From 15efe30de6a2fe933fdf2d43b562732d55d941ce Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Thu, 20 Dec 2018 18:46:31 +0100 Subject: [PATCH 001/116] switch from BasicAer to LegacySimulators --- .../european_call_option_pricing.ipynb | 54 ++++++++++--------- .../aqua/finance/fixed_income_pricing.ipynb | 12 ++--- .../aqua/finance/portfolio_optimization.ipynb | 16 +++--- 3 files changed, 45 insertions(+), 37 deletions(-) diff --git a/qiskit/aqua/finance/european_call_option_pricing.ipynb b/qiskit/aqua/finance/european_call_option_pricing.ipynb index 6ccf50564..4ef0c1a31 100644 --- a/qiskit/aqua/finance/european_call_option_pricing.ipynb +++ b/qiskit/aqua/finance/european_call_option_pricing.ipynb @@ -53,15 +53,13 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import numpy as np\n", - "from qiskit import BasicAer\n", + "from qiskit import LegacySimulators\n", "from qiskit_aqua.algorithms import AmplitudeEstimation\n", "from qiskit_aqua.components.uncertainty_problems import EuropeanCallExpectedValue, EuropeanCallDelta\n", "from qiskit_aqua.components.random_distributions import LogNormalDistribution" @@ -120,12 +118,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSa\nqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdViz\nZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZ\nWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/\nkaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScC\nIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOm\nTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj\n64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0\nBtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22\n/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4\ntOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAa\nvdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3\nAh/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRW\nrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0R\ncWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJS\nMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BE\nxDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRm\nZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgB\nmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9\nVn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwM\nPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S\n6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnF\nfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2\negvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR\n3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjA\nsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djK\njmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcY\nOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4\nain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4Cb\nWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XE\nodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNn\nk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF\n5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErh\nBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOz\nUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDL\niFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0\nENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9\nLukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6\nYBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0\nVESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgiv\nqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXq\njt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyI\nu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCn\ngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax\n3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLME\ndHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a\n8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4Alg\nqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLi\nGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8P\nLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0\nc+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQ\nbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ\n2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joir\nW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3R\nTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10\nw/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJ\nN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHc\nDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0l\nIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCI\nmBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2\nsPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhR\nd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfU\nxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lT\ndP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQi\nlgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/\nlP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSSt\nCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZ\nlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txS\nj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+Da\nFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz\n+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo\n8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqk\ni4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1\nOhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHA\np0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0\nL+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM\n6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYf\nMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J\n3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0\nOuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/Q\nTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPH\nA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB\n+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDaz\nbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJ\nYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4\nW5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C\n/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGaf\nTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyU\niBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPG\nvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx\n1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9O\nkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElr\nRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0Pa\nHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1Ny\nS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QS\np5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S\n28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX\n8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmY\nmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZm\nNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3t\nhWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMh\nmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTz\nADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9\nBThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJq\nL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8a\ncHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYf\nWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j\n/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzx\nc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYw\nbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+\nP5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgP\nMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0\n/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/\nMzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtv\nKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7\nAe/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5\nCDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI\n6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYK\nJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjS\nNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YB\ntgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6\nPStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+A\niLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4Fj\nIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJ\nEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgx\nY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/\nnv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v\n20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC\n4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj\n4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan9\n5mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3h\nNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4\nAZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRk\nZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRd\nJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJ\nYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9\nK1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2\nbrDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrst\ngFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCE\niPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV\n4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgP\njO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXq\nbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs\n++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9\nR9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcB\no0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNIT\nkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4\nm90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfv\nRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWA\nKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoM\nLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTI\nRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbV\nBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat\n2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1\nDPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/Z\nMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+b\nsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8k\ne0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/\ngUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZ\nI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVG\nTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC\n+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX\n6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTG\nCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3\nAeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XA\nmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q\n4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/\nkM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J01\n4rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2o\nQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJ\nEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N\n4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8g\nXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89W\nHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmP\nLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/p\nBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6\nMXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7\ndSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4\nbiENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCb\nEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdA\nPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogf\nkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+\nvwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6Yve\nQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh\n3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8N\nQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV\n0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS\n4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3\nt0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe\n/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYi\nLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84\ny9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD\n9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/\n6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeR\nTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1\ngNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NL\neJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVl\nJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9\ny0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT1\n3ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7\nFekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uA\nIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5\nQZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kH\nSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/F\nUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuq\nmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8w\nVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbV\nuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3\nbp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFs\nrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmI\nAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLici\nZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfS\nVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov\n6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1\nW9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6d\nPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv\n4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/n\nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB\n5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKe\nwAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzI\nerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZz\neI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ\n/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8V\nBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYF\nzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4\ngjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9\nf86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzS\nYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnasz\nIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LL\nt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy\n0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe\n/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7V\nh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfW\nI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2\nSavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTl\nEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx\n/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrb\nOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m\n+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkoho\ndC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwL\ngdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4\nW9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t\n2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4\njOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW6\n6wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtS\nz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGx\nwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjp\nZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hn\nnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq\n6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOA\naaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5b\ng+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO\n2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8\ntK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8n\nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZm\npXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5C\nYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -199,12 +199,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XeYVOX5xvHvLRY6IgghESGaX2I0\nGuOaWGKioBGNJioi2BuKGDVqIiaKEUQxir0hFgJi0LWAhQQLPZZYwBiNiIFIEVARXMuySH1+f7xn\nZRhmd2bLzJmz+3yua67dc+ac2XuGYd45b5WZ4ZxzztXWFnEHcM45l2xekDjnnKsTL0icc87ViRck\nzjnn6sQLEuecc3XiBYlzzrk68YLEFS1JgyVZym2ppHGSdo4x008lvSHpK0kW7WshqVTSiijn6VWc\nOzrt+VTe7i/ok9iYp5+kozPsXyDpxjgyuWTaMu4AzmXxOXBY9PtOwNXAFEm7mdnKGPLcAywDegCr\no33nAr8CTgWWAP+r5vw5wBlp+5bVc8Zc9QP+AzyZtv8YYEXh47ik8oLEFbt1ZvZK9PsrkhYBLwC/\nBB6LIc8uwL1mNiNt33tmNi6H81emPJ+iZGb/ijuDSxav2nJJMyv62RVA0n6Sno6qvVZKelPSSZUH\nS9ouqoY6LfVBFMyXdHPKvu6SXo2O/1jScEkto/sOiqqymgC3RVVSoyUtAPoCP6qsqqrtE6v8G5J+\nkLZ/uqTHU7ZHS5op6ReS3oqe94uSdks7r4mkyyT9V9JqSYslja58TKAEOC2liu306L7NqrYk9Zb0\ndvQ4H0gaKmnLlPtPjx5jd0mTokxzJPWs7evhksMLEpc0XaOfH0U/uwAvAWcRqpfGAaMknQBgZp8C\nT7B5ddJB0WONApC0K/AssBw4FhgEnAhUfoC/AewX/X5T9PvVhGqgiYQqq/1SjqmSpC1Tbzk9683t\nCNwADAVOADoAj0pSyjH3AFcBjwJHAr8HWkT3/SbKPDEl99+ryHso8AjhNTgKuAO4BLgzw+EPAU8T\nXpe5QKmkHWr5HF1CeNWWK3opH7Y7AcOBL4HJAGZWmnKcgH8AOwBnAw9Hd40Enpe0k5m9H+07A5hl\nZm9H21cCC4Ffm9n66PE+BR6RtJ+Z/ZNQtQawILV6StInQMccq6xKgLVpz+//zGxeDuem2g74qZnN\njR5jC0KB+T1gjqRdCFdKF5rZ7SnnPQJgZrMlrQQ+ySH3EGC6mVVe1T0bvQ5/lnSNmS1OOfYWM/tL\nlGkW8DGhEBtRw+fnEsSvSFyxa0f44F0LvEcoTPqY2YcAktpKul3SwpTj+gHfTXmMKYRC4rTonFZA\nT6KrkchPgCcqC5HIOGAdcEA9Pp93gR+n3T6oxeMsqCxEIrOjn5Xf/rtFP0fX4rG/JqkJsBebt0c9\nQvj8SL8Ce77yFzNbQehI4FckDZxfkbhi9zlwCGCE6qyltumU1aOBfQnVTLOBLwi9qI6qPMDMTNIo\n4ExJg4HehPf+QymP04nw7ZmU89ZLWkH49l9fKsxsZj08zmdp22uin02jn+0IDftf1PHvtAe2Iu21\nSdlOf20y5WqKa9C8IHHFbl1VH7ySmgJHAOeb2YiU/ZmutEcR2j26AacDT5pZWcr9HxLaGVIfvwnh\nA/nTujyBGvgq+rl12v7tCG03NbECaCGpdR0Lk+WEq7wOafs7Rj8L9dq4IuZVWy7JtiH0oqocz1FZ\nbfXr9APN7ANCtctVhKqqUWmHvAocExUelXoSvmy9WL+xq1TZ1vD9yh2SOhPaPWpqavTz1GqOyXq1\nEFX1zQKOS7urN7AB+GctsrkGxq9IXGKZ2eeSXgeulPQF4YPtj4TqsNYZThlJqOtfDExKu+8a4F/A\nk5LuJtTrXw88FzW0552ZLY6ez9WSKghf9C6nFt/6zew9SfcCN0nqQOiEsC3Qy8yOjw6bA/SQ1INw\nBTM/atdINwh4LqoeLAV2J1Ql3pfW0O4aKb8icUl3IjAfGAPcRmggH1PFsX8jNJ4/YGYbUu8ws3eA\nwwlVOOMJBcvDQK/8xK7SicAi4K/AtYQeU+/V8rF+Q7gCO5nQzfdWYFXK/dcQGv8fBV4ndJ/ejJk9\nDxwP7A1MAC4idIE+v5a5XAMjX2rXNRaSfkkoTL5bi+62zrkqeEHiGjxJ3wT+jzCQbpGZHRlzJOca\nFK/aco1BP8JYkq+AC2LO4lyD41ckzjnn6sSvSJxzztVJo+j+2759e+vatWutzl25ciUtWrTIfmCR\nSFLeJGWFZOVNUlZIVt4kZYW65Z01a9ZyM9s+64Fm1uBvJSUlVlvTpk2r9blxSFLeJGU1S1beJGU1\nS1beJGU1q1teYKbl8BnrVVvOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTrwgcc65hmjs\nWOjalQO7d4euXcN2nhS8IJG0q6QpkiokLZU0JG0NiKrO21vS85JWSPpU0mRJ+xQis3POJcrYsdCv\nHyxciMxg4cKwnafCpKAFiaS2wGTCsqlHEabI/j1hquvqzuscnbclYaGeU6Lfn5fUJZ+ZnXMucQYO\nhIqKTfdVVIT9eVDoke39gWZATwvLf06S1BoYLGmYVb0k6BFAq+i8zwAkvUxYBvSXwN35j+6ccwmx\naFHN9tdRoau2DiesOJdaYJQSCpcDqzlvK8KCROUp+8qjfarvkM45l2jt22fev+OOeflzhS5IdiEs\n7/k1M1sEVET3VWVcdMxNkjpES4feApQRlk51zjkHMH8+rFwJSvuO3bw5DB2alz9Z0GnkJa0FBpjZ\nrWn7FwNjzOzyas7dk7C63beiXR8Ch5vZv6s4vh9hHQo6duxYUlpaWqvM5eXltGzZslbnxiFJeZOU\nFZKVN0lZIVl5iznrFqtX86MLLqDphx+y4JRT6Dx+PNssW8bqDh14/6yzWHbIITV6vG7dus0ys72z\nHpjLhFz1dQPWAhdm2L8EGFrNeZ2AecBTwGHRbQKwGNgx29/1SRuLU5KymiUrb5KymiUrb9Fm3bDB\n7PTTzcDsb3/7enchJm0sdGN7GbBthv1tgM+qOW8AoWNALzNbCyBpKjAXuAT4bT3ndM65ZLnvPhg9\nGq68Eo44oqB/utBtJHNIawuJuva2IK3tJM0uwDuVhQiAma0B3gF2zkNO55xLjtdegwsugB49QkFS\nYIUuSJ4BekhqlbKvD7AKmFHNeQuBH0jaunKHpG2AHwAL8pDTOeeSYfly6NULOnUKAw6bZB3fXe8K\nXZCMAFYD4yUdEjWIDwZutpQuwZLmSRqZct79wDeBJyQdIelI4ElC28m9BUvvnHPFZP16OOEEWLYM\nxo2Ddu1iiVHQgsTMyoCDgSaExvKrCN14B6UdumV0TOV5swgN7K2AB4ExQHPgF1ZFry3nnGvwrrwS\nJk+G4cOhpCS2GAVfs93MZgPdsxzTNcO+KcCUPMVyzrlkeeopuPZaOPtsOPPMWKP47L/OOZc0c+fC\nqaeGq5Dbb487jRckzjmXKCtXQs+esOWWoV2kadO4ExW+ass551wtmYXp4N95B559FroUx+TnXpA4\n51xS3HUXPPQQXHMNHHpo3Gm+5lVbzjmXBC+/DBdfDL/6FVx2WdxpNuEFiXPOFbuPP4bjjgtVWWPG\nwBbF9dHtVVvOOVfM1q2DPn2grAwmToRtM01XGC8vSJxzrphddhnMmAEPPgg//GHcaTIqrusj55xz\nGz3+ONx4I5x3Hpx8ctxpquQFiXPOFaN334UzzoB994Wbb447TbW8IHHOuWLz5Zdh0GGzZvDYY7D1\n1tnPiZG3kTjnXDExg7594b//DRMy7rBD3ImyKvgViaRdJU2RVCFpqaQhkqqdQF/SYElWxa24OlQ7\n51xd3HJLuAq57jro1i3uNDkp6BWJpLbAZGA2cBRhdcObCAXaFdWcej/wbNq+o4E/EBbLcs655Jsx\nAy69NFRrXXJJ3GlyVuiqrf5AM6BntJDVJEmtgcGShqUubpXKzBYDi1P3SfoTMMfM3sx3aOecy7sl\nS6B3b/jOd2DUKJDiTpSzQldtHQ48l1ZglBIKlwNzfRBJ2wG/AB6u33jOOReDNWtCIbJyZZjRt3Xr\nuBPVSKELkl2AOak7zGwRUBHdl6tewFaEQsg555JtwIAwl9bIkbDbbnGnqTGZWeH+mLQWGGBmt6bt\nXwyMMbPLc3ycqUAbM6tybcloPfh+AB07diwpLa1dmVNeXk7Lli1rdW4ckpQ3SVkhWXmTlBWSlbe+\ns3aYPJldhw7lg169+N9559Xb41aqS95u3brNMrO9sx5oZgW7AWuBCzPsXwIMzfExOgHrgUty/bsl\nJSVWW9OmTav1uXFIUt4kZTVLVt4kZTVLVt56zfrWW2bNm5v97Gdma9bU3+OmqEteYKbl8Blb6Kqt\nMiDTjGNtgM9yfIzegIBH6iuUc84V3Oefh95ZrVvDI4/AVlvFnajWCt1raw5pbSGSOgMtSGs7qcbx\nwItm9kE9Z3POucLYsAFOOw0WLIBp06BTp7gT1Umhr0ieAXpIapWyrw+wCpiR7WRJXYF98d5azrkk\nGzYMnnoqTMh4wAFxp6mzQhckI4DVwHhJh0QN4oOBmy2lS7CkeZJGZjj/eGAd8HghwjrnXL2bPBkG\nDoTjj4ff/jbuNPWioFVbZlYm6WDgTmACoV3kFkJhkp4r07QpxwNTzOyTfOZ0zrm8WLQITjgBvv99\nuO++RA06rE7BJ200s9lA9yzHdK1i/575yOScc3m3ejX06hV+jh8PCenunAuf/dc55wrhoovg9ddD\nIfLd78adpl75eiTOOZdvo0fDiBHwhz/AMcfEnabeeUHinHP59K9/wbnnQvfucM01cafJCy9InHMu\nXz79FI49Ftq3h4cfhi0bZmtCw3xWzjkXtw0b4JRTYPFieOEF6NAh7kR54wWJc87lwzXXwMSJMHw4\n7LNP3Gnyyqu2nHOuvj3zDAweDKeeCv37x50m77wgcc65+jR/Ppx0EuyxB9x9d4MZdFgdL0icc66+\nrFoVGtfNwkqHzZvHnaggvI3EOefqgxmcd17o7jthAuy8c9yJCsavSJxzrj7cfz+MGgV/+hMceWTc\naQqq4AWJpF0lTZFUIWmppCGSMk3QmOncnpJel7RK0gpJz0pqke/MzjlXrddfh/PPhx49YNCguNMU\nXEELEkltgcmAAUcBQ4DfA1flcO5ZwEOENU0OB84C5uLVc865OC1fHtpFOnWCsWOhSU7fixuUQn8I\n9weaAT2j9UcmSWoNDJY0LHVNklSS2hOmm7/AzO5LueuJvCd2zrmqrF8fpoVftgxeegnatYs7USwK\nXbV1OPBcWoFRSihcDqzmvN7RzwfyFcw552ps0KCwUNVdd0FJSdxpYlPogmQX0tZmN7NFQAVpa7mn\n2Qd4D+grabGktZJelbR//qI651w1nn4ahg6Fs86Cvn3jThMrmVnh/pi0FhhgZrem7V8MjDGzy6s4\n7zlgf+AL4FJgRfRzb+D/zOzjDOf0A/oBdOzYsaS0tLRWmcvLy2mZoAVokpQ3SVkhWXmTlBWSlbe8\nvJztP/uMkv79WfWtb/GvO+5gw9Zbxx2rSnV5bbt16zbLzPbOeqCZFewGrAUuzLB/CTC0mvMmERro\nD0vZ1xooA67O9ndLSkqstqZNm1brc+OQpLxJymqWrLxJymqWkLx//atZly62QTLbaiuzFi3MFiyI\nO1VWdXltgZmWw2d7oau2yoBtM+xvQ1i/vSqfRj+nV+6w0M4yC9i1vsI551xGY8dCv36wcCEyg7Vr\nYd06ePHFuJMVhUIXJHNIawuR1BloQVrbSZp3CVck6ZPWCNhQnwGdc24zAwdCRcWm+1avDvtdwQuS\nZ4Aeklql7OsDrAJmVHPe3wiFRrfKHZLaACXAv/OQ0znnNlq0qGb7G5lCFyQjgNXAeEmHRA3ig4Gb\nLaVLsKR5kkZWbpvZTOApYKSk0yQdATxNaHO5q5BPwDnXCH3rW5n377hjYXMUqYIWJGZWBhwMNAEm\nEEa03wKkzymwZXRMqpOBJ4GbgccJhUj36DGdcy4/1q2DTL2emjcP3X9d4acXMbPZQPcsx3TNsK8c\nODe6OedcYVx2GcyZExaoeuYZbNEitOOOoRA56aS40xUFn6fKOeeqMm4c3Hgj/OY3YfQ6MGP6dA46\n6KB4cxUZn0beOecymTMHTj8d9t0Xbrkl7jRFzQsS55xL9+WX0LMnNGsGjz0GRTxyvRh41ZZzzqUy\nC3NnvfceTJoEO+wQd6Ki5wWJc86luvXWcBVy/fXQvdp+QS7iVVvOOVfpH/+AAQPgmGPCT5cTL0ic\ncw5g6VLo3Rt23hlGjwalz8jkquJVW845t2YNHHcclJfDlCnQunXciRLFCxLnnBswAF5+GUpLYbfd\n4k6TOF615Zxr3B5+GG6/HS66CPr0iTtNInlB4pxrvP7zn7BU7gEHwLBhcadJrIIXJJJ2lTRFUoWk\npZKGSEqfoDH9nK6SLMOtduvnOufc55+HQYetW8Ojj8JWW8WdKLEK2kYiqS0wGZgNHAXsDNxEKNCu\nyOEhLgFeStleXt8ZnXONwIYNcNppMH8+TJsGnTrFnSjRCt3Y3h9oBvSM1h+ZJKk1MFjSsNQ1Sarw\nnpm9kveUzrmGbdgweOqpMIfWAQfEnSbxCl21dTjwXFqBUUooXA4scBbnXGM0ZUpYIrdPH7jwwrjT\nNAiFLkh2IW1tdjNbBFSQtpZ7FUZJWi/pQ0k3S2qWj5DOuQbqgw/g+ONhl13g/vt90GE9kZkV7o9J\na4EBZnZr2v7FwBgzu7yK8zoBA4HngS+Ag4A/AM+b2VFVnNMP6AfQsWPHktLS2rXLl5eX0zLT6mhF\nKkl5k5QVkpU3SVmhMHm1Zg0/uvBCmi9axKy772ZVLZfJbUyvbbdu3WaZ2d5ZDzSzgt0Iy+NemGH/\nEmBoDR/rXMCAPbMdW1JSYrU1bdq0Wp8bhyTlTVJWs2TlTVJWswLl7d/fDMzGjavTwzSm1xaYaTl8\nHmet2pJ0qqR2tSrONlcGbJthfxvgsxo+1uPRz73qlMg51/A98ACMGAGXXhq6/Lp6lUsbyShCN12i\n9omf1OHvzSGtLURSZ6AFaW0nObC0n845t7k33wzrrXfrFtZZd/Uul4KkDPhm9Luo2wf3M0APSa1S\n9vUBVgEzavhYvaKfs+qQxznXkJWVhSuQdu3CPFpb+vSC+ZDLqzoZeFDSe4RCZLSklVUdbGbVXbGM\nAH4LjJd0PbATMBi42VK6BEuaB8wws77R9mCgFWEw4hfAz4EBwHgzeyuH5+Cca2w2bICTT4bFi8M6\nIx06xJ2owcqlIDkT+A3wPUJ7xHzgk9r8MTMrk3QwcCcwgdAucguhMEnPlTptyhzCqPazCGNOFgE3\nAH6d6pzL7JprYOJEuOsu2HffuNM0aFkLEjOrAG4EkHQIMNDM/l3bP2hms4Fq1680s65p26WEgYvO\nOZfds8/C4MFwyilw7rlxp2nwcum1tV7Sj6PN6YSqJeecK07z58OJJ8Luu4eeWj7oMO9yaWxfA2wT\n/X4qsH3+4jjnXB2sWgW9eoX2kfHjoXnzuBM1Crm0kcwmTKr4JKHXVi9JVY10NDO7u97SOedcrszg\nvPPgjTdgwoSw9roriFwKkguAewiN4kZo9K6KAV6QOOcK7/77YdQouOIKOPLIuNM0KlmrtszsZTPb\n3cy2IlyR7GtmW1Rxq3aBKuecy4vXX4fzz4dDDw2N7K6gajr7bzdCVZdzzhWH5ctDu0inTvDQQ9DE\nv88WWo2GeZrZDABJ+wAHANsBnwIvmtmr9R/POeeqsX596KH18cfw4othBLsruBoVJJJaAI8BPYD1\nwAqgHdBE0rPAcdG4E+ecy79Bg2DSJLjvPtg7+2znLj9qWrU1DNgPOB5oamadgKbR9n7A9fUbzznn\nqjBhQpiEsW9fOOusuNM0ajUtSI4F/mBmj5nZBgAz22BmjwF/BI6r74DOObeZefPCqPWSErjzzrjT\nNHo1LUjaAB9Ucd8HQOu6xXHOuSwqKsKMvk2awOOPQ9OmcSdq9GpakPwbOFfadM6BaPvc6H7nnMsP\nMzjnHPjPf0IPra5d407kqHlBcjmhoX2OpOskXSzpz8C7wKHR/dWStKukKZIqJC2VNERSzv31JG0h\naZYkk+SjjpxrTIYPh7/+Fa66Cnr0iDuNi9S0++9UST8CriS0h3QCPgReBXpGM/tWSVJbwvoms4Gj\nCCsv3kQo0K7IMcZZwLdqkts51wD8859w8cVwxBEwcGDcaVyKGi8XFhUWx9fy7/UnrCfSM1rIapKk\n1oS5vIalLm6VSVQQDSU07N9fywzOuaT5+OMw6LBzZ3jwQdiippUpLp9q9K8h6UZJu9bh7x0OPJdW\nYJQSCpcDczj/asIqiVPqkME5lyTr1sHxx8Onn4YZfdu2jTuRS1Ob7r9vS3pNUn9JbWp4/i6E1Q6/\nZmaLgIrovipJ2gM4g+onjXTONTSXXw7Tp8M998APfxh3GpeBzKxmJ0jdCB/oxxCWw30S+IuZTc7h\n3LXAADO7NW3/YmCMmVXZWC9pBvCqmV0qqSthyd9fmdnfqji+H9APoGPHjiWlpbVbYLG8vJyWLVvW\n6tw4JClvkrJCsvImKStUnbf9jBn8YPBglvz618y9+OIYkm2uoby2uejWrdssM8s+ZYCZ1eoGtAT6\nAv8gTJeyELgK2Kmac9YCF2bYvwQYWs15xwMfAa2j7a6EKeuPzCVrSUmJ1da0adNqfW4ckpQ3SVnN\nkpU3SVnNqsj77rtmrVqZ7bOP2VdfFTxTVRrEa5sjYKbl8Blb6xYrMys3s5HAIEK7RWfgMuC/kp6S\n1CXDaWXAthn2twE+y/R3JG0F3ECYfmULSduyceBjC0mtavscnHNFqrw8DDps2jQMOtxmm+znuNjU\nqiCR1FXSIEnvA88D5YTuwK2AXxOuGDLVJc0hrS1EUmegBWltJylaADsANxMKojI2DnwsBf5Vm+fg\nnCtSZmH+rPfeg9JS2GGHuBO5LGo6++8phPaRnwOLgFHAKDNbnHLYREkrCeNF0j0DDJDUysy+jPb1\nAVYBM6r4s+WEdVBSfQN4mDAAcmpNnoNzrsjdeis8+ihcdx107x53GpeDmo4juRd4AuhhZtV1wf0v\ncE2G/SOA3wLjJV0P7AQMBm62lC7BkuYBM8ysr5mtA6anPkjU2A7wtvk6KM41HC+8AAMGwDHHwKWX\nxp3G5aimBck3zaws20Fm9iGh4T19f5mkg4E7gQmEdpFbCIVJei5f5sy5xuTDD6F3b9h557D2+qZT\n+rkiVtMpUrIWIjk8xmyg2utVM+ua5f4FhPXjnXMNgNatg+OOgy++gMmToU1Nh6i5ONV4ihRJfYCz\nge8SFrXahJl1qIdczrnGYOxYGDiQny9cGLbPOw922y3eTK7GajpFyonAA8A8Qk+qp4G/RY/zBaHK\nyjnnshs7Fvr1g4ULN1YvjBoV9rtEqWn33wGE+a7Oi7aHm9mZwLeB5YSpTpxzLruBA8MiVakqKnxm\n3wSqaUHyf8BLZraeMJq9NUDUlfd64Pz6jeeca7AWLarZfle0alqQfA5UDjFdAnw/5T4B7eojlHOu\ngTOreoncHXcsbBZXZzVtbJ8J7AE8R2gfuVLSOmANYbErH9PhnMtu2DBYtQq22grWrt24v3lzGDo0\nvlyuVmp6RfJnwoh2CAXHa8Bwwgj35USz7TrnXJWmTAlTw/fpExrXu3TBJOjSBe69F046Ke6EroZy\nuiKR1Az4JWEOrY8kdTSzj4GjJG0DbGNZVjd0zjk++ABOOAG+9z24/35o2RJOOokZ06dz0EEHxZ3O\n1VLWgkTSToR5s7qm7P5CUm8ze97MVgOr85TPOddQrF4dBh1+9VVY6TBBa3q46uVStTUM2AD8DGgO\n7EaYcfeePOZyzjU0F18Mr74Ko0fDLtUuiOoSJpeCZD/gCjN7ycy+MrN3gXOAHSV1ym8851yDMGYM\n3H13mJCxZ8+407h6lktB0gl4P23f/wjdfb9R0z8oaVdJUyRVSFoqaYikaidolLSbpGej41dLWiTp\nfi/InEuAN9+Ec86Bgw6Ca6+NO43Lg1y7/9ZsYfcqSGpLaG+ZDRwF7AzcRCjQrqjm1DaENdrHAEsJ\nI+kHASWSfhxNNe+cKzZlZXDssdCuXVikassaT+/nEiDXf9XnovEi6aak788yaWN/oBnQM+rlNUlS\na2CwpGFV9fwys5eBl1N2TZe0mLA64x7AGzk+D+dcoWzYAKecEnpqzZgBHTvGncjlSS4FyWbritTB\n4cBzaQVGKWF6lQMJa5TkakX0c+t6yuacq09Dh8Lf/w533QX77Rd3GpdHWQsSM6vPgmQX0pbGNbNF\nkiqi+6otSCRtQcj8beA64HXCoEjnXDF59lkYNAhOPhnOPTfuNC7PZFYvzR+5/TFpLTDAzG5N278Y\nGGNml2c5/1mgR7Q5C/ilmS2r4th+RCPtO3bsWFJaWlqrzOXl5bRMUH/3JOVNUlZIVt44szb96CNK\nzjmH1e3b88Zdd7Ghqjm1Uvhrmz91ydutW7dZZrZ31gPNrGA3YC1wYYb9S4ChOZz/f8A+wMnAHEJh\n0jTbeSUlJVZb06ZNq/W5cUhS3iRlNUtW3tiyrlplttdeZm3amM2dm/Np/trmT13yAjMth8/2Qneh\nKAO2zbC/DWH99mqZ2dzo11clvUDoyXUi8Jd6S+icq73zz4c33oCnn4bvfCfuNK5AajppY13NIbSF\nfE1SZ6BFdF/OzGwh8CmwU72lc87V3v33w8iRcMUV8KtfxZ3GFVChC5JngB6SWqXs6wOsAmbU5IEk\nfY+w/sn8+ovnnKuVmTPDeuuHHgqDB8edxhVYoau2RgC/BcZLup5wNTEYuNlSugRLmgfMMLO+0faN\nwDrCeiefERbUupQwwr52rejOufqxfHkYdPiNb4T11ptUO1GFa4AKWpCYWZmkg4E7CV19PwNuIRQm\n6blS340zgQsIvbCaEtZEGQf82cxW5jm2c64q69eH9UM++gheegnat487kYtBwecrMLPZQPcsx3RN\n2y7FrzycKz6DB8Pzz8N998He2XuJuoap0G0kzrmGYsIEuOYaOPNMOOusuNO4GHlB4pyruXnzwjxa\ne+0Fd94ZdxoXMy9InHM1U1FmcUuSAAAgAElEQVQRGtebNIFx46BZs7gTuZj5nM7OudyZhbVF3n4b\nJk6Erl3jTuSKgBckzrnc3X03/PWvMGQIHHZY3GlckfCqLedcbl55BS66CI44AgYOjDuNKyJekDjn\nslu2DHr1gs6d4cEHYQv/6HAbedWWc65669bB8cfDihXwz39C27ZxJ3JFxgsS51z1Bg6EadPggQdg\nzz3jTuOKkF+fOueqNm4cDBsWVjk89dS407gi5QWJcy6z996DM86An/wEbrkl7jSuiBW8IJG0q6Qp\nkiokLZU0RFK104VK+rGkUZLmRee9J2mQpOxreDrnaq68HHr2hG22gccfDz+dq0JB20gktQUmA7OB\no4CdgZsIBdoV1ZzaJzr2emAusAdwdfTz2DxGdq7xMQtzZ82ZEyZk7Nw57kSuyBW6sb0/0AzoGa0/\nMklSa2CwpGGpa5Kkud7MPknZni7pK+AeSV2i1RKdc/XhttvgkUfguuvg4IPjTuMSoNBVW4cDz6UV\nGKWEwuXAqk5KK0Qq/Sv62aH+4jnXyL3wAlxyCRx9NFx6adxpXEIUuiDZhbS12c1sEVBB2lruOdgf\n2AC8Vz/RnGvkPvwQeveGnXaC0aNBijuRSwiZWeH+mLQWGGBmt6btXwyMMbPLc3ycbwBvARPN7PQq\njulHWFGRjh07lpSW1m5drPLyclq2bFmrc+OQpLxJygrJylvTrFq3jh/+7ne0mjuXN4YPZ+W3v53H\ndJtryK9t3OqSt1u3brPMLPuKZWZWsBuwFrgww/4lwNAcH2Nr4B/A+0DbXM4pKSmx2po2bVqtz41D\nkvImKatZsvLWOOtFF5mB2UMP5SVPNg36tY1ZXfICMy2Hz9hCN7aXAdtm2N+GsH57tSQJGAPsBvzU\nzMrqN55zjVBpKdx6K1x4IZxwQtxpXAIVuiCZQ1pbiKTOQAvS2k6qcAuh2/AvzCyX451z1XnnHejb\nF376U7jhhrjTuIQqdGP7M0APSa1S9vUBVgEzqjtR0mXABcDJZvZi/iI610h88UUYdNiqFTz6KGy1\nVdyJXEIVuiAZAawGxks6JGoQHwzcbCldgqMR7CNTtk8EriVUay2RtG/KbfvCPgXnGgAzOP10+N//\nQiHyzW/GncglWEGrtsysTNLBwJ3ABEK7yC2EwiQ9V+q0KYdGP0+PbqnOAEbXb1LnGrgbboAnnoCb\nb4af/zzuNC7hCj6NvJnNBrpnOaZr2vbpbF6AOOdqY+pUuOyyMGbkooviTuMaAJ/917nGZPHisEjV\n974HI0f6oENXL7wgca6xWL06LJe7ahWMHw8JGlTnipuvkOhcY/G738Grr4Zp4Xep6YxEzlXNr0ic\nawzGjIHhw2HAADjWV15w9csLEucaujffhHPOgYMOgmuvjTuNa4C8IHGuISsrC1cg220XpkLZ0muz\nXf3zd5VzDdWGDXDqqfDBBzBjBnTsGHci10B5QeJcQzJ2LAwcyIGLFkHr1vD553DnnbDffnEncw2Y\nFyTONRRjx0K/flBRgSAUIk2awLaZJtx2rv54G4lzDcXAgVBRsem+9evDfufyyAsS5xqKRYtqtt+5\nelLwgkTSrpKmSKqQtFTSEElNspyztaQbJL0gaZWkwq0P7FwSfPEFNG+e+b4ddyxsFtfoFLQgkdQW\nmAwYYYGqIcDvgauynNocOAuoAF7OZ0bnEufFF+GHP4SVKzdfU6R5cxg6NJ5crtEo9BVJf6AZ0NPM\nJpnZCEIh8jtJras6ycw+A7Yzsx7AE4WJ6lyRW7MmtH8ceCBssQW89BKMGgVdumASdOkC994LJ50U\nd1LXwBW6IDkceC51ESuglFC4HFjdidFC9M45gDlzYP/9w0j1008Po9f33z8UGgsWMGPqVFiwwAsR\nVxCFLkh2IW1tdjNbRKiy8lnknMvGLMyZtddeoaAYPz5MB9+qVdZTncuXQo8jaUtYFTFdWXSfc64q\nH30EZ54JzzwDPXqEaqxOneJO5RwqZI2RpLXAJWZ2W9r+JcBoM8va4V3S+cAdZlbtijzRevD9ADp2\n7FhSWlpaq8zl5eW0TNC6DUnKm6SsEG/edi++yPduvJEmq1bxfv/+LDn66GoXpfLXNn+SlBXqlrdb\nt26zzGzvrAeaWcFuwDJgUIb95cCAHB/jfKImk1xvJSUlVlvTpk2r9blxSFLeJGU1iynvl1+anXWW\nGZjtuafZO+/kdJq/tvmTpKxmdcsLzLQcPmML3UYyh7S2EEmdgRaktZ041+i98gr86EehDeSPfwyL\nUu26a9ypnNtMoQuSZ4AeklJbBvsAq4AZBc7iXHFatw4GD4YDDghdfKdPhz//GbbeOu5kzmVU6Mb2\nEcBvgfGSrgd2AgYDN1tKl2BJ84AZZtY3Zd/hhCuXPaPtXtFdr5vZwsLEdy7P5s2Dk08OVx+nnAJ3\n3AFt2sSdyrlqFbQgMbMySQcDdwITCD24biEUJum50qdNuRvokrL9WPTzDGB0fWd1rqDMQhXWRReF\n0emlpdCnT9ypnMtJwaeRN7PZQPcsx3TNZZ9zDcInn8DZZ8NTT8HBB8Po0bDDDnGnci5nPvuvc3Ga\nOBF23z2MDbn5Znj+eS9EXOJ4QeJcHCoq4Lzz4IgjoEMHmDkTLr44zJnlXML4u9a5Qps1K0xxMnw4\n/O538Npr4arEuYTygsS5Qlm/PkyyuO++UF4OkyfDTTdB06ZxJ3OuTnzNducKYf780J33pZegd28Y\nMQLa+vRyrmHwKxLn8skMHnggLDz19tvw4IOha68XIq4B8YLEuXxZsSJcfZx+epjq5K23wmDDaiZb\ndC6JvCBxLh8mTYI99ghjQ66/HqZODSsWOtcAeUHiXH1atSqMTj/00DC1yauvwqWXQpP0iRqcazi8\nsd25+vLvf4elbd95By64IFyJNGsWdyrn8s6vSJyrqw0b4IYb4Mc/Du0izz4Lt9/uhYhrNPyKxLm6\nWLQITjstTPXesyfccw+0bx93KucKquBXJJJ2lTRFUoWkpZKGSMpagSypjaRRksokfS5prKR2hcjs\nXEYPPxwa1GfOhL/8BR5/3AsR1ygV9IpEUltgMjAbOArYGbiJUKBdkeX0R4DvAWcBG4DrgSeBn+Ur\nr3MZffYZ/OY3oSDZf/8wNmSnneJO5VxsCn1F0h9oBvQ0s0lmNgK4CvidpNZVnSRpP6AHcJqZjTOz\nJ4CTgQMkHZKXpGPHQteuHNi9O3TtGraLWZLyJikrbJq3Y0fYeWd47DG4+mqYMcMLEdfoFbogORx4\nLnU1RKCUULgcmOW8j83sH5U7zOw1YH50X/0aOxb69YOFC5EZLFwYtov1Ay9JeZOUFTbPu2wZlJXB\nlVfCFVfAlt7M6Fyh/xfsAkxN3WFmiyRVRPdNqOa8ORn2vxvdV78GDgzTfKeqqAgjlK+9tt7/XJ39\n979hne9UxZo3SVkhc97K1Qz/9Kd4MjlXZApdkLQlLK+briy6rzbnZaxXkNQP6AfQsWNHpk+fnnPI\nAxctItMkFrZuHZ9sv33Oj1Mo28+enZi8ScoK1eRdtIgZNXhPFVp5eXmN3vNxS1LeJGWFAuU1s4Ld\ngLXAhRn2LwGGVnPeJOCJDPvHAi9l+7slJSVWI126mIXvnZveunSp2eMUSpLyJimrWfLyRqZNmxZ3\nhBpJUt4kZTWrW15gpuXw2V7oNpIyYNsM+9uQ+Yoj23nbZjmvdoYOhebNN93XvHnYX4ySlDdJWSF5\neZ2LQaELkjmktWlI6gy0IHMbSJXnRapqO6mbk06Ce++FLl0wKUy2d++9YX8xSlLeJGWF5OV1LgaF\nLkieAXpIapWyrw+wCpiR5bxvSDqgcoekvQntI8/kIygnnQQLFjBj6lRYsKD4PziSlDdJWSF5eZ0r\nsEIXJCOA1cB4SYdEDeKDgZstpUuwpHmSRlZum9k/geeAMZJ6Sjqa0D7yoplNLugzcM45t4mCFiRm\nVgYcDDQhdPW9CrgFGJR26JbRMamOJ1y1/AUYA8wCjslnXuecc9kVfDSVmc0Gumc5pmuGfZ8BZ0Q3\n55xzRcKnkXfOOVcnXpA455yrE4UxJw2bpE+AhbU8vT2wvB7j5FuS8iYpKyQrb5KyQrLyJikr1C1v\nFzPLOuVEoyhI6kLSTDPbO+4cuUpS3iRlhWTlTVJWSFbeJGWFwuT1qi3nnHN14gWJc865OvGCJLt7\n4w5QQ0nKm6SskKy8ScoKycqbpKxQgLzeRuKcc65O/IrEOedcnXhB4pxzrk68IHHOOVcnXpA455yr\nEy9InHPO1UnBZ/919SNaWfKXgIDHzGyFpB2AS4CdgQXAvWb2dnwpQdIfgIlx58iVpGbAlmb2Zcq+\n7YHzgV2BDcCbwHAz+zyelM4VF+/+G5EkwvomRwDfB7YD1gMfA68Ao83sv/El3EjST4DngZbAOuBT\noAcwkZD5HeAHwDeAQ8zshZiiImkDYIQlkR8CHjGzeXHlyUbSRGCumV0Ybe9HWIVzA2ENHAElwBqg\nu5m9E2PWHwHNzOzllH2HAZexsdD7NzA49ZhiEf2f+xWwF+E9MpPwpaOoP5QktSbMXdXdzF6MOw98\nnak7sDXwdzNbGX0BOo+wkuz7hC+WS/Py94v836wgohd8IuED4mPCKo7fIry5nyH8Q3wPuNrMro4r\nZyVJkwhXk8cAKwmLgx1N+KDrZWZrJW0DPAk0NbNuMWbdAFwP7A78gpD7DUKh8qiZLYkrWyaSlgN9\nzeypaPsVwmt8dOVViqQ2wNPAV2bWI8asrwATzGxotH0mcD8wDZhKKPQOBn4GHFv5nGLK+jLhdX03\n2m5L+DJUApRHh7UkfGnrkXpFGAdJv6nm7mbADcBtwFwAMxteiFyZSPoOMAXoHO2aDxwKTAK2Bf5H\n+PxaBZSY2eJ6D2Fmjf4GPEx4Q+yesu+bwLPAuGj7QMIb/swiyLsCODxluwPh2+ehaccdASyPOesG\n4CfR722BftGbfl10mx7taxf36xplrAB+nrK9Jv11TXltV8ac9YvUbMA84I4Mx40A/l0s74NoeyTh\nSvqwlH2HAWXALUXwPthAuLrfUMUt9b71MWd9lHDl+R1CTcqD0efZy0Cr6Jj20TH35CODN7YHhwN/\ntJR6fAuXgP2BoyV1MrMZwLXAhTFlTGXRLXWbtH2ZtmNlZmVmdq+ZHQzsAPyecCk+Algq6e+xBgz+\nA6RewX1M+M+Zrh2h0InThrTtLsDjGY57nPCNtJj8GhhiZs9W7oh+Hwr0jC3VRk8Dy4C+QBMz26Ly\nRng/CDgo2pe+LHihHQAMNbN5ZvYpcAWhnfRGi67szGw5cCubvrfrjRckgQjfMNKtj+5rE22/Cny3\nUKGqMQu4RFIrSVsAlwNLgHMlNQGQtCXwG8IHY9Exs4/M7DYz2x/4NjCIcBUYt+uAP0o6M3oNhwI3\nSPqFpK0lbRO1Q/yZ8E0wTi8AJ6VsvwNkmi78x4T3RzHZltAmkm4WoW0vVmZ2NHAaMAB4XdJPU++O\nJ1WV2gIfpWxX/lunr8H0PuELXL3zXlvBZOAaSW+Z2fvwdR3u7YR/oMpG9pZAMfTUGUio//yUUD1U\nQWhoexyYK6mysf2bhOqComZmCwkf4NcVQZbxki4gfHu7BXiP8EWi8puzEb5cPE34kInT5cBL0ZeJ\nOwiN7A9I2o5QZQihjeQi4I+xJNzUsZIqC7oyINOCSe0JVXaxM7PnJe1BeP3+LulZQq/IWNtvMlhG\nuBqttB64h3A1naoDecruje1A1G32WcLl/0JCvfi3CY3uJ5jZM9FxwwgrhvWJK2ulKPORhC8D48zs\nQ0nfAC5l4/O438zeiDEmkgYB91meeovki6R2QB/gJ4RvyFsQCu53gb+Z2awY431N0p7A3cA+bCzk\nSPm9jFCFdFs8CYOo00W60WZ2Ztpx9wC7mtnPCpMsN9H/rWGEard7CIVLNzP7R6zBAElPAp+mv5YZ\njrsD+L6ZHVLvGbwgCaIqod7AD4GmhIbLh6I6R+eKmqTvEwqT9ELvZTNbG2e2mpB0NvA/M5sad5ZM\nou7gtxC+rB1hRdCtWlJHoLmZzc9y3O8InS6m1HsGL0gaHklNzCxTm0/RkNSU0CC4AZhXjB92URvJ\nTqSMKTKzRfGmcq74eGN7Gkm7STpW0lmS+ka/7xZ3rnSSekp6UtJESb+K9vWRtABYI2lh9O0uVpJO\njsY3VG5vKek6wjfmtwidAT6VVAx1+ABIKpH0NKE++V3gJcL4hvmSlkgaIql5rCEbEEXizpGJpGbp\n/9aS9ow+F0riylV04uz/XEw34ExCu0KmvuPrCVOOnBF3zihr7yjXi8BThMb2swltOyMJo1kfjnL3\niDnrbODclO2borx/An5K6Lo4mDBY6vIieG0PJbSNzST0zBpMGJS6Jsr8e0LvqDeBtkWQ90jCuJy3\ngUdIGQOTcsw+xD/W4VCiMQ0p+44mDE5dB6yNXvMj4n5No2xtgCeiXOuA+4AmwANpnwsvAe3jzpvj\nczo2X++D2J9cMdyAC6I3zF2EUcDtozdNk+j3A4A7ow+Y84og7+vAiJTtk6JsN6UdNwqYHHPWCuDA\nlO1lwIUZjrsEWFgEr+0s4IEq3iMLCFfxTaMPwOExZ/1FyofZnVH29VFhrZTjiqEgWc+mAxKPiT6M\nX47+7S+Jfl9HhgGgMeS9nTANygXAqdGXh3HAB1GhuD1h/NkS4O648+b4nPJWkHgbCSDpfcIH87As\nx10K9DeznQqTrMocXwA9zWxytN2G0DvnEEtppIyqvO4xs9jGZ0j6EDjfzMZF26sJV0nT0477BfC0\nmTUrfMpNcqwCfm1mk9L2tyXMKLCbmb0r6VTgejPrFEfOKNOLhHnBzkjZdybhQ3ASocfhV5L2ITS6\nxzZwLuq1ta+ZvRZtvwEsMbNfpR03EWhhZgfGEDM1x3zgWjO7L9r+EaGgPsPMHkg57mzClfS340kK\nkv6S46FdCIMo6/194G0kwTeA13I47jWKYLAUoWtn6puhcq6iz9KOKycM/IrT04TBk1tH25OBEzIc\ndwLhW1/clhF67qX7IeF1rxxHtJCNA1Xj8gPgr6k7zOwvhOl89gWmRmNKitEPCN1o091LmMQxbh3Y\nOH4Mojm1CPNWpZpH5vEwhXQa4Spp9yy3LlU9QF35gMTgLeBsSf8ws0z93StnKj07OjZuCwmzuz4H\nYGbro26J76YdtxObjniNw2WEEdj/kXQ/MAG4XtIP2DhorjvwI8JMsHG7F7haUgtC28MawsjwgcA0\n2zgeZicg7h5cXwEt0nea2axoJPZzhOqiwQXOVZXU6o/P2fgFKNVKiuML7nxCgTwj2v4ZoSpuf0Lb\nZKWfEv/7YC7wmpmdWt1BknoR2tHqnRckwe8JAxJnSxpPmPL8M8Ibf1tgF0Kd7g4Ux0jx8aRNdWBm\nr2Y47kQ2fdMXnJl9Kmlfwgfx7wjf9AD2i25rCNUwPzOz1+NJuZGZDY2qYf5ImLYFwvvgYcIgtEpr\nCXOvxektQj390+l3mNn7UWEyERhd4FxVeU7Suuj3NsCebPwyUWkX4MNChqrCCOA2SbsTCr3ehC9F\nV0pqSZgAcS/gYiDuGcFfIRRw2aQOWK1X3kYSkbQzYVT4YWycjrnSB4SeOzeYWfqlbdGStCPwmZkV\nxZQTAJK6sumguf9ZcY4h2YowzqUp8H4xvYaVJJ1DmCblR1bFwNnoyuoJQvtZbN/0oxkO0s01s4fS\njpse7S+Gruu/JVS5bkWYJWKEpBMIbVCVk3beC/whzvdw1A35p2Z2e5bj2hPa+GZUd1ytMnhBsrmo\n33hl28JnZhb3LK/OuSIRVXO3N7NP4s5SLLwgaWCiy+43gJOKoapICVy6VglZxti5YuEFSYroA6QD\n8J6ZbdYQGF0a/tLMxhQ83KY5flnN3S0IDWp/JJpC3swmFiJXJkrQ0rWQrGWMcxXNw3WcmQ2JOUes\ny8HWVXQlkro08CzC84j9Q1RhVuVjCf+fRpvZHEk/BK5i45efuyxl/Zd6FfcgmWK4AdsAjxE+KNYT\nGlJHAm3Sjot9YFeUI0mrty0HjkrZfoXQG6pVyr42hN4xzxXBazuJsFTttoS68TuBxYQZBLZKeb88\nQ+jFFfv7N4fnlLeBaDXI8B1Cb8PK9+X/CB9w7xMK69cJ08d/DOxQBK/Zy4SZciu320YZN0Q5v2Dj\ngMpWceWMsvUgfBH7KHpdvyAsYFVGGKx6V/T/bj1hyej6zxD3P1gx3IArCb20ziYsDHRh9IaeC/xf\nynHFUpDMIvRsOYPQNzz1tkf0Bu9duS/mrIlZujbKkaRljHfM8dY/7vctRbAcbA3zJmZp4KiweIyw\nkiOEDhhlwMi04x4EXslLhrj/wYrhRujue37avm8A/wA+AfaL9hVLQSLCOufLCNM2fDvlvjbRf4LN\n5lyKKetrwKCU7Q+A4zMcdyrwSRHkXZ72YbF99Hr+Iu24XxZBQVJ59ZntVgxXpkuB3inbXaJcPdOO\nOwP4bxG8D9ILkk+AizIcF/vUPoTuyYekbLeN8ndPO+5QQuehes/g40iCzqQNNDSzjyQdTCjFJ0s6\nieLo346Fd8W9kh4FrgHeknRn9HuxuQ4YK+kDYAwbl65dQajOEuEyvBiWroWNyxi/RBgcl7qM8VQL\ngz+LZRnjL4GpwP1ZjjuA0LU9TrEvB1tHxbw08Co2HZha+Xv6dEPNCYNY650XJMFS4P8IVyBfs9A3\n/HhJtxIuHWNtZE9nZp8B50u6l9C3fS5wPUW0prQla+laSNYyxq8R2vH+Xt1B0dovcYt9OdhaSMrS\nwC8RBkrOjbLcSJh1+w/RbB1fRvPxXUoo+Oqd99ri60nPdjKzg6o55jLCt2mzGCe/q46k4wnLge5A\nmJwt9mVAKykhS9dCopYx/hPQz8zSB9CmH/dz4Coz61aYZBkzxL4cbE0oQUsDS/oOYQ67yvfBAsJV\n/uOEmQIWAl0JX4y6mdmb9Z7BC5Kvu871Aa4zsxXVHHcioa78jKqOiVtU7dICKLciXyXRNR4qguVg\n80FFsjRwNH7sp4SehlPMbFU0sPosNn75ecjMFufl73tB4pxzri6KYZZNlyeS7pM0Mu4cuUhSVkhe\nXufyyRvba0DSfcAWZtY37iw56kZyviwkKSskKK+kyYTah4PjzpJNkrJCsvLmM6sXJDWTmA8PADP7\nTtwZcpWkrJC4vCI579skZYVk5c1bVm8jacCibp8dzCzuhXeySlJWSF5e5/IpKSVpUZDUNFrjIymO\nIKz0lgRJygoJyitpq6S8b5OUFZKVN59ZvSCpmcR8eLjGQdJ5kv4n6UtJr0o6JcNhe1EE79skZYVk\n5Y07q7eRJJCkXPusZxqJW1BJygrJyhsNQL2DsAzwvwjjCEZLOgo4xcxWxZkvVZKyQrLyFkNWbyOh\nxh8eu8Y9sl1h3ev3CNMgVOdbwD5x5k1SVkhWXkkzgalmdmnKvoOBsYTRzUdYWJRrH+Blz5q7JOUt\nhqxekJCsDw8ASW8SFt/qk+W4XsAjMb/JE5M1ypGYvJK+BH5lZtPT9nclrJfSBDicMB9U3B92ickK\nycpbDFm9jST4D/AfMzuuuhtwc9xBI68C++ZwXOWEiHFKUlZIVt7PCR8OmzCzBcD+hCnxXwZ+XNhY\nGSUpKyQrb+xZ/YqErydeO8zMumQ57ljCGt6xFsCSdgZ2M7OnsxzXjNBFNX2q7oJJUtYoR2LySnoK\n+NLMTq7i/maEifsOJ+bJRpOUNcqTmLzFkNULEpL14eFcJUnHARcDR5rZp1Uc0wS4mzDZ6LcLmS8t\nR2KyRlkSk7cYsnpB4pxzrk68jcQ551ydeEHinHOuTrwgcY2KpNMlzYpGAJdJ+pekvPTGk/RdSYMl\nbZvDsYMlWcptqaRxUftdtnNPj85pWT/JnasZL0hco6GwXPL9wHNAT+BU4Cng13n6k98FBgFZC5LI\n58B+0e0SYE9giqQWWc77e3RORS1zOlcnPkWKa0zOB+4xs8tT9k2QdFVcgdKsM7NXot9fkbQIeAH4\nJfBY+sFRT5wmZvYJ8EnhYjq3Kb8icY3JtsBH6TstpeuipK5RNdGJkh6MqsCWSRqUfp6k7tEEeV9J\n+ljS8MrqJUkHAROiQ+dHj7mghnlnRT+7Ro85WtJMSUdLegf4CtgnU9WWpGaShklaKGm1pPmS/pyW\n/yxJ70T3L5R0Kc7Vgl+RuMbkDeCC6Jv+38xsRTXH3gD8DegF/BwYJGm5md0FIGlX4FlgEnAs0Bm4\nDtgJOCz6W5cANxKq0T4EVtcwb9fo50dp+4YBQ4CPCbO5btKOIkmEKrv9gKsJBdK3gJ+lHDMAuDZ6\nrOlACXC1pAozu7OGOV1jZ2Z+81ujuAF7AO8TpjfZALxD+EBunXJM1+j+59POvQ9YQlhqGaAUmEuo\nWqo8pnd07n7R9pHRdtccsg0mTGWxZXT7LjAN+ALoFB0zOnq8PdPOPT3a3zLa7hFt/7qKv9UaKAcG\npe0fQii0mmTL6ze/pd68ass1Gmb2FvB9QuP6cMJcWX8CZmbo8fRE2vZ44JvADtH2T4AnzGx9yjHj\ngHXAAbWM2A5YG93eI1zd9DGzD1OOWWJmb2Z5nO7Ap1b1TA37AS2AxyRtWXkDpgId2fgcncuJV225\nRsXMVhPaLiYASOpL6MnVF7gt5dBlaadWbncCFkU/P0577PWSVgDb1TLe58AhhKuJj4ClZpY+9cTH\nm521uXaEqrSqVE7w904V93cGfBoglzMvSFyjZmYjJQ0Ddkm7q0MV2x+m/NzkmKgXVTsg43xHOVhn\nZjOzHJPLnEYrCAVdVSrzHUnmgum9HP6Gc1/zqi3XaEhKLxyQtD3Qhs0/UI9J265sMF8cbb8KHBMV\nHqnHbAm8GG2viX42rUPs2pgCbCfpyCru/yewCvimmc3McPuycFFdQ+BXJK4xeTuacvt5QlVVF0LP\nqgrggbRjd4uWFxhH6LXVF7jQzDZE919DWNb0SUl3E9oVrgeeM7N/RsdUfrM/R1IpUGFmb+fnqW1i\nEmHQ5UOShhB6kHUCfrWMHXsAAADVSURBVG5m55jZZ5IGA7dJ6gL8g/Cl8rtANzNLL0Sdq5YXJK4x\nGQIcBdxOaMf4iLDgTx8zm5927KWEqp9xhPEaVwNfd4s1s3ckHU7oQjue0Lvq4ei8ymMWSroE+C1w\nAeFqpms+nlgqMzNJx0SZLyIsEb0UeCjlmGGSlhKmH/894Tn+F3gk3/lcw+PTyDuXIlqedD5h6dK/\nxZvGuWTwNhLnnHN14gWJc865OvGqLeecc3XiVyTOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHi\nnHOuTv4faiZuMWvWF98AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYVOX5xvHvLRY6IgghESGaX2I0GuOaWGKioBGNJioi2BuKGDVqIiaKEUQxir0hFgJi0LWAhQQLPZZYwBiNiIFIEVARXMuySH1+f7xnZRhmd2bLzJmz+3yua67dc+ac2XuGYd45b5WZ4ZxzztXWFnEHcM45l2xekDjnnKsTL0icc87ViRckzjnn6sQLEuecc3XiBYlzzrk68YLEFS1JgyVZym2ppHGSdo4x008lvSHpK0kW7WshqVTSiijn6VWcOzrt+VTe7i/ok9iYp5+kozPsXyDpxjgyuWTaMu4AzmXxOXBY9PtOwNXAFEm7mdnKGPLcAywDegCro33nAr8CTgWWAP+r5vw5wBlp+5bVc8Zc9QP+AzyZtv8YYEXh47ik8oLEFbt1ZvZK9PsrkhYBLwC/BB6LIc8uwL1mNiNt33tmNi6H81emPJ+iZGb/ijuDSxav2nJJMyv62RVA0n6Sno6qvVZKelPSSZUHS9ouqoY6LfVBFMyXdHPKvu6SXo2O/1jScEkto/sOiqqymgC3RVVSoyUtAPoCP6qsqqrtE6v8G5J+kLZ/uqTHU7ZHS5op6ReS3oqe94uSdks7r4mkyyT9V9JqSYslja58TKAEOC2liu306L7NqrYk9Zb0dvQ4H0gaKmnLlPtPjx5jd0mTokxzJPWs7evhksMLEpc0XaOfH0U/uwAvAWcRqpfGAaMknQBgZp8CT7B5ddJB0WONApC0K/AssBw4FhgEnAhUfoC/AewX/X5T9PvVhGqgiYQqq/1SjqmSpC1Tbzk9683tCNwADAVOADoAj0pSyjH3AFcBjwJHAr8HWkT3/SbKPDEl99+ryHso8AjhNTgKuAO4BLgzw+EPAU8TXpe5QKmkHWr5HF1CeNWWK3opH7Y7AcOBL4HJAGZWmnKcgH8AOwBnAw9Hd40Enpe0k5m9H+07A5hlZm9H21cCC4Ffm9n66PE+BR6RtJ+Z/ZNQtQawILV6StInQMccq6xKgLVpz+//zGxeDuem2g74qZnNjR5jC0KB+T1gjqRdCFdKF5rZ7SnnPQJgZrMlrQQ+ySH3EGC6mVVe1T0bvQ5/lnSNmS1OOfYWM/tLlGkW8DGhEBtRw+fnEsSvSFyxa0f44F0LvEcoTPqY2YcAktpKul3SwpTj+gHfTXmMKYRC4rTonFZAT6KrkchPgCcqC5HIOGAdcEA9Pp93gR+n3T6oxeMsqCxEIrOjn5Xf/rtFP0fX4rG/JqkJsBebt0c9Qvj8SL8Ce77yFzNbQehI4FckDZxfkbhi9zlwCGCE6qyltumU1aOBfQnVTLOBLwi9qI6qPMDMTNIo4ExJg4HehPf+QymP04nw7ZmU89ZLWkH49l9fKsxsZj08zmdp22uin02jn+0IDftf1PHvtAe2Iu21SdlOf20y5WqKa9C8IHHFbl1VH7ySmgJHAOeb2YiU/ZmutEcR2j26AacDT5pZWcr9HxLaGVIfvwnhA/nTujyBGvgq+rl12v7tCG03NbECaCGpdR0Lk+WEq7wOafs7Rj8L9dq4IuZVWy7JtiH0oqocz1FZbfXr9APN7ANCtctVhKqqUWmHvAocExUelXoSvmy9WL+xq1TZ1vD9yh2SOhPaPWpqavTz1GqOyXq1EFX1zQKOS7urN7AB+GctsrkGxq9IXGKZ2eeSXgeulPQF4YPtj4TqsNYZThlJqOtfDExKu+8a4F/Ak5LuJtTrXw88FzW0552ZLY6ez9WSKghf9C6nFt/6zew9SfcCN0nqQOiEsC3Qy8yOjw6bA/SQ1INwBTM/atdINwh4LqoeLAV2J1Ql3pfW0O4aKb8icUl3IjAfGAPcRmggH1PFsX8jNJ4/YGYbUu8ws3eAwwlVOOMJBcvDQK/8xK7SicAi4K/AtYQeU+/V8rF+Q7gCO5nQzfdWYFXK/dcQGv8fBV4ndJ/ejJk9DxwP7A1MAC4idIE+v5a5XAMjX2rXNRaSfkkoTL5bi+62zrkqeEHiGjxJ3wT+jzCQbpGZHRlzJOcaFK/aco1BP8JYkq+AC2LO4lyD41ckzjnn6sSvSJxzztVJo+j+2759e+vatWutzl25ciUtWrTIfmCRSFLeJGWFZOVNUlZIVt4kZYW65Z01a9ZyM9s+64Fm1uBvJSUlVlvTpk2r9blxSFLeJGU1S1beJGU1S1beJGU1q1teYKbl8BnrVVvOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTrwgcc65hmjsWOjalQO7d4euXcN2nhS8IJG0q6QpkiokLZU0JG0NiKrO21vS85JWSPpU0mRJ+xQis3POJcrYsdCvHyxciMxg4cKwnafCpKAFiaS2wGTCsqlHEabI/j1hquvqzuscnbclYaGeU6Lfn5fUJZ+ZnXMucQYOhIqKTfdVVIT9eVDoke39gWZATwvLf06S1BoYLGmYVb0k6BFAq+i8zwAkvUxYBvSXwN35j+6ccwmxaFHN9tdRoau2DiesOJdaYJQSCpcDqzlvK8KCROUp+8qjfarvkM45l2jt22fev+OOeflzhS5IdiEs7/k1M1sEVET3VWVcdMxNkjpES4feApQRlk51zjkHMH8+rFwJSvuO3bw5DB2alz9Z0GnkJa0FBpjZrWn7FwNjzOzyas7dk7C63beiXR8Ch5vZv6s4vh9hHQo6duxYUlpaWqvM5eXltGzZslbnxiFJeZOUFZKVN0lZIVl5iznrFqtX86MLLqDphx+y4JRT6Dx+PNssW8bqDh14/6yzWHbIITV6vG7dus0ys72zHpjLhFz1dQPWAhdm2L8EGFrNeZ2AecBTwGHRbQKwGNgx29/1SRuLU5KymiUrb5KymiUrb9Fm3bDB7PTTzcDsb3/7enchJm0sdGN7GbBthv1tgM+qOW8AoWNALzNbCyBpKjAXuAT4bT3ndM65ZLnvPhg9Gq68Eo44oqB/utBtJHNIawuJuva2IK3tJM0uwDuVhQiAma0B3gF2zkNO55xLjtdegwsugB49QkFSYIUuSJ4BekhqlbKvD7AKmFHNeQuBH0jaunKHpG2AHwAL8pDTOeeSYfly6NULOnUKAw6bZB3fXe8KXZCMAFYD4yUdEjWIDwZutpQuwZLmSRqZct79wDeBJyQdIelI4ElC28m9BUvvnHPFZP16OOEEWLYMxo2Ddu1iiVHQgsTMyoCDgSaExvKrCN14B6UdumV0TOV5swgN7K2AB4ExQHPgF1ZFry3nnGvwrrwSJk+G4cOhpCS2GAVfs93MZgPdsxzTNcO+KcCUPMVyzrlkeeopuPZaOPtsOPPMWKP47L/OOZc0c+fCqaeGq5Dbb487jRckzjmXKCtXQs+esOWWoV2kadO4ExW+ass551wtmYXp4N95B559FroUx+TnXpA451xS3HUXPPQQXHMNHHpo3Gm+5lVbzjmXBC+/DBdfDL/6FVx2WdxpNuEFiXPOFbuPP4bjjgtVWWPGwBbF9dHtVVvOOVfM1q2DPn2grAwmToRtM01XGC8vSJxzrphddhnMmAEPPgg//GHcaTIqrusj55xzGz3+ONx4I5x3Hpx8ctxpquQFiXPOFaN334UzzoB994Wbb447TbW8IHHOuWLz5Zdh0GGzZvDYY7D11tnPiZG3kTjnXDExg7594b//DRMy7rBD3ImyKvgViaRdJU2RVCFpqaQhkqqdQF/SYElWxa24OlQ751xd3HJLuAq57jro1i3uNDkp6BWJpLbAZGA2cBRhdcObCAXaFdWcej/wbNq+o4E/EBbLcs655JsxAy69NFRrXXJJ3GlyVuiqrf5AM6BntJDVJEmtgcGShqUubpXKzBYDi1P3SfoTMMfM3sx3aOecy7slS6B3b/jOd2DUKJDiTpSzQldtHQ48l1ZglBIKlwNzfRBJ2wG/AB6u33jOOReDNWtCIbJyZZjRt3XruBPVSKELkl2AOak7zGwRUBHdl6tewFaEQsg555JtwIAwl9bIkbDbbnGnqTGZWeH+mLQWGGBmt6btXwyMMbPLc3ycqUAbM6tybcloPfh+AB07diwpLa1dmVNeXk7Lli1rdW4ckpQ3SVkhWXmTlBWSlbe+s3aYPJldhw7lg169+N9559Xb41aqS95u3brNMrO9sx5oZgW7AWuBCzPsXwIMzfExOgHrgUty/bslJSVWW9OmTav1uXFIUt4kZTVLVt4kZTVLVt56zfrWW2bNm5v97Gdma9bU3+OmqEteYKbl8Blb6KqtMiDTjGNtgM9yfIzegIBH6iuUc84V3Oefh95ZrVvDI4/AVlvFnajWCt1raw5pbSGSOgMtSGs7qcbxwItm9kE9Z3POucLYsAFOOw0WLIBp06BTp7gT1Umhr0ieAXpIapWyrw+wCpiR7WRJXYF98d5azrkkGzYMnnoqTMh4wAFxp6mzQhckI4DVwHhJh0QN4oOBmy2lS7CkeZJGZjj/eGAd8HghwjrnXL2bPBkGDoTjj4ff/jbuNPWioFVbZlYm6WDgTmACoV3kFkJhkp4r07QpxwNTzOyTfOZ0zrm8WLQITjgBvv99uO++RA06rE7BJ200s9lA9yzHdK1i/575yOScc3m3ejX06hV+jh8PCenunAuf/dc55wrhoovg9ddDIfLd78adpl75eiTOOZdvo0fDiBHwhz/AMcfEnabeeUHinHP59K9/wbnnQvfucM01cafJCy9InHMuXz79FI49Ftq3h4cfhi0bZmtCw3xWzjkXtw0b4JRTYPFieOEF6NAh7kR54wWJc87lwzXXwMSJMHw47LNP3Gnyyqu2nHOuvj3zDAweDKeeCv37x50m77wgcc65+jR/Ppx0EuyxB9x9d4MZdFgdL0icc66+rFoVGtfNwkqHzZvHnaggvI3EOefqgxmcd17o7jthAuy8c9yJCsavSJxzrj7cfz+MGgV/+hMceWTcaQqq4AWJpF0lTZFUIWmppCGSMk3QmOncnpJel7RK0gpJz0pqke/MzjlXrddfh/PPhx49YNCguNMUXEELEkltgcmAAUcBQ4DfA1flcO5ZwEOENU0OB84C5uLVc865OC1fHtpFOnWCsWOhSU7fixuUQn8I9weaAT2j9UcmSWoNDJY0LHVNklSS2hOmm7/AzO5LueuJvCd2zrmqrF8fpoVftgxeegnatYs7USwKXbV1OPBcWoFRSihcDqzmvN7RzwfyFcw552ps0KCwUNVdd0FJSdxpYlPogmQX0tZmN7NFQAVpa7mn2Qd4D+grabGktZJelbR//qI651w1nn4ahg6Fs86Cvn3jThMrmVnh/pi0FhhgZrem7V8MjDGzy6s47zlgf+AL4FJgRfRzb+D/zOzjDOf0A/oBdOzYsaS0tLRWmcvLy2mZoAVokpQ3SVkhWXmTlBWSlbe8vJztP/uMkv79WfWtb/GvO+5gw9Zbxx2rSnV5bbt16zbLzPbOeqCZFewGrAUuzLB/CTC0mvMmERroD0vZ1xooA67O9ndLSkqstqZNm1brc+OQpLxJymqWrLxJymqWkLx//atZly62QTLbaiuzFi3MFiyIO1VWdXltgZmWw2d7oau2yoBtM+xvQ1i/vSqfRj+nV+6w0M4yC9i1vsI551xGY8dCv36wcCEyg7VrYd06ePHFuJMVhUIXJHNIawuR1BloQVrbSZp3CVck6ZPWCNhQnwGdc24zAwdCRcWm+1avDvtdwQuSZ4Aeklql7OsDrAJmVHPe3wiFRrfKHZLaACXAv/OQ0znnNlq0qGb7G5lCFyQjgNXAeEmHRA3ig4GbLaVLsKR5kkZWbpvZTOApYKSk0yQdATxNaHO5q5BPwDnXCH3rW5n377hjYXMUqYIWJGZWBhwMNAEmEEa03wKkzymwZXRMqpOBJ4GbgccJhUj36DGdcy4/1q2DTL2emjcP3X9d4acXMbPZQPcsx3TNsK8cODe6OedcYVx2GcyZExaoeuYZbNEitOOOoRA56aS40xUFn6fKOeeqMm4c3Hgj/OY3YfQ6MGP6dA466KB4cxUZn0beOecymTMHTj8d9t0Xbrkl7jRFzQsS55xL9+WX0LMnNGsGjz0GRTxyvRh41ZZzzqUyC3NnvfceTJoEO+wQd6Ki5wWJc86luvXWcBVy/fXQvdp+QS7iVVvOOVfpH/+AAQPgmGPCT5cTL0iccw5g6VLo3Rt23hlGjwalz8jkquJVW845t2YNHHcclJfDlCnQunXciRLFCxLnnBswAF5+GUpLYbfd4k6TOF615Zxr3B5+GG6/HS66CPr0iTtNInlB4pxrvP7zn7BU7gEHwLBhcadJrIIXJJJ2lTRFUoWkpZKGSEqfoDH9nK6SLMOtduvnOufc55+HQYetW8Ojj8JWW8WdKLEK2kYiqS0wGZgNHAXsDNxEKNCuyOEhLgFeStleXt8ZnXONwIYNcNppMH8+TJsGnTrFnSjRCt3Y3h9oBvSM1h+ZJKk1MFjSsNQ1Sarwnpm9kveUzrmGbdgweOqpMIfWAQfEnSbxCl21dTjwXFqBUUooXA4scBbnXGM0ZUpYIrdPH7jwwrjTNAiFLkh2IW1tdjNbBFSQtpZ7FUZJWi/pQ0k3S2qWj5DOuQbqgw/g+ONhl13g/vt90GE9kZkV7o9Ja4EBZnZr2v7FwBgzu7yK8zoBA4HngS+Ag4A/AM+b2VFVnNMP6AfQsWPHktLS2rXLl5eX0zLT6mhFKkl5k5QVkpU3SVmhMHm1Zg0/uvBCmi9axKy772ZVLZfJbUyvbbdu3WaZ2d5ZDzSzgt0Iy+NemGH/EmBoDR/rXMCAPbMdW1JSYrU1bdq0Wp8bhyTlTVJWs2TlTVJWswLl7d/fDMzGjavTwzSm1xaYaTl8Hmet2pJ0qqR2tSrONlcGbJthfxvgsxo+1uPRz73qlMg51/A98ACMGAGXXhq6/Lp6lUsbyShCN12i9omf1OHvzSGtLURSZ6AFaW0nObC0n845t7k33wzrrXfrFtZZd/Uul4KkDPhm9Luo2wf3M0APSa1S9vUBVgEzavhYvaKfs+qQxznXkJWVhSuQdu3CPFpb+vSC+ZDLqzoZeFDSe4RCZLSklVUdbGbVXbGMAH4LjJd0PbATMBi42VK6BEuaB8wws77R9mCgFWEw4hfAz4EBwHgzeyuH5+Cca2w2bICTT4bFi8M6Ix06xJ2owcqlIDkT+A3wPUJ7xHzgk9r8MTMrk3QwcCcwgdAucguhMEnPlTptyhzCqPazCGNOFgE3AH6d6pzL7JprYOJEuOsu2HffuNM0aFkLEjOrAG4EkHQIMNDM/l3bP2hms4Fq1680s65p26WEgYvOOZfds8/C4MFwyilw7rlxp2nwcum1tV7Sj6PN6YSqJeecK07z58OJJ8Luu4eeWj7oMO9yaWxfA2wT/X4qsH3+4jjnXB2sWgW9eoX2kfHjoXnzuBM1Crm0kcwmTKr4JKHXVi9JVY10NDO7u97SOedcrszgvPPgjTdgwoSw9roriFwKkguAewiN4kZo9K6KAV6QOOcK7/77YdQouOIKOPLIuNM0KlmrtszsZTPb3cy2IlyR7GtmW1Rxq3aBKuecy4vXX4fzz4dDDw2N7K6gajr7bzdCVZdzzhWH5ctDu0inTvDQQ9DEv88WWo2GeZrZDABJ+wAHANsBnwIvmtmr9R/POeeqsX596KH18cfw4othBLsruBoVJJJaAI8BPYD1wAqgHdBE0rPAcdG4E+ecy79Bg2DSJLjvPtg7+2znLj9qWrU1DNgPOB5oamadgKbR9n7A9fUbzznnqjBhQpiEsW9fOOusuNM0ajUtSI4F/mBmj5nZBgAz22BmjwF/BI6r74DOObeZefPCqPWSErjzzrjTNHo1LUjaAB9Ucd8HQOu6xXHOuSwqKsKMvk2awOOPQ9OmcSdq9GpakPwbOFfadM6BaPvc6H7nnMsPMzjnHPjPf0IPra5d407kqHlBcjmhoX2OpOskXSzpz8C7wKHR/dWStKukKZIqJC2VNERSzv31JG0haZYkk+SjjpxrTIYPh7/+Fa66Cnr0iDuNi9S0++9UST8CriS0h3QCPgReBXpGM/tWSVJbwvoms4GjCCsv3kQo0K7IMcZZwLdqkts51wD8859w8cVwxBEwcGDcaVyKGi8XFhUWx9fy7/UnrCfSM1rIapKk1oS5vIalLm6VSVQQDSU07N9fywzOuaT5+OMw6LBzZ3jwQdiippUpLp9q9K8h6UZJu9bh7x0OPJdWYJQSCpcDczj/asIqiVPqkME5lyTr1sHxx8Onn4YZfdu2jTuRS1Ob7r9vS3pNUn9JbWp4/i6E1Q6/ZmaLgIrovipJ2gM4g+onjXTONTSXXw7Tp8M998APfxh3GpeBzKxmJ0jdCB/oxxCWw30S+IuZTc7h3LXAADO7NW3/YmCMmVXZWC9pBvCqmV0qqSthyd9fmdnfqji+H9APoGPHjiWlpbVbYLG8vJyWLVvW6tw4JClvkrJCsvImKStUnbf9jBn8YPBglvz618y9+OIYkm2uoby2uejWrdssM8s+ZYCZ1eoGtAT6Av8gTJeyELgK2Kmac9YCF2bYvwQYWs15xwMfAa2j7a6EKeuPzCVrSUmJ1da0adNqfW4ckpQ3SVnNkpU3SVnNqsj77rtmrVqZ7bOP2VdfFTxTVRrEa5sjYKbl8Blb6xYrMys3s5HAIEK7RWfgMuC/kp6S1CXDaWXAthn2twE+y/R3JG0F3ECYfmULSduyceBjC0mtavscnHNFqrw8DDps2jQMOtxmm+znuNjUqiCR1FXSIEnvA88D5YTuwK2AXxOuGDLVJc0hrS1EUmegBWltJylaADsANxMKojI2DnwsBf5Vm+fgnCtSZmH+rPfeg9JS2GGHuBO5LGo6++8phPaRnwOLgFHAKDNbnHLYREkrCeNF0j0DDJDUysy+jPb1AVYBM6r4s+WEdVBSfQN4mDAAcmpNnoNzrsjdeis8+ihcdx107x53GpeDmo4juRd4AuhhZtV1wf0vcE2G/SOA3wLjJV0P7AQMBm62lC7BkuYBM8ysr5mtA6anPkjU2A7wtvk6KM41HC+8AAMGwDHHwKWXxp3G5aimBck3zaws20Fm9iGh4T19f5mkg4E7gQmEdpFbCIVJei5f5sy5xuTDD6F3b9h557D2+qZT+rkiVtMpUrIWIjk8xmyg2utVM+ua5f4FhPXjnXMNgNatg+OOgy++gMmToU1Nh6i5ONV4ihRJfYCzge8SFrXahJl1qIdczrnGYOxYGDiQny9cGLbPOw922y3eTK7GajpFyonAA8A8Qk+qp4G/RY/zBaHKyjnnshs7Fvr1g4ULN1YvjBoV9rtEqWn33wGE+a7Oi7aHm9mZwLeB5YSpTpxzLruBA8MiVakqKnxm3wSqaUHyf8BLZraeMJq9NUDUlfd64Pz6jeeca7AWLarZfle0alqQfA5UDjFdAnw/5T4B7eojlHOugTOreoncHXcsbBZXZzVtbJ8J7AE8R2gfuVLSOmANYbErH9PhnMtu2DBYtQq22grWrt24v3lzGDo0vlyuVmp6RfJnwoh2CAXHa8Bwwgj35USz7TrnXJWmTAlTw/fpExrXu3TBJOjSBe69F046Ke6EroZyuiKR1Az4JWEOrY8kdTSzj4GjJG0DbGNZVjd0zjk++ABOOAG+9z24/35o2RJOOokZ06dz0EEHxZ3O1VLWgkTSToR5s7qm7P5CUm8ze97MVgOr85TPOddQrF4dBh1+9VVY6TBBa3q46uVStTUM2AD8DGgO7EaYcfeePOZyzjU0F18Mr74Ko0fDLtUuiOoSJpeCZD/gCjN7ycy+MrN3gXOAHSV1ym8851yDMGYM3H13mJCxZ8+407h6lktB0gl4P23f/wjdfb9R0z8oaVdJUyRVSFoqaYikaidolLSbpGej41dLWiTpfi/InEuAN9+Ec86Bgw6Ca6+NO43Lg1y7/9ZsYfcqSGpLaG+ZDRwF7AzcRCjQrqjm1DaENdrHAEsJI+kHASWSfhxNNe+cKzZlZXDssdCuXVikassaT+/nEiDXf9XnovEi6aak788yaWN/oBnQM+rlNUlSa2CwpGFV9fwys5eBl1N2TZe0mLA64x7AGzk+D+dcoWzYAKecEnpqzZgBHTvGncjlSS4FyWbritTB4cBzaQVGKWF6lQMJa5TkakX0c+t6yuacq09Dh8Lf/w533QX77Rd3GpdHWQsSM6vPgmQX0pbGNbNFkiqi+6otSCRtQcj8beA64HXCoEjnXDF59lkYNAhOPhnOPTfuNC7PZFYvzR+5/TFpLTDAzG5N278YGGNml2c5/1mgR7Q5C/ilmS2r4th+RCPtO3bsWFJaWlqrzOXl5bRMUH/3JOVNUlZIVt44szb96CNKzjmH1e3b88Zdd7Ghqjm1Uvhrmz91ydutW7dZZrZ31gPNrGA3YC1wYYb9S4ChOZz/f8A+wMnAHEJh0jTbeSUlJVZb06ZNq/W5cUhS3iRlNUtW3tiyrlplttdeZm3amM2dm/Np/trmT13yAjMth8/2QnehKAO2zbC/DWH99mqZ2dzo11clvUDoyXUi8Jd6S+icq73zz4c33oCnn4bvfCfuNK5AajppY13NIbSFfE1SZ6BFdF/OzGwh8CmwU72lc87V3v33w8iRcMUV8KtfxZ3GFVChC5JngB6SWqXs6wOsAmbU5IEkfY+w/sn8+ovnnKuVmTPDeuuHHgqDB8edxhVYoau2RgC/BcZLup5wNTEYuNlSugRLmgfMMLO+0faNwDrCeiefERbUupQwwr52rejOufqxfHkYdPiNb4T11ptUO1GFa4AKWpCYWZmkg4E7CV19PwNuIRQm6blS340zgQsIvbCaEtZEGQf82cxW5jm2c64q69eH9UM++gheegnat487kYtBwecrMLPZQPcsx3RN2y7FrzycKz6DB8Pzz8N998He2XuJuoap0G0kzrmGYsIEuOYaOPNMOOusuNO4GHlB4pyruXnzwjxae+0Fd94ZdxoXMy9InHM1U1FmcUuSAAAgAElEQVQRGtebNIFx46BZs7gTuZj5nM7OudyZhbVF3n4bJk6Erl3jTuSKgBckzrnc3X03/PWvMGQIHHZY3GlckfCqLedcbl55BS66CI44AgYOjDuNKyJekDjnslu2DHr1gs6d4cEHYQv/6HAbedWWc65669bB8cfDihXwz39C27ZxJ3JFxgsS51z1Bg6EadPggQdgzz3jTuOKkF+fOueqNm4cDBsWVjk89dS407gi5QWJcy6z996DM86An/wEbrkl7jSuiBW8IJG0q6QpkiokLZU0RFK104VK+rGkUZLmRee9J2mQpOxreDrnaq68HHr2hG22gccfDz+dq0JB20gktQUmA7OBo4CdgZsIBdoV1ZzaJzr2emAusAdwdfTz2DxGdq7xMQtzZ82ZEyZk7Nw57kSuyBW6sb0/0AzoGa0/MklSa2CwpGGpa5Kkud7MPknZni7pK+AeSV2i1RKdc/XhttvgkUfguuvg4IPjTuMSoNBVW4cDz6UVGKWEwuXAqk5KK0Qq/Sv62aH+4jnXyL3wAlxyCRx9NFx6adxpXEIUuiDZhbS12c1sEVBB2lruOdgf2AC8Vz/RnGvkPvwQeveGnXaC0aNBijuRSwiZWeH+mLQWGGBmt6btXwyMMbPLc3ycbwBvARPN7PQqjulHWFGRjh07lpSW1m5drPLyclq2bFmrc+OQpLxJygrJylvTrFq3jh/+7ne0mjuXN4YPZ+W3v53HdJtryK9t3OqSt1u3brPMLPuKZWZWsBuwFrgww/4lwNAcH2Nr4B/A+0DbXM4pKSmx2po2bVqtz41DkvImKatZsvLWOOtFF5mB2UMP5SVPNg36tY1ZXfICMy2Hz9hCN7aXAdtm2N+GsH57tSQJGAPsBvzUzMrqN55zjVBpKdx6K1x4IZxwQtxpXAIVuiCZQ1pbiKTOQAvS2k6qcAuh2/AvzCyX451z1XnnHejbF376U7jhhrjTuIQqdGP7M0APSa1S9vUBVgEzqjtR0mXABcDJZvZi/iI610h88UUYdNiqFTz6KGy1VdyJXEIVuiAZAawGxks6JGoQHwzcbCldgqMR7CNTtk8EriVUay2RtG/KbfvCPgXnGgAzOP10+N//QiHyzW/GncglWEGrtsysTNLBwJ3ABEK7yC2EwiQ9V+q0KYdGP0+PbqnOAEbXb1LnGrgbboAnnoCbb4af/zzuNC7hCj6NvJnNBrpnOaZr2vbpbF6AOOdqY+pUuOyyMGbkooviTuMaAJ/917nGZPHisEjV974HI0f6oENXL7wgca6xWL06LJe7ahWMHw8JGlTnipuvkOhcY/G738Grr4Zp4Xep6YxEzlXNr0icawzGjIHhw2HAADjWV15w9csLEucaujffhHPOgYMOgmuvjTuNa4C8IHGuISsrC1cg220XpkLZ0muzXf3zd5VzDdWGDXDqqfDBBzBjBnTsGHci10B5QeJcQzJ2LAwcyIGLFkHr1vD553DnnbDffnEncw2YFyTONRRjx0K/flBRgSAUIk2awLaZJtx2rv54G4lzDcXAgVBRsem+9evDfufyyAsS5xqKRYtqtt+5elLwgkTSrpKmSKqQtFTSEElNspyztaQbJL0gaZWkwq0P7FwSfPEFNG+e+b4ddyxsFtfoFLQgkdQWmAwYYYGqIcDvgauynNocOAuoAF7OZ0bnEufFF+GHP4SVKzdfU6R5cxg6NJ5crtEo9BVJf6AZ0NPMJpnZCEIh8jtJras6ycw+A7Yzsx7AE4WJ6lyRW7MmtH8ceCBssQW89BKMGgVdumASdOkC994LJ50Ud1LXwBW6IDkceC51ESuglFC4HFjdidFC9M45gDlzYP/9w0j1008Po9f33z8UGgsWMGPqVFiwwAsRVxCFLkh2IW1tdjNbRKiy8lnknMvGLMyZtddeoaAYPz5MB9+qVdZTncuXQo8jaUtYFTFdWXSfc64qH30EZ54JzzwDPXqEaqxOneJO5RwqZI2RpLXAJWZ2W9r+JcBoM8va4V3S+cAdZlbtijzRevD9ADp27FhSWlpaq8zl5eW0TNC6DUnKm6SsEG/edi++yPduvJEmq1bxfv/+LDn66GoXpfLXNn+SlBXqlrdbt26zzGzvrAeaWcFuwDJgUIb95cCAHB/jfKImk1xvJSUlVlvTpk2r9blxSFLeJGU1iynvl1+anXWWGZjtuafZO+/kdJq/tvmTpKxmdcsLzLQcPmML3UYyh7S2EEmdgRaktZ041+i98gr86EehDeSPfwyLUu26a9ypnNtMoQuSZ4AeklJbBvsAq4AZBc7iXHFatw4GD4YDDghdfKdPhz//GbbeOu5kzmVU6Mb2EcBvgfGSrgd2AgYDN1tKl2BJ84AZZtY3Zd/hhCuXPaPtXtFdr5vZwsLEdy7P5s2Dk08OVx+nnAJ33AFt2sSdyrlqFbQgMbMySQcDdwITCD24biEUJum50qdNuRvokrL9WPTzDGB0fWd1rqDMQhXWRReF0emlpdCnT9ypnMtJwaeRN7PZQPcsx3TNZZ9zDcInn8DZZ8NTT8HBB8Po0bDDDnGnci5nPvuvc3GaOBF23z2MDbn5Znj+eS9EXOJ4QeJcHCoq4Lzz4IgjoEMHmDkTLr44zJnlXML4u9a5Qps1K0xxMnw4/O538Npr4arEuYTygsS5Qlm/PkyyuO++UF4OkyfDTTdB06ZxJ3OuTnzNducKYf780J33pZegd28YMQLa+vRyrmHwKxLn8skMHnggLDz19tvw4IOha68XIq4B8YLEuXxZsSJcfZx+epjq5K23wmDDaiZbdC6JvCBxLh8mTYI99ghjQ66/HqZODSsWOtcAeUHiXH1atSqMTj/00DC1yauvwqWXQpP0iRqcazi8sd25+vLvf4elbd95By64IFyJNGsWdyrn8s6vSJyrqw0b4IYb4Mc/Du0izz4Lt9/uhYhrNPyKxLm6WLQITjstTPXesyfccw+0bx93KucKquBXJJJ2lTRFUoWkpZKGSMpagSypjaRRksokfS5prKR2hcjsXEYPPxwa1GfOhL/8BR5/3AsR1ygV9IpEUltgMjAbOArYGbiJUKBdkeX0R4DvAWcBG4DrgSeBn+Urr3MZffYZ/OY3oSDZf/8wNmSnneJO5VxsCn1F0h9oBvQ0s0lmNgK4CvidpNZVnSRpP6AHcJqZjTOzJ4CTgQMkHZKXpGPHQteuHNi9O3TtGraLWZLyJikrbJq3Y0fYeWd47DG4+mqYMcMLEdfoFbogORx4LnU1RKCUULgcmOW8j83sH5U7zOw1YH50X/0aOxb69YOFC5EZLFwYtov1Ay9JeZOUFTbPu2wZlJXBlVfCFVfAlt7M6Fyh/xfsAkxN3WFmiyRVRPdNqOa8ORn2vxvdV78GDgzTfKeqqAgjlK+9tt7/XJ39979hne9UxZo3SVkhc97K1Qz/9Kd4MjlXZApdkLQlLK+briy6rzbnZaxXkNQP6AfQsWNHpk+fnnPIAxctItMkFrZuHZ9sv33Oj1Mo28+enZi8ScoK1eRdtIgZNXhPFVp5eXmN3vNxS1LeJGWFAuU1s4LdgLXAhRn2LwGGVnPeJOCJDPvHAi9l+7slJSVWI126mIXvnZveunSp2eMUSpLyJimrWfLyRqZNmxZ3hBpJUt4kZTWrW15gpuXw2V7oNpIyYNsM+9uQ+Yoj23nbZjmvdoYOhebNN93XvHnYX4ySlDdJWSF5eZ2LQaELkjmktWlI6gy0IHMbSJXnRapqO6mbk06Ce++FLl0wKUy2d++9YX8xSlLeJGWF5OV1LgaFLkieAXpIapWyrw+wCpiR5bxvSDqgcoekvQntI8/kIygnnQQLFjBj6lRYsKD4PziSlDdJWSF5eZ0rsEIXJCOA1cB4SYdEDeKDgZstpUuwpHmSRlZum9k/geeAMZJ6Sjqa0D7yoplNLugzcM45t4mCFiRmVgYcDDQhdPW9CrgFGJR26JbRMamOJ1y1/AUYA8wCjslnXuecc9kVfDSVmc0Gumc5pmuGfZ8BZ0Q355xzRcKnkXfOOVcnXpA455yrE4UxJw2bpE+AhbU8vT2wvB7j5FuS8iYpKyQrb5KyQrLyJikr1C1vFzPLOuVEoyhI6kLSTDPbO+4cuUpS3iRlhWTlTVJWSFbeJGWFwuT1qi3nnHN14gWJc865OvGCJLt74w5QQ0nKm6SskKy8ScoKycqbpKxQgLzeRuKcc65O/IrEOedcnXhB4pxzrk68IHHOOVcnXpA455yrEy9InHPO1UnBZ/919SNaWfKXgIDHzGyFpB2AS4CdgQXAvWb2dnwpQdIfgIlx58iVpGbAlmb2Zcq+7YHzgV2BDcCbwHAz+zyelM4VF+/+G5EkwvomRwDfB7YD1gMfA68Ao83sv/El3EjST4DngZbAOuBToAcwkZD5HeAHwDeAQ8zshZiiImkDYIQlkR8CHjGzeXHlyUbSRGCumV0Ybe9HWIVzA2ENHAElwBqgu5m9E2PWHwHNzOzllH2HAZexsdD7NzA49ZhiEf2f+xWwF+E9MpPwpaOoP5QktSbMXdXdzF6MOw98nak7sDXwdzNbGX0BOo+wkuz7hC+WS/Py94v836wgohd8IuED4mPCKo7fIry5nyH8Q3wPuNrMro4rZyVJkwhXk8cAKwmLgx1N+KDrZWZrJW0DPAk0NbNuMWbdAFwP7A78gpD7DUKh8qiZLYkrWyaSlgN9zeypaPsVwmt8dOVViqQ2wNPAV2bWI8asrwATzGxotH0mcD8wDZhKKPQOBn4GHFv5nGLK+jLhdX032m5L+DJUApRHh7UkfGnrkXpFGAdJv6nm7mbADcBtwFwAMxteiFyZSPoOMAXoHO2aDxwKTAK2Bf5H+PxaBZSY2eJ6D2Fmjf4GPEx4Q+yesu+bwLPAuGj7QMIb/swiyLsCODxluwPh2+ehaccdASyPOesG4CfR722BftGbfl10mx7taxf36xplrAB+nrK9Jv11TXltV8ac9YvUbMA84I4Mx40A/l0s74NoeyThSvqwlH2HAWXALUXwPthAuLrfUMUt9b71MWd9lHDl+R1CTcqD0efZy0Cr6Jj20TH35CODN7YHhwN/tJR6fAuXgP2BoyV1MrMZwLXAhTFlTGXRLXWbtH2ZtmNlZmVmdq+ZHQzsAPyecCk+Algq6e+xBgz+A6RewX1M+M+Zrh2h0InThrTtLsDjGY57nPCNtJj8GhhiZs9W7oh+Hwr0jC3VRk8Dy4C+QBMz26LyRng/CDgo2pe+LHihHQAMNbN5ZvYpcAWhnfRGi67szGw5cCubvrfrjRckgQjfMNKtj+5rE22/Cny3UKGqMQu4RFIrSVsAlwNLgHMlNQGQtCXwG8IHY9Exs4/M7DYz2x/4NjCIcBUYt+uAP0o6M3oNhwI3SPqFpK0lbRO1Q/yZ8E0wTi8AJ6VsvwNkmi78x4T3RzHZltAmkm4WoW0vVmZ2NHAaMAB4XdJPU++OJ1WV2gIfpWxX/lunr8H0PuELXL3zXlvBZOAaSW+Z2fvwdR3u7YR/oMpG9pZAMfTUGUio//yUUD1UQWhoexyYK6mysf2bhOqComZmCwkf4NcVQZbxki4gfHu7BXiP8EWi8puzEb5cPE34kInT5cBL0ZeJOwiN7A9I2o5QZQihjeQi4I+xJNzUsZIqC7oyINOCSe0JVXaxM7PnJe1BeP3+LulZQq/IWNtvMlhGuBqttB64h3A1naoDecruje1A1G32WcLl/0JCvfi3CY3uJ5jZM9FxwwgrhvWJK2ulKPORhC8D48zsQ0nfAC5l4/O438zeiDEmkgYB91meeovki6R2QB/gJ4RvyFsQCu53gb+Z2awY431N0p7A3cA+bCzkSPm9jFCFdFs8CYOo00W60WZ2Ztpx9wC7mtnPCpMsN9H/rWGEard7CIVLNzP7R6zBAElPAp+mv5YZjrsD+L6ZHVLvGbwgCaIqod7AD4GmhIbLh6I6R+eKmqTvEwqT9ELvZTNbG2e2mpB0NvA/M5sad5ZMou7gtxC+rB1hRdCtWlJHoLmZzc9y3O8InS6m1HsGL0gaHklNzCxTm0/RkNSU0CC4AZhXjB92URvJTqSMKTKzRfGmcq74eGN7Gkm7STpW0lmS+ka/7xZ3rnSSekp6UtJESb+K9vWRtABYI2lh9O0uVpJOjsY3VG5vKek6wjfmtwidAT6VVAx1+ABIKpH0NKE++V3gJcL4hvmSlkgaIql5rCEbEEXizpGJpGbp/9aS9ow+F0riylV04uz/XEw34ExCu0KmvuPrCVOOnBF3zihr7yjXi8BThMb2swltOyMJo1kfjnL3iDnrbODclO2borx/An5K6Lo4mDBY6vIieG0PJbSNzST0zBpMGJS6Jsr8e0LvqDeBtkWQ90jCuJy3gUdIGQOTcsw+xD/W4VCiMQ0p+44mDE5dB6yNXvMj4n5No2xtgCeiXOuA+4AmwANpnwsvAe3jzpvjczo2X++D2J9cMdyAC6I3zF2EUcDtozdNk+j3A4A7ow+Y84og7+vAiJTtk6JsN6UdNwqYHHPWCuDAlO1lwIUZjrsEWFgEr+0s4IEq3iMLCFfxTaMPwOExZ/1FyofZnVH29VFhrZTjiqEgWc+mAxKPiT6MX47+7S+Jfl9HhgGgMeS9nTANygXAqdGXh3HAB1GhuD1h/NkS4O648+b4nPJWkHgbCSDpfcIH87Asx10K9DeznQqTrMocXwA9zWxytN2G0DvnEEtppIyqvO4xs9jGZ0j6EDjfzMZF26sJV0nT0477BfC0mTUrfMpNcqwCfm1mk9L2tyXMKLCbmb0r6VTgejPrFEfOKNOLhHnBzkjZdybhQ3ASocfhV5L2ITS6xzZwLuq1ta+ZvRZtvwEsMbNfpR03EWhhZgfGEDM1x3zgWjO7L9r+EaGgPsPMHkg57mzClfS340kKkv6S46FdCIMo6/194G0kwTeA13I47jWKYLAUoWtn6puhcq6iz9KOKycM/IrT04TBk1tH25OBEzIcdwLhW1/clhF67qX7IeF1rxxHtJCNA1Xj8gPgr6k7zOwvhOl89gWmRmNKitEPCN1o091LmMQxbh3YOH4Mojm1CPNWpZpH5vEwhXQa4Spp9yy3LlU9QF35gMTgLeBsSf8ws0z93StnKj07OjZuCwmzuz4HYGbro26J76YdtxObjniNw2WEEdj/kXQ/MAG4XtIP2DhorjvwI8JMsHG7F7haUgtC28MawsjwgcA02zgeZicg7h5cXwEt0nea2axoJPZzhOqiwQXOVZXU6o/P2fgFKNVKiuML7nxCgTwj2v4ZoSpuf0LbZKWfEv/7YC7wmpmdWt1BknoR2tHqnRckwe8JAxJnSxpPmPL8M8Ibf1tgF0Kd7g4Ux0jx8aRNdWBmr2Y47kQ2fdMXnJl9Kmlfwgfx7wjf9AD2i25rCNUwPzOz1+NJuZGZDY2qYf5ImLYFwvvgYcIgtEprCXOvxektQj390+l3mNn7UWEyERhd4FxVeU7Suuj3NsCebPwyUWkX4MNChqrCCOA2SbsTCr3ehC9FV0pqSZgAcS/gYiDuGcFfIRRw2aQOWK1X3kYSkbQzYVT4YWycjrnSB4SeOzeYWfqlbdGStCPwmZkVxZQTAJK6sumguf9ZcY4h2YowzqUp8H4xvYaVJJ1DmCblR1bFwNnoyuoJQvtZbN/0oxkO0s01s4fSjpse7S+Gruu/JVS5bkWYJWKEpBMIbVCVk3beC/whzvdw1A35p2Z2e5bj2hPa+GZUd1ytMnhBsrmo33hl28JnZhb3LK/OuSIRVXO3N7NP4s5SLLwgaWCiy+43gJOKoapICVy6VglZxti5YuEFSYroA6QD8J6ZbdYQGF0a/tLMxhQ83KY5flnN3S0IDWp/JJpC3swmFiJXJkrQ0rWQrGWMcxXNw3WcmQ2JOUesy8HWVXQlkro08CzC84j9Q1RhVuVjCf+fRpvZHEk/BK5i45efuyxl/Zd6FfcgmWK4AdsAjxE+KNYTGlJHAm3Sjot9YFeUI0mrty0HjkrZfoXQG6pVyr42hN4xzxXBazuJsFTttoS68TuBxYQZBLZKeb88Q+jFFfv7N4fnlLeBaDXI8B1Cb8PK9+X/CB9w7xMK69cJ08d/DOxQBK/Zy4SZciu320YZN0Q5v2DjgMpWceWMsvUgfBH7KHpdvyAsYFVGGKx6V/T/bj1hyej6zxD3P1gx3IArCb20ziYsDHRh9IaeC/xfynHFUpDMIvRsOYPQNzz1tkf0Bu9duS/mrIlZujbKkaRljHfM8dY/7vctRbAcbA3zJmZp4KiweIywkiOEDhhlwMi04x4EXslLhrj/wYrhRujue37avm8A/wA+AfaL9hVLQSLCOufLCNM2fDvlvjbRf4LN5lyKKetrwKCU7Q+A4zMcdyrwSRHkXZ72YbF99Hr+Iu24XxZBQVJ59ZntVgxXpkuB3inbXaJcPdOOOwP4bxG8D9ILkk+AizIcF/vUPoTuyYekbLeN8ndPO+5QQuehes/g40iCzqQNNDSzjyQdTCjFJ0s6ieLo346Fd8W9kh4FrgHeknRn9HuxuQ4YK+kDYAwbl65dQajOEuEyvBiWroWNyxi/RBgcl7qM8VQLgz+LZRnjL4GpwP1ZjjuA0LU9TrEvB1tHxbw08Co2HZha+Xv6dEPNCYNY650XJMFS4P8IVyBfs9A3/HhJtxIuHWNtZE9nZp8B50u6l9C3fS5wPUW0prQla+laSNYyxq8R2vH+Xt1B0dovcYt9OdhaSMrSwC8RBkrOjbLcSJh1+w/RbB1fRvPxXUoo+Oqd99ri60nPdjKzg6o55jLCt2mzGCe/q46k4wnLge5AmJwt9mVAKykhS9dCopYx/hPQz8zSB9CmH/dz4Coz61aYZBkzxL4cbE0oQUsDS/oOYQ67yvfBAsJV/uOEmQIWAl0JX4y6mdmb9Z7BC5Kvu871Aa4zsxXVHHcioa78jKqOiVtU7dICKLciXyXRNR4qguVg80FFsjRwNH7sp4SehlPMbFU0sPosNn75ecjMFufl73tB4pxzri6KYZZNlyeS7pM0Mu4cuUhSVkheXufyyRvba0DSfcAWZtY37iw56kZyviwkKSskKK+kyYTah4PjzpJNkrJCsvLmM6sXJDWTmA8PADP7TtwZcpWkrJC4vCI579skZYVk5c1bVm8jacCibp8dzCzuhXeySlJWSF5e5/IpKSVpUZDUNFrjIymOIKz0lgRJygoJyitpq6S8b5OUFZKVN59ZvSCpmcR8eLjGQdJ5kv4n6UtJr0o6JcNhe1EE79skZYVk5Y07q7eRJJCkXPusZxqJW1BJygrJyhsNQL2DsAzwvwjjCEZLOgo4xcxWxZkvVZKyQrLyFkNWbyOhxh8eu8Y9sl1h3ev3CNMgVOdbwD5x5k1SVkhWXkkzgalmdmnKvoOBsYTRzUdYWJRrH+Blz5q7JOUthqxekJCsDw8ASW8SFt/qk+W4XsAjMb/JE5M1ypGYvJK+BH5lZtPT9nclrJfSBDicMB9U3B92ickKycpbDFm9jST4D/AfMzuuuhtwc9xBI68C++ZwXOWEiHFKUlZIVt7PCR8OmzCzBcD+hCnxXwZ+XNhYGSUpKyQrb+xZ/YqErydeO8zMumQ57ljCGt6xFsCSdgZ2M7OnsxzXjNBFNX2q7oJJUtYoR2LySnoK+NLMTq7i/maEifsOJ+bJRpOUNcqTmLzFkNULEpL14eFcJUnHARcDR5rZp1Uc0wS4mzDZ6LcLmS8tR2KyRlkSk7cYsnpB4pxzrk68jcQ551ydeEHinHOuTrwgcY2KpNMlzYpGAJdJ+pekvPTGk/RdSYMlbZvDsYMlWcptqaRxUftdtnNPj85pWT/JnasZL0hco6GwXPL9wHNAT+BU4Cng13n6k98FBgFZC5LI58B+0e0SYE9giqQWWc77e3RORS1zOlcnPkWKa0zOB+4xs8tT9k2QdFVcgdKsM7NXot9fkbQIeAH4JfBY+sFRT5wmZvYJ8EnhYjq3Kb8icY3JtsBH6TstpeuipK5RNdGJkh6MqsCWSRqUfp6k7tEEeV9J+ljS8MrqJUkHAROiQ+dHj7mghnlnRT+7Ro85WtJMSUdLegf4CtgnU9WWpGaShklaKGm1pPmS/pyW/yxJ70T3L5R0Kc7Vgl+RuMbkDeCC6Jv+38xsRTXH3gD8DegF/BwYJGm5md0FIGlX4FlgEnAs0Bm4DtgJOCz6W5cANxKq0T4EVtcwb9fo50dp+4YBQ4CPCbO5btKOIkmEKrv9gKsJBdK3gJ+lHDMAuDZ6rOlACXC1pAozu7OGOV1jZ2Z+81ujuAF7AO8TpjfZALxD+EBunXJM1+j+59POvQ9YQlhqGaAUmEuoWqo8pnd07n7R9pHRdtccsg0mTGWxZXT7LjAN+ALoFB0zOnq8PdPOPT3a3zLa7hFt/7qKv9UaKAcGpe0fQii0mmTL6ze/pd68ass1Gmb2FvB9QuP6cMJcWX8CZmbo8fRE2vZ44JvADtH2T4AnzGx9yjHjgHXAAbWM2A5YG93eI1zd9DGzD1OOWWJmb2Z5nO7Ap1b1TA37AS2AxyRtWXkDpgId2fgcncuJV225RsXMVhPaLiYASOpL6MnVF7gt5dBlaadWbncCFkU/P0577PWSVgDb1TLe58AhhKuJj4ClZpY+9cTHm521uXaEqrSqVE7w904V93cGfBoglzMvSFyjZmYjJQ0Ddkm7q0MV2x+m/NzkmKgXVTsg43xHOVhnZjOzHJPLnEYrCAVdVSrzHUnmgum9HP6Gc1/zqi3XaEhKLxyQtD3Qhs0/UI9J265sMF8cbb8KHBMVHqnHbAm8GG2viX42rUPs2pgCbCfpyCru/yewCvimmc3McPuycFFdQ+BXJK4xeTuacvt5QlVVF0LPqgrggbRjd4uWFxhH6LXVF7jQzDZE919DWNb0SUl3E9oVrgeeM7N/RsdUfrM/R1IpUGFmb+fnqW1iEmHQ5UOShhB6kHUCfrWMHXsAAADVSURBVG5m55jZZ5IGA7dJ6gL8g/Cl8rtANzNLL0Sdq5YXJK4xGQIcBdxOaMf4iLDgTx8zm5927KWEqp9xhPEaVwNfd4s1s3ckHU7oQjue0Lvq4ei8ymMWSroE+C1wAeFqpms+nlgqMzNJx0SZLyIsEb0UeCjlmGGSlhKmH/894Tn+F3gk3/lcw+PTyDuXIlqedD5h6dK/xZvGuWTwNhLnnHN14gWJc865OvGqLeecc3XiVyTOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTv4faiZuMWvWF98AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -269,13 +271,11 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ - "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + "# result = ae.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=LegacySimulators.get_backend('statevector_simulator'))" ] }, { @@ -306,22 +306,26 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHq5JREFUeJzt3Xv4XFV97/H3h4sQbgEEAkVKBNEI\nhcdKRGKp/CL3cGoA0eRBT08sGvWo0D5IQUQIaKngEdBSH+DBhnLUhBYop1xCCJdfIFzUIEFsEjBo\nQC6i2B+JMRAh+Z4/1g5O9m9+M3tuezKTz+t55pmZtddes/bKZL6/tfdaaysiMDMz67TNul0BMzPb\nNDjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHrAZJMyQNZq8HJc1ocP8BSZEva4S8t0p6\nvMb2KyQNSdqq4Ge/TVJIOraROpt1igOO2cZjFvBnkg7Ib5C0OXAycFNErCm9ZmZt4IBjtvH4f8Bq\nYGqVbROBMaSgZNaTHHDMmiRpgqT/lPS8pN9LWiTpo82WFxGrgFuBKVU2TwVeBO7NPntPSTMl/ULS\nK5KelHSBpC1r1HeL7BTbp3PpX5X0q1za3pKuz07hrZY0R9J+zR6bGcAW3a6A2cYsImZUvB7Ibd4b\neAC4EngV+AtgpqR1ETEr22cQUL6sGmYBH5F0cEQ8ApAFkROB70XE2izfrsBLwN8CLwPjgPOBXYDP\nNniYG5C0S3ZcLwLTs2M7B5gn6R0+pWfNcsAxa1JEzF7/WpKA+4C3AJ+k+VNfc0gBZCrwSJZ2DLBz\nZZkRsQhYVPH5DwCvAFdKOj0iXm/y8wHOALYCjoiIl7PyHwSWA9OAq1oo2zZhPqVm1iRJO0n6lqSn\ngdeyx3Tg7c2WmfUe/oPUy1GWPAV4Gni44rM3k3SGpCWSXsk++1+BUaSg14ojgbnAquw03BbACuDH\nwPgWy7ZNmAOOWfOuJQWDrwNHA+8B/gXYusVyZwF/CkyQtDUwGZgVGy7tfgZwMfDvwAeBQ4DTsm2t\nfv4uwEf5YxBd/3g/sFeLZdsmzKfUzJqQBYLjgc9FxJUV6e34I+4e0vWTqcAewPYMP0X3YWB2RJxX\n8dkH1Sl3LfA68KZc+s659/8NPApcVKWMlXU+w2xEDjhmzdkK2Bx44wK6pO1JvY2WbjIVEWsl/Tsp\nqOwJLImIn+Syjar87EzNEXIREZKeA95ZUefNgQ/kst5N6lU97gEC1k4OOGZNiIgVkn4EnCdpJbAO\nOJt0rWOHNnzELOBzpNFp51XZPg/4jKSFwM+BvwbGFij3P4Dpkh4jXRf6JLBNLs//AU4B7pF0BfA8\nsDtwODAYEf/W8NGY4YBj1opTgKuB64DfAleQfrw/14ayHyKNChsLzK6y/XzgzaTTXgHcAPwdcHOd\ncs8jXaO5CPgD8C1gMfCJ9Rki4teSDgX+Abgc2BF4AbgfGHHpHbN6VPYtpiW9DTgTOBT4M+D+KvMb\nqu03mvTlP4E02OFW4LSI+G0u32Tgq8B+pL/8LoiI69t5DGZm1rhujFI7AJgEPJk9iroeGCD9JTaN\nNCJog7/mJB0G3EiajX0ccBswS9LRrVbazMxa040ezmYRsS57fQOwS70ejqQJwIPA4RFxX5Z2CPAD\n4KiIuCtLmwtsGREfqNj3dmCHiDisE8djZmbFlN7DWR9sGnQc8OL6YJOV80PgF9k2siXbJwL5C5qz\nSfMZRjdXYzMza4demfg5DlhaJX1Jtg1gX2DLKvmWkI6z6dnfZmbWul4ZpbYTaX2pvCFgn4o8VMk3\nlNu+AUnTScuRMGrUqIP32qs9E6nXrVvHZpv1SjzvHrdTMW6nYtxOxbSznZ588smXImLXInl7JeBA\n9cl0qpKef68R0lNixNWkoa2MHz8+Fi5c2Eod3zA4OMjAwEBbyupnbqdi3E7FuJ2KaWc7ZWsJFtIr\nfwoMkeYC5O3IH3s0QxVp+TxQvYdkZmYl6ZWAs5Q/XqupVHlt5ynSAoP5fONIs8AbGYJtZmZt1isB\nZw6wezbPBgBJ40nXb+bAG8u630taf6rSFOChiFhRUl3NzKyK0q/hSNqGNPET0sKEO0g6OXt/e0Ss\nlrQMmB8RpwJExEPZHJvrJH2B1GO5GFiwfg5O5ivAoKTLSZNCJ2WPYzt+YGZmVlM3Bg3sRrqHR6X1\n799KWj9qC9JKvJWmApeR7jfyxtI2lRkiYkEWvL4KfIY0T+eUiLizjfU3M7MmlB5wImI5fxw5NlKe\nsVXSXgY+nj1q7Xsz9RcwNDOzkvXKNRwzM+txDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVw\nwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZ\nKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhm\nZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UD\njpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWii3K/kBJ+wP/BEwAXgauAS6I\niLU19pkBnD/C5nMi4h+zfNcC/6tKnndGxNIWqm2bsLFn31Zz+/KvHV9STcx6W6kBR9JOwF3AYmAy\nsC/wDVJP69wau14D3JFLOwE4C5iTS18KfDyXtry5GpuZWbuU3cP5NDAKOCkiVgLzJO0AzJB0SZY2\nTEQ8CzxbmSbpy8DSiFiUy/77iHi4A3U3M7MWlH0N5zhgbi6wzCYFocOLFiJpZ+AoYFZ7q2dmZp1S\ndsAZRzrl9YaIeAZYnW0r6mRgS1Kwyttf0kpJayQtkFQ4kJmZWecoIsr7MOk14MyIuDyX/ixwXUSc\nU7Cce4DREXFwLv104A+ka0S7AmcABwOHRcQPRyhrOjAdYMyYMQfPnl0thjVu1apVbLfddm0pq5/1\nQjs9/tyKmtsP3HN0x+vQC+20MXA7FdPOdpo4ceIjETG+SN7SR6kB1SKcRkgfnlHag3T67axhBUd8\nM5f3NlLwOYc0yGB4ZSKuBq4GGD9+fAwMDBSpRl2Dg4O0q6x+1gvtNK3eKLWPDnS8Dr3QThsDt1Mx\n3Wqnsk+pDQE7VkkfTRoiXcRHSAHq+noZI+IV4Hbg3UUraGZmnVF2wFlK7lqNpL2Abcld26lhKrAg\nIn7ZwOeWd97QzMyqKjvgzAGOkbR9RdoU4BVgfr2dJY0FDqXg6DRJo0gj4x5ptKJmZtZeZQecK4E1\nwE2Sjswu2M8ALq0cKi1pmaTvVNl/KvA6cEN+g6TRku6X9ClJR0iaAtwL7Alc1IFjMTOzBpQ6aCAi\nhiQdAVwB3EK6bnMZKejk67V5lSKmAndHxG+qbFsD/Ia0YsFuwKvAQ8DhEbGwLQdgZmZNK32UWkQs\nBj5QJ8/YEdLfVWOfV4GTWqqcmZl1jFeLNjOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmV\nwgHHzMxK4YBjZmalcMAxM7NSNBRwJFVbbsbMzKyuRns4z0m6RNI7O1IbMzPrW40GnKuAk4GfSvqB\npOmSduhAvczMrM80FHAi4vyI2Ac4CngCuBR4QdL3JB3ZiQqamVl/aGrQQETcExF/DewOfB54BzBX\n0nJJMyT9STsraWZmva/VUWrjgfeTbhs9BNwPfAJYJuljLZZtZmZ9pOGAI2lvSedLegq4G9gD+Bvg\nTyLifwJ7k671fL2tNTUzs57W0A3YJN1D6tE8C1wLzIyIpyvzRMRaSd8HTm9XJc3MrPc1esfPl4BJ\nwLyIiBr5FgFvbbpWZmbWdxo9pXYF8GC1YCNpO0nvB4iI1/I9HzMz27Q1GnDuBfYfYds7su1mZmbD\nNBpwVGPbdsDqFupiZmZ9rO41nOw02UBF0ickHZvLtjVwPPB4+6pmZmb9pMiggfeSJncCBPBh4PVc\nnj8AS4Ez21c1MzPrJ3UDTkR8nWxOjaRfACdGxKJOV8zMzPpLQ8OiI8JDnc3MrClFruFMAhZExMrs\ndU0RcXtbamZmZn2lSA/nVuBQ4IfZ62Dk0WoB+CZtZmY2TJGA81bghYrXZmZmDSsyaODpaq/NzMwa\nUeQazjaNFBgRnvxpZmbDFDmltop0baYoX8MxM7NhigScv6GxgGNmZjZMkWs415ZQDzMz63Ot3mLa\nzMyskCKDBn4ITIuIxZJ+RJ3TaxFxSLsqZ2Zm/aPINZz/Al6peO3rOWZm1rAi13A+XvF6WkdrY2Zm\nfavpazhKdpVU66ZsZmZmQBMBR9IkSQ8CrwK/Al6V9KCk49teOzMz6xsNBRxJnwJuIU0GPZ10M7bT\ns/f/mW03MzMbpqH74QDnAFdHxGdy6VdKuhL4EnBVW2pmZmZ9pdFTam8Gbhph243AzvUKkLS/pLsl\nrZb0vKQLJdVcDkfSWElR5TG7St7Jkh6X9KqkxZKmFDoyMzPrqEZ7OPcChwPzqmw7HLiv1s6SdgLu\nAhYDk4F9gW+QAt+5BT7/C8ADFe9fypV/GCnwfRs4DZgEzJI0FBF3FijfzMw6pMjEz/0r3n4LuEbS\nm4GbgV8DuwEnAscBn6hT3KeBUcBJEbESmCdpB2CGpEuytFqeiIiHa2z/MnBfRJyWvb9X0gHAeYAD\njplZFxXp4fyUDSd7CvhU9sjf/fMOaq8WfRwwNxdYZgMXk3pItxSoT1WStgImkno2lWYDMyWNjogV\nzZZvZmatKRJwJrbx88YB91QmRMQzklZn2+oFnJmSdib1rGYBX4qI9asg7AtsCSzN7bOEdMru7cCP\nWqu+mZk1q8hKA/Pb+Hk7AS9XSR/Kto1kDfDPpNNiK4EB4CxSkJlcUTZVyh/Kbd+ApOnAdIAxY8Yw\nODhYq/6FrVq1qm1l9bNeaKczDny95vYy6t8L7bQxcDsV0612anTQwBskbQZsnU8vcMfPamuxaYT0\n9WW+AHyuImlQ0ovAtyW9KyIW1ShfI6SvL/tq4GqA8ePHx8DAQO3aFzQ4OEi7yupnvdBO086+reb2\n5R8d6HgdeqGdNgZup2K61U6NTvyUpLMkLQNeA35X5VHLELBjlfTRVO/51HJD9vzuirKpUv76942W\nb2ZmbdToPJzTgLOB75B6Dv8AXAg8CSwnOzVVw1LStZo3SNoL2Jbh117qidzzU6QgOC6XbxywLquj\nmZl1SaMB55PA+cAl2fubI+IC4ABSwNivzv5zgGMkbV+RNoV0+4NGrxWdnD0/AhARa0jzhD6cyzcF\neMgj1MzMuqvRazhvBRZFxFpJr5GdroqIdZK+DVxD6gGN5EpSL+kmSRcD+wAzgEsrh0pnp+zmR8Sp\n2fsZwPakSZ8rgfcDZwI3RcRPKsr/Cun6zuWkeUKTssexDR6nmZm1WaM9nN8C22WvnwH+vGLbTqRJ\nnSOKiCHgCNJcnVuAC4DLSL2mSluw4XyepaR5OjOB24FTgK9nz5XlLyD1fI4E5gIfBE7xKgNmZt3X\naA/nAeA9pB/975NWCNgZ+APwWeDuegVExGLgA3XyjM29n02awFlXRNxM6t2YmdlGpNGAMwPYM3t9\nEemU2jRSz2Ye8Pl2VczMzPpLQwEnIp4AnsheryHdC+f0DtTLzMz6TCsTP98C7AE8HxHPta9KZmbW\nj5q5xfRnJP0SeBr4AfCMpGcl/e+2187MzPpGoysNnAdcQZpPczwwPnueA3wr225mZjZMo6fUPgtc\nFBFfzqXfka1t9lnSygNmZmYbaPSU2ihGvqvnfKos5mlmZgaNB5ybgZNG2PYh4NbWqmNmZv2qyC2m\nJ1W8nQNcImksw28xfQDw9+2vopmZ9YMi13BuZfitpPcEjqmS97ukO3GamZltoEjAeWvHa2FmZn2v\nyC2mny6jImZm1t8aXmlA0hakAQKHATsD/w3cT7pVQO2bv5uZ2SaroYAjaTfgTuAg0h0+XwQmkObf\nPCbp6Ij4TbsraWZmva/RYdGXAm8G3hsR+0TEhIjYB3hvln5puytoZmb9odGAMwk4KyJ+VJmYvf8i\naZkbMzOzYRoNOFsBvxth2++AN7VWHTMz61eNBpyHgbMkbVuZmL0/K9tuZmY2TKOj1M4A7gV+KelO\n0qCB3UiTQAUMtLV2ZmbWNxrq4UTEImA/4GpgV+AoUsC5EtgvIh5rew3NzKwvFO7hSNoSOAT4RUSc\n3bkqmZlZP2qkh7MWuAd4Z4fqYmZmfaxwwImIdcDPgDGdq46ZmfWrRkepfQk4T9KBnaiMmZn1r0ZH\nqZ1LWlFgkaTnSKPUojJDRBzSprqZmVkfaTTg/DR7mJmZNaRQwJE0irSszU+BXwF3RcSLnayYmZn1\nlyK3mN4HuAsYW5G8UtJHIuLOTlXMzMz6S5FBA5cA64C/BLYBDgAeBa7qYL3MzKzPFAk4E4BzI+KB\niHg1IpYAnwL+VNIena2emZn1iyIBZw/g57m0p0hrp+3e9hqZmVlfKjoPJ+pnMTMzG1nRYdFzJb1e\nJf3ufHpE7NZ6tczMrN8UCTgXdLwWZmbW9+oGnIhwwDEzs5Y1upaamZlZUxxwzMysFA44ZmZWCgcc\nMzMrhQOOmZmVwgHHzMxKUXrAkbS/pLslrZb0vKQLJW1eZ5/3SJopaVm23xOSzpe0dS7fDElR5XFs\nZ4/KzMzqafQGbC2RtBPpVgeLgcnAvsA3SIHv3Bq7TsnyXgz8DDgI+Er2/KFc3hVAPsAsabXuZmbW\nmlIDDvBpYBRwUkSsBOZJ2gGYIemSLK2aiyPiNxXvByW9Clwlae+IeLpi2+sR8XBnqm9mZs0q+5Ta\nccDcXGCZTQpCh4+0Uy7YrPdo9uy128zMekDZAWccsLQyISKeAVZn2xrxPtKN4Z7Ipe8o6SVJr0l6\nVNJJTdfWzMzaRhHl3XlA0mvAmRFxeS79WeC6iDinYDm7Az8Bbo+IaRXpHyP1eBYB25FuFDcJ+FBE\n3DRCWdOB6QBjxow5ePbs2Y0eVlWrVq1iu+22a0tZ/awX2unx51bU3H7gnqM7XodeaKeNgdupmHa2\n08SJEx+JiPFF8nYj4HwhIr6ZS38OuDYivlSgjDeRBh68BTg4IoZq5BXwIDAqIt5Vr+zx48fHwoUL\n62UrZHBwkIGBgbaU1c96oZ3Gnn1bze3Lv3Z8x+vQC+20MXA7FdPOdpJUOOCUfUptCNixSvpo4OV6\nO2cB5DrgAGBSrWADECma3gQcVG/otZmZdVbZo9SWkrtWI2kvYFty13ZGcBlpOPVREVEk/3q+Y6mZ\nWZeV3cOZAxwjafuKtCnAK8D8WjtK+iLweeBjEbGgyIdlPaITgcciYm1zVTYzs3You4dzJXAacJOk\ni4F9gBnApZVDpSUtA+ZHxKnZ+1OAi4BrgeckHVpR5lPrh01Lmg/cSOotbQt8EjgUOKGzh2VmZvWU\nGnAiYkjSEcAVwC2k6zaXkYJOvl6V11yOzp6nZY9KHycFIoBlwN8Ce5CGTP8YOD4i5rSj/mZm1ryy\nezhExGLgA3XyjM29n8bwQFNtv1NbqJqZmXWQV4s2M7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuF\nA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zM\nSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVYotuV8CsUWPPvq1unuVf\nO76EmphZI9zDMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAx\nM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqXwDdjMNkL5m8ydceDr\nTKtI8w3mrBe5h2NmZqVwwDEzs1KUfkpN0v7APwETgJeBa4ALImJtnf1GA5cDJ5AC5a3AaRHx21y+\nycBXgf2An2dlX9/u47Dh8qeBqvGpILNNV6k9HEk7AXcBAUwGLgTOAC4osPv1wADwCWAa8B7g5lz5\nhwE3AvcCxwG3AbMkHd2WAzAzs6aV3cP5NDAKOCkiVgLzJO0AzJB0SZY2jKQJwDHA4RFxX5b2HPAD\nSUdGxF1Z1i8D90XEadn7eyUdAJwH3Nm5wzLrbe6dWhnKDjjHAXNzgWU2cDFwOHBLjf1eXB9sACLi\nh5J+kW27S9JWwETgtNy+s4GZkkZHxIo2HUdP84+LdZu/g5umsgPOOOCeyoSIeEbS6mzbSAFnHLC0\nSvqSbBvAvsCWVfItIZ06fDvwo+aqXV+9YayNqvafrd5/Uv8HNdtQp/7PtDNgNlPHIp9fyxkHvs5A\nSyU0RxFR3odJrwFnRsTlufRngesi4pwR9psH/D4iTsilfxfYJyLeJ+kvgAXAn0fEooo8bwN+BhwT\nEcNOq0maDkzP3r4DeKLpA9zQLsBLbSqrn7mdinE7FeN2Kqad7bR3ROxaJGM3Jn5Wi3AaIb2Z/fLv\nVWN/IuJq4Oo6n90wSQsjYny7y+03bqdi3E7FuJ2K6VY7lT0PZwjYsUr6aNIQ6Ub327Fiv6GKtHwe\n6pRvZmYdVnbAWcofr7kAIGkvYFuqX6MZcb9M5bWdp4DXquQbB6wDnmyivmZm1iZlB5w5wDGStq9I\nmwK8Asyvs9/u2TwbACSNB/bJthERa0jzbz6c23cK8FAXRqi1/TRdn3I7FeN2KsbtVExX2qnsQQM7\nAYuBn5KGQu8DXApcHhHnVuRbBsyPiFMr0u4gjTT7AqnHcjHw64j4y4o8hwGDwBWkSaGTsvzHVhsw\nYGZm5Sm1hxMRQ8ARwOakIdAXAJcB5+eybpHlqTSV1Av6F+A64BHgxFz5C4CTgSOBucAHgVMcbMzM\nuq/UHo6ZmW26vFp0HZL2l3S3pNWSnpd0oaR876vafqMlzZQ0JGmFpO9JenOVfJMlPS7pVUmLJU3p\nzJF0TjNtJOk9Wfssy/Z7QtL5krbO5ZshKao8ju3sUbVfk+00doTjn10lb89/l6DpdhrpexKSvliR\n79oR8lQblLRRk/Q2SVdJekzSWkmDBffr2m+Tb8BWQ8Vio4tJi43uC3yDFKjPrbErpMVG30FabHT9\nNaebgfw1pxuBb5OW5JlEWmx0qFdOA7bQRlOyvBeTJuYeBHwle/5QLu8KIB9glrRa9zK1+F2CdC3y\ngYr3G0za64fvErTUTtcAd+TSTgDOIhtYVGEp8PFc2vLmatxVB5D+nR8G3tTAft37bYoIP0Z4AF8k\nze/ZoSLt74HVlWlV9ptAmmj6/oq0Q7K0IyvS5gL35Pa9HVjQ7WMvoY12rZI2PWujvSvSZgAvdfs4\nu9hOY7M2+R91yu/571Ir7TRCWbcBS3Jp1wILu32cbWqrzSpe3wAMFtinq79NPqVW20iLjY4iLTZa\na79hi40C6xcbpWKx0X/L7TsbmKB0/59e0FQbRcRvqiQ/mj3v1r7qbTSa/S7V1UffJWhTO0naGTgK\nmNXe6m08ImJdE7t19bfJAae2YYuGRsQzpL+2ap3zbddio72g2Taq5n2kLn5+PbsdJb0k6TVJj0o6\nqenadk+r7TQzO0//gqRLJY2q2NYv3yVo3/fpZFKbDLvWBewvaaWkNZIWSGop4PeYrv42OeDUthPV\nl8QZyra1st/653y+odz2jV2zbbQBSbsDXwL+b+6v22WkUyofIV3beR64sQeDTrPttAb4Z+BU0pSC\nq4DPsOEPab98l6BN3yfSNIofR0R+hZFHSTd9/Cvgo6TpF/MkHdJEXXtRV3+bPGigvo1qsdGNVLNt\nlDJKbyJ131cBf7dBwRHfzeW9BXiQdFO9m5qpbBc13E4R8QLwuYqkQUkvAt+W9K6oWBm9Sjm9+F2C\n1r9Pe5BOv501rOCIb+by3kYaoHAOaZDBpqBrv03u4dTmxUbra7aNAJAk0kTeA4BJkSYHjyjS1cub\ngIOKDE/fiLTUTjk3ZM/vriibKuX32ncJ2tNOHyH9OF5fL2NEvEK6GP7uenn7RFd/mxxwavNio/U1\n20brXUYa/jo5IorkX6/X/mpvtZ0qRe65X75L0J52mkoaTfXLBj63175Pzerqb5MDTm2b0mKjzWq2\njcgm5H0e+FikZYnqynpEJwKPRcTa5qrcFU23UxUnZ8+PQF99l6DFdpI0FjiUgqPTssEXx5G15Sag\nu79N3R5LvjE/SBfHXgDmkdZnm066zvDVXL5lwHdyaXcAPwdOIp0bfgK4P5fnMOB14HJgALiE9BfE\n0d0+9k63EXAK6a/KmaQfiMrHrhX55pMmnh1NCjS3Z230wW4fe0ntNIM08fGkbL8LST++N/bbd6mV\ndqpIP5v013m1eV6jgfuBT5EGYEwhTZpcA4zv9rE30VbbkP74OBl4CPivivfbjNRO3fxt6nqjbewP\nYH/gnuw/+Quk2fCb5/IsB67Npe2Y/Zi+DKwEvg/sUqX8E0irZ68hdWmndvuYy2gj0gS8GOExrSLf\nd7L/HK8Av89+MI7r9jGX2E5TgYWk1Rb+kP2AXAhs1Y/fpWbbqSJ9EXDHCOVuTbr+98usjVZkP76H\ndvuYm2ynsTX+D40dqZ26+dvkxTvNzKwUvoZjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwz\nMyuFA46ZmZXCAcfMzErx/wEcoM5WrinEjAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHq5JREFUeJzt3Xv4XFV97/H3h4sQbgEEAkVKBNEIhcdKRGKp/CL3cGoA0eRBT08sGvWo0D5IQUQIaKngEdBSH+DBhnLUhBYop1xCCJdfIFzUIEFsEjBoQC6i2B+JMRAh+Z4/1g5O9m9+M3tuezKTz+t55pmZtddes/bKZL6/tfdaaysiMDMz67TNul0BMzPbNDjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHrAZJMyQNZq8HJc1ocP8BSZEva4S8t0p6vMb2KyQNSdqq4Ge/TVJIOraROpt1igOO2cZjFvBnkg7Ib5C0OXAycFNErCm9ZmZt4IBjtvH4f8BqYGqVbROBMaSgZNaTHHDMmiRpgqT/lPS8pN9LWiTpo82WFxGrgFuBKVU2TwVeBO7NPntPSTMl/ULSK5KelHSBpC1r1HeL7BTbp3PpX5X0q1za3pKuz07hrZY0R9J+zR6bGcAW3a6A2cYsImZUvB7Ibd4beAC4EngV+AtgpqR1ETEr22cQUL6sGmYBH5F0cEQ8ApAFkROB70XE2izfrsBLwN8CLwPjgPOBXYDPNniYG5C0S3ZcLwLTs2M7B5gn6R0+pWfNcsAxa1JEzF7/WpKA+4C3AJ+k+VNfc0gBZCrwSJZ2DLBzZZkRsQhYVPH5DwCvAFdKOj0iXm/y8wHOALYCjoiIl7PyHwSWA9OAq1oo2zZhPqVm1iRJO0n6lqSngdeyx3Tg7c2WmfUe/oPUy1GWPAV4Gni44rM3k3SGpCWSXsk++1+BUaSg14ojgbnAquw03BbACuDHwPgWy7ZNmAOOWfOuJQWDrwNHA+8B/gXYusVyZwF/CkyQtDUwGZgVGy7tfgZwMfDvwAeBQ4DTsm2tfv4uwEf5YxBd/3g/sFeLZdsmzKfUzJqQBYLjgc9FxJUV6e34I+4e0vWTqcAewPYMP0X3YWB2RJxX8dkH1Sl3LfA68KZc+s659/8NPApcVKWMlXU+w2xEDjhmzdkK2Bx44wK6pO1JvY2WbjIVEWsl/TspqOwJLImIn+Syjar87EzNEXIREZKeA95ZUefNgQ/kst5N6lU97gEC1k4OOGZNiIgVkn4EnCdpJbAOOJt0rWOHNnzELOBzpNFp51XZPg/4jKSFwM+BvwbGFij3P4Dpkh4jXRf6JLBNLs//AU4B7pF0BfA8sDtwODAYEf/W8NGY4YBj1opTgKuB64DfAleQfrw/14ayHyKNChsLzK6y/XzgzaTTXgHcAPwdcHOdcs8jXaO5CPgD8C1gMfCJ9Rki4teSDgX+Abgc2BF4AbgfGHHpHbN6VPYtpiW9DTgTOBT4M+D+KvMbqu03mvTlP4E02OFW4LSI+G0u32Tgq8B+pL/8LoiI69t5DGZm1rhujFI7AJgEPJk9iroeGCD9JTaNNCJog7/mJB0G3EiajX0ccBswS9LRrVbazMxa040ezmYRsS57fQOwS70ejqQJwIPA4RFxX5Z2CPAD4KiIuCtLmwtsGREfqNj3dmCHiDisE8djZmbFlN7DWR9sGnQc8OL6YJOV80PgF9k2siXbJwL5C5qzSfMZRjdXYzMza4demfg5DlhaJX1Jtg1gX2DLKvmWkI6z6dnfZmbWul4ZpbYTaX2pvCFgn4o8VMk3lNu+AUnTScuRMGrUqIP32qs9E6nXrVvHZpv1SjzvHrdTMW6nYtxOxbSznZ588smXImLXInl7JeBA9cl0qpKef68R0lNixNWkoa2MHz8+Fi5c2Eod3zA4OMjAwEBbyupnbqdi3E7FuJ2KaWc7ZWsJFtIrfwoMkeYC5O3IH3s0QxVp+TxQvYdkZmYl6ZWAs5Q/XqupVHlt5ynSAoP5fONIs8AbGYJtZmZt1isBZw6wezbPBgBJ40nXb+bAG8u630taf6rSFOChiFhRUl3NzKyK0q/hSNqGNPET0sKEO0g6OXt/e0SslrQMmB8RpwJExEPZHJvrJH2B1GO5GFiwfg5O5ivAoKTLSZNCJ2WPYzt+YGZmVlM3Bg3sRrqHR6X1799KWj9qC9JKvJWmApeR7jfyxtI2lRkiYkEWvL4KfIY0T+eUiLizjfU3M7MmlB5wImI5fxw5NlKesVXSXgY+nj1q7Xsz9RcwNDOzkvXKNRwzM+txDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWii3K/kBJ+wP/BEwAXgauAS6IiLU19pkBnD/C5nMi4h+zfNcC/6tKnndGxNIWqm2bsLFn31Zz+/KvHV9STcx6W6kBR9JOwF3AYmAysC/wDVJP69wau14D3JFLOwE4C5iTS18KfDyXtry5GpuZWbuU3cP5NDAKOCkiVgLzJO0AzJB0SZY2TEQ8CzxbmSbpy8DSiFiUy/77iHi4A3U3M7MWlH0N5zhgbi6wzCYFocOLFiJpZ+AoYFZ7q2dmZp1SdsAZRzrl9YaIeAZYnW0r6mRgS1Kwyttf0kpJayQtkFQ4kJmZWecoIsr7MOk14MyIuDyX/ixwXUScU7Cce4DREXFwLv104A+ka0S7AmcABwOHRcQPRyhrOjAdYMyYMQfPnl0thjVu1apVbLfddm0pq5/1Qjs9/tyKmtsP3HN0x+vQC+20MXA7FdPOdpo4ceIjETG+SN7SR6kB1SKcRkgfnlHag3T67axhBUd8M5f3NlLwOYc0yGB4ZSKuBq4GGD9+fAwMDBSpRl2Dg4O0q6x+1gvtNK3eKLWPDnS8Dr3QThsDt1Mx3Wqnsk+pDQE7VkkfTRoiXcRHSAHq+noZI+IV4Hbg3UUraGZmnVF2wFlK7lqNpL2Abcld26lhKrAgIn7ZwOeWd97QzMyqKjvgzAGOkbR9RdoU4BVgfr2dJY0FDqXg6DRJo0gj4x5ptKJmZtZeZQecK4E1wE2Sjswu2M8ALq0cKi1pmaTvVNl/KvA6cEN+g6TRku6X9ClJR0iaAtwL7Alc1IFjMTOzBpQ6aCAihiQdAVwB3EK6bnMZKejk67V5lSKmAndHxG+qbFsD/Ia0YsFuwKvAQ8DhEbGwLQdgZmZNK32UWkQsBj5QJ8/YEdLfVWOfV4GTWqqcmZl1jFeLNjOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAxM7NSNBRwJFVbbsbMzKyuRns4z0m6RNI7O1IbMzPrW40GnKuAk4GfSvqBpOmSduhAvczMrM80FHAi4vyI2Ac4CngCuBR4QdL3JB3ZiQqamVl/aGrQQETcExF/DewOfB54BzBX0nJJMyT9STsraWZmva/VUWrjgfeTbhs9BNwPfAJYJuljLZZtZmZ9pOGAI2lvSedLegq4G9gD+BvgTyLifwJ7k671fL2tNTUzs57W0A3YJN1D6tE8C1wLzIyIpyvzRMRaSd8HTm9XJc3MrPc1esfPl4BJwLyIiBr5FgFvbbpWZmbWdxo9pXYF8GC1YCNpO0nvB4iI1/I9HzMz27Q1GnDuBfYfYds7su1mZmbDNBpwVGPbdsDqFupiZmZ9rO41nOw02UBF0ickHZvLtjVwPPB4+6pmZmb9pMiggfeSJncCBPBh4PVcnj8AS4Ez21c1MzPrJ3UDTkR8nWxOjaRfACdGxKJOV8zMzPpLQ8OiI8JDnc3MrClFruFMAhZExMrsdU0RcXtbamZmZn2lSA/nVuBQ4IfZ62Dk0WoB+CZtZmY2TJGA81bghYrXZmZmDSsyaODpaq/NzMwaUeQazjaNFBgRnvxpZmbDFDmltop0baYoX8MxM7NhigScv6GxgGNmZjZMkWs415ZQDzMz63Ot3mLazMyskCKDBn4ITIuIxZJ+RJ3TaxFxSLsqZ2Zm/aPINZz/Al6peO3rOWZm1rAi13A+XvF6WkdrY2ZmfavpazhKdpVU66ZsZmZmQBMBR9IkSQ8CrwK/Al6V9KCk49teOzMz6xsNBRxJnwJuIU0GPZ10M7bTs/f/mW03MzMbpqH74QDnAFdHxGdy6VdKuhL4EnBVW2pmZmZ9pdFTam8Gbhph243AzvUKkLS/pLslrZb0vKQLJdVcDkfSWElR5TG7St7Jkh6X9KqkxZKmFDoyMzPrqEZ7OPcChwPzqmw7HLiv1s6SdgLuAhYDk4F9gW+QAt+5BT7/C8ADFe9fypV/GCnwfRs4DZgEzJI0FBF3FijfzMw6pMjEz/0r3n4LuEbSm4GbgV8DuwEnAscBn6hT3KeBUcBJEbESmCdpB2CGpEuytFqeiIiHa2z/MnBfRJyWvb9X0gHAeYADjplZFxXp4fyUDSd7CvhU9sjf/fMOaq8WfRwwNxdYZgMXk3pItxSoT1WStgImkno2lWYDMyWNjogVzZZvZmatKRJwJrbx88YB91QmRMQzklZn2+oFnJmSdib1rGYBX4qI9asg7AtsCSzN7bOEdMru7cCPWqu+mZk1q8hKA/Pb+Hk7AS9XSR/Kto1kDfDPpNNiK4EB4CxSkJlcUTZVyh/Kbd+ApOnAdIAxY8YwODhYq/6FrVq1qm1l9bNeaKczDny95vYy6t8L7bQxcDsV0612anTQwBskbQZsnU8vcMfPamuxaYT09WW+AHyuImlQ0ovAtyW9KyIW1ShfI6SvL/tq4GqA8ePHx8DAQO3aFzQ4OEi7yupnvdBO086+reb25R8d6HgdeqGdNgZup2K61U6NTvyUpLMkLQNeA35X5VHLELBjlfTRVO/51HJD9vzuirKpUv76942Wb2ZmbdToPJzTgLOB75B6Dv8AXAg8CSwnOzVVw1LStZo3SNoL2Jbh117qidzzU6QgOC6XbxywLqujmZl1SaMB55PA+cAl2fubI+IC4ABSwNivzv5zgGMkbV+RNoV0+4NGrxWdnD0/AhARa0jzhD6cyzcFeMgj1MzMuqvRazhvBRZFxFpJr5GdroqIdZK+DVxD6gGN5EpSL+kmSRcD+wAzgEsrh0pnp+zmR8Sp2fsZwPakSZ8rgfcDZwI3RcRPKsr/Cun6zuWkeUKTssexDR6nmZm1WaM9nN8C22WvnwH+vGLbTqRJnSOKiCHgCNJcnVuAC4DLSL2mSluw4XyepaR5OjOB24FTgK9nz5XlLyD1fI4E5gIfBE7xKgNmZt3XaA/nAeA9pB/975NWCNgZ+APwWeDuegVExGLgA3XyjM29n02awFlXRNxM6t2YmdlGpNGAMwPYM3t9EemU2jRSz2Ye8Pl2VczMzPpLQwEnIp4AnsheryHdC+f0DtTLzMz6TCsTP98C7AE8HxHPta9KZmbWj5q5xfRnJP0SeBr4AfCMpGcl/e+2187MzPpGoysNnAdcQZpPczwwPnueA3wr225mZjZMo6fUPgtcFBFfzqXfka1t9lnSygNmZmYbaPSU2ihGvqvnfKos5mlmZgaNB5ybgZNG2PYh4NbWqmNmZv2qyC2mJ1W8nQNcImksw28xfQDw9+2vopmZ9YMi13BuZfitpPcEjqmS97ukO3GamZltoEjAeWvHa2FmZn2vyC2mny6jImZm1t8aXmlA0hakAQKHATsD/w3cT7pVQO2bv5uZ2SaroYAjaTfgTuAg0h0+XwQmkObfPCbp6Ij4TbsraWZmva/RYdGXAm8G3hsR+0TEhIjYB3hvln5puytoZmb9odGAMwk4KyJ+VJmYvf8iaZkbMzOzYRoNOFsBvxth2++AN7VWHTMz61eNBpyHgbMkbVuZmL0/K9tuZmY2TKOj1M4A7gV+KelO0qCB3UiTQAUMtLV2ZmbWNxrq4UTEImA/4GpgV+AoUsC5EtgvIh5rew3NzKwvFO7hSNoSOAT4RUSc3bkqmZlZP2qkh7MWuAd4Z4fqYmZmfaxwwImIdcDPgDGdq46ZmfWrRkepfQk4T9KBnaiMmZn1r0ZHqZ1LWlFgkaTnSKPUojJDRBzSprqZmVkfaTTg/DR7mJmZNaRQwJE0irSszU+BXwF3RcSLnayYmZn1lyK3mN4HuAsYW5G8UtJHIuLOTlXMzMz6S5FBA5cA64C/BLYBDgAeBa7qYL3MzKzPFAk4E4BzI+KBiHg1IpYAnwL+VNIena2emZn1iyIBZw/g57m0p0hrp+3e9hqZmVlfKjoPJ+pnMTMzG1nRYdFzJb1eJf3ufHpE7NZ6tczMrN8UCTgXdLwWZmbW9+oGnIhwwDEzs5Y1upaamZlZUxxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxKUXrAkbS/pLslrZb0vKQLJW1eZ5/3SJopaVm23xOSzpe0dS7fDElR5XFsZ4/KzMzqafQGbC2RtBPpVgeLgcnAvsA3SIHv3Bq7TsnyXgz8DDgI+Er2/KFc3hVAPsAsabXuZmbWmlIDDvBpYBRwUkSsBOZJ2gGYIemSLK2aiyPiNxXvByW9Clwlae+IeLpi2+sR8XBnqm9mZs0q+5TaccDcXGCZTQpCh4+0Uy7YrPdo9uy128zMekDZAWccsLQyISKeAVZn2xrxPtKN4Z7Ipe8o6SVJr0l6VNJJTdfWzMzaRhHl3XlA0mvAmRFxeS79WeC6iDinYDm7Az8Bbo+IaRXpHyP1eBYB25FuFDcJ+FBE3DRCWdOB6QBjxow5ePbs2Y0eVlWrVq1iu+22a0tZ/awX2unx51bU3H7gnqM7XodeaKeNgdupmHa208SJEx+JiPFF8nYj4HwhIr6ZS38OuDYivlSgjDeRBh68BTg4IoZq5BXwIDAqIt5Vr+zx48fHwoUL62UrZHBwkIGBgbaU1c96oZ3Gnn1bze3Lv3Z8x+vQC+20MXA7FdPOdpJUOOCUfUptCNixSvpo4OV6O2cB5DrgAGBSrWADECma3gQcVG/otZmZdVbZo9SWkrtWI2kvYFty13ZGcBlpOPVREVEk/3q+Y6mZWZeV3cOZAxwjafuKtCnAK8D8WjtK+iLweeBjEbGgyIdlPaITgcciYm1zVTYzs3You4dzJXAacJOki4F9gBnApZVDpSUtA+ZHxKnZ+1OAi4BrgeckHVpR5lPrh01Lmg/cSOotbQt8EjgUOKGzh2VmZvWUGnAiYkjSEcAVwC2k6zaXkYJOvl6V11yOzp6nZY9KHycFIoBlwN8Ce5CGTP8YOD4i5rSj/mZm1ryyezhExGLgA3XyjM29n8bwQFNtv1NbqJqZmXWQV4s2M7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVYotuV8CsUWPPvq1unuVfO76EmphZI9zDMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqXwDdjMNkL5m8ydceDrTKtI8w3mrBe5h2NmZqVwwDEzs1KUfkpN0v7APwETgJeBa4ALImJtnf1GA5cDJ5AC5a3AaRHx21y+ycBXgf2An2dlX9/u47Dh8qeBqvGpILNNV6k9HEk7AXcBAUwGLgTOAC4osPv1wADwCWAa8B7g5lz5hwE3AvcCxwG3AbMkHd2WAzAzs6aV3cP5NDAKOCkiVgLzJO0AzJB0SZY2jKQJwDHA4RFxX5b2HPADSUdGxF1Z1i8D90XEadn7eyUdAJwH3Nm5wzLrbe6dWhnKDjjHAXNzgWU2cDFwOHBLjf1eXB9sACLih5J+kW27S9JWwETgtNy+s4GZkkZHxIo2HUdP84+LdZu/g5umsgPOOOCeyoSIeEbS6mzbSAFnHLC0SvqSbBvAvsCWVfItIZ06fDvwo+aqXV+9YayNqvafrd5/Uv8HNdtQp/7PtDNgNlPHIp9fyxkHvs5ASyU0RxFR3odJrwFnRsTlufRngesi4pwR9psH/D4iTsilfxfYJyLeJ+kvgAXAn0fEooo8bwN+BhwTEcNOq0maDkzP3r4DeKLpA9zQLsBLbSqrn7mdinE7FeN2Kqad7bR3ROxaJGM3Jn5Wi3AaIb2Z/fLvVWN/IuJq4Oo6n90wSQsjYny7y+03bqdi3E7FuJ2K6VY7lT0PZwjYsUr6aNIQ6Ub327Fiv6GKtHwe6pRvZmYdVnbAWcofr7kAIGkvYFuqX6MZcb9M5bWdp4DXquQbB6wDnmyivmZm1iZlB5w5wDGStq9ImwK8Asyvs9/u2TwbACSNB/bJthERa0jzbz6c23cK8FAXRqi1/TRdn3I7FeN2KsbtVExX2qnsQQM7AYuBn5KGQu8DXApcHhHnVuRbBsyPiFMr0u4gjTT7AqnHcjHw64j4y4o8hwGDwBWkSaGTsvzHVhswYGZm5Sm1hxMRQ8ARwOakIdAXAJcB5+eybpHlqTSV1Av6F+A64BHgxFz5C4CTgSOBucAHgVMcbMzMuq/UHo6ZmW26vFp0HZL2l3S3pNWSnpd0oaR876vafqMlzZQ0JGmFpO9JenOVfJMlPS7pVUmLJU3pzJF0TjNtJOk9Wfssy/Z7QtL5krbO5ZshKao8ju3sUbVfk+00doTjn10lb89/l6DpdhrpexKSvliR79oR8lQblLRRk/Q2SVdJekzSWkmDBffr2m+Tb8BWQ8Vio4tJi43uC3yDFKjPrbErpMVG30FabHT9Naebgfw1pxuBb5OW5JlEWmx0qFdOA7bQRlOyvBeTJuYeBHwle/5QLu8KIB9glrRa9zK1+F2CdC3ygYr3G0za64fvErTUTtcAd+TSTgDOIhtYVGEp8PFc2vLmatxVB5D+nR8G3tTAft37bYoIP0Z4AF8kze/ZoSLt74HVlWlV9ptAmmj6/oq0Q7K0IyvS5gL35Pa9HVjQ7WMvoY12rZI2PWujvSvSZgAvdfs4u9hOY7M2+R91yu/571Ir7TRCWbcBS3Jp1wILu32cbWqrzSpe3wAMFtinq79NPqVW20iLjY4iLTZaa79hi40C6xcbpWKx0X/L7TsbmKB0/59e0FQbRcRvqiQ/mj3v1r7qbTSa/S7V1UffJWhTO0naGTgKmNXe6m08ImJdE7t19bfJAae2YYuGRsQzpL+2ap3zbddio72g2Taq5n2kLn5+PbsdJb0k6TVJj0o6qenadk+r7TQzO0//gqRLJY2q2NYv3yVo3/fpZFKbDLvWBewvaaWkNZIWSGop4PeYrv42OeDUthPVl8QZyra1st/653y+odz2jV2zbbQBSbsDXwL+b+6v22WkUyofIV3beR64sQeDTrPttAb4Z+BU0pSCq4DPsOEPab98l6BN3yfSNIofR0R+hZFHSTd9/Cvgo6TpF/MkHdJEXXtRV3+bPGigvo1qsdGNVLNtlDJKbyJ131cBf7dBwRHfzeW9BXiQdFO9m5qpbBc13E4R8QLwuYqkQUkvAt+W9K6oWBm9Sjm9+F2C1r9Pe5BOv501rOCIb+by3kYaoHAOaZDBpqBrv03u4dTmxUbra7aNAJAk0kTeA4BJkSYHjyjS1cubgIOKDE/fiLTUTjk3ZM/vriibKuX32ncJ2tNOHyH9OF5fL2NEvEK6GP7uenn7RFd/mxxwavNio/U120brXUYa/jo5IorkX6/X/mpvtZ0qRe65X75L0J52mkoaTfXLBj63175Pzerqb5MDTm2b0mKjzWq2jcgm5H0e+FikZYnqynpEJwKPRcTa5qrcFU23UxUnZ8+PQF99l6DFdpI0FjiUgqPTssEXx5G15Sagu79N3R5LvjE/SBfHXgDmkdZnm066zvDVXL5lwHdyaXcAPwdOIp0bfgK4P5fnMOB14HJgALiE9BfE0d0+9k63EXAK6a/KmaQfiMrHrhX55pMmnh1NCjS3Z230wW4fe0ntNIM08fGkbL8LST++N/bbd6mVdqpIP5v013m1eV6jgfuBT5EGYEwhTZpcA4zv9rE30VbbkP74OBl4CPivivfbjNRO3fxt6nqjbewPYH/gnuw/+Quk2fCb5/IsB67Npe2Y/Zi+DKwEvg/sUqX8E0irZ68hdWmndvuYy2gj0gS8GOExrSLfd7L/HK8Av89+MI7r9jGX2E5TgYWk1Rb+kP2AXAhs1Y/fpWbbqSJ9EXDHCOVuTbr+98usjVZkP76HdvuYm2ynsTX+D40dqZ26+dvkxTvNzKwUvoZjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErx/wEcoM5WrinEjAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XuYHFWd//H3h4sQCYR7QERiUERQ\nHyUDwv5YmQgKBB+DCMKq6y8KSbysuPuAgogS8LKCcvGyLgkoyE8lKCC73OWSCaCiJBFEIcGg4S4C\nBkJICAS+vz9ODRY1PT3dM93V092f1/PU01Onzqk+p6tnvlOnTp1SRGBmZtZs67S6AmZm1h0ccMzM\nrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAYw0laZakGGT5cI372Cnbz6aF9GnZfsY2p/a11WOE\n+7xYUl8N+daT9O+S7pC0WtJySVdJ2nuY7ztaPtNphe/E3yRdK2m3Gsr2ZmXeVEZdrfEccKwZngL2\nqrBcU2P5nYCTgOIf+iuz/axqTDWHXY+mkrQucBnwNeB/gSnANOAFoE/SB4ex29HymfZ7Z/a+M4Gt\ngHmSXjVEmUVZmXubXDdrkvVaXQHrSGsj4tZG7zQiHgMea/R+R6FPAwcBB0ZEPkj/j6S5wBxJ8yPi\noZG+UQs/09siYiWApAXAfcCHgG8UM0oSsEFErAAa/r2y8vgMx1pC0uclLZX0rKRHJV0jaRtJvcDl\nWba/ZF0oy7IyL+v+kTQhWz9C0nmSVkh6sL/rTtLnJD0s6TFJp0paJ/f+O0uaK+kBSask/THrwlon\n2z5oPbLtr8nK/z0rf62kNxTauH3WDbZa0jJJR9X48XwGmFcINv2+AGwIHJl7n2WSvinpi5L+Kmml\npB9LGjdUWyp1qUnaUtIPJT2Rta1PUk+hbf3v+R/ZZ748+zzqPhuMiAdIQW9Ctu9Zkh6XtLek24Bn\ngcMqdalJWjf7Lt0jaU1Wl/MLdZ0qaUH2XfurpNMkrV9vPW3kfIZjTSFpwHcrItZm2z4CnAAcB/wR\n2ILUxbIRqdvkWOCbwCHAI8CaId7uVODHwPuBjwE/lPQ2YIdsfRLwFeB3wNyszHbAkqzc08BbgZOB\nMcB/VquHpM2BW4AngI+TuqOOB66XtFNErM7+K/8fYEtScHg22//mwJ+qfG7bk/7wnllpe0TcK+lO\n4B2FTf8CLAWmA9sCpwHnAodVa8sgLgNel5V5HPgsqcvrbRGxNJfvA8DvgRnAq4EzSN2An6yy7wEk\nbUz6XP6aS34l8MOsHfcAD2ftKpoNfCTLNz/bz6G5fX8AuDDLdwKwI+n4rpO1z8oUEV68NGwBZgEx\nyDIhy/Nd4JIq+3hPPn8ufVqWPjZbn5Ctn5fLswnwPOmP+rq59N8CFw3yfiL983UC8Oca6vFlUrDZ\nPJe2Gena1aey9SlZ2bfn8uwArAX6qrR9z6zc1Cp5LgPuzq0vA/7e/7lkaR8CXgTeWOdnekC2vk8u\nz0akM5DZhfe8F1gvl3YW8Nchvh/97zcu+8y3By7KPpe3Fr5DUwtle7P0N2XrO2frR1c5rvflvx9Z\n+seA1cAWrf596bbFZzjWDE8B+1VIfzh7vR04UtLJpIvWCyPihRG83w39P0TECkmPAfML+1wKvKZ/\nRdKGwOdJf5hfA6yf27ZeZGdjg9gPuA5YkTuTexpYCPR3Pe0BPBoRv8nV7T5JC4fRvlpcF9k1kcyl\nwI+A3YG769jPHsBjETG/PyEinpF0BVAcITev8DndBWwt6RUR8dwQ7/Nk7ufHgY9FxO25tACuHmIf\nk7PX8wfZvhPp2P60cMZ9I6lb8k2ksyIriQOONcPaiFhQZfsPgI1JXTFfAp6Q9N/ArGEGnicL688N\nkrZhbv1U4ChSN9eiLP9U4MQs30oGtyXpTOTwCtv6g982wN8qbP8bqe2D6R8IsEOVPDvk8uX3+5JI\n3XorqdwNVc22wKMV0h8ldVflVfqMBbwi+7mad5C6Ih8HHoiIFwvbl9cQtLYAnok0mKCSLbPXqwbZ\nvv0Q+7cGc8Cx0mV/XM4EzsyuWXwI+Crpj+jZJVXjMOA7EXFaf4Kkg2os+3fScOUvV9j2dPb6V2Dr\nCtu3JnXnVBQRD2QX9N8LfLu4XdJrSf+ZF99760K+McBY0vWaejxS3FdmPKndjfK7whlZUS3PTXkC\n2EjSJoMEnf76ziBdvyv6Sw3vYQ3kUWrWUhHxQER8ndTltUuW3P+f7YaVSzXEGHIXzpXufTmikGew\netwA7Ar8MSIWFJYlWZ7bgPGS3p57j9cAQ97gCHwL2FfSuyts+0pW7+8X0t+ll9+8eQjpj3b/mWat\nn+lvSN1iLw1KkPRK0jDtW2qoe5luzF4/Msj2JaR/YiZUOE4LIuKJcqpp/XyGY82wnqQ9K6Q/EBEP\nSZpN+u/zVtL1nsnA60mj1iD9oQCYqXTfyaqIuLPBdbwO+JSkpVldPgVsUMgzWD3OAD4M3CjpO6Q/\nauOBfYBbIuJCUjfOHcDPJB1HGqV2CpW72Yq+Q7pO9HNJ3wT6SN1wR5Iu/v9rDLwHZzVwpaRvkLrF\nvgH8PCLuGqItLxMR10r6JXCRpONJZxHHkgL0gHtkWikilkiaA5wuaWvgJtKNrYdGxBER8aKkY4D/\nJ2kT0jWh54CJwMFZvrJveO1urR614KWzFqqPUjsxyzMN+CXpD/0q0tDaIwv7OYY0wmgtsCxXrtIo\ntfcUyi4DvllIOx9YkFsfD/wcWEG6PnEaaUjxS/sfrB5Z+quA87Kya7L3/BGway7Pa0izK6zO9jET\nuJgqo9RyZdcD/iP7bFYDy0l/MPeukHcZcHr22T8KPEMaCrxpvZ9plrYVcEH2nqtJF9Z3r+EzHrCv\nCnWtJc8s4PEK6b3kRqllaeuSjS4kBZMHGTgq7UDg5uxzWUEatPIVciPsvJSzKDsgpZH0OtK4/j1J\nfdE3R0RvDeXGkYZdHkzqCryCNBzyiUK+qaQv0+tJX8KTI+KiRrbBbDTJrvlcHBG+r8RGtVZcw9mV\ndI/CPdlSq4tI/+EcRfovaXfS/QgvUZrY8BJgHum/miuBCwfpCzczsxK14gxnnciGQEq6GNhyqDMc\nSXsBvyLdjHZTlrYH6QLnuyLi+iztWmD9iHhnruxVwCYRMaxZds1GO5/hWLso/QwnBo63r8WBpJvo\nbsrt57ekYY0HAkjagHTx+aeFsnOBvfrnlTLrNBExwcHG2kG7DIveGVhcIf3ubBukOZLWr5DvblI7\nd2pa7czMbEjtMix6Mwbe1QxpFM3EXB4q5Fte2P4ykmaQbgxjzJgxk7bfvr1uPn7xxRdZZ512+b+h\n8YbT/o3vSZcOn96pvf8H8bHv3vaPprbfc889j0fEVrXkbZeAA5XvPFaF9OK6qpQnIuYAcwB6enpi\nwYJqM7KMPn19ffT29ra6Gi0zrPYr+0osWVI93yjnY9+97R9NbZd0X615R0eIHNpyKj91cVP+cUaz\nPJdWzAOVz5DMzKwk7RJwFvOPazV5+Ws795KmpS/m25k0TXs9Q7DNzKzB2iXgXA1sk91nA0D2BMKJ\n2TYiYg3p/pvDCmUPB34dEU+VVFczM6ug9Gs42USAU7LV7YBNJPU/oe+qiFiVzW81PyKOBIiIX2f3\n2Fwg6VjSGcuppHmrrs/t/stAn6SzSDeFTsmWA5reMDMzq6oVgwa2Bn5WSOtffy1pjqb1SHMk5R1B\nmtL+B+SmtslniIhbsuD1FeATpPt0PhgRv2hg/a3dlXyzs5klpQeciFjGP0aODZZnQoW0J4GPZku1\nspdRmPLGzMxar12u4ZiZWZtzwLHuM2lSWsysVO1046dZYyxa1OoamHUln+GYmVkpHHDMzKwUDjhm\nZlYKBxwzMyuFA46ZmZXCo9Ss+0yf3uoamHUlBxzrPnPmtLoGZl3JXWpmZlYKBxzrPgsXpsXMSuUu\nNes+PT3p1bNGm5XKZzhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1J4WLR1nwULWl0D\ns67kgGPdx4+XNmsJd6mZmVkpHHCs+8yYkRYzK5UDjnWfc85Ji5mVygHHzMxK4YBjZmalcMAxM7NS\nOOCYmVkpHHDMzKwUvvHTus9uu7W6BmZdyQHHuo8fL23WEu5SMzOzUjjgmJlZKRxwrPtIaTGzUjng\nmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4ZkGrPvMnt3qGph1JQcc6z5+vLRZS5Qe\ncCTtAnwH2At4EjgXODkiXqhSZhZw0iCbT4iI/8zynQ/83wp53hgRi0dQbetiE46/sur2ZV8/qKSa\nmLW3UgOOpM2A64G7gKnAjsDppGtJJ1Ypei5wTSHtYOA44OpC+mLgo4W0ZcOrsXWkOXPSq890zEpV\n9hnOx4ExwCERsQK4TtImwCxJp2VpA0TEg8CD+TRJXwQWR8TthezPRMStTai7dYqZM9OrA45Zqcoe\npXYgcG0hsMwlBaF9at2JpM2BdwEXNrZ6ZmbWLGUHnJ1JXV4viYj7gVXZtlodCqxPClZFu0haIWmN\npFsk1RzIzMyseRQR5b2Z9Dzw2Yg4q5D+IHBBRJxQ435uBMZFxKRC+meA50jXiLYCjgEmAXtHxG8H\n2dcMYAbA+PHjJ82dWymGjV4rV65k7Nixra5Gywyn/b2TJwPQN29eTfnvfOipqtvfvN24ut6/UXzs\nu7f9o6ntkydPXhgRPbXkbUXAOTYivlVIfwg4PyK+UMM+tiVdzzkuIr45RN4xpOBzR0QcPNS+e3p6\nYsGCBUNlG1X6+vro7e1tdTVaZljt7380QY3f/dE6Ss3HvnvbP5raLqnmgFN2l9pyYNMK6eNIQ6Rr\n8QFAwEVDZYyI1cBVgB9ib2bWYmUHnMUUrtVI2h7YiMK1nSqOAG6JiAfqeN/yTuPMzKyisgPO1cD+\nkjbOpR0OrAbmD1VY0gRgT2ocnZZ1qR0ILKy3otbBImruTjOzxik74JwNrAEulbRfdsF+FnBGfqi0\npKWSvl+h/BHAWuDi4gZJ4yTdLGmmpH0lHQ7MA7YDvtaEtpiZWR1KvfEzIpZL2hf4LnA56brNmaSg\nU6zXuhV2cQRwQ0Q8VmHbGuAx0owFWwPPAr8G9omI9hoJYGbWgUqfSy0i7gLeOUSeCYOkv7VKmWeB\nQ0ZUOesOk7LR9Avd02pWJs8Wbd1n0aJW18CsK/kBbGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2Zm\npfAoNes+06e3ugZmXckBx7pP/yOmzaxU7lIzM7NS1BVwJFWabsasvSxc6FkGzFqg3i61hyRdAJwX\nEXc3o0JmTdeTPSvKM0ablareLrXZwKHAHyT9RtIMSZs0oV5mZtZh6go4EXFSREwE3gUsAc4AHpH0\nY0n7NaOCZmbWGYY1aCAiboyIjwDbAJ8G3gBcK2mZpFmSXtXISpqZWfsb6Si1HuAdpMdGLwduBo4C\nlkr68Aj3bWZmHaTugCNpB0knSboXuAHYFvgY8KqI+FdgB9K1nm80tKZmZtbW6hqlJulG0hnNg8D5\npNFq9+XzRMQLkn4CfKZRlTQzs/ZX77Dox4EpwHURVceU3g68dti1MmumBX7iuFkr1BtwvgssqhRs\nJI0FdouImyLieeC+AaXNRoP+R0ybWanqvYYzD9hlkG1vyLabmZkNUG/AUZVtY4FVI6iLWTlmzEiL\nmZVqyC41Se8AenNJR0k6oJBtQ+Ag4M7GVc2sSc45J7161mizUtVyDeftpJs7AQI4DFhbyPMcsBj4\nbOOqZmZmnWTIgBMR3yC7p0bSX4D3RcTtza6YmZl1lrpGqUWEhzqbmdmw1HINZwpwS0SsyH6uKiKu\nakjNzMyso9RyhnMFsCfw2+znYPDRagH4IW1mZjZALQHntcAjuZ/N2ttuu7W6BmZdqZZBA/dV+tms\nbfnx0mYtUcs1nFfWs8OI8M2fZmY2QC1daitJ12Zq5Ws4ZmY2QC0B52PUF3DMRjdlY16qTnhuZo1W\nyzWc80uoh5mZdbiRPmLazMysJrUMGvgtMC0i7pJ0G0N0r0XEHo2qnJmZdY5aruH8EVid+9kd32Zm\nVrdaruF8NPfztKbWxszMOtawr+Eo2UpStYeymZmZAXXOFg0vTeZ5IjApK79W0kLgqxFxZYPrZ9Z4\ns2e3ugZmXamugCNpJvA94AbgM8DfgK2BQ4D/lfTJiPBvs41ufry0WUvUe4ZzAjAnIj5RSD9b0tnA\nFwAHHDMzG6DeazhbAJcOsu0SYPOhdiBpF0k3SFol6WFJp0iqOh2OpAmSosIyt0LeqZLulPSspLsk\nHV5Ty6x7zJmTFjMrVb1nOPOAfYDrKmzbB7ipWmFJmwHXA3cBU4EdgdNJge/EGt7/WOCXufXHC/vf\nmxT4vgccDUwBLpS0PCJ+UcP+rRvMnJle3bVmVqpabvzcJbf6beBcSVsAl/GPazjvAw4Ejhpidx8H\nxgCHRMQK4DpJmwCzJJ2WpVWzJCJurbL9i8BNEXF0tj5P0q7AlwAHHDOzFqrlDOcPvPxmTwEzs6X4\n9M9rqD5b9IHAtYXAMhc4lXSGdHkN9alI0gbAZNKZTd5c4DxJ4yLiqeHu38zMRqaWgDO5ge+3M3Bj\nPiEi7pe0Kts2VMA5T9LmpDOrC4EvRET/LAg7AusDiwtl7iZ12e0E3Day6puZ2XDVMtPA/Aa+32bA\nkxXSl2fbBrMG+C9St9gKoBc4jhRkpub2TYX9Ly9sfxlJM4AZAOPHj6evr69a/UedlStXtl2dG2k4\n7e/NXmstd8yb11bd3qrP38e+e9vfrm2v+8bPfpLWATYsptfwxM9Kc7FpkPT+fT4C/FsuqU/So8D3\nJL01Im6vsn8Nkt6/7znAHICenp7o7e2tXvtRpq+vj3arcyONpP21lpt2fPX7mZd9aHjvP1I+9t3b\n/nZte13DorPpbI6TtBR4Hni6wlLNcmDTCunjqHzmU83F2etuuX1TYf/96/Xu38zMGqje+3COBo4H\nvk86c/gqcApwD7CMrGuqisWkazUvkbQ9sBEDr70MJQqv95KC4M6FfDsDL2Z1NEtP+vTTPs1KV2/A\nmQ6cBJyWrV8WEScDu5ICxuuHKH81sL+kjXNph5Mef1DvtaJDs9eFABGxhnSf0GGFfIcDv/YINTOz\n1qr3Gs5rgdsj4gVJz5N1V0XEi5K+B5xLOgMazNmks6RLJZ0KTARmAWfkh0pnXXbzI+LIbH0WsDHp\nps8VwDuAzwKXRsTvc/v/Mun6zlmk+4SmZMsBdbbTzMwarN4znCeAsdnP9wNvy23bjHRT56AiYjmw\nL+lencuBk4EzSWdNeevx8vt5FpPu0zkPuAr4IPCN7DW//1tIZz77AdcC7wU+6FkG7GUmTUqLmZWq\n3jOcXwK7k/7o/4Q0Q8DmwHPAp0izSFcVEXcB7xwiz4TC+lzSDZxDiojLSGc3ZpUtWtTqGph1pXoD\nzixgu+znr5G61KaRzmyuAz7dqIqZmVlnqSvgRMQSYEn28xrSM3E+04R6mZlZhxnJjZ+vBrYFHo6I\nhxpXJTMz60T1DhpA0ickPQDcB/wGuF/Sg5I+2fDamZlZx6h3poEvAd8l3U9zENCTvV4NfDvbbmZm\nNkC9XWqfAr4WEV8spF+TzW32KdLMA2aj1/Tpra6BWVeqN+CMYfCnes7Ho9SsHfjx0mYtUe81nMuA\nQwbZ9n7gipFVx8zMOlUtj5ieklu9GjhN0gQGPmJ6V+Bzja+iWYMtXJhePduAWalq6VK7goGPkt4O\n2L9C3h+RnsRpNnr19KRXzxhtVqpaAs5rm14LMzPreLU8Yvq+MipiZmadre6ZBiStRxogsDewOfB3\n4GbSowKqP/zdzMy6Vl0BR9LWwC+At5Ce8PkosBfp/ps7JL07Ih5rdCXNzKz91Tss+gxgC+DtETEx\nIvaKiInA27P0MxpdQTMz6wz1BpwpwHERcVs+MVv/PGmaGzMzswHqvYazAfD0INueBl4xsuqYlWDB\nglbXwKwr1RtwbgWOk3RjRDzTnyhpI+C4bLvZ6OYbPs1aot6AcwwwD3hA0i9Igwa2Jt0EKqC3obUz\nM7OOUdc1nIi4HXg9MAfYCngXKeCcDbw+Iu5oeA3NGm3GjLSYWalqPsORtD6wB/CXiDi+eVUya7Jz\nzkmvnjXarFT1nOG8ANwIvLFJdTEzsw5Wc8CJiBeBPwHjm1cdMzPrVPXeh/MF4EuS3tyMypiZWeeq\nd5TaiaQZBW6X9BBplNrL5niPiD0aVDczM+sg9QacP2SLmZlZXWoKOJLGkKa1+QPwV+D6iHi0mRUz\na5rddmt1Dcy6Ui2PmJ4IXA9MyCWvkPSBiPhFsypm1jT9j5g2s1LVMmjgNOBF4J+BVwK7Ar8DZjex\nXmZm1mFqCTh7ASdGxC8j4tmIuBuYCbxG0rbNrZ6ZmXWKWgLOtsCfC2n3kuZO26bhNTJrNiktZlaq\nWu/DiaGzmJmZDa7WYdHXSlpbIf2GYnpEbD3yapmZWaepJeCc3PRamJlZxxsy4ESEA46ZmY1YvXOp\nmZmZDYsDjpmZlaLeudTM2t9s37Ns1goOONZ9/Hhps5Zwl5qZmZXCAce6z5w5aTGzUpUecCTtIukG\nSaskPSzpFEnrDlFmd0nnSVqalVsi6SRJGxbyzZIUFZYDmtsqayszZ6bFzEpV6jUcSZuRHnVwFzAV\n2BE4nRT4TqxS9PAs76nAn4C3AF/OXt9fyPsUUAwwd4+07mZmNjJlDxr4ODAGOCQiVgDXSdoEmCXp\ntCytklMj4rHcep+kZ4HZknaIiPty29ZGxK3Nqb6ZmQ1X2V1qBwLXFgLLXFIQ2mewQoVg0+932avn\nbjMzawNlB5ydgcX5hIi4H1iVbavHP5EeDLekkL6ppMclPS/pd5IOGXZtzcysYRRR3pMHJD0PfDYi\nziqkPwhcEBEn1LifbYDfA1dFxLRc+odJZzy3A2NJD4qbArw/Ii4dZF8zgBkA48ePnzR37tx6m9VS\nK1euZOzYsa2uRssMp/29kycD0DdvXk3573zoqarb37zduLrev1F87Lu3/aOp7ZMnT14YET215G1F\nwDk2Ir5VSH8IOD8ivlDDPl5BGnjwamBSRCyvklfAr4AxEfHWofbd09MTCxYsGCrbqNLX10dvb2+r\nq9Eyw2p//8PXavzuTzj+yqrbl339oPrev0F87Lu3/aOp7ZJqDjhld6ktBzatkD4OeHKowlkAuQDY\nFZhSLdgARIqmlwJvGWrotXWRiJqDjZk1Ttmj1BZTuFYjaXtgIwrXdgZxJmk49bsiopb8/fzXxcys\nxco+w7ka2F/Sxrm0w4HVwPxqBSV9Hvg08OGIuKWWN8vOiN4H3BERLwyvymZm1ghln+GcDRwNXCrp\nVGAiMAs4Iz9UWtJSYH5EHJmtfxD4GnA+8JCkPXP7vLd/2LSk+cAlpLOljYDpwJ7Awc1tlrWVSZPS\n68KFra2HWZcpNeBExHJJ+wLfBS4nXbc5kxR0ivXKX3N5d/Y6LVvyPkoKRABLgX8HtiUNmV4EHBQR\nVzei/tYhFi1qdQ3MulLpjyeIiLuAdw6RZ0JhfRoDA02lckeOoGpmZtZEni3azMxK4YBjZmalcMAx\nM7NSOOCYmVkpSh80YNZy06e3ugZmXckBx7qPHy9t1hLuUjMzs1I44Fj3WbjQswyYtYC71Kz79GQz\nqXvGaLNS+QzHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKD4u27rNgQatrYNaVHHCs\n+/Q/YtrMSuUuNTMzK4UDjnWfGTPSYmalcsCx7nPOOWkxs1I54JiZWSkccMzMrBQepWZtZ8LxV770\n8zFvXsu03DrAsq8fVHaVzKwGPsMxM7NSOOCYmVkp3KVm3We33VpdA7Ou5IBj3cePlzZrCXepmZlZ\nKRxwzMysFA441n2ktJhZqRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmal8EwD1n1m\nz251Dcy6kgOOdR8/XtqsJdylZmZmpfAZjnWfOXPS6yg+05lQeKhckR8yZ+3IAce6z8yZ6XUUBxyz\nTuQuNTMzK0XpZziSdgG+A+wFPAmcC5wcES8MUW4ccBZwMClQXgEcHRFPFPJNBb4CvB74c7bvixrd\nDqusWleQu4HMulupZziSNgOuBwKYCpwCHAOcXEPxi4Be4ChgGrA7cFlh/3sDlwDzgAOBK4ELJb27\nIQ0wM7NhK/sM5+PAGOCQiFgBXCdpE2CWpNOytAEk7QXsD+wTETdlaQ8Bv5G0X0Rcn2X9InBTRByd\nrc+TtCvwJeAXzWuWWfvzQAVrtrIDzoHAtYXAMhc4FdgHuLxKuUf7gw1ARPxW0l+ybddL2gCYDBxd\nKDsXOE/SuIh4qkHtaGv+w2Kjgb+H3afsgLMzcGM+ISLul7Qq2zZYwNkZWFwh/e5sG8COwPoV8t1N\n6jrcCbhteNUe2lC/PP2Wff2gYf+iVSp3zJvXMu34K/3LaTaIZl1XbGTAHE4da3n/0XZNVRFR3ptJ\nzwOfjYizCukPAhdExAmDlLsOeCYiDi6k/wiYGBH/JOn/ALcAb4uI23N5Xgf8Cdg/IgZ0q0maAfSP\nj30DsGTYDWyNLYHHW12JFurm9ndz26G72z+a2r5DRGxVS8ZW3IdTKcJpkPThlCuua5D0lBgxB5gz\nxHuPWpIWRERPq+vRKt3c/m5uO3R3+9u17WXfh7Mc2LRC+jjSEOl6y22aK7c8l1bMwxD7NzOzJis7\n4CzmH9dcAJC0PbARla/RDFouk7+2cy/wfIV8OwMvAvcMo75mZtYgZQecq4H9JW2cSzscWA3MH6Lc\nNtl9NgBI6gEmZtuIiDWk+28OK5Q9HPh1B49Qa9vuwAbp5vZ3c9uhu9vflm0ve9DAZsBdwB9IQ6En\nAmcAZ0XEibl8S4H5EXFkLu0a0kizY0lnLKcCf4uIf87l2RvoA75Luil0Spb/gEoDBszMrDylnuFE\nxHJgX2Bd0hDok4EzgZMKWdfL8uQdQToL+gFwAbAQeF9h/7cAhwL7AdcC7wU+6GBjZtZ6pZ7hmJlZ\n9/Js0W1I0nRJf5L0rKSFkvatocwsSVFhOaCMOtdL0i6SbpC0StLDkk6RVDzrrVRunKTzJC2X9JSk\nH0vaoow6N8pw2i5pwiDHd26jL3rKAAAD0ElEQVRZ9W4USa+TNFvSHZJekNRXY7lOOPZ1t72djr2f\nh9NmJB0BnA3MIt3o+lHgCkm7R8Qfhij+FFAMMHc3vJIjlJvk9S7SJK87AqeT/kE6sUpRSJO8voE0\nyWv/tb7LgH+uVmi0GGHbIV2z/GVufbTcHFiPXUnXX28FXlFHubY+9pnhth3a4dhHhJc2WkgzIfwg\nt74OcCfwoyHKzQIeb3X9a2zj50n3VW2SS/scsCqfVqHcXqQbfN+RS9sjS9uv1e1qctsnZO18T6vb\n0IDPYJ3czxcDfTWUaftjP4K2t82xd5daG5E0kTRS76f9aRHxIvAz0iSmnWKwSV7HkCZ5rVZuwCSv\nQP8kr+1guG3vGNl3ul6dcOyH2/a24YDTXvpvaq00Qenmkoaaz2hTSY9Lel7S7yQd0vgqNsSAyVoj\n4n7Sf/mVbgAetFwmP8nraDfctvc7L+v7f0TSGZLGNKOSo1AnHPuRGvXH3tdw2stm2Wtxmp7lue2P\nDVJ2Kalr5nZgLDATuETS+yPi0kZXdIQ2o/JURMv5x2dQb7mJDahXGYbb9jXAf5Ge+7SC9LDC40jX\ngKY2toqjUicc++Fqm2PvgNNi2aOztx0qX0Tk/3ura4LSrPyPCu97OfAr0sPpRlvAgeZP8jqa1d2G\niHgE+LdcUp+kR4HvSXpr5GZQ72CdcOzr1k7H3l1qrXcY6bR/qAUaOEFppKuNlwJvqWW4ccmaOcnr\naDfctldycfa624hq1B464dg30qg89g44LRYR50aEhlqy7P1nOZUmKP17RAzWnVa1CsOufPM0c5LX\n0W64ba8kCq+drBOOfSONymPvgNNGIuLPpFmvX5qgVNI62frV9exLkkhTA90RES80sp4N0LRJXtvA\ncNteyaHZ68JGVGyU64Rj30ij89i3ely2l/oW4F+AF0g3AU4Gzif9MXpTLs8+wFpgn1zafOBo4N2k\nQHMV6ea497a6TRXauBnwCHAdaV68GcBK4CuFfEuB7xfSrgH+DBwCHEy6b+nmVrep2W0n3Wd1etbu\n/YBTsu/FJa1u0zA+g1eS/mAeCvwa+GNu/ZWdeuyH2/Z2OvYtr4CXYRw0mJ596dYAi4B9C9t7SafS\nvbm072e/jKuBZ4CbgQNb3ZYqbdwFuDGr7yPAl4F1C3mWAecX0jYFziP1268AfgJs2er2NLvtpMlt\nF5Bmk3gu+36cAmzQ6vYMo/0Tsu9vpWVChx/7utveTsfek3eamVkpfA3HzMxK4YBjZmalcMAxM7NS\nOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXi/wN8Qq+e1/nqnwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYHFWd//H3h4sQCYR7QERiUERQHyUDwv5YmQgKBB+DCMKq6y8KSbysuPuAgogS8LKCcvGyLgkoyE8lKCC73OWSCaCiJBFEIcGg4S4CBkJICAS+vz9ODRY1PT3dM93V092f1/PU01Onzqk+p6tnvlOnTp1SRGBmZtZs67S6AmZm1h0ccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAYw0laZakGGT5cI372Cnbz6aF9GnZfsY2p/a11WOE+7xYUl8N+daT9O+S7pC0WtJySVdJ2nuY7ztaPtNphe/E3yRdK2m3Gsr2ZmXeVEZdrfEccKwZngL2qrBcU2P5nYCTgOIf+iuz/axqTDWHXY+mkrQucBnwNeB/gSnANOAFoE/SB4ex29HymfZ7Z/a+M4GtgHmSXjVEmUVZmXubXDdrkvVaXQHrSGsj4tZG7zQiHgMea/R+R6FPAwcBB0ZEPkj/j6S5wBxJ8yPioZG+UQs/09siYiWApAXAfcCHgG8UM0oSsEFErAAa/r2y8vgMx1pC0uclLZX0rKRHJV0jaRtJvcDlWba/ZF0oy7IyL+v+kTQhWz9C0nmSVkh6sL/rTtLnJD0s6TFJp0paJ/f+O0uaK+kBSask/THrwlon2z5oPbLtr8nK/z0rf62kNxTauH3WDbZa0jJJR9X48XwGmFcINv2+AGwIHJl7n2WSvinpi5L+KmmlpB9LGjdUWyp1qUnaUtIPJT2Rta1PUk+hbf3v+R/ZZ748+zzqPhuMiAdIQW9Ctu9Zkh6XtLek24BngcMqdalJWjf7Lt0jaU1Wl/MLdZ0qaUH2XfurpNMkrV9vPW3kfIZjTSFpwHcrItZm2z4CnAAcB/wR2ILUxbIRqdvkWOCbwCHAI8CaId7uVODHwPuBjwE/lPQ2YIdsfRLwFeB3wNyszHbAkqzc08BbgZOBMcB/VquHpM2BW4AngI+TuqOOB66XtFNErM7+K/8fYEtScHg22//mwJ+qfG7bk/7wnllpe0TcK+lO4B2FTf8CLAWmA9sCpwHnAodVa8sgLgNel5V5HPgsqcvrbRGxNJfvA8DvgRnAq4EzSN2An6yy7wEkbUz6XP6aS34l8MOsHfcAD2ftKpoNfCTLNz/bz6G5fX8AuDDLdwKwI+n4rpO1z8oUEV68NGwBZgExyDIhy/Nd4JIq+3hPPn8ufVqWPjZbn5Ctn5fLswnwPOmP+rq59N8CFw3yfiL983UC8Oca6vFlUrDZPJe2Gena1aey9SlZ2bfn8uwArAX6qrR9z6zc1Cp5LgPuzq0vA/7e/7lkaR8CXgTeWOdnekC2vk8uz0akM5DZhfe8F1gvl3YW8Nchvh/97zcu+8y3By7KPpe3Fr5DUwtle7P0N2XrO2frR1c5rvflvx9Z+seA1cAWrf596bbFZzjWDE8B+1VIfzh7vR04UtLJpIvWCyPihRG83w39P0TECkmPAfML+1wKvKZ/RdKGwOdJf5hfA6yf27ZeZGdjg9gPuA5YkTuTexpYCPR3Pe0BPBoRv8nV7T5JC4fRvlpcF9k1kcylwI+A3YG769jPHsBjETG/PyEinpF0BVAcITev8DndBWwt6RUR8dwQ7/Nk7ufHgY9FxO25tACuHmIfk7PX8wfZvhPp2P60cMZ9I6lb8k2ksyIriQOONcPaiFhQZfsPgI1JXTFfAp6Q9N/ArGEGnicL688NkrZhbv1U4ChSN9eiLP9U4MQs30oGtyXpTOTwCtv6g982wN8qbP8bqe2D6R8IsEOVPDvk8uX3+5JI3XorqdwNVc22wKMV0h8ldVflVfqMBbwi+7mad5C6Ih8HHoiIFwvbl9cQtLYAnok0mKCSLbPXqwbZvv0Q+7cGc8Cx0mV/XM4EzsyuWXwI+Crpj+jZJVXjMOA7EXFaf4Kkg2os+3fScOUvV9j2dPb6V2DrCtu3JnXnVBQRD2QX9N8LfLu4XdJrSf+ZF99760K+McBY0vWaejxS3FdmPKndjfK7whlZUS3PTXkC2EjSJoMEnf76ziBdvyv6Sw3vYQ3kUWrWUhHxQER8ndTltUuW3P+f7YaVSzXEGHIXzpXufTmikGewetwA7Ar8MSIWFJYlWZ7bgPGS3p57j9cAQ97gCHwL2FfSuyts+0pW7+8X0t+ll9+8eQjpj3b/mWatn+lvSN1iLw1KkPRK0jDtW2qoe5luzF4/Msj2JaR/YiZUOE4LIuKJcqpp/XyGY82wnqQ9K6Q/EBEPSZpN+u/zVtL1nsnA60mj1iD9oQCYqXTfyaqIuLPBdbwO+JSkpVldPgVsUMgzWD3OAD4M3CjpO6Q/auOBfYBbIuJCUjfOHcDPJB1HGqV2CpW72Yq+Q7pO9HNJ3wT6SN1wR5Iu/v9rDLwHZzVwpaRvkLrFvgH8PCLuGqItLxMR10r6JXCRpONJZxHHkgL0gHtkWikilkiaA5wuaWvgJtKNrYdGxBER8aKkY4D/J2kT0jWh54CJwMFZvrJveO1urR614KWzFqqPUjsxyzMN+CXpD/0q0tDaIwv7OYY0wmgtsCxXrtIotfcUyi4DvllIOx9YkFsfD/wcWEG6PnEaaUjxS/sfrB5Z+quA87Kya7L3/BGway7Pa0izK6zO9jETuJgqo9RyZdcD/iP7bFYDy0l/MPeukHcZcHr22T8KPEMaCrxpvZ9plrYVcEH2nqtJF9Z3r+EzHrCvCnWtJc8s4PEK6b3kRqllaeuSjS4kBZMHGTgq7UDg5uxzWUEatPIVciPsvJSzKDsgpZH0OtK4/j1JfdE3R0RvDeXGkYZdHkzqCryCNBzyiUK+qaQv0+tJX8KTI+KiRrbBbDTJrvlcHBG+r8RGtVZcw9mVdI/CPdlSq4tI/+EcRfovaXfS/QgvUZrY8BJgHum/miuBCwfpCzczsxK14gxnnciGQEq6GNhyqDMcSXsBvyLdjHZTlrYH6QLnuyLi+iztWmD9iHhnruxVwCYRMaxZds1GO5/hWLso/QwnBo63r8WBpJvobsrt57ekYY0HAkjagHTx+aeFsnOBvfrnlTLrNBExwcHG2kG7DIveGVhcIf3ubBukOZLWr5DvblI7d2pa7czMbEjtMix6Mwbe1QxpFM3EXB4q5Fte2P4ykmaQbgxjzJgxk7bfvr1uPn7xxRdZZ512+b+h8YbT/o3vSZcOn96pvf8H8bHv3vaPprbfc889j0fEVrXkbZeAA5XvPFaF9OK6qpQnIuYAcwB6enpiwYJqM7KMPn19ffT29ra6Gi0zrPYr+0osWVI93yjnY9+97R9NbZd0X615R0eIHNpyKj91cVP+cUazPJdWzAOVz5DMzKwk7RJwFvOPazV5+Ws795KmpS/m25k0TXs9Q7DNzKzB2iXgXA1sk91nA0D2BMKJ2TYiYg3p/pvDCmUPB34dEU+VVFczM6ug9Gs42USAU7LV7YBNJPU/oe+qiFiVzW81PyKOBIiIX2f32Fwg6VjSGcuppHmrrs/t/stAn6SzSDeFTsmWA5reMDMzq6oVgwa2Bn5WSOtffy1pjqb1SHMk5R1BmtL+B+SmtslniIhbsuD1FeATpPt0PhgRv2hg/a3dlXyzs5klpQeciFjGP0aODZZnQoW0J4GPZku1spdRmPLGzMxar12u4ZiZWZtzwLHuM2lSWsysVO1046dZYyxa1OoamHUln+GYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCo9Ss+0yf3uoamHUlBxzrPnPmtLoGZl3JXWpmZlYKBxzrPgsXpsXMSuUuNes+PT3p1bNGm5XKZzhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1J4WLR1nwULWl0Ds67kgGPdx4+XNmsJd6mZmVkpHHCs+8yYkRYzK5UDjnWfc85Ji5mVygHHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUvvHTus9uu7W6BmZdyQHHuo8fL23WEu5SMzOzUjjgmJlZKRxwrPtIaTGzUjngmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4ZkGrPvMnt3qGph1JQcc6z5+vLRZS5QecCTtAnwH2At4EjgXODkiXqhSZhZw0iCbT4iI/8zynQ/83wp53hgRi0dQbetiE46/sur2ZV8/qKSamLW3UgOOpM2A64G7gKnAjsDppGtJJ1Ypei5wTSHtYOA44OpC+mLgo4W0ZcOrsXWkOXPSq890zEpV9hnOx4ExwCERsQK4TtImwCxJp2VpA0TEg8CD+TRJXwQWR8TthezPRMStTai7dYqZM9OrA45ZqcoepXYgcG0hsMwlBaF9at2JpM2BdwEXNrZ6ZmbWLGUHnJ1JXV4viYj7gVXZtlodCqxPClZFu0haIWmNpFsk1RzIzMyseRQR5b2Z9Dzw2Yg4q5D+IHBBRJxQ435uBMZFxKRC+meA50jXiLYCjgEmAXtHxG8H2dcMYAbA+PHjJ82dWymGjV4rV65k7Nixra5Gywyn/b2TJwPQN29eTfnvfOipqtvfvN24ut6/UXzsu7f9o6ntkydPXhgRPbXkbUXAOTYivlVIfwg4PyK+UMM+tiVdzzkuIr45RN4xpOBzR0QcPNS+e3p6YsGCBUNlG1X6+vro7e1tdTVaZljt7380QY3f/dE6Ss3HvnvbP5raLqnmgFN2l9pyYNMK6eNIQ6Rr8QFAwEVDZYyI1cBVgB9ib2bWYmUHnMUUrtVI2h7YiMK1nSqOAG6JiAfqeN/yTuPMzKyisgPO1cD+kjbOpR0OrAbmD1VY0gRgT2ocnZZ1qR0ILKy3otbBImruTjOzxik74JwNrAEulbRfdsF+FnBGfqi0pKWSvl+h/BHAWuDi4gZJ4yTdLGmmpH0lHQ7MA7YDvtaEtpiZWR1KvfEzIpZL2hf4LnA56brNmaSgU6zXuhV2cQRwQ0Q8VmHbGuAx0owFWwPPAr8G9omI9hoJYGbWgUqfSy0i7gLeOUSeCYOkv7VKmWeBQ0ZUOesOk7LR9Avd02pWJs8Wbd1n0aJW18CsK/kBbGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpfAoNes+06e3ugZmXckBx7pP/yOmzaxU7lIzM7NS1BVwJFWabsasvSxc6FkGzFqg3i61hyRdAJwXEXc3o0JmTdeTPSvKM0ablareLrXZwKHAHyT9RtIMSZs0oV5mZtZh6go4EXFSREwE3gUsAc4AHpH0Y0n7NaOCZmbWGYY1aCAiboyIjwDbAJ8G3gBcK2mZpFmSXtXISpqZWfsb6Si1HuAdpMdGLwduBo4Clkr68Aj3bWZmHaTugCNpB0knSboXuAHYFvgY8KqI+FdgB9K1nm80tKZmZtbW6hqlJulG0hnNg8D5pNFq9+XzRMQLkn4CfKZRlTQzs/ZX77Dox4EpwHURVceU3g68dti1MmumBX7iuFkr1BtwvgssqhRsJI0FdouImyLieeC+AaXNRoP+R0ybWanqvYYzD9hlkG1vyLabmZkNUG/AUZVtY4FVI6iLWTlmzEiLmZVqyC41Se8AenNJR0k6oJBtQ+Ag4M7GVc2sSc45J7161mizUtVyDeftpJs7AQI4DFhbyPMcsBj4bOOqZmZmnWTIgBMR3yC7p0bSX4D3RcTtza6YmZl1lrpGqUWEhzqbmdmw1HINZwpwS0SsyH6uKiKuakjNzMyso9RyhnMFsCfw2+znYPDRagH4IW1mZjZALQHntcAjuZ/N2ttuu7W6BmZdqZZBA/dV+tmsbfnx0mYtUcs1nFfWs8OI8M2fZmY2QC1daitJ12Zq5Ws4ZmY2QC0B52PUF3DMRjdlY16qTnhuZo1WyzWc80uoh5mZdbiRPmLazMysJrUMGvgtMC0i7pJ0G0N0r0XEHo2qnJmZdY5aruH8EVid+9kd32ZmVrdaruF8NPfztKbWxszMOtawr+Eo2UpStYeymZmZAXXOFg0vTeZ5IjApK79W0kLgqxFxZYPrZ9Z4s2e3ugZmXamugCNpJvA94AbgM8DfgK2BQ4D/lfTJiPBvs41ufry0WUvUe4ZzAjAnIj5RSD9b0tnAFwAHHDMzG6DeazhbAJcOsu0SYPOhdiBpF0k3SFol6WFJp0iqOh2OpAmSosIyt0LeqZLulPSspLskHV5Ty6x7zJmTFjMrVb1nOPOAfYDrKmzbB7ipWmFJmwHXA3cBU4EdgdNJge/EGt7/WOCXufXHC/vfmxT4vgccDUwBLpS0PCJ+UcP+rRvMnJle3bVmVqpabvzcJbf6beBcSVsAl/GPazjvAw4Ejhpidx8HxgCHRMQK4DpJmwCzJJ2WpVWzJCJurbL9i8BNEXF0tj5P0q7AlwAHHDOzFqrlDOcPvPxmTwEzs6X49M9rqD5b9IHAtYXAMhc4lXSGdHkN9alI0gbAZNKZTd5c4DxJ4yLiqeHu38zMRqaWgDO5ge+3M3BjPiEi7pe0Kts2VMA5T9LmpDOrC4EvRET/LAg7AusDiwtl7iZ12e0E3Day6puZ2XDVMtPA/Aa+32bAkxXSl2fbBrMG+C9St9gKoBc4jhRkpub2TYX9Ly9sfxlJM4AZAOPHj6evr69a/UedlStXtl2dG2k47e/NXmstd8yb11bd3qrP38e+e9vfrm2v+8bPfpLWATYsptfwxM9Kc7FpkPT+fT4C/FsuqU/So8D3JL01Im6vsn8Nkt6/7znAHICenp7o7e2tXvtRpq+vj3arcyONpP21lpt2fPX7mZd9aHjvP1I+9t3b/nZte13DorPpbI6TtBR4Hni6wlLNcmDTCunjqHzmU83F2etuuX1TYf/96/Xu38zMGqje+3COBo4Hvk86c/gqcApwD7CMrGuqisWkazUvkbQ9sBEDr70MJQqv95KC4M6FfDsDL2Z1NEtP+vTTPs1KV2/AmQ6cBJyWrV8WEScDu5ICxuuHKH81sL+kjXNph5Mef1DvtaJDs9eFABGxhnSf0GGFfIcDv/YINTOz1qr3Gs5rgdsj4gVJz5N1V0XEi5K+B5xLOgMazNmks6RLJZ0KTARmAWfkh0pnXXbzI+LIbH0WsDHpps8VwDuAzwKXRsTvc/v/Mun6zlmk+4SmZMsBdbbTzMwarN4znCeAsdnP9wNvy23bjHRT56AiYjmwL+lencuBk4EzSWdNeevx8vt5FpPu0zkPuAr4IPCN7DW//1tIZz77AdcC7wU+6FkG7GUmTUqLmZWq3jOcXwK7k/7o/4Q0Q8DmwHPAp0izSFcVEXcB7xwiz4TC+lzSDZxDiojLSGc3ZpUtWtTqGph1pXoDzixgu+znr5G61KaRzmyuAz7dqIqZmVlnqSvgRMQSYEn28xrSM3E+04R6mZlZhxnJjZ+vBrYFHo6IhxpXJTMz60T1DhpA0ickPQDcB/wGuF/Sg5I+2fDamZlZx6h3poEvAd8l3U9zENCTvV4NfDvbbmZmNkC9XWqfAr4WEV8spF+TzW32KdLMA2aj1/Tpra6BWVeqN+CMYfCnes7Ho9SsHfjx0mYtUe81nMuAQwbZ9n7gipFVx8zMOlUtj5ieklu9GjhN0gQGPmJ6V+Bzja+iWYMtXJhePduAWalq6VK7goGPkt4O2L9C3h+RnsRpNnr19KRXzxhtVqpaAs5rm14LMzPreLU8Yvq+MipiZmadre6ZBiStRxogsDewOfB34GbSowKqP/zdzMy6Vl0BR9LWwC+At5Ce8PkosBfp/ps7JL07Ih5rdCXNzKz91Tss+gxgC+DtETExIvaKiInA27P0MxpdQTMz6wz1BpwpwHERcVs+MVv/PGmaGzMzswHqvYazAfD0INueBl4xsuqYlWDBglbXwKwr1RtwbgWOk3RjRDzTnyhpI+C4bLvZ6OYbPs1aot6AcwwwD3hA0i9Igwa2Jt0EKqC3obUzM7OOUdc1nIi4HXg9MAfYCngXKeCcDbw+Iu5oeA3NGm3GjLSYWalqPsORtD6wB/CXiDi+eVUya7JzzkmvnjXarFT1nOG8ANwIvLFJdTEzsw5Wc8CJiBeBPwHjm1cdMzPrVPXeh/MF4EuS3tyMypiZWeeqd5TaiaQZBW6X9BBplNrL5niPiD0aVDczM+sg9QacP2SLmZlZXWoKOJLGkKa1+QPwV+D6iHi0mRUza5rddmt1Dcy6Ui2PmJ4IXA9MyCWvkPSBiPhFsypm1jT9j5g2s1LVMmjgNOBF4J+BVwK7Ar8DZjexXmZm1mFqCTh7ASdGxC8j4tmIuBuYCbxG0rbNrZ6ZmXWKWgLOtsCfC2n3kuZO26bhNTJrNiktZlaqWu/DiaGzmJmZDa7WYdHXSlpbIf2GYnpEbD3yapmZWaepJeCc3PRamJlZxxsy4ESEA46ZmY1YvXOpmZmZDYsDjpmZlaLeudTM2t9s37Ns1goOONZ9/Hhps5Zwl5qZmZXCAce6z5w5aTGzUpUecCTtIukGSaskPSzpFEnrDlFmd0nnSVqalVsi6SRJGxbyzZIUFZYDmtsqayszZ6bFzEpV6jUcSZuRHnVwFzAV2BE4nRT4TqxS9PAs76nAn4C3AF/OXt9fyPsUUAwwd4+07mZmNjJlDxr4ODAGOCQiVgDXSdoEmCXptCytklMj4rHcep+kZ4HZknaIiPty29ZGxK3Nqb6ZmQ1X2V1qBwLXFgLLXFIQ2mewQoVg0+932avnbjMzawNlB5ydgcX5hIi4H1iVbavHP5EeDLekkL6ppMclPS/pd5IOGXZtzcysYRRR3pMHJD0PfDYiziqkPwhcEBEn1LifbYDfA1dFxLRc+odJZzy3A2NJD4qbArw/Ii4dZF8zgBkA48ePnzR37tx6m9VSK1euZOzYsa2uRssMp/29kycD0DdvXk3573zoqarb37zduLrev1F87Lu3/aOp7ZMnT14YET215G1FwDk2Ir5VSH8IOD8ivlDDPl5BGnjwamBSRCyvklfAr4AxEfHWofbd09MTCxYsGCrbqNLX10dvb2+rq9Eyw2p//8PXavzuTzj+yqrbl339oPrev0F87Lu3/aOp7ZJqDjhld6ktBzatkD4OeHKowlkAuQDYFZhSLdgARIqmlwJvGWrotXWRiJqDjZk1Ttmj1BZTuFYjaXtgIwrXdgZxJmk49bsiopb8/fzXxcysxco+w7ka2F/Sxrm0w4HVwPxqBSV9Hvg08OGIuKWWN8vOiN4H3BERLwyvymZm1ghln+GcDRwNXCrpVGAiMAs4Iz9UWtJSYH5EHJmtfxD4GnA+8JCkPXP7vLd/2LSk+cAlpLOljYDpwJ7Awc1tlrWVSZPS68KFra2HWZcpNeBExHJJ+wLfBS4nXbc5kxR0ivXKX3N5d/Y6LVvyPkoKRABLgX8HtiUNmV4EHBQRVzei/tYhFi1qdQ3MulLpjyeIiLuAdw6RZ0JhfRoDA02lckeOoGpmZtZEni3azMxK4YBjZmalcMAxM7NSOOCYmVkpSh80YNZy06e3ugZmXckBx7qPHy9t1hLuUjMzs1I44Fj3WbjQswyYtYC71Kz79GQzqXvGaLNS+QzHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKD4u27rNgQatrYNaVHHCs+/Q/YtrMSuUuNTMzK4UDjnWfGTPSYmalcsCx7nPOOWkxs1I54JiZWSkccMzMrBQepWZtZ8LxV7708zFvXsu03DrAsq8fVHaVzKwGPsMxM7NSOOCYmVkp3KVm3We33VpdA7Ou5IBj3cePlzZrCXepmZlZKRxwzMysFA441n2ktJhZqRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmal8EwD1n1mz251Dcy6kgOOdR8/XtqsJdylZmZmpfAZjnWfOXPS6yg+05lQeKhckR8yZ+3IAce6z8yZ6XUUBxyzTuQuNTMzK0XpZziSdgG+A+wFPAmcC5wcES8MUW4ccBZwMClQXgEcHRFPFPJNBb4CvB74c7bvixrdDqusWleQu4HMulupZziSNgOuBwKYCpwCHAOcXEPxi4Be4ChgGrA7cFlh/3sDlwDzgAOBK4ELJb27IQ0wM7NhK/sM5+PAGOCQiFgBXCdpE2CWpNOytAEk7QXsD+wTETdlaQ8Bv5G0X0Rcn2X9InBTRBydrc+TtCvwJeAXzWuWWfvzQAVrtrIDzoHAtYXAMhc4FdgHuLxKuUf7gw1ARPxW0l+ybddL2gCYDBxdKDsXOE/SuIh4qkHtaGv+w2Kjgb+H3afsgLMzcGM+ISLul7Qq2zZYwNkZWFwh/e5sG8COwPoV8t1N6jrcCbhteNUe2lC/PP2Wff2gYf+iVSp3zJvXMu34K/3LaTaIZl1XbGTAHE4da3n/0XZNVRFR3ptJzwOfjYizCukPAhdExAmDlLsOeCYiDi6k/wiYGBH/JOn/ALcAb4uI23N5Xgf8Cdg/IgZ0q0maAfSPj30DsGTYDWyNLYHHW12JFurm9ndz26G72z+a2r5DRGxVS8ZW3IdTKcJpkPThlCuua5D0lBgxB5gzxHuPWpIWRERPq+vRKt3c/m5uO3R3+9u17WXfh7Mc2LRC+jjSEOl6y22aK7c8l1bMwxD7NzOzJis74CzmH9dcAJC0PbARla/RDFouk7+2cy/wfIV8OwMvAvcMo75mZtYgZQecq4H9JW2cSzscWA3MH6LcNtl9NgBI6gEmZtuIiDWk+28OK5Q9HPh1B49Qa9vuwAbp5vZ3c9uhu9vflm0ve9DAZsBdwB9IQ6EnAmcAZ0XEibl8S4H5EXFkLu0a0kizY0lnLKcCf4uIf87l2RvoA75Luil0Spb/gEoDBszMrDylnuFExHJgX2Bd0hDok4EzgZMKWdfL8uQdQToL+gFwAbAQeF9h/7cAhwL7AdcC7wU+6GBjZtZ6pZ7hmJlZ9/Js0W1I0nRJf5L0rKSFkvatocwsSVFhOaCMOtdL0i6SbpC0StLDkk6RVDzrrVRunKTzJC2X9JSkH0vaoow6N8pw2i5pwiDHd26jL3rKAAAD0ElEQVRZ9W4USa+TNFvSHZJekNRXY7lOOPZ1t72djr2fh9NmJB0BnA3MIt3o+lHgCkm7R8Qfhij+FFAMMHc3vJIjlJvk9S7SJK87AqeT/kE6sUpRSJO8voE0yWv/tb7LgH+uVmi0GGHbIV2z/GVufbTcHFiPXUnXX28FXlFHubY+9pnhth3a4dhHhJc2WkgzIfwgt74OcCfwoyHKzQIeb3X9a2zj50n3VW2SS/scsCqfVqHcXqQbfN+RS9sjS9uv1e1qctsnZO18T6vb0IDPYJ3czxcDfTWUaftjP4K2t82xd5daG5E0kTRS76f9aRHxIvAz0iSmnWKwSV7HkCZ5rVZuwCSvQP8kr+1guG3vGNl3ul6dcOyH2/a24YDTXvpvaq00Qenmkoaaz2hTSY9Lel7S7yQd0vgqNsSAyVoj4n7Sf/mVbgAetFwmP8nraDfctvc7L+v7f0TSGZLGNKOSo1AnHPuRGvXH3tdw2stm2Wtxmp7lue2PDVJ2Kalr5nZgLDATuETS+yPi0kZXdIQ2o/JURMv5x2dQb7mJDahXGYbb9jXAf5Ge+7SC9LDC40jXgKY2toqjUicc++Fqm2PvgNNi2aOztx0qX0Tk/3ura4LSrPyPCu97OfAr0sPpRlvAgeZP8jqa1d2GiHgE+LdcUp+kR4HvSXpr5GZQ72CdcOzr1k7H3l1qrXcY6bR/qAUaOEFppKuNlwJvqWW4ccmaOcnraDfctldycfa624hq1B464dg30qg89g44LRYR50aEhlqy7P1nOZUmKP17RAzWnVa1CsOufPM0c5LX0W64ba8kCq+drBOOfSONymPvgNNGIuLPpFmvX5qgVNI62frV9exLkkhTA90RES80sp4N0LRJXtvAcNteyaHZ68JGVGyU64Rj30ij89i3ely2l/oW4F+AF0g3AU4Gzif9MXpTLs8+wFpgn1zafOBo4N2kQHMV6ea497a6TRXauBnwCHAdaV68GcBK4CuFfEuB7xfSrgH+DBwCHEy6b+nmVrep2W0n3Wd1etbu/YBTsu/FJa1u0zA+g1eS/mAeCvwa+GNu/ZWdeuyH2/Z2OvYtr4CXYRw0mJ596dYAi4B9C9t7SafSvbm072e/jKuBZ4CbgQNb3ZYqbdwFuDGr7yPAl4F1C3mWAecX0jYFziP1268AfgJs2er2NLvtpMltF5Bmk3gu+36cAmzQ6vYMo/0Tsu9vpWVChx/7utveTsfek3eamVkpfA3HzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXi/wN8Qq+e1/nqnwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -396,8 +400,8 @@ }, "outputs": [], "source": [ - "# result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + "# result_delta = ae_delta.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100)\n", + "result_delta = ae_delta.run(quantum_instance=LegacySimulators.get_backend('statevector_simulator'))" ] }, { @@ -428,12 +432,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xu8XFV99/HPl4sSCSRBSKAIRFBM\nofgoCTdLJZGLEnyKAhpEq7GQxEvF9gXIRZQA6iOgQKu1JKhQHpXYIqaVO4GcIBaUJIIIJBgk3MUA\ngRASMCG//rH2yM5kzpyZOTN7n5z5vl+v/Zoza6+9Zq2Zc+Z31tprr62IwMzMrNM2KbsCZmbWHRxw\nzMysEA44ZmZWCAccMzMrhAOOmZkVwgHHzMwK4YBjbSNpuqToZftYg2XsnpUzvCp9clbO0M7UvrF6\n9LPMqyT1NJBvM0n/KOkeSaslLZd0naQDW3zdgfKeTs79PqyT9IKk30i6WNJuLZbZI+mq3PPDJP1j\n+2pt7eSAY+32AnBAje2GBo/fHTgLqP6ivzYrZ1V7qtlyPTpK0qbAbOBrwH8DE4HJwKtAj6TjWih2\noLynFe8B3gUcDXwPOAz4jaTD21D2YYADzgC1WdkVsEFnbUTc2e5CI2IZsKzd5Q5AnwOOAA6PiHyQ\n/i9Js4CZkuZFxBP9faES39O7ImJl9vMcSZcA1wA/kjQ6Il4ooU5WAPdwrHCSTpe0RNLLkp6WdIOk\n7SWNB36WZXs4G3pZmh2z3vCPpNHZ82MlXSZphaTHK0N3kr4g6UlJyySdJ2mT3OuPkTRL0mOSVkm6\nLxvC2iTb32s9sv07Z8c/lx1/o6S3VbVxp2wYbLWkpZJOaPDt+TwwtyrYVHwR2AI4Pvc6SyV9Q9KX\nJP1B0kpJP5Q0rK+21BpSk7StpH+X9GzWth5J46raVnnNf8re8+XZ+9FSbzAiXiEF2uHAR3Kvs4mk\n07LflVckPSjpE72VI2k6cBKwS27o7vJs3wGS/jv7nXhJ0t2SPtpKfa117uFY20na4PcqItZm+z4O\nnAGcCtwHvJE0xLIlsBA4GfgGcBTwFPBKHy93HvBD0vDM3wP/LumdwC7Z87HAV4BfA7OyY3YEFmfH\nvQi8AzgbGAL8v3r1kLQNcDvwLPAp0nDUaaT/1HePiNWSBPwXsC0pOLyclb8N8Ls679tOwGjgolr7\nI+IhSfcC767a9RFgCTAF2AE4H/gu8KF6benFbOAt2THPAKcAcyW9MyKW5PJ9GPgNMBV4E3AhaRjw\nM3XK7lVELJL0OLA/cEmW/C3gE8A5WTsOBb4v6dmIuKZGMd8F3kr6ffpgllbpwe0C/CIr+2Xgr4HL\nJK2LiCtbqbO1ICK8eWvLBkwHopdtdJbn28BP6pTx/nz+XPrkLH1o9nx09vyyXJ6tgTWkL/VNc+m/\nAn7cy+uJ9I/XGcDvG6jHuaRgs00ubQTp3NVns+cTs2P3y+XZBVgL9NRp+/7ZcUfWyTMbeCD3fCnw\nXOV9ydI+CqwD/rLJ9/R92fODcnm2JH1pz6h6zYeAzXJpFwN/6OP3Y73Xq7H/DuD67Oe3ZG34RFWe\nK0hDcpXnPcBVueffAJb2UY/KZz4DuLXsv5tu2tzDsXZ7ATikRvqT2ePdwPGSziadtF4QEa/24/Vu\nqfwQESskLQPmVZW5BNi58kTSFsDppC/mnYHNc/s2i6w31otDgJuBFbme3IvAAqAy9LQv8HRE/DJX\nt0ckLWihfY24OV47JwJwNfADYB/ggSbK2RdYFhHzKgkR8ZKka4DqGXJzq96n+4GRkl4XEX9qrvp/\nptzPB5MCzk+resy3AB+RtGkzvzeSRpB6mUeSeribZrv6fS7MGueAY+22NiLm19n/fWAr0lDMl4Fn\nJf0bML3FwPN81fM/9ZK2Re75ecAJpC+ghVn+I4Ezs3wr6d22pJ7IpBr7KsFve+CPNfb/kdT23lS+\n/Hapk2cXNvySXO+1Ig3rrSQNrzVjB+DpGulPk4YD82q9xwJel/3cih2BRdnP25KCQm8TCHYAHm+i\n7MtJn9u5pOC4Avg06XO3gjjgWKEiYh3pHMVF2TmLjwJfJX2JXlLv2Db6EPCtiDi/kiDpiAaPfY40\nXfncGvtezB7/AIyssX8ksLq3giPiseyE/t8C/1K9X9Kbgb+q8dojq/INAYaSztc046nqsjKjSO3u\nGEl/SToXdEeW9BxpCPKvST2darUCem9lb0Ga+fcPEXFJLt2TpgrmN9xKExGPRcTXSUNee2TJlf+O\nt6h9VFsMIXfiXOnal2Or8vRWj1uAPYH7ImJ+1bY4y3MXMErSfrnX2BnYu4G6/TNwsKTDauz7Slbv\n71WlH6r1L948inSupNLTbPQ9/SVpWOzPkxIkvYH0ZX17A3VviaTXkwLs87w2seNWUg9nWI33eX6d\nYbvq3izA67Oy8p/5VqTAbgVyD8fabTNJ+9dIfywinpA0g/Tf652k4ZIJpJlFp2b5Kl/a05SuO1kV\nEfe2uY43A5+VtCSry2dJX0p5vdXjQuBjwK2SvkXqmY0CDgJujzTj6TrgHuA/JZ1KmhV1Do39V/4t\n0nmin0r6Bumk+Fak2W7vB/4uNrwGZzVwraQLSENNFwA/jYj7+2jLeiLiRkm/AH4s6TTS5IiTSQH6\nggbq3qh9JK0G3kDqsU0jTQI5JrJrcCJisdL1ObMknU8KnluQgv3uEdHbNPNFpGA/Gfgt8ExELJV0\nF/BlSStIPabTSL9/W7exXdaXsmcteBs8G/VnqZ2Z5ZlMmp76HGlK8W+A46vKOQl4hDSksjR3XK1Z\nau+vOnYp8I2qtMuB+bnno4CfksbxnyZNI55C1QyqWvXI0v8CuCw79pXsNX8A7JnLszNpdYXVWRnT\ngKuoM0std+xmwD9l781qYDlwPXBgjbxLgW9m7/3TwEvAlcDwZt/TLG070kyw5dlrzwP2aeA93qCs\nGnWt5KlsLwL3knp1u9XIL9KqAfdl7/OyrD4fz+XpYf1Zaltkn80fs9e4PEt/C6nX9BLwKPCF7D17\npuy/m27alH0YhZH0FtLc/v1J/938PCLGN3DcMNLUyw+QhgKvAU6MiGer8h1JGnp4K/B74OyI+HE7\n22A2UGTnfK6KiJPLrotZX8o4h7Mn6TqFB7OtUT8GxpNmF00mTfmcnc+gtLjhT4C5wOGkabdX9jIe\nbmZmBSqjh7NJpJlKKK3yum1fPRxJBwD/Q7og7bYsbV/SSc5DI2JOlnYjsHlEvCd37HXA1hHR0kq7\nZgOZezi2MSm8h1MJNk06nHQh3W25cn4FPJztq8x0mQD8R9Wxs4ADKmtLmQ0mETHawcY2FhvLtOgx\nvHZBWN4D2T6A3UhXjFfne4DUzt07VjszM+vTxjItegQbXtkMaSbNrrk81Mi3vGr/eiRNJV31zpAh\nQ8butNNO/atpZt26dWyyycYSz/vHbW3dVg+m05gv7j4w/x/yZzs4tbOtDz744DMRsV0jeTeWgANp\nimM11Uivfq5e0lNixExgJsC4ceNi/vx6q7I0rqenh/Hjx7elrIHObe0HZb+eixfXz1cSf7aDUzvb\nKumRRvNuLOF8ObXvvDic13o0y3Np1Xmgdg/JzMwKsrEEnEW8dq4mL39u5yHS0vTV+caQrixuZgq2\nmZm12cYScK4Hts+uswEguwvhrtk+It01cC5pYca8ScAd4dvWmpmVqvBzONligBOzpzsCW0s6Jnt+\nXUSsyta4mhcRxwNExB3ZNTZXSDqZ1GM5j7R21Zxc8ecCPZIuJl0UOjHb3tfxhpmZWV1lTBoYCfxn\nVVrl+ZtJ6zRtxms3SKo4lrSs/ffJLW2TzxARt2fB6yuke108DBwXETe1sf5m7VPwhddmZSo84ETE\nUta/s1+tPKNrpD0PfDLb6h07m6olb8zMrHwbyzkcMzPbyDngmJVp7Ni0mXWBjenCT7PBZ+HCsmtg\nVhj3cMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuFZamZlmjKl7BqYFcYBx6xMM2eWXQOzwnhI\nzczMCuGAY1amBQvSZtYFPKRmVqZx49KjV422LuAejpmZFcIBx8zMCuGAY2ZmhXDAMTOzQjjgmJlZ\nIRxwzMysEJ4WbVam+fPLroFZYRxwzMrk20tbF/GQmpmZFcIBx6xMU6emzawLOOCYlenSS9Nm1gUc\ncMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuELP83KtPfeZdfArDAOOGZl8u2lrYt4SM3MzArh\ngGNmZoVwwDErk5Q2sy7ggGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK4RXGjAr04wZ\nZdfArDAOOGZl8u2lrYsUPqQmaQ9Jt0haJelJSedI2rSPY6ZLil6203P5Lu8lz5jOt8zMzOoptIcj\naQQwB7gfOBLYDfgmKfCdWefQ7wI3VKV9ADgVuL4qfRHwyaq0pa3V2KzDZs5Mj+7pWBcoekjtU8AQ\n4KiIWAHcLGlrYLqk87O0DUTE48Dj+TRJXwIWRcTdVdlfiog7O1B3s/abNi09OuBYFyh6SO1w4Maq\nwDKLFIQOarQQSdsAhwJXtrd6ZmbWKUUHnDGkIa8/i4hHgVXZvkYdA2xOClbV9pC0QtIrkm6X1HAg\nMzOzzlFEFPdi0hrglIi4uCr9ceCKiDijwXJuBYZFxNiq9M8DfyKdI9oOOAkYCxwYEb/qpaypwFSA\nUaNGjZ01q1YMa97KlSsZOnRoW8oa6NzW1o2fMAGAnrlz21ZmO/mzHZza2dYJEyYsiIhxDWWOiMI2\nYA3w+RrpTwBfbbCMHYBXgZMbyDsEeBiY3UjZY8eOjXaZO3du28oa6NzWfoC0DVD+bAendrYVmB8N\nxoCih9SWA8NrpA8Dnm+wjA8DAn7cV8aIWA1cB/jG8WZmJSs64Cyi6lyNpJ2ALak6t1PHscDtEfFY\nE69b3LihmZnVVPS06OuBUyRtFREvZmmTgNXAvL4OljQa2B/4TCMvJmkIaWbcglYqa9ZxvZxDHX3a\ntXUPW/r1IzpRG7OOKrqHcwnwCnC1pEOyE/bTgQsjN1Va0hJJ36tx/LHAWuCq6h2Shkn6uaRpkg6W\nNAmYC+wIfK0DbTEzsyYU2sOJiOWSDga+DfyMdN7mIlLQqa5XreVujgVuiYhlNfa9AiwjrVgwEngZ\nuAM4KCLmt6UBZmbWssIX74yI+4H39JFndC/p76hzzMvAUf2qnFnRxmYz+xd41NcGP68WbVamhQvL\nroFZYXwDNjMzK4QDjpmZFcIBx8zMCuGAY2ZmhXDAMTOzQniWmlmZpkwpuwZmhXHAMStT5RbTZl3A\nQ2pmZlaIpgKOpFrLzZhZqxYs8CoD1jWaHVJ7QtIVwGUR8UAnKmTWVcZlN0os8M67ZmVpdkhtBnAM\n8FtJv5Q0VdLWHaiXmZkNMk0FnIg4KyJ2BQ4FFgMXAk9J+qGkQzpRQTMzGxxamjQQEbdGxMeB7YHP\nAW8DbpS0VNJ0SX/RzkqamdnGr7+z1MYB7ybdNno58HPgBGCJpI/1s2wzMxtEmg44knaRdJakh4Bb\ngB2Avwf+IiL+DtiFdK7ngrbW1MzMNmpNzVKTdCupR/M4cDlpttoj+TwR8aqkHwGfb1clzcxs49fs\ntOhngInAzRF153HeDby55VqZdYv5vvu5dY9mA863gYW1go2kocDeEXFbRKwBHtngaDNbX+UW02Zd\noNlzOHOBPXrZ97Zsv5mZ2QaaDTiqs28osKofdTHrPlOnps2sC/Q5pCbp3cD4XNIJkt5XlW0L4Ajg\n3vZVzawLXHppevSq0dYFGjmHsx/p4k6AAD4ErK3K8ydgEXBK+6pmZmaDSZ8BJyIuILumRtLDwAcj\n4u5OV8zMzAaXpmapRYSnOpuZWUsaOYczEbg9IlZkP9cVEde1pWZmZjaoNNLDuQbYH/hV9nPQ+2y1\nAHyTNjMz20AjAefNwFO5n82sXfbeu+wamBWmkUkDj9T62czawLeXti7SyDmcNzRTYET44k8zM9tA\nI0NqK0nnZhrlczhmZraBRgLO39NcwDGzRimbf1N38XWzwaGRcziXF1APMzMb5Pp7i2kzM7OGNDJp\n4FfA5Ii4X9Jd9DG8FhH7tqtyZmY2eDRyDuc+YHXuZw82m5lZ0xo5h/PJ3M+TO1obMzMbtFo+h6Nk\nO0n1bspmZmYGNLlaNPx5Mc8zgbHZ8WslLQC+GhHXtrl+ZoPbjBll18CsME0FHEnTgO8AtwCfB/4I\njASOAv5b0mciwn9BZo3y7aWtizTbwzkDmBkRn65Kv0TSJcAXAQccMzPbQLPncN4IXN3Lvp8A2/RV\ngKQ9JN0iaZWkJyWdI6nucjiSRkuKGtusGnmPlHSvpJcl3S9pUkMtMyvDzJlpM+sCzfZw5gIHATfX\n2HcQcFu9gyWNAOYA9wNHArsB3yQFvjMbeP2TgV/knj9TVf6BpMD3HeBEYCJwpaTlEXFTA+WbFWva\ntPTooTXrAo1c+LlH7um/AN+V9EZgNq+dw/kgcDhwQh/FfQoYAhwVESuAmyVtDUyXdH6WVs/iiLiz\nzv4vAbdFxInZ87mS9gS+DDjgmJmVqJEezm9Z/2JPAdOyrfrunzdQf7Xow4EbqwLLLOA8Ug/pZw3U\npyZJrwcmkHo2ebOAyyQNi4gXWi3fzMz6p5GAM6GNrzcGuDWfEBGPSlqV7esr4FwmaRtSz+pK4IsR\nUVkFYTdgc2BR1TEPkIbsdgfu6l/1zcysVY2sNDCvja83Ani+RvrybF9vXgH+lTQstgIYD5xKCjJH\n5sqmRvnLq/avR9JUYCrAqFGj6OnpqVf/hq1cubJtZQ10bmvrxmeP1WWetNfauscV9X77sx2cympr\n0xd+VkjaBNiiOr2BO37WWotNvaRXynwK+IdcUo+kp4HvSHpHRNxdp3z1kl4peyYwE2DcuHExfvz4\n+rVvUE9PD+0qa6BzW/uvuszJp9W/hnrpR9tfh1r82Q5OZbW1qWnR2XI2p0paAqwBXqyx1bMcGF4j\nfRi1ez71XJU97p0rmxrlV543W76ZmbVRs9fhnAicBnyP1HP4KnAO8CCwlGxoqo5FpHM1fyZpJ2BL\nNjz30peoenyIFATHVOUbA6zL6mg2sET4bp/WNZoNOFOAs4Dzs+ezI+JsYE9SwHhrH8dfD7xX0la5\ntEmk2x80e67omOxxAUBEvEK6TuhDVfkmAXd4hpqZWbmaPYfzZuDuiHhV0hqy4aqIWCfpO8B3ST2g\n3lxC6iVdLek8YFdgOnBhfqp0NmQ3LyKOz55PB7YiXfS5Ang3cApwdUT8Jlf+uaTzOxeTrhOamG3v\na7KdZmbWZs32cJ4FhmY/Pwq8M7dvBOmizl5FxHLgYNK1Oj8DzgYuIvWa8jZj/et5FpGu07kMuA44\nDrgge8yXfzup53MIcCPwt8BxXmXABqyxY9Nm1gWa7eH8AtiH9KX/I9IKAdsAfwI+S1pFuq6IuB94\nTx95Rlc9n0W6gLNPETGb1LsxG/gWLiy7BmaFaTbgTAd2zH7+GmlIbTKpZ3Mz8Ll2VczMzAaXpgJO\nRCwGFmc/v0K6J87nO1AvMzMbZPpz4eebgB2AJyPiifZVyczMBqNmJw0g6dOSHgMeAX4JPCrpcUmf\naXvtzMxs0Gh2pYEvA98mXU9zBDAue7we+Jdsv5mZ2QaaHVL7LPC1iPhSVfoN2dpmnyWtPGBmjZgy\npewamBWm2YAzhN7v6jkPz1Iza45vL21dpNlzOLOBo3rZdzRwTf+qY2Zmg1Ujt5iemHt6PXC+pNFs\neIvpPYEvtL+KZoPYggXp0asNWBdoZEjtGja8lfSOwHtr5P0B6U6cZtaIcePSo1eMti7QSMB5c8dr\nYWZmg14jt5h+pIiKmJnZ4Nb0SgOSNiNNEDgQ2AZ4Dvg56VYB9W/EbmZmXaupgCNpJHAT8HbSHT6f\nBg4gXX9zj6TDImJZuytpZmYbv2anRV8IvBHYLyJ2jYgDImJXYL8s/cJ2V9DMzAaHZgPORODUiLgr\nn5g9P520zI2ZmdkGmj2H83rgxV72vQi8rn/VMesy8+eXXQOzwjQbcO4ETpV0a0S8VEmUtCVwarbf\nzBrlCz6tizQbcE4C5gKPSbqJNGlgJOkiUAHj21o7MzMbNJo6hxMRdwNvBWYC2wGHkgLOJcBbI+Ke\nttfQbDCbOjVtZl2g4R6OpM2BfYGHI+K0zlXJrItceml69KrR1gWa6eG8CtwK/GWH6mJmZoNYwwEn\nItYBvwNGda46ZmY2WDV7Hc4XgS9L2qsTlTEzs8Gr2VlqZ5JWFLhb0hOkWWrrraseEfu2qW5mZjaI\nNBtwfpttZmZmTWko4EgaQlrW5rfAH4A5EfF0Jytm1hX23rvsGpgVppFbTO8KzAFG55JXSPpwRNzU\nqYqZdYXKLabNukAjkwbOB9YBfwO8AdgT+DUwo4P1MjOzQaaRgHMAcGZE/CIiXo6IB4BpwM6Sduhs\n9czMbLBoJODsAPy+Ku0h0tpp27e9RmbdREqbWRdo9Dqc6DuLmZlZ7xqdFn2jpLU10m+pTo+Ikf2v\nlpmZDTaNBJyzO14LMzMb9PoMOBHhgGNmZv3W7FpqZmZmLXHAMTOzQjS7lpqZtdMMXz9t3cMBx6xM\nvr20dREPqZmZWSEccMzKNHNm2sy6QOEBR9Iekm6RtErSk5LOkbRpH8fsI+kySUuy4xZLOkvSFlX5\npkuKGtv7OtsqsxZNm5Y2sy5Q6DkcSSNItzq4HzgS2A34JinwnVnn0ElZ3vOA3wFvB87NHo+uyvsC\nUB1gHuhv3c3MrH+KnjTwKWAIcFRErABulrQ1MF3S+VlaLedFxLLc8x5JLwMzJO0SEY/k9q2NiDs7\nU30zM2tV0UNqhwM3VgWWWaQgdFBvB1UFm4pfZ49eu83MbCNQdMAZAyzKJ0TEo8CqbF8z3kW6Mdzi\nqvThkp6RtEbSryUd1XJtzcysbRRR3J0HJK0BTomIi6vSHweuiIgzGixne+A3wHURMTmX/jFSj+du\nYCjpRnETgaMj4upeypoKTAUYNWrU2FmzZjXbrJpWrlzJ0KFD21LWQOe2tm78hAkA9Mydu176vU+8\nUPe4vXYc1rY61OPPdnBqZ1snTJiwICLGNZK3jIBzckT8c1X6E8DlEfHFBsp4HWniwZuAsRGxvE5e\nAf8DDImId/RV9rhx42L+/Pl9ZWtIT08P48ePb0tZA53b2g+Vm69V/R2OPu3auoct/foR7atDHf5s\nB6d2tlVSwwGn6CG15cDwGunDgOf7OjgLIFcAewIT6wUbgEjR9Grg7X1NvTYrRcQGwcZssCp6ltoi\nqs7VSNoJ2JKqczu9uIg0nfrQiGgkf4X/os3MSlZ0D+d64L2StsqlTQJWA/PqHSjpdOBzwMci4vZG\nXizrEX0QuCciXm2tymZm1g5F93AuAU4ErpZ0HrArMB24MD9VWtISYF5EHJ89Pw74GnA58ISk/XNl\nPlSZNi1pHvATUm9pS2AKsD/wgc42y6xFY8emxwULyq2HWQEKDTgRsVzSwcC3gZ+RzttcRAo61fXK\nn3M5LHucnG15nyQFIoAlwD8CO5CmTC8EjoiI69tRf7O2W7iw7BqYFabw2xNExP3Ae/rIM7rq+WQ2\nDDS1jju+H1UzM7MO8mrRZmZWCAccMzMrhAOOmZkVwgHHzMwKUfikATPLmTKl7BqYFcYBx6xMvr20\ndREPqZmZWSEccMzKtGCBVxmwruEhNbMyjctWdfeK0dYF3MMxM7NCOOCYmVkhHHDMzKwQDjhmZlYI\nBxwzMyuEA46ZmRXC06LNyjR/ftk1MCuMA45ZH0afdu2ffz5pr7VMzj0HWPr1I1ovvHKLabMu4CE1\nMzMrhAOOWZmmTk2bWRdwwDEr06WXps2sCzjgmJlZIRxwzMysEA44ZmZWCAccMzMrhAOOmZkVwhd+\nmpVp773LroFZYRxwzMrk20tbF/GQmpmZFcIBx8zMCuGAY1YmKW1mXcABx8zMCuGAY2ZmhXDAMTOz\nQjjgmJlZIRxwzMysEA44ZmZWCK80YFamGTPKroFZYRxwzMrk20tbF3HAMTNGn3ZtzfST9lrL5Gzf\n0q8fUWSVbBDyORyzMs2cmTazLuAejlmZpk1Ljx5asy7ggGMbnd6Gf/I8/GM28BQ+pCZpD0m3SFol\n6UlJ50jatIHjhkm6TNJySS9I+qGkN9bId6SkeyW9LOl+SZM60xIzM2tGoQFH0ghgDhDAkcA5wEnA\n2Q0c/mNgPHACMBnYB5hdVf6BwE+AucDhwLXAlZIOa0sDzMysZUUPqX0KGAIcFRErgJslbQ1Ml3R+\nlrYBSQcA7wUOiojbsrQngF9KOiQi5mRZvwTcFhEnZs/nStoT+DJwU+eaZWbN8LBodyo64BwO3FgV\nWGYB5wEHAT+rc9zTlWADEBG/kvRwtm+OpNcDE4ATq46dBVwmaVhEvNCmdmzUOvXH7i8RG2j6+p30\n72Oxig44Y4Bb8wkR8aikVdm+3gLOGGBRjfQHsn0AuwGb18j3AGnocHfgrtaq3bfqX+z89QutqPWH\n4D8es4Ghnf9ctfJ33cjr13PSXmsZ368SWqOIKO7FpDXAKRFxcVX648AVEXFGL8fdDLwUER+oSv8B\nsGtEvEvSXwO3A++MiLtzed4C/A54b0RsMKwmaSpQmZP6NmBxyw1c37bAM20qa6BzWwevbmqv29qa\nXSJiu0YyljEtulaEUy/prRxX/Vy9pKfEiJlA26+8kzQ/Isa1u9yByG0dvLqpvW5r5xU9LXo5MLxG\n+jDg+RaOG547bnkurToPfZRvZmYdVnTAWcRr51wAkLQTsCW1z9H0elwmf27nIWBNjXxjgHXAgy3U\n18zM2qTogHM98F5JW+XSJgGrgXl9HLd9dp0NAJLGAbtm+4iIV0jX33yo6thJwB0lzFDrpgWy3NbB\nq5va67Z2WNGTBkYA9wO/JU2F3hW4ELg4Is7M5VsCzIuI43NpN5Bmmp1M6rGcB/wxIv4ml+dAoAf4\nNumi0IlZ/vfVmjBgZmbFKbSHExHLgYOBTUlToM8GLgLOqsq6WZYn71hSL+j7wBXAAuCDVeXfDhwD\nHALcCPwtcJyDjZlZ+Qrt4ZiZWffy/XCa1OnFRweSVtoqaZ+snUuy4xZLOkvSFkXVu1Wtfra54zeR\ntEBSSHp/J+vaX/1pq6SjJN1LdR/BAAAEwklEQVQlabWkZyXdIGnLTte5Vf34mx0n6aasjc9JmiNp\nvyLq3CpJb5E0Q9I9kl6V1NPgcYV8P/n2BE3ILT56P2nx0d2Ab5IC95l1DoW0+OjbSIuPVs5BzQb+\npt5BZelHWydlec8jXXD7duDc7PHoDla5X/r52VacAOzYkQq2UX/aKukE0jnS84FTgBHAexig3yWt\ntjWbPTsHWAh8PEs+BbhJ0tsj4pFO1rsf9iSdu74TeF0TxxXz/RQR3hrcgNNJ1/tsnUv7ArAqn1bj\nuANIF56+O5e2b5Z2SNntanNbt6uRNjVr6y5lt6vd7c3lHQEsA47P2vr+stvUgc92W+BFYErZbSig\nrZ8CXgWGV33GrwKfLrtddeq9Se7nq4CeBo4p7PvJQ2rN6W3x0SGkxUfrHbfB4qNAZfHRgailtkbE\nshrJv84eR7avem3X6mdbcS7wC+CWDtSt3Vpt64ezx3/vVMU6oNW2bg6sBVbm0lZmaap5xAAQEeta\nOKyw7ycHnOZssIhoRDxK+m+p1oWpvR6XyS8+OtC02tZa3kXqprdrnbpOaLm9kt4OfJI0BX9j0Gpb\n9yN9hsdLelzSGkm/lPSuzlW131pt60+yPN+UNFLSSNKM2uXAf3aormUp7PvJAac5I6i9RM7ybF+7\njytTW+osaXvgi8D/j17udzRA9Ke93wL+NSKWtL1WndFqW7cnjfOfCZwK/F/gJeAGSaPaXck2aamt\nEfEk6XYnRwNPZ9tRpEWAa/XiN2aFfT854DSv04uPDiT9qrOk1wH/QRqK+Kc21qtTmm6vpGNJX8Jf\n6VSlOqSVz3YTYChwfET8MCJuAD5AOq/xD+2vYtu08rnuQDoHsoA0rHR49vO1knbuRCVLVsj3kwNO\nczq5+OhA02pbAZAk0gW6ewITI130O5A13V5JmwMXkGb0bCJpOLB1tnvLqiWcBpJWP9vnsseeSkLW\na10A7NGuyrVZq209hTTz7piIuCELrkeTguvGMnTaqMK+nxxwmtPJxUcHmlbbWnERaRrqkRExUNuY\n10p7twTeRFqeaXm23ZPtm8VrkyUGmlY/2wdI//FWnzQX6RzdQNRqW8cA90XEmkpCRPwJuI80tXow\nKez7yQGnOR1bfHQAarWtSDod+BzwsUjLDW0MWmnvStI4f377SLbvDOCjnalqv7X62V5DCi4TKgmS\nhgFjeS3QDjSttvUR4K+yYWEAlG5j/1fA0g7Us0zFfT+VPW98Y9pIJ9CeAm4mrdc2lfSl85WqfEuA\n71Wl3QD8nnTi8QOk2T4/L7tN7W4rcBzpv+DLgP2rtg2u0RkoW38+26r9oxn41+H05/d4dnbsJ4Aj\nSF/ay4ARZbernW0lBdE1wLVZO99P+vJdA/yfsttVp71vIK0neQxwB6lHVnn+hjqfayHfT6W/QRvb\nRhqrvpX0H9JTpOsvNq3KsxS4vCptePYl/DywAvgRsG3Z7Wl3W4HLsy/cWtvkstvUic+2av+ADzj9\naStp0sC/Ac9mx84B9iq7PR1q68HAbaRzV8+Rguv4stvTR1srv3+1ttF12lrI95MX7zQzs0L4HI6Z\nmRXCAcfMzArhgGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK8T/ArLcU/xD9Gw7AAAA\nAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8XFV99/HPl4sSCSRBSKAIRFBMofgoCTdLJZGLEnyKAhpEq7GQxEvF9gXIRZQA6iOgQKu1JKhQHpXYIqaVO4GcIBaUJIIIJBgk3MUAgRASMCG//rH2yM5kzpyZOTN7n5z5vl+v/Zoza6+9Zq2Zc+Z31tprr62IwMzMrNM2KbsCZmbWHRxwzMysEA44ZmZWCAccMzMrhAOOmZkVwgHHzMwK4YBjbSNpuqToZftYg2XsnpUzvCp9clbO0M7UvrF69LPMqyT1NJBvM0n/KOkeSaslLZd0naQDW3zdgfKeTs79PqyT9IKk30i6WNJuLZbZI+mq3PPDJP1j+2pt7eSAY+32AnBAje2GBo/fHTgLqP6ivzYrZ1V7qtlyPTpK0qbAbOBrwH8DE4HJwKtAj6TjWih2oLynFe8B3gUcDXwPOAz4jaTD21D2YYADzgC1WdkVsEFnbUTc2e5CI2IZsKzd5Q5AnwOOAA6PiHyQ/i9Js4CZkuZFxBP9faES39O7ImJl9vMcSZcA1wA/kjQ6Il4ooU5WAPdwrHCSTpe0RNLLkp6WdIOk7SWNB36WZXs4G3pZmh2z3vCPpNHZ82MlXSZphaTHK0N3kr4g6UlJyySdJ2mT3OuPkTRL0mOSVkm6LxvC2iTb32s9sv07Z8c/lx1/o6S3VbVxp2wYbLWkpZJOaPDt+TwwtyrYVHwR2AI4Pvc6SyV9Q9KXJP1B0kpJP5Q0rK+21BpSk7StpH+X9GzWth5J46raVnnNf8re8+XZ+9FSbzAiXiEF2uHAR3Kvs4mk07LflVckPSjpE72VI2k6cBKwS27o7vJs3wGS/jv7nXhJ0t2SPtpKfa117uFY20na4PcqItZm+z4OnAGcCtwHvJE0xLIlsBA4GfgGcBTwFPBKHy93HvBD0vDM3wP/LumdwC7Z87HAV4BfA7OyY3YEFmfHvQi8AzgbGAL8v3r1kLQNcDvwLPAp0nDUaaT/1HePiNWSBPwXsC0pOLyclb8N8Ls679tOwGjgolr7I+IhSfcC767a9RFgCTAF2AE4H/gu8KF6benFbOAt2THPAKcAcyW9MyKW5PJ9GPgNMBV4E3AhaRjwM3XK7lVELJL0OLA/cEmW/C3gE8A5WTsOBb4v6dmIuKZGMd8F3kr6ffpgllbpwe0C/CIr+2Xgr4HLJK2LiCtbqbO1ICK8eWvLBkwHopdtdJbn28BP6pTx/nz+XPrkLH1o9nx09vyyXJ6tgTWkL/VNc+m/An7cy+uJ9I/XGcDvG6jHuaRgs00ubQTp3NVns+cTs2P3y+XZBVgL9NRp+/7ZcUfWyTMbeCD3fCnwXOV9ydI+CqwD/rLJ9/R92fODcnm2JH1pz6h6zYeAzXJpFwN/6OP3Y73Xq7H/DuD67Oe3ZG34RFWeK0hDcpXnPcBVueffAJb2UY/KZz4DuLXsv5tu2tzDsXZ7ATikRvqT2ePdwPGSziadtF4QEa/24/VuqfwQESskLQPmVZW5BNi58kTSFsDppC/mnYHNc/s2i6w31otDgJuBFbme3IvAAqAy9LQv8HRE/DJXt0ckLWihfY24OV47JwJwNfADYB/ggSbK2RdYFhHzKgkR8ZKka4DqGXJzq96n+4GRkl4XEX9qrvp/ptzPB5MCzk+resy3AB+RtGkzvzeSRpB6mUeSeribZrv6fS7MGueAY+22NiLm19n/fWAr0lDMl4FnJf0bML3FwPN81fM/9ZK2Re75ecAJpC+ghVn+I4Ezs3wr6d22pJ7IpBr7KsFve+CPNfb/kdT23lS+/Hapk2cXNvySXO+1Ig3rrSQNrzVjB+DpGulPk4YD82q9xwJel/3cih2BRdnP25KCQm8TCHYAHm+i7MtJn9u5pOC4Avg06XO3gjjgWKEiYh3pHMVF2TmLjwJfJX2JXlLv2Db6EPCtiDi/kiDpiAaPfY40XfncGvtezB7/AIyssX8ksLq3giPiseyE/t8C/1K9X9Kbgb+q8dojq/INAYaSztc046nqsjKjSO3uGEl/SToXdEeW9BxpCPKvST2darUCem9lb0Ga+fcPEXFJLt2TpgrmN9xKExGPRcTXSUNee2TJlf+Ot6h9VFsMIXfiXOnal2Or8vRWj1uAPYH7ImJ+1bY4y3MXMErSfrnX2BnYu4G6/TNwsKTDauz7Slbv71WlH6r1L948inSupNLTbPQ9/SVpWOzPkxIkvYH0ZX17A3VviaTXkwLs87w2seNWUg9nWI33eX6dYbvq3izA67Oy8p/5VqTAbgVyD8fabTNJ+9dIfywinpA0g/Tf652k4ZIJpJlFp2b5Kl/a05SuO1kVEfe2uY43A5+VtCSry2dJX0p5vdXjQuBjwK2SvkXqmY0CDgJujzTj6TrgHuA/JZ1KmhV1Do39V/4t0nmin0r6Bumk+Fak2W7vB/4uNrwGZzVwraQLSENNFwA/jYj7+2jLeiLiRkm/AH4s6TTS5IiTSQH6ggbq3qh9JK0G3kDqsU0jTQI5JrJrcCJisdL1ObMknU8KnluQgv3uEdHbNPNFpGA/Gfgt8ExELJV0F/BlSStIPabTSL9/W7exXdaXsmcteBs8G/VnqZ2Z5ZlMmp76HGlK8W+A46vKOQl4hDSksjR3XK1Zau+vOnYp8I2qtMuB+bnno4CfksbxnyZNI55C1QyqWvXI0v8CuCw79pXsNX8A7JnLszNpdYXVWRnTgKuoM0std+xmwD9l781qYDlwPXBgjbxLgW9m7/3TwEvAlcDwZt/TLG070kyw5dlrzwP2aeA93qCsGnWt5KlsLwL3knp1u9XIL9KqAfdl7/OyrD4fz+XpYf1Zaltkn80fs9e4PEt/C6nX9BLwKPCF7D17puy/m27alH0YhZH0FtLc/v1J/938PCLGN3DcMNLUyw+QhgKvAU6MiGer8h1JGnp4K/B74OyI+HE722A2UGTnfK6KiJPLrotZX8o4h7Mn6TqFB7OtUT8GxpNmF00mTfmcnc+gtLjhT4C5wOGkabdX9jIebmZmBSqjh7NJpJlKKK3yum1fPRxJBwD/Q7og7bYsbV/SSc5DI2JOlnYjsHlEvCd37HXA1hHR0kq7ZgOZezi2MSm8h1MJNk06nHQh3W25cn4FPJztq8x0mQD8R9Wxs4ADKmtLmQ0mETHawcY2FhvLtOgxvHZBWN4D2T6A3UhXjFfne4DUzt07VjszM+vTxjItegQbXtkMaSbNrrk81Mi3vGr/eiRNJV31zpAhQ8butNNO/atpZt26dWyyycYSz/vHbW3dVg+m05gv7j4w/x/yZzs4tbOtDz744DMRsV0jeTeWgANpimM11Uivfq5e0lNixExgJsC4ceNi/vx6q7I0rqenh/Hjx7elrIHObe0HZb+eixfXz1cSf7aDUzvbKumRRvNuLOF8ObXvvDic13o0y3Np1Xmgdg/JzMwKsrEEnEW8dq4mL39u5yHS0vTV+caQrixuZgq2mZm12cYScK4Hts+uswEguwvhrtk+It01cC5pYca8ScAd4dvWmpmVqvBzONligBOzpzsCW0s6Jnt+XUSsyta4mhcRxwNExB3ZNTZXSDqZ1GM5j7R21Zxc8ecCPZIuJl0UOjHb3tfxhpmZWV1lTBoYCfxnVVrl+ZtJ6zRtxms3SKo4lrSs/ffJLW2TzxARt2fB6yuke108DBwXETe1sf5m7VPwhddmZSo84ETEUta/s1+tPKNrpD0PfDLb6h07m6olb8zMrHwbyzkcMzPbyDngmJVp7Ni0mXWBjenCT7PBZ+HCsmtgVhj3cMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuFZamZlmjKl7BqYFcYBx6xMM2eWXQOzwnhIzczMCuGAY1amBQvSZtYFPKRmVqZx49KjV422LuAejpmZFcIBx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIRxwzMysEJ4WbVam+fPLroFZYRxwzMrk20tbF/GQmpmZFcIBx6xMU6emzawLOOCYlenSS9Nm1gUccMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuELP83KtPfeZdfArDAOOGZl8u2lrYt4SM3MzArhgGNmZoVwwDErk5Q2sy7ggGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK4RXGjAr04wZZdfArDAOOGZl8u2lrYsUPqQmaQ9Jt0haJelJSedI2rSPY6ZLil6203P5Lu8lz5jOt8zMzOoptIcjaQQwB7gfOBLYDfgmKfCdWefQ7wI3VKV9ADgVuL4qfRHwyaq0pa3V2KzDZs5Mj+7pWBcoekjtU8AQ4KiIWAHcLGlrYLqk87O0DUTE48Dj+TRJXwIWRcTdVdlfiog7O1B3s/abNi09OuBYFyh6SO1w4MaqwDKLFIQOarQQSdsAhwJXtrd6ZmbWKUUHnDGkIa8/i4hHgVXZvkYdA2xOClbV9pC0QtIrkm6X1HAgMzOzzlFEFPdi0hrglIi4uCr9ceCKiDijwXJuBYZFxNiq9M8DfyKdI9oOOAkYCxwYEb/qpaypwFSAUaNGjZ01q1YMa97KlSsZOnRoW8oa6NzW1o2fMAGAnrlz21ZmO/mzHZza2dYJEyYsiIhxDWWOiMI2YA3w+RrpTwBfbbCMHYBXgZMbyDsEeBiY3UjZY8eOjXaZO3du28oa6NzWfoC0DVD+bAendrYVmB8NxoCih9SWA8NrpA8Dnm+wjA8DAn7cV8aIWA1cB/jG8WZmJSs64Cyi6lyNpJ2ALak6t1PHscDtEfFYE69b3LihmZnVVPS06OuBUyRtFREvZmmTgNXAvL4OljQa2B/4TCMvJmkIaWbcglYqa9ZxvZxDHX3atXUPW/r1IzpRG7OOKrqHcwnwCnC1pEOyE/bTgQsjN1Va0hJJ36tx/LHAWuCq6h2Shkn6uaRpkg6WNAmYC+wIfK0DbTEzsyYU2sOJiOWSDga+DfyMdN7mIlLQqa5XreVujgVuiYhlNfa9AiwjrVgwEngZuAM4KCLmt6UBZmbWssIX74yI+4H39JFndC/p76hzzMvAUf2qnFnRxmYz+xd41NcGP68WbVamhQvLroFZYXwDNjMzK4QDjpmZFcIBx8zMCuGAY2ZmhXDAMTOzQniWmlmZpkwpuwZmhXHAMStT5RbTZl3AQ2pmZlaIpgKOpFrLzZhZqxYs8CoD1jWaHVJ7QtIVwGUR8UAnKmTWVcZlN0os8M67ZmVpdkhtBnAM8FtJv5Q0VdLWHaiXmZkNMk0FnIg4KyJ2BQ4FFgMXAk9J+qGkQzpRQTMzGxxamjQQEbdGxMeB7YHPAW8DbpS0VNJ0SX/RzkqamdnGr7+z1MYB7ybdNno58HPgBGCJpI/1s2wzMxtEmg44knaRdJakh4BbgB2Avwf+IiL+DtiFdK7ngrbW1MzMNmpNzVKTdCupR/M4cDlpttoj+TwR8aqkHwGfb1clzcxs49fstOhngInAzRF153HeDby55VqZdYv5vvu5dY9mA863gYW1go2kocDeEXFbRKwBHtngaDNbX+UW02ZdoNlzOHOBPXrZ97Zsv5mZ2QaaDTiqs28osKofdTHrPlOnps2sC/Q5pCbp3cD4XNIJkt5XlW0L4Ajg3vZVzawLXHppevSq0dYFGjmHsx/p4k6AAD4ErK3K8ydgEXBK+6pmZmaDSZ8BJyIuILumRtLDwAcj4u5OV8zMzAaXpmapRYSnOpuZWUsaOYczEbg9IlZkP9cVEde1pWZmZjaoNNLDuQbYH/hV9nPQ+2y1AHyTNjMz20AjAefNwFO5n82sXfbeu+wamBWmkUkDj9T62czawLeXti7SyDmcNzRTYET44k8zM9tAI0NqK0nnZhrlczhmZraBRgLO39NcwDGzRimbf1N38XWzwaGRcziXF1APMzMb5Pp7i2kzM7OGNDJp4FfA5Ii4X9Jd9DG8FhH7tqtyZmY2eDRyDuc+YHXuZw82m5lZ0xo5h/PJ3M+TO1obMzMbtFo+h6NkO0n1bspmZmYGNLlaNPx5Mc8zgbHZ8WslLQC+GhHXtrl+ZoPbjBll18CsME0FHEnTgO8AtwCfB/4IjASOAv5b0mciwn9BZo3y7aWtizTbwzkDmBkRn65Kv0TSJcAXAQccMzPbQLPncN4IXN3Lvp8A2/RVgKQ9JN0iaZWkJyWdI6nucjiSRkuKGtusGnmPlHSvpJcl3S9pUkMtMyvDzJlpM+sCzfZw5gIHATfX2HcQcFu9gyWNAOYA9wNHArsB3yQFvjMbeP2TgV/knj9TVf6BpMD3HeBEYCJwpaTlEXFTA+WbFWvatPTooTXrAo1c+LlH7um/AN+V9EZgNq+dw/kgcDhwQh/FfQoYAhwVESuAmyVtDUyXdH6WVs/iiLizzv4vAbdFxInZ87mS9gS+DDjgmJmVqJEezm9Z/2JPAdOyrfrunzdQf7Xow4EbqwLLLOA8Ug/pZw3UpyZJrwcmkHo2ebOAyyQNi4gXWi3fzMz6p5GAM6GNrzcGuDWfEBGPSlqV7esr4FwmaRtSz+pK4IsRUVkFYTdgc2BR1TEPkIbsdgfu6l/1zcysVY2sNDCvja83Ani+RvrybF9vXgH+lTQstgIYD5xKCjJH5sqmRvnLq/avR9JUYCrAqFGj6OnpqVf/hq1cubJtZQ10bmvrxmeP1WWetNfauscV9X77sx2cympr0xd+VkjaBNiiOr2BO37WWotNvaRXynwK+IdcUo+kp4HvSHpHRNxdp3z1kl4peyYwE2DcuHExfvz4+rVvUE9PD+0qa6BzW/uvuszJp9W/hnrpR9tfh1r82Q5OZbW1qWnR2XI2p0paAqwBXqyx1bMcGF4jfRi1ez71XJU97p0rmxrlV543W76ZmbVRs9fhnAicBnyP1HP4KnAO8CCwlGxoqo5FpHM1fyZpJ2BLNjz30peoenyIFATHVOUbA6zL6mg2sET4bp/WNZoNOFOAs4Dzs+ezI+JsYE9SwHhrH8dfD7xX0la5tEmk2x80e67omOxxAUBEvEK6TuhDVfkmAXd4hpqZWbmaPYfzZuDuiHhV0hqy4aqIWCfpO8B3ST2g3lxC6iVdLek8YFdgOnBhfqp0NmQ3LyKOz55PB7YiXfS5Ang3cApwdUT8Jlf+uaTzOxeTrhOamG3va7KdZmbWZs32cJ4FhmY/Pwq8M7dvBOmizl5FxHLgYNK1Oj8DzgYuIvWa8jZj/et5FpGu07kMuA44Drgge8yXfzup53MIcCPwt8BxXmXABqyxY9Nm1gWa7eH8AtiH9KX/I9IKAdsAfwI+S1pFuq6IuB94Tx95Rlc9n0W6gLNPETGb1LsxG/gWLiy7BmaFaTbgTAd2zH7+GmlIbTKpZ3Mz8Ll2VczMzAaXpgJORCwGFmc/v0K6J87nO1AvMzMbZPpz4eebgB2AJyPiifZVyczMBqNmJw0g6dOSHgMeAX4JPCrpcUmfaXvtzMxs0Gh2pYEvA98mXU9zBDAue7we+Jdsv5mZ2QaaHVL7LPC1iPhSVfoN2dpmnyWtPGBmjZgypewamBWm2YAzhN7v6jkPz1Iza45vL21dpNlzOLOBo3rZdzRwTf+qY2Zmg1Ujt5iemHt6PXC+pNFseIvpPYEvtL+KZoPYggXp0asNWBdoZEjtGja8lfSOwHtr5P0B6U6cZtaIcePSo1eMti7QSMB5c8drYWZmg14jt5h+pIiKmJnZ4Nb0SgOSNiNNEDgQ2AZ4Dvg56VYB9W/EbmZmXaupgCNpJHAT8HbSHT6fBg4gXX9zj6TDImJZuytpZmYbv2anRV8IvBHYLyJ2jYgDImJXYL8s/cJ2V9DMzAaHZgPORODUiLgrn5g9P520zI2ZmdkGmj2H83rgxV72vQi8rn/VMesy8+eXXQOzwjQbcO4ETpV0a0S8VEmUtCVwarbfzBrlCz6tizQbcE4C5gKPSbqJNGlgJOkiUAHj21o7MzMbNJo6hxMRdwNvBWYC2wGHkgLOJcBbI+KettfQbDCbOjVtZl2g4R6OpM2BfYGHI+K0zlXJrItceml69KrR1gWa6eG8CtwK/GWH6mJmZoNYwwEnItYBvwNGda46ZmY2WDV7Hc4XgS9L2qsTlTEzs8Gr2VlqZ5JWFLhb0hOkWWrrraseEfu2qW5mZjaINBtwfpttZmZmTWko4EgaQlrW5rfAH4A5EfF0Jytm1hX23rvsGpgVppFbTO8KzAFG55JXSPpwRNzUqYqZdYXKLabNukAjkwbOB9YBfwO8AdgT+DUwo4P1MjOzQaaRgHMAcGZE/CIiXo6IB4BpwM6Sduhs9czMbLBoJODsAPy+Ku0h0tpp27e9RmbdREqbWRdo9Dqc6DuLmZlZ7xqdFn2jpLU10m+pTo+Ikf2vlpmZDTaNBJyzO14LMzMb9PoMOBHhgGNmZv3W7FpqZmZmLXHAMTOzQjS7lpqZtdMMXz9t3cMBx6xMvr20dREPqZmZWSEccMzKNHNm2sy6QOEBR9Iekm6RtErSk5LOkbRpH8fsI+kySUuy4xZLOkvSFlX5pkuKGtv7OtsqsxZNm5Y2sy5Q6DkcSSNItzq4HzgS2A34JinwnVnn0ElZ3vOA3wFvB87NHo+uyvsCUB1gHuhv3c3MrH+KnjTwKWAIcFRErABulrQ1MF3S+VlaLedFxLLc8x5JLwMzJO0SEY/k9q2NiDs7U30zM2tV0UNqhwM3VgWWWaQgdFBvB1UFm4pfZ49eu83MbCNQdMAZAyzKJ0TEo8CqbF8z3kW6MdziqvThkp6RtEbSryUd1XJtzcysbRRR3J0HJK0BTomIi6vSHweuiIgzGixne+A3wHURMTmX/jFSj+duYCjpRnETgaMj4upeypoKTAUYNWrU2FmzZjXbrJpWrlzJ0KFD21LWQOe2tm78hAkA9Mydu176vU+8UPe4vXYc1rY61OPPdnBqZ1snTJiwICLGNZK3jIBzckT8c1X6E8DlEfHFBsp4HWniwZuAsRGxvE5eAf8DDImId/RV9rhx42L+/Pl9ZWtIT08P48ePb0tZA53b2g+Vm69V/R2OPu3auoct/foR7atDHf5sB6d2tlVSwwGn6CG15cDwGunDgOf7OjgLIFcAewIT6wUbgEjR9Grg7X1NvTYrRcQGwcZssCp6ltoiqs7VSNoJ2JKqczu9uIg0nfrQiGgkf4X/os3MSlZ0D+d64L2StsqlTQJWA/PqHSjpdOBzwMci4vZGXizrEX0QuCciXm2tymZm1g5F93AuAU4ErpZ0HrArMB24MD9VWtISYF5EHJ89Pw74GnA58ISk/XNlPlSZNi1pHvATUm9pS2AKsD/wgc42y6xFY8emxwULyq2HWQEKDTgRsVzSwcC3gZ+RzttcRAo61fXKn3M5LHucnG15nyQFIoAlwD8CO5CmTC8EjoiI69tRf7O2W7iw7BqYFabw2xNExP3Ae/rIM7rq+WQ2DDS1jju+H1UzM7MO8mrRZmZWCAccMzMrhAOOmZkVwgHHzMwKUfikATPLmTKl7BqYFcYBx6xMvr20dREPqZmZWSEccMzKtGCBVxmwruEhNbMyjctWdfeK0dYF3MMxM7NCOOCYmVkhHHDMzKwQDjhmZlYIBxwzMyuEA46ZmRXC06LNyjR/ftk1MCuMA45ZH0afdu2ffz5pr7VMzj0HWPr1I1ovvHKLabMu4CE1MzMrhAOOWZmmTk2bWRdwwDEr06WXps2sCzjgmJlZIRxwzMysEA44ZmZWCAccMzMrhAOOmZkVwhd+mpVp773LroFZYRxwzMrk20tbF/GQmpmZFcIBx8zMCuGAY1YmKW1mXcABx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIRxwzMysEA44ZmZWCK80YFamGTPKroFZYRxwzMrk20tbF3HAMTNGn3ZtzfST9lrL5Gzf0q8fUWSVbBDyORyzMs2cmTazLuAejlmZpk1Ljx5asy7ggGMbnd6Gf/I8/GM28BQ+pCZpD0m3SFol6UlJ50jatIHjhkm6TNJySS9I+qGkN9bId6SkeyW9LOl+SZM60xIzM2tGoQFH0ghgDhDAkcA5wEnA2Q0c/mNgPHACMBnYB5hdVf6BwE+AucDhwLXAlZIOa0sDzMysZUUPqX0KGAIcFRErgJslbQ1Ml3R+lrYBSQcA7wUOiojbsrQngF9KOiQi5mRZvwTcFhEnZs/nStoT+DJwU+eaZWbN8LBodyo64BwO3FgVWGYB5wEHAT+rc9zTlWADEBG/kvRwtm+OpNcDE4ATq46dBVwmaVhEvNCmdmzUOvXH7i8RG2j6+p3072Oxig44Y4Bb8wkR8aikVdm+3gLOGGBRjfQHsn0AuwGb18j3AGnocHfgrtaq3bfqX+z89QutqPWH4D8es4Ghnf9ctfJ33cjr13PSXmsZ368SWqOIKO7FpDXAKRFxcVX648AVEXFGL8fdDLwUER+oSv8BsGtEvEvSXwO3A++MiLtzed4C/A54b0RsMKwmaSpQmZP6NmBxyw1c37bAM20qa6BzWwevbmqv29qaXSJiu0YyljEtulaEUy/prRxX/Vy9pKfEiJlA26+8kzQ/Isa1u9yByG0dvLqpvW5r5xU9LXo5MLxG+jDg+RaOG547bnkurToPfZRvZmYdVnTAWcRr51wAkLQTsCW1z9H0elwmf27nIWBNjXxjgHXAgy3U18zM2qTogHM98F5JW+XSJgGrgXl9HLd9dp0NAJLGAbtm+4iIV0jX33yo6thJwB0lzFDrpgWy3NbBq5va67Z2WNGTBkYA9wO/JU2F3hW4ELg4Is7M5VsCzIuI43NpN5Bmmp1M6rGcB/wxIv4ml+dAoAf4Numi0IlZ/vfVmjBgZmbFKbSHExHLgYOBTUlToM8GLgLOqsq6WZYn71hSL+j7wBXAAuCDVeXfDhwDHALcCPwtcJyDjZlZ+Qrt4ZiZWffy/XCa1OnFRweSVtoqaZ+snUuy4xZLOkvSFkXVu1Wtfra54zeRtEBSSHp/J+vaX/1pq6SjJN1LdR/BAAAEwklEQVQlabWkZyXdIGnLTte5Vf34mx0n6aasjc9JmiNpvyLq3CpJb5E0Q9I9kl6V1NPgcYV8P/n2BE3ILT56P2nx0d2Ab5IC95l1DoW0+OjbSIuPVs5BzQb+pt5BZelHWydlec8jXXD7duDc7PHoDla5X/r52VacAOzYkQq2UX/aKukE0jnS84FTgBHAexig3yWttjWbPTsHWAh8PEs+BbhJ0tsj4pFO1rsf9iSdu74TeF0TxxXz/RQR3hrcgNNJ1/tsnUv7ArAqn1bjuANIF56+O5e2b5Z2SNntanNbt6uRNjVr6y5lt6vd7c3lHQEsA47P2vr+stvUgc92W+BFYErZbSigrZ8CXgWGV33GrwKfLrtddeq9Se7nq4CeBo4p7PvJQ2rN6W3x0SGkxUfrHbfB4qNAZfHRgailtkbEshrJv84eR7avem3X6mdbcS7wC+CWDtSt3Vpt64ezx3/vVMU6oNW2bg6sBVbm0lZmaap5xAAQEetaOKyw7ycHnOZssIhoRDxK+m+p1oWpvR6XyS8+OtC02tZa3kXqprdrnbpOaLm9kt4OfJI0BX9j0Gpb9yN9hsdLelzSGkm/lPSuzlW131pt60+yPN+UNFLSSNKM2uXAf3aormUp7PvJAac5I6i9RM7ybF+7jytTW+osaXvgi8D/j17udzRA9Ke93wL+NSKWtL1WndFqW7cnjfOfCZwK/F/gJeAGSaPaXck2aamtEfEk6XYnRwNPZ9tRpEWAa/XiN2aFfT854DSv04uPDiT9qrOk1wH/QRqK+Kc21qtTmm6vpGNJX8Jf6VSlOqSVz3YTYChwfET8MCJuAD5AOq/xD+2vYtu08rnuQDoHsoA0rHR49vO1knbuRCVLVsj3kwNOczq5+OhA02pbAZAk0gW6ewITI130O5A13V5JmwMXkGb0bCJpOLB1tnvLqiWcBpJWP9vnsseeSkLWa10A7NGuyrVZq209hTTz7piIuCELrkeTguvGMnTaqMK+nxxwmtPJxUcHmlbbWnERaRrqkRExUNuY10p7twTeRFqeaXm23ZPtm8VrkyUGmlY/2wdI//FWnzQX6RzdQNRqW8cA90XEmkpCRPwJuI80tXowKez7yQGnOR1bfHQAarWtSDod+BzwsUjLDW0MWmnvStI4f377SLbvDOCjnalqv7X62V5DCi4TKgmShgFjeS3QDjSttvUR4K+yYWEAlG5j/1fA0g7Us0zFfT+VPW98Y9pIJ9CeAm4mrdc2lfSl85WqfEuA71Wl3QD8nnTi8QOk2T4/L7tN7W4rcBzpv+DLgP2rtg2u0RkoW38+26r9oxn41+H05/d4dnbsJ4AjSF/ay4ARZbernW0lBdE1wLVZO99P+vJdA/yfsttVp71vIK0neQxwB6lHVnn+hjqfayHfT6W/QRvbRhqrvpX0H9JTpOsvNq3KsxS4vCptePYl/DywAvgRsG3Z7Wl3W4HLsy/cWtvkstvUic+2av+ADzj9aStp0sC/Ac9mx84B9iq7PR1q68HAbaRzV8+Rguv4stvTR1srv3+1ttF12lrI95MX7zQzs0L4HI6ZmRXCAcfMzArhgGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK8T/ArLcU/xD9Gw7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -462,9 +468,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_wor", + "display_name": "qiskit_stable", "language": "python", - "name": "qiskit_wor" + "name": "qiskit_stable" }, "language_info": { "codemirror_mode": { @@ -476,7 +482,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/aqua/finance/fixed_income_pricing.ipynb b/qiskit/aqua/finance/fixed_income_pricing.ipynb index 0b01e19b5..41387bf22 100644 --- a/qiskit/aqua/finance/fixed_income_pricing.ipynb +++ b/qiskit/aqua/finance/fixed_income_pricing.ipynb @@ -50,7 +50,7 @@ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import numpy as np\n", - "from qiskit import BasicAer\n", + "from qiskit import LegacySimulators\n", "from qiskit_aqua.algorithms import AmplitudeEstimation\n", "from qiskit_aqua.components.random_distributions import MultivariateNormalDistribution\n", "from qiskit_aqua.components.uncertainty_problems import FixedIncomeExpectedValue" @@ -237,8 +237,8 @@ }, "outputs": [], "source": [ - "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + "# result = ae.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=LegacySimulators.get_backend('statevector_simulator'))" ] }, { @@ -324,9 +324,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_wor", + "display_name": "qiskit_stable", "language": "python", - "name": "qiskit_wor" + "name": "qiskit_stable" }, "language_info": { "codemirror_mode": { @@ -338,7 +338,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/aqua/finance/portfolio_optimization.ipynb b/qiskit/aqua/finance/portfolio_optimization.ipynb index f3e186db1..36dbe2be7 100644 --- a/qiskit/aqua/finance/portfolio_optimization.ipynb +++ b/qiskit/aqua/finance/portfolio_optimization.ipynb @@ -57,10 +57,12 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": { + "collapsed": true + }, "outputs": [], "source": [ - "from qiskit import BasicAer\n", + "from qiskit import LegacySimulators\n", "from qiskit_aqua import QuantumInstance\n", "from qiskit_aqua import Operator, run_algorithm\n", "from qiskit_aqua.input import EnergyInput\n", @@ -264,7 +266,7 @@ } ], "source": [ - "backend = BasicAer.get_backend('statevector_simulator')\n", + "backend = LegacySimulators.get_backend('statevector_simulator')\n", "seed = 50\n", "\n", "cobyla = COBYLA()\n", @@ -348,7 +350,7 @@ } ], "source": [ - "backend = BasicAer.get_backend('statevector_simulator')\n", + "backend = LegacySimulators.get_backend('statevector_simulator')\n", "seed = 50\n", "\n", "cobyla = COBYLA()\n", @@ -394,9 +396,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_wor", + "display_name": "qiskit_stable", "language": "python", - "name": "qiskit_wor" + "name": "qiskit_stable" }, "language_info": { "codemirror_mode": { @@ -408,7 +410,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.1" } }, "nbformat": 4, From ef583e8dc3c4fc886cdb14345c4ea653c94702c5 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Feb 2019 10:51:52 -0500 Subject: [PATCH 002/116] Eliminate paulis_grouping --- community/aqua/chemistry/h2_qpe.ipynb | 47 +++++++++---------- .../aqua/chemistry/input_files/iqpe_h2.txt | 1 - .../aqua/chemistry/input_files/qpe_h2.txt | 1 - community/aqua/general/input_files/eoh.json | 3 +- community/aqua/general/vqe2iqpe.ipynb | 45 ++++++++---------- 5 files changed, 43 insertions(+), 54 deletions(-) diff --git a/community/aqua/chemistry/h2_qpe.ipynb b/community/aqua/chemistry/h2_qpe.ipynb index 8a11cca5c..40f36c613 100644 --- a/community/aqua/chemistry/h2_qpe.ipynb +++ b/community/aqua/chemistry/h2_qpe.ipynb @@ -25,21 +25,21 @@ "outputs": [], "source": [ "from collections import OrderedDict\n", - "from qiskit import LegacySimulators\n", + "from qiskit import BasicAer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.transpiler import PassManager\n", - "from qiskit_aqua import AquaError\n", - "from qiskit_aqua import QuantumInstance\n", - "from qiskit_aqua.algorithms import ExactEigensolver\n", - "from qiskit_aqua.algorithms import QPE\n", - "from qiskit_aqua.components.iqfts import Standard\n", - "from qiskit_chemistry import FermionicOperator\n", - "from qiskit_chemistry import QiskitChemistry\n", - "from qiskit_chemistry.drivers import ConfigurationManager\n", - "from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock\n", + "from qiskit.aqua import AquaError\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua.algorithms import ExactEigensolver\n", + "from qiskit.aqua.algorithms import QPE\n", + "from qiskit.aqua.components.iqfts import Standard\n", + "from qiskit.chemistry import FermionicOperator\n", + "from qiskit.chemistry import QiskitChemistry\n", + "from qiskit.chemistry.drivers import get_driver_class\n", + "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock\n", "import time\n", "\n", "distance = 0.735\n", - "cfg_mgr = ConfigurationManager()\n", "pyscf_cfg = OrderedDict([\n", " ('atom', 'H .0 .0 .0; H .0 .0 {}'.format(distance)),\n", " ('unit', 'Angstrom'),\n", @@ -47,14 +47,12 @@ " ('spin', 0),\n", " ('basis', 'sto3g')\n", "])\n", - "section = {}\n", - "section['properties'] = pyscf_cfg\n", "try:\n", - " driver = cfg_mgr.get_driver_instance('PYSCF')\n", + " driver = get_driver_class('PYSCF').init_from_input(pyscf_cfg)\n", "except ModuleNotFoundError:\n", " raise AquaError('PYSCF driver does not appear to be installed')\n", "\n", - "molecule = driver.run(section)\n", + "molecule = driver.run()\n", "qubit_mapping = 'parity'\n", "fer_op = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals)\n", "qubit_op = fer_op.mapping(map_type=qubit_mapping,threshold=1e-10).two_qubit_reduced_operator(2)" @@ -76,7 +74,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The exact ground state energy is: -1.857275030202382\n" + "The exact ground state energy is: -1.8572750302023824\n" ] } ], @@ -103,7 +101,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The ground state energy as computed by QPE is: -1.8571368753258874\n" + "The ground state energy as computed by QPE is: -1.857136875325887\n" ] } ], @@ -120,10 +118,11 @@ "iqft = Standard(n_ancillae)\n", "\n", "qpe = QPE(qubit_op, state_in, iqft, num_time_slices, n_ancillae,\n", - " paulis_grouping='random', expansion_mode='suzuki',\n", + " expansion_mode='suzuki',\n", " expansion_order=2, shallow_circuit_concat=True)\n", - "backend = LegacySimulators.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=100, pass_manager=PassManager())\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "run_config = RunConfig(shots=100, max_credits=10, memory=False)\n", + "quantum_instance = QuantumInstance(backend, run_config, pass_manager=PassManager())\n", "result_qpe = qpe.run(quantum_instance)\n", "print('The ground state energy as computed by QPE is: {}'.format(result_qpe['energy']))" ] @@ -190,7 +189,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The groundtruth total ground state energy is -1.8572750302023797.\n", + "The groundtruth total ground state energy is -1.8572750302023806.\n", "The total ground state energy as computed by QPE is -1.857136875325887.\n", "In comparison, the Hartree-Fock ground state energy is -1.8369679912029842.\n" ] @@ -214,9 +213,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Quantum py37", + "display_name": "Python 3", "language": "python", - "name": "quantum-dev-37" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -228,7 +227,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/input_files/iqpe_h2.txt b/community/aqua/chemistry/input_files/iqpe_h2.txt index 9fe87ca4d..3043ead2a 100644 --- a/community/aqua/chemistry/input_files/iqpe_h2.txt +++ b/community/aqua/chemistry/input_files/iqpe_h2.txt @@ -34,7 +34,6 @@ &algorithm name=IQPE num_time_slices=200 - paulis_grouping=random expansion_mode=suzuki expansion_order=2 num_iterations=9 diff --git a/community/aqua/chemistry/input_files/qpe_h2.txt b/community/aqua/chemistry/input_files/qpe_h2.txt index 1b032fc96..b72c0b228 100644 --- a/community/aqua/chemistry/input_files/qpe_h2.txt +++ b/community/aqua/chemistry/input_files/qpe_h2.txt @@ -34,7 +34,6 @@ &algorithm name=QPE num_time_slices=50 - paulis_grouping=random expansion_mode=suzuki expansion_order=2 num_ancillae=9 diff --git a/community/aqua/general/input_files/eoh.json b/community/aqua/general/input_files/eoh.json index d76d4c3ee..2b6d0014d 100644 --- a/community/aqua/general/input_files/eoh.json +++ b/community/aqua/general/input_files/eoh.json @@ -5,8 +5,7 @@ "expansion_order": 1, "name": "EOH", "num_time_slices": 1, - "operator_mode": "paulis", - "paulis_grouping": "default" + "operator_mode": "paulis" }, "backend": { "provider": "qiskit.BasicAer", diff --git a/community/aqua/general/vqe2iqpe.ipynb b/community/aqua/general/vqe2iqpe.ipynb index 8557c8381..3d559f5b6 100644 --- a/community/aqua/general/vqe2iqpe.ipynb +++ b/community/aqua/general/vqe2iqpe.ipynb @@ -18,15 +18,16 @@ "outputs": [], "source": [ "import numpy as np\n", - "from qiskit import LegacySimulators\n", + "from qiskit import BasicAer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.transpiler import PassManager\n", - "from qiskit_aqua import Operator, QuantumInstance, run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.algorithms import VQE\n", - "from qiskit_aqua.algorithms import IQPE\n", - "from qiskit_aqua.components.variational_forms import RYRZ\n", - "from qiskit_aqua.components.optimizers import SPSA\n", - "from qiskit_aqua.components.initial_states.varformbased import VarFormBased" + "from qiskit.aqua import Operator, QuantumInstance, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.algorithms import IQPE\n", + "from qiskit.aqua.components.variational_forms import RYRZ\n", + "from qiskit.aqua.components.optimizers import SPSA\n", + "from qiskit.aqua.components.initial_states.varformbased import VarFormBased" ] }, { @@ -70,7 +71,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The reference ground energy level is -1.8572750302023788.\n" + "The reference ground energy level is -1.8572750302023793.\n" ] } ], @@ -105,14 +106,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "VQE estimated the ground energy to be -1.7687172105530888.\n" + "VQE estimated the ground energy to be -1.6715595657632292.\n" ] } ], "source": [ "random_seed = 0\n", "np.random.seed(random_seed)\n", - "backend = LegacySimulators.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "\n", "var_form_depth = 3\n", "var_form = RYRZ(algo_input.qubit_op.num_qubits, var_form_depth)\n", @@ -137,7 +138,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -153,26 +154,18 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Continuing with VQE's result, IQPE estimated the ground energy to be -1.8551442391935626.\n" - ] - } - ], + "outputs": [], "source": [ "num_time_slices = 50\n", "num_iterations = 11\n", "\n", "iqpe = IQPE(algo_input.qubit_op, state_in, num_time_slices, num_iterations,\n", - " paulis_grouping='random', expansion_mode='suzuki', expansion_order=2,\n", + " expansion_mode='suzuki', expansion_order=2,\n", " shallow_circuit_concat=True)\n", - "quantum_instance = QuantumInstance(backend, shots=100, pass_manager=PassManager(),\n", - " seed=random_seed, seed_mapper=random_seed)\n", + "run_config = RunConfig(shots=100, max_credits=10, memory=False, seed=random_seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, pass_manager=PassManager(), seed_mapper=random_seed)\n", "result_iqpe = iqpe.run(quantum_instance)\n", "print(\"Continuing with VQE's result, IQPE estimated the ground energy to be {}.\".format(\n", " result_iqpe['energy']))" @@ -202,7 +195,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.7" } }, "nbformat": 4, From 5e1f6661c6b038de1a9ec419582299d405d67950 Mon Sep 17 00:00:00 2001 From: Richard Chen Date: Tue, 12 Feb 2019 11:35:36 -0500 Subject: [PATCH 003/116] update the tutorial to register a component/algorithm --- ...ild_a_pluggable_algorithm_components.ipynb | 66 +++++++++++++------ .../evolutionfidelity/evolutionfidelity.py | 26 ++++---- .../aqua/general/evolutionfidelity/setup.py | 47 +++---------- 3 files changed, 68 insertions(+), 71 deletions(-) diff --git a/qiskit/aqua/general/Aqua_howto_build_a_pluggable_algorithm_components.ipynb b/qiskit/aqua/general/Aqua_howto_build_a_pluggable_algorithm_components.ipynb index 870977486..57fbef38e 100644 --- a/qiskit/aqua/general/Aqua_howto_build_a_pluggable_algorithm_components.ipynb +++ b/qiskit/aqua/general/Aqua_howto_build_a_pluggable_algorithm_components.ipynb @@ -45,7 +45,7 @@ "\n", "\n", "#### Register it permentally\n", - "If you complete the pluggable algorithm/components as a Python package, you can refer to this [instruction](https://qiskit.org/documentation/aqua/extending.html#extending-aqua) to prepare the `setup.py` file to register the pluggable algorithm/component, which will be discovered in Aqua/Aqua-chemistry UI. We prepare a [setup.py](evolutionfidelity/setup.py) file for this tutorial. \n", + "If you complete the pluggable algorithm/components as a Python package, you can refer to this [instruction](https://qiskit.org/documentation/aqua/extending.html#extending-aqua) to prepare the `setup.py` file to register the pluggable algorithm/component, which will be discovered in Qiskit-Aqua. We prepare a [setup.py](evolutionfidelity/setup.py) example for this tutorial. \n", "\n", "Go to the `qiskit/aqua/general/evolutionfidelity` folder, and then do `python3 setup.py install` to install the package.\n", "\n", @@ -57,17 +57,9 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\"Could not register class is already registered\"\n" - ] - } - ], + "outputs": [], "source": [ - "from qiskit_aqua import register_pluggable\n", + "from qiskit.aqua import register_pluggable\n", "from evolutionfidelity.evolutionfidelity import EvolutionFidelity\n", "try:\n", " register_pluggable(EvolutionFidelity)\n", @@ -83,7 +75,32 @@ "source": [ "from qiskit import Aer\n", "import numpy as np\n", - "from qiskit_aqua.operator import Operator" + "from qiskit.aqua.operator import Operator\n", + "from qiskit.aqua import local_pluggables, PluggableType" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "List all registered algorithms, and we will find `EvolutionFidelity` in the list if you registered." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['QAOA.Variational', 'QSVM.Variational', 'VQE', 'ExactEigensolver', 'SVM', 'EOH', 'QSVM.Kernel', 'AmplitudeEstimation', 'BernsteinVazirani', 'DeutschJozsa', 'Grover', 'IQPE', 'QPE', 'Simon', 'EvolutionFidelity']\n" + ] + } + ], + "source": [ + "print(local_pluggables(PluggableType.ALGORITHM))" ] }, { @@ -96,21 +113,21 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.9818615150811041\n" + "0.9234907613356655\n" ] } ], "source": [ "from evolutionfidelity.evolutionfidelity import EvolutionFidelity\n", - "from qiskit_aqua.components.initial_states import Zero\n", - "from qiskit_aqua import QuantumInstance\n", + "from qiskit.aqua.components.initial_states import Zero\n", + "from qiskit.aqua import QuantumInstance\n", "num_qubits = 2\n", "temp = np.random.random((2 ** num_qubits, 2 ** num_qubits))\n", "qubit_op = Operator(matrix=temp + temp.T)\n", @@ -136,12 +153,12 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua import run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua import run_algorithm\n", "\n", "params = {\n", " 'problem': {\n", @@ -161,14 +178,14 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.9818615150811041\n" + "0.9234907613356655\n" ] } ], @@ -176,6 +193,13 @@ "result = run_algorithm(params, algo_input, backend=backend)\n", "print(result['score'])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py b/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py index 7daec6166..3834e9560 100644 --- a/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py +++ b/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py @@ -31,8 +31,8 @@ from qiskit import QuantumRegister from qiskit.quantum_info import state_fidelity -from qiskit_aqua.algorithms import QuantumAlgorithm -from qiskit_aqua import AquaError, PluggableType, get_pluggable_class +from qiskit.aqua.algorithms import QuantumAlgorithm +from qiskit.aqua import AquaError, Pluggable, PluggableType, get_pluggable_class logger = logging.getLogger(__name__) @@ -74,18 +74,21 @@ class EvolutionFidelity(QuantumAlgorithm): 'additionalProperties': False }, 'problems': ['eoh'], - 'depends': ['initial_state'], - 'defaults': { - 'initial_state': { - 'name': 'ZERO' - } - } + 'depends': [ + { + 'pluggable_type': 'initial_state', + 'default': { + 'name': 'ZERO', + } + }, + ] } """ If directly use these objects programmatically then the constructor is more convenient to call than init_params. init_params itself uses this to do the actual object initialization. """ + def __init__(self, operator, initial_state, expansion_order=1): self.validate(locals()) super().__init__() @@ -113,14 +116,14 @@ def init_params(cls, params, algo_input): operator = algo_input.qubit_op - evolution_fidelity_params = params.get(QuantumAlgorithm.SECTION_KEY_ALGORITHM) + evolution_fidelity_params = params.get(Pluggable.SECTION_KEY_ALGORITHM) expansion_order = evolution_fidelity_params.get(EvolutionFidelity.PROP_EXPANSION_ORDER) # Set up initial state, we need to add computed num qubits to params - initial_state_params = params.get(QuantumAlgorithm.SECTION_KEY_INITIAL_STATE) + initial_state_params = params.get(Pluggable.SECTION_KEY_INITIAL_STATE) initial_state_params['num_qubits'] = operator.num_qubits initial_state = get_pluggable_class(PluggableType.INITIAL_STATE, - initial_state_params['name']).init_params(initial_state_params) + initial_state_params['name']).init_params(params) return cls(operator, initial_state, expansion_order) @@ -130,6 +133,7 @@ def init_params(cls, params, algo_input): E.g., the `_run` method is required to be implemented for an algorithm. """ + def _run(self): evo_time = 1 # get the groundtruth via simple matrix * vector diff --git a/qiskit/aqua/general/evolutionfidelity/setup.py b/qiskit/aqua/general/evolutionfidelity/setup.py index 439a66a78..541fac6ab 100644 --- a/qiskit/aqua/general/evolutionfidelity/setup.py +++ b/qiskit/aqua/general/evolutionfidelity/setup.py @@ -5,48 +5,17 @@ # ============================================================================= import setuptools -from setuptools.command.install import install -from setuptools.command.develop import develop -from setuptools.command.egg_info import egg_info -import atexit long_description = """An example to install a pluggable algorithm/component.""" requirements = [ - "qiskit-aqua>=0.4.0", - "qiskit-terra>=0.7,<0.8", - "numpy>=1.13" + "qiskit-aqua>=0.5", + "numpy>=1.13,<1.16" ] - -def _post_install(): - from qiskit_aqua_cmd.preferences import Preferences - preferences = Preferences() - preferences.add_package('evolutionfidelity') - preferences.save() - - -class CustomInstallCommand(install): - def run(self): - atexit.register(_post_install) - install.run(self) - - -class CustomDevelopCommand(develop): - def run(self): - atexit.register(_post_install) - develop.run(self) - - -class CustomEggInfoCommand(egg_info): - def run(self): - atexit.register(_post_install) - egg_info.run(self) - - setuptools.setup( name='evolutionfidelity', - version="0.4.0", # this should match __init__.__version__ + version="0.1.0", # this should match __init__.__version__ description='Example', long_description=long_description, long_description_content_type="text/markdown", @@ -70,9 +39,9 @@ def run(self): install_requires=requirements, include_package_data=True, python_requires=">=3.5", - cmdclass={ - 'install': CustomInstallCommand, - 'develop': CustomDevelopCommand, - 'egg_info': CustomEggInfoCommand - } + entry_points={ + 'qiskit.aqua.pluggables': [ + 'EvolutionFidelity = evolutionfidelity:EvolutionFidelity' + ], + }, ) From a45b41b3ffdb5f8a46c4a9addd57d70274950769 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Feb 2019 12:09:02 -0500 Subject: [PATCH 004/116] Fix grover input file --- community/aqua/optimization/input_files/grover.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/community/aqua/optimization/input_files/grover.json b/community/aqua/optimization/input_files/grover.json index e8837bd55..d8a3bb5ea 100644 --- a/community/aqua/optimization/input_files/grover.json +++ b/community/aqua/optimization/input_files/grover.json @@ -7,7 +7,7 @@ "name": "qasm_simulator" }, "oracle": { - "cnf": "c This is an example DIMACS 3-sat file with 3 satisfying solutions: 1 -2 3 0, -1 -2 -3 0, 1 2 -3 0\np cnf 3 5\n-1 -2 -3 0\n1 -2 3 0\n1 2 -3 0\n1 -2 -3 0\n-1 2 3 0", + "dimacs_cnf": "c This is an example DIMACS 3-sat file with 3 satisfying solutions: 1 -2 3 0, -1 -2 -3 0, 1 2 -3 0\np cnf 3 5\n-1 -2 -3 0\n1 -2 3 0\n1 2 -3 0\n1 -2 -3 0\n-1 2 3 0", "name": "SAT" }, "problem": { From c1236aaced0f7e2a3db6f45b7ce8466c332a7274 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Feb 2019 12:30:11 -0500 Subject: [PATCH 005/116] Change from qiskit_aqua to qiskit.aqua and from qiskit_chemistry to qiskit.chemistry --- .../qsvm_kernel_directly.ipynb | 10 +++++----- .../qsvm_kernel_multiclass.ipynb | 4 ++-- .../qsvm_variational.ipynb | 14 +++++++------- .../artificial_intelligence/svm_classical.ipynb | 6 +++--- .../svm_classical_multiclass.ipynb | 6 +++--- .../LiH_with_qubit_tapering_and_uccsd.ipynb | 16 ++++++++-------- .../aqua/chemistry/ParticleHole_example.ipynb | 14 +++++++------- community/aqua/chemistry/PySCF_end2end.ipynb | 14 +++++++------- community/aqua/chemistry/Pyquante_end2end.ipynb | 14 +++++++------- community/aqua/chemistry/beh2_reductions.ipynb | 2 +- community/aqua/chemistry/dictinput.py | 4 ++-- community/aqua/chemistry/energyplot.ipynb | 2 +- community/aqua/chemistry/h2_basis_sets.ipynb | 2 +- community/aqua/chemistry/h2_excited_states.ipynb | 2 +- community/aqua/chemistry/h2_iqpe.ipynb | 2 +- community/aqua/chemistry/h2_mappings.ipynb | 2 +- community/aqua/chemistry/h2_particle_hole.ipynb | 2 +- community/aqua/chemistry/h2_qpe.ipynb | 2 +- community/aqua/chemistry/h2_swaprz.ipynb | 2 +- community/aqua/chemistry/h2_uccsd.ipynb | 2 +- community/aqua/chemistry/h2_var_forms.ipynb | 2 +- .../aqua/chemistry/h2_vqe_initial_point.ipynb | 2 +- community/aqua/chemistry/h2_vqe_spsa.ipynb | 4 ++-- community/aqua/chemistry/h2o.ipynb | 2 +- community/aqua/chemistry/lih_dissoc.ipynb | 4 ++-- community/aqua/chemistry/lih_uccsd.ipynb | 2 +- community/aqua/chemistry/nah_uccsd.ipynb | 2 +- community/aqua/general/eoh.ipynb | 10 +++++----- community/aqua/general/evolution.ipynb | 4 ++-- community/aqua/general/vqe.ipynb | 4 ++-- community/aqua/optimization/clique.ipynb | 8 ++++---- community/aqua/optimization/exact_cover.ipynb | 8 ++++---- .../aqua/optimization/graph_partition.ipynb | 8 ++++---- community/aqua/optimization/grover.ipynb | 10 +++++----- community/aqua/optimization/maxcut.ipynb | 8 ++++---- community/aqua/optimization/partition.ipynb | 8 ++++---- community/aqua/optimization/set_packing.ipynb | 8 ++++---- community/aqua/optimization/stableset.ipynb | 8 ++++---- community/aqua/optimization/vertex_cover.ipynb | 8 ++++---- .../exercises/w8_01.ipynb | 4 ++-- .../exercises/w8_02.ipynb | 8 ++++---- .../exercises/w8_03.ipynb | 8 ++++---- .../exercises/w8_04.ipynb | 8 ++++---- .../exercises/w8_05.ipynb | 12 ++++++------ .../latex/main.tex | 4 ++-- .../qml_mooc/00_Course_Introduction.ipynb | 2 +- .../qml_mooc/07_Variational Circuits.ipynb | 4 ++-- .../qml_mooc/08_Sampling a Thermal State.ipynb | 10 +++++----- ...rete Optimization and Ensemble Learning.ipynb | 8 ++++---- ... Optimization and Unsupervised Learning.ipynb | 8 ++++---- .../qsvm_kernel_classification.ipynb | 12 ++++++------ qiskit/aqua/chemistry/declarative_approach.ipynb | 4 ++-- .../dissociation_profile_of_molecule.ipynb | 6 +++--- .../aqua/chemistry/programmatic_approach.ipynb | 14 +++++++------- .../finance/european_call_option_pricing.ipynb | 6 +++--- qiskit/aqua/finance/fixed_income_pricing.ipynb | 6 +++--- qiskit/aqua/finance/portfolio_optimization.ipynb | 14 +++++++------- qiskit/aqua/general/amplitude_estimation.ipynb | 8 ++++---- .../evolutionfidelity/evolutionfidelity.py | 2 +- qiskit/aqua/optimization/maxcut_and_tsp.ipynb | 16 ++++++++-------- 60 files changed, 198 insertions(+), 198 deletions(-) diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb index 77421c01b..6eb74b102 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb @@ -29,11 +29,11 @@ "source": [ "from datasets import *\n", "from qiskit import Aer\n", - "from qiskit_aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit_aqua import run_algorithm, QuantumInstance\n", - "from qiskit_aqua.input import SVMInput\n", - "from qiskit_aqua.components.feature_maps import SecondOrderExpansion\n", - "from qiskit_aqua.algorithms import QSVMKernel" + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua import run_algorithm, QuantumInstance\n", + "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", + "from qiskit.aqua.algorithms import QSVMKernel" ] }, { diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb index f3205feb9..3284add29 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb @@ -25,8 +25,8 @@ "source": [ "from datasets import *\n", "from qiskit import Aer\n", - "from qiskit_aqua.input import SVMInput\n", - "from qiskit_aqua import run_algorithm\n", + "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua import run_algorithm\n", "import numpy as np" ] }, diff --git a/community/aqua/artificial_intelligence/qsvm_variational.ipynb b/community/aqua/artificial_intelligence/qsvm_variational.ipynb index cbe9fc7b4..c0c500634 100644 --- a/community/aqua/artificial_intelligence/qsvm_variational.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_variational.ipynb @@ -31,14 +31,14 @@ "outputs": [], "source": [ "from datasets import *\n", - "from qiskit_aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit import Aer\n", - "from qiskit_aqua.input import SVMInput\n", - "from qiskit_aqua import run_algorithm, QuantumInstance\n", - "from qiskit_aqua.algorithms import QSVMVariational\n", - "from qiskit_aqua.components.optimizers import SPSA\n", - "from qiskit_aqua.components.feature_maps import SecondOrderExpansion\n", - "from qiskit_aqua.components.variational_forms import RYRZ" + "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua import run_algorithm, QuantumInstance\n", + "from qiskit.aqua.algorithms import QSVMVariational\n", + "from qiskit.aqua.components.optimizers import SPSA\n", + "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", + "from qiskit.aqua.components.variational_forms import RYRZ" ] }, { diff --git a/community/aqua/artificial_intelligence/svm_classical.ipynb b/community/aqua/artificial_intelligence/svm_classical.ipynb index b833e7c36..3e5e40ed2 100644 --- a/community/aqua/artificial_intelligence/svm_classical.ipynb +++ b/community/aqua/artificial_intelligence/svm_classical.ipynb @@ -18,9 +18,9 @@ "outputs": [], "source": [ "from datasets import *\n", - "from qiskit_aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit_aqua.input import SVMInput\n", - "from qiskit_aqua import run_algorithm" + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua import run_algorithm" ] }, { diff --git a/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb b/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb index 9f2c0f362..717ea81e1 100644 --- a/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb +++ b/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb @@ -24,9 +24,9 @@ "outputs": [], "source": [ "from datasets import *\n", - "from qiskit_aqua.utils import split_dataset_to_data_and_labels\n", - "from qiskit_aqua.input import SVMInput\n", - "from qiskit_aqua import run_algorithm\n", + "from qiskit.aqua.utils import split_dataset_to_data_and_labels\n", + "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua import run_algorithm\n", "import numpy as np" ] }, diff --git a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb index c0ce12fb2..6238a76c9 100644 --- a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb +++ b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb @@ -14,15 +14,15 @@ "\n", "from qiskit import Aer\n", "\n", - "from qiskit_aqua import Operator, set_aqua_logging, QuantumInstance\n", - "from qiskit_aqua.algorithms.adaptive import VQE\n", - "from qiskit_aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua import Operator, set_aqua_logging, QuantumInstance\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", "\n", - "from qiskit_chemistry.drivers import PySCFDriver, UnitsType\n", - "from qiskit_chemistry.core import Hamiltonian, TransformationType, QubitMappingType \n", - "from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD\n", - "from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock\n", + "from qiskit.chemistry.drivers import PySCFDriver, UnitsType\n", + "from qiskit.chemistry.core import Hamiltonian, TransformationType, QubitMappingType \n", + "from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD\n", + "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock\n", "\n", "# set_aqua_logging(logging.INFO)" ] diff --git a/community/aqua/chemistry/ParticleHole_example.ipynb b/community/aqua/chemistry/ParticleHole_example.ipynb index 848af7262..a6980de2e 100644 --- a/community/aqua/chemistry/ParticleHole_example.ipynb +++ b/community/aqua/chemistry/ParticleHole_example.ipynb @@ -10,14 +10,14 @@ "from qiskit import Aer\n", "from qiskit.transpiler import PassManager\n", "\n", - "from qiskit_aqua import Operator, QuantumInstance\n", - "from qiskit_aqua.algorithms.adaptive import VQE\n", - "from qiskit_aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import L_BFGS_B\n", - "from qiskit_aqua.components.variational_forms import RY\n", + "from qiskit.aqua import Operator, QuantumInstance\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import L_BFGS_B\n", + "from qiskit.aqua.components.variational_forms import RY\n", "\n", - "from qiskit_chemistry import FermionicOperator\n", - "from qiskit_chemistry.drivers import PySCFDriver, UnitsType" + "from qiskit.chemistry import FermionicOperator\n", + "from qiskit.chemistry.drivers import PySCFDriver, UnitsType" ] }, { diff --git a/community/aqua/chemistry/PySCF_end2end.ipynb b/community/aqua/chemistry/PySCF_end2end.ipynb index ccf81a511..e98113091 100644 --- a/community/aqua/chemistry/PySCF_end2end.ipynb +++ b/community/aqua/chemistry/PySCF_end2end.ipynb @@ -10,14 +10,14 @@ "from qiskit import Aer\n", "from qiskit.transpiler import PassManager\n", "\n", - "from qiskit_aqua import Operator, QuantumInstance\n", - "from qiskit_aqua.algorithms.adaptive import VQE\n", - "from qiskit_aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import L_BFGS_B\n", - "from qiskit_aqua.components.variational_forms import RYRZ\n", + "from qiskit.aqua import Operator, QuantumInstance\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import L_BFGS_B\n", + "from qiskit.aqua.components.variational_forms import RYRZ\n", "\n", - "from qiskit_chemistry import FermionicOperator\n", - "from qiskit_chemistry.drivers import PySCFDriver, UnitsType" + "from qiskit.chemistry import FermionicOperator\n", + "from qiskit.chemistry.drivers import PySCFDriver, UnitsType" ] }, { diff --git a/community/aqua/chemistry/Pyquante_end2end.ipynb b/community/aqua/chemistry/Pyquante_end2end.ipynb index dee663931..33037430f 100644 --- a/community/aqua/chemistry/Pyquante_end2end.ipynb +++ b/community/aqua/chemistry/Pyquante_end2end.ipynb @@ -10,14 +10,14 @@ "from qiskit import Aer\n", "from qiskit.transpiler import PassManager\n", "\n", - "from qiskit_aqua import Operator, QuantumInstance\n", - "from qiskit_aqua.algorithms.adaptive import VQE\n", - "from qiskit_aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import L_BFGS_B\n", - "from qiskit_aqua.components.variational_forms import RY\n", + "from qiskit.aqua import Operator, QuantumInstance\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import L_BFGS_B\n", + "from qiskit.aqua.components.variational_forms import RY\n", "\n", - "from qiskit_chemistry import FermionicOperator\n", - "from qiskit_chemistry.drivers import PyQuanteDriver, UnitsType, BasisType" + "from qiskit.chemistry import FermionicOperator\n", + "from qiskit.chemistry.drivers import PyQuanteDriver, UnitsType, BasisType" ] }, { diff --git a/community/aqua/chemistry/beh2_reductions.ipynb b/community/aqua/chemistry/beh2_reductions.ipynb index af7bc06d4..b2f247456 100644 --- a/community/aqua/chemistry/beh2_reductions.ipynb +++ b/community/aqua/chemistry/beh2_reductions.ipynb @@ -73,7 +73,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/dictinput.py b/community/aqua/chemistry/dictinput.py index 03c2668bd..f3f84bc5e 100644 --- a/community/aqua/chemistry/dictinput.py +++ b/community/aqua/chemistry/dictinput.py @@ -15,7 +15,7 @@ # limitations under the License. # ============================================================================= -import qiskit_chemistry +import qiskit.chemistry # An example of using a loop to vary inter-atomic distance. A dictionary is # created outside the loop, but inside the loop the 'atom' value is updated @@ -35,6 +35,6 @@ for i in range(21): d = (0.5 + i * 0.5 / 20) / 2 input_dict['PYSCF']['atom'] = molecule.format(d) - solver = qiskit_chemistry.QiskitChemistry() + solver = qiskit.chemistry.QiskitChemistry() result = solver.run(input_dict) print('{:.4f} : {}'.format(d * 2, result['energy'])) diff --git a/community/aqua/chemistry/energyplot.ipynb b/community/aqua/chemistry/energyplot.ipynb index 1e2e2dbf2..9e3042680 100644 --- a/community/aqua/chemistry/energyplot.ipynb +++ b/community/aqua/chemistry/energyplot.ipynb @@ -42,7 +42,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "# Note: In order to allow this to run reasonably quickly it takes advantage\n", diff --git a/community/aqua/chemistry/h2_basis_sets.ipynb b/community/aqua/chemistry/h2_basis_sets.ipynb index 1aa7ff17a..10a097850 100644 --- a/community/aqua/chemistry/h2_basis_sets.ipynb +++ b/community/aqua/chemistry/h2_basis_sets.ipynb @@ -45,7 +45,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_excited_states.ipynb b/community/aqua/chemistry/h2_excited_states.ipynb index 909333717..7bd30e4c6 100644 --- a/community/aqua/chemistry/h2_excited_states.ipynb +++ b/community/aqua/chemistry/h2_excited_states.ipynb @@ -49,7 +49,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_iqpe.ipynb b/community/aqua/chemistry/h2_iqpe.ipynb index d055c03b6..ca2857eac 100644 --- a/community/aqua/chemistry/h2_iqpe.ipynb +++ b/community/aqua/chemistry/h2_iqpe.ipynb @@ -22,7 +22,7 @@ "import numpy as np\n", "import pylab\n", "from qiskit import LegacySimulators\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "import time\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", diff --git a/community/aqua/chemistry/h2_mappings.ipynb b/community/aqua/chemistry/h2_mappings.ipynb index f2ce9eb2c..9d4db6934 100644 --- a/community/aqua/chemistry/h2_mappings.ipynb +++ b/community/aqua/chemistry/h2_mappings.ipynb @@ -69,7 +69,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_particle_hole.ipynb b/community/aqua/chemistry/h2_particle_hole.ipynb index e7fa24fdd..b7b44864e 100644 --- a/community/aqua/chemistry/h2_particle_hole.ipynb +++ b/community/aqua/chemistry/h2_particle_hole.ipynb @@ -62,7 +62,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_qpe.ipynb b/community/aqua/chemistry/h2_qpe.ipynb index 40f36c613..f7e9bdc2e 100644 --- a/community/aqua/chemistry/h2_qpe.ipynb +++ b/community/aqua/chemistry/h2_qpe.ipynb @@ -133,7 +133,7 @@ "source": [ "As can be easily seen, the QPE computed energy is quite close to the groundtruth value we computed earlier.\n", "\n", - "Next we demonstrate how the same computation can be carried out using json dictionaries to drive the qiskit_chemistry stack. Such a dictionary can of course also be manipulated programmatically. An sibling notebook `h2_iqpe` is also provided, which showcases how the ground state energies over a range of inter-atomic distances can be computed and then plotted as well." + "Next we demonstrate how the same computation can be carried out using json dictionaries to drive the qiskit.chemistry stack. Such a dictionary can of course also be manipulated programmatically. An sibling notebook `h2_iqpe` is also provided, which showcases how the ground state energies over a range of inter-atomic distances can be computed and then plotted as well." ] }, { diff --git a/community/aqua/chemistry/h2_swaprz.ipynb b/community/aqua/chemistry/h2_swaprz.ipynb index e83b87076..8bbd7eccd 100644 --- a/community/aqua/chemistry/h2_swaprz.ipynb +++ b/community/aqua/chemistry/h2_swaprz.ipynb @@ -47,7 +47,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure qiskit chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_uccsd.ipynb b/community/aqua/chemistry/h2_uccsd.ipynb index d4d5c47f7..ccad2fe26 100644 --- a/community/aqua/chemistry/h2_uccsd.ipynb +++ b/community/aqua/chemistry/h2_uccsd.ipynb @@ -47,7 +47,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_var_forms.ipynb b/community/aqua/chemistry/h2_var_forms.ipynb index 845277bc7..0d87d7d13 100644 --- a/community/aqua/chemistry/h2_var_forms.ipynb +++ b/community/aqua/chemistry/h2_var_forms.ipynb @@ -30,7 +30,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_vqe_initial_point.ipynb b/community/aqua/chemistry/h2_vqe_initial_point.ipynb index ef3d7c1a1..ebb1d1f6a 100644 --- a/community/aqua/chemistry/h2_vqe_initial_point.ipynb +++ b/community/aqua/chemistry/h2_vqe_initial_point.ipynb @@ -55,7 +55,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2_vqe_spsa.ipynb b/community/aqua/chemistry/h2_vqe_spsa.ipynb index 699abd2d4..880884406 100644 --- a/community/aqua/chemistry/h2_vqe_spsa.ipynb +++ b/community/aqua/chemistry/h2_vqe_spsa.ipynb @@ -8,7 +8,7 @@ "\n", "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE with SPSA optimizer. It is compared to the same energies as computed by the ExactEigensolver. SPSA is designed to work well with probabalistic/noisy measurements. And with RYRZ variational form makes this a suitable configuration to run on a near term device.\n", "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the qiskit_chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", + "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the qiskit.chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." ] @@ -43,7 +43,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/h2o.ipynb b/community/aqua/chemistry/h2o.ipynb index 07efda166..c2c25e0d1 100644 --- a/community/aqua/chemistry/h2o.ipynb +++ b/community/aqua/chemistry/h2o.ipynb @@ -17,7 +17,7 @@ "metadata": {}, "outputs": [], "source": [ - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/lih_dissoc.ipynb b/community/aqua/chemistry/lih_dissoc.ipynb index 8450bb21a..45b6c4804 100644 --- a/community/aqua/chemistry/lih_dissoc.ipynb +++ b/community/aqua/chemistry/lih_dissoc.ipynb @@ -10,7 +10,7 @@ "\n", "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy and dipole moments of a Lithium Hydride (LiH) molecule over a range of inter-atomic distances.\n", "\n", - "This notebook populates a dictionary, which is a progammatic representation of an input file, in order to drive the qiskit_chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", + "This notebook populates a dictionary, which is a progammatic representation of an input file, in order to drive the qiskit.chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", " \n", "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires.\n", " " @@ -24,7 +24,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry" + "from qiskit.chemistry import QiskitChemistry" ] }, { diff --git a/community/aqua/chemistry/lih_uccsd.ipynb b/community/aqua/chemistry/lih_uccsd.ipynb index dd4087ad8..c72f282fe 100644 --- a/community/aqua/chemistry/lih_uccsd.ipynb +++ b/community/aqua/chemistry/lih_uccsd.ipynb @@ -47,7 +47,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/chemistry/nah_uccsd.ipynb b/community/aqua/chemistry/nah_uccsd.ipynb index b4b2bbbaf..8195f5fd2 100644 --- a/community/aqua/chemistry/nah_uccsd.ipynb +++ b/community/aqua/chemistry/nah_uccsd.ipynb @@ -59,7 +59,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", diff --git a/community/aqua/general/eoh.ipynb b/community/aqua/general/eoh.ipynb index 4a8108d03..36855a14a 100644 --- a/community/aqua/general/eoh.ipynb +++ b/community/aqua/general/eoh.ipynb @@ -22,11 +22,11 @@ "import numpy as np\n", "from qiskit import LegacySimulators\n", "from qiskit.transpiler import PassManager\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.operator import Operator, QuantumInstance\n", - "from qiskit_aqua.algorithms import EOH\n", - "from qiskit_aqua.components.initial_states import Custom\n", - "from qiskit_aqua.input import EnergyInput\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.operator import Operator, QuantumInstance\n", + "from qiskit.aqua.algorithms import EOH\n", + "from qiskit.aqua.components.initial_states import Custom\n", + "from qiskit.aqua.input import EnergyInput\n", "\n", "num_qubits = 2\n", "temp = np.random.random((2 ** num_qubits, 2 ** num_qubits))\n", diff --git a/community/aqua/general/evolution.ipynb b/community/aqua/general/evolution.ipynb index bf8e5e28c..98b67cb12 100644 --- a/community/aqua/general/evolution.ipynb +++ b/community/aqua/general/evolution.ipynb @@ -25,8 +25,8 @@ "from qiskit import execute as q_execute\n", "from qiskit import QuantumCircuit, QuantumRegister\n", "from qiskit.quantum_info import state_fidelity\n", - "from qiskit_aqua.operator import Operator\n", - "from qiskit_aqua.components.initial_states import Custom\n", + "from qiskit.aqua.operator import Operator\n", + "from qiskit.aqua.components.initial_states import Custom\n", "\n", "num_qubits = 2\n", "evo_time = 1\n", diff --git a/community/aqua/general/vqe.ipynb b/community/aqua/general/vqe.ipynb index 2dd432820..98257da86 100644 --- a/community/aqua/general/vqe.ipynb +++ b/community/aqua/general/vqe.ipynb @@ -21,8 +21,8 @@ }, "outputs": [], "source": [ - "from qiskit_aqua import Operator, run_algorithm\n", - "from qiskit_aqua.input import get_input_instance" + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import get_input_instance" ] }, { diff --git a/community/aqua/optimization/clique.ipynb b/community/aqua/optimization/clique.ipynb index d050cd8e8..e43a53568 100644 --- a/community/aqua/optimization/clique.ipynb +++ b/community/aqua/optimization/clique.ipynb @@ -33,10 +33,10 @@ "\n", "from qiskit import Aer\n", "\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import clique\n", - "from qiskit_aqua.algorithms import ExactEigensolver" + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import clique\n", + "from qiskit.aqua.algorithms import ExactEigensolver" ] }, { diff --git a/community/aqua/optimization/exact_cover.ipynb b/community/aqua/optimization/exact_cover.ipynb index 4ade3a565..aa8b5b169 100644 --- a/community/aqua/optimization/exact_cover.ipynb +++ b/community/aqua/optimization/exact_cover.ipynb @@ -44,10 +44,10 @@ "import numpy as np\n", "import json\n", "from qiskit import Aer\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import exactcover\n", - "from qiskit_aqua.algorithms import ExactEigensolver\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import exactcover\n", + "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "input_file = 'sample.exactcover'\n", "with open(input_file) as f:\n", diff --git a/community/aqua/optimization/graph_partition.ipynb b/community/aqua/optimization/graph_partition.ipynb index f7b024103..9fe476ba5 100644 --- a/community/aqua/optimization/graph_partition.ipynb +++ b/community/aqua/optimization/graph_partition.ipynb @@ -50,10 +50,10 @@ "source": [ "import numpy as np\n", "from qiskit import Aer\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import graphpartition\n", - "from qiskit_aqua.algorithms import ExactEigensolver\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import graphpartition\n", + "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "np.random.seed(100)\n", "num_nodes = 4\n", diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index 116853c44..fa938b875 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -10,7 +10,7 @@ "\n", "This notebook demonstrates how to use the `Qiskit Aqua` library Grover algorithm and process the result.\n", "\n", - "Further information is available for the algorithms in the github repo qiskit_aqua/readme.md" + "Further information is available for the algorithms in the github repo qiskit/aqua/readme.md" ] }, { @@ -23,10 +23,10 @@ "import numpy as np\n", "from qiskit import LegacySimulators\n", "from qiskit.tools.visualization import plot_histogram\n", - "from qiskit_aqua import QuantumInstance\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.algorithms import Grover\n", - "from qiskit_aqua.components.oracles import SAT" + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.algorithms import Grover\n", + "from qiskit.aqua.components.oracles import SAT" ] }, { diff --git a/community/aqua/optimization/maxcut.ipynb b/community/aqua/optimization/maxcut.ipynb index a3696c362..daa003ba2 100644 --- a/community/aqua/optimization/maxcut.ipynb +++ b/community/aqua/optimization/maxcut.ipynb @@ -23,10 +23,10 @@ "source": [ "import numpy as np\n", "\n", - "from qiskit_aqua import Operator, run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import maxcut\n", - "from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import maxcut\n", + "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", "from qiskit import Aer" ] }, diff --git a/community/aqua/optimization/partition.ipynb b/community/aqua/optimization/partition.ipynb index 7a6cffb59..c619277a4 100644 --- a/community/aqua/optimization/partition.ipynb +++ b/community/aqua/optimization/partition.ipynb @@ -22,11 +22,11 @@ "outputs": [], "source": [ "import numpy as np\n", - "from qiskit_aqua import Operator, run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import partition\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import partition\n", "from qiskit import Aer\n", - "from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising" + "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising" ] }, { diff --git a/community/aqua/optimization/set_packing.ipynb b/community/aqua/optimization/set_packing.ipynb index 214f15125..b2d539e74 100644 --- a/community/aqua/optimization/set_packing.ipynb +++ b/community/aqua/optimization/set_packing.ipynb @@ -46,10 +46,10 @@ "\n", "from qiskit import Aer\n", "\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import setpacking\n", - "from qiskit_aqua.algorithms import ExactEigensolver\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import setpacking\n", + "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "\n", "input_file = 'sample.setpacking'\n", diff --git a/community/aqua/optimization/stableset.ipynb b/community/aqua/optimization/stableset.ipynb index bf998e045..c2229f33a 100644 --- a/community/aqua/optimization/stableset.ipynb +++ b/community/aqua/optimization/stableset.ipynb @@ -23,10 +23,10 @@ "source": [ "import numpy as np\n", "\n", - "from qiskit_aqua import Operator, run_algorithm\n", - "from qiskit_aqua.translators.ising import stableset\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.translators.ising import stableset\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", "from qiskit import Aer" ] }, diff --git a/community/aqua/optimization/vertex_cover.ipynb b/community/aqua/optimization/vertex_cover.ipynb index e081d322f..31e0869cd 100644 --- a/community/aqua/optimization/vertex_cover.ipynb +++ b/community/aqua/optimization/vertex_cover.ipynb @@ -45,10 +45,10 @@ "source": [ "import numpy as np\n", "from qiskit import Aer\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import vertexcover\n", - "from qiskit_aqua.algorithms import ExactEigensolver\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import vertexcover\n", + "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "np.random.seed(100)\n", "num_nodes = 3\n", diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_01.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_01.ipynb index 8199a579d..f15a5137a 100755 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_01.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_01.ipynb @@ -29,8 +29,8 @@ "outputs": [], "source": [ "import pylab\n", - "from qiskit_aqua import run_algorithm\n", - "from qiskit_aqua.input import get_input_instance\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import get_input_instance\n", "from qiskit.tools.visualization import matplotlib_circuit_drawer as draw\n", "from qiskit.tools.visualization import plot_histogram" ] diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb index 130a6383a..73058409b 100755 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb @@ -42,13 +42,13 @@ "outputs": [], "source": [ "from qsvm_datasets import *\n", - "from qiskit_aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit_aqua.input import get_input_instance\n", - "from qiskit_aqua import run_algorithm\n", + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua.input import get_input_instance\n", + "from qiskit.aqua import run_algorithm\n", "\n", "# setup aqua logging\n", "import logging\n", - "from qiskit_aqua._logging import set_logging_config, build_logging_config\n", + "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", "# set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log" ] }, diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb index c627a92e1..6c6b8ba22 100755 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb @@ -107,13 +107,13 @@ "import networkx as nx\n", "\n", "from qiskit.tools.visualization import plot_histogram\n", - "from qiskit_aqua import Operator, run_algorithm, get_algorithm_instance\n", - "from qiskit_aqua.input import get_input_instance\n", - "from qiskit_aqua.translators.ising import maxcut, tsp\n", + "from qiskit.aqua import Operator, run_algorithm, get_algorithm_instance\n", + "from qiskit.aqua.input import get_input_instance\n", + "from qiskit.aqua.translators.ising import maxcut, tsp\n", "\n", "# setup aqua logging\n", "import logging\n", - "from qiskit_aqua._logging import set_logging_config, build_logging_config\n", + "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", "# set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log\n", "\n", "# ignoring deprecation errors on matplotlib\n", diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb index 3ca4d85a4..f687a4973 100755 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb @@ -107,13 +107,13 @@ "import networkx as nx\n", "\n", "from qiskit.tools.visualization import plot_histogram\n", - "from qiskit_aqua import Operator, run_algorithm, get_algorithm_instance\n", - "from qiskit_aqua.input import get_input_instance\n", - "from qiskit_aqua.translators.ising import maxcut, tsp\n", + "from qiskit.aqua import Operator, run_algorithm, get_algorithm_instance\n", + "from qiskit.aqua.input import get_input_instance\n", + "from qiskit.aqua.translators.ising import maxcut, tsp\n", "\n", "# setup aqua logging\n", "import logging\n", - "from qiskit_aqua._logging import set_logging_config, build_logging_config\n", + "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", "# set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log\n", "\n", "# ignoring deprecation errors on matplotlib\n", diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_05.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_05.ipynb index 92efc3255..6ce9607ae 100755 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_05.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_05.ipynb @@ -32,7 +32,7 @@ "\n", "This notebook has been written to use the HDF5 chemistry driver. This driver uses molecular data that has been saved from a prior computation so that this notebook can be run with no additional driver installation requirements. See the HDF5 chemistry driver readme for more detail.\n", "\n", - "First we import AquaChemistry, which is the object that will carry out the computation for us" + "First we import QiskitChemistry, which is the object that will carry out the computation for us" ] }, { @@ -41,7 +41,7 @@ "metadata": {}, "outputs": [], "source": [ - "from qiskit_aqua_chemistry import AquaChemistry" + "from qiskit.chemistry import QiskitChemistry" ] }, { @@ -82,7 +82,7 @@ "outputs": [], "source": [ "# Input dictionary to configure Qiskit AQUA Chemistry for the chemistry problem.\n", - "aqua_chemistry_dict = {\n", + "qiskit_chemistry_dict = {\n", " 'driver': {'name': 'HDF5'},\n", " 'HDF5': {'hdf5_input': '0.7_sto-3g.hdf5'},\n", " 'operator': {'name': 'hamiltonian'},\n", @@ -98,7 +98,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We can now create a AquaChemistry object and call run on it passing in the problem dictionary to get a result. This may take a short time and it will use a local quantum simulator to carry out the quantum computation that the VQE algorithm uses." + "We can now create a QiskitChemistry object and call run on it passing in the problem dictionary to get a result. This may take a short time and it will use a local quantum simulator to carry out the quantum computation that the VQE algorithm uses." ] }, { @@ -107,8 +107,8 @@ "metadata": {}, "outputs": [], "source": [ - "solver = AquaChemistry()\n", - "result = solver.run(aqua_chemistry_dict)" + "solver = QiskitChemistry()\n", + "result = solver.run(qiskit_chemistry_dict)" ] }, { diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex index f8b3d435b..b5b20e31a 100755 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex @@ -137,7 +137,7 @@ \section{Troubleshooting \qka} \section{\gvsa in \qka} \begin{frame}[fragile]{\gvsa in \qka} Go ahead and run the following code, while trying to understand it:\begin{minted}{python} -from qiskit_aqua import run_algorithm +from qiskit.aqua import run_algorithm # problem in DIMACS CNF format: sat_cnf = """ p cnf 3 5 @@ -223,7 +223,7 @@ \section{Chemistry in \qka} \small{We will not go much deeper into explaining the typical approaches, as this should be done by those students that truly benefit from it. However, here is an example of how such problems may be configured (the input comes from \href{https://support.hdfgroup.org/HDF5/whatishdf5.html}{HDF5} files):}\begin{minted}{python} # Input dictionary to configure Qiskit aqua Chemistry # for the chemistry problem. -aqua_chemistry_dict = { +qiskit_chemistry_dict = { 'driver': {'name': 'HDF5'}, 'HDF5': {'hdf5_input': 'H2/0.7_sto-3g.hdf5'}, 'operator': {'name': 'hamiltonian'}, diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/00_Course_Introduction.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/00_Course_Introduction.ipynb index 64a6243b0..c61e5622e 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/00_Course_Introduction.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/00_Course_Introduction.ipynb @@ -69,7 +69,7 @@ "import dimod\n", "import minorminer\n", "import qiskit\n", - "import qiskit_aqua" + "import qiskit.aqua" ] } ], diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb index a68a074b8..55b98a5f4 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb @@ -59,8 +59,8 @@ "from functools import partial, reduce\n", "from qiskit import BasicAer, QuantumRegister, execute\n", "from qiskit.quantum_info import Pauli\n", - "from qiskit_aqua import Operator, get_aer_backend\n", - "from qiskit_aqua.components.initial_states import Custom\n", + "from qiskit.aqua import Operator, get_aer_backend\n", + "from qiskit.aqua.components.initial_states import Custom\n", "from scipy.optimize import minimize\n", "np.set_printoptions(precision=3, suppress=True)" ] diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb index b71b4ba06..bf4c1c5c8 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb @@ -196,11 +196,11 @@ "from qiskit import BasicAer, QuantumRegister, QuantumCircuit, ClassicalRegister\n", "from qiskit import execute\n", "from qiskit.quantum_info import Pauli\n", - "from qiskit_aqua import get_aer_backend, QuantumInstance\n", - "from qiskit_aqua.operator import Operator\n", - "from qiskit_aqua.components.optimizers import COBYLA\n", - "from qiskit_aqua.algorithms import VQE\n", - "from qiskit_aqua.algorithms.adaptive.qaoa.varform import QAOAVarForm" + "from qiskit.aqua import get_aer_backend, QuantumInstance\n", + "from qiskit.aqua.operator import Operator\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.algorithms.adaptive.qaoa.varform import QAOAVarForm" ] }, { diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb index e95d85884..55616d3e4 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb @@ -499,7 +499,7 @@ ], "source": [ "from qiskit.quantum_info import Pauli\n", - "from qiskit_aqua import Operator\n", + "from qiskit.aqua import Operator\n", "\n", "num_nodes = w.shape[0]\n", "pauli_list = []\n", @@ -536,9 +536,9 @@ }, "outputs": [], "source": [ - "from qiskit_aqua import get_aer_backend, QuantumInstance\n", - "from qiskit_aqua.algorithms import QAOA\n", - "from qiskit_aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua import get_aer_backend, QuantumInstance\n", + "from qiskit.aqua.algorithms import QAOA\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", "p = 1\n", "optimizer = COBYLA()\n", "qaoa = QAOA(ising_model, optimizer, p, operator_mode='matrix')\n", diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb index fcb304192..544d87440 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb @@ -126,10 +126,10 @@ } ], "source": [ - "from qiskit_aqua import get_aer_backend, QuantumInstance\n", - "from qiskit_aqua.algorithms import QAOA\n", - "from qiskit_aqua.components.optimizers import COBYLA\n", - "from qiskit_aqua.translators.ising import maxcut" + "from qiskit.aqua import get_aer_backend, QuantumInstance\n", + "from qiskit.aqua.algorithms import QAOA\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.translators.ising import maxcut" ] }, { diff --git a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb index 2cc61161b..093c21f96 100644 --- a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb +++ b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb @@ -47,15 +47,15 @@ "from qsvm_datasets import *\n", "\n", "from qiskit import Aer\n", - "from qiskit_aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit_aqua.input import SVMInput\n", - "from qiskit_aqua import run_algorithm, QuantumInstance\n", - "from qiskit_aqua.algorithms import QSVMKernel\n", - "from qiskit_aqua.components.feature_maps import SecondOrderExpansion\n", + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua import run_algorithm, QuantumInstance\n", + "from qiskit.aqua.algorithms import QSVMKernel\n", + "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", "\n", "# setup aqua logging\n", "import logging\n", - "from qiskit_aqua import set_aqua_logging\n", + "from qiskit.aqua import set_aqua_logging\n", "# set_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" ] }, diff --git a/qiskit/aqua/chemistry/declarative_approach.ipynb b/qiskit/aqua/chemistry/declarative_approach.ipynb index 0011b3998..a00573e48 100644 --- a/qiskit/aqua/chemistry/declarative_approach.ipynb +++ b/qiskit/aqua/chemistry/declarative_approach.ipynb @@ -33,7 +33,7 @@ "source": [ "### Introduction\n", "\n", - "This notebook demonstrates how to use Qiskit Chemistry to compute the ground state energy of molecular Hydrogen (H$_2$) using the Variational Quantum Eigensolver (VQE) algorithm and the Unitary Coupled Cluster Singles and Doubles (UCCSD) variational form. This notebook uses the so called *declarative approach*: a Python dictionary automatically generated via the Qiskit Chemistry GUI wizard summarizes the entire experiment declaratively. That dictionary is simply then passed as a paramter to the `run` method of the `AquaChemistry` solver to get the result of the experiment, also in the form of a Python dictionary.\n", + "This notebook demonstrates how to use Qiskit Chemistry to compute the ground state energy of molecular Hydrogen (H$_2$) using the Variational Quantum Eigensolver (VQE) algorithm and the Unitary Coupled Cluster Singles and Doubles (UCCSD) variational form. This notebook uses the so called *declarative approach*: a Python dictionary automatically generated via the Qiskit Chemistry GUI wizard summarizes the entire experiment declaratively. That dictionary is simply then passed as a paramter to the `run` method of the `QiskitChemistry` solver to get the result of the experiment, also in the form of a Python dictionary.\n", "\n", "Users who are more interested in learning the Qiskit Aqua and Qiskit Chemistry APIs and/or in contributing new algorithmic components can look at the same experiment executed [programmatically](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/chemistry/programmatic_approach.ipynb).\n", "\n", @@ -48,7 +48,7 @@ "metadata": {}, "outputs": [], "source": [ - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "from qiskit import Aer" ] }, diff --git a/qiskit/aqua/chemistry/dissociation_profile_of_molecule.ipynb b/qiskit/aqua/chemistry/dissociation_profile_of_molecule.ipynb index 231637f09..b2d1831a2 100644 --- a/qiskit/aqua/chemistry/dissociation_profile_of_molecule.ipynb +++ b/qiskit/aqua/chemistry/dissociation_profile_of_molecule.ipynb @@ -116,13 +116,13 @@ "%matplotlib inline\n", "import numpy as np\n", "from qiskit import Aer\n", - "from qiskit_chemistry import QiskitChemistry\n", + "from qiskit.chemistry import QiskitChemistry\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", - "# setup qiskit_chemistry logging\n", + "# setup qiskit.chemistry logging\n", "import logging\n", - "from qiskit_chemistry import set_qiskit_chemistry_logging\n", + "from qiskit.chemistry import set_qiskit_chemistry_logging\n", "set_qiskit_chemistry_logging(logging.ERROR) # choose among DEBUG, INFO, WARNING, ERROR, CRITICAL and NOTSET" ] }, diff --git a/qiskit/aqua/chemistry/programmatic_approach.ipynb b/qiskit/aqua/chemistry/programmatic_approach.ipynb index 3e3ce1f4f..2b0a47d06 100644 --- a/qiskit/aqua/chemistry/programmatic_approach.ipynb +++ b/qiskit/aqua/chemistry/programmatic_approach.ipynb @@ -48,15 +48,15 @@ "from qiskit import Aer\n", "\n", "# lib from Qiskit Aqua\n", - "from qiskit_aqua import Operator, QuantumInstance\n", - "from qiskit_aqua.algorithms import VQE, ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua import Operator, QuantumInstance\n", + "from qiskit.aqua.algorithms import VQE, ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", "\n", "# lib from Qiskit Aqua Chemistry\n", - "from qiskit_chemistry import FermionicOperator\n", - "from qiskit_chemistry.drivers import PySCFDriver, UnitsType\n", - "from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD\n", - "from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock" + "from qiskit.chemistry import FermionicOperator\n", + "from qiskit.chemistry.drivers import PySCFDriver, UnitsType\n", + "from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD\n", + "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock" ] }, { diff --git a/qiskit/aqua/finance/european_call_option_pricing.ipynb b/qiskit/aqua/finance/european_call_option_pricing.ipynb index 6ccf50564..70a5e1485 100644 --- a/qiskit/aqua/finance/european_call_option_pricing.ipynb +++ b/qiskit/aqua/finance/european_call_option_pricing.ipynb @@ -62,9 +62,9 @@ "%matplotlib inline\n", "import numpy as np\n", "from qiskit import BasicAer\n", - "from qiskit_aqua.algorithms import AmplitudeEstimation\n", - "from qiskit_aqua.components.uncertainty_problems import EuropeanCallExpectedValue, EuropeanCallDelta\n", - "from qiskit_aqua.components.random_distributions import LogNormalDistribution" + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue, EuropeanCallDelta\n", + "from qiskit.aqua.components.random_distributions import LogNormalDistribution" ] }, { diff --git a/qiskit/aqua/finance/fixed_income_pricing.ipynb b/qiskit/aqua/finance/fixed_income_pricing.ipynb index 0b01e19b5..f5db68337 100644 --- a/qiskit/aqua/finance/fixed_income_pricing.ipynb +++ b/qiskit/aqua/finance/fixed_income_pricing.ipynb @@ -51,9 +51,9 @@ "%matplotlib inline\n", "import numpy as np\n", "from qiskit import BasicAer\n", - "from qiskit_aqua.algorithms import AmplitudeEstimation\n", - "from qiskit_aqua.components.random_distributions import MultivariateNormalDistribution\n", - "from qiskit_aqua.components.uncertainty_problems import FixedIncomeExpectedValue" + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.random_distributions import MultivariateNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import FixedIncomeExpectedValue" ] }, { diff --git a/qiskit/aqua/finance/portfolio_optimization.ipynb b/qiskit/aqua/finance/portfolio_optimization.ipynb index f3e186db1..5eaaf712c 100644 --- a/qiskit/aqua/finance/portfolio_optimization.ipynb +++ b/qiskit/aqua/finance/portfolio_optimization.ipynb @@ -61,13 +61,13 @@ "outputs": [], "source": [ "from qiskit import BasicAer\n", - "from qiskit_aqua import QuantumInstance\n", - "from qiskit_aqua import Operator, run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import portfolio\n", - "from qiskit_aqua.algorithms import VQE, QAOA, ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import COBYLA\n", - "from qiskit_aqua.components.variational_forms import RY\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import portfolio\n", + "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", "import numpy as np" ] }, diff --git a/qiskit/aqua/general/amplitude_estimation.ipynb b/qiskit/aqua/general/amplitude_estimation.ipynb index ca1743c51..43d45dcef 100644 --- a/qiskit/aqua/general/amplitude_estimation.ipynb +++ b/qiskit/aqua/general/amplitude_estimation.ipynb @@ -57,10 +57,10 @@ "import numpy as np\n", "from qiskit.tools.visualization import plot_bloch_vector\n", "from qiskit import BasicAer\n", - "from qiskit_aqua.algorithms import AmplitudeEstimation\n", - "from qiskit_aqua.algorithms.single_sample.ae.q_factory import QFactory\n", - "from qiskit_aqua.components.uncertainty_problems import UncertaintyProblem\n", - "from qiskit_aqua.utils.circuit_utils import cry" + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.algorithms.single_sample.ae.q_factory import QFactory\n", + "from qiskit.aqua.components.uncertainty_problems import UncertaintyProblem\n", + "from qiskit.aqua.utils.circuit_utils import cry" ] }, { diff --git a/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py b/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py index 3834e9560..11de1a484 100644 --- a/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py +++ b/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py @@ -19,7 +19,7 @@ This is a simple tutorial example to show how to build an algorithm to extend Qiskit Aqua library. Algorithms are designed to be dynamically discovered within Qiskit Aqua. For this the entire parent directory 'evolutionfidelity' should -be moved under the 'qiskit_aqua' directory. The current demonstration notebook +be moved under the 'qiskit/aqua' directory. The current demonstration notebook shows how to explicitly register the algorithm and works without re-locating this code. The former automatic discovery does however allow the algorithm to be found and seen in the UI browser, and selected from the GUI when choosing an algorithm. diff --git a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb index 0766edcba..d39a81c0a 100644 --- a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb +++ b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb @@ -110,17 +110,17 @@ "\n", "from qiskit import Aer\n", "from qiskit.tools.visualization import plot_histogram\n", - "from qiskit_aqua import Operator, run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import maxcut, tsp\n", - "from qiskit_aqua.algorithms import VQE, ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import SPSA\n", - "from qiskit_aqua.components.variational_forms import RY\n", - "from qiskit_aqua import QuantumInstance\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import maxcut, tsp\n", + "from qiskit.aqua.algorithms import VQE, ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import SPSA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "from qiskit.aqua import QuantumInstance\n", "\n", "# setup aqua logging\n", "import logging\n", - "from qiskit_aqua import set_aqua_logging\n", + "from qiskit.aqua import set_aqua_logging\n", "# set_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" ] }, From c5e2a9f876550572a0d09ea49bc9e248d075674c Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Feb 2019 15:27:27 -0500 Subject: [PATCH 006/116] Add run_config to some notebooks --- .../qsvm_kernel_directly.ipynb | 12 +- .../qsvm_kernel_multiclass.ipynb | 19 +-- .../qsvm_variational.ipynb | 12 +- community/aqua/general/eoh.ipynb | 55 ++++----- community/aqua/optimization/grover.ipynb | 44 +++---- ...e Optimization and Ensemble Learning.ipynb | 27 ++-- .../qsvm_kernel_classification.ipynb | 19 +-- qiskit/aqua/optimization/maxcut_and_tsp.ipynb | 115 ++++++++---------- 8 files changed, 129 insertions(+), 174 deletions(-) diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb index 6eb74b102..08b9e25c0 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb @@ -29,6 +29,7 @@ "source": [ "from datasets import *\n", "from qiskit import Aer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", "from qiskit.aqua.input import SVMInput\n", @@ -139,7 +140,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd0VWXWxp83jUBICCEJKQRI6L0jCgjSBBQRRBAFVBDF3mYE2yeMo6OjiGMfGBzQUZoORVQEGVAQKVIETEAIECkJgUBIaCnk/f7IZRY3+zmaIXghnP1bi5XkYZ97z7n37Jzcffb7bGOthaIo7sPvYu+AoigXB01+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1FcSpmS3xjT2xiz3Riz0xgz7kLtlKIovz/mfDv8jDH+AH4G0BPAPgDrAAy11ib/yjbiyeo3aUJjf0lNE1rturVpbKC/v9BO5efT2ODAQKFlZGTR2JjYSKEZErdn1166fVFRkXz+SpVobHhkFaE5vTfHj50QWvXoCBqbtnuf0CJiqtHYkOBgodFjCAqi2584fVpogQEBNNbPyFfSEA0AMg8fFVpsND+GvIICobFXsZLDMbDzpqJD7GnyXP5+/HrKjs3pHA2pUEFoTudCycdNS0tD1uHD/IUsAX9nSkd7ADuttbs8OzETQH8AjsnPmDxnDtUfGDxGaFPnvU9jq1eRifPTPnnSA0C9mBihTXxpGo0d+/RIoQX4yV80dw55lG5/8mSu0Bq1bE1jrx/ZR2j5hYU0dvXna4T22CPDaOxdtz4htFvHDqexHRo1ENpxktCN4uLo9t/v3Cm02PBwGhtKftE4/aJ4a4o8R556kB/DrkOZQis8I3+BNa9Zk26/Za/8Rd4sIYHG7sjIEBo7LoBfdNhzAUC7pCShFZJfwoBM/i4dO9I4Rln+7I8HcO7e7/NoiqKUA8py5S8Vxpi7Adz9ez+Poij/G2VJ/v0Azv17qIZH88JaOxnAZIB/5lcU5eJQluRfB6CeMSYRxUl/C4Bbf22D+k2aiM/4XRs3prFTFy8V2s6MgzT2mXtfENoV1/LPPs9+PFtoz099mcYO6HmL0IKDKwtt8IN30O2TGtYSWpN4/smoZR35eTsggBeabrrlAaG1btiSxj79xptCu69ffxrbvv31Qrtt7J1CYzUWAIivWlVoMQ6f+afM/lxoDvU+hFQJEdrirVtpbMPYWKFt3SvrP0nR0XT7TTt3Cc3fj+9Yg1hZ+2CFTADYduCA0Do3bFjq2NXJ22msX4kC49Hjx2kc47yT31pbaIx5AMBXAPwBvG+t/el8H09RFN9Sps/81tovAHxxgfZFURQfoh1+iuJSNPkVxaVo8iuKSznv9t7zoWLFUFu3rneH26OvPUdjR/XqLrTdmbJ7CwASqslWz+3p6TSWtXUeyM6msStXbhTa8AG9hHbvHfwYvvxystCmLFpEY1N/lFXmwCDZFQYAlavKOw51yZ0FAJg7ZaHQOt/UmcZmpcs259RNqULrNrgr3T7nmKw0nz4hOwQBoEZN2WmZvv8Qja1URbZEd2/WlMamZclj2LBZVsqH9+lGt5+/7geh9W/XlsbOW7tOaBUq8Ds0g9q3F9obM+fT2Gu7yFinPC3ZIjyif38kb9lSqvZevfIrikvR5FcUl6LJryguRZNfUVzK776w51xq160tluU6teyy4l6iQ0vmXlLkyT11isZmnzwptNhw3q4aVi1MaDnkcTsN5AW016c8I7QKZGknAMRHS++AqDD5/ADQgCxLHjvhbRo7aeIfhMZeLwBYmCbfi1deeEhohroaAI+NnSS0917nHi9n2BJV3qGM5SkpQosMDaWx6/fsFhor7i34YT3dvklNuXx3iUMrcYvE2kILd/Br2EqWmHfvzAuJYRUrCi3a4VxIO3zY62cnPwGGXvkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIpPq/2B/v7CCIIZcQDAkEX/EJpTlZq19z44diLfh2BZbQ8J4xXanKwcoU3/y3tC+3iBbON12q9/Lf+Wxi54+zOhVQyVVV8AiKwh7wzs284NS7/ZJivlb459i8bG15Ytwh8SV+Gbul5Ftx8/4V6hFTm0pT74xKtCqxTK34ebb+sttNFjnqexve6Q7defrd8gtL6t+K2F+atly26PVs1p7MFjx4QW5XAXglXrndrKv1on28qXz1xOYyuVOHednKgZeuVXFJeiya8oLkWTX1Fciia/oriUMhX8jDF7AOQCOAOg0FrL+xU9nMrPF5N0nFx22Xp8p5ZdVtx78+XHaezzb38otBlvvUtj23XsKbSHXxsrtOphvD2YtQJ/9NJ0GhtXSxbbYpJkGy8AzHhPOvKO+qPcLwD4x/hp8nETatDYAWP6CS33pDyGDxYsodvfN1huP+mjf9PYChXlSKoiMlkHAGpGygJnz9vlewMAA9u3E9qrU2YJ7ccI6TQMAIf2Sk+BtVWk1wIAXFm3rtAsHQ4GfLp6rdCubtyIxtatKV2BM66Q7s6MoGDuJ8C4ENX+a6y1h387TFGUSwn9s19RXEpZk98CWGyMWe8ZyyUwxtxtjPnBGPPDMYf7moqi+J6yJn8na21rAH0A3G+MubpkgLV2srW2rbW2bRWH6S2KovieMiW/tXa/52smgLkoHtutKEo54LwLfsaYEAB+1tpcz/e9APzp17YJDgxEvRJGFGx2HgCMGnGD0JgRB8BbdllVHwCevV/OdZ+2dBmN3fifTUKb+n+yvbfDx7JVFQCqEGOHqTN47NNP/E1oy+ZJ510A6DtQHgNz2QWAniNku+uUP/HW59hFcs5d936dhHY0+AjdPve0vDMQERNBY+PqyIq2kxHGnMWyJbpFs3o0lrnc3jn0OqE5uTvXbCjNPNYski2/AND+viShHc7ls/JWzf1OaE6uwKt37hRatx4daGxYcLDXzx+/I52dnShLtb86gLmmeDBhAICPrbXcl1pRlEuOsgzq3AWgxQXcF0VRfIje6lMUl6LJryguxafr+TMysjDxpWle2vNTX6axbK2zk8suW4/v1LLLint3dL+Gxq7cLsc83TS8j9BSHcaIJUVHCe3GHkNo7B/fkuvT+wXJQhUAPDXsfqF9spS30d4z+AGhDbl/NI29b9iNQmMt1cEODsSn8guEFhPFC34rFq0RWgIptgFyzToA/Lx7L41tECcLid8kS0+DLg6ttam7pS/CLcP70ljm15CZI9f4A0AnMiKNufQC3Jn4m+VyjBggC5zHcnjBkaFXfkVxKZr8iuJSNPkVxaVo8iuKS9HkVxSX4tNqf0xsJMY+PdJLG9DzFhp768NjhMZm5wHcZZcZcQC8ZZdV9QGgUwNpoDD2RXkXoUnHJnT7b75aLbRZX35EY69ueaXQ4uLq0NgBI0YK7dY+t9LYpyf/VWhvE+dcAPh65hdCi4ioLrT+D8m7AgDQLEFW6yuXaD89y6nj8i7CxqXStRYAHn/yTqEtW/cjjS0oLBRaympZ7e/ZvCnd/thheS4F+PvT2OT9+4UW6nC8zC14WXIyja1C7gIYPz4f8WjGUa+fCwvO0DiGXvkVxaVo8iuKS9HkVxSXosmvKC7FpwU/AyDAz7t4EhzM1x8PHyDXoTM3XICP0GIuuwBfj89adgFe3Hv5KTmS6ruff6bb33ifdJLNPnGCxl55ZX8Zm32QxtZuVltobdO609jGNeKF5lmGLeg2SI7FGjKwh9AC/Pk1I6SCdORNjJItzgDQa1BXoeWRYh0A/HPafKF17M19Y75YJdtgh98m26QD/fmpP3qwjM06zltmKwTIx/BzeG13H5KuwB2I+y8AnC6QbdJpzaR3AADsq+RdYAyqwFuvGXrlVxSXosmvKC5Fk19RXIomv6K4FMMMD70CjHkfwPUAMq21TT1aBIBZAGoD2ANgsLX2qNNjnCUsrJpt3967oNL3Tt4t9u2cb4TWaaBcEw0AN/URjuGOI7Qyc2QHl9N6/ANZ0qiyTqwcodWxfn26/dBhTwpt3IuyYAgAS1fIQlVRkcP4qnpy3NaRTD4TIS05TWh1WvLOwT1b9wjt6muvEFr3Jryj8S+TPxbaH0YOprHLUmTX3Ym8PBr71hOvC23u51No7PgX/i60Rh0aC61NE24AumWXfL16t21FY6tXkeeYU1Gard0/5mBIyzoKmaknID0uhvS9Dj9t3syrjiUozZV/GoCSZeBxAJZaa+sBWOr5WVGUcsRvJr+19lsAJS+B/QGcnTg5HQC/fCuKcslyvp/5q1trzxqfZ6DYxpty7riuggL+Z52iKL6nzAU/W1w0cCwcnDuuKzBQNoEoinJxON/kP2iMiQUAz1deMVMU5ZLlfNt7FwC4HcBLnq+y/5JQVFSEkydzvbSkhrVo7JNfThba61OeobHMRdWp6spGaDGXXYCvx2ctu6yqDwAz/vUXoT38nFyL74RTqyY7hmpJvE36ZK6sKEdHV6Wx+4Kkc+3fxr0ttPTHuQdDrcbyvfxo+QoaGx0p92H/bj5C69GJjwvtp31yXwFgIGnVXr9B3lmoQc4ZAEhOk67ATnfEpi76Wmh5J/lH27v7y9bpie/OoLFdesvRXBEhITQ2r8C7Jfq37t6dy29e+Y0xMwB8D6CBMWafMWYUipO+pzFmB4Aenp8VRSlH/OaV31o71OG/+EoSRVHKBdrhpyguRZNfUVzKb7b3Xkgio+Nt/0Hexpzj/o+Pjvo+RZpq9mzFhwIv3iBNOT96aTqJBKbOkOaV13cbRGOZ2SZbs37UoU3zFGlX7VCPt5Uu3rJFaE7jyR69UxY+p3zMTTmH3iBf32ffHU9je7eQr28eWVs+57vv6fZt68v16R988BmNTWggzT6j4yNpbLskuZb9cG4uieStsYv/I0eDtW3PW5TXr5Ommh07SvNNAIgLDxdauENhbu4quQ89W5d+yPXClWupXinUu234uTF3Y/f27ResvVdRlMsQTX5FcSma/IriUjT5FcWlaPIrikvxqXtveGQVXD/Su/2yZR05EgsA/vCCNHCIj+bV4AVvy4pyXC3eNvz0E38T2h/fep7GshFazGW365Br6PYMVtUHgF7NmgktLIwfb48eI4R2dZsuNPbeZ58V2rBu3K34mmvkyK+6bWQFf8SIfnT7qNBQoY0eNZDGvj7xQ6FtPp1PY4uGyjtSTnepahG3YP9AeQegdWIi3X7z5h1Ci6/K26Grksq+kzPygKukKQpz6QW4qUm2g1lL+i7vlmin9mKGXvkVxaVo8iuKS9HkVxSXosmvKC7FpwU/ay3yS4xkCggIorGBQXIte1RYGI2tGCqdUWOSpMsuACybt1Bo/YLkiCYAiIuTLrdshJaTyy5bj+/UssuKezk5h2lsQYEsjCUmyoIhAGQflKbK+fnc6yAgSJ4OoeGyiJdx7BjdnjnUsvZgAAirJt/L3CO8ZfcIOYbQCLlfAOBPCm51GtWWz0/2FQDCo2XLbqHD+8ucoKMdztFDJLZycDCJ5C3k7L0BAL+So9McCo5021JHKopyWaHJryguRZNfUVyKJr+iuJTSePi9b4zJNMZsPUcbb4zZb4zZ5PnX9/fdTUVRLjSlqfZPA/AWgA9K6JOstdxBwoHjx05g9efepgY33fIAja1cVbrRNojhFfzIGrJSPuO9N2ls34HDhfbUsPtp7IAR0mm3drPaQouK5U6wzGWXGXEAvGWXVfUB4LPP3hLan9+V7bIA8PcXXxRamzbX0th7npH7cDJf7sP+TH4XokkNOUNw5catJBJIJ0694VGy0g7w1zcogJ+6EZXlefPdms1CS42Pp9vvWC/bexNiuLtz69q1hcYq9QCwZoectTewvXSCBoCUAweElpMl7xYAQHCI9x0Dp/ZixvmO61IUpZxTls/8DxhjNns+FvCVD4qiXLKcb/K/C6AOgJYA0gFMdAo8d1bfqRPHz/PpFEW50JxX8ltrD1prz1hriwBMAdD+V2L/O6uvYgifKqMoiu85r/ZeY0zsOVN6BwDgVZ0SVI+OwGOPDPPSWjfkzqgDxywQ2tgJcnQUAOzbLkc3jfrjWBqbuilVaJ8s/TeNvbWPXN/eNk3OKrmq/1V0ezZCy8lll63Hd2rZZcW9Z+6VhUwAWJ4s3WgfG/YIjZ1wn/Q1ePS1Pwrt5o7S5wAANuzZI7S7rutFY0sWqgCgqIiv0T9D2mtjqvA2aVZwi0uKFVpAybZYD626SkfdQOIIDPAWYaeCW4f60rXZqW2YHUOrzs1pbHiJovL0UFlkduI3k98zrqsrgEhjzD4AzwHoaoxpieLpvHsA3FPqZ1QU5ZLgfMd1Tf0d9kVRFB+iHX6K4lI0+RXFpWjyK4pL8amZR9rufbjr1ie8tKff4G24c6dI041JE/9AY7/ZliK0f4yfRmN7jpDV53sG8xbjpyf/VWiNa8i20Nkzv6Lbn8yVM/yefvNpGstcdpkRB8BbdllVHwC6Nm4stAee4Hcc7hgjnXazjsvejGlfLqXbh4TJSvM3y3+gsUcz5LExUxYASGgg24YDHFq9DxyVj7t3+16hXd2wId1+3WK5vyPuuIHG7jks25zZ/D4AWLVNzp68unEjGsuq/fv3yHZoANhXwsX41KnTNI6hV35FcSma/IriUjT5FcWlaPIrikvxacEvIqYabh3r3YZ6Xz85/goA3l4wX2h7s7Jo7Jtj5fr2mARZJAKAKX+Sa5CG3D+a7wMpjLH2zTufvY9uHx0tFzs+++54GstGaDm57LL1+E4tu6y499ZfeeH0TEGh0NpfJ8dMXdGCF6pqVpPr7k+34C3K70z5RGjCidZDDnH13ZGRQWNbkjFttRrWFFrJttizNLhCFgKPn+ZFtKToaKFVCJSOzQDQID5OaHEOY8B2ZWYKrSBfvjcAUJDn7Y5cdIa3SDP0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUnxa7Q8JDkaHRg28tPbtr6exWemysr8wTc7JA4D42rLCO2BMPxobu0gaO9w37EYa+/XML4TWbVBvoe3Zuoduvy9Imow8+4B0yAWAa66RxiFO89mYyy4z4gB4yy6r6gPAu5PGCe30qQlCa/VkEt1+0rszhTZ8GJ+DyOYbHjnAfWKbdpAtyqlbd9PYxCjptJt9RDrfbk/n7bLpqdI5t4aDe+/uQ4eE5u/Hr6fxERFyv06eoLHzvvhWaPmnuZNzvTbeJiFBFfnsS4Ze+RXFpWjyK4pL0eRXFJdSmnFdCcaYZcaYZGPMT8aYhz16hDFmiTFmh+erevcrSjmiNAW/QgCPW2s3GGNCAaw3xiwBcAeApdbal4wx4wCMA8Atcz0UFRWJVsnbxt5JYzd8vUFor7zwEI39MFI6ueae5K2x3ft1krGneGxERHWhDRnYQ2hsXTcA/G2cdBvOu4dZIgJ129QVWmh4KI1lI7SYyy7A1+Ozll2AF/f++d5zQqtanf+eb9KxidAWfLWSxiZ//5PQ9u3dRmNf/bN83/s+JVu6AaB7VzkCa+PSjUK7oilfz5+W/IvQOnRuRWNnzFwktPRdvJD42FPyPJ/8zmwam515TGinjvNzdOtKb+NsJw8IRmnGdaVbazd4vs8FkAIgHkB/ANM9YdMB8JK5oiiXJP/TZ35jTG0ArQCsAVD9HO/+DADyMqkoyiVLqZPfGFMZwKcAHrHWet04tdZaFHv4s+3+O67r6BGd96kolwqlSn5jTCCKE/8ja+3Z8TYHjTGxnv+PBSDXIcJ7XFdV0uigKMrFwVj76+t/TfEC9ukAjlhrHzlHfwVA1jkFvwhr7RNOjwMArdu0sStXrfLSjpzgXU6rd8p55n1byFFKAHAiL09oHyxYQmMrBMsOqOZN5SglAEjLlB1cnUp0KAJArUjeAfav5bJTy4k29eoILeOYLPwAwP5MWWB0GqHFzDad1uOz7rQP3pe+Cq9N4IXXH3btElq3lnyM4+ufymJXgUMXW40a8hPloSPZNHZQxw5C+/Cr5UKrk8T9Hvb8Ijv84DCCa/lM+bg3PyQ7KgFg50+yI3HZrK9p7Mjxo4TmtPa/ZKfkqIEDsW3rVr7DJShNtb8jgOEAthhjNnm0pwC8BGC2MWYUgDQAg0vzhIqiXBqUZlzXSgBOv0nk1EpFUcoF2uGnKC5Fk19RXIomv6K4lN+s9l9IGjRpYt+Z7V3ljXeoYq76SbZ6rv18LY0dP+FeoVWpyEc/5Z6WbZKn8gtIJBBGHoONUnpl6iy6fa3G0megdVIijY0Kla28pwv4fgUGyFJN6kHudZC6X7ab9m3bmsay9fh1Wsm7EC3q8mNomyTX+c9Zs4bG7klJE5qTQy17HbMO8JbqE8fkiLToWtJl189h3X3JdlkAaNqpKY0tIOdN9kF+F6LnNfKuR2aO9BkAgEVzlgktNkn6UABAWLUwr59ffOxBpO34uVTVfr3yK4pL0eRXFJeiya8oLkWTX1Fcik8NPAMDAhBbYn55jMM889Mn5Iik916XBpMAUESKlpM++jeJBCJi5PqCmCi+5qBycLDQmEHkH0by5saPlq8Q2gcffEZjR4+SbaF5DgW/lRtlUequ63rR2G+Wy3nzTiO0mNkmW4/fbdAQuj0r7t18BfcO+Mci2drqZFLZuEa80M7E8QJYQjX5Xr4xeY7Q2nfjRc+q1eX5yMxkAeDATtkK3LoHf9x582URLz2Vr/0fNFqaz7JCMwBUCvJuVw+pKM9ZJ/TKryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSfFrt9zMGoSUq6FNmf05jGzSXbaVnyIgnAHjwiVeFVqEir47G1YkT2opFvAWVOab2GtRVaMbB7CE6UrYun2qQQGNfn/ih0Eq2bp4lfbesEgeH8Crv0Qzp5vrOlE9oLBuhxVx2mREHwFt2WVUfAO7qLV2Qg4L4Mew5KI+3X49baGyPm6SP7PL5cuxaxcr8ud547hmhPfrCSzR25F0DhPbJXGmeAgAJ5H0fevO1NPahO+Q+rFgh71gAQGJic6+fdxNDFSf0yq8oLkWTX1Fciia/oriUsozrGm+M2W+M2eT51/f3311FUS4UZRnXBQCTrLWy2uaAMUasRXeolSF9v3TORUseWym0ktCKzvDiYHglGZvQkBfh2JinvEK55typELmfFOZia/HZJptJa2vukVwaGx4lW1CLirgvQ8VQ6Ung589/5x85IOcqsBFaTi67bD2+U8suK+7l58uWbgAIIGvvCwsdHpe4M/v5+QutRn3u3hsZKfWYxBgau+uQdKs/uDuDxrbp1Fxouw+RcxxASIgcP+fkP5CX5+1fYC0/FxmlMfBMB5Du+T7XGHN2XJeiKOWYsozrAoAHjDGbjTHv65ReRSlflGVc17sA6qD4j/F0ABMdtvvvuK6sLL46SlEU33Pe47qstQettWds8YeMKQDoaJZzx3VVq1btQu23oihlpDTVfgNgKoAUa+1r5+jnLqgeAEAuMlcU5ZKlNLP6OgFYAWALgLOlxKcADEXxn/wWwB4A95wzspsSm1DbjnrYu3UxpEoIja3RQFZd44hRAwBUJkYHNSMjaeycxXJ+XqUweQcAADq3aCK0f06Ts+vWLJamHQDw6MTHhdY8gd9ZWJOaKrQjB2VrLgBExcq/oJzuOOQckQ6xOQ53EWrVl/t2Q2tpTvH1Vv57PvuEdM5lRhwAUL2KrGizqj4ARJPYTIc5hgvXrhfajVfKP0pzTsnWbQCIqFxZaMdP87sQzGwlOEjebQCAHRnyLkBNh7+E2Vy+w7n8PfP3875d1qtLV2zauPHCzOr7lXFdsmFaUZRyg3b4KYpL0eRXFJeiya8oLsWn47pat2ljV65a5aUtdigetSejnyLJSCsAGD3meaH1vL0njU2IlEWWn3fvpbFnCmURLT5Bjn7q3KAh3f6nffuEVoGM2gKAnWTcVmHhGRobFiILlDGkKAYAAf6ytZUVnwBgT7Jcj7/kY+m3MPypkXT7nCxZXLyqLXcKvudmOWLNqWV3ybfzhMaKgADw1qcLhXY8+7jQmrSqT7f/bNoiofUZwZ2Rl30qi8eFBXzk2KA7pTPyymWyOAkAn38o1+6np8uCMABERXkXaVNSvseJE8d0XJeiKM5o8iuKS9HkVxSXosmvKC5Fk19RXIpPq/1Nmje3s77wrh4HEKMFADh6UraKHs6V1WQAyDkhWzUHtm9HY9nx5ji0bxYQ444vVsnZdymrk+n2A4f3EVpYRWmuAQCnSKuov4PTCWtBdZrlduCobBFmMwgB4Bh5zf3IPjSKlw7IAPDmh7IqP3KwfA0A4LW3ZwiNGXEAQGKzRKGdzJH7CgAP3HS90Abf8oTQ9u/dSbdv362L0KIS5HxGAOjYuZXQtu2Ud0wAgKVZ/6s70Nj/bJWOySvnypmJAJB3Ms/r5/mfvIfDmfu12q8oijOa/IriUjT5FcWlaPIrikvx6bguC6CwhKvu1r2yBRYAstKlk+zwPt1o7GfrNwjt1SmzaOydQ2Wb5TfJKTQ2ZbXUh98mt3di/Qa5fUGeLOwBgH+gLHzWaVSbxn63ZrPQ4pJiSSSwd7tsXa7VsCaNzSZr/5mDcfOrpRMtAETXkq3Pb0zmY6bYCC3msgsAn9/9L6FNniXbeAFe3Js9869Cu/76++n2s6a+KbRe1w2jsU+OHiq0+TOXkEhO0DUdqb5+iWz7TVn/I41t2NK7fZoVaJ3QK7+iuBRNfkVxKZr8iuJSSmPgGWyMWWuM+dEzrmuCR080xqwxxuw0xswyxvAODUVRLklKY+BpAIRYa497LLxXAngYwGMA/m2tnWmMeQ/Aj9bad3/tsdq2bWvXrlvnpTmZIzIW/MDXP/dtJed4/fjLLzS2iBxvg1heLAsKkAWoQH9ZI00la/EBoAYxaEwma/wBoHWi7GJz6gZkzxfgMIIrOFD+TmYjywBge7r0X2Vjog46mGfuP3hYaBFVw2jslrWyK9JphFbX5k3l9nu5B8NLD/5ZaFWryvd34cK36fY3DZKmq9+vkqatAPDF90uFNvWdT2jsd0u+Etry7/jjPvMnmUaxDgXdmo28i7fPjBqJXdu2XZgOP1vMWTeEQM8/C6AbgLNHOh3AjaV5QkVRLg1KO7TD3xizCUAmgCUAUgFkW2vPNr/vg87vU5RyRamS3zOZpyWAGijf7Y0FAAALWElEQVSezMN9qwjnjus65DCVVFEU3/M/VfuttdkAlgG4EkC4MebsB+AaAPY7bPPfcV1RUXx1lKIovqc01f4oY0y45/uKAHoCSEHxL4FBnrDbAfDqhaIolySlae+NBTDdGOOP4l8Ws621C40xyQBmGmP+DGAjiuf5/Sqn8vNFlXbTzl001o9U2pvU5KOu5q9eJ7RDe/lHjJoN5WOk7uYV+GOHZbvr6MGyvXfLLr6GOzlNVqQPpmXS2M2bdwgtPDqcxu5YL2NbdW1BY9ctlv4DDa7gn9rSUw8ILS1Z3jVp17st3X77up+FVrU6P4Y3nntGaJGRvNo/cP3XQmMuuwBfj89adllVHwA+/UQOm3aKbUjuEuWdyiORQKsOnYXmNGJty2p5V2vlV/x8btzcexQZO2edKM24rs0AhGuBtXYXHCbzKopy6aMdforiUjT5FcWlaPIrikvxqYEna+9N3s+LbTWrRQptyf8w2mvtLl5IXLNIFgdvGd6XxrJRV8wos5LDTHb22u45LFtgASCezGQvdCgI7SH9EoFkXwGg2v8wb/4YmVnvT9p7d/0iC4MAEBgUKLSs9CwaW3Ba+hrEJMbQ2GvbyPbtNal8fFXKBll0/JkUIhd/Lj0CAODKq/oLjRUBAV6wG36HLGQCwFefTxPawUzeojzgxoeFdt1oaUwKAF3aeK/nH9SnD7b++KMaeCqK4owmv6K4FE1+RXEpmvyK4lI0+RXFpfi02t+0RQv76SLvtsykaOn4CgAzVn4ntBaJtWksG6sVR6rnAK/QJhDTDQBI3i/XKjGDDafnmrpItqX2bCsr1wAfwZWZw1s1WQXfyfiD3V2IC+ctt7vJXYQZM2Ub7a7N/E5K11u6Cm3bmm00duRdA+TjHuKtz81qyJbsSZN4tf6mEXI82NUNZTuzk9kLa9kNDOCNsOxOyIIN3HDm2mbS8TguphaNfWWmPLaasTxP9mZ4v2cT7rsHu7dv12q/oijOaPIrikvR5FcUl6LJryguxafjuvz9/BBaYja803ihChVK7zobFRoqNAteyDyce1xomTncjbbkvgJ8f3NIWywgZ6cDQHhICI015HGjw7jzLWsxZtsDvLhXIVC24QK8gJW+Szr63vzQQLr9ji2yENi6R2sa+8lc6Xx7cHcGjW333BihFRbIIi8AbNspvRXYCC3WXgzw9fjHs+U5A/Di3g2t29DYO8dMENr4v/+dxr768LNC633zEBpbKdQ7J9g554Re+RXFpWjyK4pL0eRXFJeiya8oLqUss/qmGWN2G2M2ef7x1jVFUS5JyjKrbwyAhdZaPpyM0LJ1a/ufb7/10tKzs2lsw7g4oW11mHNXP0aaQHyyeg2NXTVXtg13ukk6qwJ8BiBrgW1Zi7dpFp45I7SPlq+gsQOuukJohxzae9fs2Cm0DvXr0dhV27YLrUG8fG0BID4iQmjsTsYXS7+n2/fo0k5o8+Yvo7EJDWTLbvVo+fwAUIXc5WGvLQD8nCoNMn5eL808ln+2kG7PXHbnzeIjKA9kyDsLYx58kcb+873nhObk3jvybnlngLVOA0DLut4zHm/t1w/JmzeXqr23NO69FgCb1acoSjnmvGb1WWvPXlZfMMZsNsZMMsbIm8/wHteV5WBhpSiK7zmvWX3GmKYAnkTxzL52ACIAjHXY9r/juqpFSl8+RVEuDuc7q6+3tTbdM747D8A/oQM8FKVc8Zuf+Y0xUQAKrLXZ58zqe9kYE2utTfcUBG8EwK11z4GN6+pM1loDwN9mzBNa9858TNQBUjS8unEjGtu/nXwMp7Xwy5KThdahbl2hHTt5km4/8d0ZQhszkrfGni6Q7aaVSXsxAAxsLwtrTk6/7HVw8h/IPnlCaJPfmS20HZtkEREAmrdqILT0VNkeDABDb75WaKyYCgA1id/CB7O+pLGjh90gtKBrOgpt/LjRdHtWhPv7m0/R2OrRsmjp1LL7j3fk47J2agCYuli2PjdNrEljS75m+cTbwomyzOr7j+cXgwGwCcXVf0VRygllmdXX7XfZI0VRfIJ2+CmKS9HkVxSXosmvKC7Fp2YeIRUqoF2JuXrbDvC5b9d2kXcOnaryX63bKLS6NXkL6+qdsjU2kpiBAEAV8nysKs9m+gFAl94dqM44kSdNGJhpBwCkkNfMKZbpuzK5S+68L74VWnamNDoZOX4U3X7RHNnKO2h0Pxr7EJlpFxJShcbOmvOK0D7/cA6NrdOyjtDWL5GmG4X5vCq+ZbWMrVyZ3x1hLrvMiAMAflj0g9BYVR8ARvXqLrRevUbS2DbdvNvCT+TIOzZO6JVfUVyKJr+iuBRNfkVxKZr8iuJSfFrws9aKNtTVybxV9IpG9YXm5Ga7fOZyoWVcIVtNAaBbD1mE+2a5LMYAgPGTy6LTmiUJzakQGUGceheuXEtjszNli3JAEH97crLkOv9WneU4KADYv0e21xY4FLvyT+cL7dRxuZ7fqT04NkmOunIqRK5YIQt2fg7trodz/09o6empNHbl3JVCS1n/o9CuvY0XIld+JVuMhzw6nMayEVpOLrvNOjcTmlPLLivuLV78Po3dutW7SJt16CCNY+iVX1Fciia/orgUTX5FcSma/IriUjT5FcWl+LTab4wRM+WcKryn8mXlOc3BA7BSGJ/hxwgjBhlODsZHM44KbV8luX33TnweXR6ZJ1cplN8ZYDPx/Pz5axMcIvfBaY7hPnJsBXl8Tl29NtIBeOtK6dFS5GAcElZN3o2pFCRnLgJAYqK8O5GXx01R/Mldl6goaaQB8Fl1DVvKSnvNRrzS3ri5bCvv0kZuDwCrU6QrcMnZeWcp6bILOJuXlGzZBWRV/ywHDsh29dKiV35FcSma/IriUjT5FcWlaPIrikv5zXFdF/TJjDkE4OyMo0gAl+MUDz2u8sfldGy1rLVRpQn0afJ7PbExP1hruRd3OUaPq/xxOR/br6F/9iuKS9HkVxSXcjGTf/JFfO7fEz2u8sflfGyOXLTP/IqiXFz0z35FcSk+T35jTG9jzHZjzE5jzDhfP/+FxBjzvjEm0xiz9RwtwhizxBizw/OV295cwhhjEowxy4wxycaYn4wxD3v0cn1sxphgY8xaY8yPnuOa4NETjTFrPOfkLGMMX5BwmeHT5PcM+3wbQB8AjQEMNcY09uU+XGCmAehdQhsHYKm1th6ApZ6fyxuFAB631jYG0AHA/Z73qbwfWx6AbtbaFgBaAuhtjOkA4GUAk6y1dQEcBcAHE1xm+PrK3x7ATmvtLmttPoCZAPr7eB8uGNbabwEcKSH3BzDd8/10FI8vL1dYa9OttRs83+cCSAEQj3J+bLaY454fAz3/LIBuAD7x6OXuuM4XXyd/PIC95/y8z6NdTlS31p5dn5sBoPrF3JmyYoypjeIpzWtwGRybMcbfGLMJQCaAJQBSAWRba8+uv74cz0mKFvx+R2zxrZRyezvFGFMZwKcAHrHWelkGl9djs9aesda2BFADxX+JNrzIu3TR8HXy7wdwrgtDDY92OXHQGBMLAJ6vfDDeJY4xJhDFif+RtfbfHvmyODYAsNZmA1gG4EoA4caYs8Y2l+M5SfF18q8DUM9TXQ0CcAuABT7eh9+bBQBu93x/O4D5F3FfzgtTbLc0FUCKtfa1c/6rXB+bMSbKGBPu+b4igJ4ormcsAzDIE1bujut88XmTjzGmL4DXAfgDeN9a+4JPd+ACYoyZAaArileFHQTwHIB5AGYDqIniFYyDrbUli4KXNMaYTgBWANgC4Kxn11Mo/txfbo/NGNMcxQU9fxRf+GZba/9kjElCcfE5AsBGAMOstdIP7DJDO/wUxaVowU9RXIomv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLuX/Acz1FcvEBIHhAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYVWX3/u9HVFDAWXBElHBOHHPI1NTMstehzKHJKcvSsmzS8k0t9c0sKxssU8tG1Mox05xLCycIB5wQUVFxHlHB4fn9wfH747juXSSK4l6f6/KCc7v2Ofts9mJz1l7PvYy1FoqiuI9c13sHFEW5PmjyK4pL0eRXFJeiya8oLkWTX1Fciia/orgUTX5FcSma/IriUrKU/MaY1saYLcaYeGPMwKu1U4qiXHvMlXb4GWN8AGwFcBeAJACrAXS11sb9zTbixQIDi9LYoDJBQtubmERjQ28JFdqZ1DQae+HCBaGlHD1FY/0L+Qvt6IEjQitWWu4rAJw6clJoISElaezZNLm/STv30tgiJeQxSzvD3++Jo8eF5pc/P43NlcsIrVjxwjLOyDgASE4+LLRgsq8AkHL2rNAKOOzX4aMnhOZ03gYEyuc4cUz+fPPmy0u3T02R+1WwcCCN9fHxka91gp9LQUXlcTydmkpjz5FztEC+fDT2WEqK1+NDyck4efw4/wFdRu7MBDlwG4B4a20CABhjIgG0A+CY/IwGDdpSvd9b/YQ2pNdLNHbi9IlC27BzF409eVgm5B8zVvB9+08DoU378Buh9R7+DN1+2ZRlQhs3dhCNjduzR2gv9x5GYx8e+JjQdsbx97tw6s9Cq1wzgsb65vMV2uN9HxRavjx56Pbv/O8LoT3/SjcaG7Vpq9Ba161FY7/6ab7Qzjn8cm/UpLbQFs6RP9+QKiF0+61r5X7d+2BzGls0IEBov/z6B419rtsDQotOTKSx+44dE1qLatVo7Myo1V6Phz39JI1jZOXP/tIAdmd4nOTRFEXJAWTlyp8pjDFPAHjiWr+Ooij/jqwk/x4AZTM8LuPRvLDWjgcwHuCf+RVFuT5kJflXAwg3xpRHetJ3AfDQ320QGFhUfMZfsEB+TgSAkZ8OFlq+fAVo7K7DstC0e/NuEgmE1aggtMIlitDY+JjtQlu5crbQZtSeRLef+9lcoZ07f57GFiQFnbx5eZGnc+NGQntp/loam5S0WWjNO95DY6eOGy+0Do+1Flqj8HC6/flz8r35OdQHUo6nCC313Dkau/D7eUKrVIt/Bi7VThbWDiYdFFqfXvfT7fMXlAXDpfOiaGzXLvLYrP2V/xxOdW4jtIYOx/HHVauEtvPQIRrbuHoVr8cBfn40jnHFyW+tPW+M6QdgPgAfAJOstRuv9PkURclesvSZ31o7F4C8vCmKcsOjHX6K4lI0+RXFpWjyK4pLueL23ivhlqpV7ZhvvDvkShUqRGPrhYUJjbXAAkDycdnC+s7oyTT20zGvCi1qq6yIA0C5YsWElkaq9SP/JzsMAWDHxnih1biDd7GdOCxbWIf8l7dHNGsgq/Wx63+nsbE7dwqtdBF+d2M/OY6Ll8vq9eP387sFyzZvEpqP4deXKR9NF9rLQ3vT2FRyzCuX5G3SU5f/KbR8/rICHlSA3znaul3eJTq4W94tAIA+j7YT2sING2jsrWXLCq1amTI09rW3PxfaSdIqDgC9nu7o9fih++7DxnXrMtXeq1d+RXEpmvyK4lI0+RXFpWjyK4pLueYLezKyNzFJLMt1atllxT2/vHwN9s8xMUKr1ZIX1na/ekBobw6Xba0A0LBtQ6ENekgWpeIT1tHtx8/4RWg1qvOWzrDgYKF17/IyjV0ds1hor438jMbO+lYWPkNCqtJYX1/ZTjxj5kdCi93Flw/HxWwT2ks9OtHY4NcKCq1yqVI0tlvP14VW+y65dBcA+nSUbbSf/iCXNYfUl8VcACgfKvfBN79c6gwAPrnktZMVbgGgeDXpCbD36FEa+2r/R4WWy6FweuikdyGQ7ZMTeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZWu0PvSVUmG0yIw6At+yyqj4AtKklK/sNGsjWSwCo8vU7QrtwTrqlAoBvXmlE8ePSOTSWUbWqbFEOdHBhXb5li9Da9ulAY/PlldXnLo/eS2M7dG0ltHdeGUdjmSnviE+kYenq+dzcgt0ZOEVcegGgkL90Rn7ymZE09ouJ0sjUyUH48CnZBlundhWhFSGvD/C2Yf8qcnsAyJtbpk+XFk1obLPb5flYu6FDbJdmUqvG79DkvsxB2DgcF4Ze+RXFpWjyK4pL0eRXFJeiya8oLiVLBT9jTCKAkwAuADhvra37d/FnUtPEJB0nl91FU5cKzalllxX3oqJm0tjRL0v33sAifBxTCeI1ELVWepQ6rQ1/f+DHQuv4PG93PX5ItoVWqyYLhgAwLzZWaCHF+Fisxb+tEZpTu+rBZDk1qEFTecwLB3MPhhgygaaiw7r7Ratk8fapFx+msau2Sxfl2qGhNDbQTxZUzxBX4AMneBsuK1AynwMAaB0hJx+xYwAArTt3FFqL+26nsQG+8uezZscOGluf+F5klqtR7b/TWst9hRVFuWHRP/sVxaVkNfktgF+NMWs9Y7kExpgnjDFrjDFrTh6XAwgVRbk+ZPXP/sbW2j3GmCAAC4wxm621v2UMyDiuq3ylyjquS1FuELJ05bfW7vF8PQBgOtLHdiuKkgO44iu/McYfQC5r7UnP960AvPF321y4cAEnD3u3X7LZeQAwtF9PoTEjDoC37LKqPgBMn/6e0CL/lI6vAFCWuNxevFWacbzxOm+X3bxZzlzbE9+YxqYck7Pr7r6jHo19pG0voUWt5G3HmyvLOfS3N6pJY/ccOSK0LZtllblnW9kyDABTf5fHMe0Cb51e+M0iod3zMb9ZlEjm1J08e4bGzouRd0LshYtCq1Ca34WIiokT2tFkbrrRqGJFocVtTaSxvXq0F1pYUBCNHfzOBKH55PYhkUC10qW9Hl+8KN+rE1n5sz8YwHRPL3FuAN9Za+VERUVRbkiyMqgzAYC80akoSo5Ab/UpikvR5FcUl5Kt6/lTjp7CHzNWeGmFS/DRUWyElpPLLluP79Syy4p7XRpKl14AGD7ua6Gx0U19X5ZuqwBQsrwsKvXsLN1lAd5W+mr/d2ns3EWRQuv4wAs0tuWjLYW26Hvp/gsAJ8hIqEkThgptxdatdPvjB2Ub7Pa8/BT7bOIQ+fpneBFvbbQcA7YihXs7hFYrJ7S2taXT7y/ruOPyrjg53iziTl4gnRklC7oXSXERAKbNkse8Rt3KNPaNF2RBd52DY/Kcxd7n87GTsnDshF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKtlb7/Qv5o8F/Gnhp8THSqAEAyhWTs9TY7DyAu+wyIw6At+yyqj4ADH5KVvH/O2ai0Kzl65VubyXbc3+OkuYaALBxhTQJOXuaV7+PnT4ttHwB3BWY7duQoU/R2I8n/CC0DUlJQitNjiEA5K4lq9fhJUrQWGam4U9MLAAgIkK20W5L4CYwLapVE9q7E6YKrWkL3jpdvcmtQmtftw6NHfHBV0Kr14LPELQhchYjMwMBgGhi3HHwpLwTAwBlwrxnC+b1lbnghF75FcWlaPIrikvR5FcUl6LJryguJVsLfkcPHMG0D73HP61cOZvGvvJSd6ENeqg3jWUjtJjLLsDX47OWXYAX994cIFsvBz7NR1JNGCsLTQNfk9sDQJsGci179868ZTe0eHGhlSjPC2ujB7witPhH+XGMWihbUHs91lZoTm7Fb78p16G//gYvLkZtkuPJ2tTjhbWhT8lxXdVv42v/m9apIbQjydKnoEqpUkIDgMT90jPi9bc+p7FPPSWdmIcP5t4O48cNFppToTglNVVoToXTy8dz5XcomjL0yq8oLkWTX1Fciia/orgUTX5FcSn/WPAzxkwCcB+AA9ba6h6tCIApAEIBJALoZK3lLocZKFY6CL2HP+Olzag9ica+/sanQotP4GuwGU5FKWa26bQenxVkWHHP38+Pbt/3pdFCW7aeFyLz5pOFmh5DH6ex9ercJbSxkZ/Q2BGD+wjtnIOpZsCb/cnzyrFnD7dpTrcvHFxYaLOXcnNUX395zCZOm0tjx0e+L7QzaWk09okuz8nnnTpWaE7dhL6+eYXmVEzdeVAWioNCuSknG/m16C9+Pm+LjhdaeO1baGxICe/XSzt/nsYxMnPl/xJA68u0gQAWWWvDASzyPFYUJQfxj8nvGcJx+b2SdgAme76fDED6EiuKckNzpZ/5g621+zzfJyPdxpviNa7rmI7rUpQbhSwX/Gz6B2PHMVzW2vHW2rrW2rqBDivtFEXJfq40+fcbY0oCgOcrH6WjKMoNy5W2984C0A3AW56vsiRMOHXkJJZNWealzf2MV3hPHJM3D8bP+IXGVq0aJrT3B35MY9kILeayC/D1+Kxll1X1AeDj0S8JbVlP6UQL8PXtp1P4ev5mbf4jtOCCBWnskFGy5bZo6aI0dsc6uY484k655ry4w52UDX/+JbTm7fh4soU//Sa0p/t2prE/zF4i96GsbHEGgKbt5CixectXC61dM+4NkUjce9ct41X5dq3ke1u1YDmN9XvmEaF1atyIxn6QkCy0woX4MS8SEOD1OHeuzF/P/zHSGPM9gD8BVDLGJBljeiE96e8yxmwD0NLzWFGUHMQ/XvmttV0d/qvFVd4XRVGyEe3wUxSXosmvKC7FOK0pvhbUqVvXRq1c6aWdc2hHfPO9L4XWul0TGhuYT5pXrk9IpLF74vcKzWmEFjPbbFFbrhd3atktX0q2hTatUoXGliol2zcXrV5GIoEpPy4QWt/u99PY42QEllNRiJmmniRjxH76I4puf3+jBkJbuGEDjWUjtJwYN10Whe9rUp/GLomVr1c6WL6vOypVotufPCuP17jJM2gsO+a5fXxobExiotAaO+zD2XPnhHbeoSX78vX8dzZujJjoaEODL0Ov/IriUjT5FcWlaPIrikvR5FcUl6LJryguJVvde8+mpSFuzx4vrSCp1APAicOy3TUsmC8eXL5FOsEePyS3B4CUYylCO0Uq2gAfocVcdpkRB8BbdllVHwD27pUGDqu2SQ2QFV7A2aCjcP78QnOqSMfv3y80Zg7hdGz98shRURUdXGcPn5LjpwJ8uSlKozrVhVbA4bypFV5BaEtWRAvNqdqfO5c8Ni3v5q3A7Ng4mYQwM4+087Kq7xRbymFRnM9ld25ykXPDCb3yK4pL0eRXFJeiya8oLkWTX1FcSra29xYsWMw2aNDOS8ublxduJn47Qmjdu7xMY9v26SC08LCyNLYMmS3/3+ffo7FnT8tWz7Q0qTm57KaekWOXbqskx4UBvLjXrVlTGjt9jWw7njz8GxIJlL+1vND8C/rT2Nhlcj3+rFkfCu3CxYt0+8g/pFNvp4ay5Rfg7arHTp+msYs3yMIrKwgDQIdmco38n9u2Ca1eBVkYBIBdhw8LrXJJ7vfAYuOS9pBIoF6YfL2il63Fv0Qhf/nzSXawwLu8/fqB1q2xITZW23sVRXFGk19RXIomv6K4FE1+RXEpmfHwm2SMOWCM2ZBBG2qM2WOM+cvz795ru5uKolxtMtPe+yWAjwB8dZn+nrX2nX/zYkVKFMXDAx/z0jo7OJjWipCV7tUxi2lsvryypXJebCyNfaRtL6HNXRRJY1n1ObS4dI1ls/MA7rK7Y0MijWUtu6yqDwAd6soW492k8gwABUl775k0eRcCAIo+30NoH/0wW2j9Osr3BQAF/OWdm9id0g0XAKZFzhdaRFPpFAwADSrKOyRhQXwm3sjx3wmt3b3SBMbJHIPNAPzxdz5vsFfrlkI77nDHgrkrX3S408bmI+4lJjQAMGhAN6/HeRxatxlXOq5LUZQcTlY+8/czxqzzfCyQ41kVRbmhudLkHwcgDEBNAPsAvOsU6DWrj6xWUhTl+nBFyW+t3W+tvWCtvQjgcwC3/U3s/5/V5zBVRlGU7OeK1vMbY0pmmNLbAQC3aL2MtDNp2Bm3y0t7af5aGhu7/nehvTbyMxrb5VF5syGkGB9JFbVyjtA6PvACjc0XIAtYJcrL9eljIz+h27Mij1NLJ1uP/3SPYTSWFffKFuXvd+xUWTxqSNbHA8DMFXKUGSvubUuW46QAIOWsLCQmXZRj1wDg+b4PCa0IaWsFgLfHy4Lsyl+4g/CYzwcLrTB53shfuTPy/kTpadCuw500tnff4UK7syuPLRoof+5b9vHj+EzntkIbNYEXpQcP9T739uzN/NjMf0x+z7iuZgCKGWOSAAwB0MwYUxPp03kTATyZ6VdUFOWG4ErHdU28BvuiKEo2oh1+iuJSNPkVxaVo8iuKS8lW994TR49j4dSfvbSkpM009rEn2gtt1reTaWyHrq2Etvg33hq7uXKI0Fo+Kts0AYAZnYwe8IrQRgzuQ7cfMmqC0J58siONZS67zIgD4C27rKoPAM92aie0vi+NprEbV8cIreGtlYVWsQQ3t5i96A+hDXiYzxB8bvD7QnvT4TjuTZCtrb2H9aSx7A7LCy+NEZpTVb5SpVChxe3cTWOHj3xGaNN+/Y3GhtWXd8OrlCpNY1clJAitgsO50Lm997n724JvaRxDr/yK4lI0+RXFpWjyK4pL0eRXFJeSrQU/v/z5Ubmm95rt5h3vobGlictuSEhVGvvOK+OE5pufj026vVFNoS36nvsEDBn6lNDiH+0tNKdRWUVLy5bb3Ln471s2QsvJZZetx3dq2WXFvY9Hv0RjW7WSRbRigQWENoW49AJAyQq8EMh4/rlHhLZlL1+z3qprC6HdFhZGY9m4rNFvPy805ugLABEh0vW5gB8fI1YsMFBodWtVobGRv60QWrmS3JPgjsqyyHqbg9twSqr3ueB0fjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUrK12p8rl4FvPu9q7NRx42lsu7bNhObry+f6EeNbHEzmM9P2HJFepCeOnKSxH0/4QWhRC+WdgYA3+9Ptd6zbIbRyPYvR2Pj90kSCzc4DuMsuM+IAeMsuq+oDwK+/ThJawoGBQrujiqxGA8DCtdIx2cmh9re4TUIrWkBWzwHg4AH5M9tV6BCNZW3S05YuF1rzuvKuDwCcTpXuvadSudtxLnLirVoj5woCQOHgQkILKijvpADAxqQk+VoOVfzw4GCvx8wF2gm98iuKS9HkVxSXosmvKC4lM+O6yhpjlhhj4owxG40x/T16EWPMAmPMNs9X9e5XlByEYWvWvQKMKQmgpLU22hgTCGAtgPYAugM4Yq19yxgzEEBha61c7J6BajVq2O9/9l7Pf/gkL7bFxMh1/v27yjX+ADDik2+E1qBpLRq7ZbMswj3RnrcYbyCFF+a+O2OhbN0EeIvxI3fzdeTMkbdqab7e+9+M0NqQJNeis5ZdAEg4IJ1fb69YUWg9+nBX4cb3NxZanUq30NgPRnwhtLVRS2nstz9fPimOOwUDQFyifL+/T5Nr7IeM6Eu3jyHjxZwcl4uT9t65S7ir8IJv5gmtTgvueD9qkNy30V9NobH3NKvv9fiB1q2xITY2U1W/zIzr2metjfZ8fxLAJgClAbQDcMldYzLSfyEoipJD+Fef+Y0xoQBqAVgJIDiDd38ygGCHzRRFuQHJdPIbYwIA/AjgOWvtiYz/Z9M/O9DPDxnHdR0l99gVRbk+ZCr5jTF5kJ7431prf/LI+z31gEt1AToqJOO4rsJkma6iKNeHzEzsMUgf0rHJWpvRCXEWgG4A3vJ85Q6SGchlDPLlyeOlNQqXs9cBoE55aVgYu2sXiQRWz5dFFtZRBQA920qzzxVbt9JY5ikQVEAWyx5u05xuX5zETl68lMYeP3RCaJU68vXx/2aEFjPbdFqPzzr3WHHvi0+H0O37vBgvtFNnz9LYYSP7Ca1fT1n0BIDYRPlzT9yYSGObNKsrtKQaci183B7eAeqbW6ZEiMMotONnzgitbh3uOTFvshwTNy9SdpACwKBRcvxb3068oDsrOtrr8Zk02aHoRGbae28H8CiA9caYS/2mryI96acaY3oB2AmgU6ZfVVGU605mxnUtB+B060BarCiKkiPQDj9FcSma/IriUjT5FcWl/GN779WkeHAZe38X79bF8+fO09j2vdsILS6GO66+2P1BocUkJtLY9QmyffP4weM0tnYtWf2ePHaa0AoH82UNG/6U6/GnzfiIxvpddhcEAKb+yVtFC/hLXwOndte9CfuE5uSym3I8RWi5fOT1oXqFcnT7+rfIVt5XR3G/hvA68i5PXr+8NHbeJNkau2s7PxeKFZct0SFV5Ii2l1/oRref/KN8rdgl0qcAAO7pLdvCn24jx6MBwN6D0pl46jLeFn5w90GhDejOx7x9vWiZ1+M3n3kaiVu3XJ32XkVRbk40+RXFpWjyK4pL0eRXFJeSrQW/6hER9odffvHSWKEL4O2XrSMiSKRzCymDrdHfvo+3xrascavQ0s7LAuXspbxdtsItcvRTKtkeACqWKCG1krwwF0vWnCcdPUpj29epQ3UGM9tcv1uuj3c63nNnLBPayFeeoLHsvHv3mx9pbG7Schu9MJpEAiuXy4JddKxcz9+923/p9gnx64RWpkwlGnv8uDQRDb+1Go19Z5QcGdav3/9obLcBnYVWpVQpGntHXe/W8qSkLUhNPa0FP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lGwd15Vy9iyiNnkbZ7CWUgBYNVeOnwp+rSCNLeTvL7RFq+SYKgBY+M0ioX02kZtTHDghDTaiNm0Rmq+/H3+tn2SVefRQaWIBAIdPSRfj8xcu0NhpkfOF9nzfh2jsc4Pfl7HPPUJj2QitJd/K8WTMiAPgLbtOd5PYWKmvlsnjBQBVysiW3T4P3Etjtx+Qdxd6dH9daPf25tuHl31caE4jx5jJR7RDW/mUJb8LbeyHchQaADzV+02hbY7j49hWRC/1enx3s2Y0jqFXfkVxKZr8iuJSNPkVxaVkZVzXUGPMHmPMX55//EOUoig3JFkZ19UJwClr7TuZfbGIWrXs/KVLvbTUc+doLGshrezQ4vjkMyOF9tSLD9NY5r7rVNDxITPRWTvyxGlz6fYPtGkmtPLFi9NYdhyYOywALNkYJ7SO9fnoJ9ZOvGWvXFsO8ALnoG6yLTU0VLY9A0Dnl7sIbd8O6ScAAEEhQUJ7rGkTGrtowwahnUrl/gXzv5cF3ZrNawqtRrh0hwaALbtlW7mTz0DjSrLtd9o82eIMAGvmrxHapvWraSzjg+8/pPr+495eFK9064btmzZlqr03Mwae+wDs83x/0hhzaVyXoig5mKyM6wKAfsaYdcaYSTqlV1FyFlkZ1zUOQBiAmkj/y+Bdh+3+b1zXYTKJVlGU68MVj+uy1u631l6w1l4E8DkA+qEz47iuog6TTxRFyX4yU+2n47ouzenz0AGArMooinLDkpVxXV2NMTWRPp03EcCT//REh4+ewFc/ebemLvxemi8AwFvjZUtmt55SA4AvJsp5cqu2b6exiYekAcPaaNnWCgARERWFNvQp+VrjI2ULLQD8MHuJ0AIKB9DYRnWqC21TEp8n16CibKN9e3wkjd2bICv7rbryQUsHD8gpyt/+/JXQ2Ow8gLvs1rmLm4mwll1W1QeAFtXlsalf/z4a+2C/7kJLOyPn1wXmkw7IALAnXh6vL0aPIZHA9/OnCi1qNndc/uqr4UJblZBAY9m8vUA/3kK+84C30++/MefJyrgufn9LUZQcgXb4KYpL0eRXFJeiya8oLiVb1/Nba3Eu1buYUakWdzutTJxra99Vm8bmImvDa4eG0tiTZ2XL7IoUvvZ/W4J0rq1+W12hsQINABQvK1t5W9SuQWMLkALUylheiAwLkq2xK3/hhabew3oK7bawMBq7q5AshrIxYIkbE/n2ZIQWW7cP8PX489evp7GsuLdy5Rwa2/qhB4RWtKS8xbxkpRylBgB/zJIjtBo1laPjAODjt78W2u6dW0kkcP6i9Gb4hbgdA0CjVvWEFuBQ8Jszzvs4HHMYPcfQK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8nWan9AYH40auJdsS/Vjq8Enrpczr/r05FXXZnzbaAfb9+cFxMrtNBq5Whsi2ryTkTTOrJa/0SX5+j2Tdu1EtoSH/77tlZ4BaF1aNaIxo4c/53Qxnw+mMYGF5SOx/6+vjS2cP78Qvtu2XKhNWkm73gAQMxCedeEzc4DuMsuM+IAeMsuq+oDwLD+PYS2m6wmXRgjZ/IBQKFi8nzcS2YjAsA93dsKLWl7Io09eEKeo8kJ3OhkU2y80Ni5CMh2cR+H84uhV35FcSma/IriUjT5FcWlaPIrikv5R/feq0nJMqG257OveWkHkw7S2BYPNRfanu3cdbZO7SpCO+PgCrz/kFyz/uDtDWnsuxPkeu0jyXL7vv2kay0AzFsu3VkrVuTFxY3rZZEntGJZGluxRAmhscIeAAwaNFZoo9+WjrwAMG2pLO79OVMWXsvXkMVJADi6/6jQhr/GbR7YCK2Wj7WksWw9vn9BOaINAFrWkgXZssRB6mgKHxN3NOWU0FIcnILDgoKFNupTWYwFAL/8sj23SVPudTDxPenN8FDf+2lsk8qVvR43qF8fa9esyZR7r175FcWlaPIrikvR5FcUl5IZA08/Y8wqY0ysZ1zXMI9e3hiz0hgTb4yZYozhY00URbkhycy4LgPA31p7ymPhvRxAfwADAPxkrY00xnwKINZaO+7vnqtceEX76hjvsUP3NuLdYvH79wvNLy///VLEXxZ/2OgpJ5xiiwcGCq0KGRnm1DF3+JQsHhUjz+kE2x4Azl+Qa8Pn/LaSRAJFShQRWuEAXiyrSDwUcpORZXF7uLFoLeKh8OyTI2jsvb3lev4q5crQWGa26bQenxUC2zeUrvKFyTkDALVq3SW0L2ZMoLHd28luwi9nfkFjI0JChDbwf5/S2Db33ym06JjNNPat5wd4PT50KAnnzqVenYKfTefSWZjH888CaA7gB48+Genz+xRFySFkdmiHj8e2+wCABQC2Azhmrb00BTIJOr9PUXIUmUp+z2SemgBiRJ/wAAALvUlEQVTKIH0yT+V/2OT/yDiu69TxzFsMKYpybflX1X5r7TEASwA0BFDIGHNpVWAZAPSDYMZxXQEOjSiKomQ/man2FzfGFPJ8nw/AXQA2If2XQEdPWDcAM6/VTiqKcvXJzHr+kgAmG2N8kP7LYqq1do4xJg5ApDFmOIAYpM/z+1tSU85i61pvd9P8BeUacgA4ffy00MqHyko7wJ1+T509S2OjYuKEtiuOr9eu3uRWoSXuPyA0X19+FyKRPG+Pjq1pbO5cPnK/HKYaM7fg/Yny7ggAVKoUKrSIEN42fDpVPm8MWcvum5ufNpN/lGv3E+L5uvnwso8LbctufheBjdBiLrsAX4/ftEZVobGqPgDExCwQ2nff/ExjAwLknZRxY3h77yfvvSK0Ew5OuzGxW4RWk4yOyyqZGde1DkAtoifAYTKvoig3PtrhpyguRZNfUVyKJr+iuJRsNfAsWDgQ9z7ovU5/6Tw+Zso3n2yZ9c3P22j9q8j1/PsdegqOJss15xF31qSx7evK9davv/W50EqUl+vrAWDdMlnsGpfCC5Et75aeAqyVGAB+/F2usW/XQbaEAkDcTjlyrIDD6KdTZN160YAAoYWQ9fEA8PU7U4RWpkwlGnuRtJXn9eOF0y9GjxGa0wgtZrbJ1uM7teyy4t7brz1NYxdv3Ci0d1/+kERyHuglx5ABwO5k6XHhNK7rjUneLcIjnu2b6dfXK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8lW996qNWrY72bP9tLyOrSKBhUoIDQfYiwBcGMGVk0GgBNnzghtZtQqGrt1zTah9ezeTmg7D3IHYuYa62QikXb+vNCcTEZqEGOI3n2H09jhI58RmpOhSC4jPSC2JScLLY2YiQBA7I5EoU0awg0rvpz2gdCcfr7szs3Hb39NY2+9Q7ZkszFvjerfQ7dnLbtvfDaMxjYnI7Q+nDaLxvZqe7fQPv2Btw3XrSPbkTdv5y3o/+3p7Y58+PDeq2fmoSjKzYkmv6K4FE1+RXEpmvyK4lKyteBXJrSC7fuat5vr2l/X0tiOA+T89ROHeQGsS4smQotJTKSxcVulfvHCRRpbupxs25352RyhBYUG0e1XLZDjr6b/LNuDAb5GfvrqNXy/isg167sP8bX/R/bJ8WJ1a8l2aABYtUa2q168KI8NK0gBQJt6jYTWtceLNPaex1oJLXGrbEUGgKjZsgV8986tJBIICJDHptF98vzo0F6OgwP4evykeF5sa91dOhA/82BbGptKxsd9Nn0ujd27fZ/QXh8gnYIB4KPvvD10Phg2EEk7tmvBT1EUZzT5FcWlaPIrikvR5FcUl5KVWX1fGmN2GGP+8vzji+IVRbkhycqsvj4A5lhrf/jbJ8hA7Tp17Io/vY0onFx2WWtr8QK8LbV1swel1rkjiQR69ZBTxabNWkxjK9W8RWj31RJepo7GIX558ght/W5e0WbPUad8eRobTOYf7Dp8iMaGBQULLfI37nybK5csEkeOltXvCxdkKzIA/DjrE6E5nV9TlvwutKVTltHYSROGCu38Rd5ifPDESaFFzlwktIGPd6HbO7WFM1gF36lF2ZecC0M+4HP99u+QLdW176pNYx+7y9vEpVGDBli7dm2mqv2Zce+1ANisPkVRcjBXNKvPWntpJOwIY8w6Y8x7xhjqsZVxXNehQ/zqpChK9nNFs/qMMdUBDEL6zL56AIoAkFMJ4D2uq1ixYldptxVFySpXOquvtbV2n2d8dyqAL6ADPBQlR/GPn/mNMcUBnLPWHsswq2+UMaaktXafpyDYHsCGf3qu06mpiL6s7bZheDiNLU7W8+89Kp13AaB2Q9m+2eK+22lsWJBsxa1Rlw8dbh0RITRWwFr0Fx9J1amxbHdtXIm72aadl8Wj1HO8sMaKUlv2ySIRAFQpJSenlyvJ25GDCspjvq2F/J0+L5LXeKcuk4XEZVN5EW/shwOFNm7wOzR2VUKC0H6ZwZ83OUG2xj7+4kNCG/g/7jPARmg5ueyui5UtxrnzyLFrAC/uDevPW3aHjv1SaJcX9v5Pf2yw1+MdO/jIM0ZWZvUt9vxiMAD+Qnr1X1GUHEJWZvXxlRGKouQItMNPUVyKJr+iuBRNfkVxKdlq5hFWpYodNXmyl+b0+n+ROXev9n+Uxk5fJU0vwkvy+XmzZywV2hsv9KKx0Tt2CI3NfVvwM2+XDSgk59z1fUS2FwO8vbcCuTMBAGMjZwrtmc7cRIJVyus6tA1vTEoSWr1bKgpt0CjZxgsA+QtIZ+J6DaWbLgBMGPmN0LZs4sYub01+V2jM7RgANsXGC23zqs1C696/E90+JnaL0AoUlXdBACCsTEmhzZ2+lMYe2y/vVJWoILcHgKHPdhfamG9/orE1Irx/Pk936oQtGzeqmYeiKM5o8iuKS9HkVxSXosmvKC4lMx1+V40C+fKhxWUjjnY6rPT7/YgsouUy/HdVs2rSTXYNKdYBgE9u2X65btcuGnvwpFwbHl5CFhLDa8t1/wBQuJAsFJ13GHVVqlAhoSUfO0Zj98bvFdqoCZE0tsKtsrh3W4UKNDYXWYs++qspQuvb6T90e1a8PUSOIQBsjpMj0sZG8kJioJ+f0AKIBkCcXwDwRz15fkTHyCIgANSMkAVOp9eK3iTHuTm57H6zcKnQnFp2WYFxwMP309ipUd7OxueJ27ITeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZ2t5bvlIlO+STz7y0xtX53DjWRlvEX7aPAkBuH26gwGBuwXMW/0kigTJhpYRWm7TG7nK4Y1EkQLb3lnOwMstH3F0THZ43iBidDB7KK+UDXuomtOKB3AU5DzmOuw7LGYAbSBswABw7Ih2XRz7NZ/WtiF4qtOVbZGstAJxNTRPanHFyZiIABBSWx3zc2EFCCykjq/pOvDGJG3/8t8cTQnvhrbdp7LMPy7buy404LvHE4MeEduTUKRIJdGrQQGjWWm3vVRTFGU1+RXEpmvyK4lI0+RXFpWRrwc8YcxDATs/DYgBuxike+r5yHjfTeytnrS2emcBsTX6vFzZmjbW27nV58WuIvq+cx8383v4O/bNfUVyKJr+iuJTrmfzjr+NrX0v0feU8bub35sh1+8yvKMr1Rf/sVxSXku3Jb4xpbYzZYoyJN8bIaY05CGPMJGPMAWPMhgxaEWPMAmPMNs/XwtdzH68EY0xZY8wSY0ycMWajMaa/R8/R780Y42eMWWWMifW8r2EevbwxZqXnnJxijMl7vfc1O8jW5PcM+/wYwD0AqgLoaoyRHks5hy8BtL5MGwhgkbU2HMAiz+OcxnkAL1hrqwJoAKCv5+eU099bKoDm1toIADUBtDbGNAAwCsB71tpbABwFwAc53GRk95X/NgDx1toEa20agEgA7bJ5H64a1trfABy5TG4H4NJkkslIH1+eo7DW7rPWRnu+PwlgE4DSyOHvzaZzaXlcHs8/C6A5gEtzx3Pc+7pSsjv5SwPYneFxkke7mQi21l4aEp8MIPh67kxWMcaEIn1K80rcBO/NGONjjPkLwAEACwBsB3DMWntpBNDNeE5StOB3DbHpt1Jy7O0UY0wAgB8BPGet9Vqsn1Pfm7X2grW2JoAySP9LtPJ13qXrRnYn/x4AZTM8LuPRbib2G2NKAoDn64HrvD9XhDEmD9IT/1tr7aVBcTfFewMAa+0xAEsANARQyBhzycb+ZjwnKdmd/KsBhHuqq3kBdAEwK5v34VozC8Al+5xuAORUzRscY4wBMBHAJmvtmAz/laPfmzGmuDGmkOf7fADuQno9YwmAjp6wHPe+rpRsb/IxxtwL4H0APgAmWWtHZOsOXEWMMd8DaIb0VWH7AQwBMAPAVAAhSF/B2Mlae3lR8IbGGNMYwO8A1gO4NAXiVaR/7s+x780YUwPpBT0fpF/4plpr3zDGVEB68bkIgBgAj1hrpY/cTYZ2+CmKS9GCn6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1Fcyv8DfxiZ/STZuJQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -195,7 +196,8 @@ "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entangler_map={0: [1]})\n", "svm = QSVMKernel(feature_map, training_input, test_input, None)# the data for prediction can be feeded later.\n", "svm.random_seed = random_seed\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_mapper=random_seed)\n", + "run_config = RunConfig(shots=shots, max_credits=10, memory=False, seed=random_seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=random_seed)\n", "result = svm.run(quantum_instance)" ] }, @@ -220,7 +222,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd0VWXWxp83jUBICCEJKQRI6L0jCgjSBBQRRBAFVBDF3mYE2yeMo6OjiGMfGBzQUZoORVQEGVAQKVIETEAIECkJgUBIaCnk/f7IZRY3+zmaIXghnP1bi5XkYZ97z7n37Jzcffb7bGOthaIo7sPvYu+AoigXB01+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1FcSpmS3xjT2xiz3Riz0xgz7kLtlKIovz/mfDv8jDH+AH4G0BPAPgDrAAy11ib/yjbiyeo3aUJjf0lNE1rturVpbKC/v9BO5efT2ODAQKFlZGTR2JjYSKEZErdn1166fVFRkXz+SpVobHhkFaE5vTfHj50QWvXoCBqbtnuf0CJiqtHYkOBgodFjCAqi2584fVpogQEBNNbPyFfSEA0AMg8fFVpsND+GvIICobFXsZLDMbDzpqJD7GnyXP5+/HrKjs3pHA2pUEFoTudCycdNS0tD1uHD/IUsAX9nSkd7ADuttbs8OzETQH8AjsnPmDxnDtUfGDxGaFPnvU9jq1eRifPTPnnSA0C9mBihTXxpGo0d+/RIoQX4yV80dw55lG5/8mSu0Bq1bE1jrx/ZR2j5hYU0dvXna4T22CPDaOxdtz4htFvHDqexHRo1ENpxktCN4uLo9t/v3Cm02PBwGhtKftE4/aJ4a4o8R556kB/DrkOZQis8I3+BNa9Zk26/Za/8Rd4sIYHG7sjIEBo7LoBfdNhzAUC7pCShFZJfwoBM/i4dO9I4Rln+7I8HcO7e7/NoiqKUA8py5S8Vxpi7Adz9ez+Poij/G2VJ/v0Azv17qIZH88JaOxnAZIB/5lcU5eJQluRfB6CeMSYRxUl/C4Bbf22D+k2aiM/4XRs3prFTFy8V2s6MgzT2mXtfENoV1/LPPs9+PFtoz099mcYO6HmL0IKDKwtt8IN30O2TGtYSWpN4/smoZR35eTsggBeabrrlAaG1btiSxj79xptCu69ffxrbvv31Qrtt7J1CYzUWAIivWlVoMQ6f+afM/lxoDvU+hFQJEdrirVtpbMPYWKFt3SvrP0nR0XT7TTt3Cc3fj+9Yg1hZ+2CFTADYduCA0Do3bFjq2NXJ22msX4kC49Hjx2kc47yT31pbaIx5AMBXAPwBvG+t/el8H09RFN9Sps/81tovAHxxgfZFURQfoh1+iuJSNPkVxaVo8iuKSznv9t7zoWLFUFu3rneH26OvPUdjR/XqLrTdmbJ7CwASqslWz+3p6TSWtXUeyM6msStXbhTa8AG9hHbvHfwYvvxystCmLFpEY1N/lFXmwCDZFQYAlavKOw51yZ0FAJg7ZaHQOt/UmcZmpcs259RNqULrNrgr3T7nmKw0nz4hOwQBoEZN2WmZvv8Qja1URbZEd2/WlMamZclj2LBZVsqH9+lGt5+/7geh9W/XlsbOW7tOaBUq8Ds0g9q3F9obM+fT2Gu7yFinPC3ZIjyif38kb9lSqvZevfIrikvR5FcUl6LJryguRZNfUVzK776w51xq160tluU6teyy4l6iQ0vmXlLkyT11isZmnzwptNhw3q4aVi1MaDnkcTsN5AW016c8I7QKZGknAMRHS++AqDD5/ADQgCxLHjvhbRo7aeIfhMZeLwBYmCbfi1deeEhohroaAI+NnSS0917nHi9n2BJV3qGM5SkpQosMDaWx6/fsFhor7i34YT3dvklNuXx3iUMrcYvE2kILd/Br2EqWmHfvzAuJYRUrCi3a4VxIO3zY62cnPwGGXvkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIpPq/2B/v7CCIIZcQDAkEX/EJpTlZq19z44diLfh2BZbQ8J4xXanKwcoU3/y3tC+3iBbON12q9/Lf+Wxi54+zOhVQyVVV8AiKwh7wzs284NS7/ZJivlb459i8bG15Ytwh8SV+Gbul5Ftx8/4V6hFTm0pT74xKtCqxTK34ebb+sttNFjnqexve6Q7defrd8gtL6t+K2F+atly26PVs1p7MFjx4QW5XAXglXrndrKv1on28qXz1xOYyuVOHednKgZeuVXFJeiya8oLkWTX1Fciia/oriUMhX8jDF7AOQCOAOg0FrL+xU9nMrPF5N0nFx22Xp8p5ZdVtx78+XHaezzb38otBlvvUtj23XsKbSHXxsrtOphvD2YtQJ/9NJ0GhtXSxbbYpJkGy8AzHhPOvKO+qPcLwD4x/hp8nETatDYAWP6CS33pDyGDxYsodvfN1huP+mjf9PYChXlSKoiMlkHAGpGygJnz9vlewMAA9u3E9qrU2YJ7ccI6TQMAIf2Sk+BtVWk1wIAXFm3rtAsHQ4GfLp6rdCubtyIxtatKV2BM66Q7s6MoGDuJ8C4ENX+a6y1h387TFGUSwn9s19RXEpZk98CWGyMWe8ZyyUwxtxtjPnBGPPDMYf7moqi+J6yJn8na21rAH0A3G+MubpkgLV2srW2rbW2bRWH6S2KovieMiW/tXa/52smgLkoHtutKEo54LwLfsaYEAB+1tpcz/e9APzp17YJDgxEvRJGFGx2HgCMGnGD0JgRB8BbdllVHwCevV/OdZ+2dBmN3fifTUKb+n+yvbfDx7JVFQCqEGOHqTN47NNP/E1oy+ZJ510A6DtQHgNz2QWAniNku+uUP/HW59hFcs5d936dhHY0+AjdPve0vDMQERNBY+PqyIq2kxHGnMWyJbpFs3o0lrnc3jn0OqE5uTvXbCjNPNYski2/AND+viShHc7ls/JWzf1OaE6uwKt37hRatx4daGxYcLDXzx+/I52dnShLtb86gLmmeDBhAICPrbXcl1pRlEuOsgzq3AWgxQXcF0VRfIje6lMUl6LJryguxafr+TMysjDxpWle2vNTX6axbK2zk8suW4/v1LLLint3dL+Gxq7cLsc83TS8j9BSHcaIJUVHCe3GHkNo7B/fkuvT+wXJQhUAPDXsfqF9spS30d4z+AGhDbl/NI29b9iNQmMt1cEODsSn8guEFhPFC34rFq0RWgIptgFyzToA/Lx7L41tECcLid8kS0+DLg6ttam7pS/CLcP70ljm15CZI9f4A0AnMiKNufQC3Jn4m+VyjBggC5zHcnjBkaFXfkVxKZr8iuJSNPkVxaVo8iuKS9HkVxSX4tNqf0xsJMY+PdJLG9DzFhp768NjhMZm5wHcZZcZcQC8ZZdV9QGgUwNpoDD2RXkXoUnHJnT7b75aLbRZX35EY69ueaXQ4uLq0NgBI0YK7dY+t9LYpyf/VWhvE+dcAPh65hdCi4ioLrT+D8m7AgDQLEFW6yuXaD89y6nj8i7CxqXStRYAHn/yTqEtW/cjjS0oLBRaympZ7e/ZvCnd/thheS4F+PvT2OT9+4UW6nC8zC14WXIyja1C7gIYPz4f8WjGUa+fCwvO0DiGXvkVxaVo8iuKS9HkVxSXosmvKC7FpwU/AyDAz7t4EhzM1x8PHyDXoTM3XICP0GIuuwBfj89adgFe3Hv5KTmS6ruff6bb33ifdJLNPnGCxl55ZX8Zm32QxtZuVltobdO609jGNeKF5lmGLeg2SI7FGjKwh9AC/Pk1I6SCdORNjJItzgDQa1BXoeWRYh0A/HPafKF17M19Y75YJdtgh98m26QD/fmpP3qwjM06zltmKwTIx/BzeG13H5KuwB2I+y8AnC6QbdJpzaR3AADsq+RdYAyqwFuvGXrlVxSXosmvKC5Fk19RXIomv6K4FMMMD70CjHkfwPUAMq21TT1aBIBZAGoD2ANgsLX2qNNjnCUsrJpt3967oNL3Tt4t9u2cb4TWaaBcEw0AN/URjuGOI7Qyc2QHl9N6/ANZ0qiyTqwcodWxfn26/dBhTwpt3IuyYAgAS1fIQlVRkcP4qnpy3NaRTD4TIS05TWh1WvLOwT1b9wjt6muvEFr3Jryj8S+TPxbaH0YOprHLUmTX3Ym8PBr71hOvC23u51No7PgX/i60Rh0aC61NE24AumWXfL16t21FY6tXkeeYU1Gard0/5mBIyzoKmaknID0uhvS9Dj9t3syrjiUozZV/GoCSZeBxAJZaa+sBWOr5WVGUcsRvJr+19lsAJS+B/QGcnTg5HQC/fCuKcslyvp/5q1trzxqfZ6DYxpty7riuggL+Z52iKL6nzAU/W1w0cCwcnDuuKzBQNoEoinJxON/kP2iMiQUAz1deMVMU5ZLlfNt7FwC4HcBLnq+y/5JQVFSEkydzvbSkhrVo7JNfThba61OeobHMRdWp6spGaDGXXYCvx2ctu6yqDwAz/vUXoT38nFyL74RTqyY7hmpJvE36ZK6sKEdHV6Wx+4Kkc+3fxr0ttPTHuQdDrcbyvfxo+QoaGx0p92H/bj5C69GJjwvtp31yXwFgIGnVXr9B3lmoQc4ZAEhOk67ATnfEpi76Wmh5J/lH27v7y9bpie/OoLFdesvRXBEhITQ2r8C7Jfq37t6dy29e+Y0xMwB8D6CBMWafMWYUipO+pzFmB4Aenp8VRSlH/OaV31o71OG/+EoSRVHKBdrhpyguRZNfUVzKb7b3Xkgio+Nt/0Hexpzj/o+Pjvo+RZpq9mzFhwIv3iBNOT96aTqJBKbOkOaV13cbRGOZ2SZbs37UoU3zFGlX7VCPt5Uu3rJFaE7jyR69UxY+p3zMTTmH3iBf32ffHU9je7eQr28eWVs+57vv6fZt68v16R988BmNTWggzT6j4yNpbLskuZb9cG4uieStsYv/I0eDtW3PW5TXr5Ommh07SvNNAIgLDxdauENhbu4quQ89W5d+yPXClWupXinUu234uTF3Y/f27ResvVdRlMsQTX5FcSma/IriUjT5FcWlaPIrikvxqXtveGQVXD/Su/2yZR05EgsA/vCCNHCIj+bV4AVvy4pyXC3eNvz0E38T2h/fep7GshFazGW365Br6PYMVtUHgF7NmgktLIwfb48eI4R2dZsuNPbeZ58V2rBu3K34mmvkyK+6bWQFf8SIfnT7qNBQoY0eNZDGvj7xQ6FtPp1PY4uGyjtSTnepahG3YP9AeQegdWIi3X7z5h1Ci6/K26Grksq+kzPygKukKQpz6QW4qUm2g1lL+i7vlmin9mKGXvkVxaVo8iuKS9HkVxSXosmvKC7FpwU/ay3yS4xkCggIorGBQXIte1RYGI2tGCqdUWOSpMsuACybt1Bo/YLkiCYAiIuTLrdshJaTyy5bj+/UssuKezk5h2lsQYEsjCUmyoIhAGQflKbK+fnc6yAgSJ4OoeGyiJdx7BjdnjnUsvZgAAirJt/L3CO8ZfcIOYbQCLlfAOBPCm51GtWWz0/2FQDCo2XLbqHD+8ucoKMdztFDJLZycDCJ5C3k7L0BAL+So9McCo5021JHKopyWaHJryguRZNfUVyKJr+iuJTSePi9b4zJNMZsPUcbb4zZb4zZ5PnX9/fdTUVRLjSlqfZPA/AWgA9K6JOstdxBwoHjx05g9efepgY33fIAja1cVbrRNojhFfzIGrJSPuO9N2ls34HDhfbUsPtp7IAR0mm3drPaQouK5U6wzGWXGXEAvGWXVfUB4LPP3hLan9+V7bIA8PcXXxRamzbX0th7npH7cDJf7sP+TH4XokkNOUNw5catJBJIJ0694VGy0g7w1zcogJ+6EZXlefPdms1CS42Pp9vvWC/bexNiuLtz69q1hcYq9QCwZoectTewvXSCBoCUAweElpMl7xYAQHCI9x0Dp/ZixvmO61IUpZxTls/8DxhjNns+FvCVD4qiXLKcb/K/C6AOgJYA0gFMdAo8d1bfqRPHz/PpFEW50JxX8ltrD1prz1hriwBMAdD+V2L/O6uvYgifKqMoiu85r/ZeY0zsOVN6BwDgVZ0SVI+OwGOPDPPSWjfkzqgDxywQ2tgJcnQUAOzbLkc3jfrjWBqbuilVaJ8s/TeNvbWPXN/eNk3OKrmq/1V0ezZCy8lll63Hd2rZZcW9Z+6VhUwAWJ4s3WgfG/YIjZ1wn/Q1ePS1Pwrt5o7S5wAANuzZI7S7rutFY0sWqgCgqIiv0T9D2mtjqvA2aVZwi0uKFVpAybZYD626SkfdQOIIDPAWYaeCW4f60rXZqW2YHUOrzs1pbHiJovL0UFlkduI3k98zrqsrgEhjzD4AzwHoaoxpieLpvHsA3FPqZ1QU5ZLgfMd1Tf0d9kVRFB+iHX6K4lI0+RXFpWjyK4pL8amZR9rufbjr1ie8tKff4G24c6dI041JE/9AY7/ZliK0f4yfRmN7jpDV53sG8xbjpyf/VWiNa8i20Nkzv6Lbn8yVM/yefvNpGstcdpkRB8BbdllVHwC6Nm4stAee4Hcc7hgjnXazjsvejGlfLqXbh4TJSvM3y3+gsUcz5LExUxYASGgg24YDHFq9DxyVj7t3+16hXd2wId1+3WK5vyPuuIHG7jks25zZ/D4AWLVNzp68unEjGsuq/fv3yHZoANhXwsX41KnTNI6hV35FcSma/IriUjT5FcWlaPIrikvxacEvIqYabh3r3YZ6Xz85/goA3l4wX2h7s7Jo7Jtj5fr2mARZJAKAKX+Sa5CG3D+a7wMpjLH2zTufvY9uHx0tFzs+++54GstGaDm57LL1+E4tu6y499ZfeeH0TEGh0NpfJ8dMXdGCF6pqVpPr7k+34C3K70z5RGjCidZDDnH13ZGRQWNbkjFttRrWFFrJttizNLhCFgKPn+ZFtKToaKFVCJSOzQDQID5OaHEOY8B2ZWYKrSBfvjcAUJDn7Y5cdIa3SDP0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUnxa7Q8JDkaHRg28tPbtr6exWemysr8wTc7JA4D42rLCO2BMPxobu0gaO9w37EYa+/XML4TWbVBvoe3Zuoduvy9Imow8+4B0yAWAa66RxiFO89mYyy4z4gB4yy6r6gPAu5PGCe30qQlCa/VkEt1+0rszhTZ8GJ+DyOYbHjnAfWKbdpAtyqlbd9PYxCjptJt9RDrfbk/n7bLpqdI5t4aDe+/uQ4eE5u/Hr6fxERFyv06eoLHzvvhWaPmnuZNzvTbeJiFBFfnsS4Ze+RXFpWjyK4pL0eRXFJdSmnFdCcaYZcaYZGPMT8aYhz16hDFmiTFmh+erevcrSjmiNAW/QgCPW2s3GGNCAaw3xiwBcAeApdbal4wx4wCMA8Atcz0UFRWJVsnbxt5JYzd8vUFor7zwEI39MFI6ueae5K2x3ft1krGneGxERHWhDRnYQ2hsXTcA/G2cdBvOu4dZIgJ129QVWmh4KI1lI7SYyy7A1+Ozll2AF/f++d5zQqtanf+eb9KxidAWfLWSxiZ//5PQ9u3dRmNf/bN83/s+JVu6AaB7VzkCa+PSjUK7oilfz5+W/IvQOnRuRWNnzFwktPRdvJD42FPyPJ/8zmwam515TGinjvNzdOtKb+NsJw8IRmnGdaVbazd4vs8FkAIgHkB/ANM9YdMB8JK5oiiXJP/TZ35jTG0ArQCsAVD9HO/+DADyMqkoyiVLqZPfGFMZwKcAHrHWet04tdZaFHv4s+3+O67r6BGd96kolwqlSn5jTCCKE/8ja+3Z8TYHjTGxnv+PBSDXIcJ7XFdV0uigKMrFwVj76+t/TfEC9ukAjlhrHzlHfwVA1jkFvwhr7RNOjwMArdu0sStXrfLSjpzgXU6rd8p55n1byFFKAHAiL09oHyxYQmMrBMsOqOZN5SglAEjLlB1cnUp0KAJArUjeAfav5bJTy4k29eoILeOYLPwAwP5MWWB0GqHFzDad1uOz7rQP3pe+Cq9N4IXXH3btElq3lnyM4+ufymJXgUMXW40a8hPloSPZNHZQxw5C+/Cr5UKrk8T9Hvb8Ijv84DCCa/lM+bg3PyQ7KgFg50+yI3HZrK9p7Mjxo4TmtPa/ZKfkqIEDsW3rVr7DJShNtb8jgOEAthhjNnm0pwC8BGC2MWYUgDQAg0vzhIqiXBqUZlzXSgBOv0nk1EpFUcoF2uGnKC5Fk19RXIomv6K4lN+s9l9IGjRpYt+Z7V3ljXeoYq76SbZ6rv18LY0dP+FeoVWpyEc/5Z6WbZKn8gtIJBBGHoONUnpl6iy6fa3G0megdVIijY0Kla28pwv4fgUGyFJN6kHudZC6X7ab9m3bmsay9fh1Wsm7EC3q8mNomyTX+c9Zs4bG7klJE5qTQy17HbMO8JbqE8fkiLToWtJl189h3X3JdlkAaNqpKY0tIOdN9kF+F6LnNfKuR2aO9BkAgEVzlgktNkn6UABAWLUwr59ffOxBpO34uVTVfr3yK4pL0eRXFJeiya8oLkWTX1Fcik8NPAMDAhBbYn55jMM889Mn5Iik916XBpMAUESKlpM++jeJBCJi5PqCmCi+5qBycLDQmEHkH0by5saPlq8Q2gcffEZjR4+SbaF5DgW/lRtlUequ63rR2G+Wy3nzTiO0mNkmW4/fbdAQuj0r7t18BfcO+Mci2drqZFLZuEa80M7E8QJYQjX5Xr4xeY7Q2nfjRc+q1eX5yMxkAeDATtkK3LoHf9x582URLz2Vr/0fNFqaz7JCMwBUCvJuVw+pKM9ZJ/TKryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSfFrt9zMGoSUq6FNmf05jGzSXbaVnyIgnAHjwiVeFVqEir47G1YkT2opFvAWVOab2GtRVaMbB7CE6UrYun2qQQGNfn/ih0Eq2bp4lfbesEgeH8Crv0Qzp5vrOlE9oLBuhxVx2mREHwFt2WVUfAO7qLV2Qg4L4Mew5KI+3X49baGyPm6SP7PL5cuxaxcr8ud547hmhPfrCSzR25F0DhPbJXGmeAgAJ5H0fevO1NPahO+Q+rFgh71gAQGJic6+fdxNDFSf0yq8oLkWTX1Fciia/oriUsozrGm+M2W+M2eT51/f3311FUS4UZRnXBQCTrLWy2uaAMUasRXeolSF9v3TORUseWym0ktCKzvDiYHglGZvQkBfh2JinvEK55typELmfFOZia/HZJptJa2vukVwaGx4lW1CLirgvQ8VQ6Ung589/5x85IOcqsBFaTi67bD2+U8suK+7l58uWbgAIIGvvCwsdHpe4M/v5+QutRn3u3hsZKfWYxBgau+uQdKs/uDuDxrbp1Fxouw+RcxxASIgcP+fkP5CX5+1fYC0/FxmlMfBMB5Du+T7XGHN2XJeiKOWYsozrAoAHjDGbjTHv65ReRSlflGVc17sA6qD4j/F0ABMdtvvvuK6sLL46SlEU33Pe47qstQettWds8YeMKQDoaJZzx3VVq1btQu23oihlpDTVfgNgKoAUa+1r5+jnLqgeAEAuMlcU5ZKlNLP6OgFYAWALgLOlxKcADEXxn/wWwB4A95wzspsSm1DbjnrYu3UxpEoIja3RQFZd44hRAwBUJkYHNSMjaeycxXJ+XqUweQcAADq3aCK0f06Ts+vWLJamHQDw6MTHhdY8gd9ZWJOaKrQjB2VrLgBExcq/oJzuOOQckQ6xOQ53EWrVl/t2Q2tpTvH1Vv57PvuEdM5lRhwAUL2KrGizqj4ARJPYTIc5hgvXrhfajVfKP0pzTsnWbQCIqFxZaMdP87sQzGwlOEjebQCAHRnyLkBNh7+E2Vy+w7n8PfP3875d1qtLV2zauPHCzOr7lXFdsmFaUZRyg3b4KYpL0eRXFJeiya8oLsWn47pat2ljV65a5aUtdigetSejnyLJSCsAGD3meaH1vL0njU2IlEWWn3fvpbFnCmURLT5Bjn7q3KAh3f6nffuEVoGM2gKAnWTcVmHhGRobFiILlDGkKAYAAf6ytZUVnwBgT7Jcj7/kY+m3MPypkXT7nCxZXLyqLXcKvudmOWLNqWV3ybfzhMaKgADw1qcLhXY8+7jQmrSqT7f/bNoiofUZwZ2Rl30qi8eFBXzk2KA7pTPyymWyOAkAn38o1+6np8uCMABERXkXaVNSvseJE8d0XJeiKM5o8iuKS9HkVxSXosmvKC5Fk19RXIpPq/1Nmje3s77wrh4HEKMFADh6UraKHs6V1WQAyDkhWzUHtm9HY9nx5ji0bxYQ444vVsnZdymrk+n2A4f3EVpYRWmuAQCnSKuov4PTCWtBdZrlduCobBFmMwgB4Bh5zf3IPjSKlw7IAPDmh7IqP3KwfA0A4LW3ZwiNGXEAQGKzRKGdzJH7CgAP3HS90Abf8oTQ9u/dSbdv362L0KIS5HxGAOjYuZXQtu2Ud0wAgKVZ/6s70Nj/bJWOySvnypmJAJB3Ms/r5/mfvIfDmfu12q8oijOa/IriUjT5FcWlaPIrikvx6bguC6CwhKvu1r2yBRYAstKlk+zwPt1o7GfrNwjt1SmzaOydQ2Wb5TfJKTQ2ZbXUh98mt3di/Qa5fUGeLOwBgH+gLHzWaVSbxn63ZrPQ4pJiSSSwd7tsXa7VsCaNzSZr/5mDcfOrpRMtAETXkq3Pb0zmY6bYCC3msgsAn9/9L6FNniXbeAFe3Js9869Cu/76++n2s6a+KbRe1w2jsU+OHiq0+TOXkEhO0DUdqb5+iWz7TVn/I41t2NK7fZoVaJ3QK7+iuBRNfkVxKZr8iuJSSmPgGWyMWWuM+dEzrmuCR080xqwxxuw0xswyxvAODUVRLklKY+BpAIRYa497LLxXAngYwGMA/m2tnWmMeQ/Aj9bad3/tsdq2bWvXrlvnpTmZIzIW/MDXP/dtJed4/fjLLzS2iBxvg1heLAsKkAWoQH9ZI00la/EBoAYxaEwma/wBoHWi7GJz6gZkzxfgMIIrOFD+TmYjywBge7r0X2Vjog46mGfuP3hYaBFVw2jslrWyK9JphFbX5k3l9nu5B8NLD/5ZaFWryvd34cK36fY3DZKmq9+vkqatAPDF90uFNvWdT2jsd0u+Etry7/jjPvMnmUaxDgXdmo28i7fPjBqJXdu2XZgOP1vMWTeEQM8/C6AbgLNHOh3AjaV5QkVRLg1KO7TD3xizCUAmgCUAUgFkW2vPNr/vg87vU5RyRamS3zOZpyWAGijf7Y0FAAALWElEQVSezMN9qwjnjus65DCVVFEU3/M/VfuttdkAlgG4EkC4MebsB+AaAPY7bPPfcV1RUXx1lKIovqc01f4oY0y45/uKAHoCSEHxL4FBnrDbAfDqhaIolySlae+NBTDdGOOP4l8Ws621C40xyQBmGmP+DGAjiuf5/Sqn8vNFlXbTzl001o9U2pvU5KOu5q9eJ7RDe/lHjJoN5WOk7uYV+GOHZbvr6MGyvXfLLr6GOzlNVqQPpmXS2M2bdwgtPDqcxu5YL2NbdW1BY9ctlv4DDa7gn9rSUw8ILS1Z3jVp17st3X77up+FVrU6P4Y3nntGaJGRvNo/cP3XQmMuuwBfj89adllVHwA+/UQOm3aKbUjuEuWdyiORQKsOnYXmNGJty2p5V2vlV/x8btzcexQZO2edKM24rs0AhGuBtXYXHCbzKopy6aMdforiUjT5FcWlaPIrikvxqYEna+9N3s+LbTWrRQptyf8w2mvtLl5IXLNIFgdvGd6XxrJRV8wos5LDTHb22u45LFtgASCezGQvdCgI7SH9EoFkXwGg2v8wb/4YmVnvT9p7d/0iC4MAEBgUKLSs9CwaW3Ba+hrEJMbQ2GvbyPbtNal8fFXKBll0/JkUIhd/Lj0CAODKq/oLjRUBAV6wG36HLGQCwFefTxPawUzeojzgxoeFdt1oaUwKAF3aeK/nH9SnD7b++KMaeCqK4owmv6K4FE1+RXEpmvyK4lI0+RXFpfi02t+0RQv76SLvtsykaOn4CgAzVn4ntBaJtWksG6sVR6rnAK/QJhDTDQBI3i/XKjGDDafnmrpItqX2bCsr1wAfwZWZw1s1WQXfyfiD3V2IC+ctt7vJXYQZM2Ub7a7N/E5K11u6Cm3bmm00duRdA+TjHuKtz81qyJbsSZN4tf6mEXI82NUNZTuzk9kLa9kNDOCNsOxOyIIN3HDm2mbS8TguphaNfWWmPLaasTxP9mZ4v2cT7rsHu7dv12q/oijOaPIrikvR5FcUl6LJryguxafjuvz9/BBaYja803ihChVK7zobFRoqNAteyDyce1xomTncjbbkvgJ8f3NIWywgZ6cDQHhICI015HGjw7jzLWsxZtsDvLhXIVC24QK8gJW+Szr63vzQQLr9ji2yENi6R2sa+8lc6Xx7cHcGjW333BihFRbIIi8AbNspvRXYCC3WXgzw9fjHs+U5A/Di3g2t29DYO8dMENr4v/+dxr768LNC633zEBpbKdQ7J9g554Re+RXFpWjyK4pL0eRXFJeiya8oLqUss/qmGWN2G2M2ef7x1jVFUS5JyjKrbwyAhdZaPpyM0LJ1a/ufb7/10tKzs2lsw7g4oW11mHNXP0aaQHyyeg2NXTVXtg13ukk6qwJ8BiBrgW1Zi7dpFp45I7SPlq+gsQOuukJohxzae9fs2Cm0DvXr0dhV27YLrUG8fG0BID4iQmjsTsYXS7+n2/fo0k5o8+Yvo7EJDWTLbvVo+fwAUIXc5WGvLQD8nCoNMn5eL808ln+2kG7PXHbnzeIjKA9kyDsLYx58kcb+873nhObk3jvybnlngLVOA0DLut4zHm/t1w/JmzeXqr23NO69FgCb1acoSjnmvGb1WWvPXlZfMMZsNsZMMsbIm8/wHteV5WBhpSiK7zmvWX3GmKYAnkTxzL52ACIAjHXY9r/juqpFSl8+RVEuDuc7q6+3tTbdM747D8A/oQM8FKVc8Zuf+Y0xUQAKrLXZ58zqe9kYE2utTfcUBG8EwK11z4GN6+pM1loDwN9mzBNa9858TNQBUjS8unEjGtu/nXwMp7Xwy5KThdahbl2hHTt5km4/8d0ZQhszkrfGni6Q7aaVSXsxAAxsLwtrTk6/7HVw8h/IPnlCaJPfmS20HZtkEREAmrdqILT0VNkeDABDb75WaKyYCgA1id/CB7O+pLGjh90gtKBrOgpt/LjRdHtWhPv7m0/R2OrRsmjp1LL7j3fk47J2agCYuli2PjdNrEljS75m+cTbwomyzOr7j+cXgwGwCcXVf0VRygllmdXX7XfZI0VRfIJ2+CmKS9HkVxSXosmvKC7Fp2YeIRUqoF2JuXrbDvC5b9d2kXcOnaryX63bKLS6NXkL6+qdsjU2kpiBAEAV8nysKs9m+gFAl94dqM44kSdNGJhpBwCkkNfMKZbpuzK5S+68L74VWnamNDoZOX4U3X7RHNnKO2h0Pxr7EJlpFxJShcbOmvOK0D7/cA6NrdOyjtDWL5GmG4X5vCq+ZbWMrVyZ3x1hLrvMiAMAflj0g9BYVR8ARvXqLrRevUbS2DbdvNvCT+TIOzZO6JVfUVyKJr+iuBRNfkVxKZr8iuJSfFrws9aKNtTVybxV9IpG9YXm5Ga7fOZyoWVcIVtNAaBbD1mE+2a5LMYAgPGTy6LTmiUJzakQGUGceheuXEtjszNli3JAEH97crLkOv9WneU4KADYv0e21xY4FLvyT+cL7dRxuZ7fqT04NkmOunIqRK5YIQt2fg7trodz/09o6empNHbl3JVCS1n/o9CuvY0XIld+JVuMhzw6nMayEVpOLrvNOjcTmlPLLivuLV78Po3dutW7SJt16CCNY+iVX1Fciia/orgUTX5FcSma/IriUjT5FcWl+LTab4wRM+WcKryn8mXlOc3BA7BSGJ/hxwgjBhlODsZHM44KbV8luX33TnweXR6ZJ1cplN8ZYDPx/Pz5axMcIvfBaY7hPnJsBXl8Tl29NtIBeOtK6dFS5GAcElZN3o2pFCRnLgJAYqK8O5GXx01R/Mldl6goaaQB8Fl1DVvKSnvNRrzS3ri5bCvv0kZuDwCrU6QrcMnZeWcp6bILOJuXlGzZBWRV/ywHDsh29dKiV35FcSma/IriUjT5FcWlaPIrikv5zXFdF/TJjDkE4OyMo0gAl+MUDz2u8sfldGy1rLVRpQn0afJ7PbExP1hruRd3OUaPq/xxOR/br6F/9iuKS9HkVxSXcjGTf/JFfO7fEz2u8sflfGyOXLTP/IqiXFz0z35FcSk+T35jTG9jzHZjzE5jzDhfP/+FxBjzvjEm0xiz9RwtwhizxBizw/OV295cwhhjEowxy4wxycaYn4wxD3v0cn1sxphgY8xaY8yPnuOa4NETjTFrPOfkLGMMX5BwmeHT5PcM+3wbQB8AjQEMNcY09uU+XGCmAehdQhsHYKm1th6ApZ6fyxuFAB631jYG0AHA/Z73qbwfWx6AbtbaFgBaAuhtjOkA4GUAk6y1dQEcBcAHE1xm+PrK3x7ATmvtLmttPoCZAPr7eB8uGNbabwEcKSH3BzDd8/10FI8vL1dYa9OttRs83+cCSAEQj3J+bLaY454fAz3/LIBuAD7x6OXuuM4XXyd/PIC95/y8z6NdTlS31p5dn5sBoPrF3JmyYoypjeIpzWtwGRybMcbfGLMJQCaAJQBSAWRba8+uv74cz0mKFvx+R2zxrZRyezvFGFMZwKcAHrHWelkGl9djs9aesda2BFADxX+JNrzIu3TR8HXy7wdwrgtDDY92OXHQGBMLAJ6vfDDeJY4xJhDFif+RtfbfHvmyODYAsNZmA1gG4EoA4caYs8Y2l+M5SfF18q8DUM9TXQ0CcAuABT7eh9+bBQBu93x/O4D5F3FfzgtTbLc0FUCKtfa1c/6rXB+bMSbKGBPu+b4igJ4ormcsAzDIE1bujut88XmTjzGmL4DXAfgDeN9a+4JPd+ACYoyZAaArileFHQTwHIB5AGYDqIniFYyDrbUli4KXNMaYTgBWANgC4Kxn11Mo/txfbo/NGNMcxQU9fxRf+GZba/9kjElCcfE5AsBGAMOstdIP7DJDO/wUxaVowU9RXIomv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLuX/Acz1FcvEBIHhAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYVWX3/u9HVFDAWXBElHBOHHPI1NTMstehzKHJKcvSsmzS8k0t9c0sKxssU8tG1Mox05xLCycIB5wQUVFxHlHB4fn9wfH747juXSSK4l6f6/KCc7v2Ofts9mJz1l7PvYy1FoqiuI9c13sHFEW5PmjyK4pL0eRXFJeiya8oLkWTX1Fciia/orgUTX5FcSma/IriUrKU/MaY1saYLcaYeGPMwKu1U4qiXHvMlXb4GWN8AGwFcBeAJACrAXS11sb9zTbixQIDi9LYoDJBQtubmERjQ28JFdqZ1DQae+HCBaGlHD1FY/0L+Qvt6IEjQitWWu4rAJw6clJoISElaezZNLm/STv30tgiJeQxSzvD3++Jo8eF5pc/P43NlcsIrVjxwjLOyDgASE4+LLRgsq8AkHL2rNAKOOzX4aMnhOZ03gYEyuc4cUz+fPPmy0u3T02R+1WwcCCN9fHxka91gp9LQUXlcTydmkpjz5FztEC+fDT2WEqK1+NDyck4efw4/wFdRu7MBDlwG4B4a20CABhjIgG0A+CY/IwGDdpSvd9b/YQ2pNdLNHbi9IlC27BzF409eVgm5B8zVvB9+08DoU378Buh9R7+DN1+2ZRlQhs3dhCNjduzR2gv9x5GYx8e+JjQdsbx97tw6s9Cq1wzgsb65vMV2uN9HxRavjx56Pbv/O8LoT3/SjcaG7Vpq9Ba161FY7/6ab7Qzjn8cm/UpLbQFs6RP9+QKiF0+61r5X7d+2BzGls0IEBov/z6B419rtsDQotOTKSx+44dE1qLatVo7Myo1V6Phz39JI1jZOXP/tIAdmd4nOTRFEXJAWTlyp8pjDFPAHjiWr+Ooij/jqwk/x4AZTM8LuPRvLDWjgcwHuCf+RVFuT5kJflXAwg3xpRHetJ3AfDQ320QGFhUfMZfsEB+TgSAkZ8OFlq+fAVo7K7DstC0e/NuEgmE1aggtMIlitDY+JjtQlu5crbQZtSeRLef+9lcoZ07f57GFiQFnbx5eZGnc+NGQntp/loam5S0WWjNO95DY6eOGy+0Do+1Flqj8HC6/flz8r35OdQHUo6nCC313Dkau/D7eUKrVIt/Bi7VThbWDiYdFFqfXvfT7fMXlAXDpfOiaGzXLvLYrP2V/xxOdW4jtIYOx/HHVauEtvPQIRrbuHoVr8cBfn40jnHFyW+tPW+M6QdgPgAfAJOstRuv9PkURclesvSZ31o7F4C8vCmKcsOjHX6K4lI0+RXFpWjyK4pLueL23ivhlqpV7ZhvvDvkShUqRGPrhYUJjbXAAkDycdnC+s7oyTT20zGvCi1qq6yIA0C5YsWElkaq9SP/JzsMAWDHxnih1biDd7GdOCxbWIf8l7dHNGsgq/Wx63+nsbE7dwqtdBF+d2M/OY6Ll8vq9eP387sFyzZvEpqP4deXKR9NF9rLQ3vT2FRyzCuX5G3SU5f/KbR8/rICHlSA3znaul3eJTq4W94tAIA+j7YT2sING2jsrWXLCq1amTI09rW3PxfaSdIqDgC9nu7o9fih++7DxnXrMtXeq1d+RXEpmvyK4lI0+RXFpWjyK4pLueYLezKyNzFJLMt1atllxT2/vHwN9s8xMUKr1ZIX1na/ekBobw6Xba0A0LBtQ6ENekgWpeIT1tHtx8/4RWg1qvOWzrDgYKF17/IyjV0ds1hor438jMbO+lYWPkNCqtJYX1/ZTjxj5kdCi93Flw/HxWwT2ks9OtHY4NcKCq1yqVI0tlvP14VW+y65dBcA+nSUbbSf/iCXNYfUl8VcACgfKvfBN79c6gwAPrnktZMVbgGgeDXpCbD36FEa+2r/R4WWy6FweuikdyGQ7ZMTeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZWu0PvSVUmG0yIw6At+yyqj4AtKklK/sNGsjWSwCo8vU7QrtwTrqlAoBvXmlE8ePSOTSWUbWqbFEOdHBhXb5li9Da9ulAY/PlldXnLo/eS2M7dG0ltHdeGUdjmSnviE+kYenq+dzcgt0ZOEVcegGgkL90Rn7ymZE09ouJ0sjUyUH48CnZBlundhWhFSGvD/C2Yf8qcnsAyJtbpk+XFk1obLPb5flYu6FDbJdmUqvG79DkvsxB2DgcF4Ze+RXFpWjyK4pL0eRXFJeiya8oLiVLBT9jTCKAkwAuADhvra37d/FnUtPEJB0nl91FU5cKzalllxX3oqJm0tjRL0v33sAifBxTCeI1ELVWepQ6rQ1/f+DHQuv4PG93PX5ItoVWqyYLhgAwLzZWaCHF+Fisxb+tEZpTu+rBZDk1qEFTecwLB3MPhhgygaaiw7r7Ratk8fapFx+msau2Sxfl2qGhNDbQTxZUzxBX4AMneBsuK1AynwMAaB0hJx+xYwAArTt3FFqL+26nsQG+8uezZscOGluf+F5klqtR7b/TWst9hRVFuWHRP/sVxaVkNfktgF+NMWs9Y7kExpgnjDFrjDFrTh6XAwgVRbk+ZPXP/sbW2j3GmCAAC4wxm621v2UMyDiuq3ylyjquS1FuELJ05bfW7vF8PQBgOtLHdiuKkgO44iu/McYfQC5r7UnP960AvPF321y4cAEnD3u3X7LZeQAwtF9PoTEjDoC37LKqPgBMn/6e0CL/lI6vAFCWuNxevFWacbzxOm+X3bxZzlzbE9+YxqYck7Pr7r6jHo19pG0voUWt5G3HmyvLOfS3N6pJY/ccOSK0LZtllblnW9kyDABTf5fHMe0Cb51e+M0iod3zMb9ZlEjm1J08e4bGzouRd0LshYtCq1Ca34WIiokT2tFkbrrRqGJFocVtTaSxvXq0F1pYUBCNHfzOBKH55PYhkUC10qW9Hl+8KN+rE1n5sz8YwHRPL3FuAN9Za+VERUVRbkiyMqgzAYC80akoSo5Ab/UpikvR5FcUl5Kt6/lTjp7CHzNWeGmFS/DRUWyElpPLLluP79Syy4p7XRpKl14AGD7ua6Gx0U19X5ZuqwBQsrwsKvXsLN1lAd5W+mr/d2ns3EWRQuv4wAs0tuWjLYW26Hvp/gsAJ8hIqEkThgptxdatdPvjB2Ub7Pa8/BT7bOIQ+fpneBFvbbQcA7YihXs7hFYrJ7S2taXT7y/ruOPyrjg53iziTl4gnRklC7oXSXERAKbNkse8Rt3KNPaNF2RBd52DY/Kcxd7n87GTsnDshF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKtlb7/Qv5o8F/Gnhp8THSqAEAyhWTs9TY7DyAu+wyIw6At+yyqj4ADH5KVvH/O2ai0Kzl65VubyXbc3+OkuYaALBxhTQJOXuaV7+PnT4ttHwB3BWY7duQoU/R2I8n/CC0DUlJQitNjiEA5K4lq9fhJUrQWGam4U9MLAAgIkK20W5L4CYwLapVE9q7E6YKrWkL3jpdvcmtQmtftw6NHfHBV0Kr14LPELQhchYjMwMBgGhi3HHwpLwTAwBlwrxnC+b1lbnghF75FcWlaPIrikvR5FcUl6LJryguJVsLfkcPHMG0D73HP61cOZvGvvJSd6ENeqg3jWUjtJjLLsDX47OWXYAX994cIFsvBz7NR1JNGCsLTQNfk9sDQJsGci179868ZTe0eHGhlSjPC2ujB7witPhH+XGMWihbUHs91lZoTm7Fb78p16G//gYvLkZtkuPJ2tTjhbWhT8lxXdVv42v/m9apIbQjydKnoEqpUkIDgMT90jPi9bc+p7FPPSWdmIcP5t4O48cNFppToTglNVVoToXTy8dz5XcomjL0yq8oLkWTX1Fciia/orgUTX5FcSn/WPAzxkwCcB+AA9ba6h6tCIApAEIBJALoZK3lLocZKFY6CL2HP+Olzag9ica+/sanQotP4GuwGU5FKWa26bQenxVkWHHP38+Pbt/3pdFCW7aeFyLz5pOFmh5DH6ex9ercJbSxkZ/Q2BGD+wjtnIOpZsCb/cnzyrFnD7dpTrcvHFxYaLOXcnNUX395zCZOm0tjx0e+L7QzaWk09okuz8nnnTpWaE7dhL6+eYXmVEzdeVAWioNCuSknG/m16C9+Pm+LjhdaeO1baGxICe/XSzt/nsYxMnPl/xJA68u0gQAWWWvDASzyPFYUJQfxj8nvGcJx+b2SdgAme76fDED6EiuKckNzpZ/5g621+zzfJyPdxpviNa7rmI7rUpQbhSwX/Gz6B2PHMVzW2vHW2rrW2rqBDivtFEXJfq40+fcbY0oCgOcrH6WjKMoNy5W2984C0A3AW56vsiRMOHXkJJZNWealzf2MV3hPHJM3D8bP+IXGVq0aJrT3B35MY9kILeayC/D1+Kxll1X1AeDj0S8JbVlP6UQL8PXtp1P4ev5mbf4jtOCCBWnskFGy5bZo6aI0dsc6uY484k655ry4w52UDX/+JbTm7fh4soU//Sa0p/t2prE/zF4i96GsbHEGgKbt5CixectXC61dM+4NkUjce9ct41X5dq3ke1u1YDmN9XvmEaF1atyIxn6QkCy0woX4MS8SEOD1OHeuzF/P/zHSGPM9gD8BVDLGJBljeiE96e8yxmwD0NLzWFGUHMQ/XvmttV0d/qvFVd4XRVGyEe3wUxSXosmvKC7FOK0pvhbUqVvXRq1c6aWdc2hHfPO9L4XWul0TGhuYT5pXrk9IpLF74vcKzWmEFjPbbFFbrhd3atktX0q2hTatUoXGliol2zcXrV5GIoEpPy4QWt/u99PY42QEllNRiJmmniRjxH76I4puf3+jBkJbuGEDjWUjtJwYN10Whe9rUp/GLomVr1c6WL6vOypVotufPCuP17jJM2gsO+a5fXxobExiotAaO+zD2XPnhHbeoSX78vX8dzZujJjoaEODL0Ov/IriUjT5FcWlaPIrikvR5FcUl6LJryguJVvde8+mpSFuzx4vrSCp1APAicOy3TUsmC8eXL5FOsEePyS3B4CUYylCO0Uq2gAfocVcdpkRB8BbdllVHwD27pUGDqu2SQ2QFV7A2aCjcP78QnOqSMfv3y80Zg7hdGz98shRURUdXGcPn5LjpwJ8uSlKozrVhVbA4bypFV5BaEtWRAvNqdqfO5c8Ni3v5q3A7Ng4mYQwM4+087Kq7xRbymFRnM9ld25ykXPDCb3yK4pL0eRXFJeiya8oLkWTX1FcSra29xYsWMw2aNDOS8ublxduJn47Qmjdu7xMY9v26SC08LCyNLYMmS3/3+ffo7FnT8tWz7Q0qTm57KaekWOXbqskx4UBvLjXrVlTGjt9jWw7njz8GxIJlL+1vND8C/rT2Nhlcj3+rFkfCu3CxYt0+8g/pFNvp4ay5Rfg7arHTp+msYs3yMIrKwgDQIdmco38n9u2Ca1eBVkYBIBdhw8LrXJJ7vfAYuOS9pBIoF6YfL2il63Fv0Qhf/nzSXawwLu8/fqB1q2xITZW23sVRXFGk19RXIomv6K4FE1+RXEpmfHwm2SMOWCM2ZBBG2qM2WOM+cvz795ru5uKolxtMtPe+yWAjwB8dZn+nrX2nX/zYkVKFMXDAx/z0jo7OJjWipCV7tUxi2lsvryypXJebCyNfaRtL6HNXRRJY1n1ObS4dI1ls/MA7rK7Y0MijWUtu6yqDwAd6soW492k8gwABUl775k0eRcCAIo+30NoH/0wW2j9Osr3BQAF/OWdm9id0g0XAKZFzhdaRFPpFAwADSrKOyRhQXwm3sjx3wmt3b3SBMbJHIPNAPzxdz5vsFfrlkI77nDHgrkrX3S408bmI+4lJjQAMGhAN6/HeRxatxlXOq5LUZQcTlY+8/czxqzzfCyQ41kVRbmhudLkHwcgDEBNAPsAvOsU6DWrj6xWUhTl+nBFyW+t3W+tvWCtvQjgcwC3/U3s/5/V5zBVRlGU7OeK1vMbY0pmmNLbAQC3aL2MtDNp2Bm3y0t7af5aGhu7/nehvTbyMxrb5VF5syGkGB9JFbVyjtA6PvACjc0XIAtYJcrL9eljIz+h27Mij1NLJ1uP/3SPYTSWFffKFuXvd+xUWTxqSNbHA8DMFXKUGSvubUuW46QAIOWsLCQmXZRj1wDg+b4PCa0IaWsFgLfHy4Lsyl+4g/CYzwcLrTB53shfuTPy/kTpadCuw500tnff4UK7syuPLRoof+5b9vHj+EzntkIbNYEXpQcP9T739uzN/NjMf0x+z7iuZgCKGWOSAAwB0MwYUxPp03kTATyZ6VdUFOWG4ErHdU28BvuiKEo2oh1+iuJSNPkVxaVo8iuKS8lW994TR49j4dSfvbSkpM009rEn2gtt1reTaWyHrq2Etvg33hq7uXKI0Fo+Kts0AYAZnYwe8IrQRgzuQ7cfMmqC0J58siONZS67zIgD4C27rKoPAM92aie0vi+NprEbV8cIreGtlYVWsQQ3t5i96A+hDXiYzxB8bvD7QnvT4TjuTZCtrb2H9aSx7A7LCy+NEZpTVb5SpVChxe3cTWOHj3xGaNN+/Y3GhtWXd8OrlCpNY1clJAitgsO50Lm997n724JvaRxDr/yK4lI0+RXFpWjyK4pL0eRXFJeSrQU/v/z5Ubmm95rt5h3vobGlictuSEhVGvvOK+OE5pufj026vVFNoS36nvsEDBn6lNDiH+0tNKdRWUVLy5bb3Ln471s2QsvJZZetx3dq2WXFvY9Hv0RjW7WSRbRigQWENoW49AJAyQq8EMh4/rlHhLZlL1+z3qprC6HdFhZGY9m4rNFvPy805ugLABEh0vW5gB8fI1YsMFBodWtVobGRv60QWrmS3JPgjsqyyHqbg9twSqr3ueB0fjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUrK12p8rl4FvPu9q7NRx42lsu7bNhObry+f6EeNbHEzmM9P2HJFepCeOnKSxH0/4QWhRC+WdgYA3+9Ptd6zbIbRyPYvR2Pj90kSCzc4DuMsuM+IAeMsuq+oDwK+/ThJawoGBQrujiqxGA8DCtdIx2cmh9re4TUIrWkBWzwHg4AH5M9tV6BCNZW3S05YuF1rzuvKuDwCcTpXuvadSudtxLnLirVoj5woCQOHgQkILKijvpADAxqQk+VoOVfzw4GCvx8wF2gm98iuKS9HkVxSXosmvKC4lM+O6yhpjlhhj4owxG40x/T16EWPMAmPMNs9X9e5XlByEYWvWvQKMKQmgpLU22hgTCGAtgPYAugM4Yq19yxgzEEBha61c7J6BajVq2O9/9l7Pf/gkL7bFxMh1/v27yjX+ADDik2+E1qBpLRq7ZbMswj3RnrcYbyCFF+a+O2OhbN0EeIvxI3fzdeTMkbdqab7e+9+M0NqQJNeis5ZdAEg4IJ1fb69YUWg9+nBX4cb3NxZanUq30NgPRnwhtLVRS2nstz9fPimOOwUDQFyifL+/T5Nr7IeM6Eu3jyHjxZwcl4uT9t65S7ir8IJv5gmtTgvueD9qkNy30V9NobH3NKvv9fiB1q2xITY2U1W/zIzr2metjfZ8fxLAJgClAbQDcMldYzLSfyEoipJD+Fef+Y0xoQBqAVgJIDiDd38ygGCHzRRFuQHJdPIbYwIA/AjgOWvtiYz/Z9M/O9DPDxnHdR0l99gVRbk+ZCr5jTF5kJ7431prf/LI+z31gEt1AToqJOO4rsJkma6iKNeHzEzsMUgf0rHJWpvRCXEWgG4A3vJ85Q6SGchlDPLlyeOlNQqXs9cBoE55aVgYu2sXiQRWz5dFFtZRBQA920qzzxVbt9JY5ikQVEAWyx5u05xuX5zETl68lMYeP3RCaJU68vXx/2aEFjPbdFqPzzr3WHHvi0+H0O37vBgvtFNnz9LYYSP7Ca1fT1n0BIDYRPlzT9yYSGObNKsrtKQaci183B7eAeqbW6ZEiMMotONnzgitbh3uOTFvshwTNy9SdpACwKBRcvxb3068oDsrOtrr8Zk02aHoRGbae28H8CiA9caYS/2mryI96acaY3oB2AmgU6ZfVVGU605mxnUtB+B060BarCiKkiPQDj9FcSma/IriUjT5FcWl/GN779WkeHAZe38X79bF8+fO09j2vdsILS6GO66+2P1BocUkJtLY9QmyffP4weM0tnYtWf2ePHaa0AoH82UNG/6U6/GnzfiIxvpddhcEAKb+yVtFC/hLXwOndte9CfuE5uSym3I8RWi5fOT1oXqFcnT7+rfIVt5XR3G/hvA68i5PXr+8NHbeJNkau2s7PxeKFZct0SFV5Ii2l1/oRref/KN8rdgl0qcAAO7pLdvCn24jx6MBwN6D0pl46jLeFn5w90GhDejOx7x9vWiZ1+M3n3kaiVu3XJ32XkVRbk40+RXFpWjyK4pL0eRXFJeSrQW/6hER9odffvHSWKEL4O2XrSMiSKRzCymDrdHfvo+3xrascavQ0s7LAuXspbxdtsItcvRTKtkeACqWKCG1krwwF0vWnCcdPUpj29epQ3UGM9tcv1uuj3c63nNnLBPayFeeoLHsvHv3mx9pbG7Schu9MJpEAiuXy4JddKxcz9+923/p9gnx64RWpkwlGnv8uDQRDb+1Go19Z5QcGdav3/9obLcBnYVWpVQpGntHXe/W8qSkLUhNPa0FP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lGwd15Vy9iyiNnkbZ7CWUgBYNVeOnwp+rSCNLeTvL7RFq+SYKgBY+M0ioX02kZtTHDghDTaiNm0Rmq+/H3+tn2SVefRQaWIBAIdPSRfj8xcu0NhpkfOF9nzfh2jsc4Pfl7HPPUJj2QitJd/K8WTMiAPgLbtOd5PYWKmvlsnjBQBVysiW3T4P3Etjtx+Qdxd6dH9daPf25tuHl31caE4jx5jJR7RDW/mUJb8LbeyHchQaADzV+02hbY7j49hWRC/1enx3s2Y0jqFXfkVxKZr8iuJSNPkVxaVkZVzXUGPMHmPMX55//EOUoig3JFkZ19UJwClr7TuZfbGIWrXs/KVLvbTUc+doLGshrezQ4vjkMyOF9tSLD9NY5r7rVNDxITPRWTvyxGlz6fYPtGkmtPLFi9NYdhyYOywALNkYJ7SO9fnoJ9ZOvGWvXFsO8ALnoG6yLTU0VLY9A0Dnl7sIbd8O6ScAAEEhQUJ7rGkTGrtowwahnUrl/gXzv5cF3ZrNawqtRrh0hwaALbtlW7mTz0DjSrLtd9o82eIMAGvmrxHapvWraSzjg+8/pPr+495eFK9064btmzZlqr03Mwae+wDs83x/0hhzaVyXoig5mKyM6wKAfsaYdcaYSTqlV1FyFlkZ1zUOQBiAmkj/y+Bdh+3+b1zXYTKJVlGU68MVj+uy1u631l6w1l4E8DkA+qEz47iuog6TTxRFyX4yU+2n47ouzenz0AGArMooinLDkpVxXV2NMTWRPp03EcCT//REh4+ewFc/ebemLvxemi8AwFvjZUtmt55SA4AvJsp5cqu2b6exiYekAcPaaNnWCgARERWFNvQp+VrjI2ULLQD8MHuJ0AIKB9DYRnWqC21TEp8n16CibKN9e3wkjd2bICv7rbryQUsHD8gpyt/+/JXQ2Ow8gLvs1rmLm4mwll1W1QeAFtXlsalf/z4a+2C/7kJLOyPn1wXmkw7IALAnXh6vL0aPIZHA9/OnCi1qNndc/uqr4UJblZBAY9m8vUA/3kK+84C30++/MefJyrgufn9LUZQcgXb4KYpL0eRXFJeiya8oLiVb1/Nba3Eu1buYUakWdzutTJxra99Vm8bmImvDa4eG0tiTZ2XL7IoUvvZ/W4J0rq1+W12hsQINABQvK1t5W9SuQWMLkALUylheiAwLkq2xK3/hhabew3oK7bawMBq7q5AshrIxYIkbE/n2ZIQWW7cP8PX489evp7GsuLdy5Rwa2/qhB4RWtKS8xbxkpRylBgB/zJIjtBo1laPjAODjt78W2u6dW0kkcP6i9Gb4hbgdA0CjVvWEFuBQ8Jszzvs4HHMYPcfQK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8nWan9AYH40auJdsS/Vjq8Enrpczr/r05FXXZnzbaAfb9+cFxMrtNBq5Whsi2ryTkTTOrJa/0SX5+j2Tdu1EtoSH/77tlZ4BaF1aNaIxo4c/53Qxnw+mMYGF5SOx/6+vjS2cP78Qvtu2XKhNWkm73gAQMxCedeEzc4DuMsuM+IAeMsuq+oDwLD+PYS2m6wmXRgjZ/IBQKFi8nzcS2YjAsA93dsKLWl7Io09eEKeo8kJ3OhkU2y80Ni5CMh2cR+H84uhV35FcSma/IriUjT5FcWlaPIrikv5R/feq0nJMqG257OveWkHkw7S2BYPNRfanu3cdbZO7SpCO+PgCrz/kFyz/uDtDWnsuxPkeu0jyXL7vv2kay0AzFsu3VkrVuTFxY3rZZEntGJZGluxRAmhscIeAAwaNFZoo9+WjrwAMG2pLO79OVMWXsvXkMVJADi6/6jQhr/GbR7YCK2Wj7WksWw9vn9BOaINAFrWkgXZssRB6mgKHxN3NOWU0FIcnILDgoKFNupTWYwFAL/8sj23SVPudTDxPenN8FDf+2lsk8qVvR43qF8fa9esyZR7r175FcWlaPIrikvR5FcUl5IZA08/Y8wqY0ysZ1zXMI9e3hiz0hgTb4yZYozhY00URbkhycy4LgPA31p7ymPhvRxAfwADAPxkrY00xnwKINZaO+7vnqtceEX76hjvsUP3NuLdYvH79wvNLy///VLEXxZ/2OgpJ5xiiwcGCq0KGRnm1DF3+JQsHhUjz+kE2x4Azl+Qa8Pn/LaSRAJFShQRWuEAXiyrSDwUcpORZXF7uLFoLeKh8OyTI2jsvb3lev4q5crQWGa26bQenxUC2zeUrvKFyTkDALVq3SW0L2ZMoLHd28luwi9nfkFjI0JChDbwf5/S2Db33ym06JjNNPat5wd4PT50KAnnzqVenYKfTefSWZjH888CaA7gB48+Genz+xRFySFkdmiHj8e2+wCABQC2Azhmrb00BTIJOr9PUXIUmUp+z2SemgBiRJ/wAAALvUlEQVTKIH0yT+V/2OT/yDiu69TxzFsMKYpybflX1X5r7TEASwA0BFDIGHNpVWAZAPSDYMZxXQEOjSiKomQ/man2FzfGFPJ8nw/AXQA2If2XQEdPWDcAM6/VTiqKcvXJzHr+kgAmG2N8kP7LYqq1do4xJg5ApDFmOIAYpM/z+1tSU85i61pvd9P8BeUacgA4ffy00MqHyko7wJ1+T509S2OjYuKEtiuOr9eu3uRWoSXuPyA0X19+FyKRPG+Pjq1pbO5cPnK/HKYaM7fg/Yny7ggAVKoUKrSIEN42fDpVPm8MWcvum5ufNpN/lGv3E+L5uvnwso8LbctufheBjdBiLrsAX4/ftEZVobGqPgDExCwQ2nff/ExjAwLknZRxY3h77yfvvSK0Ew5OuzGxW4RWk4yOyyqZGde1DkAtoifAYTKvoig3PtrhpyguRZNfUVyKJr+iuJRsNfAsWDgQ9z7ovU5/6Tw+Zso3n2yZ9c3P22j9q8j1/PsdegqOJss15xF31qSx7evK9davv/W50EqUl+vrAWDdMlnsGpfCC5Et75aeAqyVGAB+/F2usW/XQbaEAkDcTjlyrIDD6KdTZN160YAAoYWQ9fEA8PU7U4RWpkwlGnuRtJXn9eOF0y9GjxGa0wgtZrbJ1uM7teyy4t7brz1NYxdv3Ci0d1/+kERyHuglx5ABwO5k6XHhNK7rjUneLcIjnu2b6dfXK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8lW996qNWrY72bP9tLyOrSKBhUoIDQfYiwBcGMGVk0GgBNnzghtZtQqGrt1zTah9ezeTmg7D3IHYuYa62QikXb+vNCcTEZqEGOI3n2H09jhI58RmpOhSC4jPSC2JScLLY2YiQBA7I5EoU0awg0rvpz2gdCcfr7szs3Hb39NY2+9Q7ZkszFvjerfQ7dnLbtvfDaMxjYnI7Q+nDaLxvZqe7fQPv2Btw3XrSPbkTdv5y3o/+3p7Y58+PDeq2fmoSjKzYkmv6K4FE1+RXEpmvyK4lKyteBXJrSC7fuat5vr2l/X0tiOA+T89ROHeQGsS4smQotJTKSxcVulfvHCRRpbupxs25352RyhBYUG0e1XLZDjr6b/LNuDAb5GfvrqNXy/isg167sP8bX/R/bJ8WJ1a8l2aABYtUa2q168KI8NK0gBQJt6jYTWtceLNPaex1oJLXGrbEUGgKjZsgV8986tJBIICJDHptF98vzo0F6OgwP4evykeF5sa91dOhA/82BbGptKxsd9Nn0ujd27fZ/QXh8gnYIB4KPvvD10Phg2EEk7tmvBT1EUZzT5FcWlaPIrikvR5FcUl5KVWX1fGmN2GGP+8vzji+IVRbkhycqsvj4A5lhrf/jbJ8hA7Tp17Io/vY0onFx2WWtr8QK8LbV1swel1rkjiQR69ZBTxabNWkxjK9W8RWj31RJepo7GIX558ght/W5e0WbPUad8eRobTOYf7Dp8iMaGBQULLfI37nybK5csEkeOltXvCxdkKzIA/DjrE6E5nV9TlvwutKVTltHYSROGCu38Rd5ifPDESaFFzlwktIGPd6HbO7WFM1gF36lF2ZecC0M+4HP99u+QLdW176pNYx+7y9vEpVGDBli7dm2mqv2Zce+1ANisPkVRcjBXNKvPWntpJOwIY8w6Y8x7xhjqsZVxXNehQ/zqpChK9nNFs/qMMdUBDEL6zL56AIoAkFMJ4D2uq1ixYldptxVFySpXOquvtbV2n2d8dyqAL6ADPBQlR/GPn/mNMcUBnLPWHsswq2+UMaaktXafpyDYHsCGf3qu06mpiL6s7bZheDiNLU7W8+89Kp13AaB2Q9m+2eK+22lsWJBsxa1Rlw8dbh0RITRWwFr0Fx9J1amxbHdtXIm72aadl8Wj1HO8sMaKUlv2ySIRAFQpJSenlyvJ25GDCspjvq2F/J0+L5LXeKcuk4XEZVN5EW/shwOFNm7wOzR2VUKC0H6ZwZ83OUG2xj7+4kNCG/g/7jPARmg5ueyui5UtxrnzyLFrAC/uDevPW3aHjv1SaJcX9v5Pf2yw1+MdO/jIM0ZWZvUt9vxiMAD+Qnr1X1GUHEJWZvXxlRGKouQItMNPUVyKJr+iuBRNfkVxKdlq5hFWpYodNXmyl+b0+n+ROXev9n+Uxk5fJU0vwkvy+XmzZywV2hsv9KKx0Tt2CI3NfVvwM2+XDSgk59z1fUS2FwO8vbcCuTMBAGMjZwrtmc7cRIJVyus6tA1vTEoSWr1bKgpt0CjZxgsA+QtIZ+J6DaWbLgBMGPmN0LZs4sYub01+V2jM7RgANsXGC23zqs1C696/E90+JnaL0AoUlXdBACCsTEmhzZ2+lMYe2y/vVJWoILcHgKHPdhfamG9/orE1Irx/Pk936oQtGzeqmYeiKM5o8iuKS9HkVxSXosmvKC4lMx1+V40C+fKhxWUjjnY6rPT7/YgsouUy/HdVs2rSTXYNKdYBgE9u2X65btcuGnvwpFwbHl5CFhLDa8t1/wBQuJAsFJ13GHVVqlAhoSUfO0Zj98bvFdqoCZE0tsKtsrh3W4UKNDYXWYs++qspQuvb6T90e1a8PUSOIQBsjpMj0sZG8kJioJ+f0AKIBkCcXwDwRz15fkTHyCIgANSMkAVOp9eK3iTHuTm57H6zcKnQnFp2WYFxwMP309ipUd7OxueJ27ITeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZ2t5bvlIlO+STz7y0xtX53DjWRlvEX7aPAkBuH26gwGBuwXMW/0kigTJhpYRWm7TG7nK4Y1EkQLb3lnOwMstH3F0THZ43iBidDB7KK+UDXuomtOKB3AU5DzmOuw7LGYAbSBswABw7Ih2XRz7NZ/WtiF4qtOVbZGstAJxNTRPanHFyZiIABBSWx3zc2EFCCykjq/pOvDGJG3/8t8cTQnvhrbdp7LMPy7buy404LvHE4MeEduTUKRIJdGrQQGjWWm3vVRTFGU1+RXEpmvyK4lI0+RXFpWRrwc8YcxDATs/DYgBuxike+r5yHjfTeytnrS2emcBsTX6vFzZmjbW27nV58WuIvq+cx8383v4O/bNfUVyKJr+iuJTrmfzjr+NrX0v0feU8bub35sh1+8yvKMr1Rf/sVxSXku3Jb4xpbYzZYoyJN8bIaY05CGPMJGPMAWPMhgxaEWPMAmPMNs/XwtdzH68EY0xZY8wSY0ycMWajMaa/R8/R780Y42eMWWWMifW8r2EevbwxZqXnnJxijMl7vfc1O8jW5PcM+/wYwD0AqgLoaoyRHks5hy8BtL5MGwhgkbU2HMAiz+OcxnkAL1hrqwJoAKCv5+eU099bKoDm1toIADUBtDbGNAAwCsB71tpbABwFwAc53GRk95X/NgDx1toEa20agEgA7bJ5H64a1trfABy5TG4H4NJkkslIH1+eo7DW7rPWRnu+PwlgE4DSyOHvzaZzaXlcHs8/C6A5gEtzx3Pc+7pSsjv5SwPYneFxkke7mQi21l4aEp8MIPh67kxWMcaEIn1K80rcBO/NGONjjPkLwAEACwBsB3DMWntpBNDNeE5StOB3DbHpt1Jy7O0UY0wAgB8BPGet9Vqsn1Pfm7X2grW2JoAySP9LtPJ13qXrRnYn/x4AZTM8LuPRbib2G2NKAoDn64HrvD9XhDEmD9IT/1tr7aVBcTfFewMAa+0xAEsANARQyBhzycb+ZjwnKdmd/KsBhHuqq3kBdAEwK5v34VozC8Al+5xuAORUzRscY4wBMBHAJmvtmAz/laPfmzGmuDGmkOf7fADuQno9YwmAjp6wHPe+rpRsb/IxxtwL4H0APgAmWWtHZOsOXEWMMd8DaIb0VWH7AQwBMAPAVAAhSF/B2Mlae3lR8IbGGNMYwO8A1gO4NAXiVaR/7s+x780YUwPpBT0fpF/4plpr3zDGVEB68bkIgBgAj1hrpY/cTYZ2+CmKS9GCn6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1Fcyv8DfxiZ/STZuJQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -283,9 +285,9 @@ ], "metadata": { "kernelspec": { - "display_name": "mykernel", + "display_name": "Python 3", "language": "python", - "name": "mykernel" + "name": "python3" }, "language_info": { "codemirror_mode": { diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb index 3284add29..901bd98f9 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb @@ -39,7 +39,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -78,20 +78,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "'testing_accuracy' : 0.8695652173913043\n", - "'test_success_ratio' : 0.8695652173913043\n", - "'predicted_labels' : [0 0 0 0 0 0 1 0 0 0 1 2 1 1 1 0 1 1 1 1 2 2 2]\n", - "'predicted_classes' : ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'A', 'B', 'C', 'B', 'B', 'B', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C']\n" - ] - } - ], + "outputs": [], "source": [ "aqua_dict = {\n", " 'problem': {'name': 'svm_classification', 'random_seed': 10598},\n", @@ -127,7 +116,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/artificial_intelligence/qsvm_variational.ipynb b/community/aqua/artificial_intelligence/qsvm_variational.ipynb index c0c500634..9d62d274e 100644 --- a/community/aqua/artificial_intelligence/qsvm_variational.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_variational.ipynb @@ -33,6 +33,7 @@ "from datasets import *\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit import Aer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.input import SVMInput\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", "from qiskit.aqua.algorithms import QSVMVariational\n", @@ -57,7 +58,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFqlJREFUeJztnW+sZ0V5x78Py9rF3ask3K1ZXMKStDEYkgrc0DQYtBgNVSK+8IUkknQp3DeVYHxhtEmz3RdN2qQxkpQ0XXbZYkSNgRIaYlETEQqp6F3ECiwSQyAsaJZbQ7y3wYL49MX9HTme/n7nzJ9nzsyZ+/0kG/a3nN/Mc8785nyfeeaZGVFVEELq5IzcBhBC0sEOTkjFsIMTUjHs4IRUDDs4IRXDDk5IxbCDE1Ix7OCEVAw7OCEVc2aKQpd27dRzlnb1XrO8vORd7vr6BgDg+fXNwWvPX97jXV9TvguLbOjW62PDvPqbekLux6V8F1zr6rO/j+befO4p5F66tli3VWhZIfX898avsPGr12Xo+0k6+DlLu3Domkt7rzl4w/u8yz1+9EEAwPXHHhy8tlu/S31N+S4ssqHvvodsmFd/U0/I/biU74JrXX3299Hcm889hdxL1xbrtgotK6Sew/eecPp+kg7eR+qO7Vpf6I99Ebf/xeL7imngvnJLo32fIc+3+c5YbRZDY6OLTUP3lRKOwQmpmNEV3JXQt3WjeClUYJ4HsUhhc7yth4hV2FQ0z3VK3kqDzzNt/3/X30dsm1HBCakYdnBCKsbJRReRswEcBXARAAVwvar+ZwqDQiKxbdeOrrk9MUGi5jmFBEgtyFXvECHP1Cew1+A6Br8FwP2q+nEReQuAtzrXQAjJxmAHF5G3A7gCwJ8DgKq+BuC1tGa5vXmHAmo1kmJOFbAPdIWoTQglKXTIPYcq+a2PPON0rcsY/AIALwM4LiI/FJGjIrK7e5GIrIrImoisbb76urOxhJB0uLjoZwK4BMBNqvqoiNwC4HMA/rp9kaoeAXAEAA7sXfLeydHnreej3N1yfZSqqw6pkllKou/5jJWwkTMxxIKxlNwFFwU/BeCUqj46+3wXtjo8IaRwBhVcVX8uIi+IyLtU9ScAPgDgKSsDFinsPCyU2wWfay3fuH1JDVNVM+KHdbu7RtFvAnDnLIL+LICDUbUSQkbBqYOr6uMAViwqHBqXxI5zh5R7KumQuRW7/dy6z8xnvNi9ps87GoqPWKfapk6RtZhJCElvbcNMNkIqptjFJm181uYuUoiQqHnfd3Mr7JhMeTFIKCVG8tu/c9cNJ6jghFQMOzghFTOKiz7PzVkUeAjZtsdlas2Ckty1EijBjc29mMWFsdJ250EFJ6Rikip435vdYtPA1MpdW1ApdprJItjmo7h9HoKlKpaQnpsKKjghFZNEwZeXl6LfeC5LG+fRfQt37QjZUCLVFsVTVYWu4rmonI/ihngKUxiL54AKTkjFFJPoEqrYQFgiivX4PcU+4GSYsSLUFm2VY1dbKjghFZNdwWOWdfood8gb0/q4o6EypqbkMVH19neG2tzn+cSMxfsW2Fjj6nnExhSo4IRUDDs4IRUzuose45I3DE2F9WEVXFvkWvnsoV4SFtNMsWuXu/gMAaYUbGszZLfPUGYeVHBCKmYUBQ89N7pLiHKHLEgJeTu77FSyqL6pM5bS+ngIsR7J2GvgXRKyQu6JCk5IxYiq9xbmgxzYu6SHrrn0t59jQ/0xyu1ig2v5qTyRoXpTYhETaYidtrQ4gy6mfNe624y1R3yXw/eewHMvb8jQ96nghFRM0jH4WGrQxlWRUifJ9LEd9zjrEpu2OXZyUK42i31OVHBCKiaJgj+/vhms3iHKbT3e6ivXsnzyuwxFieelko6Vxtq1oVu/qw0xtMu3PF2UEDJRnBRcRJ4DsAHgDQC/VlWTU07aWETKgTRLS0laLE8AyaXkvjaMhY+L/qequp7MEkKIOXTRCakYVwVXAN8SEQXwz6p6xMoAi91TXFytVAtJiD0uLvSiaSsfN9/SVW+XV5Kr7trB36uqL4rI7wP4tog8raoPtS8QkVUAq+YWEkKC8U5VFZG/AbCpqv/Qc81goSGpf5bK7VOPT30uWCxuiSXFPVoFMFN7aItI1b4Nlu28cvA2rJ18KT5VVUR2i8hS83cAHwLwRLyJhJDUuLjo7wBwj4g0139FVe/3qcRnGeE8QqZPUrxFYxffk7Kxal+X+MBYXttgB1fVZwH80Qi2EEKMSZKqev7yHrSXi84jJP3UhZKWYnYpYew9BbqJLzFR9VC65cTu0tot0+J0XRc4D05IxYy+6aLlGyp2bD/0nT4vwmcOtZRloak2JCzl/lwJWRacas7cx4YGn980FZyQimEHJ6RikrroqY7dTVX3ojIsp+na5Y5FLa556mlKl6lai+DbvO/5plKvr284XUsFJ6RikuyqunLhubp2/Eav75Sk3F2sDq0fS7ljnqXVyS+W92q17r/BwrZUu/24PmPuqkoISTMGX1/fGEzLs1DskhJFxh6PptrpdR5TmwYbwmI5Z99vOmacbn0KDhWckIrJdjZZDCUptwupx6OlMGa7uO7AOqb3seh8sZgkGZfkmD6o4IRUzOipqjHUMn8cQipbLOaTS/ao+hQw9dZKLuWGjM99lJwKTkjFjH6ySW0RWRdClCK198ANK95krE0S550zZpUZtwgqOCEVww5OSMUkSVWN2VV1HlNI8ZwaMameXVK3j0+qsAtTuDeX+1FVpqoSsp0pdppszKmXEOXOdSB8DAysbeHTdmPtndbFYgcZgApOSNWMMgYvaczT4KPaqcZ3YzPVcWqD9Vi8YaptxjE4IducpGPwVLuexpBKBfq+W7JC1Ebfs04dgygxxkEFJ6RinBVcRHYAWAPwoqpe3Xdt38kmuRYm5JzjZtquDbEbh6R43iWqdhsfBb8ZwMlUhhBC7HFScBHZD+AjAP4WwGdcCy9hGWHJ2Wljz6XXeDrqok0WxqL0Z+qq4F8E8FkAv1l0gYisisiaiKxtvvq6iXGEkDgGO7iIXA3gtKqe6LtOVY+o6oqqruw5a6eZgYSQcFxc9MsBfFREPgxgF4C3iciXVfWTi76wvLxUhHteOiGueaodahumHvhz+d2NfdJLTtd9UMFV9fOqul9VDwD4BIDv9HVuQkg5FLvYxIqY88VKwEWRQu7RajHDFBl7CWjO5BuvDq6q3wXw3SSWEELMmdTZZDFv3pgloalIdX7W2N4K4y3+DLURN3wghAySdAxurSTd8qaqHKkj1VOPO2wHFv12F+222sbHs6SCE1IxScbgB/Yu6aLFJg3Wpyh2sUxhtBqLD92jtUcyloJP1ZOaGu325PnghBB2cEJqJtu+6D7kTp+MddHHds0b6KLbE/JMUzyflYO3Ye3kS3TRCdnOTCJVNXVALgUl7kdH/LHwgnKqPhWckIqZhIJ3KflUkZJsSp3wUrMH4vrMUk2hDtW/vr7hVC4VnJCKmaSCj03qJJxUMFV1OqSKM1HBCamYSSp4SeNcH2oes9aGa/xi3m/RYlxuFWeighNSMUkUvDnZJOZNNlWVnketyt2oW633B4QtWnL57Y61VRYVnJCKYQcnpGKyHx8cwhTWTed0Wzk9Nv8ZWLSJTxl97TDWEJQKTkjFFDdNlkP5YnZ/KSnAtJ2V2+Xexw4K5jxlpYEKTkjFZFfwkhSwoUSb+qByh32nhHZOffyxy+miu0Tk+yLyIxF5UkQOm1pACEmGi4L/L4ArVXVTRHYCeFhE/l1VvxdTcQlvzy6L3p5TspUMU2J7Nlgv8R3s4Lq1advm7OPO2R/7jdwIIeY4jcFFZAeAEwD+AMCtqvpoaIW53p4xb8RUc6ohULm3qP05WJ0D7xRFV9U3VPU9APYDuExELupeIyKrIrImImubr77ubQghxB6vaTJVfQXAAwCumvP/jqjqiqqu7Dlrp5V9hJAIBl10EdkL4HVVfUVEzgLwQQB/n9yySFK7cCVNtQzhsnJpCqv3Ytt0Cm3VR9v+Wx95xuk7LmPwfQDumI3DzwDwdVW9L8RAQsi4uETR/wvAxSPYYsLYwZexlDzkvnzWHJe4U23tgbQxYKoqIRWTPVV1bFLtMjOlMXnpULntoIITUjHVKfhQql+jwiFK3v7OIjUvQcljvJScY3Eqtz1UcEIqpjoFb0h9LteQ0rXrrXVcbnVfYyl3Cd5VDO3nxLPJCCGQrcVitqxceK6uHb/xt59LWKzRpxIWe1SPdR64j9ql3pd+agrepUQld30Wh+89gede3pCh66jghFQMOzghFTOKi97G1QVJ5T5N3VWvxUWfypRYqUc900UnhIyv4A0Wb/CQt6tLvdtZyUsKFlrbbUEpp+pQwQkh+RJdLBJRpjKOI2+SyoMaK8V2askyVHBCKiZ7qqqPko81JotZkOJDjBq0vzP07Ma6n1hKty83Ic+HCk5IxWRX8AaXM5p8lGjRNT7KnnppacPUxnUhpM4/GJuptBkVnJCKYQcnpGKSuOjr6xvR66H7gkhWrnO3vEWMHXQD0rh+7fvs3ktJu6mGkMv+0tf9U8EJqZgkqaoH9i7poWsudbrW5623KFBjpawhKpD61BCL52OFZWow22wLpqoSQoJJouAiMljoojek1dsvRCGmNA71SXRJUacrXdtKV27L+hr6nlt2BReR80TkARF5SkSeFJGbgywihIzOoIKLyD4A+1T1MRFZAnACwMdU9ame73i7BX1vyCHlKCnNtWZyx0ti28VyFsTHFiuvtF3OysHbsHbypXgFV9Wfqepjs79vADgJ4J0uxhJC8uI1BheRAwAeAnCRqv6y57rogf28N6RldDJkPpxs4dIOFgpu0R6pcxfG3H22jauCOye6iMgeAHcD+PS8zi0iqwBWvawkhCTFScFFZCeA+wB8U1W/4HC9aWg+JuLOTSHsWfTcrWY1LD2pnAqeMrPNbAwuIgLgGICTLp2bEFIOLokulwO4DsCVIvL47M+HE9tFCDFgcAyuqg8DGHQFUrJovy2XNbmpDyEkds92SkHOXK65L0xVJaRikiwXPX95Dw5dc6l5gCNm58xUSl7SYpCxsL6PofZMkeoZylSUu4EKTkjFZF8u2mC1hM/1LWr15h/7fK6+5zSlMawLuVNj21gsjrLEbJqMEDJditlVdWz1ybHcss8GCztq2YbJUhX7tqny/X6bnOPt40cfxPr6htO1VHBCKiaJgi8vL0W/4XzUrMToZQjWXsVY53VZkbodfTbP7D6zEn5jIb8JKjghFcMOTkjFJJkmW7nwXF07fqN5uakJcYFSu26We5qV6qpbPsOciUwpWHQ/3FWVEJI20SX32y+UkgJ8qRI4cqt5rufmSu7f7pD9VHBCSNpEl3lvodxvxqmRapGMxfHKLuRq75DnVsJv07qdqeCEVEy2xSYlvC2HcHmbjn0f82xKse9YzJLckiixDefhq9wcgxNC0p5NlmvPaGtKUoGxFLyNq5qX2JauJ4XkImaWRFWp4IRsZ5JG0V1OD3HZOJG8ybzosM8iipQ2EXdSnbrahQpOSMWwgxNSMaPv6BKzx3kurJNNuuWUeM9tprauPAUWbZYjQEoFJ6RiitmTraFkJU9FSErvvN1fcgfbSsLF2xprL74cyt3gcvjg7SJyWkSeGMMgQogdLgr+LwD+EcCXXAttTjaJof3Ws9x7PKas2D3TajnZpGRKesZjTYX1MajgqvoQgF+MYAshxBizMbiIrAJYBYBzdv+eVbHmpFrCah078CmvG+XnWDwdLu0Ro9zdmYrYNjSLoqvqEVVdUdWVPWfttCqWEBLBKPuix46LUkfWQ8q3nBvvS+ktaVah5BwG63PeGnzm/i2V2wrOgxNSMYMKLiJfBfB+AMsicgrAIVU95lNJSec7p8ZKzSyyx7bDWDyVcnfxaU8Lz8CqzQY7uKpea1ITIWR06KITUjHZU1Wtj9BdVL5P6qJFsM0qUcfHNp97tZ6O6dZbQlCwS4qgV/ueh8rPsViHCk5IxWRX8C4lvvmtCJlaswy2WeFi01hTm0PEeiaL7Pdpw+Y5zSsrdTorFZyQikmi4OvrG8WNx3KNxUPLG5uQKbXaNoJo34ercrvsO+jS7r7xgcP3nnC6lgpOSMUkUfDn1zdx/bEH/1+6JVC2ihF7cnkvOZJ7fJQ7ZLYoxFOighNSMaPvi94l54kgrt+xHot38Rn/ljien/pYvC/K3TDUdm0s0lr7nuXBG96HWx95xql8KjghFcMOTkjFZN8XvUSXMzXW+6xbsh1WoDVYDymGfsN9aa2LbIntF1RwQiomW6rqlJQ8lW2L9lIDtoeC+uLi8Viv9R6qM2SPNiCdYnehghNSMdkXm0xRyYGwk0d87qmWsXCJ7Wgx9g5Vbt/yFpWxvr7hVC4VnJCKSaLgzckmMQsXtlN6a19UfarJIyUSsgiki9Vv0SfiHgMVnJCKyT4G75Iq7THVGd8+J4/4XGc5Rz71VFIfUt2jj3IvajvrcbsLVHBCKiapgltFgqcQWU89R9799xDa7ZBazS2fR86Mv9TKveg7LhtJuEAFJ6Ri2MEJqRgnF11ErgJwC4AdAI6q6t/5VBKSgpnKnXQJtoWs0R3bVd/uuC7WyImPax7ym3NhUMFFZAeAWwH8GYB3A7hWRN4dVSshZBRcFPwyAD9V1WcBQES+BuAaAE+FVBize2eDhUqGTEm5eBXzyrK2l5RDbHunTkV2GYO/E8ALrc+nZv9GCCkcUdX+C0Q+DuAqVb1h9vk6AH+sqp/qXLcKYHX28SIAT9ib680ygPXcRswoxZZS7ABoyzxc7ThfVfcOXeTior8I4LzW5/2zf/sdVPUIgCMAICJrqrriUHZSSrEDKMeWUuwAaMsYdri46D8A8IcicoGIvAXAJwD8m5UBhJB0DCq4qv5aRD4F4JvYmia7XVWfTG4ZISQap3lwVf0GgG94lHskzBxzSrEDKMeWUuwAaMs8TO0YDLIRQqYLU1UJqRjTDi4iV4nIT0TkpyLyOcuyPe24XUROi0jWqToROU9EHhCRp0TkSRG5OaMtu0Tk+yLyo5kth3PZMrNnh4j8UETuy2zHcyLyYxF5XETWMttytojcJSJPi8hJEfmT6DKtXPRZSuszAD6IrWSYHwC4VlWDMt4ibbkCwCaAL6nqRWPX37JjH4B9qvqYiCwBOAHgY5meiQDYraqbIrITwMMAblbV741ty8yezwBYAfA2Vb06hw0zO54DsKKq2efAReQOAP+hqkdnM1ZvVdVXYsq0VPDfprSq6msAmpTW0VHVhwD8IkfdHTt+pqqPzf6+AeAkMmUB6habs487Z3+yBGBEZD+AjwA4mqP+EhGRtwO4AsAxAFDV12I7N2DbwZnS2oOIHABwMYBHM9qwQ0QeB3AawLdVNZctXwTwWQC/yVR/GwXwLRE5McvGzMUFAF4GcHw2dDkqIrtjC2WQbQREZA+AuwF8WlV/mcsOVX1DVd+DrWzEy0Rk9OGLiFwN4LSqnhi77gW8V1UvwdZqyb+cDe9ycCaASwD8k6peDOB/AETHsSw7uFNK63ZjNt69G8Cdqvqvue0BgJnr9wCAqzJUfzmAj87Gvl8DcKWIfDmDHQAAVX1x9t/TAO7B1lAzB6cAnGp5VXdhq8NHYdnBmdLaYRbYOgbgpKp+IbMte0Xk7Nnfz8JWMPTpse1Q1c+r6n5VPYCt38h3VPWTY9sBACKyexb8xMwd/hAyLZJS1Z8DeEFE3jX7pw8gcEl2G7NNF0tKaRWRrwJ4P4BlETkF4JCqHstgyuUArgPw49nYFwD+apYZODb7ANwxm+04A8DXVTXrFFUBvAPAPVvvYZwJ4Cuqen9Ge24CcOdMIJ8FcDC2QGayEVIxDLIRUjHs4IRUDDs4IRXDDk5IxbCDE1Ix7OCEVAw7OCEVww5OSMX8Hx5+6isVaQpsAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFm9JREFUeJztnW2oZtV1x//LcdLRmRsF7zQ1GesILSFBaNSLpRg0NSRMG6n9kA8RInTUzJdGDCmEpFCG+VDafgkRKqXXeamhJiH4giWkJkLMWKWZ5I4xRGeMBFGcMWG8DZJ7W1NfsvrhPo858/Q55+y9z9ovZ9//D4a5d+Y8Z69z9rP3f62130RVQQipk3NyG0AIiQcbOCEVwwZOSMWwgRNSMWzghFQMGzghFcMGTkjFsIETUjFs4IRUzLkxbrqwbatetLCt85oXV9fP+v3SxR0AgMXFBedyVlfXeu/bxrQ8H3xsazJrp4uNIe+jr1xrhtSVaz018amzLtt83kufnU2bLOtqWm7bM//X2q+w9qs3pO++URr4RQvbsP/GqzqvueXQ0bN+n16/97brnMs5cvDo//u32fu20WffPHxsazJrp4uNIe+jr1xrhtSVaz018amzLtt83kufnU2bLOtqWm7bMx946LjTfaM08C6mhh++1f5llETsxpUSizpLzfT9z2t0bQ1xXp1Nn9nlO9ZVpi9W75oxOCEVk1zB23oml17PQrlDesahYYMrVr12Td5DSpr17PoOm9/Baf2FKPn0Wuu6o4ITUjFs4IRUjJOLLiIXAjgI4HIACuAWVf3PIQX3uS9drkqJSTUXxmr3mGl+j4Ykv1ySbbPJSMukWyiuMfidAB5W1Y+LyDsAnB/RJkKIEb0NXEQuAHAtgL8AAFV9HcDroQWGKLeF8pWcXBtaNrEnVtIrNS4x+GUAXgFwRER+KCIHRWT77EUisk9EVkRkZf21N8wNJYT44+KinwvgSgC3q+oxEbkTwOcB/E3zIlVdBrAMALt3Lpy1k6PPrKJUceq84Y3YtMVxOSeQ5FKq5jOnqnOL4avYsXhXfYS8JxcFPwXglKoem/x+HzYaPCGkcHoVXFV/LiIvich7VfUnAD4M4ETXZxYXF7xj7di9uM/9Y8fesRR7iArXEnOmwmcK65R579bnuxZSpmsW/XYA904y6M8D2OtcAiEkG04NXFWfArBkUeC0F/PphdoUz1r1mbkeHyGeh+VU0q5cgssinTZbrDwqzmQjpGKSLDZp9kKuqhs7szz0/iXFqiG2lOSthMSWs6RS8i4slkC3KXnzmsO3Xue8HpwKTkjFsIETUjFRXPTV1TVvt7yEyR59pHTL+9zHlLaUspOL1drrIcQeTnTdieauJ55zuh8VnJCKiZpkC1HueT2X5aSYUtTIlZKSeSH42F9Lss0CK5uo4IRUTBQFf3F1vbcXnvbWqWJMF0+hjbGraCxiKZ+FkofgMpU09Xdh6IYVVHBCKibJRJd5cW+IcpfQo5N0dCl535JMq2x3Sd+BEI+JCk5IxURVcCvl7rof0K3sQ2JvEo6l8oWcLlIzRw4edT5fjQpOSMWwgRNSMVFc9EsXd2D/jVcFHUdUAiXa5BOGlMyQgwznrb0e48GIXVhPhaWCE1IxURQ8ZE+2EmizKYdK+AwJxjiS2Zq23U6AYWqe67SYWAuoZofCuKMLIaSV5Du6WGLVe/cpdyo269llFh5IKi8rxLOa4mPbvEktIe2ICk5IxSTZ8MEHl9hjSPzjYlfqk0c2q3JbMBuLx1byIbH/vM/02dm22IQbPhBC0sTgXfhMHU2tdFRuP4bmWtrU18WrS63kVvjYycUmhJCzcFJwEXkBwBqAtwC8qaqDTznxWXRicQqKD5tBuUuch9CHS0Y51fi4dTm+Su662MTHRf9jVV31uJ4Qkhm66IRUjKuCK4Bvi4gC+GdVXQ4t0NU1L8GNHQulJ5J86dutpflzn6s+NqyTg64N/IOqelpEfhvAIyLyrKo+1rxARPYB2AcAF23/LRPjCCHDcD0++PTk7zMi8iCAqwE8NnPNMoBlANi9c0Gb/+ey1/mUEOW23jmGhDF0WuUY6To+uAR6Y3AR2S4iC9OfAXwUwNOxDSOEDMdFwd8F4EERmV7/FVV92KeQkOmhLvgodwmU2MMPIfa7bovFm2XHPivMB8uhM6tYvLeBq+rzAP5gUCmEkCxkm6pqodghClJSj7+ZsJ4YUuJ5YlNyb0bRhOPghFRM9sUmLsTY23wzZnznETLakFo1u+LRWHUX8oyztszaO3SJaUg8TgUnpGLYwAmpmGJc9C73o8RESu0MfedjTGZaPfOULpc9VQKOCk5IxWRT8L6EAVW7TkoaQopNl6KHJOBCJr9QwQmpmGJi8NSKPabYkKShbQdTK7oWXbkcjc1hMkLIWWRXcMbaddOWTS99mWWqqbB9E42GLjahghNSMdkUPJdyW8feYxzvLY2SM+uz9Zrqe+uzSUoXVHBCKiZ7DJ4KC4UN7b1jK9NYTvHoo03JYz1XyBl3uRR9tiyeTUYIYQMnpGaSu+ipXBrLpNdYhvJqc9VLoC9c8Pme5fgeUcEJqRhR1f6rPNm9c0H333jV27+n7LlSK3esHWMtcFFCThG2qx9Lz6OvXpb23o2Vky9L332o4IRUTJQYfHFxIYky5FSDvrJLnLSRk1R11fW9i33ksEWdz9sDfhaftkUFJ6RiRjXRJbcKlBg/dlFLVt0FF1UrcUulWbrKbar76uqa0/2o4IRUjHMWXUS2AFgBcFpVb+i6dul979aVI58KMmhsKjlLibF3zmx66vq02M98HiXWq6qaZtHvAHAy3BxCSGqcYnAR2QXgYwD+FsBnLQ0Yu2LP0pWRDYmFS1QOF8ZUry5LM1PlMazr21XBvwTgcwB+3XaBiOwTkRURWXnl1f8xMY4QMozeBi4iNwA4o6rHu65T1WVVXVLVpZ0Xnm9mICEknN4km4j8HYCbAbwJYBuAdwJ4QFU/2faZ2amqJBzLyRNdWCTZSnLLrZOGJT0bABx46DheeGVteJJNVb+gqrtUdTeATwD4TlfjJoSUw6gmupAwXCa8hOwiWpqqNbHeFXWsk5+8GriqfhfAd6NYQggxpwoFr0V1SsBF+cb0DufZahmfW+1+GgtOVSWkYkal4CVvnVSbFxHbxqFnbg0h9s6oJe2VTwUnpGJGpeBDiHWiyZDPdtk01imqU3zsD3lWS9W32lyhRKjghFQMGzghFTMqFz130sLKXcv9HLFIGVYMKcvHvW+rq1Su+9B3SgUnpGJGpeC5GEtvnYux2R1y6OAsqbywNjsOPNS5uPNtqOCEVAwV3AGrhQttvf7YFHDKWO12oe/ZxrJTLRWckIoZtYKnPlPKZeGCT2w2VgUcq92WWO251+cVDo31qeCEVEyU00VFRAG7OCW1YsSOr0o+bdSFkhXc6pwxS6y3zDpy8Kjdlk2EkPGS5HxwH8bW8/qQ+9lqVnCXZyvJ7qF1QQUnhLCBE1IzxQyTleQ+WVDb89TArFucs45my46V2KWCE1Ix2RW8RKUb0pvW9jw1U9KQWixFp4ITUjHZFLyEXnMKFc6PkpRvisvpLW3M+0zuZxvyPE1cThfdJiLfF5EficgzInJgUImEkGS4KPj/ArheVddFZCuAx0Xk31X1eyEF5u4Zp8RS7ZLULbZnUtKzWlNSxn0IvQ1cN6a6rU9+3Tr5Yz/9jRBijlMMLiJbABwH8HsA7lLVY1GtishmiLdTP2NJSm4Vu84Seyps1nFwVX1LVT8AYBeAq0Xk8tlrRGSfiKyIyMr6a29Y20kICcBrmExVXwXwKIA9c/5vWVWXVHVpx3lbrewjhAyg10UXkZ0A3lDVV0XkPAAfAfAPoQXmSl7kcluBMlxXEp8Swz+XGPxiAPdM4vBzAHxdVb8R1yxCiAXFrQefh6UC5uxlYyt5SQqS22sp6V1YM323qsr14IRsZqIo+NL73q0rRz4V9NmQXSRzHz8bSupdYXMw1v3nYp9mM2S3VCo4IQRAgQrugkvvN0ZVtzgzKxTfXT19KXm0JNXZc/MIVXLuyUYISZ9Fj9Fb1qroKQmpl5JOcfGpq5yKPQsVnBASTDHj4Fa9al+PWOKCgJxYvPccSt5XFyWptAtt77DtOZb23o2Vky9TwQnZzLCBE1IxUfZke3F1PUpSxcLtGrJ2ufmZGt31UKb1MvSo2z6sD/HLyey7imU3FZyQism+L/qULkWd9tyWCjF0OWesnUPIbxibYsf2YEKgghNSMVGGyUQk6qaMsVXTR9HHruCxFHDIcGWJyp1KnV2fi8NkhJB8E11q2cShFqwVMYbipVTtEuPpJpyqSgiJk0VfXFxo7W2nPWOb6sZalODS+5fea29WcuUJaoAKTkjFsIETUjHJJ7pYuFup3PjN4MJtJjZjfVLBCamYqMNkqdZ4+xB755KxwzobBxwmI4TEjcHn9aIhvXHfkFtsUi2HHMpmziGU/KxDvKLmczXvc9cTzzl9vlfBReQSEXlURE6IyDMickeAnYSQDLgo+JsA/kpVnxSRBQDHReQRVT0RUqDlQvd5n+3ryaf/P9STKFkxasPiFJB5lLDHfOx79Sq4qv5MVZ+c/LwG4CSA9wwqlRCSBK8YXER2A7gCwDErA6y3rnGNl9tim5ikXoY6ltyBBbnOQMs1jXZ1dc3pPs5ZdBHZAeB+AJ9R1V/O+f99IrIiIivrr73heltCSEScFFxEtmKjcd+rqg/Mu0ZVlwEsAxvj4KEGDYmRm/iol1WZbeTeEqoWJc995niTMSyvBdyy6ALgEICTqvrFKFYQQqLg4qJfA+BmANeLyFOTP38a2S5CiAG9LrqqPg6gd0rcPEKGsawJcdVnPxuClTvp46rHDjUsyeluDwl7xuKaT+FUVUIqJslU1Wavl2vaaUiiqaSklEXSrYSJOmNVbmtSvX8qOCEVk2TDB5dFJ2OIG0vAavgsxtBZ171yKbeValstGEkNFZyQisl2NpnvgedWxJ70kUqprE46rWUSzCybXbmnUMEJqZhiThed0tXrMU53I2Q8vJZ326Xcbd6VldqHnMcWO7NPBSekYtjACamY4lz0LmLtBlNCMmQIlivPrImddBzyzF2fdf1uDR0ajL1HABWckIrJruAuPVhbz2W1aysZRg4PyFXNYnkQ8545trcS4qlRwQmpmOwK7oLP8Ib1Hm++TG0qafeRWrDKMbTdp+u70ualpKxnxuCEkLPIruBDFM8lJmlT9LFnzkug5HfoM6nER7lTe2ZDvRYqOCEVE/V00SEM7Sljjwn7bFyRq9e3Pik05Owzi2fPeQLJ9BlLUO6mvUt778bKyZd5uighm5nsMXgbzR4s977iPtQS48+zP/UzlaDcqZl95uhnkxFCxgsbOCEVE8VFX1xcMF3MMfbJI7nsH9M+6U1yueY5E6TWidEpVHBCKiZJks3qhJPZnj3n5P4+dZznwYzdE4lNDOUOTaiNXbmnuBw+eFhEzojI01EsIIREw0XB/wXAPwL4smXBIZMmZokVq8323kP30hoydJZa9a2Hh0rchMKCkL3f5n3eR7mbdbO6uub0mV4FV9XHAPzC2QpCSDGYxeAisg/APgD43d+5wPvzJU0Q8VHNkEx1iCozfvcjJPbuercWnkjzHqky+mZZdFVdVtUlVV3aeeH5VrclhAwgShZ9dXUNRw4eDcoMlqTkXcxm2F2U3OfZ2hSDSt6NdTbaR7n7Niax9ipc4Dg4IRXTq+Ai8lUAHwKwKCKnAOxX1UMuNx/rTKopLmo5ZFEL1TgPbR6UyzbKPp6ly3ciRLEP33odDjx03MmG3gauqjc53YkQUhx00QmpmCRTVZtuSMjwwBiYda1SDZv5fo74ERJe+uzjP2XI+QBdUMEJqZjkO7qUvMtpmy0hCtvltfSV44tFsq6E9x8bn2d0Ve7Qd+76Oe6qSghpJfuebCUqh4vCtvXA84bNUg0X1rqww2Uo0meXW997dNnkQ+yTROdBBSekYrIruA+xMo1tDMkPNG31mc7aZ8uUEj2feQyxu2vZ7mw9W77beQyx2wdrL4wKTkjFjErBXRgydbRNBeYp+ZDM9RjU12qTC6uyfbF6x7HPJgv5nvrYQAUnpGLYwAmpmOpc9CmzboyPK9Tnqjevib3irA3LfedLIbVrHntYrIu2I4pcprP6rCajghNSMVEU/MXVddxy6Kh5yj/XDqNWE1RyHYjYxZDdZWYZ67r/ecTwivqOBJ5H19CgC1RwQiqm2hh8Fuvhs9mYyce78LEllyqm9DJSL3dNFXv7TK0N2WXGBSo4IRUTVcFDVLOrd7U448s6Dk6l5D42kDCa789Sua29sL23XYe7nnjO6VoqOCEVE0XBL13cgf03XhX02a7M9RC1nCUkO+mz9RTpJsc2UxZLSrsIUe6+sttO5jU7m4wQMl5GmUW3jjktYuE276J5/5jldzHPK0odr48hPxDiVYSMbbvQpty+UMEJqRg2cEIqxslFF5E9AO4EsAXAQVX9+6hWwS+hVdIe4Tl3gekrewxucighCbQh7yOVaz60znoVXES2ALgLwJ8AeD+Am0Tk/YNKJYQkwUXBrwbwU1V9HgBE5GsAbgRwIqZhLljvtNKW7BraM/OQwd+Q8x1YeDDW343Ye+25xODvAfBS4/dTk38jhBSOqGr3BSIfB7BHVW+b/H4zgD9U1U/PXLcPwL7Jr5cDeNreXG8WAazmNmJCKbaUYgdAW+bhaselqrqz7yIXF/00gEsav++a/NtZqOoygGUAEJEVVV1yuHdUSrEDKMeWUuwAaEsKO1xc9B8A+H0RuUxE3gHgEwD+zcoAQkg8ehVcVd8UkU8D+BY2hskOq+oz0S0jhAzGaRxcVb8J4Jse910OM8ecUuwAyrGlFDsA2jIPUzt6k2yEkPHCqaqEVIxpAxeRPSLyExH5qYh83vLennYcFpEzIpJ1qE5ELhGRR0XkhIg8IyJ3ZLRlm4h8X0R+NLHlQC5bJvZsEZEfisg3Mtvxgoj8WESeEpGVzLZcKCL3icizInJSRP5o8D2tXPTJlNbnAHwEG5NhfgDgJlVNPuNNRK4FsA7gy6p6eeryG3ZcDOBiVX1SRBYAHAfw55neiQDYrqrrIrIVwOMA7lDV76W2ZWLPZwEsAXinqt6Qw4aJHS8AWFLV7GPgInIPgP9Q1YOTEavzVfXVIfe0VPC3p7Sq6usAplNak6OqjwH4RY6yZ+z4mao+Ofl5DcBJZJoFqBusT37dOvmTJQEjIrsAfAzAwRzll4iIXADgWgCHAEBVXx/auAHbBs4prR2IyG4AVwA4ltGGLSLyFIAzAB5R1Vy2fAnA5wD8OlP5TRTAt0Xk+GQ2Zi4uA/AKgCOT0OWgiGwfelMm2RIgIjsA3A/gM6r6y1x2qOpbqvoBbMxGvFpEkocvInIDgDOq6na4Vnw+qKpXYmO15F9OwrscnAvgSgD/pKpXAPhvAIPzWJYN3GlK62ZjEu/eD+BeVX0gtz0AMHH9HgWwJ0Px1wD4s0ns+zUA14vIv2awAwCgqqcnf58B8CA2Qs0cnAJwquFV3YeNBj8IywbOKa0zTBJbhwCcVNUvZrZlp4hcOPn5PGwkQ59NbYeqfkFVd6nqbmx8R76jqp9MbQcAiMj2SfITE3f4o8i0SEpVfw7gJRF57+SfPgyDJdlmmy6WNKVVRL4K4EMAFkXkFID9qnoogynXALgZwI8nsS8A/PVkZmBqLgZwz2S04xwAX1fVrENUBfAuAA9u9MM4F8BXVPXhjPbcDuDeiUA+D2Dv0BtyJhshFcMkGyEVwwZOSMWwgRNSMWzghFQMGzghFcMGTkjFsIETUjFs4IRUzP8BWHZX30xiqhAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -69,7 +70,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF9FJREFUeJzt3XFwXWd95vHnWUVtLwmVCHGZWHZxdqf1bhoHTO9mtjVlWrytYUmo6854KS2wdGc9nW0b2O2YiTuz3pBpm0w9C2223d1JEwIUCqsSR9MkFMMkUJodSCqhYIckngIbastkLZrIIa0WFPfXP85RLCuSda50zj3nPfp+ZjTSPbq6+l3n5tF7fue97+uIEAAgHf+k7gIAAL0huAEgMQQ3ACSG4AaAxBDcAJAYghsAEkNwo1Fs/zvbD17g+x+0/Vv9rAloGoIbfWH7c7afsf29ddeykvyPx1nbz+Uf/9f2nbZ/uIfH4A8MKkNwo3K2t0j6CUkh6c21FlPcFyLiEklDkv61pFlJE7avqrcsgOBGf7xd0hclfVDSOxZ+w/bLbf+Z7WdtPyzpnxV4vJfZvs/2t20/ZPuFn7H947b/yvaZ/POPL/jepfnI+VQ++h9b6RdFxNmI+FpE/EdJfyHpxgWP96e2n8p/1+dt/0h+fJ+kX5T0nnzEfk9+/AbbX8vrfsz2zxV4rsCLENzoh7dL+mj+scv2KxZ87w8l/X9Jl0v65fxjJW+R9F5JL5P0VUm/LWXBLOk+SbdKermk90m6z/bL85/7Y0kvkfQjkn5A0vt7fB6HlZ05zPtzST+UP9aX8ueniLgt//p3I+KSiLguv//X8p8fyuv/iO3Le6wBILhRLduvlfRKSaMRMaEsvN6af29A0s9LOhgRfxcRj0r6UIGHvTsiHo6I55UF5Kvz42+S9NcR8ccR8XxEfEzSE5KuywPyjZJ+JSKeiYi5iPiLHp/OKUmXzt+IiA9ExLcj4jvKRuKvsj203A9HxJ9GxKmI+IeI+N+S/lrSNT3WABDcqNw7JH06Ir6V3/4TnWuXbJB0kaQTC+7/jfkvbP/mgguE/2vBfZ5a8PXfS7ok/3rjwp9f8HgjkjZLejoinlnDcxmR9HRe24DtW/LWx7OSnszvc9lyP2z77bYfsT1je0bSVRe6P7Cci+ouAO1luyNpr6QB2/Nh+72Shm2/StKjkp5XFqpP5N//wfmfj4jfkfQ7PfzKU8pG9wv9oKRPKfvjcKnt4YiY6fW55H5O0l/mX79V0s8qu3D5pLL2xzOSnH//vGU3bb9S0h9J2qnswudZ248suD9QGCNuVGm3pLOSrlTWzni1pH+hLPzeHhFnlfWNb7T9EttXatHFyx59UtIP236r7Yts/9v8d98bEd9U1pP+H7ZfZnvQ9utWesB8ZH2F7f8u6SeV9aYl6aWSviPpb5X1zRf/gfl/kv7pgtsXKwvz6fxx36lsxA30jOBGld4h6c6I+JuIeGr+Q9IfSPpF2xdJ+jVlrY6nlM06uXO1vywi/lbStZJ+Q1mgvkfStQvaNG+TNKdsdH9a0rsv8HA/Zvs5Sc9K+pyk75f0LyPiWP79Dytrw0xJekzZrJmF7pB0Zd4WGYuIxyT9N0lfUBbq2yT9n9U+V6xvZiMFAEgLI24ASAzBDQCJIbgBIDEENwAkppJ53Jdddlls2bKliocGgFaamJj4VkRsKHLfSoJ7y5YtGh8fr+KhAaCVbC9+1++yaJUAQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxLAeN2ozNjmlQ0eO69TMrDYOd7R/11bt3j5Sd1moEa+JYghu1GJsckoHDh/T7NxZSdLUzKwOHM5WTOV/1PWJ10RxtEpQi0NHjr/wP+i82bmzOnTkeE0VoW68JoojuFGLUzOzPR1H+/GaKI5WCWqxcbijqSX+h9w43KmhGjRBna+J1HrrjLhRi/27tqozOHDesc7ggPbv2lpTRahbXa+J+d761MysQud662OTU5X+3rUguFGL3dtHdPOebRoZ7siSRoY7unnPtkaPcip1dFR6/1XSjcPZ56OjdVfUd3W9JlLsrRdqldgelnS7sl2pQ9IvR8QXqiwM7bd7+8j6DeqFjo5K91wvzeVtgjMnstuSdPXe+uqqQR2viRR760VH3L8v6VMR8c8lvUrS49WVBKwz9990LrTnzc1mx1G55XroTb7esmJw2x6S9DpJd0hSRHw3ImaqLgxYN86c7O04SpXi9ZYiI+4rJE1LutP2pO3bbV+8+E6299ketz0+PT1deqFAaw1t6u04SpXi9RZHxIXvYHclfVHSjoh4yPbvS3o2Iv7Lcj/T7XaDHXCAghb3uCVpsCNdd+u663GvZ7YnIqJb5L5FRtwnJZ2MiIfy25+Q9JrVFgdgkav3ZiE9tFmSs8+ENi5gxVklEfGU7RO2t0bEcUk7JT1WfWnAOnL1XoIahRV95+SvS/qo7e+R9HVJ76yuJCBtqb0LD+kpFNwR8YikQr0XYD1jhTv0A++cBEqU4rvwkB6CGyhRiu/CQ3oIbqBEKb4LD+khuIESpfguPKSH9biBEs1fgGRWCapEcAMlY9VDVI1WCQAkhuAGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEENwAkBiCGwASwyJTKAX7LAL9Q3BjzdhnEeivVgY3o7/+utA+i/y7A+VrXXAz+us/9lkE+qt1Fydbtcv20VHp/VdJNw5nn4+O1l3RkthnEeivQsFt+0nbx2w/Ynu86qLWojWjv6Oj0j3XS2dOSIrs8z3XNzK82WcR6K9eWiU/FRHfqqySkmwc7mhqiZBObvR3/03S3KLnMTebHb96bz01LWP39hGNf+NpfeyhEzoboQFbP/+jDdu+6+ho9m935qTUeVl2bPYZaWiTtPNg4/5NgQtpXaukNaO/Myd7O16jsckp3TUxpbMRkqSzEbprYkpjk1M1V5ZbfPYy+3T20fAzGWA5RYM7JH3a9oTtfUvdwfY+2+O2x6enp8ursEe7t4/o5j3bNDLckSWNDHd0855tzRr9FTG0qbfjNWr8dYWlzl4Wmj+TARJRtFXy2oiYsv0Dkj5j+4mI+PzCO0TEbZJuk6Rutxsl19mTVuyyvfNgNhJcGDiDnex4wzT+ukKRs5QGnskAyyk04o6IqfzzaUl3S7qmyqKgrOd63a3S0GZJzj5fd2sje7GNn1VS5CylgWcypUlkdhKKWzG4bV9s+6XzX0v6GUmPVl0YlIX0f3pUunEm+9zA0JYSuK6w82B2trKchp7JlCKh2UkorsiI+xWSHrT9ZUkPS7ovIj5VbVlISeOvKyw+e+lcmn00/EymFMvNTjr8Hxh9J8wR5beju91ujI83ero3sD7cOKxsbsEyBjvt/sOVENsTEdEtct/WTQcEsMBKvXtm1CSJ4AbabKX+vsSMmgQR3ECbndffX0abZ9S0FMENtN387KQ9f/Ti0XebZ9S0GMENrBcJvTeg7xKb69669bgBXMDVewnqxebnus9Pm5yf6y419t+KETeA9e1CK3E2FMENYH1LaCXOeQQ3gPUtoZU45xHcANa3pea6N3y2DcENYH1LcLYNs0oAILHZNoy4ASAxBDcAJCbZVsnY5JQOHTmuUzOz2jjc0f5dW5uz/jMAVCjJ4B6bnNKBw8de2KB2amZWBw4fkyTCG0DrJdkqafyu4gBQoSSDu/G7igNAhZIM7sbvKg6g/WpcUTDJ4G78ruIA2m1+RcEzJyTFuRUF+xTeSQZ343cVB9BuNa8omOSsEikLb4IaQC1qXlGw8Ijb9oDtSdv3VlkQKpTYLh9AY9W8omAvrZJ3SXq8qkJQsZp7ckCr1LyiYKHgtr1J0psk3V5tOahMgrt89IwzCvRLzSsKFu1x/56k90h6aYW1oEoJ7vLRkwT3DUTialxRcMURt+1rJZ2OiIkV7rfP9rjt8enp6dIKREkS3OWjJ+vhjKICY5NT2nHLA7rihvu045YHNDY5VXdJKKBIq2SHpDfbflLSxyW93vZHFt8pIm6LiG5EdDds2FBymVizBHf56EnbzygqML/mz9TMrELn1vwhvJtvxeCOiAMRsSkitkh6i6QHIuKXKq8M5Upwl4+etP2MogKs+ZOuZOdxYxUS2+WjJzsPnt/jltp1RlEB1vxJV0/BHRGfk/S5SipBa/Vl7fT5P0j335S1R4Y2ZaHd1j9UJdg43NHUEiFdxZo/rJ9fLkbcqFRf105v8xlFBfbv2nrefxupmjV/WD+/fEmuVYJ00Edtrn6t+cNroHyMuFEp+qjN1o81f3gNlI8RNyrF2ungNVA+ghuVYu108BooXzNbJUdHmR3QEvOn4cwoWL94DZTPEVH6g3a73RgfH1/dDy9ec0LK5uO26c0iALCI7YmI6Ba5b/NaJaw5AQAX1LzgZs0JALig5gU3a04AwAU1L7jbvoodAKxR84K77avYAcAaNXM6IGtOAMCymjfiBgBcEMENAIlpZqsESNjCtaeHXzKoCOnM7BzvGERpCG6gRIvXnn7m7+de+B7rUKMstEqAEi219vRCrEONMhDcQImKrDHNOtRYK4IbKFGRNaZZhxprRXADJVpq7emFWIcaZeDiJFCixWtPM6sEVSC4gZL1Yx9HrG8rtkpsf5/th21/2fZXbL+3H4UBAJZWZMT9HUmvj4jnbA9KetD2n0fEFyuuDQCwhBWDO7K9zZ7Lbw7mH+XvdwYAKKTQrBLbA7YfkXRa0mci4qFqywIALKdQcEfE2Yh4taRNkq6xfdXi+9jeZ3vc9vj09HTZdQIAcj3N446IGUmflfSGJb53W0R0I6K7YcOGsuoDACxSZFbJBtvD+dcdST8t6YmqCwMALK3IrJLLJX3I9oCyoB+NiHurLQsAsJwis0qOStreh1qAtTk6Kt1/k3TmpDS0Kdtgmi3w0EK8cxLtcHRUuud6aS5fee/Miey2RHijdVhkCu1w/03nQnve3Kx0969INw5L778qC3egBRhxox3OnFz6eOSbGjACR4sw4kY7DG1a+T5zs9nIHEgcwY122HlQGiywQcFyI3MgIQQ3muPoaNaLXk1P+uq90nW3SkObJVnyMpsZFBmZAw1HjxvNUMaskKv3nrvv4seTshH5zoPl1QzUhBE3mmG5WSGr7UkvHoEPbc5uc2ESLcCIG82wXO95LT3phSNwoEUYcaMZlus905MGXoTgRjMsNSuEnjSwJIIbzUBPGiiMHjeag540UAgjbgBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJAYgnut1rKiHbASXl9YAvO414J9DlElXl9YRrIj7rHJKe245QFdccN92nHLAxqbnOp/EWWvaAcs1ObXF2cSa5LkiHtsckoHDh/T7Fy2n+DUzKwOHD4mSdq9faR/hVSxoh0wr62vL84k1mzFEbftzbY/a/sx21+x/a5+FHYhh44cfyG0583OndWhI8f7Wwgr2qFKbX19tflMok+KtEqel/QbEXGlpH8l6VdtX1ltWRd2ama2p+OVYUU7VKmtr6+2nkn00YrBHRHfjIgv5V9/W9LjkvrYj3ixjcNLbwq73PHKsKIdqtTW11dbzyT6qKcet+0tkrZLeqiKYorav2vreT1uSeoMDmj/rq39L4YV7VClNr6+dh5kP9A1KjyrxPYlku6S9O6IeHaJ7++zPW57fHp6uswaX2T39hHdvGebRoY7sqSR4Y5u3rOtvxcmAazO4jOJzqXSRR3p8D5mmBTkiFj5TvagpHslHYmI9610/263G+Pj4yWUB6DVFs8wkbLRdxtaQj2yPRER3SL3LTKrxJLukPR4kdAGgMKYYbIqRVolOyS9TdLrbT+Sf/ybiusCsB4ww2RVVrw4GREPSnIfagGw3gxtyt6As9RxLCvZt7wDaIG2zlWvWJJveV8vxiandOjIcZ2amdXG4Y7279rKzBm0y/wFyPtvytojQ5uy0F5nFyZ7RXA3VGPWYwGq1sa56hWjVdJQjVmPBUDjENwN1Zj1WAA0DsHdUI1ZjwVA4xDcDbV/11Z1BgfOO1bbeiwAGoWLkw01fwGSWSUAFiO4G2z39hGCGsCLENxATZinj9UiuIEaME8fa9H64GZUgya60Dx9Xp9YSauDm1ENmop5+liLVk8H5N2HaCrm6WMtWh3cjGrQVMzTx1q0ulWycbijqSVCusioht44qsQ8faxFq4N7tbvB0xtHPzBPH6vV6lbJaneDpzdek6Oj2S7fNw6z2zdwAa0ecUurG9XQG6/B4t2+z5zIbkus1Qws0uoR92pxxb8G7PYNFEZwL4Er/jVgt2+gsNa3SlaDK/41YLdvoDCCexlc8e+znQfP73FL7PYNLGPFVontD9g+bfvRfhSEderqvdJ1t0pDmyU5+3zdrVyYBJZQZMT9QUl/IOnD1ZaCdY/dvoFCVhxxR8TnJT3dh1oAAAUwqwQAElNacNveZ3vc9vj09HRZDwsAWKS04I6I2yKiGxHdDRs2lPWwAIBFaJUAQGKKTAf8mKQvSNpq+6Ttf199WQCA5aw4HTAifqEfhQAAiqFVAgCJIbgBIDEENwAkhuAGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEENwAkJgimwWjj8Ymp3ToyHGdmpnVxuGO9u/aqt3bR+ouC+vN0VHp/pukMyeloU3SzoNs5NwgBHeDjE1O6cDhY5qdOytJmpqZ1YHDxySJ8Eb/HB2V7rlempvNbp85kd2WCO+GoFXSIIeOHH8htOfNzp3VoSPHa6oI69L9N50L7Xlzs9lxNALB3SCnZmZ7Og5U4szJ3o6j7wjuBtk43OnpOFCJoU29HUffEdwNsn/XVnUGB8471hkc0P5dW2uqCOvSzoPS4KLBwmAnO45G4OJkg8xfgGRWCWo1fwGSWSWN5Ygo/UG73W6Mj4+X/rgA0Fa2JyKiW+S+jLgBJIH3OJxDcANoPN7jcL5CFydtv8H2cdtftX1D1UUBwEK8x+F8Kwa37QFJfyjpjZKulPQLtq+sujAAmMd7HM5XZMR9jaSvRsTXI+K7kj4u6WerLQsAzuE9DucrEtwjkk4suH0yP3Ye2/tsj9sen56eLqs+AOA9DouU9gaciLgtIroR0d2wYUNZDwsA2r19RDfv2aaR4Y4saWS4o5v3bFuXFyalYrNKpiRtXnB7U34MAPpm9/aRdRvUixUZcf+VpB+yfYXt75H0Fkl/Vm1ZAIDlrDjijojnbf+apCOSBiR9ICK+UnllAIAlFXoDTkR8UtInK64FAFAAqwMCQGIIbgBIDMENAImpZFlX29OSvlH6A/fHZZK+VXcRJeM5pYHn1HxVPp9XRkShN8FUEtwpsz1edE3cVPCc0sBzar6mPB9aJQCQGIIbABJDcL/YbXUXUAGeUxp4Ts3XiOdDjxsAEsOIGwASQ3ADQGII7pztD9g+bfvRumspi+3Ntj9r+zHbX7H9rrprWgvb32f7Ydtfzp/Pe+uuqSy2B2xP2r637lrKYPtJ28dsP2J7vO56ymB72PYnbD9h+3HbP1ZbLfS4M7ZfJ+k5SR+OiKvqrqcMti+XdHlEfMn2SyVNSNodEY/VXNqq2LakiyPiOduDkh6U9K6I+GLNpa2Z7f8sqSvp+yPi2rrrWSvbT0rqRkRr3nxj+0OS/jIibs+XuH5JRMzUUQsj7lxEfF7S03XXUaaI+GZEfCn/+tuSHtcS286lIjLP5TcH84/kRx62N0l6k6Tb664FS7M9JOl1ku6QpIj4bl2hLRHc64btLZK2S3qo3krWJm8pPCLptKTPRETSzyf3e5LeI+kf6i6kRCHp07YnbO+ru5gSXCFpWtKdeUvrdtsX11UMwb0O2L5E0l2S3h0Rz9Zdz1pExNmIeLWyLfSusZ10W8v2tZJOR8RE3bWU7LUR8RpJb5T0q3krMmUXSXqNpP8ZEdsl/Z2kG+oqhuBuubwXfJekj0bE4brrKUt+mvpZSW+ou5Y12iHpzXlP+OOSXm/7I/WWtHYRMZV/Pi3pbknX1FvRmp2UdHLBGd4nlAV5LQjuFssv5t0h6fGIeF/d9ayV7Q22h/OvO5J+WtIT9Va1NhFxICI2RcQWZfu5PhARv1RzWWti++L8YrjydsLPSEp6tlZEPCXphO2t+aGdkmq7yF9o67L1wPbHJP2kpMtsn5T0XyPijnqrWrMdkt4m6VjeF5ak38y3okvR5ZI+ZHtA2aBjNCJaMX2uZV4h6e5s3KCLJP1JRHyq3pJK8euSPprPKPm6pHfWVQjTAQEgMbRKACAxBDcAJIbgBoDEENwAkBiCGwASQ3ADQGIIbgBIzD8CW32kBECtJ7IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGCdJREFUeJzt3XGMnHd95/H3h82WDgndBeJD8drFadVuL7UNRnuRWnMRh69dKDF1U8lHaYGjf1inawuolVFc6UwatY111pHWd707uQkplADdgrMqhGJQDKWcIHSdza1DEqtA07PH5LwU1knaLTjLt388z8S7m5mdZ3bnmed5Zj4vyZqdZ5559vus5M/85vf8fs9PEYGZmVXHC4ouwMzMOuPgNjOrGAe3mVnFOLjNzCrGwW1mVjEObjOzinFwW6lI+o+SvrjG638i6Xd7WZNZ2Ti4rSckfV7SdyS9sOha2kk/PJYkPZP++ztJ90j68Q6O4Q8Yy42D23InaRvwb4EA3lRoMdl9KSKuAUaAfw8sAqclbS+2LDMHt/XG24AvA38CvH35C5JeJukvJD0l6SvAj2Y43ksk3S/paUkPSnruPZJ+WtLfSLqUPv70stdemracL6St/+l2vygiliLi6xHxn4G/Am5bdrw/l/Rk+ru+IOkn0+0HgF8G3pO22D+Rbr9V0tfTuh+V9AsZztXseRzc1gtvA+5N/01Kevmy1/4I+GfgOuBX03/tvBn4HeAlwNeA34MkmIH7gWPAy4D3AfdLeln6vj8FXgT8JPCvgDs7PI8TJN8cGv4S+LH0WA+l50dEHE9//q8RcU1E7E33/3r6/pG0/g9Juq7DGswc3JYvSa8BXgFMRcRpkvB6S/raEPCLwOGI+MeIeAT4QIbD3hcRX4mIZ0kC8lXp9jcCfxsRfxoRz0bER4DHgb1pQL4B+E8R8Z2IuBwRf9Xh6VwAXtp4EhHvj4inI+K7JC3xV0oaafXmiPjziLgQEd+PiD8D/ha4scMazBzclru3A5+JiG+lzz/Mle6STcBVwLll+/994wdJv73sAuH/XrbPk8t+/ifgmvTnzcvfv+x4Y8BW4NsR8Z0NnMsY8O20tiFJR9Kuj6eAJ9J9rm31Zklvk/SwpAVJC8D2tfY3a+Wqoguw/iWpBuwHhiQ1wvaFwKikVwKPAM+ShOrj6es/3Hh/RPw+8Psd/MoLJK375X4Y+DTJh8NLJY1GxEKn55L6BeCv05/fAvw8yYXLJ0i6P74DKH19xW03Jb0C+GNgD8mFzyVJDy/b3ywzt7gtT/uAJeAGku6MVwH/miT83hYRSyT9xrdJepGkG1h18bJDnwJ+XNJbJF0l6T+kv/uTEfFNkj7p/ynpJZKGJd3U7oBpy/p6Sf8deC1J3zTAi4HvAv9A0m+++gPm/wM/suz51SRhPp8e9x0kLW6zjjm4LU9vB+6JiP8XEU82/gH/A/hlSVcBv07S1fEkyaiTe9b7yyLiH4Cbgd8iCdT3ADcv66Z5K3CZpHV/EXj3Gof7KUnPAE8Bnwd+CPg3EXEmff2DJN0wdeBRklEzy90N3JB2i0xHxKPAfwO+RBLqO4D/s95ztcEmL6RgZlYtbnGbmVWMg9vMrGIc3GZmFePgNjOrmFzGcV977bWxbdu2PA5tZtaXTp8+/a2I2JRl31yCe9u2bczMzORxaDOzviRp9azfltxVYmZWMQ5uM7OKcXCbmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFOLjNzCrGwW1WhLkpuHM73DaaPM5NFV2RVYiXLjPrtbkp+MQ74fJi8vzSueQ5wM79xdVlleEWt1mvPXD7ldBuuLyYbDfLwMFt1muXzne23WwVd5WYtTA9W+foybNcWFhk82iNg5Pj7Ns1tvEDj2xJukeabTfLwC1usyamZ+scOnGG+sIiAdQXFjl04gzTs/WNH3zPYRiurdw2XEu2m2Xg4Laem56ts/vIKa6/9X52HznVnTDssqMnz7J4eWnFtsXLSxw9eXbjB9+5H/Yeg5GtgJLHvcd8YdIyy9RVImkUuAvYDgTwqxHxpTwLs/7UaMk2QrHRkgW60w3RJRcWFjva3rGd+x3Utm5ZW9x/CHw6In4CeCXwWH4lWT/LtSXbRZtHax1tN+ultsEtaQS4CbgbICK+FxELeRdm/Sn3lmyXHJwcpzY8tGJbbXiIg5PjBVVkdkWWFvf1wDxwj6RZSXdJunr1TpIOSJqRNDM/P9/1Qq0/VKUlu2/XGHfcsoOx0RoCxkZr3HHLjlJ159jgUkSsvYM0AXwZ2B0RD0r6Q+CpiPgvrd4zMTERXnPSmlndxw1JS9ahaINO0umImMiyb5YW93ngfEQ8mD7/GPDq9RZng80tWbONazuqJCKelHRO0nhEnAX2AI/mX5r1q327xhzUZhuQdebkbwD3SvoB4BvAO/IryczM1pIpuCPiYSBT34vZIMttmrzZMr5XiVmXVGVykVWfg9usS9aaXDSowe1vIPlwcJt1SVUmF/WKv4HkxzeZMuuSqkwu6pWq3N6gihzcZl3iafIr+RtIftxVYtYlja//7tNNbB6tUW8S0s2+gbgvvDMObrMu8uSiKw5Ojje9vcHqbyDuC++cu0rMLBdZb2/gvvDOucVtZrnJ8g3EfeGdc4vbzArl0Tidc3CbWaE8Gqdzg91VMjcFD9wOl87DyJZklW2vA2gZeBRE93g0TucGN7jnpuAT74TLaT/apXPJc3B425o8CqL7PBqnM4PbVfLA7VdCu+HyYrLdbA0eBWFFG9zgvnS+s+1mKY+CsKINbnCPbOlsu1nKoyCsaIMb3HsOw/Cq/2jDtWS72Ro8CsKKNrgXJxsXID2qxDrkURAF8kgwABQRXT/oxMREzMzMdP24ZjbAVo8Eg+Rb8t5jfRHekk5HRKYlIge3q8TMqsUjwZ7j4DazavBIsOc4uM2sGjwS7DkObjOrBo8Ee46D28yqYef+5ELkyFZAyWOfXJjsVKbhgJKeAJ4GloBns175NDPrqp37BzKoV+tkHPe/i4hv5VZJVh7HaWYDrloTcHxHPzOzzH3cAXxG0mlJB5rtIOmApBlJM/Pz892rcDmP4zQzyxzcr4mIVwNvAH5N0k2rd4iI4xExERETmzZt6mqRz/E4TjOzbMEdEfX08SJwH3BjnkW15HGcZmbtg1vS1ZJe3PgZ+FngkbwLa8rjOM3MMl2cfDlwn6TG/h+OiE/nWlUrvqOfmVn74I6IbwCv7EEt2Xgcp5kNOM+cNDOrGAe3WRHmpuDO7XDbaPI4N1V0RVYh1ZqAY9YPPJHMNsgtbrNe80Qy2yAHt1mveSKZbZC7SqyvTM/Wy7+I78iWpHuk2XazDNzitr4xPVvn0Ikz1BcWCaC+sMihE2eYnq0XXdpKnkhmG+TgzmB6ts7uI6e4/tb72X3kVPmCoKx6PHLi6MmzLF5eWrFt8fISR0+ezfX3dswLAtgGuaukjUYrrhEIjVYcUL6v4GVSwMiJCwuLHW0vlCeS2Qa4xd1GZVpxZVPAyInNo7WOtptVlYO7jUq14sqkgJETByfHqQ0PrdhWGx7i4OR4br/TrAgO7jbcilunAm7Bu2/XGHfcsoOx0RoCxkZr3HHLDndpWd9xH3cbByfHV/Rxg1txmew5vLKPG3oycmLfrjEHtfU9B3cbjRAo/djgsvEteM1yo4jo+kEnJiZiZmam68c1M+tXkk5HxESWfd3HbWZWMQ5uM7OKcXCbmVWMg9vMrGIc3GZWXl4pqCkPBzSzcvJKQS25xW1m5eSVglpycJtZOXmloJYc3GZWTgXc76YqMge3pCFJs5I+mWdBZmaAVwpaQyct7ncBj+VViJnZCl4pqKVMo0okbQHeCPwe8Ju5VmRm1uCVgprK2uL+A+A9wPdb7SDpgKQZSTPz8/NdKc7MzJ6vbXBLuhm4GBGn19ovIo5HxERETGzatKlrBZqZ2UpZWty7gTdJegL4KPA6SR/KtSozM2upbXBHxKGI2BIR24A3A6ci4ldyr8zMzJryOG4zs4rp6F4lEfF54PO5VGJmZpm4xW1mVjEObjOzinFwm5lVjIPbzKxiHNxmZhXjFXAqaHq2ztGTZ7mwsMjm0RoHJ8fZt2us6LKsnbmpZBGAS+eTW5PuOez7cNi6OLgrZnq2zqETZ1i8vARAfWGRQyfOADi8y8zLcFkXuaukYo6ePPtcaDcsXl7i3X/2MLuPnGJ6tl5QZbYmL8NlXeTgrpgLC4stX2u0vh3eJeRluKyLHNwVs3m0tubri5eXOHrybI+qscy8DJd1kYO7Yg5OjlMbHlpzn7Va5VYQL8NlXeSLkxXTuAB59ORZ6i0Cul2r3ArQuADpUSXWBQ7uCtq3a4x9u8aeN8IEoDY8xMHJ8QKrs5a8DJd1iYO7wpa3vj2m22xwOLgrrtH6NrPB4YuTZlaMuSm4czvcNpo8zk0VXVFluMVtZr3nmaQbMngtbn/KmxXPM0k3ZLBa3P6UNysHzyTdkMFqcftT3qwcPJN0QwYruP0pb1YOnkm6IYMV3P6UNyuHnfth7zEY2Qooedx7zF2WGQ1WH/eewyv7uMGf8mZF8UzSdRusFrc/5c2sD7RtcUv6QeALwAvT/T8WEe/Nu7Dc+FPezCouS1fJd4HXRcQzkoaBL0r6y4j4cs61mZlZE22DOyICeCZ9Opz+izyLMjOz1jL1cUsakvQwcBH4bEQ82GSfA5JmJM3Mz893u04zM0tlCu6IWIqIVwFbgBslbW+yz/GImIiIiU2bNnW7TjMzS3U0qiQiFoDPAa/PpxwzM2unbXBL2iRpNP25BvwM8HjehZmZWXNZRpVcB3xA0hBJ0E9FxCfzLcvMzFrJMqpkDtiVdyHTs/Xil+Cam/JirmZWeqWY8r560dv6wiKHTpwB6F14+5avZlYRpZjyfvTk2RUrlQMsXl7i6MmzvSvCt3w1s4ooRXBfWFjsaHsufMtXM6uIUnSVbB6tUW8S0ptHa032zsnIlqR7pNl2M+uKjV7LKsW1sBIoRYv74OQ4teGhFdtqw0McnBzvXRG+sbtZrhrXsuoLiwRXrmVNz9Z78v5+UooWd+MTs9BP0sYFSI8qMcvFWteyWv1fX97CfoHEUkRH7+9XpQhuSMK78D++b/lqlptOr2WtHm22OrTbvb+flaKrxMwymJuCO7fDbaPJ49xU0RV1pNU1q1bbm7XQO3l/P3Nwm1VBY57BpXNAXJlnUKHw7vRaVpaWdM+vhZWEg9usCvpgnsG+XWPcccsOxkZrCBgbrXHHLTtadpG2akkPSZne389K08dtZmvok3kGnVzLOjg5vqKPG5IW9qCG9XIObrMWSjVmeADnGZRitFlJObjNmijF/XOW23N45b10YCDmGZRitFkJuY/brIlS3D9nuZ37Ye8xGNkKKHnce8zDVweUW9xmTZTi/jmreZ6BpdziNmui0zHHZr3k4DZrohT3zzFrwV0lZk14RIOVmYPbrAWPaLCycleJmVnFOLjNzCrGwW1mVjEObjOzinFwm5lVTNvglrRV0uckPSrpq5Le1YvCzMysuSzDAZ8FfisiHpL0YuC0pM9GxKM512ZmZk20bXFHxDcj4qH056eBxwAPbjUzK0hHfdyStgG7gAebvHZA0oykmfn5+e5UZ2Zmz5N55qSka4CPA++OiKdWvx4Rx4HjABMTE82XY85RqW56b2aWo0zBLWmYJLTvjYgT+ZbUudLd9N7MLEdZRpUIuBt4LCLel39JnSvdTe/NzHKUpY97N/BW4HWSHk7//VzOdXWklDe9NzPLSduukoj4IqAe1LJum0dr1JuEtG96n5O5KXjg9mSF8ZEtybqHXpnFusTXq9rri5mTvul9D81NJYvWXjoHRPL4iXcm2802qHG9qr6wSHDletX0bL3o0kqlL4J7364x7rhlB2OjNQSMjda445Yd/pTOwwO3r1xpHJLnD9xeTD2Dam4K7twOt40mj33ywenrVdn0zUIKvul9j1w639l2677Gt57GB2jjWw9UvsvK16uy6YsWt/XQyJbOtlv39fG3Hi/SnI2D2zqz5zAMr/pPNFxLtltv9PG3Hl+vysbBbZ3ZuR/2HoORrYCSx73HKv8VvVL6+FuPr1dlo4juz06fmJiImZmZrh/XzHh+Hzck33r8AVppkk5HxESWfd3iNuumXoz28Leegdc3o0rMCtfL0R479zuoB5hb3Gbd0sejPaxcHNxm3dLHoz2sXBzcZt3Sx6M9rFwc3Gbd4jHu1iMObrNu8WgP6xGPKjHrJo/2sB5wi9vMrGIc3GZmFePgHkRF3Mu5T+8f3RH/DaxL3Mc9aIq4l3Mf3z86M/8NrIvc4h40Rczu84xC/w2sqxzcg6aI2X2eUei/gXWVu0oGzciWdKHfJtv76XeWjf8GpVa1leXd4h40Rczu84xC/w1KrIory7cNbknvl3RR0iO9KMhyVsTsPs8orOzfYHq2zu4jp7j+1vvZfeRUqcNsvaq4snzbFXAk3QQ8A3wwIrZnOahXwDGrvkZLdHmo1YaH+m4psetvvZ9mKSjg7468sWd1dHUFnIj4AvDtDVdlZpVSxZboeqx7ZfkCx+W7j9vMmrqwsNjR9qpa18ryjXH5l84BcWVcfo/Cu2vBLemApBlJM/Pz8906rJkVZN0t0YpZ18ryBY/L79pwwIg4DhyHpI+7W8c1s2IcnBxv2se9Zku0ovbtGuus377gcfkex21mTTWCrErjm3um4HH5bYNb0keA1wLXSjoPvDci7s67MDMrXsct0UGx5/DKe89AT8fltw3uiPilXhRiZlYZjfH3D9yedI+MbElCu0fj8t1VYma2HgWuduThgGZmFePgNjOrGAe3mVnFOLjNzCrGwW1mVjEObjOzinFwm5lVjIPbzKxiHNxmZhXj4DYzqxgHt5lZxTi4+1WByyqZWb58k6l+1FhWqXHLycaySlD6VcXNrD0Hdz9aa1klB7et0/Rs3YsqlISDux8VvKyS9Z/p2fqKZczqC4scOnEGwOFdAPdx96NWyyf1aFkl6z9HT55dsfYkwOLlJY6ePFtQRYPNwd2P9hxOllFarofLKln/ubCw2NF2y5eDux/t3A97j8HIVkDJ495j7t+2dds8Wutou+XLfdz9qsBllaz/HJwcX9HHDVAbHuLg5HiBVQ0uB7eZtdW4AOlRJeXg4DazTPbtGnNQl4T7uM3MKsbBbWZWMZmCW9LrJZ2V9DVJt+ZdlJmZtdY2uCUNAX8EvAG4AfglSTfkXZiZmTWXpcV9I/C1iPhGRHwP+Cjw8/mWZWZmrWQJ7jHg3LLn59NtK0g6IGlG0sz8/Hy36jMzs1W6NhwwIo4DxwEkzUv6+24du2DXAt8quogu6adzgf46n346F+iv8+nVubwi645ZgrsObF32fEu6raWI2JS1gLKTNBMRE0XX0Q39dC7QX+fTT+cC/XU+ZTyXLF0lfwP8mKTrJf0A8GbgL/Ity8zMWmnb4o6IZyX9OnASGALeHxFfzb0yMzNrKlMfd0R8CvhUzrWU1fGiC+iifjoX6K/z6adzgf46n9KdiyKi6BrMzKwDnvJuZlYxDm4zs4pxcLcg6f2SLkp6pOhaNkrSVkmfk/SopK9KelfRNa2XpB+U9BVJ/zc9l98puqaNkjQkaVbSJ4uuZaMkPSHpjKSHJc0UXc9GSRqV9DFJj0t6TNJPFV0TuI+7JUk3Ac8AH4yI7UXXsxGSrgOui4iHJL0YOA3si4hHCy6tY5IEXB0Rz0gaBr4IvCsivlxwaesm6TeBCeCHIuLmouvZCElPABMR0ReTbyR9APjriLgrHQ79oohYKLout7hbiIgvAN8uuo5uiIhvRsRD6c9PA4/R5LYFVRCJZ9Knw+m/yrY+JG0B3gjcVXQttpKkEeAm4G6AiPheGUIbHNwDR9I2YBfwYLGVrF/atfAwcBH4bERU9lyAPwDeA3y/6EK6JIDPSDot6UDRxWzQ9cA8cE/alXWXpKuLLgoc3ANF0jXAx4F3R8RTRdezXhGxFBGvIrn9wo2SKtmVJelm4GJEnC66li56TUS8muQ20L+WdjlW1VXAq4H/FRG7gH8ESrEegYN7QKT9wR8H7o2IE0XX0w3p19bPAa8vupZ12g28Ke0X/ijwOkkfKrakjYmIevp4EbiP5LbQVXUeOL/sG93HSIK8cA7uAZBe0LsbeCwi3ld0PRshaZOk0fTnGvAzwOPFVrU+EXEoIrZExDaSewCdiohfKbisdZN0dXrxm7RL4WeByo7KiogngXOSxtNNe4BSXND3Ku8tSPoI8FrgWknngfdGxN3FVrVuu4G3AmfSvmGA305vZVA11wEfSFdmegEwFRGVH0bXJ14O3Je0E7gK+HBEfLrYkjbsN4B70xEl3wDeUXA9gIcDmplVjrtKzMwqxsFtZlYxDm4zs4pxcJuZVYyD28ysYhzcZmYV4+A2M6uYfwGOvQagv0YUXQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -195,7 +196,8 @@ "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2)\n", "var_form = RYRZ(num_qubits=feature_dim, depth=3)\n", "svm = QSVMVariational(optimizer, feature_map, var_form, training_input, test_input)\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_mapper=random_seed)" + "run_config = RunConfig(shots=shots, max_credits=10, memory=False, seed=random_seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=random_seed)" ] }, { @@ -254,9 +256,9 @@ ], "metadata": { "kernelspec": { - "display_name": "mykernel", + "display_name": "Python 3", "language": "python", - "name": "mykernel" + "name": "python3" }, "language_info": { "codemirror_mode": { diff --git a/community/aqua/general/eoh.ipynb b/community/aqua/general/eoh.ipynb index 36855a14a..82511a425 100644 --- a/community/aqua/general/eoh.ipynb +++ b/community/aqua/general/eoh.ipynb @@ -17,13 +17,26 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'QuantumInstance'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtranspiler\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPassManager\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrun_algorithm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moperator\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mOperator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malgorithms\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mEOH\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minitial_states\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCustom\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'QuantumInstance'" + ] + } + ], "source": [ "import numpy as np\n", - "from qiskit import LegacySimulators\n", + "from qiskit import BasicAer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.transpiler import PassManager\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.operator import Operator, QuantumInstance\n", + "from qiskit.aqua import run_algorithm, QuantumInstance\n", + "from qiskit.aqua.operator import Operator\n", "from qiskit.aqua.algorithms import EOH\n", "from qiskit.aqua.components.initial_states import Custom\n", "from qiskit.aqua.input import EnergyInput\n", @@ -44,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -63,20 +76,11 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The result is\n", - "{'avg': (2.722036822009398-5.381265357255164e-17j), 'std_dev': 0.0}\n" - ] - } - ], + "outputs": [], "source": [ - "backend = LegacySimulators.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", "\n", "ret = eoh.run(quantum_instance)\n", @@ -92,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -122,18 +126,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The result is\n", - "{'avg': (2.722036822009398-5.381265357255164e-17j), 'std_dev': 0.0}\n" - ] - } - ], + "outputs": [], "source": [ "ret = run_algorithm(params, algo_input, backend=backend)\n", "print('The result is\\n{}'.format(ret))" @@ -156,7 +151,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index fa938b875..e4248107e 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -21,7 +21,8 @@ "source": [ "import pylab\n", "import numpy as np\n", - "from qiskit import LegacySimulators\n", + "from qiskit import BasicAer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.tools.visualization import plot_histogram\n", "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import run_algorithm\n", @@ -115,8 +116,9 @@ } ], "source": [ - "backend = LegacySimulators.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=100)\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "run_config = RunConfig(shots=100, max_credits=10, memory=False)\n", + "quantum_instance = QuantumInstance(backend, run_config)\n", "result = grover.run(quantum_instance)\n", "print(result['result'])" ] @@ -136,15 +138,15 @@ "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAFGCAYAAAAfEFTPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xt8VfWZ7/HPYy4IFJBgBhMwXERjEEgjaL2iVJx66ahDHescq7QdS9Fqp+Op9jIdRzszetRWcdpSK1qvc45FTatVmfKiVNKKLRoiAokUGgyFBIqAwBAgEJ/zx2+HbldzJclee4fv+/Xar+y91m/vPGuvvfezfut3WebuiIiIyJ8dFXcAIiIi6UbJUUREJELJUUREJELJUUREJELJUUREJELJUUREJELJUUREJCLlydHMbjSz9Wa2z8wqzezcTj7vHDM7aGarejtGERE5sqU0OZrZp4EHgbuAMmApsMDMijp43lDgSeCXvR6kiIgc8SyVM+SY2e+At939C0nL1gLPufs32nleObACMOBKd5/Q0f8aNmyYFxW1m3NFROQI89Zbb73n7vkdlctORTAAZpYLTAa+E1m1EDirnefdCAwH/h34l87+v6KiIhYvXnwYkYqISF+Vl5dX15lyKUuOwLFAFrAlsnwLML21J5jZROBfgTPcvdnM2v0HZjYLmAVQUFDA8uXLASgsLGTAgAGsW7cOgCFDhjB27FiqqqoAyMrKorS0lDVr1rBnzx4ASkpK2L59O1u2hHBHjhxJbm4utbW1AAwdOpSioiJWrFgBQE5ODhMnTqSmpoa9e/cCMH78eLZu3crWrVsBGDVqFGbGu+++C8CwYcMoKChg1arQjNqvXz9OOeUUVq9ezf79+wGYMGECDQ0NbNu2DYDRo0fj7tTVhf2bn59Pfn4+1dXVAPTv35+SkhJWrlzJgQMHACgtLWXDhg3s2LEDgLFjx9LU1MTGjRsBGD58OHl5edTU1AAwcOBAiouLWbFiBc3NzQCUlZVRW1vLzp07ARg3bhyNjY3U19fT8n4PHjyYNWvWADBo0CBOPPFEqqqqcHfMjLKyMtauXcvu3bsBKC4uZteuXTQ0NGg/aT9pP2k/pWQ/dVbKTquaWSGwCTjP3SuSlt8OXOPuxZHy/YAq4G53fyqx7A46eVq1rKzMVXMUEZFkeXl5le4+paNyqaw5vgc0E06RJhsObG6lfAFQAjxmZo8llh0FmJkdBC5x94W9FayIiBy5UtZb1d2bgErgwsiqCwm9VqM2AROBjybdHgLWJe639hwREZFuS2XNEeB+4CkzWwa8BswGCglJDzN7EsDdr3P3A8CHxjSa2Z+A/e6usY4iItJrUpoc3f0nZjYM+BbhtOkqwunRlt5DGnshIiKxS+k4x1RShxwREYnqbIccza0qIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQoIiISoeQo0sMWLVrE6aefzuTJk5kzZ85frH/sscc4++yzmTp1KhdffDHvvPMOAJWVlUydOpWpU6dy7rnn8tJLLx16zs6dO5k5cyYf+9jH+NjHPsayZctStj0iRyJz97hj6BVlZWW+ePHiuMOQI0xzczOnnXYa5eXlFBYWcsEFFzBv3jxOPvnkQ2V27drF4MGDAViwYAGPPvoozz33HI2NjeTm5pKdnc3mzZuZOnUq1dXVZGdnc+ONN3LGGWdw3XXX0dTUxN69exkyZEhcmymSsfLy8irdfUpH5VRzFOlBlZWVjBkzhtGjR5Obm8uMGTNYsGDBh8q0JEaAxsZGzAyAAQMGkJ2dDcD+/fsPLd+1axdLly7l2muvBSA3N1eJUaSXZccdgEhf0tDQwIgRIw49LiwspLKy8i/KPfLII8ydO5empiZeeOGFQ8vffPNNbr75ZjZu3MgPf/hDsrOzqaur49hjj+Wmm25i1apVlJaWcvfddzNw4MCUbJPIkUg1R5EYXH/99Sxfvpw77riD7373u4eWT5kyhddff51FixYxZ84c9u3bx8GDB1mxYgWf+9znWLJkCQMGDGi1LVNEeo6So0gPKigoYNOmTYce19fXU1BQ0Gb5GTNm8PLLL//F8uLiYgYOHEhNTQ2FhYUUFhYyZUpoJrn88st5++23ez54ETlEyVGkB5166qnU1tZSV1dHU1MT5eXlXHTRRR8q84c//OHQ/YULF3LCCScAUFdXx8GDBwH44x//yNq1aykqKmL48OGMGDGCtWvXArBkyRKKi4tTtEUiRya1OYr0oOzsbO69916uvPJKmpubueaaaygpKeGuu+6irKyMiy++mHnz5rFkyRJycnI45phj+MEPfgDAb3/7W+bMmUNOTg5HHXUU9913H8OGDQPgnnvu4Ytf/CJNTU2MHj2a73//+3Fupkifp6EcIiJyxNBQDhERkcOk5CgiIhKh5Cgifc7hTuH3q1/9imnTpnH22Wczbdo0KioqDj3nrbfe4uyzz2by5Ml8/etfp682SUmgNkcR6VO6M4Xf22+/TX5+PgUFBVRXV/N3f/d3rF69GoDp06dz9913M2XKFK666ipmzZrFhRdeGMs2yuFTm6OIHJG6M4XfpEmTDo1LLSkpYe/evezfv5/Nmzeze/duTjvtNMyMq6++mldeeSV1GyUpp6EcItKndHcKvxYvvvgipaWl9OvXj4aGBgoLCz/0mg0NDb2zAZIWVHMUkSNSW1P4AdTU1HDnnXdy//33xxSdxE3JUUT6lO5O4bdp0yauu+465s6dy5gxYw69Zn19fadfUzKfkqOI9CndmcJv586dXH311dx+++2cccYZh8ocd9xxDBo0iDfeeAN355lnnuGSSy5JzQZJLNTmKCJ9Snem8Js3bx7r16/nvvvu47777gPg+eefJz8/n/vuu48vfelL7Nu3j+nTpzN9+vQ4N1N6mYZyiIjIEaOzQzlUc4xYtGgR3/zmN2lububaa6/lK1/5yofWP/bYYzzyyCNkZWUxcOBAHnjggUPjpx544AGefvppsrKyuPvuu7ngggsAmDt3Lk899RRmxvjx4/n+97/P0UcfnfJtk3jc9sTQbr/GvTN39EAkItJZanNM0tzczG233cb8+fN5/fXXef755w/NnNHiU5/6FK+99hoVFRV8+ctf5lvf+hYA77zzDuXl5SxdupRnn32WW2+9lebmZurr63n44YdZvHgxS5cupbm5mfLy8jg2T0REOknJMUl3Bg8vWLCAGTNm0K9fP0aNGsWYMWMOja06ePDgoSu67927l+OOOy51GyUiIl2m06pJujN4uKGh4dCV2lue29DQwOmnn85NN93EpEmTOProo5k2bRof//jHe39jRETksKnmeBjaGzwc9f7777NgwQKqqqqorq6msbGR+fPnpyhSERE5HEqOSbozeLit57766qsUFRVx7LHHkpOTwyc/+UmWLVvWexshIiLdpuSYpDuDhy+66CLKy8vZv38/dXV11NbWMnnyZEaOHMmbb75JY2Mj7k5FRQUnnXRSSrdLRES6Rm2OSbozeLikpIQrrriCM88889DrZGVlMWXKFC677DKmTZtGVlYWkyZNYubMmTFvqYiItEeTAIj0Mo1zFEkfup6jiIjIYVJyFBERiVCbo4j0eTq1LV2lmqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEJgHogAYPi4gceVJeczSzG81svZntM7NKMzu3nbLnmdlSM9tmZnvN7B0z+2oq4xURkSNPSmuOZvZp4EHgRuA3ib8LzGy8u29o5Sn/A/wnsBJoBM4GfmRmje4+N0Vhi4jIESbVNcdbgMfdfZ6717j7zUADcENrhd290t2fcffV7r7e3Z8GfgG0WdsUERHprpQlRzPLBSYDCyOrFgJndfI1yhJll/RsdCIiIn+WytOqxwJZwJbI8i3A9PaeaGYbgXxCvHe6+0NtlJsFzAIoKChg+fLlABQWFjJgwADWrVsHwJAhQxg7dixVVVUAZGVlUVpaypo1a9izZw8AJSUlbN++Heh+h5yWOEaNGoWZ8e677wIwbNgwCgoKWLVqFQD9+vXjlFNOYfXq1ezfvx+ACRMm0NDQwLZt2wAYPXo07k5dXR0A+fn55OfnU11dDUD//v0pKSlh5cqVHDhwAIDS0lI2bNjAjh2hY9DYsWNpampi48aNAAwfPpy8vDxqamoAGDhwIMXFxaxYsYLm5mYAysrKqK2tZefOnQCMGzeOxsZG6uvraXm/Bw8ezJo1awAYNGgQJ554IlVVVbg7ZkZZWRlr165l9+7dABQXF7Nr1y4aGhq6vZ+2bAkfq5EjR5Kbm0ttbS0AQ4cOpaioiBUrVgCQk5PDxIkTqampYe/evQCMHz+erVu3snXr1l7aTxd09qPSpuXLl2s/dWM/wTk9sg9A36f4v0/d+93rLHP3ThfuDjMrBDYB57l7RdLy24Fr3L24neeOAT4CnAHcA/yjuz/V3v8rKyvzxYsXdztu9VaV7tJnKH7aB9IiLy+v0t2ndFQulTXH94BmYHhk+XBgc3tPdPf1ibsrzWw4cAfQbnIUERE5XClrc3T3JqASuDCy6kJgaRde6iigX0/FJSIiEpXqSQDuB54ys2XAa8BsoBB4CMDMngRw9+sSj28G1gNrEs+fCnwV0DAOERHpNSlNju7+EzMbBnwLKABWAZe4e12iSFHkKVmENsbRwEHgD8DXSSRTERGR3pDy6eMSg/dbrfm5+/mRx3OAOSkIS0RE5BBNPC4iIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhKh5CgiIhLRpeRoZleZ2V8nPb7dzDaa2S/MrKDnwxMREUm9rtYc72i5Y2anAt8E/hPIAb7bc2GJiIjEJ7uL5UcBaxL3/xb4mbvfa2YLgV/0aGQiIiIx6WrNcR8wKHH/AmBR4v7OpOUiIiIZras1x18D3zWz3wBTgCsTy08C/tiTgYmIiMSlqzXHm4AmQlKc7e71ieUXo9OqIiLSR3Sp5ujuG4G/aWX5V3osIhERkZh1eZyjmR1tZlea2dfM7JjEshPMLK/nwxMREUm9LtUczWwcoRPOR4BjgGeB94EbEo+v7+kARUREUq2rNcc5wEJgOLA3afmLwLSeCkpERCROXe2tehZwhrs3m1ny8g1AYY9FJSIiEqPDmVs1p5VlRYSxjiIiIhmvq8lxIXBL0mM3s8HAncDLPRaViIhIjLp6WvUW4FdmtgY4GvgJMA7YAlzVw7GJiIjEoqvjHOvN7KPA3wOnEmqeDwP/5e57232yiIhIhuhqzZFEEvxx4iYiItLndJgczWwG8HN3P5C43yZ3L++xyERERGLSmZrjc8BxwJ8S99viQFZPBCUiIhKnDpOjux/V2n0REZG+qkvJzsymmtlfJFQzyzKzqT0XloiISHy6WhP8FdDaBOPHJNaJiIhkvK4mRyO0LUYNA/Z0PxwREZH4dWooh5m9mLjrwNNmtj9pdRYwAVjaw7GJiIjEorPjHLcl/hqwgw9fkaMJ+A0wrwfjEhERiU2nkqO7fw7AzN4FvuPuOoUqIiJ9Vlenj7uztwIRERFJF52ZIedt4Dx332FmK2m9Qw4A7j6pJ4MTERGJQ2dqjs8DLR1w2pshR0REpE/ozAw5d7Z2X0REpK/SdHAiIiIRnWlzbLedMZnaHEVEpC/o7FU5REREjhhdanMUERE5EqjNUUREJELjHEVERCI0zlFERCQi5eMczexG4FagAFgNfMXdf91G2RnAbKAMOBqoBv7D3V9srbyIiEhPOKw2RzM7wcw+mbid0IXnfRp4ELiLkPCWAgvMrKiNp5wHLAYuTZR/BfipmZ17OHGLiIh0RpcmHjezYcCjwGXAB39ebC8Bn3f3bW0+ObgFeNzdWy5vdbOZXQTcAHwjWtjd/zGy6E4zuxS4Ami1tikiItJdXa05PgKMA84lnOY8GpgKjKGD6zmaWS4wGVgYWbUQOKsLMQwiXFNSRESkV3Sp5gh8ArjA3V9PWvaamX0RWNTBc48FsoAtkeVbgOmd+edm9iVgJPBUG+tnAbMACgoKWL58OQCFhYUMGDCAdevWATBkyBDGjh1LVVUVAFlZWZSWlrJmzRr27AmXqiwpKWH79u3A0M6E1q6WOEaNGoWZ8e677wIwbNgwCgoKWLVqFQD9+vXjlFNOYfXq1ezfH/pATZgwgYaGBrZtC5Xy0aNH4+7U1dUBkJ+fT35+PtXV1QD079+fkpISVq5cyYEDBwAoLS1lw4YN7NgRjinGjh1LU1MTGzduBGD48OHk5eVRU1MDwMCBAykuLmbFihU0NzcDUFZWRm1tLTt37gRg3LhxNDY2Ul9fT8v7PXjwYNasWQPAoEGDOPHEE6mqqsLdMTPKyspYu3Ytu3fvBqC4uJhdu3bR0NDQ7f20ZUv4WI0cOZLc3Fxqa2sBGDp0KEVFRaxYsQKAnJwcJk6cSE1NDXv3hmt2jx8/nq1bt7J169Ze2k8XdPaj0qbly5drP3VjP8E5PbIPQN+n+L9P3fvd6yxz79TMcKGwWR3wN+7+dmR5KfBzd2+r7RAzKwQ2EYaFVCQtvx24xt2LO/jfnyIkxU+7+887irWsrMwXL17cUbEO3fZE95PjvTNV0T2S6TMUP+0DaZGXl1fp7lM6KtfV06rfBuaY2YiWBYn7302sa897QDMwPLJ8OLC5vSea2ZWExHhdZxKjiIhIdxzOxONjgHfNbFPi8QhgH/BXhDbJVrl7k5lVAhcCzyatupAwlrKt/38V8AQw0901zlJERHpdqicevx94ysyWAa8RxjAWAg8BmNmTAO5+XeLx1YQa41eBCjM7LvE6Te6+vQfjEhEROSSlE4+7+08Sw0G+RZgEYBVwibvXJYpE2yxnJ2Kck7i1WAKc31NxiYiIJOtqb9Vuc/e5wNw21p3f3mMREZFU6FKHHDPLNbM7zez3ZrbPzJqTb70VpIiISCp1tbfqvwEzCb1TPyDMkfoDYBtwY8+GJiIiEo+uJsergNnu/iPCsIwX3P3LwL8Sep2KiIhkvK4mx+GEK2MA/A9wTOL+fwN/3VNBiYiIxKmryXEDYegFwDrCdHIAZwJ7eyooERGROHU1Of6UP08U+SDhKhnrgcdpZwIAERGRTNKloRzu/o2k+8+Z2UbCFTV+7+4v9XRwIiIicejWOEd3/y3w2x6KRUREJC109bQqZnaqmT1pZm8mbk+Z2am9EZyIiEgcujoJwDXAG4Sp315J3IYDy8zsMz0fnoiISOp19bTqfwD/4u53JS80s28A/w483VOBiYiIxKWrp1XzgfmtLH+WcMkqERGRjNfV5PgrWr8axvmEK2WIiIhkvM5c7HhG0sMFwN1mNoU/91I9A5gB3NHj0YmIiMTgcC92PCtxS/Y92rgUlYiISCbpzMWOuzzcQ0REJJMp8YmIiEQcziQAl5pZhZm9Z2ZbzWyJmV3SG8GJiIjEoauTAFxPmHz8D8DXgK8D64Gfmtnnez48ERGR1OvqJABfA25x9+8nLXvUzCoJifLHPRaZiIhITLp6WrWIcGHjqAXAqO6HIyIiEr/Dudjxha0s/2ugrvvhiIiIxK+rp1W/A3wvcRWOpYllZwPXAjf3ZGAiIiJx6erFjn9kZn8C/jdhVhyAGuAqd3+hp4MTERGJQ6eTo5llE06fVrj7T3svJBERkXh1us3R3Q8C5cCg3gtHREQkfl3tkLMCGNcbgYiIiKSLribHO4DvmtkVZna8meUl33ohPhERkZTram/VlxN/ywFPWm6Jx1k9EZSIiEicupocp/VKFCIiImmkU8nRzAYA9wFXADnAIuDL7v5eL8YmIiISi862Od4JfJZwWvX/EWbJ+WEvxSQiIhKrzp5WnQH8g7s/A2Bm/wW8ZmZZ7t7ca9GJiIjEoLM1x+OBX7c8cPdlwEGgsDeCEhERiVNnk2MW0BRZdpCud+gRERFJe51NbgY8bWb7k5YdDcwzs8aWBe5+WU8GJyIiEofOJscnWln2dE8GIiIiki46lRzd/XO9HYiIiEi66Or0cSIiIn2ekqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEiEkqOIiEhEypOjmd1oZuvNbJ+ZVZrZue2ULTCz/2tm75hZs5k9nsJQRUTkCJXS5GhmnwYeBO4CyoClwAIzK2rjKf2A94D/A/wuJUGKiMgRL9U1x1uAx919nrvXuPvNQANwQ2uF3f1dd/+yuz8ObE9hnCIicgRLWXI0s1xgMrAwsmohcFaq4hAREelIdgr/17FAFrAlsnwLML0n/oGZzQJmARQUFLB8+XIACgsLGTBgAOvWrQNgyJAhjB07lqqqKgCysrIoLS1lzZo17NmzB4CSkhK2b98ODO12XC1xjBo1CjPj3XffBWDYsGEUFBSwatUqAPr168cpp5zC6tWr2b9/PwATJkygoaGBbdu2ATB69Gjcnbq6OgDy8/PJz8+nuroagP79+1NSUsLKlSs5cOAAAKWlpWzYsIEdO3YAMHbsWJqamti4cSMAw4cPJy8vj5qaGgAGDhxIcXExK1asoLm5GYCysjJqa2vZuXMnAOPGjaOxsZH6+npa3u/BgwezZs0aAAYNGsSJJ55IVVUV7o6ZUVZWxtq1a9m9ezcAxcXF7Nq1i4aGhm7vpy1bwsdq5MiR5ObmUltbC8DQoUMpKipixYoVAOTk5DBx4kRqamrYu3cvAOPHj2fr1q1s3bq1l/bTBZ39qLRp+fLl2k/d2E9wTo/sA9D3Kf7vU/d+9zrL3L3ThbvDzAqBTcB57l6RtPx24Bp3L+7g+S8B77n7Zzvz/8rKynzx4sXdiDi47YnuJ8d7Z+7o9mtI5tJnKH7aB9IiLy+v0t2ndFQulW2O7wHNwPDI8uHA5hTGISIi0q6UJUd3bwIqgQsjqy4k9FoVERFJC6lscwS4H3jKzJYBrwGzgULgIQAzexLA3a9reYKZfTRxdzDwQeJxk7tXpzJwERE5cqQ0Obr7T8xsGPAtoABYBVzi7nWJIq2Nd6yKPP4boA4Y3VtxiojIkS3VNUfcfS4wt41157eyzHo7JhERkWSaW1VERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCyVFERCRCybGPWbRoEaeffjqTJ09mzpw5f7F+//79fP7zn2fy5MlMnz6dDRs2HFr3wAMPMHnyZE4//XR++ctfHlo+d+5czjzzTM466yyuv/569u3bp20Q6UWZ/h3I9PhBybFPaW5u5rbbbmP+/Pm8/vrrPP/887zzzjsfKvP0009zzDHHUFlZyQ033MAdd9wBwDvvvEN5eTlLly7l2Wef5dZbb6W5uZn6+noefvhhFi9ezNKlS2lubqa8vFzbINJLMv07kOnxt1By7EMqKysZM2YMo0ePJjc3lxkzZrBgwYIPlXnllVe4+uqrAbj88supqKjA3VmwYAEzZsygX79+jBo1ijFjxlBZWQnAwYMH2bdvHwcPHmTv3r0cd9xx2oY+rDeO+ktLSzn77LOZOnUqH//4x1OyHZkq078DmR5/CyXHPqShoYERI0YcelxYWEhDQ0ObZbKzsxk8eDDbt29v87mFhYXcdNNNTJo0iZKSEgYPHtyrP259YRsyWW8c9bd48cUXqaioYPHixancpIyT6d+BTI+/hZKjtOv9999nwYIFVFVVUV1dTWNjI/Pnz487rC7pC9uQKr111C/xyvTvQBzxKzn2IQUFBWzatOnQ4/r6egoKCtosc/DgQXbt2kVeXl6bz3311VcpKiri2GOPJScnh09+8pMsW7ZM29BH9cZRP4CZ8alPfYpp06bx+OOP9/6GZLBM/w5kevwtlBz7kFNPPZXa2lrq6upoamqivLyciy666ENlLr74Yp555hkAXnjhBc4991zMjIsuuojy8nL2799PXV0dtbW1TJ48mZEjR/Lmm2/S2NiIu1NRUcFJJ52kbZAueeWVV3j11VeZP38+jz76KEuXLo07pLSV6d+BTI+/RXavvrqkVHZ2Nvfeey9XXnklzc3NXHPNNZSUlHDXXXdRVlbGxRdfzGc+8xlmz57N5MmTGTp0KI888ggAJSUlXHHFFZx55pmHXicrK4spU6Zw2WWXMW3aNLKyspg0aRIzZ87UNvRRXTnqHzFiRKeO+iHUIgHy8/O59NJLqays5KyzzkrBFmWeTP8OZHr8Lczde/UfxKWsrMx7ouH/tieGdvs17p25o9uvIZkrkz5DBw8e5LTTTuNnP/sZBQUFXHDBBTz88MOUlJQcKvPII49QXV3N/fffz/PPP89LL73EY489Rk1NDbNmzWLRokVs3ryZK664gjfffJN9+/bxwQcfMGjQIPbs2cOMGTO49dZbmT59ekq2CTJrH0jvysvLq3T3KR2VU81RRA7pjaP+rVu3cu211wIh+V555ZUpTYwih0M1xw5k+hFnpscPmb8NmR5/X5Dp+0Dx91z8na05prxDjpndaGbrzWyfmVWa2bkdlD8vUW6fmdWa2exUxSoiIkemlJ5WNbNPAw8CNwK/SfxdYGbj3X1DK+XHAK9JyPnjAAANu0lEQVQAPwY+A5wDzDWzre7+fOoiFzlypdNRv0iqpLrmeAvwuLvPc/cad78ZaABuaKP8bKDe3W9OlJ8HPAF8NUXxiojIEShlydHMcoHJwMLIqoVAW326z2yl/C+AKWaW07MRioiIBCnrkGNmhcAm4Dx3r0hafjtwjbsXt/Kc3wNPu/u3k5ZNBZYAhe7eECk/C5iVeFgMrOnxDWndscB7KfpfvUHxxyvT44fM3wbFH79UbcMod8/vqFCfGsrh7g8DD6f6/5rZm53p/ZSuFH+8Mj1+yPxtUPzxS7dtSGWb43tAMzA8snw4sLmN52xuo/xBMv8oSURE0lTKkqO7NwGVwIWRVRcCbU20+Hob5d909wM9G6GIiEiQ6t6q9wOfNbPrzazEzB4ECoGHAMzsSTN7Mqn8Q8AIM5uTKH898FngOymOuyMpP5XbwxR/vDI9fsj8bVD88UurbUj5DDlmdiNwG1AArAL+qaWDjpm9CuDu5yeVPw94ADgFqAfucfeHUhq0iIgcUfrs9HEiIiKHS9dzFBERiVByFBERiVBy7AFmZnHHcKTSey8ivUHJsQe4Gm5j0/LeK0nGy8z0WxKj5Pdf34WeoQ45h8nM+gGTgL8FdgKrgXXAH919j5lZJiRNM8si5JgP4o6lK8zsI8BU4GpgB7AW+D2wyt3r44ytq8wsG/gg0/aBpBczG+Tuu+OOo69QcjxMZvafwAzCVUWGAqMJQ01+Bsxx99r4ouuYmU1298rIsizCj3TafyjM7AlCclxLeP+PJyTJt4B57t79K133MjM7x91/E1mWUYnSzI4HPg+cBvyBMJ/xauBtd9+RzgeJybFl2vvewsxKCFc7KiMcnG8AVgAV7v7HRJm03QfpTMnxMJjZeOC3wJVApbtvM7N84B+ALwLHAf9I+JFOuzfYzE4k/IhVE6568pS7VyWtN8K8u2XAW4nZjdJG4v3/HWG2pDfcvdnMhgBXAdcDU4BvA/9OmiZ7MzuZ8P7vAV4GvufuryWtNyAH+ASwzN23xBJoOxLXW30e6A+8AUwgTO+4Dfg1cL+7/yG+CNuX+M6WRC6EYEAW0JyOn5tkZnYC4Xq3W4DXgJMJvz39CInyEXePXtUobZjZcMJ3+BV3395OuZxYZkRzd926eAO+STgya3mcHVl/F/AO4cohscfbSvy3E2pcDxCm7ttESPa3AccnyowAPgBGxh1vK/F/BfhN0uPcyPrZwB+Bk+KOtYPPUBXwDUIiOUiYS/g7wAmJMn+V2AfHxx1vG9vwEPBz4LikZUXA14A6YCtwedxxthP/DxLv7+bE/fGR9UcltufvgKy4420l/h8m3v9BScuGE2YRqyAceP1D3HG2E//3Eu//duBZ4BKgX6RMEeH6vf1SHZ8a0Q9PDVBgZuMA3P2gmWWb2dGJ9fOARkLNMh0VE4447wG+QPihXgV8BnjdzH4O/AiocfeNsUXZthXAKDO7AMK8vYn3v39i/bOEH+e/jyvAThhBONr/EXA58HHgx8ClwFozext4hrAP/hhblO07BVji7pvNLMfMst19g7vf4+6jgEXAbDM7Kk07iZxGSPA/BM4BVpnZOjP7ppnleTjFOpMwK1dznIG2YRSw3N13m1mWmWW5+xZ3f9zdpxK27QtmNiDmONsyhfAb9L8JTSM/Bdab2ffM7NREmS8As919f6qDU3I8PBWEI/2XzOwqM+vn7gfdfR+Au68nnJpJ+Q7tSKJt5WVgs7tvdvfV7v4Eodb4ReD/AHsJR3H3xxdpu14n1MyfNrPZZtY/8f7vBXD3bcBHSNMrtyTadl8Gqt19e+JWAdxBOI16GeG08fmk3zzCyX4JfCbREeRA4iAxJ+kg5QfAScDpnqgGpAszG0Voo14G/Bvh834x4WLqs4H3zOw14J8INZx09Avgc2Z2srs3e2heyE1cWB7gUUJN8mPxhdi6xPV9NwLr3f0x4CKgFHgQOBd4w8xWEtpTY3n/1eZ4mBI79wFgImEnLwMWJ+5/CfhfwGh33xNbkJ3Q2vl8M5sBPAd8xN0b44msfYkf4P8g1M73Ek4LvwD8D/A5Qk2gOF3jT2ZmR3mkI4iZfQJYQHrvg8mE03qbgTvc/cXI+pMJHaTy0m0bzGwwoaf5u+6+JGl5f8LFECYDNxI+R4NaDrzSSaLNtxw4Bvg3d/9xZP0EYDlwTBq+/wMJZ0v+5O6/i6wbQGi//iqh02Ms77+SYzeY2TDgk4RG5bGE05VDgSXAj9z9mRjDa1VrP8SJ5dkkOiGY2XeAKZ40AXw6SZw+ak4M5ziHcKR5BnAqoca+iNAZakGMYbYpcYrRWtsPSWXuAM5090+kLLAuaOkBmWhauJfw/rd0xFkAjCccuKx396vii7RjLZ1w3P1gZPl/ASPS9XsAYfgGcDdwDaED10LC538C4bvxlrtfF1+EndNaj1oze5zQ/n5uLDEpOXaNmY0ExiUe7iH0ONxLSI4fIbQ1vuft9L6KU1L8RmgMX+Pum5PWG6ENbJO7vxFPlF2TOI2UT9gPRwM7073G3hEzOx/Y6u6r446lI4m29umEg8TTCW2R2wlt70+7e12M4XVack9VQg/cCuBud38+1sBakYj1qMRB4tGEM1hTCbWxU4H1wNNAefL3O10kJi3wtk63J2rwLwA/dPefpjS4lhiUHDvPzG4gjOkqJSTBWsJp1F8Bz6VxxwngL+LfQ+juvZFwSvJn7r4mxvA6lGhb3Jv0uN0vWDqKbkMmSrzvlxMOSPoTxjf+2t13Jn6onXAqLF3bfJPjH0Dorb3E3f+UVKYfMN3dX44nyq5LHqdsZkPcfWfcMR0uM8shnL16PbYYMuh3JVaJU6jrgO8SerflE46WzyecQqoHvuzu1ek46LaD+EsISfKfEvFnpVvvPDMbSuil+jLhiHhpy3ucnCQTg6I3ehrOFNLBNiQPSC8BGtz9/diCbUPiNN6jwDTCmYdNhLMQjYTTeU+7+9pE2VZP4ceplfg3EpL5PkJzyFPu/k58EbYvkTTGAHWt9eBMx9+eZB3Fn1aiYzt0a3NMzs3A79pYdw6hraUWODbuWPtw/PsJHZ+aCbWVbxM63bSUOZ4wdnBs3PH24W34Z0KCPy3x+GTCEKAfApWEDjr5ccd5mPG/AbyY5vF/hXDW5zHgbwiD/rMiZQYTet7mxB1vN+K/lMj45ZTHGveblSk3wjCHamBC4nG/5J1HGKxaDfyvuGPto/HPI4zb+ivCnLZ3EyYyaCacFp5FGFD/P3HH2se34dfALa0sz+LP0/n9d9xx9uH4Xyc04/w68blZTxhydQ4wJFFmNvDbuGPN9Pg1zrHzniOchvlKYlzXfg+Dz48CcPcNwPvAyDiDbEfGxp9o/6kmTOr+J3d/292/QRhE/InEujsIQzvuiS3QdvSRbcgmTBbxKQtTr5EYfH6Uh3F2FYQftpFmVhpnrK3pA/HnAwcIPbHPJUwC8Cihx3wFsNjMvkaonf2uzReKScbFH3d2zoQboU3FgCsIM6/sJuzUyfx5iqnPJJaPjjvevhZ/Yhv6kZimjHCUf1Rk/fmk6XR3fWwbziCcDr4HGN7K+uMJY01HxB1rX4sfKCBMSvCJVtaVESZd2Jb4DCn+bt7UIacLzOwYQiI5izCA+OzEqs2E5POUu98RT3Qdy9T4k8bUjQX2eNIk3Enrbgc+6+5j44u0bX1kG44iHEx9jjB/cDZh4vGfEK4GMYlQCxjv7qfFFWdbMj1+ODTEwd19X2I4B/Ch65r+B3CJu5fFFWN7Mil+JccOmNlfAdcS5v97jzCW7n3gN4R2ohzCuMH/dvffxxVnW/pQ/LcAfyJM29dAmD+13BPXziTMwVjv7i/FFmwb+sI2RCUOtD5LmAnqo4SzDvsInVru9sisJ+kmk+Nvq0dqYmaZ5cBj7p6Wp+Yhc+JXcuxAYpaGUwi98LYDeYQBtycRfui+leZfpMfpe/GXEXoZbgTu8zS+LA/0mW0YDOxO/lFL1MSOJkx+MYFQI07Lz1JfjL+VMkcDnwb+n6ffZeYyLn4lx3YkjuZ3E6r5FUnLigiT+V5PmBnnKndfHlugbejD8Y8ktB19gdCo//fpGD/0jW0AMLMfEYagLCOMUdvVSpmhnqYXOD5C4j/G03BsLGRo/HE3eqbzjXC0vxI4o431/YA3CadhYo/3CIw/N53j70Pb8PeEThLvE8bC/ogwIfQ4oH+izEeAnwET4473CIn/b4ETkuJvmW5tQtzx9pX4VXNsR6Lx+CXCFFPXAX/wv7x6ws2EC4p+NIYQ26X449dHtmEeYUzavYSkMpPww7aGcF3QXxIm3X/Q3XPbep24KP54ZWr8GufYDg9zYP4z4ajmSeA6MzvewtUgWhqQzyOMnUo7ij9+mb4NibGB64H33b3W3b/j7hMJFwpeQvihm0+45t5T8UXaOsUfr4yOP+6qaybcCI31PyH09HyP0LHix4Tu378jDU/FKP70umXyNhAuw3Zy4n4uib4KSes/TTht9tG4Y1X88cfbV+LXadUuSHTJv5QwmH4f4Wj/WU/jiYqTKf749YVtgEM9Pc3DJZO+QDglNiDuuDpL8ccrE+JXcjxMloZXHOgKxR+/vrANAGZ2C2Hy6PvijuVwKP54pWv8So4i0i0WLkPUnKmJXvHHK13jV3IUERGJUG9VERGRCCVHERGRCCVHERGRCCVHERGRCCVHERGRCCVHERGRiP8PA2DvXq5sXOIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" + "ename": "KeyError", + "evalue": "'measurements'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplot_histogram\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'measurements'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m: 'measurements'" + ] } ], "source": [ @@ -160,23 +162,11 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAFGCAYAAAAfEFTPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XucFNWZ//HP49y4CMjgBGfA4SI4DBfJOMiKCuoqq5hEXWQ1CVE0S1g00XVNYrJs1qAmmGCMuPl5SdB43d/PG0QTkYSgCRjB24BEYCDg6BBgQG4CMsDA5Pn9UQ1pyrky3V09w/f9evVruqtO9TzV1V1P1alzTpm7IyIiIn93XNQBiIiIpBslRxERkRAlRxERkRAlRxERkRAlRxERkRAlRxERkRAlRxERkRAlRxERkRAlRxERkZDMVP9DM7sB+DaQD6wAbnb315qw3DnAH4FV7j64sfLdunXzwsLCFkYrIiJtybvvvrvV3fMaK5fS5GhmVwH3ATcAf4r9nWtmA919XQPLdQWeAF4BejTlfxUWFvLqq6+2PGgREWkzcnNzK5tSLtXVqrcAj7n7THcvd/cbgSrg+kaWewR4HFic7ABFRERSlhzNLBsoBeaFZs0DzmpguRuA7sAPkhediIjI36WyWvVEIAPYHJq+GbiwrgXMbAjwfeBMd681swb/gZlNAiYB5Ofns2TJEgAKCgro0KEDa9euBaBLly707duXpUuXApCRkcHQoUNZvXo1e/bsAaC4uJjt27ezeXMQbs+ePcnOzqaiogKArl27UlhYyLJlywDIyspiyJAhlJeXs3fvXgAGDhzIli1b2LJlCwC9evXCzPjwww8B6NatG/n5+SxfvhyAnJwcBg0axIoVK9i/fz8AgwcPpqqqim3btgHQu3dv3J3KyqBmIC8vj7y8PFauXAlA+/btKS4u5r333uPAgQMADB06lHXr1rFjxw4A+vbtS01NDevXrwege/fu5ObmUl5eDkDHjh0pKipi2bJl1NbWAlBSUkJFRQU7d+4EoF+/flRXV7Nx40YOfd6dO3dm9erVAHTq1In+/fuzdOlS3B0zo6SkhDVr1rB7924AioqK2LVrF1VVVdpO2k7aTtpOKdlOTWWpumWVmRUAG4Bz3X1h3PTbgPHuXhQqnwMsBe5y9ydj06YC45rSIKekpMR1zVFEROLl5uaWufuwxsql8sxxK1BLUEUarzuwqY7y+UAx8KiZPRqbdhxgZnYQuMTdw1W0IiIiLZaya47uXgOUAaNDs0YDi+pYZAMwBPhs3OMhYG3seV3LiIiItFiq+zn+FHjSzN4CXgcmAwUESQ8zewLA3a9x9wPA8viFzewjYL+7HzFdREQkkVKaHN39GTPrBnyPoNp0OUH16KF+J+q1LyIikUtZg5xUU4McEREJa2qDHI2tKiIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkKCIiEqLkGDJ//nyGDx9OaWkpM2bM+NT8Rx99lLPPPptRo0YxZswYVq1aBUBZWRmjRo1i1KhRjBw5kpdeeunwMg888AAjRozgrLPOYuLEiezbty9l6yMiIs2n+znGqa2t5YwzzmD27NkUFBRwwQUXMHPmTAYMGHC4zK5du+jcuTMAc+fO5ZFHHuH555+nurqa7OxsMjMz2bRpE6NGjWLlypV89NFHXHLJJSxevJj27dtz3XXXMXr0aL785S8ndH1FRKRxup/jUSgrK6NPnz707t2b7Oxsxo4dy9y5c48ocygxAlRXV2NmAHTo0IHMzEwA9u/ff3g6wMGDB9m3bx8HDx5k7969nHTSSSlYGxEROVqZUQeQTqqqqujRo8fh1wUFBZSVlX2q3MMPP8wDDzxATU0NL7744uHp77zzDjfeeCPr16/nwQcfJDMzk4KCAr7xjW9w2mmn0a5dO84//3z+8R//MSXrIyIiR0dnjkdh4sSJLFmyhKlTp3LPPfccnj5s2DAWL17M/PnzmTFjBvv27ePjjz9m7ty5LF26lJUrV1JdXc2zzz4bYfQiItIYJcc4+fn5bNiw4fDrjRs3kp+fX2/5sWPHMmfOnE9NLyoqomPHjpSXl/PHP/6RwsJCTjzxRLKysvj85z/PW2+9lZT4RUQkMZQc45x++ulUVFRQWVlJTU0Ns2fP5uKLLz6izPvvv3/4+bx58zjllFMAqKys5ODBgwD89a9/Zc2aNRQWFtKzZ0/eeecdqqurcXcWLlzIqaeemrqVEhGRZtM1xziZmZlMnz6dcePGUVtby/jx4ykuLmbatGmUlJQwZswYZs6cyYIFC8jKyuKEE07g/vvvB+CNN95gxowZZGVlcdxxx3H33XfTrVs3unXrxqWXXsr5559PRkYGp512GhMmTIh4TUVEpCHqyiEiIscMdeUQERE5SkqOIiIiIUqOIiIiIUqOIiIiIUqOIiIiIUqOIiIiIUqOIiIiIUqOIiIiIUqOIiIiIUqOIiIiIUqOIiIiIRp4vBG3Pt61xe8xfcKOBEQiIk01f/58pkyZQm1tLVdffTU333zzEfMfffRRHn74YTIyMujYsSP33nsvAwYMYPv27Vx77bUsXbqUL33pS0yfPv3wMu+++y5f//rX2bdvH6NHj+auu+7CzFK9apIiOnMUkTaltraWW2+9lWeffZbFixcza9YsVq1adUSZK664gtdff52FCxdy00038b3vfQ+AnJwcpkyZwh133PGp9/3Wt77FjBkzeOedd3j//feZP39+StZHoqHkKCJtSllZGX369KF3795kZ2czduxY5s6de0SZzp07H35eXV19+AywY8eOnHnmmeTk5BxRftOmTezevZszzjgDM+OLX/wiL7/8cvJXRiKjalURaVOqqqro0aPH4dcFBQWUlZV9qtzDDz/MAw88QE1NDS+++GKj71lQUHDEe1ZVVSUuaEk7OnMUkWPSxIkTWbJkCVOnTuWee+6JOhxJM0qOIgk2f/58hg8fTmlpKTNmzPjU/EcffZSzzz6bUaNGMWbMmCOuh917772UlpYyfPhwXnnlFQDWr1/PpZdeyplnnsmIESN46KGHUrYurVF+fj4bNmw4/Hrjxo3k5+fXW37s2LHMmTOn0ffcuHFjk99TWj8lR5EEakljkFWrVjF79mwWLVrEc889x7e//W1qa2vJzMzkzjvv5I033mDevHk88sgjn3pP+bvTTz+diooKKisrqampYfbs2Vx88cVHlHn//fcPP583bx6nnHJKg+950kkn0alTJ95++23cnaeffppLLrkkKfFLetA1R5EEim8MAhxuDDJgwIDDZeprDDJ37lzGjh1LTk4OvXr1ok+fPpSVlTF8+HBOOukkADp16sSpp55KVVXVEe8pf5eZmcn06dMZN24ctbW1jB8/nuLiYqZNm0ZJSQljxoxh5syZLFiwgKysLE444QTuv//+w8sPHTqU3bt3c+DAAebMmcOsWbMYMGAAd9999+GuHBdeeCEXXnhhhGspyabkKJJALWkMUlVVxbBhw45YNtzoY926dfz5z3+mtLQ0SWvQNowePZrRo0cfMW3KlCmHn//oRz+qd9lly5bVOb2kpIRFixYlJkBJe6pWFYnA0TQG+eSTT5gwYQLTpk074uxTRBJPyVEkgVrSGKShZQ8cOMCECRMYN24cX/jCF5IUvYgcouQokkAtaQxy8cUXM3v2bPbv309lZSUVFRWUlpbi7tx0002ceuqpfP3rX0/p+ogcq3TNUSSBWtIYpLi4mMsvv5wRI0Ycfp+MjAzeeOMNnnnmGQYOHMioUaMA+O///u9PXVMTkcQxd486hqQoKSnxV199tcXvo4HHRUTajtzc3DJ3H9ZYOVWrioiIhCg5ioiIhCg5ioiIhCg5ioiIhCg5ioiIhKgrh4i0eWp1Ls2lM0cREZEQJUcREZGQlCdHM7vBzD4ws31mVmZmIxsoe66ZLTKzbWa218xWmdm3UhmviIgce1J6zdHMrgLuA24A/hT7O9fMBrr7ujoW+QT4H+A9oBo4G/i5mVW7+wMpCltERI4xqT5zvAV4zN1nunu5u98IVAHX11XY3cvc/Wl3X+HuH7j7U8DvgHrPNkVERFoqZWeOZpYNlAI/Cc2aB5zVxPcoiZWdmtDgRJJILSVFWp9UVqueCGQAm0PTNwMXNrSgma0H8gjivd3dH6qn3CRgEgT3xluyZAkQ3FG9Q4cOrF27FoAuXbrQt29fli5dCkBGRgZDhw5l9erV7NmzBwjukLB9+3ag5Tu2Q3H06tULM+PDDz8EoFu3buTn57N8+XIAcnJyGDRoECtWrGD//v0ADB48mKqqKrZt2wZA7969cXcqKysByMvLIy8vj5UrVwLQvn17iouLee+99zhw4AAAQ4cOZd26dezYEexg+/btS01NDevXrwege/fu5ObmUl5eDkDHjh0pKipi2bJl1NbWAsFd0CsqKti5cycA/fr1o7q6mo0bN3Lo8+7cuTOrV68GoFOnTvTv35+lS5fi7pgZJSUlrFmzht27dwNQVFTErl27Dt/tviXbafPm4GvVs2dPsrOzqaioAKBr164UFhYevrt7VlYWQ4YMoby8nL179wIwcOBAtmzZwpYtW5K0nS5o6lelXkuWLNF2asF2gnMSsg1Av6fof08t2+81VcruymFmBcAG4Fx3Xxg3/TZgvLsXNbBsH+B44Ezgx8C/u/uTDf0/3ZVD0oW+Q9HTNpBDmnpXjlSeOW4FaoHuoendgU0NLejuH8Sevmdm3QmqVRtMjiIiIkcrZQ1y3L0GKAPCd2gdDSxqxlsdB+QkKi4REZGwVA8f91PgSTN7C3gdmAwUAA8BmNkTAO5+Tez1jcAHwOrY8qOAbwHqxiEiIkmT0uTo7s+YWTfge0A+sBy4xN0rY0UKQ4tkEFxj7A0cBN4HvkssmYqIiCRDygcej3Xer/PMz93PC72eAcxIQVgiIiKHaWxVERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRECVHERGRkGYlRzO70sz+Ke71bWa23sx+Z2b5iQ9PREQk9Zp75jj10BMzOx2YAvwPkAXck7iwREREopPZzPK9gNWx5/8MvODu081sHvC7hEYmIiISkeaeOe4DOsWeXwDMjz3fGTddRESkVWvumeNrwD1m9idgGDAuNv1U4K+JDExERCQqzT1z/AZQQ5AUJ7v7xtj0MahaVURE2ohmnTm6+3rgC3VMvzlhEYmIiESs2f0czaydmY0zs++Y2QmxaaeYWW7iwxMREUm9Zp05mlk/gkY4xwMnAM8BHwPXx15PTHSAIiIiqdbcM8cZwDygO7A3bvqvgfMTFZSIiEiUmtta9SzgTHevNbP46euAgoRFJSIiEqGjGVs1q45phQR9HUVERFq95ibHecAtca/dzDoDtwNzEhaViIhIhJpbrXoL8AczWw20A54B+gGbgSsTHJuIiEgkmtvPcaOZfRb4EnA6wZnnL4D/dfe9DS4sIiLSSjT3zJFYEvxl7CEiItLmNJoczWws8Bt3PxB7Xi93n52wyERERCLSlDPH54GTgI9iz+vjQEYighIREYlSo8nR3Y+r67mIiEhb1axkZ2ajzOxTCdXMMsxsVOLCEhERiU5zzwT/ANQ1wPgJsXkiIiKtXnOToxFcWwzrBuxpeTgiIiLRa1JXDjP7deypA0+Z2f642RnAYGBRgmMTERGJRFP7OW6L/TVgB0fekaMG+BMwM4FxiYiIRKZJydHdrwMwsw+Bn7i7qlBFRKTNau7wcbcnKxAREZF00ZQRcv4MnOvuO8zsPepukAOAu5+WyOBERESi0JQzx1nAoQY4DY2QIyIi0iY0ZYSc2+t6LiIi0lZpODgREZGQplxzbPA6YzxdcxQRkbagqXflEBEROWY065qjiIjIsUDXHEVERELUz1FERCRE/RxFRERC1M9RREQk5KiuOZrZKWb2+djjlGYue4OZfWBm+8yszMxGNlB2rJnNM7MtZrbbzN40s0uPJmYREZGmalZyNLNuZvYCsAZ4Ifb4i5m9aGbdmrD8VcB9wDSghOAekHPNrLCeRc4FXgU+Fyv/MvCrhhKqiIhISzX3zPFhoB8wEmgXe4wC+tC0+zneAjzm7jPdvdzdbwSqgOvrKuzu/+7uP3L3t9x9baxatwy4vJlxi4iINFmzblkFXARc4O6L46a9bmb/BsxvaEEzywZKgZ+EZs0DzmpGDJ0IbrgsIiKSFM1NjluAum50XA1sa2TZE4EMYHNo+mbgwqb8czP7OtATeLKe+ZOASQD5+fksWbIEgIKCAjp06MDatWsB6NKlC3379mXp0qUAZGRkMHToUFavXs2ePcHqFRcXs337dqBrU0Jr0KE4evXqhZnx4YcfAtCtWzfy8/NZvnw5ADk5OQwaNIgVK1awf3/QQHjw4MFUVVWxbVvw8fbu3Rt3p7KyEoC8vDzy8vJYuXIlAO3bt6e4uJj33nuPAwcOADB06FDWrVvHjh3BMUXfvn2pqalh/fr1AHTv3p3c3FzKy8sB6NixI0VFRSxbtoza2loASkpKqKioYOfOnQD069eP6upqNm7cyKHPu3PnzqxevRqATp060b9/f5YuXYq7Y2aUlJSwZs0adu/eDUBRURG7du2iqqqqxdtp8+bga9WzZ0+ys7OpqKgAoGvXrhQWFrJs2TIAsrKyGDJkCOXl5ezduxeAgQMHsmXLFrZs2ZKk7XRBU78q9VqyZIm2Uwu2E5yTkG0A+j1F/3tq2X6vqcy9ScOmBoXN/hUYD1zt7hti03oAjwNPu/vDDSxbAGwg6DO5MG76bcB4dy9q5H9fQZAUr3L33zQWa0lJib/66qtNWKuG3fp4y5Pj9Ak60T2W6TsUPW0DOSQ3N7fM3Yc1Vu5oBh7vA3xoZhtir3sA+4DPEFyTrM9WoBboHpreHdjUSAzjgCeAa5qSGEVERFoiZQOPu3uNmZUBo4Hn4maNJhhooE5mdiXBmekEd9cgBCIiknSpHnj8p8CTZvYW8DowGSgAHgIwsydi//Oa2OsvElSlfgtYaGYnxd6nxt23JzAuERGRw5rbIKdF3P2ZWH/I7wH5wHLgEnevjBUJ93ecTBDjjNjjkAXAecmNVkREjlXNSo6x7hj/BXyJIJFlxc9394zG3sPdHwAeqGfeeQ29FhERSYXmDgJwJzABuAf4G/Bt4H6Cbhw3JDY0ERGRaDQ3OV4JTHb3nxO0PH3R3W8Cvk/QsEZERKTVa25y7A6sjD3/BDgh9vy3wD8lKigREZEoNTc5riNoXQqwlmA4OYARwN5EBSUiIhKl5ibHX/H3sbDuA243sw+Ax2h4AAAREZFWo1mtVd39P+OeP29m6wkGDf+Lu7+U6OBERESi0KJ+ju7+BvBGgmIRERFJC82tVsXMTjezJ8zsndjjSTM7PRnBiYiIRKFZydHMxgNvE4xu83Ls0R14y8y+kvjwREREUq+51ao/BP7b3afFTzSz/wR+ADyVqMBERESi0txq1Tzg2TqmP0dwyyoREZFWr7nJ8Q/UPeD3eQSDgYuIiLR6TbnZ8di4l3OBu8xsGH9vpXomMBaYmvDoREREInC0NzueFHvE+xn13G1DRESkNWnKzY6b3d1DRESkNVPiExERCTmaQQA+Z2YLzWyrmW0xswVmdkkyghMREYlCcwcBmEgw+Pj7wHeA7wIfAL8ys68mPjwREZHUa+4gAN8BbnH3/xM37REzKyNIlL9MWGQiIiIRaW61aiHBjY3D5gK9Wh6OiIhI9I7mZsej65j+T0Bly8MRERGJXnOrVX8C/Cx2F45FsWlnA1cDNyYyMBERkag092bHPzezj4BvEoyKA1AOXOnuLyY6OBERkSg0OTmaWSZB9elCd/9V8kISERGJVpOvObr7QWA20Cl54YiIiESvuQ1ylgH9khGIiIhIumhucpwK3GNml5vZyWaWG/9IQnwiIiIp19zWqnNif2cDHjfdYq8zEhGUiIhIlJqbHM9PShQiIiJppEnJ0cw6AHcDlwNZwHzgJnffmsTYREREItHUa463A9cSVKv+P4JRch5MUkwiIiKRamq16ljgX939aQAz+1/gdTPLcPfapEUnIiISgaaeOZ4MvHbohbu/BRwECpIRlIiISJSamhwzgJrQtIM0v0GPiIhI2mtqcjPgKTPbHzetHTDTzKoPTXD3SxMZnIiISBSamhwfr2PaU4kMREREJF00KTm6+3XJDkRERCRdNHf4OBERkTZPyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCREyVFERCQk5cnRzG4wsw/MbJ+ZlZnZyAbK5pvZ/zWzVWZWa2aPpTBUERE5RqU0OZrZVcB9wDSgBFgEzDWzwnoWyQG2Aj8C3kxJkCIicsxL9ZnjLcBj7j7T3cvd/UagCri+rsLu/qG73+TujwHbUxiniIgcw1KWHM0sGygF5oVmzQPOSlUcIiIijclM4f86EcgANoembwYuTMQ/MLNJwCSA/Px8lixZAkBBQQEdOnRg7dq1AHTp0oW+ffuydOlSADIyMhg6dCirV69mz549ABQXF7N9+3aga4vjOhRHr169MDM+/PBDALp160Z+fj7Lly8HICcnh0GDBrFixQr2798PwODBg6mqqmLbtm0A9O7dG3ensrISgLy8PPLy8li5ciUA7du3p7i4mPfee48DBw4AMHToUNatW8eOHTsA6Nu3LzU1Naxfvx6A7t27k5ubS3l5OQAdO3akqKiIZcuWUVtbC0BJSQkVFRXs3LkTgH79+lFdXc3GjRs59Hl37tyZ1atXA9CpUyf69+/P0qVLcXfMjJKSEtasWcPu3bsBKCoqYteuXVRVVbV4O23eHHytevbsSXZ2NhUVFQB07dqVwsJCli1bBkBWVhZDhgyhvLycvXv3AjBw4EC2bNnCli1bkrSdLmjqV6VeS5Ys0XZqwXaCcxKyDUC/p+h/Ty3b7zWVuXuTC7eEmRUAG4Bz3X1h3PTbgPHuXtTI8i8BW9392qb8v5KSEn/11VdbEHHg1sdbnhynT9jR4veQ1kvfoehpG8ghubm5Ze4+rLFyqbzmuBWoBbqHpncHNqUwDhERkQalLDm6ew1QBowOzRpN0GpVREQkLaTymiPAT4Enzewt4HVgMlAAPARgZk8AuPs1hxYws8/GnnYG/hZ7XePuK1MZuIiIHDtSmhzd/Rkz6wZ8D8gHlgOXuHtlrEhd/R2Xhl5/AagEeicrThERObal+swRd38AeKCeeefVMc2SHZOIiEg8ja0qIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoIiISouQoaWf+/PkMHz6c0tJSZsyY8an5+/fv56tf/SqlpaVceOGFrFu3DoDt27dz6aWXcvLJJ3Prrbcescy4ceMYOXIkI0aM4JZbbqG2tjYl6yJyLEr0b7i6upqrrrqKf/iHf2DEiBHcfvvtSV8HJUdJK7W1tdx66608++yzLF68mFmzZrFq1aojyjz11FOccMIJlJWVcf311zN16lQAcnJymDJlCnfcccen3veXv/wlr732GosWLWLr1q288MILqVidVikZByc/+MEPGDx4MCeffHJK1kGik6zf8De+8Q3efPNNFixYwJtvvsnvf//7pK6HkmMbc7Q7NoB7772X0tJShg8fziuvvHJ4+kMPPcRZZ53FiBEjePDBB5Maf1lZGX369KF3795kZ2czduxY5s6de0SZl19+mS9+8YsAXHbZZSxcuBB3p2PHjpx55pnk5OR86n07d+4MwMGDBzlw4ABmltT1aK2StWO76KKLmD9/fipWQSKWjN9whw4dGDlyJADZ2dmcdtppbNy4ManroeTYhrRkx7Zq1Spmz57NokWLeO655/j2t79NbW0tK1eu5IknnmD+/Pm89tprzJs3j4qKiqStQ1VVFT169Dj8uqCggKqqqnrLZGZm0rlzZ7Zv397oe19xxRWceuqpHH/88Vx22WWJDbyNSNbByRlnnMFJJ52UknWQaCXzNwywc+dOfve733HuuecmLug6KDm2IS3Zsc2dO5exY8eSk5NDr1696NOnD2VlZfzlL3+htLSUDh06kJmZyVlnncVLL70Uxeq12KxZsygvL2f//v0sXLgw6nDSUrJ3bNI0ia4BWrNmDaNGjTr8KCwsTHotUDIcPHiQiRMnMmnSJHr37p3U/6Xk2Ia0ZMdW37LFxcW88cYbbN++nerqan7/+9+zYcOGpK1Dfn7+Ee+/ceNG8vPz6y1z8OBBdu3aRW5ubpPev127dlxyySWfOmgQSRfJqAHq378/CxcuZOHChfzhD3+gQ4cOfP7zn09K/Mn8Dd98882ccsopXH/99YkNug5KjtKgoqIibrrpJq644gr+5V/+hSFDhnDcccn72px++ulUVFRQWVlJTU0Ns2fP5uKLLz6izJgxY3j66acBePHFFxk5cmSD1xA/+eQTNm3aBAQ/xHnz5tG/f/+krUNrluyDE2lcMmqA4i1YsIDevXsnrXFUMn7DAD/84Q/ZtWsX06ZNS0rcYZkp+S+SEs3ZsfXo0eOIHVtDy1599dVcffXVANx5550UFBQkbR0yMzOZPn0648aNo7a2lvHjx1NcXMxQPgeNAAAP/UlEQVS0adMoKSlhzJgxfOUrX2Hy5MmUlpbStWtXHn744cPLDx06lN27d3PgwAHmzJnDrFmzyM3NZfz48ezfv5+//e1vjBw5kuuuuy5p69Caxe/Y8vPzmT17Nr/4xS+OKHNoxzZ8+PAm79ik6eqqxQknuIZqgIYNG3bEsuHao9mzZ3PFFVckLf5k/IY7derEPffcQ//+/TnvvPMAmDhxItdcc03y1iNp7ywp15Id28UXX8ykSZO44YYb2LRpExUVFZSWlgKwZcsW8vLyWL9+PS+99BLz5s1L6nqMHj2a0aNHHzFtypQph5+3a9eOxx57rM5lly1bVuf0+Na3Ur9k7NgGDBjA97//fZ5//nmqq6sZNGgQV199Nd/97ncjXNNjU01NDb/97W+57bbbkvp/kvEbTvV1bSXHNqQlO7bi4mIuv/xyRowYcfh9MjIyAJgwYQLbt28nKyuL6dOn06VLl5Su162Pd23xe0yfsCMBkRwbkrFju/3221PScbstSFYNEAQNfU477TQ+85nPJH9FWjklxzamJTu2b37zm3zzm9/81PSXX345oTGKSP2SVQMEQYvtZFap1qc1HuAqOYpIg1rjjq01S1YN0J49e/jjH//IvffeG+XqtRpKjm2cdmwirU8yaoA6duzI+++/n9A42zIlRxGRNKeD3NRLeT9HM7vBzD4ws31mVmZmIxspf26s3D4zqzCzyamKVUREjk0pTY5mdhVwHzANKAEWAXPNrLCe8n2Al2PlSoC7gJ+ZWeqvKIuIyDEj1WeOtwCPuftMdy939xuBKqC+sYAmAxvd/cZY+ZnA48C3UhSviIgcg1KWHM0sGygFwj3I5wFn1bPYiDrK/w4YZmZZiY1QREQkYO6emn9kVgBsAM5194Vx028Dxrt7UR3L/AV4yt3viJs2ClgAFLh7Vaj8JGBS7GURsDrhK1K3E4GtKfpfyaD4o9Xa44fWvw6KP3qpWode7p7XWKE21VrV3X8B/KLRgglmZu+4+7DGS6YnxR+t1h4/tP51UPzRS7d1SOU1x61ALdA9NL07sKmeZTbVU/4grf8oSURE0lTKkqO71wBlwOjQrNEErVHrsrie8u+4+4HERigiIhJIdWvVnwLXmtlEMys2s/uAAuAhADN7wsyeiCv/ENDDzGbEyk8ErgV+kuK4G5PyqtwEU/zRau3xQ+tfB8UfvbRah5Q1yDn8D81uAG4F8oHlwH8caqBjZn8EcPfz4sqfC9wLDAI2Aj9294dSGrSIiBxTUp4cRURE0l3Kh48TERFJd0qOIiIiIUqOCWBmFnUMxyp99iKSDEqOCeC6cBuZQ5+9kmS0zEz7kgjFf/76LSSGGuQcJTPLAU4D/hnYCawA1gJ/dfc9ZmatIWmaWQZBjvlb1LE0h5kdD4wCvgjsANYAfwGWu/vGKGNrLjPLBP7W2raBpBcz6+Tuu6OOo61QcjxKZvY/wFiCu4p0BXoTdDV5AZjh7hXRRdc4Myt197LQtAyCnXTafynM7HGC5LiG4PM/mSBJvgvMdPdXIwyvSczsHHf/U2haq0qUZnYy8FXgDOB9gvGMVwB/dvcd6XyQGB9ba/vcDzGzYoK7HZUQHJyvA5YBC939r7EyabsN0pmS41Ews4HAG8A4oMzdt5lZHvCvwL8BJwH/TrCTTrsP2Mz6E+zEVhLc9eRJd18aN98Ixt0tAd6NjW6UNmKf/5sEoyW97e61ZtYFuBKYCAwD7gB+QJomezMbQPD57wHmAD9z99fj5huQBVwEvOXumyMJtAGx+63OAtoDbwODCYZ33Aa8BvzU3d+PLsKGxX6zxaEbIRiQAdSm4/cmnpmdQnC/283A68AAgn1PDkGifNjdw3c1Shtm1p3gN/yyu29voFxWJCOiubsezXwAUwiOzA69zgzNnwasIrhzSOTx1hH/bQRnXPcSDN23gSDZ3wqcHCvTA/gb0DPqeOuI/2bgT3Gvs0PzJwN/BU6NOtZGvkNLgf8kSCQHCcYS/glwSqzMZ2Lb4OSo461nHR4CfgOcFDetEPgOUAlsAS6LOs4G4r8/9vluij0fGJp/XGx9/gXIiDreOuJ/MPb5d4qb1p1gFLGFBAde/xp1nA3E/7PY578deA64BMgJlSkkuH9vTqrj00X0o1MO5JtZPwB3P2hmmWbWLjZ/JlBNcGaZjooIjjh/DHyNYEe9HPgKsNjMfgP8HCh39/WRRVm/ZUAvM7sAgnF7Y59/+9j85wh2zl+KKsAm6EFwtP9z4DLgH4FfAp8D1pjZn4GnCbbBXyOLsmGDgAXuvsnMssws093XufuP3b0XMB+YbGbHpWkjkTMIEvyDwDnAcjNba2ZTzCzXgyrWCQSjctVGGWg9egFL3H23mWWYWYa7b3b3x9x9FMG6fc3MOkQcZ32GEeyDvklwaeRXwAdm9jMzOz1W5mvAZHffn+rglByPzkKCI/2XzOxKM8tx94Puvg/A3T8gqJpJ+QZtTOzayhxgk7tvcvcV7v44wVnjvwE/AvYSHMX9NLpIG7SY4Mz8KTObbGbtY5//XgB33wYcT5reuSV2bXcOsNLdt8ceC4GpBNWolxJUG59H+o0jHO8V4CuxhiAHYgeJWXEHKfcDpwLDPXYakC7MrBfBNeq3gDsJvu9jCG6mPhnYamavA/9BcIaTjn4HXGdmA9y91oPLC9mxG8sDPEJwJvkP0YVYt9j9fdcDH7j7o8DFwFDgPmAk8LaZvUdwPTWSz1/XHI9SbOPeCwwh2MhvAa/Gnn8d+DLQ2933RBZkE9RVn29mY4HngePdvTqayBoW2wH/kODsfC9BtfCLwCfAdQRnAkXpGn88MzvOQw1BzOwiYC7pvQ1KCar1NgFT3f3XofkDCBpI5abbOphZZ4KW5h+6+4K46e0JboZQCtxA8D3qdOjAK53ErvnOBk4A7nT3X4bmDwaWACek4effkaC25CN3fzM0rwPB9etvETR6jOTzV3JsATPrBnye4KJyX4Lqyq7AAuDn7v50hOHVqa4dcWx6JrFGCGb2E2CYxw0An05i1Ue1se4c5xAcaZ4JnE5wxj6foDHU3AjDrFesitHq2g5xZaYCI9z9opQF1gyHWkDGLi1MJ/j8DzXEmQsMJDhw+cDdr4wu0sYdaoTj7gdD0/8X6JGuvwMIum8AdwHjCRpwzSP4/g8m+G286+7XRBdh09TVotbMHiO4/j4ykpiUHJvHzHoC/WIv9xC0ONxLkByPJ7jWuNUbaH0Vpbj4jeBi+Gp33xQ33wiugW1w97ejibJ5YtVIeQTboR2wM93P2BtjZucBW9x9RdSxNCZ2rf1CgoPE4QTXIrcTXHt/yt0rIwyvyeJbqhK0wF0I3OXusyINrA6xWI+LHSS2I6jBGkVwNnY68AHwFDA7/vedLmKDFnh91e2xM/gXgQfd/VcpDe5QDEqOTWdm1xP06RpKkAQrCKpR/wA8n8YNJ4BPxb+HoLn3eoIqyRfcfXWE4TUqdm1xb9zrBn9g6Si8Dq1R7HO/jOCApD1B/8bX3H1nbEftBFVh6XrNNz7+DgSttRe4+0dxZXKAC919TjRRNl98P2Uz6+LuO6OO6WiZWRZB7dXiyGJoRfuVSMWqUNcC9xC0bssjOFo+j6AKaSNwk7uvTMdOt43EX0yQJP8jFn9GurXOM7OuBK1U5xAcES869BnHJ8lYp+j1noYjhTSyDvEd0ouBKnf/OLJg6xGrxnsEOJ+g5mEDQS1ENUF13lPuviZWts4q/CjVEf96gmS+j+ByyJPuviq6CBsWSxp9gMq6WnCm474nXmPxp5Vw3w496u2TcyPwZj3zziG41lIBnBh1rG04/v0EDZ9qCc5W7iBodHOozMkEfQf7Rh1vG16H/yJI8GfEXg8g6AL0IFBG0EAnL+o4jzL+t4Ffp3n8NxPU+jwKfIGg039GqExngpa3WVHH24L4P0eo/3LKY436w2otD4JuDiuBwbHXOfEbj6Cz6krgy1HH2kbjn0nQb+szBGPa3kUwkEEtQbXwJIIO9Z9EHWsbX4fXgFvqmJ7B34fz+23Ucbbh+BcTXMZ5Lfa9+YCgy9U5QJdYmcnAG1HH2trjVz/HpnueoBrm5li/rv0edD4/DsDd1wEfAz2jDLIBrTb+2PWflQSDun/k7n929/8k6ER8UWzeVIKuHT+OLNAGtJF1yCQYLOIKC4ZeI9b5/DgP+tktJNix9TSzoVHGWpc2EH8ecICgJfZIgkEAHiFoMb8QeNXMvkNwdvZmvW8UkVYXf9TZuTU8CK6pGHA5wcgruwk2ail/H2LqK7HpvaOOt63FH1uHHGLDlBEc5R8Xmn8eaTrcXRtbhzMJqoN/DHSvY/7JBH1Ne0Qda1uLH8gnGJTgojrmlRAMurAt9h1S/C18qEFOM5jZCQSJ5CyCDsRnx2ZtIkg+T7r71Giia1xrjT+uT11fYI/HDcIdN+824Fp37xtdpPVrI+twHMHB1HUE4wdnEgw8/gzB3SBOIzgLGOjuZ0QVZ31ae/xwuIuDu/u+WHcO4Ij7mv4QuMTdS6KKsSGtKX4lx0aY2WeAqwnG/9tK0JfuY+BPBNeJsgj6Df7W3f8SVZz1aUPx3wJ8RDBsXxXB+KmzPXbvTIIxGDe6+0uRBVuPtrAOYbEDrWsJRoL6LEGtwz6CRi13eWjUk3TTmuOvr0VqbGSZJcCj7p6WVfPQeuJXcmxEbJSGQQSt8LYDuQQdbk8l2NF9L81/SI/R9uIvIWhluB6429P4tjzQZtahM7A7fqcWOxNrRzD4xWCCM+K0/C61xfjrKNMOuAr4f55+t5lrdfErOTYgdjS/m+A0f2HctEKCwXwnEoyMc6W7L4ks0Hq04fh7Elw7+hrBRf0vpWP80DbWAcDMfk7QBeUtgj5qu+oo09XT9AbHx0j8J3ga9o2FVhp/1Bc90/lBcLT/HnBmPfNzgHcIqmEij/cYjD87neNvQ+vwJYJGEh8T9IX9OcGA0P2A9rEyxwMvAEOijvcYif+fgVPi4j803NrgqONtK/HrzLEBsYvHLxEMMXUN8L5/+u4JNxLcUPSzEYTYIMUfvTayDjMJ+qRNJ0gqEwh2bKsJ7gv6CsGg+/e5e3Z97xMVxR+t1hq/+jk2wIMxMP+L4KjmCeAaMzvZgrtBHLqAfC5B36m0o/ij19rXIdY38APgY3evcPefuPsQghsFLyDY0T1LcM+9J6OLtG6KP1qtOv6oT11bw4PgYv0zBC09txI0rPglQfPvN0nDqhjFn16P1rwOBLdhGxB7nk2srULc/KsIqs0+G3Wsij/6eNtK/KpWbYZYk/zPEXSm30dwtP+cp/FAxfEUf/TawjrA4Zae5sEtk75GUCXWIeq4mkrxR6s1xK/keJQsDe840ByKP3ptYR0AzOwWgsGj7446lqOh+KOVrvErOYpIi1hwG6La1proFX+00jV+JUcREZEQtVYVEREJUXIUEREJUXIUEREJUXIUEREJUXIUEREJUXIUEREJ+f+exPhwluwJjAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "params = {\n", " 'problem': {'name': 'search'},\n", @@ -213,7 +203,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb index 55616d3e4..dbdcedd52 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb @@ -122,7 +122,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/sklearn/linear_model/stochastic_gradient.py:144: FutureWarning: max_iter and tol parameters have been added in Perceptron in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3.\n", + "/Users/manoel/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/sklearn/linear_model/stochastic_gradient.py:144: FutureWarning: max_iter and tol parameters have been added in Perceptron in 0.19. If both are left unset, they default to max_iter=5 and tol=None. If tol is not None, max_iter defaults to max_iter=1000. From 0.21, default max_iter will be 1000, and default tol will be 1e-3.\n", " FutureWarning)\n" ] } @@ -164,7 +164,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n", + "/Users/manoel/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/sklearn/svm/base.py:196: FutureWarning: The default value of gamma will change from 'auto' to 'scale' in version 0.22 to account better for unscaled features. Set gamma explicitly to 'auto' or 'scale' to avoid this warning.\n", " \"avoid this warning.\", FutureWarning)\n" ] } @@ -487,16 +487,7 @@ "start_time": "2018-11-19T20:10:18.767740Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n" - ] - } - ], + "outputs": [], "source": [ "from qiskit.quantum_info import Pauli\n", "from qiskit.aqua import Operator\n", @@ -537,13 +528,15 @@ "outputs": [], "source": [ "from qiskit.aqua import get_aer_backend, QuantumInstance\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.algorithms import QAOA\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "p = 1\n", "optimizer = COBYLA()\n", "qaoa = QAOA(ising_model, optimizer, p, operator_mode='matrix')\n", "backend = get_aer_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=100)\n", + "run_config = RunConfig(shots=100)\n", + "quantum_instance = QuantumInstance(backend, run_config)\n", "result = qaoa.run(quantum_instance)" ] }, @@ -592,7 +585,7 @@ { "data": { "text/plain": [ - "array([1., 0., 0.])" + "array([0., 1., 1.])" ] }, "execution_count": 17, @@ -625,8 +618,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "accuracy (train): 0.55\n", - "accuracy (test): 0.41\n" + "accuracy (train): 0.64\n", + "accuracy (test): 0.29\n" ] } ], @@ -661,7 +654,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb index 093c21f96..94ea0b51e 100644 --- a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb +++ b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb @@ -47,6 +47,7 @@ "from qsvm_datasets import *\n", "\n", "from qiskit import Aer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit.aqua.input import SVMInput\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", @@ -95,7 +96,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFmxJREFUeJztnV2oZtV5x/9/xwljnBOFnGmqGesILcEgNDoHSzFoakiwqWR6kYsIETp+zE0jhhRCUijDXBTamxChUjqZjxpiEoJWpkhqIsRoDY3JGWMadYwEGXFMwswhSGbaUD/y9OK8W9/Zvu+719rrY6+9zv8H4rwze6/97I+1/s9a61nPoplBCFEn5wxtgBAiHargQlSMKrgQFaMKLkTFqIILUTGq4EJUjCq4EBWjCi5ExaiCC1Ex56YodGnLZnv30ha8uHYGAHDp8ta5xy4vL3WWt7Z2+qzfTbkNs8rvKrddZizatgFvt8/lnhvm2dnnuS3C5ZnOu/as68x6DvPKHepduRDyrmK/o4bm2ZoZu45NUsHfvbQFe3ftxC0HHwUA7N21c+6xu2+7rrO8wwcePet3U27DrPK7ym2XGYu2bcDb7XO554Z5dvZ5botweabzrj3rOrOew7xyh3pXLoS8q9jvqGHes51Fkgr+4toZLyNm4fPRTFNSxU6BzwdXIs1zOnRrOfcx69019jXfi8tzb45pznE5t32OC4duvQ77jhx1OlZ9cCEqJomCN7i00i4t1zx19FGBRW7+vHL6tK59bHNhbMrd3H8uz6YPqWwLUfKGWJ6mFFyIilEFF6JinFx0khcCOADgCgAG4BYz+695x1+6vHXhKOwi+rhNPu5rjIE63/L6lBtyzrxzF7l9fbo7IbbNem59nnuqwbp2+THuefr5d5Uz69/7uO2uffC7ADxkZp8g+Q4A7/S+khAiO50VnOQFAK4F8FcAYGavAng1tiE+Sti0qj7zjO3yZ7X8MQaySpr+aTN9fzEGcXLNTy8a7AxR8j4DgSHTZrPK6Tp33t/d/f3nO68PuPXBLwNwCsBhkj8meYDk+e2DSO4huUpy9cxvX3O6uBAiLS4u+rkArgJwh5k9QfIuAJ8H8HfTB5nZfgD7AWDHtqXOTI59+tp9lNuFeeUtKqPk6R/xFqFeS4y+fp/p1lnH9vEwXRT8BIATZvbE5Pd9WK/wQojC6VRwM/sVyZdIvs/MfgbgwwCe9blIqNrFCmiZLqtPa1iTaocE8fjg0s9t/5vLu2mX66K08+551jld5fUZVQ/1JqbPcV2k4jqKfgeAeycj6C8A2O1rnBAiP04V3MyeArDiWmiMxSaho9wuo+aiTGLMObfL8i0v9feSy4NSJJsQFZN0sckifFpInyWgXZ5DjPXnwh+fvnjX4h/grXcUsy8+BKltkYILUTGq4EJUTBYXvc+ARUgY6qxrb/RpsXnkdld9wkNjDrbNKm+srrrPdykFF6Jikih4yHLR2MrtQwkteS2EZCjps1QzxDPwWZqZOrNO7MwuUnAhKoZmnetCvNmxbcn27tq5sLXr07/ymb4KWZgS0vd2mZ4pmRClnUVIiuWGXEEnpTP97PYdOYrjp0535kWXggtRMUkUfOXyi2318O3Rykul3O3yUyl3w1iUAug3musTXuwTnLSo/JiM5f0cPvCoFFwIMWCo6jxC+2iurXAfBQkl9rzuUMR+XqXkUO+7MCU3u2+7LmrKJiHESFEFF6JisrjoLvml+kxVhQSzxHIHa11nHjsDa4zyXbabEmcjBReiYpIq+KKWed6/pdrZJNdUmAu1DLa1CVVYn8G21Dub1PKOpOBCVEwSBV9bO+3db0u9s0kI6u+lJWTZppR8MVJwISomiYIvLy/12i2ki9zJG6Tc4fRRwFICX6YZq5JLwYWomMHmwRvmtdKhedFDRs2l3OFjF336xiX3xRtKUPLDBx513tlECi5ExTgpOMnjAE4DeAPA62bmvMvJPEpS7pitfi4liUXJaar69MVDnv+s68Tcm2wIfFz0PzOztWSWCCGiIxddiIpxVXAD8B2SBuBfzGy/y0mL3D+X7Wlc6eNmxnah2+6dFkacjY9LW1K+8rFvYulawT9oZi+T/D0AD5N8zswemz6A5B4AewDgD37/gshmCiH64Lp98MuT/58k+QCAqwE81jpmP4D9wHpONl9DYim3z+Bd17VjBOWUSgnq6EruwTafcofIAhM1owvJ80kuNX8G8FEATwdZKITIgouCvwfAAySb479mZg8tOsFnsUnsVs+1xY513VTLW2uhzy4lQzH97XS911keQup761N+ZwU3sxcA/HFvq4QQg5F0sYlLqqY+9Ok/huyg4kPpfe8x46Owsa7lquTT57S/nyG9Fc2DC1ExSRebDNly5bp2LsV28SpK7NeGUMJ8eJ80Uu1zY/XN+5wvBReiYlTBhaiYpDnZck78x6DE4I+SbIo5sBUaIJI760u7K9Yn8+sQQTFScCEqJkte9NitVW2DSbMoSbnF21k0uDpv4dGsoJiGVN+0FFyIiilu++AhGWpaZgi1LmEKqiHE00vVF++zDXXbJh/mvYd5e7gpJ5sQIn9W1TH0n1OrWwmqOSZc3sdQudQXfc8x3nNoGVJwISqmmD54KlUL8RhK6qeOldyLb0raATa1ursgBReiYrIruNQwPrkX1rj0c/vsaOJzXK7vKNV8dbucVPcjBReiYlTBhagYmnknQO1k5fKLbfXw7W/+HjKQIwaldyuGypITixD7h343qbtH8+5v35GjOH7qNLvOl4ILUTFZFpukJnUWSxGf2INVQ72rRdeNcY+hA4tScCEqJmnCh9SMIezVhUXTTrVlaU31znIructWw7Gn2KbPj7aziRBivBQTqurDRlDu2sidvmuIPnmM9xn7OUnBhagY53lwkpsArAJ42cxuXHTsjm1LtnfXzgjmnc1Qyh1bDXxa+pj7qLsQ615L9LJSq3qIgvuG9q7s/jJWj/0i6jz4nQCOeRwvhBgYJwUnuR3APQD+HsBnuxScZGehfUaHS1KFPmrQp4Ufg4KX9F58CFkS6vKcYvTJ573/2JFsXwLwOQC/m3cAyT0kV0muOpYphEhMZwUneSOAk2Z2dNFxZrbfzFbMbCWadUKIIFymya4B8HGSHwOwBcC7SH7VzD6V1rS3GKsL2FDrdNjY30vqbC0+udN9jvPp3nYquJl9wcy2m9kOAJ8E8N2clVsI0Z9RBrqMgVDVLjlEdezKnZp5z2d6YM71/YZ+R14V3My+B+B7QVcUQmRDCj4yhpweq025c99znyyroZ6cQlWFqJgkCn7p8lbEDFVNtUtpCnKFK8ZCSS0Wk2sX0FRZVqXgQlTMqPrgQyt5KrVzUe7Y9yzl7re01OfYVCGwPkjBhagYVXAhKmZULnrD0K56LHIPqoW6f7U89zapssCU0A2SggtRMaNU8IYSFWXRBn1DrYEvQUnGwKxnnWvdfyqk4EJUTHYFn9e6lby4og8lZKxJpdwlek6pyLXNbyqk4EJUTFIFj71RfJtaFKSW+9gIuCh6+5sesk8uBReiYpLsD15rVtXQ/lcu+3P3E4d+L6WRK+OqmWl/cCE2MkkUvNnZpGmlQkfIS1SIea10CbZKwcsktrJLwYXY4KiCC1ExSV30EOT2+TNUEIbelT8xQmDloguxwckyTTbGKbExEnNhhN5ZHkLemRRciA3OqJeLxiZ1vi0xLCVPbfpw6NbrsO/Iwr1A38Rld9EtJH9I8icknyG5L9hCIUQWXBT8/wBcb2ZnSG4G8DjJ/zCzH3SdGBLgMqu1ddnzKRcbacnkmHH5NmJ9PyV9nw2dFdzWR+HOTH5unvwXf2ROCBEdpz44yU0AjgL4QwB3m9kTi46PvbNJQ4mL7WtT8loSbwzp1ZWE0yi6mb1hZh8AsB3A1SSvaB9Dcg/JVZKrZ377Wmw7hRA98JomM7NXADwC4IYZ/7bfzFbMbGXreZtj2SeECKDTRSe5DcBrZvYKyfMAfATAPya3LDI+q3RqcVNdiHGvJXVPSnSTXXB5hn3uzaUPfhGAeyb98HMAfNPMHvS+khAiOy6j6P8N4MoMthRDrHXsIh8xlDt1DsFp+ng9fXZgUaiqEBVTbKhq7D5J6kyXtU2XlU4uxY5J6LfR556l4EJUzCiyqoa0fBsxP1muex5DlthYKl3avnL7jhzF8VOntVxUiI3MYH3wXCPVufaWKkG5G1Ltd50LH7tT9aOH2nEn9juTggtRMVmSLsaaX0ytkiGtZ0kK3ia2KuTeBTX1aHcJ++P18VqUskmIDY4quBAVk2WQbZYL1Ha7XAbdUgeTjH2z93nMel5D3VuujfkWUYJLngspuBAVk2SQbeXyi2318O1v/q5lamrRfYytZW/IlUlWyr0Y3zqiQBchRB4FnyaFmg+hnrXk2G7jk822b3ltUip3X9Ue6j261g8puBAiv4I3pB7FHbrPNHYlD2Wo4JWS+9kxWdn9Zawe+4UUXIiNTLEJH2bhE/I6dB95+vpjUoYQhuxvbxTl9kUKLkTFqIILUTFZXPRYA2qNG7bIzeva0L7GYJUUlB6mGzOPQM359KTgQlTMqAbZGlyUvE372FkKkEq1alaInKTO/hM7yKcEpOBCVMwoFbyhj5I3zDpHO5mU1fcu4X0MPd0aSqeCk7yE5CMknyX5DMk7cxgmhAjHRcFfB/A3ZvYkySUAR0k+bGbPul5kurWLEeLZLmO6pQ8JpHDpp4v0jOG5j6W/3qngZvZLM3ty8ufTAI4BeG9qw4QQ4XgtNiG5A8BjAK4ws9/MOy52woeulnFR+TFCI4fcUTI3JfXB25SUemoROd5z9MUmJLcCuB/AZ2ZVbpJ7SK6SXD31yv/6WSuESIKTgpPcDOBBAN82sy92Hd8o+JD5uNvXLkHJS1bwsSlhifY2jErBSRLAQQDHXCq3EKIcXFz0awDcDOB6kk9N/vtYYruEEBHonCYzs8cBdLoC06ytnXZ2oboWh0zjE/LZ3oAvJCgmlJJd8xKJ+bxiv+9F3bQS37NCVYWomGJDVReFkra9g0Utp0ur6trKTx83hmCMkumjdiUOrKVS7ViBNFJwISomiYIvLy9h923XRW9x54WS+uQ/a/fNp8tJ1T8vebloLbvOzMNlX7y+5cQk1XuQggtRMUn74LPUsk2MJZ/TraurWs5aANNli/rdi8nZHx2aWPea+t6k4EJUTJZRdJdFAm117JuOqd0v79PSbgSljqkcpfS3U9D+FlLv09Ym9NlKwYWoGFVwISomyeaDO7Yt2d5dO4NWf83CZ+uiNn0yxaSilsGoIbaBikGf7yiXa+56HW0+KIRIO8jWZ3FI+9xpQgbiSgo2iW1LidNIMch9X7O8v9QhtX3LX1s77XSsFFyIiil2sUmfqTWRh1xekEugVEnkUG5fpOBCVEz23UVDWn+XfvqYKGlcoGRizcbEDEFOrdZ9rjMLKbgQFVNsH9wFn6ybfdI8tUmV8GEsSl66fSnJFWYa2yuVggtRMaNW8EWkVptZS1VLYww2pmZRrITLcylxZNwHKbgQFaMKLkTFZHfRxzCg5BNgEdMNjjWd2HZLQ20s+V0NTd9n47q1Vuh3JQUXomKqHWRLwXRrGlslRRglL5WdZVvXQqmuhS93f/95p2u7bD54iORJkk87lSiEKAYXBf9XAP8E4CsxL1xbX7xh7Epe8vvwIXR6bB6ptrCOmWBimk4FN7PHAPw6ytWEEFmJ1gcnuQfAnua3a1jnWJU8xm4o83Zqmb6Wz3PpskV7q+WheXepUkP5JHyIVsHNbD+A/QBAMn6iNyGENxpFD6SPkg+xR3kXJXtQi/AZH0nd9+6j3LETk7bRPLgQFdOp4CS/DuBDAJZJngCw18wO+lyklr7frP3MGmLcVy3PqQRiPb8uhZ3+Dnzmtl2VO3R+v7OCm9lNQVcQQgyGXHQhKkaDbD3JlfFzqGlEl/sa68CcC66ueewBNZeccj7dDym4EBWTRMEvXd6Kvbt2zmzdxh7K2SaVko/hOS2651rV3eU99w1emWZW3enzLUjBhaiYpH3wGOGcY8FHyVM9l5ByY3sgYwhBbuOTpXcWIcErSvgghPAmyyi6T/bKMbX4s3DZUy3VNce+00tM+vR7+zy/PsEr09dKpdwNUnAhKkbz4BmIobC1eDixGfp59F0sklq5G6TgQlSMKrgQFSMX3YPQvOVtV91lWmsMAS9jI6SrFLI9kUtONpctsn2mQaXgQlRMEgV/ce0Mbjn4aDWqM6sVDRn00rTW+EidTTW2cjdIwYWomCyLTXyUfGzTQWOzNwaLssGWTB+PKeYecdO4hrWGhjNLwYWomCyj6H3yQ5eES5+5j5K3j825KKePdzXPvhpH+lOMlruEtfokknBBCi5ExRSzXLStArH2yq4NF08h9nLUPuWU8s58+t0hqg10K7fLclRXb3ffkaNO9knBhaiYwZaL+vTnhh6pLmG+2qWfq/n1t8il3KG7mKZ+V1JwISpGFVyIinFy0UneAOAuAJsAHDCzf1h0vEuoatdA0Fi38YkxXQbkmzJzcf03Um69LvpMY7l8C6mmkjsVnOQmAHcD+HMA7wdwE8n3e19JCJEdFwW/GsDPzewFACD5DQC7ADwbwwCfJZMNffJtlTJtUyq1BKukHlxzIea0WI6squ8F8NLU7xOTvxNCFA7NbPEB5CcA3GBmt01+3wzgT8zs063j9gDYM/l5BYCn45vrzTKAtaGNmFCKLaXYAciWWbjacamZbes6yMVFfxnAJVO/t0/+7izMbD+A/QBActXMVhzKTkopdgDl2FKKHYBsyWGHi4v+IwB/RPIyku8A8EkA/x7LACFEOjoV3MxeJ/lpAN/G+jTZITN7JrllQohgnObBzexbAL7lUe7+fuZEpxQ7gHJsKcUOQLbMIqodnYNsQojxolBVISomagUneQPJn5H8OcnPxyzb045DJE+SHHSqjuQlJB8h+SzJZ0jeOaAtW0j+kORPJrbsG8qWiT2bSP6Y5IMD23Gc5E9JPkVydWBbLiR5H8nnSB4j+afBZcZy0Schrc8D+AjWg2F+BOAmM4sS8eZpy7UAzgD4ipldkfv6U3ZcBOAiM3uS5BKAowD+cqBnQgDnm9kZkpsBPA7gTjP7QW5bJvZ8FsAKgHeZ2Y1D2DCx4ziAFTMbfA6c5D0A/tPMDkxmrN5pZq+ElBlTwd8MaTWzVwE0Ia3ZMbPHAPx6iGu37PilmT05+fNpAMcwUBSgrXNm8nPz5L9BBmBIbgfwFwAODHH9EiF5AYBrARwEADN7NbRyA3EruEJaF0ByB4ArATwxoA2bSD4F4CSAh81sKFu+BOBzAH430PWnMQDfIXl0Eo05FJcBOAXg8KTrcoDk+aGFapAtAyS3ArgfwGfM7DdD2WFmb5jZB7AejXg1yezdF5I3AjhpZm5JxdLzQTO7CuurJf960r0bgnMBXAXgn83sSgD/AyB4HCtmBXcKad1oTPq79wO418z+bWh7AGDi+j0C4IYBLn8NgI9P+r7fAHA9ya8OYAcAwMxenvz/JIAHsN7VHIITAE5MeVX3Yb3CBxGzgiuktcVkYOsggGNm9sWBbdlG8sLJn8/D+mDoc7ntMLMvmNl2M9uB9W/ku2b2qdx2AADJ8yeDn5i4wx/FQIukzOxXAF4i+b7JX30YEZZkR0u6WFJIK8mvA/gQgGWSJwDsNbODA5hyDYCbAfx00vcFgL+dRAbm5iIA90xmO84B8E0zG3SKqgDeA+CB9XYY5wL4mpk9NKA9dwC4dyKQLwDYHVqgItmEqBgNsglRMargQlSMKrgQFaMKLkTFqIILUTGq4EJUjCq4EBWjCi5Exfw/lPaJWyKm65gAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFiFJREFUeJztnW2sZVV5x/9/htGBmSsk3KlFh86QtDEakgre0DQYsBoNtUT84AdJJHEA50slGJtYbdLQ+dCkTRojSUnTcV6KETUGSmiIQUnEoZiK3kGswCAxBMKgZubWEO9UDS8+/XDPoWc25+y99l6ve93/L5kwZ9gvz95rr/V/1rPWehbNDEKIOjkrtwFCiHioggtRMargQlSMKrgQFaMKLkTFqIILUTGq4EJUjCq4EBWjCi5ExZwd46JL27baBUvbXvu9vLzUec7a2noMU15379D3cXm2LubZ9Nzaae/rurB7eccZv0sqq9D3C1lWucpnyv+s/xbrv32ZXedHqeAXLG3Drde+67Xfe2+6qvOcIwePxjDldfcOfR+XZ+tink03HIrzPprMlhNQVlmFvl/IsspVPlP233vM6fwoFXxKiBfqS6yPMQRN21J9NKUSu6ym1w/xXR6+ceMascts3vWn93ZBfXAhKiaqgrvg0mp3tZJ9WjSRhlrLbKr+0+929jlSeWB97iMFF6JiVMGFqBgnF53k+QAOArgEgAG4wcz+a9Hxy8tL0SOiufEJ1NTyDpr0cR1nj03trocMtpWOax/8NgD3m9lHSL4BwLkRbRJCBKKzgpM8D8CVAD4OAGb2EoCXXC7uo1SxAha+ww4x2OzDY9Pn71MOzXeWugybwbZZG0oqT5c++MUATgE4QvKHJA+S3N48iOQ+kqskV0+9+Ovghgoh+uPiop8N4DIAN5vZIyRvA/BZAH87e5CZHQBwAAD27FyyFP1Ml1bbpTUdoiBDKKnvPeRZF9kfSrFSlcOUWH3xkpTcRcFPADhhZo9Mft+FjQovhCicTgU3s1+QfJ7k28zsJwDeB+DJWAaFVoPNTGwlLOkdp1b/HMw+W+i56DcDuHMSQX8GwN6+xgkh0uNUwc3sMQArrhd9bu00bjh01Csq2kauVnpoXy113zv0+0lt/xj64i7vpIS+uGayCVExURab7F7esXAdqw+houalUUJL3wcXO5tllXohxrxvpUuhSxrlCIUUXIiKUQUXomKyrwcf4u4NuYbP9VPhu7Y45HOEdldDd0NidGtmXfiQzx/K1iHBRym4EBWTJCfbkKSCsQNqpU9L7dPql+KB5GBMAcpQ2V+U0UUIASCSgk8TPvRRsVQqNOQ+vosRfJJfpHovqZIf9FHc0BNe+kxoafM+Q5DK85CCC1Ex2aLoi1rlea2rT/7wktMB5dyUIXfaotDZSGOVcyolnxJa0aXgQlQMzSz4RffsXDLXqap9+qepldtn8YGvMvooRqztlKbEiuynTsM05D3lWngzDzPr3JtMCi5ExaiCC1Ex2YJsIV3z0K5c6HXBPjb0uf7Y83yPYdJK7MBok3nftia6CCEAFLR98JCW0GXNbywFTBVsGbsqT3EZspvSxyPzGcYKMVToMqzrep7ruYdvvMo5J5sUXIiKiTpV1YU+ubabLXtqdasx48cQFvWVh8ZCQsQbYk9I6UNoj2DKkGeTggtRMcmj6K6tUJsahFbuzZirqwuX5AexRi9Sv+/c03ZdmbXv9u8+7XSOFFyIiomi4Gtr60Fb4dRTCkPYPnuNkpUhtnoNua6PkoeIqs9eZ+xIwYWoGKfFJiSfBbAO4FUAr5hZ6y4nfRabLKLEXUTaZhCljBmEYNF7Ch3Fzf3svt9DbvvnceTgUey/9xiePbXeudikj4v+Z2a25mGXECIxctGFqBhXBTcA3yJpAP7VzA7EMqik6aKhFj2UMgwT2l1tu17uZw1FKWUHDCs/1wr+bjN7geTvAXiA5FNm9tDsAST3AdgHABdsf2NvQ4QQ4emd0YXk3wE4bWb/tOiYIUG2UModYvpkrHzruVRgjMGxGITw+HK+l1n7XYNsnX1wkttJLk3/DuADAB73sFMIkQgXF/3NAO4hOT3+K2Z2fygDhiyb66OwLrm1UyUYSNWf24xTa10IMRU2dO69ruv70lnBzewZAH8c9K5CiCRk313UpcUKobAlbEAfGyl3ekofSdA4uBAVk13Bm5SccK8kpNbDSbUstQR1l4ILUTGq4EJUTHYXXS55Pzazax56vXbOPG6p7ikFF6Jisim4lLsfm1G525459oSTRcSaxrwIl9x4bUjBhaiY5Apeu3KHXmySS7lz5ifLtUtJbFxy/behrKpCiDNIruBj2EFyCKmV2+X95Zgu60PIbLahlTzW99q1vNnXk5KCC1ExvRM+uOCTVXVsyu6ikr77tAHpo7ezxOjXlrg7a6z3P4Quj3Bl7xexevxn/gkfhBDjJftMtiY5+41drfTQiGcXJSlHbDbjeP4Q2pYdHzl4FGtr607XkYILUTGq4EJUTHEuek5CdA/kmp9Jbpc81ISdsQ7vSsGFqBgpuCchJ7GMTR2a5FZrX3wXdoQkVLBZCi5ExWRT8JyL7UMwBuUOpQLN6Z9jLbM+LHrW2H3x0MPEUnAhKiabgm8GFZgy9j53Lco9ZCFKLiUPhRRciIpxXmxCcguAVQAvmNk1bcf6LDbZDMRu9X36cW3qNnYFn+IzHp5q7kKOxSa3ADje43ghRGacFJzkLgB3APh7AJ/uq+CbQRVcSNVf803u10UtZRYrhVYKJQ+2P/iELwD4DIDfLTqA5D6SqyRXT//mZcfLCiFi0lnBSV4D4KSZHWs7zswOmNmKma3sOGdrMAOFEMNxGSa7AsCHSH4QwDYAbyL5ZTP72KITlpeXis5umZpaXPMSadrfp/sQq6sRcght9hpDyrdTwc3sc2a2y8z2APgogG+3VW4hRDlosQnKn6zQReosOLkmvrh4Gz6KHprQk2HasrwsolcFN7PvAPhOn3OEEPmIklV15e1vsdUjn2g9JlfLKrXeIGTfO1ZZhrCx1CG9EN+hmSmrqhCbmah98FJbz1KJ3ZeOFTGfd12fss8V2fdV1T7l51vW++9tHbV+DSm4EBUTRcHX1ta91dulFR+rh5Aq6p1zjHtM4+uho9xNcub6l4ILUTGq4EJUTHETXYZk25ily23PkYkjdb51URZDJqiEQgouRMVEmehC8oyLhtxi15UhAbgQqr4ZF3yUTJ/voIRMO67fgrYPFkKU1wcPxZBFB80Wtq1Fj5X3TORjtkxT5VebEuubkIILUTFJ+uCzdLVmsdUt5+SYkpR70XsoycYhpCrf0JHxvu9dfXAhRDlR9CY1KXkpqtjnmUux2ZWxTVv2fb9ScCFEnCj67uUdKH1nk9h7QY9NAZvMvpOSnyW3cpf8bgApuBBVowouRMUUN9GldJdnjPi6sUO23Y1NKte8pGceghRciIrJpuC5W8bYClBCkCp3ACo0m2Fo0/UZ19bWnY6TggtRMdnyoudiM0xVjf2MqdWttueZZeizBds+mOQ2kt8n+SOST5DcP8giIURyOhWcJAFsN7PTJLcCeBjALWb2vUXnlKTgY+iHxtqIPhUlJOvoQ+74D+D+jG3LVl12NukMstlGC3B68nPr5E94v14IERynPjjJLQCOAfhDALeb2V+3HZ9awUtSM1EWY1JroF+iiWB7k5nZq2b2TgC7AFxO8pLmMST3kVwluXrqxV87GymEiEevYTIzexHAgwCunvP/DpjZipmt7Dz/3FD2CSE86OyDk9wJ4GUze5HkOQDeD+AfYxsmt1v0oQRXvEkJGV1dZrJdCOCOST/8LABfN7P7olgjhAiKSxT9vwFc2ueiITYfdCFWq5dzszgxfkpQ7imaqipExRS3XDTlnmFC+DLUU031nUvBhaiY4hRcnEmflr7E2MEQpSrxOZrk6GfPvpf99x5zOkcKLkTFRFkuumfnkvlmVc3RFy9JOXyev4TnqG2n1hIi400FD7JcVAgxXopV8HmUsH9zKnIpoA8lzUvwVfJc+8u7cPjGq6TgQghVcCGqZlTDZFNXLbQrFNsFHOLuxXrWzULbO2+W3dgWNvX5JqTgQlTMqIJsi0g1mSLUEEzqIZc+zzrvGUPkDwtBSUHQNlJ5XcEyugghxkkVCh6bsU+ecFE+l2fssnesCt727D7989jvQwouxCYnexR97FMyfegTzS05ql6iTW308cgWHeui7CWUmRRciIrJruA+zGsZx6zqs2qxSCFKUIXUhCrTkLGUPqMNoctsOlXVBSm4EBWjCi5ExURx0ZeXl5zczRhM3aAxu+rA/7uAXW4fUK+7HqIMU+ZLj11mQ96HFFyIikkSZGsLSDRbpVBqVIuSu7AoiDPWZx+bcg8hVZlJwYWomKhTVX2mP8bIROlKia3/kGmtvotMuu6dc9luiWXUJHTsafaZV/Z+EavHf+Y/VZXkRSQfJPkkySdI3uJppxAiES598FcA/JWZPUpyCcAxkg+Y2ZNdJ85rwZot76LpmvNa81jR4jGoQVeEdpax9b277B1D+cwSUrl9n71Twc3s52b26OTv6wCOA3ir112FEEnoFUUnuQcbO40+MvSG09ZtUcuUI+IuXk/suQttqu2jWkPszpHIo4uumMja2rrTdZyj6CR3ALgbwKfM7Fdz/v8+kqskV0//5mXXywohIuIURSe5FcB9AL5pZp93ON6AcIkGpri0kK4R5LH165rkTBQYK41UauVuw9WWHPc9cvBouLzoJAngEIDjLpVbCFEOLi76FQCuB/Beko9N/nwwsl1CiAB0BtnM7GEAna7ALLuXdyBGTjaXoSLXIaLZa4zdXR8ToYfwYnVVUneBQuTEm4emqgpRMdkzunQNmw2lloUXm4EYHlSfQGDObyO29ygFF6Jisiv4kBasz7TNKW3DZ7G8iNooaWJRyAUwJS8t9o0FSMGFqJhsCp5LLaXk46VNzUryLlzwybfeBym4EBWTvQ/uw5C++JS2nOpS8vDE6t+OTbmbxB5vl4ILUTGq4EJUTDYXPbYbPGS7mGYAriRXPefqsdzkXJsei1TlKQUXomKyB9lCqGToXVQWKfmie8ZgMyv2lNjDYiVObGlj9pu7/btPO50jBReiYrIr+JRmax1KIWNtt1tS/3zsNN9ljX3uoUTPqiqEGC/FKHiTEhIyuCxCWKQ2NSr7EG+oj1pKucMjBReiYopV8FlCqGSsvvgihkTeFTkPz9hVe9E3ETwvuhBifIxCwRcxRPFSK/kssUYKUuOyw0xu5cx9/1KQggtRMargQlTMqF10H2ZduEXuemw3r5agWknucEm2lIAUXIiK2bQKPkuMVr/EwFMfQi/gCc0Y3mUJC2JcNh88TPIkyce97iSESI6Lgv8bgH8G8KUQN2wODZWoDrEYw24r84buaiuzITEXl4UwIYdeQ30bnQpuZg8B+GWQuwkhkhKsD05yH4B9APAHv38e9t501dzWrrk0MIQ6jLW/W/KOGm2kWtYZAhdVdVFun+vnJFgU3cwOmNmKma3sPP/cUJcVQnhAM+s+iNwD4D4zu8Tloitvf4utHvnEa7/bWvoQOzz4ttJD6ON5uLbyJSi5z/TZkhTdd0lrV/mGVu6+Zb//3mN49tQ6u47TOLgQFdPZByf5VQDvAbBM8gSAW83sUJ+btI2pLlqA0Wcc1mVWWgja1C1Ev3TW9tRqPtaFL018yj/lO0hVvp0V3MyuS2GIECI8ctGFqBinIFtfmkG2eXS5svPcpRCBNxfXaFGApY8LN8/WWLnMQhDaPc0VcPN5xy7f3JAuQKiynB1WVZBNCFHuYpN5WVX7DE2FzNwyL4AWOyAz1kkwuQit3CGv34fQQWIpuBAVE0XB19bWk6idy9BUU8lDKWNXv3zeMF/OfHDi9bR9lz75/voQ+1uQggtRMUn64L5qPkQtm+Tco6zpaZSk5CVOcAkxfXkeXQo7ZORjyDTXoQzxEKTgQlRMFAV/bu00bjh0dG6LE3t81HXKaNu0UJ9x71C7rYSMnpeo0vNIZWeIqLmLcvtcv+s+2h9cCKEKLkTNFDvRxZdFrnqqXOdtuc1S2ZTaNS9pPfgUl3fbx+4+k2R8prn6dgGmSMGFqJgoCr57eQduvfZdwadbDglk+azTHnK/5rnzzh9DTjMX20J5CDE8jSHK3aawQ6a3hsD3PlJwISomah+8pIUSIZQ8NCUqeR9bSrJ7ypDc5n36xrGVO3SdkYILUTGjjKL79I1j0bZrSZ+pts1zXO4XotVPrcahyy50tLzPdWPcJ9T7kYILUTGjVHAfUvV7U2ZIVXKIYZTQ945dZlJwISpm1ApeYl+8jT72lhRhH8OuqKHJ9Yyhv2UpuBAVowouRMU4uegkrwZwG4AtAA6a2T+0Hb+8vLRw++ApId2+IRlj+myN5EuqIFjzPj5dmLYA1GYK6oVwmWNkEVpbW3c6tlPBSW4BcDuAPwfwDgDXkXyHl4VCiCS4KPjlAH5qZs8AAMmvAbgWwJNdJ7YFinyynfpMKmkeF4o+edbGGmyrBZ9db0LcZyhDvgGXPvhbATw/8/vE5N+EEIXTuTcZyY8AuNrMbpr8vh7An5jZJxvH7QOwb/LzEgCPhze3N8sA1nIbMaEUW0qxA5At83C1Y7eZ7ew6yMVFfwHARTO/d03+7QzM7ACAAwBActXMVhyuHZVS7ADKsaUUOwDZksIOFxf9BwD+iOTFJN8A4KMA/iOUAUKIeHQquJm9QvKTAL6JjWGyw2b2RHTLhBDeOI2Dm9k3AHyjx3UPDDMnOKXYAZRjSyl2ALJlHkHt6AyyCSHGi6aqClExQSs4yatJ/oTkT0l+NuS1e9pxmORJklmH6kheRPJBkk+SfILkLRlt2Uby+yR/NLFlfy5bJvZsIflDkvdltuNZkj8m+RjJ1cy2nE/yLpJPkTxO8k+9rxnKRZ9MaX0awPuxMRnmBwCuM7POGW+hIXklgNMAvmRml6S+/4wdFwK40MweJbkE4BiAD2d6JwSw3cxOk9wK4GEAt5jZ91LbMrHn0wBWALzJzK7JYcPEjmcBrJhZ9jFwkncA+E8zOzgZsTrXzF70uWZIBX9tSquZvQRgOqU1OWb2EIBf5rh3w46fm9mjk7+vAziOTLMAbYPTk59bJ3+yBGBI7gLwFwAO5rh/iZA8D8CVAA4BgJm95Fu5gbAVXFNaWyC5B8ClAB7JaMMWko8BOAngATPLZcsXAHwGwO8y3X8WA/AtkscmszFzcTGAUwCOTLouB0lu972ogmwJILkDwN0APmVmv8plh5m9ambvxMZsxMtJJu++kLwGwEkzO5b63gt4t5ldho3Vkn856d7l4GwAlwH4FzO7FMD/AvCOY4Ws4E5TWjcbk/7u3QDuNLN/z20PAExcvwcBXJ3h9lcA+NCk7/s1AO8l+eUMdgAAzOyFyX9PArgHG13NHJwAcGLGq7oLGxXei5AVXFNaG0wCW4cAHDezz2e2ZSfJ8yd/PwcbwdCnUtthZp8zs11mtgcb38i3zexjqe0AAJLbJ8FPTNzhDyDTIikz+wWA50m+bfJP74PDkuwugiVdLGlKK8mvAngPgGWSJwDcamaHMphyBYDrAfx40vcFgL+ZzAxMzYUA7piMdpwF4OtmlnWIqgDeDOCejXYYZwP4ipndn9GemwHcORHIZwDs9b2gZrIJUTEKsglRMargQlSMKrgQFaMKLkTFqIILUTGq4EJUjCq4EBWjCi5Exfwf0nzSKjdNxaIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -107,7 +108,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF4JJREFUeJzt3X2QXXV9x/H3x03UFTALsjKwQUM7ylQJErllRqGMNdVgBY2xQ/EJsX9kOq1PxcEB/4jIVMOUqaittZPKk4rSCCHDkyADItJRYJdggjxUtNjkIs0iJIDdSli+/eOeazZh7+65uefc83A/r5mdvffs2XO/l10++e3v/B4UEZiZWXW8qOgCzMysOw5uM7OKcXCbmVWMg9vMrGIc3GZmFePgNjOrGAe3lYqkMyTdMcfXL5X09/2syaxsHNzWF5Juk/SkpJcUXct8kn88piU9k3z8l6RLJL22i2v4HxjLjYPbcidpCfAnQADvKrSY9H4cEfsDi4A/A6aACUlHFVuWmYPb+uN04CfApcCHZ35B0iskXSPpKUl3AX+Y4noHSrpe0tOS7pT0+++R9GZJd0vamXx+84yvHZS0nB9NWv8b53uhiJiOiF9ExN8APwTOnXG970p6LHmt2yW9Pjm+GvgA8OmkxX5tcvxsSb9I6r5f0ntSvFezF3BwWz+cDlyefKyQdMiMr30V+D/gUOCvko/5nAZ8DjgQeBj4PLSCGbge+ArwCuCLwPWSXpF83zeBlwGvB14JXNjl+9hA6y+Htu8Br0mudU/y/oiIdcnjf4iI/SPilOT8XyTfvyip/1uSDu2yBjMHt+VL0gnAq4H1ETFBK7zen3xtCHgvsCYifhsR9wGXpbjs1RFxV0Q8Rysgj0mOvxP4eUR8MyKei4jvAA8CpyQB+Q7gryPiyYjYFRE/7PLtPAoc1H4SERdHxNMR8TtaLfE3SFrU6Zsj4rsR8WhEPB8R/w78HDiuyxrMHNyWuw8D34+Ix5Pn32Z3d8kosADYOuP8X7UfSPrMjBuE/zrjnMdmPP5fYP/k8WEzv3/G9caAw4EnIuLJHt7LGPBEUtuQpPOTro+ngEeScw7u9M2STpd0r6QdknYAR811vlknC4ouwOpL0jBwKjAkqR22LwFGJL0BuA94jlaoPph8/VXt74+ILwBf6OIlH6XVup/pVcCNtP5xOEjSSETs6Pa9JN4D/Ch5/H7g3bRuXD5Cq/vjSUDJ1/dYdlPSq4F/A5bTuvE5LeneGeebpeYWt+VpJTANvI5Wd8YxwB/RCr/TI2KaVr/xuZJeJul17HXzsks3AK+V9H5JCyT9ZfLa10XEr2n1Sf+LpAMlLZR04nwXTFrWR0j6J+AttPqmAQ4Afgf8hla/+d7/wPwP8Acznu9HK8wnk+t+hFaL26xrDm7L04eBSyLivyPisfYH8M/AByQtAD5Kq6vjMVqjTi7Z1xeLiN8AJwOfohWonwZOntFN8yFgF63W/Xbgk3Nc7k2SngGeAm4DXg78cURsSb7+DVrdME3gflqjZma6CHhd0i2yMSLuB/4R+DGtUF8K/Me+vlcbbPJGCmZm1eIWt5lZxTi4zcwqxsFtZlYxDm4zs4rJZRz3wQcfHEuWLMnj0mZmtTQxMfF4RIymOTeX4F6yZAnj4+N5XNrMrJYk7T3rtyN3lZiZVYyD28ysYhzcZmYV4+A2M6sYB7eZWcU4uM3MKsbrcVtqGzc1ueCmh3h0xxSHjQxz1oojWblsrOiyzAaOg9tS2bipyTkbtjC1axqA5o4pztnQWuHU4W3WX+4qsVQuuOmh34d229SuaS646aGCKjIbXA5uS+XRHVNdHTez/Di4LZXDRoa7Om5m+XFwWypnrTiS4YVDexwbXjjEWSuOLKgis8GVKrgljUi6UtKDkh6Q9Ka8C7NyWblsjLWrljI2MoyAsZFh1q5a6huTZgVIO6rky8CNEfEXkl5Ma1drGzArl405qM1KYN7glrQIOBE4AyAingWezbcsMzPrJE2L+whgErhE0huACeATEfHbXCuzyvJEHbN8penjXgC8EfhaRCwDfgucvfdJklZLGpc0Pjk5mXGZVhXtiTrNHVMEuyfqbNzULLo0s9pIE9zbgG0RcWfy/EpaQb6HiFgXEY2IaIyOptp9x2rIE3XM8jdvcEfEY8BWSe1xX8uB+3OtyirLE3XM8pd2VMnHgMuTESW/BD6SX0lWZYeNDNOcJaQ9UccsO6nGcUfEvUk3yNERsTIinsy7MKsmT9Qxy59XB7RMtUePeFRJTW1eD7ecBzu3waLFsHwNHH1q0VUNHAe3Zc4TdWpq83q49uOwK+kK27m19Rwc3n3mtUrMLJ1bztsd2m27plrHra8c3GaWzs5t3R233Di4zSydRYu7O265cXCbWTrL18DCvYZ1LhxuHbe+cnCb1c3m9XDhUXDuSOvz5vXZXPfoU+GUr8CiwwG1Pp/yFd+YLIBHlZjVSd4jP44+1UFdAm5xm9WJR34MBAe3WZ145MdAcHCb1YlHfgwEB7dZnXjkx0BwcJvViUd+DASPKjGrG4/8qD23uM3MKsbBbWZWMQ7uvOQ1e83MBp77uPPgdYvNLEducefBs9fMLEcO7jx49pqZ5chdJR1s3NTc930TFy1udY/MdtzMrEducc9i46Ym52zYQnPHFAE0d0xxzoYtbNzUTHcBz14zsxw5uGdxwU0PMbVreo9jU7umueCmh9JdwLPXzCxHqbpKJD0CPA1MA89FRCPPoor26I6pro7PyrPXzCwn3fRx/2lEPJ5bJSVy2MgwzVlC+rCR4VnONrNB09M9sAy4q2QWZ604kuGFQ3scG144xFkrjiyoIjMri57vgWUgbXAH8H1JE5JWz3aCpNWSxiWNT05OZldhAVYuG2PtqqWMjQwjYGxkmLWrlvb1X1QzK6ee74FlIG1XyQkR0ZT0SuBmSQ9GxO0zT4iIdcA6gEajERnX2Xcrl405qM3sBTK5B9ajVC3uiGgmn7cDVwPH5VmUmVlZdbrX1c97YPMGt6T9JB3Qfgy8Hbgv78LMzMqoDPfA0nSVHAJcLal9/rcj4sZcqzKrks3rW+vQ7NzWmh27fI2HgtZYuwu1yFElisi+O7rRaMT4+Hjm1zUrnb1XgoTWLFlPuLIuSZpIO0fGwwHNeuGVIK0ADm6zXnglSCuAg9usF51WfPRKkJYjB7dZL7wSpBXAwW3Wi71Xghw+CBYMw4bV3mvUcuPgNuvV0afC390Hq9bBc1Mw9QQQu/cadXhbxrwDzgxFr/hlFTfXCBMPDbQMObgT7RW/2ovHtFf8Ahzelo5HmFifuKskUYYVv6ziPMLE+sTBnSjDil9WcR5hYn3i4E6UYcUvqzjvNWp94j7uxFkrjtyjjxu8643tA+81an3g4E6UYcUvM7M0HNwzeNcbM6sCB7fZgPK8hepycJsNIM9bqDaPKjEbQJ63UG0Obtt3m9e3FlI6d8QLKlWM5y1Um4Pb9k17y66dW/GCStXjeQvV5uC2feMtuyqtDDuV277zzUnbN15QqdI8b6HaHNy2bxYtTrpJZjluleB5C9WVuqtE0pCkTZKuy7MgqwgvqGRWmG76uD8BPJBXIVYxXlDJrDCpukokLQbeCXweODPXiqw6vKCSWSHStri/BHwaeL7TCZJWSxqXND45OZlJcWZm9kLzBrekk4HtETEx13kRsS4iGhHRGB0dzaxAMzPbU5oW9/HAuyQ9AlwBvFXSt3KtyszMOpo3uCPinIhYHBFLgNOAWyPig7lXZmZms/LMSTOziulqAk5E3AbclkslZmaWilvcZmYV4+A2M6sYB7eZWcU4uM3MKsarA5aMN3A1s/k4uEvEG7iaWRruKikRb+BqdbRxU5Pjz7+VI86+nuPPv5WNm5pFl1T5/VLd4i4Rb+BqdVPKvyLb+6W2t95r75cKlVnt0i3uEvEGrlY3pfwrsgb7pTq4S8QbuFrdlPKvyBrsl+rgLpGVy8ZYu2opYyPDCBgbGWbtqqW+MWmVVcq/Ijvti1qh/VLdx10y3sDV6uSsFUfu0ccNJfgrcvmaPfu4oXL7pTq4zSw37UZIqeYmtG9A3nJeq3tk0eJWaFfkxiSAIiLzizYajRgfH8/8umZmdSVpIiIaac51i7uiPMPSbHA5uCuolGNjzaxvPKqkgko5NtbM+sbBXUGlHBtrZn3j4K6gUo6NNbO+cXBXkGdYmg0235ysoFKOjTWzvnFwV5RnWJoNrnm7SiS9VNJdkn4q6WeSPtePwszMbHZpWty/A94aEc9IWgjcIel7EfGTnGszM7NZzBvc0ZoT/0zydGHykf08eTMzSyXVqBJJQ5LuBbYDN0fEnbOcs1rSuKTxycnJrOs0M7NEquCOiOmIOAZYDBwn6ahZzlkXEY2IaIyOjmZdp5mZJboaxx0RO4AfACflU46Zmc0nzaiSUUkjyeNh4G3Ag3kXZmZms0szquRQ4DJJQ7SCfn1EXJdvWWZm1kmaUSWbgWV9qMXMzFLwWiVmZhXj4DYzqxgHt5lZxXiRKUvN+1yalYOD21LxPpdm5eGuEkvF+1yalYeD21LxPpdm5eHgtlS8z6VZeTi4LRXvc2lWHr45aal4n0uz8nBwW2re59KsHNxVYmZWMW5xWyl5so9ZZw5uKx1P9jGbm7tKrHQ82cdsbg5uKx1P9jGbm4PbSseTfczm5uC20vFkH7O5+eaklY4n+5jNzcFtpeTJPmaduavEzKxiHNxmZhUzb1eJpMOBbwCHAAGsi4gv512YmQHXnQkTl0JMg4bg2DPg5C8WXZUVLE0f93PApyLiHkkHABOSbo6I+3OuzWywXXcmjF+0+3lM737u8B5o83aVRMSvI+Ke5PHTwAOA7xqZ5W3i0u6O28Doqo9b0hJgGXBnHsWY2Qwx3d1xGxipg1vS/sBVwCcj4qlZvr5a0rik8cnJySxrNBtMGuruuA2MVMEtaSGt0L48IjbMdk5ErIuIRkQ0RkdHs6zRbDAde0Z3x21gpBlVIuAi4IGI8B0Rs35p34D0qJLS6/f68YqIuU+QTgB+BGwBnk8OfyYibuj0PY1GI8bHxzMr0sysrPZePx5aa+usXbW0q/CWNBERjTTnztvijog7AKV+dTOzATLX+vF5tbo9c9LMrAdFrB8/eItMbV4Pt5wHO7fBosWwfA0cfWrRVZlZyXXqxz5sZJjmLCGd5/rxg9Xi3rwerv047NwKROvztR9vHTcz66Ddj93cMUWwex/UjZuahawfP1jBfct5sGuvfxl3TbWOm5l1MF8/9tpVSxkbGUbA2Mhw1zcmuzVYXSU7t3V33MyM+fux+71+/GC1uBct7u64mRnl2wd1sIJ7+RpYuNd/6IXDreNmZh2UbR/UweoqaY8e8agSM+tC2fZBnXfm5L7wzEkzs+50M3NysLpKzMxqwMFtZlYxDm4zs4pxcJuZVUwpR5X0e21bM7MqKV1w7722bXtNAMDhbWZGCYO7iLVt29zSt7Lx76TNpnTBXcTatuCWvpWPfyetk9LdnCxqTYC5WvpmRfDvpHVSuuAuak2Aolr6Zp34d9I6KV1wF7G2LZRv9S8z/05aJ6Xr44b+r20LrZb+bDs1F7X6l5l/J62TUgZ3Ecq2+peZfydLrOC9a706oJlZN9p7187cBnHhMJzylZ7CO9PVASVdLGm7pPv2uSIzsyravB4uPArOHWl9bre0C967Ns3NyUuBk3Kuw8ysXNot651bgWh9/v3zWfRx79p5gzsibgee6EMtZmbl0allraHZz+/j3rWZDQeUtFrSuKTxycnJrC5rZlaMTi3omC5879rMgjsi1kVEIyIao6OjWV22dDZuanL8+bdyxNnXc/z5t7JxU7PokswsD51a0IsOb92IXHQ4oN3P+ziqxMMBu+C1I8wqbOYQvuEDW8emnuw8nG/5mtlHj7TPLXCT8dLNnCwzrx1hVlF732iceqL1MfOm4+b1e37P0acW3rLuZN4Wt6TvAG8BDpa0DfhsRFyUd2FZymppTK8dYVZRs91onKk9nG/vUC64Zd3JvMEdEe/rRyF5ybJ747CRYZqzhLTXjjAruTRD9fo4nK9Xte8qybJ7o6iVC82sR2mG6vVxOF+vah/cWXZvFLVyoZn1aPmaFw7hm6nPw/l6VftRJVl3bxSxcqGZ9ajdT93NqJISq31we2lMMwNKe6NxX9S+q2TlsjHee+wYQxIAQxLvPdatZjOrrtoH98ZNTa6aaDKdLF87HcFVE03PeDSzyqp9cHvSjJnVTe2D25NmzKxuah/c3nDVzOqm9sHtSTNmVje1Hw7oDVcLUPBGqmZ1V/vgBk+a6au9N1Jtr7wGDm+zjNS+q8T6rAQbqZrVnYPbstVphbUKrbxmVnYObstWx+2eqrPymlnZObgtW7OtwlaxldfMyq6cwb15PVx4FJw70vq895ZCVl4l3u7JrC7KN6rEoxKqr0arsJmVUfla3B6VYGY2p/IFt0clmJnNqXxdJYsWt7pHZjtutreaz9LcuKnpWb/2AuVrcXtUgqXVvh+ycysQu++H1ORm9sZNTc7ZsIXmjikCaO6Y4pwNW7yWvKULbkknSXpI0sOSzs61om5GJXj0SfVk+TOr+f0QryVfYgVnz7xdJZKGgK8CbwO2AXdLuiYi7s+tqjSjEjz6pHqy/pnV/H6I15IvqRJkT5oW93HAwxHxy4h4FrgCeHe+ZaVQ89ZWLWX9M6v5LE2vJV9SJcieNME9Bsy8W7gtObYHSasljUsan5yczKq+zmre2qqlrH9mNb8f4rXkS6oE2ZPZzcmIWBcRjYhojI6OZnXZzmre2qqlrH9mNZ+luXLZGGtXLWVsZBgBYyPDrF211KNKilaC7EkzHLAJHD7j+eLkWLGWr9mznwlq1dqqpTx+ZjWfpem15EuoBNmTpsV9N/AaSUdIejFwGnBNvmWlUPPWVi35Z2Z1UILfY0XE/CdJfw58CRgCLo6Iz891fqPRiPHx8WwqNDMbAJImIqKR5txUMycj4gbghp6qMjOzTJRv5qSZmc3JwW1mVjEObjOzinFwm5lVjIPbzKxiHNxmZhXj4DYzq5hUE3C6vqg0CfxqjlMOBh7P/IWLU7f3A35PVVC39wOD/Z5eHRGpFnrKJbjnfVFpPO0MoSqo2/sBv6cqqNv7Ab+ntNxVYmZWMQ5uM7OKKSq41xX0unmp2/sBv6cqqNv7Ab+nVArp4zYzs33nrhIzs4pxcJuZVUxfg1vSSZIekvSwpLP7+dp5kHSxpO2S7iu6lqxIOlzSDyTdL+lnkj5RdE29kPRSSXdJ+mnyfj5XdE1ZkTQkaZOk64quJQuSHpG0RdK9kiq/E4ukEUlXSnpQ0gOS3pTZtfvVxy1pCPhP4G20doq/G3hfRNzflwJyIOlE4BngGxFxVNH1ZEHSocChEXGPpAOACWBlVX9OkgTsFxHPSFoI3AF8IiJ+UnBpPZN0JtAAXh4RJxddT68kPQI0IqIWE3AkXQb8KCK+nmz7+LKI2JHFtfvZ4j4OeDgifhkRzwJXAO/u4+tnLiJuB54ouo4sRcSvI+Ke5PHTwANAZXerjZZnkqcLk4/K35GXtBh4J/D1omuxF5K0CDgRuAggIp7NKrShv8E9Bmyd8XwbFQ6EQSBpCbAMuLPYSnqTdCncC2wHbo6ISr+fxJeATwPPF11IhgL4vqQJSauLLqZHRwCTwCVJd9bXJe2X1cV9c9JmJWl/4CrgkxHxVNH19CIipiPiGGAxcJykSndrSToZ2B4RE0XXkrETIuKNwDuAv026IqtqAfBG4GsRsQz4LZDZfb1+BncTOHzG88XJMSuZpC/4KuDyiNhQdD1ZSf5U/QFwUtG19Oh44F1Jn/AVwFslfavYknoXEc3k83bgalrdq1W1Ddg246+7K2kFeSb6Gdx3A6+RdETSUX8acE0fX99SSG7mXQQ8EBFfLLqeXkkalTSSPB6mdXP8wWKr6k1EnBMRiyNiCa3/j26NiA8WXFZPJO2X3Awn6VJ4O1DZ0VoR8RiwVdKRyaHlQGY3+BdkdaH5RMRzkj4K3AQMARdHxM/69fp5kPQd4C3AwZK2AZ+NiIuKrapnxwMfArYk/cIAn4mIGwqsqReHApclo5peBKyPiFoMn6uZQ4CrW+0GFgDfjogbiy2pZx8DLk8aqr8EPpLVhT3l3cysYnxz0sysYhzcZmYV4+A2M6sYB7eZWcU4uM3MKsbBbWZWMQ5uM7OK+X9rrjJVKx/cpgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFwdJREFUeJzt3X+Q3HV9x/HXy+OqK+AdyOmQS2JoRzPVEIlzpaNYx5JqsIBGOpP6E2s7zXRaBa0ThvhHikwrTDMVh9a2k/JDVNSeGjICamQARToKXggm/Er9hU0u0AThAuhVj/juH9/vkrvjLrd7t9/9fj+7z8fMzd1+b3fzXrh73Wc/Px0RAgCk43llFwAAaA7BDQCJIbgBIDEENwAkhuAGgMQQ3ACQGIIblWL7z2zfeZTvf9r237ezJqBqCG60he1v2X7C9vPLrmUu+R+Pw7afzj9+avta269o4jn4A4PCENwonO1lkv5AUkh6a6nFNO67EXGcpD5JfyRpXNIO2yvKLQsguNEe50v6nqRPS3rf5G/YfrHtr9p+0vbdkn6ngec7wfbNtp+yfZftZx9j+3W2v2/7UP75dZO+d2Lect6ft/63zfUPRcThiPhxRPy1pG9LumTS833J9qP5v3WH7Vfl19dLereki/IW+4359Ytt/ziv+wHbb2/gtQLPQXCjHc6XdH3+scb2Syd971OS/k/SyZL+PP+YyzskfUzSCZJ+JOkfpCyYJd0s6UpJL5b0CUk3235x/rjPSnqhpFdJeomkK5p8HVuVvXOo+7qkl+fPdU/++hQRW/Kv/zEijouIc/P7/zh/fF9e/+dsn9xkDQDBjWLZfr2kl0kajogdysLrXfn3eiT9iaRNEfGLiLhP0nUNPO0NEXF3RDyjLCBPy6+fLemHEfHZiHgmIr4g6SFJ5+YB+RZJfxURT0TERER8u8mXs1/SifUbEXFNRDwVEb9S1hJ/te2+2R4cEV+KiP0R8ZuI+E9JP5R0epM1AAQ3Cvc+Sd+MiMfy25/Xke6SAUnHSNo76f4/q39h+6OTBgj/fdJ9Hp309S8lHZd/vWjy4yc936CkJZIej4gnFvBaBiU9ntfWY/vyvOvjSUkP5/c5abYH2z7f9r22x2yPSVpxtPsDszmm7ALQuWzXJK2T1GO7HrbPl9Rv+9WS7pP0jLJQfSj//tL64yPi45I+3sQ/uV9Z636ypZK+oeyPw4m2+yNirNnXknu7pO/kX79L0tuUDVw+rKz74wlJzr8/ZdtN2y+T9B+SVisb+Dxs+95J9wcaRosbRVor6bCkVyrrzjhN0u8qC7/zI+Kwsn7jS2y/0PYrNW3wsklfk/QK2++yfYztP83/7Zsi4hFlfdL/avsE27223zDXE+Yt61Ns/7OkNyrrm5ak4yX9StLPlfWbT/8D87+SfnvS7WOVhfnB/Hnfr6zFDTSN4EaR3ifp2oj4n4h4tP4h6V8kvdv2MZI+oKyr41Fls06une8/FhE/l3SOpI8oC9SLJJ0zqZvmvZImlLXuD0j60FGe7rW2n5b0pKRvSXqRpN+LiN359z+jrBtmVNIDymbNTHa1pFfm3SLbIuIBSf8k6bvKQv1USf8139eK7mYOUgCAtNDiBoDEENwAkBiCGwASQ3ADQGIKmcd90kknxbJly4p4agDoSDt27HgsIgYauW8hwb1s2TKNjIwU8dQA0JFsT1/1Oyu6SgAgMQQ3ACSG4AaAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJIbgBQJJ2DUtXrJAu6c8+7xouu6JZcXQZAOwalm68QJoYz24f2pvdlqSV68qraxa0uAHg1kuPhHbdxHh2vYIIbgA4tK+56yUjuAGgb3Fz10tGcAPA6k1Sb23qtd5adr2CCG4AWLlOOvdKqW+JJGefz72ykgOTErNKACCzcl1lg3o6WtwAkBiCGwASQ3ADQGIIbgBIDMENAIlhVgk6wrado9q8fY/2j41rUX9NG9Ys19pVg2WXBRSC4Ebytu0c1catuzU+cViSNDo2ro1bd0sS4Y2ORFcJkrd5+55nQ7tufOKwNm/fU1JFQLEIbiRv/9h4U9eB1BHcSN6i/lpT14HU0ceNtmv1QOKGNcun9HFLUq23RxvWLG9FuehyVRz4JrjRVkUMJNYfV7VfLqSvqgPfBDfa6mgDiQv5RVi7apCgRssV9fO6UA0Ft+2HJT0l6bCkZyJiqMii0LkYSERKqvrz2kyL+w8j4rHCKkFXWNRf0+gMP/QMJKLVWtE3XdWfV2aVoK02rFmuWm/PlGsMJKLV6n3To2PjCh3pm962c7Sp56nqz2ujwR2Svml7h+31M93B9nrbI7ZHDh482LoK0Zhdw9IVK6RL+rPPu4bLrmhGa1cN6rLzTtVgf02WNNhf02XnnUr/NFqqVYuyqvrz6oiY+072YESM2n6JpFskfTAi7pjt/kNDQzEyMtLCMnFUu4alGy+QJia9peutVfroJaBIp1x8s2ZKNkv66eVnt7uchtje0ej4YUMt7ogYzT8fkHSDpNPnXx5a7tZLp4a2lN2+9dJy6gFK1umLsuYMbtvH2j6+/rWkN0u6r+jC0IRD+5q7DnS4qvZNt0ojs0peKukG2/X7fz4ivlFoVWhO32Lp0N6ZrwNdqNMXZc0Z3BHxE0mvbkMtmK/Vm2bu4169qbyaUHlVXMrdSp28KIuVk52gPgB566VZ90jf4iy0GZjELKq6lBuNIbg7xcp1BDUa1oql3J3eYq8yghvoQgtdyk2LvVysnAS60EKny3HqULkIbqALLXS6XFU3X+oWBDfQhRa6lLvTF7hUHX3cQJdayHQ5Th0qF8ENoGmdvsCl6ghuAPPSyQtcqo4+bgBITLrBncj+0wDQaml2lUzff/rQ3uy2xOpBAB0vzRZ3avtP8+4AQAul2eJOaf9p3h0AaLE0W9yz7TNdxf2nU3t3AKDy0gzu1Zuy/aYnq+r+0ym9OwCQhDSDe+W67CDcviWSnH2u6sG4Kb07AJCENPu4pXT2n+Z0GgAtlmaLOyUpvTsAkIR0W9wpSeXdAYAk0OIGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiWk4uG332N5p+6YiCwIAHF0zLe4LJT1YVCEAgMY0FNy2F0s6W9JVxZYDAJhLoy3uT0q6SNJvZruD7fW2R2yPHDx4sCXFAQCea87gtn2OpAMRseNo94uILRExFBFDAwMDLSsQADBVIy3uMyS91fbDkr4o6Uzbnyu0KgDArOYM7ojYGBGLI2KZpHdIui0i3lN4Zd2slWdUct4lUIwSf7fYHbBqWnlGJeddAsUo+XerqQU4EfGtiDinqGKg1pxRWW8JbP1LzrsEilDyWbK0uKtmoWdUTm8JLOS5AMys5LNkWfJeNQs9o3KmlsB8nwvAzEo+S5bgrpqFnmA/1198zrsEFm6hv6cLRHBXzULPqDzaX3zOuwRao+SzZB0RLX/SoaGhGBkZafnzogEz9XH31ghsoOJs74iIoUbuS4u703CqPNDxmFXSiRI9VX7bzlFt3r5H+8fGtai/pg1rlmvtqsGyywIqh+BGJWzbOaqNW3drfOKwJGl0bFwbt+6WJMIbmIbgRiVs3r7n2dCuG584rM3b93RtcPMOBLMhuFEJ+8dmnns+2/VOxzsQHE01ByfZGKnrLOqvNXW90x3tHQhQveCuT2c7tFdSHNm8hfDuaBvWLFett2fKtVpvjzasWV5SReXiHQiOpnpdJUfbvCXBmRJoTP3tf4p9ukX0RS/qr2l0hpDu1ncgmKp6wV3y5i0oz9pVg0kE9WRF9UVvWLN8yvNK3f0OBFNVr6uk5M1bgGYU1Re9dtWgLjvvVA3212RJg/01XXbeqcn9YUMxqtfiXr1p5iXbbIzUVao4FW6mmorsi07xHQjao3rBXe/HvvXSrHukb3EW2vRvd40qToWbraa+Wq/Gxieec3/6olGk6gW3lOySbbRGFRfjzFbTC3qfp1pvD33RaKvq9XGj61VxKtxs//bYLyfoi0bbVbPFja5WxalwR6uJvmi0Gy1uVE4VF+NUsSZ0L1rcqJwqLsapYk2pqeJMoVRxAg6Awk2flSNl71gYDziCE3AAVAqbZrUWwQ2gcFWcKZQyghtA4di2t7XmDG7bL7B9t+0f2L7f9sfaURjSs23nqM64/DadcvHNOuPy27Rt52jZJaEimJXTWo3MKvmVpDMj4mnbvZLutP31iPhewbUhIVVcpo7qYFZOa80Z3JFNO3k6v9mbf7R+KgqSVsVl6qgWFiq1TkN93LZ7bN8r6YCkWyLirhnus972iO2RgwcPtrpOVByDT0D7NBTcEXE4Ik6TtFjS6bZXzHCfLRExFBFDAwMDra4TFcfgE9A+Tc0qiYgxSbdLOquYcpAqBp+A9mlkVsmA7f7865qkN0l6qOjCkBZObAHap5FZJSdLus52j7KgH46Im4otCyli8Aloj0ZmleyStKoNtQAAGsDKSQBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJAYghsAEkNwA0BiCG6Ua9ewdMUK6ZL+7POu4bIrAiqvkSXvQDF2DUs3XiBN5Fu/Htqb3ZaklevKqwuoOFrcKM+tlx4J7bqJ8ew6gFkR3CjPoX3NXQcgieBGmfoWN3cdgCSCG2VavUnqnX5CjrO+bgYqgVkR3CjPynXSuVdKfUvyC9az51DXByoJb+A5CG6Ua+U66cP35eEdU7/HQCUwI4Ib1cBAJdCwzgtuFnSkiYFKoGGdFdz1BR2H9koK+klTMtNAZW8tuw5gis4KbhZ0pGvKQKWzz+deyQpKYAadteSdftK0rVxHUAMN6KwWN/2kALpAZwU3/aQAukBnBTf9pAC6QGf1cUv0kwLoeJ3V4gaALjBncNteYvt22w/Yvt/2he0oDAAws0a6Sp6R9JGIuMf28ZJ22L4lIh4ouDYAwAzmDO6IeETSI/nXT9l+UNKgJIK7QrbtHNXm7Xu0f2xci/pr2rBmudauGiy7LAAFaGpw0vYySask3TXD99ZLWi9JS5cubUFpaNS2naPauHW3xicOS5JGx8a1cetuSSK8gQ7U8OCk7eMkfUXShyLiyenfj4gtETEUEUMDAwOtrBFz2Lx9z7OhXTc+cVibt+8pqSIARWoouG33Kgvt6yNia7EloVn7x8abug4gbY3MKrGkqyU9GBGfKL4kNGtR//Tjv45+HUDaGmlxnyHpvZLOtH1v/vHHBdeFJmxYs1y13p4p12q9PdqwZnlJFXUZ9oBHmzUyq+ROZYcBoqLqA5DMKilBfQ/4+nbC9T3gJVbwojCOiLnv1aShoaEYGRlp+fMClXPFivzgjmn6lmRnaQINsr0jIoYauS9L3oGFYA94lKDzNpkq067h7LSdQ/uk2gnZtfEnsv3AV2/irXMn6ls8S4ubPeBRHFrcrTL9vMvxx7MPzr7sbOwBjxIQ3K0y03mXk3H2ZWdiD3iUgK6SVmmkT5N+z87EHvBos44O7oVsvNT0Y2fr65x+nw7GRlddbPL4DmM6hevYrpL6xkujY+MKHdl4advO0WIeO1Nf52Qd3u+5kP/eSNz08R3GdArXscG9kI2X5vXY6X2dtROzjy7p92Sjqy420/gOYzqF6tiukoVsvDTvx3ZxXycbXXUx5rK3Xce2uBey8RKbNjWP/2ZdbLaxmw4f0ylTxwb3QjZeYtOm5vHfrIsxl73tOrarZCEbL7FpU/P4b9bF6t2DzCppGzaZKhNTqADkmtlkqmNb3JXHdqAA5qlj+7grjylUAOaJ4C4LU6gAzBPBXRamUAGYJ4K7LEyhAjBPBHdZ2A4UwDwxq6RMXbxEHsD80eIGgMQQ3EC32jWcnVJ/SX/2mW1Yk0FXCdCNWACWNFrcQDdiAVjSCG6gG7EALGlzBrfta2wfsH1fOwoC0AYsAEtaIy3uT0s6q+A6ALQTC8CSNufgZETcYXtZ8aUA5em6E+rZQztpLZtVYnu9pPWStHTp0lY9LVC4+gn19cOO6yfUS+r88Caok9SywcmI2BIRQxExNDAw0KqnBQrHCfVIDbNK0PU4oR6pIbjR9TihHqlpZDrgFyR9V9Jy2/ts/0XxZSEZHbBsmhPqkZpGZpW8sx2FIEEdsmyaE+qRGk55x/xdsSIL6+n6lkgfZr0W0IxmTnmnjxvzx7JpoBQEN+aPZdNAKQhuzB/LpoFSENyYP87NBErBQQpYGJZNA21HixsAEkNwA0BiCG4ASAzBDQCJIbgBIDEENwAkhuAGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIZtXdGQbTtHOUwXqAiCG3PatnNUG7fu1vjEYUnS6Ni4Nm7dLUmEN1ACukowp83b9zwb2nXjE4e1efuekioCFmDXsHTFCumS/uzzruGyK2oaLW7Maf/YeFPXgcraNSzdeIE0kf/sHtqb3ZaSOsmJFjfmtKi/1tR1tMa2naM64/LbdMrFN+uMy2/Ttp2jZZeUvlsvPRLadRPj2fWEENyY04Y1y1Xr7Zlyrdbbow1rlpdUUeerjyuMjo0rdGRcgfBeoEP7mrteUQ0Ft+2zbO+x/SPbFxddFKpl7apBXXbeqRrsr8mSBvtruuy8UxmYLBDjCgXpW9zc9Yqas4/bdo+kT0l6k6R9kr5v+6sR8UDRxaE61q4aJKjbiHGFgqzeNLWPW5J6a9n1hDTS4j5d0o8i4icR8WtJX5T0tmLLArob4woFWblOOvdKqW+JJGefz70yqYFJqbFZJYOS9k66vU/S7xdTDgApG1eYPHdeYlyhZVauSy6op2vZdEDb6yWtl6SlS5e26mmBrlTvlmK1KmbSSHCPSloy6fbi/NoUEbFF0hZJGhoaipZUB3QxxhUwm0b6uL8v6eW2T7H9W5LeIemrxZYFAJjNnC3uiHjG9gckbZfUI+maiLi/8MoAADNqqI87Ir4m6WsF1wIAaAArJwEgMQQ3ACSG4AaAxDii9TP3bB+U9LN5PPQkSY+1uJx264TXIHXG6+A1VAOvoTEvi4iBRu5YSHDPl+2RiBgqu46F6ITXIHXG6+A1VAOvofXoKgGAxBDcAJCYqgX3lrILaIFOeA1SZ7wOXkM18BparFJ93ACAuVWtxQ0AmAPBDQCJqUxwp36upe1rbB+wfV/ZtcyX7SW2b7f9gO37bV9Ydk3Nsv0C23fb/kH+Gj5Wdk3zZbvH9k7bN5Vdy3zYftj2btv32h4pu575sN1v+8u2H7L9oO3Xll2TVJE+7vxcy//WpHMtJb0zpXMtbb9B0tOSPhMRK8quZz5snyzp5Ii4x/bxknZIWpvY/wdLOjYinrbdK+lOSRdGxPdKLq1ptv9W0pCkF0XEOWXX0yzbD0saiohkF9/Yvk7SdyLiqnxb6xdGxFjZdVWlxZ38uZYRcYekx8uuYyEi4pGIuCf/+ilJDyo7ui4ZkXk6v9mbf5TfOmmS7cWSzpZ0Vdm1dCvbfZLeIOlqSYqIX1chtKXqBPdM51omFRidxvYySask3VVuJc3LuxjulXRA0i0RkdxrkPRJSRdJ+k3ZhSxASPqm7R350YapOUXSQUnX5l1WV9k+tuyipOoENyrE9nGSviLpQxHxZNn1NCsiDkfEacqO2TvddlJdV7bPkXQgInaUXcsCvT4iXiPpLZL+Ju9OTMkxkl4j6d8iYpWkX0iqxPhbVYK7oXMtUby8X/grkq6PiK1l17MQ+dva2yWdVXYtTTpD0lvzPuIvSjrT9ufKLal5ETGafz4g6QZlXaIp2Sdp36R3bF9WFuSlq0pwc65lBeQDe1dLejAiPlF2PfNhe8B2f/51TdmA90PlVtWciNgYEYsjYpmy34XbIuI9JZfVFNvH5gPcyrsX3iwpqRlXEfGopL22l+eXVkuqxEB9Q0eXFa0TzrW0/QVJb5R0ku19kv4uIq4ut6qmnSHpvZJ2533EkvTR/Oi6VJws6bp8ptLzJA1HRJLT6RL3Ukk3ZG0BHSPp8xHxjXJLmpcPSro+b1D+RNL7S65HUkWmAwIAGleVrhIAQIMIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJCY/weh1dxCRXPbhgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -175,7 +176,8 @@ "qsvm = QSVMKernel(feature_map, training_input, test_input, datapoints[0])\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(shots=1024, max_credits=10, memory=False, seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", "\n", @@ -212,7 +214,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYVfX2/98fEcQRUVFRcApywAk155xujlmaaaV105vlbbbh1vVamWbeX926adO3ruV407ScMtNyzMoZEgfECadEBFER0VSQz+8PjvfhsN5bCRTFvV7P4wPn7dqcvfc5i81Z+/1Zy1hroSiK+yh2vXdAUZTrgya/orgUTX5FcSma/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUDJb4zpYYzZZYzZa4wZcbV2SlGUa4/Jr8PPGOMDYDeArgAOA9gEYKC1dsdlthFPFhxSk8YW9/MVWuKhQzQ2omEDoZ08nU5jTyafFFpWViaNZeemdlgtoaWm8edKO35KaNVrBtPYpCMpQqsWUpnGHtqfILTAyoEO+3BaaBkZ52hsRsYFoYXVDRPamXN8ez9f+ZoVM4bG+vr4SK14cRqbevas0MqXKkVjz5w/LzQfsg/+fn50+8yLF+X2xfg18mJWltB+vyDPodPPcNoHdsaMw3k8mnzc63HqieM4e+Y0D84FP9t5oyWAvdbafZ6dmwWgDwDH5Gc8+sIoqlcODRLauGeeo7FLV/8otDkr19DY+R/PFlp6ukxSALhw4Xehzfh2itC+Xcqfa9nMxUJ785NXaez4UZ8LbfS7z9LYZwaPFNo9T91HY5dPXy60hITdNPbYsd+ENnPRQqFt2sG3D6kmf1mV9fensVUCAoRWPZD/AlsQHS203pGRNDZq37487UNESAjdPjktTWjlSpaksWm/y/fHtt/kOQSAwNKlhVY3mF8IipNfjE6/gP718Qyvx5MmjKVxjIL82V8dQM4jPezRFEUpAhTkyp8njDHDAAy71s+jKMofoyDJnwAgNMfjEI/mhbV2IoCJAP/MryjK9aEgyb8JQLgxpjayk/4BAIMut0FwSE3xGX/sC0NpLPvs9tATL9DYT6d/I7RHH7yLxh7df1RoO9bE0thyQfJzaXny2S16qfxMCgB+fvKz5phn36Gxbe5sL7cvLj/7AcCdj/QV2urZq2nshg2L8rRfAPD4a68IrQI53pohVen24VWqCI0V6wCgTmVZH9gUH09jG4eGCm1hFD/nvSKbCu18pizoHj5xgm7PCobVHGoR7LN5gEMhMqRCBaEdOn6cRAL1SC1g37FkGjv2Re/8WfLlJzSOke/kt9ZmGmOeBvADAB8Ak621PIsURbnhKNBnfmvtYgCypK0oyg2POvwUxaVo8iuKS9HkVxSXcs3v83s9mZ+vcO6xqj4AtKhTR2gfzvmWxu7ftl9oWx2cVnVvqyu0EiW5zTKgkqz2d27dQ2hhYc3p9o+OeVRo6WelKwzg9s0/tepKY/+zcIbQnrn/bhobnyRdkSfPnKGxazduE9rhk9IO3dDBHXc8XVqJ/Rwsu6fIXYCmNbnVe8J/5wnt6Qf70Fjm0KtWXlbrnd53oRUrCu3AsWM0NiVd2rqb1eLHkJgqXaSNyF0MAIhPShJalXLyvQgAq+PivB6fdrBeM/TKryguRZNfUVyKJr+iuBRNfkVxKflez58ffH1L2EqVvItFTpbdmhGycPJMf27ZPUEKL88/x220MZt+ElpYeDMa+2v0MqHNWSmtxNFxe+j2rw99QmjvfDWNxo4b9pLQ5q+YS2M7NG0jtO69H6axJ5OljfXAAVnYA4DY2F+Etv032UPhx01b6Pbd2sjCZwmHgh8rcDILLADsOSot2U5FS2a5rRss7cjFDL/upZOCWVC5cjT2ArENO1l22dr/kArcNswsxpUdCn6LY2K8Hg8fNAh7duzI03p+vfIrikvR5FcUl6LJryguRZNfUVyKJr+iuJRCtfdGNGwgmm2yRhwAt+yyqj4AVChTRmjbSJUaAKoGvCi072N49Xp6y3FCe+yxMULLzJAdXwFg8boVQlv+40Yau3r990J75EHZqBMAonbIRhaf/1c22gSAlqEtheZfWjYDAYD7O8mGIhmkot2/Szu6PXstnxx8D41lNlynBhsjh/9baHc9ye/83H1bC6GV9CshtElL5J0cAKhbp4bQjju871ZHy7smj97JLdlj3p8qtNeHD6Gx8zdGCa1Lwwgam9siXNKhIzBDr/yK4lI0+RXFpWjyK4pL0eRXFJdSIHuvMeYAgNMALgLItNbKaksOaoaF27+/+76X1rejtKoCfD3+rA/lum4A+NvrsgNwo1BZuAGAsR//V2gPDehOY79atEpoZSuUFdpQhyLPy69/KLQRLz9CY1/5xwdCG/zsABo74pF/CK3bA3x9e7P2jYWW/jtf8z33PWknHj7uMaF9N0+eFwB49BFZ3GMWWACIjpfr6XuSzrsA74j77ebNNPYsObb29WUPh0pluWX3h61bhRZUVr7mANAmPFxomw8coLHsGH5zKHCmnJZ9EQa24XmSnObdJ6Bbx06I2bz5mo/rukRna60cNKcoyg2N/tmvKC6loMlvASw1xkR7xnIJjDHDjDFRxpio9DQ+EFNRlMKnoH/2t7fWJhhjKgNYZozZaa31WjObc1xXzbBwHdelKDcIBbryW2sTPF+TAcxH9thuRVGKAPm+8htjSgMoZq097fm+G4A3LrfNyeSTmP/xbC+Nzc4DeJdd1ogD4JZdVtUHgNee+rPQ1i7iQ4RXrpA/Y/3uOKGtiOVTyhZ/PVNo9z7ci8bai7LZA5tnBwCR7doKbcOStTT2UBy3OTMSEnYLjTXdqFanGt2+SoBsOOFkyX7wdmklZg0vAOAI6SB8OP4I34ea8pz5++bd8lqdNBSp7NDMw6eYvHbeQuYVAryLcWhF3rzE10fGZjnclVu6xdtinPY77w7NKMif/VUAzPe8OYoDmGmtlQZ1RVFuSAoyqHMfgCZXcV8URSlE9FaforgUTX5FcSmFup4/KysT6ene9/p3rOHFMjZCy6nLLluP72TZZcW9JUsm0ti2baVdtbiP/H356ahJdPsmkZ2EtmzxGhrr4ytfihMOHWqrhcmCW3DtYBqbsOew0OJjd9HYug3l+WX273u73U63n7lstdAeuKMDjd2XnCy08sQCCwDTZskp8K06RtJYZsVlRccKpUvT7SOqVxcaKzgCwJZDspjKbLwAsGKjtCP3bsdvjrH3WJkS/jR2d5R3kfbcGR3XpSjKFdDkVxSXosmvKC5Fk19RXIomv6K4lEKt9ltrceGCt/2wXBCfQRZQSepsdh7Au+x+NJN3BWaWXVbVB4C1a+cLrZiRDTq6/6UH3f6fTz8ntHuf60djd2+S1trSJWTXWYDfIXHqyZJ4+KDQsrJ4t+Eo0m34zaBnhTZ36c90+2H9egqNzb4DgPCqcn5exkW+XwP63SG0raTSDgDlSpYUGrPR/hEbbBl/Xmm/NVjeYXG6MzCkx5+ExuzBALfysi7KABDRpoHX45Jl5PE7oVd+RXEpmvyK4lI0+RXFpWjyK4pLKdSCX+2wWpjx7RQvrbyDzbJza1lEm7OSF/HYCK3293ILKluPz+yUAC/uRYSECO2lNz6m2++Kl51g1++Np7HPjJZdfRuE1qSx0fGyOFi+FD+PzO7qS9aWA7xz7fSvlwitdy9u2T2XkSG01LNnaexFUtRyWjcfn5wktDsjub13YZQcZdaQvGZ7jvI+EnNmLxXaC08OpLFJp2RbOifbMLNq+/n40Nj9x44JrQGxHQNAlwbeBb+yDsVJhl75FcWlaPIrikvR5FcUl6LJrygu5YoFP2PMZAC9ASRbaxt6tAoAZgOoBeAAgPustdzalIPUtHR8u9R7PXv0UlmgAYCwsOZCi47bQ2MzM6QzzGmEFmu26bQenzn3WHHvnVFP0e1LBci13UtmzKGxA54aIrR77h1OY/cmybXwaWm8UWbsuh1CO5fOXXe39bxNaM3bynFfrIAGAGt2y0Jki9q1aaw/mSPv5AbcuUUWSc9ncMdbxwb1qZ6b+tV4E9Le/ToLraLDuK74JFmIdCpa7tonx5Mxl6PTvhV3KA4eTPEeluU0Ho2Rlyv/VAC5s2AEgBXW2nAAKzyPFUUpQlwx+T1DOHJPFOwDYJrn+2kA+l7l/VIU5RqT38/8Vay1iZ7vjyK7jTcl57iuM6fT8vl0iqJcbQpc8LPZTd4cx3BZaydaa1tYa1uUdhiLrChK4ZPf5E8yxgQDgOerrEApinJDk19770IAgwG85fnKfbe5SDt+Cstmendi9fPjdsRHxzwqtCfvup/GLibr0F9+XVpzAT5Ci3XZBfh6fGbZZVV9ABgz/C9Ce+3fn9PYmRNkB+HVaxfS2HYt5V0INlYLAHyKyZf4zFk+LXnR7GlCi4ldL7QpS1fS7Xu1kndoWFUfAFKJ3bWkQ+xDfeWdm+nzfqCxbcPDhcbW46c4fARldyfOnD9PY9k4NaeRY2yMV6CDFfjoqVShOd1FqBYY6PXYybrNuOKV3xjzJYB1AOoaYw4bY4YiO+m7GmP2ALjD81hRlCLEFX9NWGv5qgZAtiZRFKXIoA4/RXEpmvyK4lIMG8d0rajfqJGdtmCBlzbm2Xdo7MARDwnNqaiVSGa1P9S3G41l67idRmg1aC2tokGk8DLykb/T7bvfLxuDjn1RFjIBYPjI94TW8PZGNLZUWVlgjFkZQ2Orh8t14KdSeMGvXWdZsNt3MEFofdq3otuviJVW4va33kpj2Ws5f8UvNLZxQ1nEm/0ZL4Y+9IRskJqYKgtorNEnwIt7udfMX2L1Ttkbok2Y3Nfs2J1Ci9vEx6bdTl6H3Qfk2DUAqFPD2wr85H33YVdsLE+UXOiVX1Fciia/orgUTX5FcSma/IriUjT5FcWlFGr33qQjKRg/ytve2ubO9jSWVYPHDXuJxq5e/73QRox4n8bai9J+6ePLTwMbocW67LJGHAC37LKqPgC8/88XhBaXICvtANCjrbyT0aXnfTQ2+BY5UmrLqi009osPpCX6hXfHCs2AF5PPnZHNOKqWL09j527cKLRWzSJoLLMIR3ZtRmNZ91xmjT174QLdPoDcBWBdegGgRsVKQnO6i5B2SjZbada2IY2N/lXeRfjT7S1o7PHTp6meF/TKryguRZNfUVyKJr+iuBRNfkVxKYVq723YpImd+713cc6vOO9K+qdWcg33kjWysAcAfxs2TmgvvfM0jWVrsNkoJQAoXaKE0NgILacuu59NHi202T9yC2v7xtJCWt9hRFPCidwtFQE/h3XcTC/hELv9sLSQRsfKomfPNrz4xHAqlrHXIaAU74swfeVqoXVuwotlubvZAkD7unWF9l0Mt0Pv3/2b0P7cmy9gPZ4ui3jsPQMAWSTPqgQE0Fh2zpzW86fkKvj17NIFWzZvVnuvoijOaPIrikvR5FcUl6LJryguJS89/CYbY5KNMdtzaKONMQnGmBjPv17XdjcVRbna5MXeOxXARwCm59LHW2vf/SNPdmh/Ap4ZPNJLu/MRPuznPwtnCK1D0zY0NmqHnPd3/128aUZku7ZCqxbG57btWCPn+kXHy+o3m50H8C67Iz75J41lll1W1QeA6hUqCG3IY6NpbKUQaUHduUkeFwCsX/+t0H7ZKm24P5KmHQAQWLaM0ELIvgLAl0tlBf/xvj1pLKvsJ5zkoyFvDZZ2ZtZRt1N9PtOvM2ncsf/YMRobRu5YbD54kMam/f670Eo5dCv+ZZds8tHvNjlHEQBSct1xyLwo51Y6kd9xXYqiFHEK8pn/aWPMVs/HgsArhyuKciOR3+T/BMAtAJoCSATwb6fAnLP6MjL4CGZFUQqffCW/tTbJWnvRWpsF4DMALS8T+79Zfb6+fDqPoiiFT77W8xtjgnNM6b0HwPbLxV8isHIg7nnKe9356tmy8AMAz9x/t9C6936Yxn7+X9nJtdsDfWjshiVrhRZcWxaJAIA5n8uXkuvF09KkzRPgPQmcuuyy9fhOll1W3Jv6mdQA4K67pM25fKWKNPaegU8ILZQU7OJKcxsu218nW+qQO6VlltmLAd59953nedfnL+bKngRsv9bsloVbAKhXTRZ/61atSmNjSb+FyJrS/g0AK3bIIqtTTwHWIZqdAwCol6vA6e/rS+MYV0x+z7iuTgAqGWMOA3gdQCdjTFNkT+c9AOCveX5GRVFuCPI7rmvSNdgXRVEKEXX4KYpL0eRXFJeiya8oLqVQu/emHT+N5dOXe2kbNiyisfFJzwntZDI3GrYMlXcaa9Tmlt1DcYeElrDHocp8WFo1g8qWFVrsOm539SkmTy+bnQfwLrtO1X5m2WVVfQD49tuPhFa5Mq9I9xv0ONVz8+tqfsfib08MEpqT3bSkn2x64dTcgv2M0f/3Ko09RrrZMmtt89q16fbR+/cLrdUtt9DYJjVqCG3bb7IZCMBn+PkU49deZjGOT0qisYeOH/d6fCEzk8Yx9MqvKC5Fk19RXIomv6K4FE1+RXEphVrwy8g4h4QEb1ulnx/3+58kHXUPHNhGY/1Ly54A6b/nfRFRfKxcPw0AWVmy0ORLinDn0vlznTkru7CeSuHdbNkIrScH9KaxbD2+k2WXFfeSk/ma811bpEubHW+DNrIgBfDxYhVJgRQAzmVkCC2gFB91lX5Ont+yDmOxIhw6Hsvn59baFnXqCK2Eg2WWFezY+xbgPQUia9WisankZ1QL5GPPktPSvAViKXdCr/yK4lI0+RXFpWjyK4pL0eRXFJeiya8oLqWQq/0XcOyYt/3x8ddeobFrN8rKfmwsn3N3f6f2QhvyIP+5ue82AEDdhs1obNS6FUL7YetWod3Wk3dWXTR7mtDadW5OY7/4QDahcGpuwbrsskYcALfssqo+AKxaJTsmr9sjbbTnfz9Pt2eVfZ9ivPrMLLfVAnkrSNaRl9l4AWBDfLzQGoWGCo1V3wHgWO7qOYAaFfmdFIZT8xJm1T519iyNPUpm9TVwuIsRezjO6/E5hwYhDL3yK4pL0eRXFJeiya8oLiUv47pCjTGrjDE7jDGxxpjhHr2CMWaZMWaP56v27leUIoSxrEVtzgBjggEEW2t/NcaUBRANoC+AIQBOWGvfMsaMABBorf375X5WROPGduYi7/X7FUrLbrgAcJiMYwpwsHRWJevAnYplrKOu0zmoHRQktOlfLxFa87aN6fbtbr1VaLNW/kRjL2bKAlQxh2JZx+by+ViXXSeYZRcA1u3ZI5+LjLV66Y2P6faNO8n96teSF0PX7d0rtKXf8HMz7NF7hRbssPa/ScN2MjZYWnbHfDqabj+gQ1ehfbeed5iOiZPFxYe7d6ax8zdFyZ878Tsa++DzA4S2ftWvNDb5oPeouLlffoRjSYfz5PHNy7iuRGvtr57vTwOIA1AdQB8Al8rZ05D9C0FRlCLCH/rMb4ypBSASwAYAVXL07j8KoMpV3TNFUa4peU5+Y0wZAHMBPGet9boZarP/bqZ/O+cc13XSYeqsoiiFT56S3xjji+zEn2GtneeRkzz1gEt1ATqnOue4rsA/8LlUUZRrS14m9hhkD+mIs9a+l+O/FgIYDOAtz9dvrvSzzpw7h007vB12NUP4KKSGISFCm/+jHLUFAP27yCLPd/NW0dhqdWRjz3u73U5j5y79WWi9e3UQGttXAJiydKXQ+rRvRWMNZI2GrXkHgB9jZcNQpxFarNmm03p85txjxb13Rj1Ft08mzrTzDg0lW4fJppi7I2RzVYCv58906BPA+kMEBMiGpxkOjUWbNpVjxMr4854TJcvJAnQCKVQDQIf69YS2p4UssAJAizqyuejWqJ00tlQ579e9mE/eP8nnxd7bDsCfAWwzxlx6J41EdtJ/ZYwZCuAgADlsTlGUG5a8jOv6BSCXpWzkr0lFUYoE6vBTFJeiya8oLkWTX1FcyhXtvVeTWyMi7Adffuml1SNrtQEg/bys8Pr7+tHYmV//ILSB/bvRWDYSauYybt8c3KOL0FgF3mlEU1gV6XtavZNXbc+dkcd7RyS3DW85JKviTqO9WoeFCY112QX4evz1u2VFunsTvl+Vybl1Wjd/34C/Ca1uS1kRB4AF02RfhBmLZe8BgHSzBbBgymKh7SfWXAB4e+JrQnt39Gc0ds8O2dth3boFNJbZyt+fzW+QvffySKG163A3jT129KjX4/XrFyItLeXq2HsVRbk50eRXFJeiya8oLkWTX1FcSqEW/Oo1bGgnzZvnpZUuIee0A7yAVdbJZuknC4FJxGrq9HzlHXoKZBBraippuljdofGkP9mvBIfFTVXLy3FMWw7ysVrFfXyE5tQ40p+MmjrhMFKKNdusUk4W8ZwsuwGlpMXYaQb91xs2CC1uEx+b9tB93YX2xiuf0NgPPpAtJU6kpwttebQcjwYAf+kmi7yrdkg7NQAkJKcIbViPnjT23Hn5vvnw64U09pkBsri3bDtvutopV7+F1q1aIToqSgt+iqI4o8mvKC5Fk19RXIomv6K4FE1+RXEphTquy9fHR9hr61SuTGPZKKMz5/mYKGbpjI7fR2MfvF2O9tqXTJsQIbyqbDRykdwdYVV9AEglVXVm8wSAuRs3Cq1bo0Y09sul0o485E6+urqkn7y74dQkhI3QYl12WSMOgFt2WVUfAAa0kk1NElNTaezijdFCG/vWMzSW3eXZeeSI0IKC+B2a+KQkofVtzZu9zP5ZNmv5zxJpJQaABwaNENrESa/T2MhI+Vq+OvEtGvuvz7zt8keP5b1Vnl75FcWlaPIrikvR5FcUl1KQcV2jjTEJxpgYz79e1353FUW5WuSl4JcJ4MWc47qMMcs8/zfeWvtuXp/Mt3hxYYXdROapA0DTmjWFFug02otYZntGNqWxbH15eWJLBXiHV2ajZd1lAW47nrFEFokAoFWzCKExuywAPN5XWkidxpOx/gUBpfjYs2rEpjxlqlxz7tRll63Hd7LssuJeMLE4A8Co8ZOFNnWPLOIBwOkTsvi7ePZsoRVzsB0PfeV5oW3fv5tEAh1bdBLasJFyLT4AhNYLlVoVqQHAS29NENpj3fl6/r+99W+q54W8NPBMBJDo+f60MebSuC5FUYowBRnXBQBPG2O2GmMm65ReRSlaFGRc1ycAbgHQFNl/GdC/P3KO60pJkaugFEW5PuR7XJe1Nslae9FamwXgMwAt2bY5x3VVqiQnpyiKcn3IS7Wfjuu6NKfPwz0A+IJjRVFuSK7YzMMY0x7AzwC2AbhUKh8JYCCy/+S3AA4A+GuOkd2UOvXr23GTvSu3jUN5xXPR0jVC69erI40dOVx+4pgx4//R2CNkltq0WdySOaDfHUKLT5b2z51b+B2Lh/p2FdruRH6KAsuUEVr0LmmtBYDOTRrKfXD4uUGkI6/T3YlbSSflsxcu5Hn7QT0HCW3Rj/NIJLAqRl4rDsby5iVvPP+I0OYQOzTA71isWiljNy7mtuOJ098Q2txVfEbkxNHyRtfaDUtobGRjaRF+7l9jaOxPX/8ktHIVebOW3F2fFy2YiJRjR/LUzKMg47p4xiiKUiRQh5+iuBRNfkVxKZr8iuJSCrV7b7Pmze3qNd6FvIVRcq02APS9rbnQYg/zMVM7iV7awcJ6OF7aQus2qE1j2Xr8OyMjhfbDVjm2CQDit+8X2sHtB2hsZNdmQuvagluUE0jRctQTY2ns6P97VWhOHZNZV+Aw0m8h02EEF+uL8P64qTSWrcef6lB4rX9bXaH1b0nvLOP46dNCY0XLJRv4++6R7nIt/f5jx2jsgu9lYe54Il9Pf3d/+XM3bOI3yHp0lMfm1I26fV3vc9OqZUtEafdeRVEuhya/orgUTX5FcSma/IriUjT5FcWlFGr33jPnzyNqn3dX3V4OTTdYR15WjQaAu29rIbRvHe4iVKkpq9fMAgsA5UrKOwbs7kTHBvWFBgBtw8OFduB2vrKxAmlUctBhFSSz4X4x90Mae4xUvyOq83YMG0hjlSYN2wnNz4/PTBw/S87PY7PzAF69Zo04AG7ZZVV9AKhIXsuICNmxefI3U+n2wVXlnZ85P/1AY31LyGYt/xj+MI1ds1s2BPl5zs80tkt7eadr+WJuMX77Re/GH3v2cIs0Q6/8iuJSNPkVxaVo8iuKS9HkVxSXUqgFPx9jUNbfu1h0PjOTxlYrL4s8rHMuwEdSta8vLaEA4O8rizQn0tNpbGjFCkJrGBJCYxll/GVhjI2/Avix5bZuXoJ1IPYrzl9KNoLLiUakt0JwcB2hBQTwjkwLpkh7bt2RQ2ksG6HFuuwCQEBl2dU3tH8PGsuKe7Gxvwjt/TGT6PZNm0obbvxh3ivh64+mC61XJzmGDAAWz1wutG3bpD0YABZ800RoUyfwJtmVKlXzepyRwUfaMfTKryguRZNfUVyKJr+iuJS8NPD0N8ZsNMZs8YzrGuPRaxtjNhhj9hpjZhtj+JxqRVFuSPJS8DsPoIu1Nt3TwvsXY8wSAC8ge1zXLGPMpwCGIruXvyP+fn6IyFUwY6O2AAgnIAD8KUKOtAKASUuWCe2BLh0utyteMHcdwItle44eFVr9atWEBgApp6VjjbkGAb7m/LuYGBrbqb50FDIHGQA0ry0da+cy5HMBvJA45tPRQmNjzABg/MvSZbg8eguNDQqSBV2nEVqs2WZQaBCNZc49Vtyb+V/e4HUfadC6fi9v0Lp9u3To7UzkY8T2bpVjy9p04OMto5ZuElpWFi+MD3z2r16PPxhzgMYxrnjlt9lcKof7ev5ZAF0AzPHo0wD0zfOzKopy3cnr0A4fY0wMgGQAywDEA0i11l76dXQYOr9PUYoUeUp+z2SepgBCkD2ZR45jdUDHdSnKjckfqvZba1MBrALQBkB5Y8ylmkEIANpgT8d1KcqNSV6q/UHGmPKe70sC6AogDtm/BPp7wgYDkIPcFUW5YclLtT8YwDRjjA+yf1l8Za1dZIzZAWCWMeZNAJuRPc/vsmRevCjW6Z85z+2IoRUrCs1pTFTdOjWE5tRRt3oFadl1Wt/OmDN7qdB69+tMY1uQSrvT8QaQuwD7d/9GYzs3aCC0eg53HKL3yw7CLepIyy4AHCM9FAZ0kCPHmAUWAN6bMk5oTnbo+CT6MkbbAAAKeElEQVRZVR/6yvM09oEeckxbxTK8BwNbj8/2l1X1AaBO5SpC23zgAI2dv/ZHoTlZskM/fUVon3/8NY199c0nhDZvsbQtA8DJJO9Ozhcd7PKMvIzr2gpA9Ku21u6Dw2ReRVFufNThpyguRZNfUVyKJr+iuJRCHdcV2ayZXfmztyWSrXkHgANkRFJ41ao0lq0NdxpvFEIKiRkORRK2byXIunnWNBLgxT2n8832t2KZMjT2MBnXVdfh3DDLbglfXxqbSWy7MQdlQ0in1+zt1ycKbfAL99PYvq3lvPrt+7lFefEaaXft2lqONwOAI+TcsPX4/qX5MTCrdmStWjR2zsaNQsvdr+ISsz6aJ7QJE16msd06y3P29Ds8Nm5dnNfjyR+MQ+LhAzquS1EUZzT5FcWlaPIrikvR5FcUl6LJrygupVC7917MyhINMpxGcKWQjro1Haryq6O3Ce0vPbkF1Yc0jNhy6BCNZWOxWFWeWVUBoE5lORps8RbeoKNGRbLoyaGrcBj5ubEJdF0VmtSQ1md2DpyIiZONLEqW4w1J9uyQluqEZP46zP55pdA6tuhEYwMDpeX2zHOP01g2Qot12WWNOABu2WVVfQDo31IaXJ1s5XFbNwut5x0P0thb6jYS2vP9BtLYbj3/7PX4wu/avVdRlCugya8oLkWTX1Fciia/oriUQrX3hjdoYMfPmOGlBZQqRWOb1aoptMRUbtmtHSQ7ubLuvwBwSxVZPDrlMNKKWXlZp18nuyyz1jqNz2JdfVMcZtDvJ9bnyJryfAHAbtJt+OSZMzSWjQxjRcsEYqEFgDBybv1L8Nf3P0vkaK+Evbzz7fND+gvtjfem0Nh/DH9YaKxI69Rlt0djOSpr1Y4dNJbRvXFjqrM8+3jedzR2WB85iuynnTtp7O25+ge0adUK0dHRau9VFMUZTX5FcSma/IriUjT5FcWlFGRW31RjzH5jTIznX9Nrv7uKolwtCjKrDwBestbOucy2XvgUK4bAXNXyENJNF+CVfVY9B4Ax708V2qD7ZcUUAPxIBX/FRmm9BIAhPaQ19QSplO/6A3cWNsTzuW9pp6SVt2szWXkG+B2DFTtiaWybsHChOZ1Hdm7mb4oSWof6fGaLMbLI7HQ36YFBI4QWWi+UxkY2lo0/piyaQSL5zMLFM5cLjc3OA3iXXdaIA+CWXafjZefm/dm8233tmrI7c4sW/P38fq7XMj6ed3xm5KV7rwXAZvUpilKEydesPmvtpbGp44wxW40x440xJRy2/d+4rlSH+8OKohQ++ZrVZ4xpCOAfyJ7ZdxuACgD+7rDt/8Z1lQ+UY5kVRbk+5HdWXw9rbaJnfPd5AFOgAzwUpUhxRXuvMSYIQIa1NtUzq28pgLcBRFtrE012JWM8gHPWWlnFyUHTZs3s8tWrvbRDx4/T2EahsvhzITODxvr7yjXcKx0smW3Dw4R26iy33FYJCCCxZ4V2LoPvV+7iJgD8+/OvaGyztg2F1rWRXNcNAKdJwe/shQs0tnQJ+WnMyVLNju3pJ/8ptFtb3Eq3D6wi/7IjdS4AwODecgxYaBVe8Hv7iy+Edu4MH9328xy5Tn/btp+E1qZDL7p92QqyE/M/xzxFY9l6/EEvDqWxFzNlZ+Th9/ehsRO/+0FoH46QrwMA9BnsvZ5/0oSxOPJb3rr3FmRW30rPLwYDIAYA766gKMoNSUFm9XW5JnukKEqhoA4/RXEpmvyK4lI0+RXFpRRq914D2a23HumQC/COuBXKyOo5AMzfKC2oPsV5V2BfH3nIxX3478AscieENdJg890A4OipVKHd3rk5jY3+NU5ojUnnXQD4ZZe0pgaRRhwA0LmBtIqmOjTzOEqaXjz4/AChtahTm27fsnE7oR04sJ3GRkZK6/RLb02gsT99Lav1o95+msZ2aS/P74JvpE06aqmc/wcAr775hNDY7DyAd9lljTgAbtllVX0AGHZnd6Hd9wCf1Xf+rHe33qysvJtv9cqvKC5Fk19RXIomv6K4FE1+RXEphdq9t1nz5nb1mjVe2sEUWUADgCrlpLXWqah1hKwWrOawiIgV8c45WGMZbF2208gxZkeeuZKPiWoZUVdoToVERmKqLC5m74MccVYtsDyNLV3CX2ijxk8WWqmy3B687Sc5qmrIy4NoLOtJ8Fj3u2nsfQ8PF9rAv3Jr7PLFa4U2dcK7QsvK4qPfnh37ptCqh1ensWyE1qwfv6exH74yUWj79m2hsfUjWgntq1n/orGPPPGG1+Nv5nyKlOQE7d6rKIozmvyK4lI0+RXFpWjyK4pL0eRXFJdSqNX+aqG17NDnXvPSxjo0P1gdJ+2uZ86fJ5G88UcJX+5cXrplm9B2R8mOrwAQ0UZaMrsQu+zBlBS6PbvjEHeEz4hj5dl6DtX+lHTZ6dfJJs2apfgU48Xg2MMJQls0TVpQS5Xj1f7t62OE9t2Sz2jsvz77UmimGL8W7d4kX59J/xlFY+/qLe25iYl7hTbw2b/S7U8myTtHxRz268D2/UKbMvkNEgn07/e80Jp05N3uc1t2AeB4Im96M/kTeR6stVrtVxTFGU1+RXEpmvyK4lI0+RXFpRRqwc8YcwzAQc/DSgB4paxoo8dV9LiZjq2mtTYoL4GFmvxeT2xMlLW2xXV58muIHlfR42Y+tsuhf/YrikvR5FcUl3I9k1+ucbw50OMqetzMx+bIdfvMryjK9UX/7FcUl1LoyW+M6WGM2WWM2WuMuexgzxsdY8xkY0yyMWZ7Dq2CMWaZMWaP52uRm0tujAk1xqwyxuwwxsQaY4Z79CJ9bMYYf2PMRmPMFs9xjfHotY0xGzzvydnGGDn59SakUJPfM+zzYwA9ATQAMNAYI1fKFB2mAsjdqH0EgBXW2nAAKzyPixqZAF601jYA0BrAU57Xqagf23kAXay1TQA0BdDDGNMa2VOnx1trwwCcBMBXm91kFPaVvyWAvdbafdbaCwBmAeDN2IoA1tqfAJzIJfcBMM3z/TQAfQt1p64C1tpEa+2vnu9PA4gDUB1F/NhsNpeWRPp6/lkAXQDM8ehF7rjyS2Enf3UAv+V4fNij3UxUsdYmer4/CqDK9dyZgmKMqYXsKc0bcBMcmzHGxxgTAyAZwDIA8QBSrbWXOnrejO9Jihb8riE2+1ZKkb2dYowpA2AugOestWk5/6+oHpu19qK1timAEGT/JVrvOu/SdaOwkz8BQM7OGyEe7WYiyRgTDACer8nXeX/yhTHGF9mJP8NaO88j3xTHBgDW2lQAqwC0AVDeGHOp+8vN+J6kFHbybwIQ7qmu+gF4AMDCQt6Ha81CAIM93w8G8M113Jd8YbKHE0wCEGetfS/HfxXpYzPGBBljynu+LwmgK7LrGasA9PeEFbnjyi+FbvIxxvQCMAGAD4DJ1tpxhboDVxFjzJcAOiF7VVgSgNcBLADwFYAayF7BeJ+1NndR8IbGGNMewM8AtgHI8sgjkf25v8gemzGmMbILej7IvvB9Za19wxhTB9nF5woANgN4yFrLe8bdRKjDT1Fcihb8FMWlaPIrikvR5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJS/j+FVnnKS/HWXAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd0VWXWxp+XkISSkAChBAIJhN6bCAiCdBgULKCMOIgwtgELY0EdxzL6WUZFnWJHUVFgYEQQEJBepHdCCxAgISRAGkkgBd7vj9zM4mY/R2OCF+LZv7VYyX3Y595zTu7Oyd1nv8821looiuI+yl3pHVAU5cqgya8oLkWTX1Fciia/orgUTX5FcSma/IriUjT5FcWlaPIrikspVfIbYwYaY/YbY2KNMZMu104pivLrY0ra4WeM8QNwAEA/APEANgEYaa2N+YltxItVrBhEYwMCKgktIrJ2sffv6OHjVI9uHCW01IyzNDYzNVNoQVXl/mamZdHtK4dUFlpSfAKNDQyUx3vx4gUaW768v9CiGkbQ2LjD8ULzK1+extauEya0igEBQrtw8SLdPjWTnAeH91dYSBWhHTx4lMZWJ/uVncHPed75PKFVCpHntmqVYLp9Qnyy0MLr1qCxaenyfRMawp+3gr/8mWWeP09jKwUGCi0nTx4XAKSmZnjvU8oZZGedNTS4CPxdUDw6A4i11h4GAGPMdABDATgmP6NRo45Ub9CgjdBee4//cWGMPNY/3v4wjZ2zYIrQZixdTWPXzJZ691t7CG3dnHV0+2uHXCu0yU/8hcZGR3cQWmZmKo2tVk3+Evx8+t9p7OiR8pyFhlWlsY+/eK/Q2tSrJ7SMc+fo9rPXrhdafi5/0/5xcH+hDRw4jsaOfm6s0LYu2UpjEw7KX64dB8j32IhBvej2Tz/2ttCeefkBGvvN/JVCGzr4ehrbom5doa3ev5/GdoyKElpssvylBACzZi3xevzxWy/SOEZp/uyvC+DSy2u8R1MUpQxQmit/sTDG3AtAXlIURbmilCb5EwBc+jdhhEfzwlr7IYAPAf6ZX1GUK0Npkn8TgMbGmAYoSPo7APz+pzaoWDFIfMbftUt+bgKAIXfKpwoL5sWUKhUrCs2pWHYyPV1o+zfuo7FterUVWla6LDQNue93dPtNizYLLTi4Go2Nj5f70KlrXxqbTfahXDn+CS4p6YjQUlJO8H04c0ZoTWvL+kJlUpACgH4d5PmKSeAFzrwL8ufT89Y+NLZ9ZKTQEiJlIRMA6jSqI7RGzeX2p87yIm/r61sLbXc8f61m7RsLLTKsOo3Nzc+Xr0XqKQAwfdVaoWWlyeIzAFSt5V2/8fMvfkqXOPmttfnGmPEAFgHwAzDFWrunpM+nKIpvKdVnfmvtAgALLtO+KIriQ7TDT1Fciia/orgUTX5FcSm/+n3+SwkIqCQ691hVHwBemXSf0P7vSd4u8MhfZFdWtwG8crztSJzQut7YlcaO7Had0D5bukxoT9/JO8Aeevl5oaWknKSxXboNEdrBmJ00lvG31z+hemSDFkJr3UNWtAGgYc2aQvvvZnnHIqoGb3f96M2vhDbigWE0dtoK2T0Zf4BX1TdEHxCaf6BsOwaAC+QuQsMa8rjCQ0Pp9nG75N2Rh0fdTGNfnPyZ0FgbLwCkZWcLbWRX/r7r2LSR0NrWr09jvyny8wmswM8LQ6/8iuJSNPkVxaVo8iuKS9HkVxSX4tOCX0RkbbEs16lllxX32NJdAFi1T7bGnnZo3zx1Uraw+jsUSViL8H0PvyK0vfs30e0/XbhUaIeO7KKxBxIThVY/TK5jB4A80iq6JS6OxvqRc1aTrKUHgLW79gqtTwe5tLqGw1r4uybcJrR2pDUXAJLIsTWN5J4EB47JQmCPLrKVGAACiVcBa/+ev3Ub3f7WsbLwupK8vwAg+6ws4sUnJNHYRlHy2BLT0mhseGiI0JzapPOLFDh/iT+HXvkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIpPq/2ArNizSizAW3ZZVR8Arm/WTGhrD8iWUACoWUVWuotWTAt58LHXhdb91u5CG9j/brr9U+9K88zvtvEqc/M60oTiy0XLaWzlUOkKPPHWkTR25srFQqsexKv1I3rKduap3y0R2tJpssUZAO57YYzQgipUoLHTf1gltGE9ebtrI9J2vI/cHQGAetWkWUp1ckdp6DWd6PasAu/UCtzucdlyezI9g0QCy9ZsEdqBQ9xh+q7+vYQWFszv0BTNHyejFYZe+RXFpWjyK4pL0eRXFJeiya8oLqXE47oAwBgTB+AsgAsA8q21vIriITi4mm3f3tuR1slll63H7zqoM42tFSLbIa9r0oTGZpERSetjY2ns7M+kPeGW1bJQdftD99Dt+19/jdDuH/koje3USxYSW3RtTmMTD0tPgIfuka21ANCovnSYnfTWOzT2vhGytbUc6ahOz+YTe/adkK7AoZVlcRLgBc4Zq/nko+tayoKu08iwrJwcoYVUkuO6Gjh4EizYsV1oXRvJcwgA6w4eFBorPgNAJTL27MipUzR2wz5ZrO7YOJrGLlzmPSXpneeexPEjh371cV2F3GCtPX0ZnkdRFB+if/YrikspbfJbAIuNMVs8Y7kExph7jTGbjTGb8/Lkn2SKolwZSvtnf3drbYIxpiaAJcaYfdZarw/Fl47rCg6upuO6FOUqoVRXfmttgudrMoBvUDC2W1GUMkCJq/3GmMoAyllrz3q+XwLgRWvt907btOvQwS5b5V0tZ7PzAO6y6zSvrGWTBkJj890AoDJpN523lc96P58nZ8v3biHdcJ1muW3aLKeX1Y2WVW4AyMuTBh21qvK20upBQULLIQYfAHeT3ZfAZ/W9/5Rsqa5YUbbGjnrmbrr9vvWy/fquUXyO4fg/yNbn/877gMZOmbNIaBNuv4nGMsOX1aQtfNUy6UoMAHffMVho363ZSGMTD8nzGLvtEI09kyxNPv7276dp7N6jsu3XaQZf92ZNvR7f1K8fdm7f/qtX+2sB+MZzsssD+OqnEl9RlKuL0gzqPAyAeykpinLVo7f6FMWlaPIrikspVXvvLyWyUWM76c13vbT9G/kafTZCKzuTt5U2rFtbaE7tn9m5uUK7sUMHGvvD7t1C69G0qdDYcwLA2LueFRrzAwCAg5tlS+e1Q66lscnHZFvo6XjeKjrsjv5Cmzebr8ePaimLpCP79hRaWlYW3T6QFKWmfcdfa/RN/YT23N94wa9FN1lknfn2lzS2cz95fisFy/beCWNupdtPfPQNob377pM0dtriFUK7uVc3GpuSKYvVbIQXwB2InXwRJox+xuvx+vVzkZFxulgFP73yK4pL0eRXFJeiya8oLkWTX1Fciia/orgUn7r3ZqZmYs3s1V5am168T2hkN+kk62T8wVx2neb63TBcVq9ZVR8A+rZqJbT3vl0otBfvH0+3f+GT94T26vgnaOyNI0cL7ctXPqWx5ctLh9aWXeRMPQB475XPhdZ5kDQZAYA+ndsLbe5m6TpbNYgbdMz+cJ7Qxk3krsLzNsr2WuZKDACBleTx/v5xeb4A4FymNGvp2aWd0PId3kuhNaUxzEWHO2JsVt9+YmgCAEdOyPbeu/v0orFbjhwRWuPa8o4WAEx84xGvxw+N3EDjGHrlVxSXosmvKC5Fk19RXIomv6K4lCve3puVzltFa9aT7qpr53B3V9Yy+68nZBEQABb88LXQnFonpyz4QWgPDB0ktC9Xr6Hbd4puKLTvV/K14WERYUJrHlGXxu45Jtd7t46Uo6MA4P7bJwjt4clP0dhaZJRZM+Kyy9ySAWDj4cNCC67Ax0fVqiKfw2l0G2vVDiQ+BQDgV05ez+JTUoTmNILLqS2cwUaGRYXJn6MTTu+7lXv3Co39HBgDb7gBO7Zt0/ZeRVGc0eRXFJeiya8oLkWTX1Fcys92+BljpgAYAiDZWtvKo1UDMANAFIA4ACOstak/91yZaVlYV6RoN+Q+bvD49J0PCG3v/k00dmD/u4XmNEKLmW22qc+LZaxzjxX3RvXga/S/3SK7476fOp/G9rlDrm//95Nv0tgmLWVX5I9BvHjU9zZpdHk+S3bBAUDdqCihHT9zRmgfTJ1Dtw+pIYt4N/fn5+YMWd8+a/laGsuK0t3at6SxyRkZQmsVESE0dlwA8CMZ3TagdWsae4AU/KqS0WAAP95ypDgJAE3Dw4VWkxRjAVnM/CUF/OJc+T8DMLCINgnAUmttYwBLPY8VRSlD/Gzye4ZwFL1XMhTAVM/3UwEMu8z7pSjKr0xJP/PXstYW/s1zEgU23pRLx3XlnOf39BVF8T2lLvjZgg8Zjh80rLUfWms7WWs7BVbgq7YURfE9JU3+JGNMOAB4viZfvl1SFMUXlHQ9/1wAowG86vn6bXE2qhxSWTjSblrExyY99PLzQvt04VIa+9S7st5Yx6F98/sVcr3zO898RGPZenzWssuq+gAwtGNHoX0wjw81ev9Z6RpbP1K61gLAOeJiHNmKjydr3rmZ0J6+834a27mLbF1+5e2JQmvVle9XbXLOz57nk5lZ22/SUbnmHQB69JH+A199zu+a1IysKV+LtA13aiBHvAHAjhU7hOZU7d++aqfQmpBKPcAr+/WrV6exjMPJ/Pq649gxr8dZOcWfhP2zV35jzNcAfgTQ1BgTb4wZi4Kk72eMOQigr+exoihliJ+98ltruRUL0Ocy74uiKD5EO/wUxaVo8iuKS/GpgWdSfAImP/EXLy04uBqNTUk5KbRDR3bR2O+2bRPa/SMfpbF/el0WsJxGaDGzzWxSiHRq2WXFvftuLNosWUC/fmOElp5+msbm5QULrc8AOd4MAJ64W46a6j1oOI0d98jtQsvMka3A3cnIMgCYs/JHoVWrVZXGspbblBNy3T0AxMTImffh0bywdpGsx2fjxdi6fwCwF+T2rGAIAJEtZFu4Uxvu6bOy7dgJZuDZ3GE9/+71MV6Pzzm0bjP0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUnxa7Q8MrITo6A5eWnz8PhrbpdsQoTHzBIBXQjv14hX8vLx8oR3cfIDGshFazGWXGXEAvGWXVfUBYMkSOZqrSRM+Vis/P1doadl8xWR4uGxH/vyjl2hsnUbyPP7+dnl34nyefH0ACI+QrbVt69ejsRcuyrVglUK4EUbXjnJs2oo1W2lshcrS1KRRLbno9Fwub4P1rxAgtKT0dBqbclL61+Rf4GPAAstLt2Ent+LqQUFCO+TQ3luvqff5DSD774Re+RXFpWjyK4pL0eRXFJeiya8oLsWnBb+LFy8gM9O7SNKpa18aezBGrpWu7zAK6ctFy4XWomtzGlurqlxzXtRj4H/P+4oswv1hnLQrdHLZZevxnVp2WXHvwAHuVhwRIdfoH94vR3gBQPMu8jzExvLjrRNdvNFcK8g4KQBISzsrtPggburcjKx7TzzEC7p74xOElnueFx1TEmWL8MlWsmDnNJYr47Rswz2Xy1/LP1AW8ZyelxXxnNbet64ni6R7EuQ5AID2TaO9HldyGI/G0Cu/orgUTX5FcSma/IriUjT5FcWlFMfDb4oxJtkYs/sS7XljTIIxZrvn3+BfdzcVRbncFKfa/xmAfwL4vIg+2Vor+1d/6sXK+6NatdpeWnZ68Qd55OXL1lwAqBwq5wHE7YqjsR2aNxbaji28xbh8eVk53XNMVtXZ7DyAu+wyIw6At+yyqj7AW6IzSaUdAOIPyNmEQUHcYKNrO3l3Yv+JE0KrFMBbSFcs3y60NuOiaOwxh1l5jB7N5Xn4ah+/u8HeCw1q1BCaU8suMwPJyc+jsezuxB4yCxIA6lSV59zJoIPdMWD7BQAnUr3vpjjlCKOk47oURSnjlOYz/3hjzE7PxwJ+KVEU5aqlpMn/HoBoAO0AJALgXS7wntWXmyv/DFYU5cpQouS31iZZay9Yay8C+AhA55+I/d+svoAAvoRRURTfU6L2XmNM+CVTem8GsPun4guJahiBz6f/3UtjY4wA4G+vfyK0LXFxNHbirXKuSOyxgzQ2hrRJno4/RWNbdmkjtNaR0rH1xyC5hhzgI7ScXHbZenynll1W3PvLA3fR2NgkOQJrZ5ERT4WEkRbUBXv2C23jgo10+2H3yJs+4Q5j02b/sFpot4+/mcbWrSYdngMr8TbW7l1k8bVqZekTUCOYF15Zq3d0TT6Eesjw3kLLdyjMLVi0Vmgb6/BxXfcOGSC0NvXl+w4AUjIzvR6XM4bGMX42+T3junoBCDPGxAN4DkAvY0w7FEznjQNwX7FfUVGUq4KSjuuSl2VFUcoU2uGnKC5Fk19RXIomv6K4FJ+aecQdjsfokZO8tKQkOZcMACIbyFZTP4dK5syVi4XWqL5s4wWAxZtl1XXYHf1p7HuvFO1oBu6/fYLQ+t52E92+eWfZlspm5wHcZZcZcQC8ZZdV9QHuXDvm3udpbJ3H7xRai2h5x2Lcu9yA5dMfpKlKSHN+DN06tRaaU8svc8Qd1r8Hjc3Jk624AcQ519/Pj27PzF7yHBx548/IxteeLfjxhg2UdxeYoQkAfLRwidA6NGvE9yHZ2xwm93K29yqK8ttEk19RXIomv6K4FE1+RXEpPi34+ZUvj9Aw7wWAKSlyvTgAtO4hC0I1Q6rQ2OpBspgy6a13aOy+BPl6u9fw7uTOg6Sj7qBxg4R2Pus83f7pO+8XWu9Bw2ksG6Hl5LLL1uM7teyy4t6nH0oNAKrXle7IEx+SRcCtDm3WLaKk62z6Ob6Yi62xX7ZqM41lhbGVW3bRWP8KsrhXMUBqBrx4vHunbAsPc2gFzkzNFFpQBd7qHVheppqT029RR14A2H+COxvXqOZdoCxPXscJvfIrikvR5FcUl6LJryguRZNfUVyKJr+iuBRjrfXZi7Vs08Z+PX++lxbv0NLZsGZNoa3dxWfEjeh5XbH34Xf9/yC0UU+MpbF9OrcX2tFT0viDmU0AwPOPvSu0R17gr7XgO2luwWbnAdxllxlxAMBxcn5nfbWIxr7x3HihvT/3e6HVr19baABvJf528RoaGxQq9/d318m7KwAwb/UGoXVs1YTG+pNq9/QvFghtxJ0D6fb1w6TBRno2v2PB2n6PnuazGFMzpVlLKDEZAYDmdeXP/cxZeWeBxfbodh22btlSLEcPvfIrikvR5FcUl6LJrygupTjjuuoZY5YbY2KMMXuMMQ979GrGmCXGmIOer+rdryhliJ8t+BljwgGEW2u3GmOCAWwBMAzA3QBSrLWvGmMmAahqreWL1T106tTJbt7s3cLJ1l8DwH83y1bPro34mubvVq4X2pgb+9HYW276k9BmffsvGjt38xah3dBSFttYUQ0AaoWECC0zh7cC+/vJQhXbHuAjtHbFxtFYth6ftdYCwFxSWLv/JlkY+2KVLE4CwOd/myK0Ca/JIiIA3NSho9Bmrpc/RwAY0l4WXtcd5O7MJ8ga+zrVZUF2yVx+DI07SB+IwzsO09isdFmE+27GFzT2+HFZrH7q7+/R2DDSZm0cvCyaNY3yevzgiBHYv2fP5Sn4WWsTrbVbPd+fBbAXQF0AQwFM9YRNRcEvBEVRygi/6DO/MSYKQHsAGwDUusS7/yQAbm6uKMpVSbGT3xgTBGA2gEestRmX/p8t+OxAPz9cOq7rFLlHrijKlaFYyW+M8UdB4k+z1v7XIyd56gGFdYFktu2l47pqOHzWVBTF9xRnYo9BwZCOvdbaty75r7kARgN41fP12597rgsXLyKjyPruyoF87FIU+UVRowpfV7102jKh3dKnO40d9czdQkvLkt1XAFA1SM56Z0W4D6bOodu36iqLg92bNqWx5/NyhbZiL+9orBQQIDSnEVrMbNNpPT7r3GPFvbuu5+aZbDZ9dk4Ojf1k8VKhDb+W+xe8NmWG0Mbcxjv0ehHD0AU7tgtt3D18NFg90q15sqMcAeZE/+E3UD2FdOjNfms2jX3jg6eEFlKRz7nc4eDjUByKs/L/OgB3AdhljCk8i0+jIOlnGmPGAjgKYESJ90JRFJ9TnHFdawAH2xOgz+XdHUVRfIV2+CmKS9HkVxSXosmvKC7Fp+69qZlZmL3Wu4WzXwdeSf3oza+EdteE22jsfS+MEdo+0gILAPvW7xPagHZtaOzsD+cJrepEuQ49pAZvw60dKkc/zVn5I40Nj5D+BWlpZ2nsiuWyej3snsE0lo3QYi67AF+PP/lx6YLMqvoA0DIiQmg/7ObOyF+99pnQ1s1ZR2MffHyU0Oas4q3AcXuOCm3sGNl8+ldyXABQMUhW1auHc7+GhTNnCi0/X961AYCmTeWdjJf+8Wcau/mwbCfOzeVt8H5Fxo45jRZj6JVfUVyKJr+iuBRNfkVxKZr8iuJSfGrgGdW4iX3mnX96aZH1+Izyi2S/ro2WY4wAPiJp1/HjNJa1xi5cIdexA0CXznJkWHAF2Y7s1KJ89rxsbd2bkEBjO0c3FFp8SiqNZa8XToqLAG8LdRqhNW3uD0Jr2lruV3gIfy32vH1btaKxC7bLouW0yf+hseEN5Xtk7fdyX53YsEEWbhNTuQfDM0//U2h/ef4+GpuWnS20pPR0Gsveo19/PJfGvvnyw0LLPM99IN752PucffTmCzhxPE4NPBVFcUaTX1Fciia/orgUTX5FcSma/IriUnxa7WfuvU7tiNNWSBOJLs35iKblm3YI7e5BfLXxjYPHCW3mnH/T2HkbpYPw4E4dhHYmk49SCvSX3dPZObz9M9DfX2hOBg7HiFvwj1t4G223TvKOhZN774yl8pw/MHSQ0JgRB8Bbdv/8Jm9hHdyundCcXIFv6SzHeC2N2UNjU1IzhNawrrxbMOMTeQcAANreINvN96zlr2UvytyZP5O798bF7RLas5M/prGsxTj3HH/fXN+7k9fje2+7Dft279Zqv6IozmjyK4pL0eRXFJdSmnFdzxtjEowx2z3/+JpSRVGuSkozrmsEgExr7RvFfbGQkBq2a9ehXlrPW3lhLv6AXDM+6j7uuBoVJscbLdoi20cB4JZucl31M8/zgl/lUOne+8JjY4U2ZQFvNU06miS0lBNynBQAVAqRs9oTDyWSSM7t4/m5ySUF1dg9R/hz/E46z66PjRWak8vuuD+9JLTzWbwtdeBY6b7r5Ar8j//INtg3HpMOtwCQnCzdbO+d+KLQbhzJx7kNaCsLkQu2baWxL49/WWjX9r2exrboJp2cnRjYSY4nO5mWRmP//uwHXo+/n/8pzpxJLFbBrzgGnokAEj3fnzXGFI7rUhSlDFOacV0AMN4Ys9MYM0Wn9CpK2aI047reAxANoB0K/jJ402G7/43rys3lq8kURfE9JR7XZa1NstZesNZeBPARgM5s20vHdQUE8KYVRVF8T3Gq/XRcV+GcPg83A+AtZoqiXJWUZlzXSGNMOxRM540DwB0PLqF6nTCMfs67Wt4+MpLGbog+ILQDx7hrbKOa0vn2upbNaOyUOYuE5lSJDawkTTMuXLwoNKc7Jj36yLbUmJhDNLZrR2l6sTeeG3/0aC6PrS6ZMQcA+aTa3yycG6jMWy1NTcYMlrP+2Ow8gLvsfv35fBrLWnbTSFUfACYMv0loU5etoLHlyvsJbeWMlULLyeNuuO9/t1BowQ5t1g+8Kk03erfk7yV/P5lq87duo7Hz1sm5iz3atqSxzbt4v96KlcX/67o047oWFPtVFEW56tAOP0VxKZr8iuJSNPkVxaX4dFxXdkYWti7xbpVMiORFPP9A6bLbowsf7bUvUbbB1ggOprETbpfFo7597qKxv398tNDYuvtu7Xkx5itS7AqP5sW2FWtkC2nueb6G+6t90pmYFScBYFh/2TK7cotcWw4AHVtJv4R1Bw8KbcxtsjUX4CO0nFx2l97YVWhOLbusuDe6dy8aGxYmR5G1bi1bbltG8Pr0uMFyJNz3G+TIMwDYvHiL0DLTs2hsrVqyIJufm09jxw6URdbjxMMBAGK3ebdf52TzdmqGXvkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIpPq/155/OQcNC7ZbVOozo09gJpSw0sz3e3HmltZQ63AFCwVMGbzv2609hzmbJy6ldO/r5MzpCOsQBQM1K2HV8k7cEAUKGynOWWksiNP5jJSHeHOyGsjdW/grxjAQD+5PyeOCHvpPRq3pxuH7fnKNUZzGWXGXEAvGWXVfUB4PRpeSckOFi+PzYe4m3WWVly1t72w9z8JOWEfI8d2cljTVv5vstyuDOQQtygY5OkMQwAlCtXLN8Ovm2Jt1QUpUyjya8oLkWTX1Fciia/orgUn47rqtcw2j7y4uteWpOWDWhswxqyWFbFYV01W8t+ODmZxiakyCLaih/k+mkAGDZUutlWDwoSWjlSRASAo6TomJbFizyNatUS2sl0WXwC+LitqpWl+y8ABJSXxb34FF4Mfe/9WUIbcEtPoWXn5tDtW9SNEFqTcF7QXUHGbc3+Qq6lB4CsNHnODsXspbGsuDd37j+Eluxwbl+b/LnQ/vyw9CkAuFdCksPzhlaWRdp//XM6jX3jhQlCyzjHLfA+me19zt557kkcP3JIx3UpiuKMJr+iuBRNfkVxKcUx8KxgjNlojNnhGdf1gkdvYIzZYIyJNcbMMMbINbiKoly1FKfDLwdAb2ttpsfCe40xZiGAiQAmW2unG2PeBzAWBV7+jlStEowRg3p5aafOnqWx4aGhQnMyPBx6TSehOc2g/3rWYqFNGHMrjc2/KAs61YOkT4DTWutODWQxk3UIAsA5UkRjZqEALyo5+Rf4+8nuOEMtGYERd8p1+rNmyPM17h4+Guyvj78jtMRUfm5efOkjod08ehCNZV2KTuvxWefex1/IMWI1Q0Lo9itiYoQWXac+jX32nQ+EtnL2Uhrbrqd8j/510jgaO2zoeKHt3r2Gxm7audbr8Zdv/x+NY/zsld8WUNhv6O/5ZwH0BlBYHp6Kgvl9iqKUEYo7tMPPY9udDGAJgEMA0qy1hVYk8dD5fYpSpihW8nsm87QDEIGCyTzcFJ9w6biuFIc/jxVF8T2/qNpvrU0DsBxAVwChxpjCmkEEADph4tJxXdWqVy/VziqKcvkoTrW/hjEm1PN9RQD9AOxFwS+BQrfD0QC+/bV2UlFmvSnoAAALOUlEQVSUy09xqv3hAKYaY/xQ8MtiprX2O2NMDIDpxpiXAGxDwTy/nyQhPhlPP/a2l9b6+tY0Nm6XXBd969ghNDYxLU1oB07KdegAcPcdg4U28dE3aGxoTVkRfp20Xv4YGys0ANixYofQ7AVewfevIO+UZpzmPgHME+DaIdfS2FpV5V2T3TulIy8AjLqxj9Aad2gsNOafAAAVg2T79TNP/5PGdv6dnOs6oG07GstGaDGXXYCvx//jxOeExqr6ANCrhRy3tfaAHB0HAA+NlO+Fbn3709iIJrL1+dv1m2jslGmvCi0nnzv9jhr+qNfjI4ekn4ETxRnXtRNAe6IfhsNkXkVRrn60w09RXIomv6K4FE1+RXEpPjXwDK9bA8+8/ICXtjuej+t6eJRsIV25bx9/XtIKzNbdA8B/lsk2yXfffZLGXiym18GA1rxoyXSnWe+sZfdcLh/XlZMv212ja0o/AADII2vOwxxagdOz5ZrxwzsOC+1kR24WWj1cFgIfvH8EjZ389pdCW7BNjiwD+DlzGqHFzDb7tW0jNKeWXVbcu66JHGMGAJ/+IPdhyVTZDg0AiYfkOX98/J00dmDv24W2Y8cKGpuW4e1P0a0Lb4Fn6JVfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaX4tNqfln4W38xf6aU1ay/bRwHgxcmfCS37bDaNbfe4rNyuj+XjmBIPnRDatMUraCx7vX49ZVPjgUTeSrx91U6hRbbgVeaUk6lC8w/kY7USD8nXGzK8N42NPyPdijNT5TgoAOjRoZXQstJ5LGPhzJlC+/0feEu2vSjvpLw8/mUa+8CrDwtt8+ItNJaN0LqhVUuhMSMOgLfssqo+AIzpK92dO3Tg7b0gDs9OI8Pe+XIyfw7C+Ee93bCPHT9Z7G31yq8oLkWTX1Fciia/orgUTX5FcSk+LfiFhgRj6ODrvbTIMO7uU8GfjJlK4DPKT6bLde/XN+NOY9Mny5FUD47la8P3n5DFwaiwMKFVrcRHZTUJDxdazSpVaCwb/eTk3ruHtETnO8T2bNFcaEEVKtDYHw/Kdf7fzfhCaP2Hy0IXAOTny3Zkp/FV82fK571lNHez7d1SrrHPdJhtf2SnbO9l++DkssvW4zu17LLi3tatPDY7W75Hr9l9DY2tHSVbtQ9s4R4Mve/0LvQuXSrbpp3QK7+iuBRNfkVxKZr8iuJSNPkVxaWUZlbfZ8aYI8aY7Z5/3H1RUZSrktLM6gOAx621snzuQAV/f7So6z3YJ9fBlTQtW7bWNoqSDqgAsGyNbPV8cDhvKz2TLO8YpGTyFtYjJ2Rs+6go+ZwO25cjc/lOn+WOvIHl5d0NJ0OSOlWrCm3BorUkEggbKE0kAsvzH3tqpqygHz++V2gpZ/nxNm0qHYSd7izExe0SWotusqoPAP5+cn9r1eIOwqatbKMNrVxZaGx2HsBddpkRR8GLyddiVX0A2LdvvdDST/M7Iaz9ulIwN4HJy/U2dmFt004Ux73XAmCz+hRFKcOUaFaftXaD579eNsbsNMZMNsYEOmz7v3Fdp06duky7rShKaSnRrD5jTCsAT6FgZt81AKoBoEZ4l47rquEwNltRFN9T0ll9A621iZ7x3TkAPoUO8FCUMoWxP+NQa4ypASDPWpvmmdW3GMBrALZYaxONMQbAZADnrbWTfuq5mrVqZT+aPdtLa12vHo0NJS2zbCwXAMxdvUFovTpJx1YASCeFRKfW2G6NpdcAc/R1ciCu/wsGk1YhDrVZOTk0NsDPT2hTFy2jsaMHyHX+Tm3DK/bK4t7GVduFtmO5HEMGAC/9489Ce/8fM2hsWIRsk45sEUljywfI0lR+Li8UZ5yRBbcjZPTbXyfxVmI2QmtYV35dY+vxY3bzNfqsuPf8Q3fT2L0JcuYtK/ICwLgx3qPIflj8OVJSTspKJKE0s/qWeX4xGADbAdxfnBdUFOXqoDSz+rh1jKIoZQLt8FMUl6LJryguRZNfUVzKz1b7LycdOna0a9at89Kmr+JtqR2bNhJaeGgIjQ0KlC2ks9bJdkoAYMfbqgGvMjMyzsl5dk2JaQcAVAqUfU9bjsjKM8BbeZ3uhLBqfYBDy+5HC5cIrX3TaL4PwXIf5q/aKLRBPXj1e/NhOdfv5k68jfbtL/4rtD/cMoDGzlsn92HswL40lrVqVyXtvcOGjqfbT5n2qtBu7M9n6jGX3SMOjWyx2+RdgNuG8bJZ8yIt8ADQosV1NPaVL971ejxx1CjExsQUq9qvV35FcSma/IriUjT5FcWlaPIrikvxqXtvTl4eYpOTvbSsNL42vG19OdYqhrQ9AkBYsHTE7diYF7W2HYkTmtOa88a1awuNOcE6OfIeLnKsANC8Th0ae4jE7nE43ouk4NeGnC8A6NBMFk73n+DjxZpAHq8ha9ZDSCsyAOQWWVsOAJnnz/PYc9Lp96RD+3aPtnLc1vEzciwXAMQmSQ+GDsSDYffuNXT7HOIvsWPHChrLcHLZZevxnVp2WXEvJoYXxge0bu312Olnw9Arv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL8Wm1PzU1A7NmebebVq3FK57fbN4sNDbPDuBGGAuX8fbe2wb1FNq9d1IHMkx84xGhsbsQ8SkpdPsdx44Jbff6GBpbr6ls5XVqwz2Rmio0Jwfi+OTTQqtRLZTGNq8r70Skk3ZmdlwA4EdMRt75+D80ts/ArkL7+7Mf8P3qIl19Y7fF0thy5eTdiW3XybsFm3by6vmo4Y8KLS2D/3zHP/q60IrOziukqMsuII04CinasgvIqn4hFQICqF4c9MqvKC5Fk19RXIomv6K4FE1+RXEpPl3Pb4w5BeCo52EYAFmNKvvocZU9fkvHFmmtLdaADJ8mv9cLG7PZWsudHsowelxlj9/ysf0U+me/orgUTX5FcSlXMvk/vIKv/Wuix1X2+C0fmyNX7DO/oihXFv2zX1Fcis+T3xgz0Biz3xgTa4z5ycGeVzvGmCnGmGRjzO5LtGrGmCXGmIOer3zxwlWMMaaeMWa5MSbGGLPHGPOwRy/Tx2aMqWCM2WiM2eE5rhc8egNjzAbPe3KGMabkDfNlCJ8mv2fY578ADALQAsBIY4xctVF2+AzAwCLaJABLrbWNASz1PC5r5AP4s7W2BYAuAP7k+TmV9WPLAdDbWtsWQDsAA40xXVAwdXqytbYRgFQAY6/gPvoMX1/5OwOItdYettbmApgOYKiP9+GyYa1dBaDokq+hAKZ6vp8KYJhPd+oyYK1NtNZu9Xx/FsBeAHVRxo/NFlC4/NHf888C6A1glkcvc8dVUnyd/HUBHL/kcbxH+y1Ry1pb6JB5EkCtK7kzpcUYE4WCKc0b8Bs4NmOMnzFmO4BkAEsAHAKQZq0tdO78Lb4nKVrw+xWxBbdSyuztFGNMEIDZAB6x1mZc+n9l9distReste0ARKDgL9FmV3iXrhi+Tv4EAJe6VkR4tN8SScaYcADwfJWe3GUAY4w/ChJ/mrW2cLDeb+LYAMBamwZgOYCuAEKNMYXGNr/F9yTF18m/CUBjT3U1AMAdAOb6eB9+beYCGO35fjSAb6/gvpQIU2DW/wmAvdbaty75rzJ9bMaYGsaYUM/3FQH0Q0E9YzmA2zxhZe64SorPm3yMMYMBvA3AD8AUa+3LPt2By4gx5msAvVCwKiwJwHMA5gCYCaA+ClYwjrDWch+oqxRjTHcAqwHsAlA4IeRpFHzuL7PHZoxpg4KCnh8KLnwzrbUvGmMaoqD4XA3ANgCjrLU5V25PfYN2+CmKS9GCn6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1Fcyv8DkG9ma3wjJZIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -283,7 +285,8 @@ "qsvm = QSVMKernel(feature_map, training_input, test_input)\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(shots=1024, max_credits=10, memory=False, seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", "\n", @@ -329,9 +332,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Quantum py37", + "display_name": "Python 3", "language": "python", - "name": "quantum-dev-37" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -343,7 +346,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb index d39a81c0a..d5cf1f79c 100644 --- a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb +++ b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb @@ -109,6 +109,7 @@ "import networkx as nx\n", "\n", "from qiskit import Aer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.tools.visualization import plot_histogram\n", "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", @@ -160,13 +161,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/usr/local/Cellar/python/3.7.1/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/networkx/drawing/nx_pylab.py:611: MatplotlibDeprecationWarning: isinstance(..., numbers.Number)\n", + "/Users/manoel/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/networkx/drawing/nx_pylab.py:611: MatplotlibDeprecationWarning: isinstance(..., numbers.Number)\n", " if cb.is_numlike(alpha):\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOX9///nPUkme8ISdkQ2UUAFBVlEQSIt8msVq35cqJZakG60FotVm4SEQFoFK0IrKl9REcQF0BasCxVBQDZREYogIBTCFpZsZLJMJnP//jgJBsgyYSa5Z3k/rmuuzHJyzovD5H3Ouc997qO01gghhAgtNtMBhBBCND0p/kIIEYKk+AshRAiS4i+EECFIir8QQoQgKf5CCBGCpPgLIUQIkuIvhBAhSIq/EEKEoHDTAWqTlJSkO3fubDqGEEIElC+++OKU1rpVfdP5bfHv3LkzW7duNR1DCCECilLqoCfTSbOPEEKEICn+QggRgqT4CyFECJLiL4QQIUiKvxBChCAp/kIIEYL8tqunEDWqqIDNm2HbNutnTg643ZCYCP36QZ8+cMMNEB9vOqkQfk2KvwgMxcXw2mswfz4UFkJ5OYSHQ0SE9fmhQ7B1q/XaZoM77oBf/xouucRsbiH8lBR/4f8+/xz+8Ac4fhyio2vfq4+Ls366XPDWW/DOO5CaCmPGWBsEIcRZ8hch/Ntrr8F998Hp09C8OURF1f874eHWtHY7pKfDxIngdDZ+ViECiBR/4b/eeAOmToXY2O/36hvCbrfOBXz4oXXk4Hb7PqMQAUqKv/BP33wDU6ZYhb+qXf9i2GzQrBl89BEsWOC7fEIEOCn+wv84nfDww6CUtffuLZvN2og8+ST873/ez0+IICDFX/iflSvhwAHfdte0260eQnPm+G6eQgQwKf7C/7zwAoSFWXv+dSisqGDy4cPcsHs3P963jw8LCuqeb2IivPce5Ob6MKwQgUm6egr/cuQI7N5tFep6PHn8OBFKsbJHD/aUlvJwdjY9oqLoGhlZ8y+EhYHWsHo13Hmnj4ML4YGKCtizB3btss5rFRVZ57S6d4eePaF3b6uJsglI8Rf+ZedOj/b6S9xuPjlzhre7diXGZqNvTAzD4uP5d0EBv2vduvZfdLuti8Gk+IumlJtrXXvy8svWRYput7UhsNmsHRL4vmPD7bfDz38OV1zRqJGk+Av/snOnR33yDzmdhAGdqp0Qviwyki+Li+v+xago+OILL0MK4SGtYfly62LDkhLr+1fXuSyXC5YsgWXL4IEHYPJkiIlplGhS/IV/OX3ao6txi91uYm02nOXl5OXlYVMKXVpKbkkJBYWFhNls2KoeYWHnPKe+cwNC+ILTCX/8I7z/vnVlerNm9f9O1QWKFRVW1+RVq2DRokYZpkSKvwhIMTYbDreb/x04gLO8nNatW1NYXo7d7ebMmTO43W7cFRVUuN3W88rX4VpTHhHB47fdRmxsLDExMcTGxl7wvKbP4uLiiImJOfs8IiICVU/zlAhRLhf85jfW+aXExIYPLxIWZm0Ejh61mijffRc6dPBpRCn+wr+0bevRlbid7HZKnU7ymzenuVIkJiRworycq+Pi6FhLm78GtMOB65JLeP7553E4HGcfxcXF5zw/ceLEBe+dP73b7W7QxqKujYvdbpcNSTCZPRs++cQq4N78vyYmWucLfvELq6eaNxc8nkeKv/AvV14JtfXWqcZVXMx1NhvvKMUv4+PZcPo0n545wyudO9f6OwpQZWXYhwyhgw/2opxOJ8XFxRQXF1NUVHTB86oNxenTp8nOzq51Q+NwOHC5XA3aWNR1xBIZGSkbEpP++1+ru3JCgneFv0piInz3nTXP3/3O+/lVkuIv/EuvXtYhs9td66Gyy+Xi2LFjZFx6KTPz8/lpbi6RLhdPXHpp7d08q4SFWeP++4Ddbsdut9PMk7bcepSXl5/dENR0lFH1PC8vj8OHD9e6ISkqKsLlcjVoY1HXUUpUVJRsSBoqLc36Ge6j8qqU1f3zH/+Ae++FVq18Mlsp/sK/tG4NAwZYwzjX0NdfA0ePHaNZs2a0jo/nb/HxaGDvnj10rq9XRNU9AIYPb5To3oiIiCAxMZFED65vqI/L5fJoQ1JQUMCRI0dqPWIpLi7G6XSe3Sh42qRV2xFLdHR08G9I9uyBHTvqvU7l7dxcVhQUsK+sjJEJCWS0b1/3fCMiwOGApUut+1T4gBR/4X8eesgq/lpfcNicl5dHRUUFrZKSzr6ngPj4eM4UFtKyZcva53vmjNV9rokuojElPDychIQEEhISvJ5XRUXFORuS2pq3CgsLOX78eJ3nUcrKyoiKivKqSatqYxMVFYXNH+/RsHSpddRaz0YuKTyccUlJbCwqoqyqn399oqKsIc6l+IugNWwYXHMNfPnlOd3jysrKOHnyJJ07d75gDzI+IYFTJ0/WXvxLS61hoSdObMzkQScsLIz4+HjifTDOktvtrvckusPhoKioiBMnTtQ5XWlpKVFRUV41aVV9HhMT47sNyWefeXTPieTKDfM3JSWccLk8m3dkJJw4YZ0AbtHCm5SAFH/hj2w2+Nvf4Ic/tC6MiY7GrTVHjh6lTevWRNYw0mdMTAxlTiflLhcR57e1VlRY85k922ftpaLhbDYbcXFxxF3MvRnO43a7KSkpqfMketXj1KlTF5wXqT5NaWkpkZGRXjVpxcbGEhMZSdyePajGun901Si3u3bBkCFez84nxV8pdQswGwgDXtJaP1nLdHcCS4HrtNZbfbFsEaQuuQSef95qAlKKkwUFVrt4LSdXbUoRFxfHmTNnaNG8+fcfVFRYF3X94hfwox81UXjR2Gw229mi6y23201paWmdJ9GrmrpOnTpV6xELBQW8mJ2NIzz8nAsLw2q62LDyUVZWZnVC8FRFhXUhpA94XfyVUmHAc8APgMPA50qp5Vrrb86bLh54GNjs7TJFiLjpJnjxRUp+8QsqTp+mXY8e1NWSmhAfT25e3vfFv7gYyspgwgT405980+1OBB2bzXZ2T7+VN0eGeXno667DnZDw/YWF1S4wdLvd51x06HA4yCsoQDWkCUdrn92Rzhd7/gOAfVrr/QBKqTeB0cA35003DXgKeNQHyxQhoqBfPx7u0oVnunQhPDvb2kuKi6uxkMfGxXHk6FFcDgfhTqfVLvrCCzB0qIHkIuTExqK0Jkwpwurp5lnhdrN//36aJSZS2JBl2Gw+u8+FL85ydACyq70+XPneWUqpa4FLtNb/9sHyRIjQWpOVlcXVt95Ki1Wr4O9/t4a9LSiwRkY8fdr6WVgIeXnYCgpoGRFBodsNf/6zNS6KFH7RVOx26NjROtqsgwYOHz2KPTYWe2QkbsDpdlPhSa8ftxt69PBJ3EY/4auUsgHPAD/3YNoJwASATp06NW4w4fdWrFjBoUOHmD59urXHM2qU9Th0yOpLvW2bNfaJy2Xt5V9zDXtyc1m6axezxo0zHV+Eon794F//qrPHT2FBAYvOnOHdau+9X1DAhKQkJtTV7FRe/v0Gxgd8UfyPANWHnOtY+V6VeOBKYE1l97y2wHKl1G3nn/TVWs8D5gH079/fw86vIhhlZ2czZ84cXnzxRezn9+7p1Ml61HACt6/DwROjRuFwOHxyMlCIBrnjDlixotaPneXlHM/J4Y9dupDiQZfQcxQVwX33+ezclS+afT4HLlNKdVFK2YF7geVVH2qtC7TWSVrrzlrrzsAm4ILCL0QVl8tFWloa48ePp1u3bg363djYWK699lrWr1/fSOmEqMP110NSktXZ4DwaOHrkCElJSUQ1tPBXDXfys5/5Jic+KP5aaxcwEfgI2AW8rbXeqZTKVErd5u38ReiZP38+8fHx3HPPPRf1+8nJyaxatcrHqYTwgM0GTzxhtfuf14Z/6tQplM1Gi4u5QKuwEEaM8Fl7P/joBu5a6/e11j201t201lmV703RWi+vYdqbZK9f1Gb79u288847pKenX/Q4MEOHDmXz5s2Ulpb6OJ0QHrj1Vusq9fz8s28Vl5SQl5tL+/bt6+yuXKPiYmtIkunTfRrTDwfHEKHK4XCQmppKSkoKSdXG7mmoZs2a0atXLzZt2uTDdEJ4SCmYORPatYOCAircbo4eOULbdu0uvPq8PqWlVoeGuXOhrnGrLoIUf+E3ZsyYwaBBgxjqg+6Zw4cP55NPPvFBKiEuQsuW8Pbb0L49Bf/7HzExMSQ0pH++1laXZpfLulbFB8M5nE+Kv/ALK1euZMeOHUyaNMkn8xs+fDjr16+nvLzcJ/MTosHat2fVH/7A2pYtaRsVZbXbe9KXv6TEajLq2hX++U9ITm6UeFL8hXE5OTnMnDmTrKwsoqOjfTLPVq1a0blzZ7ZuldNLwozjx4/z5Ny59PjXv7AtXAh9+lh787m51s/SUusm72Vl1nDjubnWBiIhwbohzHvvwRVXNFo+GdVTGOV2u5kyZQpjxoyhZ8+ePp13VdPP4MGDfTpfIepT/Xvdq1cv680hQ2D/fli3DrZsgZ07rb388HC49FIYOBCuuw4GDWr4Dd8vghR/YdSiRYvQWjN27Fifzzs5OZkHH3yQJ554wj9v/CGC1muvvQZw4fe6a1fr0Qjf94aS4i+M2b17NwsXLmThwoWNUpw7dOhAUlIS27Zt49prr/X5/IWoya5du3j99dcb7XvtK/6bTAS10tJSUlJSmDx5Mm3btm205SQnJ0uvH9FkSkpKSElJ4dFHH23U77UvSPEXRjz77LP07t2bkSNHNupyqoq/9vQ+qUJ4YdasWVx11VX88Ic/NB2lXtLsI5rc2rVr2bBhA4sXL270ZXXp0oXo6Gi++eYbevfu3ejLE6FrzZo1bNq0iTfeeMN0FI/Inr9oUrm5uWRlZZGZmemTe7nWRynFzTffLE0/olGdPHmSv/zlL0yfPj1gRpOV4i+ajNaajIwMbr/9dvr27dtky63q8ilNP6IxuN1uMjIyuOuuu7j66qtNx/GYFH/RZJYsWUJBQQEPPfRQky73iiuuwOVy8d133zXpckVoePPNNykpKWFcgN1ASNr8RZPYv38/8+bN4+WXXya8oYNbeUkpdXbvv3v37k26bBHc9uzZw8svv8yCBQsICwszHadBZM9fNDqn00lqaiq/+93vjN2eMzk5mdWrVxtZtghOZWVlpKam8sgjj9ChQ4f6f8HPSPEXjW7u3Ll06NCB224zd2+fq6++mtOnT5OdnW0sgwgus2fPpnv37owaNcp0lIsixV80qi1btrBy5UpSU1Mv+uYsvmCz2Rg+fLjs/Quf+Oyzz1i7di1PPPGE0e+1N6T4i0ZTUFBARkYG6enpJCYmmo4jt3cUPpGbm8u0adPIzMwkviFj9PsZKf6iUWitycrKYsSIEQwcONB0HAD69etHdnY2OTk5pqOIAKW1ZurUqdx2220BP16UFH/RKFasWMGhQ4eYOHGi6ShnhYeHM3ToUNasWWM6ighQS5YsIS8vjwkTJpiO4jUp/sLnsrOzmTNnDllZWdjtdtNxziFNP+JiVXVXnj59epN3V24MUvyFT7lcLtLS0hg/fjzdunUzHecCgwYNYs+ePeTm5pqOIgKI0+kkJSXFaHdlX5PiL3xq/vz5xMfHc88995iOUiO73c7gwYNZu3at6SgigDz33HNccsklRrsr+5oUf+Ez27dv55133iE9Pd2vu79VXe0rhCc2b97Mf/7zH1JSUvz6e91QUvyFTzgcDlJTU0lJSSEpKcl0nDrdcMMNbNu2jTNnzpiOIvxcfn4+U6dOJSMjwy+6K/uSFH/hEzNmzGDQoEEMHTrUdJR6xcTE0L9/f9atW2c6ivBjWmumTZvGyJEjGTBggOk4PifFX3ht5cqV7Nixg0mTJpmO4jEZ60fU55///CfHjh3j17/+tekojUKKv/BKTk4OM2fOJCsri+joaNNxPDZ06FC2bNlCSUmJ6SjCDx08eJDnnnvOL7sr+4oUf3HR3G43U6ZMYcyYMfTs2dN0nAZJSEigd+/ebNy40XQU4WfKy8tJTU3lV7/6FV26dDEdp9H4pPgrpW5RSn2rlNqnlHq8hs8fUUp9o5TarpRapZS61BfLFWYtWrQIrTVjx441HeWiyO0dRU1efPFFkpKSuPPOO01HaVReF3+lVBjwHDAK6AXcp5Tqdd5kXwH9tdZXA0uBGd4uV5i1e/duFi5cSGZmJjZbYB5ADhs2jM8++wyn02k6ivATX3zxBe+99x5paWlB1a2zJr74qx0A7NNa79daO4E3gdHVJ9Bar9ZaF1e+3AR09MFyhSGlpaWkpKQwefJk2rZtazrORUtKSqJr1658/vnnpqMIP1BYWMiUKVOYMmUKLVq0MB2n0fmi+HcAqt8h43Dle7UZB3zgg+UKQ5599ll69+7NyJEjTUfxmjT9CLC6df7lL39h+PDhXH/99abjNIkmPV5XSt0P9Adm1vL5BKXUVqXU1pMnTzZlNOGhtWvXsmHDBv70pz+ZjuITN910E59++ikVFRWmowiD/v3vf3PgwAF+//vfm47SZHxR/I8Al1R73bHyvXMopUYAKcBtWuuymmaktZ6nte6vte7fqlUrH0QTvpSbm0tWVhaZmZnExcWZjuMT7du3p127dnz11VemowhDDh8+zLPPPhvU3Tpr4ovi/zlwmVKqi1LKDtwLLK8+gVLqGuBFrMJ/wgfLFE1Ma01GRga33347ffv2NR3Hp2Ssn9DlcrlITU1l3LhxdO/e3XScJuV18ddau4CJwEfALuBtrfVOpVSmUqpqCLyZQBywRCm1TSm1vJbZCT+1ZMkSCgoKeOihh0xH8bmqq33dbrfpKKKJ+fsotI3JJ3ck0Fq/D7x/3ntTqj0f4YvlCDOqbmLx8ssvB8VNLM7XuXNn4uPj2blzJ1dddZXpOKKJfP311yxbtozFixcHbHdlb4Tev1g0iNPpJDU1NahuYlGT4cOHy1g/IaSoqIi0tDRSU1P9fhTaxiLFX9Rp7ty5dOjQIahuYlGTqts7aq1NRxFNYMaMGQwePDggRqFtLMF3DC98ZsuWLaxcuZI33ngj6K927NGjB1pr9u7dS48ePUzHEY3oww8/ZOfOnbz++uumoxgle/6iRgUFBWRkZJCenh50N7GoiVKK5ORk6fUT5I4ePcrf/vY3srKyiIqKMh3HKCn+4gJaa7KyshgxYgQDBw40HafJSPEPblWj0D7wwANcccUVpuMYJ8VfXGDFihUcOnSIiRMnmo7SpK688koKCws5ePCg6SiiEbz66qtERERw//33m47iF6T4i3NkZ2czZ86ckLvaEcBms8kFX0Fq586dvPnmm0ydOjUku3XWRNaCOMvlcpGWlsb48ePp1q2b6ThGyO0dg09xcTGpqak8/vjjtG7d2nQcvyHFX5wVylc7Vrn22ms5cuQIx48fNx1F+MjTTz/NNddcQ3JysukofkWKvwBg+/btvPPOO6Snpwd9t866hIWFMWzYMGn6CRKrVq3iq6++YvLkyaaj+B0p/gKHw0FqaiopKSkhe7VjddL0ExxOnDjBU089xfTp04mJiTEdx+9I8RfMmDGDQYMGhfTVjtUNGDCAvXv3cvr0adNRxEWq6tZ577330rt3b9Nx/JIU/xC3cuVKduzYwaRJk0xH8Rt2u53rr7+eTz/91HQUcZEWLVqEy+Xi5z//uekofkuKfwjLyclh5syZZGVlER0dbTqOX5HbOwau3bt3s3DhQqZNmybdOusgayZEVR0Wjxkzhp49e5qO43cGDx7Mjh07KCwsNB1FNEBpaSkpKSlMnjyZdu3amY7j16T4h6hFixahtWbs2LGmo/ilmJgYrrvuOtatW2c6imiAWbNm0bt3b0aOHGk6it+T4h+Cqg6LMzMz5bC4DjLWT2BZu3YtGzdu5E9/+pPpKAFB/vJDTPXD4rZt25qO49duuOEGPv/8c4qLi01HEfU4deoU06dPZ9q0acTFxZmOExCk+IeYZ599ll69eslhsQcSEhLo06cPGzZsMB1F1MHtdpORkcGdd95Jnz59TMcJGFL8Q8jatWvZsGEDjz32mOkoAUMGevN/b731Fg6Hg/Hjx5uOElCk+IeI3NxcsrKyyMzMlMPiBrjpppvYsGEDTqfTdBRRg7179zJ//nymTZtGWFiY6TgBRYp/CNBak5GRwejRo+nbt6/pOAGlRYsW9OjRg82bN5uOIs5TVlZGamoqf/jDH+jYsaPpOAFHin8IWLJkCfn5+UyYMMF0lIAkTT/+6e9//ztdu3blRz/6kekoAUlu4B7k9u/fz7x583j55ZcJD5f/7ouRnJzMSy+9hMvlknXoJzZs2MDq1at54403QnoUWm/Inn8QczqdpKamMnHiRDp16mQ6TsBq06YNHTp04MsvvzQdRWCdv8rMzCQzM5OEhATTcQKWFP8gNnfuXDp06MDo0aNNRwl4csGXf9BaM23aNH784x/Tr18/03ECmhT/ILVlyxZWrlxJamqqHBb7QNUY/26323SUkLZs2TJOnTrFL3/5S9NRAp4U/yBUUFBARkYG6enpJCYmmo4TFDp16kSzZs3YsWOH6Sgh68CBA7zwwgtMnz6diIgI03ECnhT/IKO1JisrixEjRjBw4EDTcYKKNP2Y43Q6SUlJ4be//S2XXnqp6ThBwSfFXyl1i1LqW6XUPqXU4zV8HqmUeqvy881Kqc6+WK640IoVKzh06BATJ040HSXoVDX9aK1NRwk5zz//PO3bt+f22283HSVoeF38lVJhwHPAKKAXcJ9Sqtd5k40D8rTW3YFZwFPeLldcKDs7mzlz5pCVlYXdbjcdJ+h0794dm83Gt99+azpKSNmyZQsfffSRnL/yMV/s+Q8A9mmt92utncCbwPndS0YDCyqfLwVuVvK/6FMul4u0tDTGjx9Pt27dTMcJSkopafppYtXPXzVr1sx0nKDii+LfAciu9vpw5Xs1TqO1dgEFQEsfLFtUmj9/PvHx8dxzzz2mowS1qqYf0fi01kyfPp0f/OAHcv6qEfjVCV+l1ASl1Fal1NaTJ0+ajhMwtm/fzrJly0hPT5fD4kbWq1cvHA4HBw4cMB0l6C1fvpzDhw/z29/+1nSUoOSL4n8EuKTa646V79U4jVIqHEgETp8/I631PK11f611/1atWvkgWvBzOBykpqaSkpJCUlKS6ThBz2azMXz4cNn7b2SHDh3i73//u5y/akS+KP6fA5cppboopezAvcDy86ZZDlTdLPYu4BMtXSZ8YsaMGQwaNIhhw4aZjhIykpOTWbVqlekYQcvlcpGamsqECRPo2rWr6ThBy+tRqrTWLqXUROAjIAx4WWu9UymVCWzVWi8H5gMLlVL7gFysDYTw0sqVK9mxYwevv/666SghpW/fvpw4cYKjR4/Svn1703GCzrx582jevDn/93//ZzpKUPPJEIVa6/eB9897b0q156WA/E/6UE5ODjNnzmT27NlER0ebjhNSwsLCGDZsGKtXr+anP/2p6ThB5csvv2T58uUsXrxYzl81Mr864Ss843a7mTJlCmPGjKFXr/MvqRBNQZp+fO/MmTNMmTKFtLQ0WrRoYTpO0JPiH4AWLVqE1pqxY8fWP7FoFNdddx0HDhzg1KlTpqMEBa01f/3rXxk6dChDhgwxHSckSPEPMLt372bhwoVMnToVm03++0yJiIjghhtuYM2aNaajBIUPPviAffv28fDDD5uOEjKkegSQ0tJSUlJSmDx5Mu3atTMdJ+TJ7R1948iRIzzzzDNMnz6dyMhI03FChhT/APLss8/Sq1cvRo4caTqKAK6//np27txJQUGB6SgBq6KigrS0NH7xi1/Qo0cP03FCihT/ALF27Vo2bNjAY489ZjqKqBQVFcXAgQP59NNPTUcJWPPnzyc6Opp775Xe301Nin8AyM3NJSsri8zMTOLi4kzHEdXI1b4Xb/v27SxdupSMjAw5f2WArHE/p7UmIyOD0aNH07dvX9NxxHluvPFGvvjiC4qLi01HCShVw5L8+c9/RoZyMUOKv59bsmQJ+fn5TJgwwXQUUYO4uDj69u3L+vXrTUcJKFXDktx0002mo4QsKf5+bP/+/cybN4/p06cTHu6Ti7FFI7j55pul108DVA1LMmnSJNNRQpoUfz/ldDpJTU1l4sSJdOrUyXQcUYehQ4eyceNGysrKTEfxe8ePH2fmzJlkZWXJsCSGSfH3U3PnzqVDhw6MHn3+TdGEv2nevDlXXHEFmzZtMh3Fr1UNS3L//ffTs2dP03FCnhR/P7RlyxZWrlwp9ywNINL0U78FCxaglOKBBx4wHUUgxd/vVL9naWJiouk4wkM33XQT69ato7y83HQUv/TNN9+wePFiMjMzpVunn5D/BT+itSYrK4sRI0bIPUsDTOvWrenUqRNffPGF6Sh+p7i4mNTUVB577DHatGljOo6oJMXfj6xYsYJDhw4xceJE01HERUhOTpamnxo888wz9OnThxEjRpiOIqqR4u8nsrOzmTNnjtyzNIAlJyezZs0a3G636Sh+45NPPmHr1q08+uijpqOI80jx9wMul4u0tDTGjx9Pt27dTMcRF6ljx44kJSXx9ddfm47iF06cOMGTTz7JtGnTiImJMR1HnEeKvx+YP38+8fHx3HPPPaajCC/JWD8Wt9tNRkYGd999N1dddZXpOKIGUvwN+/rrr1m2bBnp6enSrTMIVLX7a61NRzFq8eLFlJWV8eCDD5qOImohxd8gh8NBWloaKSkpJCUlmY4jfKBr167Y7XZ27dplOooxe/bsYcGCBUybNo2wsDDTcUQtpPgbVDW41bBhw0xHET6ilArpXj9Vd5t75JFHaN++vek4og5S/A2Rwa2CVyg3/cyePZvLL7+cUaNGmY4i6iFDRRqQk5PDzJkzmT17tgxuFYR69uxJWVkZBw4coGvXrqbjNJl169axfv16Fi9ebDqK8IDs+Tcxt9tNWloaY8aMoVevXqbjiEZQ1fSzatUq01GaTG5uLtOnTyczM5P4+HjTcYQHpPg3sYULFwIwduxYw0lEY0pOTg6ZLp9Vd5u7/fbbueaaa0zHER6SZp8mtHv3bhYtWsRrr70mg1sFuT59+nDq1CkOHz5Mx44dTcdpVEuWLKGgoICHHnrIdBTRAFKBmkgv8GWVAAAWv0lEQVRVL4jJkyfTrl0703FEI7PZbNx0001B3+tH7jYXuKT4N5FZs2bRq1cvRo4caTqKaCLB3vTjdDpJSUnh97//PZdcconpOKKBvCr+SqkWSqn/KKX2Vv5sXsM0fZVSG5VSO5VS25VSITeGwdq1a9m4cSOPPfaY6SiiCfXr14+DBw9y4sQJ01EaxT/+8Q86derErbfeajqKuAje7vk/DqzSWl8GrKp8fb5i4Gda697ALcCzSqlmXi43YJw+fZqsrCwyMzOJi4szHUc0oYiICG644QbWrFljOorPbdq0iVWrVpGSkiLDkgQob4v/aGBB5fMFwO3nT6C13qO13lv5/ChwAmjl5XIDgtaaqVOnMnr0aPr27Ws6jjAgGG/vmJ+fz9SpU5k6dSoJCQmm44iL5G3xb6O1Plb5/DhQ5216lFIDADvwnZfLDQhLliwhPz+fCRMmmI4iDBk0aBC7du0iLy/PdBSf0Fozbdo0Ro0aRf/+/U3HEV6ot/grpT5WSv23hsfo6tNp61r2Wq9nV0q1AxYCD2qta7zbhVJqglJqq1Jq68mTJxv4T/Ev0gtCAERGRjJ48GDWrl1rOopPvPvuu+Tk5PDrX//adBThpXqrkta61nuvKaVylFLttNbHKot7jWe2lFIJwL+BFK31pjqWNQ+YB9C/f/+AHRilqhfExIkT6dSpk+k4wrDk5GT+/e9/M3r06Pon9mP/+9//mDt3Li+99BIRERGm4wgvedvssxyoulR1LPCv8ydQStmBd4HXtNZLvVxeQJg7dy4dO3YM+D924RtDhgzhq6++oqioyHSUi1ZeXk5qaiq/+c1v6Ny5s+k4wge8Lf5PAj9QSu0FRlS+RinVXyn1UuU0dwNDgZ8rpbZVPoL27OeWLVtYuXIlqamp0gtCABAbG0u/fv1Yv3696SgX7YUXXqB169b85Cc/MR1F+IhXjdFa69PAzTW8vxUYX/l8EbDIm+UEioKCAjIyMkhPTycxMdF0HOFHhg8fzieffMItt9xiOkqDbd26lffff5/FixfLDk0QkSt8fURrTVZWFiNGjGDgwIGm4wg/M2zYMDZv3kxpaanpKA1SWFhIeno6U6ZMoXnzC67hFAFMir+PrFixgkOHDjFx4kTTUYQfSkxMpHfv3mzcuNF0FI9V7dDcfPPNDB482HQc4WNS/H0gOzubOXPmkJWVhd1uNx1H+Kmqpp9A8d5773Hw4EHZoQlSUvy95HK5SEtLY/z48XTr1s10HOHHhg8fzvr16ykvLzcdpV7Z2dnMnj1bdmiCmBR/L82fP5/4+HjuuSfkxqsTDZSUlESXLl34/PPPTUepU9UOzUMPPSQ7NEFMir8Xvv76a5YtW0Z6err0ghAeqbq5uz976aWXSEhI4O677zYdRTQiKf4XyeFwkJaWRkpKCklJSabjiACRnJzMp59+ittd4wgnxm3bto13331XdmhCgBT/izRjxgwGDRrEsGHDTEcRAaR9+/a0bt2ar776ynSUCxQVFTFlyhRSU1Np2bKl6TiikUnxvwgrV65kx44dTJo0yXQUEYD8tennqaeeYsiQIdx4442mo4gmIMW/gXJycpg5cybTp08nOjradBwRgKpu7+hPTT8ffPABu3fv5uGHHzYdRTQRKf4N4Ha7SUtLY8yYMfTq1ct0HBGgunTpQkxMDN98843pKAAcPXqUZ555hqysLKKiokzHEU1Ein8DLFy4EICxY8fWM6UQdfOXpp+KigrS0tIYO3YsPXr0MB1HNCEp/h7avXs3ixYtYurUqdhsstqEd6qafqx7IJnz6quvEhkZyZgxY4zmEE1PqpgHSktLSUlJYfLkybRr1850HBEELr/8cioqKti3b5+xDP/973956623yMjIkB2aECT/4x6YNWsWvXr1YuTIkaajiCChlGL48OGsXr3ayPKLi4tJTU3liSeeoHXr1kYyCLOk+Ndj7dq1bNy4kccee8x0FBFkkpOTWbVqlZFlP/300/Tv35/hw4cbWb4wT4p/HU6fPk1WVhaZmZnExcWZjiOCzFVXXUV+fj6HDh1q0uV+/PHHbNu2jUceeaRJlyv8ixT/WmitmTp1KqNHj6Zv36C966QwyGazNXnTT05ODjNmzGD69OnExMQ02XKF/5HiX4slS5aQn5/PhAkTTEcRQawpm37cbjdTpkzhvvvuk+tUhHf38A1W+/fvZ968ebz88suEh8sqEo3n2muv5ciRIxw/fpy2bds26rIWLVqE1lquUxGA7PlfwOl0kpKSwsSJE+nUqZPpOCLIhYeHM3ToUNasWdOoy9m1axcLFy4kMzNTunUKQIr/BebOnUvHjh0ZPXq06SgiRDT27R1LSkpITU3l0UcfbfSjCxE4QqP4u1yQnw95eeB01jrZli1bWLlyJampqTKWuWgygwYNYs+ePeTm5jbK/GfNmsWVV17JD3/4w0aZvwhMwdmgrTXs2AFLl8LmzfDdd+d+1rkzXHcd3HGH9VMpCgoKyMjIID09ncTERGPRReix2+1cf/31rFmzhjvuuMOn8/7000/ZvHkzixcv9ul8ReALvuK/ZQtMmWIV/IoKiIqChASoaud0u+H4cXj7bVi2DDp0QE+ZQtaHHzJixAgGDhxoNr8IScOHD2f58uU+Lf6nTp0iKyuLp59+mtjYWJ/NVwSH4Cn+paWQlQVvvAFhYVbBr6npxmaD6GjroTXk5FA8Zgw3JSQwYsOGps8tBDBkyBCmTZvGmTNniI+P93p+brebjIwM7rrrLq6++mofJBTBJjja/IuL4YEH4PXXIT7eenjSZq8UzogIjjgc/KC0FPtPfwqN1O4qRF1iYmLo378/69at88n83nzzTYqLixk3bpxP5ieCT+AXf7cbHnoIvvwSmje39vo9pLXmyNGjtGzViohWraymogcegLKyRgwsRM1uvvlmn/T62bt3L6+88grTpk0jrAF/DyK0BH7xf/VV2LQJmjXzbG+/mlOnThFms9GiRQvrdxMTYfduePbZxskqRB1uvPFGtmzZQklJyUXPo6ysjJSUFCZNmkSHDh18mE4EG6+Kv1KqhVLqP0qpvZU/m9cxbYJS6rBS6h/eLPMchw7BjBkQG9vgwl9cUkJeXh7t2rfn7G8qZTUZ/b//Bzt3+iymEJ5ISEjgqquuYoMX557mzJlD9+7dGTVqlA+TiWDk7Z7/48AqrfVlwKrK17WZBqz1cnnnevVVKC8Hu73OydKOHGHk3r0M/fZb7vjuO97JzeXIkSO0a9eOiPOHb6h6/fzzPo0qhCe8afr57LPPWLt2LU888YRcpyLq5W3xHw0sqHy+ALi9pomUUv2ANsBKL5f3veJiePNN8GCo5QeTkljRrRtrL7+cZzp2ZPaRIxyz22vvVREfDx99BCdP+iyuEJ4YNmwYn332Gc46LkasSW5uLtOmTWPq1Kk+6S0kgp+3XT3baK2PVT4/jlXgz6GUsgF/A+4HRni5vO999ZV1sjciot5Ju0ZGnn1+pqgIt9tNSUJC7b8QFmY1AW3aBLfe6ou0QnikZcuWdO/enS9Wr2Zw8+awZw8UFlpHpC1aQM+ecNll5xztaq3JzMzktttu49prrzWYXgSSeou/UupjoKYBQVKqv9Baa6VUTXej/g3wvtb6cH2HokqpCcAEoP5B1XburHOohvM9efw4y/PyKCwt5cr4eG6sq/iD1Zz01VdS/EXTqaiAdetI2b2bxPvug9atre+hy2XtjEREfN+b7Sc/gZ/9DHr2ZOnSpeTm5srw46JB6i3+Wuta99aVUjlKqXZa62NKqXbAiRomGwzcqJT6DRAH2JVSRVrrC84PaK3nAfMA+vfvX9OG5HvbtzeoW+djbdtyd2kpBxMT2W+3Y6+vTTQqylqGEE3hu+/gD3+A3bvp6HKxv7yc5nFx1PgtdbmsK9SXLiU/OZmF337LP157TYYfFw3i7bdlOTAWeLLy57/On0Br/dOq50qpnwP9ayr8DVZU9P2QDR4oLy+nxOGgM/BBYSEv5ufzk9hYwmw2bDYbtrCwc587neiTJzmTk0NsbCwxMTEyFK5oHMuWwZ//bDVjJiQQoRT2wkKKHY6ah2UID4fmzXFXVFD2+ussaNeO5g5H0+cWAc3b4v8k8LZSahxwELgbQCnVH/iV1nq8l/OvXUSENTyDh+wREXTr3h23201kTg55ShEdHY3b7cZdUUF5eTlllc8r3G7CnU6OlpSQ/uCDFBUVUVpaSlRUFLGxsec84uLiGvye7KGJsxYvhrQ0q7tytXb8+Ph4zpw5U+eYPCdPnaI8Lo7WNhvcfTe89RbIHbqEh7yqQlrr08DNNby/Fbig8GutXwVe9WaZZ3XvDh9/XO9kuS4XW4uLuSEujii7nc0OB6tLS/lLhw40r6tXRH4+HW69lfdnzQKssVJKSkpwOBwUFRXhcDjOeVS9l5ubS3Z2dp3ThYeHX9RGo/rruLg4IiIipEtfIKsahPC8wg8Qn5DAwYMHadO2bY1NPw6Hg8LCQrp07YoKC4MzZ6xzAB9/bF3wKEQ9AncXtE+fevv3AyhgaV4efzl2DDfQLiKCP7Zpw9D6usNpbQ33XMlms50twK1bt77o2FprysrKLthonL+BKCoqIicnp87p3G63V0cgVY/o6GjZiDQ1hwMefthqwqnhexxptxMWFkZJSQkx0dHnfOaqqODo0aO0b9+e8KrzXvHx1j0r0tNh9uym+BeIABe4xf+aa6w2Ure7zrb/5uHhzLv00obNW2trnv36eRnyQkopoqKiiIqKomXLll7Ny+l0UlxcXOMGovrz06dP13qk4nA4cDqdxMTE+GRDIudFPPTSS3DihDUeVS3i4+M5U1h4TvHXwLFjx0hITLywSSghAd5/H8aOBenyKeoRuMW/TRu44QZYt873h7kOB/ToAZdf7tv5+pjdbsdut9PMy39/RUXFBRuHmo42cnJy6mzyKikpITIy0qONRl0bk5iYGCI8uH4jYDmd8MorEBNT52RRsbGk7d/Pd2fOUFhRQceICH4WE0OP8vKax+2x2aydoVdekeIv6hW4xR9gwgSr+Nez998gWlt9q3/7W9/MLwCEhYWRkJBAQn3XPtTD7XZTWlpa5wbC4XCQl5fH4cOH62zy8ua8SPX37Ha7/zVprV9vXaFez/oOj4qilc3Gw23a0DkujtX5+Tx+8CBvd++OrbZ/U0KCdXV6YWG98xehLbCL/+DBMGoUfPCB7/b+CwpgwAC45RbfzC+E2Gw2YmJiiKlnj7Y+WmucTufZjYM350UqKiq8bsqKi4sjKirKd01aW7ZYOxj1iLHZeCgpCVVaCnFxdMnP55KoKA643XSp7ZfCwqwdoZ07rb8PIWoR2MUfIDMTNm60ejt4O6aJw2Hd4evpp313JCEaTClFZGQkkZGRjXpepPp7eXl5dTZ5lZWVER0dfUGPq4s6L7J5s3URoQfi4+M5duwYaI3DZuM45w5XUss/Woq/qFfgF//mza07eN19t3eHukVF1iX0r74KMg560PDleZHqG5HaNiTVj0TOP0qpOi/yyq5dRAPu8HDrwsKwMGw22zkXGVZ/XVpSQqnTyXNRUfw4MZHO9RV/gOxsr/69IvgFfvEH68Ts0qUwbhwcPWodAXg69IPbbTX1tGxpjePfp0/jZhUBKSwsjPj4eK9HzHS73egBA3CXlOC22XC73VS43WcvNqx6XlFRQbnTSYXbTUxsLHMBu83Gn9rWNMzWeZTyqFlJhLbgKP5gjXT40UfwzDPW3rvbbfWmsNtrvtGL02k18ygFd90FqaneNxsJUQ+bzQbx8YSVloIHe/BaazKPHaOwvJw5HTsS7snJa7dbLvQS9Qquhu3oaEhJgU8/hYkTrT+uggKrSaew0HoUFVnvKWUdKXz8MTz1lBR+0XSuvhpKSz2a9K/Hj3PA6WTWJZcQ6el5KLsdevf2IqAIBcGz519d+/YwaZI1SuLJk9Z9efPzrW6ciYlWM1Hbtg2+9aMQPjFgAKxYUe9kx8rLeSc/H7tSjNy79+z7f27bllGJiTX/ktbWnn/Pnr5KK4JUcBb/KkpZY6J7MRyDED43bNj3F2TVsTffLiKCrQ0t4iUl1s5Pl1o7gwoBBFuzjxCBoGNHGDLEaob0tfJy6+JHOaoV9ZDiL4QJjzxi/ayo8N08HQ6r6/Po0b6bpwhaUvyFMKFPH3jwQWvvvwH3pahVRYW11z9rFsTFeT8/EfSk+Athyh//CFde+X1nhItVUWH1YBs3zmpOEsIDUvyFMCUqChYssO6+lZd3cU1AZWXW0cP998Njj/k+owhaUvyFMKlZM+v2i/ffb41P5WkzUEXF9xuMv/4Vpk6V8ahEg8i3RQjTYmKsAQoXL4arrrKacE6ftjYG5eXf37SorMz6LC/POrl7663WRYp33y29e0SDBXc/fyECyYABsGwZ7NsHH34ImzZZo3OeOWONVdWiBQwdCtdfbw1l3qKF6cQigCnti54GjaB///5669atpmMIIURAUUp9obXuX9900uwjhBAhSIq/EEKEICn+QggRgqT4CyFECJLiL4QQIUiKvxBChCAp/kIIEYL8tp+/UuokcNDHs00CTvl4nsFG1pFnZD3VT9aRZ3y9ni7VWreqbyK/Lf6NQSm11ZOLH0KZrCPPyHqqn6wjz5haT9LsI4QQIUiKvxBChKBQK/7zTAcIALKOPCPrqX6yjjxjZD2FVJu/EEIIS6jt+QshhCDIi79S6v+UUjuVUm6lVK1n05VStyilvlVK7VNKPd6UGU1TSrVQSv1HKbW38mfzWqarUEptq3wsb+qcJtT3vVBKRSql3qr8fLNSqnPTpzTPg/X0c6XUyWrfn/EmcpqklHpZKXVCKfXfWj5XSqk5letwu1Lq2sbOFNTFH/gvcAewtrYJlFJhwHPAKKAXcJ9SqlfTxPMLjwOrtNaXAasqX9ekRGvdt/JxW9PFM8PD78U4IE9r3R2YBTzVtCnNa8Dfz1vVvj8vNWlI//AqcEsdn48CLqt8TACeb+xAQV38tda7tNbf1jPZAGCf1nq/1toJvAmMbvx0fmM0sKDy+QLgdoNZ/Ikn34vq624pcLNSIXc/xVD/+/GI1notkFvHJKOB17RlE9BMKdWuMTMFdfH3UAcgu9rrw5XvhYo2Wutjlc+PA21qmS5KKbVVKbVJKRUKGwhPvhdnp9Fau4ACoGWTpPMfnv793FnZnLFUKXVJ00QLKE1ehwL+Hr5KqY+BtjV8lKK1/ldT5/FHda2j6i+01lopVVv3r0u11keUUl2BT5RSO7TW3/k6qwhKK4A3tNZlSqlfYh0tJRvOFPICvvhrrUd4OYsjQPU9kY6V7wWNutaRUipHKdVOa32s8jDzRC3zOFL5c79Sag1wDRDMxd+T70XVNIeVUuFAInC6aeL5jXrXk9a6+jp5CZjRBLkCTZPXIWn2gc+By5RSXZRSduBeICR6s1RaDoytfD4WuOBoSSnVXCkVWfk8CRgCfNNkCc3w5HtRfd3dBXyiQ+/CmXrX03lt17cBu5owX6BYDvysstfPIKCgWnNs49BaB+0D+AlW21kZkAN8VPl+e+D9atP9f8AerD3ZFNO5m3gdtcTq5bMX+BhoUfl+f+ClyufXAzuAryt/jjOdu4nWzQXfCyATuK3yeRSwBNgHbAG6ms7sp+vpr8DOyu/PauAK05kNrKM3gGNAeWVNGgf8CvhV5ecKq9fUd5V/Y/0bO5Nc4SuEECFImn2EECIESfEXQogQJMVfCCFCkBR/IYQIQVL8hRAiBEnxF0KIECTFXwghQpAUfyGECEH/P2TEwqJVUnGvAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX+//HXSSeBEAIJhBKKlARdQWSxK4qL2MtKF3GlK1VZWvytwFJFBBVpgkpTQRYQ7AjqV5dVRLEnoYQWCJAeSM/M+f1xJ5iBJJOQmbmT5PN8PPJIZubO3E/mkeSde+49n6O01gghhBDFvMwuQAghhGeRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELYkWAQQghhR4JBCCGEHQkGIYQQdiQYhBBC2PExu4DL0ahRI92qVSuzyxBCiGrlhx9+SNFahznarloGQ6tWrdi3b5/ZZQghRLWilDpWke1kKEkIIYSdannE4DQWC6SmQmEh+PtDw4aglNlVCSGEqWpfMJw6Be+9B7t2QXw8WK1GGGgNvr5w5ZVw773w0EMQEmJ2tUII4Xa1JxjOnIHp02HnTiME/PwgMBC8vf/cpqgIfv0V9u+HuXOhb1+YNAnq1jWtbCGEcLfacY5h+3a44w747DMIDoYGDSAoyD4UAHx8jBAICTFCY8MG6NED9u41p24hhDBBzQ+GZctgwgRjuKhBA/Cq4Lfs7W1sn5UFAwfCJ5+4tk4hhPAQNTsY3nkHFiyAevUgIODyXiMoyHjumDHw7bfOrU8IITxQzQ2GY8eMcwp16xpDRFXh72+8xpgxxhGEEELUYDUzGLSGiRONy1H9/JzzmkFBkJYG8+c75/WEEMJD1cxg+PVX+OknqF+/3M02paUx6MgRboiLY/qpU45fNzjYuNQ1Lc1JhQohhOepmcGwZs2f8xPK0cjHhyGNGvGAgwC5wNvbeN0tW5xQpBBCeKaaFwxaG5elVmDuwR3BwXSvV4/6F1+2Wh5fX/jwwyoUKIQQnq3mBcPp05CXZ/wBd4WAAIiNNY4chBCiBqp5wXDkSNWvQipP8XDS6dOu24cQQpio5rXEyMszhpMqSANp6elkWq0k+/kREBBAnYAAfMoLFy8vyM+veq1CCOGBal4w+PpWqkOqApRSaK2xWq2kpaWRl5eHUoo6AQEEBAQQUKcOAQEB+BaHhdXquqEqIYQwWc0LhmbNKjz+b9Eai9bUCw7mVHIyAXXr0igsDC+lKCwsJC8vj7zcXNLT0si1hUWAvz/1tebnuDii/PwICwtDSatuIUQNUvOCoVUr44jBYrm0Sd5FVqeksDIlBQCLUtx84ACjmzVjRFgYfr6++Pn6ElyvHmAMORUVFpKfmUlanTps3r6d2PnzUUoRFRVFdHT0hc+NGzeWsBBCVFtKV2I83lN07dpVl7u05+OPw//+53CCW0kaOHH8OIFBQTRq2LDsDdPTYdgwmDIFrTVnz54lLi6O2NjYCx9Wq5Xo6OgLYREVFUVERISEhRDCVEqpH7TWXR1u54xgUEr1Al4GvIFVWut5Fz2+CLjddjMQCNdah9geswC/2h47rrV+wNH+HAbDV18Zf7yDgyv1fRQUFHDk6FFat26NX2nnEKxWo1fSrl3QsmWpr6G1Jjk5mbi4OLvAKCwsvHBEUfwhYSGEcCe3BYNSyhs4APwNSAS+B/prrf8oY/sxwDVa6ydtt89rrSu1Eo7DYLBY4LbbICWl0ovspKSmkpOdTYvISC75k52RATfeCGvXVuo1AVJSUi6ERHFo5OXlXTiiKA6LZs2aSVgIIVzCncFwAzBda32X7fZUAK313DK23wM8r7Xeabvt/GAAY3GdAQOMltuVmNmstSbhyBEaNWpE/ZJHHAUFxsfOndCiRWXKLVNaWprdEFRsbCy5ubl2YREVFUXz5s3xqug6EkIIUYaKBoMzTj43A06UuJ0IXFdGUS2B1sDuEncHKKX2AUXAPK31tjKeOxwYDhAZGem4qm7d4LHHjP/uGzSo8CWsSikiIiJITEykblAQ3t7exhFIdjbMmuW0UAAIDQ3lpptu4qabbrpwX1pa2oUjip07d/LKK69w/vx5OnToYHfeokWLFhIWQgiXcMYRw6NAL631UNvtQcB1WuvRpWw7GWiutR5T4r5mWuuTSqk2GIHRQ2t9uLx9VuiIAYw1nEePNv7LDw6u1JHD6dOnsWpN00aN4Nw5GDXKaOVtwjBPRkaG3fmKuLg4MjIyLhmGioyMlLAQQpTJnUcMJ4GS/0Y3t91Xmn7A0yXv0FqftH1OUEp9CVwDlBsMFebjA0uWwL//bazfXLymcwWEhYWRdOAAeT4+BPzrX/Dkk6aEAkBISAjXX389119//YX7MjMzLxxZfPXVVyxfvpz09HTat29vd2TRqlUrCQshRKU444jBB+Pkcw+MQPgeGKC1/v2i7aKAT4DW2rZTpVQDIEdrna+UagT8D3iwrBPXxSp8xFDSd98Zaz+npBgtM+rVK339Z4vFuPLIy4uUhg2ZHhzMSx98gJ+zFvxxoaysLLuroeLi4khNTaVt27Z2V0O1atXKGCITQtQq7r5c9R5gMcblqm9orWcrpWYC+7TW223bTAcCtNZTSjzvRmAFYMVo6LdYa73a0f4uKxjAGFr6v/+D11+HH34wjgCUMoJCKeNyVC8vuP12GDIE3aULz06cSFRUFMOHD6/8/jzAuXPniI+PtxuGSk5Opl27dnZDUW3atJGwEKKGc2swuNtlB0NJRUWQkACJiVBYaKzr3Lq1cXK5xJHEmTNnGDBgAKtXr6ZVq1ZV26eHyM7OtguL2NhYzpw5Y3dkERUVRZs2bcpvJiiEqFYkGJzonXfe4YsvvmDFihU1do5BTk7OhbAoHopKSkqiTZs2dsNQbdq0wVcaCApRLUkwOJHVauWJJ57g0Ucf5YEHHE7MrjFycnI4cOCAXVicPHnyQlgUD0NdccUV1eIcjBC1nQSDk8XHxzN69Gg2btxIaGioW/ftSXJzczl48KDdOYsTJ07QunVru0tn27ZtK2EhhIeRYHCBl19+meTkZGbNmuX2fXuyvLy8C2FRfGRx/PhxWrZsaXdk0a5dO/z9/c0uV4haS4LBBXJzc+nbty9Tp07lhhtucPv+q5OCggK7I4vY2FiOHTtGZGSkXdfZ9u3bExAQYHa5QtQKEgwusmfPHubNm8emTZvkD1olFRQUcOjQIbtZ3EeOHKF58+Z2J7jbtWtHnTp1zC5XiBpHgsGFpk2bRkREBGPGjHG8sShXQUEBhw8ftus6e/jwYZo1a2Z3zqJ9+/YEBgaaXa4Q1ZoEgwulpqbSt29fli1bRrt27Uyro6YqLCwkISHBbhgqISGBiIgIu66zUVFREhZCVIIEg4tt2bKF7du388Ybb0gvIjcoKioiISHBbhjq0KFDNG7c2O4Ed1RUFEFBQWaXK4RHkmBwMavVyrBhw7jrrrvo06ePqbXUVhaLhSNHjthdOnvw4EHCwsLshqE6dOhAPdva3ULUZhIMbpCQkMDw4cN5++23CQ8PN7scgREWR48etTuyOHjwIKGhoZeswx1cyaVfhajuJBjcZPny5Rw+fJgFCxaYXYoog9VqtQuLuLg44uPjCQkJsbsaKioqivr165tdrhAuI8HgJgUFBfTr149x48Zx2223mV2OqCCr1crx48cvWYc7JCTkkgWQQkJCzC5XCKeQYHCjffv28fzzz/Pee+/JVTLVmNVqJTEx0e5qqPj4eOrWrXvJMFRtbosiqi8JBjebMWMGQUFBTJw40exShBNZrVZOnjxp1+4jLi6OOnXqXDIM1bBhQ7PLdb6EBGORq7174eBByM+HgADo0AH++le47jqoIe3oawMJBjfLzMykd+/eLF68mI4dO5pdjnAhrXWpYeHv72936Wx0dDSNGjUyu9zK0xq+/NJYFvfnn/+838/PWKvEajUCorgFfdeuxtrqN99sSrmi4iQYTPDRRx+xfv161q1bJ6uh1TJaa5KSkuzOWcTGxuLj43PJkUVYWJjnruuRmgrTpsHnn4O3t7EEbnm1ag3nzhlhce+9MGMGyDkZjyXBYAKtNU8//TQ33HADgwYNMrscYTKtNadPn7YLitjYWLy8vC45sggPDzc/LA4ehP79ISMDgoNLXxO9LFYrZGZCWBi8+64ML3koCQaTnDhxgieeeIJ169bRtGlTs8sRHkZrzdmzZ+1OcMfFxaG1tju5HR0dTZMmTdwXFkePwsMPQ3a2EQqXKysL6teHbdugWTOnlSecw63BoJTqBbwMeAOrtNbzLnr8CWABcNJ21xKt9SrbY4OB52z3z9Jar3G0P08OBoA333yT/fv38/LLL5v/X6DweFprkpOT7Y4qYmNjsVgsdkcVUVFRREREOP9nqrAQ7r8fDh82/qhXVXo6XHUVbNliDEcJj+G2YFBKeQMHgL8BicD3QH+t9R8ltnkC6Kq1Hn3Rc0OBfUBXQAM/ANdqrdPL26enB0NRUREDBw5kyJAh9OzZ0+xyRDWVnJxsN8ciNjaW/Px8u7CIjo6madOmVQuLJUtg0SLj3IAzQkdrYzhq2jQYMqTqryecxp3BcAMwXWt9l+32VACt9dwS2zxB6cHQH+iutR5hu70C+FJr/U55+/T0YAD45ZdfmDRpEps2bZLWC8JpUlNTLznBnZuba9dEMDo6mubNm1csLLKyoFs38PcHX1/nFVpQABYL7NsHsraGx6hoMPg4YV/NgBMlbicC15Wy3d+VUrdiHF1M0FqfKOO5NWJg8uqrr6Z79+68+uqrxMTEmF2OqCEaNmzIzTffzM0lLg1NS0u7EBKfffYZL7/8MtnZ2ZfM4G7evPmlnYC3b4eiIqhbt9z9FlitzDt9mr05OWRZLDT39WV0eDg3lvU8Pz/jZPRHH8Hf/17Vb1u4mTOCoSJ2AO9orfOVUiOANcAdlXkBpdRwYDhAZGSk8yt0gdGjR9O7d2/279/PNddcY3Y5ooYKDQ3lxhtv5MYbb7xwX3p6+oWw2LVrF0uWLCErK4sOHTrYnbNouWEDqgJHChagia8vKyMjaeLry3/Pn2fKyZO827o1Tf38Sn+Slxe8844EQzXklqGki7b3BtK01vVr8lBSsV27drF8+XI2bNiAX1m/QEK4QUZGBvHx8ReGog78/juv7tqFJSgI/zp1qBMQQEBAAH7+/lTkTEO/hASGN2rEHWUNlVoskJsLf/xRuUtfhcu4cyjpe6CdUqo1xlVH/YABFxUTobVOst18AIi1ff0pMEcp1cB2uycw1Qk1eYw77riDDz74gLVr1zJ06FCzyxG1WEhICNdddx3XXWcb6T1wAMu995Ln40NuXh7nzp8nOTmZIouFAH9/AurUISAggDqlhEVaURHHCwpo4+9f9g69vY35DYmJUE2O8oWhysGgtS5SSo3G+CPvDbyhtf5dKTUT2Ke13g6MVUo9ABQBacATtuemKaX+jREuADO11mlVrcmTKKWYPHkyAwcOpGfPntVmGEzUApmZePv4EBQUZLfqncVqJS83l9y8PM6fP09KSgpFRUX4+/lRt25dQho14rlTp7ivfn1alRcMYBwpZGW5+BsRziYT3Nzk7bff5quvvmL58uUyt0F4hn37YNAgqMBSqAWFhRw7epSCoiJW+flh8fXlpRYt8HH0s3z+vDGfQfqHeYSKDiXJwJ+b9OvXj5ycHHbs2GF2KUIYQkONoR4HCouKOHHiBPWCg3m3bl1OZWczp0kTx6EAxnmGBg0cbyc8igSDm3h5eRETE8OSJUtITy93/p4Q7tGypfHZYilzk+IjhfrBway2WjlhsTC/cWMyzp51/PpFRcb8iCZNnFSwcBcJBjeKiori7rvvZtGiRWaXIoRxcviqqyAnp9SH8/PzOXb0KKENG1JYvz5bMzI4kJfHoPR0Hk5J4cY//uDjzMyyXz8nB7p0cc5sauFWEgxuNmLECPbv3893331ndilCwOOPlzqclJuXx7FjxwgPDye0QQMifH3ZFx3Nnqgovo6K4st27Vjj50fPevXKf/3HHnNR4cKVJBjcLDAwkMmTJzN37lzy8/PNLkfUdnfdZazIVuJnMTsnhxPHjxPRtCn1y2iqFxQURGBgICnJyaW/bl6eMZv69ttdUbVwMQkGE9x8881ERUWxatUqs0sRtV1AAMTEGBPRtObc+fOcTEykWbNm1HPQJqNx48ZkZmaSl5dn/4DWxus9/7xz+y8Jt5FgMMnEiRPZunUrhw4dMrsUUdv16QN//SvZSUkknTpFixYt7OY1lMXH25vwxo1JSkrC7qL3jAy49VZ44AGXlSxcS4LBJI0aNWLUqFHMmTMHawUuGRTCZby8+OCuuziSl0erBg2oU4luqPXr10d5eZGelvZnu+3WrY023nLSudqSYDDRww8/DMCWLVtMrkTUZmvXrmXlli2E7t6NX/v2xkI7RUUVeq4CIiIiSE1Opig1Fdq3h02bZN3nak6CwUReXl4899xzLF++nOSyTuIJ4SJaa1577TV27NjBqlWraNq5M+zYAUOHGkt8pqeXO8cBgKIi/LOzCQ8M5KPWrY0lPUND3fMNCJeRYDBZmzZteOSRR1iwYIHZpYhaxGq1Mn/+fL799ltef/11wsPDjQcCAmDqVCMgHn7YmItw/jykpRnrK2RlGZ/T0oz78/Kgb1/q7N7NWw0a8NX//mfuNyacQnoleYD8/Hz69evHhAkTuPXWW80uR9RwRUVFzJgxgzNnzrBo0aLyTzRnZcFPPxmts3//3bisNSAArrzS+OjUCWxzGX744Qf+9a9/8d577xEYGOim70ZUhtuW9jRDTQsGgL179zJz5kw2bdokv1TCZQoKCpgyZQoWi4UXXngBf0fdUStpxowZ1KtXj2eeecapryucQ5roVTPdunXj2muvZfny5WaXImqonJwcxo4dS0BAAC+++KLTQwFg/PjxfPLJJ8TGxjreWHgsCQYPMmHCBPmlEi6RlZXFqFGjiIyMZNasWfi6aOJZ/fr1GTduHLNnz8bi6MS18FgSDB4kJCSEsWPHMmvWLPmlEk6TkpLCsGHDuPbaa5k6dSpeLl5m85577qFevXps3LjRpfsRriPB4GHuvfdegoODeffdd80uRdQAp06dYujQofTq1YsxY8a4ZZEopRRTp05l9erVnDlzxuX7E84nweBhin+p3njjDU6dOmV2OaIaS0hIYOjQoQwcOJB//OMfbl05MDIykv79+zN//nyq4wUutZ0EgweKjIxk4MCB8kslLtsff/zByJEjGT16NL179zalhscff5zjx4/z5ZdfmrJ/cfmcEgxKqV5KqXil1CGl1JRSHn9GKfWHUuoXpdQupVTLEo9ZlFI/2T62O6OemmDQoEEkJSXx+eefm12KqGZ+/PFHxo0bR0xMDPfcc49pdfj5+TFt2jQWLFhAdna2aXWIyqtyMCilvIHXgLuBjkB/pdTFK3/vB7pqra8GNgMvlHgsV2vd2fYh7RhtfH19iYmJYeHChZw7d87sckQ18c033zB58mRmz57NbbfdZnY5dOnShRtuuIGlS5eaXYqoBGccMXQDDmmtE7TWBcC7wIMlN9Baf6G1Ll4/8FuguRP2W+N16tSJW2+9lVdffdXsUkQ18NlnnzFz5kwWLVpEt27dzC7ngnHjxrFz507++OMPs0sRFeSMYGgGnChxO9F2X1mGAB+XuB2glNqnlPpWKfWQE+qpUcaMGcPXX3/Nzz//bHYpwoNt2bKFRYsWsXTpUq666iqzy7ETHBzM+PHj5TLsasStJ5+VUo8BXYGSHeNa2qZoDwAWK6WuKOO5w20Bsq82dSItbi8we/ZsCgsLzS5HeKC1a9fy1ltvsXLlStq2bWt2OaW6++67CQkJkcuwqwlnBMNJoEWJ281t99lRSt0JxAAPaK0vLDCrtT5p+5wAfAlcU9pOtNYrtdZdtdZdw8LCnFB29XHnnXcSERHBunXrzC5FeBCtNUuXLmX79u2sWrWKFi1aOH6SSUpehp2UlGR2OcIBZwTD90A7pVRrpZQf0A+wu7pIKXUNsAIjFM6WuL+BUsrf9nUj4CZABiIvopRiypQpbNiwgePHj5tdjvAAVquVF154gT179ti3zfZgLVq0kMuwq4kqB4PWuggYDXwKxAKbtNa/K6VmKqWKrzJaANQF3rvostRoYJ9S6mfgC2Ce1lqCoRQRERE8+eSTzJkzR36parmioiKmT5/OoUOHWL58OQ0aNDC7pAobNGgQp06d4osvvjC7FFEOabtdjVgsFgYPHky/fv247777zC5HmKC4bXZRUREvvPACAQEBZpdUaT/99BPTpk1j06ZN1K1b1+xyahVpu10DeXt7ExMTwyuvvEJGRobZ5Qg3y8nJYdy4cQQEBLBw4cJqGQoAnTt35qabbpK5DR5MgqGaiY6OplevXixatMjsUoQbZWVl8dRTT9G8eXOXts12lzFjxrB7925+++03s0sRpZBgqIZGjhzJDz/8wN69e80uRbhBcdvsa665hmnTprm8bbY7BAcHM2HCBGbPnk1RUZHZ5YiLVP+fsFooMDCQSZMmMXfuXPLz8x0/QVRbxW2z77rrLsaOHevWDqmu1rNnTxo2bMjbb79tdiniIhIM1dStt95Ku3btWL16tdmlCBc5cuQIQ4cOZcCAATz55JM1KhTgz8uw16xZIy3mPYwEQzX2z3/+ky1btpCQkGB2KcLJYmNjL7TN7tOnj9nluEzz5s157LHHZG6Dh5FgqMbCwsIYOXIks2bNwmq1ml2OcJIff/yRsWPHMnXqVFPbZrvLoEGDOH36tLSY9yASDNXcI488AsDWrVtNrkQ4w3//+98LbbO7d+9udjlu4ePjQ0xMDC+99JK0mPcQEgzVnJeXFzExMSxbtoyUlBSzyxFV8NlnnzFjxgxeeuklj2qb7Q5XX301t9xyC6+99prZpQgkGGqEK664gocffpgXX3zR7FLEZdq6dSuLFi3itdde4y9/+YvZ5ZhizJgxfPnll/zyyy9ml1LrSTDUEEOHDiUuLo5vvvnG7FJEJa1du5Y333yTlStX0q5dO7PLMU3JFvMyt8FcEgw1hL+/P9OmTWP+/Pnk5OQ4foIwXXVqm+0uf/vb32jcuDEbNmwwu5RaTYKhBunWrRvXXHMNK1asMLsU4UB1bJvtDsVzG9auXcvJk5cs6yLcRIKhhpkwYQIff/wxcXFxZpciylCd22a7Q9OmTRk8eDDz5s2TuQ0mkWCoYRo0aMCYMWOYPXu2rK/rgQoKCpg0aRIZGRm8+uqr0na6DAMGDCA5OZmdO3eaXUqtJMFQA913330EBQWxceNGs0sRJdSUttnuUHJuQ1ZWltnl1DoSDDWQUopp06axevVqTp8+bXY5gprXNtsd/vKXv3D77bezZMkSs0updSQYaqjIyEj69+8vPWg8QE1sm+0uTz/9NF9//TU///yz2aXUKvITWoMNHjyYxMREdu/ebXYptVZNbpvtDnXr1uXZZ59l9uzZFBYWml1OrSHBUIP5+voSExPDiy++yPnz580up9ap6W2z3aVHjx40bdqU9evXm11KreGUYFBK9VJKxSulDimlppTyuL9SaqPt8e+UUq1KPDbVdn+8UuouZ9Qj/tS5c2duvvlmGad1s9rSNtsdlFJMmjSJ9evXk5iYaHY5tUKVg0Ep5Q28BtwNdAT6K6U6XrTZECBda90WWATMtz23I9APuBLoBSy1vZ5wIulB4161rW22OzRt2pQnnniCuXPnyjkzN3DGEUM34JDWOkFrXQC8Czx40TYPAmtsX28GeijjuPpB4F2tdb7W+ghwyPZ6womCg4OlB42b1Ma22e7Sv39/0tPT+fTTT80upcZzRjA0A06UuJ1ou6/UbbTWRUAm0LCCzwVAKTVcKbVPKbUvOTnZCWXXLsU9aNatW2d2KTVWbW6b7Q7FcxsWLVokcxtcrNqcfNZar9Rad9Vadw0LCzO7nGqnuAfN+vXrOXHihOMniEqRttnuceWVV9KjRw9eeeUVs0up0ZwRDCeBkm0hm9vuK3UbpZQPUB9IreBzhZPIOK1rrFu3Ttpmu9HTTz/Nnj172L9/v9ml1FjOCIbvgXZKqdZKKT+Mk8nbL9pmOzDY9vWjwG5t/GXaDvSzXbXUGmgH7HVCTaIMAwYMICMjg48//tjsUqq94rbZ77//vrTNdqOgoCAmTpzInDlzZG6Di1Q5GGznDEYDnwKxwCat9e9KqZlKqQdsm60GGiqlDgHPAFNsz/0d2AT8AXwCPK21ls5vLuTt7c1zzz3H4sWLycjIMLucastqtbJgwQJpm22S22+/nRYtWrB27VqzS6mRVHUcUujatavet2+f2WVUay+++CLZ2dk8//zzZpdS7VgsFmbMmEFSUhKLFi2SDqkmOX36NAMHDuTNN98kMjLS7HKqBaXUD1rrro62qzYnn4VzPfXUU+zduxcJ2MqRttmeo0mTJgwZMkTWbXABCYZaKjAwkMmTJzNnzhwKCgrMLqdaKG6b7efnJ22zPUTfvn3JzMyUc2ZOJsFQi9166620bduWN954w+xSPF5x2+xmzZoxe/ZsaZvtIby9vYmJiWHx4sVkZmaaXU6NIcFQy02cOJHNmzeTkJBgdikeKzU1leHDh9O5c2diYmKkbbaH6dixIz179uTll182u5QaQ37Ca7nw8HCGDx/O7NmzsVqtZpfjcYrbZvfs2ZNx48ZJh1QP9dRTT/Htt9/y448/ml1KjSDBIHj00UexWCxs27bN7FI8ypEjRxg2bBj9+/eXttkeLjAwkEmTJjF79mw5Z+YEEgwCLy8vYmJiWLp0KampqWaX4xHi4uIYOXIkTz31lLTNria6d+9Oq1atWLNmjeONRbkkGAQA7dq148EHH2ThwoVml2K6/fv3M2bMGKZOncq9995rdjmiEiZNmsTGjRs5fvy42aVUaxIM4oJhw4bx+++/s2fPHrNLMc2ePXv45z//KW2zq6nGjRszZMgQ5syZI3MbqkCCQVwQEBDA1KlTmTdvHrm5uWaX43Y7d+5k+vTp0ja7muvbty/Z2dl8+OGHZpdSbUkwCDvXX389nTp1YuXKlWaX4lbbtm3jpZde4rXXXuPqq682uxxRBcXnzF555RXpB3aZJBjEJSZMZ2CWAAAaqElEQVRMmMCHH37IgQMHzC7FLdavX8/q1atZsWKFtM2uIaKioujVqxeLFy82u5RqSYJBXCI0NJTRo0cza9asGj23QWvNsmXL2Lp1K6tWrZJGbDXMyJEj+f7776Uf2GWQYBCluv/++wkICGDjxo1ml+ISxW2zv/nmG1atWkXjxo3NLkk4mfQDu3wSDKJUSiliYmJYtWoVZ86cMbscp7JYLEyfPp0DBw6wYsUKGjRoYHZJwkWK+4G99dZbZpdSrUgwiDK1bNmSvn37Mn/+/Bpz6V9BQQGTJ08mIyODJUuWSNvsWmDixIls2rSJo0ePml1KtSHBIMr1xBNPcPz4cb744guzS6mynJwcxo8fj4+Pj7TNrkXCw8MZNmyYzG2oBAkGUS4/Pz+mTZvGiy++yPnz580u57JlZWXx9NNPExERwZw5c6Rtdi3Tu3dv8vLy2LFjh9mlVAsSDMKhLl26cOONN7J06VKzS7ksxW2zO3XqxHPPPSdts2shLy8vnnvuOZYsWUJ6errZ5Xi8Kv2GKKVClVI7lVIHbZ8vOYunlOqslPqfUup3pdQvSqm+JR57Syl1RCn1k+2jc1XqEa4zduxYdu/eza+//mp2KZWSlJQkbbMFAO3bt+eee+5h0aJFZpfi8ar6r9MUYJfWuh2wy3b7YjnA41rrK4FewGKlVEiJx/+pte5s+/ipivUIFwkODmbChAnMnj2boqIis8upkKNHjzJ06FBpmy0uGD58OPv372fv3r1ml+LRqhoMDwLFPW7XAA9dvIHW+oDW+qDt61PAWSCsivsVJujZsydhYWGsX7/e7FIciouLY8SIEdI2W9gpXrdh7ty5MrehHFUNhsZa6yTb16eBcmcJKaW6AX7A4RJ3z7YNMS1SSvmX89zhSql9Sql9ycnJVSxbXA6lFFOnTmXdunUkJiaaXU6Z9u/fz9ixY6VttijVLbfcQvv27Vm9erXZpXgsh8GglPpcKfVbKR8PltxOG9eBlXktmFIqAlgH/ENrXdxnYSoQBfwVCAUml/V8rfVKrXVXrXXXsDA54DBL06ZNGTx4MHPnzvXIS//27NnDpEmTmDVrlrTNFmWaOHEi//nPf2St8zI4DAat9Z1a66tK+XgfOGP7g1/8h/9saa+hlAoGPgRitNbflnjtJG3IB94EpNdxNTBgwADS0tL45JNPzC7Fzueff8706dNZuHChtM0W5QoLC2PEiBHMmTOnRvcDu1xVHUraDgy2fT0YeP/iDZRSfsBWYK3WevNFjxWHisI4P/FbFesRbuDj48Nzzz3H4sWLycrKMrscAN5//30WLlwobbNFhf3973+nqKiI7du3m12Kx6lqMMwD/qaUOgjcabuNUqqrUmqVbZs+wK3AE6VclrpBKfUr8CvQCJhVxXqEm1x55ZXceeedHtHWeMOGDdI2W1Sal5cX06ZN47XXXiMtLc3scjyK8sRxYke6du2qpZWu+bKzs+nduzezZs2iS5cubt+/1poVK1awc+dOli5dKh1SxWV55ZVXSE5O5t///rfZpbicUuoHrXVXR9vJFFBx2YKCgpg0aRKzZ892+6V/VquVF198ka+//lraZosqGTZsGD///DPfffed2aV4DAkGUSXdu3endevWbm1rbLFYmDFjBvHx8dI2W1RZnTp1mDJlCnPmzCE/P9/scjyCBIOoskmTJrFx40aOHDni8n0Vt81OT0+XttnCaW688UY6duwocxtsJBhElYWHhzN8+HCXX/onbbOFKz377LNs3bpV5jYgwSCcpHfv3hQUFLjs0j9pmy1crVGjRowcObLGr3VeERIMwim8vLyIiYkp/9I/raGgACyWSr12amoqI0aM4Oqrr5a22cKlHn74YbTWbNu2zexSTCW/YcJp2rdvz/3338/ChQuNO6xW+PprmDoV/vY3aNsWOnSAK66Azp1h8GBYtQrK6X2VlJTEsGHDuPPOOxk/frx0SBUuVfwPzrJly0hNTTW7HNPIPAbhVLm5ufTr04f5119P1I4dkJpqHCHUqQP+/uDlZRw5FBVBbq4RHkrB3XfDtGnQpMmF1zp69CijR49m0KBB9O3bt5y9CuFcS5Ys4dSpU8yZM8fsUpxK5jEIU9TJzGRVfj7158zBmpUF9etDaKgRDMVDQEqBry8EB0NICNStCx9+CD16wH/+A1oTHx/PyJEjGTVqlISCcLuhQ4fy22+/sWfPHrNLMYUEg3CehAS4/37CEhKw1qtHckXXiPb2hgYNjOCYNImTEyYwZvRoJk+eLG2zhSkCAgKYOnUq8+bNIy8vz+xy3E6CQTjHmTPQty9kZkJICI2bNCEzI6Nyv1T+/pz38kKtWMGKzp25/fbbXVevEA7ccMMN/OUvf2HVqlWON65hJBhE1WkNEydCWpoxPITRgTUsPJykpKSyF+m4SFZWFqfOnCGkZUtab9sGv/ziupqFqIBnnnmG999/n0OHDpldiltJMIiq27YN9uwxzheUEBISgvLyIj093eFLZGRkcPrMGSIjIwmsW9c4DzFuHBQWuqpqIRxq2LAho0aNYvbs2bVqboMEg6gaqxUWLjSuOLroUlIFRDRpQnJyMoVFRWW+RGpaGskpKbRs2fLP2czBwZCYCF9+6brahaiAhx56CC8vL7Zu3Wp2KW4jwSCqZu9e4/xCnTqlPuzv709ogwacPn2aLIuFiYmJ3BwXx32HDvFxZiZnk5NJT0+nVcuW+Pv52T9ZKVi50g3fhBBlKzm3ISUlxexy3EKCQVTNp58a8xTKmXjWsFEj8vPzmXn8OL5K8Vn79vy7aVNmHj/OH5mZtGrZsvQWF/XqwY8/goesEidqrzZt2vDII4/8OXmzhpNgEFXz/ffgoJmdl1KENG7M55mZDG/YkDpeXoRnZPBXb29+rlcPHx+f0p9YPN8hPt4FhQtROUOGDCE2Npb//ve/ZpfichIMomoOHjTOLziQ6uODr5cXARkZJCYmYikq4trwcI46WuCnsBBq2RUhwjP5+/szdepU5s+fT25urtnluJQEg7h8WkNe3p8zmsuRY7USEhBAVmYm58+dIzAwEL+iIs47aqhnsRitM4TwANdddx2dOnXi9ddfN7sUl6pSMCilQpVSO5VSB22fS11KSyllUUr9ZPvYXuL+1kqp75RSh5RSG5VSfqU9X3gopYxZyxUQ6OVFjtXKFW3bEtG0KUUWC6czMynIyuLgoUMkJiaSkpLC+exsikqGRSX2IYQ7TJgwgR07dnDgwAGzS3GZqh4xTAF2aa3bAbtst0uTq7XubPt4oMT984FFWuu2QDowpIr1CHdr3Nhope1ApJ8fFuCUxUJI/fo0adyY9Hr1uLZJEyIjI6kXHIzFYiE1JYVDhw5x8OBBTiQmkpGby2+pqbXmahDh+UJDQxk9erTLF6YyU1WD4UFgje3rNcBDFX2iMvon3wFsvpznCw/RubMxnORAHS8v7qhXj+XJyeRarfyck8NX585xX/36+Pv5UT84mMaNG9OyZUs6dOhAy5YtqR8cjLZYeGf/fvr06UOvXr0YP348K1as4KuvvuLs2bNUx+7Aovq7//778fX1ZfPmzY43roaq1HZbKZWhtQ6xfa2A9OLbF21XBPwEFAHztNbblFKNgG9tRwsopVoAH2utr3K0X2m77UHeeQf+3/+7ZNZzabIsFmacOsV32dnU9/ZmTHg4verXL/sJ+fnGVUn79qGVIikpibi4uAsfsbGxAERFRREdHU1UVBRRUVFERETIug3C5RISEhg+fDjvvPMOYWFhZpdTIRVtu+0wGJRSnwNNSnkoBlhTMgiUUula60vOMyilmmmtTyql2gC7gR5AJpUIBqXUcGA4QGRk5LXHjh1z9L0Jd8jKgr/+1ZjgVtZlp5crPR0mTIDRo0t9WGtNcnLyhZAo/lxQUHAhJIpDo1mzZrLym3C6ZcuWcfToUebPn292KRXitGBwsJN4oLvWOkkpFQF8qbXu4OA5bwEfAP8BkoEmWusipdQNwHSt9V2O9itHDB5m6lTYtMlone0shYXGENX//Z9xHqMSUlJSLjmyyM7OpkOHDnZHF5GRkRIWokoKCgro27cvzzzzDLfccovZ5TjkrmBYAKRqrecppaYAoVrrSRdt0wDI0Vrn24aP/gc8qLX+Qyn1HvAfrfW7SqnlwC9a66WO9ivB4GHS0uD2241V2cpojVEpWkNGBkyaBCNGVP31gPT09EvCIiMjg/bt29uFRatWrfCWq6BEJezdu5eZM2eyadMmAgMDzS6nXO4KhobAJiASOAb00VqnKaW6AiO11kOVUjcCKwArxsnuxVrr1bbntwHeBUKB/cBjWut8R/uVYPBAn30Go0YZbSyqOqSUkQHR0bB1q/OHp0rIysqyC4u4uDjOnj1Lu3bt7MKiTZs2Zc/OFgL417/+RWhoKOPHjze7lHK5JRjMIsHgoVasgPnzjXAorfeRI1obC/00bQpbtkCjRs6v0YHz589z4MABu/MWp06d4oorrrA7b9G2bVv8Lm76J2qt9PR0+vbty6uvvkqHDuWOpptKgkGYY906mDXLaMcdHFxucz07hYWQnQ1XXgmrV5sSCmXJycnh4MGDdmFx4sQJWrZseeGoIjo6mnbt2uFfgfYgombavn07mzdv5q233vLYc1cSDMI8Bw/C+PFw4IBxFBAcXHrbDK2NS1Lz8owho2efhSefrBYznfPz8y8Ji6NHj9K8efNLwsLTx52Fc2itGTFiBD169KBv375ml1MqCQZhLqvVWNXt9dfhm2+MoSWLxbgfjNtFRRAaaoTBo4961FHC5SgoKODw4cMXgiIuLo7Dhw/TtGlTu0tn27dvT926dc0uV7jA0aNHGTp0KG+//Tbh4eFml3MJCQbhOfLzjaOHQ4cgJ8c4ImjcGDp2hPDwig83VUNFRUUkJCTYXQ118OBBwsPD7c5ZREVFEWxbL1tUbytXruTgwYMsWLDA7FIuIcEghIeyWCwcO3bMblLegQMHCAkJuWQWdwNnzg0RblFQUEC/fv0YN24ct912m9nl2JFgEKIasVqtHD9+3O7IIi4ujrp169qFRXR0NA0bNjS7XOHAvn37eP7553nvvfc86hyTBIMQ1ZzVauXkyZN2QREXF4efn5/dUUV0dDRhYWHSH8rDzJgxg3r16vHMM8+YXcoFEgxC1EBa6zKbCZYMC2kmaL6MjAz69OnDyy+/THR0tNnlABIMQtQaFWkmWBwa0kzQvT744APeffdd1qxZ4xGtViQYhKjlUlJSiI+PtwsLaSboXlprRo0axW233Ub//v3NLkeCQQhxqfKaCZYcipJmgs5z/Phx/vGPf/D222/TuJKdgp1NgkEIUSGlNRNMTk6mbdu2dmEhzQQv3+uvv05cXBwLFy40tQ4JBiHEZcvOziY+Pr7cZoLR0dFcccUV0kywAgoKChgwYACjR4+me/fuptUhwSCEcKqymgm2atXKLiykmWDpfvzxR5577jk2b95s2twGCQYhhMuV1UywRYsWl4SFJ030MsvMmTMJDAxk4sSJpuxfgkEIYYrSmgkmJCQQERFhdzVUhw4dCAoKMrtct8rMzKR3794sXryYjh07un3/EgxCCI8hzQT/9NFHH7FhwwbWrl3r9iu/JBiEEB6tvGaCF7f8CAkJMbtcp9Fa8/TTT3PTTTcxcODAix+E1FRITze+DgmBsDCndSCWYBBCVDtWq5UTJ07YhUV8fDxBQUGXhEV1biZYPLdh/fr1RISFwVdfwdtvww8/wLlzfy6Na7FAYCB06gQDBsAdd0AVrgJzSzAopUKBjUAr4CjQR2udftE2twOLStwVBfTTWm9TSr0F3AZk2h57Qmv9k6P9SjAIUXuUbCZY8iR3yWaCxZ+rUzPB1atWYd2+naGnTqEybX8CAwON1QyLvwetjQWtcnP/fDwmBv7+99JXRXTAXcHwApCmtZ6nlJoCNNBaTy5n+1DgENBca51jC4YPtNabK7NfCQYhareymgkqpS45Z+GRzQQzMrBMmEDye+9Rt1Ej6lZ09cL8fGOxq+uvh8WLjWGmSnBXMMQD3bXWSUqpCOBLrXWHcrYfDtymtR5ou/0WEgxCCCeoTDPB5s2bmxcWqanQpw8cPUqOnx8nT52izRVX4F3RIwCtISMDmjSBzZshIqLCu3ZXMGRorUNsXysgvfh2GdvvBl7SWn9gu/0WcAOQD+wCpmit8x3tV4JBCFFR5TUTLDkU1aJFC9c3E8zPh4cegoMHjRPLwKmkJLyUokmTJpV7rYwMaN4cPvwQKnjZr9OCQSn1OVBaxTHAmpJBoJRK11qXuhah7YjiF6Cp1rqwxH2nAT9gJXBYaz2zjOcPB4YDREZGXnvs2DEH35oQQpQuPT39krC4uJlgdHQ0LVu2dO4lpS+8ACtWGKFgO2KxWCwcTkigRfPm1KlTp7LfiHFS+t//rtDmHjeUpJQaB1yptR5exuPdgYla6/sc7VeOGIQQzubyZoJxcXD//cZ/9xc9PzMri9TUVFq3alW5IS6LxbiKadMm6NLF4eYVDYaqtkrcDgwG5tk+v1/Otv2BqSXvUEpF2EJFAQ8Bv1WxHiGEuCzBwcF069aNbt26XbivZDPB77//nnXr1pGUlESbNm0q30zw9deNP+SlhEpwcDAZGRmkpaWxOC+PvTk55FqtNPLx4fGGDXmorHkcxUczy5YZr+8kVT1iaAhsAiKBYxiXq6YppboCI7XWQ23btQL+C7TQWltLPH83EAYo4Cfbc8472q8cMQghzOKomWDx0YVdM8GMDLjuOuNy0zKGpgoKCjhy9Ci6aVPaBAbi5+XF0fx8hh87xsstWhBd1jCT1QpZWfDNN8YJ6XK45YhBa50K9Cjl/n3A0BK3jwLNStnujqrsXwgh3C0wMJBOnTrRqVOnC/dd3Exw69atds0Eb7NYuCE/H7+gIMo6ve3n50fD0FBy0tPxrVsXMP5jVkqRWFhYdjB4eRkfe/fCAw845XuUVTeEEKKK/P39ueqqq7jqqqsu3FeymWDh6tVkpaaSlpKCr58fAQEBdh/Fl6qGNmxI5pEjzDh6lJ15eeRrTYeAAG6yBUWZCgvhp58kGIQQwpMVz8yOjo6Gjz+GiAjC6tUjPz+fvLw88vLyOJeVRV5+Pj4+PhdCIiQkhAEpKcS0a8fv+fn8kJODn6MT0v7+8JvzTtFKMAghhKvl5oKXF0qpCwFQTAMF+fnk2sIiLy+PgoICigoK6BwYyEeZmWxOT6dfaGjZr+/l9WfbDCeQYBBCCFfz9zdOEpdCYQxF+fv7Q/36gBEWxccIFiCxoKD819fa2IeTuHianxBCCKKijPMADqQVFfFZVha5VitWrfnf+fN8mplJN0czm/PzoUOZ3YgqTY4YhBDC1a6+ukLtshWwOT2dOUlJWIEIX1+ebdyYW+vVK/+J3t5w7bVOKRUkGIQQwvW6dDGGkqzWcttlN/DxYWXLlpV7bavVGErq6nB6QoXJUJIQQrhaWBj06GFMRHO2c+egWzeIjHTaS0owCCGEOwy3tYkr4yT0ZSk+Whg1ynmviQSDEEK4R5cu0Ls3FK/W5gyZmdCrF9xyi/NeEwkGIYRwn5gYo5+RM8IhKwsaNoSZpa5UUCUSDEII4S5168I770CDBkZjvctpYqq1ESxBQfD221DexLfLJMEghBDuFBkJ27ZBx45GOFRgfsMFhYXGc1q3hq1boW1bl5QowSCEEO7WtKnxh33KFCgoMP7YZ2eXfmLaaoWcHGObvDwYO9ZYzrNVK5eVJ/MYhBDCDN7eMGwY9OsHO3bAunXGWtA+PheW/URr4yihTRt47DFjvWhb2wxXkmAQQggz1atnrNs8YIBx9HDokHF0AEYItG3r1D5IFSHBIIQQnsLPzzj3YDI5xyCEEMKOBIMQQgg7Sl/OdbQmU0olA8ec+JKNgBQnvl5NJe+TY/IeVYy8T4654j1qqbUOc7RRtQwGZ1NK7dNaO681YQ0l75Nj8h5VjLxPjpn5HslQkhBCCDsSDEIIIexIMBhWml1ANSHvk2PyHlWMvE+OmfYeyTkGIYQQduSIQQghhJ1aGQxKqd5Kqd+VUlalVJln/ZVSvZRS8UqpQ0qpKe6s0RMopUKVUjuVUgdtnxuUsZ1FKfWT7WO7u+s0g6OfDaWUv1Jqo+3x75RSrdxfpfkq8D49oZRKLvHzM9SMOs2klHpDKXVWKfVbGY8rpdQrtvfwF6VUF1fXVCuDAfgNeAT4v7I2UEp5A68BdwMdgf5KKfPnqrvXFGCX1rodsMt2uzS5WuvOto8H3FeeOSr4szEESNdatwUWAfPdW6X5KvE7tLHEz88qtxbpGd4CepXz+N1AO9vHcGCZqwuqlcGgtY7VWsc72KwbcEhrnaC1LgDeBR50fXUe5UFgje3rNcBDJtbiSSrys1HyvdsM9FCquGVmrSG/QxWgtf4/IK2cTR4E1mrDt0CIUirClTXVymCooGbAiRK3E2331SaNtdZJtq9PA43L2C5AKbVPKfWtUqo2hEdFfjYubKO1LgIygYZuqc5zVPR36O+2IZLNSqkW7imtWnH736Ia211VKfU50KSUh2K01u+7ux5PVd77VPKG1lorpcq6hK2l1vqkUqoNsFsp9avW+rCzaxU10g7gHa11vlJqBMZR1h0m11Tr1dhg0FrfWcWXOAmU/O+lue2+GqW890kpdUYpFaG1TrIdup4t4zVO2j4nKKW+BK4BanIwVORno3ibRKWUD1AfSHVPeR7D4fuktS75nqwCXnBDXdWN2/8WyVBS2b4H2imlWiul/IB+QK244qaE7cBg29eDgUuOtJRSDZRS/ravGwE3AX+4rUJzVORno+R79yiwW9e+SUMO36eLxsofAGLdWF91sR143HZ10vVAZokhXtfQWte6D+BhjHG6fOAM8Knt/qbARyW2uwc4gPHfb4zZdZvwPjXEuBrpIPA5EGq7vyuwyvb1jcCvwM+2z0PMrttN780lPxvATOAB29cBwHvAIWAv0Mbsmj30fZoL/G77+fkCiDK7ZhPeo3eAJKDQ9ndpCDASGGl7XGFc3XXY9jvW1dU1ycxnIYQQdmQoSQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELYkWAQQghh5/8D+Hbjig77/OkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -260,7 +261,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOX9///nPUkme8ISkE1kEwVUUJBFlCXSIr9WserHhWqpBelGa7FYtUlICKRVsCK0YuUrVgRxAbQF60JFEJFN3KAIAkIhbGHJRibLZDL374+TYIQsE2Yy9yzvx3XNlcnk5JwXw+R9zrnPfe5baa0RQggRXmymAwghhPA/Kf5CCBGGpPgLIUQYkuIvhBBhSIq/EEKEISn+QggRhqT4CyFEGJLiL4QQYUiKvxBChKFI0wHqk5KSort06WI6hhBCBJVPP/30lNa6TWPLBWzx79KlC9u2bTMdQwghgopS6qAny0mzjxBChCEp/kIIEYak+AshRBiS4i+EEGFIir8QQoQhKf5CCBGGArarpxB1qaqCLVvgiy+sr3l54HZDcjL07w99+8L110NioumkQgQ2Kf4iKJSWwksvwcKFUFwMlZUQGQlRUdbPDx2Cbdus7202uO02+OUv4eKLzeYWIlBJ8RcB75NP4He/g+PHITa2/qP6hATrq8sFr70Gb7wB6ekwbpy1QxBCfEv+JERAe+kluOceOH0aWraEmJjGfycy0lrWbofMTJg8GZzO5s8qRDCR4i8C1iuvwPTpEB//7VF9U9jt1rWAd9+1zhzcbt9nFCJYSfEXAemrr2DaNKvw17TrXwibDVq0gPfeg0WLfJdPiGAnxV8EHKcTHnwQlLKO3r1ls1k7kccfh//9z/v1CREKpPiLgLN6NRw44Nvumna71UNo3jzfrVOIYCbFXwScv/8dIiKsI/+GVFUVc/jwVHbvvp59+35IUdG7DS6fnAxvvQX5+T4MK0SQkq6eIqAcOQK7d1uFujHHjz+OUlH07Lma8vI95OY+SExMT6Kju9W5fEQEaA1r18Ltt/s4uBCeqKqCPXtg1y7rwlZJiXVRq0cP6NUL+vSx2ij9QIq/CCg7d3p21O92l3HmzAd06/Y6NlsccXH9SEwcTlHRv2nb9jcN/J51M5gUf+FX+fnWzScvvGDdpeh2WzsCm806IoFvezbceiv89Kdw+eXNGkmKvwgoO3d61iff6TwERGC3dz77WnT0pZSWftbg78XEwKefehlSCE9pDStXWncblpVZH8CGLma5XLBsGaxYAffdB1OnQlxcs0ST4i8CyunTnt2N63aXYrPFU1nppKCgAKVslJdrysryKS4uwmaLwGazYbPZiIiwfed5UVHz/zuEwOmE3/8e3n7bujW9RYvGf6fmDsWqKqtv8po1sGRJs4xTIsVfBCWbLQ6328GBA/+jstJJ27Ztqawsxu22c+bMGdxuN1VVbtzuKtxu99nvtY4kKqqSW255lPj4eOLi4oiPjz/veV0/S0hIIC4u7uzzqKgoVGPtUyI8uVzwq19ZF5iSk5s+vkhEhLUTOHrUaqN8803o2NGnEaX4i4DSrp1nd+La7Z1xOstp2bIQpVqSlJRMZeUJEhKuom3bTvX8lsbh0Fx8sYtnn30Wh8Nx9lFaWvqd5ydOnDjvtXOXd7vdTdpZNLRzsdvtsiMJJXPnwgcfWAXcm//X5GTresHPfmZ1VfPmjsdzSPEXAeWKKyA6uvHlSktd2GzXotQbJCb+nNOnN3LmzId06fKPBn5LUVGhGDrUTkcfHEU5nU5KS0spLS2lpKTkvOc1O4rTp0+Tm5tb747G4XDgcrmatLNo6IwlOjpadiQm/fe/Vn/lpCTvCn+N5GT45htrnb+pvzNDU0nxFwGld2/rjNntrv9M2eVycezYMS65JIvCwtnk5/8YlyuaSy55rN5unjUiIqxx/33Bbrdjt9tp4UlbbiMqKyvP7gjqOsuoeV5QUMDhw4fr3ZGUlJTgcrmatLNo6CwlJiZGdiRNlZFhfY30UXlVyur++be/wd13Q5s2PlmtFH8RUNq2hYEDrWGc6+7rrzl27CgtWrQgMbEtiYl/ATR79uwlLq5Lg+uumQNg5MhmCO6lqKgokpOTSfbkBodGuFwuj3YkRUVFHDlypN4zltLSUpxO59mdgqdNWvWdscTGxob+jmTPHtixo9EbVV7Pz2dVURH7KioYnZREVocODa83KgocDli+3Jqowgek+IuA88ADVvHX+vyz5oKCAqqqqkhJqX30o0hMTKS4+AytW7eud71nzli95/x0D40xkZGRJCUlkZSU5PW6qqqqvrMjqa95q7i4mOPHjzd4HaWiooKYmBivmrRqdjYxMTHYAnGShuXLrdPWRnZyKZGRTEhJYVNJCRU1/fwbExNjjXEuxV+EquHD4eqr4bPPvts7rqKigpMnT9KlS5fzjiCTkhI5efJUvcW/vNwaFnry5OZMHnoiIiJITEwk0QcDLbnd7kYvojscDkpKSjhx4kSDy5WXlxMTE+NVk1bNz+Pi4ny3I/n4Y48mnUit3jF/VVbGCZfLs3VHR8OJE9YF4FatvEkJSPEXAchmg7/8Bb7/feu+mNhY0NrN0aNHaNv2Iuz2868Ix8XF4XRW4HJVEhn53R4RVVXWeubO9VlzqbgANpuNhIQEEi5kcoZzuN1uysrKGryIXvM4derUeddFai9TXl5OdHS0V01a8fHxxEVHk7BnD6q5JpCuGeZ21y4YOtTr1fmk+CulbgLmAhHA81rrx+tZ7nZgOXCt1nqbL7YtQtPFF8Ozz1pNQEpBUdFJoqKiaNGi7rZUpazCcubMGVq2/PaoqKoKioqsnnI/+IG/0ovmZrPZzhZdb7ndbsrLyxu8iF7T1HXq1Kl6z1goKuK53FwckZHYImrdZFj9tfZrNY+KigqrF4KnqqqsOyF9wOvir5SKAJ4BvgccBj5RSq3UWn91znKJwIPAFm+3KcLDiBHw3HPws5+Vcfp0FT17tgfqb0tNTEyioCD/bPEvLYWKCpg0Cf7wB9/0uhOhx2aznT3Sb+PNqWFBAfraa3EnJZ29sfDso8q62bCq1msOh4OCoiJUU5pwtPbZlHS+OPIfCOzTWu8HUEq9CowFvjpnuRnAE8DDPtimCBP9+xfRteuDdO36FLm5kUREWG33dRXyhIR4jh49gsPhwumMpFUrq2v0sGH+zy3CUHw8SmsilCKikW6eVW43+/fvp0VyMsVN2YbN5rOJLnxxlaMjkFvr+8PVr52llLoGuFhr/W8fbE+ECa01OTk53HzzVaxZ04q//tUa9baoyBoY8fRp62txMRQUQFGRjaio1rjdxfzxj9awKFL4hd/Y7dCpk3W62QANHD56FHt8PPboaNyA0+2mypNeP2439Ozpk7jNfsFXKWUDngJ+6sGyk4BJAJ07d25kaRHqVq1axaFDh5g5cyY2G4wZYz0OHbK6Un/xhTX0ictldX64+mrIz9/Drl3LmTBhjun4Ihz17w//+leDPX6Ki4pYcuYMb9Z67e2iIialpDCpoWanyspvdzA+4IvifwSoPeRcp+rXaiQCVwDrqrvntQNWKqVuOfeir9Z6AbAAYMCAAR52fhWhKDc3l3nz5vHcc89hP2ci386drUddF3Adjn6MGfMYDofDJxcDhWiS226DVavq/bGzspLjeXn8vmtX0jzoEvodJSVwzz0+u3jli2afT4BLlVJdlVJ24G5gZc0PtdZFWusUrXUXrXUXYDNwXuEXoobL5SIjI4OJEyfSvXv3Jv1ufHw811xzDRs2bGimdEI04LrrICXF6m1wDg0cPXKElJQUYppa+GvGO/nJT3yTEx8Uf621C5gMvAfsAl7XWu9USmUrpW7xdv0i/CxcuJDExETuuuuuC/r91NRU1qxZ4+NUQnjAZoPHHrPa/c9pwz916hTKZqPVhdygVVwMo0b5rL0ffDSBu9b6ba11T611d611TvVr07TWK+tYdoQc9Yv6bN++nTfeeIPMzMwLHgdm2LBhbNmyhfLych+nE8IDN99s3aZeWHj2pdKyMgry8+nQoUMDnZXrUVpqjUkyc6ZPYwbg4BgiXDkcDtLT00lLSyMlJeWC19OiRQt69+7N5s2bfZhOCA8pBbNnQ/v2UFREldvN0SNHaNe+PVFNHemzvNzq0TB/PjQwbtWFkOIvAsasWbMYPHgww3zQP3PkyJF88MEHPkglxAVo3Rpefx06dKDof/8jLi6OpKb0z9fa6tPsclk3q/hgOIdzSfEXAWH16tXs2LGDKVOm+GR9I0eOZMOGDVRWVvpkfUI0WYcOrPnd71jfujXtYmKsdntP+vKXlVlNRt26wT//CampzRJPir8wLi8vj9mzZ5OTk0NsbKxP1tmmTRu6dOnCtm1yeUmYcfz4cR6fP5+e//oXtsWLoW9f62g+P9/6Wl5uTfJeUWGNN56fb+0gkpKsCWHeegsuv7zZ8smonsIot9vNtGnTGDduHL169fLpumuafoYMGeLT9QrRmNqf6969e1svDh0K+/fDRx/B1q2wc6d1lB8ZCZdcAoMGwbXXwuDBTZ/w/QJI8RdGLVmyBK0148eP9/m6U1NTuf/++3nssccCc+IPEbJeeuklgPM/1926WY9m+Lw3lRR/Yczu3btZvHgxixcvbpbi3LFjR1JSUvjiiy+45pprfL5+Ieqya9cuXn755Wb7XPtK4CYTIa28vJy0tDSmTp1Ku3btmm07qamp0utH+E1ZWRlpaWk8/PDDzfq59gUp/sKIp59+mj59+jB69Ohm3U5N8deezpMqhBfmzJnDlVdeyfe//33TURolzT7C79avX8/GjRtZunRps2+ra9euxMbG8tVXX9GnT59m354IX+vWrWPz5s288sorpqN4RI78hV/l5+eTk5NDdna2T+ZybYxSihtvvFGafkSzOnnyJH/605+YOXNm0IwmK8Vf+I3WmqysLG699Vb69evnt+3WdPmUph/RHNxuN1lZWdxxxx1cddVVpuN4TIq/8Jtly5ZRVFTEAw884NftXn755bhcLr755hu/bleEh1dffZWysjImTJhgOkqTSJu/8Iv9+/ezYMECXnjhBSKbOriVl5RSZ4/+e/To4ddti9C2Z88eXnjhBRYtWkRERITpOE0iR/6i2TmdTtLT0/nNb35jbHrO1NRU1q5da2TbIjRVVFSQnp7OQw89RMeOHRv/hQAjxV80u/nz59OxY0duucXc3D5XXXUVp0+fJjc311gGEVrmzp1Ljx49GDNmjOkoF0SKv2hWW7duZfXq1aSnp1/w5Cy+YLPZGDlypBz9C5/4+OOPWb9+PY899pjRz7U3pPiLZlNUVERWVhaZmZkkJyebjiPTOwqfyM/PZ8aMGWRnZ5PYlDH6A4wUf9EstNbk5OQwatQoBg0aZDoOAP379yc3N5e8vDzTUUSQ0lozffp0brnllqAfL0qKv2gWq1at4tChQ0yePNl0lLMiIyMZNmwY69atMx1FBKlly5ZRUFDApEmTTEfxmhR/4XO5ubnMmzePnJwc7Ha76TjfIU0/4kLVdFeeOXOm37srNwcp/sKnXC4XGRkZTJw4ke7du5uOc57BgwezZ88e8vPzTUcRQcTpdJKWlma0u7KvSfEXPrVw4UISExO56667TEepk91uZ8iQIaxfv950FBFEnnnmGS6++GKj3ZV9TYq/8Jnt27fzxhtvkJmZGdDd32ru9hXCE1u2bOE///kPaWlpAf25biop/sInHA4H6enppKWlkZKSYjpOg66//nq++OILzpw5YzqKCHCFhYVMnz6drKysgOiu7EtS/IVPzJo1i8GDBzNs2DDTURoVFxfHgAED+Oijj0xHEQFMa82MGTMYPXo0AwcONB3H56T4C6+tXr2aHTt2MGXKFNNRPCZj/YjG/POf/+TYsWP88pe/NB2lWUjxF17Jy8tj9uzZ5OTkEBsbazqOx4YNG8bWrVspKyszHUUEoIMHD/LMM88EZHdlX5HiLy6Y2+1m2rRpjBs3jl69epmO0yRJSUn06dOHTZs2mY4iAkxlZSXp6en84he/oGvXrqbjNBufFH+l1E1Kqa+VUvuUUo/W8fOHlFJfKaW2K6XWKKUu8cV2hVlLlixBa8348eNNR7kgMr2jqMtzzz1HSkoKt99+u+kozcrr4q+UigCeAcYAvYF7lFK9z1nsc2CA1voqYDkwy9vtCrN2797N4sWLyc7OxmYLzhPI4cOH8/HHH+N0Ok1HEQHi008/5a233iIjIyOkunXWxRd/tQOBfVrr/VprJ/AqMLb2AlrrtVrr0upvNwOdfLBdYUh5eTlpaWlMnTqVdu3amY5zwVJSUujWrRuffPKJ6SgiABQXFzNt2jSmTZtGq1atTMdpdr4o/h2B2jNkHK5+rT4TgHd8sF1hyNNPP02fPn0YPXq06Shek6YfAVa3zj/96U+MHDmS6667znQcv/Dr+bpS6l5gADC7np9PUkptU0ptO3nypD+jCQ+tX7+ejRs38oc//MF0FJ8YMWIEH374IVVVVaajCIP+/e9/c+DAAX7729+ajuI3vij+R4CLa33fqfq171BKjQLSgFu01hV1rUhrvUBrPUBrPaBNmzY+iCZ8KT8/n5ycHLKzs0lISDAdxyc6dOhA+/bt+fzzz01HEYYcPnyYp59+OqS7ddbFF8X/E+BSpVRXpZQduBtYWXsBpdTVwHNYhf+ED7Yp/ExrTVZWFrfeeiv9+vUzHcenZKyf8OVyuUhPT2fChAn06NHDdBy/8rr4a61dwGTgPWAX8LrWeqdSKlspVTME3mwgAVimlPpCKbWyntWJALVs2TKKiop44IEHTEfxuZq7fd1ut+kows8CfRTa5uSTGQm01m8Db5/z2rRaz0f5YjvCjJpJLF544YWQmMTiXF26dCExMZGdO3dy5ZVXmo4j/OTLL79kxYoVLF26NGi7K3sj/P7FokmcTifp6ekhNYlFXUaOHClj/YSRkpISMjIySE9PD/hRaJuLFH/RoPnz59OxY8eQmsSiLjXTO2qtTUcRfjBr1iyGDBkSFKPQNpfQO4cXPrN161ZWr17NK6+8EvJ3O/bs2ROtNXv37qVnz56m44hm9O6777Jz505efvll01GMkiN/UaeioiKysrLIzMwMuUks6qKUIjU1VXr9hLijR4/yl7/8hZycHGJiYkzHMUqKvziP1pqcnBxGjRrFoEGDTMfxGyn+oa1mFNr77ruPyy+/3HQc46T4i/OsWrWKQ4cOMXnyZNNR/OqKK66guLiYgwcPmo4imsGLL75IVFQU9957r+koAUGKv/iO3Nxc5s2bF3Z3OwLYbDa54StE7dy5k1dffZXp06eHZbfOusi7IM5yuVxkZGQwceJEunfvbjqOETK9Y+gpLS0lPT2dRx99lLZt25qOEzCk+IuzwvluxxrXXHMNR44c4fjx46ajCB958sknufrqq0lNTTUdJaBI8RcAbN++nTfeeIPMzMyQ79bZkIiICIYPHy5NPyFizZo1fP7550ydOtV0lIAjxV/gcDhIT08nLS0tbO92rE2afkLDiRMneOKJJ5g5cyZxcXGm4wQcKf6CWbNmMXjw4LC+27G2gQMHsnfvXk6fPm06irhANd067777bvr06WM6TkCS4h/mVq9ezY4dO5gyZYrpKAHDbrdz3XXX8eGHH5qOIi7QkiVLcLlc/PSnPzUdJWBJ8Q9jeXl5zJ49m5ycHGJjY03HCSgyvWPw2r17N4sXL2bGjBnSrbMB8s6EqZrT4nHjxtGrVy/TcQLOkCFD2LFjB8XFxaajiCYoLy8nLS2NqVOn0r59e9NxApoU/zC1ZMkStNaMHz/edJSAFBcXx7XXXstHH31kOopogjlz5tCnTx9Gjx5tOkrAk+IfhmpOi7Ozs+W0uAEy1k9wWb9+PZs2beIPf/iD6ShBQf7yw0zt0+J27dqZjhPQrr/+ej755BNKS0tNRxGNOHXqFDNnzmTGjBkkJCSYjhMUpPiHmaeffprevXvLabEHkpKS6Nu3Lxs3bjQdRTTA7XaTlZXF7bffTt++fU3HCRpS/MPI+vXr2bhxI4888ojpKEFDBnoLfK+99hoOh4OJEyeajhJUpPiHifz8fHJycsjOzpbT4iYYMWIEGzduxOl0mo4i6rB3714WLlzIjBkziIiIMB0nqEjxDwNaa7Kyshg7diz9+vUzHSeotGrVip49e7JlyxbTUcQ5KioqSE9P53e/+x2dOnUyHSfoSPEPA8uWLaOwsJBJkyaZjhKUpOknMP31r3+lW7du/OAHPzAdJSjJBO4hbv/+/SxYsIAXXniByEj5774QqampPP/887hcLnkPA8TGjRtZu3Ytr7zySliPQusNOfIPYU6nk/T0dCZPnkznzp1NxwlaF110ER07duSzzz4zHUVgXb/Kzs4mOzubpKQk03GClhT/EDZ//nw6duzI2LFjTUcJenLDV2DQWjNjxgx++MMf0r9/f9NxgpoU/xC1detWVq9eTXp6upwW+0DNGP9ut9t0lLC2YsUKTp06xc9//nPTUYKeFP8QVFRURFZWFpmZmSQnJ5uOExI6d+5MixYt2LFjh+koYevAgQP8/e9/Z+bMmURFRZmOE/Sk+IcYrTU5OTmMGjWKQYMGmY4TUqTpxxyn00laWhq//vWvueSSS0zHCQk+Kf5KqZuUUl8rpfYppR6t4+fRSqnXqn++RSnVxRfbFedbtWoVhw4dYvLkyaajhJyaph+ttekoYefZZ5+lQ4cO3HrrraajhAyvi79SKgJ4BhgD9AbuUUr1PmexCUCB1roHMAd4wtvtivPl5uYyb948cnJysNvtpuOEnB49emCz2fj6669NRwkrW7du5b333pPrVz7miyP/gcA+rfV+rbUTeBU4t3vJWGBR9fPlwI1K/hd9yuVykZGRwcSJE+nevbvpOCFJKSVNP35W+/pVixYtTMcJKb4o/h2B3FrfH65+rc5ltNYuoAho7YNti2oLFy4kMTGRu+66y3SUkFbT9COan9aamTNn8r3vfU+uXzWDgLrgq5SapJTappTadvLkSdNxgsb27dtZsWIFmZmZclrczHr37o3D4eDAgQOmo4S8lStXcvjwYX7961+bjhKSfFH8jwAX1/q+U/VrdS6jlIoEkoHT565Ia71Aaz1Aaz2gTZs2PogW+hwOB+np6aSlpZGSkmI6Tsiz2WyMHDlSjv6b2aFDh/jrX/8q16+akS+K/yfApUqprkopO3A3sPKcZVYCNZPF3gF8oKXLhE/MmjWLwYMHM3z4cNNRwkZqaipr1qwxHSNkuVwu0tPTmTRpEt26dTMdJ2R5PUqV1tqllJoMvAdEAC9orXcqpbKBbVrrlcBCYLFSah+Qj7WDEF5avXo1O3bs4OWXXzYdJaz069ePEydOcPToUTp06GA6TshZsGABLVu25P/+7/9MRwlpPhmiUGv9NvD2Oa9Nq/W8HJD/SR/Ky8tj9uzZzJ07l9jYWNNxwkpERATDhw9n7dq1/PjHPzYdJ6R89tlnrFy5kqVLl8r1q2YWUBd8hWfcbjfTpk1j3Lhx9O597i0Vwh+k6cf3zpw5w7Rp08jIyKBVq1am44Q8Kf5BaMmSJWitGT9+fOMLi2Zx7bXXcuDAAU6dOmU6SkjQWvPnP/+ZYcOGMXToUNNxwoIU/yCze/duFi9ezPTp07HZ5L/PlKioKK6//nrWrVtnOkpIeOedd9i3bx8PPvig6ShhQ6pHECkvLyctLY2pU6fSvn1703HCnkzv6BtHjhzhqaeeYubMmURHR5uOEzak+AeRp59+mt69ezN69GjTUQRw3XXXsXPnToqKikxHCVpVVVVkZGTws5/9jJ49e5qOE1ak+AeJ9evXs3HjRh555BHTUUS1mJgYBg0axIcffmg6StBauHAhsbGx3H239P72Nyn+QSA/P5+cnByys7NJSEgwHUfUInf7Xrjt27ezfPlysrKy5PqVAfKOBzitNVlZWYwdO5Z+/fqZjiPOccMNN/Dpp59SWlpqOkpQqRmW5I9//CMylIsZUvwD3LJlyygsLGTSpEmmo4g6JCQk0K9fPzZs2GA6SlCpGZZkxIgRpqOELSn+AWz//v0sWLCAmTNnEhnpk5uxRTO48cYbpddPE9QMSzJlyhTTUcKaFP8A5XQ6SU9PZ/LkyXTu3Nl0HNGAYcOGsWnTJioqKkxHCXjHjx9n9uzZ5OTkyLAkhknxD1Dz58+nY8eOjB177qRoItC0bNmSyy+/nM2bN5uOEtBqhiW599576dWrl+k4YU+KfwDaunUrq1evljlLg4g0/TRu0aJFKKW47777TEcRSPEPOLXnLE1OTjYdR3hoxIgRfPTRR1RWVpqOEpC++uorli5dSnZ2tnTrDBDyvxBAtNbk5OQwatQombM0yLRt25bOnTvz6aefmo4ScEpLS0lPT+eRRx7hoosuMh1HVJPiH0BWrVrFoUOHmDx5suko4gKkpqZK008dnnrqKfr27cuoUaNMRxG1SPEPELm5ucybN0/mLA1iqamprFu3DrfbbTpKwPjggw/Ytm0bDz/8sOko4hxS/AOAy+UiIyODiRMn0r17d9NxxAXq1KkTKSkpfPnll6ajBIQTJ07w+OOPM2PGDOLi4kzHEeeQ4h8AFi5cSGJiInfddZfpKMJLMtaPxe12k5WVxZ133smVV15pOo6ogxR/w7788ktWrFhBZmamdOsMATXt/lpr01GMWrp0KRUVFdx///2mo4h6SPE3yOFwkJGRQVpaGikpKabjCB/o1q0bdrudXbt2mY5izJ49e1i0aBEzZswgIiLCdBxRDyn+BtUMbjV8+HDTUYSPKKXCutdPzWxzDz30EB06dDAdRzRAir8hMrhV6Arnpp+5c+dy2WWXMWbMGNNRRCNkqEgD8vLymD17NnPnzpXBrUJQr169qKio4MCBA3Tr1s10HL/56KOP2LBhA0uXLjUdRXhAjvz9zO12k5GRwbhx4+jdu7fpOKIZ1DT9rFmzxnQUv8nPz2fmzJlkZ2eTmJhoOo7wgBR/P1u8eDEA48ePN5xENKfU1NSw6fJZM9vcrbfeytVXX206jvCQNPv40e7du1myZAkvvfSSDG4V4vr27cupU6c4fPgwnTp1Mh2nWS1btoyioiIeeOBsEAaQAAAW0klEQVQB01FEE0gF8pOaXhBTp06lffv2puOIZmaz2RgxYkTI9/qR2eaClxR/P5kzZw69e/dm9OjRpqMIPwn1ph+n00laWhq//e1vufjii03HEU3kVfFXSrVSSv1HKbW3+mvLOpbpp5TapJTaqZTarpQKuzEM1q9fz6ZNm3jkkUdMRxF+1L9/fw4ePMiJEydMR2kWf/vb3+jcuTM333yz6SjiAnh75P8osEZrfSmwpvr7c5UCP9Fa9wFuAp5WSrXwcrtB4/Tp0+Tk5JCdnU1CQoLpOMKPoqKiuP7661m3bp3pKD63efNm1qxZQ1pamgxLEqS8Lf5jgUXVzxcBt567gNZ6j9Z6b/Xzo8AJoI2X2w0KWmumT5/O2LFj6devn+k4woBQnN6xsLCQ6dOnM336dJKSkkzHERfI2+J/kdb6WPXz40CD0/QopQYCduAbL7cbFJYtW0ZhYSGTJk0yHUUYMnjwYHbt2kVBQYHpKD6htWbGjBmMGTOGAQMGmI4jvNBo8VdKva+U+m8dj7G1l9PWvez13s+ulGoPLAbu11rXOduFUmqSUmqbUmrbyZMnm/hPCSzSC0IAREdHM2TIENavX286ik+8+eab5OXl8ctf/tJ0FOGlRquS1rreudeUUnlKqfZa62PVxb3OK1tKqSTg30Ca1npzA9taACwAGDBgQNAOjFLTC2Ly5Ml07tzZdBxhWGpqKv/+978ZO3Zs4wsHsP/973/Mnz+f559/nqioKNNxhJe8bfZZCdTcqjoe+Ne5Cyil7MCbwEta6+Vebi8ozJ8/n06dOgX9H7vwjaFDh/L5559TUlJiOsoFq6ysJD09nV/96ld06dLFdBzhA94W/8eB7yml9gKjqr9HKTVAKfV89TJ3AsOAnyqlvqh+hOzVz61bt7J69WrS09OlF4QAID4+nv79+7NhwwbTUS7Y3//+d9q2bcuPfvQj01GEj3jVGK21Pg3cWMfr24CJ1c+XAEu82U6wKCoqIisri8zMTJKTk03HEQFk5MiRfPDBB9x0002mozTZtm3bePvtt1m6dKkc0IQQucPXR7TW5OTkMGrUKAYNGmQ6jggww4cPZ8uWLZSXl5uO0iTFxcVkZmYybdo0WrY87x5OEcSk+PvIqlWrOHToEJMnTzYdRQSg5ORk+vTpw6ZNm0xH8VjNAc2NN97IkCFDTMcRPibF3wdyc3OZN28eOTk52O1203FEgKpp+gkWb731FgcPHpQDmhAlxd9LLpeLjIwMJk6cSPfu3U3HEQFs5MiRbNiwgcrKStNRGpWbm8vcuXPlgCaESfH30sKFC0lMTOSuu8JuvDrRRCkpKXTt2pVPPvnEdJQG1RzQPPDAA3JAE8Kk+Hvhyy+/ZMWKFWRmZkovCOGRmsndA9nzzz9PUlISd955p+koohlJ8b9ADoeDjIwM0tLSSElJMR1HBInU1FQ+/PBD3O46Rzgx7osvvuDNN9+UA5owIMX/As2aNYvBgwczfPhw01FEEOnQoQNt27bl888/Nx3lPCUlJUybNo309HRat25tOo5oZlL8L8Dq1avZsWMHU6ZMMR1FBKFAbfp54oknGDp0KDfccIPpKMIPpPg3UV5eHrNnz2bmzJnExsaajiOCUM30joHU9PPOO++we/duHnzwQdNRhJ9I8W8Ct9tNRkYG48aNo3fv3qbjiCDVtWtX4uLi+Oqrr0xHAeDo0aM89dRT5OTkEBMTYzqO8BMp/k2wePFiAMaPH9/IkkI0LFCafqqqqsjIyGD8+PH07NnTdBzhR1L8PbR7926WLFnC9OnTsdnkbRPeqWn6seZAMufFF18kOjqacePGGc0h/E+qmAfKy8tJS0tj6tSptG/f3nQcEQIuu+wyqqqq2Ldvn7EM//3vf3nttdfIysqSA5owJP/jHpgzZw69e/dm9OjRpqOIEKGUYuTIkaxdu9bI9ktLS0lPT+exxx6jbdu2RjIIs6T4N2L9+vVs2rSJRx55xHQUEWJSU1NZs2aNkW0/+eSTDBgwgJEjRxrZvjBPin8DTp8+TU5ODtnZ2SQkJJiOI0LMlVdeSWFhIYcOHfLrdt9//32++OILHnroIb9uVwQWKf710Fozffp0xo4dS79+ITvrpDDIZrP5veknLy+PWbNmMXPmTOLi4vy2XRF4pPjXY9myZRQWFjJp0iTTUUQI82fTj9vtZtq0adxzzz1yn4rwbg7fULV//34WLFjACy+8QGSkvEWi+VxzzTUcOXKE48eP065du2bd1pIlS9Bay30qApAj//M4nU7S0tKYPHkynTt3Nh1HhLjIyEiGDRvGunXrmnU7u3btYvHixWRnZ0u3TgFI8T/P/Pnz6dSpE2PHjjUdRYSJ5p7esaysjPT0dB5++OFmP7sQwSM8ir/LBYWFUFAATme9i23dupXVq1eTnp4uY5kLvxk8eDB79uwhPz+/WdY/Z84crrjiCr7//e83y/pFcArNBm2tYccOWL4ctmyBb7757s+6dIFrr4XbbrO+KkVRURFZWVlkZmaSnJxsLLoIP3a7neuuu45169Zx2223+XTdH374IVu2bGHp0qU+Xa8IfqFX/LduhWnTrIJfVQUxMZCUBDXtnG43HD8Or78OK1ZAx47oadPIefddRo0axaBBg8zmF2Fp5MiRrFy50qfF/9SpU+Tk5PDkk08SHx/vs/WK0BA6xb+8HHJy4JVXICLCKvh1Nd3YbBAbaz20hrw8SseNY0RSEqM2bvR/biGAoUOHMmPGDM6cOUNiYqLX63O73WRlZXHHHXdw1VVX+SChCDWh0eZfWgr33QcvvwyJidbDkzZ7pXBGRXHE4eB75eXYf/xjaKZ2VyEaEhcXx4ABA/joo498sr5XX32V0tJSJkyY4JP1idAT/MXf7YYHHoDPPoOWLa2jfg9prTly9Cit27Qhqk0bq6novvugoqIZAwtRtxtvvNEnvX727t3LP/7xD2bMmEFEE/4eRHgJ/uL/4ouweTO0aOHZ0X4tp06dIsJmo1WrVtbvJifD7t3w9NPNk1WIBtxwww1s3bqVsrKyC15HRUUFaWlpTJkyhY4dO/ownQg1XhV/pVQrpdR/lFJ7q7+2bGDZJKXUYaXU37zZ5nccOgSzZkF8fJMLf2lZGQUFBbTv0IGzv6mU1WT0//4f7Nzps5hCeCIpKYkrr7ySjV5ce5o3bx49evRgzJgxPkwmQpG3R/6PAmu01pcCa6q/r88MYL2X2/uuF1+Eykqw2xtcLOPIEUbv3cuwr7/mtm++4Y38fI4cOUL79u2JOnf4hprvn33Wp1GF8IQ3TT8ff/wx69ev57HHHpP7VESjvC3+Y4FF1c8XAbfWtZBSqj9wEbDay+19q7QUXn0VPBhq+f6UFFZ17876yy7jqU6dmHvkCMfs9vp7VSQmwnvvwcmTPosrhCeGDx/Oxx9/jLOBmxHrkp+fz4wZM5g+fbpPeguJ0OdtV8+LtNbHqp8fxyrw36GUsgF/Ae4FRnm5vW99/rl1sTcqqtFFu0VHn31+pqQEt9tNWVJS/b8QEWE1AW3eDDff7Iu0QnikdevW9OjRg7VrP6VlyyHs2QPFxdYJaatW0KsXXHrpd092tdZkZ2dzyy23cM0115gLL4JKo8VfKfU+UNeAIGm1v9Faa6VUXbNR/wp4W2t9uLFTUaXUJGAS0Pigajt3NjhUw7keP36clQUFFJeXc0ViIjc0VPzBak76/HMp/sJvqqrgo49g9+407rknmbZtrY+hy2Udi0RFfduZ7Uc/gp/8xNoZLF++nPz8fBl+XDRJo8Vfa13v0bpSKk8p1V5rfUwp1R44UcdiQ4AblFK/AhIAu1KqRGt93vUBrfUCYAHAgAED6tqRfGv79iZ163ykXTvuLC/nYHIy++127I21icbEWNsQwg+++QZ+9zurs5nL1YnKyv0kJLQEzv+culzWDerLl0NqaiFff72Yl176mww/LprE20/LSmA88Hj113+du4DW+sc1z5VSPwUG1FX4m6yk5NshGzxQWVlJmcNBF+Cd4mKeKyzkR/HxRNhs2Gw2bBER333udKJPnuRMXh7x8fHExcXJULiiWaxYAX/8o9WKad2YHkVxsR2Ho7TOYRkiI61bWqqq3Lz8cgXt2y/C4ai3o50QdfK2+D8OvK6UmgAcBO4EUEoNAH6htZ7o5frrFxVlDc/gIXtUFN179MDtdhOdl0eBUsTGxuJ2u3FXVVFZWUlF9fMqt5tIp5OjZWVk3n8/JSUllJeXExMTQ3x8/HceCQkJTX5NjtBEjaVLISPD6q1cux0/MTGRM2fONDgmz6lTJ0lIqMRma8udd8Jrr4FM0CU85VUV0lqfBm6s4/VtwHmFX2v9IvCiN9s8q0cPeP/9RhfLd7nYVlrK9QkJxNjtbHE4WFtezp86dqRlQ70iCgvpePPNvD1nDmCNlVJWVobD4aCkpASHw/GdR81r+fn55ObmNrhcZGTkBe00an+fkJBAVFSUdOkLYjVjEJ5b+AGSkhI5ePAg7dpdRF1NPw6Hg+LiYrp160pEhOLMGesawPvvW/c7CtGY4D0E7du30f79YP3ZLC8o4E/HjuEG2kdF8fuLLmJYY93htLaGe65ms9nOFuC2bdtecGytNRUVFeftNM7dQZSUlJCXl9fgcm6326szkJpHbGys7ET8zOGABx+0mnDq+hjb7dFERERQVlZGbOx3J1qvqnJx9OhROnToQESE9SecmGhNWZGZCXPn+uNfIIJd8Bb/q6+2Gknd7gbb/ltGRrLgkkuatm6trXX27+9lyPMppYiJiSEmJobWrVt7tS6n00lpaWmdO4jaz0+fPl3vmYrD4cDpdBIXF+eTHYlcF/HM88/DiRNW2319EhMTKS4+c07x1xw7dozk5KTzmoSSkuDtt2H8eJAen6IxwVv8L7oIrr/e6hvn6/NchwN69oTLLvPten3Mbrdjt9tp4eW/v6qq6rydQ11nG3l5eQ02eZWVlREdHe3RTqOhnUlcXBxRHty/EaycTvjHPyAuruHl4uNj2L8/gzNnvqGqqpioqE7Exf2EysqedY7bY7NZx0L/+IcUf9G44C3+AJMmWcW/kaP/JtHa6lz961/7Zn1BICIigqSkJJIau/ehEW63m/Ly8gZ3EA6Hg4KCAg4fPtxgk5c310Vqv2a32wOuSWvDBusG9cbe7piYSGy2Nlx00YMkJHShsHAtBw8+So8er2PdO3m+pCTr5vTi4sbXL8JbcBf/IUNgzBh45x3fHf0XFcHAgXDTTb5ZXxix2WzExcUR19ghbSO01jidzrM7B2+ui1RVVXndlJWQkEBMTIzPmrS2brWOLxpjs8WRkvIA5eWKhAQoLOxKTMzFuN0HgK51/k5EhHUctHOn9echRH2Cu/gDZGfDpk1w5ox11csbDoc1w9eTT/ruTEI0mVKK6OhooqOjm/W6SO3XCgoKGmzyqqioIDY29rweVxeyM9myxUZMjGf5ExMTOXbsWPVlKAdwnOjobo38m6X4i8YFf/Fv2dKawevOO7071y0pse6hf/FFkHHQQ4Yvr4vU3onUtyOpfSZy7llKzXWRXbv+AcQSGenGZosgIqL65kJbBDab7bzvy8rKcTrLiYl5huTkHxId3aXRvLm5Xv1zRRgI/uIP1oXZ5cthwgQ4etQ6A/B06Ae322rqad3aGse/b9/mzSqCUkREBImJiV6PmOl2uxk4UFNW5sZmc1s3GbqrcLvdVFXVfl6F01mJ211FfHwcMB+bzU67dn9odBtKedasJMJbaBR/sIY6fO89eOop6+jd7ba6U9jtdU/04nRazTxKwR13QHq6981GQjTCZrORmAjl5RHUGmy2Xlprjh3LprKymE6d5qFU43+ybrfc6CUaF1oN27GxkJYGH34IkydDdLR1VF9SYjUJFRdbz4uKrKI/YYJ1S+QTT0jhF35z1VVQXu7ZsseP/xmn8wAXXzwHm82DvQXW8U6fPl4EFGEhdI78a+vQAaZMsYZJPHnSGiqxsNDqxpmcbDUTtWvX5KkfhfCFgQNh1arGl6usPEZh4RsoZWfv3tFnX2/X7o8kJ9c9TaPW1pF/r16+SitCVWgW/xpKQdu21kOIADF8+Lc3ZDXUqSwqqj29em1r0rrLyqxjn6519wQV4qzQavYRIgh06gRDh1qtkL5WWWnd+ygntaIxUvyFMOChh6yvVVW+W6fDYfV8HjvWd+sUoUuKvxAG9O0L999vHf03YVqKelVVWUf9c+ZAQoL36xOhT4q/EIb8/vdwxRXf9kW4UFVVVge2CROs5iQhPCHFXwhDYmJg0SJr9q2CggtrAqqosM4e7r0XHnnE9xlF6JLiL4RBLVpY0y/ee681PJWnzUBVVd/uMP78Z5g+XYajEk0jHxchDIuLs8YnXLoUrrzSasI5fdraGVRWfjtnUUWF9bOCAuvi7s03W/co3nmn9O4RTRfa/fyFCCIDB8KKFbBvH7z7LmzebI3OeeaMNVRVq1YwbBhcd501knmrVqYTi2CmtC+6GjSDAQMG6G3bmnaDixBChDul1Kda6wGNLSfNPkIIEYak+AshRBiS4i+EEGFIir8QQoQhKf5CCBGGpPgLIUQYkuIvhBBhKGD7+SulTgIHfbzaFOCUj9cZauQ98oy8T42T98gzvn6fLtFat2lsoYAt/s1BKbXNk5sfwpm8R56R96lx8h55xtT7JM0+QggRhqT4CyFEGAq34r/AdIAgIO+RZ+R9apy8R54x8j6FVZu/EEIIS7gd+QshhCDEi79S6v+UUjuVUm6lVL1X05VSNymlvlZK7VNKPerPjKYppVoppf6jlNpb/bVlPctVKaW+qH6s9HdOExr7XCilopVSr1X/fItSqov/U5rnwfv0U6XUyVqfn4kmcpqklHpBKXVCKfXfen6ulFLzqt/D7Uqpa5o7U0gXf+C/wG3A+voWUEpFAM8AY4DewD1Kqd7+iRcQHgXWaK0vBdZUf1+XMq11v+rHLf6LZ4aHn4sJQIHWugcwB3jCvynNa8Lfz2u1Pj/P+zVkYHgRuKmBn48BLq1+TAKebe5AIV38tda7tNZfN7LYQGCf1nq/1toJvAqMbf50AWMssKj6+SLgVoNZAoknn4va791y4Ealwm5CxXD/+/GI1no9kN/AImOBl7RlM9BCKdW+OTOFdPH3UEcgt9b3h6tfCxcXaa2PVT8/DlxUz3IxSqltSqnNSqlw2EF48rk4u4zW2gUUAa39ki5wePr3c3t1c8ZypdTF/okWVPxeh4J+Dl+l1PtAuzp+lKa1/pe/8wSiht6j2t9orbVSqr7uX5dorY8opboBHyildmitv/F1VhGSVgGvaK0rlFI/xzpbSjWcKewFffHXWo/ychVHgNpHIp2qXwsZDb1HSqk8pVR7rfWx6tPME/Ws40j11/1KqXXA1UAoF39PPhc1yxxWSkUCycBp/8QLGI2+T1rr2u/J88AsP+QKNn6vQ9LsA58Alyqluiql7MDdQFj0Zqm2Ehhf/Xw8cN7ZklKqpVIquvp5CjAU+MpvCc3w5HNR+727A/hAh9+NM42+T+e0Xd8C7PJjvmCxEvhJda+fwUBRrebY5qG1DtkH8COstrMKIA94r/r1DsDbtZb7/4A9WEeyaaZz+/k9ao3Vy2cv8D7Qqvr1AcDz1c+vA3YAX1Z/nWA6t5/em/M+F0A2cEv18xhgGbAP2Ap0M505QN+nPwM7qz8/a4HLTWc28B69AhwDKqtr0gTgF8Avqn+usHpNfVP9NzaguTPJHb5CCBGGpNlHCCHCkBR/IYQIQ1L8hRAiDEnxF0KIMCTFXwghwpAUfyGECENS/IUQIgxJ8RdCiDD0/wPK18KinPsCjAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX+//HXSSeNEEgglFCkJOgKIl/siuIq9rLSRVzpSlWWFn8rsFQVQUUFBJViAVlAsCOoq8sqotiTUEILBEwPpGfm/P64k5iBVDIzdyb5PB+PPJKZuTP3k3kkeeeee8/nKK01QgghRCkvswsQQgjhXiQYhBBC2JFgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2fMwu4EI0a9ZMt2vXzuwyhBDCo3z//fdpWuuI6rbzyGBo164de/fuNbsMIYTwKEqpozXZToaShBBC2PHIIwaHsVggPR2Ki8HfH5o2BaXMrkoIIUzV8ILh5El4913YuRMSE8FqNcJAa/D1hYsvhjvugHvvhbAws6sVQgiXazjBcPo0zJoFO3YYIeDnB4GB4O395zYlJfDLL7BvHyxYAAMGwNSpEBxsWtlCCOFqDeMcw7ZtcNNN8OmnEBoKTZpAUJB9KAD4+BghEBZmhMabb0KfPrBnjzl1CyGECep/MLzyCkyebAwXNWkCXjX8lr29je1zcmDIEPj4Y+fWKYQQbqJ+B8Pbb8Mzz0BICAQEXNhrBAUZzx0/Hr75xrH1CSGEG6q/wXD0qHFOITjYGCKqC39/4zXGjzeOIIQQoh6rn8GgNUyZYlyO6ufnmNcMCoKMDFi0yDGvJ4QQbqp+BsMvv8CPP0LjxlVutjEjg6GHD3NVQgKzTp6s/nVDQ41LXTMyHFSoEEK4n/oZDGvW/Dk/oQrNfHwY3qwZd1cTIGW8vY3X3bzZAUUKIYR7qn/BoLVxWWoN5h7cFBpK75AQGp972WpVfH3hgw/qUKAQQri3+hcMp05BQYHxB9wZAgIgPt44chBCiHqo/gXD4cN1vwqpKqXDSadOOW8fQghhovrXEqOgwBhOqiENZGRmkm21kurnR0BAAI0CAvCpKly8vKCwsO61CiGEG6p/weDrW6sOqQpQSqG1xmq1kpGRQUFBAUopGgUEEBAQQECjRgQEBOBbGhZWq/OGqoQQwmT1Lxhatarx+L9FayxaExIaysnUVAKCg2kWEYGXUhQXF1NQUEBBfj6ZGRnk28IiwN+fxlrzU0ICMX5+REREoKRVtxCiHql/wdCunXHEYLGc3yTvHKvT0liZlgaARSmu3b+fca1aMToiAj9fX/x8fQkNCQGMIaeS4mIKs7PJaNSITdu2Eb9oEUopYmJiiI2NLfvcvHlzCQshhMdSuhbj8e6iZ8+eusqlPR96CP73v2onuJWngePHjhEYFESzpk0r3zAzE0aOhOnT0Vrzxx9/kJCQQHx8fNmH1WolNja2LCxiYmKIioqSsBBCmEop9b3Wume12zkiGJRSfYHnAW9gldZ64TmPLwFutN0MBCK11mG2xyzAL7bHjmmt765uf9UGw5dfGn+8Q0Nr9X0UFRVx+MgR2rdvj19F5xCsVqNX0s6d0LZtha+htSY1NZWEhAS7wCguLi47oij9kLAQQriSy4JBKeUN7Af+CiQD3wGDtNa/V7L9eOAyrfUjtttntda1Wgmn2mCwWOCGGyAtrdaL7KSlp5OXm0ub6GjO+5OdlQVXXw1r19bqNQHS0tLKQqI0NAoKCsqOKErDolWrVhIWQgincGUwXAXM0lrfars9A0BrvaCS7XcDT2mtd9huOz4YwFhcZ/Bgo+V2LWY2a61JOnyYZs2a0bj8EUdRkfGxYwe0aVObciuVkZFhNwQVHx9Pfn6+XVjExMTQunVrvGq6joQQQlSipsHgiJPPrYDj5W4nA1dUUlRboD2wq9zdAUqpvUAJsFBrvbWS544CRgFER0dXX1WvXvDgg8Z/902a1PgSVqUUUVFRJCcnExwUhLe3t3EEkpsLc+c6LBQAwsPDueaaa7jmmmvK7svIyCg7otixYwcvvPACZ8+epUuXLnbnLdq0aSNhIYRwCkccMTwA9NVaj7DdHgpcobUeV8G204DWWuvx5e5rpbU+oZTqgBEYfbTWh6raZ42OGMBYw3ncOOO//NDQWh05nDp1CqvWtGzWDM6cgbFjjVbeJgzzZGVl2Z2vSEhIICsr67xhqOjoaAkLIUSlXHnEcAIo/290a9t9FRkIPFb+Dq31CdvnJKXUF8BlQJXBUGM+PrBsGfzrX8b6zaVrOtdAREQEKfv3U+DjQ8A//wmPPGJKKACEhYVx5ZVXcuWVV5bdl52dXXZk8eWXX7J8+XIyMzPp3Lmz3ZFFu3btJCyEELXiiCMGH4yTz30wAuE7YLDW+rdztosBPgbaa9tOlVJNgDytdaFSqhnwP+Ceyk5cl6rxEUN5335rrP2clma0zAgJqXj9Z4vFuPLIy4u0pk2ZFRrKc++/j5+jFvxxopycHLuroRISEkhPT6djx452V0O1a9fOGCITQjQorr5c9XZgKcblqq9precppeYAe7XW22zbzAICtNbTyz3vamAFYMVo6LdUa726uv1dUDCAMbT0n//Aq6/C998bRwBKGUGhlHE5qpcX3HgjDB+O7tGDJ6ZMISYmhlGjRtV+f27gzJkzJCYm2g1Dpaam0qlTJ7uhqA4dOkhYCFHPuTQYXO2Cg6G8khJISoLkZCguNtZ1bt/eOLlc7kji9OnTDB48mNWrV9OuXbu67dNN5Obm2oVFfHw8p0+ftjuyiImJoUOHDlU3ExRCeBQJBgd6++23+fzzz1mxYkW9nWOQl5dXFhalQ1EpKSl06NDBbhiqQ4cO+EoDQSE8kgSDA1mtVh5++GEeeOAB7r672onZ9UZeXh779++3C4sTJ06UhUXpMNRFF13kEedghGjoJBgcLDExkXHjxrFhwwbCw8Ndum93kp+fz4EDB+zOWRw/fpz27dvbXTrbsWNHCQsh3IwEgxM8//zzpKamMnfuXJfv250VFBSUhUXpkcWxY8do27at3ZFFp06d8Pf3N7tcIRosCQYnyM/PZ8CAAcyYMYOrrrrK5fv3JEVFRXZHFvHx8Rw9epTo6Gi7rrOdO3cmICDA7HKFaBAkGJxk9+7dLFy4kI0bN8oftFoqKiri4MGDdrO4Dx8+TOvWre1OcHfq1IlGjRqZXa4Q9Y4EgxPNnDmTqKgoxo8fX/3GokpFRUUcOnTIruvsoUOHaNWqld05i86dOxMYGGh2uUJ4NAkGJ0pPT2fAgAG88sordOrUybQ66qvi4mKSkpLshqGSkpKIioqy6zobExMjYSFELUgwONnmzZvZtm0br732mvQicoGSkhKSkpLshqEOHjxI8+bN7U5wx8TEEBQUZHa5QrglCQYns1qtjBw5kltvvZX+/fubWktDZbFYOHz4sN2lswcOHCAiIsJuGKpLly6E2NbuFqIhk2BwgaSkJEaNGsVbb71FZGSk2eUIjLA4cuSI3ZHFgQMHCA8PP28d7tBaLv0qhKeTYHCR5cuXc+jQIZ555hmzSxGVsFqtdmGRkJBAYmIiYWFhdldDxcTE0LhxY7PLFcJpJBhcpKioiIEDBzJx4kRuuOEGs8sRNWS1Wjl27Nh563CHhYWdtwBSWFiY2eUK4RASDC60d+9ennrqKd599125SsaDWa1WkpOT7a6GSkxMJDg4+LxhqIbcFkV4LgkGF5s9ezZBQUFMmTLF7FKEA1mtVk6cOGHX7iMhIYFGjRqdNwzVtGlTs8t1uKQkY42rPXvgwAEoLISAAOjSBf7v/+CKK6CedKNvECQYXCw7O5t+/fqxdOlSunbtanY5wom01hWGhb+/v92ls7GxsTRr1szscmtNa/jiC2NV3J9++vN+Pz9jqRKr1QiI0g70PXsaS6tfe60p5YpakGAwwYcffsj69etZt26drIbWwGitSUlJsTtnER8fj4+Pz3lHFhEREW67rkd6OsycCZ99Bt7exgq4VZWqNZw5Y4TFHXfA7Nkgp2TclwSDCbTWPPbYY1x11VUMHTrU7HKEybTWnDp1yi4o4uPj8fLyOu/IIjIy0vSwOHAABg2CrCwIDa14SfTKWK2QnQ0REfDOOzK85K4kGExy/PhxHn74YdatW0fLli3NLke4Ga01f/zxh90J7oSEBLTWdie3Y2NjadGihcvC4sgRuO8+yM01QuFC5eRA48awdSu0auWw8oSDuDQYlFJ9gecBb2CV1nrhOY8/DDwDnLDdtUxrvcr22DDgSdv9c7XWa6rbnzsHA8Drr7/Ovn37eP75503/L1C4P601qampdkcV8fHxWCwWu6OKmJgYoqKiHP4zVVwMd90Fhw4Zf9TrKjMTLrkENm82hqOE+3BZMCilvIH9wF+BZOA7YJDW+vdy2zwM9NRajzvnueHAXqAnoIHvgcu11plV7dPdg6GkpIQhQ4YwfPhwbrnlFrPLER4qNTXVbo5FfHw8hYWFdmERGxtLy5Yt6xQWy5bBkiXGuQFHZI7WxnDUzJkwfHjdX084jiuD4Spgltb6VtvtGQBa6wXltnmYioNhENBbaz3adnsF8IXW+u2q9unuwQDw888/M3XqVDZu3CitF4TDpKenn3eCOz8/366JYGxsLK1bt65RWOTkQK9e4O8Pvr6Oq7OoCCwW2LsXZGkN91HTYPBxwL5aAcfL3U4Grqhgu78ppa7HOLqYrLU+Xslz68XI5KWXXkrv3r158cUXiYuLM7scUU80bdqUa6+9lmvLXRuakZFRFhKffvopzz//PLm5uefN4G7duvV5nYC3bYOSEggOrnq/VmsRp04tJC9vDxZLDr6+rYmMHEdw8NUVbu/nZ5yM/vBD+Nvf6vxtCxdzRDDUxHbgba11oVJqNLAGuKk2L6CUGgWMAoiOjnZ8hU4wbtw4+vXrx759+7jsssvMLkfUU+Hh4Vx99dVcffWff6QzMzPLwmLnzp0sW7aMnJwcunTpYnfO4s032+LrW5PxIwu+vi2Ijl6Jr28Lzp79LydOTKd9+3fw86v4IgsvL3j7bQkGT+SSoaRztvcGMrTWjevzUFKpnTt3snz5ct588038/PzMLkc0YFlZWSQmJpYNRf3223527nyRoCALjRr5ExDQiICAAPz9/YDqwyIpaSDNmo0iNLTi//EsFsjPh99/r92lr8J5XDmU9B3QSSnVHuOqo4HA4HOKidJap9hu3g3E277+BJivlGpiu30LMMMBNbmNm266iffff5+1a9cyYsQIs8sRDVhYWBhXXHEFV1xhjPTu3w933GHBx6eAgoJ8zp49Q2pqKhZLCf7+ATRqFEBAQAABAY3OC4uSkgyKio7h79+h0v15exvzG5KTwUMO8oVNnYNBa12ilBqH8UfeG3hNa/2bUmoOsFdrvQ2YoJS6GygBMoCHbc/NUEr9CyNcAOZorTPqWpM7UUoxbdo0hgwZwi233OIxw2Ci/svOBh8fb4KCguxWvbNaLeTnl4bFWdLS0igpKcHPz5/g4GCaNQvj5Mknadz4Tvz921W5Dy8v4wS38Cwywc1F3nrrLb788kuWL18ucxuEW9i7F4YOhZqshFpcXMSRI0cpKSnCz28Vvr4W2rR5DqWq/t/y7FljPoO0D3MPNR1KkpE/Fxk4cCB5eXls377d7FKEACA83BjqqU5JSTHHjx8nNDSE4OB3yM09SYsW86sNBTDOMzRpUu1mws1IMLiIl5cXcXFxLFu2jMzMKufvCeESbdsany2WyrcpPVIIDW2M1boai+U4zZsv4o8/sqp9/ZISY35EixYOKli4jASDC8XExHDbbbexZMkSs0sRAm9vo3VFXl7FjxcWFnLkyFGaNg2nceNisrK2UFCwn8zMoaSl3cfvv19NdvZHlb5+Xh706OGY2dTCtSQYXGz06NHs27ePb7/91uxShOChhyoeTiooyOfo0aNERkbSpEk4vr5RxMbuJSZmNzExX9Gp0xf4+a0hJKTqli8PPuikwoVTSTC4WGBgINOmTWPBggUUFhaaXY5o4G691ViRrfyPYl5eLseOHadlyygaV9JVLygoiMDAQFJT0yp8vKDAmE19443OqFo4mwSDCa699lpiYmJYtWqV2aWIBi4gAOLijIloWsPZs2dITj5Bq1atCA4OqfK5zZs3Jzs7m4KCArv7tTZe76mnHNt/SbiOBINJpkyZwpYtWzh48KDZpYgGrn9/Y/3mlJRcTp5MoU2bNnbzGirj7e1D8+aRpKSkYDRHNmRlwfXXw913O7Fo4VQSDCZp1qwZY8eOZf78+Vhrcs2gEE7i5QW33vo+BQWHadKkHY1q0Q61cePGeHkpMjIyy9ptt29vtPGWk86eS4LBRPfddx8AmzdvNrkS0ZCtXbuWzZtXsmtXOJ07+5GZaVxqWjOKqKgoUlPTSU8voXNn2LhR1n32dBIMJvLy8uLJJ59k+fLlpKamml2OaGC01rz00kts376dVatW0b17S7ZvhxEjjCU+MzOrnuMARoDk5voTGBhJ+/YfsnWrMXFOeDYJBpN16NCB+++/n2eeecbsUkQDYrVaWbRoEd988w2vvvoqkZGRgHEyesYM2L7dWAM6L89oa5GRYfRWyskxPmdkGPcXFMCAAbBrVyOaNHmD//3vS5O/M+EI0ivJDRQWFjJw4EAmT57M9ddfb3Y5op4rKSlh9uzZnD59miVLllR5ojknB3780Wid/dtvxmWtAQFw8cXGR7duEGK7eOn777/nn//8J++++y6BgYEu+m5EbbhsaU8z1LdgANizZw9z5sxh48aN8kslnKaoqIjp06djsVh4+umn8ff3d+jrz549m5CQEB5//HGHvq5wDGmi52F69erF5ZdfzvLly80uRdRTeXl5TJgwgYCAAJ599lmHhwLApEmT+Pjjj4mPj69+Y+G2JBjcyOTJk+WXSjhFTk4OY8eOJTo6mrlz5+LrpJlnjRs3ZuLEicybNw9LdWeuhduSYHAjYWFhTJgwgblz58ovlXCYtLQ0Ro4cyeWXX86MGTPwcvI6m7fffjshISFs2LDBqfsRziPB4GbuuOMOQkNDeeedd8wuRdQDJ0+eZMSIEfTt25fx48e7ZJEopRQzZsxg9erVnD592un7E44nweBmSn+pXnvtNU6ePGl2OcKDJSUlMWLECIYMGcLf//53l64cGB0dzaBBg1i0aBGeeIFLQyfB4Iaio6MZMmSI/FKJC/b7778zZswYxo0bR79+/Uyp4aGHHuLYsWN88cUXpuxfXDiHBINSqq9SKlEpdVApNb2Cxx9XSv2ulPpZKbVTKdW23GMWpdSPto9tjqinPhg6dCgpKSl89tlnZpciPMwPP/zAxIkTiYuL4/bbbzetDj8/P2bOnMkzzzxDbm6uaXWI2qtzMCilvIGXgNuArsAgpdS5S3/vA3pqrS8FNgFPl3ssX2vd3fYh/RhtfH19iYuLY/HixZw5c8bscoSH+Prrr5k2bRrz5s3jhhtuMLscevTowVVXXcXLL79sdimiFhxxxNALOKi1TtJaFwHvAPeU30Br/bnWunQBwW+A1g7Yb73XrVs3rr/+el588UWzSxEe4NNPP2XOnDksWbKEXr16mV1OmYkTJ7Jjxw5+//13s0sRNeSIYGgFHC93O9l2X2WGA+UXig1QSu1VSn2jlLrXAfXUK+PHj+err77ip59+MrsU4cY2b97MkiVLePnll7nkkkvMLsdOaGgokyZNksuwPYhLTz4rpR4EegLlO8a1tU3RHgwsVUpdVMlzR9kCZG9D6kRa2l5g3rx5FBcXm12OcENr167ljTfeYOXKlXTs2NHscip02223ERYWJpdhewhHBMMJoE25261t99lRSt0MxAF3a63LVpjVWp+wfU4CvgAuq2gnWuuVWuueWuueERERDijbc9x8881ERUWxbt06s0sRbkRrzcsvv8y2bdtYtWoVbdq0qf5JJil/Gbax4ptwZ44Ihu+ATkqp9kopP2AgYHd1kVLqMmAFRij8Ue7+Jkopf9vXzYBrABmIPIdSiunTp/Pmm29y7Ngxs8sRbsBqtfL000+ze/duu7bZ7qxNmzZyGbaHqHMwaK1LgHHAJ0A8sFFr/ZtSao5SqvQqo2eAYODdcy5LjQX2KqV+Aj4HFmqtJRgqEBUVxSOPPML8+fPll6qBKykpYdasWRw8eJDly5fTpEkTs0uqsaFDh3Ly5Ek+//xzs0sRVZC22x7EYrEwbNgwBg4cyJ133ml2OcIEpW2zS0pKePrppwkICDC7pFr78ccfmTlzJhs3biQ4ONjschoUabtdD3l7exMXF8cLL7xAVlaW2eUIF8vLy2PixIkEBASwePFijwwFgO7du3PNNdfI3AY3JsHgYWJjY+nbty9LliwxuxThQjk5OTz66KO0bt3aqW2zXWX8+PHs2rWLX3/91exSRAUkGDzQmDFj+P7779mzZ4/ZpQgXKG2bfdlllzFz5kynt812hdDQUCZPnsy8efMoKSkxuxxxDs//CWuAAgMDmTp1KgsWLKCwsLD6JwiPVdo2+9Zbb2XChAku7ZDqbLfccgtNmzblrbfeMrsUcQ4JBg91/fXX06lTJ1avXm12KcJJDh8+zIgRIxg8eDCPPPJIvQoF+PMy7DVr1kiLeTcjweDB/vGPf7B582aSkpLMLkU4WHx8fFnb7P79+5tdjtO0bt2aBx98UOY2uBkJBg8WERHBmDFjmDt3Llar1exyhIP88MMPTJgwgRkzZpjaNttVhg4dyqlTp6TFvBuRYPBw999/PwBbtmwxuRLhCP/973/L2mb37t3b7HJcwsfHh7i4OJ577jlpMe8mJBg8nJeXF3FxcbzyyiukpaWZXY6og08//ZTZs2fz3HPPuVXbbFe49NJLue6663jppZfMLkUgwVAvXHTRRdx33308++yzZpciLtCWLVtYsmQJL730En/5y1/MLscU48eP54svvuDnn382u5QGT4KhnhgxYgQJCQl8/fXXZpciamnt2rW8/vrrrFy5kk6dOpldjmnKt5iXuQ3mkmCoJ/z9/Zk5cyaLFi0iLy+v+icI03lS22xX+etf/0rz5s158803zS6lQZNgqEd69erFZZddxooVK8wuRVTDE9tmu0Lp3Ia1a9dy4sR5y7oIF5FgqGcmT57MRx99REJCgtmliEp4cttsV2jZsiXDhg1j4cKFMrfBJBIM9UyTJk0YP3488+bNk/V13VBRURFTp04lKyuLF198UdpOV2Lw4MGkpqayY8cOs0tpkCQY6qE777yToKAgNmzYYHYpopz60jbbFcrPbcjJyTG7nAZHgqEeUkoxc+ZMVq9ezalTp8wuR1D/2ma7wl/+8hduvPFGli1bZnYpDY4EQz0VHR3NoEGDpAeNG6iPbbNd5bHHHuOrr77ip59+MruUBkV+QuuxYcOGkZyczK5du8wupcGqz22zXSE4OJgnnniCefPmUVxcbHY5DYYEQz3m6+tLXFwczz77LGfPnjW7nAanvrfNdpU+ffrQsmVL1q9fb3YpDYZDgkEp1VcplaiUOqiUml7B4/5KqQ22x79VSrUr99gM2/2JSqlbHVGP+FP37t259tprZZzWxRpK22xXUEoxdepU1q9fT3JystnlNAh1DgallDfwEnAb0BUYpJTqes5mw4FMrXVHYAmwyPbcrsBA4GKgL/Cy7fWEA0kPGtdqaG2zXaFly5Y8/PDDLFiwQM6ZuYAjjhh6AQe11kla6yLgHeCec7a5B1hj+3oT0EcZx9X3AO9orQu11oeBg7bXEw4UGhoqPWhcpCG2zXaVQYMGkZmZySeffGJ2KfWeI4KhFXC83O1k230VbqO1LgGygaY1fC4ASqlRSqm9Sqm9qampDii7YSntQbNu3TqzS6m3GnLbbFconduwZMkSmdvgZB5z8llrvVJr3VNr3TMiIsLscjxOaQ+a9evXc/z48eqfIGpF2ma7xsUXX0yfPn144YUXzC6lXnNEMJwAyreFbG27r8JtlFI+QGMgvYbPFQ4i47TOsW7dOmmb7UKPPfYYu3fvZt++fWaXUm85Ihi+AzoppdorpfwwTiZvO2ebbcAw29cPALu08ZdpGzDQdtVSe6ATsMcBNYlKDB48mKysLD766COzS/F4pW2z33vvPWmb7UJBQUFMmTKF+fPny9wGJ6lzMNjOGYwDPgHigY1a69+UUnOUUnfbNlsNNFVKHQQeB6bbnvsbsBH4HfgYeExrLZ3fnMjb25snn3ySpUuXkpWVZXY5HstqtfLMM89I22yT3HjjjbRp04a1a9eaXUq9pDxxSKFnz5567969Zpfh0Z599llyc3N56qmnzC7F41gsFmbPnk1KSgpLliyRDqkmOXXqFEOGDOH1118nOjra7HI8glLqe611z+q285iTz8KxHn30Ufbs2YMEbO1I22z30aJFC4YPHy7rNjiBBEMDFRgYyLRp05g/fz5FRUVml+MRSttm+/n5SdtsNzFgwACys7PlnJmDSTA0YNdffz0dO3bktddeM7sUt1faNrtVq1bMmzdP2ma7CW9vb+Li4li6dCnZ2dlml1NvSDA0cFOmTGHTpk0kJSWZXYrbSk9PZ9SoUXTv3p24uDhpm+1munbtyi233MLzzz9vdin1hvyEN3CRkZGMGjWKefPmYbVazS7H7ZS2zb7llluYOHGidEh1U48++ijffPMNP/zwg9ml1AsSDIIHHngAi8XC1q1bzS7FrRw+fJiRI0cyaNAgaZvt5gIDA5k6dSrz5s2Tc2YOIMEg8PLyIi4ujpdffpn09HSzy3ELCQkJjBkzhkcffVTaZnuI3r17065dO9asWVP9xqJKEgwCgE6dOnHPPfewePFis0sx3b59+xg/fjwzZszgjjvuMLscUQtTp05lw4YNHDt2zOxSPJoEgygzcuRIfvvtN3bv3m12KabZvXs3//jHP6Rttodq3rw5w4cPZ/78+TK3oQ4kGESZgIAAZsyYwcKFC8nPzze7HJfbsWMHs2bNkrbZHm7AgAHk5ubywQcfmF2Kx5JgEHauvPJKunXrxsqVK80uxaW2bt3Kc889x0svvcSll15qdjmiDkrPmb3wwgvSD+wCSTCI80yePJkPPviA/ftWT0PVAAAan0lEQVT3m12KS6xfv57Vq1ezYsUKaZtdT8TExNC3b1+WLl1qdikeSYJBnCc8PJxx48Yxd+7cej23QWvNK6+8wpYtW1i1apU0YqtnxowZw3fffSf9wC6ABIOo0F133UVAQAAbNmwwuxSnKG2b/fXXX7Nq1SqaN29udknCwaQf2IWTYBAVUkoRFxfHqlWrOH36tNnlOJTFYmHWrFns37+fFStW0KRJE7NLEk5S2g/sjTfeMLsUjyLBICrVtm1bBgwYwKJFi+rNpX9FRUVMmzaNrKwsli1bJm2zG4ApU6awceNGjhw5YnYpHkOCQVTp4Ycf5tixY3z++edml1JneXl5TJo0CR8fH2mb3YBERkYycuRImdtQCxIMokp+fn7MnDmTZ599lrNnz5pdzgXLycnhscceIyoqivnz50vb7AamX79+FBQUsH37drNL8QgSDKJaPXr04Oqrr+bll182u5QLUto2u1u3bjz55JPSNrsB8vLy4sknn2TZsmVkZmaaXY7bq9NviFIqXCm1Qyl1wPb5vLN4SqnuSqn/KaV+U0r9rJQaUO6xN5RSh5VSP9o+utelHuE8EyZMYNeuXfzyyy9ml1IrKSkp0jZbANC5c2duv/12lixZYnYpbq+u/zpNB3ZqrTsBO223z5UHPKS1vhjoCyxVSoWVe/wfWuvuto8f61iPcJLQ0FAmT57MvHnzKCkpMbucGjly5AgjRoyQttmizKhRo9i3bx979uwxuxS3VtdguAco7XG7Brj33A201vu11gdsX58E/gAi6rhfYYJbbrmFiIgI1q9fb3Yp1UpISGD06NHSNlvYKV23YcGCBTK3oQp1DYbmWusU29engCpnCSmlegF+wKFyd8+zDTEtUUr5V/HcUUqpvUqpvampqXUsW1wIpRQzZsxg3bp1JCcnm11Opfbt28eECROkbbao0HXXXUfnzp1ZvXq12aW4rWqDQSn1mVLq1wo+7im/nTauA6v0WjClVBSwDvi71rq0z8IMIAb4PyAcmFbZ87XWK7XWPbXWPSMi5IDDLC1btmTYsGEsWLDALS/92717N1OnTmXu3LnSNltUasqUKfz73/+Wtc4rUW0waK1v1lpfUsHHe8Bp2x/80j/8f1T0GkqpUOADIE5r/U25107RhkLgdUB6HXuAwYMHk5GRwccff2x2KXY+++wzZs2axeLFi6VttqhSREQEo0ePZv78+fW6H9iFqutQ0jZgmO3rYcB7526glPIDtgBrtdabznmsNFQUxvmJX+tYj3ABHx8fnnzySZYuXUpOTo7Z5QDw3nvvsXjxYmmbLWrsb3/7GyUlJWzbts3sUtxOXYNhIfBXpdQB4GbbbZRSPZVSq2zb9AeuBx6u4LLUN5VSvwC/AM2AuXWsR7jIxRdfzM033+wWbY3ffPNNaZstas3Ly4uZM2fy0ksvkZGRYXY5bkW54zhxdXr27Kmlla75cnNz6devH3PnzqVHjx4u37/WmhUrVrBjxw5efvll6ZAqLsgLL7xAamoq//rXv8wuxemUUt9rrXtWt51MARUXLCgoiKlTpzJv3jyXX/pntVp59tln+eqrr6RttqiTkSNH8tNPP/Htt9+aXYrbkGAQddK7d2/at2/v0rbGFouF2bNnk5iYKG2zRZ01atSI6dOnM3/+fAoLC80uxy1IMIg6mzp1Khs2bODw4cNO31dp2+zMzExpmy0c5uqrr6Zr164yt8FGgkHUWWRkJKNGjXL6pX/SNls40xNPPMGWLVtkbgMSDMJB+vXrR1FRkdMu/ZO22cLZmjVrxpgxY+r9Wuc1IcEgHMLLy4u4uLgqL/3TGoqKwGKp3Wunp6czevRoLr30UmmbLZzqvvvuQ2vN1q1bzS7FVPIbJhymc+fO3HXXXSxevBgAqxW++gpmzIC//hU6doQuXeCii6B7dxg2DFatgqpaX6WkpDBy5EhuvvlmJk2aJB1ShVOV/oPzyiuvkJ6ebnY5ppF5DMKh8vPz6d9/IFdeuYjt22NITzeOEBo1An9/8PIyjhxKSiA/3wgPpeC222DmTGjR4s/XOnLkCOPGjWPo0KEMGDCg8p0K4WDLli3j5MmTzJ8/3+xSHErmMQhTZGc3orBwFfPnNyYnx0rjxhAebgRD6QiQUuDrC6GhEBYGwcHwwQfQpw/8+99GcCQmJjJmzBjGjh0roSBcbsSIEfz666/s3r3b7FJMIcEgHCYpCe66C5KSIggJsXL2bM3ao3t7Q5MmRnBMnQqTJ59g3LjxTJs2TdpmC1MEBAQwY8YMFi5cSEFBgdnluJwEg3CI06dhwADIzjaOAlq0aE5WVnatfqmMoaazrFih6N59BTfeeKMTKxaialdddRV/+ctfWLVqVfUb1zMSDKLOtIYpUyAjwxgeAqMDa2RkBCkpKVSxTIednJwcTp8+Sdu2YWzd2p6ff3ZezULUxOOPP857773HwYMHzS7FpSQYRJ1t3Qq7dxtHCuWFhYXh5aXIzMys9jWysrI4ffoU0dHRBAcHohRMnAjFxU4qWogaaNq0KWPHjmXevHkNam6DBIOoE6sVFi82hoHOv5JU0aJFFKmpqZSUVP4XPiMjnbS0VNq2bVs2mzk0FJKT4YsvnFa6EDVy77334uXlxZYtW8wuxWUkGESd7NljnF9o1Kjix/39/WnSJJxTp05hseSQnDyFhIRrOXjwTrKzPyI19Q8yMzNp27Ydfn72S34rBStXuuCbEKIK5ec2pKWlmV2OS0gwiDr55BNjnkJV886aNWtKYWEhx47NQSlfOnf+lJYt/8WxY3PIzv6dtm3bVdjiIiQEfvgB3GSRONGAdejQgfvvv79s8mZ9J8Eg6uS776C6XnZKedG8eRjZ2Z/RtOkovLwakZUVibf3/xES8hM+Pj6VPM+Y75CY6ITChail4cOHEx8fz3//+1+zS3E6CQZRJwcOGOcXquPjk46Xly9ZWQEkJydTUmIhMvJyioqOVPm84mJoYBeECDfl7+/PjBkzWLRoEfn5+WaX41QSDOKCaQ0FBX/OaK6K1ZpHQEAY2dk5nDlzlsDAQEpK/LBYzlb5PIvFaJ0hhDu44oor6NatG6+++qrZpThVnYJBKRWulNqhlDpg+1zhUlpKKYtS6kfbx7Zy97dXSn2rlDqolNqglPKrSz3CtZQyZi3XhJdXIFZrHh07XkTLllFYLCVkZ58iJ6eIgwcPkJycTFpaGrm5Z7FYSi5oH0K4wuTJk9m+fTv79+83uxSnqesRw3Rgp9a6E7DTdrsi+Vrr7raPu8vdvwhYorXuCGQCw+tYj3Cx5s2NVtrV8fOLBixYLCdp3DiM5s1bEBKSSYsWlxMdHU1oaAgWi4W0tHQOHjzIgQMHSE4+Tn5+FunpvzaYq0GE+wsPD2fcuHFOX5jKTHUNhnuANbav1wD31vSJyuiffBOw6UKeL9xD9+7GcFJ1vLwaERJyE6mpy7Fa88nL+4kzZ76kceM78fPzJzS0Mc2bN6dt27Z06dKFtm3bEhraGItFs2/f2/Tv35++ffsyadIkVqxYwZdffskff/yBJ3YHFp7vrrvuwtfXl02bNlW/sQeqU9ttpVSW1jrM9rUCMktvn7NdCfAjUAIs1FpvVUo1A76xHS2glGoDfKS1vqS6/Urbbffx9tvw//7f+bOeK2Kx5HDy5Gxyc7/F27sxkZHjady4b6XbFxYaVyXt3QtKaVJSUkhISCj7iI+PByAmJobY2FhiYmKIiYkhKipK1m0QTpeUlMSoUaN4++23iYiIMLucGqlp2+1qg0Ep9RnQooKH4oA15YNAKZWptT7vPINSqpXW+oRSqgOwC+gDZFOLYFBKjQJGAURHR19+9OjR6r434QI5OfB//2dMcKvkqtMLlpkJkyfDuHEVP661JjU1tSwkSj8XFRWVhURpaLRq1UpWfhMO98orr3DkyBEWLVpkdik14rBgqGYniUBvrXWKUioK+EJr3aWa57wBvA/8G0gFWmitS5RSVwGztNa3VrdfOWJwLzNmwMaNRutsRykuNoao/vMf4zxGbaSlpZ13ZJGbm0uXLl3sji6io6MlLESdFBUVMWDAAB5//HGuu+46s8uplquC4RkgXWu9UCk1HQjXWk89Z5smQJ7WutA2fPQ/4B6t9e9KqXeBf2ut31FKLQd+1lq/XN1+JRjcS0YG3HijsSpbZa0xakNryMoy1mYYPbrurweQmZl5XlhkZWXRuXNnu7Bo164d3nIZlKiFPXv2MGfOHDZu3EhgYKDZ5VTJVcHQFNgIRANHgf5a6wylVE9gjNZ6hFLqamAFYMU42b1Ua73a9vwOwDtAOLAPeFBrXVjdfiUY3M+nn8LYsUYbi7oOKWVlQWwsbNni+OGp8nJycuzCIiEhgT/++INOnTrZhUWHDh0qnZ0tBMA///lPwsPDmTRpktmlVMklwWAWCQb3tGIFLFpkhEMFrY+qpbWx0E/LlrB5MzRr5vgaq3P27Fn2799vd97i5MmTXHTRRXbnLTp27Iifn0y7EYbMzEwGDBjAiy++SJcuVY6mm0qCQZhi3TqYO9doxx0aWnVzvfKKiyE3Fy6+GFavNicUKpOXl8eBAwfswuL48eO0bdu27KgiNjaWTp064V+T/iCiXtq2bRubNm3ijTfecNtzVxIMwjQHDsCkSbB/v3EUEBpacdsMrY1LUgsKjCGjJ56ARx7xjJnOhYWF54XFkSNHaN269Xlh4e7jzsIxtNaMHj2aPn36MGDAALPLqZAEgzCV1Wqs6vbqq/D118bQksVi3A/G7ZISCA83wuCBB9zrKOFCFBUVcejQobKgSEhI4NChQ7Rs2dLu0tnOnTsTHBxsdrnCCY4cOcKIESN46623iIyMNLuc80gwCLdRWGgcPRw8CHl5xhFB8+bQtStERtZ8uMkTlZSUkJSUZHc11IEDB4iMjLQ7ZxETE0No6YLZwqOtXLmSAwcO8Mwzz5hdynkkGIRwUxaLhaNHj9pNytu/fz9hYWHnzeJu4sjJIcIlioqKGDhwIBMnTuSGG24wuxw7EgxCeBCr1cqxY8fsjiwSEhIIDg62C4vY2FiaNm1qdrmiGnv37uWpp57i3XffdatzTBIMQng4q9XKiRMn7IIiISEBPz8/u6OK2NhYIiIipD+Um5k9ezYhISE8/vjjZpdSRoJBiHpI68qbCZYPC2kmaL6srCz69+/P888/T2xsrNnlABIMQjQYNWkmWBoa0kzQtd5//33eeecd1qxZ4xatViQYhGjg0tLSSExMtAsLaSboWlprxo4dyw033MCgQYPMLkeCQQhxvqqaCZYfipJmgo5z7Ngx/v73v/PWW2/RvLatgh1MgkEIUSMVNRNMTU2lY8eOdmEhzQQv3KuvvkpCQgKLFy82tQ4JBiHEBcvNzSUxMbHKZoKxsbFcdNFF0kywBoqKihg8eDDjxo2jd+/eptUhwSCEcKjKmgm2a9fOLiykmWDFfvjhB5588kk2bdpk2twGCQYhhNNV1kywTZs254WFO030MsucOXMIDAxkypQppuxfgkEIYYqKmgkmJSURFRVldzVUly5dCAoKMrtcl8rOzqZfv34sXbqUrl27unz/EgxCCLchzQT/9OGHH/Lmm2+ydu1al1/5JcEghHBrVTUTPLflR1hYmNnlOozWmscee4xrrrmGIUOGnPsgpKdDZqbxdVgYREQ4rAWxBIMQwuNYrVaOHz9uFxaJiYkEBQWdFxae3EywdG7D+vXriYqIgC+/hLfegu+/hzNn/lwb12KBwEDo1g0GD4abboI6XAXmkmBQSoUDG4B2wBGgv9Y685xtbgSWlLsrBhiotd6qlHoDuAHItj32sNb6x+r2K8EgRMNRvplg+ZPc5ZsJln72pGaCq1etwrptGyNOnkRl2/4EBgYayxmWfg9aGyta5ef/+XhcHPztbxUvi1gNVwXD00CG1nqhUmo60ERrPa2K7cOBg0BrrXWeLRje11pvqs1+JRiEaNgqayaolDrvnIVbNhPMysIyeTKp775LcLNmBNd0+cLCQmO1qyuvhKVLjWGmWnBVMCQCvbXWKUqpKOALrXWXKrYfBdygtR5iu/0GEgxCCAeoTTPB1q1bmxcW6enQvz8cOUKenx8nTp6kw0UX4V3TIwCtISsLWrSATZsgKqrGu3ZVMGRprcNsXysgs/R2JdvvAp7TWr9vu/0GcBVQCOwEpmutC6vbrwSDEKKmqmomWH4oqk2bNs5vJlhYCPfeCwcOGCeWgZMpKXgpRYsWLWr3WllZ0Lo1fPAB1PCyX4cFg1LqM6CiiuOANeWDQCmVqbWucC1C2xHFz0BLrXVxuftOAX7ASuCQ1npOJc8fBYwCiI6Ovvzo0aPVfGtCCFGxzMzM88Li3GaCsbGxtG3b1rGXlD79NKxYYYSC7YjFYrFwKCmJNq1b06hRo9p+I8ZJ6X/9q0abu91QklJqInCx1npUJY/3BqZore+sbr9yxCCEcDSnNxNMSIC77jL+uz/n+dk5OaSnp9O+XbvaDXFZLMZVTBs3Qo8e1W5e02Coa6vEbcAwYKHt83tVbDsImFH+DqVUlC1UFHAv8Gsd6xFCiAsSGhpKr1696NWrV9l95ZsJfvfdd6xbt46UlBQ6dOhQ+2aCr75q/CGvIFRCQ0PJysoiIyODpQUF7MnLI99qpZmPDw81bcq9lc3jKD2aeeUV4/UdpK5HDE2BjUA0cBTjctUMpVRPYIzWeoRtu3bAf4E2WmtruefvAiIABfxoe87Z6vYrRwxCCLNU10yw9OjCrplgVhZccYVxuWklQ1NFRUUcPnIE3bIlHQID8fPy4khhIaOOHuX5Nm2IrWyYyWqFnBz4+mvjhHQVXHLEoLVOB/pUcP9eYES520eAVhVsd1Nd9i+EEK4WGBhIt27d6NatW9l95zYT3LJli10zwRssFq4qLMQvKIjKTm/7+fnRNDycvMxMfIODAeM/ZqUUycXFlQeDl5fxsWcP3H23Q75HWXVDCCHqyN/fn0suuYRLLrmk7L7yzQSLV68mJz2djLQ0fP38CAgIsPsovVQ1vGlTsg8fZvaRI+woKKBQa7oEBHCNLSgqVVwMP/4owSCEEO6sdGZ2bGwsfPQRREURERJCYWEhBQUFFBQUcCYnh4LCQnx8fMpCIiwsjMFpacR16sRvhYV8n5eHX3UnpP394VfHnaKVYBBCCGfLzwcvL5RSZQFQSgNFhYXk28KioKCAoqIiSoqK6B4YyIfZ2WzKzGRgeHjlr+/l9WfbDAeQYBBCCGfz9zdOEldAYQxF+fv7Q+PGgBEWpccIFiC5qKjq19fa2IeDOHmanxBCCGJijPMA1cgoKeHTnBzyrVasWvO/s2f5JDubXtXNbC4shC6VdiOqNTliEEIIZ7v00hq1y1bApsxM5qekYAWifH15onlzrg8JqfqJ3t5w+eUOKRUkGIQQwvl69DCGkqzWKttlN/HxYWXbtrV7bavVGErqWe30hBqToSQhhHC2iAjo08eYiOZoZ85Ar14QHe2wl5RgEEIIVxhlaxNXyUnoC1J6tDB2rONeEwkGIYRwjR49oF8/KF2tzRGys6FvX7juOse9JhIMQgjhOnFxRj8jR4RDTg40bQpzKlypoE4kGIQQwlWCg+Htt6FJE6Ox3oU0MdXaCJagIHjrLahq4tsFkmAQQghXio6GrVuha1cjHGowv6FMcbHxnPbtYcsW6NjRKSVKMAghhKu1bGn8YZ8+HYqKjD/2ubkVn5i2WiEvz9imoAAmTDCW82zXzmnlyTwGIYQwg7c3jBwJAwfC9u2wbp2xFrSPT9myn2htHCV06AAPPmisF21rm+FMEgxCCGGmkBBj3ebBg42jh4MHjaMDMEKgY0eH9kGqCQkGIYRwF35+xrkHk8k5BiGEEHYkGIQQQthR+kKuozWZUioVOOrAl2wGpDnw9eoreZ+qJ+9Rzcj7VD1nvEdttdYR1W3kkcHgaEqpvVprx7UmrKfkfaqevEc1I+9T9cx8j2QoSQghhB0JBiGEEHYkGAwrzS7AQ8j7VD15j2pG3qfqmfYeyTkGIYQQduSIQQghhJ0GGQxKqX5Kqd+UUlalVKVn/ZVSfZVSiUqpg0qp6a6s0R0opcKVUjuUUgdsn5tUsp1FKfWj7WObq+s0Q3U/G0opf6XUBtvj3yql2rm+SvPV4H16WCmVWu7nZ4QZdZpJKfWaUuoPpdSvlTyulFIv2N7Dn5VSPZxdU4MMBuBX4H7gP5VtoJTyBl4CbgO6AoOUUubPVXet6cBOrXUnYKftdkXytdbdbR93u648c9TwZ2M4kKm17ggsARa5tkrz1eJ3aEO5n59VLi3SPbwB9K3i8duATraPUcArzi6oQQaD1jpea51YzWa9gINa6yStdRHwDnCP86tzK/cAa2xfrwHuNbEWd1KTn43y790moI9SpS0zGwz5HaoBrfV/gIwqNrkHWKsN3wBhSqkoZ9bUIIOhhloBx8vdTrbd15A011qn2L4+BTSvZLsApdRepdQ3SqmGEB41+dko20ZrXQJkA01dUp37qOnv0N9sQySblFJtXFOaR3H536J6211VKfUZ0KKCh+K01u+5uh53VdX7VP6G1lorpSq7hK2t1vqEUqoDsEsp9YvW+pCjaxX10nbgba11oVJqNMZR1k0m19Tg1dtg0FrfXMeXOAGU/++lte2+eqWq90kpdVopFaW1TrEduv5RyWucsH1OUkp9AVwG1OdgqMnPRuk2yUopH6AxkO6a8txGte+T1rr8e7IKeNoFdXkal/8tkqGkyn0HdFJKtVdK+QEDgQZxxU0524Bhtq+HAecdaSmlmiil/G1fNwOuAX53WYXmqMnPRvn37gFgl254k4aqfZ/OGSu/G4h3YX2eYhvwkO3qpCuB7HJDvM6htW5wH8B9GON0hcBp4BPb/S2BD8ttdzuwH+O/3ziz6zbhfWqKcTXSAeAzINx2f09gle3rq4FfgJ9sn4ebXbeL3pvzfjaAOcDdtq8DgHeBg8AeoIPZNbvp+7QA+M328/M5EGN2zSa8R28DKUCx7e/ScGAMMMb2uMK4uuuQ7Xesp7NrkpnPQggh7MhQkhBCCDsSDEIIIexIMAghhLAjwSCEEMKOBIMQQgg7EgxCCCHsSDAIIYSwI8EghBDCzv8HZPTjillfG1oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -330,7 +331,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOX9///nPUkmC5mEJSCbyCYKqKAgiwtIpEV+rWLVjwvVUgvSjdZqadUmISGQVsGK0IrKV6wI4gJoC9aFiiAgm7hBEQSEQtjCko1MlsnM3L8/ToIRsjKTuWd5P65rrsxycs6Lw+R9zrnPfe6jtNYIIYSILDbTAYQQQgSeFH8hhIhAUvyFECICSfEXQogIJMVfCCEikBR/IYSIQFL8hRAiAknxF0KICCTFXwghIlC06QB1SUlJ0V27djUdQwghQsqnn356UmvdtqHpgrb4d+3ala1bt5qOIYQQIUUpdaAx00mzjxBCRCAp/kIIEYGk+AshRASS4i+EEBFIir8QQkQgKf5CCBGBgrarpxC18nhg82b44gvrZ14eeL2QnAwDBkC/fnDddeBwmE4qRFCT4i9CQ2kpvPwyzJ8PxcVQWQnR0RATY31+8CBs3Wq9ttngttvgl7+ECy80m1uIICXFXwS/Tz6B3/0Ojh2D+Pi69+oTE62fbje8/jq8+Sakp8PYsdYGQQhxhvxFiOD28stwzz1w6hS0agVxcQ3/TnS0Na3dDpmZMGkSuFzNn1WIECLFXwSvV1+FqVOhRYtv9+qbwm63zgW895515OD1+j+jECFKir8ITl99BVOmWIW/ul3/fNhs0LIlvP8+LFjgv3xChDgp/iL4uFzw4IOglLX37iubzdqIPP44/O9/vs9PiDAgxV8En5UrYf9+/3bXtNutHkJz5vhvnkKEMCn+Ivg89xxERVl7/vUo9niYfOgQ1+3axQ/37uW9oqL655ucDG+/Dfn5fgwrRGiSrp4iuBw+DLt2WYW6AY8fO0aMUqzs1Yvd5eU8mJtLr7g4usfG1v4LUVGgNaxeDbff7ufgQjTM44Hdu2HnTuu0VkmJdUqrZ0/o3Rv69rVaKANBir8ILjt2NGqvv8zr5cPTp3mje3cSbDb6JyQw3OHg30VF/KZdu7p/0eu1LgaT4i8CKD/fuvTkxRetaxS9XmtDYLNZ+yPwbb+GW2+Fn/4ULr20eTNJ8RfBZceORvXJP+hyEQV0qXFC+OLYWD4rLa3/F+Pi4NNPfQwpRONoDcuXW9calpVZX7/6TmW53bBkCSxbBvfdB5MnQ0JC82ST4i+Cy6lTjboat9TrpYXNhquykoKCAmxKocvLyS8ro6i4mCibDVv1IyrqO89p6NyAEH7gcsHvfw/vvGNdmN6yZcO/U319osdj9UxetQoWLWqeUUqk+IuQlGCz4fR6+d/+/bgqK2nXrh3FlZXYvV5Onz6N1+vF6/Hg8Xqt51Wvo7WmMiaGR2+5hRYtWpCQkECLFi3OeV7bZ4mJiSQkJJx5HhMTg2qgeUpEJrcbfvUr6/RScnLTRxeJirI2AkeOWC2Ub70FnTr5N6MUfxFc2rdv1JW4Xex2yl0uClu1opVSJCclcbyykisSE+lcR5u/BrTTifvCC3n22WdxOp1nHqWlpd95fvz48XPeO3t6r9fbpI1FfRsXu90uG5IwMns2fPihVcB9+W9NTrbOF/zsZ1ZHNV+udzybFH8RXC67DOrqrVODu7SUq2023lSKnzscbDh1io9On+YfXbvW+TsKUBUV2K+9lk5+2I1yuVyUlpZSWlpKSUnJOc+rNxSnTp0iNze3zg2N0+nE7XY3aWNR3xFLbGysbEgM+u9/rd7KSUm+Ff5qycnwzTfWPH/zG9/nV02KvwguffpYx8xeb53Hym63m6NHj5J10UXMLCzkx/n5xLrdPHbRRXV386wWFWWN++8Hdrsdu91Oy8Y05jagsrLyzIagtqOM6ucFBQUcOnSozg1JSUkJbre7SRuL+o5S4uLiZEPSRBkZ1s9oP1VXpazun3//O9x9N7Rt65/5SvEXwaVdOxg0yBrGuZa+/ho4cvQoLVu2pJ3DwV8dDjSwZ/duujbULaL6HgAjRjRLdF/ExMSQnJxMciOub2iI2+1u1IakqKiIw4cP13nEUlpaisvlOrNRaGyTVl1HLPHx8WG/Idm9G7Zvb/gylfz8NygqWkFFxV6SkkbRsWNWvdPHxIDTCUuXWrep8Acp/iL4PPCAVfy1Pue4uaCgAI/HQ9uUlDPvKcDhcHC6uJg2bdrUPd/Tp63+c4G6isaQ6OhokpKSSEpK8nleHo/nOxuSupq3iouLOXbsWL3nUSoqKoiLi/OpSat6YxMXF4ctCO/RsHSpddDa0DYuOjqFlJTxlJRsROuKRs07Ls4a4VyKvwhfw4fDlVfCZ599p39cRUUFJ06coGvXrufsQTqSkjh54kTdxb+83BoWetKk5kwedqKionA4HDj8MM6S1+tt8CS60+mkpKSE48eP1ztdeXk5cXFxPjVpVX+ekJDgtw3Jxx837pYTSUmpAJSVfYXbfbxR846NhePHrRPArVv7ktIixV8EH5sN/vpX+P73rStj4uPxas3hI0e4oF07YmsZ6TMhIYEKl4tKt5uYsxtbPR5rPrNn+6/BVDSZzWYjMTGRxPO5N8NZvF4vZWVl9Z5Er36cPHnynPMiNacpLy8nNjbWpyYt60R7Art3J+JwNE/TVvUgtzt3wrXX+j4/vxR/pdRNwGwgCnhBa/14HdPdDiwFrtZab/XHskWYuvBCePZZqwlIKU4UFVnt4nWcXLUpRWJiIqdPn6Z1q1bffuDxWBd1/exn8IMfBCi8aG42m+1M0fWV1+ulvLy83pPo1U1dJ0+erPOIpagIcnOfJzraSVRUjYsMbdZFht99z3pUVFQQFdX4rB6PdR2kP/hc/JVSUcAzwPeAQ8AnSqnlWuuvzprOATwIbPZ1mSJC3HADPP88ZT/7GZ5Tp+jQqxf17VMlORzkFxR8W/xLS6GiAiZOhD/+0T/97kTYsdlsZ/b02/pwZFhQAFdfrUlKqnFhYdXD46l+7jnznrXBKKB168Z/L7X23w3p/LHnPwjYq7XeB6CUeg0YA3x11nTTgCeAP/hhmSJCFA0YwIPduvFUt25E5+ZaXTUTE2st5C0SEzl85Ahup5Nol8tqGH3uORg2zEByEWlatACtFUpFER1d/+681+th3759JCe3BIobvQybzX+3ufDHWY5OQG6N14eq3jtDKXUVcKHW+t9+WJ6IEFprcnJyuOLmm2m9ahX87W/WuLdFRdbQiKdOWT+Li6GgAFtREW1iYij2euFPf7IGRpHCLwLEbofOna2Dzfppjhw5RIsWdmJj7YAXr9eF1p4Gl+H1Qq9e/kgbgBO+Sikb8BTw00ZMOxGYCNClS5fmDSaC3ooVKzh48CDTp0+3dnlGj7YeBw9anam/+MIa/MTttvbyr7yS3fn5LN25k1njx5uOLyLQgAHwr3/V3+OnqKiY06cXAW/VeO8dUlIm0rbtxDp/r7Ly2w2MP/ij+B8Gao4517nqvWoO4DJgTVX3vPbAcqXULWef9NVazwPmAQwcOFD7IZsIUbm5ucyZM4fnn38e+9m9e7p0sR61nMDt73Ty2OjROJ1Ov5wMFKIpbrsNVqyo+/PKShd5ecfo1u33xMWlNWneJSVwzz3+O3Xlj2afT4CLlVLdlFJ24G5gefWHWusirXWK1rqr1rorsAk4p/ALUc3tdpORkcGECRPo0aNHk363RYsWXHXVVaxfv76Z0glRt2uugZQUq6/BuTSHDx8hJSWFuMZcDFBD9WgnP/mJX2ICfij+Wms3MAl4H9gJvKG13qGUylZK3eLr/EXkmT9/Pg6Hg7vuuuu8fj81NZVVq1b5OZUQDbPZ4LHHrHZ/fVbbxcmTJ7HZFK3P4wqt4mIYOdJ/7f3gpxu4a63f0Vr30lr30FrnVL03RWu9vJZpb5C9flGXbdu28eabb5KZmXne48AMGzaMzZs3U15e7ud0QjTs5puti9QLC799r6yslPz8Ajp27Aj1dlg+V2mp1ZNo+nT/5gy+wTFExHI6naSnp5OWlkZKjbF7mqply5b06dOHTZs2+TGdEI2jFMycCR06WB3TvF4Phw8foUOH9kRHN21A/vJyqz/D3LlQ37BV50OKvwgaM2bMYMiQIQzzQ/fMESNG8OGHH/ohlRBN16YNvPEGdOwI//tfEQkJCTgcjR9oT2trw+F2W5eq+GM4h7NJ8RdBYeXKlWzfvp2HHnrIL/MbMWIE69evp7Ky0i/zE6KpOnaE3/1uFW3arCUurj3FxeeeB6hNWZnVZNS9O/zzn5Ca2jz5pPgL4/Ly8pg5cyY5OTnEx8f7ZZ5t27ala9eubN0qp5eEGceOHWPu3Mf51796sXChjX79rL35/HzrZ3m5dZP3igprtPH8fOvEblKSdUOYt9+GSy9tvnwyqqcwyuv1MmXKFMaOHUvv3r39Ou/qpp+hQ4f6db5CNKTm97pPnz6A1XSzbx+sWwdbtsCOHdZefnQ0XHQRDB4MV18NQ4Y0/Ybv50OKvzBq0aJFaK0ZN26c3+edmprK/fffz2OPPRaUN/4Q4evll18GOOd73b279WiGr3uTSfEXxuzatYuFCxeycOHCZinOnTp1IiUlhS+++IKrrrrK7/MXojY7d+7klVdeabbvtb8EbzIR1srLy0lLS2Py5Mm0b9++2ZaTmpoqvX5EwJSVlZGWlsYf/vCHZv1e+4MUf2HE008/Td++fRk1alSzLqe6+OvGdLMQwkezZs3i8ssv5/vf/77pKA2SZh8RcGvXrmXDhg0sXry42ZfVrVs34uPj+eqrr+jbt2+zL09ErjVr1rBp0yZeffVV01EaRfb8RUDl5+eTk5NDdna2X+7l2hClFDfeeKM0/YhmdeLECf785z8zffr0kBlNVoq/CBitNVlZWdx66630798/YMut7vIpTT+iOXi9XrKysrjjjju44oorTMdpNCn+ImCWLFlCUVERDzzwQECXe+mll+J2u/nmm28CulwRGV577TXKysoYH2I3EJI2fxEQ+/btY968ebz44otERwf2a6eUOrP337Nnz4AuW4S33bt38+KLL7JgwQKiouq/b2+wkT1/0excLhfp6en85je/MXZ7ztTUVFavXm1k2SI8VVRUkJ6ezsMPP0ynTp0a/oUgI8VfNLu5c+fSqVMnbrnF3L19rrjiCk6dOkVubq6xDCK8zJ49m549ezJ69GjTUc6LFH/RrLZs2cLKlStJT08/75uz+IPNZmPEiBGy9y/84uOPP2bt2rU89thjRr/XvpDiL5pNUVERWVlZZGZmkpycbDqO3N5R+EV+fj7Tpk0jOzsbh8NhOs55k+IvmoXWmpycHEaOHMngwYNNxwFgwIAB5ObmkpeXZzqKCFFaa6ZOncott9wS8uNFSfEXzWLFihUcPHiQSZMmmY5yRnR0NMOGDWPNmjWmo4gQtWTJEgoKCpg4caLpKD6T4i/8Ljc3lzlz5pCTk4Pdbjcd5zuk6Uecr+ruytOnTw94d+XmIMVf+JXb7SYjI4MJEybQo0cP03HOMWTIEHbv3k1+fr7pKCKEuFwu0tLSjHZX9jcp/sKv5s+fj8Ph4K677jIdpVZ2u52hQ4eydu1a01FECHnmmWe48MILjXZX9jcp/sJvtm3bxptvvklmZmZQd3+rvtpXiMbYvHkz//nPf0hLSwvq73VTSfEXfuF0OklPTyctLY2UlBTTcep13XXX8cUXX3D69GnTUUSQKywsZOrUqWRlZQVFd2V/kuIv/GLGjBkMGTKEYcOGmY7SoISEBAYOHMi6detMRxFBTGvNtGnTGDVqFIMGDTIdx++k+AufrVy5ku3bt/PQQw+ZjtJoMtaPaMg///lPjh49yi9/+UvTUZqFFH/hk7y8PGbOnElOTg7x8fGm4zTasGHD2LJlC2VlZaajiCB04MABnnnmmaDsruwvUvzFefN6vUyZMoWxY8fSu3dv03GaJCkpib59+7Jx40bTUUSQqaysJD09nV/84hd069bNdJxm45fir5S6SSn1tVJqr1Lq0Vo+f1gp9ZVSaptSapVS6iJ/LFeYtWjRIrTWjBs3znSU8yK3dxS1ef7550lJSeH22283HaVZ+Vz8lVJRwDPAaKAPcI9Sqs9Zk30ODNRaXwEsBWb4ulxh1q5du1i4cCHZ2dnYbKF5ADl8+HA+/vhjXC6X6SgiSHz66ae8/fbbZGRkhFW3ztr44692ELBXa71Pa+0CXgPG1JxAa71aa11a9XIT0NkPyxWGlJeXk5aWxuTJk2nfvr3pOOctJSWF7t2788knn5iOIoJAcXExU6ZMYcqUKbRu3dp0nGbnj+LfCah5h4xDVe/VZTzwrh+WKwx5+umn6du3L6NGjTIdxWfS9CPA6tb55z//mREjRnDNNdeYjhMQAT1eV0rdCwwEZtbx+USl1Fal1NYTJ04EMppopLVr17Jhwwb++Mc/mo7iFzfccAMfffQRHo/HdBRh0L///W/279/Pb3/7W9NRAsYfxf8wcGGN152r3vsOpdRIIA24RWtdUduMtNbztNYDtdYD27Zt64dowp/y8/PJyckhOzubxMRE03H8omPHjnTo0IHPP//cdBRhyKFDh3j66afDultnbfxR/D8BLlZKdVNK2YG7geU1J1BKXQk8j1X4j/thmSLAtNZkZWVx66230r9/f9Nx/ErG+olcbreb9PR0xo8fT8+ePU3HCSifi7/W2g1MAt4HdgJvaK13KKWylVLVQ+DNBBKBJUqpL5RSy+uYnQhSS5YsoaioiAceeMB0FL+rvtrX6/WajiICLNhHoW1Ofrkjgdb6HeCds96bUuP5SH8sR5hRfROLF198MSxuYnG2rl274nA42LFjB5dffrnpOCJAvvzyS5YtW8bixYtDtruyLyLvXyyaxOVykZ6eHlY3sajNiBEjZKyfCFJSUkJGRgbp6elBPwptc5HiL+o1d+5cOnXqFFY3sahN9e0dtdamo4gAmDFjBkOHDg2JUWibS/gdwwu/2bJlCytXruTVV18N+6sde/XqhdaaPXv20KtXL9NxRDN677332LFjB6+88orpKEbJnr+oVVFREVlZWWRmZobdTSxqo5QiNTVVev2EuSNHjvDXv/6VnJwc4uLiTMcxSoq/OIfWmpycHEaOHMngwYNNxwkYKf7hrXoU2vvuu49LL73UdBzjpPiLc6xYsYKDBw8yadIk01EC6rLLLqO4uJgDBw6YjiKawUsvvURMTAz33nuv6ShBQYq/+I7c3FzmzJkTcVc7AthsNrngK0zt2LGD1157jalTp0Zkt87ayFoQZ7jdbjIyMpgwYQI9evQwHccIub1j+CktLSU9PZ1HH32Udu3amY4TNKT4izMi+WrHaldddRWHDx/m2LFjpqMIP3nyySe58sorSU1NNR0lqEjxFwBs27aNN998k8zMzLDv1lmfqKgohg8fLk0/YWLVqlV8/vnnTJ482XSUoCPFX+B0OklPTyctLS1ir3asSZp+wsPx48d54oknmD59OgkJCabjBB0p/oIZM2YwZMiQiL7asaZBgwaxZ88eTp06ZTqKOE/V3Trvvvtu+vbtazpOUJLiH+FWrlzJ9u3beeihh0xHCRp2u51rrrmGjz76yHQUcZ4WLVqE2+3mpz/9qekoQUuKfwTLy8tj5syZ5OTkEB8fbzpOUJHbO4auXbt2sXDhQqZNmybdOushayZCVR8Wjx07lt69e5uOE3SGDh3K9u3bKS4uNh1FNEF5eTlpaWlMnjyZDh06mI4T1KT4R6hFixahtWbcuHGmowSlhIQErr76atatW2c6imiCWbNm0bdvX0aNGmU6StCT4h+Bqg+Ls7Oz5bC4HjLWT2hZu3YtGzdu5I9//KPpKCFB/vIjTM3D4vbt25uOE9Suu+46PvnkE0pLS01HEQ04efIk06dPZ9q0aSQmJpqOExKk+EeYp59+mj59+shhcSMkJSXRr18/NmzYYDqKqIfX6yUrK4vbb7+dfv36mY4TMqT4R5C1a9eyYcMGHnnkEdNRQoYM9Bb8Xn/9dZxOJxMmTDAdJaRI8Y8Q+fn55OTkkJ2dLYfFTXDDDTewYcMGXC6X6SiiFnv27GH+/PlMmzaNqKgo03FCihT/CKC1JisrizFjxtC/f3/TcUJK69at6dWrF5s3bzYdRZyloqKC9PR0fve739G5c2fTcUKOFP8IsGTJEgoLC5k4caLpKCFJmn6C09/+9je6d+/OD37wA9NRQpLcwD3M7du3j3nz5vHiiy8SHS3/3ecjNTWVF154AbfbLeswSGzYsIHVq1fz6quvRvQotL6QPf8w5nK5SE9PZ9KkSXTp0sV0nJB1wQUX0KlTJz777DPTUQTW+avs7Gyys7NJSkoyHSdkSfEPY3PnzqVTp06MGTPGdJSQJxd8BQetNdOmTeOHP/whAwYMMB0npEnxD1Nbtmxh5cqVpKeny2GxH1SP8e/1ek1HiWjLli3j5MmT/PznPzcdJeRJ8Q9DRUVFZGVlkZmZSXJysuk4YaFLly60bNmS7du3m44Ssfbv389zzz3H9OnTiYmJMR0n5EnxDzNaa3Jychg5ciSDBw82HSesSNOPOS6Xi7S0NH79619z0UUXmY4TFvxS/JVSNymlvlZK7VVKPVrL57FKqderPt+slOrqj+WKc61YsYKDBw8yadIk01HCTnXTj9badJSI8+yzz9KxY0duvfVW01HChs/FXykVBTwDjAb6APcopfqcNdl4oEBr3ROYBTzh63LFuXJzc5kzZw45OTnY7XbTccJOz549sdlsfP3116ajRJQtW7bw/vvvy/krP/PHnv8gYK/Wep/W2gW8BpzdvWQMsKDq+VLgRiX/i37ldrvJyMhgwoQJ9OjRw3ScsKSUkqafAKt5/qply5am44QVfxT/TkBujdeHqt6rdRqttRsoAtr4Ydmiyvz583E4HNx1112mo4S16qYf0fy01kyfPp3vfe97cv6qGQTVCV+l1ESl1Fal1NYTJ06YjhMytm3bxrJly8jMzJTD4mbWp08fnE4n+/fvNx0l7C1fvpxDhw7x61//2nSUsOSP4n8YuLDG685V79U6jVIqGkgGTp09I631PK31QK31wLZt2/ohWvhzOp2kp6eTlpZGSkqK6Thhz2azMWLECNn7b2YHDx7kb3/7m5y/akb+KP6fABcrpboppezA3cDys6ZZDlTfLPYO4EMtXSb8YsaMGQwZMoThw4ebjhIxUlNTWbVqlekYYcvtdpOens7EiRPp3r276Thhy+dRqrTWbqXUJOB9IAp4UWu9QymVDWzVWi8H5gMLlVJ7gXysDYTw0cqVK9m+fTuvvPKK6SgRpX///hw/fpwjR47QsWNH03HCzrx582jVqhX/93//ZzpKWPPLEIVa63eAd856b0qN5+WA/E/6UV5eHjNnzmT27NnEx8ebjhNRoqKiGD58OKtXr+bHP/6x6Thh5bPPPmP58uUsXrxYzl81s6A64Ssax+v1MmXKFMaOHUufPmdfUiECQZp+/O/06dNMmTKFjIwMWrdubTpO2JPiH4IWLVqE1ppx48Y1PLFoFldffTX79+/n5MmTpqOEBa01f/nLXxg2bBjXXnut6TgRQYp/iNm1axcLFy5k6tSp2Gzy32dKTEwM1113HWvWrDEdJSy8++677N27lwcffNB0lIgh1SOElJeXk5aWxuTJk+nQoYPpOBFPbu/oH4cPH+app55i+vTpxMbGmo4TMaT4h5Cnn36aPn36MGrUKNNRBHDNNdewY8cOioqKTEcJWR6Ph4yMDH72s5/Rq1cv03EiihT/ELF27Vo2bNjAI488YjqKqBIXF8fgwYP56KOPTEcJWfPnzyc+Pp6775be34EmxT8E5Ofnk5OTQ3Z2NomJiabjiBrkat/zt23bNpYuXUpWVpacvzJA1niQ01qTlZXFmDFj6N+/v+k44izXX389n376KaWlpaajhJTqYUn+9Kc/IUO5mCHFP8gtWbKEwsJCJk6caDqKqEViYiL9+/dn/fr1pqOElOphSW644QbTUSKWFP8gtm/fPubNm8f06dOJjvbLxdiiGdx4443S66cJqocleeihh0xHiWhS/IOUy+UiPT2dSZMm0aVLF9NxRD2GDRvGxo0bqaioMB0l6B07doyZM2eSk5Mjw5IYJsU/SM2dO5dOnToxZszZN0UTwaZVq1ZceumlbNq0yXSUoFY9LMm9995L7969TceJeFL8g9CWLVtYuXKl3LM0hEjTT8MWLFiAUor77rvPdBSBFP+gU/OepcnJyabjiEa64YYbWLduHZWVlaajBKWvvvqKxYsXk52dLd06g4T8LwQRrTU5OTmMHDlS7lkaYtq1a0eXLl349NNPTUcJOqWlpaSnp/PII49wwQUXmI4jqkjxDyIrVqzg4MGDTJo0yXQUcR5SU1Ol6acWTz31FP369WPkyJGmo4gapPgHidzcXObMmSP3LA1hqamprFmzBq/XazpK0Pjwww/ZunUrf/jDH0xHEWeR4h8E3G43GRkZTJgwgR49epiOI85T586dSUlJ4csvvzQdJSgcP36cxx9/nGnTppGQkGA6jjiLFP8gMH/+fBwOB3fddZfpKMJHMtaPxev1kpWVxZ133snll19uOo6ohRR/w7788kuWLVtGZmamdOsMA9Xt/lpr01GMWrx4MRUVFdx///2mo4g6SPE3yOl0kpGRQVpaGikpKabjCD/o3r07drudnTt3mo5izO7du1mwYAHTpk0jKirKdBxRByn+BlUPbjV8+HDTUYSfKKUiutdP9d3mHn74YTp27Gg6jqiHFH9DZHCr8BXJTT+zZ8/mkksuYfTo0aajiAbIUJEG5OXlMXPmTGbPni2DW4Wh3r17U1FRwf79++nevbvpOAGzbt061q9fz+LFi01HEY0ge/4B5vV6ycjIYOzYsfTp08d0HNEMqpt+Vq1aZTpKwOTn5zN9+nSys7NxOBym44hGkOIfYAsXLgRg3LhxhpOI5pSamhoxXT6r7zZ36623cuWVV5qOIxpJmn0CaNeuXSxatIiXX35ZBrcKc/369ePkyZMcOnSIzp07m47TrJYsWUJRUREPPPCA6SiqPrb4AAAWzklEQVSiCaQCBUh1L4jJkyfToUMH03FEM7PZbNxwww1h3+tH7jYXuqT4B8isWbPo06cPo0aNMh1FBEi4N/24XC7S0tL47W9/y4UXXmg6jmgin4q/Uqq1Uuo/Sqk9VT9b1TJNf6XURqXUDqXUNqVUxI1hsHbtWjZu3MgjjzxiOooIoAEDBnDgwAGOHz9uOkqz+Pvf/06XLl24+eabTUcR58HXPf9HgVVa64uBVVWvz1YK/ERr3Re4CXhaKdXSx+WGjFOnTpGTk0N2djaJiYmm44gAiomJ4brrrmPNmjWmo/jdpk2bWLVqFWlpaTIsSYjytfiPARZUPV8A3Hr2BFrr3VrrPVXPjwDHgbY+LjckaK2ZOnUqY8aMoX///qbjCAPC8faOhYWFTJ06lalTp5KUlGQ6jjhPvhb/C7TWR6ueHwPqvU2PUmoQYAe+8XG5IWHJkiUUFhYyceJE01GEIUOGDGHnzp0UFBSYjuIXWmumTZvG6NGjGThwoOk4wgcNFn+l1AdKqf/W8hhTczptXcte5/XsSqkOwELgfq11rXe7UEpNVEptVUptPXHiRBP/KcFFekEIgNjYWIYOHcratWtNR/GLt956i7y8PH75y1+ajiJ81GBV0lrXee81pVSeUqqD1vpoVXGv9cyWUioJ+DeQprXeVM+y5gHzAAYOHBiyA6NU94KYNGkSXbp0MR1HGJaamsq///1vxowZ0/DEQex///sfc+fO5YUXXiAmJsZ0HOEjX5t9lgPVl6qOA/519gRKKTvwFvCy1nqpj8sLCXPnzqVz584h/8cu/OPaa6/l888/p6SkxHSU81ZZWUl6ejq/+tWv6Nq1q+k4wg98Lf6PA99TSu0BRla9Rik1UCn1QtU0dwLDgJ8qpb6oeoTt2c8tW7awcuVK0tPTpReEAKBFixYMGDCA9evXm45y3p577jnatWvHj370I9NRhJ/41BittT4F3FjL+1uBCVXPFwGLfFlOqCgqKiIrK4vMzEySk5NNxxFBZMSIEXz44YfcdNNNpqM02datW3nnnXdYvHix7NCEEbnC10+01uTk5DBy5EgGDx5sOo4IMsOHD2fz5s2Ul5ebjtIkxcXFZGZmMmXKFFq1OucaThHCpPj7yYoVKzh48CCTJk0yHUUEoeTkZPr27cvGjRtNR2m06h2aG2+8kaFDh5qOI/xMir8f5ObmMmfOHHJycrDb7abjiCBV3fQTKt5++20OHDggOzRhSoq/j9xuNxkZGUyYMIEePXqYjiOC2IgRI1i/fj2VlZWmozQoNzeX2bNnyw5NGJPi76P58+fjcDi4666IG69ONFFKSgrdunXjk08+MR2lXtU7NA888IDs0IQxKf4++PLLL1m2bBmZmZnSC0I0SvXN3YPZCy+8QFJSEnfeeafpKKIZSfE/T06nk4yMDNLS0khJSTEdR4SI1NRUPvroI7zeWkc4Me6LL77grbfekh2aCCDF/zzNmDGDIUOGMHz4cNNRRAjp2LEj7dq14/PPPzcd5RwlJSVMmTKF9PR02rRpYzqOaGZS/M/DypUr2b59Ow899JDpKCIEBWvTzxNPPMG1117L9ddfbzqKCAAp/k2Ul5fHzJkzmT59OvHx8abjiBBUfXvHYGr6effdd9m1axcPPvig6SgiQKT4N4HX6yUjI4OxY8fSp08f03FEiOrWrRsJCQl89dVXpqMAcOTIEZ566ilycnKIi4szHUcEiBT/Jli4cCEA48aNa2BKIeoXLE0/Ho+HjIwMxo0bR69evUzHEQEkxb+Rdu3axaJFi5g6dSo2m6w24Zvqph/rHkjmvPTSS8TGxjJ27FijOUTgSRVrhPLyctLS0pg8eTIdOnQwHUeEgUsuuQSPx8PevXuNZfjvf//L66+/TlZWluzQRCD5H2+EWbNm0adPH0aNGmU6iggTSilGjBjB6tWrjSy/tLSU9PR0HnvsMdq1a2ckgzBLin8D1q5dy8aNG3nkkUdMRxFhJjU1lVWrVhlZ9pNPPsnAgQMZMWKEkeUL86T41+PUqVPk5OSQnZ1NYmKi6TgizFx++eUUFhZy8ODBgC73gw8+4IsvvuDhhx8O6HJFcJHiXwetNVOnTmXMmDH07x+2d50UBtlstoA3/eTl5TFjxgymT59OQkJCwJYrgo8U/zosWbKEwsJCJk6caDqKCGOBbPrxer1MmTKFe+65R65TEb7dwzdc7du3j3nz5vHiiy8SHS2rSDSfq666isOHD3Ps2DHat2/frMtatGgRWmu5TkUAsud/DpfLRVpaGpMmTaJLly6m44gwFx0dzbBhw1izZk2zLmfnzp0sXLiQ7Oxs6dYpACn+55g7dy6dO3dmzJgxpqOICNHct3csKysjPT2dP/zhD81+dCFCR0QUf7cbCguhoABcrrqn27JlCytXriQ9PV3GMhcBM2TIEHbv3k1+fn6zzH/WrFlcdtllfP/732+W+YvQFJYN2lrD9u2wdCls3gzffPPdz7p2hauvhttus34qBUVFRWRlZZGZmUlycrKx7CLy2O12rrnmGtasWcNtt93m13l/9NFHbN68mcWLF/t1viL0hV3x37IFpkyxCr7HA3FxkJQE1c2cXi8cOwZvvAHLlkGnTjBliua993IYOXIkgwcPNvsPEBFpxIgRLF++3K/F/+TJk+Tk5PDkk0/SokULv81XhIewKf7l5ZCTA6++ClFRVsGvreXGZoP4eOuhNeTlwdixpSQl3cCGDSMDH1wI4Nprr2XatGmcPn0ah8Ph8/y8Xi9ZWVnccccdXHHFFX5IKMJNWLT5l5bCfffBK6+Aw2E9GtNkrxTExLhwOg9TXv49fvxjO83U7CpEvRISEhg4cCDr1q3zy/xee+01SktLGT9+vF/mJ8JPyBd/rxceeAA++wxatbL2+htLa82RI4dp27YNbdvG8M031kakoqL58gpRlxtvvNEvvX727NnDP/7xD6ZNm0ZUU/4gREQJ+eL/0kuwaRO0bNm4vf2aTp48ic0WRevWrVEKkpNh1y54+ulmiSpEva6//nq2bNlCWVnZec+joqKCtLQ0HnroITp16uTHdCLc+FT8lVKtlVL/UUrtqfrZqp5pk5RSh5RSf/dlmTUdPAgzZkCLFk0v/GVlpRQUFNCxYwdAVWW0moz+3/+DHTv8lVKIxklKSuLyyy9nw4YN5z2POXPm0LNnT0aPHu3HZCIc+brn/yiwSmt9MbCq6nVdpgFrfVzed7z0ElRWgt1e/3SHD2ewZ88ovv56GN98cxv5+W9y+PBhOnToQHR0zHemrR7N4dln/ZlUiMbxpenn448/Zu3atTz22GNynYpokK/FfwywoOr5AuDW2iZSSg0ALgBW+ri8M0pL4bXXoDEjLaek3E+PHiu45JK1dO78FIcPz8ZuP1pnrwqHA95/H06c8FdaIRpn+PDhfPzxx7jquxqxFvn5+UybNo2pU6f6pbeQCH++dvW8QGt9tOr5MawC/x1KKRvwV+BewG99KT//3DrZGxPT8LSxsd3PPC8pOY3X6yUpqe521agoqwlo0ya4+WZ/pBWicdq0aUPPnj35dPVqhrZqBbt3Q3GxdUjaujX07g0XX/ydw12tNdnZ2dxyyy1cddVVBtOLUNJg8VdKfQDUNiBIWs0XWmutlKrtbtS/At7RWh9q6FBUKTURmAg0OKjajh31D9VwtmPHHqegYDnl5cU4HJeRlHR9vdNXVlobGCn+ImA8Hli3jrRdu0i+5x5o1876Irrd1f2Sv+3O9qMfwU9+Ar17s3TpUvLz82X4cdEkDRZ/rXWde+tKqTylVAet9VGlVAfgeC2TDQWuV0r9CkgE7EqpEq31OecHtNbzgHkAAwcOrG1Dcsa2bU3r1tm+/SOUl99JcvIB7PZ9KFX/iYK4OGsZQgTEN9/A734Hu3bR2e1mX2UlrRITqXV3ye22LlFfupTC1FQWfv01f3/5ZRl+XDSJr9+W5cA44PGqn/86ewKt9Y+rnyulfgoMrK3wN1VJybdDNjRGZWUlTmcZ0JXi4ncpLHyeFi1+hM0Whc1mIyrK9p3nLlcUJ05o8vJO06JFCxISEmQoXNE8li2DP/3JasdMSiJGKezFxZQ6nbUPyxAdDa1a4fV4qHjlFRZ06EArpzPwuUVI87X4Pw68oZQaDxwA7gRQSg0EfqG1nuDj/OsUE2MNz9D46e307NkDr9dLXl4sShUQHx+P1+vF4/FSWVmJ11uBx+PF6/XgckVTVnaE++/PpKSkhPLycuLi4mjRosV3HomJiU1+T/bQxBmLF0NGhtVfuUY7vsPh4PTp0/WOyXPi5EkqExNpZ7PBnXfC66+D3KFLNJJPVUhrfQq4sZb3twLnFH6t9UvAS74ss1rPnvDBBw1P53bnU1q6lcTE67Db43A6N1NevppOnf6Mw1HnZQkUFsLNN3di1qx3AGuslLKyMpxOJyUlJTidzu88qt/Lz88nNze33umio6PPa6NR83ViYiIxMTHSpS+UVY9CeFbhB3AkJXHgwAEuaN++1qYfp9NJcXEx3bp3R0VFwenT1jmADz6wrngUogEhuwvar1/D/fstioKCpRw9+mfAS0xMBy644Pc4HMPq/S2treGeq9lstjMFuF27duedW2tNRUXFORuNszcQJSUl5OXl1Tud1+v16Qik+hEfHy8bkUBzOuHBB60mnFq+yLF2O1FRUZSVlZEQH/+dz9weD0eOHKFjx45EV5/4cjisPZbMTJg9OxD/AhHiQrb4X3ml1UTq9dbf9h8d3YqLLprXpHlrbc1zwAAfQ9ZCKUVcXBxxcXG0adPGp3m5XC5KS0tr3UDUfH7q1Kk6j1ScTicul4uEhAS/bEjkvEgjvfACHD9uDUhVB4fDweni4u8Ufw0cPXqUpOTkc5uEkpLgnXdg3DiQLp+iASFb/C+4AK67Dtat8/9RrtMJvXrBJZf4d77+ZrfbsdvttPRxBXg8nnM2DrUdbeTl5dXb5FVWVkZsbGyjNhr1bUwSEhKIacwFHKHK5YJ//AMSEuqdLK5FCzL27eOb06cp9njoHBPDTxIS6FVZWfu4PTabtTf0j39I8RcNCtniDzBxolX8G9r7bwqtra7Vv/61f+YXCqKiokhKSiIpKcmn+Xi9XsrLy+vdQDidTgoKCjh06FC9TV6+nBep+Z7dbg++Jq31661L1BtY39FxcbS12XjwggvompjI6sJCHj1wgDd69sRW178pKcm6PL24uMH5i8gW0sV/6FAYPRrefdd/e/9FRTBoENx0k3/mF0lsNhsJCQkkNLBH2xCtNS6X68zGwZfzIh6Px+emrMTEROLi4vzXpLVli7WH0YAEm40HUlJQ5eWQmEi3wkIujItjv9dLt7p+KSrK2hPascP6AxGiDiFd/AGys2HjRquzg69Dmjid1h2+nnzSf0cSoumUUsTGxhIbG9us50VqvldQUFBvk1dFRQXx8fHn9Lg6r/MimzdbVxE2gsPh4OjRo6A1TpuNY0D32NiG/tFS/EWDQr74t2pl3cHrzjt9O9ItKbGuoH/pJeu+viI8+PO8SM2NSF0bkppHImcfpVSfF/nHzp3EA97oaKJsNmxRVRcX2mzYanldXlZGucvFM3Fx/DA5ma4NFX+A3Fyf/r0i/IV88QfrxOzSpTB+PBw5Yh0BNHboB6/Xaupp08Yax79fv+bNKkJTVFQUDofD5xEzvV4vetAgvGVleG026yJDrxev14vX4znz3OPxUOly4fF6SWjRgrmA3Wbjj+1rG2brLEo1qllJRLawKP5gDXT4/vvw1FPW3rvXa3WmsNtrv9GLy2U18ygFd9wB6em+NxsJ0RCbzQYOB1Hl5dCIPXitNdlHj1JcWcmczp2JbszJa69XLvQSDQqrlu34eEhLg48+gkmTrL+toiKrSae42HqUlFjvKWUdKXzwATzxhBR+EUBXXAHl5Y2a9C/HjrHf5WLWhRcS29gTUXY79O3rQ0ARCcJmz7+mjh3hoYesQRJPnLDuy1tYaHXjTE62monat2/6rR+F8ItBg2DFigYnO1pZyZuFhdiVYtSePWfe/1P79oxOTq79l7S29vx79/ZXWhGmwrL4V1PKGhLdh9EYhPC/4cO/vSCrnr35DjExbG1qES8rs/Z+utXZGVQIIMyafYQICZ07w7XXWu2Q/lZZaV39KIe1ogFS/IUw4eGHrZ8ej//m6XRafZ/HjPHfPEXYkuIvhAn9+sH991t7/025MUVdPB5rr3/WLEhM9H1+IuxJ8RfClN//Hi677NveCOfL47G6sI0fbzUnCdEIUvyFMCUuDhYssO6+VVBwfk1AFRXW0cO998Ijj/g/owhbUvyFMKllS+v2i/feaw1Q1dhmII/n2w3GX/4CU6fKgFSiSeTbIoRpCQnWCIWLF8Pll1tNOKdOWRuDyspv71pUUWF9VlBgndy9+WbrKsU775TePaLJwrqfvxAhZdAgWLYM9u6F996DTZus0TlPn7YGq2rdGoYNg2uuscYyb93adGIRwpT2R0+DZjBw4EC9detW0zGEECKkKKU+1VoPbGg6afYRQogIJMVfCCEikBR/IYSIQFL8hRAiAknxF0KICCTFXwghIpAUfyGEiEBB289fKXUCOODn2aYAJ/08z3Aj66hxZD01TNZR4/h7PV2ktW7b0ERBW/ybg1Jqa2Mufohkso4aR9ZTw2QdNY6p9STNPkIIEYGk+AshRASKtOI/z3SAECDrqHFkPTVM1lHjGFlPEdXmL4QQwhJpe/5CCCEI8+KvlPo/pdQOpZRXKVXn2XSl1E1Kqa+VUnuVUo8GMqNpSqnWSqn/KKX2VP1sVcd0HqXUF1WP5YHOaUJD3wulVKxS6vWqzzcrpboGPqV5jVhPP1VKnajx/ZlgIqdJSqkXlVLHlVL/reNzpZSaU7UOtymlrmruTGFd/IH/ArcBa+uaQCkVBTwDjAb6APcopfoEJl5QeBRYpbW+GFhV9bo2ZVrr/lWPWwIXz4xGfi/GAwVa657ALOCJwKY0rwl/P6/X+P68ENCQweEl4KZ6Ph8NXFz1mAg829yBwrr4a613aq2/bmCyQcBerfU+rbULeA0Y0/zpgsYYYEHV8wXArQazBJPGfC9qrrulwI1KRdz9FCP976dRtNZrgfx6JhkDvKwtm4CWSqkOzZkprIt/I3UCcmu8PlT1XqS4QGt9tOr5MeCCOqaLU0ptVUptUkpFwgaiMd+LM9Nord1AEdAmIOmCR2P/fm6vas5YqpS6MDDRQkrA61DI38NXKfUB0L6Wj9K01v8KdJ5gVN86qvlCa62VUnV1/7pIa31YKdUd+FAptV1r/Y2/s4qwtAJ4VWtdoZT6OdbRUqrhTBEv5Iu/1nqkj7M4DNTcE+lc9V7YqG8dKaXylFIdtNZHqw4zj9cxj8NVP/cppdYAVwLhXPwb872onuaQUioaSAZOBSZe0GhwPWmta66TF4AZAcgVagJeh6TZBz4BLlZKdVNK2YG7gYjozVJlOTCu6vk44JyjJaVUK6VUbNXzFOBa4KuAJTSjMd+LmuvuDuBDHXkXzjS4ns5qu74F2BnAfKFiOfCTql4/Q4CiGs2xzUNrHbYP4EdYbWcVQB7wftX7HYF3akz3/wG7sfZk00znDvA6aoPVy2cP8AHQuur9gcALVc+vAbYDX1b9HG86d4DWzTnfCyAbuKXqeRywBNgLbAG6m84cpOvpL8COqu/PauBS05kNrKNXgaNAZVVNGg/8AvhF1ecKq9fUN1V/YwObO5Nc4SuEEBFImn2EECICSfEXQogIJMVfCCEikBR/IYSIQFL8hRAiAknxF0KICCTFXwghIpAUfyGEiED/P+APwqIyWFBdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4VGX6//H3k04aISSBUEKRQIKuILLYFcVV7GWlq7jSlaosLf5WYKkqgoo0QaVYQFYUuyjqV5dVRLEnoYQWCJAeSM/M8/vjTDADSSYhM3Mmyf26rrky5cw5d+ZK8sl5zjn3o7TWCCGEEOW8zC5ACCGEZ5FgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELY8TG7gPMRERGh27dvb3YZQghRr/zwww8ZWutIR8vVy2Bo3749u3btMrsMIYSoV5RSh2qynAwlCSGEsFMv9xicxWKBzEwoLQV/f2jeHJQyuyohhDBXowuGY8fgrbfg888hORmsViMMtAZfX7jwQrjtNrj7bggLM7taIYRwv0YTDCdOwMyZsG2bEQJ+fhAYCN7efy5TVga//gq7d8P8+TBgAEyZAsHBppUthBBu1yiOMWzdCjfcAJ9+CqGh0KwZBAXZhwKAj48RAmFhRmi89hr06QM7d5pTtxBCmKHBB8Py5TBpkjFc1KwZeNXwO/b2NpbPy4MhQ+Djj11bpxBCeIoGHQxvvAFPPw0hIRAQcH7rCAoy3jtuHHz7rXPrE0IIT9Rgg+HQIeOYQnCwMURUF/7+xjrGjTP2IIQQoiFrkMGgNUyebJyO6ufnnHUGBUFWFixc6Jz1CSGEp2qQwfDrr/DTT9C0afXLZWVt4sCBB0hKuoJjx2Y6XG9oqHGqa1aWc+oUQghP1CCDYe3aP69PqI6PTwQREcNo2vTOGq3X29tY79tvO6FIIYTwUA0uGLQ2TkutybUHoaE3EBLSG29vB7sWFfj6wgcf1KFAIYTwcA0uGI4fh6Ii4w+4KwQEQGKisecghBANUYMLhgMH6n4WUnXKh5OOH3fdNoQQwkwNriVGUZExnFRzmuzsLKzWXPz80gkICCAgoAk+1aSLlxcUF9e5VCGE8EgNLhh8fWvbIVWhlEJrjdVqJSsri6KiIpRSBAQ0ISAggCZNAggICMDHxxifslpdN1QlhBBma3DB0Lp1zcf/tbagtYXQ0BDS048RHBxAZGQESnlRWlpKUVERhYVFZGVlU1RUiFIKf/8AtG5KUtLP+PnFERkZiZJe3UKIBqTBBUP79sYeg8VybpO8s2VkrCEjYxUASlnYs+dqWrceS2TkKHx9/fD19SMkJNS2tKa0tIzc3GKaNMli69bNLFyYiFKKuLg44uPjz3xt0aKFhIUQot5SunYD8h6hZ8+eurqpPR98EP73P8cXuNnTHD58hKCgQJo3j6hyqexsGDECpk0DrTUnT54kKSmJxMTEMzer1Up8fPyZsIiLiyM6OlrCQghhKqXUD1rrng6Xc0YwKKX6As8B3sBqrfWCs15fDFxvexgIRGmtw2yvWYBfba8d1lo7vNrMUTB89ZXxxzs0tMpFKlVSUsLBgwfo0KEDvr7n9tKwWo1eSZ9/Du3aVb4OrTXp6ekkJSXZBUZpaemZPYrym4SFEMKd3BYMSilvYA/wNyAV+B4YpLX+o4rlxwGXaK0ftj0+rbWu1VQ4joLBYoHrroOMjNpPspOZmUF+fgExMW0B+z/aOTlw5ZWwbl3t1gmQkZFxJiTKQ6OoqOjMHkV5WLRu3VrCQgjhEu4MhiuAmVrrm22PpwNoredXsfwO4Emt9TbbY6cHAxiT6wwebLTcdnSsoSKtNQcOpBAREUFo6J9jUSUlxm3bNmjbtjbVVi0rK8tuCCoxMZHCwkK7sIiLi6NNmzZ41XQiCSGEqEJNg8EZB59bA0cqPE4FLquiqHZAB2B7hacDlFK7gDJggdb6nSreOxIYCRATE+OwqF694P77jf/umzWr+SmsSimio6NJTU0lKCgYb29vLBbIz4c5c5wXCgDh4eFcddVVXHXVVWeey8rKOrNHsW3bNp5//nlOnz5Nly5d7I5btG3bVsJCCOESzthjuA/oq7Uebnv8AHCZ1npsJctOBdporcdVeK611vqoUqojRmD00Vrvr26bNdljAGMO57Fjjf/yQ0Nrt+dw/PhxtLYSEdGKU6dgzBijlbcZozw5OTl2xyuSkpLIyck5ZxgqJiZGwkIIUSV37jEcBSr+H93G9lxlBgKPVnxCa33U9jVFKfUlcAlQbTDUlI8PLF0K//63MX9z+ZzONREZGcmePWn4+BTxr38F8PDD5oQCQFhYGJdffjmXX375medyc3PP7Fl89dVXrFixguzsbDp37my3Z9G+fXsJCyFErThjj8EH4+BzH4xA+B4YrLX+/azl4oCPgQ7atlGlVDOgQGtdrJSKAP4H3FXVgetyNd1jqOi774y5nzMyjJYZISGVz/9ssRhnHnl5QfPmGYSGzuT995/Fz1kz/rhQXl6e3dlQSUlJZGZm0qlTJ7uzodq3b493bXafhBANgrtPV70VWIJxuurLWuu5SqnZwC6t9VbbMjOBAK31tArvuxJYCVgxGvot0VqvcbS98wkGMIaW/u//4KWX4IcfjD0ApYygUMo4HdXLC66/HoYNgx49NJMnP05cXBwjR46s9fY8walTp0hOTrYbhkpPTyc2NtZuKKpjx44SFkI0cG4NBnc732CoqKwMUlIgNRVKS415nTt0MA4uV9yTOHHiBIMHD2bNmjW0b9++boV7iPz8fLuwSExM5MSJE3Z7FnFxcXTs2LHaZoJCiPpFgsGJ3njjDb744gtWrlzZYK8xKCgoOBMW5UNRaWlpdOzY0W4YqmPHjvhKB0Eh6iUJBieyWq089NBD3Hfffdx5Z82mAW0ICgoK2LNnj11YHD169ExYlA9DXXDBBfXiGIwQjZ0Eg5MlJyczduxYNm7cSHh4uFu37UkKCwvZu3ev3TGLI0eO0KFDB7tTZzt16iRhIYSHkWBwgeeee4709HTmzJnj9m17sqKiojNhUb5ncfjwYdq1a2e3ZxEbG4u/v7/Z5QrRaEkwuEBhYSEDBgxg+vTpXHHFFW7ffn1SUlJit2eRmJjIoUOHiImJses627lzZwICAswuV4hGQYLBRXbs2MGCBQvYtGmT/EGrpZKSEvbt22d3FfeBAwdo06aN3QHu2NhYmjRpYna5QjQ4EgwuNGPGDKKjoxk3bpzjhUW1SkpK2L9/v13X2f3799O6dWu7YxadO3cmMDDQ7HKFqNckGFwoMzOTAQMGsHz5cmJjY02ro6EqLS0lJSXFbhgqJSWF6Ohou66zcXFxEhZC1IIEg4u9/fbbbN26lZdffll6EblBWVkZKSkpdsNQ+/bto0WLFnYHuOPi4ggKCjK7XCE8kgSDi1mtVkaMGMHNN99M//79Ta2lsbJYLBw4cMDu1Nm9e/cSGRlpNwzVpUsXQkJCzC5XCNNJMLhBSkoKI0eO5PXXXycqKsrscgRGWBw8eNBuz2Lv3r2Eh4efMw93aG3nfhWinpNgcJMVK1awf/9+nn76abNLEVWwWq12YZGUlERycjJhYWF2Z0PFxcXRtGlTxysUop6SYHCTkpISBg4cyIQJE7juuuvMLkfUkNVq5fDhw+fMwx0WFnbOBEhhYWFmlyuEU0gwuNGuXbt48skneeutt+QsmXrMarWSmppqdzZUcnIywcHB5wxDNea2KKL+kmBws1mzZhEUFMTkyZPNLkU4kdVq5ejRo3btPpKSkmjSpMk5w1DNmzc3u1znS0kxZrnauRP27oXiYggIgC5d4K9/hcsugwbSjr4xkGBws9zcXPr168eSJUvo2rWr2eUIF9JaVxoW/v7+dqfOxsfHExERYXa5tac1fPmlMS/uzz//+byfnzFZidVqBER5C/qePY3J1a++2pRyRc1JMJjgww8/ZMOGDaxfv15mQ2tktNakpaXZHbNITEzEx8fnnD2LyMhIz53XIzMTZsyAzz4Db29jDtzqatUaTp0ywuK222DWLJBjMh5LgsEEWmseffRRrrjiCh544AGzyxEm01pz/Phxu6BITEzEy8vrnD2LqKgo88Ni714YNAhyciA0tPJJ0atitUJuLkRGwptvyvCSh5JgMMmRI0d46KGHWL9+Pa1atTK7HOFhtNacPHnS7gB3UlISWmu7g9vx8fG0bNnSfWFx8CDccw/k5xuhcL7y8qBpU3jnHWjd2mnlCedwazAopfoCzwHewGqt9YKzXn8IeBo4antqqdZ6te21ocATtufnaK3XOtqeJwcDwCuvvMLu3bt57rnnzP8vUHg8rTXp6el2exWJiYlYLBa7vYq4uDiio6Od/zNVWgp33AH79xt/1OsqOxsuugjeftsYjhIew23BoJTyBvYAfwNSge+BQVrrPyos8xDQU2s99qz3hgO7gJ6ABn4ALtVaZ1e3TU8PhrKyMoYMGcKwYcO46aabzC5H1FPp6el211gkJiZSXFxsFxbx8fG0atWqbmGxdCksXmwcG3BG6GhtDEfNmAHDhtV9fcJp3BkMVwAztdY32x5PB9Baz6+wzENUHgyDgN5a61G2xyuBL7XWb1S3TU8PBoBffvmFKVOmsGnTJmm9IJwmMzPznAPchYWFdk0E4+PjadOmTc3CIi8PevUCf3/w9XVeoSUlYLHArl0gc2t4jJoGg48TttUaOFLhcSpwWSXL/V0pdS3G3sUkrfWRKt7bIAYmL774Ynr37s0LL7xAQkKC2eWIBqJ58+ZcffXVXF3h1NCsrKwzIfHpp5/y3HPPkZ+ff84V3G3atDm3E/DWrVBWBsHB1W63xGplwfHj7CwoIM9ioY2vL2Ojoriyqvf5+RkHoz/8EP7+97p+28LNnBEMNfEe8IbWulgpNQpYC9xQmxUopUYCIwFiYmKcX6ELjB07ln79+rF7924uueQSs8sRDVR4eDhXXnklV1555ZnnsrOzz4TF559/ztKlS8nLy6NLly52xyzavfYaqgZ7Chagpa8vq2JiaOnry39Pn2ba0aO82aEDrfz8Kn+Tlxe88YYEQz3klqGks5b3BrK01k0b8lBSuc8//5wVK1bw2muv4VfVL5AQbpCTk0NycvKZoag9v//OC59/jiUoCP8mTWgSEEBAQAB+/v7U5EjDwJQURkZEcENVQ6UWCxQWwh9/1O7UV+Ey7hxK+h6IVUp1wDjraCAw+KxiorXWabaHdwKJtvufAPOUUs1sj28CpjuhJo9xww038P7777Nu3TqGDx9udjmiEQsLC+Oyyy7jsstsI7179mC57TaKfHwoLCri1OnTpKenU2axEODvT0CTJgQEBNCkkrDIKivjcEkJHf39q96gt7dxfUNqKtSTvXxhqHMwaK3LlFJjMf7IewMva61/V0rNBnZprbcC45VSdwJlQBbwkO29WUqpf2OEC8BsrXVWXWvyJEoppk6dypAhQ7jpppvqzTCYaARyc/H28SEoKMhu1juL1UpRYSGFRUWcPn2ajIwMysrK8PfzIzg4mLCICJ44dozbmzalfXXBAMaeQl6ei78R4WxygZubvP7663z11VesWLFCrm0QnmHXLnjgAajBVKglpaUcOniQkrIyVvv5YfH15dm2bfFx9LN8+rRxPYP0D/MINR1KkoE/Nxk4cCAFBQW89957ZpcihCE83BjqcaC0rIwjR44QEhrKm8HBHMvPZ17Llo5DAYzjDM2aOV5OeBQJBjfx8vIiISGBpUuXkp1d7fV7QrhHu3bGV4ulykXK9xSahoayxmrliMXCwhYtyDl50vH6y8qM6yNatnRSwcJdJBjcKC4ujltuuYXFixebXYoQxsHhiy6CgoJKXy4uLubQwYOEN29OadOmbMnJYU9REQ9kZ3NPRgZX/vEHH+XmVr3+ggLo0cM5V1MLt5JgcLNRo0axe/duvvvuO7NLEQIefLDS4aTCoiIOHTpEVFQU4c2aEe3ry674eHbExfF1XBxfxsay1s+Pm0JCql///fe7qHDhShIMbhYYGMjUqVOZP38+xcXFZpcjGrubbzZmZKvws5hfUMCRw4eJbtWKplU01QsKCiIwMJCM9PTK11tUZFxNff31rqhauJgEgwmuvvpq4uLiWL16tdmliMYuIAASEowL0bTm1OnTHE1NpXXr1oQ4aJPRokULcnNzKSoqsn9Ba2N9Tz7p3P5Lwm0kGEwyefJktmzZwr59+8wuRTR2/fvDX/9KfloaaceO0bZtW7vrGqri4+1NVIsWpKWlYXfSe04OXHst3Hmny0oWriXBYJKIiAjGjBnDvHnzsNbglEEhXMbLi/dvvpkDRUW0b9aMJrXohtq0aVOUlxfZWVl/ttvu0MFo4y0HnestCQYT3XPPPQC8/fbbJlciGrN169ax6u23Cd++Hb/OnY2JdsrKavReBURHR5OZnk5ZZiZ07gybNsm8z/WcBIOJvLy8eOKJJ1ixYgXpVR3EE8JFtNa8+OKLvPfee6xevZpW3bvDe+/B8OHGFJ/Z2dVe4wBAWRn++flEBQbyYYcOxpSe4eHu+QaEy0gwmKxjx47ce++9PP3002aXIhoRq9XKwoUL+fbbb3nppZeIiooyXggIgOnTjYC45x7jWoTTpyEry5hfIS/P+JqVZTxfVAQDBtBk+3ZebdaMr/73P3O/MeEU0ivJAxQXFzNw4EAmTZrEtddea3Y5ooErKytj1qxZnDhxgsWLF1d/oDkvD376yWid/fvvxmmtAQFw4YXGrVs3sF3L8MMPP/Cvf/2Lt956i8DAQDd9N6I23Da1pxkaWjAA7Ny5k9mzZ7Np0yb5pRIuU1JSwrRp07BYLDz11FP4O+qOWkuzZs0iJCSExx57zKnrFc4hTfTqmV69enHppZeyYsUKs0sRDVRBQQHjx48nICCAZ555xumhADBx4kQ+/vhjEhMTHS8sPJYEgweZNGmS/FIJl8jLy2PMmDHExMQwZ84cfF104VnTpk2ZMGECc+fOxeLowLXwWBIMHiQsLIzx48czZ84c+aUSTpORkcGIESO49NJLmT59Ol4unmbz1ltvJSQkhI0bN7p0O8J1JBg8zG233UZoaChvvvmm2aWIBuDYsWMMHz6cvn37Mm7cOLdMEqWUYvr06axZs4YTJ064fHvC+SQYPEz5L9XLL7/MsWPHzC5H1GMpKSkMHz6cIUOG8I9//MOtMwfGxMQwaNAgFi5cSH08waWxk2DwQDExMQwZMkR+qcR5++OPPxg9ejRjx46lX79+ptTw4IMPcvjwYb788ktTti/On1OCQSnVVymVrJTap5SaVsnrjyml/lBK/aKU+lwp1a7Caxal1E+221Zn1NMQPPDAA6SlpfHZZ5+ZXYqoZ3788UcmTJhAQkICt956q2l1+Pn5MWPGDJ5++mny8/NNq0PUXp2DQSnlDbwI3AJ0BQYppc6e+Xs30FNrfTGwGXiqwmuFWuvutpu0Y7Tx9fUlISGBRYsWcerUKbPLEfXEN998w9SpU5k7dy7XXXed2eXQo0cPrrjiCpYtW2Z2KaIWnLHH0AvYp7VO0VqXAG8Cd1VcQGv9hda6fP7Ab4E2Tthug9etWzeuvfZaXnjhBbNLEfXAp59+yuzZs1m8eDG9evUyu5wzJkyYwLZt2/jjjz/MLkXUkDOCoTVwpMLjVNtzVRkGfFThcYBSapdS6lul1N1OqKdBGTduHF9//TU///yz2aUID/b222+zePFili1bxkUXXWR2OXZCQ0OZOHGinIZdj7j14LNS6n6gJ1CxY1w72yXag4ElSqkLqnjvSFuA7GpMnUjL2wvMnTuX0tJSs8sRHmjdunW8+uqrrFq1ik6dOpldTqVuueUWwsLC5DTsesIZwXAUaFvhcRvbc3aUUjcCCcCdWuszE8xqrY/avqYAXwKXVLYRrfUqrXVPrXXPyMhIJ5Rdf9x4441ER0ezfv16s0sRHkRrzbJly9i6dSurV6+mbdu2jt9kkoqnYaelpZldjnDAGcHwPRCrlOqglPIDBgJ2ZxcppS4BVmKEwskKzzdTSvnb7kcAVwEyEHkWpRTTpk3jtdde4/Dhw2aXIzyA1WrlqaeeYseOHfZtsz1Y27Zt5TTseqLOwaC1LgPGAp8AicAmrfXvSqnZSqnys4yeBoKBt846LTUe2KWU+hn4AligtZZgqER0dDQPP/ww8+bNk1+qRq6srIyZM2eyb98+VqxYQbNmzcwuqcYeeOABjh07xhdffGF2KaIa0na7HrFYLAwdOpSBAwdy++23m12OMEF52+yysjKeeuopAgICzC6p1n766SdmzJjBpk2bCA4ONrucRkXabjdA3t7eJCQk8Pzzz5OTk2N2OcLNCgoKmDBhAgEBASxatKhehgJA9+7dueqqq+TaBg8mwVDPxMfH07dvXxYvXmx2KcKN8vLyeOSRR2jTpo1L22a7y7hx49i+fTu//fab2aWISkgw1EOjR4/mhx9+YOfOnWaXItygvG32JZdcwowZM1zeNtsdQkNDmTRpEnPnzqWsrMzscsRZ6v9PWCMUGBjIlClTmD9/PsXFxY7fIOqt8rbZN998M+PHj3drh1RXu+mmm2jevDmvv/662aWIs0gw1FPXXnstsbGxrFmzxuxShIscOHCA4cOHM3jwYB5++OEGFQrw52nYa9eulRbzHkaCoR775z//ydtvv01KSorZpQgnS0xMPNM2u3///maX4zJt2rTh/vvvl2sbPIwEQz0WGRnJ6NGjmTNnDlar1exyhJP8+OOPjB8/nunTp5vaNttdHnjgAY4fPy4t5j2IBEM9d++99wKwZcsWkysRzvDf//73TNvs3r17m12OW/j4+JCQkMCzzz4rLeY9hARDPefl5UVCQgLLly8nIyPD7HJEHXz66afMmjWLZ5991qPaZrvDxRdfzDXXXMOLL75odikCCYYG4YILLuCee+7hmWeeMbsUcZ62bNnC4sWLefHFF/nLX/5idjmmGDduHF9++SW//PKL2aU0ehIMDcTw4cNJSkrim2++MbsUUUvr1q3jlVdeYdWqVcTGxppdjmkqtpiXaxvMJcHQQPj7+zNjxgwWLlxIQUGB4zcI09Wnttnu8re//Y0WLVrw2muvmV1KoybB0ID06tWLSy65hJUrV5pdinCgPrbNdofyaxvWrVvH0aPnTOsi3ESCoYGZNGkSH330EUlJSWaXIqpQn9tmu0OrVq0YOnQoCxYskGsbTCLB0MA0a9aMcePGMXfuXJlf1wOVlJQwZcoUcnJyeOGFF6TtdBUGDx5Meno627ZtM7uURkmCoQG6/fbbCQoKYuPGjWaXIipoKG2z3aHitQ15eXlml9PoSDA0QEopZsyYwZo1azh+/LjZ5QgaXttsd/jLX/7C9ddfz9KlS80updGRYGigYmJiGDRokPSg8QANsW22uzz66KN8/fXX/Pzzz2aX0qjIT2gDNnToUFJTU9m+fbvZpTRaDblttjsEBwfz+OOPM3fuXEpLS80up9GQYGjAfH19SUhI4JlnnuH06dNml9PoNPS22e7Sp08fWrVqxYYNG8wupdFwSjAopfoqpZKVUvuUUtMqed1fKbXR9vp3Sqn2FV6bbns+WSl1szPqEX/q3r07V199tYzTulljaZvtDkoppkyZwoYNG0hNTTW7nEahzsGglPIGXgRuAboCg5RSXc9abBiQrbXuBCwGFtre2xUYCFwI9AWW2dYnnEh60LhXY2ub7Q6tWrXioYceYv78+XLMzA2cscfQC9intU7RWpcAbwJ3nbXMXcBa2/3NQB9l7FffBbyptS7WWh8A9tnWJ5woNDRUetC4SWNsm+0ugwYNIjs7m08++cTsUho8ZwRDa+BIhceptucqXUZrXQbkAs1r+F4AlFIjlVK7lFK70tPTnVB241Leg2b9+vVml9JgNea22e5Qfm3D4sWL5doGF6s3B5+11qu01j211j0jIyPNLqfeKe9Bs2HDBo4cOeL4DaJWpG22e1x44YX06dOH559/3uxSGjRnBMNRoGJbyDa25ypdRinlAzQFMmv4XuEkMk7rGuvXr5e22W706KOPsmPHDnbv3m12KQ2WM4LheyBWKdVBKeWHcTB561nLbAWG2u7fB2zXxl+mrcBA21lLHYBYYKcTahJVGDx4MDk5OXz00Udml1LvlbfNfvfdd6VtthsFBQUxefJk5s2bJ9c2uEidg8F2zGAs8AmQCGzSWv+ulJqtlLrTttgaoLlSah/wGDDN9t7fgU3AH8DHwKNaa+n85kLe3t488cQTLFmyhJycHLPLqbesVitPP/20tM02yfXXX0/btm1Zt26d2aU0SKo+Din07NlT79q1y+wy6rVnnnmG/Px8nnzySbNLqXcsFguzZs0iLS2NxYsXS4dUkxw/fpwhQ4bwyiuvEBMTY3Y59YJS6getdU9Hy9Wbg8/CuR555BF27tyJBGztSNtsz9GyZUuGDRsm8za4gARDIxUYGMjUqVOZN28eJSUlZpdTL5S3zfbz85O22R5iwIAB5ObmyjEzJ5NgaMSuvfZaOnXqxMsvv2x2KR6vvG1269atmTt3rrTN9hDe3t4kJCSwZMkScnNzzS6nwZBgaOQmT57M5s2bSUlJMbsUj5WZmcnIkSPp3r07CQkJ0jbbw3Tt2pWbbrqJ5557zuxSGgz5CW/koqKiGDlyJHPnzsVqtZpdjscpb5t90003MWHCBOmQ6qEeeeQRvv32W3788UezS2kQJBgE9913HxaLhXfeecfsUjzKgQMHGDFiBIMGDZK22R4uMDCQKVOmMHfuXDlm5gQSDAIvLy8SEhJYtmwZmZmZZpfjEZKSkhg9ejSPPPKItM2uJ3r37k379u1Zu3at44VFtSQYBACxsbHcddddLFq0yOxSTLd7927GjRvH9OnTue2228wuR9TClClT2LhxI4cPHza7lHpNgkGcMWLECH7//Xd27Nhhdimm2bFjB//85z+lbXY91aJFC4YNG8a8efPk2oY6kGAQZwQEBDB9+nQWLFhAYWGh2eW43bZt25g5c6a0za7nBgwYQH5+Ph988IHZpdRbEgzCzuWXX063bt1YtWqV2aW41TvvvMOzzz7Liy++yMUXX2x2OaIOyo+ZPf+oyTT5AAAauElEQVT889IP7DxJMIhzTJo0iQ8++IA9e/aYXYpbbNiwgTVr1rBy5Uppm91AxMXF0bdvX5YsWWJ2KfWSBIM4R3h4OGPHjmXOnDkN+toGrTXLly9ny5YtrF69WhqxNTCjR4/m+++/l35g50GCQVTqjjvuICAggI0bN5pdikuUt83+5ptvWL16NS1atDC7JOFk0g/s/EkwiEoppUhISGD16tWcOHHC7HKcymKxMHPmTPbs2cPKlStp1qyZ2SUJFynvB/bqq6+aXUq9IsEgqtSuXTsGDBjAwoULG8ypfyUlJUydOpWcnByWLl0qbbMbgcmTJ7Np0yYOHjxodin1hgSDqNZDDz3E4cOH+eKLL8wupc4KCgqYOHEiPj4+0ja7EYmKimLEiBFybUMtSDCIavn5+TFjxgyeeeYZTp8+bXY55y0vL49HH32U6Oho5s2bJ22zG5l+/fpRVFTEe++9Z3Yp9YIEg3CoR48eXHnllSxbtszsUs5Ledvsbt268cQTT0jb7EbIy8uLJ554gqVLl5KdnW12OR6vTr8hSqlwpdQ2pdRe29dzjuIppborpf6nlPpdKfWLUmpAhddeVUodUEr9ZLt1r0s9wnXGjx/P9u3b+fXXX80upVbS0tKkbbYAoHPnztx6660sXrzY7FI8Xl3/dZoGfK61jgU+tz0+WwHwoNb6QqAvsEQpFVbh9X9qrbvbbj/VsR7hIqGhoUyaNIm5c+dSVlZmdjk1cvDgQYYPHy5ts8UZI0eOZPfu3ezcudPsUjxaXYPhLqC8x+1a4O6zF9Ba79Fa77XdPwacBCLruF1hgptuuonIyEg2bNhgdikOJSUlMWrUKGmbLeyUz9swf/58ubahGnUNhhZa6zTb/eNAtVcJKaV6AX7A/gpPz7UNMS1WSvlX896RSqldSqld6enpdSxbnA+lFNOnT2f9+vWkpqaaXU6Vdu/ezfjx46VttqjUNddcQ+fOnVmzZo3ZpXgsh8GglPpMKfVbJbe7Ki6njfPAqjwXTCkVDawH/qG1Lu+zMB2IA/4KhANTq3q/1nqV1rqn1rpnZKTscJilVatWDB06lPnz53vkqX87duxgypQpzJkzR9pmiypNnjyZ//znPzLXeRUcBoPW+kat9UWV3N4FTtj+4Jf/4T9Z2TqUUqHAB0CC1vrbCutO04Zi4BVAeh3XA4MHDyYrK4uPP/7Y7FLsfPbZZ8ycOZNFixZJ22xRrcjISEaNGsW8efMadD+w81XXoaStwFDb/aHAu2cvoJTyA7YA67TWm896rTxUFMbxid/qWI9wAx8fH5544gmWLFlCXl6e2eUA8O6777Jo0SJpmy1q7O9//ztlZWVs3brV7FI8Tl2DYQHwN6XUXuBG22OUUj2VUqtty/QHrgUequS01NeUUr8CvwIRwJw61iPc5MILL+TGG2/0iLbGr732mrTNFrXm5eXFjBkzePHFF8nKyjK7HI+iPHGc2JGePXtqaaVrvvz8fPr168ecOXPo0aOH27evtWblypVs27aNZcuWSYdUcV6ef/550tPT+fe//212KS6nlPpBa93T0XJyCag4b0FBQUyZMoW5c+e6/dQ/q9XKM888w9dffy1ts0WdjBgxgp9//pnvvvvO7FI8hgSDqJPevXvToUMHt7Y1tlgszJo1i+TkZGmbLeqsSZMmTJs2jXnz5lFcXGx2OR5BgkHU2ZQpU9i4cSMHDhxw+bbK22ZnZ2dL22zhNFdeeSVdu3aVaxtsJBhEnUVFRTFy5EiXn/onbbOFKz3++ONs2bJFrm1AgkE4Sb9+/SgpKXHZqX/SNlu4WkREBKNHj27wc53XhASDcAovLy8SEhKqP/VPaygpAYulVuvOzMxk1KhRXHzxxdI2W7jUPffcg9aad955x+xSTCW/YcJpOnfuzB133MGiRYuMJ6xW+PprmD4d/vY36NQJunSBCy6A7t1h6FBYvRqq6X2VlpbGiBEjuPHGG5k4caJ0SBUuVf4PzvLly8nMzDS7HNPIdQzCqQoLCxnYvz8LL7+cuPfeg8xMYw+hSRPw9wcvL2PPoawMCguN8FAKbrkFZsyAli3PrOvgwYOMHTuWBx54gAEDBlSzVSGca+nSpRw7dox58+aZXYpTyXUMwhRNcnNZXVxM03nzsOblQdOmEB5uBEP5EJBS4OsLoaEQFgbBwfDBB9CnD/znP6A1ycnJjB49mjFjxkgoCLcbPnw4v/32Gzt27DC7FFNIMAjnSUmBO+4gMiUFa0gI6TWdI9rbG5o1M4JjyhSOTprEuLFjmTp1qrTNFqYICAhg+vTpLFiwgKKiIrPLcTsJBuEcJ07AgAGQmwthYbRo2ZLcnJza/VL5+3Paywu1ciUru3fn+uuvd129QjhwxRVX8Je//IXVq1c7XriBkWAQdac1TJ4MWVnG8BBGB9bIqCjS0tKqnqTjLHl5eRw7cYKwdu3o8M478MsvrqtZiBp47LHHePfdd9m3b5/ZpbiVBIOou3fegR07jOMFFYSFhaG8vMjOzna4ipycHI6fOEFMTAyBwcHGcYgJE6C01FVVC+FQ8+bNGTNmDHPnzm1U1zZIMIi6sVph0SLjjKOzTiVVQHTLlqSnp1NaVlblKjKzskjPyKBdu3Z/Xs0cGgqpqfDll66rXYgauPvuu/Hy8mLLli1ml+I2EgyibnbuNI4vNGlS6cv+/v6EN2vG8ePHybNYmJyaytVJSdy+bx8f5eZyMj2d7Oxs2rdrh7+fn/2blYJVq9zwTQhRtYrXNmRkZJhdjltIMIi6+eQT4zqFai48ax4RQXFxMbMPH8ZXKT7t3Jl/t2rF7MOH+SM3l/bt2lXe4iIkBH78ETxkljjReHXs2JF77733z4s3GzgJBlE3338PDprZeSlFWIsWfJaby8jmzWni5UVUTg5/9fbm55AQfHx8Kn9j+fUOyckuKFyI2hk2bBiJiYn897//NbsUl5NgEHWzd69xfMGBTB8ffL28CMjJITU1FUtZGZdGRXHQ0QQ/paXQyM4IEZ7J39+f6dOns3DhQgoLC80ux6UkGMT50xqKiv68orkaBVYrYQEB5OXmcvrUKQIDA/ErK+O0o4Z6FovROkMID3DZZZfRrVs3XnrpJbNLcak6BYNSKlwptU0ptdf2tdKptJRSFqXUT7bb1grPd1BKfaeU2qeU2qiU8qvs/cJDKWVctVwDgV5eFFitXNCpE9GtWlFmsXA8N5eSvDz27ttHamoqGRkZnM7Pp6xiWNRiG0K4w6RJk3jvvffYs2eP2aW4TF33GKYBn2utY4HPbY8rU6i17m673Vnh+YXAYq11JyAbGFbHeoS7tWhhtNJ2IMbPDwtwzGIhrGlTWrZoQXZICJe2bElMTAwhoaFYLBYyMzLYt28fe/fu5UhqKjmFhfyWmdlozgYRni88PJyxY8e6fGIqM9U1GO4C1trurwXurukbldE/+QZg8/m8X3iI7t2N4SQHmnh5cUNICCvS0ym0Wvm5oICvTp3i9qZN8ffzo2loKC1atKBdu3Z06dKFdu3a0TQ0FG2x8Mbu3fTv35++ffsyceJEVq5cyVdffcXJkyepj92BRf13xx134Ovry+bNmx0vXA/Vqe22UipHax1mu6+A7PLHZy1XBvwElAELtNbvKKUigG9tewsopdoCH2mtL3K0XWm77UHeeAP+3/8756rnyuRZLMw6dozv8vNp6u3NuKgo+jZtWvUbiouNs5J27UIrRVpaGklJSWduiYmJAMTFxREfH09cXBxxcXFER0fLvA3C5VJSUhg5ciRvvPEGkZGRZpdTIzVtu+0wGJRSnwEtK3kpAVhbMQiUUtla63OOMyilWmutjyqlOgLbgT5ALrUIBqXUSGAkQExMzKWHDh1y9L0Jd8jLg7/+1bjArarTTs9XdjZMmgRjx1b6staa9PT0MyFR/rWkpORMSJSHRuvWrWXmN+F0y5cv5+DBgyxcuNDsUmrEacHgYCPJQG+tdZpSKhr4UmvdxcF7XgXeB/4DpAMttdZlSqkrgJla65sdbVf2GDzM9OmwaZPROttZSkuNIar/+z/jOEYtZGRknLNnkZ+fT5cuXez2LmJiYiQsRJ2UlJQwYMAAHnvsMa655hqzy3HIXcHwNJCptV6glJoGhGutp5y1TDOgQGtdbBs++h9wl9b6D6XUW8B/tNZvKqVWAL9orZc52q4Eg4fJyoLrrzdmZauiNUataA05OTBlCowaVff1AdnZ2eeERU5ODp07d7YLi/bt2+MtZ0GJWti5cyezZ89m06ZNBAYGml1OtdwVDM2BTUAMcAjor7XOUkr1BEZrrYcrpa4EVgJWjIPdS7TWa2zv7wi8CYQDu4H7tdbFjrYrweCBPv0Uxowx2ljUdUgpJwfi42HLFucPT1WQl5dnFxZJSUmcPHmS2NhYu7Do2LFj1VdnCwH861//Ijw8nIkTJ5pdSrXcEgxmkWDwUCtXwsKFRjhU1vvIEa2NiX5atYK334aICOfX6MDp06fZs2eP3XGLY8eOccEFF9gdt+jUqRN+Zzf9E41WdnY2AwYM4IUXXqBLl2pH000lwSDMsX49zJljtOMODa22uZ6d0lLIz4cLL4Q1a0wJhaoUFBSwd+9eu7A4cuQI7dq1O7NXER8fT2xsLP41aA8iGqatW7eyefNmXn31VY89diXBIMyzdy9MnAh79hh7AaGhlbfN0No4JbWoyBgyevxxePjhenGlc3Fx8TlhcfDgQdq0aXNOWHj6uLNwDq01o0aNok+fPgwYMMDsciolwSDMZbUas7q99BJ8840xtGSxGM+D8bisDMLDjTC47z6P2ks4HyUlJezfv/9MUCQlJbF//35atWpld+ps586dCQ4ONrtc4QIHDx5k+PDhvP7660RFRZldzjkkGITnKC429h727YOCAmOPoEUL6NoVoqJqPtxUD5WVlZGSkmJ3NtTevXuJioqyO2YRFxdHqG2+bFG/rVq1ir179/L000+bXco5JBiE8FAWi4VDhw7ZXZS3Z88ewsLCzrmKu5kzrw0RblFSUsLAgQOZMGEC1113ndnl2JFgEKIesVqtHD582G7PIikpieDgYLuwiI+Pp3nz5maXKxzYtWsXTz75JG+99ZZHHWOSYBCinrNarRw9etQuKJKSkvDz87Pbq4iPjycyMlL6Q3mYWbNmERISwmOPPWZ2KWdIMAjRAGmtq2wmWDEspJmg+XJycujfvz/PPfcc8fHxZpcDSDAI0WjUpJlgeWhIM0H3ev/993nzzTdZu3atR7RakWAQopHLyMggOTnZLiykmaB7aa0ZM2YM1113HYMGDTK7HAkGIcS5qmsmWHEoSpoJOs/hw4f5xz/+weuvv06LWnYKdjYJBiFEjVTWTDA9PZ1OnTrZhYU0Ezx/L730EklJSSxatMjUOiQYhBDnLT8/n+Tk5GqbCcbHx3PBBRdIM8EaKCkpYfDgwYwdO5bevXubVocEgxDCqapqJti+fXu7sJBmgpX78ccfeeKJJ9i8ebNp1zZIMAghXK6qZoJt27Y9Jyw86UIvs8yePZvAwEAmT55syvYlGIQQpqismWBKSgrR0dF2Z0N16dKFoKAgs8t1q9zcXPr168eSJUvo2rWr27cvwSCE8BjSTPBPH374Ia+99hrr1q1z+5lfEgxCCI9WXTPBs1t+hIWFmV2u02itefTRR7nqqqsYMmTIWa9BZiZkZxv3w8IgMtJ5DYglGIQQ9Y7VauXIkSN2YZGcnExQUNA5YVGfmwmWX9uwYcMGIiOj+eoreP11+OEHOHXqz5lxLRYIDIRu3WDwYLjhBqjLSWBuCQalVDiwEWgPHAT6a62zz1rmemBxhafigIFa63eUUq8C1wG5ttce0lr/5Gi7EgxCNB4VmwlWPMhdsZlg+df61Exw9eo1bN1q5dix4eTmGjUHBhqTGZZ/C1ob81kVFnLm9YQE+PvfK58U0RF3BcNTQJbWeoFSahrQTGs9tZrlw4F9QButdYEtGN7XWm+uzXYlGIRo3KpqJqiUOueYhSc2E8zJgUmTLLz1VjoREcFERNRsRr/iYmOuq8svhyVLjGGm2nBXMCQDvbXWaUqpaOBLrXWXapYfCVyntR5ie/wqEgxCCCeoTTPBNm3amBYWmZnQvz8cPAh+fgUcO3aUCy7oiJdXzQ5Ea20ES8uWsHkzREfXfNvuCoYcrXWY7b4CsssfV7H8duBZrfX7tsevAlcAxcDnwDStdbGj7UowCCFqqrpmghWHotq2bevyZoLFxXD33bB3r3FgGSAt7RhKedGyZctarSsnB9q0gQ8+gJqe9eu0YFBKfQZUVnECsLZiECilsrXWlc5FaNuj+AVopbUurfDcccAPWAXs11rPruL9I4GRADExMZceOnTIwbcmhBCVy87OPicszm4mGB8fT7t27Zx6SulTT8HKlUYolO+wWCwWUlL206ZNW5o0aVLL78M4KP3vf9dseY8bSlJKTQAu1FqPrOL13sBkrfXtjrYrewxCCGdzdTPBpCS44w7jv/uz356Xl0tmZibt23eo1RCXxWKcxbRpE/To4Xj5mgZDXVslbgWGAgtsX9+tZtlBwPSKTyilom2hooC7gd/qWI8QQpyX0NBQevXqRa9evc48V7GZ4Pfff8/69etJS0ujY8eOtW4m+NJLxh/yyjIlNDSUnJwcsrKyKCpaQkHBTqzWQnx8Imje/EHCwu6udJ3lOzPLlxvrd5a67jE0BzYBMcAhjNNVs5RSPYHRWuvhtuXaA/8F2mqtrRXevx2IBBTwk+09px1tV/YYhBBmcdRMsHzvomIzwZwcuOwy43TTqkamSkpKOHjwAK1aaQIDO+Ll5Udx8UEOHRpJ27bP0aRJ5dODWq2QlwfffGMckK6OW/YYtNaZQJ9Knt8FDK/w+CDQupLlbqjL9oUQwt0CAwPp1q0b3bp1O/Pc2c0Et2zZYtdM0GK5juLiKwgK8gMqP8Dt5+dHeHhzsrMLCA62XeGGQilFaWlqlcHg5WXcdu6EO+90zvcos24IIUQd+fv7c9FFF3HRRRedea5iM8E1a0rJzMwjIyMLPz9fAgIC7G7lp6o2bx7OgQO5HDw4i6KibWhdTEBAF4KDr6p2+6Wl8NNPEgxCCOHRyq/Mjo+P56OPjOsNQkIiKS4upqioiKKiIvLyTlFcXISPj8+ZkAgLCyMjYzCxsQkUF/9OQcEPKFX98Qt/f/jNiUdoJRiEEMLFCguN4R6l1JkA+JOmuLiEoqLCM4FRUlJCSUkZgYHdyc39kOzszYSHD6xy/V5ef7bNcAYJBiGEcDF/f+MgceUU/v7++Pv707Rp+XMa45wcAAslJanVrl9rYxvO4trL/IQQQhAXZxwHcKSsLIu8vE+xWgvR2srp0/8jN/cTgoJ6Vfu+4mLoUmUzotqTPQYhhHCxiy+uabtsRXb2ZtLS5gFWfH2jadHicUJCrq32Xd7ecOmlzqjUIMEghBAu1qOHMZRktVbfLtvHpxnt2q2q1bqtVmMoqafDqxNqToaShBDCxSIjoU8f40I0Zzt1Cnr1gpgY561TgkEIIdxgpK1LXNUHoWuvfG9hzBjnrRMkGIQQwi169IB+/SA31/GyNZWbC337wjXXOG+dIMEghBBuk5Bg9DNyRjjk5UHz5jC70okK6kaCQQgh3CQ4GN54A5o1MxrrnU8PU62NYAkKgtdfh/Bw59cpwSCEEG4UEwPvvANduxrhUJPrG8qVlhrv6dABtmyBTp1cU6MEgxBCuFmrVsYf9mnToKTE+GOfn1/5gWmrFQoKjGWKimD8eGM6z/btXVefXMcghBAm8PaGESNg4EB47z1Yv96YC9rH589pP7U29hI6doT77zfmi/6zbYbrSDAIIYSJQkKMeZsHDzb2HvbtM/YOwAiBTp2c2wepJiQYhBDCQ/j5GccezCbHGIQQQtiRYBBCCGFH6fM5kdZkSql04JATVxkBZDhxfQ2VfE6OyWdUM/I5OeaKz6id1jrS0UL1MhicTSm1S2vtxN6EDZN8To7JZ1Qz8jk5ZuZnJENJQggh7EgwCCGEsCPBYKjdzBiNl3xOjslnVDPyOTlm2mckxxiEEELYkT0GIYQQdhplMCil+imlfldKWZVSVR71V0r1VUolK6X2KaWmubNGT6CUCldKbVNK7bV9bVbFchal1E+221Z312kGRz8bSil/pdRG2+vfKaXau79K89Xgc3pIKZVe4ednuBl1mkkp9bJS6qRS6rcqXldKqedtn+EvSqkerq6pUQYD8BtwL/B/VS2glPIGXgRuAboCg5RSHnCxultNAz7XWscCn9seV6ZQa93ddrvTfeWZo4Y/G8OAbK11J2AxsNC9VZqvFr9DGyv8/Kx2a5Ge4VWgbzWv3wLE2m4jgeWuLqhRBoPWOlFrnexgsV7APq11ita6BHgTuMv11XmUu4C1tvtrgbtNrMWT1ORno+Jntxnoo1R5z8xGQ36HakBr/X9AVjWL3AWs04ZvgTClVLQra2qUwVBDrYEjFR6n2p5rTFpordNs948DLapYLkAptUsp9a1SqjGER01+Ns4so7UuA3KB5m6pznPU9Hfo77Yhks1KqbbuKa1ecfvfogbbXVUp9RnQspKXErTW77q7Hk9V3edU8YHWWiulqjqFrZ3W+qhSqiOwXSn1q9Z6v7NrFQ3Se8AbWutipdQojL2sG0yuqdFrsMGgtb6xjqs4ClT876WN7bkGpbrPSSl1QikVrbVOs+26nqxiHUdtX1OUUl8ClwANORhq8rNRvkyqUsoHaApkuqc8j+Hwc9JaV/xMVgNPuaGu+sbtf4tkKKlq3wOxSqkOSik/YCDQKM64qWArMNR2fyhwzp6WUqqZUsrfdj8CuAr4w20VmqMmPxsVP7v7gO268V005PBzOmus/E4g0Y311RdbgQdtZyddDuRWGOJ1Da11o7sB92CM0xUDJ4BPbM+3Aj6ssNytwB6M/34TzK7bhM+pOcbZSHuBz4Bw2/M9gdW2+1cCvwI/274OM7tuN3025/xsALOBO233A4C3gH3ATqCj2TV76Oc0H/jd9vPzBRBnds0mfEZvAGlAqe3v0jBgNDDa9rrCOLtrv+13rKera5Irn4UQQtiRoSQhhBB2JBiEEELYkWAQQghhR4JBCCGEHQkGIYQQdiQYhBBC2JFgEEIIYUeCQQghhJ3/D2c+44qmjAljAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -377,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "scrolled": true }, @@ -386,16 +387,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -1.4999638236459272\n", - "time: 123.54426908493042\n", - "maxcut objective: -3.999963823645927\n", - "solution: [1. 0. 1. 0.]\n", + "energy: -1.4986779698866395\n", + "time: 28.347098112106323\n", + "maxcut objective: -3.9986779698866393\n", + "solution: [0. 1. 0. 1.]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOX9///nPUkme8ISkE1kEwVUUJBFlCXSIr9WserHhWqpBelGa7FYtUlICKRVsCK0YuUrVgRxAbQF60JFEJFN3KAIAkIhbGHJRibLZDL374+TYIQsE2Yy9yzvx3XNlcnk5JwXw+R9zrnPfe5baa0RQggRXmymAwghhPA/Kf5CCBGGpPgLIUQYkuIvhBBhSIq/EEKEISn+QggRhqT4CyFEGJLiL4QQYUiKvxBChKFI0wHqk5KSort06WI6hhBCBJVPP/30lNa6TWPLBWzx79KlC9u2bTMdQwghgopS6qAny0mzjxBChCEp/kIIEYak+AshRBiS4i+EEGFIir8QQoQhKf5CCBGGArarpxB1qaqCLVvgiy+sr3l54HZDcjL07w99+8L110NioumkQgQ2Kf4iKJSWwksvwcKFUFwMlZUQGQlRUdbPDx2Cbdus7202uO02+OUv4eKLzeYWIlBJ8RcB75NP4He/g+PHITa2/qP6hATrq8sFr70Gb7wB6ekwbpy1QxBCfEv+JERAe+kluOceOH0aWraEmJjGfycy0lrWbofMTJg8GZzO5s8qRDCR4i8C1iuvwPTpEB//7VF9U9jt1rWAd9+1zhzcbt9nFCJYSfEXAemrr2DaNKvw17TrXwibDVq0gPfeg0WLfJdPiGAnxV8EHKcTHnwQlLKO3r1ls1k7kccfh//9z/v1CREKpPiLgLN6NRw44Nvumna71UNo3jzfrVOIYCbFXwScv/8dIiKsI/+GVFUVc/jwVHbvvp59+35IUdG7DS6fnAxvvQX5+T4MK0SQkq6eIqAcOQK7d1uFujHHjz+OUlH07Lma8vI95OY+SExMT6Kju9W5fEQEaA1r18Ltt/s4uBCeqKqCPXtg1y7rwlZJiXVRq0cP6NUL+vSx2ij9QIq/CCg7d3p21O92l3HmzAd06/Y6NlsccXH9SEwcTlHRv2nb9jcN/J51M5gUf+FX+fnWzScvvGDdpeh2WzsCm806IoFvezbceiv89Kdw+eXNGkmKvwgoO3d61iff6TwERGC3dz77WnT0pZSWftbg78XEwKefehlSCE9pDStXWncblpVZH8CGLma5XLBsGaxYAffdB1OnQlxcs0ST4i8CyunTnt2N63aXYrPFU1nppKCgAKVslJdrysryKS4uwmaLwGazYbPZiIiwfed5UVHz/zuEwOmE3/8e3n7bujW9RYvGf6fmDsWqKqtv8po1sGRJs4xTIsVfBCWbLQ6328GBA/+jstJJ27Ztqawsxu22c+bMGdxuN1VVbtzuKtxu99nvtY4kKqqSW255lPj4eOLi4oiPjz/veV0/S0hIIC4u7uzzqKgoVGPtUyI8uVzwq19ZF5iSk5s+vkhEhLUTOHrUaqN8803o2NGnEaX4i4DSrp1nd+La7Z1xOstp2bIQpVqSlJRMZeUJEhKuom3bTvX8lsbh0Fx8sYtnn30Wh8Nx9lFaWvqd5ydOnDjvtXOXd7vdTdpZNLRzsdvtsiMJJXPnwgcfWAXcm//X5GTresHPfmZ1VfPmjsdzSPEXAeWKKyA6uvHlSktd2GzXotQbJCb+nNOnN3LmzId06fKPBn5LUVGhGDrUTkcfHEU5nU5KS0spLS2lpKTkvOc1O4rTp0+Tm5tb747G4XDgcrmatLNo6IwlOjpadiQm/fe/Vn/lpCTvCn+N5GT45htrnb+pvzNDU0nxFwGld2/rjNntrv9M2eVycezYMS65JIvCwtnk5/8YlyuaSy55rN5unjUiIqxx/33Bbrdjt9tp4UlbbiMqKyvP7gjqOsuoeV5QUMDhw4fr3ZGUlJTgcrmatLNo6CwlJiZGdiRNlZFhfY30UXlVyur++be/wd13Q5s2PlmtFH8RUNq2hYEDrWGc6+7rrzl27CgtWrQgMbEtiYl/ATR79uwlLq5Lg+uumQNg5MhmCO6lqKgokpOTSfbkBodGuFwuj3YkRUVFHDlypN4zltLSUpxO59mdgqdNWvWdscTGxob+jmTPHtixo9EbVV7Pz2dVURH7KioYnZREVocODa83KgocDli+3Jqowgek+IuA88ADVvHX+vyz5oKCAqqqqkhJqX30o0hMTKS4+AytW7eud71nzli95/x0D40xkZGRJCUlkZSU5PW6qqqqvrMjqa95q7i4mOPHjzd4HaWiooKYmBivmrRqdjYxMTHYAnGShuXLrdPWRnZyKZGRTEhJYVNJCRU1/fwbExNjjXEuxV+EquHD4eqr4bPPvts7rqKigpMnT9KlS5fzjiCTkhI5efJUvcW/vNwaFnry5OZMHnoiIiJITEwk0QcDLbnd7kYvojscDkpKSjhx4kSDy5WXlxMTE+NVk1bNz+Pi4ny3I/n4Y48mnUit3jF/VVbGCZfLs3VHR8OJE9YF4FatvEkJSPEXAchmg7/8Bb7/feu+mNhY0NrN0aNHaNv2Iuz2868Ix8XF4XRW4HJVEhn53R4RVVXWeubO9VlzqbgANpuNhIQEEi5kcoZzuN1uysrKGryIXvM4derUeddFai9TXl5OdHS0V01a8fHxxEVHk7BnD6q5JpCuGeZ21y4YOtTr1fmk+CulbgLmAhHA81rrx+tZ7nZgOXCt1nqbL7YtQtPFF8Ozz1pNQEpBUdFJoqKiaNGi7rZUpazCcubMGVq2/PaoqKoKioqsnnI/+IG/0ovmZrPZzhZdb7ndbsrLyxu8iF7T1HXq1Kl6z1goKuK53FwckZHYImrdZFj9tfZrNY+KigqrF4KnqqqsOyF9wOvir5SKAJ4BvgccBj5RSq3UWn91znKJwIPAFm+3KcLDiBHw3HPws5+Vcfp0FT17tgfqb0tNTEyioCD/bPEvLYWKCpg0Cf7wB9/0uhOhx2aznT3Sb+PNqWFBAfraa3EnJZ29sfDso8q62bCq1msOh4OCoiJUU5pwtPbZlHS+OPIfCOzTWu8HUEq9CowFvjpnuRnAE8DDPtimCBP9+xfRteuDdO36FLm5kUREWG33dRXyhIR4jh49gsPhwumMpFUrq2v0sGH+zy3CUHw8SmsilCKikW6eVW43+/fvp0VyMsVN2YbN5rOJLnxxlaMjkFvr+8PVr52llLoGuFhr/W8fbE+ECa01OTk53HzzVaxZ04q//tUa9baoyBoY8fRp62txMRQUQFGRjaio1rjdxfzxj9awKFL4hd/Y7dCpk3W62QANHD56FHt8PPboaNyA0+2mypNeP2439Ozpk7jNfsFXKWUDngJ+6sGyk4BJAJ07d25kaRHqVq1axaFDh5g5cyY2G4wZYz0OHbK6Un/xhTX0ictldX64+mrIz9/Drl3LmTBhjun4Ihz17w//+leDPX6Ki4pYcuYMb9Z67e2iIialpDCpoWanyspvdzA+4IvifwSoPeRcp+rXaiQCVwDrqrvntQNWKqVuOfeir9Z6AbAAYMCAAR52fhWhKDc3l3nz5vHcc89hP2ci386drUddF3Adjn6MGfMYDofDJxcDhWiS226DVavq/bGzspLjeXn8vmtX0jzoEvodJSVwzz0+u3jli2afT4BLlVJdlVJ24G5gZc0PtdZFWusUrXUXrXUXYDNwXuEXoobL5SIjI4OJEyfSvXv3Jv1ufHw811xzDRs2bGimdEI04LrrICXF6m1wDg0cPXKElJQUYppa+GvGO/nJT3yTEx8Uf621C5gMvAfsAl7XWu9USmUrpW7xdv0i/CxcuJDExETuuuuuC/r91NRU1qxZ4+NUQnjAZoPHHrPa/c9pwz916hTKZqPVhdygVVwMo0b5rL0ffDSBu9b6ba11T611d611TvVr07TWK+tYdoQc9Yv6bN++nTfeeIPMzMwLHgdm2LBhbNmyhfLych+nE8IDN99s3aZeWHj2pdKyMgry8+nQoUMDnZXrUVpqjUkyc6ZPYwbg4BgiXDkcDtLT00lLSyMlJeWC19OiRQt69+7N5s2bfZhOCA8pBbNnQ/v2UFREldvN0SNHaNe+PVFNHemzvNzq0TB/PjQwbtWFkOIvAsasWbMYPHgww3zQP3PkyJF88MEHPkglxAVo3Rpefx06dKDof/8jLi6OpKb0z9fa6tPsclk3q/hgOIdzSfEXAWH16tXs2LGDKVOm+GR9I0eOZMOGDVRWVvpkfUI0WYcOrPnd71jfujXtYmKsdntP+vKXlVlNRt26wT//CampzRJPir8wLi8vj9mzZ5OTk0NsbKxP1tmmTRu6dOnCtm1yeUmYcfz4cR6fP5+e//oXtsWLoW9f62g+P9/6Wl5uTfJeUWGNN56fb+0gkpKsCWHeegsuv7zZ8smonsIot9vNtGnTGDduHL169fLpumuafoYMGeLT9QrRmNqf6969e1svDh0K+/fDRx/B1q2wc6d1lB8ZCZdcAoMGwbXXwuDBTZ/w/QJI8RdGLVmyBK0148eP9/m6U1NTuf/++3nssccCc+IPEbJeeuklgPM/1926WY9m+Lw3lRR/Yczu3btZvHgxixcvbpbi3LFjR1JSUvjiiy+45pprfL5+Ieqya9cuXn755Wb7XPtK4CYTIa28vJy0tDSmTp1Ku3btmm07qamp0utH+E1ZWRlpaWk8/PDDzfq59gUp/sKIp59+mj59+jB69Ohm3U5N8deezpMqhBfmzJnDlVdeyfe//33TURolzT7C79avX8/GjRtZunRps2+ra9euxMbG8tVXX9GnT59m354IX+vWrWPz5s288sorpqN4RI78hV/l5+eTk5NDdna2T+ZybYxSihtvvFGafkSzOnnyJH/605+YOXNm0IwmK8Vf+I3WmqysLG699Vb69evnt+3WdPmUph/RHNxuN1lZWdxxxx1cddVVpuN4TIq/8Jtly5ZRVFTEAw884NftXn755bhcLr755hu/bleEh1dffZWysjImTJhgOkqTSJu/8Iv9+/ezYMECXnjhBSKbOriVl5RSZ4/+e/To4ddti9C2Z88eXnjhBRYtWkRERITpOE0iR/6i2TmdTtLT0/nNb35jbHrO1NRU1q5da2TbIjRVVFSQnp7OQw89RMeOHRv/hQAjxV80u/nz59OxY0duucXc3D5XXXUVp0+fJjc311gGEVrmzp1Ljx49GDNmjOkoF0SKv2hWW7duZfXq1aSnp1/w5Cy+YLPZGDlypBz9C5/4+OOPWb9+PY899pjRz7U3pPiLZlNUVERWVhaZmZkkJyebjiPTOwqfyM/PZ8aMGWRnZ5PYlDH6A4wUf9EstNbk5OQwatQoBg0aZDoOAP379yc3N5e8vDzTUUSQ0lozffp0brnllqAfL0qKv2gWq1at4tChQ0yePNl0lLMiIyMZNmwY69atMx1FBKlly5ZRUFDApEmTTEfxmhR/4XO5ubnMmzePnJwc7Ha76TjfIU0/4kLVdFeeOXOm37srNwcp/sKnXC4XGRkZTJw4ke7du5uOc57BgwezZ88e8vPzTUcRQcTpdJKWlma0u7KvSfEXPrVw4UISExO56667TEepk91uZ8iQIaxfv950FBFEnnnmGS6++GKj3ZV9TYq/8Jnt27fzxhtvkJmZGdDd32ru9hXCE1u2bOE///kPaWlpAf25biop/sInHA4H6enppKWlkZKSYjpOg66//nq++OILzpw5YzqKCHCFhYVMnz6drKysgOiu7EtS/IVPzJo1i8GDBzNs2DDTURoVFxfHgAED+Oijj0xHEQFMa82MGTMYPXo0AwcONB3H56T4C6+tXr2aHTt2MGXKFNNRPCZj/YjG/POf/+TYsWP88pe/NB2lWUjxF17Jy8tj9uzZ5OTkEBsbazqOx4YNG8bWrVspKyszHUUEoIMHD/LMM88EZHdlX5HiLy6Y2+1m2rRpjBs3jl69epmO0yRJSUn06dOHTZs2mY4iAkxlZSXp6en84he/oGvXrqbjNBufFH+l1E1Kqa+VUvuUUo/W8fOHlFJfKaW2K6XWKKUu8cV2hVlLlixBa8348eNNR7kgMr2jqMtzzz1HSkoKt99+u+kozcrr4q+UigCeAcYAvYF7lFK9z1nsc2CA1voqYDkwy9vtCrN2797N4sWLyc7OxmYLzhPI4cOH8/HHH+N0Ok1HEQHi008/5a233iIjIyOkunXWxRd/tQOBfVrr/VprJ/AqMLb2AlrrtVrr0upvNwOdfLBdYUh5eTlpaWlMnTqVdu3amY5zwVJSUujWrRuffPKJ6SgiABQXFzNt2jSmTZtGq1atTMdpdr4o/h2B2jNkHK5+rT4TgHd8sF1hyNNPP02fPn0YPXq06Shek6YfAVa3zj/96U+MHDmS6667znQcv/Dr+bpS6l5gADC7np9PUkptU0ptO3nypD+jCQ+tX7+ejRs38oc//MF0FJ8YMWIEH374IVVVVaajCIP+/e9/c+DAAX7729+ajuI3vij+R4CLa33fqfq171BKjQLSgFu01hV1rUhrvUBrPUBrPaBNmzY+iCZ8KT8/n5ycHLKzs0lISDAdxyc6dOhA+/bt+fzzz01HEYYcPnyYp59+OqS7ddbFF8X/E+BSpVRXpZQduBtYWXsBpdTVwHNYhf+ED7Yp/ExrTVZWFrfeeiv9+vUzHcenZKyf8OVyuUhPT2fChAn06NHDdBy/8rr4a61dwGTgPWAX8LrWeqdSKlspVTME3mwgAVimlPpCKbWyntWJALVs2TKKiop44IEHTEfxuZq7fd1ut+kows8CfRTa5uSTGQm01m8Db5/z2rRaz0f5YjvCjJpJLF544YWQmMTiXF26dCExMZGdO3dy5ZVXmo4j/OTLL79kxYoVLF26NGi7K3sj/P7FokmcTifp6ekhNYlFXUaOHClj/YSRkpISMjIySE9PD/hRaJuLFH/RoPnz59OxY8eQmsSiLjXTO2qtTUcRfjBr1iyGDBkSFKPQNpfQO4cXPrN161ZWr17NK6+8EvJ3O/bs2ROtNXv37qVnz56m44hm9O6777Jz505efvll01GMkiN/UaeioiKysrLIzMwMuUks6qKUIjU1VXr9hLijR4/yl7/8hZycHGJiYkzHMUqKvziP1pqcnBxGjRrFoEGDTMfxGyn+oa1mFNr77ruPyy+/3HQc46T4i/OsWrWKQ4cOMXnyZNNR/OqKK66guLiYgwcPmo4imsGLL75IVFQU9957r+koAUGKv/iO3Nxc5s2bF3Z3OwLYbDa54StE7dy5k1dffZXp06eHZbfOusi7IM5yuVxkZGQwceJEunfvbjqOETK9Y+gpLS0lPT2dRx99lLZt25qOEzCk+IuzwvluxxrXXHMNR44c4fjx46ajCB958sknufrqq0lNTTUdJaBI8RcAbN++nTfeeIPMzMyQ79bZkIiICIYPHy5NPyFizZo1fP7550ydOtV0lIAjxV/gcDhIT08nLS0tbO92rE2afkLDiRMneOKJJ5g5cyZxcXGm4wQcKf6CWbNmMXjw4LC+27G2gQMHsnfvXk6fPm06irhANd067777bvr06WM6TkCS4h/mVq9ezY4dO5gyZYrpKAHDbrdz3XXX8eGHH5qOIi7QkiVLcLlc/PSnPzUdJWBJ8Q9jeXl5zJ49m5ycHGJjY03HCSgyvWPw2r17N4sXL2bGjBnSrbMB8s6EqZrT4nHjxtGrVy/TcQLOkCFD2LFjB8XFxaajiCYoLy8nLS2NqVOn0r59e9NxApoU/zC1ZMkStNaMHz/edJSAFBcXx7XXXstHH31kOopogjlz5tCnTx9Gjx5tOkrAk+IfhmpOi7Ozs+W0uAEy1k9wWb9+PZs2beIPf/iD6ShBQf7yw0zt0+J27dqZjhPQrr/+ej755BNKS0tNRxGNOHXqFDNnzmTGjBkkJCSYjhMUpPiHmaeffprevXvLabEHkpKS6Nu3Lxs3bjQdRTTA7XaTlZXF7bffTt++fU3HCRpS/MPI+vXr2bhxI4888ojpKEFDBnoLfK+99hoOh4OJEyeajhJUpPiHifz8fHJycsjOzpbT4iYYMWIEGzduxOl0mo4i6rB3714WLlzIjBkziIiIMB0nqEjxDwNaa7Kyshg7diz9+vUzHSeotGrVip49e7JlyxbTUcQ5KioqSE9P53e/+x2dOnUyHSfoSPEPA8uWLaOwsJBJkyaZjhKUpOknMP31r3+lW7du/OAHPzAdJSjJBO4hbv/+/SxYsIAXXniByEj5774QqampPP/887hcLnkPA8TGjRtZu3Ytr7zySliPQusNOfIPYU6nk/T0dCZPnkznzp1NxwlaF110ER07duSzzz4zHUVgXb/Kzs4mOzubpKQk03GClhT/EDZ//nw6duzI2LFjTUcJenLDV2DQWjNjxgx++MMf0r9/f9NxgpoU/xC1detWVq9eTXp6upwW+0DNGP9ut9t0lLC2YsUKTp06xc9//nPTUYKeFP8QVFRURFZWFpmZmSQnJ5uOExI6d+5MixYt2LFjh+koYevAgQP8/e9/Z+bMmURFRZmOE/Sk+IcYrTU5OTmMGjWKQYMGmY4TUqTpxxyn00laWhq//vWvueSSS0zHCQk+Kf5KqZuUUl8rpfYppR6t4+fRSqnXqn++RSnVxRfbFedbtWoVhw4dYvLkyaajhJyaph+ttekoYefZZ5+lQ4cO3HrrraajhAyvi79SKgJ4BhgD9AbuUUr1PmexCUCB1roHMAd4wtvtivPl5uYyb948cnJysNvtpuOEnB49emCz2fj6669NRwkrW7du5b333pPrVz7miyP/gcA+rfV+rbUTeBU4t3vJWGBR9fPlwI1K/hd9yuVykZGRwcSJE+nevbvpOCFJKSVNP35W+/pVixYtTMcJKb4o/h2B3FrfH65+rc5ltNYuoAho7YNti2oLFy4kMTGRu+66y3SUkFbT9COan9aamTNn8r3vfU+uXzWDgLrgq5SapJTappTadvLkSdNxgsb27dtZsWIFmZmZclrczHr37o3D4eDAgQOmo4S8lStXcvjwYX7961+bjhKSfFH8jwAX1/q+U/VrdS6jlIoEkoHT565Ia71Aaz1Aaz2gTZs2PogW+hwOB+np6aSlpZGSkmI6Tsiz2WyMHDlSjv6b2aFDh/jrX/8q16+akS+K/yfApUqprkopO3A3sPKcZVYCNZPF3gF8oKXLhE/MmjWLwYMHM3z4cNNRwkZqaipr1qwxHSNkuVwu0tPTmTRpEt26dTMdJ2R5PUqV1tqllJoMvAdEAC9orXcqpbKBbVrrlcBCYLFSah+Qj7WDEF5avXo1O3bs4OWXXzYdJaz069ePEydOcPToUTp06GA6TshZsGABLVu25P/+7/9MRwlpPhmiUGv9NvD2Oa9Nq/W8HJD/SR/Ky8tj9uzZzJ07l9jYWNNxwkpERATDhw9n7dq1/PjHPzYdJ6R89tlnrFy5kqVLl8r1q2YWUBd8hWfcbjfTpk1j3Lhx9O597i0Vwh+k6cf3zpw5w7Rp08jIyKBVq1am44Q8Kf5BaMmSJWitGT9+fOMLi2Zx7bXXcuDAAU6dOmU6SkjQWvPnP/+ZYcOGMXToUNNxwoIU/yCze/duFi9ezPTp07HZ5L/PlKioKK6//nrWrVtnOkpIeOedd9i3bx8PPvig6ShhQ6pHECkvLyctLY2pU6fSvn1703HCnkzv6BtHjhzhqaeeYubMmURHR5uOEzak+AeRp59+mt69ezN69GjTUQRw3XXXsXPnToqKikxHCVpVVVVkZGTws5/9jJ49e5qOE1ak+AeJ9evXs3HjRh555BHTUUS1mJgYBg0axIcffmg6StBauHAhsbGx3H239P72Nyn+QSA/P5+cnByys7NJSEgwHUfUInf7Xrjt27ezfPlysrKy5PqVAfKOBzitNVlZWYwdO5Z+/fqZjiPOccMNN/Dpp59SWlpqOkpQqRmW5I9//CMylIsZUvwD3LJlyygsLGTSpEmmo4g6JCQk0K9fPzZs2GA6SlCpGZZkxIgRpqOELSn+AWz//v0sWLCAmTNnEhnpk5uxRTO48cYbpddPE9QMSzJlyhTTUcKaFP8A5XQ6SU9PZ/LkyXTu3Nl0HNGAYcOGsWnTJioqKkxHCXjHjx9n9uzZ5OTkyLAkhknxD1Dz58+nY8eOjB177qRoItC0bNmSyy+/nM2bN5uOEtBqhiW599576dWrl+k4YU+KfwDaunUrq1evljlLg4g0/TRu0aJFKKW47777TEcRSPEPOLXnLE1OTjYdR3hoxIgRfPTRR1RWVpqOEpC++uorli5dSnZ2tnTrDBDyvxBAtNbk5OQwatQombM0yLRt25bOnTvz6aefmo4ScEpLS0lPT+eRRx7hoosuMh1HVJPiH0BWrVrFoUOHmDx5suko4gKkpqZK008dnnrqKfr27cuoUaNMRxG1SPEPELm5ucybN0/mLA1iqamprFu3DrfbbTpKwPjggw/Ytm0bDz/8sOko4hxS/AOAy+UiIyODiRMn0r17d9NxxAXq1KkTKSkpfPnll6ajBIQTJ07w+OOPM2PGDOLi4kzHEeeQ4h8AFi5cSGJiInfddZfpKMJLMtaPxe12k5WVxZ133smVV15pOo6ogxR/w7788ktWrFhBZmamdOsMATXt/lpr01GMWrp0KRUVFdx///2mo4h6SPE3yOFwkJGRQVpaGikpKabjCB/o1q0bdrudXbt2mY5izJ49e1i0aBEzZswgIiLCdBxRDyn+BtUMbjV8+HDTUYSPKKXCutdPzWxzDz30EB06dDAdRzRAir8hMrhV6Arnpp+5c+dy2WWXMWbMGNNRRCNkqEgD8vLymD17NnPnzpXBrUJQr169qKio4MCBA3Tr1s10HL/56KOP2LBhA0uXLjUdRXhAjvz9zO12k5GRwbhx4+jdu7fpOKIZ1DT9rFmzxnQUv8nPz2fmzJlkZ2eTmJhoOo7wgBR/P1u8eDEA48ePN5xENKfU1NSw6fJZM9vcrbfeytVXX206jvCQNPv40e7du1myZAkvvfSSDG4V4vr27cupU6c4fPgwnTp1Mh2nWS1btoyioiIeeOBsEAaQAAAW0klEQVQB01FEE0gF8pOaXhBTp06lffv2puOIZmaz2RgxYkTI9/qR2eaClxR/P5kzZw69e/dm9OjRpqMIPwn1ph+n00laWhq//e1vufjii03HEU3kVfFXSrVSSv1HKbW3+mvLOpbpp5TapJTaqZTarpQKuzEM1q9fz6ZNm3jkkUdMRxF+1L9/fw4ePMiJEydMR2kWf/vb3+jcuTM333yz6SjiAnh75P8osEZrfSmwpvr7c5UCP9Fa9wFuAp5WSrXwcrtB4/Tp0+Tk5JCdnU1CQoLpOMKPoqKiuP7661m3bp3pKD63efNm1qxZQ1pamgxLEqS8Lf5jgUXVzxcBt567gNZ6j9Z6b/Xzo8AJoI2X2w0KWmumT5/O2LFj6devn+k4woBQnN6xsLCQ6dOnM336dJKSkkzHERfI2+J/kdb6WPXz40CD0/QopQYCduAbL7cbFJYtW0ZhYSGTJk0yHUUYMnjwYHbt2kVBQYHpKD6htWbGjBmMGTOGAQMGmI4jvNBo8VdKva+U+m8dj7G1l9PWvez13s+ulGoPLAbu11rXOduFUmqSUmqbUmrbyZMnm/hPCSzSC0IAREdHM2TIENavX286ik+8+eab5OXl8ctf/tJ0FOGlRquS1rreudeUUnlKqfZa62PVxb3OK1tKqSTg30Ca1npzA9taACwAGDBgQNAOjFLTC2Ly5Ml07tzZdBxhWGpqKv/+978ZO3Zs4wsHsP/973/Mnz+f559/nqioKNNxhJe8bfZZCdTcqjoe+Ne5Cyil7MCbwEta6+Vebi8ozJ8/n06dOgX9H7vwjaFDh/L5559TUlJiOsoFq6ysJD09nV/96ld06dLFdBzhA94W/8eB7yml9gKjqr9HKTVAKfV89TJ3AsOAnyqlvqh+hOzVz61bt7J69WrS09OlF4QAID4+nv79+7NhwwbTUS7Y3//+d9q2bcuPfvQj01GEj3jVGK21Pg3cWMfr24CJ1c+XAEu82U6wKCoqIisri8zMTJKTk03HEQFk5MiRfPDBB9x0002mozTZtm3bePvtt1m6dKkc0IQQucPXR7TW5OTkMGrUKAYNGmQ6jggww4cPZ8uWLZSXl5uO0iTFxcVkZmYybdo0WrY87x5OEcSk+PvIqlWrOHToEJMnTzYdRQSg5ORk+vTpw6ZNm0xH8VjNAc2NN97IkCFDTMcRPibF3wdyc3OZN28eOTk52O1203FEgKpp+gkWb731FgcPHpQDmhAlxd9LLpeLjIwMJk6cSPfu3U3HEQFs5MiRbNiwgcrKStNRGpWbm8vcuXPlgCaESfH30sKFC0lMTOSuu8JuvDrRRCkpKXTt2pVPPvnEdJQG1RzQPPDAA3JAE8Kk+Hvhyy+/ZMWKFWRmZkovCOGRmsndA9nzzz9PUlISd955p+koohlJ8b9ADoeDjIwM0tLSSElJMR1HBInU1FQ+/PBD3O46Rzgx7osvvuDNN9+UA5owIMX/As2aNYvBgwczfPhw01FEEOnQoQNt27bl888/Nx3lPCUlJUybNo309HRat25tOo5oZlL8L8Dq1avZsWMHU6ZMMR1FBKFAbfp54oknGDp0KDfccIPpKMIPpPg3UV5eHrNnz2bmzJnExsaajiOCUM30joHU9PPOO++we/duHnzwQdNRhJ9I8W8Ct9tNRkYG48aNo3fv3qbjiCDVtWtX4uLi+Oqrr0xHAeDo0aM89dRT5OTkEBMTYzqO8BMp/k2wePFiAMaPH9/IkkI0LFCafqqqqsjIyGD8+PH07NnTdBzhR1L8PbR7926WLFnC9OnTsdnkbRPeqWn6seZAMufFF18kOjqacePGGc0h/E+qmAfKy8tJS0tj6tSptG/f3nQcEQIuu+wyqqqq2Ldvn7EM//3vf3nttdfIysqSA5owJP/jHpgzZw69e/dm9OjRpqOIEKGUYuTIkaxdu9bI9ktLS0lPT+exxx6jbdu2RjIIs6T4N2L9+vVs2rSJRx55xHQUEWJSU1NZs2aNkW0/+eSTDBgwgJEjRxrZvjBPin8DTp8+TU5ODtnZ2SQkJJiOI0LMlVdeSWFhIYcOHfLrdt9//32++OILHnroIb9uVwQWKf710Fozffp0xo4dS79+ITvrpDDIZrP5veknLy+PWbNmMXPmTOLi4vy2XRF4pPjXY9myZRQWFjJp0iTTUUQI82fTj9vtZtq0adxzzz1yn4rwbg7fULV//34WLFjACy+8QGSkvEWi+VxzzTUcOXKE48eP065du2bd1pIlS9Bay30qApAj//M4nU7S0tKYPHkynTt3Nh1HhLjIyEiGDRvGunXrmnU7u3btYvHixWRnZ0u3TgFI8T/P/Pnz6dSpE2PHjjUdRYSJ5p7esaysjPT0dB5++OFmP7sQwSM8ir/LBYWFUFAATme9i23dupXVq1eTnp4uY5kLvxk8eDB79uwhPz+/WdY/Z84crrjiCr7//e83y/pFcArNBm2tYccOWL4ctmyBb7757s+6dIFrr4XbbrO+KkVRURFZWVlkZmaSnJxsLLoIP3a7neuuu45169Zx2223+XTdH374IVu2bGHp0qU+Xa8IfqFX/LduhWnTrIJfVQUxMZCUBDXtnG43HD8Or78OK1ZAx47oadPIefddRo0axaBBg8zmF2Fp5MiRrFy50qfF/9SpU+Tk5PDkk08SHx/vs/WK0BA6xb+8HHJy4JVXICLCKvh1Nd3YbBAbaz20hrw8SseNY0RSEqM2bvR/biGAoUOHMmPGDM6cOUNiYqLX63O73WRlZXHHHXdw1VVX+SChCDWh0eZfWgr33QcvvwyJidbDkzZ7pXBGRXHE4eB75eXYf/xjaKZ2VyEaEhcXx4ABA/joo498sr5XX32V0tJSJkyY4JP1idAT/MXf7YYHHoDPPoOWLa2jfg9prTly9Cit27Qhqk0bq6novvugoqIZAwtRtxtvvNEnvX727t3LP/7xD2bMmEFEE/4eRHgJ/uL/4ouweTO0aOHZ0X4tp06dIsJmo1WrVtbvJifD7t3w9NPNk1WIBtxwww1s3bqVsrKyC15HRUUFaWlpTJkyhY4dO/ownQg1XhV/pVQrpdR/lFJ7q7+2bGDZJKXUYaXU37zZ5nccOgSzZkF8fJMLf2lZGQUFBbTv0IGzv6mU1WT0//4f7Nzps5hCeCIpKYkrr7ySjV5ce5o3bx49evRgzJgxPkwmQpG3R/6PAmu01pcCa6q/r88MYL2X2/uuF1+Eykqw2xtcLOPIEUbv3cuwr7/mtm++4Y38fI4cOUL79u2JOnf4hprvn33Wp1GF8IQ3TT8ff/wx69ev57HHHpP7VESjvC3+Y4FF1c8XAbfWtZBSqj9wEbDay+19q7QUXn0VPBhq+f6UFFZ17876yy7jqU6dmHvkCMfs9vp7VSQmwnvvwcmTPosrhCeGDx/Oxx9/jLOBmxHrkp+fz4wZM5g+fbpPeguJ0OdtV8+LtNbHqp8fxyrw36GUsgF/Ae4FRnm5vW99/rl1sTcqqtFFu0VHn31+pqQEt9tNWVJS/b8QEWE1AW3eDDff7Iu0QnikdevW9OjRg7VrP6VlyyHs2QPFxdYJaatW0KsXXHrpd092tdZkZ2dzyy23cM0115gLL4JKo8VfKfU+UNeAIGm1v9Faa6VUXbNR/wp4W2t9uLFTUaXUJGAS0Pigajt3NjhUw7keP36clQUFFJeXc0ViIjc0VPzBak76/HMp/sJvqqrgo49g9+407rknmbZtrY+hy2Udi0RFfduZ7Uc/gp/8xNoZLF++nPz8fBl+XDRJo8Vfa13v0bpSKk8p1V5rfUwp1R44UcdiQ4AblFK/AhIAu1KqRGt93vUBrfUCYAHAgAED6tqRfGv79iZ163ykXTvuLC/nYHIy++127I21icbEWNsQwg+++QZ+9zurs5nL1YnKyv0kJLQEzv+culzWDerLl0NqaiFff72Yl176mww/LprE20/LSmA88Hj113+du4DW+sc1z5VSPwUG1FX4m6yk5NshGzxQWVlJmcNBF+Cd4mKeKyzkR/HxRNhs2Gw2bBER333udKJPnuRMXh7x8fHExcXJULiiWaxYAX/8o9WKad2YHkVxsR2Ho7TOYRkiI61bWqqq3Lz8cgXt2y/C4ai3o50QdfK2+D8OvK6UmgAcBO4EUEoNAH6htZ7o5frrFxVlDc/gIXtUFN179MDtdhOdl0eBUsTGxuJ2u3FXVVFZWUlF9fMqt5tIp5OjZWVk3n8/JSUllJeXExMTQ3x8/HceCQkJTX5NjtBEjaVLISPD6q1cux0/MTGRM2fONDgmz6lTJ0lIqMRma8udd8Jrr4FM0CU85VUV0lqfBm6s4/VtwHmFX2v9IvCiN9s8q0cPeP/9RhfLd7nYVlrK9QkJxNjtbHE4WFtezp86dqRlQ70iCgvpePPNvD1nDmCNlVJWVobD4aCkpASHw/GdR81r+fn55ObmNrhcZGTkBe00an+fkJBAVFSUdOkLYjVjEJ5b+AGSkhI5ePAg7dpdRF1NPw6Hg+LiYrp160pEhOLMGesawPvvW/c7CtGY4D0E7du30f79YP3ZLC8o4E/HjuEG2kdF8fuLLmJYY93htLaGe65ms9nOFuC2bdtecGytNRUVFeftNM7dQZSUlJCXl9fgcm6326szkJpHbGys7ET8zOGABx+0mnDq+hjb7dFERERQVlZGbOx3J1qvqnJx9OhROnToQESE9SecmGhNWZGZCXPn+uNfIIJd8Bb/q6+2Gknd7gbb/ltGRrLgkkuatm6trXX27+9lyPMppYiJiSEmJobWrVt7tS6n00lpaWmdO4jaz0+fPl3vmYrD4cDpdBIXF+eTHYlcF/HM88/DiRNW2319EhMTKS4+c07x1xw7dozk5KTzmoSSkuDtt2H8eJAen6IxwVv8L7oIrr/e6hvn6/NchwN69oTLLvPten3Mbrdjt9tp4eW/v6qq6rydQ11nG3l5eQ02eZWVlREdHe3RTqOhnUlcXBxRHty/EaycTvjHPyAuruHl4uNj2L8/gzNnvqGqqpioqE7Exf2EysqedY7bY7NZx0L/+IcUf9G44C3+AJMmWcW/kaP/JtHa6lz961/7Zn1BICIigqSkJJIau/ehEW63m/Ly8gZ3EA6Hg4KCAg4fPtxgk5c310Vqv2a32wOuSWvDBusG9cbe7piYSGy2Nlx00YMkJHShsHAtBw8+So8er2PdO3m+pCTr5vTi4sbXL8JbcBf/IUNgzBh45x3fHf0XFcHAgXDTTb5ZXxix2WzExcUR19ghbSO01jidzrM7B2+ui1RVVXndlJWQkEBMTIzPmrS2brWOLxpjs8WRkvIA5eWKhAQoLOxKTMzFuN0HgK51/k5EhHUctHOn9echRH2Cu/gDZGfDpk1w5ox11csbDoc1w9eTT/ruTEI0mVKK6OhooqOjm/W6SO3XCgoKGmzyqqioIDY29rweVxeyM9myxUZMjGf5ExMTOXbsWPVlKAdwnOjobo38m6X4i8YFf/Fv2dKawevOO7071y0pse6hf/FFkHHQQ4Yvr4vU3onUtyOpfSZy7llKzXWRXbv+AcQSGenGZosgIqL65kJbBDab7bzvy8rKcTrLiYl5huTkHxId3aXRvLm5Xv1zRRgI/uIP1oXZ5cthwgQ4etQ6A/B06Ae322rqad3aGse/b9/mzSqCUkREBImJiV6PmOl2uxk4UFNW5sZmc1s3GbqrcLvdVFXVfl6F01mJ211FfHwcMB+bzU67dn9odBtKedasJMJbaBR/sIY6fO89eOop6+jd7ba6U9jtdU/04nRazTxKwR13QHq6981GQjTCZrORmAjl5RHUGmy2Xlprjh3LprKymE6d5qFU43+ybrfc6CUaF1oN27GxkJYGH34IkydDdLR1VF9SYjUJFRdbz4uKrKI/YYJ1S+QTT0jhF35z1VVQXu7ZsseP/xmn8wAXXzwHm82DvQXW8U6fPl4EFGEhdI78a+vQAaZMsYZJPHnSGiqxsNDqxpmcbDUTtWvX5KkfhfCFgQNh1arGl6usPEZh4RsoZWfv3tFnX2/X7o8kJ9c9TaPW1pF/r16+SitCVWgW/xpKQdu21kOIADF8+Lc3ZDXUqSwqqj29em1r0rrLyqxjn6519wQV4qzQavYRIgh06gRDh1qtkL5WWWnd+ygntaIxUvyFMOChh6yvVVW+W6fDYfV8HjvWd+sUoUuKvxAG9O0L999vHf03YVqKelVVWUf9c+ZAQoL36xOhT4q/EIb8/vdwxRXf9kW4UFVVVge2CROs5iQhPCHFXwhDYmJg0SJr9q2CggtrAqqosM4e7r0XHnnE9xlF6JLiL4RBLVpY0y/ee681PJWnzUBVVd/uMP78Z5g+XYajEk0jHxchDIuLs8YnXLoUrrzSasI5fdraGVRWfjtnUUWF9bOCAuvi7s03W/co3nmn9O4RTRfa/fyFCCIDB8KKFbBvH7z7LmzebI3OeeaMNVRVq1YwbBhcd501knmrVqYTi2CmtC+6GjSDAQMG6G3bmnaDixBChDul1Kda6wGNLSfNPkIIEYak+AshRBiS4i+EEGFIir8QQoQhKf5CCBGGpPgLIUQYkuIvhBBhKGD7+SulTgIHfbzaFOCUj9cZauQ98oy8T42T98gzvn6fLtFat2lsoYAt/s1BKbXNk5sfwpm8R56R96lx8h55xtT7JM0+QggRhqT4CyFEGAq34r/AdIAgIO+RZ+R9apy8R54x8j6FVZu/EEIIS7gd+QshhCDEi79S6v+UUjuVUm6lVL1X05VSNymlvlZK7VNKPerPjKYppVoppf6jlNpb/bVlPctVKaW+qH6s9HdOExr7XCilopVSr1X/fItSqov/U5rnwfv0U6XUyVqfn4kmcpqklHpBKXVCKfXfen6ulFLzqt/D7Uqpa5o7U0gXf+C/wG3A+voWUEpFAM8AY4DewD1Kqd7+iRcQHgXWaK0vBdZUf1+XMq11v+rHLf6LZ4aHn4sJQIHWugcwB3jCvynNa8Lfz2u1Pj/P+zVkYHgRuKmBn48BLq1+TAKebe5AIV38tda7tNZfN7LYQGCf1nq/1toJvAqMbf50AWMssKj6+SLgVoNZAoknn4va791y4Ealwm5CxXD/+/GI1no9kN/AImOBl7RlM9BCKdW+OTOFdPH3UEcgt9b3h6tfCxcXaa2PVT8/DlxUz3IxSqltSqnNSqlw2EF48rk4u4zW2gUUAa39ki5wePr3c3t1c8ZypdTF/okWVPxeh4J+Dl+l1PtAuzp+lKa1/pe/8wSiht6j2t9orbVSqr7uX5dorY8opboBHyildmitv/F1VhGSVgGvaK0rlFI/xzpbSjWcKewFffHXWo/ychVHgNpHIp2qXwsZDb1HSqk8pVR7rfWx6tPME/Ws40j11/1KqXXA1UAoF39PPhc1yxxWSkUCycBp/8QLGI2+T1rr2u/J88AsP+QKNn6vQ9LsA58Alyqluiql7MDdQFj0Zqm2Ehhf/Xw8cN7ZklKqpVIquvp5CjAU+MpvCc3w5HNR+727A/hAh9+NM42+T+e0Xd8C7PJjvmCxEvhJda+fwUBRrebY5qG1DtkH8COstrMKIA94r/r1DsDbtZb7/4A9WEeyaaZz+/k9ao3Vy2cv8D7Qqvr1AcDz1c+vA3YAX1Z/nWA6t5/em/M+F0A2cEv18xhgGbAP2Ap0M505QN+nPwM7qz8/a4HLTWc28B69AhwDKqtr0gTgF8Avqn+usHpNfVP9NzaguTPJHb5CCBGGpNlHCCHCkBR/IYQIQ1L8hRAiDEnxF0KIMCTFXwghwpAUfyGECENS/IUQIgxJ8RdCiDD0/wPK18KinPsCjAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4VGX6//H3k04aISSBUEKRQIKuILLYFcVV7GWlq7jSlaosLf5WYKkqgoo0QaVYQFYUuyjqV5dVRLEnoYQWCJAeSM/M8/vjTDADSSYhM3Mmyf26rrky5cw5d+ZK8sl5zjn3o7TWCCGEEOW8zC5ACCGEZ5FgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELY8TG7gPMRERGh27dvb3YZQghRr/zwww8ZWutIR8vVy2Bo3749u3btMrsMIYSoV5RSh2qynAwlCSGEsFMv9xicxWKBzEwoLQV/f2jeHJQyuyohhDBXowuGY8fgrbfg888hORmsViMMtAZfX7jwQrjtNrj7bggLM7taIYRwv0YTDCdOwMyZsG2bEQJ+fhAYCN7efy5TVga//gq7d8P8+TBgAEyZAsHBppUthBBu1yiOMWzdCjfcAJ9+CqGh0KwZBAXZhwKAj48RAmFhRmi89hr06QM7d5pTtxBCmKHBB8Py5TBpkjFc1KwZeNXwO/b2NpbPy4MhQ+Djj11bpxBCeIoGHQxvvAFPPw0hIRAQcH7rCAoy3jtuHHz7rXPrE0IIT9Rgg+HQIeOYQnCwMURUF/7+xjrGjTP2IIQQoiFrkMGgNUyebJyO6ufnnHUGBUFWFixc6Jz1CSGEp2qQwfDrr/DTT9C0afXLZWVt4sCBB0hKuoJjx2Y6XG9oqHGqa1aWc+oUQghP1CCDYe3aP69PqI6PTwQREcNo2vTOGq3X29tY79tvO6FIIYTwUA0uGLQ2TkutybUHoaE3EBLSG29vB7sWFfj6wgcf1KFAIYTwcA0uGI4fh6Ii4w+4KwQEQGKisecghBANUYMLhgMH6n4WUnXKh5OOH3fdNoQQwkwNriVGUZExnFRzmuzsLKzWXPz80gkICCAgoAk+1aSLlxcUF9e5VCGE8EgNLhh8fWvbIVWhlEJrjdVqJSsri6KiIpRSBAQ0ISAggCZNAggICMDHxxifslpdN1QlhBBma3DB0Lp1zcf/tbagtYXQ0BDS048RHBxAZGQESnlRWlpKUVERhYVFZGVlU1RUiFIKf/8AtG5KUtLP+PnFERkZiZJe3UKIBqTBBUP79sYeg8VybpO8s2VkrCEjYxUASlnYs+dqWrceS2TkKHx9/fD19SMkJNS2tKa0tIzc3GKaNMli69bNLFyYiFKKuLg44uPjz3xt0aKFhIUQot5SunYD8h6hZ8+eurqpPR98EP73P8cXuNnTHD58hKCgQJo3j6hyqexsGDECpk0DrTUnT54kKSmJxMTEMzer1Up8fPyZsIiLiyM6OlrCQghhKqXUD1rrng6Xc0YwKKX6As8B3sBqrfWCs15fDFxvexgIRGmtw2yvWYBfba8d1lo7vNrMUTB89ZXxxzs0tMpFKlVSUsLBgwfo0KEDvr7n9tKwWo1eSZ9/Du3aVb4OrTXp6ekkJSXZBUZpaemZPYrym4SFEMKd3BYMSilvYA/wNyAV+B4YpLX+o4rlxwGXaK0ftj0+rbWu1VQ4joLBYoHrroOMjNpPspOZmUF+fgExMW0B+z/aOTlw5ZWwbl3t1gmQkZFxJiTKQ6OoqOjMHkV5WLRu3VrCQgjhEu4MhiuAmVrrm22PpwNoredXsfwO4Emt9TbbY6cHAxiT6wwebLTcdnSsoSKtNQcOpBAREUFo6J9jUSUlxm3bNmjbtjbVVi0rK8tuCCoxMZHCwkK7sIiLi6NNmzZ41XQiCSGEqEJNg8EZB59bA0cqPE4FLquiqHZAB2B7hacDlFK7gDJggdb6nSreOxIYCRATE+OwqF694P77jf/umzWr+SmsSimio6NJTU0lKCgYb29vLBbIz4c5c5wXCgDh4eFcddVVXHXVVWeey8rKOrNHsW3bNp5//nlOnz5Nly5d7I5btG3bVsJCCOESzthjuA/oq7Uebnv8AHCZ1npsJctOBdporcdVeK611vqoUqojRmD00Vrvr26bNdljAGMO57Fjjf/yQ0Nrt+dw/PhxtLYSEdGKU6dgzBijlbcZozw5OTl2xyuSkpLIyck5ZxgqJiZGwkIIUSV37jEcBSr+H93G9lxlBgKPVnxCa33U9jVFKfUlcAlQbTDUlI8PLF0K//63MX9z+ZzONREZGcmePWn4+BTxr38F8PDD5oQCQFhYGJdffjmXX375medyc3PP7Fl89dVXrFixguzsbDp37my3Z9G+fXsJCyFErThjj8EH4+BzH4xA+B4YrLX+/azl4oCPgQ7atlGlVDOgQGtdrJSKAP4H3FXVgetyNd1jqOi774y5nzMyjJYZISGVz/9ssRhnHnl5QfPmGYSGzuT995/Fz1kz/rhQXl6e3dlQSUlJZGZm0qlTJ7uzodq3b493bXafhBANgrtPV70VWIJxuurLWuu5SqnZwC6t9VbbMjOBAK31tArvuxJYCVgxGvot0VqvcbS98wkGMIaW/u//4KWX4IcfjD0ApYygUMo4HdXLC66/HoYNgx49NJMnP05cXBwjR46s9fY8walTp0hOTrYbhkpPTyc2NtZuKKpjx44SFkI0cG4NBnc732CoqKwMUlIgNRVKS415nTt0MA4uV9yTOHHiBIMHD2bNmjW0b9++boV7iPz8fLuwSExM5MSJE3Z7FnFxcXTs2LHaZoJCiPpFgsGJ3njjDb744gtWrlzZYK8xKCgoOBMW5UNRaWlpdOzY0W4YqmPHjvhKB0Eh6iUJBieyWq089NBD3Hfffdx5Z82mAW0ICgoK2LNnj11YHD169ExYlA9DXXDBBfXiGIwQjZ0Eg5MlJyczduxYNm7cSHh4uFu37UkKCwvZu3ev3TGLI0eO0KFDB7tTZzt16iRhIYSHkWBwgeeee4709HTmzJnj9m17sqKiojNhUb5ncfjwYdq1a2e3ZxEbG4u/v7/Z5QrRaEkwuEBhYSEDBgxg+vTpXHHFFW7ffn1SUlJit2eRmJjIoUOHiImJses627lzZwICAswuV4hGQYLBRXbs2MGCBQvYtGmT/EGrpZKSEvbt22d3FfeBAwdo06aN3QHu2NhYmjRpYna5QjQ4EgwuNGPGDKKjoxk3bpzjhUW1SkpK2L9/v13X2f3799O6dWu7YxadO3cmMDDQ7HKFqNckGFwoMzOTAQMGsHz5cmJjY02ro6EqLS0lJSXFbhgqJSWF6Ohou66zcXFxEhZC1IIEg4u9/fbbbN26lZdffll6EblBWVkZKSkpdsNQ+/bto0WLFnYHuOPi4ggKCjK7XCE8kgSDi1mtVkaMGMHNN99M//79Ta2lsbJYLBw4cMDu1Nm9e/cSGRlpNwzVpUsXQkJCzC5XCNNJMLhBSkoKI0eO5PXXXycqKsrscgRGWBw8eNBuz2Lv3r2Eh4efMw93aG3nfhWinpNgcJMVK1awf/9+nn76abNLEVWwWq12YZGUlERycjJhYWF2Z0PFxcXRtGlTxysUop6SYHCTkpISBg4cyIQJE7juuuvMLkfUkNVq5fDhw+fMwx0WFnbOBEhhYWFmlyuEU0gwuNGuXbt48skneeutt+QsmXrMarWSmppqdzZUcnIywcHB5wxDNea2KKL+kmBws1mzZhEUFMTkyZPNLkU4kdVq5ejRo3btPpKSkmjSpMk5w1DNmzc3u1znS0kxZrnauRP27oXiYggIgC5d4K9/hcsugwbSjr4xkGBws9zcXPr168eSJUvo2rWr2eUIF9JaVxoW/v7+dqfOxsfHExERYXa5tac1fPmlMS/uzz//+byfnzFZidVqBER5C/qePY3J1a++2pRyRc1JMJjgww8/ZMOGDaxfv15mQ2tktNakpaXZHbNITEzEx8fnnD2LyMhIz53XIzMTZsyAzz4Db29jDtzqatUaTp0ywuK222DWLJBjMh5LgsEEWmseffRRrrjiCh544AGzyxEm01pz/Phxu6BITEzEy8vrnD2LqKgo88Ni714YNAhyciA0tPJJ0atitUJuLkRGwptvyvCSh5JgMMmRI0d46KGHWL9+Pa1atTK7HOFhtNacPHnS7gB3UlISWmu7g9vx8fG0bNnSfWFx8CDccw/k5xuhcL7y8qBpU3jnHWjd2mnlCedwazAopfoCzwHewGqt9YKzXn8IeBo4antqqdZ6te21ocATtufnaK3XOtqeJwcDwCuvvMLu3bt57rnnzP8vUHg8rTXp6el2exWJiYlYLBa7vYq4uDiio6Od/zNVWgp33AH79xt/1OsqOxsuugjeftsYjhIew23BoJTyBvYAfwNSge+BQVrrPyos8xDQU2s99qz3hgO7gJ6ABn4ALtVaZ1e3TU8PhrKyMoYMGcKwYcO46aabzC5H1FPp6el211gkJiZSXFxsFxbx8fG0atWqbmGxdCksXmwcG3BG6GhtDEfNmAHDhtV9fcJp3BkMVwAztdY32x5PB9Baz6+wzENUHgyDgN5a61G2xyuBL7XWb1S3TU8PBoBffvmFKVOmsGnTJmm9IJwmMzPznAPchYWFdk0E4+PjadOmTc3CIi8PevUCf3/w9XVeoSUlYLHArl0gc2t4jJoGg48TttUaOFLhcSpwWSXL/V0pdS3G3sUkrfWRKt7bIAYmL774Ynr37s0LL7xAQkKC2eWIBqJ58+ZcffXVXF3h1NCsrKwzIfHpp5/y3HPPkZ+ff84V3G3atDm3E/DWrVBWBsHB1W63xGplwfHj7CwoIM9ioY2vL2Ojoriyqvf5+RkHoz/8EP7+97p+28LNnBEMNfEe8IbWulgpNQpYC9xQmxUopUYCIwFiYmKcX6ELjB07ln79+rF7924uueQSs8sRDVR4eDhXXnklV1555ZnnsrOzz4TF559/ztKlS8nLy6NLly52xyzavfYaqgZ7Chagpa8vq2JiaOnry39Pn2ba0aO82aEDrfz8Kn+Tlxe88YYEQz3klqGks5b3BrK01k0b8lBSuc8//5wVK1bw2muv4VfVL5AQbpCTk0NycvKZoag9v//OC59/jiUoCP8mTWgSEEBAQAB+/v7U5EjDwJQURkZEcENVQ6UWCxQWwh9/1O7UV+Ey7hxK+h6IVUp1wDjraCAw+KxiorXWabaHdwKJtvufAPOUUs1sj28CpjuhJo9xww038P7777Nu3TqGDx9udjmiEQsLC+Oyyy7jsstsI7179mC57TaKfHwoLCri1OnTpKenU2axEODvT0CTJgQEBNCkkrDIKivjcEkJHf39q96gt7dxfUNqKtSTvXxhqHMwaK3LlFJjMf7IewMva61/V0rNBnZprbcC45VSdwJlQBbwkO29WUqpf2OEC8BsrXVWXWvyJEoppk6dypAhQ7jpppvqzTCYaARyc/H28SEoKMhu1juL1UpRYSGFRUWcPn2ajIwMysrK8PfzIzg4mLCICJ44dozbmzalfXXBAMaeQl6ei78R4WxygZubvP7663z11VesWLFCrm0QnmHXLnjgAajBVKglpaUcOniQkrIyVvv5YfH15dm2bfFx9LN8+rRxPYP0D/MINR1KkoE/Nxk4cCAFBQW89957ZpcihCE83BjqcaC0rIwjR44QEhrKm8HBHMvPZ17Llo5DAYzjDM2aOV5OeBQJBjfx8vIiISGBpUuXkp1d7fV7QrhHu3bGV4ulykXK9xSahoayxmrliMXCwhYtyDl50vH6y8qM6yNatnRSwcJdJBjcKC4ujltuuYXFixebXYoQxsHhiy6CgoJKXy4uLubQwYOEN29OadOmbMnJYU9REQ9kZ3NPRgZX/vEHH+XmVr3+ggLo0cM5V1MLt5JgcLNRo0axe/duvvvuO7NLEQIefLDS4aTCoiIOHTpEVFQU4c2aEe3ry674eHbExfF1XBxfxsay1s+Pm0JCql///fe7qHDhShIMbhYYGMjUqVOZP38+xcXFZpcjGrubbzZmZKvws5hfUMCRw4eJbtWKplU01QsKCiIwMJCM9PTK11tUZFxNff31rqhauJgEgwmuvvpq4uLiWL16tdmliMYuIAASEowL0bTm1OnTHE1NpXXr1oQ4aJPRokULcnNzKSoqsn9Ba2N9Tz7p3P5Lwm0kGEwyefJktmzZwr59+8wuRTR2/fvDX/9KfloaaceO0bZtW7vrGqri4+1NVIsWpKWlYXfSe04OXHst3Hmny0oWriXBYJKIiAjGjBnDvHnzsNbglEEhXMbLi/dvvpkDRUW0b9aMJrXohtq0aVOUlxfZWVl/ttvu0MFo4y0HnestCQYT3XPPPQC8/fbbJlciGrN169ax6u23Cd++Hb/OnY2JdsrKavReBURHR5OZnk5ZZiZ07gybNsm8z/WcBIOJvLy8eOKJJ1ixYgXpVR3EE8JFtNa8+OKLvPfee6xevZpW3bvDe+/B8OHGFJ/Z2dVe4wBAWRn++flEBQbyYYcOxpSe4eHu+QaEy0gwmKxjx47ce++9PP3002aXIhoRq9XKwoUL+fbbb3nppZeIiooyXggIgOnTjYC45x7jWoTTpyEry5hfIS/P+JqVZTxfVAQDBtBk+3ZebdaMr/73P3O/MeEU0ivJAxQXFzNw4EAmTZrEtddea3Y5ooErKytj1qxZnDhxgsWLF1d/oDkvD376yWid/fvvxmmtAQFw4YXGrVs3sF3L8MMPP/Cvf/2Lt956i8DAQDd9N6I23Da1pxkaWjAA7Ny5k9mzZ7Np0yb5pRIuU1JSwrRp07BYLDz11FP4O+qOWkuzZs0iJCSExx57zKnrFc4hTfTqmV69enHppZeyYsUKs0sRDVRBQQHjx48nICCAZ555xumhADBx4kQ+/vhjEhMTHS8sPJYEgweZNGmS/FIJl8jLy2PMmDHExMQwZ84cfF104VnTpk2ZMGECc+fOxeLowLXwWBIMHiQsLIzx48czZ84c+aUSTpORkcGIESO49NJLmT59Ol4unmbz1ltvJSQkhI0bN7p0O8J1JBg8zG233UZoaChvvvmm2aWIBuDYsWMMHz6cvn37Mm7cOLdMEqWUYvr06axZs4YTJ064fHvC+SQYPEz5L9XLL7/MsWPHzC5H1GMpKSkMHz6cIUOG8I9//MOtMwfGxMQwaNAgFi5cSH08waWxk2DwQDExMQwZMkR+qcR5++OPPxg9ejRjx46lX79+ptTw4IMPcvjwYb788ktTti/On1OCQSnVVymVrJTap5SaVsnrjyml/lBK/aKU+lwp1a7Caxal1E+221Zn1NMQPPDAA6SlpfHZZ5+ZXYqoZ3788UcmTJhAQkICt956q2l1+Pn5MWPGDJ5++mny8/NNq0PUXp2DQSnlDbwI3AJ0BQYppc6e+Xs30FNrfTGwGXiqwmuFWuvutpu0Y7Tx9fUlISGBRYsWcerUKbPLEfXEN998w9SpU5k7dy7XXXed2eXQo0cPrrjiCpYtW2Z2KaIWnLHH0AvYp7VO0VqXAG8Cd1VcQGv9hda6fP7Ab4E2Tthug9etWzeuvfZaXnjhBbNLEfXAp59+yuzZs1m8eDG9evUyu5wzJkyYwLZt2/jjjz/MLkXUkDOCoTVwpMLjVNtzVRkGfFThcYBSapdS6lul1N1OqKdBGTduHF9//TU///yz2aUID/b222+zePFili1bxkUXXWR2OXZCQ0OZOHGinIZdj7j14LNS6n6gJ1CxY1w72yXag4ElSqkLqnjvSFuA7GpMnUjL2wvMnTuX0tJSs8sRHmjdunW8+uqrrFq1ik6dOpldTqVuueUWwsLC5DTsesIZwXAUaFvhcRvbc3aUUjcCCcCdWuszE8xqrY/avqYAXwKXVLYRrfUqrXVPrXXPyMhIJ5Rdf9x4441ER0ezfv16s0sRHkRrzbJly9i6dSurV6+mbdu2jt9kkoqnYaelpZldjnDAGcHwPRCrlOqglPIDBgJ2ZxcppS4BVmKEwskKzzdTSvnb7kcAVwEyEHkWpRTTpk3jtdde4/Dhw2aXIzyA1WrlqaeeYseOHfZtsz1Y27Zt5TTseqLOwaC1LgPGAp8AicAmrfXvSqnZSqnys4yeBoKBt846LTUe2KWU+hn4AligtZZgqER0dDQPP/ww8+bNk1+qRq6srIyZM2eyb98+VqxYQbNmzcwuqcYeeOABjh07xhdffGF2KaIa0na7HrFYLAwdOpSBAwdy++23m12OMEF52+yysjKeeuopAgICzC6p1n766SdmzJjBpk2bCA4ONrucRkXabjdA3t7eJCQk8Pzzz5OTk2N2OcLNCgoKmDBhAgEBASxatKhehgJA9+7dueqqq+TaBg8mwVDPxMfH07dvXxYvXmx2KcKN8vLyeOSRR2jTpo1L22a7y7hx49i+fTu//fab2aWISkgw1EOjR4/mhx9+YOfOnWaXItygvG32JZdcwowZM1zeNtsdQkNDmTRpEnPnzqWsrMzscsRZ6v9PWCMUGBjIlClTmD9/PsXFxY7fIOqt8rbZN998M+PHj3drh1RXu+mmm2jevDmvv/662aWIs0gw1FPXXnstsbGxrFmzxuxShIscOHCA4cOHM3jwYB5++OEGFQrw52nYa9eulRbzHkaCoR775z//ydtvv01KSorZpQgnS0xMPNM2u3///maX4zJt2rTh/vvvl2sbPIwEQz0WGRnJ6NGjmTNnDlar1exyhJP8+OOPjB8/nunTp5vaNttdHnjgAY4fPy4t5j2IBEM9d++99wKwZcsWkysRzvDf//73TNvs3r17m12OW/j4+JCQkMCzzz4rLeY9hARDPefl5UVCQgLLly8nIyPD7HJEHXz66afMmjWLZ5991qPaZrvDxRdfzDXXXMOLL75odikCCYYG4YILLuCee+7hmWeeMbsUcZ62bNnC4sWLefHFF/nLX/5idjmmGDduHF9++SW//PKL2aU0ehIMDcTw4cNJSkrim2++MbsUUUvr1q3jlVdeYdWqVcTGxppdjmkqtpiXaxvMJcHQQPj7+zNjxgwWLlxIQUGB4zcI09Wnttnu8re//Y0WLVrw2muvmV1KoybB0ID06tWLSy65hJUrV5pdinCgPrbNdofyaxvWrVvH0aPnTOsi3ESCoYGZNGkSH330EUlJSWaXIqpQn9tmu0OrVq0YOnQoCxYskGsbTCLB0MA0a9aMcePGMXfuXJlf1wOVlJQwZcoUcnJyeOGFF6TtdBUGDx5Meno627ZtM7uURkmCoQG6/fbbCQoKYuPGjWaXIipoKG2z3aHitQ15eXlml9PoSDA0QEopZsyYwZo1azh+/LjZ5QgaXttsd/jLX/7C9ddfz9KlS80updGRYGigYmJiGDRokPSg8QANsW22uzz66KN8/fXX/Pzzz2aX0qjIT2gDNnToUFJTU9m+fbvZpTRaDblttjsEBwfz+OOPM3fuXEpLS80up9GQYGjAfH19SUhI4JlnnuH06dNml9PoNPS22e7Sp08fWrVqxYYNG8wupdFwSjAopfoqpZKVUvuUUtMqed1fKbXR9vp3Sqn2FV6bbns+WSl1szPqEX/q3r07V199tYzTulljaZvtDkoppkyZwoYNG0hNTTW7nEahzsGglPIGXgRuAboCg5RSXc9abBiQrbXuBCwGFtre2xUYCFwI9AWW2dYnnEh60LhXY2ub7Q6tWrXioYceYv78+XLMzA2cscfQC9intU7RWpcAbwJ3nbXMXcBa2/3NQB9l7FffBbyptS7WWh8A9tnWJ5woNDRUetC4SWNsm+0ugwYNIjs7m08++cTsUho8ZwRDa+BIhceptucqXUZrXQbkAs1r+F4AlFIjlVK7lFK70tPTnVB241Leg2b9+vVml9JgNea22e5Qfm3D4sWL5doGF6s3B5+11qu01j211j0jIyPNLqfeKe9Bs2HDBo4cOeL4DaJWpG22e1x44YX06dOH559/3uxSGjRnBMNRoGJbyDa25ypdRinlAzQFMmv4XuEkMk7rGuvXr5e22W706KOPsmPHDnbv3m12KQ2WM4LheyBWKdVBKeWHcTB561nLbAWG2u7fB2zXxl+mrcBA21lLHYBYYKcTahJVGDx4MDk5OXz00Udml1LvlbfNfvfdd6VtthsFBQUxefJk5s2bJ9c2uEidg8F2zGAs8AmQCGzSWv+ulJqtlLrTttgaoLlSah/wGDDN9t7fgU3AH8DHwKNaa+n85kLe3t488cQTLFmyhJycHLPLqbesVitPP/20tM02yfXXX0/btm1Zt26d2aU0SKo+Din07NlT79q1y+wy6rVnnnmG/Px8nnzySbNLqXcsFguzZs0iLS2NxYsXS4dUkxw/fpwhQ4bwyiuvEBMTY3Y59YJS6getdU9Hy9Wbg8/CuR555BF27tyJBGztSNtsz9GyZUuGDRsm8za4gARDIxUYGMjUqVOZN28eJSUlZpdTL5S3zfbz85O22R5iwIAB5ObmyjEzJ5NgaMSuvfZaOnXqxMsvv2x2KR6vvG1269atmTt3rrTN9hDe3t4kJCSwZMkScnNzzS6nwZBgaOQmT57M5s2bSUlJMbsUj5WZmcnIkSPp3r07CQkJ0jbbw3Tt2pWbbrqJ5557zuxSGgz5CW/koqKiGDlyJHPnzsVqtZpdjscpb5t90003MWHCBOmQ6qEeeeQRvv32W3788UezS2kQJBgE9913HxaLhXfeecfsUjzKgQMHGDFiBIMGDZK22R4uMDCQKVOmMHfuXDlm5gQSDAIvLy8SEhJYtmwZmZmZZpfjEZKSkhg9ejSPPPKItM2uJ3r37k379u1Zu3at44VFtSQYBACxsbHcddddLFq0yOxSTLd7927GjRvH9OnTue2228wuR9TClClT2LhxI4cPHza7lHpNgkGcMWLECH7//Xd27Nhhdimm2bFjB//85z+lbXY91aJFC4YNG8a8efPk2oY6kGAQZwQEBDB9+nQWLFhAYWGh2eW43bZt25g5c6a0za7nBgwYQH5+Ph988IHZpdRbEgzCzuWXX063bt1YtWqV2aW41TvvvMOzzz7Liy++yMUXX2x2OaIOyo+ZPf+oyTT5AAAauElEQVT889IP7DxJMIhzTJo0iQ8++IA9e/aYXYpbbNiwgTVr1rBy5Uppm91AxMXF0bdvX5YsWWJ2KfWSBIM4R3h4OGPHjmXOnDkN+toGrTXLly9ny5YtrF69WhqxNTCjR4/m+++/l35g50GCQVTqjjvuICAggI0bN5pdikuUt83+5ptvWL16NS1atDC7JOFk0g/s/EkwiEoppUhISGD16tWcOHHC7HKcymKxMHPmTPbs2cPKlStp1qyZ2SUJFynvB/bqq6+aXUq9IsEgqtSuXTsGDBjAwoULG8ypfyUlJUydOpWcnByWLl0qbbMbgcmTJ7Np0yYOHjxodin1hgSDqNZDDz3E4cOH+eKLL8wupc4KCgqYOHEiPj4+0ja7EYmKimLEiBFybUMtSDCIavn5+TFjxgyeeeYZTp8+bXY55y0vL49HH32U6Oho5s2bJ22zG5l+/fpRVFTEe++9Z3Yp9YIEg3CoR48eXHnllSxbtszsUs5Ledvsbt268cQTT0jb7EbIy8uLJ554gqVLl5KdnW12OR6vTr8hSqlwpdQ2pdRe29dzjuIppborpf6nlPpdKfWLUmpAhddeVUodUEr9ZLt1r0s9wnXGjx/P9u3b+fXXX80upVbS0tKkbbYAoHPnztx6660sXrzY7FI8Xl3/dZoGfK61jgU+tz0+WwHwoNb6QqAvsEQpFVbh9X9qrbvbbj/VsR7hIqGhoUyaNIm5c+dSVlZmdjk1cvDgQYYPHy5ts8UZI0eOZPfu3ezcudPsUjxaXYPhLqC8x+1a4O6zF9Ba79Fa77XdPwacBCLruF1hgptuuonIyEg2bNhgdikOJSUlMWrUKGmbLeyUz9swf/58ubahGnUNhhZa6zTb/eNAtVcJKaV6AX7A/gpPz7UNMS1WSvlX896RSqldSqld6enpdSxbnA+lFNOnT2f9+vWkpqaaXU6Vdu/ezfjx46VttqjUNddcQ+fOnVmzZo3ZpXgsh8GglPpMKfVbJbe7Ki6njfPAqjwXTCkVDawH/qG1Lu+zMB2IA/4KhANTq3q/1nqV1rqn1rpnZKTscJilVatWDB06lPnz53vkqX87duxgypQpzJkzR9pmiypNnjyZ//znPzLXeRUcBoPW+kat9UWV3N4FTtj+4Jf/4T9Z2TqUUqHAB0CC1vrbCutO04Zi4BVAeh3XA4MHDyYrK4uPP/7Y7FLsfPbZZ8ycOZNFixZJ22xRrcjISEaNGsW8efMadD+w81XXoaStwFDb/aHAu2cvoJTyA7YA67TWm896rTxUFMbxid/qWI9wAx8fH5544gmWLFlCXl6e2eUA8O6777Jo0SJpmy1q7O9//ztlZWVs3brV7FI8Tl2DYQHwN6XUXuBG22OUUj2VUqtty/QHrgUequS01NeUUr8CvwIRwJw61iPc5MILL+TGG2/0iLbGr732mrTNFrXm5eXFjBkzePHFF8nKyjK7HI+iPHGc2JGePXtqaaVrvvz8fPr168ecOXPo0aOH27evtWblypVs27aNZcuWSYdUcV6ef/550tPT+fe//212KS6nlPpBa93T0XJyCag4b0FBQUyZMoW5c+e6/dQ/q9XKM888w9dffy1ts0WdjBgxgp9//pnvvvvO7FI8hgSDqJPevXvToUMHt7Y1tlgszJo1i+TkZGmbLeqsSZMmTJs2jXnz5lFcXGx2OR5BgkHU2ZQpU9i4cSMHDhxw+bbK22ZnZ2dL22zhNFdeeSVdu3aVaxtsJBhEnUVFRTFy5EiXn/onbbOFKz3++ONs2bJFrm1AgkE4Sb9+/SgpKXHZqX/SNlu4WkREBKNHj27wc53XhASDcAovLy8SEhKqP/VPaygpAYulVuvOzMxk1KhRXHzxxdI2W7jUPffcg9aad955x+xSTCW/YcJpOnfuzB133MGiRYuMJ6xW+PprmD4d/vY36NQJunSBCy6A7t1h6FBYvRqq6X2VlpbGiBEjuPHGG5k4caJ0SBUuVf4PzvLly8nMzDS7HNPIdQzCqQoLCxnYvz8LL7+cuPfeg8xMYw+hSRPw9wcvL2PPoawMCguN8FAKbrkFZsyAli3PrOvgwYOMHTuWBx54gAEDBlSzVSGca+nSpRw7dox58+aZXYpTyXUMwhRNcnNZXVxM03nzsOblQdOmEB5uBEP5EJBS4OsLoaEQFgbBwfDBB9CnD/znP6A1ycnJjB49mjFjxkgoCLcbPnw4v/32Gzt27DC7FFNIMAjnSUmBO+4gMiUFa0gI6TWdI9rbG5o1M4JjyhSOTprEuLFjmTp1qrTNFqYICAhg+vTpLFiwgKKiIrPLcTsJBuEcJ07AgAGQmwthYbRo2ZLcnJza/VL5+3Paywu1ciUru3fn+uuvd129QjhwxRVX8Je//IXVq1c7XriBkWAQdac1TJ4MWVnG8BBGB9bIqCjS0tKqnqTjLHl5eRw7cYKwdu3o8M478MsvrqtZiBp47LHHePfdd9m3b5/ZpbiVBIOou3fegR07jOMFFYSFhaG8vMjOzna4ipycHI6fOEFMTAyBwcHGcYgJE6C01FVVC+FQ8+bNGTNmDHPnzm1U1zZIMIi6sVph0SLjjKOzTiVVQHTLlqSnp1NaVlblKjKzskjPyKBdu3Z/Xs0cGgqpqfDll66rXYgauPvuu/Hy8mLLli1ml+I2EgyibnbuNI4vNGlS6cv+/v6EN2vG8ePHybNYmJyaytVJSdy+bx8f5eZyMj2d7Oxs2rdrh7+fn/2blYJVq9zwTQhRtYrXNmRkZJhdjltIMIi6+eQT4zqFai48ax4RQXFxMbMPH8ZXKT7t3Jl/t2rF7MOH+SM3l/bt2lXe4iIkBH78ETxkljjReHXs2JF77733z4s3GzgJBlE3338PDprZeSlFWIsWfJaby8jmzWni5UVUTg5/9fbm55AQfHx8Kn9j+fUOyckuKFyI2hk2bBiJiYn897//NbsUl5NgEHWzd69xfMGBTB8ffL28CMjJITU1FUtZGZdGRXHQ0QQ/paXQyM4IEZ7J39+f6dOns3DhQgoLC80ux6UkGMT50xqKiv68orkaBVYrYQEB5OXmcvrUKQIDA/ErK+O0o4Z6FovROkMID3DZZZfRrVs3XnrpJbNLcak6BYNSKlwptU0ptdf2tdKptJRSFqXUT7bb1grPd1BKfaeU2qeU2qiU8qvs/cJDKWVctVwDgV5eFFitXNCpE9GtWlFmsXA8N5eSvDz27ttHamoqGRkZnM7Pp6xiWNRiG0K4w6RJk3jvvffYs2eP2aW4TF33GKYBn2utY4HPbY8rU6i17m673Vnh+YXAYq11JyAbGFbHeoS7tWhhtNJ2IMbPDwtwzGIhrGlTWrZoQXZICJe2bElMTAwhoaFYLBYyMzLYt28fe/fu5UhqKjmFhfyWmdlozgYRni88PJyxY8e6fGIqM9U1GO4C1trurwXurukbldE/+QZg8/m8X3iI7t2N4SQHmnh5cUNICCvS0ym0Wvm5oICvTp3i9qZN8ffzo2loKC1atKBdu3Z06dKFdu3a0TQ0FG2x8Mbu3fTv35++ffsyceJEVq5cyVdffcXJkyepj92BRf13xx134Ovry+bNmx0vXA/Vqe22UipHax1mu6+A7PLHZy1XBvwElAELtNbvKKUigG9tewsopdoCH2mtL3K0XWm77UHeeAP+3/8756rnyuRZLMw6dozv8vNp6u3NuKgo+jZtWvUbiouNs5J27UIrRVpaGklJSWduiYmJAMTFxREfH09cXBxxcXFER0fLvA3C5VJSUhg5ciRvvPEGkZGRZpdTIzVtu+0wGJRSnwEtK3kpAVhbMQiUUtla63OOMyilWmutjyqlOgLbgT5ALrUIBqXUSGAkQExMzKWHDh1y9L0Jd8jLg7/+1bjArarTTs9XdjZMmgRjx1b6staa9PT0MyFR/rWkpORMSJSHRuvWrWXmN+F0y5cv5+DBgyxcuNDsUmrEacHgYCPJQG+tdZpSKhr4UmvdxcF7XgXeB/4DpAMttdZlSqkrgJla65sdbVf2GDzM9OmwaZPROttZSkuNIar/+z/jOEYtZGRknLNnkZ+fT5cuXez2LmJiYiQsRJ2UlJQwYMAAHnvsMa655hqzy3HIXcHwNJCptV6glJoGhGutp5y1TDOgQGtdbBs++h9wl9b6D6XUW8B/tNZvKqVWAL9orZc52q4Eg4fJyoLrrzdmZauiNUataA05OTBlCowaVff1AdnZ2eeERU5ODp07d7YLi/bt2+MtZ0GJWti5cyezZ89m06ZNBAYGml1OtdwVDM2BTUAMcAjor7XOUkr1BEZrrYcrpa4EVgJWjIPdS7TWa2zv7wi8CYQDu4H7tdbFjrYrweCBPv0Uxowx2ljUdUgpJwfi42HLFucPT1WQl5dnFxZJSUmcPHmS2NhYu7Do2LFj1VdnCwH861//Ijw8nIkTJ5pdSrXcEgxmkWDwUCtXwsKFRjhU1vvIEa2NiX5atYK334aICOfX6MDp06fZs2eP3XGLY8eOccEFF9gdt+jUqRN+Zzf9E41WdnY2AwYM4IUXXqBLl2pH000lwSDMsX49zJljtOMODa22uZ6d0lLIz4cLL4Q1a0wJhaoUFBSwd+9eu7A4cuQI7dq1O7NXER8fT2xsLP41aA8iGqatW7eyefNmXn31VY89diXBIMyzdy9MnAh79hh7AaGhlbfN0No4JbWoyBgyevxxePjhenGlc3Fx8TlhcfDgQdq0aXNOWHj6uLNwDq01o0aNok+fPgwYMMDsciolwSDMZbUas7q99BJ8840xtGSxGM+D8bisDMLDjTC47z6P2ks4HyUlJezfv/9MUCQlJbF//35atWpld+ps586dCQ4ONrtc4QIHDx5k+PDhvP7660RFRZldzjkkGITnKC429h727YOCAmOPoEUL6NoVoqJqPtxUD5WVlZGSkmJ3NtTevXuJioqyO2YRFxdHqG2+bFG/rVq1ir179/L000+bXco5JBiE8FAWi4VDhw7ZXZS3Z88ewsLCzrmKu5kzrw0RblFSUsLAgQOZMGEC1113ndnl2JFgEKIesVqtHD582G7PIikpieDgYLuwiI+Pp3nz5maXKxzYtWsXTz75JG+99ZZHHWOSYBCinrNarRw9etQuKJKSkvDz87Pbq4iPjycyMlL6Q3mYWbNmERISwmOPPWZ2KWdIMAjRAGmtq2wmWDEspJmg+XJycujfvz/PPfcc8fHxZpcDSDAI0WjUpJlgeWhIM0H3ev/993nzzTdZu3atR7RakWAQopHLyMggOTnZLiykmaB7aa0ZM2YM1113HYMGDTK7HAkGIcS5qmsmWHEoSpoJOs/hw4f5xz/+weuvv06LWnYKdjYJBiFEjVTWTDA9PZ1OnTrZhYU0Ezx/L730EklJSSxatMjUOiQYhBDnLT8/n+Tk5GqbCcbHx3PBBRdIM8EaKCkpYfDgwYwdO5bevXubVocEgxDCqapqJti+fXu7sJBmgpX78ccfeeKJJ9i8ebNp1zZIMAghXK6qZoJt27Y9Jyw86UIvs8yePZvAwEAmT55syvYlGIQQpqismWBKSgrR0dF2Z0N16dKFoKAgs8t1q9zcXPr168eSJUvo2rWr27cvwSCE8BjSTPBPH374Ia+99hrr1q1z+5lfEgxCCI9WXTPBs1t+hIWFmV2u02itefTRR7nqqqsYMmTIWa9BZiZkZxv3w8IgMtJ5DYglGIQQ9Y7VauXIkSN2YZGcnExQUNA5YVGfmwmWX9uwYcMGIiOj+eoreP11+OEHOHXqz5lxLRYIDIRu3WDwYLjhBqjLSWBuCQalVDiwEWgPHAT6a62zz1rmemBxhafigIFa63eUUq8C1wG5ttce0lr/5Gi7EgxCNB4VmwlWPMhdsZlg+df61Exw9eo1bN1q5dix4eTmGjUHBhqTGZZ/C1ob81kVFnLm9YQE+PvfK58U0RF3BcNTQJbWeoFSahrQTGs9tZrlw4F9QButdYEtGN7XWm+uzXYlGIRo3KpqJqiUOueYhSc2E8zJgUmTLLz1VjoREcFERNRsRr/iYmOuq8svhyVLjGGm2nBXMCQDvbXWaUqpaOBLrXWXapYfCVyntR5ie/wqEgxCCCeoTTPBNm3amBYWmZnQvz8cPAh+fgUcO3aUCy7oiJdXzQ5Ea20ES8uWsHkzREfXfNvuCoYcrXWY7b4CsssfV7H8duBZrfX7tsevAlcAxcDnwDStdbGj7UowCCFqqrpmghWHotq2bevyZoLFxXD33bB3r3FgGSAt7RhKedGyZctarSsnB9q0gQ8+gJqe9eu0YFBKfQZUVnECsLZiECilsrXWlc5FaNuj+AVopbUurfDcccAPWAXs11rPruL9I4GRADExMZceOnTIwbcmhBCVy87OPicszm4mGB8fT7t27Zx6SulTT8HKlUYolO+wWCwWUlL206ZNW5o0aVLL78M4KP3vf9dseY8bSlJKTQAu1FqPrOL13sBkrfXtjrYrewxCCGdzdTPBpCS44w7jv/uz356Xl0tmZibt23eo1RCXxWKcxbRpE/To4Xj5mgZDXVslbgWGAgtsX9+tZtlBwPSKTyilom2hooC7gd/qWI8QQpyX0NBQevXqRa9evc48V7GZ4Pfff8/69etJS0ujY8eOtW4m+NJLxh/yyjIlNDSUnJwcsrKyKCpaQkHBTqzWQnx8Imje/EHCwu6udJ3lOzPLlxvrd5a67jE0BzYBMcAhjNNVs5RSPYHRWuvhtuXaA/8F2mqtrRXevx2IBBTwk+09px1tV/YYhBBmcdRMsHzvomIzwZwcuOwy43TTqkamSkpKOHjwAK1aaQIDO+Ll5Udx8UEOHRpJ27bP0aRJ5dODWq2QlwfffGMckK6OW/YYtNaZQJ9Knt8FDK/w+CDQupLlbqjL9oUQwt0CAwPp1q0b3bp1O/Pc2c0Et2zZYtdM0GK5juLiKwgK8gMqP8Dt5+dHeHhzsrMLCA62XeGGQilFaWlqlcHg5WXcdu6EO+90zvcos24IIUQd+fv7c9FFF3HRRRedea5iM8E1a0rJzMwjIyMLPz9fAgIC7G7lp6o2bx7OgQO5HDw4i6KibWhdTEBAF4KDr6p2+6Wl8NNPEgxCCOHRyq/Mjo+P56OPjOsNQkIiKS4upqioiKKiIvLyTlFcXISPj8+ZkAgLCyMjYzCxsQkUF/9OQcEPKFX98Qt/f/jNiUdoJRiEEMLFCguN4R6l1JkA+JOmuLiEoqLCM4FRUlJCSUkZgYHdyc39kOzszYSHD6xy/V5ef7bNcAYJBiGEcDF/f+MgceUU/v7++Pv707Rp+XMa45wcAAslJanVrl9rYxvO4trL/IQQQhAXZxwHcKSsLIu8vE+xWgvR2srp0/8jN/cTgoJ6Vfu+4mLoUmUzotqTPQYhhHCxiy+uabtsRXb2ZtLS5gFWfH2jadHicUJCrq32Xd7ecOmlzqjUIMEghBAu1qOHMZRktVbfLtvHpxnt2q2q1bqtVmMoqafDqxNqToaShBDCxSIjoU8f40I0Zzt1Cnr1gpgY561TgkEIIdxgpK1LXNUHoWuvfG9hzBjnrRMkGIQQwi169IB+/SA31/GyNZWbC337wjXXOG+dIMEghBBuk5Bg9DNyRjjk5UHz5jC70okK6kaCQQgh3CQ4GN54A5o1MxrrnU8PU62NYAkKgtdfh/Bw59cpwSCEEG4UEwPvvANduxrhUJPrG8qVlhrv6dABtmyBTp1cU6MEgxBCuFmrVsYf9mnToKTE+GOfn1/5gWmrFQoKjGWKimD8eGM6z/btXVefXMcghBAm8PaGESNg4EB47z1Yv96YC9rH589pP7U29hI6doT77zfmi/6zbYbrSDAIIYSJQkKMeZsHDzb2HvbtM/YOwAiBTp2c2wepJiQYhBDCQ/j5GccezCbHGIQQQtiRYBBCCGFH6fM5kdZkSql04JATVxkBZDhxfQ2VfE6OyWdUM/I5OeaKz6id1jrS0UL1MhicTSm1S2vtxN6EDZN8To7JZ1Qz8jk5ZuZnJENJQggh7EgwCCGEsCPBYKjdzBiNl3xOjslnVDPyOTlm2mckxxiEEELYkT0GIYQQdhplMCil+imlfldKWZVSVR71V0r1VUolK6X2KaWmubNGT6CUCldKbVNK7bV9bVbFchal1E+221Z312kGRz8bSil/pdRG2+vfKaXau79K89Xgc3pIKZVe4ednuBl1mkkp9bJS6qRS6rcqXldKqedtn+EvSqkerq6pUQYD8BtwL/B/VS2glPIGXgRuAboCg5RSHnCxultNAz7XWscCn9seV6ZQa93ddrvTfeWZo4Y/G8OAbK11J2AxsNC9VZqvFr9DGyv8/Kx2a5Ge4VWgbzWv3wLE2m4jgeWuLqhRBoPWOlFrnexgsV7APq11ita6BHgTuMv11XmUu4C1tvtrgbtNrMWT1ORno+Jntxnoo1R5z8xGQ36HakBr/X9AVjWL3AWs04ZvgTClVLQra2qUwVBDrYEjFR6n2p5rTFpordNs948DLapYLkAptUsp9a1SqjGER01+Ns4so7UuA3KB5m6pznPU9Hfo77Yhks1KqbbuKa1ecfvfogbbXVUp9RnQspKXErTW77q7Hk9V3edU8YHWWiulqjqFrZ3W+qhSqiOwXSn1q9Z6v7NrFQ3Se8AbWutipdQojL2sG0yuqdFrsMGgtb6xjqs4ClT876WN7bkGpbrPSSl1QikVrbVOs+26nqxiHUdtX1OUUl8ClwANORhq8rNRvkyqUsoHaApkuqc8j+Hwc9JaV/xMVgNPuaGu+sbtf4tkKKlq3wOxSqkOSik/YCDQKM64qWArMNR2fyhwzp6WUqqZUsrfdj8CuAr4w20VmqMmPxsVP7v7gO268V005PBzOmus/E4g0Y311RdbgQdtZyddDuRWGOJ1Da11o7sB92CM0xUDJ4BPbM+3Aj6ssNytwB6M/34TzK7bhM+pOcbZSHuBz4Bw2/M9gdW2+1cCvwI/274OM7tuN3025/xsALOBO233A4C3gH3ATqCj2TV76Oc0H/jd9vPzBRBnds0mfEZvAGlAqe3v0jBgNDDa9rrCOLtrv+13rKera5Irn4UQQtiRoSQhhBB2JBiEEELYkWAQQghhR4JBCCGEHQkGIYQQdiQYhBBC2JFgEEIIYUeCQQghhJ3/D2c+44qmjAljAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -414,7 +415,8 @@ "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", "backend = Aer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -459,7 +461,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -467,15 +469,15 @@ "output_type": "stream", "text": [ "energy: -1.5\n", - "time: 186.3367669582367\n", + "time: 63.78048515319824\n", "maxcut objective: -4.0\n", - "solution: [0 1 0 1]\n", + "solution: [1 0 1 0]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VOX9///nPUkmC5mEJSCbyCYKqKAgiwtIpEV+rWLVjwvVUgvSjdZqadUmISGQVsGK0IrKV6wI4gJoC9aFiiAgm7hBEQSEQtjCko1MlsnM3L8/ToIRsjKTuWd5P65rrsxycs6Lw+R9zrnPfe6jtNYIIYSILDbTAYQQQgSeFH8hhIhAUvyFECICSfEXQogIJMVfCCEikBR/IYSIQFL8hRAiAknxF0KICCTFXwghIlC06QB1SUlJ0V27djUdQwghQsqnn356UmvdtqHpgrb4d+3ala1bt5qOIYQQIUUpdaAx00mzjxBCRCAp/kIIEYGk+AshRASS4i+EEBFIir8QQkQgKf5CCBGBgrarpxC18nhg82b44gvrZ14eeL2QnAwDBkC/fnDddeBwmE4qRFCT4i9CQ2kpvPwyzJ8PxcVQWQnR0RATY31+8CBs3Wq9ttngttvgl7+ECy80m1uIICXFXwS/Tz6B3/0Ojh2D+Pi69+oTE62fbje8/jq8+Sakp8PYsdYGQQhxhvxFiOD28stwzz1w6hS0agVxcQ3/TnS0Na3dDpmZMGkSuFzNn1WIECLFXwSvV1+FqVOhRYtv9+qbwm63zgW895515OD1+j+jECFKir8ITl99BVOmWIW/ul3/fNhs0LIlvP8+LFjgv3xChDgp/iL4uFzw4IOglLX37iubzdqIPP44/O9/vs9PiDAgxV8En5UrYf9+/3bXtNutHkJz5vhvnkKEMCn+Ivg89xxERVl7/vUo9niYfOgQ1+3axQ/37uW9oqL655ucDG+/Dfn5fgwrRGiSrp4iuBw+DLt2WYW6AY8fO0aMUqzs1Yvd5eU8mJtLr7g4usfG1v4LUVGgNaxeDbff7ufgQjTM44Hdu2HnTuu0VkmJdUqrZ0/o3Rv69rVaKANBir8ILjt2NGqvv8zr5cPTp3mje3cSbDb6JyQw3OHg30VF/KZdu7p/0eu1LgaT4i8CKD/fuvTkxRetaxS9XmtDYLNZ+yPwbb+GW2+Fn/4ULr20eTNJ8RfBZceORvXJP+hyEQV0qXFC+OLYWD4rLa3/F+Pi4NNPfQwpRONoDcuXW9calpVZX7/6TmW53bBkCSxbBvfdB5MnQ0JC82ST4i+Cy6lTjboat9TrpYXNhquykoKCAmxKocvLyS8ro6i4mCibDVv1IyrqO89p6NyAEH7gcsHvfw/vvGNdmN6yZcO/U319osdj9UxetQoWLWqeUUqk+IuQlGCz4fR6+d/+/bgqK2nXrh3FlZXYvV5Onz6N1+vF6/Hg8Xqt51Wvo7WmMiaGR2+5hRYtWpCQkECLFi3OeV7bZ4mJiSQkJJx5HhMTg2qgeUpEJrcbfvUr6/RScnLTRxeJirI2AkeOWC2Ub70FnTr5N6MUfxFc2rdv1JW4Xex2yl0uClu1opVSJCclcbyykisSE+lcR5u/BrTTifvCC3n22WdxOp1nHqWlpd95fvz48XPeO3t6r9fbpI1FfRsXu90uG5IwMns2fPihVcB9+W9NTrbOF/zsZ1ZHNV+udzybFH8RXC67DOrqrVODu7SUq2023lSKnzscbDh1io9On+YfXbvW+TsKUBUV2K+9lk5+2I1yuVyUlpZSWlpKSUnJOc+rNxSnTp0iNze3zg2N0+nE7XY3aWNR3xFLbGysbEgM+u9/rd7KSUm+Ff5qycnwzTfWPH/zG9/nV02KvwguffpYx8xeb53Hym63m6NHj5J10UXMLCzkx/n5xLrdPHbRRXV386wWFWWN++8Hdrsdu91Oy8Y05jagsrLyzIagtqOM6ucFBQUcOnSozg1JSUkJbre7SRuL+o5S4uLiZEPSRBkZ1s9oP1VXpazun3//O9x9N7Rt65/5SvEXwaVdOxg0yBrGuZa+/ho4cvQoLVu2pJ3DwV8dDjSwZ/duujbULaL6HgAjRjRLdF/ExMSQnJxMciOub2iI2+1u1IakqKiIw4cP13nEUlpaisvlOrNRaGyTVl1HLPHx8WG/Idm9G7Zvb/gylfz8NygqWkFFxV6SkkbRsWNWvdPHxIDTCUuXWrep8Acp/iL4PPCAVfy1Pue4uaCgAI/HQ9uUlDPvKcDhcHC6uJg2bdrUPd/Tp63+c4G6isaQ6OhokpKSSEpK8nleHo/nOxuSupq3iouLOXbsWL3nUSoqKoiLi/OpSat6YxMXF4ctCO/RsHSpddDa0DYuOjqFlJTxlJRsROuKRs07Ls4a4VyKvwhfw4fDlVfCZ599p39cRUUFJ06coGvXrufsQTqSkjh54kTdxb+83BoWetKk5kwedqKionA4HDj8MM6S1+tt8CS60+mkpKSE48eP1ztdeXk5cXFxPjVpVX+ekJDgtw3Jxx837pYTSUmpAJSVfYXbfbxR846NhePHrRPArVv7ktIixV8EH5sN/vpX+P73rStj4uPxas3hI0e4oF07YmsZ6TMhIYEKl4tKt5uYsxtbPR5rPrNn+6/BVDSZzWYjMTGRxPO5N8NZvF4vZWVl9Z5Er36cPHnynPMiNacpLy8nNjbWpyYt60R7Art3J+JwNE/TVvUgtzt3wrXX+j4/vxR/pdRNwGwgCnhBa/14HdPdDiwFrtZab/XHskWYuvBCePZZqwlIKU4UFVnt4nWcXLUpRWJiIqdPn6Z1q1bffuDxWBd1/exn8IMfBCi8aG42m+1M0fWV1+ulvLy83pPo1U1dJ0+erPOIpagIcnOfJzraSVRUjYsMbdZFht99z3pUVFQQFdX4rB6PdR2kP/hc/JVSUcAzwPeAQ8AnSqnlWuuvzprOATwIbPZ1mSJC3HADPP88ZT/7GZ5Tp+jQqxf17VMlORzkFxR8W/xLS6GiAiZOhD/+0T/97kTYsdlsZ/b02/pwZFhQAFdfrUlKqnFhYdXD46l+7jnznrXBKKB168Z/L7X23w3p/LHnPwjYq7XeB6CUeg0YA3x11nTTgCeAP/hhmSJCFA0YwIPduvFUt25E5+ZaXTUTE2st5C0SEzl85Ahup5Nol8tqGH3uORg2zEByEWlatACtFUpFER1d/+681+th3759JCe3BIobvQybzX+3ufDHWY5OQG6N14eq3jtDKXUVcKHW+t9+WJ6IEFprcnJyuOLmm2m9ahX87W/WuLdFRdbQiKdOWT+Li6GgAFtREW1iYij2euFPf7IGRpHCLwLEbofOna2Dzfppjhw5RIsWdmJj7YAXr9eF1p4Gl+H1Qq9e/kgbgBO+Sikb8BTw00ZMOxGYCNClS5fmDSaC3ooVKzh48CDTp0+3dnlGj7YeBw9anam/+MIa/MTttvbyr7yS3fn5LN25k1njx5uOLyLQgAHwr3/V3+OnqKiY06cXAW/VeO8dUlIm0rbtxDp/r7Ly2w2MP/ij+B8Gao4517nqvWoO4DJgTVX3vPbAcqXULWef9NVazwPmAQwcOFD7IZsIUbm5ucyZM4fnn38e+9m9e7p0sR61nMDt73Ty2OjROJ1Ov5wMFKIpbrsNVqyo+/PKShd5ecfo1u33xMWlNWneJSVwzz3+O3Xlj2afT4CLlVLdlFJ24G5gefWHWusirXWK1rqr1rorsAk4p/ALUc3tdpORkcGECRPo0aNHk363RYsWXHXVVaxfv76Z0glRt2uugZQUq6/BuTSHDx8hJSWFuMZcDFBD9WgnP/mJX2ICfij+Wms3MAl4H9gJvKG13qGUylZK3eLr/EXkmT9/Pg6Hg7vuuuu8fj81NZVVq1b5OZUQDbPZ4LHHrHZ/fVbbxcmTJ7HZFK3P4wqt4mIYOdJ/7f3gpxu4a63f0Vr30lr30FrnVL03RWu9vJZpb5C9flGXbdu28eabb5KZmXne48AMGzaMzZs3U15e7ud0QjTs5puti9QLC799r6yslPz8Ajp27Aj1dlg+V2mp1ZNo+nT/5gy+wTFExHI6naSnp5OWlkZKjbF7mqply5b06dOHTZs2+TGdEI2jFMycCR06WB3TvF4Phw8foUOH9kRHN21A/vJyqz/D3LlQ37BV50OKvwgaM2bMYMiQIQzzQ/fMESNG8OGHH/ohlRBN16YNvPEGdOwI//tfEQkJCTgcjR9oT2trw+F2W5eq+GM4h7NJ8RdBYeXKlWzfvp2HHnrIL/MbMWIE69evp7Ky0i/zE6KpOnaE3/1uFW3arCUurj3FxeeeB6hNWZnVZNS9O/zzn5Ca2jz5pPgL4/Ly8pg5cyY5OTnEx8f7ZZ5t27ala9eubN0qp5eEGceOHWPu3Mf51796sXChjX79rL35/HzrZ3m5dZP3igprtPH8fOvEblKSdUOYt9+GSy9tvnwyqqcwyuv1MmXKFMaOHUvv3r39Ou/qpp+hQ4f6db5CNKTm97pPnz6A1XSzbx+sWwdbtsCOHdZefnQ0XHQRDB4MV18NQ4Y0/Ybv50OKvzBq0aJFaK0ZN26c3+edmprK/fffz2OPPRaUN/4Q4evll18GOOd73b279WiGr3uTSfEXxuzatYuFCxeycOHCZinOnTp1IiUlhS+++IKrrrrK7/MXojY7d+7klVdeabbvtb8EbzIR1srLy0lLS2Py5Mm0b9++2ZaTmpoqvX5EwJSVlZGWlsYf/vCHZv1e+4MUf2HE008/Td++fRk1alSzLqe6+OvGdLMQwkezZs3i8ssv5/vf/77pKA2SZh8RcGvXrmXDhg0sXry42ZfVrVs34uPj+eqrr+jbt2+zL09ErjVr1rBp0yZeffVV01EaRfb8RUDl5+eTk5NDdna2X+7l2hClFDfeeKM0/YhmdeLECf785z8zffr0kBlNVoq/CBitNVlZWdx66630798/YMut7vIpTT+iOXi9XrKysrjjjju44oorTMdpNCn+ImCWLFlCUVERDzzwQECXe+mll+J2u/nmm28CulwRGV577TXKysoYH2I3EJI2fxEQ+/btY968ebz44otERwf2a6eUOrP337Nnz4AuW4S33bt38+KLL7JgwQKiouq/b2+wkT1/0excLhfp6en85je/MXZ7ztTUVFavXm1k2SI8VVRUkJ6ezsMPP0ynTp0a/oUgI8VfNLu5c+fSqVMnbrnF3L19rrjiCk6dOkVubq6xDCK8zJ49m549ezJ69GjTUc6LFH/RrLZs2cLKlStJT08/75uz+IPNZmPEiBGy9y/84uOPP2bt2rU89thjRr/XvpDiL5pNUVERWVlZZGZmkpycbDqO3N5R+EV+fj7Tpk0jOzsbh8NhOs55k+IvmoXWmpycHEaOHMngwYNNxwFgwIAB5ObmkpeXZzqKCFFaa6ZOncott9wS8uNFSfEXzWLFihUcPHiQSZMmmY5yRnR0NMOGDWPNmjWmo4gQtWTJEgoKCpg4caLpKD6T4i/8Ljc3lzlz5pCTk4Pdbjcd5zuk6Uecr+ruytOnTw94d+XmIMVf+JXb7SYjI4MJEybQo0cP03HOMWTIEHbv3k1+fr7pKCKEuFwu0tLSjHZX9jcp/sKv5s+fj8Ph4K677jIdpVZ2u52hQ4eydu1a01FECHnmmWe48MILjXZX9jcp/sJvtm3bxptvvklmZmZQd3+rvtpXiMbYvHkz//nPf0hLSwvq73VTSfEXfuF0OklPTyctLY2UlBTTcep13XXX8cUXX3D69GnTUUSQKywsZOrUqWRlZQVFd2V/kuIv/GLGjBkMGTKEYcOGmY7SoISEBAYOHMi6detMRxFBTGvNtGnTGDVqFIMGDTIdx++k+AufrVy5ku3bt/PQQw+ZjtJoMtaPaMg///lPjh49yi9/+UvTUZqFFH/hk7y8PGbOnElOTg7x8fGm4zTasGHD2LJlC2VlZaajiCB04MABnnnmmaDsruwvUvzFefN6vUyZMoWxY8fSu3dv03GaJCkpib59+7Jx40bTUUSQqaysJD09nV/84hd069bNdJxm45fir5S6SSn1tVJqr1Lq0Vo+f1gp9ZVSaptSapVS6iJ/LFeYtWjRIrTWjBs3znSU8yK3dxS1ef7550lJSeH22283HaVZ+Vz8lVJRwDPAaKAPcI9Sqs9Zk30ODNRaXwEsBWb4ulxh1q5du1i4cCHZ2dnYbKF5ADl8+HA+/vhjXC6X6SgiSHz66ae8/fbbZGRkhFW3ztr44692ELBXa71Pa+0CXgPG1JxAa71aa11a9XIT0NkPyxWGlJeXk5aWxuTJk2nfvr3pOOctJSWF7t2788knn5iOIoJAcXExU6ZMYcqUKbRu3dp0nGbnj+LfCah5h4xDVe/VZTzwrh+WKwx5+umn6du3L6NGjTIdxWfS9CPA6tb55z//mREjRnDNNdeYjhMQAT1eV0rdCwwEZtbx+USl1Fal1NYTJ04EMppopLVr17Jhwwb++Mc/mo7iFzfccAMfffQRHo/HdBRh0L///W/279/Pb3/7W9NRAsYfxf8wcGGN152r3vsOpdRIIA24RWtdUduMtNbztNYDtdYD27Zt64dowp/y8/PJyckhOzubxMRE03H8omPHjnTo0IHPP//cdBRhyKFDh3j66afDultnbfxR/D8BLlZKdVNK2YG7geU1J1BKXQk8j1X4j/thmSLAtNZkZWVx66230r9/f9Nx/ErG+olcbreb9PR0xo8fT8+ePU3HCSifi7/W2g1MAt4HdgJvaK13KKWylVLVQ+DNBBKBJUqpL5RSy+uYnQhSS5YsoaioiAceeMB0FL+rvtrX6/WajiICLNhHoW1Ofrkjgdb6HeCds96bUuP5SH8sR5hRfROLF198MSxuYnG2rl274nA42LFjB5dffrnpOCJAvvzyS5YtW8bixYtDtruyLyLvXyyaxOVykZ6eHlY3sajNiBEjZKyfCFJSUkJGRgbp6elBPwptc5HiL+o1d+5cOnXqFFY3sahN9e0dtdamo4gAmDFjBkOHDg2JUWibS/gdwwu/2bJlCytXruTVV18N+6sde/XqhdaaPXv20KtXL9NxRDN677332LFjB6+88orpKEbJnr+oVVFREVlZWWRmZobdTSxqo5QiNTVVev2EuSNHjvDXv/6VnJwc4uLiTMcxSoq/OIfWmpycHEaOHMngwYNNxwkYKf7hrXoU2vvuu49LL73UdBzjpPiLc6xYsYKDBw8yadIk01EC6rLLLqO4uJgDBw6YjiKawUsvvURMTAz33nuv6ShBQYq/+I7c3FzmzJkTcVc7AthsNrngK0zt2LGD1157jalTp0Zkt87ayFoQZ7jdbjIyMpgwYQI9evQwHccIub1j+CktLSU9PZ1HH32Udu3amY4TNKT4izMi+WrHaldddRWHDx/m2LFjpqMIP3nyySe58sorSU1NNR0lqEjxFwBs27aNN998k8zMzLDv1lmfqKgohg8fLk0/YWLVqlV8/vnnTJ482XSUoCPFX+B0OklPTyctLS1ir3asSZp+wsPx48d54oknmD59OgkJCabjBB0p/oIZM2YwZMiQiL7asaZBgwaxZ88eTp06ZTqKOE/V3Trvvvtu+vbtazpOUJLiH+FWrlzJ9u3beeihh0xHCRp2u51rrrmGjz76yHQUcZ4WLVqE2+3mpz/9qekoQUuKfwTLy8tj5syZ5OTkEB8fbzpOUJHbO4auXbt2sXDhQqZNmybdOushayZCVR8Wjx07lt69e5uOE3SGDh3K9u3bKS4uNh1FNEF5eTlpaWlMnjyZDh06mI4T1KT4R6hFixahtWbcuHGmowSlhIQErr76atatW2c6imiCWbNm0bdvX0aNGmU6StCT4h+Bqg+Ls7Oz5bC4HjLWT2hZu3YtGzdu5I9//KPpKCFB/vIjTM3D4vbt25uOE9Suu+46PvnkE0pLS01HEQ04efIk06dPZ9q0aSQmJpqOExKk+EeYp59+mj59+shhcSMkJSXRr18/NmzYYDqKqIfX6yUrK4vbb7+dfv36mY4TMqT4R5C1a9eyYcMGHnnkEdNRQoYM9Bb8Xn/9dZxOJxMmTDAdJaRI8Y8Q+fn55OTkkJ2dLYfFTXDDDTewYcMGXC6X6SiiFnv27GH+/PlMmzaNqKgo03FCihT/CKC1JisrizFjxtC/f3/TcUJK69at6dWrF5s3bzYdRZyloqKC9PR0fve739G5c2fTcUKOFP8IsGTJEgoLC5k4caLpKCFJmn6C09/+9je6d+/OD37wA9NRQpLcwD3M7du3j3nz5vHiiy8SHS3/3ecjNTWVF154AbfbLeswSGzYsIHVq1fz6quvRvQotL6QPf8w5nK5SE9PZ9KkSXTp0sV0nJB1wQUX0KlTJz777DPTUQTW+avs7Gyys7NJSkoyHSdkSfEPY3PnzqVTp06MGTPGdJSQJxd8BQetNdOmTeOHP/whAwYMMB0npEnxD1Nbtmxh5cqVpKeny2GxH1SP8e/1ek1HiWjLli3j5MmT/PznPzcdJeRJ8Q9DRUVFZGVlkZmZSXJysuk4YaFLly60bNmS7du3m44Ssfbv389zzz3H9OnTiYmJMR0n5EnxDzNaa3Jychg5ciSDBw82HSesSNOPOS6Xi7S0NH79619z0UUXmY4TFvxS/JVSNymlvlZK7VVKPVrL57FKqderPt+slOrqj+WKc61YsYKDBw8yadIk01HCTnXTj9badJSI8+yzz9KxY0duvfVW01HChs/FXykVBTwDjAb6APcopfqcNdl4oEBr3ROYBTzh63LFuXJzc5kzZw45OTnY7XbTccJOz549sdlsfP3116ajRJQtW7bw/vvvy/krP/PHnv8gYK/Wep/W2gW8BpzdvWQMsKDq+VLgRiX/i37ldrvJyMhgwoQJ9OjRw3ScsKSUkqafAKt5/qply5am44QVfxT/TkBujdeHqt6rdRqttRsoAtr4Ydmiyvz583E4HNx1112mo4S16qYf0fy01kyfPp3vfe97cv6qGQTVCV+l1ESl1Fal1NYTJ06YjhMytm3bxrJly8jMzJTD4mbWp08fnE4n+/fvNx0l7C1fvpxDhw7x61//2nSUsOSP4n8YuLDG685V79U6jVIqGkgGTp09I631PK31QK31wLZt2/ohWvhzOp2kp6eTlpZGSkqK6Thhz2azMWLECNn7b2YHDx7kb3/7m5y/akb+KP6fABcrpboppezA3cDys6ZZDlTfLPYO4EMtXSb8YsaMGQwZMoThw4ebjhIxUlNTWbVqlekYYcvtdpOens7EiRPp3r276Thhy+dRqrTWbqXUJOB9IAp4UWu9QymVDWzVWi8H5gMLlVJ7gXysDYTw0cqVK9m+fTuvvPKK6SgRpX///hw/fpwjR47QsWNH03HCzrx582jVqhX/93//ZzpKWPPLEIVa63eAd856b0qN5+WA/E/6UV5eHjNnzmT27NnEx8ebjhNRoqKiGD58OKtXr+bHP/6x6Thh5bPPPmP58uUsXrxYzl81s6A64Ssax+v1MmXKFMaOHUufPmdfUiECQZp+/O/06dNMmTKFjIwMWrdubTpO2JPiH4IWLVqE1ppx48Y1PLFoFldffTX79+/n5MmTpqOEBa01f/nLXxg2bBjXXnut6TgRQYp/iNm1axcLFy5k6tSp2Gzy32dKTEwM1113HWvWrDEdJSy8++677N27lwcffNB0lIgh1SOElJeXk5aWxuTJk+nQoYPpOBFPbu/oH4cPH+app55i+vTpxMbGmo4TMaT4h5Cnn36aPn36MGrUKNNRBHDNNdewY8cOioqKTEcJWR6Ph4yMDH72s5/Rq1cv03EiihT/ELF27Vo2bNjAI488YjqKqBIXF8fgwYP56KOPTEcJWfPnzyc+Pp6775be34EmxT8E5Ofnk5OTQ3Z2NomJiabjiBrkat/zt23bNpYuXUpWVpacvzJA1niQ01qTlZXFmDFj6N+/v+k44izXX389n376KaWlpaajhJTqYUn+9Kc/IUO5mCHFP8gtWbKEwsJCJk6caDqKqEViYiL9+/dn/fr1pqOElOphSW644QbTUSKWFP8gtm/fPubNm8f06dOJjvbLxdiiGdx4443S66cJqocleeihh0xHiWhS/IOUy+UiPT2dSZMm0aVLF9NxRD2GDRvGxo0bqaioMB0l6B07doyZM2eSk5Mjw5IYJsU/SM2dO5dOnToxZszZN0UTwaZVq1ZceumlbNq0yXSUoFY9LMm9995L7969TceJeFL8g9CWLVtYuXKl3LM0hEjTT8MWLFiAUor77rvPdBSBFP+gU/OepcnJyabjiEa64YYbWLduHZWVlaajBKWvvvqKxYsXk52dLd06g4T8LwQRrTU5OTmMHDlS7lkaYtq1a0eXLl349NNPTUcJOqWlpaSnp/PII49wwQUXmI4jqkjxDyIrVqzg4MGDTJo0yXQUcR5SU1Ol6acWTz31FP369WPkyJGmo4gapPgHidzcXObMmSP3LA1hqamprFmzBq/XazpK0Pjwww/ZunUrf/jDH0xHEWeR4h8E3G43GRkZTJgwgR49epiOI85T586dSUlJ4csvvzQdJSgcP36cxx9/nGnTppGQkGA6jjiLFP8gMH/+fBwOB3fddZfpKMJHMtaPxev1kpWVxZ133snll19uOo6ohRR/w7788kuWLVtGZmamdOsMA9Xt/lpr01GMWrx4MRUVFdx///2mo4g6SPE3yOl0kpGRQVpaGikpKabjCD/o3r07drudnTt3mo5izO7du1mwYAHTpk0jKirKdBxRByn+BlUPbjV8+HDTUYSfKKUiutdP9d3mHn74YTp27Gg6jqiHFH9DZHCr8BXJTT+zZ8/mkksuYfTo0aajiAbIUJEG5OXlMXPmTGbPni2DW4Wh3r17U1FRwf79++nevbvpOAGzbt061q9fz+LFi01HEY0ge/4B5vV6ycjIYOzYsfTp08d0HNEMqpt+Vq1aZTpKwOTn5zN9+nSys7NxOBym44hGkOIfYAsXLgRg3LhxhpOI5pSamhoxXT6r7zZ36623cuWVV5qOIxpJmn0CaNeuXSxatIiXX35ZBrcKc/369ePkyZMcOnSIzp07m47TrJYsWUJRUREPPPCA6SiqPrb4AAAWzklEQVSiCaQCBUh1L4jJkyfToUMH03FEM7PZbNxwww1h3+tH7jYXuqT4B8isWbPo06cPo0aNMh1FBEi4N/24XC7S0tL47W9/y4UXXmg6jmgin4q/Uqq1Uuo/Sqk9VT9b1TJNf6XURqXUDqXUNqVUxI1hsHbtWjZu3MgjjzxiOooIoAEDBnDgwAGOHz9uOkqz+Pvf/06XLl24+eabTUcR58HXPf9HgVVa64uBVVWvz1YK/ERr3Re4CXhaKdXSx+WGjFOnTpGTk0N2djaJiYmm44gAiomJ4brrrmPNmjWmo/jdpk2bWLVqFWlpaTIsSYjytfiPARZUPV8A3Hr2BFrr3VrrPVXPjwDHgbY+LjckaK2ZOnUqY8aMoX///qbjCAPC8faOhYWFTJ06lalTp5KUlGQ6jjhPvhb/C7TWR6ueHwPqvU2PUmoQYAe+8XG5IWHJkiUUFhYyceJE01GEIUOGDGHnzp0UFBSYjuIXWmumTZvG6NGjGThwoOk4wgcNFn+l1AdKqf/W8hhTczptXcte5/XsSqkOwELgfq11rXe7UEpNVEptVUptPXHiRBP/KcFFekEIgNjYWIYOHcratWtNR/GLt956i7y8PH75y1+ajiJ81GBV0lrXee81pVSeUqqD1vpoVXGv9cyWUioJ+DeQprXeVM+y5gHzAAYOHBiyA6NU94KYNGkSXbp0MR1HGJaamsq///1vxowZ0/DEQex///sfc+fO5YUXXiAmJsZ0HOEjX5t9lgPVl6qOA/519gRKKTvwFvCy1nqpj8sLCXPnzqVz584h/8cu/OPaa6/l888/p6SkxHSU81ZZWUl6ejq/+tWv6Nq1q+k4wg98Lf6PA99TSu0BRla9Rik1UCn1QtU0dwLDgJ8qpb6oeoTt2c8tW7awcuVK0tPTpReEAKBFixYMGDCA9evXm45y3p577jnatWvHj370I9NRhJ/41BittT4F3FjL+1uBCVXPFwGLfFlOqCgqKiIrK4vMzEySk5NNxxFBZMSIEXz44YfcdNNNpqM02datW3nnnXdYvHix7NCEEbnC10+01uTk5DBy5EgGDx5sOo4IMsOHD2fz5s2Ul5ebjtIkxcXFZGZmMmXKFFq1OucaThHCpPj7yYoVKzh48CCTJk0yHUUEoeTkZPr27cvGjRtNR2m06h2aG2+8kaFDh5qOI/xMir8f5ObmMmfOHHJycrDb7abjiCBV3fQTKt5++20OHDggOzRhSoq/j9xuNxkZGUyYMIEePXqYjiOC2IgRI1i/fj2VlZWmozQoNzeX2bNnyw5NGJPi76P58+fjcDi4666IG69ONFFKSgrdunXjk08+MR2lXtU7NA888IDs0IQxKf4++PLLL1m2bBmZmZnSC0I0SvXN3YPZCy+8QFJSEnfeeafpKKIZSfE/T06nk4yMDNLS0khJSTEdR4SI1NRUPvroI7zeWkc4Me6LL77grbfekh2aCCDF/zzNmDGDIUOGMHz4cNNRRAjp2LEj7dq14/PPPzcd5RwlJSVMmTKF9PR02rRpYzqOaGZS/M/DypUr2b59Ow899JDpKCIEBWvTzxNPPMG1117L9ddfbzqKCAAp/k2Ul5fHzJkzmT59OvHx8abjiBBUfXvHYGr6effdd9m1axcPPvig6SgiQKT4N4HX6yUjI4OxY8fSp08f03FEiOrWrRsJCQl89dVXpqMAcOTIEZ566ilycnKIi4szHUcEiBT/Jli4cCEA48aNa2BKIeoXLE0/Ho+HjIwMxo0bR69evUzHEQEkxb+Rdu3axaJFi5g6dSo2m6w24Zvqph/rHkjmvPTSS8TGxjJ27FijOUTgSRVrhPLyctLS0pg8eTIdOnQwHUeEgUsuuQSPx8PevXuNZfjvf//L66+/TlZWluzQRCD5H2+EWbNm0adPH0aNGmU6iggTSilGjBjB6tWrjSy/tLSU9PR0HnvsMdq1a2ckgzBLin8D1q5dy8aNG3nkkUdMRxFhJjU1lVWrVhlZ9pNPPsnAgQMZMWKEkeUL86T41+PUqVPk5OSQnZ1NYmKi6TgizFx++eUUFhZy8ODBgC73gw8+4IsvvuDhhx8O6HJFcJHiXwetNVOnTmXMmDH07x+2d50UBtlstoA3/eTl5TFjxgymT59OQkJCwJYrgo8U/zosWbKEwsJCJk6caDqKCGOBbPrxer1MmTKFe+65R65TEb7dwzdc7du3j3nz5vHiiy8SHS2rSDSfq666isOHD3Ps2DHat2/frMtatGgRWmu5TkUAsud/DpfLRVpaGpMmTaJLly6m44gwFx0dzbBhw1izZk2zLmfnzp0sXLiQ7Oxs6dYpACn+55g7dy6dO3dmzJgxpqOICNHct3csKysjPT2dP/zhD81+dCFCR0QUf7cbCguhoABcrrqn27JlCytXriQ9PV3GMhcBM2TIEHbv3k1+fn6zzH/WrFlcdtllfP/732+W+YvQFJYN2lrD9u2wdCls3gzffPPdz7p2hauvhttus34qBUVFRWRlZZGZmUlycrKx7CLy2O12rrnmGtasWcNtt93m13l/9NFHbN68mcWLF/t1viL0hV3x37IFpkyxCr7HA3FxkJQE1c2cXi8cOwZvvAHLlkGnTjBliua993IYOXIkgwcPNvsPEBFpxIgRLF++3K/F/+TJk+Tk5PDkk0/SokULv81XhIewKf7l5ZCTA6++ClFRVsGvreXGZoP4eOuhNeTlwdixpSQl3cCGDSMDH1wI4Nprr2XatGmcPn0ah8Ph8/y8Xi9ZWVnccccdXHHFFX5IKMJNWLT5l5bCfffBK6+Aw2E9GtNkrxTExLhwOg9TXv49fvxjO83U7CpEvRISEhg4cCDr1q3zy/xee+01SktLGT9+vF/mJ8JPyBd/rxceeAA++wxatbL2+htLa82RI4dp27YNbdvG8M031kakoqL58gpRlxtvvNEvvX727NnDP/7xD6ZNm0ZUU/4gREQJ+eL/0kuwaRO0bNm4vf2aTp48ic0WRevWrVEKkpNh1y54+ulmiSpEva6//nq2bNlCWVnZec+joqKCtLQ0HnroITp16uTHdCLc+FT8lVKtlVL/UUrtqfrZqp5pk5RSh5RSf/dlmTUdPAgzZkCLFk0v/GVlpRQUFNCxYwdAVWW0moz+3/+DHTv8lVKIxklKSuLyyy9nw4YN5z2POXPm0LNnT0aPHu3HZCIc+brn/yiwSmt9MbCq6nVdpgFrfVzed7z0ElRWgt1e/3SHD2ewZ88ovv56GN98cxv5+W9y+PBhOnToQHR0zHemrR7N4dln/ZlUiMbxpenn448/Zu3atTz22GNynYpokK/FfwywoOr5AuDW2iZSSg0ALgBW+ri8M0pL4bXXoDEjLaek3E+PHiu45JK1dO78FIcPz8ZuP1pnrwqHA95/H06c8FdaIRpn+PDhfPzxx7jquxqxFvn5+UybNo2pU6f6pbeQCH++dvW8QGt9tOr5MawC/x1KKRvwV+BewG99KT//3DrZGxPT8LSxsd3PPC8pOY3X6yUpqe521agoqwlo0ya4+WZ/pBWicdq0aUPPnj35dPVqhrZqBbt3Q3GxdUjaujX07g0XX/ydw12tNdnZ2dxyyy1cddVVBtOLUNJg8VdKfQDUNiBIWs0XWmutlKrtbtS/At7RWh9q6FBUKTURmAg0OKjajh31D9VwtmPHHqegYDnl5cU4HJeRlHR9vdNXVlobGCn+ImA8Hli3jrRdu0i+5x5o1876Irrd1f2Sv+3O9qMfwU9+Ar17s3TpUvLz82X4cdEkDRZ/rXWde+tKqTylVAet9VGlVAfgeC2TDQWuV0r9CkgE7EqpEq31OecHtNbzgHkAAwcOrG1Dcsa2bU3r1tm+/SOUl99JcvIB7PZ9KFX/iYK4OGsZQgTEN9/A734Hu3bR2e1mX2UlrRITqXV3ye22LlFfupTC1FQWfv01f3/5ZRl+XDSJr9+W5cA44PGqn/86ewKt9Y+rnyulfgoMrK3wN1VJybdDNjRGZWUlTmcZ0JXi4ncpLHyeFi1+hM0Whc1mIyrK9p3nLlcUJ05o8vJO06JFCxISEmQoXNE8li2DP/3JasdMSiJGKezFxZQ6nbUPyxAdDa1a4fV4qHjlFRZ06EArpzPwuUVI87X4Pw68oZQaDxwA7gRQSg0EfqG1nuDj/OsUE2MNz9D46e307NkDr9dLXl4sShUQHx+P1+vF4/FSWVmJ11uBx+PF6/XgckVTVnaE++/PpKSkhPLycuLi4mjRosV3HomJiU1+T/bQxBmLF0NGhtVfuUY7vsPh4PTp0/WOyXPi5EkqExNpZ7PBnXfC66+D3KFLNJJPVUhrfQq4sZb3twLnFH6t9UvAS74ss1rPnvDBBw1P53bnU1q6lcTE67Db43A6N1NevppOnf6Mw1HnZQkUFsLNN3di1qx3AGuslLKyMpxOJyUlJTidzu88qt/Lz88nNze33umio6PPa6NR83ViYiIxMTHSpS+UVY9CeFbhB3AkJXHgwAEuaN++1qYfp9NJcXEx3bp3R0VFwenT1jmADz6wrngUogEhuwvar1/D/fstioKCpRw9+mfAS0xMBy644Pc4HMPq/S2treGeq9lstjMFuF27duedW2tNRUXFORuNszcQJSUl5OXl1Tud1+v16Qik+hEfHy8bkUBzOuHBB60mnFq+yLF2O1FRUZSVlZEQH/+dz9weD0eOHKFjx45EV5/4cjisPZbMTJg9OxD/AhHiQrb4X3ml1UTq9dbf9h8d3YqLLprXpHlrbc1zwAAfQ9ZCKUVcXBxxcXG0adPGp3m5XC5KS0tr3UDUfH7q1Kk6j1ScTicul4uEhAS/bEjkvEgjvfACHD9uDUhVB4fDweni4u8Ufw0cPXqUpOTkc5uEkpLgnXdg3DiQLp+iASFb/C+4AK67Dtat8/9RrtMJvXrBJZf4d77+ZrfbsdvttPRxBXg8nnM2DrUdbeTl5dXb5FVWVkZsbGyjNhr1bUwSEhKIacwFHKHK5YJ//AMSEuqdLK5FCzL27eOb06cp9njoHBPDTxIS6FVZWfu4PTabtTf0j39I8RcNCtniDzBxolX8G9r7bwqtra7Vv/61f+YXCqKiokhKSiIpKcmn+Xi9XsrLy+vdQDidTgoKCjh06FC9TV6+nBep+Z7dbg++Jq31661L1BtY39FxcbS12XjwggvompjI6sJCHj1wgDd69sRW178pKcm6PL24uMH5i8gW0sV/6FAYPRrefdd/e/9FRTBoENx0k3/mF0lsNhsJCQkkNLBH2xCtNS6X68zGwZfzIh6Px+emrMTEROLi4vzXpLVli7WH0YAEm40HUlJQ5eWQmEi3wkIujItjv9dLt7p+KSrK2hPascP6AxGiDiFd/AGys2HjRquzg69Dmjid1h2+nnzSf0cSoumUUsTGxhIbG9us50VqvldQUFBvk1dFRQXx8fHn9Lg6r/MimzdbVxE2gsPh4OjRo6A1TpuNY0D32NiG/tFS/EWDQr74t2pl3cHrzjt9O9ItKbGuoH/pJeu+viI8+PO8SM2NSF0bkppHImcfpVSfF/nHzp3EA97oaKJsNmxRVRcX2mzYanldXlZGucvFM3Fx/DA5ma4NFX+A3Fyf/r0i/IV88QfrxOzSpTB+PBw5Yh0BNHboB6/Xaupp08Yax79fv+bNKkJTVFQUDofD5xEzvV4vetAgvGVleG026yJDrxev14vX4znz3OPxUOly4fF6SWjRgrmA3Wbjj+1rG2brLEo1qllJRLawKP5gDXT4/vvw1FPW3rvXa3WmsNtrv9GLy2U18ygFd9wB6em+NxsJ0RCbzQYOB1Hl5dCIPXitNdlHj1JcWcmczp2JbszJa69XLvQSDQqrlu34eEhLg48+gkmTrL+toiKrSae42HqUlFjvKWUdKXzwATzxhBR+EUBXXAHl5Y2a9C/HjrHf5WLWhRcS29gTUXY79O3rQ0ARCcJmz7+mjh3hoYesQRJPnLDuy1tYaHXjTE62monat2/6rR+F8ItBg2DFigYnO1pZyZuFhdiVYtSePWfe/1P79oxOTq79l7S29vx79/ZXWhGmwrL4V1PKGhLdh9EYhPC/4cO/vSCrnr35DjExbG1qES8rs/Z+utXZGVQIIMyafYQICZ07w7XXWu2Q/lZZaV39KIe1ogFS/IUw4eGHrZ8ej//m6XRafZ/HjPHfPEXYkuIvhAn9+sH991t7/025MUVdPB5rr3/WLEhM9H1+IuxJ8RfClN//Hi677NveCOfL47G6sI0fbzUnCdEIUvyFMCUuDhYssO6+VVBwfk1AFRXW0cO998Ijj/g/owhbUvyFMKllS+v2i/feaw1Q1dhmII/n2w3GX/4CU6fKgFSiSeTbIoRpCQnWCIWLF8Pll1tNOKdOWRuDyspv71pUUWF9VlBgndy9+WbrKsU775TePaLJwrqfvxAhZdAgWLYM9u6F996DTZus0TlPn7YGq2rdGoYNg2uuscYyb93adGIRwpT2R0+DZjBw4EC9detW0zGEECKkKKU+1VoPbGg6afYRQogIJMVfCCEikBR/IYSIQFL8hRAiAknxF0KICCTFXwghIpAUfyGEiEBB289fKXUCOODn2aYAJ/08z3Aj66hxZD01TNZR4/h7PV2ktW7b0ERBW/ybg1Jqa2Mufohkso4aR9ZTw2QdNY6p9STNPkIIEYGk+AshRASKtOI/z3SAECDrqHFkPTVM1lHjGFlPEdXmL4QQwhJpe/5CCCEI8+KvlPo/pdQOpZRXKVXn2XSl1E1Kqa+VUnuVUo8GMqNpSqnWSqn/KKX2VP1sVcd0HqXUF1WP5YHOaUJD3wulVKxS6vWqzzcrpboGPqV5jVhPP1VKnajx/ZlgIqdJSqkXlVLHlVL/reNzpZSaU7UOtymlrmruTGFd/IH/ArcBa+uaQCkVBTwDjAb6APcopfoEJl5QeBRYpbW+GFhV9bo2ZVrr/lWPWwIXz4xGfi/GAwVa657ALOCJwKY0rwl/P6/X+P68ENCQweEl4KZ6Ph8NXFz1mAg829yBwrr4a613aq2/bmCyQcBerfU+rbULeA0Y0/zpgsYYYEHV8wXArQazBJPGfC9qrrulwI1KRdz9FCP976dRtNZrgfx6JhkDvKwtm4CWSqkOzZkprIt/I3UCcmu8PlT1XqS4QGt9tOr5MeCCOqaLU0ptVUptUkpFwgaiMd+LM9Nord1AEdAmIOmCR2P/fm6vas5YqpS6MDDRQkrA61DI38NXKfUB0L6Wj9K01v8KdJ5gVN86qvlCa62VUnV1/7pIa31YKdUd+FAptV1r/Y2/s4qwtAJ4VWtdoZT6OdbRUqrhTBEv5Iu/1nqkj7M4DNTcE+lc9V7YqG8dKaXylFIdtNZHqw4zj9cxj8NVP/cppdYAVwLhXPwb872onuaQUioaSAZOBSZe0GhwPWmta66TF4AZAcgVagJeh6TZBz4BLlZKdVNK2YG7gYjozVJlOTCu6vk44JyjJaVUK6VUbNXzFOBa4KuAJTSjMd+LmuvuDuBDHXkXzjS4ns5qu74F2BnAfKFiOfCTql4/Q4CiGs2xzUNrHbYP4EdYbWcVQB7wftX7HYF3akz3/wG7sfZk00znDvA6aoPVy2cP8AHQuur9gcALVc+vAbYDX1b9HG86d4DWzTnfCyAbuKXqeRywBNgLbAG6m84cpOvpL8COqu/PauBS05kNrKNXgaNAZVVNGg/8AvhF1ecKq9fUN1V/YwObO5Nc4SuEEBFImn2EECICSfEXQogIJMVfCCEikBR/IYSIQFL8hRAiAknxF0KICCTFXwghIpAUfyGEiED/P+APwqIyWFBdAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX+//HXSSeNEEgglFCkJOgKIl/siuIq9rLSRVzpSlWWFn8rsFQVQUUFBJViAVlAsCOoq8sqotiTUEILBEwPpGfm/P64k5iBVDIzdyb5PB+PPJKZuTP3k3kkeeeee8/nKK01QgghRCkvswsQQgjhXiQYhBBC2JFgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2fMwu4EI0a9ZMt2vXzuwyhBDCo3z//fdpWuuI6rbzyGBo164de/fuNbsMIYTwKEqpozXZToaShBBC2PHIIwaHsVggPR2Ki8HfH5o2BaXMrkoIIUzV8ILh5El4913YuRMSE8FqNcJAa/D1hYsvhjvugHvvhbAws6sVQgiXazjBcPo0zJoFO3YYIeDnB4GB4O395zYlJfDLL7BvHyxYAAMGwNSpEBxsWtlCCOFqDeMcw7ZtcNNN8OmnEBoKTZpAUJB9KAD4+BghEBZmhMabb0KfPrBnjzl1CyGECep/MLzyCkyebAwXNWkCXjX8lr29je1zcmDIEPj4Y+fWKYQQbqJ+B8Pbb8Mzz0BICAQEXNhrBAUZzx0/Hr75xrH1CSGEG6q/wXD0qHFOITjYGCKqC39/4zXGjzeOIIQQoh6rn8GgNUyZYlyO6ufnmNcMCoKMDFi0yDGvJ4QQbqp+BsMvv8CPP0LjxlVutjEjg6GHD3NVQgKzTp6s/nVDQ41LXTMyHFSoEEK4n/oZDGvW/Dk/oQrNfHwY3qwZd1cTIGW8vY3X3bzZAUUKIYR7qn/BoLVxWWoN5h7cFBpK75AQGp972WpVfH3hgw/qUKAQQri3+hcMp05BQYHxB9wZAgIgPt44chBCiHqo/gXD4cN1vwqpKqXDSadOOW8fQghhovrXEqOgwBhOqiENZGRmkm21kurnR0BAAI0CAvCpKly8vKCwsO61CiGEG6p/weDrW6sOqQpQSqG1xmq1kpGRQUFBAUopGgUEEBAQQECjRgQEBOBbGhZWq/OGqoQQwmT1Lxhatarx+L9FayxaExIaysnUVAKCg2kWEYGXUhQXF1NQUEBBfj6ZGRnk28IiwN+fxlrzU0ICMX5+REREoKRVtxCiHql/wdCunXHEYLGc3yTvHKvT0liZlgaARSmu3b+fca1aMToiAj9fX/x8fQkNCQGMIaeS4mIKs7PJaNSITdu2Eb9oEUopYmJiiI2NLfvcvHlzCQshhMdSuhbj8e6iZ8+eusqlPR96CP73v2onuJWngePHjhEYFESzpk0r3zAzE0aOhOnT0Vrzxx9/kJCQQHx8fNmH1WolNja2LCxiYmKIioqSsBBCmEop9b3Wume12zkiGJRSfYHnAW9gldZ64TmPLwFutN0MBCK11mG2xyzAL7bHjmmt765uf9UGw5dfGn+8Q0Nr9X0UFRVx+MgR2rdvj19F5xCsVqNX0s6d0LZtha+htSY1NZWEhAS7wCguLi47oij9kLAQQriSy4JBKeUN7Af+CiQD3wGDtNa/V7L9eOAyrfUjtttntda1Wgmn2mCwWOCGGyAtrdaL7KSlp5OXm0ub6GjO+5OdlQVXXw1r19bqNQHS0tLKQqI0NAoKCsqOKErDolWrVhIWQgincGUwXAXM0lrfars9A0BrvaCS7XcDT2mtd9huOz4YwFhcZ/Bgo+V2LWY2a61JOnyYZs2a0bj8EUdRkfGxYwe0aVObciuVkZFhNwQVHx9Pfn6+XVjExMTQunVrvGq6joQQQlSipsHgiJPPrYDj5W4nA1dUUlRboD2wq9zdAUqpvUAJsFBrvbWS544CRgFER0dXX1WvXvDgg8Z/902a1PgSVqUUUVFRJCcnExwUhLe3t3EEkpsLc+c6LBQAwsPDueaaa7jmmmvK7svIyCg7otixYwcvvPACZ8+epUuXLnbnLdq0aSNhIYRwCkccMTwA9NVaj7DdHgpcobUeV8G204DWWuvx5e5rpbU+oZTqgBEYfbTWh6raZ42OGMBYw3ncOOO//NDQWh05nDp1CqvWtGzWDM6cgbFjjVbeJgzzZGVl2Z2vSEhIICsr67xhqOjoaAkLIUSlXHnEcAIo/290a9t9FRkIPFb+Dq31CdvnJKXUF8BlQJXBUGM+PrBsGfzrX8b6zaVrOtdAREQEKfv3U+DjQ8A//wmPPGJKKACEhYVx5ZVXcuWVV5bdl52dXXZk8eWXX7J8+XIyMzPp3Lmz3ZFFu3btJCyEELXiiCMGH4yTz30wAuE7YLDW+rdztosBPgbaa9tOlVJNgDytdaFSqhnwP+Ceyk5cl6rxEUN5335rrP2clma0zAgJqXj9Z4vFuPLIy4u0pk2ZFRrKc++/j5+jFvxxopycHLuroRISEkhPT6djx452V0O1a9fOGCITQjQorr5c9XZgKcblqq9precppeYAe7XW22zbzAICtNbTyz3vamAFYMVo6LdUa726uv1dUDCAMbT0n//Aq6/C998bRwBKGUGhlHE5qpcX3HgjDB+O7tGDJ6ZMISYmhlGjRtV+f27gzJkzJCYm2g1Dpaam0qlTJ7uhqA4dOkhYCFHPuTQYXO2Cg6G8khJISoLkZCguNtZ1bt/eOLlc7kji9OnTDB48mNWrV9OuXbu67dNN5Obm2oVFfHw8p0+ftjuyiImJoUOHDlU3ExRCeBQJBgd6++23+fzzz1mxYkW9nWOQl5dXFhalQ1EpKSl06NDBbhiqQ4cO+EoDQSE8kgSDA1mtVh5++GEeeOAB7r672onZ9UZeXh779++3C4sTJ06UhUXpMNRFF13kEedghGjoJBgcLDExkXHjxrFhwwbCw8Ndum93kp+fz4EDB+zOWRw/fpz27dvbXTrbsWNHCQsh3IwEgxM8//zzpKamMnfuXJfv250VFBSUhUXpkcWxY8do27at3ZFFp06d8Pf3N7tcIRosCQYnyM/PZ8CAAcyYMYOrrrrK5fv3JEVFRXZHFvHx8Rw9epTo6Gi7rrOdO3cmICDA7HKFaBAkGJxk9+7dLFy4kI0bN8oftFoqKiri4MGDdrO4Dx8+TOvWre1OcHfq1IlGjRqZXa4Q9Y4EgxPNnDmTqKgoxo8fX/3GokpFRUUcOnTIruvsoUOHaNWqld05i86dOxMYGGh2uUJ4NAkGJ0pPT2fAgAG88sordOrUybQ66qvi4mKSkpLshqGSkpKIioqy6zobExMjYSFELUgwONnmzZvZtm0br732mvQicoGSkhKSkpLshqEOHjxI8+bN7U5wx8TEEBQUZHa5QrglCQYns1qtjBw5kltvvZX+/fubWktDZbFYOHz4sN2lswcOHCAiIsJuGKpLly6E2NbuFqIhk2BwgaSkJEaNGsVbb71FZGSk2eUIjLA4cuSI3ZHFgQMHCA8PP28d7tBaLv0qhKeTYHCR5cuXc+jQIZ555hmzSxGVsFqtdmGRkJBAYmIiYWFhdldDxcTE0LhxY7PLFcJpJBhcpKioiIEDBzJx4kRuuOEGs8sRNWS1Wjl27Nh563CHhYWdtwBSWFiY2eUK4RASDC60d+9ennrqKd599125SsaDWa1WkpOT7a6GSkxMJDg4+LxhqIbcFkV4LgkGF5s9ezZBQUFMmTLF7FKEA1mtVk6cOGHX7iMhIYFGjRqdNwzVtGlTs8t1uKQkY42rPXvgwAEoLISAAOjSBf7v/+CKK6CedKNvECQYXCw7O5t+/fqxdOlSunbtanY5wom01hWGhb+/v92ls7GxsTRr1szscmtNa/jiC2NV3J9++vN+Pz9jqRKr1QiI0g70PXsaS6tfe60p5YpakGAwwYcffsj69etZt26drIbWwGitSUlJsTtnER8fj4+Pz3lHFhEREW67rkd6OsycCZ99Bt7exgq4VZWqNZw5Y4TFHXfA7Nkgp2TclwSDCbTWPPbYY1x11VUMHTrU7HKEybTWnDp1yi4o4uPj8fLyOu/IIjIy0vSwOHAABg2CrCwIDa14SfTKWK2QnQ0REfDOOzK85K4kGExy/PhxHn74YdatW0fLli3NLke4Ga01f/zxh90J7oSEBLTWdie3Y2NjadGihcvC4sgRuO8+yM01QuFC5eRA48awdSu0auWw8oSDuDQYlFJ9gecBb2CV1nrhOY8/DDwDnLDdtUxrvcr22DDgSdv9c7XWa6rbnzsHA8Drr7/Ovn37eP75503/L1C4P601qampdkcV8fHxWCwWu6OKmJgYoqKiHP4zVVwMd90Fhw4Zf9TrKjMTLrkENm82hqOE+3BZMCilvIH9wF+BZOA7YJDW+vdy2zwM9NRajzvnueHAXqAnoIHvgcu11plV7dPdg6GkpIQhQ4YwfPhwbrnlFrPLER4qNTXVbo5FfHw8hYWFdmERGxtLy5Yt6xQWy5bBkiXGuQFHZI7WxnDUzJkwfHjdX084jiuD4Spgltb6VtvtGQBa6wXltnmYioNhENBbaz3adnsF8IXW+u2q9unuwQDw888/M3XqVDZu3CitF4TDpKenn3eCOz8/366JYGxsLK1bt65RWOTkQK9e4O8Pvr6Oq7OoCCwW2LsXZGkN91HTYPBxwL5aAcfL3U4Grqhgu78ppa7HOLqYrLU+Xslz68XI5KWXXkrv3r158cUXiYuLM7scUU80bdqUa6+9lmvLXRuakZFRFhKffvopzz//PLm5uefN4G7duvV5nYC3bYOSEggOrnq/VmsRp04tJC9vDxZLDr6+rYmMHEdw8NUVbu/nZ5yM/vBD+Nvf6vxtCxdzRDDUxHbgba11oVJqNLAGuKk2L6CUGgWMAoiOjnZ8hU4wbtw4+vXrx759+7jsssvMLkfUU+Hh4Vx99dVcffWff6QzMzPLwmLnzp0sW7aMnJwcunTpYnfO4s032+LrW5PxIwu+vi2Ijl6Jr28Lzp79LydOTKd9+3fw86v4IgsvL3j7bQkGT+SSoaRztvcGMrTWjevzUFKpnTt3snz5ct588038/PzMLkc0YFlZWSQmJpYNRf3223527nyRoCALjRr5ExDQiICAAPz9/YDqwyIpaSDNmo0iNLTi//EsFsjPh99/r92lr8J5XDmU9B3QSSnVHuOqo4HA4HOKidJap9hu3g3E277+BJivlGpiu30LMMMBNbmNm266iffff5+1a9cyYsQIs8sRDVhYWBhXXHEFV1xhjPTu3w933GHBx6eAgoJ8zp49Q2pqKhZLCf7+ATRqFEBAQAABAY3OC4uSkgyKio7h79+h0v15exvzG5KTwUMO8oVNnYNBa12ilBqH8UfeG3hNa/2bUmoOsFdrvQ2YoJS6GygBMoCHbc/NUEr9CyNcAOZorTPqWpM7UUoxbdo0hgwZwi233OIxw2Ci/svOBh8fb4KCguxWvbNaLeTnl4bFWdLS0igpKcHPz5/g4GCaNQvj5Mknadz4Tvz921W5Dy8v4wS38Cwywc1F3nrrLb788kuWL18ucxuEW9i7F4YOhZqshFpcXMSRI0cpKSnCz28Vvr4W2rR5DqWq/t/y7FljPoO0D3MPNR1KkpE/Fxk4cCB5eXls377d7FKEACA83BjqqU5JSTHHjx8nNDSE4OB3yM09SYsW86sNBTDOMzRpUu1mws1IMLiIl5cXcXFxLFu2jMzMKufvCeESbdsany2WyrcpPVIIDW2M1boai+U4zZsv4o8/sqp9/ZISY35EixYOKli4jASDC8XExHDbbbexZMkSs0sRAm9vo3VFXl7FjxcWFnLkyFGaNg2nceNisrK2UFCwn8zMoaSl3cfvv19NdvZHlb5+Xh706OGY2dTCtSQYXGz06NHs27ePb7/91uxShOChhyoeTiooyOfo0aNERkbSpEk4vr5RxMbuJSZmNzExX9Gp0xf4+a0hJKTqli8PPuikwoVTSTC4WGBgINOmTWPBggUUFhaaXY5o4G691ViRrfyPYl5eLseOHadlyygaV9JVLygoiMDAQFJT0yp8vKDAmE19443OqFo4mwSDCa699lpiYmJYtWqV2aWIBi4gAOLijIloWsPZs2dITj5Bq1atCA4OqfK5zZs3Jzs7m4KCArv7tTZe76mnHNt/SbiOBINJpkyZwpYtWzh48KDZpYgGrn9/Y/3mlJRcTp5MoU2bNnbzGirj7e1D8+aRpKSkYDRHNmRlwfXXw913O7Fo4VQSDCZp1qwZY8eOZf78+Vhrcs2gEE7i5QW33vo+BQWHadKkHY1q0Q61cePGeHkpMjIyy9ptt29vtPGWk86eS4LBRPfddx8AmzdvNrkS0ZCtXbuWzZtXsmtXOJ07+5GZaVxqWjOKqKgoUlPTSU8voXNn2LhR1n32dBIMJvLy8uLJJ59k+fLlpKamml2OaGC01rz00kts376dVatW0b17S7ZvhxEjjCU+MzOrnuMARoDk5voTGBhJ+/YfsnWrMXFOeDYJBpN16NCB+++/n2eeecbsUkQDYrVaWbRoEd988w2vvvoqkZGRgHEyesYM2L7dWAM6L89oa5GRYfRWyskxPmdkGPcXFMCAAbBrVyOaNHmD//3vS5O/M+EI0ivJDRQWFjJw4EAmT57M9ddfb3Y5op4rKSlh9uzZnD59miVLllR5ojknB3780Wid/dtvxmWtAQFw8cXGR7duEGK7eOn777/nn//8J++++y6BgYEu+m5EbbhsaU8z1LdgANizZw9z5sxh48aN8kslnKaoqIjp06djsVh4+umn8ff3d+jrz549m5CQEB5//HGHvq5wDGmi52F69erF5ZdfzvLly80uRdRTeXl5TJgwgYCAAJ599lmHhwLApEmT+Pjjj4mPj69+Y+G2JBjcyOTJk+WXSjhFTk4OY8eOJTo6mrlz5+LrpJlnjRs3ZuLEicybNw9LdWeuhduSYHAjYWFhTJgwgblz58ovlXCYtLQ0Ro4cyeWXX86MGTPwcvI6m7fffjshISFs2LDBqfsRziPB4GbuuOMOQkNDeeedd8wuRdQDJ0+eZMSIEfTt25fx48e7ZJEopRQzZsxg9erVnD592un7E44nweBmSn+pXnvtNU6ePGl2OcKDJSUlMWLECIYMGcLf//53l64cGB0dzaBBg1i0aBGeeIFLQyfB4Iaio6MZMmSI/FKJC/b7778zZswYxo0bR79+/Uyp4aGHHuLYsWN88cUXpuxfXDiHBINSqq9SKlEpdVApNb2Cxx9XSv2ulPpZKbVTKdW23GMWpdSPto9tjqinPhg6dCgpKSl89tlnZpciPMwPP/zAxIkTiYuL4/bbbzetDj8/P2bOnMkzzzxDbm6uaXWI2qtzMCilvIGXgNuArsAgpdS5S3/vA3pqrS8FNgFPl3ssX2vd3fYh/RhtfH19iYuLY/HixZw5c8bscoSH+Prrr5k2bRrz5s3jhhtuMLscevTowVVXXcXLL79sdimiFhxxxNALOKi1TtJaFwHvAPeU30Br/bnWunQBwW+A1g7Yb73XrVs3rr/+el588UWzSxEe4NNPP2XOnDksWbKEXr16mV1OmYkTJ7Jjxw5+//13s0sRNeSIYGgFHC93O9l2X2WGA+UXig1QSu1VSn2jlLrXAfXUK+PHj+err77ip59+MrsU4cY2b97MkiVLePnll7nkkkvMLsdOaGgokyZNksuwPYhLTz4rpR4EegLlO8a1tU3RHgwsVUpdVMlzR9kCZG9D6kRa2l5g3rx5FBcXm12OcENr167ljTfeYOXKlXTs2NHscip02223ERYWJpdhewhHBMMJoE25261t99lRSt0MxAF3a63LVpjVWp+wfU4CvgAuq2gnWuuVWuueWuueERERDijbc9x8881ERUWxbt06s0sRbkRrzcsvv8y2bdtYtWoVbdq0qf5JJil/Gbax4ptwZ44Ihu+ATkqp9kopP2AgYHd1kVLqMmAFRij8Ue7+Jkopf9vXzYBrABmIPIdSiunTp/Pmm29y7Ngxs8sRbsBqtfL000+ze/duu7bZ7qxNmzZyGbaHqHMwaK1LgHHAJ0A8sFFr/ZtSao5SqvQqo2eAYODdcy5LjQX2KqV+Aj4HFmqtJRgqEBUVxSOPPML8+fPll6qBKykpYdasWRw8eJDly5fTpEkTs0uqsaFDh3Ly5Ek+//xzs0sRVZC22x7EYrEwbNgwBg4cyJ133ml2OcIEpW2zS0pKePrppwkICDC7pFr78ccfmTlzJhs3biQ4ONjschoUabtdD3l7exMXF8cLL7xAVlaW2eUIF8vLy2PixIkEBASwePFijwwFgO7du3PNNdfI3AY3JsHgYWJjY+nbty9LliwxuxThQjk5OTz66KO0bt3aqW2zXWX8+PHs2rWLX3/91exSRAUkGDzQmDFj+P7779mzZ4/ZpQgXKG2bfdlllzFz5kynt812hdDQUCZPnsy8efMoKSkxuxxxDs//CWuAAgMDmTp1KgsWLKCwsLD6JwiPVdo2+9Zbb2XChAku7ZDqbLfccgtNmzblrbfeMrsUcQ4JBg91/fXX06lTJ1avXm12KcJJDh8+zIgRIxg8eDCPPPJIvQoF+PMy7DVr1kiLeTcjweDB/vGPf7B582aSkpLMLkU4WHx8fFnb7P79+5tdjtO0bt2aBx98UOY2uBkJBg8WERHBmDFjmDt3Llar1exyhIP88MMPTJgwgRkzZpjaNttVhg4dyqlTp6TFvBuRYPBw999/PwBbtmwxuRLhCP/973/L2mb37t3b7HJcwsfHh7i4OJ577jlpMe8mJBg8nJeXF3FxcbzyyiukpaWZXY6og08//ZTZs2fz3HPPuVXbbFe49NJLue6663jppZfMLkUgwVAvXHTRRdx33308++yzZpciLtCWLVtYsmQJL730En/5y1/MLscU48eP54svvuDnn382u5QGT4KhnhgxYgQJCQl8/fXXZpciamnt2rW8/vrrrFy5kk6dOpldjmnKt5iXuQ3mkmCoJ/z9/Zk5cyaLFi0iLy+v+icI03lS22xX+etf/0rz5s158803zS6lQZNgqEd69erFZZddxooVK8wuRVTDE9tmu0Lp3Ia1a9dy4sR5y7oIF5FgqGcmT57MRx99REJCgtmliEp4cttsV2jZsiXDhg1j4cKFMrfBJBIM9UyTJk0YP3488+bNk/V13VBRURFTp04lKyuLF198UdpOV2Lw4MGkpqayY8cOs0tpkCQY6qE777yToKAgNmzYYHYpopz60jbbFcrPbcjJyTG7nAZHgqEeUkoxc+ZMVq9ezalTp8wuR1D/2ma7wl/+8hduvPFGli1bZnYpDY4EQz0VHR3NoEGDpAeNG6iPbbNd5bHHHuOrr77ip59+MruUBkV+QuuxYcOGkZyczK5du8wupcGqz22zXSE4OJgnnniCefPmUVxcbHY5DYYEQz3m6+tLXFwczz77LGfPnjW7nAanvrfNdpU+ffrQsmVL1q9fb3YpDYZDgkEp1VcplaiUOqiUml7B4/5KqQ22x79VSrUr99gM2/2JSqlbHVGP+FP37t259tprZZzWxRpK22xXUEoxdepU1q9fT3JystnlNAh1DgallDfwEnAb0BUYpJTqes5mw4FMrXVHYAmwyPbcrsBA4GKgL/Cy7fWEA0kPGtdqaG2zXaFly5Y8/PDDLFiwQM6ZuYAjjhh6AQe11kla6yLgHeCec7a5B1hj+3oT0EcZx9X3AO9orQu11oeBg7bXEw4UGhoqPWhcpCG2zXaVQYMGkZmZySeffGJ2KfWeI4KhFXC83O1k230VbqO1LgGygaY1fC4ASqlRSqm9Sqm9qampDii7YSntQbNu3TqzS6m3GnLbbFconduwZMkSmdvgZB5z8llrvVJr3VNr3TMiIsLscjxOaQ+a9evXc/z48eqfIGpF2ma7xsUXX0yfPn144YUXzC6lXnNEMJwAyreFbG27r8JtlFI+QGMgvYbPFQ4i47TOsW7dOmmb7UKPPfYYu3fvZt++fWaXUm85Ihi+AzoppdorpfwwTiZvO2ebbcAw29cPALu08ZdpGzDQdtVSe6ATsMcBNYlKDB48mKysLD766COzS/F4pW2z33vvPWmb7UJBQUFMmTKF+fPny9wGJ6lzMNjOGYwDPgHigY1a69+UUnOUUnfbNlsNNFVKHQQeB6bbnvsbsBH4HfgYeExrLZ3fnMjb25snn3ySpUuXkpWVZXY5HstqtfLMM89I22yT3HjjjbRp04a1a9eaXUq9pDxxSKFnz5567969Zpfh0Z599llyc3N56qmnzC7F41gsFmbPnk1KSgpLliyRDqkmOXXqFEOGDOH1118nOjra7HI8glLqe611z+q285iTz8KxHn30Ufbs2YMEbO1I22z30aJFC4YPHy7rNjiBBEMDFRgYyLRp05g/fz5FRUVml+MRSttm+/n5SdtsNzFgwACys7PlnJmDSTA0YNdffz0dO3bktddeM7sUt1faNrtVq1bMmzdP2ma7CW9vb+Li4li6dCnZ2dlml1NvSDA0cFOmTGHTpk0kJSWZXYrbSk9PZ9SoUXTv3p24uDhpm+1munbtyi233MLzzz9vdin1hvyEN3CRkZGMGjWKefPmYbVazS7H7ZS2zb7llluYOHGidEh1U48++ijffPMNP/zwg9ml1AsSDIIHHngAi8XC1q1bzS7FrRw+fJiRI0cyaNAgaZvt5gIDA5k6dSrz5s2Tc2YOIMEg8PLyIi4ujpdffpn09HSzy3ELCQkJjBkzhkcffVTaZnuI3r17065dO9asWVP9xqJKEgwCgE6dOnHPPfewePFis0sx3b59+xg/fjwzZszgjjvuMLscUQtTp05lw4YNHDt2zOxSPJoEgygzcuRIfvvtN3bv3m12KabZvXs3//jHP6Rttodq3rw5w4cPZ/78+TK3oQ4kGESZgIAAZsyYwcKFC8nPzze7HJfbsWMHs2bNkrbZHm7AgAHk5ubywQcfmF2Kx5JgEHauvPJKunXrxsqVK80uxaW2bt3Kc889x0svvcSll15qdjmiDkrPmb3wwgvSD+wCSTCI80yePJkPPviA/ftWT0PVAAAan0lEQVT3m12KS6xfv57Vq1ezYsUKaZtdT8TExNC3b1+WLl1qdikeSYJBnCc8PJxx48Yxd+7cej23QWvNK6+8wpYtW1i1apU0YqtnxowZw3fffSf9wC6ABIOo0F133UVAQAAbNmwwuxSnKG2b/fXXX7Nq1SqaN29udknCwaQf2IWTYBAVUkoRFxfHqlWrOH36tNnlOJTFYmHWrFns37+fFStW0KRJE7NLEk5S2g/sjTfeMLsUjyLBICrVtm1bBgwYwKJFi+rNpX9FRUVMmzaNrKwsli1bJm2zG4ApU6awceNGjhw5YnYpHkOCQVTp4Ycf5tixY3z++edml1JneXl5TJo0CR8fH2mb3YBERkYycuRImdtQCxIMokp+fn7MnDmTZ599lrNnz5pdzgXLycnhscceIyoqivnz50vb7AamX79+FBQUsH37drNL8QgSDKJaPXr04Oqrr+bll182u5QLUto2u1u3bjz55JPSNrsB8vLy4sknn2TZsmVkZmaaXY7bq9NviFIqXCm1Qyl1wPb5vLN4SqnuSqn/KaV+U0r9rJQaUO6xN5RSh5VSP9o+utelHuE8EyZMYNeuXfzyyy9ml1IrKSkp0jZbANC5c2duv/12lixZYnYpbq+u/zpNB3ZqrTsBO223z5UHPKS1vhjoCyxVSoWVe/wfWuvuto8f61iPcJLQ0FAmT57MvHnzKCkpMbucGjly5AgjRoyQttmizKhRo9i3bx979uwxuxS3VtdguAco7XG7Brj33A201vu11gdsX58E/gAi6rhfYYJbbrmFiIgI1q9fb3Yp1UpISGD06NHSNlvYKV23YcGCBTK3oQp1DYbmWusU29engCpnCSmlegF+wKFyd8+zDTEtUUr5V/HcUUqpvUqpvampqXUsW1wIpRQzZsxg3bp1JCcnm11Opfbt28eECROkbbao0HXXXUfnzp1ZvXq12aW4rWqDQSn1mVLq1wo+7im/nTauA6v0WjClVBSwDvi71rq0z8IMIAb4PyAcmFbZ87XWK7XWPbXWPSMi5IDDLC1btmTYsGEsWLDALS/92717N1OnTmXu3LnSNltUasqUKfz73/+Wtc4rUW0waK1v1lpfUsHHe8Bp2x/80j/8f1T0GkqpUOADIE5r/U25107RhkLgdUB6HXuAwYMHk5GRwccff2x2KXY+++wzZs2axeLFi6VttqhSREQEo0ePZv78+fW6H9iFqutQ0jZgmO3rYcB7526glPIDtgBrtdabznmsNFQUxvmJX+tYj3ABHx8fnnzySZYuXUpOTo7Z5QDw3nvvsXjxYmmbLWrsb3/7GyUlJWzbts3sUtxOXYNhIfBXpdQB4GbbbZRSPZVSq2zb9AeuBx6u4LLUN5VSvwC/AM2AuXWsR7jIxRdfzM033+wWbY3ffPNNaZstas3Ly4uZM2fy0ksvkZGRYXY5bkW54zhxdXr27Kmlla75cnNz6devH3PnzqVHjx4u37/WmhUrVrBjxw5efvll6ZAqLsgLL7xAamoq//rXv8wuxemUUt9rrXtWt51MARUXLCgoiKlTpzJv3jyXX/pntVp59tln+eqrr6RttqiTkSNH8tNPP/Htt9+aXYrbkGAQddK7d2/at2/v0rbGFouF2bNnk5iYKG2zRZ01atSI6dOnM3/+fAoLC80uxy1IMIg6mzp1Khs2bODw4cNO31dp2+zMzExpmy0c5uqrr6Zr164yt8FGgkHUWWRkJKNGjXL6pX/SNls40xNPPMGWLVtkbgMSDMJB+vXrR1FRkdMu/ZO22cLZmjVrxpgxY+r9Wuc1IcEgHMLLy4u4uLgqL/3TGoqKwGKp3Wunp6czevRoLr30UmmbLZzqvvvuQ2vN1q1bzS7FVPIbJhymc+fO3HXXXSxevBgAqxW++gpmzIC//hU6doQuXeCii6B7dxg2DFatgqpaX6WkpDBy5EhuvvlmJk2aJB1ShVOV/oPzyiuvkJ6ebnY5ppF5DMKh8vPz6d9/IFdeuYjt22NITzeOEBo1An9/8PIyjhxKSiA/3wgPpeC222DmTGjR4s/XOnLkCOPGjWPo0KEMGDCg8p0K4WDLli3j5MmTzJ8/3+xSHErmMQhTZGc3orBwFfPnNyYnx0rjxhAebgRD6QiQUuDrC6GhEBYGwcHwwQfQpw/8+99GcCQmJjJmzBjGjh0roSBcbsSIEfz666/s3r3b7FJMIcEgHCYpCe66C5KSIggJsXL2bM3ao3t7Q5MmRnBMnQqTJ59g3LjxTJs2TdpmC1MEBAQwY8YMFi5cSEFBgdnluJwEg3CI06dhwADIzjaOAlq0aE5WVnatfqmMoaazrFih6N59BTfeeKMTKxaialdddRV/+ctfWLVqVfUb1zMSDKLOtIYpUyAjwxgeAqMDa2RkBCkpKVSxTIednJwcTp8+Sdu2YWzd2p6ff3ZezULUxOOPP857773HwYMHzS7FpSQYRJ1t3Qq7dxtHCuWFhYXh5aXIzMys9jWysrI4ffoU0dHRBAcHohRMnAjFxU4qWogaaNq0KWPHjmXevHkNam6DBIOoE6sVFi82hoHOv5JU0aJFFKmpqZSUVP4XPiMjnbS0VNq2bVs2mzk0FJKT4YsvnFa6EDVy77334uXlxZYtW8wuxWUkGESd7NljnF9o1Kjix/39/WnSJJxTp05hseSQnDyFhIRrOXjwTrKzPyI19Q8yMzNp27Ydfn72S34rBStXuuCbEKIK5ec2pKWlmV2OS0gwiDr55BNjnkJV886aNWtKYWEhx47NQSlfOnf+lJYt/8WxY3PIzv6dtm3bVdjiIiQEfvgB3GSRONGAdejQgfvvv79s8mZ9J8Eg6uS776C6XnZKedG8eRjZ2Z/RtOkovLwakZUVibf3/xES8hM+Pj6VPM+Y75CY6ITChail4cOHEx8fz3//+1+zS3E6CQZRJwcOGOcXquPjk46Xly9ZWQEkJydTUmIhMvJyioqOVPm84mJoYBeECDfl7+/PjBkzWLRoEfn5+WaX41QSDOKCaQ0FBX/OaK6K1ZpHQEAY2dk5nDlzlsDAQEpK/LBYzlb5PIvFaJ0hhDu44oor6NatG6+++qrZpThVnYJBKRWulNqhlDpg+1zhUlpKKYtS6kfbx7Zy97dXSn2rlDqolNqglPKrSz3CtZQyZi3XhJdXIFZrHh07XkTLllFYLCVkZ58iJ6eIgwcPkJycTFpaGrm5Z7FYSi5oH0K4wuTJk9m+fTv79+83uxSnqesRw3Rgp9a6E7DTdrsi+Vrr7raPu8vdvwhYorXuCGQCw+tYj3Cx5s2NVtrV8fOLBixYLCdp3DiM5s1bEBKSSYsWlxMdHU1oaAgWi4W0tHQOHjzIgQMHSE4+Tn5+FunpvzaYq0GE+wsPD2fcuHFOX5jKTHUNhnuANbav1wD31vSJyuiffBOw6UKeL9xD9+7GcFJ1vLwaERJyE6mpy7Fa88nL+4kzZ76kceM78fPzJzS0Mc2bN6dt27Z06dKFtm3bEhraGItFs2/f2/Tv35++ffsyadIkVqxYwZdffskff/yBJ3YHFp7vrrvuwtfXl02bNlW/sQeqU9ttpVSW1jrM9rUCMktvn7NdCfAjUAIs1FpvVUo1A76xHS2glGoDfKS1vqS6/Urbbffx9tvw//7f+bOeK2Kx5HDy5Gxyc7/F27sxkZHjady4b6XbFxYaVyXt3QtKaVJSUkhISCj7iI+PByAmJobY2FhiYmKIiYkhKipK1m0QTpeUlMSoUaN4++23iYiIMLucGqlp2+1qg0Ep9RnQooKH4oA15YNAKZWptT7vPINSqpXW+oRSqgOwC+gDZFOLYFBKjQJGAURHR19+9OjR6r434QI5OfB//2dMcKvkqtMLlpkJkyfDuHEVP661JjU1tSwkSj8XFRWVhURpaLRq1UpWfhMO98orr3DkyBEWLVpkdik14rBgqGYniUBvrXWKUioK+EJr3aWa57wBvA/8G0gFWmitS5RSVwGztNa3VrdfOWJwLzNmwMaNRutsRykuNoao/vMf4zxGbaSlpZ13ZJGbm0uXLl3sji6io6MlLESdFBUVMWDAAB5//HGuu+46s8uplquC4RkgXWu9UCk1HQjXWk89Z5smQJ7WutA2fPQ/4B6t9e9KqXeBf2ut31FKLQd+1lq/XN1+JRjcS0YG3HijsSpbZa0xakNryMoy1mYYPbrurweQmZl5XlhkZWXRuXNnu7Bo164d3nIZlKiFPXv2MGfOHDZu3EhgYKDZ5VTJVcHQFNgIRANHgf5a6wylVE9gjNZ6hFLqamAFYMU42b1Ua73a9vwOwDtAOLAPeFBrXVjdfiUY3M+nn8LYsUYbi7oOKWVlQWwsbNni+OGp8nJycuzCIiEhgT/++INOnTrZhUWHDh0qnZ0tBMA///lPwsPDmTRpktmlVMklwWAWCQb3tGIFLFpkhEMFrY+qpbWx0E/LlrB5MzRr5vgaq3P27Fn2799vd97i5MmTXHTRRXbnLTp27Iifn0y7EYbMzEwGDBjAiy++SJcuVY6mm0qCQZhi3TqYO9doxx0aWnVzvfKKiyE3Fy6+GFavNicUKpOXl8eBAwfswuL48eO0bdu27KgiNjaWTp064V+T/iCiXtq2bRubNm3ijTfecNtzVxIMwjQHDsCkSbB/v3EUEBpacdsMrY1LUgsKjCGjJ56ARx7xjJnOhYWF54XFkSNHaN269Xlh4e7jzsIxtNaMHj2aPn36MGDAALPLqZAEgzCV1Wqs6vbqq/D118bQksVi3A/G7ZISCA83wuCBB9zrKOFCFBUVcejQobKgSEhI4NChQ7Rs2dLu0tnOnTsTHBxsdrnCCY4cOcKIESN46623iIyMNLuc80gwCLdRWGgcPRw8CHl5xhFB8+bQtStERtZ8uMkTlZSUkJSUZHc11IEDB4iMjLQ7ZxETE0No6YLZwqOtXLmSAwcO8Mwzz5hdynkkGIRwUxaLhaNHj9pNytu/fz9hYWHnzeJu4sjJIcIlioqKGDhwIBMnTuSGG24wuxw7EgxCeBCr1cqxY8fsjiwSEhIIDg62C4vY2FiaNm1qdrmiGnv37uWpp57i3XffdatzTBIMQng4q9XKiRMn7IIiISEBPz8/u6OK2NhYIiIipD+Um5k9ezYhISE8/vjjZpdSRoJBiHpI68qbCZYPC2kmaL6srCz69+/P888/T2xsrNnlABIMQjQYNWkmWBoa0kzQtd5//33eeecd1qxZ4xatViQYhGjg0tLSSExMtAsLaSboWlprxo4dyw033MCgQYPMLkeCQQhxvqqaCZYfipJmgo5z7Ngx/v73v/PWW2/RvLatgh1MgkEIUSMVNRNMTU2lY8eOdmEhzQQv3KuvvkpCQgKLFy82tQ4JBiHEBcvNzSUxMbHKZoKxsbFcdNFF0kywBoqKihg8eDDjxo2jd+/eptUhwSCEcKjKmgm2a9fOLiykmWDFfvjhB5588kk2bdpk2twGCQYhhNNV1kywTZs254WFO030MsucOXMIDAxkypQppuxfgkEIYYqKmgkmJSURFRVldzVUly5dCAoKMrtcl8rOzqZfv34sXbqUrl27unz/EgxCCLchzQT/9OGHH/Lmm2+ydu1al1/5JcEghHBrVTUTPLflR1hYmNnlOozWmscee4xrrrmGIUOGnPsgpKdDZqbxdVgYREQ4rAWxBIMQwuNYrVaOHz9uFxaJiYkEBQWdFxae3EywdG7D+vXriYqIgC+/hLfegu+/hzNn/lwb12KBwEDo1g0GD4abboI6XAXmkmBQSoUDG4B2wBGgv9Y685xtbgSWlLsrBhiotd6qlHoDuAHItj32sNb6x+r2K8EgRMNRvplg+ZPc5ZsJln72pGaCq1etwrptGyNOnkRl2/4EBgYayxmWfg9aGyta5ef/+XhcHPztbxUvi1gNVwXD00CG1nqhUmo60ERrPa2K7cOBg0BrrXWeLRje11pvqs1+JRiEaNgqayaolDrvnIVbNhPMysIyeTKp775LcLNmBNd0+cLCQmO1qyuvhKVLjWGmWnBVMCQCvbXWKUqpKOALrXWXKrYfBdygtR5iu/0GEgxCCAeoTTPB1q1bmxcW6enQvz8cOUKenx8nTp6kw0UX4V3TIwCtISsLWrSATZsgKqrGu3ZVMGRprcNsXysgs/R2JdvvAp7TWr9vu/0GcBVQCOwEpmutC6vbrwSDEKKmqmomWH4oqk2bNs5vJlhYCPfeCwcOGCeWgZMpKXgpRYsWLWr3WllZ0Lo1fPAB1PCyX4cFg1LqM6CiiuOANeWDQCmVqbWucC1C2xHFz0BLrXVxuftOAX7ASuCQ1npOJc8fBYwCiI6Ovvzo0aPVfGtCCFGxzMzM88Li3GaCsbGxtG3b1rGXlD79NKxYYYSC7YjFYrFwKCmJNq1b06hRo9p+I8ZJ6X/9q0abu91QklJqInCx1npUJY/3BqZore+sbr9yxCCEcDSnNxNMSIC77jL+uz/n+dk5OaSnp9O+XbvaDXFZLMZVTBs3Qo8e1W5e02Coa6vEbcAwYKHt83tVbDsImFH+DqVUlC1UFHAv8Gsd6xFCiAsSGhpKr1696NWrV9l95ZsJfvfdd6xbt46UlBQ6dOhQ+2aCr75q/CGvIFRCQ0PJysoiIyODpQUF7MnLI99qpZmPDw81bcq9lc3jKD2aeeUV4/UdpK5HDE2BjUA0cBTjctUMpVRPYIzWeoRtu3bAf4E2WmtruefvAiIABfxoe87Z6vYrRwxCCLNU10yw9OjCrplgVhZccYVxuWklQ1NFRUUcPnIE3bIlHQID8fPy4khhIaOOHuX5Nm2IrWyYyWqFnBz4+mvjhHQVXHLEoLVOB/pUcP9eYES520eAVhVsd1Nd9i+EEK4WGBhIt27d6NatW9l95zYT3LJli10zwRssFq4qLMQvKIjKTm/7+fnRNDycvMxMfIODAeM/ZqUUycXFlQeDl5fxsWcP3H23Q75HWXVDCCHqyN/fn0suuYRLLrmk7L7yzQSLV68mJz2djLQ0fP38CAgIsPsovVQ1vGlTsg8fZvaRI+woKKBQa7oEBHCNLSgqVVwMP/4owSCEEO6sdGZ2bGwsfPQRREURERJCYWEhBQUFFBQUcCYnh4LCQnx8fMpCIiwsjMFpacR16sRvhYV8n5eHX3UnpP394VfHnaKVYBBCCGfLzwcvL5RSZQFQSgNFhYXk28KioKCAoqIiSoqK6B4YyIfZ2WzKzGRgeHjlr+/l9WfbDAeQYBBCCGfz9zdOEldAYQxF+fv7Q+PGgBEWpccIFiC5qKjq19fa2IeDOHmanxBCCGJijPMA1cgoKeHTnBzyrVasWvO/s2f5JDubXtXNbC4shC6VdiOqNTliEEIIZ7v00hq1y1bApsxM5qekYAWifH15onlzrg8JqfqJ3t5w+eUOKRUkGIQQwvl69DCGkqzWKttlN/HxYWXbtrV7bavVGErqWe30hBqToSQhhHC2iAjo08eYiOZoZ85Ar14QHe2wl5RgEEIIVxhlaxNXyUnoC1J6tDB2rONeEwkGIYRwjR49oF8/KF2tzRGys6FvX7juOse9JhIMQgjhOnFxRj8jR4RDTg40bQpzKlypoE4kGIQQwlWCg+Htt6FJE6Ox3oU0MdXaCJagIHjrLahq4tsFkmAQQghXio6GrVuha1cjHGowv6FMcbHxnPbtYcsW6NjRKSVKMAghhKu1bGn8YZ8+HYqKjD/2ubkVn5i2WiEvz9imoAAmTDCW82zXzmnlyTwGIYQwg7c3jBwJAwfC9u2wbp2xFrSPT9myn2htHCV06AAPPmisF21rm+FMEgxCCGGmkBBj3ebBg42jh4MHjaMDMEKgY0eH9kGqCQkGIYRwF35+xrkHk8k5BiGEEHYkGIQQQthR+kKuozWZUioVOOrAl2wGpDnw9eoreZ+qJ+9Rzcj7VD1nvEdttdYR1W3kkcHgaEqpvVprx7UmrKfkfaqevEc1I+9T9cx8j2QoSQghhB0JBiGEEHYkGAwrzS7AQ8j7VD15j2pG3qfqmfYeyTkGIYQQduSIQQghhJ0GGQxKqX5Kqd+UUlalVKVn/ZVSfZVSiUqpg0qp6a6s0R0opcKVUjuUUgdsn5tUsp1FKfWj7WObq+s0Q3U/G0opf6XUBtvj3yql2rm+SvPV4H16WCmVWu7nZ4QZdZpJKfWaUuoPpdSvlTyulFIv2N7Dn5VSPZxdU4MMBuBX4H7gP5VtoJTyBl4CbgO6AoOUUubPVXet6cBOrXUnYKftdkXytdbdbR93u648c9TwZ2M4kKm17ggsARa5tkrz1eJ3aEO5n59VLi3SPbwB9K3i8duATraPUcArzi6oQQaD1jpea51YzWa9gINa6yStdRHwDnCP86tzK/cAa2xfrwHuNbEWd1KTn43y790moI9SpS0zGwz5HaoBrfV/gIwqNrkHWKsN3wBhSqkoZ9bUIIOhhloBx8vdTrbd15A011qn2L4+BTSvZLsApdRepdQ3SqmGEB41+dko20ZrXQJkA01dUp37qOnv0N9sQySblFJtXFOaR3H536J6211VKfUZ0KKCh+K01u+5uh53VdX7VP6G1lorpSq7hK2t1vqEUqoDsEsp9YvW+pCjaxX10nbgba11oVJqNMZR1k0m19Tg1dtg0FrfXMeXOAGU/++lte2+eqWq90kpdVopFaW1TrEduv5RyWucsH1OUkp9AVwG1OdgqMnPRuk2yUopH6AxkO6a8txGte+T1rr8e7IKeNoFdXkal/8tkqGkyn0HdFJKtVdK+QEDgQZxxU0524Bhtq+HAecdaSmlmiil/G1fNwOuAX53WYXmqMnPRvn37gFgl254k4aqfZ/OGSu/G4h3YX2eYhvwkO3qpCuB7HJDvM6htW5wH8B9GON0hcBp4BPb/S2BD8ttdzuwH+O/3ziz6zbhfWqKcTXSAeAzINx2f09gle3rq4FfgJ9sn4ebXbeL3pvzfjaAOcDdtq8DgHeBg8AeoIPZNbvp+7QA+M328/M5EGN2zSa8R28DKUCx7e/ScGAMMMb2uMK4uuuQ7Xesp7NrkpnPQggh7MhQkhBCCDsSDEIIIexIMAghhLAjwSCEEMKOBIMQQgg7EgxCCCHsSDAIIYSwI8EghBDCzv8HZPTjillfG1oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -495,7 +497,8 @@ "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(shots=1024, seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -554,7 +557,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -562,14 +565,14 @@ "output_type": "stream", "text": [ "distance\n", - " [[ 0. 56. 39.]\n", - " [56. 0. 17.]\n", - " [39. 17. 0.]]\n" + " [[ 0. 18. 90.]\n", + " [18. 0. 93.]\n", + " [90. 93. 0.]]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF29JREFUeJzt3XuUnXV97/H3dyaZ3G8kAwECBtAALi4RR4qUHpAQSjwcqC1FUmFxQIx1eU7F2qOiCMdzlkta8HhcuiqmigeWEG4GbXuwhVZtPV1KOkC4E+6JucEEMgFyT/b3/PHsyDRNZu89syeT/fB+rTVr9v7t53n29zfZfPaP33OLzESS1PrahrsASVJzGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkmM2JdvNm3atJw5c+a+fEtJGno7d8Lq1bBhQ/G8rQ0i9r58ZrFOWxscfDAccEC/m3/wwQfXZWZnrTL2aaDPnDmT7u7uffmWkjS0li2Diy+GCRPg0EOLkK7Xtm2wcSOccAL85V/C6NF7XCwiltezOadcJGmgnn0WLrwQXn8dJk9uLMwBOjqK9X7+c/jYx4qAHwQDXZIGYvNmuOyy4veECQPfTgRMmQL/8i/wta8NqiQDXZIG4oYbYM0amDhx8NuKKLZz002wdOmAN2OgS1KjVq6EW25pTpjvMmJEEezXXjvgTRjoktSo22+HSgXa2/td7M7XXuOSF1/k/U8/zX9fvbr2didMgCeeKHa0DoCBLkmNyIRbb4Vx42ouOm3ECD46bRrnTZpU37Yjii+KH/5wQKXt08MWJanlrV0Lb74JdYT0mdUpmSc3b+aVHTvq2/6oUfDLXw6oNEfoktSIp56qOdUyKKNHwzPPFCP1BhnoktSI9euLszyHSns77NhRHA7ZIANdkhqRuW/exxG6JA2xiROHdsqlUil2jo4d2/CqBrokNeKYY+oePe/MZFulQgWoANsqFXbWGuFv2QJHHTWgLw2PcpGkRsyYASNHwvbtxe9+fG/dOhauW/eb5/du2MCCadNY0NnPhRO3bIGTTx5QaQa6JDWirQ1+//fhttuKa7D0Y0FnZ//hvbvMYmT+oQ8NrLQBrSVJb2eXXFIE+wB2XPZr40Y4/HB4z3sGtLqBLkmNmjUL5s1764YWzVCpFNM4X/pS/zfH6IeBLkkD8eUvF0e8bNw4+G1lQm8vnHcenHHGgDdjoEvSQEyZAgsXFiPrTZsGvp3MYqT/rncVXxKDUFegR8SnI+KJiHg8IhZFxOiIuDUillXbboqI/nf3SlLZvO998P3vF497exs/6WjnzmK9WbNg0aJBX463ZqBHxKHAnwBdmXkc0A5cBNwKHAMcD4wBrhhUJZLUik49Fe69F44/vgjnjRtrB3ulUlxC4M034YorYPHimjeKrke9hy2OAMZExHZgLLA6M+/b9WJELAFmDLoaSc3V01NcTOrJJ4vHbW1w0EHw7nfDscfWPOxOdZo5s7jk7T33FDd7XrGiCO22tuK+oVA837r1rROG5s6FT36y+CJokpqBnpmrIuIGYAWwGbhvtzAfCVwCfGpP60fEAmABwOGHH96MmiX1Z+dO+OlPi/ndhx8u7oSz+82HR40qLgB12mnFCPHUUwd8ZIWq2trgD/6gOEb9sceKv/2SJfDCC8Xfetw4OOEEOOmk4u994IFNLyGyxv8aRMQU4IfAh4Fe4C7g7sz8QfX1vwI2ZuaVtd6sq6sru7u7B120pL14/nm48spiVN7WVtwBZ29BXakUd6uPKM5MvP56OOSQfVuv6hIRD2ZmV63l6tkpehbwYmb2ZOZ2YDFwavVNrgU6gT8dTLGSmuBHP4IPfhCefrq4+cLEif2PutvaYPLkYrkHHiimAP75n/ddvWq6egJ9BXBKRIyNiADmAE9FxBXA7wLzM7PJp0tJasjdd8NnPlNMpUya1Nj0SUQR7FBMvxjqLatmoGfmA8DdwEPAY9V1FgI3AgcBv4yIpRFxzVAWKmkvHn0UrrqqmKPdtQNuIMaMKS429cd/XOzUU8upOYfeTM6hS022dSucfTasWTPoY5h/o7cXZs+GO+8spmU07Jo5hy5pf3XbbbByZfPCHIopm6VL4b77ai+r/YqXz5VaVaVSHJo4enS/i22rVLhu7VqWbNrE6zt3MmPkSP7LgQdy6vjxe14hojhW+jvfgXPOGYLCNVQcoUutqrsbXn21mPvux05g+siRLDz8cH4+axaf6Ozk86tWsXr3Y9P7Gj8eHn8cli9vbs0aUga61KoeeaQ4YaWGMW1tLOjs5JCODtoi+J0JEzhk5Eie3rJl7ytFFD+PPtrEgjXUDHSpVS1ZUpwF2qDXduxgxbZtHDlqVP8Lbt9enO2olmGgS61q1aqGA31HJlevXs25kyYxs1agjxxZ7HBVyzDQpVZVqTR0AlElk2tWr2YE8Nnp0+tbaefOgdWmYWGgS61q0qS6Azcz+Z9r1vDqjh1cP2MGI+r5IqhUvBpjizHQpVZ10knFiUV1+Oratby4bRtfP+wwRtV7slBm8R5qGR6HLrWq2bOLee4a1mzfzuLeXjoi+N1nn/1N+xemT2fepEl7X3HECDjmmGZUqn3EQJda1amnFicA7djR787Rg0eOpPvYYxvb9pYtxdmnJ544yCK1LznlIrWqCROKGyq88Ubzt715M1x++Vt311FLMNClVvbxjxfTLv2d9dmozZuL0fn8+c3bpvYJA11qZYcdBl/8Yn03Jq5HpVJMt9xww1vXSFfLMNClVveRj8BZZxV3kR9MqFcqsGEDXHwxzJnTvPq0zxjoUqtra4NvfrMI9d7e4pT9Rm3dWoT5hz8M117b/Bq1TxjoUhl0dMC3vw2f+1wxZbJ+fX0nHe3YUSxbqcB118FXvuJNLVqY/3JSWbS3w4IFcO+9MG9eMa++fn0xat+ypRi5b99e7PTc1b55M1xwAdx/P/zhHzZ2L1LtdzwOXSqbo46Cb30LenrgH/6huCrjww8XAd7WBp2d8N73wsknF9M0/Z1cpJZioEtl1dlZHHro4YdvG3VNuUTEpyPiiYh4PCIWRcToiDgiIh6IiOci4o6IGMTtxiVJg1Uz0CPiUOBPgK7MPA5oBy4C/hz4ema+E1gPfHQoC5Uk9a/enaIjgDERMQIYC6wBzgTurr5+M/B7zS9PklSvmoGemauAG4AVFEG+AXgQ6M3MXTc0XAkcOlRFSpJqq2fKZQpwPnAEcAgwDjin3jeIiAUR0R0R3T09PQMuVJLUv3qmXM4CXszMnszcDiwGfhuYXJ2CAZgBrNrTypm5MDO7MrOrs7OzKUVLkv69egJ9BXBKRIyNiADmAE8CPwMuqC5zKfDjoSlRklSPeubQH6DY+fkQ8Fh1nYXA54A/jYjngKnA94awTklSDXWdWJSZ1wK7X7HnBeDkplckSRoQr+UiSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJVEzUCPiKMjYmmfn9cj4sqImB0Rv6q2dUeEN4yWpGE0otYCmbkMmA0QEe3AKuAe4K+AL2fmTyLig8BfAGcMXamSpP40OuUyB3g+M5cDCUystk8CVjezMElSY2qO0HdzEbCo+vhK4O8j4gaKL4ZTm1mYJKkxdY/QI6IDOA+4q9r0CeDTmXkY8Gnge3tZb0F1jr27p6dnsPVKkvaikSmXecBDmfly9fmlwOLq47uAPe4UzcyFmdmVmV2dnZ0Dr1SS1K9GAn0+b023QDFnfnr18ZnAs80qSpLUuLrm0CNiHDAX+Hif5o8B34iIEcAWYEHzy5Mk1auuQM/MjcDU3dr+H/DeoShKktQ4zxSVpJIw0CWpJAx0SSoJA12SSsJAl6SSMNAlqSQMdEkqCQNdkkrCQJekkjDQJakkDHRJKgkDXZJKwkCXpJIw0CWpJAx0SSoJA12SSsJAl6SSMNAlqSQMdEkqCQNdkkrCQJekkqgZ6BFxdEQs7fPzekRcWX3tv0bE0xHxRET8xdCXK0namxG1FsjMZcBsgIhoB1YB90TEB4DzgRMzc2tEHDiklUqS+tXolMsc4PnMXA58ArguM7cCZOYrzS5OklS/RgP9ImBR9fEs4Hci4oGI+KeIeN+eVoiIBRHRHRHdPT09g6lVktSPugM9IjqA84C7qk0jgAOAU4D/BtwZEbH7epm5MDO7MrOrs7OzCSVLkvakkRH6POChzHy5+nwlsDgLS4AKMK3ZBUqS6tNIoM/nrekWgB8BHwCIiFlAB7CueaVJkhpRV6BHxDhgLrC4T/NNwJER8ThwO3BpZmbzS5Qk1aPmYYsAmbkRmLpb2zbg4qEoSpLUOM8UlaSSMNAlqSQMdEkqCQNdkkrCQJekkjDQJakkDHRJKgkDXZJKwkCXpJIw0CWpJAx0SSoJA12SSsJAl6SSMNAlqSQMdEkqCQNdkkrCQJekkjDQJakkDHRJKgkDXZJKomagR8TREbG0z8/rEXFln9c/ExEZEdOGtlRJUn9G1FogM5cBswEioh1YBdxTfX4YcDawYghrlCTVodEplznA85m5vPr868BngWxqVZKkhjUa6BcBiwAi4nxgVWY+0t8KEbEgIrojorunp2eAZUqSaqk70COiAzgPuCsixgJfAK6ptV5mLszMrszs6uzsHHilkqR+NTJCnwc8lJkvA0cBRwCPRMRLwAzgoYiY3vwSJUn1qLlTtI/5VKdbMvMx4MBdL1RDvSsz1zW1OklS3eoaoUfEOGAusHhoy5EkDVRdI/TM3AhM7ef1mc0qSJI0MJ4pKkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVRM2bREfE0cAdfZqOBK4BDgX+E7ANeB64LDN7h6JISVJtNUfombksM2dn5mzgvcAm4B7gfuC4zDwBeAa4akgrlST1q9EplznA85m5PDPvy8wd1fZfATOaW5okqRGNBvpFwKI9tF8O/GTw5UiSBqruQI+IDuA84K7d2r8I7ABu3ct6CyKiOyK6e3p6BlOrJKkfjYzQ5wEPZebLuxoi4j8D5wIfyczc00qZuTAzuzKzq7Ozc1DFSpL2ruZRLn3Mp890S0ScA3wWOD0zNzW7MElSY+oaoUfEOGAusLhP87eACcD9EbE0Im4cgvokSXWqa4SemRuBqbu1vXNIKpIkDYhnikpSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJVEXfcUHRYbNsCjj8ITT8Azz8D27TBuHBx/PBx7LBx3HHR0DHeVkrTfqBnoEXE0cEefpiOBa4Bbqu0zgZeACzNz/aAreuwx+O534Sc/gbY22LoV2tshAioVuOsuGDmyCPNLLoGLL4aDDx7020pSq4vMrH/hiHZgFfBbwCeB1zLzuoj4PDAlMz/X3/pdXV3Z3d295xc3boSvfhVuvx0yYeLEIsj3Ztu2Yp2ODrj6apg/v/gCkKSSiYgHM7Or1nKNJuAc4PnMXA6cD9xcbb8Z+L0Gt/WWFSvg7LOLMJ8wAaZM6T/MoQjyKVOK0fo118Dll8PmzQMuQZJaXaOBfhGwqPr4oMxcU328FjhoQBWsXAkXXACvvAKTJ9cO8t11dBTr/eIXcNllxRSNJL0N1R3oEdEBnAfctftrWczb7HHuJiIWRER3RHT39PT82xe3b4crroDXXoNJkxoqfLc3KUJ9yZJi2kaS3oYaGaHPAx7KzJerz1+OiIMBqr9f2dNKmbkwM7sys6uzs/PfvnjjjfDss4ML810iiu384Afwr/86+O1JUotpJNDn89Z0C8BfA5dWH18K/Lihd371VfjmN2H8+CKMm6G9vfi5+upix6okvY3UFegRMQ6YCyzu03wdMDcingXOqj6v3+LFxWGII0f2u9jrO3fyZytXctrTT3Puc8/xdxs29L/d8ePhhReKwx8l6W2krhOLMnMjMHW3tlcpjnoZmJtvhlGjai523dq1jIzgvlmzeGbLFj71618za/RojtzbuhGwcyfccQeccMKAy5OkVjM8B25v2ABr1sDo0f0utrlS4advvMEnOjsZ29bG7LFjOX3CBP5vrVH6mDHwq181sWBJ2v8NT6AvW1Ycblhj7nzFtm20A4f3OcX/XaNG8UKtQxNHjYLly4uTjyTpbWJ4An3dumL+vIZNlQrjdjv7c3xbGxtrrdvWVnxZ1BrJS1KJ7Nfnyo/dQ3hv3EPI71GER7pIelsZnkCfMKGuQxUP7+hgJ8XUyy7PbN269x2iu2QWO0bHjx9koZLUOoYn0I8+GnbsqDmCHtPWxpkTJnBjTw+bKxUe2bSJf3rjDf5jrRORtm0rrsA4dmwTi5ak/dvwBHpnZzFK37695qKfnz6drZUKc595hi+sWsVV06fXHqFv2gQnndSkYiWpNQzPDS4i4MILi+ue17hJxcT2dr522GGNbb+9vbjglyS9jQzfTtE/+qO3blrRTJs3F5fVPe205m5XkvZzwxfo73gHfOhDzT20MBO2bIGrrvJmF5LedoY39b70JTjgAHjzzeZsr7cXTj8dzj+/OduTpBYyvIE+cSJ85zvF402bBretDRvg0EPh+uubd/VGSWohwz8vcdJJcMstRQj39jZ+MlClAuvXF2F+550wdWrtdSSphIY/0AFOPhnuvbe4OmJvb3Hz51rBXqkUo/LXXy+OmPmbv4Hp0/dNvZK0H4rch6fHR0QPsHwQm5gGrGtSOfsj+9f6yt5H+zc83pGZnbUW2qeBPlgR0Z2ZXcNdx1Cxf62v7H20f/u3/WPKRZI0aAa6JJVEqwX6wuEuYIjZv9ZX9j7av/1YS82hS5L2rtVG6JKkvdhvAz0iboqIVyLi8T5tB0TE/RHxbPX3lOGscTAi4rCI+FlEPBkRT0TEp6rtpehjRIyOiCUR8Ui1f1+uth8REQ9ExHMRcUdE9H+5zf1cRLRHxMMR8bfV56XpX0S8FBGPRcTSiOiutpXi8wkQEZMj4u6IeDoinoqI97d6//bbQAf+D3DObm2fB/4xM98F/GP1eavaAXwmM98NnAJ8MiLeTXn6uBU4MzNPBGYD50TEKcCfA1/PzHcC64GPDmONzfAp4Kk+z8vWvw9k5uw+h/KV5fMJ8A3g7zLzGOBEin/H1u5fZu63P8BM4PE+z5cBB1cfHwwsG+4am9jXHwNzy9hHYCzwEPBbFCdtjKi2vx/4++GubxD9mkHxH/2ZwN8CUbL+vQRM262tFJ9PYBLwItX9iGXp3/48Qt+TgzJzTfXxWuCg4SymWSJiJvAe4AFK1MfqdMRS4BXgfuB5oDczd1QXWQkcOlz1NcH/Bj4L7Lqo/1TK1b8E7ouIByNiQbWtLJ/PI4Ae4PvVKbPvRsQ4Wrx/rRbov5HFV2jLH6ITEeOBHwJXZubrfV9r9T5m5s7MnE0xkj0ZOGaYS2qaiDgXeCUzHxzuWobQaZl5EjCPYkrwP/R9scU/nyOAk4BvZ+Z7gI3sNr3Siv1rtUB/OSIOBqj+fmWY6xmUiBhJEea3ZubianOp+giQmb3AzyimICZHxK5bH84AVg1bYYPz28B5EfEScDvFtMs3KE//yMxV1d+vAPdQfCmX5fO5EliZmQ9Un99NEfAt3b9WC/S/Bi6tPr6UYt65JUVEAN8DnsrM/9XnpVL0MSI6I2Jy9fEYiv0DT1EE+64bvrZs/zLzqsyckZkzgYuAn2bmRyhJ/yJiXERM2PUYOBt4nJJ8PjNzLfDriDi62jQHeJIW799+e2JRRCwCzqC4+tnLwLXAj4A7gcMprtp4YWa+Nlw1DkZEnAb8AniMt+Zgv0Axj97yfYyIE4CbgXaKgcOdmfk/IuJIihHtAcDDwMWZuXX4Kh28iDgD+LPMPLcs/av2457q0xHAbZn5lYiYSgk+nwARMRv4LtABvABcRvWzSov2b78NdElSY1ptykWStBcGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkn8f9/0izGPYzYeAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGL5JREFUeJzt3X2UVfV97/H3dx5hYBgERp4JWBXjSgXj1IerTVqIxQeWslov1SZZNAtDmuZetbmNl5ibriZNl7pSr7FN00j1JrPSqBiq1XpblRCT2MSFd3jIrfKgRAF5GBgRBgRhmDnf/vHbI2Q6M2efM+cwe37zea0165y9z96//eWsw2d+8zu/vbe5OyIiMvRVDHYBIiJSGgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkElVn8mATJkzwmTNnnslDlteJE7B9O5w8CRUVYJZuP3fo6oKaGpg5E2pry1mliAxx69ate9vdG/Ntd0YDfebMmbS0tJzJQ5bP1q2weDFMmgQNDcW1cfgwVFbCI4/A+eeXtj4RiYaZ7UiznYZcinHgAPzBH8Dx48WHOcCYMfDee/Dxj8M775SuPhEZlhTohXKHL30JDh2C+vqBt1dfH8L8y18ObYuIFEmBXqgXX4Qf/nBgPfOeGhrguefg5z8vXZsiMuwo0Av17W+HLz8r+n/rHn/nHT755ptcsWULf75nT/9tdn+h+uCDJSxURIYbBXoh3noLXn451VDLhKoqlk6YwA1pe/L19fDSS7B79wCLFJHhSoFeiPXrQ286T+8cYN6YMfxWfT0NlZXp2u7upa9fP8AiRWS4UqAXYv166OwsX/snT8KGDeVrX0SipkAvxGuvhZOByqWmJhxDRKQICvRCdHSkPxu0GBUV4RgiIkVQoBdi5EjI5crXfi4HdXXla19EoqZAL8ScOal70F3udORy5IAc0JHL0ZXvxKGODrjoogGXKSLD0xm9lsuQd9FFqcfQH377bVa8/fb7y//S3s6yCRNY1tjP9XVqauDXf32gVYrIMKVAL8Rv/MapKyXmmY64rLGx//Duqavr1DFERIqQasjFzP7EzF41s1fM7FEzG2Fms8xsrZltM7OVZlbG6R8ZMW4cXHttuEpiqR0+DAsXwtixpW9bRIaFvIFuZlOB24Amd/8QUAncDNwL3O/u5wIHgaXlLDQzPvOZMBullPPROztDm5/+dOnaFJFhJ+2XolXASDOrAuqAvcA8YFXyejOwqPTlZdCFF8Ktt8KRI6W5OqJ7aOszn4ELLhh4eyIybOUNdHffDfwVsJMQ5O3AOuCQu3d3U3cBU8tVZObccQfMng3t7QNrxz20ccEFcNttpalNRIatNEMuZwE3ArOAKcAo4Jq0BzCzZWbWYmYtbW1tRReaKbW18A//ALNmwcGDxc1Nz+XCvr/2a/C975X3DFQRGRbSDLl8DHjT3dvc/STwBHAlMDYZggGYBvR6mUB3X+HuTe7e1FjIrI+sGzcOVq2CBQtCL/vYsXT7uYdt29vhuuvgBz8IbYmIDFCaQN8JXG5mdWZmwHxgE/ACcFOyzRLgqfKUmGENDfC3fwvf+laYndLeHnrdJ0786vi6e1h38GCYzTJ2bLiu+je/GW5DJyJSAuYpvtgzs68Avw90AhuAWwlj5o8B45J1n3D3E/2109TU5NHcJLqnXC7ccWjlSli3Dvbtg6rkD5iuLpg4ES65BG6+GS6/PNUleEVEAMxsnbs35d0uTaCXStSB3tO774Yeu1nohY8ePdgVicgQlTbQdaZouYwerRAXkTNKf/eLiERCgS4iEgkFuohIJBToIiKRUKCLiERCgS4iEgkFuohIJBToIiKRUKCLiERCgS4iEgkFuohIJBToIiKRUKCLiEQiu1dbzOVgxw7YvBna2sI1xUePhnPPDffgrKsb7ApFRDIle4H+1lvw6KPhnp3Hj4d1J0+Gx8rKcNOIkyfhqqvg1lvhyit1swgREbIU6CdOwAMPwN//feidjxrV9+3Zuu8O9POfw+zZ8I1vhJ67iMgwlo2u7c6dcM018OCDIcjPOgtqavrevqIi3M9zzBjYuhWuvx4ee+zM1SsikkF5A93MZpvZxtN+DpvZHWY2zsxWm9nryeNZRVWwcyf83u/Brl0hyKsK+KPBLAR7bS186Uvw3e8WVYKISAzyBrq7b3X3ue4+F7gEOAY8CSwH1rj7ecCaZLkw770Hn/wkHDoUgrlYNTXhC9OvfQ1++tPi2xERGcIKHXKZD/zS3XcANwLNyfpmYFHBR7/vvtAzH0iYd6uuDsH++c/D4cMDb09EZIgpNNBvBh5Nnk90973J81ZgYkEtvfEGNDf3/cVnMerq4OBB+OY3S9emiMgQkTrQzawGuAH4Qc/X3N0B72O/ZWbWYmYtbW1tp1743vfCbJXKyn6Pe7iriz/dtYurtmxh4bZtPNve3n+ho0fD978fhnNERIaRQnro1wLr3X1fsrzPzCYDJI/7e9vJ3Ve4e5O7NzU2NoaVHR2wcmUI3zzuaW2l2oznzz+fr02Zwt2trbxx4kTfO1RXh/ZXry7gnyYiMvQVEui3cGq4BeBpYEnyfAnwVOqWtm0LvfPq6n43ey+X40dHjvDZxkbqKiqYW1fHR+vr+b/5eum5HLz0UupyRERikCrQzWwUcDXwxGmr7wGuNrPXgY8ly+ls2hRO5c9jZ0cHlcCM0+akn1db238PHWDECGhpSV2OiEgMUk36dvejwPge6w4QZr0Ubs+eU6fz9+NYLseoHqf1j66o4Ggu1/+O1dWwd2//24iIRGZwzhTt7AwnBeVR10t4H+0l5P8Ts1R/AYiIxGRwAr2+PtVmM2pq6CIMvXR77cQJzqmt7X/Hrq5wCQERkWFkcAL9vPPC6fp5jKyoYF59Pd9ua+O9XI5fHDvGT44c4fp8JyKdOBEusSsiMowMTqB/8INh2MV7nbr+K5ZPmsSJXI6rX3uNu3bv5ouTJuXvoXd0wGWXlahYEZGhYXAun3v22aGX/uabeeeij6ms5L7p09O37R5OVppf3Pe1IiJD1eD00M3gj/6oPF9cvvtuGG658MLSty0ikmGDdz30BQtCT/3dd0vXZi4XhnK+8IXStSkiMkQMXqCPGBHuUNTZWbqeens7LFwIH/1oadoTERlCBveORU1N8LnPhcvdDjTU29th+nT46ldLU5uIyBAz+Legu+MO+NSnQqjnO6W/N7lcuGTulCnhNnSluLa6iMgQNPiBbhZuH3fvvafCOU1v3R2OHg098wUL4J/+CSZNKn+9IiIZNfiBDiHUb7oJfvjDcMPno0dDsB8+HOaUu4efrq7w2oED4bWpU8ONpb/1rXA/UhGRYWxw5qH3ZfJk+Ou/DoH9z/8MP/sZbNwIb78dAn3kSJg9Gy69FK67DubMSXVNGBGR4SBbgd5t/Hj4wz8MP3DqjFKFt4hIn7IZ6D0pyEVE8srGGLqIiAyYAl1EJBIKdBGRSCjQRUQikfYm0WPNbJWZbTGzzWZ2hZmNM7PVZvZ68qiJ4CIigyhtD/0B4Fl3vwCYA2wGlgNr3P08YE2yLCIigyRvoJtZA/AR4GEAd+9w90PAjUBzslkzsKhcRYqISH5peuizgDbgO2a2wcweMrNRwER335ts0wpMLFeRIiKSX5pArwI+DPydu18MHKXH8Iq7O9DrDULNbJmZtZhZS1tb20DrFRGRPqQJ9F3ALndfmyyvIgT8PjObDJA87u9tZ3df4e5N7t7U2NhYippFRKQXeQPd3VuBt8xsdrJqPrAJeBpYkqxbAjxVlgpFRCSVtNdy+e/A982sBngD+BThl8HjZrYU2AEsLk+JIiKSRqpAd/eNQFMvL80vbTkiIlIsnSkqIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikUh1T1Ez2w4cAbqATndvMrNxwEpgJrAdWOzuB8tTpoiI5FNID/233X2uu3ffLHo5sMbdzwPWJMsiIjJIBjLkciPQnDxvBhYNvBwRESlW2kB34HkzW2dmy5J1E919b/K8FZjY245mtszMWsyspa2tbYDliohIX1KNoQNXuftuMzsbWG1mW05/0d3dzLy3Hd19BbACoKmpqddtRERk4FL10N19d/K4H3gSuBTYZ2aTAZLH/eUqUkRE8ssb6GY2yszqu58DvwO8AjwNLEk2WwI8Va4iRUQkvzRDLhOBJ82se/tH3P1ZM/t/wONmthTYASwuX5kiIpJP3kB39zeAOb2sPwDML0dRIiJSOJ0pKiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkUge6mVWa2QYzeyZZnmVma81sm5mtNLOa8pUpIiL5FNJDvx3YfNryvcD97n4ucBBYWsrCRESkMKkC3cymAdcDDyXLBswDViWbNAOLylGgiIikk7aH/g3gTiCXLI8HDrl7Z7K8C5ha4tpERKQAeQPdzBYC+919XTEHMLNlZtZiZi1tbW3FNCEiIimk6aFfCdxgZtuBxwhDLQ8AY82sKtlmGrC7t53dfYW7N7l7U2NjYwlKFhGR3uQNdHf/ortPc/eZwM3Aj9z948ALwE3JZkuAp8pWpYiI5DWQeej/E/i8mW0jjKk/XJqSRESkGFX5NznF3X8M/Dh5/gZwaelLEhGRYuhMURGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYlE3kA3sxFm9rKZ/cLMXjWzryTrZ5nZWjPbZmYrzaym/OWKiEhf0vTQTwDz3H0OMBe4xswuB+4F7nf3c4GDwNLylSkiIvnkDXQP3k0Wq5MfB+YBq5L1zcCislQoIiKppBpDN7NKM9sI7AdWA78EDrl7Z7LJLmBqH/suM7MWM2tpa2srRc0iItKLVIHu7l3uPheYBlwKXJD2AO6+wt2b3L2psbGxyDJFRCSfgma5uPsh4AXgCmCsmVUlL00Ddpe4NhERKUCaWS6NZjY2eT4SuBrYTAj2m5LNlgBPlatIERHJryr/JkwGms2skvAL4HF3f8bMNgGPmdnXgA3Aw2WsU0RE8sgb6O7+/4GLe1n/BmE8XUREMkBnioqIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISiTQ3iZ5uZi+Y2SYze9XMbk/WjzOz1Wb2evJ4VvnLFRGRvqTpoXcC/8PdLwQuBz5nZhcCy4E17n4esCZZFhGRQZI30N19r7uvT54fATYDU4EbgeZks2ZgUbmKFBGR/AoaQzezmcDFwFpgorvvTV5qBSaWtDIRESlI6kA3s9HAPwJ3uPvh019zdwe8j/2WmVmLmbW0tbUNqFgREelbqkA3s2pCmH/f3Z9IVu8zs8nJ65OB/b3t6+4r3L3J3ZsaGxtLUbOIiPQizSwXAx4GNrv7/z7tpaeBJcnzJcBTpS9PRETSqkqxzZXAJ4F/N7ONybq7gHuAx81sKbADWFyeEkVEJI28ge7u/wZYHy/PL205IiJSLJ0pKiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgk0sxDFxGRtA4fhn/9V3jxRdi4Efbtg64uqKuD88+Hyy6DBQtgzhywvmaEF0eBLiJSCgcOwH33wRNPQGdnWDdyJNTXh+Du6oLNm2HDBnjoIfjAB+DOO+Hqq0sW7BpyEREZqOeeg3nzYOVKGDECxo4NP7W1UFERAruqCkaNgvHjYcwY2L0bPvtZ+OM/hnfeKUkZCnQRkWK5w9/8TQjlzk4466wQ3PmYhXBvaIDnn4cbboA9ewZcjgJdRKRY3/kO3H9/GFYZObLw/Ssqwi+B1lZYvHjAPXUFuohIMTZtgrvvDmGeplfen7FjYe9euOuu0OsvkgJdRKRQnZ1w++1h6KS6ujRtNjTA6tVhCKZICnQRkUL95CewfXvonZdKRQXU1MDXv150L13TFkVECrViReid9zPdsCOX457WVl4+dozDXV1Mq67mv519Nv9l9Oi+262rgx07wvz1iy8uuCz10EVECnH4MLS05O2ddwGTqqtZMWMGPz7/fD7b2Mjy3bvZ09HR905mYTjnueeKKk09dBGRQmzZEsbN85wMNLKigmWn3Uf5N+vrmVJdzZbjx5lSU9P3jiNGwNq1RZWmHrqISCG2bYOTJwve7Z3OTnZ2dHBObW3/G9bWwtatRZWmQBcRKcTRo+E0/gJ0uvO/9uxhYUMDM/MFemUlvPdeUaXlDXQz+z9mtt/MXjlt3TgzW21mryePZxV1dBGRoaaysqBrr+Tc+bM9e6gC7pw0Kf8O7uEYRUjTQ/8ucE2PdcuBNe5+HrAmWRYRid/EiWF6YQruzl/s3cuBzk6+Pm0aVWl+EZw8CWefXVRpeQPd3X8K9Dwf9UagOXneDCwq6ugiIkPNBz+YetO7W1t5s6OD+6dPp7Yi5Qj38eNFTVmE4me5THT3vcnzVmBiXxua2TJgGcCMGTOKPJyISEbMnBm+uOzo6LenvvfkSZ44dIgaMxa8/vr76++aNIlrGxr6bt8drrqqqNIGPG3R3d3M+jytyd1XACsAmpqair9IgYhIFlRUwCc+AQ8+2G+gT66upqWA3jwQ5qBXVsJ11xVXWlF7wT4zmwyQPO4vsh0RkaHnlltC8HbfyKJUjhyBRYvCdV2KUGygPw0sSZ4vAZ4qsh0RkaFn+nRYtiwE8ACujvgrjh8P10j/wheKbiLNtMVHgZeA2Wa2y8yWAvcAV5vZ68DHkmURkeHjttvgnHPCpQAGqrMzzD2/+26YMKHoZvKOobv7LX28NL/oo4qIDHU1NdDcHIZIDh4sepiEzs7wS+G22+D66wdUks4UFREp1pQp8OST4YbPBw8WNqbuHoL86FFYvjxcX32AzEs1/pPmYGZtwI4zdsDeTQDeHuQa0lKt5TOU6lWt5TNU6v2Auzfm2+iMBnoWmFmLuzcNdh1pqNbyGUr1qtbyGWr15qMhFxGRSCjQRUQiMRwDfcVgF1AA1Vo+Q6le1Vo+Q63efg27MXQRkVgNxx66iEiUog10MxthZi+b2S/M7FUz+0qyfpaZrTWzbWa20szSXdj4DDCzSjPbYGbPJMtZrnW7mf27mW00s5ZkXSZvfGJmY81slZltMbPNZnZFhmudnbyn3T+HzeyODNf7J8n/r1fM7NHk/10mP7dmdntS56tmdkeyLpPva7GiDXTgBDDP3ecAc4FrzOxy4F7gfnc/FzgILB3EGnu6Hdh82nKWawX4bXefe9q0r6ze+OQB4Fl3vwCYQ3iPM1mru29N3tO5wCXAMeBJMlivmU0FbgOa3P1DQCVwMxn83JrZh4BPA5cSPgMLzexcMvi+Doi7R/8D1AHrgcsIJxFUJeuvAJ4b7PqSWqYRPlDzgGcAy2qtST3bgQk91m0FJifPJwNbM1BnA/AmyfdFWa61l9p/B/hZVusFpgJvAeMIlxF5BliQxc8t8F+Bh09b/jJwZxbf14H8xNxD7x7C2Ei4vO9q4JfAIXfvPj93F+FDmQXfIHzAcsnyeLJbK4ADz5vZuuQmJlDAjU/OoFlAG/CdZDjrITMbRTZr7elm4NHkeebqdffdwF8BO4G9QDuwjmx+bl8BftPMxptZHXAdMJ0Mvq8DEXWgu3uXhz9dpxH+1LpgkEvqlZktBPa7+7rBrqUAV7n7h4Frgc+Z2UdOf9FDlycLU6iqgA8Df+fuFwNH6fFndYZqfV8y7nwD8IOer2Wl3mS8+UbCL80pwCj+8/2HM8HdNxOGgp4HngU2Al09tsnE+zoQUQd6N3c/BLxA+PNvrJl1X2VyGrB70Ao75UrgBjPbDjxGGHZ5gGzWCrzfO8Pd9xPGeC8lmzc+2QXscve1yfIqQsBnsdbTXQusd/d9yXIW6/0Y8Ka7t7n7SeAJwmc5k59bd3/Y3S9x948QxvZfI5vva9GiDXQzazSzscnzkcDVhC/DXgBuSjbLxM053P2L7j7N3WcS/sz+kbt/nAzWCmBmo8ysvvs5Yaz3FTJ44xN3bwXeMrPZyar5wCYyWGsPt3BquAWyWe9O4HIzqzMz49R7m9XP7dnJ4wzgd4FHyOb7WrRoTywys4uAZsI37xXA4+7+VTM7h9ALHgdsAD7h7icGr9JfZWa/Bfypuy/Maq1JXU8mi1XAI+7+l2Y2HngcmEG4quZid39nkMp8n5nNBR4CaoA3gE+RfCbIWK3w/i/JncA57t6erMvqe/sV4PeBTsJn9FbCmHkWP7cvEr6bOgl83t3XZPV9LVa0gS4iMtxEO+QiIjLcKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEv8BP2MHC9hYLwwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -603,20 +606,20 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "order = (0, 1, 2) Distance = 112.0\n", - "Best order from brute force = (0, 1, 2) with total distance = 112.0\n" + "order = (0, 1, 2) Distance = 201.0\n", + "Best order from brute force = (0, 1, 2) with total distance = 201.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1NX+x/HXAUEFF1zINderpXXVDCu9tml6rVvadlGzXNLUVgt3S00BF1xS3BFkERTQNH92bbFr3nYNl9TUXEMBFxRZZBtgzu+PQTJTGWBgFj7Px8OH8J3v8vkqvud45pzvUVprhBBC2D8naxcghBDCMiTQhRDCQUigCyGEg5BAF0IIByGBLoQQDkICXQghHIQEuhBCOAgJdCGEcBAS6EII4SCqVOTF6tevr1u0aFGRlxRCiPJXUABJSZCWZvreyQmUuvX+WpuOcXKCRo2gbt3bnn7Pnj2XtNaexZVRoYHeokUL4uLiKvKSQghRvn77DV5+GWrWhCZNTCFtLoMBMjOhQwdYvhyqVbvpbkqpeHNOJ10uQghRWsePg7c3pKeDh0fJwhzA1dV03M6d8NprpoAvAwl0IYQojexsGDbM9HvNmqU/j1JQpw58/z0sWFCmkiTQhRCiNObPh3PnoFatsp9LKdN51qyB/ftLfRoJdCGEKKmEBIiIsEyYX1OliinYp08v9Skk0IUQoqSio8FoBGfn2+4Wm5LCK6dP0/XoUT5MSir+vDVrwq+/mj5oLQUJdCGEKAmtISoK3N2L3bV+lSoMr1+fvrVrm3dupUxvFB9/XKrSKnTYohBC2L3z5+HqVTAjpHsUdskczs7mYn6+eeevWhV+/LFUpUkLXQghSuLIkWK7WsqkWjU4dszUUi8hCXQhhCiJK1dMszzNYNSajIwM8s1tnYPpzSI/3zQcsoSky0UIIUpC69u8pMnOySErM5PMrCyuZmSQX1BAdo0at5wFekulaKFLoAshREnUqlXU5aKBnOsCPCsrC1dXV6pVrUp+Xh5Vq1WjVZMmfJ+eTra5rXSj0fThqJtbiUuTQBdCCDMZjUbOVKtG3bQ00lJTycrMpIqLC+5ubnh4eNC4USPSMzJITk6mbt26eNStiwaMhb8MRiPOSuF8uwd35eRA69al6qeXQBdCiFvQWhMfH09cXBw///wze/bsoVaNGqwyGqnt7k6jhg2pUsUUo7kGAwkJCQC0aN6cqlWrEpScTNClS0Xn25aWxsj69RnpeZsHJ+bkwAMPlKpeCXQhhCiktSYxMZG4uLiiX1WqVKFLly488sgj+Pj40KBBA5g6FdatgypVMGrN5cuXSUlJwdPTkzp16nCt/T3S0/P24f3XAkwt8+eeK1X9EuhCiErtwoULRS3wuLg48vPz8fLyokuXLrz++us0btwYdWMXySuvQHQ02VlZJJ0/j4uLC61atsTFxaVsxWRmQrNmcN99pTpcAl0IUalcvny5qPX9888/c/XqVby8vPDy8mLo0KE0b978rwF+g+w77+Row4Y0iIujftOm1Kpdm9sfYQajEfLyTK3/Yq5/KxLoQgiHlpqayt69e4ta4JcvX+a+++6jS5cu9O/fn1atWuFUgueY7969G39/f7o88ACT0tKokpdX9iK1htRU6NcPHnus1KeRQBdCOJSMjAz27dtX1AJPSkqiU6dOeHl5MXPmTO66664SBfg16enpLFq0iF27djF58mS6d+8OP/9sWq0oK6tUwwwBU5inpUGbNjBjRunOUcisQFdKvQeMwDTs8iAwDAgBvIA8YDcwSmttgbcqIYQwX1ZWFvv37y/qRvn999+599576dKlC1OmTKFdu3ZFI1FKa8eOHQQEBNCjRw82bNiA27Xw7tIFQkNhxAhTC7t27ZJ1lxQUmFY7uusuiIws8+N4lb7NrCcApVQT4DugvdY6WykVC2wDLgKfFe62DvhGa73idufy8vLSsqaoEKIscnNz+eWXX4oC/Pjx47Rr166oH/zee+/F1dXVItdKTk4mICCA06dPM3XqVDp27HjzHX//Hd57Dw4cMC0r5+Z2+2A3Gk2tcicnePVV07G3mUmqlNqjtfYqrl5z37aqANWVUnmAG5Cktf7yuovtBpqaeS4hREVJTjY9TOrwYdPXTk7QoAG0bw/t2pmWPrNxeXl5HDp0qKgP/MiRI7Rp0wYvLy9Gjx5Nhw4dqFbSafXF0FqzZcsWli5dyvPPP4+/v//t3yRatDA98nbzZtNiz2fOmELbyckU8GD6Pjf3jwlDvXrBm2/C3/9usbqLbaEDKKXGAP5ANvCl1nrQda+5ALuAMVrrb29y7EhgJECzZs3uj483a/FqIURpFRTAjh0QFAT79plWwrlx8eGqVU0PgOre3dRd0K1bqUdWWFpBQQGHDx8u6gM/dOgQLVq0KGqBd+rU6Y8uj3Jw9uxZ/P39ycrKYurUqbRp06ZkJ9AaDh40/dnv3g2nTpn+rN3doUMH6NzZ9Od9xx1mn9LcFro5XS51gI+B/kAqsAHYqLWOLHx9NZCptX63uItJl4sQ5ezkSXj3XVOr3MnJtALOrYLaaDT13yplmpk4bx40blyx9WKaTn/s2LGiFvj+/ftp3Lhx0Vjw++67j5plWYTZTAUFBaxbt46wsDCGDRvGwIEDcS7Px+SWgCW7XJ4ATmutkwtPvAnoBkQqpaYDnsCoshQrhLCATz6BiRNNQW3Oh3NOTuDhYWpR7tpl6gJYsQIeeaRcyzQajZw6daqoBb5v3z7q1auHl5cXffv2ZcaMGXh4eJRrDTc6duwYvr6+1KhRg/DwcJo2tc8eZHMC/QzwkFLKDVOXS08gTik1Avgn0FNrXfLnPAohLGfjRlOYu7v/0WdrLqVMwZ6dbep+CQ62aKhrrTlz5kxRC3zPnj24u7vj5eVF7969mTx5MvXr17fY9UrCYDAQHBzM5s2befvtt3nmmWeKnVRky8ztQ5+BqcslH9iHaQhjJhAPZBTutklrPfN255EuFyHKwYED8MILUL16ycP8RtnZphb755+bpqCXgtaapKSkP02nd3Z2pkuXLkX94A0bNixbnRawb98+/Pz8aN26NRMmTLDam4o5LNaHbkkS6EJYWG4u9O4N586VeQxzkdRU6NQJYmNN3TJmuPY8lGu/DAbDnwK8SZMmNtPyzczMZMmSJfzvf/9jwoQJPP7449YuqViWHrYohLBF69ZBQoJlhx/Wrg3798OXX0KfPjfdJSUl5U8t8IyMDO6//368vLwYMmSIWc9DsYZvv/2WOXPm0LVrV2JjYyvkw9aKJIEuhL0yGk1DE4sZg20wGplz/jy7s7JILyigqYsLb91xB91q1Lj5AUqZxkqvWlUU6GlpaezZs6eoBZ6cnEznzp3x8vLC29ub1q1bl2o6fUVJSUlh/vz5HD58mA8//JAuXbpYu6RyIYEuhL2Ki4PLl4vtaikAGrq4ENSsGQ1dXPj+6lUmJSYS3bIljW/R517g5kbuzz8T9cEHfH3qFImJiXTs2BEvLy9mzJhR6uehVDStNZ999hmLFi3iX//6F9OmTbP4JCRbIoEuhL365RfThJViVHdy+tMiCw/XrEljFxeO5uQUBXqB0Uh2VpZpXczMTHINBuo4O9MiPZ1JkybRvn37Mj8PpaKdO3eO2bNnk5yczKJFi2jfvr21Syp39vU3JIT4w+7dplmgJZSSn88Zg4GGBQVcTE4mKzOTnNxcqlWrhrubG3c0aED16tVxSkmhV/36ptmNdsRoNLJhwwaCgoIYNGgQgwcPtrs3o9KqHHcphCNKTCxRoOfl53PpyhUmXLzIg0Yjbmlp4O6Op6cn1d3ccLrxQ0wXF9MHrnbk1KlT+Pn54eTkxJo1a2jevLm1S6pQEuhC2Cuj0eznr2RcvUpiUhLLtaZGtWrMadGCquZMay8oKGORFSMvL4+wsDCio6N5/fXXef755+2ij9/SJNCFsFe1a5se23obGrh86RIpKSlEVqtGrtYE3nknVc0JO6PRLp7GeOjQIXx9fWnUqBHr1q0zLeJcSUmgC2GvOnc29aPfYvihsXDGZp7BQIy7Owl5eSxv1sy8MAfTjNHOnS1YsGVlZ2ezYsUKPv/8c8aOHUvv3r1tcux7RZJAF8Jedepk6ue+iby8PM4mJFC1alVcmzRhy8mTuCrFP48fL9pnSsOGPFm79q3PX6UK3H23pau2iF27duHv70+nTp2IjY2t8Id52SoJdCHsVbdupglA+fl/+nA0KzubhIQE6tatS7169VBAXLt2JTt3To5pfPutVuixkvT0dBYuXEhcXBxTpkyhW7du1i7JplS+Tw2EcBQ1a5oeypWRUbQpNS2NhLNnadSoEfULw7xUsrNNS6PZyPPAtdZ89dVXeHt74+7uTmxsrIT5TUgLXQh7NmoUbNyINhi4cOUKV69epXnz5lStWrX058zONrXOBw60XJ1lcPHiRebOncuZM2cICAigg52Ni69I0kIXwp7deSdZPj5cio8nNyeHli1alC3MjUZTd8v8+aZnpFuR0Whk06ZNvPTSS7Rp04aoqCgJ82JIC10IOxYfH4/PZ58xrX17Oly4gCrL2OtrK9G//DL07Gm5IkvhzJkz+Pn5kZuby8qVK/nb3/5m1XrshbTQhbBTP/zwAyNGjGDw0KF0/N//UE88YXqWeV5eyU+Wm2sK8/79Yfp0yxdrpoKCAiIiIhg2bBiPPfYYoaGhEuYlIC10IeyM1pqoqCgiIyOZP38+Ha+NRFmxAkJCYMECuHrV1A9e3Iea+fmmD1WrVYM5c+DFF82efWppx44dY+bMmdSqVYu1a9fS2AoLVts7CXQh7IjBYMDf35/jx48TFhb256XcnJ1h5EhTd8lHH5kWqCgoMAV0tWp/hHt+vqmf/Npzz198EcaMASsFaG5uLqtXr2bLli288847PP3005V+glBpSaALYSeSk5MZP348DRs2JCQkhOrVq998x9atYelSSE6Gr74yzSbdt8/UHePkBJ6ecP/98MAD8MQTpkcIWMnevXvx8/Ojbdu2REdHU69ePavV4ggk0IWwA4cPH2bcuHG88MILvPrqq+a1YD09TUMPbWT44fWuXr1KYGAg3333HRMnTuTRRx+1dkkOwawPRZVS7ymlflVKHVJKrVdKVVNKtVRK7VJKnVBKxSilyrjcuBDiZj777DPeeecdxo8fz/Dhw+2+O+Kbb77B29sbgJiYGAlzCyq2ha6UagK8A7TXWmcrpWKBAcBTwEda62il1EpgOLCiXKsVohIxGo0sW7aM7du3O8TQvZSUFObNm8fRo0fx9fXl/vvvt3ZJDsfcYYtVgOpKqSqAG3AO6AFsLHw9HHjW8uUJUTllZmbi4+PDwYMHiYiIsOsw11rzn//8hwEDBtCoUSOio6MlzMtJsS10rXWiUmo+cAbIBr4E9gCpWutrCxomAE3KrUohKpGzZ8/i4+ND586dGT9+vF0vn5aUlMSsWbNISUkhMDCQu2306Y2OotgWulKqDtAPaAk0BtyBPuZeQCk1UikVp5SKS05OLnWhQlQGu3fvZvjw4fTv35/JkyfbbZgbjUbWr1/PK6+8gpeXFxERERLmFcCcn5YngNNa62QApdQm4B+Ah1KqSmErvSmQeLODtdZBQBCAl5eXtkjVQjgYrTUxMTGsWbOG2bNn23WXxKlTp5g5cyaurq6EhobSrFkza5dUaZgT6GeAh5RSbpi6XHoCccDXwItANDAE2FJeRQrhyAwGA3PnzuXQoUOEhYXZ7QxJg8FAWFgYsbGxvPHGGzz77LOVcl1PazKnD32XUmojsBfIB/ZhanH/B4hWSvkVbgspz0KFcEQpKSmMHz+eOnXqEBoaipubm7VLKpWDBw/i6+tL06ZNWbduHXfccYe1S6qUzOqg01pPB258Ys8p4AGLVyREJXHs2DF8fHx4+umnGTlypF22ZrOysli+fDnbt29n7Nix9OrVy+7Hydsz+/sJEsIBfPXVV7zxxhuMGTOG0aNH22WY//jjj/Tv35+MjAxiY2NlkWYbYJ8foQthp4xGI6tXr2br1q0sW7aMu+66y9ollVhaWhoLFixg3759TJkyha5du1q7JFFIAl2ICpKVlcX06dO5fPkyERER1K1b19ollYjWmu3bt7NgwQJ69+5NTEyM3fb5OyoJdCEqQFJSEj4+PrRv3x5/f39cXe3r0UcXL15kzpw5JCQkMG/ePFkKzkbZX8edEHZm7969DBs2jGeffZapU6faVZgbjUY+/vhjXnrpJe6++24iIyMlzG2YtNCFKEebNm1i5cqV+Pr68uCDD1q7nBK5tq6nwWAgKCiIVq1aWbskUQwJdCHKQX5+PvPnzycuLo7g4GC7mi2Zn59PZGQka9euZcSIEfTv398uR+FURhLoQlhYamoqEydOpFq1aoSFhVGjRg1rl2S2o0ePMnPmTOrWrSvretohCXQhLOjEiRP4+PjwxBNP8NZbb9lNyzY3N5dVq1bx6aefMmbMGJ566ikZU26HJNCFsJCdO3fi5+eHj48PTz31lLXLMduePXvw8/OjXbt2REdH291wSvEHCXQhykhrzZo1a/j4449ZvHgx99xzj7VLMktGRgaBgYF8//33TJo0iUceecTaJYkykkAXogxycnKYMWMGiYmJhIeH4+npae2SzLJz504CAgJ4+OGHiY2Ntat+fnFrEuhClNKFCxfw8fGhdevWrF69mqpVq1q7pGJdvnyZgIAAjh8/jp+fH507d7Z2ScKC7OMTGyFszIEDBxgyZAh9+vRhxowZNh/mWmu2bt3KwIEDufPOO1m/fr2EuQOSFroQJfR///d/LFmyhA8//JB//OMf1i6nWElJSfj7+5OWlsaSJUvs8oFgwjwS6EKYqaCggMWLF/Pdd9+xevVqWrRoYe2SbstoNBIdHU1ISAhDhgxh0KBBODs7W7ssUY4k0IUwQ3p6OpMnTwYgLCyMWrVqWbmi2ztx4gS+vr5Uq1ZN1vWsRCTQhSjG6dOnGTt2LN27d2fMmDE23co1GAysWbOGjRs38uabb9KvXz+7mdwkyk4CXYjb+P777/nwww95++236du3r7XLua0DBw7g6+tL8+bNWb9+vd0MoRSWI4EuxE1orVm7di3r1q1jwYIFNv3I2KysLJYuXcqOHTsYP348PXr0kGn7lVSxga6UuguIuW5TK2AasBNYCVQD8oE3tNa7y6FGISqUwWDAz8+PU6dOER4eToMGDaxd0i398MMPzJo1iy5duhAbG2vzffuifBUb6Frr34BOAEopZyAR2AysBmZorT9TSj0FBACPlV+pQpS/5ORkxo0bR+PGjQkODqZatWrWLummUlNTWbhwIfv372fq1Kl296x1UT5K+mlJT+Ck1joe0MC15kBtIMmShQlR0X799VeGDBnCo48+yqxZs2wyzLXWfPHFF3h7e+Ph4UFMTIyEuShS0j70AcD6wq/fBb5QSs3H9MbQzZKFCVGRtm3bxsKFC5k6dSqPPvqotcu5qQsXLjB79mzOnTvHwoULuffee61dkrAxZrfQlVKuQF9gQ+Gm14H3tNZ3Au8BIbc4bqRSKk4pFZecnFzWeoWwKKPRSGBgICtXrmTlypU2GeZGo5ENGzYwaNAg7rnnHiIjIyXMxU0prbV5OyrVD3hTa9278Ps0wENrrZXpI/U0rfVtP5Hx8vLScXFxZa1ZCIu4evUq77//Pjk5OcydOxcPDw9rl/QXv//+O35+fhiNRj744ANZ17OSUkrt0Vp7FbdfSfrQB/JHdwuY+syvNWd6AMdLcC4hrOrMmTMMHTqUxo0bs2zZMpsL8/z8fNasWcPw4cPp1asXwcHBEuaiWGb1oSul3IFewKjrNr8GLFZKVQFygJGWL08Iy9u1axdTp05l1KhRvPDCC9Yu5y8OHz6Mr68vnp6eREZG0qhRI2uXJOyEWYGutc4E6t2w7Tvg/vIoSojyoLUmOjqa0NBQ5syZY3OPj83JyWHVqlX85z//4d133+XJJ5+UCUKiRGSmqKgUDAYDc+bM4fDhw4SFhdncavY///wz/v7+3HPPPbKupyg1CXTh8FJSUhg3bhz16tVjzZo1uLm5WbukIhkZGSxatIiffvqJSZMm8fDDD1u7JGHH5DFswqEdPXqUwYMH89BDDzF37lybCvMdO3bg7e2Ni4sLsbGxEuaizKSFLhzW9u3bmTt3LpMnT6Znz57WLqfI5cuXmTt3LidOnGDWrFncd9991i5JOAgJdOFwjEYjq1atYtu2bSxfvpy2bdtauyTgj3U9lyxZwnPPPYefnx+urq7WLks4EAl04VCysrKYOnUqqamphIeH28yHi4mJifj7+5ORkcGyZcts5k1GOBbpQxcOIykpiWHDhuHh4cHKlSttIswLCgqIjIxk8ODBdO3albCwMAlzUW6khS4cwp49e5g8eTLDhw/H29vbJsZvHz9+HF9fX9zc3AgPD6dp06bWLkk4OAl0Yfc2btxIUFAQfn5+PPDAA9YuB4PBQHBwMJs3b+att96ib9++NvEGIxyfBLqwW/n5+cybN4+9e/cSEhLCnXfeae2S2L9/P35+frRq1Yr169dTv359a5ckKhEJdGGXUlNTmTBhAm5uboSFheHu7m7VejIzM1m6dCk7d+4sWtdTiIomH4oKu3P8+HEGDx5Mhw4dWLhwodXD/LvvvsPb25vc3FxiYmIkzIXVSAtd2JWvv/4af39/xo0bR58+faxay5UrV1iwYAEHDx5k+vTpNtF/Lyo3CXRhF7TWhISEsGnTJgIDA2nfvr1Va/n888/56KOPePLJJ4mOjqZ69epWq0eIayTQhc3Lzs5mxowZnD9/noiICKt+0Hj+/HlmzZrFxYsXWbRokVXfWIS4kfShC5t2/vx5hg8fjqurK0FBQVYLc6PRSGxsLIMGDaJjx46sXbtWwlzYHGmhC5u1f/9+Jk6cyCuvvMKgQYOsNpb79OnT+Pr6opQiODiYli1bWqUOIYojgS5s0pYtW1i6dCkzZsygW7duVqkhLy+P8PBw1q9fz6hRo3jxxRdxcpL/1ArbJYEubEpBQQEfffQRP/zwA8HBwTRv3twqdfz666/4+vrSoEEDoqKiaNiwoVXqEKIkJNCFzUhPT2fSpEk4OzsTFhZGrVq1KryG7OxsVq5cyWeffYaPjw///Oc/Zdq+sBvy/0dhE06dOsWQIUNo06YNixYtskqY7969mwEDBpCSkkJMTAx9+vSRMBd2pdgWulLqLiDmuk2tgGla60VKqbeBN4EC4D9a6wnlU6ZwZN9++y0zZ87knXfe4Zlnnqnw66enp7No0SJ2797N5MmT+cc//lHhNQhhCcUGutb6N6ATgFLKGUgENiulHgf6AR211rlKqTvKtVLhcLTWREREEB0dzYIFC+jQoUOF17Bjxw4CAgLo0aMHsbGxNrXmqBAlVdI+9J7ASa11vFJqHjBHa50LoLW+aPHqhMPKzc3F19eX+Ph4wsPDueOOim0PJCcnExAQwOnTp5k7dy4dO3as0OsLUR5K2oc+AFhf+HVb4GGl1C6l1P+UUl1udoBSaqRSKk4pFZecnFyWWoWDuHjxIq+99hpGo5HVq1dXaJhrrfnkk0946aWXaNWqFevWrZMwFw7D7Ba6UsoV6AtMvu7YusBDQBcgVinVSmutrz9Oax0EBAF4eXn96TVR+Rw6dIgJEybw73//m6FDh1boh45nz57F39+frKwsli9fTps2bSrs2kJUhJJ0uTwJ7NVaXyj8PgHYVBjgu5VSRqA+IM1wcVPbtm1j4cKFTJs2jUceeaTCrltQUEBUVBTh4eG8+uqrDBw4UCYICYdUkkAfyB/dLQCfAI8DXyul2gKuwCUL1iYchNFoZOnSpfz3v/8lKCiIVq1aVdi1jx07hq+vLzVr1iQiIoImTZpU2LWFqGhmBbpSyh3oBYy6bvMaYI1S6hBgAIbc2N0iREZGBu+//z4Gg4GIiAhq165dIdc1GAysXr2aTz75hLfffptnnnlGxpQLh2dWoGutM4F6N2wzAC+XR1HCMZw5c4b33nuPBx98EB8fH6pUqZiJyfv27cPX15c2bdoQHR1NvXr1ij9ICAcgU/9Fufjxxx+ZNm0ar7/+Os8//3yFXDMzM5PAwEC++eYbJkyYwOOPP14h1xXCVkigC4vSWrN+/XrCw8OZO3cunTt3rpDrfvvtt8yZM4euXbsSGxtLzZo1K+S6QtgSCXRhMQaDgdmzZ3P06FFCQ0Np3LhxuV8zJSWF+fPnc/jwYWbMmIGXl1e5X1MIWyVjt4RFXL58mdGjR5OZmUlISEi5h7nWmm3btjFgwAAaNmxIdHS0hLmo9KSFLsrsyJEjjBs3jn79+jFixIhyH+N97tw5Zs2axaVLl2RdTyGuI4EuyuTLL78kICCAKVOm0KNHj3K91rV1PVevXs2gQYMYPHhwhY2cEcIeyL8GUSpGo7FoIYjly5fTtm3bcr3eqVOn8PX1xdnZmTVr1lhtJSMhbJkEuiixrKwsPvjgAzIyMggPD6du3brldq28vDxCQ0OJjY1l9OjRPP/88zJtX4hbkH8ZokQSExMZOnQo9erVY/ny5eUa5ocOHWLQoEEcOXKEqKgoWaRZiGJIC12YLS4ujilTpjBixAj+/e9/l9tU+uzsbFasWMHnn3/OuHHj6NWrl0zbF8IMEuiiWFprNm7cyOrVq/H396dLl5s++t4idu3ahb+/P506dSI2NhYPD49yu5YQjkYCXdxWXl4e8+bNY//+/axZs4amTZuWy3XS09NZuHAhe/bsYfLkyXTr1q1criOEI5MOSXFLV65c4c033+TSpUuEhoaWS5hrrfnqq6/w9vbG3d2dmJgYCXMhSkla6OKmjh8/ztixY+nTpw+jR48ulw8jL168yNy5czlz5gwBAQFWWSRaCEciLXTxFzt27OD111/nzTff5I033rB4mBuNRjZt2sRLL71E27ZtiYqKkjAXwgKkhS6KGI1GgoOD2bJlC4GBgeUypf7MmTP4+fmRm5vLqlWraN26tcWvIURlJYEuANNQwenTp5OcnEx4eDj169e36PkLCgqIjIwkIiKC4cOHM2DAABlTLoSFSaALzp07x9ixY2nbti2rVq3C1dXVouf/7bffmDlzJh4eHqxdu7b+HXsgAAAU70lEQVRCHqsrRGUkgV7J7du3j0mTJjF48GBeeukli07gyc3NJSgoiK1bt/LOO+/wr3/9SyYICVGOJNArsc2bN7N8+XJmzJhh8aGCe/fuxc/Pj7Zt2xIdHV2ujwgQQpgUG+hKqbuAmOs2tQKmaa0XFb4+FpgPeGqtL5VLlcKi8vPzWbhwIT/99BPBwcEWfXLh1atXCQwM5LvvvmPixIk8+uijFju3EOL2ig10rfVvQCcApZQzkAhsLvz+TqA3cKYcaxQWlJaWxqRJk3BxcSE8PNyia29+8803zJkzh+7duxMbG0uNGjUsdm4hRPFK2uXSEziptY4v/P4jYAKwxaJViXJx6tQpfHx8ePzxx3n77bctNsokJSWFefPmcfToUfz8/CpsYWghxJ+V9F/0AGA9gFKqH5Cotf7ldgcopUYqpeKUUnHJycmlLFOU1TfffMOoUaN47bXXGDNmjEXCXGvNp59+yoABA2jcuDHR0dES5kJYkdktdKWUK9AXmKyUcgOmYOpuuS2tdRAQBODl5aVLWacoJa014eHhxMTEsHDhQv7+979b5LxJSUnMmjWLlJQUAgMDufvuuy1yXiFE6ZWky+VJYK/W+oJS6u9AS+CXwmFoTYG9SqkHtNbny6FOUQq5ubnMnDmTs2fPEh4ezh133FHmcxqNRqKjowkJCeGVV17h5ZdflnU9hbARJfmXOJDC7hat9UGgKB2UUr8DXjLKxXZcvHiRsWPH0rx5c1avXk3VqlXLfM6TJ0/i6+uLq6sroaGhNGvWzAKVCiEsxaxAV0q5A72AUeVbjrCEgwcPMmHCBAYMGMDgwYPLPJnHYDAQGhrKhg0beOONN3j22Wdl2r4QNsisQNdaZwL1bvN6C0sVJMrm008/ZfHixUybNo2HH364zOc7cOAAfn5+NG3alHXr1lmk20YIUT6k89NBGI1GAgMD2blzJ6tWraJVq1ZlOl9WVhbLly9n+/btjBs3jieeeEKm7Qth4yTQHUBGRgbvv/8++fn5REREUKtWrTKd78cff2TWrFl07tyZ2NhYateubaFKhRDlSQLdzsXHx/Pee+/RtWtX3nvvvTKNOElLS2PBggXs37+fKVOm0LVrVwtWKoQob/LJlh374YcfGDFiBK+88grjx48vdZhrrfnyyy/x9vamdu3aREdHS5gLYYekhW6HtNZERUWxdu1aAgICuO+++0p9rosXLzJnzhwSEhKYP3++xSYeCSEqngS6nTEYDMyaNYtjx44RFhZGo0aNSnUeo9HI5s2bWbFiBd7e3sydOxcXFxcLVyuEqEgS6Hbk0qVLjB8/Hk9PT0JCQqhevXqpznNtXc+8vDyCgoLKPCJGCGEbJNDtxOHDhxk3bhzPPfccw4cPL9XEnvz8fNauXUtkZCSvvfYa3t7eMkFICAcigW4HvvjiC+bNm8eUKVPo0aNHqc5x5MgRfH19qVevnqzrKYSDkkC3YUajkRUrVvDFF1+wfPly2rZtW+Jz5OTkEBQUxKeffsq7777Lk08+KROEhHBQEug2KjMzk6lTp3L16lXCw8OpU6dOic8RFxeHv78/7dq1k3U9hagEJNBtUEJCAj4+PnTq1KlUo08yMjIIDAzk+++/Z9KkSTzyyCPlVKkQwpbIJ2I2Zvfu3bz66qt4e3szZcqUEof5zp076d+/P05OTsTGxkqYC1GJSAvdRmit2bBhA8HBwcyaNQsvL68SHX/58mUCAgI4fvy4rOspRCUlgW4D8vLyCAgI4MCBA4SGhtKkSROzj9Vas3XrVpYsWcKzzz5btACFEKLykUC3spSUFCZMmECtWrUIDQ3Fzc3N7GMTExPx9/cnPT2dZcuWlWoUjBDCcUgfuhUdO3aMIUOG0LlzZ+bPn292mBuNRqKiohg8eDAPPfQQ4eHhEuZCCGmhW8uOHTuYNWsWEyZMoHfv3mYfd+LECWbOnEn16tVlXU8hxJ9IoFcwo9FIcHAwW7ZsYcmSJbRr186s4wwGAyEhIXz88ce8+eab9OvXT6btCyH+RAK9AmVlZfHhhx9y6dIlIiIiqFfvlsu0/smBAwfw9fWlefPmrF+/Hk9Pz3KuVAhhj4oNdKXUXUDMdZtaAdOAJsAzgAE4CQzTWqeWR5GOICkpibFjx3L33Xfj5+dn1kiUrKwsli5dyo4dOxg/fjw9evSQaftCiFsq9v/sWuvftNadtNadgPuBLGAzsB24V2vdATgGTC7XSu3Y3r17GTZsGM888wzTpk0zK8x/+OEHvL29yc7OJjY2lp49e0qYCyFuq6RdLj2Bk1rreCD+uu0/AS9arCoHsmnTJlasWIGvry8PPfRQsfunpqayYMECfvnlF6ZOncqDDz5YAVUKIRxBSQN9ALD+Jttf5c/dMpVefn4+CxcuZNeuXYSEhBQ7GkVrzRdffMHChQvp06cPMTExpV7AQghROZkd6EopV6AvN3StKKXeB/KBqFscNxIYCVSaIXZpaWlMnDgRV1dXwsPDqVGjxm33v3DhArNnz+bcuXN89NFH3HPPPRVUqRDCkZRk3NuTwF6t9YVrG5RSQ4GngUFaa32zg7TWQVprL621V2UYnXHy5EkGDx5M+/btWbRo0W3D3Gg0smHDBgYNGsS9995LZGSkhLkQotRK0uUykOu6W5RSfYAJwKNa6yxLF2aPvvnmG2bOnImPjw9PPfXUbff9/fff8fPzw2g0yrqeQgiLMCvQlVLuQC9g1HWblwJVge2Foy9+0lqPtniFdkBrTWhoKBs3bmTx4sW3bWXn5+cTERFBVFQUo0aN4sUXX5QJQkIIizAr0LXWmUC9G7b9rVwqsjM5OTnMnDmThIQEwsLCuOOOO2657+HDh/H19cXT05OoqCgaNmxYgZUKIRydzBQtgwsXLjB27FhatmzJ6tWrqVq16k33y8nJYeXKlWzbtk3W9RRClBv5v34pHThwgKFDh9K7d29mzpx5yzD/+eef6d+/P8nJycTExPDUU09JmAshyoW00Eth69atBAYGMn36dLp3737TfdLT01m8eDE//fQTkydPvuV+QghhKRLoJVBQUMDixYv59ttvCQoKomXLljfdb8eOHcybN4/HHnuM2NhY3N3dK7hSIURlJIFupvT0dKZMmYLRaCQ8PJxatWr9ZZ9Lly4REBDAyZMnmT17Np06dbJCpUKIykr60M0QHx/P0KFDadmyJUuWLPlLmGut2bJlCwMHDqRFixasX79ewlwIUeGkhV6MH374genTp/PWW2/Rr1+/v7yekJCAv78/mZmZsq6nEMKqJNBvQWtNZGQkUVFRzJ8/n44dO/7p9YKCAtatW0dYWBjDhg1j4MCBODs7W6laIYSQQL8pg8GAn58fJ06cICws7C8TgI4dO4afnx9ubm6Eh4fTtGlTK1UqhBB/kEC/QXJyMuPGjaNRo0aEhIT86RG2BoOB4OBgNm/ezFtvvUXfvn1lTLkQwmZIoF/n8OHDjBs3jhdeeIFXX331T2G9f/9+fH19ad26NevXr6d+/fpWrFQIIf5KAr3QZ599xoIFC3j//fd5/PHHi7ZnZmaydOlSvv76ayZMmECPHj2sWKUQQtxapQ90o9HIsmXL2L59OytXruRvf/vjmWPfffcds2fP5sEHHyQ2NvamY8+FEMJWVOpAz8zM5P333ycrK4uIiAg8PDwAuHLlCvPnz+fQoUNMnz6dBx54wMqVCiFE8SrtxKKzZ88ydOhQGjZsyPLly/Hw8EBrzbZt2+jfvz+enp7ExMRImAsh7EalbKHv3r2bDz74gJEjR/Liiy8CcO7cOWbPnk1ycjKLFi2iffv2Vq5SCCFKplIFutaamJgY1qxZw+zZs7n//vsxGo1s3LiRVatWMWjQIAYPHkyVKpXqj0UI4SAqTXIZDAbmzp3LoUOHCAsLo3Hjxpw+fRpfX1+UUoSEhNCiRQtrlymEEKVWKQI9JSWF8ePHU6dOHUJDQ3FxcSE4OJjo6GhGjRrFCy+8IOt6CiHsnu0GeloaHDgAv/4Kx45BXh64u8Pf/w7t2sG994Kra7GnOXbsGD4+Pjz99NOMHDmSI0eO4OvrS4MGDYiMjJR1PYUQDqPYQFdK3QXEXLepFTANiCjc3gL4HfDWWl8pc0UHD0JwMHz2GTg5QW4uODuDUmA0woYN4OJiCvNXXoGXX4ZGjW56qq+++oo5c+YwceJEunfvzqJFi/j888/x8fHhn//8p0zbF0I4FKW1Nn9npZyBROBB4E0gRWs9Ryk1CaijtZ54u+O9vLx0XFzczV/MzITZsyE6GrSGWrVMQX4rBoPpGFdX+OADGDjQ9AaAabLQ6tWr2bp1KwsWLCAtLQ0/Pz86duzI2LFji8abCyGEPVBK7dFaexW3X0m7XHoCJ7XW8UqpfsBjhdvDgZ3AbQP9ls6cMQXyhQtQs+btg/waV1fTL4MBpk2D7dthxQqytGb69OlcvnyZpUuXEhERwe7du5kyZQrdunUrVXlCCGEPShroA4D1hV830FqfK/z6PNCgVBUkJMCLL8KVK1CalrOrq6kL5ttvyRowgJGurrS591569uzJ6NGj6dGjB7Gxsbi5uZWqPCGEsBdmd7kopVyBJOAerfUFpVSq1trjutevaK3r3OS4kcBIgGbNmt0fHx//x4t5efDMM3DiROnC/DqZmZmkxceT1LMn69u2JT4+nmnTptGhQ4cynVcIIazN3C6XkozVexLYq7W+UPj9BaVUo8KLNQIu3uwgrXWQ1tpLa+3l6en55xdXroTjx6F27RKU8VdXrlwhMTERJw8PGv/3v3RzcWHdunUS5kKISqUkgT6QP7pbAP4PGFL49RBgS4mufPkyLFkCNWqYRrCUgtaac+fPc+nSJaq4uJCdm0u9hg15Yd8+XF1cSnVOIYSwV2b1oSul3IFewKjrNs8BYpVSw4F4wLtEV960yTQMsZjgTS8oYOa5c/x09SoeVarwlqcnfWrXJr+ggISEBAy5uRi1pm7t2tStWxelNZw6ZRr+KC10IUQlYlaga60zgXo3bLuMadRL6YSHQ9Wqxe425/x5XJTiy7ZtOZaTw5izZ2nu5ITTuXMUFBTg7u5Oo0aN/miRKwUFBRATI4EuhKhUrDPfPS0Nzp2DatVuu1u20ciOjAxe9/TEzcmJTm5uPOTqSsSpUxTk59O4USOaNWv21+6V6tXhp5/K8QaEEML2WGfq/2+/mYYbFtN3fsZgwBlo5uqKBpKSkqiVmsopV1fatm1766ciVq0K8fGmMepmPB5ACCEcgXVa6JcumfrPi5FlNOJeOPvzxIkTXLp0iWaenjjXqHH7R9w6OZneLNLSLFWxEELYPNt9OBfg5uREZmHw169fn5o1anAwLQ33rKziD1bK9AgBIYSoJKzTQq9Z06yhis1cXSnA1PVSx8ODKlWqcCw3l1bFfZiqtemD0Ro1LFOvEELYAesE+l13QX5+sS3o6k5O9KhZk5XJyWQbjfySlcX/MjL4V3ETkQwG0xMYZbq/EKISsU6ge3qaWul5ecXuOqlhQ3KNRnodO8aUxEQmN2xYfAs9Kws6d7ZQsUIIYR+s04euFHh7m557XswolFrOziy4886Snd/Z2fTALyGEqESst+7aSy/9sWiFJWVnQ5060L27Zc8rhBA2znqB3rw5PPecZYcWag05OTB5ctFiF0IIUVlYN/WmToW6deHqVcucLzUVHn0U+vWzzPmEEMKOWDfQa9WCVatMX5sztvx20tKgSROYN6/UT28UQgh7Zv1+ic6dISLCFMKpqSWfDGQ0mlY7atIEYmOhXr3ijxFCCAdk/UAHeOAB2LbN9HTE1FTT4s/FBbvRaGqVp6ebRsxs3QoNG1ZMvUIIYYPMXoLOIhdTKhnTs9NLqz5wyULl2CK5P/vn6Pco92cdzbXWnsXtVKGBXlZKqThz1tWzV3J/9s/R71Huz7bZRpeLEEKIMpNAF0IIB2FvgR5k7QLKmdyf/XP0e5T7s2F21YcuhBDi1uythS6EEOIWbDbQlVJrlFIXlVKHrttWVym1XSl1vPD3OtassSyUUncqpb5WSh1WSv2qlBpTuN0h7lEpVU0ptVsp9Uvh/c0o3N5SKbVLKXVCKRWjlLLrRV+VUs5KqX1KqU8Lv3eY+1NK/a6UOqiU2q+Uiivc5hA/nwBKKQ+l1Eal1FGl1BGlVFd7vz+bDXQgDOhzw7ZJwH+11m2A/xZ+b6/ygbFa6/bAQ8CbSqn2OM495gI9tNYdgU5AH6XUQ8Bc4COt9d+AK8BwK9ZoCWOAI9d972j397jWutN1Q/kc5ecTYDHwudb6bqAjpr9H+74/rbXN/gJaAIeu+/43oFHh142A36xdowXvdQvQyxHvEXAD9gIPYpq0UaVwe1fgC2vXV4b7aorpH30P4FNAOdj9/Q7Uv2GbQ/x8ArWB0xR+jugo92fLLfSbaaC1Plf49XmggTWLsRSlVAvgPmAXDnSPhd0R+4GLwHbgJJCqtc4v3CUBaGKt+ixgETABuPZQ/3o41v1p4Eul1B6l1MjCbY7y89kSSAZCC7vMgpVS7tj5/dlboBfRprdQux+io5SqAXwMvKu1Tr/+NXu/R611gda6E6aW7APA3VYuyWKUUk8DF7XWe6xdSznqrrXuDDyJqUvwketftPOfzypAZ2CF1vo+IJMbulfs8f7sLdAvKKUaART+ftHK9ZSJUsoFU5hHaa03FW52qHsE0FqnAl9j6oLwUEpdW/qwKZBotcLK5h9AX6XU70A0pm6XxTjO/aG1Tiz8/SKwGdObsqP8fCYACVrrXYXfb8QU8HZ9f/YW6P8HDCn8egimfme7pJRSQAhwRGu98LqXHOIelVKeSimPwq+rY/p84AimYL+24Kvd3p/WerLWuqnWugUwANihtR6Eg9yfUspdKVXz2tdAb+AQDvLzqbU+D5xVSt1VuKkncBg7vz+bnViklFoPPIbp6WcXgOnAJ0As0AzTUxu9tdYp1qqxLJRS3YFvgYP80Qc7BVM/ut3fo1KqAxAOOGNqOMRqrWcqpVphatHWBfYBL2utc61XadkppR4Dxmmtn3aU+yu8j82F31YB1mmt/ZVS9XCAn08ApVQnIBhwBU4Bwyj8WcVO789mA10IIUTJ2FuXixBCiFuQQBdCCAchgS6EEA5CAl0IIRyEBLoQQjgICXQhhHAQEuhCCOEgJNCFEMJB/D9qY+JIRwWS5AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1OX+///HxaYiCqIognuZR3/p6aQtx5ZTWVq24ZKZwUFRkUGPmkcB9+2omGXZUUDchdwi4NjJj+nX6pOdyjVTP7mVW+ICpIiKyDLX748ZyzoqAw68Z4bX/Xbzxsww854ncxtfXFxzvV+X0lojhBDC+bkZHUAIIYR9SEEXQggXIQVdCCFchBR0IYRwEVLQhRDCRUhBF0IIFyEFXQghXIQUdCGEcBFS0IUQwkV4VOWTNWjQQLdo0aIqn7JyXbsGx49DcTG4uYFStj1OaygtBS8vaNECatSozJRCCCe3a9euXK11QFn3q9KC3qJFC3bu3FmVT1l5Dh2CPn0gMBB8fSt2jPx8cHeHVavgnnvsm08I4TKUUidsuZ9MuVTEzz9Dv35QWFjxYg5Qty5cvQqvvw7nz9svnxCiWpKCXl5aw/jxkJcHderc+fHq1LEU84kTLccWQogKkoJeXlu3wv/7f3c2Mv89X1/45BP46iv7HVMIUe1IQS+vpCTLh59ut3/p1p0/T9ixY/z54EGmnD59+2Ne/0B14UI7BhVCVDdS0Mvjp59g+3abploaeHgwsEEDXrJ1JF+nDnz9NWRl3WFIIUR1JQW9PHbvtoymyxidAzxVty5P1KmDr7u7bce+PkrfvfsOQwohqisp6OWxezeUlFTe8YuL4dtvK+/4QgiXJgW9PA4ftpwMVFm8vCzPIYQQFVClJxY5vaIim88GLSkp4VRWFrkFBZT6+Nh2fDc3y3MIIUQFyAi9PGrVArO5zLsVFRVx/PhxvL29qVWrFnl5eeRfulT28c1m8Pa2Q1AhRHUkBb08/vjHMkfQVwsLOX7iBH7+/vjVr08tb298fH356exZTp89i77dyUNFRdChg51DCyGqC5lyKY8OHW47h3758mWyTp8mqHFjVhcWknzo0C/f26w1vfPz6VtYSHCTJnh63OSl9/KC9u0rI7kQohqQgl4eDzzwa6fE3y1HzLt4kexz52jatCnetWoRWacOkQG/bY6mgZ9zczl27BhBQUH41K796zdLS399DiGEqACbplyUUm8opf5PKbVfKbVaKVVTKdVSKbVNKfWDUmqtUqoSl384CH9/eO45S5dEKw3k5uaSk5ND8xYt8K5V65YPV0CDBg0IDg7m9OnT5OTk8MsETH4+vPAC+PlV5k8ghHBhZRZ0pVQwMBzopLW+F3AH+gKzgXe01ncDF4CBlRnUYQwZYlmNUlKCBs6ePUv+pUu0aNGCGjYuaazt7U3Lli25UlDATydPUnLtmuWYgwdXbnYhhEuz9UNRD6CWUsoD8AbOAE8BadbvrwBC7B/PAbVrB4MGYc7P59RPP1FUVETz5s1vPid+G54eHjRv3pwaNWqQffQop198Ef7wh0oKLYSoDsos6FrrLOAt4CSWQn4R2AXkaa2vnzZ5CgiurJCO5uKAAewvKsK7qIimTZvibkMrgJtRWtOoRg1qdOjAwO++Y9WqVbdfBSOEELdhy5RLPeBloCUQBNQGnrX1CZRSkUqpnUqpnTk5ORUO6ijOnDnDwOhovoqOxr9TJ9zy8mxam/5fzGa4cAHuuov6H3/MkpQU/ud//ofY2FguX75s/+BCCJdny9DyaeCY1jpHa10MpAOPAH7WKRiAJsBN2wRqrZO11p201p0CAsrcEs+hHT58mIEDB9KzZ0+ixo1DpaVBt25w8SIUFNh2EK0t9714Ebp3hw8+AH9/goKCWLJkCf7+/oSFhXFYWgAIIcrJloJ+EnhYKeWtlFJAF+B74DOgt/U+4cC/KieiY9ixYwdDhw7ljTfeoF+/fpYbfX1hwQJISLCsTrl40TLqvnbtt7sPaW257cIFy2oWPz9LX/X58y3b0Fl5eXkRFxfHkCFDiI6OZv369VX8UwohnJmyZc5WKTUVeBUoAb4FBmGZM18D+FtvC9VaX7vdcTp16qSdcZPoTz75hLfeeov4+Hg6dux48zuZzZYdh9auhV274Nw5uP5BaWkpNGoEHTtC377w8MNltuA9evQosbGxtG/fnpiYGGrWrGnnn0oI4SyUUru01p3KvF9VfgjnjAU9NTWVVatW8d5773H33Xfb/sDLly0jdqUso3BbG3TdoKCggJkzZ/Ljjz8ye/ZsmjVrVu5jCCGcn60FXXq53ILZbGbu3LmsX7+eZcuWla+Yg6WABwdDUFCFijmAt7c306dPp3fv3kRERLBly5YKHUcIUT3Iqf83UVRUxOTJk8nNzWXx4sXUvWGeu6oppejVqxdt27YlLi6OPXv2MHz4cDw9PQ3LJIRwTDJC/51Lly7xt7/9jdLSUhYsWGBoMb9Ru3btSE1N5dSpU0RGRnLu3DmjIwkhHIwU9BtkZ2czePBg7rrrLuLj4/GqzN2JKqBu3bq8/fbbPPHEE4SFhfH1118bHUkI4UCkoFsdPXqUiIgInnvuOcaMGYNbBc/+rGxubm6Eh4cTHx/PtGnTWLhwIeaKnNgkhHA5jlm1qtiePXuIiooiOjqa8PBwlI3bzBnp/vvvJzU1ld27dzNs2DDOnz9vdCQhhMGqfUH/9NNPGT16NNOmTaN79+5GxymX+vXrk5CQwL333ktoaCjfffed0ZGEEAaq1qtc1q1bx7Jly5g/fz5/cNJOh+7u7kRHR9OhQwfGjBnDX//6V15//XWn+CtDCGFf1XKErrVmwYIFrFmzhsWLFzttMb/Ro48+yvLly9m0aRMxMTFcsmVTaiGES6l2Bb2kpIQpU6awY8cOli5dSnCw63T9DQoKYvHixQQEBEiDLyGqoWpV0AsKChg5ciT5+fkkJSXh54LbvXl5eRETE0N0dDTR0dFkZmZKj3UhqolqU9B//vlnIiMjady4MW+99ZbLN7vq2rUrixYtYtWqVUydOpXCwkKjIwkhKlm1KOgnT55kwIABPP7444wbNw53d3ejI1WJli1bsmLFCsxmM+Hh4Zw4ccLoSEKISuTyBX3//v0MGjSIAQMGEBkZWe1Wf9SqVYupU6fy6quvMnDgQDZv3mx0JCFEJXHcZYtmM5w4AQcOQE6Opae4jw/cfbdlM2Vv7zIP8eWXXzJlyhQmT57MY489VgWhHZNSip49e9KuXTtiY2PZs2cPI0eOlAZfQrgYx+uH/tNPsHo1pKbC9Xnf4mLLV3d3y6YRxcXw6KMwaBA88shNN4vIzMwkISGBuXPncu+999r5J3Fe+fn5TJkyhfPnzxMfH09gYKDRkYQQZXC+DS6uXYN582DRIsvovHZtuFVzLLMZrq+zbtMG3n3XMnLHssZ88eLFfPTRR8yfP182hbgJrTUpKSmkpqYyZcoUOnfubHQkIcRtOFdBP3kSwsMtX+vU+XXrtrJobdmj080Npk6l9JVXiI+P58CBA8ybN4/69evb9wdwMd9++y3jx4/nxRdfZMiQIQ7bkEyI6s5uOxYppdoopfbc8C9fKTVSKeWvlNqslDpi/VqvQklPnoReveDUKahXz/Zibgln2ai5Rg3M48axrnt3zpw5Q3JyshRzG/zpT38iNTWVvXv3MnToUGnwJYSTK7Oga60Paa3v01rfB3QECoAMIA7YorVuDWyxXi+fq1chLAzy8iyFuYJK3N35KS+Prjt28G7Pnnjb8IGpsPD392fBggV06NCB0NBQvv32W6MjCSEqqLx/Y3cBftRanwBeBlZYb18BhJT72d9+2zIyv4NiXlRczPHjx6nl44N/YCAeMTGWaRhhMzc3N0wmExMmTCA2NpaVK1fK2aVCOKHyFvS+wGrr5UZa6zPWy2eBRuU60tGjsGIF3MEWb4WFhRw/fhx/f38aNmyI8vaGCxdg/vwKH7M669y5MytXrmTLli2MHj1aGnwJ4WRsLuhKKS/gJeCD339PW4ZzNx3SKaUilVI7lVI7c3Jyfv1GSopltUoZZ23ml5Yy+tQpHj14kBd++IGNFy8CcPnKFU6ePElgYCD+9W6Yvvfxgffft0zniHILDAxk8eLFBAYGEhoaysGDB42OJISwUXlG6M8Bu7XW13cnPqeUagxg/Zp9swdprZO11p201p0CAgIsNxYVwdq1luJbhvizZ/FUik333MM/goKYdfYs3+XmcjoriyZNmlC3Tp3fPsDT03J8OSOywjw9PRkzZgzDhg1j2LBhpKenyxSMEE6gPAX9NX6dbgFYD4RbL4cD/7L5SD/8YBmdl3Gm4lWzmU8vXcIUEIC3mxt/9PbmAXd30s6do3nz5rf+8NNsBtlA+Y4988wzLFmyhLVr1zJ58mSuyl89Qjg0mwq6Uqo28AyQfsPN8cAzSqkjwNPW67b5/nvLqfxlOFlUhDvQzMsLDZw7e5bA4mLyfXyoUaPGrR9YsyaUdUaqsEnz5s1ZsWIFSinCw8M5fvy40ZGEELdgU0HXWl/RWtfXWl+84baftdZdtNattdZPa61tX8R8+vSvp/PfRoHZTG03N7TWnPrpJ65du0bLRo0oc5zo6QlnzpR1L2GjmjVrMmXKFPr168egQYPYtGmT0ZGEEDdhTHOukhLLSUFl8HZz44rZDEpxpaCAOj4+XCoupnZZZzQqZdNfAMJ2SilCQkJo27btbxp8ed2qPYMQosoZc6737z/IvIVmXl6UAj8VFdG6dWu8atRgR3Y29QsLKb7dCL+01NILRthdmzZtSElJITs7m0GDBnH69GmjIwkhrIwp6K1bw+3mwK1qubnxVJ06JOXkUASc9vZmn6cnXX18OHrsGGfPnqW4pOS/H3jtmqXFrqgUderUYc6cOXTr1o3+/fvz5ZdfGh1JCIFRBb1tW8u0iw1L4eICA7lmNvPM4cOMy8piXOPGPNi4MXe1aoVSiqNHj3IuO5uSG6dYiorgoYcq8QcQSilef/113nzzTWbOnMmCBQsolWkuIQxlTLdFraF7dzh2zKa16LdTXFJCbm4u+fn51KtXj/r+/rhfugTr10O7dnZKLm7n/PnzTJgwgdLSUmbOnCmN0YSwM7t1W6wUSkFUlF0+uPT08KBxYCAtW7akpKSErEOHOFm7NgUtWtx5TmETf39/5s+fz/33309oaCi7d+82OpIQ1ZJxDbC7dYOGDeHyZbsczsvTk6BGjWgcEMDmP/6RkJAQUlJSZLf7KuLm5saQIUOYNGkScXFxv2xOLYSoOsYV9Jo1LTsUlZTYb4nhxYt4hoQwcOVKkpKS2L9/PyEhIaxdu5aioiL7PIe4rT//+c+kpKTw+eef8/e//5186XwpRJUxdouaTp1g6FBLu9s7LeoXL0LTpjBtGgCtWrVi9uzZzJs3j2+++YYePXqQkZFByc1WxQi7atSoEcnJyTRt2pTQ0FC+//57oyMJUS0YvwWd1jBjBixbBt7eNi1n/A2z2VLMmzSxNPy6xabH+/btIzExkaysLCIjI3nuuedky7UqsGXLFmbNmkVUVBS9evVC2XBCmRDit5xrT1Gt4cMPYfJkKCy09Egvo60uWkNBgWWJYrdull8K9creBW/37t0kJiZy4cIFhgwZQpcuXaSwV7KTJ08SGxvLXXfdxbhx42RHKSHKybkK+nVnzsCsWbBxo2UKxt3dMtd+vSuj2Wwp+IWFlr1HmzeHuDh4+uly5dBas23bNhITEykqKsJkMvHYY4/J6LESFRYW8uabb7Jv3z5mz55Nq1atjI4khNNwzoJ+3c8/w0cfwX/+A3v2QG6uZUReqxa0aQMPPmhZx/7HP9rUE+ZWtNZs3bqVpKQkPDw8MJlMPPzww1LYK9H69et57733GD16NM8++6zRcYRwCs5d0H/vesZKKrRms5lPP/2UpKQk/Pz8iI6O5v7776+U5xJw+PBhYmNjeeihhxg1apQ0+BKiDI59YlF5KVVpxRwsa6iffvpp1q1bR8+ePZk2bRrR0dHs27ev0p6zOrvnnntISUnh/Pnz0uBLCDtyjoJeRdzc3OjevTtpaWl07dqVsWPHMnLkSNlXsxL4+Pgwe/Zsnn32Wfr378/WrVuNjiSE03OOKReDFBUVkZmZybJly2jfvj1DhgzhrrvuMjqWy9m7dy9xcXF0794dk8mEe1krnISoZlxrysUgXl5e9OnTh4yMDDp06IDJZGLChAmcPHnS6GgupUOHDrz//vscOHAAk8lEbm6u0ZGEcEpS0G1Qs2ZNQkNDyczMpFWrVkRERDBt2jSZ+7WjevXq8c9//pNOnToRFhbGrl27jI4khNOxdZNoP6VUmlLqoFLqgFLqz0opf6XUZqXUEevXss/qcXLe3t5ERESQkZFBw4YNCQ0NJT4+nuzsbKOjuQQ3NzciIyOZPHkyY8eOZdmyZdLgS4hysHWEPg/YqLX+A/BH4AAQB2zRWrcGtlivVwt16tQhKiqK9PR0vL296du3L3PnzuX8edv3yRa39vDDD5OamsrWrVsZNWqUNPgSwkZlFnSllC/wOLAEQGtdpLXOA14GVljvtgIIqayQjsrPz4/hw4fzwQcfYDab6d27N/Pnz5cCZAcNGzYkOTmZZs2aSYMvIWxkywi9JZADLFNKfauUWqyUqg000lqfsd7nLNCoskI6uvr16zN69GhWr15Nfn4+PXr0IDk5mct26vVeXXl4eDBq1ChGjhzJiBEj+OCDD6jKVVlCOBtbCroHcD+QqLX+E3CF302vaMv/spv+T1NKRSqldiqldubk5NxpXofWqFEjxo0bx8qVKzl9+jQ9evRg+fLlXL161ehoTu2pp55iyZIlpKenM378eAoKCoyOJIRDsqWgnwJOaa23Wa+nYSnw55RSjQGsX2/6yaDWOllr3Ulr3SkgIMAemR1ecHAwU6ZMYdGiRRw+fJiQkBBWrVolm2zcgWbNmrF8+XJq1arFX//6V44ePWp0JCEcTpkFXWt9FvhJKdXGelMX4HtgPRBuvS0c+FelJHRiLVq0YObMmcyfP5/du3cTEhJCWloaxcXFRkdzSjVq1GDixIn89a9/JTIykg0bNhgdSQiHYtOZokqp+4DFgBdwFBiA5ZfBOqAZcALoo7W+7TIPZztT1N6+//57kpKSOH78OIMGDeL555+XsyIr6MiRI8TGxtKpUydGjx4tDb6ES3Otbosu5rvvviMhIYGcnBwiIyPp2rWrbLJRAVeuXGHatGlkZWUxe/ZsgoODjY4kRKWQgu4EduzYQWJiIpcvXyYqKoonn3xSerGXk9aatWvXsmTJEiZOnMjjjz9udCQh7E4KupPQWvPVV1+RkJAAgMlk4pFHHpHCXk579+5l7NixdOvWjaFDh8pUlnApUtCdjNaazz//nMTERGrXro3JZOKBBx6Qwl4OeXl5TJw4kcLCQmbOnEl1WVUlXJ90W3QySimefPJJ1qxZQ9++fYmPjycqKoo9e/YYHc1p+Pn5MW/ePB566CHCwsLYsWOH0ZGEqFIyQndQpaWlbNiwgUWLFtG8eXNMJhPt2rUzOpbT2L59OxMnTuTVV1+lf//+8qGzcGoy5eIiiouLWb9+PUuWLKFt27ZERUXRunVro2M5hezsbMaOHUvt2rWZPn06vr6+RkcSokJkysVFeHp60qtXLzIzM+nUqRPDhg1j7NixHDt2zOhoDq9hw4YsXLiQVq1aERoayv79+42OJESlkhG6k7l69Srr1q0jNTWVzp07M3jwYJo0aWJ0LIf32WefMXPmTAYPHswrr7wiHzYLpyIjdBdVq1YtwsPDyczMpEmTJoSHhzNjxgzOnj1rdDSH9uSTT7Js2TIyMzMZN26cNPgSLkkKupOqXbs2gwcPJiMjAz8/P/r168ecOXNkP87baNKkCcuWLcPHx4ewsDB+/PFHoyMJYVdS0J1c3bp1GTp0KGlpabi7u9OnTx/mzZtHXl6e0dEcUo0aNRg/fjwREREMGTKEjz/+2OhIQtiNFHQX4e/vz6hRo1izZg2FhYX07NmTxMRELl26ZHQ0h/T888+TlJTEkiVLmDFjhrQ2Fi5BCrqLadiwIbGxsaSmppKTk0NISAhLliyROeObuPvuu0lNTeXy5cv079+fU6dOGR1JiDsiBd1FBQUFMWnSJJYtW8bx48cJCQkhJSWFwsJCo6M5FG9vb2bOnElISAgDBgzg888/NzqSEBUmyxariaNHj5KUlMTevXsZMGAAPXr0kB7iv7N//37Gjh1Lly5dGDZsGB4eHkZHEgKQZYvid1q1asWbb77JvHnz+Oabb+jRowcZGRmUlJQYHc1h3HvvvaSmpnL06FGGDBlCdvZNd1UUwmFJQa9m2rRpwzvvvEN8fDybN2+mV69ebNiwAbPZbHQ0h+Dr68u7777LI488QlhYGNu3bzc6khA2kymXam737t0kJCSQl5fHkCFD6NKlizSystqxYwcTJ06kd+/eREREyOsiDCPNuYTNtNZs27aNhIQEiouLMZlMPPbYY3J6PJCTk8O4ceOoWbMm06dPx8/Pz+hIohqya0FXSh0HLgGlQInWupNSyh9YC7QAjmPZJPrC7Y4jBd2xaa3ZunUrSUlJeHh4YDKZePjhh6t9YS8tLWXBggVs2rSJWbNm0b59e6MjiWqmMgp6J6117g23vQmc11rHK6XigHpa69jbHUcKunMwm818+umnJCUl4efnR3R0NPfff7/RsQz3xRdfMH36dCIiIujbt2+1/0Unqk5VFPRDwBNa6zNKqcbA51rrNrc7jhR052I2m9m4cSPJyckEBQVhMpmq/eg0KyuL2NhYgoODmTRpErVr1zY6kqgG7L1sUQOblFK7lFKR1tsaaa3PWC+fBRrdIkikUmqnUmpnTk6OjU8nHIGbmxvdu3cnLS2Nrl27EhcXx8iRIzl48KDR0QwTHBzM0qVL8fX1JSwsjCNHjhgdSYhf2DpCD9ZaZymlGgKbgb8B67XWfjfc54LWut7tjiMjdOdWVFREZmYmS5cupUOHDgwZMoS77rrL6FiG2bBhA3PnzmXEiBG8+OKLRscRLsyuI3StdZb1azaQATwInLNOtWD9KmdhuDgvLy/69OlDZmYmHTp0wGQyMWHCBE6ePGl0NEN0796d5ORkVqxYwbRp07h27ZrRkUQ1V2ZBV0rVVkrVuX4Z6ArsB9YD4da7hQP/qqyQwrHUrFmT0NBQMjMzadWqFREREUybNo3Tp08bHa3KtWrVipUrV1JYWMiAAQOq7S834RhsGaE3Ar5USn0HbAc+1lpvBOKBZ5RSR4CnrddFNeLt7U1ERAQZGRk0bNiQ0NBQ4uPjq90p897e3syYMYMePXowcOBAPv30U6MjiWpKTiwSdpOXl8fKlSvJzMzkhRdeoH///vj7+xsdq0p9//33xMXF8cQTTzB8+HBp8CXsQppziSrn5+fH8OHD+eCDDzCbzfTu3Zv58+eTn59vdLQq065dO1JTUzl58iSRkZHV7q8VYSwp6MLu6tevz+jRo1m9ejX5+fn06NGD5ORkLl++bHS0KlG3bl3mzp3L448/TmhoKN98843RkUQ1IVMuotKdOnWKRYsW8dVXX/H666/z6quvUqtWLaNjVYldu3Yxfvx4evbsyaBBg6TBl6gQmXIRDqNJkyZMnTqVRYsWcfjwYV5++WVWrVpVLfbx7NixI6mpqezcuZO//e1vXLhw23ZHQtwRKeiiyrRo0YKZM2eyYMECdu3aRUhICGlpaRQXFxsdrVI1aNCAxMRE2rZtS2hoKHv37jU6knBRMuUiDPP999+TlJTE8ePHGTRoEM8//zzu7u5Gx6pUW7duZfr06fTv35/XXntNGnwJm0g/dOE09uzZQ0JCArm5uURGRtK1a1eXnms+ffo0sbGxNG7cmEmTJuHj42N0JOHgZA5dOI377ruPhQsXEhcXx7p16+jbty+ffvopVTnYqEpBQUEsWbKE+vXrExYWxuHDh42OJFyEjNCFQ9Fa89VXX5GQkIBSiqioKB555BGXnZrYuHEjb731FsOHD+ell14yOo5wUDLlIpya1prPP/+cxMREateujclk4oEHHnDJwn7s2DFiYmJo3749MTEx1KxZ0+hIwsHIlItwakopnnzySdasWUPfvn2Jj48nKiqKPXv2GB3N7lq2bMmKFSsoLi6WBl/ijsgIXTiF0tJSNmzYwKJFi2jevDkmk4l27doZHcuutNakp6eTlJREXFwcXbp0MTqScBAy5SJcUnFxMevXr2fJkiW0bduWqKgoWrdubXQsuzpw4ACxsbH85S9/Yfjw4Xh6ehodSRhMplyES/L09KRXr15kZGTQsWNHhg0bxtixYzl27JjR0eymbdu2pKamcurUKSIjIzl37pzRkYSTkIIunFKNGjXo168fmZmZ/OEPfyAyMpLJkydz6tQpo6PZRd26dXn77bd54oknCAsL4+uvvzY6knACMuUiXMLly5dZtWoVa9eu5amnnmLgwIEEBgYaHcsudu/ezfjx4wkJCWHw4MEufdKVuDmZchHVio+PD5GRkWRkZODn50e/fv2YM2cOubm5Rke7Y/fffz+pqans3r2bYcOGcf78eaMjCQclBV24lLp16zJ06FDS0tJwd3enT58+zJs3j7y8PKOj3ZH69euTkJDAvffeS2hoKN99953RkYQDsrmgK6XclVLfKqX+bb3eUim1TSn1g1JqrVLKq/JiClE+/v7+jBo1ijVr1lBYWEjPnj1JTEzk0qVLRkerMHd3d6Kjoxk3bhxjxowhNTXVZdsjiIopzwh9BHDghuuzgXe01ncDF4CB9gwmhD00bNiQ2NhYUlNTycnJoUePHixZsoSCggKjo1XYo48+yvLly9m0aRMxMTFO/UtK2JdNBV0p1QR4Hlhsva6Ap4A0611WACGVEVAIewgKCmLSpEksXbqU48ePExISQkpKCoWFhUZHq5CgoCAWL15MQECANPgSv7B1hP4uEAOYrdfrA3la6xLr9VNAsJ2zCWF3zZo1Y/r06SQlJbFv3z5CQkJYu3atU+6e5OXlRUxMDNHR0URHR5OZmSlTMNVcmQVdKfUCkK213lWRJ1BKRSqldiqldubk5FTkEELYXatWrXjzzTcaIo+AAAAY40lEQVSZN28e33zzDT169CAjI4OSkpKyH+xgunbtyqJFi1i1ahVTp0512r86xJ2zZYT+CPCSUuo4sAbLVMs8wE8p5WG9TxMg62YP1lona607aa07BQQE2CGyEPbTpk0b3nnnHeLj49m8eTO9evViw4YNmM3msh/sQK43+DKbzYSHh3PixAmjIwkDlOvEIqXUE8BorfULSqkPgA+11muUUknAXq11wu0eLycWCUe3a9cuEhMTycvLY8iQIXTp0sWpTuTRWpORkUFCQgKxsbE888wzRkcSdlApzbl+V9BbYRmx+wPfAqFa62u3e7wUdOEMtNZs27aNhIQEiouLMZlMPPbYY07Vi/3gwYPExsby6KOPMnLkSGnw5eSk26IQd0hrzdatW0lMTMTT0xOTycTDDz/sNIU9Pz+fKVOmcP78eeLj412mFUJ1JAVdCDsxm81s2bKFhQsX4ufnR3R0NPfff7/RsWyitSYlJYXU1FSmTJlC586djY4kKkAKuhB2Zjab2bhxIwsXLiQ4OBiTyUT79u2NjmWTb7/9lvHjx/Piiy8yZMgQp/pcQEhBF6LSlJSU8NFHH7F48WJat26NyWSiTZs2Rscq0/nz5xk/fjwAM2bMwN/f3+BEwlbSbVGISuLh4fHLuvXOnTszYsQIYmJiOHr0qNHRbsvf358FCxbQoUMHQkND+fbbb42OJOxMRuhC3KHCwkLS0tJYuXIlDz74IJGRkTRr1szoWLf11VdfMWXKFEJDQwkLC3OaD3qrKxmhC1FFatasSWhoKJmZmbRq1YqIiAimTZvG6dOnjY52S507d2blypVs2bKF0aNHS4MvFyEFXQg78fb2JiIigvT0dAICAggNDSU+Pp7s7Gyjo91UYGAgixcvJjAwkNDQUA4ePGh0JHGHpKALYWd169bFZDKRnp6Ot7c3ffv2Ze7cuQ6505Cnpydjxoxh2LBhDBs2jPT0dGnw5cSkoAtRSfz8/Bg+fDjr1q2jtLSU3r17M3/+fPLz842O9l+eeeYZlixZwtq1a5k8eTJXr141OpKoACnoQlSyBg0aMGbMGFatWkV+fj49evQgOTmZy5cvGx3tN5o3b86KFStQShEeHs7x48eNjiTKSQq6EFUkMDCQcePGsWLFCrKysujRowfLly93qNFwzZo1mTJlCv369WPQoEFs2rTJ6EiiHGTZohAGOX78OMnJyezatYvw8HB69+6Nl5fjbM176NAhYmNj6dy5MyNHjnSobNWNLFsUwsG1aNGCmTNnMn/+fHbt2kVISAhpaWkUFxcbHQ2w9IpPSUkhOzubQYMGOfQyTGEhBV0Ig7Vu3Zq3336bt956iy+++IJevXqxfv16SktLjY5GnTp1mDNnDt26daN///58+eWXRkcStyFTLkI4mD179pCQkEBubi6RkZF07drVIZpp7dmzh3HjxvH8888TFRWFu7u70ZGqDWnOJYQT01qzY8cOEhMTuXLlClFRUTz55JOGn6J//vx5JkyYQGlpKTNnzqR+/fqG5qkupKAL4QK01nz11VckJCSglCIqKopHHnnE0MJuNptZtGgRmZmZzJgxw2l6wzszKehCuBCtNZ999hlJSUnUrl0bk8nEAw88YGhh//rrr5k8eTKvv/46YWFhDjEt5KqkoAvhgsxmM5s3b2bhwoUEBARgMpm47777DMtz7tw54uLi8PPzY+rUqdStW9ewLK7MbssWlVI1lVLblVLfKaX+Tyk11Xp7S6XUNqXUD0qptUopWaQqRCVzc3OjW7dufPDBBzz//PNMnDiRv/3tb3z//feG5GnUqBHJyck0bdqU0NBQw3IIizJH6MryN11trfVlpZQn8CUwAhgFpGut1yilkoDvtNaJtzuWjNCFsK/i4mL+9a9/sXTpUtq2bUtUVBStW7c2JMuWLVuYNWsWUVFR9OrVy/APcF2J3Ubo2uJ60wlP6z8NPAWkWW9fAYRUMKsQooI8PT3p3bs3GRkZdOzYkaFDhzJu3DhD+rB06dKFpUuX8uGHHzJx4kQKCgqqPEN1Z9OnGEopd6XUHiAb2Az8CORprUusdzkFBN/isZFKqZ1KqZ05OTn2yCyE+J0aNWrQr18/MjMzueeeexg8eDCTJ0/m1KlTVZqjWbNmLFu2DC8vL8LDwx1+Wz5XY1NB11qXaq3vA5oADwJ/sPUJtNbJWutOWutOAQEBFYwphLCFt7c3/fv3JyMjg+DgYMLDw5kxYwZnz56tsgw1a9Zk0qRJhIWFERkZycaNG6vsuau7cq0z0lrnAZ8Bfwb8lFIe1m81AbLsnE0IUUE+Pj5ERkaSnp6Or68v/fr1Y86cOeTm5lZZhpdeeomEhAQWLlxIfHw8RUVFVfbc1ZUtq1wClFJ+1su1gGeAA1gKe2/r3cKBf1VWSCFExfj6+jJs2DDS0tJwd3enT58+zJs3j7y8vCp5/nvuuYeUlBTOnz/PwIEDpcFXJbNlhN4Y+EwptRfYAWzWWv8biAVGKaV+AOoDSyovphDiTvj7+zNq1CjWrFlDYWEhPXv2JDExsUo2h/bx8WH27Nk899xz9O/fny+++KLSn7O6khOLhKiGTp8+zeLFi/niiy947bXXeO211/D29q705927dy9jx47l2WefJTo6Whp82Uj6oQshbikoKIhJkyaxdOlSjh07RkhICCkpKRQWFlbq83bo0IHU1FQOHTqEyWSq0jn96kAKuhDVWLNmzfjHP/5BUlIS+/btIyQkhHXr1lXqB5j16tXjvffeo1OnToSGhiJ/tduPTLkIIX5x8OBBkpKSOHLkCIMGDeLFF1/Ew8Oj7AdW0LZt25g0aRJ9+/YlPDxcGnzdgjTnEkJU2N69e0lKSiIrK4shQ4bw7LPPVlqxzc7OJi4ujjp16jB9+nRp8HUTMocuhKiwDh06kJCQwKRJk0hPT6dPnz5s3rwZs9ls9+dq2LAhycnJtGjRgtdff10afN0BGaELIW5La80333xDYmIixcXFmEwmHnvssUppvvXpp58ya9YsBg8ezCuvvCINvqxkykUIYVdaa7Zu3UpiYiKenp6YTCYefvhhuxfdn376idjYWFq0aMGECROqZDmlo5MpFyGEXSmlePzxx3n//fcJCwvj7bffZvDgwezevduuz9O0aVOWLVtGrVq1CAsLkwZf5SAjdCFEhZjNZjZu3MjChQsJDg7GZDLRvn17uz7HRx99xLx58xg1ahTdu3e367GdiUy5CCGqRElJCR999BGLFy+mdevWmEwm2rRpY7fj//DDD8TExNCpUydGjx6Nl1f12xxNplyEEFXCw8ODHj16kJGRQefOnRkxYgQxMTF2myq5++67SUlJIT8/n4iICLKypLHrrUhBF0LYhZeXF3369CEzM5P27dsTFRXFhAkTOHny5B0fu3bt2syaNYsXXnhBGnzdhky5CCEqRUFBAatXr2b16tU8/vjjDBo0iKCgoDs+7vUGX926dWPo0KHVosGXTLkIIQzl7e3NwIEDSU9PJyAggNDQUOLj48nOzr6j43bo0IH333+fI0eOEBUVhWxt+Ssp6EKISlW3bl1MJhPp6el4e3vTt29f5s6dy/nz5yt8TD8/P+bNm8dDDz1EWFgYO3bssGNi5yUFXQhRJfz8/Bg+fDjr1q2jtLSU3r17s2DBAvLz8yt0PDc3NwYNGsS0adOYMGECS5curZTWBM5ECroQoko1aNCAMWPGsGrVKvLy8ujRowfJyclcvny5Qsd78MEHSUlJ4T//+Q8jR47k4sWLdk7sPKSgCyEMERgYyPjx41mxYgVZWVn06NGD5cuXc/Xq1XIfq2HDhixcuJBWrVoRGhrK/v37KyGx47Nlk+imSqnPlFLfK6X+Tyk1wnq7v1Jqs1LqiPVrvcqPK4RwNU2aNGHq1KkkJydz6NAhQkJCWLVqVbk32fDw8GDkyJGMGjWKN954g3Xr1lGVq/gcQZnLFpVSjYHGWuvdSqk6wC4gBOgPnNdaxyul4oB6WuvY2x1Lli0KIcpy+PBhFi5cyIEDB4iIiODll1/G09OzXMc4deoUMTExNG/enIkTJzp9gy+7LVvUWp/RWu+2Xr4EHACCgZeBFda7rcBS5IUQ4o7cc889vP3228yZM4f//d//pVevXqxfv57S0lKbj9GkSROWLVuGj48PYWFh/Pjjj5WY2HGU68QipVQL4AvgXuCk1trPersCLly/fisyQhdClNeePXtISEggNzeXyMhIunbtWq7dkz7++GPeeecd3njjDZ5//vlKTFp57N6cSynlA/wvMENrna6UyruxgCulLmit/2seXSkVCUQCNGvWrOOJEyds/RmEEAKw9GLfsWMHiYmJXLlyhaioKJ588kmbe7Ffb/DVsWNHxowZ43QNvuxa0JVSnsC/gU+01nOttx0CntBan7HOs3+utb5tizUZoQsh7oTWmv/85z8kJiailMJkMtG5c2ebCntBQQHTp0/nxIkTvPnmmzRp0qQKEtuH3ebQrdMpS4AD14u51Xog3Ho5HPhXRYIKIYStlFI8+uijpKamEhERwbx584iIiGD79u1lrmjx9vZm5syZhISEMGDAAD7//POqCV2FbFnl8iiwFdgHXD8NaxywDVgHNANOAH201rc9l1dG6EIIezKbzWzatImFCxfSsGFDTCYT9913X5mP279/P2PHjqVLly4MGzYMDw+PKkhbcbLBhRCi2igtLeXjjz9m0aJFtGjRApPJRLt27W77mIsXLzJx4kSuXLnCrFmzaNiwYRWlLT/ptiiEqDbc3d156aWXSE9P5y9/+QujR4/m73//O0eOHLnlY3x9fXn33Xd55JFHCAsLY/v27VWYuHLICF0I4XKuXbvGhx9+yPLly+nUqRORkZG0aNHilvffsWMHEydOpHfv3kRERJRrWWRVkBG6EKLaqlGjBv369SMzM5N77rmHwYMHM3nyZE6dOnXT+z/wwAOkpKSwbds2RowYQV5eXhUntg8p6EIIl+Xt7U3//v3JyMggODiY8PBwZsyYwdmzZ//rvgEBASQlJdG6dWtCQ0PZt2+fAYnvjBR0IYTL8/HxITIykvT0dHx9fenXrx9z5swhNzf3N/dzd3dn+PDhxMTEMGrUKFavXu1UDb6koAshqg1fX1+GDRtGWloa7u7u9OnTh/fee++/plgef/xxli9fzscff0xcXBxXrlwxKHH5SEEXQlQ7/v7+jBo1ijVr1lBQUEDPnj1JTEzk0qVLv9wnODiYpUuX4uvrS1hY2G1XzPxGfj6sXQvDhsGjj0Lr1tCqFdx7L/TsCbNnw549UAkjf1nlIoSo9k6fPs3ixYv54osv6NevH3379v1Ny90NGzYwd+5cRowYwYsvvnjzg/z8M7z9NqSnQ0mJ5bZatcDTE5SC0lK4dg0KC8HDA5o3h5gYeOYZy/dvQ04sEkKIcjp58iTJycls376dsLAwXnnlFWrWrAnA0aNHiYmJoUOHDsTGxlKjRo1fH/jJJ5bifPky1KljKdi3ozUUFEBREXTtCjNmgL//Le8uyxaFEKKcmjVrxj/+8Q8SExPZt28fISEhrFu3jqKiIlq1asXKlSspLCxkwIABnDx50lKY//lPiI62jMrr1Su7mINlRF67Nvj6wqZN8NJLcPr0HeeXEboQQtzCwYMHSUpK4siRIwwaNIgXX3wRd3d30tLSSE5OZt5999Huww+hbl3bCvmt5OVBYCCsX3/TkbpMuQghhJ3s3buXpKQksrKyGDJkCM8++yxH//1vvF97DQ9fXwIaN7a5N/stXbhgmU9PTPyvOXUp6EIIYWe7du0iISGBSxcukHj8OH75+WRduoS5tJTgJk3wvJNRutkMFy9CQgJ06/abb8kcuhBC2FnHjh1ZvHgxk598kuIffuDEzz9Tz88PHx8fjh09yuU7Wa/u5gZeXjBnToWXNDp2E2AhhHAwSin+vy+/RAcGctnNjZzsbJRS+Pv7c/r0aer5+dEgIIBis5n4s2fZXlBAfmkpTTw9GdawIZ19fG59cG9vOHHCsk79T38qdzYp6EIIUR75+bBzJ8rPjzpK4ePjw6X8fLJzcvDw8OBifj4FV6/i37gxgZ6eJDdrRqCnJ/+5fJm4rCzWtGxJ0K32NFXKslrmk08qVNBlykUIIcrj4MFfTxYCFFC3bl3uuusu/P390Vpz9epVso4eJdTHhyAvL9yU4rE6dQjy9ORgYeHtj1+zJmzbVqFoUtCFEKI8fvgBiov/62YF+Pn6cvddd9GoUSO01vzwww+cPXcODZwvKeFkURGtbjwh6WZq1IBDhyoUTaZchBCiPK5csZzGfwtKKer5+eHr60tubi5nzpzBrBT/KCzkBV9fWpRV0N3d4erVCkUrc4SulFqqlMpWSu2/4TZ/pdRmpdQR69d6FXp2IYRwNu7uZfZeAXBTioYBAbRr145/FhXhAcQEBpZ9fK0tz1EBtky5LAee/d1tccAWrXVrYIv1uhBCuL5GjSzLC22gtWZmdjbnS0uZ06QJHracfFRcDBXcsLrMgq61/gI4/7ubXwZWWC+vAEIq9OxCCOFs2ra1+a6zzp7lWFER7zRtSg1b9yktLKzQCheo+Bx6I631Gevls0CjW91RKRUJRIKl8Y0QQji1Fi0sH1wWFd12pH6muJj0vDy8lKLbDb3UxwUG8pyv762Pr7Wlj3oF3PGHolprrZS65WlNWutkIBksp/7f6fMJIYSh3NwgNBQWLrxtQW/s6cnOcozmAcsadHd36N69YtEq9Cg4p5RqDGD9ml3B4wghhPN57TVL4b2+kYW9XLoEISGWtroVUNGCvh4It14OB/5VweMIIYTzadoUIiMtBdheDQ4LCy090seMqfAhbFm2uBr4GmijlDqllBoIxAPPKKWOAE9brwshRPUxfLhlr9D8/Ds/VkmJZe35rFnQoEGFD1PmHLrW+rVbfKtLhZ9VCCGcnZcXrFhhmSK5cKHC0ySUlFh+KQwfDs8/f0eR5NR/IYSoqKAgyMiwbPh84UL55tS1thTyK1cgLg5GjLjjOFW6wYVSKgc4UWVPeHMNgFyDM9hKslYeZ8orWSuPs+RtrrUOKOtOVVrQHYFSaqctO384AslaeZwpr2StPM6Wtywy5SKEEC5CCroQQriI6ljQk40OUA6StfI4U17JWnmcLe9tVbs5dCGEcFXVcYQuhBAuyWULulKqplJqu1LqO6XU/ymlplpvb6mU2qaU+kEptVYpZVtj4yqglHJXSn2rlPq39bojZz2ulNqnlNqjlNppvc0hNz5RSvkppdKUUgeVUgeUUn924KxtrK/p9X/5SqmRDpz3Dev/r/1KqdXW/3cO+b5VSo2w5vw/pdRI620O+bpWlMsWdOAa8JTW+o/AfcCzSqmHgdnAO1rru4ELwEADM/7eCODADdcdOSvAk1rr+25Y9uWoG5/MAzZqrf8A/BHLa+yQWbXWh6yv6X1AR6AAyMAB8yqlgoHhQCet9b2AO9AXB3zfKqXuBQYDD2J5D7yglLobB3xd74jW2uX/Ad7AbuAhLCcReFhv/zPwidH5rFmaYHlDPQX8G8uesw6Z1ZrnONDgd7cdAhpbLzcGDjlATl/gGNbPixw5602ydwX+46h5gWDgJ8AfSxuRfwPdHPF9C7wCLLnh+kQgxhFf1zv558oj9OtTGHuwtPfdDPwI5Gmtr5+fewrLm9IRvIvlDWa2Xq+P42YF0MAmpdQu6yYmUI6NT6pQSyAHWGadzlqslKqNY2b9vb7Aautlh8urtc4C3gJOAmeAi8AuHPN9ux94TClVXynlDXQHmuKAr+udcOmCrrUu1ZY/XZtg+VPrDwZHuiml1AtAttZ6l9FZyuFRrfX9wHPAUKXU4zd+U1uGPI6whMoDuB9I1Fr/CbjC7/6sdqCsv7DOO78EfPD77zlKXut888tYfmkGAbX57/2HHYLW+gCWqaBNwEZgD1D6u/s4xOt6J1y6oF+ntc4DPsPy55+fUup6l8kmQJZhwX71CPCSUuo4sAbLtMs8HDMr8MvoDK11NpY53gdxzI1PTgGntNbbrNfTsBR4R8x6o+eA3Vrrc9brjpj3aeCY1jpHa10MpGN5Lzvk+1ZrvURr3VFr/TiWuf3DOObrWmEuW9CVUgFKKT/r5VrAM1g+DPsM6G29m0NszqG1Hqu1bqK1boHlz+xPtdav44BZAZRStZVSda5fxjLXux8H3PhEa30W+Ekp1cZ6Uxfgexww6++8xq/TLeCYeU8CDyulvJVSil9fW0d93za0fm0G9ARW4Ziva4W57IlFSqkOwAosn7y7Aeu01tOUUq2wjIL9gW+BUK31NeOS/pZS6glgtNb6BUfNas2VYb3qAazSWs9QStUH1gHNsHTV7KO1Pm9QzF8ope4DFgNewFFgANb3BA6WFX75JXkSaKW1vmi9zVFf26nAq0AJlvfoICxz5o74vt2K5bOpYmCU1nqLo76uFeWyBV0IIaobl51yEUKI6kYKuhBCuAgp6EII4SKkoAshhIuQgi6EEC5CCroQQrgIKehCCOEipKALIYSL+P8BjAYnXF/vJ/4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -671,7 +674,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -688,22 +691,22 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "energy: -600056.0\n", + "energy: -600100.5\n", "feasible: True\n", - "solution: [0, 1, 2]\n", - "solution objective: 112.0\n" + "solution: [1, 2, 0]\n", + "solution objective: 201.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1NX+x/HXAUEFF1zINderpXXVDCu9tml6rVvadlGzXNLUVgt3S00BF1xS3BFkERTQNH92bbFr3nYNl9TUXEMBFxRZZBtgzu+PQTJTGWBgFj7Px8OH8J3v8vkqvud45pzvUVprhBBC2D8naxcghBDCMiTQhRDCQUigCyGEg5BAF0IIByGBLoQQDkICXQghHIQEuhBCOAgJdCGEcBAS6EII4SCqVOTF6tevr1u0aFGRlxRCiPJXUABJSZCWZvreyQmUuvX+WpuOcXKCRo2gbt3bnn7Pnj2XtNaexZVRoYHeokUL4uLiKvKSQghRvn77DV5+GWrWhCZNTCFtLoMBMjOhQwdYvhyqVbvpbkqpeHNOJ10uQghRWsePg7c3pKeDh0fJwhzA1dV03M6d8NprpoAvAwl0IYQojexsGDbM9HvNmqU/j1JQpw58/z0sWFCmkiTQhRCiNObPh3PnoFatsp9LKdN51qyB/ftLfRoJdCGEKKmEBIiIsEyYX1OliinYp08v9Skk0IUQoqSio8FoBGfn2+4Wm5LCK6dP0/XoUT5MSir+vDVrwq+/mj5oLQUJdCGEKAmtISoK3N2L3bV+lSoMr1+fvrVrm3dupUxvFB9/XKrSKnTYohBC2L3z5+HqVTAjpHsUdskczs7mYn6+eeevWhV+/LFUpUkLXQghSuLIkWK7WsqkWjU4dszUUi8hCXQhhCiJK1dMszzNYNSajIwM8s1tnYPpzSI/3zQcsoSky0UIIUpC69u8pMnOySErM5PMrCyuZmSQX1BAdo0at5wFekulaKFLoAshREnUqlXU5aKBnOsCPCsrC1dXV6pVrUp+Xh5Vq1WjVZMmfJ+eTra5rXSj0fThqJtbiUuTQBdCCDMZjUbOVKtG3bQ00lJTycrMpIqLC+5ubnh4eNC4USPSMzJITk6mbt26eNStiwaMhb8MRiPOSuF8uwd35eRA69al6qeXQBdCiFvQWhMfH09cXBw///wze/bsoVaNGqwyGqnt7k6jhg2pUsUUo7kGAwkJCQC0aN6cqlWrEpScTNClS0Xn25aWxsj69RnpeZsHJ+bkwAMPlKpeCXQhhCiktSYxMZG4uLiiX1WqVKFLly488sgj+Pj40KBBA5g6FdatgypVMGrN5cuXSUlJwdPTkzp16nCt/T3S0/P24f3XAkwt8+eeK1X9EuhCiErtwoULRS3wuLg48vPz8fLyokuXLrz++us0btwYdWMXySuvQHQ02VlZJJ0/j4uLC61atsTFxaVsxWRmQrNmcN99pTpcAl0IUalcvny5qPX9888/c/XqVby8vPDy8mLo0KE0b978rwF+g+w77+Row4Y0iIujftOm1Kpdm9sfYQajEfLyTK3/Yq5/KxLoQgiHlpqayt69e4ta4JcvX+a+++6jS5cu9O/fn1atWuFUgueY7969G39/f7o88ACT0tKokpdX9iK1htRU6NcPHnus1KeRQBdCOJSMjAz27dtX1AJPSkqiU6dOeHl5MXPmTO66664SBfg16enpLFq0iF27djF58mS6d+8OP/9sWq0oK6tUwwwBU5inpUGbNjBjRunOUcisQFdKvQeMwDTs8iAwDAgBvIA8YDcwSmttgbcqIYQwX1ZWFvv37y/qRvn999+599576dKlC1OmTKFdu3ZFI1FKa8eOHQQEBNCjRw82bNiA27Xw7tIFQkNhxAhTC7t27ZJ1lxQUmFY7uusuiIws8+N4lb7NrCcApVQT4DugvdY6WykVC2wDLgKfFe62DvhGa73idufy8vLSsqaoEKIscnNz+eWXX4oC/Pjx47Rr166oH/zee+/F1dXVItdKTk4mICCA06dPM3XqVDp27HjzHX//Hd57Dw4cMC0r5+Z2+2A3Gk2tcicnePVV07G3mUmqlNqjtfYqrl5z37aqANWVUnmAG5Cktf7yuovtBpqaeS4hREVJTjY9TOrwYdPXTk7QoAG0bw/t2pmWPrNxeXl5HDp0qKgP/MiRI7Rp0wYvLy9Gjx5Nhw4dqFbSafXF0FqzZcsWli5dyvPPP4+/v//t3yRatDA98nbzZtNiz2fOmELbyckU8GD6Pjf3jwlDvXrBm2/C3/9usbqLbaEDKKXGAP5ANvCl1nrQda+5ALuAMVrrb29y7EhgJECzZs3uj483a/FqIURpFRTAjh0QFAT79plWwrlx8eGqVU0PgOre3dRd0K1bqUdWWFpBQQGHDx8u6gM/dOgQLVq0KGqBd+rU6Y8uj3Jw9uxZ/P39ycrKYurUqbRp06ZkJ9AaDh40/dnv3g2nTpn+rN3doUMH6NzZ9Od9xx1mn9LcFro5XS51gI+B/kAqsAHYqLWOLHx9NZCptX63uItJl4sQ5ezkSXj3XVOr3MnJtALOrYLaaDT13yplmpk4bx40blyx9WKaTn/s2LGiFvj+/ftp3Lhx0Vjw++67j5plWYTZTAUFBaxbt46wsDCGDRvGwIEDcS7Px+SWgCW7XJ4ATmutkwtPvAnoBkQqpaYDnsCoshQrhLCATz6BiRNNQW3Oh3NOTuDhYWpR7tpl6gJYsQIeeaRcyzQajZw6daqoBb5v3z7q1auHl5cXffv2ZcaMGXh4eJRrDTc6duwYvr6+1KhRg/DwcJo2tc8eZHMC/QzwkFLKDVOXS08gTik1Avgn0FNrXfLnPAohLGfjRlOYu7v/0WdrLqVMwZ6dbep+CQ62aKhrrTlz5kxRC3zPnj24u7vj5eVF7969mTx5MvXr17fY9UrCYDAQHBzM5s2befvtt3nmmWeKnVRky8ztQ5+BqcslH9iHaQhjJhAPZBTutklrPfN255EuFyHKwYED8MILUL16ycP8RtnZphb755+bpqCXgtaapKSkP02nd3Z2pkuXLkX94A0bNixbnRawb98+/Pz8aN26NRMmTLDam4o5LNaHbkkS6EJYWG4u9O4N586VeQxzkdRU6NQJYmNN3TJmuPY8lGu/DAbDnwK8SZMmNtPyzczMZMmSJfzvf/9jwoQJPP7449YuqViWHrYohLBF69ZBQoJlhx/Wrg3798OXX0KfPjfdJSUl5U8t8IyMDO6//368vLwYMmSIWc9DsYZvv/2WOXPm0LVrV2JjYyvkw9aKJIEuhL0yGk1DE4sZg20wGplz/jy7s7JILyigqYsLb91xB91q1Lj5AUqZxkqvWlUU6GlpaezZs6eoBZ6cnEznzp3x8vLC29ub1q1bl2o6fUVJSUlh/vz5HD58mA8//JAuXbpYu6RyIYEuhL2Ki4PLl4vtaikAGrq4ENSsGQ1dXPj+6lUmJSYS3bIljW/R517g5kbuzz8T9cEHfH3qFImJiXTs2BEvLy9mzJhR6uehVDStNZ999hmLFi3iX//6F9OmTbP4JCRbIoEuhL365RfThJViVHdy+tMiCw/XrEljFxeO5uQUBXqB0Uh2VpZpXczMTHINBuo4O9MiPZ1JkybRvn37Mj8PpaKdO3eO2bNnk5yczKJFi2jfvr21Syp39vU3JIT4w+7dplmgJZSSn88Zg4GGBQVcTE4mKzOTnNxcqlWrhrubG3c0aED16tVxSkmhV/36ptmNdsRoNLJhwwaCgoIYNGgQgwcPtrs3o9KqHHcphCNKTCxRoOfl53PpyhUmXLzIg0Yjbmlp4O6Op6cn1d3ccLrxQ0wXF9MHrnbk1KlT+Pn54eTkxJo1a2jevLm1S6pQEuhC2Cuj0eznr2RcvUpiUhLLtaZGtWrMadGCquZMay8oKGORFSMvL4+wsDCio6N5/fXXef755+2ij9/SJNCFsFe1a5se23obGrh86RIpKSlEVqtGrtYE3nknVc0JO6PRLp7GeOjQIXx9fWnUqBHr1q0zLeJcSUmgC2GvOnc29aPfYvihsXDGZp7BQIy7Owl5eSxv1sy8MAfTjNHOnS1YsGVlZ2ezYsUKPv/8c8aOHUvv3r1tcux7RZJAF8Jedepk6ue+iby8PM4mJFC1alVcmzRhy8mTuCrFP48fL9pnSsOGPFm79q3PX6UK3H23pau2iF27duHv70+nTp2IjY2t8Id52SoJdCHsVbdupglA+fl/+nA0KzubhIQE6tatS7169VBAXLt2JTt3To5pfPutVuixkvT0dBYuXEhcXBxTpkyhW7du1i7JplS+Tw2EcBQ1a5oeypWRUbQpNS2NhLNnadSoEfULw7xUsrNNS6PZyPPAtdZ89dVXeHt74+7uTmxsrIT5TUgLXQh7NmoUbNyINhi4cOUKV69epXnz5lStWrX058zONrXOBw60XJ1lcPHiRebOncuZM2cICAigg52Ni69I0kIXwp7deSdZPj5cio8nNyeHli1alC3MjUZTd8v8+aZnpFuR0Whk06ZNvPTSS7Rp04aoqCgJ82JIC10IOxYfH4/PZ58xrX17Oly4gCrL2OtrK9G//DL07Gm5IkvhzJkz+Pn5kZuby8qVK/nb3/5m1XrshbTQhbBTP/zwAyNGjGDw0KF0/N//UE88YXqWeV5eyU+Wm2sK8/79Yfp0yxdrpoKCAiIiIhg2bBiPPfYYoaGhEuYlIC10IeyM1pqoqCgiIyOZP38+Ha+NRFmxAkJCYMECuHrV1A9e3Iea+fmmD1WrVYM5c+DFF82efWppx44dY+bMmdSqVYu1a9fS2AoLVts7CXQh7IjBYMDf35/jx48TFhb256XcnJ1h5EhTd8lHH5kWqCgoMAV0tWp/hHt+vqmf/Npzz198EcaMASsFaG5uLqtXr2bLli288847PP3005V+glBpSaALYSeSk5MZP348DRs2JCQkhOrVq998x9atYelSSE6Gr74yzSbdt8/UHePkBJ6ecP/98MAD8MQTpkcIWMnevXvx8/Ojbdu2REdHU69ePavV4ggk0IWwA4cPH2bcuHG88MILvPrqq+a1YD09TUMPbWT44fWuXr1KYGAg3333HRMnTuTRRx+1dkkOwawPRZVS7ymlflVKHVJKrVdKVVNKtVRK7VJKnVBKxSilyrjcuBDiZj777DPeeecdxo8fz/Dhw+2+O+Kbb77B29sbgJiYGAlzCyq2ha6UagK8A7TXWmcrpWKBAcBTwEda62il1EpgOLCiXKsVohIxGo0sW7aM7du3O8TQvZSUFObNm8fRo0fx9fXl/vvvt3ZJDsfcYYtVgOpKqSqAG3AO6AFsLHw9HHjW8uUJUTllZmbi4+PDwYMHiYiIsOsw11rzn//8hwEDBtCoUSOio6MlzMtJsS10rXWiUmo+cAbIBr4E9gCpWutrCxomAE3KrUohKpGzZ8/i4+ND586dGT9+vF0vn5aUlMSsWbNISUkhMDCQu2306Y2OotgWulKqDtAPaAk0BtyBPuZeQCk1UikVp5SKS05OLnWhQlQGu3fvZvjw4fTv35/JkyfbbZgbjUbWr1/PK6+8gpeXFxERERLmFcCcn5YngNNa62QApdQm4B+Ah1KqSmErvSmQeLODtdZBQBCAl5eXtkjVQjgYrTUxMTGsWbOG2bNn23WXxKlTp5g5cyaurq6EhobSrFkza5dUaZgT6GeAh5RSbpi6XHoCccDXwItANDAE2FJeRQrhyAwGA3PnzuXQoUOEhYXZ7QxJg8FAWFgYsbGxvPHGGzz77LOVcl1PazKnD32XUmojsBfIB/ZhanH/B4hWSvkVbgspz0KFcEQpKSmMHz+eOnXqEBoaipubm7VLKpWDBw/i6+tL06ZNWbduHXfccYe1S6qUzOqg01pPB258Ys8p4AGLVyREJXHs2DF8fHx4+umnGTlypF22ZrOysli+fDnbt29n7Nix9OrVy+7Hydsz+/sJEsIBfPXVV7zxxhuMGTOG0aNH22WY//jjj/Tv35+MjAxiY2NlkWYbYJ8foQthp4xGI6tXr2br1q0sW7aMu+66y9ollVhaWhoLFixg3759TJkyha5du1q7JFFIAl2ICpKVlcX06dO5fPkyERER1K1b19ollYjWmu3bt7NgwQJ69+5NTEyM3fb5OyoJdCEqQFJSEj4+PrRv3x5/f39cXe3r0UcXL15kzpw5JCQkMG/ePFkKzkbZX8edEHZm7969DBs2jGeffZapU6faVZgbjUY+/vhjXnrpJe6++24iIyMlzG2YtNCFKEebNm1i5cqV+Pr68uCDD1q7nBK5tq6nwWAgKCiIVq1aWbskUQwJdCHKQX5+PvPnzycuLo7g4GC7mi2Zn59PZGQka9euZcSIEfTv398uR+FURhLoQlhYamoqEydOpFq1aoSFhVGjRg1rl2S2o0ePMnPmTOrWrSvretohCXQhLOjEiRP4+PjwxBNP8NZbb9lNyzY3N5dVq1bx6aefMmbMGJ566ikZU26HJNCFsJCdO3fi5+eHj48PTz31lLXLMduePXvw8/OjXbt2REdH291wSvEHCXQhykhrzZo1a/j4449ZvHgx99xzj7VLMktGRgaBgYF8//33TJo0iUceecTaJYkykkAXogxycnKYMWMGiYmJhIeH4+npae2SzLJz504CAgJ4+OGHiY2Ntat+fnFrEuhClNKFCxfw8fGhdevWrF69mqpVq1q7pGJdvnyZgIAAjh8/jp+fH507d7Z2ScKC7OMTGyFszIEDBxgyZAh9+vRhxowZNh/mWmu2bt3KwIEDufPOO1m/fr2EuQOSFroQJfR///d/LFmyhA8//JB//OMf1i6nWElJSfj7+5OWlsaSJUvs8oFgwjwS6EKYqaCggMWLF/Pdd9+xevVqWrRoYe2SbstoNBIdHU1ISAhDhgxh0KBBODs7W7ssUY4k0IUwQ3p6OpMnTwYgLCyMWrVqWbmi2ztx4gS+vr5Uq1ZN1vWsRCTQhSjG6dOnGTt2LN27d2fMmDE23co1GAysWbOGjRs38uabb9KvXz+7mdwkyk4CXYjb+P777/nwww95++236du3r7XLua0DBw7g6+tL8+bNWb9+vd0MoRSWI4EuxE1orVm7di3r1q1jwYIFNv3I2KysLJYuXcqOHTsYP348PXr0kGn7lVSxga6UuguIuW5TK2AasBNYCVQD8oE3tNa7y6FGISqUwWDAz8+PU6dOER4eToMGDaxd0i398MMPzJo1iy5duhAbG2vzffuifBUb6Frr34BOAEopZyAR2AysBmZorT9TSj0FBACPlV+pQpS/5ORkxo0bR+PGjQkODqZatWrWLummUlNTWbhwIfv372fq1Kl296x1UT5K+mlJT+Ck1joe0MC15kBtIMmShQlR0X799VeGDBnCo48+yqxZs2wyzLXWfPHFF3h7e+Ph4UFMTIyEuShS0j70AcD6wq/fBb5QSs3H9MbQzZKFCVGRtm3bxsKFC5k6dSqPPvqotcu5qQsXLjB79mzOnTvHwoULuffee61dkrAxZrfQlVKuQF9gQ+Gm14H3tNZ3Au8BIbc4bqRSKk4pFZecnFzWeoWwKKPRSGBgICtXrmTlypU2GeZGo5ENGzYwaNAg7rnnHiIjIyXMxU0prbV5OyrVD3hTa9278Ps0wENrrZXpI/U0rfVtP5Hx8vLScXFxZa1ZCIu4evUq77//Pjk5OcydOxcPDw9rl/QXv//+O35+fhiNRj744ANZ17OSUkrt0Vp7FbdfSfrQB/JHdwuY+syvNWd6AMdLcC4hrOrMmTMMHTqUxo0bs2zZMpsL8/z8fNasWcPw4cPp1asXwcHBEuaiWGb1oSul3IFewKjrNr8GLFZKVQFygJGWL08Iy9u1axdTp05l1KhRvPDCC9Yu5y8OHz6Mr68vnp6eREZG0qhRI2uXJOyEWYGutc4E6t2w7Tvg/vIoSojyoLUmOjqa0NBQ5syZY3OPj83JyWHVqlX85z//4d133+XJJ5+UCUKiRGSmqKgUDAYDc+bM4fDhw4SFhdncavY///wz/v7+3HPPPbKupyg1CXTh8FJSUhg3bhz16tVjzZo1uLm5WbukIhkZGSxatIiffvqJSZMm8fDDD1u7JGHH5DFswqEdPXqUwYMH89BDDzF37lybCvMdO3bg7e2Ni4sLsbGxEuaizKSFLhzW9u3bmTt3LpMnT6Znz57WLqfI5cuXmTt3LidOnGDWrFncd9991i5JOAgJdOFwjEYjq1atYtu2bSxfvpy2bdtauyTgj3U9lyxZwnPPPYefnx+urq7WLks4EAl04VCysrKYOnUqqamphIeH28yHi4mJifj7+5ORkcGyZcts5k1GOBbpQxcOIykpiWHDhuHh4cHKlSttIswLCgqIjIxk8ODBdO3albCwMAlzUW6khS4cwp49e5g8eTLDhw/H29vbJsZvHz9+HF9fX9zc3AgPD6dp06bWLkk4OAl0Yfc2btxIUFAQfn5+PPDAA9YuB4PBQHBwMJs3b+att96ib9++NvEGIxyfBLqwW/n5+cybN4+9e/cSEhLCnXfeae2S2L9/P35+frRq1Yr169dTv359a5ckKhEJdGGXUlNTmTBhAm5uboSFheHu7m7VejIzM1m6dCk7d+4sWtdTiIomH4oKu3P8+HEGDx5Mhw4dWLhwodXD/LvvvsPb25vc3FxiYmIkzIXVSAtd2JWvv/4af39/xo0bR58+faxay5UrV1iwYAEHDx5k+vTpNtF/Lyo3CXRhF7TWhISEsGnTJgIDA2nfvr1Va/n888/56KOPePLJJ4mOjqZ69epWq0eIayTQhc3Lzs5mxowZnD9/noiICKt+0Hj+/HlmzZrFxYsXWbRokVXfWIS4kfShC5t2/vx5hg8fjqurK0FBQVYLc6PRSGxsLIMGDaJjx46sXbtWwlzYHGmhC5u1f/9+Jk6cyCuvvMKgQYOsNpb79OnT+Pr6opQiODiYli1bWqUOIYojgS5s0pYtW1i6dCkzZsygW7duVqkhLy+P8PBw1q9fz6hRo3jxxRdxcpL/1ArbJYEubEpBQQEfffQRP/zwA8HBwTRv3twqdfz666/4+vrSoEEDoqKiaNiwoVXqEKIkJNCFzUhPT2fSpEk4OzsTFhZGrVq1KryG7OxsVq5cyWeffYaPjw///Oc/Zdq+sBvy/0dhE06dOsWQIUNo06YNixYtskqY7969mwEDBpCSkkJMTAx9+vSRMBd2pdgWulLqLiDmuk2tgGla60VKqbeBN4EC4D9a6wnlU6ZwZN9++y0zZ87knXfe4Zlnnqnw66enp7No0SJ2797N5MmT+cc//lHhNQhhCcUGutb6N6ATgFLKGUgENiulHgf6AR211rlKqTvKtVLhcLTWREREEB0dzYIFC+jQoUOF17Bjxw4CAgLo0aMHsbGxNrXmqBAlVdI+9J7ASa11vFJqHjBHa50LoLW+aPHqhMPKzc3F19eX+Ph4wsPDueOOim0PJCcnExAQwOnTp5k7dy4dO3as0OsLUR5K2oc+AFhf+HVb4GGl1C6l1P+UUl1udoBSaqRSKk4pFZecnFyWWoWDuHjxIq+99hpGo5HVq1dXaJhrrfnkk0946aWXaNWqFevWrZMwFw7D7Ba6UsoV6AtMvu7YusBDQBcgVinVSmutrz9Oax0EBAF4eXn96TVR+Rw6dIgJEybw73//m6FDh1boh45nz57F39+frKwsli9fTps2bSrs2kJUhJJ0uTwJ7NVaXyj8PgHYVBjgu5VSRqA+IM1wcVPbtm1j4cKFTJs2jUceeaTCrltQUEBUVBTh4eG8+uqrDBw4UCYICYdUkkAfyB/dLQCfAI8DXyul2gKuwCUL1iYchNFoZOnSpfz3v/8lKCiIVq1aVdi1jx07hq+vLzVr1iQiIoImTZpU2LWFqGhmBbpSyh3oBYy6bvMaYI1S6hBgAIbc2N0iREZGBu+//z4Gg4GIiAhq165dIdc1GAysXr2aTz75hLfffptnnnlGxpQLh2dWoGutM4F6N2wzAC+XR1HCMZw5c4b33nuPBx98EB8fH6pUqZiJyfv27cPX15c2bdoQHR1NvXr1ij9ICAcgU/9Fufjxxx+ZNm0ar7/+Os8//3yFXDMzM5PAwEC++eYbJkyYwOOPP14h1xXCVkigC4vSWrN+/XrCw8OZO3cunTt3rpDrfvvtt8yZM4euXbsSGxtLzZo1K+S6QtgSCXRhMQaDgdmzZ3P06FFCQ0Np3LhxuV8zJSWF+fPnc/jwYWbMmIGXl1e5X1MIWyVjt4RFXL58mdGjR5OZmUlISEi5h7nWmm3btjFgwAAaNmxIdHS0hLmo9KSFLsrsyJEjjBs3jn79+jFixIhyH+N97tw5Zs2axaVLl2RdTyGuI4EuyuTLL78kICCAKVOm0KNHj3K91rV1PVevXs2gQYMYPHhwhY2cEcIeyL8GUSpGo7FoIYjly5fTtm3bcr3eqVOn8PX1xdnZmTVr1lhtJSMhbJkEuiixrKwsPvjgAzIyMggPD6du3brldq28vDxCQ0OJjY1l9OjRPP/88zJtX4hbkH8ZokQSExMZOnQo9erVY/ny5eUa5ocOHWLQoEEcOXKEqKgoWaRZiGJIC12YLS4ujilTpjBixAj+/e9/l9tU+uzsbFasWMHnn3/OuHHj6NWrl0zbF8IMEuiiWFprNm7cyOrVq/H396dLl5s++t4idu3ahb+/P506dSI2NhYPD49yu5YQjkYCXdxWXl4e8+bNY//+/axZs4amTZuWy3XS09NZuHAhe/bsYfLkyXTr1q1criOEI5MOSXFLV65c4c033+TSpUuEhoaWS5hrrfnqq6/w9vbG3d2dmJgYCXMhSkla6OKmjh8/ztixY+nTpw+jR48ulw8jL168yNy5czlz5gwBAQFWWSRaCEciLXTxFzt27OD111/nzTff5I033rB4mBuNRjZt2sRLL71E27ZtiYqKkjAXwgKkhS6KGI1GgoOD2bJlC4GBgeUypf7MmTP4+fmRm5vLqlWraN26tcWvIURlJYEuANNQwenTp5OcnEx4eDj169e36PkLCgqIjIwkIiKC4cOHM2DAABlTLoSFSaALzp07x9ixY2nbti2rVq3C1dXVouf/7bffmDlzJh4eHqxdu7b+HXsgAAAU70lEQVRCHqsrRGUkgV7J7du3j0mTJjF48GBeeukli07gyc3NJSgoiK1bt/LOO+/wr3/9SyYICVGOJNArsc2bN7N8+XJmzJhh8aGCe/fuxc/Pj7Zt2xIdHV2ujwgQQpgUG+hKqbuAmOs2tQKmaa0XFb4+FpgPeGqtL5VLlcKi8vPzWbhwIT/99BPBwcEWfXLh1atXCQwM5LvvvmPixIk8+uijFju3EOL2ig10rfVvQCcApZQzkAhsLvz+TqA3cKYcaxQWlJaWxqRJk3BxcSE8PNyia29+8803zJkzh+7duxMbG0uNGjUsdm4hRPFK2uXSEziptY4v/P4jYAKwxaJViXJx6tQpfHx8ePzxx3n77bctNsokJSWFefPmcfToUfz8/CpsYWghxJ+V9F/0AGA9gFKqH5Cotf7ldgcopUYqpeKUUnHJycmlLFOU1TfffMOoUaN47bXXGDNmjEXCXGvNp59+yoABA2jcuDHR0dES5kJYkdktdKWUK9AXmKyUcgOmYOpuuS2tdRAQBODl5aVLWacoJa014eHhxMTEsHDhQv7+979b5LxJSUnMmjWLlJQUAgMDufvuuy1yXiFE6ZWky+VJYK/W+oJS6u9AS+CXwmFoTYG9SqkHtNbny6FOUQq5ubnMnDmTs2fPEh4ezh133FHmcxqNRqKjowkJCeGVV17h5ZdflnU9hbARJfmXOJDC7hat9UGgKB2UUr8DXjLKxXZcvHiRsWPH0rx5c1avXk3VqlXLfM6TJ0/i6+uLq6sroaGhNGvWzAKVCiEsxaxAV0q5A72AUeVbjrCEgwcPMmHCBAYMGMDgwYPLPJnHYDAQGhrKhg0beOONN3j22Wdl2r4QNsisQNdaZwL1bvN6C0sVJMrm008/ZfHixUybNo2HH364zOc7cOAAfn5+NG3alHXr1lmk20YIUT6k89NBGI1GAgMD2blzJ6tWraJVq1ZlOl9WVhbLly9n+/btjBs3jieeeEKm7Qth4yTQHUBGRgbvv/8++fn5REREUKtWrTKd78cff2TWrFl07tyZ2NhYateubaFKhRDlSQLdzsXHx/Pee+/RtWtX3nvvvTKNOElLS2PBggXs37+fKVOm0LVrVwtWKoQob/LJlh374YcfGDFiBK+88grjx48vdZhrrfnyyy/x9vamdu3aREdHS5gLYYekhW6HtNZERUWxdu1aAgICuO+++0p9rosXLzJnzhwSEhKYP3++xSYeCSEqngS6nTEYDMyaNYtjx44RFhZGo0aNSnUeo9HI5s2bWbFiBd7e3sydOxcXFxcLVyuEqEgS6Hbk0qVLjB8/Hk9PT0JCQqhevXqpznNtXc+8vDyCgoLKPCJGCGEbJNDtxOHDhxk3bhzPPfccw4cPL9XEnvz8fNauXUtkZCSvvfYa3t7eMkFICAcigW4HvvjiC+bNm8eUKVPo0aNHqc5x5MgRfH19qVevnqzrKYSDkkC3YUajkRUrVvDFF1+wfPly2rZtW+Jz5OTkEBQUxKeffsq7777Lk08+KROEhHBQEug2KjMzk6lTp3L16lXCw8OpU6dOic8RFxeHv78/7dq1k3U9hagEJNBtUEJCAj4+PnTq1KlUo08yMjIIDAzk+++/Z9KkSTzyyCPlVKkQwpbIJ2I2Zvfu3bz66qt4e3szZcqUEof5zp076d+/P05OTsTGxkqYC1GJSAvdRmit2bBhA8HBwcyaNQsvL68SHX/58mUCAgI4fvy4rOspRCUlgW4D8vLyCAgI4MCBA4SGhtKkSROzj9Vas3XrVpYsWcKzzz5btACFEKLykUC3spSUFCZMmECtWrUIDQ3Fzc3N7GMTExPx9/cnPT2dZcuWlWoUjBDCcUgfuhUdO3aMIUOG0LlzZ+bPn292mBuNRqKiohg8eDAPPfQQ4eHhEuZCCGmhW8uOHTuYNWsWEyZMoHfv3mYfd+LECWbOnEn16tVlXU8hxJ9IoFcwo9FIcHAwW7ZsYcmSJbRr186s4wwGAyEhIXz88ce8+eab9OvXT6btCyH+RAK9AmVlZfHhhx9y6dIlIiIiqFfvlsu0/smBAwfw9fWlefPmrF+/Hk9Pz3KuVAhhj4oNdKXUXUDMdZtaAdOAJsAzgAE4CQzTWqeWR5GOICkpibFjx3L33Xfj5+dn1kiUrKwsli5dyo4dOxg/fjw9evSQaftCiFsq9v/sWuvftNadtNadgPuBLGAzsB24V2vdATgGTC7XSu3Y3r17GTZsGM888wzTpk0zK8x/+OEHvL29yc7OJjY2lp49e0qYCyFuq6RdLj2Bk1rreCD+uu0/AS9arCoHsmnTJlasWIGvry8PPfRQsfunpqayYMECfvnlF6ZOncqDDz5YAVUKIRxBSQN9ALD+Jttf5c/dMpVefn4+CxcuZNeuXYSEhBQ7GkVrzRdffMHChQvp06cPMTExpV7AQghROZkd6EopV6AvN3StKKXeB/KBqFscNxIYCVSaIXZpaWlMnDgRV1dXwsPDqVGjxm33v3DhArNnz+bcuXN89NFH3HPPPRVUqRDCkZRk3NuTwF6t9YVrG5RSQ4GngUFaa32zg7TWQVprL621V2UYnXHy5EkGDx5M+/btWbRo0W3D3Gg0smHDBgYNGsS9995LZGSkhLkQotRK0uUykOu6W5RSfYAJwKNa6yxLF2aPvvnmG2bOnImPjw9PPfXUbff9/fff8fPzw2g0yrqeQgiLMCvQlVLuQC9g1HWblwJVge2Foy9+0lqPtniFdkBrTWhoKBs3bmTx4sW3bWXn5+cTERFBVFQUo0aN4sUXX5QJQkIIizAr0LXWmUC9G7b9rVwqsjM5OTnMnDmThIQEwsLCuOOOO2657+HDh/H19cXT05OoqCgaNmxYgZUKIRydzBQtgwsXLjB27FhatmzJ6tWrqVq16k33y8nJYeXKlWzbtk3W9RRClBv5v34pHThwgKFDh9K7d29mzpx5yzD/+eef6d+/P8nJycTExPDUU09JmAshyoW00Eth69atBAYGMn36dLp3737TfdLT01m8eDE//fQTkydPvuV+QghhKRLoJVBQUMDixYv59ttvCQoKomXLljfdb8eOHcybN4/HHnuM2NhY3N3dK7hSIURlJIFupvT0dKZMmYLRaCQ8PJxatWr9ZZ9Lly4REBDAyZMnmT17Np06dbJCpUKIykr60M0QHx/P0KFDadmyJUuWLPlLmGut2bJlCwMHDqRFixasX79ewlwIUeGkhV6MH374genTp/PWW2/Rr1+/v7yekJCAv78/mZmZsq6nEMKqJNBvQWtNZGQkUVFRzJ8/n44dO/7p9YKCAtatW0dYWBjDhg1j4MCBODs7W6laIYSQQL8pg8GAn58fJ06cICws7C8TgI4dO4afnx9ubm6Eh4fTtGlTK1UqhBB/kEC/QXJyMuPGjaNRo0aEhIT86RG2BoOB4OBgNm/ezFtvvUXfvn1lTLkQwmZIoF/n8OHDjBs3jhdeeIFXX331T2G9f/9+fH19ad26NevXr6d+/fpWrFQIIf5KAr3QZ599xoIFC3j//fd5/PHHi7ZnZmaydOlSvv76ayZMmECPHj2sWKUQQtxapQ90o9HIsmXL2L59OytXruRvf/vjmWPfffcds2fP5sEHHyQ2NvamY8+FEMJWVOpAz8zM5P333ycrK4uIiAg8PDwAuHLlCvPnz+fQoUNMnz6dBx54wMqVCiFE8SrtxKKzZ88ydOhQGjZsyPLly/Hw8EBrzbZt2+jfvz+enp7ExMRImAsh7EalbKHv3r2bDz74gJEjR/Liiy8CcO7cOWbPnk1ycjKLFi2iffv2Vq5SCCFKplIFutaamJgY1qxZw+zZs7n//vsxGo1s3LiRVatWMWjQIAYPHkyVKpXqj0UI4SAqTXIZDAbmzp3LoUOHCAsLo3Hjxpw+fRpfX1+UUoSEhNCiRQtrlymEEKVWKQI9JSWF8ePHU6dOHUJDQ3FxcSE4OJjo6GhGjRrFCy+8IOt6CiHsnu0GeloaHDgAv/4Kx45BXh64u8Pf/w7t2sG994Kra7GnOXbsGD4+Pjz99NOMHDmSI0eO4OvrS4MGDYiMjJR1PYUQDqPYQFdK3QXEXLepFTANiCjc3gL4HfDWWl8pc0UHD0JwMHz2GTg5QW4uODuDUmA0woYN4OJiCvNXXoGXX4ZGjW56qq+++oo5c+YwceJEunfvzqJFi/j888/x8fHhn//8p0zbF0I4FKW1Nn9npZyBROBB4E0gRWs9Ryk1CaijtZ54u+O9vLx0XFzczV/MzITZsyE6GrSGWrVMQX4rBoPpGFdX+OADGDjQ9AaAabLQ6tWr2bp1KwsWLCAtLQ0/Pz86duzI2LFji8abCyGEPVBK7dFaexW3X0m7XHoCJ7XW8UqpfsBjhdvDgZ3AbQP9ls6cMQXyhQtQs+btg/waV1fTL4MBpk2D7dthxQqytGb69OlcvnyZpUuXEhERwe7du5kyZQrdunUrVXlCCGEPShroA4D1hV830FqfK/z6PNCgVBUkJMCLL8KVK1CalrOrq6kL5ttvyRowgJGurrS591569uzJ6NGj6dGjB7Gxsbi5uZWqPCGEsBdmd7kopVyBJOAerfUFpVSq1trjutevaK3r3OS4kcBIgGbNmt0fHx//x4t5efDMM3DiROnC/DqZmZmkxceT1LMn69u2JT4+nmnTptGhQ4cynVcIIazN3C6XkozVexLYq7W+UPj9BaVUo8KLNQIu3uwgrXWQ1tpLa+3l6en55xdXroTjx6F27RKU8VdXrlwhMTERJw8PGv/3v3RzcWHdunUS5kKISqUkgT6QP7pbAP4PGFL49RBgS4mufPkyLFkCNWqYRrCUgtaac+fPc+nSJaq4uJCdm0u9hg15Yd8+XF1cSnVOIYSwV2b1oSul3IFewKjrNs8BYpVSw4F4wLtEV960yTQMsZjgTS8oYOa5c/x09SoeVarwlqcnfWrXJr+ggISEBAy5uRi1pm7t2tStWxelNZw6ZRr+KC10IUQlYlaga60zgXo3bLuMadRL6YSHQ9Wqxe425/x5XJTiy7ZtOZaTw5izZ2nu5ITTuXMUFBTg7u5Oo0aN/miRKwUFBRATI4EuhKhUrDPfPS0Nzp2DatVuu1u20ciOjAxe9/TEzcmJTm5uPOTqSsSpUxTk59O4USOaNWv21+6V6tXhp5/K8QaEEML2WGfq/2+/mYYbFtN3fsZgwBlo5uqKBpKSkqiVmsopV1fatm1766ciVq0K8fGmMepmPB5ACCEcgXVa6JcumfrPi5FlNOJeOPvzxIkTXLp0iWaenjjXqHH7R9w6OZneLNLSLFWxEELYPNt9OBfg5uREZmHw169fn5o1anAwLQ33rKziD1bK9AgBIYSoJKzTQq9Z06yhis1cXSnA1PVSx8ODKlWqcCw3l1bFfZiqtemD0Ro1LFOvEELYAesE+l13QX5+sS3o6k5O9KhZk5XJyWQbjfySlcX/MjL4V3ETkQwG0xMYZbq/EKISsU6ge3qaWul5ecXuOqlhQ3KNRnodO8aUxEQmN2xYfAs9Kws6d7ZQsUIIYR+s04euFHh7m557XswolFrOziy4886Snd/Z2fTALyGEqESst+7aSy/9sWiFJWVnQ5060L27Zc8rhBA2znqB3rw5PPecZYcWag05OTB5ctFiF0IIUVlYN/WmToW6deHqVcucLzUVHn0U+vWzzPmEEMKOWDfQa9WCVatMX5sztvx20tKgSROYN6/UT28UQgh7Zv1+ic6dISLCFMKpqSWfDGQ0mlY7atIEYmOhXr3ijxFCCAdk/UAHeOAB2LbN9HTE1FTT4s/FBbvRaGqVp6ebRsxs3QoNG1ZMvUIIYYPMXoLOIhdTKhnTs9NLqz5wyULl2CK5P/vn6Pco92cdzbXWnsXtVKGBXlZKqThz1tWzV3J/9s/R71Huz7bZRpeLEEKIMpNAF0IIB2FvgR5k7QLKmdyf/XP0e5T7s2F21YcuhBDi1uythS6EEOIWbDbQlVJrlFIXlVKHrttWVym1XSl1vPD3OtassSyUUncqpb5WSh1WSv2qlBpTuN0h7lEpVU0ptVsp9Uvh/c0o3N5SKbVLKXVCKRWjlLLrRV+VUs5KqX1KqU8Lv3eY+1NK/a6UOqiU2q+Uiivc5hA/nwBKKQ+l1Eal1FGl1BGlVFd7vz+bDXQgDOhzw7ZJwH+11m2A/xZ+b6/ygbFa6/bAQ8CbSqn2OM495gI9tNYdgU5AH6XUQ8Bc4COt9d+AK8BwK9ZoCWOAI9d972j397jWutN1Q/kc5ecTYDHwudb6bqAjpr9H+74/rbXN/gJaAIeu+/43oFHh142A36xdowXvdQvQyxHvEXAD9gIPYpq0UaVwe1fgC2vXV4b7aorpH30P4FNAOdj9/Q7Uv2GbQ/x8ArWB0xR+jugo92fLLfSbaaC1Plf49XmggTWLsRSlVAvgPmAXDnSPhd0R+4GLwHbgJJCqtc4v3CUBaGKt+ixgETABuPZQ/3o41v1p4Eul1B6l1MjCbY7y89kSSAZCC7vMgpVS7tj5/dlboBfRprdQux+io5SqAXwMvKu1Tr/+NXu/R611gda6E6aW7APA3VYuyWKUUk8DF7XWe6xdSznqrrXuDDyJqUvwketftPOfzypAZ2CF1vo+IJMbulfs8f7sLdAvKKUaART+ftHK9ZSJUsoFU5hHaa03FW52qHsE0FqnAl9j6oLwUEpdW/qwKZBotcLK5h9AX6XU70A0pm6XxTjO/aG1Tiz8/SKwGdObsqP8fCYACVrrXYXfb8QU8HZ9f/YW6P8HDCn8egimfme7pJRSQAhwRGu98LqXHOIelVKeSimPwq+rY/p84AimYL+24Kvd3p/WerLWuqnWugUwANihtR6Eg9yfUspdKVXz2tdAb+AQDvLzqbU+D5xVSt1VuKkncBg7vz+bnViklFoPPIbp6WcXgOnAJ0As0AzTUxu9tdYp1qqxLJRS3YFvgYP80Qc7BVM/ut3fo1KqAxAOOGNqOMRqrWcqpVphatHWBfYBL2utc61XadkppR4Dxmmtn3aU+yu8j82F31YB1mmt/ZVS9XCAn08ApVQnIBhwBU4Bwyj8WcVO789mA10IIUTJ2FuXixBCiFuQQBdCCAchgS6EEA5CAl0IIRyEBLoQQjgICXQhhHAQEuhCCOEgJNCFEMJB/D9qY+JIRwWS5AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1OX+///HxaYiCqIognuZR3/p6agtx5ZTWVq24ZKZwUERkUGPmkcB9+2omGXZUUDchdwi4Nipj+nX6pOdylwy9eNabokLkCJuyDLX748ZyzoqAw68Z4bX/Xbzxsww854ncxtfXFxzvV+X0lojhBDC+bkZHUAIIYR9SEEXQggXIQVdCCFchBR0IYRwEVLQhRDCRUhBF0IIFyEFXQghXIQUdCGEcBFS0IUQwkV4VOWTNWjQQLdo0aIqn7JyXbsGx45BcTG4uYFStj1OaygtBS8vaNECatSozJRCCCe3Y8eOPK11QFn3q9KC3qJFC7Zv316VT1l5Dh6Evn0hMBB8fSt2jIICcHeHVavgnnvsm08I4TKUUsdtuZ9MuVTEzz9D//5QWFjxYg5Qty5cvQqvvQbnztkvnxCiWpKCXl5aw/jxkJ8Pderc+fHq1LEU84kTLccWQogKkoJeXlu2wP/7f3c2Mv89X1/45BP46iv7HVMIUe1IQS+v5GTLh59ut3/p1p07R9jRo/z5wAGmnDp1+2Ne/0B14UI7BhVCVDdS0Mvjp5/g229tmmpp4OHBoAYNeNHWkXydOvD115CdfYchhRDVlRT08ti50zKaLmN0DvBk3bo8XqcOvu7uth37+ih95847DCmEqK6koJfHzp1QUlJ5xy8uhu++q7zjCyFcmhT08jh0yHIyUGXx8rI8hxBCVECVnljk9IqKbD4btKSkhJPZ2eRduUKpj49tx3dzszyHEEJUgIzQy6NWLTCby7xbUVERx44dw9vbm1q1apGfn0/BxYtlH99sBm9vOwQVQlRHUtDL449/LHMEfbWwkGPHj+Pn749f/frU8vbGx9eXn86c4dSZM+jbnTxUVAQdOtg5tBCiupApl/Lo0OG2c+iXLl0i+9Qpgho3ZnVhISkHD/7yvU1a06eggH6FhQQ3aYKnx01eei8vaN++MpILIaoBKejlcf/9v3ZK/N1yxPwLF8g5e5amTZviXasWUXXqEBXw2+ZoGvg5L4+jR48SFBSET+3av36ztPTX5xBCiAqwacpFKfW6Uur/lFJ7lVKrlVI1lVItlVJblVI/KKXWKqUqcfmHg/D3h2eftXRJtNJAXl4eubm5NG/RAu9atW75cAU0aNCA4OBgTp06RW5uLr9MwBQUwPPPg59fZf4EQggXVmZBV0oFA8OBzlrrewF3oB8wG3hba303cB4YVJlBHcaQIZbVKCUlaODMmTMUXLxIixYtqGHjksba3t60bNmSy1eu8NOJE5Rcu2Y55uDBlZtdCOHSbP1Q1AOopZTyALyB08CTQLr1+yuAEPvHc0Dt2kFkJOaCAk7+9BNFRUU0b9785nPit+Hp4UHz5s2pUaMGOUeOcOqFF+APf6ik0EKI6qDMgq61zgbeBE5gKeQXgB1Avtb6+mmTJ4HgygrpaC4MHMjeoiK8i4po2rQp7ja0ArgZpTWNatSgRocODPr+e1atWnX7VTBCCHEbtky51ANeAloCQUBt4Blbn0ApFaWU2q6U2p6bm1vhoI7i9OnTDIqJ4auYGPw7d8YtP9+mten/xWyG8+fhrruo/9FHLElN5X/+53+Ii4vj0qVL9g8uhHB5tgwtnwKOaq1ztdbFQAbwMOBnnYIBaALctE2g1jpFa91Za905IKDMLfEc2qFDhxg0aBC9evUietw4VHo6dO8OFy7AlSu2HURry30vXIAePeD998Hfn6CgIJYsWYK/vz9hYWEckhYAQohysqWgnwAeUkp5K6UU0BXYB3wG9LHeJxz4V+VEdAzbtm1j6NChvP766/Tv399yo68vLFgAiYmW1SkXLlhG3deu/Xb3Ia0tt50/b1nN4udn6as+f75lGzorLy8v4uPjGTJkCDExMaxfv76Kf0ohhDNTtszZKqWmAq8AJcB3QCSWOfM1gL/1tlCt9bXbHadz587aGTeJ/uSTT3jzzTdJSEigU6dON7+T2WzZcWjtWtixA86ehesflJaWQqNG0KkT9OsHDz1UZgveI0eOEBcXR/v27YmNjaVmzZp2/qmEEM5CKbVDa925zPtV5YdwzljQ09LSWLVqFe+++y5333237Q+8dMkyYlfKMgq3tUHXDa5cucLMmTP58ccfmT17Ns2aNSv3MYQQzs/Wgi69XG7BbDYzd+5c1q9fz7Jly8pXzMFSwIODISioQsUcwNvbm+nTp9OnTx8iIiLYvHlzhY4jhKge5NT/mygqKmLy5Mnk5eWxePFi6t4wz13VlFL07t2btm3bEh8fz65duxg+fDienp6GZRJCOCYZof/OxYsX+dvf/kZpaSkLFiwwtJjfqF27dqSlpXHy5EmioqI4e/as0ZGEEA5GCvoNcnJyGDx4MHfddRcJCQl4VebuRBVQt25d3nrrLR5//HHCwsL4+uuvjY4khHAgUtCtjhw5QkREBM8++yxjxozBrYJnf1Y2Nzc3wsPDSUhIYNq0aSxcuBBzRU5sEkK4HMesWlVs165dREdHExMTQ3h4OMrGbeaM1LFjR9LS0ti5cyfDhg3j3LlzRkcSQhis2hf0Tz/9lNGjRzNt2jR69OhhdJxyqV+/PomJidx7772Ehoby/fffGx1JCGGgar3KZd26dSxbtoz58+fzByftdOju7k5MTAwdOnRgzJgx/PWvf+W1115zir8yhBD2VS1H6FprFixYwJo1a1i8eLHTFvMbPfLIIyxfvpyNGzcSGxvLRVs2pRZCuJRqV9BLSkqYMmUK27ZtY+nSpQQHu07X36CgIBYvXkxAQIA0+BKiGqpWBf3KlSuMHDmSgoICkpOT8XPB7d68vLyIjY0lJiaGmJgYsrKypMe6ENVEtSnoP//8M1FRUTRu3Jg333zT5ZtddevWjUWLFrFq1SqmTp1KYWGh0ZGEEJWsWhT0EydOMHDgQB577DHGjRuHu7u70ZGqRMuWLVmxYgVms5nw8HCOHz9udCQhRCVy+YK+d+9eIiMjGThwIFFRUdVu9UetWrWYOnUqr7zyCoMGDWLTpk1GRxJCVBLHXbZoNsPx47B/P+TmWnqK+/jA3XdbNlP29i7zEF9++SVTpkxh8uTJPProo1UQ2jEppejVqxft2rUjLi6OXbt2MXLkSGnwJYSLcbx+6D/9BKtXQ1oaXJ/3LS62fHV3t2waUVwMjzwCkZHw8MM33SwiKyuLxMRE5s6dy7333mvnn8R5FRQUMGXKFM6dO0dCQgKBgYFGRxJClMH5Nri4dg3mzYNFiyyj89q14VbNscxmuL7Ouk0beOcdy8gdyxrzxYsX8+GHHzJ//nzZFOImtNakpqaSlpbGlClT6NKli9GRhBC34VwF/cQJCA+3fK1T59et28qitWWPTjc3mDqV0pdfJiEhgf379zNv3jzq169v3x/AxXz33XeMHz+eF154gSFDhjhsQzIhqju77ViklGqjlNp1w78CpdRIpZS/UmqTUuqw9Wu9CiU9cQJ694aTJ6FePduLuSWcZaPmGjUwjxvHuh49OH36NCkpKVLMbfCnP/2JtLQ0du/ezdChQ6XBlxBOrsyCrrU+qLW+T2t9H9AJuAJkAvHAZq11a2Cz9Xr5XL0KYWGQn28pzBVU4u7OT/n5dNu2jXd69cLbhg9MhYW/vz8LFiygQ4cOhIaG8t133xkdSQhRQeX9G7sr8KPW+jjwErDCevsKIKTcz/7WW5aR+R0U86LiYo4dO0YtHx/8AwPxiI21TMMIm7m5uWEymZgwYQJxcXGsXLlSzi4VwgmVt6D3A1ZbLzfSWp+2Xj4DNCrXkY4cgRUr4A62eCssLOTYsWP4+/vTsGFDlLc3nD8P8+dX+JjVWZcuXVi5ciWbN29m9OjR0uBLCCdjc0FXSnkBLwLv//572jKcu+mQTikVpZTarpTanpub++s3UlMtq1XKOGuzoLSU0SdP8siBAzz/ww9suHABgEuXL3PixAkCAwPxr3fD9L2PD7z3nmU6R5RbYGAgixcvJjAwkNDQUA4cOGB0JCGEjcozQn8W2Km1vr478VmlVGMA69ecmz1Ia52ite6ste4cEBBgubGoCNautRTfMiScOYOnUmy85x7+ERTErDNn+D4vj1PZ2TRp0oS6der89gGenpbjyxmRFebp6cmYMWMYNmwYw4YNIyMjQ6ZghHAC5Snor/LrdAvAeiDcejkc+JfNR/rhB8vovIwzFa+azXx68SKmgAC83dz4o7c397u7k372LM2bN7/1h59mM8gGynfs6aefZsmSJaxdu5bJkydzVf7qEcKh2VTQlVK1gaeBjBtuTgCeVkodBp6yXrfNvn2WU/nLcKKoCHegmZcXGjh75gyBxcUU+PhQo0aNWz+wZk0o64xUYZPmzZuzYsUKlFKEh4dz7NgxoyMJIW7BpoKutb6sta6vtb5ww20/a627aq1ba62f0lrbvoj51KlfT+e/jStmM7Xd3NBac/LkSa5du0bLRo0oc5zo6QmnT5d1L2GjmjVrMmXKFPr3709kZCQbN240OpIQ4iaMac5VUmI5KagM3m5uXDabQSkuX75MHR8fLhYXU7usMxqVsukvAGE7pRQhISG0bdv2Nw2+vG7VnkEIUeWMOdf79x9k3kIzLy9KgZ+KimjdujVeNWqwLSeH+oWFFN9uhF9aaukFI+yuTZs2pKamkpOTQ2RkJKdOnTI6khDCypiC3ro13G4O3KqWmxtP1qlDcm4uRcApb2/2eHrSzceHI0ePcubMGYpLSv77gdeuWVrsikpRp04d5syZQ/fu3RkwYABffvml0ZGEEBhV0Nu2tUy72LAULj4wkGtmM08fOsS47GzGNW7MA40bc1erViilOHLkCGdzcii5cYqlqAgefLASfwChlOK1117jjTfeYObMmSxYsIBSmeYSwlDGdFvUGnr0gKNHbVqLfjvFJSXk5eVRUFBAvXr1qO/vj/vFi7B+PbRrZ6fk4nbOnTvHhAkTKC0tZebMmdIYTQg7s1u3xUqhFERH2+WDS08PDxoHBtKyZUtKSkrIPniQE7Vrc6VFizvPKWzi7+/P/Pnz6dixI6GhoezcudPoSEJUS8Y1wO7eHRo2hEuX7HI4L09Pgho1onFAAJv++EdCQkJITU2V3e6riJubG0OGDGHSpEnEx8f/sjm1EKLqGFfQa9a07FBUUmK/JYYXLuAZEsKglStJTk5m7969hISEsHbtWoqKiuzzHOK2/vznP5Oamsrnn3/O3//+dwqk86UQVcbYLWo6d4ahQy3tbu+0qF+4AE2bwrRpALRq1YrZs2czb948vvnmG3r27ElmZiYlN1sVI+yqUaNGpKSk0LRpU0JDQ9m3b5/RkYSoFozfgk5rmDEDli0Db2+bljP+htlsKeZNmlgaft1i0+M9e/aQlJREdnY2UVFRPPvss7LlWhXYvHkzs2bNIjo6mt69e6NsOKFMCPFbzrWnqNbwwQcweTIUFlp6pJfRVhet4coVyxLF7t0tvxTqlb0L3s6dO0lKSuL8+fMMGTKErl27SmGvZCdOnCAuLo677rqLcePGyY5SQpSTcxX0606fhlmzYMMGyxSMu7tlrv16V0az2VLwCwste482bw7x8fDUU+XKobVm69atJCUlUVRUhMlk4tFHH5XRYyUqLCzkjTfeYM+ePcyePZtWrVoZHUkIp+GcBf26n3+GDz+E//wHdu2CvDzLiLxWLWjTBh54wLKO/Y9/tKknzK1ordmyZQvJycl4eHhgMpl46KGHpLBXovXr1/Puu+8yevRonnnmGaPjCOEUnLug/971jJVUaM1mM59++inJycn4+fkRExNDx44dK+W5BBw6dIi4uDgefPBBRo0aJQ2+hCiDY59YVF5KVVoxB8sa6qeeeop169bRq1cvpk2bRkxMDHv27Km056zO7rnnHlJTUzl37pw0+BLCjpyjoFcRNzc3evToQXp6Ot26dWPs2LGMHDlS9tWsBD4+PsyePZtnnnmGAQMGsGXLFqMjCeH0nGPKxSBFRUVkZWWxbNky2rdvz5AhQ7jrrruMjuVydu/eTXx8PD169MBkMuFe1gonIaoZ15pyMYiXlxd9+/YlMzOTDh06YDKZmDBhAidOnDA6mkvp0KED7733Hvv378dkMpGXl2d0JCGckhR0G9SsWZPQ0FCysrJo1aoVERERTJs2TeZ+7ahevXr885//pHPnzoSFhbFjxw6jIwnhdGzdJNpPKZWulDqglNqvlPqzUspfKbVJKXXY+rXss3qcnLe3NxEREWRmZtKwYUNCQ0NJSEggJyfH6Gguwc3NjaioKCZPnszYsWNZtmyZNPgSohxsHaHPAzZorf8A/BHYD8QDm7XWrYHN1uvVQp06dYiOjiYjIwNvb2/69evH3LlzOXfO9n2yxa099NBDpKWlsWXLFkaNGiUNvoSwUZkFXSnlCzwGLAHQWhdprfOBl4AV1rutAEIqK6Sj8vPzY/jw4bz//vuYzWb69OnD/PnzpQDZQcOGDUlJSaFZs2bS4EsIG9kyQm8J5ALLlFLfKaUWK6VqA4201qet9zkDNKqskI6ufv36jB49mtWrV1NQUEDPnj1JSUnhkp16vVdXHh4ejBo1ipEjRzJixAjef/99qnJVlhDOxpaC7gF0BJK01n8CLvO76RVt+V920/9pSqkopdR2pdT23NzcO83r0Bo1asS4ceNYuXIlp06domfPnixfvpyrV68aHc2pPfnkkyxZsoSMjAzGjx/PlStXjI4khEOypaCfBE5qrbdar6djKfBnlVKNAaxfb/rJoNY6RWvdWWvdOSAgwB6ZHV5wcDBTpkxh0aJFHDp0iJCQEFatWiWbbNyBZs2asXz5cmrVqsVf//pXjhw5YnQkIRxOmQVda30G+Ekp1cZ6U1dgH7AeCLfeFg78q1ISOrEWLVowc+ZM5s+fz86dOwkJCSE9PZ3i4mKjozmlGjVqMHHiRP76178SFRXFxx9/bHQkIRyKTWeKKqXuAxYDXsARYCCWXwbrgGbAcaCv1vq2yzyc7UxRe9u3bx/JyckcO3aMyMhInnvuOTkrsoIOHz5MXFwcnTt3ZvTo0dLgS7g01+q26GK+//57EhMTyc3NJSoqim7duskmGxVw+fJlpk2bRnZ2NrNnzyY4ONjoSEJUCinoTmDbtm0kJSVx6dIloqOjeeKJJ6QXezlprVm7di1Llixh4sSJPPbYY0ZHEsLupKA7Ca01X331FYmJiQCYTCYefvhhKezltHv3bsaOHUv37t0ZOnSoTGUJlyIF3clorfn8889JSkqidu3amEwm7r//fins5ZCfn8/EiRMpLCxk5syZVJdVVcL1SbdFJ6OU4oknnmDNmjX069ePhIQEoqOj2bVrl9HRnIafnx/z5s3jwQcfJCwsjG3bthkdSYgqJSN0B1VaWsrHH3/MokWLaN68OSaTiXbt2hkdy2l8++23TJw4kVdeeYUBAwbIh87CqcmUi4soLi5m/fr1LFmyhLZt2xIdHU3r1q2NjuUUcnJyGDt2LLVr12b69On4+voaHUmICpEpFxfh6elJ7969ycrKonPnzgwbNoyxY8dy9OhRo6M5vIYNG7Jw4UJatWpFaGgoe/fuNTqSEJVKRuhO5urVq6xbt460tDS6dOnC4MGDadKkidGxHN5nn33GzJkzGTx4MC+//LJ82CyciozQXVStWrUIDw8nKyuLJk2aEB4ezowZMzhz5ozR0RzaE088wbJly8jKymLcuHHS4Eu4JCnoTqp27doMHjyYzMxM/Pz86N+/P3PmzJH9OG+jSZMmLFu2DB8fH8LCwvjxxx+NjiSEXUlBd3J169Zl6NChpKen4+7uTt++fZk3bx75+flGR3NINWrUYPz48URERDBkyBA++ugjoyMJYTdS0F2Ev78/o0aNYs2aNRQWFtKrVy+SkpK4ePGi0dEc0nPPPUdycjJLlixhxowZ0tpYuAQp6C6mYcOGxMXFkZaWRm5uLiEhISxZskTmjG/i7rvvJi0tjUuXLjFgwABOnjxpdCQh7ogUdBcVFBTEpEmTWLZsGceOHSMkJITU1FQKCwuNjuZQvL29mTlzJiEhIQwcOJDPP//c6EhCVJgsW6wmjhw5QnJyMrt372bgwIH07NlTeoj/zt69exk7dixdu3Zl2LBheHh4GB1JCECWLYrfadWqFW+88Qbz5s3jm2++oWfPnmRmZlJSUmJ0NIdx7733kpaWxpEjRxgyZAg5OTfdVVEIhyUFvZpp06YNb7/9NgkJCWzatInevXvz8ccfYzabjY7mEHx9fXnnnXd4+OGHCQsL49tvvzU6khA2kymXam7nzp0kJiaSn5/PkCFD6Nq1qzSystq2bRsTJ06kT58+REREyOsiDCPNuYTNtNZs3bqVxMREiouLMZlMPProo3J6PJCbm8u4ceOoWbMm06dPx8/Pz+hIohqya0FXSh0DLgKlQInWurNSyh9YC7QAjmHZJPr87Y4jBd2xaa3ZsmULycnJeHh4YDKZeOihh6p9YS8tLWXBggVs3LiRWbNm0b59e6MjiWqmMgp6Z6113g23vQGc01onKKXigXpa67jbHUcKunMwm818+umnJCcn4+fnR0xMDB07djQ6luG++OILpk+fTkREBP369av2v+hE1amKgn4QeFxrfVop1Rj4XGvd5nbHkYLuXMxmMxs2bCAlJYWgoCBMJlO1H51mZ2cTFxdHcHAwkyZNonbt2kZHEtWAvZctamCjUmqHUirKelsjrfVp6+UzQKNbBIlSSm1XSm3Pzc218emEI3Bzc6NHjx6kp6fTrVs34uPjGTlyJAcOHDA6mmGCg4NZunQpvr6+hIWFcfjwYaMjCfELW0fowVrrbKVUQ2AT8Ddgvdba74b7nNda17vdcWSE7tyKiorIyspi6dKldOjQgSFDhnDXXXcZHcswH3/8MXPnzmXEiBG88MILRscRLsyuI3Stdbb1aw6QCTwAnLVOtWD9KmdhuDgvLy/69u1LVlYWHTp0wGQyMWHCBE6cOGF0NEP06NGDlJQUVqxYwbRp07h27ZrRkUQ1V2ZBV0rVVkrVuX4Z6AbsBdYD4da7hQP/qqyQwrHUrFmT0NBQsrKyaNWqFREREUybNo1Tp04ZHa3KtWrVipUrV1JYWMjAgQOr7S834RhsGaE3Ar5USn0PfAt8pLXeACQATyulDgNPWa+LasTb25uIiAgyMzNp2LAhoaGhJCQkVLtT5r29vZkxYwY9e/Zk0KBBfPrpp0ZHEtWUnFgk7CY/P5+VK1eSlZXF888/z4ABA/D39zc6VpXat28f8fHxPP744wwfPlwafAm7kOZcosr5+fkxfPhw3n//fcxmM3369GH+/PkUFBQYHa3KtGvXjrS0NE6cOEFUVFS1+2tFGEsKurC7+vXrM3r0aFavXk1BQQE9e/YkJSWFS5cuGR2tStStW5e5c+fy2GOPERoayjfffGN0JFFNyJSLqHQnT55k0aJFfPXVV7z22mu88sor1KpVy+hYVWLHjh2MHz+eXr16ERkZKQ2+RIXIlItwGE2aNGHq1KksWrSIQ4cO8dJLL7Fq1apqsY9np06dSEtLY/v27fztb3/j/PnbtjsS4o5IQRdVpkWLFsycOZMFCxawY8cOQkJCSE9Pp7i42OholapBgwYkJSXRtm1bQkND2b17t9GRhIuSKRdhmH379pGcnMyxY8eIjIzkueeew93d3ehYlWrLli1Mnz6dAQMG8Oqrr0qDL2ET6YcunMauXbtITEwkLy+PqKgounXr5tJzzadOnSIuLo7GjRszadIkfHx8jI4kHJzMoQuncd9997Fw4ULi4+NZt24d/fr149NPP6UqBxtVKSgoiCVLllC/fn3CwsI4dOiQ0ZGEi5ARunAoWmu++uorEhMTUUoRHR3Nww8/7LJTExs2bODNN99k+PDhvPjii0bHEQ5KplyEU9Na8/nnn5OUlETt2rUxmUzcf//9LlnYjx49SmxsLO3btyc2NpaaNWsaHUk4GJlyEU5NKcUTTzzBmjVr6NevHwkJCURHR7Nr1y6jo9ldy5YtWbFiBcXFxdLgS9wRGaELp1BaWsrHH3/MokWLaN68OSaTiXbt2hkdy6601mRkZJCcnEx8fDxdu3Y1OpJwEDLlIlxScXEx69evZ8mSJbRt25bo6Ghat25tdCy72r9/P3FxcfzlL39h+PDheHp6Gh1JGEymXIRL8vT0pHfv3mRmZtKpUyeGDRvG2LFjOXr0qNHR7KZt27akpaVx8uRJoqKiOHv2rNGRhJOQgi6cUo0aNejfvz9ZWVn84Q9/ICoqismTJ3Py5Emjo9lF3bp1eeutt3j88ccJCwvj66+/NjqScAIy5SJcwqVLl1i1ahVr167lySefZNCgQQQGBhodyy527tzJ+PHjCQkJYfDgwS590pW4OZlyEdWKj48PUVFRZGZm4ufnR//+/ZkzZw55eXlGR7tjHTt2JC0tjZ07dzJs2DDOnTtndCThoKSgC5dSt25dhg4dSnp6Ou7u7vTt25d58+aRn59vdLQ7Ur9+fRITE7n33nsJDQ3l+++/NzqScEA2F3SllLtS6jul1L+t11sqpbYqpX5QSq1VSnlVXkwhysff359Ro0axZs0aCgsL6dWrF0lJSVy8eNHoaBXm7u5OTEwM48aNY8yYMaSlpblsewRRMeUZoY8A9t9wfTbwttb6buA8MMiewYSwh4YNGxIXF0daWhq5ubn07NmTJUuWcOXKFaOjVdgjjzzC8uXL2bhxI7GxsU79S0rYl00FXSnVBHgOWGy9roAngXTrXVYAIZURUAh7CAoKYtKkSSxdupRjx44REhJCamoqhYWFRkerkKCgIBYvXkxAQIA0+BK/sHWE/g4QC5it1+sD+VrrEuv1k0CwnbMJYXfNmjVj+vTpJCcns2fPHkJCQli7dq1T7p7k5eVFbGwsMTExxMTEkJWVJVMw1VyZBV0p9TyQo7XeUZEnUEpFKaW2K6W25+bmVuQQQthdq1ateOONN5iQEQ72AAAY4klEQVQ3bx7ffPMNPXv2JDMzk5KSkrIf7GC6devGokWLWLVqFVOnTnXavzrEnbNlhP4w8KJS6hiwBstUyzzATynlYb1PEyD7Zg/WWqdorTtrrTsHBATYIbIQ9tOmTRvefvttEhIS2LRpE7179+bjjz/GbDaX/WAHcr3Bl9lsJjw8nOPHjxsdSRigXCcWKaUeB0ZrrZ9XSr0PfKC1XqOUSgZ2a60Tb/d4ObFIOLodO3aQlJREfn4+Q4YMoWvXrk51Io/WmszMTBITE4mLi+Ppp582OpKwg0ppzvW7gt4Ky4jdH/gOCNVaX7vd46WgC2egtWbr1q0kJiZSXFyMyWTi0Ucfdape7AcOHCAuLo5HHnmEkSNHSoMvJyfdFoW4Q1prtmzZQlJSEp6enphMJh566CGnKewFBQVMmTKFc+fOkZCQ4DKtEKojKehC2InZbGbz5s0sXLgQPz8/YmJi6Nixo9GxbKK1JjU1lbS0NKZMmUKXLl2MjiQqQAq6EHZmNpvZsGEDCxcuJDg4GJPJRPv27Y2OZZPvvvuO8ePH88ILLzBkyBCn+lxASEEXotKUlJTw4YcfsnjxYlq3bo3JZKJNmzZGxyrTuXPnGD9+PAAzZszA39/f4ETCVtJtUYhK4uHh8cu69S5dujBixAhiY2M5cuSI0dFuy9/fnwULFtChQwdCQ0P57rvvjI4k7ExG6ELcocLCQtLT01m5ciUPPPAAUVFRNGvWzOhYt/XVV18xZcoUQkNDCQsLc5oPeqsrGaELUUVq1qxJaGgoWVlZtGrVioiICKZNm8apU6eMjnZLXbp0YeXKlWzevJnRo0dLgy8XIQVdCDvx9vYmIiKCjIwMAgICCA0NJSEhgZycHKOj3VRgYCCLFy8mMDCQ0NBQDhw4YHQkcYekoAthZ3Xr1sVkMpGRkYG3tzf9+vVj7ty5DrnTkKenJ2PGjGHYsGEMGzaMjIwMafDlxKSgC1FJ/Pz8GD58OOvWraO0tJQ+ffowf/58CgoKjI72X55++mmWLFnC2rVrmTx5MlevXjU6kqgAKehCVLIGDRowZswYVq1aRUFBAT179iQlJYVLly4ZHe03mjdvzooVK1BKER4ezrFjx4yOJMpJCroQVSQwMJBx48axYsUKsrOz6dmzJ8uXL3eo0XDNmjWZMmUK/fv3JzIyko0bNxodSZSDLFsUwiDHjh0jJSWFHTt2EB4eTp8+ffDycpyteQ8ePEhcXBxdunRh5MiRDpWtupFli0I4uBYtWjBz5kzmz5/Pjh07CAkJIT09neLiYqOjAZZe8ampqeTk5BAZGenQyzCFhRR0IQzWunVr3nrrLd58802++OILevfuzfr16yktLTU6GnXq1GHOnDl0796dAQMG8OWXXxodSdyGTLkI4WB27dpFYmIieXl5REVF0a1bN4doprVr1y7GjRvHc889R3R0NO7u7kZHqjakOZcQTkxrzbZt20hKSuLy5ctER0fzxBNPGH6K/rlz55gwYQKlpaXMnDmT+vXrG5qnupCCLoQL0Frz1VdfkZiYiFKK6OhoHn74YUMLu9lsZtGiRWRlZTFjxgyn6Q3vzKSgC+FCtNZ89tlnJCcnU7t2bUwmE/fff7+hhf3rr79m8uTJvPbaa4SFhTnEtJCrkoIuhAsym81s2rSJhQsXEhAQgMlk4r777jMsz9mzZ4mPj8fPz4+pU6dSt25dw7K4MrstW1RK1VRKfauU+l4p9X9KqanW21sqpbYqpX5QSq1VSskiVSEqmZubG927d+f999/nueeeY+LEifztb39j3759huRp1KgRKSkpNG3alNDQUMNyCIsyR+jK8jddba31JaWUJ/AlMAIYBWRordcopZKB77XWSbc7lozQhbCv4uJi/vWvf7F06VLatm1LdHQ0rVu3NiTL5s2bmTVrFtHR0fTu3dvwD3Bdid1G6NrietMJT+s/DTwJpFtvXwGEVDCrEKKCPD096dOnD5mZmXTq1ImhQ4cybtw4Q/qwdO3alaVLl/LBBx8wceJErly5UuUZqjubPsVQSrkrpXYBOcAm4EcgX2tdYr3LSSD4Fo+NUkptV0ptz83NtUdmIcTv1KhRg/79+5OVlcU999zD4MGDmTx5MidPnqzSHM2aNWPZsmV4eXkRHh7u8NvyuRqbCrrWulRrfR/QBHgA+IOtT6C1TtFad9Zadw4ICKhgTCGELby9vRkwYACZmZkEBwcTHh7OjBkzOHPmTJVlqFmzJpMmTSIsLIyoqCg2bNhQZc9d3ZVrnZHWOh/4DPgz4KeU8rB+qwmQbedsQogK8vHxISoqioyMDHx9fenfvz9z5swhLy+vyjK8+OKLJCYmsnDhQhISEigqKqqy566ubFnlEqCU8rNergU8DezHUtj7WO8WDvyrskIKISrG19eXYcOGkZ6ejru7O3379mXevHnk5+dXyfPfc889pKamcu7cOQYNGiQNviqZLSP0xsBnSqndwDZgk9b630AcMEop9QNQH1hSeTGFEHfC39+fUaNGsWbNGgoLC+nVqxdJSUlVsjm0j48Ps2fP5tlnn2XAgAF88cUXlf6c1ZWcWCRENXTq1CkWL17MF198wauvvsqrr76Kt7d3pT/v7t27GTt2LM888wwxMTHS4MtG0g9dCHFLQUFBTJo0iaVLl3L06FFCQkJITU2lsLCwUp+3Q4cOpKWlcfDgQUwmU5XO6VcHUtCFqMaaNWvGP/7xD5KTk9mzZw8hISGsW7euUj/ArFevHu+++y6dO3cmNDQU+avdfmTKRQjxiwMHDpCcnMzhw4eJjIzkhRdewMPDo+wHVtDWrVuZNGkS/fr1Izw8XBp83YI05xJCVNju3btJTk4mOzubIUOG8Mwzz1Rasc3JySE+Pp46deowffp0afB1EzKHLoSosA4dOpCYmMikSZPIyMigb9++bNq0CbPZbPfnatiwISkpKbRo0YLXXntNGnzdARmhCyFuS2vNN998Q1JSEsXFxZhMJh599NFKab716aefMmvWLAYPHszLL78sDb6sZMpFCGFXWmu2bNlCUlISnp6emEwmHnroIbsX3Z9++om4uDhatGjBhAkTqmQ5paOTKRchhF0ppXjsscd47733CAsL46233mLw4MHs3LnTrs/TtGlTli1bRq1atQgLC5MGX+UgI3QhRIWYzWY2bNjAwoULCQ4OxmQy0b59e7s+x4cffsi8efMYNWoUPXr0sOuxnYlMuQghqkRJSQkffvghixcvpnXr1phMJtq0aWO34//www/ExsbSuXNnRo8ejZdX9dscTaZchBBVwsPDg549e5KZmUmXLl0YMWIEsbGxdpsqufvuu0lNTaWgoICIiAiys6Wx661IQRdC2IWXlxd9+/YlKyuL9u3bEx0dzYQJEzhx4sQdH7t27drMmjWL559/Xhp83YZMuQghKsWVK1dYvXo1q1ev5rHHHiMyMpKgoKA7Pu71Bl/du3dn6NCh1aLBl0y5CCEM5e3tzaBBg8jIyCAgIIDQ0FASEhLIycm5o+N26NCB9957j8OHDxMdHY1sbfkrKehCiEpVt25dTCYTGRkZeHt7069fP+bOncu5c+cqfEw/Pz/mzZvHgw8+SFhYGNu2bbNjYuclBV0IUSX8/PwYPnw469ato7S0lD59+rBgwQIKCgoqdDw3NzciIyOZNm0aEyZMYOnSpZXSmsCZSEEXQlSpBg0aMGbMGFatWkV+fj49e/YkJSWFS5cuVeh4DzzwAKmpqfznP/9h5MiRXLhwwc6JnYcUdCGEIQIDAxk/fjwrVqwgOzubnj17snz5cq5evVruYzVs2JCFCxfSqlUrQkND2bt3byUkdny2bBLdVCn1mVJqn1Lq/5RSI6y3+yulNimlDlu/1qv8uEIIV9OkSROmTp1KSkoKBw8eJCQkhFWrVpV7kw0PDw9GjhzJqFGjeP3111m3bh1VuYrPEZS5bFEp1RhorLXeqZSqA+wAQoABwDmtdYJSKh6op7WOu92xZNmiEKIshw4dYuHChezfv5+IiAheeuklPD09y3WMkydPEhsbS/PmzZk4caLTN/iy27JFrfVprfVO6+WLwH4gGHgJWGG92wosRV4IIe7IPffcw1tvvcWcOXP43//9X3r37s369espLS21+RhNmjRh2bJl+Pj4EBYWxo8//liJiR1HuU4sUkq1AL4A7gVOaK39rLcr4Pz167ciI3QhRHnt2rWLxMRE8vLyiIqKolu3buXaPemjjz7i7bff5vXXX+e5556rxKSVx+7NuZRSPsD/AjO01hlKqfwbC7hS6rzW+r/m0ZVSUUAUQLNmzTodP37c1p9BCCEASy/2bdu2kZSUxOXLl4mOjuaJJ56wuRf79QZfnTp1YsyYMU7X4MuuBV0p5Qn8G/hEaz3XettB4HGt9WnrPPvnWuvbtliTEboQ4k5orfnPf/5DUlISSilMJhNdunSxqbBfuXKF6dOnc/z4cd544w2aNGlSBYntw25z6NbplCXA/uvF3Go9EG69HA78qyJBhRDCVkopHnnkEdLS0oiIiGDevHlERETw7bfflrmixdvbm5kzZxISEsLAgQP5/PPPqyZ0FbJllcsjwBZgD3D9NKxxwFZgHdAMOA701Vrf9lxeGaELIezJbDazceNGFi5cSMOGDTGZTNx3331lPm7v3r2MHTuWrl27MmzYMDw8PKogbcXJBhdCiGqjtLSUjz76iEWLFtGiRQtMJhPt2rW77WMuXLjAxIkTuXz5MrNmzaJhw4ZVlLb8pNuiEKLacHd358UXXyQjI4O//OUvjB49mr///e8cPnz4lo/x9fXlnXfe4eGHHyYsLIxvv/22ChNXDhmhCyFczrVr1/jggw9Yvnw5nTt3JioqihYtWtzy/tu2bWPixIn06dOHiIiIci2LrAoyQhdCVFs1atSgf//+ZGVlcc899zB48GAmT57MyZMnb3r/+++/n9TUVLZu3cqIESPIz8+v4sT2IQVdCOGyvL29GTBgAJmZmQQHBxMeHs6MGTM4c+bMf903ICCA5ORkWrduTWhoKHv27DEg8Z2Rgi6EcHk+Pj5ERUWRkZGBr68v/fv3Z86cOeTl5f3mfu7u7gwfPpzY2FhGjRrF6tWrnarBlxR0IUS14evry7Bhw0hPT8fd3Z2+ffvy7rvv/tcUy2OPPcby5cv56KOPiI+P5/LlywYlLh8p6EKIasff359Ro0axZs0arly5Qq9evUhKSuLixYu/3Cc4OJilS5fi6+tLWFjYbVfM/EZBAaxdC8OGwSOPQOvW0KoV3Hsv9OoFs2fDrl1QCSN/WeUihKj2Tp06xeLFi/niiy/o378//fr1+03L3Y8//pi5c+cyYsQIXnjhhZsf5Oef4a23ICMDSkost9WqBZ6eoBSUlsK1a1BYCB4e0Lw5xMbC009bvn8bcmKREEKU04kTJ0hJSeHbb78lLCyMl19+mZo1awJw5MgRYmNj6dChA3FxcdSoUePXB37yiaU4X7oEdepYCvbtaA1XrkBREXTrBjNmgL//Le8uyxaFEKKcmjVrxj/+8Q+SkpLYs2cPISEhrFu3jqKiIlq1asXKlSspLCxk4MCBnDhxwlKY//lPiImxjMrr1Su7mINlRF67Nvj6wsaN8OKLcOrUHeeXEboQQtzCgQMHSE5O5vDhw0RGRvLCCy/g7u5Oeno6KSkpzLvvPtp98AHUrWtbIb+V/HwIDIT16286UpcpFyGEsJPdu3eTnJxMdnY2Q4YM4ZlnnuHIv/+N96uv4uHrS0Djxjb3Zr+l8+ct8+lJSf81py4FXQgh7GzHjh0kJiZy8fx5ko4dw6+ggOyLFzGXlhLcpAmedzJKN5vhwgVITITu3X/zLZlDF0IIO+vUqROLFy9m8hNPUPzDDxz/+Wfq+fnh4+PD0SNHuHQn69Xd3MDLC+bMqfCSRsduAiyEEA5GKcX/9+WX6MBALrm5kZuTg1IKf39/Tp06RT0/PxoEBFBsNpNw5gzfXrlCQWkpTTw9GdawIV18fG59cG9vOH7csk79T38qdzYp6EIIUR4FBbB9O8rPjzpK4ePjw8WCAnJyc/Hw8OBCQQFXrl7Fv3FjAj09SWnWjEBPT/5z6RLx2dmsadmSoFvtaaqUZbXMJ59UqKDLlIsQQpTHgQO/niwEKKBu3brcdddd+Pv7o7Xm6tWrZB85QqiPD0FeXrgpxaN16hDk6cmBwsLbH79mTdi6tULRpKALIUR5/PADFBf/180K8PP15e677qJRo0Zorfnhhx84c/YsGjhXUsKJoiJa3XhC0s3UqAEHD1Yomky5CCFEeVy+bDmN/xaUUtTz88PX15e8vDxOnz6NWSn+UVjI876+tCiroLu7w9WrFYpW5ghdKbVUKZWjlNp7w23+SqlNSqnD1q/1KvTsQgjhbNzdy+y9AuCmFA0DAmjXrh3/LCrCA4gNDCz7+FpbnqMCbJlyWQ4887vb4oHNWuvWwGbrdSGEcH2NGlmWF9pAa83MnBzOlZYyp0kTPGw5+ai4GCq4YXWZBV1r/QVw7nc3vwSssF5eAYRU6NmFEMLZtG1r811nnTnD0aIi3m7alBq27lNaWFihFS5Q8Tn0Rlrr09bLZ4BGt7qjUioKiAJL4xshhHBqLVpYPrgsKrrtSP10cTEZ+fl4KUX3G3qpjwsM5Flf31sfX2tLH/UKuOMPRbXWWil1y9OatNYpQApYTv2/0+cTQghDublBaCgsXHjbgt7Y05Pt5RjNA5Y16O7u0KNHxaJV6FFwVinVGMD6NaeCxxFCCOfz6quWwnt9Iwt7uXgRQkIsbXUroKIFfT0Qbr0cDvyrgscRQgjn07QpREVZCrC9GhwWFlp6pI8ZU+FD2LJscTXwNdBGKXVSKTUISACeVkodBp6yXhdCiOpj+HDLXqEFBXd+rJISy9rzWbOgQYMKH6bMOXSt9au3+FbXCj+rEEI4Oy8vWLHCMkVy/nyFp0koKbH8Uhg+HJ577o4iyan/QghRUUFBkJlp2fD5/PnyzalrbSnkly9DfDyMGHHHcap0gwulVC5wvMqe8OYaAHkGZ7CVZK08zpRXslYeZ8nbXGsdUNadqrSgOwKl1HZbdv5wBJK18jhTXslaeZwtb1lkykUIIVyEFHQhhHAR1bGgpxgdoBwka+VxpryStfI4W97bqnZz6EII4aqq4whdCCFckssWdKVUTaXUt0qp75VS/6eUmmq9vaVSaqtS6gel1FqllG2NjauAUspdKfWdUurf1uuOnPWYUmqPUmqXUmq79TaH3PhEKeWnlEpXSh1QSu1XSv3ZgbO2sb6m1/8VKKVGOnDe163/v/YqpVZb/9855PtWKTXCmvP/lFIjrbc55OtaUS5b0IFrwJNa6z8C9wHPKKUeAmYDb2ut7wbOA4MMzPh7I4D9N1x35KwAT2it77th2ZejbnwyD9igtf4D8Ecsr7FDZtVaH7S+pvcBnYArQCYOmFcpFQwMBzprre8F3IF+OOD7Vil1LzAYeADLe+B5pdTdOODreke01i7/D/AGdgIPYjmJwMN6+5+BT4zOZ83SBMsb6kng31j2nHXIrNY8x4AGv7vtINDYerkxcNABcvoCR7F+XuTIWW+SvRvwH0fNCwQDPwH+WNqI/Bvo7ojvW+BlYMkN1ycCsY74ut7JP1ceoV+fwtiFpb3vJuBHIF9rff383JNY3pSO4B0sbzCz9Xp9HDcrgAY2KqV2WDcxgXJsfFKFWgK5wDLrdNZipVRtHDPr7/UDVlsvO1xerXU28CZwAjgNXAB24Jjv273Ao0qp+kopb6AH0BQHfF3vhEsXdK11qbb86doEy59afzA40k0ppZ4HcrTWO4zOUg6PaK07As8CQ5VSj934TW0Z8jjCEioPoCOQpLX+E3CZ3/1Z7UBZf2Gdd34ReP/333OUvNb55pew/NIMAmrz3/sPOwSt9X4sU0EbgQ3ALqD0d/dxiNf1Trh0Qb9Oa50PfIblzz8/pdT1LpNNgGzDgv3qYeBFpdQxYA2WaZd5OGZW4JfRGVrrHCxzvA/gmBufnAROaq23Wq+nYynwjpj1Rs8CO7XWZ63XHTHvU8BRrXWu1roYyMDyXnbI963WeonWupPW+jEsc/uHcMzXtcJctqArpQKUUn7Wy7WAp7F8GPYZ0Md6N4fYnENrPVZr3URr3QLLn9mfaq1fwwGzAiilaiul6ly/jGWudy8OuPGJ1voM8JNSqo31pq7APhww6++8yq/TLeCYeU8ADymlvJVSil9fW0d93za0fm0G9AJW4Ziva4W57IlFSqkOwAosn7y7Aeu01tOUUq2wjIL9ge+AUK31NeOS/pZS6nFgtNb6eUfNas2Vab3qAazSWs9QStUH1gHNsHTV7Ku1PmdQzF8ope4DFgNewBFgINb3BA6WFX75JXkCaKW1vmC9zVFf26nAK0AJlvdoJJY5c0d8327B8tlUMTBKa73ZUV/XinLZgi6EENWNy065CCFEdSMFXQghXIQUdCGEcBFS0IUQwkVIQRdCCBchBV0IIVyEFHQhhHARUtCFEMJF/P+XqCdcLvWBGgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -750,23 +753,23 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "energy: -597781.6405056512\n", - "time: 255.34230828285217\n", + "energy: -594841.9262828702\n", + "time: 56.990293979644775\n", "feasible: True\n", "solution: [2, 0, 1]\n", - "solution objective: 112.0\n" + "solution objective: 201.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1NX+x/HXAUEFF1zINderpXXVDCu9tml6rVvadlGzXNLUVgt3S00BF1xS3BFkERTQNH92bbFr3nYNl9TUXEMBFxRZZBtgzu+PQTJTGWBgFj7Px8OH8J3v8vkqvud45pzvUVprhBBC2D8naxcghBDCMiTQhRDCQUigCyGEg5BAF0IIByGBLoQQDkICXQghHIQEuhBCOAgJdCGEcBAS6EII4SCqVOTF6tevr1u0aFGRlxRCiPJXUABJSZCWZvreyQmUuvX+WpuOcXKCRo2gbt3bnn7Pnj2XtNaexZVRoYHeokUL4uLiKvKSQghRvn77DV5+GWrWhCZNTCFtLoMBMjOhQwdYvhyqVbvpbkqpeHNOJ10uQghRWsePg7c3pKeDh0fJwhzA1dV03M6d8NprpoAvAwl0IYQojexsGDbM9HvNmqU/j1JQpw58/z0sWFCmkiTQhRCiNObPh3PnoFatsp9LKdN51qyB/ftLfRoJdCGEKKmEBIiIsEyYX1OliinYp08v9Skk0IUQoqSio8FoBGfn2+4Wm5LCK6dP0/XoUT5MSir+vDVrwq+/mj5oLQUJdCGEKAmtISoK3N2L3bV+lSoMr1+fvrVrm3dupUxvFB9/XKrSKnTYohBC2L3z5+HqVTAjpHsUdskczs7mYn6+eeevWhV+/LFUpUkLXQghSuLIkWK7WsqkWjU4dszUUi8hCXQhhCiJK1dMszzNYNSajIwM8s1tnYPpzSI/3zQcsoSky0UIIUpC69u8pMnOySErM5PMrCyuZmSQX1BAdo0at5wFekulaKFLoAshREnUqlXU5aKBnOsCPCsrC1dXV6pVrUp+Xh5Vq1WjVZMmfJ+eTra5rXSj0fThqJtbiUuTQBdCCDMZjUbOVKtG3bQ00lJTycrMpIqLC+5ubnh4eNC4USPSMzJITk6mbt26eNStiwaMhb8MRiPOSuF8uwd35eRA69al6qeXQBdCiFvQWhMfH09cXBw///wze/bsoVaNGqwyGqnt7k6jhg2pUsUUo7kGAwkJCQC0aN6cqlWrEpScTNClS0Xn25aWxsj69RnpeZsHJ+bkwAMPlKpeCXQhhCiktSYxMZG4uLiiX1WqVKFLly488sgj+Pj40KBBA5g6FdatgypVMGrN5cuXSUlJwdPTkzp16nCt/T3S0/P24f3XAkwt8+eeK1X9EuhCiErtwoULRS3wuLg48vPz8fLyokuXLrz++us0btwYdWMXySuvQHQ02VlZJJ0/j4uLC61atsTFxaVsxWRmQrNmcN99pTpcAl0IUalcvny5qPX9888/c/XqVby8vPDy8mLo0KE0b978rwF+g+w77+Row4Y0iIujftOm1Kpdm9sfYQajEfLyTK3/Yq5/KxLoQgiHlpqayt69e4ta4JcvX+a+++6jS5cu9O/fn1atWuFUgueY7969G39/f7o88ACT0tKokpdX9iK1htRU6NcPHnus1KeRQBdCOJSMjAz27dtX1AJPSkqiU6dOeHl5MXPmTO66664SBfg16enpLFq0iF27djF58mS6d+8OP/9sWq0oK6tUwwwBU5inpUGbNjBjRunOUcisQFdKvQeMwDTs8iAwDAgBvIA8YDcwSmttgbcqIYQwX1ZWFvv37y/qRvn999+599576dKlC1OmTKFdu3ZFI1FKa8eOHQQEBNCjRw82bNiA27Xw7tIFQkNhxAhTC7t27ZJ1lxQUmFY7uusuiIws8+N4lb7NrCcApVQT4DugvdY6WykVC2wDLgKfFe62DvhGa73idufy8vLSsqaoEKIscnNz+eWXX4oC/Pjx47Rr166oH/zee+/F1dXVItdKTk4mICCA06dPM3XqVDp27HjzHX//Hd57Dw4cMC0r5+Z2+2A3Gk2tcicnePVV07G3mUmqlNqjtfYqrl5z37aqANWVUnmAG5Cktf7yuovtBpqaeS4hREVJTjY9TOrwYdPXTk7QoAG0bw/t2pmWPrNxeXl5HDp0qKgP/MiRI7Rp0wYvLy9Gjx5Nhw4dqFbSafXF0FqzZcsWli5dyvPPP4+/v//t3yRatDA98nbzZtNiz2fOmELbyckU8GD6Pjf3jwlDvXrBm2/C3/9usbqLbaEDKKXGAP5ANvCl1nrQda+5ALuAMVrrb29y7EhgJECzZs3uj483a/FqIURpFRTAjh0QFAT79plWwrlx8eGqVU0PgOre3dRd0K1bqUdWWFpBQQGHDx8u6gM/dOgQLVq0KGqBd+rU6Y8uj3Jw9uxZ/P39ycrKYurUqbRp06ZkJ9AaDh40/dnv3g2nTpn+rN3doUMH6NzZ9Od9xx1mn9LcFro5XS51gI+B/kAqsAHYqLWOLHx9NZCptX63uItJl4sQ5ezkSXj3XVOr3MnJtALOrYLaaDT13yplmpk4bx40blyx9WKaTn/s2LGiFvj+/ftp3Lhx0Vjw++67j5plWYTZTAUFBaxbt46wsDCGDRvGwIEDcS7Px+SWgCW7XJ4ATmutkwtPvAnoBkQqpaYDnsCoshQrhLCATz6BiRNNQW3Oh3NOTuDhYWpR7tpl6gJYsQIeeaRcyzQajZw6daqoBb5v3z7q1auHl5cXffv2ZcaMGXh4eJRrDTc6duwYvr6+1KhRg/DwcJo2tc8eZHMC/QzwkFLKDVOXS08gTik1Avgn0FNrXfLnPAohLGfjRlOYu7v/0WdrLqVMwZ6dbep+CQ62aKhrrTlz5kxRC3zPnj24u7vj5eVF7969mTx5MvXr17fY9UrCYDAQHBzM5s2befvtt3nmmWeKnVRky8ztQ5+BqcslH9iHaQhjJhAPZBTutklrPfN255EuFyHKwYED8MILUL16ycP8RtnZphb755+bpqCXgtaapKSkP02nd3Z2pkuXLkX94A0bNixbnRawb98+/Pz8aN26NRMmTLDam4o5LNaHbkkS6EJYWG4u9O4N586VeQxzkdRU6NQJYmNN3TJmuPY8lGu/DAbDnwK8SZMmNtPyzczMZMmSJfzvf/9jwoQJPP7449YuqViWHrYohLBF69ZBQoJlhx/Wrg3798OXX0KfPjfdJSUl5U8t8IyMDO6//368vLwYMmSIWc9DsYZvv/2WOXPm0LVrV2JjYyvkw9aKJIEuhL0yGk1DE4sZg20wGplz/jy7s7JILyigqYsLb91xB91q1Lj5AUqZxkqvWlUU6GlpaezZs6eoBZ6cnEznzp3x8vLC29ub1q1bl2o6fUVJSUlh/vz5HD58mA8//JAuXbpYu6RyIYEuhL2Ki4PLl4vtaikAGrq4ENSsGQ1dXPj+6lUmJSYS3bIljW/R517g5kbuzz8T9cEHfH3qFImJiXTs2BEvLy9mzJhR6uehVDStNZ999hmLFi3iX//6F9OmTbP4JCRbIoEuhL365RfThJViVHdy+tMiCw/XrEljFxeO5uQUBXqB0Uh2VpZpXczMTHINBuo4O9MiPZ1JkybRvn37Mj8PpaKdO3eO2bNnk5yczKJFi2jfvr21Syp39vU3JIT4w+7dplmgJZSSn88Zg4GGBQVcTE4mKzOTnNxcqlWrhrubG3c0aED16tVxSkmhV/36ptmNdsRoNLJhwwaCgoIYNGgQgwcPtrs3o9KqHHcphCNKTCxRoOfl53PpyhUmXLzIg0Yjbmlp4O6Op6cn1d3ccLrxQ0wXF9MHrnbk1KlT+Pn54eTkxJo1a2jevLm1S6pQEuhC2Cuj0eznr2RcvUpiUhLLtaZGtWrMadGCquZMay8oKGORFSMvL4+wsDCio6N5/fXXef755+2ij9/SJNCFsFe1a5se23obGrh86RIpKSlEVqtGrtYE3nknVc0JO6PRLp7GeOjQIXx9fWnUqBHr1q0zLeJcSUmgC2GvOnc29aPfYvihsXDGZp7BQIy7Owl5eSxv1sy8MAfTjNHOnS1YsGVlZ2ezYsUKPv/8c8aOHUvv3r1tcux7RZJAF8Jedepk6ue+iby8PM4mJFC1alVcmzRhy8mTuCrFP48fL9pnSsOGPFm79q3PX6UK3H23pau2iF27duHv70+nTp2IjY2t8Id52SoJdCHsVbdupglA+fl/+nA0KzubhIQE6tatS7169VBAXLt2JTt3To5pfPutVuixkvT0dBYuXEhcXBxTpkyhW7du1i7JplS+Tw2EcBQ1a5oeypWRUbQpNS2NhLNnadSoEfULw7xUsrNNS6PZyPPAtdZ89dVXeHt74+7uTmxsrIT5TUgLXQh7NmoUbNyINhi4cOUKV69epXnz5lStWrX058zONrXOBw60XJ1lcPHiRebOncuZM2cICAigg52Ni69I0kIXwp7deSdZPj5cio8nNyeHli1alC3MjUZTd8v8+aZnpFuR0Whk06ZNvPTSS7Rp04aoqCgJ82JIC10IOxYfH4/PZ58xrX17Oly4gCrL2OtrK9G//DL07Gm5IkvhzJkz+Pn5kZuby8qVK/nb3/5m1XrshbTQhbBTP/zwAyNGjGDw0KF0/N//UE88YXqWeV5eyU+Wm2sK8/79Yfp0yxdrpoKCAiIiIhg2bBiPPfYYoaGhEuYlIC10IeyM1pqoqCgiIyOZP38+Ha+NRFmxAkJCYMECuHrV1A9e3Iea+fmmD1WrVYM5c+DFF82efWppx44dY+bMmdSqVYu1a9fS2AoLVts7CXQh7IjBYMDf35/jx48TFhb256XcnJ1h5EhTd8lHH5kWqCgoMAV0tWp/hHt+vqmf/Npzz198EcaMASsFaG5uLqtXr2bLli288847PP3005V+glBpSaALYSeSk5MZP348DRs2JCQkhOrVq998x9atYelSSE6Gr74yzSbdt8/UHePkBJ6ecP/98MAD8MQTpkcIWMnevXvx8/Ojbdu2REdHU69ePavV4ggk0IWwA4cPH2bcuHG88MILvPrqq+a1YD09TUMPbWT44fWuXr1KYGAg3333HRMnTuTRRx+1dkkOwawPRZVS7ymlflVKHVJKrVdKVVNKtVRK7VJKnVBKxSilyrjcuBDiZj777DPeeecdxo8fz/Dhw+2+O+Kbb77B29sbgJiYGAlzCyq2ha6UagK8A7TXWmcrpWKBAcBTwEda62il1EpgOLCiXKsVohIxGo0sW7aM7du3O8TQvZSUFObNm8fRo0fx9fXl/vvvt3ZJDsfcYYtVgOpKqSqAG3AO6AFsLHw9HHjW8uUJUTllZmbi4+PDwYMHiYiIsOsw11rzn//8hwEDBtCoUSOio6MlzMtJsS10rXWiUmo+cAbIBr4E9gCpWutrCxomAE3KrUohKpGzZ8/i4+ND586dGT9+vF0vn5aUlMSsWbNISUkhMDCQu2306Y2OotgWulKqDtAPaAk0BtyBPuZeQCk1UikVp5SKS05OLnWhQlQGu3fvZvjw4fTv35/JkyfbbZgbjUbWr1/PK6+8gpeXFxERERLmFcCcn5YngNNa62QApdQm4B+Ah1KqSmErvSmQeLODtdZBQBCAl5eXtkjVQjgYrTUxMTGsWbOG2bNn23WXxKlTp5g5cyaurq6EhobSrFkza5dUaZgT6GeAh5RSbpi6XHoCccDXwItANDAE2FJeRQrhyAwGA3PnzuXQoUOEhYXZ7QxJg8FAWFgYsbGxvPHGGzz77LOVcl1PazKnD32XUmojsBfIB/ZhanH/B4hWSvkVbgspz0KFcEQpKSmMHz+eOnXqEBoaipubm7VLKpWDBw/i6+tL06ZNWbduHXfccYe1S6qUzOqg01pPB258Ys8p4AGLVyREJXHs2DF8fHx4+umnGTlypF22ZrOysli+fDnbt29n7Nix9OrVy+7Hydsz+/sJEsIBfPXVV7zxxhuMGTOG0aNH22WY//jjj/Tv35+MjAxiY2NlkWYbYJ8foQthp4xGI6tXr2br1q0sW7aMu+66y9ollVhaWhoLFixg3759TJkyha5du1q7JFFIAl2ICpKVlcX06dO5fPkyERER1K1b19ollYjWmu3bt7NgwQJ69+5NTEyM3fb5OyoJdCEqQFJSEj4+PrRv3x5/f39cXe3r0UcXL15kzpw5JCQkMG/ePFkKzkbZX8edEHZm7969DBs2jGeffZapU6faVZgbjUY+/vhjXnrpJe6++24iIyMlzG2YtNCFKEebNm1i5cqV+Pr68uCDD1q7nBK5tq6nwWAgKCiIVq1aWbskUQwJdCHKQX5+PvPnzycuLo7g4GC7mi2Zn59PZGQka9euZcSIEfTv398uR+FURhLoQlhYamoqEydOpFq1aoSFhVGjRg1rl2S2o0ePMnPmTOrWrSvretohCXQhLOjEiRP4+PjwxBNP8NZbb9lNyzY3N5dVq1bx6aefMmbMGJ566ikZU26HJNCFsJCdO3fi5+eHj48PTz31lLXLMduePXvw8/OjXbt2REdH291wSvEHCXQhykhrzZo1a/j4449ZvHgx99xzj7VLMktGRgaBgYF8//33TJo0iUceecTaJYkykkAXogxycnKYMWMGiYmJhIeH4+npae2SzLJz504CAgJ4+OGHiY2Ntat+fnFrEuhClNKFCxfw8fGhdevWrF69mqpVq1q7pGJdvnyZgIAAjh8/jp+fH507d7Z2ScKC7OMTGyFszIEDBxgyZAh9+vRhxowZNh/mWmu2bt3KwIEDufPOO1m/fr2EuQOSFroQJfR///d/LFmyhA8//JB//OMf1i6nWElJSfj7+5OWlsaSJUvs8oFgwjwS6EKYqaCggMWLF/Pdd9+xevVqWrRoYe2SbstoNBIdHU1ISAhDhgxh0KBBODs7W7ssUY4k0IUwQ3p6OpMnTwYgLCyMWrVqWbmi2ztx4gS+vr5Uq1ZN1vWsRCTQhSjG6dOnGTt2LN27d2fMmDE23co1GAysWbOGjRs38uabb9KvXz+7mdwkyk4CXYjb+P777/nwww95++236du3r7XLua0DBw7g6+tL8+bNWb9+vd0MoRSWI4EuxE1orVm7di3r1q1jwYIFNv3I2KysLJYuXcqOHTsYP348PXr0kGn7lVSxga6UuguIuW5TK2AasBNYCVQD8oE3tNa7y6FGISqUwWDAz8+PU6dOER4eToMGDaxd0i398MMPzJo1iy5duhAbG2vzffuifBUb6Frr34BOAEopZyAR2AysBmZorT9TSj0FBACPlV+pQpS/5ORkxo0bR+PGjQkODqZatWrWLummUlNTWbhwIfv372fq1Kl296x1UT5K+mlJT+Ck1joe0MC15kBtIMmShQlR0X799VeGDBnCo48+yqxZs2wyzLXWfPHFF3h7e+Ph4UFMTIyEuShS0j70AcD6wq/fBb5QSs3H9MbQzZKFCVGRtm3bxsKFC5k6dSqPPvqotcu5qQsXLjB79mzOnTvHwoULuffee61dkrAxZrfQlVKuQF9gQ+Gm14H3tNZ3Au8BIbc4bqRSKk4pFZecnFzWeoWwKKPRSGBgICtXrmTlypU2GeZGo5ENGzYwaNAg7rnnHiIjIyXMxU0prbV5OyrVD3hTa9278Ps0wENrrZXpI/U0rfVtP5Hx8vLScXFxZa1ZCIu4evUq77//Pjk5OcydOxcPDw9rl/QXv//+O35+fhiNRj744ANZ17OSUkrt0Vp7FbdfSfrQB/JHdwuY+syvNWd6AMdLcC4hrOrMmTMMHTqUxo0bs2zZMpsL8/z8fNasWcPw4cPp1asXwcHBEuaiWGb1oSul3IFewKjrNr8GLFZKVQFygJGWL08Iy9u1axdTp05l1KhRvPDCC9Yu5y8OHz6Mr68vnp6eREZG0qhRI2uXJOyEWYGutc4E6t2w7Tvg/vIoSojyoLUmOjqa0NBQ5syZY3OPj83JyWHVqlX85z//4d133+XJJ5+UCUKiRGSmqKgUDAYDc+bM4fDhw4SFhdncavY///wz/v7+3HPPPbKupyg1CXTh8FJSUhg3bhz16tVjzZo1uLm5WbukIhkZGSxatIiffvqJSZMm8fDDD1u7JGHH5DFswqEdPXqUwYMH89BDDzF37lybCvMdO3bg7e2Ni4sLsbGxEuaizKSFLhzW9u3bmTt3LpMnT6Znz57WLqfI5cuXmTt3LidOnGDWrFncd9991i5JOAgJdOFwjEYjq1atYtu2bSxfvpy2bdtauyTgj3U9lyxZwnPPPYefnx+urq7WLks4EAl04VCysrKYOnUqqamphIeH28yHi4mJifj7+5ORkcGyZcts5k1GOBbpQxcOIykpiWHDhuHh4cHKlSttIswLCgqIjIxk8ODBdO3albCwMAlzUW6khS4cwp49e5g8eTLDhw/H29vbJsZvHz9+HF9fX9zc3AgPD6dp06bWLkk4OAl0Yfc2btxIUFAQfn5+PPDAA9YuB4PBQHBwMJs3b+att96ib9++NvEGIxyfBLqwW/n5+cybN4+9e/cSEhLCnXfeae2S2L9/P35+frRq1Yr169dTv359a5ckKhEJdGGXUlNTmTBhAm5uboSFheHu7m7VejIzM1m6dCk7d+4sWtdTiIomH4oKu3P8+HEGDx5Mhw4dWLhwodXD/LvvvsPb25vc3FxiYmIkzIXVSAtd2JWvv/4af39/xo0bR58+faxay5UrV1iwYAEHDx5k+vTpNtF/Lyo3CXRhF7TWhISEsGnTJgIDA2nfvr1Va/n888/56KOPePLJJ4mOjqZ69epWq0eIayTQhc3Lzs5mxowZnD9/noiICKt+0Hj+/HlmzZrFxYsXWbRokVXfWIS4kfShC5t2/vx5hg8fjqurK0FBQVYLc6PRSGxsLIMGDaJjx46sXbtWwlzYHGmhC5u1f/9+Jk6cyCuvvMKgQYOsNpb79OnT+Pr6opQiODiYli1bWqUOIYojgS5s0pYtW1i6dCkzZsygW7duVqkhLy+P8PBw1q9fz6hRo3jxxRdxcpL/1ArbJYEubEpBQQEfffQRP/zwA8HBwTRv3twqdfz666/4+vrSoEEDoqKiaNiwoVXqEKIkJNCFzUhPT2fSpEk4OzsTFhZGrVq1KryG7OxsVq5cyWeffYaPjw///Oc/Zdq+sBvy/0dhE06dOsWQIUNo06YNixYtskqY7969mwEDBpCSkkJMTAx9+vSRMBd2pdgWulLqLiDmuk2tgGla60VKqbeBN4EC4D9a6wnlU6ZwZN9++y0zZ87knXfe4Zlnnqnw66enp7No0SJ2797N5MmT+cc//lHhNQhhCcUGutb6N6ATgFLKGUgENiulHgf6AR211rlKqTvKtVLhcLTWREREEB0dzYIFC+jQoUOF17Bjxw4CAgLo0aMHsbGxNrXmqBAlVdI+9J7ASa11vFJqHjBHa50LoLW+aPHqhMPKzc3F19eX+Ph4wsPDueOOim0PJCcnExAQwOnTp5k7dy4dO3as0OsLUR5K2oc+AFhf+HVb4GGl1C6l1P+UUl1udoBSaqRSKk4pFZecnFyWWoWDuHjxIq+99hpGo5HVq1dXaJhrrfnkk0946aWXaNWqFevWrZMwFw7D7Ba6UsoV6AtMvu7YusBDQBcgVinVSmutrz9Oax0EBAF4eXn96TVR+Rw6dIgJEybw73//m6FDh1boh45nz57F39+frKwsli9fTps2bSrs2kJUhJJ0uTwJ7NVaXyj8PgHYVBjgu5VSRqA+IM1wcVPbtm1j4cKFTJs2jUceeaTCrltQUEBUVBTh4eG8+uqrDBw4UCYICYdUkkAfyB/dLQCfAI8DXyul2gKuwCUL1iYchNFoZOnSpfz3v/8lKCiIVq1aVdi1jx07hq+vLzVr1iQiIoImTZpU2LWFqGhmBbpSyh3oBYy6bvMaYI1S6hBgAIbc2N0iREZGBu+//z4Gg4GIiAhq165dIdc1GAysXr2aTz75hLfffptnnnlGxpQLh2dWoGutM4F6N2wzAC+XR1HCMZw5c4b33nuPBx98EB8fH6pUqZiJyfv27cPX15c2bdoQHR1NvXr1ij9ICAcgU/9Fufjxxx+ZNm0ar7/+Os8//3yFXDMzM5PAwEC++eYbJkyYwOOPP14h1xXCVkigC4vSWrN+/XrCw8OZO3cunTt3rpDrfvvtt8yZM4euXbsSGxtLzZo1K+S6QtgSCXRhMQaDgdmzZ3P06FFCQ0Np3LhxuV8zJSWF+fPnc/jwYWbMmIGXl1e5X1MIWyVjt4RFXL58mdGjR5OZmUlISEi5h7nWmm3btjFgwAAaNmxIdHS0hLmo9KSFLsrsyJEjjBs3jn79+jFixIhyH+N97tw5Zs2axaVLl2RdTyGuI4EuyuTLL78kICCAKVOm0KNHj3K91rV1PVevXs2gQYMYPHhwhY2cEcIeyL8GUSpGo7FoIYjly5fTtm3bcr3eqVOn8PX1xdnZmTVr1lhtJSMhbJkEuiixrKwsPvjgAzIyMggPD6du3brldq28vDxCQ0OJjY1l9OjRPP/88zJtX4hbkH8ZokQSExMZOnQo9erVY/ny5eUa5ocOHWLQoEEcOXKEqKgoWaRZiGJIC12YLS4ujilTpjBixAj+/e9/l9tU+uzsbFasWMHnn3/OuHHj6NWrl0zbF8IMEuiiWFprNm7cyOrVq/H396dLl5s++t4idu3ahb+/P506dSI2NhYPD49yu5YQjkYCXdxWXl4e8+bNY//+/axZs4amTZuWy3XS09NZuHAhe/bsYfLkyXTr1q1criOEI5MOSXFLV65c4c033+TSpUuEhoaWS5hrrfnqq6/w9vbG3d2dmJgYCXMhSkla6OKmjh8/ztixY+nTpw+jR48ulw8jL168yNy5czlz5gwBAQFWWSRaCEciLXTxFzt27OD111/nzTff5I033rB4mBuNRjZt2sRLL71E27ZtiYqKkjAXwgKkhS6KGI1GgoOD2bJlC4GBgeUypf7MmTP4+fmRm5vLqlWraN26tcWvIURlJYEuANNQwenTp5OcnEx4eDj169e36PkLCgqIjIwkIiKC4cOHM2DAABlTLoSFSaALzp07x9ixY2nbti2rVq3C1dXVouf/7bffmDlzJh4eHqxdu7b+HXsgAAAU70lEQVRCHqsrRGUkgV7J7du3j0mTJjF48GBeeukli07gyc3NJSgoiK1bt/LOO+/wr3/9SyYICVGOJNArsc2bN7N8+XJmzJhh8aGCe/fuxc/Pj7Zt2xIdHV2ujwgQQpgUG+hKqbuAmOs2tQKmaa0XFb4+FpgPeGqtL5VLlcKi8vPzWbhwIT/99BPBwcEWfXLh1atXCQwM5LvvvmPixIk8+uijFju3EOL2ig10rfVvQCcApZQzkAhsLvz+TqA3cKYcaxQWlJaWxqRJk3BxcSE8PNyia29+8803zJkzh+7duxMbG0uNGjUsdm4hRPFK2uXSEziptY4v/P4jYAKwxaJViXJx6tQpfHx8ePzxx3n77bctNsokJSWFefPmcfToUfz8/CpsYWghxJ+V9F/0AGA9gFKqH5Cotf7ldgcopUYqpeKUUnHJycmlLFOU1TfffMOoUaN47bXXGDNmjEXCXGvNp59+yoABA2jcuDHR0dES5kJYkdktdKWUK9AXmKyUcgOmYOpuuS2tdRAQBODl5aVLWacoJa014eHhxMTEsHDhQv7+979b5LxJSUnMmjWLlJQUAgMDufvuuy1yXiFE6ZWky+VJYK/W+oJS6u9AS+CXwmFoTYG9SqkHtNbny6FOUQq5ubnMnDmTs2fPEh4ezh133FHmcxqNRqKjowkJCeGVV17h5ZdflnU9hbARJfmXOJDC7hat9UGgKB2UUr8DXjLKxXZcvHiRsWPH0rx5c1avXk3VqlXLfM6TJ0/i6+uLq6sroaGhNGvWzAKVCiEsxaxAV0q5A72AUeVbjrCEgwcPMmHCBAYMGMDgwYPLPJnHYDAQGhrKhg0beOONN3j22Wdl2r4QNsisQNdaZwL1bvN6C0sVJMrm008/ZfHixUybNo2HH364zOc7cOAAfn5+NG3alHXr1lmk20YIUT6k89NBGI1GAgMD2blzJ6tWraJVq1ZlOl9WVhbLly9n+/btjBs3jieeeEKm7Qth4yTQHUBGRgbvv/8++fn5REREUKtWrTKd78cff2TWrFl07tyZ2NhYateubaFKhRDlSQLdzsXHx/Pee+/RtWtX3nvvvTKNOElLS2PBggXs37+fKVOm0LVrVwtWKoQob/LJlh374YcfGDFiBK+88grjx48vdZhrrfnyyy/x9vamdu3aREdHS5gLYYekhW6HtNZERUWxdu1aAgICuO+++0p9rosXLzJnzhwSEhKYP3++xSYeCSEqngS6nTEYDMyaNYtjx44RFhZGo0aNSnUeo9HI5s2bWbFiBd7e3sydOxcXFxcLVyuEqEgS6Hbk0qVLjB8/Hk9PT0JCQqhevXqpznNtXc+8vDyCgoLKPCJGCGEbJNDtxOHDhxk3bhzPPfccw4cPL9XEnvz8fNauXUtkZCSvvfYa3t7eMkFICAcigW4HvvjiC+bNm8eUKVPo0aNHqc5x5MgRfH19qVevnqzrKYSDkkC3YUajkRUrVvDFF1+wfPly2rZtW+Jz5OTkEBQUxKeffsq7777Lk08+KROEhHBQEug2KjMzk6lTp3L16lXCw8OpU6dOic8RFxeHv78/7dq1k3U9hagEJNBtUEJCAj4+PnTq1KlUo08yMjIIDAzk+++/Z9KkSTzyyCPlVKkQwpbIJ2I2Zvfu3bz66qt4e3szZcqUEof5zp076d+/P05OTsTGxkqYC1GJSAvdRmit2bBhA8HBwcyaNQsvL68SHX/58mUCAgI4fvy4rOspRCUlgW4D8vLyCAgI4MCBA4SGhtKkSROzj9Vas3XrVpYsWcKzzz5btACFEKLykUC3spSUFCZMmECtWrUIDQ3Fzc3N7GMTExPx9/cnPT2dZcuWlWoUjBDCcUgfuhUdO3aMIUOG0LlzZ+bPn292mBuNRqKiohg8eDAPPfQQ4eHhEuZCCGmhW8uOHTuYNWsWEyZMoHfv3mYfd+LECWbOnEn16tVlXU8hxJ9IoFcwo9FIcHAwW7ZsYcmSJbRr186s4wwGAyEhIXz88ce8+eab9OvXT6btCyH+RAK9AmVlZfHhhx9y6dIlIiIiqFfvlsu0/smBAwfw9fWlefPmrF+/Hk9Pz3KuVAhhj4oNdKXUXUDMdZtaAdOAJsAzgAE4CQzTWqeWR5GOICkpibFjx3L33Xfj5+dn1kiUrKwsli5dyo4dOxg/fjw9evSQaftCiFsq9v/sWuvftNadtNadgPuBLGAzsB24V2vdATgGTC7XSu3Y3r17GTZsGM888wzTpk0zK8x/+OEHvL29yc7OJjY2lp49e0qYCyFuq6RdLj2Bk1rreCD+uu0/AS9arCoHsmnTJlasWIGvry8PPfRQsfunpqayYMECfvnlF6ZOncqDDz5YAVUKIRxBSQN9ALD+Jttf5c/dMpVefn4+CxcuZNeuXYSEhBQ7GkVrzRdffMHChQvp06cPMTExpV7AQghROZkd6EopV6AvN3StKKXeB/KBqFscNxIYCVSaIXZpaWlMnDgRV1dXwsPDqVGjxm33v3DhArNnz+bcuXN89NFH3HPPPRVUqRDCkZRk3NuTwF6t9YVrG5RSQ4GngUFaa32zg7TWQVprL621V2UYnXHy5EkGDx5M+/btWbRo0W3D3Gg0smHDBgYNGsS9995LZGSkhLkQotRK0uUykOu6W5RSfYAJwKNa6yxLF2aPvvnmG2bOnImPjw9PPfXUbff9/fff8fPzw2g0yrqeQgiLMCvQlVLuQC9g1HWblwJVge2Foy9+0lqPtniFdkBrTWhoKBs3bmTx4sW3bWXn5+cTERFBVFQUo0aN4sUXX5QJQkIIizAr0LXWmUC9G7b9rVwqsjM5OTnMnDmThIQEwsLCuOOOO2657+HDh/H19cXT05OoqCgaNmxYgZUKIRydzBQtgwsXLjB27FhatmzJ6tWrqVq16k33y8nJYeXKlWzbtk3W9RRClBv5v34pHThwgKFDh9K7d29mzpx5yzD/+eef6d+/P8nJycTExPDUU09JmAshyoW00Eth69atBAYGMn36dLp3737TfdLT01m8eDE//fQTkydPvuV+QghhKRLoJVBQUMDixYv59ttvCQoKomXLljfdb8eOHcybN4/HHnuM2NhY3N3dK7hSIURlJIFupvT0dKZMmYLRaCQ8PJxatWr9ZZ9Lly4REBDAyZMnmT17Np06dbJCpUKIykr60M0QHx/P0KFDadmyJUuWLPlLmGut2bJlCwMHDqRFixasX79ewlwIUeGkhV6MH374genTp/PWW2/Rr1+/v7yekJCAv78/mZmZsq6nEMKqJNBvQWtNZGQkUVFRzJ8/n44dO/7p9YKCAtatW0dYWBjDhg1j4MCBODs7W6laIYSQQL8pg8GAn58fJ06cICws7C8TgI4dO4afnx9ubm6Eh4fTtGlTK1UqhBB/kEC/QXJyMuPGjaNRo0aEhIT86RG2BoOB4OBgNm/ezFtvvUXfvn1lTLkQwmZIoF/n8OHDjBs3jhdeeIFXX331T2G9f/9+fH19ad26NevXr6d+/fpWrFQIIf5KAr3QZ599xoIFC3j//fd5/PHHi7ZnZmaydOlSvv76ayZMmECPHj2sWKUQQtxapQ90o9HIsmXL2L59OytXruRvf/vjmWPfffcds2fP5sEHHyQ2NvamY8+FEMJWVOpAz8zM5P333ycrK4uIiAg8PDwAuHLlCvPnz+fQoUNMnz6dBx54wMqVCiFE8SrtxKKzZ88ydOhQGjZsyPLly/Hw8EBrzbZt2+jfvz+enp7ExMRImAsh7EalbKHv3r2bDz74gJEjR/Liiy8CcO7cOWbPnk1ycjKLFi2iffv2Vq5SCCFKplIFutaamJgY1qxZw+zZs7n//vsxGo1s3LiRVatWMWjQIAYPHkyVKpXqj0UI4SAqTXIZDAbmzp3LoUOHCAsLo3Hjxpw+fRpfX1+UUoSEhNCiRQtrlymEEKVWKQI9JSWF8ePHU6dOHUJDQ3FxcSE4OJjo6GhGjRrFCy+8IOt6CiHsnu0GeloaHDgAv/4Kx45BXh64u8Pf/w7t2sG994Kra7GnOXbsGD4+Pjz99NOMHDmSI0eO4OvrS4MGDYiMjJR1PYUQDqPYQFdK3QXEXLepFTANiCjc3gL4HfDWWl8pc0UHD0JwMHz2GTg5QW4uODuDUmA0woYN4OJiCvNXXoGXX4ZGjW56qq+++oo5c+YwceJEunfvzqJFi/j888/x8fHhn//8p0zbF0I4FKW1Nn9npZyBROBB4E0gRWs9Ryk1CaijtZ54u+O9vLx0XFzczV/MzITZsyE6GrSGWrVMQX4rBoPpGFdX+OADGDjQ9AaAabLQ6tWr2bp1KwsWLCAtLQ0/Pz86duzI2LFji8abCyGEPVBK7dFaexW3X0m7XHoCJ7XW8UqpfsBjhdvDgZ3AbQP9ls6cMQXyhQtQs+btg/waV1fTL4MBpk2D7dthxQqytGb69OlcvnyZpUuXEhERwe7du5kyZQrdunUrVXlCCGEPShroA4D1hV830FqfK/z6PNCgVBUkJMCLL8KVK1CalrOrq6kL5ttvyRowgJGurrS591569uzJ6NGj6dGjB7Gxsbi5uZWqPCGEsBdmd7kopVyBJOAerfUFpVSq1trjutevaK3r3OS4kcBIgGbNmt0fHx//x4t5efDMM3DiROnC/DqZmZmkxceT1LMn69u2JT4+nmnTptGhQ4cynVcIIazN3C6XkozVexLYq7W+UPj9BaVUo8KLNQIu3uwgrXWQ1tpLa+3l6en55xdXroTjx6F27RKU8VdXrlwhMTERJw8PGv/3v3RzcWHdunUS5kKISqUkgT6QP7pbAP4PGFL49RBgS4mufPkyLFkCNWqYRrCUgtaac+fPc+nSJaq4uJCdm0u9hg15Yd8+XF1cSnVOIYSwV2b1oSul3IFewKjrNs8BYpVSw4F4wLtEV960yTQMsZjgTS8oYOa5c/x09SoeVarwlqcnfWrXJr+ggISEBAy5uWitqVu7NnXr1kVpDadOmYY/SgtdCFGJmBXoWutMoN4N2y5jGvVSOuHhULVqsbvNOX8eF6X4sm1bjuXkMObsWZo7OeF07hwFBQW4u7vTqFGjP1rkSkFBAcTESKALISoV68x3T0uDc+egWrXb7pZtNLIjI4PXPT1xc3Kik5sbD7m6EnHqFAX5+TRu1IhmzZr9tXulenX46adyvAEhhLA91pn6/9tvpuGGxfSdnzEYcAaaubqigaSkJGqlpnLK1ZW2bdve+qmIVatCfLxpjLoZjwcQQghHYJ0W+qVLpv7zYmQZjbgXzv48ceIEly5dopmnJ841atz+EbdOTqY3i7Q0S1UshBA2z3YfzgW4OTmRWRj89evXp2aNGhxMS8M9K6v4g5UyPUJACCEqCeu00GvWNGuoYjNXVwowdb3U8fCgSpUqHMvNpVVxH6ZqbfpgtEYNy9QrhBB2wDqBftddkJ9fbAu6upMTPWrWZGVyMtlGI79kZfG/jAz+VdxEJIPB9ARGme4vhKhErBPonp6mVnpeXrG7TmrYkFyjkV7HjjElMZHJDRsW30LPyoLOnS1UrBBC2Afr9KErBd7epueeFzMKpZazMwvuvLNk53d2Nj3wSwghKhHrrbv20kt/LFphSdnZUKcOdO9u2fMKIYSNs16gN28Ozz1n2aGFWkNODkyeXLTYhRBCVBbWTb2pU6FuXbh61TLnS02FRx+Ffv0scz4hhLAj1g30WrVg1SrT1+aMLb+dtDRo0gTmzSv10xuFEMKeWb9fonNniIgwhXBqasknAxmNptWOmjSB2FioV6/4Y4QQwgFZP9ABHngAtm0zPR0xNdW0+HNxwW40mlrl6emmETNbt0LDhhVTrxBC2CCzl6CzyMWUSsb07PTSqg9cslA5tkjuz/45+j3K/VlHc621Z3E7VWigl5VSKs6cdfXsldyf/XP0e5T7s2220eUihBCizCTQhRDCQdhboAdZu4ByJvdn/xz9HuX+bJhd9aELIYS4NXtroQshhLgFmw10pdQapdRFpdSh67bVVUptV0odL/y9jjVrLAul1J1Kqa+VUoeVUr8qpcYUbneIe1RKVVNK7VZK/VJ4fzMKt7dUSu1SSp1QSsUopex60VellLNSap9S6tPC7x3m/pRSvyulDiql9iul4gq3OcTPJ4BSykMptVEpdVQpdUQp1dXe789mAx0IA/rcsG0S8F+tdRvgv4Xf26t8YKzWuj3wEPCmUqo9jnOPuUAPrXVHoBPQRyn1EDAX+Ehr/TfgCjDcijVawhjgyHXfO9r9Pa617nTdUD5H+fkEWAx8rrW+G+iI6e/Rvu9Pa22zv4AWwKHrvv8NaFT4dSPgN2vXaMF73QL0csR7BNyAvcCDmCZtVCnc3hX4wtr1leG+mmL6R98D+BRQDnZ/vwP1b9jmED+fQG3gNIWfIzrK/dlyC/1mGmitzxV+fR5oYM1iLEUp1QK4D9iFA91jYXfEfuAisB04CaRqrfMLd0kAmlirPgtYBEwArj3Uvx6OdX8a+FIptUcpNbJwm6P8fLYEkoHQwi6zYKWUO3Z+f/YW6EW06S3U7ofoKKVqAB8D72qt069/zd7vUWtdoLXuhKkl+wBwt5VLshil1NPARa31HmvXUo66a607A09i6hJ85PoX7fznswrQGVihtb4PyOSG7hV7vD97C/QLSqlGAIW/X7RyPWWilHLBFOZRWutNhZsd6h4BtNapwNeYuiA8lFLXlj5sCiRarbCy+QfQVyn1OxCNqdtlMY5zf2itEwt/vwhsxvSm7Cg/nwlAgtZ6V+H3GzEFvF3fn70F+v8BQwq/HoKp39kuKaUUEAIc0VovvO4lh7hHpZSnUsqj8OvqmD4fOIIp2K8t+Gq396e1nqy1bqq1bgEMAHZorQfhIPenlHJXStW89jXQGziEg/x8aq3PA2eVUncVbuoJHMbO789mJxYppdYDj2F6+tkFYDrwCRALNMP01EZvrXWKtWosC6VUd+Bb4CB/9MFOwdSPbvf3qJTqAIQDzpgaDrFa65lKqVaYWrR1gX3Ay1rrXOtVWnZKqceAcVrrpx3l/grvY3Pht1WAdVprf6VUPRzg5xNAKdUJCAZcgVPAMAp/VrHT+7PZQBdCCFEy9tblIoQQ4hYk0IUQwkFIoAshhIOQQBdCCAchgS6EEA5CAl0IIRyEBLoQQjgICXQhhHAQ/w9SVeJJd8DKDwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1OX+///HxaYiCqIognuZR3/p6agtx5ZTWVq24ZKZwUERkUGPmkcB9+2omGXZUUDchdwi4Nipj+nX6pOdylwy9eNabokLkCJuyDLX748ZyzoqAw68Z4bX/Xbzxsww854ncxtfXFxzvV+X0lojhBDC+bkZHUAIIYR9SEEXQggXIQVdCCFchBR0IYRwEVLQhRDCRUhBF0IIFyEFXQghXIQUdCGEcBFS0IUQwkV4VOWTNWjQQLdo0aIqn7JyXbsGx45BcTG4uYFStj1OaygtBS8vaNECatSozJRCCCe3Y8eOPK11QFn3q9KC3qJFC7Zv316VT1l5Dh6Evn0hMBB8fSt2jIICcHeHVavgnnvsm08I4TKUUsdtuZ9MuVTEzz9D//5QWFjxYg5Qty5cvQqvvQbnztkvnxCiWpKCXl5aw/jxkJ8Pderc+fHq1LEU84kTLccWQogKkoJeXlu2wP/7f3c2Mv89X1/45BP46iv7HVMIUe1IQS+v5GTLh59ut3/p1p07R9jRo/z5wAGmnDp1+2Ne/0B14UI7BhVCVDdS0Mvjp5/g229tmmpp4OHBoAYNeNHWkXydOvD115CdfYchhRDVlRT08ti50zKaLmN0DvBk3bo8XqcOvu7uth37+ih95847DCmEqK6koJfHzp1QUlJ5xy8uhu++q7zjCyFcmhT08jh0yHIyUGXx8rI8hxBCVECVnljk9IqKbD4btKSkhJPZ2eRduUKpj49tx3dzszyHEEJUgIzQy6NWLTCby7xbUVERx44dw9vbm1q1apGfn0/BxYtlH99sBm9vOwQVQlRHUtDL449/LHMEfbWwkGPHj+Pn749f/frU8vbGx9eXn86c4dSZM+jbnTxUVAQdOtg5tBCiupApl/Lo0OG2c+iXLl0i+9Qpgho3ZnVhISkHD/7yvU1a06eggH6FhQQ3aYKnx01eei8vaN++MpILIaoBKejlcf/9v3ZK/N1yxPwLF8g5e5amTZviXasWUXXqEBXw2+ZoGvg5L4+jR48SFBSET+3av36ztPTX5xBCiAqwacpFKfW6Uur/lFJ7lVKrlVI1lVItlVJblVI/KKXWKqUqcfmHg/D3h2eftXRJtNJAXl4eubm5NG/RAu9atW75cAU0aNCA4OBgTp06RW5uLr9MwBQUwPPPg59fZf4EQggXVmZBV0oFA8OBzlrrewF3oB8wG3hba303cB4YVJlBHcaQIZbVKCUlaODMmTMUXLxIixYtqGHjksba3t60bNmSy1eu8NOJE5Rcu2Y55uDBlZtdCOHSbP1Q1AOopZTyALyB08CTQLr1+yuAEPvHc0Dt2kFkJOaCAk7+9BNFRUU0b9785nPit+Hp4UHz5s2pUaMGOUeOcOqFF+APf6ik0EKI6qDMgq61zgbeBE5gKeQXgB1Avtb6+mmTJ4HgygrpaC4MHMjeoiK8i4po2rQp7ja0ArgZpTWNatSgRocODPr+e1atWnX7VTBCCHEbtky51ANeAloCQUBt4Blbn0ApFaWU2q6U2p6bm1vhoI7i9OnTDIqJ4auYGPw7d8YtP9+mten/xWyG8+fhrruo/9FHLElN5X/+53+Ii4vj0qVL9g8uhHB5tgwtnwKOaq1ztdbFQAbwMOBnnYIBaALctE2g1jpFa91Za905IKDMLfEc2qFDhxg0aBC9evUietw4VHo6dO8OFy7AlSu2HURry30vXIAePeD998Hfn6CgIJYsWYK/vz9hYWEckhYAQohysqWgnwAeUkp5K6UU0BXYB3wG9LHeJxz4V+VEdAzbtm1j6NChvP766/Tv399yo68vLFgAiYmW1SkXLlhG3deu/Xb3Ia0tt50/b1nN4udn6as+f75lGzorLy8v4uPjGTJkCDExMaxfv76Kf0ohhDNTtszZKqWmAq8AJcB3QCSWOfM1gL/1tlCt9bXbHadz587aGTeJ/uSTT3jzzTdJSEigU6dON7+T2WzZcWjtWtixA86ehesflJaWQqNG0KkT9OsHDz1UZgveI0eOEBcXR/v27YmNjaVmzZp2/qmEEM5CKbVDa925zPtV5YdwzljQ09LSWLVqFe+++y5333237Q+8dMkyYlfKMgq3tUHXDa5cucLMmTP58ccfmT17Ns2aNSv3MYQQzs/Wgi69XG7BbDYzd+5c1q9fz7Jly8pXzMFSwIODISioQsUcwNvbm+nTp9OnTx8iIiLYvHlzhY4jhKge5NT/mygqKmLy5Mnk5eWxePFi6t4wz13VlFL07t2btm3bEh8fz65duxg+fDienp6GZRJCOCYZof/OxYsX+dvf/kZpaSkLFiwwtJjfqF27dqSlpXHy5EmioqI4e/as0ZGEEA5GCvoNcnJyGDx4MHfddRcJCQl4VebuRBVQt25d3nrrLR5//HHCwsL4+uuvjY4khHAgUtCtjhw5QkREBM8++yxjxozBrYJnf1Y2Nzc3wsPDSUhIYNq0aSxcuBBzRU5sEkK4HMesWlVs165dREdHExMTQ3h4OMrGbeaM1LFjR9LS0ti5cyfDhg3j3LlzRkcSQhis2hf0Tz/9lNGjRzNt2jR69OhhdJxyqV+/PomJidx7772Ehoby/fffGx1JCGGgar3KZd26dSxbtoz58+fzByftdOju7k5MTAwdOnRgzJgx/PWvf+W1115zir8yhBD2VS1H6FprFixYwJo1a1i8eLHTFvMbPfLIIyxfvpyNGzcSGxvLRVs2pRZCuJRqV9BLSkqYMmUK27ZtY+nSpQQHu07X36CgIBYvXkxAQIA0+BKiGqpWBf3KlSuMHDmSgoICkpOT8XPB7d68vLyIjY0lJiaGmJgYsrKypMe6ENVEtSnoP//8M1FRUTRu3Jg333zT5ZtddevWjUWLFrFq1SqmTp1KYWGh0ZGEEJWsWhT0EydOMHDgQB577DHGjRuHu7u70ZGqRMuWLVmxYgVms5nw8HCOHz9udCQhRCVy+YK+d+9eIiMjGThwIFFRUdVu9UetWrWYOnUqr7zyCoMGDWLTpk1GRxJCVBLHXbZoNsPx47B/P+TmWnqK+/jA3XdbNlP29i7zEF9++SVTpkxh8uTJPProo1UQ2jEppejVqxft2rUjLi6OXbt2MXLkSGnwJYSLcbx+6D/9BKtXQ1oaXJ/3LS62fHV3t2waUVwMjzwCkZHw8MM33SwiKyuLxMRE5s6dy7333mvnn8R5FRQUMGXKFM6dO0dCQgKBgYFGRxJClMH5Nri4dg3mzYNFiyyj89q14VbNscxmuL7Ouk0beOcdy8gdyxrzxYsX8+GHHzJ//nzZFOImtNakpqaSlpbGlClT6NKli9GRhBC34VwF/cQJCA+3fK1T59et28qitWWPTjc3mDqV0pdfJiEhgf379zNv3jzq169v3x/AxXz33XeMHz+eF154gSFDhjhsQzIhqju77ViklGqjlNp1w78CpdRIpZS/UmqTUuqw9Wu9CiU9cQJ694aTJ6FePduLuSWcZaPmGjUwjxvHuh49OH36NCkpKVLMbfCnP/2JtLQ0du/ezdChQ6XBlxBOrsyCrrU+qLW+T2t9H9AJuAJkAvHAZq11a2Cz9Xr5XL0KYWGQn28pzBVU4u7OT/n5dNu2jXd69cLbhg9MhYW/vz8LFiygQ4cOhIaG8t133xkdSQhRQeX9G7sr8KPW+jjwErDCevsKIKTcz/7WW5aR+R0U86LiYo4dO0YtHx/8AwPxiI21TMMIm7m5uWEymZgwYQJxcXGsXLlSzi4VwgmVt6D3A1ZbLzfSWp+2Xj4DNCrXkY4cgRUr4A62eCssLOTYsWP4+/vTsGFDlLc3nD8P8+dX+JjVWZcuXVi5ciWbN29m9OjR0uBLCCdjc0FXSnkBLwLv//572jKcu+mQTikVpZTarpTanpub++s3UlMtq1XKOGuzoLSU0SdP8siBAzz/ww9suHABgEuXL3PixAkCAwPxr3fD9L2PD7z3nmU6R5RbYGAgixcvJjAwkNDQUA4cOGB0JCGEjcozQn8W2Km1vr478VmlVGMA69ecmz1Ia52ite6ste4cEBBgubGoCNautRTfMiScOYOnUmy85x7+ERTErDNn+D4vj1PZ2TRp0oS6der89gGenpbjyxmRFebp6cmYMWMYNmwYw4YNIyMjQ6ZghHAC5Snor/LrdAvAeiDcejkc+JfNR/rhB8vovIwzFa+azXx68SKmgAC83dz4o7c397u7k372LM2bN7/1h59mM8gGynfs6aefZsmSJaxdu5bJkydzVf7qEcKh2VTQlVK1gaeBjBtuTgCeVkodBp6yXrfNvn2WU/nLcKKoCHegmZcXGjh75gyBxcUU+PhQo0aNWz+wZk0o64xUYZPmzZuzYsUKlFKEh4dz7NgxoyMJIW7BpoKutb6sta6vtb5ww20/a627aq1ba62f0lrbvoj51KlfT+e/jStmM7Xd3NBac/LkSa5du0bLRo0oc5zo6QmnT5d1L2GjmjVrMmXKFPr3709kZCQbN240OpIQ4iaMac5VUmI5KagM3m5uXDabQSkuX75MHR8fLhYXU7usMxqVsukvAGE7pRQhISG0bdv2Nw2+vG7VnkEIUeWMOdf79x9k3kIzLy9KgZ+KimjdujVeNWqwLSeH+oWFFN9uhF9aaukFI+yuTZs2pKamkpOTQ2RkJKdOnTI6khDCypiC3ro13G4O3KqWmxtP1qlDcm4uRcApb2/2eHrSzceHI0ePcubMGYpLSv77gdeuWVrsikpRp04d5syZQ/fu3RkwYABffvml0ZGEEBhV0Nu2tUy72LAULj4wkGtmM08fOsS47GzGNW7MA40bc1erViilOHLkCGdzcii5cYqlqAgefLASfwChlOK1117jjTfeYObMmSxYsIBSmeYSwlDGdFvUGnr0gKNHbVqLfjvFJSXk5eVRUFBAvXr1qO/vj/vFi7B+PbRrZ6fk4nbOnTvHhAkTKC0tZebMmdIYTQg7s1u3xUqhFERH2+WDS08PDxoHBtKyZUtKSkrIPniQE7Vrc6VFizvPKWzi7+/P/Pnz6dixI6GhoezcudPoSEJUS8Y1wO7eHRo2hEuX7HI4L09Pgho1onFAAJv++EdCQkJITU2V3e6riJubG0OGDGHSpEnEx8f/sjm1EKLqGFfQa9a07FBUUmK/JYYXLuAZEsKglStJTk5m7969hISEsHbtWoqKiuzzHOK2/vznP5Oamsrnn3/O3//+dwqk86UQVcbYLWo6d4ahQy3tbu+0qF+4AE2bwrRpALRq1YrZs2czb948vvnmG3r27ElmZiYlN1sVI+yqUaNGpKSk0LRpU0JDQ9m3b5/RkYSoFozfgk5rmDEDli0Db2+bljP+htlsKeZNmlgaft1i0+M9e/aQlJREdnY2UVFRPPvss7LlWhXYvHkzs2bNIjo6mt69e6NsOKFMCPFbzrWnqNbwwQcweTIUFlp6pJfRVhet4coVyxLF7t0tvxTqlb0L3s6dO0lKSuL8+fMMGTKErl27SmGvZCdOnCAuLo677rqLcePGyY5SQpSTcxX0606fhlmzYMMGyxSMu7tlrv16V0az2VLwCwste482bw7x8fDUU+XKobVm69atJCUlUVRUhMlk4tFHH5XRYyUqLCzkjTfeYM+ePcyePZtWrVoZHUkIp+GcBf26n3+GDz+E//wHdu2CvDzLiLxWLWjTBh54wLKO/Y9/tKknzK1ordmyZQvJycl4eHhgMpl46KGHpLBXovXr1/Puu+8yevRonnnmGaPjCOEUnLug/971jJVUaM1mM59++inJycn4+fkRExNDx44dK+W5BBw6dIi4uDgefPBBRo0aJQ2+hCiDY59YVF5KVVoxB8sa6qeeeop169bRq1cvpk2bRkxMDHv27Km056zO7rnnHlJTUzl37pw0+BLCjpyjoFcRNzc3evToQXp6Ot26dWPs2LGMHDlS9tWsBD4+PsyePZtnnnmGAQMGsGXLFqMjCeH0nGPKxSBFRUVkZWWxbNky2rdvz5AhQ7jrrruMjuVydu/eTXx8PD169MBkMuFe1gonIaoZ15pyMYiXlxd9+/YlMzOTDh06YDKZmDBhAidOnDA6mkvp0KED7733Hvv378dkMpGXl2d0JCGckhR0G9SsWZPQ0FCysrJo1aoVERERTJs2TeZ+7ahevXr885//pHPnzoSFhbFjxw6jIwnhdGzdJNpPKZWulDqglNqvlPqzUspfKbVJKXXY+rXss3qcnLe3NxEREWRmZtKwYUNCQ0NJSEggJyfH6Gguwc3NjaioKCZPnszYsWNZtmyZNPgSohxsHaHPAzZorf8A/BHYD8QDm7XWrYHN1uvVQp06dYiOjiYjIwNvb2/69evH3LlzOXfO9n2yxa099NBDpKWlsWXLFkaNGiUNvoSwUZkFXSnlCzwGLAHQWhdprfOBl4AV1rutAEIqK6Sj8vPzY/jw4bz//vuYzWb69OnD/PnzpQDZQcOGDUlJSaFZs2bS4EsIG9kyQm8J5ALLlFLfKaUWK6VqA4201qet9zkDNKqskI6ufv36jB49mtWrV1NQUEDPnj1JSUnhkp16vVdXHh4ejBo1ipEjRzJixAjef/99qnJVlhDOxpaC7gF0BJK01n8CLvO76RVt+V920/9pSqkopdR2pdT23NzcO83r0Bo1asS4ceNYuXIlp06domfPnixfvpyrV68aHc2pPfnkkyxZsoSMjAzGjx/PlStXjI4khEOypaCfBE5qrbdar6djKfBnlVKNAaxfb/rJoNY6RWvdWWvdOSAgwB6ZHV5wcDBTpkxh0aJFHDp0iJCQEFatWiWbbNyBZs2asXz5cmrVqsVf//pXjhw5YnQkIRxOmQVda30G+Ekp1cZ6U1dgH7AeCLfeFg78q1ISOrEWLVowc+ZM5s+fz86dOwkJCSE9PZ3i4mKjozmlGjVqMHHiRP76178SFRXFxx9/bHQkIRyKTWeKKqXuAxYDXsARYCCWXwbrgGbAcaCv1vq2yzyc7UxRe9u3bx/JyckcO3aMyMhInnvuOTkrsoIOHz5MXFwcnTt3ZvTo0dLgS7g01+q26GK+//57EhMTyc3NJSoqim7duskmGxVw+fJlpk2bRnZ2NrNnzyY4ONjoSEJUCinoTmDbtm0kJSVx6dIloqOjeeKJJ6QXezlprVm7di1Llixh4sSJPPbYY0ZHEsLupKA7Ca01X331FYmJiQCYTCYefvhhKezltHv3bsaOHUv37t0ZOnSoTGUJlyIF3clorfn8889JSkqidu3amEwm7r//fins5ZCfn8/EiRMpLCxk5syZVJdVVcL1SbdFJ6OU4oknnmDNmjX069ePhIQEoqOj2bVrl9HRnIafnx/z5s3jwQcfJCwsjG3bthkdSYgqJSN0B1VaWsrHH3/MokWLaN68OSaTiXbt2hkdy2l8++23TJw4kVdeeYUBAwbIh87CqcmUi4soLi5m/fr1LFmyhLZt2xIdHU3r1q2NjuUUcnJyGDt2LLVr12b69On4+voaHUmICpEpFxfh6elJ7969ycrKonPnzgwbNoyxY8dy9OhRo6M5vIYNG7Jw4UJatWpFaGgoe/fuNTqSEJVKRuhO5urVq6xbt460tDS6dOnC4MGDadKkidGxHN5nn33GzJkzGTx4MC+//LJ82CyciozQXVStWrUIDw8nKyuLJk2aEB4ezowZMzhz5ozR0RzaE088wbJly8jKymLcuHHS4Eu4JCnoTqp27doMHjyYzMxM/Pz86N+/P3PmzJH9OG+jSZMmLFu2DB8fH8LCwvjxxx+NjiSEXUlBd3J169Zl6NChpKen4+7uTt++fZk3bx75+flGR3NINWrUYPz48URERDBkyBA++ugjoyMJYTdS0F2Ev78/o0aNYs2aNRQWFtKrVy+SkpK4ePGi0dEc0nPPPUdycjJLlixhxowZ0tpYuAQp6C6mYcOGxMXFkZaWRm5uLiEhISxZskTmjG/i7rvvJi0tjUuXLjFgwABOnjxpdCQh7ogUdBcVFBTEpEmTWLZsGceOHSMkJITU1FQKCwuNjuZQvL29mTlzJiEhIQwcOJDPP//c6EhCVJgsW6wmjhw5QnJyMrt372bgwIH07NlTeoj/zt69exk7dixdu3Zl2LBheHh4GB1JCECWLYrfadWqFW+88Qbz5s3jm2++oWfPnmRmZlJSUmJ0NIdx7733kpaWxpEjRxgyZAg5OTfdVVEIhyUFvZpp06YNb7/9NgkJCWzatInevXvz8ccfYzabjY7mEHx9fXnnnXd4+OGHCQsL49tvvzU6khA2kymXam7nzp0kJiaSn5/PkCFD6Nq1qzSystq2bRsTJ06kT58+REREyOsiDCPNuYTNtNZs3bqVxMREiouLMZlMPProo3J6PJCbm8u4ceOoWbMm06dPx8/Pz+hIohqya0FXSh0DLgKlQInWurNSyh9YC7QAjmHZJPr87Y4jBd2xaa3ZsmULycnJeHh4YDKZeOihh6p9YS8tLWXBggVs3LiRWbNm0b59e6MjiWqmMgp6Z6113g23vQGc01onKKXigXpa67jbHUcKunMwm818+umnJCcn4+fnR0xMDB07djQ6luG++OILpk+fTkREBP369av2v+hE1amKgn4QeFxrfVop1Rj4XGvd5nbHkYLuXMxmMxs2bCAlJYWgoCBMJlO1H51mZ2cTFxdHcHAwkyZNonbt2kZHEtWAvZctamCjUmqHUirKelsjrfVp6+UzQKNbBIlSSm1XSm3Pzc218emEI3Bzc6NHjx6kp6fTrVs34uPjGTlyJAcOHDA6mmGCg4NZunQpvr6+hIWFcfjwYaMjCfELW0fowVrrbKVUQ2AT8Ddgvdba74b7nNda17vdcWSE7tyKiorIyspi6dKldOjQgSFDhnDXXXcZHcswH3/8MXPnzmXEiBG88MILRscRLsyuI3Stdbb1aw6QCTwAnLVOtWD9KmdhuDgvLy/69u1LVlYWHTp0wGQyMWHCBE6cOGF0NEP06NGDlJQUVqxYwbRp07h27ZrRkUQ1V2ZBV0rVVkrVuX4Z6AbsBdYD4da7hQP/qqyQwrHUrFmT0NBQsrKyaNWqFREREUybNo1Tp04ZHa3KtWrVipUrV1JYWMjAgQOr7S834RhsGaE3Ar5USn0PfAt8pLXeACQATyulDgNPWa+LasTb25uIiAgyMzNp2LAhoaGhJCQkVLtT5r29vZkxYwY9e/Zk0KBBfPrpp0ZHEtWUnFgk7CY/P5+VK1eSlZXF888/z4ABA/D39zc6VpXat28f8fHxPP744wwfPlwafAm7kOZcosr5+fkxfPhw3n//fcxmM3369GH+/PkUFBQYHa3KtGvXjrS0NE6cOEFUVFS1+2tFGEsKurC7+vXrM3r0aFavXk1BQQE9e/YkJSWFS5cuGR2tStStW5e5c+fy2GOPERoayjfffGN0JFFNyJSLqHQnT55k0aJFfPXVV7z22mu88sor1KpVy+hYVWLHjh2MHz+eXr16ERkZKQ2+RIXIlItwGE2aNGHq1KksWrSIQ4cO8dJLL7Fq1apqsY9np06dSEtLY/v27fztb3/j/PnbtjsS4o5IQRdVpkWLFsycOZMFCxawY8cOQkJCSE9Pp7i42OholapBgwYkJSXRtm1bQkND2b17t9GRhIuSKRdhmH379pGcnMyxY8eIjIzkueeew93d3ehYlWrLli1Mnz6dAQMG8Oqrr0qDL2ET6YcunMauXbtITEwkLy+PqKgounXr5tJzzadOnSIuLo7GjRszadIkfHx8jI4kHJzMoQuncd9997Fw4ULi4+NZt24d/fr149NPP6UqBxtVKSgoiCVLllC/fn3CwsI4dOiQ0ZGEi5ARunAoWmu++uorEhMTUUoRHR3Nww8/7LJTExs2bODNN99k+PDhvPjii0bHEQ5KplyEU9Na8/nnn5OUlETt2rUxmUzcf//9LlnYjx49SmxsLO3btyc2NpaaNWsaHUk4GJlyEU5NKcUTTzzBmjVr6NevHwkJCURHR7Nr1y6jo9ldy5YtWbFiBcXFxdLgS9wRGaELp1BaWsrHH3/MokWLaN68OSaTiXbt2hkdy6601mRkZJCcnEx8fDxdu3Y1OpJwEDLlIlxScXEx69evZ8mSJbRt25bo6Ghat25tdCy72r9/P3FxcfzlL39h+PDheHp6Gh1JGEymXIRL8vT0pHfv3mRmZtKpUyeGDRvG2LFjOXr0qNHR7KZt27akpaVx8uRJoqKiOHv2rNGRhJOQgi6cUo0aNejfvz9ZWVn84Q9/ICoqismTJ3Py5Emjo9lF3bp1eeutt3j88ccJCwvj66+/NjqScAIy5SJcwqVLl1i1ahVr167lySefZNCgQQQGBhodyy527tzJ+PHjCQkJYfDgwS590pW4OZlyEdWKj48PUVFRZGZm4ufnR//+/ZkzZw55eXlGR7tjHTt2JC0tjZ07dzJs2DDOnTtndCThoKSgC5dSt25dhg4dSnp6Ou7u7vTt25d58+aRn59vdLQ7Ur9+fRITE7n33nsJDQ3l+++/NzqScEA2F3SllLtS6jul1L+t11sqpbYqpX5QSq1VSnlVXkwhysff359Ro0axZs0aCgsL6dWrF0lJSVy8eNHoaBXm7u5OTEwM48aNY8yYMaSlpblsewRRMeUZoY8A9t9wfTbwttb6buA8MMiewYSwh4YNGxIXF0daWhq5ubn07NmTJUuWcOXKFaOjVdgjjzzC8uXL2bhxI7GxsU79S0rYl00FXSnVBHgOWGy9roAngXTrXVYAIZURUAh7CAoKYtKkSSxdupRjx44REhJCamoqhYWFRkerkKCgIBYvXkxAQIA0+BK/sHWE/g4QC5it1+sD+VrrEuv1k0CwnbMJYXfNmjVj+vTpJCcns2fPHkJCQli7dq1T7p7k5eVFbGwsMTExxMTEkJWVJVMw1VyZBV0p9TyQo7XeUZEnUEpFKaW2K6W25+bmVuQQQthdq1ateOONN5iQEQ72AAAY4klEQVQ3bx7ffPMNPXv2JDMzk5KSkrIf7GC6devGokWLWLVqFVOnTnXavzrEnbNlhP4w8KJS6hiwBstUyzzATynlYb1PEyD7Zg/WWqdorTtrrTsHBATYIbIQ9tOmTRvefvttEhIS2LRpE7179+bjjz/GbDaX/WAHcr3Bl9lsJjw8nOPHjxsdSRigXCcWKaUeB0ZrrZ9XSr0PfKC1XqOUSgZ2a60Tb/d4ObFIOLodO3aQlJREfn4+Q4YMoWvXrk51Io/WmszMTBITE4mLi+Ppp582OpKwg0ppzvW7gt4Ky4jdH/gOCNVaX7vd46WgC2egtWbr1q0kJiZSXFyMyWTi0Ucfdape7AcOHCAuLo5HHnmEkSNHSoMvJyfdFoW4Q1prtmzZQlJSEp6enphMJh566CGnKewFBQVMmTKFc+fOkZCQ4DKtEKojKehC2InZbGbz5s0sXLgQPz8/YmJi6Nixo9GxbKK1JjU1lbS0NKZMmUKXLl2MjiQqQAq6EHZmNpvZsGEDCxcuJDg4GJPJRPv27Y2OZZPvvvuO8ePH88ILLzBkyBCn+lxASEEXotKUlJTw4YcfsnjxYlq3bo3JZKJNmzZGxyrTuXPnGD9+PAAzZszA39/f4ETCVtJtUYhK4uHh8cu69S5dujBixAhiY2M5cuSI0dFuy9/fnwULFtChQwdCQ0P57rvvjI4k7ExG6ELcocLCQtLT01m5ciUPPPAAUVFRNGvWzOhYt/XVV18xZcoUQkNDCQsLc5oPeqsrGaELUUVq1qxJaGgoWVlZtGrVioiICKZNm8apU6eMjnZLXbp0YeXKlWzevJnRo0dLgy8XIQVdCDvx9vYmIiKCjIwMAgICCA0NJSEhgZycHKOj3VRgYCCLFy8mMDCQ0NBQDhw4YHQkcYekoAthZ3Xr1sVkMpGRkYG3tzf9+vVj7ty5DrnTkKenJ2PGjGHYsGEMGzaMjIwMafDlxKSgC1FJ/Pz8GD58OOvWraO0tJQ+ffowf/58CgoKjI72X55++mmWLFnC2rVrmTx5MlevXjU6kqgAKehCVLIGDRowZswYVq1aRUFBAT179iQlJYVLly4ZHe03mjdvzooVK1BKER4ezrFjx4yOJMpJCroQVSQwMJBx48axYsUKsrOz6dmzJ8uXL3eo0XDNmjWZMmUK/fv3JzIyko0bNxodSZSDLFsUwiDHjh0jJSWFHTt2EB4eTp8+ffDycpyteQ8ePEhcXBxdunRh5MiRDpWtupFli0I4uBYtWjBz5kzmz5/Pjh07CAkJIT09neLiYqOjAZZe8ampqeTk5BAZGenQyzCFhRR0IQzWunVr3nrrLd58802++OILevfuzfr16yktLTU6GnXq1GHOnDl0796dAQMG8OWXXxodSdyGTLkI4WB27dpFYmIieXl5REVF0a1bN4doprVr1y7GjRvHc889R3R0NO7u7kZHqjakOZcQTkxrzbZt20hKSuLy5ctER0fzxBNPGH6K/rlz55gwYQKlpaXMnDmT+vXrG5qnupCCLoQL0Frz1VdfkZiYiFKK6OhoHn74YUMLu9lsZtGiRWRlZTFjxgyn6Q3vzKSgC+FCtNZ89tlnJCcnU7t2bUwmE/fff7+hhf3rr79m8uTJvPbaa4SFhTnEtJCrkoIuhAsym81s2rSJhQsXEhAQgMlk4r777jMsz9mzZ4mPj8fPz4+pU6dSt25dw7K4MrstW1RK1VRKfauU+l4p9X9KqanW21sqpbYqpX5QSq1VSskiVSEqmZubG927d+f999/nueeeY+LEifztb39j3759huRp1KgRKSkpNG3alNDQUMNyCIsyR+jK8jddba31JaWUJ/AlMAIYBWRordcopZKB77XWSbc7lozQhbCv4uJi/vWvf7F06VLatm1LdHQ0rVu3NiTL5s2bmTVrFtHR0fTu3dvwD3Bdid1G6NrietMJT+s/DTwJpFtvXwGEVDCrEKKCPD096dOnD5mZmXTq1ImhQ4cybtw4Q/qwdO3alaVLl/LBBx8wceJErly5UuUZqjubPsVQSrkrpXYBOcAm4EcgX2tdYr3LSSD4Fo+NUkptV0ptz83NtUdmIcTv1KhRg/79+5OVlcU999zD4MGDmTx5MidPnqzSHM2aNWPZsmV4eXkRHh7u8NvyuRqbCrrWulRrfR/QBHgA+IOtT6C1TtFad9Zadw4ICKhgTCGELby9vRkwYACZmZkEBwcTHh7OjBkzOHPmTJVlqFmzJpMmTSIsLIyoqCg2bNhQZc9d3ZVrnZHWOh/4DPgz4KeU8rB+qwmQbedsQogK8vHxISoqioyMDHx9fenfvz9z5swhLy+vyjK8+OKLJCYmsnDhQhISEigqKqqy566ubFnlEqCU8rNergU8DezHUtj7WO8WDvyrskIKISrG19eXYcOGkZ6ejru7O3379mXevHnk5+dXyfPfc889pKamcu7cOQYNGiQNviqZLSP0xsBnSqndwDZgk9b630AcMEop9QNQH1hSeTGFEHfC39+fUaNGsWbNGgoLC+nVqxdJSUlVsjm0j48Ps2fP5tlnn2XAgAF88cUXlf6c1ZWcWCRENXTq1CkWL17MF198wauvvsqrr76Kt7d3pT/v7t27GTt2LM888wwxMTHS4MtG0g9dCHFLQUFBTJo0iaVLl3L06FFCQkJITU2lsLCwUp+3Q4cOpKWlcfDgQUwmU5XO6VcHUtCFqMaaNWvGP/7xD5KTk9mzZw8hISGsW7euUj/ArFevHu+++y6dO3cmNDQU+avdfmTKRQjxiwMHDpCcnMzhw4eJjIzkhRdewMPDo+wHVtDWrVuZNGkS/fr1Izw8XBp83YI05xJCVNju3btJTk4mOzubIUOG8Mwzz1Rasc3JySE+Pp46deowffp0afB1EzKHLoSosA4dOpCYmMikSZPIyMigb9++bNq0CbPZbPfnatiwISkpKbRo0YLXXntNGnzdARmhCyFuS2vNN998Q1JSEsXFxZhMJh599NFKab716aefMmvWLAYPHszLL78sDb6sZMpFCGFXWmu2bNlCUlISnp6emEwmHnroIbsX3Z9++om4uDhatGjBhAkTqmQ5paOTKRchhF0ppXjsscd47733CAsL46233mLw4MHs3LnTrs/TtGlTli1bRq1atQgLC5MGX+UgI3QhRIWYzWY2bNjAwoULCQ4OxmQy0b59e7s+x4cffsi8efMYNWoUPXr0sOuxnYlMuQghqkRJSQkffvghixcvpnXr1phMJtq0aWO34//www/ExsbSuXNnRo8ejZdX9dscTaZchBBVwsPDg549e5KZmUmXLl0YMWIEsbGxdpsqufvuu0lNTaWgoICIiAiys6Wx661IQRdC2IWXlxd9+/YlKyuL9u3bEx0dzYQJEzhx4sQdH7t27drMmjWL559/Xhp83YZMuQghKsWVK1dYvXo1q1ev5rHHHiMyMpKgoKA7Pu71Bl/du3dn6NCh1aLBl0y5CCEM5e3tzaBBg8jIyCAgIIDQ0FASEhLIycm5o+N26NCB9957j8OHDxMdHY1sbfkrKehCiEpVt25dTCYTGRkZeHt7069fP+bOncu5c+cqfEw/Pz/mzZvHgw8+SFhYGNu2bbNjYuclBV0IUSX8/PwYPnw469ato7S0lD59+rBgwQIKCgoqdDw3NzciIyOZNm0aEyZMYOnSpZXSmsCZSEEXQlSpBg0aMGbMGFatWkV+fj49e/YkJSWFS5cuVeh4DzzwAKmpqfznP/9h5MiRXLhwwc6JnYcUdCGEIQIDAxk/fjwrVqwgOzubnj17snz5cq5evVruYzVs2JCFCxfSqlUrQkND2bt3byUkdny2bBLdVCn1mVJqn1Lq/5RSI6y3+yulNimlDlu/1qv8uEIIV9OkSROmTp1KSkoKBw8eJCQkhFWrVpV7kw0PDw9GjhzJqFGjeP3111m3bh1VuYrPEZS5bFEp1RhorLXeqZSqA+wAQoABwDmtdYJSKh6op7WOu92xZNmiEKIshw4dYuHChezfv5+IiAheeuklPD09y3WMkydPEhsbS/PmzZk4caLTN/iy27JFrfVprfVO6+WLwH4gGHgJWGG92wosRV4IIe7IPffcw1tvvcWcOXP43//9X3r37s369espLS21+RhNmjRh2bJl+Pj4EBYWxo8//liJiR1HuU4sUkq1AL4A7gVOaK39rLcr4Pz167ciI3QhRHnt2rWLxMRE8vLyiIqKolu3buXaPemjjz7i7bff5vXXX+e5556rxKSVx+7NuZRSPsD/AjO01hlKqfwbC7hS6rzW+r/m0ZVSUUAUQLNmzTodP37c1p9BCCEASy/2bdu2kZSUxOXLl4mOjuaJJ56wuRf79QZfnTp1YsyYMU7X4MuuBV0p5Qn8G/hEaz3XettB4HGt9WnrPPvnWuvbtliTEboQ4k5orfnPf/5DUlISSilMJhNdunSxqbBfuXKF6dOnc/z4cd544w2aNGlSBYntw25z6NbplCXA/uvF3Go9EG69HA78qyJBhRDCVkopHnnkEdLS0oiIiGDevHlERETw7bfflrmixdvbm5kzZxISEsLAgQP5/PPPqyZ0FbJllcsjwBZgD3D9NKxxwFZgHdAMOA701Vrf9lxeGaELIezJbDazceNGFi5cSMOGDTGZTNx3331lPm7v3r2MHTuWrl27MmzYMDw8PKogbcXJBhdCiGqjtLSUjz76iEWLFtGiRQtMJhPt2rW77WMuXLjAxIkTuXz5MrNmzaJhw4ZVlLb8pNuiEKLacHd358UXXyQjI4O//OUvjB49mr///e8cPnz4lo/x9fXlnXfe4eGHHyYsLIxvv/22ChNXDhmhCyFczrVr1/jggw9Yvnw5nTt3JioqihYtWtzy/tu2bWPixIn06dOHiIiIci2LrAoyQhdCVFs1atSgf//+ZGVlcc899zB48GAmT57MyZMnb3r/+++/n9TUVLZu3cqIESPIz8+v4sT2IQVdCOGyvL29GTBgAJmZmQQHBxMeHs6MGTM4c+bMf903ICCA5ORkWrduTWhoKHv27DEg8Z2Rgi6EcHk+Pj5ERUWRkZGBr68v/fv3Z86cOeTl5f3mfu7u7gwfPpzY2FhGjRrF6tWrnarBlxR0IUS14evry7Bhw0hPT8fd3Z2+ffvy7rvv/tcUy2OPPcby5cv56KOPiI+P5/LlywYlLh8p6EKIasff359Ro0axZs0arly5Qq9evUhKSuLixYu/3Cc4OJilS5fi6+tLWFjYbVfM/EZBAaxdC8OGwSOPQOvW0KoV3Hsv9OoFs2fDrl1QCSN/WeUihKj2Tp06xeLFi/niiy/o378//fr1+03L3Y8//pi5c+cyYsQIXnjhhZsf5Oef4a23ICMDSkost9WqBZ6eoBSUlsK1a1BYCB4e0Lw5xMbC009bvn8bcmKREEKU04kTJ0hJSeHbb78lLCyMl19+mZo1awJw5MgRYmNj6dChA3FxcdSoUePXB37yiaU4X7oEdepYCvbtaA1XrkBREXTrBjNmgL//Le8uyxaFEKKcmjVrxj/+8Q+SkpLYs2cPISEhrFu3jqKiIlq1asXKlSspLCxk4MCBnDhxwlKY//lPiImxjMrr1Su7mINlRF67Nvj6wsaN8OKLcOrUHeeXEboQQtzCgQMHSE5O5vDhw0RGRvLCCy/g7u5Oeno6KSkpzLvvPtp98AHUrWtbIb+V/HwIDIT16286UpcpFyGEsJPdu3eTnJxMdnY2Q4YM4ZlnnuHIv/+N96uv4uHrS0Djxjb3Zr+l8+ct8+lJSf81py4FXQgh7GzHjh0kJiZy8fx5ko4dw6+ggOyLFzGXlhLcpAmedzJKN5vhwgVITITu3X/zLZlDF0IIO+vUqROLFy9m8hNPUPzDDxz/+Wfq+fnh4+PD0SNHuHQn69Xd3MDLC+bMqfCSRsduAiyEEA5GKcX/9+WX6MBALrm5kZuTg1IKf39/Tp06RT0/PxoEBFBsNpNw5gzfXrlCQWkpTTw9GdawIV18fG59cG9vOH7csk79T38qdzYp6EIIUR4FBbB9O8rPjzpK4ePjw8WCAnJyc/Hw8OBCQQFXrl7Fv3FjAj09SWnWjEBPT/5z6RLx2dmsadmSoFvtaaqUZbXMJ59UqKDLlIsQQpTHgQO/niwEKKBu3brcdddd+Pv7o7Xm6tWrZB85QqiPD0FeXrgpxaN16hDk6cmBwsLbH79mTdi6tULRpKALIUR5/PADFBf/180K8PP15e677qJRo0Zorfnhhx84c/YsGjhXUsKJoiJa3XhC0s3UqAEHD1Yomky5CCFEeVy+bDmN/xaUUtTz88PX15e8vDxOnz6NWSn+UVjI876+tCiroLu7w9WrFYpW5ghdKbVUKZWjlNp7w23+SqlNSqnD1q/1KvTsQgjhbNzdy+y9AuCmFA0DAmjXrh3/LCrCA4gNDCz7+FpbnqMCbJlyWQ4887vb4oHNWuvWwGbrdSGEcH2NGlmWF9pAa83MnBzOlZYyp0kTPGw5+ai4GCq4YXWZBV1r/QVw7nc3vwSssF5eAYRU6NmFEMLZtG1r811nnTnD0aIi3m7alBq27lNaWFihFS5Q8Tn0Rlrr09bLZ4BGt7qjUioKiAJL4xshhHBqLVpYPrgsKrrtSP10cTEZ+fl4KUX3G3qpjwsM5Flf31sfX2tLH/UKuOMPRbXWWil1y9OatNYpQApYTv2/0+cTQghDublBaCgsXHjbgt7Y05Pt5RjNA5Y16O7u0KNHxaJV6FFwVinVGMD6NaeCxxFCCOfz6quWwnt9Iwt7uXgRQkIsbXUroKIFfT0Qbr0cDvyrgscRQgjn07QpREVZCrC9GhwWFlp6pI8ZU+FD2LJscTXwNdBGKXVSKTUISACeVkodBp6yXhdCiOpj+HDLXqEFBXd+rJISy9rzWbOgQYMKH6bMOXSt9au3+FbXCj+rEEI4Oy8vWLHCMkVy/nyFp0koKbH8Uhg+HJ577o4iyan/QghRUUFBkJlp2fD5/PnyzalrbSnkly9DfDyMGHHHcap0gwulVC5wvMqe8OYaAHkGZ7CVZK08zpRXslYeZ8nbXGsdUNadqrSgOwKl1HZbdv5wBJK18jhTXslaeZwtb1lkykUIIVyEFHQhhHAR1bGgpxgdoBwka+VxpryStfI4W97bqnZz6EII4aqq4whdCCFckssWdKVUTaXUt0qp75VS/6eUmmq9vaVSaqtS6gel1FqllG2NjauAUspdKfWdUurf1uuOnPWYUmqPUmqXUmq79TaH3PhEKeWnlEpXSh1QSu1XSv3ZgbO2sb6m1/8VKKVGOnDe163/v/YqpVZb/9855PtWKTXCmvP/lFIjrbc55OtaUS5b0IFrwJNa6z8C9wHPKKUeAmYDb2ut7wbOA4MMzPh7I4D9N1x35KwAT2it77th2ZejbnwyD9igtf4D8Ecsr7FDZtVaH7S+pvcBnYArQCYOmFcpFQwMBzprre8F3IF+OOD7Vil1LzAYeADLe+B5pdTdOODreke01i7/D/AGdgIPYjmJwMN6+5+BT4zOZ83SBMsb6kng31j2nHXIrNY8x4AGv7vtINDYerkxcNABcvoCR7F+XuTIWW+SvRvwH0fNCwQDPwH+WNqI/Bvo7ojvW+BlYMkN1ycCsY74ut7JP1ceoV+fwtiFpb3vJuBHIF9rff383JNY3pSO4B0sbzCz9Xp9HDcrgAY2KqV2WDcxgXJsfFKFWgK5wDLrdNZipVRtHDPr7/UDVlsvO1xerXU28CZwAjgNXAB24Jjv273Ao0qp+kopb6AH0BQHfF3vhEsXdK11qbb86doEy59afzA40k0ppZ4HcrTWO4zOUg6PaK07As8CQ5VSj934TW0Z8jjCEioPoCOQpLX+E3CZ3/1Z7UBZf2Gdd34ReP/333OUvNb55pew/NIMAmrz3/sPOwSt9X4sU0EbgQ3ALqD0d/dxiNf1Trh0Qb9Oa50PfIblzz8/pdT1LpNNgGzDgv3qYeBFpdQxYA2WaZd5OGZW4JfRGVrrHCxzvA/gmBufnAROaq23Wq+nYynwjpj1Rs8CO7XWZ63XHTHvU8BRrXWu1roYyMDyXnbI963WeonWupPW+jEsc/uHcMzXtcJctqArpQKUUn7Wy7WAp7F8GPYZ0Md6N4fYnENrPVZr3URr3QLLn9mfaq1fwwGzAiilaiul6ly/jGWudy8OuPGJ1voM8JNSqo31pq7APhww6++8yq/TLeCYeU8ADymlvJVSil9fW0d93za0fm0G9AJW4Ziva4W57IlFSqkOwAosn7y7Aeu01tOUUq2wjIL9ge+AUK31NeOS/pZS6nFgtNb6eUfNas2Vab3qAazSWs9QStUH1gHNsHTV7Ku1PmdQzF8ope4DFgNewBFgINb3BA6WFX75JXkCaKW1vmC9zVFf26nAK0AJlvdoJJY5c0d8327B8tlUMTBKa73ZUV/XinLZgi6EENWNy065CCFEdSMFXQghXIQUdCGEcBFS0IUQwkVIQRdCCBchBV0IIVyEFHQhhHARUtCFEMJF/P+XqCdcLvWBGgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -785,7 +788,8 @@ "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", "backend = Aer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\"\"\"\n", @@ -827,33 +831,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -582286.57421875\n", - "time: 2370.5845291614532\n", - "feasible: True\n", - "solution: [2, 1, 0]\n", - "solution objective: 112.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1NX+x/HXAUEFF1zINderpXXVDCu9tml6rVvadlGzXNLUVgt3S00BF1xS3BFkERTQNH92bbFr3nYNl9TUXEMBFxRZZBtgzu+PQTJTGWBgFj7Px8OH8J3v8vkqvud45pzvUVprhBBC2D8naxcghBDCMiTQhRDCQUigCyGEg5BAF0IIByGBLoQQDkICXQghHIQEuhBCOAgJdCGEcBAS6EII4SCqVOTF6tevr1u0aFGRlxRCiPJXUABJSZCWZvreyQmUuvX+WpuOcXKCRo2gbt3bnn7Pnj2XtNaexZVRoYHeokUL4uLiKvKSQghRvn77DV5+GWrWhCZNTCFtLoMBMjOhQwdYvhyqVbvpbkqpeHNOJ10uQghRWsePg7c3pKeDh0fJwhzA1dV03M6d8NprpoAvAwl0IYQojexsGDbM9HvNmqU/j1JQpw58/z0sWFCmkiTQhRCiNObPh3PnoFatsp9LKdN51qyB/ftLfRoJdCGEKKmEBIiIsEyYX1OliinYp08v9Skk0IUQoqSio8FoBGfn2+4Wm5LCK6dP0/XoUT5MSir+vDVrwq+/mj5oLQUJdCGEKAmtISoK3N2L3bV+lSoMr1+fvrVrm3dupUxvFB9/XKrSKnTYohBC2L3z5+HqVTAjpHsUdskczs7mYn6+eeevWhV+/LFUpUkLXQghSuLIkWK7WsqkWjU4dszUUi8hCXQhhCiJK1dMszzNYNSajIwM8s1tnYPpzSI/3zQcsoSky0UIIUpC69u8pMnOySErM5PMrCyuZmSQX1BAdo0at5wFekulaKFLoAshREnUqlXU5aKBnOsCPCsrC1dXV6pVrUp+Xh5Vq1WjVZMmfJ+eTra5rXSj0fThqJtbiUuTQBdCCDMZjUbOVKtG3bQ00lJTycrMpIqLC+5ubnh4eNC4USPSMzJITk6mbt26eNStiwaMhb8MRiPOSuF8uwd35eRA69al6qeXQBdCiFvQWhMfH09cXBw///wze/bsoVaNGqwyGqnt7k6jhg2pUsUUo7kGAwkJCQC0aN6cqlWrEpScTNClS0Xn25aWxsj69RnpeZsHJ+bkwAMPlKpeCXQhhCiktSYxMZG4uLiiX1WqVKFLly488sgj+Pj40KBBA5g6FdatgypVMGrN5cuXSUlJwdPTkzp16nCt/T3S0/P24f3XAkwt8+eeK1X9EuhCiErtwoULRS3wuLg48vPz8fLyokuXLrz++us0btwYdWMXySuvQHQ02VlZJJ0/j4uLC61atsTFxaVsxWRmQrNmcN99pTpcAl0IUalcvny5qPX9888/c/XqVby8vPDy8mLo0KE0b978rwF+g+w77+Row4Y0iIujftOm1Kpdm9sfYQajEfLyTK3/Yq5/KxLoQgiHlpqayt69e4ta4JcvX+a+++6jS5cu9O/fn1atWuFUgueY7969G39/f7o88ACT0tKokpdX9iK1htRU6NcPHnus1KeRQBdCOJSMjAz27dtX1AJPSkqiU6dOeHl5MXPmTO66664SBfg16enpLFq0iF27djF58mS6d+8OP/9sWq0oK6tUwwwBU5inpUGbNjBjRunOUcisQFdKvQeMwDTs8iAwDAgBvIA8YDcwSmttgbcqIYQwX1ZWFvv37y/qRvn999+599576dKlC1OmTKFdu3ZFI1FKa8eOHQQEBNCjRw82bNiA27Xw7tIFQkNhxAhTC7t27ZJ1lxQUmFY7uusuiIws8+N4lb7NrCcApVQT4DugvdY6WykVC2wDLgKfFe62DvhGa73idufy8vLSsqaoEKIscnNz+eWXX4oC/Pjx47Rr166oH/zee+/F1dXVItdKTk4mICCA06dPM3XqVDp27HjzHX//Hd57Dw4cMC0r5+Z2+2A3Gk2tcicnePVV07G3mUmqlNqjtfYqrl5z37aqANWVUnmAG5Cktf7yuovtBpqaeS4hREVJTjY9TOrwYdPXTk7QoAG0bw/t2pmWPrNxeXl5HDp0qKgP/MiRI7Rp0wYvLy9Gjx5Nhw4dqFbSafXF0FqzZcsWli5dyvPPP4+/v//t3yRatDA98nbzZtNiz2fOmELbyckU8GD6Pjf3jwlDvXrBm2/C3/9usbqLbaEDKKXGAP5ANvCl1nrQda+5ALuAMVrrb29y7EhgJECzZs3uj483a/FqIURpFRTAjh0QFAT79plWwrlx8eGqVU0PgOre3dRd0K1bqUdWWFpBQQGHDx8u6gM/dOgQLVq0KGqBd+rU6Y8uj3Jw9uxZ/P39ycrKYurUqbRp06ZkJ9AaDh40/dnv3g2nTpn+rN3doUMH6NzZ9Od9xx1mn9LcFro5XS51gI+B/kAqsAHYqLWOLHx9NZCptX63uItJl4sQ5ezkSXj3XVOr3MnJtALOrYLaaDT13yplmpk4bx40blyx9WKaTn/s2LGiFvj+/ftp3Lhx0Vjw++67j5plWYTZTAUFBaxbt46wsDCGDRvGwIEDcS7Px+SWgCW7XJ4ATmutkwtPvAnoBkQqpaYDnsCoshQrhLCATz6BiRNNQW3Oh3NOTuDhYWpR7tpl6gJYsQIeeaRcyzQajZw6daqoBb5v3z7q1auHl5cXffv2ZcaMGXh4eJRrDTc6duwYvr6+1KhRg/DwcJo2tc8eZHMC/QzwkFLKDVOXS08gTik1Avgn0FNrXfLnPAohLGfjRlOYu7v/0WdrLqVMwZ6dbep+CQ62aKhrrTlz5kxRC3zPnj24u7vj5eVF7969mTx5MvXr17fY9UrCYDAQHBzM5s2befvtt3nmmWeKnVRky8ztQ5+BqcslH9iHaQhjJhAPZBTutklrPfN255EuFyHKwYED8MILUL16ycP8RtnZphb755+bpqCXgtaapKSkP02nd3Z2pkuXLkX94A0bNixbnRawb98+/Pz8aN26NRMmTLDam4o5LNaHbkkS6EJYWG4u9O4N586VeQxzkdRU6NQJYmNN3TJmuPY8lGu/DAbDnwK8SZMmNtPyzczMZMmSJfzvf/9jwoQJPP7449YuqViWHrYohLBF69ZBQoJlhx/Wrg3798OXX0KfPjfdJSUl5U8t8IyMDO6//368vLwYMmSIWc9DsYZvv/2WOXPm0LVrV2JjYyvkw9aKJIEuhL0yGk1DE4sZg20wGplz/jy7s7JILyigqYsLb91xB91q1Lj5AUqZxkqvWlUU6GlpaezZs6eoBZ6cnEznzp3x8vLC29ub1q1bl2o6fUVJSUlh/vz5HD58mA8//JAuXbpYu6RyIYEuhL2Ki4PLl4vtaikAGrq4ENSsGQ1dXPj+6lUmJSYS3bIljW/R517g5kbuzz8T9cEHfH3qFImJiXTs2BEvLy9mzJhR6uehVDStNZ999hmLFi3iX//6F9OmTbP4JCRbIoEuhL365RfThJViVHdy+tMiCw/XrEljFxeO5uQUBXqB0Uh2VpZpXczMTHINBuo4O9MiPZ1JkybRvn37Mj8PpaKdO3eO2bNnk5yczKJFi2jfvr21Syp39vU3JIT4w+7dplmgJZSSn88Zg4GGBQVcTE4mKzOTnNxcqlWrhrubG3c0aED16tVxSkmhV/36ptmNdsRoNLJhwwaCgoIYNGgQgwcPtrs3o9KqHHcphCNKTCxRoOfl53PpyhUmXLzIg0Yjbmlp4O6Op6cn1d3ccLrxQ0wXF9MHrnbk1KlT+Pn54eTkxJo1a2jevLm1S6pQEuhC2Cuj0eznr2RcvUpiUhLLtaZGtWrMadGCquZMay8oKGORFSMvL4+wsDCio6N5/fXXef755+2ij9/SJNCFsFe1a5se23obGrh86RIpKSlEVqtGrtYE3nknVc0JO6PRLp7GeOjQIXx9fWnUqBHr1q0zLeJcSUmgC2GvOnc29aPfYvihsXDGZp7BQIy7Owl5eSxv1sy8MAfTjNHOnS1YsGVlZ2ezYsUKPv/8c8aOHUvv3r1tcux7RZJAF8Jedepk6ue+iby8PM4mJFC1alVcmzRhy8mTuCrFP48fL9pnSsOGPFm79q3PX6UK3H23pau2iF27duHv70+nTp2IjY2t8Id52SoJdCHsVbdupglA+fl/+nA0KzubhIQE6tatS7169VBAXLt2JTt3To5pfPutVuixkvT0dBYuXEhcXBxTpkyhW7du1i7JplS+Tw2EcBQ1a5oeypWRUbQpNS2NhLNnadSoEfULw7xUsrNNS6PZyPPAtdZ89dVXeHt74+7uTmxsrIT5TUgLXQh7NmoUbNyINhi4cOUKV69epXnz5lStWrX058zONrXOBw60XJ1lcPHiRebOncuZM2cICAigg52Ni69I0kIXwp7deSdZPj5cio8nNyeHli1alC3MjUZTd8v8+aZnpFuR0Whk06ZNvPTSS7Rp04aoqCgJ82JIC10IOxYfH4/PZ58xrX17Oly4gCrL2OtrK9G//DL07Gm5IkvhzJkz+Pn5kZuby8qVK/nb3/5m1XrshbTQhbBTP/zwAyNGjGDw0KF0/N//UE88YXqWeV5eyU+Wm2sK8/79Yfp0yxdrpoKCAiIiIhg2bBiPPfYYoaGhEuYlIC10IeyM1pqoqCgiIyOZP38+Ha+NRFmxAkJCYMECuHrV1A9e3Iea+fmmD1WrVYM5c+DFF82efWppx44dY+bMmdSqVYu1a9fS2AoLVts7CXQh7IjBYMDf35/jx48TFhb256XcnJ1h5EhTd8lHH5kWqCgoMAV0tWp/hHt+vqmf/Npzz198EcaMASsFaG5uLqtXr2bLli288847PP3005V+glBpSaALYSeSk5MZP348DRs2JCQkhOrVq998x9atYelSSE6Gr74yzSbdt8/UHePkBJ6ecP/98MAD8MQTpkcIWMnevXvx8/Ojbdu2REdHU69ePavV4ggk0IWwA4cPH2bcuHG88MILvPrqq+a1YD09TUMPbWT44fWuXr1KYGAg3333HRMnTuTRRx+1dkkOwawPRZVS7ymlflVKHVJKrVdKVVNKtVRK7VJKnVBKxSilyrjcuBDiZj777DPeeecdxo8fz/Dhw+2+O+Kbb77B29sbgJiYGAlzCyq2ha6UagK8A7TXWmcrpWKBAcBTwEda62il1EpgOLCiXKsVohIxGo0sW7aM7du3O8TQvZSUFObNm8fRo0fx9fXl/vvvt3ZJDsfcYYtVgOpKqSqAG3AO6AFsLHw9HHjW8uUJUTllZmbi4+PDwYMHiYiIsOsw11rzn//8hwEDBtCoUSOio6MlzMtJsS10rXWiUmo+cAbIBr4E9gCpWutrCxomAE3KrUohKpGzZ8/i4+ND586dGT9+vF0vn5aUlMSsWbNISUkhMDCQu2306Y2OotgWulKqDtAPaAk0BtyBPuZeQCk1UikVp5SKS05OLnWhQlQGu3fvZvjw4fTv35/JkyfbbZgbjUbWr1/PK6+8gpeXFxERERLmFcCcn5YngNNa62QApdQm4B+Ah1KqSmErvSmQeLODtdZBQBCAl5eXtkjVQjgYrTUxMTGsWbOG2bNn23WXxKlTp5g5cyaurq6EhobSrFkza5dUaZgT6GeAh5RSbpi6XHoCccDXwItANDAE2FJeRQrhyAwGA3PnzuXQoUOEhYXZ7QxJg8FAWFgYsbGxvPHGGzz77LOVcl1PazKnD32XUmojsBfIB/ZhanH/B4hWSvkVbgspz0KFcEQpKSmMHz+eOnXqEBoaipubm7VLKpWDBw/i6+tL06ZNWbduHXfccYe1S6qUzOqg01pPB258Ys8p4AGLVyREJXHs2DF8fHx4+umnGTlypF22ZrOysli+fDnbt29n7Nix9OrVy+7Hydsz+/sJEsIBfPXVV7zxxhuMGTOG0aNH22WY//jjj/Tv35+MjAxiY2NlkWYbYJ8foQthp4xGI6tXr2br1q0sW7aMu+66y9ollVhaWhoLFixg3759TJkyha5du1q7JFFIAl2ICpKVlcX06dO5fPkyERER1K1b19ollYjWmu3bt7NgwQJ69+5NTEyM3fb5OyoJdCEqQFJSEj4+PrRv3x5/f39cXe3r0UcXL15kzpw5JCQkMG/ePFkKzkbZX8edEHZm7969DBs2jGeffZapU6faVZgbjUY+/vhjXnrpJe6++24iIyMlzG2YtNCFKEebNm1i5cqV+Pr68uCDD1q7nBK5tq6nwWAgKCiIVq1aWbskUQwJdCHKQX5+PvPnzycuLo7g4GC7mi2Zn59PZGQka9euZcSIEfTv398uR+FURhLoQlhYamoqEydOpFq1aoSFhVGjRg1rl2S2o0ePMnPmTOrWrSvretohCXQhLOjEiRP4+PjwxBNP8NZbb9lNyzY3N5dVq1bx6aefMmbMGJ566ikZU26HJNCFsJCdO3fi5+eHj48PTz31lLXLMduePXvw8/OjXbt2REdH291wSvEHCXQhykhrzZo1a/j4449ZvHgx99xzj7VLMktGRgaBgYF8//33TJo0iUceecTaJYkykkAXogxycnKYMWMGiYmJhIeH4+npae2SzLJz504CAgJ4+OGHiY2Ntat+fnFrEuhClNKFCxfw8fGhdevWrF69mqpVq1q7pGJdvnyZgIAAjh8/jp+fH507d7Z2ScKC7OMTGyFszIEDBxgyZAh9+vRhxowZNh/mWmu2bt3KwIEDufPOO1m/fr2EuQOSFroQJfR///d/LFmyhA8//JB//OMf1i6nWElJSfj7+5OWlsaSJUvs8oFgwjwS6EKYqaCggMWLF/Pdd9+xevVqWrRoYe2SbstoNBIdHU1ISAhDhgxh0KBBODs7W7ssUY4k0IUwQ3p6OpMnTwYgLCyMWrVqWbmi2ztx4gS+vr5Uq1ZN1vWsRCTQhSjG6dOnGTt2LN27d2fMmDE23co1GAysWbOGjRs38uabb9KvXz+7mdwkyk4CXYjb+P777/nwww95++236du3r7XLua0DBw7g6+tL8+bNWb9+vd0MoRSWI4EuxE1orVm7di3r1q1jwYIFNv3I2KysLJYuXcqOHTsYP348PXr0kGn7lVSxga6UuguIuW5TK2AasBNYCVQD8oE3tNa7y6FGISqUwWDAz8+PU6dOER4eToMGDaxd0i398MMPzJo1iy5duhAbG2vzffuifBUb6Frr34BOAEopZyAR2AysBmZorT9TSj0FBACPlV+pQpS/5ORkxo0bR+PGjQkODqZatWrWLummUlNTWbhwIfv372fq1Kl296x1UT5K+mlJT+Ck1joe0MC15kBtIMmShQlR0X799VeGDBnCo48+yqxZs2wyzLXWfPHFF3h7e+Ph4UFMTIyEuShS0j70AcD6wq/fBb5QSs3H9MbQzZKFCVGRtm3bxsKFC5k6dSqPPvqotcu5qQsXLjB79mzOnTvHwoULuffee61dkrAxZrfQlVKuQF9gQ+Gm14H3tNZ3Au8BIbc4bqRSKk4pFZecnFzWeoWwKKPRSGBgICtXrmTlypU2GeZGo5ENGzYwaNAg7rnnHiIjIyXMxU0prbV5OyrVD3hTa9278Ps0wENrrZXpI/U0rfVtP5Hx8vLScXFxZa1ZCIu4evUq77//Pjk5OcydOxcPDw9rl/QXv//+O35+fhiNRj744ANZ17OSUkrt0Vp7FbdfSfrQB/JHdwuY+syvNWd6AMdLcC4hrOrMmTMMHTqUxo0bs2zZMpsL8/z8fNasWcPw4cPp1asXwcHBEuaiWGb1oSul3IFewKjrNr8GLFZKVQFygJGWL08Iy9u1axdTp05l1KhRvPDCC9Yu5y8OHz6Mr68vnp6eREZG0qhRI2uXJOyEWYGutc4E6t2w7Tvg/vIoSojyoLUmOjqa0NBQ5syZY3OPj83JyWHVqlX85z//4d133+XJJ5+UCUKiRGSmqKgUDAYDc+bM4fDhw4SFhdncavY///wz/v7+3HPPPbKupyg1CXTh8FJSUhg3bhz16tVjzZo1uLm5WbukIhkZGSxatIiffvqJSZMm8fDDD1u7JGHH5DFswqEdPXqUwYMH89BDDzF37lybCvMdO3bg7e2Ni4sLsbGxEuaizKSFLhzW9u3bmTt3LpMnT6Znz57WLqfI5cuXmTt3LidOnGDWrFncd9991i5JOAgJdOFwjEYjq1atYtu2bSxfvpy2bdtauyTgj3U9lyxZwnPPPYefnx+urq7WLks4EAl04VCysrKYOnUqqamphIeH28yHi4mJifj7+5ORkcGyZcts5k1GOBbpQxcOIykpiWHDhuHh4cHKlSttIswLCgqIjIxk8ODBdO3albCwMAlzUW6khS4cwp49e5g8eTLDhw/H29vbJsZvHz9+HF9fX9zc3AgPD6dp06bWLkk4OAl0Yfc2btxIUFAQfn5+PPDAA9YuB4PBQHBwMJs3b+att96ib9++NvEGIxyfBLqwW/n5+cybN4+9e/cSEhLCnXfeae2S2L9/P35+frRq1Yr169dTv359a5ckKhEJdGGXUlNTmTBhAm5uboSFheHu7m7VejIzM1m6dCk7d+4sWtdTiIomH4oKu3P8+HEGDx5Mhw4dWLhwodXD/LvvvsPb25vc3FxiYmIkzIXVSAtd2JWvv/4af39/xo0bR58+faxay5UrV1iwYAEHDx5k+vTpNtF/Lyo3CXRhF7TWhISEsGnTJgIDA2nfvr1Va/n888/56KOPePLJJ4mOjqZ69epWq0eIayTQhc3Lzs5mxowZnD9/noiICKt+0Hj+/HlmzZrFxYsXWbRokVXfWIS4kfShC5t2/vx5hg8fjqurK0FBQVYLc6PRSGxsLIMGDaJjx46sXbtWwlzYHGmhC5u1f/9+Jk6cyCuvvMKgQYOsNpb79OnT+Pr6opQiODiYli1bWqUOIYojgS5s0pYtW1i6dCkzZsygW7duVqkhLy+P8PBw1q9fz6hRo3jxxRdxcpL/1ArbJYEubEpBQQEfffQRP/zwA8HBwTRv3twqdfz666/4+vrSoEEDoqKiaNiwoVXqEKIkJNCFzUhPT2fSpEk4OzsTFhZGrVq1KryG7OxsVq5cyWeffYaPjw///Oc/Zdq+sBvy/0dhE06dOsWQIUNo06YNixYtskqY7969mwEDBpCSkkJMTAx9+vSRMBd2pdgWulLqLiDmuk2tgGla60VKqbeBN4EC4D9a6wnlU6ZwZN9++y0zZ87knXfe4Zlnnqnw66enp7No0SJ2797N5MmT+cc//lHhNQhhCcUGutb6N6ATgFLKGUgENiulHgf6AR211rlKqTvKtVLhcLTWREREEB0dzYIFC+jQoUOF17Bjxw4CAgLo0aMHsbGxNrXmqBAlVdI+9J7ASa11vFJqHjBHa50LoLW+aPHqhMPKzc3F19eX+Ph4wsPDueOOim0PJCcnExAQwOnTp5k7dy4dO3as0OsLUR5K2oc+AFhf+HVb4GGl1C6l1P+UUl1udoBSaqRSKk4pFZecnFyWWoWDuHjxIq+99hpGo5HVq1dXaJhrrfnkk0946aWXaNWqFevWrZMwFw7D7Ba6UsoV6AtMvu7YusBDQBcgVinVSmutrz9Oax0EBAF4eXn96TVR+Rw6dIgJEybw73//m6FDh1boh45nz57F39+frKwsli9fTps2bSrs2kJUhJJ0uTwJ7NVaXyj8PgHYVBjgu5VSRqA+IM1wcVPbtm1j4cKFTJs2jUceeaTCrltQUEBUVBTh4eG8+uqrDBw4UCYICYdUkkAfyB/dLQCfAI8DXyul2gKuwCUL1iYchNFoZOnSpfz3v/8lKCiIVq1aVdi1jx07hq+vLzVr1iQiIoImTZpU2LWFqGhmBbpSyh3oBYy6bvMaYI1S6hBgAIbc2N0iREZGBu+//z4Gg4GIiAhq165dIdc1GAysXr2aTz75hLfffptnnnlGxpQLh2dWoGutM4F6N2wzAC+XR1HCMZw5c4b33nuPBx98EB8fH6pUqZiJyfv27cPX15c2bdoQHR1NvXr1ij9ICAcgU/9Fufjxxx+ZNm0ar7/+Os8//3yFXDMzM5PAwEC++eYbJkyYwOOPP14h1xXCVkigC4vSWrN+/XrCw8OZO3cunTt3rpDrfvvtt8yZM4euXbsSGxtLzZo1K+S6QtgSCXRhMQaDgdmzZ3P06FFCQ0Np3LhxuV8zJSWF+fPnc/jwYWbMmIGXl1e5X1MIWyVjt4RFXL58mdGjR5OZmUlISEi5h7nWmm3btjFgwAAaNmxIdHS0hLmo9KSFLsrsyJEjjBs3jn79+jFixIhyH+N97tw5Zs2axaVLl2RdTyGuI4EuyuTLL78kICCAKVOm0KNHj3K91rV1PVevXs2gQYMYPHhwhY2cEcIeyL8GUSpGo7FoIYjly5fTtm3bcr3eqVOn8PX1xdnZmTVr1lhtJSMhbJkEuiixrKwsPvjgAzIyMggPD6du3brldq28vDxCQ0OJjY1l9OjRPP/88zJtX4hbkH8ZokQSExMZOnQo9erVY/ny5eUa5ocOHWLQoEEcOXKEqKgoWaRZiGJIC12YLS4ujilTpjBixAj+/e9/l9tU+uzsbFasWMHnn3/OuHHj6NWrl0zbF8IMEuiiWFprNm7cyOrVq/H396dLl5s++t4idu3ahb+/P506dSI2NhYPD49yu5YQjkYCXdxWXl4e8+bNY//+/axZs4amTZuWy3XS09NZuHAhe/bsYfLkyXTr1q1criOEI5MOSXFLV65c4c033+TSpUuEhoaWS5hrrfnqq6/w9vbG3d2dmJgYCXMhSkla6OKmjh8/ztixY+nTpw+jR48ulw8jL168yNy5czlz5gwBAQFWWSRaCEciLXTxFzt27OD111/nzTff5I033rB4mBuNRjZt2sRLL71E27ZtiYqKkjAXwgKkhS6KGI1GgoOD2bJlC4GBgeUypf7MmTP4+fmRm5vLqlWraN26tcWvIURlJYEuANNQwenTp5OcnEx4eDj169e36PkLCgqIjIwkIiKC4cOHM2DAABlTLoSFSaALzp07x9ixY2nbti2rVq3C1dXVouf/7bffmDlzJh4eHqxdu7b+HXsgAAAU70lEQVRCHqsrRGUkgV7J7du3j0mTJjF48GBeeukli07gyc3NJSgoiK1bt/LOO+/wr3/9SyYICVGOJNArsc2bN7N8+XJmzJhh8aGCe/fuxc/Pj7Zt2xIdHV2ujwgQQpgUG+hKqbuAmOs2tQKmaa0XFb4+FpgPeGqtL5VLlcKi8vPzWbhwIT/99BPBwcEWfXLh1atXCQwM5LvvvmPixIk8+uijFju3EOL2ig10rfVvQCcApZQzkAhsLvz+TqA3cKYcaxQWlJaWxqRJk3BxcSE8PNyia29+8803zJkzh+7duxMbG0uNGjUsdm4hRPFK2uXSEziptY4v/P4jYAKwxaJViXJx6tQpfHx8ePzxx3n77bctNsokJSWFefPmcfToUfz8/CpsYWghxJ+V9F/0AGA9gFKqH5Cotf7ldgcopUYqpeKUUnHJycmlLFOU1TfffMOoUaN47bXXGDNmjEXCXGvNp59+yoABA2jcuDHR0dES5kJYkdktdKWUK9AXmKyUcgOmYOpuuS2tdRAQBODl5aVLWacoJa014eHhxMTEsHDhQv7+979b5LxJSUnMmjWLlJQUAgMDufvuuy1yXiFE6ZWky+VJYK/W+oJS6u9AS+CXwmFoTYG9SqkHtNbny6FOUQq5ubnMnDmTs2fPEh4ezh133FHmcxqNRqKjowkJCeGVV17h5ZdflnU9hbARJfmXOJDC7hat9UGgKB2UUr8DXjLKxXZcvHiRsWPH0rx5c1avXk3VqlXLfM6TJ0/i6+uLq6sroaGhNGvWzAKVCiEsxaxAV0q5A72AUeVbjrCEgwcPMmHCBAYMGMDgwYPLPJnHYDAQGhrKhg0beOONN3j22Wdl2r4QNsisQNdaZwL1bvN6C0sVJMrm008/ZfHixUybNo2HH364zOc7cOAAfn5+NG3alHXr1lmk20YIUT6k89NBGI1GAgMD2blzJ6tWraJVq1ZlOl9WVhbLly9n+/btjBs3jieeeEKm7Qth4yTQHUBGRgbvv/8++fn5REREUKtWrTKd78cff2TWrFl07tyZ2NhYateubaFKhRDlSQLdzsXHx/Pee+/RtWtX3nvvvTKNOElLS2PBggXs37+fKVOm0LVrVwtWKoQob/LJlh374YcfGDFiBK+88grjx48vdZhrrfnyyy/x9vamdu3aREdHS5gLYYekhW6HtNZERUWxdu1aAgICuO+++0p9rosXLzJnzhwSEhKYP3++xSYeCSEqngS6nTEYDMyaNYtjx44RFhZGo0aNSnUeo9HI5s2bWbFiBd7e3sydOxcXFxcLVyuEqEgS6Hbk0qVLjB8/Hk9PT0JCQqhevXqpznNtXc+8vDyCgoLKPCJGCGEbJNDtxOHDhxk3bhzPPfccw4cPL9XEnvz8fNauXUtkZCSvvfYa3t7eMkFICAcigW4HvvjiC+bNm8eUKVPo0aNHqc5x5MgRfH19qVevnqzrKYSDkkC3YUajkRUrVvDFF1+wfPly2rZtW+Jz5OTkEBQUxKeffsq7777Lk08+KROEhHBQEug2KjMzk6lTp3L16lXCw8OpU6dOic8RFxeHv78/7dq1k3U9hagEJNBtUEJCAj4+PnTq1KlUo08yMjIIDAzk+++/Z9KkSTzyyCPlVKkQwpbIJ2I2Zvfu3bz66qt4e3szZcqUEof5zp076d+/P05OTsTGxkqYC1GJSAvdRmit2bBhA8HBwcyaNQsvL68SHX/58mUCAgI4fvy4rOspRCUlgW4D8vLyCAgI4MCBA4SGhtKkSROzj9Vas3XrVpYsWcKzzz5btACFEKLykUC3spSUFCZMmECtWrUIDQ3Fzc3N7GMTExPx9/cnPT2dZcuWlWoUjBDCcUgfuhUdO3aMIUOG0LlzZ+bPn292mBuNRqKiohg8eDAPPfQQ4eHhEuZCCGmhW8uOHTuYNWsWEyZMoHfv3mYfd+LECWbOnEn16tVlXU8hxJ9IoFcwo9FIcHAwW7ZsYcmSJbRr186s4wwGAyEhIXz88ce8+eab9OvXT6btCyH+RAK9AmVlZfHhhx9y6dIlIiIiqFfvlsu0/smBAwfw9fWlefPmrF+/Hk9Pz3KuVAhhj4oNdKXUXUDMdZtaAdOAJsAzgAE4CQzTWqeWR5GOICkpibFjx3L33Xfj5+dn1kiUrKwsli5dyo4dOxg/fjw9evSQaftCiFsq9v/sWuvftNadtNadgPuBLGAzsB24V2vdATgGTC7XSu3Y3r17GTZsGM888wzTpk0zK8x/+OEHvL29yc7OJjY2lp49e0qYCyFuq6RdLj2Bk1rreCD+uu0/AS9arCoHsmnTJlasWIGvry8PPfRQsfunpqayYMECfvnlF6ZOncqDDz5YAVUKIRxBSQN9ALD+Jttf5c/dMpVefn4+CxcuZNeuXYSEhBQ7GkVrzRdffMHChQvp06cPMTExpV7AQghROZkd6EopV6AvN3StKKXeB/KBqFscNxIYCVSaIXZpaWlMnDgRV1dXwsPDqVGjxm33v3DhArNnz+bcuXN89NFH3HPPPRVUqRDCkZRk3NuTwF6t9YVrG5RSQ4GngUFaa32zg7TWQVprL621V2UYnXHy5EkGDx5M+/btWbRo0W3D3Gg0smHDBgYNGsS9995LZGSkhLkQotRK0uUykOu6W5RSfYAJwKNa6yxLF2aPvvnmG2bOnImPjw9PPfXUbff9/fff8fPzw2g0yrqeQgiLMCvQlVLuQC9g1HWblwJVge2Foy9+0lqPtniFdkBrTWhoKBs3bmTx4sW3bWXn5+cTERFBVFQUo0aN4sUXX5QJQkIIizAr0LXWmUC9G7b9rVwqsjM5OTnMnDmThIQEwsLCuOOOO2657+HDh/H19cXT05OoqCgaNmxYgZUKIRydzBQtgwsXLjB27FhatmzJ6tWrqVq16k33y8nJYeXKlWzbtk3W9RRClBv5v34pHThwgKFDh9K7d29mzpx5yzD/+eef6d+/P8nJycTExPDUU09JmAshyoW00Eth69atBAYGMn36dLp3737TfdLT01m8eDE//fQTkydPvuV+QghhKRLoJVBQUMDixYv59ttvCQoKomXLljfdb8eOHcybN4/HHnuM2NhY3N3dK7hSIURlJIFupvT0dKZMmYLRaCQ8PJxatWr9ZZ9Lly4REBDAyZMnmT17Np06dbJCpUKIykr60M0QHx/P0KFDadmyJUuWLPlLmGut2bJlCwMHDqRFixasX79ewlwIUeGkhV6MH374genTp/PWW2/Rr1+/v7yekJCAv78/mZmZsq6nEMKqJNBvQWtNZGQkUVFRzJ8/n44dO/7p9YKCAtatW0dYWBjDhg1j4MCBODs7W6laIYSQQL8pg8GAn58fJ06cICws7C8TgI4dO4afnx9ubm6Eh4fTtGlTK1UqhBB/kEC/QXJyMuPGjaNRo0aEhIT86RG2BoOB4OBgNm/ezFtvvUXfvn1lTLkQwmZIoF/n8OHDjBs3jhdeeIFXX331T2G9f/9+fH19ad26NevXr6d+/fpWrFQIIf5KAr3QZ599xoIFC3j//fd5/PHHi7ZnZmaydOlSvv76ayZMmECPHj2sWKUQQtxapQ90o9HIsmXL2L59OytXruRvf/vjmWPfffcds2fP5sEHHyQ2NvamY8+FEMJWVOpAz8zM5P333ycrK4uIiAg8PDwAuHLlCvPnz+fQoUNMnz6dBx54wMqVCiFE8SrtxKKzZ88ydOhQGjZsyPLly/Hw8EBrzbZt2+jfvz+enp7ExMRImAsh7EalbKHv3r2bDz74gJEjR/Liiy8CcO7cOWbPnk1ycjKLFi2iffv2Vq5SCCFKplIFutaamJgY1qxZw+zZs7n//vsxGo1s3LiRVatWMWjQIAYPHkyVKpXqj0UI4SAqTXIZDAbmzp3LoUOHCAsLo3Hjxpw+fRpfX1+UUoSEhNCiRQtrlymEEKVWKQI9JSWF8ePHU6dOHUJDQ3FxcSE4OJjo6GhGjRrFCy+8IOt6CiHsnu0GeloaHDgAv/4Kx45BXh64u8Pf/w7t2sG994Kra7GnOXbsGD4+Pjz99NOMHDmSI0eO4OvrS4MGDYiMjJR1PYUQDqPYQFdK3QXEXLepFTANiCjc3gL4HfDWWl8pc0UHD0JwMHz2GTg5QW4uODuDUmA0woYN4OJiCvNXXoGXX4ZGjW56qq+++oo5c+YwceJEunfvzqJFi/j888/x8fHhn//8p0zbF0I4FKW1Nn9npZyBROBB4E0gRWs9Ryk1CaijtZ54u+O9vLx0XFzczV/MzITZsyE6GrSGWrVMQX4rBoPpGFdX+OADGDjQ9AaAabLQ6tWr2bp1KwsWLCAtLQ0/Pz86duzI2LFji8abCyGEPVBK7dFaexW3X0m7XHoCJ7XW8UqpfsBjhdvDgZ3AbQP9ls6cMQXyhQtQs+btg/waV1fTL4MBpk2D7dthxQqytGb69OlcvnyZpUuXEhERwe7du5kyZQrdunUrVXlCCGEPShroA4D1hV830FqfK/z6PNCgVBUkJMCLL8KVK1CalrOrq6kL5ttvyRowgJGurrS591569uzJ6NGj6dGjB7Gxsbi5uZWqPCGEsBdmd7kopVyBJOAerfUFpVSq1trjutevaK3r3OS4kcBIgGbNmt0fHx//x4t5efDMM3DiROnC/DqZmZmkxceT1LMn69u2JT4+nmnTptGhQ4cynVcIIazN3C6XkozVexLYq7W+UPj9BaVUo8KLNQIu3uwgrXWQ1tpLa+3l6en55xdXroTjx6F27RKU8VdXrlwhMTERJw8PGv/3v3RzcWHdunUS5kKISqUkgT6QP7pbAP4PGFL49RBgS4mufPkyLFkCNWqYRrCUgtaac+fPc+nSJaq4uJCdm0u9hg15Yd8+XF1cSnVOIYSwV2b1oSul3IFewKjrNs8BYpVSw4F4wLtEV960yTQMsZjgTS8oYOa5c/x09SoeVarwlqcnfWrXJr+ggISEBAy5uRi1pm7t2tStWxelNZw6ZRr+KC10IUQlYlaga60zgXo3bLuMadRL6YSHQ9Wqxe425/x5XJTiy7ZtOZaTw5izZ2nu5ITTuXMUFBTg7u5Oo0aN/miRKwUFBRATI4EuhKhUrDPfPS0Nzp2DatVuu1u20ciOjAxe9/TEzcmJTm5uPOTqSsSpUxTk59O4USOaNWv21+6V6tXhp5/K8QaEEML2WGfq/2+/mYYbFtN3fsZgwBlo5uqKBpKSkqiVmsopV1fatm1766ciVq0K8fGmMepmPB5ACCEcgXVa6JcumfrPi5FlNOJeOPvzxIkTXLp0iWaenjjXqHH7R9w6OZneLNLSLFWxEELYPNt9OBfg5uREZmHw169fn5o1anAwLQ33rKziD1bK9AgBIYSoJKzTQq9Z06yhis1cXSnA1PVSx8ODKlWqcCw3l1bFfZiqtemD0Ro1LFOvEELYAesE+l13QX5+sS3o6k5O9KhZk5XJyWQbjfySlcX/MjL4V3ETkQwG0xMYZbq/EKISsU6ge3qaWul5ecXuOqlhQ3KNRnodO8aUxEQmN2xYfAs9Kws6d7ZQsUIIYR+s04euFHh7m557XswolFrOziy4886Snd/Z2fTALyGEqESst+7aSy/9sWiFJWVnQ5060L27Zc8rhBA2znqB3rw5PPecZYcWag05OTB5ctFiF0IIUVlYN/WmToW6deHqVcucLzUVHn0U+vWzzPmEEMKOWDfQa9WCVatMX5sztvx20tKgSROYN6/UT28UQgh7Zv1+ic6dISLCFMKpqSWfDGQ0mlY7atIEYmOhXr3ijxFCCAdk/UAHeOAB2LbN9HTE1FTT4s/FBbvRaGqVp6ebRsxs3QoNG1ZMvUIIYYPMXoLOIhdTKhnTs9NLqz5wyULl2CK5P/vn6Pco92cdzbXWnsXtVKGBXlZKqThz1tWzV3J/9s/R71Huz7bZRpeLEEKIMpNAF0IIB2FvgR5k7QLKmdyf/XP0e5T7s2F21YcuhBDi1uythS6EEOIWbDbQlVJrlFIXlVKHrttWVym1XSl1vPD3OtassSyUUncqpb5WSh1WSv2qlBpTuN0h7lEpVU0ptVsp9Uvh/c0o3N5SKbVLKXVCKRWjlLLrRV+VUs5KqX1KqU8Lv3eY+1NK/a6UOqiU2q+Uiivc5hA/nwBKKQ+l1Eal1FGl1BGlVFd7vz+bDXQgDOhzw7ZJwH+11m2A/xZ+b6/ygbFa6/bAQ8CbSqn2OM495gI9tNYdgU5AH6XUQ8Bc4COt9d+AK8BwK9ZoCWOAI9d972j397jWutN1Q/kc5ecTYDHwudb6bqAjpr9H+74/rbXN/gJaAIeu+/43oFHh142A36xdowXvdQvQyxHvEXAD9gIPYpq0UaVwe1fgC2vXV4b7aorpH30P4FNAOdj9/Q7Uv2GbQ/x8ArWB0xR+jugo92fLLfSbaaC1Plf49XmggTWLsRSlVAvgPmAXDnSPhd0R+4GLwHbgJJCqtc4v3CUBaGKt+ixgETABuPZQ/3o41v1p4Eul1B6l1MjCbY7y89kSSAZCC7vMgpVS7tj5/dlboBfRprdQux+io5SqAXwMvKu1Tr/+NXu/R611gda6E6aW7APA3VYuyWKUUk8DF7XWe6xdSznqrrXuDDyJqUvwketftPOfzypAZ2CF1vo+IJMbulfs8f7sLdAvKKUaART+ftHK9ZSJUsoFU5hHaa03FW52qHsE0FqnAl9j6oLwUEpdW/qwKZBotcLK5h9AX6XU70A0pm6XxTjO/aG1Tiz8/SKwGdObsqP8fCYACVrrXYXfb8QU8HZ9f/YW6P8HDCn8egimfme7pJRSQAhwRGu98LqXHOIelVKeSimPwq+rY/p84AimYL+24Kvd3p/WerLWuqnWugUwANihtR6Eg9yfUspdKVXz2tdAb+AQDvLzqbU+D5xVSt1VuKkncBg7vz+bnViklFoPPIbp6WcXgOnAJ0As0AzTUxu9tdYp1qqxLJRS3YFvgYP80Qc7BVM/ut3fo1KqAxAOOGNqOMRqrWcqpVphatHWBfYBL2utc61XadkppR4Dxmmtn3aU+yu8j82F31YB1mmt/ZVS9XCAn08ApVQnIBhwBU4Bwyj8WcVO789mA10IIUTJ2FuXixBCiFuQQBdCCAchgS6EEA5CAl0IIRyEBLoQQjgICXQhhHAQEuhCCOEgJNCFEMJB/D9qY+JIRwWS5AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# run quantum algorithm with shots\n", "\n", @@ -864,7 +844,8 @@ "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis', batch_mode=True)\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(shots=1024, seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -897,9 +878,9 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Quantum py37", + "display_name": "Python 3", "language": "python", - "name": "quantum-dev-37" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -911,7 +892,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, From 38ac4a9e69993e1c6754445643ce99ecca50783a Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Feb 2019 15:41:30 -0500 Subject: [PATCH 007/116] Remove LegacySimulators --- community/aqua/chemistry/h2_iqpe.ipynb | 65 ++++------------------ community/aqua/general/evolution.ipynb | 76 +++++++++----------------- 2 files changed, 35 insertions(+), 106 deletions(-) diff --git a/community/aqua/chemistry/h2_iqpe.ipynb b/community/aqua/chemistry/h2_iqpe.ipynb index ca2857eac..75151fbee 100644 --- a/community/aqua/chemistry/h2_iqpe.ipynb +++ b/community/aqua/chemistry/h2_iqpe.ipynb @@ -21,7 +21,7 @@ "source": [ "import numpy as np\n", "import pylab\n", - "from qiskit import LegacySimulators\n", + "from qiskit import Aer\n", "from qiskit.chemistry import QiskitChemistry\n", "import time\n", "\n", @@ -48,7 +48,7 @@ "]\n", "\n", "backends = [\n", - " LegacySimulators.get_backend('qasm_simulator'),\n", + " Aer.get_backend('qasm_simulator'),\n", " None\n", "]\n", "\n", @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -80,32 +80,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05394029 -1.07537168 -1.09193522 -1.10534368 -1.11548918 -1.1232653\n", - " -1.12869848 -1.13338114 -1.13493551 -1.13632972 -1.1364747 -1.13529234\n", - " -1.13323618 -1.13012864 -1.12773585 -1.12335899 -1.11914159 -1.11450112\n", - " -1.10994671 -1.10478822 -1.09957597]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601 -1.12416092\n", - " -1.12990478 -1.13382622 -1.13618945 -1.13722138 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]]\n", - "Hartree-Fock energies: [-1.04299627 -1.06306214 -1.07905074 -1.0915705 -1.10112824 -1.10814999\n", - " -1.11299655 -1.11597526 -1.11734903 -1.11734327 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251055 -1.09745432 -1.09191404 -1.08595587\n", - " -1.07963693 -1.07300676 -1.06610865]\n", - "--- 517.6182761192322 seconds ---\n" - ] - } - ], + "outputs": [], "source": [ "start_time = time.time()\n", "max_workers = max(4, mp.cpu_count())\n", @@ -142,20 +119,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VEXbwOHfpFdCCYEUegkJkEIJJTQp0gSJdLAAUkREPvVVQQVBRbErCCigwiugIL2DqEgNECCEkBBCh5BGIJWEtPn+2E3egClLspsNZO7r2svdc+ac8+wG99mZOTMjpJQoiqIoSlmZGDsARVEU5fGgEoqiKIqiFyqhKIqiKHqhEoqiKIqiFyqhKIqiKHqhEoqiKIqiFyqhKIqBCCHGCCEOGjsORSkvKqEo5UIIcUUI0fOBbflfuEIISyHEj0KIq0KIFCFEsBCibwnndBZCLBVC3BRCpAohLgkhlgshmhnyveiLEOJFIcQ57fuNFULsEELYa/ctF0J89BDnKlPy0h6fo/0cCz5cSntOpfJRCUWpKMyA60BXwAF4D1grhKhfWGEhRA3gMGADdAbsgVbAP0CvIo4x03fQpSWE6Ap8DIyUUtoDHsAa40bFESml3QOPm/q8QEX6Gyj6pxKKUiFIKdOklLOllFeklLlSym3AZaB1EYe8BiQDz0kpL0qNRCnlz1LKBQBCiPpCCKmtCVwD/tJuHyiEOCuESBRC7BNCeOSdVFu+cYHX+TUFIUQ3IcQNIcQbQog4IUS0EGJsgbI1hBBbhBDJQohjQKNi3nJbNF/gp7Tv/7aUcoWUMkUIMREYDbylrSVs1Z5/uhDiorZGEyaECNBu9wC+Bzpoyydqt1sKIb4QQlzT1oC+F0JY6/xHKUBbw/yPECJECJEkhFgjhLAqsP8pba0yUQhxWAjh9cCxbwshQoA0IYSZEKKVEOKU9r38rj1f3uccKoQYUOB4cyHELSGEb2liV8qPSihKhSSEqAU0Bc4WUaQnsFFKmavD6bqiqQH0FkI0BX4F/g+oCewAtgohLHQMrTaaGpQr8CKwUAhRTbtvIZABOAPjtI+iHNXGM0cI4S+EsMzbIaVcAqwCPtPWEvK+XC+iqY05AHOAlUIIZyllOPAS/6thVNWWn4fmM/QBGmtjnqXj+yzMMKAP0ADwAsYAaL/ofwImATWAH4AtBd8TMBLoD1RF872zEVgOVEfz9wgoUPa/wLMFXvcDovOSr1JxqYSilKdN2l+widpf0YsKKySEMEfzhbpCSnmuiHM5AjEFjhmoPW+KEGLPA2Vna2tA6cBwYLuU8g8pZRbwBWANdNTxPWQBH0gps6SUO4BUwF0IYQoMBmZprxUKrCjqJFLKA8AzaJrptgMJQoivtOcp6pjfpZQ3tTW4NUAk4FdYWSGEACYCr2lrPylomthGFPPe2hf8+wghLj6wf772+reBrWgSFdrr/CClPCqlzJFSrgDuAe0fOPa69m/QHk0T53zt57gBOFag7EqgnxCiivb1c8AvxcStVBAqoSjlaZCUsmreA3j5wQJCCBM0Xx6ZwCvFnCsBTU0AACnlFu05XwMerG1cL/DcBbha4Lhc7X5XHd9DgpQyu8Dru4AdmtpOXj9QnqsUQ0q5U1v7qA48jeYX//iiygshni/QrJQItECTWAtTE03/0okC5XdptxclsODfR0r5YJNdTIHnee8boB7wxgM/Fuqg+azzPPg3iJL3z0ybv1/bb3MIGCyEqAr0RfMDQ6ngVEJRKgztr+ofgVrAYG0Noih/AoO0CagkBb+4bqL5Aix4zTpAlHbTXTRfxHlq63B+gHggW3uuPHV1OVBb4/gTTR9Pi0JiRghRD1iKJsnW0CbPUEAUVh64BaQDzQskCAcppR36dx2Y+0AyspFS/lqgTMH4ogFX7Wefp+DnBpra3bPAUDRNeVEoFZ5KKEpFshhNX8cAbdNIcb4CqgG/CCEaCQ17/tcMU5S1QH8hRA9t09obaJpnDmv3BwOjhBCmQog+aPpfSiSlzAE2ALOFEDZCCE/ghaLKCyGeFkKMEEJU08bup71WoLZILNCwwCG2aL6U47XHj+V/ySevvFteX5C25rUU+FoI4aQ9xlUI0VuX9/OQlgIvCSHaad+LrRCiv/bvUZgjQA7wiraD/mn+3XS3CU1z4DQ0fSrKI0AlFKVC0P4Cn4QmIcSI/42DGF1YeSnlLTRt8RnAQSAFTTKwByYXdR0pZQSaX74L0PyKH4AmgWVqi0zTbktEc6fVpod4G6+gaQaKQdPh/HMxZe8AE9D0gySj6Tf4XEqZ17TzI+CpbULaJKUMA75E82UcC7RE0yyU5y80NzDECCFuabe9DVwAAoUQycBewL2YmDqIf49DaVvSm5ZSBmnfy3fa93UBbYd9EeUz0fQfvYjmc34W2IYmseeVSQfWo7kBYENJMSgVg1ALbCmKYmxCiKPA91LKnwtsmwU0lVI+W/SRSkWiaiiKopQ7IURXIURtbZPXC2huQ95VYH91NDWYJcaKUXl4KqEoimIM7sBpNE1ebwBDpJTRAEKICWg6+ndKKfcbL0TlYakmL0VRFEUvVA1FURRF0YtKNVGbo6OjrF+/vrHDUBRFeaScOHHilpSyuEGxgBETihBiKDAbzbgDP+2th4WV6wN8C5gCy6SU8x7YPx8Yp8uArfr16xMUVOhlFEVRlCIIIYqd9SGPMZu8QtHci15kp5t2XqOFaKZe8ARGageM5e1vg2Zwm6IoimJkRksoUspw7SCz4vgBF6SUl7SDoX5DM+dRXrL5HHjLsJEqiqIouqjonfKu3D+p3A3+N4nfK8CWvFsNiyKEmCiECBJCBMXHxxsoTEVRFMWgfShCiL0UPrneu1LKzWU4rwuaSeO6lVRWu7bEEoA2bdqoe6QVpZSysrK4ceMGGRkZxg5FMRArKyvc3NwwNzcv1fEGTShSyp4llypWFPfPQuqm3eaLZsGgC9oJS22EEBeklI3/fQpFUfThxo0b2NvbU79+fe6fKFh5HEgpSUhI4MaNGzRo0KBU56joTV7HgSZCiAbaWVRHoGnm2i6lrC2lrC+lrA/cVclEUQwrIyODGjVqqGTymBJCUKNGjTLVQI2WUIQQAUKIG0AHYLsQYrd2u4sQYgeAdiGjV4DdQDiwVkpZ1JKwiqIYmEomj7ey/n2NNg5FSrkRzbrSD26/iWYN6bzXO9Cs+13cuQyxaFC+/efjCb2ZxMvdVCVIURSlKBW9yatCOHThFl/tOc/ttMySCyuKYjB2dvf/dly+fDmvvFLcStH/FhwczI4dxf5GLZPly5dTs2ZNfHx88PHx4fnnn3/oc+zbt4+nnnrKANEZlkooOhjk60p2rmRbyE1jh6IoShlkZ2cXm1Cys7P1cp3hw4cTHBxMcHAw//1v5VlwUiUUHXg4V6FZbXs2nlLLWitKRbV161batWuHr68vPXv2JDY2FoDZs2fz3HPP4e/vz3PPPcesWbNYs2YNPj4+rFmz5l/7c3JyePPNN2nbti1eXl788MMP+df4/PPP87e///77DxVfcHAw7du3x8vLi4CAAO7cuQPAhQsX6NmzJ97e3rRq1YqLFy/ed9zx48fx9fX91/aKqFJNDlkWAb6ufLLzHJdvpdHA0dbY4SiKUc3Zepawm8l6PaenSxXeH9C82DLp6en4+Pjkv759+zYDBw4EoFOnTgQGBiKEYNmyZXz22Wd8+eWXAISFhXHw4EGsra1Zvnw5QUFBfPfdd4Am4RTcv2TJEhwcHDh+/Dj37t3D39+fJ598ksjISCIjIzl27BhSSgYOHMj+/fvp0qXLv+Jcs2YNBw8eBGDatGmMHTuW559/ngULFtC1a1dmzZrFnDlz+Oabbxg9ejTTp08nICCAjIwMcnNzuX5dM5778OHDTJ06lc2bN1O3bt2yf8gGphKKjp72cWXernNsOhXFa72aGjscRamUrK2tCQ4Ozn+dlxxAM05m+PDhREdHk5mZed9YioEDB2JtbV3keQvu37NnDyEhIaxbtw6ApKQkIiMj2bNnD3v27MHX1xeA1NRUIiMjC00ow4cPz09YeedITEyka9euALzwwgsMHTqUlJQUoqKiCAgIADQDC/OEh4czceJE9uzZg4uLy8N9UEaiEoqOajtY0bFRDTYFR/F/PZuo2yeVSq2kmoQxTJ06lddff52BAweyb98+Zs+enb/P1rb4VoWC+6WULFiwgN69e99XZvfu3cyYMYNJkybdt33hwoUsXboUQK+d/c7OzmRkZHDq1KlHJqGoPpSHEODrxtWEu5y8dsfYoSiK8oCkpCRcXTVT/a1YsaLIcvb29qSkpBS5v3fv3ixevJisrCwAzp8/T1paGr179+ann34iNTUVgKioKOLi4pgyZUp+B3xRX/wODg5Uq1aNAwcOAPDLL7/QtWtX7O3tcXNzY9OmTQDcu3ePu3fvAlC1alW2b9/OjBkz2Ldv38N9GEaiEspD6NOiNlbmJqpzXlEqoNmzZzN06FBat26No6NjkeWeeOIJwsLC8jvlHzR+/Hg8PT1p1aoVLVq0YNKkSWRnZ/Pkk08yatQoOnToQMuWLRkyZEixielBK1as4M0338TLy4vg4GBmzZoFaJLL/Pnz8fLyomPHjsTExOQfU6tWLbZt28aUKVM4evToQ3waxlGp1pRv06aNLOsCW6/+eor9kfEce6cnFmYqHyuVR3h4OB4eHsYOQzGwwv7OQogTUso2JR2rvhEfUkArVxLvZrEvIs7YoSiKolQoKqE8pM6NHXG0s1DNXoqiKA9QCeUhmZmaMMDbhT/D40hKzzJ2OIqiKBWGSiilEODrSmZOLjvOFLtYpKIoSqWiEkoptHR1oFFNWzaeVM1eiqIoeVRCKQUhBAG+rhy7cpvrt+8aOxxFUZQKQSWUUnraRzOAanOwqqUoSnkpOH392bNn6d69O+7u7jRq1Ij333+f3Nxc4P4p5D09PfNHsj84tbyPjw9hYWFGeS+PI5VQSqlOdRv8GlRn46koKtNYHkWpCNLT0xk4cCDTp08nIiKCM2fOcOzYMb799tv8MnlTyO/bt4933nknf/bhglPLBwcH4+npaay38dhRCaUMAnxduRifxpmoJGOHoiiVyurVq/NnAQawsbHhu+++4/PPP/9XWScnJxo1asTVq1fLO8xKR00OWQb9Wjrz/uazbDwVhZdbVWOHoyjlZ+d0iDmj33PWbgl95+lU9OzZs7Ru3fq+bY0aNSI9PZ3ExMT7tl+6dIlLly7RuHFjwsLC7ptaHuDIkSPFzkSs6E4llDJwsDanh4cTW0/f5N1+HpiZqgqfolQUeYnD0tKSH374gerVqwP/nlpe0R+VUMoowNeVnaExHIi8xRPNnIwdjqKUDx1rEobi6enJ/v3779t26dIlatSoQdWqmtYClTjKn/pJXUbd3J2oamOupmJRlHI0evRoDh48yN69ewFNJ/2rr77KnDlzjBxZ5aYSii4idsLfnxS6y8LMhKe8nNkTFkPqvexyDkxRKidra2u2bNnC3Llzadq0KY6Ojvj7+zN69OgSj81bTz7vcfjw4XKIuHJQ09frYu8cOPQt/CcSbGv8a/eJq7cZvPgIXwz1ZkhrNz1EqigVT0Wevn7Tpk28/vrr/P3339SrV8/Y4TzS1PT1htY8gGSRC+e2Frq7Vd1q1Kthw8ZTN8o5MEVRAAYNGsSlS5dUMjEylVB0MPfqVobVqYMMXV/ofiEEg3xcOXwxgZikjHKOTlEUpWJQCUUHLRxbEGUCIdHHILXwhbUG+boipZqKRVGUykslFB30qNsDCxNzdthYQ/iWQss0cLTFt25VdbeXoiiVlkooOrCzsKNrnW7strcnO3RDkeUCfF05F5NCeHRyOUanKIpSMaiEoqO+DfqSYALHYk9AcuELaz3l5YKZiVC1FEVRKiWVUHTU2bUzdmY27LSzKbLZq7qtBd3ca7I5OIqc3MpzO7ailBdTU9P7xpDMm6e/EfvBwcHs2LEj/3VRU93fvHmTIUOG6O26pXHlyhVatGhh1BgKo6Ze0ZGVmRXd6/Vkb9YW3gtdj2W7SYWWC/B1Y294HEcuJtCpiWM5R6kojzdra2uCg4MNcu7g4GCCgoLo169f/raipm9Zt26dQWIob9nZ2ZiZ6S8NqBrKQ+jXoB+pAg4mhEBS4WNOeng4YW9pppq9FKWcJCUl4e7uTkREBAAjR47MX1Br8uTJtGnThubNm/P+++/nH3P8+HE6duyIt7c3fn5+JCUlMWvWrPxR9GvWrCnyegVrB3fv3mXYsGF4enoSEBBAu3btyBs8vWfPHjp06ECrVq0YOnQoqampANSvX5/333+fVq1a0bJlS86dOwfAP//8k18T8vX1JSUlBSklb775Ji1atKBly5aFxtW+fXvOnj2b/7pbt24EBQWRlpbGuHHj8PPzw9fXl82bNwOamtfAgQPp3r07PXr0KPXnXhij1FCEEEOB2YAH4CelLHT4uhCiD/AtYAosk1LO024XwEfAUCAHWCylnG/ouNs5t6O6hQPb7e7SI2wzdJjyrzJW5qb0a+nMtpCbfDSoBdYWpoYOS1HK3afHPuXc7XN6PWez6s142+/tYsukp6fj4+OT/3rGjBn5tYgxY8Ywbdo07ty5w4QJEwCYO3cu1atXJycnhx49ehASEkKzZs0YPnw4a9asoW3btiQnJ2NjY8MHH3xAUFBQfo1k+fLlhU51X9CiRYuoVq0aYWFhhIaG5sd269YtPvroI/bu3YutrS2ffvopX331FbNmzQLA0dGRkydPsmjRIr744guWLVvGF198wcKFC/H39yc1NRUrKys2bNhAcHAwp0+f5tatW7Rt25YuXbrcF8Pw4cNZu3Ytc+bMITo6mujoaNq0acM777xD9+7d+emnn0hMTMTPz4+ePXsCcPLkSUJCQvJnYNYXY9VQQoFngP1FFRBCmAILgb6AJzBSCJG3tNoYoA7QTErpAfxm0Gi1zEzMeLJBX/bb2JAaWnSVN6CVK2mZOewJiymPsBSl0shr8sp7DB8+HIBevXrRsmVLpkyZwrJly/LLr127llatWuHr68vZs2cJCwsjIiICZ2dn2rZtC0CVKlWKbPZ5cHXHB9dNOXjwICNGjACgRYsWeHl5ARAYGEhYWBj+/v74+PiwYsWK+xb4euaZZwBo3bo1V65cAcDf35/XX3+d+fPnk5iYiJmZGQcPHmTkyJGYmppSq1YtunbtyvHjx++LYdiwYflNcGvXrs3v39mzZw/z5s3Dx8eHbt26kZGRwbVr1/I/L30nEzBSDUVKGQ6aEebF8AMuSCkvacv+BjwNhAGTgVFSylzt+QofbWgA/Rv257eI3/grKYKBd65CtX9P9eBXvzquVa3ZeCoqf+15RXmclFSTKG+5ubmEh4djY2PDnTt3cHNz4/Lly3zxxRccP36catWqMWbMGDIyymcmCyklvXr14tdffy10v6WlJaC5ySA7WzOp7PTp0+nfvz87duzA39+f3bt363QtV1dXatSoQUhICGvWrOH777/Pj2H9+vW4u7vfV/7o0aPY2tqW9q0VqyL3obgC1wu8vqHdBtAIGC6ECBJC7BRCNCnqJEKIidpyQfHx8WUOyrumNy7WTuywtYGwTYWWMTERPO3jwoHIW8Sn3CvzNRVFKd7XX3+Nh4cHq1evZuzYsWRlZZGcnIytrS0ODg7Exsayc+dOANzd3YmOjs7/pZ+SkkJ2djb29vakpKQ81HX9/f1Zu3YtAGFhYZw5o1nFsn379hw6dIgLFy4AkJaWxvnz54s918WLF2nZsiVvv/02bdu25dy5c3Tu3Jk1a9aQk5NDfHw8+/fvx8/P71/HDh8+nM8++4ykpKT8WlLv3r1ZsGABeRMAnzp16qHeW2kYLKEIIfYKIUILeTyth9NbAhna2S+XAj8VVVBKuURK2UZK2aZmzZplvrAQgr6NBhBobc3t4pq9fF3JyZVsPX2zzNdUFEUjrw8l7zF9+nQiIiJYtmwZX375JZ07d6ZLly589NFHeHt74+vrS7NmzRg1ahT+/v4AWFhYsGbNGqZOnYq3tze9evUiIyODJ554grCwsPs65Uua6v7ll18mPj4eT09P3nvvPZo3b46DgwM1a9Zk+fLljBw5Ei8vLzp06JDf+V6Ub775Jr/ZzNzcnL59+xIQEICXlxfe3t50796dzz77jNq1a//r2CFDhvDbb78xbNiw/G0zZ84kKysLLy8vmjdvzsyZM8v68ZfIqNPXCyH2Af8prFNeCNEBmC2l7K19PQNASvmJEOIc0FdKeVnbQZ8opXQo6Xqlnr7+ARG3IxiydQjv3rrNiDH7oUajQss9teAAAsHWqZ3KfE1FMbaKPH29seTk5JCVlYWVlRUXL16kZ8+eREREYGFhYezQSu1xnb7+ONBECNFACGEBjADyRhRuAp7QPu8KFF+X1LOm1ZrS2L4eO+yKbvYCGOTjypmoJC7EPVw1WlGUR8Pdu3fp1KkT3t7eBAQEsGjRokc6mZSVURKKECJACHED6ABsF0Ls1m53EULsAJBSZgOvALuBcGCtlDLvZut5wGAhxBngE2B8OcdP38YDOWVlxc2zhU9pDzDQxwUTgRqToiiPKXt7e4KCgjh9+jQhISH07dvX2CEZlVESipRyo5TSTUppKaWsldesJaW8KaXsV6DcDillUyllIynl3ALbE6WU/aWULaWUHaSUp8v7PfRtoPmHszP9GtyKLLSMk70VnZrUZNOpm+SqqViUx0BlWuG1Mirr37ciN3lVaHXs6+BVrRk7bW3h7MYiyw1u5UpUYjr/RJb9DjNFMSYrKysSEhJUUnlMSSlJSEjAysqq1OdQc3mVQb8mg5h35xwXz66jUde3Ci3Tt4Uzn1Q5x7IDl3jC3amcI1QU/XFzc+PGjRvo4/Z7pWKysrLCzc2t1MerhFIGvev35rNjn7IjM4apceHg9O87YCzMTBjrX59Pdp4jNCqJFq4l3oymKBWSubk5DRo0MHYYSgWmmrzKwNHaET8nX3bY2SKLWXhrZLu62FmasfTApXKMTlEUpXyphFJG/RoP4oa5GaHh66GItuUqVuaMaFuHbSHRRCWml3OEiqIo5UMllDLqUa8H5sKUHTkJEBtaZLmxnTRNBT8fvFxeoSmKogAQnVQ+P2RVQimjKhZV6OzcgV22tuQU0+zlWtWap7yc+fXYNZLSs8oxQkVRKrOtp2/S9bN97A2LNfi1VELRg35NBnHLzJSgiA1FNnsBTOjckLTMHH47dq0co1MUpbJaG3Sdab+dwqdOVdo11P909Q9SCUUPurp1xcbEnB0yGaKLXp60hasD/o1r8POhK2Rm55ZjhIqiVDbLD13mrXUh+Dd2ZMU4P+ytzA1+TZVQ9MDKzIoedZ7gDxsbMouZgRg0tZSY5Aw1C7GiKAaz8O8LzN4aRu/mtVj2QptyWzlWJRQ96dt4ECmmJhyM3FJss1fXpjVxr2XP0gOX1IhjRVH0SkrJZ7vO8fnuCAb5uLBwVCsszcpvGXKVUPSkvUt7qplas5M0iDpRZDkhBOM7N+BcTAoHIm+VY4SKojzOcnMlc7aGsWjfRUb61eWrYT6YmZbvV7xKKHpibmLOk/V7s8/Ghrtnfi+27EAfF5zsLdVAR0VR9CInV/LW+hCWH77C+E4N+DigBSYmxS6xbhAqoehRvyYBZJgI/rq4DXKL7nS3NDNljH99DkTeIuxmcjlGqCjK4yYzO5dXfzvFuhM3mNajCe/290Cz7mD5UwlFj3ycfKhtXoUdpvfgxrFiy472q4eNhSnLVC1FUZRSysjKYfLKE2wPiebdfh681qup0ZIJqISiVybChL6NBnDE2oo7Z9YUW9bBxpwRbeuy5fTNchvFqijK4yPtXjbjlh/nr4g4PhrUggldGho7JJVQ9K1fk0FkC8Efl3dBbk6xZcf610cCPx+6Ui6xKYryeEhKz+K5H48SeCmBL4d682z7esYOCVAJRe/cq7nT0MqRHWbZcO1IsWXrVLehX0tnVh+9RnKGmo5FUZSSJaTeY+SSQM5EJbFodCueaVX69Uv0TSUUPRNC0LfJM5ywtiIm5NcSy0/o3IDUe9msOXa9HKJTFOVRFpOUwfAlgVyMT2Xp823o08LZ2CHdRyUUA+jX+GkAdl37E3Kyiy3r5VaV9g2r89Ohy2TlqOlYFEUp3PXbdxn6w2GiE9NZMc6PbhVwBViVUAygbpW6tLB1ZYeFhKsHSyw/sUtDopMy2B4SXQ7RKYryqLkQl8rQ74+QnJ7Nqgntad+whrFDKpRKKAbSz30Y4ZYWXApZWWLZbk2daOxkx5L9ajoWRVHuF3w9kaHfHyY7N5ffJrbHp05VY4dUJJVQDKR3o6cQwM6oA5BTfIe7iYlgYueGhEUnc/hiQvkEqChKhbf/fDyjlgZib2XO+skd8XCuYuyQiqUSioE42TjhV6UROy0F8tK+Ess/7euCo50lP+xXAx0VRYEtp2/y4orj1Kthy7qXOlCvhq2xQyqRSigG1LfZCK6amxMW8kuJZS3NTBnrX5/95+MJj1bTsShKZbbi8BWm/XYK37rV+G1ie5yqWBk7JJ2ohGJAPRv2xQzBjphAyM4ssfzodnWxNjdl2QG17ryiVEZSSr764zzvbzlLT49a/HecHw7Whl8YS19UQjEgB0sHOlVvzi4rU3LObiyxfFUbC4a3rcOW01HEJGWUQ4SKolQUObmS9zaFMv/PSIa1cWPx6FZYmZffWib6oBKKgT3V4gXizMw4dPzbYhfeyjPOvwE5uZLlh68YPjhFUSqEe9k5TP31JKuOXmNyt0Z8Otir3Ncy0YdHL+JHTPd6PXAys2VldhxcL34GYoC6NWzo28KZVUevknqv+EGRiqI8+lLvZTP25+PsOBPDe/09eLtPM6POGFwWKqEYmLmJOcM9n+WItTUXD3+p0zETuzQkJSObNcfVdCyK8ji7pZ2X6+jl23w1zJvxnY0/Y3BZqIRSDoZ4jMICE1bdOg6J10os712nKn4NqvPTQTUdi6I8rq7fvsvQ748QGZfC0udbV6hJHktLJZRyUN2qOv3r9mSrrQ1JgQt1OmZi54ZEJaaz44yajkVRHjfnYpIZvPgwCan3WDW+Hd2b1TJ2SHqhEko5Ge3T4Uf+AAAgAElEQVQ9kQwTE9ZHrod7qSWW797MiYY1bVl6QE3HoiiPk6Artxn2/RGEgN9f6kjretWNHZLeGC2hCCGGCiHOCiFyhRBtiinXRwgRIYS4IISYXmB7DyHESSFEsBDioBCicflEXjru1d1pW7UZv9qYkx28qsTyJiaCCZ0bEhqVzMELt8ohQkVRDO3P8FhGLzuKo50l6yd3xL22vbFD0itj1lBCgWeA/UUVEEKYAguBvoAnMFII4andvRgYLaX0AVYD7xk23LJ71ncyMWZm/HViMeSW3DcS4OuKWzVr5m4PJ1v1pSjKI+33oOtM/OUE7rXt+f2lDrhVszF2SHpntIQipQyXUkaUUMwPuCClvCSlzAR+A57OOwWQN1OaA3DTMJHqT1e3rrhaVGWVaRpc+KPE8lbmprzbz4NzMSn8qu74UpRHkpSSb/ae5811IXRoWIPVE9pTw87S2GEZREXvQ3EFCn6T3tBuAxgP7BBC3ACeA+YVdgIhxEQhRJAQIig+Pt6gwZbE1MSUUS3HcdLKirAjX+t0TJ8WtWnfsDpf7Ykg8W7J07coilJxZGbn8ua6EL7ZG8mQ1m78NKYtdpZmxg7LYAyaUIQQe4UQoYU8ni756BK9BvSTUroBPwNfFVZISrlEStlGStmmZs2aerhs2QQ0HYKNMGNVSgTEhpVYXgjBrKeak5SexTd7I8shQkVR9CE5I4uxy4+x7sQNXuvZlM+HeGFhVtF/w5eNQd+dlLKnlLJFIY/NOp4iCqhT4LUbECWEqAl4SymParevATrqMXSDsbew5+lGA9hpZ8utI9/qdIynSxVG+tXll8CrnI9NMXCEiqKUVVRiOkMWH+bopdt8MdSbaT2bPLKj3x9GRU+Xx4EmQogGQggLYASwBbgDOAghmmrL9QLCjRTjQxvVYhxZQvD71T2QptsdXG886Y6thSkfbgtTtxErSgUWGpVEwMJDRCdmsGKcH0NaP/oDFnVlzNuGA7T9Hx2A7UKI3drtLkKIHQBSymzgFWA3moSxVkp5Vrt9ArBeCHEaTR/Km8Z4H6VR36E+nWv6ssbOmsygZTodU93Wgtd6NeVA5C32hscZOEJFUUrj74g4hv1wBDMTwbrJHfFv7GjskMqVqEy/dtu0aSODgoKMHQYAh6MOM2nvJOYmZzNw8mkwsyjxmKycXPp9e4DMnFz2vNYFS7NHa2prRXmcrT56jZmbQ2lW256fxrSl1iOyKJYuhBAnpJRFjhfMo1MNRQixQQjRXwhR0ZvIHhkdXDrQ0LoWKy1zkaEbdDrG3NSEWQM8uZpwl58OXjFsgIqi6CQ3V/LprnO8s/EMXZo4snZSh8cqmTwMXRPEImAUECmEmCeEcDdgTJWCEILRXhMIt7Tg1LH5Oq2VAtC5SU16etTiu78iiUtWi3ApijHdy85h2ppgFu+7yKh2dVn6fBtsH+PbgkuiU0KRUu6VUo4GWgFXgL1CiMNCiLFCiEdnfcoK5qlGA6hiasnK7Fi4Fqjzce/19yAzJ5dPd5U0LlRRFENJvJvJc8uOsfX0Tab3bcbcQS0eyUWx9Enndy+EqAGMQTOg8BTwLZoEU/KQb6VQNuY2DG46jL9srIk+8o3Ox9V3tGVcpwasP3mD4OuJBoxQUZTCXEu4yzOLDxN8PZH5I315qWujSnFbcEl07UPZCBwAbIABUsqBUso1UsqpgJ0hA3zcjfR8DoQJv8YdhTtXdT5uavcm1LS3ZPaWs+TmVp4bKxTF2IKvJxKw6BAJqZmsHN+Ogd4uxg6pwtC1hjJfSukppfxESnnfAh269PwrRXO2c6a7iz/r7Wy5G7hI5+PsLM14q7c7wdcT2RQcZcAIFUXJs/tsDCOWHMHG0pQNL3fEr8HjM/W8PuiaUKoJIZ554NFDCOFk0OgqiWe9JpBsasK28+vhnu4j4Qe3csPbzYF5O8+RptafVxSDkVKy8O8LvLTyBO61q7DxZX8a1VSNMw/SNaG8CCwDRmsfS4G3gUNCiOcMFFul4evki4d9PVbbmCJPrdb5OBMTwawBzYlLuceifRcMGKGiVF7pmTm8+lswn++OYICXC2smtsfxMZ0tuKx0TSjmgIeUcrCUcjCatUkk0A5NYlHKQAjBs94TuWhhwZGTi3RaKyVP63rVCPB1ZemBy1xLuGvAKBWl8olOSmfYD0fYFnKTt/q48+0IH6zM1YDiouiaUNyklLEFXscBdaSUt4Es/YdV+fSp34caZrasEmkQueehjn27TzPMTARzd5Q8e7GiKLo5ee0OA787xKX4VJY+14aXuzVWd3KVQNeEsk8IsU0I8YIQ4gVgs3abLaDuW9UDC1MLhnmMZr+NNVcDdb+FGKC2gxVTnmjM7rOxHFLLBStKma07cYMRPwRibW7Kxin+9PSsZeyQHgm6JpQpaNYc8dE+/gtMkVKmSSmfMFRwlc0wj5GYYcLqpHMQE/pQx77YqQFu1az5YGuYWi5YUUopJ1cyd3sY//n9NK3rVWPzFH+a1nq81n03pBITinZd97+klOullK9pH+tkZZpVspw4WjvSr14vNtnbkhK44KGOtTI35b3+HkTEprD62DUDRagoj6+k9CzGLT/O0gOXeaFDPf77oh/VbEuetFX5nxITipQyB8gVQjiUQzyV3uiW47hrYsLGK7sh9eGWLO7dvDYdGtbgyz3nuZOmlgtWFF1djE8lYOEhDl24xccBLZnzdAvMK/k0KqWh6yeWCpwRQvwohJif9zBkYJWVZw1PWlXzYLWdNTlBPz7UsUII3h/oSUpGFt/sPW+gCBXl8fLP+XgGLTxEYnoWq8a3Y1S7usYO6ZGla0LZAMwE9gMnCjwUAxjtNZ4oczP+CVkO2fce6thmtaswul09Vh69RkSMWi5YUYoipWTZgUuM/fkYrlWt2TzFn3YNaxg7rEearrMNrwDWAoFSyhV5D8OGVnl1r9sdZ8tqrLLIgbMbH/r413s1xc7SjDlbz6rlghWlEPeyc3hzXQgfbQ+nl2ct1k/uSJ3qNsYO65Gn6+SQA4BgYJf2tY8QYoshA6vMzEzMGNH8BY5ZWxERqPtaKXmq2Vrweq+mHL6YwK7QGANFqSiPpriUDEYuCWTdiRu82qMJi0e3rtRrmOiTrk1eswE/tGNOpJTBQEMDxaQAg5sOwUqYsTorGq4cfOjjR7eri4dzFd7ZeIabiekGiFBRHj0nrt7h6e8OERadzMJRrXi9V1NMTNRgRX3RNaFkSSmTHtimBjsYkIOlAwMaDWC7nS13/pz90LUUM1MTFo7yJTM7l1dWnyRLjU1RKjEpJT8dvMzwH45gaiJY91JH+ns5Gzusx46uCeWsEGIUYCqEaCKEWAAcNmBcCvBs8zFkCsHytEg4t/2hj29Y045Ph3hx8loin+48Z4AIFaXiS8nI4uVVJ/lgWxjd3J3YPrUzLVzVKAhD0DWhTAWaA/eAX4Fk4P8MFZSi0bBqQ/o36M8qBwdi/poNOQ8/Rf1TXi680KEeyw5eVv0pSqUTHp3MwO8OsScslhl9m7H0+dY42KhVyw1F17u87kop35VStpVSttE+zzB0cApMbfUquSamfCcTIHhlqc7xTn8PvNwceHPdaTUjsVJprA26zqCFh0i7l83q8e2YpJbpNThd7/JqKoRYIoTYI4T4K+9h6OAUcLFzYbTHs2yxs+P8/nmQmfbQ57A0M2XhqFYI4OXVJ8jIytF/oIpSQWRk5fDWutO8tS6EVnWrsf3Vzmp8STnRtcnrd+AU8B7wZoGHUg7Ge03A3tyGr62yIXBxqc5Rp7oNXw7zITQqmY+2q2nulcfT5VtpDFp4iLVBN3jlicasHN+OmvZqMazyomtCyZZSLpZSHpNSnsh7GDQyJZ+DpQMTvCdz0MaawOMLIS2hVOfp5VmLSV0asjLwGpvVOvTKY2bnmWgGLDhITHIGP49ty396u2OqbgkuV7omlK1CiJeFEM5CiOp5D4NGptxnpMdInK0c+cregtz9n5f6PP/p7U6betWYseEMF+JS9RihohhHZnYuH2wNY/KqkzRysmP7q515wt3J2GFVSromlBfQNHEd5n/zeAUZKijl3yxNLZna5nXCLS3YdXYl3LlSqvOYm5qwYJQvVuamvLzqBOmZqj9FeXTdTExnxJIj/HToMmM61uf3SR1wrWpt7LAqLV3v8mpQyEONlC9n/Rv2p5lDI+ZXq0Lmnx+U+jzODtZ8M9yHyLhUZm5+uIW8FKWi+Od8PP3nHyAiJoXvRvkye2BzLMzUlPPGVOynL4R4q8DzoQ/s+9hQQSmFMxEmvOb3FlFmpvx2bQ9Eny71ubo0rcnU7k1Yd+IGa49f12OUimJYObmSr/44z5ifj+Fkb8WWqZ14ysvF2GEplFxDGVHg+YwH9vXRcyyKDjq6dKRjbT+WVKtK8p73ynSuaT2a4N+4BjM3hxIenaynCBXFcK7fvsvwH44w/89InvF1Y9MUfxrVtDN2WIpWSQlFFPG8sNdKOXmt7Zskmwh+TDwNF0s/HMjURPDNcF8crM15edVJUjKy9BilouiPlJK1Qdfp881+ImJS+GqYN18M9cLawtTYoSkFlJRQZBHPC3utlJNm1ZsxoEF/Vjo4EL13JuSWfuLHmvaWLBjpy9WENGZsOKPWT1EqnITUe7y08gRvrQuhhasDO/+vM8+0clOj3iugkhKKtxAiWQiRAnhpn+e9blnaiwohhgohzgohcoUQbYop95MQIk4IEfrA9upCiD+EEJHa/1YrbSyPqldaTQMTU77LuglnN5TpXO0a1uA/vd3ZFhLNL4FX9RShopTdX+di6f3NAf4+F887/ZqxekJ73KqphbAeWinmASyNYhOKlNJUSllFSmkvpTTTPs97XZYZ1kKBZ9AsKVyc5RTeVzMd+FNK2QT4U/u6UnG2c2a0x3NstbMjYt+ch14q+EEvdWlE92ZOfLgtjNPXE/UUpaKUzt3MbN7deIZxy4NwtLNg8yv+TOzSSA1ULI3L+2FhW4g1/AwZRrnHTkoZLqWM0KHcfuB2IbueBvKWIF4BDNJjeI+MF73Ga6ZkMUuHoJ/LdC4TE8GXQ71xsrdiyuqTJN1V/SmKcZy6dof+8w+y+tg1JnZpyKYp/ng4VzF2WI+enCzYOxtWDARhAtLwY84e1Zu2a0kpo7XPY4BaRRUUQkwUQgQJIYLi4+PLJ7py4mDpwESflzlkY82RwC8go2x3alWzteC7Ub7EJmfwxu+nVX+KUq6ycnL5+o/zDPn+CJnZuawe3553+nlgZa463h9awkX48Uk4+DW0eg4m7Yfape6l0JnBEooQYq8QIrSQx9P6vI7UfOsV+c0npVyinXK/Tc2aNfV56QphZLORuFg58rWNKbmHvi3z+XzrVmNGXw/2hsey+J+LeohQUUp2MT6VIYsP8+2fkTzt7cLO/+tMh0ZqhuCHJiUEr4YfusDtSzDsvyT3mcu84AWkZhp+qiUzQ51YStnTUOcGYoUQzlLKaCGEMxBnwGtVaBamFkxt+wYzDsxgx+kfecpvAtjXLtM5x/rX5+S1O3y2KwJLM1Ne7NRAT9Eqyv2klKw8eo2528Pyl1lQS/OWUnoibH8dQtdDvU7wzA+cyIhlxpYhxN+Np71ze7rV6WbQEB7VJq8taOYXQ/vfzUaMxej6NeiHR5WGLHCwJvPvsk9gIITgq2E+9G1Rmw+3hbFo3wU9RKko94tLzmDs8uPM3BRK2/rV2f1/XVQyKa1rgfB9Zzi7CbrPJOu59Sy4tJFxu8dhbmLOL/1+MXgyASMlFCFEgBDiBtAB2C6E2K3d7iKE2FGg3K/AEcBdCHFDCPGidtc8oJcQIhLoqX1daZkIE15vP4ObZmb8enET3Ios8zktzExYMNKXp31c+GxXBF//cV71qSh6IaVkc3AUvb/Zz5GLCcwZ2Jz/jvOjtoOVsUN79ORkw7558HNfMDGBF/dw3Xc4Y/a8yJKQJQxoOIC1A9bSwrFFuYQjKtOXRJs2bWRQ0OM7SfJLu8ZxJvooO6xb4jDiN72cMydXMn19CL+fuMFLXRvxdh93NaBMKbUrt9KYuTmUA5G38HJz4Kth3jR2sjd2WI+mxGuwfgJcDwSvEci+n7Ht5n7mHp2LCSbM6jiLPvX1M0OWEOKElLLIMYN5DNaHopS/1/zeZujWIfwYe4TXrx+DOn5lPqepieDTwV5YmJnw/T8XuZedw6ynPFVSUR7KvewclvxziQV/X8DC1ITZAzx5rkN9Na6ktELXw9bXAAnPLCOlWR8+DPyQnZd30sqpFfM6z8PZrvybD1VCeYy4V3dnQP1+rLq8nZF/vIvz2D2ghy9+ExPBR4NaYGlmyk+HLpOZncuHT7fARH0ZKDoIvJTAuxvPcDE+jf4tnZn5lKdq3iqteymw820IXgVubWHwMk5l3WH6liHE3o3lFZ9XGN9yPKYmxrnVWiWUx8zUNq+x6+puvku9wNzzu8C9r17OK4Rg5lMeWJqbsHjfRe5l5/LpYC/1C1Mp0u20TOZuD2f9yRu4VbPm5zFteaKZWkmx1KJOwPrxmsX1urxFduc3WHL2J34I+QEXWxdW9F2Bd01vo4aoEspjprZtbUZ7PMvysyt47q9ZNGvyJOjp14oQgrd6u2NlZsrXe8+TmZ3LV8O8MTN9VG8WVAwhN1ey7sQNPt4ZTmpGNi93a8TU7k3UzMCllZsDh76Fv+eCXW0Ys50b1esy448JBMcHM7DRQGb4zcDOwvjT+KuE8hga7z2RDRFr+Zrb/HDqF2g9Rm/nFkIwrWcTLMxM+HTXOTKzc5k/0letlKcAcD42hfc2hnLsym3a1q/G3ICWNK2lOt1LLekGbJgEVw+C5yAY8A3bog8xd+sbAHza+VP6Nexn5CD/RyWUx1AViypM9H2Fz4M+5/C+2XRs0BWq63dw4uRujbA0M+GDbWG8tPIEi0a3UlNkVGLpmTks+CuSJfsvYWdlxmeDvRjS2k31s5VF6AbY9n+aGsqgxaR6DGDusY/Zdmkbvk6+fNL5E1ztXI0d5X3UbcOPqcycTAZteAqZfIN10hnbsbvBVP+/H1YGXuW9TaF0buLIkufaqGaNSujviDhmbQ7l+u10Brdy451+zahhZ2nssB5d91Jgx1twejW4toHBSwnOTmb6genEpMUwyXsSE1pOwMyk/OoDut42rNopHlMWphbM7fopN83M+DTjEuz/zCDXebZ9PT4f4sXBC7cYu/wYaffKZ90FxfhikzOYsuokY38+joWpCb9OaM+Xw7xVMimL68fh+04Q8ht0fZvMF7bwzeUtvLBLMzHI8j7Lmew9uVyTycOomFEpeuHr5MuLLcez9MxSugYtoEfDJ6BeB71fZ2ibOliYmfD62tM8/9Mxfh7blipWZVkuR6nIktKz+OGfi/x06DK5Et7o1ZSJXRtiaaZqp6WWkw0HvoR/PgUHVxi7kwi7aryz63nO3znP4CaDebPtm9ia2xo70mKpJq/HXFZOFqO3jyQ6IYINSVBz0gGwrmqQa+0KjWbqr6fwcK7Cf8f5UdXGwiDXUYwjPTOH5YevsHjfBVLuZTPQ24U3erlTt4ZaQbFM7lyBDRPh+lHwGk5On3msuLSJ7059RxWLKszpOIeudboaNURdm7xUQqkELiVeYtjWIbRNTWGRY2fEkB/1MuCxMH+GxzJ55UkaONoyf6Qv7rXVHT6PuqycXNYcv878PyOJS7lH92ZO/OdJdzxd1KJXZXZ6DWx/Q/P/Y/+vuF6/Pe8eepdTcafoWbcnMzvMpLpVdWNHqfpQlP9pWLUhr7f5DwdtrFhzbTeErDHYtXp41OLnsW25lXqPAQsOsvDvC2Tn5Brseorh5OZqJnHs+dU/vLcplLrVbfj9pQ78NKatSiZllZ6oGaS4cSLUboGcdIDfrWDw1sFcuHOBjzt9zFfdvqoQyeRhqBpKJSGlZPLelzgRdYS1cYk0GP+P3m8lLuh2WiazNoeyLSQaLzcHvhjqrcYjPCKklOw7H89nuyIIj06mWW173urjzhPuTmoON324elgztiQ5Cp6YQXyr53g/8AMORB2gXe12fNTpI2rblm1NI31TTV6FqMwJBSDubhzPbBqEW9odfhEumI/dBaaG7TzfcSaamZtCScnIZlrPJkzq0lCNrK/Agq7c5rNdERy7cpu61W1448mmDPByUeNJ9CEnS9PpfuBLqFoPBi9jd3YCHwZ+SEZ2Bq+1fo2RzUZiIire/x8qoRSisicUgL1X9/LavteYeCeJqV6ToPu7Br9mQuo9Zm0+y/Yz0XhraytNVG2lQgmPTuaL3RH8eS6OmvaWvNqjCcO1d+8penDzFGx5FWJCwPdZkrq/wyfBC9h+aTvNazTn484f09ChobGjLJJKKIVQCUXjvYPvsfXiZlZEx+EzciPU61gu190eEs3MzaGkZmTzf72aMLGzqq0Y27WEu3y99zybgqOwszTjpa6NGOtfHxsLNaJAL+6lwF9z4dgPYOsE/T7ncFVHZh6aSUJ6ApO8JjHeazzmJhX7NnuVUAqhEopGamYqQ7Y8g0iOZl2SxPalgwa7lfhBt1LvMWtzKDvOxKjaipFIKTlyKYEVh6/wR1gs5qYmjPVvwEtdG6pbvfXp3HbY8SYk34S2L5Le9S2+Pvsjv577lQYODfik0yc0d2xu7Ch1ohJKIVRC+Z+TsScZu2sMg1JSmVO7Gww23K3EhdkWcpNZm8+SmpHNa72aMqFzA1VbMbC7mdlsPBXFfw9fJSI2hWo25ozwq8uYjvWpVUWtT6I3yTc1ieTcNnBqDgO+IcjchPcPv8+1lGs86/Es01pNw8rs0fnMVUIphEoo9/v25LcsO7OMb2Lj6fHk1+Azslyvfyv1HjM3hbIzNAbvOlX5cqiXWg7WAK4l3OW/R66wNug6yRnZeDpXYUzH+gz0cVETeupTbg4cXwZ/fgi52dDtbdLajOXr4O9YE7EGVztXPuj4AX7OZV9JtbyphFIIlVDul5WTxegdo4lJiGBDTAKOE/dD9fLtGJRSsi0kmlmbQ0nLzOH1Xk2Z0LmhWrirjKSUHIi8xYrDV/grIg4TIejTojZjOtanTb1q6vZffYs5A1unaRbBatQd+n/F4fRoZh+ZTUxaDKM9RjPVdyo25o/mrAIqoRRCJZR/04yiH0rbu2ksMnFBjNtt8FuJCxOfoqmt7Dqrqa1MfaIxTzRzUonlIaXey2b9iRusOHKFS/FpONpZMNKvLqPb1VPL7hpCZhrsmwdHFoJNdej9CcnuT/JF0JdsvLCR+lXq86H/h/g4+Rg70jJRCaUQKqEUblX4KuYdm8d7t24z3HcydH/PKHFIKdkaEs1H28KIS7mHa1VrRrWry7A2dahpr2awLc6l+FT+e+Qq607cIPVeNt5uDrzQsT79vZzVpI2GEvkHbH8dEq9Bq+eh5xz+vnWajwI/IiEjgTHNxzDZZzKWpo/+v12VUAqhEkrhcmUuL+99mRM3j7D2xk0aPLu53G4lLkxWTi5/hMWyMvAqhy8mYG4q6N28Ns+2r0e7BtVVc41WfMo9/joXy7aQaA5E3sLcVNC/pTMvdKyPb91qxg7v8ZUSC7umw9kN4NgUBnzLnVoezDs2jx2Xd9CkWhM+7PjhI3MHly5UQimESihFi7sbxzObA3C7m8wvyRLzcryVuDgX41NZFXiNdSc0HcpNnOwY3a4uz7R2q3RT5EspiYxL5Y+wWPaGxxJ8PREpwbWqNUPbuDGqXV2c7FWzlsHk5sLJFfDH+5CdDl3eRHZ8lT1R//Dx0Y9JzkxmYsuJjG85HnMjNBsbkkoohVAJpXh/XP2D1/e9zqTEFF5xeQKG/FSutxIXJz0zh60hN1kVeJXTN5KwNjdlkK8Lo9vVo4Wrg7HDM5isnFyOX7nN3rA49obHcu32XQC83Bzo6VGLnh618HC2V7U2Q7sVqRnpfu0w1O8MT33DLduqfBT4EX9e+5PmNZrzgf8HNK3W1NiRGoRKKIVQCaVk7x58l20Xt7LiZjQ+fb4B39HGDulfQm4ksjLwKltO3yQjKxefOlV5tn09nvJyfixug03OyOKfiHj2hsfy97k4kjOysTAzwb9RDXp61qJHs1qqg728ZGfC4W/hn8/A3BqenIv0Gc3Wy9v49NinZGRnMMV3Cs97Pl9hV1HUB5VQCqESSsk0o+gHI1LjWHcjCttRa6FhN2OHVaiku1msP3mDlUevcik+jao25gxp5UZX95p4Old5pJaivX77Ln+Gx7I3PI7ASwlk50qq21rQvZkTPT1q0bmJI7aWj+8XVoV0Iwi2TIW4MGgeAH0+JcZEMufIHA5GHcSnpg8f+H9AAwfDzdpdUaiEUgiVUHRzIvYEY3eN5aksU+bGxiJe2AJuJf5bMpq8qURWBV5j99kYsnM1/6ZrV7HC06UKzV2q4OlcheYuDtSpbm205iEpJbdSM4mMS+FCXCqRsan5z2+lZgLQqKYtPT1r0cujFr51q6nbpo3hXir89REc/R7snaH/l2Q3fZJfz/3Kd6e+QyKZ1moaI9xHYGry6NeIdaESSiFUQtHd4uDFLDq9iPEZMO1OMozdCbU8jR1WiZLuZhF6M4mwm8mcvZlEWHQyF+JS0eYY7C3N8MhPMFXwdKlCEyd7vc6qK6UkLuVefsKIjEvlgvb5nbtZ+eXsLc1oUsuOJk72uNe2p5t7TRrWtNNbHEopRP4B216DpOvQdjz0eJ+QlCt8GPgh526fo5NrJ95p9w517OsYO9JypRJKIVRC0Z2Ukg8CP2Dd+XX8JzWbF9JzYdwugy7KZSgZWTlExKRw9mYyYdFJnL2ZzLnoFNKzcgAwNxU0cbKnuUsVHAsZ71LY/yKSf29MTMvKTyApGdn52x2szWlay47GTvY0cbKjSS07mtayx8neUnWmVxRpt2DXDDizFhzdYeB8kmp5MP/kfH4//zs1bWoy3W86Pev2rJR/M5VQCqESysPJyc3hzf1v8sfVP/goMZ2nsYVxuyav2ncAABjMSURBVMG+Yq0mVxo5uZLLt9IIi9bWZG4mEx6dTHJ69r8LF/H98eBmeyszGjtpahxNatnlP3e0s6iUX0KPBCk1S2LvmqGZar7zG8hOr7Ht2h98EfQFSfeSGOUxiik+U7A1tzV2tEaja0JRvXxKkUxNTJnXeR4pmSm8L45R5VYST/wSAGO2a6aZeISZmggaO2m+9Ad6uxg7HMUY7lzRNG9d/Avc/OD/27v3uKrKfI/jnx93kJuCCoigeMc0SxOdpoulVmplab7KtJym6eapqdHqTL06nVOdZhq7TY7TaFM545R2xi5adhEdzTJFDQUvSKICoiJ4QxBFYD/nj7V00DaKtmGx2b/367VfLPZarP17YLu/rmet9Tw3vcGO4GD+91+TWVO8hr6xfZk5bCY92/R0ulKvoeOFq7MK8g/ij0P+SGpMb6bGtmZtRSG8d5t14lIpb+Sqtcbe+vNg2LUGRrzM8bsW8EZROmMWjiHnYA7PDHqGOSPmaJicJ0cCRURuE5HNIuISkXoPo0TkHREpEZFNZzw/TUS2iki2iHwsIs7f0t2ChQWGMePaGSRGJvFIQjw5+zfBvPFQU+V0aUqdn6J18Ndr4aunoPOVMDmDFQk9GP3prby18S1u6HQDn47+lHE9xjXLud2bO6d+Y5uAW4EV59huNnC9m+fTgYuMMX2BH4DferQ69SOtQ1ozc9hMIkLa8EBSJwp2rYT590Ctm3MOSjU35cXw8QNWmBzZA2Pepvim1/nN+leZvHQyQf5BvD38bV684kViQmOcrtZrORIoxpgcY0xuA7ZbARx08/xiY8zJT7LVQKKHS1RuxLWKY+awmRj/YO5P6UHJti/g00esMY6Uao5qquDb12B6f9j0IVz+KDWTM/i7XyU3LxjNiqIVPHLJI3x444deOfFVc9MSTsrfA3xQ30oRuQ+4DyApKampamqxOkd15s2hb3LPV/dwf5dUZmfPJSokCq57sdmM+6UUxkDuF1bX1qGd0GMEDH+BtdUHeSn9V+QeyvXZe0oaU6MFiogsAdxdX/q0MWaBh17jaaAGeK++bYwxs4BZYF027InX9XW9Y3vzxjVv8OCSB5nc5SJmZbxJWEg0XP2k06UpBaW51vDy2/9l3VMy4SMK23Xj1e9fZWnhUuJaxfHKVa8wLHmYXs7tYY0WKMaYoY21bwARmQSMAq41vnQzTTORFp/GH678A1O+nsJvuvZl+vIXCQyNhrT7nS5N+apjh63ZE9fMgqBwa/bEfrcza9M7vLdqKoF+gTx8ycPclXoXIQE6uGZj8MrLGETkeuAJ4CZjTKXT9fiqoclDeXbws6ysOcTTXfrg+uIJyJrndFnK17hqYd27MP1Sa/ytSydS8x9rmde6DaMWjObvW/7OjSk3suiWRdzX9z4Nk0bkyDkUEbkFmA60BRaJyAZjzHUikgD81Rgzwt5uLnA1ECsiRcCzxpi3gT8BwUC6fci62hjzgANN8Xm3druVw1WHee3714jq3JunPnkICY6AniOdLk35goLv4IsnoTgbkgbDDS+x0lXBtKX3s71sO5fFXcbjAx6nV0wvpyv1CTr0ivKIV9a9wuzNs3moJowH9+yECfOt6/yVagxlRZD+X9aVW5GJMPw5dnTox7TvX+bb3d/SMaIjUwZM4ZqO1+h5Eg/QoVdUk/pN/99wuOowf877hKj2HRn/3jgY9Sr0G+90aaolqamC76bDipcBA1c9yaEBk/jz5nf556fPExYQxtQBU7mj5x0E+Qc5Xa3P0UBRHiEiPDv4WcqqyvjdrmVEJfZi5CcPQv63MGIaBPnuwHrKQ/KWwuePw8Ht0OtGqof+N+8Xr2TmZ2OprK5kbPexPNTvIdqEePc4c95MA0V5TIBfANOumsYD6Q/wVEkmJZfcxKT17yO7v4fb/gbtdFwkdQHKiqz7SbYsgDYpmPHzWRbizytf/5rC8kIuT7icqQOm0rV1V6cr9Xl6DkV5XGV1Jc+sfIbFBYsZHtuP53NWEVZ1FEa83CznqFfNVM0JWD3Dms/duDA/n8LqLmnM2PgWWaVZpESl8Phlj/PzDj93utIWT+dDcUMDpekYY5i9eTavZ75O5/CO/PFINcn5q+Hi8TDyZe0CU2e342ure2t/LvQYwdoB4/lT3nwySzKJaxXHfX3v45autxDgp50sTUEDxQ0NlKa3as8qnljxBDWuGn4f3Z+r1vwDYrvDuL9BO72UU53hyF5Y/LR19VZ0MpmXP8iMg+tYU7yGdqHtuLfvvYzpNkZPuDcxDRQ3NFCcsbtiN48te4ycgzk8mHQDD6z7GL+qchj5inaBKUttNWTMhOW/g9pqsi6byJ+ljO+KM4gJieHePvcytvtYvSnRIRoobmigOOd4zXGeX/08C7cv5Kq4Qby4dzeR+Svh4jusYNEuMN+VvxI+nwolW9jc5QpmxMbyTcn3tA5uzS/7/JJxPcYRGhDqdJU+TQPFDQ0UZxljmJc7jz+s+QMJ4fG83qoP3VbNtLrAbpsN7VOdLlE1pfJ91s2J2fPY2iaJGcm9WH44h6jgKCb1nsT4nuMJCwxzukqFBopbGijNQ+a+TKZ8PYWj1Ud5ruvtXL/iTagqt+5XuWSCDoPfkhkDezJh8yfw/Wy2Uc2bXfqRfmw3EUER3J16N3f2upPwoHCnK1V1aKC4oYHSfJRUljBl+RQ2lG7gF93G8ci2DAJ2fgN9b7e6wIL1A6XFMMaaenfLJ7BlIZQV8kNwCG8lduMr1xFaBbZiYupEJqROIDIo0ulqlRsaKG5ooDQv1bXVvLT2JT7I/YC0uDSmBXSk9TevQWw3GP0XSOzvdInqQrlcULT23yFypAiXXyDfdL6MOWH+ZFQUEBoQyoReE7i7991EBUc5XbE6Cw0UNzRQmqePt33MC6tfICY0hte6TaT3khehohgGPQRDntIT9t7CVQu7MqzurJyFUL4X/IOo7DKEBe2SeK9sMwUVRbQLa8f4nuMZ232sBomX0EBxQwOl+dq8fzOPLn+Ug8cO8syAqdycl4F8/y5EJ8NNb0DK1U6XqNxx1VpDyG9ZYIVIxT7wD4ZuwyjuOoT3a0uZv+NTyk+U0ye2DxNTJzI0eSiBfoFOV67OgwaKGxoozdvB4wd54usnyCjOIC0+jcfih9B72SvWYID9JsB1L0Boa6fLVAAHtsOat2DTfDhaCgGh0G0Y9B5NVusE/pH3EekF6RgMQ5OGMjF1Ihe3vViHkvdSGihuaKA0fzWuGj7I/YCZWTM5VHWIG5KH8/BxoWPGO9Aq1roSLPVmp8v0TS6XNU/7mpmwbTH4BULPEdD7Fmq6XMOSvauYkzOH7NJsIgIjGNN9DHf0vIOE8ASnK1c/kQaKGxoo3qPiRAXvbn6XOVvmUO2qZlziNdyXu5qY4k3Qc5R1JVhEnNNl+objRyBrrjVX+4E8CG8PA+6B/r+gLCiED7d9yNytcyk+WkxSRBJ39rqT0V1H6z0kLYgGihsaKN6ntLKUN7Pe5KNtHxHsH8ykiB7cvXExYX5BMPx5uPQuvW+lsRzYboXI+vfgRDl0GABpD+DqdSOZBzbx2Y7P+Hzn5xyrOcbAuIFMTJ3IlYlX4id+TleuPEwDxQ0NFO+1s2wn09dPJ70gnZjgaB48JtxakEVg5yvhxj9CmxSnS2wZTnZrZfwF8tKtbq2LboWB95PXKopFOxexaMci9h7dS2hAKMOThzMhdQI92+hcNy2ZBoobGijeL6s0i1fXvUpmSSbJQdE8UrybYUcrkSFPWZcZ++tw5hfkZLdWxkzrIojw9jDgl5SkjuKL0nV8tuMzth7cir/4MzhhMCNTRnJNx2u0W8tHaKC4oYHSMhhjWFG0gtczXyfvcB59JJTH9uRzWZtUuGk6xPVxukTvYAzs/wHWvg0b3re6tRIvo6L/JNLDQlhU8CVr9q7BYOgT24eRKSO5rtN1xIbGOl25amIaKG5ooLQsta5aFm5fyIwNM9hXuY8rqmp59MABuicMtPr7EwdYXyPaO11q83HiKOz8BvKWWF1ah/LBL5Dq3qP5NmUQi45sZfmu5VTVVtExoiOjUkYxMmUkyZHJTleuHKSB4oYGSst0vOY4c7fO5a3sWVRUVzCwNoBhh/dz7dEKYmtdENUROvS3HokDIL4fBPlIV83Jo5Bt6VaIFKyE2hMQGEZ1pyvYkNCLr/yr+XLPCsqqymgd3JrrO1/PyJSR9I3tq/eNKEADxS0NlJatrKqMf+T8gy93fkn+kXwE4ZLQOIbVBDC0dBdxhwqtDcXfGiq/7lFMbHfwayFXJ1WVW1Po5i2BvKVQZrXb1bYHuckDyYiIZnVVCZmlGzhWc4wQ/xCGJA1hVMooBicM1rvY1Y9ooLihgeIbjDHkHc5jScESFhcsJu9wHgB92/RiWHgKQ6shsXgr7M6EqjLrh4IioMMlkHApxPeFuIutK8e8IWSMgZIt/z4KKVwNrmpMUDiFnQaTEZvIajnO2gObOVx1GIDOUZ1Ji0tjUPwgBiUMolWgjpem6qeB4oYGim/KL8tnSeESFucvJudgDgC92vRiWNJQhkZ2o3PZXmt49d3rYN8WcFVbPxgUDu0vgviL7ZDpC217QoCD85kfOwSluXUeW2HfJmsMLaAkLpWM+J5kBAeQUb6T4krr+bhWcaTFpZEWn8bAuIG0b6XnlVTDaaC4oYGiisqLWFKwhPTCdLJLswHoGt2VYcnDGJY8jK7hScj+XNibBcXZsDcbijdC9VFrB/5BVqjEX2w94vpC3EWeHRHZGGt8rNKtpwfH/h9OBQdAdUAou9p1YXtUHGtbhZNxYj87yq3urajgKAbGDWRQ/CDS4tNIikjS8yHqgmmguKGBouoqPlrM0sKlpBekk7kvE4MhKjiK5IhkOkZ2PPU1qVUiybWGqIM7rKDZm22FTeUBe08CMV2tLjL/QOvhd/JrQJ3vA+yvQXWW7XW1J6zAKM2F/bnWkQjgAorDosiPSaYgPJbC4BDypYaCE2XsPrYPl3EBEBoQyqXtL2VQnBUgPdr00DvWlcdooLihgaLqs//YfpbtWsbWA1spLC+k8Eghe4/uxfDvfx+RQZEkRSSRFJlEUkRHkgIjSTpeSVJZMdH7cpEjReCqgdpqq9ustsYKipPLrmprnanFALVYgVEjQqUIu8LbkN+6AwVhkRQE+JPvOsau4weocp04VUNoQCidIjuRHJl86tEpshM92/Qk0F9PpqvGoYHihgaKOh8nak9QVF5EYXkhBUcK2FW+69TXPRV7TgubiKAIYkJicBkXtaaWGlfNOZfrE+AXQMeIjqfCIiky6VSItA1tq11Xqsk1NFB0nAql6hHkH0RKdAop0T8eJ+xE7QmKKoooPGIdzRSWF3Lo+CH8/fwJkAD8/fzxF/vhbvmM54L9g0mKsIIjPjyeAD/9p6m8j75rlboAQf5BpESlkBKlg1IqdZKetVNKKeURjgSKiNwmIptFxCUi9fbLicg7IlIiIpvqWT9FRIyI6Gh1SinlMKeOUDYBtwIrzrHdbOB6dytEpCMwHCj0aGVKKaUuiCOBYozJMcbkNmC7FcDBela/BjwB+M5lakop1Yx55TkUEbkZ2G2MyWrAtveJyDoRWVdaWtoE1SmllG9qtKu8RGQJEOdm1dPGmAU/Yb9hwFNY3V3nZIyZBcwC6z6UC31dpZRSZ9dogWKMGdpIu+4CdAay7Bu8EoFMERlojClupNdUSil1Dl53H4oxZiPQ7uT3IpIPDDDG7HesKKWUUs4MvSIitwDTgbbAYWCDMeY6EUkA/mqMGWFvNxe4GogF9gHPGmPePmNf+TQwUESkFCi4wLJjAV8LLW2zb9A2+4af0uZkY0zbc23kU2N5/RQisq4hY9m0JNpm36Bt9g1N0WavvMpLKaVU86OBopRSyiM0UBpultMFOEDb7Bu0zb6h0dus51CUUkp5hB6hKKWU8ggNFKWUUh6hgXIGEbleRHJFJE9E/tPN+kkiUioiG+zHvU7U6UnnarO9zTgR2WJPO/B+U9foaQ34O79W52/8g4gcdqJOT2pAm5NEZJmIrBeRbBEZ4USdntKA9iaLyFK7rctFJNGJOj2pAVN+iIi8Yf9OskXkUo8WYIzRh/0A/IHtQAoQBGQBqWdsMwn4k9O1NnGbuwHrgdb29+2crrux23zG9g8D7zhddxP8nWcBD9rLqUC+03U3cnv/CdxtL18DzHG6bg+0+0rgUmBTPetHAF8AAgwCMjz5+nqEcrqBQJ4xZocx5gQwD7jZ4ZoaW0Pa/CtghjHmEIAxpqSJa/S08/073wHMbZLKGk9D2myASHs5CtjThPV5WkPamwr8y15e5ma91zFnn/IDrDb+3VhWA9EiEu+p19dAOV0HYFed74vs5840xj5cnG9P9OXNGtLm7kB3EVkpIqtFxO2kZ16koX9nRCQZazDSf7lb70Ua0ub/BiaISBHwOdaRmbdqSHuzsCb6A7gFiBCRmCaozUkNfu9fCA2U8/cp0MkY0xdIB/7mcD1NIQCr2+tqrP+tvyUi0Y5W1HRuB+YbY2qdLqQJ3AHMNsYkYnWNzBGRlvwZMRW4SkTWA1cBuwFf+Ds3mpb8ZrkQu4G6RxyJ9nOnGGMOGGOq7G//CvRvotoayznbjPW/mIXGmGpjzE7gB6yA8VYNafNJt+P93V3QsDb/Evg/AGPMKiAEa0BBb9SQf8t7jDG3GmMuAZ62n/P6iy/O4Xze++dNA+V0a4FuItJZRIKwPkwW1t3gjP7Gm4CcJqyvMZyzzcAnWEcniEgsVhfYjqYs0sMa0mZEpCfQGljVxPU1hoa0uRC4FkBEemEFirdOc9qQf8uxdY7Afgu808Q1OmEhcJd9tdcgoMwYs9dTO/e6+VAakzGmRkT+A/gK6yqRd4wxm0XkOWCdMWYh8IiI3ATUYJ38muRYwR7QwDZ/BQwXkS1YXQKPG2MOOFf1T9PANoP1ITTP2JfHeLMGtnkKVnfmY1gn6Cd5a9sb2N6rgd+JiAFWAJMdK9hD6k75YZ8LexYIBDDG/AXr3NgIIA+oBH7h0df30veLUkqpZka7vJRSSnmEBopSSimP0EBRSinlERooSimlPEIDRSmllEdooCivJiIVDdjmUREJ8+BrjhaRVA/u77uf8LMV9tcEEZl/lu2iReShC30dpRpCA0X5gkeB8woUEfE/y+rRWAMLeoQx5mce2MceY8zYs2wSDWigqEalgaJaBBG52p7TYr6IbBWR9+y7gR8BEoBlIrLM3na4iKwSkUwR+aeIhNvP54vISyKSCdwmIr8SkbUikiUiH4pImIj8DGuEhGn2XCldRKSfPWhmtoh8LCKt7f0tF2telXUikiMil4nIRyKyTUReqFN7RZ3lJ0Vko/2av3fTzs527RvP2Eenk3NgiEhvEVlj15ctIt2A3wNd7OemiUi4WHOBZNr7urnOfnJE5C2x5r5ZLCKh9rquIrLEri1TRLrYzz9u/56yReR/PPqHVd7F6fH79aGPn/IAKuyvVwNlWGMT+WENl/Jze10+EGsvx2LdFd3K/v5J4L/qbPdEnX3H1Fl+AXjYXp4NjK2zLhu4yl5+DnjdXl4OvGQv/xprOPh4IBhrfLSYM9pwA/AdEGZ/38ZNexcCd9nLk+v8bCfsOTCA6cCd9nIQEFp3vf18ABBZ53eShzVHRiesUSD62ev+D5hgL2cAt9jLIVhHfcOx5lER+/f+GXCl0+8LfTjz0KFXVEuyxhhTBCAiG7A+HL89Y5tBWN1VK0UErA/cumN1fVBn+SL7KCAaCMcaxuM0IhIFRBtjvraf+hvWxE0nnRzGZSOw2djjJonIDqxB+uoOYTMUeNcYUwlgjHE3r8XlwBh7eQ7wkpttVgFPizUD4UfGmG12W08rHXhRRK4EXFhDmLe31+00xmywl78HOolIBNDBGPOxXdtxux3DsUJlvb19ONbAoSvc1KVaOA0U1ZJU1Vmuxf37W4B0Y8wd9ezjaJ3l2cBoY0yWiEzCHiDzAmtynVGfq576GuKs4yUZY94XkQxgJPC5iNzPjwfzvBNoC/Q3xlSLSD7WUUfdmsH6PYae5eUE+J0xZuZ51K9aKD2HonxBORBhL68GLheRrgAi0kpEutfzcxHAXhEJxPoA/tH+jDFlwCERucJeNxH4mguTDvzi5BVpItLGzTYrsQat5IyaThGRFGCHMeYNYAHQl9N/B2DNyFhih8kQIPlshRljyoEiERltv0awXedXwD11zkN1EJF2DWqtanE0UJQvmAV8KSLLjDGlWCNEzxWRbKzuoZ71/NwzWOcNVgJb6zw/D3hcRNbbJ6bvxjpJnw30wzqPct6MMV9idZGts7vsprrZ7NfAZBHZSP0z7Y0DNtn7uAhrytcDWN18m0RkGvAeMMDez11ntK8+E7FG287GOtcTZ4xZDLwPrLL3NZ/Tg0v5EB1tWCmllEfoEYpSSimP0EBRSinlERooSimlPEIDRSmllEdooCillPIIDRSllFIeoYGilFLKI/4flRvDElv5XUIAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -169,20 +135,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW5+PHPQ/YESCBhDyHsAoooATfUagVxA9wuqFe0tdW2anvbe221vVW0m3b53bZqrUstlmrV2mqxLiAKKqBCEEQhAiFsCZCEhISQPZnn98f3BIaYZWAymSzP+/Wa15w563POzJxnzvd75vsVVcUYY4w5UT3CHYAxxpjOzRKJMcaYoFgiMcYYExRLJMYYY4JiicQYY0xQLJEYY4wJiiUSE1IiskBE/uoNp4nIYRGJ8F4PEJH3RKRMRH4jzp9F5KCIrAlv5CdORK4UkT3evp4W7ng6msafg47G/zNrAmOJpIMSkZ0iUul94Roej4Q7rmCo6m5V7amq9d6oW4EDQG9V/W9gGjAdSFXVqeGKsw38GrjD29f17b1xEVERKW/02fl+CLd3s4isbDRuoYjUNIrhE2jyc2A6uchwB2BadIWqLgvlBkQkUlXrQrmNFgwDNuvRf8UOA3aqavnxrijM+9HYMGBTUxPaMc5TVTW7HbbTkl+q6v+GOYYOQ0QiumrytCuSTqjhF6CI/NorBtohIpf4TU8UkT+JyD4RyRORn/oVJ90sIqtE5P9EpAhYICIRXtHSAW9dd3i/aiNF5FoRWddo+98TkX81E9twEXnXK656C0jxm5but96FwE3A971fq7cBTwFnea/v95a5XEQ2iEiJiKwWkYl+69spIj8QkY1AubfewSLyDxEp9Pbl237zLxCRF0XkL158m0Qkw2/6UBH5p7dskf8VoIh8VUSyvOO9RESGNbHvMSJyGIgAPhGR7S3EOU5EVnj7tUlEZvmtZ6GI/EFE3vCOxSoRGSgiv/W2//mJFpmJyOsi8hu/18+LyNPe8EgRecfb9wMi8qyIJLV0fERkHPBHv/etJIAYjnwOvNfD5WgR5zIReVT8ipZE5EzvvS8RkU9E5Et+01aIyE+8Y1QmIktFJMWbFisif/ViLRGRtSIywJs2WEQWi0ixiGSLyNebifUNEbmj0bhPROQqb/gkEXnLW88WEfkPv/kWishj3jEvBy5o7dh0Wqpqjw74AHYCFzUz7WagFvg67qT1TWAvIN70l4HHgQSgP7AGuM1v2TrgTtwVaRzwDWAzkAr0AZYB6k2PAYqBcX7bXw9c3UxsHwD/z1vuPKAM+Ks3Lb1hvd7rhcBPG+3XSr/XpwEFwBneft7kHZcYv2O0ARjq7UcPYB1wLxANjABygIu9+RcAVcCl3vp+AXzoTYsAPgH+zztuscA0b9psIBsY5x2T/wVWt/DeKTCq0XvpH2eUt74fenFe6B2nsX7H5QAw2YvjHWAHMN+L86fA8kC332jaQO+YXgjc4B2fXt60UbiixRigH/Ae8NsAjs8x71tT722jaY0/Bx/gigOjccWbhzj6mRkCFHnvWQ8vviKgnzd9BbAdGOMd2xXAg96024BXgXgv/sm4YlS8ffuDtx+TgELgQr/PScP25wOr/GIfD5R4xygB2AN8xftcnOa9b+P9jkEpcI4Xe2y4zyshO1+FOwB7NPPGuJPPYe9D2/D4ujftZiDbb95474s5EBgAVANxftOvazjxeMvubrStd/ASjff6okZf9MeAn3nDE4CDeCfzRutJwyWpBL9xz3HiieQx4CeNtrEFON/vGH3Vb9oZTezbPcCfveEFwDK/aeOBSm/4LO9kEtnEfr0B3OL3ugdQAQxr5r1rKpH4x3kusB/o4Tfub8ACv+PypN+0O4Esv9enACUtfHYUdzL2/+xc7Df9atwJ8ABeMmhmPXOA9QEcn2PeN799qGoUwzONPwd+n5l4v2X/6veZ+QGwqNG6lwA3ecMrgP/1m/Yt4E1v+KvAamBio+WHAvV4CdQb9wtgod/npGH7vYDyhvca+BnwtDc8F3i/0bofB+7zOwZ/CeY80FkeVrTVsc1R1SS/x5N+0/Y3DKhqhTfYE1c+HwXs8y7nS3Af7v5+y+5ptJ3BjcY1nv4McL2ICHAj8KKqVjcR72DgoB5bx7Gr5V1s0TDgvxv2w9uXod52mop1GDC40fw/xCXXBvv9hiuAWK+IZSiwS5uuvxgG/M5vncWA4H4tB8o/zsHAHlX1+Y3b1Wh9+X7DlU287tnK9k5v9NlZ4jftVdwv9C2qeqSSXNxddM+LKw49hDuhNxRNtnR8mvPrRjHc1MQ8g4Fiv88wfPE9vbbRezoNGOQ3T+P3tOHYLMIlnedFZK+I/FJEovy2Wea3XOPjD4A3z2vAPG/UdcCzfrGd0Si2G3A/6Jraly7LKtu7nj24K5KUFr70jZt83ocr1mow9JiZVT8UkRrcL+nrvUdT9gF9RCTBL5mkNbG9QO3BXQn9rIV5/Ne9B9ihqqNPcFtp0nRleEMczzaxXKD849wLDBWRHn7JJA3YGsT6j8fPgCxguIhcp6p/88b/3IvzFFUtFpE5QEM9UUvHJ5gmxPcBfUUk3i+Z+H/+9uCuSJqsw2iJqtYC9wP3i0g68Druinapt81efskkDchrZlV/A+4TkfdwRWHL/WJ7V1WntxTG8cbdGdkVSRejqvtwX5TfiEhvEenhVaKe38JiLwLfEZEhXuXqD5qY5y+4k0qt/6/YRtveBWTivrjRIjINuCKI3XkS+IaInCFOgohcJiK9mpl/DVAmrmI7TtxNBCeLyJQAtrUGd1J70NtOrIic4037I3CPiEyAIzczXBvEfn2E++X8fRGJ8iqPrwCeD2KdARGR83Bl+vNxdU4Pi0jDL/FeuOLUUm/cXX6LtnR88oFUEYk+3nj8PjMLvM/MWRz7mfkrcIWIXOy9n7Ei8iURSW1yhcfu6wUicoq4G00O4eoVfaq6B1fk9QtvfROBW7xtNeV13NXHA8ALfsn/38AYEbnRex+jRGSKuBsQuhVLJB3bq3LsffgvB7jcfFzF5WZcfcZLHFsU0NiTuOSzEVeR/jqu3Nr/VsVFwMk0/2VrcD2urqIYuA+XgE6Iqmbibih4BLcf2bjy+Obmrwcux1We7sDVATwFJAawrXrcCWwUsBvIxZWBo6ovAw/hikgOAZ8BlzSzqlapao23rUu8GP8AzFfVz090nU34pNFn57ci0hv3ftyhqnmq+j7wJ+DPXrHl/cDpuAri14B/+sXc7PHB1bFtAvaLyAG/GL7fKAb/af5uwNXBFOFuJHgBd1WNd9KfjSuiLMRdBdxFYOeugbjP/iHcFdi7uM8xuCKqdNzV4cu4eo0mb7X3inH/ias7fM5vfBkwA1fstRdXxPYQriK+W2m4y8eYI8TdSvxHVR3mNy4Od7fP6aq6LWzBmS5PRF4APlfV+8IdiwmMXZEYvGKgS8X9v2EI7kqi8dXPN4G1lkRMW/OKg0Z6xbAzcVcgr4Q7LhM4q2w34O5Auh9XpFCJK9a498hEkZ3ePHPCEZzp8gbiio6ScUVm39QwNC1jTpwVbRljjAmKFW0ZY4wJSrco2kpJSdH09PRwh2GMMZ1GSkoKS5YsWaKqM1ubt1skkvT0dDIzM8MdhjHGdCriNYDZGivaMsYYExRLJMYYY4JiicQYY0xQukUdiTGmY6mtrSU3N5eqqqpwh2KA2NhYUlNTiYqKOqHlLZEYY9pdbm4uvXr1Ij09HdfMlwkXVaWoqIjc3FyGDx9+QusIadGWiMwU1/1ktojc3cT0GBF5wZv+kdfUMyIyVVz3qhvEdWt5pd8yO0XkU2+a3YplTCdUVVVFcnKyJZEOQERITk4O6uowZFckXtPNj+K6xswF1orIYlXd7DfbLbiOkEaJyDxcy5lzca2rZqhqnYgMwrVk+qpfPwgXqGpzLYkaYzoBSyIdR7DvRSivSKbiuoPN8ZrNfh7XGJu/2bje98A19/xlERFVrfBLGrF0k85hjDGmrVTV1rO/tJL2aAYrlIlkCMd2M5nLF7uyPDKPlzhKcQ234XVmtAn4FPiGX2JRYKmIrBORW5vbuIjcKiKZIpJZWFjYJjtkjOk6evY8trfihQsXcscddxzXOjZs2MDrr7/elmEdY+HChfTr149JkyYxadIk5s+f3+oyPp+yv7SKbfmHKS6vZdk7y7n88stDFiN04Mp2Vf0ImOD1NvaMiLyhqlXANFXNE5H+wFsi8rmqvtfE8k8ATwBkZGTYFY0xpk3V1dWxYcMGMjMzufTSS5ucHhkZ/Cl27ty5PPLII63PCJRX15F7sJLqunr6xEczKDGWgq2h/5dHKLeQx7F9L6fyxT6Rj8wjIpG4nuyK/GdQ1Sxc958ne6/zvOcCXJ8ZU0MQuzGmG3v11Vc544wzOO2007jooovIz88HYMGCBdx4442cc8453Hjjjdx777288MILTJo0iRdeeOEL0+vr67nrrruYMmUKEydO5PHHHz+yjV/96ldHxt933/H14bVhwwbOPPNMJk6cyJVXXsmBoiLyDlawfM1Gbr72Cm649DxmXzSNXTt3HLPc2rVrOe2009i+fXvwB8lPKK9I1gKjRWQ4LmHMw3XD6m8xrt/oD4BrgHdUVb1l9niV7cOAk4CdIpIA9FDVMm94Bq4fZWNMJ3X/q5vYvPdQm65z/ODe3HfFhBbnqaysZNKkSUdeFxcXM2vWLACmTZvGhx9+iIjw1FNP8ctf/pLf/OY3AGzevJmVK1cSFxfHwoULyczMPHLFsGDBgmOmP/HEEyQmJrJ27Vqqq6s555xzmDFjBtu2bWPbtm2sWbMGVWXWrFm89957nHfeeV+I84UXXmDlypUAfOc73+ErX/kK8+fP5+GHH+b888/nB/f8iO/d/WPuuu/n3Pvd2/jRPfdw9dVXUVVVhc/nY88eV8OwevVq7rzzTv71r3+RlpYW/EH2E7JE4iWBO4AlQATwtKpuEpEHgExVXYzrL3qRiGTj+vie5y0+DbhbRGoBH/AtVT0gIiOAl707DCKB51T1zVDtgzGm64qLi2PDhg1HXjckBXD/c5k7dy779u2jpqbmmP9XzJo1i7i4uGbX6z996dKlbNy4kZdeegmA0tJStm3bxtKlS1m6dCmnnXYaAIcPH2bbtm1NJpLGRVulpaWUlJRw9rRz2VVUznmXXcP3v/UV+scpBfv3cfXVVwHuT4YNsrKyuPXWW1m6dCmDBw8+7mPVmpDWkajq68Drjcbd6zdcBVzbxHKLgEVNjM8BTm37SI0x4dLalUM43HnnnXzve99j1qxZrFixggULFhyZlpCQ0OKy/tNVlYcffpiLL774mHmWLFnCPffcw2233XbM+EcffZQnn3wSoNlKfFXFp7A1vwyfQr+eMcRE9iA+uvnT+aBBg6iqqmL9+vUhSSTW1pYxxjRSWlrKkCHuJtNnnnmm2fl69epFWVlZs9MvvvhiHnvsMWprawHYunUr5eXlXHzxxTz99NMcPnwYgLy8PAoKCrj99tvZsGEDGzZsaPKEX11bT3FtJAm9evPpug8Z3b8nr7/yIueffz69evUiNTWVV15x3d1XV1dTUVEBQFJSEq+99hr33HMPK1asOKFj0hJLJMYY08iCBQu49tprmTx5MikpzXfJccEFF7B58+Yjle2Nfe1rX2P8+PGcfvrpnHzyydx2223U1dUxY8YMrr/+es466yxOOeUUrrnmmhYTkqpSUFbFtoLDVNbU8/hTT/Pbn93H1MmnsWHDBu691xX0LFq0iN///vdMnDiRs88+m/379x9Zx4ABA/j3v//N7bffzkcffRTE0fmibtFne0ZGhlrHVsZ0HFlZWYwbNy7cYXQKlTXult7K2noS46IYnBRHVETbXwM09Z6IyDpVzWht2Q77PxJjjOnO6n3uKuRAWQ0REcKw5HgS46LDHVaTLJEYY0wHoqocqqplb0kVtfU++iZEMzAxlsgeHbcmwhKJMcZ0EDV19eSVVFFWVUtsVARpfXuSENPxT9MdP0JjjOnifKocKKumoKwagEGJcaT0jO40LSRbIjHGmDA6XFVLXkkV1XWuMn1QYhzRkR23GKsplkiMMSYMaut97CutoqSihujIHqSnJNA79sS6ug23zpX2jDGmjfg3I79p0yYuvPBCxo4dy8iRI7nvvvvw+XzAsU25jx8//sg/zxs38T5p0iQ2b97c5Lb8qSpFh6vZml9GaWUt/XvFMqZ/r06bRMASiTGmm6usrGTWrFncfffdbNmyhU8//ZQ1a9bwu9/97sg8c+fOZcOGDaxYsYIf/vCHR1oDbhjf8Bg/fnyL26qoqSO78DB5JZXERUUwpn9PBibG0qNH56gLaY4lEmNMt/bcc88daZUXID4+nkceeYRf/epXX5i3f//+jBw5kl27dh3XNup9PvJKKtlecJjaeiWtbzzDUxKIiYpok30IN6sjMcaE1xt3w/5P23adA0+BSx4MaNZNmzYxefLkY8aNHDmSyspKSkpKjhmfk5NDTk4Oo0aNYvPmzcc08Q7wwQcfHNMysKpSWlnL3tIq6ut9JPeMYUDvGCI68H9CToQlEmOMaUVDwoiJieHxxx+nb9++QMu9F1bW1LG3pIrymjrioyMYnNyzxRZ6O7OuuVfGmM4jwCuHUBk/fjzvvXdsb905OTkkJyeTlJQEHF93t3X1PvIPVVFcXkNEjx6k9omjT3zn+U/Iieha11fGGHOcbrjhBlauXMmyZcsAV/n+7W9/m/vvv/+41tNwN9aW/DKKy2tJ7hnDmAE96ZsQ06WTCFgiMcZ0c3FxcSxevJif/exnjBkzhpSUFM455xxuuOGGVpdt6K994qmnMv6UU3lt2QrioiIYPaAng5PiiAxBK70dkTUjb4xpdx25GflXXnmF733veyxfvpxhw4a1OG9NnY/9pVWUVNYQHdGDQYmx9I6L6pRXINaMvDHGtJE5c+YwZ86cFufx+ZTCw9UUem1jDegdS7+eMZ3+/yAnyhKJMcYEyDXxXse+0kpq6nxe21ixREd2jf+DnKiQFuCJyEwR2SIi2SJydxPTY0TkBW/6RyKS7o2fKiIbvMcnInJloOs0xnQOna1Yvaq2nh0HytlVVE4PEUakJDAsOaFLJJFg34uQXZGISATwKDAdyAXWishiVfVvjOYW4KCqjhKRecBDwFzgMyBDVetEZBDwiYi8CmgA6zTGdHCxsbEUFRWRnJzc4esT6nw+Cg5VU3S4hh49YHBSHH0TounRweMOlKpSVFREbGzsCa8jlEVbU4FsVc0BEJHngdmA/0l/NrDAG34JeERERFUr/OaJxSWQQNdpjOngUlNTyc3NpbCwMNyhNEtVKa+pp6yyFp9CfEwEvWOjKCwVOm7UJyY2NpbU1NQTXj6UiWQIsMfvdS5wRnPzeFcfpUAycEBEzgCeBoYBN3rTA1knACJyK3ArQFpaWvB7Y4xpM1FRUQwfPjzcYTRJVXk7q4Cfv5FFTmE5Z49M5keXjWPC4MRwh9ZhddjKdlX9CJggIuOAZ0TkjeNc/gngCXC3/4YgRGNMF7Npbyk/ey2L1duLGNEvgafmZ/Dlcf07fPFbuIUykeQBQ/1ep3rjmponV0QigUSgyH8GVc0SkcPAyQGu0xhjjkv+oSp+vWQLL32cS1JcFA/MnsB1U9OI6iZ/KAxWKBPJWmC0iAzHneznAdc3mmcxcBPwAXAN8I6qqrfMHq84axhwErATKAlgncYYE5CKmjqeeC+Hx9/Nod6nfP3cEdx+wSgS4zpvJ1PhELJE4iWBO4AlQATwtKpuEpEHgExVXQz8CVgkItlAMS4xAEwD7haRWsAHfEtVDwA0tc5Q7YMxpmvy+ZR/fJzLr5duIf9QNZedMogfzDyJtOT4cIfWKVkTKcaYbmX19gP87LUsNu09xKlDk/jxZePISO8b7rA6JGsixRhj/GwvPMwvXv+cZVn5DEmK43fzJnHFxMHdtlmTtmSJxBjTpRWUVfHw29n8bc1uYqMi+P7MsXz1nOHEdpFubjsCSyTGmC6prKqWJ9/L4amVO6ip8zFv6lD+66IxpPSMCXdoXY4lEmNMl1JdV89fP9zNo8uzKS6v4fKJg/ifGWNJT0kId2hdliUSY0yXUO9T/rUhj98s3UpeSSXTRqXwg5kncUqq/SM91CyRGGM6NVVlxZZCHnrzcz7fX8bJQ3rz4NWncO7ofuEOrduwRGKM6bQ+3n2QB9/4nDU7ihmWHM/D153GZacMsjux2pklEmNMp5NdcJhfLfmcJZvySekZw09mT2CeNWkSNpZIjDGdxv7SKn67bCsvZu4hPjqS/54+hq9OG05CjJ3KwsmOvjGmwys6XM3j7+XwzOqdqMLNZw/n9gtGkmy38nYIlkiMMR1WaUUtT7y/nYWrdlJZW8+cSUP47vQxDO1rbWJ1JJZIjDEdTllVLU+v3MlTK3Moq6rj8omD+K+LxjCqf89wh2aaYInEGNNhVNTU8czqXTz+3nZKKmqZMX4A350+hnGDeoc7NNMCSyTGmLCrqq3nrx/u4o/vbufA4RouGNuP700fa38m7CQskRhjwqa6rp4X1u7h0eXZ5B+q5pxRyTw+fSyTh/UJd2jmOFgiMca0u9p6H/9Yl8vD72STV1LJlPQ+/HbuaZw1MjncoZkTYInEGNNu6n3KK+vz+P0729hVVMGpQ5P4xVWncO7oFETs3+idlSUSY0zI1dX7WPzJXh5Znk1OYTnjB/XmqfkZfHlcf0sgXYAlEmNMyNTW+3j54zweXZHNrqIKThrYiz/ccDozJwy09rC6kJAmEhGZCfwOiACeUtUHG02PAf4CTAaKgLmqulNEpgMPAtFADXCXqr7jLbMCGARUequZoaoFodwPY8zxqa6r56V1ufxh+XbySio5eUhvHr9xMtPHDbAE0gWFLJGISATwKDAdyAXWishiVd3sN9stwEFVHSUi84CHgLnAAeAKVd0rIicDS4AhfsvdoKqZoYrdGHNiqmrdXVh/fHc7+0qrmDQ0iZ/OOZkvje1nRVhdWCivSKYC2aqaAyAizwOzAf9EMhtY4A2/BDwiIqKq6/3m2QTEiUiMqlaHMF5jzAmqrKnn2Y928fh7ORSWVTMlvQ+/vGYi00ZZJXp3EMpEMgTY4/c6FzijuXlUtU5ESoFk3BVJg6uBjxslkT+LSD3wD+CnqqptHbwxpnXl1XUs+nAXT72fw4HDNZw1IpnfzzuNM0f0tQTSjXToynYRmYAr7prhN/oGVc0TkV64RHIjrp6l8bK3ArcCpKWltUO0xnQfh6pq+cvqnfxp5Q4OVtRy7ugUvv3l0UxJ7xvu0EwYhDKR5AFD/V6neuOamidXRCKBRFylOyKSCrwMzFfV7Q0LqGqe91wmIs/hitC+kEhU9QngCYCMjAy7YjGmDRwsr2Hh6p38edUODlXVceFJ/bnzwlGclmb/RO/OQplI1gKjRWQ4LmHMA65vNM9i4CbgA+Aa4B1VVRFJAl4D7lbVVQ0ze8kmSVUPiEgUcDmwLIT7YIwB9pZU8tT7O/jbmt1U1tYzY/wA7rxwtLWFZYAQJhKvzuMO3B1XEcDTqrpJRB4AMlV1MfAnYJGIZAPFuGQDcAcwCrhXRO71xs0AyoElXhKJwCWRJ0O1D8Z0d9kFZfzx3RxeWe8KE2ZNGsw3zh/JmAG9whyZ6UikO9RTZ2RkaGam3S1sTKA+3n2Qx1Zs563N+cRFRTBv6lC+du4IhiTFhTs0045EZJ2qZrQ2X4eubDfGtB9V5d2thTy2Yjsf7SgmMS6K73x5NDednU7fhOhwh2c6MEskxnRzdfU+Xv9sP4+t2E7WvkMMSozlx5ePZ96UoSTE2CnCtM4+JcZ0U1W1rhmTJ97LYXdxBSP7JfCrayYye9IQoiN7hDs804lYIjGmmymtqOXZNbt4euVODhyu5tShSfzosnHWDpY5YZZIjOkmdhdV8PSqHbyYuYeKmnrOG9OPb54/0v6FboJmicSYLm7drmKeen8HSzbtJ6KHcMWpg7ll2nAmDLb/gJi2YYnEmC6ort7H0s35PPl+Dut3l5AYF8U3zh/JTWenM6B3bLjDM12MJRJjupDD1XW8uHYPT6/aQe7BSoYlx3P/rAlcMznV7sAyIWOfLGO6gH2llSxctZPn1uymrKqOKel9+N/LxjN9/AAirALdhJglEmM6sc/ySnny/Rxe27gPnyqXnDKIr587gklDk8IdmulGLJEY08nU+5S3s/J5etUOPswppmdMJDednc7NZ6cztG98uMMz3ZAlEmM6idKKWl7I3M1fPthF7sFKBifG8sNLT2Le1DR6x0aFOzzTjVkiMaaD27K/jIWrd/Ly+lyqan2cMbwvP7p0HNPHDyAywv6BbsLPEokxHVC9T3lrcz7PrN7JBzlFxET24MrThjD/rHTGD+4d7vCMOYYlEmM6kJKKGp5fu4dFH+wir6SSIUlx3H3JSczNGEofa4HXdFCWSIzpALL2HeKZ1Tt5ZUMeVbU+zhzRlx9fPp6LxvW34ivT4VkiMSZM6up9LMvK58+rdvLRjmJio1zx1U1np3PSQCu+Mp2HJRJj2ln+oSqeX7OH59fuZl9pFUOS4rjnkpOYO2UoSfFWfGU6H0skxrQDn09Zvb2Iv364i7ey8qn3KeeOTmHBrAlcNM7+fW46N0skxoTQwfIaXlqXy3NrdrPjQDl94qP42rThXH9GGsOSE8IdnjFtIqSJRERmAr8DIoCnVPXBRtNjgL8Ak4EiYK6q7hSR6cCDQDRQA9ylqu94y0wGFgJxwOvAd1RVQ7kfxhwPVeXj3SU8++Eu/v3pPmrqfExJ78N3vjyamScPJDYqItwhGtOmAkokIvJP4E/AG6rqC3CZCOBRYDqQC6wVkcWqutlvtluAg6o6SkTmAQ8Bc4EDwBWquldETgaWAEO8ZR4Dvg58hEskM4E3AonJmFA6XF3HK+vzePaj3WTtO0TPmEjmTRnK9WekWeW56dICvSL5A/AV4Pci8nfgz6q6pZVlpgLZqpoDICLPA7MB/0QyG1jgDb8EPCIioqrr/ebZBMR5Vy99gd6q+qG3zr8Ac7BEYsIoa98h/vrhLl5Zn0d5TT0TBvfmF1edwqxTB1vT7aZbCOhTrqrLgGUikghzA+pOAAAepElEQVRc5w3vAZ4E/qqqtU0sNgTY4/c6FzijuXlUtU5ESoFk3BVJg6uBj1W1WkSGeOvxX+cQmiAitwK3AqSlpQWym8YErLy6jn9v3Mvza/ewfncJMZE9uOLUwfznmcM4NTXRuq413UrAP5dEJBn4T+BGYD3wLDANuAn4UiiCE5EJuOKuGce7rKo+ATwBkJGRYXUoJmiqyvo9Jby4dg+vfrKX8pp6Rvfvyf9eNo5rJqfarbum2wq0juRlYCywCFd3sc+b9IKIZDazWB4w1O91qjeuqXlyRSQSSMRVuiMiqcDLwHxV3e43f2or6zSmTRWX1/Dy+jxeWLubrfmHiY+O4PKJg5g7JY3T05Ls6sN0e4FekfxeVZc3NUFVM5pZZi0wWkSG407284DrG82zGHdF8wFwDfCOqqqIJAGvAXer6iq/be0TkUMiciausn0+8HCA+2BMwHw+ZdX2Azy/dg9vbcqnpt7HpKFJPHjVKVx+6mB6Wt2HMUcE+m3oIyJXNRpXCnyqqgVNLeDVedyBu+MqAnhaVTeJyANApqouxt0JtkhEsoFiXLIBuAMYBdwrIvd642Z42/oWR2//fQOraDdtaG9JJX/PzOXFzD3klVSSFB/Ff545jLlThjJ2YK9wh2dMhySB/AVDRF4DzgIarkq+BKwDhgMPqOqiUAXYFjIyMjQzs7kSONPd1dT5eDsrnxcy9/Du1kJUYdqoFOZOGcqMCQOIibT/fZjuSUTWtVDqdESgVyRRwDhVzfdWPgD3R8IzgPdwdSfGdCqb9pby0rpcFm/YS1F5DQN7x3LnBaO4NmOodVlrzHEINJGkNiQRTwEwVFWLRaSpW3+N6ZAKy6r514Y8XlqXy+f7y4iO6MGXx/XnPzKGct6YftbmlTEnINBEskJE/g383Xt9tTcuASgJSWTGtJGq2nrezirgHx/n8u7WQup9yqlDk/jJ7Alccepgu23XmCAFmkhuB67C/W8EXLHWP7w2ri4IRWDGBENV2bCnhH98nMurn+yjtLKWAb1j+Pq5I7hm8hBG9beKc2PaSquJxGsza5mqXgD8I/QhGXPi9pVW8s+P8/jHx7nkFJYTG9WDiycM5OrTUzlnVIoVXRkTAq0mElWtFxGfiCSqaml7BGXM8aioqWPppnxeWpfLqu0HUIWp6X257bwRXHrKIHrFRoU7RGO6tECLtg4Dn4rIW0B5w0hV/XZIojKmFbX1PlZuO8ArG/JYuimfytp6UvvEceeFo7n69CHW14cx7SjQRPJP72FM2Lh+Pg7yyvq9vPbpPorLa0iMi2LOaUOYM2kwU9L70sOKroxpd4G2/vuMiMQBaQE0H29Mm9qaX8a/NuTxrw17yT1YSUxkD6aPH8DsSUM4f0w/oiN7hDtEY7q1QBttvAL4Na7HwuEiMgn3j/ZZoQzOdF97Syp59ZO9vLJhL1n7DtFDYNrofnz3ojFcfPJAa+vKmA4k0G/jAlxHVSsAVHWDiIwIUUymmyqpqOH1T/fzrw15rNlZjCpMGprEfVeM5/KJg+nXKybcIRpjmhBoIqlV1dJGzWUH1OWuMS0pq6plWVY+r23cx7tbC6mtV0b0S+C7F41h1qmDSU+xSnNjOrpAE8kmEbkeiBCR0cC3gdWhC8t0ZYer63g7K59/e8mjps7HoMRYbjorndmThnDykN7Wx4cxnUigieRO4EdANfA3XNPwPwlVUKbrqaip4+2sAl7buI/lWwqorvMxoHcMN5yRxuUTB3Ha0D52x5UxnVSgd21V4BLJj0IbjulKKmvqWb7FJY+3P8+nqtZHv14xXDc1jcsmDmJymiUPY7qCQO/aGgP8D5Duv4yqXhiasExnVVVbz4otBfx74z7eziqgsraelJ7RXDt5KJdNHMSU9L7WTIkxXUygRVt/B/4IPAXUhy4c0xmVV9fx7tZC3vxsP29n5VNeU0/fhGiuPH0Il08cxBnDky15GNOFBZpI6lT1sZBGYjqVkooa3s4q4M1N+3lvayHVdT76JkRzxamDuXziYM4c0ZfICPujoDHdQaCJ5FUR+RbwMq7CHQBVLQ5JVKZDKjhUxdLN+SzZtJ8PthdR51MGJcZy3dQ0Zp48kIxhfSx5GNMNBZpIbvKe7/Ibp4D9KbGL21NcwZJN+3nzs/2s230QVRieksDXzxvBzAkDmZiaaLfqGtPNBXrX1vATWbmIzAR+B0QAT6nqg42mx+A6yZoMFAFzVXWniCQDLwFTgIWqeoffMiuAQUClN2qGqhacSHzmi1SV7ILDvPnZft7ctJ9New8BMH5Qb7570RhmnjyQ0f17WvIwxhzRYiIRke+r6i+94WtV9e9+036uqj9sYdkI4FFgOpALrBWRxaq62W+2W4CDqjpKROYBDwFzgSrgx8DJ3qOxG1Q1M6A9NK2qq/fx8e4SlmXls2xzPjkHXE8Bp6cl8aNLx3HxhIGkJceHOUpjTEfV2hXJPOCX3vA9HO2zHWAm0GwiwbXNla2qOQAi8jwwG/BPJLNx7XiBuwJ5REREVcuBlSIyKpCdMMfvcHUd728t5K2sfJZ/XsDBilqiIoQzRyRz8znpXDxhIAN6x4Y7TGNMJ9BaIpFmhpt63dgQYI/f61zgjObmUdU6ESkFkoEDraz7zyJSj+v696de3/HHBidyK3ArQFpaWiur6x72llTydlY+b2UV8OH2ImrqfSTGRXHhSf25aNwAzhuTYr0JGmOOW2uJRJsZbup1e7lBVfNEpBcukdyIq2c5hqo+ATwBkJGREa5Yw0pV2bT3EG9tzmdZVv6R+o5hyfHMP2sYF40fYHdaGWOC1loiOVVEDuGuPuK8YbzXrZV75AFD/V6neuOamidXRCKBRFyle7NUNc97LhOR53BFaF9IJN1VVW09H+QU8XZWPss2F7D/UBUiMDmtD3dfchIXjevPyH5WWW6MaTstJhJVjQhi3WuB0SIyHJcw5gHXN5pnMe7W4g+Aa4B3miqmauAlmyRVPSAiUcDlwLIgYuwS9hRXsGJLAcu3FLJ6+wGqan3ERUVw3pgU/nvcGC44qT8pPa0vD2NMaISsmzmvzuMOXEvBEcDTqrpJRB4AMlV1MfAnYJGIZAPFuGQDgIjsBHoD0SIyB5gB7AKWeEkkApdEngzVPnRUNXU+1u4sZvnnBazYWkh2wWEA0vrGM29KGueP7cdZI5KJjQrmd4AxxgRGWrgA6DIyMjI0M7Nz3y28r7SSFVsKWf55AauyD1BeU090RA/OGNGXL43tzwVj+zE8JcGKrIwxbUZE1qlqRmvzWcfXHVTDfzuWbylg+ecFfL6/DIAhSXHMOW0IF4ztz1kjk0mwvsuNMWFmZ6EOZE9xBe9vO8D72wpZmX2Asqo6InsIU9L78sNLT+JLY/vbv8qNMR2OJZIwKquq5YPtRazMPsD72w6ww/tH+eDEWC49eRAXnNSPc0bZfzuMMR2bJZJ2VO9TNuaWHLnq+Hh3CfU+JT46grNGJHPTWcM4d0w/RlhdhzGmE7FEEmJ7iiu8K45CVmUXUVpZiwicMiSRb5w/gnNH9+P0tD5ER9qfAo0xnZMlkjZ2sLyGD3OKWL29iFXZB440gDgoMZaLJwzg3NGuuKpvQnSYIzXGmLZhiSRIZVW1rN1ZzOpslzyy9h9CFRKiI5g6vC83njWMc0en2L/JjTFdliWS41RVW8/Huw6yensRq7cf4JPcUup9SnRkDyan9eF7F43h7FEpTExNJMrasDLGdAOWSFpRW+9jY27JkSuOdbsPUlPnI6KHcGpqIt88fyRnj0zm9GF97J/kxphuyRJJC25/9mNWbCmgvKYecL0Ezj9zGOeMSmHK8L70tD8DGmOMJZKWJMZHcdXpqZw9MpkzRiRbBbkxxjTBEkkLfn7lKeEOwRhjOjyrDTbGGBMUSyTGGGOCYonEGGNMUCyRGGOMCYolEmOMMUGxRGKMMSYolkiMMcYEJaSJRERmisgWEckWkbubmB4jIi940z8SkXRvfLKILBeRwyLySKNlJovIp94yvxdrCdEYY8IqZIlERCKAR4FLgPHAdSIyvtFstwAHVXUU8H/AQ974KuDHwP80serHgK8Do73HzLaP3hhjTKBCeUUyFchW1RxVrQGeB2Y3mmc28Iw3/BLwZRERVS1X1ZW4hHKEiAwCeqvqh6qqwF+AOSHcB2OMMa0IZSIZAuzxe53rjWtyHlWtA0qB5FbWmdvKOgEQkVtFJFNEMgsLC48zdGOMMYHqspXtqvqEqmaoaka/fv3CHY4xxnRZoUwkecBQv9ep3rgm5xGRSCARKGplnamtrNMYY0w7CmUiWQuMFpHhIhINzAMWN5pnMXCTN3wN8I5X99EkVd0HHBKRM727teYD/2r70I0xxgQqZM3Iq2qdiNwBLAEigKdVdZOIPABkqupi4E/AIhHJBopxyQYAEdkJ9AaiRWQOMENVNwPfAhYCccAb3sMYY0yYSAsXAF1GRkaGZmZmhjsMY4zpVERknapmtDZfl61sN8YY0z4skRhjjAmKJRJjjDFBsURijDEmKJZIjDHGBMUSiTHGmKBYIjHGGBMUSyTGGGOCYonEGGNMUCyRGGOMCYolEmOMMUGxRGKMMSYolkiMMcYExRKJMcaYoFgiMcYYExRLJMYYY4JiicQYY0xQLJEYY4wJiiUSY4wxQbFEYowxJighTSQiMlNEtohItojc3cT0GBF5wZv+kYik+027xxu/RUQu9hu/U0Q+FZENIpIZyviNMca0LjJUKxaRCOBRYDqQC6wVkcWqutlvtluAg6o6SkTmAQ8Bc0VkPDAPmAAMBpaJyBhVrfeWu0BVD4QqdmOMMYEL5RXJVCBbVXNUtQZ4HpjdaJ7ZwDPe8EvAl0VEvPHPq2q1qu4Asr31GWOM6WBCmUiGAHv8Xud645qcR1XrgFIguZVlFVgqIutE5NbmNi4it4pIpohkFhYWBrUjxhhjmtcZK9unqerpwCXA7SJyXlMzqeoTqpqhqhn9+vVr3wiNMaYbCWUiyQOG+r1O9cY1OY+IRAKJQFFLy6pqw3MB8DJW5GWMMWEVykSyFhgtIsNFJBpXeb640TyLgZu84WuAd1RVvfHzvLu6hgOjgTUikiAivQBEJAGYAXwWwn0wxhjTipDdtaWqdSJyB7AEiACeVtVNIvIAkKmqi4E/AYtEJBsoxiUbvPleBDYDdcDtqlovIgOAl119PJHAc6r6Zqj2wRhjTOvEXQB0bRkZGZqZaX85McaY4yEi61Q1o7X5OmNluzHGmA7EEokxxpigWCIxxhgTFEskxhhjgmKJxBhjTFAskRhjjAmKJRJjjDFBsURijDEmKJZIjDHGBMUSiTHGmKBYIjHGGBMUSyTGGGOCErLWf40xptPx1UNVKVSVQGXJ0efqMohOgPhkiO8LcX3dcHR8aOKor4WqQ1BdCrVVoL5GD21iXDPzjPoy9IgITZweSyTGmMDUVUNBlnv0HQ6pU0J+ggqIzwd1lVBbCTXl7rm2wnuuhNryo9MaJ4hjnkuh+hCuN+8ARca6hBLX1yWY+L5+r/2Sjta7xFBV4rZRVeq9Lm36dW1F2x2fH+VbIgmrXauh5wDoOwJcHygmFHz1cDjf/XpKTG3fbRfnQM4KiO7lTo590t0JoLu/39VlsP9T2LcR9m90z4VZ4Ks7Ok9cXxg9A8bOhJEXQmxiaGIp2Q073nOPgqwvJoi6quNbX2QsxCZBXJJ77j0Y+o87dlzj55heLhFVFkNFEVR4z5XF3nCxG97/qTd8kBYTUkS0O14xvd1zbG8Xx5HXiUenR8WCRID0aOIhzYz3e0REB3X4AzqkId9CZ/bKt+DgDuidCsPPhfRz3XNSWrgj61yqDkFprvfY4zfsPcr2Hj1B9R0Jo6e7x7Bp7kvUlnz1kJsJW16HLW/AgS1fnCemN/QZBn2Ge8ll+NEk0zsVIrrY1+ZwIez/xCWLfZ+4xFGcc3R6Qj8YOBFGX+Se+4+Hgs2w9U3YtgQ2Pg89ImHYOTD2EhhzsfvxdaLK8mHn+7DjXZc8Du704ugPgye5k3pUHETFN/HcxLhov+HYpLb/TDWloYisIen0iHTJwj85dCHWsVVLCre4D/LO92HnSvehAEga5iWW89xz78FtG3BHourKaxuKDhoeR15Xucvwuir3uuLAFxNF9aFj19kj0h2zxKHuCqThUVcD2cvc8a6rgsg4d3xHTXcnsRM9OVUfhpzlLnFsfdO9j0dOfJe6pFVf6340FO9wJ66G4ZJdUF9zbOxJaccmmcQh7sq15wDo2R+ie4b/iqauxq/IpFHxSfUhKD8A+Ztc0ijbd3S5pDSXLAZNgkET3XCvgc3vj68e9qxxx3Xrm1D4uRufMtYllLGXQOrUlpNvRTHsWnX0qqNhHbGJ3o+382H4edBvbPiPazcTaMdWlkgC5fO5S/sd78GO92HXSvfFBPcrevh5R69aevY/vnWrupNx1SFXpFB9yJ2Uo+JdBV90vDs5RcVDZMyJfZl8Plc+W34AygvdCb+8EMqL/IYPuJNs9eFjE4fWH9+24vp6yaFRokgcevSk21KZbW0l7FwF2W/BtqVHfx03XK2Mmg7p57hfmc0pzXMnti1vuPesvtqdmEbPcCe3URcFVhTjq4dDe11iObjTSzQ7jj43fAb8RcW7z0BDYvFPMv7PCf0hMtolMf+y/SPDDWX7FV6Zv/doeF1z+GhiOKa8/ZB7/1oiPdzJviFZDJoIA0+BuD6tH5OWFO+ArUtg6xvuPfTVunWOmu4Sy6iL3Hu/+8OjVxz7NgIKUQkw7Czvu3Sei6sj1MF0Y5ZI/ISkq11fvSsP3fm+l1hWQ02Zm9bvJJdQUsa4cdVlR7/wxwwfOpo8Aj1ZS4SXXBL8Eo3fIyrBJZuqUi9BHDiaIJrbRmwixKe4IoyEFFd0EBnrFQ/EuhN2ZJxXPBDX8uu4JBdHWyra7q5Utr3V/NVKn+Hu1/WWN1yx1b5P3LJ9hrurjrGXQNqZEBHVtrFVFEPZflfHc7jAe/Yf9p4ri5tevkfksfUOgZAe7n2OjvcrZ+997HBM4tGyd/9y+IbhmF6hP0lXHYLt77jEsm3J0StBcPscEQ1DzziaOAaf7hKr6TA6RCIRkZnA74AI4ClVfbDR9BjgL8BkoAiYq6o7vWn3ALcA9cC3VXVJIOtsSrv02V5f505eO73L890fHr3zokek3xe8l/clbxju3WjYOxlExrgTZk259wvV+wVaU+5+kdYcPvrr9Zh5vF+xsYkuKcSnuOcEL1HEp0BC8tHh+OTO9eVt7molprdXhCYwdKpXVn9JxykOqatxV32Nk0xthVeG7/eIbmY4Ks4l6YjojrFPx8NXD3nrXFJBXeIYekbLV5Um7MKeSEQkAtgKTAdygbXAdaq62W+ebwETVfUbIjIPuFJV54rIeOBvwFRgMLAMGOMt1uI6m9IuiaSxuhp350Zsb/frvrN98TuLhquV/Z+6K47RF0PPfuGOypguIdBEEsrbT6YC2aqa4wX0PDAb8D/pzwYWeMMvAY+IiHjjn1fVamCHiGR76yOAdXYMkdHQa0C4o+j6kke6hzEmbELZRMoQYI/f61xvXJPzqGodUAokt7BsIOsEQERuFZFMEcksLCwMYjeMMca0pMu2taWqT6hqhqpm9OtnRR3GGBMqoUwkecBQv9ep3rgm5xGRSCARV+ne3LKBrNMYY0w7CmUiWQuMFpHhIhINzAMWN5pnMXCTN3wN8I662v/FwDwRiRGR4cBoYE2A6zTGGNOOQlbZrqp1InIHsAR3q+7TqrpJRB4AMlV1MfAnYJFXmV6MSwx4872Iq0SvA25XdX+CaGqdodoHY4wxrbM/JBpjjGlSoLf/dtnKdmOMMe3DEokxxpigdIuiLREpBHad4OIpwIE2DKczsH3uHrrbPne3/YXg9vkAgKrObG3GbpFIgiEimYGUEXYlts/dQ3fb5+62v9B++2xFW8YYY4JiicQYY0xQLJG07olwBxAGts/dQ3fb5+62v9BO+2x1JMYYY4JiVyTGGGOCYonEGGNMUCyReERkpohsEZFsEbm7iek3i0ihiGzwHl8LR5xtpbX99eb5DxHZLCKbROS59o6xrQXwHv+f3/u7VURKwhFnWwpgn9NEZLmIrBeRjSJyaTjibEsB7PMwEXnb298VIpIajjjbiog8LSIFIvJZM9NFRH7vHY+NInJ6mwehqt3+gWsAcjswAogGPgHGN5rnZuCRcMfajvs7GlgP9PFe9w933KHe50bz34lrFDTssYf4fX4C+KY3PB7YGe6422Gf/w7c5A1fCCwKd9xB7vN5wOnAZ81MvxR4AxDgTOCjto7BrkicI90Cq2oN0NCFb1cVyP5+HXhUVQ8CqGpBO8fY1o73Pb4O+Fu7RBY6geyzAr294URgbzvGFwqB7PN44B1veHkT0zsVVX0P13p6c2YDf1HnQyBJRAa1ZQyWSJxAu/C92rs0fElEhjYxvbMIZH/HAGNEZJWIfCgirTaT0MEdTzfNw4DhHD3ZdFaB7PMC4D9FJBd4HXcl1pkFss+fAFd5w1cCvUQkuR1iC5eAP/snyhJJ4F4F0lV1IvAW8EyY4wm1SFzx1pdwv86fFJGksEbUfuYBL6nXB04Xdx2wUFVTcUUgi0Skq58X/gc4X0TWA+fjelntDu91yHT1D0ygWu3CV1WLVLXae/kUMLmdYguFQLoszgUWq2qtqu4AtuISS2d1PN00z6PzF2tBYPt8C/AigKp+AMTiGvrrrAL5Lu9V1atU9TTgR964Tn9jRQtC3kW5JRKn1S58G5UpzgKy2jG+thZIl8Wv4K5GEJEUXFFXTnsG2cYC6qZZRE4C+gAftHN8oRDIPu8GvgwgIuNwiaSwXaNsW4F8l1P8rrruAZ5u5xjb22Jgvnf31plAqarua8sNhKyr3c5EA+sW+NsiMgvX9W8x7i6uTinA/V0CzBCRzbjL/rtUtSh8UQcnwH0Gd+J5Xr3bXTqzAPf5v3HFlt/FVbzf3Jn3PcB9/hLwCxFR4D3g9rAF3AZE5G+4fUrx6rruA6IAVPWPuLqvS4FsoAL4SpvH0Ik/M8YYYzoAK9oyxhgTFEskxhhjgmKJxBhjTFAskRhjjAmKJRJjjDFBsURiOiURORzAPP8lIvFtuM05IjK+Dde3OohlD3vPg0XkpRbmSxKRb53odowJhCUS05X9F3BciUREIlqYPAfX4F+bUNWz22Ade1X1mhZmSQIskZiQskRiOjUR+ZLXp8RLIvK5iDzr/YP328BgYLmILPfmnSEiH4jIxyLydxHp6Y3fKSIPicjHwLUi8nURWSsin4jIP0QkXkTOxrVo8Cuvv5KRIjLJa9Byo4i8LCJ9vPWtENe3SaaIZInIFBH5p4hsE5Gf+sV+2G/4ByLyqbfNB5vYz+Fe7J82Wkd6Qz8UIjJBRNZ48W0UkdHAg8BIb9yvRKSnuL44PvbWNdtvPVki8qS4/meWikicN22UiCzzYvtYREZ64+/yjtNGEbm/Td9Y07mEuy19e9jjRB7AYe/5S0Aprv2gHrimTaZ503YCKd5wCu5fzAne6x8A9/rN932/dSf7Df8UuNMbXghc4zdtI3C+N/wA8FtveAXwkDf8HVzT7IOAGFwbZsmN9uESYDUQ773u28T+Lgbme8O3+y2bjtcPBfAwcIM3HA3E+U/3xkcCvf2OSTaun4p0XKsNk7xpLwL/6Q1/BFzpDcfirvJm4PoyEe+4/xs4L9yfC3uE52FNpJiuYI2q5gKIyAbcSXFlo3nOxBVLrRIRcCda//a0XvAbPtn71Z8E9MQ1t3EMEUkEklT1XW/UM7gOkxo0NLnyKbBJvbaNRCQH14Cef3MzFwF/VtUKAFVtqm+Jc4CrveFFwENNzPMB8CNxPf79U1W3eft6TOjAz0XkPMCHa058gDdth6pu8IbXAeki0gsYoqove7FVefsxA5dM1nvz98Q16vleE3GZLs4SiekKqv2G62n6cy3AW6p6XTPrKPcbXgjMUdVPRORmvMYrTzAmX6P4fM3EF4gW2zNS1edE5CPgMuB1EbmNLza0eQPQD5isqrUishN3leEfM7jjGNfC5gT4hao+fhzxmy7K6khMV1YG9PKGPwTOEZFRACKSICJjmlmuF7BPRKJwJ94vrE9VS4GDInKuN+1G4F1OzFvAVxruMBORvk3MswrXoCSNYjpCREYAOar6e+BfwESOPQbgekEs8JLIBcCwlgJT1TIgV0TmeNuI8eJcAnzVr55piIj0D2hvTZdjicR0ZU8Ab4rIclUtxLXY/DcR2YgrBjqpmeV+jKsXWAV87jf+eeAuEVnvVTjfhKt83whMwtWTHDdVfRNXFJbpFc39TxOzfQe4XUQ+pfne7f4D+Mxbx8m47lWLcMV5n4nIr4BngQxvPfMb7V9zbsS1fr0RV5czUFWXAs8BH3jreoljE5bpRqz1X2OMMUGxKxJjjDFBsURijDEmKJZIjDHGBMUSiTHGmKBYIjHGGBMUSyTGGGOCYonEGGNMUP4/A7va7bk7Tf8AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='IQPE')\n", @@ -210,7 +165,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/general/evolution.ipynb b/community/aqua/general/evolution.ipynb index 98b67cb12..07fea27c9 100644 --- a/community/aqua/general/evolution.ipynb +++ b/community/aqua/general/evolution.ipynb @@ -17,11 +17,23 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'LegacySimulators'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinalg\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mexpm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLegacySimulators\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mexecute\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mq_execute\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mQuantumRegister\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'LegacySimulators'" + ] + } + ], "source": [ "import numpy as np\n", "from scipy.linalg import expm\n", - "from qiskit import LegacySimulators\n", + "from qiskit import BasicAer\n", "from qiskit import execute as q_execute\n", "from qiskit import QuantumCircuit, QuantumRegister\n", "from qiskit.quantum_info import state_fidelity\n", @@ -45,19 +57,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The directly computed groundtruth evolution result state is\n", - "[-0.35888043-0.10717084j -0.34485103+0.42765631j 0.05738265+0.48043469j\n", - " -0.28881915+0.49028597j].\n" - ] - } - ], + "outputs": [], "source": [ "state_in_vec = state_in.construct_circuit('vector')\n", "groundtruth = expm(-1.j * h1 * evo_time) @ state_in_vec\n", @@ -73,19 +75,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The groundtruth evolution result as computed by the Dynamics algorithm is\n", - "[-0.35888043-0.10717084j -0.34485103+0.42765631j 0.05738265+0.48043469j\n", - " -0.28881915+0.49028597j].\n" - ] - } - ], + "outputs": [], "source": [ "groundtruth_evolution = qubitOp.evolve(state_in_vec, evo_time, 'matrix', 0)\n", "print('The groundtruth evolution result as computed by the Dynamics algorithm is\\n{}.'.format(groundtruth_evolution))\n", @@ -101,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -124,21 +116,11 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The evolution result state from executing the Dynamics circuit is\n", - "[-0.01000053+0.37433407j 0.5027273 +0.22166398j 0.4488905 -0.18050667j\n", - " 0.54861817+0.15111948j].\n" - ] - } - ], + "outputs": [], "source": [ - "backend = LegacySimulators.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "job = q_execute(circuit, backend)\n", "circuit_execution_result = np.asarray(job.result().get_statevector(circuit))\n", "print('The evolution result state from executing the Dynamics circuit is\\n{}.'.format(circuit_execution_result))" @@ -153,17 +135,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fidelity between the groundtruth and the circuit result states is 0.9999999825657268.\n" - ] - } - ], + "outputs": [], "source": [ "print('Fidelity between the groundtruth and the circuit result states is {}.'.format(\n", " state_fidelity(groundtruth, circuit_execution_result)\n", @@ -194,7 +168,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.7" } }, "nbformat": 4, From accfa516d0c517aacab216b122389b0981295a21 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Feb 2019 19:15:26 -0500 Subject: [PATCH 008/116] Remove get_aer_backend and arr run_config --- .../qml_mooc/07_Variational Circuits.ipynb | 53 +++------ ...e Optimization and Ensemble Learning.ipynb | 5 +- .../aqua/finance/portfolio_optimization.ipynb | 103 ++++++------------ 3 files changed, 53 insertions(+), 108 deletions(-) diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb index 55b98a5f4..1f2140a81 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/07_Variational Circuits.ipynb @@ -43,23 +43,14 @@ "start_time": "2018-11-19T20:09:25.393410Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n" - ] - } - ], + "outputs": [], "source": [ "import itertools\n", "import numpy as np\n", "from functools import partial, reduce\n", - "from qiskit import BasicAer, QuantumRegister, execute\n", + "from qiskit import Aer, BasicAer, QuantumRegister, execute\n", "from qiskit.quantum_info import Pauli\n", - "from qiskit.aqua import Operator, get_aer_backend\n", + "from qiskit.aqua import Operator\n", "from qiskit.aqua.components.initial_states import Custom\n", "from scipy.optimize import minimize\n", "np.set_printoptions(precision=3, suppress=True)" @@ -290,7 +281,7 @@ "def evaluate_circuit(gamma_beta, qr, p):\n", " n = len(gamma_beta)//2\n", " circuit = create_circuit(qr, gamma_beta[:n], gamma_beta[n:], p)\n", - " return np.real(Hc.eval(\"matrix\", circuit, get_aer_backend('statevector_simulator'))[0])\n", + " return np.real(Hc.eval(\"matrix\", circuit, Aer.get_backend('statevector_simulator'))[0])\n", "evaluate = partial(evaluate_circuit, qr=qr, p=p)" ] }, @@ -311,34 +302,18 @@ } }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n" - ] - }, { "data": { "text/plain": [ - " fun: -0.9999999999999905\n", + " fun: -0.9999999999999931\n", " hess_inv: <4x4 LbfgsInvHessProduct with dtype=float64>\n", " jac: array([-0., 0., 0., 0.])\n", " message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'\n", - " nfev: 60\n", - " nit: 7\n", + " nfev: 50\n", + " nit: 8\n", " status: 0\n", " success: True\n", - " x: array([ 0.785, 2.124, 1.519, -0.393])" + " x: array([3.927, 6.113, 0.455, 2.749])" ] }, "execution_count": 12, @@ -396,7 +371,7 @@ "output_type": "stream", "text": [ "[0.707 0. 0. 0.707]\n", - "[-0.785 -0.285 -0.285 -0.785]\n" + "[-0.785 0.172 0.172 -0.785]\n" ] } ], @@ -451,14 +426,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "-5.495603971894525e-15\n", - "-5.495603971894525e-15\n" + "-1.7208456881689926e-15\n", + "-1.7208456881689926e-15\n" ] } ], "source": [ - "print(Z0.eval(\"matrix\", circuit, get_aer_backend('statevector_simulator'))[0])\n", - "print(Z1.eval(\"matrix\", circuit, get_aer_backend('statevector_simulator'))[0])" + "print(Z0.eval(\"matrix\", circuit, Aer.get_backend('statevector_simulator'))[0])\n", + "print(Z1.eval(\"matrix\", circuit, Aer.get_backend('statevector_simulator'))[0])" ] }, { @@ -485,7 +460,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb index dbdcedd52..1853fc0f8 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb @@ -527,14 +527,15 @@ }, "outputs": [], "source": [ - "from qiskit.aqua import get_aer_backend, QuantumInstance\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit import Aer\n", "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.algorithms import QAOA\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "p = 1\n", "optimizer = COBYLA()\n", "qaoa = QAOA(ising_model, optimizer, p, operator_mode='matrix')\n", - "backend = get_aer_backend('statevector_simulator')\n", + "backend = Aer.get_backend('statevector_simulator')\n", "run_config = RunConfig(shots=100)\n", "quantum_instance = QuantumInstance(backend, run_config)\n", "result = qaoa.run(quantum_instance)" diff --git a/qiskit/aqua/finance/portfolio_optimization.ipynb b/qiskit/aqua/finance/portfolio_optimization.ipynb index 5eaaf712c..8ff3543c5 100644 --- a/qiskit/aqua/finance/portfolio_optimization.ipynb +++ b/qiskit/aqua/finance/portfolio_optimization.ipynb @@ -61,12 +61,14 @@ "outputs": [], "source": [ "from qiskit import BasicAer\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", "from qiskit.aqua.translators.ising import portfolio\n", "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.initial_states import Zero\n", "from qiskit.aqua.components.variational_forms import RY\n", "import numpy as np" ] @@ -83,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -102,10 +104,8 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, + "execution_count": 3, + "metadata": {}, "outputs": [], "source": [ "# set number of assets (= number of qubits)\n", @@ -130,10 +130,8 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": true - }, + "execution_count": 4, + "metadata": {}, "outputs": [], "source": [ "def index_to_selection(i, num_assets):\n", @@ -170,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -232,7 +230,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -244,22 +242,22 @@ "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 0 1 1]\t-0.7012\t\t0.5104\n", - " [1 1 0 0]\t-0.5110\t\t0.2438\n", - " [1 0 0 1]\t-0.4158\t\t0.1839\n", - " [0 1 1 0]\t-0.5149\t\t0.0605\n", - " [1 0 1 1]\t3.0617\t\t0.0004\n", - " [0 1 0 0]\t4.5153\t\t0.0003\n", - " [0 0 1 0]\t3.4782\t\t0.0003\n", - " [0 1 0 1]\t2.1421\t\t0.0002\n", - " [1 1 1 1]\t15.6136\t\t0.0001\n", - " [1 1 0 1]\t4.6445\t\t0.0001\n", - " [1 1 1 0]\t2.6688\t\t0.0000\n", - " [0 0 0 1]\t4.0314\t\t0.0000\n", + " [0 0 1 1]\t-0.7012\t\t0.4800\n", + " [1 1 0 0]\t-0.5110\t\t0.2290\n", + " [1 0 0 1]\t-0.4158\t\t0.2173\n", + " [0 1 1 0]\t-0.5149\t\t0.0723\n", + " [1 0 1 1]\t3.0617\t\t0.0003\n", + " [0 0 1 0]\t3.4782\t\t0.0002\n", + " [1 1 0 1]\t4.6445\t\t0.0002\n", + " [0 1 0 0]\t4.5153\t\t0.0002\n", + " [1 1 1 0]\t2.6688\t\t0.0001\n", + " [0 0 0 1]\t4.0314\t\t0.0001\n", + " [0 1 0 1]\t2.1421\t\t0.0001\n", + " [1 1 1 1]\t15.6136\t\t0.0000\n", " [1 0 1 0]\t-0.2876\t\t0.0000\n", - " [0 1 1 1]\t4.9012\t\t0.0000\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n", " [1 0 0 0]\t4.0242\t\t0.0000\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n" + " [0 1 1 1]\t4.9012\t\t0.0000\n" ] } ], @@ -269,11 +267,12 @@ "\n", "cobyla = COBYLA()\n", "cobyla.set_options(maxiter=250)\n", - "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full')\n", + "init_state = Zero(qubitOp.num_qubits)\n", + "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full', initial_state=init_state)\n", "vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", "vqe.random_seed = seed\n", - "\n", - "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -316,47 +315,19 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal: selection [0 0 1 1], value -0.7012\n", - "\n", - "----------------- Full result ---------------------\n", - "selection\tvalue\t\tprobability\n", - "---------------------------------------------------\n", - " [0 0 1 1]\t-0.7012\t\t0.1831\n", - " [1 1 0 0]\t-0.5110\t\t0.1795\n", - " [0 1 1 0]\t-0.5149\t\t0.1767\n", - " [1 0 0 1]\t-0.4158\t\t0.1762\n", - " [1 0 1 0]\t-0.2876\t\t0.1518\n", - " [0 1 0 1]\t2.1421\t\t0.1196\n", - " [1 1 1 0]\t2.6688\t\t0.0053\n", - " [1 0 1 1]\t3.0617\t\t0.0023\n", - " [0 1 1 1]\t4.9012\t\t0.0017\n", - " [0 0 0 1]\t4.0314\t\t0.0014\n", - " [0 0 1 0]\t3.4782\t\t0.0007\n", - " [0 1 0 0]\t4.5153\t\t0.0005\n", - " [1 0 0 0]\t4.0242\t\t0.0005\n", - " [1 1 0 1]\t4.6445\t\t0.0005\n", - " [1 1 1 1]\t15.6136\t\t0.0002\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n" - ] - } - ], + "outputs": [], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", "seed = 50\n", "\n", "cobyla = COBYLA()\n", "cobyla.set_options(maxiter=250)\n", - "qaoa = QAOA(qubitOp, cobyla, 3, 'matrix')\n", + "qaoa = QAOA(qubitOp, cobyla, 3, operator_mode='matrix')\n", "qaoa.random_seed = seed\n", - "\n", - "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + "run_config = RunConfig(seed=seed)\n", + "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", "\n", "result = qaoa.run(quantum_instance)\n", "\n", @@ -385,18 +356,16 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { - "display_name": "qiskit_wor", + "display_name": "Python 3", "language": "python", - "name": "qiskit_wor" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -408,7 +377,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.7" } }, "nbformat": 4, From 4c14d06306293db1d19d56ce58ffb5035566003d Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Feb 2019 20:16:03 -0500 Subject: [PATCH 009/116] Remove get_aer_backend and add run_config --- .../08_Sampling a Thermal State.ipynb | 133 +++++------------- ...timization and Unsupervised Learning.ipynb | 11 +- 2 files changed, 43 insertions(+), 101 deletions(-) diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb index bf4c1c5c8..030f36603 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb @@ -119,7 +119,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD5CAYAAAAHtt/AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4XNWB9/HvmaLebFmusi0bdyxjmgnVJgRYOglkk00hlbzkJYHd7O77kk3YDc/CS7JppEICJARCEgIhBUxCgNBCtzG49yrZliXZ6nVmzvvHGUkjWWUkTdGMfp8n95k7996598hP+M2Zc889x1hrERGR1OFJdgFERGR4FNwiIilGwS0ikmIU3CIiKUbBLSKSYhTcIiIpRsEtIpJiFNwiIilGwS0ikmJ88TjppEmTbFlZWTxOLSKSttauXVtjrS0Z6ri4BHdZWRlr1qyJx6lFRNKWMWZfNMepqUREJMUouEVEUoyCW0QkxcSljVtEJN46OzupqKigra0t2UUZtqysLEpLS/H7/SP6vIJbRFJSRUUF+fn5lJWVYYxJdnGiZq2ltraWiooK5syZM6JzqKlERFJSW1sbxcXFKRXaAMYYiouLR/VLIS7B3dDaybr9x+JxahGRbqkW2l1GW+64BPe+oy38+s398Ti1iMi4F7emkv1HW+J1ahGRcS1uwX3gaGu8Ti0iMibce++9LF++nOXLl+PxeLrXv/SlL8X1unHrVXKwvpWOQIgMn+5/ikh6uv7667n++uuprKzkrLPO4p133knIdeOWqtZCZZ1q3SKS/jZu3Eh5eXnCrhfX6rDauUVkPNiwYQNLly5N2PXi+gDOAQW3iCRA2S2r43buvV+/bMhjNm7cyIUXXtj9fvfu3dxxxx3U19fz2GOPxbxMca1xK7hFZDzoW+OeO3cu999/f9yup6YSEZFRCIVC7Nixg0WLFiXsmnFtKlFwi0giRNOcES87d+6ktLSUzMzMhF0zvjXu2hastfG8hIhIUi1YsIDNmzf32lZbW8sNN9zAunXruPPOO2N+zbjUuD3h5/Ab2wPUt3ZSlJMRj8uIiIxJxcXF3HPPPXE7f1xq3H5vzwAqai4REYmtuAR3ZsTTknr0XUQktuJT444IbtW4RURiKy7BneFVcIuIxEsCmkoU3CIisRSnGre3e101bhGR2Ip7G3dlXSuBYCgelxERGZfiEtweAyX57imiYMhyqH7kk2KKiEhvcXtyctbEnO51tXOLiMROQoJ7n4JbRNJQ2k1dVlac272+vaoxXpcREUmatJu67MTpBd3rGyvr43UZEZGkS5upy8pLC7vXN1Y2EAxplEARSU9pM3XZlIIsJudncqSxndbOILurm5g/JT9elxOR8exrhUMfM+JzD91i0Hfqsj/84Q+sXr2aI0eOcOONN3LRRRfFtEhxHY97WUSte32FmktEJD31rXFfffXV3HvvvTzwwAM88sgjMb9eXIN76Yye4N6gdm4RSUODTV12++23c+ONN8b8mnGduiyyxq3gFpG4iaI5I176m7rMWsstt9zCJZdcwimnnBLza8Y1uCNr3JsPNhAIhvB541rJFxFJqP6mLvvBD37As88+S319PTt37uSGG26I6TXjGtyT87OYWpDF4YY2WjuD7KpuZuFU3aAUkfR20003cdNNN8Xt/HGv/qqdW0QktuIe3L3auSvq4n05EZG0F/fgLleNW0QkphLaVLL5UIPG5hYRGaW4B3dJfibTCrMAaOsMsbO6Kd6XFBFJawnpmxfZXKInKEVERifhwa2RAkVERicxwa0xS0REYibhNe7Nhxro1A1KEZERS0hwF+dlMqMoG4COQIgdVbpBKSKpL+2mLutr6YwCKutaAdhQWceSiBlyRERSUdpNXdbXstKi7nU9iCMi6STRU5clrMbd6wlK3aAUkRgq/0X8QnPDJzYMfUyCpy5LWI07Mri3HG6kI6AblCKSHvrWuLds2cINN9zAtddey9133x3z6yUsuCfkZlA6oecG5faqxkRdWkQkrvrWuBcvXsw999zDb3/7W9asWRPz6yWsqQRcrbvimLtBubGyvtc4JiIiIxVNc0a8DDR12Z/+9Ce+/vWv84UvfCHm10zodDS9HsTRDUoRSQP9TV0GcOWVV/Lqq6/y8MMPx/yaCa9xd9Gj7yKSDvqbuuyFF17g8ccfp729nUsvvTTm10xacG895G5QZvg0B6WIpJdVq1axatWquJ0/oalZlJPBzInhG5RB3aAUERmJhFd3l83oeRBHA06JiAxfwoNbkweLiIxO4mvckZMHV2ryYBGR4Up8jXt6T3BvO9xIeyCY6CKISJqw1ia7CCMy2nInPLgLc/zMLs4BoDNo2XZYNyhFZPiysrKora1NufC21lJbW0tWVtaIz5HQ7oBdls4oZF9tC+DauSNHDhQRiUZpaSkVFRVUV1cnuyjDlpWVRWlp6Yg/n5TgXjajkNXrDwHhkQLPSEYpRCSV+f1+5syZk+xiJEVSnn4pV88SEZERS0pwnzij9w3Ktk7doBQRiVZSgrsw209Z+AZlIKQblCIiw5G0gULKI25IaqRAEZHoJS+4Z/RMFrxRj76LiEQticGtGreIyEgkLbhPjKhx76jSDUoRkWglLbgLsvzMnZQLuBuUWw41JKsoIiIpJamzGGikQBGR4UtqcPcaKVA3KEVEoqIat4hIiklqcJ84vQBj3PqOI020dugGpYjIUJIa3PlZfuaEb1AGQ5bNukEpIjKkpE+xviyiuWSjmktERIaU9OCObOfW5MEiIkNLenBHTqKgGreIyNCSHty9b1A20tIRSG6BRETGuKQHd26mjxNK8gAIWfQEpYjIEKIKbmPM74wxlxlj4hL0y9TOLSIStWiD+G7gI8AOY8zXjTGLYlkIPYgjIhK9qILbWvustfajwCnAXuAZY8yrxphPGWP8oy2EHn0XEYle1E0fxphi4JPAZ4F1wPdwQf7MaAuxZHoBnvANyl3VTTS36waliMhAom3jfhx4GcgBrrDWXmmtfcRa+0Ugb7SFyMnwMW9yzw1KPUEpIjKwaGvc91lrl1hr77TWHgIwxmQCWGtPi0VBerVzq7lERGRA0Qb37f1sey2WBVmmG5QiIlHxDbbTGDMVmAFkG2NOBsIt0RTgmk1iprxUwS0iEo1Bgxu4GHdDshT4TsT2RuA/YlmQJdMK8RjXxr2ruomm9gB5mUMVT0Rk/Bk0Ga21vwB+YYy5xlr7u3gWJDvDy/zJ+WyrasRa2HywgRVzJsbzkiIiKWmoppKPWWt/CZQZY77Ud7+19jv9fGzEyksL2VbVCMD6ijoFt4hIP4a6OZkbfs0D8vtZYqpcY3OLiAxpqKaSn4Rfb0tEYSJvUK5XcIuI9GuoppLvD7bfWntTLAuzZFoBXo8hGLLsqWmmsa2T/KxRP1EvIpJWhuq2sTYhpQjL8nuZPzmPrYfdDcpNBxt4z9ziRBZBRGTMi6ZXSUKVzyhk62F3g3JDRb2CW0Skj6GaSu6y1v6zMeYJwPbdb629MtYFWlZayKNrKwA9iCMi0p+hmkoeCr9+K94F6aKxuUVEBjdUU8na8OuLxpgMYBGu5r3NWtsx4AdDwREXaPG0AnweQyB8g7KhrZMC3aAUEekW7bCulwG7gO8DPwR2GmMuGfADVRvh8f8F+14Fe1wLy6Cy/F7mT+npIq7+3CIivUU7OuC3gfOttaustSuB84HvDni0DcH638DPL4Efng6vfB+aa6Iu1DI9iCMiMqBog/uItXZnxPvdwJGoPlm7A565Fb69CH57Hex8DkKhQT+ytFSTB4uIDGSoXiUfCK9uMsY8BfwW18b9QeCtAT9YshBOvQg2PAYdrmsfoU7Y/Ee3FM6CUz4Oyz8KhTOO+7hq3CIiAxuqxn1FeMkCqoCVwCqgGpgw4Kf8OXDFXfCvW+GqH0Hpit776/fD83fAXUvhVx+Crash2DPP5MKp+fjCk1DurW2hvrVzuH+XiEjaGqpXyadGdfbMPDj5Y26p2gzrHoJ3fw2tx8IXCMH2v7glbyqc/FE4+WNkTZzLwqn5bDro5p7cVFnPWfMmjaooIiLpwtgoen0YY7KAzwAn4mrfAFhrP93f8aeddppds2ZN/yfrbIOtT8Lbv4A9L/V/zJyV/Cqwiq/tmEsHfm65ZBE3rDxhyHKKiKQyY8zaaObxjfbm5EPAVNyMOC/iZsRpHFHJ/FlQfi184gn44ttwzpcgb0rvY/a8yEcO3MbrmTfyVd9DVO9+d0SXEhFJR9HWuNdZa082xqy31i4zxviBp6217+3v+EFr3P0JdsL2p+HtB2HnM64Jpa+ZZ8Ap18GJ74eM3OP3i4ikuGhr3NFO6th1d7DOGLMUOAyUjbBsx/P6YfHlbqmvgHUPY99+ENNQ0XPMgTfc8pcvuxr7KdfB9JNjVgQRkVQRbVPJT40xE4BbgT8Bm4FvxKVEhaWw6v9i/nk9/5l/G6uDK+i03p797Q2w5mfw01Vwz7nwxk+h5WhciiIiMhZF1VQyXMNuKhnAlx/fwK/f3E8x9fxwyVbOrF8NtTuPP9DjhwUXw0kfhvkXgy9j1NcWEUm0mN6cNMYUG2N+YIx52xiz1hhzlzEm7gNlLws/QVlLIQ95r4IvrIFPPgXLPgS+rJ4DQ52up8ojH4NvL4DV/wYVa4Y9ToqISCqItqnkN7hH3K8BrgVqgEfiVagu5X2HeDUGys6GD/zUPdxz6beg9PTeH2o9Bm/dC/ddAN8/Gf52OxzZGu+iiogkTLS9StZaa0/ts23NQFX6WDWVdARCLP2vp+kIul4m6269kAm5/TSD1Ox0g1q9+4h7KrM/U8qh/BpYeg0UzRp12UREYi3W/bifN8Z82BjjCS//CKweXRGHluHzsGhaxBCvBwcYt2TSPHjvV+Hmd+GTq92TmpmFvY+p2gDPfg3uKof7L4Y374Wm6vgVXkQkTgatcRtjGnGDShkgF+jqYO0Bmqy1Bf19LlY1boCv/H4DD7/hatH/fvFCbjx/XnQf7GxzfcI3POYeqQ+0HX+M8cLcVVD+QVh0GWT1++eIiCRETPpxW2vzB9ufCOUjHSnQnwWLr3BLWwNsewo2PAq7ngcbnqHHBmHXc27xZbmeKUuvhfkXuc+LiIxB0T6AgzHmSuC88NsXrLVPxqdIvZXHYmzurALXVfCkD7sJHTb93tXED7zec0ygrWfY2cwCF/hLr4E5K8Eb9T+TiEjcRZVIxpivA6cDD4c33WyMOcdae0vcSha2YEo+GT4PHYEQlXWtHG3uYGJ/NyijlTsJVlzvlrr9sPF3sOF3rg28S3sDvPOwW3JLYMlVsORqmH0WeLwDn1tEJAGi7VWyHlhurRtExBjjBdZZa5f1d3ws27gBrvrRK7x7oA6AX3x6BSsXlMTs3N2ObIWNj7nmlGN7+z8mt8TVxJdcDbPPVk1cRGIq1r1KAIoi1gsHPCoOymf03DSM24w4kxe5nik3vQOf/Ruc8fnjRy1srnaP2z94JXx7ITxxs2szj5gEQkQk3qKtMt4JrDPGPI/rYXIe8OW4laqPZTOKANezZM3eOI9LYgyUnuqWi++AvX937d5bnoDmiGk2W2pg7QNuyZ7oBshadAXMOU83NkUkroZsKjHGGNz42wFcO7cB3rDWHh7oM7FuKtlX28zKb74AuL7db996IXmZCW6mCAVh/2vhG5h/gqYB/vyMPJh/ISy63L1mJfTHiYiksGibSkb85ORgYh3cAJd872W2HHJTmf3gn07mipOmx/T8wxIKuSFmN//BhXjjwf6P8/hdDXzRZbDwUiiYlthyikhKiXUb9+vGmNOHPix+/uHEqd3rf9k4YGU/MTwemH0mXPIN+JdN8Om/wllfhAlzeh8X6nR9xFd/Cb6zCO69AP7+XajZkZxyi0haiLbGvRlYCOwFmnHNJTZRvUoAtlc1ctF33RyVORle3r71QrL8Y6xrnrVQvRW2POlGKzz0zsDHTlrgmlMWXe4mhPAM5z6xiKSjWDeVzO5vu7V2X3/b4xHc1lou+PaL7K5pBuDe607jwiVThvhUktUdcE9sbn0S9r7S88RmX/nTYeEl7snNOeeBPzux5RSRMSEmwR2e3f0GYB6wAbjfWjtk37d4BDfA//xlKz9+YRcAHzhlBt/5x+Uxv0bctBx182pufRJ2PgeB1v6P82XD3JXusfsFF7sZgURkXIhVcD+Cm2/yZeASYJ+19uahThqv4F5fUceVP3wFgIIsH2tvvRC/NwWbGDpaYPfzsHU1bPsztA7SxXFKOSy4CBb8A8w4VU9uiqSxWE0WvMRaWx4+4f3Am7Eo3EiVzyhkRlE2lXWtNLQFeG1XLefF4ynKeMvIcT1NFl3mHt458LobwXD701CzvfexVRvc8vK3IacY5l3oauInvBeyi/o/v4iktaGCu2t2d6y1AdelO3mMMVx84lR+9soeAP707sHUDO5IXh+UneOWi26Ho7th+19hx9Pu4Z9gR8+xLbVuwoj1v3FD0s4+yzWpzHsfTF7sHh4SkbQ3VFNJENeLBFxPkmyghZ5eJXEfj7uvdw7UcfWPXHNJXqaPt77yPrIz0rT5oL0Rdr/gauI7/gpNVQMfmz8d5r0XTrjAjTGeMzFBhRSRWInVeNxjLhFPKi1k7qRcdtc009Qe4JktVVyZzIdx4ikzv2dM8VAIDr/rQnz7X+Dgut7HNh6Edb90i/HA9FNcTXzeBW5dA2KJpI2ougMOVzxr3ADff24H33nGtQWfv7CEn39qRdyuNWY1Vrla+M5nXK28bZDBt7IKXS183vtcjbxwRoIKKSLDEdN+3MMV7+A+cLSFc//neQC8HsMb/3EBk/Iy43a9MS8YgINvw85nXVfDyrW4GecGULLIBfgJ73VPgGbkJqyoIjKwtA5ugA/e8ypv7T0GwH9dsYRPnT1niE+MIy1HXS18Z3hatsZDAx/r8cPMFW6mn7krXZdDrz9hRRWRHmkf3A+/sY+v/H4j4Nq9//iFc+J6vZRlLRzZ4mrju56Dfa/27qnSV0aemyRi7koX5lNOVG8VkQRJ++Cub+nk9DuepSPoJp5/7l9XckJJXlyvmRY6mt3j97ueg90vQvWWwY/PLXGP4c9Z6drJJ/Q7+oGIxECsHsAZswpz/Jy/qISnN7kuco+uqeCWSxYluVQpICM3/CTmRe59YxXseQn2vOCCvP5A7+Obq928nBt/595PKHMhXnYulJ0NBWnao0dkDEvZGjfAM5uruP5Bd53i3Axe+/IFZPhS8BH4scJa9wDQnhddiO95afDH8cENZdv1ANHss6FoZmLKKpKG0r7GDa4r4LTCLA7Vt1Hb3MHTmw4nd4KFVGcMFJ/gltM+7fqOV20Ih/iLrn28s6X3Z47tccu6h9z7otk9IV52jppWROIgpWvcAN97dgfffdb16X7P3In85nNnJuS641KgAyreco/i7/s7HHgTAm2Df6ZwZjjEu4J8jm52igwg7W9Odjlc38bZ3/gbwZD7O5790nnMm5yfkGuPe4F2qHzbhfjecJD3rZH3lT/djbEy6z1umbxEIx6KhCU1uIvnF9urfngVfo+/1+Lz+PB7+9nm8Xdv734/wPFdx0Yed9sft/Hi9qNgvXxkxRy+elk5fo8fr/GS7IGxxpVAh5v1Z+/LrufK/tehs3nwz2QWQOlpMOtMmHmGW9cDQTJOJTW4s+dk23lfmxfz8w6XwfQb9L2+AEw/Xw7efr5ABvhyiWb7cfsG2O5Nt5pnsBMOvRtuWnkF9r0GHY2Df8Z4YdoymPmenlp5/tTBPyOSJhTcKchjPMMKep+39xdFNJ8Zzfa+v4I8Zpg9eIIBOLweDrzhauP7X4emKCZ+LprtauSzznCBXrJIc3RKWkpqcC85aYl94C8P0Bnq7FmC7jUQCgxr+3H7gr3fd63XtbbS2N6OMQGMJ4TXEyI40ByPEhNe4x1xk1f3/kAb/uZa/E1H8Dccwt9cgw+L31r8lvCrxQ/4utZ92fiL5+EvWYSvZAn+qUvx5Uzqda2uX1Jd1/F5fPiMT01nMqYltTtgjj+HFdMSO2JfU3uAM+98jsY2NyXmfdedxvmLJhGwgf6/BCK2Dba9e1+U23t9qQSP/zLqW57Ia9rBBoYag4I2SDAYpC04RM+SaGUAGYVRHnwYqg9D9QuwOfpLRAZ5v18wfdZ9Ht+An+n1Gvll0c+XxkDXHGh/321p14wmo5LS/bgj5WX6+MiKWfzkpd0A/PTl3bxvyRS8eMn0psbIgcFQcFhBP5xfL/39ShnsV02/2/vsS0WBUIBAaMj5rsecrvs1I/2SiMsXVBTn9nl8w29SkyGlTXADfPLsMu7/+x4CIcube47y7oE6TpqZOvMyej1evB4vWWQluyhDstYStMGhw36YTV5R/RJqbyDQcpTOtmN0tDcS6GwhgKXTGAIG90r41Rg6gYAxBFO4mcRi6Qh10BHqgBT73ulqUovml8VIf80M9oU0rGv2udZYbVpLq+CeVpjNFSdN5/frKgH41l+38eCnV4zZf/xUZozBZ9x/BNlkJ7cwgXY4vME9HFTxFlSsgbp9xx0Wgt6BbiBQOJPOKSfSOXkxgZIFdE6cS8Cf2evXTteXx0hf+10Pn7/XsZHX7HPtVGtGi9TVpEYK3nIa6pdL172Tri+TyNDv+yXR32f7rkddrjj+zUnx+VUn8Md3KglZeHlHDX/beoQLFk9JdrEknnyZrv936WnA5922piMuwCvegso1UPk2no4m14xurRuXBeDoPrdseSp8MgOT5sP0k3uWqadCRk4S/rAeXc1oo/myiPZLIhZfUJGvqWysNq2lXXAvmJLPP62YxcNv7AfgjtVbOHd+iQafGm/yJsOiS90CEApC9VYX5ofecXN2Ht4Ix7XVW6jZ7pb1j7hNxgMli8NBvhymLXfjlCcwzLua0VKNtXbwXxax+PUywl8xQ72O5V5pKf/Ie39qm9pZ9a0XunuYfPWyxXz23LlJK4+MUYF2qNrkQvzgOjj4DhzZDNH8B2s8UDzfPSw0dVnPa87E+JdbEiJkQ71+qQz0KyYy8Ada73d/15dMxBfOrWfeOj7GKhnIfS/v5vbVbpKA/CwfL/77+UzMzUhqmSQFdLa69vLuMF8H1dsYdA7PSAWlx4d5YakG1pKojJtBpgbSEQhx8V0vsafGjZXxsffM4vary5NaJklR7Y1waH1PkB9eDzU7iDrMsye4AJ9aDtNOcuvF88Cbdi2VMkrjPrgBnt1cxWfDEy14DPz55vNYOFUjB0oMdDS7ZpbD612oH14PVZsh2B7d572ZULIApix1IyROOdEteVNUOx/HFNy4GyMfv/9N/r6zBoBz5k3ioc+oe6DESbDT3dTsCvJD612zS3t99OfIKXYBPjkc5FOWuBujSe7VIomh4A7bdriRS773EuHhurnvutN43xJ1D5QEsdb1KY8M86pN0FAxjJOEZyaavMTV0KeEa+hFZRpsK80ouCN89Q8b+OXrrnvgnEm5PP3P56l7oCRX6zHXtHJkM1Rt7FnvaIr+HP5c19xSsihiWehGU1SgpyQFd4SjzR2s/Obz6h4oY1so5GrnRza7WnnXcnQX2FD05/Fl9x/oE8o029AYp+Duo2/3wBf+bRXFeakx+JSMc52t7uGhqk2uZl610a231AzvPL4s91Ror0BfBBPnKNDHCAV3Hx2BEP9w10vsDncP/OgZs7jj/eoeKCmsqdoFevVW19e8a725enjn8Wa6NvTieS7Yi+fDpAUwaR5kRTvMrsSCgrsfz22p4jO/6OkeuPqmc1k8rSDJpRKJseZaqNkGR7b0DvSmquGfK3eyC/PuQJ/vAr5otvqhx4GCux/WWq772Zu8vMP9xDx7XjG//MwZ6h4o40PLUdddsW+gNx4a/rm8GTBxbp9aejjU9dj/iCm4B7C9qpFLvvcywXD/wJ9+/FQuOlGT0co41lYPNTuhdkd4gK0dULsTandF/0BRpOyJrull4tzw0rU+R6E+hKROXTaWLZiSz0fPmMWDr7nxmu94agsrF5aQ6dPNGRmnsgqh9FS3RAoFoW6/C/GaHeFgDy+DTfLcehQqjrohdfvKnnB8oHeFfPYEPTUapXFX4wbXPXDVN5+nIdw98DPnzOHWy5ckuVQiKaSt4fhAr93plsAI5yDNKoyonYcDfUKZW8bJUABqKhnCg6/t5T//uKn7/b3XncaFeqJSZHRCIWg8CEd3u6V2V3h9j3sNtI7svL5sKJrVE+QTZrvXotluPTM9xiBScA/BWsv1D67h2S1HACjM9rP6pnMonaAxIUTiIhRyTSy9Aj1i6WwZ+blzJvUJ87KegC8oTZkeMAruKNS1dHDp917mYL37aXfyrCIe+dyZehxeJNGsdd0VewX6Lji2D47thba6kZ/beKFopgv0oplQOCv8fhYUzoSC6eCNfr7HeFJwR2ntvqP8409e7+5l8sFTS/mfa5epi6DIWNJa54YDOLa3J8yP7XXb6vZDsGPk5zYeyJ8eDvVwoEeuF5aCPzETYqtXSZROnT2R/3PxQu7881YAHl1bweziHL7w3vlJLpmIdMsucsu0k47fFwq6vuhdgV4XEezH9g3eAwbcODANFeERG1/r/5jcknCQz3RNL4UzoGCGC/WC6e7maQKHDRj3wQ3wufPmsuNIE4+tdUNtfuuv25k5MYerls9IcslEZEgerwvQwlIoO/v4/R0trlbeVTuvPwB1B3pehwp2cMMINFfDwbcHKIMP8qe5MC+YHg72roCf7tZzS2I2aqOCGzDG8P/eX87BulZe3VULwL8/up7pRdmcXqYHBkRSWkYOTF7klv50tkFDZf+hXrff7RtqAulQwH2m/sDAx3j84RCfcXyNvWs9SuO+jTtSfWsn19z9KjuPuDGRJ+T4efSGs5g3OS/JJRORpAkGXFNMV5g3VLqlvrJnvaU2JpcytzXo5uRIHDjawvt//Ao1Te5mR0l+Jr++/j0KbxEZWGcrNByMCPSK8GvXtoqoesYouEdh3f5jfPS+N2jpcD+PFN4iMmodzS7I6yuOr7GH181/VCi4R+PNPUf55M/f7BPeZzBvcno8oSUiY0+03QH1pMkAVsyZyAOfWkFOhuviU93YzjV3v8Zbe48muWQiMt4puAfRN7y23V2ZAAAHqElEQVTrWzv56H1v8OcNIxi/WEQkRhTcQ1gxZyK/+dx7mJSXAbgp0P73r97mR8/vJB7NTCIiQ1FwR2FZaRGPf/5s5kzKBdywCt98ehs3/uptmtoDSS6diIw3Cu4ozSrO4XefP4sVEQ/kPLXhMJd//2XWV4xiABwRkWFScA/DxNwMHr7+DD5x5uzubXtrW/jAj1/lJy/u6h6oSkQknhTcw+T3erjtqqV878PLyct0IwYEQpY7/7yVa+95la2HG5JcQhFJdwruEbpq+QyeuulcTppZ1L1t3f46Lv/+3/nm01tp6xxibAMRkRFScI/CrOIcHrvhTG6+YD5+rxu/OxCy/Oj5XVz03Zd44t2DhNR8IiIxpuAeJb/Xw79cuIA/33wup5dN6N6+/2gLX/z1Oq7+8Su8urMmiSUUkXSj4I6ReZPzeeRzZ3LnB8opzO6ZBml9RT0fue8NPn7/G7y2q1Z9v0Vk1DRWSRzUt3Ry94u7+Pkre2gPhHrtO2lmEZ9fOZf3LZ6Cz6vvTRHpoTknx4BD9a1895ntPLa2gr5N3VMLsvjQ6TP50OkzmV6UmPnsRGRsU3CPIXtrmvnpy7t5bG0FHX1q4B4D5y+czNUnz+CCxZPJydCkRCLjlYJ7DDrS2MYvXt3LI28d6J6oIVK238sFiydz+bJpnDO/pLufuIiMDwruMawjEOKZzVX86s19vLKz/ymP/F7DijkTWbVgMucvKuGEkjyMMQkuqYgkkoI7ReytaeaP7xzkifUHu+e67M+UgkxOL5vIijkTOb1sIgun5OPxKMhF0omCO8VYa9lW1ciT7x7iua1H2HJo8Efn87N8LJ9ZxJLpBZw4vZCl0wsoK85VmIukMAV3ijtc38aL24/w/NZqXtlZQ2MUw8fmZnhZMDWfE0rymFuSy9xJeZxQksvs4lwyfOp6KDLWKbjTSCAYYuvhRt7ae5S39h7lzT3HqGlqj/rzXo9helEWM4qymVGUw4yiLGZMyGZ6kVsm52eSl+lTG7pIkim405i1lv1HW9h0sIGNlfVsOtjApoP1/fZUiVamz8OkvEwm5WdSkpfh1vMymZCbQUGWj8JsPwXZ/l6vuRlehb1IDEUb3OpvloKMMcwudk0gl5ZPA1yYH2lsZ+eRJnZXN7Grupld1U3srm7mYH0rQ30/twdCVNa1UlnXGnU5vB5DQZaP/Cw/ORlesjO85Gb4yM7wkhNesv2+7n05GV4yfB4yvB4yfB4yfZ7wey9+r3HrXdu97tiu7X6vB6/H4DVG7fgy7im404QxhikFWUwpyOLseZN67WvtCFJZ10JlXRuVx1o5GA7oyjq3XtPUTltnaIAzDywYshxr6eRYS2es/oyoGANeY/B6DD6PC3Kfx73vCnev13Qf4xYPXg94jMEYgwmfxxNe9xgD7n/hY3r2E7ktYh0Mnojj3P6uz3adN7we3hf5N7gz9H7vtpnex5iePUN9/uYLFlCSnznKf2EZ6xTc40B2hpd5k/OZNzm/3/3WWpo7gtQ0tlPT5Jbqpg5qGtupb+2kvrWThq7Xtq73AVqTNOa4tRCwlkDIEn1L//jw6bPnKLjHAQW3YIwhL9NHXqaPsvCEyNFoDwRpbAvQ2BagpSNAa0eQlu4lQEtHsGdbp9vfEQjREQy51/B6Z8T79kD4feQxgRCBkCUYcmEtA9M9h/FBwS0jlunzkpnnZVJeYmt4oZAlaHuCPNh3sZZg0BIIhQjZ3seErPuF4fLfYi29tlksdG3r3m+xuGOspc+28HbC29zHe47FEgq5fV1snxVLxD7b+xgbxTGRNzAm5maM8l9XUoGCW1KOx2PwYPB7k10SkeTQUxkiIilGwS0ikmIU3CIiKUbBLSKSYhTcIiIpRsEtIpJiFNwiIikmLqMDGmOqgX0xP7GISHqbba0tGeqguAS3iIjEj5pKRERSjIJbRCTFaKwSSSnGmCCwIWLTb6y1X09WeUSSQW3cklKMMU3W2rwYn9NnrR16NmaRMUJNJZIWjDF7jTG3GWPeNsZsMMYsCm/PNcb8zBjzljFmnTHmqvD2TxpjHjXGPAH81RjjMcb82BizyRjzpDHmKWPMtcaYC4wxv4+4zoXGmMeT9GeKAApuST3Zxph3IpYPReyrsdaeAtwN/Ft421eAv1lrTwfOB75pjOmaLeJM4BPW2vcCHwDKgHLgs+F9AH8DFhtjurpofQr4eZz+NpGoqI1bUk2rtXb5APu6asJrcUEMcBFwpTGmK8izgFnh9WestUfD6+cAj1prQ8BhY8zzANZaa4x5CPiYMebnuEC/LnZ/jsjwKbglnXRNQRmk5//bBrjGWrst8kBjzBlAc+SmQc77c+AJoA0X7moPl6RSU4mku6eBL5rwZIzGmJMHOO7vwDXhtu4pwKquHdbag8BB4KvAA3EtrUgUVOOWVJNtjHkn4v1frLW3DHL8fwN3AevD4b0XuLyf434HXABsBLYDbwD1EfsfBkqstZtHUXaRmFB3QJEwY0yetbbJGFMMvAmcba09HN73Q2Cdtfb+pBZSBNW4RSI9aYwpAjKA/44I7bW49vB/TWbhRLqoxi0ikmJ0c1JEJMUouEVEUoyCW0QkxSi4RURSjIJbRCTFKLhFRFLM/wdOxz3g/X5GkgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD5CAYAAAAHtt/AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8lNW9x/HPmUwyE5KQsCQssoMsCojgSkUBq9al1Cp2u9aldatWba29L9vbXrto9Xptq9UqrXutvXXDXdu6gAtqlU1BEGUnbAkBEsiemXP/eGYykxCSSTLPTGbm+369HufZ5jkntK/fc+b3nOccY61FRERShyfZFRARkc5R4BYRSTEK3CIiKUaBW0QkxShwi4ikGAVuEZEUo8AtIpJiFLhFRFKMAreISIrxunHR/v372xEjRrhxaRGRtLVkyZJd1trijs5zJXCPGDGCxYsXu3FpEZG0ZYzZFMt5SpWIiKQYBW4RkRSjwC0ikmJcyXGLiLitsbGR0tJS6urqkl2VTvP7/QwZMoTs7OwufV+BW0RSUmlpKQUFBYwYMQJjTLKrEzNrLRUVFZSWljJy5MguXUOpEhFJSXV1dfTr1y+lgjaAMYZ+/fp165eCK4F7X10jy7fsdePSIiLNUi1oh3W33q4E7o0VNfzlvY1uXFpEJOO5lirZWZV6DwxERFKBa4F7R6UCt4ikt/vvv58pU6YwZcoUPB5P8/oPf/hDV8t1rVdJWVW9W5cWEekRLrnkEi655BK2bt3K9OnTWb58eULKda3Fva++ier6JrcuLyLSY6xcuZJJkyYlrDxXuwPuUJ5bRDLAihUrmDhxYsLKc/UFnJ1VdYwuznezCBERRtzwkmvX3njrmR2es3LlSk455ZTm7fXr13PzzTdTWVnJU089Ffc6udriVs8SEckErVvco0aN4oEHHnCtPHdTJZV6QCki6S0YDPL5558zYcKEhJXpeqpERMRtsaQz3LJ27VqGDBlCTk5OwspUqkREpBvGjh3LqlWrWuyrqKjgiiuuYNmyZdxyyy1xL9PVFrd6lYhIJurXrx/z5s1z7frutrj19qSISNy5GrjL9tUTDFo3ixARyTiuBO4sjzNkYVPQUlHd4EYRIiIZy5XAne2JXFYPKEVE4suVwO3NigwSrlECRUTiy50Wd1bksupZIiISXy4F7kiLu0yBW0QkrtTiFhFJMe7nuDWhgohIXLne4tZLOCKSrtJq6rIWgXufAreIpKe0mrrM6zF4Qy/h7K1ppK4x4EYxIiI9QtpMXVZS4Gte10s4IpLO0mbqsgGFfraF8ts7KusY3i/PraJEJNP9otDFa1d2eErrqcueffZZXnrpJaqqqvjud7/LqaeeGtcqudbiHtjb37y+c596lohI+mrd4j777LO57777mDdvHo8//njcy3MtcA+IDtzqWSIiaaq9qctuuukmrrrqqriX6V6qJCpw6yUcEXFVDOkMt7Q1dZm1lhtuuIHTTz+dqVOnxr1M1wL3wMLIw0kFbhFJV21NXXbXXXfx2muvUVlZydq1a7niiiviWmZCWtwar0REMsk111zDNddc49r1E5LjVotbRCR+EtOrpKoeazWFmYhIPLgWuPN8Xgp8TiamoSnInppGt4oSEckork4WXNJbb0+KiMSbq4F7YKHy3CIi8eZq4NZLOCIi8edui1s9S0RE4i5xLW7NhCMiEhcJDNxqcYuIxEPiHk4qxy0iaSatpi4LG6gWt4iksbSauiysf34OoRnMqKhuoKEp6GZxIiJJkeipy1xtcXuzPPTP91EWmkihbF8dQ/r0crNIEclAkx5xL2iuuHBFx+ckeOoyV1vc0DLPrXSJiKSj1i3u1atXc8UVVzB37lzuvffeuJfneuBuMUpgpboEikj6ad3injBhAvPmzeOJJ55g0aJFcS/P1VQJwACNVyIiLoslneGWg01d9vzzz3Pvvffy7W9/O+5lup8qUc8SEUljbU1dBjBnzhxeeeUVHnvssbiXmYAWt157F5H01dbUZQsXLmT+/PnU19dzxhlnxL1M1wO3XsIRkUwzc+ZMZs6c6dr1E/pwMtwtUEREui7BvUrqNIWZiEg3uR64e/u95GZnAVDbGKCqrsntIkVE0prrgdsYoy6BIiJx5HrgBg3vKiLuSNXUa3frnZDArZ4lIhJvfr+fioqKlAve1loqKirw+/0dn3wQrncHBL2EIyLxN2TIEEpLSykvL092VTrN7/czZMiQLn8/IYG7RC/hiEicZWdnM3LkyGRXIykSkyrR3JMiInGTkMA9qCgSuLfsrklEkSIiaSshgXt0//zm9Q27qgkEU+thgohIT5KQwF3YK5v++U5f7vqmINv21iaiWBGRtJSQwA0wujiveX1t2f5EFSsiknYSF7hLIumSdeUK3CIiXZXAFrcCt4hIPCQlVbKurDpRxYqIpJ2EBe4xSpWIiMSFO4G7bu8BuwYX5uLPdoqrqG5gT3WDK0WLiKQ7dwL37g3w4g+hMdLtz+MxjOqvVreISHe5lypZ/CDcNxvKVjfvUs8SEZHuczfHXbYK/jwLFj8E1jKmRc8SPaAUEekKdwJ30VDwhsYnaaqFF38AT17IuKJA8yl6CUdEpGvcCdy9+sNlC6HksMi+Vc8xe+G5HGU+BZQqERHpKvdSJSUT4NI34KjvNu/K2V/KEzm/5gbv39i5u5K6xkA7FxARkba4m+POzoWzfgdfexT8RU6BxnKF90Wezf4ZO9Z86GrxIiLpKDEv4Bw2B773Loya1bxrvGcLw54+C966HQJNCamGiEg6iClwG2PmG2PONMZ0PdAXHgLffoZXhl1Prc1xCreN8Mav4aEvQcW6Ll9aRCSTxBqI7wG+BXxujLnVGDOuS6UZw96JF3J6wy0sDY6J7C/9EOadAB/cByk2Y7OISKLFFLitta9Za/8DmApsBF4zxrxrjLnYGJPdmQJHF+ez0Q7ivIYbeaTXBeAJfb2xBl6+Hh79KlRu7dxfISKSQWJOfRhj+gEXAZcAy4A7cQL5q50pMDzYVIAsbt13JsFLXm/ZbXD9ArjnePj4CbW+RUTaEGuO+xngbaAX8GVr7Rxr7ePW2quB/Pa/3VLfvBz69HJa2bWNAXb0Guv0+f7CtYBxTqqvhPmXwpMXQnVFZy4vIpL2Ym1x32etPcxae4u1djuAMcYHYK09qrOFRk+qsLZsP3h9cMqv4OKXoWh45MRVz8E9x8Gaf3S2CBGRtBVr4L6pjX3vdbXQg86GM3w6fG8RTLsosq+6DP7v6/D81VC/r6tFioikjXYDtzFmoDFmGpBrjDnSGDM1tMzESZt0yeiSqNlwWr/67iuAL98J33oS8gdE9i/9i5P7/uxfXS1WRCQteDs4fhrOA8khwO+i9u8DftrVQlvMhnOwaczGngpXvg8vXQefPOPsq9wCfzsPJs6FL90K+cVdrYKISMpqN3Bbax8BHjHGnGutfTpehcY8cXCvvnDewzD+LHj5x1C729m/8ilY9zqc9hs44ptgTLyqJiLS43WUKjk/tDrCGHNd66WrhQ7p04ucLKfosn31VNU1tv+FSXPh+x/C5K9H9tXugWe/B4+eDbvXd7UqIiIpp6OHk+FkdD5Q0MbSJVkew8j+0bO+xzDEa15/OOfPcP7TUDQssn/9QrhnOiy6U2OeiEhG6ChV8qfQ5y/jXfCYknzW7HR6iawrr+bIYX1i/OIXndz3gt/A+/eADTqTNbz637DiKZhzFwyeEu/qioj0GO0GbmPMH9o7bq29pqsFjy5up2dJR3Ly4LSbYeK58Pw1sHOFs3/Hx848l8d9D2be4PRQERFJMx31KlniVsHREwd3eRqzQ6bCZQvg3bvgzf+BpjqwAXjvblj5tBPcDz9HDy9FJK3E0qvEFTH3LOlIVjbMuA4O+wq8cC1sfNvZv287PPUdWPIInHE7FI/tZo1FRHqGjnqV3BH6fMEY83zrpTsFj4pKlWyuqKExEOzO5aDfaLjwBfjqnyGvJLJ/w5tw73R49UZo0MzyIpL6OkqVPBr6vD3eBffK8XJIUS5b99bSFLRsqqhp8WJOlxgDR3wdxn0JFtwCH/zJeXgZbIRFdzgPL7/0G5gwR+kTEUlZ7ba4rbVLQp9v4oxNsgfYDbwX2tcto7rzgLI9/kI4/Va4/C0Yelxkf1UpPHEB/PUc2LU2fuWJiCRQrMO6ngmsA/4A3A2sNcac3t3CDxglMN4GToKLX4Gz74W8qNfj170B9x4Pr/8K6l0oV0TERbGODvhbYJa1dqa19iRgFvD77hYe3bMkri3uaB4PTPkWfH8xHHMZhKfNDDTA27+Fu6bB8r9BsJs5dhGRBIk1cO+z1kbnFtbjDDTVLWNa9Cxx+cFhbhGc8b/OpA1Djons37/DeXX+/tmwqcsj1YqIJExHvUrOMcacAyw2xrxsjLnIGHMh8ALwYXcLjx7edX3ZfmwipiobdAR8559O+iR/YGT/tmXObPNPXgR7NrlfDxGRLuqoxf3l0OIHdgInATOBciC3u4UX5/so8DsdW/bVN1G+r767l4xNOH1y9RI48cfg9UeOffIM3H00vPZLTdwgIj1SRy/gXOxm4cYYRhfns3zLXsB5QFnS29/Bt+LIlw+zfwZTL4DXfuG8bQkQqId3fgfL/gon/xym/Ad4shJXLxGRdsTaq8RvjLnKGHOPMebB8BKPCsTtDcruKBoGcx+E7/wLBk+N7K8uc6ZMmzfDmXlHs86LSA8Q68PJR4GBODPivIkzI05c8ggtZsNx+wFlR4YdC5e87rx9WTA4sr/sE2fmnYfPgtLFyaufiAixB+4x1tqfA9Wh8UvOBI6NRwW6NUqgGzwe5+3LqxfDSTdAdqR+bHoH7j8ZHv827Po8eXUUkYwWa+AOT1Gz1xgzESgESto5P2Yt+nK78RJOV+XkwayfwLXL4ehLwRP1OGD18/DHY+GFH8C+Hcmro4hkpFgD95+NMX2AnwPPA6uA/4lHBYb17YXX44wbsq2yjur6HjaLTX4JnHk7XPWBM0RsmA3AkofgzinOG5h1lcmro4hklJgCt7X2fmvtHmvtm9baUdbakvDsON2VneVhRNQ0ZuuTnec+mH6j4byH4NIFMPLEyP6mWucNzDunwDt3aARCEXFdrL1K+hlj7jLGLDXGLDHG3GGM6RevSvS4PHd7DpkKFzwP5893xkIJq90Nr93oBPD37oHGuuTVUUTSWqypkr8DZcC5wFxgF/B4vCrRI7oEdoYxMOZkuOwtOOd+KBoeOVZdBv/8CfzhSPjwfmhqSF49RSQtxRq4B1lrf22t3RBabgIGxKsSro8S6BaPByaf5wxgddbvofchkWP7tsFLP4K7pjqz8AQaD34dEZFOiDVw/8sY8w1jjCe0fA34Z7wqkZBRAt3kzYGjvgNXL4XTb4P8qHta5RZ44RrnNfplf1UAF5Fu62iQqX3GmCrgUuBvQENo+TtwWbwqEZ3j3rirhqbuTmOWLNl+OPZyuGY5nHoT9Ip6DLBnAzx3FfxhKnz4ADQlaFwWEUk7Hc2AU2Ct7R369FhrvaHFY63tHa9KFPizGVTojFHSEAjyeSqlS9qS0wumXw3Xfgwn/zf4iyLHKjfDS9fBnUfA+/dCQ03y6ikiKSnWVAnGmDnGmNtDy1nxrsiRwyLBbfHG3fG+fHL48mHGj+AHK5wAHt0C37cd/nED3DnZ6UaokQhFJEaxdge8FbgW58WbVcC1xphb4lmRo4b3bV5fvGlPPC+dfP7ekQB+6s0tc+DV5U43wjsmwZu3Qe3e5NVTRFJCrC3uM4BTrLUPWmsfBL6EM15J3Bw1ok/z+uKNaRa4w3LyYPr34dqP4PT/bdkLpXYPLLgZfj8R/vUzqNyavHqKSI8Wc6oEiErUUhjvihw2qDe9cpwxr7furWXb3tp4F9FzZOfCsZc5DzG/fGfLfuAN++Ddu5wc+LNXQtnq5NVTRHqkWAP3LcAyY8zDxphHgCXAzfGsiDfL0zLPnW7pkrZ4c2DaRc5MPGfPg/5jI8eCjbD8MbjnOHjsa7BxkcYDFxEghsBtjDHAO8BxwHzgaeB4a23c3pwMmxad506XB5SxyMqGKd+EK/8N3/w7DDu+5fHP/wkPnwH3fxFWPQfBQHLqKSI9QrtTlwFYa60x5mVr7SSckQFdc3RUnvvDdM1zt8fjgXGnO8vmf8O7f4BPXwJCLe2ti+GJC6DvKDj++3DEN52uhyKSUWJNlSw1xhztak2AI4f1ITTCK2t2VFFVl8FvGQ47Fr7xGHz/Q5h6IWTlRI7tXu/0Bf/9YfDqjVBZmrx6ikjCxRq4jwXeN8asM8Z8bIxZYYz5ON6Vyfd5mTDIea8naGHZZnWNo/+hMOcP8IOVcMJ14I96Lly7BxbdAXdMhicuhM3vKw8ukgFiDdynAaOA2cCXgbNCn3F39IgMzXN3pGAAfPFG+OEncNotLXui2ACsehYePA3umwUfPa5RCUXSWEdjlfiNMT8AfozTd3urtXZTeHGjQtOGZ0B/7u7wFcDxV8I1y+Abf4MRM1oe37YMnrkM7pgIC/8H9pclp54i4pqOWtyPAEcBK4DTgd+6XaHoF3GWbdlDY6oOOOU2TxaMPxMuehGuWARHng9Zvsjx/Tth4W/gd4fBU99Rd0KRNNJR4D7MWnt+aJqyucCMDs7vtkGFuQzpkwtAXWOQVduq3C4y9Q2cCF/5I1y3Cmb/DAoGRY4FG2Hl0053wnuOhw/ugzr9m4qkso4Cd3O3DmttwmbxPWp4dLdA5bljltcfTvyxMyrhuQ/AkFYdgcpXw8vXw2/HwwvXwva4P18WkQToKHAfYYypCi37gMnh9dA43a44qsUDSuW5O82bA5PmwiWvweVvO29nZkfGPKexGpY8DH+a4bzUs/z/NEemSArpaDzurNB43OExub1R63Ebj7u1FgNObdqDVW626wZNdsZD+dFqOON2KJ7Q8njph/DsFfDbcfDyj9UKF0kBnRlkKmHGlhRQ4Hde6ty1v55NFZpsoNv8hXDMpXDle3DxKzBxLniyI8fr9sIHf3Za4X860cmFa4hZkR6pRwZuj8coz+0WY2D4dJj7AFy3Gk6+sWWfcIDtH4Vy4eNg/mWw4W31SBHpQXpk4IaWee4lmTBSYDLkF8OM65zhZS94Hiad17JLYVMdfPw4PHIW/OFIeOt2qNqWvPqKCADGjfxx4ZhCO/u3s/Fn+fF7/fi8vuZ1f5YfX5YPn9dHblYuPq8PX5aPXG8uviznPJ/Xx4ayBm587jOw2QwrKuTJy09qvk62Jxtn0EKJu9o98PGTsOwvsGPFgceNB0ae5AxwNeEsZ3IIEYkLY8wSa+1RHZ7nRuDOHZlrx/xiTNyvG+YxnuYg7/c6N4Lmm0IouLe1r/ncGG8o4X1ZnizX/pYebdtyWPoXWPEU1FceeDw7Dw6bA5O/DiNPdF4KEpEuS+vAnWjZnuy2bwBRAd/vbePGEMMNJfpXh9/rJ8eT0/N+TTTUwOoXYNmjsPEdmoeZjVYwGCaf57TESyYceFxEOpTUwD35yMn2ydefpD5QT32gntqmWuoD9dQ11VEXqKO+qZ66QB11TXXN+1scD61v3L2X8ur9GNNIri9ItjdAXaCOpmDC3gVKOINp88ZwsNRSizRTF24onf41sXcLrHjCGchq15q2zxk42QngE8+BgoHd/0cRyRBJDdxHHXWUXbx4cbev8+HG3Zw37z0ABhX6efeG2RhjaAo2tXkjaL5JNLW8YbS+ebR1k2jrhhL+XjrzGm/zzSC8hIP7wbZ9Xh9+j4+cmgr8O1bi27Ycf/0+coIWv7X4rPOZY8E/eCq+safjG38WvvwB+LP8eD3enverQqQHiDVwdzgDTjIdObSI3n4vVXVNbK+s47Od+xk3sACvx4vX4yUv2/0HY9ZaGoINTnAPB/02fi20dZOob4q6YRzkl0brm0eif0002SaaGpuobqzu+kV6+wDfQQ5ug88fcJaQ8DOKdm8MWX5ysnJa/HJobzs6FXXANXpqCkqki3p04PZmeZhxaDEvrdgOwII1ZYwbWJDQOhhjmoNBoS/uk9sfoCnYREOgoUXAbxHoo24erW8EB7t5tLhGq+vZtvLVLgvaILVNtQn9NWNw/ndsDvad/JXR4c2ljW1flg+P6bE9biWF9ejADXDSuEjgXrimjCtOGp3kGrkr/GuiV7b7c0laa2kMNjYH++gUUSzb4ZtCQ6ChxY2kebthP/U1u6lvqKI+2EidMdQbQyAJLV+LdW5agTqqSNzoiNEPtrt7YwgfC+/Lyco56LZuGOmtxwfumWOLm9cXb9xDZW0jhbnZ7XxDYmWMIScrh5ysHApw+ZfMnk3wyTOw8mmadnxMvTFOIPc4wbzeGOq8fuqHTKN+6LHUDzycOo8nchMI3SiabyKhG8XBtsM3mvD3G4PJmb+0MdhIY7CRfY37ElpujicSxMM3ghbbWW1vH/TGELqxHOxmEf1d3TTc16MfToZ9+a53WLHV6Ud8+3lHMHfakLhdW5Jg1+ewcj6sfAp2fdb2OVk5MGomTJjjTBjRq2/b58UoEAxQH6hvcSOIDuydvTF0dKMI78tE2Z7stm8O0TcPj69TvyJi+X46pKbSoldJ2Lw313HrK58CMHNcMQ9ffEzcri1JZC3s/ARWPQern4fyT9s+z2TBiC9EgnjvwYmtZxdFP9iOTi81B/5W2w2BhhbPIqK3wzed6BtF6+3ofZkqfNM42C8Jn9fnBP2oXxId/Yo44Obj8R3w6yNeL+qlVeDesruGGbctAMDrMSz+2Rcp6pUTt+tLD1H+mRPAVz/vDHR1MIOmwLgzYNyXnD7j6i3SQviG0fwLI/RL4GBBvvV29PnhG0/zdugXhW4aB/Ia7wHBPPomEMu+y4+4PPW7A4YN7duLKUOLWL5lL01Byz8/2cHXjx6W7GpJvBWPheLr4cTrYc9G523NVc9D6Qctz9u+3FkW/gZ6D3EC+NjTYeQM8B6sW2LmiO4JlWitbxqtU1CtA3+bN4LQ+eHrNG/38JtGk22iqamJmib3h6FOicANcNbkQSzf4owP/eLH2xW4012fETD9amep2gafvuQE8k2LILqve1UpfHi/s+Tkw+jZMO50OPQ0yOuXtOpnqnS+aUQ/32gINLS4Tn2gPqFda1MiVQKwbW8t0299A4Asj+GDn55Mv3y1rjJOXSWsfQ3WvAKf/8vZbovxwJBj4NBTnGXAJPCk9oMr6bmstTTZpgOC+cHWD7bv2mnXpk+OO2zuve+yODQ2901nT+T844Z38A1Ja4FG2Py+E8TXvAx7Nhz83LwSGPNFGHOy0yrvZi8VETek1cPJsIcXbeAXL6wC4LhRffn7ZcfHvQxJUdY6XQvXvAxr/gFb/k2boxiC0xo/ZBqMOcUJ5oOPVGtceoS0DNxlVXUce8vrWOt0JPj3T0+mpMAf93IkDVTvclIqa1+Dta9DbTvT3/Xq57TCx5wCo2dBfkni6ikSJS0GmWqtpLefY0f25f31u7EWXlmxgwunj0h2taQnyusPR3zDWYIBZ1KIta86gbx0MS1a4zUVsOJJZwEoORxGneS8ADR8OvgSOz6OSEdSqsUN8Oj7m/j5sysBOHpEH568Yror5Ugaq9kN696ItMiryw9+rscLhxzlBPFRJznrXr1DIO5Iy1QJwK799Rxz82sEQ9V+7yezGVSY60pZkgGCQdjxcSSlUvohtDeuSXae0wofNdMJ5CWHKz8ucZOWqRKA/vk+po/uzztrdwEwf+lWrpqVPtOkSYJ5PDB4irOceD3U74fN78H6hbD+TdjZasLkxupQyuVVZ7tXPyeQDz/BeS1fgVwSIOVa3ADzl5Zy3RPOK9FD+uTy1o9n4fHotWdxwf5y2PhWKJAvhL2b2z/fXxQK5F9wAvnAyZpEWWKWtqkSgLrGAMfd8jp7a5yftA9ffDQzx6kngCTA7g2w4U0niG94y3mw2R5fbxh2XCiQnwCDjoAsDUssbUvbVAmAPzuLc6cO4YF3nBcu/vbvzQrckhh9RzrLtIuc/Hj5p85r+BvfcT5bP+isr3Le8Pz8X852dh4MmQZDj4Ohx8LQo8Hv/sxKkl5SssUNsK58Pyf/9k3AeQX+7f+cxeAiPaSUJLLWGWt80zuwcZETyPdt7+BLBkomhIL4sTDsWOgzUiMeZqi0TpWEfeu+93l3nfNT9bITR/HTMya4XqZIzKyF3eth07uhVvkiqOwgRw7O6/lDjwkF8uOc9IpGPcwIGRG4X1+9k+8+4pRT4PPy7k9mU+BX/lB6sMpS53X8zf92PnesABto/ztZOc4Y5IdMCy1Toe8otcrTUFrnuMNmjSthVHEe68ur2VffxOMfbuGSGaOSXS2Rgysc4iwTz3W26/fDtqWRQL7lA6hvNeJhoMEZkzx6XPLcPlGBfBoMngr5xUhmSOkWN8D/fbCZn8x3+toOLvTz5n/OIjtL/WglRQWDsGuNM+rhlg9gy/tOuiUWRcNaBvNBR0BOnrv1lbjKiFQJOF0Dv3DrG1RUNwBw6zmT+MYxmmRB0sj+cqdVvnVJZKnd0/H3jAf6HeoE8MFTnM+Bk9SLpQfLmMANcM/Ctdz2jzUAHFKUy4LrZ5LjVatb0lT4oefWqGC+/SOIdequvqOcIN68TNH45D1ERgXu6vomZty2gN2hVvdvvjqJbx2rVrdkkKYGKFsFWxdHAvquz8AGY/t+4TAYNNkJ4oMmw4CJ0HuwHoAmWEYFboA/vbmOW175FHBy3W9cPxN/tl41lgzWUA07P3Fa49uXw7aPoHx1yzk72+MvcgL4gMNDy0QoGa+8uYsyLnDXNDRx4m0L2LXfaXX/6JSxXH3yoQmtg0iP11jntMy3fxRZdn4Se5oF46RawoE8HNSLhmtwrTjIuMANLcfq9md7eO26kxjSp1fC6yGSUgKNUL4m0jLfsdIJ5q27JbYnJx9KDnOCeMkEKB4HxeMhf4DSLZ2QkYE7ELR8+a53WLW9CoDTJw7k3vOnJbweIinPWudloZ2fwM6VoeUTqFgbe94cnB4sxeMjgTz82fsQBfQ2ZGTgBli8cTdz573XvP3od49hxqF6MUEkLhprnYG1dn4SCeo7VrY/p2dbcgqgeGwomI+PBPXCoRmdcsnYwA1w3RPLmb++PfeKAAAJX0lEQVR0KwCji/N45doT1T1QxC3Wwv6doVb5KucFovLQUl/VuWtl94J+o53+5/3GQP/QZ78x4O/tTv17kIwO3GX76ph9+5vsr3eenv/k9PFcftLopNVHJCNZ64yOWP5pKJCHPstWQ93ezl8vf0AkiDcH9EOhz/C0GeM8owM3wP1vr+eml1YD4PN6eOmaGYwpyU9qnUQEJ6BXlx8Y0Ms/bX/i5oPxeJ1eLX1HhcZLH+UMjdt3lBPUU2hkxYwP3I2BIHPuXsTq0IPKwwf3Zv6V0/F51bdbpMeq2e2MaV7xufMgdNfnULEOdq9zBtvqNOM8CA1PgNEc1Ec6nz0s/ZLxgRtg9fYqvnL3IhoCzlPwS2eM5L/OPCzJtRKRTgsGnPk+K9a1CuproWpr16/bq3+kpd5nhNNyLxrmtNR7H5Lw+UIVuEMefGcDv3pxVfP2H781lTMnD0pijUQkrhqqnblAd6+HPaHP3Rucpaq0c90Xo3m8zhC8RcOcgN5neCiwh9bzSuLeAyYjxuOOxcVfGMHbn5ezYI2TO/vRk8sZ2jeXyUOKklwzEYmLnDwYONFZWmuqd1rquze0CurrYe+m9tMvwSbYs9FZ2pKV44znUjjUCfC9DwmNtz4UCkPrvoJ4/IUHSPsWN8Demga+es+7bNhVDcCA3j6eu+oEBhb6k1wzEUmaYMBJs0QH8r2bYU/os7qs+2X4C51A3hzUWy0Fg1r0iFGqpJX15fs5+4+LqKpzughOOqSQJy4/ntwcPawUkTY01DgBfO9mJ6jv2RhZ37s5tjHRO2I8kD+wOZCbrz2swN3aorW7uODBDwgEnb/55PElzPv2NM2YIyKd11ANlVuhcoszPEBlqdOCb97e2onBuxzml1XKcbf2hTH9+eWcw/lZaCCq1z8t48rHlnL3t45UN0ER6ZycvNBr+2PbPm4tVO9yAnnV1khwr9wSCvilsH9Hl4rOqBZ32G3/+JR7Fq5r3p45rph7/2Oa0iYiklhNDbBvW3NQN1O+GVOLOyNzBD8+bRyXnxSZDX7hmnK+8ef3KKuqS2KtRCTjeHOc/uMjToAjvhHz1zIycBtjuOFL47lm9pjmfR+VVjLn7kWs3NqJMYhFRJIgIwM3OMH7ulPH8auvHE6WxxkXeEdVHefNe4/5S0txI4UkIhIPGRu4wy44fgQPXXQ0BX7nOW1tY4DrnviIKx9bSsX+zj0RFhFJhIwP3AAnji3mmSunM6JfZJqzV1bu4LQ73uLVVTuTWDMRkQMpcIeMKSngxWtm8M1jhjXv27W/gUv/spjL/rKYzRU1SaydiEiEAneUfJ+XW86ZxEMXHU1JQWQM33+t2skXf/cmNz63kp3qeSIiSabA3YZZ40v45w9O5JyphzTvawgEeeS9TZx42wJufG4l68v3J7GGIpLJMvIFnM5YtnkPv35xFUs3HzjV0klji7lw+nBOPLQYr16bF5Fu0iBTcWStZeFn5dzx6md8VHpgP+/++T7mHDGYMycPYsrQoubuhSIinaHA7QJrLe+s3cUj727k9U/LaOufrl9eDrPGl/DFCSUcP6o/hb3SYxJTEXGfArfLNlfU8Nd/b2L+0q3sOkh/b2Ng3IACjhnZl6NH9GXK0CKG9MnFGLXIReRACtwJ0hQI8u66Cl74aBsL1pSxa3/7E5oW+L1MGNibCYMKmDCoN6OK8xnRrxfFBT4FdJEMp8CdBMGg5aPSvby+uoy3Py9n5baq5rG/O9IrJ4vh/fI4pCiXgYU+Bvb2M6C3n4GFfgb29lNc4KO3PxuP8uciaUuBuweorm9i2ea9fLChgiWb97BqWxV7ahq7fD1joDA3m6LcbAp75VCUm01RL2c7z+elV04WuTle8nKyyM3JoldOeF+W85mdRY7XQ3aWs+RkecjOMmR5jFr7Ij2AJgvuAfJ8Xk44tD8nHNofcB5u7qiqY/X2KlZtq2LNzv1sqqhmw65q9oWmVGuPtbC3ppG9NY0Q5zc5w0E823tgUM/yGDwmtHggyziB3mNoDvpZoWPh85zv0OJ74ZuDoeU6ODelyLppXsdAeKvlOeHDJrJuIlds69yjhvfl7CMjffNFUpUCdwIZYxhUmMugwlxmjx/QvN9ay56aRjZWVLOjso4dlXXsrKpjR1VkvaK6Iabg3lUNgSANAXD+k54am6wCt6QFBe4ewBhD37wc+ubltHteYyBIVW0je2udVndlbQN7qp3tmvomahoD1DYEqGlooqYhvB4I7W+itjFAY5OlMRCkIRCkMRCkMWBjzsOnOmWDJF0ocKeQ7CwP/fJ99Mv3dXxyJwSDlsagE8Qbm4JRgd3SFAgStBAIWoI2vDjbttV6ILQdDJ3rfIfmdQALB4x1bi1YbGQ9dDj6XNv8n1bnHuwa0RcPfXVMcX5c/91EkkWBW/B4DD5PFj4vEN97goi4QANsiIikGAVuEZEUo8AtIpJiFLhFRFKMAreISIpR4BYRSTEK3CIiKcaVQaaMMeXAprhfWEQkvQ231hZ3dJIrgVtERNyjVImISIpR4BYRSTEaq0RSijEmAKyI2vV3a+2tyaqPSDIoxy0pxRiz31ob12H+jDFea617g52LxJlSJZIWjDEbjTG/NMYsNcasMMaMD+3PM8Y8aIz5wBizzBjzldD+i4wxzxtj3gBeN8Z4jDH3GGM+Nca8aox52Rgz1xgz2xjzbFQ5pxhjnknSnykCKHBL6sk1xiyPWr4edWyXtXYqcC9wfWjffwFvWGuPAWYB/2uMyQsdmwrMtdaeBJwDjAAOA74NHB86ZwEw3hgT7qJ1MfCgS3+bSEyU45ZUU2utnXKQY/NDn0twAjHAqcAcY0w4kPuBYaH1V621u0PrJwBPWmuDwA5jzAIAa601xjwKnG+MeQgnoF8Qvz9HpPMUuCWd1Ic+A0T+v22Ac621a6JPNMYcC1THeN2HgBeAOpzgrny4JJVSJZLu/glcbULTyhtjjjzIeYuAc0O57gHAzPABa+02YBvwM5wgLpJUanFLqsk1xiyP2v6HtfaGds7/NXAH8LExxgNsAM5q47yngZOBVcAWYClQGXX8MaDYWru6O5UXiQd1BxQJMcbkW2v3G2P6AR8AX7DW7ggduxtYZq19IKmVFEEtbpFoLxpjioAc4NdRQXsJTj78R8msnEiYWtwiIilGDydFRFKMAreISIpR4BYRSTEK3CIiKUaBW0QkxShwi4ikmP8HIXKwUENqnN0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -179,24 +179,16 @@ "start_time": "2018-11-19T20:11:12.766644Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n" - ] - } - ], + "outputs": [], "source": [ "import itertools\n", "import numpy as np\n", "from functools import reduce\n", - "from qiskit import BasicAer, QuantumRegister, QuantumCircuit, ClassicalRegister\n", + "from qiskit import Aer, BasicAer, QuantumRegister, QuantumCircuit, ClassicalRegister\n", "from qiskit import execute\n", + "from qiskit.qobj import RunConfig\n", "from qiskit.quantum_info import Pauli\n", - "from qiskit.aqua import get_aer_backend, QuantumInstance\n", + "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua.operator import Operator\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "from qiskit.aqua.algorithms import VQE\n", @@ -464,29 +456,26 @@ ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n", - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Results of QAOA {'eigvals': array([0.]), 'opt_params': array([ 1.898, -0.447]), 'eigvecs': array([[-0.177-0.438j, -0.076-0.058j, -0.076-0.058j, -0.075-0.055j,\n", - " -0.076-0.058j, 0.328+0.241j, -0.075-0.055j, 0.219-0.137j,\n", - " -0.076-0.058j, -0.075-0.055j, 0.328+0.241j, 0.219-0.137j,\n", - " -0.075-0.055j, 0.219-0.137j, 0.219-0.137j, 0.028+0.328j]]), 'energy': 0.0, 'eval_count': 28, 'eval_time': 11.246169090270996}\n" + "ename": "TypeError", + "evalue": "construct_circuit() missing 1 required positional argument: 'qr'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_thermal_state\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_thermal_state\u001b[0;34m(weights, p)\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mrun_config\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRunConfig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mquantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrun_config\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mqaoa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mquantum_instance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Results of QAOA\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/quantum_algorithm.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, quantum_instance, **kwargs)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcircuit_summary\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 305\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 306\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_solve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 307\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_ground_state_energy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_aux_ops\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_solve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 221\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_solve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 223\u001b[0;31m \u001b[0mopt_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mopt_val\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind_minimum_eigenvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 224\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'eigvals'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mopt_val\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'opt_params'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopt_params\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36mfind_minimum_eigenvalue\u001b[0;34m(self, initial_point)\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Starting optimizer bounds={}\\ninitial point={}'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbounds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 400\u001b[0m sol, opt, nfev = self._optimizer.optimize(self._var_form.num_parameters, self._energy_evaluation,\n\u001b[0;32m--> 401\u001b[0;31m variable_bounds=bounds, initial_point=initial_point)\n\u001b[0m\u001b[1;32m 402\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnfev\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 403\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mnfev\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mnfev\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/components/optimizers/cobyla.py\u001b[0m in \u001b[0;36moptimize\u001b[0;34m(self, num_vars, objective_function, gradient_function, variable_bounds, initial_point)\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnum_vars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobjective_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariable_bounds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 94\u001b[0;31m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mminimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobjective_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtol\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"COBYLA\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_options\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 95\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnfev\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/scipy/optimize/_minimize.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)\u001b[0m\n\u001b[1;32m 606\u001b[0m **options)\n\u001b[1;32m 607\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'cobyla'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 608\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_minimize_cobyla\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 609\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'slsqp'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 610\u001b[0m return _minimize_slsqp(fun, x0, args, jac, bounds,\n", + "\u001b[0;32m~/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/scipy/optimize/cobyla.py\u001b[0m in \u001b[0;36m_minimize_cobyla\u001b[0;34m(fun, x0, args, constraints, rhobeg, tol, maxiter, disp, catol, **unknown_options)\u001b[0m\n\u001b[1;32m 250\u001b[0m xopt, info = _cobyla.minimize(calcfc, m=m, x=np.copy(x0), rhobeg=rhobeg,\n\u001b[1;32m 251\u001b[0m \u001b[0mrhoend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrhoend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0miprint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0miprint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmaxfun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmaxfun\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 252\u001b[0;31m dinfo=info)\n\u001b[0m\u001b[1;32m 253\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mcatol\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/scipy/optimize/cobyla.py\u001b[0m in \u001b[0;36mcalcfc\u001b[0;34m(x, con)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 241\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcalcfc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcon\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 242\u001b[0;31m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 243\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mizip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcons_lengths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_energy_evaluation\u001b[0;34m(self, parameters)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter_sets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0mparameter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparameter_sets\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0mcircuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_use_simulator_operator_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0mcircuits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcircuit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36mconstruct_circuit\u001b[0;34m(self, parameter, backend, use_simulator_operator_mode)\u001b[0m\n\u001b[1;32m 204\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mgenerated\u001b[0m \u001b[0mcircuits\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mHamiltonian\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 205\u001b[0m \"\"\"\n\u001b[0;32m--> 206\u001b[0;31m \u001b[0minput_circuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_var_form\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 207\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbackend\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 208\u001b[0m \u001b[0mwarning_msg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Circuits used in VQE depends on the backend type, \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/qaoa/varform.py\u001b[0m in \u001b[0;36mconstruct_circuit\u001b[0;34m(self, angles)\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0mcircuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_state\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 54\u001b[0;31m \u001b[0mcircuit\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_state\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'circuit'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 55\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcircuit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mqregs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0mq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumRegister\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cost_operator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_qubits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'q'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: construct_circuit() missing 1 required positional argument: 'qr'" ] } ], @@ -496,9 +485,10 @@ " print(\"Begin QAOA...\")\n", " \n", " optimizer = COBYLA()\n", - " qaoa = MyQAOA(Hc, optimizer, initial_state, p, \"matrix\")\n", - " backend = get_aer_backend('statevector_simulator')\n", - " quantum_instance = QuantumInstance(backend, shots=100)\n", + " qaoa = MyQAOA(Hc, optimizer, initial_state, p, operator_mode=\"matrix\")\n", + " backend = Aer.get_backend('statevector_simulator')\n", + " run_config = RunConfig(shots=100)\n", + " quantum_instance = QuantumInstance(backend, run_config)\n", " result = qaoa.run(quantum_instance)\n", " print(\"Results of QAOA\", result)\n", " \n", @@ -515,27 +505,14 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-11-19T20:11:44.601197Z", "start_time": "2018-11-19T20:11:14.085143Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAD9VJREFUeJzt3X+MZWV9x/H3RxYwjbaAO63Ir4V0a4tpK3RCsSYVrVWghrUR2yVRwWI2Um01tUlBG2xMmmr/0MRipGuliDVoxR9d4xKCglEToQ5k+blBFmzDlq2MoCBR0dVv/7hn29vhzt4zM/fODI/vV3Iz5zznOed8ee7dz5w595xDqgpJUluettYFSJImz3CXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNWjDWu1448aNtWnTprXavSQ9Jd1yyy3frqqZcf3WLNw3bdrE3NzcWu1ekp6Skvxnn36elpGkBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAat2R2qkrSWNl38+TXb93+8+w+mvg+P3CWpQYa7JDXIcJekBo0N9yTHJbkxye4kdyV5y4g+ZyR5NMmu7nXpdMqVJPXR5wvV/cDbqurWJM8EbklyfVXdvaDfV6rqFZMvUZK0VGOP3KtqX1Xd2k1/D9gNHDPtwiRJy7ekc+5JNgGnADePWPyCJLcluTbJ8yZQmyRpmXpf557kGcCngLdW1WMLFt8KnFBVjyc5G/gssHnENrYB2wCOP/74ZRctSTq4XkfuSQ5lEOwfq6pPL1xeVY9V1ePd9E7g0CQbR/TbXlWzVTU7MzP2fwEoSVqmPlfLBPgwsLuq3rtIn2d3/UhyWrfdhydZqCSpvz6nZV4IvBa4I8muru3twPEAVXU5cC5wUZL9wA+ArVVVU6hXktTD2HCvqq8CGdPnMuCySRUlSVoZ71CVpAYZ7pLUIMNdkhr0lHyee+vPYZaklfLIXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lq0NhwT3JckhuT7E5yV5K3jOiTJO9PsifJ7UlOnU65kqQ+NvTosx94W1XdmuSZwC1Jrq+qu4f6nAVs7l6/DXyw+ylJWgNjj9yral9V3dpNfw/YDRyzoNsW4KoauAk4IsnRE69WktTLks65J9kEnALcvGDRMcADQ/N7efIvAEnSKukd7kmeAXwKeGtVPbZw8YhVasQ2tiWZSzI3Pz+/tEolSb31CvckhzII9o9V1adHdNkLHDc0fyzw4MJOVbW9qmaranZmZmY59UqSeuhztUyADwO7q+q9i3TbAbyuu2rmdODRqto3wTolSUvQ52qZFwKvBe5IsqtreztwPEBVXQ7sBM4G9gDfB14/+VIlSX2NDfeq+iqjz6kP9yngTZMqSpK0Mt6hKkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSg8aGe5IrkjyU5M5Flp+R5NEku7rXpZMvU5K0FBt69LkSuAy46iB9vlJVr5hIRZKkFRt75F5VXwYeWYVaJEkTMqlz7i9IcluSa5M8b7FOSbYlmUsyNz8/P6FdS5IWmkS43wqcUFW/CfwD8NnFOlbV9qqararZmZmZCexakjTKisO9qh6rqse76Z3AoUk2rrgySdKyrTjckzw7Sbrp07ptPrzS7UqSlm/s1TJJrgbOADYm2Qu8EzgUoKouB84FLkqyH/gBsLWqamoVS5LGGhvuVXXemOWXMbhUUpK0TniHqiQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWrQ2HBPckWSh5LcucjyJHl/kj1Jbk9y6uTLlCQtRZ8j9yuBMw+y/Cxgc/faBnxw5WVJklZibLhX1ZeBRw7SZQtwVQ3cBByR5OhJFShJWrpJnHM/BnhgaH5v1yZJWiOTCPeMaKuRHZNtSeaSzM3Pz09g15KkUSYR7nuB44bmjwUeHNWxqrZX1WxVzc7MzExg15KkUSYR7juA13VXzZwOPFpV+yawXUnSMm0Y1yHJ1cAZwMYke4F3AocCVNXlwE7gbGAP8H3g9dMqVpLUz9hwr6rzxiwv4E0Tq0iStGLeoSpJDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoN6hXuSM5Pck2RPkotHLL8gyXySXd3rDZMvVZLU14ZxHZIcAnwA+H1gL/D1JDuq6u4FXT9RVW+eQo2SpCXqc+R+GrCnqu6vqh8BHwe2TLcsSdJK9An3Y4AHhub3dm0LvSrJ7UmuSXLcRKqTJC1Ln3DPiLZaMP85YFNV/QbwBeAjIzeUbEsyl2Rufn5+aZVKknrrE+57geEj8WOBB4c7VNXDVfVEN/sh4LdGbaiqtlfVbFXNzszMLKdeSVIPfcL968DmJCcmOQzYCuwY7pDk6KHZc4DdkytRkrRUY6+Wqar9Sd4MXAccAlxRVXcleRcwV1U7gD9Pcg6wH3gEuGCKNUuSxhgb7gBVtRPYuaDt0qHpS4BLJluaJGm5vENVkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QG9Qr3JGcmuSfJniQXj1h+eJJPdMtvTrJp0oVKkvobG+5JDgE+AJwFnAycl+TkBd0uBL5TVb8MvA94z6QLlST11+fI/TRgT1XdX1U/Aj4ObFnQZwvwkW76GuD3kmRyZUqSlqJPuB8DPDA0v7drG9mnqvYDjwLPmkSBkqSl29Cjz6gj8FpGH5JsA7Z1s48nuafH/kfZCHx7meuuSA5+wmnN6uphvdZmXUtjXUuzLuvKe1ZU1wl9OvUJ973AcUPzxwIPLtJnb5INwC8AjyzcUFVtB7b3KexgksxV1exKtzNp67UuWL+1WdfSWNfS/CzX1ee0zNeBzUlOTHIYsBXYsaDPDuD8bvpc4IaqetKRuyRpdYw9cq+q/UneDFwHHAJcUVV3JXkXMFdVO4APAx9NsofBEfvWaRYtSTq4PqdlqKqdwM4FbZcOTf8QePVkSzuoFZ/amZL1Whes39qsa2msa2l+ZuuKZ08kqT0+fkCSGrRuwz3Jq5PcleSnSRb9VnmxRyN0XwDfnOTe7tEIh02orqOSXN9t9/okR47o8+Iku4ZeP0zyym7ZlUm+ObTs+atVV9fvJ0P73jHUvpbj9fwkX+ve79uT/PHQsomO10oepZHkkq79niQvX0kdy6jrL5Lc3Y3PF5OcMLRs5Hu6SnVdkGR+aP9vGFp2fve+35vk/IXrTrmu9w3V9I0k3x1aNs3xuiLJQ0nuXGR5kry/q/v2JKcOLZvseFXVunwBvwY8F/gSMLtIn0OA+4CTgMOA24CTu2X/Cmztpi8HLppQXX8PXNxNXwy8Z0z/oxh8yfxz3fyVwLlTGK9edQGPL9K+ZuMF/AqwuZt+DrAPOGLS43Wwz8tQnz8FLu+mtwKf6KZP7vofDpzYbeeQVazrxUOfoYsO1HWw93SV6roAuGzEukcB93c/j+ymj1ytuhb0/zMGF4JMdby6bf8ucCpw5yLLzwauZXBv0OnAzdMar3V75F5Vu6tq3E1OIx+NkCTASxg8CgEGj0Z45YRKG37UQp/tngtcW1Xfn9D+F7PUuv7XWo9XVX2jqu7tph8EHgJmJrT/YSt5lMYW4ONV9URVfRPY021vVeqqqhuHPkM3MbjfZNr6jNdiXg5cX1WPVNV3gOuBM9eorvOAqye074Oqqi8z4h6fIVuAq2rgJuCIJEczhfFat+He02KPRngW8N0aPAphuH0Sfqmq9gF0P39xTP+tPPmD9bfdn2TvS3L4Ktf19CRzSW46cKqIdTReSU5jcDR231DzpMZrJY/S6LPuNOsadiGDo78DRr2nq1nXq7r355okB254XBfj1Z2+OhG4Yah5WuPVx2K1T3y8el0KOS1JvgA8e8Sid1TVv/XZxIi2Okj7iuvqu41uO0cDv87gHoEDLgH+m0GAbQf+CnjXKtZ1fFU9mOQk4IYkdwCPjei3VuP1UeD8qvpp17zs8Rq1ixFtfR+lsaLP1Bi9t53kNcAs8KKh5ie9p1V136j1p1DX54Crq+qJJG9k8FfPS3quO826DtgKXFNVPxlqm9Z49bFqn681DfeqeukKN7HYoxG+zeDPnQ3d0deoRyYsq64k30pydFXt68LooYNs6o+Az1TVj4e2va+bfCLJPwN/uZp1dac9qKr7k3wJOAX4FGs8Xkl+Hvg88Nfdn6sHtr3s8RphJY/S6LPuNOsiyUsZ/MJ8UVU9caB9kfd0EmE1tq6qenho9kP83+O+9wJnLFj3SxOoqVddQ7YCbxpumOJ49bFY7RMfr6f6aZmRj0aowTcUNzI43w2DRyP0+Uugj+FHLYzb7pPO9XUBd+A89yuBkd+qT6OuJEceOK2RZCPwQuDutR6v7r37DINzkZ9csGyS47WSR2nsALZmcDXNicBm4N9XUMuS6kpyCvCPwDlV9dBQ+8j3dBXrOnpo9hxgdzd9HfCyrr4jgZfx//+CnWpdXW3PZfDl5NeG2qY5Xn3sAF7XXTVzOvBodwAz+fGa1rfGK30Bf8jgt9kTwLeA67r25wA7h/qdDXyDwW/edwy1n8TgH98e4JPA4ROq61nAF4F7u59Hde2zwD8N9dsE/BfwtAXr3wDcwSCk/gV4xmrVBfxOt+/bup8XrofxAl4D/BjYNfR6/jTGa9TnhcFpnnO66ad3//17uvE4aWjdd3Tr3QOcNeHP+7i6vtD9OzgwPjvGvaerVNffAXd1+78R+NWhdf+kG8c9wOtXs65u/m+Ady9Yb9rjdTWDq71+zCC/LgTeCLyxWx4G//Oj+7r9zw6tO9Hx8g5VSWrQU/20jCRpBMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QG/Q+IRNmbPQ0h1AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "var_form = MyQAOAVarForm(Hc, p, initial_state)\n", "thermal_state = var_form.construct_circuit(result['opt_params'], qr, cr)\n", @@ -572,21 +549,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Begin QAOA...\n", - "Results of QAOA {'eigvals': array([-0.973]), 'opt_params': array([0., 0.]), 'eigvecs': array([[ 0.993+0.j , -0. -0.j , -0. -0.j , -0. +0.j ,\n", - " -0. -0.j , 0. -0.082j, -0. +0.j , -0. +0.j ,\n", - " -0. -0.j , -0. +0.j , 0. -0.082j, -0. +0.j ,\n", - " -0. +0.j , -0. +0.j , -0. +0.j , -0.007-0.j ]]), 'energy': -0.973407734380529, 'eval_count': 27, 'eval_time': 12.175426006317139}\n" - ] - } - ], + "outputs": [], "source": [ "β = 5\n", "initial_state = InitialState(β, n_qubits)\n", @@ -595,35 +560,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([4.923, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,\n", - " 0.078]),\n", - " array([-1. , -0.8, -0.6, -0.4, -0.2, 0. , 0.2, 0.4, 0.6, 0.8, 1. ]),\n", - " )" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAADbxJREFUeJzt3XuMXGUdxvHnoUVQQSl0xHKRhQRRohHIhhBJQCpyNYARtSQoKKYB0WDUaAn+oSZG8A8xRhOsiKAod4mVi1goDSHhtkVupQLlYqxUuojcYqxcfv4x75DDdqZzZjtntj/4fpLNzpzzzpln35k+e/bMmakjQgCAPLaY6QAAgMFQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMnMbmKjc+fOjbGxsSY2DQBvSCtWrHg6Ilp1xjZS3GNjY5qYmGhi0wDwhmT7b3XHcqgEAJKhuAEgmVqHSmw/IekFSa9IejkixpsMBQDobZBj3IdExNONJQEA1MKhEgBIpm5xh6Q/215he2G3AbYX2p6wPTE5OTm8hACA16lb3AdGxH6SjpR0uu2Dpg6IiMURMR4R461WrVMRAQDTUKu4I+LJ8n2dpKsl7d9kKABAb32L2/bbbW/buSzpMEkPNB0MANBdnbNKdpR0te3O+N9FxJ+aCjS26NqmNr1RT5x99IzcLwAMqm9xR8Rjkj40giwAgBo4HRAAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqG4ASAZihsAkqld3LZn2f6L7WuaDAQA2LhB9rjPkLSqqSAAgHpqFbftXSQdLen8ZuMAAPqpu8f9Y0nflPRqg1kAADX0LW7bH5e0LiJW9Bm30PaE7YnJycmhBQQAvF6dPe4DJR1j+wlJl0qab/viqYMiYnFEjEfEeKvVGnJMAEBH3+KOiDMjYpeIGJO0QNKyiDix8WQAgK44jxsAkpk9yOCIWC5peSNJAAC1sMcNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMn0LW7bW9u+0/a9tlfa/u4oggEAuptdY8x6SfMj4kXbW0q61fb1EXF7w9kAAF30Le6ICEkvlqtblq9oMhQAoLdax7htz7J9j6R1kpZGxB3NxgIA9FKruCPilYjYR9Iukva3/YGpY2wvtD1he2JycnLYOQEAxUBnlUTEs5KWSzqiy7rFETEeEeOtVmtI8QAAU9U5q6Rle7ty+a2SDpX016aDAQC6q3NWyTxJF9mepXbRXx4R1zQbCwDQS52zSu6TtO8IsgAAauCdkwCQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQDMUNAMlQ3ACQTN/itr2r7Zttr7K90vYZowgGAOhudo0xL0v6ekTcbXtbSStsL42IBxvOBgDoou8ed0SsjYi7y+UXJK2StHPTwQAA3Q10jNv2mKR9Jd3RRBgAQH+1i9v2NpKukvTViHi+y/qFtidsT0xOTg4zIwCgolZx295S7dL+bUT8vtuYiFgcEeMRMd5qtYaZEQBQUeesEkv6paRVEfGj5iMBADamzh73gZI+K2m+7XvK11EN5wIA9ND3dMCIuFWSR5AFAFAD75wEgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGQobgBIhuIGgGT6FrftC2yvs/3AKAIBADauzh73hZKOaDgHAKCmvsUdEbdIemYEWQAANXCMGwCSGVpx215oe8L2xOTk5LA2CwCYYmjFHRGLI2I8IsZbrdawNgsAmIJDJQCQTJ3TAS+RdJukvWyvsX1K87EAAL3M7jcgIk4YRRAAQD0cKgGAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZChuAEiG4gaAZGoVt+0jbD9ke7XtRU2HAgD0NrvfANuzJP1M0sckrZF0l+0lEfFg0+EAYDrGFl07I/f7xNlHj+R+6uxx7y9pdUQ8FhH/k3SppGObjQUA6KVOce8s6e+V62vKMgDADOh7qESSuyyLDQbZCyUtLFdftP3QNDPNlfT0NG87bT6n75AZyVUDuQZDrsGQawA+Z5Ny7VZ3YJ3iXiNp18r1XSQ9OXVQRCyWtLjuHfdieyIixjd1O8NGrsGQazDkGsybPVedQyV3SdrT9u623yJpgaQlzcYCAPTSd487Il62/WVJN0iaJemCiFjZeDIAQFd1DpUoIq6TdF3DWTo2+XBLQ8g1GHINhlyDeVPncsQGrzMCADZjvOUdAJKZkeK2/SnbK22/arvnK7C93mpfXii9w/Yjti8rL5oOI9f2tpeW7S61PafLmENs31P5+q/t48q6C20/Xlm3z6hylXGvVO57SWX5TM7XPrZvK4/3fbY/U1k31Pnq99EMtrcqP//qMh9jlXVnluUP2T58U3JMI9fXbD9Y5ucm27tV1nV9TEeU62Tbk5X7/2Jl3UnlcX/E9kkjznVuJdPDtp+trGtkvmxfYHud7Qd6rLftn5TM99ner7Ju+HMVESP/kvR+SXtJWi5pvMeYWZIelbSHpLdIulfS3mXd5ZIWlMvnSTptSLl+KGlRubxI0jl9xm8v6RlJbyvXL5R0fAPzVSuXpBd7LJ+x+ZL0Xkl7lss7SVorabthz9fGni+VMV+SdF65vEDSZeXy3mX8VpJ2L9uZNcJch1SeQ6d1cm3sMR1RrpMl/bTLbbeX9Fj5PqdcnjOqXFPGf0XtEyaanq+DJO0n6YEe64+SdL3a73s5QNIdTc7VjOxxR8SqiOj3Bp2ub7W3bUnzJV1Zxl0k6bghRTu2bK/udo+XdH1E/GdI99/LoLleM9PzFREPR8Qj5fKTktZJag3p/qvqfDRDNe+Vkj5a5udYSZdGxPqIeFzS6rK9keSKiJsrz6Hb1X6vRNM25aMsDpe0NCKeiYh/S1oq6YgZynWCpEuGdN89RcQtau+k9XKspF9H2+2StrM9Tw3N1eZ8jLvXW+13kPRsRLw8Zfkw7BgRayWpfH9Xn/ELtOGT5vvlT6VzbW814lxb256wfXvn8I02o/myvb/ae1GPVhYPa77qfDTDa2PKfDyn9vw0+bEOg277FLX33Dq6PaajzPXJ8vhcabvzRrzNYr7KIaXdJS2rLG5qvvrplbuRuap1OuB02L5R0ru7rDorIv5QZxNdlsVGlm9yrrrbKNuZJ+mDap/f3nGmpH+qXU6LJX1L0vdGmOs9EfGk7T0kLbN9v6Tnu4ybqfn6jaSTIuLVsnja89XtLrosm/pzNvKc6qP2tm2fKGlc0sGVxRs8phHxaLfbN5Drj5IuiYj1tk9V+6+V+TVv22SujgWSroyIVyrLmpqvfkb63GqsuCPi0E3cRK+32j+t9p8hs8teU9e34E8nl+2nbM+LiLWlaNZtZFOflnR1RLxU2fbacnG97V9J+sYoc5VDEYqIx2wvl7SvpKs0w/Nl+x2SrpX07fJnZGfb056vLup8NENnzBrbsyW9U+0/f2t9rEODuWT7ULV/GR4cEes7y3s8psMoor65IuJflau/kNT5RJ81kj4y5bbLh5CpVq6KBZJOry5ocL766ZW7kbnanA+VdH2rfbSP+N+s9vFlSTpJUp09+DqWlO3V2e4Gx9ZKeXWOKx8nqesr0E3ksj2nc6jB9lxJB0p6cKbnqzx2V6t9/O+KKeuGOV91Ppqhmvd4ScvK/CyRtMDts052l7SnpDs3IctAuWzvK+nnko6JiHWV5V0f0xHmmle5eoykVeXyDZIOK/nmSDpMr//Ls9FcJdtear/Yd1tlWZPz1c8SSZ8rZ5ccIOm5smPSzFw18Qpsvy9Jn1D7N9F6SU9JuqEs30nSdZVxR0l6WO3fmGdVlu+h9j+s1ZKukLTVkHLtIOkmSY+U79uX5eOSzq+MG5P0D0lbTLn9Mkn3q11AF0vaZlS5JH243Pe95fspm8N8STpR0kuS7ql87dPEfHV7vqh96OWYcnnr8vOvLvOxR+W2Z5XbPSTpyCE/3/vlurH8O+jMz5J+j+mIcv1A0spy/zdLel/ltl8o87ha0udHmatc/46ks6fcrrH5UnsnbW15Lq9R+7WIUyWdWtZb7f9w5tFy3+OV2w59rnjnJAAkszkfKgEAdEFxA0AyFDcAJENxA0AyFDcAJENxA0AyFDcAJENxA0Ay/wfjBc2Du+cXxAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "var_form = MyQAOAVarForm(Hc, p, initial_state)\n", "thermal_state = var_form.construct_circuit(result['opt_params'], qr, cr)\n", @@ -673,7 +612,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb index 544d87440..12e444040 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb @@ -126,7 +126,9 @@ } ], "source": [ - "from qiskit.aqua import get_aer_backend, QuantumInstance\n", + "from qiskit import Aer\n", + "from qiskit.qobj import RunConfig\n", + "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua.algorithms import QAOA\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "from qiskit.aqua.translators.ising import maxcut" @@ -174,8 +176,9 @@ }, "outputs": [], "source": [ - "backend = get_aer_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=100)\n", + "backend = Aer.get_backend('statevector_simulator')\n", + "run_config = RunConfig(shots=100)\n", + "quantum_instance = QuantumInstance(backend, run_config)\n", "result = qaoa.run(quantum_instance)\n", "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", "graph_solution = maxcut.get_graph_solution(x)\n", @@ -280,7 +283,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, From 41b6887f0506cb1778cbd356329738116e28140a Mon Sep 17 00:00:00 2001 From: Richard Chen Date: Fri, 15 Feb 2019 11:04:07 -0500 Subject: [PATCH 010/116] fix the format of entangler_map --- .../aqua/artificial_intelligence/qsvm_kernel_directly.ipynb | 2 +- .../aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb | 2 +- community/aqua/chemistry/ParticleHole_example.ipynb | 2 +- community/aqua/chemistry/PySCF_end2end.ipynb | 2 +- community/aqua/chemistry/Pyquante_end2end.ipynb | 2 +- 5 files changed, 5 insertions(+), 5 deletions(-) diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb index 08b9e25c0..b3b4c830b 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb @@ -193,7 +193,7 @@ "outputs": [], "source": [ "backend = Aer.get_backend('qasm_simulator')\n", - "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entangler_map={0: [1]})\n", + "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entangler_map=[[0, 1]])\n", "svm = QSVMKernel(feature_map, training_input, test_input, None)# the data for prediction can be feeded later.\n", "svm.random_seed = random_seed\n", "run_config = RunConfig(shots=shots, max_credits=10, memory=False, seed=random_seed)\n", diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb index 901bd98f9..2b7c41f3f 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb @@ -87,7 +87,7 @@ " 'algorithm': {\n", " 'name': 'QSVM.Kernel'\n", " },\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': {0: [1]}},\n", + " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': [[0, 1]]},\n", " 'multiclass_extension': {'name': 'AllPairs'},\n", " 'backend': {'shots': 1024}\n", "}\n", diff --git a/community/aqua/chemistry/ParticleHole_example.ipynb b/community/aqua/chemistry/ParticleHole_example.ipynb index a6980de2e..c1b1ba1f5 100644 --- a/community/aqua/chemistry/ParticleHole_example.ipynb +++ b/community/aqua/chemistry/ParticleHole_example.ipynb @@ -114,7 +114,7 @@ "lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", "\n", "# setup variational form generator (generate trial circuits for VQE)\n", - "var_form = RY(newqubitOp_jw.num_qubits, 5, entangler_map = {0: [1], 1:[2], 2:[3]})\n", + "var_form = RY(newqubitOp_jw.num_qubits, 5, entangler_map = [[0, 1], [1, 2], [2, 3]])\n", "\n", "# setup VQE with operator, variational form, and optimizer\n", "vqe_algorithm = VQE(newqubitOp_jw, var_form, lbfgs, 'matrix')\n", diff --git a/community/aqua/chemistry/PySCF_end2end.ipynb b/community/aqua/chemistry/PySCF_end2end.ipynb index e98113091..878d72ab5 100644 --- a/community/aqua/chemistry/PySCF_end2end.ipynb +++ b/community/aqua/chemistry/PySCF_end2end.ipynb @@ -105,7 +105,7 @@ "lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", "\n", "# setup variational form generator (generate trial circuits for VQE)\n", - "var_form = RYRZ(qubitOp.num_qubits, 5, entangler_map = {0: [1], 1:[2], 2:[3]})\n", + "var_form = RYRZ(qubitOp.num_qubits, 5, entangler_map = [[0, 1], [1, 2], [2, 3]])\n", "\n", "# setup VQE with operator, variational form, and optimizer\n", "vqe_algorithm = VQE(qubitOp, var_form, lbfgs, 'matrix')\n", diff --git a/community/aqua/chemistry/Pyquante_end2end.ipynb b/community/aqua/chemistry/Pyquante_end2end.ipynb index 33037430f..adada2985 100644 --- a/community/aqua/chemistry/Pyquante_end2end.ipynb +++ b/community/aqua/chemistry/Pyquante_end2end.ipynb @@ -118,7 +118,7 @@ "lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", "\n", "# setup variational form generator (generate trial circuits for VQE)\n", - "var_form = RY(qubitOp_jw.num_qubits, 5, entangler_map = {0: [1], 1:[2], 2:[3]})\n", + "var_form = RY(qubitOp_jw.num_qubits, 5, entangler_map = [[0, 1], [1, 2], [2, 3]])\n", "\n", "# setup VQE with operator, variational form, and optimizer\n", "vqe_algorithm = VQE(qubitOp_jw, var_form, lbfgs, 'matrix')\n", From e8cb5f4e0d7dd601df83cac9f74ce2fac83b6532 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Fri, 22 Feb 2019 18:28:11 -0500 Subject: [PATCH 011/116] Update h2_uccsd to latest chemistry/aqua --- community/aqua/chemistry/h2_uccsd.ipynb | 54 +++++++++++++++---------- 1 file changed, 33 insertions(+), 21 deletions(-) diff --git a/community/aqua/chemistry/h2_uccsd.ipynb b/community/aqua/chemistry/h2_uccsd.ipynb index ccad2fe26..dbde1be85 100644 --- a/community/aqua/chemistry/h2_uccsd.ipynb +++ b/community/aqua/chemistry/h2_uccsd.ipynb @@ -27,10 +27,10 @@ "Processing step 20 --- complete\n", "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515973 -1.0759136 -1.09262986 -1.105918 -1.11628597 -1.12416088\n", - " -1.12990474 -1.13382618 -1.13618943 -1.13722134 -1.13711706 -1.13604435\n", - " -1.13414766 -1.13155119 -1.12836188 -1.12467173 -1.12056028 -1.11609624\n", - " -1.11133942 -1.1063421 -1.10115033]\n", + "Energies: [[-1.05515973 -1.0759136 -1.09262986 -1.105918 -1.11628597 -1.12416089\n", + " -1.12990475 -1.1338262 -1.13618942 -1.13722134 -1.13711706 -1.13604434\n", + " -1.13414766 -1.1315512 -1.12836186 -1.12467174 -1.12056028 -1.11609624\n", + " -1.11133942 -1.10634211 -1.10115033]\n", " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", @@ -39,14 +39,15 @@ " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [49. 52. 50. 50. 43. 54. 47. 47. 52. 46. 42. 56. 45. 49. 44. 55. 47. 49.\n", - " 54. 58. 55.]\n" + "VQE num evaluations: [45. 52. 50. 50. 43. 50. 47. 47. 51. 46. 42. 57. 45. 47. 44. 54. 53. 49.\n", + " 51. 56. 55.]\n" ] } ], "source": [ "import numpy as np\n", "import pylab\n", + "import copy\n", "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", @@ -77,9 +78,14 @@ " d = start + i*by/steps\n", " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", + " dict = copy.deepcopy(qiskit_chemistry_dict)\n", + " dict['algorithm']['name'] = algorithms[j] \n", + " if algorithms[j] == 'ExactEigensolver':\n", + " del dict['optimizer']\n", + " del dict['variational_form']\n", + " del dict['initial_state']\n", " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", + " result = solver.run(dict)\n", " energies[j][i] = result['energy']\n", " hf_energies[i] = result['hf_energy']\n", " if algorithms[j] == 'VQE':\n", @@ -101,7 +107,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 2, @@ -110,12 +116,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -137,7 +145,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 3, @@ -146,12 +154,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VNX9//HXm7DvEnZCAFkUUNYI7oALYFXAqgWlYltb/bZu39ra6rf9KtpNa/urtVpbt6K0FtRvtbiCKIgoAlEDCIiERZOwJshOIMvn98e90CFmGZhMJsvn+XjMgzv3nnvv58wM88k95845MjOcc86541Uv0QE455yr2TyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicXElaaqkv4fLqZL2SkoKn3eQtEDSHkm/V+Bvkr6UtCSxkR8/SZdJygrrOjjR8VQ3JT8H1U3kZ9ZFxxNJNSVpo6QD4X+4w4+HEx1XLMzsCzNrbmZF4arrgVygpZn9CDgbuBBIMbNhiYqzEvwOuCms68dVfXJJJmlfic/OT+J4vm9JWlhi3TRJh0rEsAxK/Ry4Gq5+ogNw5brUzObG8wSS6ptZYTzPUY5uwCr7z69iuwEbzWzfsR4owfUoqRuwsrQNVRjnQDPLrILzlOe3ZvbzBMdQbUhKqq3J069IaqDDfwFK+l3YDLRB0kUR21tJelLSZkk5kn4Z0Zz0LUnvSfqDpDxgqqSksGkpNzzWTeFftfUlXSnpwxLnv03Sv8uIrYekd8LmqjeBthHbukccdxpwLfCT8K/VG4AngDPC5/eE+1wiKUPSTknvSxoQcbyNkn4qaTmwLzxuZ0n/J2l7WJdbIspPlfScpGfC+FZKSovY3lXSv8J98yKvACV9R9Lq8PWeLalbKXVvJGkvkAQsk7SunDj7Spof1mulpHERx5km6c+SXg9fi/ckdZT0YHj+T4+3yUzSa5J+H/F8hqSnwuWekt4O654r6R+SWpf3+kjqC/wl4n3bGUUMRz4H4fMe+k8T51xJjyiiaUnS6eF7v1PSMkkjI7bNl/SL8DXaI2mOpLbhtsaS/h7GulPSUkkdwm2dJc2StENSpqTvlRHr65JuKrFumaSvh8snS3ozPM4aSd+IKDdN0qPha74PGFXRa1NjmZk/quED2AhcUMa2bwEFwPcIvrS+D2wCFG5/Efgr0AxoDywBbojYtxC4meCKtAnwX8AqIAU4AZgLWLi9EbAD6Btx/o+By8uIbRHw/8L9zgX2AH8Pt3U/fNzw+TTglyXqtTDi+WBgGzA8rOe14evSKOI1ygC6hvWoB3wI3AU0BE4E1gNjwvJTgXzga+HxfgN8EG5LApYBfwhft8bA2eG28UAm0Dd8TX4OvF/Oe2dArxLvZWScDcLj/U8Y53nh63RSxOuSCwwN43gb2ABMCeP8JTAv2vOX2NYxfE3PAyaHr0+LcFsvgqbFRkA7YAHwYBSvz1HvW2nvbYltJT8HiwiaAxsSNG/u5j+fmS5AXvie1QvjywPahdvnA+uAPuFrOx+4L9x2A/Ay0DSMfyhBMyph3f4c1mMQsB04L+Jzcvj8U4D3ImLvB+wMX6NmQBbw7fBzMTh83/pFvAa7gLPC2Bsn+nslbt9XiQ7AH2W8McGXz97wQ3v48b1w27eAzIiyTcP/mB2BDsBBoEnE9qsOf/GE+35R4lxvEyaa8PkFJf6jPwr8KlzuD3xJ+GVe4jipBEmqWcS6Zzn+RPIo8IsS51gDjIh4jb4TsW14KXW7E/hbuDwVmBuxrR9wIFw+I/wyqV9KvV4Hrot4Xg/YD3Qr470rLZFExnkOsAWoF7Hun8DUiNfl8YhtNwOrI56fCuws57NjBF/GkZ+dMRHbLyf4AswlTAZlHGcC8HEUr89R71tEHfJLxPB0yc9BxGemacS+f4/4zPwUmF7i2LOBa8Pl+cDPI7b9AHgjXP4O8D4woMT+XYEiwgQarvsNMC3ic3L4/C2AfYffa+BXwFPh8kTg3RLH/itwd8Rr8Ews3wM15eFNW9XbBDNrHfF4PGLblsMLZrY/XGxO0D7fANgcXs7vJPhwt4/YN6vEeTqXWFdy+9PA1ZIEXAM8Z2YHS4m3M/ClHd3H8Xn5VSxXN+BHh+sR1qVreJ7SYu0GdC5R/n8IkuthWyKW9wONwyaWrsDnVnr/RTfgjxHH3AGI4K/laEXG2RnIMrPiiHWflzje1ojlA6U8b17B+YaU+OzMjtj2MsFf6GvM7EgnuYK76GYoaA7dTfCFfrhpsrzXpyy/KxHDtaWU6QzsiPgMw1ff0ytLvKdnA50iypR8Tw+/NtMJks4MSZsk/VZSg4hz7onYr+TrD0BY5lVgUrjqKuAfEbENLxHbZII/6EqrS63lne21TxbBFUnbcv7TlxzyeTNBs9ZhXY8qbPaBpEMEf0lfHT5Ksxk4QVKziGSSWsr5opVFcCX0q3LKRB47C9hgZr2P81ypKr0z/HAc/yhlv2hFxrkJ6CqpXkQySQU+i+H4x+JXwGqgh6SrzOyf4fpfh3GeamY7JE0ADvcTlff6xDKE+GagjaSmEckk8vOXRXBFUmofRnnMrAC4B7hHUnfgNYIr2jnhOVtEJJNUIKeMQ/0TuFvSAoKmsHkRsb1jZheWF8axxl0T+RVJLWNmmwn+o/xeUktJ9cJO1BHl7PYccKukLmHn6k9LKfMMwZdKQeRfsSXO/TmQTvAft6Gks4FLY6jO48B/SRquQDNJF0tqUUb5JcAeBR3bTRTcRHCKpNOiONcSgi+1+8LzNJZ0VrjtL8CdkvrDkZsZroyhXosJ/nL+iaQGYefxpcCMGI4ZFUnnErTpTyHoc/qTpMN/ibcgaE7dFa67PWLX8l6frUCKpIbHGk/EZ2Zq+Jk5g6M/M38HLpU0Jnw/G0saKSml1AMeXddRkk5VcKPJboJ+xWIzyyJo8vpNeLwBwHXhuUrzGsHVx73AzIjk/wrQR9I14fvYQNJpCm5AqFM8kVRvL+vo+/BfjHK/KQQdl6sI+jNe4OimgJIeJ0g+ywk60l8jaLeOvFVxOnAKZf9nO+xqgr6KHcDdBAnouJhZOsENBQ8T1COToD2+rPJFwCUEnacbCPoAngBaRXGuIoIvsF7AF0A2QRs4ZvYicD9BE8lu4BPgojIOVSEzOxSe66Iwxj8DU8zs0+M9ZimWlfjsPCipJcH7cZOZ5ZjZu8CTwN/CZst7gCEEHcSvAv+KiLnM14egj20lsEVSbkQMPykRQ+S2SJMJ+mDyCG4kmElwVU34pT+eoIlyO8FVwO1E993VkeCzv5vgCuwdgs8xBE1U3QmuDl8k6Nco9Vb7sBn3XwR9h89GrN8DjCZo9tpE0MR2P0FHfJ1y+C4f545QcCvxX8ysW8S6JgR3+wwxs7UJC87VepJmAp+a2d2JjsVFx69IHGEz0NcU/L6hC8GVRMmrn+8DSz2JuMoWNgf1DJthxxJcgbyU6Lhc9Lyz3UFwB9I9BE0KBwiaNe46slHaGJaZkIjgXK3XkaDpKJmgyez7loChZdzx86Yt55xzMfGmLeecczGpE01bbdu2te7duyc6DOecqzHatm3L7NmzZ5vZ2IrK1olE0r17d9LT0xMdhnPO1SgKB8CsiDdtOeeci4knEuecczHxROKccy4mdaKPpDQFBQVkZ2eTn5+f6FDqvMaNG5OSkkKDBg0SHYpz7jjU2USSnZ1NixYt6N69O8EwQy4RzIy8vDyys7Pp0aNHosNxzh2HuDZtSRqrYPrJTEl3lLK9kaSZ4fbF4VDPSBqmYHrVDAXTWl4Wsc9GSSvCbcd9K1Z+fj7JycmeRBJMEsnJyX5l6FwNFrcrknDo5kcIpsbMBpZKmmVmqyKKXUcwEVIvSZMIRs6cSDC6apqZFUrqRDCS6csR8yCMMrOyRhI9lhhjPYSrBP4+OFezxfOKZBjBdLDrw2GzZxAMxhZpPMHsexAM93y+JJnZ/oik0Zg6MjmMc85Vlk+37Ob+Nz6lKobBimci6cLR00xm89WpLI+UCRPHLoKB2wgnM1oJrAD+KyKxGDBH0oeSri/r5JKul5QuKX379u2VUqHK1rz50bOlTps2jZtuuumYjpGRkcFrr71WmWEdZdq0abRr145BgwYxaNAgpkyZcszHmD9/PpdcckkconPOlZRfUMQDsz/lkocWMnNpFpt3xb/ZuNp2tpvZYqB/ONvY05JeN7N84Gwzy5HUHnhT0qdmtqCU/R8DHgNIS0urlVc0hYWFZGRkkJ6ezte+9rVSt9evH/tbPHHiRB5++OGKCzrnEuq9zFx+9uIKNubt5/IhKfzs4r60aXbME1ces3hekeRw9NzLKXx1TuQjZSTVJ5jJLi+ygJmtJpj+85TweU747zaCOTOGxSH2hHv55ZcZPnw4gwcP5oILLmDr1q0ATJ06lWuuuYazzjqLa665hrvuuouZM2cyaNAgZs6c+ZXtRUVF3H777Zx22mkMGDCAv/71r0fO8cADDxxZf/fdxzaHUEZGBqeffjoDBgzgsssu48svvwQgMzOTCy64gIEDBzJkyBDWrVt31H5Lly5l8ODBX1nvnDt+O/Yd4kfPLWPyE4sB+Md3h/P7bwyskiQC8b0iWQr0ltSDIGFMIpiGNdIsgnmjFwFXAG+bmYX7ZIWd7d2Ak4GNkpoB9cxsT7g8mmAe5Zjc8/JKVm3aHethjtKvc0vuvrR/uWUOHDjAoEGDjjzfsWMH48aNA+Dss8/mgw8+QBJPPPEEv/3tb/n9738PwKpVq1i4cCFNmjRh2rRppKenH7limDp16lHbH3vsMVq1asXSpUs5ePAgZ511FqNHj2bt2rWsXbuWJUuWYGaMGzeOBQsWcO65534lzpkzZ7JwYTBN+6233sq3v/1tpkyZwp/+9CdGjBjBXXfdxT333MODDz7I5MmTueOOO7jsssvIz8+nuLiYrKyghfP999/n5ptv5t///jepqamxv8jO1XFmxksZOfzildXsPlDAjaN6cvN5vWncIKlK44hbIgmTwE3AbCAJeMrMVkq6F0g3s1kE80VPl5RJMMf3pHD3s4E7JBUAxcAPzCxX0onAi+FdPvWBZ83sjXjVId6aNGlCRkbGkeeHkwIEv3OZOHEimzdv5tChQ0f9xmLcuHE0adKkzONGbp8zZw7Lly/nhRdeAGDXrl2sXbuWOXPmMGfOHAYPHgzA3r17Wbt2bamJpGTT1q5du9i5cycjRowA4Nprr+XKK69kz5495OTkcNllwd3ajRs3PrLP6tWruf7665kzZw6dO3c+thfKOfcVX+Tt52cvreDdtbkM6tqa+y4/lZM7tkxILHHtIzGz14DXSqy7K2I5H7iylP2mA9NLWb8eGFjZcVZ05ZAIN998M7fddhvjxo1j/vz5TJ069ci2Zs2albtv5HYz409/+hNjxow5qszs2bO58847ueGGG45a/8gjj/D4448DVGonfqdOncjPz+fjjz/2ROJcDAqKinly4QYenPsZ9evV497x/Zk8vBtJ9RJ3G72PtVVN7dq1iy5dgpvcnn766TLLtWjRgj179pS5fcyYMTz66KMUFBQA8Nlnn7Fv3z7GjBnDU089xd69ewHIyclh27Zt3HjjjWRkZJCRkVHmF36rVq044YQTePfddwGYPn06I0aMoEWLFqSkpPDSS8F02wcPHmT//v0AtG7dmldffZU777yT+fPnH9uL4ZwDYFnWTsY9/B73vf4p5/Zux5u3ncuUM7onNImAJ5Jqa+rUqVx55ZUMHTqUtm3LnhJg1KhRrFq16khne0nf/e536devH0OGDOGUU07hhhtuoLCwkNGjR3P11VdzxhlncOqpp3LFFVeUm5BKevrpp7n99tsZMGAAGRkZ3HVXcKE5ffp0HnroIQYMGMCZZ57Jli1bjuzToUMHXnnlFW688UYWL158DK+Gc3Xb3oOF3PPySib8+T127DvIX745lMempNGpVdlN3FWpTszZnpaWZiUntlq9ejV9+/ZNUESuJH8/nCvd3FVbuevfn7B5dz7fHN6N28eeRMvGVTPAqaQPzSytonLV9nckzjlXl23aeYBfvLKK1z/ZQp8OzXnh6jMZ2u2ERIdVKk8kzjlXjRwqLOap9zbw0FtrKTbj9jEn8b1zTqRh/erbE+GJxDnnqon31+Vy179XkrltLxf07cDdl/aja5umiQ6rQp5InHMuwbbtzueXr65m1rJNdG3ThCevTeP8vh0SHVbUPJE451yCFBYV8/Siz/nDm59xqLCYW87rxQ9G9aryX6bHyhOJc84lQPrGHfz8pU/4dMsezu3TjnvG9adH2/J/bFxdVd/em1pu1KhRzJ49+6h1Dz74IN///vdZuXIl5513HieddBI9e/bk7rvvpri4GPjqsO6DBg1i1apVpZ3COVcN5e09yO3PL+OKvyxi14ECHp08hKe/fVqNTSLgiSRhrrrqKmbMmHHUuhkzZjBp0iTGjRvHHXfcwZo1a1ixYgVLlizhj3/845FyEydOPPLr84yMDPr161fV4TvnjlFRsfH3Dz7nvN+/w4sf53DDiBOZe9sILjq1U42fJdQTSYJcccUVvPrqqxw6dAiAjRs3smnTJjIzM4+M0AvQtGlTHn74YR544IFEhuuci8GyrJ1c9uf3+PlLn9C3Uwtev/Uc7ryoL80a1Y7ehdpRi1i9fgdsWVG5x+x4Klx0X5mb27Rpw7Bhw3j99dcZP348M2bM4Bvf+AYrV65k6NChR5Xt2bMnBw4cYOfOncDRw7oDLFq0qNzRgJ1zibFj3yF+N2cN/1zyBW2bN+KPkwYxbmDnGn8FUpJfkSRQZPPWjBkzuOqqq6Lar2TTlicR56qXgqJinlq4gZEPzGPm0iy+dWZ33vrRCMYP6lLrkgj4FUmgnCuHeBo/fjw//OEP+eijj9i/fz9Dhw7l448/ZsGCo2cOXr9+PcnJybRu3TohcTrnorfgs+3c+8oqMrft5Zzebbnrkn707tAi0WHFlV+RJFDz5s0ZNWoU3/nOd45cjUyePJmFCxcyd+5cIJhF8ZZbbuGee+5JZKjOuQpsyN3Hd59eypSnllBQVMzjU9J45jvDan0SAU8kCXfVVVexbNmyI4mkSZMmzJo1i1/96lf06dOHtm3bctZZZzF58uQj+xyeo/3w4/33309U+M7VeXvyC/jN66sZ/Yd3WLQujzsuOpk5PzyXC/t1qJXNWKXxYeSruZdeeonbbruNefPm0a1bt0SHEzc15f1w7rDiYuOFj7L57RtryN17kCuHpnD72JNo36JxxTvXED6MfC0xYcIEJkyYkOgwnHMRPvx8B1NnrWJFzi4Gp7bmyWvTGNi17vZheiJxzrkobd51gPte/5R/Z2yiQ8tGPDhxEOMH1b7beY9VXPtIJI2VtEZSpqQ7StneSNLMcPtiSd3D9cMkZYSPZZIui/aYx6IuNOvVBP4+uOouv6CIP721lvN+9w6vf7KFm0b14u0fjWTC4Np5O++xitsViaQk4BHgQiAbWCpplplFDgx1HfClmfWSNAm4H5gIfAKkmVmhpE7AMkkvAxbFMaPSuHFj8vLySE5O9g9CApkZeXl5NG5ce9qVXe1RXGy8vHwTv31jDTk7D3DRKR35n6/1rRFzhFSleDZtDQMyzWw9gKQZwHgg8kt/PDA1XH4BeFiSzGx/RJnGBAkk2mNGJSUlhezsbLZv336su7pK1rhxY1JSUhIdhnNHWbw+j1+/tppl2bvo26klD1wxgDN7tU10WNVSPBNJFyAr4nk2MLysMuHVxy4gGciVNBx4CugGXBNuj+aYAEi6HrgeIDU19SvbGzRoQI8ePY6jWs652mz99r3c9/qnzFm1lY4tG/O7Kwdy2eAuJNXzlouyVNvOdjNbDPSX1Bd4WtLrx7j/Y8BjENz+G4cQnXO1SN7egzz01lr+sfgLGtWvx49H9+G6s0+kScOaNclUIsQzkeQAXSOep4TrSiuTLak+0ArIiyxgZqsl7QVOifKYzjkXtfyCIp56bwOPzlvH/oIirhrWlVvP70O7Fo0SHVqNEc9EshToLakHwZf9JODqEmVmAdcCi4ArgLfNzMJ9ssLmrG7AycBGYGcUx3TOuQoVFxsvZeTwu9lr2LQrnwv6tueOi06mV/vaP6RJZYtbIgmTwE3AbCAJeMrMVkq6F0g3s1nAk8B0SZnADoLEAHA2cIekAqAY+IGZ5QKUdsx41cE5Vzu9vy6XX7+2mk9ydnNql1b8/huDOKNncqLDqrHq7BApzrm6J3PbHn7z2qe89ek2urRuwu1jTmLcwM7U8470UvkQKc45F9q2O58/vrWWGUuzaNogiZ+OPZlvn9Wdxg28I70yeCJxztVauw4U8Nd31vG39zZSUFTMNad34+bzepHc3DvSK5MnEudcrXPgUBFPL9rIo/PXsetAAeMGdua2C/vQvW2zRIdWK3kicc7VGgVFxTyXnsUf565l256DjDqpHT8ecxL9O7dKdGi1micS51yNV1xsvLJiM/9vzho25u0nrdsJPHz1EIb1aJPo0OoETyTOuRrLzJj/2XYeeGMNqzbv5uSOLXjy2jTOO7m9D8ZahTyROOdqpA8/38H9b6xhyYYddG3ThAcnDuLSgZ19TKwE8ETinKtRPt2ym9/NXsPc1dto27wRvxjfn4mnpdKwflynV3Ll8ETinKsRvsjbz4NzP+PFjByaN6rP7WNO4ttndadpQ/8aSzR/B5xz1VrWjv08Mi+TFz7MJqmeuP7cE/n+iJ60btow0aG5kCcS51y1lLPzAI/My+T59CyE+Obp3fj+yJ50aOmzaVY3nkicc9XK5l0H+PO8dcxcmoVhTDotlR+M6kmnVk0SHZorgycS51y1sG13Pn+ev45nl3xBcbHxjdO6cuOoXnRp7QmkuvNE4pxLqO17DvKXd9bx9w8+p7DYuHJoCjeO6kXXNk0THZqLkicS51xC5O09yF8XrOeZRRspKDIuG9yFm8/rRbdkHw+rpvFE4pyrUjv2HeKxMIHkFxQxYVAXbj6/Nz18QMUayxOJc65K5O09yJMLN/D0+xvZX1DEuIGdueX83vRs1zzRobkYeSJxzsXV1t35PL5gPf9Y/AX5hUVcfGonbj2/N707+NzotYUnEudcXGR/uZ+/vLOO59KzKSo2xg/qzA9G9qJXe78CqW3imkgkjQX+CCQBT5jZfSW2NwKeAYYCecBEM9so6ULgPqAhcAi43czeDveZD3QCDoSHGW1m2+JZD+dc9Dbk7uPP8zJ58eMcJLhiaFe+P6Inqcl+F1ZtFbdEIikJeAS4EMgGlkqaZWarIopdB3xpZr0kTQLuByYCucClZrZJ0inAbKBLxH6TzSw9XrE7547dmi17eGReJq8s30SDpHp88/Ru3DDiRP8hYR0QzyuSYUCmma0HkDQDGA9EJpLxwNRw+QXgYUkys48jyqwEmkhqZGYH4xivc+44rMjexcPz1jJ75VaaNUzie+eeyHfPPpF2LXxe9LoinomkC5AV8TwbGF5WGTMrlLQLSCa4IjnscuCjEknkb5KKgP8DfmlmVvLkkq4HrgdITU2NsSrOuZI+/HwHf3o7k/lrttOycX1uOb833z6zOyc088EU65pq3dkuqT9Bc9foiNWTzSxHUguCRHINQT/LUczsMeAxgLS0tK8kGufcsTMz3l+Xx8NvZ7JofR5tmjXk9jEncc0Z3WjZuEGiw3MJEs9EkgN0jXieEq4rrUy2pPpAK4JOdySlAC8CU8xs3eEdzCwn/HePpGcJmtC+kkicc5WnqNh445Mt/HXBOpZn76J9i0b8/OK+XD081ecDcXFNJEuB3pJ6ECSMScDVJcrMAq4FFgFXAG+bmUlqDbwK3GFm7x0uHCab1maWK6kBcAkwN451cK5Oyy8o4oUPs3n83fV8nrefHm2b8evLTuXrQ7rQuEFSosNz1UTcEknY53ETwR1XScBTZrZS0r1AupnNAp4EpkvKBHYQJBuAm4BewF2S7grXjQb2AbPDJJJEkEQej1cdnKurdu4/xN8/+Jxp728kd+8hBnZtzZ0XncyF/Tr6nOjuK1RKP3Wtk5aWZunpfrewcxXZtPMATy7cwD+XfMH+Q0WMPKkd/zWiJ8N7tEHyBFLXSPrQzNIqKueNm8451mzZw18XrGNWxiYMGDewM9efeyJ9O7VMdGiuBvBE4lwdZWYs2bCDv7yzjnlrttOkQRLXnNGN687uQcoJ/it0Fz1PJM7VMUXFxpurtvKXd9aRkbWT5GYN+dGFffjm6d38NyDuuHgica6O2HuwkOfTs5j2/kY+z9tPapum/GLCKVw5NMXvwHIx8UTiXC2Xs/MAT7+/kX8u+YI9+YUMSW3NT8aczJj+HaifVC/R4blawBOJc7XUR198yZMLN/DGJ1sAuOiUjlx3dg8Gp56Q4MhcbeOJxLlapLComNkrt/LEwvV8/MVOWjSuz3fP7sGUM7vTpbWPwuviwxOJc7XA7vwCZi4J+j9ydh6gW3JTpl7ajyvTutKskf83d/HlnzDnarDP8/bxt/c28nx6FvsOFTG8RxvuvrQf5/ft4L9Ad1XGE4lzNYyZsXjDDv723gbmrNpKksSlAztz3dk9OKVLq0SH5+ogTyTO1RD7DhbyUkYOz7z/OWu27qF10wb8YGRPppzRnQ4tGyc6PFeHeSJxrprbkLuP6Ys+5/kPs9iTX0j/zi357RUDGDews//+w1ULnkicq4aKio13PtvG0+9/zjufbadBkvjaqZ2YckZ3hqS29gEUXbXiicS5amTn/kM8n57N9A8+54sd++nQshG3XdiHScO60r6FN1+56skTiXPVwKpNu3lm0UZeysghv6CYYd3b8JOxJzGmf0ca+K/PXTXnicS5BCkoKuaNT7bwzKKNLN34JY0b1OOywV245vTu9Ovsw7e7msMTiXNVLGvHfv655AueS88md+9BUts05ecX9+XKoV1p1bRBosNz7ph5InGuChQWFfPWp9t4dvEXLFi7HQHnndyeycO7MaJPO+r5jwddDeaJxLk4ytl5gJlLvmBmehZbdx+kQ8tG3Hxebyad1pXOPvaVqyXimkgkjQX+CCQBT5jZfSW2NwKeAYYCecBEM9so6ULgPqAhcAi43czeDvcZCkwDmgCvAbdcJ18VAAAZ0ElEQVRaXZh43tUYRcXG/DXB1ce8NdswYESfdvxifCrnndzeh253tU7cEomkJOAR4EIgG1gqaZaZrYoodh3wpZn1kjQJuB+YCOQCl5rZJkmnALOBLuE+jwLfAxYTJJKxwOvxqodz0dq6O5+ZS7OYuTSLnJ0HaNeiEd8f2ZNJp6XStY1PXetqr6gSiaR/AU8Cr5tZcZTHHgZkmtn68BgzgPFAZCIZD0wNl18AHpYkM/s4osxKoEl49dIGaGlmH4THfAaYgCcSlyDFxca7mbn844PPeevTbRQVG+f0bsvPL+7LBf06+K27rk6I9orkz8C3gYckPQ/8zczWVLBPFyAr4nk2MLysMmZWKGkXkExwRXLY5cBHZnZQUpfwOJHH7EIpJF0PXA+QmppaQajOHZucnQd4IT2b5z/MIvvLAyQ3a8h3z+nBVael0r1ts0SH51yViiqRmNlcYK6kVsBV4XIW8DjwdzMriEdwkvoTNHeNPtZ9zewx4DGAtLQ070NxMTtYWMSclVt5Lj2LhZm5mMHZvdryk7HBtLWN6vu4V65uirqPRFIy8E3gGuBj4B/A2cC1wMhSdskBukY8TwnXlVYmW1J9oBVBpzuSUoAXgSlmti6ifEoFx3SuUq3atJvn0rN4KSOHnfsL6NK6Cbec15srhqZ434dzRN9H8iJwEjCdoBN8c7hppqT0MnZbCvSW1IPgy34ScHWJMrMIEtEi4ArgbTMzSa2BV4E7zOy9w4XNbLOk3ZJOJ+hsnwL8KZo6OHcsdu0vYNayHGamZ/FJzm4aJtVjdP8OTDytK2f2bOuTRjkXIdorkofMbF5pG8wsrYz1hZJuIrjjKgl4ysxWSroXSDezWQQd+NMlZQI7CJINwE1AL+AuSXeF60ab2TbgB/zn9t/X8Y52V0mKi41F6/OYuTSLN1Zu4VBhMX07tWTqpf2YMLgLrZs2THSIzlVLiuYnGJK+XsrqXcCK8Mu9WktLS7P09LIunFxdV7LjvGXj+kwY3IVvpHX1GQddnSbpw7IuFiJFe0VyHXAGcPiqZCTwIdBD0r1mNv24onQuQfYeLOT1FZt58eMcFq3PwwzO6pXM7WOCEXd9wijnohdtImkA9DWzrQCSOhD8In04sICg78S5aq2o2HgvM5d/fZTNGyu3kF9QTLfkptx6fm8uH+Id584dr2gTScrhJBLaBnQ1sx2S4nLrr3OVZc2WPfzro2xeyshh6+6DtGxcn68PSeHyIV0YknqCzzboXIyiTSTzJb0CPB8+vzxc1wzYGZfInIvB9j0HmbVsE//6KJuVm3ZTv54YeVI77r40hfNObu9NV85VomgTyY3A1wl+NwJBs9b/hYMljopHYM4dq/yCIuau3sq/Psrhnc+2U1RsDEhpxd2X9uPSgZ1p27xRokN0rlaqMJGEgy/ONbNRwP/FPyTnoldcbCzesIN/Z+Tw6orN7MkvpGPLxlx/7ol8fXAXendokegQnav1KkwkZlYkqVhSKzPbVRVBOVceM2NFzi5mZWzi5eWb2Lr7IE0bJjH2lI5cPiSF009M9h8MOleFom3a2guskPQmsO/wSjO7JS5ROVeKzG17mbVsEy8v28SG3H00SBIj+rTnZxd35oK+7Wna0Odpcy4Rov2f96/w4VyV2rTzAC8v28SsZZtYuWk3EpxxYjI3nHsiY0/p6L82d64aiHb036clNQFSoxg+3rmY7Nh3iFdXbObljE0s2bgDgIEprfjfS/pxyYBOdGjZOMEROuciRTto46XA7wimvu0haRBwr5mNi2dwru7Ye7CQN1dtYVbGJt5dm0thsdGzXTNuu7AP4wZ29jk+nKvGom3amkow4+F8ADPLkHRinGJydcTeg4W8tXorryzfzDufbedQYTFdWjfhunN6MG5gZ/p1auk/FnSuBog2kRSY2a4S/6mjnXLXuSP25Bfw1uptvLriP8mjQ8tGXD0slYsHdGJo6gnU8zuunKtRok0kKyVdDSRJ6g3cArwfv7BcbbInv4C5q7fy6vItLFh7dPK4ZEAnhnjycK5GizaR3Az8DDgI/JNgjpFfxCsoV/MdlTw+286hoiB5TB6eysWnevJwrjaJ9q6t/QSJ5GfxDcfVZLvzC3hr9VZeXb6ZBZ/lcqiomI4tGzP5dE8eztVm0d611Qf4MdA9ch8zOy8+YbmaYtuefN5ctZXZK7eyaF0uBUVGx5aN+ebp3bh4QEcGd/Xk4VxtF23T1vPAX4AngKL4heNqgs/z9jF75RZmr9zKR198iRmktmnKt87szthTPHk4V9dEm0gKzezRuEbiqi0zY9Xm3cxeuZU5K7fw6ZY9APTt1JJbz+/NmP4dObljC79V17k6KtpE8rKkHwAvEnS4A2BmO8rbSdJY4I9AEvCEmd1XYnsjgiHphwJ5wEQz2ygpGXgBOA2YZmY3RewzH+gEHAhXja4J88bXNEXFxkdffMnsT7Ywe9UWsnYcQIK0bifw84v7MqZ/R59R0DkHRJ9Irg3/vT1inQFl/igxHH7+EeBCIBtYKmmWma2KKHYd8KWZ9ZI0CbgfmAjkA/8LnBI+SppsZulRxu6ilF9QxKJ1ecxZtYU3V20ld+8hGibV46xeydw4shfn9+1AuxY+p4dz7mjR3rXV4ziOPQzINLP1AJJmAOOByEQynuBX8xBcgTwsSWa2D1goqddxnNcdg2178pn36Tbmrt7GwrW5HCgoolnDJEad3J4x/Tsy8qR2tGjcINFhOueqsXITiaSfmNlvw+Urzez5iG2/NrP/KWf3LkBWxPNsYHhZZcysUNIuIBnIrSDuv0kqIpho65fhTI0lY78euB4gNTW1gsPVHYf7O95evY25n25jWVYwU3LnVo25YmgK5/dtz+knJvtUtM65qFV0RTIJ+G24fCf/mbMdYCxQXiKJl8lmliOpBUEiuYagn+UoZvYY8BhAWlraVxJNXZJfUMSi9Xm8tXorb6/exqZd+UgwMKU1P7qwD+f37UDfTt5Z7pw7PhUlEpWxXNrzknKArhHPU8J1pZXJllQfaEXQ6V4mM8sJ/90j6VmCJrSvJJK6bvueg2GT1VYWZuay/1ARTRokcU7vtvz3BX0YdXJ77+9wzlWKihKJlbFc2vOSlgK9JfUgSBiTgKtLlJlF0JG/CLgCeLu0ZqrDwmTT2sxyJTUALgHmVhBHnVBcbCzP2cX8NduYv2Y7y7J3YhY0WV0+JIXz+rbnDG+ycs7FQUWJZKCk3QRXH03CZcLn5c4uFPZ53EQwLlcS8JSZrZR0L5BuZrOAJ4HpkjKBHQTJJjiBtBFoCTSUNAEYDXwOzA6TSBJBEnn8WCpcm+TtPciCtdt5Z812FqzNZce+Q0earG67wJusnHNVQ+VcANQaaWlplp5e8+8WLio2lmXvZP6a7byzZhvLc3ZhBsnNGjKiTztGnNSOc3q3o00zn37WORc7SR+aWVpF5aL9HYlLkNy9B1nw2Xbmr9nOu2u38+X+AuoJBnVtzQ8v6MPIk9pxSudWPiSJcy5hPJFUMwVFxWRk7eTdz7Yz/7PtLM/eBUDb5g0ZdXJ7Rp7UnnN6teUEv+pwzlUTnkgSzMxYt30fC9duZ2FmLh+s38Heg4XUEwxOPYEfXdiHkSe1p3/nln7V4ZyrljyRJEDe3oMszMxl4dpc3svMZdOufCAYQXfcoM6c06stZ/ZsS6um/oty51z154mkCuQXFLF04w4Wrs3l3bW5rNoc3PzWsnF9zurVlhvPa8s5vdqRmuyDIDrnah5PJHFQVGys3ryb9zJzWZiZy5INOzhYWEyDJDEk9QR+PLoPZ/dux6ldWpHkzVXOuRrOE0klKC42Ptu2h0Xr8li0Lo/FG3aw60ABAH06NGfy8G6c07stw3q0oVkjf8mdc7WLf6sdh8Md5IvW5/HBujwWrc9jx75DQNDPMbZ/R87omcwZPZPp0LLc320651yN54kkCmbGFzv2B1cc64Orjm17gvm9OrVqzMiT2nHGiUHiSDnB+zmcc3WLJ5JyvPhxNgvX5rFo3X/urGrbvBFn9EzmzJ7JnHFiMt2Sm/oQJM65Os0TSTkeX7CBzbsOcPqJyfzXyCB59GzX3BOHc85F8ERSjmnfOY22zRr5DwGdc64cnkjK0b6Fd5Q751xF6iU6AOecczWbJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOOReTuCYSSWMlrZGUKemOUrY3kjQz3L5YUvdwfbKkeZL2Snq4xD5DJa0I93lI/utA55xLqLglEklJwCPARUA/4CpJ/UoUuw740sx6AX8A7g/X5wP/C/y4lEM/CnwP6B0+xlZ+9M4556IVzyuSYUCmma03s0PADGB8iTLjgafD5ReA8yXJzPaZ2UKChHKEpE5ASzP7wMwMeAaYEMc6OOecq0A8E0kXICvieXa4rtQyZlYI7AKSKzhmdgXHdM45V4VqbWe7pOslpUtK3759e6LDcc65WiueiSQH6BrxPCVcV2oZSfWBVkBeBcdMqeCYAJjZY2aWZmZp7dq1O8bQnXPORSueiWQp0FtSD0kNgUnArBJlZgHXhstXAG+HfR+lMrPNwG5Jp4d3a00B/l35oTvnnItW3Eb/NbNCSTcBs4Ek4CkzWynpXiDdzGYBTwLTJWUCOwiSDQCSNgItgYaSJgCjzWwV8ANgGtAEeD18OOecSxCVcwFQa6SlpVl6enqiw3DOuRpF0odmllZRuVrb2e6cc65qeCJxzjkXE08kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xM4ppIJI2VtEZSpqQ7StneSNLMcPtiSd0jtt0Zrl8jaUzE+o2SVkjKkJQez/idc85VrH68DiwpCXgEuBDIBpZKmmVmqyKKXQd8aWa9JE0C7gcmSuoHTAL6A52BuZL6mFlRuN8oM8uNV+zOOeeiF88rkmFAppmtN7NDwAxgfIky44Gnw+UXgPMlKVw/w8wOmtkGIDM8nnPOuWomnomkC5AV8Tw7XFdqGTMrBHYByRXsa8AcSR9Kur6sk0u6XlK6pPTt27fHVBHnnHNlq4md7Web2RDgIuBGSeeWVsjMHjOzNDNLa9euXdVG6JxzdUg8E0kO0DXieUq4rtQykuoDrYC88vY1s8P/bgNexJu8nHMuoeKZSJYCvSX1kNSQoPN8Vokys4Brw+UrgLfNzML1k8K7unoAvYElkppJagEgqRkwGvgkjnVwzjlXgbjdtWVmhZJuAmYDScBTZrZS0r1AupnNAp4EpkvKBHYQJBvCcs8Bq4BC4EYzK5LUAXgx6I+nPvCsmb0Rrzo455yrmIILgNotLS3N0tP9JyfOOXcsJH1oZmkVlauJne3OOeeqEU8kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xM4ppIJI2VtEZSpqQ7StneSNLMcPtiSd0jtt0Zrl8jaUy0x3TOOVe14pZIJCUBjwAXAf2AqyT1K1HsOuBLM+sF/AG4P9y3HzAJ6A+MBf4sKSnKYzrnnKtC9eN47GFAppmtB5A0AxgPrIooMx6YGi6/ADwsSeH6GWZ2ENggKTM8HlEcs/I8Owm+3BCXQzvnXJW4YQHUbxTXU8QzkXQBsiKeZwPDyypjZoWSdgHJ4foPSuzbJVyu6JgASLoeuB4gNTX1+GrQpgfUb3h8+zrnXLWguJ8hnokkoczsMeAxgLS0NDuug4z9TWWG5JxztVI8O9tzgK4Rz1PCdaWWkVQfaAXklbNvNMd0zjlXheKZSJYCvSX1kNSQoPN8Vokys4Brw+UrgLfNzML1k8K7unoAvYElUR7TOedcFYpb01bY53ETMBtIAp4ys5WS7gXSzWwW8CQwPexM30GQGAjLPUfQiV4I3GhmRQClHTNedXDOOVcxBRcAtVtaWpqlp6cnOgznnKtRJH1oZmkVlfNftjvnnIuJJxLnnHMx8UTinHMuJp5InHPOxaROdLZL2g58fpy7twVyKzGcmsDrXDfUtTrXtfpCbHXOBTCzsRUVrBOJJBaS0qO5a6E28TrXDXWtznWtvlB1dfamLeecczHxROKccy4mnkgq9liiA0gAr3PdUNfqXNfqC1VUZ+8jcc45FxO/InHOORcTTyTOOedi4okkJGmspDWSMiXdUcr2b0naLikjfHw3EXFWlorqG5b5hqRVklZKeraqY6xsUbzHf4h4fz+TtDMRcVamKOqcKmmepI8lLZf0tUTEWZmiqHM3SW+F9Z0vKSURcVYWSU9J2ibpkzK2S9JD4euxXNKQSg/CzOr8g2BI+nXAiUBDYBnQr0SZbwEPJzrWKqxvb+Bj4ITweftExx3vOpcofzPBNAUJjz3O7/NjwPfD5X7AxkTHXQV1fh64Nlw+D5ie6LhjrPO5wBDgkzK2fw14nWDO3dOBxZUdg1+RBIYBmWa23swOATOA8QmOKZ6iqe/3gEfM7EsAM9tWxTFWtmN9j68C/lklkcVPNHU2oGW43ArYVIXxxUM0de4HvB0uzytle41iZgsI5nMqy3jgGQt8ALSW1KkyY/BEEugCZEU8zw7XlXR5eGn4gqSupWyvKaKpbx+gj6T3JH0gqcJhEqq5aN9jJHUDevCfL5uaKpo6TwW+KSkbeI3gSqwmi6bOy4Cvh8uXAS0kJVdBbIkS9Wf/eHkiid7LQHczGwC8CTyd4HjirT5B89ZIgr/OH5fUOqERVZ1JwAsWzspZy10FTDOzFIImkOmSavv3wo+BEZI+BkYAOUBdeK/jprZ/YKKVA0ReYaSE644wszwzOxg+fQIYWkWxxUOF9SX4q2WWmRWY2QbgM4LEUlNFU+fDJlHzm7UgujpfBzwHYGaLgMYEA/3VVNH8X95kZl83s8HAz8J1Nf7GinIcy2f/uHgiCSwFekvqIakhwRfJrMgCJdoUxwGrqzC+ylZhfYGXCK5GkNSWoKlrfVUGWcmiqTOSTgZOABZVcXzxEE2dvwDOB5DUlyCRbK/SKCtXNP+X20Zcdd0JPFXFMVa1WcCU8O6t04FdZra5Mk9QvzIPVlOZWaGkm4DZBHd9PGVmKyXdC6Sb2SzgFknjgEKCjq1vJSzgGEVZ39nAaEmrCC77bzezvMRFHZso6wzBF88MC293qcmirPOPCJotf0jQ8f6tmlz3KOs8EviNJAMWADcmLOBKIOmfBHVqG/Z13Q00ADCzvxD0fX0NyAT2A9+u9Bhq8GfGOedcNeBNW84552LiicQ551xMPJE455yLiScS55xzMfFE4pxzLiaeSFyNJGlvFGX+W1LTSjznBEn9KvF478ew797w386SXiinXGtJPzje8zgXDU8krjb7b+CYEomkpHI2TyAY8K9SmNmZlXCMTWZ2RTlFWgOeSFxceSJxNZqkkeGcEi9I+lTSP8Jf8N4CdAbmSZoXlh0taZGkjyQ9L6l5uH6jpPslfQRcKel7kpZKWibp/yQ1lXQmwYgGD4TzlfSUNCgc0HK5pBclnRAeb76CuU3SJa2WdJqkf0laK+mXEbHvjVj+qaQV4TnvK6WePcLYV5Q4RvfD81BI6i9pSRjfckm9gfuAnuG6ByQ1VzAXx0fhscZHHGe1pMcVzD8zR1KTcFsvSXPD2D6S1DNcf3v4Oi2XdE+lvrGuZkn0WPr+8MfxPIC94b8jgV0E4wfVIxja5Oxw20agbbjcluBXzM3C5z8F7ooo95OIYydHLP8SuDlcngZcEbFtOTAiXL4XeDBcng/cHy7fSjA0eyegEcEYZskl6nAR8D7QNHzeppT6zgKmhMs3RuzbnXAeCuBPwORwuSHQJHJ7uL4+0DLiNckkmKeiO8GoDYPCbc8B3wyXFwOXhcuNCa7yRhPMZaLwdX8FODfRnwt/JObhQ6S42mCJmWUDSMog+FJcWKLM6QTNUu9JguCLNnI8rZkRy6eEf/W3BpoTDLdxFEmtgNZm9k646mmCCZMOOzzkygpgpYVjG0laTzCAXuRwMxcAfzOz/QBmVtrcEmcBl4fL04H7SymzCPiZghn//mVma8O6HhU68GtJ5wLFBMOJdwi3bTCzjHD5Q6C7pBZAFzN7MYwtP6zHaIJk8nFYvjnBoJ4LSonL1XKeSFxtcDBiuYjSP9cC3jSzq8o4xr6I5WnABDNbJulbhINXHmdMxSXiKy4jvmiUO56RmT0raTFwMfCapBv46kCbk4F2wFAzK5C0keAqIzJmCF7HJuWcTsBvzOyvxxC/q6W8j8TVZnuAFuHyB8BZknoBSGomqU8Z+7UANktqQPDF+5Xjmdku4EtJ54TbrgHe4fi8CXz78B1mktqUUuY9ggElKRHTEZJOBNab2UPAv4EBHP0aQDAL4rYwiYwCupUXmJntAbIlTQjP0SiMczbwnYh+pi6S2kdVW1freCJxtdljwBuS5pnZdoIRm/8paTlBM9DJZez3vwT9Au8Bn0asnwHcLunjsMP5WoLO9+XAIIJ+kmNmZm8QNIWlh01zPy6l2K3AjZJWUPbsdt8APgmPcQrB9Kp5BM15n0h6APgHkBYeZ0qJ+pXlGoLRr5cT9OV0NLM5wLPAovBYL3B0wnJ1iI/+65xzLiZ+ReKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xMPJE455yLyf8HByXLL4ekyaQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX9//HXm7DvEnbCJosCyhpxF3ABrApYtaBUbGur39btW1tb/bZfRbtpbX+1rdbWrShtBfWrFhcEURBRBKIGEBAJiyZhS4LsBLJ8fn/cCx1iloHJZLJ8no/HPLhz77n3fs7MMJ/cc+6cIzPDOeecO171Eh2Ac865ms0TiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEhdXkqZK+ke43E3SXklJ4fMOkhZK2iPp9wr8XdKXkpYmNvLjJ+lySZlhXYckOp7qpuTnoLqJ/My66HgiqaYkbZJ0IPwPd/jxcKLjioWZfWFmzc2sKFx1A5ALtDSzHwHnABcBKWY2PFFxVoLfATeHdf24qk8uySTtK/HZ+Ukcz/ctSYtKrJsm6VCJGJZDqZ8DV8PVT3QArlyXmdm8eJ5AUn0zK4znOcrRHVht//lVbHdgk5ntO9YDJbgeJXUHVpW2oQrjHGRmGVVwnvL81sx+nuAYqg1JSbU1efoVSQ10+C9ASb8Lm4E2Sro4YnsrSU9K2iIpW9IvI5qTviXpPUl/kJQHTJWUFDYt5YbHujn8q7a+pKskfVji/LdL+ncZsfWU9E7YXPUm0DZiW4+I404DrgN+Ev61eiPwBHBm+PzecJ9LJaVL2inpfUkDI463SdJPJa0A9oXH7Szp/yTlhHW5NaL8VEnPSXomjG+VpNSI7V0lvRjumxd5BSjpO5LWhK/3HEndS6l7I0l7gSRguaT15cTZT9KCsF6rJI2LOM40SX+RNDt8Ld6T1FHSQ+H5Pz3eJjNJr0v6fcTzGZKeCpd7SXo7rHuupH9Kal3e6yOpH/DXiPdtZxQxHPkchM976j9NnPMkPaKIpiVJZ4Tv/U5JyyWNjNi2QNIvwtdoj6S5ktqG2xpL+kcY605JyyR1CLd1ljRL0g5JGZK+V0assyXdXGLdcklfD5dPlvRmeJy1kr4RUW6apEfD13wfMKqi16bGMjN/VMMHsAm4sIxt3wIKgO8RfGl9H9gMKNz+EvA3oBnQHlgK3BixbyFwC8EVaRPgv4DVQApwAjAPsHB7I2AH0C/i/B8DV5QR22Lg/4X7nQfsAf4Rbutx+Ljh82nAL0vUa1HE8yHAduD0sJ7Xha9Lo4jXKB3oGtajHvAhcDfQEDgR2ACMCctPBfKBr4XH+w3wQbgtCVgO/CF83RoD54TbxgMZQL/wNfk58H45750BvUu8l5FxNgiP9z9hnOeHr9NJEa9LLjAsjONtYCMwJYzzl8D8aM9fYlvH8DU9H5gcvj4twm29CZoWGwHtgIXAQ1G8Pke9b6W9tyW2lfwcLCZoDmxI0Ly5m/98ZroAeeF7Vi+MLw9oF25fAKwH+oav7QLg/nDbjcArQNMw/mEEzaiEdftLWI/BQA5wfsTn5PD5pwDvRcTeH9gZvkbNgEzg2+HnYkj4vvWPeA12AWeHsTdO9PdK3L6vEh2AP8p4Y4Ivn73hh/bw43vhtm8BGRFlm4b/MTsCHYCDQJOI7Vcf/uIJ9/2ixLneJkw04fMLS/xHfxT4Vbg8APiS8Mu8xHG6ESSpZhHr/sXxJ5JHgV+UOMdaYETEa/SdiG2nl1K3u4C/h8tTgXkR2/oDB8LlM8Mvk/ql1Gs2cH3E83rAfqB7Ge9daYkkMs5zga1AvYh1zwJTI16XxyO23QKsiXh+KrCznM+OEXwZR352xkRsv4LgCzCXMBmUcZwJwMdRvD5HvW8RdcgvEcPTJT8HEZ+ZphH7/iPiM/NTYHqJY88BrguXFwA/j9j2A+CNcPk7wPvAwBL7dwWKCBNouO43wLSIz8nh87cA9h1+r4FfAU+FyxOBd0sc+2/APRGvwTOxfA/UlIc3bVVvE8ysdcTj8YhtWw8vmNn+cLE5Qft8A2BLeDm/k+DD3T5i38wS5+lcYl3J7U8D10gScC3wnJkdLCXezsCXdnQfx+flV7Fc3YEfHa5HWJeu4XlKi7U70LlE+f8hSK6HbY1Y3g80DptYugKfW+n9F92BP0Yccwcggr+WoxUZZ2cg08yKI9Z9XuJ42yKWD5TyvHkF5xta4rMzJ2LbKwR/oa81syOd5AruopuhoDl0N8EX+uGmyfJen7L8rkQM15VSpjOwI+IzDF99T68q8Z6eA3SKKFPyPT382kwnSDozJG2W9FtJDSLOuSdiv5KvPwBhmdeASeGqq4F/RsR2eonYJhP8QVdaXWot72yvfTIJrkjalvOfvuSQz1sImrUO63pUYbMPJB0i+Ev6mvBRmi3ACZKaRSSTbqWcL1qZBFdCvyqnTOSxM4GNZtbnOM/VTaV3hh+O45+l7BetyDg3A10l1YtIJt2Az2I4/rH4FbAG6CnpajN7Nlz/6zDOU81sh6QJwOF+ovJen1iGEN8CtJHUNCKZRH7+MgmuSErtwyiPmRUA9wL3SuoBvE5wRTs3PGeLiGTSDcgu41DPAvdIWkjQFDY/IrZ3zOyi8sI41rhrIr8iqWXMbAvBf5TfS2opqV7YiTqinN2eA26T1CXsXP1pKWWeIfhSKYj8K7bEuT8H0gj+4zaUdA5wWQzVeRz4L0mnK9BM0iWSWpRRfimwR0HHdhMFNxGcIum0KM61lOBL7f7wPI0lnR1u+ytwl6QBcORmhqtiqNcSgr+cfyKpQdh5fBkwI4ZjRkXSeQRt+lMI+pz+LOnwX+ItCJpTd4Xr7ojYtbzXZxuQIqnhscYT8ZmZGn5mzuToz8w/gMskjQnfz8aSRkpKKfWAR9d1lKRTFdxospugX7HYzDIJmrx+Ex5vIHB9eK7SvE5w9XEfMDMi+b8K9JV0bfg+NpB0moIbEOoUTyTV2ys6+j78l6LcbwpBx+Vqgv6MFzi6KaCkxwmSzwqCjvTXCdqtI29VnA6cQtn/2Q67hqCvYgdwD0ECOi5mlkZwQ8HDBPXIIGiPL6t8EXApQefpRoI+gCeAVlGcq4jgC6w38AWQRdAGjpm9BDxA0ESyG/gEuLiMQ1XIzA6F57o4jPEvwBQz+/R4j1mK5SU+Ow9JaknwftxsZtlm9i7wJPD3sNnyXmAoQQfxa8CLETGX+foQ9LGtArZKyo2I4SclYojcFmkyQR9MHsGNBDMJrqoJv/THEzRR5hBcBdxBdN9dHQk++7sJrsDeIfgcQ9BE1YPg6vAlgn6NUm+1D5txXyToO/xXxPo9wGiCZq/NBE1sDxB0xNcph+/yce4IBbcS/9XMukesa0Jwt89QM1uXsOBcrSdpJvCpmd2T6FhcdPyKxBE2A31Nwe8buhBcSZS8+vk+sMyTiKtsYXNQr7AZdizBFcjLiY7LRc872x0EdyDdS9CkcICgWePuIxulTWGZCYkIztV6HQmajpIJmsy+bwkYWsYdP2/acs45FxNv2nLOOReTOtG01bZtW+vRo0eiw3DOuRqjbdu2zJkzZ46Zja2obJ1IJD169CAtLS3RYTjnXI2icADMinjTlnPOuZh4InHOORcTTyTOOediUif6SEpTUFBAVlYW+fn5iQ6lzmvcuDEpKSk0aNAg0aE4545DnU0kWVlZtGjRgh49ehAMM+QSwczIy8sjKyuLnj17Jjoc59xxiGvTlqSxCqafzJB0ZynbG0maGW5fEg71jKThCqZXTVcwreXlEftskrQy3Hbct2Ll5+eTnJzsSSTBJJGcnOxXhs7VYHG7IgmHbn6EYGrMLGCZpFlmtjqi2PUEEyH1ljSJYOTMiQSjq6aaWaGkTgQjmb4SMQ/CKDMrayTRY4kx1kO4SuDvg3M1WzyvSIYTTAe7IRw2ewbBYGyRxhPMvgfBcM8XSJKZ7Y9IGo2pI5PDOOdcZfl0624eeONTqmIYrHgmki4cPc1kFl+dyvJImTBx7CIYuI1wMqNVwErgvyISiwFzJX0o6YayTi7pBklpktJycnIqpUKVrXnzo2dLnTZtGjfffPMxHSM9PZ3XX3+9MsM6yrRp02jXrh2DBw9m8ODBTJky5ZiPsWDBAi699NI4ROecKym/oIgH53zKpX9axMxlmWzZFf9m42rb2W5mS4AB4WxjT0uabWb5wDlmli2pPfCmpE/NbGEp+z8GPAaQmppaK69oCgsLSU9PJy0tja997Wulbq9fP/a3eOLEiTz88MMVF3TOJdR7Gbn87KWVbMrbzxVDU/jZJf1o0+yYJ648ZvG8Isnm6LmXU/jqnMhHykiqTzCTXV5kATNbQzD95ynh8+zw3+0Ec2YMj0PsCffKK69w+umnM2TIEC688EK2bdsGwNSpU7n22ms5++yzufbaa7n77ruZOXMmgwcPZubMmV/ZXlRUxB133MFpp53GwIED+dvf/nbkHA8++OCR9ffcc2xzCKWnp3PGGWcwcOBALr/8cr788ksAMjIyuPDCCxk0aBBDhw5l/fr1R+23bNkyhgwZ8pX1zrnjt2PfIX703HImP7EEgH9+93R+/41BVZJEIL5XJMuAPpJ6EiSMSQTTsEaaRTBv9GLgSuBtM7Nwn8yws707cDKwSVIzoJ6Z7QmXRxPMoxyTe19ZxerNu2M9zFH6d27JPZcNKLfMgQMHGDx48JHnO3bsYNy4cQCcc845fPDBB0jiiSee4Le//S2///3vAVi9ejWLFi2iSZMmTJs2jbS0tCNXDFOnTj1q+2OPPUarVq1YtmwZBw8e5Oyzz2b06NGsW7eOdevWsXTpUsyMcePGsXDhQs4777yvxDlz5kwWLQqmab/tttv49re/zZQpU/jzn//MiBEjuPvuu7n33nt56KGHmDx5MnfeeSeXX345+fn5FBcXk5kZtHC+//773HLLLfz73/+mW7dusb/IztVxZsbL6dn84tU17D5QwE2jenHL+X1o3CCpSuOIWyIJk8DNwBwgCXjKzFZJug9IM7NZBPNFT5eUQTDH96Rw93OAOyUVAMXAD8wsV9KJwEvhXT71gX+Z2RvxqkO8NWnShPT09CPPDycFCH7nMnHiRLZs2cKhQ4eO+o3FuHHjaNKkSZnHjdw+d+5cVqxYwQsvvADArl27WLduHXPnzmXu3LkMGTIEgL1797Ju3bpSE0nJpq1du3axc+dORowYAcB1113HVVddxZ49e8jOzubyy4O7tRs3bnxknzVr1nDDDTcwd+5cOnfufGwvlHPuK77I28/PXl7Ju+tyGdy1NfdfcSond2yZkFji2kdiZq8Dr5dYd3fEcj5wVSn7TQeml7J+AzCosuOs6MohEW655RZuv/12xo0bx4IFC5g6deqRbc2aNSt338jtZsaf//xnxowZc1SZOXPmcNddd3HjjTcetf6RRx7h8ccfB6jUTvxOnTqRn5/Pxx9/7InEuRgUFBXz5KKNPDTvM+rXq8d94wcw+fTuJNVL3G30PtZWNbVr1y66dAlucnv66afLLNeiRQv27NlT5vYxY8bw6KOPUlBQAMBnn33Gvn37GDNmDE899RR79+4FIDs7m+3bt3PTTTeRnp5Oenp6mV/4rVq14oQTTuDdd98FYPr06YwYMYIWLVqQkpLCyy8H020fPHiQ/fv3A9C6dWtee+017rrrLhYsWHBsL4ZzDoDlmTsZ9/B73D/7U87r0443bz+PKWf2SGgSAU8k1dbUqVO56qqrGDZsGG3blj0lwKhRo1i9evWRzvaSvvvd79K/f3+GDh3KKaecwo033khhYSGjR4/mmmuu4cwzz+TUU0/lyiuvLDchlfT0009zxx13MHDgQNLT07n77uBCc/r06fzpT39i4MCBnHXWWWzduvXIPh06dODVV1/lpptuYsmSJcfwajhXt+09WMi9r6xiwl/eY8e+g/z1m8N4bEoqnVqV3cRdlerEnO2pqalWcmKrNWvW0K9fvwRF5Ery98O50s1bvY27//0JW3bn883Tu3PH2JNo2bhqBjiV9KGZpVZUrtr+jsQ55+qyzTsP8ItXVzP7k6307dCcF645i2HdT0h0WKXyROKcc9XIocJinnpvI396ax3FZtwx5iS+d+6JNKxffXsiPJE451w18f76XO7+9yoytu/lwn4duOey/nRt0zTRYVXIE4lzziXY9t35/PK1NcxavpmubZrw5HWpXNCvQ6LDiponEuecS5DComKeXvw5f3jzMw4VFnPr+b35wajeVf7L9Fh5InHOuQRI27SDn7/8CZ9u3cN5fdtx77gB9Gxb/o+Nq6vq23tTy40aNYo5c+Ycte6hhx7i+9//PqtWreL888/npJNOolevXtxzzz0UFxcDXx3WffDgwaxevbq0UzjnqqG8vQe54/nlXPnXxew6UMCjk4fy9LdPq7FJBDyRJMzVV1/NjBkzjlo3Y8YMJk2axLhx47jzzjtZu3YtK1euZOnSpfzxj388Um7ixIlHfn2enp5O//79qzp859wxKio2/vHB55z/+3d46eNsbhxxIvNuH8HFp3aq8bOEeiJJkCuvvJLXXnuNQ4cOAbBp0yY2b95MRkbGkRF6AZo2bcrDDz/Mgw8+mMhwnXMxWJ65k8v/8h4/f/kT+nVqwezbzuWui/vRrFHt6F2oHbWI1ew7YevKyj1mx1Ph4vvL3NymTRuGDx/O7NmzGT9+PDNmzOAb3/gGq1atYtiwYUeV7dWrFwcOHGDnzp3A0cO6AyxevLjc0YCdc4mxY98hfjd3Lc8u/YK2zRvxx0mDGTeoc42/AinJr0gSKLJ5a8aMGVx99dVR7VeyacuTiHPVS0FRMU8t2sjIB+czc1km3zqrB2/9aATjB3epdUkE/IokUM6VQzyNHz+eH/7wh3z00Ufs37+fYcOG8fHHH7Nw4dEzB2/YsIHk5GRat26dkDidc9Fb+FkO9726moztezm3T1vuvrQ/fTq0SHRYceVXJAnUvHlzRo0axXe+850jVyOTJ09m0aJFzJs3DwhmUbz11lu59957Exmqc64CG3P38d2nlzHlqaUUFBXz+JRUnvnO8FqfRMATScJdffXVLF++/EgiadKkCbNmzeJXv/oVffv2pW3btpx99tlMnjz5yD6H52g//Hj//fcTFb5zdd6e/AJ+M3sNo//wDovX53HnxScz94fncVH/DrWyGas0Pox8Nffyyy9z++23M3/+fLp3757ocOKmprwfzh1WXGy88FEWv31jLbl7D3LVsBTuGHsS7Vs0rnjnGsKHka8lJkyYwIQJExIdhnMuwoef72DqrNWszN7FkG6tefK6VAZ1rbt9mJ5InHMuSlt2HeD+2Z/y7/TNdGjZiIcmDmb84Np3O++ximsfiaSxktZKypB0ZynbG0maGW5fIqlHuH64pPTwsVzS5dEe81jUhWa9msDfB1fd5RcU8ee31nH+795h9idbuXlUb97+0UgmDKmdt/Meq7hdkUhKAh4BLgKygGWSZplZ5MBQ1wNfmllvSZOAB4CJwCdAqpkVSuoELJf0CmBRHDMqjRs3Ji8vj+TkZP8gJJCZkZeXR+PGtadd2dUexcXGKys289s31pK98wAXn9KR//lavxoxR0hVimfT1nAgw8w2AEiaAYwHIr/0xwNTw+UXgIclycz2R5RpTJBAoj1mVFJSUsjKyiInJ+dYd3WVrHHjxqSkpCQ6DOeOsmRDHr9+fQ3Ls3bRr1NLHrxyIGf1bpvosKqleCaSLkBmxPMs4PSyyoRXH7uAZCBX0unAU0B34NpwezTHBEDSDcANAN26dfvK9gYNGtCzZ8/jqJZzrjbbkLOX+2d/ytzV2+jYsjG/u2oQlw/pQlI9b7koS7XtbDezJcAASf2ApyXNPsb9HwMeg+D23ziE6JyrRfL2HuRPb63jn0u+oFH9evx4dF+uP+dEmjSsWZNMJUI8E0k20DXieUq4rrQyWZLqA62AvMgCZrZG0l7glCiP6ZxzUcsvKOKp9zby6Pz17C8o4urhXbntgr60a9Eo0aHVGPFMJMuAPpJ6EnzZTwKuKVFmFnAdsBi4EnjbzCzcJzNszuoOnAxsAnZGcUznnKtQcbHxcno2v5uzls278rmwX3vuvPhkerev/UOaVLa4JZIwCdwMzAGSgKfMbJWk+4A0M5sFPAlMl5QB7CBIDADnAHdKKgCKgR+YWS5AaceMVx2cc7XT++tz+fXra/gkezendmnF778xmDN7JSc6rBqrzg6R4pyrezK27+E3r3/KW59up0vrJtwx5iTGDepMPe9IL5UPkeKcc6Htu/P541vrmLEsk6YNkvjp2JP59tk9aNzAO9IrgycS51yttetAAX97Zz1/f28TBUXFXHtGd245vzfJzb0jvTJ5InHO1ToHDhXx9OJNPLpgPbsOFDBuUGduv6gvPdo2S3RotZInEudcrVFQVMxzaZn8cd46tu85yKiT2vHjMScxoHOrRIdWq3kicc7VeMXFxqsrt/D/5q5lU95+UrufwMPXDGV4zzaJDq1O8ETinKuxzIwFn+Xw4BtrWb1lNyd3bMGT16Vy/sntfTDWKuSJxDlXI334+Q4eeGMtSzfuoGubJjw0cTCXDersY2IlgCcS51yN8unW3fxuzlrmrdlO2+aN+MX4AUw8rRsN68d1eiVXDk8kzrka4Yu8/Tw07zNeSs+meaP63DHmJL59dg+aNvSvsUTzd8A5V61l7tjPI/MzeOHDLJLqiRvOO5Hvj+hF66YNEx2aC3kicc5VS9k7D/DI/AyeT8tEiG+e0Z3vj+xFh5Y+m2Z144nEOVetbNl1gL/MX8/MZZkYxqTTuvGDUb3o1KpJokNzZfBE4pyrFrbvzucvC9bzr6VfUFxsfOO0rtw0qjddWnsCqe48kTjnEipnz0H++s56/vHB5xQWG1cNS+GmUb3p2qZpokNzUfJE4pxLiLy9B/nbwg08s3gTBUXG5UO6cMv5veme7ONh1TSeSJxzVWrHvkM8FiaQ/IIiJgzuwi0X9KGnD6hYY3kicc5Viby9B3ly0Uaefn8T+wuKGDeoM7de0Ide7ZonOjQXI08kzrm42rY7n8cXbuCfS74gv7CIS07txG0X9KFPB58bvbbwROKci4usL/fz13fW81xaFkXFxvjBnfnByN70bu9XILVNXBOJpLHAH4Ek4Akzu7/E9kbAM8AwIA+YaGabJF0E3A80BA4Bd5jZ2+E+C4BOwIHwMKPNbHs86+Gci97G3H38ZX4GL32cjQRXDuvK90f0oluy34VVW8UtkUhKAh4BLgKygGWSZpnZ6ohi1wNfmllvSZOAB4CJQC5wmZltlnQKMAfoErHfZDNLi1fszrljt3brHh6Zn8GrKzbTIKke3zyjOzeOONF/SFgHxPOKZDiQYWYbACTNAMYDkYlkPDA1XH4BeFiSzOzjiDKrgCaSGpnZwTjG65w7DiuzdvHw/HXMWbWNZg2T+N55J/Ldc06kXQufF72uiGci6QJkRjzPAk4vq4yZFUraBSQTXJEcdgXwUYkk8ndJRcD/Ab80Myt5ckk3ADcAdOvWLcaqOOdK+vDzHfz57QwWrM2hZeP63HpBH759Vg9OaOaDKdY11bqzXdIAguau0RGrJ5tZtqQWBInkWoJ+lqOY2WPAYwCpqalfSTTOuWNnZry/Po+H385g8YY82jRryB1jTuLaM7vTsnGDRIfnEiSeiSQb6BrxPCVcV1qZLEn1gVYEne5ISgFeAqaY2frDO5hZdvjvHkn/ImhC+0oicc5VnqJi441PtvK3hetZkbWL9i0a8fNL+nHN6d18PhAX10SyDOgjqSdBwpgEXFOizCzgOmAxcCXwtpmZpNbAa8CdZvbe4cJhsmltZrmSGgCXAvPiWAfn6rT8giJe+DCLx9/dwOd5++nZthm/vvxUvj60C40bJCU6PFdNxC2RhH0eNxPccZUEPGVmqyTdB6SZ2SzgSWC6pAxgB0GyAbgZ6A3cLenucN1oYB8wJ0wiSQRJ5PF41cG5umrn/kP844PPmfb+JnL3HmJQ19bcdfHJXNS/o8+J7r5CpfRT1zqpqamWluZ3CztXkc07D/Dkoo08u/QL9h8qYuRJ7fivEb04vWcbJE8gdY2kD80staJy3rjpnGPt1j38beF6ZqVvxoBxgzpzw3kn0q9Ty0SH5moATyTO1VFmxtKNO/jrO+uZvzaHJg2SuPbM7lx/Tk9STvBfobvoeSJxro4pKjbeXL2Nv76znvTMnSQ3a8iPLurLN8/o7r8BccfFE4lzdcTeg4U8n5bJtPc38Xnefrq1acovJpzCVcNS/A4sFxNPJM7Vctk7D/D0+5t4dukX7MkvZGi31vxkzMmMGdCB+kn1Eh2eqwU8kThXS330xZc8uWgjb3yyFYCLT+nI9ef0ZEi3ExIcmattPJE4V4sUFhUzZ9U2nli0gY+/2EmLxvX57jk9mXJWD7q09lF4XXx4InGuFtidX8DMpUH/R/bOA3RPbsrUy/pzVWpXmjXy/+YuvvwT5lwN9nnePv7+3iaeT8tk36EiTu/Zhnsu688F/Tr4L9BdlfFE4lwNY2Ys2biDv7+3kbmrt5Ekcdmgzlx/Tk9O6dIq0eG5OsgTiXM1xL6Dhbycns0z73/O2m17aN20AT8Y2YspZ/agQ8vGiQ7P1WGeSJyr5jbm7mP64s95/sNM9uQXMqBzS3575UDGDersv/9w1YInEueqoaJi453PtvP0+5/zzmc5NEgSXzu1E1PO7MHQbq19AEVXrXgica4a2bn/EM+nZTH9g8/5Ysd+OrRsxO0X9WXS8K60b+HNV6568kTiXDWwevNunlm8iZfTs8kvKGZ4jzb8ZOxJjBnQkQb+63NXzXkicS5BCoqKeeOTrTyzeBPLNn1J4wb1uHxIF649owf9O/vw7a7m8ETiXBXL3LGfZ5d+wXNpWeTuPUi3Nk35+SX9uGpYV1o1bZDo8Jw7Zp5InKsChUXFvPXpdv615AsWrstBwPknt2fy6d0Z0bcd9fzHg64G80TiXBxl7zzAzKVfMDMtk227D9KhZSNuOb8Pk07rSmcf+8rVEnFNJJLGAn8EkoAnzOz+EtsbAc8Aw4A8YKKZbZJ0EXA/0BA4BNxhZm+H+wwDpgFNgNdmNzTQAAAZv0lEQVSB26wuTDzvaoyiYmPB2uDqY/7a7Rgwom87fjG+G+ef3N6Hbne1TtwSiaQk4BHgIiALWCZplpmtjih2PfClmfWWNAl4AJgI5AKXmdlmSacAc4Au4T6PAt8DlhAkkrHA7HjVw7lobdudz8xlmcxclkn2zgO0a9GI74/sxaTTutG1jU9d62qvqBKJpBeBJ4HZZlYc5bGHAxlmtiE8xgxgPBCZSMYDU8PlF4CHJcnMPo4oswpoEl69tAFamtkH4TGfASbgicQlSHGx8W5GLv/84HPe+nQ7RcXGuX3a8vNL+nFh/w5+666rE6K9IvkL8G3gT5KeB/5uZmsr2KcLkBnxPAs4vawyZlYoaReQTHBFctgVwEdmdlBSl/A4kcfsQikk3QDcANCtW7cKQnXu2GTvPMALaVk8/2EmWV8eILlZQ757bk+uPq0bPdo2S3R4zlWpqBKJmc0D5klqBVwdLmcCjwP/MLOCeAQnaQBBc9foY93XzB4DHgNITU31PhQXs4OFRcxdtY3n0jJZlJGLGZzTuy0/GRtMW9uovo975eqmqPtIJCUD3wSuBT4G/gmcA1wHjCxll2yga8TzlHBdaWWyJNUHWhF0uiMpBXgJmGJm6yPKp1RwTOcq1erNu3kuLZOX07PZub+ALq2bcOv5fbhyWIr3fThH9H0kLwEnAdMJOsG3hJtmSkorY7dlQB9JPQm+7CcB15QoM4sgES0GrgTeNjOT1Bp4DbjTzN47XNjMtkjaLekMgs72KcCfo6mDc8di1/4CZi3PZmZaJp9k76ZhUj1GD+jAxNO6clavtj5plHMRor0i+ZOZzS9tg5mllrG+UNLNBHdcJQFPmdkqSfcBaWY2i6ADf7qkDGAHQbIBuBnoDdwt6e5w3Wgz2w78gP/c/jsb72h3laS42Fi8IY+ZyzJ5Y9VWDhUW069TS6Ze1p8JQ7rQumnDRIfoXLWkaH6CIenrpazeBawMv9yrtdTUVEtLK+vCydV1JTvOWzauz4QhXfhGalefcdDVaZI+LOtiIVK0VyTXA2cCh69KRgIfAj0l3Wdm048rSucSZO/BQmav3MJLH2ezeEMeZnB272TuGBOMuOsTRjkXvWgTSQOgn5ltA5DUgeAX6acDCwn6Tpyr1oqKjfcycnnxoyzeWLWV/IJiuic35bYL+nDFUO84d+54RZtIUg4nkdB2oKuZ7ZAUl1t/nassa7fu4cWPsng5PZttuw/SsnF9vj40hSuGdmFotxN8tkHnYhRtIlkg6VXg+fD5FeG6ZsDOuETmXAxy9hxk1vLNvPhRFqs276Z+PTHypHbcc1kK55/c3puunKtE0SaSm4CvE/xuBIJmrf8LB0scFY/AnDtW+QVFzFuzjRc/yuadz3IoKjYGprTinsv6c9mgzrRt3ijRITpXK1WYSMLBF+eZ2Sjg/+IfknPRKy42lmzcwb/Ts3lt5Rb25BfSsWVjbjjvRL4+pAt9OrRIdIjO1XoVJhIzK5JULKmVme2qiqCcK4+ZsTJ7F7PSN/PKis1s232Qpg2TGHtKR64YmsIZJyb7Dwadq0LRNm3tBVZKehPYd3ilmd0al6icK0XG9r3MWr6ZV5ZvZmPuPhokiRF92/OzSzpzYb/2NG3o87Q5lwjR/s97MXw4V6U27zzAK8s3M2v5ZlZt3o0EZ56YzI3nncjYUzr6r82dqwaiHf33aUlNgG5RDB/vXEx27DvEayu38Er6ZpZu2gHAoJRW/O+l/bl0YCc6tGyc4Aidc5GiHbTxMuB3BFPf9pQ0GLjPzMbFMzhXd+w9WMibq7cyK30z767LpbDY6NWuGbdf1Jdxgzr7HB/OVWPRNm1NJZjxcAGAmaVLOjFOMbk6Yu/BQt5as41XV2zhnc9yOFRYTJfWTbj+3J6MG9SZ/p1a+o8FnasBok0kBWa2q8R/6min3HXuiD35Bby1ZjuvrfxP8ujQshHXDO/GJQM7MazbCdTzO66cq1GiTSSrJF0DJEnqA9wKvB+/sFxtsie/gHlrtvHaiq0sXHd08rh0YCeGevJwrkaLNpHcAvwMOAg8SzDHyC/iFZSr+Y5KHp/lcKgoSB6TT+/GJad68nCuNon2rq39BInkZ/ENx9Vku/MLeGvNNl5bsYWFn+VyqKiYji0bM/kMTx7O1WbR3rXVF/gx0CNyHzM7Pz5huZpi+5583ly9jTmrtrF4fS4FRUbHlo355hnduWRgR4Z09eThXG0XbdPW88BfgSeAoviF42qCz/P2MWfVVuas2sZHX3yJGXRr05RvndWDsad48nCurok2kRSa2aNxjcRVW2bG6i27mbNqG3NXbeXTrXsA6NepJbdd0IcxAzpycscWfquuc3VUtInkFUk/AF4i6HAHwMx2lLeTpLHAH4Ek4Akzu7/E9kYEQ9IPA/KAiWa2SVIy8AJwGjDNzG6O2GcB0Ak4EK4aXRPmja9pioqNj774kjmfbGXO6q1k7jiABKndT+Dnl/RjzICOPqOgcw6IPpFcF/57R8Q6A8r8UWI4/PwjwEVAFrBM0iwzWx1R7HrgSzPrLWkS8AAwEcgH/hc4JXyUNNnM0qKM3UUpv6CIxevzmLt6K2+u3kbu3kM0TKrH2b2TuWlkby7o14F2LXxOD+fc0aK9a6vncRx7OJBhZhsAJM0AxgORiWQ8wa/mIbgCeViSzGwfsEhS7+M4rzsG2/fkM//T7cxbs51F63I5UFBEs4ZJjDq5PWMGdGTkSe1o0bhBosN0zlVj5SYSST8xs9+Gy1eZ2fMR235tZv9Tzu5dgMyI51nA6WWVMbNCSbuAZCC3grj/LqmIYKKtX4YzNZaM/QbgBoBu3bpVcLi643B/x9trtjPv0+0szwxmSu7cqjFXDkvhgn7tOePEZJ+K1jkXtYquSCYBvw2X7+I/c7YDjAXKSyTxMtnMsiW1IEgk1xL0sxzFzB4DHgNITU39SqKpS/ILili8IY+31mzj7TXb2bwrHwkGpbTmRxf15YJ+HejXyTvLnXPHp6JEojKWS3teUjbQNeJ5SriutDJZkuoDrQg63ctkZtnhv3sk/YugCe0riaSuy9lzMGyy2saijFz2HyqiSYMkzu3Tlv++sC+jTm7v/R3OuUpRUSKxMpZLe17SMqCPpJ4ECWMScE2JMrMIOvIXA1cCb5fWTHVYmGxam1mupAbApcC8CuKoE4qLjRXZu1iwdjsL1uawPGsnZkGT1RVDUzi/X3vO9CYr51wcVJRIBknaTXD10SRcJnxe7uxCYZ/HzQTjciUBT5nZKkn3AWlmNgt4EpguKQPYQZBsghNIm4CWQENJE4DRwOfAnDCJJBEkkcePpcK1Sd7egyxcl8M7a3NYuC6XHfsOHWmyuv1Cb7JyzlUNlXMBUGukpqZaWlrNv1u4qNhYnrWTBWtzeGftdlZk78IMkps1ZETfdow4qR3n9mlHm2Y+/axzLnaSPjSz1IrKRfs7EpcguXsPsvCzHBaszeHddTl8ub+AeoLBXVvzwwv7MvKkdpzSuZUPSeKcSxhPJNVMQVEx6Zk7efezHBZ8lsOKrF0AtG3ekFEnt2fkSe05t3dbTvCrDudcNeGJJMHMjPU5+1i0LodFGbl8sGEHew8WUk8wpNsJ/Oiivow8qT0DOrf0qw7nXLXkiSQB8vYeZFFGLovW5fJeRi6bd+UDwQi64wZ35tzebTmrV1taNfVflDvnqj9PJFUgv6CIZZt2sGhdLu+uy2X1luDmt5aN63N277bcdH5bzu3djm7JPgiic67m8UQSB0XFxpotu3kvI5dFGbks3biDg4XFNEgSQ7udwI9H9+WcPu04tUsrkry5yjlXw3kiqQTFxcZn2/eweH0ei9fnsWTjDnYdKACgb4fmTD69O+f2acvwnm1o1shfcudc7eLfasfhcAf54g15fLA+j8Ub8tix7xAQ9HOMHdCRM3slc2avZDq0LPd3m845V+N5IomCmfHFjv3BFceG4Kpj+55gfq9OrRoz8qR2nHlikDhSTvB+Dudc3eKJpBwvfZzFonV5LF7/nzur2jZvxJm9kjmrVzJnnphM9+SmPgSJc65O80RSjscXbmTLrgOccWIy/zUySB692jX3xOGccxE8kZRj2ndOo22zRv5DQOecK4cnknK0b+Ed5c45V5F6iQ7AOedczeaJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxSSuiUTSWElrJWVIurOU7Y0kzQy3L5HUI1yfLGm+pL2SHi6xzzBJK8N9/iT/daBzziVU3BKJpCTgEeBioD9wtaT+JYpdD3xpZr2BPwAPhOvzgf8FflzKoR8Fvgf0CR9jKz9655xz0YrnFclwIMPMNpjZIWAGML5EmfHA0+HyC8AFkmRm+8xsEUFCOUJSJ6ClmX1gZgY8A0yIYx2cc85VIJ6JpAuQGfE8K1xXahkzKwR2AckVHDOrgmM655yrQrW2s13SDZLSJKXl5OQkOhznnKu14plIsoGuEc9TwnWllpFUH2gF5FVwzJQKjgmAmT1mZqlmltquXbtjDN0551y04plIlgF9JPWU1BCYBMwqUWYWcF24fCXwdtj3USoz2wLslnRGeLfWFODflR+6c865aMVt9F8zK5R0MzAHSAKeMrNVku4D0sxsFvAkMF1SBrCDINkAIGkT0BJoKGkCMNrMVgM/AKYBTYDZ4cM551yCqJwLgFojNTXV0tLSEh2Gc87VKJI+NLPUisrV2s5255xzVcMTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xMPJE455yLiScS55xzMfFE4pxzLiaeSJxzzsXEE4lzzrmYeCJxzjkXE08kzjnnYhLXRCJprKS1kjIk3VnK9kaSZobbl0jqEbHtrnD9WkljItZvkrRSUrqktHjG75xzrmL143VgSUnAI8BFQBawTNIsM1sdUex64Esz6y1pEvAAMFFSf2ASMADoDMyT1NfMisL9RplZbrxid845F714XpEMBzLMbIOZHQJmAONLlBkPPB0uvwBcIEnh+hlmdtDMNgIZ4fGcc85VM/FMJF2AzIjnWeG6UsuYWSGwC0iuYF8D5kr6UNINZZ1c0g2S0iSl5eTkxFQR55xzZauJne3nmNlQ4GLgJknnlVbIzB4zs1QzS23Xrl3VRuicc3VIPBNJNtA14nlKuK7UMpLqA62AvPL2NbPD/24HXsKbvJxzLqHimUiWAX0k9ZTUkKDzfFaJMrOA68LlK4G3zczC9ZPCu7p6An2ApZKaSWoBIKkZMBr4JI51cM45V4G43bVlZoWSbgbmAEnAU2a2StJ9QJqZzQKeBKZLygB2ECQbwnLPAauBQuAmMyuS1AF4KeiPpz7wLzN7I151cM45VzEFFwC1W2pqqqWl+U9OnHPuWEj60MxSKypXEzvbnXPOVSOeSJxzzsXEE4lzzrmYeCJxzjkXE08kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mMQ1kUgaK2mtpAxJd5ayvZGkmeH2JZJ6RGy7K1y/VtKYaI/pnHOuasUtkUhKAh4BLgb6A1dL6l+i2PXAl2bWG/gD8EC4b39gEjAAGAv8RVJSlMd0zjlXherH8djDgQwz2wAgaQYwHlgdUWY8MDVcfgF4WJLC9TPM7CCwUVJGeDyiOGblmX0nbF0Zl0M751zcdTwVLr4/7qeJZ9NWFyAz4nlWuK7UMmZWCOwCksvZN5pjAiDpBklpktJycnJiqIZzzrnyxPOKJKHM7DHgMYDU1FQ7roNUQSZ3zrmaLp5XJNlA14jnKeG6UstIqg+0AvLK2TeaYzrnnKtC8Uwky4A+knpKakjQeT6rRJlZwHXh8pXA22Zm4fpJ4V1dPYE+wNIoj+mcc64Kxa1py8wKJd0MzAGSgKfMbJWk+4A0M5sFPAlMDzvTdxAkBsJyzxF0ohcCN5lZEUBpx4xXHZxzzlVMwQVA7ZaammppaWmJDsM552oUSR+aWWpF5fyX7c4552LiicQ551xMPJE455yLiScS55xzMakTne2ScoDPj3P3tkBuJYZTE3id64a6Vue6Vl+Irc65AGY2tqKCdSKRxEJSWjR3LdQmXue6oa7Vua7VF6quzt605ZxzLiaeSJxzzsXEE0nFHkt0AAngda4b6lqd61p9oYrq7H0kzjnnYuJXJM4552LiicQ551xMPJGEJI2VtFZShqQ7S9n+LUk5ktLDx3cTEWdlqai+YZlvSFotaZWkf1V1jJUtivf4DxHv72eSdiYizsoURZ27SZov6WNJKyR9LRFxVqYo6txd0lthfRdISklEnJVF0lOStkv6pIztkvSn8PVYIWlopQdhZnX+QTAk/XrgRKAhsBzoX6LMt4CHEx1rFda3D/AxcEL4vH2i4453nUuUv4VgmoKExx7n9/kx4Pvhcn9gU6LjroI6Pw9cFy6fD0xPdNwx1vk8YCjwSRnbvwbMBgScASyp7Bj8iiQwHMgwsw1mdgiYAYxPcEzxFE19vwc8YmZfApjZ9iqOsbId63t8NfBslUQWP9HU2YCW4XIrYHMVxhcP0dS5P/B2uDy/lO01ipktJJjPqSzjgWcs8AHQWlKnyozBE0mgC5AZ8TwrXFfSFeGl4QuSupayvaaIpr59gb6S3pP0gaQKh0mo5qJ9j5HUHejJf75saqpo6jwV+KakLOB1giuxmiyaOi8Hvh4uXw60kJRcBbElStSf/ePliSR6rwA9zGwg8CbwdILjibf6BM1bIwn+On9cUuuERlR1JgEvWDgrZy13NTDNzFIImkCmS6rt3ws/BkZI+hgYAWQDdeG9jpva/oGJVjYQeYWREq47wszyzOxg+PQJYFgVxRYPFdaX4K+WWWZWYGYbgc8IEktNFU2dD5tEzW/WgujqfD3wHICZLQYaEwz0V1NF8395s5l93cyGAD8L19X4GyvKcSyf/ePiiSSwDOgjqaekhgRfJLMiC5RoUxwHrKnC+CpbhfUFXia4GkFSW4Kmrg1VGWQli6bOSDoZOAFYXMXxxUM0df4CuABAUj+CRJJTpVFWrmj+L7eNuOq6C3iqimOsarOAKeHdW2cAu8xsS2WeoH5lHqymMrNCSTcDcwju+njKzFZJug9IM7NZwK2SxgGFBB1b30pYwDGKsr5zgNGSVhNc9t9hZnmJizo2UdYZgi+eGRbe7lKTRVnnHxE0W/6QoOP9WzW57lHWeSTwG0kGLARuSljAlUDSswR1ahv2dd0DNAAws78S9H19DcgA9gPfrvQYavBnxjnnXDXgTVvOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkhcjSRpbxRl/ltS00o85wRJ/SvxeO/HsO/e8N/Okl4op1xrST843vM4Fw1PJK42+2/gmBKJpKRyNk8gGPCvUpjZWZVwjM1mdmU5RVoDnkhcXHkicTWapJHhnBIvSPpU0j/DX/DeCnQG5kuaH5YdLWmxpI8kPS+pebh+k6QHJH0EXCXpe5KWSVou6f8kNZV0FsGIBg+G85X0kjQ4HNByhaSXJJ0QHm+BgrlN0iStkXSapBclrZP0y4jY90Ys/1TSyvCc95dSz55h7CtLHKPH4XkoJA2QtDSMb4WkPsD9QK9w3YOSmiuYi+Oj8FjjI46zRtLjCuafmSupSbitt6R5YWwfSeoVrr8jfJ1WSLq3Ut9YV7Mkeix9f/jjeB7A3vDfkcAugvGD6hEMbXJOuG0T0DZcbkvwK+Zm4fOfAndHlPtJxLGTI5Z/CdwSLk8DrozYtgIYES7fBzwULi8AHgiXbyMYmr0T0IhgDLPkEnW4GHgfaBo+b1NKfWcBU8LlmyL27UE4DwXwZ2ByuNwQaBK5PVxfH2gZ8ZpkEMxT0YNg1IbB4bbngG+Gy0uAy8PlxgRXeaMJ5jJR+Lq/CpyX6M+FPxLz8CFSXG2w1MyyACSlE3wpLipR5gyCZqn3JEHwRRs5ntbMiOVTwr/6WwPNCYbbOIqkVkBrM3snXPU0wYRJhx0ecmUlsMrCsY0kbSAYQC9yuJkLgb+b2X4AMyttbomzgSvC5enAA6WUWQz8TMGMfy+a2bqwrkeFDvxa0nlAMcFw4h3CbRvNLD1c/hDoIakF0MXMXgpjyw/rMZogmXwclm9OMKjnwlLicrWcJxJXGxyMWC6i9M+1gDfN7OoyjrEvYnkaMMHMlkv6FuHglccZU3GJ+IrLiC8a5Y5nZGb/krQEuAR4XdKNfHWgzclAO2CYmRVI2kRwlREZMwSvY5NyTifgN2b2t2OI39VS3kfiarM9QItw+QPgbEm9ASQ1k9S3jP1aAFskNSD44v3K8cxsF/ClpHPDbdcC73B83gS+ffgOM0ltSinzHsGAkpSI6QhJJwIbzOxPwL+BgRz9GkAwC+L2MImMArqXF5iZ7QGyJE0Iz9EojHMO8J2IfqYuktpHVVtX63gicbXZY8AbkuabWQ7BiM3PSlpB0Ax0chn7/S9Bv8B7wKcR62cAd0j6OOxwvo6g830FMJign+SYmdkbBE1haWHT3I9LKXYbcJOklZQ9u903gE/CY5xCML1qHkFz3ieSHgT+CaSGx5lSon5luZZg9OsVBH05Hc1sLvAvYHF4rBc4OmG5OsRH/3XOORcTvyJxzjkXE08kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxeT/A03Hzov3BnDFAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -172,7 +182,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 4, @@ -181,12 +191,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXl8XHd57/9+ZtdiSbYkL7ItL3LiLYmz2CEhEEggdmlyExrWJJAA5eaa8rv0Qhva9PaWpaXhkrYXCre/NKUFAqQJFIemULAJJJiATezssbM5jp3Y8qLF2kfSnJnn/nHmjEfySLOdM6MZfd+vl16aOXO+5zwjzZznfJ/v83weUVUMBoPBMHvxldsAg8FgMJQX4wgMBoNhlmMcgcFgMMxyjCMwGAyGWY5xBAaDwTDLMY7AYDAYZjnGERgMBsMsxzgCQ9UiIodE5O1lOvcCEdkpIoMi8rclPO83ReSvPDr2TSKyw4tjG8qLcQSzFBH5qYh8PsP260TkuIgEks/fKCK/SF7Q+kXkQRFZk7b/W0UkISJDk34uLeX7mYHcCnQDDar6R+U2Jl9EZLmIqPM5AFDV76rq5nLaZfAG4whmL98CPiAiMmn7B4HvqqqVvJjvAP4daANWAM8AvxaR5WljOlW1ftLPLu/fQmlIvxjmwTJgv5rSfUMFYBzB7OWHQDPwZmeDiMwFrgHuSW76EnCPqn5FVQdVtVdV/xx4DPhMISdNhmv+WESeSc4w7heRSPK1D4nIo5P2VxFZlXz8TRH5BxH5SXLW8WsRWSgiXxaRUyLygohcMOmUm0Rkf/L1bzjnSh7vGhF5SkT6ROQ3InLeJDv/RESeAYYzOYPkbGlP8n3sEZE3OnYCtwCfTtp5RnhKRMIi8jci8pqInBCRu0SkJvna8yJyTdq+ARHpEpELk8+/n5y19SfDT+un+Ftn+3teLSJPisiAiLwuIp9N23Vn8nefM8ObfLyp3n/ytUdE5C+T/6NBEdkhIi3J1yIi8h0R6Un+7feIyIJM78FQGowjmKWoahT4HnBz2ub3Ai+o6tMiUgu8Efh+huHfA4oJEbwX+B3sGcZ5wIfyHPvnQAswBuwCnkg+/zfg7ybtfxOwBegAzk6OJekw/gX4b9gO8R+BB0UknDb2BuBqoElVrfSDisg84MfA3yfH/x3wYxFpVtUPAd8FvpScHT2U4X18MWnP+cAqYDHwF8nX/jV5boctQLeqPpF8/hPgLGB+8r1/N/OfKivD2P//puT7/JiIvDP52uXJ302ZZnjTvf+03W4EPpy0MwT8cXL7LUAjsDQ5disQLfA9GFzAOILZzbeAd6fdJd+c3AYwD/vzcSzDuGNAa9rztuSdXfpP3TTn/XtV7VTVXuA/sC+GufKAqj6uqqPAA8Coqt6jqnHgfmDyjOBrqvp68lxf4PQF9lbgH1X1t6oaV9VvYTuWSybZ+XrSaU7mauBlVf22qlqq+q/AC8B/yfYGkuG4W4FPJmdZg8BfA+9P7nIvcG3SGYN9Qf1XZ7yq/ktyhjYGfBbYICKN2c47GVV9RFWfVdWEqj6TPMdbchyey/v/hqq+lHbT4fyfY9gOYFXyb/+4qg7ka7/BPYwjmMWo6qPYC5rvFJEO4GLsixDAKSABLMowdFFynEOnqjZN+hme5tTH0x6PAPV5mH0i7XE0w/PJx3o97fFh7LUOsGP4f5TuvLDvUNumGDuZtuTx0jmMfWefjVagFng87dw/TW5HVQ8AzwP/JekMriX5fxERv4h8UUReEZEB4FDymC05nHcCIvIGEXk4GXbqx74zz/U4ubz/qf7P3wa2A/eJSKeIfElEgvnab3AP4wgM92DPBD4AbFfVEwDJC/ku4D0ZxrwXeMQDW4axL5AAiMhCF465NO1xO9CZfPw68IVJzqs2eWfrMN1Cbye2M0mnHTiag03d2E5rfdq5G1U13Yk54aHrsBedDyS335jc9nbs8Mry5PbJi/6Q/e95L/AgsFRVG4G70o6TbZG74PevqjFV/ZyqrsMOP17DxBClocQYR2C4B/ui8l85HRZy+FPgFhH5hIjMEZG5Yueovxk7lOE2TwPrReT8ZLjqsy4c8+MisiQZ0/6f2OEjgH8CtibvikVE6pKLp3NyPO5/AmeLyI3Jxdz3AeuAH2UbqKqJ5Pn/j4jMBxCRxSKyJW23+7DXYT7G6VkawBzsEFYP9kV+uv9Dtr/nHKBXVUdF5GJsJ+PQhT0jXDnFsQt+/yJyhYicKyJ+YAA7VJTINs7gHcYRzHJU9RDwG6AO++4w/bVHsRcqr8deF+jFXuh7m6o+l7Zrm5xZR/CuAmx5Cfg88BDwMvDo9CNy4l7sFNiDwCvAXyXPtRfb+X0NOwx2gDwWrVW1B/tO9o+wL8qfBq5R1e5pB57mT5Ln3J0M8TwErE47/jHsGdkbOe28wHbch7HvvPcDu6exMdvf8w+Az4vIIPZC9ffSxo5gr6n8Ohm+Sl87Kfb9L8Re2B/ADoH9EjtcZCgTYtKcDbkidnrlw8CNqrq93PYYDAZ3MDMCQ84kM0veCZwrhRVZGQyGGYiZERgMBsMsx8wIDAaDYZZTEdP7lpYWXb58ebnNMBgMhori8ccf71bV1mz7VYQjWL58OXv37i23GQaDwVBRiMjkor+MmNCQwWAwzHKMIzAYDIZZjnEEBoPBMMupiDWCTMRiMY4cOcLo6Gi5TfGESCTCkiVLCAaNFpfBYPCWinUER44cYc6cOSxfvhw5o8lWZaOq9PT0cOTIEVasWFFucwwGQ5XjaWhI7C5Pz4rdBWpvctv5IrLb2ZYUu8qb0dFRmpubq84JAIgIzc3NVTvbMRhmAwM7t3Fw6yZees9iDm7dxMDObeU2aUpKMSO4YpIQ1ZeAz6nqT0Tkd5PP31rIgavRCThU83szGKqdgZ3bOHHXbei43dPI6j7KibtuA6Dh8uvLaVpGyrFYrEBD8nEjp/XhDQaDoSrovveOlBNw0PEo3ffeUSaLpsdrR6DADhF5XERuTW77H8CdIvI68DfA7ZkGisitydDR3q6uLo/NzJ8rrriC7dsnCnB++ctf5mMf+xj79u3jyiuvZPXq1XR0dPCZz3yGRMKWW//mN79Ja2sr559/fupn//795XgLBoPBI6yezPe3U20vN147gjep6oXAO7AbhFyO3Wjjk6q6FPgk8M+ZBqrq3aq6UVU3trZmrZDOitvxuhtuuIH77rtvwrb77ruP97///Vx77bX86Z/+KS+++CLPPvssjz32GF/5yldS+73vfe/jqaeeSv2sW7euKFsMBsPMItDcltf2cuOpI1DVo8nfJ7EbjV+M3djEuQp/P7nNU5x4ndV9FFRT8bpinMG73/1ufvzjHzM+Pg7AoUOH6Ozs5MCBA1x22WVs3rwZgNraWr72ta9x5513uvJeDAbDzKflxtuRYHjCNglFaLkxYwCk7Hi2WCwidYBPVQeTjzdjd0vqBN6C3fP2SuzOSUVx8ht/wdir+6Z8ffSlx1FrfMI2HY9y4h8+Rf9D3804JrxiPfM//Pkpjzlv3jwuvvhifvKTn3Dddddx33338d73vpd9+/Zx0UUXTdi3o6ODaDRKX18fAPfffz+PPnq6WdSuXbuoqanJ+j4NBkNl0HD59Qzu2c7wrv/AbgOt1G3aMiMXisHbGcEC4FEReRp4DPixqv4Uuz3g3ya3/zVw6zTHcIXJTiDb9lxJDw/dd9993HDDDTmNmxwaMk7AYKg+4l1HiKy6gLP/7Sg16y5h7OUn0cTMbM3s2YxAVQ8CGzJsfxS46MwRhTPdnTvAwa2b7LDQJAIti1n6+R8UfN7rrruOT37ykzzxxBOMjIxw0UUX8eSTT7Jz586J5z94kObmZpqamgo+l8FgqBys3uOMHniS5hv+BIDGzTdz/Mt/wMhTj1B34ZVltu5MZoXWUMuNtyOhiXfdEqopOl5XX1/PFVdcwUc+8pHUbOCmm27i0Ucf5aGHHgIgGo3yiU98gs997nNFnctgMFQOQ3t/BkD9pi0AzHnD7+JvbKFvx7fKadaUzApH0HD59SzYeieBlsUgQqBlMQu23ulKvO6GG27g6aefTjmCmpoaHnzwQb7whS9w9tln09LSwmWXXcZNN92UGnP//fdPSB/9zW9+U7QdBoNh5jC8dwfBBcsILV0NgARDNF55A8NP/JxY15EyW3cmFdGzeOPGjTq5Mc3zzz/P2rVry2RR7vzwhz/kU5/6FA8//DDLli3La2ylvEeDwXCaRHSYVz5yDo1bbmH+hz6b2h47+TqvfvwS5l3/CVqSISOvEZHHVXVjtv1mxYygnLzzne/k4MGDeTsBg8FQmQw//QgaG0uFhRyC85dSd+Hb6P/5vWisuEQVtzGOwGAwGFxk6LHt+OrnUrNm0xmvNW65hXhfF0N7floGy6amoh1BJYS1CqWa35vBUK1o3GL4iZ9Td+HbEP+ZSZl1G95KYP5S+rbfUwbrpqZiHUEkEqGnp6cqL5hOP4JIJFJuUwwGQx5En3+MxNAp6i/ekvF18ftpuuoDRPf9hrEjRdfSukbFNqZZsmQJR44cYSYK0rmB06HMYDBUDkN7tiPBMHUb3jrlPg1X3kD3/X9D//ZvMf/3/6p0xk1DxTqCYDBouncZDIYZg6oyvGc7tee+CV9N3ZT7BRpbmHPJ1Qz88vu03PRn+CK1JbQyMxUbGjIYDIaZxPjrLxI7+Rp1mzKHhdJp3HwLiZFBBh99oASWZcc4AoPBYHCBoT12f5L6i96edd+atRcTWrqavh33zIh1TuMIDAaDwQWG9mwnsuoCAvMWZt1XRGjafDNjB59l9MBTJbBueowjMBgMhiKxeo8zduCpnMJCDnPe8m4kUkv/DNAfMo7AYDAYimRozw6AKdNGM+GvnUPDm9/F4K8fJD54yivTcsI4AoPBYCiSob07CC5cTmjJ2XmNa9pyMzo+ysAj3/fIstwwjsBgMBiKIBEdIvrso9Rt3IyI5DU2vHw9kbMvsheNy9i0xlNHICKHRORZEXlKRPambf/vIvKCiOwTkS95aYPBMBMZ2LmNg1s38dJ7FnNw66ai+mcbysvwU4+g1vgZInO50rTlFmLHDjLy3KPZd/aIUswIrlDV8x0pVBG5ArgO2KCq64G/KYENBsOMYWDnNk7cdZvdNU8Vq/soJ+66zTiDCmVoz9Qic7lQf+k1+ObMpb+M+kPlCA19DPiiqo4BqOrJMthgMJSN7nvvQMejE7bpeJTue+8ok0WGQlErxvATP6f+ordnFJnLBV8oQuMV72Noz3ZiPcdctjBHGzw+vgI7RORxEXGa1J8NvFlEfisivxSRjG5URG4Vkb0isrda9YQMsxOrpzOv7YaZS/SFx0gM9eWVNpqJxqs+CIk4Az+/1yXL8sNrR/AmVb0QeAfwcRG5HFvfaB5wCXAb8D3JsMKiqner6kZV3dja2uqxmQZD6Qg0t+W13TBzOS0y95aijhNatILaDW+h/6F70bjlknW546kjUNWjyd8ngQeAi4EjwDa1eQxIAC1e2mEwzCRabrwd/MEJ2yRUY283VAy2yNyOrCJzudK05Was3mOpxvelxDNHICJ1IjLHeQxsBp4Dfghckdx+NhACur2yw2CYaTRcfj11aXo0gZbFLNh6Jw2XX19Gqwz5Mv7aCzmLzOVC3UVXEWheRP/20lcaeylDvQB4IBn1CQD3qupPRSQE/IuIPAeMA7foTFBdMhhKSKDJDneGlpzN8i8/Ul5jDAWREpnbeJUrxxN/gMa3f4Ce++9k/NhBQotWunLcXPBsRqCqB1V1Q/Jnvap+Ibl9XFU/oKrnqOqFqvoLr2wwGGYq8X57Emz1lidLxFA8Q3u2EznrQgJzF7h2zMa33wj+AP07vu3aMXPBVBYbDGXA6rcz4RIjg8RHBstsjSFfYj3HGHvl6YKLyKYiMHcB9Zt+h/6H7ycxFs0+wCWMIzAYykC8vwcC9oKxSRutPIb32iJzdZs2u37spi03kxjqY3DXf7h+7KkwjsBgKAPx/i7C7WsAsMpURGQonKE9hYnM5ULNOZcRbOsoaaWxcQQGQ4lJjI+SGBkksvI8AFtqosqpJm2lRHSI6HO/pn7TlrxF5nLBaVoz+vITvPLR80vyN6vY5vUGQ6XiLBSHV5wDIsSqPDTkaCs5shqOthJQkSmzw08+jFrjrqWNZkJCNQDE+2wFHq//ZmZGYDCUmHh/DwCB5kX4m+ZXfWio2rSVhvZsxzdnLjWrN3p2jt5tXzljm5d/M+MIDIYS42QM+RtaCDa3YXVX94ygmrSVTovMXVWwyFwulPpvZhyBwVBinNBQoKmVQPOiirwg5kM1aStFn/8tieF+6ja6ny2UTqn/ZsYRGAwlJu7MCBqbCbS0EevppJqL61tuvD0V83aoVG0lt0TmslHqv5lZLDYYSozV34NE6vCFawk0t6GjIyRGBvDXNZbbNE9wFjdP3PXH6PgoEopUpLaSqjK0dwe1577ZFZG56XD+Nt333oHV00mguY2WG2/37G9mHIHBUGLifV0EGm3B3WDzIgCs7s6qdQRgX9j6/vOfGT3wJIGWtopzAgDjh5/HOvk6837vEyU5X8Pl15fs72RCQwZDiYn3d+FPOgIn5lvtmUNAKk02duI11IqV2Zr8GdqzHURcE5mbSRhHYDCUGKu/57QjaLEdQbXXEmhsnHjfSYLz2yFuETtxuNwm5c1pkbn55TbFdYwjMBhKTLy/KyVDHZi7AHy+6k8h7TsJqtSe92YAxo8eKLNF+RHr6WTs4DPUe5wtVC6MIzAYSojG48QHe/E32DMC8QcINC3A6q1yR5CU0Ug5gs5XymlO3gzvcUTmvKsmLifGERgMJSQ+dAoSCfxNp7uzBlqqv6jMCX2Flq7B39RacTOCob07CC5cQWjJWeU2xRM8dQQickhEnhWRp0Rk76TX/khEVERMv+IZQDWJgs1kUsVkjWmOYN6iql8jcBbDA82LCLWtqpgZwcDObRz8bxsZeeoR4v1dDP7qgXKb5AmlmBFcoarnq2pKmENElmL3MH6tBOc3ZMERBbO6j4JqSuDKOAP3ifc5xWStqW2BljasnmNVXVRmdXfiq52Dv3YOocUdFeEIUt+LpJNORIeq9ntRrtDQ/wE+DVTvJ7+CqDZRsJmMNWDPCPxpM4Jgcxs6FiUx1FcuszwnliyKAgi1dZAYPEV8oKfMVk3PbPpeeO0IFNghIo+LyK0AInIdcFRVn55uoIjcKiJ7RWRvV1eXx2bObqpJFGymE+/LEBpqcWoJqvfvbfUcI5AsngsuXgXM/AXj2fS98NoRvElVLwTeAXxcRC4H/gz4i2wDVfVuVd2oqhtbW1uz7W4ogmoSBZvpxPu7wR/Al1ZF7FwgY1VcVGZNmhHAzE8hnU3fC08dgaoeTf4+CTwAvAVYATwtIoeAJcATIrLQSzsM01NNomAzHStZVSy+01+9VHVxlWYOJWJjxPu6CCZnPsHWpUggNONnBC033p7qK+1Qrd8LzxyBiNSJyBznMfbi8B5Vna+qy1V1OXAEuFBVj3tlhyE7DZdfz4Ktd4LYH4dKFQWrBOL93QQamidsCzTNB5+/KkMOAPHeE4CdHQUgfj/BRStm/Iyg4fLriay6wP5eiBBoWVy13wsvRecWAA8ke3oGgHtV9acens9QBPVv+B34+wQA/qbWqvywzwSs/m78TRNDneL3E5i3oGr1hpzUWGctBCC0eBVjrz1fLpNyxurppP7i36Httq+X2xRP8cwRqOpBYEOWfZZ7dX5DfjhhidCSsxg/8jKJ6BC+mvoyW1V9xPu7CbWtOmN7oLmtamsJnM9WMN0RtHUwtGc7asWQSeGXmUKs6whW1xFqrrm13KZ4jqksNgCnC37qLrgSgLHXXiinOVWJqtqhoaYzayiruWWlE/IKzJvoCGzxuUNlsio70X27AKhdf2mZLfEe4wgMwOnpe92FbwOMI/ACHR1Gx0cn1BA4BJoXYfVWZ1FZrKcTX13jhGYuqRTSozN3wXhk/y589U2E2teW2xTPMY7AAJyevkfOvghfTT3jFRC/rTSsZFVxoPHMdOhAy2J0fJTEYG+pzfIcq7vzjJTLSkghje7fTc2aiydkeFUr1f8ODTlh9R7D39CML1xDaOlqxg6bGYHbODpDmWcEyb4EVRgesnpPF5M5+Osa8DfNn7EppLGeY8SOH5oVYSEwjsCQJNbdmcrqCC9by9hrL1RlmKKcWNM6gmTLyt7qyxyyujsnLBQ7hNpmruZQdL+9PlCzzjgCwyxiQuVn+xoSQ6eInzpRZquqi5TyaNOZoSHnQlltC8aJ8VHiAz0Zq3FDiztm7BpBdP9ufLVzCC9fX25TSoJxBAZgohZMOLk4ZhaM3SXen1QenVRQBkk1Un+g6lJIrV67VnRyaAgg1LbKvuGYgeJzI/t22esDfn+5TSkJxhEYSESHSQz3E0zetYXb1wAwdtgsGLuJ1deFr35uxrx58fkIzFtYdUVlqRqCDDOC4OKZuWBsnTpJrPMVatZdUm5TSoZxBIYzKj/9c+bin7eQcTMjcJV4fw+BxjNnAw7VWEtgZagqdgjNUBXS6PO7gdmzPgDGERhI+7Km3bWF29dUhARAJRHv75rQkGYydoOaanMEpzuTTSbYsgQJhmecIxjZtwuJ1BJZeW65TSkZxhEYMk7fw+1rGD/yMhq3ymVW1WH1d2fMGHIINC+quk5lsZ5OfPVz8YVrz3htporPRfftomb1phkrfeEFxhEY0iQATquBh9vXorExYsdfLZdZVcdU8hIOgeY21BqfkYunhWJ1HyXYcuZswGGmpZBa/T2MH3mJ2vVvLLcpJcU4AgOxnmP4m1qRYCi1LZRaMDbrBG6gsXESw/34G6Z2BNWYQmr1HJugMTSZUFsHseOH0dh4Ca2amtPrA7NnoRiMIzAwsYbAIbTkLPD5TeaQS6R6FWeoIXBwLpjVtE4Q6+nMuFDsEFq8ChJxYicPl9CqqYnu24WEIkQ6phVOrjqMIzDYlZ+THIEvFCHUttIsGLtEqphsmqwh54JZLbUEibEREoOnpm3tGJxhmkMj+3dTs3rjhNnxbMBTRyAih0TkWRF5SkT2JrfdKSIviMgzIvKAiDR5aUMhDOzcxsGtm3jpPYs5uHUTAzu3ldskT8mkBQN2eGimp5BWyv/KaVo/XdaQv6EZCYSqJjTkFJMFM3y2HE6Lz5V/nSA+eIrx156fVWmjDqWYEVyhquer6sbk858B56jqecBLwIxqADqwcxsn7roNq/soqGJ1H+XEXbfN2AtMscRHBkmMDGacvofb1xI7cZhEdLgMlmWnkv5XqdDQNFlD1VZU5ji06UJDM0l8Lvr8b0GVmlkiNJdOTo5ARDpEJJx8/FYR+UShd/KqukNVnZzE3dgN7GcM3ffegY5HJ2zT8Sjd995RJou8JVMNgUOqwvj1F0tqU65U0v8qPo0EdTrVVEsQm+azlU6orWNGhIZG9u9GgmEiq84vtyklJ9cZwQ+AuIisAu4GlgL35jBOgR0i8riIZOr39hHgJ5kGisitIrJXRPZ2dXXlaGbxTPUlrJYv52Scu89M0/fQMltzaKb2Jqik/1W8vxsJRZDImfn06VRTy8pUMVlaWnImQotXMd75StnrJ6L7dxE560J8oUhZ7SgHuTqCRPIu/veAr6rqbcDUgb/TvElVLwTeAXxcRC53XhCR/wlYwHczDVTVu1V1o6pubG2d/i7KTaa6e8l2V1OpWN1HAbsxymSCrUuRSO2MFZ+rpP+V07ReRKbdz+5UdhxNJEpkmXdY3Z34G+bhC9dMu1+orYPEUB/xgfI15YkPDzB2aB8162dX2qhDro4gJiI3ALcAP0puy1p2p6pHk79PAg8AFwOIyIeAa4CbtNy3AZNoufF2JDApY8Dnp+XGGbWU4Rqxnk4QITB3wRmvic9HeOmaGesIWm68HSZVf0qoZkb+r+L93QSmqSFwCDa3gRVLZRlVMpnSkjPhaA7FOssXHoq+8BgkEtTOwoViyN0RfBi4FPiCqr4qIiuAb083QETqRGSO8xjYDDwnIr8DfBq4VlVHCjfdGxouv55AWwf4fCCCROogEU9lN1QbVs8x/E3zpyyntzOHni/7tD0TDZdfT7jjdDzX1zCPBVvvpOHy68toVWbi/V34p6kqdnAWVmdieCtfYj2Zs9Emk1IhLeOCcXT/LggEiZx9YdlsKCc5OQJV3a+qn1DVf00+f1VV/3eWYQuAR0XkaeAx4Meq+lPga8Ac4GfJtNK7irDfdcZPHCb2+gvMe9f/4OzvH2XlPz6Ov2k+J+7+NBqPl9s818lUQ5BOuH0N8YHe1GLnTEJVifccpW7jVeAP0Pi2G2ekEwBbumC6jCEH58IZq4LMoVxnBCnxuTIuGEf37Say6vyMmkizgVyzhi4TkZ+JyEsiclBEXhWRg9ONUdWDqroh+bNeVb+Q3L5KVZcmU0rPV9WtbrwRt+jf8W0QH41vvwmw09vmf/hzjB18lr7t3yyvcR5gZan8DC9zmtTMvAVj6+TrWN2d1G54i91e85Wny21SRjSRsENDWTKGAALN9lqNs3ZTqSRGR0gM9WVsUTmZlPhcmWYEiegQowefmbVhIcg9NPTPwN8BbwI2ARuTv6uKRGyMgYfvo37j5glZNPVvvJbaDW+h51//d6pIphpQVVsCYJrpu5NCOhMLy0aSfWVr111KpGMDo688MyNDWInhPkjEc5oR+BvmIcFwxfcuni4tORN2Cml5HEH0hT2QiM/K+gGHXB1Bv6r+RFVPqmqP8+OpZWVgaNePiQ/00rjl5gnbRYT5H/1r1IrR9c3Plsc4D0iMDKCjI9N+Wf0Nzfib5s/IGUF0/y589XMJLV1NpGMDieF+YscPldusM7D6sheTOYiInTlU4dXFudYQOIQWryJ2ojzicyP7d4E/QM3qqru3zZlcHcHDSWmIS0XkQufHU8vKQN+ObxFcuILac998xmuhRSuYd/1/Z/A3DzL81COlN84DUn0Iskzfw+1rZqQKaXTfbmrWvcHObkqKhI2+8lSZrToTp1dxIAdHANVRS5BLVXE6obaOsonPRfftItKxAV+WGo9qJldH8AbscNBfA3+b/Pkbr4wqB2OHn2f0hT00bv4g4sv8Z5n7zo9jkcdjAAAgAElEQVQTbFvJya//GYmxaMZ9KonTBT/TZ3aEl61l/MhLM2qxPNZ9lNjJ11Jx3fDS1UgowuiBmbdO4KSCTqc8mk6gua3iZSZyLSZzSLWtLPGCcWJ0hNFXnp51stOTyTVr6IoMP1d6bVwp6dtxDxIM03jFe6fcxxcMs+CjdxA7fojeH36thNZ5w+RexVMRal+Djo8SO3GoBFblRnT/RN14CQQJL18/IxeMrb78ZgRBp6hsBjnefLF6OvE3tuALhnPaP1gm8bnoS3shbs3qhWLIPWuoUUT+zpF8EJG/FZFGr40rFYnoEAO//DfmvPFa/HPmTbtv7XlvZs6bfo9TD/zfGSGUVQxWdyf4fBmLydIJtzuZQzMnPDSybxe+2gbCy9altkU6NjD66rMz7gIaH+gBnx9f/dyc9g+0tEHcSoWUKpFYd26pow7+2jlJ8bnSzgii+3aDz0dkzexdH4DcQ0P/AgwC703+DADf8MqoUjOw8wfo6DCNW27Jaf/WWz6DhCKc/KfbZ2SWSq5YvZ0EmhYg/sC0+9lNanwzqklNdP9uatZejPj9qW2RVeejoyMlv5hkw+rrsiWmpwg5Tsa5gFZyLcFU0ubTEVq8qvQzgv27CK84F3/tnJKed6aRqyPoUNXPJGsDDqrq54CVXhpWKlSVvu33EF5xDpGzLshpTGDufFpuup2RZx9l8NEHPLbQO6zu6WsIHHzhGoILl8+YFFLr1Alixw6eoRufWjA+MLMWjONZmtZPxrmAVnJ1sdXdmVMNQTpO/+JS3VwlxqKMvvwktbN8fQBydwRREXmT80RELgMqf7UUGH1xD+OvPU/j5luyCoKl0/j2DxBedT5d3/ws8aE+Dy30jliOlZ9gh4dmSmhoZF+yfmBS3neorQOJ1DE6w9YJ7GKy3B1BpfcuTkSHSIwM5C3+F1q8qqTic6MvP4la47O6fsAhV0fwMeD/JjuOHcaWiZhRFcGF0rf9Hny1c2h48+/lNU78fhbc+kXig710/2s2tY2Zh6rajcVznL6H29cQO/4qidHyy0NF9+/GV1NPeMU5E7aLz0dk5XmMzbDMoXxnBL76uUgoUrEzAieklXdoKLlgXCrxuej+XSBCzdo3lOR8M5lcs4aeUtUNwHnAuap6garOrG9bAVj9PQzt+hENb3l3QTnEkZXn0fSOj9C/4x6iLz/pgYXekRjqQ8ei0+oMpRNqXwuqjB95yWPLshPdv4vImoszrm1EVm1g7PD+shQmTYXV30Ugx9RRcIrKKreWICVt3nymtPl0lDqFdGT/bsLL1uGvq5q8l4KZ1hGIyAeSvz8lIp8CPgp8NO15RTPw8H2oNU7j5puz7zwFze+7Df/cBZy8+0/QuJV9wAzByjF11CG8LNmtrMwLxlZ/N+NHXp4yrhvp2IDGxhh7fWaEsRKjI+hYFH/D1E3rMxFobqvY0JDz2cp3jSDQstgWnytBNl4iNsboS4+bsFCSbDOCuuTvORl+6j20y3M0kaD/Z9+hZt0lhJeuLvg4/to5zP/Q5xh79Tn6fvpN9wz0mFh3fhIAwfnLkFCk7OsEqfqBKb7A4WSbwZlSWGYlU0BzLSZzCLa0VazekNVzbMoeF9OREp8rwYxg7MBT6PjorGxUn4lp8wZV9R+TDx9S1V+nv5ZcMK5YRp7+JbETh2m+4U+KPlb9pddQe/4V9Nz3JeovuTpj28eZhpVnHFf8fkJLV5e9bWV0/y4kUktk5XkZXw/Ob8dXPze5YPzB0hqXgVRVcR5rBOB0KjuBxuMTUmQrgVhPJ/7GViQYyr7zJEJtqxg7vN8DqyYykryhqF1n1gcg98Xir+a4rWLo2/4t/I0tzHnD7xZ9LFuU7gto3KoYUTqrpxP8AQJN83MeE24vf7eykX27qTl745SNdESESMd5jM0QzaFcm9ZPJtDcBok4Vt8JL8zylFzTkjMRWtxREvG56L5dhNrXZi0gnS1kWyO4VET+CGh11gWSP58FKus2JY1Y1xGGn3iIxitvKOiuJROhhcuZd/0nGNr1Hww/+bArx/SSWHcngbkL8rrbDC9bR7y/G6tMbRTjAz2Mv/Z81rhuZNX5jL324ozQg7L6bZFef2OeawSpTmWVFx6yeo4RzKJfNRWhxasgEWf8hHfic2rFiL64h9pZ2p84E9lmBCHstYAAE9cHBoB3Zzt4Mt302WQnsr3JbfOSTW5eTv7Ore7eRfofuhdUadzsbuhg7nUfI9jWwbGvfoKDWzfy0nsWc3DrJgZ2bsv5GAM7t3Fw66aCxuZDIZWfqd4EZVowHnn+MYCsBUCRjvMgEWfs0L5SmDUtjkxEvqEhJ5urEheMszU7mo5SpJCOvvI0OhY16wNpZFsj+CXwSxH5pqoW6qKvUNX0W8g/BX6uql8UkT9NPi8+UJ8jGhun/+ffpe7CtxFsXeLqsX3BMPWX/C6ntn2VRHKb1X2UE3fdBpC1jeLAzm2cuOs2dDya99h8sbo7iaw8N68xoWWnNYdqzztTqttrovt3IaFIakF4Kpw+xqOvPE3N6o2lMG1K4v3d+GobchZfc6jU6uL48ACJ6FDexWQOp8XnvHME0WRDo9muOJrO9CIzpxkRkTuB9UDE2VigAul1wFuTj78FPEIJHcHQnp8S7+vKWVcoXwYz3MHreJQTd93G0GM/mXbs8BO/SDmB9LHd997hqiNQVXtGcPGWvMYFGlvwN7aUrUlNdN8uImdflPWiGpi3EH/T/BmROWTl2LR+Mr66RiRSW3F6Q06mU76zTQd/7Rz8cxd4mkI6sm83oSVn5VXtXe3k6gi+C9wPXINdUXwLkIs0ogI7RESBf1TVu4EFqup8uo9jN7k/AxG5FbgVoL29PUczs9O3/R4C85dSt+Gtrh0znanu4HQ8mvUuZ7ITyHbMQkkM9qLjowXdtZVrwTg+1MfY4f00vyd7+YqI2IVlB8vvCOL9PQQa8r/giAjBCqwlyLXZ0XR42bZS4xbRFx6j4fJ3eXL8SiVXR9Csqv8sIn+YFi7ak8O4N6nqURGZD/xMRCZcQVRVk07iDJJO426AjRs3uqJCNXbkZaL7fkPLTbd7lpJnFwKd2Xg80LKY5f9n+kXkg1s3ZR5b4DR7KvKtIUgn1L6W/oe+gyYSOatpukH0hcdANee4bqTjfIYff4hEdAhfTflKXuL9XYSWnF3Q2EDzoooLDRXz2XIILV7F4G8eRFXz0v/KhbFXn0NHh01YaBK5fpNjyd/HRORqEbkAyJp3papHk79PAg8AFwMnRGQRQPL3ybytLpD+HfdAIEjDlTd4do6WG29HQjUTtkmohpYbb/d0bD4UWvkJ9oxAx6LEPMzqyER03y4kEMpZITbSsQFUGX3lGY8tmx4rT52hdCqxU5nV21lQMVk6obYOz8TnphIsnO3k6gj+KtmI5o+APwa+DnxyugEiUicic5zHwGbgOeBB7NASyd//XoDdeZMYHWHgke8z55KrPY0NNlx+PQu23kmgZbH9hWhZzIKtd+YU43fG+pK5zf6m+TmPzYd8i8nSCS8rT5Oakf27iZx1Ab5wTfadSZOkLqMSqVoxEoOnCv68BVrasPpOVJZ0SXcn/rkLpqzzyAUvNYei+3cRXLSyKEdVjeQUGlLVHyUf9gNX5HjsBcADyaldALhXVX+aDCl9T0R+HziM3ejGcwZ//UMSIwM0bvZmkTidhsuvL/ji3XD59YRXrOfwJ6+g9YN/7roTgGSLykAQf55FTgChpWeDiF1h/IZ3uG5bJuIjg4y9+izzrv9EzmMCjc0EWpeUtZl9fMCpISjQEcxrg0QCq/e46xluXmH1dOYsZDgVE1JIXaz81Xic6POPUX/pNa4ds1rIyRGIyDewF34noKofmWqMqh4ENmTY3gO8LQ8bXaFv+z2Elq6mZu3FpT513oQWrYRA0LPsHKu7k8C8hQXF+H3hWoILljN2uHQzgtEX9kAikXdf2UjH+YyVMTRkpeQl8ne4kNaXoOdYBTmCY4SK0O6CNPE5l2cEY4f3kxgZMGGhDOR6JfgR8OPkz8+BBmDIK6PcZvTAU4wdfIamzTe7vvjkBRIIEl5ylmcX22IqP8HJHCpdCunI/l0QCBJZfVFe4yId5xE7cZj4YGkanUzG0RkK5FlV7HC6urgyFoxVNa9mR1Nhi8+tdD2FNCVYaBaKzyDXfgQ/SPv5LnY4p7yVOnnQt/1bSKSWOW/JWgw9Ywi1r/WsNWQxlZ8AoWXJJjUlknCI7t9NpGMDvnB+PSMijhJpmWYFKcG5PJVHHQJJZx2rkBTSxHA/OjpSVOqog9228qALVp1mZP8ugguWEWzJr0/CbKDQ/L+zgNzVyspIfKiPwV//Ow1vfldFNagOt6/B6j3mehtMTSSSnckK/7KG29dCIsH40ZddtCwzidERRl95Ou+wEEA4WTldrgVjq8+RlyjMEfjrGvDV1FeMHHUxSQiTCS1e5ar4nCYSRPf/1swGpiAnRyAigyIy4PwG/oMSVgMXgqPZ88qH1tnFUxV2FxBu9yY7Jz7Yi1rjRX1ZHc2hUmQORV/cA3GroAYi/rpGgm0ry+YI4gPdSDBcVB2D2w1qvNSycjqquVH3Elrc4Zr43MDObRz8bxeSGDrF0N4dnul3VTK5Zg1Vzq00Z2r2APT+4CsEW5d4koXjBaFlpwXesoms5YMblZ/BhSuQUKQk4nPR/bvB5y9YMyjScT7RZO54qYn32TUExaxLBZoXuday0mstK+ezVUzY0SGUpjkUXnJWwceZ/J4Tg6c80++qZLLJUF843U+pjMyX7nvvmFKzp1IIzFuEr67R9btuq6ewfrLpiN9PaMlZJWlbGd23i8jK8wq+q450bMDqPYZ1qvS6/sUUkzkEWtwrKvP6e2H1HAOfL68eF1MRdEmFtBquBaUg24zgb6d5TYFCROc8Z6osi0rJvgBba8aL7JyYS3HccPtahp96xAWLpiYxFmX0wFM0Xf37BR8jsup0YVn9xs1umZYT8f4uAnMXFnWMYHMb8b6TaGy86N4ZXn8vrB6nx0WuyjVT45b4XDVcC0rBtDMCVb1imp8Z6QRg6hil25o9XhNqX8P46y+i6orUEmBP3yUQyruZ+mRC7WuI951MFU15wejLT6DWeFG68eHl54DPx+iB0heWxft78m5IM5lA8yJQdWVG4/X3ItZdfOpoOqHFq4oWn6uWa4HX5Jw1JCLniMh7ReRm58dLw4qhVJo9XhNuX0tiZDCjEF2hWD2dBJoXFS0YV4oF45F9u8Dno2ZN4UWAvkgtoSWrS55CqqpYA90Fp446OBcsN+5gW268HfwTpR/c/F5YvS47grYOxjtfKepGqP6y687YVonXAq/JNWvoM9g9ir+KLTHxJeBaD+0qimL0fmYS4eSCsZuxeDt1tPj0vpTmkIfrBNF9uwgvX4+/rqGo4zg9jN2cWWUjMdwPVqwgCep0nGw3NxaMGy6/nmDbSvDZyru+mnrXvheqitXd6UoNgUNo8aqk+Fxhs87EWJTh3T/G1zS/4q8FXpNrMO/d2HIRT6rqh0VkAfAd78wqnmL0fmYKoaXJzKHXXoCNV7lyzFhPJzWrNxV9HH/TfHxz5no2I0iMjzL68hOuNBCKrDqfgYfvx+o+WjKphlSLygKa0qQTdDqVuZBCGh8eIHbsIHP/y61Ek7Idbn1HEkOnCu5xMRWnM4deKUi4r3fbV4mdOMySz3yP2nPf5Jpd1Uiu8YGoqiYAS0QasKWjl3pnlgHsgqJAy2LXFow1KWDmRnqfvZjtXfXz6IGn0NiYK7owEUeJtITrBKeb1hfnCHw19fhqG1zJHBp+8hdgxajftIXadZcy+srTJKLDRR8X3C0mcyimf/H40Zfp/ff/y5zL32WcQA7k6gj2ikgT8E/A48ATQHmSs2cZ4fa1roVf4v3dYMWK0hlKJ9y+hrHXX0ATiew750l03y4QoWZt8eqToWVrIRAsaWFZPFlVHCiwqjidQEubK6Gh4T3b8Tc0EznrIrtALxG3C/ZcwI2GNJMJtCy261XyFJ9TVU7805/hC9fSevNfuGZPNZOr1tAfqGqfqt4FXAXcoqof9tY0A9iFZeOdr7hSau8sOLoxIwBbD0lHR4h1ve7K8dKJ7t9FeNla/PVNRR/LFwwTXraupD2MUzpDLvS+CMxbVHRoSGPjDD/5MHUbr0L8fjs86POnhNiKpZhmR1Mhfj/BhSvyTiEd/NU2os/9mpYbbydQ5GL9bCHXxeIHReRGEalT1UOqWt62T7OIcPsaiFuuSPK6fdfmLBi7XWGssXGiL+4tKm10MpEOu4exF7OXTFj9XSCCf07WRn5ZCba0Fa03NPL8bhIjA9Rv2gKAr6aOSMcGW9nVBayeY+APFKyrNBX5ppDGh/ro+tbniJx1IY1XfcBVW6qZXENDfwu8CdgvIv8mIu8WkYiHdhmSuKk5ZLmoBQMQTurOu71gPPrK0+j4qOuOIDEySOz4q64dczri/T3458xzpTd2oLmNeF8XidhYwccY3rMdCUWoPe/NqW016y5h9MBTJMZGirYx1u0Uk7nbCzzU1kHs5Gs5v/fue79IfLCX+bd+saQ9tSudXENDv1TVPwBWAv+ILUOdU69hEfGLyJMi8qPk87eJyBMi8pSIPCoiqwo1fjYQausAf8CVBWOrpxMJRfA3FH+XCvZdZXDBMtern51wRa2L3alOLxiXJjxk9XcVXUPg4CzAWr3HCxqvqgzt2U7teZdPkPKuWX8pWDFGX3qiaBuLlTafCkd8LnY8u/hc9KUn6P/Zt2l6x+8TWXGO67ZUM/kUlNUA7wK2ApuAb+U49A+B9CvF/w/cpKrnA/cCf56rDbMRCYbs6bEbM4LuTgLzFrnanCfUvsb1zKGR/bsILV1ddPVzOqGlZyOhSMkWjON9XfiLrCFwCKR1KiuEsVefw+ruTIWFHGrWXAw+nyvhoWKbHU1FqC3ZvzjLOoHGLU7e/ScE5i6k5f23uW5HtZPrGsH3sC/mVwJfAzpU9b/nMG4JcDV2s3sHxe5wBtAIGNGPLLilORTrdaeYLJ1w+1rGOw8WFbZIR+MW0Rf2uK4bL/4A4RXnlKyHcXygh0CRNQQOTg/gQheMh/ZsBxHqJtWi+GvnEF5+DtF9xS0YqypW7zFPZgTBtpVA9hTSvp98g7FD+2j9yOeLkv2ereQ6I/hn7Iv/VlV9OFlTkAtfBj4NpO//UeA/ReQI8EHgi5kGisitIrJXRPZ2dXXleLrqJNy+Fqu7k/hwf1HHsVzWgoFk9XMizvgRd5rUjB58Fh0d9qSvbGTV+Yy9+hwat1w/9mSsvi5XMoYgXWaiMKmR4b07iKzemLEoq3b9pYy+/ASJ8dGC7YsP9LpeTObgr52Df97CaReMYz2ddN/3JeoufBv1b/hd122YDWSTof40gKpuB66f9NpfZxl7DXBSVR+f9NIngd9V1SXAN4C/yzReVe9W1Y2qurG1dXangIWc7JwiQjAaj2P1Hnc1vQ/sFFIozrZ0oskwRc1a9ztJRTrOR8eirjmtqUiMjaCjw67UEICtl+Srb0opx+ZDrOsIY68+d0ZYyKFm3SVobKyoYju3kxAm42gOTUXXNz4LiTitv/9XFdGTfCaSbUbw/rTHk1WafifL2MuAa0XkEHAfcKWI/BjYoKq/Te5zP/DGHG2dtbgh8Bbv74JE3PXQUGjRCiQYdm3BOLpvN8G2DgJz3e+EGuk4D/C+dWU8VVXs3hpHoZ3KhvbuAJhSgrtm7RtApKjmPV7UEKRjp5AeyKgVNfTEzxna/SPmvet/EFqwzJPzzwayOQKZ4nGm5xNQ1dtVdYmqLsd2KL8ArgMaReTs5G5XMXEh2ZCBQMtifLUNRTkCLyo/wY69hxavYuxw8TMCjceJvvBbT8JCAMFFK/HVzvHcEVipYjL3ZrLB5kUFKZAO79lOsK2D0OLMyXn++ibCy9amZmKFYHn02XIItXWQGO4/Q3wuMTZC19f/J6ElZzHv2q2enHu2kM0R6BSPMz3PiqpawH8FfiAiT2OvEZgl/iyICKH21UUVbnl51xZySXNo7PA+EiODBfUnzgXx+QivPM9zzaGU4JxLawSQnBHkGRqKD/czsm/XlGEhh5p1lxJ9cW/B1eux3mMQCLr6ftNJF59Lp3fbV4mdfI35H72j6KY9s51sjmCD07QeOC/52Hl+bq4nUdVHVPWa5OMHVPVcVd2gqm9V1YNF2D9rCLevZey1FwqWUvZCFMwhvGwNVu8x4kN9RR3HyV6pdbGQbDKRjg2MHd7vWpZTJhx5CTflDQItbcQHevJa1B1+8hcQt3JyBDo+WnBGlZ2WvNCzAi5nNpNeXT925GV6//0faHjLe6g9x0SXiyVbhzK/qjao6hxVDSQfO8+D0401uEu4fQ2JkYGCG5Q4xWS++rkuW+Ze9fPI/l0EF64gMK+49o7TEenYAFaMcRdCWVNh9SVDQy7WQaSKyvKYFQw/th1/YwuRs6ZvL+4U7o0UmEZq9XSmUly9wBGfc1JIVZWT/3Q7vkgdLTf/L8/OO5swNdgVQqjIi22s26789CKrIuQsZh/eX/AxNJEg+vxj1Kx3P1sonciq8wFvF4zjA922fHS4JvvOOZKqJcjREWhsnOGnTovMTYe/oZnQ0tUFrxO41exoKsTnI7hoZSo0NLjzB0T3/YaWm/6soD4FhjMxjqBCCLfbuj6FrhNYPZ0E5nlz1xaYtxBffVNR6wTjr71AYuiUp2EhgEDrEnxz5npaWBbv63JdfO10dXFuM8KR/btIjAxOmS00mZp1lxB9cQ9qxfKySxOJpCPwtgewk0IaHzxli8qdfRGNb7vR03POJowjqBD89U0EmhcVPCOwetxtI5jO4K8eQEdH6P/Zdzi4dRMDO7flNX5g5zZe/8y7AOj67l/nPT4fRIRIx/me9jC2XGhaPxknXBbLMYV0KIPI3HTUrn8jOjrC6MFn87IrPtCDWuOeVBWno/EYseOv8sqH1xMf6KHuoquMqJyLmL9kBRFKLhjni8YtrFMnPLlrG9i5jRN33YZadsaJ1X2UE3fdlvPF3BmfSFZNx3uP5zW+ECKrNjD++ouuqG5mIt7f5VoxmYMvXItvztyc5KhVleG9O6jd8JYJInPT4Uh65BseckJVQQ9DQwM7tzH8xM8nbOv9wVc8/YzMNnLtWWyYAYTb1zDy7K9QK4YEcl+rt/pOQiLhSRy3+9470PHohG06HuXE3Z9mZN9vso4f/PUPM47vvvcOz3pORzo2QCLO2Kv7qFlTfP/mycT7u/Gvudj14wab27C6s8tMjL36LFZ3J83v/eOcjx1oaiW0eJWt/PrOj+c8zpG9CDQvznlMvnTfewdMCll5/RmZbRhHUEGEl621M16OHUz1AsiFVMGPB9P3qWLWOjpipy9mQUcz35UXmh2VCylJ6leedt0RaNwiPthbdNP6TARyLCob2rMdfD7qLroq677p1Ky71HbM8XjOfQViHn62HKZ6z15+RmYbxhFUECmpicPP5+cInGIyD0JDgSnuUgMti1l5V/Z+uAe3bso83st0xHkL8c9b6ElhWXzwFKgScEmCOp1Ay2KiL02W7jqT4T3bqTl7I4E81ylq1l9C/8++zdihfSk5jmxYPceQQMiVTmxTMeVnzOMF6tmEWSOoIIKLV4HPn3d2jpfFZC033o6EJqZJSqiGlhsnS1N5M75QIh0bPEkhdZrWu9WUJp1gcxuJwVPTrm3Euo4wdmg/dZtyyxZKx8nYymedwOrpJNC8yNOF23J9RmYTxhFUEL5gmFBbR94Cb7HuTiRSi6+u0XWbGi6/ngVb7yTQshhECLQsZsHWO3OO3RY7vlAiHRuIdb5CfHjA1eNaA+41rZ9MLkVlQ3u2A2StJs54/HkLCS5cwUgeAnReSJtPplyfkdmECQ1VGOH2NUQPPJnXGKfy0yuJ3obLry/qS1ns+EJwCsvGXn2W2nMuc+248WRVsReFToG0ojJHf2cyw3u2E1q8asrXs1Gz/hKGfvsTNJHI6S4/1nuMmtXuL7hPphyfkdmEmRFUGKFla7FOvk58ZDDnMV5XflYikZW2VJbb6wTxfg9nBMkF2dgUi6Tx4X5G9u+mroDZgEPtuktJDPUxnsOsUxMJrN7jntcQGLzHOIIKw1kwzmedINbj/fS90vA3NBOc3+56YZnV3wWBoCdhOKeobKq+BMNP/DwnkbnpcOoJcgkPxfu7wIp5qjNkKA3GEVQY+Qq8qRUjfuqEuWvLQHjVBtelJuL9XQQaWjwJw/lCEfwNzVOuEQztyU1kbjqCrUsIzF9q1xNkwcskBENpMY6gwgi0LkEidTkvGFunTtjpjB7pDFUykY4NdphtUsOTYoj393hSQ+AQaGnLmD+fiI0x8mRSZK7IDJ7adZcSfX43mpi+NblXzY4MpcdzRyAifhF5UkR+lHwuIvIFEXlJRJ4XkU94bUM1IT4f4fY1OYeGvG4jWMk4GUOvfOTcgjSSMmH1deH3oIbAIdDcllFvKLpvF4noUFFhIYeadZcQH+hl/MhL0+5nPlvVQylmBH/IxHaUHwKWAmtUdS12P2NDHoSX5d6kphSVn5XIwM5t9P3o7tTzfDWSpiI+0O1qQ5rJBJoXZdQbGtqzHQnXUHtubiJz0+F0iMvWxzjV48LDYjJDafDUEYjIEuBq4Otpmz8GfF5VEwCqetJLG6qRUPsaEkN9WL3Hs+6biuPOM3HcdGyNpIndvhz9mkJRVeJ93a4rj6YTbG4jMdRHIk2aY6LIXPE9EILz2wk0L2IkyzqB3ZlskWdpyYbS4fWM4MvAp4H0YGMH8D4R2SsiPxGRszINFJFbk/vs7erq8tjMysJZMM4lPGT1dOKrqcdf1+C1WRWFF/o1iZFB1Bp3vRdBOqf7EpyWXBg7+CxWzzFXwkJgS3XXrH8j0f27pp11xno6zUyzSvDMEYjINcBJVZ0sjhIGRlV1I/BPwL9kGq+qd6vqRlXd2Nrq3RerEjGqBV4AABMCSURBVElpDuWwYFyKys9KZKq/STF/K6dpvZddsxz7YmmZQ0N7fmqLzF34dtfOU7vuEuL93an2kJmweo6ZmWaV4OWM4DLgWhE5hL0OcKWIfAc4AjiB2AeA3NStDCn8c+bin7eQsRz67sZ6TTFZJrzQr/GymMwh1bIybcF4aM+OgkTmpsNZJ5iqj7HG41i9x81CcZXgmSNQ1dtVdYmqLgfeD/xCVT8A/BC4IrnbW4DpUxMMGbEzh3KcEZgv6xlM0K8B8AeK1q+xSuAIUkVlyRBW7OTrjB/eX1Q1cSaCC1fgn7tgSgE6u8dF3Mw2q4Ry1BF8EXiXiDwL3AF8tAw2VDzh9jWMHz2Axq0p99HYOPH+LlP5OQUNl1/Pyrv20PqRv4S4RWTVhqKO58wIvMwakmAIf1NrKgkgJTJ3sbuOQESoXXcJI/t3Z1wnMMVk1UVJHIGqPqKq1yQf96nq1ap6rqpeqqruawHPAsLta9HYGOPHXp1yH6v3uF1MZhzBtDiLrM5FtVAsR4La43TK9FqCoT07CC05i9Cila6fp2bdpcR7jxM7fuiM10wNQXVhKosrlFBKc2jq8FDM3LXlRLB1CeHl64t2BPGBHnxz5ubVRrQQgs12dXF8qI/o/l2uh4UcUvUEGcJDlqkqriqMI6hQQkvOAp9/2gXjVD/ZFu/6yVYLdZu2MPri3lScvxDife43rc+E3bLyGMNP/AIScdfSRicTWrwKf2NLxgVjq/eYXUxW3+TJuQ2lxTiCCsUXihBatGLaFFLnri1oZgRZqd+0BVQZfvyhgo8R7+/2dKHYIdDSRmJkgIGdP8Df1Epk1QWenEdEqFl7ScYZQSyZhGCKyaoD4wgqmFD72mmLyqzeY/hqG/DV1JfQqsokvOIcAi1tRYWHrP5uT2sIHJxwzMhTD1N3UfEic9NRs/4SrO6jxE6+PmG70+zIUB0YR1DBhNvXEDtxmER0OOPrMZM6mjMiQt3GzYw8/ctpewJPR6lmBOlicMN7trsiljcVTh/jkUmzAsv0uKgqjCOoYMLLkhXGr7+Y8XXzZc2P+k1b0PFRRp75Vd5jE+OjJEYGPGlan87Azm2cevCu1PP4QI8rYnlTEVq6Gl/93AkCdBq3sE6dMJ+tKsI4ggomlNIcyrxOYPUcM+sDeVC77lJ8tXMKCg85PQ28lKAGb8TypkN8PmrWvWFCoxrr1AlIJMxss4owjqCCCc5vRyK1GbuVJWJjxPu7zV1bHkgwRN0FVzK892doPJ7X2FTTeg+b0oA3YnnZqF13KbETh4l1H02ey6QlVxvGEVQw4vMRXrI6oyNIfVnNXVte1G3aQnygh9GXn8hrnJUUnPN6jcALsbxsOH2MnVlBqpjM3GRUDcYRVDihZbbm0GQZAHPXVhh1F1wB/kDe4aGUvITHdQReiOVlI7xsHb66xlRDe9PsqPowjqDCCbevJT7QS7xvYs8Gc9dWGP66RmrXX1qAIyjNjGCCWJ4IgZbFRYvlZUP8fmrWXpw2IziGRGrx1ZoeF9VCoNwGGIoj1Zvg8H4Cc+enthsJgMKp27SFrn/+c8aPHiC0eFVOY6z+HvviGKn12DrbGXh54c9EzbpLGd77M6xTJ1I1BKaYrHowM4IKx8kcmrxOEOvpxFffVJILU7VRv3EzkJ8IXbyvi4DHGUPlJFVPsG+XaXZUhRhHUOEEGpvxN80/o8LY1BAUTrB1CeEV5zC0d0fOY+ID3Z7XEJST8Ir1+Grqie7fbZodVSHGEVQB4fY1Z2gOWd1GAqAY6vMUobP6uvE3eNe0vtyIP0BkzcWMPPso8VMnzEJxlWEcQRUQXraW8SMvT8h9t8xdW1HUbdxsi9Dt/VlO+8cHuj1tSDMTqF13CbFjB0HV3GRUGZ47AhHxi8iTIvKjSdv/XkSGvD7/bCDUvgYdHyV23G5SkxiLEh/oNXdtRWCL0C3OaZ1A43HiAz0l0RkqJ4nxsdTj7nv/t6caR4bSUooZwR8CE+IWIrIRmFuCc88KwpMWjK1eu4bA3LUVjohQv2kzI8/szCpCFx/qg0Siqh3BwM5tnPr3f0g9jw90e6pxZCgtnjoCEVkCXA18PW2bH7gT+LSX555N2E1qfKl1AlNM5g51jgjd0zun3c+pISiFBHW5sDWOohO2ealxZCgtXs8Ivox9wU+kbfv/gAdV9dh0A0XkVhHZKyJ7u7q6ptt11uML1xBcuJzxZLcyy1R+uoItQteQNXvIqSr2l6A7Wbkoh8aRoXR45ghE5BrgpKo+nratDXgP8NVs41X1blXdqKobW1ur9wvmFuH2tanQUCz55QzMMzOCYpBAkLoLs4vQlUpnqJyUQ+PIUDq8nBFcBlwrIoeA+4ArgX3AKuBAcnutiBzw0IZZg92k5hCJ0RGsnmP45szFF67JPtAwLXUbNydF6B6fcp94vy1B7bXyaDkph8aRoXR45ghU9XZVXaKqy4H3A79Q1bmqulBVlye3j6hqbjX8hmkJta8FVcaPvGRqCFyk7oIrIRCcNnso3tcFPj++uupt5F4OjSND6TBaQ1VCqlvZ4eeJ9XQSbF1cZouqA39dA7XrbBG61g/+r4z7WAN2i0ovewfPBMqhcWQoDSX55KrqI6p6TYbtpqu6SwTnL0NCEcZeewGr55iJ3bpI/aYtxDoPMn705Yyvx/u6qjpjyFD9VPctzCxC/H5CS1cz+vITJIZOmdCQi9RtckToMmcPxfurv5jMUN0YR1BFhNvXMHrgScCkjrpJsGUx4ZXnTrlOYPV3VXXqqKH6MY6gigi3r4WEXbJhUkfdpX7jZkZfehxrUgMgVbV7QzdWr+CcofoxjqCKCCUXjMHMCNymbtMWW4Tu8YkidDo6jI6PVrUEtaH6MY6gihjvPJh6fOSz7zY6MC4SXr6eQOuSM8JDzgzBrBEYKhnjCKqEgZ3b6L7nL1PPre5OIwrmIiJC/cbNjDzzKxKjp0XoStW03mDwEuMIqgQjCuY99Y4I3TOnReislM6QWSMwVC7GEVQJRhTMe2rWXYKvrnFCeGg2CM4Zqh/jCKoEIwrmPRIIUnfBlQw//lBKhC4lQV3FbSoN1Y9xBFWCEQUrDfWbkiJ0L+0F7NCQr74JCYbKbJnBUDjGEVQJRhSsNNROEqGLV3nTesPswIjOVRFGFMx7/LVzqF3/Rob27KDlg/9rVjStN1Q/ZkZgMORJ/aYtxI4dJNZ5AKuvC3+DqSEwVDbGERgMeZISoXtsO/GBHvxV3JDGMDswjsBgyJNgcxvhlecxuOtHJIb6jAS1oeIxjsBgKID6TZsZO/gMYGoIDJWP545ARPwi8qSI/Cj5/Lsi8qKIPCci/yIiQa9tMBhcx3c6z6L7vi8ZKQ9DRVOKGcEfAs+nPf8usAY4F6gBPloCGwwG1xjYuY3eH3wl9Twx0GN0nQwVjaeOQESWAFcDX3e2qep/ahLgMWCJlzYYDG5jdJ0M1YbXM4IvA58GEpNfSIaEPgj8NNNAEblVRPaKyN6urq5MuxgMZcHoOhmqDc8cgYhcA5xU1cen2OUfgJ2q+qtML6rq3aq6UVU3traaxTjDzMHoOhmqDS9nBJcB14rIIeA+4EoR+Q6AiHwGaAU+5eH5DQZPMLpOhmrDM0egqrer6hJVXQ68H/iFqn5ARD4KbAFuUNUzQkYGw0zH6DoZqo1yaA3dBRwGdokIwDZV/XwZ7DAYCsboOhmqiZI4AlV9BHgk+dgI3RkMBsMMwlQWGwwGwyzHOAKDwWCY5RhHYDAYDLMc4wgMBoNhliO20sPMRkS6sDONCqEF6HbRnErAvOfZgXnPs4Ni3vMyVc1akVsRjqAYRGSvqm4stx2lxLzn2YF5z7ODUrxnExoyGAyGWY5xBAaDwTDLmQ2O4O5yG1AGzHueHZj3PDv4f+2dfYwdZRWHn59AoaWFLV1RKNotpQ1WQiqoaUDb+pEGS0KLIKEByqIhRisfRioa4hchQtM/NKiJgqnFhpaPFXQ1SKm6pbFsC7Uf25Yi1NJogaRNxYZKRKDHP96zOL3sbmeXuXd67z1PMrln5n3vO78zM3fOzDtzz1t1nxv+GUEQBEEwMM1wRxAEQRAMQASCIAiCJqdhAoGkCyT9VdIOSd/oo7xd0l5Jm3yq+7GSD+ez17lM0tOStklaVmuNRZNjP/8gs4+flfSvMnQWSQ6f3y+pS9JGST2SZpWhsyhy+DtO0h/d11U+JG5dI2mxpD2StvZTLkl3+jbpkXROoQLMrO4n4Cjgb8DpwDBgMzC5ok478OOytdbY54nARmC0z59ctu5q+1xR/zpgcdm6a7Cf7wK+5PZkYFfZuqvs74PA1W5/Elhatu4C/J4GnANs7ad8FvB7QMBUYF2R62+UO4KPAjvMbKeZ/Zc0ItrskjVVmzw+Xwv8xMxeBjCzPTXWWDSD3c9zgeU1UVY98vhswAlunwjU8+DJefydDPzJ7a4+yusOM1sN/HOAKrOBX1piLdAi6ZSi1t8ogWAs8I/M/G5fVsklflvVIel9tZFWNfL4PAmYJGmNpLWSLqiZuuqQdz8jaRwwnv+fMOqVPD5/F7hS0m7gEdKdUL2Sx9/NQO+oQBcDoySNqYG2Msl97A+FRgkEefgt0GZmZwMrgXtK1lMLjiZ1D80gXR3fLamlVEW143Kgw8zeLFtIDZgLLDGz00hdCEslNfJv+yZguqSNwHTgBaAZ9nPVaJSD5QUge4V/mi97CzPbZ2av+ezPgXNrpK1aHNZn0lVDp5m9bmbPA8+SAkO9ksfnXi6n/ruFIJ/PXwAeADCzbuA4UqKyeiTPb/lFM/usmX0IuMWX1f1LAYdhMMf+oGmUQPAUMFHSeEnDSCeBzmyFiv60i4DtNdRXDQ7rM/Br0t0AklpJXUU7aymyYPL4jKQzgdFAd431VYM8Pv8d+BSApA+QAsHemqosjjy/5dbMHc83gcU11lgGncA8f3toKrDfzF4qqvGGGD/YzN6Q9BVgBemtg8Vmtk3SrcB6M+sErpd0EfAG6aFMe2mCCyCnzyuAmZKeJt06LzCzfeWpfmfk9BnSyeM+89ct6pmcPn+N1O33VdKD4/Z69T2nvzOA2yUZsBqYX5rggpC0nORXqz/r+Q5wDICZ/ZT07GcWsAN4Fbim0PXX6fESBEEQFESjdA0FQRAEQyQCQRAEQZMTgSAIgqDJiUAQBEHQ5EQgCIIgaHIiEASlIOlAjjo3ShpR4DrnSJpcYHtPvIPvHvDPUyV1DFCvRdKXh7qeIMhDBILgSOZGYFCBQNJRAxTPISUsKwQzO6+ANl40s0sHqNICRCAIqkoEgqBUJM3wnPIdkp6RdK//e/J64FSgS1KX150pqVvSBkkPShrpy3dJWihpA/A5SddKekrSZkm/kjRC0nmkf5Qv8rEKJkia4sn4eiQ9LGm0t7dKaVyD9ZK2S/qIpIckPSfptoz2Axn7ZklbfJ139OHneNe+paKNtt4c9JI+KOlJ19cjaSJwBzDBly2SNFIpF/8Gb2t2pp3tku5WGnviMUnDvewMSX9wbRskTfDlC3w79Uj6XqE7Nqgvys7DHVNzTsAB/5wB7CflTnkXKS3Ex7xsF9DqdivpX6TH+/zNwLcz9b6eaXtMxr4NuM7tJcClmbIeYLrbtwI/dHsVsNDtG0hpnU8BjiXlbxpT4cNngCeAET5/Uh/+dgLz3J6f+W4bnoMe+BFwhdvDgOHZcl9+NHBCZpvsIOWobyP9a36Klz0AXOn2OuBit48j3WXNJI1jIN/uvwOmlX1cxFTO1BApJoK650kz2w0gaRPppPbnijpTSd06ayRBOlFmcwndn7HP8qvuFmAkKV3BIUg6EWgxs8d90T2kAU966U1XsQXYZp7XRdJOUvKvbKqOTwO/MLNXAcysr7zy5wOXuL0UWNhHnW7gFqURtx4ys+fc10OkA9+XNA04SEpF/B4ve97MNrn9F6BN0ihgrJk97Nr+437MJAWDjV5/JCkh4eo+dAUNTgSC4EjgtYz9Jn0flwJWmtncftr4d8ZeAswxs82S2vHEe0PUdLBC38F+9OVhwHwuZrZM0jrgQuARSV/k7UkCrwDeDZxrZq9L2kW6ys9qhrQdhw+wOgG3m9nPBqE/aFDiGUFwJPMKMMrttcD5ks4AkHS8pEn9fG8U8JKkY0gnzre1Z2b7gZclfdzLrgIeZ2isBK7pfcNJ0kl91FlDSoZHhaa3kHQ6sNPM7gR+A5zNodsA0ghkezwIfAIYN5AwM3sF2C1pjq/jWNe5Avh85jnLWEkn5/I2aDgiEARHMncBj0rqMrO9pIyxyyX1kLpRzuzne98i9YuvAZ7JLL8PWKA0yPsE4GrSw+MeYArpOcGgMbNHSV1J671r66Y+qt0AzJe0hf5HlroM2OptnEUamnAfqTtsq6RFwL3Ah72deRX+9cdVpOy7PaRnGe81s8eAZUC3t9XBoQEnaCIi+2gQBEGTE3cEQRAETU4EgiAIgiYnAkEQBEGTE4EgCIKgyYlAEARB0OREIAiCIGhyIhAEQRA0Of8DiHmR8xihiWcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXmYXGWV/z+nqrp6qaSXpLuzdUIgZGEnIcEFDCRxdEYRGFQI6AyiIwM644b4E3VEUMSRGWVGZwYZB0RkcwFFXFAIEFmUhISdpAMh0N0JpJeku9Nbbef3x723Ut2p7q7t1nL7/TxPPV1113Orqu+p97znfI+oKgaDwWCYuviKbYDBYDAYiotxBAaDwTDFMY7AYDAYpjjGERgMBsMUxzgCg8FgmOIYR2AwGAxTHOMIDAaDYYpjHIHBs4jILhF5Z5HOPUtENopIv4j8ewHP+yMR+YZLx/6QiPzBjWMbiotxBFMUEfm9iFydYvlZIvKGiATs128XkQ32Da1XRO4VkWVJ258uInEROTDm8bZCXk8JcjHQBdSq6mXFNiZTRGShiKjzPQBQ1dtU9V3FtMvgDsYRTF1uAT4sIjJm+d8Bt6lq1L6Z/wH4FTAXOBx4FnhMRBYm7bNbVaeNeTzh/iUUhuSbYQYcBryopnTfUAYYRzB1+SUwE3iHs0BEGoAzgB/bi74N/FhV/0NV+1W1R1W/AjwJXJnNSe1wzedF5Fl7hHGXiFTZ6z4iIo+O2V5F5Ej7+Y9E5L9F5Hf2qOMxEZktIteLyD4R2SYiy8eccpWIvGivv9k5l328M0TkaRHZLyKPi8jxY+z8fyLyLDCQyhnYo6VN9nVsEpG3O3YCFwJfsO08JDwlIpUi8m8i8rqIvCkiN4hItb3uJRE5I2nbgIh0isgK+/XP7FFbrx1+Omac93qy9/O9IrJVRPpEpE1Evpa06Ub7735nhDf2eONdv73uYRH5uv0Z9YvIH0Sk0V5XJSI/EZFu+73fJCKzUl2DoTAYRzBFUdUh4KfA3yctPhfYpqrPiEgN8HbgZyl2/ymQS4jgXOCvsUYYxwMfyXDfrwCNwAjwBLDFfv1z4Dtjtv8Q8G5gEbDE3hfbYdwE/COWQ/wBcK+IVCbtez7wXqBeVaPJBxWRGcBvgP+09/8O8BsRmamqHwFuA75tj44eSHEd37LtORE4EpgHfNVed4d9bod3A12qusV+/TtgMdBsX/ttqd+qSRnA+vzr7eu8VETOttettv/WpxrhTXT9SZtdAFxk2xkEPm8vvxCoA+bb+14CDGV5DYY8YBzB1OYW4ANJv5L/3l4GMAPr+7EnxX57gKak13PtX3bJj9AE5/1PVd2tqj3Ar7Fuhulyj6o+parDwD3AsKr+WFVjwF3A2BHB91W1zT7XNRy8wV4M/EBV/6KqMVW9BcuxvHWMnW220xzLe4EdqnqrqkZV9Q5gG/C+yS7ADsddDHzWHmX1A98E1tub3A6caTtjsG6odzj7q+pN9ghtBPgacIKI1E123rGo6sOq+pyqxlX1Wfscp6W5ezrXf7Oqtib96HA+5wiWAzjSfu+fUtW+TO035A/jCKYwqvoo1oTm2SKyCDgZ6yYEsA+IA3NS7DrH3s9ht6rWj3kMTHDqN5KeDwLTMjD7zaTnQylejz1WW9Lz17DmOsCK4V+W7LywfqHOHWffscy1j5fMa1i/7CejCagBnko69+/t5ajqy8BLwPtsZ3Am9uciIn4R+ZaIvCIifcAu+5iNaZx3FCLyFhF5yA479WL9Mk/3OOlc/3if863A/cCdIrJbRL4tIhWZ2m/IH8YRGH6MNRL4MHC/qr4JYN/InwA+mGKfc4GHXbBlAOsGCYCIzM7DMecnPV8A7LaftwHXjHFeNfYvW4eJJnp3YzmTZBYAHWnY1IXltI5JOnedqiY7MSc8dBbWpPPL9vIL7GXvxAqvLLSXj530h8nfz9uBe4H5qloH3JB0nMkmubO+flWNqOpVqno0VvjxDEaHKA0FxjgCw4+xbiof52BYyOGLwIUi8ikRmS4iDWLlqL8DK5SRb54BjhGRE+1w1dfycMxPikiLHdP+Mlb4COB/gUvsX8UiIiF78nR6msf9LbBERC6wJ3PPA44G7ptsR1WN2+f/rog0A4jIPBF5d9Jmd2LNw1zKwVEawHSsEFY31k1+os9hsvdzOtCjqsMicjKWk3HoxBoRHjHOsbO+fhFZIyLHiYgf6MMKFcUn28/gHsYRTHFUdRfwOBDC+nWYvO5RrInKc7DmBXqwJvrWqerzSZvOlUPrCN6fhS2twNXAA8AO4NGJ90iL27FSYHcCrwDfsM+1Gcv5fR8rDPYyGUxaq2o31i/Zy7Buyl8AzlDVrgl3PMj/s8/5ZzvE8wCwNOn4e7BGZG/noPMCy3G/hvXL+0XgzxPYONn7+QngahHpx5qo/mnSvoNYcyqP2eGr5LmTXK9/NtbEfh9WCOwRrHCRoUiISXM2pItY6ZUPAReo6v3FtsdgMOQHMyIwpI2dWXI2cJxkV2RlMBhKEDMiMBgMhimOGREYDAbDFKcshveNjY26cOHCYpthMBgMZcVTTz3VpapNk21XFo5g4cKFbN68udhmGAwGQ1khImOL/lJiQkMGg8EwxTGOwGAwGKY4xhEYDAbDFKcs5ghSEYlEaG9vZ3h4uNimuEJVVRUtLS1UVBgtLoPB4C5l6wja29uZPn06CxcuRA5pslXeqCrd3d20t7dz+OGHF9scg8Hgcco2NDQ8PMzMmTM95wQARISZM2d6drRjgL6Nd7PzklW0fnAeOy9ZRd/Gu4ttkmEKU7YjAsCTTsDBy9c21enbeDdv3nA5Grb63US7OnjzhssBqF19TjFNM0xRynZEYDCUK123X5twAg4aHqLr9muLZJFhqmMcQZasWbOG++8fLcB5/fXXc+mll/LCCy+wdu1ali5dyqJFi7jyyiuJxy259R/96Ec0NTVx4oknJh4vvvhiMS7BUCSi3bszWm4wuM2UcQT5jsmef/753HnnnaOW3Xnnnaxfv54zzzyTL37xi2zfvp3nnnuOJ598kv/4j/9IbHfeeefx9NNPJx5HH310TrYYyovAzLkZLTcY3GZKOAInJhvt6gDVREw2F2fwgQ98gN/85jeEw2EAdu3axe7du3n55Zc55ZRTeNe73gVATU0N3//+97nuuuvyci2G8qfxgisgMDotWILV1nKDoQiU9WSxw96bv8rIqy+Mu3649Sk0Gh61TMNDvPnfn6P3gdtS7lN5+DE0X3T1uMecMWMGJ598Mr/73e8466yzuPPOOzn33HN54YUXOOmkk0Ztu2jRIoaGhti/fz8Ad911F48+erBZ1BNPPEF1dfWk12nwBrWrz2Fg6wb6/2T9EAk0zqPxgivMRLGhaEyJEcFYJzDZ8nRJDg/deeednH/++WntNzY0ZJzA1KOieT4ANce/gyNu2GScgKGoeGJEMNEvd4Cdl6yywkJjCDTOY/7Vv8j6vGeddRaf/exn2bJlC4ODg5x00kls3bqVjRs3jj7/zp3MnDmT+vr6rM9l8Bax/n0ARPftLbIlBsMUGRE0XnAFEhz9qzsfMdlp06axZs0aPvrRjyZGAx/60Id49NFHeeCBBwAYGhriU5/6FFdddVVO5zJ4i1hfD2AcgaE0mBKOoHb1Ocy65DoCjfNAhEDjPGZdcl1ehuPnn38+zzzzTMIRVFdXc++993LNNdewZMkSGhsbOeWUU/jQhz6U2Oeuu+4alT76+OOP52yHobyI9VuOIH5gH/HISJGtMUx1yqJn8cqVK3VsY5qXXnqJo446qkgWpc8vf/lLPve5z/HQQw9x2GGHZbRvuVyjIXN2fW4d4ddfAuDw/3mSiqaWIltk8CIi8pSqrpxsuykxIigmZ599Njt37szYCRi8Tay/B399M2DCQ4bi46ojEJFdIvKciDwtIpuTlv+ziGwTkRdE5Ntu2mAwlBqqSqy/h8oFSwGI7TeOwIuUk7BgIbKG1qhql/NCRNYAZwEnqOqIiDRne2BV9aw4WzmE7AzZER86ANEIwfnLGHz2T2ZE4EHKTViwGKGhS4FvqeoIgKpm9V9QVVVFd3e3J2+YTj+CqqqqYpticIG4nTpaOX8JiBDd/2aRLTLkm3ITFnR7RKDAH0REgR+o6o3AEuAdInINMAx8XlU3jd1RRC4GLgZYsGDBIQduaWmhvb2dzs5ON+0vGk6HMoP3cDKG/PVN+GtnEtvvze/wVKbchAXddgSnqmqHHf75o4hss885A3grsAr4qYgcoWN+2ttO40awsobGHriiosJ07zKUJU4NgX/6DPz1zUT3mRGB1wjMnJu6iHXmnCJYMzmuhoZUtcP+uxe4BzgZaAfuVosngTjQ6KYdBkMpETtghYb8tTMINDQTNSMCz5GqiBWAQJBob9ehy4uMa45AREIiMt15DrwLeB74JbDGXr4ECAKl984YDC6RGBFMayBQ30zMjAg8R+3qc5jxwc8mXgca51H33n8g1vMGbV96H+GOl4to3aG4GRqaBdxjZ/UEgNtV9fciEgRuEpHngTBw4diwkMHgZWL9PeDz4QvV4bdHBBqPIz5T1uMl/KE6ABZ+71GCc44AoPaUs9n9rQt5/ctnMvcLN1Fz9FuLaWIC1755qrpTVU+wH8eo6jX28rCqflhVj1XVFaq6wS0bDIZSJNbXg39aA+LzEahvhliUuB0uMniHoW2b8Nc1UjH74Fxm9ZIVzL/2PgJ1jXRcvZ6+P5VGbYH5CWIwFJhY/z78tTMACDSY6mKvMrx9E9VLVx1S6xScdRjzr7mXqqUreeM//onun19f9DR44wgMhgIT67dGBAD++lkAJnPIY0T37SXy5mtULVuVcr1/Wj3zvnIb01e/n+47v82b/3MZGo0U2MqDeKIfgcFQTsT6e6iYvRA4OCIwtQTeYmi7VRpVPY4jAPBVVDL7n/+TilkL6PnZd4l2dTDnsv/FH6otlJkHbSn4GQ2GKU6sfx/+6XZoKCE8Z0YEXmLopSeRYBVVhx834XYiQuN5lzPrn65n8IUnaPvKWUQ62wtk5UGMIzAYCogjOOefboWGfNUhpCpkagk8xtD2TVQtOgGpCKa1fd3p59LylduJdu/h9SvOYPiVZ122cDTGERgMBcQRnHNGBACBhlmmlsBDxEcGGXn1+XHnB8aj5rhTmX/NvUhFkLav/i17b/lawdRLjSMwGAqIIzjnZA0BBOqbiBopas8wvONpiEWpXpqZIwBLiHDBN+/DV9fI/l/faMlUqCbUS91yBsYRGAwFJCE4lzQisIrKjCPwComJ4qWTNgZLSaChGYnFDlnupnqpcQQGQwE5KDjXkFhmyUwYR+AVhrZtItiyZNRnnCnRnj2pl7ukXmocgcFQQBIjguTQUEMz8aEDxIcHi2WWIU9oPM5w61MTpo2mQ2Dm3IyW54pxBAZDAYk5cwSjQkN2UZkJD5U94fZW4gO9GU8UjyWVeqkEq2m84IqcjjsexhEYDAUkIThXc7BoyKklMJlD5c/QS08CZDVRnEzt6nOYdcl1BBrngQiBxnnMuuQ619pcmspig6GAJAvOORwsKjMjgnJnaLsjNLcw52PVrj6nYP2NzYjAYCggyYJzDiY05B2Gt6UWmit1jCMwGApIsuCcg396A/gDJnOozInue5PI3tdznh8oBsYRGAwFJNbfg2/MiEB8PgJ1pqis3Bna5gjNnVxkSzLHOAKDoYDE+npGZQw5+OubzBxBmTO0bZMtNHdssU3JGOMIDIYCoarEDhw6RwBWLUFsv8kaKmeGtm+i6sgT0xaaKyVcdQQisktEnhORp0Vk85h1l4mIikijmzYYDKVCQnBu2qEVp4GGWZ5WIO3beHfBBNSKgSM0l2vaaLEoRProGlXtSl4gIvOBdwGvF+D8BkNJkKqq2MFf30SstwuNRRG/t7K6+zbezZs3XI6GhwASAmpAwdIj3cYRmivHiWIoXmjou8AXgOI26jQYCkg8RVWxQ6BhFqgS6+06ZF2503X7tQkn4OCmgFoxGNpmF5ItOanIlmSH245AgT+IyFMicjGAiJwFdKjqMxPtKCIXi8hmEdnc2endIbNh6pBKcM4h0cTeg5lD4wmluSWgVgzyITRXTNx2BKeq6grgb4BPishq4EvAVyfbUVVvVNWVqrqyqanJZTMNBveZODTk3eri8YTSpLIGTSG3XG7kS2iumLjqCFS1w/67F7gHOA04HHhGRHYBLcAWEZntph0GQymQSnDOIWBXF3tRbyiVgBr+ADo8wO7rPlb2qqvhtu3EB/vKsn7AwTVHICIhEZnuPMeaHN6kqs2qulBVFwLtwApVfcMtOwyGUsESnPOPEpxz8Ndbo14vZg45AmpSUQlAoHEesz95PU0f+wYDWx6g7cr3l/VIyCkkK9eJYnA3a2gWcI+tuREAblfV37t4PoOhpLEE5+pHCc45+Coq8U2rJ+rBEQFYzqD7ruuoWrycOZ/578TyiqYW9nz3Ul7/0hnM+9KtVM5fWkQrs2No+yb89U1UzDqs2KZkjWsjAlXdqaon2I9jVPWaFNssHJtaajB4lVh/T8r5AYdAfTMxD44IwIqjR7v3HDJfMG3lu5h/9T1oJEzbl89i8LlHi2Rh9pSr0FwyprLYYCgQsf59KecHHPz1zZ4dEcR6u9BomIrGeYesq1p0PAuuvY/AzDm0f+MCeh/+aREszI5ozxtE9r5e1hPFYByBwVAwYv09+CZILwx4uIl9pKsDgEBj6gyiiqYW5n/jV9Qc8zbe/P5n6LrrOlRLv8woMT9QphXFDsYRGAwFYjzBOQdLb6izLG6AmeLUDARSjAgc/KFa5n3pJ9SuOY+en32XN773aTQSLpSJWTG0vXyF5pLxVi27wVCiTCQ45+Cvb0bDw8QH+/CH6gponftEO60RQcU4IwIHCVQw6xPfoWL2Qrrv+Fei3buZe/kP8U+rL4SZGTO0rXyF5pIxIwKDoQAkBOcmGRGAN4vKIt27kcpqfCkE98YiIsx8/6eZ/anvM7x9M21fPpOeX99YcqJ18WFbaK6M6wccjCMwGApAoqp4wjkCu6jMg/ME0a4OKhrnZZRZU7v6HOb9yx2EuzrouuVrRLs6QDUhWldsZzD88laIx8q6fsDBOAKDoQAc1BmaODQEeDJzKNq1e1ypiYmoOeZt+FMU4JWCaF2iI1mZCs0lYxyBwVAAEsqjE9UR2KEhL9YSRLo6CDSNP1E8EeONkIotWje0bRPB+UtLdv4iE4wjMBgKQDqhIV9NLRKs8tyIIB4ZIbZ/LxVZjAhgfNG6bEYY+UJjsbIXmkvGOAKDoQCkExoSEU/2Lo72WFJiE6WOTkQq0ToJVtN4wRU525YtCaG5Mq8fcDDpowZDAYgd2Deu4FwylsyExxxB58TFZJPhdDHr/Mk3iPW8gS9US/PHvlnU7mZD28tfaC4ZMyIwGAqAVUzWkFJwLplAfbP3RgR2LD+VvES61K4+h0U3bqFy4dFUHnZM0VtcDm0rf6G5ZIwjMBgKQKy/J63uVX4Pykwk5CXyENMPLV/H0LYniQ305XysXBjavonqZSeXtdBcMsYRGAwFYDLBOYdAwyziB/YTj4wUwKrCEO3ajb92Br7K6sk3noTQirUQjzH43J/yYFl2RHveILq3zTPzA2AcgcFQEKwRQRqOwG5Q46UU0khXR9YTxWOpWnISvlAdA1sezMvxssELjWjGYhyBwVAAYn0TK486+O3qYi+lkEa7sysmS4X4A4ROOI2BLRuKJs7nFaG5ZIwjMBhcRlUnbUrjcLCozDvzBI68RL4IrVhHbP9eRl59Pm/HzARLaG45EqgoyvndwFVHICK7ROQ5EXlaRDbby64TkW0i8qyI3CMiJVeW17fx7pITuDKUL/GhAxCLphka8pbwXGygj/hgf9apo6moOfF0AAa2bsjbMdPloNCcd8JCUJgRwRpVPVFVV9qv/wgcq6rHA61A8apCUtC38W7evOHykhO4MpQviariNEYE/rpGEPFM5lA+UkfHEqhvonLRCUWZJxjescUzQnPJFDw0pKp/UNWo/fLPQEuhbZiIrtuvRcNDo5aVgsCVoXxJVBWnI8HsD+CvnUnMIyOCfKaOJhNasZbhHVsSTrZQeEloLhm3HYECfxCRp0Tk4hTrPwr8LtWOInKxiGwWkc2dnYXLoBhPyKrYAleG8iUdwblkAg3e6V0c7bI7k2UpODceoeXrIB5n4JlH8nrcyRjavonggmWeEJpLxm1HcKqqrgD+BvikiKx2VojIl4EocFuqHVX1RlVdqaorm5qaXDbzIKUocGUobw4KzqXnCPz1s4h6JH002tUBPj+B+ll5PW7VohPw185gYEvh5gkSQnMeqh9wcNURqGqH/XcvcA9wMoCIfAQ4A/iQlliD1lQCV/j8RRW4MpQ3BwXnJg8NAQQamjwUGtpNYMZsxO/P63HF76fmxDUMPv0QGovl9djjYQnN9XtuohhcdAQiEhKR6c5z4F3A8yLy18AXgDNVddCt82dL7epzaL7k22CXjvuqp0E8RnDuEUW2zFCuxPp70hKccwjUzyLa24nG4y5b5j75Th1NJrRiLbG+HoZfecaV44/Fa0Jzybg5IpgFPCoizwBPAr9R1d8D3wemA3+000pvcNGGrAgddyqo0vTRr3P4D57CX9fI3pu/WrQCFkN5Y8lLTC445+BvaIZYlJg9t1DORLt35zV1NJnQCaeBz1ewNFJLaK6ZiuYFBTlfIXHNEajqTlU9wX4co6rX2MuPVNX5dkrpiap6iVs2ZEu4rRWAyvlL8ddMp/GCKxjevpn+x35ZZMsM5Ui68hIOTi1BrMwnjDUeJ9K9O2/yEmPxT59B1eIVhXME2zdRvWyVZ4TmkjGVxSkYadsOQLBlCQC1a86j8ojj6Lr1G8SHSy6aZShxHAnqdHGqi8u9liDW2wnRSNadydIhtGIdIy8/7frkeqR7j+eE5pJJyxGIyCIRqbSfny4inyrFiuB8EW7fgW9aPX5bAEx8Ppovuppo9x56fvVfRbbOUG7EDqSnPOqQ0Bsqc0cQcSl1NJnQ8jUADD79sGvnABj28PwApD8i+AUQE5EjgRuB+cDtrllVZMLtrQRbFo8aAlYf9Ramn3IW+371P0Q624tonaHciPWlpzPk4JXQUNQuJnNrshigcuGx+OubXa8yHtrmPaG5ZNJ1BHG7Gvhvge+p6uXAHPfMKh6qykhbK5V2WCiZxg9/GYDOW79eaLMMZYojOJeO8qiDr6oGX/W0sq8lSBSTuRgaEp+P0PI1DDzzCBqLTr5Dlgxt20TV4hWeEppLJl1HEBGR84ELgfvsZZ58R2K9XcQP7CM4f+kh6yqaWphx9ic58PivGXzxL0WwzjCWUhcIjA/2py04l4y/vvyriyNdHUhVDT6Xq3BDK9YRH+hluPWpvB+7b+Pd7PzHlYzsfJaRnc+V3PcrX6TrCC4C3gZco6qvisjhwK3umVU8wu1WxlCwZXHK9Q1nXUqgcS6dN/9LwQpZDKkpB4HA2IHM5CUcAg3NZV9UFu3eTcXMua5n2dQcvxp8/rxXGSe+X7a8THyov+S+X/kiLUegqi+q6qdU9Q779auq+q/umlYcnNTRYIrQEICvsobGD3+FkVefp++hOwtpmmEM5SAQmIngXDKB+uayDw3lszPZRPhDtVQvO5mBrfmdJyiH71e+SDdr6BQR+aOItIrIThF5VUR2um1cMRhpb8VXM53AjNnjbjP9lLOoWraKrtu/VfQm2lOZchAIzESCOhm/B4Tnol3uFZONJbRiLSO7XiTSvSdvxyyH71e+SDc09H/Ad4BTgVXASvuv5wi37yDYsmTC4ayI0HzR14n199Dz8+8W0DpDMuUgEJhQHs1wjiBQ34wODxAfGnDDLNeJR0aI7d/rasZQMqEV6wAYzGNxWTl8v/JFuo6gV1V/p6p7VbXbebhqWZEIt20nOD91WCiZqkXHU7t2Pft++3+Ed79SAMsMY2m84ArwB0Ytk2B1SQkEJkJDGc8RlHctQdT+ZV6om2Zw/lICjXPzOk/QcNYnD1lWat+vfJGuI3jIbjH5NhFZ4TxctawIRHu7ifV1p0wdTUXj+V/EF6yi85arXLbMkIra1efgnzkXfJaypS9Uz6xLrqN29TlFtuwgmQrOOTjFjOXastJJHS3UiEBECC1fx+Bzf0Ij4bwcc+TVZ0F8VoGfCIHGeSX3/coXgck3AeAt9t+VScsUWJtfc4pLuGMHMP5E8VgC9U3M+MBn6Lr1GwxsfShR5WgoDNH9ncT2vs7M8y5n/x9vpebot5bcP2lCcC7DzBlnRFCuTeydYjI3q4rHElqxlt4/3srQ9k3UHHtKTscafuVZ+h66i4b3/SNNf//VPFlYuqTlCFR1StzhEhlDaYSGHOrf8zF6/3gbnT+6kprjTvVswUkp4sgKhE5ax8jr2xja9mRxDUpBpoJzDgm9oTKdMI7YE6qBGYWrO6059lQkEGRgy4M5OQJVZe/N/4K/diYz3v+ZPFpYuqSbNVQnIt9xWkeKyL+LSJ3bxhWacPt2pCqUUVzTV1FJ00euJNzxMvvvv8VF6wxjGdjyIP76ZioXHkv1slVEu3YneuSWCpkKzjn4pjWAP1C+cwRdHfhrZ+KrrJ584zzhqw5RffRbcp4n6H/sVwxv20TjBV/EH8ospFeupDtHcBPQD5xrP/qAm90yqliMtO2gcpKMoVSETvorao5fTfdd/0a015Nz6CWHxqIMPPMIoeVrEJ+P6mUnAwebi5cK2Y4IxOcjUN9UtqGhSAFTR5MJLV9HuL2VyN62rPaPjwzSdevXqTz8WGpPPy/P1pUu6TqCRap6pd1jYKeqXgV4rmVXuL2V4PzUFcUTISI0XXQV8eEBuu+6zgXLDGMZbn2K+EBvIm2wcuHRSFVNQiWyVIj178s4Y8jBkpkoT0cQLVAx2VhCK6xpy2x7FPT88r+Jdu+h6aKv5729ZimTriMYEpFTnRcicgowNMH2ZUesfx+x/XsJthyqMZQOlfOXUv/uC+l94CeM7Hoxz9YZxjKwZQP4/Ja8ACD+AFVHriipEYEjOJfNiACseYJydgRu9iEYj4q5i6iYdVhWaqSRznb2/eq/mf72M6k5+i2T7+Ah0nUElwKObmstAAAgAElEQVT/JSK7ROQ1rHaTk3YWs7d/zm5JudleNsOuUt5h/808gOoCCY2hDCaKxzLz3Mvw1dSx+/pLsxZCK5aIWqmLt41lYOuDVC87eVQMt3rZSkZee5H40IEiWnYQR3AuE+XRZAINs8oyNBQb6CM+dKAoIwIRIbRiLYPPPUo8PJzRvl0/uQaAxr/7ihumlTTpag09raonAMcDx6nqclVNt2P0GrslpZN6+kXgQVVdDDxovy46I+1W6mi6NQSp8E9vILTynUTad2QlhFYsEbVyEG9LJtK9h5FdLybCAA7Vy06GeJyhHVuKZNloshWcc/DXNxHr63ZVXtkNEn0ICpg6mkxo+To0PMzQi39Oe5/BF/9C/2O/ouGsT1DR1OKidaXJhOmjIvJhVf2JiHxuzHIAVPU7WZzzLOB0+/ktwMPA/8viOHkl3N6KVFbn/Ctm6PnHD1mm4SE6b/laIiVwPDpv+dq4Ildu5sdPJK5Vann5AINPPwRAaPloR1C1eAWIMPTSk4TskFExSVQVZxsaqp9lOeb9nVTMLJ/2H4nU0SJJMVQf8zYkWMXAlgcJnXj6pNtrLEbnzf9CYOYcZpz9CfcNLEEmqyMI2X+np1inaRxfgT+IiAI/UNUbgVmq6ihDvQHMSrWjiFwMXAywYMGCNE6VG+G2VoLzFiO+3No4jydIFevtov2qc/N6zHxRbuJaA1s2EJg5h+CCZaOW+0O1BBccVTITxgnBuaxDQ3ansjJzBNFOu5isCKEhAF9lNTXHnmLNI3108iZSfQ/fxcirzzP7M/+Fr7KmABaWHhM6AlX9gf30AVV9LHmdPWE8GaeqaoeINAN/FJFtY46vtpNIde4bsdpisnLlynScTk6E23dQc9ypk284CYGZcxND42T8dU3MuewHKfY4yJ5//0er4XeKY7rJeDaXoriWRsIMPruR6aeenTLNt3rZKvoe+TkaiyL+dAvn3SGe44jAX1+eRWXR7t3gDyRabhaD0PK1DGx5kPCenQTnjJ/gGBvsp+v2b1G1bBXTTzm7gBaWFun+/P1emstGoaod9t+9wD3AycCbIjIHwP5b9Nmw2EAv0Z494zajyYTGC65AgqOLaCRYTdOFV1Jz9FsnfDRdeGXKfd0WuRrP5lIU1xravon40IFDwkIO1ctWocMDjLz2UoEtO5RYf25zBAdHBEX/F8mISFcHgRmzi5p+WeOkkU5SXNbzi+uJ9XXTfNHXXW+gU8pM6AhskbnLgCYR+VzS42vAhJ+yiIREZLrzHHgX8DxwL1bLS+y/v8rxGnImbE8U55Ix5FC7+hxmXXKdNSzOUKjK2dcXsoq2AzPnFETkqnb1OTR/fHSzjYazLi3J+YGBLQ9CoIKa496Rcn2isKwEwkPZCs45lKvwXLRrd1FSR5MJzjqMirmLJqwnCO/Zyb7f/JDaNedRtej4AlpXekw2dg4C0+ztkucJ+oAPTLLvLOAe28sGgNtV9fcisgn4qYh8DHgNq1K5qBxsT5m7IwDrxprtTbR29Tn4a2fQ8Y0LmP3p/6Lm6LfmxabJqDryRACaP/4tOn98FdGeNwpy3kwZ2LKBmqPfiq86lHJ9oHEegRlzGN62Cf7mowW2bjRWDUHmgnMOvopKfNMayk5mItrVQdWSk4ptBqEV6+i9/xbiw4P4qg6N/XfechW+ikoazy+JxMWiMtkcwSPAIyLyI1V9LZMDq+pO4IQUy7uBdRlZ6TLh9h1IsIqKpvnFNgU42C853NZaMEfgOMOqxcuZ/vb30f/Yr2j+yFXj3nCLQWRvG+H2VurWXTDuNiJC1bKVJTIi2Jf1/IBDufUu1nicSM8ephVBXmIsoRVr2X/fjQw+/xjTVv7VqHUDTz/MwOY/0vh3X5k0m28qkO4cwaDdj+C3IrLBebhqWQEZadtOcN6RJVNSHpg5F1/1NMLt2wt2znDbdhAhOG8RdWvPR4cH6P/zfQU7fzo4w/yx9QNjqV5qC9B1thfCrHGJ9fVkPT/gEKhvKqsRQay3E6KRgvUhmIjqo96CVNUcEh7SaITOH11JxeyF1L/nY0WyrrRI1xHcBmwDDgeuAnYBxf/JlSfC7a15CwvlAxEh2LKEkbYdBTvnSHsrFc0L8FXWULXsZCrmHkHfg3cU7PzpMLDlQSrs2O9ElMo8Qay/J+Om9WPxN8wqq6yhSJFTR5PxVVRSc9w7GNjyIKoHEw/3338L4fYdNF14Jb6KyiJaWDqk6whmqur/ARFVfURVP4pHmtLEBvuJdu0uKUcAVnjICdcUAqtXsxWSEhHq1qxnaNuTJdOGMx4eZvD5xwitWDtpzN0RoCu27lAugnMOgYZmYvs7R93IShmn9qSiBEJDYM0TRDvbEwkhsb5uun/679Qcv5rQyncV2brSIV1HELH/7hGR94rIciC3b3iJEO54GYDKPGQM5ZNgyxJi+/cmUhDdRGNRwrtfITj/oOBe7ekfBJ+f3g13un7+dBh68c/oyBA146SNJiP+ANWLV1gTxkUiV8E5h0B9MxoZIT7QmyfL3CXRmawERgRAomugI0LXdde/ER86QNNFV03pdNGxpOsIvmE3orkM+DzwQ+CzrllVQMJtVhw+H6mj+cSxpxCjgsgbr0I0MkpnKdAwi9CKtfQ9/LOS0LoZ2LoBCVZRc8zb0tq+atkqRl5/qWgCdI7gXK4jAn+iU1l5zBNEunYjVTWJFOhiU9E4j+CCoxjYuoGR116i94+3Uv/uC6mcn53KsFdJV3TuPlXtVdXnVXWNqp6kqve6bVwhCLe3IhWVVDS7L2ORCc4X1RHDcxNnLmJseKxu7fnE9u/NWts9nwxs2UD1MW9PWwKgeukqS4Cu9SmXLUuNIy+RrfKoQ6C+vHoXR7s6qGicV1K/tgNNLQw9/xivXbYOlFEjX4NFWjX4InIzKbSF7LmCsibcvoOKuYuKLkcwlsDMuUhVTUFGBIk6inlHjloeWrEOf30TvRvuZFoR46nhPTuJ7NlJ/XvS/7pVLTkJfD6Gtm0idMJpLlqXmkRVcc7po+VVVBbp3l1S0iR9G+9m6NmNBxdonM4ffQ1fVagkCyaLRbqhofuA39iPB4FaoDRE33NkpL215OYHwGpVGJy3mHBbYRxBoHn+ITUDEqig9rQPMPDUA0T3H6qBVCgcmQCnG1k6+GumU7lgWdEE6A4KzuUYGrJHBOWSQlqszmTj0XX7tWhkZNQyR1nXcJB0Q0O/SHrchlUNvHKy/Uqd+PAg0b1tJZcx5FDZsiSR7eAmI22t4/ZhqFu7HmJR+h75uet2jMfA1g1UzF1EcNZhGe1XtXQVQ61bijLHcVBwLrfQkK9mOhKsIlYGKaTxyIillFoiGUNQfsq6xSJbzeXFQNmX4yU0hkrUEQRbFhPt2UPMxYwRjUWJ7H5lXMG94LzFVC1dSd+GO4qSwhgfHmTohScyGg04HBSgK3zr0FwF5xxEhECZ9C6Odlvq8qU0IhgvTFVK4atSIC1HICL9ItLn/AV+TQk0k8kVJzZemUXD+kLgTGq5OSqI7H0djYxM6Azr1p5PuONlhrdvds2O8Rh8/jE0MjJpNXEqEoVlRUgjzVVwLhl/Q3NRQ3PpkuhMVkKOoJyUdYtJuqGh6apam/R3iar+wm3j3GakvRUCFVTMWlhsU1JSiBRSZw5iokyK6W9/H1JVQ+9Dha8pGNi6AamqofqozJuJVzS1EJg5pyj1BLF+S14iH9kzgfpmYvtLPzQU7bI7k5VQaCgXNeCpxGStKldMtF5VS6M5bJaE21sJzl2EBCqKbUpKKhpbkGCVqyOCEdsRVE7Qi8FXPY3pbz+T/sfupfkjVxdMiE5VGdi6gZpjT81aCqB66aqiSE3E+nKXl3DwNzQTff6xyTcsMhGnmGxGaXVTy0UNeKowWc7kv0+wTilzmYlwWyuVJaxDLn4/wXlHMtLmnvhcuL2VQKMlcjcRdWvX07fhTvqf+LU1gVwAwh0vE93bxoyz/ynrY1QtW0X/4/cS6WwvaFPyfMhLOAQaZhEf6CUeHsYXrMrLMd0g2r0bf+1MfJXVk29sKCkmk6FeUyhDCk18ZJDI3tepPW2ytgrFJTh/KUMvPuHa8dMV3KtauoqKuYvo3XBHwRyBIwvgyARkQ/WyVYAlQFdYR9BDcBJxvHQJ2A1qYvs78TWXhlR6KiKdpZU6akiftLOGRORYETlXRP7eebhpmNuEO14B1ZLNGHKobFlCtGs3scH+vB9bYzHCHS+nVW4vItStXc/wtk0JfSa3GdiygeCCZTndwCsPK44AndOUJh/4G8qjlsCqISid+QFD+qSbNXQlVo/i7wFrgG8DZ7pol+scbE9Z2uXmiSY1Ltx8I13taHg47V7NtacVToguNtjP0La/jNubOF0OCtA9mSfLJscSnMu9KY1DoAxaVqoqEVtewlB+pDsi+ABWV7E3VPUirM5jpaEqlSXhtu3gDxCcvbDYpkyIm5lDCcG9NEdFgYZmQivW0ffIz9BoZPIdcmDwuUchGsmqfmAsVctOZuT1ba6MqlKRL8E5h4A9IijlorL4YB86PGBCQ2VKuo5gSFXjQFREaoG9QFrBShHxi8hWEbnPfr1ORLaIyNMi8qiIHDnZMdxgpL2V4JzDkYpgMU6fNhXNhyEVlYmbdj5JpI6mOSIAqFt3PrH9na4L0Q1seRBfzXSql+ZewF69zBKgGy6QAF2+BOcc/LWN4POVdGjISR0tpapiQ/qk6wg2i0g98L/AU8AWIN0ZzE8DLyW9/h/gQ6p6InA78JU0j5NXrEYspT0/AE7m0CJXUkjD7Tvwz5iNPwPJ4NDytQkhOrdQVQa3PkTN8aflJbW32hGgK1Aaab4E5xzE78dfO7OkQ0OREutDYMiMdAvKPqGq+1X1BuCvgAvtENGEiEgL8F6s/gWJw2GJ1oEVXiq46Ec8PEzkzV0l14NgPIItS6zitzwz0j6+xtB4WEJ0H7SE6Fy6MYVfe4loz56sqolT4aueRuWCowpWWJYvwblkAvWl3cQ+UUxmpBvKknQni+8VkQtEJKSqu1T12TSPfz3wBSCetOwfgN+KSDvwd8C3xjnnxSKyWUQ2d3bmt7w+snsnxOMZ3wSLRbBlCdG9bcSHB/N2TI3HrdTRLJxh3dr1EI/Rt9EdIbqBrbmnjY6latkqhnYURoAuITiXpzkCsHsXl3RoqAP8AQL1ZS9BNiVJNzT078CpwIsi8nMR+YCITFjZIiJnAHtVdWxg9rPAe1S1BbgZ+E6q/VX1RlVdqaorm5qa0jQzPUbaM5skLTaOnfkMD0W7OtCRoazeg+C8I6latoreB90RohvYsoHKw49NTJLmA0uAbrAgAnQHRwT5mSMAK3OolB1BpHs3gRmzEb+/2KYYsiDd0NAjqvoJ4AjgB1gy1JN9K08BzhSRXcCdwFoR+Q1wgqr+xd7mLuDt2RieC+G2HeDzUzH3iEKfOisqXcgcckJNE0lLTETd2vOJ7H4l70J0sQP7Gdq+OS/ZQslUL7ULywoQHor178ub4JxDoGGW1cQ+FsvbMfNJ1KSOljWZFJRVA+8HLgFWAbdMtL2qXqGqLaq6EFgPbADOAupExPkZ+leMnkguCOH2VipmL8xav6bQVMxeCIGKvM4THMwYym5UNP1t70OqQvRuuCNvNgEMPrsR4rGc6wfG4gjQDRWgniCfgnMO/oZmiMeIHdiXt2Pmk0hXh5kfKGPSnSP4KdYNey3wfWCRqv5zpidT1SjwceAXIvIM1hzB5ZkeJ1fCWUySFhPxBwjOXZTXEUG4fTv++uaswxe+6hDTTzmT/sfvJT40kDe7BrZswDetgarFE+odZkX1spMZ3rbZ9b4K+RScc3Bi76VYS6CxGNGeNwg0mRFBuZLuiOD/sG7+l6jqQ3ZNQdqo6sOqeob9/B5VPU5VT1DV01V1Z6ZG50I8MkJ4z6tlkzHkEGzJb9vKcFvu6bN1a9ajw4P0P35vXmzSeJyBrRsInXiaK7HmqmWriPbsSejmu0U+BeccAg2WIyjFvgSx3k6IRkxoqIyZ0BGIyBcAVPV+4Jwx677pol2uEdnzKsRjGRVRlQKV85cS2fs68ZHcM4dU1e7VnNt7ULV0JcF5R+YtPDSy8zlivV15nx9wODhP4G54yNIZyq8j8NsjgmgJjggiJnW07JlsRJAsMzm2pc9f59mWguCEV8olY8gh2LIEVC2xvByJdu9GhwcItuSmsyQi1K5dz/D2zYQ7cs9oGtj6IIhQc8LpOR8rFZWHHYVUhVyfMHbmCPKJMyIoxVqCUuxMZsiMyRyBjPM81euyYKStFXy+vEkEF4p8ppAe7EqWuzPMpxDdwNaHqDpyOYG6mTkfKxXiD1C9ZAXDLlYYJwTn8jxH4KuswVczvSRTSJ1G8EZ5tHyZzBHoOM9TvS4Lwm2tVDQfVnbNM4KzF4I/kJcJ43COqaPJBOqbCJ30Tvoe+XlOQnSxvm6Gd2zJWzXxeFQtXeWqAF2+BeeS8dc3laTMRKSrA6kK4ctAqsRQWkzmCE5wmtYDx9vPndfHFcC+vGM1Yimv+QEAqQgSnHNEXrqVjbS34q+dib82P7+8K2YfRmx/JzvWH8bOS1bRt/HujPbv23g3r356Naiy//4fZ7x/JrgtQOeGvIRDoH5WzllDfRvvZuclq2j94LysPqtURLt2U9E4N6/psobCMqEjUFV/UtP6gP3ceV2ajX4nQKMRwnt2ll3GkEOwZUneQkP56sPQt/Fueu+/NfE62tXBmzdcnvYNpm/j3bx5w+XEbaG22P69Ge2fKQkBOpcmjGN9+VUeTSbQ0JxT1pDzXke7OkA1489qPCJdpjNZuTNZz2JPEX5jF8SiaXXkKkWC8xdz4Mnf5tS7VlUJt7cy/R35aebddfu1aHho9DnCQ7z5P5fR98jPJt1/6MU/o5GRQ/bvuv1aVxqO+6qnUXnY0Qxty29FtINT8OXGiMBf30x0f/YjgvE+q1zf62hXB1WHH5v1/obik3ZlsRc4mDFUfqEhsNpWEo9bonlZEu15g/hgf94K6pyJwrFoZIT40IFJH2OdwGTHzQfVy1Yx/LI7AnRuCM45BBqa0eFB4kMHstp/vPc0l/c6Hh4m1ttlUkfLnKk1ImjbDiIE5xWlF07OOJlDI+3bqVx4dFbHSDjDPIXHAjPnpizQCjTOY8E3fz3p/jsvWZV6fxdvLFVLV7H/dzczsutFqhYdn9djuzpHkNS7OFg9LfP9x/uscnivo917rGOYquKyZmqNCNpaqWiaj6+yptimZEXF3CPA57dE87Ik0as5TyOCxguuQIKjM7AkWE3jBWPLTtzZPxuql7lXWBbr3wf+AL6a6Xk/tj/H3sXT3v6+Q5bl+l47o4kKMyIoa6aUIxhp31G2E8UAvopKKmYvzCmFNNy2Hd/0Bvx1jXmxqXb1Ocy65DprslCEQOM8Zl1yXdox51z3z4aKxnkEGue60rHMqipucCWDJtG7OItaAo2EGdj8B3z1zaMmdmee9/mc3mvTmcwbTJnQkMaiRHa/ktdmJ8WgsmVJTo7A6UqWzxtV7epzcrqZ5Lp/NlQvXcXgS39BVfP6XsT68i8v4RDIYUSw//c3E9m9k3lf+gmhFWuJ7nuTnf+4Mmc104OdyebkdBxDcZkyI4LIG7vQaLisRwRgxfbDe15FI+GM97UyhsqjV7PbVC1bRaznDaKd7Xk9rjMicAPf9BkQqMhYbyja20X3z75DaMW6RMFeoGEWoRVr6Xv4ZzlNmke7OvDXNWadxWYoDaaMIxixY+PlJD+diuD8JRCPEd6TeeZQbH8n8QP7yzZrKp9ULzsZyH+jmlj/PtdGBCJCoL6JWIa1BN13/CvxkSGaLrxy1PK6teuJ7XuTga0PZW2T6UPgDaaMI0hky8wr75tgZUv23coS0hJlWkeRTyoXHIWvelre5wncEJxLxl/fnNGIYHjnc/Q+eDv1f/PRQ7LlQiveib+uMSf1WKuq2MwPlDtTxxG0tRJoasFXHSq2KTlRMecI8Pks8bwMceQpyj08lg/E76dq8Yq8jggSgnMujQjAalCT7hyBqtJ581fxT29g5gc/e8h6CVRQe9oHGHjqgawqllXVGhGY1NGyZ+o4gvbtnoiN+yqrqWg+LCupiXD7DnyhuoS2/VSnetkqwq+/RGygLy/HSwjOuTRHAE7v4vQcwYEn7mPopb8w8/wv4h9HEK5u3fkQi9L3yM8ztiU+2IcOD5jQkAdw3RGIiF9EtorIffZrEZFrRKRVRF4SkU+5bYPGYoQ7XsmL2mYpEJy/xCqOyxBHcM+Ig1nEIiOgyisXLsuLAJubxWQO/vomYn3dkyq9xkeG6Pzx1VQuPJq6teePu11w3mKqlq6kb8MdGbfwjHaaPgReoRAjgk8zukH9R4D5wDJVPQrIXch+EiJ7X0cjI54YEYCdQrpnZ8ayz+H2VjM/YNO38W56f/PDxOt8CLAlBOdcnCNIVBf3dk243b57byDa1UHTRV+ftO1n3dr1hDtezliRNWL6EHgGVx2BiLQA7wV+mLT4UuBqp++xqrousH5QVsEbN8Hg/CUQi1oiemkS7e0i1tfjGWeYK5YA2/CoZY4AW7YkRgR5bkqTjFNLMFGnskhXBz33fI9pbz2DmmPeNukxp7/9TKSqJuNJY9OZzDu4PSK4HvgCkNzsfhFwnohsFpHfiUjKeI2IXGxvs7mzM7eG3eUuNjcW5zoyyRxKdCXzyHuQK64IsNlS2q5mDSX0hsbPHOr6yTdBlaa//5e0jumrnsb0t72P/sfuJT40kLYt0a7d4A/gr2tKex9DaeKaIxCRM4C9qjp2vFkJDKvqSuB/gZtS7a+qN6rqSlVd2dSU2xdtpK2VwMw5+F3QfykGwXlHgkhG8wT5Fpsrd8ab4Mxl4rMQcwRO7+LovtQ/joa2baL/0XtoOPNSKprnp33cunXno8MD9D8xuVCgg1VDMGfS0JOh9HFzRHAKcKaI7MKaB1grIj8B2gEnEHsPkF/5xxRYk6TeuQH6KmuoaF6Q+JWfDiPtrfhqphOYYaQAwB2xu1hfj2uCcw4B+9d3LMWIQONx9t78VQIz5jDjb/8po+NWLV1FxdxF9GXQezra1WHCQh7BNUegqleoaouqLgTWAxtU9cPALwFH8Oc0IPcmvBPZEY9bsgoemR9wCLYsTlRLp0O4zXKGJmPIYpTYHYDPT/Ml385J8yh2YJ9rgnMOUhHEN70hZS1B3yM/Y+SVZ2j88JfwVWWmsCsi1K1dz9C2Jwl3vJzWPpHu3SZ11CMUo47gW8D7ReQ54FrgH9w8WbSzHQ0PeyZ11CHYsoTI7lfS1okp117NblK7+hyOuGETzR+/FuIxqhedkNPx3BScSybQMIvomFqC2GA/Xbd9k6olJzH91L/N6ri1p30QfH56H7pr0m01FiPavceMCDxCQRyBqj6sqmfYz/er6ntV9ThVfZuqPuPmuRPVtB4KDYEV69domMibr026bayvm1hvl+feg3wRWm4JsQ1s2ZDTcSzBuQI4gvqmQ7KGeu7+T2L7O2m66GrEl92/daChmdCKdWkJ0cV6OyEWNamjHsHzlcVenSStbLFCXelITYy0v2zv4633IF9UNM8n2LKEga0P5nQca0TgXuqog79+1ii9ofCeV9l/3/9Se/q5VC9entOx69adT2z/Xga2TPxemD4E3mIKOIId+GfMHrfEvlxxBMTSSSENG42hSQmtWMvgi3/OKH1yLLED+1xNHXUINDQT29+ZqATu/PHVEKig8UO5d3ULLV+Lv76J3kkmjZ0+BKYzmTfwvCOwGrF4Lzbuqw4RaGpJK3Mo3N6KVIXMr7cJCK1YB9EIg8/9Kav9VbVwcwT1zWg0TPzAfgae3cjApvuZec6nElXHuWAJ0X3QEqKbpGgNTK9ir+BpR2BlDHkrdTSZYJrdyozG0ORUL12Fr3pa1tr88cE+iMcKExpyagm699B585VUNC+g/oyP5+34dWvPg3iMvo3jC9FFu3cjVSF8NbV5O6+heHjWEfRtvJudl6xEhwfp2/iLnAXFSpHK+UsI734FjcUm3G6kfYeZH5gEqQhSc/xqBrY+mLH4GthN63G3mMxh5PVtALz2+XcSbttOzap35bVDWHDeYqqWraL3wfGF6KKdVg2B+XHhDTzpCPo23s2bN1xOrOcNAOIH9ucsKFaKBFuWoOFhIntfH3eb2IH9xPa9aeYH0iC0fA3Rrt1ZKbsWQnAOrO/2/l//YPSyP96W9+923Zr1RHa/wvD2zSnXR7o6TKjRQ3jSEViCYkOjluUqKFaKBNPoVnZQZ8k4gsmoSaSRZp49VAh5CbC/25GRUcvc+G5bQnShcYXoot27qTCpo57Bk47ADUGxUiQd8bmRNm/0ai4EFTPnULnw6KzqCRKCcy7PERTqu+2rDjH9lDPpf/xe4kMHRq2Lh4eJ9XaZEYGH8KQjcENQrBTx10wnMHNO4mafinB7K1JZTaCppYCWlS+h5esY2vZkxl3LCjUiKOR3u27NenR4kP7HRwvRRbv3WOc0IwLP4ElH4IagWKkSnL+UcPv4Me1w23aC8xZnXW061QitWAvxGIPPbsxov0IIzkFhv9tVS1cSnHfkIeEh04fAe3jy7jBKUEyEQOM8Zl1yXU6CYqWKlUK6A43HU64Pt+8w8wMZULXkJHyhuoznCSx5CXcF56Cw320RoXbteoa3bybccXDUmehM5rER9lQmUGwD3KJ29TmevPGPpbJlMRoeJtrZTsWsBaPWxQb6iPbsoXK+9wrq3EL8AUInnMbA1ofQeDztkVSsf19BUkehsN/t2tM+SNdt19K74U6a/s5qdOP0Kg7MNJLmXsGTI4KphPNrfyTFhLHzK86MCDIjtGIdsf17Gdn1fNr7FEpwrtAE6psInfRO+h75eaJHdqSrA399U15rFwzFxTiCMsepD0iV+55oT+mxXgxuU7PcapeRSfZQrK+nIDpDxcASoutMhMuipg+B5zCOoMzxh3PVSb4AAA5hSURBVOrwz5hNOEWTmnB7KxKsoqIp/ZaFBgjUNVJ55IkMbM3AEdhNabyIJUTXnBCiM53JvIdxBB6gsmVxytDQSFsrwbmLTE/ZLAgtX8Pwji2JtNCJKKTgXDEQf4Da0z/IwJYHie57k0jXbpM66jGMI/AAjvjcWF0YLwvuuU1o+TqIxxl45pFJtz0oOOdNRwBQt3Y9xGPs++3/ocMDZkTgMVx3BCLiF5GtInLfmOX/KSIHxtvPkD7B+UvR4cFEfjdAfOgA0a4OozGUJVWLTsBfOyOteQJHZ8iroSGA4NxFVC87mf2/uwkwqaNeoxAjgk8DLyUvEJGVgHf/awqM028huTeB09i+0jiCrBC/n5oT1zD49EOTqrs6yqNuC84Vm4r5i9HhQQD23vQVz4k4TmVcdQQi0gK8F/hh0jI/cB3wBTfPPZVwNIeS5wmM2FzuhFasJdbXw/ArE7fVLpS8RDHp23g3/Y/8IvE6tr/Tk4q+UxW3RwTXY93wk8te/wm4V1X3uHzuKYN/+gz89U2jxOfC7a1IIEjFrMOKaFl5EzrhNPD5Ju1lnHAEHh4RWIq+w6OWeVHRd6rimiMQkTOAvar6VNKyucAHge+lsf/FIrJZRDZ3dna6ZaZncKQmHMJtO6iYuwjxe7Z43HX802dQtXjFpPMECeXRad6Ndk4VRd+pipsjglOAM0VkF3AnsBZ4ATgSeNleXiMiL6faWVVvVNWVqrqyqanJRTO9QeX80ZlDI+3bzfxAHgitWMfIK88Q3T/+j5FCCc4Vk6mi6DtVcc0RqOoVqtqiqguB9cAGVW1Q1dmqutBePqiqR7plw1Qi2LKE+GA/0Z49xIcHie5tM/MDeSDkNKt5evxexo68hJfbNk4lRd+piKkj8AiJbmVtrYQ7rEGWSR3NncrDj8Vf3zyhGqklOOfdsBBMLUXfqUhBAsiq+jDwcIrl0wpx/qnAwbaVOxI3JTMiyB0RIbR8DQee/D0ai6acc/Gq4NxYpoqi71TEjAg8QqBuJv7amYy0bWekbTsEKgjOXlhsszxBaMU64gO9DLc+lXK9lwXnDFMD4wg8hCM1EW5vJTjnCCRQUWyTPEHN8avB5x83e2iqjAgM3sU4Ag8RnG+lkIbbjMZQPvGHaqlednLKegJVnRJzBAZvYxyBhwi2LCY+0EvkzdcS1caG/BBasZaRXS8S6R5dBzkVBOcM3sc4Ag9RmdSAptI0o8kroRXrABgc06MgIThn5ggMZYxxBB5iJKmyeO/NXzU6MHkkOH8pgca5h8wTJATnTGjIUMYYR+AR+jbeTdePv554Hdv3phEFyyNWGuk6Bp7diEbCieVTQXDO4H2MI/AIlijY0KhlRhQsv4RWrEWHBxja9mRi2VQQnDN4H+MIPIIRBXOfmmNPRQLBUVXGB5vSGEdgKF+MI/AIRhTMfXzVIaqPfgsDWw/qDsX791mCc9WmSN5QvhhH4BGMKFhhCC1fR7i9lcjeNmBqCM4ZvI9xBB7BiIIVhtAKW43UTiM18hIGL2C6lngIIwrmPhVzF1Ex6zAGtjxI/bsvJHZgn6cb0himBmZEYDBkgIgQWrGWweceJR4eNiMCgycwjsBgyJDQ8nVoeJihF/9sBOcMnsA4AoMhQ6qPeRsSrGLgqQeM4JzBExhHYDBkiK+ymppjT6H/iV8bwTmDJzCOwGDIgtDytcTshvZmjsBQ7rjuCETELyJbReQ++/VtIrJdRJ4XkZtExHRPMZQd8Wgk8bzzlquMppOhrCnEiODTwEtJr28DlgHHAdXAPxTABoMhb/RtvJvuO/418TrW120E/gxljauOQERagPcCP3SWqepv1QZ4Emhx0waDId8YgT+D13B7RHA98AUgPnaFHRL6O+D3qXYUkYtFZLOIbO7s7HTXSoMhA4zAn8FruOYIROQMYK+qPjXOJv8NbFTVP6Vaqao3qupKVV3Z1NTklpkGQ8YYgT+D13BzRHAKcKaI7ALuBNaKyE8ARORKoAn4nIvnNxhcwQj8GbyGa45AVa9Q1RZVXQisBzao6odF5B+AdwPnq+ohISODodQxAn8Gr1EM0bkbgNeAJ2zp3rtV9eoi2GEwZI0R+DN4iYI4AlV9GHjYfm4UTw0Gg6GEMJXFBoPBMMUxjsBgMBimOMYRGAwGwxTHOAKDwWCY4oil9FDaiEgnVqZRNjQCXXk0pxww1zw1MNc8Ncjlmg9T1UkrcsvCEeSCiGxW1ZXFtqOQmGueGphrnhoU4ppNaMhgMBimOMYRGAwGwxRnKjiCG4ttQBEw1zw1MNc8NXD9mj0/R2AwGAyGiZkKIwKDwWAwTIBxBAaDwTDF8YwjEJG/FpHtIvKyiHwxxfqPiEiniDxtP8q+V/Jk12xvc66IvCgiL4jI7YW2Md+k8Tl/N+kzbhWR/cWwM5+kcc0LROQhEdkqIs+KyHuKYWe+SON6DxORB+1rfdhuiVvWiMhNIrJXRJ4fZ72IyH/a78mzIrIirwaoatk/AD/wCnAEEASeAY4es81HgO8X29YCX/NiYCvQYL9uLrbdbl/zmO3/Gbip2HYX4HO+EbjUfn40sKvYdrt8vT8DLrSfrwVuLbbdebju1cAK4Plx1r8H+B0gwFuBv+Tz/F4ZEZwMvKyqO1U1jNUR7awi2+Q26Vzzx4H/UtV9AKq6t8A25ptMP+fzgTsKYpl7pHPNCtTaz+uAcm6enM71Hg1ssJ8/lGJ92aGqG4GeCTY5C/ixWvwZqBeROfk6v1ccwTygLel1u71sLO+3h1U/F5H5hTHNNdK55iXAEhF5TET+LCJ/XTDr3CHdzxkROQw4nIM3jHIlnWv+GvBhEWkHfos1EipX0rneZwCnK9DfAtNFZGYBbCsmaX/3s8ErjiAdfg0sVNXjgT8CtxTZnkIQwAoPnY716/h/RaS+qBYVjvXAz1U1VmxDCsD5wI9UtQUrhHCriHj5f/vzwGkishU4DegApsLn7Bpe+bJ0AMm/8FvsZQlUtVtVR+yXPwROKpBtbjHpNWP9arhXVSOq+irQiuUYypV0rtlhPeUfFoL0rvljwE8BVPUJoApLqKwcSed/ebeqnqOqy4Ev28vKPilgEjL57meMVxzBJmCxiBwuIkGsm8C9yRuMiaedCbxUQPvcYNJrBn6JNRpARBqxQkU7C2lknknnmhGRZUAD8ESB7XODdK75dWAdgIgcheUIOgtqZf5I53+5MWnEcwVwU4FtLAb3An9vZw+9FehV1T35Orgn+geralRE/gm4Hyvr4CZVfUFErgY2q+q9wKdE5EwgijUp85GiGZwH0rzm+4F3iciLWEPny1W1u3hW50aa1wzWzeNOtdMtypk0r/kyrLDfZ7Emjj9Srtee5vWeDlwrIgpsBD5ZNIPzhIjcgXVdjfZcz5VABYCq3oA19/Me4GVgELgor+cv0++LwWAwGPKEV0JDBoPBYMgS4wgMBoNhimMcgcFgMExxjCMwGAyGKY5xBAaDwTDFMY7AUBRE5EAa23xGRGryeM6zReToPB7v8Rz2PWD/nSsiP59gu3oR+US25zEY0sE4AkMp8xkgI0cgIv4JVp+NJViWF1T17Xk4xm5V/cAEm9QDxhEY/n97ZxdiVRXF8d8vKlPHMrVPH5oaiyAJoYLIMoMQooeMPiBM+4DoQcqXzIcoKKQUX6KeqoeM0L5MKSJMAzUy02zSO4aCYT4IQREhWhSRq4e9J86Md8SkGJ27fnCYdffeZ52191zOunfve/77fyUTQTKsqDOrpvwqdY+6oj49+ThwMbBB3VDbzlK3qL3qe2pXLd+vLlV7gXvUR9Sv1J3q++oY9QbKE+XL6l4FPeq0KsbXUteo51Z/Gy37GmxXd6vXqavVveriRuyHG/Yita9ec0mbfl5aY+8b5KO7X4NevUrdVuNrqZcDS4CeWrZM7bJo8fdWX3c0/OxWX7PsPbFOHV3rpqif1th61Z5avrCOU0t99j/9xyanFsOtw51HZx7A4fp3JnCQop1yGkUW4sZatx+YVO1JlKdIx9bXi4BnGu2ebPie2LAXA49Vezlwd6OuBdxc7eeAF6u9EVha7QUUWeeLgFEU/aaJg/pwG/AFMKa+ntCmvx8C86o9v3FuN1WDHngZmFPtM4HRzfpafjpwdmNMvqNo1HdTnpqfVuveBe6v9lbgzmqfRfmWNYuyj4F13D8CZgz3+yKP4TlGhMREcsqzLSIOAKg7KDe1zwe1uZ4yrbNZhXKjbGoJvdOwp9ZP3eOBLopcwQDUc4DxEbGpFr1B2fCkn365ij7g26i6Luo+ivhXU6rjVuD1iPgNICLa6cpPB+6q9pvA0jZttgBPWXbcWh0Re2tfB4QOPK/OAI5QpIgvqHXfR8SOan8NdKvjgMkRsabG9nvtxyxKMvimtu+iCBJ+1iauZISTiSA5GfijYf9F+/elwPqIuG8IH7827OXA7IjYqT5IFd47wZiODIrvyBDxHQ/H1HOJiJXqVuB24GP1UY4WCZwDnAdcExF/qvspn/KbMUMZx9HHuJzACxHxyr+IPxmh5BpBcjJzCBhX7S+B6eoUAHWsesUQ540DflDPoNw4j/IXEQeBX9Sbat1cYBMnxnrgof5fOKkT2rTZTBHDY1BM/6BeBuyLiJeAD4CrGTgGUHYg+7EmgVuAS44VWEQcAg6os+s1RtU4PwEebqyzTFbPP67eJiOOTATJycyrwFp1Q0T8RFGMfUttUaZRrhzivKcp8+KbgT2N8reBhZZN3nuAByiLxy1gGmWd4F8TEWspU0nb69TWE22aLQDmq30MvbPUvcCu6mMqZWvCnynTYbvUZcAK4NrqZ96g/g3FXIr6bouylnFhRKwDVgJbqq9VDEw4SQeR6qNJkiQdTn4jSJIk6XAyESRJknQ4mQiSJEk6nEwESZIkHU4mgiRJkg4nE0GSJEmHk4kgSZKkw/kb8WuVvUxQg0cAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -222,7 +234,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, From 9e7bc3e38cc45b34d53c1669d8898d41e4504eab Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Sat, 23 Feb 2019 11:09:04 -0500 Subject: [PATCH 012/116] Update ExactEigensolver valid dictionaries --- community/aqua/chemistry/h2_mappings.ipynb | 137 +++-------------- .../aqua/chemistry/h2_particle_hole.ipynb | 129 +++------------- community/aqua/chemistry/h2_swaprz.ipynb | 107 +++---------- community/aqua/chemistry/h2_var_forms.ipynb | 84 ++-------- .../aqua/chemistry/h2_vqe_initial_point.ipynb | 118 +++----------- community/aqua/chemistry/lih_uccsd.ipynb | 132 +++------------- community/aqua/chemistry/nah_uccsd.ipynb | 144 +++--------------- 7 files changed, 126 insertions(+), 725 deletions(-) diff --git a/community/aqua/chemistry/h2_mappings.ipynb b/community/aqua/chemistry/h2_mappings.ipynb index 9d4db6934..6a3a3ad6c 100644 --- a/community/aqua/chemistry/h2_mappings.ipynb +++ b/community/aqua/chemistry/h2_mappings.ipynb @@ -17,52 +17,14 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[[-1.05500736 -1.07447588 -1.09246402 -1.10560676 -1.11617529\n", - " -1.12411244 -1.12989941 -1.13377935 -1.1361881 -1.13718163\n", - " -1.13692659 -1.11393966 -1.13359243 -1.10702389 -1.10251128\n", - " -1.09745562 -1.11702035 -1.08595587 -1.09201117 -1.10586236\n", - " -1.10113428]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]]\n", - "\n", - " [[-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382621 -1.13618944 -1.13720887\n", - " -1.13709532 -1.13602101 -1.13411462 -1.13150623 -1.12831803\n", - " -1.12464048 -1.12052035 -1.11605108 -1.11130129 -1.10631433\n", - " -1.10113126]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]]\n", - "\n", - " [[-1.05456417 -1.07579293 -1.09245928 -1.10580546 -1.11600146\n", - " -1.1239087 -1.12915555 -1.13218011 -1.13590305 -1.13719849\n", - " -1.13674886 -1.13514256 -1.13334844 -1.13069428 -1.12796707\n", - " -1.12444893 -1.12027861 -1.11593003 -1.1113173 -1.10626115\n", - " -1.10100374]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]]]\n", - "Hartree-Fock energies: [-1.04299627 -1.06306214 -1.07905074 -1.0915705 -1.10112824 -1.10814999\n", - " -1.11299655 -1.11597526 -1.11734903 -1.11734327 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251055 -1.09745432 -1.09191404 -1.08595587\n", - " -1.07963693 -1.07300676 -1.06610865]\n" + "Processing step __\b\b 0" ] } ], @@ -77,9 +39,7 @@ " 'driver': {'name': 'PYSCF'},\n", " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", " 'operator': {'name': 'hamiltonian', 'qubit_mapping': '', 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'L_BFGS_B', 'maxfun': 2500},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 5}\n", + " 'algorithm': {'name': ''}\n", "}\n", "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", "\n", @@ -99,6 +59,15 @@ " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", + " if algorithms[j] == 'ExactEigensolver':\n", + " if 'optimizer' in qiskit_chemistry_dict:\n", + " del qiskit_chemistry_dict['optimizer']\n", + " if 'variational_form' in qiskit_chemistry_dict:\n", + " del qiskit_chemistry_dict['variational_form']\n", + " else:\n", + " qiskit_chemistry_dict['optimizer'] = {'name': 'L_BFGS_B', 'maxfun': 2500}\n", + " qiskit_chemistry_dict['variational_form'] = {'name': 'RYRZ', 'depth': 5}\n", + " \n", " for k in range(len(mappings)):\n", " qiskit_chemistry_dict['operator']['qubit_mapping'] = mappings[k] \n", " solver = QiskitChemistry()\n", @@ -115,20 +84,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAHwCAYAAAAM12EMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XtcVVX6+PHPEhUUDBVQQUvNyQsgd0FEvCeTKYiphE6TNVpjqaWTZfM1Ba3v9FUrTWsqU+lXGpiVoelo5pVMAfXgBe+XzEATUwQBua3fH+dwBhQQkZv6vF8vXsnea6/17H0Or56zzrPXVlprhBBCCCGEEDWvXm0HIIQQQgghxP1KknEhhBBCCCFqiSTjQgghhBBC1BJJxoUQQgghhKglkowLIYQQQghRSyQZF0IIIYQQopZIMi6EuG8opcYopeJqO457mVIqUCl1tIr6aqeU0kqp+qbf1yulni62/02lVJpS6rzp91Cl1K9KqUyllGdVxHAvUkqNVkptrO04hBBGkowLcZ9SSp1RSg24YZs5WVVKWSqlliilflFKZSilDEqpx27Rp6NSarFSKsWUEJ1SSkUppTpX57lUFaXU35RSR0zne0EptU4p1cS0L0op9eZt9HVHib/p+ALTdSz+41TZPmuC1nqH1rpTNfX9mNb6MwCl1EPAPwBnrXUrU5N5wASttY3Wel91xFAWpVSEUuqLmhyzsrTWy7XWA2s7DiGEkSTjQoiy1Ad+BXoDtsB0YKVSql1pjZVSdsBOoDEQCDQBvIBtwKNlHFO/qoOuLKVUb+B/gXCtdROgCxBTu1HxsymxLP6TUpUD1KXX4DY9BFzSWv9ebFtb4FBlOruLr4MQ4i4nybgQolRa62ta6wit9RmtdaHWei1wGvAu45DJwFXgKa31SW10RWu9TGu9EEqUHfxNKXUW2GzaHqyUOqSUuqKU2qqU6lLUqan9n4r9bp6hVkr1UUqdU0r9Qyn1u1IqVSn1TLG2dkqpWKXUVaVUPNChnFPuhjH53Wc6/z+01p9prTOUUs8Bo4FXTbPTa0z9T1NKnTTNpCcrpUJN27sAHwH+pvZXTNstlVLzlFJnTTPvHymlGlX4RSnG9M3GK0qp/UqpdKVUjFLKqtj+waZvM64opXYqpdxuOPY1pdR+4JpSqr5Syksptc90Ll+Z+iu6zgeVUkOKHd/AVB5yUylI0WtS0ThvONbCdH3SlFKngMdv2L9VKTXW9I3OD4CT6fp+qZTKBCyAJKXUSVN7J6XU10qpi0qp00qpScX6ilBKrVJKfaGUugqMUUrVK/aaXlJKrVRKNTe1L3rvPm16/dKUUv9j2vdn4J9AmCmepHJes6mma3FNGb95aqmM5TcZSqlNSqlmxdp/pZQ6b7pu25VSLsX2RZnePz+Yjt2mlGpbbL9WSk1Sxm+n0pRSc5VS9Uz7SnxrY2r7d6XUcdP75QOllCr2mrxj6uO0UmqCKlk6NMY0RoZp/+jSzl0IUTZJxoUQFaKUagl0pOyZxwHAt1rrwgp01xvjzHOQUqoj8CXwMuAArAPWKKUaVjC0Vhhn7lsDfwM+KJbQfADkAI7As6afsuw2xROplApQSlkW7dBafwIsB+aYZqeLEtOTGL8FsAUigS+UUo5a68PA3/nvzHZTU/u3MV5DD+BPpphnVPA8SzMS+DPQHnADxgCYkuSlwPOAHfAxEFv8nIBwjMluU4z/L/gWiAKaY3w9Qou1/X/AX4r9PghIvY1SkFLjLMU4YDDgCfgAw0trpLXeBDwGpJiub7jW2sa0211r3cGUeK4BkjBe5/7Ay0qpoGJdhQCrMF6D5cBEYCjG96cTcBnje6i4nkAnU38zlFJdtNb/wfitSowpHvdyrsUTGL8p6ggMAdZjTOQdML4Ok4q1XQ88ArQA9ppiLG40MBuwBwyl7A/FeB29TOda3vt/MMYPpG4YX6+i6zQO47X2MPUztOgApZQ18D7wmOnbpB6mOIQQt0GScSHub6tNM2FXlHH29sPSGimlGmD8H/1nWusjZfRlD5wvdkywqd8MdfPNYhGmmfdsIAz4Xmv9g9Y6D2PdbyOM/2OviDxgltY6T2u9DsgEOimlLDAmPjNMYx0EPiurE631DmAYxoTje+CSUupdUz9lHfOV1jrF9M1BDHAc8C2trWmm8TlgsmnWPQNjAvdkOefWvfjrUzTjW8z7pvH/wJh4epi2Pwd8rLXerbUuMNVZXwe633Dsr6bXoDvGsqT3TdfxGyC+WNsvgEFKqQdMvz8FfF5O3DcqK84bjQTmm+L6A/jXbYxxo26Ag9Z6ltY6V2t9ClhMyev9s9Z6ten1y8b4Aep/tNbntNbXgQhguCpZwhKptc7WWidhTPTLS7xLs1BrfUFr/RuwA9ittd6ntc7B+IHI/G2D1nqp1jqjWCzuSinbYn19r7Xebtr/Pxi/iXmw2P7/M73XzgLzMX4AK8vbpm+yzgJb+O9rNBJYYLomlzF+oCyuEHBVSjXSWqdqrStVJiTE/UyScSHub0O11k2LfoAXbmxgmmH8HMgFJpTT1yWMM9AAaK1jTX1OBm6c5f612L+dgF+KHVdo2t+6gudwSWudX+z3LMAG40xjUd17kV8oh9Z6vWnWuznGmcQxwNiy2iul/qr+WwpyBXDF+KGkNA4Y6+n3FGv/H9P2suwq/vporW8sszlf7N9F5w3G2ul/3PBB60GM17rIja/Bb1prXdp+U536T8ATSqmmGGdKb5yFLU9Zcd7Iidt4vW6hLcYyluLX4J9Ay2Jtfi3lmG+LtT8MFNxwTEXPpSwXiv07u5TfbcBcHvK2qWTmKnDG1Kb4+6v4a5QJ/EHZr/EvN+y7UVnndeNrUnzMaxg/TP8dSFVKfa/ukpu1hahLJBkXQpTJNJu7BGMy8oRp5rosPwJDi+pSb6F40peCMQkqPuaDwG+mTVkYk9giraiYi0C+qa8iD1XkQNNM6Y8Ya9pdS4kZU33uYowfUOxMHzwOAqq09kAaxmTLpVhybVusvKIq/Qq8dUMi31hr/WWxNsXjSwVaF9UJmxS/bmD8VuEvwAiMM8q/UfVSqcTrVYZfgdM3XIMmWutBxdrc+Br9irHkovgxVhU81xv7ulOjMH4gHICxDKqdaXupr5FSygbjh8iU0vZjvJaVufk3FWhTRp9orTdorR/F+EH8CMa/CSHEbZBkXAhRnn9jrO0eYvoavzzvAs2Az5VSHZRRE8ouSSiyEnhcKdXfVA7zD4wlFTtN+w3AKNNM4Z8x1vPekta6APgGiFBKNVZKOQNPl9VeKRWilHpSKdXMFLuvaaxdpiYXgIeLHWKNMQG7aDr+Gf6buBe1b1NU+26a8V8MvKeUamE6pvUNNcxVZTHwd6WUn+lcrJVSj5tej9L8jHEGeIIy3swZws3lNqsxlvC8hLGGvDqsBCYppdqY6v6n3UFf8UCGMt6o2sj0/nFVSnUr55iPgLdMH7RQSjmYrkVFXADaVfDDaEU0wfh3cAnjh9H/LaXNIKVUT9N7bDbGb1KKz2JPNb2fH8T4ulVmdaCVwEum92pT4LWiHcp482mIqXb8OsYSsYrcMyKEKEaScSFEqUwJyfMYk+nz6r/rXJe6WoLWOg1j7XEOEAdkYEykmwDjyxpHa30U44zrQoyzx0MwJv+5piYvmbZdwXjD2urbOI0JGL9uP4/x5sRl5bS9jPFmteMYV4X5ApirtS4qx1gCOJtKGFZrrZOBdzAmsheArhhLOYpsxniz63mlVJpp22vACWCXqfRgE8abAcvir25eZ7y8ZBIArXWi6VwWmc7rBGXfNInpWg/DeAPsFYyvx1qMCVZRm2zga4w3YX5zqxgqaTGwAWMt9t47Gcf0YWwwxvfvaYzvrU8xzjKXZQEQC2xUSmVg/CDmV8EhvzL995JSam+lgi7p/2EsLfkNSOa/HwqLWwHMxFie4k3Jm2wBvgP2YPw7/B7je/h2LQY2AvuBfRhvsM7H+OGtHjAF44z7Hxg/vJb5ty6EKJ0qWSIohBBCgFJqN/CR1npZsW0zgI5a6xuTPlHDlFJRwDmt9fQy9mvgEa31iSoe9zGM74u2t2wshKgQmRkXQgiBUqq3UqqVqUzlaYxL3P2n2P7mGGfOP6mtGEXNM5X4DDK9L1pjnIn/trbjEuJeUmvJuFJqhDI+5KNQKeVTTrs/K6WOKqVOKKVuqh9USr2vjA97EEIIUXmdMJaHXMFYtz9ca50KoJQah/HmxvVa6+21F6KoBQrjGvqXMZapHObO1sYXQtyg1spUlPEJdYUYH0bxiqnG8cY2FsAxjA9IOAckYHxUdbJpvw/GetLQalqRQAghhBBCiGpTazPjWuvDphu3yuMLnNBanzLdYBSNcamnokR9LvBq9UYqhBBCCCFE9ajrNeOtKfmwgXP890EgE4DYoq9RhRBCCCGEuNvUv3WTylNKbaL0B3T8j9b6uzvo1wnjgyf6VKDtcxgfDY21tbV3587ycDAhhBBCCFG99uzZk6a1Lu8py0A1J+Na6wF32MVvlHzaVxvTNk/gT8AJ0wPjGiulTmit/1RKDJ9guvvfx8dHJybeVJouhBBCCCFElVJK/VKRdtWajFeBBOARpVR7jEn4k8AorfUhis24K6UyS0vEhRBCCCGEqMtqc2nDUKXUOcAf+F4ptcG03UkptQ5Aa52PsTZ8A8bllFaaEnEhhBBCCCHuevfVEzilTEUIIYQQQtQEpdQerXWZz9IpUtfLVIQQQghRR+Tl5XHu3DlycnJqOxQh6gwrKyvatGlDgwYNKnW8JONCCCGEqJBz587RpEkT2rVrh2kBBSHua1prLl26xLlz52jfvn2l+qjr64wLIYQQoo7IycnBzs5OEnEhTJRS2NnZ3dG3RZKMCyGEEKLCJBEXoqQ7/ZuQZFwIIYQQdw0bG5sSv0dFRTFhwoTb6sNgMLBu3bqqDKuEqKgoHBwc8PDwwMPDg7/+9a+33cfWrVsZPHhwNUQn6hqpGRdCCCHEfSM/Px+DwUBiYiKDBg0qdX/9+neeHoWFhbFo0aI77kfc+2RmvAbcT8tHCiGEELVlzZo1+Pn54enpyYABA7hw4QIAERERPPXUUwQEBPDUU08xY8YMYmJi8PDwICYm5qb9BQUFTJ06lW7duuHm5sbHH39sHmPu3Lnm7TNnzryt+AwGA927d8fNzY3Q0FAuX74MwIkTJxgwYADu7u54eXlx8uTJEsclJCTg6el503Zxb5CZ8Wr2Q/IF/rXuMKsnBPCAVeWWvBFCCCHqmsg1h0hOuVqlfTo7PcDMIS7ltsnOzsbDw8P8+x9//EFwcDAAPXv2ZNeuXSil+PTTT5kzZw7vvPMOAMnJycTFxdGoUSOioqJITEw0z1xHRESU2P/JJ59ga2tLQkIC169fJyAggIEDB3L8+HGOHz9OfHw8WmuCg4PZvn07vXr1uinOmJgY4uLiAHjppZd45pln+Otf/8rChQvp3bs3M2bMIDIykvnz5zN69GimTZtGaGgoOTk5FBYW8uuvvwKwc+dOJk6cyHfffcdDDz105xdZ1DmSjFez5tYNOZV2jY2HLjDcu01thyOEEELc1Ro1aoTBYDD/XpRYg3HpxbCwMFJTU8nNzS2x1FxwcDCNGjUqs9/i+zdu3Mj+/ftZtWoVAOnp6Rw/fpyNGzeyceNGPD09AcjMzOT48eOlJuM3lqmkp6dz5coVevfuDcDTTz/NiBEjyMjI4LfffiM0NBQwrlld5PDhwzz33HNs3LgRJyen27tQ4q4hyXg183qoKW2aNSI2KUWScSGEEPeMW81g14aJEycyZcoUgoOD2bp1KxEREeZ91tbW5R5bfL/WmoULFxIUFFSizYYNG3j99dd5/vnnS2z/4IMPWLx4MUCV3hjq6OhITk4O+/btk2T8HiY149VMKUWwuxM/nUgjLfN6bYcjhBBC3LPS09Np3bo1AJ999lmZ7Zo0aUJGRkaZ+4OCgvj3v/9NXl4eAMeOHePatWsEBQWxdOlSMjMzAfjtt9/4/fffefHFFzEYDBgMhjKTZltbW5o1a8aOHTsA+Pzzz+nduzdNmjShTZs2rF69GoDr16+TlZUFQNOmTfn+++95/fXX2bp16+1dDHHXkGS8BgR7OFFQqFl3ILW2QxFCCCHuWREREYwYMQJvb2/s7e3LbNe3b1+Sk5PNN3DeaOzYsTg7O+Pl5YWrqyvPP/88+fn5DBw4kFGjRuHv70/Xrl0ZPnx4uUn9jT777DOmTp2Km5sbBoOBGTNmAMbE/P3338fNzY0ePXpw/vx58zEtW7Zk7dq1vPjii+zevfs2roa4W6j7aaUPHx8fXVRXVtOC3ttOE6v6rBrfo1bGF0IIIe7U4cOH6dKlS22HIUSdU9rfhlJqj9ba51bHysx4DQn2cCLxl8ucu5xV26EIIYQQQog6QpLxGjLEzVhDtiZJSlWEEEIIIYSRJOM15CG7xng+1JTYpJTaDkUIIYQQQtQRkozXoGB3Jw6nXuX4hYrf7CGEEEIIIe5dkozXoMfdHKmnkNlxIYQQQggBSDJeo1o0scK/gx2xSSncT6vYCCGEEEKI0kkyXsNC3Fvzy6Us9p9Lr+1QhBBCCCFELZNkvIYFubaioUU9vjNIqYoQQghxO/r27cuGDRtKbJs/fz7jx48H4NChQ/Tr149OnTrRoUMHZs6cSWFhIQBRUVE4ODjg4eFh/klOTi53vEGDBnHlypVKxxsVFcWECRMqfXxl3GnMouZJMl7DbBs1oHcnB9buT6GgUEpVhBBCiIoKDw8nOjq6xLbo6GjCw8PJzs4mODiYadOmcfToUQ4cOEB8fDwLFiwwtw0LCzM/tt5gMODs7FzueOvWraNp06YVik1rbU78a9PtxFwZ+fn51db3/ap+bQdwPwrxcOKH5AvsPn2JHh3KflyvEEIIUWetnwbnD1Rtn626wmNvl7l7+PDhTJ8+ndzcXBo2bMiZM2dISUkhMDCQpUuXEhAQwMCBAwFo3LgxixYtIjAwkMmTJ1cqnHbt2pGYmIi9vT3vvvsuS5cuBWDs2LG8/PLLnDlzhqCgIPz8/NizZw/r1q1j8+bN/Otf/6Jp06a4u7tjaWkJwJo1a3jzzTfJzc3Fzs6O5cuX07JlSyIiIjh79iynTp3i7NmzvPzyy0yaNKnUeObOnYulpSWTJk1i8uTJJCUlsXnzZjZv3sySJUtYvnx5iZhnz57NF198gYODAw8++CDe3t688sor9OnTBz8/P7Zs2cKVK1dYsmQJgYGBFBQUMG3aNLZu3cr169d58cUXef7559m6dStvvPEGzZo148iRIxw7dqxS11OUTmbGa0H/zi2xbmjBGllVRQghhKiw5s2b4+vry/r16wHjrPjIkSNRSnHo0CG8vb1LtO/QoQPZ2dnmso2YmJgSZSrZ2dkVGnfPnj0sW7aM3bt3s2vXLhYvXsy+ffsAOH78OC+88AKHDh2iYcOGzJw5k59++om4uLgSZTA9e/Zk165d7Nu3jyeffJI5c+aY9x05coQNGzYQHx9PZGQkeXl5pcYRGBjIjh07AEhMTCQzM5O8vDx27NhBr169SrRNSEjg66+/JikpifXr15OYmFhif35+PvHx8cyfP5/IyEgAlixZgq2tLQkJCSQkJLB48WJOnz4NwN69e1mwYIEk4tVAZsZrQaOGFjzq3JJ1B84TGexKw/rymUgIIcRdppwZ7OpUVKoSEhJCdHQ0S5YsqfCxYWFhLFq06LbHjIuLIzQ0FGtrawCGDRvGjh07CA4Opm3btnTv3h2A3bt306dPHxwcHMzjFSWv586dIywsjNTUVHJzc2nfvr25/8cffxxLS0ssLS1p0aIFFy5coE2bNjfF4e3tzZ49e7h69SqWlpZ4eXmRmJjIjh07eP/990u0/emnnwgJCcHKygorKyuGDBlSYv+wYcPMfZ45cwaAjRs3sn//flatWgVAeno6x48fp2HDhvj6+paIWVQdyQJrSYhHa9Kz89h+7GJthyKEEELcNUJCQvjxxx/Zu3cvWVlZ5tlwZ2dn9uzZU6LtqVOnsLOzq9Ya6qIE/VYmTpzIhAkTOHDgAB9//DE5OTnmfUWlLAAWFhZl1mU3aNCA9u3bExUVRY8ePQgMDGTLli2cOHGCLl263FbcRWMWH09rzcKFC8019adPnzaX/VT0PMXtk2S8lvR8xJ5mjRvIA4CEEEKI22BjY0Pfvn159tlnCQ8PN28fPXo0cXFxbNq0CYDs7GwmTZpkLsEoT+fOncvdHxgYyOrVq8nKyuLatWt8++23BAYG3tTOz8+Pbdu2cenSJfLy8vjqq6/M+9LT02ndujUAn332WYXOtaxY5s2bR69evQgMDOSjjz7C09MTpVSJdgEBAaxZs4acnBwyMzNZu3btLfsOCgri3//+t7lM5tixY1y7dq3SsYqKkWS8ljSwqMdjXR35IfkCWblyZ7IQQghRUeHh4SQlJZVIxhs1akRsbCxvvfUWHTt2xN7enoCAAEaPHm1uc2PN+M6dO0lLSyv3QXxKKby8vBgzZgy+vr74+fkxduxYPD09b2rr6OhIREQE/v7+BAQElJitjoiIYMSIEXh7e2NvX/nFGwIDA0lNTcXf35+WLVtiZWVV6geDbt26ERwcjJubG4899hhdu3bF1ta23L7Hjh2Ls7MzXl5euLq68vzzz8vqKTVA3U9PgvTx8dE33sBQm3adusSTn+xiwZMehHi0ru1whBBCiHIdPnz4tsshasvq1auZMmUKW7ZsoW3btmW2W7t2LadOnbppBZOCggJatGjB+fPnadCgQXWHWy0yMzOxsbEhKyuLXr168cknn+Dl5VXbYd2TSvvbUErt0Vr73OpYuYGzFvm2a06rB6xYk5QiybgQQghRhYYOHcrQoUNv2W7w4MGlbndxcWHs2LF3bSIO8Nxzz5GcnExOTg5PP/20JOJ1lCTjtahePcUQd0eidp7hSlYuTRs3rO2QhBBCCIFxucHacunSJfr373/T9h9//BE7O7sK97NixYqqDEtUE0nGa1mwe2sW7zjN+oPnCfd9qLbDEUIIIUQts7Ozw2Aw1HYYoobIDZy1zLX1Azxsb02sQVZVEUIIIYS430gyXsuUUgxxd2LX6UtcuJpz6wOEEEIIIcQ9Q5LxOiDYwwmtYY2sOS6EEEIIcV+RZLwO6OBgg4vTA5KMCyGEEOXo27cvGzZsKLFt/vz5jB8/HoBDhw7Rr18/OnXqRIcOHZg5cyaFhYUAREVF4eDgUGKd8eTk5GqNNzY2lrfffhswLrVY3eOJu5Mk43VEiIcTSefSOZMmT7oSQgghShMeHk50dHSJbdHR0YSHh5OdnU1wcDDTpk3j6NGjHDhwgPj4eBYsWGBuGxYWZn7Uu8FgwNnZudpizc/PN8cDkoyLskkyXkcMdnMCpFRFCCGEKMvw4cP5/vvvyc3NBeDMmTOkpKQQGBjIihUrCAgIYODAgQA0btyYRYsWMXfu3EqPZ2Njw+TJk3FxcaF///5cvHgRgMWLF9OtWzfc3d154oknyMrKAmDMmDH8/e9/x8/Pj1dffZWoqCgmTJjAzp07iY2NZerUqXh4eHDy5MkSa34fP35c1gC/j8nShnWEU9NG+LZrzndJKUzo9yeUUrUdkhBCCFGm/4v/P478UbVrcXdu3pnXfF8rc3/z5s3x9fVl/fr1hISEEB0dzciRI1FKcejQIby9vUu079ChA9nZ2Vy5cgWAmJgY4uLizPt//vlnGjVqVOZ4165dw8fHh/fee49Zs2YRGRnJokWLGDZsGOPGjQNg+vTpLFmyhIkTJwJw7tw5du7ciYWFBVFRUQD06NGD4OBgBg8ezPDhwwGwtbXFYDDg4eHBsmXLeOaZZ27/gol7gsyM1yHBHk6c+D2Tw6kZtR2KEEIIUScVL1UpKlGpqBvLVMpLxAHq1atHWFgYAH/5y1/MifzBgwcJDAyka9euLF++nEOHDpmPGTFiBBYWFreMZezYsSxbtoyCggJiYmIYNWpUhc9D3FtkZrwOGdTVkYjYQ8QmpeDs9EBthyOEEEKUqbwZ7OoUEhLC5MmT2bt3L1lZWebZcGdnZ7Zv316i7alTp7Czs6Np06ZVMnbRt9Zjxoxh9erVuLu7ExUVxdatW81trK2tK9TXE088QWRkJP369cPb2/u2nqwp7i0yM16HNLduSM9H7FmTlEJhoa7tcIQQQog6x8bGhr59+/Lss8+WmBUfPXo0cXFxbNq0CYDs7GwmTZpEZGTkLfvs3LlzqdsLCwtZtWoVYHy0fM+ePQHIyMjA0dGRvLw8li9fXqG4mzRpQkbGf7/5trKyIigoiPHjx0uJyn1OkvE6JsTDid+uZLP37OXaDkUIIYSok8LDw0lKSiqRjDdq1IjY2FjeeustOnbsiL29PQEBAYwePdrcJiYmpsTShjt37iQtLQ2tS58As7a2Jj4+HldXVzZv3syMGTMAmD17Nn5+fgQEBJSZyN/oySefZO7cuXh6enLy5EnA+AGiXr165ptOxf1JlfUGvBf5+PjoxMTE2g6jXJnX8/Ge/QNh3R5kVohrbYcjhBBCmB0+fJguXbrUdhgVsnr1aqZMmcKWLVto27Ztme3Wrl3LqVOnmDRp0k37bGxsyMzMrLYY582bR3p6OrNnz662MUTNKO1vQym1R2vtc6tjpWa8jrGxrM+ALi35fn8qMwY7U99CvrwQQgghbtfQoUMZOnToLdsNHjy4BqK5WWhoKCdPnmTz5s21Mr6oOyTTq4OGuDtx6VouP528VNuhCCGEEPet6pwV//bbb9m/fz/29vbVNoa4O0gyXgf16eRAE6v6xBrkAUBCCCGEEPcyScbrIKsGFvzZpRUbDp0nJ6+gtsMRQgghhBDVRJLxOirYw4nM6/lsOfJ7bYcihBBCCCGqiSTjdZT/w3bY21gSmySlKkIIIYQQ9ypJxuuo+hb1GOzmyI9HficjJ6+2wxFCCCGEENVAkvE6bIi7E7n5hWw8dKG2QxFCCCFqXd++fdmwYUOJbfPnz2f8+PEAHDp0iH79+tGpUyc6dOjAzJkzKSwsBCAqKgoHB4cSD/1JTk4udzwbG5vqOZEyzJgxw/wE0dK0a9eOtLS0m7b36NEDgDNnzrBixYpqi09UD0nG6zCvh5rSpll/w1EeAAAgAElEQVQjvpNSFSGEEILw8HCio6NLbIuOjiY8PJzs7GyCg4OZNm0aR48e5cCBA8THx7NgwQJz27CwMAwGg/nH2dn5jmPKz8+/4z6KzJo1iwEDBtz2cTt37gQkGb9byUN/6jClFMHuTny8/RSXMq9jZ2NZ2yEJIYQQAJz/3//l+uEjVdqnZZfOtPrnP8vcP3z4cKZPn05ubi4NGzbkzJkzpKSkEBgYyNKlSwkICDA/Wr5x48YsWrSIwMBAJk+eXOmYJk+ezMaNG2nVqhXR0dE4ODjQp08fPDw8iIuLIzw8nI4dO/Lmm2+Sm5uLnZ0dy5cvx8HBgYcffhiDwUDTpk0BeOSRR9i0aRN9+vTh2LFjNGjQgKtXr+Lu7s6xY8cYN24cgwcPZvjw4eXGlJ2dzbBhwxg2bBjjxo0zPyl02rRpHD58GA8PD55++mlCQ0N56qmnuHbtGgCLFi0yz6LPnTuXlStXcv36dUJDQ4mMjGTatGk8+OCDvPjiiwBERERgY2PDK6+8UunrJ25NZsbruGAPJwoKNesOpNZ2KEIIIUStat68Ob6+vqxfvx4wzoqPHDkSpRSHDh3C29u7RPsOHTqQnZ3NlStXAIiJiSlRppKdnV3ueNeuXcPHx4dDhw7Ru3dvIiMjzftyc3NJTEzkH//4Bz179mTXrl3s27ePJ598kjlz5lCvXj1CQkL49ttvAdi9ezdt27albdu29OnTh++//958DsOGDaNBgwYVugaZmZkMGTKE8PBwxo0bV2Lf22+/TWBgIAaDgcmTJ9OiRQt++OEH9u7dS0xMDJMmTQJg48aNHD9+nPj4eAwGA3v27GH79u2EhYWxcuVKc38rV64kLCysQnGJypOZ8Tquc6sH6NjShu8MKTzl3662wxFCCCEAyp3Brk5FpSohISFER0ezZMmSCh8bFhbGokWLKty+Xr165mT0L3/5C8OGDSvRV5Fz584RFhZGamoqubm5tG/f3txm1qxZPPPMM0RHR5uPGTt2LHPmzGHo0KEsW7aMxYsXVzimkJAQXn31VUaPHn3Ltnl5eUyYMAGDwYCFhQXHjh0DjMn4xo0b8fT0BIwJ/vHjx/nb3/7G77//TkpKChcvXqRZs2Y8+OCDFY5NVI7MjN8FQjxak/jLZX67Uv4neCGEEOJeFxISwo8//sjevXvJysoyz4Y7OzuzZ8+eEm1PnTqFnZ2duUzkTimlzP+2trY2/3vixIlMmDCBAwcO8PHHH5OTkwOAv78/J06c4OLFi6xevdqczAcEBHDmzBm2bt1KQUEBrq6uFY4hICCA//znP2itb9n2vffeo2XLliQlJZGYmEhubi4AWmtef/11c+38iRMn+Nvf/gbAiBEjWLVqFTExMTIrXkMkGa9mOceOcWHOXPQd3OAxxM0JgDVyI6cQQoj7nI2NDX379uXZZ58lPDzcvH306NHExcWZVyPJzs5m0qRJJUpLytK5c+dStxcWFrJq1SoAVqxYQc+ePUttl56eTuvWrQH47LPPzNuVUoSGhjJlyhS6dOmCnZ2ded9f//pXRo0axTPPPHPL+IqbNWsWzZo1M9d1F9ekSRMyMjJKxOXo6Ei9evX4/PPPKSgwPtU7KCiIpUuXkpmZCcBvv/3G778bHzIYFhZGdHQ0q1atYsSIEbcVm6gcScarWe6p0/yxdClZiXtu3bgMD9k1xuPBpsQaJBkXQgghwsPDSUpKKpGMN2rUiNjYWN566y06duyIvb09AQEBJco5bqwZ37lzJ2lpaWXOMltbWxMfH4+rqyubN29mxowZpbaLiIhgxIgReHt7Y29vX2JfWFgYX3zxxU2zzKNHj+by5cslzqGiFixYQHZ2Nq+++mqJ7W5ublhYWODu7s57773HCy+8wGeffYa7uztHjhwxz+YPHDiQUaNG4e/vT9euXRk+fLg5iXdxcSEjI4PWrVvj6Oh427GJ26cq8jXHvcLHx0cnJibW6JiFJ38medjfsRs6FMcKfDovy7KfThO5JplNU3rxpxZNqjBCIYQQomIOHz5Mly5dajuMClm9ejVTpkxhy5YttG3btsx2a9eu5dSpU+abG2vKqlWr+O677/j8889rdFxRPUr721BK7dFa+9zqWJkZr2YbVuyl8cB5pG5PQJu+HqqMx90cqaeQ2XEhhBCiAoYOHcqpU6fKTcQBBg8eXOOJ+MSJE5k2bRpvvPFGjY4r6iZJxqvZA84daGhhxVWn7mTv3Vvpflo0scK/gx2xSSkVumlDCCGEEHXTwoULOXHiBB07dix1f2hoaIlyGg8Pj5uePCruHbK0YTXzCxnAsZ3recC+I1e/X0Pjbt0q3VewuxOvfX2A/efScX+wau4MF0IIIUTdUrQ2ubg/yMx4Natfvz6/WZzH3sqRlB170IWFle7rzy6ONLSoR6ysqiKEEEIIcU+QZLwG2PR8mHqqHlcd/cnet6/S/dg2bkDvTg6s3Z9CQaGUqgghhBBC3O0kGa8B3Qb1Jj3vDx6we4Sra765o76C3Z24cPU68af/qKLohBBCCCFEbZFkvAbUr1+f3+pfxN6qFb/t2H9HpSoDurSkcUMLYpN+q8IIhRBCCCFEbZBkvIY07f0n6ql6ZDj5k52UVOl+GjW0YKBzS9YdOE9ufuWTeiGEEOJuZGFhUWKVkbfffrvK+jYYDKxbt878e1RUFA4ODiXGS05OJiUlheHDh1fZuJVx5swZXF1dq32cQYMGceXKlUofHxUVxYQJE6owolu705hrmqymUkN8B/Xh4KbV2Db/ExnffkljT89K9xXs4cRqQwo7jl+kf5eWVRilEEIIUbc1atQIg8FQLX0bDAYSExMZNGiQeVtYWBiLFi26qe2qVauqJYaalp+fT/36ZaeDxT+c3IrWGq019erV7lzv7cRcGbe6ZrdLkvEa9FvDSzjrR/h15xFaaI1SqlL9BD7iQLPGDfjOkCLJuBBCiFqxY+Ux0n7NrNI+7R+0IXBk6Wtvlyc9PR1fX19iY2Pp1KkT4eHh9OvXj3HjxjF+/HgSEhLIzs5m+PDhRJqehp2QkMBLL73EtWvXsLS05IcffmDGjBlkZ2cTFxfH66+/XuZ4Z86cYfDgwRw8eJCsrCzGjBnDwYMH6dSpEykpKXzwwQf4+PiwceNGZs6cyfXr1+nQoQPLli3DxsaGdu3a8fTTT7NmzRry8vL46quv6Ny5M9u2beOll14CQCnF9u3bsbGx4dVXX2X9+vUopZg+fTphYWEl4unevTtLlizBxcUFgD59+jBv3jy6dOnCxIkTOXjwIHl5eURERBASEkJUVBTffPMNmZmZFBQUsG3btjLPtV27diQmJmJvb8+7777L0qVLARg7diwvv/wyZ86cISgoCD8/P/bs2cO6devYvHkz//rXv2jatCnu7u5YWloCsGbNGt58801yc3Oxs7Nj+fLltGzZkoiICM6ePcupU6c4e/YsL7/8cpkPYpo7dy6WlpZMmjSJyZMnk5SUxObNm9m8eTNLlixh+fLlJWKePXs2X3zxBQ4ODjz44IN4e3vzyiuv0KdPH/z8/NiyZQtXrlxhyZIlBAYGUlBQwLRp09i6dSvXr1/nxRdf5Pnnn2fr1q288cYbNGvWjCNHjnDs2LEKvjtvTcpUapBdv44opch06kHOHZSqNLCox2NdHfkh+QJZuflVGKEQQghRt2VnZ5coG4mJicHW1pZFixYxZswYoqOjuXz5MuPGjQPgrbfeIjExkf3797Nt2zb2799Pbm4uYWFhLFiwgKSkJDZt2oS1tTWzZs0iLCwMg8FgTnhjYmJKjJednV0ing8//JBmzZqRnJzM7Nmz2bNnDwBpaWm8+eabbNq0ib179+Lj48O7775rPs7e3p69e/cyfvx45s2bB8C8efP44IMPMBgM7Nixg0aNGvHNN99gMBjMcU6dOpXU1NQSMYSFhbFy5UoAUlNTSU1NxcfHh7feeot+/foRHx/Pli1bmDp1KteuXQNg7969rFq1qtxEvLg9e/awbNkydu/eza5du1i8eDH7TCvEHT9+nBdeeIFDhw7RsGFDZs6cyU8//URcXBzJycnmPnr27MmuXbvYt28fTz75JHPmzDHvO3LkCBs2bCA+Pp7IyEjy8vJKjSMwMJAdO3YAkJiYSGZmJnl5eezYsYNevXqVaJuQkMDXX39NUlIS69evJzExscT+/Px84uPjmT9/vvlD2pIlS7C1tSUhIYGEhAQWL17M6dOnzddswYIFVZqIg8yM1yifgYEc+M+3NG3egatfLaORx4JK9xXs7sSK3WfZdPh3gt2dqjBKIYQQ4tYqM4NdFcoqU3n00Uf56quvePHFF0kqNuG1cuVKPvnkE/Lz80lNTSU5ORmlFI6OjnQzPYjvgQceKHO8sspUisTFxZlns11dXXFzcwNg165dJCcnExAQAEBubi7+/v7m44YNGwaAt7c333xjXGktICCAKVOmMHr0aIYNG0abNm2Ii4sjPDwcCwsLWrZsSe/evUlISDCPAzBy5EgGDhxIZGQkK1euNNezb9y4kdjYWHOyn5OTw9mzZ83Xq3nz5mWeV2nnGRoairW1tTn+HTt2EBwcTNu2benevTsAu3fvpk+fPjg4OJivX1Hyeu7cOcLCwkhNTSU3N5f27dub+3/88cextLTE0tKSFi1acOHCBdq0aXNTHN7e3uzZs4erV69iaWmJl5cXiYmJ7Nixg/fff79E259++omQkBCsrKywsrJiyJAhJfYXfw3OnDljvmb79+83lyGlp6dz/PhxGjZsiK+vb4mYq4ok4zUsxfIPXHRHfk04c0elKr7tmtPqAStiDSmSjAshhLjvFRYWcvjwYRo3bszly5dp06YNp0+fZt68eSQkJNCsWTPGjBlDTk5OjcSjtebRRx/lyy+/LHV/UemGhYUF+fnGb7mnTZvG448/zrp16wgICGDDhg0VGqt169bY2dmxf/9+YmJi+Oijj8wxfP3113Tq1KlE+927d5uT6qpQ0b4mTpzIlClTCA4OZuvWrURERJj3FV0PKHlNbtSgQQPat29PVFQUPXr0wM3NjS1btnDixAm6dOlyW3GX9hporVm4cCFBQUEl2m7durVKr1lxUqZSw1o8anyjZDr2ICep8g8AqldPMcTdkW3HfudKVm5VhSeEEELcld577z26dOnCihUreOaZZ8jLy+Pq1atYW1tja2vLhQsXWL9+PQCdOnUiNTWVhIQEADIyMsjPz6dJkyZkZGTc1rgBAQHmEpHk5GQOHDgAGOu4f/rpJ06cOAHAtWvXblnecPLkSbp27cprr71Gt27dOHLkCIGBgcTExFBQUMDFixfZvn07vr6+Nx0bFhbGnDlzSE9PN8+aBwUFsXDhQrQ2PihwXzkPHuzcuXO5sQUGBrJ69WqysrK4du0a3377LYGBgTe18/PzY9u2bVy6dMlcD18kPT2d1q1bA/DZZ5+VO96tYpk3bx69evUiMDCQjz76CE9Pz5smOAMCAlizZg05OTlkZmaydu3aW/YdFBTEv//9b3OZzLFjx8ylPdVFkvEa5tmvB3/kXqRZsw5kRH9yR30Fu7cmr0Dzn4Pnqyg6IYQQom67sWZ82rRpHD16lE8//ZR33nmHwMBAevXqxZtvvom7uzuenp507tyZUaNGmUtGGjZsSExMDBMnTsTd3Z1HH32UnJwc+vbtS3JysrkWHW6uGd+5c2eJeF544QUuXryIs7Mz06dPx8XFBVtbWxwcHIiKiiI8PBw3Nzf8/f05cuRIuec2f/58c6lLgwYNeOyxxwgNDcXNzQ13d3f69evHnDlzaNWq1U3HDh8+nOjoaEaOHGne9sYbb5CXl4ebmxsuLi688cYbpY6blpZmTthLo5TCy8uLMWPG4Ovri5+fH2PHjsWzlJXhHB0diYiIwN/fn4CAgBKz1REREYwYMQJvb2/s7e3LvRblCQwMJDU1FX9/f1q2bImVlVWpHwy6detGcHAwbm5uPPbYY3Tt2hVbW9ty+x47dizOzs54eXnh6urK888/X+YsfVVR5V38e42Pj4++sXi/Nvznn0txLXyElH3v0O0/31a6VEVrTb93tuFoa8WKcd2rOEohhBCipMOHD992KcC9rqCggLy8PKysrDh58iQDBgzg6NGjNGzYsLZDq7C1a9dy6tSpm1YwKSgooEWLFpw/f54GDRrUUnR3JjMzExsbG7KysujVqxeffPIJXl5eVT5OaX8bSqk9WmufWx0rNeO1oFWQC6zPJdsxgOv7dmPlVblEWilFsLsT728+zoWrObR8wKqKIxVCCCFEebKysujbty95eXlorfnwww/vqkQcYPDgwaVud3FxYezYsXdtIg7w3HPPkZycTE5ODk8//XS1JOJ3SpLxWuDR24+k776mWbOHuRr9UaWTcTA+AGjBj8dZuz+Vv/Ws+jt8hRBCCFG2Jk2a3LRk3r3iVmU11enSpUv079//pu0//vgjdnZ2Fe5nxYoVVRlWtaiVmnGl1Ail1CGlVKFSqszpe6XUn5VSR5VSJ5RS04ptV0qpt5RSx5RSh5VSpa8MX4elNkqnuWULTh9IL7dO61Y6ONjg4vQAsUkpVRidEEIIIUTtsbOzw2Aw3PRzO4n43aK2buA8CAwDtpfVQCllAXwAPAY4A+FKKWfT7jHAg0BnrXUXILpao60GbR433umc06on1xO23FFfwe5OJP16hV8uVe/dvkIIIYQQomrVSjKutT6stT56i2a+wAmt9SmtdS7GhDvEtG88MEtrXWjq7/fqi7Z6uPbwIS33As2bticjZvEd9TXEtM54rEFmx4UQQggh7iZ1eWnD1sCvxX4/Z9oG0AEIU0olKqXWK6UeqfHoqkCq9VWaWTpwMjkHXVhY6X6cmjbCt11zYpNS7qjkRQghhBBC1KxqS8aVUpuUUgdL+Qm59dG3ZAnkmJaLWQwsLSeO50xJe+LFixerYOiq89DjxvU5rzsGkvvzrReiL88QDyeO/57JkfO397ACIYQQ4m5iYWFRYt3vt99+u8r6NhgMrFu3zvx7VFQUDg4OJcZLTk4mJSXF/Mj52nLmzBlcXV1rNYaKiI2NNb9Gq1evJjk5uZYjqnuqbTUVrfWAO+ziN4x14UXamLaBcZb8G9O/vwWWlRPHJ8AnYFxn/A5jqlIu3T3ZF/MVdrbtubpyKQ4BwZXu6/GujkTGHuI7QwpdHB+owiiFEEKIuqNRo0YYDIZq6dtgMJCYmMigQYPM28LCwli0aNFNbVetWlUtMdS0/Px86tevnnQwPz+f4OBggoON+c3q1asZPHgwzs7Otzjy/lKXy1QSgEeUUu2VUg2BJ4FY077VQF/Tv3sD5T9ftg473ySTppb2nDxRHwoq/4Sn5tYN6fmIPWukVEUIIcR9Jj09nU6dOnH0qPF2tPDwcBYvNt6PNX78eHx8fHBxcWHmzJnmYxISEujRowfu7u74+vqSnp7OjBkzzE/cLHoCZ2mKz0pnZWUxcuRInJ2dCQ0Nxc/Pz7zU4caNG/H398fLy4sRI0aQmZkJQLt27Zg5cyZeXl507drVvITgtm3bzDPwnp6eZGRkoLVm6tSpuLq60rVr11Lj6t69O4cOHTL/3qdPHxITE7l27RrPPvssvr6+eHp68t133wHGGf/g4GD69etX6vKBxdnY2DB58mRcXFzo378/RVUGixcvplu3bri7u/PEE0+QlZUFwJgxY/j73/+On58fr776KlFRUUyYMIGdO3cSGxvL1KlT8fDw4OTJkyXW/D5+/HidXAO8JtTKOuNKqVBgIeAAfK+UMmitg5RSTsCnWutBWut8pdQEYANgASzVWhe9094GliulJgOZwNhaOI0q8fBQH3TMZa63DOD6ti+x7PdUpfsKdndiysok9p69jHfb5lUYpRBCCFHSlqhP+P2XU1XaZ4u2D9N3zHPltsnOzsbDw8P8++uvv26evR4zZgwvvfQSly9fZty4cQC89dZbNG/enIKCAvr378/+/fvp3LkzYWFhxMTE0K1bN65evUrjxo2ZNWsWiYmJ5pnwqKgoYmJiiIuLM4/3888/l4jnww8/pFmzZiQnJ3Pw4EFzbGlpabz55pts2rQJa2tr/u///o93332XGTNmAGBvb8/evXv58MMPmTdvHp9++inz5s3jgw8+ICAggMzMTKysrPjmm28wGAwkJSWRlpZGt27d6NWrV4kYwsLCWLlyJZGRkaSmppKamoqPjw///Oc/6devH0uXLuXKlSv4+voyYICxcGHv3r3s37+f5s3LzxeuXbuGj48P7733HrNmzSIyMpJFixYxbNgw8zWePn06S5YsYeLEiQCcO3eOnTt3YmFhQVRUFAA9evQgODiYwYMHm0t8bG1tMRgMeHh4sGzZMp555plyY7lX1UoyrrX+FmN5yY3bU4BBxX5fB6wrpd0V4PHqjLGmdPLqyt7PV2LftD1Xv/43DneQjA90aYVl/QPEGlIkGRdCCHFPKqtM5dFHH+Wrr77ixRdfJCkpybx95cqVfPLJJ+Tn55OamkpycjJKKRwdHenWrRsADzxQdnlnWWUqReLi4njppZcAcHV1xc3NuHTxrl27SE5OJiAgAIDc3Fz8/f3Nxw0bNgwAb29vvvnGWHkbEBDAlClTGD16NMOGDaNNmzbExcURHh6OhYUFLVu2pHfv3iQkJJjHARg5ciQDBw4kMjKSlStXmpPdjRs3Ehsby7x58wDIycnh7Nmz5ut1q0QcoF69eoSFhQHwl7/8xRz3wYMHmT59OleuXCEzM5OgoCDzMSNGjMDCwuKWfY8dO5Zly5bx7rvvEhMTQ3x8/C2PuRfJEzjrgAu21+ia48jxo7Y4XM8AyyaV6sfGsj4DurTk+wOpvDHYmfoWdbkKSQghxN3sVjPYNa2wsJDDhw/TuHFjLl++TJs2bTh9+jTz5s0jISGBZs2aMWbMGHJycmokHq01jz76KF9++WWp+y0tLQHjDan5+cYy1WnTpvH444+zbt06AgIC2LBhQ4XGat26NXZ2duzfv5+YmBg++ugjcwxff/01nTp1KtF+9+7dWFtbV+q8lFKAsRxl9erVuLu7ExUVxdatW81tKtr3E088QWRkJP369cPb2/uefKBPRUi2Vgd0CPWjUBeS3yqA65v/3x31NcTdibTMXHaevFRF0QkhhBB133vvvUeXLl1YsWIFzzzzDHl5eVy9ehVra2tsbW25cOEC69evB6BTp06kpqaSkJAAQEZGBvn5+TRp0oSMjNtblSwgIICVK1cCkJyczIEDBwBjHfdPP/3EiRMnAGO5x7Fj5d/idvLkSbp27cprr71Gt27dOHLkCIGBgcTExFBQUMDFixfZvn07vr6+Nx0bFhbGnDlzSE9PN8+aBwUFsXDhQvO9ZPv27Stz7M6dO5e6vbCw0Hyz6ooVK+jZsydgvGaOjo7k5eWxfPnycs+ryI3X18rKiqCgIMaPH3/flqiAJON1Qkd3Zy7mXsDeth2Xv72zh4n26eRAE8v6xCbJA4CEEELce4pqxot+pk2bxtGjR/n000955513CAwMpFevXrz55pu4u7vj6elJ586dGTVqlLlkpGHDhsTExDBx4kTc3d159NFHycnJoW/fviQnJ5e4gbPohs6in507d5aI54UXXuDixYs4Ozszffp0XFxcsLW1xcHBgaioKMLDw3Fzc8Pf3998o2ZZ5s+fby51adCgAY899hihoaG4ubnh7u5Ov379mDNnDq1atbrp2OHDhxMdHc3IkSPN29544w3y8vJwc3PDxcWFN954o9Rx09LSylz8wdramvj4eFxdXdm8ebO55n327Nn4+fkREBBQZiJ/oyeffJK5c+fi6enJyZMnARg9ejT16tVj4MCBFerjXqTup5U3fHx8dNEdznXNusgo3LI7cPbQInqsWABNbv5Dq6ipXyXxn4PnSZg+AKsGt67ZEkIIISri8OHDdOnSpbbDqFMKCgrIy8vDysqKkydPMmDAAI4ePUrDhg1rO7QKW7t2LadOnWLSpEk37bOxsTGvAlMd5s2bR3p6OrNnz662MWpCaX8bSqk9pmfilEtqxuuITk90p/DzC+S3DCB381Iahvyz0n0Fezjx1Z5zbD36O392dazCKIUQQghRXFZWFn379iUvLw+tNR9++OFdlYgDDB48uFbGDQ0N5eTJk2zevLlWxq8rJBmvIzq4diYxNwkH23Zcjo2k5R0k4/4P22Fv05DYpBRJxoUQQohq1KRJE+rqt+5VoTpnxb/99qaF9e5LUjNeh/zeLJsmDZpxIq0T/F5+XVl56lvUY7CbE5sO/05GTl4VRiiEEEIIIaqSJON1SJcRARTqQgod/MndsvSO+hri7kRufiEbD12oouiEEEIIIURVk2S8Dmnf5REu5KbiYNuey+u+h8LCSvfl9VBT2to15sv4s1UYoRBCCCGEqEqSjNcxaXbXsWlgy/F0T/h1V6X7UUrxtH87En+5TNKvV6owQiGEEEIIUVUkGa9jXMMCKdQFaAd/8rZF3VFfI3zaYGNZn2U/na6a4IQQQgghRJWSZLyOefCRhzmfm0qLB9pxeeMmyL9e6b6aWDVgpM+DrN2fyoWrNfP4XyGEEKI6WVhYlHgIz9tvv11lfRsMBtatW2f+PSoqCgcHhxLjJScnk5KSwvDhw6ts3Mo4c+YMrq6u1T6OjY1NtY9R3IwZM9i0aVOZ+9u1a0daWtpN23v06AEYr8uKFSuqLb7qIEsb1kFp9rk4ZTzA0axAWhzfCF2GVLqvMT3asWznaT7/+RdeCepUhVEKIYQQNa9Ro0YYDIZq6dtgMJCYmMigQYPM28LCwli0aNFNbYseEX+3y8/Pp379O0sHq6KPIrNmzarUcUVPRi1KxkeNGlUl8dQEmRmvg9xH9aZAF4C9H3k7Pr+jvh6ya8yjXVqyfPcv5OQVVFGEQggh7ndX1pzk94/3V+nPlTUnKxVLeno6nTp14ujRowCEh4ezePFiAMaPH4+Pj1JtcDUAACAASURBVA8uLi7MnDnTfExCQgI9evTA3d0dX19f0tPTmTFjBjExMXh4eBATE1PmeMVnpbOyshg5ciTOzs6Ehobi5+dnXnd848aN+Pv74+XlxYgRI8xrdrdr146ZM2fi5eVF165dOXLEuJzxtm3bzDPwnp6eZGRkoLVm6tSpuLq60rVr11Lj6t69O4cOHTL/3qdPHxITE7l27RrPPvssvr6+eHp68t133wHGGf/g4GD69etH//79b3l9J0+ejIuLC/379+fixYvmMV5++WV8fHxYsGABa9aswc/PD09PTwYMGPD/2bvv8CirtI/j32cy6Y100iChEyC0BAgBBBVEUBEEQxFpihVddXVZy666+q69dxFBlCZiReyNmgAhEAgtENJJQgjpbWae94+BLCglwMw8M8n9ua65kkw5988h4J2T85xDUVERJpOJqKgojh//37VrnTt3Jjs7m+joaBobzdsvV1RUNH09c+bMZv2gU1tby9VXX93053xyBn/+/PmsW7eOPn368PLLL3P48GGGDh1Kv3796NevX1PTDvD8888THx9PbGxs0/fG/PnzefPNN5ue8/jjj/PCCy+cN8+lkGbcDoVHR3GkocC8VOW3TVBbdknjzR4STVlNI19sz7dMQCGEEEIjtbW1py0bWbFiBb6+vrzxxhvMnDmT5cuXU1ZWxq233grA008/zdatW9m5cye///47O3fupKGhgaSkJF599VV27NjBTz/9hKenJ08++SRJSUmkpaWRlJQE0NScn7zV1taeluett97Cz8+PjIwM/vOf/7Bt2zYAjh49ylNPPcVPP/1EamoqcXFxvPTSS02vCwwMJDU1lTvuuKOp2XvhhRd48803SUtLY926dbi7u7N69WrS0tKacj744IMUFhaeliEpKYmVK1cCUFhYSGFhIXFxcTz99NNcfvnlpKSk8Ouvv/Lggw9SXV0NQGpqKqtWreL3338/5/tdXV1NXFwcu3fv5rLLLuOJJ55oeqyhoYGtW7fywAMPMGTIEDZv3sz27duZPHkyzz33HDqdjnHjxjUd7pOcnEz79u1p3749w4cPZ82aNQAsX76cCRMm4Ozs3KzvgaqqKq699lqmTJnS9Od80jPPPMPQoUNJS0vjvvvuIzg4mB9//JHU1FRWrFjBPffcA5h/UDpw4AApKSmkpaWxbds2/vjjj9PeS4CVK1c2fS9YiyxTsVPHghsJL/dmb8NIgjO+hP4zL3qsgdH+xIT6sHBDFknxkSiKYrmgQgghWqU213bUpO7ZlqmMHDmSTz/9lLvuuosdO3Y03b9y5Uree+89DAYDhYWFZGRkoCgKoaGhxMfHA+Dj43PWemdbpnLS+vXruffeewHo2bMnsbGxAGzevJmMjAwSExMBc+OakJDQ9LoJEyYA0L9/f1avXg1AYmIi999/P9OmTWPChAlERESwfv16pkyZgpOTEyEhIVx22WVs2bKlqQ7AjTfeyKhRo3jiiSdYuXJl03r2H374ga+++qqp2a+rqyMnJ6fp/fL39z/rf9dJOp2uqRm96aabmnKffG9OysvLIykpicLCQhoaGoiOjm56zpNPPsmsWbNYvnx502tuueUWnnvuOa6//no+/PDDphnu5hg3bhwPPfQQ06ZNO+9zGxsbufvuu0lLS8PJyYn9+/cD5vfmhx9+oG/fvoC5wT9w4ABz5syhuLiYgoICSkpK8PPzIzIystnZLobMjNupPlOvxGgyoPOPp3HDpV2IoCgKs4dEs7+oig2ZpRZKKIQQQtgPk8nEnj178PDwoKzM/BvlrKwsXnjhBX7++Wd27tzJ2LFjqauzzYYGqqoycuRI0tLSSEtLIyMjgw8++KDpcVdXV8B8QarBYADMSyQWLFhAbW0tiYmJTctXzic8PJyAgAB27tzJihUrmhpeVVX57LPPmjLk5OTQvXt3ADw9PS/qv+vUCb1Tx5g3bx5333036enpvPvuu03vc0JCApmZmZSUlPDFF180NfOJiYkcPnyY3377DaPReEEXoyYmJvLdd9+hqup5n/vyyy8TEhLCjh072Lp1Kw0NDYD5vfnnP//Z9N5kZmYyZ84cACZNmsSqVatOey+tSZpxOxXaPpzCxhO7qmzaDccv7fCea3uHEujlwkLZ5lAIIUQL9PLLL9O9e3eWLl3KrFmzaGxspKKiAk9PT3x9fSkqKmLt2rUAdO3alcLCQrZs2QJAZWUlBoMBb29vKisrL6huYmJi07KGjIwM0tPTAfM67g0bNpCZmQmYl3ucnJU9m4MHD9KrVy/+8Y9/EB8fz969exk6dCgrVqzAaDRSUlLCH3/8wYABA/7y2qSkJJ577jnKy8ubZs2vuuoqXn/99aamdfv27Wet3a1btzPebzKZmtZwL126lCFDhpzxeeXl5YSHhwOwePHipvsVRWH8+PHcf//9dO/enYCAgKbHbr75ZqZOncqsWbPO9bb8xZNPPomfnx933XXXXx77859heXk5oaGh6HQ6lixZgtFovn7uqquuYuHChU3r+PPz8ykuLgbM7+Xy5ctZtWoVkyZNuqBsF0OacTtW1taIh96LPYarIf3TSxrLVe/ETYPa88veYg6VVFkooRBCCGFbf14zPn/+fPbt28eCBQt48cUXGTp0KMOGDeOpp56id+/e9O3bl27dujF16tSmJSMuLi6sWLGCefPm0bt3b0aOHEldXR0jRowgIyPjtAs4/7xm/NQLAAHuvPNOSkpKiImJ4dFHH6VHjx74+voSFBTEokWLmDJlCrGxsSQkJJx3pvuVV15pWuri7OzM1Vdfzfjx44mNjaV3795cfvnlPPfcc7Rt2/Yvr504cSLLly/nxhtvbLrvscceo7GxkdjYWHr06MFjjz12xrpHjx496yyzp6cnKSkp9OzZk19++YV//etfZ3ze448/zqRJk+jfvz+BgYGnPZaUlMTHH3/8l1nmadOmUVZWxpQpU875vpzJq6++Sm1tLQ899NBp98fGxuLk5ETv3r15+eWXufPOO1m8eDG9e/dm7969TbP5o0aNYurUqSQkJNCrVy8mTpzY1MT36NGDyspKwsPDCQ0NveBsF0ppzhR/SxEXF6eevMLZERTlF1L76h7yy/czsMMC9A9tgUtY711SWU/iM78weUAkT46z/t6kQgghWpY9e/Y0LXMQZkajkcbGRtzc3Dh48CBXXnkl+/btw8XFRetozfbNN99w6NChposbbWXVqlV8+eWXLFlyaTvH2YMz/d1QFGWbqqpx53utXMBpx0LCQ9nU8AvB3u05uqOQtkd2Qmjvix4vyNuV6/qE8enWPB4Y2RVfj+ZdtSyEEEKIM6upqWHEiBE0NjaiqipvvfWWQzXiANdcc43Na86bN4+1a9eedsiSpTUYjDQYVbxc7bvdte90guPhJiJLvdhruIa2O1deUjMOMDsxmlXb8lixNYe5w7S5El4IIYRoKby9vXGk37rbi9dff/2cj48fP56srNOvc3v22We56qqrmjV+g8HIoZJqVKBriDc6nf3uJCfNuJ2Lu2kU1S/vxtm/P4aUF9CPfBJ0Thc9XkyYDwkdAli8MZvZidHoneSyASGEEELYl5N7k1+MeoORrJJqjKpKdKCnXTfiIBdw2r2g0BAKGgoI8W7P0b3VkHXuzfmbY/aQaPKP1/JDRpEFEgohhGhNWtO1ZsLx1DeaZ8SNqkqHQE88XKw/73ypfyekGXcAFZHg5uTBXuM42Lny/C84j8u7BdM+wIOF62WbQyGEEM3n5uZGaWmpNOTCLtU3Gjl0tBpVhQ6BXrjbqBEvLS3Fzc3toseQZSoOYMD0qyh/YScufn0xbH8C/dhqcLm4zfoBnHQKMwdH8cTXGezIPU7vyDYWTCuEEKKlioiIIC8vj5KSEq2jCHGaRqOJo1UNoKoEertyuNx2881ubm5ERERc9OulGXcA/sFB7G0oINirHUcPKbTdtxZ6TbykMSfFRfLSD/tZuCGLVyf3tVBSIYQQLZmzs3PTMedC2IsDRZVMfz8ZgGW3DqRziLfGiS6MLFNxEBVROtycPNijjoedKy55PC9XPTfGR7JmZyFHym1zNLAQQgghhCXtO1LJ5Pc2o1Ng+dxBDteIgzTjDmPQzWNoNDXg6hOLcfcvUHXpvyKcOTgKk6qyZPPhSw8ohBBCCGFDGQUVTHl/M3onheVzB9Ep2EvrSBdFmnEH0cbfj4KGfEK82lGS6wm7V1/ymJH+HoyMCWFpcg61DUYLpBRCCCGEsL5d+eVMXbAZV72OFXMT6BDkmI04SDPuUKo6OOPq5M4e9QaLLFUB8yFAZTWNfJGWb5HxhBBCCCGsKT2vnGkLkvF00bNibgJRgRe/qYU9kGbcgQyePoYGUz1uPj0xZqXC0cxLHnNAtD89wnxYuD5LtqoSQgghhF1Lyz3O1AWb8XbTs3zuINoFeGgd6ZJJM+5AvP18zQcAebajKK8NpF/6nuOKojA7MZoDxVWszzxqgZRCCCGEEJaXmlPG9AXJ+Hm4sHzuICL9Hb8RB2nGHU51JxdcnNzYyyTzUhULzGZf0zuUQC9XOQRICCGEEHZpW/Yxbv4gBX8vcyMe4dcyGnGQZtzhJN48hgZjHe5e3TEWZUPelkse01XvxPRB7fl1XwkHS6oskFIIIYQQwjJSssyNeJC3KyvmJhDWxl3rSBYlzbiD8fLxIb+xgBCvdhQdCbHYhZzTBrXDxUnHog2HLTKeEEIIIcSl2nSwlBkLU2jr68aKuYNo63vxx87bK2nGHVBtFzdcdK7sNY2HXavB0HDJYwZ6uTKuTxirtuVRXtNogZRCCCGEEBdvY+ZRZi1KIcLPnWVzBxHs0/IacZBm3CEl3jyWemMtHp5dMVaUwcGfLTLurMRoahuNLN+SY5HxhBBCCCEuxroDJcxatIX2/p7mRty7ZTbiIM24Q/L08jIvVfFsR+HR9hZbqhIT5kNChwAWbzyMwWiyyJhCCCGEEBfit33FzFm8lehAT5beOpBAL1etI1mVNOMOqr67J846F/Y1XgP71kJduUXGnTMkmoLyOr7fXWSR8YQQQgghmuvXvcXM/WgbnYK8WHbrIAJaeCMO0ow7rCE3XUOdsQYv9y6Yauthz9cWGffybsG0D/Bg4QbZ5lAIIYQQtvNTRhFzl2yla1tvlt46ED9PF60j2YQ04w7K3dOd/MYCgj0jKCjvZrGlKjqdwqzBUWzLLiMt97hFxhRCCCGEOJfvdx/hjk+2ERPqw8dzBtLGo3U04iDNuEMz9PAxL1WpvQqy1kF5vkXGnRgXiberXg4BEkIIIYTVrU0v5K5PUukZ7suSWwbi6+GsdSSbkmbcgSVOH3tiqUpHTAZg1yqLjOvlqicpPpJv0wspLK+1yJhCCCGEEH/2zc4C7l62nd6Rbfho9gB83FpXIw7SjDs0Nzc38hrzCfGIIL82DnautNjYMwZHYVJVlmzKttiYQgghhBAnfZmWzz3LttOvXRsWzx6AdytsxEGacYdn6tUGvc6Z/RXDoGgXHNllkXEj/T0YFdOWpSk51DYYLTKmEEIIIQTA59vzuG9FGvFR/iyaNQAvV73WkTQjzbiDGzxtDLWGKrzdojGZ9JBuudnx2UOiOV7TyOfbLbMWXQghhBBi1bY87l+5g0EdAvhwVjyerbgRB2nGHZ6bmxv5hkKC3cPJbbgMdn4KJssc2BMf5UfPcB8WbshCVVWLjCmEEEKI1mvFlhweXLWDIZ0C+WBGPB4urbsRB2nGWwS1jx96nTOZZf2gsgCy11tkXEVRmJ0YTWZxFesOHLXImEIIIYRonZYm5/CPz9IZ2jmI92+Ow93FSetIdkGa8RZgyJSx1Biq8HGJwuTkbbE9xwHGxoYS5O0qhwAJIYQQ4qIt2ZzNw5+nM6JrEO9N74+bszTiJ0kz3gI4u7qQbygg2COcXOMIyPgKGi2zJaGr3onpg9rz274SMourLDKmEEIIIVqPRRuyeOyLXVzZPZh3pBH/C2nGWwglLhAnRU/mkRior4D931ls7KkD2+Gi17Foo8yOCyGEEKL53vn9II9/ncGomBDemtYfV7004n8mzXgLMWTyWKoNFfi6tMPkEQY7LLdUJdDLlev7hPHZtnyO1zRYbFwhhBBCtEyqqvLC9/t4Zu1eru0dxpvT+uGil7bzTORdaSH0ej35xiMEuYdz2DAcMn+E6lKLjT8rMZraRiPLt+RabEwhhBBCtDwmk8oTX2fwxq+ZTI6P5JWkPjg7Sct5NvLOtCD6uGCcFCcO5UaDyQC7V1ts7O6hPgzuGMDijYdpNFpm60QhhBBCtCxGk8r81TtZtPEwc4ZE898JvXDSKVrHsmvSjLcgg5OupqqxgjbOEagBMbDTcgcAAcxOjKawvI7vdx+x6LhCCCGEcHwNBhP3LNvOyq153HNFZx4d2x1FkUb8fKQZb0H0ej0FpkKC3cM4WJsIeSlw7JDFxr+8WzBRAR4sXC8XcgohhBDif+oajdz+8TbWpBfy8Jhu3D+yizTizSTNeAvjMigUneLE4ay2gGLR2XGdTmFWYjSpOcfZnlNmsXGFEEII4biq6g3M+nALv+4r5v/G92LusI5aR3Io0oy3MINuuIrKxnL8nMNR2w+DtE/AZLk13hP7R+DtpufDDYctNqYQQgghHNPxmgZuWpBMyuFjvHxjH6YObKd1JIcjzXgLc3KpSpB7GAeqBsLxHMj63WLje7rqmRwfybfphRSWW+ZgISGEEEI4npLKeia/t5mMggremtaP6/uGax3JIUkz3gK5DQ5Hp+jI2esO7n6Q+pFFx785IQqTqvLRpmyLjiuEEEIIx1BwvJakdzeRXVrDBzPjuKpHW60jOSxpxluggeNHUdF4HH99GGqPG2HvN1BzzGLjR/p7cFWPtixNzqG2wWixcYUQQghh/w4frWbSO5soqaxnyZwBDO0cpHUkhybNeAuk1+spNBUS6BbKvuJOYGyAnZY7kRNg9pBoymsbWb09z6LjCiGEEMJ+7TtSyaR3N1HTYGDZ3EHERflrHcnhSTPeQnkMbY9O0ZG/rRrC+5uXqqiqxcaPa+9Hr3BfFq7PwmSy3LhCCCGEsE87846T9N4mFGDlbQn0DPfVOlKLIM14CxV/3RUcbygl2KU99R1ugOIMyE+12PiKojB7SBQHS6pZl3nUYuMKIYQQwv6kZB1j6vvJeLnqWXX7YDqHeGsdqcWQZryF0uv15LsW4+caxOZfasHZA1IXW7TG2F5hBHm7yiFAQgghRAv2275ibl6YTIiPK6tuH0y7AA+tI7Uo0oy3YP3mjaPBVI9LeQBq9/Gw6zOor7LY+C56HTcPas/v+0vILK602LhCCCGEsA9r0wu59aOtdAj0YsVtCbT1ddM6UosjzXgLFhQWQk59NmGeUewr6gINVZDxhUVrTB3YDhe9Tg4BEkIIIVqYz7blcdfSVHqF+7Js7iACvVy1jtQiSTPewnlcFY2Toqdwhw4Cu1h8z/EAL1fG9wnns9Q8jtc0WHRsIYQQQmhjyabDPPDpDhI6BrBkzkB83Z21jtRiSTPewg0YczlFdQWEeXWiIvhayE2Gkn0WrTFrSBR1jSaWpeRadFwhhBBC2N7bvx3ksS93c2X3YD6YEY+nq17rSC2aNOOtQEloLZ56b1LWuYFOb/HZ8W5tfUjsFMBHmw7TaDRZdGwhhBBC2Iaqqjz//V6e/W4v1/YO4+2b+uPm7KR1rBZPmvFW4LK7k6g2VOKva4cp+irYsQwMll1SMjsxmsLyOr7bdcSi4wohhBDC+kwmlSe+zuDNXw8yOT6SV5L64OwkbaItyLvcCrh7upNDHsHu4WzJ7AY1pbB/rUVrjOgaTFSABws3yDaHQgghhCMxmlT+8dlOFm08zJwh0fx3Qi+cdIrWsVoNacZbiegZwzCqBhqK26J6h1l8qYpOpzArMZrtOcdJzSmz6NhCCCGEsI4Gg4l7lm3n02153HtFZx4d2x1FkUbclqQZbyU69epGXl0u4d4dyNePhsyfoTzPojUm9o/A200v2xwKIYQQDqCu0chtS7ayJr2QR8Z0576RXaQR14A0461IY18vXHSu7N0bYb5j+ycWHd/TVc+UAe34Nr2QwvJai44thBBCCMupqjcw88MUfttfwv+N78WtwzpoHanVkma8FRly03WUNRwl1L0jdQGJsP1jMFl295ObE9qjqiqLN2ZbdFwhhBBCWMbxmgamLUhmy+EyXknqw9SB7bSO1KpJM96K6PV68r1K8XUJYPOB/lCeA1m/WbRGhJ8Ho3u2ZWlyNuW1jRYdWwghhBCXpqSynsnvbWZPQQVvT+vHuD7hWkdq9TRrxhVFmaQoym5FUUyKosSd43mjFUXZpyhKpqIo80+5/wpFUVIVRUlTFGW9oiidbJPcsQ24exz1xjrcTZ1QXf0sfiEnwF0jOlFZb+CtXzMtPrYQQgghLk7+8VpufHcT2aU1fDAzjlE92modSaDtzPguYALwx9meoCiKE/AmcDUQA0xRFCXmxMNvA9NUVe0DLAUetW7clsE/OIjsxmxCPduxu/pq2PMNVJdatEaPMF9u6BfBhxsOk3usxqJjCyGEEOLCZR2t5sZ3NnG0sp4lcwYwtHOQ1pHECZo146qq7lFV9Xznsg8AMlVVPaSqagOwHBh3cgjA58TnvkCBdZK2PH7XxqCg4+jRGDA1ws4VFq/x91FdcdIpPPvdXouPLYQQQojm25l3nIlvb6S20ciyuYOIi/LXOpI4hb2vGQ8Hck/5Ou/EfQC3AN8qipIHTAeesXE2h9X3isEcqc8n3KsTZfp+5qUqqmrRGm193bh1WAe+2Vko+44LIYQQGvljfwmT39uMm7MTq25PoGe4r9aRxJ9YtRlXFOUnRVF2neE27vyvPq/7gDGqqkYAHwIvnSXDXEVRtiqKsrWkpMQCZVuGsnZG3PVebMu7HEr2QP42i9e4bVgHgrxdeeqbDFQLN/tCCCGEOLcv0/KZvWgL7fw9WH3nYDoEeWkdSZyBVZtxVVWvVFW15xluXzZziHwg8pSvI4B8RVGCgN6qqiafuH8FMPgsGd5TVTVOVdW4oCBZH3XSsDsnUtVYTqBbV4yqJ6QutngNT1c9fx/VhdSc46xJL7T4+EIIIYQ4swXrDnHv8jT6t/dj5e0JhPi4aR1JnIW9L1PZAnRWFCVaURQXYDLwFVAG+CqK0uXE80YCezTK6JDc3NzIdiog0C2U5LLxsGs11FdZvM7E/pF0a+vNs9/tpd5gtPj4QgghhPgfk0nlv9/u4ak1e7i6Z1sWzx6Aj5uz1rHEOWi5teH4E+u9E4A1iqJ8f+L+MEVRvgVQVdUA3A18j7nZXqmq6u4T998KfKYoyg7Ma8Yf1OK/w5HF3HolBlMjqqEvan0V7P7c4jWcdAqPjo0h91gtizcetvj4QgghhDBrNJr4+6c7ePePQ0wf1J43pvbDzdlJ61jiPJTWtJY3Li5O3bp1q9Yx7Mr6excR7hoJpqeJ7uYEt/xolTqzPkxha3YZvz84An9PF6vUEEIIIVqr6noDd3ySyh/7S3hgZBfuvrwTiqJoHatVUxRlm6qqZz1L5yR7X6YirExNCMRZ58KhiqshLwWKrbMV4cNjulPTYOS1nw9YZXwhhBCitSqtqmfq+5tZf6CEZyb0Yt4VnaURdyDSjLdyQydfw9H6IsK8u1JT7Q7bl1ilTucQbybHR/Lx5mwOlVh+bboQQgjRGuUeq2HiO5vYe6SSd6fHMXlAO60jiQskzbig0K8cb2c/NpdPhx3LwNBglTr3jeyCm7MT/10rBwEJIYQQlyqjoIIJb2/kWHUDn9wykJExIVpHEhdBmnHBkHkTqTPW4O3aG1NlKez71ip1Ar1cuWN4R37MKGLzoVKr1BBCCCFag00HS0l6dxN6ncKntyfIqZoOTJpxgbefL9mGXEI8IkkvGWI+kdNK5gyJJryNO0+tycBkaj0XDwshhBCW8m16ITMWphDi68ZndwymS4i31pHEJZBmXAAQMqkvAMe5Gg7+AsdzrVLHzdmJB6/qyq78Cj7fnm+VGkIIIURLtWTTYe5amkqvCF9W3Z5AWBt3rSOJSyTNuACg5+D+FNblEe7dmeKjbSDtE6vVuq53GLERvjz//T5qG+QgICGEEOJ8VFXlxR/28diXu7miWzAfzxlIGw/ZKrglkGZcNKnoosPNyYP0upmw/WMwWadR1p04COhIRR0L1h2ySg0hhBCipTAYTfxzdTqv/5JJUlwk79zUH3cXOcynpZBmXDQZcdskKhrLCPTqiaE4Hw79ZrVaA6L9Gd2jLW//fpDiyjqr1RFCCCEcWW2Dkds/TmX5llzmXd6JZ27ohd5J2reWRP40RRO9Xk+OSxEBbiFsKrrGqhdyAsy/uhuNRhMv/7jfqnWEEEIIR3S8poGbPkjm571FPDmuBw+M6iqH+bRA0oyL08TeNppGUwNO7sNRM9ZAtfW2IIwK9GT6oChWbMll35FKq9URQgghHE3B8VomvbOJ9Lxy3pjSj5sTorSOJKxEmnFxmrCoSHLrcwjzjOZAfiTsXG7Vevdc0QlvN2ee/naPVesIIYQQjmJ/USU3vL2RI+V1LJodz9jYUK0jCSuSZlz8hfOIcPQ6Z/KYZl6qolpvP/A2Hi7Mu7wTf+wv4ff9JVarI4QQQjiCrYePMemdTRhMKstvG8TgjoFaRxJWJs24+IuE60dRUldImE83Kg5kQd5Wq9a7OSGK9gEePL0mA4PRZNVaQgghhL36MaOIaQuS8fd0YfUdg+kR5qt1JGED0oyLMyoKrsbL2Zct5dMgdbFVa7nodcwf3Y39RVWs3Jpn1VpCCCGEPVqeksNtS7bSra03q25PINLfQ+tIwkakGRdnNPSeSdQaqvD1jse0fTXUW/cCy9E92xIf5cdLP+6jqt5g1VpCCCGEvVBVldd/PsD81ekM6RzE0lsHEeDlqnUsYUPSjIsz8vTyIlvNI8Q9gtTDvWD3ucKtaQAAIABJREFU51atpygKj4yN4WhVA+/8dtCqtYQQQgh7YDSp/OvL3bz4437G9w3ngxlxeLrqtY4lbEyacXFWEVMHomKixm0c6jbrLlUB6BPZhut6h/H+ukMUHK+1ej0hhBBCK3WNRuYtS2XJ5mzmDuvAi5N64yyH+bRK8qcuzqpb/1jy63KJ8O5MYephKLb+9oMPje6KCrzw/T6r1xJCCCG0UFHXyIyFKXybfoRHx3bn4THd0enkMJ/WSppxcU61vTxwcXIjo346pC6xer0IPw/mDIlm9fZ80vPKrV5PCCGEsKWiijpufGcT27LLeCWpD7cM7aB1JKExacbFOQ2bOY7jDaWE+MZSu34ZGOqtXvPO4R0J8HThqTUZqFbc41wIIYSwpf1HKsh5ZSQzy17jw5v7cH3fcK0jCTsgzbg4J71eT55HCX6uQaTkXgb7vrV6TW83Z/42sgvJWcf4MaPI6vWEEEIIa/t9fwn3vP0l8aadTFZ+ZGjy7VB7XOtYwg5IMy7Oq/+d19FgqsfV6zLULda/kBNgSnwknYK9+O/avTQY5CAgIYQQjuvjzdnMXrSFEZ5Z5jsS74XsDbBwNBzP0Tac0FyzmnFFUVYrijJWURRp3luhoLAQchpyCPWKJmNdoU3+4dA76Xh4TDeyjlbzSXK21esJIYQQlmY0qfznmwwe/WIXwzoHcl+34+DiBVf8G25aDRUFsOBKyE/VOqrQUHOb67eAqcABRVGeURSlqxUzCTvkMbojTooTxbok2P6JTWqO6BpMYqcAXv35AOU1jTapKYQQQlhCdb2B25Zs5YP1WcwcHMX7N8fhUrAFwvuDzgk6XAZzfgAnV1g0FvZafxmosE/NasZVVf1JVdVpQD/gMPCToigbFUWZpSiKszUDCvswYPRlFNXlE+7bjePfLwOT0eo1FUXhkTExlNc28savB6xeTwghhLCEwvJaJr2ziV/2FvPEdT14/Loe6A01ULQLIgf+74nB3eCWnyCoGyyfCsnvahdaaKbZy04URQkAZgK3ANuBVzE35z9aJZmwOyXhDXjovdl2ZBQc+tUmNWPCfJjYL4LFG7PJKa2xSU0hhBDiYu3KL+f6NzeQXVrNBzPimTE4yvxAQSqoptObcQDvEJi5BrqOgbUPwXf/tMmEl7AfzV0z/jmwDvAArlVV9TpVVVeoqjoP8LJmQGE/LrtzEtWGSvx84zBuWGizun+/qitOOoVnv9trs5pCCCHEhfph9xEmvbMJJ0Vh1R2DGdEt+H8P5iabP0b0/+sLXTwgaQkMuhM2vwUrpkNDtW1CC801d2b8NVVVY1RV/a+qqoWnPqCqapwVcgk75O7pTraST7B7OFt+rYHqozapG+Ljxm2XdWBNeiHbso/ZpKYQQgjRXKqqsmDdIW77eBtdQrz44u5Euof6nP6k3BTzchR3vzMPonOC0f+Fq5+D/WvN68grZXvf1qC5zbifoigT/nS7QlGU4PO/VLQkHWcMxagaMLiPRt2+zGZ15w7rQIiPK0+t2SMHAQkhhLAbjUYTj3yxi6fW7GF0j7Ysn5tAsLfb6U8ymSBvC0QOOP+AA2+DpE+gZJ95p5Vi+a1wS9fcZnwOsACYduL2PvAPYIOiKNOtlE3YoY49u5FXl0u4dydyV38GNmqMPVz0PDCqK9tzjvPNzsLzv0AIIYSwsvLaRmYv2sLS5BzuGN6RN6f2w93F6a9PLM2E2jKIaEYzDtBtDMz6Foz18MEoOPS7ZYMLu9LcZtwZ6K6q6g2qqt4AxAAqMBBzUy5akcY4X5x1rhw4fqX5J30buaFfBN1DfXhm7V7qGuXiFiGEENrJPVbDxLc3sulgKc9NjOUfo7uh0ylnefKJ9eJ/vnjzXML6mnda8QmDjydA2tJLDy3sUnOb8QhVVU9duFQMRKqqegyQDaBbmSFTxnKsoYS2bXpR891bNqvrpFN4dGx38o/XsmjjYZvVFUIIIU61LbuM69/cQFFFHR/NGcCNcZHnfkFusnmteECnCyvUph3M+R6ihsAXd8AvT9vsN9LCdprbjP+mKMo3iqLMUBRlBvDlifs8gePWiyfskV6vp8CnDF8Xf5LXu0J9pc1qJ3YK5PJuwbz5SyalVfU2qyuEEEIAfLWjgCnvb8bLTc/ndyUyuGPg+V+UtwUi4kF3EQeZu/nCtFXQ5yb44zn4/DYwyP//WpLmflfcBXwI9Dlx+wi4S1XValVVR1grnLBfA+68jnpjHR7eiZhSV9i09sNjulHTaOTVn+UgICGEELahqiqv/3yAe5Ztp09EGz6/M5GOQc3Y3bm2DEr2Nu/izbNxcoZxb8Dlj8LOFbBkgnlc0SKctxlXFMUJ+EVV1c9UVb3vxG2VKltatGr+wUFkG3II9WzPrk9se4Rvp2BvpgyI5JPkHDKLq2xaWwghROtTbzDywModvPjjfib0DWfJLQPw93Rp3ovztpo/Xsh68TNRFBj2IExYAHkpsGAkHMu6tDGFXThvM66qqhEwKYria4M8woH4XdcDBYVjDcNQj+y2ae2/XdkFd2cnnlm7x6Z1hRBCtC7HqhuYviCF1dvzeWBkF168sTeu+jPsmHI2uSmg6CCsn2UCxU6C6V9AdYl568OTzb5wWM1dplIFpCuK8oGiKK+dvFkzmLB/fUcM4kh9HuE+3Shd+bpNawd6uXLniI78tKeYjQdtc/iQEEKI1uVgSRXj39pAWt5xXpvSl3lXdEZRzrJjytnkJkNIT3C14IHlUYnmnVZcvcyHA2V8abmxhc01txlfDTwG/AFsO+UmWrmyKBV3vSc7tvvb/IKS2YnRhLdx56lv9mA0yaopIYQQlrPpYCkT3tpIVZ2BZbcO4rreYRc+iMkI+dsufYnKmQR2hlt+hra9YOUM2Pi67LTioJrVjKuquhhYCWxWVXXxyZt1owlHMOKOSVQ1lhPg2xfDZtteyOnm7MRDo7uSUVjB6tQ8m9YWQgjRcq3cmsv0D5IJ9nbli7sS6d/+LEfYn09xBjRUXdrFm+fiGQgzvoaY6+CHR2HNA2A0WKeWsJpmNeOKolwLpAHfnfi6j6IoX1kzmHAMzq4uZOsLCXRrS/JHtj8h7LreYfSObMMLP+yjpkH+ARJCCHHxTCaVZ7/by0OrdpLQMYBVdwwm0t/j4gdsOuzHSs04gLM7TFwEg++BrR/A8ilQL5sbOJLmLlN5HBjAiT3FVVVNAzpYKZNwMDG3XIHB1AhOg1BLDtm0tqIoPDa2O0UV9bz/h1xVLoQQ4uLUNhi5e1kqb/92kKkD27FwZjy+7s6XNmhuCniFQJv2lgl5NjodjPoPjH0JMn+CD0dDRYF1awqLaW4z3qiqavmf7jNZOoxwTJGdO5Bbn024d0cOvfeSzevHRflzdc+2vPvHQYor6mxeXwghhGMrrqxj8nubWLvrCI+O7c7T1/fE2ekiDuj5s9wU82E/F3rR58WKnwNTV5q3PFxwJRzZZZu64pI09zttt6IoUwEnRVE6K4ryOrDRirmEg1ESQ9DrnMk+FGG+YMXG5l/djUajiRd/2G/z2kIIIRzX3iMVjH9zI/uLqnhvehy3DO1w4TumnElVMZRlWefizXPpPBJmrQXVBAtHQ+bPtq0vLlhzm/F5QA+gHlgGVAB/s1Yo4XiG3DiGo/VFhLaJoerHj21ev32AJzcnRLFyWy4ZBRU2ry+EEMLx/LavmIlvb8JgMvHp7QmMjAmx3OC5KeaPtm7GAUJjzTut+LWHTybBtkW2zyCarbm7qdSoqvqIqqrxqqrGnfhc1gOI0xT6l+Pt7EfKp+ma1L/n8s74e7hw/8o06hptPzsvhBDCcXy06TCzF22hfYAHX941hJ7hFj7bMC8FdM4Q2tuy4zaXb7h5hrzjCPj6XvjpcTDJCmN71NzdVLooivKeoig/KIryy8mbtcMJxzLk7onUGWvwdu+D8chhm9f39XDmhRt7s/dIJU+vkZM5hRBC/FWDwcQjn6fzry93c3m3EFbelkBbXzfLF8pNgbA+4GyFsZvLzQemrID+M2H9y/D5bbIXuR1q7jKVT4HtwKPAg6fchGji7edLtjGbEI9Idr7yqiYZRnQN5tah0SzZnM13uwo1ySCEEMI+FVXUkfTeJj5JzuH2yzry7vT+eLrqLV/I0AD5qdosUfkzJz1c8woMexDSV8JBWUNub5rbjBtUVX1bVdUUVVW3nbxZNZlwSCGT4gCoLOuIatBm3+8Hr+pGbIQvD63aSV5ZjSYZhBBC2JeUrGOMfW09+45U8ta0fsy/uhtOOivtcnIkHYz15p1U7IGiwLCHwDcSfv0/mR23M81txr9WFOVORVFCFUXxP3mzajLhkHom9KOwLpdwny7kvfEfTTK46HW8PqUvJhX+tjwNg1HWyAkhRGulqiqLNmQx9f3NeLvp+fKuRMb0CrVu0abDfuxgZvwkvQsM+zvkb4MDP2qdRpyiuc34DMzLUjYC207ctlorlHBstf29cXVy5+AuX9T6Wk0ytA/w5OnxPdmaXcarPx/QJIMQQght1TUaeWDlDh7/OoPhXYP48u5EOod4W79wbjL4tgMfKzf9F6rPNGjTDn6T2XF70tzdVKLPcJMTOMUZDb95HPl1ObTz68WBZx7VLMe4PuFM6h/BG79msjHzqGY5hBBC2F7usRpueHsjn6flc//ILrw3PQ4ft0s8UbPZxVMgcoBtal0IJ2fzcpWC7bD/O63TiBPO2YwrivLQKZ9P+tNj/2etUMLxGUYE46xz5Uh+NKbKMs1yPDGuB9GBnvxtRRqlVfWa5RBCCGE76w6UcO0b68k5VsPCGfHcc0VndNZaH/5n5XlQWWCfzThA78ngFwW//Vdmx+3E+WbGJ5/y+T//9NhoC2cRLUjiuJHk1B2mXZsYdv/nMc1yeLjoeWNKP47XNvL3T3egyj88QgjRYqmqytu/HWTGwhRCvN34+u4hjOgWbNsQTevF7bQZPzk7XrgD9n2rdRrB+Ztx5Syfn+lrIU7jOb4LOkVHRUUsxqN5muWICfPhkTHd+XVfCR+sz9IshxBCCOupqjdw5yepPPvdXsb0CuXzuwYTFehp+yC5KeDsASE9bV+7uWKTwL8D/PpfOQjIDpyvGVfP8vmZvhbiNH2GDyKr/hCRvl3Y/oQ2O6ucdHNCe0bGhPDsd3tJzyvXNIsQQgjLOlRSxfg3N/D97iM8MqY7r0/pi4eLFfYPb47cFAjrZ56BtldOerjsH1CUDnu/0TpNq3e+Zry3oigViqJUArEnPj/5dS8b5BMOru3N8ZhUEwbTIIy5+zTLoSgKz0+MJdDLlXnLUqmq12YPdCGEEJb1Y0YR497YQGl1Ax/PGcitwzqgKBr98r6hBo7stN8lKqfqORECOsFvz8jsuMbO2YyrquqkqqqPqqreqqrqT3x+8ms7/pFP2Iuu/Xpx0HCIcK+OJD/1iqZZ2ni48OrkvuQcq+HRz9Nl/bgQQjgwk0nlpR/2cetHW4kO8uTreUMY3ClQ21AF28FksK/9xc/GSQ+XzYfi3bDnS63TtGrN3WdciIvW+bYRNKoNOLsk0rhvi6ZZBkT7c+8VXfgirYDPUvM1zSKEEOLilNc0MmfxFl77JZNJ/SNYeVsC4W3ctY4FeSnmj/Zy8ub59JwAgV3ht2dldlxD0owLq2vXtSOZahahnu3Z9OwireNw9+WdGBjtz7++3MXBkiqt4wghhLgAe49UcN2b61mfeZSnru/JcxNjcXN20jqWWW6KeemHZ4DWSZpH5wSXPQQleyDjc63TtFrSjAub6HvfddQZa/D2HkbN5rWaZnHSKbw6uS+ueh3zlm6n3mDUNI8QQojm+WpHAePf3Ehtg5HlcxO4aVB77daH/5mqmrc1dIQlKqfqMR6Cup9YOy7/P9SCNOPCJoLCQsh0ziHIPYzkd3/UOg5tfd14YVJvMgor+O+3e7WOI4QQ4hwMRhNPr8ngnmXb6Rnuwzf3DKF/ez+tY53u2CGoKXWcJSon6Zxg+D/g6H7YtVrrNK2SNOPCZhIfvJFqQwUBbRKp/vETreNwRfcQZiVGsWjjYX7MKNI6jhBCiDMorapn+gcpvL8uixkJ7fnklkEEe7tpHeuvck+sF3e0mXGA7uMguAf8/gwYZbcxW5NmXNiMt58vh7yP4O8aTPInu+ziGN75V3ejR5gPD67aQWF5rdZxhBBCnGJH7nGufX09qTllvDipN0+M64mL3k5bl9xkcPWBoG5aJ7lwOh0Mnw+lmbBrldZpWh07/Y4WLdXwv0+lorGMtv4JlH32mtZxcNU78fqUvjQYTNy7PA2jSfsfEIQQQsDKLblMencTiqLw2R2DuaF/hNaRzi1vC0TEmRtbR9TtGgjpBb8/K7PjNuag3zHCUbl7upMTUoaPix+p35TZxV/4DkFePHV9T1KyjvH6Lwe0jiOEEK1avcHIw5+n89BnOxkQ5c8384bQM9xX61jnVlcBRbsdc4nKSTodjPinee37zhVap2lVpBkXNnfl/dM4Vl9MRGA8xQuf0joOABP6RTChbziv/XyA5EOlWscRQohWqaiijsnvbWZpcg63X9aRxbMH4OfponWs88vfCqiOcfLmuXQdA6G94Y/nwNiodZpWQ5pxYXN6vZ6izgY89T7s2uSG2lCjdSQAnry+J+38Pbh3eRpl1Q1axxFCiFYlJesYY19bz74jlbw9rR/zr+6Gk85Oti08n9wtgALhcVonuTSKAsP/CWWHYcdyrdO0GtKMC02MmHsDRXUFtAvoS+5rj2kdBwAvVz1vTO1HaXU9D67aiWoHF5gKIURLp6oqizZkMfX9zXi76fnyrkSu7hWqdawLk5sMwTHg5qN1kkvXZTSE9TXPjhtkYsoWpBkXmtDr9VTGueHm5MGhvRGoNWVaRwKgZ7gv86/uzk97ili88bDWcYQQokWrazTywModPP51BsO7BvPl3Yl0DvHWOtaFMZkgb6vjL1E5SVFg+MNwPAd2LNU6TasgzbjQzPCbxpFfl0M7/17sf+YRreM0mZ0YxRXdgvm/b/eyu6Bc6zhCCNEiZe/bTuazQ+iY/hL3j+zCe9P74+PmrHWsC3d0H9SXt5xmHKDzSPOSmz9ekNlxG5BmXGjKdEVbnBUXiop6oJblax0HAEVReH5Sb/w8nZm3dDvV9drv+CKEEC2FajKR/NnLBC29ip6GDG5z+4l7hoajc5T14X+Wm2z+6Mg7qfyZoph3VinPhe1LtE7T4kkzLjSVcO0V5NRn0c63O7ue/pfWcZr4e7rwSlJfskqr+fdXu7WOI4QQLUL5sRJSXxzHwPTHOeQWQ/nVb6I3VMP+tVpHu3i5KeARAP4dtE5iWR2vgIgBsO5FMNRrnaZFk2ZcaM7z+q7oFB0V1QMxFe7ROk6ThI4BzBvRiVXb8vhiu33M2gshhKPK2Pw9ta8NIrZqA5s73EPMQz/jGz8VfMJh50qt41283GRz06o46Mz+2SgKjHgYKvIh9SOt07Ro0owLzfUZPohD9YeI9OlC6lPPax3nNPdc0Zn4KD8e+Tydw0ertY4jhBAOx9DYwKYP/k7XtUkYFT2Hx61m0M3/QefkZD5opucNkPkTVDvgGQ/VpeYj5FvSevFTdRgO7RLMs+ONdVqnabGkGRd2IWzGAEyqCQPDMGZu1jpOE72Tjlcn90XvpGPesu00GExaRxJCCIdRcHgfB567jITc90ltMwrf+zbTud/w058UmwQmA+xerUnGS5K3xfyxJa0XP9XJfccrCyF1sdZpWixpxoVd6NK3JwcNhwj36sDmZxdoHec0YW3ceW5iLOn55Tz33V6t4wghhEPYuuYDvBYNJ7Ihi639nyP+vpV4+fj99Ylte0JwD0j/1PYhL1VuMuj05n25W6roYdB+CKx7CRprtU7TIkkzLuxGlzuvoNFUj4vbcAw77Otinqt6tOXmhPYsWJ/Fr3uLtY4jhBB2q7qynORXphK35X4K9ZFUzPyVuGtvO/eLYieZG9tjWbYJaSl5W6BtL3Dx0DqJ9ZzcWaXqCGz9UOs0LZImzbiiKJMURdmtKIpJUZSznh2rKMpCRVGKFUXZ9af7/RVF+VFRlAMnPp7hR23haCI7RZPJYUI927Ph1a/Azk7AfHhMd7q19eaBT3dQVCFr54QQ4s8yd6zn2EuDiC/7ls3hM+nw0DrCoruf/4W9Jpk/pq+ybkBLMjZC/raWu0TlVFFDIGoorH8ZGmq0TtPiaDUzvguYAPxxnuctAkaf4f75wM+qqnYGfj7xtWgB+t5/HbXGany8h1P7+8daxzmNm7MTb0ztS22DkftWpGE02dcPC0IIoRWT0cjmj5+g3errcFXr2DPqYwbd+irOLq7NG8A3wrwUYucKu5uIOauiXdBYAxHxWiexjREPQ3UxbF2odZIWR5NmXFXVPaqq7mvG8/4Ajp3hoXHAySsJFgPXWzCe0FBQaAgHnXMJcg9j0+JUMBm1jnSaTsHePHFdDzYeLOXt3zK1jiOEEJorOZJD+vOjGJT5EhmeA3G5exM9Eq+58IFib4TSA1Cw3fIhrSG3hV+8+WftB5t3V1n/MjTI7mKW5KhrxkNUVS088fkRIETLMMKyhsxPoqqxgqA2Q6le84bWcf5iUlwE1/UO4+WfDrD18Jl+VhRCiNZhx6+r0L0zhK61O0iJeYTef19Dm8C2FzdYzDhwcnGcCzlzk8E7zDyr31oMfxhqjsIW+9powdFZrRlXFOUnRVF2neE2zpJ1VFVVgbP+TktRlLmKomxVFGVrSUmJJUsLK/Hy8SHLtwg/1yA2ry6yu71NFUXh6fE9CW/jzr3L0yivadQ6khBC2FR9XQ2b37qN3r/PoULXhiNJaxlw40MouktoK9zbQJerzOvGjQbLhbWW3BSIjG95h/2cS7uB5pM5N7wK9VVap2kxrNaMq6p6paqqPc9w+9ICwxcpihIKcOLjWbe3UFX1PVVV41RVjQsKCrJAaWELIx6aSnnDMUL9B3F8xTNax/kLbzdnXp/Sl6KKOv7x2U5UR1njKIQQlyh7Xxq5zw9hUPFykoMmEvr3jUTFWGjddGySeV1y1u+WGc9aKgqhPKf1LFE51YiHoaYUUt7TOkmL4ajLVL4CZpz4fAZgiQZf2BE3NzdyQ8vxcfZj2y8K1FVoHekveke24aHRXflu9xE+Ts7ROo4QQliVajKR8tkrBC0dRYCxmB1D3mHgXR/g5uFluSKdR4GbL+xcabkxrSEvxfyxNTbjEXHmP6eNr0F9pdZpWgSttjYcryhKHpAArFEU5fsT94cpivLtKc9bBmwCuiqKkqcoypwTDz0DjFQU5QBw5YmvRQtz5X1TKa0vJsI/nqKF/9I6zhndMqQDl3UJ4j/fZLCn0P5+YBBCCEsoP1ZC6kvXMyD93xxy645h7np6XznF8oX0rhBzPez52r4vEsxNASdXaBurdRJtDJ8PtWWQ/K7WSc6pct0fHHjxBa1jnJdWu6l8rqpqhKqqrqqqhqiqetWJ+wtUVR1zyvOmqKoaqqqq84nnf3Di/lJVVa9QVbXzieUwchVdC6TX6ynpYsBT783ubaGolfZ32I5Op/Dijb3xdXfmzk9SKZb9x4UQLcye5O+pfW0QsZXr2dzhHmIe+oWgsCjrFYy9ERqrYZ99Hf52mtwU86mbehetk2gjvD90GQ0bX4e6cq3T/IVqMLD/8X+ze9lBqnPbU1FUeP4XachRl6mIVuLKO5IoqiugnX8f8t56ROs4ZxTo5co7N/WjqKKOKe9vprhSGnIhhOMzNDaw6YMH6fJtEgZFT9a41Qy6+T/onJysW7jdYPCJMO85bo8a66AwDSIHaJ1EW8P/CXXH7W52vLGoiA033Y2hsj/h3h05qj+Gm499nw0pzbiwe9VxHrg5eXAwMwbVTo9K7t/en0WzBlBYXseU96QhF0I4tsLsfRx4bjgJue+R2mYUbe7bTJd+w21TXKeDXhMh82eoPmqbmheicAcYG6QZD+sDXcfCpjeg9rjWaQAo++5L1j+4gMh2STgrzmRF53PlC7fh4u6mdbRzkmZc2L1hN11Lfm0O7f16ceDFf2sd56wGRPvz4cx4CsvrmPp+MiWV9VpHEkKIC7bt24V4fjicyIZDbO3/HPH3rcTL1jOLsUmgGmHXatvWbY6TF29GtPJmHMxrx+vKYfPbmsZQDQYyHryT/d+U0zlsGMUNR3Cb3Zlht1vhugYrkGZcOAT1ilD0igtHjg5ELdipdZyzGtghgA9nxpNfVsuU9zdLQy6EcBg1VeWkvDqV/in3UaiPpHzGr8Rde5s2YUJiIKQXpNvhriq5yeAXBd5y3iChsdD9Wtj8lvmCTg00Ht7HH9PuRGcaQ6hne/Yo++n77EQiYzppkudiSDMuHMKg6y4nuy6Ldr7dSX/+Wa3jnNPADgF8OMvckE+VhlwI4QAyd2zg6IsJxB37lk3hM+nw0DrCO3TXNlTsJMjbAqUHtc1xKlU9cdhPK9zS8Gwumw/1FbDpLZuXPrbkedY/8QVRUVNRFIXcXtWM/O8c9K7ONs9yKaQZFw7DZ2I3FEVHZd1w1Mx1Wsc5p0EdAlg4M548aciFEHasob6OTR/+g3arr8NNrSVj1BISbn0VZxdXraNBz4mAAumfap3kf47nQFURRFjokKOWoG1PiBlnXqpSY5vN7dSqo6TfNpGDKaF0DhnMkfoCfO/sTeJNY87/YjskzbhwGLFDB5JVf4hIny5sfeld8wyFHUvoeHpDfrRKGnIhhP3Yu+1X8p4dQEL2O6T7DMXl7k30TLxW61j/4xsOUUPMBwDZy7/3ua34sJ9zuWw+NFSZL+a0ssbkVfw2+2FcvWcT7BHBHpeDxL2YRNsOEVavbS3SjAuHEj57ECbViFE3ElP611rHOa+TDXluWY005EIIu1BdWc6mt+bS+avxeJkq2THkHfo/8AVtAttqHe2vYpPg2EHIT9U6iVluMrh4QXCM1knsS0gM9Bhv3uawutQ6NeoqKH0miQ3vZtMxehrjN0GtAAAgAElEQVQm1cSRASZGPjkTJ2tvt2ll0owLh9I5NoaDhoNEeHVg0+ufgcmodaTzOtmQ5xyrYdr7yZRKQy6E0MiO3z/n+EvxJBSvYFvQONz/ttU6J2laSsx15pMu7eVCztxkCO8HTnqtk9if4fPNp6ZufM3iQ6sHfmH7rRM4XHA9nYIHkN+QS+Df4hl4w+UWr6UFacaFw+ly55U0GOtwdR+FMfljreM0y+COgSycEU/2sWqmSkMuhLCxstJikl+eTO9fZ2LCib2jlzPg7sV4twnQOtq5uflC19GQvgqMjdpmqa+Cot2yROVsgrqa94dPeR+qSiwz5v+zd9/RUZXb/8ffk94rSUghvUEKvUPoHUVaRJpee8Eudr36tYt69ao/r713xA4iFkCKFGkJgYRUUkgC6X3a+f1xBBtKSSZnJtmvtVizmJw55xNKsvPMPs9ua8T4/jJ+vPcTPIJuwd8liANuhQx54gJ69Oo6u9lIMS5sTq/YKHIppKdbOJte3gJG2yhsR8T24NULB1NY1cSiV6QgF0JYnmI2s/3r1zA9O5iBtWvZFnoRgbftJHHYNK2jnb7U86H5GOSv1zZH2S5173Mpxv/emNvA2AJbnmn/uYq2UHHnKDb/EEdc+PkYFD3VY5yYdO8Sm29L+TMpxoVNGrT8PFqMTXh7TaB1neVvGOkoI2N78NpFgyk4phbk1U16rSMJIbqoIyUF7FoxkyE7bqTOoQfF81cz9LJncHZx1zramYmdBC4+6o2cWirepj6GDdI2hzXrEQcp6bD9FWisPLtzGFpQVt/BjjvupMx4JzH+AyjSFxJy2ygGzBjVsXmthBTjwib5BQaQ51RMD5dgtnxUDG0NWkc6bb8vyBe+/LMU5EKIDmUymdn84RO4vzyCpObtbI+9gcjbfyYqebjW0c6Og5N6c+DBr9RWEa0U74AeCeDaydNIbc2YW8Gkh81nsTpeshPDkyP54Z0WfEPvwMfZn4Nehxn1n6X4BPp1fFYrIcW4sFmjbj+fRkMdAT5jaP78Ua3jnJGRv7asSEEuhOhIBTn7yHp0DCMPPECJSxw1F25gyOL7sXewrSEof5GaDoZmyF6tzfXNZijZDr2GaHN9W+Ifo7YW7XgFGspP7zXGNvjuPsofnM3W/EtICJ9Lq6mFxskeTLxzkWXzWgEpxoXN8vDyosC7Al/nHmz5xgRNx7SOdEZGxfXglQsHnWhZqZGCXAhxltr0bfz0+t0EvzueSEMuu/veR+/b1hMcnaR1tI7Raxh4h8O+D7W5flWuOu5divHTM2a5esPtpqdPfWzZbpQX0vj5jS1UuPyHaL9U8vX5RN41jpSJ3aM/X4pxYdPG3bqIOn01ob4jqPvgPq3jnLHRcQG8vHQQeUcbWSgFuRDiLGTt2kTRo8MZXfQsOZ5DMVz5M/1n34jOrgt9i7ezU3fqyPvx7HuR26NEhv2cEb9o6HcB7HwN6o+c/BiTAX58BMN/J/H99rEEBi/H08mHbP8S0p66EA9/787NrKEu9D9VdEcuLi6UBNfi6ejLzs0B6qhiG5MWH8ArvxbkskIuhDhdjU2N/PTCtcR/fg7+5ioyR/6X1Ju/wq9nhNbRLCP1fHU3k8xVnX/t4m3qTaT+cZ1/bVuVtlz9+9r01F8/VrEfXh5PyUcvsa32IRJDZ9JoaqDtHH8mLLfife8tRIpxYfMm3LiIY20V9PIbTOUb/9Y6zllJi1dXyHOPNrL41W3UNktBLoT4e7s2fkXVE4MZXfEWGT2m4XzDTpInXQg6ndbRLCcwEXqmatOqUrwdwgarK/Ti9PhGQr9F8MsbUFeqPmcywk9Porwwhi0/96DG5UkiffqQa8gj7t9T6T26v5aJNSP/qoTNc3BwoCrBiJuDJ5mZiVB5QOtIZ2VMfAAvLRnIoUp1hVwKciHEn1VXHWXz04sZ8MMinDCRM+Vt+l/7Hh4+AVpH6xyp6ep+38dyO++aLbVw9KC0qJyNtFtAUdTV8aM58Npk9F8/yPeFVxMcuAw3B08OBZcz9smLcPV20zqtZqQYF13ChCsXUN5aSoRvfw4/fQuYTVpHOitjEwKlIBdC/IWiKGxd/RaGZ4cwrOYrdoUsxG/5TuKHn6t1tM6VPA/QQUYn7jleslN9lJs3z5xPOAxYAr+8CS+OpjCzip31K0jsOYk6Qw3K/BDGXT9f65Sak2JcdBktQ9xxtnelsGoG5p+e1zrOWTtRkFdIy4oQAspKiti+YhbDt19Lq70npXO/YMDlL+Ds5qV1tM7nFQxRaeoAIEXpnGsWbwOdHYQO7JzrdTWjb0ZxdGNjyQya7P+PcK8Ecoy5JD44g9ghXWS3n3aSYlx0GaMXnkNeay5RPsn89OpeqMrTOtJZG5sQyItLB5JTrhbkdc0GrSMJITqZyWRm40f/xe3lEfRv2syumKsJu30H4alpWkfTVur5UFPw24q1pZVsh6AkcPbonOt1MU1NOr7Lv4pwr8U427uQH36U8U/8Cxd3V62jWQ0pxkWXkrh8Kk3GBgIDzqPkqWXqoAYbNS4hkBeXSEEuRHeUl5PFvkcnkJZ1D0ddwqlZ+j0DljyCvaOz1tG01/sccHDpnFYVs0kt+qVf/Kzs/+BDMh/+jt7+o6g2HMNxSQxpV8/ROpbVkWJcdClBocGUxjfj6ehDQdUsTOuf0zpSu4xLDOR/SwaQXd7Akte2UdciBbkQXVmbXs+Pb9xPz3fHEm/IYl/qXcTetomgmH5aR7MeLl6QMA0yP1H3qrakyizQN0KY9IufCbNez7rrHsBhpyfB7hFkK4dIeWw2EamxWkezSlKMiy5nwhXzOdR2iCifJH56PQuqC7SO1C7jE4N4YfEADhypZ8mrUpAL0VXt2bOTvEdHMq7wKYo8+mG4Yiupc25FZ2evdTTrk3o+NFdB3g+WvU7x8WE/Uoyfroq9u9h43Uskuo7BrJgo729gwmMX4+jkqHU0qyXFuOiSkm+dQYOhluDAcyh61LbbVQAm9A7if4sHSkEuRBeUW9nIpW/upOmT6wgzl5I17An63LIWn+BoraNZr5gJ4Oqr3shpScXbwT1Q3TNb/CNFUdj8+DNUvF5ArE9fDrcVELJ8BEMWTNI6mtWTYlx0SQHBQZSnqHuPlzSch/EH225XgT8W5EulIBfC5lU2tHLXpxlMeXoje/NLGeaQg+vQf9Fn6mVde3hPR3BwgqQ5cPBraGuw3HWKt6mr4vL38Y+aj1Wy7srHCDmWjIejF4f8ihn59IV49/TXOppNkGJcdFnjLprNIcMhIrwT+en1Qyg1RVpHarcJvYN4YdFAso7Us/S17dS3SkEuhK1p1ht55rtDjF2xng93FLN4aDjfz3PCXjHgGDtO63i2IzUdjC1qQW4JjUfVXVukReUf7f/sMzLu+4Y+viOpMVShpIcy7taFWseyKVKMiy6t/x3nUW+oITR4Gvn3L+u8fWktaGKfIP7fooFkldWx5FUpyIWwFUaTmfe3H2bMivX857scxsQH8O2Nadw/KxmvI1vAzhEihmsd03b0GqoOldn3oWXOX3K8X1x2UjkZs8HAupsfxmGTE8Hu4eSY1Zs0Ywb30TqazZFiXHRpvgH+HBtkh4u9OxX68zCs/a/WkTrEpD5BPL9wAFlldSx9dTvVTTIYSAhrpSgK3x+oYNozP3HHqgx6+bryyVXDeWHxQKIDft27On+9ugLr5K5pVpui00FKuvpn11DR8ecv3qb+gBQsO9n8WcXBTDZe+yKJDqMwKyYq+xsY/7jcpHm2pBgXXV7aBTPJMeUS7hXPpreLUKptv10FYHJSz18L8nqmPL2RH7MrtY4khPiTfSW1XPDyz1zy5k6MZoX/LR7AJ1eNYGCE328HNVdDeQZEj9Uqpu1KTQfFrG5z2NGKt0NwX3B06fhz27CN/3meihezifXpS1FbASHLRzJIbtJsFynGRbcw9K551OqrCAueTM7d13WJdhVQC/LPrhmJv7sT/3p9B3d9mkGz3qh1LCG6veLqZq57fzfnPreZnIpG/m9WEt/emMbU5GB0f74ZsGAjoEDUGE2y2rSABHXluqNbVYx6KNstLSq/01xXzdqrHqfXkUQ8HLw45FPEqKcvxLun36lfLP6RFOOiW/D09aZulBvO9i7U6GbT9vUzWkfqMH1CvPh82UiuSIvmve2Hmf7MT+w6XKN1LCG6pdpmPQ9+lcWEJzewdn8514yLYcPysSwdHomj/d98y81fD06eEDqgU7N2GanpcGQPHM3puHOWZ4CxFXoN7rhz2rD9a1az766vSPIeTq2+Ct28EMbdvljrWF2GFOOi2xg5ZzIHlVzCPGPY/H4ZSlXXaFcBcHaw547pvfngsmEYTArzXtjCE2uz0Rtte391IWxFq8HESxvzSHv8R17dXMCsfiGsXz6W5VMS8XQ5RR9twQaIHAn20m97VpLngs4OMjpwz/HibepjN5+8aTaZ+Oa2x3D4HkLcw8kx5ZD8+GyihiZpHa1LkWJcdCsj711Atf4o4SETyLr9hi7TrnLc0Gh/vrlhNHMHhPHcj7nMeWEzhyosuAevEN2c2azw+Z5SJjy5gYdXH6R/uC+rrxvNivl9CfZ2PfUJag9Ddb60qLSHZ0/1z2/fRx33Nb1kO3j3Au/QjjmfDarIy2bDsv+RxHD1Js3UVsavuERu0rQAKcZFt+Lu4UHTOB8c7Zxocp5N48dPah2pw3m6OLJifl9eXDKQstpWZjy7iVc3FWA2d60fPITQ2pa8Y8x6fjPXf7AHb1dH3rlkKG9ePITewV6nf5L8Depj9FhLROw+Us+H2qLfxte3V/F2COu+LSob/9/LVDyXSZx3KodbCwi5ZQSDFk3VOlaXJcW46HaGnzOeg7p8Qjyi2P55NebKQq0jWcSUpJ6svSGNtLgePPBVFotf3UZpbYvWsYSweTkVDVz8xg4WvryNqsY2nkrvy1fXjmJUXI8zP1n+enXcemDvDs/ZrfSeCQ6uHXMjZ10J1Jd2y5s3Wxrr+eaaFfQqjFZv0vQqYuQzF+IdLJM0LUmKcdEtpd2zkKq2SiJCxpJx201drl3luABPZ15eOohH56Swt7iWqU9v5NPdJShd9PMVwpIq6lu5/ZN9TH16IzsKq7l9WiI/3DKWOQPCsLM7i3HpiqLupBI9Rsatt5ezJyROh/2fqjuhtMfx1fVuNnkz8/t17LvjM5I9h1Gjr4K5PRl3p9yk2RmkGBfdkqu7K4ZpgdjrHNB7zKHunUe1jmQxOp2OBUPCWXN9GglBntz44V6ueW8XNTIoSIjT0thm5Klvsxm7Yj2f7CrhwhGRbFg+jivHxODiaH/2J648AE2V0i/eUVLPh5ZqyPu+fecp3q6usvdM6ZhcVs5sNrPmridwXGMg2C2cHGM2KY/PJnpY9/j8rYEU46LbGjR5NAcdCwh2j+CXta2YjuRrHcmiwv3d+PCK4dw2NZF1WRUyKEiIUzCYzLz9cxFjV/zIf3/IZXzvQL67aQz/PicJP3en9l8gf736GD22/ecSEDMe3PzVGznbo3ibus1kN9jdpqIonw3LXiDZOES9STOpmfFPXCo3aXYyKcZFtzb2nkUcbSsnMngU+5bf1mXbVY6zt9Nx1dgYPrtmJL5uMihIiJNRFIVv95cz5emN3PNZJlE93Pn06hE8v3AAEf4dOK6+YAP4RYNPr447Z3dm7whJcyB7NbTWn905DC1Qvq9btKisf/k1Kp7eTZxXKodb8wm5ZTiDlk7XOla3JMW46NZcXFzQzeqFnc4es98cal59UOtInSIpxJvPl43kchkUJMQJZrPC9wcqSH9xK5e//QsALy0ZyEdXDKd/uG/HXsxkgMJN0qLS0VLT1WE9B748u9eX7QazsUvvL97S3Mia654k4lAE7g5e5HoUMPKZi/AOPosbkEWHkGJcdHv9xg7jgEshQW5h7NmgYCw5pHWkTuHiaM+d03vz/u8GBT35bTYGkwwKEt1Ls97I21sLmfjUBi55cyfF1S08eF4ya29IY3JSz7+Or+8IpbtA3ygtKh0tbDD4Rp79AKDjw3666Mp45sYf2HvbKlLchlCjr8LuvEDG3r1U61jdnhTjQgAT71pMRVsZkcEj2XPz3d1qt5Fhvw4KmjMgjGd/yGX2/5NBQaJ7OFLXwqNrDjL8kR+45/P9eLg48MyCfvx02zgWD4v4+/H1HSF/PaCDqDTLXaM70ukgJV3dv73+yJm/vngH+MWAe9daJTaZTXx9z5M4ftFKiFs4h/QHSXl8NlEj+2odTSDFuBAAODo74Tg3GgD7nnOofu4ejRN1Lk8XR56Y35f/LZZBQaLr21tcy3Xv72b0Yz/y0sY8hkf78/GVw/n8mpHM6hdq2SL8uIINEJwKbn6Wv1Z3k5oOKJD5yZm9TlHUlfEutr943t6dbLr2Ffoafr1JM7GRcU9dJjdpWhEHrQMIYS1SRw1m9fevk2oXy76deYzKz8Ixuo/WsTrV1OSeDIzw5fZP9vHAV1l8f6CCJ+b3JcTnNMZ6C2HFTGb1psxXNxWws6gGD2cHlg6P5F8jI+nl59a5YfRN6vZ5w67q3Ot2Fz3iIGSAOgBoxLLTf111PjQfg15dY/Km2Wxm7X1PEtmUSIxnH/JbDtH/jtl49uzg+x9Eu8nKuBC/M/muJZS1lRAVNIxdtz3YrdpVjgvwdOaVC9VBQXuKa5kig4KEDWtoNfDKT/mMWfEjV727i/L6Vu6e0Zutd4zn3nP6dH4hDlC0FcwG6Re3pNR0dVeUyoOn/5qSHepjF1gZP5y5m43X/I+ktiHY6ew4HFZB2jMXSyFupaQYF+J3HBwc8LigN2ZMOIfOpmLF7VpH0sRvg4JGnxgUtOy93TIoSNiM4upm/u/LLIY/8gMPfn2Anl4uvLBoABuWj+PS0dF4umj4Fn3BerB3gvDh2mXo6pLngs7+zG7kLN4Gzl4QkGi5XBamKArf3reC+teKiPVOobi1gKAbhjBi2Tyto4l/IG0qQvxJnyH9WPPdG6TUx3Awyw+/g3txSuyeN7lE+Lvz4RXDeXFjHv9Zl8OOwmoen5fK2IRAraMJ8ReKorCzqIZXfyrg26xy7HQ6pqcEc8moKPr28tE63m/y16urr04arMp3Fx6B6jsP+z6GcXeD3WmsPRZvh9CBYNeOqaoaKtu/l4PPbiDRezBtdi3kBx0h7caLtI4lToOsjAtxEpNuXUxJWzFRgUP45c4VKMbuOxTH3k7H1WNj+eyakfi4OXLR6zu4+zMZFCSsh8Fk5vM9pcx6fjPz/7eVrflVXJ4Ww0+3jeO/F/S3rkK8qQrKM2R/8c6Qej7UHf5tu8J/0loPFfttskVFMZv54f7HOfZKLvE+/SltLcb76r6k3ZiudTRxmmRlXIiTcHBwwO+ifhjfKcE9fDZlD91K6L+f0jqWppJCvPli2Sie/DabVzYVsDm3iofOS2Z4jL9l9mEW4hRqm/W8t/0wb20pory+lege7jxwXjJzB4Ti5mSl394KNqiP0VKMW1ziDHB0U2/kjDhFS1DpL4Bic/uLV2TtJfPp74n1GYzRwUCuXyljb12idSxxhqz0q5UQ2ovv24c13+wkpSaK3MJQ/Pdsw6Wf7a2adCQXR3vumtGHCb2DuPmjvSx8ZRu9g724aEQEs/qF4uJom2/vCtuSf7SR1zYX8MkvpbQYTIyM9efhOcmMjQ/Ezs7KfzAs2ABOnupuH8KynD3Ugnz/pzDtcXBw+vtji7cDOggb1Gnx2kMxmfjpwRV41cSQ4DeYstZiwi4fydg+EVpHE2dB1512SBg0aJCyc+dOrWMIG2I0Gtm+/ANCnUIpzX6dYR+9gp3TP3xB70Za9CY+21PKm1sKOVjegI+bI+cP7sXioRHa7FAhujRFUdiSV8Wrmwr44WAlTvZ2zOoXwsWjougd7KV1vNP3TD/1BsGFH2idpHs4tA7enQcL3lML87/z9hxoOAJXb+28bGepOmsfu55cQ6z/YMyKiSKfStJuX4C9vSyGWBudTveLoiin/AlPinEhTiE/Kxvz64W0GJvwcf6eXo8+r3Ukq6IoCtsKqnlzSyHfZlWgKAoTegdx0YhIRkgLi2inNqOJz/eU8dqmAg6WN+Dv7sTiYREsHhZBgKez1vHOTE0RPJMKUx+DYVdqnaZ7MBnhyQSIHAXpb578GLMZHouE5NlwzjOdGu9MKEYjWx9agXN1JEGuYZS3lhJ44UDC+8dpHU38jdMtxqVNRYhTiO6TwDfBO0iujCC/Mg7/LRtwGyH9nsfpdDqGRfszLNqfstoW3vm5iA92FLMuq4K4QA+WjohkTv9Q3J3ly404feVHj7Jm236e32PgWKOehCBPHp+byrn9Qmy3HUr6xTufvYO6zeEvb0BrHbh4//WYY9nQVgdh1tsvXpO5l51PfUlMj2HonHUcciki7aELZDW8i5CVcSFO06Yb3yLcKZzDB99ixHvPYufurnUkq9VqMPHl3jLe3FpIZmk9ni4OzB/Yi6XDI4jsIX9u4uRyKxtZu7+cb/eXk17+FOfYb2F5+IcsSUtiZGwXeJdl5cVQuAluzgZb/1xsSclOeGUCnPscDDjJzY2/vAFfXg/LfoEesZ0e758oBgPbH34Mu2ORBLtHcLStHM/5vYkdkax1NHEaZGVciA4WcfUoWl/MxifmXIpuv4GoZ1/WOpLVcnG0Z/6gXswbGMauwzW8saWIt7YW8vqWAsbGB3DhiEjS4gKs/2Y7YVGKorC3pI61+8tZu7+c/KNNAPQL9WS2627cDC28OLgS4rrASrLZDPkbIGa8FOKdLXQg+EWrA4BOVowX7wBXP/CP6fxs/6Ahcx/bHv+EqKCROLg6kuNYwJj/W4i9te4UJM6a/I0KcZp6xUWzNvxnksp6kV+fSsB3a/CYOE3rWFZNp9MxMMKPgRF+VM7ozbvbDvPutsNc9PoOonq4s3R4BPMGhmk7DVF0KoPJzPaC6l9XwCsor2/F3k7HsGg/LhoRyaQ+QQTXZ8Kr1eoLMj6C1Pnahu4IlVnQfEwdRCM6l04HKemw4TGoLwOvkD9+vHibuqWhlfyQZNbr2f3IYxgrw0kMmUiVvhKnGZGMn7BU62jCQqQYF+IMTLluIRtvfJNI/1R2P/sOIwYNx97HigaKWLFALxdunBTPNeNiWZN5hDe2FHL/l1k8sTabuQPDWDo8kthAD61jCgto0ZvYeOgoa/eX8/2BSupaDLg42pEWF8DypAQm9A7Ex+13uxTtWK2OMu+/GHa/A03HwL2Hdp9AR5B+cW2lpsOGRyFjJYy87rfnm6uh6hD0u0C7bL/TuHcP21Z8SHjPMTh5uHDIroBRDy3A0VV28erKpGdciDNUVlhM43MZGM1GnOo/IfaVv7lDX5zSvpJa3thSyFd7j6A3mRkd14MLh0cyLjEQe2lhsWm1zXq+P1DJt1nlbMg5SqvBjLerIxMSA5mc1JMx8QG4Ov3NzWfPD1OL72mPwQsjYPoTMOSyzv0EOtq76VCVC9ft0jpJ9/XyBDC2wVWbfnsuZy28lw4Xfa3uuKIRc1sbmQ8/QlNlL3p5x1Orr8I8PojUmacYViSsmvSMC2EhIZG9WBezmd5FoRTYDSXw81V4zZqjdSyblBrmw1Pp/bhzem8+2H6Yd34+zKVv7aSXnytLh0WSPqgX3m7SwmIryuta+TZL7f/+Ob8ak1mhp5cL6YN6MSWpJ0Oi/HC0t/vnk1Tnw9EDMOARCEqCwCTY95FtF+MmAxRtVsezC+2kpsOaW6EiC4L6qM8Vb1PfhQnpr1msxl92sv2JDwgNHYePlweHlHyG35eOi5erZplE55JiXIizMOmqBay/6XVifJPZ89r7DB82CsegQK1j2aweHs4sGx/HFWNi+HZ/BW9uKeSh1Qd4cl02s/uHceGICBJ72tBgl24k72jjrzdgVrC3uBaA6AB3Lk+LZkpST1JDvc/sRt3sb9THhKnqY+p8+O4+tUj3i+7Y8J2l9BfQN0qLitaS5sA3d6j3IQTdpz5XvB16poBT5+/yZG5pIeuhh6k9GkZ8xCzqDbUcGwLj5l7Y6VmEtqQYF+Is9b55KjX/2UVA7HRyb7qexHfes/2t1zTmaG/HjNRgZqQGk1VWz5tbClm1q4T3tx9mWLQfFw5Xb/BzONXqqrAYRVHIKK07UYDnVjYCkBrmzfIpCUxJCiI20PPsL5C9GgJ6/1Z4J89Ti/GMlTDm1vZ/AlrIXw/oIHK01km6N48AdTebfR/D+HtBMas/KPU/yQ4rFta0bTvbn3ibnuGTifT1Ic9UwMA7Z+Ph347/O8JmSTEuxFkKCg0mM6GZhLyeFHmMofa9t/FdJHe7d5Q+IV48Ni+V26cl8uHOYt7eWsRV7+4ixNuFC4aEMzTanz4hXnjIMCGLM/5+B5SsCo7UqTugDI3yY8mwCCb1CSLEpwPeUm+pgaItMPL6357z6QURI9VWlbTlVrPjxRnJ3wDBfcHNT+skIvV8WHUpHN6qroYbmtWdVDqJqaGBnIcf4dixUGKi59FsaqQ0qYUxS+R7R3cm38WEaIcJl83nh5tfI943iX0ffcDg3im4DdCu97Ar8nV34soxMVw2OprvDqgtLE+uywHUuiyqhzvJId6khHqTFOpFUog33q7SZ362zGaF0toWDlU2kF3eyIEj9Ww8dJTaZgPODnakxQdw8+QEJiQG4uvewTs8HPoOFBMkTP/j86np6lCWI3s07e09K22NULIdhi/TOokASJwOju6w70MI+nVwTicU44qiUP/NN+x56Ut6RE0hyt+PAmMhfW+eSWKwr8WvL6ybFONCtFPKLTM49sR2guNmkHnzvfR99b84R0dpHavLsbfTMSWpJ1OSelJZ30pmWR2ZpfVklNaxs7CaL/aWnTg23M/tRHGeHOJNcqg3fh1dONo4RVGobGgju7yBnAr1V3ZFI7kVDTTpTSeOC/JyZlxCIFOSgkiLD8DNkgNHctaAe4A6pOX3+syC1cvV9k094kgAACAASURBVAJbK8YPbwWzUfrFrYWTO/SeCVmfqe/EeAaDdy+LXlJfUsKBe+6j0Xkw0fELaDY1UhRdx+jLO789RlgnKcaFaKeA4CByhjsQst0Jt/4Xc/Dyq0h6/20cAgK0jtZlBXq5MN7LhfGJQSeeq2psY3+ZWpzvL6sjo7SOrzOOnPh4qI8rSSFeJId6kxyqPgZ6umgRv9NVNbaRU9F4oujOqWggu7yB+lbjiWN6eDgRF+jJ/EG9iAvyICHIk7ggz857l8GoV1fG+5wLdn+6J8DVF+ImQ+ZKmPwA2P3NlojWKH892DtDuGxRZzVS09WV8QNfQu9zLNb6pBgMVL76Clnf5xMaMQc/ew/yzYX0v/kcEmQ1XPyOFONCdICR86axrvIDEop6cizpIvIvuZjY9z/Azr3z79Dvrvw9nEmLDyAt/rcfguqaDewvqzuxip5ZVse6AxUcH68Q6OmsFucninRvgr1dbPZG3LoWA4cqGv5SeB9r1J84xsvFgYSenszsG/Jrwe1BfJAnPTycNUwOHN4CbXV/bVE5LmU+HPxKHZ4TM75zs7VH/ga1DcJRtqmzGlFj1Xdgmo5Cr6EWuUTzrl1k/N8KdGHTiIs5l1pDNY1DFMbMld5w8VdSjAvRQSZdvYA1D75Gii6Okl5zOXz1ZUS88iY6R+lf1oq3myMjYnswIva36Y2NbUayyurJLFWL9P2l9azPrsT8a4Hu5+5EUogXKb8W58kh3vTyc7WqAr1Zb+RQRSPZFQ0c+rW95FBFA0fqWk8c4+ZkT1yQJ+MTA4kP8iQ+yJOEnp4Eejpb1edyQvYacHD5+3Hx8VPB2UttVbGVYrzpGFRkwPi7tU4ifs/eQd2lZ9sLHV6Mm2prKX70EQoPuxMedzH2OgcOORQx4u65OHvID2Ti5KQYF6IDTbv7Yr654xWSPRMoMIzE6e47CH50hXUWP92Uh7MDQ6L8GBL1284WLXoTB8rr2V/6Wx/6SxvzMf5aoXu5OJxYOff/U+/5n2cY/3mosfKXI/56zF8//tcDGttM5FY2kF3RQHF1y4nnnRzsiAv0YFi0/68FtwdxgZ6E+rie2f7eWlIUdUvD6HHg5HbyYxxdoPe5kPU5zHzKNlaaCzaoj9HjtM0h/mrk9eruNqEDOuR0iqJQ/8UX7H/hA1wTziM2PIRKfTnu58Yxbqz8/Yt/pjvZF/2uatCgQcrOnTu1jiG6OKPRyKbb3ibWMZbcss0kDXAm4IYbtY4lzlCb0UROeeOvLS7qrwPlDeiNZk3yONjpiAnw+EM/d0JPT8L93LC3laL771TsV8fen/NfGPgPA0/yN8Bb58K81yHZBqbefnEd7P8Ubi1QV2NFl9RWUEDBvfdS4dCPyIABmDBS5FtN2s1zsbfkDc/C6ul0ul8URRl0quPkX4kQHczBwYFhD13A7js+ISZ4BPs3raZf6Ef4zE/XOpo4A84O9qSEeZMS5n3iOaPJjN7012Jcxx+L4dN5I+TPx5zqHHY6ne0X3X8ne7X6GD/1n4+LHKXufpHxsW0U4/nr1UE/Uoh3Sea2No699BIH1+zBL3EOMU49KNEXE37xCMYlR2odT9gQ+QohhAW4uLiQeOdUCh/5kajoKex780MGBATiMXas1tFEOzjY28n0T0vIXgOhg8Az6J+Ps7OH5Lmw7UVorrbuITrVBVBbBMOv0TqJsICmn3/m0P0P09hrGpEpS2k1NVPQq5rR1yzUOpqwQfJdRQgL8Q3wx/+K/jSZGgjrPZd9D71IS0am1rGEsC4N5epI8oRpp3d8ajqYDWr7hzU70S8+VssUooMZq6ooWb6cnY99gGvSFUT6JVNoPkzQTUMYfc0sreMJGyXFuBAWFJ4Qg2FWECZM+PddQsYNd6EvLtY6lhDWI+cb9fF0i/GeqdAjQW1VsWb5G8CjJ/SI1zqJ6ACK2UzNxx+zZ+5SSpqTiEmYi1ExUd7PQNqKJXiH+GsdUdgwKcaFsLC+aUOpGGLGyc4Zt74XcfDSqzDW1GgdSwjrkL0GfMIhsM/pHa/TQep8dbJl7WHLZjtbZjMUbFSnbspOSjav7dAh8hZewN5VmfgOvp5gj0gO2RUS8+9JDFpgI9tsCqsmxbgQnWDU/OnkRpTj5eiLMXEx+ZdcjLml5dQvFKIr0zepNzkmTD+zojVlvvporavjlfuh+Zi0qNg4c0sLlU8+xe5Lb6MuaDaxERNpMNXTNMmTcQ8vwcXLBrbXFDZBinEhOsmkaxax3zOPQNdQqoNnUXz9MhSTSetYQmgnfz0YW0+/ReU430joNUwdAGSN2/Pm/9ovHjVG2xzirDVu3MjBmedyIMNEz6HL8HPuQY5HMSmPnkefiQO1jie6GE2KcZ1ON1+n0+3X6XRmnU73t/sv6nS613Q6XaVOp8v80/MrdDrdQZ1Ot0+n032q0+l8LJ9aiPabdvcl7OcgYZ4xHFYGUHH/v0864EWIbiF7NTh7Q8TIM39t6nw4egAqrPCm6Pz14B8H3qFaJxFnyFBRSckNN7D3wVcxpV5FTM9hVBgrcFwcxfi7F8q+4cIitFoZzwTmABtPcdwbwMk2nl0HJCuKkgrkAHd0aDohLGjCg/8iV59LlH8qBwvdqXrpRa0jCdH5zCbI/gbiJoK945m/vs9ssHOAfR91fLb2MOqhaIvaLy5shmIyUf3Ou2TNmktBcxy9+l+Mi70b+SHHGLQinbDUGK0jii5Mk2JcUZQDiqJkn8ZxG4Hqkzz/raIoxl9/+zMQ1sERhbAYBwcHhj18ASVth4kJHknmukLqvvhC61hCdK7SX9S+6oTpZ/d6d3+InQgZK9XC3lqU7gRDk/SL25DWrCwKFiwg4+NtOI+8jSi/VIpMh/G/biBp183G3t5e64iii+sKPeMXA2u0DiHEmXBxcSH+jskc01cSFT2FvS+vpmnrVq1jCdF5slerK9uxE87+HCnzoaEMijZ3XK72yt8AOjt1WqiwaqbGJioeeYTMi66hInA6Mb3nY0ahNKWV0U8swS88QOuIopuwWDGu0+m+0+l0mSf51WG74ut0ursAI/DuPxxzuU6n26nT6XYePXq0oy4tRLv5BQbgf0U/mkyNhCbOZe99z9Kafco3jIToGrLXQMQIcPU9+3MkTAcnD+tqVSnYAMH92vd5CYtSFIX6td9yaMYMDuxpxmfM7YR6RHFIV0jkPeMYumiS1hFFN2OxYlxRlImKoiSf5NfnHXF+nU53ETATWKT8wx1wiqK8pCjKIEVRBgUEyE+5wrqEJ8ZimNUDMyb8UxaRuew2DEeOaB1LCMuqzoejB8++ReU4JzfofQ5kfQGG1o7J1h5tjVCyQ/rFrVhbfj7Fl1zCgQefp7Hv5cRGTabJ1Ej9eDfGPbIENx8PrSOKbsgm21R0Ot1U4FbgXEVRmrXOI0R79E0bTsUgI052LrikXMiBS67GVF+vdSwhLCf716mb8Se7P/8MpcyHtjo49G37z9VeRVvAbJQtDa2QqbGJihUrODB3EYX2/ek5/Ab8XYLIcTtMn0fPJXnKEK0jim5Mq60NZ+t0uhJgOPC1Tqdb++vzITqdbvXvjnsf2Aok6HS6Ep1Od8mvH3oO8ATW6XS6PTqd7n+d/CkI0aFGnT+T3Igj6lCguPPJv+xyzHq91rGEsIzs1erETb+o9p8ragy4B0KGFbSq5K8He2cIH6Z1EvErRVGo++prDk2fxoEdNbhNuIdo/36UGEtxXBzJ+HsX4eh0Frv5CNGBNNkwU1GUT4FPT/J8GTD9d7+/4G9eH2u5dEJoY9I1i1nzwMuk6BIp6TEF55tuoNd/n0NnZ5NvYAlxci016gryqBs65nz2DpA8F3a+qp5by17tgg0QPhQcZTKjNWjNyaH8gQcpPWLEbcAyYl2CqdEfo66fCyMXLNY6nhAnyHd5IazItHsuYz8HCPOMpagticrHHtU6khAd69B3oJja3y/+e6nzwaRXe8e10nhUHUAUPVa7DAIAU0MDFY88QtbiyyhxH0mvgVfg5ehDjmcJiY/OZPCC8VpHFOIPpBgXwspMePBicvWHiPJP5cABHdVvvqF1JCE6TvZqta0kZEDHnTNkAPjHQsbHHXfOM1WwQX2MGqtdhm5OMZup/ewzcqZO58B+E95j7iLcO5EC82G8r05l/F0XSEuKsEpSjAthZdShQAtPDAXa99VB6teu1TqWEO1n1EPud5AwFTqy/Uqng5R0KNwEdaUdd94zUbABnL0hpJ821+/mWg8coHDRIjJeXoNxyE3Eho2hzlRH3VhnxqxYQo+onlpHFOJvSTEuhBU6PhSoSl9JVNQU9jz3Gc2//KJ1LCHap2gztNVD/LSOP3fKPECBzJUdf+7Tkb8eokaDnUxr7EymujrK/+8B9l16ExV+k4lKWYyzvTO5QRX0XTGHlGlyM62wflKMC2Gl/AID8LuiL02mBkIT57Dnrqdoy8vTOpYQZy97DTi4WKav2j8GQgfBPg1aVaoLoPaw9It3IsVspnblSrKmnUN2gRsBI28h2D2SHF0BIbeNZOyN82SMvbAZUowLYcXCE+MwnOOnDgVKXkjGslsxVFZqHUuIM6coajEePU4d1mMJqelQkQEVWZY5/9/JX68+yv7inaIlI5OC889n77tbcBi+nJigIVQaKzGcF8D4R5biEeCtdUQhzogU40JYub5jR1ExSK8OBeq9mIOXXYWpsUnrWEKcmYr9UHcYEizQonJc0hzQ2Xf+nuMFG8AzGHrEde51uxljTQ1H7rmX3dfeS3XwecQkzEZBoTC2jqFPXUDsiGStIwpxVqQYF8IGjDr/XHJ7leLl6Ishcj4FV1+NYjBoHUuI05e9Rn3siKmbf8cjAGLGQ8ZKMJstd53fM5shf4PaoqLTdc41uxnFZKLm/ffJmDmX3PJAQodeh79LENnORUTfP5FRl87UOqIQ7SLFuBA2YtK1S8l0zyHQNZRjnmMpuf02FEXROpYQpyd7tdrT7Rlk2eukpkNdMRT/bNnrHFeRCS3V0qJiIc27d5M7fy57P8vCffhyovz7UmwswXFpNBPuX4yLh4VanoToRFKMC2FDpt97OfuVLMI8Yymsj+Ho009rHUmIU6s/AmW7LNuiclzCdHB0g32d1KpyfH/xaCnGO5Lx2DHK7riD3bf+h6bwRcRGTabV3MKRgQZGPbmYsORorSMK0WGkGBfCxkx46JITQ4GydrdS8+GHWkcS4p/lfKM+duTUzb/j7AGJM2D/p+q+5paWvx56xINXiOWv1Q0oRiPVb73NnjlLKKyNJnzApXg4epHjXULSo+cyeL5MzxRdjxTjQtiYPw8F2rtyN9XvvistK8J6Za8BnwgI7N0510tJh9ZayF1n2esY9VC0RbY07CDNO3ZwcPYc9q0rxnfoTYR5xZNnLsT32v6Mv+MC7J0ctI4ohEVIMS6EDXJxcSH+9klUGdShQBmf7Kb0xhsxNTRoHU2IP9I3qavHCdM77wbHmHHg5m/5VpWSHWBoln7xdjJUVFKyfDk7738NU9y/iA0dTa2xhvoJroxdsRT/8ECtIwphUVKMC2Gj/IIC8b4kiTpjDdFx55JX14u8OXNo2b9f62hC/CbvRzC1dU6/+HH2jpA8V22Paa233HUKNoDODiJHWe4aXZi5uZljL7/MrgWXU9qcTHTyQhztnMkNrqTfE3NJnjxE64hCdAopxoWwYVFJvQm7bRSH9YXEBA2hOn4ROUsupvq996RtRViH7DXg7A0RIzr3uinpYGyFA19a7hr56yGkP7j6WO4aXZC5pYWqV19j39RZ7N/aSNDg6why70W2roDQO0Yz9vq5Mj1TdCtSjAth4/yCAhm6YiH7zVmEecagG3Mruc++RekN0rYiNGY2qavTcZPU1erOFDYIfKMsNwCotR5KdkqLyhkwt7RQ9fob7J80jYwNlXgMvYWYwEGUG8sxzQliwiNL8fD31DqmEJ1OinEhugAHBwemPH4FmT1y8HT0wXfkDRTkNFAwZ660rQjtlP4Czcc6t0XlOJ0OUuZDwUZ1a8WOVrQFFJPcvHkazK2tVL3xBtkTJ5OxrhCnYcuJDRlJnamOIwMNDHtqITHDkrSOKYRmpBgXoguZessllA9vxYSR8JTFFPccQdGCC2S3FaGN7NVg5wCxE7W5fmo6KGbI/KTjz12wARxcoNfQjj93F2FubaX6zTfJmTiRjK8OYB56C7HhE2gzt1EUV0+/FXNlq0IhANknSIguZvjsGRxOzOboS3uIC51Ankcgpgcepnn7DoIffAB7T3kbWHSS7DUQMVK7nuoecRDcT21VGbGsY8+dvwHCh4GjS8eetwswt7VR++FHHHv5Zcp9++Iz+EZinQOpN9SQG3KU0dfMkp5wIX5HVsaF6ILCeyeQ+MAMDulziPFOoXnKXVRu/kVtW8mUthXRCary4OjBzhn0809Sz4cje+FoTseds7ESKvdLv/ifmNvaqH77HXInTWb/e+tpHHA10X3ScbZ3JcenlLgHpzL2ujlSiAvxJ1KMC9FFuXt4MO6pS9jnuJ8glxBcxiznmHMgRRdI24roBCembk7VNkfyXHX7wY68kbNgo/oYPbbjzmnDzHo91e++S97kKRx8/Stq+15GVL+L8HLyJdv1MOH3jGX87QtwdHXSOqoQVknaVITo4qY/cCU/vPg24bmBBPa5kKKAH1AeeFDaVoRlZa+BwD7gG6ltDs8gdQU742MYd1fHDB7K/xFcvCG4b/vPZcPMej21K1dS9dLLVBk9MPe7kF7uMRgUPTn2BQy8fiaxwX5axxTC6snKuBDdwPgrltA8w5UmYxMxgVMpmXAZdd99J20rwjKaq9XdRrTYReVkUtOhplCdmNleiqL2i0eOBrvu2W5h1uup+eAD8qZMJe+Z1ynvcwHBI28mxC2CXArxvCKJ8Q8txVsKcSFOixTjQnQTqWPT6HnTEErbiuntOZjqiTehNypq28o70rYiOlDud+q2f1r3ix+XOFPd+WTfh+0/V3U+1BV3yxYVRa+n5oMPyZsylYLHn6M0YQ4BY+4gwjOBw6ZiHBZHMO6xpQTEBGsdVQibIsW4EN1IQFgIgx5LJ8uURZRrHPp+V9A6cAQVDz5I6fU3yJAg0TGyV4N7IIQM0DqJysVLXaXf/ymYDO07V8EG9TF6bHtT2QxFr6fmo4/ImzqNww+voDjuHLwn/JtYn76UGY/QOtOX0U8sISw1RuuoQtgkKcaF6GYcnZ2YvOIKMryz8HH0w63HuVSdcz4NP/wgbSui/Yx6OPSdeuOmnRV9i0k9H5qrIO+H9p0nfwN4hYJ/bMfksmKKwUDNxx+TN206Jfc/RGHUZNwmP0i83yCqTFVUj3JgxFOLiB+dqnVUIWyaFX2lFEJ0pml3XEHpgBoUFMJ0aRyesQTFaJC2FdE+RZtA32A9LSrHxUwAV1/Y145dVcxmdSeVqDEdcyOolVIMBmpXriRv6jTK7rmPgvAxOE59iMSAETSaGznSV8+QpxaQOnO41lGF6BJkNxUhurGRC+aSl7CbmrdySXIezoF+HsQ17aHiwQdp3r6d4IcelN1WxJnJXgMOrta3B7eDEyTNhr0fQFsjOHuc+TkqMqClusu2qCgGA3VffMmx//2PtuJijgyZS8++g+jt5E+NvoqiqDqGXTpb9gkXooPJyrgQ3VxM//7E/XsSeW259HZOodwtDadLL5O2FXHmFEUtxmPGgZOb1mn+KiUdDM1w8Ouze33+evUxKq3DIlkDs15P7apPyZsxkyN33UVRUCqGaQ+QGDIFe509eYFH6fPoTEZeMVMKcSEsQIpxIQQePj6MXLGEDLsMQpx70XIkhtZly1CMRmlbEaevIlPdacRatjT8s15DwTv87HdVyd8AAYng1TV2C2nNyaHikUfITRvDkTvvpMQvnsap95IQNgs3e3cOeZUS/cAkxtw0B3sneSNdCEuR/11CCAAcHByY9vDVrHvmVaJLwnHNi6Jw+mzi87KkbUWcnuw1gA7iNZ66+Xfs7CB1Pmz6jzrS3iPw9F9rbFP3Th+w1HL5OoGpsYn6NaupXbmS1r37wMGBsuFTcXVLJdY1kjZTCznORQy/7Tzifc+ilUcIccZkZVwI8QeTrr+E2nFGWs0txB1LJdM3kcBbl//WtpKRqXVEYa2yV0PYoDMrcjtbSjooZshcdWavK9kBxhaItrJe+NOgKAote/ZQdvfdHEpLo/yee9E3NpA3cymNk+4iwf9cgp1DOKQrxP+GgYy/fzGuUogL0WmkGBdC/MXA6dPwvSqJI/pSUpQBZGSYCXzhORSjkcKFC6l++x1pWxF/VF8GZbutt0XluMBE6JkCGWe4q0r+BtDZQeQoy+SyAGNNDVVvvEH+OedQuOAC6levQTd+LNmzr0SfcDn9HEbhY+/NIcfD+F7bl3GPLMEn1F/r2EJ0O9KmIoQ4qZDYWPweDmXT3W+R6NyHwlVH8Lv/Hlze/5iKhx76rW3Fy0vrqMIa5HyjPlrbloYnk5IO6+6BqjzwP81BNfnr1SFGLt4WjdZeitlM05at1H6ykobvvgeDAZe+qbRdexWHix1JNEYwSPGkTldNrl85w66cSZyXq9axhejWdN1pdWvQoEHKzp07tY4hhM1Zff/zJDX1ocXcTFW/GhINRiqffBJ7d3d80ufju3AhjsFd46Y2cZbeTYdj2XDdHuvfg7u+DJ7qA2NvV3+dSms9PBYJo26ECfdYPN7ZMBw5Qu2qVdR9sgpDWRn23t54zZrFwehetO5oId4+Cic7Zyr0R2hL9GDoJVNkZxQhLEyn0/2iKMqgUx0nK+NCiFOa/u9r2PjGu/TM9CNkXzA7fLIY88EHVL30ElWvvkbVa6/jOXEifkuX4DpgADprL8ZEx9I3qSvHgy+x/kIcwCtEbTfZ9yGMue3UmYs2g2Kyun5xRa+n4cf11K5cSdOmTaAouI8Yjt9NN/BTXS0+O01E14WBg44SQwkeY6IYOCtd69hCiD+RYlwIcVrSLlpE9tYt1H18hOT6fmx8Yz0TnlhB0LFj1Lz3HjUfr6Rh7Vpc+vTBd8kSvGZMx87JSevYojPk/QimNuvvF/+91PPhi2VQugvCBv7zsfkb1EFGYUM6J9sptOXnU7vyE+o++wxTdTUOQUH0uOpKdNMm8OM3W4n4vpGBzpEYHPUUmIuJTB/KiMHW9YOEEOI30qYihDgjtUcryHh4DVHOMZS2FuMwzpWBs2Zjbm6m7suvqH77LfS5edj7++N7fjo+CxbgGGjFu2uI9vvsGjjwJdyaB/aOWqc5Pa11sCIOBv0Lpj32z8c+Pww8e8LSzzon20mYm5up/2YttStX0rJrFzg44DluHD7z5lKTGMG2l78hvjoQP6cAWkxNFDsfo9+lk/GLlP97QmjldNtUpBgXQpwxo8HAuntfJNHUG3udPbn6Q8Qu7Ud4/8EoikLz1q1Uv/0OjevXg4MDXlOn4rdkMa6pqVpHFx3NbIIn4tUR8fNe1TrNmflwCRzeCjcdBPu/eaO4oQKejIeJ96k9451IURRaMzOp/Xgl9V9/jbmpCaeoKHzmzcV71iz2Vx2m4M1t9NaH4+7gRb2hhoqAFoZdNRNXb/dOzSqE+CvpGRdCWIyDoyPTHllG7o4dFL23j1ineIzv1bLm/WcZdctcPEeMwH3ECPRFRdS89x61Kz+h/ssvce3bV21hmTIZnaONrKCKf1ayE5qP2VaLynGp6XDgCyhYD7ETT35MwUb1MXpsJ4UCU20tdV9+Re3KlbRlZ6NzccFr6lR85s/DpX9/Nmz6jtZHV5Ggi2KQfTKV5nKORSkM+9d0+sikTCFsjqyMCyHabevHq7Df0kaIcxiNhjoKffKYeNuVODg5A+rUv7pPP6XmnXfQFxXhEBiI78IL8ElPx8HPT+P0ol3W/Ru2PgfL88DVR+s0Z8bYBk/EQfw0mPPiyY/57Bo4+BXcmg92ltt9RDGbad62jdqVn9Cwbh2KXo9LcjI+8+bhNWM6ZncXVq/6BO/NLUQ5RaFDR5mhFNfR4fSdbTt7nwvRnUibyklIMS6EZX37n5cJKQnEx9GPyrZyGnvXknb5ZSc+rpjNNP30E9VvvU3T5s3onJzwmjkTvyWLcendW8Pk4qw9N0Ttp77wC62TnJ0vroWMT2D5IXD6U2uHosB/kiF0AJz/tkUury8poW7Vp9R99hmGsjLsvLzwPuccfObNxaV3b+pb61n76keE57oR6twLo9nAYaWUsDkDiR7exyKZhBAdQ4rxk5BiXAjLa2lq5sdHXie+LRYXezcKW/PwmeZP8pRz/nBcW14e1e+8Q91nn6O0tOA2aBC+S5fgOX48Ogd5q90mVOXBswNg6mMw7Eqt05ydwk3wxgyY+yqkzPvjx45/fjOehMGXdtglzc3N1H/7LXWrPqV5+3bQ6XAfMQLvObPxnDABOxcXSqtL2fLCl8RXBeDvFEirqZlip6OkXjIR/+ieHZZFCGE5UoyfhBTjQnSeiqJC9v13LXH2cQAcMmaTfNkIgnv3/cNxpvp6ald+Qs2772IoLcUxJATfRQvxmTcPe2/rnnbY7W15Dr69C67fC76RWqc5O2YzPJ0CQUmw6KM/fmzHq/D1TXDtrtOf1Pk3FEWhZfdualetomHNN5ibmnAMD8dnzmy8Z806MTQrI28vea9tIbEtHA8HL+oNtVT4NzPsqhm4+nq0K4MQonNJMX4SUowL0fkyN/5Ezad5RDnH0GpqJsfhAONuXYSrb8AfjlNMJhp//JHqt96meft2dK6ueJ97Ln5LFuMcG6tRevGPXp8BLTVw9Ratk7TPunth6/Nwcw64+//2/IdL1H3Ib8w862FGhopK6j7/nLpVq9AXFqJzc1NvxpwzG9eBA9HpdDQbmln36ec4b2skzi4SZ3sXjuoraIpxYvhl07GXmzKFsElSjJ+EFONCaGfjWx/isVtHoHMwtYZqygILmHzLspNuKdd68CDV77xD/ZdfobS14T5iBL5LDfisywAAGg1JREFUFuMxZgw6OzsN0ou/aK6GFbFWPSL+tJVnwv9GwvQnYMiv9ziYzbAiGhJmwHnPn9HpzHo9jT/8QO2qVTRt2gxmM66DBuIzew5eU6dg5+6OWTGzZcdGjn5xgOjmIPydAjArJsoMZTgPD6P//DQLfKJCiM4kxfhJSDEuhLaMRiPfPfEaEUdD8HT05khbCcb+zQxfcvFJVx6NNTXUfvQxNe+9h7GiAsfwcPwWL8J7zhzsPeQte03t/RA+vRwu/eHUEyxtwf8bDs6ecMm36u/L9sBLY2DOy+oWiKegKAqtWVnUrfqU+q++wlRXh0PPnnifNwuf2bNxiogAoLA8n51vrSPkiDuhTmHY6+yp0R/jmHcLSQvGEJgQasnPUgjRiaQYPwkpxoWwDo11dfz06HvEG2NxtHOioC2X4POCiR87/aTHKwYDDevWUf32O7Ts3o2duzt+//oXfhddhL2HDDfRxEcX/jYwpyu8W/HTU/D9/XDdHvCLgk1Pw3f/hpuz1d1i/oaxupr6L7+kdtWn6p7gTk54TpyI95w5uA8fhs7envrWer7/+HM8duuJtu+Fs70rLaYmSu2OEji+N32mnPJ7tRDCBkkxfhJSjAthXYoP5pDz0gbiHOMwKSZyTFkMWTYe36ikv31NS0YmVS+9RMO6ddj7+dHjyivxWXA+dk5OnZi8mzO28f/bu/f4qso73+Of377lfjPhfgfBoCAQkGitoI5lLI4oOHb0tFZbZ9qZ2lpt63RmOmfmnL7OmVY71rZTX3bsHNtabx0dqdQy3hDvEMAEAoIgqCgScoOQy97Z2Zfn/LG3EHUHI+xkQfi+Xy9e2XutZ639W/vJTr6sPOtZ3DYFZiyDJT/zuprsaHsXfjIDLvhHWHgL/HYptDfADWs/0tTF43S+8CIHlz9Kx3PPQyxG7syZlC5bSvHixfhLSki6JC+89AztK99kcs8oSoOnkEjG2RtvwFWWctY1FxHM0/esyFCmMJ6BwrjI8enVJ1bR80QD43InEI53sCt3Gxd99zqCReV9bhOpr6fpx3cQXruW4OjRVNz4DUouvRTzD9yNWSRt5yq4bxlc/Ts47WKvq8meXy2Grmb465fghxNg7rXw2VsPrY7u3Enbo8s5uGIFiZYW/OXllFx6KSXLlpI7bRoAb7z7OvX3Ps+4lmJGhkbjMx8tPU0cKO9h1hcu4pQJw/p6dREZYhTGM1AYFzm+rfr3+6jYnk95aBitPU20jtnNhTfdmPEiT0iN0+165RWaf3wH3a+9Rs7UqQy7+WYKLzgfO8rZL6Qf/vgdqLsPvvsWBPO8riZ7NvwKHr8JFv3f1JSNVz9EYtS5tK9cSdujy+mur4dAgMKFCyldtpTCBQuwYJC2SBur71tB6bYEEwLjCPly6Ip3sDfQyrjFszl1wUyvj0xEPKAwnoHCuMjxLxbt4Zlbf8WU9nHkB4p4t/ttQtUx5l71pT6nl3PJJB1PPUXzHT+hZ/du8ubMYfi3v0X+PI3Fzbr370o5ahZc/YDX1WRXeD/86zScL0T4vSRtOX9Bx+rncdEoOVOnUrJsGSVLLiVQXk4imWD1qieIPv0ekxOpC5JjyR72JhoIzhrO3Ksu1JSEIic5hfEMFMZFThz7G5tYf/typnEqPvOzs2c70z43iXHnLOpzGxeL0bZ8OS0/v5N4UxMFCxcw/Oabya2sHMTKh7h9m+EXn4YlP4eqa7yuJmtijY2Ea2roeuBWurY3E4/4U7em/7NLKFm6jNwZZ2BmbH1jM9sfeIXxbWWMyEndqKexp4H2kY551y6iaESZx0ciIscLhfEMFMZFTjw7autpuO9VJgUnE0v2sIMtnPfNxRSOPa3PbZKRCAfuv5+Wu39JsqOD4ksuYdiN3yA0fvwgVj5EPX8brP4X+M4OKBzudTVHLd7aSnjdOrrW1hCuqaHn7bcB8BXmUVC6n+JFF1H4zTvx5eTQ0tHKi79ZQfkuH+OD4wj4gnTE2tib28apS+czYV7f34sicvJSGM9AYVzkxLVm+UoCL7QzKmcMnbGD7OYtKqqCzL3yGghlnt4wcfAgrf/vHvbfey8uHqfsc1dS8Td/Q2CYLqI7anefD74A/OUzXlfyiSQOHiS8fj1dNesIr11L9I03APDl55N/1lnkV1dTcHY1OVMmYs9+n3j1V3n2pXqSLzYx2Y0hP1BET7KbPcl9FFSPZfayBfh1sbCIHIHCeAYK4yIntng8zqo772fY2/kMz0nN/Xygp4X37F1GVhcye9nnIZDzke1iTU203HUXbQ8/ggWDnHLtFym//nr8RUWDfQgntva98OPp8Cf/BOd92+tqjijR2UWk9tVDZ767t24F57DcXPKr5pBffTYF1fPJPeMMLBgEIJqI8vKqVXS8+C4TusqpCI0g6ZLsizUQHhek+ssXk1eiee1FpH8UxjNQGBcZOrbW1LL7sXWMjFQwLGcEAK09zTT49jD63DLOXHL1R2Zh6dm9m+af/oz2lSvxl5RQ/pWvUPb5/4EvN9eLQzjxbLgHHr8ZvrYWhk/3upoPSHZ3E6mro6umhvDaGiJbtkA8DsEg+bNmHTrznTtr1qE56Z1zbNpay1srN1K8z8doKigKlgLQ1tNKY1EH0/9iAaNPn+DloYnICUphPAOFcZGhactLNez5Yx0jo8OoCKXGMbf0NNHg38P480dzxmev+MBdIru3bqXpjp/Q9eKLBEaMoOLrN1C6dCkW0OwXR3T/ldCyI3WXSo+njnQ9PUQ2b6Zr7VrCNeuI1NXhYjHw+8mdcQYF1WeTXz2f/KoqfHmHp19saN3L+uWrCe4IMzJeRnlwGD7zEUv20BxvpqMkztjzZnDqwpkahiIix0RhPAOFcZGhb9NzL9HwxGZG94zglFBqbHhztJF9wfeY/JlJnHbRpYeCZFfNOpp+fDvdm+oJTZrEsJtuomjRZzRHeSbRTrhtMpx1PVz8g0F/eReP071166Ez3+HaWlwkAmbkTK+kYH41+WdXkz9vHv7CwkPbdUW7WPP0asI1exnWWcDI4AiCvhySLsmBWAutoS4KZo5i9mWfJqdwCM2ZLiKeUxjPQGFc5ORS99Rqmp7Zzuj4CMpCFTjnaO7ZR2NOA1MWVzLtvEU4oHPVKpru+Ak9u3aRO3Mmw791MwXnnON1+ceXbX+A330Brv0DTFow4C/nkkmiO3YcOvMdXr+eZGcnAKFTp6TOfJ9dTcFZZ+EvLT28nXNs3PIqu1dupKQxwGjfMAoCxQB0xttpcvtJjs9n5mWfpnziiAE/DhE5eSmMZ6AwLnLy2vDHp2l9bhdjEiMpDZXjnKOpp4HG3H2ctmQWk+efx8HHVtD8b/9GvKGBgk+dw7Cbv0XezBlel358+P3X4PXH4ZZd4A9mfffJcJhI/WYiG+sI19YS2biJZHs7AMEJ4w+d+S6YP/8js+Hsad5D7X89R2hXN6MSZZwSHIaZ0ZOM0hRvorMsycQLZjPpnOkaeiIig0ZhPAOFcREBqFn+OAdf2cOY5GhKgmUkXZKmngaa8puY/mezKdnxFi13/YJEWxtFF1/MsBtvJGfyJK/L9k4yAf86FaZcCFf8R1Z2GWtsJFJbS7iujkhtHd3btkEiAaTOfOfPmUNe1VwKqucTHD36A9t2RjtZ+9/PElm/j+HhQoYHRxD0hUi6JK2xZvbndlE8azyzl5xLMC+UlXpFRD4phfEMFMZFpLd4PM765Y/TUbOPcW4MRcFSki5JY3QvLflNTMztxH7/KC4apXTZMipu+BrBkSO9LnvwvbMW7vlT+PN7YMYVn3hzl0gQ3bEjdca7biOR2lpie/cCYLm55M2cSV5VFXlzZpM/e/YHhp0AJF2SjbXrePfJLZQ2BxnlH05+IDUuvD3WRrPvAEws5MzLF1A2puLYj1dEJAsUxjNQGBeRvsTjcWr+cznhV/czjjEUBktIuASN0b20R3dTvuG/yetpp3DhQnKnV5JTWUluZSWBkSOH/gWfT/8TrLkT/vZNyC352OaJzi4imzYeCt6RTZtIdnUBEBg2jLyqKvKr5pA3Zw6506cfmuf7fbFEjO1vbOOtZ+vJeTPKqOQplIVSITuaiNCYaCZcDlP+dC6T5lVm/3hFRLJAYTwDhXER6Y94PM6a+x8muqmdcb6xFASKSbg4jZH36OpswHeggdD+tylsfoOcooJ0MD+NnMrpqa9TpmChITQ84udnQfFo+OJjH1nlnCO+dy/h2joidXWE6+qIbt8OyWRqppNp08irmkN+VRV5c6oIjhmNmeGco7GtkR3rNnFg2z78zT0URIIUu3yKA8Xk+VM310m4BC2xJg7kRyibO4kzLzmHYCj7Y9ZFRLJNYTwDhXER+aTisRgv3/sg8de6GesbS0Hg8F07ky5BV7yDzlg70Wg78a79+NobyD3wNmVlRsH00w8H9MpKAmVlHh7JUWrZCT+fC5+9Daq/mppicNvr6eBdS6S2jnhjIwCWn0/erDPJn1OVGnYyexaJvBA7Xn+Nd9bvIP5uBzntUBTPo8RXSGGgGL8dnts9mojQnmin0yJ05zlCY0uoumIhRcNK+6pOROS4pTCegcK4iBwL5xzv1G/krZpNhPd0EugKUJjIp8hXRFGghIDv8BnbeDJGZ7ydcE870e6DJMKt+LqbKS7sZvgZ0yg880xyKisJjR+PHaczfLh4nMQzt9O9/HbCk75OZNubROrrU/N7A4HRo1LBe85suqaMZ1dLB+07m/E3xyjoDlLsCigOFJPrzz+0z6RL0Blvp911Eg7GSJQEKZ40nCnzZ1Ax5SQcjy8iQ5bCeAYK4yIyUOLRGDtf3cB7da/T0xAmFA5R6FJBvTBQjM8OB+6eRDedsXbCsVRQj8f3E8wNM3LqKYxdcD65Z8zCV1BwzDU553DhMIn2dhLtHSTbD5Lo6CBxsJ1kR2pZou0AyYNtJA62pda3d5Do7CTZ0UkyEj28M7+fUOVpHJw6nZa84UQTOeREAhTFcynJcIzdiTAdiXY6rJtoQZLgyCJGzpjMpHmV5OTnHvOxiYgc7xTGM1AYFxEvRMPdvP5yDc2bdxFv6SY3kkOhK6AoUES+v+gDF4BG4l10xtqJxNqJJA6SCHSSNxJGzRhLMhwm3tZJT2cXrrObeDhKsjtOIpogGU3iYkAsCQkfLuEDZ2B+MB/O5wfzH/qKz5d67vfh/D7wpb46X/qx+cBnmAUIBYsp8hdT7C8mx3/4LpUJl6AzfpAO10U4GCNZFqRk8kimVM/glAnDPXinRUSOHwrjGSiMi8jxpqO1je0vr2f/tt1YS4zcnlwKrZCi4AeHd3gpkuiiI9FBp0WIFkBwVBFjZp7KxLmnaR5vEZE+9DeMBz6ugYiIDJyi8lLmLfkMLPnoutZ3G3nj+Ro6tr2LdTmcz8DvwwUM/H5c0A8BPxbwY34/5k+t9/n9+AI+zO/H5/fhC/rxB/z4gkECQT++gJ9AMEggFCAQDBEIBQnmhAiGQgRDAXw5qXX+UBB/0K/ALSIygBTGRUSOU+XjRlD+hQwpXUREhgyf1wWIiIiIiJysFMZFRERERDyiMC4iIiIi4hGFcRERERERjyiMi4iIiIh4RGFcRERERMQjnoRxM7vSzF4zs6SZ9TkZupndY2ZNZralj/XfNjNnZhUDV62IiIiIyMDw6sz4FmAZ8MLHtPs1cHGmFWY2DlgEvJPVykREREREBoknYdw5t805t70f7V4A9vex+g7gbwGXzdpERERERAbLCTlm3MwuA95zzm3yuhYRERERkaMVGKgdm9kzwMgMq77nnHvsGPabD/wDqSEq/Wn/FeAr6aedZvaxZ+QHQAXQ4sHryuBSP58c1M8nB/Xz0Kc+Pjl42c8T+tNowMK4c+6iAdr1FGASsMnMAMYCtWY23zm3L0MddwN3D1At/WJmG5xzfV6oKkOD+vnkoH4+Oaifhz718cnhROjnAQvjA8U5txkY/v5zM3sbmOec0/9uRUREROSE4tXUhkvNbA9wDvBHM3syvXy0ma3s1e5BYA1wmpntMbPrvahXRERERGQgeHJm3Dm3HFieYfleYHGv51f3Y18Ts1rcwPB0mIwMGvXzyUH9fHJQPw996uOTw3Hfz+acZgYUEREREfHCCTm1oYiIiIjIUKAwnkVmdrGZbTeznWb2dxnWX2dmzWa2Mf3vL72oU47Nx/Vzus3nzGyrmb1mZg8Mdo1y7Prxeb6j12d5h5m1eVGnHL1+9PF4M1ttZnVmVm9mizPtR45v/ejnCWa2Kt3Hz5nZWC/qlKNnZveYWZOZbeljvZnZz9LfA/VmVjXYNR6JhqlkiZn5gR3AZ4A9wHrgaufc1l5triM188vXPSlSjlk/+3kq8J/Ahc65A2Y23DnX5EnBclT6088fav8NYI5z7suDV6Uci35+lu8G6pxzd5nZ6cDKE+Q6JUnrZz8/DDzunPuNmV0IfMk5d40nBctRMbMFQCdwr3NuRob1i4FvkLousRr4qXOuenCr7JvOjGfPfGCnc+5N51wP8BBwmcc1Sfb1p5//CrjTOXcAQEH8hPRJP89XAw8OSmWSLf3pYwcUpx+XAHsHsT7Jjv708+nAs+nHqzOsl+Occ+4FYP8RmlxGKqg759xaoNTMRg1OdR9PYTx7xgDv9nq+J73sw65I/4nkETMbNzilSRb1p5+nAdPM7GUzW2tmFw9adZIt/f08Y2YTSN2I7NlM6+W41Z8+/l/AF9JT8a4kdWZNTiz96edNwLL046VAkZmVD0JtMnj6/TPdCwrjg+sPwETn3JnA08BvPK5HBkYAmAqcT+qM6S/NrNTTimQgXQU84pxLeF2IZN3VwK+dc2NJ/Xn7t2am35tDz3eAhWZWBywE3gP0eZZBox8q2fMe0PtM99j0skOcc63OuWj66X8AcwepNsmej+1nUv/jXuGciznn3iI1XnHqINUn2dGffn7fVWiIyomoP318PanrP3DOrQFygYpBqU6ypT+/m/c655Y55+YA30sv0wXZQ8sn+Zk+6BTGs2c9MNXMJplZiNQv6BW9G3xofNISYNsg1ifZ8bH9DPye1FlxzKyC1LCVNwezSDlm/elnzKwSKCN1p2A5sfSnj98B/gTAzKaTCuPNg1qlHKv+/G6u6PUXj78H7hnkGmXgrQC+mJ5V5WzgoHOuweui3ufJHTiHIudc3My+DjwJ+IF7nHOvmdn3gQ3OuRXAjWa2BIiTutDgOs8KlqPSz35+ElhkZltJ/anzFudcq3dVyyfVz36G1C/2h5ympTrh9LOPv01qmNnNpC7mvE59fWLpZz+fD/zAzBzwAnCDZwXLUTGzB0n1Y0X6Go9/BoIAzrlfkLrmYzGwEwgDX/Km0sw0taGIiIiIiEc0TEVERERExCMK4yIiIiIiHlEYFxERERHxiMK4iIiIiIhHFMZFRERERDyiMC4iMgDMrLMfbW4ys/wsvublZnZ6Fvf3yjFs25n+OtrMHjlCu1Iz+9rRvo6IyIlOYVxExDs3AZ8ojJuZ/wirLweyFsadc5/Kwj72Ouf+/AhNSgGFcRE5aSmMi4gMIDM738yeM7NHzOx1M7s/fRe4G4HRwGozW51uu8jM1phZrZk9bGaF6eVvm9mtZlYLXGlmf2Vm681sk5n9l5nlm9mnSN3Z90dmttHMppjZbDNba2b1ZrbczMrS+3vOzO4wsw1mts3MzjKzR83sDTP7P71q7+z1+Ltmtjn9mj/McJyT0rVv/tA+JprZlvTjM8xsXbq+ejObCvwQmJJe9iMzKzSzVen3YLOZXdZrP9vM7Jdm9pqZPWVmeel1p5rZM+naas1sSnr5Len3qd7M/ndWO1ZEJEsUxkVEBt4cUmfBTwcmA+c6534G7AUucM5dYGYVwD8CFznnqoANwLd67aPVOVflnHsIeNQ5d5ZzbhawDbjeOfcKqVs+3+Kcm+2c2wXcC3zXOXcmsJnUXene1+Ocmwf8AniM1F0HZwDXmVl57+LN7LPAZUB1+jVvy3CMPwXucs7NBPq6zfRfAz91zs0G5gF7gL8DdqVrvgXoBpam34MLgNvNzNLbTwXudM6dAbQBV6SX359ePgv4FNBgZovS7ecDs4G5Zragj7pERDwT8LoAEZGTwDrn3B4AM9sITARe+lCbs0mF9ZfT2TMErOm1/ne9Hs9In30uBQpJ3er7A8ysBCh1zj2fXvQb4OFeTVakv24GXnPONaS3exMYB7T2ansR8CvnXBjAObc/wzGey+Fw/Fvg1gxt1gDfM7OxpP5D8cbhnH24dOBf0sE5CYwBRqTXveWc25h+/Cow0cyKgDHOueXp2rrTx7EIWATUpdsXkgrnL2SoS0TEMwrjIiIDL9rrcYLMP3sNeNo5d3Uf++jq9fjXwOXOuU1mdh1w/jHUlPxQfck+6usPd8SVzj1gZjXAJcBKM/sq8OaHmn0eGAbMdc7FzOxtIPdDNUPqfcw7wssZ8APn3L9/gvpFRAadhqmIiHinAyhKP14LnGtmpwKYWYGZTetjuyJSQzGCpMLrR/bnnDsIHDCz89LrrgGe5+g8DXzp/ZlfzOyUDG1eBq5KP/58hvWY2WTgzfQQnceAM/ngewBQAjSlg/gFwIQjFeac6wD2mNnl6dfISdf5JPDlXuPux5jZ8H4drYjIIFIYFxHxzt3AE2a22jnXDFwHPGhm9aSGdFT2sd3/BGpIBeDXey1/CLjFzOrSFzFeS+qCznpS46a/fzRFOueeIDWsZUN6mM13MjT7JnCDmW0mNbQkk88BW9L7mAHc65xrJTU0Z4uZ/YjU+O956f188UPH15drgBvTx/kKMNI59xTwALAmva9H+GDoFxE5LphzR/yrooiIiIiIDBCdGRcRERER8YjCuIiIiIiIRxTGRUREREQ8ojAuIiIiIuIRhXEREREREY8ojIuIiIiIeERhXERERETEIwrjIiIiIiIe+f96VwosxKQ9dQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.rcParams['figure.figsize'] = (12, 8)\n", "pylab.ylim(-1.14, -1.04)\n", @@ -145,70 +103,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVOX+wPHPw76KghuIiruiAm4oklsuaAupqbhk7m1a3ep2s26Z3ZZfda3b1cwyM81KUbPU0iDNJXdQccN9RxFxYZMdnt8fZ+COyMAAMwzC83695gUz5znnfOecmfme5znnPI+QUqIoiqIoFWVl6QAURVGU6kElFEVRFMUkVEJRFEVRTEIlFEVRFMUkVEJRFEVRTEIlFEVRFMUkVEKpwYQQE4UQOywdhwJCiHFCiMgSpvcVQsSVYXkbhRATTBMdCCEuCCEGmGp5FYjjDSHEIkvHUZUIIZoIIdKEENaWjkUlFJ3ivjD6P7hCCHshxDdCiItCiFQhRIwQYkgpy/QUQnwthLiq2+HnhBBLhBBtzfleTEUIMUUIcUL3fhOEEBuEEK66aUuEEO+VYVkVSl66+fN021H/4VXeZVYlUsofpJSDCp4LIaQQomUFljdESrnUNNFVHVLKD6SUUy0dR1UipbwkpXSRUuZZOhaVUIxnA1wG+gBuwJvASiGET3GFhRAewC7ACegFuAKdgW3AQAPz2Jg66PISQvQBPgDGSCldgXZAuGWjYrfui6P/uGrKFVSlfWAJNf39G6K2i5GklOqh9RZwARhQ5LWJwI4S5jkMPG5g2nvAIcCqhPl9AAlMAS4B23WvhwLHgCRgK9BObx4JtNR7vgR4T/d/XyAOeAW4DsQDk/TKegDrgBRgH/CuofcH/B34xcC0p4AcIBtIA9brXp8JnAVSgVhgmO71dkAmkKcrn6R73R6Yo3vvCcCXgKOBdZa2Ly7oYj4MJKMlPwe96Y8AMbptugvwKzLva7p5s9AOHjoDB3XvZZVueQXb+SjwqN78tsANoFMxcW0r+IwAwbr997DueX8gpuj7A7bryt3Rba+w0vZtMevdCkzV/W+FdgB0UTfvd4BbKZ/B8bryN4F/ovf9AAKB3bptGQ98DtgV+Yw+A5zWlZkPiFK+fxeBLrr/x+mW0V73fAq6zyIwG/heb74n9eJ8q0ics4GVuvebivad6qo3rxfwE5AInAde0Js2G1gNfI/2fZlaTMxLgC+Ajbr9tBNoCHwG3AZO6H8mMPD90Nv/O3XbMlk3b/8i+/P/0L63KcBawL3IPrTRK/uubnmpQCRQ15htVtGHqqGUkxCiAdAa7UNanAHAz1LKfCMW1wftRzdECNEaWA78DagHbADWCyHsjAytIVoNqhHaF3G+EKKObtp8tB92T2Cy7mHIXl087wghgoUQ9gUTpJQLgR+Aj6VWS3hUN+ksWm3MDXgH+F4I4SmlPI72A1NQw6itK/8h2jYMAFrqYp5l5PsszihgMNAM8EP7kiKE6AQsBp5GS6pfAev03xMwBngYqI32A/wz2g+GO9r+GKZX9jvgCb3nDwHxUsqDxcS0DS0ZgLafzwG99Z5vKzqDlLJgur9uexXUDEvatyWZqHv0A5oDLmg/XPr0P4O+wAK0pOKFts289crmAS8BdYEgtMT4XJHlPQJ0Q9sPo4CQUmIs83bSxfkFWgLy5H/bRl8osAJtv65D976FEFbAerSDvka69/A3IYR+nI+hJZXaaJ/34oxCS9Z10Q5GdgMHdM9XA5/qlS32+6E3vbuuTF3gbWCNEMJdb/qTaN9ZTyAXmGsgJoCxwCSgPmCHdrBl7DYrP1NkperwQMvSaWhHVAWPdIo5KkY7It0EfFXC8s4Az+g9D9UtMxWILHJk0Vyv3FvASr3nVsAVoK/ueWk1lAx0Ryq6164DPQBrtFpFW71pHxT3/vSmD0H70iXpts2ngHXR9ZYwfwzwmO7/ifrrAgTaEXgLvdeCgPMGljUR7Uukv3/OFtl/T+g9/xj4Uvf/AuDdIss7CfTRm3ey3rTeum0u9F7bobedvXT7sZbu+WrgHwbi7g8c1v3/OzAV2KN7vg0YbmD7FN3PBvetgfVu5X81lM3Ac3rT2ug+CzYU/xmcBazQe+6MVhst9igW7eDn5yKxP6D3fCUws5TPyhRgne7/47rttEL3/CLQWff/bHQ1FF2cy/WW4aQfp67sJr3pvkCG7v/uwKUiMbwOfKs37/ZSYl4CfK33/HnguN7zjuhq40Z+P64W+cztA8br7c8Pi7yXbLTvdcE+1K+hvKlX9jngd2O2WUUfqoZyt6FSytoFD+496io4slmGthNmlLCsm2hHAABIKdfplvkS2hGDvst6/3uhfYEK5svXTTf2KOKmlDJX73k62hFpPf53HqjARUogpdwotdqHO9rR2kS0L3qxhBBP6i5WSBJCJAEd0I62ilMP7cO8X6/877rXDdmjv3+klC2KTL+m93/B+wZoCrxSsB7duhqjbesCRffBFan7xhWdLrXzNjuBx4UQtdESr6Ej2N1Aa12NNgCtdtNYCFEXreloewnvtyhD+7Y0d32mdP/bAA30Xiv6/vXf7x20zzMAQojWQohfhRDXhBApaAcmRfezoX1hyDagl+6I3RotCQXrzlG6of34Fve+9ONM14/TQBwOuvMhTQGvIp+JNzC8TQxJ0Ps/o5jnhe/biO9H0c/cRQx/Ri+iHdga+n4Z2v7GbLNyUwmlDIQQAvgG7UP3uJQyp4Tim4GhugRUGv0P0VW0D7v+OhujHTGD9uFw0ivf0Ijlg9ZOnKtbVoEmxswopcyXUm4G/kT7EhSNGSFEU+BrtCTroUueR9FqIveURzvnkIHWTl6QINyklMb8QJbVZeD9IsnISUq5XK+MfnzxQCPdti+gv90AlqI1e41Ea8q7QjF0X9j9wIvAUSllNto5nJfRalg3KvTOjHPXZwptv+dy949f0fdf+H6FEE5ozV4FFqC18beSUtZC+yHW31ZlJqU8g/bZfh6tZpCC9qP4FFrNrbim43j0muKEEI5F4izJZbTasP5nwlVK+ZB+WOV5L8Ux4vsB937mmqDtuwJFv7s5aN+jsqjINiuVSihlswCtnflRKWVGKWU/BeoAy4QQLYTGFe0otSQrgYeFEP2FELZoJ2Gz0H6EQDtSGyuEsBZCDEZrXy6V1C4pXAPMFkI46dpSJxgqL4R4TAgxWghRRxd7oG5de3RFEtDa4ws4o30BE3XzT+J/yaegvHfBuSDdD8TXwH+EEPV18zQq0oZtKl8Dzwghuuvei7MQ4uGCS6CLsRvtPMEMIYSNEOIxtNqEvl/QTty/iFbrKMk2tB+SgvMAW4s8L07R7VsRy4GXhBDNhBAuaDWK8CK1HX2rgUeEEA/o9te/uPu3whXtxHCa7hL4Z00UZ1m302rgUSFET12cszE+se0DUoUQrwkhHHXfpw5CiG7ljr5kpX0/QDvf8YIQwlYIMRLtt2aD3vQnhBC+ugT/L2C1LPulwhXZZqVSCcVIuiOMp9ESwjW9+yDGFVded+TZA+0k+A60NvcYtC+jwS+glPIk2pHvPLSjj0fREli2rsiLuteS0E6s/VKGtzEDrep7Da3999sSyt4GpqFdqZOCdrXLv6WUBU073wC+uur7L1LKWOATtB/jBLT24516y/sT7QKGa0KIgqOq19DONe3RNZ1sQmvfNyRI3HsfSqk/AFLKaN17+Vz3vs6gO2FvoHw2MBytXT8JbX/8ipbYC8pkoF0h1AwtUZdkG9p+327geXFmA0t123dUKcsvzWK0ZtrtaFczZaLVBIolpTwGTAd+RDuivY12hVmBv6Od9E1FS9amupy8TNtJF+fzaCfd49HO811Hbz8ZovshfgTt+3we7bu2CK15zeSM+H6AdiFMK10s7wMjpJT6zVHL0L631wAH4IVyxFHubWYMcXeTnaIoxRFC7EU7yf+t3muzgNZSyicMz2kZQojtwCIpZWm1p2pDV/tKQmuKO2/peMpCCDER7SKKBwxM34p2MYJJewkw9TZTNRRFKYYQoo8QoqGuyWsC2uWvv+tNd0erwSy0VIyG6JpEmqMdeVdrQohHdU24zmj3NB1Bu2pPMcCc28xiCUUIMVIIcUwIkS+E6FpCucFCiJNCiDNCiJnFTJ8rhEgzb7RKDdQG7R6FJLTzWCOklPEAQohpaCd1N0opy3KVltnpzkddQ2suqlL9tAkhviymyTJNCPFlBRb7GNqJ66tozUWjpWp2KY3ZtpnFmryEEO2AfLSbzP6ua+cuWsYaOIXWVUkcEIXWFUisbnpXtHMKw8x0dZCiKIpiJIvVUKSUx3UnoEsSCJyRUp7TnShdgZZdC5LNv4F/mDdSRVEUxRhVvcOzRtx9M08c2h2uoF2xtE5KGX/3pdt3E0I8hXYtO87Ozl3atr0vOvpVFEWpMvbv339DSlnSTceAmROKEGITxd94908p5doKLNcL7YayvqWVlVq/UwsBunbtKqOj72lZUxRFUUoghCixV40CZk0oUsqKDshzhbvvDvXWvdYJrTPBM7raiZMQ4oyUstzjRyiKoigVU9WbvKKAVkKIZmiJZDQwVndzTmHNRwiRppKJoiiKZVnysuFhQhvSNAj4TQgRoXvdSwixAUDXNcQMIAKtB9KVumSiKIqiVDE16k75ipxDycuXWFuZrMsbRbnv5OTkEBcXR2ZmpqVDUczEwcEBb29vbG1t73pdCLFfSmnwfsECVb3Jq0r4JPIkW05eZ/2MByjpijJFqc7i4uJwdXXFx8dHfQ+qISklN2/eJC4ujmbNmpVrGarrFSPUr+XA0SspnLiWaulQFMViMjMz8fDwUMmkmhJC4OHhUaEaqEooRnioQ0OsrQTrDl0tvbCiVGMqmVRvFd2/KqEYwcPFnl6t6rIu5io16ZyToihKWaiEYqRQfy+uJGVw4NJtS4eiKDWWi8vdXfYtWbKEGTNKGon7XjExMWzYsKH0guW0ZMkS6tWrR0BAAAEBATz55JNlXsbWrVt55JFHzBCdeamEYqRB7Rtib2PFuhjV7KUo96vc3NwSE0purqFBLMsmLCyMmJgYYmJi+O67GjMkjUooxnKxt6F/u/r8diSe3LzihrdWFMWS1q9fT/fu3enUqRMDBgwgISEBgNmzZzN+/HiCg4MZP348s2bNIjw8nICAAMLDw++ZnpeXx6uvvkq3bt3w8/Pjq6++KlzHv//978LX33777TLFFxMTQ48ePfDz82PYsGHcvq21dpw5c4YBAwbg7+9P586dOXv27F3zRUVF0alTp3ter4rUZcNlEOrfiA1HrrHr7E16ty61nzRFqbbeWX+M2KspJl2mr1ct3n60fYllMjIyCAgIKHx+69YtQkNDAXjggQfYs2cPQggWLVrExx9/zCeffAJAbGwsO3bswNHRkSVLlhAdHc3nn38OaAlHf/rChQtxc3MjKiqKrKwsgoODGTRoEKdPn+b06dPs27cPKSWhoaFs376d3r173xNneHg4O3Zow9G8+OKLTJo0iSeffJJ58+bRp08fZs2axTvvvMNnn33GuHHjmDlzJsOGDSMzM5P8/HwuX9b6xN21axfPP/88a9eupUmTJhXfyGamEkoZ9G1TD1d7G9YduqoSiqJYgKOjIzExMYXPC5IDaPfJhIWFER8fT3Z29l33UoSGhuLo6GhwufrTIyMjOXz4MKtXrwYgOTmZ06dPExkZSWRkJJ06dQIgLS2N06dPF5tQwsLCChNWwTKSkpLo06cPABMmTGDkyJGkpqZy5coVhg0bBmg3FhY4fvw4Tz31FJGRkXh5eZVtQ1mISihl4GBrTUiHhkQcvcZ7QzvgYGtt6ZAUxSJKq0lYwvPPP8/LL79MaGgoW7duZfbs2YXTnJ2dS5xXf7qUknnz5hESEnJXmYiICF5//XWefvrpu16fP38+X3/9NYBJT/Z7enqSmZnJwYMH75uEos6hlNFjAV6kZuWy9eR1S4eiKIqe5ORkGjVqBMDSpUsNlnN1dSU11fBNyiEhISxYsICcnBwATp06xZ07dwgJCWHx4sWkpWkjjl+5coXr168zffr0whPwhn743dzcqFOnDn/99RcAy5Yto0+fPri6uuLt7c0vv/wCQFZWFunp6QDUrl2b3377jddff52tW7eWbWNYiEooZRTU3IO6LnbqJkdFqWJmz57NyJEj6dKlC3Xr1jVYrl+/fsTGxhaelC9q6tSp+Pr60rlzZzp06MDTTz9Nbm4ugwYNYuzYsQQFBdGxY0dGjBhRYmIqaunSpbz66qv4+fkRExPDrFmzAC25zJ07Fz8/P3r27Mm1a9cK52nQoAG//vor06dPZ+/evWXYGpahOocsh7fXHmVF1GWi3xyAq4Nt6TMoSjVw/Phx2rVrZ+kwFDMrbj8b2zmkqqGUQ2iAF1m5+fwRm2DpUBRFUaoMlVDKoXOTOnjXcWStuslRURSlkEoo5SCE4FF/L3acucHNtCxLh6MoilIlqIRSTqH+XuTlSzYcvVZ6YUVRlBpAJZRyatvQldYNXFgXc8XSoSiKolQJKqGUkxCCUH8voi7c5kpShqXDURRFsTiVUCrgUX/tJqZf1T0pimJ2/fr1IyIi4q7XPvvsM5599lmOHTvGgw8+SJs2bWjRogVvv/02+flaJ65Fu5MPCAggNjbWEm+h2lMJpQKaejjj37i2utpLUSrBmDFjWLFixV2vrVixgtGjRxMaGsrMmTM5efIkR44cYd++ffz3v/8tLKffnXxMTAy+vr6VHX6NoBJKBT3m70VsfApnrqdZOhRFqdZGjBjBb7/9RnZ2NgAXLlzg6tWrnDlzprBHYAAnJyc+//xz/v3vf1sy3BpJdQ5ZQY/4efLeb7GsO3SVlwe2tnQ4ilI5Ns6Ea0dMu8yGHWHIhwYnu7u7ExgYyMaNG3nsscdYsWIFo0aN4tixY3Tp0uWusi1atCAjI4OkpCTg7u7kAXbv3l1i78NK+agaSgXVr+VAj+YerIu5osabVxQz02/2WrFiBWPGjDFqvqJNXiqZmIeqoZhAqL8XM9cc4ciVZPy8a1s6HEUxvxJqEub02GOP8dJLL3HgwAHS09Pp0qULBw8eZPv27XeVO3fuHB4eHtSurb6PlUnVUExgSAdPbK2FGm9eUczMxcWFfv36MXny5MLaybhx49ixYwebNm0CtFEdX3jhBd555x1LhlojqYRihEN/zmLVsoEGp7s52dKndX3WH75KXr5q9lIUcxozZgyHDh0qTCiOjo6sW7eO999/n9atW1O3bl2Cg4MZN25c4TwFY8gXPHbt2mWp8Ks11eRlhI2pp1mVG8+Q+EO4ePoXWyY0wItNxxPYd/4WQS08KjlCRak5hg4des/5yg4dOrBlyxYAfvnlF15++WXGjh1L06ZNmThxIhMnTrRApDWPqqEYYbDfFLKtBFujPzdYZkC7+jjZWauBtxTFwoYOHcq5c+do2rSppUOpcVRCMYKfz4M0wJqIa3vAwJVcTnY2DPRtwMaj8WTn5ldyhIqiKJanEooRrIQVg+p2ZqetJOXcVoPlQv29SErP4a/TiZUXnKIoShWhEoqRBgdMI0cItsZ8ZbBMr1b1cHO0Vc1eiqLUSCqhGKmjVw88hR0RNw5BbnaxZexsrHiooyd/xCaQnp1byREqiqJYlkooRhJCENIwiF321iSfWGewXKi/F+nZeWw6fr0So1MURbE8lVDKYHDANHKF4M/DSwyWCWzmToNa9uomR0UxA2tr67vuJ/nwQ9PdsR8TE8OGDRsKnxvq9v7q1auMGDHCZOstjwsXLtChQweLxlAci9yHIoQYCcwG2gGBUspoA+UGA/8FrIFFUsoPda8L4D1gJJAHLJBSzjV33L71/Ghk5UhEyimGZSaDg9s9ZaytBI/6ebF09wWS03Nwc7I1d1iKUmM4OjoSExNjlmXHxMQQHR3NQw89VPhaWFgYn39+7+0Cq1evNksMlS03NxcbG9OlAUvVUI4Cw4HthgoIIayB+cAQwBcYI4QoGMRgItAYaCulbAesKHYhJiaEIKRxP/Y62JF0ONxgudAAL3LyJL8fi6+MsBSlRktOTqZNmzacPHkS0O6k//rrrwF49tln6dq1K+3bt+ftt98unCcqKoqePXvi7+9PYGAgycnJzJo1q/CO+vBww99v/dpBeno6o0aNwtfXl2HDhtG9e3eio7Xj48jISIKCgujcuTMjR44kLU0b4sLHx4e3336bzp0707FjR06cOAHAtm3bCmtCnTp1IjU1FSklr776Kh06dKBjx47FxtWjRw+OHTtW+Lxv375ER0dz584dJk+eTGBgIJ06dWLt2rWAVvMKDQ3lwQcfpH///uXe7sWxSA1FSnkctB/oEgQCZ6SU53RlVwCPAbHAs8BYKWW+bnmVdsJicIcJLL64gc2xP/B44FPFlunYyA0fDyfWxlwlrFuTygpNUSrNR/s+4sStEyZdZlv3trwW+FqJZTIyMggICCh8/vrrrxfWIiZOnMiLL77I7du3mTZtGgDvv/8+7u7u5OXl0b9/fw4fPkzbtm0JCwsjPDycbt26kZKSgpOTE//617+Ijo4urJEsWbKk2G7v9X3xxRfUqVOH2NhYjh49WhjbjRs3eO+999i0aRPOzs589NFHfPrpp8yaNQuAunXrcuDAAb744gvmzJnDokWLmDNnDvPnzyc4OJi0tDQcHBxYs2YNMTExHDp0iBs3btCtWzd69+59VwxhYWGsXLmSd955h/j4eOLj4+natStvvPEGDz74IIsXLyYpKYnAwEAGDBgAwIEDBzh8+DDu7u7l2VUGVeWuVxoBl/WexwHddf+3AMKEEMOAROAFKeXp4hYihHgKeAqgSZOK/7i39WhHExtXIlKv8nhyHLh5F7dOQv29mLflDNdTMqlfy6HC61UUxXCT18CBA1m1ahXTp0/n0KFDha+vXLmShQsXkpubS3x8PLGxsQgh8PT0pFu3bgDUqlXL4PoMNXkV2LFjBy+++CKgdf/i5+cHwJ49e4iNjSU4OBiA7OxsgoKCCucbPnw4AF26dGHNmjUABAcH8/LLLzNu3DiGDx+Ot7c3O3bsYMyYMVhbW9OgQQP69OlDVFRU4XoARo0axaBBg3jnnXdYuXJl4fmdyMhI1q1bx5w5cwDIzMzk0qVLhdvL1MkEzJhQhBCbgIbFTPqnlHJtBRdvD2RKKbsKIYYDi4FexRWUUi4EFgJ07dq1wj03CiEI8Qlh8elV3IpZhnuf14stFxrgxdw/z/Dr4XgmP9CsoqtVlCqltJpEZcvPz+f48eM4OTlx+/ZtvL29OX/+PHPmzCEqKoo6deowceJEMjMzKyUeKSUDBw5k+fLlxU63t7cHtIsMcnO1WwxmzpzJww8/zIYNGwgODiYiIsKodTVq1AgPDw8OHz5MeHg4X375ZWEMP/30E23atLmr/N69e3F2di7vWyuR2c6hSCkHSCk7FPMwNplcQTtPUsBb9xpotZU1uv9/BvyoRCHtRpMnBJtO/mSwTMv6rvh61mKtuslRUczuP//5D+3atePHH39k0qRJ5OTkkJKSgrOzM25ubiQkJLBx40YA2rRpQ3x8PFFRUQCkpqaSm5uLq6srqampZVpvcHAwK1euBCA2NpYjR7RRLHv06MHOnTs5c+YMAHfu3OHUqVMlLuvs2bN07NiR1157jW7dunHixAl69epFeHg4eXl5JCYmsn37dgIDA++ZNywsjI8//pjk5OTC2ktISAjz5s0r7Ejz4MGDZXpv5VGVLxuOAloJIZoJIeyA0UDBDSC/AP10//cBSt5TJta6Tmt87OoQmZ8M144aLBca4MWhy0lcvHmnEqNTlOqr4BxKwWPmzJmcPHmSRYsW8cknn9CrVy969+7Ne++9h7+/P506daJt27aMHTu2sPnJzs6O8PBwnn/+efz9/Rk4cCCZmZn069eP2NjYu07Kl9bt/XPPPUdiYiK+vr68+eabtG/fHjc3N+rVq8eSJUsYM2YMfn5+BAUFFZ58N+Szzz4rbDaztbVlyJAhDBs2DD8/P/z9/XnwwQf5+OOPadjw3oafESNGFA6JXOCtt94iJycHPz8/2rdvz1tvvVXRzV86KWWlP4BhaLWMLCABiNC97gVs0Cv3EFqyOIvWVFbwem3gN+AIsBvwN2a9Xbp0kaYyb+/H0u/b9jJxw98Nlom7nS6bvvarnLf5lMnWqyiWEhsba+kQqpzc3FyZkZEhpZTyzJkz0sfHR2ZlZVk4qoopbj8D0dKI31hLXeX1M1pTVdHXr6IlkYLnG4ANxZRLAh42Z4ylCWk1lK+Of8emc78xOv9DsLK+p0yj2o5086nD2pirTO/XsrSr2hRFuc+kp6fTr18/cnJykFLyxRdfYGdnZ+mwLKYqX+VVpbWq04oWDvWIyLjM6As7oHmfYsuFBjTirV+OcjguGf/GanxrRalOXF1dC+87Uar2OZQqL6TVUPY72HM9ZpnBMkMDvHCxt+HbnecrMTJFMQ9pYDwgpXqo6P5VCaUCQpo/ghSCPy5vgZyMYsu4Otgysqs3vx6OJyGlci5ZVBRzcHBw4ObNmyqpVFNSSm7evImDQ/nvm1NNXhXQvHZzWjl5EZl5jnEnN0KH4cWWm9jThyW7LrBs90X+HtKm2DKKUtV5e3sTFxdHYqIaQK66cnBwwNv73pu1jaUSSgWFtBrG54fmc+3QDzQ0kFCaejgzoF0Dfth7kRkPtsTB9t4T+IpS1dna2tKsmbpJVzFMNXlVUEizwQD8cT0K7tw0WG5ycDNup+fwy8ErBssoiqLcz1RCqSAfNx/aujYlwskBjq0xWK5Hc3faedZi8c7zqg1aUZRKczMti6e+iyY+ufjzvKakEooJhLQayiEHe+IPF99vD2h9gE0O9uFUQho7zxiuySiKophKYmoWY77ew/bTiVy8mW729amEYgIhTUMAiEw5BbfOGSz3qL8XdV3sWKwuIVYUxcyup2Yy5us9XL6VweKJ3ejR3MPs61QJxQQa12qMb+1WRDg7weFVBss52FrzRI+m/HniOucS0yoxQkVRapKElExGL9zD1aQMvp3UjZ4t6lbKelVCMZGQFo9wxMGeuCMroIRzJOO6N8XO2ooluy5UXnCKotQY8ckZjF64h4Q8NKf0AAAgAElEQVTkTJZODqyUmkkBlVBMZFDTQQBE5ibClQMGy9VztSc0wItV0XEkp+dUVniKotQAV5IyCPtqD4mpWXw3pTvdfEw/iFZJVEIxEW9Xbzq6tyPC2QVKGG8eYFKwDxk5eYRHX6qk6BRFqe7ibqczeuFubt/JZtmUQLo0rVPpMaiEYkIhzR8m1t6WS8fXQJ7h2kd7Lzd6NHdn6a6L5OblV2KEiqJUR5dvpRP21R6S03P4fmp3OjWp/GQCKqGYVGGzl1UWnN1SYtnJwc24kpRBZGxCZYSmKEo1dfHmHcK+2k1aVi4/Tuth0V7NVUIxIU8XT/zr+hHh6gqHV5RYtn+7BjRxd+KbHeoSYkVRyuf8jTuEfbWHjJw8fpzWnQ6N3Cwaj0ooJhbSbDAnbK25cOZ3yEwxWM7aSjCxpw/7L94m5nJSJUaoKEp1cDYxjbCvdpOdl8+P03rQ3suyyQRUQjG5gU0HAhDhYA0nfi2x7Miu3mqsFEVRyuzM9VRGL9xDvpQsn9aDdp61LB0SoBKKyTV0bkjn+p2IcK1d6tVerg62jOramN8Ox3MtWY2VoihK6U4laMkEYMVTPWjT0NXCEf2PSihmMMgnhNM2cO7yTkiJL7HsxJ4+5EnJsj0XKic4RVHuW8fjUxi9cA9WQrDiqR60rF91kgmohGIWA5sORCCIcHaEo6tLLNvEw4mB7Rrw495LZGTnVVKEiqLcb45dTWbs13uws7Yi/OkgWtRzsXRI91AJxQzqO9WnS4MuRLh5lNrsBTD5Ad1YKTFqrBRFUe519Eoy4xbtxdHWmvCne9CsrrOlQyqWSihmEuITwlmrPE7fPAEJsSWW7d7MHV/PWizeocZKURTlblEXbjFm4R6c7WxY8VQQTT2qZjIBlVDMZkDTAVhhRYSLMxxZWWJZIQSTH2jG6etp7Dhzo5IiVBSlqvvrdCLjv9lLPVd7Vj0TRBMPJ0uHVCKVUMykrmNdujXsRkTtusjDqyC/5C5WHvX3pK6LPYvVjY6KogARx64xZUk0zeq6EP50EF61HS0dUqlUQjGjQT6DuEA2pzIT4ML2Esva21gzvkdTtpxM5KwaK0VRarRfDl7huR8O4OtVixXTelDP1d7SIRlFJRQzGtB0AFbCigi3OnBgWanlx/Vooo2VsvOC+YNTFKVK+mHvRV5aGUOgjzvfT+2Om5OtpUMymkooZuTu4E5gw0Ai3NyRx9dD+q0Sy9d1seexAC9W71djpShKTbRw+1n++fNR+rWpz7eTuuFib2PpkMpEJRQzG9JsCJfy0jlkI+GI4eGBC0wKbkZGTh4rotRYKYpSU0gp+TTyJB9sOMHDfp58+UQXHGytLR1WmamEYmYhPiE42zqzokETOPBdicMDA/h61SKouQdLd11QY6UoSg0gpeTdX48z988zjOrqzdzRnbCzuT9/mu/PqO8jzrbOhLYIJdImj5uJsXD1YKnzTH6gGVeTM4k4psZKUZTqLC9f8vqaIyzeeZ5JwT58ONwPayth6bDKTSWUSjC67WhyZB5r3OpotZRSPNi2Pk09nFiseiFWlGorJy+fF1ccZEXUZZ5/sCWzHvHF6j5OJqASSqVo7tac7p7dWVmnDrlHVkP2nRLLq7FSFKV6y8zJ45ll+/n1cDwzh7TllUFtEOL+TiagEkqlGdNmDNdkNttsciF2banlR3ZtjKsaK0VRqp07WblMXhLF5hPXeXdoB57p08LSIZmMxRKKEGKkEOKYECJfCNG1hHKDhRAnhRBnhBAz9V7vL4Q4IISIEULsEEK0rJzIy6dP4z40dGrIco/6RjV7udjbMKqbNlZKfHJGJUSoKIq5Jafn8MQ3e9l7/hafjvJnfI+mlg7JpCxZQzkKDAcM3kIuhLAG5gNDAF9gjBDCVzd5ATBOShkA/Ai8ad5wK8bGyoaRbUay10ZyLj4KbpwudZ6JPX0A+PzPM2aOTlEUc7uRlsWYr/dw9Eoy88d2Znhnb0uHZHIWSyhSyuNSypOlFAsEzkgpz0kps4EVwGMFiwAKxr10A66aJ1LTebzV49ha2RJeq5ZRtZTG7k480aMpy/dd4lRCaiVEqCiKOVy+lc7IL3dz7kYaiyZ0Y3CHhpYOySyq+jmURsBlvedxutcApgIbhBBxwHjgw+IWIIR4SggRLYSITkxMNGuwpfFw9GCQzyDW1apF+uHlkFf63fAv9G+Fs70NH2w4XgkRKopiarFXUxi+YBe37mTz/ZTu9Gldz9IhmY1ZE4oQYpMQ4mgxj8dKn7tULwEPSSm9gW+BT4srJKVcKKXsKqXsWq+e5Xfk6DajSSOfX0UGnPq91PLuznY8/2BLtp5M5K/Tlk2IiqKUze6zNwn7ajc2VoJVzwTR1cfd0iGZlVkTipRygJSyQzGP0i9z0lwBGus99wauCCHqAf5Syr2618OBniYM3Wz86/nTrk5blteug9y/1Kh5JvT0obG7I+//dpy8fDUAl6LcDzYciWfC4n00dHPgp2d70rpB1Rr/3RyqepNXFNBKCNFMCGEHjAbWAbcBNyFEa125gcB90SYkhGB0uzGcsRFEx/0FyaUP+2tvY81rg9ty4loqq/dfLrW8oiiW9d3uC0z/8QAdvd1Y9cz9MZaJKVjysuFhuvMfQcBvQogI3eteQogNAFLKXGAGEIGWMFZKKY/pXp8G/CSEOIR2DuVVS7yP8hjSbAi1bF1Y4eoMMT8aNc/DHT3p3KQ2cyJPcScr18wRKopSHlJK5kScZNbaY/Rv24AfpnantpOdpcOqNJa8yutnKaW3lNJeStlAShmie/2qlPIhvXIbpJStpZQtpJTvF5m/o5TSX0rZV0p5zhLvozwcbRwZ1upx/nRx5nrMd6WO5ghazeafD/uSmJrFV9vvm7eqKDVGbl4+M386wudbzjC6W2O+fKLzfdljcEVU9SavaiusTRh5wGqZXOpojgW6NK3Dw36eLNx+lmvJmeYNUFEUo2Vk5/HM9wcIj9b65fq/4R2xsa55P69GvWMhxBohxMNCiJq3hcykca3GBHv2ZFUtV3L2LzF6vpmD25KfD3MiS7uFR1GUypCUns0T3+xl84kE3n2sfbXpl6s8jE0QXwBjgdNCiA+FEG3MGFONMcZ3HDesrdh8aXOpozkWaOzuxKRgH346EMexq8lmjlBRlJJcTcpg5Je7ORKn3f0+PsjH0iFZlFEJRUq5SUo5DugMXAA2CSF2CSEmCSHunwGPq5hgr2C8Heuz3MUBDq80er7n+rWktqMt7/92HFnKgF2KopjHqYRUHl+wi2vJmSydHMhDHT0tHZLFGd2EJYTwACai3aF+EPgvWoL5wyyR1QDWVtaE+Y7ngIMDpw5+W+pojgXcHG3524DW7Dp7kz9PXDdzlIqiFBV94RYjFuwiN18S/nQQQS08LB1SlWDsOZSfgb8AJ+BRKWWolDJcSvk84GLOAKu7Ya2GYS+sWZGbAFcPGD3f2O5NaF7Pmfc3HCdHDRWsKJXmj9gExi3ai4eLPWue7YmvV63SZ6ohjK2hzJVS+kop/09KGa8/QUppsOt5pXRu9m4M8QnhVxcXUqK/MXo+W2srXh/SjnOJd1i+75IZI1QUpcAfEev49/e/0LahK6ufCaKxu5OlQ6pSjE0odYQQw4s8+gsh6ps1uhpidPsnybASrLsQUepojvoGtKtPj+bufLbpNCmZpXc0qShK+eTnSz7cEEvgrqdZb/8W4X1u4uFib+mwqhxjE8oUYBEwTvf4GngN2CmEGG+m2GqM9h7t8XNtRriTLflHfzZ6PiEEbz7sy+30bOZvUWOmKIo5ZGTnMf3HA2z+6y/cRDp2Dk44/DQBdn9h6dCqHGMTii3QTkr5uJTycbTBriTQHS2xKBU02n8aF+xs2RPzdZnm69DIjWGdGvHtjgtcvpVupugUpWa6npLJ6IW7+f3YNWb5a2MSiQnrod0jEPE6bPgH5OdZOMqqw9iE4i2lTNB7fh1oLKW8Bai2FhMI8QnB3dqBFZlxkHiqTPO+GtIGKyv4OELd7KgopnI8PoWh83dyKiGNheO70svhHDh5QIMOMPI7CJoB+76CFePK1FRdnRmbULYKIX4VQkwQQkwA1upecwaSzBdezWFnbcfwlsPY5uTI1agvyzSvp5sjT/VqzvpDVzl46baZIlSUmmPLieuMWLCLPClZ9UwQA30bwOV94B0IQoCVFYS8Dw/NgdMR8O1DkHrN0mFbnLEJZTraIFYBusd3wHQp5R0pZT9zBVfTjOowCYRg5YUNkJtdpnmf7tOCeq72vKdudlSUClm66wJTlkbhU9eZtdMfoEMjN7hzE26ehsaBdxcOnAajl8ON07BoACTEWiboKqLUhCKEsAb+lFL+JKV8SfdYLdWvlsl5unjSp0571jhYkXVifZnmdba34ZWBrdl/8TYbj6ojJUUpq9y8fGavO8bb647xYNsGrHw6iIZuDtrEuCjtb+Pu987YZjBM2qAN6b04BM5uqbygq5hSE4qUMg/IF0K4VUI8Nd6YzjO4bW1N5IGyNXsBjOzamLYNXflw4wmyctWJQkUxVlpWLtO+i2bJrgtMfaAZX43vgrO9zf8KxO0DKxvw6lT8ArwCYNpmcGsMP4yAA8sqJ/AqxtgmrzTgiBDiGyHE3IKHOQOrqXo0CsbHxpUVmRchOa5M81pbCd54qB2XbqWzbPdFM0WoKNXLlaQMRizYxfbTN3h/WAfefMQXa6sivQVf3gcNO4JdCTcyunnD5N+hWW9YNwM2v2t0d0rVhbEJZQ3wFrAd2K/3UExMCMHoNqM5bG/Psb3zyjx/79b16NO6HnM3n+b2nbKdh1GUmubQ5SSGzt/JldsZLJnUjXHdm95bKC8XruwvvrmrKIdaMHYldH4S/poDa6ZBbpbpA6+ijO1teCmwEtgjpVxa8DBvaDVXqN8kHBEsv7DBqNEci/rnw+1Iy8pl7p+nzRCdolQPvx+NJ2zhbuxtrFjzXE96tapXfMGEo5CTDt7djFuwtS08Ohf6vw1HVsF3Q40enuJ+Z2znkI8CMcDvuucBQoh15gysJnO1c+WRup353TafpFMbyjx/6waujA5swrLdFzmXmGaGCBXl/iWl5MttZ3nm+wO086zFL9ODadXA1fAMl/dpf42poRQQAnq9DCMWa7WbbwbCreo/dLexTV6zgUB095xIKWOA5maKSQFGB/6dLCsrfj4wv1zzvzSgNQ621rzx8xHy8mtWO66iGJKdq437/uHGEzzi58nyaT2oW1qfXJf3gquXdo6krDo8DhPWaTWURQP+l5yqKWMTSo6UsujwgKrPdDNqXa8DXWzdCc+4QN6dxDLPX8/Vntmh7dlz7hZfqH6+FIVryZmELdxdOO773NGdcLC1Ln3GuH3QuJtW6yiPJj1g6iZwcIPlYyCr+rYaGJtQjgkhxgLWQohWQoh5wC4zxqUAo33Hc8XGhm3b3inX/I93bsTQAC/+s+kUURdqRhuuohRn3/lbPDJvByevpbJgXGdeGdQGq6JXchUnJR6SLpWtuas4Hi1g2EJIvwFRZeuv735ibEJ5HmgPZAHLgRTgb+YKStH095tAE2HH/KubyU8rey1FCMF7wzrSxN2JF5cfJCldXfWl1CxSSpbsPM/Yr/fg6mDD2unBDCnLUL1x5Th/YkjjbtByAOz8L2SlVnx5VZCxV3mlSyn/KaXsJqXsqvs/09zB1XS2VrZM93uWU7Y2bNz093Itw8XehnljOpOYlsU/Vh9W3bIoNUZGdh6vrDzE7PWx9G1Tn7UzSjn5XpzL+8DaHhr6mSaovm9Axm3Y+5VpllfFGHuVV2shxEIhRKQQ4s+Ch7mDU2Cw/2RaWzkz/8Y+cm6dL9cyOnq78drgtkTGJvD9HnXDo1L9Xb6VzuMLdvFzzBVeHtiaheO7UMvBthwL2qfdHW9jZ5rAvLtAqxDYNQ8yU0yzzCrE2CavVcBB4E3gVb2HYmZWwooXuv2dy7Y2/PzHy+VezpQHmtGvTT3e/e04sVer3wdZUQr8dTqRRz/fweXb6Sye0I0X+rcy7nxJUblZEB9zb4eQFdV3JmQmVctairEJJVdKuUBKuU9Kub/gYdbIlEK92zxOgG0dvko7SWb8oXItQwjBnJH+1Ha05fnlB0jPzjVxlIpiWVJKvth6hgmL99HA1YH1Mx6gX9sKjFIefwjysk1z/kRfo87Q5iHYPQ8yqtfoH8YmlPVCiOeEEJ5CCPeCh1kjUwoJIXix52yu21izfHP5zqUAeLjY89noAM7duMPsdcdMGKGiWFZaVi7P/XCAj38/yUMdPfl5ek986jpXbKGX92p/TV1DAV0tJRn2lr0T2KrM2IQyAa2Jaxf/68cr2lxBKffq6vMgwY5efJN9hdTz28q9nJ4t6jKjX0tWRsexNuaKCSNUFMs4m5jG0Pk7iYxN4M2H2zFvTCec7GxKn7E0l/dCHR9wqUAtxxBPf2j7iDYufUb1GRTP2Ku8mhXzUHfKV7IXen1AsrU1S7a9UaFeTF/s34quTevwz5+PcvGmGrpUuX/9EZvA0M93cutONsumBDK1V3NEeW9A1CeldkLe1M1d+vrOhKxkLalUEyUmFCHEP/T+H1lk2gfmCkopnq9nFwa5tmSZTOJG7C/lXo6NtRWfjQ7ASsALyw+Snas6PVDuL3n5kk8jTzLtu2ia1XNm/fMP0LNFXdOtIOkSpCUY3yFkeTTsCO1CYc+CatN5ZGk1lNF6/79eZNpgE8eiGGFG34/IFlZ8s+e9cvVEXMC7jhMfj/DjUFwycyJPmjBCRTGv5JsJfPnFHOb9eYqRXbxZ+XQQjWo7mnYl5ekQsjz6zoTsVNhdvj77qprSEoow8H9xz5VK0My9NY/VDSDcOourBxZXaFmDO3jyRI8mLNx+jq0nr5soQkUxn2M7fyNrXg+m33iPb4Nu8PEIP+P64yqruH1g5wL1fU2/bH0N2kP7YdrJ+Ts3zbuuSlBaQpEG/i/uuVJJnu3zEQLBggNzIbdi3am8+bAvbRu68srKQ1xPUZ0fKFVTTnYWu7/+G+0ix5ElHMi1r0PfrC2mOV9SnMt7tct7rU1wcr80fWZC9h3tMuL7XGkJxV8IkSKESAX8dP8XPO9YCfEpxWjo6kWYV2/W2eVzbs9nFVqWg601n4/txJ3sXF5aGUO+6upeqWKunj/BuY97E3TlW6LrDMH95d3Y+I+Ck7+b5z6O7Dtw7aj5m7sK1G+rdXO/dyHcuVE56zSTEhOKlNJaSllLSukqpbTR/V/wvBz9GGiEECOFEMeEEPlCiK4llFsshLguhDha5HV3IcQfQojTur91yhvL/Wpqr3/hgBWfxy7RvgAV0LK+K++EtmfnmZss2HbWNAEqiglE/7oQ1yV98cq9yP5unxD4t+U4u9YGvzDIy4LjZhjn78oBkHmVl1AA+rwGuRlax5H3MWPvQzG1o8BwtDHqS7KE4k/+zwQ2SylbAZt1z2sUd0cPnmz2MH/YW3Ns+3sVXt6oro15xM+TT/84xf6L1ee6eOX+lJZym6j/hNE1+lWu2DUjdeI2ujw89X8FGnUG9+ZweKXpV15wQ6O3wWNd06vXGjqMgKhFUI6exasKiyQUKeVxKWWplxZJKbcDxV1P9xhQMKb9UmCoCcO7b0wI+ie1sWbu2Z8rfNmhEIIPhnfEq7YDLyw/SHJGjomiVJSyOX1wO0n/CaJzUgS7G0+l5T+24eXT5u5CQmi1lAs7INnEN+he3gd124BjJTd89HkNcjNhZ8WasS3JUjWUimogpYzX/X8NaGCooBDiKSFEtBAiOjHx/s38xXGxc2FqmzHscrAlavMbFV5eLQdb5o3pTEJKJjN/Ul3dK5UrPy+PPctm4fPLUGxkDqcGLydoyifY2Bro6bfjSEDC0dWmC0JK3QiNZuhupTR1W2pJMuobSE2o/PWbgNkSihBikxDiaDGPx0y5Hqn96hn85ZNSLtSN4dK1Xr16plx1lRDW9UXqCzs+i9+KTIqr8PICGtfm1ZA2bDx6je/3XjJBhIpSuhtXL3Ls4wH0OPtfjrgE4/jCHtoFDSl5Jo8W0KiraZu9bp7RukKxREIB6P2q1iGlCWspWek3+Orn0WSmm/+yZLMlFCnlACllh2Iea02w+AQhhCeA7m+NvYnCwcaBZ/2e4rC9LVs3mWZEgWm9mtOndT1mrzvGr4evmmSZimJIzOYVWC98gJaZR9nX4W06vbIWN3cjD/78wiDhKCSYqLPTwg4hK/GEvD6PFuA/BqIXa8MPV9D5Y6sYu7wfn6ccY8dB8w89fL82ea1D67AS3V9TJKn71mN+k2li7cTc2wfJu368wsuzshJ8Ma4znZvU5sUVMSqpKGaRmXGHvfOnEPDX09yy9uD6mAgCR7yMsCrDz1L7YSCsTVdLubwPHGqDRyvTLK88ev8d8nNhx3/Kv4zsO6xfM46wfbNJtIIv/F5kQLD5r12ySEIRQgwTQsQBQcBvQogI3eteQogNeuWWA7uBNkKIOCHEFN2kD4GBQojTwADd8xrL1sqWGV1e5oydLRtMVEtxtrdhyaTAwqTy2+GKHy0pSoHzsVFc/XdPuieuZk/9MBr9fSdN23Yu+4Jc6kHL/nBkdYW6Iip0eZ/Wf1dZkpqpuTfTain7l0BK2Q/m0s9v482lQbyRehhf+7qsGraeXp2mlj6jCVjqKq+fpZTeUkp7KWUDKWWI7vWrUsqH9MqNkVJ6SiltdeW/0b1+U0rZX0rZSte0Vj16VquAkLYjaWtbhy/Sz5BTUG2vIGd7G76dFEinxrV5YcVBlVSUCsvKTGf3N6/QKDyE2vm3ONT7a3o8txAHxwqMXeIXBilxcGlXxYLLSILE45Zr7tLX+1XtXpi/PjV+npxMTv32AmM2Pc06W8kzTR5i0ejNNKjtY7Ywi7pfm7yUIqyEFc/3eIM4W1vW/PmayZbrYm/Dksn/SyobjqikopTPiahNxH8cSNDlRRx2exAxfR/+D46q+ILbDAFbZzgcXrHlXNEN8WSpE/L66jSFTk/AgaWQXPrFNvJyNKsXBzH2+mZS7J1Z2G8u0/t9hI1VJXQdo0cllGqkV7MQOjt68lVuAhmnIky23IKkEtC4Ns8vP8hGlVSUMkhLTWL3/Km0/nUEDvkZHO6ziK4vr6ZOPU/TrMDOGdo9CsfWQk4F+qO7vA+EFTTqYpq4KqrX37XLmP/6xHCZ3CzS/niL19aF8Y5DLp3d27FqZAQ9mvarvDj1qIRSjQgheOGBf5FoY8OP298yTZuyjou9DUsmdStMKr8fVUlFKV3MltWkftKV7tdXE13/cVxfjsav38jSZywrv5HaYFWnI8u/jMt7td5/7V1MF1dF1G4MnZ+EA8u08VmKij/MsUW9GXVxFZEuTrzY8Wm+DF1JXUcTjgtTRiqhVDNdvHrwgGtzFlulkXJkhUmX7epgy5JJ3fDzdmPGjwf5/eg1ky5fqT5uJsaz79ORBGybQo6VPWceWU3g9G9wrmWmu8+b9QXn+uVv9srPg7j9VeP8ib5er2i9Amyf87/X8nKQWz7khxWP8ITDHbKd6/LtkO+Y2nkGVsKyP+kqoVRDL/T+gBRra5bs+QjyTNuFiquDLUsnB+qSygGVVJS7yPx89q5biJgfSKfkzextPJWG/4imdbcB5l2xtY3WY+/pyPKN0X79uDbQlXcVOH+iz60RdJ4AMT/A7Qtw/TjJix7kb8e/5kN3Nx7wCmb1sF/pVL+TpSMFVEKpltrVbc9gdz++t8vlxr4FJl9+QVLpqJKKoufqxdPEfDyY7gde5aZNQ66G/U73KZ9g52Di0RQN8Rul3WUeW47b0gpvaKxiCQWg18vavTbhTxDzbX9G2t5iu4sr/+j2D+YO/JLaDrUtHWEhlVCqqRm93ydbWDHv4PxyXctemoKk0qGRllQijqmkUlPl5eWxc8VH1Frci7YZB4lq8wotZu6mqW8l/zh7ddJuSDy8quzzxkVpTWZ1fEweVoXV8iK/yyS+ybjAxIYeWNdqxPcP/cB43/HmG2CsnFRCqaaauvkwvuVQ1jjbsXPtVO1qEROr5WDLd1O0pDL9hwNEqqRS45w7cZATH/Yi+MQHXHJsS8rkv+g2ZhZWNpV7uSqg64F4FFzcAUmXyzbv5b1a7aSK/UADJKYn8qzNLT5zr0P/poNYGfoT7eu2t3RYxVIJpRqbEfQmze3qMCv7PCkHlphlHXcllR8P8Efs/dlLqlI2KZk5/LbsExotH0jjnAsc7Pw+7f7xJw2atrVsYB11V5CVpQfitES4da5KNndtubSF4euGc+B6DLOCZjGnzxxc7VwtHZZBKqFUY/bW9rzf/3NuWtvw0b4PIdU8NYiCpOLr5cZzP+xnk0oq1VZ2bj5Ldp6n78dbCDgznwTHFuQ/u5dOoTPK1geXubg3006sHwo3vlYeF6X9rUJXeGXkZvDu7nd5YcsLeDp7Ev5oOCNbj6xyTVxFVYFPgGJOHer7MbnVCNY52bFl3RSzNH2BLqlMDsTXsxbPqqRS7Ugp2XAknkH/2cbs9bH0rZdKI3GTJv2nUbtBY0uHdze/UVoXKglHSy8LWnOXlS14Bpg3LiOduHWC0b+OZuWplUxsP5HvH/qe5m7NLR2WUVRCqQGe6fE6rezc+VfmeZIOfme29bg52vLdlO74etbi6e/382nkSXLyTHdzpWIZ0Rdu8fiCXTz3wwHsbaz5dlI3PumiuzS3WV+Lxlas9sPBysb4Hogv7wNPf7B1MG9cpciX+Sw9tpQxv40hLTuNhQMX8krXV7CzNjDAWBWkEkoNYGdtxwcDvyDJ2poP9v2fWUeDc3O05fup3RnWqRFz/zzD8C92ceZ6qtnWp5jP2cQ0nl4WzYgvdxN3O4OPHu/Ihhd70a9NfcT5bVDLWxu/o6px9oCWA3Q9EOeVXDYvB64esHhz1/X06zzzxzPMiZ5D70a9+Sn0J4K8giwaU3mohFJDtK3bnqdah7HR0ZY/zNj0BdolxadL7zoAACAASURBVHNG+vPlE124kpTBw3N38O3O8+TnqyGF7wc30rJ465ejDPrPdnacvsErA1uz9dW+hHVrgrWV0H6kz2+H5n2q5FVRgNbslXoVLu4sudy1w9o47o27VU5cxdhyaQuPr3ucg9cPMitoFp/1+6xK3VtSFha4tk+xlKk9XmPrpc28m36OzjHf4dFpQukzVcDgDg3p3LQ2r/90hHfWx7LpeAL/HuGPV+1KutFNKZOM7DwW/XWOL7edJTM3n7GBTXihfyvqudrfXfDaYchMguZ9LRGmcVoPATsXrSuWZr0Nl7u8T/trgTvkM3IzmBM1h5WnVtLOvR0f9v7wvjlXYoiqodQgtla2vDdwAWlW1ry370NkqvlHTq7v6sCiCV35v+EdOXgpiZDPtvPLwStIM9aQlLLJy5eER12i75wtfPLHKYJb1iXypd68O7TDvckE4Nw27W9JP9SWZucE7UIhdl3JPRBf3gdujbUuTirR8ZvHCfs17L488V4SlVBqmFYebXmuzVg2Odiwcf2U0mcwASEEYwKbsPHFXrRu4MrfwmOY8eNBbt/JrpT1K8WTUrL5eAIP/fcvXvvpCF61HVn1TBALn+xKi3ol9Lh7bivUaweuDSst1nLxGwlZKXDqd8NlCkZorCQFJ97HbhjLnew79+WJ95KohFIDTez+Kn72dXk/8yyJB5dV2nqbejiz8ukg/jG4DZGx1wj5bDtbT5q/lqTcLTMnjx/3XmLgf7YzZWk0mbl5fDGuM2ue7Uk3H/eSZ87JhEt7tPMnVV2zPuDSwPDVXslXtJEeK+mEfHU58V4SlVBqIBsrG94b9DVZVta8E/V/yLQblbZuayvBc31b8sv0YGo72TLx2yje/OUI6dm5lRZDTXU9JZM5EScJ+r/NvPHzEextrPh0lD9/vNSHhzp6GnfTXNw+yM3QfqyrOitr7c7505GQXswo4XG68ydmvkNeSsmGcxsYtnZYtTjxXhKVUGqoZu4teaHdeLbZW7N2/eRKX397LzfWzXiAab2a8cPeSzw8dwcHL5Wj23GlVEevJPNyeAzBH/3J/K1n6Orjzoqnevx/e3ceVlW1PnD8+zIJCKKCiqAC4qyoKZWzluWUc2pZ19Iys6yrtzRv+es2WN1blvfebpZNppk2WJqaU2oOOWsOCBqogAODOQIyKMP6/bGPhgpygH04HFif5zkPm703e7+L6T17r73exU/PdmFou3q4uRTj30DsJqPybXBn2wVsprDhkJcNh368edvJXeDiAf5hNjv9+azzPL/peab+OpXgasF8N+A7hxjxXlJSmTpHw8PD1Z49e+wdRrmRp/IY8+29xGQms6Tdi/i3+Ytd4th+7ByTFx0gOTWLCT1CebZnY1yd9Xud0sjNM/pHPt8Sx86483i6OTMivD6jOwUT7Fe15Af+zDKvydh15gRqa0rBrDvB0xceW3X9tk/vBhd3GLPSJqf+5cQvvLb9NVKvpDKh7QRGtxxd5nO8m0VEflNKhRe1n/6rrcScxIk3+nxKrjjxys63UOnn7BJHx1BfVk3qyuC2xmDIIR9uZd2h0+TqcSvFln45h7lb47j7vY2Mm/8bpy5k8lK/Zmx/sSevDmxZumSSlQIJv5Xvx4VvJGJ0zp/Ydv00utmZkBRhk9tdqVdSmbZlGhM3TKS2Z22+ue8bxoaNddhkUhw6oVRy9as35G8tRrOtijPf2+HW11XV3F15b0QbZv+lHWfTrjD2yz3c9e5GPt0cS0qGubNOVkSJFzP558rDdPjnel5dfoiaVd344KHb2DSlB+O6heLj4Vr6k8RvBZXnGP0n+V2tQHww3zwpifuNW2Emjz/ZlrCNIUuHsCJ2BU+2fpKF/RbStGZTU89RnlX8lKkV6YHb/8b62FW8m3mUTgcWENjmYbvF0qdVXXo2r8OaqGTmbYvnzZWHmbk2hsG3BTK6UzBN/ctv6e6ylnkll82HE8jdNIOXk7twEW/6tPLn8S4htGtgg7nbYzcafQ7lsMz7LdUIhgYdjQrEXZ4zrlpMnqExIzuD9/a8x3cx3xHiE8J/7/ovrfxamXJsR6ITioaTOPF6n88Z+mN/Xt71Fp817oOTp6/d4nF1dqJ/6wD6tw4gKjGFL7cdZ/HeU3y96wQdGtZkdKdg7mleB5dK2M9yMeMK6w//wZqoZDYfOcNdudv5yO1LvEKqEDp8OoG2rEIQtwmCOoJLAYMdy7uw4bDiOWOUf902Rsn6mqFQ1a/Uh96TvIeXt75MwqUEHm3xKM/c9gzuLvYtNGkvle8vUitQQPUgprR4nN1uTnxjx1tfN2oZ4MPbw1qz48We/L1vM06ez2T8V3vp9s4GPtx4lPOVYHBkUkom87bF89CnO2j/xjqeX3SAgwkpPBBen9eaHQegW9YGAn1s+E8sNQnO/O5Y/Sf5tRxilKiP+M7oqL86Q2MpZOVkMWP3DB5bY/y9fNHnCybfPrnSJhPQVyhaPkNvn8ja2BX8J+MoXQ4spEGbh+wd0jU1qroxvnsoT3RtyLrDp5m3LZ53Vkfzn3VHGNQmgEc7BdMq0MfeYZrm6B+XWBOVzM9RyRw4lQJAo9pejO/ekN4t/QkL9EHycuHdTeBeHc4dNarmBra3TUBxm42PjtZ/cpVnTWh8r1GBOPwxSD9TqoQSeTaSl7a8RFxKHA80fYDn2j+Hp6uniQE7Jp1QtGtEhFf7fc7Qxffxf7vf4ovGfXD2LGLkdBlzdhJ6t/Snd0t/Yk6nMW9bPIv3JrDot1OEB9Xg0U7B9GhaC293Ezqhy5BSiohTKayJSmZNVDLHzqQD0KZ+dV7o05TeLf1vLodycidkXoAB78PKyRCxyIYJZRN41AD/1rY5flloPQKiV8Kv7xmfl2CEfHZuNrMjZvP5wc/x8/Dj43s+plNgJ5MDdVx6HIp2k2W732faoU95vkoQox9YXn5LlFukZGazaM9J5u84zvFzGQCE+FWlZUA1WgX6EBboQ8uAalT3LB/1krJz84g/m07M6UtEn07jyOk09p24SHJqFs5OQoeGNend0p97W9Shrs8t+kTWTINdn8ALsfDjU3BiJzx3GJxNfp+oFPy7JdQLhxG2m6DN5rIzYUZjuJIGbt7w9+PGaHorRZ6N5JVtrxBzIYaBoQOZesdUqrlVs2HA5Ye141D0FYp2kwHhz/JL3Gr+kxFPyOpJdO/7X3uHdEs+Hq6M7dqQxzqHsD32HPtOXOBgQgr7Tlzkp4ika/vVq+FBqwAfwur5XEs2fl6262DOzVOcPJ9B9Ok0YpLTiPnjEjHJacSevUR2rvFGzkkg2Lcq7YNqcHez2vRsXtu6xKeU8W47uCtU8YawEXB4uXEl0ainuQ05dwxSEyDkeXOPW9ZcPaDFINj/lZEcrUwmGdkZfLD/AxYcXoCvuy/v3/U+dzW4y8bBOiadULSbiAhvDV7EmG97MiV5HZ9ve5ewTpPtHVaRnJyEzo386Nzozyd3LqRfITIxhciEVCITU4hKSGF1VPK17f7V3GkV6EOrwGq0CvApsFx7QdfwBV3ZX8i4QszpS5bkkcaR05e4nPPnFMj1anjQtI43dzevTZM6XjSp401oLS/cXa1/l3zN2SNwPhY6PG183rgXVPExxlqYnVBiNxgfG/Yw97j20HqEkVCs7D/ZkrCF6dunk5ieyIgmI5jUfhLebvrR9cLohKIVyNOtKrMGL+Evi/sx4fc5fFWtPg1aPWDvsIqtRlU3ujauRdfGta6tS8nM5lBiKlGJKUQmpHAwIYX1v582bRJL/2ruNPH3ZlQHX5r4e9OkjjeNa3tRtYqJf27RlnIhTfsaH13docVAiFoC98005gMxS9wmY86Qmo4/XwfBXaHXm9Dq/lvudj7rPO/sfocVsSsI8QlhXp95tKvTroyCdFw6oWiF8vOuy+x+XzJqxcOM3/ka870D8Q3qYu+wSs3Hw5WOob50DP1zrE365RwOJ6WSmnXzqHyhkD6kG1Z7V3GhcR1vc0alFyV6ldFB7lPvz3WtH4B9841kEzbMnPNcne63+YBy35dmFScn6PRMoZuVUiyPXc6M3TO4lH2J8W3G80TYExVmvhJb0wlFu6XgWmF80H0mYzdNYsLaJ5kzeAmefk3sHZbpqlZxIbyouUDKi/SzxhNe3adevz6oM1QLNG57mZVQkg4YNbxCephzvHLsZNpJpm+fzvak7bSp1YZXO75KoxqN7B2WQ7HLwEYRGS4iUSKSJyKFPjkgInNE5A8Ribxh/QwR+V1EIkRkiYhUvIkFypE2Ifcwo/1UDrsIk5cOJyf9jL1Dqtxi1gDqz9tdVzk5Gbdyjq4Dswp9xjnAdL+llJOXw9zIuQxdOpSIsxG8dOdLfNn3S51MSsBeI+UjgaHA5iL2mwv0KWD9WqCVUqo1EAO8aGp02k16hI1iWuOR/OqSx/RFA1C3mqdbs63oleAdYJQQuVHrEZCXA4eWmHOu2I1QuwV41zHneOXMoXOHeGjFQ7z323t0qNuBHwf9yMhmI3ESXUSkJOzyXVNKHVZKRVux32bgpqnWlFI/K6WuTvG3A6h34z6a+UZ0nsa4Ol1ZLOl8tGgQ5OUV/UWaubKz4NgvxtVJQX0adVoZ871HLLp5W0nOdWKH446Ov4XMnExm7pnJQyse4o+MP3i3+7u8f/f7+Ff1t3doDq0ipOHHgFWFbRSRcSKyR0T2nDmjb9WU1jO9ZzHIuzEfZSfyw7LR9g6n8on/FbIzoGm/grdfnf/j5A64EF+6c53cCTlZFeNx4Xy2J25n6NKhfBH1BYMaDWLp4KX0Du5dYWdRLEs2Sygisk5EIgt4DTLxHNOAHGBBYfsopT5RSoUrpcJr1apV2G6alUSEVwZ9Q2dXX6Zf3Mvm9fpuY5mKXgluXhDStfB9Cpr/oyTiLNP9BlWM0iJJl5J4fuPzjFs7DmcnZ+b0nsNrnV7Dp0rFqQFnbzZ7ykspdY+tjg0gIqOB/kBPVZnqx5QDrs5uzLx/OWO+7cnkE8v4fHd9wm5/2t5hVXxKGY8Lh9596xLy1RtAg07Gba+uk0v+uG/sRmNEubtjlxfJyslibtRcPj/4OQrF022fZkzLMZW6KrCtOOQtLxHpA7wADFRKZdg7nsrIs4o3swb9QE1xYcLBWZyIXm7vkCq+pP2QllT47a78Wg+Hs9HG/B8lkXkREvc5dP+JUor1J9YzeOlgZu2fRdd6XVk2eBlPtXlKJxMbsddjw0NE5BTQEVghImss6wNEZGW+/b4GtgNNReSUiDxu2fQB4A2sFZH9IjK7jJugAX4+9ZndZy5KnBi/5e+cS9CFN20qehWIk1FmpSgtBv85/0dJHLdM99uwR8m+3s5iL8Yyft14Jm2YhIeLB5/1+oyZPWYS4BVg79AqNF1tWCu1A0dXMnbLC4TmCnPuX4Fn9Qb2Dqlimt3FqJL7WKHPoFzv65HGVcbfoopVVReAlVNg31cw9Ti4OM4o8bQracw+MJuFhxfi4eLBhNsmMKLpCFydHGs6g/LG2mrDDnnLSytf2jTqxzttJnLYWTF58WByslLsHVLFc/EkJB+8eTDjrYQNN26Rxf9a/PPFbjLmYXeQZJKn8vjx6I8MWDKA+YfmM6jRIH4a+hMPN39YJ5MypBOKZoq7bnuCaSFD+dU5m+nf9Ufl3FwTSyuFmNXGR2v6T65q2te4oinumJTURKP/pWGP4n2dnUSejWTUylG8vPVlAr0D+fq+r3m106vUdHeQUjoViE4ommlGdH+dcX53sFhdZNYPQ1C5ufYOqeKIXgm+jcGvGOVAXD2MCsSHlxmDFK11dbrfhuW7Q/5s5ln+sfUfjFwxksT0RN7s8ibz+86npV9Le4dWaemEopnqmX6fMdgzmI+zjjN94d1kZ1ywd0iOLysV4n6FpgVVISpC2HC4nPrnFY41YjeBR02oE1b885WB7Nxs5h+az4AlA1geu5wxLcewfPByBoYO1CVT7Ex/9zVTiQivDl3CWN/2LMo7zxPf3MX5kj66qhmOrYe87OLd7roqpBt4+Vs/yFEpY/xJSDej2GQ5kpuXy/Jjyxn440De2f0ObWq1YfHAxTwX/hxebl72Dk9DJxTNBpydXZjYfy5vN32ESKccRq4cSXRUCR9f1YzHhT1qQj3rZhm8jpOzUYH4yM+QcVNZvJudOwppieWq/0QpxYYTGxi2fBgvbXkJLzcvPuz5IR/d8xEhPiH2Dk/LRycUzWb6dZjC3C4zyBEnRu16jfUb/s/eITme3ByjXH2T3uBcwsIWrYdD7hU4tLTofWM3Gh/LSf/J7uTdjFo1ir9u+CvZednM6DaDb/t/S9d6XXXtrXJIJxTNplo16ss3gxbT2MmDSSeWMvv7+/UTYMVxcgdkXSze48I3qtvW6NC35rZX7EajdEsN+77zjzoXxZNrn+SxNY+RlJ7EKx1fYcmgJfQJ6aP7Scox/ZPRbK5WzcbMGbmJAe6BzEqPYfKCbmSkJdk7LMcQvQqc3Yz6XSUlYsyTcnyrMZ6lMHm5xpiVkO52m+43NiWW5zY+x4M/Pcihc4eYHD6ZFUNWMKzJMD2exAHohKKViSpuVXlzxCom+3dnnUrj0UW9STq53d5hlW9Kwe8rjA7yKt6lO9bVCsSR3xe+T9J+Y7rfhj1Kd64SSLqUxD+2/oMhS4ewNWEr49uMZ9XQVTza8lFdd8uB6ISilRkR4dHeH/BB2LOckjweXDuWvXs/tXdY5dfZGLgQV7rbXVfVDDE69W81yDG27Kf7PZ91nrd3vc19S+7jp9ifeKjZQ6y6fxUT2k7QT245IJ1QtDLXtf2TLOg5G29x5vGI/7J4zUTj3bh2vWhLza4mJiQUMG57/REFyZEFb4/dCLVbgldtc853C2lX0pi1fxZ9f+jLwt8X0r9hf1YMWcHUO6bqEe4OTCcUzS4aNujCgmGruN3Ji1eSf+Ff3/Yj54qeieA60auMeeN9As05XsshxoRZBwt4hDs705jut2EPc85ViOT0ZGbsnsG939/L7AOz6RzYmSWDlvB659ep61XXpufWbE8nFM1ufLwD+fChzYyq2pgFl0/x1MJupFyIs3dY5UP6WWMK3pIMZixMVT9o1BMO/gB5eddvO7kTci/b7HHh6PPRvPjri/T9oS8LDi+gW71ufNf/O2b2mElDn4Y2OadW9nRC0ezKxcWNF4Yt5vUGA/mNLEYuGcixYz/bOyz7i1kDKHP6T/ILGwGpp+DEtuvXx24CJxdTp/tVSrEtYRvjfh7HsOXDWH9iPQ82e5CVQ1fyTrd3aO7b3LRzaeWDzaYA1rTiGHLXm4REhjFp9xs8vPk5nv69AyN7/htX91I+3eSooldCtUDwb23ucZv1A9eqxsRbwV3+XB+7EQLDS/80GZCdl83quNXMi5pH9IVo/Dz8mNhuIsObDNfzt1dw+gpFKzfatnqQb/p+RWvnqsw4u5PBCzuxbvP0yle1ODsLjv1iXJ2YPR7ErSo07w+HfoScy8a6zIvGI8OlvN116col5kXNo+8PfXlpy0vk5OXweqfXWXP/GsaGjdXJpBLQCUUrV/z92/LxqB182HI8ruLE3+K+Y/SX4UQdXGjv0MpO3GbIzjD/dtdVYSOM8SZHLLcW47eUarrf0+mnmfnbTO79/l7e3fMuDao1YFbPWSwetJghjYfg5uwYk3RppadveWnljojQNXwCHds+weJN05h1YhUP7v0n/fd/xMQeM/Cv38HeIdpW9Epw84LgrrY5fsMeULWWcdur+QDjdperp3HLqxgOnzvMV4e/YmXcSvJUHr2CejG65Wg9H0klphOKVm65uLgxoucM+qVP4fO1E/ny4kHWrhvLI16hPH7v/6haEeeuz8sz5i5p1BNcqtjmHM4u0HIo/DbXuFKJ2wRBna2a7vds5llWxK5g2bFlxFyIwcPFgxFNRjCqxSjqedezTbyaw9AJRSv3vKrWZuLgrxl++iD//eU5Ps2IZfHivkzw78KQnu/iYkJHcrmRtN+YB97Mx4UL0noE7PoYdn5sjMhv90ihu17OvcyGkxtYdnQZ2xK3katyCfMLY9qd0+gb0lf3jWjXiKpEI5TDw8PVnj177B2GVkoHj/zEjO3T2acyaJSjmNz0YTp3mlruJoQqkV/ehF/fhSnHwNOGI8aVgv+1g5QEY/zJ+C3gH5Zvs+LAmQMsO7aM1fGrSbuSRm3P2gxoOICBjQbqsSOVjIj8ppQq8p6ovkLRHE5Y4/7Ma3Qf63a/z8yoOYw/tpDOMYuYfMdUGrV6wN7hlU70KmjQ0bbJBIynx8JGwKZ/gaevUXIFo0jj8tjlLD+2nPjUeNyd3ekZ1JOBoQO50/9OnJ2cbRuX5tD0FYrm0K5kZ/H1xhf5+NRa0gXud67Jo+0nEdRssONdsVw8Af8Jg15vQKdnbX++c8fgf+3IaDGIde2HsezoMnYl70KhaF+nPYNCB3Fv0L26SKNm9RWKTihahXDxUhKz107k25RD5IjQLEfRu3pzeoc9Rv3Gfew2v0ex7PwEVk2BZ/eCb6hNT3U28yw7knaw9cBc1qfHk5l7mXpe9RgYOpD+of2p713fpufXHItOKAXQCaXiO30hlp/3fsjqhM1EqEwAWuRAn5ph9Gr7BIHBPcpvcvlyMKQmwDO7TT90Vk4We0/vZXvSdrYlbiPmQgwA1atU5+4GdzMwdCDtarfT0+pqBdIJpQA6oVQuiWd/5+e9H7ImaRuRGKPCW+cKvfxuo/dtT5Wv8SxZKfBOKHR4CnpNL/Xh8lQeMRdi2Ja4je2J29l7ei9X8q7g6uRKu9rt6BDQgY4BHWles7meUlcrkk4oBdAJpfI6eTrCSC6nd3FYjDnt2+Y607t2OL3aT6B23dvsG2DkYvh+DIxZDUEdS3SI0+mnr12B7Ezayfms8wA0qt6IjgEd6RTQiXa12+Hp6mlm5FoloBNKAXRC0QCOJ+xizb7ZrDmzlxinXEQpbqMKvf070KHJYOoF3Imbe7WyDWrxODiyFqYchSKepFJKcS7rHHEpccSnxnP0wlF2Ju3kWMoxAHzdfekY0JGOAR3pULcDtT1tP2GWVrHphFIAnVC0G8Ue/5U1Bz5hzbkIjjkZc4Q4KUVAHgQ5eRDk7keQd32CfZvRoE476tZtj7PZFZBzc2BGqDGYcchH11Zfzr3M8dTjxKfEE58af93HtOy0a/u5O7vTrk47OgV0okPdDjSp0UT3hWim0gmlADqhaLdyLHY9h05s5PjFY5xITyQ+O4XjKpsMpz//ObsqRYNcCHL2NJJNtQYE+TYn2L89vjVCyb2STl52OjnZ6eReySD32nImuTkZ5GZnGq+cLHJyMsjNziI38xwZ8Zs53uEJ4jyrEZcaR3xKPImXElH8+fdZx7MOwT7BBFcLJsQn5NpH/6r+uh9EsymdUAqgE4pWXEopzl44xvHEXRw/E8nxi8c4npHM8exUTpBNtslXAh4uHgRVCyKkWsi15HH1o+770OxFj5TXNBOICLVqNqJWzUbc+NeUm5dL8oUjHE/cTfyZg1zIPIeLizvOTq44u1QxXs7uuLhUwcnFHRdnd5xd3XF28cDZxR0XZzecxAkXJxeqOFchqFoQtT1r66sNzWHphKJpJeTs5EygbzMCfZth3sS5mua49FshTdM0zRR2SSgiMlxEokQkT0QKvS8nInNE5A8RiSxk+/MiokTEz3bRapqmadaw1xVKJDAU2FzEfnOBPgVtEJH6QC/ghKmRaZqmaSVil4SilDqslIq2Yr/NwPlCNv8beAGoPI+paZqmlWMO2SkvIoOABKXUgaIGcInIOGCc5dNLIlJkIiuEH3C2hF/rqHSbKwfd5sqhNG0OsmYnmyUUEVkH+BewaZpSamkpjusJvIRxu6tISqlPgE9Ker58591jzXPYFYluc+Wg21w5lEWbbZZQlFL32OjQoUAIcPXqpB6wV0TuUEol2+icmqZpWhEc7paXUuogcK3anYjEA+FKqcp2+appmlau2Oux4SEicgroCKwQkTWW9QEisjLffl8D24GmInJKRB63R7wWpb5t5oB0mysH3ebKweZtrlS1vDRN0zTb0SPlNU3TNFPohKJpmqaZQieUG4hIHxGJFpGjIvL3AraPFpEzIrLf8hprjzjNVFSbLfuMEJFDlpI5C8s6RrNZ8XP+d76fcYyIXLRHnGayos0NRGSDiOwTkQgR6WePOM1iRXuDRGS9pa0bRaSePeI0kxXlqkRE3rd8TyJEpJ2pASil9MvyApyBY0BDwA04ALS4YZ/RwAf2jrWM29wY2AfUsHxe295x27rNN+z/LDDH3nGXwc/5E+Apy3ILIN7ecdu4vYuARy3LdwPz7R23Ce3uBrQDIgvZ3g9YBQjQAdhp5vn1Fcr17gCOKqVilVJXgG+AQXaOydasafMTwCyl1AUApdQfZRyj2Yr7cx4JfF0mkdmONW1WQDXLsg+QWIbxmc2a9rYAfrEsbyhgu8NRty5XBUYbv1SGHUB1Ealr1vl1QrleIHAy3+enLOtudL/lcvF7S5FKR2ZNm5sATURkq4jsEJECC3Y6EGt/zohIEMZA2l8K2u5ArGnzq8BfLI/0r8S4MnNU1rT3AEaRWoAhgLeI+JZBbPZk9e9+SeiEUnzLgWClVGtgLTDPzvGUBReM2149MN6tfyoi1e0aUdl5EPheKZVr70DKwEhgrlKqHsatkfkiFXr6yMlAdxHZB3QHEoDK8HO2mYr8y1ISCUD+K456lnXXKKXOKaUuWz79DGhfRrHZSpFtxngXs0wpla2UigNiMBKMo7KmzVc9iOPf7gLr2vw48B2AUmo74I5RUNARWfO3nKiUGqqUug2YZlnn8A9fFKE4v/vFphPK9XYDjUUkRETcMP6ZLMu/ww33GwcCh8swPlsoss3AjxhXJ1gmM2sCxJZlkCazps2ISDOgBka1BkdnTZtPAD0BRKQ5RkI5U6ZRmseav2W/fFdgLwJzyjhGe1gGPGJ52qsDkKKUSjLrtRtUJAAABNpJREFU4A5Xy8uWlFI5IvIMsAbjKZE5SqkoEXkd2KOUWgb8VUQGAjkYnV+j7RawCaxs8xqgl4gcwrglMEUpdc5+UZeOlW0G45/QN8ryeIwjs7LNz2PczvwbRgf9aEdtu5Xt7QH8U0QUxmR/E+wWsEks5ap6AH6WvrBXAFcApdRsjL6xfsBRIAMYY+r5HfT3RdM0TStn9C0vTdM0zRQ6oWiapmmm0AlF0zRNM4VOKJqmaZopdELRNE3TTKETiubQROSSFftMEhFPE885WERamHi8baX42kuWjwEi8v0t9qsuIk+X9DyaZg2dULTKYBJQrIQiIs632DwYo7CgKZRSnUw4RqJSatgtdqkO6ISi2ZROKFqFICI9LHNafC8iv4vIAsto4L8CAcAGEdlg2beXiGwXkb0iskhEvCzr40XkbRHZCwwXkSdEZLeIHBCRH0TEU0Q6YVRImGGZKyVURNpaimZGiMgSEalhOd5GMeZV2SMih0XkdhFZLCJHROSNfLFfyrc8VUQOWs75rwLaGWKJ/eANxwi+OgeGiLQUkV2W+CJEpDHwLyDUsm6GiHiJMRfIXsuxBuU7zmER+VSMuW9+FhEPy7ZGIrLOEtteEQm1rJ9i+T5FiMhrpv5gNcdi7/r9+qVfpXkBlywfewApGLWJnDDKpXSxbIsH/CzLfhijoqtaPp8K/CPffi/kO7ZvvuU3gGcty3OBYfm2RQDdLcuvA/+xLG8E3rYsT8QoB18XqIJRH833hjb0BbYBnpbPaxbQ3mXAI5blCfm+NhjLHBjA/4CHLctugEf+7Zb1LkC1fN+ToxhzZARjVIFoa9n2HfAXy/JOYIhl2R3jqq8XxjwqYvm+/wR0s/fvhX7Z56VLr2gVyS6l1CkAEdmP8c9xyw37dMC4XbVVRMD4h5u/Vte3+ZZbWa4CqgNeGGU8riMiPkB1pdQmy6p5GBM3XXW1jMtBIEpZ6iaJSCxGkb78JWzuAb5QSmUAKKUKmteiM3C/ZXk+8HYB+2wHpokxA+FipdQRS1uvCx14S0S6AXkYJczrWLbFKaX2W5Z/A4JFxBsIVEotscSWZWlHL4ykss+yvxdG4dDNBcSlVXA6oWgVyeV8y7kU/PstwFql1MhCjpGeb3kuMFgpdUBERmMpkFnCmPJuiC+vkPiscct6SUqphSKyE7gPWCkiT3JzMc+HgVpAe6VUtojEY1x15I8ZjO+jxy1OJ8A/lVIfFyN+rYLSfShaZZAGeFuWdwCdRaQRgIhUFZEmhXydN5AkIq4Y/4BvOp5SKgW4ICJdLdtGAZsombXAmKtPpIlIzQL22YpRtJIbYrpGRBoCsUqp94GlQGuu/x6AMSPjH5ZkchcQdKvAlFJpwCkRGWw5RxVLnGuAx/L1QwWKSG2rWqtVODqhaJXBJ8BqEdmglDqDUSH6axGJwLg91KyQr3sZo99gK/B7vvXfAFNEZJ+lY/pRjE76CKAtRj9KsSmlVmPcIttjuWU3uYDdJgITROQghc+0NwKItByjFcaUr+cwbvNFisgMYAEQbjnOIze0rzCjMKptR2D09fgrpX4GFgLbLcf6nusTl1aJ6GrDmqZpmin0FYqmaZpmCp1QNE3TNFPohKJpmqaZQicUTdM0zRQ6oWiapmmm0AlF0zRNM4VOKJqmaZop/h8KmwK6g3o4hAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAEWCAYAAAAKFbKeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8HOWd+PHPd1e7Oytp5SLbuDdJljEGF0S1TWwuCR2bEsDhLr2QO5I77i6X5C6NXHK58stdciGBhEBIpSSYDiHhKC5AsMHYYFwlbCz3rlXZ/vz+mFl5LauspO3+vl+vfUk7MzvPd2dn57vzPM88I8YYlFJKqVLhyncASimlVCZpYlNKKVVSNLEppZQqKZrYlFJKlRRNbEoppUqKJjallFIl5ZRLbCLyTRH5tfP/RBFpFRG38/w0EVkuIkER+Z7Yfi4iR0TktfxGPnAico2I7HTe65x8x1Nouu4HhSZ1ny0UIrJBRBb2Mv9FEflUmutaICKbMxjbx0RkZabWNxjOfjU133EUEhG5S0S+ls0yyvoRzHbgNCCeMvk+Y8ytmQ4qV4wx7wGVKZM+AxwEqowxRkQWAB8Axhtj2vIRY4b8P+BWY8xj+ShcRAzQDqReNPktY8x/Zqm8jwGfMsbMT5l2H/BhIJKyaKMxZlY3+4HqgzHmjOT/IvJNoNYY85cDXNcKoD5DoRUUY4zuV10YY27JdhlpJzbHVcaY57ISiUNEyowxsWyW0YtJwDvm+FXrk4DtA0lqeX4fXU0CNnQ3I4dxzjLGbMtBOb35T2PMV/McQ8EQEbcxJt73koWrFN5DphXYsSc/jDFpPYDtwPt7mPcxYCX2mcER4F3gspT5Q4B7gD3ALuDbgDvltauA/wEOJecB38M+e3oXuBX7134Z8CHg9S7l/z3wWA+xTQFeAoLAn4A7gF878yanrPc+IIr9i74V+CwQwj5DbQVud15zJfAmcBR4GTiryzb6ErAeCDvrHQs8DBxw3ssXUpb/JvAQ8Esnvg1AQ8r8CcAy57WHgDtS5n0C2Ohs72eBSd28d58TuwHasM9QeorzdOBF531tAK5OWc99wI+BZ5z1rQJGA993yt8EzOll3zHYv+i7m/c08L2U5w8A9zr/1wDPO+/9IPAbYGhv28d5H6mf29GU9/DtHmLo3A9S9pnlzmfyHPCj5D7jzD/f+eyPAuuAhSnzXgT+1dlGQeCPwAhnngX82on1KLAaOM2ZNxZ4HDgMbAM+3WU/Se6zz2CffafGvw641vl/OvZ+fhjYDNzQ5XO809nmbXT5PgOLgLdSnv8JWJ3yfAWwJPV4AFyK/Z2JOtt7XV/boZvtvxBoTnne1754wnsAqp1t1wK85pS7MuU1PwB2OvNfBxak+x3sId6PA0+kPN8K/C7l+U5gdtd934nzCSeO1djHutQ4DXCLs76j2PudpPOdd177N85r3+1lH/+4E98Rp6xzsI8DRznx+NLXd2878BXgHWddPwes1M8T+GfntduBm7t8ht/usuw/APuxc8THU5btdZv1+Bn1tUCXN9JbYosCn8ZOSp8Ddic/FOAR4CdABTDK2fk+m/LaGPB57AOs39ng7wDjgWHYB5dkAvJhf2lPTyl/LXBdD7G9Avy387qLsHfekxJbdwc/J7bUHW+Os/HPc97nR53t4kvZRm9iH3D92G2YrwNfB7zAVKAJuCTlSxUCLnfW913gVWeeG/uA9T/OdrOA+c68xdgHv9OdbfJV4OVePrsTEks3cXqc9f2zE+fFznaqT9kuB4GznTiex07SH3Hi/DbwQrrld5k32tmmFwM3O9sn4Myrxa4K9gEjsZPN99PYPid8bt19tj186ZP7wSvYP9K8wHzsL1VynxmH/WW/3Pl8P+A8H5lyQG8Epjnb9kXg3515n8X+kpY78Z+NXe2N895+7LyP2djJ+uKU/SRZ/keAVSmxz8A+KPmc7bAT++BVhr2/HgRmpGyDY8A8J3ary3bwY++PI5x9Yh/2D9GAM68DqO56PEiNL2VdPW6Hbrb/QpzERnr74gnvAfvH0EPO+5/pxJz6vf1L7ANkGfYBdC/HD8LfpIfvYC/781Rnm7uwf5DsSIl/KvaB3tV133fifMD5/Gc4n1XXxPYkMBSY6OwDl6bznXde+ydgOODvZR+/y9lmH3Te96PYx+Rx2N/D9/X13Uv5/N/GPoYMx/4Bk5qsYhw/7r4P+0dI6mfYddlvOZ/95djNFsPS2WY9fkbpJLWUN9LqfKDJx6dTDiTbUpYtdzbiaOx2uXDqxgaW4hwInde+16Ws53ESn/P8/Zx44LkT+I7z/xnOjuTrJuaJzkarSJn2Wwae2O4E/rVLGZtTdobtwCdS5p3XzXv7CvDzlC/Vc10OUh3O/xdg79hl3byvZ4BPpjx3OTvDpB4+u+4SW2qcC7C/7K6UafcD30zZLnenzPs8sDHl+Zk4Z0a9lN/SZd+5JGX+ddg77EGc5NTDepYAa9PYPid8binvIdQlhl903Q9S9pnylNf+OmWf+RLwqy7rfhb4qPP/i8BXU+b9NfAH5/9P0OUs35k+AfsMM5Ay7bvYbdjJ/SRZfgD7IDHJef4djp/h3gis6LLunwDfSNkGv+zje74CuBb7rPSP2AnjUuyzufVd9qG+Elu326GbMhdyPDGksy/+MmWeG/tH9fSUaf/W9fPvUt4R7KrxZOzdfgf72E47gbnATcBPsX+sT8f+UfF41+9eSpz1KfO6O2Obn/L8IeDL6Xznndde3Eu8k51lxqVMOwTcmPL8YeDv+vrupXz+t6Q8v5zjNUILOfm4+xDwtZTPMDWxdZDyPcZOsOens816evS3jW2J6bmNbW/yH2NMu4iA3SA/HDsT73Gmgf2h7Ex5ber/YP8K6m3+L4D7ReSrwF8BDxljwt3ENBY4Yk5sI9uBfSAZiEnAR0Xk8ynTvE453cU6CRgrIkdTprmxDx5Je1P+bwcsESlzYtxhuq8rnwT8QES+lzJNsH917UjzvaTGORbYaYxJpEzb4awvaV/K/x3dPO+rkXyu6bmN7Qngh8BmY0xnbzYROQ27GmkB9gHdhX1Qgt63T0/+n+m7jW0scNgY054ybSfH95lJwIdE5KqU+R7ghZTnXT/T5Lb5lbOeB0RkKHbC/JeUMoMpr9sBNHQNzhgTFJGnsA+o/4H9I/HTKbGd12V/K3PKTX0vvXmJ49VDL2Fv7/dh/zh9qY/XdtXTduhNOvti6nsYif0ed3ZZvpOI/CPwSWfdBqjCPivtKU4rjXaq5Haqdf4/ir2dLqD77dRdnN19Fj1ts3S+8319tpDm97iP71538e/gxONgd8fd1PmpDnXZ1sn3ne42O0kuuvvvxP5SjDDGDHUeVSalVxUn9pYDu551fMrzExKRMeZV7Hr9Bdg93VK/uF3XM0xEKlKmTRzAe0jaiX2mODTlUW6MuT81vC7Lv9tl+YAx5vI0y5roJLnu5n22y3r9xpiX+/FeUuPcDUwQkdT9YSJ2lU4ufAe77WCMiCxNmf5v2HGeaYypwq5SSv466m37dN2f+mMPMFxEylOmpe5/O7HP2FK3fYUx5t/7WrExJmqMud0YMwO4ELu99iPY23+4iARSFu9t+98PLBWRC7CrlZJJdSfwUpfYKo0xn0sNo48wkwfsi5z/X8I+YL+PnhPbYLZ3V+nsi6nlHcA+O5jQZXnAvpQA+CfgBuzqraHYVZnC4CS30wLS207JOHs8rvUhne98Jj+H3r57SV23+e6U590dd1Pnp2PA2yzric0Yswe7SuN7IlIlIi4RqRGR9/XysoeAvxWRcc4v2y91s8wvsTsLRFN/5XcpewewBrhdRLwiMh+4qrtl03Q3cIuInOdc41YhIld0OSCleg0IisiXRMQvIm4RmSki56RR1mvYB9l/d8qxRGSeM+8u4CsicgaAiAwRkQ8N4n39GftX0j+JiMe5Pukq7LrtrBKRi7Crbz6C3Wb5QxFJ/joPYFd/H3OmfTHlpb1tn33AeBHx9jeelH3mm84+cwEn7jO/Bq4SkUucz9MSkYUiMr7bFZ74XheJyJnO9XIt2NUsCWPMTuwqyu866zsL+wyjp2vXnsb+Bf8t4MGUs5sngWki8lfO5+gRkXNE5PR+bIKXsbvenwu8ZozZ4JR1HnY7S3f2AZO7JKOB6te+aOwekcuwP69yEZmBvR8lBbAPjgeAMhH5OvYZ22C9hF096zfGNGPXwlyK3Za3No04p2Pv8+nK9He+L71995L+RkTGi8hw7JqHB7vMTx53F2D/iPtdfwIYzDbr7474hHPBYfLxSJqv+wh2lV2yB83vgTG9LH83djJcj72TPI29c6Z26/0VdkNxXxeufhj7S3kY+AZ2QhwQY8wa7GqfO7Dfxzbs9pyelo9jf6CzsTtbHAR+ht1LtK+y4thf6FrgPeyqoRudeY9gV0M9ICIt2I24lw3wbWGMiThlXebE+GPgI8aYTQNdZzfWddl3vi8iVdifx63GmF3Gvp7pHuDnYtdb347djnEMeAp7J0/G3OP2wW6j3QDsFZGDKTH8U5cYUueluhm7SinZS/dB7FoHnCS0GLtzwwHsX9JfJL3v0mjsfb8F+wz1JY7XNizFbgfZjd3Z6hs9Vfs71e7LsNuef5syPYjdKeAmZz17sfcTXxqxJdfRBrwBbHD2C7A70+wwxuzv4WXJA9YhEXkj3bJ6KH8g++Kt2FVXe7Hbb36eMu9Z4A/AFuzqsBBpVmf1EecW7AP/Cud5C3bHp1Wm58sPbsX+7u/F/tzvx9mv0igvo9/5NPT43UvxW+zjdBN2R6Fvp8zbi32M3I3do/KWAR5PBrTNkr0WC5qIXAbcZYyZlDLNj93IONcYszVvwamSJyIPApuMMd/IdyylSEQuBn5mjDmlRugQkf8ARhtjPtrnwgVG7AE7PtXdjy/nLPvXxpg+azEGUG5a26wgh9Ryqu0uF5Ey5zT4G9i/YlN9DvsaG01qKqOc6rsap9r8UuwztEfzHVcJm4ldo1HSRGS6iJzlNGOci13dnG6t1ylpoNusv70icyVZDfUgdk+dp7CvBbNn2r8WBLsLqlKZNhq76qUau4rzc8aYk9pN1OCJyA+AqzmxXSzvRGQidtNJd2YYexi2/gpgV6WNxW6X/B6Ql2HuisiAtllRVEUqpZRS6SrIqkillFJqoAq1KnJAxL5o9qpAIPDpadOm5TscpZQqKq+//vpBY8zIfMcxWCVZFdnQ0GDWrFmT7zCUUqqoiMjrxpiTRrwpNloVqZRSqqRoYlNKKVVSNLEppZQqKSXZeaS2tjbfoSililg0GqW5uZlQKJTvULLCsizGjx+Px+PJdyhZoZ1HlFKqi3fffZdAIEB1dTUig70RQGExxnDo0CGCwSBTpkw5YZ52HlFKqRIVCoVKMqkBiAjV1dUlezYKmtiUUqpbpZjUkkr5vYEmNqWUOkkiEiLR0ZrvMNQAlVRiE5GrROSnx44dy3coSqkiFW85RPzYQSK7G4ns3UEiGun7RRm2aNEinn322ROmff/73+dzn/scGzZs4OKLL6a+vp6amhq+8Y1vkEjY95q97777GDlyJLNnz+58vPNOT2M5l66SSmzGmCeMMZ8ZMqTP+3gqpQpEItxB7PBewjs307Hxz7Su+SMtL/6OI0/9jKN/uA+TSPS9kgwKvvwEAO6qahLtLUR2biJ6aC8m0dP9QzNv6dKlPPDAiTcNf+CBB7jpppu4+uqr+fKXv8zmzZt56623eO211/jBD37QudyNN97Im2++2fmYMWNGzuIuFCXV3V8plR8mGiHedox461ESrUftv87z4/8fs+e1pTxvO4aJ9n5D5LKR46k8+/05eifQsvxh5Ip/wDNyPO6ho4gd3kP86D4SwcOUVY/BVTk0621U119/PV/96leJRCJ4vV62b9/O7t272bZtG/PmzeODH/wgAOXl5dxxxx0sWLCA2267LasxFRNNbEqpXoW2vUnbuuUk2pwk1eokrLZjJFqPEG87hgm197oOV3kVrsohuCuG4KoYinf8abgqhuCuHIK7Ymjn//Zf+7nLX8mOv19EywsP5SyxRfZuJ7TldVzXldtxe7wcffoeQo3r7QRsEiBuxONFXO4Bl+ObcgajPv6tHucPHz6cc889l2eeeYbFixfzwAMPcMMNN7BhwwbOPvvsE5atqamho6ODo0ePAvDggw+ycuXKzvmvvPIKfr9/wLEWI01sSqle7b3jb4k0b0W8Fu7KYXaCqhyKZ9QE3FPPtBNR5VA7aVUO7UxM7sqhdrIqH4K4B5YEAguu49izvyAePIw7MDzD7+xkwRXLQATxlZ8wXVxuxFeOiUcx0Qgm0gHuMqTMB1k6e0tWRyYT2z333MNvfvObPl934403cscdd2QlpmKhiU2pImCMof2tFZTPnI+4ctc0Hm8PEtm1jeob/oHqG/4hZ+UmDVl0A0efupuWFY8w7PJPZrUsYwwty5fhP2MerSmJuOuZlUnEiR3ZT/zoARChbNgo3ENGZvxzWbx4MbfddhtvvPEG7e3tnH322axdu5bly5efsFxTUxPV1dUMHTo0o+UXs5LqPKJUqerY+Bq7vnUTbWv+mNNyw+++DcZg1c7JablJvsln4Jsyk5YXH8p6WaFtbxLd00TVRdf2upy43Hiqx+CdWI+rPEDs8F4iOzcTbz1GJkdyqqysZNGiRXziE59g6dKlANx8882sXLmS5557DoCOjg6+8IUvcPvtt2es3FKgiU2pIhDZYXfZ7tjyek7LDTWuA8BXc1ZOy01VtehGwk1vEd6e3W7rweUPI16LyvMuT2t5l8eHd/RkPGOmgstFdN92onuaSIQ7MhbT0qVLWbduXWdi8/v9PP7443znO99h2rRpjBgxgnnz5nHzzTd3vubBBx88obv/yy+/nLF4ikVJJTa9jk2VqvCurQCEtq3LbbmN6ygbMY6yISNyWm6qqgXXQJmHYy88mLUyTCxKcNVjVDR8AHdFVb9e6y4P4B0/jbIR40iEO4g0byF2ZH9G4lqyZAnGGKZPn945bebMmbzwwgts2bKF3/zmN9x9993s2LEDgI997GMcOHDghO7+F154YUZiKSYlldj0OjZVqiLNdmILN63L6XVdocb1WLWzc1Zed9yB4VQ2fJDgiocxWbpYum39cuIth6i66LoBvV5EKBsyAt/E6bj8lcSO7s9otWRPlixZQlNTE5MmTcp6WcWkpBKbUqUq0rwVscpJtAeJ7mnMSZnx1qNE976LlcdqyKSqRTcSbzlM29r/y8r6gy/9HldgGBWzFg5qPeIuw1UxFBJxTCz3I5YomyY2pQpcvPUo8aP7CVxwJQChrW/mpNxw01sA+Gpm5aS83lTMXoh76CiOPZ/56sh4e5DW1c8SuPBqxOPtnD7QMy6XZV8zZjLY1pZppXi7slSa2JQqcMlqyMrzLkesckKNuUlsyY4j1tT8n7GJu4yq911H2xv/R+zogYyuu/W1ZzCR0AnVkJZlcejQoQElAPFaIEKij4vW8yV5PzbLsvIdStbodWxKFbhI8xYAfBOmY02dlbMztlDjOjyjJ+OuLIzro6oW3cSRx+4kuGIZw676bMbWG1z+MJ7TJmFNOz6ix/jx42lububAgYEl0diRI7DvKGUHCrMjW/IO2qVKE5tSBS6yaxvitSgbOR6rdhZHn74XE42cUG2WDaHGdfjr5ma1jP7wja/DqpvLsRceZOiVn8nIeI2xw3tpf2slw6//uxPW5/F4Trq7dH/sv+c3HHvhAWp/sXnAo66ogdOqSKUKXLh5K96xNYjLhVU7BxOLEN6xMatlxo4dInaguSDa11JVLbyByHubCDeuz8j6WlY+CsZQtaD3i7L7y6qdjQm1E3Eu01C5pYlNqQIXad6Cd/w0AKw6ewSQbLezhZvsxGEVWGILzF+MeC2OvZiZTiTB5Q9j1c7BO7YmI+tLSl4iEdqWm2pjdSJNbEoVsESondiBZrzj6wAoGzEOd1U1oW1rs1pu54gjU8/Majn95a4YQuW5lxJc+SiJSGhQ6wq/t4nw9g0E+hhCayA8Y6biKg9oYssTTWxKFbDIrm0AnWdsIoJVOyfrHUhCjevwjK3BXR7IajkDUbXoRhKtRwc9bmbLimXgchOYtyRDkR0nLhe+qbM0seVJUSQ2EVkiIneLyIMi8sF8x6NUriTbaJJnbABW7Swiu7aS6GjNWrnhxvUFVw2ZVD5zPmXVYzj2wsAHRjaJBMEVy6iYvYiyIdUZjO44q2424fc2DvrMUvVf1hObiNwrIvtF5O0u0y8Vkc0isk1EvtzbOowxjxpjPg3cAtyYzXiVKiSRnVvAXYZ39OTOaVbtHDCGUIY6UHQVO7KP2OE9BZvYxO2mauENtK97keihPQNaR8c7rxI7uDsr1ZBJVs1siEWzPnizOlkuztjuAy5NnSAibuBHwGXADGCpiMwQkTNF5Mkuj1EpL/2q8zqlTgnhXVvxjpmClHk6p1m1dsLJVgeSZMIshKG0elK18AZIJAgu//2AXt+y4mHEqqDynOxVAFl1TgeSHF1Qr47LemIzxiwHDneZfC6wzRjTZIyJAA8Ai40xbxljruzy2C+2/wCeMca80V05IvIZEVkjImsGelGlUoUmtUdkkruqGs+oiVlrZws1rgOXC9/kmVlZfyZ4x0zBP/1cjr3wYL9HB0lEQrS+8iSB86/A1eVO2ZlUNnwM7qGjCOf4jgwqf21s44CdKc+bnWk9+TzwfuB6EbmluwWMMT81xjQYYxpGjhyZuUiVypNENEx07w684+pOmuernZW1M4Fw43q84+pw+Suysv5MqVp0I9HdTYT6eY+6ttefI9EezGo1JCQ7+szKeg9WdbKi6DxijPlfY8zZxphbjDF39bSc3o9NlZLonnchEcc74eTEZtXOIXagmdixgxkt0xhDqGldZ3VnIQtceBXi89PSz/u0tSx/GPew0yg/Y16WIjvOqp1DZHcj8baWrJeljstXYtsFTEh5Pt6ZNih6PzZVSpKDH3d3xpatC4Bjh/cQP3oAa2rhJzaXv5LABVcRXPUYiXB6Aw7Hg4dpW/s8VfOX5GSoK6t2NhjTecG7yo18JbbVQJ2ITBERL3AT8PhgV6pnbKqURJq3gEi3o2JYU84Elyvj1Vzh5IXZBdojsquqhTeQ6Gil9c9/SGv54MtPQixKYIA3FO2vZAccvZ4tt3LR3f9+4BWgXkSaReSTxpgYcCvwLLAReMgYs2GwZekZmyolkeateEZNxOXznzTP5a/AO34aoQx3TAg1rgd3Gb5Jp2d0vdnin3E+nlETaXnhgbSWb1nxMN4J9fgmn5HlyGzuwHA8oyd3juSiciPro/sbY5b2MP1p4Olsl69UsQo3bz3hwuyurNrZtK5+FmNMRka6B7tHpG9CfbfJtBCJy0XVohs49ND3iB5oxjOy51uxRPbtILRpNSNu/krGtlc6rJpZdGxenbPyVJF0HkmXVkWqUmHiMaJ7mnpPbDWzSQSPENu/s8dl+lWmMXZiK5JqyKSq930IjKHlxd/1ulxwxSMABOZfk4uwOlm1s4kd3J3xG6SqnpVUYtOqSFUqovvfw0TDJ13DlqrzAuAMtbPF9u8kETxSsCOO9MQzagL+mfNpefEhTCLR7TLGGFqWP4x/xgW9ntVlg470n3slldiUKhW99YhM8k08HfH4MnbATLYDFVtiAxhy8Y1E9+2gY+Ofu50fblxHdHcjVe/LTaeRVL4sdfRRPSupxKZVkapURJq3APRaFSllHnxTZmY0sUmZF+/E+oysL5cqz7sMl7+yx2vaWpY/jHh8VJ5/RY4jA5dVjnfC9Ix39FE9K6nEplWRqlREmrfZQzL1cdsYq3Y2oab1mHhs0GWGGtfjnXQ6Lo9v0OvKNZevnMoLryb46pMkOtpOmGdiUYIrH6Xi7A/grsjPscFyRorp7/BfamBKKrEpVSrCzVt6PVtLsmpnY8IdnVWXA2USCcJNhXurmnQMWXQjJtRO8JUnTpjevn4F8ZZDVGV5CK3eJDv6RPe/l7cYTiWa2JQqMMYYIrt67+qfdLxjwuDab6L7tpNobynoEf37YtU34Bk79aTqyJblD+OqHEbFnIvzFNnxzymsHUhyoqQSm7axqVIQO7gLE2rvtUdkkmf0FFzlVYNuvynmjiNJIsKQhTfSsfHPRPa8C2CPSvLaM/a4kh5v3mLzTZyOeC3tGZkjJZXYtI1NlYLIrm1A7x1HksTlysgI8uHG9YjXSiuZFrLA+64Hl6vzmrbW1/6AiYTyWg0JTkefyWdoYsuRkkpsSpWCyE67R6QvjcQGdvtN+L1NJMIdAy4z1LgO3+QzTrihaTHyVI+h/Kz30fLSQ5h4nJblD1M2agJW/Tn5Di2jHX1U7zSxKVVgIru24q4ajruqOq3lrbrZEI8R3j6w4VZNPE6o6a2iroZMNWTRDcQO7ia48hHa31pB1YLrcjqEVk8y1dFH9a2kEpu2salSEO7mrtm98dUMbmSLyJ4mTKitZBJbxTmX4KoYwr67vwKJBFUX5XYIrZ7oCCS5U1KJTdvYVLEzxhBp3trriCNdearH4B4+esAHzGK7VU1fXF6LwPwlmFAbvppZ/dqW2dTZ0UdH+s+6kkpsShW7+LGDJFqPptVxJJVVM2vAiS3UuA6xyru971uxGnKxfVORqvddn+dIjhOXC6vmLB1aKwc0sSlVQDrHiOxvYqudQ3RPE/HWo/0uM9S4DmvKmTm5o3SuWDVnMfG//sjQSz6W71BOYNXOIbxjI4lIKN+hlDRNbEoVkONjRPav271Va1cj9reay8RjhN99u2SqIVNZU2YWXLL21Q6uo49KjyY2pQpIZNdWXP5KyoaP7tfrkh0/+nuhdqR5KyYSKuoRR4pJ5w8Q7UCSVSWV2LRXpCp24Z12x5H+dk93Vw7FM3Zqv9tvSmHEkWJSNnwM7mGn6Uj/WVZSiU17RapiF9m1Fe+EgfXis2pm97sqMtS4Dld5AM/oKQMqU/WPiDgdfbQDSTaVVGJTqpjF244RP7JvwN3TrdrZxA/vJXpoT9qvCTWuwzf1LMSlh4JcsWpnE93dSLytJd+hlCzdm5UqEMd7RA5svMbOEeQb02u/MdEIke3vaPtajnV+Tk3r8xxJ6dLEplSBGGgf8tfIAAAgAElEQVRX/yTf5DPAXUZoa3qJLbxzEyYW0fa1HDve0UerI7NFE5tSBSLSvAXxWnhGThjQ610+P76J0wmlecYWarTPGEqxq38hcweG4Rk9RTuQZJEmNqUKRGTXNrxjpw7q2iurdg6hbeswiUSfy4Yb1+GqHIZn1MQBl6cGxqqdlfYPENV/mtiUKhD9Hfy4O1btLBLtLUT3NPW5bKhxHVbNWQUx8v2pxqqZTezgbmJH9uc7lJJUUolNr2NTxSoRaid2oHnQA/ZatXOAvkcgSURChN/bpO1reWLVOSP961lbVpRUYtPr2FSxiuzeBsbgnTC4Mzbv+DrE5ye0tfeOCeEdGyEe0/a1PPFNmQkud9odfVT/lFRiU6pYRZq3AQz6jE3cZVhTz+rzjC3cOeKIdvXPB5evHO+Eej1jyxJNbEoVgEjzFnCX4R09edDrsmpnE373bUw00uMyocZ1uIeMoKx67KDLUwNj1c62O/oYk+9QSo4mNqUKQKR5K97RkxGPd9DrsmpnY6Jhwjs39bhMqHE9Vs0s7TiSR1btbBKtR4ju25HvUEqOJrYMSYTaaXvzxXyHoYpUJnpEJvmckS16ar9JhNuJNG/Gp9WQeXX8Qm2tjsw0TWwZcvixH7Pr2x/uvOhVqXSZaITo3u0DHnGkK8+oibgCw3psvwm/uwESCe0RmWe+idMRr9XZ3qkyRxNbBhhjCK56DICWFcvyHI0qNpG970IinrHEJiLOhdrdJ7bOW9VM1TO2fJIyD77JZ/TZg1X1nya2DAhv30B0dyNiVRBc+SgmHs93SKqIdI4ROcgekams2llEmreQ6Gg7aV6ocT3u4aP7fTNTlXlW3RxC776FicfyHUpJ0cSWAcFVj4G7jJF/9TXiR/fT/vbKfIekikikeQuI4B1Xk7F1WrVzIJEg9O5bJ80LN63Ts7UCYdXMxoQ7iOzcku9QSkrBJzYROV1E7hKR34vI5/IdT1fJasjysy6iatENuMoDBFc8ku+wVBGJNG/FM3ICLl95xtZpdXYgObGaK9HRSmTXNm1fKxBWrdOBRK9ny6isJjYRuVdE9ovI212mXyoim0Vkm4h8ubd1GGM2GmNuAW4A5mUz3oEIbX2D2IFmquYtxuW1qDzvcoKvPkUi3J7v0FSRCDdvzViPyKSyISMoGzn+pANmqOktMEYTW4HwjJ6Cq2KIjvSfYdk+Y7sPuDR1goi4gR8BlwEzgKUiMkNEzhSRJ7s8RjmvuRp4Cng6y/H2W3DVY4jHR8U5lwBQddF1mFAbbWv+lOfIVDEw8TjR3Y14x9dmfN1WzeyTOpAkO45oV//CIC4XVs1Zem+2DMtqYjPGLAcOd5l8LrDNGNNkjIkADwCLjTFvGWOu7PLY76zncWPMZcDN2Yy3v0w8TvDlJ6iYczHuiioA/DMuwD18tPaOVGmJ7n8PEw1n/IwN7IF2Y/t3Ejt2qHNauHEdZSPGUTZkRMbLUwNj1cwm/N4mEpFQvkMpGfloYxsH7Ex53uxM65aILBSR/xWRn9DLGZuIfEZE1ojImgMHDmQu2l50bHqN+JF9BOZdfTwOt5uqeYtpW/sC8ZZDvbxaKYjsGtxds3tj1Zw8gnyocX1n+5sqDFbdbIjHCG/fkO9QSkbBdx4xxrxojPmCMeazxpgf9bLcT40xDcaYhpEjR+YktuCqxxCfn4qzP3DC9MBF10E8RvCVJ3MShypeyd5wmezqn2TVnAUihJ3qyHjrUaJ739WBjwuMr6b7jj5q4PKR2HYBE1Kej3emDVou78dmYlFaX32SyoYP4rJO7M3mm3wG3vHTtDpS9Smyaxvu4aM7q7IzyeWvxDuurrOdLdxkd/3XW9UUFk/1GNzDTuvzjgwqfflIbKuBOhGZIiJe4Cbg8UysOJf3Y2t/exXxlsME5i0+aZ6IEFhwLaFNq4nuey/rsajiFW7egi8L1ZBJVp3dgcQYoyOOFDB7pH89Y8uUbHf3vx94BagXkWYR+aQxJgbcCjwLbAQeMsZkpHI5l2dswVWP4iqvonzOom7nVy24BoCWlXpNm+qeMcYe1T8L1ZBJVs1s4i2HiB1oJtS4Hs/oybgrh2atPDUwVu1sorubiLdl/9h1Ksh2r8ilxpgxxhiPMWa8MeYeZ/rTxphpxpgaY8x3MlheTs7YEtEwrX9+hsrzLsXl8XW7jGfUBPzTzyW4Ypneb0l1K3ZoNybUlpUekUlW7RzAHkE+pCOOFKxkh56wDqKeEQXfeaQQta99gUR7kMC8Jb0uF7joOiLNWwm/+3avy6lTU+cYkVmsivRNOh0p89K29v+I7d+p7WsFSm9hk1klldhyVRUZXPUY7qrhlM/sfSCUwAVXQpmHoHYiUd04ntiyd8YmHi++yWcQXGU3Y+uII4XJXTkUz+gpmtgypKQSWy6qIhOhdlrX/JHK869Eyjy9LusODKNi9iJadMR/1Y3Irq24AsMoG1Kd1XKsutkY5+Jf39Qzs1qWGjirdraOGZkhJZXYcqHtjecw4Q4CF17d98LYQ2zFj+yjY8PLWY5MFZvIzi34sthxJCl5obZnbA3u8kDWy1MDY9XOJnZoD7Ej+/IdStErqcSWi6rI4MrHcA87Df/p56W1fMXZ78flr6RlxcNZi0kVH2OMPfjxhOxVQyZZdXZi02rIwtY50r9WRw5aSSW2bFdFxttaaFv7PIELr0Lc7rRe4/L5qTz/clpffZpEuCMrcaniE285RKL1SFa7+id5xtRQMfcvur3mUhUO35SZ4HLrSP8ZUFKJLdvaVj+LiYb7fYCoWnAdiY5W2l5/LkuRqWKTix6RSeJyMe6ff0Vlwwf6XljljctXjm9ivV6onQElldiyXRXZsuoxykaOx6qb26/X+c+4EPew02hZrtWRyhZpdsaIzEFiU8XDVzObUOM6vfZ1kEoqsWWzKjLecoj29csJzFuMiPTrteJ2UzV/CW1vvkA8eCTjsaniE2neilgVlFWPzXcoqoD4p80l0XqU6J6mfIdS1EoqsWVT8M/PQDw24HaKwIJrIRbVEf8VYHf1946v6/ePJFXarPpzAOjYvCbPkRS3tBKbiCwTkStE5JRNhMFVj+EZW4Nv8hkDer1vyky84+sIanWkAsLNW/Fl8cJsVZy8Y2twVQ4lpIltUNJNVD8GPgxsFZF/F5H6LMZUcGLOdWiBeVcP+Bd2csT/jk2vET3QnOEIVTGJt7UQP7wX77jafIeiCoy4XPinna1nbIOUVmIzxjxnjLkZmAtsB54TkZdF5OMi0vvwGzmUrc4jwVeeBGMIXDi47tJV8+0R/4MrdMT/U1nnXbNzcA2bKj5WfQORnZt1pP9BSLtqUUSqgY8BnwLWAj/ATnR/ykpkA5CtziPBVY/hnTQD3yAPRJ7TJmJNP4eW5Q9rr6dTWGdX/xxcw6aKj7++AYDQ5tfzHEnxSreN7RFgBVAOXGWMudoY86Ax5vNAZTYDzLfogWZCm9dQlaGLW6sWXEukeQvh7Rm5BZ0qQpHmLYjHh2fUxHyHogqQVTMbXG6tjhyEdM/Y/tcYM8MY811jzJ7UGcaYhizEVTCCL9ujolfOS29syL4ELrwK3GUZHfE/HjyigywXkUjzNjxja9IevUadWlz+CnyTZ2hiG4R0E9swEbm2y+MvRGRUVqMrAMFVj2HVzsF72qSMrM8dGE7FnMyN+N+yYhlNnz2bvT/4G63eLBKR5i349MJs1Qt/fQOhbW9g4rF8h1KU0k1snwR+BtzsPO4GvgSsEpG/ylJs/ZbpziOR3Y2Em97K+Bh7VQuuJX54Lx3vvDLgdZh4nAO/+jZ7f3Ar7qpqgi8/zrE//iqDUapsSITbiR7YqSOOqF5Z9Q2YUDvhHRvzHUpRSjexeYDTjTHXGWOuA2YABjgPO8EVhEx3HgmuehxEqLzwqoysL6mi4QPOiP8Dq46Mt7Ww+z8+xpHHfsyQSz7K5B+upHzOxRy47xuE9G7dBS2yqxGMyerNRVXx8zsXauv1bAOTbmIbb4xJvUnQfmCCMeYwEM18WIUh+PLj+E8/D0/1mIyu1+Urp/K8y2l99SkSzg0g0xXZ3ch7X7mCtnUvMerT/85pn/4uLo+P0bf+AFdgGHv++xYSHa0ZjVdlTmdXfz1jU70oGzEO9/DR2s42QOkmthdF5EkR+aiIfBR4zJlWARzNXnj5E35vE5Gdm9O+oWh/BRZcQ6I92K8R/9vWvsB7X76CROsRxn/9QYZe8pHOeWVDqhnzdz8mum87+37yJW1vK1CR5q3gcuMdPSXfoagCJiL4pzXQsUUT20Ckm9j+Bvg5MNt5/BL4G2NMmzFmUbaCy6fgqsfA5aLygiuzsv7ymfNxDx2VVnWkMYbDj9/Fru/+FWUjxzPx35+h/IwLTl7njPOpvvGLBFc+Qsv//TYbYatBijRvxTN6MuLx5jsUVeD89Q3E9u8kdnhvvkMpOmV9LSAibuA5J4GdEgMdGmMIrnqM8pnzKRsyIitliNtNYP4Sjv3hPuLBI7gDw7pdLhEJse+ufyK4/PdUnn8lo2/9Pi6rvMf1Dl9yKx0bXmb/vV/DmnY2vonTsxK/Ghi7R6S2r6m+Wc6F2h1bXidw/hV5jqa49HnGZoyJAwkRyc5tqQtQuHE90b3bs37H4aoF12JiEYKvPtXt/NjhvTR//TqCy39P9Y1fZMw//KTXpAZ2whz9hTtwlVex578/SyLUno3Q1QCYaITI3u3avqbSYk2ZiXh82oFkANKtimwF3hKRe0Tkf5OPbAaWT8FVj0KZh8rzLstqOb6pZ+IdV9vtxdodW95gx5cuI9y8mTFfvIfqD92W9gDMZUNHMuZv7yCyaxv7f/bPmQ5bDVBk73aIx7RHpEqLeLxYNbO0A8kApJvYlgFfA5YDr6c8CkomrmMziQTBlx+nYvZC3JVDMxjdyTpH/H/n1RNG/G958Xc0f+M6XB4fE7/zBIEBJNjyM+cz/PrbaHnxIY69+FAmw1YDdLxHpI7qr9Jj1TcQalrf797Tp7p0R/f/BfAQ8Kox5hfJR3ZD679MXMcW2rya2KE9Wa+GTAoscEb8X/kIJh7jwC9uZ+8df4tV38DE/3ga36TTB7zu6utvw3/Ghey/+yuEd27JVMhqgFpf+wPi8+vtalTa/PUNEIsSblqf71CKSrqDIF8FvAn8wXk+W0Qez2Zg+dKy6jHEa1HZcElOyvOeNgmrvoGWF3/Hru9+hCNP/IShl32c8V/9Le7A8EGtW9xuxvztHbh85ez5n1tIhLW9LV8ie5oIrnyEoZd8FJev93ZSpZI6O5BodWS/pFsV+U3gXJxr1owxbwJTsxRT3ph4jNZXnqRi7vtx+StyVm7VgmuJ7NpG+9urGPXZ/2LUJ7+DlGXmNndlw0cz+gs/JLJzM/vv/XpG1qn67/Cy/0XKvAy7+nP5DkUVkbIhI/CMmaqJrZ/67O7viBpjjnXpvJDIQjx51bHhFeLHDhKYn5tqyKTAgmsJbXuTIX+xFP/p52V8/RWzFzL8ms9zeNn/Uj7zQqoWXJvxMlTPIvt20PLSwwy97BOUDR2Z73BUkfHXN9C29nmMMWl3IDvVpXvGtkFEPgy4RaRORH4IvJzFuPKiZdVjiFVBxZyLc1quu6KK0bd+PytJLan6xn/EP/1c9v3kS0R2N2atHHWyw8t+iLjLGL5Yz9ZU/1n1DcSPHSS6b0e+Qyka6Sa2zwNnAGHgfqAF+LtsBZUvQxbdwKiPfwuXz5/vUDJO3GWMvu3HiMdrX9+mvaxyInqgmZaXfkfVXyylbPjofIejilDnHbU3rc5zJMUj3V6R7caYfzHGnGOMaXD+L7kjo3/6uQz5i6X5DiNrPNVjGX3rDwhvf4cDv7g93+GcEg4/+iMAhi/5mzxHooqVd/w0XOUBbWfrh7Ta2ERkGvCPwOTU1xhjcltnpwat8uz3M+zqWzjy+F2Un3FB1gZ5VhA9tJuW/7ufIYtuwjNiXL7DUUVKXC6saWdrYuuHdDuP/A64C/tmo4O/7bPKqxEf/godm1az785/xDf1LLyjJ+c7pJJ05NEfY0yC4dfcmu9QVJHz1zdw6KHvEW9rwV1Rle9wCl66bWwxY8ydxpjXjDGvJx9ZjUxljZR5GHPbneAus9vbouF8h1RyYkf2cey531C18EN4Rk3IdziqyFn1DWAMoa1v5DuUopBuYntCRP5aRMaIyPDkI6uRpRCRChFZIyLZuYfMKcgzcjyj//q/CTe9xYF7v673b8uww4/diYnHGH7N5/MdiioBVu0ccLm0OjJN6Sa2jwJfxO7inxwnss8tLCL3ish+EXm7y/RLRWSziGwTkS+nUf6XsIf0UhlUee6lDFv81xz706849ND38h1OyYgdPcCxP/6Sqouu02pelRHu8gC+idN1pP80pdXGZowZ6O1+7wPuwL4xKdB5f7cfAR8AmoHVzvBcbuC7XV7/CWAW8A5gDTAG1YsRf/kvxFsOcfh3/427cijDrvhUvkMqekeeuAsTizD8Wj1bU5lj1Z9DcPnDmHgccbvzHU5B6/WMTUT+KeX/D3WZ9299rdwYsxw43GXyucA2Y0yTMSYCPAAsNsa8ZYy5sstjP7AQOB/4MPBpEek2ZhH5jFNduebAgQN9haYcIsJpt/wXleddzoGff51jLzyY75CKWrzlEEef/QWBCxfjHVuT73BUCfHXN5DoaCWyc3O+Qyl4fVVF3pTy/1e6zLt0gGWOA3amPG92pnXLuWbu74DfAncbY7odyssY81PnGruGkSN12KL+EHcZo//uR5SftYB9d/4DwT8/k++QitaRJ+/GhDsYft3f5jsUVWJ0QOT09ZXYpIf/u3ueVcaY+4wxT/a2TCbux3aqcnl8jP3ivVi1c9j7P5+jff2KfIdUdOLBIxx95l4qL7gS3wS9majKLM+oibiHjtTEloa+Epvp4f/unqdrF5Da/3m8M23QMnE/tlOZy1/BuK/8Es/Yqez6z4/TsUW7FvfHkad/RqKjlerrSm60OVUARAT/tAZCWzSx9aWvxDZLRFpEJAic5fyffH7mAMtcDdSJyBQR8WJXd2bk3m56xjZ47sAwxn/tfsqGjmLXv/0l4fc25TukohBvO8bRp+6h8rzLB3VzWKV6Y9U3EN27ndhR7UfQm14TmzHGbYypMsYEjDFlzv/J533eMExE7gdeAepFpFlEPmmMiQG3As8CG4GHjDEbMvFm9IwtM8qGncb4rz2AeHw0/+tSIjqqeJ+OPn0vifYWhl+vZ2sqezoHRNaztl6lex3bgBhjlhpjxhhjPMaY8caYe5zpTxtjphljaowx38lmDGpgPKdNZPzXH8BEI+y6/UZih/fmO6SCFW8PcuSpu6lo+CDWlJn5DkeVMN/UM5Eyr7az9SGriS3XtCoys3wT6hn3L78m1nKI5n9dSjzY9coNBXDsD/eRaD1K9fW35TsUVeJcXgvf1DM1sfWhpBKbVkVmnr9uDuO+9HOie7ez6zt/RaKjNd8hFZRERxuHn7iL8jkXY9XOync46hTgr28g3Lhex3jtRUklNpUd5WfOZ8xtdxJqWs+u//iE3qQ0xdE//pJE8AjV2ramcsSqPwcTDRN+9+2+Fz5FlVRi06rI7Kk891JG//V/0/H2SvZ8/68x8Vi+Q8q7RLidI4/fSflZF3U26iuVbcl9rUPvqN2jkkpsWhWZXVULP8TIj3+Lttf+wL47/xGT6HYQmFPGsT/9hvixg1R/SNvWVO6UDRuF57RJOiByL9K90ahSAAy74lMk2o5x6KHv4aqoYuTHbkckp4PQFIREuIPDj/4I/8x5+E8/L9/hqFOMVd9A+/oVGGNOye9fX0rqjE3lxvAP/T1Dr/gUR5/6GYd///18h5MXx56/n/jR/doTUuWFv76B+NH9xPbv7HvhU1BJJTZtY8sNEWHkR79JYP4SDv3ue8SO7M9p+YlIiD0/uJXw9ndyWm5n+dEwRx75Ef7p5+I/44K8xKBObX4dELlXJZXYtI0td8TlYvj1t0EiQfDljIyIlra2NX8iuGIZLSsezmm5SS3PP0js8B6Gf+g2rQZSeeGdMB2xKujYrB1IulNSiU3llm98Hb7JMwiufDSn5basWAZAKA+DNJtohMOP/BBr2tmUn3VRzstXCkDcbvzT5moHkh5oYlODEph/DaGtb+RsPMl48Ahta5+HMg+hxnU5v+ygZfnviR3cRfX1eram8suqbyD83kYdNKEbJZXYtI0t9wLzFgPk7Kwt+OpTEIsy7PJPYiIhwjs25qTcpJYVj+CdUE/5nEU5LVeprvz150AiQWjr2nyHUnBKKrFpG1vueUaOxz/9XIIrHsGYgd6iL33BFcvwjqtlyCUfBSC0NXfVkSYWJbT1DcpnztOzNZV3Vt0cENEOJN0oqcSm8iOw4BoizVuIZPnsKXqgmY53XiWw4Fr7bsJV1Tn9tRresRET7sDSUUZUAXBXDME7oV4TWzc0salBC1xwJbjLaFn5SFbLSVZ3BhZcg4hgTZtLx5bXs1pmqo5NrwHgn35OzspUqjf++gZCW14/5UcB6koTmxo0d1U1FbPeR3Dlo1n9grWseARr2tl4T5sEgFV3NtHdjcRbj2atzFShzWsoqx6DZ8S4nJSnVF+s+gYS7S1Edm3NdygFRRObyojA/CXEDu7K2p19wzs2EnlvI1ULru2c5q+bA0Bo25tZKbOrji1r7AZ7pQrE8QGRtToyVUklNu0VmT+V51yCeC1aVmSnOrJlxTJwuam88OrOab7a2SBCKAfVkdGDu4gd3K3ta6qgeEZPwV01nNAWvVA7VUklNu0VmT8ufyWVDR+k9ZUnMLFoRtdtEgmCKx+hYvZCyoZUd053lwfsxvMcXKidvBBWz9hUIbHbmhu0A0kXJZXYVH4F5i8h3nKY9rdWZnS9HRv/TOzgbgILrjlpnlU3l9C2tVm/1KBj02rE58c3eUZWy1Gqv/z1DUR3NxFvOZTvUAqGJjaVMeVzFuGqGJLx6sjgimWIVU7lOZeeNM9fN4dE61Gie5oyWmZXHZvXYNXOQco8WS1Hqf6ynFqEXPYQLnSa2FTGuDw+Ks+/gtbXniER7sjIOhPRMMFXnqTynEtxWeUnzbemnQ1kd9zIRKid8PYN2s1fFSSr5ixwl+kdtVNoYlMZVTV/CSbURtvrz2Vkfe1rnyfRduyE3pCpvOPqcPkr6cjiCCShbWshEdeOI6oguXx+rCln6oDIKTSxqYzyz7gA97DTMnaxdsvyR3BXVVM+q/uR9MXtxlczO6tDayUb5v11c7NWhlKDYdU32IOCRyP5DqUgaGJTGSVuN4F5i2l/43nibYO77CLe1kLb638iMG8x4i7rcTn/tLmEt79DItw+qPJ60rFpNd7x03AHhmVl/UoNlr++ARMJEdq+Id+hFISSSmx6HVthqJq/BBOL0Prq04NaT+ufn8ZEwwR6qIZMsqbNhUScUONbgyqvOyaRILTlda2GVAUtuX9qdaStpBKbXsdWGHw1s/CMnkJwkNWRwRXL8IyebI9i3gvLqSLMRnVkZNdWEm3HtOOIKmie6jGUjRyv17M5SiqxqcIgIgQWLKF9w8vEjuwb0Dpih/fS/vaqzgGPe1M2ZASeUROzktiSQxX59YxNFTh/fQMdm1fn5PZRhU4Tm8qKqvlLIJEg+PITA3p9cNVjYEyPvSG7sqbNzUqX/9CW1birhuMZMzXj61Yqk6z6BuKH9xI7uCvfoeSdJjaVFd5xdfimzCQ4wIu1W1Ysw1czC+/YmrSWt+rmEju8h+ih3QMqrycdm9ZgTWvQG4uqguevb8A9dJQmNjSxqSwKzL+G0La1RPZu79frIru2Em56K+2zNUhtZ8vcjUdjxw4R3dOk1ZCqKPimnMnUu9fiP/28fIeSd5rYVNYE5tkj8SdvEJquluWPgMtFYN7itF/jm3IGUubN6Ej/oc32SA7acUQVAxHRmgWHJjaVNZ4R4/DPOJ/gykfSbtA2xhBcsYzymfMpGzYq7bJcHh++qWdm9IytY/MaKPPgm3pWxtaplMo+TWwqqwLzryHSvJXIjnfSWj60eQ3R/e8RuCj9asgkq26OPfpChm6bE9q8BmvqWbh8/oysTymVG5rYVFYFLrgC3GVpj/jfsmIZ4rWoPPeyfpdl1c3FREKE39vY79d2lYiGCTWu0/Y1pYpQwSc2EVkoIitE5C4RWZjveFT/uAPDqZi1kOCqRzGJRK/LmliU1leeoKLhA7jLA/0uy5/Bkf7D776NiYY7bwmilCoeWU1sInKviOwXkbe7TL9URDaLyDYR+XIfqzFAK2ABzdmKVWVPYMESYgd3d3bG6EnbupeItxzuV2/IVGUjx+MeOjIj7WzJW4D4688e9LqUUrmV7TO2+4AT7g4pIm7gR8BlwAxgqYjMEJEzReTJLo9RwApjzGXAl4DbsxyvyoLKhksQr0VLH70jgyuW4aocRsXsRQMqR0SwaufQsXXwPSNDm9fgGTWRsmGnDXpdSqncympiM8YsBw53mXwusM0Y02SMiQAPAIuNMW8ZY67s8thvjEnWXx0BfD2VJSKfEZE1IrLmwIEDWXk/amBc/goqz7mE4MuP99ixI9HRRuvqZwlccCXi8Q64LP+0s4nubiIePDLgdRhj6Ni8Gku7+StVlPLRxjYO2JnyvNmZ1i0RuVZEfgL8Crijp+WMMT81xjQYYxpGjhyZsWBVZgQWXEMieIT29Su6nd+6+g+YcEefI/n3xZrmXKi97c0BryO6/z3iRw9oxxGlilTBdx4xxiwzxnzWGHOjMebFfMejBqZi1kJclUN7vAFpy/JllI0YN+iLoa2aWSBCxyAu1E7e+sOvHUeUKkr5SGy7gAkpz8c70wZN78dWuMTjJXD+FbS+9sxJNwSNHTtI+/rl9kj+rsHtki5/Jd4J0wc10n/HptW4ygN4J9QPKhalVH7kI7GtBupEZIqIeIGbgMczsWK9H1thC8y/BhNqp+31506YHlz1GCTiA+4N2ZV/2j3eVBQAAA4jSURBVFxC297s8/KCnnRsXoNVNxdxuzMSj1Iqt7Ld3f9+4BWgXkSaReSTxpgYcCvwLLAReMgYk5H7mesZW2Hzn34e7uGjT7pYO7jiEbyTZuCbOD0j5Vh1c0i0HiW6p6nfr423tRB5b6O2rylVxLLdK3KpMWaMMcZjjBlvjLnHmf60MWaaMabGGPOdDJanZ2wFTNxuquYtpm3t88RbjwIQ2fMuoa1vUDWAIbR6YjkXancMoDoytPUNMAZLE5tSRavgO4+o0hKYfw3EorT++WkAgisfAREC85dkrAzvuDpc5YEBXajdsXkNuFydt8FRShWfkkpsWhVZ+HxTz8QzZiotKx7FGEPLimX4Z1yAp3psxsoQlwurdvaAbmET2rwa38TpAxrSSylVGEoqsWlVZOET5+ysY8Mq2tb8kejuJqoWXJPxcqy6uYR3bDypB2ZvTDxOx5Y3dHxIpYpcSSU2VRyq5i8BY9h35z8iZV4qL7gy42VYdXMhESfU+Fbarwm/txETatPr15QqciWV2LQqsjh4x9Xim3om8ZZDVMz9C9wVmT/DTraRhfoxbuTxC7O144hSxaykEptWRRaPwHy7+nEgNxRNR9mQajynTerXLWw6Nq3GPew0ykZN6HthpVTBKst3AOrUNPSDH8Hlr6TynEuyVoZVN5f2d15Je/mOLWvw1zcgIlmLSSmVfSV1xqZVkcXDZZUz9AN/ibiz99vKmjaX+OG9RA/t7nPZ2OG9xPbv1PY1pUpASSU2rYpUqTrb2dKojuxw2tf0wmylil9JJTalUlmTz0A8vrSuZ+vYvAbxWlhTZuYgMqVUNmliUyVLPF58U2amNQJJaNNqrJpZg7rJqVKqMGhiUyXNmnY2oab1Pd65GyAR7iD07ltaDalUiSipxKadR1RX/ro5mEiI8I6NPS4TalwP8digb3KqlCoMJZXYtPOI6io50n9vNx4NbX4NAL+zrFKquJVUYlOqq7IR43APHUVHLz0jOzavwTO2BndVdQ4jU0pliyY2VdJEBKtuTo9nbMYYOjav0WG0lCohmthUyfNPm0t0TxPx4OGT5kV3N5IIHtH2NaVKSEklNu08orpj1SXb2d48aV7HptX2MjriiFIlo6QSm3YeUd2xamaBy0VHNyP9d2xZg6tyKN6xNXmITCmVDSWV2JTqjstfgXfC9G6H1gptXoN/WgPi0q+CUqVCv83qlOCfNpfQtjcxiUTntHjwCJHmrXphtlIlRhObOiVYdXNJtB0juqexc1qHM4akdhxRqrRoYlOnhORI/6nXs4U2rQaXG6t2Vr7CUkplgSY2dUrwjqvFVR44YUDkjs1r8E2ZictXnsfIlFKZpolNnRLE5cKqndN5CxsTixLatlarIZUqQSWV2PQ6NtUbq24u4fc2kgi1E96+ARMJ6YgjSpWgkkpseh2b6o01bS4kEoSa1usds5UqYWX5DkCpXPHXzQEgtOV1Qo3rKRsxDk/12DxHpZTKNE1s6pThrqrGM3oKoS1v0LFtLeUzzs93SEqpLNDEpk4pVt0cWlf/ARNq12pIpUpUSbWxKdUXa9pcTKgdQDuOKFWiNLGpU4rfGelfrHJ8k2bkORqlVDZoYlOnFN+k0xGPD6t2LuLWmnilSpF+s9UpRTxeRn7sdrxjp+Y7FKVUlmhiU6ecoZd8JN8hKKWySKsilVJKlZSCP2MTERfwr0AVsMYY84s8h6SUUqqAZfWMTUTuFZH9IvJ2l+mXishmEdkmIl/uYzWLgfFAFGjOVqxKKaVKQ7bP2O4D7gB+mZwgIm7gR8AHsBPVahF5HHAD3+3y+k8A9cDLxpifiMjvgf/LcsxKKaWKWFYTmzFmuYhM7jL5XGCbMaYJQEQeABYbY74LXNl1HSLSDEScp/GeyhKRzwCfAZg4ceKgY1dKKVWc8tF5ZBywM+V5szOtJ8uAS0Tkh8DynhYyxvzUGNNgjGkYOXJkZiJVSilVdAq+84gxph34ZDrLishVwFW1tbXZDUoppVTByscZ2y5gQsrz8c60QdP7sSmllMrHGdtqoE5EpmAntJuAD2eygNdff/2giOwY4MtHAAczGU8R0Pd8atD3XPoG+34nZSqQfMpqYhOR+4GFwAinE8g3jDH3iMitwLPYPSHvNcZsyGS5xpgBN7KJyBpjzCk17Lu+51ODvufSd6q9355ku1fk0h6mPw08nc2ylVJKnZp0SC2llFIlRRPbyX6a7wDyQN/zqUHfc+k71d5vt8QYk+8YlFJKqYzRMzallFIlRRObUkqpknLKJra+7jAgIh8TkQMi8qbz+FQ+4sykdO6qICI3iMg7IrJBRH6b6xgzLY3P+X9SPuMtInI0H3FmShrvd6KIvCD/v72zj5WivOLw82sVBaFehFq/Gq6iRKkxVNuEaAv0I8TSRPGjjURFbGOalvjRVGqM0bTGVAn/NLZNWm1alKhUb/24bSxIFSS9XlDKlYUWUiyShmCisYZITa2W0z/eAx3W3etc3J1xZ8+TTO7Zed9953dmd+fkfWfuOdKQpJqkOWXobCU5fJ4k6Wn3d42kk8rQ2UqaVU7JtEvS3X5OapLOLlpjqZhZ122k/5/7O3AKMArYBEyt67MA+GnZWgv2+TRgCBjvr48tW3e7fa7rfy3p/ypL197Gz/ge4NtuTwV2lq27AJ8fAa5y+4vAsrJ1t8DvGcDZwJYm7XOAPwACpgPry9Zc5NatM7YDFQbM7D/AclLdtyqTx+drgJ+Z2RsAZvZqwRpbzUg/53nAQ4Uoaw95/DVS0V6Ao4HdBeprB3l8ngo84/bqBu0dh5mtBf45TJcLgfstsQ7okXR8MerKp1sDW94KA5f4NL5P0icbtHcSeXyeAkyRNCBpnaTzC1PXHnJXkpA0CTiZ/18AO5E8/v4AuMIzAT1JmqV2Mnl83gRc7PZFwDhJEwrQViYjraJSKbo1sOXhd0CvmZ0FrALuK1lPERxGWo6cRZq93Cupp1RFxXEZ0GdmTWv+VYR5wFIzO4m0XLVMUtWvAzcCMyUNATNJOWqr/jl3NVX/QjfjfSsMmNnrZva2v/wlcE5B2tpFnqoKu4B+M3vHzF4G/kYKdJ3KSCpJXEZnL0NCPn+/CTwMYGaDwJGkxLmdSp7f8m4zu9jMPg3c4vs6+iGhHLStikon0K2B7UCFAUmjSBe1/myHuvXoC4CtBeprB+/rM/A4abaGpImkpckdRYpsMXl8RtLpwHhgsGB9rSaPv/8AvgQg6QxSYHutUJWtJc9veWJmVnoz8KuCNZZBPzDfn46cDuwxs1fKFlUUH/pCo+3AzN5tVGFA0u3ABjPrB66TdAHwLukm7YLSBLeAnD6vBGZL+itpqWaRmb1enuoPRk6fIV0Ml5s/Ttap5PT3e6Ql5u+SHiRZ0Ml+5/R5FnCnJAPWAgtLE9wiGlVOAQ4HMLOfk+6fzgFeAt4Cri5HaTlESq0gCIKgUnTrUmQQBEFQUSKwBUEQBJUiAlsQBEFQKSKwBUEQBJUiAlsQBEFQKSKwBR2BpL05+twgaUwLjzlX0tQWjvfcB3jvXv97gqS+Yfr1SPrOoR4nCKpABLagStwAjCiwSfroMM1zSQl0W4KZnduCMXab2aXDdOkBIrAFXU0EtqCjkDTLa2r1Sdom6QHPrnAdcAKwWtJq7ztb0qCkjZIekTTW9++UtFjSRuBrkq6R9IKkTZJ+K2mMpHNJGWeWeK22yZKmeXLomqTHJI338dYo1XXbIGmrpM9KelTSdkl3ZLTvzdg3Sdrsx7yrgZ8nu/bNdWP07q/BJelTkp53fTVJpwF3AZN93xJJY5VqkW30sS7MjLNV0r1KtfeekjTa206V9EfXtlHSZN+/yM9TTdIPW/rBBkErKbtuTmyx5dmAvf53FrCHlPvuI6Q0WJ/ztp3ARLcnkrJMHOWvbwJuy/T7fmbsCRn7DuBat5cCl2baasBMt28Hfuz2GmCx29eTSsEcDxxByr85oc6HrwDPAWP89TEN/O0H5ru9MPPeXrwGF/AT4HK3RwGjs+2+/zDgY5lz8hKpRlcvKavONG97GLjC7fXARW4fSZoFzybVcpOf998DM8r+XsQWW6OtK1NqBR3P82a2C0DSi6SL9J/q+kwnLSMOSIJ04c/mgvxNxj7TZ0U9wFhSeqaDkHQ00GNmz/qu+0gFLPezPz3XZuAv5nn5JO0gJaPNpib7MvBrM3sLwMwa1dU6D7jE7WXA4gZ9BoFblCpCP2pm293Xg6QDP5I0A9hHKl3yCW972cxedPvPQK+kccCJZvaYa/u3+zGbFNyGvP9YUoLstQ10BUGpRGALOpG3M/Z/afw9FrDKzOY1GeNfGXspMNfMNklagCeCPkRN++r07WuiLw/D5rszswclrQe+Cjwp6Vu8N2n15cDHgXPM7B1JO0mzsKxmSOdx9DCHE3Cnmf1iBPqDoBTiHltQJd4Exrm9DjhP0qkAko6SNKXJ+8YBr0g6nBQI3jOeme0B3pD0eW+7EniWQ2MVcPX+JzglHdOgzwApOTN1mg4g6RRgh5ndDTwBnMXB5wBSlexXPah9AZg0nDAzexPYJWmuH+MI17kS+EbmPuWJko7N5W0QFEwEtqBK3AOskLTazF4jVWR4SFKNtGx3epP33Uq6rzQAbMvsXw4skjTkD1BcRXqYpAZMI91nGzFmtoK0dLnBl1JvbNDtemChpM00r3z8dWCLj3EmcL+lagwDkrZIWgI8AHzGx5lf518zriRVt6iR7gUeZ2ZPAQ8Cgz5WHwcH0CD40BDZ/YMgCIJKETO2IAiCoFJEYAuCIAgqRQS2IAiCoFJEYAuCIAgqRQS2IAiCoFJEYAuCIAgqRQS2IAiCoFL8DyywiiHl5DdfAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcFVX/wPHPYRFEEQU3EBVzRwTcQTT3vdxScc2lPbOe6unJekrtyXp6bDfNMjPNyiXT1NQgKzV3UVEBN1Rc2FzZZOee3x9z4Xcllgvcy2U579frvrx35szM987g/c45M3OOkFKiKIqiKGVlZekAFEVRlKpBJRRFURTFJFRCURRFUUxCJRRFURTFJFRCURRFUUxCJRRFURTFJFRCUcxKCDFDCLHP0nEoIISYIoQILmJ+XyHE9fKMKd/2vxBCvGmp7ZuLECJFCPGApeMoDyqhlCMhRJQQYmC+aXk/uEIIOyHE10KIK0KIZCFEqBBiWDHrdBVCfCWEiNH/4V4SQqwSQrQz53cxFSHEY0KIs/rvGy+E2CGEcNTPWyWEWFiCdZUpeemXz9HvR8OXW2nXWZFIKb+XUg7O/SyEkEKIVpaMyZCU8mkp5dtg+eRmSlLK2lLKS5aOozyohFKx2ADXgD6AE/AGsEEI4VFQYSGEC3AAcAB6A45AZ2APMKiQZWxMHXRpCSH6AO8Ck6SUjkB7YL1lo+Kg/gfA8BVjyg1UpGNQUQghrC0dg2ICUkr1KqcXEAUMzDdtBrCviGVOAY8UMm8hcBKwKmJ5D0ACjwFXgb366SOBcCAB2A20N1hGAq0MPq8CFurf9wWuAy8DN4BYYKZBWRdgK5AEHAHeLuz7Af8Efi5k3pNAFpAJpADb9NPnAheBZCACGKOf3h5IB3L05RP00+2AD/TfPR74AqhZyDaLOxZR+phPAYloyc/eYP5DQKh+nx4AvPMt+6p+2Qy0k4fOwAn9d/lRv77c/RwGPGywvC1wC+hUQFx7cv9GgAD98Ruh/zwACM3//YC9+nL39PsrsLhjW8B2dwP/1R/nJGAL4Gww/0cgTr+v9gId8v1NLQN26GMYqJ+2EKgFpAE6fWwpgBuQCrgYrKMzcBOwLSC2Bfrtf6ffv6eBNsBr+u92DRhsUH4mcEZf9hLwlMG83P3yuv4YRAFT8n2XL4Df9MvvAZoX9P9JX3YpsF1f9jDQ0qDsYOCcfp99rl/X45b+7TL2pWooFZgQohHaf4LwQooMBDZLKXVGrK4P2o/uECFEG2At8A+gAdp/6m1CiBpGhtYYrQbVBC1RLRVC1NPPW4r2w+4KzNK/CnNYH89bQogAIYRd7gwp5XLge2CR1GoJD+tnXUSrjTkBbwHfCSFcpZRngKf5/xpGXX3599D2oS/QSh/zPCO/Z0EmAEOBFoA32o80QohOwErgKbSk+iWw1fA7AZOAEUBdtNaBzWg/MM5ox2OMQdlvgakGn4cDsVLKEwXEtAftRw+043wJeNDg8578C0gpc+f76PdXbs2wqGNbkEfRjrErkA0sNpi3E2gNNASOox1PQ5OBd9Bq1nlNlVLKe8AwIEbeX0vcjbb/c00D1kkpswqJ7WFgDVAPLXEHoe33JsB/0I5RrhtoJwR10JLLx0KIzgbzGwP19ctOB5YLIdoazJ+CdvJUH+2kIv93NTQR7W+3HhCp3wcIIeoDG9GSngtaYulZxHoqHktntOr0QjuzSUE7g819pVLAWTHaGeku4Msi1hcJPG3weaR+nclAsH6aB9oZ0gMG5d4ENhh8tgKigb76z8XVUNIAG4P5NwA/wBqtVtHOYN67BX0/g/nDgG36uFOAjwDr/NstYvlQYJT+/QzDbQEC7ezX8AzQH7hcyLpmoP0oGh6fi/mO31SDz4uAL/TvlwFv51vfOaCPwbKzDOY9qN/nwmDaPoP97KY/jnX0nzcC/yok7gHAKf37X4HHgUP6z3uAsYXsn/zHudBjW8h2dwPvGXz2RKtRWhdQtq5+e04Gx/bbfGXy/51dzzc/ENivf2+NVvvpXkhsC4DfDD4/rP/7yv3bctTHU7eQ5X8GXjCIJRuoZTB/A/CmQdzrDObVRqspN82/n/VlVxiUHQ6c1b9/FO2EyPDv9xqqhqIUYbSUsm7uC3g2fwEhhBXamVUm8FwR67qNdmYIgJRyq36dLwL5axvXDN67AVcMltPp5zcx8jvcllJmG3xORftP1ID/vw6U6wpFkFLulFrtwxkYhfaj93hh5YUQj+pvVkgQQiQAXmhnhQVpgHZ96ZhB+V/10wtzyPD4SClb5psfZ/A+93sDNAdezt2OfltN0fZ1rvzHIFrqfznyz5faGfl+4BEhRF20xFvYWe9BoI2+RuuLVrtpqj/j7Y7W3GSswo5tYfIfa1ugvhDCWgjxnhDiohAiCS2hwv3HynBZY2wBPIUQLdCuESZKKY8UUT7e4H0acEtKmWPwGfTfTQgxTAhxSAhxR3/shueL9a7Uak65rlDIsZVSpgB38s03VNjfkFu+9Ui0prZKQyWUCkYIIYCvgUZo7eKFVecBfgdG6xNQcQx/uGLQfgANt9kU7YwZtD9yB4PyjY1YP2jt2dn6deVqZsyCUkqdlPJ34A+0JJE/ZoQQzYGv0JKsiz55hqGdyf2tPFp7dxpa231ugnCSUhb1A1la14B38iUjBynlWoMyhvHFAk30+z6X4X4DWI3W7DUe7cw1mgJIKVOBY8ALQJiUMhPtGs5LaDWsW2X6ZkXLf6yz0Pb7ZLQThIFoTWge+jKG37eors7/Nk9KmY5WM5iK1ty1prRBG9I3S/6Edq2tkf7vake+WOsJIWoZfG6G9v8oV95+EELURjtBKunNHLGAu8F6hOHnykAllIpnGdq1joellGnFlP0IrR12jRCipdA4op2lFmUDMEIIMUAIYYt2ETYD7UcItGakyfqzzKFo7fDF0p/9bQIWCCEchBCeaO3NBRJCjBJCTBRC1NPH3l2/rUP6IvGA4f37tdB+aG7ql5/J/yef3PLuudeC9DWvr9Dawxvql2kihBhizPcpoa+Ap4UQPfTfpZYQYkTuLdAFOIjWLPKcEMJGCDEKrTZh6Ge0C88voNU6irIHLdHmXi/Zne9zQfLv39KYKoTwFEI4oF2X2Kj/O3BE+5u6jXZy8m4J1xsPuAghnPJN/xatFjsSEyUUtNq8HfoTIv2t+oMLKPeWEKKGEKI32vWWHw3mDRdC9NL/7b2NVtMtaQ1sO9BRCDFafyfgbIw/masQVEKpQPRn4E+hJYQ4g+cgphRUXn/m6Yd2EXwfWpt7KNp/5mcK246U8hzaWd5naGeTD6MlsEx9kRf00xLQLjb+XIKv8RxaFT4Orb34myLK3gWeAC6g3SX0HfC+lDK3aedrtCaOBCHEz1LKCOBDtB/jeKAjWrNQrj/QbmCIE0LknpW/inat6ZC+6WUXYHgxNT//Ap5D6Vbcl5ZShui/yxL994pEf8G+kPKZwFi0C98JaMfjF7Qf4dwyaWhnzi3QEnVR9qAd972FfC7IAmC1fv9OKKJcUdagHec4wB54Xj/9W7RmoWi0u/EOFbRwYaSUZ9FuVLikj89NP30/2t1fx6WURTanlmBbyfq4N6Adu8lodyoaitPPi0FrenxaH2OuH4D5aE1dXbj/hgpj47iFVhtdhJaIPYEQDP4mKjpxfxOuoiiWIoQ4jHaR/xuDafOANlLKEv9AmZsQYjfwnZRyRTlv9w/gh/LarhCiL9r3LLD5SQixCu0GgjdMvF0rtGsoU6SUf5py3eaiaiiKYiFCiD5CiMb6Jq/paLch/2ow3xmtBrPcUjFWNPraYmcs/wCsWQghhggh6uqv67yOdh2nRLU7S7JYQhFCjBdChAshdEKIrkWUGyqEOCeEiBRCzC1g/mIhRIp5o1UUs2iL9mBqAtp1rHFSylgAIcQTaBf6d0opS3KXVpUlhFiN1mT5D30zVVXkj/asVW5T9GgjrqVWGBZr8hJCtEdrC/0S+Ke+DTp/GWvgPNotgteBo2jddETo53dFa+8fY6Y7dxRFURQjWayGIqU8o784XJTuQKSU8pL+IuY6tFsRc5PN+8C/zBupoiiKYoyK3kldE+5/+Ok60EP//jlgq5Qy9v5b+e8nhHgSrV8oatWq1aVdu0rRCa+iKEqFcezYsVtSyqIeCAbMnFCEELso+D7qf0spt5RhvW5ot9f1La6s1PqEWg7QtWtXGRLyt5Y1RVEUpQhCCKNu0TZrQpFSDiy+VJGiuf9JXHf9tE5oHf1F6msnDkKISCllhRnbQVEUpbqp6E1eR4HW+r57otF66ZwspQzHoOYjhEhRyURRFMWyLHnb8BihjcjmD2wXQgTpp7sJIXYA6Dupew6t2+kzaD3kFtaVu6IoimJB1epJ+bJcQ8nRSaytCr/4ryhVXVZWFtevXyc9Pd3SoShmYm9vj7u7O7a2tvdNF0Ick1IW+rxgrore5FUhfBh8jj/P3WDbc70o6o4yRanKrl+/jqOjIx4eHur/QRUkpeT27dtcv36dFi1alGodqusVIzSsY09YdBJn46rqw7mKUrz09HRcXFxUMqmihBC4uLiUqQaqEooRhns1xtpKsPVkSYc3UJSqRSWTqq2sx1clFCO41Lajd+v6bA2NoTpdc1IURSkJlVCMNNLHjeiENI5fvWvpUBSl2qpd+/4u+1atWsVzzxU1SvbfhYaGsmPHDlOGdZ9Vq1bRoEEDfH198fX15dFHHy3xOnbv3s1DDz1khujMSyUUIw3u0Bg7Gyu2hqpmL0WprLKzs4tMKNnZ2SbZTmBgIKGhoYSGhvLtt8UNtll1qIRipNp2Ngxo35Dtp2PJztFZOhxFUfLZtm0bPXr0oFOnTgwcOJD4+HgAFixYwLRp0wgICGDatGnMmzeP9evX4+vry/r16/82Pycnh1deeYVu3brh7e3Nl19+mbeN999/P2/6/PnzSxRfaGgofn5+eHt7M2bMGO7e1Vo7IiMjGThwID4+PnTu3JmLFy/et9zRo0fp1KnT36ZXROq24RIY6dOEHafjOHDxNg+2KbafNEWpst7aFk5ETJJJ1+npVof5D3coskxaWhq+vr55n+/cucPIkSMB6NWrF4cOHUIIwYoVK1i0aBEffvghABEREezbt4+aNWuyatUqQkJCWLJkCaAlHMP5y5cvx8nJiaNHj5KRkUFAQACDBw/mwoULXLhwgSNHjiClZOTIkezdu5cHH3zwb3GuX7+effv2AfDCCy8wc+ZMHn30UT777DP69OnDvHnzeOutt/jkk0+YMmUKc+fOZcyYMaSnp6PT6bh2TesT98CBA8yZM4ctW7bQrFmzsu9kM1MJpQT6tm2Ao50NW0/GqISiKBZQs2ZNQkND8z7nJgfQnpMJDAwkNjaWzMzM+56lGDlyJDVr1ix0vYbzg4ODOXXqFBs3bgQgMTGRCxcuEBwcTHBwMJ06dQIgJSWFCxcuFJhQAgMD8xJW7joSEhLo06cPANOnT2f8+PEkJycTHR3NmDFjAO3BwlxnzpzhySefJDg4GDc3t5LtKAtRCaUE7G2tGeLVmKCwOBaO9sLe1trSISmKRRRXk7CEOXPm8NJLLzFy5Eh2797NggUL8ubVqlWryGUN50sp+eyzzxgyZMh9ZYKCgnjttdd46qmn7pu+dOlSvvrqKwCTXux3dXUlPT2dEydOVJqEoq6hlNAoXzeSM7LZfe6GpUNRFMVAYmIiTZo0AWD16tWFlnN0dCQ5ufCHlIcMGcKyZcvIysoC4Pz589y7d48hQ4awcuVKUlK0Ecejo6O5ceMGs2fPzrsAX9gPv5OTE/Xq1eOvv/4CYM2aNfTp0wdHR0fc3d35+eefAcjIyCA1NRWAunXrsn37dl577TV2795dsp1hISqhlJD/Ay7Ur11DPeSoKBXMggULGD9+PF26dKF+/fqFluvXrx8RERF5F+Xze/zxx/H09KRz5854eXnx1FNPkZ2dzeDBg5k8eTL+/v507NiRcePGFZmY8lu9ejWvvPIK3t7ehIaGMm/ePEBLLosXL8bb25uePXsSFxeXt0yjRo345ZdfmD17NocPHy7B3rAM1TlkKczfEsa6o9cIeWMgjva2xS+gKFXAmTNnaN++vaXDUMysoONsbOeQqoZSCiN93cjI1vFbRLylQ1EURakwVEIphc7N6uFeryZb1EOOiqIoeVRCKQUhBA/7uLEv8ha3UzIsHY6iKEqFoBJKKY30cSNHJ9kRFld8YUVRlGpAJZRSatfYkTaNarM1NNrSoSiKolQIKqGUkhCCkT5uHI26S3RCmqXDURRFsTiVUMrgYR/tIaZf1DMpimJ2/fr1Iygo6L5pn3zyCc888wzh4eH079+ftm3b0rJlS+bPn49Op3Ximr87eV9fXyIiIizxFao8lVDKoLlLLXya1lV3eylKOZg0aRLr1q27b9q6deuYOHEiI0eOZO7cuZw7d47Tp09z5MgRPv3007xyht3Jh4aG4unpWd7hVwsqoZTRKB83ImKTiLyRYulQFKVKGzduHNu3byczMxOAqKgoYmJiiIyMzOsRGMDBwYElS5bw/vvvWzLcakl1DllGD3m7snB7BFtPxvDSoDaWDkdRysfOuRB32rTrbNwRhr1X6GxnZ2e6d+/Ozp07GTVqFOvWrWPChAmEh4fTpUuX+8q2bNmStLQ0EhISgPu7kwc4ePBgkb0PK6Wjaihl1LCOPX4PuLA1NFqNN68oZmbY7LVu3TomTZpk1HL5m7xUMjEPVUMxgZE+bszddJrT0Yl4u9e1dDiKYn5F1CTMadSoUbz44oscP36c1NRUunTpwokTJ9i7d+995S5duoSLiwt166r/j+VJ1VBMYJiXK7bWQo03ryhmVrt2bfr168esWbPyaidTpkxh37597Nq1C9BGdXz++ed56623LBlqtaQSihFOhq3jx+AXC53v5GBLnzYN2XYqhhydavZSFHOaNGkSJ0+ezEsoNWvWZOvWrbzzzju0adOG+vXrExAQwJQpU/KWyR1DPvd14MABS4VfpakmLyPsjPieH1MvMyw5ltqOrgWWGenrxq4z8Ry5fAf/li7lHKGiVB+jR4/+2/VKLy8v/vzzTwB+/vlnXnrpJSZPnkzz5s2ZMWMGM2bMsECk1Y+qoRhhaPuJZArB7mOfF1pmYPuGONSwVgNvKYqFjR49mkuXLtG8eXNLh1LtqIRiBG/PQBrlSIKu/l5oGYcaNgzybMTOsFgys3XlGJ2iKErFoBKKEaysbRjs2JL9uiSSEq8VWm6kjxsJqVn8deFmOUanKIpSMaiEYqShnpPJEoLdx5YVWqZ36wY41bRVzV6KolRLKqEYqWP78bjmSIKu/1lomRo2Vgzv6MpvEfGkZmaXY3SKoiiWpxKKkYSVFUPqtOaALpnExKuFlhvp40ZqZg67ztwox+gURVEsTyWUEhjaYSrZQvBHyJJCy3Rv4UyjOnbqIUdFMQNra+v7nid57z3TPbEfGhrKjh078j4X1u19TEwM48aNM9l2SyMqKgovLy+LxlAQizyHIoQYDywA2gPdpZQhhZQbCnwKWAMrpJTv6acLYCEwHsgBlkkpF5s7bs+2Y2hycAFB1/cwppAy1laCh73dWH0wisTULJwcbM0dlqJUGzVr1iQ0NNQs6w4NDSUkJIThw4fnTQsMDGTJkr+fQG7cuNEsMZS37OxsbGxMlwYsVUMJA8YCewsrIISwBpYCwwBPYJIQIncQgxlAU6CdlLI9sK7AlZiYsLJiiFMbDst7JNy9XGi5kb5uZOVIfg2PLY+wFKVaS0xMpG3btpw7dw7QnqT/6quvAHjmmWfo2rUrHTp0YP78+XnLHD16lJ49e+Lj40P37t1JTExk3rx5eU/Ur1+/vtDtGdYOUlNTmTBhAp6enowZM4YePXoQEqKdHwcHB+Pv70/nzp0ZP348KSnaEBceHh7Mnz+fzp0707FjR86ePQvAnj178mpCnTp1Ijk5GSklr7zyCl5eXnTs2LHAuPz8/AgPD8/73LdvX0JCQrh37x6zZs2ie/fudOrUiS1btgBazWvkyJH079+fAQMGlHq/F8QiNRQp5RnQhtEtQncgUkp5SV92HTAKiACeASZLKXX69ZXbBYuhXo+y8tAb/B6yhEcGfVhgmY5NnPBwcWBLaAyB3ZqVV2iKUm7+d+R/nL1z1qTrbOfcjle7v1pkmbS0NHx9ffM+v/baa3m1iBkzZvDCCy9w9+5dnnjiCQDeeecdnJ2dycnJYcCAAZw6dYp27doRGBjI+vXr6datG0lJSTg4OPCf//yHkJCQvBrJqlWrCuz23tDnn39OvXr1iIiIICwsLC+2W7dusXDhQnbt2kWtWrX43//+x0cffcS8efMAqF+/PsePH+fzzz/ngw8+YMWKFXzwwQcsXbqUgIAAUlJSsLe3Z9OmTYSGhnLy5Elu3bpFt27dePDBB++LITAwkA0bNvDWW28RGxtLbGwsXbt25fXXX6d///6sXLmShIQEunfvzsCBAwE4fvw4p06dwtnZuTSHqlAV+RpKE8DwoY/r+mkALYFAIUSIEGKnEKJ1YSsRQjypLxdy82bZnw9p1/phmuVAUMxfhZbJHW/+4KXb3EhKL/M2FUXR5DZ55b4CAwMBGDRoEB07dmT27NmsWLEir/yGDRvo3LkznTp1Ijw8nIiICM6dO4erqyvdunUDoE6dOoU2+xTX7f2+ffuYOHEioHX/4u3tDcChQ4eIiIggICAAX19fVq9ezZUrV/KWGzt2LABdunQhKioKgICAAF566SUWL15MQkICNjY27Nu3j0mTJmFtbU2jRo3o06cPR48evS+GCRMm5DXBbdiwIe/6TnBwMO+99x6+vr707duX9PR0rl69mre/TJ1MwIw1FCHELqBxAbP+LaXcUsbV2wHpUsquQoixwEqgd0EFpZTLgeUAXbt2LXPPjcLKiiF127Ey6Qx37kTi7NyqwHIjfd1Y/Eckv5yKZVavFmXdrKJUKMXVJMqbTqfjzJkzODg4cPfuXdzd3bl8+TIffPABR48epV69esyYMYP09PI5wZNSMmjQINauXVvgfDs7O0C7ySA7W3vEYO7cuYwYMYIdO3YQEBBAUFCQUdtq0qQJLi4unDp1ivXr1/PFF1/kxfDTTz/Rtm3b+8ofPnyYWrVqlfarFclsNRQp5UAppVcBL2OTSTTadZJc7vppoNVWNunfbwa8TRO1cYZ4TSdHCHYVcbdXq4aOeLrWYYt6yFFRzO7jjz+mffv2/PDDD8ycOZOsrCySkpKoVasWTk5OxMfHs3PnTgDatm1LbGxs3pl+cnIy2dnZODo6kpycXKLtBgQEsGHDBgAiIiI4fVobxdLPz4/9+/cTGRkJwL179zh//nyR67p48SIdO3bk1VdfpVu3bpw9e5bevXuzfv16cnJyuHnzJnv37qV79+5/WzYwMJBFixaRmJiYV0saMmQIn332WV5HmidOnCjRdyuNitzkdRRoLYRoIYSoAUwEturn/Qz007/vAxR9pEysTavheOQIgmP3F1lupK8bJ68lcOX2vXKKTFGqttxrKLmvuXPncu7cOVasWMGHH35I7969efDBB1m4cCE+Pj506tSJdu3aMXnyZAICAgCoUaMG69evZ86cOfj4+DBo0CDS09Pp168fERER912UL67b+2effZabN2/i6enJG2+8QYcOHXBycqJBgwasWrWKSZMm4e3tjb+/f97F98J88sknec1mtra2DBs2jDFjxuDt7Y2Pjw/9+/dn0aJFNG7894afcePG5Q2JnOvNN98kKysLb29vOnTowJtvvlnW3V88KWW5v4AxaLWMDCAeCNJPdwN2GJQbjpYsLqI1leVOrwtsB04DBwEfY7bbpUsXaSqfbQqU3t90kDdvnim0zPW7qbL5q7/Iz34/b7LtKoqlREREWDqECic7O1umpaVJKaWMjIyUHh4eMiMjw8JRlU1BxxkIkUb8xlqkhiKl3CyldJdS2kkpG0kph+inx0gphxuU2yGlbCOlbCmlfMdgeoKUcoSUsqOU0l9KebK8v8OQjjPQCcGukKWFlmlStybdPOqxJTRGjTevKFVQamoqvXr1wsfHhzFjxvD5559To0YNS4dlMRW5yatCa91qKC1zBEFxB4ssN9K3CRdupHDqemI5RaYoSnlxdHQkJCSEkydPcurUKYYNG2bpkCxKJZQyGOLsxTHSuREfVmiZ0b5u1Laz4Zv9hT8IqSiVhappV21lPb4qoZTBEJ/HkELw2/HCR3J0tLdlfFd3fjkVS7x6JkWpxOzt7bl9+7ZKKlWUlJLbt29jb29f6nWoMeXL4IEWA2i924rg+MNMKaLcjJ4erDoQxZqDV/jnkLZFlFSUisvd3Z3r169jigeElYrJ3t4ed3f3Ui+vEkoZDXH2ZklCKHFxoTRu7FtgmeYutRjYvhHfH77Cc/1bYW9rXc5RKkrZ2dra0qKFekhXKZxq8iqjIT6PA/Db8cJHcgSYFdCCu6lZ/HwiushyiqIolZVKKGXk4dGHdjorguKPFlnO7wFn2rvWYeX+y6oNWlGUcnM7JYMnvw0hNjHN7NtSCcUEhrj4ctIqi9iYY4WWEUIwK8CD8/Ep7I+8XY7RKYpSXd1MzmDSV4fYe+EmV26nmn17KqGYwJBOTwIQfOKLIss97ONG/do1WKluIVYUxcxuJKcz6atDXLuTxsoZ3fB7wMXs21QJxQSaNg3AU2dN0I0CB57MY29rzVS/5vxx9gaXbqaUU3SKolQ38UnpTFx+iJiENL6Z2Y2eLeuXy3ZVQjGRIfU7c9oqm+vXDxVZbkqP5tSwtmLVgajyCUxRlGolNjGNicsPEZ+YzupZ3culZpJLJRQTGZzX7LW8yHINHO0Y6evGjyHXSUzNKo/QFEWpJqIT0gj88hA3kzP49rEedPMw/SBaRVEJxUTc3f3oqLMh6NbxYsvODPAgLSuH9SFXyyEyRVGqg+t3U5m4/CB372Wy5rHudGler9xjUAnFhIY07EqEVQ5Xr+4rslwHNyf8HnBm9YErZOfoyik6RVGqqmt3Ugn88hCJqVl893gPOjUr/2QCKqGY1OBOTwMQHPpVsWVnBbQgOiGN4Ih4c4elKEoVduX2PQK/PEhKRjY/POGHT9O6FotMWmsbAAAgAElEQVRFJRQTcnXrgo/OlqDbocWWHdC+Ec2cHfh6n7qFWFGU0rl86x6BXx4iLSuHH57ogVcTJ4vGoxKKiQ1p1I2zVjqiovYUWc7aSjCjpwfHrtwl9FpCOUWnKEpVcfFmCoFfHiQzR8cPT/jRwc2yyQRUQjG5QZ2fASDo5Ipiy47v6q7GSlEUpcQibyQzcfkhdFKy9gk/2rvWsXRIgEooJte4sS+dZQ2C7pwqtqyjvS0TujZl+6lY4hLVWCmKohTvfLyWTADWPelH28aOFo7o/6mEYgaDG/XggpWOS5d/L7bsjJ4e5EjJmkNR5g9MUZRK7UxsEhOXH8JKCNY96UerhhUnmYBKKGYxqPOzCCkJOvl1sWWbuTgwqH0jfjh8lbTMnHKITlGUyig8JpHJXx2ihrUV65/yp2WD2pYO6W9UQjGDho286II9QXcKH2ve0Kxe+rFSQtVYKYqi/F1YdCJTVhympq0165/yo0X9WpYOqUAqoZjJkMb+XLSWXIj8tdiyPVo44+lah5X71FgpiqLc72jUHSYtP0StGjase9Kf5i4VM5mASihmM7DrbKykJOj0qmLLCiGY1asFF26ksC/ylvmDUxSlUvjrwk2mfX2YBo52/Pi0P81cHCwdUpFUQjGT+vXb0U3UJOhuBFJXfPcqD/u4Ur+2HSvVg46KogBB4XE8tiqEFvVrs/4pf9zq1rR0SMVSCcWMBrsGEGUtOR+5o9iydjbWTPNrzp/nbnJRjZWiKNXazyeiefb743i61WHdE340cLSzdEhGUQnFjAZ2fU5r9gpbbVT5KX7NtLFS9keZNzBFUSqs7w9f4cUNoXT3cOa7x3vg5GBr6ZCMphKKGTk7t6K7cCAo4axRzV71a9sxyteNjcfUWCmKUh0t33uRf28Oo1/bhnwzsxu17WwsHVKJqIRiZsOaPMhVazgZsc6o8jMDWpCWlcO6o2qsFEWpLqSUfBR8jnd3nGWEtytfTO2Cva21pcMqMZVQzGyI3z+ppZOsO1l8l/YAnm518H/AhdUHotRYKYpSDUgpefuXMyz+I5IJXd1ZPLETNWwq509z5Yy6EqlVuzEjHZoTnHWT27fOG7XMrF4tiElMJyhcjZWiKFVZjk7y2qbTrNx/mZkBHrw31htrK2HpsEpNJZRyMLH7y2QJwaYDC40q379dQ5q7OLBS9UKsKFVWVo6OF9adYN3Ra8zp34p5D3liVYmTCaiEUi4eaNGfHtiz4dZxsrOK71VYjZWiKFVbelYOT685xi+nYpk7rB0vD26LEJU7mYBKKOVmUqtHiLMW7Dn6qVHlx3dtiqMaK0VRqpx7GdnMWnWU38/e4O3RXjzdp6WlQzIZiyUUIcR4IUS4EEInhOhaRLmhQohzQohIIcRcg+kDhBDHhRChQoh9QohW5RN56fTp/g8a50jWXthoVPnadjZM6KaNlRKbmGbm6BRFKQ+JqVlM/fowhy/f4aMJPkzza27pkEzKkjWUMGAssLewAkIIa2ApMAzwBCYJITz1s5cBU6SUvsAPwBvmDbdsbGztGV+/E4dJ59LlP4xaZkZPDwCW/BFpxsgURSkPt1IymPTVIcKiE1k6uTNjO7tbOiSTs1hCkVKekVKeK6ZYdyBSSnlJSpkJrANG5a4CyB330gmIMU+kpvNIzzexlZL1Rz8yqnxTZwem+jVn7ZGrnI9PNnN0iqKYy7U7qYz/4iCXbqWwYno3hno1tnRIZlHRr6E0Aa4ZfL6unwbwOLBDCHEdmAa8V9AKhBBPCiFChBAhN2/eNGuwxXGp34bBtg3Yei+K1JQbRi3z/IDW1LKz4d0dZ8wcnaIo5hARk8TYZQe4cy+T7x7rQZ82DSwdktmYNaEIIXYJIcIKeI0qfulivQgMl1K6A98ABZ72SymXSym7Sim7Nmhg+QM50ecJUqwEv+x/x6jyzrVqMKd/K3afu8lfFyybEBVFKZmDF28T+OVBbKwEPz7tT1cPZ0uHZFZmTShSyoFSSq8CXluMXEU00NTgszsQLYRoAPhIKQ/rp68HepowdLPx8ZxIe501a6P/NKp/L4DpPT1o6lyTd7afIUenBuBSlMpgx+lYpq88QmMne356pidtGlWs8d/NoaI3eR0FWgshWgghagATga3AXcBJCNFGX24QUCnahISVFRObDiTSWhJyapVRy9jZWPPq0HacjUtm47FrxS+gKIpFfXswitk/HKejuxM/Pl05xjIxBUveNjxGf/3DH9guhAjST3cTQuwAkFJmA88BQWgJY4OUMlw//QngJyHESbRrKK9Y4nuUxrCer1NHJ1kX9o3Ry4zo6ErnZnX5IPg89zKyzRidoiilJaXkg6BzzNsSzoB2jfj+8R7Udahh6bDKjSXv8tospXSXUtpJKRtJKYfop8dIKYcblNshpWwjpWwppXwn3/IdpZQ+Usq+UspLlvgepVHTwZkxtVvxR/ZdbsSHGbWMEIJ/j/DkZnIGX+6tNF9VUaqN7Bwdc386zZI/I5nYrSlfTO1cKXsMLouK3uRVZQX6vUIOsPGAcRfnAbo0r8cIb1eW771IXGLxXbgoilI+0jJzePq746wP0frl+u/YjthYV7+fV6O+sRBikxBihBCi+u0hM2naNIAAUZsf754mK+Oe0cvNHdoOnQ4+CC7uER5FUcpDQmomU78+zO9n43l7VIcq0y9XaRibID4HJgMXhBDvCSHamjGmamNSu0BuWQt+P/yB0cs0dXZgZoAHPx2/TnhMohmjUxSlODEJaYz/4iCnr2tPv0/z97B0SBZlVEKRUu6SUk4BOgNRwC4hxAEhxEwhROUZ8LiCCegyG/ccWHtpa4mWe7ZfK+rWtOWd7WeQUt1GrCiWcD4+mUeWHSAuMZ3Vs7ozvKOrpUOyOKObsIQQLsAMtCfUTwCfoiWY38wSWTVgbVODwIY9OC4yOR+50+jlnGra8o+BbThw8TZ/nDXuiXtFUUwnJOoO45YdIFsnWf+UP/4tXSwdUoVg7DWUzcBfgAPwsJRypJRyvZRyDlDbnAFWdWN6vYGdTrIuxLhu7XNN7tGMBxrU4p0dZ8hSQwUrSrn5LSKeKSsO41Lbjk3P9MTTrU7xC1UTxtZQFkspPaWU/5VSxhrOkFIW2vW8Ujynuh4Ms2vML2nXSUo0/qFFW2srXhvWnks377H2yFUzRqgoSq51R67y1JoQ2jV2ZOPT/jR1drB0SBWKsQmlnhBibL7XACFEQ7NGV01M7PwsaVaCrSW4hRhgYPuG+D3gzCe7LpCUnmWm6BRF0ekk7+08y9xNp+ndugE/POGHS207S4dV4RibUB4DVgBT9K+vgFeB/UKIaWaKrdro0G4s3job1sfuR5dj/FPwQgjeGOHJ3dRMlv6pxkxRFHNIy8xh9g/H+WLPRSb3aMaK6V2pZWdj6bAqJGMTii3QXkr5iJTyEbTBriTQAy2xKGU00WMEUdZw6MTyEi3n1cSJMZ2a8M2+KK7dSTVTdIpSPd1ISmfi8oP8Gh7HGyPa885oL2yr4QOLxjJ2z7hLKeMNPt8Amkop7wCqrcUEhvR8FWedZF3E9yVe9pUhbbGygkVB6mFHRTGVM7FJjF66n/PxKSyf1pXHez9QbR9YNJaxCWW3EOIXIcR0IcR0YIt+Wi0gwXzhVR817BwZW6cde3SJxMSElGhZV6eaPNn7AbadjOHE1btmilBRqo8/z95g3LID5EjJj0/7M8izkaVDqhSMTSiz0Qax8tW/vgVmSynvSSn7mSu46maC/2sAbDhY4OCTRXqqT0saONqxUD3sqChlsvpAFI+tPopH/Vpsmd0LryZOlg6p0ig2oQghrIE/pJQ/SSlf1L82SvWrZXKubl3oY+XEpqSzZKSXrFuVWnY2vDyoDceu3GVnWJyZIlSUqis7R8eCreHM3xpO/3aN2PCUP42d7C0dVqVSbEKRUuYAOiGEStPlYFKHady1EgQfXFTiZcd3bUq7xo68t/MsGdk5ZohOUaqmlIxsnvg2hFUHoni8Vwu+nNZF3clVCsY2eaUAp4UQXwshFue+zBlYdeXX6Uk8cgTronaUeFlrK8Hrw9tz9U4qaw5eMUN0ilL1RCekMW7ZAfZeuMU7Y7x44yFPrK3UxffSMDahbALeBPYCxwxeiokJKysmugZwyiqb8DM/lXj5B9s0oE+bBiz+/QJ372WaIUJFqTpOXktg9NL9RN9NY9XMbkzp0dzSIVVqxvY2vBrYABySUq7OfZk3tOprZMAb1NRJ1p5YVqrl/z2iPSkZ2Sz+44KJI1OUquPXsFgClx/EzsaKTc/2pHfrBpYOqdIztnPIh4FQ4Ff9Z18hRMn6XFeM5linCQ/VdOfXjDgS7l4u8fJtGjkysXsz1hy8wqWbKWaIUFEqLyklX+y5yNPfHae9ax1+nh1A60aOlg6rSjC2yWsB0B39MydSylDgATPFpAATu75AhpVg8/6FpVr+xYFtsLe15vXNp8nRqRvyFAUgM1sb9/29nWd5yNuVtU/4UV/1yWUyxiaULCll/vtYVZ/pZtSm1TC6SDvW3zhCTnbJr4U0cLRjwcgOHLp0h89VP1+KQlxiOoHLD+aN+754Yifsba0tHVaVYmxCCRdCTAashRCthRCfAQfMGJcCTHxgJNHWsOfIJ6Va/pHOTRjt68bHu85zNOqOiaNTlMrjyOU7PPTZPs7FJbNsSmdeHtwWK3Unl8kZm1DmAB2ADGAtkAT8w1xBKZoB/v+kWQ4sPfd9iXohziWEYOGYjjRzduCFtSdISFV3fSnVi5SSVfsvM/mrQzja27BldgDD1FC9ZmPsXV6pUsp/Sym7SSm76t+nmzu46s7W1oHZLcdy3krHzr/+U6p11Laz4bNJnbmZksG/Np5S3bIo1UZaZg4vbzjJgm0R9G3bkC3PqYvv5mbsXV5thBDLhRDBQog/cl/mDk6Bob3epI3OiqWXNpOVVbru6Tu6O/Hq0HYER8Tz3SH1wKNS9V27k8ojyw6wOTSalwa1Yfm0LtSxt7V0WFWesU1ePwIngDeAVwxeiplZWdvwfPvpXLOGzX++Xur1PNarBf3aNuDt7WeIiEkyYYSKUrH8deEmDy/Zx7W7qayc3o3nB7RW10vKibEJJVtKuUxKeURKeSz3ZdbIlDwPdv8HvtKWL6/vIj2tdN3TCyH4YLwPdWvaMmftcVIzS35NRlEqMikln++OZPrKIzRytGfbc73o106NUl6ejE0o24QQzwohXIUQzrkvs0am5BFWVrzg+zw3rAVrf/9nqdfjUtuOTyb6cunWPRZsDTdhhIpiWSkZ2Tz7/XEW/XqO4R1d2Ty7Jx71a1k6rGrH2IQyHa2J6wD/349XyUaBUsqkq+8MAnDg65uHSU6KLvV6erasz3P9WrEh5DpbQku/HkWpKC7eTGH00v0ER8Tzxoj2fDapEw41VE/BlmDsXV4tCnipJ+XL2fM9XiPRSrDq95fKtJ4XBrSma/N6/HtzGFdu3zNRdIpS/n6LiGf0kv3cuZfJmse6q2F6LazIhCKE+JfB+/H55r1rrqCUgnm2G81g67qsSQjn1q2zpV6PjbUVn0z0xUrA82tPkJmtOj1QKpccneSj4HM88W0ILRrUYtucXvRsWd/SYVV7xdVQJhq8fy3fvKEmjkUxwnO93iZTwNd/lO0mO/d6Diwa583J64l8EHzORNEpivklpGby2OqjLP4jkvFd3NnwlD9N6ta0dFgKxScUUcj7gj4r5aCFR19G2bmyPvUyMTFlu4w11MuVqX7NWL73ErvP3TBRhIpiPgcv3mboJ3+xP/IWC0d7sWict+qPqwIpLqHIQt4X9FkpJ8/0XYQAlu2eW+Z1vTHCk3aNHXl5w0luJKnOD5SKKStHxwdB55i84hAONazZ/GwAU/2aq+slFUxxCcVHCJEkhEgGvPXvcz93LIf4lAI0du1EYK2WbM2M49Ll38u0Lntba5ZM7sS9zGxe3BCKTnV1r1Qw1+6kMuHLgyz5M5Jxnd3ZNqcXXk2cLB2WUoAiE4qU0lpKWUdK6SiltNG/z/1c6n4MhBDjhRDhQgidEKJrEeVWCiFuCCHC8k13FkL8JoS4oP+3XmljqaweH/Ah9hKW7Jtf5nW1aujIWyM7sD/yNsv2XDRBdIpiGltCoxn+6V9E3kjhs0mdeH+8D7Xs1C3BFZWxz6GYWhgwFm2M+qKsouCL/3OB36WUrYHf9Z+rFWfnVjxatyO/6RJLNfZ8fhO6NuUhb1c++u08x66U7ml8RTGVlIxsXt5wkhfWhdKmsSM7nu/Nwz5ulg5LKYZFEoqU8oyUsthbi6SUe4GCBvIYBeSOab8aGG3C8CqN6QM/oq5OsvjI/8q8LiEE747tiFtde55fe4LEtCwTRKgoJXfqegIPLf6LzSeu8/yA1qx/0o+mzg6WDksxgqVqKGXVSEoZq38fBzQqrKAQ4kkhRIgQIuTmzZvlE105qe3oyuMN/TlAGkdPfF3m9dWxt+WzSZ2JT0pn7k+qq3ulfOl0ki/3XGTs5wfIzNax7kl/XhrUBhvryvozVf2Y7UgJIXYJIcIKeI0y5Xak9qtX6C+flHK5fgyXrg0aNDDlpiuEwP6LaJgj+SR0KVJX9gcUfZvW5ZUhbdkZFsd3h6+aIEJFKd6NpHQeXXmE/+48yyDPRux84UG6t1DdBZpCRuptvtwUSPq9W2bfltkSipRyoJTSq4DXFhOsPl4I4Qqg/7faPkRhX7MezzQdzCmrLHYf/sgk63yi9wP0adOABVvD+eVUjEnWqSiF+f1MPEM//YuQK3f479iOfD6lM04OauwSU7h8MYjJ6/qxJDmCfSfL3opRnMpal9yK1mEl+n9NkaQqrVF9F9IsBxafXUNOdtmH+bWyEnw+pTOdm9XlhXWhKqkoZpGelcOCreE8tjqERnXs+WVOLyZ1b6aeLTEFKdn228sE7n2Jm0LH517PMrDnq2bfrEUSihBijBDiOuAPbBdCBOmnuwkhdhiUWwscBNoKIa4LIR7Tz3oPGCSEuAAM1H+utmxtHXiu5SNEWunYUcqhgvOrZWfDqpnd85LK9lOxxS+kKEY6F5fM6KX7WXUgilkBLdj8bE9aNVTD85pCanIsb3zfl9djgvG0qsWPD22gd5dnymXbojpdeO3atasMCamave7rcrIJ/LYLKVLH1imHsLUzzVgQKRnZzFh5hBPXElg8sRMjvF1Nsl6lesrIzmHpnxdZtjuSOva2fDDeRw2CZULnz/7MKwfe5LKV5Cnnzjw1fAU2NjXKvF4hxDEpZaHPDOaqrE1eSj5W1jbM8ZzFdWvYtDt/P56lV9vOhlWzutOpaV2eX3eCHadVTUUpnWNX7jBi8T4W/36Bh7zd+O2lPiqZmIjMyWHjzmeZfPANkoRkead/MnvktyZJJiWhEkoV0rvbHDrLGnwZ/QdpqQU9vlM6uUnFt2ld5qw9wU6VVJQSSMnIZt6WMMZ9cZC0zBxWzezGx4G+ONcq3x+7qiol4Sqvfv8gb934i87Wjvw4egt+PjMsEotKKFWIsLLi+U7Pc9Na8MPvL5t03bXtbFg1s1teUvk1TCUVpXh/nI1n0Ed7WHPoCjN6ehD84oP0batqJaYSfvoHJmwaTrAukRca+PPF1H3Ur9fSYvGohFLFdPGZTi9qsfLWUZISr5l03Y72tqya2Q1vdyee++EEv4bFmXT9StVxKyWDOWtPMGtVCHXsbdn0TE/mP9xB9cNlIjInm++3zWLqsXfJFIJvus/j8eHLsbKybFf+KqFUQc/7vUaSCYYKLoijvS2rZ3XXJ5XjKqko95FS8tOx6wz8aA9BYXG8NKgN2+b0olOzatd/q9kk3j7PP74L4L07R+llU4+Nj+ykk+cES4cFqIRSJbVvO4qh1vX4LvFMmYYKLkxuUumokopi4NqdVB5deYSXfzxJywa12f58L54f0JoaNupnxlRCj69g/JYx7JX3+JdrfxZP3kPdOu6WDiuPOtJV1HO93yFTwGe/zTHL+nOTilcTLakEhaukUl3l6CRf77vM4I/3cvzKXf4zqgM/PuVP60bquRJT0WVn8vXmScw49QnWwprvAt5j2uBPEVYV6ye8YkWjmEzz5r2ZVrs1mzLj2H90iVm2Ucfelm8f05LK7O+PE6ySSrVzNi6JscsO8PYvEfi3dOG3l/rwqL8HVlbqaXdTuRkTwjNr/PkkKYwBNRqyYfwuOrR+yNJhFUg92FiFZaQnMuGH3qSgY/MjO6nj1NQs20lKz+LRr48QHpPI51O6MMiz0M6flSoiKT2LZbsv8tXeSzjVtGX+yA487O2quk0xJSn5c+9/mHdxA+lC8C+PhxnX912L7GP1YKOCnb0T7/i9yW0r+N/2GWbbTm5NxdPNiWe/P8auiHizbUuxrMxsHav2X6bv+7tZtvsio3ybsOulPoz0cVPJxITSkmN5+4cBPB+1EVcrO9YPXM74fv+t8PtYJZQqzstzPLPqtGdr1g3+PPiB2bZTx96Wb2d1x9O1Ds+opFLlSCnZcTqWwR/vYcG2CNo1duSXOb34cIIP9dQDiiZ1NmwdEzcMYkP2TWY4deC7Kft5oGlPS4dlFNXkVQ1kZiQz8Yde3JU5bB6zjbr1WphtW4lpWTz69WHCYpKY3bclcwa0xlYNkFSphUTd4d0dZzh+NYG2jRyZO7wdfds0qPBny5WNLjuDNb/M4pOEkzhLwcIur+Dv/ailwwKMb/JSCaWaOHtuK5MOvs4gGxcWTd1j1m0lp2fx1rYINh67TscmTnwc6KN6kq2ELt5MYdGvZwkKj6ehox0vD27DuC5NsVYX3E3uRvRR3gh+ioNWWfS3deGth76nbp0mlg4rj0ooBajOCQVg2c9T+DzxFB+1nMSgXq+bfXu/hsXx+ubT3MvIZu6wdkxXd/9UCrdSMvh01wV+OHIVexsrnu7Tksd6t8ChhnrK3eSk5M89C5h3aSPpVoJ/eYxiXJ+FFa72pxJKAap7QsnKSmXqdz2JJZvND2/CpX4bs2/zRnI6r/10mt/P3iCglQvvj/PBrW5Ns29XKbm0zBxW/HWJL/ZcJD1bx+TuzXh+QGsaONpZOrQqKS0phg+2TmFDzi3ayxq8N3AJD7j7WzqsAqmEUoDqnlAALkT+SuC+f9LHui4fTdlbLg9GSSlZd/Qab/8SgbWV4O1RXozyVXcFVRQ5OsnGY9f46LfzxCdlMNizEa8Oa0fLBrUtHVqVdeb0D7x65F0u2whmOHkxZ8RKathW3BMtlVAKoBKKZsW2GXx65xj/8xjL8D5vldt2r9y+x0sbTnLsyl1GdHRl4WgvdYeQBUkp+ePsDRb9eo5z8cl0alaX14e3p5uHs6VDq7J0WenahffEU9qF967/wr/jNEuHVSyVUAqgEoomOyud6d/5E0UWP49YT4OGHcpt2zk6yZd7L/Lxb+ep51CDReO8VXfm5Sw9K4dNx6NZuf8ykTdSaO7iwKtD2zHMq7GqNZrRjetHtAvv1tn0t63PWw9/T11HN0uHZRSVUAqgEsr/uxy1m/F/PoeftSOfTd1f7n0Chcck8uL6UM7HpzDVrxmvD2+vLvqa2Y2kdL49eIXvD1/hbmoWHdzq8FivFjzk7aY6cDQjmZPDzt9f4Z3rQWRaCf7VYgzjHvxPpUreKqEUQCWU+32740nev3mQt92HM3rA/8p9++lZOXwYfI4V+y7j4VKLjyb4qG7OzSAsOpGV+y6z7VQM2TrJwPaNeKxXC3q0cK5UP2qV0Z24Uyz89Ql+E6l4Y8/CgUtp0aS7pcMqMZVQCqASyv10OdnMXNOD8zKDzcO+o3FjX4vEcfDibf7540niktLVw5AmkqOT/H4mnq/3Xebw5Ts41LBmQtemzOjpgUf9WpYOr+qTkj92v8lblzeTZCWY3bgPMwZ9go21raUjKxWVUAqgEsrfXbu2n0d2PUUnKwe+mHbIYt1hJ6Vn8dbWCH46fh2vJnX4x4A29GvXUD1EV0L3MrL5MeQa3xyI4srtVJrUrcn0ns0J7NYMp5qV88esskm6dZ7/7ZjJVplEO2qwsO9HtG3ex9JhlYlKKAVQCaVga399jnfj9zDPdSDjB39s0Vh+DYtlwdYI4pLSaebswDS/5kzo2hQnB/VjWJSYhDRWH4jihyNXSU7PplOzujzWqwVDOzTGRtX2yoeUHNj3X9688D23rQSPN+jBU4M/x9a28j/HoxJKAVRCKZguJ5snv/PntC6NTYNX0sTCbbxZOTqCwuNYfSCKo1F3qWlrzehOTZjR04O2jVUXLrnSMnPYc/4m207F5I2aOdSrMY/1akFndS2qXKUmXOXDbdPYoLtDC2nNu73fw6vlUEuHZTIqoRRAJZTCxcSEMDZoBp7CnhXTDmFlXTHuuAqPSeTbA1f4OTSajGwdfg84M6OnBwPbN6qWZ94JqZn8fuYGQeFx7L1wk/QsHXUdbJnQtSnTe3rQRPVCUO5CDn/Cm2FfEW0teLSeN88N+wr7GlXrOpVKKAVQCaVoP/32Mgtignmt0YNMHrrU0uHc5+69TNaHXGPNwStEJ6Th5mTPVP/mTOzWDOcq/nBkbGIaweHxBIXHcfjyHXJ0ElcnewZ7NmKIV2O6ezhXy+RqaenJsXy27VHWZMbSRFqz0H8+XdqNtXRYZqESSgFUQima1Ol4Zo0/x3X32DjgC5o162XpkP4mRyfZdSae1QeiOHDxNjVsrBjl48b0nh54NXGydHgmE3kjhaDwOILD4zh5PRGAVg1rM6RDI4Z0aEzHJk7qll8LCju+gtdPfMJlG0Fg7Ta8NGIlDvZV5+8vP5VQCqASSvHi4kIZu3MqrYQd30w9iLVNxT37Px+fzOoDUWw6Hk1aVg5dm9djek8P+rZtgKN95bqIL6Xk1PVEgsLjCAqP4+LNewD4NK2bl0RU31qWl3XvNl9se5Sv069QX1rxn67/omfHqZYOy+xUQimASijG2frH6/z72jZedunBjIdWWDqcYiWmZfFjyDXWHLrCld+hC84AABcFSURBVNupALSoX4sObnXwauJExyZOdHCrQ12HipEcs3J0RN26x/n4FM7FJ3MhPpkTVxOIS0rH2krg94AzQzo0ZpBnI1yd1DWRiiLs+FfMP/Ep520EIx2a8+qIVdRxqG/psMqFSigFUAnFOFKn48Xve7M7J5FP282ij99Llg7JKDqd5OCl25y4epfT0YmERScRnZCWN9+9Xk283Jzo6O6Ul2zq1zbfLZ05Osm1O6mci0/mfFwy52+kcD4umUu3UsjK0f7fWQnwcKlFe9c69G/XkAHtG1aYxKdoUhOusmT7LL7PisNFWvGmz3P06/ykpcMqVyqhFEAlFOOlptxg5o+DuUw2X3efT8cO4y0dUqncvZdJWIyWXMJiEgmPTiRKX4sBaFzHHq8mTng1qYOXm1OBY38U9D+koP83d1MzOR+fok8eyVyITyEjW5c3371eTdo2cqRNY0faNKpNm0aOtGxQG3tba5N8V8XEpGTfXwt5O3IdMdZWTKjdmn8M+wpHBxdLR1buVEIpgEooJXPr1lmmbh1PqpB8V0Ev0pdGYloWETFJhMckEhadyOnoRC7duoep/is0rmOvJY2GtfXJw5HWDWtTy65i3IqtFO9O7AkWBT/Ddu7RQtqwwH8+nduOtnRYFqMSSgFUQim5qKg9TPtzNo5SsGbkT+UyyqMl3MvI5kxsEknpWX+bJyjkbqp8kx3tbGjdyFF1cVKJyewstv32D96P3U2KleDxBn48MXgJNWztLR2aRamEUgCVUErnZNg6Hj+6kJbYsHJ8MA611fglStVzLTKYt/e+ykHrbHyEAwv6f0wr956WDqtCMDahWORpKCHEeCFEuBBCJ4QoNEghxEohxA0hRFi+6e8LIc7+X3t3Hh1FnS1w/Hu7EyAsEiFBlkiCICAyLiDIpqJocBgFAUURFxxHHUUFn4gLx1HHGdFB0WF0dBgXhKegqCyOKItGUQkIgoRNUCAgYV/EYAxJd9/3RxXzAjbQQCWVTu7nnD6prvp11f2lO31T2/2JSI6ITBaR5NKPuvI6s/U1jDztJlZKiKHv9SRUXOh3SMZ4JlT4E2Pfu4Y+n99DjhTzUOPLGHfdXEsmx8Cv22uXAX2AOUdoNxaIVhBnFtBaVc8AVgMPehqd+ZWuHe5leMOL+Vx/5vF3LkcjkSO/yJhybsWScVz7RmeeyV9Oh6qpTOn5Hv0vHEEgYBdKHAtfEoqqrlTVVTG0mwPsijJ/pqqG3KfzgDSPQzRR9Mt8jltPaMV7RVt4ceoAv8Mx5pj98tMmRk24lGsX/41tAXi61R8Y3T+L+nUr5jnCslIRCgD9HvjwUAtF5FYRWSgiC7dv316GYVVMd/aaQK/Ek3jxp2W8O+tev8Mx5uiokv3FU/SZdAmvFeXRq8YpTO33Md3bDbZSNh4otesYRWQ2UD/KouGqOtWjbQwHQsAbh2qjqmOAMeCclPdiu5WZBAI8ctU0drx5IY/nzSB1fhrnn3uP32EZc0Sbcz/j6U+HMVMKSA8m8mq7h2jXqp/fYVUopZZQVPXi0lo3gIgMBC4DumllulStHEhMrM6ovu9z06RMhq54hVdqpsXtjY+m4ivM38LYj+7glb2rUBHuSO3ITRc/V+FKzJcHcXnIS0QuBYYBPVW14Ejtjfeq16zHC5dPpI4Kg756jA0bvvA7JGMOoOEQH2cN54pJ3Xih4DvOq9aAab97m9t7VLzxSsoLvy4b7i0iG4GOwAciMsOd31BEppdoNwHIBlqIyEYRudld9DxQC5glIt+IyEtl3AUDpKS05KWLnkeBP86+nZ07VvsdkjEArP12Cn98vR1DNkwjKVCFl9s+xKj+s2mY2srv0Co0u7HRHDe78dGUF/m71vDSjDt4c18eSQqDGv+Wfl3/SmLQCm4ej3J9Y6OpWM5sfQ1/aznQbnw0vokUFzLlwzu5fEpPxu/Lo1eNJvynz4cM6DbSkkkZsoRiPHFhx6F246PxxbLFr3H9uPY8vO0zGgVrMOG8Z3j0qvepU/tkv0OrdKz8qfFMv8zn2Dr5asb8tILUqdcyqNebSMD+ZzGlY8fmRYyePYTJkd2kBOCvza7hsk4PEhD7zPnFEorx1J29JrBtYib/+mk5u97uwYO93yWxql1RY7xTXLCbibMG889dX1Mowk3Jv+HW7s9TM6nyjVNS3lhCMZ6SQIBH+00nZeq1vLx3FWsnXMConhOpU6eZ36GZOBcuKmB61nD+mTeTjcEAnRNP5P6uT9MkrYPfoRmX7RsazwUTqjC47zs8ldGHZVpI/ym9WfXdB36HZeKUhorJ+vQRrhzfnoe2zKZmoCr/PHMILw743JJJOWN7KKbU9LjgMRqntmbwvMe4/ov7GbFtKd06P+B3WCZeqLJg3nP8feVrLAkq6YEgI1tcT2b7e6wacDll96GYUrd923KGfHAdOYEQg5LP5LbLx9nJenNoqixfMpbRi0YzNxiiXgRuP+UKenV52C4B9omN2BiFJRT/7Cvcw2Pv9ub90HYyg8k83mcy1aun+B2WKWfWrpzC8/OfYJb8QnIE/tDoIq7u+oSVSvFZrAnFDnmZMlG1Wm3+2n82LT68jVHbs9nwVjdGd3+VBg3b+h2aKQc2r/uUFz9/mKmR3VRT+GNKe27sNtKu3IoztodiytznX41m2PIxVAGebTOMNmfe4HdIxie7Ni3i31nDeKt4CwBX1z6dW7o9Q50TbMy88sQOeUVhCaX8WLvuE+7OGkxeQHk47VL6XPy03yGZMpS//VvGfXIf4wrWUihCrxpNuP3CkTRIael3aCYKSyhRWEIpX/bs2cB9U64km18YkJTB0N6TSEis5ndYphRtWZfF+OwRvLsvj58DAS6pchJ3XjCCUxq28zs0cxiWUKKwhFL+hIoLGTXlasYXrKUDSTzd621qJ2f4HZbxkiqrcsYx9puX+EjzUSAzKY2bzn2A0zK6+h2diYEllCgsoZRfkz8exuM/TKd+RPjHBaNo2vQSv0Myx0mL95E972nGfjeJ7GCYJFX6Jrfm+i6P0tAObcUVSyhRWEIp375Z+gZDFoygUOCOkzrRv9uzVgcsDhUX7OSjOY/wet6nrEoQUiLCgIbnc1WXR6ldwy4Vj0eWUKKwhFL+bdm8mD/NvI1sfqFxGO5pfi3dOt1vN0LGgb07VvPunD8xfvdStiYEaEoiNzbty+86DKVKQlW/wzPHwRJKFJZQ4oNGInyx8HmeWfYya4JKG63CsHMf4vTT+vodmolia+5nvJH9BJMKN7I3EKBdoBYDz7iFLmfcaKXkKwhLKFFYQokvoeJC3st6gBfyZrMrIFyWkMLgi0ZRv8HZfodmwiFW5ozjf3NeZrr+RATIrNaQgecO4/QmF/sdnfGYJZQoLKHEp735m3ll5l2My/8WUbihdituzhxNjZr1/Q6t0tnxQzYfLPg703YvZXVCgCRVetduxfVdHiEt9XS/wzOlxBJKFJZQ4tumTQv5e9ZQpod2UjesDEq7hN4XjrB7V0rZvvzNZM0bxbQfPmZuoIiwCL+RJHo2voTftrvHTrRXApZQorCEUjEsXT6JkQueZLEU0SwSYGjrW+jc7k6/w6pQNFTEksWvMG3VW3xUtJ38YIB6Klxe5yx6njOYU6wGW6ViCSUKSygVh0YizJ77JKNWT2BjEDpTnaFdHqdZ00y/Q4trm9dl8f7XL/D+npXkJgSopkq3pDR6nn4D57a6mqCNQ1IpWUKJwhJKxVO0L58Js/+Hf23L5meBvtXSuLHjcNLTz/M7tLhR8OMGZs9/mml5c/gqEEJFaCs16NWkB5eccxc1k070O0TjM0soUVhCqbh+3L2Ol2bdzVsF6wiJ0DISoHvK2XQ/6xZOPrmz3+GVL6rsyFvAvBUT+XLLfD4O/8gvgQBpGqBnajsuazeEk+u19jtKU45YQonCEkrFt3VrDjO/foGPti4gJ1AMQKtIkEtT25J59m00atTe5wj9UZi/mUVLx5O9IYu5P//A6gQBIDkCF9VIp+cZN9OmxRWIiM+RmvLIEkoUllAql02bFjJz0UvM2P41ywIhAM6IJJBZrx3d29xeoe9niRQXsnrVZOZ+/z7Zu79lEUUUBYREVdoEa9Eh5Uw6tujLaU262c2H5ogsoURhCaXy+uGHbGZ+M4YZOxazMhAG4CxNpPtJ7clscyf1TorzQzyqbN04j+wVE5m7dSHzQz+yK+gkimaaQMfap9KpyaW0Oe0qqlet5XOwJt5YQonCEooBWL/+c2YsGcOMnTmsDkQQVc6mKt3rd6BD896kNTqXKuX4S1dDxezcuoR1m+aTu2M53/+4hvkFeaxxD2PVjUDHpAZ0bNSFDq0HUO/Epj5HbOKdJZQoLKGYg61d9wkzlrzCjF1LWRN0/hYCqjSMCOnBJNKrpZJ+QjoZdU+jcYO2NKjflmBi2RQ63Je/mfUbs8ndspjc3avJ/XkTucV7yJUw+SWKZVZTpU3wBDqlnk2HllfSPL2rnQsxnrKEEoUlFHM4a9bMYsWGz1j/4/ds+HkzucV7WE+IgsD/fzknqtI4IqQn1CQ9qR7pJ2SQntqajIbtqFunBeFIEZFwEaFwEeFQIeFwEaHQPsLhIsKRIsLhYsJh53koUuw+L6KgcDfrd65k3Z5c1u3bQW74FzYFBS2RGE6KQEawJhlJ9WiS3ISMlN/QJK0j9VNa2nkQU6osoURhCcUcLY1E2LFzNes3f8X6bUtZv2ct6wu2sj6UzwYJU+zxnkCSKulUoUmVE8momUZG3RZkNDiHjIYdqF7tBE+3ZUysYk0oCWURjDHxSgIBUlNbkprakoP/msLhEFu25bB+0wJyd65g9y87SQgkEAwECYr7M5BIQiCBgCS4yxIIBhIJBhNJCCYSCCSQEEikamJN0hu1o16d5ra3YeKWJRRjjlEwmECjBm1o1KANnfwOxphywP4VMsYY4wlfEoqIXCUiy0UkIiKHPC4nIq+KyDYRWXaI5feKiIqI1c82xhif+bWHsgzoA8w5QruxwKXRFojIyUAmsMHTyIwxxhwTXxKKqq5U1VUxtJsD7DrE4meBYUDluUzNGGPKsbg8KS8ivYA8VV1ypBu4RORW4Fb36V4ROWIiO4QUYMcxvjZeWZ8rB+tz5XA8fU6PpVGpJRQRmQ1EG/R7uKpOPY71VgcewjncdUSqOgYYc6zbK7HdhbFch12RWJ8rB+tz5VAWfS61hKKqF5fSqpsCTYD9eydpwCIRaa+qW0ppm8YYY44g7g55qepSoN7+5yKSC5yjqpVt99UYY8oVvy4b7i0iG4GOwAciMsOd31BEppdoNwHIBlqIyEYRudmPeF3HfdgsDlmfKwfrc+VQ6n2uVLW8jDHGlB67U94YY4wnLKEYY4zxhCWUg4jIpSKySkS+F5EHoiwfKCLbReQb9/EHP+L00pH67LbpJyIr3JI5b5Z1jF6L4X1+tsR7vFpEfvQjTi/F0OfGIpIlIotFJEdEevgRp1di6G+6iHzs9vVTEUnzI04vxVCuSkRktPs7yRGRNp4GoKr2cB9AEFgDnAJUAZYArQ5qMxB43u9Yy7jPpwKLgRPd5/X8jru0+3xQ+7uAV/2Ouwze5zHA7e50KyDX77hLub+TgBvd6YuA8X7H7UG/zwfaAMsOsbwH8CEgQAdgvpfbtz2UA7UHvlfVtapaBEwEevkcU2mLpc+3AC+o6m4AVd1WxjF67Wjf5/7AhDKJrPTE0mcF9o/iVRvYVIbxeS2W/rYCPnGns6Isjzt6+HJV4PRxnDrmAcki0sCr7VtCOVAj4IcSzze68w7W191dfMctUhnPYulzc6C5iHwpIvNEJGrBzjgS6/uMiKTj3Ej7SbTlcSSWPj8KXOde0j8dZ88sXsXS3yU4RWoBegO1RKRuGcTmp5g/+8fCEsrRex/IUNUzgFnA6z7HUxYScA57dcX5b/3fIpLsa0Rl5xrgHVUN+x1IGegPjFXVNJxDI+NFKvTwkUOBC0RkMXABkAdUhve51FTkD8uxyANK7nGkufP+S1V3quo+9+nLQNsyiq20HLHPOP/FTFPVYlVdB6zGSTDxKpY+73cN8X+4C2Lr883A2wCqmg1UwykoGI9i+VvepKp9VPVsYLg7L+4vvjiCo/nsHzVLKAdaAJwqIk1EpArOl8m0kg0OOt7YE1hZhvGVhiP2GZiCs3eCO5hZc2BtWQbpsVj6jIi0BE7EqdYQ72Lp8wagG4CInIaTULaXaZTeieVvOaXEHtiDwKtlHKMfpgE3uFd7dQD2qOpmr1Yed7W8SpOqhkTkTmAGzlUir6rqchH5M7BQVacBd4tITyCEc/JroG8BeyDGPs8AMkVkBc4hgftUdad/UR+fGPsMzpfQRHUvj4lnMfb5XpzDmffgnKAfGK99j7G/XYERIqI4g/0N8i1gj7jlqroCKe65sEeARABVfQnn3FgP4HugALjJ0+3H6efFGGNMOWOHvIwxxnjCEooxxhhPWEIxxhjjCUsoxhhjPGEJxRhjjCcsoZi4JiJ7Y2gzRESqe7jNK0SklYfrm3scr93r/mwoIu8cpl2yiNxxrNsxJhaWUExlMAQ4qoQiIsHDLL4Cp7CgJ1S1kwfr2KSqVx6mSTJgCcWUKksopkIQka7umBbviMi3IvKGezfw3UBDIEtEsty2mSKSLSKLRGSSiNR05+eKyFMisgi4SkRuEZEFIrJERN4Vkeoi0gmnQsJId6yUpiJylls0M0dEJovIie76PhVnXJWFIrJSRNqJyHsi8p2I/KVE7HtLTN8vIkvdbT4ZpZ9N3NiXHrSOjP1jYIjI6SLylRtfjoicCjwJNHXnjRSRmuKMBbLIXVevEutZKSL/Fmfsm5kikuQuayYis93YFolIU3f+fe7vKUdEHvP0jTXxxe/6/fawx/E8gL3uz67AHpzaRAGccild3GW5QIo7nYJzV3QN9/n9wJ9KtBtWYt11S0z/BbjLnR4LXFliWQ5wgTv9Z+A5d/pT4Cl3ejBOOfgGQFWc+mh1D+rDb4G5QHX3eZ0o/Z0G3OBODyrx2gzcMTCAfwAD3OkqQFLJ5e78BOCEEr+T73HGyMjAqQJxlrvsbeA6d3o+0Nudroaz15eJM46KuL/3/wDn+/25sIc/Dyu9YiqSr1R1I4CIfIPz5fjFQW064Byu+lJEwPnCLVmr660S063dvYBkoCZOGY8DiEhtIFlVP3NnvY4zcNN++8u4LAWWq1s3SUTW4hTpK1nC5mLgNVUtAFDVaONadAb6utPjgaeitMkGhoszAuF7qvqd29cDQgeeEJHzgQhOCfOT3GXrVPUbd/prIENEagGNVHWyG1uh249MnKSy2G1fE6dw6JwocZkKzhKKqUj2lZgOE/3zLcAsVe1/iHX8XGJ6LHCFqi4RkYG4BTKPMabIQfFFDhFfLA5bL0lV3xSR+cDvgOkichu/LuY5AEgF2qpqsYjk4ux1lIwZnN9j0mE2J8AIVf3XUcRvKig7h2Iqg3ygljs9D+gsIs0ARKSGiDQ/xOtqAZtFJBHnC/hX61PVPcBuETnPXXY98BnHZhZw0/4r0kSkTpQ2X+IUreSgmP5LRE4B1qrqaGAqcAYH/g7AGZFxm5tMLgTSDxeYquYDG0XkCncbVd04ZwC/L3EeqpGI1Iupt6bCsYRiKoMxwEcikqWq23EqRE8QkRycw0MtD/G6h3HOG3wJfFti/kTgPhFZ7J6YvhHnJH0OcBbOeZSjpqof4RwiW+geshsapdlgYJCILOXQI+31A5a562iNM+TrTpzDfMtEZCTwBnCOu54bDurfoVyPU207B+dcT31VnQm8CWS763qHAxOXqUSs2rAxxhhP2B6KMcYYT1hCMcYY4wlLKMYYYzxhCcUYY4wnLKEYY4zxhCUUY4wxnrCEYowxxhP/B+cm4k/+T9pCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8FPX5wPHPk0029wHBgxsERLEqCoL1BCuKB2LVqoi13q1nf7a1ta2t1bYe7a+/amur9cQTxKvFE6XlEEXlUpSiEhElAeXMTdhk8/z+mAkM6ybZJLs7yeZ5v155Za6deb6zs/Ps9zvfnRFVxRhjjPFDmt8BGGOM6b4sCRljjPGNJSFjjDG+sSRkjDHGN5aEjDHG+MaSkDHGGN9YEkoSEfmNiDzuDg8QkWoRCbjje4nIAhGpEpE/ieNhEdkmIu/6G3n7ici3RWSdW9ZD/I6ns4k8Djob7zHbWYjIShEZ18L8eSJyaRJD8m67U7+f7SUivxCRBxK1/k6fhERkrYhsd9/cpr+7/Y6rI1T1C1XNU9WwO+lyYDNQoKo/Bo4CJgD9VHWMX3HGwf8CV7tlXZ7sjYuIikhNxLHz0wRu70IRWRgxbZqIhCJieB+iHgemFap6gKrOg86XJCPfTz8TYjyp6q2qmrBypCdqxXE2SVXnJHIDIpKuqg2J3EYLBgL/1V2/HB4IrFXVmrauyOdyRBoIrIw2I4lxHqyqJUnYTkv+oKo3+hxDpyEigVRLvJ3sc9e1qGqn/gPWAsc3M+9CYCHON+5twGfASZ75hcCDwAagDPgdEPC89k3gz8CWpnnAn3BqJZ8BVwOKk6y/AyyN2P6PgH81E9tgYD5QBbwO3A087s4b5FnvNKAeCAHVwPeBOiDsjt/svuZU4D2gHHgLOChiH/0MWAHscNfbB3gW2OSW5VrP8r8BZgKPuvGtBEZ75vcHnnNfuwW42zPvYmCVu79nAwOjlD3TjV2BGuDTFuLcH5jnlmslcJpnPdOAvwOvuOt7E9gbuNPd/kfAIS0cOwoMbWbey8CfPOMzgIfc4SHAf9yybwaeAIpa2j9uObzvW7mnDL9rJoadx4HnmFngvidzgL81HTPu/MPd974ceB8Y55k3D/itu4+qgNeAXu68LOBxN9ZyYDGwlzuvDzAL2AqUAJdFHCdNx+wrOLVab/zvA2e4w/vhHOdbgY+BsyPex3vcfV5DxOcZGA984Bl/HVjsGX8DON17PgAm4nxm6t39/X5r+yHK/h8HlAK/cN/ntcBUz/xTgOVAJbAO+E2U9+4S4Av3fdv5fgK/d4+FOje+u933808RMcwCrmvh+L0SWO2W5bc4x+ZbbkwzgaC7bA/gRZxjcps73C/i+LgNeNd97b+AnhFluRxYj3O+/Ekzx0HTst9zy70Z+KVn2WzgETeGVcBPgdIWz/HtTQ7J+qP1JFQPXIaTQK5wd6K4858H/gHkAnu6b8D3Pa9tAK5xD5ps4AfAf4F+7ps6x3NQZeJ8wPb3bH85cGYzsS0C/s993THuQfS1JBTtROXGttAzfgiwERjrlvN77n7J9Oyj93BOjtk4zaxLgV8DQWAfYA1wouegqgNOdtd3G/C2Oy+Ac3L5s7vfsoCj3HmTcU5U+7v75EbgrRbeu92SQJQ4M9z1/cKN8zh3Pw337JfNwCg3jv/gJNQL3Dh/B8yNdfsR8/Z29+lxwFR3/+S784biNIdmAnvgnGDujGH/7Pa+RXtvI+ZFHgeLcL5QBXGaZCvZdcz0xUkiJ7vv7wR3fA/PSeZTYF93384DbnfnfR94Achx4x+F0/SLW7a/u+UYiXMSOy7KyecC4E1P7CNwElqmux/WARe5x8Uh7vs2wrMPKoAj3dizIvZDNs7x2Ms9Jr7C+dKY787bDhRHng+88UWcbKPuhyj7fxzOOaDpc3osTpIc7pl/oBvzQW5cp0e8d4+65c+O8n7OAy71bG8MzvkpzR3vBdTifiFo5vj9F1AAHIDzxe3fOJ/nQpxz1ffcZYuBM933OB94GvhnxH4pA77hxvssXz8fTXfnHegeB1/bz55l73fLfLAb1/7u/Ntxvnz3wDmPriBFklA1zgHf9HeZ50Nf4lk2x91BewN7uTsn2zN/Cu5Jy33tFxHb+g9uknLHj484qO4Bfu8OH4CT7TOjxDwA5+DO9Ux7MsobGWsSugf4bcQ2PgaO9eyjiz3zxkYp28+Bhz0H1ZyIE8p2d/ib7gGYHqVcrwCXeMbTcD5EA1v4EEUmIW+cRwNf4n4o3WnTcb9xuvvlfs+8a4BVnvEDcWscLWy/MuLYOdEz/0yck+dm3ETSzHpOB5bHsH92e988ZaiLiOGRyOPAc8zkeF77uOeY+RnwWMS6Z7PrJDQPuNEz70rgVXf4YiJqz+70/jjf1vM9024DpnmOk6bt5+OcoAe6479nV83xHOCNiHX/A7jJsw8ebeVz/gZwBk5t7zWcb/kTcWpJKyKOodaSUNT9EGWb4/j653Qm8Ktmlr8T+HPEe7ePZ/7O99MTy6UR61gFTHCHrwZebuX4PdIzvhT4mWf8T7hfjqK8diSwLWK/3O4ZH4FTkwx44t7PM/8PwINRjoOmZb21rHeBc93hnV923fFLaSUJdfqOCa7TVbXI83e/Z96XTQOqWusO5uFcj8gANohIuYiU43ww9vS8dl3EdvpETIuc/whwnogI8F1gpqruiBJvH5wDwHtN5/OWi9iigcCPm8rhlqW/u51osQ4E+kQs/wucxNzkS89wLZAlIunuej/X6O3bA4G7POvcCgjOt/RYeePsA6xT1UbPtM8j1veVZ3h7lPG8VrZ3aMSxM9sz7wWcD+HHqrqzQ4HbW3GGiJSJSCVOMujlzm5p/zTnfyNi+F6UZfoAWz3HMHz9Pf1OxHt6FNDbs0zke9q0bx7DSVgzRGS9iPxBRDI826zyvC5y/wPgLvMScK47aQpOM2VTbGMjYpuK82UwWlmimY+TFI5xh+fh1EyOdcfborn9EE20z2kfABEZKyJzRWSTiFTgtJT0inh9a+WK9Ahwvjt8Ps5705KYjn8RyRGRf4jI5+4xuwAoiuip5431c5zzY68W5nvPL5Ga28etnUO/pqskofZYh1MT6uX58Beo6gGeZTTiNRtwqpBN+ntnqurbON8ejgbOo/kDaAPQQ0RyPdMGtKMMTdbh1MC8J7IcVZ3uDS9i+c8ils9X1ZNj3NYANyFFm/f9iPVmq+pbbSiLN871QH8R8R6HA3CaDZLh9zjfTHuLyBTP9Ftx4jxQVQtwThbizmtp/0QeT22xAegpIjmead7jbx1OTci773NV9fbWVqyq9ap6s6qOAI7Aub54Ac7+7yki+Z7FW9r/04EpIvJNnOa7uZ7Y5kfElqeqV3jDaCXMyCQ0n9aTUEf2d5Non9P17vCTONds+qtqIXAvu46DWGKINu9xYLKIHIzTrP3PdkX9dT8GhgNj3WP2GHe6N17v8TQA51LG5hbmr6ftWjyHRpOySUhVN+BU6/8kIgUikiYiQ0Tk2BZeNhP4oYj0FZEinCaQSI/iXGSs9357jtj258AS4GYRCYrIUcCkDhTnfuAH7jczEZFcETkl4uTh9S5QJSI/E5FsEQmIyDdE5LAYtvUuzoF0u7udLBE50p13L/BzETkAQEQKReQ7HSjXOzjfon4qIhnu7z8m4XQSSCgROQbnGsYFONfY/ioiTTWAfJwm4Ap32vWel7a0f74C+olIsK3xeI6Z37jHzDfZ/Zh5HJgkIie672eWiIwTkX5RV7h7WceLyIHut+JKnJNPo6quw2mmu81d30E4F9qb6/b8Mk6t5xbgKU8N9kVgXxH5rvs+ZojIYSKyfxt2wVs4J9ExwLuqutLd1licb/XRfAUMivgS0x5Nn9OjcRL00+70fJyaYp2IjMH54tkWX+Fcv9lJVUtxOoY8Bjyrqts7FvpO+Tg1o3IR6QncFGWZ80VkhPtF5xbgGd29l+Kv3BrVATifjafaEcdMnHNED/ezc3VrL+gqSeiFiN9ZPB/j6y7Aucj7X5zrN8+we/NFpPtxEtcKnE4HL+O0GXvfqMdwLu619vuE83A+QFtxDohHY4z5a1R1CU7ni7txylGCc/2hueXDOB+mkTgX8jcDD+BczGxtW2Gck99QnN4vpTht/qjq88AdOM06lcCHwEntLBaqGnK3dZIb49+BC1T1o/auM4r3I46dO0WkAOf9uFpVy1T1DZxelA+7Ta03A4fiXEx/CacnXFPMze4fnGuKK4EvRcT7DfOnETF453lNxbnm1NRb8ymc2jxuwpiM06y6Caf2cT2xfYb3xjn2K3FqfvPZVYufgtPOvx6nI89N2szPIdym5+dwrpU+6ZleBZyA01S3Hqep5g6ci/0xcZvElgEr3eMCnI4an6vqxmZe1pQstojIsli3FeFLnM/UepzmxR94jr8rgVtEpAqnk8/MNq77LuAscX50/hfP9Edwrme21hTXFnfidBTYDLwNvBplmcdwrs99iVOTvTZi/nycc8u/cZqQX2tHHLfgfCY+w+nY9QzuMdycpl5kJgoROQm4V1UHeqZl4/SqOlRVV/sWnEl5IvIU8JGqRvtWazrIrXk/rqqt1ibjvN1jcL7EDtQknYBFZB5OWb925wMRGYSTNDLaeK0zlu1egdNpodkWqK5SE0oKt+nqZBFJd6uSN+F8O/S6Auc3DJaATFy5TVhD3KbjiTg1n3hdMzCdgNsh5IfAA8lKQMkkIr1F5Ej3GB6Oc62qxZarrnLHhGRpaop5Cqd99SWcargzU2Stu8zpfgRnUt7eOM1dxThNGleoD7c7MonhXiNbgvM7s4t8DidRgji9kAfj/BxhBk4ze7OsOc4YY4xvrDnOGGOMb7pFc1yvXr100KBBfodhjDFdytKlSzer6h6J3EZKJyERmQRMGjp0KEuWLPE7HGOM6VJEpCN3eomJNccZY4zxTUonIVV9QVUvLyxs9TeaxhhjfJDSSUhEJonIfRUVFX6HYowxJoqUviakqi8AL4wePfoyv2MxxnRd9fX1lJaWUldX53coCZGVlUW/fv3IyMhI+rZTOgl5OyYYY0x7lZaWkp+fz6BBg3BuL5g6VJUtW7ZQWlrK4MGDk779lG6Os2tCxph4qKuro7i4OOUSEICIUFxc7FstL6WTkDHGxEsqJqAmfpbNmuOMMTHTcAN1nyyl7tMVIIKkB5H0DCQjiATSoWk8PWPXvMhpwUwCRXt26pO6NjYSrthMw5YN1G9ZT2NGLxq2fYVkZO76S7Pv8PGQ0knIOiYY03H1m0qpeW8+te/NpfaDhTTWVnZ4nRl7DiD3sBPIG30C2fuPRdKTd0E8MsE0bFlPw5YNO//Xb1lPw9YvoaF+52vC1z5Cw9bdn1Uo6UEnGQV3Jaa0YBYE0uOeYMePH88NN9zAiSeeuHPanXfeyccff8zVV1/NNddcQ1lZGQ0NDZx//vncdNNNpKWlMW3aNK6//nr69t31xPYnn3ySESNGxDW+jkjpJGSMabvGHdvZvuodapbPpfb9eYRKnaeWpBf3Ju+bp5I7cpyTOALpaEM92hBy/+8apiGEhhsi5jv/G2sqqV2xgIrXH6f8pQdIyy0k95DjyDvsBHJGjieQWxC3soRrKqkrWU7dJ0vZ/skyQmWrv5ZgwEko6cW9SS/uQ/bww0jv1YeMnr1J79WH9OLerNmeRubg/dH6EBqqQ+t30Fi/w/lfWQM7HzILSNrOxJSWkYkEs9xkldXu5DRlyhRmzJixWxKaMWMGd9xxB6eddhr33HMPJ5xwArW1tZx55pncddddXHfddQCcc8453H333e3abjKkdBKy5jhjWqeqhMpKqF0+l5r357H9v2+joTokI5PsEYdT+K3zyBk5nmC/YXH7ht/jlEtprKuldsV8qhe/Rs3S16la+DykZ5Az4ps7a0kZe8T+vDltbCRUVuImnKXUfbKUUOknoAoiBPsPJ3vf0aTv0Xe3BJNe3JdAQc8WyyarViFpASQzGzKzd9+uKhquR0NOUtL6Hc5wXS0N1eW7Fgykk5adTyAnn7ScfKf5MkZnnXUWN954I6FQiGAwyNq1a1m/fj0lJSUceeSRnHDCCQDk5ORw9913c/TRR+9MQp1dSicha44zJrpwbRW1K96g9r251Lw3j4bNZQAE+w6lcML55I4cT/aIsaRl5iQshrSsHPLGnETemJPQcJi61UupXvwa1Ytns+nBG9n04I1kDjrASUiHnUjm4AN3SxThmgrqVi9n+8dLqFu9jLrVy2mscX6YnpZXRNawQ8k/4jSy9j2UrKGHxK2GtfHhX7Pjs5UxLq2oKjSG0cYwhMOA+/ictACSFoC0AFn7HMieF/+22bX07NmTMWPG8MorrzB58mRmzJjB2WefzcqVKxk1atRuyw4ZMoTt27dTXu4kwKeeeoqFCxfunL9o0SKys3dPpH5K6SRkjNmlYdtGqpe8RvU7r1D74UJoqCctJ5+cA48m58wfkjtyXJtqHvEkgQDZ+40he78x7PHdGwmVlVC95HVqFs9m67N3sfXpP5Ne3JvcURPQhhB1nyxzajng1nL2I/+ISWTtO4rsfQ8lo/eQTtJxQJzEGUhDAhmQgZOMGsNoOIw2hAAIV22lfuMXpOUUkJadF7WW1NQk15SEHnzwQZ544olWI7DmOGOMb0IbPqP63VeofvdV6j5ZCqpk7DWQHiddTO5hJ5K976ikdgqIVbDvUHr2HUrPyVfQULGFmmVzqFn8GpXzn0Yyssje91Dyjzqd7H1HkTl0JIGc/KTFtudFt8RtXdpQT+P2KsK1VYRrKglXbQNAsnJ3NdsFsxERJk+ezHXXXceyZcuora1l1KhRLF++nAULFuy2zjVr1lBcXExRUVHc4kyklE5Cdk3IdDeqyo41H1D97qtUv/sKoXUfA5A5+BsUn/0T8sZMJDhgv07dPTpSemExhePPoXD8OWi4wWnG6kLxt0TSMwjk9ySQ39O5tlRXS7i2isbtlU4Hiq1fQiCdQG4h2XlFjB8/nosvvpgpU6YAMHXqVG699VbmzJnD8ccfz/bt27n22mu5+eabfS5Z7FI6Cdk1IdMdaLiB7f9920k8i1+lYfN6SEsje//D2eOiW8gbM9G3ZrZ4a8vF/K5GRJDsXNKyc4G90YZ6wturaHRrSOHKLZz5raM4Z+ZMnpz2EKpKdnY2s2bN4pprruHKK6+krKyMG2+8kalTp+5cb+Q1ob///e8cccQRPpQwOlFVv2NIuNGjR6s91M50VRoO01hbSbimwjkh1ZTTWF3hXJj/aDHVS+fQWL0NCWaRc9Ax5I09ibxRxxMoKPY79JSxatUq9t9/f9+2r41hGmurCFeXO7/TUkXSM0jLLSKQV4RkOk12//znP/nRj37E3LlzGThwYJu2Ea2MIrJUVUfHsyyRUvdrhTGdnNaHqHrnJeq//JzGmgrnBFPTlGwqdv5vrK1qdh1puYXkjppA3piJ5I4cR1pW4nqzGf9IWoBAnpNwnC8lFYSrKwhXbCZcsQnJCJKWW8RpJ53I5MmfdqnmSktCxiSZ1oeomPc0W5+7i4ZNpQBIVg6B3ELScgsJ5BaS3qsPmQNHkJZXSFpOAYG8ItJyC3ZbJi2vkPTCPTplxwKTOBII7LqOFG5wvqxUlxMu30S4fKPzI1k3YaUFs/wOt1UpnYSsY4LpTCKTT9awQ9nr8jvI+caRSEaw9RUYX6lqp6thSCCd9IJiKChGGxp2NdVu+4rwtq+QYBaBgmLSC3u1uB4/L8ukdBKyjgmmM9CGeirnzWTLc3+hYeO6Xcln5LhOd1Iz0WVlZbFly5ZO/TgHSU93kk1hL6dTQ3U54ZpyNNTyIxqanieUleVPrSmlk5Axfvpa8hl6CHtddrslny6oX79+lJaWsmnTJr9DaTuthM2rWlyk6cmqfrAkZEycaUM9lfOfZsuzd+1KPpfeRs4h4y35dFEZGRm+PHW0O7AkZEycRCafzKEj2fPSW8k95DhLPsY0w5KQMR3kJJ9n2PrsXdRv/ILMIQdb8jEmRpaEjOmAcNU2vvjlJOrXryFzyMH0ueR35B76LUs+xsSoSyYhERkH/BZYCcxQ1Xm+BmS6rdqVi6hfv4a9rvw/CsafY8nHmDZK+r3OReQhEdkoIh9GTJ8oIh+LSImI3NDKahSoBrKA0kTFakxrQmUlAOR/c5IlIGPawY+a0DTgbuDRpgkiEgD+BkzASSqLRWQWEABui3j9xcAbqjpfRPYC/g+YijE+CJWVkF7c273ppDGmrZKehFR1gYgMipg8BihR1TUAIjIDmKyqtwGntrC6bUBmtBkicjlwOcCAAQM6GLUx0YXKVhPsO8zvMIzpsjrLNaG+wDrPeCkwtrmFReQM4ESgCKdW9TWqep+IbAAmBYPBUdGWMaYjVJVQWQmF48/xOxRjuqzO8PzbNlPV51T1+6p6TkudElT1BVW9vLCwMInRme6iYeuXaF0Nwb52b0Jj2quzJKEyoL9nvJ87rUNEZJKI3FdRUdHRVRnzNfVupwRLQsa0X2dJQouBYSIyWESCwLnArI6u1GpCJpF2lK0GINjPrgkZ015+dNGeDiwChotIqYhcoqoNwNXAbGAVMFNVV8ZhW1YTMgkTKishLSefQNGefodiTJflR++4Kc1Mfxl4Oc7bskc5mISpLysh2Geo/T7ImA7oLM1xCWE1IZNIO8pKrCnOmA5K6SRk14RMooRrqwhv/ZJg3yF+h2JMl5bSSciYRKlf/ylgPeOM6aiUTkLWHGcSJWTds42Ji5ROQtYcZxIlVLoaAulk7DXI71CM6dJSOgkZkyihshKCew9C0jP8DsWYLi2lk5A1x5lECa0vIcOa4ozpsJROQtYcZxJBG+oJbfiMTLt7tjEdltJJyJhEqP/qcwg3WKcEY+LAkpAxbdTUM86a44zpuJROQnZNyCTCzu7ZfeyHqsZ0VEonIbsmZBIhVFZCoOfeBHIL/A7FmC4vpZOQMYkQcm9caozpOEtCxrRB0yO97Z5xxsSHJSFj2iBcvonG2krrGWdMnKR0ErKOCSbeQvY0VWPiKqWTkHVMMPFmNy41Jr5SOgkZE2+hshIkK5f0nr39DsWYlGBJyJg2CJWuJtjXHultTLxYEjKmDULrS6wpzpg4siRkTIwat9fQsHm9JSFj4siSkDExCm2wR3obE2/pfgfQHiKSBvwWKACWqOojPodkuoFQaVPPOOuebUy8JL0mJCIPichGEfkwYvpEEflYREpE5IZWVjMZ6AfUA6WJitUYr1BZCaQFyNh7oN+hGJMy/KgJTQPuBh5tmiAiAeBvwAScpLJYRGYBAeC2iNdfDAwH3lLVf4jIM8C/kxC36eZCZSVk7DWQtIxMv0MxJmUkPQmp6gIRGRQxeQxQoqprAERkBjBZVW8DTo1ch4iUAiF3NBxtOyJyOXA5wIABA+ISu+neQmWr7XqQMXHWWTom9AXWecZL3WnNeQ44UUT+CiyItoCq3gfcDCwLBoPxitN0UxpuoH7DZ5aEjImzLtkxQVVrgUtiWO4F4IXRo0dflvioTCqr37gObQhZEjImzjpLTagM6O8Z7+dO6xC7gamJF7tnnDGJ0VmS0GJgmIgMFpEgcC4wq6MrtRuYmnjZefdsS0LGxJUfXbSnA4uA4SJSKiKXqGoDcDUwG1gFzFTVlXHYltWETFyEykoIFO1BIK/I71CMSSl+9I6b0sz0l4GX47wtuyZk4sIe6W1MYnSW5riEsJqQiYedj/S2B9kZE3cpnYTsmpCJh3DlFhqry+16kDEJkNJJyGpCJh6sZ5wxiZPSSchqQiYeLAkZkzgpnYSMiYdQ6WokM5v04j5+h2JMyknpJGTNcSYenJ5xQ5C0lP64GOOLlP5UWXOciQd7pLcxiZPSSciYjmrcUUvDplJ7kJ0xCWJJyJgWhNavAVWrCRmTICmdhOyakOko6xlnTGKldBKya0Kmo5xHeqeR0Xuw36EYk5JSOgkZ01GhstVk7DmAtGCW36EYk5IsCRnTglDZp3bjUmMSyJKQMc3QcJj6DWsI9h3idyjGpCxLQsY0o35zKRqqs7tnG5NAKZ2ErHec6QjrGWdM4qV0ErLecaYj6i0JGZNwKZ2EjOmIUFkJgYKeBPJ7+h2KMSnLkpAxzQiVrrbb9RiTYJaEjGmG3bjUmMSzJGRMFOHKLYQrt1oSMibB0v0OoD1E5GhgKk78I1T1CJ9DMilmV884a44zJpGSXhMSkYdEZKOIfBgxfaKIfCwiJSJyQ0vrUNU3VPUHwIvAI4mM13RP1j3bmOTwoyY0DbgbeLRpgogEgL8BE4BSYLGIzAICwG0Rr79YVTe6w+cBlyQ6YNP9hMpKkGAW6b36+h2KMSktpiQkIs8BDwKvqGpjRzaoqgtEZFDE5DFAiaqucbc3A5isqrcBpzYT0wCgQlWrOhKPMdGEyj4lo/c+SCDgdyjGpLRYm+P+jlPrWC0it4vI8DjH0RdY5xkvdae15BLg4eZmisjlIrJERJZs2rQpDiGa7iRUtppMa4ozJuFiSkKqOkdVpwKHAmuBOSLylohcJCIZiQywhZhuUtW3Wph/H3AzsCwYDCYvMNPlNYbqqN/4BRmWhIxJuJg7JohIMXAhcCmwHLgLJym9Hoc4yoD+nvF+7rQOsdv2mPao3/CZPdLbmCSJKQmJyPPAG0AOMElVT1PVp1T1GiAvDnEsBoaJyGARCQLnArM6ulK7galpD+sZZ0zyxNo77i+qOjfaDFUd3ZYNish0YBzQS0RKgZtU9UERuRqYjdMj7iFVXdmW9RoTL6Gy1SBCsM8+fodiTMqLNQn1EJEzIqZVAB94ukvHRFWnNDP9ZeDltqwrhm29ALwwevToy+K5XpPaQmUlpO/Rj7TMHL9DMSblxZqELgG+CTTVhsYBS4HBInKLqj6WgNiM8UWorMQe6W1MksTaMSED2F9Vz1TVM4ERgAJjgZ8lKriOsmtCpq20sdFJQvY0VWOSItYk1E9Vv/KMbwT6q+pWoD7+YcWH9Y4zbdWwZb3zSG/rlGBMUsTaHDdPRF4EnnbHz3Sn5QLlCYksDkRkEjBp6FA7oZjYWM84Y5Ir1prQVTh3Jxjp/j0KXKWqNao6PlHBdZTVhExbWRIyJrlarQm5Nxed4yabZxOXK/z+AAAaDklEQVQfkjH+CZWuJi2vB4GCYr9DMaZbaLUmpKphoFFEulx1wjommLYKlZUQ7DsEEfE7FGO6hVivCVUDH4jI60BN00RVvTYhUcWJ/U7ItFVofQm5h37L7zCM6TZiTULPuX/GpKxwdTnh8k32NFVjkiimJKSqj4hINjBAVT9OcEzG+MI6JRiTfLHewHQS8B7wqjs+0n3yaadm14RMW1gSMib5Yu2i/Rucp5+WA6jqe0Cnv7ujddE2bREqK0HSg2Ts2b/1hY0xcRFrEqpX1cjqRIce821MZxMqW01Gn32QQKyXSo0xHRVrElopIucBAREZJiJ/BZp9qqkxXVGo7FO7cakxSRZrEroGOADYAUwHKoH/SVRQxiRbY/0O6r/63K4HGZNksfaOqwV+6f4Zk3Lqv1wLjWGC/SwJGZNMMSUhEdkX+AkwyPsaVT0uMWHFh93A1MTKesYZ449Yr8A+DdwLPACEExdOfNkdE0ysdiah3kN8jsSY7iXWJNSgqvckNBJjfBQqKyG9Vx/SsnP9DsWYbiXWjgkviMiVItJbRHo2/SU0MmOSKFS62m7XY4wPYq0Jfc/9f71nmtIFfrBqTGtUldD6EgqPm+J3KMZ0O7H2jhuc6ECM8UvD1g1oXa11SjDGBy02x4nITz3D34mYd2uigmqNiAwQkX+KyEMicoNfcZjUECpdDWDNccb4oLVrQud6hn8eMW9iezboJo6NIvJhxPSJIvKxiJTEkFgOBJ5R1YuBQ9oThzFNdqz5ALDu2cb4obXmOGlmONp4rKYBdwOP7lyR8wjxvwETgFJgsXuX7gBwW8TrLwbeBp4RkYuBx9oZhzGoKpXznyZr31Gk99jT73CM6XZaqwlpM8PRxmOiqguArRGTxwAlqrpGVUPADGCyqn6gqqdG/G0ELgJucn8se0q07YjI5SKyRESWbNq0qT2hmm6g7qN3CZWupvD4qX6HYky31FpN6GARqcSp9WS7w7jjWXGMoy+wzjNeCoxtYflXgd+4N1VdG20BVb0PuA9g9OjR7UqYJvWVv/4EaTn55B9xmt+hGNMttZiEVDWQrEDaQlU/BM5qbTm7bY9pSbhqG9WLXqDguHNJy8rxOxxjuqVYf6yaaGWA90li/dxpxiRM5YJn0fodFE043+9QjOm2OksSWgwME5HBIhLE6ZXX4ceH25NVTXNUlYp/P0nW0EPIHHSA3+EY020lPQmJyHRgETBcREpF5BJVbQCuBmYDq4CZqroyDtuaJCL3VVREPhTWdHd1nywl9MVHFE6wDgnG+CnpzzFW1aj3RlHVl4GX47wtu4u2iapizuNIVi75R0z2OxRjurXO0hyXEFYTMtGEayqoenMWBUefYXfNNsZnKZ2E7JqQiaZqwXNoqM6a4ozpBFI6CRkTSVUpf/1xMvc5iKx9DvI7HGO6vZROQtYcZyLVrV5O6ItVFFq3bGM6hZROQtYcZyI5HRJyKDjqdL9DMcaQ4knIGK9wbRVVb/6LgqO+TVp2nt/hGGNI8SRkzXHGq+qN59Ed2yk83prijOksUjoJWXOcaaKqVLz+GJmDDiBziHVIMKazSOkkZEyTHZ+uYMfalRROOB+R9j4KyxgTb5aETLdQMedxJDOb/KO+7XcoxhiPlE5Cdk3IADRur6Zy4fPkHzmZQG6B3+EYYzxSOgnZNSEDULnwn2hdrXVIMKYTSukkZAxAxeuPExw4gqxhh/gdijEmgiUhk9Lq1qxgx5oVFB0/1TokGNMJWRIyKa1izpNIMIv8Y87wOxRjTBQpnYSsY0L31ri9hqo3niP/yNMI5Np1QWM6o5ROQtYxoXureutfNG6vpvBb9sgGYzqrlE5CpnureP0Jgv2HkzV8tN+hGGOaYUnIpKS6zz6krmQ5hdYhwZhOzZKQSUkVc55AglkUHHOm36EYY1pgSciknMa6WqreeI68w08lkN/D73CMMS2wJGRSTtVbs2israJognVIMKaz65JJSERGiMhMEblHRM7yOx7TuVTMeYJgv2Fk7TfG71CMMa1IehISkYdEZKOIfBgxfaKIfCwiJSJyQyurOQn4q6peAVyQsGBNl7Pj81XUfbKUwuPtkQ3GdAXpPmxzGnA38GjTBBEJAH8DJgClwGIRmQUEgNsiXn8x8Bhwk4icBhQnIWbTRVTMeQJJD1JwrHVIMKYrSHoSUtUFIjIoYvIYoERV1wCIyAxgsqreBpzazKqucpPXc9FmisjlwOUAAwYMiEPkprNr3FFL5YJnyTv8FAL5Pf0OxxgTAz9qQtH0BdZ5xkuBsc0t7CaxXwC5wB+jLaOq94nIBmBSMBgcFbdITadVveglGmsqKJxgj2wwpqvokh0TVHWtql6uqlNVdWELy9lte7qR8jmPk9FnH7JHHO53KMaYGHWWJFQG9PeM93OndYjdwLT72LHuY+o+WmwdEozpYjpLEloMDBORwSISBM4FZnV0pVYT6h5Ula3P/w1JD1I47jt+h2OMaQM/umhPBxYBw0WkVEQuUdUG4GpgNrAKmKmqK+OwLasJdQNbn/kzVQueocek7xMosM6SxnQloqp+x5Bwo0eP1iVLlvgdhkmA8tmPsPH+n1Mw7mz2uurP1hRnTByJyFJVTeht6DtLc1xCWE0otVW9NYuND/yC3NET2OuK/7UEZEwXlNJJyK4Jpa6a9+ax4S/XkL3fGHpfdy8S6Cy/NjDGtEVKJyGTmrZ/soz1/3spmf2G0eeGaaRlZvsdkjGmnVI6CVlzXOrZUbqaslu/S3rhHvT95ZMEcq2Wa0xXltJJyJrjUkv9plLKfnsukp5O319NJ73Hnn6HZIzpoJROQl1Zxb+ns3n6HwjXVPodSqcQrtxC6W+n0Li9hn43Pklw70F+h2SMiYOUTkJdtTkuXFvFxod/xdZn72TtNUdS/voTaDjsd1i+adxeTemt36Vhcxl9bniEzEEH+B2SMSZOUjoJddXmuKr5z6B1tez5/T8S7DOEjf+4ni9+diK1H77ld2hJ11i/g/V/uJgdaz6g94/uJWdEs/e1NcZ0QSmdhLoiVaX8tUfJ3OcgCo8/j36/fZ7eP7qXcHUFpb85i/V/vJTQV5/7HebXqCra2BjXGpuGw3x51zXUfrCQva78E3mjT4jbuo0xnYP9uKKT2b7qHULrPt7tx5f5R5xG7qgJbHvhH2x9/q/ULJ1D0aTLKT7jWtKy8+Ky3cZQHbXvz6f6nVeoXfkWWh8CbQRtRBvVM9wIjWFQRbURGhvdebvuvJE55GDyDjuRvDETCfYf3q4fkaoqGx/4BdVvv0ivC35N4biz41JOY0znktK37RGRScCkoUOHXrZ69Wq/w4nJhj9fQc3yuexz/zLSMnO+Nr9h65dsfuI2Kuc/TaBoD3pNuYGC8ecgaW2v1DZur6Zm+X+oevslapb9B62rIS2viJyDjiaQUwBpARBx1i3OnzMskBZAJA2axt15Wh+i9oOF1K1eBkDGXgPJGzOR3MNOJHv4YUggEFNsm6f/ga3P3kmP069ij/N/2eayGWM6Lhm37UnpJNSkq9w7rmHbRtZccRhFJ17Inhfd3OKy21cvZ9PDv6buk6Vk7nMge1x4S0zXS8LV5VQveY3qt1+m9v35aP0OAoW9yBtzEnljTyLnG0ci6RlxKMtXVC9+jerFs9n+wUK0IUSgoCe5o44n77CJ5Bx8TNQkC7DtpQfY9PCvKfjWFPb6gd2Oxxi/WBKKk66ShLY8exdbpt/BoLsWEOw7tNXlVZWqhc+z+fHf07BlA3lHTGKP7/6KjD367bZcQ/kmqt99leq3X6J25VsQbiC9Vx/yxp5M3thTyB4+OuYaSns4Na65VL/7KjXL/k1jbSUSzCLn4GPJO+xEckdNIL3Quft15YLn+PIvV5M7ZiJ9fnyf3Y7HGB9ZEoqT9iah0Jdr2fTwr9nzkt+TsWf/1l/QARoO89lVYwn23od+N81s02sb62rZ+q+/s+1ffwegx6QfUHDMt6l5bz7Vb7/E9o/eBVUy9h5M3uEnk3/4KWQOOdiXGoY21FP730XULJ5N9buv0rBlA6SlkT38MLL2HcW2F+8je78x9P3l46QFs5IenzFmF0tCcdLeJFS/ZT1rrz6S/CMns/fVdyYgsl2qF89m/R0X0fsnD5B/+MntWkf95jI2P34rVQuf3zktOGB/8g8/mbyxJxMcsF+natpSVXZ89oFTS1v8GqHP/0vm4G/Q7+ZnCeTk+x2eMd2eJaEOikfHhE2P3My2l+5n4J/+TWb/4fEN0KP0d1PZ8cUq9rnn3Q43QW3/ZCl1n75P7shxBHvvE6cIE69+cxmBvB6kZUW/VmSMSS57nlAHxePHqj3PuIa0rFw2T78jjpHtLvTlWmrfm0vR8VPjcg0ke99R9Djp4i6VgAAyevW1BGRMN5PSSSgeAvk96THpB9S8+yrbP1mWkG1UvPYopAUoPH5qQtZvjDGdlSWhGPQ49TICBcVsfvL2uK+7ccd2Kv7zFHljJpLec++4r98YYzozS0IxSMvOo+eZP2T7hwupWbEgruuuXvQijdXbKDrxe3FdrzHGdAWWhGJUeMJ3Se/Vl81P3EY8O3OUz36EjD5DyP7GkXFbpzHGdBWdPgmJyD4i8qCIPOOZlisij4jI/SKSlAspaRmZFJ/zE3Z8+j7V77wcl3XWrVlB3eplFJ34vU7VddoYY5IloUlIRB4SkY0i8mHE9Iki8rGIlIjIDS2tQ1XXqOolEZPPAJ5R1cuA0+IcdrMKjjmLYL9hbJl+Bxpu6PD6ymc/igSzKBj3nThEZ4wxXU+ia0LTgIneCSISAP4GnASMAKaIyAgROVBEXoz4a+75zf2Ade5w0p72JoEAxef+jFBZCZXzn2n9BS0I11RQtfB58o8+g0Bu13rekTHGxEtCk5CqLgC2RkweA5S4NZwQMAOYrKofqOqpEX8bm1l1KU4igiQ3KeaNPYnMoSPZMvNPNNbvaPd6Kuc9je7YTtGJF8QxOmOM6Vr8uCbUl121GHASSt/mFhaRYhG5FzhERH7uTn4OOFNE7gFeaOZ1l4vIEhFZsmnTpjiFDiJCr/NuoGFzGRWvPdaudagqFa89StawQ8na56C4xWaMMV1Np79FsapuAX4QMa0GuKiV190nIhuAScFgcFQ8Y8o96BhyDjyKrc/eSeFx57b5wXLbV75FqKyEva++K55hGWNMl+NHTagM8N6Sup87Le7icdue5hSf93PClVvZ9uJ9bX5t+auPkJbXg7wjJsU9LmOM6Ur8SEKLgWEiMlhEgsC5wKxEbEhEJonIfRUVFXFfd/awQ8gbcxLbZt1LuHJLzK9r2Pol1YtfpfC4c+xRBcaYbi/RXbSnA4uA4SJSKiKXqGoDcDUwG1gFzFTVlYnYfiJrQgDFU35G445atj5/d8yvqfj3kxBuoPAE65BgjDEJvSakqlOamf4yEJ9ffLbA8yiHhKw/s/++FBxzFuWvTqPolEvJ6NVs/woANNxAxetPkDNyHMG9ByUkJmOM6Uo6/R0TOiLRNSGA4rN/jGojW57+c6vLVi95nYatG+w+ccYY40rpJJTIa0JNMvbsT9EJF1A59ylC6z9tcdmK2dNI79WX3EOPT1g8xhjTlaR0EkpGTQig55k/RIKZbJ7xh2aXCa3/lNoVb1A44XwkEEhoPMYY01WkdBJKRk0IIL2wFz1OuZzqt16gbs2KqMuUv/YYpGdQeFzUy2TGGNMtpXQSSlZNCKDHaT8gLa9H1AffNe6opXLuU+SPOYn0Hs3dDs8YY7qflE5CyRTILaDnt6+i9r151K5ctNu8qjdn0VhTQeHEC/0JzhhjOqmUTkLJao5rUjTxIgI992bzE7fu9uC78tmPEOw/nOz9xyYlDmOM6SpSOgklszkOIC0zm+Lv/Ii6T5ZSs/R1AOpK3mPHp+9TdMIF9uA6Y4yJkNJJyA+F488hY+/BbH7ydjQcpnz2I0hWDvnHnuV3aMYY0+lYEoozSc+g+NzrCX3xEeWzp1H15r8oOOYsAjn5fodmjDGdTkonoWRfE2qSf8RpZA46gE0P/xoN1VFk94kzxpioUjoJJfuaUBNJS6PXeT8HVbL2O4zMQSOSun1jjOkqOv1D7bqqnEPGU3zO9eQcdLTfoRhjTKdlSShBRITi71zndxjGGNOppXRznDHGmM7NkpAxxhjfpHQS8qt3nDHGmNikdBLyq3ecMcaY2KR0EjLGGNO5WRIyxhjjG0tCxhhjfGNJyBhjjG/E+9ybVCUim4DPO7CKXsDmOIXTFXS38oKVubuwMrfNQFXdI57BROoWSaijRGSJqo72O45k6W7lBStzd2Fl7nysOc4YY4xvLAkZY4zxjSWh2NzndwBJ1t3KC1bm7sLK3MnYNSFjjDG+sZqQMcYY31gSMsYY4xtLQi4RmSgiH4tIiYjcEGX+hSKySUTec/8u9SPOeGqtzO4yZ4vIf0VkpYg8mewY4y2G9/nPnvf4ExEp9yPOeIqhzANEZK6ILBeRFSJysh9xxlMMZR4oIv92yztPRPr5EWe8iMhDIrJRRD5sZr6IyF/c/bFCRA5NdozNUtVu/wcEgE+BfYAg8D4wImKZC4G7/Y41yWUeBiwHerjje/odd6LLHLH8NcBDfsedhPf5PuAKd3gEsNbvuJNQ5qeB77nDxwGP+R13B8t8DHAo8GEz808GXgEEOBx4x++Ym/6sJuQYA5So6hpVDQEzgMk+x5RosZT5MuBvqroNQFU3JjnGeGvr+zwFmJ6UyBInljIrUOAOFwLrkxhfIsRS5hHAf9zhuVHmdymqugDY2sIik4FH1fE2UCQivZMTXcssCTn6Aus846XutEhnulXZZ0Skf3JCS5hYyrwvsK+IvCkib4vIxKRFlxixvs+IyEBgMLtOVF1VLGX+DXC+iJQCL+PUALuyWMr8PnCGO/xtIF9EipMQm19iPvaTzZJQ7F4ABqnqQcDrwCM+x5MM6ThNcuNwagX3i0iRrxElz7nAM6oa9juQJJgCTFPVfjjNNo+JSKqfG34CHCsiy4FjgTKgO7zXnU6qH2ixKgO8NZt+7rSdVHWLqu5wRx8ARiUptkRptcw435ZmqWq9qn4GfIKTlLqqWMrc5Fy6flMcxFbmS4CZAKq6CMjCuellVxXL53m9qp6hqocAv3SndflOKC1oy7GfVJaEHIuBYSIyWESCOCegWd4FItpPTwNWJTG+RGi1zMA/cWpBiEgvnOa5NckMMs5iKTMish/QA1iU5PgSIZYyfwF8C0BE9sdJQpuSGmV8xfJ57uWp7f0ceCjJMSbbLOACt5fc4UCFqm7wOyhwmlu6PVVtEJGrgdk4PWseUtWVInILsERVZwHXishpQAPOBcALfQs4DmIs82zgBBH5L05TxfWqusW/qDsmxjKDc9KaoW63oq4sxjL/GKep9TqcTgoXduWyx1jmccBtIqLAAuAq3wKOAxGZjlOmXu61vZuADABVvRfnWt/JQAlQC1zkT6RfZ7ftMcYY4xtrjjPGGOMbS0LGGGN8Y0nIGGOMbywJGWOM8Y0lIWOMMb6xJGS6JBGpjmGZ/xGRnDhu83QRGRHH9b3VgddWu//7iMgzLSxXJCJXtnc7xiSaJSGTyv4HaFMSEpFAC7NPx7nxZVyo6hFxWMd6VT2rhUWKAEtCptOyJGS6NBEZ5z4P5hkR+UhEnnB/FX4t0AeYKyJz3WVPEJFFIrJMRJ4WkTx3+loRuUNElgHfEZHLRGSxiLwvIs+KSI6IHIFzp4w/us8aGiIiI90bu64QkedFpIe7vnniPJdoiYisEpHDROQ5EVktIr/zxF7tGf6ZiHzgbvP2KOUc7Mb+QcQ6BjU9Q0ZEDhCRd934VojIMOB2YIg77Y8ikifOc3SWueua7FnPKhG5X5xnR70mItnuvKEiMseNbZmIDHGnX+/upxUicnNc31jTffj9LAn7s7/2/AHV7v9xQAXOvbDScG61c5Q7by3Qyx3uhfPL+Fx3/GfArz3L/dSz7mLP8O+Aa9zhacBZnnkrgGPd4VuAO93hecAd7vAPcR6N0BvIxLkfX3FEGU4C3gJy3PGeUco7C7jAHb7K89pBuM+QAf4KTHWHg0C2d747PR0o8OyTEpxnzAzCuRvISHfeTOB8d/gd4NvucBZO7fIEnOcQibvfXwSO8fu4sL+u92e37TGp4F1VLQUQkfdwTqgLI5Y5HKcp7U0RAeck7b033FOe4W+4tY0iIA/n9i+7EZFCoEhV57uTHsF5UFqTplsAfQCsVPc+XSKyBudGkt7bHx0PPKyqtQCqGu25MEcCZ7rDjwF3RFlmEfBLcZ4S+pyqrnbLulvowK0icgzQiHM7/73ceZ+p6nvu8FJgkIjkA31V9Xk3tjq3HCfgJKLl7vJ5ODe3XRAlLmOaZUnIpIIdnuEw0Y9rAV5X1SnNrKPGMzwNOF1V3xeRC3Fv4trOmBoj4mtsJr5YtHiPLVV9UkTeAU4BXhaR7/P1G85OBfYARqlqvYisxandeGMGZz9mt7A5AW5T1X+0IX5jvsauCZlUVgXku8NvA0eKyFAAEckVkX2beV0+sEFEMnBO2l9bn6pWANtE5Gh33neB+bTP68BFTT35RKRnlGXexLmxKhEx7SQi+wBrVPUvwL+Ag9h9H4Dz5NSNbgIaDwxsKTBVrQJKReR0dxuZbpyzgYs919X6isieMZXWGA9LQiaV3Qe8KiJzVXUTzp3Pp4vICpymq/2aed2vcK6DvAl85Jk+A7heRJa7F+e/h9NRYQUwEue6UJup6qs4zXdL3ObEn0RZ7IfAVSLyAc0/EfNs4EN3Hd/AeZzzFpwmyA9F5I/AE8Bodz0XRJSvOd/FuYv8CpxrV3ur6mvAk8Aid13PsHuyMyYmdhdtY4wxvrGakDHGGN9YEjLGGOMbS0LGGGN8Y0nIGGOMbywJGWOM8Y0lIWOMMb6xJGSMMcY3/w+qXYXu24ZQYwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcFVX/wPHPYRcEFFwRFTUXEMEF9y13y3JLxSVzq6zMfKqnJ+sp0yfrabEe08q0NM1yT1NTw8zU3EVFBdwVFRDEhU12OL8/5sLvahe4wL1clvN+ve4LZubMzPfO3DvfO2dmzhFSShRFURSlpKwsHYCiKIpSMaiEoiiKopiESiiKoiiKSaiEoiiKopiESiiKoiiKSaiEoiiKopiESigKQoiJQoj9lo5DASHEOCHEzgKmPyqEiCzC8vYIIZ41TXTFV9j70isnhRCP5DMtWQjR2PTRlU9CiLeFEN9ZOg59KqE8RAgRIYTo+9C4vAOuEMJeCLFUCHFNCJEkhAgRQjxWyDLrCiG+FUJE674UV4QQy4UQLcz5XkxFCDFFCHFO935jhRDbhRDOumnLhRBzi7CsEiUv3fzZuu2o//Io7jLLEinlT1LK/rnDBR1gy5OH31cxl1FVSnkFiv65q4iklB9KKS3+Y0GfSihFZwPcAHoCrsA7wDohhJehwkIId+Ag4Ah0B5yBtsBeoF8+89iYOujiEkL0BD4ExkgpnQFvYK1lo+KQ7uCi/4o25QrK0j4oLZXxPSsmJqVUL70XEAH0fWjcRGB/AfOcBp7KZ9pc4BRgVcD8XoAEpgDXgX268YOBMCAe2AN4680jgUf0hpcDc3X/PwpEAq8Dt4CbwCS9su7AFiAROAq8n9/7A/4J/JLPtOeBTCADSAa26sbPBC4DSUA4MEw33htIA7J15eN14+2Bebr3Hgt8A1TJZ52F7YsIXcyngQS05OegN/0JIES3TQ8Cfg/N+6Zu3nS0Hw9tgZO697Jet7zc7RwKPKk3vy1wG2hjIK69uZ8RoKtu/w3SDfcBQh5+f8A+Xbn7uu0VWNi+NbDePcB/dfs5EdgMuBXyuVsPxOi23z6gpW58R914a73lD9NtrzpACuCuN60tEKfbLgXuN0Ofa6Ab2o+3R/WnUcTPnd6yJwNngXtAENBQN34RMO+hspuB1wqI8SXgom5d7wNNdJ+nRGAdYKcrWx34Vbcd7un+9yzi/nkeiNbt63/qzTsb+PGhshN0+/I28G+9slWAFboYzgL/AiJLcqw0uG1MvcDy/qKICQWojXaQbJHP9MPA7ELWmfth+AFw0u38ZmgHkn66L+S/gEt6H9TCEkoW8B/dvI+jfdmr66av0X3onQBfIKqA99cdSAXmoB0I7R+anrdevXEjAQ+0M+BA3fuom9+2BP6HluDc0M7gtgL/zSeefPeF3v47qlu/m+7L84JuWhu0g3BHwFr35YvIfU+6/0OA+rp9YAdcA2botuNwtINY7nb+F7BWb91DgDP5xPUfYKHu/7fRDnwf6037wtD7M7CfC9y3Bta7R7d/fXX7+2f+fhDK+9zpxk/W7Qd7YD66ZKebdhnopze8Hpip+3878OJD+3WhofdVwP7LTRoD0ZJJB0PbgqJ/7oagfX+80X4ovAMc1E3roVuX0A1XR/vMexQQ42bABWiJ9uPjD6AxWq1FODBBV9YdeAqthsJZt71+0VuWMftntW5aK7TE1Fc3fbaBst+ifXb9dXF566Z/hPajpjrgifYjQCUUc7/QDirJaL9gc18phr4MaF/oXcDiApZ3Cd0BTTc8WLfMJGDnQx+Gxnrl3gXW6Q1b6T54jz785Xr4C4Z20EkFbPSm3wI6oR1IM9FLgGhVWgUdpB9DO8jH67bN5+h+pWLgi21g/hBgiO7/iTx4wBRoX/wmeuM6A1fzWdZEtAOq/v65/ND+e1pv+BPgG93/i4D3H1reeaCn3ryT9ab10G1zoTduv9529tDtRxfd8AbgX/nE3Qc4rfv/N+BZ4LBueC8wPJ/tYyihGNy3+ax3D/CR3rAPWlK0xsDnzsD81XRlXHXDc4Fluv+ddfuuoW44EDig+98a7Wymg6H3VcD6JPAWWiL3NTAt34RSyOduBzDloe9TCtBQ9xm8DvTQTXsO2F1IjF31ho8Db+oNfwbMz2fe1sC9Iu4f/e/qJ8BS3f+z+XtC0T/7OQqM1v1/BRigN+1ZzJBQ1DUUw4ZKKavlvtBObx8ghLACVqLt/JcLWNYdoG7ugJRyi26Zr6L9AtZ3Q+9/D7QvVe58Obrp9Yx8D3eklFl6wylAVaAm/38dKNc1CiCl3CGlfBLtF/8QtINDvhcDhRDP6G5WiBdCxKP9+qqRT/GaaL/ejuuV/003Pj+H9fePlLLJQ9Nj9P7Pfd+gHTxez12Pbl310bZ1rof3QZTUfQMfni616zYHgKeEENXQEu9P+cR8CGgmhKiNdlD5AagvhKgBdECrWjJWfvs2Pw/va1se3B9504UQ1kKIj4QQl4UQiWhJFr3yq4DhQgh7tDO2E1LK3M/PZsBHCNEI7cw6QUp5tAjvK9c/0H5MhRZlpkI+dw2BL/Sm3UVLJPV0+3cNMEZXdiz578dcsXr/pxoYrqqLyVEIsVh3E08i2n6uJoSw1itv9P7RTS/oBpT8PvseDy1H/3+TUQmlGIQQAliKVt31lJQys4DifwBDdQmoMPoHrmi0L4H+Ouuj/WIG7cPiqFe+jhHLB+2UOUu3rFwNjJlRSpkjpfwD2I32ZX04ZoQQDdFOu19Gq0+vhnatQRgqj1bXm4pWT5+bIFyllAUdIIvrBvDBQ8nIUUq5Wq+Mfnw3gXq6bZ9Lf7uBVi/9NFp1yyEpZRQGSClT0H7JzgBCpZQZaHXur6GdYd0u0Tsr2MP7OhNtu+eFp/f/WLQfDX3Rqm+8dOMFgJQyHO2g9piu7Kq8hUiZhlaV+jQwHu0HV3GMRPvOzCigTFE/dzeAqQ/t+ypSyoO66auBEbrldESrejKF14HmQEcppQvaWS96cUHh++fh6cW5AeUmWlWXoWWajEooxbMIrS72SSllaiFlP0ert1wphGgiNM5ov1ILsg4YJIToI4SwRftgpqMdhEA7nR+r+0U5EO2us0JJKbOBjcBs3a8nH7RrCQYJIYYIIUYLIarrYu+gW9dhXZFYtLrjXE5oX/Y43fyT+P/kk1veUwhhp4snB+1A8D8hRC3dPPWEEAOMeT9F9C3wghCio+69OAkhBuXeAm3AIbQbCF4WQtgIIYagnU3o+wXt4vMMtLOOguxFO+Dt1Q3veWjYkIe3b3E8LYTwEUI4ol172aD7HBjijPY5u4P2g+VDA2VWob3fHmjXBPT9gHYGO5jiJ5RotCrCGUKIF/MpU9TP3TfAW0KIlrrprkKIkbkTpZQn0Q7i3wFBUsr4Ysb+MGe0H0zxQgg34D0DZQrbP+/qvqstgUkU7y7LdWjvv7oQoh4F16oUm0ooRaT7BTMVLSHE6D0HMc5Qed0vz05oF+73o9W5h6B90PL7siClPI/2S28h2gf9SbQElqErMkM3Lh4Yh3ZgM9bLaKfCMWh10d8XUPYeWp3yRbS7UH4EPpVS5lYJLEWr5ogXQvyi+wX7GdrBOBbtQuIBveXtRrtzLUYIkfsr7E20a02HddUCu9B+1eWns4HnUNoX9qallMG69/Kl7n1dQjv45Vc+A61aZwradn4a7S6ddL0yqWi/ZhuhJeqC7EXb7/vyGTZkNrBCt31HFbL8/KxE288xgAPwSgFlf0A7A4lCu7h82ECZ1Wg/KnY/fGYlpTwA5PBgVViRSSmvoyWVmcLwg5lF+txJKTcBHwNrdJ+xULSzLH2r0M7MVmE689Eukt9G25a/GShT2P7Zi/ZZ/QPtbrRCHxA14D9odwdeRft+bUDvc2wquXc1KIpiBCHEEbSL/N/rjZsFNJNSPm25yMoOIcRuYJWUskw9xV0WCSH2oF1Y/9u20j3bdhWwfeiamSnW+yLaBXujajaMpc5QFKUAQoieQog6uiqvCYAfer8yddUYU4AlloqxLNGdKbbF8g+/KnqE1lpHVyGElRCiOVoV+iZTr8diCUUIMVIIESaEyBFCBBRQbqAQ4rwQ4pIQYqaB6QuEEMnmjVapxJqjPZgaj/YlHCGlvAkghHgO7WLvDillUe7SqpCEECvQqlP+IaVMyqdMdwPVlcnqO2x2dsBitCr33Wh35H1t6pVYrMpLCOGNVte6GO3pz2ADZayBC2i3IEYCx9CaAAnXTQ9Au5YwzEx3BSmKoihGstgZipTyrO7Cc0E6AJeklFd0F0jXoN3SmJtsPkV7WllRFEWxsLLeGFw9HnwAJxLtHnHQ7lTaIqW8+eBjAg8SQjyP1hYOTk5O7Vq0KBcN/CqKopQZx48fvy2lLOhhY8DMCUUIsQvDD9z9W0q5uQTL9UB7+OnRwspKKZegu2AaEBAgg4P/VrOmKIqiFEAIYdQt4GZNKFLKvoWXKlAUDz7R6akb1watAblLurMTRyHEJSllue83QlEUpbwq61Vex4CmQmsbKAoYDYyVUoahd+YjhEhWyURRFMWyLHnb8DChdWXaGdgmhAjSjfcQQmwH0D3M8zJa3wVn0RqMC7NUzIqiKEr+KtWT8iW5hpKdI7G2yv/iv6JUdJmZmURGRpKWlmbpUBQzcXBwwNPTE1tb2wfGCyGOSynzfV4wV1mv8ioTPtt5nj/P32Lry90o6I4yRanIIiMjcXZ2xsvLS30PKiApJXfu3CEyMpJGjRoVaxmq6RUj1HJxIDQqkXMxBh/+VZRKIS0tDXd3d5VMKighBO7u7iU6A1UJxQiP+9bB2kqw5VRxuiFQlIpDJZOKraT7VyUUI7hXtad70xpsCYmmMl1zUhRFKQqVUIw02N+DqPhUTly/Z+lQFKXSqlr1wSb7li9fzssvF62vqJCQELZv327KsB6wfPlyatasSevWrWndujXPPPNMkZexZ88ennjiCTNEZ14qoRipf8s62NtYsSVEVXspSnmVlZVVYELJyjJNtyOBgYGEhIQQEhLCDz8U1pFnxaESipGq2tvQx7sW287cJCs7x9LhKIrykK1bt9KxY0fatGlD3759iY2NBWD27NmMHz+erl27Mn78eGbNmsXatWtp3bo1a9eu/dv07Oxs3njjDdq3b4+fnx+LFy/OW8enn36aN/699wz15pu/kJAQOnXqhJ+fH8OGDePePa2249KlS/Tt2xd/f3/atm3L5cuXH5jv2LFjtGnT5m/jyyJ123ARDPavx/YzMRy8fIcezQptJ01RKqw5W8MIj0406TJ9PFx478mWBZZJTU2ldevWecN3795l8ODBAHTr1o3Dhw8jhOC7777jk08+4bPPPgMgPDyc/fv3U6VKFZYvX05wcDBffvkloCUc/elLlizB1dWVY8eOkZ6eTteuXenfvz8XL17k4sWLHD16FCklgwcPZt++ffTo0eNvca5du5b9+/cDMGPGDCZNmsQzzzzDwoUL6dmzJ7NmzWLOnDnMnz+fcePGMXPmTIYNG0ZaWho5OTncuKG1iXvw4EGmT5/O5s2badCgQck3spmphFIEjzavibO9DVtORauEoigWUKVKFUJCQvKGc5MDaM/JBAYGcvPmTTIyMh54lmLw4MFUqVIl3+XqT9+5cyenT59mw4YNACQkJHDx4kV27tzJzp07adOmDQDJyclcvHjRYEIJDAzMS1i5y4iPj6dnT63H3QkTJjBy5EiSkpKIiopi2LBhgPZgYa6zZ8/y/PPPs3PnTjw8PIq2oSxEJZQicLC1ZoBvHYJCY5g71BcHW2tLh6QoFlHYmYQlTJ8+nddee43BgwezZ88eZs+enTfNycmpwHn1p0spWbhwIQMGDHigTFBQEG+99RZTp059YPxXX33Ft99+C2DSi/1169YlLS2NkydPlpuEoq6hFNGQ1h4kpWex5/wtS4eiKIqehIQE6tWrB8CKFSvyLefs7ExSUv4PKQ8YMIBFixaRmZkJwIULF7h//z4DBgxg2bJlJCdrvRVHRUVx69Ytpk2blncBPr8Dv6urK9WrV+evv/4CYOXKlfTs2RNnZ2c8PT355ZdfAEhPTyclJQWAatWqsW3bNt566y327NlTtI1hISqhFFHnxu7UqGqnHnJUlDJm9uzZjBw5knbt2lGjRo18y/Xq1Yvw8PC8i/IPe/bZZ/Hx8aFt27b4+voydepUsrKy6N+/P2PHjqVz5860atWKESNGFJiYHrZixQreeOMN/Pz8CAkJYdasWYCWXBYsWICfnx9dunQhJiYmb57atWvz66+/Mm3aNI4cOVKErWEZqnHIYnhvcyhrjt0g+J2+ODvYFj6DolQAZ8+exdvb29JhKGZmaD8b2zikOkMphsGtPUjPyuH38FhLh6IoilJmqIRSDG0bVMezehU2q4ccFUVR8qiEUgxCCJ7092D/pdvcSU63dDiKoihlgkooxTTY34PsHMn20JjCCyuKolQCKqEUU4s6zjSrXZUtIVGWDkVRFKVMUAmlmIQQDPb34FjEPaLiUy0djqIoisWphFICT/prDzH9qp5JURSz69WrF0FBQQ+Mmz9/Pi+++CJhYWH07t2b5s2b06RJE9577z1ycrRGXB9uTr5169aEh4db4i1UeCqhlEBDdyf861dTd3spSikYM2YMa9aseWDcmjVrGD16NIMHD2bmzJmcP3+eM2fOcPToUb744ou8cvrNyYeEhODj41Pa4VcKKqGU0BB/D8JvJnLpVrKlQ1GUCm3EiBFs27aNjIwMACIiIoiOjubSpUt5LQIDODo68uWXX/Lpp59aMtxKSTUOWUJP+NVl7rZwtpyK5rV+zSwdjqKUjh0zIeaMaZdZpxU89lG+k93c3OjQoQM7duxgyJAhrFmzhlGjRhEWFka7du0eKNukSRNSU1OJj48HHmxOHuDQoUMFtj6sFI86QymhWi4OdGrszpaQKNXfvKKYmX6115o1axgzZoxR8z1c5aWSiXmoMxQTGOzvwcyNZzgTlYCfZzVLh6Mo5lfAmYQ5DRkyhFdffZUTJ06QkpJCu3btOHnyJPv27Xug3JUrV3B3d6daNfV9LE3qDMUYR7+FdRPynfyYb11srYXqb15RzKxq1ar06tWLyZMn552djBs3jv3797Nr1y5A69XxlVdeYc6cOZYMtVJSCcUIpxIus/7G7xB/w+B0V0dbejarxdbT0WTnqGovRTGnMWPGcOrUqbyEUqVKFbZs2cIHH3xAs2bNqFGjBl27dmXcuHF58+T2IZ/7OnjwoKXCr9BUQjHCDjvBR25uJIduyLfM4NYexCamc/Tq3VKMTFEqn6FDhyKlpEWLFnnjfH19+fPPP7lw4QI//fQT3377LdeuXQNg4sSJxMXFPXANpUuXLpYKv0JTCcUIA70DybAS7LmwMd8yfb1r4WhnrTreUhQLGzp0KFeuXKFhw4aWDqXSUQnFCH41/aht7UhQWjQkGG67y9HOhn4+tdkRepOMrJxSjlBRFMXyVEIxgpWwon+DPhxwrEJiQdVe/h7Ep2Ty18W4UoxOURSlbFAJxUgDvUeTKQR7Lvycb5nuTWviWsVWVXspilIpqYRipFY1WlHX2kmr9koy3AeKnY0Vj7eqy+/hsaRkZJVyhIqiKJalEoqRhBAMaNCHg1UcSAhdn2+5wf4epGRks+vsrVKMTlEUxfJUQimCgT5jyRKC3efyv47SoZEbtV3s1UOOimIG1tbWDzxP8tFHpntiPyQkhO3bt+cN59fsfXR0NCNGjDDZeosjIiICX19fi8ZgiEWaXhFCjARmA95AByllcD7lBgJfANbAd1LKj3TjBTAXGAlkA4uklAvMHbePuw/1rJ0ISoliWPItqFrrb2WsrQRP+nmw4lAECSmZuDramjssRak0qlSpQkhIiFmWHRISQnBwMI8//njeuMDAQL788su/ld2wIf8fleVJVlYWNjamSwOWOkMJBYYD+/IrIISwBr4CHgN8gDFCiNxODCYC9YEWUkpvYI3BhZiYVu3VlyNVHIg/sy7fcoNbe5CZLfkt7GZphKUolVpCQgLNmzfn/PnzgPYk/bfffgvAiy++SEBAAC1btuS9997Lm+fYsWN06dIFf39/OnToQEJCArNmzcp7on7t2rX5rk//7CAlJYVRo0bh4+PDsGHD6NixI8HB2u/jnTt30rlzZ9q2bcvIkSNJTta6uPDy8uK9996jbdu2tGrVinPnzgGwd+/evDOhNm3akJSUhJSSN954A19fX1q1amUwrk6dOhEWFpY3/OijjxIcHMz9+/eZPHkyHTp0oE2bNmzevBnQzrwGDx5M79696dOnT7G3uyEWOUORUp4F7QBdgA7AJSnlFV3ZNcAQIBx4ERgrpczRLa/ULlgM9BnLsqub+ePCBp7q/LLBMq3queLl7sjmkGgC2zcordAUpdR8fPRjzt09Z9JltnBrwZsd3iywTGpqKq1bt84bfuutt/LOIiZOnMiMGTO4d+8ezz33HAAffPABbm5uZGdn06dPH06fPk2LFi0IDAxk7dq1tG/fnsTERBwdHfnPf/5DcHBw3hnJ8uXLDTZ7r+/rr7+mevXqhIeHExoamhfb7du3mTt3Lrt27cLJyYmPP/6Yzz//nFmzZgFQo0YNTpw4wddff828efP47rvvmDdvHl999RVdu3YlOTkZBwcHNm7cSEhICKdOneL27du0b9+eHj16PBBDYGAg69atY86cOdy8eZObN28SEBDA22+/Te/evVm2bBnx8fF06NCBvn37AnDixAlOnz6Nm5tbcXZVvspya8P1AP3GsyKBjrr/mwCBQohhQBzwipTyoqGFCCGeB54HaNCg5Af3Fu7eNLCpSlBSFE/dvw1ONQytk8H+Hiz88xK3EtOo5eJQ4vUqipJ/lVe/fv1Yv34906ZN49SpU3nj161bx5IlS8jKyuLmzZuEh4cjhKBu3bq0b98eABcXl3zXl1+VV679+/czY8YMQGv+xc/PD4DDhw8THh5O165dAcjIyKBz58558w0fPhyAdu3asXGj1gJH165dee211xg3bhzDhw/H09OT/fv3M2bMGKytralduzY9e/bk2LFjeesBGDVqFP3792fOnDmsW7cu7/rOzp072bJlC/PmzQMgLS2N69ev520vUycTMGNCEULsAuoYmPRvKeXmEi7eHkiTUgYIIYYDy4DuhgpKKZcASwACAgJK3HJj7t1eyy7/wt0za3HrNM1gucGtPViw+xK/nr7J5G6NSrpaRSlTCjuTKG05OTmcPXsWR0dH7t27h6enJ1evXmXevHkcO3aM6tWrM3HiRNLS0kolHikl/fr1Y/Xq1Qan29vbA9pNBllZ2iMGM2fOZNCgQWzfvp2uXbsSFBRk1Lrq1auHu7s7p0+fZu3atXzzzTd5Mfz88880b978gfJHjhzBycmpuG+tQGa7hiKl7Cul9DXwMjaZRKFdJ8nlqRsH2tlKbsNamwA/StEAn6fJFoJd5/O/MPdILWd86rqwWT3kqChm97///Q9vb29WrVrFpEmTyMzMJDExEScnJ1xdXYmNjWXHjh0ANG/enJs3b3Ls2DEAkpKSyMrKwtnZmaSkpCKtt2vXrqxbp11PDQ8P58wZrRfLTp06ceDAAS5dugTA/fv3uXDhQoHLunz5Mq1ateLNN9+kffv2nDt3ju7du7N27Vqys7OJi4tj3759dOjQ4W/zBgYG8sknn5CQkJB39jJgwAAWLlyY1/HfyZMni/TeiqMs3zZ8DGgqhGgkhLADRgNbdNN+AXrp/u8JFLynTKyZW3O8bJzZmRoJ9+/kW25waw9O3Yjn2p37pRidolRcuddQcl8zZ87k/PnzfPfdd3z22Wd0796dHj16MHfuXPz9/WnTpg0tWrRg7NixedVPdnZ2rF27lunTp+Pv70+/fv1IS0ujV69ehIeHP3BRvrBm71966SXi4uLw8fHhnXfeoWXLlri6ulKzZk2WL1/OmDFj8PPzo3PnznkX3/Mzf/78vGozW1tbHnvsMYYNG4afnx/+/v707t2bTz75hDp1/l7xM2LEiLwukXO9++67ZGZm4ufnR8uWLXn33XdLuvkLJ6Us9RcwDO0sIx2IBYJ04z2A7XrlHkdLFpfRqspyx1cDtgFngEOAvzHrbdeunTSVhfvekX7ft5Rxh7/Ot0zkvRTZ8M1f5cI/LphsvYpiKeHh4ZYOoczJysqSqampUkopL126JL28vGR6erqFoyoZQ/sZCJZGHGMtdZfXJrSqqofHR6Mlkdzh7cB2A+XigUHmjLEwA1qOZ/GVX9h1fgOjO75osEy9alVo71WdzSHRTOv1SGF3tSmKUs6kpKTQq1cvMjMzkVLy9ddfY2dnZ+mwLKYs3+VVpjV1a0YTG2eCkm8wOuUuOBq+Y2Jw63q8+0sopyMT8K+v+rdWlIrE2dk577kTpWxfQynzBjTow3F7O26F5v+Q49DWHlS1t+H7A1dLMTJFMQ8pVRfXFVlJ969KKCUwwHciUgh+P59/Y5HODraMDPDk19M3iU0snVsWFcUcHBwcuHPnjkoqFZSUkjt37uDgUPzn5lSVVwk0rt6EpjYu7EyOZFxqPFQxXKU1sYsXyw9GsPLQNf45oLnBMopS1nl6ehIZGUlcnOpArqJycHDA09Oz2POrhFJCAxr04csrm4gJXUed9s8bLNPQ3Ym+3rX56cg1Xu79CA621qUcpaKUnK2tLY0aqYd0lfypKq8SGuA3CYDfz+Vf7QUwuWsj7qVk8stJw33SK4qilHcqoZSQl2sjWti4EJR6HdIS8y3XqbEb3nVdWHbgqqqDVhSl1NxJTuf5H4K5mZBq9nWphGICAxr05ZS9HTdD82/yWgjB5K5eXIhN5sCl/J+uVxRFMZW4pHTGfHuYfRfjuHYnxezrUwnFBAb4TQZgZyHVXk/6e1Cjqh3L1C3EiqKY2a2kNMZ8e5gbd1NZNrE9nRq7m32dKqGYQH3XhvjYuBCUch3S829czsHWmqc7NWT3uVtciUsuxQgVRalMYhPTGL3kMNHxqXw/qT1dmvy9mw1zUAnFRAY06MsZe1sizxTceeS4jg2xs7Zi+cGI0glMUZRK5WZCKqOXHCY2IY0VkzuUyplJLpVQTKS/3xQAdhbwkCNATWdVDw6wAAAgAElEQVR7Brf2YH1wJAkpmaURmqIolURUfCqBiw8Tl5TOD1M60t7L9J1oFUQlFBPxdG1AKxtXrdoro+Dm6id19SI1M5u1wddLKTpFUSq6yHspjF5yiHv3M1g5pQPtGlYv9RhUQjGhAQ36EG5ny/Uzhntpy9XSw5VOjd1YcfAaWdk5pRSdoigV1Y27KQQuPkxCSiY/PtuRNg1KP5mASigm1b/1c0Dh1V6gPegYFZ/KzvBYc4elKEoFdu3OfQIXHyI5PYtVz3WyaKvmKqGYUF1nT/xtXAm6fx0yCr7nu493bRq4ObJ0v7qFWFGU4rl6+z6Biw+TmpnNquc64lvP1aLxqIRiYgMa9OWcnQ0RoQXf7WVtJZjYxYvj1+4RciO+lKJTFKWiuByXTODiQ2Rk57DquU609LBsMgGVUEyun79W7RV0Lv8+UnKNDPBUfaUoilJkl24lMXrJYXKkZPVznfCu62LpkACVUEyujks92tq4EpRyDTILbjvH2cGWUQH12Xb6JjEJqq8URVEKdyFWSyYAa57vRPM6zhaO6P+phGIG/Rv05aKtDVcKqfYCra+UbClZeTjC/IEpilKunb2ZyOglh7ESgjXPd+KRWmUnmYBKKGbRr/XzCCmNqvZq4O5IP+/arDpyndSM7FKITlGU8igsOoGx3x7GztqKtVM706RmVUuH9DcqoZhBLWcP2tlUI+j+NchKL7T85G66vlJCVF8piqL8XWhUAuO+O0IVW2vWTu1EoxpOlg7JIJVQzGRAg75ctrXm4plVhZbt2MgNn7ouLNuv+kpRFOVBxyLuMmbJYZzsbFjzfGcaupfNZAIqoZhN3zZTsTKy2ksIweRujbh4K5n9l26XQnSKopQHf12MY/zSI9R0tmf9C51p4O5o6ZAKpBKKmdRwrkt7XbWXzCz8Dq4n/etSo6o9y9SDjoqiAEFhMUxZHkyjGlVZO7UzHtWqWDqkQqmEYkb9G/YlwtaaC0bc7WVvY834Tg3583wcl1VfKYpSqf1yMoqXfjqBj4cLa57rRE1ne0uHZBSVUMyob5sXtGqv84VXewGM69RA6yvlQIR5A1MUpcz66cg1Xl0XQgcvN358tiOujraWDsloKqGYkVvVOnSwqUbQ/QhkZuF3e9Woas+Q1h5sOK76SlGUymjJvsv8e1MovZrX4vtJ7alqb2PpkIpEJRQze6zhAK7bWHPqxGKjyk/q2ojUzGzWHFN9pShKZSGl5POd5/lw+zkG+dXlm6fb4WBrbemwikwlFDMb0GEGThLWnP3JqPI+Hi50buzOioMRqq8URakEpJS8/+tZFuy+xKgATxaMboOdTfk8NJfPqMsRJ3sXBrv6sJP73Ll+yKh5JndrRHRCGkFhqq8URanIsnMkb208w7IDV5nU1YuPhvthbSUsHVaxqYRSCkZ3nkmmEGw8/LFR5Xu3qEVDd0eWqVaIFaXCyszOYcaak6w5doPpvR9h1hM+WJXjZAIqoZSKxnXa0NG6GuuSLpCVcqfQ8qqvFEWp2NIys3lh5XF+PX2TmY+14PX+zRGifCcTUAml1IzxfYYYG2v2HjDuLGVkQH2cVV8pilLh3E/PYvLyY/xx7hbvD/XlhZ5NLB2SyVgsoQghRgohwoQQOUKIgALKDRRCnBdCXBJCzNQb30cIcUIIESKE2C+EeKR0Ii+enn6TqCOtWH39N8gp/GJ7VXsbRrXX+kq5mVBwvyqKopQPCSmZPL30CEeu3uXzUf6M79TQ0iGZlCXPUEKB4cC+/AoIIayBr4DHAB9gjBDCRzd5ETBOStkaWAW8Y95wS8bGyoaRdXtwxEZyJWytUfNM7OIFwJe7L5kxMkVRSsPt5HTGfHuY0KgEvhrbluFtPS0dkslZLKFIKc9KKc8XUqwDcElKeUVKmQGsAYbkLgLI7ffSFYg2T6Sm81TXt7GVkrUh3xhVvr6bI093asjqo9e5EJtk5ugURTGXG3dTGPnNIa7cTua7Ce0Z6FvH0iGZRVm/hlIPuKE3HKkbB/AssF0IEQmMBz4ytAAhxPNCiGAhRHBcXJxZgy2Me9W69HdqyJas26TEnTNqnlf6NMXJ3oYPt581c3SKophDeHQiwxcd5O79DH6c0pGezWpaOiSzMWtCEULsEkKEGngNKXzuQr0KPC6l9AS+Bz43VEhKuURKGSClDKhZ0/I7cnS7GSRbWfHrgQ+MKu/mZMf03o+w53wcf120bEJUFKVoDl2+Q+DiQ9hYCda/0JkALzdLh2RWZk0oUsq+UkpfA6/NRi4iCqivN+wJRAkhagL+UsojuvFrgS4mDN1s/Bv1w1s4sPr2cWSGcRfbJ3Txor5bFT7YdpbsHNUBl6KUB9vP3GTCsqPUcXXg5xe70Kx22er/3RzKepXXMaCpEKKREMIOGA1sAe4BrkKIZrpy/YByUSckhGD0I8O5ZGtN8NEvjJrH3saaNwe24FxMEhuO3yh8BkVRLOqHQxFMW3WCVp6urH+hfPRlYgqWvG14mO76R2dgmxAiSDfeQwixHUBKmQW8DAShJYx1Usow3fjngJ+FEKfQrqG8YYn3URyPtZ+Bi4Q1F9YbPc+gVnVp26Aa83Ze4H56lhmjUxSluKSUzAs6z6zNYfRpUZufnu1INUc7S4dVaix5l9cmKaWnlNJeSllbSjlANz5aSvm4XrntUspmUsomUsoPHpq/lZTSX0r5qJTyiiXeR3FUsXVkmHsbdlulc+vyLqPmEULw70E+xCWls3hfuXmrilJpZGXnMPPnM3z55yVGt6/PN0+3LZctBpdEWa/yqrACO88kG9hw1OC9BAa1a1idQX51WbLvMjEJhXcrrChK6UjNyOaFH0+wNlhrl+u/w1thY135Dq9GvWMhxEYhxCAhROXbQmZSv4YPXe1qsj41gsykm0bPN3NgC3JyYN7Owh7hURSlNMSnZPD00iP8cS6W94e0rDDtchWHsQnia2AscFEI8ZEQorkZY6o0xvg9y21ra/7Yb9wtxKA97Dipqxc/n4gkLDrBjNEpilKY6PhURn5ziDOR2tPv4zt7WTokizIqoUgpd0kpxwFtgQhglxDioBBikhCi/HR4XMZ09RmNJzasjtoDOdlGz/dSr0eoVsWWD7adRUp1G7GiWMKF2CSeWnSQmIQ0VkzuwOOt6lo6JIszugpLCOEOTER7Qv0k8AVagvndLJFVAtZW1gR69uWEreBCyHKj53OtYss/+jbj4OU77D53y3wBKopiUHDEXUYsOkhWjmTt1M50buJu6ZDKBGOvoWwC/gIcgSellIOllGullNOBquYMsKIb1nkm9lKy5szSIs03tmMDGtd04oPtZ8lUXQUrSqn5PTyWcd8dwb2qPRtf7IKPh0vhM1USxp6hLJBS+kgp/yulfOAKspQy36bnlcK5OrrzmPMj/JqTQGL0SaPns7W24q3HvLkSd5/VR6+bMUJFUXKtOXqdqSuDaVHHmQ0vdKa+m6OlQypTjE0o1YUQwx969RFC1DJrdJXE6A5vkGplxZaD/y3SfH29a9GpsRvzd10kMS3TTNEpipKTI/loxzlmbjxD96Y1WfVcJ9yr2ls6rDLH2IQyBfgOGKd7fQu8CRwQQow3U2yVRsv6XfGzqsrahFBy0oy/c0sIwTuDfLiXksFXf6o+UxTFHFIzspm26gTf7L3M2I4N+G5CAE72NpYOq0wyNqHYAt5SyqeklE+hdXYlgY5oiUUpodEtxhBhY83hQ/OKNJ9vPVeGtanH9/sjuHE3xUzRKUrldCsxjdFLDvFbWAzvDPLmg6G+2FbCBxaNZeyW8ZRSxuoN3wLqSynvAqquxQQGtJmKmxSsubIVingr8BsDmmNlBZ8EqYcdFcVUzt5MZOhXB7gQm8yS8QE8271xpX1g0VjGJpQ9QohfhRAThBATgM26cU5AvPnCqzzsbOwZXqsje62ziD5nbOv+mrquVXi+e2O2norm5PV7ZopQUSqPP8/dYsSig2RLyfoXOtPPp7alQyoXjE0o09A6sWqte/0ATJNS3pdS9jJXcJXNqC5vA7DuxJdFnndqzybUdLZnrnrYUVFKZMXBCKasOIZXDSc2T+uGbz1XS4dUbhSaUIQQ1sBuKeXPUspXda8NUh21TK5utUb0dKjLxvRo0u9eLdK8TvY2vN6vGcev3WNHaIyZIlSUiisrO4fZW8J4b0sYvVvUZt3UztRxdbB0WOVKoQlFSpkN5AghVJouBWPaTuOetTU7jewiWN/IgPq0qOPMRzvOkZ5lfFMuilLZJadn8dwPwSw/GMGz3RqxeHw7dSdXMRhb5ZUMnBFCLBVCLMh9mTOwyqpT0yF4Ycea2EOQlVGkea2tBG8/7s31uymsPHTNTBEqSsUSFZ/KiEUH2XfxNh8M8+WdJ3ywtlIX34vD2ISyEXgX2Acc13spJiaEYHSjQZy2tSIs+Jsiz9+jWU16NqvJgj8ucu9+0RKSolQ2p27EM/SrA0TdS2X5pPaM69jQ0iGVa8a2NrwCWAccllKuyH2ZN7TKa3CH16kiYfXZH4s1/78HeZOcnsWC3RdNHJmiVBy/hd4kcMkh7G2s2PhSF7o3rWnpkMo9YxuHfBIIAX7TDbcWQmwxZ2CVmbODK09U8+E37hN/bX+R529W25nRHRqw8tA1rsQlmyFCRSm/pJR8s/cyL/x4Au+6LvwyrStNaztbOqwKwdgqr9lAB3TPnEgpQ4DGZopJAUZ3fIN0Kys2Hf60WPO/2rcZDrbWvL3pDNk56oY8RQHIyNL6ff9oxzme8KvL6uc6UUO1yWUyxiaUTCnlw41MqTbTzahZ3QDa2biyNvki2ffjijx/TWd7Zg9uyeErd/latfOlKMQkpBG45FBev+8LRrfBwdba0mFVKMYmlDAhxFjAWgjRVAixEDhoxrgUYHTLCUTZWLN375xizf9U23oMbe3B/3Zd4FjEXRNHpyjlx9Grd3li4X7OxySxaFxbXu/fHCt1J5fJGZtQpgMtgXRgNZAI/MNcQSmaPn4TaSDs+Cp6Nzn3bxd5fiEEc4e1ooGbIzNWnyQ+Rd31pVQuUkqWH7jK2G8P4+xgw+ZpXXlMddVrNsbe5ZUipfy3lLK9lDJA93+auYOr7GytbJnm9wIXbK3ZseufxVpGVXsbFo5pS1xyOv/acFo1y6JUGqkZ2by+7hSzt4bzaPNabH5ZXXw3N2Pv8momhFgihNgphNid+zJ3cAoM9J9CMytHvoo7Qmb8jWIto5WnK28ObMHO8Fh+PKweeFQqvht3U3hq0UE2hUTxWr9mLBnfDhcHW0uHVeEZW+W1HjgJvAO8ofdSzMxKWPFKwOvcsLVh067Xi72cKd0a0at5Td7fdpbw6EQTRqgoZctfF+N48sv93LiXwrIJ7XmlT1N1vaSUGJtQsqSUi6SUR6WUx3NfZo1MydOjxUha21RjcUIoaXHnirUMIQTzRvpTrYot01efICUjy8RRKoplSSn5es8lJiw7Sm1nB7a+3I1eLVQv5aXJ2ISyVQjxkhCirhDCLfdl1siUPEIIZnR5l1s21qz+o3jXUgDcq9ozf3Rrrty+z+wtYSaMUFEsKzk9i5d+OsEnv53n8VZ12TStC141nCwdVqVjbEKZgFbFdZD/b8cr2FxBKX8X0Kg/Xe1rszTlCkmRxd/0XZrU4OVej7AuOJLNIVEmjFBRLONyXDJDvzrAzvBY3hnkzcIxbXC0Uy0FW4Kxd3k1MvBST8qXsle6zyXB2prle94s0XJm9GlKQMPq/HtTKNfu3DdRdIpS+n4Pj2Xolwe4ez+DlVM6qG56LazAhCKE+Jfe/yMfmvahuYJSDPOp14n+jg1ZmRnD7cvFv8nOxtqK+aNbYyXgldUnychSjR4o5Ut2juTzned57odgGtV0Yuv0bnRpUsPSYVV6hZ2hjNb7/62Hpg00cSyKEV5+9CMyhGDp/ndLtBzP6o58MsKPU5EJzNt53kTRKYr5xadkMGXFMRbsvsTIdp6sm9qZetWqWDoshcITisjnf0PDSiloVNOXIa7erJUJRIdvKtGyBvrW5elODViy7wp7zt8yUYSKYj6HLt9h4Py/OHDpNnOH+vLJCD/VHlcZUlhCkfn8b2hYKSUv9voUASw6/CGU8Mn3dwb50KKOM6+vO8WtRNX4gVI2ZWbnMC/oPGO/O4yjnTWbXurK050aquslZUxhCcVfCJEohEgC/HT/5w63KoX4FAPqVPMisEYAW6xSuRKyvETLcrC15suxbbifkcWr60LIUU3dK2XMjbspjFp8iC//vMSItp5snd4N33qulg5LMaDAhCKltJZSukgpnaWUNrr/c4eL3Y6BEGKkECJMCJEjhAgooNwyIcQtIUToQ+PdhBC/CyEu6v5WL24s5dWzvT7BAcGXJ76AnJJdVH+kljNzBrfkwKU7LNp72UQRKkrJbQ6J4vEv/uLSrWQWjmnDpyP9cbJXtwSXVcY+h2JqocBwtD7qC7Icwxf/ZwJ/SCmbAn/ohisVN6daPOPRk99tsgk7uqDEyxsVUJ8n/Ory+e8XOH7tngkiVJTiS07P4vV1p5ixJoRmdZzZ/kp3nvT3sHRYSiEsklCklGellIXeWiSl3AcY6shjCJDbp/0KYKgJwys3JvT4kGpSsCB0KWRnlmhZQgg+HN4Kj2oOvLL6JAmpJVueohTX6ch4nljwF5tORvJKn6asfb4T9d0cLR2WYgRLnaGUVG0p5U3d/zFA7fwKCiGeF0IECyGC4+KK3vNhWVbVwYVnvZ7goC0c21/yx4JcHGxZOKYtsYlpzPxZNXWvlK6cHMnivZcZ/vVBMrJyWPN8Z17r1wwb6/J6mCpDSum7bLY9JYTYJYQINfAaYsr1SO2ol+/WklIu0fXhElCzZk1TrrpMCOz6LrWkFfMvrkNmpJR4ea3rV+ONAc3ZERrDj0eumyBCRSncrcQ0nll2lP/uOEc/n9rsmNGDDo1Uc4GmkB55jMVLO5B2K9zs6zJbQpFS9pVS+hp4bTbB4mOFEHUBdH8r7UMUDrZVeLH5GE7bWrFnT8kedsz1XPfG9GxWk9lbwvj1dLRJlqko+fnjbCwDv/iL4Gt3+e/wVnw9ri2ujqrvkhKTkqv7P2XsjvF8aZvG/si/zL7K8nouuQWtwUp0f02RpMqtIR1fpwG2LLi+g+yUkl9Qt7ISfD2uLW0bVGPGmhCVVBSzSMvMZvaWMKasCKa2iwO/Tu/GmA4N1LMlppCWyNY1Qwi8uJw4Owe+7voxfdtONftqLZJQhBDDhBCRQGdgmxAiSDfeQwixXa/cauAQ0FwIESmEmKKb9BHQTwhxEeirG660bK1sebnVc1yytWb77pI1HJnLyd6G5ZM65CWVbadvFj6TohjpfEwSQ786wPKDEUzu2ohNL3XhkVqqe15TSLlxlHdWduPtjKv4ONZl/VM76P7I46WyblGZLrwGBATI4OCK2ep+jswhcGUnkjOT2TJqN7bOdUyy3OT0LCYuO8rJG/EsGN2GQX51TbJcpXJKz8rmqz8vs2jPJVwcbJk30l91gmUqUnLhwKe8ce57rtpYM9XrCab2mIuNVcmf2xFCHJdS5vvMYK7yWuWlPMRKWDG93atE2lizcddrJltuVXsblk/uQJv61XhlzUm2n1FnKkrxHL92l0EL9rPgj4s84efB76/1VMnERGRqAhvWDGbsxRUk2tqzpMdnTHv0I5Mkk6JQCaUC6e4zmrbWLiy+G0LqHdM98Z6bVFrXr8b01SfZoZKKUgTJ6VnM2hzKiG8OkZqRzfJJ7flfYGvcnOwsHVqFkHzjMG/+2J05GRG0dfJk/Yjf6dR4gEViUQmlAhFC8ErnfxNnY82qP1436bKr2tuwfFL7vKTyW6hKKkrhdp+Lpd/ne1l5+BoTu3ix89UePNpcnZWYhJSE/fVfRgVNYqdtDjMaDeWbkTuo4WS5xyNUQqlg2jV5nG52NVmWfJHEmFMmXbazgy3LJ7XHz9OVl1ed5LfQGJMuX6k4bienM331SSYvD8bFwZaNL3bhvSdbqna4TESmJfLTmid4+vJPZNg68P2jC3m2x/tYCcse0lVCqYBe6fYfEq2tWL77X4UXLiJnB1tWTO6gSyonVFJRHiCl5OfjkfT9fC9BoTG81q8ZW6d3o02DStd+q9kkXD/MP37sxkcZ1+nmVJ8No/6gjVcvS4cFqIRSIXnX78bAKp78mB7J7Wv7Tb783KTSSiUVRc+Nuyk8s+wor68/RZOaVdn2Sjde6dMUOxt1mDEJKQn560NG/j6ZfTY5/KvJCBaM2E61KmWnRQG1pyuolx/9mAwhWLj7dcjJNvnyc5OKbz0tqQSFqaRSWWXnSJbuv0r//+3jxLV7/GdIS9ZP7UzT2uq5ElPJSUtg6ZpBTLy8Cmsbe37s8w3ju71X5h4CVQmlgmpYy4/xtTqx0SqFA7vM07q/i4MtP0zRksq0n06wUyWVSudcTCLDFx3k/V/D6dzEnd9f68kznb2wsipbB7ryLO7Kbl78sTvzM27Qp6oX6wL30LJ+N0uHZZBKKBXYy/2/pLGwZ9aNbSRGHjPLOh5IKqtO8Ht4rFnWo5QtiWmZfPzbOZ5YsJ/IuyksGNOGpRMC8KhWxdKhVRw5Ofy58zWG73mZEzY5zGo6jnlPbcXZoez2VqmelK/gQm/s5+k/XmBQth0fTDgMNua59z8xLZPxS48SHp3AonHt6OuTb48CSjmWkZXDqiPXWLD7EnfvZ/BUW0/eGeRNdfVMiUml3otg3paxrCMJb1GFjwYsoXHt1haLRz0prwDgW78bk+v1ZotNJn8GzTDbelwcbPlhcgd86rrw4k/H2aXOVCoUKSXbz9yk///2MntrOC3qOPPr9G58NspfJRMTO3diKaM3DmIdSUysEcCPY/+yaDIpCnWGUglkZGcwelV37mUksanXV1RrbL5bDBNSM3lm6RFCoxOZ9mgTpvdpiq3qIKlcC464y4fbz3LiejzNazsz8/EWPNqsZpm7IFze5WSksHLLBOYnn8VNWjG307t09h5p6bAA489QVEKpJM7dDGZM0ET6ZVnzyTOHwM58XaompWUyZ2s4G45H0qqeK/8L9FctyZZDl+OS+eS3cwSFxVLL2Z7X+zdjRLv6WKsL7iZ36/pB3tn1Eoess+ltV5s5T/5ItaqmaeDVFFRCMaAyJxSARX/O5Ovr2/jcpQ39hv1g9vX9FhrD25vOcD89i5mPtWCCuvunXLidnM4Xuy6y6uh1HGyseKFnE6Z0b4SjnXrK3eSk5M8/32FWxC+kWQn+1WQkI7rNKnNnfyqhGFDZE0pmTiZPr+7FzfS7bOr8Ee7eg82+zltJabz18xn+OHeLro+48+kIf3UnUBmVmpHNd39d4Zu9l0nLymFshwa80qcpNZ3tLR1ahZSaGK1deM++gzd2fNRvEY09Olg6LINUQjGgsicUgItxoQRuG0PPDMnnT/+FcDR/kxhSStYcu8H7v4ZjbSV4f4gvQ1p7lLlfYZVVdo5kw/EbfP77BWIT0+nvU5s3H2tBk5pVLR1ahXX2zGrePPoBV20EE6v5Mf3xpdjZOlg6rHyphGKASiia7w7M4YtLG/i4SjMeH/Vzqa332p37vLbuFMev3WNQq7rMHeqr7hCyICklu8/d4pPfznM+Nok2Darx9uPetPcqO015VDQ5WRms/HUy8+NDcJOCuQH/onOr8ZYOq1AqoRigEoomKyeLCWv7EpF6i1/avk3N1k+X2rqzcySL913mf79foLqjHZ+M8FPNmZeytMxsNp6IYtmBq1y6lUxDd0feHNiCx3zrqLNGM7p18zjv/PY8h6wy6G3jzpwnf6KaSz1Lh2UUlVAMUAnl/129e5GRW4bTKSOLhWP2IJxL90HEsOgEXl0bwoXYZJ7u1IC3H/dWF33N7FZiGj8cusZPR65xLyWTlh4uTOnWiCf8PFQDjmYks7PZsftNPojcQQaCf3k9yYhHPyxXyVslFANUQnnQD0fm8em5FbxvXY+h43ZAKX/A0zKz+Wzneb7bfxUvdyc+H+Wvmjk3g9CoBJbtv8rW09Fk5Uj6etdmSrdGdGzkVq4OauXR3egTzN35Ar+LVPywZ27vBTSq38XSYRWZSigGqITyoByZw6R1A7iQEs0mn5ep0/FFi8Rx6PId/rn+FDGJaephSBPJzpH8cTaWpfuvcuTqXRztrBkVUJ+JXbzwquFk6fAqvpxsdv/xJnNu7CDRSjCtTk8m9puPjbWtpSMrFpVQDFAJ5e9uJFzjqU1P0iY9g29GBSGqN7RIHIlpmczZEs7PJyLxrefCP/o0o1eLWuohuiK6n57F+uAbfH8wgmt3UqhXrQoTujQksH0DXKuUz4NZeZMYfZKPg55ni1UaLbBnbu/5NC+jrQMbSyUUA1RCMWz1ia/48Mw3zJJujHzmT7Cy3NnBb6E3mb0lnJjENBq4OTK+U0NGBdTH1VEdDAsSHZ/KioMRrDp6naS0LNo0qMaUbo0Y2LIONupsr3RkZ3Hwj5m8e2M7d6yteLZOd6b2/QJbMzXIWppUQjFAJRTDcmQOz//8JGeSItj4yDPU6/6mRePJzM4hKCyGFQcjOBZxjyq21gxtU4+JXbxoXkc14ZIrNSObvRfi2Ho6Oq/XzIG+dZjSrRFt1bWoUpUSdYLPgqayzjqNRsKeD3t+hm/DnpYOy2RUQjFAJZT8RSdFMXzj4/ikpfHdsF+wquVt6ZAA7W6wHw5e45eQKNKzcujU2I2JXbzo6127Uv7yjk/J4I+ztwgKi2HfxTjSMnOo5mjLqID6TOjiRT3VCkHpys4keNdbvHtjG1E21jxTpysv95mPg23F2g8qoRigEkrBfj79PbNPfs5bmY6MnbQfytAFxHv3M1gbfIOVh64RFZ+Kh6sDT3duyOj2DXCr4A9H3kxIZWdYLEFhMRy5epfsHEldVwf6+9RmgG8dOni5VcrkamlpkcEs/G0qK23SqWflwNwen9DOq7elwzILlVAMUAmlYFJKXtz8FE3vLTEAABpkSURBVCfunWeD51Aa9PvA0iH9TXaOZNfZWFYcjODg5TvY2VgxxN+DCV288K1XdnuyK6pLt5IJCothZ1gMpyITAHikVlUGtKzNgJZ1aFXPVd3yaylZGYT+PpO3o7Zz1daWwFodea3vAhxtzdeCt6WphGKASiiFi7kfw/ANA3kkLYXvB63C2rPQz5DFXIhNYsXBCDaeiCI1M5uAhtWZ0MWLR5vXxNmh7JxdGUNKyenIBILCYggKi+Fy3H0A/OtXy0siqm0ty8u8cYRvfnuRpbYZ1LCy5z/dPqRL4wGWDsvsVEIxQCUU42w5u5p/H/2Q11MFE8fvBqcalg6pQAmpmawPvsHKw9e4dicFgEY1nGjp4YJvPVda1XOlpYcL1RzLRtVYZnYOEbfvcyE2mfOxSVyMTeLk9XhiEtOwthJ0auzGgJZ16OdTm7quFasuvtxKSyQ06J+8d2svF+zsGFwzgDf7foGLnYulIysVKqEYoBKKcaSUvLpjIntuHeeLLFd6PvO7WTvkMpWcHMmhK3c4ef0eZ6ISCI1KJCo+NW+6Z/Uq+Hq40srTNS/Z1KhqvqbZs3MkN+6mcD42iQsxSVy4lcyFmCSu3E4mM1v73lkJ8HJ3wruuC71b1KKPd60yk/gUQEpSzqzjy4Nz+MnBCndrB97tModeTQZZOrJSpRKKASqhGC8lM4VJm4dzNekGS22b0GrMRrAuf21t3bufQWi0llxCoxMIi0ogQncWA1DHxQHfeq741nPB18PVYN8fhr4hhr4391IyuBCbrEseSVyMTSY9Kydvumf1KjSv7UyzOs40q12VZrWdaVKzKg621iZ5r4qJ3bvG/l9f4P30CKJtbRhVrxf/6PEBznaV79Z1lVAMUAmlaG6n3ubpTUNISbvHj27daDBkcam392UOCamZhEcnEhadQGhUAmeiErhy+z6m+irUcXHQkkatqrrk4UzTWlVxsi9/CblSys7k7v55fBK2jG1ODjSyq8bsRz+nbd32lo7MYlRCMUAllKKLSIhg/JancE6/z8om43Dv9a6lQzKL++lZnL2ZSGJa5t+mCfJJog+Ndra3oWltZ9XESTkmrx1m6/+1d+fxUdR3A8c/32zOzQkJAQIkgURuAQMiAauIClgplydVBOtVxauPaGt9ar3a6oPSp1brVSkFEazWA5USREEQAohAwhFAAgmEG8KREBKyye/5Y0aegAsssMlkk+/79drXzs5MZr6/3WS/md/MfH9ZDzAh+AilrmDu7DCKuy5+hFBX4+6G9DWh6L9M6rRSY1N5ZdDb3PmfMYz7fiqTYpJx9xzjdFh+FxkWTC8dWKrxOnqAbVm/5tldX5EdEUH3qLY8NeAvpDdJdzqygOLI3VAicoOIrBWRahE5ZdYTkUkiskdE1pw0f4KIrBeRXBH5SETiaj/qxqt7Yg8mXP4SeWFhjF/2HJ5NXzgdklL+YQyenBlMfjuTkQcWkeuO5rc9H2HKyE81mZwDp26vXQOMBBacYb3JwGAv878AuhpjugEbgcf9Gp36kf6pV/FEz/EsdIfz7JxxmB05Toek1PnZn8+6Kdfw86W/56XoEPo078XH1/2HUV3HEiRaeeBcONLlZYzJA854p68xZoGIpHqZP6fGyyXA9X4MT53CjV3HsLt0B29ueJfmH4/ivp/Phrhkp8NS6ux4Kji64EVeW/s2U6LdxLnjeLHfUwxMHazVB85TQziH8gvgvVMtFJG7gbsBkpP1y+983X/Jb9hduoPXts+n+XvDuW70XHDruQcVIPK/IjtrPM+EllEUE8nIlMH8V+Z/ExvWcMr2OKnWjutEZK6IrPHyGObHfTwBeIBpp1rHGPOmMaaXMaZXs2bN/LXrRktE+P2AifRr0plnw46xYMZIqCx3OiylTu/gNnbOuIlHZt/J3ZGVuKKTmDRoEk/3n6DJxI9q7QjFGHNVbW0bQETGAkOAK01juva5HggJCmHiNf/g9o9HML60iLf/fQsX3vi+owNzKeWVp4LybyYyOfct3o52Y6JjuK/rHdze7S7Cg8Odjq7BCchvABEZDDwGDDXGlJ1pfeV/7hA3rw6ZRtPQWMaV5bF11sNOh6TUCcyGLL58szfDN03h1dhIftL6J8wcOYt7Mx7QZFJLnLpseISIFAGZwOcikmXPTxKRWTXWmw5kAx1EpEhE7rAXvQJEA1+IyCoReb2Om6CAhIgEXh/yLiY4nF/umsP+hS86HZJSULyFzdNG8MuvxvFwZDURsa35+8C/M/Hq10iKSnI6ugZN75RX5y1n9yrunH0baRXlTLrkadzdRzkdkmqMKo9SsuAFXl83hXej3US4whh30YPc2PnnhARp9YLz4eud8gHZ5aXql+7Ne/A/l00gLzSM8dlP4tlyptuLlPIjY6jO+5SP3+rNzwr+xdSYSIalXsNnN3zBLV3HaDKpQ5pQlF9c0XYQT/R8hIUR4Tw7+y7M7nVOh6Qag/35rHlnCKMXPMLvIqFVk3SmXzuDp/pPoGm4Xs5e1xrCfSiqnrjxwrHsLt3Omxtn0OzD6xl37WQkubfTYamG6NgR9s17jpc3/YuPotwkRDbhD5f8hiHpw/QudwdpQlF+dX+f37LnyC7e2D6f4pk38/hFDxHS98EGUfZe1QNVlVSunMaMZRP4WwSUR0Vy+wU3cHevXxEVqkMkO00TivIrEeGpAf9Lwrcv8vf177B59StMLPyGpsPf0Dvq1bmrqqQqZzqzlrzI30KPURQZQr+mXfj1ZX+ibWxbp6NTNr3KS9WaWZs/58lvniC+soKXj7joMOIf0KbxDlKkzkGVB5Mzg/nZE3g5tJxNoaF0dCfxYOYTXNrqJ1p7q47oeCjKcT9tdy3JMSk8NPdeRrsO8qcZw7my3+OQOU67wNTpVXlg9ft8u+h5/hJ8lJyoMFLCk5hw8WMMbDtIz5PUU3qEomrd3rK9PPzl/eQWr2PcgYPc06wvMuI17QJTP1blgTUfsHbhC7zsKmGxO4LEkBju7fkwwy4YrpcAO0SHAPZCE4pzKqoqeHrxU3y6+TMGHjnKsxXhuK/XLjBlq66C1R+w+ZsXeEUO8UWkm7hgN3d2v5ebOt6spVIcpl1eql4Jc4Xxh0v/SIemHZm4/CW2hhlennItLa/4HWTer11gjVV1Faz5kJ0Lnuc1ivkkKopwVxy/7Ho7Y7qM1Su3Aoweoag6t7BoIY8teJTQygr+vGM7GSkDYPjftAusMamugrUfUbzged6q2st7MTEQ5OKmDqO4q/tdelNiPaNdXl5oQqk/Nh/azINfPsj2km38bn8xIyUWrp8EbfRGyAbt4FZYOY2SVe8wRUqYEhdLuQjD0oZxb4/7aBnV0ukIlReaULzQhFK/HKo4xKNfP0r2zmxuKYfxu3cQfNVT2gXW0HgqYMMsWDGFXQULmBobzb9jYziC4erkq7k/437axbZzOkp1GppQvNCEUv94qj1M/G4iU9dNpU9QFC9uWU9s+kC4+hlo1sHp8NT52LMeVk6FnOls8BxmckILZocFYUQYmDqI27vcTqf4Tk5HqXygCcULTSj110fff8SzS56lhcvNXwvzSasog3ZXQJ97If1qHQ0yUFSUwtqPYMUUTNEyst2RTG6ZSnZ1CRHBEVx3wXWM7jxaxyUJMJpQvNCEUr+t2rOKh+c9TLnnKPfFdGbUxmxCSnZC03bQ+x7o8XMIj3E6THUyY2D7d7Din7DmQyqPlTK7RRr/jI1hw7H9JEQkcEunW7ih/Q06fnuA0oTihSaU+m/XkV08uehJsndmkxzdhl8lZHLlxvlI0XIIjYaLboXed0F8mtOhqrJiyH0PVkyBPesoDY3k32kXM9UcYHfFAdJi0xjTZQzXtruWUFeo09Gq86AJxQtNKIHBGMM327/hpeUvkX8on4zEDB5L+Rld8rKs7pRqD7QfBJf8Etr11xP4danKA/lfwap3YMN/oOoYu1v1YFpSGu8fWkdp5REubnExY7uM5dJWl2qJlAZCE4oXmlACi6faw4fff8irq16luLyYIe2G8FD7UbRY9xksnwRH9kKzjnDJPdDtJgiNdDrkhmvf97DyHciZAaW7wB1PXqfBvBMuzNq1mGpTzcCUgYztMpYuCV2cjlb5mSYULzShBKbSY6W8veZtpqydgohwW+fbuKPTrURuyIKlr8HOHAiPg4zbrO6wuGSnQ24Yyg/D2g9h5TQoWgbiYl/6FXzeMo2ZJZvYePB7IoIjGJE+gtGdR9M6urXTEataognFC00ogW1H6Q7+suIvzNoyi/jweMZdNI4RacMJLloOS1+HvE8BA91uhise18RyLqqroWAhrJoG62aC5ygVzTowLy2TmZSyeM93VJkqLky4kKFpQ7mm7TV6or0R0ITihSaUhmH13tVMWD6BlXtWkh6Xzvhe4+nXqh8c3GYllmVvAQZ63QGXjYfIBKdDrv8OFMKqdyHnXTi4FRMWS06HK5kZE8Xsvd9RcqyERHciP2v3M4amD9UbERsZTSheaEJpOIwxzN06l4nLJ1JUWkS/Vv0Y33M86U3S4dB2+Pp5q88/xA19H7DGYAmLdjrs+uVQEWyeb12ptWUBIOxs249PW6bxaWk+BSVbCXeFc2XKlQxNG8olLS7BFeRyOmrlAE0oXmhCaXiOVR1j+vrpvJHzBkc8R7jugusY02UMKTEpsHcjzHsO1n0C7ni47FHo9QsIDnM6bGeU7rESR8FC67l4MwBlTVKYm57JTI6wbF8uBkPP5j0ZljaMq1Ou1oq/ShOKN5pQGq6D5Qd5Pfd13lv/Hh7joWPTjgxKHcSglEG0KdkDc5+GLV9DbBu44rfWVWEN/b/tsmIoXGQljy0LYW+eNT8shn3Jl7AkoTWLpIIv937HUc9RWke1ZmjaUIakDaFNdBtnY1f1iiYULzShNHy7j+xmTuEcZhfMJndvLgCd4zszOHUwAyWaVt/8FXaugmad4MonocM1Dec+lvLDsDXbTiALYNdqwECIm/I2vVnR4gKyQ4XFh/LZePB7AOLC4hiQPIChaUPJSMzQMdqVV5pQvNCE0rjsKN3BnII5ZBVksWb/GgC6JVzIwPBWDMr7khb78qF1b7jqKUjt52is56SsGIq+ha1LrG6s7SvAVIErlOo2vdmY1JXFEeFkl21nxZ6VHKs+RkhQCBmJGfRJ6kNmUiadmnbSmw/VGWlC8UITSuO1rWTb8eSSV2x1/fRwJzFozzYGFu8ise0A64ilZTeHIz0FY6xzHluXwLal1mPvemuZuKBVT3Yn9yI7OpbFFXtZuns5xeXFAKTHpZOZlEnfpL5kJGbgDnE72BAViDSheKEJRQEUHi4kqyCLrIIsNh7YiAAXVXgYVHKYPnHtad28B6Etu0PzCyGxE4Q68AXsqYAdq2DbEti2zEogR/YCYMJi2d86gy2JaRREx7NJPCzdvYL8Q/kAxIfHk5mUSWZSJn1a9iHRnVj38asGRROKF5pQ1Mk2H9psJZfNs8g/XABAkDEkeTykVHpI8XhICW1CamxbkhO707J1H1wtukF0C/+dezEGyvZbSWOrnUB2rKSiuoLC4BAKmrSioGlrCsIjKaCSgrLdlFSWHP/xcFc4Gc0z6JvUlz4t+9C+SXs9F6L8ShOKF5pQ1OnkH8xn3f51FB4qYOv+PAoO5lN4dA9lxnN8nRBjSK6sJKU6iJTweFJiUklJ7EZqm37Ex3ek6mgx1eUH8Bw9QFXZAarKD+IpP0BVxWGqjh60nisOU1VRgqfiMFXHSqk6VkqZ8VAYEsKW0DC2RDWhICSYHVVHMfz/32dzd3NSY1NJjUmlbWzb488tIlvoeRBVqzSheKEJRZ0tYwz7ju6j8HAhhfvzKNy1ksKDmygs283WqjIq/XwgEOEKJyU2lbYxbY8njx+e9dyHcoqvCSW4LoJRKlCJCM3czWjmbkavFr2gy+jjy6qqq9hVsp3CosUU7PqOA0f3ERzixhUcgSs0EldIJK7QSIJDowgKcRMcFIwryIVLXLiCXARLMEESRHBQMGGuMFJiUkh0J+rRhgpYmlCUOkeuIBetYpNpFZtM3y43Ox2OUo7Tf4WUUkr5hSMJRURuEJG1IlItIqfslxORSSKyR0TWnGL5IyJiRETLySqllMOcOkJZA4wEFpxhvcnAYG8LRKQNMBDY6tfIlFJKnRNHEooxJs8Ys8GH9RYAxadY/GfgMaDxXKamlFL1WECelBeRYcB2Y0zOmW7gEpG7gbvtl6UicsZEdgoJwL5z/NlApW1uHLTNjcP5tDnFl5VqLaGIyFyghZdFTxhjPjmP7bqB32J1d52RMeZN4M1z3V+N/S735TrshkTb3DhomxuHumhzrSUUY8xVtbTpNKAt8MPRSWtghYj0NsbsqqV9KqWUOoOA6/IyxqwGjle7E5ECoJcxprEdviqlVL3i1GXDI0SkCMgEPheRLHt+kojMqrHedCAb6CAiRSJyhxPx2s672ywAaZsbB21z41DrbW5UtbyUUkrVHr1TXimllF9oQlFKKeUXmlBOIiKDRWSDiGwSkd94WT5WRPaKyCr7cacTcfrTmdpsr3OjiKyzS+a8W9cx+psPn/Ofa3zGG0XkoBNx+pMPbU4WkXkislJEckXkp07E6S8+tDdFRL602zpfRFo7Eac/+VCuSkTkZfs9yRWRDL8GYIzRh/0AXEA+0A4IBXKAzietMxZ4xelY67jNFwArgSb260Sn467tNp+0/gPAJKfjroPP+U3gXnu6M1DgdNy13N73gTH29ABgqtNx+6HdlwEZwJpTLP8p8B9AgD7AUn/uX49QTtQb2GSM2WyMOQbMAIY5HFNt86XNdwGvGmMOABhj9tRxjP52tp/zKGB6nURWe3xpswFi7OlYYEcdxudvvrS3M/CVPT3Py/KAY05frgqsNk4xliVAnIi09Nf+NaGcqBWwrcbrInveya6zDxc/sItUBjJf2tweaC8ii0RkiYh4LdgZQHz9nBGRFKwbab/ytjyA+NLmp4Bb7Uv6Z2EdmQUqX9qbg1WkFmAEEC0i8XUQm5N8/t0/F5pQzt6nQKoxphvwBfBPh+OpC8FY3V79sf5bf0tE4hyNqO7cDHxgjKlyOpA6MAqYbIxpjdU1MlWkQQ8fOR64XERWApcD24HG8DnXmob8y3IutgM1jzha2/OOM8bsN8ZU2C//DvSso9hqyxnbjPVfzExjTKUxZguwESvBBCpf2vyDmwn87i7wrc13AP8CMMZkA+FYBQUDkS9/yzuMMSONMRcBT9jzAv7iizM4m9/9s6YJ5UTfAheISFsRCcX6MplZc4WT+huHAnl1GF9tOGObgY+xjk6wBzNrD2yuyyD9zJc2IyIdgSZY1RoCnS9t3gpcCSAinbASyt46jdJ/fPlbTqhxBPY4MKmOY3TCTOA2+2qvPsAhY8xOf2084Gp51SZjjEdE7geysK4SmWSMWSsizwDLjTEzgQdFZCjgwTr5NdaxgP3AxzZnAQNFZB1Wl8Cjxpj9zkV9fnxsM1hfQjOMfXlMIPOxzY9gdWf+CusE/dhAbbuP7e0P/ElEDNZgf+McC9hP7HJV/YEE+1zY74EQAGPM61jnxn4KbALKgNv9uv8A/X1RSilVz2iXl1JKKb/QhKKUUsovNKEopZTyC00oSiml/EITilJKKb/QhKICmoiU+rDOwyLi9uM+h4tIZz9ub/F5/Gyp/ZwkIh+cZr04EbnvXPejlC80oajG4GHgrBKKiLhOs3g4VmFBvzDG9PXDNnYYY64/zSpxgCYUVas0oagGQUT622NafCAi60Vkmn038INAEjBPRObZ6w4UkWwRWSEi74tIlD2/QEReEJEVwA0icpeIfCsiOSLybxFxi0hfrAoJE+yxUtJEpIddNDNXRD4SkSb29uaLNa7KchHJE5GLReRDEfleRJ6rEXtpjelfi8hqe5/Pe2lnWzv21SdtI/WHMTBEpIuILLPjyxWRC4DngTR73gQRiRJrLJAV9raG1dhOnoi8JdbYN3NEJMJeli4ic+3YVohImj3/Uft9yhWRp/36warA4nT9fn3o43weQKn93B84hFWbKAirXMql9rICIMGeTsC6KzrSfv1r4Mka6z1WY9vxNaafAx6wpycD19dYlgtcbk8/A/yvPT0feMGefgirHHxLIAyrPlr8SW24BlgMuO3XTb20dyZwmz09rsbPpmKPgQH8FbjFng4FImout+cHAzE13pNNWGNkpGJVgehhL/sXcKs9vRQYYU+HYx31DcQaR0Xs9/0z4DKnfy/04cxDS6+ohmSZMaYIQERWYX05fnPSOn2wuqsWiQhYX7g1a3W9V2O6q30UEAdEYZXxOIGIxAJxxpiv7Vn/xBq46Qc/lHFZDaw1dt0kEdmMVaSvZgmbq4B/GGPKAIwx3sa16AdcZ09PBV7wsk428IRYIxB+aIz53m7rCaEDfxSRy4BqrBLmze1lW4wxq+zp74BUEYkGWhljPrJjK7fbMRArqay014/CKhy6wEtcqoHThKIakooa01V4//0W4AtjzKhTbONIjenJwHBjTI6IjMUukHmOMVWfFF/1KeLzxWnrJRlj3hWRpcC1wCwRuYcfF/O8BWgG9DTGVIpIAdZRR82YwXofI06zOwH+ZIx54yziVw2UnkNRjUEJEG1PLwH6iUg6gIhEikj7U/xcNLBTREKwvoB/tD1jzCHggIj8xF42Gviac/MFcPsPV6SJSFMv6yzCKlrJSTEdJyLtgM3GmJeBT4BunPgegDUi4x47mVwBpJwuMGNMCVAkIsPtfYTZcWYBv6hxHqqViCT61FrV4GhCUY3Bm8BsEZlnjNmLVSF6uojkYnUPdTzFz/0O67zBImB9jfkzgEdFZKV9YnoM1kn6XKAH1nmUs2aMmY3VRbbc7rIb72W1h4BxIrKaU4+0dyOwxt5GV6whX/djdfOtEZEJwDSgl72d205q36mMxqq2nYt1rqeFMWYO8C6QbW/rA05MXKoR0WrDSiml/EKPUJRSSvmFJhSllFJ+oQlFKaWUX2hCUUop5ReaUJRSSvmFJhSllFJ+oQlFKaWUX/wfajChaR2PF5sAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEWCAYAAAAO4GKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4HOW1+PHv2a4uW7LkIlkylm2wDTa9YyCEdgMmARJKAgYCCVyS/NITklBSbki7IbkpBAgtFNOJCc04wRhsik0x2FRjGyxXyVavW97fHzOS10JlJe3ubDmf5/Hj1c7szJnd2Tn7vnPmHTHGoJRSSqU7l9MBKKWUUvGgCU0ppVRG0ISmlFIqI2hCU0oplRE0oSmllMoImtCUUkplhKxOaCJyrYjcZT+eLCKtIuK2/y4XkWUi0iIivxPLbSLSICKvOBv5yInIZ0Vkk72t+zsdT6rpux+kmuh9NlWIyFoROXaQ6UtF5MsxLutYEamNW3CjMNR22fMM+HmIyFUicktCgktT9ndrr0Qt3zOSF4nIRqAcCEc9fbsx5sp4BOUEY8zHQH7UU5cB9UChMcaIyNHAp4EKY0ybEzHGyW+BK40x/3Ri5SJigHYg+gLInxpjfp2g9S0AvmyMOSrquduB84DuqFk/NMbM6Wc/UEMwxszqeSwi1wI1xpgvOhdRfERv1whf/z89j0WkGtgAeI0xodFFlr6MMQn9bo0oodlOM8YsiVsk/RARj4MffhXwttl95XkVsHEkyczh7eirCljb34QkxjnHGLMuCesZzK+NMT92OIaUISJuY0x46DlTS7rGrRIj7l2OIrJARF4Qkd/a3XMbROSUqOlFIvJ3EdkqIptF5OdR3XwLRGS5iPxeRHYC14qI2+7yq7eXdaWIGBHxiMjZIvJqn/V/S0T6bX2IyBQRec7uRnwGKI2aVh213NuBC4Hv2U3krwC3AIfbf19nv+YzIvKGiDSKyAoR2S9qeRtF5Psi8ibQZi93oog8JCJ19rZ8PWr+a0XkfhG5045vrYgcFDW9UkQetl+7U0T+FDXtYhF5x36/nxaRqn623S8irYAbWC0iHw4S5z52N1GjHcfpUcu5XUT+IiJP2u/FchEZLyI32Ot/d6RdmSLyhIj8LurvhSJyq/14qoj8x972ehG5W0SKB3t/RGQf4Maoz60xhhh69wP77ymyu+t5iYj8WaK6mETkMPuzbxSR1RLVRWW/hz+z36MWEVksIqX2tICI3GXH2igiK0Wk3J42UUQWicguEVknIpcOEOuTInJln+dWi8jn7Md7i8gz9nLeE5HPR813u4j81X7P24Dj+iznOBF5K+rvZ0RkZdTfz4vIGfbjjSJygoicDFwFfMF+v1dHLbKqv/dhkM/hKvtz3igi5w8Wt4j8l4i8LiLNYnWnXxvLe2R/lr/rM22RiHwzersGi7PPa70icq9Y33Gf7Nkducz+v9F+bw6PYZ/u93hhP98hImOj5t3fXoa3n7iuFZEH7P2tRUTeEpHpIvJDEdlhv2cnRs1/kVjHkxYRWS/W8a9n2rEiUjvE53Ojvb+0iHW8rYqabkSkJmreP4vI4/a8L4vI1Kh5T7T32yaxjjnPyVBd18aYYf8DNgInDDBtARAELsU6eF4ObAHEnv4I8DcgDygDXgG+EvXaEPA1rNZjDvBV4G2gAhgDLMHqrvIAfmAXsE/U+l8HzhwgtheB/7VfdwzQAtxlT6vuWa799+3Az/ts1wtRf+8P7AAOtbfzQvt98Ue9R28AlfZ2uIBXgasBH7AXsB44yZ7/WqATONVe3i+Bl+xpbmA18Hv7fQsAR9nT5gPrgH3s9+THwIpBPjuD1SXEAHF67eVdZcd5vP0+zYh6X+qBA+04/oPVlXKBHefPgWdjXX+faePt9/R44Hz7/Smwp9Vgdfn6gXFYB4gbYnh/9vjc+vts+0zrux+8iNVN6wOOAprZvc9MAnban5nLjm8nMM6evhT4EJhuv7dLgevtaV8BHgNy7fgPxOrext62v9jbMReoA46P2k961n8BsDwq9plAo/0e5QGbgIvs/WJ/+3ObGfUeNAFH2rEH+rwPOVj7Y6m9T2wHNgMF9rQOoKTv8SA6vqhlDfg+9PP+H4t1DOj5ns4D2thz/9sjbvs1+9p/72fHekYM79EhWMcmlz2tFKs7vHyo41zU8q4F7rK363E7Pnc/n1U1UftVDPv0UMeL/wCXRi3rN8CNg8TYCZxk7wt3Yn1nf2R/tpcCG6Lm/y9gKiD2+98OHDCMz6cF6/jqB/7AnsfN3u+/Pe9O+3PwAHcDC6M+i2bgc/a0b2DllS8P+nkMNnGQD3Ej0GrvGD3/Lo06gKyLmjfX3ojxWOfduoCcqOnnYh8A7dd+3Gdd/8FOePbfJ7DnAeevwC/sx7OABuyk0mc5k+0PIi/quXsG2uEYOqH9FfhZn3W8B8yLeo8ujpp2aD/b9kPgtqidbkmfL16H/fhwrIOap5/tehK4JOpvF9YOWDXAZ9dfQouO82hgG/aX3H7uXuDaqPfl5qhpXwPeifp7X6BxkH3H2Dtq9L5zUtT0M7EOxPXYSWmA5ZwBvB7D+7PH5xa1DZ19Yrij734Qtc/kRr32rqh95vvAP/os+2ngQvvxUuDHUdOuAJ6yH18MrAD26/P6Sqxz0wVRz/0S6xx1z37Ss/4CrINJlf33L4Bb7cdfAJ7vs+y/AddEvQd3DvE9fx7rgHIYsBi4HzgZqzX3Zp99aKiE1u/70M86j+WT39P7gZ8MI+4bgN8P9R7Zf78DfNp+fCXwRH/bNci6rgUWAc8Bf8T+4d7PZ9W7X8W4Tw91vPgy8B/7sWB9Z44ZJMZnov4+Dev43ZN4C+zYigd4/aPAN4bx+SyMmpaPtT9XRn3/oxPaLVHzngq8az++AHgxalrPNg6a0EbT5XiGMaY46t/NUdO29TwwxrTbD/Oxzt94ga1idbM0Yn3JyqJeu6nPeib2ea7v9DuA80REgC8B9xtjuvqJdyLQYPY8B/bR4Js4qCrg2z3bYW9Lpb2e/mKtAib2mf8qrCTfY1vU43YgIFbXVyXwken//FYV8IeoZe7C+vAnDWNbouOcCGwyxkSinvuoz/K2Rz3u6OfvoU78HtBn33k6atpjWC2W94wxL/Q8KVbV6UKxuqmbsRJLT7fVYO/PQH7bJ4YL+5lnIrArah+GT36mZ/f5TI8CJkTN0/cz7Xlv/oGV/BaKyBYR+bXdXdSzzpao1/V9/wGw53kcOMd+6lysX7k9sR3aJ7bzsX5Y9rct/XkO6wB2jP14KdYv8nn238Mx0PvQn/6+pwN9rxCRQ0XkWbtrrgmrV6cUhnyPwDp+9BSwfBHrcxmuw7Bahtcb++gbiyH26aGOFw9hdaVPwPp8Ilg/QAbS9ztab3afe+yw/8+34zpFRF4Sq6u6ESvRRHcRx/z5GGNasY5J0dOjDbRf7HHct9/XIatfk122vwmrhVYadSApNHtWE/XdIbZidTf2qIyeaIx5Cata7WisyrWBdsitwBgRyYt6bvIItqHHJqyWYfRBMdcYc290eH3m39Bn/gJjzKkxrmuyndz6m/aVPsvNMcasGMa2RMe5BagUkeh9YzJWd1My/ALrV/MEETk36vn/wYpzX2NMIdbBR+xpg70/MR9g+rEVGCsiuVHPRe9/m7BaaNHvfZ4x5vqhFmyMCRpjrjPGzASOAD6D9at0i73OgqjZB3v/7wXOFZHDsbrfno2K7bk+seUbYy6PDmOIMPsmtOcYOqGN5v3u0d/3dMsg67gHq5VUaYwpwjpvKlHTB3qPwEoi80VkDla3/aMjiHcxViv632KfB+1Hf+/LUPv0gMcLY0yDvd4vYB33Fg4nmQ5ERPxYyfK3WF2vxcAT7Pl+DvX59H5HRCQfGNtneiz2OO7bDZaKgWe3JDWhGWO2Yn0IvxORQhFx2SdG5w3ysvuBb4jIJPuE6ff7medO4E9AMPpXfZ91fwSsAq4T64TtUVhN75G6Gfiq/etQRCRPrJPTBQPM/wrQIlYBRo5YxS6zReTgGNb1CtYHfL29noCIHGlPuxH4oYjMgt6im7NHsV0vY/1S+p5YJ7mPxXqfFo5imTERkWOwzvlcgHVO8v9EpKdlUoDVTdJkP/fdqJcO9v5sBypExDfceKL2mWvtfeZw9txn7gJOE5GT7M8zINZJ8yG/eGIVXewrVkFUM9b5gYgxZhNWV+Qv7eXtB1xir6s/T2D9mv8pcF9Uy/pfwHQR+ZL9OXpF5GCxCmVitQKYgXWO4xVjzFp7XYeyu8ihr+1AdZ8fRCPR8z09GivZPzDIvAVYrdpOETkE6wAfbaD3CGNMLbAS64fwQ8aYDkbAWJed3IOV1PoreKnDakVFX4M11D491PHiHqzvyln243jwYZ37qgNCYhX0ndjPfIN9PqeKyFH2d+5nWLUAQ/UG9PU4sK+InGH/UP1v9uxd6NdodrrHxKrW6fn3SIyvuwDrTXsb63zXg+zZRdPXzVhJ8E2sgo8nsPpwo0t1/wHMZuAvfY/zsL6Mu4BrsBLhiBhjVmGdTP0T1naswzpfM9D8YawPfi7WCdl6rMrJohjWFcY6kNYAH2M1vb9gT3sE+BVW11UzsAY4ZYBFDckY022v6xQ7xr8AFxhj3h3pMvuxus++c4OIFGJ9HlcaYzYbY54H/g7cZv86uw44AKsg4HHg4aiYB3x/sM7BrgW2iUh9VAzf6xND9LRo52Odo9uJVfByH1YvA/aXdD5WV1Ad1q/q7xLb92o81r7fjNUifY7dvQvnYp1z2YJVRHWNGeASGbt7/WGsc8v3RD3fgnUgOsdezjas/cQfQ2w9y2gDXgPW2vsFWEUyHxljdgzwsp4D204ReS3WdfWxDes7tQWre/CrQ+x/VwA/FZEWrCKK+6MnDvQeRbkD69zvSLobo9fzM6wW3hKJqkC0p7Vj9T4st7sQD2PofXqo48UiYBqwzRgTXVE6mm1oAb6O9R42YB0zF/WZbajP5x6s4+surGKnYV+TaIypB84Gfo313ZuJ9eOyv9NJvXoqD9OG/YvhRmNMVdRzOVjVcQcYYz5wLDiV8UTkPqwT19c4HYuKD7tn4C6swpH0OiAmmd1jc5cxpt9eCLEueao1cb7G027x1wLnG2OeHWi+lB/6ym5unyrW9VGTsDJ/39bg5cBKTWYq3uxuuql29/jJWC2ykZxnUSlIrEKcb2BV22kySyF2V36xfV7vKqzzeC8N9pqUT2hYG3EdVhP3dazumat7J1rDcH0D+LYTwamMNx6ruq8Vqyz7cmPM645GpOLCPp/YiHXK44ZB5nuyT/d0z7+rkhZsdjoc6/rFeqxTCmcMdY4z7boclVJKqf6kQwtNKaWUGtJoBidOWaWlpaa6utrpMJRSKq28+uqr9caYcU7HMVIZldBE5DTgtJqaGlatWuV0OEoplVZEZDSjJzkuo7ocjTGPGWMuKyoa8tIupZRSGSajEppSSqnspQlNKaVURsioc2hKKRUPwWCQ2tpaOjs7nQ4lIQKBABUVFXi9n7gfaFrThKaUUn3U1tZSUFBAdXU11lCimcMYw86dO6mtrWXKlClOhxNX2uWolFJ9dHZ2UlJSknHJDEBEKCkpycjWpyY0pZTqRyYmsx6Zum2a0FTaMcbQtPR+wi27nA5FKZVCNKGptNP+5jK2/+n/0bTkbqdDUSohjjvuOJ5++uk9nrvhhhu4/PLLWbt2LccffzwzZsxg6tSpXHPNNUQi1j1Lb7/9dsaNG8fcuXN7/7399ttObIIjNKGptNP41O0AdG5Y42wgSiXIueeey8KFe94kfuHChZxzzjmcfvrp/OAHP+C9997jrbfe4pVXXuEPf/hD73xf+MIXeOONN3r/zZw5M9nhO0YTmkorwR2baHv1GRCha+Nap8NRKiHOOussHn/8cbq7rRuFb9y4kS1btrBu3TqOPPJITjzxRAByc3P505/+xG9+8xsnw00ZWrav0krj4jsBKDz+XJr/cy+RjjZcOXkOR6Uy2Y7brqZrQ3x/PPmnzKLsop8OOH3s2LEccsghPPnkk8yfP5+FCxfy+c9/nrVr13LggQfuMe/UqVPp6OigsbERgPvuu48XXnihd/qLL75ITk5OXONPVdpCU2kj0tVB07/vIf/gk8k/+EQwhq6Psuf8gMou0d2OCxcu5Nxzz43pdX27HLMlmYG20FQaaVmxiEhLA8WnXIR3fDUAXRvWkLP3wc4GpjLaYC2pRJo/fz7f/OY3ee2112hvb+fAAw/k9ddfZ9myZXvMt379ekpKSiguLnYkzlSiLTSVFowxND55K76K6eTMOgJPyURcBWPo1PNoKkPl5+dz3HHHcfHFF/e2zs4//3xeeOEFlixZAkBHRwdf//rXue6665wMNWVoQlNpofOD1+ha/xbFp1yEiCAiBKpn0aWVjiqDnXvuuaxevbo3oeXk5LBo0SJ+8YtfMH36dEpLSznyyCM5//zze19z33337VG2v2LFCqfCTzrtclRpofHJ23DlFlB4zFm9z/mnzKbxydswoSDiyaxBVpUCOOOMMzDG7PHc7NmzefbZZwF49NFH+da3vsV5551HVVUVCxYsYMGCBQ5Emhq0haZSXqixjpYXH6Pw2M/vUdHor56NCXbRvXmdg9Ep5ZwzzjiD9evXU1VV5XQoKUETmkp5TUvuhlCQ4pMu3ON5/5TZANrtqJQCNKGpFGdCQZoW/4PcOfPwTarZY5pv4lTEF9DCEJUQfbv6MkmmbpsmNJXSWlc+TWjXVopPuegT08Ttxj95H22hqbgLBALs3LkzIw/8PfdDCwQCTocSd1oUolJa41O34ymrJG//T/U73T9lNi0rFmGMydhbYqjkq6iooLa2lrq6OqdDSYieO1ZnGk1oKmV1ffwuHWtXUPrFHyFud7/z+Ktn0fTMPwjV1eItq0xyhCpTeb3ejLubczbQLkeVshqfuh3xBSj61MBD/vQWhmzUbkelsp0mNJWSwm1NND/3AAVHzsddMHbA+fxVe4PLpbeSUUppQlOpqXnpA5iujn6LQaK5/Ln4Jk7VwhCllCY0lXpMJELjU7cTmH4ggb32G3J+f/VsvTeaUkoTmko97W8uI7h1/ZCtsx7+KbMI1W8h3LIrwZEppVJZyic0EdlHRG4UkQdF5HKn41GJ1/jkrbiLx1Fw2Gdimn/3iCHaSlMqmyU0oYnIrSKyQ0TW9Hn+ZBF5T0TWicgPBluGMeYdY8xXgc8DRyYyXuW87u0f0fbavyk64XzE64vpNYHqWQBaGKJUlkt0C+124OToJ0TEDfwZOAWYCZwrIjNFZF8R+Veff2X2a04HHgeeSHC8ymFNT98B4qLo01+K+TXuwhI8JRP0PJpSWS6hF1YbY5aJSHWfpw8B1hlj1gOIyEJgvjHml0C/fUzGmEXAIhF5HLinv3lE5DLgMoDJkyfHJX6VXJGudpr+s5D8Q0/FWzJhWK/1673RlMp6TpxDmwRsivq71n6uXyJyrIj8UUT+xiAtNGPMTcaYg4wxB40bNy5+0aqkaXnhUSKtjTEXg0TzT5lN95Z1RLo6EhCZUiodpPzQV8aYpcBSh8NQCWaMofHJ2/BN3pucfQ4d9uv9U/aFSISuj98lZ9r+CYhQKZXqnGihbQaiB92rsJ9TWazzvVV0bVxL8ckXjWiQ4Z7CEO12VCp7OZHQVgLTRGSKiPiAc4BFDsShUkjjU7fhyi2k8OjPjej1nrJKXLmFGVsYEtyxiY3fPoHtN36X9rdfxkQiToekVMpJaJejiNwLHAuUikgtcI0x5u8iciXwNOAGbjXGxOUoJCKnAafV1NQMOa9KHaGG7bS8+C+KT74IV07eiJYhIhldGNK05G66N71LcPtGmpbcjaesksKjz6Rw3pn4Jk51OjylUkKiqxz7HSbdGPMECSjBN8Y8Bjx20EEHXRrvZavEaVpyN4RDFJ984aiW458ym6Zn/oEJhwe83Uw6MpEIzcseJHe/eUz89k20rnyK5uceZNcjf2TXQzcQmHYAhcecScGRp+MuLInbesMtDXR+uJrOD98kZ9r+5O53dNyWrVQipHxRiMpsJhSkcfE/yJ17HL4Je41qWf4pszDdnXRvXY+/YlqcInRex5rlhOq3UPrFH+PKyaPwmDMpPOZMQru20fz8IzQve4gdf/8RO26/hrz9j6dw3lnkHXgCLl/sdySOdHXQtXEtneveoPOD1+lc9wbBbRt6p7vHlLPXX19BPN5EbKJScaEJTTmq9ZUnCTdsp/irvxn1sgLVu++NlkkJrfm5B3HlFpJ/8El7PO8ZO56x8y9n7PzL6dr4Ns3LHqT5+UdoW7UYV14RBUecRuExZxLY+5A9Cm1MOEx37ftW8lr3Bp3rXqfr43chHLKWWzKBwNS5FH3qHAI1+xNqqmfbDVfQ8tLjFB51RlK3Xanh0ISmHNX45G14y6vIm3vcqJflq5iGeHzWebSjPhuH6JwX6Wij5eXHKTzqs7j8OQPO56+eybjqqyk9/0e0r3mB5ucepHnZQzQ9cxfesskUHHUGJtRtJbD1b2I62wFw5RYSqJnD2PlXEKiZS6BmLp6x4/dYtolE2Lnw1zQ+8XdNaCqlZVRC06KQ9NK1cS0d77xM6QVXx+Wcl3i8+CbPyKjCkJaXH8d0tlM476yY5he3m7w588ibM49Ix/W0vvKkdb7t0T8hbi/+6lkUHXcOgWn7E6iZi3f8FMQ1eLGzuFwUn3wRdbdfQ+e61QRq5sRj05SKu4xKaFoUkl4an7od8QUoOu4LcVumf8ps2lY+jTFmRNezpZrmpQ/gHV9NYO9Dhv1aV04ehfPOonDeWYTbmnD5cmIe8LmvwuO+QP3CX9H45K2M/9ofRrQMpRIt5W8fozJTuLWR5mUPUXD053AXjInbcv3Vswg37yK0a2vclumUYF0tHWuWUzjvrFEnZ3de0YiTmfX6QgrnnU3L8n8SaqofVSxKJYomNOWIlhf/henupPikC+K63EAG3Rut+bkHASicd7bDkViKT7kYE+qm6Zm7nA5FqX5pQlOOaFu5GG/ZZGsMxjjyV80EkbQ/j2aMofm5B8mZeTjessqhX5AE/opp5M6ZR+PiOzGhoNPhKPUJmtBU0kU622l/63nyDj4x7ue5XDn5eMdPSfshsDrff5Xg1vUUHpsarbMexadcTHjXNlpf1lsTqtSTUQlNRE4TkZuampqcDkUNov3N5zDBLvIPOjEhy8+EIbCalz6A+ALkH/ZfToeyh7wDPoV3fDUNT/zd6VCU+oSMSmjGmMeMMZcVFRU5HYoaROvKxbhyC0d0m5hYBKbMJrjjY8Jt6fnDJtLdScuKReQfeiru3AKnw9lDTwl/53ur6PzwTafDUWoPGZXQVOoz4TBtry4h74DjEzaMkr+nMGTj2wlZfqK1rVpMpK0p5bobexQe9wUkkEvjk7c6HYpSe9CEppKq84PXCDfvJC9B3Y1gdTlC+t4brXnpA3jGTiB39lFOh9Kv3hL+Fx7VEn6VUjShqaRqXbUY3B7y9h/9UFcD8Ywpw11clpaFIaGGHbS9sZSCeWem9B0Dekv4l9ztdChK9dKEppKqbdVicmcehjsvsec5/dWz6EzDFlrLC49AJJwy154NxF8xjdz9jqHx6Tu0hF+lDE1ofRhjnA4hY3VvXU937QcJ7W7sEZgym+7a94kEuxK+rnhqWvoA/pq5aXG3gOJTL9ESfpVSNKFFqbvjOjZddZrTYWSstlXPACSsXD+af8osCIfo3vRewtcVL50b1tD90dsUpXjrrEfe/sfjLa+iQYtDVIrIqIQ22uvQxJ9D54dvELFvraHiq3XlYnyT98FbPjnh6/Kn4RBYzUsfAI+XgqPmOx1KTMTttkr4311J53ot4VfOy6iENtrr0AI1cyESoWvDW3GOTIVbdtHx7ivkH5z41hmAt7waCeTRtTE9zqOZUJCWFx4h/8BP4y4Y63Q4MSs8/guIP0dL+FVKyKiENlqBqXMB6Fy32uFIMk/b689CJJyU82dgXQDsr56ZNoUhbW8sJdxUn7LXng3EnVdE4bGfp+V5LeFXztOEFsUzpgxPyQQ6P3zD6VAyTuvKxbiLywhMTd7NIQNTZtO18W1MJJK0dY5U89IHcBeOJW//450OZdiKT75IS/hVStCE1kegZn8612lCi6dIsIv2N54l/6BPD3l35HjyV8/CdLYR3L4xaesciXBLA22rFlNw1GcTNnpKIvkrp5O739E0Pa2j8CtnaULrI1Azh+C2jYRbGpwOJWN0rH2RSEdr0robe6RLYUjLikWYUHfadTdGKz71EkK7ttL6ypNOh6KymCa0PnrPo32o59HipXXVYsQXIHff5A7l5KucAW5Pyg+B1bz0AXyT9477veGSKW//T+Etr6LxCS0OUc7RhNaHf+p+gCa0eDHGWKODzJmHy5+T1HW7vH58FdPpTOEhsLo3r6Pzg9conHd23O8Nl0xWCf8COt59RUv4lWMyKqHF435o7rwivBOn0vnB63GMLHt1bVxLqH5LUi6m7k9gyuyUbqE1P/cguFwUHvM5p0MZtcLjz9ESfuWojEpo8bofWqBmrrbQ4qRt1WIQIe/AExxZv796FuHGHYQadjiy/sGYSITmZQ+SO+dYPGPKnQ5n1Nx5RfYo/P8k1LTT6XBUFsqohBYvgalzCDdsJ7hzq9OhpL3WlYsJTDsAT/E4R9a/+95oqdft2LFmOaH6LRTOO8vpUOKm+JSLMcEuLeFXjtCE1o9AjVUY0qXXo41KcOcWuta/mbTRQfrjr54JpOa90ZqWPoArt5D8g09yOpS46S3hX6yj8Kvk04TWD3/1LHB7dMSQUWpbtQSAvIOcO2C784rwlk2mM8WGwIp0tNL68uMUHHFa0otlEq34lIsJ7dxK6ytPOR2KyjKa0Prh8ufgn7w3neu0MGQ0Wlctxju+Gp/Dt0LxV89KuWvRWl5+AtPVkdbXng0k74AT8JZNpvGJvzsdisoymtAGYBWGvKn3RxuhSEcbHW+9QN5BJzpeju6fMpvgtg1EOlodjSNa89IH8I6fQmDGwU6HEnfidlPUW8KvA32r5NGENoDA1DlE2poIbtvgdChpqW31c5hQt2Pl+tH8U2aDMXR99LbToQAQrKulY81yCued5Xh/mxzNAAAgAElEQVSyT5QiLeFXDtCENoCewhAd13Fk2lYtxpVfTM7ezrdA/FNmAakzBFbzcw8CZFR1Y1/u/GK7hP9Rws1awq+SQxPaAHyVMxBfQBPaCJhwmNZXnyFv/+NTYrBdz9gJuAvHpkRhiDGG5uceJGfm4XjLKp0OJ6GKT7nILuG/x+lQVJbIqIQWj5FCepfl9uDfa19NaCPQ+f4qIi0NjpbrRxMRuzDE+YTW+d4qglvXZ2QxSF/+yhnk7nsUDU/dRqRL7wKvEi+jElq8RgrpEZg6l64NazDhUFyWly1aVy0Gj5fcOcc6HUov/5TZdH/8nuPXRjU/9yDiz6Hg8M84GkeyjD37W4R3baPhn391OhSVBTIqocVboGYOpruT7k3vOR1KWmlduZjcmYfjzit0OpRe/upZmFA33bUfOBZDpLuTlhWLyD/0VFw5+Y7FkUy5Mw8j/4jT2PXonwnW1TodjspwmtAGoYUhw9e9eR3BLR+SlyLdjT16bs3i5BBYba/9m0hbU1Z0N0Yb96WfAFD/j587HInKdJrQBuEdPwVXXpEmtGFoXfUMQEqU60fzTdjLKvJx8Dxa14Y14HKTO+sIx2JwgndcBWPmX0HLikW0v/2S0+GoDKYJbRAiQmDqHE1ow9C2ajH+6pl4x1U4HcoexO3GXzXT0RZasK4WT8kExO1xLAanjD3jCjylE6m79SeYcNjpcFSG0oQ2hEDNXLo+fpdIV4fToaS8cPNOOt5bSV6Ktc56+KfMpmvjWsdGfwnVb8ZbOsmRdTvN5c9l3Jd+QtfGtTT9516nw1EZShPaEAI1cyASTsnbj6Sattf+A5EI+Q4ORjwYf/UsIm1NhBwqTgjW1eJJsZZrMuUfcTo5+xzKznuvJ9w2+ktrlOpLE9oQ/FO1MCRWrasW4x47Hv9e+zodSr967o3mxHk0Ew4T2rk15bpik0lEGHfRTwm3NLDz/v91OhyVgTShDcFbMgH32PGa0IYQ6e6k7Y1nyT/w04grNXcr/+QZ4HLRtSH5A+aGGrZBJIwnS7scewT22peiE86n8anb6HLwEgqVmVLzyJNiAlPn0Kk3+xxUx9oXMZ3tKVeuH83lz8U3scaR7uNQ/WaArG6h9Sg55/u4/LnU3X6N3s1CxZUmtBgEauYS3LJe+/0H0bpqMeLPIXf2kU6HMij/lNmODIHVc1FxtrfQADxFJZR8/tu0v7GUtleXOB2OyiCa0GIQmDoHgK4P33Q4ktRkjKFt5WLy5hyLyxdwOpxB+atnEdq5NekjwIfq7BaaJjQAik9egG9SDXW3X4sJdjsdjsoQGZXQ4jk4cbSehKbn0frXteEtQru2pnR3Y49AT2FIkrsdg/WbcRWMwRXITep6U5V4vIy76KcEt22g4YlbnA5HZYiMSmjxHpy4h7tgDN7xUzShDaB15WIQIe+AE5wOZUhO3RstWFer58/6yJt7LHkHnsCuB28g1LDD6XBUBsiohJZIgZrMLAzZ9uf/x4Yrj6B+4a/p3rp+RMtoW7WYwIyD8BSVxDm6+HMXjMVTMoGuj95J6nqti6o1ofU1bsG1RIJd1N/zy7guN9zeQsPjtxBq0puLZhNNaDEKTJ1LaOfWjPolGWqqp/m5hzChbnY99Ac2fu0oPv7hZ2h88raYzzEF6zfTtWFNyo3dOBjv+CkEd3yUtPUZY+yLqvX8WV++CXsx5r++TPOz98WtB6Tj3ZV8/J1PU3fb1Wz/23fjskyVHjShxShQY59Hy6BWWsuKRRAJM+lHdzPlxlWUfunHRLo62PH3H/Hhpfuz+foFtLz4LyLdnQMuo61nMOI0OH/Ww1tWSXD7x0lbX6StCdPZpi20AYw98//hLh7Hjlt/MqoyfhMKUn/fb9h09WcxGAo/dS5trzxF6ytPxjFalcqyb5TUEfJP2Rdcbjo/eCOtWiODaVn2MP7qmfgrZwAwdv4VjJ1/BV0b19L83IM0v/AobasW48orouDwz1BwzFnk7H3wHhdOt65ajHfCXngn1ji1GcPmLa8i3LCdSFcHLn9OwtfXW7KvLbR+uXMLKD3vh2z/y7doef4RCo/53LCX0b11A9v++DU6P3iNwnlnM+6Sn+PyBehct5odt/yYnNlH4c4tSED0KpXE1EITkYdF5L9EJGtbdK5ALr7KGRnTQuveup7OD16j4OgzPzHNXz2LcRdew143rmLSj+8h78ATaH7+YWqv/iwbrjyc+nt/TfeWDwm3t9C+Zjn5B30aEXFgK0bGWzYZIGk3nOwZO1JbaAMrPPbz+KfOoe6unxPpaIv5dcYYmv59Dx9999N0b/mQCd+6kfFf+wPu3ALE46X8q78h1LCNnff+KoHRq1QRa4L6C3Ae8IGIXC8iMxIYU8oK1Myhc93qjBjdoOX5R0CEgqPOGHAecbvJm3ssE77+f0y95U3Gf+2P+MZPYdcjf2Tj14/m4++eCKEgeQen5mDEA/GW2wltR3K6HYP2KCHaQhuYuFyUXfwzwru2sevRP8X0mnDLLrb+5sts/+t3CNTsT9XvllBwxOl7zJMzbX+KT15A41O30fHB64kIXaWQmBKaMWaJMeZ84ABgI7BERFaIyEUi4k1kgKkkMHUukdaGpB0IE8UYQ/Oyh8mZdSTekgkxvcaVk0fhvLOouHohe924itIv/QQJ5OGbVEPOjIMSHHF8ecurAAhuT05hSKiuFvEFcBemfhWok3JmHETBMWfSsOhGuof4bNreWMrGb32K1teWUPqlH1Nx9X0DXrRecu4P8IwZz46/fRcTCiYidJUiYu5CFJESYAHwZeB14A9YCe6ZhESWgnoLQ9L8l17nujcIbtswonMVAJ6x4xk7/3Kqf7eE6j8sS7sbVrqLShF/TtIKQ4L1W/CUTkqrblmnlJ5/Fbjd1N/5s36nR7o72XHb1Wz++Xm48wqZ/D//Yuz8KwYdENudW8C4S35O18a3aXj85kSFrlJArOfQHgGeB3KB04wxpxtj7jPGfA3IT2SAqcQ/eR/E66frw9VOhzIqLcseQrx+8g891elQHCEieMsmJ62lHaqr1SGvYuQtmcDYz36d1pefoP2tF/aY1vXRO3z8g1NpfPwWik+5iMm/epJAjLcqKjj0FPIOPomd9/02qRWuKrlibaH90Rgz0xjzS2PM1ugJxpj06m8aBfF48U+ZndYjhphQkJbl/yTvoBNx5xU6HY5jklm6H6zfnNU39hyuMaddhrdsMjtuuxoTDmEiERoeu4mPv38K4eadTLrqLsou+QUu//CGESu75OfgcrP95h9mxHlw9UmxJrQxIvK5Pv8+JSJlCY0uBQWmzqFzw1uYcNjpUEak/c3nCTfvHHF3Y6bwllcR3P5Rwg9ske5Owo07tIU2DC5fgNILr6H743fZ+eDv2fzzc6m741py586j6nf/Ju+A40e0XG/pJErP/T7tbzxLy/J/xjlqlQpiTWiXALcA59v/bga+DywXkS8lKLaUFKiZi+lsp3tzet6csHnZQ7jyx5A39zinQ3GUt7wK09lGpGVXQtcT2rnFWp+20IYl/5CTyd33KHY98Hs63l1J2WW/YuL3b8dTVDqq5RaffBH+mrnU3XY14dbGOEWrUkWsCc0L7GOMOdMYcyYwEzDAoViJLWsEauYC6VkYEuloo3XlUxQccRri9TkdjqO8ZZUAdCe427HntjF6H7ThERHKLvsVhcefQ9VvFlN84pfiUlQjbjflX/k14ZYG6u/6RRwiVakk1oRWYYzZHvX3DqDSGLMLyKo6WO+EvXDlFtCZhoUhrSufwnR1UHj0Z50OxXE9pfuhBBeG9Fy8rS204fNNmML4K/4X36T4jkITmDKbMZ+5lKYld9P+9stxXbZyVqwJbamI/EtELhSRC4F/2s/lAVnVbheXC/9ec9KyMKR52UN4yioJzDjY6VAc1ztaSIJbaMH6zSCCJ8br/VRylHz+O3jGVbDjpu8RCXY5HY6Kk1gT2n8DtwFz7X93Av9tjGkzxmTdyZhAzRy6Pn5n0EF7U02osY72N5dRePTnBr1mJ1u4Arm4i0qHvIB3tEL1tXjGjEc8WTP+QFpwBXIpv/R6ums/oOHRvzgdjoqTIa+IFRE3sMROXA8lPqTUF6iZC6EgXRvfJmf6AU6HE5OW5f+ESISCo7O7ujGat7wqCV2OW3TIqxSVd8DxFBxxOrse/iMFR56Ob+JUp0NSozTkT3VjTBiIiEh8bwOdACJymojc1NTUlND19BaGpNFAxc3LHsK/1774K6Y5HUrKSMa1aKF6vag6lY276KeI18/2m36g16ZlgFj7nlqBt0Tk7yLyx55/iQxsJIwxjxljLisqSmzu9ZRMxF08jq516VEY0r15HV0frqawn5H1s5m3vIpg/WZMOJSQ5ZtIhFD9Fr2oOoV5xpRR+sUf0bFmOc1L73c6HDVKsQ7C97D9T2GVFAemzkmbFlrz8w+Dy0XBUfOdDiWleMsmQyRMqH5L7wj88RRuqsOEurXCMcUVnXA+zcsepO6On5J3wAl4inQQ6XQV62j7dwD3Ay8ZY+7o+ZfY0FJboGYu3ZvXEW5vcTqUQRljaHn+EXJnH4VnTLnT4aSU3tvIJKgwpPfGntrlmNLE5aL8K78m0tlK3R3XOR2OGoVYByc+DXgDeMr+e66ILEpkYKkuULM/GEPX+jedDmVQne+/SnD7RxRk+VBX/em9jUyCCkNC9n3QtIWW+vyVMxg7/wpalj1I2+rnnA5HjVCs59CuBQ7BvubMGPMGsFeCYkoLgan7AaT89WjNyx5CfAHyDznF6VBSjmfsBHB7ElYYoi209DL2c1/HO34KO27+IZGuDqfDUSMQa0ILGmP6lg5G4h1MOnEXluAtm0xnHApDIp3tNDx+C+E4jytoQkFaViwi/+CTcOcWxHXZmUDcbrzjKhLW5Riq34wrr0jf+zTh8udQftn1BLdtZNeDNzgdjhqBWBPaWhE5D3CLyDQR+T9gRQLjSgv+mtEXhkS6O9ny64uou+1qtvz2srhW3LW9sZRIS4NeezYI675omxKy7GBdrbbO0kzufkdTOO9sdi36K10fveN0OGqYYk1oXwNmAV3AvUAz8P8SFVS6CEydS6iullBT/Yheb4LdbP3dZbS/+TyF886mY+0K6ga4U+9ItCx7CFfBGPLmHhu3ZWYab/lkgjsSVRSyGa9eVJ12xl14NS5fgIYn/u50KGqYYirbN8a0Az+y/ylbYNr+gHUeLf/AE4b1WhMOsfWPX6Pt1SWUXXo9xSddgCuvkMbHbyYwdT8KjxndNWPh9hZaVy2m8PhzdNilQXjLJhNu3kWkoxVXTnxvvh6q30zuzEPjukyVeO7CEvx77Uf3pvecDkUNU6xVjtNF5CYRWSwi/+n5l+jgUl1gyr7gcg27MMREImz787doffExxl14LcUnXQDAuAuuJmfmYWy/8bt0rn9rVLG1vvIkpruTQu1uHFRvpWOcC0PC7S1E2pq0yzFN+Sqm0V37vo4ekmZi7XJ8AHgd+DHw3ah/Wc2Vk4dv0jS6hnErGWMMO27+IS3LHqTknO8x5rTLeqeJx8uEb9+Eu2AMW35zCeHmnSOOrWXZQ3jLqwhMP3DEy8gGvaPux7nbUUv205u/YjqR9hZCu7Y5HYoahlgTWsgY81djzCvGmFd7/iU0sjQRqLFuJRPLLzljDHV3XEfTM/9g7Ge/xtgzv/GJeTxFpUz87t8JN9ax5X8vH1GRSGjXNtrXLKfg6M/G5aaImWz3xdXxLQzRkv305qucDkB37fsOR6KGI9aE9piIXCEiE0RkbM+/hEaWJgJT5xJu3knIPoANZufC39D4r5soPvUSSs77wYDJJlAzl7LLrqdjzQsjuqtuz8j62t04NFd+Ma7cAm2hqT34KnoS2gcORxK7cEsDW/9wZcJviZTKYk1oF2J1Ma4AXrX/rUpUUOkkULO7MGQwux7+P3Y9dANFJ5xvjfA9RMup6LgvUHTyAhoe+5s1FuMwNC97CH/N3Ljf6TcTiYhVuh/nc2jBulrE48NdNC6uy1XJ4S4qxZU/Jq1aaDsf+gMtyx/FdLY7HYpjYh3LcUo//7J6pJAe/qp9EI9v0OvRGh6/hfp7fknB0Z+j7NLrY+4GLFtwHTn7HMr2v36Hzg1rYnpN16b36dqwRltnw+Atr4r78Fehulo8pRP1ZqppSkTwV06ne1N6JLTurRtofOo2Co87B3/VPk6H45hBv20i8r2ox2f3mfY/iQoqnYjXh6965oAjhjQ+czd1t11N/mH/xfgrb0Dc7tiX3VMkkm8XicQwkkjL8w+Dy03BkTqyfqy8ZZUEd2zCROI3+E2wfjOeUu1uTGe+iul0pUmlY/3d/4N4vJSe872hZ85gQ/18PCfq8Q/7TDs5zrGkLetWMqsx4fAezzcve4gdN32PvAM+xYRv/Blxx3q3nt08xeOY8J2bCe/aztb//eqgRSImEqH5hUfI3e8YPMXa1RUrb3kVpruTcOOOuC0zVLcZ77iJcVueSj5fxTQirY2ERzhwQrK0v/0yrS89ztj5/41nTJnT4ThqqIQmAzzu7++sFZi2P6azje4tH/Y+1/LS42z70zfImXUkE759E+L1jXj5OdMPoOzSX9L+1gvU3/PLAefrfG8loR2bKNSR9Ydld+l+fLodTShIqGGbttDSXG+lYwpfYG0iEeruvA7P2AmMOf0rTofjuKESmhngcX9/Z63A1LkAvefRWl9dwtYbriAw7QAmff82XP6cUa+j6FPnUnTShTT88680v/Bov/M0L3sY8eeQf7A2nodjd+l+fBJaaOdWMAavluynNb9d6diVwoUhLcsfpWvdG5Sc931c/lynw3HcUH1gc0SkGas1lmM/xv47kNDI0ohv4lQkkEfnujfwjp3A1t9ein/yPky66i5cOXlxW0/Zguvo+uhttv/lW/grpuGvntU7zQS7aXnxMfIPPjmu68wGnnEVIBK3FlrPNWhasp/e3GPKceUWpmzpfqSrg/q7f4l/ymwKjznL6XBSwqAtNGOM2xhTaIwpMMZ47Mc9f+sAgTZxuwnstR9tK59m868W4J0whYqf3IM7rzC+6/H6mPjtm3HlF7Pl15cQbmnondb2+n+ItDaOegzIbOTyBfCMGR+/Fpp9DZpHByZOayJiDYGVopWOjU/cQqh+M+MuvEaraW36LsRJoGYOoZ1b8ZRMoOLq+3AXJOa6c8+YMiZ+52ZCu7ax9YYregtRmpc9jLuwhNw5xyRkvZnOWz45bvdF6x0lpESLQtKdr3J6Sl6LFmqqZ9fD/0feQZ8md/aRToeTMjShxUnBEaeTO/c4Kq65P+EVhjnTD6Tsy7+gffVz1N97PeG2ZtpefYaCI+ePqJJSxfdatGD9ZtzFZbh82iuf7vwVM6yRgJpGPq5qIuy8/3dEujoY96UfOx1KStGjX5wEauZS8eO7k7a+ohPOp/PDN2l49M8Et6zHBLso0O7GEfOWVRLatY1Id+eoE1GorlYLQjJEb6Xj5g/wFJU4HI2lq/YDmp65i6ITv4Rv0jSnw0kp2kJLY+Mu/imB6QfS+sqTeCfsRaBmrtMhpS1veRUYE9OYnEMJ1m+2Ck1U2vNVWAkjlc6j1d/5M1yBXErO/rbToaQcTWhpzOX1M/G7t+CrmMaYz1ymI+uPgresEoDgjtGNum+MIVS/GW+pnj/LBJ6SiUggL2XOo7W/+Txtry1h7JnfSJkWYyrRLsc05xlTTtXvl2oyG6XdN/ocXWFIuHknprtTW2gZQkTwV0ynKwVaaCYcti6iLquk+JSLnQ4nJaVFC01E8kRklYh8xulYUpEms9FzF5chvsCoC0NCdfZtY/QcWsbwVU5LiRZa83MP0LXxbcadf5UWHA0goQlNRG4VkR0isqbP8yeLyHsisk5EfhDDor4P3J+YKJUCcbnwjqsY9bVowXq7ZF9baBnDVzGdcOOOPa77TLZIZzv19/6KwPQDyT/idMfiSHWJbqHdTp9BjEXEDfwZOAWYCZwrIjNFZF8R+Veff2Ui8mngbSB+I8cq1Q9vedWouxx7W2ia0DJG780+Nzs3YkjDor8SbtjOuAuu1h6ZQST0HJoxZpmIVPd5+hBgnTFmPYCILATmG2N+CXyiS1FEjgXysJJfh4g8YYyJ330+lLJ5yirpePcVjDEjPmgE62uRQB6uvKI4R6ec0jum46YPyNn7kKSvP7RrG7v++RfyDz+NnL0PTvr604kTRSGTgOhSslrg0IFmNsb8CEBEFgD1AyUzEbkMuAxg8uTJ8YpVZRFfeRWR9hYirY24C8aMaBnWbWMq9Fd0BvGMq0D8OY6dR6tf+GsIhyn94lWOrD+dpEVRCIAx5nZjzL8GmX6TMeYgY8xB48bpvcDU8PWOuj+K0v1gfS0eLQjJKOJy4ZvkTGFI54Y1ND97H8WnXITPrsRVA3MioW0GKqP+rrCfU8pRvfdFG8V5tGBdrZ4/y0C+iuSP6WiMof7On+LKK2bsmd9I6rrTlRMJbSUwTUSmiIgP667YixyIQ6k9eEaZ0CKd7URaGrRkPwP5K6cR2rmVcHtL0tbZ9tq/aX/rBUrO/ibu/OKkrTedJbps/17gRWCGiNSKyCXGmBBwJfA08A5wvzFmbSLjUCoW7twC3IVjR9zlGNTbxmSs3krHJLXSTDhE/T9+hnfCXhSfeEFS1pkJEl3leO4Azz8BPBHv9YnIacBpNTU18V60yhKespHfRqbnPmja5Zh5ehPapvfJmX5gwtfXtORuums/YOL3/o54fQlfX6ZIm6KQWBhjHjPGXFZUpCXTamR8ZZNHPFpI733QtMsx43jLJiNef1JaaOH2Fnbe91tyZh5G3sEnD/0C1SujEppSo+Upn0ywrrb3xqnDEarfDC43njHjExCZcpK43fgmTaWrNvEXV+965P8IN+9k3AXX6OUfw6QJTako3rIqCIcI7do67NcG62rxlExA3O4ERKac5quYkfAWWrCulsZ/3UzBMWcSqJmT0HVlIk1oSkXx9VyLNoIxHUNasp/RfJXTCdXVEuloS9g6GhffiYmEKT0vliFuVV8ZldBE5DQRuampqcnpUFSa8pSPvHQ/WL9Zz59lsN1jOq5L2Do63lpOYNr+eunHCGVUQtOiEDVa3pKJ4HIPuzDEhEOEdm7VFloG8/fcvTpB3Y7htmY6168md9aRCVl+NsiohKbUaInHi6d04rC7HEMN2yESxlOqCS1TecdXg8dLV4ISWsc7L0MkQu6+mtBGShOaUn14y6qG3UIL2SX7Xr2oOmOJ24Nv4lS6N72XkOV3rF2BeP0EknCdW6bShKZUH97y4V9cHey9qFoTWibzVUyjO0Gl++1vvUBgxkF6N+pR0ISmVB/essmEm+qJdLbH/JqeG3t6SjShZTJ/xXSCOz4m0hX7vhGLcMsuuj56m9xZR8R1udkmoxKaVjmqeNh9G5nYux2DdbW4C8fiCuQmKiyVAnyVM8AYujd/GNfltq99CYzR82ejlFEJTascVTx47ftODSuh1W/WgpAssHuQ4vh2O3asXY74cwhMnRvX5WabjEpoSsXD7vuixZ7QQnW1eu1QFvCNrwa3J+6l++1vLSdnn0N1IOJR0oSmVB/uwrFIIC/mwhBjjNVC02vQMp54ffgmTIlr6X6osY7u2vf1/FkcaEJTqg8RwTuMUfcjrY2YzjZtoWWJeN+9umPtCgBy9z0qbsvMVprQlOqHVbofW0LbfWNPbaFlA1/FNILbNhIJdsVlee1rluPKLcA/ZXZclpfNNKEp1Q9vuXVxtTFmyHl7L6rWFlpW8FVMh0iEYJwqHdvXrCBn5mGIO6H3W84KGZXQtGxfxYu3rBLT1UG4qX7IeXtv7KkttKzgtysd43EeLbhzC8Gt63X8xjjJqISmZfsqXnpL92MoDAnVb0Z8AdyFYxMdlkoB3ol7gcsVl/NoHWus82c5s7UgJB4yKqEpFS+9pfsxFIYE66zbxujdhbODyxfAO746Lteita95AVf+GPxVM+MQmdKEplQ/vGVW92EshSGh+s1625gsE49KR2MM7W8tJ3fW4YhLD8XxoO+iUv1w+XNxjymPqcsxWF+rN/bMMv6K6XRv3YAJdo94GcEdHxOq30zubD1/Fi+a0JQagLeskuCOTYPOE+nuJNxYpy20LOOrmA7hEN3bNo54GR1rlgOQowktbjShKTUAb3nVkC200M4t1rzaQssqvjjcvbr9reW4i8f1LkuNniY0pQbgLZ9MaOeWQbuVtGQ/O/kmTQWRESc0Ywzta1eQO+sILSaKI01oSg3AWzYZ7HEaB9JzHzTtcswuLn8u3rLJdI3w7tXBLesIN2wnZ7YOdxVPGZXQ9MJqFU+xXIsWrK8FlwvP2PHJCkuliNHcvbrdvv4sV68/i6uMSmh6YbWKJ29ZJcCghSGh+s14xpQjHm+ywlIpwlc5g+4tH2LCoWG/tn3NCjylE/GOr45/YFksoxKaUvHkGTMe8fgGb6HZF1Wr7OOvmA6hIMFhVjqaSISOtcvJnXWknj+LM01oSg1A3G48ZRWDXlytF1VnL1/vmI7D63bs3vQe4eZd5Oyr5frxpglNqUEMdl80E4kQqt+iLbQs5ZtUAwy/dL/dvv5Mb+gZf5rQlBpEz21k+hNu3IEJdWsLLUu5cvLwjKuge9PwE5q3vEr3mwTQhKbUILxllURaGwm3fbJyVm/sqYY7pqMJh+lY+6KODpIgmtCUGsTu0v1PttL0xp7KXzHNrnQMxzR/18a1RNqbtVw/QTShKTWIwW4j09tC04SWtXwV0zHdnTHdZgis28UAOiBxgmhCU2oQ3nI7ofXTQgvW1eLKK8KdW5DssFSK8FValY6xdju2r1mBb1INnjHliQwra2VUQtORQlS8ufOKcOUX9/sL3CrZ19ZZNusp3Y8loZlQkI53XtLzZwmUUQlNRwpRieAtm9zvxdV6UbVy5xbgKZlA16ahr0Xr/HA1prNduxsTKKMSmlKJMNC1aKG6Wsx1OXIAAAxOSURBVC29VjFXOvaO3zjr8ESHlLU0oSk1BG/5ZEI7aveoZAu3NRNpb8ZTqgkt2/kqptO9+QNMJDLofB1rXsBXNRN3YUmSIss+mtCUGoK3bDIm1E2oYVvvc6H6ntvGaJdjtvNVTMd0dfTuE/2JBLvoeG+VdjcmmCY0pYbQW+kYNer+7pJ9baFlO3+ldcfprkG6HTvffw3T3anXnyWYJjSlhtDffdF6L6rWFlrW802yElr3IDf7bF+zHFwucmYelqywspImNKWG4C2dBCJ7FIYE62oRjw930TgHI1OpwF0wBndx2aCFIR1rluOfsi/uPK3ATiRNaEoNQbw+PCUT97i4OlS/GU/pRMSlXyEF/srpdA9Quh/paqfjg9e0uzEJ9NuoVAz6XosWrKvV82eql69iOl2172OM+cS0jndXQihI7uyjHIgsu2hCUyoG3vLJexSFhOq36Pkz1ctXMR3T2UZo55ZPTOtYswLcHnL2PsSByLKLJjSlYuAtryLcsJ1IVzsmaJXw6yghqsfuMR0/2e3YvmY5gZq5uHLykh1W1tGEplQMdo+6X0to1zYwRkcJUb38FT2VjnsWhoTbW+j8cLVef5YkGZXQdHBilSi7r0X7mKDeB0314S4swV1Y8olr0TreeRkiYU1oSZJRCU0HJ1aJEn0tWrDeSmh6p2oVrb8xHTvWLEc8PgLTD3QoquySUQlNqURxF5Ui/hyCOzYRqrNHCSmZ4HBUKpX4KqfTvWnPSsf2tSsIzDgIlz/HwciyhyY0pWIgIr2l+8H6WtzFZbh8AafDUinEXzGdSHsz4YbtAIRbGujasEavP0siTWhKxchbVklw+8eE6jZrQYj6hJ5Kx57zaB3vvATG6PmzJNKEplSMvOVVVlFIfa2W7KtP6L17tV3p2P7WcsSfQ6BmfyfDyiqa0JSKkbe8CtPZRnDbRr2oWn2Cu6gUV/6Y3mvR2teuIGfvQxCvz+HIsocmNKVi5C2rtB5EItpCU58gIvgrptFd+z6hpnq6P35Xz58lmSY0pWLUU7oP6Dk01S9f5XS6Nr1Px5rlAOTo+I1JpQlNqRh5x1VGPdaEpj7JVzGdSGsDLcsX4crJJ7DXvk6HlFU0oSkVI1dOHu6iUgDtclT98tlDYLWuepqcfQ5D3B6HI8ou+m4rNQze8ipMdycuvVGj6kdPpSORCLn7arl+smlCU2oYAtMOQHw5iIjToagU5Bk7HlduIZH2ZnJmaUFIsmlCU2oYxi241ukQVAoTEXwV0+je8iH+6llOh5N1NKEpNQzaMlNDGXvmN4i0NCAuLVFINk1oSikVR/kHnuB0CFlLf0IopZTKCJrQlFJKZQRNaEoppTJCRiU0ETlNRG5qampyOhSllFJJllEJzRjzmDHmsqIivehVKaWyTUYlNKWUUtlLE5pSSqmMoAlNKaVURhBjjNMxxJ2I1AEfjfDlpUB9HMNJB7rN2UG3OfONdnurjDHj4hVMsmVkQhsNEVlljDnI6TiSSbc5O+g2Z75s296+tMtRKaVURtCEppRSKiNoQvukm5wOwAG6zdlBtznzZdv27kHPoSmllMoI2kJTSimVETShKaWUyghZm9BE5GQReU9E1onID/qZvkBE6kTkDfvfl52IM56G2mZ7ns+LyNsislZE7kl2jPEWw+f8+6jP+H0RaXQizniJYXsni8izIvK6iLwpIqc6EWc8xbDNVSLyb3t7l4pIhRNxxpOI3CoiO0RkzQDTRUT+aL8nb4rIAcmO0RHGmKz7B7iBD4G9AB+wGpjZZ54FwJ+cjjXJ2zwNeB0YY/9d5nTcid7mPvN/DbjV6bgT/BnfBFxuP54JbHQ67iRs8wPAhfbj44F/OB13HLb7GOAAYM0A008FngQEOAx42emYk/EvW1tohwDrjDHrjTHdwEJgvsMxJVos23wp8GdjTAOAMWZHkmOMt+F+zucC9yYlssSIZXsNUGg/LgK2JDG+RIhlm2cC/7EfP9vP9LRjjFkG7BpklvnAncbyElAsIhOSE51zsjWhTQI2Rf1daz/X15l2c/1BEalMTmgJE8s2Twemi8hyEXlJRE5OWnSJEevnjIhUAVPYfeBLR7Fs77XAF0WkFngCq1WazmLZ5tXA5+zHnwUKRKQkCbE5KeZ9P5Nka0KLxWNAtTFmP+AZ4A6H40kGD1a347FYrZWbRaTY0YiS5xzgQWNM2OlAEuxc4HZjTAVWt9Q/RCTTjwPfAeaJyOvAPGAzkOmfc1bK9B15IJuB6BZXhf1cL2PMTmNMl/3nLcCBSYotUYbcZqxfcYuMMUFjzAbgfawEl65i2eYe55De3Y0Q2/ZeAtwPYIx5EQhgDWibrmL5Lm8xxnzOGLM/8CP7ubQu/onBcPb9jJGtCW0lME1EpoiID+tgtih6hj79zacD7yQxvkQYcpuBR7FaZ4hIKVYX5PpkBhlnsWwzIrI3MAZ4McnxxVss2/sx8CkAEdkHK6HVJTXK+Irlu1wa1Qr9IXBrkmN0wiLgArva8TCgyRiz1emgEs3jdABOMMaERORK4GmsKqlbjTFrReSnwCpjzCLg6yJyOhDCOvm6wLGA4yDGbX4aOFFE3sbqkvmuMWanc1GPTozbDNZBcKGxy8PSVYzb+22sruRvYhWILEjn7Y5xm48FfikiBlgG/LdjAf//9u4vxIoyjOP491eZqWttav/0oi0toiSECkLLDEKoLtrIgjAtgwiS0ovMi6gopBRvom76c5EVan9MKSJKAzVaTbNVdw0FxbyQgroIcZMi8unifTZm191ltcVlx98Hhn3PzHveeWf2cB5m5vA8A0TSaspxjcvnoS8AwwAi4g3K89G7gAPAMWDe4Mz09HLqKzMzq4Uz9ZajmZnVjAOamZnVggOamZnVggOamZnVggOamZnVggOaDQmSOvrRZ6GkkQO4z2ZJ1w7geFv+x3s78u94SWv66Nco6YlT3Y/ZUOaAZnWyEDipgCbp7D42N1MS2w6IiJg6AGP8HBGz+ujSCDig2RnJAc2GFEkzsqbVGkn7JK3MbAhPAeOBjZI2Zt+ZkrZKapX0saSGXH9I0jJJrcD9kh6T9L2k3ZI+kTRS0lRKhpjlWSttoqQpmbS5TdI6SRfmeJtU6qrtkLRX0k2S1kraL2lJZe4dlfZiSe25z6U9HOcVOff2bmM0ddbAknSdpO05vzZJVwFLgYm5brmkBpVaYK051j2VcfZKelul9t16SSNy2yRJX+fcWiVNzPWL8jy1SXpxQP+xZgNhsOvXePHSnwXoyL8zgCOU3HRnUdJV3ZLbDgHjsj2OkhViVL5eDDxf6fdMZeyxlfYS4MlsrwBmVba1Abdl+yXg1WxvApZlewGlJMtlwHBKfsyx3Y7hTmALMDJfj+nheD8D5mZ7fuW9TWQNLOB1YHa2zwVGVLfn+nOA8yvn5AClRlYTJQvOlNz2EfBQtrcB92b7PMpV70xKLTXlef8cmD7YnwsvXqrLGZn6yoa87RFxGEDSLsqX87fd+txMuV3YIgnKF341V+OHlfbkvApqBBooaZS6kHQB0BgRm3PVu5TCkZ0602i1Az9G5s2TdJCSJLaaQuwO4J2IOAYQET3VtZoG3Jft94FlPfTZCjyrUoF5bUTsz2PtMnXgZUnTgeOUEiKX5LafImJXtn8AmiSNBiZExLqc2595HDMpQW1n9m+gJK7+pod5mQ0KBzQbiv6qtP+h58+xgA0R8WAvY/xRaa8AmiNit6RHyATNpzin493md7yX+fVHn3npImKVpG3A3cAXkh7nxGTSs4GLgBsi4m9JhyhXXdU5QzmPI/rYnYBXIuLNk5i/2WnlZ2hWJ0eB0dn+DpgmaRKApFGSru7lfaOBXyQNowSAE8aLiCPA75JuzW1zgM2cmg3AvM5fZEoa00OfFkrSZLrN6T+SrgQORsRrwKfA9XQ9B1CqUv+awex24PK+JhYRR4HDkppzH8Nznl8Bj1aeQ06QdHG/jtbsNHFAszp5C/hS0saI+I1SIWG1pDbK7blrennfc5TnRi3Avsr6D4BFknbmDyMepvxIpA2YQnmOdtIi4kvKLcodecv06R66LQDmS2qn90rDDwB7cozJwHtRqiO0SNojaTmwErgxx5nb7fh6M4dSbaKN8qzv0ohYD6wCtuZYa+gaOM0GnbPtm5lZLfgKzczMasEBzczMasEBzczMasEBzczMasEBzczMasEBzczMasEBzczMauFf/3HHtcgFtN0AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.rcParams['figure.figsize'] = (6, 4)\n", "for k in range(len(mappings)):\n", @@ -256,7 +153,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_particle_hole.ipynb b/community/aqua/chemistry/h2_particle_hole.ipynb index b7b44864e..b130f635a 100644 --- a/community/aqua/chemistry/h2_particle_hole.ipynb +++ b/community/aqua/chemistry/h2_particle_hole.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "scrolled": true }, @@ -24,38 +24,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[[-1.05515972 -1.0759136 -1.09262986 -1.105918 -1.11628597\n", - " -1.12416087 -1.12990475 -1.13382619 -1.13618942 -1.13722134\n", - " -1.13711706 -1.13604434 -1.13414766 -1.13155119 -1.12836187\n", - " -1.12467174 -1.12056027 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599\n", - " -1.12416089 -1.12990476 -1.1338262 -1.13618944 -1.13722136\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133943 -1.10634212\n", - " -1.10115034]]\n", - "\n", - " [[-1.05515973 -1.07591359 -1.09262986 -1.105918 -1.11628597\n", - " -1.12416089 -1.12990475 -1.13382616 -1.13618942 -1.13722135\n", - " -1.13711706 -1.13604434 -1.13414766 -1.1315512 -1.12836188\n", - " -1.12467174 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599\n", - " -1.12416089 -1.12990476 -1.1338262 -1.13618944 -1.13722136\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133943 -1.10634212\n", - " -1.10115034]]]\n", - "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", - " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", - " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [[50. 53. 56. 50. 43. 52. 51. 45. 51. 46. 42. 57. 45. 49. 48. 50. 50. 52.\n", - " 51. 56. 60.]\n", - " [49. 49. 56. 50. 43. 51. 49. 45. 61. 46. 43. 57. 45. 47. 44. 50. 53. 49.\n", - " 54. 56. 55.]]\n" + "Processing step 9" ] } ], @@ -71,10 +40,7 @@ " 'PYQUANTE': {'atoms': '', 'basis': 'sto3g'},\n", " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'jordan_wigner',\n", " 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", - " 'variational_form': {'name': 'UCCSD'},\n", - " 'initial_state': {'name': 'HartreeFock'}\n", + " 'algorithm': {'name': ''}\n", "}\n", "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", "algorithms = ['VQE', 'ExactEigensolver']\n", @@ -95,6 +61,18 @@ " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", + " if algorithms[j] == 'ExactEigensolver':\n", + " if 'optimizer' in qiskit_chemistry_dict:\n", + " del qiskit_chemistry_dict['optimizer']\n", + " if 'variational_form' in qiskit_chemistry_dict:\n", + " del qiskit_chemistry_dict['variational_form']\n", + " if 'initial_state' in qiskit_chemistry_dict:\n", + " del qiskit_chemistry_dict['initial_state']\n", + " else:\n", + " qiskit_chemistry_dict['optimizer'] = {'name': 'COBYLA', 'maxiter': 10000 }\n", + " qiskit_chemistry_dict['variational_form'] = {'name': 'UCCSD'}\n", + " qiskit_chemistry_dict['initial_state'] = {'name': 'HartreeFock'}\n", + " \n", " for k in range(len(transformations)):\n", " qiskit_chemistry_dict['operator']['transformation'] = transformations[k] \n", " solver = QiskitChemistry()\n", @@ -114,30 +92,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVFX/wPHPYQdFRXBBEUFTXFlccEE0TbPFNMol8zGX1MwlH3uezPrl1lM9VlbmUmmm2GK55b5bmXuKioqAIkpuqIiy7zPn98cMPKAsg8wwIOf9es0r5t5z7/3O9dV859x7z/cIKSWKoiiKUlYW5g5AURRFeTSohKIoiqIYhUooiqIoilGohKIoiqIYhUooiqIoilGohKIoiqIYhUooimIiQoiRQoiD5o5DUcqLSihKuRBCxAghet+3LO8LVwhhK4T4TgjxtxAiWQgRKoR4uoR9ugohvhVC3BBCpAghLgkhgoUQLUz5WYxFCPGqECJS/3lvCSG2CyEc9euChRAflGJfZUpe+u01+vOY/9XgYfepVD0qoSgVhRVwFegB1ATeA9YIITwKayyEcAYOAw5AIOAItAP+BPoUsY2VsYN+WEKIHsBHwFAppSPQElht3qg4IqWsft/rhjEPUJH+DRTjUwlFqRCklKlSytlSyhgppVZKuRW4DLQvYpOpQBIwXEoZLXUSpJQrpJQLAYQQHkIIqe8JXAF+1y/vL4Q4J4RIEELsE0K0zN2pvv1j+d7n9RSEEI8LIa4JIf4lhLgthIgVQozK19ZZCLFZCJEkhDgGNC3mI3dE9wV+Sv/570opV0opk4UQ44BhwDR9L2GLfv/ThRDR+h5NuBAiSL+8JfAN0EXfPkG/3FYIMU8IcUXfA/pGCGFv8D9KPvoe5r+FEGeEEIlCiNVCCLt86/vpe5UJQojDQgjv+7Z9WwhxBkgVQlgJIdoJIU7pP8ta/f5yz3OYEOK5fNtbCyHuCCH8HiZ2pfyohKJUSEKIekBz4FwRTXoDG6SUWgN21wNdD6CvEKI58DPwT6AOsB3YIoSwMTC0+uh6UA2BV4HFQggn/brFQAbgCozWv4rylz6eOUKIACGEbe4KKeVS4CfgE30vIffLNRpdb6wmMAf4UQjhKqWMAMbzvx5GLX37uejOoS/wmD7mmQZ+zsIMBp4CPAFvYCSA/ot+OfAa4AwsATbn/0zAUOBZoBa6750NQDBQG92/R1C+tt8D/8j3/hkgNjf5KhWXSihKedqo/wWboP8V/VVhjYQQ1ui+UFdKKSOL2JcLcDPfNv31+00WQuy+r+1sfQ8oHRgCbJNS7pFSZgPzAHugq4GfIRt4X0qZLaXcDqQAXkIIS+BFYKb+WGHAyqJ2IqU8ALyA7jLdNiBeCPG5fj9FbbNWSnlD34NbDUQB/oW1FUIIYBwwVd/7SUZ3ie2lYj5b5/z/PkKI6PvWL9Af/y6wBV2iQn+cJVLKv6SUGinlSiAT6Hzftlf1/wad0V3iXKA/j78Cx/K1/RF4RghRQ/9+OPBDMXErFYRKKEp5el5KWSv3BUy4v4EQwgLdl0cWMKmYfcWj6wkAIKXcrN/nVOD+3sbVfH83AP7Ot51Wv76hgZ8hXkqZk+99GlAdXW8n9z5Qrr8phpRyh773URsYgO4X/5ii2gshXsl3WSkBaIMusRamDrr7Syfytd+pX16Uo/n/faSU91+yu5nv79zPDdAY+Nd9PxYaoTvXue7/N7guC1amzVuvv29zCHhRCFELeBrdDwylglMJRakw9L+qvwPqAS/qexBF+Q14Xp+ASpL/i+sGui/A/MdsBFzXL0pD90Wcq74B+weIA3L0+8rlbsiG+h7Hb+ju8bQpJGaEEI2Bb9ElWWd98gwDRGHtgTtAOtA6X4KoKaWsjvFdBT68Lxk5SCl/ztcmf3yxQEP9uc+V/7yBrnf3D2AQukt511EqPJVQlIrka3T3Op7TXxopzueAE/CDEKKp0HHkf5dhirIGeFYI8YT+0tq/0F2eOaxfHwq8LISwFEI8he7+S4mklBrgV2C2EMJBCNEKGFFUeyHEACHES0IIJ33s/vpjHdU3uQU0ybdJNXRfynH67Ufxv+ST294t916Qvuf1LfCFEKKufpuGQoi+hnyeUvoWGC+E6KT/LNWEEM/q/z0KcwTQAJP0N+gH8OClu43oLgdOQXdPRakEVEJRKgT9L/DX0CWEm+J/4yCGFdZeSnkH3bX4DOAgkIwuGTgCrxd1HCnleXS/fBei+xX/HLoElqVvMkW/LAHdk1YbS/ExJqG7DHQT3Q3nFcW0vQeMRXcfJAndfYNPpZS5l3a+A1rpLyFtlFKGA5+h+zK+BbRFd1ko1+/oHmC4KYS4o1/2NnAROCqESAL2Al7FxNRFPDgOpWNJH1pKGaL/LIv0n+si+hv2RbTPQnf/6FV05/kfwFZ0iT23TTqwHt0DAL+WFINSMQg1wZaiKOYmhPgL+EZKuSLfsplAcynlP4reUqlIVA9FUZRyJ4ToIYSor7/kNQLdY8g7862vja4Hs9RcMSqlpxKKoijm4AWcRnfJ61/AQCllLIAQYiy6G/07pJT7zReiUlrqkpeiKIpiFKqHoiiKohhFlSrU5uLiIj08PMwdhqIoSqVy4sSJO1LK4gbFAmZMKEKIQcBsdOMO/PWPHhbW7ingS8ASWCalnHvf+gXAaEMGbHl4eBASUuhhFEVRlCIIIYqt+pDLnJe8wtA9i17kTTd9XaPF6EovtAKG6geM5a7vgG5wm6IoimJmZksoUsoI/SCz4vgDF6WUl/SDoX5BV/MoN9l8CkwzbaSKoiiKISr6TfmGFCwqd43/FfGbBGzOfdSwKEKIcUKIECFESFxcnInCVBRFUUx6D0UIsZfCi+v9n5RyUxn22wBd0bjHS2qrn1tiKUCHDh3UM9JVXHZ2NteuXSMjI8PcoShKhWNnZ4ebmxvW1tYPtb1JE4qUsnfJrYp1nYJVSN30y/zQTRh0UV+w1EEIcVFK+diDu1CU/7l27RqOjo54eHhQsNitolRtUkri4+O5du0anp6eD7WPin7J6zjQTAjhqa+i+hK6y1zbpJT1pZQeUkoPIE0lE8UQGRkZODs7q2SiKPcRQuDs7Fym3rvZEooQIkgIcQ3oAmwTQuzSL28ghNgOoJ/IaBKwC4gA1kgpi5oSVlEMopKJohSurP9vmG0cipRyA7p5pe9ffgPdHNK577ejm/e7uH2ZYtKgPPsvxBF2I5EJj6tOkKIoSlEq+iWvCuHQxTt8vvsCd1OzSm6sKCWoXr3g75/g4GAmTSputuMHhYaGsn17sb+zyiQ4OJg6derg6+uLr68vr7zySqn3sW/fPvr162eC6JSKSiUUAzzv15AcrWTrmRvmDkVRyMnJKTah5OTkFLq8tIYMGUJoaCihoaF8/72aNFEpmUooBmjpWoMW9R3ZcEpNa62Y1pYtW+jUqRN+fn707t2bW7duATB79myGDx9OQEAAw4cPZ+bMmaxevRpfX19Wr179wHqNRsNbb71Fx44d8fb2ZsmSJXnH+PTTT/OWz5o1q1TxhYaG0rlzZ7y9vQkKCuLevXsAXLx4kd69e+Pj40O7du2Ijo4usN3x48fx8/N7YLnyaKlSxSHLIsivIf/dEcnlO6l4ulQzdziKEczZco7wG0lG3WerBjWY9VzrYtukp6fj6+ub9/7u3bv0798fgG7dunH06FGEECxbtoxPPvmEzz77DIDw8HAOHjyIvb09wcHBhISEsGjRIkCXcPKvX7p0KTVr1uT48eNkZmYSEBDAk08+SVRUFFFRURw7dgwpJf3792f//v107979gThXr17NwYMHAZgyZQqjRo3ilVdeYeHChfTo0YOZM2cyZ84c5s+fz7Bhw5g+fTpBQUFkZGSg1Wq5elU3Jvnw4cNMnjyZTZs24e7uXvaTrFRYKqEYaIBvQ+bujGTjqetM7dPc3OEolZi9vT2hoaF573OTA+jGyQwZMoTY2FiysrIKjAfo378/9vb2Re43//rdu3dz5swZ1q1bB0BiYiJRUVHs3r2b3bt34+fnB0BKSgpRUVGFJpQhQ4bkJazcfSQkJNCjRw8ARowYwaBBg0hOTub69esEBQUBusFxuSIiIhg3bhy7d++mQYMGpTtRSqWjEoqB6te0o2tTZzaGXuefvZupR08fASX1JMxh8uTJvPnmm/Tv3599+/Yxe/bsvHXVqhXfM86/XkrJwoUL6du3b4E2u3bt4p133uG1114rsHzx4sV8++23AEa92e/q6kpGRganTp1SCaUKUPdQSiHIz42/49M4eeWeuUNRHlGJiYk0bKgrV7dy5coi2zk6OpKcnFzk+r59+/L111+TnZ0NwIULF0hNTaVv374sX76clJQUAK5fv87t27eZOHFi3g34or74a9asiZOTEwcOHADghx9+oEePHjg6OuLm5sbGjRsByMzMJC0tDYBatWqxbds23nnnHfbt21e6k6FUOiqhlMJTbepjZ22hbs4rJjN79mwGDRpE+/btcXFxKbJdz549CQ8Pz7spf78xY8bQqlUr2rVrR5s2bXjttdfIycnhySef5OWXX6ZLly60bduWgQMHFpuY7rdy5UreeustvL29CQ0NZebMmYAuuSxYsABvb2+6du3KzZs387apV68eW7duZeLEifz111+lOBtKZVOl5pTv0KGDLOsEW2/8fIr9UXEce7c3NlYqH1c2ERERtGzZ0txhKEqFVdj/I0KIE1LKDiVtq74RSymoXUMS0rLZd/62uUNRFEWpUFRCKaXAx1xwqW6jLnspiqLcRyWUUrKytOA5nwb8FnGbxPRsc4ejKIpSYaiE8hCC/BqSpdGy/Wyxk0UqiqJUKSqhPIS2DWvStE41NpxUl70URVFyqYTyEIQQBPk15FjMXa7eTTN3OIqiKBWCSigPaYCvbvDZplDVS1EM17NnT3bt2lVg2fz583n99dcBOHfuHL169cLLy4umTZsya9YstFot8GBJeV9fX8LDw8sUT1xcXF4xytwBi4WZPXs28+bNA2DkyJF5JV0UJT+VUB5So9oO+HvWZsOp61SlsTxK2QwdOpRffvmlwLJffvmFoUOHkp6eTv/+/Zk+fTrnz5/n7NmzHDt2jC+//DKvbf6S8qGhobRq1arIY+3bt4+RI0cWG89vv/1G27ZtOXXqFIGBgWX6bIqiEkoZBPk1JDoulbPXE80dilJJDBw4kG3btpGVpZusLSYmhhs3bhAYGMiqVavyqgIDODg4sGjRIj799FOTxBIaGsq0adPYtGkTvr6+pKenF5j8a926dSUmJEXJTxWHLINn2roya9M5Npy6jrdbLXOHo5TWjulw86xx91m/LTw9t8jVtWvXxt/fnx07djBgwAB++eUXBg8ejBCCc+fO0b59+wLtmzZtSnp6OgkJCUDBkvIAR44cKbYCcXF8fX15//33C5TBV5SyUD2UMqhpb80TLeuy5fQNcjRac4ejVBL5L3vlXu4y1P2XvApLJp06dcLX15cxY8awefPmvPst99+7URRjUz2UMgrya8iOsJsciLpDzxZ1zR2OUhrF9CRMacCAAUydOpWTJ0+SlpaW1ytp1aoV+/fvL9D20qVLODs7U6uW4T3g3AKM+/btIzg4mODgYIO3zT8tQ0ZGhsHbKQqoHkqZPe5Vl1oO1qoUi2Kw6tWr07NnT0aPHl2gdzJs2DAOHjzI3r17Ad3Mjm+88QZz5swpt9jq1atHREQEWq2WDRs2lNtxlUeDSihlZGNlQT9vV3aH3yQlM8fc4SiVxNChQzl9+nSBhGJvb8/mzZv58MMPad68OS4uLgQEBDBs2LC8NrnzyOe+Dh8+bNS45s6dS79+/ejatSuurq5G3bfy6FPl643gxN93efHrI8wb5MPA9m5G379iPJWpfP3GjRt58803+eOPP2jcuLG5w1GqCFW+vhzcvniuyHXt3J1o7OzAhlPXyjEi5VH3/PPPc+nSJZVMlEpDJRQDfP/qB2z68ByanMIvaQkheN63IYej47mZqG5kKopSNamEYgDHetlk2bpw5PulRbZ53q8hUqpSLIqiVF0qoRggcNwwhDabS4fvFtnG06Uafu611NNeiqJUWSqhGMDFozn2WeGkyzZkpiQX2S7IryGRN5OJiE0qx+gURVEqBpVQDFSnaQo51jXYv+zrItv0826AlYVQvRRFUaoklVAM1P21V7HMSef66aJLrNSuZsPjXnXYFHodjbbqPI6tKIoCKqEYrEbdBthpwsiwbEvynZtFtgvyc+NWUiZHouPLMTqlsqho86GUVUJCAl999VXe+xs3bjBw4MBit3n88cd5mPFgHh4e3Llzx+D2wcHBTJo0qdTHUR6eSiil0LCtQGNlz/4l3xbZ5omWdXG0tVKXvZRCVbT5UMoiJyfngYTSoEEDNflWFWaW4pBCiEHAbKAl4C+lLPTnihDiKeBLwBJYJqWcq18ugA+AQYAG+FpKucDUcXcf9zqXpvzO7ahqRbaxs7bkmbaubD1zgw+eb4O9jaWpw1Ie0sfHPibybqRR99midgve9n+7yPUDBw7kvffeIysrCxsbmwLzoSxfvrzQ+VACAwOZOnWqUePMNXLkSOzs7AgJCSEpKYnPP/+cfv36ERMTw/Dhw0lNTQVg0aJFdO3alX379jFjxgycnJyIjIykXbt2REdH4+vrS58+fZg4cSL9+vUjLCwMjUbD22+/zc6dO7GwsGDs2LFMnjy5wPF3797NrFmzyMzMpGnTpqxYsaLAnCz3W7hwIVu2bCE7O5u1a9fSokUL7t69y+jRo7l06RIODg4sXboUb2/vAtvFxcUxfvx4rly5Auh6hQEBAUY+m4q5qg2HAS8AS4pqIISwBBYDfYBrwHEhxGYpZTgwEmgEtJBSaoUQ5VLm17a6I/acJdW6A3diLuDi0bzQdkHtGrI65Cq7w2/mTRWsKFCx5kPJFRMTw7Fjx4iOjqZnz55cvHiRunXrsmfPHuzs7IiKimLo0KF5l6lOnjxJWFgYnp6exMTEEBYWRmhoaN6+ci1dupSYmBhCQ0OxsrLi7t2Cj93fuXOHDz74gL1791KtWjU+/vhjPv/8c2bOnFlkrC4uLpw8eZKvvvqKefPmsWzZMmbNmoWfnx8bN27k999/55VXXsmLJ9eUKVOYOnUq3bp148qVK/Tt25eIiIgynTflQWZJKFLKCChYKrsQ/sBFKeUlfdtfgAFAOPA68LKUUqvf322TBpyPZ5danAmx4cDSVQR9NLvQNv4etWlYy54Np66rhFKBFdeTMKXcy165CeW7774zeNshQ4aUOBlWp06dyMzMJCUlhbt37+Lr6wvAxx9/TN++fR9oP3jwYCwsLGjWrBlNmjQhMjIST09PJk2aRGhoKJaWlly4cCGvvb+/P56eniXGunfvXsaPH4+Vle5rpnbt2gXWHz16lPDw8LyeQlZWFl26dCl2ny+88AIA7du359dffwXg4MGDrF+/HoBevXoRHx9PUlLBR/f37t1b4H5TUlISKSkpxfaGlNKryPOhNASu5nt/Deik/7spMEQIEQTEAW9IKaMK24kQYhwwDsDd3b3MQXUdOZ6IQxu4d92lyDYWFoIBvg1Ysv8SccmZ1HG0LfNxlUdHRZsP5f4fdkIIvvjiC+rVq8fp06fRarXY2dnlra9WrehLvqUhpaRPnz78/PPPBm9ja6v7f8nS0pKcIkohFUar1XL06NECn0MxPpPdlBdC7BVChBXyGmCE3dsCGfrql98Cy4tqKKVcKqXsIKXsUKdOnTIf2NLKCgebcNLtvLh29niR7YL8GqLRSracvlHmYyqPloo2H8ratWvRarVER0dz6dIlvLy8SExMxNXVFQsLC3744Qc0Gk2h2zo6OpKcXPhg3z59+rBkyZK8L/77L3l17tyZQ4cOcfHiRQBSU1ML9IQMFRgYyE8//QTokqiLiws1atQo0ObJJ59k4cKFee/vvySmGIfJEoqUsreUsk0hr00G7uI6uvskudz0y0DXW/lV//cGoOAdOBPz6u0BwpIjwZuLbNOsniNtGtZQT3sphapI86G4u7vj7+/P008/zTfffIOdnR0TJkxg5cqV+Pj4EBkZWWSvxNnZmYCAANq0acNbb71VYN2YMWNwd3fH29sbHx8fVq1aVWB9nTp1CA4OZujQoXh7e9OlSxciI0v/kMTs2bM5ceIE3t7eTJ8+nZUrVz7QZsGCBYSEhODt7U2rVq345ptvSn0cxQBSSrO9gH1AhyLWWQGXAE/ABjgNtNavmwuM1v/9OHDckOO1b99eGkNOdrb8dsQPctkrS4tt9+3+aNn47a0y6laSUY6rlF14eLi5QzDYhg0bpKenp4yJiTHZMUaMGCHXrl1rsv0rlU9h/48AIdKA71izjEMRQgQJIa4BXYBtQohd+uUNhBDbAaSUOcAkYBcQAayRUuZOSjIXeFEIcRb4LzCmPOO3tLLCodoFMuybcuHPnUW26+/bAAuB6qUoD0XNh6JUNuZ6ymsDuktV9y+/ATyT7/12YHsh7RKAZ00ZY0l8gzrwxzo4se4QzXs8VWibuo52dGtWh42nbvCvPl5YWBT7VJuilLuSbtibQ1BQEJcvXy6wrKgn1JSKpSI/5VWhterdnyM/fEdqRrNi273YriFTfgnlz6g4enqVy3AZRanUNmx44LemUkmo0itl4Fg7hkw7N0I3riqyzdNtXKlfw45lBy6VY2SKoijlTyWUMuj8j6dAagnbWfSjjjZWFowK8ODQxXjCrieWY3SKoijlSyWUMnBvH4B9xgXSM1sWOd88wNBO7lS3teJb1UtRFOURphJKGdVyvUmWbR2O/risyDY17Kx5qWMjtp6J5XpCejlGp1RElpaWBcaSzJ0712j7Dg0NZfv2/z3HUlTJe0PKzJtaTEwMbdq0MWsMoCsc2alTJ/z8/Dhw4ECR7WbPns28efMAXVFNVVX5QSqhlFG3MUMQ2myiD8YV225UN13toxUHLxfbTnn02dvbFyhBP336dKPt+/6EAoWXvH+UyswXV4LFkBL+v/32G23btuXUqVMEBgYaObqKISun6IkBjUkllDKq+1hr7DMjSNe2ISs9rch2DWvZ08/blZ+PXSExPbscI1Qqg8TERLy8vDh//jygG0n/7be6eXdef/11OnToQOvWrZk1a1beNsePH6dr1674+Pjg7+9PYmIiM2fOzBtNv3r16iKPl793kJaWxuDBg2nVqhVBQUF06tQpr7Lw7t276dKlC+3atWPQoEGkpKQAusmuZs2aRbt27Wjbtm3eCPc///wzryfk5+dHcnIyUkreeust2rRpQ9u2bQuNq3Pnzpw7dy7vfe4kXKmpqYwePRp/f3/8/PzYtElXaCM4OJj+/fvTq1cvnnjiiYc+76GhoUybNo1Nmzbh6+tLenp6gYKR69atM+mcMuUhIS2L87eSSSqH7x312LARuDRN4sqNmhxY9jVPTP5Xke3GBjZhU+gNfjl2hdd6NC3HCJXC3PzoIzIjjDsfim3LFtR/991i26Snp+dVAAZ455138qoIjxw5kilTpnDv3j3Gjh0LwIcffkjt2rXRaDQ88cQTnDlzhhYtWjBkyBBWr15Nx44dSUpKwsHBgffff5+QkJC8isTBwcGFlrzP76uvvsLJyYnw8HDCwsLyYiupvHxhpeTnzZvH4sWLCQgIICUlBTs7O3799VdCQ0M5ffo0d+7coWPHjnTv3r1ADEOGDGHNmjXMmTOH2NhYYmNj6dChA++++y69evVi+fLlJCQk4O/vT+/evQFdGf0zZ848UMW4NHx9fR84Z4+Su6lZXL+XhoONFdVsTT83k0ooRtBj/Bh++r9Qrp3KKrZdm4Y1CXjMmRWHYhgV4ImNleogVkW5l7zu16dPH9auXcvEiRM5ffp03vI1a9awdOlScnJyiI2NJTw8HCEErq6udOzYEeCBYoj5lVTy/uDBg0yZMgWANm3a5E1OVVJ5+cJKyQcEBPDmm28ybNgwXnjhBdzc3Dh48CBDhw7F0tKSevXq0aNHD44fP15gEqzBgwfz5JNPMmfOHNasWZN3f2f37t1s3rw5795FRkZG3iRZffr0KTKZlLaE/6PoTkomNxLSqW5rhYdztXIZWK0SihHUqNsA+5wfSbdsS9q9OByciq5qPDawCSNXHGfL6Ru82N6tHKNU7ldST6K8abVaIiIicHBw4N69e7i5uXH58mXmzZvH8ePHcXJyYuTIkWRkZJRLPLKE8vKFlZKfPn06zz77LNu3bycgIIBdu3YZdKyGDRvi7OzMmTNnWL16dV7xRikl69evx8vLq0D7v/76q9gy+qUt4Z9f/nL+5XWuje12UgY3kzKoaW9No9oOWBQ/95TRqJ/IRuLaWovGyoF93xQ5CSUAPZrXwaueI98euJRbBFNRAPjiiy9o2bIlq1atYtSoUWRnZ5OUlES1atWoWbMmt27dYseOHQB4eXkRGxvL8eO6KRSSk5PJyckptpx8UQICAlizZg0A4eHhnD17Fni48vLR0dG0bduWt99+m44dOxIZGUlgYCCrV69Go9EQFxfH/v378ff3f2DbIUOG8Mknn5CYmJjXe+nbty8LFy7M+3/l1KlTpfpsD6NevXpERESg1Wor3ah9KSU3E9O5mZRBLQcb3MsxmYBKKEbT47XxWGUnc+t88dOxCiEYE+hJ5M1kDkTdKafolIok9x5K7mv69OmcP3+eZcuW8dlnnxEYGEj37t354IMP8PHxwc/PjxYtWvDyyy/nXX6ysbFh9erVTJ48GR8fH/r06UNGRgY9e/YkPDy8wE35kkreT5gwgbi4OFq1asV7771H69atqVmz5kOVl58/f37eZTNra2uefvppgoKC8krY9+rVi08++YT69es/sO3AgQPzpkTONWPGDLKzs/H29qZ169bMmDGjrKe/RHPnzqVfv3507doVV1dXkx/PWKSUxCZmcDs5k9rVbGjkZF/SrLhGJ6rSr+QOHTrI3KdXTGHlqx+SZtGel2Y2x6lRkyLbZeZoCPz4D7zqO/LDq52KbKcYX0REBC1btjR3GBWKRqMhOzsbOzs7oqOj6d27N+fPn8fGxsbcoSkGklJy7V4699KycKlui2tNu4dOJoX9PyKEOCF1ExoWS/X+4bhBAAAgAElEQVRQjMjT3xGtpQ1/Lv2+2Ha2VpaMDPDgQNQdwm8kFdtWUUwtLS2Nbt264ePjQ1BQEF999ZVKJpWIVkqu3E3jXloW9WrYlSmZlJVKKEbUdeRrWGfd5e4V5xLbDvNvjIONpSoaqZido6MjISEhnD59mjNnzvD000+bOyTFQFqt5Ep8Gonp2bjWtKdeDfMlE1AJxaisbG2xtzpHhm0LboQVf2mtpoM1L3V0Z/PpG8QmqnIsiqKUjkYriYlPJSkjm4a17KnjaGvukFRCMTavXu5IC0sOB28qse2oAA8ksOJQjMnjUhTl0ZGj1XL5TiqpmTk0cnLAubr5kwmohGJ07QcOxzYjlsS4kseYNKrtwDNtXVn11xWSMlQ5FkVRSpaj0XI5LpX0bA3uzg44Vas497tUQjEySysr7B0ukGHfjIuH9pbYfmygJymZOaw+drUcolMUpTLLztESHZdKZo4WD2cHatpXnGQCKqGYhO8APwBCVu8vsa23Wy06N6nN8kOXydaUT0VQRVEqn6wcDdF3UsjWaPFwqYajnbW5Q3qASigm0Lrv89ilx5CSZFgByHHdmxCbmMG2M7EmjkypCNR8KDoVZT6UskpISOCrr77Ke2/Iuc2tpmyojGwN0XGpPNGxDTWErj6XIYKDg5k0aZLBxykrlVBMpLrTZTLtGhG6pegS4rkeb16Xx+pWZ+l+VY6lKlDzoRhXWedDKeux708oxj63aVk5XIpLQUqwsrTAwabilmCsuJFVcv5De7N9eTbntoXj+1zxbS0sBOMCmzBt/RkOR8cT8JhL+QRZxR1Yc4E7V1OMuk+XRtUJHNy81NslJibi7+/P5s2b8fLyYujQofTq1YuxY8fy+uuvc/z4cdLT0xk4cCBz5swBdPOhTJkyhdTUVGxtbdmzZw8zZ84kPT2dgwcP8s477xR5vJiYGPr160dYWBhpaWmMHDmSsLAwvLy8uHHjBosXL6ZDhw7s3r2bWbNmkZmZSdOmTVmxYgXVq1fHw8ODESNGsGXLFrKzs1m7di0tWrTgzz//zKtcLIRg//79VK9enWnTprFjxw6EELz33nsMGTKkQDydO3fmu+++o3Xr1oDuF/y8efNo2bIlkydPJiwsjOzsbGbPns2AAQMIDg7m119/JSUlBY1Gw59//lnqc55r5MiR2NnZERISQlJSEp9//jn9+vUjJiaG4cOHk5qaCsCiRYvo2rUr+/btY8aMGTg5OREZGUm7du2Ijo7G19eXPn36MHHixLxzq9FoePvtt9m5cycWFhaMHTuWyZMnFzh+UecYIDkjm7/j07CyFHi6VEMACxcufOC83717l9GjR3Pp0iUcHBxYunRpgWrOoJuZcvz48XnVmufPn59XysdYVEIxEc9OPbD/6mvSLFqgycnB0qr4Uz3ArwGf7DrPkv2XVEJ5xKn5UCrOfCi5YmJiOHbsGNHR0fTs2ZOLFy9St25d9uzZg52dHVFRUQwdOjTvMtXJkycJCwvD09OTmJgYwsLC8qYkiImJydvv0qVLiYmJITQ0FCsrK+7evVvguMWd44S0LK7eS8fWygJPl2pYW1oUed5nzZqFn58fGzdu5Pfff+eVV155YIqEKVOmMHXqVLp168aVK1fo27cvERERZT53+amEYkI168dyM9GLYz8vp8vwccW2tbWyZFSAB5/uOk9EbBItXYue30IxjofpSRiDmg+l4s2HMnjwYCwsLGjWrBlNmjQhMjIST09PJk2aRGhoKJaWlgUqLfv7++Pp6VnkOc21d+9exo8fj5X+B+X98RZ1jnPnMqlma0VjZwesLP53d6Kw837w4EHWr18PQK9evYiPjycpqWBZp7179xIeHp73PikpiZSUlAIzVJaVSigm1O3VQayfF0vU/pt0GV5y+2Gd3Fn0+0WWHbjMZ4N9TB+gUqGo+VDMNx/K/eVKhBB88cUX1KtXj9OnT6PVarGzs8tbX9yxS+P+cyyl5FayLpnUsLPWlZ+/b2Ksws67IbRaLUePHi3wOYxN3ZQ3oXrN22KfGUGGpvj55nPVcrBhSMdGbD59nZuJlXNiH+XhqflQzDcfytq1a9FqtURHR3Pp0iW8vLxITEzE1dUVCwsLfvjhBzQaTaHbFnfO+/Tpw5IlS/K++O+/5JX/HEspuXj9DsdCw6jtYENj5weTSVECAwP56aefAF0SdXFxeaDX+uSTT7Jw4cK894X1kstKJRQTc2maSLZNLf5Y+KVB7UcHeKLRSoIPx5g2MMVs1HwoFW8+FHd3d/z9/Xn66af55ptvsLOzY8KECaxcuRIfHx8iIyOL7JU4OzsTEBBAmzZteOuttwqsGzNmDO7u7nmff9WqVQXW5z/Hrdq05dk+j3P3+mUalnIuk9mzZ3PixAm8vb2ZPn06K1eufKDNggULCAkJwdvbm1atWuX1Ao1JzYdiYhnJCXw/5XesNDcZvXKCQdtM/Okk+6PiOPLOEwY/b64YRs2H8qCqPh/KyJEj6devn9nG5Wi0kr/jU0nJzMG1pvmLPKr5UCowO8daVLcPJd2+BaEbV5W8AbqBjskZOaw+rsqxKKan5kMxn2yNlktxKaRmamjk5GD2ZFJW6udvOeg+/jk2L7zL6c0x+D5fcnufRrXw96zN8oOXeaVL47zHBRXFFHLnQ6mqSrphbypZORou30kjW6OlsbMDNez/V0olKCiIy5cvF2hf1BNqFYlKKOXArW1HHLLnkmbVjpuRp6nfouQnuMYFNmHM9yFsPxvLAN+G5RBl1SGlNOskRIqSnq0h5k4qWinxdKlGtfsubW/YsMEscZX1Foj66VtOWj/jitbShj8WG1aSoVeLujSpU41vD6hyLMZkZ2dHfHy8OqeK2aRm6kqpADStU/2BZGIuUkri4+PL9Fix2T6JEGIQMBtoCfhLKQvtcwshngK+BCyBZVLKufrlTwCfokuKKcBIKeXFcgj9oXQcNIKzW78hOcuHzJRkbKs7FtvewkIwNrAJ7/x6loMX7xDYrE45Rfpoc3Nz49q1a8TFxZk7FKUKysjWEJ+ahZWFwLm6DZcTKtZvejs7O9zcSp7LqSjmTI1hwAvAkqIaCCEsgcVAH+AacFwIsVlKGQ58DQyQUkYIISYA7wEjTR51GdRvcYfLfzdn9+df8Jy+fEVxgvwasviPi3y4LYKtk52xUvdSysza2tqgEc6KYmxrQ64y/deztG5QgxUjO1aYWRaNyWzfUFLKCCnl+RKa+QMXpZSXpJRZwC/AgNxdALkjd2oCN0wTqfH0/ueb2GTe4Xa0q0Ht7awt+b9nWhJ5M5mf1RNfilIpSSmZv/cCb607Q5cmzqwa2/mRTCZQ8e+hNATyf5Ne0y8DGANsF0JcA4YDhU4qIYQYJ4QIEUKEmPsyh429AzVqniXDvil//fSdQds81aY+nZvU5vPd50lIyzJxhIqiGFNWjpa31p1h/t4oBrZ3Y/nIjo/02DKTJhQhxF4hRFghrwElb12iqcAzUko3YAXweWGNpJRLpZQdpJQd6tQx/32IXm+8jIUmg4i98Qa1F0Iws19rEtOzmb83ysTRKYpiLEkZ2YwKPsa6E9eY2rs5nw70xsaqov+GLxuTpkopZe8y7uI60CjfezfguhCiDuAjpfxLv3w1sLOMxyoXdZq0pJp2PSnWHbly6gjufl1K3KZVgxoM9Xfnh6N/83Ind5rXK/6GvqIo5nU9IZ1RK45xKS6VeYN8GNj+4W90VyYVPV0eB5oJITyFEDbAS8Bm4B5QUwiRW3+8D2Dcwv4m5PdiC6SFNQe+NTwH/utJL6rZWPKfreHqkVdFqcDCricStPgQsQkZrBztX2WSCZgxoQghgvT3P7oA24QQu/TLGwghtgNIKXOAScAudAljjZTynH75WGC9EOI0unsobxV2nIqo7TMDsU8/R0qmH2n3DLuvU7uaDVP7NOdA1B32Rtw2cYSKojyMP87fZvCSI1hZCNa93rXKTZanikOayZ4vPuHC+Q40qL2foI9mG7RNtkbLM18eIEujZffU7thaWZo2SEVRDLbqryvM2BRGi/qOLB/ZkXo1TDfvSHkzanFIIcSvQohnhRAV/RJZpdFr8pvYZsQSf90DjYGT5FhbWjDzuVb8HZ/G8oMxpg1QURSDaLWSj3dG8u6Gs3Rv5sKa17o8UsmkNAxNEF8BLwNRQoi5QgivkjZQimdpZUUtl0gy7d059N1XBm8X2KwOvVvWY9HvUdxOUpNwKYo5ZeZomLI6lK/3RfNyJ3e+faVDhSmlYg4GJRQp5V4p5TCgHRAD7BVCHBZCjBJCWBe/tVKUJ/41BsucVKKPGD6NJ8B7z7YkS6Pl450ljQtVFMVUEtKyGL7sGFtO32D60y348Pk2Vb6ahcGfXgjhjK60yRjgFLr6Wu2APSaJrApwcm1MNYuTpNm2JWq/YXNvA3i4VGN0N0/Wn7xG6NUEE0aoKEphrsSn8cLXhwm9msCCoX6M79FUVbDG8HsoG4ADgAPwnJSyv5RytZRyMlDdlAE+6jr/ozMAR388WqrtJvdqRh1HW2ZvPodWW3UerFAUcwu9mkDQV4eIT8nixzGd6O/TwNwhVRiG9lAWSClbSSn/K6WMzb/CkDv/StGade+LQ+ZZUrXtuBf7t8HbVbe1YlpfL0KvJrAx9LoJI1QUJdeuczd5aekRHGwt+XVCV/w9a5s7pArF0ITiJIR44b7XE0KIuiaNropo2sUKjVU1fvvcsPpeuV5s54aPW03m7ogkNbN092EURTGclJLFf1xk/I8n8Kpfgw0TAmhaR12cuZ+hCeVVYBkwTP/6FngbOCSEGG6i2KqMgFcnYJt+hYQ4L4MfIQbdnCkzn2vN7eRMvtpXYaeCUZRKLT1Lwxu/hPLprvM8592A1eM64/KIVgsuK0MTijXQUkr5opTyRaAVuvLxndAlFqUMLK2scG4YQ6adK78vKrTGZZHaN3YiyK8h3x64zJX4NBNFqChVU2xiOoOXHGHrmRtMe8qLL1/yxc5aDSguiqEJxU1KeSvf+9tAIynlXSDb+GFVPX3fmohVdhLXTtmXetu3n2qBlYXgw+3hJohMUaqmk1fu0X/RIS7FpfDt8A5MePwx9SRXCQxNKPuEEFuFECOEECOATfpl1QD13KoRODjVobrNKdLsWxO289dSbVu/ph0Tez7GrnO3OHTxjokiVJSqY92Ja7y05Cj21pZsmBhA71b1zB1SpWBoQpmIbs4RX/3re2CilDJVStnTVMFVNYFjnkRoczi5rvQ9jVe7eeLmZM/7W8LJ0WhNEJ2iPPo0WsmH28L599rTtG/sxKaJAWq6iFIoMaHo53X/XUq5Xko5Vf9aJ6tSVcly4t4+AIfsUFJFO+Iula4av521Je8925Lzt5JZdeyKiSJUlEdXYno2o4OP8+2By4zo0pjvX/XHqZqNucOqVEpMKFJKDaAVQtQsh3iqvJa9ndFa2vH7glWl3rZv6/p0aeLMZ7svcC9VTResKIaKjkshaPEhDl28w0dBbZkzoA3WVbyMysMw9IylAGeFEN8JIRbkvkwZWFXVadir2KVHk5TYlqz00j21JYRgVv9WJGdkM3/vBRNFqCiPlj8vxPH84kMkpGfz05hOvNzJ3dwhVVqGJpRfgRnAfuBEvpdiAnWbxpJl68Le+aV7hBigRf0aDOvUmB//usL5m8kmiE5RHg1SSpYduMSoFcdoWMueTRMD6NTE2dxhVWqGVhteCawBjkopV+a+TBta1fXkm1OxzrzLzciHm+3tzT7NqW5rxZwt59R0wYpSiMwcDW+tO8MH2yLo06oe61/vSqPaDuYOq9IztDjkc0AosFP/3lcIsdmUgVVlttUdcax+mnT75hxfW/q87VTNhjf7NOdwdDw7w26aIEJFqbxuJ2cwdOlR1p24xhtPNOPrYe2r9BwmxmToJa/ZgD/6MSdSylCgiYliUoCeEwdiockifMeNh9p+WCd3WrrW4N0NZ7mRkG7k6BSlcjrx9z0GLDpEeGwSi19ux5t9mmNhoQYrGouhCSVbSpl43zI12MGE6rfwwUFzkjRLP26EhZR6eytLCxa/7EdWjpZJq06SrcamKFWYlJLlBy8zZMkRLC0E68Z35VlvV3OH9cgxNKGcE0K8DFgKIZoJIRYCh00YlwL4PN8UrYUVvy3c9lDbN6lTnY8HenPySgIf74g0cnSKUjkkZ2Qz4aeTvL81nMe96rJtciBtGqpREKZgaEKZDLQGMoGfgSTgn6YKStHx7T+EalknSdF24uKhvQ+1j37eDRjRpTHLDl5W91OUKiciNon+iw6xO/wW7zzdgm9faU9NBzVruakY+pRXmpTy/6SUHaWUHfR/Z5g6OAW6jvRGCsHBZQ//lPa7z7bE260mb607rSoSK1XGmpCrPL/4EKmZOawa04nX1DS9JmfoU17NhRBLhRC7hRC/575MHZwCzXs8hSN/kWrTnhPrv3+ofdhaWbL45XYIYMKqE2Rka4wbpKJUIBnZGqatO820dWdo5+7EtjcC1fiScmLoJa+1wCngPeCtfC+lHDz57yAsNemc3pz00PtoVNuBzwb7EnY9iQ+2qTL3yqPp8p1Unl98iDUh15jU8zF+HNOJOo5qMqzyYmhCyZFSfi2lPCalPJH7MmlkSp56zdtSy+E46fat2Ltg3kPvp0+rerzWvQk/Hr3CJjUPvfKI2XE2lucWHuRmUgYrRnXk3329sFSPBJcrQxPKFiHEBCGEqxCidu7LpJEpBTw7cwLWmXeJOeFCTmbmQ+/n33296NDYiXd+PcvF2ylGjFBRzCMrR8v7W8J5/aeTNK1bnW1vBNLTq665w6qSDE0oI9Bd4jrM/+p4lX5whPLQHF3qU6dhGJn27mz7cO5D78fa0oKFL/thZ23JhJ9OkJ6l7qcoldeNhHReWnqE5YcuM7KrB2tf60LDWqWf9VQxDkOf8vIs5KVGypez52a8g236VW5fbUnavbiH3o9rTXvmD/El6nYKMzaFGTFCRSk/f16I49kFBzh/M5lFL/sxu39rbKxUyXlzKvbsCyGm5ft70H3rPjJVUErhrGxtaex3iyxbF7bMKdvsAd2b12Fyr2asO3GNNcevGilCRTE9jVby+Z4LjFxxjLqOdmye3I1+3g3MHZZCyT2Ul/L9/c59654yciyKAfr8cxr26RHcS+7I7YvnyrSvKU80I+AxZ2ZsCiMi9uGfIFOU8nL1bhpDlhxhwW9RvODnxsaJATStU93cYSl6JSUUUcTfhb1Xykmbpx3QWDmw69N1ZdqPpYVg/hA/atpbM+GnkyRnZBspQkUxLikla0Ku8tT8/Zy/mczng32YN8gbextLc4em5FNSQpFF/F3Ye6Wc+L80impZJ0mWnYnav6tM+6rjaMvCoX78HZ/KO7+eVfOnKBVOfEom4388wbR1Z2jTsCY7/hnIC+3c1Kj3CqikhOIjhEgSQiQD3vq/c9+3fdiDCiEGCSHOCSG0QogOxbRbLoS4LYQIu295bSHEHiFElP6/Tg8bS2UVMMoHgEMrQsu8r05NnPl3Xy+2nonlh6N/l3l/imIsv0feou/8A/wRGce7z7Rg1djOuDmpibAqqmITipTSUkpZQ0rpKKW00v+d+74sFdbCgBfQTSlcnGAKv1czHfhNStkM+E3/vkpp1r0vjhwl1aY9x9cEl3l/47s3pVeLuvxnazinryaUPUBFKYO0rBz+b8NZRgeH4FLdhk2TAhjXvakaqFjBmeUZOyllhJTyvAHt9gN3C1k1AMidynAl8LwRw6s0nvz3C1hq0jm7rewDFC0sBJ8N8qGuox0TV50kMU3dT1HM49SVezy74CCrjl1hXPcmbJwYQEvXGuYOSzFAZX1ou56UMlb/902gXlENhRDjhBAhQoiQuLiHH7tREdVr3pZa1Y7pSrJ8+fAlWXI5VbNh0ct+3ErK4F9rT6v7KUq5ytZo+WLPBQZ+c4SsHC2rxnTm3WdaYmetbrxXFiZLKEKIvUKIsEJeA4x5HKn71ivym09KuVRfcr9DnTp1jHnoCqH/7Dewzown5lSdMpVkyeXn7sQ7T7dkb8Qtvv4z2ggRKkrJouNSGPj1Yb78LYoBPg3Y8c9AujRVFYKN4fbFc3w/5gPuxFww+bFMllCklL2llG0KeW0ywu5vCSFcAfT/vW2EfVZKDk51qOt2jky7Rmz94L9G2eeoAA/6ebvyyc7zfHfwslH2qSiFkVLyw9G/eXbBAWLi01j8cjs+H+JLDTs1CZYx/PnNl2z8MIIUi04c/6VswwwMYWXyI5jGZnT1xebq/2uMJFVp9XvvHYJf+4Xb11qTdi8OB6ey9cSEEHw+2BeNVvKfreFk5miY8PhjRopWUXRuJ2Uwbf0Z9p2PI7CZC58O9KF+TTtzh/VIyEhOYN1b80mU3bDhDr4Bl+g64l2TH9cs91CEEEFCiGtAF2CbEGKXfnkDIcT2fO1+Bo4AXkKIa0KIV/Wr5gJ9hBBRQG/9+yrLytYWj3ZxZNs6s3l22Uqy5LKxsmDhUD8G+Dbgk53n+WLPBXVPRTEKKSWbQq/Td/5+jkTHM6d/a74f7a+SiZGE793MT5PWk0h3qmWd4MU5Heg64rVyObaoSl8SHTp0kCEhj26R5OUjFpNl7U7QNA/qNX/oYUIFaLSS6evPsPbENcb3aMrbT3mpAWXKQ4u5k8qMTWEciLqDt1tNPh/sw2N1Hc0d1iNBk5PDltkfcPNmR0DSoNFJ+s+aaZR9CyFOSCmLHDOYq7Je8lIK0fbZahz7zZ7d835l+FLjJBRLC8HHL3pjY2XBN39Gk5mjYWa/ViqpKKWSmaNh6Z+XWPjHRWwsLZj9XCuGd/FQ40qMJO5SBFvf30aaXXfssi/S/dXGNOtunGRSGiqhPEI6Dh7JuR0fk2ytK8nSrHtfo+zXwkLwwfNtsLWyZPmhy2TlaPnPgDZYqC8DxQBHL8XzfxvOEh2XyrNtXZnRr5W6vGVE+5cuJPJIfbJtfXCy3MfAb6ZjY2+eagIqoTxiuo1pz+6VGg6tOG20hAK6G/Uz+rXE1tqCr/dFk5mj5eMXvdUvTKVId1Oz+HBbBOtPXsPNyZ4VIzvSs4WaSdFYMlOSWffWPBK0gdgQj0+nKLqNft+sMamE8oh5LKA3R1bOIckmgGO/rMD/pVFG27cQgml9vbCzsuSLvRfIytHy+WAfrCwr6/hYxRS0Wsm6E9f4aEcEKRk5THi8KZN7NVOVgY0o8vetHFp5kwz7HlTLCqHfrOdx8Whu7rBUQnkU9Z02kF//G03YjjT8Xyq5fWkIIZjSuxk2VhZ8vDOSrBwtC4b6qZnyFAAu3ErmvQ1hHIu5S0cPJz4MakvzeuqmuzFtnDGbm7EdwdoVt7oHGPD+LHOHlEd9CzyC6j7WGifH46Tbt2TP/E9McozXH2/KzH6t2HnuJuN/PEFGtpqbvipLz9Lwyc5InvnyABduJ/PJi96sHtdFJRMjuhNzgeBRn3A9rjvW2Tfo+Q9RoZIJqB7KI+u5WW/w05u/E3O6MXevXKS2u/EHJo7u5omNlQXvbQxj7PchLB3eQV3WqIL+OH+bmZvCuHo3nRfbufHuMy1wrm5r7rAeKQeWLSLyUF2ybPyoZfEnAxf/G9vqFS9Zqx7KI8rBqQ5eXW6TZePM5lmmK7nwj86N+XSgNwcv3mFU8DFSM3NMdiylYrmVlMHEn04yasVxbCwt+HlsZz4b7KOSiRGl3Yvjx9fmcOZ4CwC8O55n2FdzKmQyATWw8ZH34/jZJNIdD/fDPPvueyY7zqbQ67y55jS+jWqxYlRHVYvpEZaYns2SP6NZfugyWgmTez7GuB5NsLVSvVNjOr52Jae3CTLt3Kie9RfPzR5kkisNhjB0YKNKKI+49IS7/DRlMxqr2vQd74RHx0CTHWtnWCyTfz5FS9cafD/an1oONiY7llL+0rM0BB+O4et9F0nOzKG/TwP+1ccLd2c1g6IxZaWnsX7af7mX2Q1LTTqNm4fz1Numr8NVHJVQClEVEwpA6ObVHNlSE9usi4z4bjyWVqa7dfZbxC1e//Ekni7VWDDUD6/6FbNrrhguW6Nl9fGrLPgtitvJmfRqUZd/P+lFqwZq0itjC9+ziSM/3ibDvikO6afp8+9uuLXtaO6wVEIpTFVNKABr3pxBXFpP6lb7g0Gf/cekxzp08Q5v/HyK5IwcpvRuxmvdm6ixKpWQVivZcuYGn++5wN/xaXRo7MTbT7ego0dtc4f2yNHk5LDhnfeJS+iCkBrq1Q+h/+z3TPrjrzRUQilEVU4ompwcVr66hEybpnR9PhmfZweZ9Hh3U7OYuSmMrWdi8XarybxBPuoR0kpCSsm+C3F8svM8EbFJtKjvyLSnvOjpVVfVcDOBmOMH+H1RKOn2rbFPP0/3cc14LKC3ucMqQCWUQlTlhAJw+a8/2bU0EeuceIYtCsLOsZbJj7n9bCwzNoap3kolERJzl092nudYzF3cazvwryeb85x3A1W3zUS2vP8+1//2RVrY4Fz9EC/MfQ8r24r3lJxKKIWo6gkFYOt//sPf1wOoyX7+8c3scjlmfEomMzedY9vZWHz0vZVmqrdSoUTEJjFv13l+i7xNHUdb3niiGUM6NFIVEEzk1oWz7PhoJ6l27bFL/5v2Ax3wfW6IucMqkkoohVAJRSd41Mek2rTHu2MkgWMmldtxt52JZcamMFIycvhnn2aMC1S9FXO7Ep/GF3svsDH0OtVtrRjfoymjAjxwsKkY1+4fRXvmf8LlM03Jtq5BLcuDvPjx1HK5WlAWKqEUQiUUnTsxF9gwJxSQvDinfbk+234nJZOZm8LYfvam6q2YiZSSI5fiWXk4hj3ht7C2tGBUgCfjezRRj3qbUGLsNTa9F0yydVdsM27S+okUugwfZ+6wDKISSiFUQvmf/UsWcPZkK6pnH2fE8nfK/fhbz9xg5qZzpGTkMLVPc8YGeqreiomlZeWw4dR1vj/8N+dvJePkYM1L/u6M7IuRt/0AABqfSURBVOpBvRpqfhJT2vf1l0Qdq0eWbV0ccw7x/EevUqNuA3OHZTCVUAqhEkpBP742m0Rh+lH0RbmTksmMjWHsCLuJT6NafDbIW00HawJX4tP4/kgMa0KukpSRQyvXGozs6kF/3wbYWavR7aZ098pFtsxZTYp1F2wy79C0/TV6TXrT3GGVmkoohVAJpaD/jaJ34ukJLri3Dyj3GKSUbD0Ty8xNYaRmaXizT3PGBjZRE3eVkZSSA1F3WHk4ht/P38ZCCJ5qU5+RXT3o0NhJPf5bDvZ88QmXzzQh26YWjpojPPefV3BybWzusB6KSiiFUAnlQeU5ir44ccm63srOc7reyuSej9GzRV2VWEopJTOH9SeusfJIDJfiUnGpbsNQf3eGdWqspt0tJ7cvnmP7h1tItfXHJuMmLbrdLdeHX0xBJZRCqIRSuDVTZxCX3pO61f9g0DzTjqIvjpSSLWdi+WBrOLeTM2lYy56XO7kzuEMj6jhWvGfzK5JLcSl8f+Rv1p24RkpmDj5uNRnR1YNnvV1V0cZytOO/H3I1qiXZ1o7U5DADPnwNR5f65g6rzFRCKYRKKIXLyczk+3HLym0UfUmyNVr2hN/ix6N/czg6HmtLQd/W9flH58Z08qytLtfoxSVn8nvkLbaeieVA1B2sLQXPtnVlRFcP/NydzB1elXIjLIRd8/aRZtcO24zrtH4ivdI8wWUIlVAKoRJK0cwxit4Q0XEp/HT0CutO6G4oN6tbnWGd3HmhvVuVK5EvpSTqdgp7wm+xN+IWoVcTkBIa1rJnUAc3Xu7kTl1HdVmrPGlyctj+0Ufc+NsHjaU9Na0O8cJHU7Cv9WjVO/v/9u48PKry7OP4985kmQkJJIEkEAEhEISAgKIs+iqiaEEpgltVULF9SxdrtaVuWLRFr6qlrVhbF9qiLe4LKlYrFWURZJUlLGFfBAMkGMjCTCYzk+f94xx4I05ggElOJrk/1zUXZ845OXM/k2F+OdvzaKCEoYFyfEfuok9jAWMa6C76SPmqQ7xfUMTLS3axZk8ZngQXo87JYcyAM+l1Riuny6s3gVANy3eWMmdDMXMK9/NlqReA3u1bMbRHNkN7ZNOjXarutTngyy8W8cnTy/C6++D27aLvSBf9rr3V6bLqhQZKGBooJ3b0Lvr+m7joB3c4XU5YBXsO8dKSXcxaU0RVoIa+HdIYO/BMRvRu1yQugy2vCjB/UwlzCvczd2Mx5VVBEuPjuLBLa4bmZ3NZ92w9we6gUDDIrIceZX9xP2riEklPWsg1j93baEdRjAYNlDA0UE7MybvoT1aZN8DbK/fw0tJdbC85TFpyAted257BZ2WS365lTA1Fu7vUyyeF+5lTWMyS7V8TrDFktEjk0u5ZDO2RzUV5bWiRpN2hOG3rojksmLYRnycft287593QyvFzjg1BAyUMDZTIzH/uKdat6kmL6pXc8rdfNpoxGepypCuRl5d8yez1+wjWWJ/pti3d5Oe0pGdOS/LbtaRnTis6ZHgcOzxkjOFAZTVbiivYWlzJlv2VR6cPVFYDkJvZgst7ZDM0P5tzO6brZdONhL+ygnd//XtKDw8ChNYpnzPqdw+Q6Gkeo1VqoIShgRK5l3/6MIdqBtPKLGDs879xupyIlXkDrCsqY0NROeuLytiwt5ytxZXYGUNqUjw9jgZMS/JzWpKXlRrVXnWNMRRX+I8GxpbiSrba0we9gaPrpSbFk5edQl5WKme1TWXwWZl0yUyJWh0qOha98CyF85Lxezrg8W1g4C0dyR860umyGpQGShgaKJELBYO8NH4KlYkDaJ00lxufcu7+lNNVFQixaV8F64vK2bC3jPVF5WzcW4EvEAIgwSXkZaXSM6clbcLc7xLuv4jh2zMPHQ4cDZCKquDR+a08CXTLTqFrVip5WSnkZafQLTuVrNQkPZneiO3fvJaPnphFZfwAEgJl5HTewPAHHmj0e+z1QQMlDA2Uk1Pt8/LyT57D6+5LTsZ8Rv/ut06XFDWhGsOOA4fZsNfekykqp3BvOeW+4LdXruM7/9jZqe54umZZexx52SlHp9ukJGpwxJBQMMis3zxK8d6+BONbkFqzmBGTbm7U5xPrmwZKGBooJ897sITX7n4TnzuP3E7LGP7Ag06XpFS9Wf3+66x86yA+Tzfcvh2cPTyO/jfe7nRZjos0ULS/cHVcyemZjH50GO6q3ezYcR5zn5nqdElKRV15cREv/fg3fP5+OtUJ7clOncdt08ZqmJwkRwJFRK4XkfUiUiMidaaeiEwXkWIRWXfM/CkislFECkTkHRFpHLd1N1HpHXIZfk9vEqsPsGllHste/YfTJSkVNbOnPM7r9y2kjItJDqzmqjvbcN2UyY1ybPfGzqk9lHXANcCCE6z3IjAszPyPgV7GmN7AZqDhR4hqZnJ6nceQ8W2JC/lYNac16z6a6XRJSp2WbZ9/wgvjnmTrtv6ICdKj12rGvXAvHfoMdLq0mOXI5QrGmELghCcqjTELRKRTmPn/rfV0CXBdFMtTdehywWVUHnyTJTOFxa8HaZE+n84DBjtdllIn5Rv3lCT0ID1+HqOn3t3k+t9yQlM4h/J94D91LRSR8SKyQkRWlJSUNGBZTVOfq66n9yX7Ccan8Mmzu9m3cY3TJSkVsbnPTGXGz97hQNUQkqq3M/h71dz8l8kaJlFSb3soIjIHCDcQwIPGmPei9BoPAkHg5brWMcZMA6aBdZVXNF63uRt0y3i8h/7IprW9+OCx5VzzeFrMjkSnmof1s99l2as78Lr7kBBXSsechVw5cWKzvKekPtXbu2mMGVpf2wYQkXHACOAy05yufW4kLrtzAr5HHmHXnkG8c//73PTUzfpXnmp0ireuZ/YTb1MhA5GE7qS75jHi8R/TMkuPkteHmDzkJSLDgHuBkcYYr9P1NFcjJk2ibdoCfJ58Xr97OkG/3+mSlAKs8yRvTpjEO49tpTzuApIDKxk+PoWb/zqZllk5TpfXZDl12fBoEdkDDAI+EJHZ9vwcEfmw1nqvAouBs0Rkj4j8wF70FyAV+FhEVovIcw3cBGW79onJZCTM5bD7XF756RRCwTB3mivVgD7+0++Z8bNZFB8eQkJwL+dfsotxL9xPp/Mvcrq0Jk/vlFdRMWP8ZMrj/oe0uPmMeabpdNGiYsfqWa+z8u0SfJ58Ev0l5ORtYdi99+t5kijQO+VVg7r5mYm08C/jUM1g3vjlJKfLUc1I0boV/OsHj7LogwyqEzrROmkuY/50KVdN/LWGSQPTQFFR4YqP56an7yDZt5YS7xDefUj3UlT98h0q5bW7JjFr6j4q4geQElzGiLuyufGpR0hOz3S6vGZJD3mpqKo4sI83JrxHlbsLGYkLuOHJh/SvRBVVoWCQ2VMe56vNXalOysLjK+ScUWmcM3qM06U1WdrbcBgaKA3j4O7tvDvpXbzuviRXrWbUI6NI75DrdFkqxoWCQeb+dSq7VqZR5cklqWovHc/ewxUT7nO6tCZPAyUMDZSGEwoGeeMXkymtvpgk/34G3uih17BrnC5Lxai5f/0T25elUOXpSkJ1KRmtC/juw/eQlJLqdGnNggZKGBooDW/OU39gW0E3jLjolLeGYfdNdLokFUMWPP9ntn6eiM/TjYTqQ6Snr+KqX/9cz5E0MA2UMDRQnLFp3od89kIxfk9H0mQ+35s6UbsGV8e1cPozbJ5v8Hl6EB8oJ63lFwx/4Cd6U6JDNFDC0EBxTnlxETPvm8HhpPPx+NYxYtJlZHXt6XRZqpFZPGMahXP8+Dw9iQ9U0CplBcPv/xGt2rV3urRmTQMlDA0UZ4WCQWbe91tKKi4mIfA1/UYEOffasU6XpRqBZa+9wPr/lOP1nI0rUEkrzwqG3TdOL+ZoJDRQwtBAaRwWPP9nCpd2oMbl5oz2yxn58ENOl6QcsvLtl1jzfgledx9cQS8tk5ZxxT1jadOpm9OlqVo0UMLQQGk8diydz6fPbKHKk0vLms+44U+/1Ct2mpEv3v4XBe+X4E3qgyvkJzVhGZdPuEEPgzZSGihhaKA0Lr5Dpbwx4VkqEwbh8W1i2D3nk9PrhJ9ZFaOCfj9zpv6Rog3p+DxnERfyk+paytC7R9O2ex+ny1PHoYEShgZK4zTzgYfY9/WFxAcq6H3ZQQaO/aHTJakoOrh7O3OmvsCh0nyqk7JJqD5IaovVDLnjOg2SGKGBEoYGSuO1eMY01s7NIBifStvWi7j6Ee2yJdZtXTSHxf9cxOGafoTik3H7dpLZaTdX/Oou3KlpTpenToIGShgaKI3bnrXL+e8fVuDznIXHt4n8y+N1byUGLZz+DFsW+PAm9QaEZH8BXS9K4oLbfqR/JMQoDZQwNFAaP39lBe9N+j0Hy88jmJBKi6qV9B+TR/7lVztdmjoOf2UFs//wJCU7zqDK0xlX0EuLuJUMGNOfboOHOV2eOk0aKGFooMSOAzs389Hjr1ARGoARFyk1yxhy51A69BnodGmqlv2b1/Lp029QcbgPgcQMEv3FtEpfz+W/uF3vIWlCNFDC0ECJPTuXf8b8Zz+jMuF84moCtExYypUP3KZfVg4K+v0snP4cu5Z78br6UuNKwuPbTLsepVz+iwnarU4TpIEShgZK7FrzwZusfHMPXncf4gPlZKR/wXcfnqAndxvQqndeZv1HW/BW9yKQlEFcyI8nWED+d7Lof+PtTpen6pEGShgaKLFv4fRn2DQ/nipPVxL9+2nbeQtXTpyoJ3vryY6l81n6yhwqD3XF7+kAJoSnahMZHQ8wePytuqfYTGighKGB0jSEgkE+/uPv2VPYEb87B7dvJ7kDyhny07udLq1JOLBzMwuef4lDRe3wufNA4nD7dpKasYOBt15Jx3MGOV2iamAaKGFooDQt1T4v/578OAf29yGQmI7Ht54+I1vR79pbnS4t5vgOlTLv2WfZt8lNVUJPalyJJPpLSHZvoM/VfXRwtGZOAyUMDZSmqby4iA8eeY4yX39CLjeeqi2kZhYx4KZhdOx3odPlNVq+Q6UseeVffPnFYXycTSghhfhABR7WknthBoNuHa+HEhWggRKWBkrTtm/jGj6ZOhNvVXeq3dlganBXbSclYzf9rhtM1wuHOl2io4J+PytnvsT2xbvwlmXhT+xCjSuJuFA17sA6cnoGGfzjH+uFDupbNFDC0EBpHkLBIGvee43CT7bg8+bhd1uj/Ll9O2jRahd9R/Wn+6UjHK6y/oWCQQrnzGLjnFVUHEin2tWVYEIKAElV+0h0bad1rmHQLTeR0bGrw9WqxkwDJQwNlOZp7YdvsfbDArwVufg9HQFI8n1Jcup2eg4/mz5XXe9whdGzY+l8Vr8/l7KvPFRLFwKJGQAkVJeSaLaRdoaP3iMGkztwiMOVqliigRKGBora+Om/Wf3uMg6XnUmVpzMASVVFeDxb6DE0jz5X3xgz5w18h0rZ9NnH7Fm9mdKdQnWoM353OwBcgUqSQltJbXOQ7kPPocfQkTHTLtX4aKCEoYGiatv2+Sd88eY8KkrbU+XuAhKHK1BJQrAEl5SSkFxJi9ZCZm42XQZd4EhX60G/n+1L5rJrVQGHdlfgK0skGEgnFJdJdWJrkDgA4kJ+kqq3kdyqmNxBZ3LuNWP1jnUVNRooYWigqLp8+cUilr02m8OlSYSC6QTjMgkkph/9wgZwBQ+TECghTkpJdFeQ3EbIzM0it39/srv3Pak9gFAwSLDKRyhQhb/KS8W+InYuX8GBHSV4S10EqloSkkwCCW2ocSUe/bm4kJ+EQDEuDtg1QFbXtpw76gY8aRlRfU+UOkIDJQwNFHUyvAdL2PzZp+zdsI2yvT78lW5CwXRCcW2oTsw4Jmy8uILl9rw4jLgAwYgLc3Te/z8QV52vKzVBEqsP4DIlxCeV4WkVpHWnNDqd14+O/S7UQ1eqwUUaKPrJVKoOyemZ9B35PfqO/PYy78ESNi/8lL3rt1G+z0dVhZsaPGBqEKmx/zVADWIMiEGw/z0yHQcSZz13xUOrM1rQoU8Pugy6lKSU1AZvr1KnSwNFqVOQnJ5J3+9+j77fdboSpRqPuBOvopRSSp2YI4EiIteLyHoRqRGROo/Lich0ESkWkXV1LJ8gIkZE2tRftUoppSLh1B7KOuAaYMEJ1nsRCDt+qIh0AK4AvoxqZUoppU6JI4FijCk0xmyKYL0FQGkdi58E7gWaz2VqSinViMXkORQRuRr4yhizJoJ1x4vIChFZUVJS0gDVKaVU81RvV3mJyBygbZhFDxpj3juN7SYDE7EOd52QMWYaMA2s+1BO9XWVUkodX70FijGmvvoK7wJ0BtaICEB7YKWI9DfG7Kun11RKKXUCMXcfijFmLZB15LmI7ATOM8YccKwopZRSznS9IiKjgaeBTOAQsNoY8x0RyQH+boy50l7vVeASoA2wH3jYGPOPY7a1kwgDRURKgF2nWHYboLmFlra5edA2Nw+n0+YzjTGZJ1qpWfXldTpEZEUkfdk0Jdrm5kHb3Dw0RJtj8iovpZRSjY8GilJKqajQQIncNKcLcIC2uXnQNjcP9d5mPYeilFIqKnQPRSmlVFRooCillIoKDZRjiMgwEdkkIltF5P4wy8eJSImIrLYf/+tEndF0ojbb69wgIhvsYQdeaegaoy2C3/OTtX7Hm0XkkBN1RlMEbe4oInNFZJWIFIjIlU7UGS0RtPdMEfnEbus8EWnvRJ3RFMGQHyIif7bfkwIROTeqBRhj9GE/ABewDcgFEoE1QP4x64wD/uJ0rQ3c5jxgFZBuP89yuu76bvMx698JTHe67gb4PU8DfmJP5wM7na67ntv7JnCbPX0pMMPpuqPQ7ouBc4F1dSy/EvgPIMBAYGk0X1/3UL6pP7DVGLPdGFMNvAZc7XBN9S2SNv8Q+Ksx5iCAMaa4gWuMtpP9Pd8EvNogldWfSNpsgJb2dCugqAHri7ZI2psPfGpPzw2zPOaY4w/5AVYb/2UsS4A0EWkXrdfXQPmmM4DdtZ7vsecd61p7d/Ete6CvWBZJm7sB3URkkYgsEZGwg57FkEh/z4jImVidkX4abnkMiaTNvwHGisge4EOsPbNYFUl712AN9AcwGkgVkdYNUJuTIv7snwoNlJP3PtDJGNMb+Bj4p8P1NIR4rMNel2D9tf43EUlztKKGcyPwljEm5HQhDeAm4EVjTHusQyMzRKQpf0f8ChgsIquAwcBXQHP4PdebpvxhORVfAbX3ONrb844yxnxtjPHbT/8O9Gug2urLCduM9VfMLGNMwBizA9iMFTCxKpI2H3EjsX+4CyJr8w+ANwCMMYsBN1aHgrEokv/LRcaYa4wx5wAP2vNi/uKLEziZz/5J00D5puVAnoh0FpFErC+TWbVXOOZ440igsAHrqw8nbDPwLtbeCSLSBusQ2PaGLDLKImkzItIdSAcWN3B99SGSNn8JXAYgIj2wAiVWhzmN5P9ym1p7YA8A0xu4RifMAm61r/YaCJQZY/ZGa+MxNx5KfTLGBEXkZ8BsrKtEphtj1ovIZGCFMWYW8HMRGQkEsU5+jXOs4CiIsM2zgStEZAPWIYF7jDFfO1f16YmwzWB9Cb1m7MtjYlmEbZ6AdTjzF1gn6MfFatsjbO8lwGMiYoAFwB2OFRwltYf8sM+FPQwkABhjnsM6N3YlsBXwArdH9fVj9POilFKqkdFDXkoppaJCA0UppVRUaKAopZSKCg0UpZRSUaGBopRSKio0UFRME5HKCNa5W0SSo/iao0QkP4rb+/w0frbS/jdHRN46znppIvLTU30dpSKhgaKag7uBkwoUEXEdZ/EorI4Fo8IYc0EUtlFkjLnuOKukARooql5poKgmQUQusce0eEtENorIy/bdwD8HcoC5IjLXXvcKEVksIitF5E0RSbHn7xSRJ0RkJXC9iPxQRJaLyBoReVtEkkXkAqweEqbYY6V0EZG+dqeZBSLyjoik29ubJ9a4KitEpFBEzheRmSKyRUQerVV7Za3p+0Rkrf2aj4dpZ2e79rXHbKPTkTEwRKSniCyz6ysQkTzgcaCLPW+KiKSINRbISntbV9faTqGI/E2ssW/+KyIee1lXEZlj17ZSRLrY8++x36cCEfltVH+xKrY43X+/PvRxOg+g0v73EqAMq2+iOKzuUv7HXrYTaGNPt8G6K7qF/fw+4KFa691ba9uta00/CtxpT78IXFdrWQEw2J6eDEy1p+cBT9jTd2F1B98OSMLqH631MW0YDnwOJNvPM8K0dxZwqz19R62f7YQ9BgbwNDDGnk4EPLWX2/PjgZa13pOtWGNkdMLqBaKvvewNYKw9vRQYbU+7sfb6rsAaR0Xs9/3fwMVOfy704cxDu15RTckyY8weABFZjfXluPCYdQZiHa5aJCJgfeHW7qvr9VrTvey9gDQgBasbj28QkVZAmjFmvj3rn1gDNx1xpBuXtcB6Y/ebJCLbsTrpq92FzVDgBWOMF8AYE25ciwuBa+3pGcATYdZZDDwo1giEM40xW+y2fqN04HcicjFQg9WFeba9bIcxZrU9/QXQSURSgTOMMe/YtVXZ7bgCK1RW2eunYHUcuiBMXaqJ00BRTYm/1nSI8J9vAT42xtxUxzYO15p+ERhljFkjIuOwO8g8xZpqjqmvpo76InHc/pKMMa+IyFLgKuBDEfkR3+7McwyQCfQzxgREZCfWXkftmsF6Hz3HeTkBHjPGPH8S9asmSs+hqOagAki1p5cAF4pIVwARaSEi3er4uVRgr4gkYH0Bf2t7xpgy4KCIXGQvuwWYz6n5GLj9yBVpIpIRZp1FWJ1WckxNR4lILrDdGPNn4D2gN998D8AakbHYDpMhwJnHK8wYUwHsEZFR9msk2XXOBr5f6zzUGSKSFVFrVZOjgaKag2nARyIy1xhTgtVD9KsiUoB1eKh7HT83Ceu8wSJgY635rwH3iMgq+8T0bVgn6QuAvljnUU6aMeYjrENkK+xDdr8Ks9pdwB0ispa6R9q7AVhnb6MX1pCvX2Md5lsnIlOAl4Hz7O3cekz76nILVm/bBVjnetoaY/4LvAIstrf1Ft8MLtWMaG/DSimlokL3UJRSSkWFBopSSqmo0EBRSikVFRooSimlokIDRSmlVFRooCillIoKDRSllFJR8X+lotgm5nTJ7gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -151,30 +108,9 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFX6+PHPQyihl4QeQkea1AgiIEUprgioKCArYncV9au7WH7rIrrurqi769pWsYGsCsqKYkEQBRGkBQy9BQgkoaVAqAkpz++Pe8NOYsrAZDIpz/v1mhd37j333ufMDPPknnPnHFFVjDHGmItVIdABGGOMKd0skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjF+JSLTROQ/7nK4iJwSkSD3eUMRWS4iJ0Xk7+J4X0SOicjawEZ+8UTkehGJdevaPdDxlDS5Pwcljedn1njHEkkJJSIxInLW/Q+X/Xgt0HH5QlUPqGoNVc10V90DJAK1VPX3QD9gCBCmqr0CFWcReAmY7Nb1l+I+uYioiJzO9dl5zI/nmyQiK3Ktmyki53LFsBHy/ByYUq5ioAMwBbpOVZf48wQiUlFVM/x5jgI0B7bp/34V2xyIUdXTF3qgANcjt+bA1rw2FGOcXVU1uhjOU5AXVPWpAMdQYohIUFlNnnZFUgpl/wUoIi+5zUD7ROQaj+21ReRdETkkIvEi8pxHc9IkEVkpIv8UkSRgmogEuU1Lie6xJrt/1VYUkZtEZH2u8z8qIl/kE1tLEfnRba76Dgj12NbC47gzgduAx9y/Vu8F3gH6uM+fcfcZISJRInJcRH4WkS4ex4sRkcdFZBNw2j1uExH5r4gkuHV5yKP8NBH5REQ+cOPbKiIRHtubichn7r5JnleAInKHiGx3X+9FItI8j7pXEZFTQBCwUUT2FBBnBxFZ5tZrq4iM9DjOTBF5Q0QWuq/FShFpJCIvu+ffcbFNZiLyjYj83eP5HBF5z11uLSI/uHVPFJEPRaROQa+PiHQA3vR43457EcP5z4H7vKX8r4lziYi8Lh5NSyJyufveHxeRjSIy0GPbMhH5s/sanRSRxSIS6m4LFpH/uLEeF5F1ItLQ3dZERBaISLKIRIvI3fnEulBEJudat1FEbnCX24vId+5xdorIzR7lZorIv93X/DQwqLDXptRSVXuUwAcQA1ydz7ZJQDpwN86X1u+Ag4C42+cDbwHVgQbAWuBej30zgAdxrkirAvcB24AwoC6wBFB3exUgGejgcf5fgBvziW0V8A93vyuBk8B/3G0tso/rPp8JPJerXis8nncHjgK93Xre5r4uVTxeoyigmVuPCsB6YCpQGWgF7AWGueWnAanAb9zj/Q1Y7W4LAjYC/3Rft2Cgn7ttFBANdHBfk6eAnwt47xRok+u99Iyzknu8/+fGOdh9nS7xeF0SgZ5uHD8A+4CJbpzPAUu9PX+ubY3c13QwMMF9fWq629rgNC1WAeoDy4GXvXh9crxveb23ubbl/hyswmkOrIzTvHmC/31mmgJJ7ntWwY0vCajvbl8G7AHaua/tMuB5d9u9wJdANTf+njjNqLh1e8OtRzcgARjs8TnJPv9EYKVH7B2B4+5rVB2IBW53Pxfd3feto8drkAL0dWMPDvT3it++rwIdgD3yeWOcL59T7oc2+3G3u20SEO1Rtpr7H7MR0BBIA6p6bB+f/cXj7nsg17l+wE007vOrc/1H/zfwF3e5E3AM98s813HCcZJUdY91H3HxieTfwJ9znWMnMMDjNbrDY1vvPOr2JPC+uzwNWOKxrSNw1l3u436ZVMyjXguBOz2eVwDOAM3zee/ySiSecfYHDgMVPNZ9DEzzeF3e9tj2ILDd4/mlwPECPjuK82Xs+dkZ5rH9RpwvwETcZJDPcUYDv3jx+uR43zzqkJorhlm5Pwcen5lqHvv+x+Mz8zgwO9exFwG3ucvLgKc8tt0PfOsu3wH8DHTJtX8zIBM3gbrr/gbM9PicZJ+/JnA6+70G/gK85y6PBX7Kdey3gKc9XoMPfPkeKC0Pa9oq2Uarah2Px9se2w5nL6jqGXexBk77fCXgkHs5fxznw93AY9/YXOdpkmtd7u2zgFtERIBbgU9UNS2PeJsAxzRnH8f+gqtYoObA77Pr4dalmXuevGJtDjTJVf7/4STXbIc9ls8AwW4TSzNgv+bdf9Ec+JfHMZMBwflr2VuecTYBYlU1y2Pd/lzHO+KxfDaP5zUKOV+PXJ+dRR7bvsT5C32nqp7vJBfnLro54jSHnsD5Qs9umizo9cnPS7liuC2PMk2AZI/PMPz6Pb0p13vaD2jsUSb3e5r92szGSTpzROSgiLwgIpU8znnSY7/crz8AbpmvgXHuqvHAhx6x9c4V2wScP+jyqkuZZZ3tZU8szhVJaAH/6XMP+XwIp1krW7MchVVXi8g5nL+kb3EfeTkE1BWR6h7JJDyP83krFudK6C8FlPE8diywT1XbXuS5wiXvzvDsOD7MYz9vecZ5EGgmIhU8kkk4sMuH41+IvwDbgZYiMl5VP3bX/9WN81JVTRaR0UB2P1FBr48vQ4gfAuqJSDWPZOL5+YvFuSLJsw+jIKqaDjwDPCMiLYBvcK5oF7vnrOmRTMKB+HwO9THwtIgsx2kKW+oR24+qOqSgMC407tLIrkjKGFU9hPMf5e8iUktEKridqAMK2O0T4GERaep2rj6eR5kPcL5U0j3/is117v1AJM5/3Moi0g+4zofqvA3cJyK9xVFdRK4VkZr5lF8LnBSnY7uqODcRdBaRy7w411qcL7Xn3fMEi0hfd9ubwJMi0gnO38xwkw/1WoPzl/NjIlLJ7Ty+DpjjwzG9IiJX4rTpT8Tpc3pVRLL/Eq+J05ya4q6b4rFrQa/PESBMRCpfaDwen5lp7memDzk/M/8BrhORYe77GSwiA0UkLM8D5qzrIBG5VJwbTU7g9CtmqWosTpPX39zjdQHudM+Vl29wrj6eBeZ6JP+vgHYicqv7PlYSkcvEuQGhXLFEUrJ9KTnvw5/v5X4TcTout+H0Z8wjZ1NAbm/jJJ9NOB3p3+C0W3veqjgb6Ez+/9my3YLTV5EMPI2TgC6Kqkbi3FDwGk49onHa4/MrnwmMwOk83YfTB/AOUNuLc2XifIG1AQ4AcTht4KjqfGA6ThPJCWALcE0+hyqUqp5zz3WNG+MbwERV3XGxx8zDxlyfnZdFpBbO+zFZVeNV9SfgXeB9t9nyGaAHTgfx18BnHjHn+/rg9LFtBQ6LSKJHDI/lisFzm6cJOH0wSTg3EszFuarG/dIfhdNEmYBzFTAF7767GuF89k/gXIH9iPM5BqeJqgXO1eF8nH6NPG+1d5txP8PpO/zIY/1JYChOs9dBnCa26Tgd8eVK9l0+xpwnzq3Eb6pqc491VXHu9umhqrsDFpwp80RkLrBDVZ8OdCzGO3ZFYnCbgX4jzu8bmuJcSeS++vkdsM6SiClqbnNQa7cZdjjOFcjngY7LeM862w04dyA9g9OkcBanWWPq+Y0iMW6Z0YEIzpR5jXCajkJwmsx+pwEYWsZcPGvaMsYY4xNr2jLGGOOTctG0FRoaqi1atAh0GMYYU2qEhoayaNGiRao6vLCy5SKRtGjRgsjIyECHYYwxpYq4A2AWxpq2jDHG+MQSiTHGGJ9YIjHGGOOTctFHkpf09HTi4uJITU0NdCimBAkODiYsLIxKlSoFOhRjSo1ym0ji4uKoWbMmLVq0wBlmyJR3qkpSUhJxcXG0bNky0OEYU2r4tWlLRIaLM/1ktIg8kcf2KiIy192+xh3qGRHpJc70qlHiTGt5vcc+MSKy2d120bdipaamEhISYknEnCcihISE2FWqMRfIb1ck7tDNr+NMjRkHrBORBaq6zaPYnTgTIbURkXE4I2eOxRldNUJVM0SkMc5Ipl96zIMwSFXzG0n0QmL09RCmjLHPhDEXzp9XJL1wpoPd6w6bPQdnMDZPo3Bm3wNnuOerRERU9YxH0gimnEwOY4wxRWXH4RNM/3YHxTEMlj8TSVNyTjMZx6+nsjxfxk0cKTgDt+FOZrQV2Azc55FYFFgsIutF5J78Ti4i94hIpIhEJiQkFEmFilqNGjlnS505cyaTJ0++oGNERUXxzTffFGVYOcycOZP69evTrVs3unXrxsSJEy/4GMuWLWPEiBF+iM4Yk1tqeiYvLtrBiFdWMHddLIdS/N9UW2I721V1DdDJnW1slogsVNVUoJ+qxotIA+A7Edmhqsvz2H8GMAMgIiKiTF7RZGRkEBUVRWRkJL/5zW/y3F6xou9v8dixY3nttdcKL2iMCaiV0Yn8cf5mYpLOcGOPMP54bQfqVb/giSsvmD+vSOLJOfdyGL+eE/l8GRGpiDOTXZJnAVXdjjP9Z2f3ebz771GcOTN6+SH2gPvyyy/p3bs33bt35+qrr+bIkSMATJs2jVtvvZW+ffty6623MnXqVObOnUu3bt2YO3fur7ZnZmYyZcoULrvsMrp06cJbb711/hwvvvji+fVPP31hcwhFRUVx+eWX06VLF66//nqOHTsGQHR0NFdffTVdu3alR48e7NmzJ8d+69ato3v37r9ab4y5eMmnz/H7TzYy4Z01AHx4V2/+fnPXYkki4N8rknVAWxFpiZMwxuFMw+ppAc680auAMcAPqqruPrFuZ3tzoD0QIyLVgQqqetJdHoozj7JPnvlyK9sOnvD1MDl0bFKLp6/rVGCZs2fP0q1bt/PPk5OTGTlyJAD9+vVj9erViAjvvPMOL7zwAn//+98B2LZtGytWrKBq1arMnDmTyMjI81cM06ZNy7F9xowZ1K5dm3Xr1pGWlkbfvn0ZOnQou3fvZvfu3axduxZVZeTIkSxfvpwrr7zyV3HOnTuXFSucadoffvhhbr/9diZOnMirr77KgAEDmDp1Ks888wwvv/wyEyZM4IknnuD6668nNTWVrKwsYmOdFs6ff/6ZBx98kC+++ILw8HDfX2RjyjlV5fOoeP781XZOnE3ngUGteXBwW4IrBRVrHH5LJG4SmAwsAoKA91R1q4g8C0Sq6gKc+aJni0g0zhzf49zd+wFPiEg6kAXcr6qJItIKmO/eWVMR+EhVv/VXHfytatWqREVFnX+enRTA+Z3L2LFjOXToEOfOncvxu4aRI0dStWrVfI/ruX3x4sVs2rSJefPmAZCSksLu3btZvHgxixcvpnv37gCcOnWK3bt355lIcjdtpaSkcPz4cQYMGADAbbfdxk033cTJkyeJj4/n+uudu7WDg4PP77N9+3buueceFi9eTJMmTS7shTLG/MqBpDP88fPN/LQ7kW7N6vD8jZfSvlGtgMTi1z4SVf0G+CbXuqkey6nATXnsNxuYncf6vUDXoo6zsCuHQHjwwQd59NFHGTlyJMuWLWPatGnnt1WvXr3AfT23qyqvvvoqw4YNy1Fm0aJFPPnkk9x777051r/++uu8/fbbAEXaid+4cWNSU1P55ZdfLJEY44P0zCzeXbGPl5fsomKFCjw7qhMTejcnqELgbl23sbZKqJSUFJo2dW5ymzVrVr7latasycmTJ/PdPmzYMP7973+Tnp4OwK5duzh9+jTDhg3jvffe49SpUwDEx8dz9OhRHnjgAaKiooiKisr3C7927drUrVuXn376CYDZs2czYMAAatasSVhYGJ9/7ky3nZaWxpkzZwCoU6cOX3/9NU8++STLli27sBfDGAPAxtjjjHxtJc8v3MGVbevz3aNXMrFPi4AmEbBEUmJNmzaNm266iZ49exIamv+UAIMGDWLbtm3nO9tzu+uuu+jYsSM9evSgc+fO3HvvvWRkZDB06FBuueUW+vTpw6WXXsqYMWMKTEi5zZo1iylTptClSxeioqKYOtW50Jw9ezavvPIKXbp04YorruDw4cPn92nYsCFfffUVDzzwAGvWrLmAV8OY8u1UWgbPfLmV0W+sJPl0Gm/+ticzJkbQuHb+TdzFqVzM2R4REaG5J7bavn07HTp0CFBEpiSzz4YpSZZsO8LUL7Zw6EQqv+3dnCnDL6FWcPEMKioi61U1orByJfZ3JMYYU54dPH6WP3+1jYVbDtOuYQ3m3XIFPZvXDXRYebJEYowxJci5jCzeW7mPV77fTZYqU4Zdwt39W1G5YsntibBEYowxJcTPexKZ+sVWoo+e4uoODXn6uo40q1ct0GEVyhKJMcYE2NETqTz39XYWbDxIs3pVefe2CK7q0DDQYXnNEokxxgRIRmYWs1bt55/f7eJcRhYPDW7D/YPaFPsv031licQYYwIgMiaZpz7fwo7DJ7myXX2eGdmJlqEF/9i4pCq5vTdl3KBBg1i0aFGOdS+//DK/+93vANi6dSuDBw/mkksuoXXr1jz99NNkZWUBvx7avVu3bmzbtu1X57gQCQkJ5weJzP6hYV6mTZvGSy+9BMCkSZPOD71ijPFO0qk0pny6kTFvriLlbDr/ntCDWbdfVmqTCFgiCZjx48czZ86cHOvmzJnD+PHjOXv2LCNHjuSJJ55g586dbN68mbVr1/Kvf/3rfNmxY8ee/wV6VFQUHTt2zPdcy5YtY9KkSQXG8/3333PppZfyyy+/0L9/f5/qZoz5tcws5T+r9zP47z8y/5d47h3QiiWPDuCaSxuX+pk5LZEEyJgxY/j66685d+4cADExMRw8eJD+/fvz0UcfnR+lF6BatWq89tprvPjii36JJSoqiscee4wvvviCbt26cfbs2RyTbs2bN6/QRGSMyd/G2ONc/8ZKnvp8Cx0a12Thw/158poOVK9SNnoXykYtfLXwCTi8uWiP2ehSuOb5fDfXq1ePXr16sXDhQkaNGsWcOXO4+eabERG2bt1Kz549c5Rv3bo1Z8+e5fjx40DOod0BVq1aVeCIwAXp1q0bzz77bI7h6I0xvks+fY6XFu/k47UHCK1RhX+N68bIrk1K/RVIbpZIAii7eSs7kbz77rte7+vNrIW9e/cmLS2NU6dOkZycfH7uk+nTp/9qNGBjTNFJz8xi9qr9vLxkF6fPZTLpihY8MqRdsQ1tUtwskUCBVw7+NGrUKB555BE2bNjAmTNnzl+FdOzYkeXLc84evHfvXkJCQqhTp47Xx88eGHHZsmXMnDmTmTNner2v519Mqan+n/PZmLJi+a4Env1qG9FHT9G/bShTR3SkbcOagQ7Lr6yPJIBq1KjBoEGDuOOOOxg/fvz59RMmTGDFihUsWbIEcGZSfOihh3jmmWeKLbaGDRuyfft2srKymD9/frGd15jSal/iae6atY6J760lPTOLtydG8MEdvcp8EgFLJAE3fvx4Nm7cmCORVK1alQULFvCXv/yFdu3aERoaSt++fZkwYcL5MtnztGc/fv755yKN6/nnn2fEiBFcccUVNG7cuEiPbUxZcjI1nb8t3M7Qf/7Iqj1JPHFNexY/ciVDOjYsc30h+bFh5EuBzz//nEcffZSlS5fSvHnzQIdT5pWmz4YJnKwsZd6GOF74dieJp9K4qWcYU4ZfQoOawYXvXErYMPJlyOjRoxk9enSgwzDGuNbvT2bagm1sjk+he3gd3r0tgq7NvO+/LGsskRhjjJcOpZzl+YU7+CLqIA1rVeHlsd0Y1a3s3c57ofzaRyIiw0Vkp4hEi8gTeWyvIiJz3e1rRKSFu76XiES5j40icr23xzTGmKKWmp7Jq9/vZvBLP7Jwy2EmD2rDD78fyOjuTct9EgE/XpGISBDwOjAEiAPWicgCVfUcFOpO4JiqthGRccB0YCywBYhQ1QwRaQxsFJEvAfXimMYYUySyspQvNx3khW93En/8LNd0bsT/+02HUjFHSHHyZ9NWLyBaVfcCiMgcYBTg+aU/CpjmLs8DXhMRUdUzHmWCcRKIt8c0xhifrdmbxF+/2c7GuBQ6NK7Fi2O6cEWb0ECHVSL5M5E0BWI9nscBvfMr4159pAAhQKKI9AbeA5oDt7rbvTkmACJyD3APQHh4uO+1McaUC3sTTvH8wh0s3naERrWCeemmrlzfvSlBFawJKz8ltrNdVdcAnUSkAzBLRBZe4P4zgBng3P7rhxCNMWVI0qk0Xvl+Nx+uOUCVihX4w9B23NmvFVUrl65JpgLBn53t8UAzj+dh7ro8y4hIRaA2kORZQFW3A6eAzl4es1QoafOR+Or48eO88cYb558fPHiQMWPGFLjPwIEDyf37Hm+0aNGCxMREr8vPnDmTyZMnX/B5TPmQmp7JG8uiGfjiMv6z5gDjejVj2ZRBTB7c1pKIl/yZSNYBbUWkpYhUBsYBC3KVWQDc5i6PAX5QVXX3qQggIs2B9kCMl8csFUrafCS+yMjI+FUiadKkiU16ZUq0rCzlsw1xDH5pGS98u5Pereqx6P/689zoS6lfs0qgwytV/Na05fZpTAYWAUHAe6q6VUSeBSJVdQHwLjBbRKKBZJzEANAPeEJE0oEs4H5VTQTI65i+xjp97XR2JO/w9TA5tK/Xnsd7PZ7v9jFjxvDUU09x7tw5KleunGM+kvfeey/P+Uj69+/PI488UqRxZps0aRLBwcFERkZy4sQJ/vGPfzBixAhiYmK49dZbOX36NACvvfYaV1xxBcuWLeNPf/oTdevWZceOHfTo0YM9e/bQrVs3hgwZwgMPPMCIESPYsmULmZmZPP7443z77bdUqFCBu+++mwcffDDH+RcvXszTTz9NWloarVu35v33388xJ0pur776Kl9++SXp6el8+umntG/fnuTkZO644w727t1LtWrVmDFjBl26dMmxX0JCAvfddx8HDhwAnKvAvn37FvGraUq6n/ck8tdvtrMl/gSXNq3N32/uRp/WIYEOq9Tyax+Jqn4DfJNr3VSP5VTgpjz2mw3M9vaYpVFJmo8kW0xMDGvXrmXPnj0MGjSI6OhoGjRowHfffUdwcDC7d+9m/Pjx55ujNmzYwJYtW2jZsiUxMTFs2bKFqKio88fKNmPGDGJiYoiKiqJixYokJyfnOG9iYiLPPfccS5YsoXr16kyfPp1//OMfTJ06lfyEhoayYcMG3njjDV566SXeeecdnn76abp3787nn3/ODz/8wMSJE8/Hk+3hhx/mkUceoV+/fhw4cIBhw4axfft2n143U3pEHz3J377Zwfc7jtK0TlVeHuvMD1LBOtJ9UmI724tTQVcO/lTS5iO5+eabqVChAm3btqVVq1bs2LGDli1bMnnyZKKioggKCmLXrl3ny/fq1YuWLVsWGuuSJUu47777qFjR+bjVq1cvx/bVq1ezbdu281cG586do0+fPgUe84YbbgCgZ8+efPbZZwCsWLGC//73vwAMHjyYpKQkTpw48atYPPuTTpw4walTpwq8+jGl39ETqfzr+93MWRdLtUpBPD68Pbf3bUFwJesDKQqWSAKopM1HkvsXuiLCP//5Txo2bMjGjRvJysoiOPh/A9JVr17d61gKoqoMGTKEjz/+2Ot9qlRx2rCDgoLIyMjwer+srCxWr16dox6m7Eo5m85bP+7h/ZUxpGdmcevlzXlwcBtCalgfSFGyYeQDqKTNR/Lpp5+SlZXFnj172Lt3L5dccgkpKSk0btyYChUqMHv2bDIzM/Pct2bNmpw8eTLPbUOGDOGtt946/4Wfu2nr8ssvZ+XKlURHRwNw+vTpHFc+3urfvz8ffvgh4CTP0NBQatWqlaPM0KFDefXVV88/z930ZcqGs+cyefPHPVz5wlLeWLaHIR0bsuTRAUwb2cmSiB9YIgmwkjQfSXh4OL169eKaa67hzTffJDg4mPvvv59Zs2bRtWtXduzYke9VSEhICH379qVz585MmTIlx7a77rqL8PBwunTpQteuXfnoo49ybK9fvz4zZ85k/PjxdOnShT59+rBjx4Xf/DBt2jTWr19Ply5deOKJJ5g1a9avyrzyyitERkbSpUsXOnbsyJtvvnnB5zElV3pmFh+u2c+AF5fy/MId9Aivw9cP9eOV8d1pEVo0V9Dm12w+klKgOOYjmTRpEiNGjCj0tx/lQWn6bBhHVpby1eZD/GPxTmKSzhDRvC6PDW9Pr5b1Ct/Z5MvmIylDbD4SY/KmqizblcCL3+5k26ETtG9Uk3dvi2Bw+wY2Km8xskRiAArtiA+E66+/nn379uVYl98dZ6b8Wb8/menf7mTtvmSa1XNu5b2uaxMbEysAynUiUVX7q6UEmz9/frGfszw09ZZ2Ow6f4KVFO1my/SihNarw51GdGHtZOJUrWpdvoJTbRBIcHExSUhIhISGWTAzgJJGkpCS7NbiEOpB0hpeX7GJ+VDw1qlRkyrBLuL1vC6pVLrdfYyVGuX0HwsLCiIuLIyEhIdChmBIkODiYsLCwQIdhPMQmn+H1pdHMWx9HUAXhnitb8bsBralTrXKgQzOucptIKlWq5NWvso0xgRF//CyvL43m08hYBOG3lzfndwNb07CWXTGWNOU2kRhjSqZDKWd5Y+ke5q6LRVHGXRbO/YNa07i2b2PJGf+xRGKMKRGOnkjljWV7+GjtAbKylJsva8YDg9rQtI4lkJLOEokxJqASTqbx5o97+M/q/WRkKTf1DOOBQW1oVq9aoEMzXrJEYowJiKRTaby1fC8frIohPVO5vntTHhzchuYhNpRJaWOJxBhTrJJPn2OGm0BS0zMZ3a0pD17VlpY2FlapZYnEGFMskk6l8e6Kfcz6OYYz6ZmM7NqEh65qS+v6NhdMaWeJxBjjV0dOpPL28r18uOYAqRmZXHtpYx6+qi1tG9YMdGimiFgiMcb4RdyxM7z54x4+iYwjM0sZ1a0J9w9sQ5sGdgVS1vg1kYjIcOBfQBDwjqo+n2t7FeADoCeQBIxV1RgRGQI8D1QGzgFTVPUHd59lQGPgrHuYoap61J/1MMZ4b1/iad5YGs38X+IRgTE9m/G7Aa0JD7G7sMoqvyUSEQkCXgeGAHHAOhFZoKrbPIrdCRxT1TYiMg6YDowFEoHrVPWgiHQGFgFNPfaboKo5JxgxxgTUzsMneX1pNF9tOkiloAr89vLm3Duglf2QsBzw5xVJLyBaVfcCiMgcYBTgmUhGAdPc5XnAayIiqvqLR5mtQFURqaKqaX6M1xhzETbHpfDa0t0s2nqE6pWDuPvKVtzVrxX1a9qUtuWFPxNJUyDW43kc0Dv5TP6HAAAer0lEQVS/MqqaISIpQAjOFUm2G4ENuZLI+yKSCfwXeE7zGPtbRO4B7gFnClljTNFavz+ZV3+IZtnOBGoFV+Shq9py+xUtqFvdBlMsb0p0Z7uIdMJp7hrqsXqCqsaLSE2cRHIrTj9LDqo6A5gBzlS7xRCuMWWeqvLzniRe+yGaVXuTqFe9MlOGXcKtfZpTK7hSoMMzAeLPRBIPNPN4Huauy6tMnIhUBGrjdLojImHAfGCiqu7J3kFV491/T4rIRzhNaL9KJMaYopOZpXy75TBvLd/DprgUGtSswlPXduCW3uE2H4jxayJZB7QVkZY4CWMccEuuMguA24BVwBjgB1VVEakDfA08oaorswu7yaaOqiaKSCVgBLDEj3UwplxLTc9k3vo43v5pL/uTztAytDp/vf5SbujRlOBKQYEOz5QQfkskbp/HZJw7roKA91R1q4g8C0Sq6gLgXWC2iEQDyTjJBmAy0AaYKiJT3XVDgdPAIjeJBOEkkbf9VQdjyqvjZ87xn9X7mflzDImnztG1WR2evKY9Qzo2sjnRza9IeZijOiIiQiMj7W5hYwpz8PhZ3l2xj4/XHuDMuUwGXlKf+wa0pnfLejYldTkkIutVNaKwcta4aYxh5+GTvLV8DwuiDqLAyK5NuOfKVnRoXCvQoZlSwBKJMeWUqrJ2XzJv/riHpTsTqFopiFv7NOfOfi0Jq2u/Qjfes0RiTDmTmaV8t+0Ib/64h6jY44RUr8zvh7Tjt5c3t9+AmItiicSYcuJUWgafRsYy8+cY9iedIbxeNf48ujM39QyzO7CMTyyRGFPGxR8/y6yfY/h47QFOpmbQI7wOjw1rz7BODakYVCHQ4ZkywBKJMWXUhgPHeHfFPr7dchiAazo34s5+LekeXjfAkZmyxhKJMWVIRmYWi7Ye4Z0Ve/nlwHFqBlfkrn4tmXhFC5rWsVF4jX9YIjGmDDiRms7ctU7/R/zxszQPqca06zpyU0Qzqlex/+bGv+wTZkwptj/pNO+vjOHTyFhOn8ukd8t6PH1dR67q0NB+gW6KjSUSY0oZVWXNvmTeX7mPxduOECTCdV2bcGe/lnRuWjvQ4ZlyyBKJMaXE6bQMPo+K54Of97PzyEnqVKvE/QNbM7FPCxrWCg50eKYcs0RiTAm3L/E0s1ft59P1sZxMzaBTk1q8MKYLI7s2sd9/mBLBEokxJVBmlvLjrqPM+nk/P+5KoFKQ8JtLGzOxTwt6hNexARRNiWKJxJgS5PiZc3waGcfs1fs5kHyGhrWq8OiQdozr1YwGNa35ypRMlkiMKQG2HTzBB6ti+DwqntT0LHq1qMdjwy9hWKdGVLJfn5sSzhKJMQGSnpnFt1sO88GqGNbFHCO4UgWu796UWy9vQccmNny7KT0skRhTzGKTz/Dx2gN8EhlH4qk0wutV46lrO3BTz2bUrlYp0OEZc8EskRhTDDIys/h+x1E+WnOA5bsTEGBw+wZM6N2cAe3qU8F+PGhKMUskxvhR/PGzzF17gLmRsRw5kUbDWlV4cHBbxl3WjCY29pUpI/yaSERkOPAvIAh4R1Wfz7W9CvAB0BNIAsaqaoyIDAGeByoD54ApqvqDu09PYCZQFfgGeFjLw8TzptTIzFKW7XSuPpbuPIoCA9rV58+jwhncvoEN3W7KHL8lEhEJAl4HhgBxwDoRWaCq2zyK3QkcU9U2IjIOmA6MBRKB61T1oIh0BhYBTd19/g3cDazBSSTDgYX+qocx3jpyIpW562KZuy6W+ONnqV+zCr8b2Jpxl4XTrJ5NXWvKLq8SiYh8BrwLLFTVLC+P3QuIVtW97jHmAKMAz0QyCpjmLs8DXhMRUdVfPMpsBaq6Vy/1gFqquto95gfAaCyRmADJylJ+ik7kw9X7+X7HUTKzlP5tQ3nq2g5c3bGh3bprygVvr0jeAG4HXhGRT4H3VXVnIfs0BWI9nscBvfMro6oZIpIChOBckWS7Edigqmki0tQ9jucxm5IHEbkHuAcgPDy8kFCNuTDxx88yLzKOT9fHEnfsLCHVK3NX/5aMvyycFqHVAx2eMcXKq0SiqkuAJSJSGxjvLscCbwP/UdV0fwQnIp1wmruGXui+qjoDmAEQERFhfSjGZ2kZmSzeeoRPImNZEZ2IKvRrE8pjw51pa6tUtHGvTPnkdR+JiIQAvwVuBX4BPgT6AbcBA/PYJR5o5vE8zF2XV5k4EakI1MbpdEdEwoD5wERV3eNRPqyQYxpTpLYdPMEnkbF8HhXP8TPpNK1TlYcGt2VMzzDr+zAG7/tI5gOXALNxOsEPuZvmikhkPrutA9qKSEucL/txwC25yizASUSrgDHAD6qqIlIH+Bp4QlVXZhdW1UMickJELsfpbJ8IvOpNHYy5ECln0lmwMZ65kbFsiT9B5aAKDO3UkLGXNeOK1qE2aZQxHry9InlFVZfmtUFVI/JZnyEik3HuuAoC3lPVrSLyLBCpqgtwOvBni0g0kIyTbAAmA22AqSIy1V03VFWPAvfzv9t/F2Id7aaIZGUpq/YmMXddLN9uPcy5jCw6NK7FtOs6Mrp7U+pUqxzoEI0pkcSbn2CIyA15rE4BNrtf7iVaRESERkbmd+FkyrvcHee1gisyuntTbo5oZjMOmnJNRNbnd7HgydsrkjuBPkD2VclAYD3QUkSeVdXZFxWlMQFyKi2DhZsPMf+XeFbtTUIV+rYJYcowZ8RdmzDKGO95m0gqAR1U9QiAiDTE+UV6b2A5Tt+JMSVaZpayMjqRzzbE8e3Ww6SmZ9E8pBoPX9WWG3tYx7kxF8vbRBKWnURcR4FmqposIn659deYorLz8Ek+2xDH51HxHDmRRq3gitzQI4wbezSlR3hdm23QGB95m0iWichXwKfu8xvdddWB436JzBgfJJxMY8HGg3y2IY6tB09QsYIw8JL6PH1dGIPbN7CmK2OKkLeJ5AHgBpzfjYDTrPVfd7DEQf4IzJgLlZqeyZLtR/hsQzw/7kogM0vpElabp6/ryHVdmxBao0qgQzSmTCo0kbiDLy5R1UHAf/0fkjHey8pS1uxL5ouoeL7efIiTqRk0qhXMPVe24obuTWnbsGagQzSmzCs0kahqpohkiUhtVU0pjqCMKYiqsjk+hQVRB/ly00GOnEijWuUghnduxI09wri8VYj9YNCYYuRt09YpYLOIfAeczl6pqg/5JSpj8hB99BQLNh7ky40H2Zd4mkpBwoB2DfjjtU24ukMDqlW2edqMCQRv/+d95j6MKVYHj5/ly40HWbDxIFsPnkAE+rQK4d4rWzG8cyP7tbkxJYC3o//OEpGqQLgXw8cb45Pk0+f4evMhvow6yNqYZAC6htXmTyM6MqJLYxrWCg5whMYYT94O2ngd8BLO1LctRaQb8KyqjvRncKb8OJWWwXfbDrMg6iA/7U4kI0tpXb86jw5px8iuTWyOD2NKMG+btqbhzHi4DEBVo0SklZ9iMuXEqbQMvt9+hK82HeLHXQmcy8iiaZ2q3Nm/JSO7NqFj41r2Y0FjSgFvE0m6qqbk+k/t7ZS7xpx3MjWd77cf5evN/0seDWtV4ZZe4VzbpTE9w+tSwe64MqZU8TaRbBWRW4AgEWkLPAT87L+wTFlyMjWdJduP8PWmwyzfnTN5jOjSmB6WPIwp1bxNJA8CfwTSgI9x5hj5s7+CMqVfjuSxK4FzmU7ymNA7nGsvteRhTFni7V1bZ3ASyR/9G44pzU6kpvP99iN8vekQy3clci4zi0a1gplwuSUPY8oyb+/aagf8AWjhuY+qDvZPWKa0OHoyle+2HWHR1iOs2pNIeqbSqFYwv728Odd2aUT3ZpY8jCnrvG3a+hR4E3gHyPRfOKY02J90mkVbD7No6xE2HDiGKoTXq8akK1owvLMlD2PKG28TSYaq/tuvkZgSS1XZdugEi7YeYfHWw+w4fBKADo1r8fBVbRnWqRHtG9W0W3WNKae8TSRfisj9wHycDncAVDW5oJ1EZDjwLyAIeEdVn8+1vQrOkPQ9gSRgrKrGiEgIMA+4DJipqpM99lkGNAbOuquGloZ540ubzCxlw4FjLNpymEXbDhObfBYRiGhel6eu7cCwTo1sRkFjDOB9IrnN/XeKxzoF8v1Rojv8/OvAECAOWCciC1R1m0exO4FjqtpGRMYB04GxQCrwJ6Cz+8htgqpGehm78VJqeiar9iSxeNthvtt2hMRT56gcVIG+bUJ4YGAbrurQkPo1bU4PY0xO3t611fIijt0LiFbVvQAiMgcYBXgmklE4v5oH5wrkNRERVT0NrBCRNhdxXnMBjp5MZemOoyzZfpQVuxM5m55J9cpBDGrfgGGdGjHwkvrUDK4U6DCNMSVYgYlERB5T1Rfc5ZtU9VOPbX9V1f9XwO5NgViP53FA7/zKqGqGiKQAIUBiIXG/LyKZOBNtPefO1Jg79nuAewDCw8MLOVz5kd3f8cP2oyzZcZSNsc5MyU1qBzOmZxhXdWjA5a1CbCpaY4zXCrsiGQe84C4/yf/mbAcYDhSUSPxlgqrGi0hNnERyK04/Sw6qOgOYARAREfGrRFOepKZnsmpvEt9vP8IP249yMCUVEegaVoffD2nHVR0a0qGxdZYbYy5OYYlE8lnO63lu8UAzj+dh7rq8ysSJSEWgNk6ne75UNd7996SIfITThParRFLeJZxMc5usjrAiOpEz5zKpWimI/m1D+b+r2zGofQPr7zDGFInCEonms5zX89zWAW1FpCVOwhgH3JKrzAKcjvxVwBjgh7yaqbK5yaaOqiaKSCVgBLCkkDjKhawsZVN8Cst2HmXZzgQ2xh1H1WmyurFHGIM7NKCPNVkZY/ygsETSVURO4Fx9VHWXcZ8XOLuQ2+cxGWdcriDgPVXdKiLPApGqugB4F5gtItFAMk6ycU4gEgPUAiqLyGhgKLAfWOQmkSCcJPL2hVS4LEk6lcby3Qn8uDOB5bsTST597nyT1aNXW5OVMaZ4SAEXAGVGRESERkaW/ruFM7OUjXHHWbYzgR93HmVTfAqqEFK9MgPa1WfAJfXp37Y+9arb9LPGGN+JyHpVjSisnLe/IzEBkngqjeW7Eli2M4Gfdidw7Ew6FQS6NavDI1e3Y+Al9encpLYNSWKMCRhLJCVMemYWUbHH+WlXAst2JbApLgWA0BqVGdS+AQMvaUD/NqHUtasOY0wJYYkkwFSVPQmnWbE7gRXRiazem8yptAwqCHQPr8vvh7Rj4CUN6NSkll11GGNKJEskAZB0Ko0V0Yms2J3IyuhEDqakAs4IuiO7NaF/m1CuaB1K7Wr2i3JjTMlniaQYpKZnsi4mmRW7E/lpdyLbDjk3v9UKrkjfNqE8MDiU/m3qEx5igyAaY0ofSyR+kJmlbD90gpXRiayITmTtvmTSMrKoFCT0CK/LH4a2o1/b+lzatDZB1lxljCnlLJEUgawsZdfRk6zak8SqPUms2ZdMytl0ANo1rMGE3s3p3zaUXi3rUb2KveTGmLLFvtUuQnYH+aq9Sazek8SqvUkknz4HOP0cwzs1ok/rEPq0DqFhrQJ/t2mMMaWeJRIvqCoHks84Vxx7nauOoyed+b0a1w5m4CX16dPKSRxhda2fwxhTvlgiKcD8X+JYsTuJVXv+d2dVaI0q9GkdwhWtQ+jTKoTmIdVsCBJjTLlmiaQAby/fx6GUs1zeKoT7BjrJo3X9GpY4jDHGgyWSAsy84zJCq1exHwIaY0wBLJEUoEFN6yg3xpjCVAh0AMYYY0o3SyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnfk0kIjJcRHaKSLSIPJHH9ioiMtfdvkZEWrjrQ0RkqYicEpHXcu3TU0Q2u/u8IvbrQGOMCSi/JRIRCQJeB64BOgLjRaRjrmJ3AsdUtQ3wT2C6uz4V+BPwhzwO/W/gbqCt+xhe9NEbY4zxlj+vSHoB0aq6V1XPAXOAUbnKjAJmucvzgKtERFT1tKquwEko54lIY6CWqq5WVQU+AEb7sQ7GGGMK4c9E0hSI9Xge567Ls4yqZgApQEghx4wr5JjGGGOKUZntbBeRe0QkUkQiExISAh2OMcaUWf5MJPFAM4/nYe66PMuISEWgNpBUyDHDCjkmAKo6Q1UjVDWifv36Fxi6McYYb/kzkawD2opISxGpDIwDFuQqswC4zV0eA/zg9n3kSVUPASdE5HL3bq2JwBdFH7oxxhhv+W30X1XNEJHJwCIgCHhPVbeKyLNApKouAN4FZotINJCMk2wAEJEYoBZQWURGA0NVdRtwPzATqAosdB/GGGMCRAq4ACgzIiIiNDIyMtBhGGNMqSIi61U1orByZbaz3RhjTPGwRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ/4NZGIyHAR2Ski0SLyRB7bq4jIXHf7GhFp4bHtSXf9ThEZ5rE+RkQ2i0iUiET6M35jjDGFq+ivA4tIEPA6MASIA9aJyAJV3eZR7E7gmKq2EZFxwHRgrIh0BMYBnYAmwBIRaaeqme5+g1Q10V+xG2OM8Z4/r0h6AdGquldVzwFzgFG5yowCZrnL84CrRETc9XNUNU1V9wHR7vGMMcaUMP5MJE2BWI/nce66PMuoagaQAoQUsq8Ci0VkvYjck9/JReQeEYkUkciEhASfKmKMMSZ/pbGzvZ+q9gCuAR4QkSvzKqSqM1Q1QlUj6tevX7wRGmNMOeLPRBIPNPN4Huauy7OMiFQEagNJBe2rqtn/HgXmY01exhgTUP5MJOuAtiLSUkQq43SeL8hVZgFwm7s8BvhBVdVdP869q6sl0BZYKyLVRaQmgIhUB4YCW/xYB2OMMYXw211bqpohIpOBRUAQ8J6qbhWRZ4FIVV0AvAvMFpFoIBkn2eCW+wTYBmQAD6hqpog0BOY7/fFUBD5S1W/9VQdjjDGFE+cCoGyLiIjQyEj7yYkxxlwIEVmvqhGFlSuNne3GGGNKEEskxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xP/JpIRGS4iOwUkWgReSKP7VVEZK67fY2ItPDY9qS7fqeIDPP2mMYYY4qX3xKJiAQBrwPXAB2B8SLSMVexO4FjqtoG+Ccw3d23IzAO6AQMB94QkSAvj2mMMaYYVfTjsXsB0aq6F0BE5gCjgG0eZUYB09zlecBrIiLu+jmqmgbsE5Fo93h4ccwi8+DHVxGbdswfhzbGGP+rWIVPxv9I5aDK/j2NH4/dFIj1eB4H9M6vjKpmiEgKEOKuX51r36bucmHHBEBE7gHuAQgPD7+oCoQFVacSJy9qX2OMCbiKNRDE/6fx+xkCRFVnADMAIiIi9GKO8fjNC4o0JmOMKYv82dkeDzTzeB7mrsuzjIhUBGoDSQXs680xjTHGFCN/JpJ1QFsRaSkilXE6z3P/ib8AuM1dHgP8oKrqrh/n3tXVEmgLrPXymMYYY4qR35q23D6PycAiIAh4T1W3isizQKSqLgDeBWa7nenJOIkBt9wnOJ3oGcADqpoJkNcx/VUHY4wxhRPnAqBsi4iI0MjIyECHYYwxpYqIrFfViMLK2S/bjTHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8Ui4620UkAdh/kbuHAolFGE5pYHUuH8pbnctbfcG3OicCqOrwwgqWi0TiCxGJ9OauhbLE6lw+lLc6l7f6QvHV2Zq2jDHG+MQSiTHGGJ9YIincjEAHEABW5/KhvNW5vNUXiqnO1kdijDHGJ3ZFYowxxieWSIwxxvjEEolLRIaLyE4RiRaRJ/LYPklEEkQkyn3cFYg4i0ph9XXL3Cwi20Rkq4h8VNwxFjUv3uN/ery/u0TkeCDiLEpe1DlcRJaKyC8isklEfhOIOIuSF3VuLiLfu/VdJiJhgYizqIjIeyJyVES25LNdROQV9/XYJCI9ijwIVS33D5wh6fcArYDKwEagY64yk4DXAh1rMda3LfALUNd93iDQcfu7zrnKP4gzTUHAY/fz+zwD+J273BGICXTcxVDnT4Hb3OXBwOxAx+1jna8EegBb8tn+G2AhIMDlwJqijsGuSBy9gGhV3auq54A5wKgAx+RP3tT3buB1VT0GoKpHiznGonah7/F44ONiicx/vKmzArXc5drAwWKMzx+8qXNH4Ad3eWke20sVVV2OM59TfkYBH6hjNVBHRBoXZQyWSBxNgViP53HuutxudC8N54lIszy2lxbe1Lcd0E5EVorIahEpdJiEEs7b9xgRaQ605H9fNqWVN3WeBvxWROKAb3CuxEozb+q8EbjBXb4eqCkiIcUQW6B4/dm/WJZIvPcl0EJVuwDfAbMCHI+/VcRp3hqI89f52yJSJ6ARFZ9xwDx1Z+Us48YDM1U1DKcJZLaIlPXvhT8AA0TkF2AAEA+Uh/fab8r6B8Zb8YDnFUaYu+48VU1S1TT36TtAz2KKzR8KrS/OXy0LVDVdVfcBu3ASS2nlTZ2zjaP0N2uBd3W+E/gEQFVXAcE4A/2VVt78Xz6oqjeoanfgj+66Un9jRQEu5LN/USyRONYBbUWkpYhUxvkiWeBZIFeb4khgezHGV9QKrS/wOc7VCCISitPUtbc4gyxi3tQZEWkP1AVWFXN8/uBNnQ8AVwGISAecRJJQrFEWLW/+L4d6XHU9CbxXzDEWtwXARPfurcuBFFU9VJQnqFiUByutVDVDRCYDi3Du+nhPVbeKyLNApKouAB4SkZFABk7H1qSABewjL+u7CBgqIttwLvunqGpS4KL2jZd1BueLZ466t7uUZl7W+fc4zZaP4HS8TyrNdfeyzgOBv4mIAsuBBwIWcBEQkY9x6hTq9nU9DVQCUNU3cfq+fgNEA2eA24s8hlL8mTHGGFMCWNOWMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSUyqJyCkvyvyfiFQrwnOOFpGORXi8n33Y95T7bxMRmVdAuToicv/FnscYb1giMWXZ/wEXlEhEJKiAzaNxBvwrEqp6RREc46CqjimgSB3AEonxK0skplQTkYHunBLzRGSHiHzo/oL3IaAJsFRElrplh4rIKhHZICKfikgNd32MiEwXkQ3ATSJyt4isE5GNIvJfEakmIlfgjGjwojtfSWsR6eYOaLlJROaLSF33eMvEmdskUkS2i8hlIvKZiOwWkec8Yj/lsfy4iGx2z/l8HvVs6ca+OdcxWmTPQyEinURkrRvfJhFpCzwPtHbXvSgiNcSZi2ODe6xRHsfZLiJvizP/zGIRqepuayMiS9zYNohIa3f9FPd12iQizxTpG2tKl0CPpW8Pe1zMAzjl/jsQSMEZP6gCztAm/dxtMUCouxyK8yvm6u7zx4GpHuUe8zh2iMfyc8CD7vJMYIzHtk3AAHf5WeBld3kZMN1dfhhnaPbGQBWcMcxCctXhGuBnoJr7vF4e9V0ATHSXH/DYtwXuPBTAq8AEd7kyUNVzu7u+IlDL4zWJxpmnogXOqA3d3G2fAL91l9cA17vLwThXeUNx5jIR93X/Crgy0J8LewTmYUOkmLJgrarGAYhIFM6X4opcZS7HaZZaKSLgfNF6jqc112O5s/tXfx2gBs5wGzmISG2gjqr+6K6ahTNhUrbsIVc2A1vVHdtIRPbiDKDnOdzM1cD7qnoGQFXzmluiL3CjuzwbmJ5HmVXAH8WZ8e8zVd3t1jVH6MBfReRKIAtnOPGG7rZ9qhrlLq8HWohITaCpqs53Y0t16zEUJ5n84pavgTOo5/I84jJlnCUSUxakeSxnkvfnWoDvVHV8Psc47bE8ExitqhtFZBLu4JUXGVNWrviy8onPGwWOZ6SqH4nIGuBa4BsRuZdfD7Q5AagP9FTVdBGJwbnK8IwZnNexagGnE+BvqvrWBcRvyijrIzFl2Umgpru8GugrIm0ARKS6iLTLZ7+awCERqYTzxfur46lqCnBMRPq7224FfuTifAfcnn2HmYjUy6PMSpwBJckV03ki0grYq6qvAF8AXcj5GoAzC+JRN4kMApoXFJiqngTiRGS0e44qbpyLgDs8+pmaikgDr2pryhxLJKYsmwF8KyJLVTUBZ8Tmj0VkE04zUPt89vsTTr/ASmCHx/o5wBQR+cXtcL4Np/N9E9ANp5/kgqnqtzhNYZFu09wf8ij2MPCAiGwm/9ntbga2uMfojDO9ahJOc94WEXkR+BCIcI8zMVf98nMrzujXm3D6chqp6mLgI2CVe6x55ExYphyx0X+NMcb4xK5IjDHG+MQSiTHGGJ9YIjHG/P/26lgAAAAAYJC/9SD2lkSwiASARSQALCIBYBEJAEvm7FDeZ3AEGAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[0][1]), label='Hartree-Fock')\n", "for k in range(len(transformations)):\n", @@ -187,30 +123,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXl8VOXV+L9nsu/7Agn7KvsmqIAKVKgWd0uldrG2tdZa+9oWa99f34rWvrV1a9Va9bUute4LiHUBEVxAESGsQiAhBEhCMlnIMtkz8/z+uHdCltkzk5mE+/185jPJc+9z75nkzj33nPOcc0QphYGBgYGBgTtMwRbAwMDAwGBgYCgMAwMDAwOPMBSGgYGBgYFHGArDwMDAwMAjDIVhYGBgYOARhsIwMDAwMPAIQ2EYGBgYGHiEoTAMzmhEpFhEvhakc2eJyCci0iAiD/TjeZ8VkXsCdOzrRGRDII5tEHwMhWHgFBF5X0TudjB+uYiUi0i4/vt5IrJJv/HVicg6EZnYZf8LRcQmIpYer3P78/OEIDcCVUCiUupXwRbGW0RkpIgo+3UAoJR6QSm1NJhyGQQOQ2EYuOI54DsiIj3Gvwu8oJTq0G/6G4C3gKHAKGAvsFVERnaZU6aUiu/x+jzwH6F/6HrT9IIRwAFllFswGCAYCsPAFWuBNGChfUBEUoDlwL/0ob8A/1JK/U0p1aCUqlFK/Q7YDtzpy0l1N9GvRWSvbrG8IiLR+rbrRWRLj/2ViIzVf35WRB4Tkfd0K2ariGSLyF9F5JSI5IvIzB6nPFtEDujbn7GfSz/echHZLSK1IvKZiEzrIedvRGQv0OhIaejW15f65/hSRM6zywl8H7hdl7OXW0xEokTkfhE5LiIVIvK4iMTo2w6KyPIu+4aLSKWIzNJ/f023Aut0t9dkJ39rd3/Pb4jILhGpF5ETIrK6y66f6O+1doux5/GcfX5920ci8gf9f9QgIhtEJF3fFi0i/xaRav1v/6WIZDn6DAb9h6EwDJyilGoGXgW+12V4BZCvlNojIrHAecBrDqa/CvTFNbEC+DqaxTINuN7Lub8D0oFW4HMgT//9deDBHvtfBywDxgDj9bnoiuVp4CdoivMJYJ2IRHWZuxL4BpCslOroelARSQXeAR7W5z8IvCMiaUqp64EXgL/o1tZGB5/jXl2eGcBYIAf4vb7tJf3cdpYBVUqpPP3394BxQKb+2V9w/KdySyPa/z9Z/5w/FZEr9G3n6+/JjixGV5+/y27fBn6gyxkJ/Fof/z6QBAzT594ENPv4GQz8hKEwDNzxHHBNl6fu7+ljAKlo19BJB/NOAhldfh+qPyl2fcW5OO/DSqkypVQN8DbaTdNT1iildiqlWoA1QItS6l9KKSvwCtDTwnhUKXVCP9cfOX0jvhF4Qin1hVLKqpR6Dk0BndNDzhO6cu3JN4ACpdTzSqkOpdRLQD5wqbsPoLsBbwRu0622BuB/gWv1XV4ELtOVNmg33pfs85VST+sWXyuwGpguIknuztsTpdRHSql9SimbUmqvfo4LPJzuyed/Ril1uMvDif3/3I6mKMbqf/udSql6b+U38C+GwjBwiVJqC1pg9goRGQPMRbtZAZwCbMAQB1OH6PPslCmlknu8Gl2curzLz01AvBdiV3T5udnB7z2PdaLLz8fQYjGgxRh+1VXJoT3xDnUytydD9eN15RiapeCODCAW2Nnl3O/r4yilCoGDwKW60rgM/f8iImEicq+IHBGReqBYP2a6B+fthojME5HNururDu1J39PjePL5nf2fnwfWAy+LSJmI/EVEIryV38C/GArDwBP+hWZZfAdYr5SqANBv+J8D33QwZwXwUQBkaUS7kQIgItl+OOawLj8PB8r0n08Af+yh5GL1J2U7rgLWZWhKpyvDgVIPZKpCU26Tu5w7SSnVVdnZ3VKXowXPC/Xxb+tjX0Nz64zUx3suXgD3f88XgXXAMKVUEvB4l+O4C9b7/PmVUu1KqbuUUpPQ3J7L6e4aNQgChsIw8IR/od18fsxpd5SdO4Dvi8itIpIgIimirfFfiOZC8Td7gMkiMkN3k632wzF/JiK5us/9/6G5rQD+D7hJf8oWEYnTg8AJHh73XWC8iHxbD0p/C5gE/MfdRKWUTT//QyKSCSAiOSKyrMtuL6PFiX7KaasPIAHNdVaNpgxc/R/c/T0TgBqlVIuIzEVTRnYq0SzM0U6O7fPnF5FFIjJVRMKAejQXlc3dPIPAYigMA7copYqBz4A4tKfNrtu2oAVcr0KLW9SgBSyXKKX2d9l1qPTOw7jaB1kOA3cDG4ECYIvrGR7xItrS4CLgCHCPfq4daEryUTT3WyFeBN+VUtVoT8a/Qrt53w4sV0pVuZx4mt/o59ymu5Y2AhO6HP8kmoV3HqeVHGgK/hjak/wBYJsLGd39PW8G7haRBrSA+6td5jahxXy26m6zrrGdvn7+bLQFCvVorreP0dxUBkFEjCXgBv5EtGWnm4FvK6XWB1seAwMD/2FYGAZ+RV9JcwUwVXxLZjMwMAhRDAvDwMDAwMAjDAvDwMDAwMAjBpXLID09XY0cOTLYYhgYGBgMGHbu3FmllMpwv+cgUxgjR45kx44dwRbDwMDAYMAgIj2TK51iuKQMDAwMDDzCUBgGBgYGBh5hKAwDAwMDA48YVDEMR7S3t1NSUkJLS0uwRTEIIaKjo8nNzSUiwqhnZ2DgKYNeYZSUlJCQkMDIkSORXo3jDM5ElFJUV1dTUlLCqFGjgi2OgcGAYdArjJaWFkNZGEBTDTScBGsbEhZJWnw2lZWG1Wlg4A2DXmEAhrI402mqgboToPRip9Y2pL4E2tqDK5eBwQDDCHobDH4aTp5WFnaUDVrqgiOPgcEAxVAYAWbRokWsX9+9aOtf//pXfvrTnwLw1VdfsXjxYiZMmMCYMWO48847sdm0m9uzzz5LRkYGM2bM6HwdOHCgT/JUVlYyb948Zs6cyaeffup0v9WrV3P//fcDcP311/P666/36bxBxdrmeNzW4XjcwMDAIYbC6MHaXaXMv3cTo+54h/n3bmLtLk+aozln5cqVvPzyy93GXn75ZVauXElzczOXXXYZd9xxB4cOHWLfvn1s376dv/3tb537futb32L37t2dr0mTJjk910cffcT111/vUp4PP/yQqVOnsmvXLhYuXNinzzZgCIt0PG46IzyyBgZ+w1AYXVi7q5TfvrmP0tpmFFBa28xv39zXJ6VxzTXX8M4779DWpj3lFhcXU1ZWxsKFC3nxxReZP38+S5cuBSA2NpZHH32U++67zx8fpxe7d+/m9ttv56233mLGjBk0NzcTH3+64+frr7/uVuEMSBKG0Ks7qZggOiko4hgYDFTOqEesu97+igNl9U637zpeS5u1u6+7ud3K7a/v5aXtxx3OmTQ0kTsvnez0mKmpqcydO5f33nuPyy+/nJdffpkVK1YgInz11VfMnj272/5jxoyhubmZ2tpaAF555RW2bDndBO3zzz8nJibG7Wd1xIwZM7j77rvZsWMHjz76qE/HGJDEpkJzLbTqMYuwSE2J1FYEVy4DgwHGGaUw3NFTWbgb9xS7W8quMP75z396PPdb3/qW25v7vHnzaG1txWKxUFNTw4wZMwD485//zLJly1zOPWMI0y/1qERIG6MPGgrDwMAbziiF4coSAJh/7yZKa5t7jeckx/DKT871+byXX345t912G3l5eTQ1NXVaFZMmTeKTTz7ptm9RURFpaWkkJyd7fPwvvvgC0GIYzz77LM8++6zHc7suOR7U2fDW9u7vBgYGXmPEMLqwatkEYiLCuo3FRISxatmEPh03Pj6eRYsWccMNN7By5crO8euuu44tW7awceNGAJqbm7n11lu56667+nQ+b8jKyuLgwYPYbDbWrFnTb+ftd+wromyGwjAw8JWAKgwRSRaR10UkX0QOisi5IpIqIh+ISIH+nuJk7vf1fQpE5PuBlNPOFTNz+NNVU8lJjkHQLIs/XTWVK2bm9PnYK1euZM+ePd0URkxMDOvWreOPf/wj48ePJz09nfnz53Pdddd17vPKK690W1b72Wef9VmWrtx7770sX76c8847jyFDhvj12CFFp8LoAKMtsYGBTwS0p7eIPAd8qpR6SkQigVjgv4EapdS9InIHkKKU+k2PeanADmAOoICdwGyl1ClX55szZ47q2UDp4MGDnHXWWX77TIFk7dq1/PKXv2Tz5s2MGDEi2OIMHpSCk3tAREvYy5oCYRED6towMHDE2l2l3Lf+EGW1zQxNjmHVsgleP+CKyE6l1BxP9g2YhSEiScD5wD8BlFJtSqla4HLgOX2354ArHExfBnyglKrRlcQHwNcDJWuocMUVV1BUVGQoC3+jrICCCH11mRHHMBgEBCINwB2BdEmNAiqBZ0Rkl4g8JSJxQJZS6qS+TzmQ5WBuDnCiy+8l+piBgfdYdXdURKz2bsQxDAYB960/RHO7tdtYc7uV+9YfCtg5A6kwwoFZwD+UUjOBRuCOrjsozR/WJ5+YiNwoIjtEZEdlZWVfDmUwWLErCMPCMBhElDlY0elq3B8EUmGUACVKqS/0319HUyAVIjIEQH83O5hbCgzr8nuuPtYLpdSTSqk5Sqk5GRkZfhPeYBBhD3iHx3T/3cBgADM02XECr7NxfxAwhaGUKgdOiIh9TeoS4ACwDrCvevo+8JaD6euBpSKSoq+iWqqPGRh4j92iCIsECTMsDINBwaplEzD1qHjjjzQAVwQ6ce/nwAv6Cqki4AdoSupVEfkhcAxYASAic4CblFI/UkrViMgfgC/149ytlKoJsKwGgxW7RWEKg7AII4ZhMCg4f3wGSkF8VDiNrR0+r5LyhoAqDKXUbrSlsT1Z4mDfHcCPuvz+NPB04KQzOGOwdYApQltWa4owLAyDQcF/9pahgNduOpezhiT2yzmNTO+e7H0VHpoCq5O1972v9ulwodYPo6/U1tby2GOPdf5eVlbGNddc43LOhRdeSM/8GE8YOXIkVVVVHu//7LPPcsstt/TeYG0/Xco8LMKIYRgMCt7IK+WsIYn9pizAUBjd2fsqvH2r1s4Tpb2/fWuflEao9cPoCx0dHb0UxtChQ0O/uZKt43TxwbBwTYEY2d4GA5gjlRb2nKjl6ln9m21wRhUf5L07oHyf8+0lX4K1tftYezO8dQvsfM7xnOypcPG9Tg95zTXX8Lvf/Y62tjYiIyO79cN4+umnHfbDWLhwIbfddpu3n84jrr/+eqKjo9mxYwf19fU8+OCDLF++nOLiYr773e/S2NgIwKOPPsp5553HRx99xP/8z/+QkpJCfn4+s2bN4siRI8yYMYOLLrqIn/3sZyxfvpz9+/djtVr5zW9+w/vvv4/JZOLHP/4xP//5z7udf8OGDdx55520trYyZswYnnnmmW49OXryyCOP8Pbbb9Pe3s5rr73GxIkTqamp4YYbbqCoqIjY2FiefPJJpk2b1m1eZWUlN910E8ePH4f2Zv76p7uYf/FYzSWFApvV8QkNDAYAa/JKMQlcNn1ov573zFIY7uipLNyNe0Ao9cOwU1xczPbt2zly5AiLFi2isLCQzMxMPvjgA6KjoykoKGDlypWdbqS8vDz279/PqFGjKC4uZv/+/ezevbvzWHaefPJJiouL2b17N+Hh4dTUdF+nUFVVxT333MPGjRuJi4vjz3/+Mw8++CC///3vncqanp5OXl4ejz32GPfffz9PPfUUd955JzNnzmTt2rVs2rSJ733ve53y2PnFL37BbbfdxoL58zm+432WfedWDl58teaSAiPwbTBgsdkUa3aVsnBcBpmJ0f167jNLYbiwBAAtZlF3ovd40jD4wTs+nzbU+mGsWLECk8nEuHHjGD16NPn5+YwaNYpbbrmF3bt3ExYWxuHDhzv3nzt3LqNGjXIr68aNG7npppsID9cuq9TU1G7bt23bxoEDB5g/fz4AbW1tnHuu67LxV111FQCzZ8/mzTffBGDLli288cYbACxevJjq6mrq67s3xtq4caMe71HQ3kJ9gwWLxUJ8hK4wjMC3wQBle3ENpbXN3P71wC2fdcaZpTDcseT3WsyivUumZESMNt4HQq0fRtceGPbfH3roIbKystizZw82m43o6NNPLnFxcR7L4gqlFBdddBEvvfSSx3OioqIACAsLo6PD82C1zWZj27ZtRIcBlQcheQTExkOH3vPDCHwbDFDezCshLjKMpZOy+/3cRtC7K9NWwKUPaxYFor1f+rA23gdCrR/Ga6+9hs1m48iRIxQVFTFhwgTq6uoYMmQIJpOJ559/HqvVsY8/ISGBhoYGh9suuuginnjiic4be0+X1DnnnMPWrVspLCwEoLGxsZsl4ykLFy7khRdeADQlmZ6eTmJi95UiS5cu5ZFHHul0Pe3ef1DbYDIsDIOBS0u7lXf3lXPJ1CHERIa5n+BnDIXRk2kr4Lb9sLpWe++jsrATSv0whg8fzty5c7n44ot5/PHHiY6O5uabb+a5555j+vTp5OfnO7Uq0tLSmD9/PlOmTGHVqlXdtv3oRz9i+PDhTJs2jenTp/Piiy92256RkcGzzz7LypUrmTZtGueeey75+fley7969Wp27tzJtGnTuOOOO3juud4LEh5++GF27NjBtNnnMOnCq3n8qWe0DaYwEJMRwzAYkGw4UIGltYMr+3l1lJ2A9sPob4x+GO65/vrrWb58udvciUGDxQz1pZA19fTS2ooDEBHDwYqWAXNtGBgAXP/Mdg6XN7DlN4sx9awL4iMh0Q/DwHuMfhgBwNYBiGZZ2AkLN2IYBgMOc0MLnxZUccXMHL8pC28xgt5nGO4C4sHgyiuv5OjRo93GnK3w8hp7lnfXQL8pQl/YEJwvnYGBL6zbXYbVprgqSO4oOEMUhlKq18ogg9BhzZo1gTt41yxvO2ERqJY6ICpw5zUw8DNv5pUyPTeJsZkJQZNh0LukoqOjqa6uZjDFagy8wNZ+emWUjpJwqi1tREdGOJlkYBBa5JfXc+BkPVcGsBKtJwx6CyM3N5eSkhKMbnxnKPVlEB4N5rbTY22NRJ/cQe6si4Inl4GBF6zJKyXcJFzaz6VAejLoFUZERIRHWcoGgxCbDe5ZAOfdCrPvPD1+ZBNs+y1MnA6MC5p4BgaeYLUp1u4u5cIJGaTFB9eNOuhdUgZnMC21WgwjPrP7eLyeIWsp73+ZDAy85LMjVVTUt3LVrNxgi2IoDINBjEVvF99TYSToCqOhon/lMTDwgTfzSkmMDmfxxEz3OweYgLqkRKQYaACsQIdSao6IvALYq2YlA7VKqRmezA2krAaDEIuuEOJ6fNFiUrT+3oaFYRDiNLZ28P7+cq6YmUN0RP+XAulJf8QwFimlOtumKaW+Zf9ZRB4A6jyda2DgFY36QoeeFoYIxGcZFoZByPP+/nKa26393ijJGUELeouWGLECWBwsGQwGOXYLo6fCAE1hGBaGQYizZlcpw1NjmT0iJdiiAIGPYShgg4jsFJEbe2xbCFQopQp8mGtg4B6LWXM9RTsoFZ+QbVgYBiHNybpmth6p4sqZOSGTeBxoC2OBUqpURDKBD0QkXyllbwCxEnDVGMHV3E50ZXIjaFVYDQw6aazU4heOvmzxWXBsa//LZGDgIWt3laEUQS0F0pOAWhhKqVL93QysAeYCiEg4cBXwirdzHez3pFJqjlJqTkZGhn8/gMHAxlIB8U6uiYRsaD4FHb633zUwCBRKKd7MK2H2iBRGpPmngZk/CJjCEJE4EUmw/wwsBfbrm78G5CulSnyYa2DgGRZz7xVSduKz9H1C1y315bonKF89FtudSZSvHsuX654ItkgG/cRXZfUUmC0hZV1AYC2MLGCLiOwBtgPvKKXe17ddSw93lIgMFZF3PZhrYOAZFrPjgDeEfC7Gl+ueYMrO35FNJSaBbCqZsvN3htI4Q3gjr4TIMBPLpwa3FEhPAhbDUEoVAdOdbLvewVgZcIm7uQYGHmGzaTEMZwqj08IIzZVSw/LuI0bauo3FSBvD8u6Dy34SJKkM+oN2q42395Sx5KxMkmJDq0CmkeltMDhpPgXKelox9KTTwghNhZGpHBfLzDTSkgY9nxZUUmVpC4lSID0xFIbB4KQzy9tJ0DsuQ+vtHaIxDLM4ltss6f0siUF/82ZeKSmxEVwwPvQW8RgKw2Bw0uikjpQdU5imNEJUYZyYtYpmFdltrFlFcmLWqiBJZNAf1DW3s+FABZdNH0pkeOjdnkNPIgMDf9BZeNCJS8q+LUSD3mdf9hP2z74Hm9JySGqJZ//sezjbiF8Mat7bd5K2DhtXhqA7CgyFYTBYsSsMZy4p0OIYIRr0Bpi+5FpMonWKPJjzTUNZnAG8uauU0RlxTM9NCrYoDjEUhsHgpNEMYVEQ7eKLF8IWBsCpimOdP0c0OExZMhhEnKhpYvvRGq6elRsypUB6YigMg8GJPQfD1RcvIVtTLDZr/8nlBfXm4wC0qTBim08GWRqDQLN2VykAl88IrdyLrhgKI0gYWbwBxmJ27Y4CzcJQNmgMzaWqzTWaVXEkfAyp7aFrCRn0Dfu94GefzGFr1K2c/PT5YIvkFENhBAEji7cfsJhdB7zhdC5GiMYxOmrLAKhMnkG6qqajvc3NDIOBRs97QY5UhfS9wFAYQcBlFq+Bf2g0Oy88aCc+tMuDSH0Z9SqWyOyzCBcb5tKjwRbJwM8MtHuBoTCCgJHFG2BsVs3N5NbCCO3yIBFNFVRJKnFZowA4VXYkyBIZ+JuBdi8wFEYQMLJ4A0xTjVYWxFmlWjt2hRKiFkZMi5na8HSSh4wBoMlsWBiDjUon3/lTYiyrNdAxsngDTGeWtxuXVHgUxKSErIWR2FFFY1QGGbmawug4dTzIEhn4m7CU4SjVfcymIJVa2Lg65Pq1GAojCMTMvpbHOi4FQCloU+FGFq8/6ezl7cYlZd8nFAsQ2qyk2Gpoi8kmOiaOKpIJqz8RbKkM/Mmel0k/lcfHpnMoVenYlFBOBrtn3I3M/C5seQieXATl+4ItaSeBbtFq4IBHNxUyIiIRgK8ylzPR/C5nXbgiyFINIiy6X9idSwo0hRGC9aSsDWbCsaH0OEt1eBaxTaVBlsrAb1Qfgf/8krbcc/lh4c3ctvQsblk8jmwg277PxOXw9q2a0rjwDpj/XxAW3Fu2YWH0M4fKG3j/q3IuyyiH+GzU1GsIFxtFeZuCLdrgwV3hwa4kZIdkDKO+UrMmTElaxzVL9BCS20JPTgMf6GiF138A4ZGsn/AHrISxaKKDa3XC1+HmbXDWctj0B3h6GVQV9r+8XTAURj/z6OZC4iLDmGgtgJxZjJ65mHYVRmPBJ8EWbfBgqYDwaIhKcL9vfJYWw+jpSA4yDWatLEh0ilaErj0hh0xbJTZraGalG3jBxtVwcg9c/nfePWYiOzGaSUMSHe8bmwrffBau/idUF8LjC+CLJ7QGYUHAUBj9yJFKC//ZW8YPz04jrKYQcmYRl5BEUcRYks1fBlu8wYOlUnNHeVKPJyEbrG1aw6UQwp7lHZ85DABJHkGkdFBTYdSUGtAcXg/bHoO5N9I29mI+Lahi0cQM97Wjpl6jWRsjF8B7t8Pzl0Nt/8e0AqowRKRYRPaJyG4R2aGPrRaRUn1st4hc4mTu10XkkIgUisgdgZSzv3hs8xGiwk38cHStNjB0FgCn0ucwpu0QLU2WIEo3iLBUeOaOgi6tWkPL3WOtLcOqhJQMzSUVnTECgKqy4LokDPpA/UlY+1PImgoX/YEdxTVYWju4cIKH12riELjuNbj0b1CaB/84D9b9Ah6aAquTtfe9rwb0I/SHhbFIKTVDKTWny9hD+tgMpdS7PSeISBjwd+BiYBKwUkQm9YOsAeN4dRNrd5fy7bkjSKrRVz0MnQlAzPjziZQOjuz6OIgSDiJc9fLuSai2am04SSXJZCTFAZCYrS2ttVQUBVMqA1+xWeHNH0N7M3zzGYiIZlO+mcgwEwvGepF/JQKzr4ebtmgPO3nPQt0JQGnvb98aUKURqi6puUChUqpIKdUGvAxcHmSZ+sQ/Pi4kTISfXDAaSndC6mjNPwmMnPk1bEqoP/RRcIUcLNgr1XqCvTxIiFkYkU0VVEoq0RFhAGTkjgWgvdrIxRiQbHkQij+FS+6D9HEAbD5kZt7oVOKifFj5lDoKOpp7j7c3w4d391FY5wRaYShgg4jsFJEbu4zfIiJ7ReRpEUlxMC8H6OqgK9HHeiEiN4rIDhHZUVnpOM0+2JTWNvP6zhJWnJ1LVmI0lO2CnNmd25NS0ikKH01CxfYgSjlIsFmhqcqzJbVwujxIiFkYMS1m6sJPJx7GJ6ZQRxymOkNhDDiOb4PNf4Ip18CM67Sh6iaOVDayyFN3lCPqnCyzrgtcnCvQCmOBUmoWmmvpZyJyPvAPYAwwAzgJPNCXEyilnlRKzVFKzcnICL2m6QBPfHwEpeCmC8ZoN6b60s74hZ2qtNmMaTlAW2tLkKQcJDRVayXLPbUwohIgIi7kLIykjiqaorpfz5Vh2UQ3lQVJIgOfaD4Fb/wIkofB8oc6F2Jsyteut8WOltN6SpKTNq7Oxv1AQBWGUqpUfzcDa4C5SqkKpZRVKWUD/g/N/dSTUmBYl99z9bEBh7m+hZe/PMHVs3LJTYnVglXQzcIAiBqzgBhpo2jPp0GQchDRmeXtxRcxIcSyvduaiFcW2mK6Z6o3RGWT1BpCchq4RilY93NoOAnXPA3Rp5fObjpUyej0OEamx/l+/CW/h4iY7mMRMdp4gAiYwhCROBFJsP8MLAX2i8iQLrtdCex3MP1LYJyIjBKRSOBaYF2gZA0kT35ShNWmuHmRFrSkdCdIGGRP7bbfiJlfA+DUwY/6WcJBRmcvby8URnx2SFkYqkHrrmdLyO423hqfQ6a1AhWkNfgGXrLjaTj4Niy5s9sDYlNbB9uKqh0n63nDtBVw6cOQNAwQ7f3Sh7XxABHIPPMsYI2+vjgceFEp9b6IPC8iM9DiG8XATwBEZCjwlFLqEqVUh4jcAqwHwoCnlVJfBVDWgFBtaeWFL45z+fShjEjTnyTK8iBrEkTGdts3NTOHYtMw4k5+EQRJBxGNehzLWwvj5N7AyOMDjZUniAfCknqE7ZKGEWtupbYswjUxAAAgAElEQVTGTHJ6tsO5BiFCxVfw/m9hzBI495Zum7YWVtPWYeubO8rOtBUBVRA9CZjCUEoVAdMdjH/Xyf5lwCVdfn8X6LXkdiDx1JajtHRYuXmRtsIFpTSX1CTHC74qUmYzuWo9He1thEdEOtzHwA2+uKTis8HyQWDk8QFL5XHigZjU7gojKn0kFEBVaaGhMEKZtiZ47QcQnQRXPg6m7o6cTflm4iLDOHtkapAE9J1QXVY74KltauNfnxVzydQhjM2M1wZriqCltlf8wk7Y6AXESzNH92/rR0kHGRYzRMRCZLzncxKyoM0CraGRONl8SgvXxWUM7zaekD0agPpyoy9GSPP+HVB1GK56steDi1KKjw6ZWTAuncjwgXf7HXgSDxCe3lpMY5uVny8ee3qwM+A9y+GcETMvAqD6wOZAizd4sZghLsOzsiB2QiwXw1pbSqOKIi21e0JXeo52LbVVFwdBKgOX7H1Vz7hOgrznYPwyGLOo124HTzZwsq7FP+6oIGAojABQ39LOs1uPsnRSFhOzuxQVK8uD8BjIOMvhvIyhIymRIUSVGhaGzzR6kbRnJyG0yoNIQzkVKoXMpOhu40mpmTSpKKg1cjFCir2vahnWdV1Sx45+7DDjevMhbVFGn/IvgoihMALA858fo76lg58vHtd9Q+lOGDLdZU37sqSZjG7aY1Ql9RVLpWeNk7oSH1rlQSKatSzvhB4ZwGIyYQ7LJMoyIFeYD14+vFvLsO6Kk4zrzflmpuQkkpkY3WvbQMAjhSEiY0QkSv/5QhG5VUSSAyvawKSxtYOnPi1i0YQMpuZ26ctrbddW4jiJX9iRkQtIopFj+TsCK+hgxVKhuaS8ISG0XFJxrVqWt6MKpvWR2SQYuRihhbPM6h7jpxrbyDt+isUD1LoAzy2MNwCriIwFnkRLqnsxYFINYF744hinmtq5pad1YT6o1X5xEr+wkzNDy8cw7zMaKnmNtUPL9PbWwohJgbDI0LAwlCKxvbpXlred5rgc0q2hodgMdDzMuP6koBKbou/5F0HEU4VhU0p1oCXaPaKUWgUMcTPnjKOl3cqTnxxl/tg0Zo/oUSKrTA946xVqnTFk+DjKSSei5PMASTmIaaoCFMR7aWGIhE6r1qZqIminPdax0rMlDScZC5b60OrfcUaz5PcgPW6lDjKuN+WbSYuLZHruwHXOeKow2kVkJfB94D/6WERgRBq4vLz9OFWW1t6xC9DiF9HJWpVaF4jJREniTEZYdhsZvd7iS5a3nfgQKQ+iZ3mrBMfPYxFp2lLbyhKjL0bIMGaxVr8sKhFnGddWm+Ljw5VcMCEDk8mLFXwhhqcK4wfAucAflVJHRWQU8HzgxBp4tHZYefzjIuaOTOWc0Wm9dyjdpbmjPFjuaRt+HmnUcaIwdLKPBwR2heGtSwq0OEYIWBgteqc9U88sb52ErFEA1Jcf6TeZDNxQuFF7/95bsLoWbtvfK/t61/FT1Da1D9jltHY8UhhKqQNKqVuVUi/pvx9VSv05sKINLF7fWUJ5fQs/XzK298a2JjAfcBvwtjNk+hIAyvcacQyvaLQrDB+qFoeIhWGp1JZmRqc59ounDdWs15bKY/0mk4EbCjZoVu2QGU532ZRvJswkLBwXmhW1PcXTVVLzReQDETksIkUiclREjNZfOu1WG//46AgzhiU77p5VvheUtVdJc2fkjplKFcmYjm/1s6SDnL64pBKyobkGOtr8K5OXtOoWRmK6YwsjNSuXNhWOzcjFCA2sHZqFMe6iXiVAurIp38zsESkkxQxsT76ntaT+CdwG7ASMBAGdtbtKuW/9IUprtTXYF0/JdtzMvXSn9u5mhZQdMZk4Hj+dYfW7UDYb4uJCNOiCxaz1tojyoiyIna69vZOHud43gFjryqhUiWQkJzjcbgoLw2zKINLIxejN3le13Ie6Em2F0pLfB74wX8l2aKmDcUud7lJW20x+eQN3XDwxsLL0A57eieqUUu8ppcxKqWr7K6CShThrd5Xy2zf3dSoLgH9vO8baXQ6+yKV5kJhzer2/B7QPO48sqjl57LA/xD0zaDT75o6CkMnFEMtJKlQqmQlRTvepjcwivtlopNSNbtnW/dPfGoDD68EU7rAMiB17dvdAj1+A5wpjs4jcJyLnisgs+yugkoU4960/RHN7d2Orud3GfesP9d65dKfH1oWdzCnaBVi6Z6PPMp5xWCp8C3jD6XlBjmNENlVgJpWUWOfViptjckjrCH6APqTwItvarxRsgOHnapVpnbA530xOcgzjMn2wfEMMT11S8/T3OV3GFLDYv+IMHMpqHTRgdzTeVAOnjsKs73l1/BET51BLPKp4K3CL2/0N0MqCpI3xbW6nhRFchRHXaqY+fKTLpZcdScNIr62lpbmR6Jg+dGwbTHiYbe1Xak9oi1mW3uN0l5Z2K1sLq7lmdq5jd/UAwyOFoZRybm+doQxNjunmjuo63o0yxy1Z3WEKC+No7DSG1uX5KuKZR6MZRpzn29y4DC35qiGIT+4drcRb62iKde26CE8ZDsegsrSIYWOnutz3jCEpt3vxv67jgaJgvfY+bpnTXb44WkNzu3VQuKPA81VSSSLyoIjs0F8PiIhzG+wM4NdLx9PzeSEmIoxVyyZ0Hyzdpb0Pdb7kzhmtOeeSq8oxlxr9D9xibdfLgvj4xTSFQWx6cC0M3R3WFus61hWbqeVi1JUZuRidLPm9FkvoSoD7W3N4A6SMhHQHibo6m/PNREeYOHeMg9ysAYinMYyngQZghf6qB55xN0lEikVkn4jsFpEd+th9IpIvIntFZI2zIoaO5oYS8dERKCAlNgIBcpJj+NNVU7liZo/lkGV5kD7epY/TGWmTNcPu+K7Q6QYXsjRWae/eFh7sSkJWcC0MN1nedlKGam63pkrjQaKTMUsAk9Y8y87CXwdulVR7Mxz9RLMunLialFJsyjdz3ph0oiPCAiNHP+NpDGOMUurqLr/fJSK7PZy7SClV1eX3D4Df6n27/wz8FviNh3NDAqUUj2wqYFhqDJt+dSERYU70rlJawHu0bx69UZPnYVkTg/XoVuBG3wU+E+hszepj0Bv0Vq3BszA6aksJByKSh7rcL3PoSKxKsJ4ycjE62fZ3sLXDT7doDw33j9fih4GieItWTNTFctojlY0cr2nix+e7Lgc0kPDUwmgWkQX2X0RkPuA46usGpdQGvZAhwDYggE7GwPBJQRV7S+q4+cKxzpUFQH2ZdiPzMn5hJzwikiMxU8g+tdNHSc8gGiu1d19dUhB0C6OxSgvQRqe6zgMJj4yiUtIJbwhgQHcg0XwKvngSJl0OGRMgNlXreLfvNS2xLhAcXq9ZMyMXON1lc769WdLAzu7uiqcK46fA33U30THgUeAmD+YpYIOI7BQRR4/INwDv+TgXABG50R5bqays9ECkvqGU4pEPCxiaFM3Vs9zoOi8T9hzRNGQeI2wnqK4wbg4u6awj1QeFEZ+tBc5twclNbT1VQquKIDnV/WeoicgirvlkP0g1APjiSWhrgPN/fXps+rXa/7IoAO2OldIC3qMugAjnjZA25ZsZnxVPbkqs030GGp7WktqtlJoOTAOmKqVmKqX2eDB1gVJqFnAx8DMROd++QUT+H9ABvODt3B6yPamUmqOUmpOREXhN/nlRNTuOneKmC8e4b+JelgemCMia4vP5UibpcYzdH/p8jDMCu0vKl7IgdhKytaqjjcHxglpryyh30JrVEU0xQ0htC37tq6DTUg/bHoMJl0B2lxVj45ZqfU72vOT/c1Ye0trkjnfujqpvaefL4poB3fvCES5jGCLyHaXUv0Xklz3GAVBKPehqvlKqVH83i8gaYC7wiYhcDywHliillDdzPflQgeSRDwvJTIhixRwPykeU7oSsyS6fQtwxetoCmv8TSWvhp7Ds+z4fx1/Yy6GU1TYzNDmGVcsm9A70B4PGSoiMh8g+PM11lgcpP93nux8xWU5SQQrDE9xfL+0JuaTXfUhHexvhEc6T/AY9Xz4FLbVw/qru4+FRMOVq2PVvTalEJ7o9lMfXdudyWucKY0tBFR02NaC76znCnYVhzwpKcPBymbYoInEikmD/GVgK7BeRrwO3A5cppZq8mevRJwogO4pr+LyomhvPH+1+1YPNBmW7fY5f2ImMiuZI9CQyaoIfx+haDkUBpbXN/PbNfY7LofQ3loq+uaPgdPJekOIYkc1mKlQKafHuFUBYynDCxUZl2Rm8UqqtET5/FMZ+zbHbd9q10NECB95yeyivru3DGzSvgYscj035ZhKjw3s3UhvguFQYSqkn9B83KqXu6voC3PlIsoAtIrIH2A68o5R6Hy3+kQB8oC+ZfRxARIaKyLtu5gaVRzYVkhoXybfnDXe/c3UhtNb3KX5hpyFrHqM6jlJXE/gYjSscl0OxOi6H0t9YzH1zR0F3C6O/Uaqzl7fLhRQ6MXouxqmyM7ho9I5ntNyb8293vD13DqSOgb2vuD2Ux9d2cy0c/9yldWGzKT46VMn54zMI9+B/OZDwdFntI0DPO5+jsU6UUkXAdAfjDhpGgFKqDLjE1dxgsudELR8fruT2r08gNtKDP5uPGd6OSJxwAabjT3B014fMWHJtn4/nKx6XQwkGjZVavktf6KwnFQQLo6WWSNVKU7RnSi95iLZUs9F8hloY7S3w2cMwciEMn+d4HxEt+L35j1rMIdn5g57H1/aRTVqrgvHOs7v3l9VRZWkdNNndXXGp/vRig78CMkTkl11eq4HBkYniIY9sKiQpJoLvnTvSswmlO7VS2329iQFjZl5AmwqnpSC4IZxeZU90YqPCaGkPctV7f7ikIqK1NrrBqFhbr614ao/zLHaSkas9d3XUnKGNlHY9r/2fLnBiXdixJ+65sTJiIh3fzlLiergHCzZo10jOHIf7g+aOEoELxg+e5bR23NlLkWixinC6xy/qgWsCK1rocKCsno0HK7hh/ijiozw0ykrzYOhMreREH4mOjedI5ARSq77s87H6wqplE4jsYWKHmYTGViuXPPwpu0/UBkewjjZtLX5fXVKgt2oNgktKz/LGTZa3neiYOKpIJqzeQf2kwU5HG2z5Kww7R7MwXJEyEkbMhz2vaMthHfDW7lKa2qyE9yj4KEBNYxurXttDQ0u7Fpcs+ECLmYQ5vw9szjczY1gyafHOS9QPVNzFMD7W4xXn9IhhPKiUKugnGYPOo5sLSIgK5/r5Iz2b0NGmddnLmek3GWozz2Z0eyGNDUG6KQNXzMxh6WTtCdheDuWBb07n3z+cR3Oblav/8RkPbDhEW4etfwXzR9KenfjgJO/Z6rX+FuHJnq84qwnPJKbpDOyLsedFqC+BC1Y5LcvRjWnfguoC7SGuB8eqG/l/a/YzZ0QKf7l6KjnJMZ3X9n3XTONni8bwRl4JX//rp+z9cjM0Vbl0R1U2tLKnpI5Fg2x1lB1PYxhNInIfMBnoXPOnlBr05c0LKhp4b385P7twrOftFc1fgbXNL/ELO/HjLyC89FkO5m1i6gVX+e243hIZbiI7MZpt/72k2/j7/3U+d739FY9sKmRTvpkHV8xgQrbjrnF+p9EPSXt2ErK1oGY/01xdQhwQm+q5wmiIHkpm4xnWYMvaDp8+qFnvY5a43x9g8hXw7iotJyP39HeyrcPGrS/twiTw12tnkJsSy1Wzey+XX3JWFr96dQ+b336OKeEmWocvwrFzFj4aRM2SHOFpCP8FIB8YBdwFFAPB9Y/0E3/fXEhMRBg3LBjl+SR7hreHPbw9YdTMRXQoE5bDwY1jFJotjMvqvaI6KSaCB1fM4Invzqa8roVLH9nC4x8fwWpz7AbwKxa7heGH3Am7heHEfREoWmtKOKXiSUvxvEhle3wOmbZKbNYzqGvyvteg9pi2MsrT/hLRSTDxG7D/jW492+/fcIg9JXX85ZppLrOxZw1P4d1bF/LNxAPk2cbyjae+YtfxUw733XzITGZCFJOHus/7GIh4qjDSlFL/BNp1N9UNnAHNk45WNbJuTxnfOWcEqT2DX64o3aWVynaxKsNb4hNTKIoYS7J5u9+O6S1KKQrNFsZkOE/BWTY5m/W3nc+iiRnc+14+33ric45VNwZWsM4sbz8EGROywdqqJYP1I9b6k1qWt4vWrD2RlOFESTs1Z0rZGJsVPn0AsqbChIu9mzv9WmiugUKt8vNHh8w8+UkR180bztenuI8bxbRWMrQpn4xZl9LSrrlf71/f3f3abrXx6eEqFk3IHBTNkhzhqcJo199Pisg3RGQmkBogmUKGxzYXEhFm4kcLvbAu4HRLVj9fNDXpZzOm7RAtTRa/HtdTyupa+FrHx/z6wNWwOhkemuKwZ3J6fBSPf2c2D66YzqGKBi7+26f8e9sx1uSVMP/eTYy64x3m37vJfwl/Hrik1u4q9ezcQVpaG9bZy9vzqgDR6SMBqCorDJBUIcZXa7T8pvN/7f13a8xi7YFiz8uYG1r49Wt7mJCVwP8sn+TZ/AJN0Yw450rev+18rpqVy6ObC7ni71vJL69n7a5Szv3ThzS0dvDBwYrQSGYNAJ7GMO7RGyb9Ci3/IhG4LWBShQAnappYs6uU75wzwqsvMa0NUJmv+U39TPTYhUSWv8BXuz9h8nmX+P347qj74kXujXiK2BbdrK87AW/fqv3co++AiHDVrFzOGZ3Gb97Yy+/W7sckYPdQ2TNpgb6XFrGYISpRa5jjAHsWrz0xy+W5u7ZqzZzYN7m8IKq5gnI1lXMSPbcwEodofTEaK86AXAybDT65H9InwFmXeT8/LAKmXIPa8U/+p+5TLK0dvPTjczzvU1GwHhJzIGsKiSLc/83pLJ2UxX+v2cc3/vYpIkKHfnHXNLb579oOMTwtPvgfpVSdUmq/UmqRUmq2UmpdoIULJv/4+AgmEW66wMse0Sf3AMqv8Qs7o2Z9DZsS6vM/8vuxPWHYrvuIlbbug+3N8OHdTucMTY7hXzfMJSkmgp7hDL9liVvMLt1RXmWoxwehPIi1nZi2GmrD07xqtGPPxWivPgNyMfL/A5UHNevC5GP29PRrEWsb6cfe5c5LJzMuy8NFGR1tcOQjGHdRN8tm6eRs1v/X+USEmzqVhZ2QqYDgZzyyMETkGbRy493QYxmDjpN1zby+o4Rvzskl24PKod2wL93zQ0mQniSlZnAkfCQJFV/4/dieEN/iJD+hzrUPXUSob253uM0vWeKNlS4D3l5lqCcEoTyIxYwJRXOUdytr4hNTqCMOqR/kMQyl4JP7IHU0TPZ9hWBe+3DibbnckPAFo8/2oHioneOfaeXTHZQDSYuPorXd8TLykKiA4Gc8VdX/Ad7RXx+iuaSC40jvB574uAibUt5bF6DFL5KHQ1y6/wUDKlPnMKblAG2tLQE5vstzm5w8xbsowmbHWZa4s3GvsFRAvHMLw6tzRyVoGfr9aWE02LO8XffydkRVWBbRjYNcYRxer+U1LfyVy4Q5V9Q1t3Pry7vZGLmIMS1fITVe1OA6vAHCIrX+Fw4I6LUdYnjqknqjy+sFtL7eznPjBzDmhhZe2n6cK2fmMCzVh1LZZXl+zb/oSeSYBcRIG0V7twTsHI5QSvGg7Vo6pEcuiikClvze7fxVyyYQ08PdEhMRxqplE/ounJvCg6uWTegVI3V57oSs/rUw9KQ9El23ZnVEQ1Q2Sa2DuC+G3bpIHq4l4Pl0CMV/v7mPk3UtLLz6ZkAcLtZwSsF6rbNelOPVgQG9tkMMX0spjgMGZWbKU58epd1q42eLHNZIdE1jlVbkLADxCzsjZl0EwKkDAegk5oIqSxsvt5zD8Qx7f3KB8Git4VCG+y/GFTNz+NNVU8lJ1lx8MREm/nTV1L4HBTv0JbAuXFJLJ2eBorP0Q3p8pOtzx2f3q4WhdIUR6aaXtyNa4nPJsJpRtn7Oru8vijZD6Q5YcJsWuPaBl788wTv7TvKrpeOZetYkGHW+lsTnSa5N9RFtZdY459ndp6/t01nifrm2QxCPFIaINIhIvf0deBv4TWBF639qGtv497ZjXDZ9KCPT49xP6Emp/yrUOiMtM4djpmHEnuzfOEaBuQGAhJgISBoOq2vhlwe1G/VrP9BWh7nhipk5bL1jCZfPGEp8dASXz/D+BtmLzrIgzl1SecdqUcAjK2cSGW7i8hk5rr/M/WxhtNaW0abCiEvx3iVF0jDipIX6U8EtfR8wPr4PEobCjOt8ml5Q0cBdb3/FgrHp3HS+7mKevlJL/ju+zYMDaMtpXXXXA/u1vZij936DrXcsHpTKAjx3SSUopRK7vI9XSr0RaOH6m39uKaK53coti32wLkCLX4gJhgS2Mnt5yizGNO/H2hGgBvcOKDRrIauUhgLI1lvOxqbC1f8Hp45qpRc8ZO6oVCobWimudtg/yzs6e3k7tzC2H63GJLBgXDrnjE5jc77Z9TH72cJoqynBTAqZSd77vKPSRwBQWTIIczGKt2gB5/m/0DroeUlLu5VbXtxFXGQ4D66YjsleXPCsSyEiFva+7P4gBeshbZwWcDdwW958lqtXfwnZH9Q1tfPcZ8e4ZMoQxmb6WAOpLA8yJjr1dfqLsFELiJdmivb3X82jQrOF9CgbYacKu/coH7lAK9Ow5yWtIqgHzBuVBsAXRdV9F8yuMFzEMLYdrWFKThIJ0REsnpBBUVUjxVUuss8TsrRVMW0BzlDXsdWXYVbJZHiR5W0nPku7kdWXD8JGSh//Rfu/zvatNfE97xzgUEUDD6yYTmZil9WOUfGa0ti/Ruur4YxWi6a0XBQbPNNwZ2E84OJ1f2BF61+e/awYS2uHb7EL0PyhpTsDGr+wM3ymFseo/qr/4hgFFRYuTK1ClE3rU96V81fB8PPgnV9qPl83jMmIIz0+ku1Ha/oumJss75Z2K7tP1DJ3pFaYYPFEzRLZfMiFldGZi9E/bqkwSznlXmZ528nI0a7XtupiP0sVZE5sh6Mfw3k/d5qQ6Yr39p3k39uOc+P5o7nQUeXY6ddCax0cdtHI8+jHWhFRF931zjTclTdf5OLltpaUiBSLyD69FesOfSxVRD4QkQL93WHTWxH5vr5PgYj49ojhAfaU/oc2HiY63MThCve+eIfUHtfaRQYg/6Inx3ZuoEOZmHf4AcpXj+XLdU+4n9RHCswW5sXoq3myp3bfGBauuaZM4fD6D7RAtAtEhLmjUvnCHwrDTR2pPSdqaeuwMXeUpjCGp8UyOiOOTa7cUp25GP3jlorSe3lnepHlbScpLYsmFQW1g6MvxpfrnqB89VjUUxdhRdhZ6XkRyK7lX25+IY9hKTH8eqmTBRmjLtB6j+xx4ZY6vB4iE2D4uV5+isGLx6ukRGSKiKwQke/ZXx5OXaSUmqGUsi/DvQP4UCk1Di2n4w4H50oF7gTmAXOBO50plr5gLxlxsk4zS1s6bM4bv7vDXqE2wArjy3VPMGXn7wgXGyKQTSVTdv4uoEqjtqmNKksrZ5mOazkKKQ5qayXlwhWPaZnuG+9ye8y5I1MprW2m5FQf4xiWSohK0rrlOcBuxdgVBsDiCZl8UVRDY6uTGFB/WhitDURaG6kypZHgaXOuLojJhDksk6jGgV+7yH5tZ1OJCIShmLTrHraueYy65naXrxe3H+OON/dSWtuMQssyNje08u6+k45PZgqDqd/UihE2VvXerpQW8B5zIYR7UXh0kONppvedwIXAJOBd4GJgC/AvH855uX4sgOeAj+i94moZ8IFSqkY//wfA14GXfDifU1yVjPB6lUNZHoRFQeZk9/v2gWF59xHTozxHjLQxLO8+uOwnATmnPeCd01oEWZOcl2aY+A2YeyNs+zuMvtDlypK5ehxj+9Eal6Wl3dJodll0cHtxDROzE0iOPf2lXzwxk6e2HGVrYRVLJztYmdRZT6ofLAy9NWtLtO8VTusis0locXJjHEA4u7ZH7HqA6V+M8Pp4rR0219/l6Su1vuD734B5Pb475fugoQzG/bfX5x3MePpIcw0wHdillPqBiGQB//ZgngI2iIgCnlBKPQlkKaXsV3c54Gh5Sw7Q1cYu0cd6ISI3AjcCDB/uXTlxr0pGuKM0T3PVBPhpJFNVau3ueo07eEryE5rCUCTVH4IpbkozXPQHOPY5rL0JbtoKiY5LR0/MTiAxOpwvimq4apb7THGnWJwrjHarjZ3HTvHN2d2PP2dkKvFR4Ww+ZHasMGJStITE/rAwGjQ3X4cPWd52WuJyGFF90F8SBQ1n1/ZQqXZbVfYP/zngcNzldzlrkvad3fNSb4VRsF57N+IX3fBUYTQrpWwi0iEiiYAZ8KQYywKlVKmIZAIfiEh+141KKaUrE5/RldCTAHPmzPHqWEOTYyh1cEF5ndJvs0LZbpj5He/m+YBZMsim95p7s6Tj+y3HNQVmC6MiTmFqresd8O5JRDRc8zQ8eQGsuRG+u9ZhX3OTSYtjbC/uYxzDYj69zLcH+0vraGqzdlozdiLDTSwcl87m/EqUUr2f7EW0Zbr9YWHoSkmcKFZPUInDSK620NhQS1xCsr8k63cqJJ0h9H7wMUs6P3TTwOzpLUd9+y5PXwnr/xsqD3VPQD28AYbMOB3PMgA8j2HsEJFk4P+AnUAe4HZNp1KqVH83A2vQ4hEVIjIEQH93FH0spbtCytXH/IrfUvorD0F7Y78EvE/MWkWz6m7FNKtITszyPA/CWwrMFhYl6zfPngFvR2SMh4v/Akc/gS0POd1t3qg0jlY1Yq7vQ10sF2VB7EH1s0f1Dn8tmphJeX0LB07WOz5uQlb/WBidWd6+J3qFD4JcjPqWdh7m27Sp7t9HT69tn7/LU64BCese/G6shpIvjeW0DvA0ce9mpVStUupx4CLg+0qpH7iaIyJxIpJg/xlYCuwH1gH2VU/fB95yMH09sFREUvRg91J9zK/4LaW/LPAZ3nbOvuwn7J99D+VkoJQWm9s7/fecHaD4BcARs4XZUbq+dmdh2Jn5He3LuHHlkhwAACAASURBVPl/4bjjrHR7INrn1VLtLdrSSCdZ3tuP1jA6I87hctULJ2hznCbxxWf3i4XRUVtGvYohKdn3NR3xmdrTd93JgZmLYa/19GrbuVQmTsaKYFNQTgb7Z9/j0bXt83c5IUtrrrT3Va3nBsCRDwHlshzImYqnQe91wMvAW0qpYg+PnQWs0c39cOBFpdT7IvIl8KqI/BA4hlbIEBGZA9yklPqRUqpGRP7A6b7hd9sD4P7mipluykR4QulOrYFPqg/VbX3g7Mt+Apf9hLz1zzPr81tIGu5h1zAfaGztoLS2mQkJxyFlpFbN1RNEYPlDWh2gN34IN32qxQa6MHloInGRYWw/WsOl030oE9LovJe31ab4sriG5dMcu3oyE6KZlpvE5kOV3LJ4XO8dErLgeOATI9tOleid9rxfUmsnTc/FaKkq9pNU/curO07wn70nWbV0PDm7q2HS5bDiObLBKzerz9/l6ddq1+ixLVqdqcPrtWXaQ2d6f6xBjqcuqQeABcABEXldRK4REZdZRkqpIqXUdP01WSn1R328Wim1RCk1Tin1NbsiUErtUEr9qMv8p5VSY/XXMz5+vv6hNE+7uHxt7OIjOZPPA6C2wIOaOD5ypFJbITWkuUeGtydEJ8LVT2vlu9fd2qvYW3iYidkjU/niqI8Z3y6yvA+erKehpaMzq9wRiyZksuv4KU41tvXeGJ+t9YDucLDNj9jsvbwTvU/as5OWNYw2FY7t1MBrpFRobuDOdV8xf2waP50eDvWlMGJ+/wox8RtavsWel8HaAYUbYexF/f59Hgh46pL6WCl1MzAaeALNKnBTkOcMob0FKvb3S/yiJ5lDR1FJCuEndwXsHAUVFmJoIdZyzHuFAZA7Wyt/fnAd7Oyt9+eNSuVwhYUaRzdtd7jI8naUf9GTRRMzsSn4+LCDwn32YGdjYC/zsMZyKuibhWEKC6PSlE6kZWDlYnSt9fTQihmYTugW3ch+VhgRMTD5cjjwlpbd3VKrddcz6IU3iXsxwNXATcDZaDkUA5+9r8JDU2B1svbuTZ38va/C36aCrQPy/uXdXD8gJhMlsWeR1fBVwM5RYLYwObwUQTldjeSWc38OY5bAO6vg/gnd/tbz9Bu6T2VC7DEGBwrji6PV5KbEuFwlMy0nifT4SMdZ3/3RqtVmJaqlkgof60h15VRkNvHN/svF6Jo1Pf/eTb4ls7rhj+8cJL+8gfvttZ6Kt0J0MmSc5fdzuWX6SmizwIt6b/oNv+v37/NAwNPy5q8CB4HFwKPAGKXUzwMpWL+w91V4+1aoOwEo7f3tWz27UOxz7W6RpmrP5/qRlszpDFNl1J0KTB5GodnCggT9RuSLhQGaaT/hElAdetnw03/r6bUbiAo3+agwdMugR1kQpRTbj9a4dEdpYgkXjM/k48OVdFh79JPoj1atjZWYlJVK0kiN7Vv+TlPMUFI7/KPc7BUQ7FnTpbXNvldAcML7+8t5ftsxfrxwFIvstZ6ObYUR5wXHFVRXCoj28AeaaywI3+dQx9M8jH8CK5VSVrd7DiQ+vBvae6zdbm/WLpRD77qee/h9x3M/vBumrfCvnC6IHz0Piv/B8X1bmXr+5X4/fqG5ge9GloE1AZK9z7btZOtfe4+1NxOx+R5mDv8/thf7EMewVGhPpD1KXxeaLZxqau+0XlyxeGImb+SVsOtELWeP7LJ/f5QH0VuzNkVnni697SPWxGFk1L5La0sjUdE+9HLpgl8rIDigtLaZ37yxl2m5SaxaNlEbrC/TyuSf/SPXkwPFpj+g5Rl3IQjf51DHXXnz2wGUUuuBq3ps+98AytU/1DnphdzeDBVfuX71VBbujhkghk9ZAIDlqP8bKrW0Wzle08QYVawtp+3Lk5+zv0tdCfNGpXGgrJ76lnbvjumkLMg23VqZN9q9wlg4Pp1wk/R2S8VlABLYpbV6WZC+ZHnbCU/VqhyYS/q+tNavFRB60GG18YuXdtFhtfHwtVpDKwCOfaa9jzivz+fwCRfXp8Fp3N0Bru3y8297bPu6n2Xpf5KclKRIGga3fOn6leQk0d3ZMQNEUmoGJ2Qo0RW7/X7so1WN2JQiq6nQ9/iFHad/61zmjUrFpmBn8SnvjmmpdLikdvvRGrISoxjuQU/2xOgI5oxM6Z2PERauKY2AWhha0p6pD1nedmIztb4YtWV9VxjO4j7pfYyzADz8YQE7jp3ij1dO7d7V8thWbaVS9rQ+n8MnXFyfBqdxpzDEyc+Ofh94LPl971r7ETHaeCDn+pmKhEnkNPm/llCB2UKuVBLRYfE8Yc8ZLv5eM4enEBEmbPN2ea2lwmH84ouiauaOSvO4mN/iiZnklzf0Li2REODyIPUnsWIiKrnvFkbKUC0HqLnyaJ+P9dMLHecTVTW08reNBbT3jPd4yOdHqnlkcyFXz8rt7doq3grD5/3/9s48PM7qOvi/M9r3fbNkW96wbIz3hR0MKRAWYwOlELLQlIR8TROSfjH5+NomaUrapPQjlK6QBJImBJKASRySQgk7Nl7lFWywvMjWOrIkSxrt0pzvj/cdWZJnrJFm04zu73nmmXfue9/7njsjzZl7zj3nWIo6Ekyi/+fJzFgKQ30ce3sdfSy+E2553F4tiPV8y+P+2SwDuTbIDBQvo5AWmupOBHXcKqeLCx323v4iP1KCnI8R75fN1f8XFt9JSmIci8uyx+/47mw6xyRV3dyFs6PXL/+Fh2sqrDHeHF1UKb04pCuMwfZ6mjSL/MzAfA4ABdPKGVTB3Xoy4LHcdrxMYUbSUNT0329YxLql0/j+Hz7i9v/YSpVzfHVjWjr7+Mov9jArL41v3zrqx4erCU5/GP74i+FMov/nycxY6nyJiLRjrSZS7GPs1xOPNJpMLL5z4n8UgVwbRLLnroGPoObguxRMKw/auFXODi5Oa4A+sTJ7Born/Wqvh+8vhJ62oVNrZuXy5NvH6OobIDXRj1+Z/d3Q236OwvAonfEojDkF6UzPTeGNw07uWTPMsZ9RZMXYhIj+1lo7aC9wU09CYhINkkdcR+CFlF6orKWiOIOXv3LliPZPrJnJ9RcW81cvHuDGx9/lwevn89nLZo3psFdVNv5qH62d/Tx17yrSRtf98ETUR1JhwKT5f57MjFVxL05VM1U1Q1Xj7WPP64RwCWk4P+WLLmFAHfRU7xy78ziocrpYHF8DubMhMfBfwUNklsDstSPy96yelcuAW6msPuPfGD6ivLcdbyY3LZG5hf7XVRcR1s4vZEtVMz3DdwelF1v3cYdmc6C21+HUnAmVZvVGa0IRaQHGYhxtcrHv1Blu95Fy/saLSnjlq1dy5bx8Hv7dIe7+wTZOtZy/CNbTW07w2mEnD91YwYXTss7tUL0F4lNMKo4owMS+xwDJqelUx5eTfnp/0MbsH3Rz/HQnswePB+7w9saSu6DtJJy0dsesmJmDQ2CHv34MH3mkdhxvYXV57riLEa2tKKS7f5Btx4bdP6MYdNCKsQkB8Z2eWt6BrzAAOlOmkdMXmAntxcpaHAK3LvWd26swI5kffHol/3jHYt6va+eGx97muR0nUT3XSn2wto3v/vdhPragkHsvLfc+YPUWmL7KVLaLAozCiBFOZy1iZu+HqHtiDsnRVDd3kTjYRU5vzcQD9s5HxU2QmG4VrwEykhNYVJo1tCV2TIaivM86va2Sr91+bacdzSWz80hOcIzcLeVRRqHwY/R1kdDfHjSTFEB/RhkF2sxA/8TyX7ndyot7arl8XsGYua1EhDtXTuflr1zB4rJs/s+mA/zZT3bhbO8ZESV+679tITnBwT/escS7Eu9uhYaDkTdHGfzCKIwYQUqXk0knNceCkyakyulivtj28FAojMQ0WLAO3v/NUEzL6vJc9p46M9Is5AsvJinP6uR8+aN8kZwQx2Vz8nn9Q+fZX8qhLNVqB+01kkt+enAURlzODOLFzen6iSUh3HGihdoz3dy+3P/gvLKcVJ65bw3fvGUhW6pOc9Ujb7Dx+X1DUeKDbqVnwM3b3vJ1gZ36Xo3CiBKMwogR8udbAU+NH2wJynhVzg4WOOwdN6EwSYFllurrgMO/A2DN7Dz6Btzsr2kb40KGKYyzK4wdx1vISI6nojhzQuKsrSjkVEv3UIbekK4wbIXRnVRAQlxw/g1TCsoBaK2dWCGlTZU1pCXGcd3C8W3zdTiEP71sFr9/4AoG3Er/4EjTVJ9dW9sr1VuscrhlKycksyG8GIURI8yYv4xuTWSgZndQxqtyuliZXAvJWb6DFAOl/ArILIP9vwBgVblVL2P7MT98Bp1Oq77GMLv39mOW/yJugmk21trba4eivtNDmE8qiFHeHrJKrOA9l3P8sRjdfYP8/kADH7+ohJTEc0vq+sOcgnQGBr3vtvcZJV69xSo8NjoGwjApMQojRohPSORE4jyyWw4EZbwjTheL4k5Z5qhxOpD9xuGAxX8MVa9BRyPZqYlUFGf4V+fb5Rzh8HZ29HDsdOeEzFEeSrNTqCjOOKswEpKtXFWhyFhrrzAkK/DcTB4Ky6xCSgMt4zdJvXqoEVfvALeNwxzlDV9R4l7be11Qtzf86cwNE8YojBiiLfciyvur6O/rDWgct1s51tTOzIHjgUd4j8Xiu6ydSAefB6z4id3VrWNHE7uc55ijwDJrBcLaikJ2nWg9m9cqozg0K4yOerpIJiNz4qVZR5Ocms5psolrH3/+o02VNUzLSubiMTL8jsW4amuf2m599pHKH2UYNyFXGCISJyJ7ROQl+/U7IrLXftSJyK99XDc4rN/mUMsZC8TPWEmy9FN9aFdA49Se6aZwoIFEd3doHN7DKayw9t/vew6A1bPy6Oob5GDtGH6MUYkHdxxvITUxjgunTcx/4WHt/EIG3Mq7R+x08elFIVlhaHsdjZodUKU9b7TEF5LSVTeua5wdPbxz5DTrl5UGnDV3XLW1q7eCxMH0NQHd0xA+wpG45QGsWhqZAKp6heeEiLwA/MbHdd2qujT04sUOJQsuhZ3Q/NE25i6Z+DL/iLODCgmxw3s4i++Cl78OjR+wepaVx2j78RaWzTjPr+9RJqntx1pYMTMnYAfy8hnZZKUk8PphJzdeVGKtMEJQ23vgTC0N7uDFYHhwJZdQ0HlkXNds3lvHoFsDNkd58Lu2dvVWKFnif514Q8QJ6QpDRMqAm4AfejmXiVWQyesKwzB+ppUv4AzpSF1gju8qp4uFjpOoOKAwCClBxmLR7eCIh/3PUZCRxOyCtPPnlerrsqqj2Sap1s4+PmzsGFc6EF/Exzm48oIC3vzQidutZ1cYXoLSAkE7GmggsFre3uhLL6PQ3YR70P/o9E2VtSwuy2JuYRi/uPu7oXaXMUdFGaE2ST0GPAh4M0ivB15T1XYv5wCSRWSXiGwTkfW+biAin7f77Wpq8rHXe4ogDgcnkyvIbwssFuNIo4slCaeQvLnh2b2SXgBzP2anChlkzaxcdp5oYdDt40u6c+Qupp0nPPW7A7O/e7imooDTrj4O1LZZK4zBXqvOc7BQJb6zgcYgRnl7kJwZJEk/LU3+Vcc73NDOB/Xt3BaEwkjjonY3DPZB+eXhva8hIEKmMETkZsCpqr5+7t4NPHueIWaq6krgE8BjIuI157KqPqmqK1V1ZUFBgbcuU4qu/CXMHKymy+VHLIMPjtgrjJD7L4az5C5r59Dxt1gzK4+OngEO1fv4LeGJwbB9GNuPt5AY72DJdC95iibAVRcUImJvrx2KxQiiH6OrGYe73/JhBCmPlIek/HIAmmv8i8V4sbKWeIdwyxLfqUBCwoktgMCMi8N7X0NAhHKFcRmwTkROAM8B14jIzwBEJB9YDfzO18WqWms/HwPeBExmMj9ILl9FnCjV72+b0PWqSqPTSeFgY+h3SA3ngo9DUhbs+8XQ1lifZqlRQXs7jrewbHo2SfETix8YTW5aIsumZ/PGh85h0d5B3Cllb6lt0NygpQXxkFU8C/AvFmPQrfx6by1Xzy8gb3S0+f5fwvcXwbeyredg17au3mL9IEkJ3i4xQ+gJmcJQ1YdUtUxVy7Eq972uqp+0T98BvKSqPd6uFZEcEUmyj/OxlM8HoZI1lihbZDm726ompjAa23sp7bOrthUHWANjPCQkw4Xr4dBmpqUMMj03he2+EhEO5ZEqor2nn/fr2oLivxjONRWF7K9po1nsL7RgrjDsoL2OxAKSE4Kj5Dzkl80DoP/0iTH7bj16msb2Xm4bnZl2/y+tuvZtpwC1nn/75eApjYE+OLXD+C+ikEjFYdzFKHOUiKwUEY9zfAGwS0T2AW8A31VVozD8IL94Bg3kk9AwsZKtR4anBAmnSQpgyd3Q3wWHfsvq8jx2HG/xmgF1KFNtWj67q1txa+DxF6PxRH2/VW9/oQd1hWFtex0MYpS3h4ysXNpJQ/yIxdhUWUtGcvxQAakhXvv2uTXr+7ut9mBQvxcGuk3AXhQSFoWhqm+q6s3DXl+tqi+P6rNLVe+zj7eq6kWqusR+/lE45IwV6tIWUuyamOO7yuligVTjTs6BzDDbtWdcDNkzYf9zrJmVS2tXP1VO17n9XE5IzYO4BHYcbyHeISybkR1UURaWZFKUmcSrR1yQkBqSFUZcZvAVBkBTXBHJned3enf2DvDywQZuXjzt3FVOmw9l46t9vFTb+c5mmBVGtGEivWOQ3qKllGojZ06P/1fxEaeLi+JPIcUhTAniCxHL+X3sLS4ttKyVXtOduxqHstRuP9bM4rIs/6r0jUsUq6jSO1XNaHqQa3t31NNCFnlZ/hd5Gg/tScVk9p7/s3/5YAPd/YPeYy+SfAQ/ZnkvqjRuTmyB/AtGpKY3RAdGYcQgGXNWA3Dy4LvjvvZoYxsXcAoJtznKw+I/AZTSU7+jKDPJu+PbruXd3TfI/pq2oG2nHc3aikJcvQN0JOQFVWFoRz31mhP0LbUeetNKKRh0nrc2yqY9NUzPTWHlzFFO55PbrdK3MmrVkZAC134jcOHcg3Bym0lnHqUYhRGDzFx0GW4VOo+Pv2Rrr/MoSfSGJ8LbG3lzoGw1su9Z1pTnsv1Y87l+DFcjpBdSebKVAbcG3eHt4fK5+STGOajpzwxqinN3Wx0N7uCVZj2H7OmkSzftrd7jkurbutl6tJnblpWNLGrU3Qov/Blkz4CbHx2ZpfjSB4JT77phv5XS3iiMqMQojBgkIyuXU3FlpDrH5/hudvUyrcfevx+pFQZYZqmmw9yQ14izo5fq5lE1o11NkFbI9uMtOARWlIdma2ZaUjxrZudy2JUaXJNUex2NmkNBiFYYnliMJh+xGL/eU4cqbBgerKcKm79sbfm942lYcS989SA8VAspuVBXGRzhqq2SvGaHVHRiFEaM4sxYSGn34XGVbK1yuljgOIlKHBRUhFC6MbhwA8QlcknnH4BR8Ri9LujvhPRCdhxvZuG0TDKTE0Imytr5hRzpSrfMNH1dY18wFgO9xPW0BLWW92jSi6y6GB2N58ZiqCqbKmtYMTOH8vy0syd2Pw2HNsM1fwNlK862J6XDJV+EI/8DdXsCF656K+SUQxDTuhvCh1EYMYp72nLyOYOz5qjf1xyxd0gN5M614iIiRWouXHA92Ud/Q0FqHNuGx2PYaUH6U/LZc/IMa0Lkv/BwTUUhTrV3YAVja61t2rLySIVGYeSXWnUxer3EYrxf184Rp2vk6qLxA3j5IZhzDVz65XMHXP15q5DW2/8UmGBut7VDypijohajMGKUnHlWyoXacZRsrXK6uNBxkviSMAbs+WLJ3UhnE58pPDpyheGy7PLHetLoHXAHVDDJH8rz07go0fqSd//zMhq+NZedm5+Y+IB2lLdTcygIkQ8jO6+ILk2yA+9G8kJlDYlxDm5eXGI19HXB85+1dkZteMIqajWa5ExY8wU4/BI0BpCnrOmw5ScxCiNqMQojRpm5cDV9Gkdftf+1Meoa6imRZmtLbaSZ+0eQksuN+hY1rd3Uekp82r6EPc2WGWpVeWgVxs7NT3CXWhlsHALFNLFo919PXGm0W0F7LY48MpNDU11AHA6a4gpJco2Mm+gfdLN5bx3XLigkO9UubfvKQ9B0CDb854j6Iuew5guQmB7YKsMTf2H8F1GLURgxSlJyKtUJs8lo3u/3NQ6n/euxaBKsMOITYdHtlJ9+kwy62OExS9kmqXcbHMwvyiA3LfE8gwTO9MpHSJb+EW0p0sf0ykcmNqBtkhrMKB65QynInEksJqOnfkTbO0eaaO7sO2uOev9F2P1juOwBmHvt+QdMzYXVn7OuafpoYkJVb4HMUsuHYYhKjMKIYVqyL2Jm70d+1UZo7+mnuNveVTMZVhgAS+7GMdjLhuRdZ81SriYU4a0aDbk5CqBQvW9NLdTTExuwo44+EkjOCG3QWk9aKXmDzhFtL1TWkpOawNXzC6G1GjY/AKUrLEe3P1zyF1Y8xjv/b/wCqVoO75mXhj8g1BA0jMKIYaR0OenSzakj+8bsa6UEOUlfUu6ISnYRpXQ55M3jnqStbD/mURiNDCTn0tEHa2aHXmE4xfsXu1PyJzZgez2nJTfohZNG484sI4eOoTT3bd39vPpBI+uWTCNRBuGF+wCF238EcX7uMkvLh5WfhQO/gpZj4xOo+ahlTjTmqKjGKIwYpqjC+ud0Ht46Zl9rS201g4UXTp5fgCKw5E+Y37ufvuYTODt6oLOJ9jgr7iIcK4xTyzfSrSPNXt2ayKnlGyc2YEc99e7QRXl7SMibCUDTKWvV+N8H6ukbcLNheRm8+Q9QswNueQxyZ41v4Eu/ZFVHfPf747tuyH9hCiZFM0ZhxDBl85bQqcm4a8Yu2Xq08QzzpYak0sVhkGwcLP4TANY73rXMUq5GGgYzmZ2fFrpI6WGsWnc/B1c8TD0FqFqWlaoLv8SqdfdPaDx3ez117uyQrzDSCy1FcKbe2la9qbKW2QVpLOnbC+88Css+ZZXGHS8ZxbD807D3WThz7i4sn1RvseqX5M8b/z0NkwajMGKYuPh4TiRdQM6Zg2P27ag9TJL04whnDQx/yJ6Be+Zl3BH/LjuONaMuJ8d7UsOyuvCwat39lHyriv9Y/QrdJDFXqyc2kCp01NGguSGL8vaQZ9fF6Dl9glMtXew40cI9F6YgL37e+tL++PcmPvjlX7Getzzm/zXGfxETGIUR43TkXkR5/zH6er3Wqhoi8bRdbmSyOLyH4VhyN+VST3vVe6jLSd1AVlgVhocbVi/iZ4MfI+nQJssmP156zuAY6KExhIkHPeQVTadP43G3nuLFPbUIbj5R/13oPmOl/khMG3sQX2SVwdJPQOVPh1K1n5fWaismxMRfRD1GYcQ4iTNXkSgDVH+ww2ef7r5BCruqGJR4yJ8fRun8ZOGtDDiSuKLtNzgGujmtmUEvmOQPswvSea/obvqJR995dPwD2F+ulsIIrUnKEReH05FPoquGTZU1/G3hW6RUvw7Xfyc4Pwou/yq4B2Dr42P3HcofZRRGtGMURoxTstByfLd89J7PPkebrJQgnZlzrPiHyUZyJm0zrmOdw5rDQGohpdkpERHlmpUX8fOBtbDvOThzcnwXh7CWtzfOJBYT33GKjJaD3NPxNFTcDKvuC87gubMs/9Kup4ei731SvcVKLVK4MDj3NkSMkCsMEYkTkT0i8pL9+sciclxE9tqPpT6u+4yIHLEfnwm1nLFK8fR5NJOFo9534jhP0kGKLgyjZOOjyZFPgljxJH/e93Rg6TkC4ObF03hKb8EN8O44bPgwpDBOSy65qaFVzDs3P8GsnkMs1iO8mPgN+uNSYd2/BNeHcMVfwkAPvPev5+9XvcWqruct7YghqgjHJ/gAcGhU20ZVXWo/zsnBLSK5wDeBNcBq4JsiEpoc1jGOOBzUpFRQ0O7b8V1Te4piaSV1ulfdHXF2bn6CmUefGXqdL+2BpecIgJy0RBZWLOA3rEX3/HQo1Ydf2CYpd1oRDkfonL87Nz/Bot1/TZr0IgLx4kb6u9n5h18F90b582DRbbDzh9DlpdAVWHNuOWbqd8cIIVUYIlIG3AT8cJyXXg+8qqotqtoKvArcEGz5pgpdBUuZMViDq73V6/m+2gMAxE+bZDukbKZXPkKK9I1oCyg9R4BsWFbGoz03WdXjtvhhw/fQUYfLkUFWlo8SqEHC2/uVJP2heb+u+Br0uWDbf3g/b/JHxRShXmE8BjwIjC7K8B0R2S8i3xcRb8bcUmD4Ju8au+0cROTzIrJLRHY1NY1hS52ipM5ahUOU6gPeA/iSW+wdUpMhh5QXgp6eI0DWVhTgSille8YfWXUkXM6xLwLoaKCJvJDvkArr+1W0EBbcAtufgJ62c89Xb7WSFhYvCf69DWEnZApDRG4GnKo6OmrsIaACWAXkAl8P5D6q+qSqrlTVlQUFpqi8N2YssqJrO45tP+dc34Cboq4qXAl5kD4537+gp+cIkKT4OG5eXMI3Wq5HB/tg67/4d2F7HXXu7JClNfcQ9vfryo3Q2wY7njz3XPVWmL4G4kKTmdcQXkK5wrgMWCciJ4DngGtE5GeqWq8WvcDTWD6K0dQCwwoKU2a3GSZATkEJdVJEYuO5ju8TzZ1USDWdOQsiIJl/BD09RxC4bXkZHw0UcbLk47DzR75t+MPQjnpqBrJDvsII+/tVsgTmXQ/v/btVEdFDZ7OVOt2Yo2KGkCkMVX1IVctUtRy4C3hdVT8pIiUAYuV2Xg9488a+AlwnIjm2s/s6u80wQerTF1LiGr33AKrqW5krtcQVT94dUp70HA0U4FahgQIOrnh4wuk5gsGy6dnMyk/j8f51VsnYbf9+/gsG+8HlDGmlPQ8Reb+uehC6W2DXj862nbRNoOUmf1SsEIl14jMiUgAIsBf4AoCIrAS+oKr3qWqLiPwdsNO+5tuqOvZPOINP+ouWUtLxBs2NNeQVlQ21t1S/T5IMILOWR1C6sVm17n6wv/CK7UckERE2LCvl0Vc7+btFn670owAAD0lJREFUN5G6/Qkr/XdKtvcLXE4EpVFzWRimHFhhfb/KVsLstZZ5btXnIDEVTmyB+GSYtizUdzeEibBsjFbVN1X1Zvv4GlW9SFUXqeonVdVlt+9S1fuGXfOUqs61H0+HQ85YJnOuVbK15v13R7QP1FsFlhKnTbKkg1GApxDRb7Pugd527zZ8D0NBe6FPCxIxrnoQOpug8ifW6+otULYK4mN0vlMQE0kzRShfdAmDKnQd3zmiPa31MP0kmCyiE2B6biqry3N54qM09IIbLLNUb4f3zna8RqOG3iQVMWZeaqUv3/LPVvR3wwGTDiTGMApjipCansXJuJmkNp0tpjQw6Ka4u4rm1Fn+F9ExjOC25aUca+rkSMWfQ3erFcTmDXuF4SSX/PQYVRgAV37NmutjiwC1fBr7fxlpqQxBwiiMKURT5kJm9BxG3VZYzKnWbubLSXpyJ+8OqcnOjYtLSIx38MypPJhzLWz9V+jrOrdjRz0DEo+m5JEQF8P/dp1NIA4rZYjn9W+/bJRGjBDDf7mG0WjpCnLooL76IwCqT1ZTKGcmbYR3NJCZnMAfLSzit/vr6b/8a9B1Gnb/+NyO7fW0OXLJz4xM0sSw8dq3QUfF6fZ3W+2GqMcojClE3gWW47v+A8vx3X6iEoDc2ZN7h9Rk5/blpbR09vFm9xwov8Ky4fePqj/SUUdTGGp5R5y2mvG1G6IKozCmEDMXrKJXE+g/uctqaLBCYFJnmG2PgXDFvALy0hLZVFljRT27GmDPT0d2aq+nbjCbglj2X4BVXGk87YaowiiMKURCYhInEuaQ2WIlG8xoO0xLXD6khr96XSyREOdg3dJpvHbISVvRJVYqjHcfg4GzCQC1o4GTA9mxu0PKw7XfgIRRZreEFKvdEPUYhTHFaM25iPK+I/T391HSc5TmNLOdNhjcvryMvkE3Lx2shysfhPYa2PesdbK3A+nroN4dwzEYHhbfCbc8DlnTAbGeb3ncajdEPUZhTDHip68gVXrZu/MdZlNLX76pghYMLpyWybzCdDZV1sLca63o5ncfhcGBsJZmnRQsvhO+ehC+dcZ6NsoiZjAKY4pRtMBKBOfa8TMSZZCkMpN2OhiICLctL2N3dSvVLV3WKqP1BBx8HjrsoL0w5JEyGEKJURhTjNLZi2gnlWWtVi7H/LkrIixR7LB+2TREsFYZ8z8ORYvg7X+CNivRcoPmxr5JyhDTGIUxxXDExVGdNJ9s6aSHRLJLKyItUsxQkpXCpXPyeHFPLQpW1HPzkaEcU1PGJGWIWYzCmIIMOKwvrSTto+HvKiJSGztWuW1ZGSdbuthd3QoLboX0YqjfiwJ/SHqQlMMvRFpEg2HCGIUxxdi5+QkWdlkJCEWgmCYW7f5rozSCxA2LiklJiOOFylrLf9FtZeUXYJqcNmkyDFGNURhTjOmVj5AkAyPaUqSP6ZWPREii2CItKZ4bFhXzu/11uP/wtzDYN7KDSZNhiGKMwphiFGqTj/bTYZYkdrlteSntPQNIu4+qwiZNhiFKMQpjiuGUAh/t+WGWJHa5dE4+RZlJNMd5f69NmgxDtBJyhSEicSKyR0Resl8/IyIfishBEXlKRLwWYhCRQRHZaz82h1rOqcKp5Rvp1sQRbd2ayKnlGyMkUewR5xDWLy3lO71/jMabNBmG2CEcK4wHgEPDXj8DVAAXASnAfd4uArpVdan9WBdiGacMq9bdz8EVD9NAAW4VGijg4IqHrRrQhqCxYXkpLw5cxtsVf0N/eiluFbpSSkyaDENUEx/KwUWkDLgJ+A7wlwCq+vth53cAZn0eZlatux9sBVFsPwzBpaI4k4UlmTzasISEDW/ziR9s5+efWsOlc43pzxC9hHqF8RjwIOAefcI2RX0KeNnHtckisktEtonIel83EJHP2/12NTV5d+gaDJHgtuWl7KtpY9vRZgCTFsQQ9YRMYYjIzYBTVXf76PLvwNuq+o6P8zNVdSXwCeAxEZnjrZOqPqmqK1V1ZUGBDyejwRAB1i2dhkPgv7ZVA1BgorwNUU4oVxiXAetE5ATwHHCNiPwMQES+CRRgm6m8oaq19vMx4E3AVPkxRBWFGcnML8rgTFc/ADf+89v8eo+PrbYGQxQQMoWhqg+papmqlgN3Aa+r6idF5D7geuBu1dHFfy1EJEdEkuzjfCzl80GoZDUYQsGv99RS1eQael17poeHNh0wSsMQtUQiDuM/gSLgPXvL7DcARGSliPzQ7rMA2CUi+4A3gO+qqlEYhqjikVc+pH9QR7R19w/yyCsfRkgigyEwQrpLyoOqvollVkJVvd5TVXdhb7FV1a1Y224Nhqil7kz3uNoNhsmOifQ2GELEtOyUcbUbDJMdozAMhhCx8fr5pCTEjWhLSYhj4/XzIySRwRAYYTFJGQxTkfXLSgHLl1F3pptp2SlsvH7+ULvBEG0YhWEwhJD1y0qNgjDEDMYkZTAYDAa/MArDYDAYDH5hFIbBYDAY/MIoDIPBYDD4hVEYBoPBYPALUdWxe0UJItIEVE/w8nxgqhW2NnOOfabafMHMebzMVFW/Un3HlMIIBBHZZadTnzKYOcc+U22+YOYcSoxJymAwGAx+YRSGwWAwGPzCKIyzPBlpASKAmXPsM9XmC2bOIcP4MAwGg8HgF2aFYTAYDAa/MArDYDAYDH4xpRSGiNwgIh+KSJWI/B8v5+8VkSa7dOxeu/54VDPWnO0+d4rIByLyvoj8PNwyBhs/PufvD/uMPxKRM5GQM5j4MecZIvKGiOwRkf0icmMk5Awmfsx5poi8Zs/3TREpi4ScwUJEnhIRp4gc9HFeRORx+/3YLyLLgy6Eqk6JBxAHHAVmA4nAPmDhqD73Av8aaVnDPOd5wB4gx35dGGm5Qz3nUf2/BDwVabnD8Dk/Cfwv+3ghcCLScodhzr8CPmMfXwP8NNJyBzjnK4HlwEEf528E/hsQ4GJge7BlmEorjNVAlaoeU9U+4Dng1gjLFGr8mfPngH9T1VYAVXWGWcZgM97P+W7g2bBIFjr8mbMCmfZxFlAXRvlCgT9zXgi8bh+/4eV8VKGqbwMt5+lyK/BfarENyBaRkmDKMJUURilwatjrGrttNLfby7nnRWR6eEQLGf7M+QLgAhHZIiLbROSGsEkXGvz9nBGRmcAszn6pRCv+zPlbwCdFpAb4PdbKKprxZ877gNvs4w1AhojkhUG2SOH33/5EmUoKwx9+C5Sr6mLgVeAnEZYnHMRjmaWuxvq1/QMRyY6oROHjLuB5VR2MtCBh4G7gx6pahmW6+KmIxPr//9eAq0RkD3AVUAtMhc86ZMT6H8xwaoHhK4Yyu20IVW1W1V775Q+BFWGSLVSMOWesXyGbVbVfVY8DH2EpkGjFnzl7uIvoN0eBf3P+M+CXAKr6HpCMlbAuWvHn/7lOVW9T1WXAX9ltUb/B4TyM529/QkwlhbETmCcis0QkEevLYvPwDqPsfeuAQ2GULxSMOWfg11irC0QkH8tEdSycQgYZf+aMiFQAOcB7YZYvFPgz55PAtQAisgBLYTSFVcrg4s//c/6wVdRDwFNhljHcbAY+be+WuhhoU9X6YN4gPpiDTWZUdUBE/gJ4BWuHxVOq+r6IfBvYpaqbgS+LyDpgAMu5dG/EBA4Cfs75FeA6EfkAa7m+UVWbIyd1YPg5Z7C+YJ5Te3tJNOPnnP83lrnxq1gO8Hujee5+zvlq4B9ERIG3gS9GTOAgICLPYs0p3/ZFfRNIAFDV/8TyTd0IVAFdwJ8GXYYo/psxGAwGQxiZSiYpg8FgMASAURgGg8Fg8AujMAwGg8HgF0ZhGAwGg8EvjMIwGAwGg18YhWGYtIiIy48+XxGR1CDec72ILAzieFsDuNZlP08TkefP0y9bRP58ovcxGPzFKAxDtPMVYFwKQ0TiznN6PVbSuqCgqpcGYYw6Vb3jPF2yAaMwDCHHKAzDpEdErrbrGTwvIodF5Bk7mvXLwDTgDRF5w+57nYi8JyKVIvIrEUm320+IyPdEpBL4YxH5nIjsFJF9IvKCiKSKyKVYEf6P2LUy5ojIUjsp434ReVFEcuzx3hSrrsYuETkkIqtEZJOIHBGRh4fJ7hp2/HUROWDf87te5jnLlv3AqDHKPTUQRORCEdlhy7dfROYB3wXm2G2PiEi6WHUgKu2xbh02ziER+YFYtU/+R0RS7HNzReQPtmyVIjLHbt9ov0/7ReRvg/rBGqKPSOd4Nw/z8PUAXPbz1UAbVm4cB1Y6j8vtcyeAfPs4HyuiN81+/XXgG8P6PThs7Lxhxw8DX7KPfwzcMezcfuAq+/jbwGP28ZvA9+zjB7DShZcASVj5ufJGzeHjwFYg1X6d62W+m4FP28dfHHZtOXYNBOBfgHvs40QgZfh5uz0eyBz2nlRh1Ugox8pisNQ+90vgk/bxdmCDfZyMtWq7DquOhtjv+0vAlZH+uzCPyD2mTGoQQ9SzQ1VrAERkL9aX37uj+lyMZU7aIiJgfaEOzxX1i2HHi+xf8dlAOlaKiRGISBaQrapv2U0/wSrK48GTZuQA8L7aeXtE5BhWErjhKVY+Bjytql0AquqtrsFlwO328U+B73np8x7wV2JVj9ukqkfsuY4QHfh7EbkScGOluC6yzx1X1b328W6gXEQygFJVfdGWrceex3VYSmOP3T8dKzHl217kMkwBjMIwRAu9w44H8f63K8Crqnq3jzE6hx3/GFivqvtE5F7sBIwTlMk9Sj63D/n84by5elT15yKyHbgJ+L2I3M+5ySLvAQqAFaraLyInsFYNw2UG631MOc/tBPgHVX1iHPIbYhjjwzBEOx1Ahn28DbhMROYCiEiaiFzg47oMoF5EErC+YM8ZT1XbgFYRucI+9yngLSbGq8CfenZ0iUiulz5bsJIiMkqmIURkNnBMVR8HfgMsZuR7AFZFPaetLNYCM88nmKp2ADUist6+R5It5yvAZ4f5gUpFpNCv2RpiEqMwDNHOk8DLIvKGqjZhZRh+VkT2Y5lvKnxc9zdYdvstwOFh7c8BG0Vkj+34/QyWE3w/sBTLjzFuVPVlLBPWLtuk9jUv3R4AvigiB/BdKe1O4KA9xiKskpzNWGa4gyLyCPAMsNIe59Oj5ueLT2Fla96P5WspVtX/AX4OvGeP9TwjFZNhimGy1RoMBoPBL8wKw2AwGAx+YRSGwWAwGPzCKAyDwWAw+IVRGAaDwWDwC6MwDAaDweAXRmEYDAaDwS+MwjAYDAaDX/x/CNDPZZIhvWYAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for k in range(len(transformations)):\n", " pylab.plot(distances, eval_counts[k], '-o', label='VQE + ' + transformations[k])\n", @@ -244,7 +159,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_swaprz.ipynb b/community/aqua/chemistry/h2_swaprz.ipynb index 8bbd7eccd..da46c7db6 100644 --- a/community/aqua/chemistry/h2_swaprz.ipynb +++ b/community/aqua/chemistry/h2_swaprz.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "scrolled": true }, @@ -24,29 +24,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515973 -1.07591361 -1.09262987 -1.10591801 -1.11628597 -1.12416089\n", - " -1.12990475 -1.1338262 -1.13618943 -1.13722136 -1.13711706 -1.13604435\n", - " -1.13414767 -1.1315512 -1.12836188 -1.12467173 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133943 -1.10634212 -1.10115034]]\n", - "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", - " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", - " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [ 685. 687. 707. 717. 666. 755. 828. 668. 750. 786. 645. 875.\n", - " 649. 788. 832. 2379. 938. 875. 816. 917. 757.]\n" + "Processing step __\b\b 0" ] } ], "source": [ "import numpy as np\n", "import pylab\n", + "import copy\n", "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure qiskit chemistry for the chemistry problem.\n", @@ -78,9 +63,14 @@ " d = start + i*by/steps\n", " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", + " dict = copy.deepcopy(qiskit_chemistry_dict)\n", + " dict['algorithm']['name'] = algorithms[j]\n", + " if algorithms[j] == 'ExactEigensolver':\n", + " del dict['optimizer']\n", + " del dict['variational_form']\n", + " del dict['initial_state']\n", " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", + " result = solver.run(dict)\n", " energies[j][i] = result['energy']\n", " hf_energies[i] = result['hf_energy']\n", " if algorithms[j] == 'VQE':\n", @@ -96,30 +86,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -132,30 +101,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYFOW59/Hvj4FhFxDc2IkIkSgBwd2IelTQyKJxQ46KGlHjkhNPjHqSo3jeGJJ4cmKiJgYj4pKIhKhBQUETERdUUBAFRFBRBlEUBUHWmbnfP54aqGlmhu6ZrumZnvtzXXNRXVVddVd3U3c9Sz0lM8M555xLV6NcB+Ccc65+8cThnHMuI544nHPOZcQTh3POuYx44nDOOZcRTxzOOecy4onDZZWksZIeiqa7StooqSB6vY+k2ZI2SPqNgvskfSnptdxGXn2STpe0MjrW/rmOp65J/R3UNfHfrEuPJ446QtIKSZuj/2Blf3fmOq6aMLOPzKyVmZVEs8YAnwN7mNl/AscAJwGdzeywXMWZBf8LXBUd6/za3rkkk/R1ym/nJwnub7SkF1PmTZS0LSWGN6HC34Gr5xrnOgBXzlAzezbJHUhqbGbFSe6jCt2AxbbzrtNuwAoz+zrTDeX4OFJ1AxZVtKAW4/y2mS2vhf1U5ddm9rMcx1BnSCrI12TpJY56oOwKT9L/RtU6H0g6Jba8jaR7Ja2WtErSz2PVQ6MlvSTpt5LWAmMlFURVRZ9H27oqumptLOksSa+n7P9aSf+oJLYekp6Pqp+eATrElnWPbXcicCHwk+hq9DLgz8CR0etbovecJmmBpHWSXpbUN7a9FZKul7QQ+DrabkdJf5f0WXQs18TWHytpsqQHovgWSRoYW95F0qPRe9fGS3iSLpa0JPq8Z0jqVsGxN5W0ESgA3pT0XhVxHihpVnRciyQNi21noqQ/SHoq+ixekrSvpNuj/b9T3SowSdMl/Sb2epKkCdH0/pL+FR3755L+IqltVZ+PpAOBu2Pf27o0YtjxO4he99DOKstnJd2lWFWRpCOi736dpDclHRdbNkvS/4s+ow2SZkrqEC1rJumhKNZ1kuZK2ida1lHSVElfSFou6dJKYn1K0lUp896UdEY0/U1Jz0TbWSrp7Nh6EyX9MfrMvwaO391nU2+Zmf/VgT9gBXBiJctGA9uBSwknqSuAjwFFyx8D/gS0BPYGXgMui723GLiaUMJsDlwOLAY6A+2AZwGLljcFvgAOjO1/PvC9SmKbA/xf9L5jgQ3AQ9Gy7mXbjV5PBH6eclwvxl73B9YAh0fHeWH0uTSNfUYLgC7RcTQCXgduAgqBbwDvA4Oj9ccCW4BTo+2NA16JlhUAbwK/jT63ZsAx0bLhwHLgwOgz+RnwchXfnQE9U77LeJxNou39VxTnCdHn1Dv2uXwODIji+BfwAXBBFOfPgefS3X/Ksn2jz/QEYFT0+bSOlvUkVBU2BfYCZgO3p/H5lPveKvpuU5al/g7mEKr3CgnVlV+x8zfTCVgbfWeNovjWAntFy2cB7wG9os92FvDLaNllwBNAiyj+AYRqUaJj+0N0HP2Az4ATYr+Tsv1fALwUi70PsC76jFoCK4GLot9F/+h76xP7DNYDR0exN8v1eSWx81WuA/C/6IsIJ5uN0Y+07O/SaNloYHls3RbRf8R9gX2ArUDz2PKRZSea6L0fpezrX0SJJXp9Ysp/7D8Ct0bT3wK+JDp5p2ynKyEptYzN+yvVTxx/BP5fyj6WAoNin9HFsWWHV3BsNwL3RdNjgWdjy/oAm6PpI6OTR+MKjusp4JLY60bAJqBbJd9dRYkjHud3gE+ARrF5DwNjY5/LPbFlVwNLYq8PBtZV8dsxwsk3/tsZHFv+PcIJ73Oik38l2xkBzE/j8yn3vcWOYUtKDPen/g5iv5kWsfc+FPvNXA88mLLtGcCF0fQs4GexZT8Ano6mLwZeBvqmvL8LUEKUMKN544CJsd9J2f5bA1+XfdfArcCEaPoc4IWUbf8JuDn2GTxQk/NAffnzqqq6ZYSZtY393RNb9knZhJltiiZbEerXmwCro+L5OsKPee/Ye1em7KdjyrzU5fcD50kScD4w2cy2VhBvR+BLK99G8WHVh1ilbsB/lh1HdCxdov1UFGs3oGPK+v9FSKZlPolNbwKaRVUmXYAPreL2h27A72Lb/AIQ4Wo4XfE4OwIrzaw0Nu/DlO19GpveXMHrVrvZ3yEpv50ZsWVPEK7Al5rZjkZthV5ukxSqN78inMDLqhqr+nwq878pMVxYwTodgS9iv2HY9Ts9K+U7PQbYL7ZO6nda9tk8SEgykyR9LOnXkprE9rkh9r7Uzx+AaJ1pwLnRrJHAX2KxHZ4S2yjCBVxFx5K3vHG8/ltJKHF0qOI/eeoQyKsJ1VRlupRb2ewVSdsIV8rnRX8VWQ20k9Qyljy6VrC/dK0klHRurWKd+LZXAh+Y2QHV3FdXVdx4XRbHXyp4X7ricX4MdJHUKJY8ugLv1mD7mbgVWAL0kDTSzB6O5v8iivNgM/tC0gigrJ2nqs+nJkNqrwb2lNQiljziv7+VhBJHhW0QVTGz7cAtwC2SugPTCSXWmdE+W8eSR1dgVSWbehi4WdJsQtXWc7HYnjezk6oKI9O46yMvcdRzZraa8B/jN5L2kNQoavQcVMXbJgM/lNQpagy9voJ1HiCcRLbHr1JT9v0hMI/wH7VQ0jHA0Boczj3A5ZIOV9BS0nclta5k/deADQoN0c0VGv0PknRoGvt6jXAS+2W0n2aSjo6W3Q3cKOlbsKPzwVk1OK5XCVfGP5HUJGrsHQpMqsE20yLpWEKd/AWENqM7JJVdabcmVI+uj+ZdF3trVZ/Pp0BnSYWZxhP7zYyNfjNHUv438xAwVNLg6PtsJuk4SZ0r3GD5Yz1e0sEKHUO+IrQLlprZSkIV1rhoe32BS6J9VWQ6oXTxP8AjsWT/JNBL0vnR99hE0qEKHQYaFE8cdcsTKt8P/rE033cBoaFxMaE9Ygrli/ap7iEkm4WEhu/phHrneNfBB4GDqPw/V5nzCG0NXwA3ExJOtZjZPEIHgDsJx7GcUJ9e2folwGmExs4PCHX4fwbapLGvEsIJqyfwEVBEqMPGzB4DfkWo8vgKeBs4pZJN7ZaZbYv2dUoU4x+AC8zsnepuswJvpvx2bpe0B+H7uMrMVpnZC8C9wH1RNeQtwCGEBt1pwKOxmCv9fAhtZIuATyR9HovhJykxxJfFjSK0oawlNPw/Qig1E53khxOqHD8jXOVfR3rnqn0Jv/2vCCWs5wm/YwhVTt0Jpb/HCO0SFXZ9j6plHyW0/f01Nn8DcDKhGutjQpXZrwgN5w1KWa8c14ApdO2928y6xeY1J/TGOcTMluUsOJf3JD0CvGNmN+c6FpceL3E0QFG1zqkK9xd0IpQUUks3VwBzPWm4bIuqd/aPqlWHEEoYj+c6Lpc+bxxvmMqqKR4h9NiZRrgXIiyUVkTrjMhFcC7v7UuoCmpPqAK7wnIwVIurPq+qcs45lxGvqnLOOZeRvKqqkjQUGNq6detLe/XqletwnHOuXnn99dc/N7O9drdeXlZVDRw40ObNm5frMJxzrl6R9LqZDdzdenlVVSVpqKTx69evz3UozjmXt/IqcZjZE2Y2pk2b3d7/5ZxzrpryKnF4icM555KXV4nDSxzOOZe8vEocXuJwzrnk5VXi8BKHc84lL68Sh3POueTl5Q2APXv2zHUozjlXI6WlxpbiEjZvK2Hz9hK2bC9h87ZSNm8Przdvi+aVTReXsGVbCWcf2oXO7VokGlteJQ4zewJ4YuDAgRk/Pcw559JhZmwrKWVLykl858m9ZMf8XV7vmC7d9cS/vaTc9rYWl+4+mBQSHNWzgycO55xLV2mpsbU4nNA3bSuu8ip907aqTuyx+RUkhdJqDLjRtHEjmhcW0LxJ+GvWpIDmhQU0a9KIdi2ahNfR/BaFO5fvWD823byw0Y71y9Zp1qSApo0bEZ7Rlay8ShxeVeVc3ZVa9VLpv2XTFVy5b4qfxCtcL/Or9EZi5wk4dhJu3qSAPVsW0rxtRSfugtiJu1HshN84mo4licICmjYuoKBR8if02uJjVTnnMAtX6lu27zw5x0/omyq5Ut+5bnGsCqZ453o1PKkXNBItopN2i5STevxEHz+Z71yvEc2jE/nOE3zjlKv4RhQW1M5Ven2Q7lhVeVXicC5flZQam8pOzttKdjkxp57sy07um7YVs3lb6c7pKq7sM61+aSTCFXbKybt5kwL2bt2k3Pxdql5S31PJ6yYF3vGzLvLE4VwWbIvq1cNVeHG5K/Vdp4tTTu4VX93H37utJPOr9eYpJ+qyk3e7loV0TDnRx0/WLWLVMCEx7Hql3rywgCYF8iv1BsoTh2sQthWXxq7Gi8udnMtPF1cyP3YFH1XHxE/sxRlersev1lukXIW3jRpKd85vvLOqpbAxLSo40cff36KwMU0bN6JRHtWpu7olrxKHN47XXzuqYmJX5mVX4hVdwZdVwWzeXlzhSb6mJ/bGjZRyUm9Mi8JwUm7fqvzJOvUEX3bF3qKw/HT86t7r1V195o3jLi1ljadlV+Wbdzm57zzB73LyTl13e3G5923eXsK2DPuslzWa7nLlXVhA8yaNdzlp75xuXO4kXn56Z3VMYWOvW3cNjzeON0CpV+3hpFwcO5GXlDvxb4rVye96xR5O8Jt3TJeQ6TVGRVffzQsL2Lt1s11O3C2aVHxCj5/oW/gVu3N1gieOWlR2x2m5E3vZiTteFbOtkuqXXZLAzgSwaVvmV+3x6pgWsWqW1s0as88eTWlR2HiXk36L2JV5/ORe/mRfQLPGBV7H7lye8sSRwszKVats3p5ylV7JyT61Xr2i6ppN20soybCuvWnjRjtP7LGr7g6tCmlR2KLcCXznybtxdIKv+Kq9RdRDxqtjnHPVUS8Sh6QRwHeBPYB7zWxmEvu5fspCHpm3MsPYiOraG5e/Mi8soF2Lwl3m7Xp1XvFJvSxB+FW7c66uSTxxSJoAnAasMbODYvOHAL8DCoA/m9kvK9uGmT0OPC6pHfC/QCKJ47jee7FPm2Y7T/ZNKjixx67ow1ACXtfunGtYaqPEMRG4E3igbIakAuAu4CSgCJgraSohiYxLef/FZrYmmv5Z9L5EnHLwfpxy8H5Jbd455/JC4onDzGZL6p4y+zBguZm9DyBpEjDczMYRSiflKFzS/xJ4yszeqGg/ksYAYwC6du2atfidc86Vl6s2jk5AvDGhCDi8ivWvBk4E2kjqaWZ3p65gZuMlrQaGFhYWDshqtM4553aoF91qzOz3ZjbAzC6vKGnE1vNnjjvnXMJylThWAV1irztH82pE0lBJ49evX1/TTTnnnKtErhLHXOAAST0kFQLnAlNzFItzzrkMJJ44JD0MzAF6SyqSdImZFQNXATOAJcBkM1tU0315VZVzziWvNnpVjaxk/nRgejb35aPjOudc8upF43i6vMThnHPJy6vE4Y3jzjmXvLxKHF7icM655OVV4nDOOZe8vEocXlXlnHPJy6vE4VVVzjmXvLxKHM4555KXV4nDq6qccy55eZU4vKrKOeeSl1eJwznnXPI8cTjnnMuIJw7nnHMZyavE4Y3jzjmXvLxKHN447pxzycurxOGccy55njicc85lxBOHc865jNT5xCHpQEl3S5oi6Ypcx+Occw1doolD0gRJayS9nTJ/iKSlkpZLuqGqbZjZEjO7HDgbODrJeJ1zzu1e0iWOicCQ+AxJBcBdwClAH2CkpD6SDpb0ZMrf3tF7hgHTyPIzyp1zzmWucZIbN7PZkrqnzD4MWG5m7wNImgQMN7NxwGmVbGcqMFXSNOCvFa0jaQwwBqBr165Zid8559yuEk0clegErIy9LgIOr2xlSccBZwBNqaLEYWbjgfEAAwcOtGwE6pxzble5SBwZMbNZwKx01pU0FBjas2fPJENyzrkGLRe9qlYBXWKvO0fznHPO1QO5SBxzgQMk9ZBUCJwLTM3Ghn3IEeecS17S3XEfBuYAvSUVSbrEzIqBq4AZwBJgspktytL+fJBD55xLWNK9qkZWMn863rXWOefqpTp/53gmvKrKOeeSl1eJwznnXPLyKnF4G4dzziUvrxKHV1U551zy8ipxeInDOeeSl1eJw0sczjmXvLxKHM4555LnicM551xG8ipxeBuHc84lL68Sh7dxOOdc8vIqcTjnnEueJw7nnHMZyavE4W0czjmXvLxKHN7G4ZxzycurxOGccy55njicc85lxBOHc865jNSLxCGppaR5kk7LdSzOOdfQJf3M8QmS1kh6O2X+EElLJS2XdEMam7oemJxMlM455zKR6DPHgYnAncADZTMkFQB3AScBRcBcSVOBAmBcyvsvBr4NLAaaJRyrc865NCSaOMxstqTuKbMPA5ab2fsAkiYBw81sHLBLVZSk44CWQB9gs6TpZlaaZNzOOecql3SJoyKdgJWx10XA4ZWtbGY/BZA0Gvi8sqQhaQwwBqBr167ZitU551yKXCSOajGzibtZPl7SamBoYWHhgNqJyjnnGp5c9KpaBXSJve4czXPOOVcP5CJxzAUOkNRDUiFwLjA1Gxv2IUeccy55SXfHfRiYA/SWVCTpEjMrBq4CZgBLgMlmtihL+/NBDp1zLmEys1zHkHUDBw60efPm5ToM55yrVyS9bmYDd7devbhzPF1e4nDOueTlVeLwNg7nnEteXiUOL3E451zy8ipxeInDOeeSl1eJw0sczjmXvLxKHF7icM655OVV4nDOOZe8ejNWlXOu/tq+fTtFRUVs2bIl16E4oFmzZnTu3JkmTZpU6/1pJQ5JjwL3Ak/V5SHNJQ0Fhvbs2TPXoTjnYoqKimjdujXdu3dHUq7DadDMjLVr11JUVESPHj2qtY10q6r+AJwHLJP0S0m9q7W3hHkbh3N105YtW2jfvr0njTpAEu3bt69R6S+txGFmz5rZKOAQYAXwrKSXJV0kqXplHedcg+JJo+6o6XeRduO4pPbAaOD7wHzgd4RE8kyNInDOuVrQqlWrcq8nTpzIVVddldE2FixYwPTp07MZVjkTJ05kr732ol+/fvTr148LLrgg423MmjWL007b5WGqWZVuG8djQG/gQWComa2OFj0iyUcTdM7lveLiYhYsWMC8efM49dRTK1zeuHHN+xudc8453HnnnTXeTpLSLXH83sz6mNm4WNIAIJ2RFGuL3wDonKuOJ554gsMPP5z+/ftz4okn8umnnwIwduxYzj//fI4++mjOP/98brrpJh555BH69evHI488ssvykpISrrvuOg499FD69u3Ln/70px37uO2223bMv/nmmzOKb8GCBRxxxBH07duX008/nS+//BKA5cuXc+KJJ/Ltb3+bQw45hPfee6/c++bOnUv//v13mV9T6abHdpLOSJm3HnjLzNZkNaIaMLMngCcGDhx4aa5jcc5V7JYnFrH446+yus0+Hffg5qHfqnKdzZs3069fvx2vv/jiC4YNGwbAMcccwyuvvIIk/vznP/PrX/+a3/zmNwAsXryYF198kebNmzNx4kTmzZu3o0QwduzYcsvHjx9PmzZtmDt3Llu3buXoo4/m5JNPZtmyZSxbtozXXnsNM2PYsGHMnj2bY489dpc4H3nkEV588UUAfvjDH3LRRRdxwQUXcMcddzBo0CBuuukmbrnlFm6//XZGjRrFDTfcwOmnn86WLVsoLS1l5cqVALz88stcffXV/OMf/6Br1641/5Bj0k0clwBHAs9Fr48DXgd6SPofM3swq1E551yWNW/enAULFux4XZYEIHQXPuecc1i9ejXbtm0r10112LBhNG/evNLtxpfPnDmThQsXMmXKFADWr1/PsmXLmDlzJjNnzqR///4AbNy4kWXLllWYOFKrqtavX8+6desYNGgQABdeeCFnnXUWGzZsYNWqVZx++ulAuDejzJIlSxgzZgwzZ86kY8eOmX1QaUg3cTQBDjSzTwEk7QM8ABwOzCa0fTjn3G7trmSQC1dffTXXXnstw4YNY9asWYwdO3bHspYtW1b53vhyM+OOO+5g8ODB5daZMWMGN954I5dddlm5+XfddRf33HMPQFYb3ffbbz+2bNnC/PnzE0kc6bZxdC5LGpE1QBcz+wLYnvWonHOuFq1fv55OnToBcP/991e6XuvWrdmwYUOlywcPHswf//hHtm8Pp8V3332Xr7/+msGDBzNhwgQ2btwIwKpVq1izZg1XXnklCxYsYMGCBZWe4Nu0aUO7du144YUXAHjwwQcZNGgQrVu3pnPnzjz++OMAbN26lU2bNgHQtm1bpk2bxo033sisWbMy+zDSkG7imCXpSUkXSroQ+Ec0ryWwLutRxUg6TtILku6WdFyS+3LONUxjx47lrLPOYsCAAXTo0KHS9Y4//ngWL168o3E81fe//3369OnDIYccwkEHHcRll11GcXExJ598Mueddx5HHnkkBx98MGeeeWaVCSjV/fffz3XXXUffvn1ZsGABN910ExCSyO9//3v69u3LUUcdxSeffLLjPfvssw9PPvkkV155Ja+++moGn8bupfXMcYW7Rc4AjolmvQT83XbzZkkTgNOANWZ2UGz+EMJ9IAXAn83sl1VsYxBwA/Ap8HMzW767eP2Z487VLUuWLOHAAw/MdRgupqLvJN1nju+2jUNSAfCsmR0P/D3D2CYCdxLaQ+Lbuws4CSgC5kqaSkgi41LefzHwgpk9H7Wr/B8wKsMYnHPOZdFuE4eZlUgqldTGzDK6QcLMZkvqnjL7MGC5mb0PIGkSMNzMxhFKJ5X5Emha2UJJY4AxQNa7njnnnNsp3V5VG4G3JD0DfF0208yuqcY+OwErY6+LCL2zKhTdPzIYaEsovVTIzMZLWg0MLSwsHFCNuJxzzqUh3cTxaPRX68ws7X37DYDOOZe8tBKHmd0vqTnQ1cyW1nCfq4Ausdedo3k15s/jcM655KXVHTc6IS8Ano5e94satKtjLnCApB6SCoFzgepuyznnXC1L9z6OsYRG7XUAZrYA+Mbu3iTpYWAO0FtSkaRLzKwYuAqYASwBJpvZomrEvgt/kJNzriLHH388M2bMKDfv9ttv54orrmDRokWccMIJ9O7dm/3335+bb76Z0tLwoNPUYc779evH4sWLc3EIdUq6iWN7BT2qdvsIWTMbaWb7mVkTM+tsZvdG86ebWS8z29/Mbs006Mr46LjOuYqMHDmSSZMmlZs3adIkzj33XIYNG8YNN9zA0qVLeeutt3jttdf43e9+t2O9c845Z8fd3QsWLKBPnz61HX6dk27iWCTpPKBA0gGS7gBeTjCuavESh3OuImeeeSbTpk1j27ZtAKxYsYKPP/6Y5cuX7xjBFqBFixbceeed3HbbbbkMt85Lt1fV1cBPga3Aw4Rqpv+XVFDV5Y3jztUDT90An7yV3W3uezCcUukAFOy5554cdthhPPXUUwwfPpxJkyZx9tlns2jRIgYMKN97f//992fz5s2sWxdGU4oPcw4wZ86cKkfLbQjSfeb4JjP7qZkdamYDo+nqP+k8IV7icM5VJl5dNWnSJEaOHJnW+1Krqhp60oD0Hx3bC/gx0D3+HjM7IZmwnHN5q4qSQZKGDx/Oj370I9544w02bdrEgAEDmD9/PrNnzy633vvvv0/79u1p27ZtTuKsD9Jt4/gbMB/4GXBd7K9O8cZx51xlWrVqxfHHH8/FF1+8o7QxatQoXnzxRZ599lkgPCXwmmuu4ZZbbsllqHVeuomj2Mz+aGavmdnrZX+JRlYNXlXlnKvKyJEjefPNN3ckjubNmzN16lRuvfVWevXqRYcOHTj66KMZNWrnWKplzxgv+3v55TrXL6jWpTus+ljCw5seIzSQAxA9yKnO8WHVnatb6suw6o8//jjXXnstzz33HN26dct1OIlKdFj1yIXRv/HqKSONmwBrk/eqcs7VxIgRIxgxYkSuw6jz0u1V1aOCvzqVNMCrqpxzrjZUmTgk/SQ2fVbKsl8kFZRzzrm6a3cljnNj0zemLBuS5Vicc3ksnfZUVztq+l3sLnGokumKXjvnXIWaNWvG2rVrPXnUAWbG2rVradasWbW3sbvGcatkuqLXOeeN487VTZ07d6aoqIjPPvss16E4QiLv3Llztd9fZXdcSSWER8UKaA5sKlsENDOzJtXec4K8O65zzmUuK91xzawgeyE555zLB+neOe6cc84Bnjicc85lKN07x3NGUiPCsz/2AOaZ2f05Dsk55xq0REsckiZIWiPp7ZT5QyQtlbRc0g272cxwoDOwHShKKlbnnHPpSbrEMRG4E3igbIakAuAu4CRCIpgraSpQAIxLef/FQG/gZTP7k6QpwD8Tjtk551wVEk0cZjZbUveU2YcBy83sfQBJk4DhZjYOOC11G5KKgG3Ry5LK9iVpDDAGoGvXrjWO3TnnXMVy0cbRCVgZe10EHF7F+o8Cd0j6DjC7spXMbLyk1cDQwsLCAZWt55xzrmbqfOO4mW0CLklz3SeAJwYOHHhpslE551zDlYvuuKuALrHXnaN5NeaPjnXOueTlInHMBQ6Q1ENSIWEE3qk5iMM551w1JN0d92FgDtBbUpGkS8ysGLgKmAEsASab2aJs7M8f5OScc8lLulfVyErmTwemZ3t/Pjquc84lL6+GHPESh3POJS+vEoc3jjvnXPLyKnF4icM555KXV4nDOedc8vIqcXhVlXPOJS+vEodXVTnnXPLyKnE455xLXl4lDq+qcs655OVV4vCqKuecS15eJQ7nnHPJ88ThnHMuI544nHPOZSSvEoc3jjvnXPLyKnF447hzziUvrxKHc8655HnicM45lxFPHM455zKS6BMAs0HSd4BRhFj7mNlROQ7JOecatKSfOT5B0hpJb6fMHyJpqaTlkm6oahtm9oKZXQ48CdyfZLzOOed2L+kSx0TgTuCBshmSCoC7gJOAImCupKlAATAu5f0Xm9maaPo84JKE43XOObcbiSYOM5stqXvK7MOA5Wb2PoCkScBwMxsHnFbRdiR1Bdab2YbK9iVpDDAGoGvXrjUP3jnnXIVy0TjeCVgZe10UzavKJcB9Va1gZuPNbKCZDdxrr71qGKJzzrnK1PnGcQDNbSn0AAAYn0lEQVQzuzmd9SQNBYb27Nkz4Yicc67hykWJYxXQJfa6czTPOedcPZCLxDEXOEBSD0mFwLnA1Gxs2Icccc655CXdHfdhYA7QW1KRpEvMrBi4CpgBLAEmm9miLO3PBzl0zrmEJd2ramQl86cD05Pct3POuWTk1ZAjXlXlnHPJy6vE4ZxzLnl5lTi8jcM555KXV4nDq6qccy55eZU4vMThnHPJy6vE4SUO55xLXl4lDuecc8nzxOGcq5u2boC3pkBpSa4jcSnyKnF4G4dzeWTmf8PfL4Hnf53rSFyKvEoc3sbhXJ74dBG8cT803xNm/xo+eCHXEbmYvEoczrk8YAYzfgpN94DLZsOe34BHL4WvP891ZC7iicM5V7csmwnvPweDroe2XeDM+2DTF/D4FSGpuJzLq8ThbRzO1XMl20NpY8/94dDvh3n79YXBt4aEMueu3MbngDxLHN7GUQ3bt0Dx1lxH4VwwbwKsXQYn/xwaF+6cf+j34ZunwbNjYdXrOQvPBXmVOFyGvngf/nAE3DEQPl6Q62hcQ7f5S5g1DnocC71PKb9MguF3Qut9YcrFsMVrFXLJE0dDtfpNuPfk8B/QSmDCYFg4OddRuYbs+V/D5nUw+BchUaRq3g6+dy+sWwlP/Ie3d+SQJ444s4bxY/xgNtz3XWjcDC6eAWOeh04DQs+Vp2+EkuJcR+gams+Xw2vj4ZDzYd+DK1+v6+Fwwk9h0aOhu67LiTqfOCR1lfS4pAmSbkh0Z6/eHRWDv0p0Nzm16HF46HvQpnNIGnv1glZ7wQX/gMMvh1f+AA+O8K6PrnY989/hQub4n+1+3aN/BN84Dp66HtYsSToyV4Gknzk+QdIaSW+nzB8iaamk5Wkkg4OBKWZ2MdA/sWAh9OhY/A8YPwhWL0x0Vzkx917422jo2B8umg5tOu1cVtAETvkVjLgbiubCnwbBx/NzFqprQN5/HpZOh+9cC6332f36jRrB6eOhaevwe962KfEQXXlJlzgmAkPiMyQVAHcBpwB9gJGS+kg6WNKTKX97A68Al0j6F/B0otEefQ2MfhK2b4Y/nxh6eORD1ZUZPDcOpl0LvQbD+Y9Diz0rXrffSLj46VDHPGEIvDmpdmN1DUtpCcz4L2jTFY64Mv33td4HzhgPny2Fp5OtiHC7SjRxmNls4IuU2YcBy83sfTPbBkwChpvZW2Z2WsrfGuAi4GYzOwH4bpLxAtDtKLj8Reh+DDz5ozBWTn2uuiotCQnj+V9Cv1Fwzl+gsEXV7+nYH8bMgs6HwmOXhSqBku21Ea1raOY/BJ++DSeNhSbNMnvv/ifAMT8KbR1v/z2R8FzFctHG0QlYGXtdFM2rzNPANZLuBlZUtpKkMZLmSZr32Wef1SzClh1g1BT4t5tg0WMw/rj6WXW1fUsoys+bAEf/Bwy/Cwoap/felh1CyeSIK0PbzwPDYWMNP1fn4rZugH/9HLocDt86o3rbOP6/oPNhMPWHoXt5fbdtU7hPpY6PCFznG8fN7G0zO9PMLjezH1ex3njgFuCNwsLCylZLX6NG8J3/hAufhO2b6l/V1Zav4C9nwpKpoXvjSbdU3MWxKgWNYcgv4Ix7wo95/CBY9UYy8damdR+FISxcbr3wf/D1Ghg8LvPfZpmCJnDmveH/65SLoXhbdmOsTVs3woOnwz0nwP8dCNOvgw9fhtLSXEe2i1wkjlVAl9jrztG8uqn70XDZC+HfJ38Ef/9+uFKqyzZ8ChNPhY/mhEbEIzOoO65I37PhkpmggtDuMf8v2YkzF1a8BHcdDr89CJ65Gb5em+uIGqYvPwzDhxx8NnQeULNtte0Kw+4MnTn+eUt24qtt276Gv54dOqYcd2Mohb3xANx3Cvy2T6gu/uiVOpNEZAlfQUvqDjxpZgdFrxsD7wL/RkgYc4HzzGxRtvY5cOBAmzdvXrY2F5SWwov/B8/dCu16wNn3V93fPB3FW+HDl2Dp07DylTA+T9cjQ1/1fQ6CRgWZb/OL98NVy8Y1cPaDcMCJNYsx7uu1MGV0uA/ksDGhJFPQpPL1zWDTWvhyxc6/dR+Gk8aXK8LxD/t9aLCvDR/Oiboid4L9vh0eElTYMhzLUVdX3mHAZd/fLoKlT8HV80LX8GyY9mOYew+cN7n2flPZsG0TPHwOrHgxlO4PPjPM37oB3p0RqsuXPQMlW6F1R/jWCPjW6dBpYChpZZGk181s4G7XSzJxSHoYOA7oAHxKaOS+V9KpwO1AATDBzG7N0v6GAkN79ux56bJly7KxyV2teBGmXAJb1oXuq4dcmFkxe+OaMFjbu0/De8/Bto3QuDl0HhhO+l9Fha/C1tDlUOhyBHQ9IiwvbFn1tle/CQ+dCaXFMOpv4T3ZVlIMz94Mc+6ErkfB6X8MvdC+XLEzIcSTw/avy7+/5V7Qrju07QafvRP+RtwNfc/KfqxxH70KD50BrfeD0dNCr5zPlsLzv4K3H4XCVnD4ZaF0lkQC2fBpqDZc/Sa02hv26Ah7dArx7NEJWrTP+kmgzvroVZhwMhz7k3AzX7Zs3xKqlL9aBVe8FD7jum77Fnj4XHh/Fpx+N3z73IrX2/JVOGcsegyWPwsl22CPzrEkMqD61X0xdSJx5EoiJY64jZ+Fu6zffw4OPgtO+23oU14RM/jkrXDl8O7T0QBtFk4WvQZDryHQ/Ts7ezqtWwkrXw3VTB+9Eh5og4Vqov36RiWSI0JCifd5/2A2PHweNGsD5z8WbuxL0sK/wdSroXhz+flNWobE0K5bSA5l0+26hyqFePLb8hU8PDKUuk69DQ67NJlYV84NpbBWe4ekscd+5ZevWQKzfgmLHw/PgDj8cjjyB2GIi5ooSxaLHg/HiIUHE5UN8xJXUBglkY6xv1hi2aMjtNon/c4NdVVpKdx7IqxfBVe/Dk1bZXf7ny8L9yB17A8XTq1eqb22FG+FSaNg+TOh40r/f0/vfVvWh9Laosdg+T+hdHvozlyWRDr2r3YSaZCJo1ZKHGVKS+HF38BzvwgPmjnrftj3oLBs++ZwIn/36ZAwykoRnQZAr1NCwtj34PS+3M3roGjezkSyah4UbwnL2vUISaRtt1CNtuc34N8fLX9jX5I+XRx+9Ht0ihJE93DlnMmPdvvm0Ki5dHq4a/jYH2flymmHotfDnfAt2oebHqu6Cv10UUggS6ZC0zYheRxxRUjG6drwCSyeGpLQhy8DBh167/xPvfeBocfMxjXw1cfht7Fhdfj3q4/L/5WkjFqsAuhwAOzdB/bpE6oz9+4TEnI2P7MkLZwcLrqG/wH6j0pmHwsehscvD20Fx9XRezyKt8HkC+Ddp2Do72DA6OptZ/O68H9n0WPw3r9CbcN5f4NeJ1drcw0ycZRJvMQR98EL0b0e68NJZs07odhZvDlcfe9/fBjps+dJ6d0VuzvF2+CThTsTyUevwKbPQ2PayEn1s56+pBimXgVvPgxH/ABOvjU71Tar3oAHRkCLdqGkkW5d+idvhQTyzpMhaRx5VSiFNNuj4vW/Wr2zZPHRHMBgr29CnxEhYex9YOaxm4WeX/HEsm5lKB2tWRR6hpVpukfYx959YJ9vhb+9+0DztpnvN0nbNsGdA0NX70tnJVs19+hl8NZk+M6PQxtWq72S21emSraHbvLvPAmn/m/2Stqbv4R3psFBZ2Z+T0ykQSaOWi1xxG1cE1VdzQpXf72GRFVQx0Djpsnu2yycVFrvV7eL5btTWgozbgz3jHz7PBh2R82qZT5eAA8MCyf+0dPDk+QytfrNkECWTodmbeGoKIE0bR1KBGUli49eISSLA0Oi6DMC9v5m9WNPx5avdiaRTxeF0t+aReWHG9+jc1Qy+VYonRxwUmalp2x7/tehc8no6aGXYpK2bgw3r77zJBQ0hW+fEy4A9uqd7H53p6Q4XGgufhyG/AqOuDy38aRokImjTK2WOMqUlsLXn4V69PpSbVDXmIWTy6xfQO/vwpkTqnfltHoh3D80nOBHTwttLDXx8fyQQN59OrR7tD8Ail4Ly/bus7NkkeuTUtlFxKeLw93YaxaH6c+XhiqMVvvAkHHhZrva/o1+tRruOAR6/huc81Dt7fezd+GVu8LQOcVb4ICTQwLpcWztfwalJfDoGHh7SihVH3VV7e4/DZ44ajtxuOx5dTw8dV3oNHDuXyuvIqrIJ2+HpNGkBVw0LbS7ZMuq1+H522DDx+FpdH1GJN8JIRuKt4W2sadvCKWonieGKpI9e9ReDI//AN76G1z5amiLq21ffx4G+XxtfKja3bdvSCAHnVF1l/JsKS0Jn8HCSXDi2DBUSh3UIBNHzqqqXPYtnAyPXR56ko36O7Rsv/v3fLoY7j8tDM89+sncnKDqspLicJ/Dv34eSiDHXgdHXVP+Ea1J+HhBGLbnqKvCI2FzafsWWPhIuPnw86XhvojDLwuN00m1CZWWhh6ICx4KHUAGXZfMfrKgQSaOMl7iyBNLn4a/XRjajc5/rOrG7TXvwMTvhqvH0dOg/f61F2d9s34VPH09LHkiNOKfdjt0OzKZfZmF7+Wzd+Ca+bltY4krLQ33Q8y5I/SALGwF/c8PHVxqWrWZup9pP4LXJ8Kg68PYWnVYuomjgdxx5Oql3kNC9+INn4ShTj5fXvF6n70bqqcaNQ5ji3nSqFqbTqGdYeQjYaiL+4bAP67K/vhd6z4K3dU/fCmcMOtK0oDQo6vXyXDhE3DZbPjmd0Np7Pf9YPKFoQt8TZmFKtfXJ8Ix14buwXkir0ocXlWVp1a/CQ9Go6f++9+hY7+dyz5fFq5ozUJJoz60OdQl276GWeNgzh9CVc3Jt4a7l6vTcGwWeni9My30ZvokGlH6G8eF6sa6fvPi+lXw2p9g3kTYuj50Jthz/3Ah0n7/aLpnaBtq0rzqbZmFxzC/+sdQHXjS/9SLTjNeVeVVVfnl8+XhRr4t68P9Kt2PhrXvwX2nhruwR0/Lfa+m+uyTt8IgnkVzQ6eE034bbjbcndKSMNJBWbL4cgUg6HJYuIr/5mn1rwS4dWNoxF41H754L/zOvl5Tfp09OqcklCiptO0Wqkuf+W94+Y5wX9LgX9SLpAGeODxx5KP1RWHokHUfweBbYfZvwpg9o5+s3k12rrzSUnj9Pnj2lnAD6zHXht4/qV2it28J9yy982QY+mLT52HIlB6DQrLofWp2bnatS7Z8tTOJrH0vNr08jFtXRgXQet/QLfqwMXDKr+tN0gBPHJ448tXXa+Ev3wv3VrRoH+qo9/lWrqPKLxs+DY9zfXtKuJo+7bdhNOFlM0OyWPZsGLyysHVoJ/jmd8PICJl0m84nm76IJZPlYXqfPuGu9XqUNMAThyeOfLZ1A7zwm/Ash3365Dqa/LX8nzDtP+HLD0LHg7KbCHufGqqgenwn+ZERXK1qkInDG8edy7Ltm8MwMJvXhZJFAs+AcHVHg0wcZbzE4ZxzmfP7OJxzziXCE4dzzrmMeOJwzjmXkTqfOCT1kTRZ0h8lnZnreJxzrqFLNHFImiBpjaS3U+YPkbRU0nJJu3u24ynAHWZ2BXBBYsE655xLS9KDx0wE7gQeKJshqQC4CzgJKALmSpoKFADjUt5/MfAgcLOkYUAaY2s755xLUqKJw8xmS+qeMvswYLmZvQ8gaRIw3MzGAadVsqkro4TzaGX7kjQGGAPQtWvXGkbunHOuMrkYrrITsDL2ugg4vLKVo8TzX0BL4LbK1jOz8ZJWA0MLCwsHZCVS55xzu6jj4xyDma0gKkmkse4TwBOSTpf0YTV32QH4vJrvra/8mBsGP+b8V9PjTespVrlIHKuALrHXnaN5WWNme1X3vZLmpXPnZD7xY24Y/JjzX20dby66484FDpDUQ1IhcC4wNQdxOOecq4aku+M+DMwBeksqknSJmRUDVwEzgCXAZDNblGQczjnnsifpXlUjK5k/HZie5L5rYHyuA8gBP+aGwY85/9XK8ebl6LjOOeeSU+eHHHHOOVe3eOJwzjmXkQabOHY3Xpak0ZI+k7Qg+vt+LuLMpnTGCJN0tqTFkhZJ+mttx5htaXzPv419x+9KWpeLOLMljePtKuk5SfMlLZR0ai7izKY0jrmbpH9GxztLUudcxJlNlY0DGFsuSb+PPpOFkg7JagBm1uD+CONivQd8AygE3gT6pKwzGrgz17HW8jEfAMwH2kWv98513Ekfc8r6VwMTch13wt/xeOCKaLoPsCLXcdfCMf8NuDCaPgF4MNdxZ+G4jwUOAd6uZPmpwFOAgCOAV7O5/4Za4tgxXpaZbQMmAcNzHFPS0jnmS4G7zOxLADNbU8sxZlum3/NI4OFaiSwZ6RyvAXtE022Aj2sxviSkc8x9gH9F089VsLzeMbPZwBdVrDIceMCCV4C2kvbL1v4bauKoaLysThWs972omDdFUpcKltcn6RxzL6CXpJckvSJpSK1Fl4x0v2ckdQN6sPMEUx+lc7xjgX+XVEToEn917YSWmHSO+U3gjGj6dKC1pHwfaTvt3351NNTEkY4ngO5m1hd4Brg/x/HUhsaE6qrjCFff90hqm9OIas+5wBQzK8l1IAkbCUw0s86E6owHJeX7eeDHwCBJ84FBhCGO8v17TlS+/2Aqs9vxssxsrZltjV7+GajvI+6mM0ZYETDVzLab2QfAu4REUl9lMi7audTvaipI73gvASYDmNkcoBlhYLz6Kp3/yx+b2Rlm1h/4aTSvXneCSEOiYwI21MSx2/GyUuoDhxGGR6nP0hkj7HFCaQNJHQhVV+/XZpBZlta4aJK+CbQjDI9Tn6VzvB8B/wYg6UBC4visVqPMrnT+L3eIlapuBCbUcoy5MBW4IOpddQSw3sxWZ2vjdX5Y9SSYWbGksvGyCgg9aRZJ+h9gnplNBa6JnjpYTGiEGp2zgLMgzWOeAZwsaTGhKH+dma3NXdQ1k+YxQzjZTLKoO0p9lebx/iehCvJHhIby0fX5uNM85uOAcZIMmA1cmbOAsyQaB/A4oEPUXnUz0ATAzO4mtF+dCiwHNgEXZXX/9fg345xzLgcaalWVc865avLE4ZxzLiOeOJxzzmXEE4dzzrmMeOJwzjmXEU8crl6QtDGNdf5DUoss7nOEpD5Z3N7LNXjvxujfjpKmVLFeW0k/qO5+nEuHJw6XT/4DyChxSCqoYvEIwgB5WWFmR2VhGx+b2ZlVrNIW8MThEuWJw9Urko6LnqkwRdI7kv4S3R17DdAReE7Sc9G6J0uaI+kNSX+T1Cqav0LSryS9AZwl6VJJcyW9KenvklpIOoowYsBt0bM69pfULxr8caGkxyS1i7Y3S+G5HvMkLZF0qKRHJS2T9PNY7Btj09dLeiva5y8rOM4eUexvpWyje9kzGCR9S9JrUXwLJR0A/BLYP5p3m6RWCs+ieCPa1vDYdpZIukfh2SszJTWPlvWU9GwU2xuS9o/mXxd9Tgsl3ZLVL9bVL7keV97//C+dP2Bj9O9xwHrC2DuNCMOEHBMtWwF0iKY7EO4Sbhm9vh64KbbeT2Lbbh+b/jlwdTQ9ETgztmwhMCia/h/g9mh6FvCraPqHhKHK9wOaEsb/ap9yDKcALwMtotd7VnC8U4ELoukrY+/tTvQMBuAOYFQ0XQg0jy+P5jcG9oh9JssJz2joThgVoV+0bDLw79H0q8Dp0XQzQinuZMKzPBR97k8Cx+b6d+F/uflrkEOOuHrvNTMrApC0gHASfDFlnSMI1UwvSYJwYo2PRfVIbPqg6Kq+LdCKMHxFOZLaAG3N7Plo1v2EBwSVKRu+5C1gkUXjAkl6nzDYXHzolhOB+8xsE4CZVfRchaOB70XTDwK/qmCdOcBPFZ5o96iZLYuOtVzowC8kHQuUEobW3ida9oGZLYimXwe6S2oNdDKzx6LYtkTHcTIhecyP1m9FGABzdgVxuTznicPVR1tj0yVU/DsW8IyZjaxkG1/HpicCI8zsTUmjiQZ6rGZMpSnxlVYSXzqqHA/IzP4q6VXgu8B0SZex66CUo4C9gAFmtl3SCkIpIh4zhM+xeRW7EzDOzP6UQfwuT3kbh8snG4DW0fQrwNGSegJIaimpVyXvaw2sltSEcKLdZXtmth74UtJ3omXnA89TPc8AF5X1AJO0ZwXrvEQYfJGUmHaQ9A3gfTP7PfAPoC/lPwMIT/lbEyWN44FuVQVmZhuAIkkjon00jeKcAVwcayfqJGnvtI7W5R1PHC6fjAeelvScmX1GGNH4YUkLCdU636zkff9NqNd/CXgnNn8ScJ2k+VED8YWExvKFQD9CO0fGzOxpQtXWvKiq7ccVrPZD4EpJb1H5k9vOBt6OtnEQ4VGhawnVc29Lug34CzAw2s4FKcdXmfMJo0MvJLTF7GtmM4G/AnOibU2hfIJyDYiPjuuccy4jXuJwzjmXEU8czjnnMuKJwznnXEY8cTjnnMuIJw7nnHMZ8cThnHMuI544nHPOZeT/A0sVgE/lfUYEAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", @@ -168,30 +116,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEWCAYAAACe8xtsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VOX58PHvnZmEhJCNLAgB2QRbXOqC1tZqXVp3hbqgoHV9RdRW675VqVar1WrdftVqxa0i7i21WlyqUncREXdFBAkgJCFMAmSbmfv945wJkzCTzCSzJbk/1zUXZ56zPScJc8+zi6pijDHGxCMr3RkwxhjT+1jwMMYYEzcLHsYYY+JmwcMYY0zcLHgYY4yJmwUPY4wxcbPgYYwxJm4WPIxxicgyEflZmu49RETmi0iDiNycwvs+ICLXJunax4vIC8m4tkk/Cx4mJiLyHxG5JkL6JBH5TkS87vsfi8h/3Q9Bn4jMFZHvhR2/j4gERWRDh9ePUvk8GWg6UAMUquoF6c5MvERklIho6O8AQFUfUdUD0pkvkzwWPEysHgROEBHpkP5L4BFV9bsB4AXgn8AwYDSwGHhDREaFnbNKVQd1eL2V/EdIjfAP0DiMBD5Vm/LB9BIWPEys/gGUAnuFEkSkBDgMeMhNuhF4SFVvU9UGVV2nqr8F3gVmduemblXShSKy2C3JPCYiue6+k0Xk9Q7Hq4hs424/ICJ/EZHn3dLNGyKylYjcKiJ1IvK5iOzc4Za7icin7v77Q/dyr3eYiCwSkfUi8qaI7Nghn5eIyGJgY6QA4pbK3nOf4z0R+XEon8BJwMVuPreoOhORASLyJxH5VkTWiMjdIpLn7vtMRA4LO9YrItUisov7/gm3dOhzq8a2i/Kz7urneaiIfCAi9SKyQkR+F3bofPff9aGSZMfrRXt+d9+rIvJ793fUICIviEiZuy9XRP4uIrXuz/49ERkS6RlM6ljwMDFR1UbgceDEsOQpwOeq+qGIDAR+DDwR4fTHgZ5UX0wBDsIpyewInBznub8FyoBm4C1gofv+SeCWDscfDxwIjAXGu+fiBplZwBk4QfSvwFwRGRB27lTgUKBYVf3hFxWRwcC/gdvd828B/i0ipap6MvAIcKNbCnspwnPc4OZnJ2AboBK4yt33qHvvkAOBGlVd6L5/HhgHVLjP/kjkH1WXNuL8/ovd5zxTRCa7+/Z2/y2OVJLs7PnDDpsGnOLmMwe40E0/CSgCRrjnzgAau/kMJkEseJh4PAgcHfZt/EQ3DWAwzt/T6gjnrQbKw94Pc79Bhr/yO7nv7aq6SlXXAf/C+QCN1TOq+r6qNgHPAE2q+pCqBoDHgI4ljztVdYV7r+vY/KE8Hfirqr6jqgFVfRAnGO3RIZ8r3EDb0aHAV6r6sKr6VfVR4HPg8K4ewK0qnA6c55bmGoA/AMe5h8wGjnADODgfwo+GzlfVWW5JsBn4HfADESnq6r4dqeqrqvqRqgZVdbF7j5/GeHosz3+/qn4Z9kUl9HtuxQka27g/+/dVtT7e/JvEsuBhYqaqr+M06k4WkbHA7jgfXAB1QBAYGuHUoe55IatUtbjDa2Mnt/4ubHsTMCiObK8J226M8L7jtVaEbS/HabsBp03igvCAh/NNeFiUczsa5l4v3HKcEkRXyoGBwPth9/6Pm46qLgE+Aw53A8gRuL8XEfGIyA0i8rWI1APL3GuWxXDfdkTkhyLyilsl5sMpAcR6nVieP9rv+WFgHjBHRFaJyI0ikh1v/k1iWfAw8XoIp8RxAjBPVdcAuB/+bwHHRDhnCvBqEvKyEedDFQAR2SoB1xwRtr01sMrdXgFc1yHgDXS/QYd01ti9CicAhdsaWBlDnmpwAt12YfcuUtXwwBequpqE0/C+xE2f5qb9DKfqZ5Sb3rHjA3T985wNzAVGqGoRcHfYdbpq6O/286tqq6peraoTcKpGD6N99alJAwseJl4P4XwQnc7mKquQS4GTROQcESkQkRJxxhDshVPNkmgfAtuJyE5uVdrvEnDNs0VkuFtHfwVO1RbAvcAM99u3iEi+24BcEON1nwPGi8g0t0H7WGAC8GxXJ6pq0L3/n0WkAkBEKkXkwLDD5uC0K53J5tIgQAFO9VotTmDo7PfQ1c+zAFinqk0isjtOYAqpxil5joly7W4/v4jsKyI7iIgHqMepxgp2dZ5JLgseJi6qugx4E8jH+RYavu91nMbaI3HaOdbhNHbur6ofhx06TLYc53FUN/LyJXAN8BLwFfB652fEZDZOd+OlwNfAte69FuAEzDtxquiWEEfDvarW4nxjvgDng/xi4DBVren0xM0uce/5tlv99BKwbdj1V+OU/H7M5oAHTrBfjvMN/1Pg7U7y2NXP8yzgGhFpwGmsfzzs3E04bURvuFVr4W1BPX3+rXA6N9TjVM+9hlOVZdJIrFu5SRZxurK+AkxT1Xnpzo8xJnGs5GGSxu2RMxnYQbo3cM4Yk6Gs5GGMMSZuVvIwxhgTtz5blVBWVqajRo1KdzaMMabXeP/992tUtbzrI/tw8Bg1ahQLFixIdzaMMabXEJGOAzmjsmorY4wxcbPgYYwxJm4WPIwxxsStz7Z5RNLa2kpVVRVNTU3pzkrC5ebmMnz4cLKzbb44Y0zy9avgUVVVRUFBAaNGjUK2WBCv91JVamtrqaqqYvTo0enOjjGmH+hX1VZNTU2Ulpb2qcABICKUlpb2yRKV6b/q5z/N0hm78eUxlSydsRv1859Od5ZMmH5V8gD6XOAI6avPZfqn+vlPs+bui9AWZ10tf81K1tx9EQCFex+ZzqwZV78qeRhjeoea2de3BY4QbWmkZvb1acqR6ciCRwrtu+++zJvXfnLZW2+9lTPPPJNPPvmE/fbbj2233ZaxY8cyc+ZMgkFnyYIHHniA8vJydtppp7bXp59+mo5HMCYl/LWr4ko3qWfBoxOJrnOdOnUqc+bMaZc2Z84cjjvuOI444gguvfRSvvjiCz766CPeffddbrvttrbjjj32WBYtWtT2mjBhQo/yYkwm85YOiyvdpJ4FjyhCda7+mpWg2lbn2pMAcvTRR/Pvf/+blpYWAJYtW8aqVatYsmQJe+65JwcccAAAAwcO5M477+Smm25KyLMY09uUTbsMyclrlyY5eZRNuyxNOTId9bsG85C1919F8zefRN3f9OX7qL+lXZq2NLLmL+fje+mRiOcMGL0dFadcE/WagwcPZvfdd+f5559n0qRJzJkzhylTpvDJJ5+w6667tjt27NixNDY2sn79egAee+wxXn9988Jub731Fnl57f9zGdNXFO59JIqy5vZfA+AZvBXlJ/zWGssziJU8ougYOLpKj1V41dWcOXOYOnVqTOd1rLaywGH6ukETD2jbHnbRfRY4Mky/LXl0VkIAWDpjN6fKqgNvWSUjrnmq2/edNGkS5513HgsXLmTTpk3suuuufPDBB8yfP7/9/ZcupbS0lOLi4m7fy5jeLODbvLx5YP3aNObERGIljyiSVec6aNAg9t13X0499dS2Usfxxx/P66+/zksvvQRAY2Mj55xzDldffXWP7mVMbxYePPzrq9OYExOJBY8oCvc+kiEzbsJbVgkieMsqGTLjpoQUnadOncqHH37YFjzy8vKYO3cu1113HePHj6esrIw999yT448/vu2cxx57rF1X3TfffLPH+TAmkwXqw0seFjwyTb+ttopF4d5HJqWedfLkyXRcO3777bfnlVdeAeAf//gH559/PtOmTWPkyJGcfPLJnHzyyQnPhzGZzO+rdTZE8Fu1VcaxkkcGmjx5MkuXLmXkyJHpzooxaROqtsoeMspKHhnIgocxJiMFfNVk5RfhLau0kkcG6nfBo2N1UV/RV5/L9F9+Xw2eolK8xeXtGs9NZkha8BCRESLyioh8KiKfiMi5bvpNIvK5iCwWkWdEpNhNHyUijSKyyH3dHXatXUXkIxFZIiK3SzenkM3NzaW2trbPfdCG1vPIzc1Nd1aMSZiArxZvYRme4nIreWSgZDaY+4ELVHWhiBQA74vIi8CLwGWq6heRPwKXAZe453ytqjtFuNZdwOnAO8BzwEHA8/FmaPjw4VRVVVFd3ffqT0MrCRrTVwR8NeRUboO3uBxt2kSwcSNZefnpzpZxJS14qOpqYLW73SAinwGVqvpC2GFvA0d3dh0RGQoUqurb7vuHgMl0I3hkZ2fbSnvG9BKB+ho8E/bAW1wBgN9XTY4Fj4yRkjYPERkF7IxTcgh3Ku2DwGgR+UBEXhORvdy0SqAq7JgqNy3SfaaLyAIRWdAXSxfG9Bca8BNoqMNT5FRbgY0yzzRJDx4iMgh4CviNqtaHpV+BU7UVmmVwNbC1qu4MnA/MFpHCeO6lqveo6kRVnVheXp6YBzDGpFygoQ5U8RaV4XWDh40yzyxJHSQoItk4geMRVX06LP1k4DBgf3Vbr1W1GWh2t98Xka+B8cBKILwyf7ibZozpo0K9q5ySh1NtFaizkkcmSWZvKwHuAz5T1VvC0g8CLgaOUNVNYenlIuJxt8cA44ClbttJvYjs4V7zROCfycq3MSb92gWPgsGQlYXfZyWPTJLMkseewC+Bj0RkkZt2OXA7MAB40e1x+7aqzgD2Bq4RkVYgCMxQ1XXueWcBDwB5OG0kcTeWG2N6D787r5W3qBTxePAUltoo8wyTzN5WrwORxmM8F+X4p3CquCLtWwBsn7jcGWMyWcCd18pTWAaA18Z6ZJx+N8LcGJP5AuurweMlK78IAE9xBYH1Nso8k1jwMMZkHH99DZ7CUiTL+YjyFldYySPDWPAwxmScgK8Gb1Fp23tPURmB9dV9bmqh3syChzEm4wR8tW3tHeCUPNTfQnCjL425MuEseBhjMk7AV9M2shzAU+KOMrfuuhnDgocxJuP462vwFoWVPIrcUeZ1FjwyhQUPY0xGCTZtQps24SkMa/MITY5ojeYZw4KHMSajBOrdMR7hJY/Q5Ii2KFTGsOBhjMko/rCpSUKyBhWDN9tKHhnEgocxJqOEShfhbR4igreozKZlzyAWPIwxGSUQoeQBTruHNZhnDgsexpiM0hY8Cge3S/cWl1tX3QxiwcMYk1H8vhokN5+sAQPbpXuKy21BqAxiwcMYk1GcqUnKtkj3FlcQ8NWgwWAacmU6suBhjMkogfqaLdo7wCl5EAw4S9SatLPgYYzJKH5fbcTg4Q0tR2s9rjKCBQ9jTEaJVm3lCU1RYsEjI1jwMMZkDA0GCdRHKXmEJke0RvOMYMHDGJMxghvXQzDQbl6rEG/b/FYWPDJB0oKHiIwQkVdE5FMR+UREznXTB4vIiyLylftviZsuInK7iCwRkcUiskvYtU5yj/9KRE5KVp6NMenl9205r1WI5OYjObnW5pEhklny8AMXqOoEYA/gbBGZAFwKvKyq44CX3fcABwPj3Nd04C5wgg0wE/ghsDswMxRwjDF9S6SpSUJExF2O1koemSBpwUNVV6vqQne7AfgMqAQmAQ+6hz0ITHa3JwEPqeNtoFhEhgIHAi+q6jpVrQNeBA5KVr6NMekTbWqSEI+NMs8YKWnzEJFRwM7AO8AQVV3t7voOGOJuVwIrwk6rctOipUe6z3QRWSAiC6qr7Q/MmN7G7waGaMHDSh6ZI+nBQ0QGAU8Bv1HV+vB96qxmn7AV7VX1HlWdqKoTy8vLuz7BGJNRAr4aEMEzKHLNtKe43No8MkRSg4eIZOMEjkdU9Wk3eY1bHYX7b+gvYSUwIuz04W5atHRjTB8T8NXiKRiMeDwR93uLywnUr0P9rSnOmekomb2tBLgP+ExVbwnbNRcI9Zg6CfhnWPqJbq+rPQCfW701DzhARErchvID3DRjTB8T8NU405BEEVqONrTaoEkfbxKvvSfwS+AjEVnkpl0O3AA8LiKnAcuBKe6+54BDgCXAJuAUAFVdJyK/B95zj7tGVdclMd/GmDTx19fgKYzc3gHgLXb2+devxTt4q1Rly0SQtOChqq8DEmX3/hGOV+DsKNeaBcxKXO6MMZko4Ksld8wOUfd7bKBgxrAR5saYjBHwRZ5RN2Tz5IgWPNLNgocxJiMEW5sJbqrvNHiE9lnwSD8LHsaYjBBqBO+szSNrQB5ZAwtsZt0MYMHDGJMRNk9NsuWkiOGc5WgteKSbBQ9jTEYIdDIpYjhvcQWB9TWpyJLphAUPY0xG6GpqkhAreWQGCx7GmIzQ2Yy64bxF5dZgngEseBhjMkLAV4Pk5CK5+Z0e5ymuILipnmBLU4pyZiKx4GGMyQgBn7P8rDOzUXRed/qSUEnFpIcFD2NMRvB3MUAwJDT3lb/O2j3SyYKHMSYjBOpr8HYyxiNk8yhzCx7pZMHDGJMRnKlJOh/jAWElD6u2SisLHsaYtFPVtjaPrnjbpiixkkc6WfAwxqRdcFMD6m/pspsugHizySoosZl108yChzEm7QL1ThVULCUPcEeZW4N5WlnwMMakXajbraew6zYPcLrrhkakm/Sw4GGMSTv/+vhKHh4bZZ52FjyMMWkX69QkId6SCpvfKs0seBhj0q6tzSPGaitPcTna3EiwcWMys2U6YcHDGJN2fl8NWYNKEG92TMd729Yyt9JHuiQteIjILBFZKyIfh6U9JiKL3NcyEVnkpo8SkcawfXeHnbOriHwkIktE5HbpauIbY0yvE/DVdrkIVDiPjfVIO28Sr/0AcCfwUChBVY8NbYvIzYAv7PivVXWnCNe5CzgdeAd4DjgIeD4J+TXGpEkgxnmtQjaXPKzRPF2SVvJQ1fnAukj73NLDFODRzq4hIkOBQlV9W1UVJxBNTnRejTHpFaiv6XTt8o48JaH5rSx4pEu62jz2Atao6ldhaaNF5AMReU1E9nLTKoGqsGOq3LSIRGS6iCwQkQXV1fZHZUxv4Y9xXqsQz6ASyMqykkcaxRQ8RGSsiAxwt/cRkXNEpLgH951K+1LHamBrVd0ZOB+YLSKF8V5UVe9R1YmqOrG8vLwH2TPGpIoG/AQb6mLupgsgHg+ewjJrME+jWEseTwEBEdkGuAcYAczuzg1FxAscCTwWSlPVZlWtdbffB74GxgMrgeFhpw9304wxfUSg3qndjqfNA5xR5gEbZZ42sQaPoKr6gV8Ad6jqRcDQbt7zZ8DnqtpWHSUi5SLicbfHAOOApaq6GqgXkT3cdpITgX92877GmAzUNjVJnMHDU1xh1VZpFGvwaBWRqcBJwLNuWqcdskXkUeAtYFsRqRKR09xdx7FlQ/newGK36+6TwAxVDTW2nwX8DViCUyKxnlbG9CGhOariaTAHt+Rh1VZpE2tX3VOAGcB1qvqNiIwGHu7sBFWdGiX95AhpT+FUjUU6fgGwfYz5NMb0MgFfLUBc4zzAGWUeWF+Dqna57rlJvJiCh6p+CpwT9v4b4I/JypQxpv9oq7Yqjq+Ti7e4AvW3ENzowzOoJ/13THfE2ttqTxF5UUS+FJGlIvKNiCxNduaMMX2fv74GvNlkDYyvg6Wn2KnmsnaP9Ii12uo+4DzgfSCQvOwYY/qbgK8Gb2FZ3FVPoVHmgfVrYfi4ZGTNdCLW4OFTVWuoNsYkXCDOAYIhHpuiJK1iDR6viMhNwNNAcyhRVRcmJVfGmH4j4KuNu5suOL2twKYoSZdYg8cP3X8nhqUpsF9is2OM6W/89TXkDRsb93lZ+UWIN8dGmadJrL2t9k12Rowx/VPAVxN3N10AEcFTXGYljzSJtbdVkYjcEpp0UERuFpGiZGfOGNO3BZs2oc2N3aq2Ahtlnk6xjjCfBTTgTKM+BagH7k9Wpowx/UN3pyYJ8RaV2SjzNIm1zWOsqh4V9v7q0CqAxhjTXW1Tk/Sg5NH09eJEZsnEKNaSR6OI/CT0RkT2BBqTkyVjTH8RKnl445zXKsRbXEGgvhYN2PCzVIu15HEm8KDbziE4KwSenKxMGWP6h81Tk3Q3eJRDMEBgQ3zrgZiei7W31SLgB6EFmlS1Pqm5Msb0C353UkRPYfy9rWDzfFiBurUWPFKs0+AhIieo6t9F5PwO6QCo6i1JzJsxpo8L1NeQNbCArJzcbp0fGijoX7+WAUxIZNZMF7oqeeS7/xZE2KcJzosxpp8J+GriXscjXGiKklD1l0mdToOHqv7V3XxJVd8I3+c2mhtjTLd1d16rkPCSh0mtWHtb3RFjmjHGxMzfzXmtQiQ3HxmQZ6PM06CrNo8fAT8Gyju0exQCnmRmzBjT9wXqa8jbdtduny8ieIsr8NdZySPVumrzyAEGuceFt3vUA0cnK1PGmL5Pg0EC9bU9avMAdzlan5U8Uq2rNo/XgNdE5AFVXR7PhUVkFnAYsFZVt3fTfgecDoR+05er6nPuvsuA03AWmzpHVee56QcBt+GUdP6mqjfEkw9jTGYKbqiDYLBHbR4A3qJyWlbbwqapFusgwU3ueh7bAW196lS1synZHwDuBB7qkP5nVf1TeIKITACOc68/DHhJRMa7u/8P+DlQBbwnInPdNdWNMb2YPzS6vIfjMzwlFfg/ezsRWTJxiLXB/BHgc2A0cDWwDHivsxNUdT7OSPRYTALmqGqzqn4DLAF2d19LVHWpqrYAc9xjjTG93OZJEct7dB1vcTnBhjrU35qIbJkYxRo8SlX1PqBVVV9T1VPp/kJQvxKRxSIyS0RK3LRKYEXYMVVuWrT0iERkemja+OpqqwM1JpP1dEbdkFDw8dtYj5SKNXiEQvpqETlURHYGBnfjfncBY4GdgNXAzd24RlSqeo+qTlTVieXlPfs2Y4xJrs3VVj1s87DlaNMi1jaPa91JES/AGd9RCJwX781UdU1oW0TuBZ51364ERoQdOtxNo5N0Y0wvFvDVQlYWWYNKuj64E6FR5jZQMLVinRgx9CHvA7q9JK2IDFXV1e7bXwAfu9tzgdkicgtOg/k44F2cGXzHichonKBxHDCtu/c3xmSOQH0NnsJSJCvWCpDIvCXuFCVW8kipmIKHiNxPhLms3LaPaOc8CuwDlIlIFTAT2EdEdnKvtQw4w73OJyLyOPAp4AfOVtWAe51fAfNwuurOUtVPYn04Y0zm8vdwXquQUJuJLUebWrFWWz0btp2LU2pY1dkJqjo1QvJ9nRx/HXBdhPTngOdiy6YxprcI+Gp63N4BkJWTS9bAQluONsVirbZ6Kvy9W6p4PSk5Msb0CwFfLdnb/CAh1/IUl7ctaWtSo7uVjeOAikRmxBjTvwTqa3rcTTfEW1xubR4pFmubRwNOO4W4/34HXJLEfBlj+rBgSxPBTQ0JafMAp+TRvMyaQ1Mp1mqrSItBGWNMtwQSNMYjxFtcwab1rybkWiY2XU3Jvktn+1V1YWKzY4zpDwKhtcuLEzOY11tcQXBTA8HmRrIG5CXkmqZzXZU8OhsBrnR/ihJjTD/mr3enJklUtZXbdhLw1ZBVMaKLo00idDUle7cHBBpjTDSBBM2oG+Ip2TzKPNuCR0rEOs4DEdkemED7Kdk7TrdujDFdStSkiCE2v1XqxdrbaibOaPEJOAP2DsYZ52HBwxgTt4CvBhmQR1buwIRcr21mXQseKRPrOI+jgf2B71T1FOAHQFHScmWM6dP8vtqElTpgc/WXjTJPnViDR6OqBgG/iBQCa2k/260xxsQsUF+DN0GN5QDizcZTONhKHikUa5vHAhEpBu4F3gc2AG8lLVfGmD4t4KvBO3irhF7TU1xhbR4pFOsgwbPczbtF5D9AoaouTl62jDF9WcBXy4DR2yf0mt6iMlvTI4ViqrYSkbkiMk1E8lV1mQUOY0x3qSr+BM5rFWIlj9SKtc3jZuAnwKci8qSIHC0iuV2dZIwxHQU3+sDfircosUtFe92ZdVW3WHrIJEFMwUNVX3OrrsYAfwWm4DSaG2NMXDaP8UjMvFYhnuIKtLkRbdqY0OuayGKekl1E8oCjgBnAbsCDycqUMabv8ofmtUpwtVVooKC1e6RGrG0ejwOf4cxldScwVlV/ncyMGWP6poA7r1Uiu+rC5kkW/XXW7pEKsXbVvQ+YGlpX3BhjuivRU5OEeIsr3Otb8EiFTkseInIxgKrOA47ssO8PScyXMaaPagsehYMTel2PVVulVFfVVseFbV/WYd9BnZ0oIrNEZK2IfByWdpOIfC4ii0XkGXfgISIySkQaRWSR+7o77JxdReQjEVkiIreLiMT4bMaYDOT31ZBVUIJ4Yp6XNSaeQSWQ5bHuuinSVfCQKNuR3nf0AFsGmBeB7VV1R+BL2gekr1V1J/c1Iyz9LuB0nHXTx0W4pjGmFwn4ahM2FXs48XjwFJXZFCUp0lXw0Cjbkd6336k6H1jXIe0FVfW7b98Ghnd2DREZijOa/W11Om8/BEzuIs/GmAwWqK9J2CJQHXmLy21yxBTpKnj8QETqRaQB2NHdDr3foYf3PhV4Puz9aBH5QEReE5G93LRKoCrsmCo3LSIRmS4iC0RkQXW1ffswJhMFfIkfXR7iKSq3kkeKdLWSoCcZNxWRKwA/8IibtBrYWlVrRWRX4B8isl2811XVe4B7ACZOnGjDTI3JQH5fLXkJHiAY4i0pp2XF50m5tmkvsS1WMRCRk4HDgP3dqihUtRlodrffF5GvgfHAStpXbQ1304wxvZD6WwluqEv41CQhnuIK/L4aVBXrW5NcMY8wTwQROQi4GDhCVTeFpZeLiMfdHoPTML5UVVcD9SKyh9vL6kTgn6nMszEmcQL1yRldHuItKgd/K8EN65NyfbNZ0oKHiDyKs+bHtiJSJSKn4YxOLwBe7NAld29gsYgsAp4EZqhqqLH9LOBvwBLga9q3kxhjehF/kgYIhmwe62HtHsmWtGorVZ0aIfm+KMc+BTwVZd8CILET/xtj0iI0QNCbrDaP0Cjz9WthxPik3MM4UlptZYzp35JebVXiljxsipKks+BhjEmZzVOTJK+rLkDAJkdMOgsexpiU8ftqEG8OWQMLknL9rPwixJtj81ulgAUPY0zKOAMES5PWjVZE8BSXt5VwTPJY8DDGpEzAV5u09o4QT3G5lTxSwIKHMSZl/Emc1yrE5rdKDQsexpiUCfhq2paLTRZvcYWN80gBCx7GmJRQ1bY2j2TyFJcTqK9FA7bwaTJZ8DDGpIQ2bURbmpJfbVVUDsEggYZ1XR9sus2ChzEmJfxto8uT3GD5zhgvAAAc40lEQVReEjbK3CSNBQ9jTEoEkjyvVYjX5rdKCQsexpiU2Bw8ktzmERplbsEjqSx4GGNSwu9L7rxWIaHJEW2sR3JZ8DDGpESgPjSvVXJLHll5+UjuQKu2SjILHsaYlAj4asgaWEhW9oCk38tbXGHVVklmwcMYkxLOGI/kVlmFeIrKrOSRZBY8jDEp4ffVJr2xPMQpeVibRzJZ8DDGpESgvsYZwJcCnuJyWxAqySx4GGNSIrC+OmXVVt7icoINdWhrS0ru1x8lNXiIyCwRWSsiH4elDRaRF0XkK/ffEjddROR2EVkiIotFZJewc05yj/9KRE5KZp6NMYmngQCBhnUpq7byhLrr1tu6HsmS7JLHA8BBHdIuBV5W1XHAy+57gIOBce5rOnAXOMEGmAn8ENgdmBkKOMaY3iGwoQ5U8SZ5XquQ0ChzW442eZIaPFR1PtBxdrJJwIPu9oPA5LD0h9TxNlAsIkOBA4EXVXWdqtYBL7JlQDLGZLBUTU0S0lbysHaPpElHm8cQVV3tbn8HDHG3K4EVYcdVuWnR0rcgItNFZIGILKiutj8aYzJFqoNHW8nDelwlTVobzFVVAU3g9e5R1YmqOrG8PDW9OowxXfOnuuTh3sfGeiRPOoLHGrc6Cvff0FeDlcCIsOOGu2nR0o0xvUSgbTr21DSYZ+XkkpVfZKPMkygdwWMuEOoxdRLwz7D0E91eV3sAPrd6ax5wgIiUuA3lB7hpxpheIlBfC1kesvKLU3ZPG2WeXN5kXlxEHgX2AcpEpAqn19QNwOMichqwHJjiHv4ccAiwBNgEnAKgqutE5PfAe+5x16iqLRFmTC8S8NXgKSxFslL3fdVGmSdXUoOHqk6Nsmv/CMcqcHaU68wCZiUwa8aYFPL7avAWp6a9A6B+/tM0fb0IbW5k6YzdKJt2GYV7H5my+/cHSQ0exhgDoZJHaoJH/fynWXP3RWhLIwD+mpWsufsiAAsgCWTTkxhjki6VM+rWzL6+LXCEaEsjNbOvT8n9e6J+/tMsnbEbXx5TydIZu1E//+l0ZykqCx7GmKTzpzB4+GtXRU6vWUnDW8+igUBK8hGvUInJX7MSVNtKTJkaQCx4GGOSKti8CW3amLJuut7SYZF3ZHlZffN0lp33U3wvP5pxkyb2thKTBQ9jTFIF6p3Okalq8yibdhmSk9cuTXLyGHLWLQw9/69kDRjImrsu4Jtf/Yi6Z+8l2LQpJfnqir8mSokpSkkq3azB3BiTVKmemiTUKF4z+3r8tavwlg5r19tq0I8OY9OHr7Hu6TuofmAmtU/eSskhp1J88Kl4ClI/56qqsv65+4g22UbUklSaWfAwpheon/901A/DTJfqqUnACSDRfj4iQv5O+5C/0z40frGAdc/cQe3jN7Nu7l0U//yXFB82ncZP3krJzzuwsZ41fzmfDe88R87o7WlduQRtaWp3TPHBpyb8volgwcOYDNfbu55unpokdcEjVnnbTqTy0gdp/vZz1v3j/6j799+oe/ZeEIGg07CerJ9309LFrL75DFprVlJ24lWUHH4GDf97pi1oeYqHEGxswPfyIxTtPxXPoNSNzo+FtXkYk+F6W0NqR23VVoWpaTDvjgFbf4+h59zB6DveQAbktQWOkET+vFWV9fMeYsXlR6D+FkZc/RSDj5iBiFC495GMufs9xj+xkrH3LmT4FX+nde0KVt88HfW3JuT+iWLBw5gMF7XraYY2pHYUqK9FcgeSlTsw3VnpUvaQrdHmyA3o/pqVPe6hFWzcwHe3nc3aey8lb4efMPKmF8j73m5Rj8/7/g8ZcsaNbProddbef1WP7p1oFjyMyXDRGkwztSG1I7+vBm9R71kiobOf69Kz92Dd03cQaIh/er3m5Z+x/JKDaHhzLmXTLqPysodiKo0V7XssJZPOxDfvQdY/f3/c900WCx4mLXrTSNp0G7THoVsmShal0y7dMj3D1M9/mg1vPUvrmuW95vccratv8RFnMmD4eGpmX8/SMyay5p5LaVm5JKZr+v47h28vO5Tgpg0Mn/kEg4/8dVyTRJZNu5z8XX/G2vuvYuOHr8X1PMliDeYm5Xp7A3AqBVub2bjgBTwlWyEeD/7aVWQNLCS40Ycnw6uB2n7Prc1A7/k9d9XVt/nbz6n7973Uv/IYvhceIn+X/Sk+7HQG7rAXItK+Z9zgoXgrRtD02TsM3OEnbHXu/7WtchgP8XgY+pu/8O0VR7D6lhls/Yd/kVO5TUKfO+48OZPZ9j0TJ07UBQsWpDsbJoKlM3ZzpmDowFtWyZi734twRv+17pk7qXnkD1Re+Sj5P/gpAOpvZflFBxBs3sSoP79K1oC8Lq6Sev66NSz7zb4EN67fYl9f+T37fTX4XniI9f95gICvhpytv0/uuJ1p+N8zW3RwyN/9YIZdcA/i8fTonq1rV/DtpYeQlV/E1n/4V8LHpYjI+6o6MZZjrdrKpJQGAhEDB/SeBuBU8detofap28ifeEBb4AAQbzYVp12Lf+0K6ubelcYcttdau4q6f/+NFVf+gqXTd4kYOKDv/J69RWWUHnM+o+96lyFn3QJA/cuztwgcAM1LF/c4cABkV4xg2EV/w19dxaqbz0hrDywLHiYlVJWNC//L8ot+HvWY3tIAnCo1f/8D+FspP2nmFvsGbr8ng350OOueuZPW6qo05M7RWl1F3b/u4dsrjuCbMyZSff9VBDbWUzrlAjwlQyKe09d+z1k5uRTtdxwjb34JkIjHJDJg5n3/h1TMuJHGj19n7awrSVftkbV5mKRr+nox1Q9fS+PHr5O91SiKDjmN+pe2/IZWdMCJacph7FI10rvxy4XUv/YEJZPPJmfo6IjHlJ94JRsXvkT1g1cz7MJ7E56HkI7PXHzo6RAMsOHtf9P01UIABozajtKpl1Cwx6FtdfHZQ0a1a9sCp+G5bNplSctrOokI3rJhkatkExwwi/aZQsuKL6n751/IGTGekjSMQrfgYZKmdc231Dz6RxpefwZP4WDKT7uW4p+dgGTnkLfNzptH0pYMIdi0Cd9Lf6do/6kZORIZUtfQr8Eg1bOuxFNcQelR50Y9Lrt8OIOPPIfaR//IxsXzyd9x74TlISTSM9c8+DsABozZgbLjL2PQHoeSM3TMFud21fDcF5VNuyxlAbNs2mW0rFxC9f1XkTN0DPk77ZPwe3TGGsxNwgUa6lj39O1On/SsLEoOP4OSSWfhGVgQ9ZymJYtYcdWRDBizA8NnPk5W9oAU5rhrgYY6vjlnL4IR+vcnugG4/tUn+O7Ocxnyq1sp2mdKp8cGW5pYft6+SHYOI//0EuLNTlg+IHrnBk/JVoy9d2FC79VXpHIesmDjBr797WT81VVsff2/yKkc16PrxdNgbsHDdFvH/ySDp1xIsKGWdU/fQbCxgcJ9plB67EVklw6N6XoNb85l9S0zKNx3CkPO+jMikeuPUyHY2kzTF++zafF8Ni6eT/PXH0K0/ysijH8icieAuO/buIFvfv0TsssqGfGHf8U0FmDDghdYdcPJlJ80k5LDz0hIPkK+PDpKdUsCn9n0TGt1Fd9eegiqkJWdjX/dd90OWvEEj5RXW4nItsBjYUljgKuAYuB0oNpNv1xVn3PPuQw4DQgA56jqvNTl2EQSqTpj7V/OB5T8Xfan7PjLGTDy+3Fds+DHR9BS9RW1j99MzvDxDJ50VhJyHvmbYcFev6BlxRds+tAJFo2fvoU2N0KWh9zxu1B6zPmsn/cQAV/1FtdLZH127VO3EVi/lmEXz4p5EFn+rj9n4M77Ufv4zRT85Bd4SyoSkpdNi/8XdV9fa/TuzbLLh1P08xNZ9+QtBN20VIypSWvJQ0Q8wErgh8ApwAZV/VOHYyYAjwK7A8OAl4DxqtrpWpJW8kiuqNUZRWWMvW9xt6+rqqz+8ww2vPUswy65n0ETD+hJNrfQMegBkOVBcvPRTfUAZA8bS/4P9mbgjnuTt92P26rbIp4LFB3y/xhy6jU9zlvL6m9Yft6+FOw5ia1+fVuc5y5l+Xn7devcSBo/f5eq308lK7+Y4Ia6dtOES04eQ2bc1KfbLnqbRI2d6k3jPPYHvlbV5Z0cMwmYo6rNqvoNsAQnkJg0irbqWaC+tkfXFRG2OvvPDBizI6tvPZvm5Z/16HodRZqhlmAAAq0MOfNmRt/1LqNv/x8Vp13HoN0ObNdOU7j3kQyZcRPeskoQwVs6DO9Wo/C98CAbF73a47xVP3g1eLMpO+HyuM/NGTqG4sOnU//aEzR+3rP2l6Yli1h53Ql4S4cy8o/PM2TGnzY/c1mlBY4MlI7JM9MdPI7DKVWE/EpEFovILBEJDZ2sBFaEHVPlpm1BRKaLyAIRWVBdvWX1gkmMjYtehazI7RGJqM7IGjCQykvuJ2tgAStvOKltMaGeaq2uijpAUVuaKNp/Ktnlwzu9RviU2WP+uoCRf3yeAcPHs+rGU9n06TvdztvGRa+yccELlB51Dt4o4yO6UnrkuXgHD2XtrN+igU4L5lE1L/uUqmun4SkYzPCZj+MtqWj/zHe/Z4EjA6Vj8sy0BQ8RyQGOAJ5wk+4CxgI7AauBm+O9pqreo6oTVXVieXnvmcWzJ1I5wWBgYz3f3XUhK6+dhqewDOnQIyqRXRK9g7ei8uL7CfhqWHXjqQTd+ZG6Q/2trPvnX1j2m58SbRBXd/+TefKLqLxyDtnlw1l1/S9pWvJht/JX/cBMsrcaRfFh07uVD4CsvHzKTvwtzUs/wvffR7s+oYOWlV9Rdc2xZOXkMXzm42Rbu0avEW0yx2SOqUlnyeNgYKGqrgFQ1TWqGlDVIHAvm6umVgIjws4b7qb1Gd0NAKE6eH/NSlBtayRLRgDZuOhVlp+/L/WvzKFk0lmM/svbDDnz5qRWZ+Ru8wO2+tVtNH2xgLV3X9ytkbSNn73D8osPpObhaxm4w16UnXJ1wv+TeYtKqbxqDlkFJVRdO43mbz+P6/z18x6kpeoryk+8qsddlAv2nEzehD2omX09gYa6mM9r+W4ZK64+FkQYPvMxsods3aN8mNTaoko1BdWLaWswF5E5wDxVvd99P1RVV7vb5wE/VNXjRGQ7YDabG8xfBsb1lQbzSI2wkpNL6bEXkbftRAIN6wg01DmvDXUEQ9sNdTR+8R4E/FtcM5HjDgIb66l+6BrqX55NTuU2DDn7VvLG75KQa8eq9olbqH3sT5SdcAWDJ58d0zmB+lqq/34d9f+dg7eskorTrmXQbgcCyeuH3/LdMlZc+QtQZcTvn4k6Mjyc31fLsl/vSe42O1F55aMJ6Z7cvOxTll98AEU//yVDTu969bvW6ipWXHUkwcaNjLj6ybh7yZm+I+PHeYhIPvAtMEZVfW7awzhVVgosA84ICyZXAKcCfuA3qvp8V/foTvDoyYdKPOcGNtbTunopLauWsvZvlxHc1BBbBj1ePAUleAaV4CkcTOOnb0c9tOTwMyjc7zgGjNg2tmtHsHHRq6y56wL8dWsoOXwGpcdeSFZObrev112qyne3nkXDm3MZdvGstiAQ8dhgkPpX5lD98HUEGxsoOWw6pcecn7JV7JpXfMmKq35BVm4+I37/DNllEZvn2qz56yX4Xp7NyJtfZsCI8QnLx9r7rmD9vAcZeeM8BozaLupx/ro1rLjySAL1NQyf+QS5Y3dMWB5M75PxwSMV4g0ekUsAsXVJjHZu6bEXkDNsLC2rvqZl1VI3YHxNYH1sjfmVVzyCp2AwnoISsgpKyMob1O6babTueZKTiwb8EPCTO24XCvc9loI9J+HJL4zpvu1KG8PHMeSsP6e8tNFRsLmRFTOPoqXqS7a+di4DRk3Y4pjm5Z+x5t5Lafr8PWfyuNOvZ8DW30t5Xpu+XkzV1cfgKS5nxO//EXW6laZvPubbiw+k+OBTqTj19wnNQ2DDepad8xNyKscx/JqnI5Zo/L5aqmYeRWtNFcN/+2iny6Ga/sGCB/EHj2gfxFn5RQyefBYaDELAjwYCaNDftk0wgO+Vx9CmjZ1e31NYSs6wsWQPG0PO0DHkVI4le+hYVl53fLf7Z3cW8Ab+4Kc0zH8K3ytzaPn2cyQnl0F7HErRfseRN+FHUQegtSttHHEmpVMuSEtpIxL/uu/49tJDCbQ04snJw1/njKQdfPT5tK76irpn7yUrv5DyE6+icJ8paR2h3vjZO1T9fio5w8Yw/HdP4hlU3G6/qlI18yiaV3zB6Dve2GJ/Iqx/8RHW/vUitjr3Tgr3av8FKLBhPVW/O4aWVV9TefnDDNx+z4Tf3/Q+FjyIP3h8eUxl9OknwmVlOYPKsjyIxwseL8ENkdctABjxh2fJGTYm6odDT0o8ofM7qy5TVZq/XozvlTk0/O8Zgpvqya7YmsJ9p1C4zxQaP3vXOb9mFZKbhzZtypjSRiQ1T97Kujk3dkgVQCncfxrlJ1yOp2BwOrK2hY0fvsaq609iwOjtGX7VHLLyBrXta3jzX6y+5QwqTr+B4gOTM5uwBgJ8e9mh+OvWMPr2/7XdP9i4gaprjqPpm4+ovOQB8nfeNyn3N72PBQ8SV/Lwlg5j1O3/cwJFlifiN/aeju5M1URqweZGNrz7PPX/ncOmj153EiULNLj5II+XijNuoni/YxN+/0SIPrK9nLH3xd9NNtka3nme1TdPJ2/CHlRe/jBZObkEmzex7NyfkpVfxMgb5yVkkaBoGr98nxWXH05W3iCCTRvxlg5FcvJo/W4Zwy68h0G7H5y0e5veJ6PntspUUadSPv7yLpf57Ok0zIV7H5mSgVdZA/Io3OtICvc6kta1K1h+4c+2bKwP+Fn3+J8yNnhEGzEbqE/MQMJEK/jhweivbuW7O87h28sPJ7hhfVvwK9n76KQGDoDW75ZDlodg4wZg88wAhQedbIHD9Ei6R5hnjJ70k05HH+ueyq4Y0faB0lEmLxOajpG0PVW491EU7DOFlmWftCs1rX/2nqQO6gRnOhaCW/Zq37TgxaTe1/R9VvII05MSQKpKD4nkLU3NqmeJlMrFdhKpMVRNGEZbGqmZfX1S/27SMeeR6R+s5NGPpWNKg57qjaU8SN+HeG8sqZnewUoe/VhvXSbUSnmx660lNZP5LHj0c73xg7g3SteHeG/9gmAynwUPY1IgnR/i9gXBJIMFD2NSxD7ETV9iDebGGGPiZsHDGGNM3Cx4GGOMiZsFD2OMMXGz4GGMMSZufXZWXRGpBpZ38/QyIDNn2ksee+a+r789L9gzx2ukqpbHcmCfDR49ISILYp2WuK+wZ+77+tvzgj1zMlm1lTHGmLhZ8DDGGBM3Cx6R3ZPuDKSBPXPf19+eF+yZk8baPIwxxsTNSh7GGGPiZsHDGGNM3Ppt8BCRg0TkCxFZIiKXRth/sohUi8gi9/X/0pHPROrqmd1jpojIpyLyiYjMTnUeEy2G3/Ofw37HX4rI+nTkM5FieOatReQVEflARBaLyCHpyGcixfDMI0XkZfd5XxWR4enIZ6KIyCwRWSsiH0fZLyJyu/vzWCwiuyQ8E6ra716AB/gaGAPkAB8CEzocczJwZ7rzmuJnHgd8AJS47yvSne9kP3OH438NzEp3vlPwe74HONPdngAsS3e+U/DMTwAnudv7AQ+nO989fOa9gV2Aj6PsPwR4HhBgD+CdROehv5Y8dgeWqOpSVW0B5gCT0pynZIvlmU8H/k9V6wBUdW2K85ho8f6epwKPpiRnyRPLMytQ6G4XAcldSD35YnnmCcB/3e1XIuzvVVR1PrCuk0MmAQ+p422gWESGJjIP/TV4VAIrwt5XuWkdHeUW+Z4UkRGpyVrSxPLM44HxIvKGiLwtIgelLHfJEevvGREZCYxm8wdMbxXLM/8OOEFEqoDncEpcvVksz/whEFqJ6xdAgYiUpiBv6RLz33539dfgEYt/AaNUdUfgReDBNOcnFbw4VVf74HwLv1dEitOao9Q5DnhSVQPpzkgKTAUeUNXhONUbD4tIX/8suBD4qYh8APwUWAn0h9910vT1P5hoVgLhJYnhblobVa1V1Wb37d+AXVOUt2Tp8plxvp3MVdVWVf0G+BInmPRWsTxzyHH0/ioriO2ZTwMeB1DVt4BcnMn0eqtY/j+vUtUjVXVn4Ao3rdd3juhEPH/73dJfg8d7wDgRGS0iOTgfHHPDD+hQP3gE8FkK85cMXT4z8A+cUgciUoZTjbU0lZlMsFieGRH5HlACvJXi/CVDLM/8LbA/gIh8Hyd4VKc0l4kVy//nsrDS1WXArBTnMdXmAie6va72AHyqujqRN/Am8mK9har6ReRXwDycnhqzVPUTEbkGWKCqc4FzROQIwI/TMHVy2jKcADE+8zzgABH5FKdIf5Gq1qYv1z0T4zOD82EzR91uKr1ZjM98AU6V5Hk4jecn9+Znj/GZ9wGuFxEF5gNnpy3DCSAij+I8U5nbdjUTyAZQ1btx2rIOAZYAm4BTEp6HXvw3Y4wxJk36a7WVMcaYHrDgYYwxJm4WPIwxxsTNgocxxpi4WfAwxhgTNwseplcQkQ0xHPMbERmYwHtOFpEJCbzemz04d4P77zARebKT44pF5Kzu3seYWFnwMH3Jb4C4goeIeDrZPRlnQr2EUNUfJ+Aaq1T16E4OKQYseJiks+BhehUR2cddj+FJEflcRB5xR9GeAwwDXhGRV9xjDxCRt0RkoYg8ISKD3PRlIvJHEVkIHCMip4vIeyLyoYg8JSIDReTHODML3OSu9TFWRHZyJ4xcLCLPiEiJe71XxVkXZIGIfCYiu4nI0yLylYhcG5b3DWHbl4jIR+49b4jwnKPdvH/U4RqjQms4iMh2IvKum7/FIjIOuAEY66bdJCKDxFnHYqF7rUlh1/lMRO4VZ+2WF0Qkz923jYi85OZtoYiMddMvcn9Oi0Xk6oT+Yk3vk+556e1lr1hewAb3330AH85cPVk4U4r8xN23DChzt8twRhLnu+8vAa4KO+7isGuXhm1fC/za3X4AODps32Lgp+72NcCt7varwB/d7XNxpjgfCgzAmS+stMMzHAy8CQx03w+O8LxzgRPd7bPDzh2Fu4YDcAdwvLudA+SF73fTvUBh2M9kCc4aD6NwZk/Yyd33OHCCu/0O8At3OxenNHcAzjog4v7cnwX2Tvffhb3S9+qX05OYXu9dVa0CEJFFOB+Er3c4Zg+cKqc3RAScD9fwuaseC9ve3v12XwwMwpnmoh0RKQKKVfU1N+lBnAWGQkJTnXwEfKLuPEIishRngrrwaV5+BtyvqpsAVDXSugx7Ake52w8Df4xwzFvAFeKsive0qn7lPmu7rAN/EJG9gSDOtNxD3H3fqOoid/t9YJSIFACVqvqMm7cm9zkOwAkgH7jHD8KZNHN+hHyZfsCCh+mNmsO2A0T+OxbgRVWdGuUaG8O2HwAmq+qHInIy7uSQ3cxTsEP+glHyF4tO5w5S1dki8g5wKPCciJzBlhNZHg+UA7uqaquILMMpTYTnGZyfY14ntxPgelX9axz5N32YtXmYvqQBKHC33wb2FJFtAEQkX0TGRzmvAFgtItk4H7ZbXE9VfUCdiOzl7vsl8Brd8yJwSqhnmIgMjnDMGzgTNtIhT21EZAywVFVvB/4J7Ej7nwE4KwWudQPHvsDIzjKmqg1AlYhMdu8xwM3nPODUsHajShGpiOlpTZ9kwcP0JfcA/xGRV1S1Gmcm5EdFZDFOFc/3opx3JU49/xvA52Hpc4CLROQDt9H4JJwG9MXATjjtHnFT1f/gVHMtcKvdLoxw2LnA2SLyEdFXgJsCfOxeY3ucZUdrcarqPhaRm4BHgInudU7s8HzR/BJnVunFOG0zW6nqC8Bs4C33Wk/SPkiZfsZm1TXGGBM3K3kYY4yJmwUPY4wxcbPgYYwxJm4WPIwxxsTNgocxxpi4WfAwxhgTNwsexhhj4vb/ARl/jXhZSfxSAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", @@ -224,7 +151,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_var_forms.ipynb b/community/aqua/chemistry/h2_var_forms.ipynb index 0d87d7d13..9f5aefd11 100644 --- a/community/aqua/chemistry/h2_var_forms.ipynb +++ b/community/aqua/chemistry/h2_var_forms.ipynb @@ -22,8 +22,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Hartree-Fock energy: -1.1173432691225829\n", - "FCI energy: -1.1372213770723043\n" + "Hartree-Fock energy: -1.1173432691225826\n", + "FCI energy: -1.1372213770723034\n" ] } ], @@ -39,10 +39,7 @@ " 'PYSCF': {'atom': 'H .0 .0 -0.3625; H .0 .0 0.3625', 'basis': 'sto3g'},\n", " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'jordan_wigner',\n", " 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': 'ExactEigensolver'},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'},\n", - " 'initial_state': {'name': 'ZERO'}\n", + " 'algorithm': {'name': 'ExactEigensolver'}\n", "}\n", "var_forms = ['RYRZ', 'RY']\n", "entanglements = ['full', 'linear']\n", @@ -70,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "scrolled": true }, @@ -79,27 +76,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step 7 --- complete\n", - "Depths: [3, 4, 5, 6, 7, 8, 9, 10]\n", - "Energies: [[[-1.11734327 -1.13697842 -1.13720129 -1.13719983 -1.13722136\n", - " -1.13722136 -1.13722135 -1.13722137]\n", - " [-1.1372213 -1.13721845 -1.13722128 -1.13714447 -1.13715117\n", - " -1.13710957 -1.13721905 -1.13717202]]\n", - "\n", - " [[-1.13722043 -1.13722129 -1.13722093 -1.1372209 -1.13722136\n", - " -1.13722136 -1.13722137 -1.13722137]\n", - " [-1.13722134 -1.13722138 -1.13722136 -1.13722137 -1.13722137\n", - " -1.13722137 -1.13722137 -1.13722137]]]\n", - "Num evaluations: [[[ 770. 10000. 10000. 10000. 4018. 2982. 3503. 3571.]\n", - " [ 5668. 10000. 4820. 10000. 10000. 10000. 10000. 10000.]]\n", - "\n", - " [[ 7196. 2785. 4062. 5296. 1744. 2008. 1127. 1219.]\n", - " [ 1125. 380. 1105. 794. 952. 914. 706. 829.]]]\n" + "Processing step __\b\b 0" ] } ], "source": [ "qiskit_chemistry_dict['algorithm']['name'] = 'VQE' \n", + "qiskit_chemistry_dict['optimizer'] = {'name': 'COBYLA', 'maxiter': 10000 }\n", + "qiskit_chemistry_dict['variational_form'] = {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'}\n", + "qiskit_chemistry_dict['initial_state'] = {'name': 'ZERO'}\n", + " \n", "print('Processing step __', end='')\n", "for i, d in enumerate(depths):\n", " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", @@ -121,30 +107,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4VMXXgN+TRui9t9A7hCJYQGkKSJGuCChSFBBsPz87iAXEriiKCEgVpShNECnSpIOhSA8ECJ1AqAmkzPfH3MASUjbJtmzmfZ777N65U85tc+60c0QphcFgMBgM9uLjbgEMBoPBkLkwisNgMBgMacIoDoPBYDCkCaM4DAaDwZAmjOIwGAwGQ5owisNgMBgMacIojiyMiPQRkXXulsMAInJVRMpb/7OLyEIRuSQis62wD0XkvIicdq+k6UdEHhCRg9a5dnS3PGlFRAaJyBlL/oLulsedGMVhISJhItIyUditilVEsonIRBE5KiJXRCRERNqkkmdxEflRRE5aD9thEZksIlWdeS6OQkT6icg+63zPiMhiEcltHZssIh+mIa8MKSkrfZx1HW23EunN0xWISFMRibeRN1xEZonIPbbxlFK5lFKHrd2uQFGgoFKqm4iUAf4HVFdKFXPxKTiS94FvrXOd5+rCrXc8yroPp61nOJedaf2BL4BHLPkjnCutZ2MUh/34AceBh4C8wDvALBEJSiqy9UWyHsgBNAFyA/WA1cDDyaTxc7TQ6UVEHgJGAT2UUrmBasCv7pWKDdZLa7uddGQBTroHJ5VSudDPwL3APmCtiLRIJn5Z4IBSKtbaLwNEKKXOprVg0XjKe14W+C+pAy6Us711L4KBusCbdqYrCgSSjPypISK+6UnnsSilzKZXz4cBLROF9QHWpZBmJ9AlmWMfAjsAnxTSBwEK6AccA9ZY4R3QD2gksAqoZpNGARVt9icDH1r/mwLh6K/Ts8Ap4BmbuAWBBcBlYDPwQXLnB7wKzEvm2LNADHATuAostMLfAEKBK8AeoJMVXg2IBuKs+JFWeDbgM+vczwDjgOzJlJnavQizZN4JXEIruUCb4+2AEOuargdqJ0r7upX2BvojoR7wr3Uus638Eq7zbnQFlJDeHzgP1E1CrqZAeBLh3wJbE99X4D3rusZY1+o5IAqIt/YnW/Hvtc4j0nrOmtrktQoYCfxjpa2I/tiZaD0TJ9DPp6/ttbXuxUXgCNDGJr8CwE/ASev4PHuua6LzDbXOIco6j2zJyFkC/YxeAA4BA2zyGGHdi+nWfdkFVEZX/mfRH3aP2PuOA58Af9jsJ/k8WmVcs+7RVWClFb8qsMySdT/QPdF7+T2w2ErbMrn87Xx3swOfA0fRz/c6m7TJPgtOqy+dXUBm2RI/VLYvVDLxi6Irw6rJHN8IjEilzCDrYZwK5Ez0kD6MrpBes16gACtNaoojFt0l4A88ClwH8lvHfwFmWWXVRFcgyZ1fE/TL/B7wAJAt0fFb5dqEdUO/+D7A49Z5FE/uWgJfoiuJAuiv8YXAR8nIk+y9sLl/m63yCwB7gYHWsbrWy9gI8AWetuJns0kbApS27kGA9YK+aF3HzujKPOE6vwb8alP2Y8CuZORqStKKozm6Is2Z+L6iK8jpyeUBlAQirPvrYz0rEUBh6/gqdOVUA60E/YHfgR+se1/EulbP2VzbGGCAdX0GoZWEWMf/QCvO/FZeD9lzXVN7x5KRcw3wHfrrPhg4BzS3uS7RQCsr/lS0knvbSjsAOGLPOw6UQiuer+15Hrn9rvpZ+znRiuoZS5a66I+H6jbvxyX0u+NjnU9K+Tcl5Xd3rHW9SlrX+n60IkrxWXBafenMzDPTZj1UV9FaO2G7ThKVlXVjlwM/pJDfIayKy9rvYOV5Bfgr0cNY3ibeMGCWzb4PuoJvau2npjiiEh5uK+ws+ovEF105VLU5Niqp87M53sZ6uCOta/MFt79Sb5WbQvoQ4DHrfx/bsgBBK5YKNmH3kcyLb6WPTXR/QhPdv142+58A46z/3wMfJMpvP7crwDCgr82xB61rLjZh62yucwnrPuax9ucAryUjd1OSVhxVrXtZMvF9JXXF8TowLVF+S4Gnrf+rgPdtjhVFt6Sy24T1AP62ubaHbI7lsOQpBhRHK7j8SZxDitc1mXcsseKwlbM0ulWa2ybsI263skYAy2yOtUc/lwnPZG5L7nypvONXrHgrEuKSyvPI3YrjcWBtovx/AN61eT+m2vu8k/K762Mdq5PEOaX4LDhr85g+dQ+ho1JqecKOiPQB+ttGsPphp6G/QIekkFcE+qUDQCm1AMgnIv2BXoniHrf5XwL9tZuQLl5EjqO/LOwhQt3uGwet/HIBhbk9TpPAUVJAKbUEWGKdczN0N8F+9AtyFyLyFPAK+iXDKrdQMtkXRldQ20TkVhZoBZccG5VSjVM4bjvj6Dr6WoLuW39aRIbaHA+wOQ5334MTynoLEx9XSp0UkX+ALiLyO1rBvpiCXElREl0RRaYxHejz6SYi7W3C/IG/k5LXiu8PnLK51j6J4ty6dkqp61a8XOiv4wtKqYvJyJHadU2NxNf9glLqik3YUaCBzf4Zm/9RwHmlVJzNfoLcyV3Xjkqp5dYY3s/o5zOStD+PZYFGImJbjh+6bkjq3OzJP7l3txC6xRKajBypPQsOxyiONCD6jk9Ef8E9qpSKSSH6CqCjiLynlIpPJWvbCuokUCtRmaXRX8CgH6YcNvGLoftGU+Mc+ou9NHpwFvSga6pY8q8QkZXoLq7EMiMiZYEfgRboQew4EQlBvxx3xUc366OAGkqpEziX48BIpdTIFOLYyncKKCkiYqM8SnPnizsF/VHhhz7ftJ5DJ2C7UupaGtOBPp9pSqkBKcRJrPRuAIUSVUz2llVARPIppRJXxvZc19RI/OwXEJHcNsqjDLeffYehlFotIpPRYw4dSfvzeBxYrZRKcqJLQjE2/zPyvJ9Hd9FVQI9hJJYjtWfB4XjKbIvMwvfogd72SqmoVOJ+ge4TniYiFaxZI7nR/bYpMQtoKyItrCmA/0O/9Out4yHAkyLiKyKt0bO8UsX6KvsNGCEiOUSkOrpPOklE5DEReUJE8luyN7TK2mhFOQOUt0mSE/2inLPSP8NtJZMQv5SIBFjyxKMVzZciUsRKU1JEWtlzPmnkR2CgiDSyziWniLRNmFqcBBvQXSZDRMRPRB4DGiaKMw89gP4iuq89VayyS4rIu2il81a6zkYPDrcXkVbWcxBoTfstlVRkpdQp4C/gcxHJIyI+1jOZ6rNjpV0CfGc9C/4i8qB1OK3XNbWyjqOf84+sc6qNnjgyPT352cFXwMMiUicdz+MioLKI9Lauib+I3CMi1ZKKnJHn3Uo7CfhCREpY9/w+EclGGp8FR2EUh51YX9TPoSv+03J7Xn7PpOIrpc6j+yej0f3jV9CVfm704GOSKKX2o7uyvkF/abRHK6qbVpQXrbBIoCe6ArOXIeim72l0H+xPKcS9iB5sPIiehTUd+FQpNcM6PhGoLiKRIjJPKbUHPetjA1pJ1ELPlklgJXqm2GkROW+FvY4eC9ooIpfR40ZVUpDpPrl7Hcc9KcQHQCm11TqXb63zOoTu108u/k30gHg/9HXuha4obtjEiQLmAuXQCjklSojIVXT/+hb0tWmqlPorNdmTke84ekD+LbSiPg78Hym/z0+hu5H2oK/BHGy6UlOhN3p8bB+63/0lS440XVc76YHu6jyJHtB/17b72JEopc6hlf5wK8ju59FqET0CPGHJehr4GD1gnRxpfd5teRU9mL8FPYvrY/SMzfQ8CxkmYdaEwWBIARHZhB5s/8kmbDhQWSmVeMzKYPBqTIvDYEgCEXlIRIpZXVVPA7WBP22OF0C3SMa7S0aDwV0YxWEwJE0V9EBkJHqcqavV34+IDEB3CSxRSq1xn4gGg3swXVUGg8FgSBOmxWEwGAyGNOGV6zgKFSqkgoKC3C2GwWAwZCq2bdt2XilVOLV4Xqk4goKC2Lp1q7vFMBgMhkyFiKRoTSIBr+qqEpH2IjL+0qVL7hbFYDAYvBavUhxKqYVKqWfz5s3rblEMBoPBa/EqxWEwGAwG5+NVYxyWhcj2FStWdLcoBkOWJSYmhvDwcKKjo90tiiEZAgMDKVWqFP7+/ulK75XrOBo0aKDM4LjB4B6OHDlC7ty5KViwIDYmxA0eglKKiIgIrly5Qrly5e44JiLblFINkkl6C9NVZTAYHEp0dLRRGh6MiFCwYMEMtQiN4jAYDA7HKA3PJqP3xygOGzYdjmDC2sPuFsNgMBg8Gq9SHBldxzF3ezgf/rGXZXvOpB7ZYDB4LL6+vgQHB1OzZk3at29PZGQk0dHRVK1alV27dt2K9+mnn/Lcc88RFhZG9uzZCQ4Opnr16jz11FPExGgHn2+//TbBwcG3tsqVK+Pr68vVq1czJOPatWupUaMGwcHBREUl7xeuadOmtxY0BwUFcf78+WTjugqvUhwZXcfx/mM1qVUyLy//GsKhsxl7KAwGg/vInj07ISEh7N69mwIFCjB27FgCAwP56quvGDx4MEopTpw4wbhx4xg9ejQAFSpUICQkhF27dhEeHs6sWbMAGDlyJCEhIbe2e+65hzfffJNcuXIlW/6IESOYPHlyijLOmDGDN998k5CQELJnz+6wc3cFXqU4Mkqgvy8/9K5PNj8fnp26lcvRKbkUNxgMmYH77ruPEye0m+/WrVtTvHhxpk6dyssvv8yIESPInz//HfF9fX1p2LDhrTS2TJ8+nUOHDjFixIgMyTRhwgRmzZrFsGHD6NmzJ6tWraJdu3a3jg8ZMiRVxeNOvGodhyMokS873/WsR88Jm3j5lxB+fKoBPj5moM9gSA/vLfyPPScvOzTP6iXy8G77GnbFjYuLY8WKFfTr1+9W2FdffUXDhg2pVKkSvXv3vitNdHQ0mzZt4uuvv74jPCwsjDfeeINVq1bh55exqrN///6sW7eOdu3a0bVrV1atWpWh/FyNaXEkQaPyBRnevjor9p3lq+UH3C2OwWBII1FRUQQHB1OsWDHOnDnDww8/fOtYiRIlaN68OYMGDbojTWhoKMHBwRQtWpTixYtTu3btW8fi4uLo1asXH3zwAcktMN61a9etcZBx48YxfPjwW/sRERHOOVE3kSlaHCLSEWgL5AEmKqX+cnaZve8ty67wS4xZeYjqJfLSumYxZxdpMHgd9rYMHE3CGMf169dp1aoVY8eO5YUXXrh13MfHBx+fO7+bE8Y4zp8/zwMPPMCCBQvo0KEDAB9++CHFixfnmWeeSbbMWrVqERISAugxjqCgIPr06WOXvH5+fsTHx9/a9/RV905vcYjIJBE5KyK7E4W3FpH9InJIRN5IKQ+l1Dyl1ABgIPC4M+W1kY8POtakTul8/G9WCAfPXHFFsQaDwYHkyJGDMWPG8PnnnxMbG2tXmkKFCjF69Gg++ugjADZu3MjkyZMZP9557uXLli3Lnj17uHHjBpGRkaxYscJpZTkCV3RVTQZa2waIiC8wFmgDVAd6iEh1EaklIosSbUVskr5jpXMJgf6+/NCrPtkD/BgwdSuXosxgucGQ2ahbty61a9dm5syZdqfp2LEj169fZ+3atbz77rtcv36dZs2a3TEtNzQ01GEyli5dmu7du1OzZk26d+9O3bp1HZa3M3CJrSoRCQIWKaVqWvv3ASOUUq2s/TcBlFIfJZNegNHAMqXU8tTKc7Stqq1hF+jx40YeqFiIiU/fg68ZLDcYkmXv3r1Uq1bN3WIYUiGp++TptqpKAsdt9sOtsOQYCrQEuorIwKQiiMizIrJVRLaeO3fOcZICDYIKMKJDDVbtP8fnf+13aN4Gg8GQ2cgUg+NKqTHAmFTijBeRU0D7gICA+o6WoWejsuw+cYnvVoVSo0Re2tYu7ugiDAaDIVPgrhbHCaC0zX4pK8yjGdGhBvXK5OPV2TvYd9qxc9MNBoMhs+AuxbEFqCQi5UQkAHgCWJDRTJ3tOjabny/jetUnd6Afz07dRuT1m04px2AwGDwZV0zHnQlsAKqISLiI9FNKxQJDgKXAXmCWUuo/B5SVISOH9lAkTyDjetfn9KVohs78l7h473OEZTAYDCnhdMWhlOqhlCqulPJXSpVSSk20whcrpSorpSoopUY6qCyntjgSqFcmP+8/VoO1B8/zydJ9Ti3LYDAYPA2vMjniihZHAk80LEOve8vww+rDLNhx0unlGQwG+8kMZtVtzaU/+uijREZGZig/V+JVisNVLY4EhrerwT1B+Xltzg6HG3IzGAzpJzOYVbdl8eLF5MuXL0PnnBL2rpq3F69SHK5scQAE+Pkwtmc98mUP4NlpW7lwzQyWGwyehieaVU9MgoOmsLAwqlWrxoABA6hRowaPPPLILSdPoaGhtG7dmvr169OkSRP27dPd5AsXLqRRo0bUrVuXli1bcuaMdkQ3YsQIevfuzQMPPJCkFeCMkCnWcdiLUmohsLBBgwYDXFVmkdyB/NC7Pt1+2MCQn7cztW9D/Hy9Sh8bDOlnyRtwelfq8dJCsVrQZrRdUT3VrHpKHDx4kJkzZ/Ljjz/SvXt35s6dS69evXj22WcZN24clSpVYtOmTQwePJiVK1fSuHFjNm7ciIgwYcIEPvnkEz7//HMA9uzZw7p16xzuKMqrFIe7qFM6HyM71uT/5uxk9JJ9vNOuurtFMhiyNAlm1U+cOEG1atWSNKtu6zgJbptVP3LkCG3btk2XWfUERXT69GkCAgL46quvAFixYgUFCxa0S/Zy5coRHBwMQP369QkLC+Pq1ausX7+ebt263Yp348YNAMLDw3n88cc5deoUN2/epFy5crfidOjQwSneBb1KcYhIe6B9cjfWmXRrUJr/Tl5mwroj1CiZh051S7lcBoPB47CzZeBoMptZdVuyZct267+vry9RUVHEx8eTL1++W/nbMnToUF555RU6dOjAqlWr7uhGy5kzZ5rLtwev6lNx9eB4Yt5uW41G5Qrwxtxd7D7hmnEWg8GQPJnFrHpq5MmTh3LlyjF79mwAlFLs2LEDgEuXLlGypDb1N2XKFJfI41WKw934++rB8oI5A3hu2jYirt5wt0gGQ5YnM5hVt4cZM2YwceJE6tSpQ40aNZg/fz6gWzfdunWjfv36FCpUyCWyuMSsuquw6aoacPDgQbfJsSv8El3HradumXxM69cIfzNYbshCGLPqmYPMaFbdKbi7qyqBWqXy8lHnWmw8fIGRf+x1qywGg8HgaLxqcNyT6FyvFLtPXGbSP0eoWTIvXeubwXKDweAdeFWLw9N469Gq3F+hIG/9vosdxzOPOQGDwWBICaM4nIifrw/fPlmPwrmy8dy0bZy7YgbLDQZD5serFIerTY7YQ4GcAYx/qj6RUTcZPGMbN2Pj3S2SwWAwZAivUhyeMjiemBol8vJxl9psCbvIB4v2uFscg8FgyBBepTg8mceCS/Lsg+WZtvEov2455m5xDAavJq1m1TPCuXPnbhkZXLt2bbLxRowYwWeffQZAnz59mDNnTobKdSdGcbiQ11pVoUmlQgyb9x/bj110tzgGg9eSHrPqSbFq1apUzYasWLGCWrVq8e+//9KkSRMHn4lnYhSHC/Hz9eGbHnUpmjcbg6Zv4+zlaHeLZDB4PWk1q54WQkJCeO2115g/fz7BwcFERUXd4adjzpw56bJX5emYdRwuJl+OAMb3bkDn79YzaMZ2Zg64lwA/o78N3snHmz9m3wXHuleuWqAqrzd83a646TGrnhaCg4N5//332bp1K99++22G8spMeHyNJSLVRGSciMwRkUHulscRVCueh0+71Wbb0YuMWPifu8UxGLyOBLPqxYoV48yZM0maVR80KPnqpFGjRgQHB9O/f38WLFhwyz7V0qVLXSG+x+PUFoeITALaAWeVUjVtwlsDXwO+wASlVLKdjEqpvcBAEfEBpgLfO1NmV9Gudgn+O3mZ71eFUqNEHno2KutukQwGh2Nvy8DRpMesui2bNm0C9BjH5MmT0+QGVkRu/Y+O9s7uaGe3OCYDrW0DRMQXGAu0AaoDPUSkuojUEpFFibYiVpoOwB/AYifL61JefaQKD1UuzIgF/7E17IK7xTEYvI70mFXPKEWLFmXv3r3Ex8fz+++/u6RMV+NUxaGUWgMkrhEbAoeUUoeVUjeBX4DHlFK7lFLtEm1nrXwWKKXaAD2TK0tEnhWRrSKy9dy5c846JYfi6yOMeaIuJfJlZ9CM7Zy+5J1fJwaDO0mPWfWMMHr0aNq1a8f9999P8eLFXVKmq3G6WXURCQIWJXRViUhXoLVSqr+13xtopJQakkz6pkBnIBuwUyk1NoWyPMKselo5cOYKHcf+Q+Wiufn1uXvJ5ufrbpEMhnRjzKpnDrzarLpSapVS6gWl1HMpKQ0rrkeuHE+NykVz80X3OoQcj2TYvN14k48Ug8HgfbhDcZwAStvsl7LCMown2qqyl9Y1izO0eUVmbQ1n+saj7hbHYDAYksUdimMLUElEyolIAPAEsMANcngcL7esTPOqRXhv4R42HzGD5QaDwTNxquIQkZnABqCKiISLSD+lVCwwBFgK7AVmKaUcspghs3ZVJeDjI3z5eDBlCuRg8IxtnIyMcrdIBoPBcBfOnlXVQylVXCnlr5QqpZSaaIUvVkpVVkpVUEqNdFR5mbmrKoG82f0Z/1R9omPiGTh9G9Exce4WyWAwGO7A4wfH00Jmb3EkULGIHizfGX6Jt383g+UGg8Gz8CrF4U08UqMYL7WsxNzt4UxeH+ZucQyGTIUrzarbmksfPnw4y5cvz1B+mQGvUhze0FVlywvNK/Fw9aJ8+MdeNoRGuFscgyHT4Eqz6ra8//77tGzZ0gFnkDSuWv2eGl6lOLylqyoBHx/hi+51CCqYg+d/3k74xevuFslgyHQ406x6YmwdNAUFBfHuu+9Sr149atWqxb592krwtWvX6Nu3Lw0bNqRu3brMnz8fgLCwMJo0aUK9evWoV68e69evB7TyatKkCR06dKB69eoOkzUjeJVZdZuV4+4WxWHkDvRn/FMN6PjtPzw3bRtzBt5P9gCzstyQOTg9ahQ39jrWrHq2alUp9tZbdsV1tln11ChUqBDbt2/nu+++47PPPmPChAmMHDmS5s2bM2nSJCIjI2nYsCEtW7akSJEiLFu2jMDAQA4ePEiPHj3YunUrANu3b2f37t2UK1fOqfLai2lxZAIqFM7F1z2C2XPqMm/+ttMMlhsMqeApZtU7d+4MQP369QkLCwPgr7/+YvTo0QQHB9O0aVOio6M5duwYMTExDBgwgFq1atGtWzf27NlzK5+GDRt6jNIAL2txeDPNqxbllZaV+XzZAWqWzEv/JuXdLZLBkCr2tgwcjTvNqtuSLVs2QA/WJ4xPKKWYO3cuVapUuSPuiBEjKFq0KDt27CA+Pp7AwMBbx3LmzJmu8p2FV7U4vJ3nm1WkdY1ijFq8l3UHz7tbHIPB43GHWfXUaNWqFd98882tnoN///0XgEuXLlG8eHF8fHyYNm0acXGeu4bLqxSHt82qSoyPj/BZ9zpUKJyLITO3c/yCGSw3GFLD1WbVU2PYsGHExMRQu3ZtatSowbBhwwAYPHgwU6ZMoU6dOuzbt8/jWhm2ON2sujto0KCBShhU8kbCzl+jw7frKJk/B7MH3keubKbH0eA5GLPqmQOvNqtuuJugQjkZ06Mu+09fpv036wg5HulukQwGQxbCKI5MStMqRfh5wL3ciImjy/fr+WbFQWLj4t0tlsFgyAKkqjhE00tEhlv7ZUSkofNFM6TGveULsuSlB2lbqzifLzvA4+M3cizCjHsY3I83doF7Exm9P/a0OL4D7gN6WPtXgBQ98bkLbx8cT4q82f0Z06MuXz8RzIHTV3h0zFrmbAs3L67BbQQGBhIREWGeQQ9FKUVERMQd033TSqqD4yKyXSlVT0T+VUrVtcJ2KKXqpLtUJ+Ptg+PJEX7xOq/M2sHmIxd4tFYxRnWqRb4cAe4Wy5DFiImJITw8nOjoaHeLYkiGwMBASpUqhb+//x3h9g6O2zMdJ0ZEfAFlZVwYMJ3pHkip/DmYOeBeflgTyhd/HWDb0Yt83i2YxpUKuVs0QxbC39/fo1Y5GxyPPV1VY4DfgSIiMhJYB4xyqlSGdOPrIwxuWpF5zz9Azmx+9Jq4iQ8X7TEOoQwGg8Owax2HiFQFWgACrFBK7XW2YBkhq3ZVJSbqZhyjFu9l2sajVC2Wm6+fqEuVYrndLZbBYPBQHLaOQ0TuBU4opcYqpb4FTohII0cIaS8iklNEtopIO1eWm9nJHuDLBx1r8lOfezh/9Qbtv13HpHVHiI83g5YGgyH92NNV9T1w1Wb/qhWWKiIySUTOisjuROGtRWS/iBwSkTfsyOp1YJY9ZRruplnVIvz50oM8WKkQ7y/aw9M/bebMZTNwaXAyMVFwbj8c+As2jYc/34JfesKU9nDyX3dLZ8gA9syqClFKBScK26mUqp1q5iIPohXNVKVUTSvMFzgAPAyEA1vQU319gY8SZdEXqAMUBAKB80qpRamVa7qqkkYpxc+bj/HBoj0E+vvyUadatKlV3N1iGTIr8fFw9TRcDLO2o7f/Rx6FK6fujO+fA/KVhesRoOKg719QyHt853gD9nZV2aM4fgNWcbuVMRhoppTqaKcgQcAiG8VxHzBCKdXK2n8TQCmVWGkkpB8J5ASqA1FAJ6XUXbO6RORZ4FmAMmXK1D969Kg94mVJQs9d5eVfQ9gZfolu9Uvxbocaxt6VIWmiL99WBIkVROQxiLthE1kgbynIH6QVRP4ga7P+5ywMIhARChMf0Yqk31LIU8Llp2VIGkcqjiLomVXN0VNyVwAvKaXO2ilIEHcqjq5Aa6VUf2u/N9BIKTUklXz6YFocDiMmLp6vlx/ku1WHKJU/B18+Hkz9so5zoWnIJMTFwKXwO1sKtgoi6sKd8QPz3lYIdyiHIMhbGvzsXDd08l+Y3E6neWYx5CjgsFMypB+HreOwFMQTDpEqAyilJqcWxxtdxzoLf18fXm1VhQcrF+blX0Po/sMGhjSryNDmFfHzNSbMOHcAYqPANxv4+oNftkT/A8AnE7jwVUp3Dd1SBmF3KohLJ3S3UQI+/pDC6vdyAAAgAElEQVSvtFYEJeomUhBlIbuDPi5K1IUnfoYZXWHmE9B7HgTkcEzeBqeTquKwFvwNAIJs4yul+qazzBNAaZv9UlaYwQ00LFeAJS81YcSC//h6xUFWHzjHV48HE1TIc30BOJ3Dq2DqY6nHE19LifhbSiVAf3H7WluCgrm1H5B0vMRxbfO8FS+R0koc7+bVu8cZEhTEzat3yp2ziFYEpRtB7aA7lUOeEq5TiOUfgs4/wuw+entihj4fg8djT1fVemAtsA249WmilJprVwF3d1X5oQfHW6AVxhbgSaXUf2kXP2lMV1X6WLTzJG/9tovYeMW77avTvUFpRMTdYrkWpWB8U7h2HtqMhribujsn9ob1/6b1P0b378fdhNib1v8MxFMOXKDpl/3u8YVb3UtlIMDDPgq2TIQ/XoE6PeCx7yAFl64G5+JIkyM5lFKvp1OImUBToJCIhAPvKqUmisgQYCl6JtUkRykN01WVMdrVLkH9svn536wdvD53Fyv3neWjzrUpkDML2bvaMx9OhegKrFp715UbH2ejSG4mUja2iiiZff8ct5VDwiB0ZuGefro77e+RkLMQPPKhuyUypII9LY4PgfVKqcWuESnjmBZHxoiPV0xcd4RPl+4nXw5/Pu1Wh4cqF3a3WM4nLha+awQ+fjBofeYYw/AWlIIlr8Hm8fDw+/DAi+6WKEviSA+ALwKLRCRaRC6LyBURuZxxER1PVjSr7gx8fIQBD5Zn3vMPkDe7P09P2syIBf95v72rkBkQcQiaDzNKw9WIQOuPoUZnWDYc/p3ubokyJ/GusT+bquJQSuVWSvkopQKVUnms/TyuEC6tKKUWKqWezZs3r7tF8Qqql8jDwqGN6XN/EJPXh9Hh23XsOemR3wwZJyYKVo2Gkg2galt3S5M18fGBTj9A+Waw4AXYl2k6OTyDkyHwQxO9TsbJpMUD4DBrv7SnegA0LQ7HE+jvy4gONZjStyEXr8fQcew/jF8T6n32rjb/CFdOQssRmWt8wNvwC4DHp0HxOjDnGTi63t0SZQ72/wk/PQpRkXrMy8mkxQPgk9b+VTzUA6BpcTiPhyoXZulLD9K0SmFGLd5HzwmbOBkZ5W6xHENUJKz9HCq0gHJN3C2NIVtu6DlbLw78+Qk4vTv1NFmZTePhlx5QqBIMWAFFqjm9SHsURyOl1PNANIBS6iKQhabZGBIokDOAH3rX5+MutdgRHknrr9awaOdJd4uVcdZ/A9GR0GK4uyUxJJCzEPT+TU8dnt5Fr0kx3El8HPz5Jiz5P6jUSq/Az13MJUXbozgyjQdA01XlfESEx+8pw+IXmlC+cC6G/Pwvr/wawpXoGHeLlj6unIGN3+lB2RLBqcc3uI58ZbTyiI2GaZ3g6jl3S+Q53LwGs57Sz26jgXrxpAvX53iVB0DTVeU6ggrlZPbA+3ixRSXmhZygzddr2RJ2IfWEnsaaT/V6iObvuFsSQ1IUqaa7rS6fghldtNHFrM6VMzC5Lez7Q89Ea/Oxy2cB2jOragbwGtrk+Smgo1JqtrMFM3g+/r4+vPxwZWYPvB8fER7/YQOfLd1PTJxHNkjv5sIR2PYT1HsKClZwtzSG5CjdUA+Yn/kPfnkSYrKwL5mze2FCS+3n5Imf4d6BbhEjRcUhIr4isk8ptS/BA6Anu401XVXuoX7Z/Cx+sQld6pXi278P0eX79YSeu5p6Qnfz9yi92O+hdBlGMLiSSg/r1fxha+G3Abp/P6txeBVMbKWtCjyzGKo+6jZRUlQcSqk4YL+IlHGRPBnCdFW5j1zZ/Pi0Wx2+71mPYxeu027MOmZsOoo9Pu3dwuldsGu27h/OY5xZZQrqPA6tRsHeBfDH//Rq86zCv9P1JIE8JaD/cm1d2I3YY6sqP/CfiGwGriUEKqU6OE0qQ6alTa3i1C2Tn1dn7+Dt33fz976zjO5Sm0K5srlbtDtZ8QEE5oHGL7lbEkNauO95uHYO1n2pbXI1f9vdEjkXpWDlh7D2M70wsvsU7RPFzdijOIY5XQqDV1EsbyBT+zZk8vowRv+5j9ZfreHTrnVoVrVIuvJTShEXr4iNV8TExRMbp4iJ17+2/2Pi4vVxm3ix8fHEWPFi4+O5GRtP/vNbaXlwKVsrvsD2LReIiYu4I25MXDy+PsKghyqQPysZeMwstHhXK481n+hpu42ec7dEziH2BswbDLvn6HG4tl94jNl5exw5rRaRskAlpdRyEcmBtmprMCSLj4/Qt3E57q9YkJd+CeGZyVtoVK4Afr5iVeQJFXxCJW9V8DZKIDb+tmJwXK+EYnbAKM5IPnrtrkv07n23joiAv48Pfr7C9ZtxxMUrhrWr7qiCDY5CBNp9DdcvwpLXIUdBqNXV3VI5lusX9ESAYxv0+qLGr3iURQN7rOMOQPvyLqCUqiAilYBxSqkWrhAwLdiYVR9w8OBBd4tjsIiOiePrFQdZf+g8fr4++PkI/r66gvb39cHfV/CzKuyEitvfiudnc9zf7/ZxP18f/BMd1+msuAnhicrLc3Q5hRc9zeWWnxJXtw/+freP+/rcfjFf+TWExbtP8c/rzSnoad1sBk1MlO73P74ZnvwVKnpclZQ+IkJhRjft0rfT91Czi8uKdqTP8RCgIbBJKVXXCtullKrlEEmdgDGrbkiS+DgY11gvKHt+c4rN/kNnr/Dwl2sY3LQC/9eqqguFNKSJ6EvwU1u4cBieXgil6rtbooxxbCPM7KH/95gJZe51afGONKt+Qyl1y2qW5cEvC01nMHgNu2bD2T16sV8qfcUVi+SmdY1iTF1/lEtRmXRVfFYgMC/0mqPHOmZ01b7iMyu758KUDtqve//lLlcaacEexbFaRN4CsovIw8BsYKFzxTIYHEzsDe1hrlhtqN7JriTPN6vIlRuxTNsQ5lTRDBkkdzHo/btePT2tE1w64W6J0oZS2sjmnL5Qsp5WGh6+INUexfEGcA7YBTwHLAaMfQZD5mLbZIg8Bi3ftdundc2SeWlWpTAT1x3h+s1Y58pnyBgFK0CvubrralonPbicGYiLgQVDYcX7ULMr9J4HOQq4W6pUSfYNEpEV1t+PlFI/KqW6KaW6Wv9d1lUlIk1FZK2IjBORpq4q1+BF3LgCqz+BoCbadHoaGNK8Ihevx/DzpmNOEs7gMIrX0eMCF4/Az921IUBPJvqSHgT/dxo0eRU6/wj+ge6Wyi5S+vQqLiL3Ax1EpK6I1LPd7MlcRCaJyFkR2Z0ovLWI7BeRQyLyRirZKLQPkEAg3J5yDYY72Pg9XD+v5/+ncUpj/bIFuLd8AcavOez9rnO9gXJNoMtEOLENZj2tv+g9kcjjMKm1NqHy2FhoMczulrAnkJKkw9GL/0oBXwCf22yf2Zn/ZKC1bYBlon0s0AaoDvQQkeoiUktEFiXaigBrlVJtgNeB9+w/NYMBuBYB/4yBqu2g9D3pymJo80qcvXKDOdvMd0umoHoHaPclHFoG8593mR9uuzn5L0xooafb9poLdXu5W6I0k9ICwFNKqTYiMlwp9X56MldKrRGRoETBDYFDSqnDACLyC/CYUuojoF0K2V0EzIR6Q9pY9wXEXMuQ2fT7KxQkuHQ+xq0O5fF7SuPvm3m+DLMs9fvAtfOw8gO9QLDVKM9YQLd/iR4Ez1EInprvEm99ziClN2CM9dvRwWWWBI7b7IdbYUkiIp1F5AdgGvBtCvGeFZGtIrL13Dnj8MWA7g7Y/CPU6ZGhF1REGNKsIuEXo5gf4gUeD7MKTf4HjQZpZ0frvnS3NLDpB70avHAVPXMqkyoNSLnFESMi44GSIjIm8UGl1AvOE+uOcn4DfrMj3ngROQW0DwgIyOSrgAwOYfVoQEHT1IbRUqdFtSJULZab71YdolPdknesMjd4KCK6pXH9PKx4T7c86j/tejni42Dp27Dpe6jSFrr86FJvfc4gpRZHO2Al2tf4tiS29HICKG2zX8oKMxgcx7n9EPIz3NNfuyDNICLCkOYVOXzuGn/uPu0AAQ0uwcdH+/Go0AIWvQR7F7m2/JvX4NdeWmncO1g7pMrkSgPsMzlSRym1I90F6DGORUqpmta+H3AAaIFWGFuAJ5VS/6W3jMQYkyMGfu0FoX/Dizv0qmIHEBevePjL1WTz82XxC40RT+gzN9jHzWt6VfbpXdqPeVBj55d55YyeFnx6p3bx2uhZ55eZQTJsckREXrP+9heRMYk3O4WYCWwAqohIuIj0U0rFAkOApcBeYJajlIbxAGgAIHwb7F0I9w91mNIAbpla33vqMiv3nXVYvgYXEJBT+y7PH6RtQZ3a6dzyzuzRM6fOH4AnZmYKpZEWkm1xiEh7pdRCEUmyU1ApNcWpkmUA0+LIwigFU9prm1Qv7oBsuR2afUxcPE0/XUWRPNn4bdD9ptWR2bgUDhMf0es7+i2FAuUdX0boSr2GxD+HttpbItjxZTiJDLc4lFILrd8pSW2OFNZRmBaHgcN/60VVD/6fw5UGgL+vDwObVuDfY5FsCI1weP4GJ5O3lLZrFR8D0zrr7iRHsn2qXg2etzQMWJGplEZaSKnFsZAUrOB6sutY0+LIosTHw4/NtJ2ioVvBzznLfqJj4njwk7+pWCQXPw/wXAumhhQI36pbpgUrQJ8/Mu6ONT5erxlZ9wVUaA7dpmjXxJkMR5hV/wy9SvwIEAX8aG1XgVBHCOloTIsji7N3PpwKgWZvOU1pAAT6+zKgSXnWh0aw7ehFp5VjcCKlGugZTmf3wswnISY6/XnFRMPcflpp1HsanpyVKZVGWrBnVtXWxBooqTBPwrQ4siBxMTC2EfgGwKB/tIltJ3LtRiwPfLySemXyM6lP+kyZGDyAnbPht/7aJE23KeCbqjftO7kWoRf1Hd8ILd+DB170jBXq6cSRjpxyisitESQRKQdk/onIBu/i3+lwIVT7Z3ay0gDImc2Pvg+UY+W+s/x30rRwMy21u+mpsvsWwR8vkybn9hGhMLGltj3VbTI0filTK420YI/ieBlYJSKrRGQ18DfwonPFSh+mqyqLcvM6rP4YSjWEKm1cVuzT9weRO5sf3/3tkT23Bnu5d6A2a759qh6nsIejG/R02+hL2mVtDfucg3kLqbbLlFJ/ikglIMHx8j6l1A3nipU+rJlgCxs0aDDA3bIYXMjm8XDllDan7cIvvrzZ/el9X1m+Xx3KobNXqFjE8bO4DC6i+Ttw7Zz2xJejENw3OPm4u+bAvEHaIkHP2c6Z0uvh2GXmUyl1Qym1w9o8UmlkSVznT8tzibqoByUrPgxBD7i8+H6Ny5HNz4fvVplWR6ZGRJtir9Yelr4JO2fdHUcpWPOZHggv2QD6LcuSSgPsVByZhSzVVXVkDXxWSfuayMr8M0Z3F7QY7pbiC+bKRo+GZZgfcpLjF667RQaDg/Dxhc4TtKfIeYPg4PLbx+JiYMEQ3ZVVqzs8lTlcvDoLr1IcSqmFSqln8+bN4JxsT+fYRvj5cW1/Z9kw+PujrNn6uHJae/er2RWK13abGM8+WB5fEcatNq2OTI9/IDzxMxSpDrN6w/EtEBUJ07voCRgPvgadxzt1undmIFXFISK/iUhbEfEqJZNpObENpneFPCVg6DYI7qnNhy8blvWUx+pP9ArgZm+5VYziebPTpX4pZm8N58zlDKwHMHgGgXm0Z75cReHnbjCpFRz9R1vZbf52lpk5lRL2KIPvgCeBgyIyWkSqOFkmQ3Kc2qnNJOQoAE8t0Mqjw7fadPj6b+CP/3mem0xnEREK26foBVcFK7hbGgY9VIE4pRi/5rC7RTE4glxFtGkS3wC4fAp6/QZ1e7pbKo/BnllVy4HlIpIX6GH9P45eRT5dKeWh3uC9jLN7YVpHCMilp//ltZwm+vjAo59pg2rrx0BMFHT4Ju0LmTIbf48CH3946LXU47qAMgVz0KFOCX7edIznm1WkQM4Ad4tkyCgFysHAdaDiIXcxd0vjUdjV/SQiBYE+QH/gX+BroB6wzGmSpQOvHRw/fwimPqYryqcXQP6ydx4XgYffh6Zvwo6f9UrYOC/W56d2wu45cO8gj3qhBzetQHRsHJPWHXG3KAZHkauIRz1jnoI9Yxy/A2uBHEB7pVQHpdSvSqmhQC5nC5gWvHJw/GIYTO2g3U8+NT/5bhkR7SL14Q/gv9/h194Zs7/jyax4HwLzafMOHkSlorlpXaMYU9aHcSnKixW3IctjT4tjjFKqulLqI6XUKdsDnmyvyiu4FK4teN68pqf/FamaepoHXtBdVweWwMwndFpvImwdHFoGjV+G7PncLc1dPN+sIlduxDJtQ5i7RTEYnIY9iiO/iHROtLUQkSJOly4rc+W0dnUZFakH6YrVsj9twwF6BsiR1XoaYfRl58npSpSC5e9B7uLQ0DM9qtUsmZemVQozcd0Rrt+Mdbc4BoNTsEdx9AMmAD2t7UfgdeAfEentRNmyLtfO6zGNK6eh5xwoWS/tedTtCV0mQPgWndf1C46X09XsXwLhm+Gh1yEgh7ulSZahzSty8XoMP2865m5RDAanYI/i8AeqKaW6KKW6ANXRDp4aoRWIwZFcvwBTO+qxjSd/hTKN0p9XzS7w+HQ4s1t3eV095zAxXU58nB7bKFAB6vZytzQpUr9sAe4tX4Af1x4mOibO3eIYDA7HHsVRSill61/xLFBaKXUBcPoIoIj4iMhIEfkmOf/nXkP0JZjeGc7v16tXyzXJeJ5V2mgFFBEKP7WByycznqc72DkLzu2FFsPA19/d0qTKkGaVOHP5BnO2hbtbFIPB4dijOFaJyCIRedqquOdbYTmByJQSisgkETkrIrsThbcWkf0ickhE3kil/MeAUmgl5b1v4Y2r2lfx6V3QfSpUbOG4vCs0h96/6a6vSa11ayYzEXtDr9soHgzVHnO3NHbxQMWC1Cmdj3GrQ4mJyyKLMg1ZBnsUx/PAT0CwtU0FnldKXVNKNUsl7WSgtW2AiPgCY4E26G6vHiJSXURqWQrKdisCVAHWK6VeAQal5eTSyqmrpwi7FObMIpLm5nU9Ayp8izYN7gyfEmXv19N5oyPhp0f12pDMwtZJcOkYtHxXL3jMBIgIQ5tVJPxiFAtCMmkrz2BIhhTfQquSX6mUmquUetna5qjU/M1aKKXWAIlHZRsCh5RSh5VSN4FfgMeUUruUUu0SbWfRrYwEx87JdhiLyLMislVEtp47l76+/I+3fEy3hd2YuW8m8cpFX4mxN+DXnnqaaacfoEZH55VVqj70+UOX+VMbOPOf88pyFDeuwJpPodyDUD617xTPokW1IlQtlpvvVh0iLj6L2REzeDUpKg6lVBwQb5kbcRQlgeM2++FWWHL8BrQSkW+ANclFUkqNB94DtgcEpM/cw5sN36R+0fqM2jSKgcsGcvra6XTlYzexN2HW0xC6UpsJqd3dueWBntb7zBJtQnpyWzix3fllZoQNY+F6BLQYkemMy4kIzzerSOi5a/y528nPksHgQuxp918FdonIRBEZk7A5W7AElFLXlVL9lFJDlVJjU4mboZXjRXMW5fuW3zPs3mGEnAuh8/zOLAxdiJ0NrLQRF6tNgxxYohfs1XPhzObClbXyyJZbT9U9ttF1ZaeFa+e18cZq7XVrKRPyaK3ilC+Uk2//PuSc58hgcAP2KI7fgGHor/1tNlt6OQGUttkvZYVlGEfYqhIRulfpzpz2c6iQrwJvrXuL/63+HxeiHbgOIj4O5g+GPfPhkZF6wZ6rKVBOK49cRWBaJzi8yvUypMbazyHmOjQf5m5J0o2vjzCoaQX2nrrM3/vPulscg8EhpKo4lFJTgFnARqXUlIQtA2VuASqJSDkRCQCeABZkID+nUCZPGSa3nszL9V9m1fFVdJrfib+P/Z3xjOPjYdFLsPNX7ef4/iEZzzO95C0FfRZD/iCY0R0OLHWfLImJPAZbJkDwk1A4c1vy71i3JCXzZefblabVYfAO7DFy2B4IAf609oNFxK6KXkRmAhuAKiISLiL9lFKxwBBgKbAXmKWUcsgoraONHPr6+NK3Zl9mtp1JoeyFeOHvFxj+z3Cu3ryaXgFhyWuwfSo8+H96cze5i+oB8yLV4Jcn4b957pZIs2o0IPBQarO1PR9/Xx8GPlSe7cci2XA4wt3iGAwZxp6uqhHomVCRAEqpEMAuD+1KqR5KqeJKKX+lVCml1EQrfLFSqrJSqoJSamQ6Zb8LZ5lVr1KgCr+0/YUBtQYwP3Q+XRZ0YcvpLWnLRCntpW/Lj3DfEGj2tkNlzBA5Cmhz7SXrw5xnYMcv7pXn7F7YMVN34eUrnXr8TEC3BqUpnDsb367MRNOgDYZksEdxxCilEtfEHrmiyZlm1f19/Xmh3gtMaT0FPx8/+i7tyydbPiE61k7T5X+P0gO99wyARz70vBlCgXm1McWgxvD7QL12wl2s/BD8c0LjV9wng4MJ9PdlQJNyrA+NYPuxi6knMBg8GHvcxP0nIk8CviJSCXgBWO9csdKH1a3WvmLFik4rI7hIMLPbz+aLbV8wbc80/jnxD6Maj6JGoRrJJ1rzGaz5BOo9BW0+8TylkUBATnhylp4ivOhl7U3wvuedXqxSilgVS1x8HLHHNxN7YDGxjV8ilhhir4QTp+KIjY/Vm4q99T8uPu6usNj42FvxY+Jj7kgbp+KIiY+xK62/jz/9a/WnfD67Gtd20bNRWb5bFcrYlYeY2Oceh+VrMLgaSW2wTkRyAG8DjwCCHpv4QCnlsV6CGjRooLZu3er0ctafWM+w9cOIiIrgudrP0b92f/x9EtlRWv8t/PU21OoOncbp9ROeTuxNPVV4z3xo9g48+GqGlN3OczuZtHsSu87v0hV24spfudb8uCD4+fjpTfSvr4/vHfvno87j6+PLuJbjqFmopsPKHrPiIF8sO8AfLzSmRgkvcjhm8ApEZJs9fpZSVRyZEVcpDoBLNy7x0eaP+OPwH9QoWINRjUfd/krd/CMsfhWqPwZdJmUuP+BxsTD/edj5i3aa1OLdNCkPpRQbTm1g4q6JbD69mTwBeWhauinZfLPpilp88ffxv11pix9+F8Pw2z4Nv2od8Cv30O3K3KZCT0h7KzyJyt9f/O9Ie0dZ4ouvHcr7+OXjDFg2gIvRF/mm+Tc0LN4wI1fzFpeux/DAxyt5qHJhxvZMh7l8g8GJOExxiEhl4FUgCJuuLaVU8wzK6HBsuqoGHDx40KVl/xX2Fx9s/ICo2CherPciPaMUPguHQuU28Pi0TGHR9S7i4+GPV2DbT9BoILT6KFVbUXHxcaw8vpIJuyawJ2IPRbIX4akaT9G1cldy+udMuazxD2lbWkO2gl82B59M2jl7/SzPLXuOY5eP8elDn9K8jGMe+Y//3Me41aEse/khKhbxKO/LhiyOIxXHDmAcetHfLVtRSqmMLAJ0Kq5scdhyPuo8I9aPYHX4au6JiubDHFUp8eQcj6gE041SsPRt2DgW6vaG9l8n2d0WExfDosOLmLR7EmGXwyiTuwzP1HyGDhU6EOBrhwmY3XNhTl9tr6vOE044kfQRGR3J4BWD2ROxh/fuf4/HKmbcOu/5qzdo/PFK2tYqwefd6zhASoPBMdirOOyZVRWrlPpeKbVZKbUtYXOAjF5HoeyF+KZYS94/f5H/ArPT2fcsvx9ZnLkXfYlAq5F6zcm/0+D35yDuthuW6zHXmbZnGm1+a8Pw9cMJ9Avk04c+ZUHHBXSt3NU+pREXo2dSFakOtbo58WTSTr7AfEx4ZAINijXgnX/eYfqe6RnOs1CubPRoWIZ5ISc4fuG6A6Q0GFyLPYpjoYgMFpHiIlIgYXO6ZJmR/UuQuf3olK86c9vPoWrBagxfP5wX/n6B81Hn3S1d+hHRq9xbvAu7ZsPsPly6dpbvd3xPq7mt+GTLJ5TKXYrvW37PrHazaB3U2q5xhFv8Ow0uHNb5e+DkgRz+OfiuxXe0LNOSj7d8zNiQsRn+GHj2wfL4CIxbHeogKQ0G12FPV9WRJIKVUspx8xQdhDvHODi0QvvUKFpD+70IzEu8imfanmmM2T6GnP45GX7fcFqWbelauRzMmbWfMfXfb5idNy9RKJqWakq/Wv0ILhKcvgxvXocxdbXZk75/eu5UZSA2Ppb3NrzHvEPzeLLqk7ze8HV8JP3+Qd78bSdzt51g7evNKJon0IGSGgzpw8yqcuUYR9g6mN4VClbUK7Bz3NkgC40M5c21b7L3wl7al2/PG43eIE9AHtfJ5wCOXj7KT7t/YkHoAuLjY2l99Sp9c1akco+52spueln3JSwfAc/8CWXvc5i8zkIpxWdbP2Pqnqm0K9+O9x94/+4p2HZyLOI6zT5fxTP3B/FOu+oOltRgSDsZHuMQkdds/ndLdGxUxsTzIo5t0gYC85eFp+bdpTQAKuSrwIy2MxhYZyCLjyym8/zObDi5wQ3Cpp29EXt5dfWrdJjXgYWhC+lcqTOLOi9mdJOPqXx0q7asG5WiB+HkibqoFUelVplCaYC2nvxqg1d5oe4LLDq8iJf/ftl+6wGJKFMwBx3qlGDGpmNcuHbTwZIaDM4jpXa27dSWNxMda41BO0Ga0VUbCnxqPuQslGxUfx9/ng9+numPTie7X3aeXfYsozaNIio2yoUC24dSii2ntzBw2UC6L+rOuhPr6FOjD0u7LuWde9+hVO5SULsbdJ8CJ0NgSjvtOyOtrPsKoi9Di+GOPwknIiIMqD2Adxq9w5rwNQxaPijdhi8HN61AVEwck9Yl1SNsMHgmKSkOSeZ/UvtZj9O79Nd29nzw9ELIXcyuZDUL1WR2+9n0qtaLmftm0n1hd3ae2+lkYe0jXsWz6vgqei/pTd+lfdl7YS8v1nuRv7r+xcv1X6ZQ9kSKsVp76PELnD+ovQleSYOXu8snYdM4PYuqmONWZruSx6s+zugmowk5G0LfpX3T5bOlUtHctK5RjCkbwrgcHZNqfIPBE0hJcahk/ie17xE4yzruXZzdB1M7attOTy/Ufi3SQJlcQ3IAACAASURBVKBfIK83fJ0Jj0zgRtwNei/pzZjtY4iJc0/FERsfy6LDi+iyoAtDVw7l3PVzvNXoLZZ2WUr/Wv1THo+p1BJ6zoHI4zCptfajYQ+rP4H4WGj2lmNOwk08Wv5Rvm7+NYcvHebpJU+ny93wkOYVuRIdy7QNR50gocHgeJIdHBeROOAaunWRHUiYcC5AoFLKY5dCO3VwPCIUfnoUUNoJUqGMGVS8cvMKH2/+mPmh86laoCqjGo+iUv5KjpE1FaJjo5l3aB6T/5vMiasnqJivIn1r9qV1udZpH/A9vgWmd9ED5U8vgIIVko8bEQrf3gMN+kLbzzJ2Eh7CtjPbGLJiCLkCcjH+4fGUy1suTen7/LSZneGXWPd6M3IEZCLTNAavIsOD40opX6VUHqVUbqWUn/U/Yd9jlYZTuXgUpnSA+Bg9ppFBpQGQOyA3Hzb+kK+bfc3Z62d5fNHj/LT7J+Li41JPnE6u3LzChF0TaD23NSM3jaRg9oKMaTaGuR3m0r5C+/TNEip9D/RZCLFRWrGe3Zd83JUf6tX0nuDIykHUL1qfSa0mcTPuJn3+7MOeiD1pSj+kWUUuXLvJzM3HnSShweA40j8JPatx6QRMaQ83r0DvedpjngNpXqY5v3X4jQdLPcgX276g79K+HL/i2ErkfNR5vt7+NY/MeYSvt39NlQJVmNRqEtPbTKdZmWYZWpMAQPE6uhWGgsmPwqkdd8c5GQL//Qb3DtaTCryIagWrMaX1FLL5ZqPf0n5sPW1/q7dBUAEalSvA+DWh3Ih13keDweAIjOKwhytnYGoHuH5BOzsqXtspxRTMXpAvm37JyMYjOXDxAF0WdGH2gdkZXqV84uoJPtz4Ia3ntmbironcX+J+fm33Kz88/AP3FLsHceSiuyJV4Zkl4J8DJrfXXVi2rHgfsueHB15wXJkeRFDeIKa2mUrhHIUZuHwga8LX2J12aPNKnLl8gznbwp0oocGQcTx+AaCINAF6oi3zVldK3Z9aGoeOcVyL0DOGIo9B79+gzL2OyTcVTl09xbD1w9h0ahONSzbm/fvfp3COwmnK49DFQ0zcPZElR5YgInSo0IFnajxDUN4g5whtS+Qx3a137ZyeeVWuCRxZo1ttD3/gtYojgQvRFxi0fBAHLhzgw8Yf0rZ821TTKKXo+N16Lly7wd//a4qfr/muM7gWRxo5zIgQk0TkrIjsThTeWkT2i8ghEXkjpTyUUmuVUgOBRcAUZ8p7F1EXYdpjcPEIPPmLy5QGQPFcxRn/8HjeaPgGW09vpdOCTvwZ9qddaXec28HQlUPptKATK46toGe1nizpvIT37n/PNUoDIF8ZbUIkbym91uXgclj+HuQuoX2JezkFAgsw8ZGJBBcJ5s21b/LLvtT9uIsIQ5pV5PiFKBbsOOkCKQ2G9OHUFoeIPAhcBaYqpWpaYb7AAeBhIBzYAvQAfIGPEmXRVyl11ko3C+inlLqSWrkOaXFEX4ZpHfV6jSdm6mmnbuLIpSO8ve5tdp3fRZugNrx979vkzXan9zilFOtPrmfCrglsPbOVvNny0rNqT3pU7UG+wHxukpz/b+/M46Oqzj7+fWbJZCYJScgKgQiKRVHLFqwLotVXRetaEW3V1qXSqmDxFYVWW7GruFVw16KgragvVWu1VUFFbbXKqoKKgrKEJQlZCMlkmeV5/7g3YRKSkIQkM5Oc7+dzP/feM/ee87tDuL8523OsiYFPnwc71wIKZ8+DsT+Onp4epjZYy03v3MSywmVMHTWVKd+e0mbTYDisnDnvPQKhMEtuOBGHw0yZMvQcMROrSkSGAK9EGMexwGxVPd0+/wWAqjY3jcg88oFfqWqrP1VFZAowBSA/P3/s5s0HMCa+vtoaWlq4HCY/DYed2fm8uohgOMj8T+fzyMePkJ6Yzm+O/w3j88YTCodYumUp8z+dz+dln5Pty+bHI37MpG9Nwuf2RVu2RU0FPHMRBKrh6mXxtRJiFxAIB/j1f37NK1+/wmUjLmNGwYw2ByK8/PF2rl+0mocuGcOZRw3oQaWGvk4sG8ckYKKq/sQ+vwz4jqpObSOP24HXVfX99pR5QDWOQA08M9kKXDjpCTji/M7l0018VvoZt/z7FjZUbOCMIWfwednnbKrcxJB+Q7jyyCs56+CzcMfiaoOq1oS/WNTWA4Q1zJyP5vDMF89w7iHnMvu42bgcLRtoKKz8z73v4Etw8sq08V07eMFgaIOY6OPoKlT1tvaYxgHPHA/WwXOXwTfvwXmPxJxpAIzIGMGzZz3L5UdczmubXsPr8nLPiffw0rkvcf6h58emaYAVLj1WtfUADnEw6+hZXDPyGv6+8e/MeGcGdaG6Fq91OoRrTjqEddsrWba+pIeVGgz7JxrGsQ0YHHE+yE6LPi9Pgw1LrOVRR14UbTWt4nF6uLHgRj665COeO+s5ThtyWscWTjJEBRHh2lHXMnPcTN7c8ibXLb2O6kB1i9eePzqPvDQv97/1VXyvIGnolUTDOJYDh4rIUBFJwIrC+3JXZKyq/1DVKampqfu/uCWOngJn/SluOm8TXYmmGSMOuXTEpfx+/O9ZUbSCn7z+Eypq9w1L73Y6+OmJB7NqSwUffF0aBZUGQ+t093DcRcAHwHARKRSRq1Q1CEwFXgc+B55X1XVdVN6BNVUNKrDiJxkM3cw5h5zDvSfdy5flX3L5a5dTVF20zzWTCwaTleLhwbc3REGhwdA6MT8BsDP0+AqABkMn+WjHR0x7axrpiek8dupj5PfLb/L5Y+9u5A///IIXrj2OMfnpUVJp6Cv0qs7x9tJjYdUNhi7i6AFH88TpT1AdqOZH//oR68vWN/n8ku8cRJrPzYNvmVqHIXboVcZxwH0cBkMUOCLzCBZOXIjT4eSK169gTfGaxs+SPC6uOG4ob35RzGfbK6Oo0mDYS68yDlPjMMQrB6cdzNNnPE26J52r37ia/2z7T+Nnlx83hGSPiweXmVqHITboVcZhahyGeGZg8kAWnrGQIalDmPrW1MbYZKk+N5cdexD//HQHG0s6t7a5wdCV9CrjOFA0HEaDwWjLMPRhMr2ZzD99Pt/O/DY3v3Mzi79cDMBV44ficTl4eNnGKCs0GHqZcRxoU9Wuhx9m65QpBMvLu1iZwdB++iX045FTH+H4vOO5/YPbmf/pfDKTPVw8Lp8XV29ja5l//5kYDN1IrzKOA22qcufm4l++gk0XTqZ2/fr932AwdBNel5d5353HxCETuW/Vfdy78l6mTBiKQ+DRd02twxBdepVxHChpF1zAQU8/hdbVseniH1D52uvRlmTow7idbu444Q4mf2syT659ksc+u5MLxgzk+RWFFFfWRlueoQ/Tq4yjK0ZVeUeNYsjfFpM4fDjbpk+n+E/3oSGzBrQhOjgdTm495lauPupq/vbV39idsoBgqJ7H3/s62tIMfZheZRxdNarKnZ1N/lMLSbvwQkoffZSt115LqNKMoTdEBxHh+jHXc+PYG/n3jjcZfPiz/OXDDZRV10dbmqGPYkKO7IfyZ59j5+9+R0JeHoMeehDPIYd0Sb4GQ2d44asXuP392wn4B3Hp0N/wy4ljoy0pJgiFlbpgiLpAmNrm+0CIuuC++ybHrVxTGwiR7ktgdH4ao/PTOWJgPxLdvTcSdcws5BQNujpWlX/lSgp/Ph2tqWHgnXNIOeWULsvbYOgoSzYv4cZlN6P1Wbw8aSFD02N/lUBVpbS6nh0VteysrMVfH6QuEKYuGKJ2P/umL/Jwo0FEXhMIHdh7zONy4HE5SHQ78bgdJLqsvcflZOfuWrZV1ACQ4HQwYmC/RiMZk59GXpq310SpNsbRxUEOAzt3Ujh1GrVr15I5dSqZ116DOHpVS58hjnjm46X8YdVMUhP689w5TzIoZVBU9dTUh9i+u4btFQ1brbXfvfe4LhhuMw8RGl/Yre09jXv7Jd+JvcflJLFZXvt78RdV1rJ6SwWrt5SzeksFn2yroDZgPU9WiocxjUaSzlF5qXgT4rNW0ieNQ0TOBs4eNmzY1V999VWX5x+uq2PnbbPZ/dJLJJ9yCgPn3IEzObnLyzEY2sOkJxaxnj+RmZzEb4//Lf0T++NxekhwJJDgtDaP00OCM6HVZWrbQzislFTVsa2idWNo3t8iAtkpHgamea0tNbHxOLdfIkke1z6/8N1OiZtf7oFQmC927GH11nJWbS5n9dYKNpda82tcDuHwAQ21kjTG5KeT398XF8/WJ42jge4Mq66qlD/9F4rmzCFhyBAGPXA/nqFDu6Usg6Etlm8q46InXyTr0IX4Q21PWnWIA4/Tg9vhbjSTBmNx4gJ1Ewo7CYacBIIO6uod1NY78NeDv1YIhV0QdqLqBnXicXpI8/ro7/ORmZREdnIS2SlJ5KakMDA1hQH9UkhK8DQpK8GR0KtXqiytqrNqJVvLWbW5go8LK/DXWyMyM5L29pOMHpzGyMFpJHk6b+bdhTGObl6Po/q/H7Jt+nQ0FCLv7rtIPvHEbi0v3qnbuJG69etxZWfjys3FlZ2NIyEh2rLinose/YBvyouY88P+KEHqw/XUh+qpC9VRH6qnJlBHeY2f0mo/FbV+dtfWsKe2hqr6WvyBWmoCdQQ1ABJEHEFrL0GczhAOZxCREEqAEAHgwN8VLnHhc/s4ZsAxnDbkNE7IOwGf23fgX0QMEgorXxbtYZXdvLVqSzlfl1hLBTsEvpWTwpiDLCMZc1A6QzOScDiiWysxxtEDCznVF26jcNo06r74gqzp08mYcnVcVEd7kuCuXZTMu5+KxYsh3LSN25mejisnB3dODq6cHFw52RHHVrqjXz/znbbBe1+VcNn8j7j6hKEMSvc16VPYXlFDUWUt4Wb/xdN8bgamWs1GeWl7m5AG2sfZKYk4m73AVJWgBqkP7TWmQChgGVQzs6oP1VMfbnoeeV1ZbRnLti6jrLYMr8vLCXkn9HoTaaDCX8/qrRWN/SVrtlawp9aKj5fqdVu1ksHpjM5PY1R+Gv0S3T2qzxhHD60AGK6pYcetv6Ly1VdJOf10Bv7h9ziSknqk7FgmXFdH2cKnKH30UcJ1daT/8AeknX8+wdIygkVFBIuLCOwsIlhURKC4iGBRMaHSfdfWlsREy1Cyc3Dl5uLOycaVbRtLrm0ymZmIK/aq/T2BqnL+Q++zZqu1bnmC09FoAANSmxuDZQ6+hOh/V6FwiFXFq3h90+ss2byk0UTG543n9CGn9wkTAav/aGNJVWOtZPWWCr4s3oOq1U80LCuZMfnpjc1ch2Ynd2utpNcYh4jkA/OAMuBLVb1jf/f09NKxqkrZkwsovvtuPMOGMejBB0gYPLjHyo8lVJU9//oXxXffQ2D7dpJPPpnsm2a0qx8oXF9PsLiEYLFtKEVFBHfaJlNUbBlOUREaCDS90eHAlZFhmUhujmUyDTWY3Fxc2Tm4c7J7raGXV9ezpczPwDQvGUkJUW/u6CiRJrJ081JKa0tJdCZywqAT+pSJNFBZG+CTrbttM7E63iv81t98isfFyMFpjaO4RuenkebruibfmDAOEXkCOAsoVtUjI9InAnMBJ/DntsxARL4HpKvqX0TkOVW9aH/lRmvN8ap//4dtN94IQN6995B8/PE9riGa1Hz8MUV/vIOaNWvwHHYYObNmknTMMV1ahqoSKi9vwVisWkuwaCeBomLCLcz0dyQnt9I0ltt47Ozf3wyzjiJtmchpQ05jQt6EPmUiYP3Nf7OrurGfZPWWCr7YWdnYBHlwZhKj7NFbo/PTGJ6TgsvZub/hWDGOCUAV8FSDcYiIE/gSOBUoBJYDP8AykT82y+JKIAQsxuqZe1pVn9xfudEyDoD6LVsovG4qdRs3kj1jBv2vuLzXt9EHtm+n+J57qXz1VZxZmWRPn07qeechzuiNoAn7/QSLi+2ays4IY2kwmSKCJSX79LvgduPKysSdnYMjORmHz2dvXhw+H+Lz4fD69kl3+HyI14vDl4QjyYfD60U8nl7/b9+dGBNpneq6IJ8U7m4cwbV6Szml9pDoBVeM46Th2Z3KNyaMwxYyBHglwjiOBWar6un2+S8AVLW5aTTcPwP4SFXfFZHFqjppf2VG0zgAwtXVbP/FL9nzxhv0O+ssBvz2Nzi83qjp6S5CVdWUPv44ZQsWAND/isvJ+MnVOJPjo0lIQyGCu0rt/padjcYSLC4iUFxMuNpP2F+N+msI+/2E/X60vgPxoRwOy1S8EabTsHm9Tcyn8bMGU0pqeo147TSfD0lIOGBD0lDIWrQsGEQjtqbnITQYiEjr3PnefO0yBRIPH4FvXAHuvLx2PYsxkbZRVbaW1bB6azknH5ZNSic71WPZOCYBE1X1J/b5ZcB3VHVqK/cfCcwGdgFVqjqjleumAFMA8vPzx27evLlrH6SDqCqljz5Gydy5eA4/jMH33487Ly+qmroKDYWoeOEFSubOI7RrF/3OPpvsG6bjHjgw2tK6HQ0GCdfsNZKw34/6/XvTqiOO/dVoS+k1NYT91fa9NQduSEk+xOlqhxHsPaen+zbdbsTlQlyWTq2xQni4cnPxjR2Lb1wBvoICEg45ZL9GYkyk++g1xtHBsrp15nhn2LNsGdtn3IS43eTddx9J3zk62pIOiOoPPqDojjnUrV+Pd/RocmbNxDtyZLRlxT1NDKnaT7jGNqQGo6n2NzGd5oakwWDjixmXE3G593PustOcdloL504X4na1fh6xEfHZPufNmiw1HKbuqw34V66gZsUK/MtXWM2GWEO0vWPH4CsowFcwjsTDhrc5Ys6YSNcSy8bRoaaqDpYVc8YBUPf1NxROnUr95s3kzJpF+qWXxF3bd93X31B8111Uvf027oEDyb5pBikTJ8bdcxhiD1UlsHUr/uUr8K9YgX/lSgJbtgDg8PnwjrGNZFwBiUcd1erE0QYTeWPTGyzZvMSYSCeIZeNwYXWOnwJsw+oc/6GqruuqMqPdx9ESoaoqtt88k6q33iL1/PPJnX0bDo8n2rL2S7C8nF0PPUz5okU4PB4yfvZT+v/oR3Gh3RC/BIqKLBNZsYKaFSups38ISkIC3m9/G++4AnxjC/COGtVin1qbJnLQaUwYZEykJWLCOERkEXASkAkUAbep6nwRORO4D2sk1ROq+vsuKi8maxwNaDjMrgcfYteDD5J41FEMun8e7tzcaMtqEa2vp3zRIkoeepjwnj2kXXghWdOm4srMjLY0Qx8kWF5OzapV+FesxL9iBbWffQahEDidJI4Y0dhP4h0zBld6epN7I01k6Zal7KrZZUykFWLCOKJFLNY4ItmzdCnbb56J+HwMmjcX35gx0ZbUiKpS9dZbFN95F/WbN5N03HFkz5xJ4vBvRVuawdBIqKqamjVrrH6S5Suo+eSTxgEGnkOH4S0osPtJCnDn5Oy9r5eZSLi2lmBJCcHi4sZ9vzPOwJWV1an8+qRxxHqNI5K6DRvYet11BLbvIPeWW0i/eL/zGrud2s8/p+iOOfg//JCEgw8mZ+bNJE2YYPoxDDFPuK6O2rVrG/tJalatIuy3wpy7Bw9uNBFfwVjc+fmICKFwiNXFq62O9RgzkbDfbxlBhCkEGs1hb3p4z5597s1/8gmSjj22U+X2SeNoINZrHA2EKivZNmMG1e++R9rkyeTcektUIsYGiospmTuX3S+8iDM1lcxpU0mfPBlx92yANYOhq9BgkNov1uNfsbyxnyRUYcXzcmVlWc1aBVY/iefQYYTRFk1kfN54xuWOI8eXQ5YviyxvFpneTNzOzv3fCFdXt2oCkUYRrqra515xu3FlZVkRprOymh5nZ+PKtvbO1NRORz/ok8YRTzWOBjQUomTuPEofewzv6NHkzb0Pd3bnZn12lHBNDWULFrDr8T+jgQD9L72UzGt+hrNfvx4p32DoKTQcpv7rr+0O95X4ly8nWFQEgCM11eojsftJ3MO/xZrytbyx2epY31Wza5/8+if2J8ub1WgmuZLKwJpEMv1O0vcoSZUBPBXVhEtKmxhDuLp6n7wkIaGpAexjCta5My2t22v/fdI4GoiXGkcklf/6F9t/eQvOlBQG3T+vW+dGaDhM5auvUnzPvQR37iTl1FPJvmkGCfn53VamwRBLqCqBbdv2jtxavoJ6e9Kw+Hz4Ro3EW1CAd+xYqlJclBdupHLHZvw7txEoLkJ3leEsrSSxwk9yZQBP/b7v0ToXVKY48ad5qE9LRjNScWRl4skZQPKAQaQOHErG4EPJyMrvdA2mqzHGEWfGAVC7fj2F100lWFRE7uzZpF3w/S4vw79qFUV3zKH2k09IHDGCnF/MwjduXJeXYzDEG8GSEvwrVzb2k9R9+WWLM+zF622sBbjtWoEjM5PaNB+VqU7KfEqRL0Cx7KG4poSSmhJK/CUU+4spqy1Dmy2I5RAHGYkZZPmyyPZmk+nLJNubbZ37shtrNume9G5fQbFPGkc8NlU1J1hezvYbb6T6/Q9Iv+QScmbN7JK+hvrCQorvvoc9r72GKzubrP+9gdRzzjGRYA2GVgjt3o1/1SrCVdVN+hEcSUmdbjIKhoOU1pRSUmMZSYnfNpZm52W1Zfvc6xQnGd6MRlNpMJQGc8n2ZZPpzSQ9MR2HmD6ODhOvNY4GNBik+J57KXvySXwFBeTNvQ9XRkan8grt2UPpo49StvApcDrJuOoqMq66EocvfoYcGgx9jUAoQGltaaOZFNdEmEzEeUVdxT73Pn7a4xwzoHPLGbTXOKK/FJhhH8TlImfmzSSOOJwdt/6KbyZdyKD778d75BHtzkODQSoWL6Zk3v2EyspIPe88sm6Y3mRMu8FgiE3cTje5SbnkJrU9Qbg+VM+uml2WwdimMixtWLfr61U1jt7QVNWcmnXrKJw6jVBZGQN+91tSzz57v/dUvfdviu+cQ91XG/AWjCVn1i86ZDoGg6FvYpqq4ripqjnB0lK2Tb8B//Ll9L/8crJn3NhixNC6DRsouvNOqt99D/fgwVYgwlNPNRP4DAZDuzBNVb0IV0YG+U/Mp2jOnZQtWEDt+i/Iu/fexpg8wbIydj3wAOXPPY/D5yP75ptJv/SSqEwmNBgMvR9jHHGCuN3k3noLiYcfzs7Zs9k06ULy7vsT/o+Ws+uRRwj7/aRfdBGZU6/D1b9/tOUaDIZejDGOOCPtgu/jGXYIhdOuZ9OFkwFIOnECOTfdhGdY93eKGQwGQ68yjojO8WhL6Va8I0cy9G+L2fXwIySffDLJ44+PtiSDwdCHMJ3jBoPBYADa3zlupg0bDAaDoUMY4zAYDAZDhzDGYTAYDIYOYYzDYDAYDB0i5o1DREaIyPMi8rCITIq2HoPBYOjrdKtxiMgTIlIsImubpU8UkfUiskFEZu0nmzOA+1X1GuBH3SbWYDAYDO2iu+dxLAAeAJ5qSBARJ/AgcCpQCCwXkZcBJ/DHZvdfCTwN3CYi5wCdiy1uMBgMhi6jW41DVd8VkSHNko8GNqjq1wAi8ixwrqr+ETirlayusw3nhdbKEpEpwBSAfLMEqsFgMHQb0Zg5ngdsjTgvBL7T2sW28fwSSALuau06VX1MRHYAZ2/ZsuVQEelsXPVMYN/V6WOXeNIbT1ohvvTGk1aIL719SetB7bko5kOOqOom7JpEO679B/CP9l7fEiKyoj0zJ2OFeNIbT1ohvvTGk1aIL71G675EY1TVNmBwxPkgO81gMBgMcUA0jGM5cKiIDBWRBOBi4OUo6DAYDAZDJ+ju4biLgA+A4SJSKCJXqWoQmAq8DnwOPK+q67pTRwd5LNoCOkg86Y0nrRBfeuNJK8SXXqO1Gb0yOq7BYDAYuo+YnzluMBgMhtjCGIfBYDAYOoQxDhsRSRSRj0TkYxFZJyK3R1vT/hARp4isFpFXoq1lf4jIJhH5VETWiEhMr7IlImkislhEvhCRz0Xk2Ghrag0RGW5/pw1bpYhMj7au1hCRG+z/X2tFZJGIJEZbU2uIyM9tneti8TttKaSTiPQXkSUi8pW9T++Oso1x7KUOOFlVRwKjgIkickyUNe2Pn2MNMIgXvquqo+JgTPxc4DVVPQwYSQx/x6q63v5ORwFjAT/wYpRltYiI5AHXAwWqeiRWmKGLo6uqZUTkSOBqrEgXI4GzRCTW1qReAExsljYLeFNVDwXetM+7HGMcNmpRZZ+67S1mRw6IyCDge8Cfo62lNyEiqcAEYD6AqtarakV0VbWbU4CNqro52kLawAV4RcQF+IDtUdbTGocDH6qq3x4J+g7w/ShraoKqvguUNUs+F1hoHy8EzuuOso1xRGA3/awBioElqvphtDW1wX3AzUA42kLaiQJviMhKO65YrDIUKAGetJsB/ywiSdEW1U4uBhZFW0RrqOo24G5gC7AD2K2qb0RXVausBU4QkQwR8QFn0nTicqySo6o77OOdQE53FGKMIwJVDdlV/kHA0XZ1NeYQkbOAYlVdGW0tHWC8qo7BCpN/nYhMiLagVnABY4CHVXU0UE03Vfe7Ensy7TnA/0VbS2vY7e3nYpnzQCBJRC6NrqqWUdXPgTnAG8BrwBogFFVRHUStuRbd0mpijKMF7KaJt9m3/TBWOB44R0Q2Ac8CJ4vIX6IrqW3sX5uoajFWG/zR0VXUKoVAYURtczGWkcQ6ZwCrVLUo2kLa4H+Ab1S1RFUDWNGuj4uyplZR1fmqOlZVJwDlwJfR1tQOikRkAIC9L+6OQoxx2IhIloik2cderPVCvoiuqpZR1V+o6iBVHYLVPPGWqsbkLzcAEUkSkZSGY+A0rKaAmENVdwJbRWS4nXQK8FkUJbWXHxDDzVQ2W4BjRMQnIoL13cbswAMRybb3+Vj9G89EV1G7eBn4sX38Y+Dv3VFIzEfH7UEGAAvtdT8cWKFQYn6Ya5yQA7xovStwAc+o6mvRldQm04C/2s0/XwNXRFlPm9hmfCrw02hraQtV/VBEFgOrgCCwmtgO5/E3EckAAsB1sTZIwg7pdBKQKSKFwG3AHcDzInIVQPKF9wAABJdJREFUsBmY3C1lm5AjBoPBYOgIpqnKYDAYDB3CGIfBYDAYOoQxDoPBYDB0CGMcBoPBYOgQxjgMBoPB0CGMcRhiChF5W0ROb5Y2XUQe7mA+/2yYl9PGNb9sdv5+R8pop44FIjKphfTD7Gi2q0XkkK4ut6N62nnvSSJyXMR5p/MyxDfGOAyxxiL2jZja7hhMYuFQ1TPbMe6+iXGoak/OYj4PWKyqo1V14/4ubniuHtDVFicRwzO9DT1HtP8QDYbmLAa+Z0++Q0SGYMU1ek9EkkXkTRFZZa/tcW7DNSKyXkSewpqRPthe/yPT/vwlO7jiuoYAiyJyB1aU1jUi8lc7rcrei4jcZa/F8KmIXGSnnyQiy2TvWh1/tWdAIyK/FpHl9j2PNaS3hIicCUwHrhGRt+20/7XvXSv22g+tPFeVrW2diCwVkaNtTV+LyDktlCUi8oCdz1IgO+KzsSLyjv3dvB4RqmKZiMy1v5u1dhlDgJ8BN9jpJ9jZTBCR9+3yTe2jr6CqZjNbTG3AK8C59vEs4G772AX0s48zgQ2AAEOwogQfE5HHJiDTPu5v771YL+AM+7yqWblV9v4CYAnWehE5WKEyBmD94t6NFQTTAXyAFbyxsQz7+GngbPt4ATCphWecDcywj8cCnwJJQDKwDhjdynMpcIZ9/CJWED431poRa1oo5/sRzzIQqAAm2fe8D2TZ110EPGEfLwMet48nAGuba454tv+zv4sRwIZo/+2YrWc2U+MwxCKRzVWRzVQC/EFEPgGWAnnsDRu9WVX/20p+14vIx8B/sUJjH7qf8scDi9SKllyEtRbDOPuzj1S1UFXDWBFTh9jp3xWRD0XkU+Bk4Ij2PWpjeS+qarVaa8K8ADT8om/+XPVY0VrBMpt31AoY+GmElkgmRDzLduAtO304cCSwRKylBG7FMsQGFkHjmg/92ugveklVw6r6Gd0UwtsQe5hYVYZY5O/An0RkDODTveHjLwGygLGqGhArOnDD0qPVLWUkIidhRWU9VlX9IrIs4p7OUBdxHAJcYi1/+hDWynZbRWT2AZYRSfPnCqhqQ5ygcIMeVQ2LtThSexFgnaq2tixu81hErcUmivw+Wm2eM/QuTI3DEHPYv7rfBp6gaad4KtY6JAER+S5wUDuySwXKbdM4DIhcDjggIu4W7nkPuEishb2ysH61f9RGGQ0msUtEkrGagjrCe8B5YkWNTQLOt9O6gnfZ+ywDgO/a6euBLLHXUxcRt4hE1pIa+nXGYy24tBvYA6R0kS5DHGNqHIZYZRFWG37kCKu/Av+wm4NW0L6w968BPxORz7FelpHNPo8Bn4jIKlW9JCL9ReBY4GOsX9o3q+pO23j2QVUrRORxrP6TncDy9jxgxP2rRGQBe83pz6q62u6QPlBexGo6+wyrr+YDu8x6uzN7nljL5bqwVpVcZ99XKyKrsfpCrrTT/gEstgclTOsCbYY4xUTHNRgMTbCb82ao6opoazHEJqapymAwGAwdwtQ4DAaDwdAhTI3DYDAYDB3CGIfBYDAYOoQxDoPBYDB0CGMcBoPBYOgQxjgMBoPB0CH+H3CXQ7Xn5M38AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for k in range(len(var_forms)):\n", " for j in range(len(entanglements)):\n", @@ -158,30 +123,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4VVXWh9+VRkIgBAiQQknoLSGEACpiAQRHqg0bioI46owy1rF8aoaxMHbsBRBsWFApoqKiiIoiSQihhE4CCQECKUB62d8f5wSSkHKT3Jrs93nuc+/d55y9172Bu87ea+3fEqUUGo1Go9FYAzdHG6DRaDSapoN2KhqNRqOxGtqpaDQajcZqaKei0Wg0GquhnYpGo9ForIZ2KhqNRqOxGtqpaDQajcZqaKei0dSBiCSLyBgHjd1JRNaJyEkRecGO4y4SkSdt1PcNIvK9LfrWOB7tVDSNQkS+E5E51bRPFpHDIuJhvj9PRH4yfxxzRGSFiPStcP5FIlImIqeqPM615+dxQm4DjgF+Sqn7HG1MfRGRUBFR5f8OAJRSHymlxjrSLo3t0E5F01gWA9NERKq03wh8pJQqMR3D98ByIBgIAxKB30UktMI1h5RSrao8/rD9R7APFX9Y60E3YLvS0hcaF0E7FU1jWQa0B0aWN4hIW2AC8L7Z9CzwvlJqnlLqpFIqUyn1f8BfwBMNGdRckrpfRBLNmc+nIuJtHrtZRH6rcr4SkZ7m60Ui8oaIfGvOhn4XkUAReVlEskRkh4gMrjLkUBHZbh5/r3wss78JIpIgItkisl5EIqrY+W8RSQRyq3Ms5ixuo/k5NorIeeV2AtOBB007z1qCE5EWIvK8iBwQkSMi8paI+JjHkkRkQoVzPUQkQ0SizPefm7PJHHOJbUAN33Vd3+d4EdkkIidE5KCIxFQ4dZ35nF0+86zaX02f3zy2VkT+a/6NTorI9yISYB7zFpEPReS4+d1vFJFO1X0Gjf3QTkXTKJRS+cBnwE0VmqcCO5RSm0WkJXAe8Hk1l38GNGYZZCpwKcbMJwK4uZ7X/h8QABQCfwDx5vulwItVzr8BGAf0AHqb12I6n4XA3zGc69vAChFpUeHa64DxgL9SqqRipyLSDlgFvGJe/yKwSkTaK6VuBj4CnjVnbT9W8znmmvZEAj2BEOBx89gSc+xyxgHHlFLx5vtvgV5AR/Ozf1T9V1UnuRh/f3/zc94hIlPMYxeYz/7VzTxr+/wVTrseuMW00wu432yfDrQBupjX3g7kN/AzaKyEdioaa7AYuKrC3ftNZhtAO4x/Z+nVXJcOdKjwPti846z48K1l3FeUUoeUUpnASowfVkv5SikVp5QqAL4CCpRS7yulSoFPgaozldeUUgfNsZ7izI/1bcDbSqkNSqlSpdRiDCd1ThU7D5oOuCrjgd1KqQ+UUiVKqSXADmBiXR/AXHK8DbjHnP2dBJ4GrjVP+RiYZDp2MH6cl5Rfr5RaaM4cC4EYYJCItKlr3KoopdYqpbYopcqUUonmGBdaeLkln/89pdSuCjcw5X/nYgxn0tP87uOUUifqa7/Guminomk0SqnfMILJU0SkBzAM4wcNIAsoA4KquTTIvK6cQ0op/yqP3FqGPlzhdR7Qqh5mH6nwOr+a91X7OljhdQpGbAiMmMd9FR0hxp1zcA3XViXY7K8iKRgzjrroALQE4iqM/Z3ZjlJqD5AETDQdyyTMv4uIuIvIXBHZKyIngGSzzwALxq2EiAwXkZ/NpbUcjBmDpf1Y8vlr+jt/AKwGPhGRQyLyrIh41td+jXXRTkVjLd7HmKFMA1YrpY4AmE7hD+Dqaq6ZCqy1gS25GD+2AIhIoBX67FLhdVfgkPn6IPBUFUfY0rzjLqe2IPshDMdUka5AmgU2HcNwgAMqjN1GKVXRIZYvgU3GCPjvMduvN9vGYCwhhZrtVRMuoO7v82NgBdBFKdUGeKtCP3UlGDT48yulipVS/1FK9cdYYp1A5WVYjQPQTkVjLd7H+IGaxZmlr3IeAqaLyN0i0lpE2oqxB2IkxnKNtdkMDBCRSHNJLsYKff5DRDqbMYBHMZbIAN4Fbjfv1kVEfM3AdWsL+/0G6C0i15uB9GuA/sDXdV2olCozx39JRDoCiEiIiIyrcNonGHGrOzgzewRojbFMdxzDYdT2d6jr+2wNZCqlCkRkGIbDKicDY6bavYa+G/z5ReRiEQkXEXfgBMZyWFld12lsi3YqGquglEoG1gO+GHetFY/9hhEkvgIjjpKJEWQdrZTaWuHUYDl7n8qVDbBlFzAH+BHYDfxW+xUW8TFGWvQ+YC/wpDlWLIYjfQ1jqW8P9UgYUEodx7jDvg/jB/5BYIJS6litF57h3+aYf5rLWD8CfSr0n44xUzyPM44QjJuAFIwZwXbgz1psrOv7vBOYIyInMZIEPqtwbR5GDOp3c4muYqypsZ8/ECOp4gTGMt8vGEtiGgciOv1dY2/ESLn9GbheKbXa0fZoNBrroWcqGrtjZghNAcKlYRsCNRqNk6JnKhqNRqOxGnqmotFoNBqr0eyWHgICAlRoaKijzdBoNBqXIS4u7phSqkPdZzZDpxIaGkpsbKyjzdBoNBqXQUSqblCtEb38pdFoNBqroZ2KRqPRaKyGdioajUajsRrNLqai0WgcR3FxMampqRQUFDjaFE01eHt707lzZzw9G67LqZ2KRqOxG6mpqbRu3ZrQ0FDkrGKhGkeilOL48eOkpqYSFhbW4H5s5lREZCGGps9RpdRAs60dhv5QKIbU9lSlVJZZF2IecBmGtPXN5YWERGQ6ZkEk4EmzXgUiMgRYBPhgiNLN1iVXYeOKt+kS/xwdVQZHpQMHox5g6KS/O9qsGlm2KY3nVu/kUHY+wf4+PDCuD1MGW6L6bn9c7bsl8TNYMwdyUqFNZxj9OERMdahJBQUF1TuUvEw4mQ6lReDuBa2DoGU7xxhpCa5kr4W2igjt27cnIyOjUcPZMqayCKMqX0UeAtYopXoBa8z3AH/DqEDXC6Po0Jtw2gk9AQzHqNHxhBilajHPmVXhuqpjNTs2rnibgXH/RyAZuAkEksHAuP9j44q3HW1atSzblMbDX24hLTsfBaRl5/Pwl1tYtskS1Xf74mrfLYmfwcq7IecgoIznlXcb7Q6mWoeSc9D40QPjOeeg0e6MuJK99bTVGrNHm81UlFLrRCS0SvNk4CLz9WKMWhr/NtvfN2caf4qIv4gEmef+YFbbQ0R+AC4VkbWAn1LqT7P9fQwtqW9t9XlcgS7xz+EjRZXafKSIkLhnedH7IscYVQvv/Z5MfnFppbb84lIeW7aVfRmnHGRV9Vwb92y1322/+BhoZamgsB3Z8BYUVyk0WZwPq+6DY7sdYxNA29FwokoR0NwMUFUU61WZMcMqKbSfbZbiSvbWZOvJdJvNrOwdU+lkSnGDUc2tk/k6hMrV8VLNttraU6tprxYRuQ1jBkTXrl0bYb5z01FlVFtiKZDjvPrznrMPOJiaFitPFpY4nb3/8qrecfiqPFj3nJ2tsYQavtzCE461d1w0nDpc93kAqtTyc+uBe5dowvv2pKS0lLAuwXzwypN4t/Aicux1fP72/wjv1wuA595czJ79B3n4rhn0u+hK+nTvRlFxMdER/VnwwuN4enry6NzXWLXmTCWAvPwC9qakkrNjHa18W9ZkQp38uiGe2x96Gk8PD/5YsQgfH+9qz7voqlk8/9g9RA/qT+jw8cR++yEB7dpWe24lSovqPqeBOCxQr5RSImKXGIhS6h3gHYDo6OgmG3c5Kh0I5Oz10KMSwP5nxjvAotoZMfcn0rLPLtse4u/D7w+NcoBFNXM4pvrv9oh0IDDGuRwgAC8NNJe+qtCmC9yz9ex2e5GUBMH9Krcd2Vb9j5y7F8sO+Vs95ubj40PCtp0ATJ8+nde//JVHH32Ul197kztjnmLdunUcOnSItz5eSWxsLDk5OfTo0ZOErVspLS3lkgvP47OVP3DDFZfx1EP/5KmH/nna3hvufZqp14fRqteIGsePiYkhNDSUm2++ucZzPlr9Ng8/9h+mTZtW+4fxagUd+kDwYCNeEhgBARUqOdfy3doKe+9TOWIua2E+HzXb06hcrrWz2VZbe+dq2ps1B6MeoERV/pPmKy8ORj3gIItq54FxffDxdK/U5uPpzgPj+tRwheM4GPUAxaqyrc783TL6cfD0qdzm6WO0Oxutg0Cq/BSJG8uSPWweczv33HNJSzP6u/TSSwkKCuL999/nnnvuISYmhrZtK9/1u7u7M2z4OaQdrnKDIW58+PWv7Nmzh5iYmEbZNH/+fD777DMee+wxbrjhBtauXcuECRNOH//nP//JokWLLOushu+W1kGNsrE27D1TWYFR8W+u+by8Qvs/ReQTjKB8jlIqXURWA09XCM6PBR5WSmWKyAmzitwGjLrUr9rzgzgjQ8+9CBVfxgnlQyvycRM42vUyp81QKr/jdIXsr6HjZ1CU+F8KSgrwUiUcUu3Z3v9fjHXS7/Z0lpeTZX9V5D8rt7H90AnjTVkJlBYaa6Ii4N6CTamHKCqtHA/ILy7lwaWJLPnrQLV99g/244mJAywav7S0lDVr1jBz5szTbS+//DLDhg2jV69e3HjjjWddU1BQwIb4RObNnWPc7ZsZVcmZxTz0xJOsXbsWD4/G/azeeuut/Pbbb0yYMIGrrrqKtWvXNryz8riJHTPVbJlSvAQj0B4gIqkYWVxzgc9EZCZGKdPyf+HfYKQT78FIKb4FwHQe/wU2mufNKQ/aY5QwXYSRUvwtzTxID8C65ylx8+HCvJf4+bEr8P9gDN0Kd5/5j+qETBkc4pRO5Cx2fYdXyUm4dgmZXcZw0VM/MrNNGGMdbVdtREx1KidSK24exqMCVR1KXe2Wkp+fT2RkJGlpafTr149LLrnk9LHg4GBGjRpVaWYAsHfvXiIjI9m/fz/jx48nYvjI08dKS0uZduWF/Pe//6Vnz57Vjrlly5bTTurw4cN4eXnx8ssvA7BmzRrat2/fqM9UKy3b2TXd2ZbZX9fVcGh0Necq4B819LMQWFhNeywwsDE2NimO74WtS/mx9VW0bxWMv28LGDoTVs6Ggxug6zl196GpmY0LwK8z9B5HOzd3RvYKYGXCIf49ri9ubs7psJ2dumYUtcXcPv37uQ0e18fHh4SEBPLy8hg3bhyvv/46d9999+njbm5uuLlVXjLq0aMHCQkJHDt2jBEjRrBixQomTZoEwJNPPklQUBC33HJLjWOGh4eTkJAAWBZTqYiHhwdlZWccqbOrEWjtr6bCry+g3Fvw7IlLGNLVXC0ceBW08DN+EDUN5/he2PczDJkObkZcZcrgEA7lFLAx2Qn3JjQRbB1za9myJa+88govvPACJSUlFl0TEBDA3LlzeeaZZwD4888/WbRoEe+8845VbKqObt26sX37dgoLC8nOzmbNmjU2G8saaKfSFMhKhs2fkN3vevYX+DIk1HQqLVpBxDWwfRnkHneoiS5N3Hsg7hB10+mmS/p3wsfTnWUJhxxoWNNmyuAQnrkinBB/HwRjhvLMFeFWXS4dPHgwERERLFmyxHK7pkwhLy+PX3/9lSeeeIK8vDwuvvhiIiMjTz/27t1rNRu7dOnC1KlTGThwIFOnTmXw4MFW69sWNLsa9dHR0arJFelaORsSPmb5hd8w+5uj/HTfhXTv0Mo4dmQ7vHkuXDIHRsx2rJ2uSHEBvNgPQs+Haz6odGj2J5tYuzODjY+OwctD359ZQlJSEv369av7RI3DqO5vJCJxSqloS67X/xNcnZxU2PQRDL6RX4940c7Xi7AA3zPHO/WHrudC7HtQ1rgAZ7Nk+3LIzzTiU1WYEhlCTn4xv+xqnFaSRtOU0E7F1fl9HqDg/H8Rl5JFVNe2Z+v3RM+ErP1GXEBTP2IXQLseEHrBWYfO7xVAO18vlic0+y1SGs1ptFNxZU4ehrjFMOg6jnt0Yv+xXKJDq5Fo6D8JWraH2LOS6DS1cXirkTkXPQPczv6v4unuxvjwIH5MOsKpQssCvRpNU0c7FVdm/avGprGR9xKXkgVAdLdqnIpHCxg8DXZ+Cyd0YNliYheCewuIvL7GUyZHBlNQXMb326yvUaXRuCLaqbgquceMH73wq6Fdd+JSsvByd2NgSJvqzx9yiyHQF7fYvna6KoUnIfFTGHhFrRvHhnRrS+e2PjoLTKMx0U7FVfnjNUPKfOR9AMSlZDEwxA/vKnn9p2kXBj1GQ/xiKNVLNXWy5XMoOmXEo2pBRJg0KJjfdmeQcdLJZM81GgegnYorkpcJf70LAy6HDr0pLCklMS2H6NA6pBiGzjQ0gHZpRZtaUQo2LoRO4dC57izKKYNDKFOwKlHPVlwBd3d3IiMjGThwIBMnTiQ7O5uCggL69u3Lli1bTp/33HPP8fe//53k5GR8fHyIjIykf//+3HTTTRQXFwPw6KOPVtqf0rt3b9zd3Tl1qnH1gC666CLKtz5cdtllZGdnN6o/e6Kdiiuy4S3jLvqC+wHYmpZDUUkZUV3rqKPQaxz4heiAfV2kxsKRLTB0hkWaab07taZfkJ9eArMFiZ8ZMv4x/sazFSpXlsu0bN26lXbt2vH666/j7e3Nyy+/zJ133olSirS0NN566y3mzp0LnJFp2bJlC6mpqXz2mWHHU089RUJCwunH0KFDefjhh2nVqlWN48fExFiuMgx88803+Pv7N+oz14alagKWop2Kq1GQA3++BX0nQCdDOyk22QjSD6kuSF8Rdw+Img57fzKkRzTVE7sAvFob8SoLmRwZTMLBbFKO59rQsGaGHUoiN0j6ftiw09dU5MMPP7SK9H1VQkNDOXbsGMnJyfTr149Zs2YxYMAAxo4dS36+oY22d+9eLr30UoYMGcLIkSPZsWMHACtXrmT48OEMHjyYMWPGcOTIEcBwbDfeeCMjRoyoVo25MTisSJemgfz1DhTmwIUPnm6KS8kitH1LOrRuUff1UTfBL/8zpEfGPmlDQ12UvEzY+qWRLdeitcWXTRoUzNxvd7A84RB3j+5lQwObEN8+BIe31Hw8daMhh1+R4nxY/s+aE04Cw+Fvcy0avsHS9xs2MG/evErtycnJPPTQQ1aRvq+N3bt3s2TJEt59912mTp3KF198wbRp07jtttt466236NWrFxs2bODOO+/kp59+4vzzz+fPP/9ERJg/fz7PPvssL7zwAgDbt2/nt99+w8fHp45R64d2Kq5E4Sn44w3ofSkEDQJAKUVcShYX9ulgWR9+QdD3MmMX/sX/B57VlylttiR8bPyQRc+o12XB/j4MC2vHsoQ07hrV8+wNqJr6U9Wh1NVuIVaRvo+IOGNOaSnTpk2zi/R9WFgYkZGRAAwZMoTk5GROnTrF+vXrufrqMzPrwkLjO0pNTeWaa64hPT2doqIiwsLCTp8zadIkqzsU0E7FtYhdYEiGXHBmlpJ8PI/juUVEd6tHvYTomZC00pAgGXSNDQx1UcrKjHhTl+EQWP+qClMiQ3jkqy1sO3Si5tRuzRnqmlHUVhL5llUNHtbVpO8r0qLFmdUId3d38vPzKSsrw9/f/3T/Fbnrrru49957mTRpEmvXrq20NOfr63vW+dZAx1RchaI8Y7Njj1HQecjp5tObHqvbSV8TYRdCu+46YF+V5HWQubfONOKauCw8EE930bIt1sLGJZFdRfq+Lvz8/AgLC+Pzzz8HjNWLzZs3A5CTk0NIiKHqvHixffaoaafiKsQvhtyMSrMUgLiUTPy8PejZoeZsk7NwczOWdw7+CUe2WdlQF2bjAvBpB/0nN+hy/5ZeXNi7Iys2H6K0rHmpf9uEiKkw8RVjZoIYzxNfsWo1S1eQvreEjz76iAULFjBo0CAGDBjA8uVGpfaYmBiuvvpqhgwZQkBAgF1s0dL3rkBxAcwbBAG94OavKx265MVfCGnrw6JbhtWvz7xMeKEvRN0I41+worEuyol0eGkAnHtnoxIYVm4+xF1LNvHxrcM5r6d9/hO7Elr63vnR0vfNgU0fwKnDcMEDlZpz8orZffRU9XpfddGynbF5cvOnRgJAc2fTB4aMzZCa18UtYUy/Tvh6ubNc71nRNFO0U3F2Sorgt5eN4HFYZfn1+APl+1PqEaSvyNCZUHQStlgv798lKS2BuEXQ/WJo36NRXfl4uTNuYCDfbE2noLjUOvZpNC6EdirOzuYlcCLViKVUSVONTcnE3U0Y1KWBmUadh0KngYYkSTNbBq3E7u/hRFq1hbgawuTIEE4WlLB2py7epWl+aKfizJSWwG8vQvBg6Dn6rMNxKVkMCPajpVcDM8NFjID9kS2GNElzJXYBtA6C3n+zSncjerQnoJUu3qVpnmin4sxs+RyykqudpRSXlpFwMLtuaZa6iJgKXq2ab3px5n7Ys8aQr3G3zrYtD3c3JkQEs2bHUU4UFFulT43GVdBOxVkpK4VfnzeUcvucfQe9/dAJCorLGu9UWrQ2HMu2L42MsOZG3CIQN0O+xopMjgymqKSM77bq4l2a5oV2Ks7Ktq/g+B5DibgayY/Y05UeGxikr0j0DCgpMOI3zYmSQtj0oeG024RYtevILv50a9+SFToLzOmor/R9Y8jIyDgt6Pjrr7/WeF5MTAzPP/88ADfffDNLly5t1LiORDsVZ6SsDNY9Dx36Qr9J1Z4Sn5JFiL8PgW2soN0VGA6dhxlLYM0pYJ+0EvKO1VvnyxJEhMmDglm/9xhHTxRYvf/mwqp9qxi7dCwRiyMYu3Qsq/Y1XJ6lnIZI31fH2rVr65RaWbNmDeHh4WzatImRI0c22nZXQDsVZ2TH15CRBCPvN3a/V0EpRWxKZuOXvioydKYxM9r/i/X6dHY2LoC2YUYqsQ2YFGkU71qxWc9WGsKqfauIWR9Dem46CkV6bjox62Os4ljKqa/0fX1ISEjgwQcfZPny5URGRpKfn1+pzsrSpUsbpP/l7GhBSWdDKVj3HLTrYdRHr4bUrHyOnCisn95XXfSfAt89ZMxWul9kvX6dlaNJcGA9XDKnWsdtDXp2bMXAED9WbD7ErSO722QMV+Z/f/2PHZk7ajyemJFIUVlRpbaC0gIe//1xlu6qfnmob7u+/HvYvy0avyHS9/UhMjKSOXPmEBsby2uvvdaovlwJ7VScjV2r4XAiTH4D3KqvN39m06MVnYqnN0TeYFSVPHkYWgdar29nJHYhuHsZn9mGTIkM4clVSezLOEX3+uizac5yKHW1W0pDpO8rMnz4cAoLCzl16hSZmZmnpej/97//MW7cuEbZ1hTQTsWZUArWPQv+XWsVzYtNzsLXy50+nSwvImUR0TPgj9cg/gO48IG6z3dVinJh8yfG7MzXtvpcEyKCeeqbJJYnHOKeS3rbdCxXo64ZxdilY0nPTT+rPcg3iPcufa/B4zZE+r4iGzZsAIyYyqJFi+pVGrhinZ2CgqYZa9MxFWdi70+QFgfn3wvunjWeFpuSxeCubfFwt/Kfr30PY+krbpGR0txU2bIUCk/YJEBflcA23pzbvT3LE9JobuKtjWV21Gy83Ssnoni7ezM7arZV+m+I9H1j6dSpE0lJSZSVlfHVV1/ZZUx7o52Ks1AeS/ELgcjrazztZEExOw+fsO7SV0WiZxqyMLu/t03/zkDsQujYH7qeY5fhJkcGk3w8j8TUHLuM11QY3308MefFEOQbhCAE+QYRc14M47uPt9oYDZG+bwxz585lwoQJnHfeeQQFBdllTLujlLL7A7gH2AZsBZYA3kAYsAHYA3wKeJnntjDf7zGPh1bo52GzfScwzpKxhwwZopySfeuUesJPqT/frvW0dbuOqm7//lqt23XUNnaUFCn1XG+lPrjSNv07mtRY43ve8I7dhszOK1K9HvlGxazYarcxnZXt27c72gRNHVT3NwJilYW/73afqYhICHA3EK2UGgi4A9cC/wNeUkr1BLKA8pSMmUCW2f6SeR4i0t+8bgBwKfCGiFQf2XYF1j0LrToZ9U1qITY5CzcxNtfZBHdPGDId9vxoSMQ0NTYuBE9fiLBfGeU2Pp5c3LcDKzen6+JdmiaPo5a/PAAfEfEAWgLpwCigPE9wMTDFfD3ZfI95fLQY0a7JwCdKqUKl1H6MGUs9K1U5CQf+hP3rYMTss8unViH+QBZ9Av1o7V1zzKXRRN1k7OKPW2S7MRxBfhZs/QIirgZvP7sOPSUyhGOnClm/95hdx9Vo7I3dnYpSKg14HjiA4UxygDggWylVHi1LBcp1M0KAg+a1Jeb57Su2V3NNJUTkNhGJFZHYjAwnlCP/5VloGVBngajSMsWmA9kNK8pVH9p0NhR74z8wpEyaCps/gZJ8uwToq3Jx3460buHBsk16I6SmaeOI5a+2GLOMMCAY8MVYvrIZSql3lFLRSqnoDh062HKo+pMaB3vXwHn/BK+WtZ664/AJThWW2C5IX5GhMwwJk6SVth/LHihlBOhDoiFokN2H9/Z059KBgazedlgX79I0aRyx/DUG2K+UylBKFQNfAiMAf3M5DKAzUF6MIg3oAmAebwMcr9hezTWuw7rnwKctDL21zlPjU2yw6bEmuo+CtqFNRxI/+Tc4tsshs5RypgwO4VRhCWuSjjrMBo3G1jjCqRwAzhGRlmZsZDSwHfgZuMo8Zzqw3Hy9wnyPefwnMxthBXCtiLQQkTCgF/CXnT6DdUhPhF3fwjl3GhL0dRCbkkUnvxZ0blt73MUquLkZy3Epv8PRmqU0XIbYheDtX6P0jT04p3t7OrZuoYt3aZo0joipbMAIuMcDW0wb3gH+DdwrInswYiYLzEsWAO3N9nuBh8x+tgGfYTik74B/KKVca11h3XPQwg+G3WbR6bHJWQzp1rbSrlybMniaIWXi6rOVU0eNZbzIG+pMhLAl7m7CxEHBrN2ZQU6eLt7lKOwpfV9R0v7xxx/nxx9/bFR/roBDsr+UUk8opfoqpQYqpW40M7j2KaWGKaV6KqWuVkoVmucWmO97msf3VejnKaVUD6VUH6XUt474LA3maBIkrYDhfwefutODD+cUkJadzxBr1E+xFN8A6D/ZqLNSlGu/ca1N/PtQVgzRtSdC2IPJkcEUlZbx7daz5Uc0Z5OzciW7R40mqV9/do8aTc7Kxsf47Cl9X5E5c+YXlqzzAAAgAElEQVQwZsyYRttfE/ZSBagLvaPeUax73ijje86dFp0ed7oolx3iKRWJnmFImmz9wr7jWouyUohbDGEXQEAvR1tDeEgbugf4skwvgdVJzsqVpD/2OCWHDoFSlBw6RPpjj1vFsZRjS+n7qlQsvhUaGsoTTzxBVFQU4eHh7NhhLDHn5uYyY8YMhg0bxuDBg1m+3IgCJCcnM3LkSKKiooiKimL9+vWA4dhGjhzJpEmT6N+/v9VsbQxaUNIRHNtjlO897y5oadnMIzYlE29PN/oH23d/BV3PhQ79jNojVi65axf2/Ag5B2DsHEdbAhiCgpMig5m3ZjfpOfkEtXHccpyjOfz00xQm1Ryvy9+8GVVUWZFYFRSQ/uj/kf3Z59Ve06JfXwIfecSi8W0tfV8XAQEBxMfH88Ybb/D8888zf/58nnrqKUaNGsXChQvJzs5m2LBhjBkzho4dO/LDDz/g7e3N7t27ue6664iNjQUgPj6erVu3EhYWZlN7LUXPVBzBry+Aews49y6LL4lLyWJQZ388rS0iWRciRgGv9ARIi7fv2NYgdqGhVNC3ZilzezM5MgSlYKUu3lUrVR1KXe2WUi59HxgYyJEjR6qVvr/jjjtqvH748OFERkZy6623smLFCiIjI4mMjGT16tX1suOKK4ykkSFDhpCcnAzA999/z9y5c4mMjOSiiy6ioKCAAwcOUFxczKxZswgPD+fqq69m+/btp/sZNmyY0zgU0DMV+5O5HxI/NWIprSzbM5NXVMK2Qye4/UIHFXqKmAo/PA6xCyAkyjE2NITsA0Z9mpH31ar6bG/CAnwZ1LkNyzYd4rYLejjaHIdR14xi96jRxtJXFTyCg+n2wfsNHteR0vcVadGiBWAkDpTHQ5RSfPHFF/Tp06fSuTExMXTq1InNmzdTVlaGt/cZ9WZfX98GjW8r9EzF3vz2Erh5wHl3132uyeaDOZSWKfvsT6kO7zYQfjVs+QLysx1jQ0OIW2zMtIbc7GhLzmJyZAjb00+w+8hJR5vitHS851+Id2Xpe/H2puM9/7JK/46Qvq+LcePG8eqrr54uk7Bp0yYAcnJyCAoKws3NjQ8++IDSUudNdNVOxZ5kH4SEjw3RSD/LZa/jUjIBiOrqIKcCRsC+JN+QOnEFSoqMrK9e48C/S93n25kJg4JwE1ieoJfAaqLNxIkE/XcOHsHBIIJHcDBB/51Dm4kTrTaGvaXv6+Kxxx6juLiYiIgIBgwYwGOPPQbAnXfeyeLFixk0aBA7duxwutlJRaTcIzYXoqOjVXmAy+6sut8Qabx7U71+6G557y9Ss/L54d4LbWebJbw7CgpPwT82GDMAZ2brl7D0Frj+c+g91tHWVMuNCzaQfDyXdQ9cbL+9Rw4mKSmJfv36OdoMTS1U9zcSkTilVLQl1+uZir04edi4c468rl4OpaxMEZeSRXSoA2cp5UTPgGM7jV32zk7sQqMsc8/RjrakRiZHhnAwM5/4Ay60pKjR1IF2Khawat8qxi4dS8TiCMYuHcuqfavq38nvr0BZiVEquB7syTjFiYISxy59lTPgCiO+snFB3ec6koxdkPyrEUtxc94SO+MGdKKFhxsr9J4VTRNCO5U6WLVvFTHrY0jPTUehSM9NJ2Z9TP0cy6kM4845Yiq0q1/q3+lNj6F23ElfE14tDamTpJWG9ImzEvceuHnCYNvuM2gsrb09GdOvE18nplNcWuZoc+xGc1tydyWs8bfRTqUO5sXPo6C0oFJbQWkB8+LnWd7JH69BSYGR2lpPYpOzaO/rRWj72mXx7caQWwzJk00fONqS6inKg4SPoN9EaNXR0dbUyaTIYI7nFvH7nuZRvMvb25vjx49rx+KEKKU4fvx4pXTlhqD3qdTB4dzD9Wo/i7xM+OtdQx23ATIhcSmZRNlTRLIuOvSG0JEQuwhG/Mv5lpe2fQkFOcaGTRfgoj4d8PP2YHnCIS7q4/xOsLF07tyZ1NRUnLJYngZvb286d+7cqD60U6mDQN9A0nPPFv8L9A20rIM/34DiXBh5f73HzjhZSPLxPK4b1rXe19qU6BlGZtWeNc6XWRW7EAL6QLcRjrbEIlp4uHNZeBArNh8ir6iEll5N+7+kp6enU+3+1lgfvfxVB7OjZuPtXnk66O3uzeyo2XVfnJ8NG942lmI61V/sLf5AeTzFCYL0Fek7AXw7GjvsnYlDCZAWZzg9Z5nZWcDkyBDyikr5URfv0jQBtFOpg/HdxxNzXgxBvmc2K07oPoHx3cfXffFf7xgKvxc80KCx41Ky8HJ3Y0BwmwZdbzM8vAxxyV2rDSkUZyF2IXj4wKBrHW1JvRge1o5AP2+Wb9JZYBrXRzsVCxjffTzfX/U9iTcl0qdtH2KPxFJaVodMQuFJY+mr998aXBM9NjmT8M5t8PZ0srgFwBCzGGfcYsfaUU5BDmz5HMKvtKg+jTPh5mYoF/+yK4Os3MaJJWo0jkY7lXogItwacSvJJ5JZc2BN7SdvnA/5WXBhw2YpBcWlbE07Yf/6KZbi3xV6jzM2dJY6QRXDxM+gOA+iXSNAX5XJkcGUlClWbdHFuzSujXYq9eSSrpcQ6hfK/C3za06LLMqF9a9Bj9EQMqRB42xNy6GotIwoZ3UqYMQuco/Cjq8da4dSxobMoEjXUlGuQP8gP3p2bMUKrQWmcXG0U6kn7m7uzAyfSVJmEr+m/Vr9SXGLIO8YXPhgg8eJNTc9OkyZ2BJ6joE2XR2/w/7AH5CR5DJpxNUhIkyJDOav5ExSs/IcbY5G02C0U2kA47uPJ8g3iHcT3z17tlJcYEiyhI6Eruc0eIy4lCzCAnwJaNWikdbaEDd3I7aS/KshjeIoYhdCizYw8ErH2WAFJg0KAWDlZr0EpnFdtFNpAJ5untwy8BYSMhKIPVJF8XjTB3DqcKNmKUop4lOynHuWUk7UTYYkStx7jhk/9xhsX25kfHk5rxy4JXRt35Korv4s11pgGhdGO5UGcnnPy2nv3Z53E98901hSBL+9DF3OMWYqDWT/sVyO5xa5hlNp1dHYh5PwERTn23/8TR9CaZER32kCTI4MYcfhk+w4fMLRpmg0DUI7lQbi7eHN9AHT+SP9D7Ye22o0bv4YTqQaGV+N2Hx3WkTSFZwKGD/oBTlGDRN7UlZmzJC6jYCOfe07to0YHxGEu5vo4l0al0U7lUYwtc9U/Lz8eCfxHSOt9tcXITjKyPpqBHEpWbTx8aRHh1ZWstTGhJ4PAb2N2IY92fcTZCU3mVkKQECrFozsFcCKhEOUlWnRRY3roZ1KI/D19OWGfjfw88Gf2fXX65CdYsRSGikREpuSRVRXf9zcXERqRMT4YU+LhfTN9ht340JoGQD9JtlvTDswOTKYtOx84kyZHo3GldBOpZHc0O8GWnq0ZP629yAwHHpf2qj+svOK2HP0lHPUT6kPg641JFLslV6ckwq7voWoGw3ZmCbE2P6BeHu6sUzLtmhcEIucioj0EJEW5uuLRORuEXEtLQwb0aZFG65pF8lqj1IODGu8kGG5iKRLBOkr4tPWSOndstSIr9ia+PeNTY9Dbrb9WHbGt4UHl/QPZNWWdIpKmk/xLk3TwNKZyhdAqYj0BN4BugAf28wqV6KsjJv2b8IDYWF+SqO7i03OwsNNGNTZBX320BmGzH/iZ7Ydp7TY0BzrOQbahtp2LAcxJTKY7Lxift2t645oXAtLnUqZUqoEuBx4VSn1ABBUxzXNgx0rCTi6kys6DmX5vhWWF++qgdiULAYE++Hj5YQiknURMsSQSoldaMwibMXOb429QC68g74uRvbqgH9LT50FpnE5LHUqxSJyHTAdKBd68rSNSS6EUvDLc9C+J7ec/x9QsGjbogZ3V1xaxuaD2Qzp5mLxlIpEz4Cj2+HAn7YbI3YB+HWGXk5WIMyKeHm4MT48iB+2HyG3sMTR5mg0FmOpU7kFOBd4Sim1X0TCACctUm5Hdn4LR7bAyPsI9uvC+O7j+WLXFxzPP96g7rYdOkFhSZnrxVMqEn4VtPCzXXrx8b2wb60RS3G2UsZWZnJkCPnFpfyw/YijTdFoLMYip6KU2q6UulsptcR8v18p9T/bmubkKAXrngX/bhB+NQAzw2dSWFrIB9sb5m9jkzMBJ6z0WB+8fI1MsO3LDAkVaxO7ENw8jKyvJk50t7aE+PuwTMu2aFwIS7O/RojIDyKyS0T2ich+EdnX0EFFxF9ElorIDhFJEpFzRaSdOcZu87mtea6IyCsiskdEEkUkqkI/083zd4vI9Iba0yD2rIFDm2DkveBurASGtQljbOhYPtn5CSeK6i+zEX8gi85tfejk5133yc5M9AxDOmXTh9bttzjfkIPpOx5aB1q3byekvHjXr7uPcexUoaPN0WgswtLlrwXAi8D5wFAg2nxuKPOA75RSfYFBQBLwELBGKdULWGO+B/gb0Mt83Aa8CSAi7YAngOHAMOCJckdkc8pnKX6dYdD1lQ7NCp9FbnEuS5KW1LNLRWxylutIs9RGx36GdErce4aUirXYvtwofOaihbgawuTIYErLFN/o4l0aF8FSp5KjlPpWKXVUKXW8/NGQAUWkDXABhqNCKVWklMoGJgPltWkXA1PM15OB95XBn4C/iAQB44AflFKZSqks4AegcTsPLWX/Oji4Ac7/11kb7/q068MFnS/gw6QPySu2vC5GalY+R08WunY8pSLRMwwJlX0/Wa/PjQugfU8Iu8B6fTo5fQP96BvYWm+E1LgMljqVn0XkOXOZKqr80cAxw4AM4D0R2SQi80XEF+iklCq/HTsMdDJfhwAHK1yfarbV1H4WInKbiMSKSGxGhhXy/tc9B60CYXD16/qzwmeRXZjN57s+t7jLuNNFuVw486si/SYaEiqxVpLEP7wFUv8ynFUjN5i6GpMig4k/kM2B47p4l8b5sdSpDMdY8noaeMF8PN/AMT2AKOBNpdRgIJczS10AKKPyldU2Oiil3lFKRSulojt06NC4zlL+MIpSjbgbPKuPfUR2jGRY4DAWb1tMYalla+GxKZm0auFBn8DWjbPPWfBoAYOnwc5vIMcKd9mxC8HDGwZd1/i+XIxJg4IBWLFZz1Y0zo+l2V8XV/MY1cAxU4FUpdQG8/1SDCdzxFzWwnw+ah5Pw9jBX05ns62mdtuy7lnw7QBDbqn1tFkRs8jIz2D5nuUWdRubnMXgrv64u4qIpCUMudmIP8W/37h+Ck8au/QHXAEtm8hMrh50btuSoaFtWZZw6OxKoxqNk2Fp9lcbEXmxfAlJRF4wYyP1Ril1GDgoIn3MptHAdmAFxuZKzOfyX+MVwE1mFtg5GPGddGA1MFZE2poB+rFmm+1IjYO9P8G5/wSvlrWeOjxwOBEBESzcupCSsto3r50sKGbnkZNNJ55STrsw6Dka4hcb0ioNJfEzKDrVpHfQ18XkyBD2HD3F9nRdvEvj3Fi6/LUQOAlMNR8ngMYslt8FfCQiiUAkxrLaXOASEdkNjDHfA3wD7AP2AO8CdwIopTKB/wIbzcccs836JH4GLw2E+aNA3Cy6WxYRbg2/lbRTaXy7/9taz910IBulILqpxFMqEj0TTqYbG0UbglLG0ldguCED00y5LDwIDzdhhZZt0Tg5Hhae10MpdWWF9/8RkYSGDqqUSsCI0VTlrOpWZnzlHzX0sxDD4dmOxM9g5d1nSuWqMvj2QWN9P2JqrZde2OVCerXtxfwt8xnffTxuUr0Pj03Jwk0gsqsLikjWRe9xRup17ELo34C6J6kb4chWmPByswvQV6SdrxcX9u7Ais2H+PelfV2n1o6m2WHpTCVfRM4vfyMiIwAHFCR3AGvmnF17vTjfaK8DN3FjVvgs9uXsY82BNTWeF5eSSd9AP1q1sNTHuxBu7jBkOuz72ZBYqS8bF4BX69OqBc2ZyYNDSM8pYMN+20zINRprYKlTuQN4XUSSRSQFeA243XZmORE5qfVrr8LYbmPp5teNdxPfrTbIWlJaRsKBbNeWZqmLqJtA3I3NkPUhLxO2fQWDroEWLlJa2YaM6deRll7uOgtM49RYmv2VoJQaBEQA4UqpwUopO9aNdSBtOtevvQrubu7MHDiTpMwkfj/0+1nHdxw+SW5RadML0lekdaAhrbLpIygusPy6hI+gtLBJ1aBvDC29PBg3IJBViekUlpQ62hyNplpqdSoiMs18vldE7gVuBW6t8L7pM/px8PSp3ObpY7RbyITuEwj0DeTdxHfPOnZm02MTdipgZG7lZxpSK5ZQVmZsnOxyDnQaYFvbXIhJkcGcKCjhl526eJfGOalrpuJrPreu5tE81iMipsLEV6BNF0CM54mv1Bmkr4inuyc3D7iZ+KPxxB6OrXQsLiWLQD9vQvx9ari6iRB6AbTrYdRCsYT9v0Dm3madRlwd5/cMoL2vly7epXFaao0MK6XeNl/+qJSqtHZjBuubBxFT6+VEquPKXlfyTuI7vLvlXaIDzyS+xaVkMSS0LdLUM5vc3IxlrO8fhcNbIXBg7efHLgCfdtCvARljTRhPdzfGRwTx6caDnCwoprW3rpWncS4sDdS/amGbpga8Pby5qf9NrD+0nq3HtgKQnpNPWnY+Q7o28aWvciKvB/cWdRfwOpEOO74xZF5qkMJxBKv2rWLs0rFELI5g7NKxrNq3yiF2TI4MobCkjNXbdPEujfNRV0zlXBG5D+hQHkcxHzFA0y67ZwOu6XMNrb1aM3/LfOBMPKVJZ35VpGU7GHgFJH5qSK/URPz7oEoNmRcnYdW+VcSsjyE9Nx2FIj03nZj1MQ5xLFFd/enSzofluniXxgmpa6bihRE78aByPOUEcJVtTWt6tPJqxfV9r2fNgTXsydpDbHIWPp7u9Avyc7Rp9iN6piG5sqUGBefSEkPWpccoaN/DvrbVwrz4eRSUVs5cKygtYF78PLvbIiJMHhTC73uOcfRkPbLpNBo7UKtTUUr9opT6D3COUuo/FR4vKqV228nGJsW0ftPw8fBh/tb5xKVkMahLGzzdLV2FbAJ0joZO4bBxoSHBUpXdq+FEmlOlEZepMtJzqy+SdTj3sJ2tMZgyOJgyBV9v1sW7NM6Fpb9meWY9lW9E5Kfyh00ta6L4e/sztfdUvt3/LUnH9jdNva/aEIGhM+DIFkOCpSobF0DrYOj9N/vbVg2JGYlM+2ZajccDfR1T1rhnx9b0D/Jj+WadBaZxLix1Kh8BOzAKbP0HSMYQcdQ0gOkDpuOGO+5t1zKkucRTKhJ+tSG9UjVgn7kf9q4xZF3cHStZk5GXwaO/PcoN39zA4dzDXN37arzdKycNuIkbs6NmO8hCY7ay+WA2+4/lOswGjaYqljqV9kqpBUCxuSQ2A2hoPZVmT4eWHejdchSe/nF0CWiEJLyr0qK1kaK99UtDiqWcuPcMOZeomxxmWlFpEQu3LmTCVxP4dv+3zBg4g5WXr+Txcx8n5rwYgnyDEIRWnq0oU2V08Glk0bdGMHFQMCJo5WKNU2GpUyn/5UsXkfEiMhhoZus21kVOjEJQfLH3Q0eb4hiiZxgSLAkfG+9LCmHTh9Dnb+AX7BCT1qWu4/Lll/NS3EsMCxzGssnLuGfIPfh6GnuAx3cfz/dXfU/i9ER+nvozIa1CeOavZyguc8yNQVAbH4aHtWN5Qpou3qVxGix1Kk+aRbnuA+4H5gP32MyqJk5ZmWLbAXc6e45g6a6lZBY0Q9XZwIHQZbixBFZWBttXQN5xhwTo9+fs544f7+Afa/6Bm7jx5pg3eXX0q3T161rjNd4e3jw49EH2ZO9hSdISO1pbmcmRIew7lsvWNF28S+McWCoo+bVSKkcptdUsJTxEKbXC1sY1VXYfPcXJghImh91IYWkhH25vrrOVmYYUS/I6w7m0DYPuF9tt+FNFp3h+4/NcsfwKEo4mcH/0/Xw56UvODzm/7ouBi7tczIiQEbyx+Q2O5R+zsbXVc9nAIDzdhWV6z4rGSbC0nPB7IrKw6sPWxjVVYlOMmcmlvSMY020MS3Ys4URRM7zT7D8ZPH3hw6vgwHpDcHLrUpsPW6bK+Gr3V0z4agLvb3+fiT0msvLylUwfMB1Pd8tlT0SEh4c9TFFpES/GvmhDi2umTUtPLurTkZWbD1FappfANI7H0uWvr4FV5mMN4AecspVRTZ24lCwCWnnRrX1LZoXP4lTxKT7d8amjzbI/SSuMuEp5TKIgx6iymfiZzYbcnLGZG1bdwOPrH6dz684sGb+EOSPmEOAT0KD+uvl1Y/qA6azct5L4I/FWttYypkSGcPRkIX/uO+6Q8TWaili6/PVFhcdHGHXqqysHrLGAuJQsoroaIpL92vdjZMhIPtj+AXnFeY42zb6smQNlJZXbLKyqWV/KU4SnfTONI3lHePr8p3n/b+8zIKDxsvqzwmfRqWUnnt7wNCVVP48dGN2vI61aeLBsk14C0ziehm7l7gV0tKYhzYWMk4WkHM+rpPc1K2IWWYVZfLH7Cwda5gAaWVXTEopKi1iwZcHpFOGZA2ey8vKVTOwxETexjpJBS8+WPDD0AXZm7eTzXTXIz9gQb093xg0I5Luthyko1sW7NI7F0pjKSRE5Uf4MrAT+bVvTmiZninKdycge3HEw0Z2iWbR1EUWlRY4yzf40sqpmbSil+OXgL1y+/HJejn/5dIrwv4b863SKsDUZ220sw4OG8+qmVx2SzTdlcDAnC0v4ecdRu4+t0VTE0uWv1kopvwrPvZVSzey22jrEpWTi5eHGwJDKIpKzImZxNP8oy/daWBmxKWCFqprVsT9nP3esuYN//vRP3MSNt8a8VWeKcGMRER4Z9gj5xfkOEZk8t3t7Alq10MW7NA6nVi0MEYmq7bhSyjGRSRcmNiWLiJA2tPCoXDng3KBzGdh+IAu3LOTynpfj4eZYmRK7UF74bM0cY8mrTWfDoTSwINrJopO8vfltPkr6CG8Pb+6Pvp/r+15fr4yuxtDdvzvT+k9j0bZFXNnrSiI6RNhlXAAPdzcmDgrioz8PkJNfTBsfXbxL4xjq+uV6oZZjCi3VUi8KikvZmpbDjPPDzjomIsyKmMXsn2fzXfJ3TOg+wQEWOgArVNUsU2Us37Ocl+NfJqsgi8t7Xc5dg+9qcEZXY7h90O2s2reKpzY8xceXfYy7m/3KDk2ODOG935NZvfUwU4d2sdu4Gk1F6ionbL+daM2ALWk5FJeqGpWJL+pyET39ezI/cT6XhV1mtUByU2ZzxmbmbpjL1uNbGdRhEG+MfsMqGV0NxdfTl/ui7+OhXx/iyz1fcnXvq+029qDObQht35JlCWnaqWgchsW/WiIyUESmishN5Q9bGtYUiU02gvRRXf2rPe4mbtwafit7c/by84Gf7Wmay1FdivAHf/vAoQ6lnMvCLmNIpyHMi59HdkG23cYVESZFhvDHvuMcOaGLd2kcg6XZX09g1KR/FbgYeBaYZEO7miRxKVl0D/ClfasWNZ4zLnQcXVp34Z0t72iRwGqoLUVYRBxtHmAG7Yc/wqmiU7y66VW7jj0lMhilYKWus6JxEJbOVK4CRgOHlVK3AIOANjazqgmilCL+QBZDutVeP8XDzYOZA2ey/fh21h9abyfrnJ+zUoSDbJsi3Fh6t+3NdX2v4/Ndn7Pt+Da7jdu9QysiOrfRWmAah2GpU8lXSpUBJSLiBxwF9KJtPdh3LJfM3KI6nQrApB6T6NSyE+9uedcOljk/FVOE3d3cjRThUbZNEbYGd0TeQVvvtjy94WnKVJndxp00KJitaSfYc1QrKWnsj6VOJVZE/IF3gTggHvjDZlY1QeLMeEq0BZUePd09uXnAzcQdiXOYnpQzcLLo5GkV4c1HN/NA9AN8MekLRoSMcLRpFuHn5ce9Q+4lMSOR5Xvst/9o0uniXXq2orE/lm5+vFMpla2Uegu4BJhuLoNpLCQuJQv/lp50D2hl0flX9r6Sdt7teGfLOza2zPmoqiI8qeckvr78a24acBOebq61/2Jij4kM6jCIl+NftpsSdUc/b87r0Z7lmw/puJzG7lgaqF8hIteLiK9SKlkplWhrw5oasSmZRHVti5ubZcFkHw8fbux/I7+n/W7XNXl7s2rfKsYuHUvE4gjGLh3LGwlvnFYR7tK6C0smLOE/5/2H9j7tHW1qg3ATNx4d/ihZBVm8vul1u407OTKElON5JBy0X/aZRgOWL3+9AJwPbBeRpSJylYh4N2ZgEXEXkU0i8rX5PkxENojIHhH5VES8zPYW5vs95vHQCn08bLbvFJFxjbHHlmTlFrE3I9eieEpFrulzDa09WzM/cb6NLHMsq/atImZ9DOm56SgU6bnpvLn5TVJOpPDMyGeMFOH2jk8Rbiz92vdjap+pfLLzE3Zm7rTLmJcODMRdYNqCDYQ9tIoRc3/SKsYau2Dp8tcvSqk7ge7A2xjS941VrpsNJFV4/z/gJaVUTyALmGm2zwSyzPaXzPMQkf7AtcAA4FLgDRGx3/blehB/wIyn1NOptPZqzXX9ruPHAz+yN3uvLUxzKPPi51FQevZ+Cl9PXyZ0n+A0KcLW4K7Bd+Hn5cfTG562y5LUT0lHUUBuYSkKSMvO5+Evt2jHorE59dn86ANcCdwODAUWN3RQEekMjMeodY8Yvx6jgPKyf4uBKebryRXGWgqMNs+fDHyilCpUSu0H9gDDGmqTLYlNycLDTRjUpfpNj7Uxrd80fDx8WLBlgQ0scyzpuenVth/JO2JnS2xPmxZtmB01m/ij8azav8rm4z23eidVC0HmF5fy3Gr7zJQ0zRdLYyqfYcwqRgGvAT2UUnc1YtyXgQeB8jzL9kC2Uqq8wlEqEGK+DgEOApjHc8zzT7dXc41TEZecxYCQNnh71n8i1da7LVf1vopv9n/DwZMH677ABTiSe4T7f7m/xuOBvoF2tMZ+XNHrCga2H8gLsS9wqsi26b6HsvPr1a7RWAtLZyoLMBzJ7Uqpn809Kw1CRCYAR5VScQ3towFj3ohpUW4AACAASURBVCYisSISm5GRYa9hASgqKWNzana9l74qcvOAm3ETN97b+p4VLbM/xWXFLN62mEnLJrH24FrGdB2Dt3vl0Jy3uzezo2Y7yELb4iZuPDL8EY7nH+etzW/ZdKxgf59q293dhFWJ6ZTpevYaG1GrUxGRBwGUUquBK6oce7qBY44AJolIMvAJxuxnHuAvIuUCl52B8sXfNMyNlubxNsDxiu3VXFMJpdQ7SqlopVR0hw4dGmh2w9h2KIfCkrJGOZWOLTsypecUlu1ZxpFc11wa2nh4I1NXTuX52OeJDozmq8lf8dLFLxFzXgxBvkEIQpBvEDHnxTC++3hHm2szwjuEc0WvK/go6SObxskeGNcHnyozY093oa2vJ//4OJ5xL69jeUIapdq5aKxMXTOVayu8frjKsUsbMqBS6mGlVGelVKjZ/09KqRuAnzHkYACmA+W7xVaY7zGP/6SMSOcK4FozOywMo8TxXw2xyZacqfTYcKcCcMvAWyhTZSze3uBQlkM4ln+Mh359iBmrZ5Bfks+ro17l9dGv06W1cT8wvvt4vr/qexKnJ/L9Vd83aYdSzt1Rd+Pj6cMzG56xWdB+yuAQnrkinBB/HwQI8ffhuasG8efDY3j1usG4iTD7kwTGvPgLS+NSKS61345/TdOmrnoqUsPr6t43ln8Dn4jIk8AmjCU3zOcPRGQPkInp6JRS28xYz3agBPiHUsrpCnTHpWTRpZ0PHf0alYFNl9Zd+FvY31i6aymzwmfR1rtxTsrWlJSV8MmOT3g94XUKSwv5e8TfmRk+Ex+P6pdlmhPtvNtx9+C7eWrDU6xOWc2loQ26P6uTKYNDmDL47DDjxEHBjA8P4vvth3llzR7u/3wz89bs4s6LenJlVGe8PHTJBU3DkdrulEQkXikVVfV1de9dhejoaBUbG2uXsZRSDHt6Def3DOClayIb3d/e7L1MWT6F2yJu467BjcmTsC2bjm7iyT+fZFfWLkYEj+Dh4Q/Tza+bo81yKkrLSrl21bVkFWSxYsoKWnq2dIgdSil+2nGUV9bsZnNqDsFtvLnjoh5cHd2lQYklmqaJiMQppaItObeuW5JBInJCRE4CEebr8vfhjba0iXMwM5+Mk4VENXLpq5we/j0Y03UMS5KWcLLopFX6tCbH84/z6G+PctO3N3Gi6AQvXfQSb455UzuUanB3c+eR4Y9wJO8I7yQ6TopHRBjdrxPL/jGCxTOGEeTvw2PLt3Hhcz+z8Lf95Bc53eRfU0+WbUpjxNyf7LYJtlanopRyV0r5KaVaK6U8zNfl711LhMkBxKZkAvXf9Fgbt0bcysnik3y681Or9dlYSstK+WTHJ0xcNpFv9n/DzIEzWT55OWO6jWlSGxitzeCOg5nUYxKLty8mOSfZobaICBf27sDS28/l41uHExbgy5yvtzPy2Z94+5e95BaW1N2JxulYtimNh7/cQlp2vt02wda6/NUUsefy16NfbWFFwiESnhiLu4WaX5Zw+4+3k3Q8ie+u/M7hMYrEjESe/PNJkjKTGB40nEeGP0L3Nt0dapMrcSz/GBO/MkQn3xzzplM54b/2Z/LqT7v5dfcx2rb05NaR3bnp3G609tb3k8s2pfHc6p0cys4n2N+HB8b1qTZ+ZSuUUhSWlJmPUgqLjeeC4spt932eQGZu8VnXh/j78PtDoywerz7LX3UF6jWNIC4li8iu/lZ1KACzwmdx83c38+XuL7mh3w1W7dtSsgqymBc/jy92f0FHn448d+FzjOs2zql+FF2BAJ8A7oy8k2f/v70zj4+qOv//+5kleyYhECBhCWGHiqyCIiKIIiEBFFRq6698q3VptYUuWqtdqK3W1lpLXdqq1VprRVFRCYssirUuKIsgiyBb2MKWhCSTdZbz++Pe7DvMzM2E83697mvOnLuc5w7hfu55nnOe89kfePfwu0zpPcVqk6oZm57Ei7eMY/OhAp54dy+PvLObv7+/j29fms7Nl6aTEHN+ikvV23+Zx3ANHj1Txr2vbyOvpIKJA5LrPej9lHt8NXVV32s9/Ms9NfvqioOvWjiqr+GpqTsXgjkJVvdUgkRhmYcRD6xmwZSBzL9yQMCvP2/lPI66j7Jy9kqc9tD95/YrP69/9TqLNi+ipLKEm4bexB3D72iXqy+GC16/l+uXXU+pp5Q3r3nT8t5nU3xxpJDH3/2K1TtPEBfpYN74NG6Z0Jek2AirTQsJ5R4fWw6d4bYXN1Jcfu7uQJtAlNNOpMNGpMNOlNP4jHTaGtY5bGa9vebTYRxXfQ3zs+aaNm5/cRMniysatK17KmHI54fPoFTrFuU6G2678DbuWHsHb+97mzkD5wSljfrsOL2D337yW7bnbWdMtzHcP+5++nfqH5K2OzIOm4P7xt3Hze/czHPbn+POEXdabVKjDOuZwNPfGsOu3CKeeHcvT63fx/MfHuT/XZzGdy7rS3J8pNUmBpTSSi+bc86w4UAeG/bn8/nhM1S2MJ/n8RtHtvigr6pz2oM/dPu+6UPq9KoAop127r56UNDa1KISJDYdzMcmMOIskki2hvGp4xnaeSj/2P4PZvWfhcMWvH/KwopC/rL5LyzZs4SkqCR+d9nvyEzP1K6uAHJR94vISM/guS+eY2bfmfRytd/VuoekuHjym6P46kQxT7y3l2c+2M8LHx/kxrG9uePyfnQ7xzlZVuGu8LLxYD4bDuSzYX8e244U4vUrbAIX9Ehg3vg0xqV35hdvbSe3sGF27R6J0cwYnmqB5U1TFecJZfxHu7+CxDee+YTCMg/Lf3BZ0NpYl7OOBesX8PBlDwdlJrpf+Xlr71s8tukxCisL+cbgb/C9Ed8jPiI+4G1pjESbM9+cydjuY3l8yuNWm9Nq9p9y89T6fSzdchS7TZg7phd3TOpHjybyj7UXCss8dURk+7EifH6FwyYM65nAuPTOjOubxJi0TnUGJ9SPqYDx9v+72cNCGqwPJW1xf2lRCQJen58Lf72a60f35NezLghaO37lZ/ZbsxERXp/5OjYJXHf6y/wv+e0nv2Xrqa2M7DqS+8fdz6Ck4HWZNQbPb3+eP236E09OeZKJPSdabU6bOJRXyl/f38trm44AMGdUT743qT+9O1szsbM+Z0orTQHJZ8OBPHbmFqEURNhtDO9VIyKj0zoRE9F8z9/q0V+hRotKM4RCVLYfLSTr8f/xlxtHMjPI3eFl+5Zx3//uY9HkRVzRu/WBt6YoqiziyS1Psnj3YhIjE/nR6B8xo9+MgAqWpmk8Pg9zls3B6/eydNZSIu3hF6c4eqaMv63fxyufHcanFNeM6MGdk/vRNzkupHacdlfwqdkL2XAgny+PGxOGIx02RvZOrBaRUb076ewBLaBFpRlCISr//PAAC5ft5MN7rwi6C8Dr9zJj6QwSIxP5T+Z/zjrOoZQie382j258lIKKAm4YeAN3jbyLhMiEAFusaYmPjn3E7Wtu564Rd3H78NutNuesOVFUzt/f389LG3Lw+PzMGJ7KXZP7M6BbcNynJ4vLq3shG/bn89VJY82aaKed0WmdGJeexLi+nRneK4FIhxaRtqBHf1nMpkNnSEmIColP2WFzcPOwm3ng4wf4OPdjxqeOb/M19hTs4cFPHmTzyc1c2OVCnrryKYZ2HhoEazWtYXzqeK5Ku4pnv3iWGf1mkBrXvoK/raWbK4pfzhjKdyf149kP9vPiJzm8vfUY0y9I4a4r+jMkxXVO188tLKsjIvtPlwAQG2FnTJ8krh3Vg3HpnRnWI0EnyQwhuqcSBMb/bh2j0jrxxDdCk2+z0ldJxusZ9Hb15vlprV/Iy13p5q9b/8pLu14iPiKeBaMWcO2Aa7Wrqx2Q685l5pszmdBjAo9NfsxqcwJCfkklz/3vAP/86CDuCi9XDe3GD64YwLCeCa2KURzOL60Oqm84kM+h/FIA4qMcjO2TxLi+SYxL78zXUl04QjBc93xC91Qs5NiZMo4VlnNrAPN9tUSEPYJ5X5vHIxsfYcvJLYzsOrLZ45VSrDq4ikc+e4TTZaeZM3AO80fOJzEqOMOfNW0nJS6FWy+8lce3PM5HRz9ifI+290DbG0mxEfzk6kHcellfnv/oAM/97wAzdp5gSPd49p8uqZ4lbuSn2sap4gpc0Q6zN5LPUXMWeEK0k7HpSXzrkjQu7tuZISmugGet0Jw9uqcSYJZtPcb3X97CsrsmMKxn6OIRpZ5Spr0+jQu6XMBTVz7V5HH7zuzjoQ0P8enxTxnaeSg/H/dzhiXrhNPtkUpfJde+ZfQc35j5RkgzJ4SConIPL36cw6Ord9PcApSdYyMYm55UHRMZ1C0emxaRkKJ7KhayKaeAaKedISmhncsR44zhpqE38fiWx9mVt4shnYfU2V/qKeVv2/7GizteJMYZwy8u/gVzBszBbtMBy/ZKhD2Cn479KXeuu5N/7fwXtwy7xWqTAoorysmdk/vzx3d2N3nMmh9OpH/XOD3RNozQohJgNubkM6JXoiU+3a8P/jpPb32ab638FhW+CrrHducHI39AhD2CP3z2B06UnuDa/teyYPQCkqKSQm6fpu1M7DmRSb0m8fdtfyezbybdY7tbbVLASU2MrnZt1aZHYnTQRoppgoeOZgWQkgovu3KLg5bvqyU+OPIBPuWj3FeOQpFbksv9H97Pj9//MYmRibyY8SIPXPqAFpQw456L7sHn9/HoxketNiUo3H31IKLrzRMJdn4qTfDQohJAth4+g8+vGB3CIH1tFm1ehFfVzZ7qV35cES4WZy1mRNdzX9JYE3p6xffilmG3sOrgKj7N/dRqcwLONSN78LvZw+iRGI1g9FA6csqTjo52fwWQjTkFiMDI3taIyvGS443WF1cWBzXhpCb43HzBzby9720e2vAQS2YuwWnrWEH7a0b20CLSQdA9lQCyMaeAgV3jSYi25j98U/72juiHP9+IckRxz0X3sK9wHy/vetlqczSaJtGiEiD8fsWWnAJGWxRPAZg/aj5R9rppx6PsUcwfNd8iizSBZHKvyUzoMYGntj7FqdJTVpuj0TSKFpUAsedkMcUVXsZYFE8ByOybycLxC0mJTUEQUmJTWDh+YVDS4mtCj4hw79h7qfRV8timjjHLXtPx0I72ALHxYAGAZUH6KjL7ZmoR6cCkudL4v6/9H8988QzXDbyOUd1CkwpIo2ktuqcSIDbnFNAlLpLeSe1j7QhNx+U7w75D99juPLjhQbz+c18rXaMJJFpUAsTGnALGpHXSM381QSfGGcPdY+5mT8EeXt39qtXmaDR10KISAE4Wl3Mov9Ry15fm/OGqtKsYlzKOJz5/gryyPKvN0Wiq0aISADbnmPEUC0d+ac4vRIT7xt5HmaeMRZsXWW2ORlONFpUAsPFgAREOGxek6lUSNaGjb2Jfbhp6E0v3LmXbqW1Wm6PRAFpUAsLGnAKG99Sry2lCzx3D7yA5OpkHNzyIz++z2hyNRovKuVLu8bHjWCGj03SSRk3oiXXG8uMxP2Zn3k7e2PuG1eZoNFpUzpVtRwrx+JSlkx415zfT06czuttoFm1exJnyM1aboznPCbmoiEgvEXlPRHaKyA4RmW/WJ4nIGhH5yvzsZNaLiPxFRPaKyDYRGVXrWvPM478SkXmhvhcw1k8BGKVFRWMRIsJ94+7DXenm8S2PW23OWbF8/3KmvjaVC1+4kKmvTWX5/uVWm6Q5S6zoqXiBHyulhgIXA3eKyFDgXmCdUmoAsM78DpABDDC324C/giFCwK+AccBY4FdVQhRKNh0soG9yLEmxEaFuWqOpZmCngdw4+EaW7FnCjrwdVpvTJpbvX87CjxaSW5JbvQ7Qwo8WamEJU0IuKkqpXKXUZrNcDOwCegCzgBfMw14ArjHLs4B/KYNPgEQRSQGuBtYopfKVUgXAGmBaCG8FpRSbDhVo15emXfDdEd+lU1QnHtrwEH7lt9qcVrNo8yLKfeV16sp95XqodJhiae4vEekDjAQ2AN2UUrnmruNAN7PcAzhc67QjZl1T9SFj36kSzpR6GKOD9Jp2gCvCxY9G/4iff/hz3tr7FtcOuNZqkwDj5Su/PJ9j7mMcLTnKMfcxo+w2yrkluY2e19T6QJr2jWWiIiJxwOvAAqVUUe30JkopJSIqgG3dhuE6o3fv3oG6LJt0PEXTzpjRbwZL9izhz5v/zJS0KbgiXEFvsyXROOY+1qAn4opw0SOuB+kJ6ZwoOUGJt6TRa//+098zd9Bc+iT0Cfp9aAKDJaIiIk4MQXlJKVU1DvKEiKQopXJN99ZJs/4o0KvW6T3NuqPApHr16xtrTyn1NPA0wJgxYwImVptyCugU46RfcmygLqnRnBM2sXH/uPuZmz2XJ7c8yc/G/eycr6mUIq88r4FYVAlIrju3gWgkRCaQGptKekI6l/a4lB5xPUiNTSU1ztjiI+Krj62KqdS+RoQtgsFJg1n85WL+vevfXJJyCV8f/HUu73k5dlvd9ew17YuQi4oYXZJ/ALuUUn+qtettYB7wsPn5Vq36u0RkMUZQvtAUnneAh2oF56cC5/4/qA1szClgtE4iqWlnDOk8hBsG3cB/vvwPq3NWk1eWR/fY7swfNb/RZRFaEo1j7mNU+CrqnFMlGv0S+nFZj8tIjUs1hCMuldTYVOIi4lptb5VNizYv4njJ8Tq2ni47zWt7XmPJniXMf28+KbEpXD/wemYPmE3n6M7n9kNpgoIoFbAX99Y1KDIB+AD4AqiKJt6HEVd5FegN5AA3KKXyTRF6AiMIXwp8Wym10bzWzea5AA8qpZ5vqf0xY8aojRs3nvN95JdUMuo3a7hn2iC+N6n/OV9PowkkS3Yv4YFPHqhTF2GLYPaA2XSL7VZHQHJLchuIRmJkYrVQpMSmnJNoBAKv38v6w+tZvHsxG3I34LA5mJo2lRsH38jw5OH6xS7IiMgmpdSYVh0balGxmkCJytqdJ/jOvzby6u2XMDZdB+o17Yupr01tMgAOdUWjyi1VLRpxqcQ6269Ld3/hfl7d/Spv7X0Lt8fN4KTBzB00l+np04lx6vWMgoEWlWYIlKg8vPJL/vG//Xyx8GqinNrHq2lfXPjChSga/t8WhI+/8XG7Fo3WUuopJXt/Not3L+argq+Id8Yzq/8sHdgPAm0RFZ2m5SzZlJPP11ITtKBo2iXdY7s3Wd8RBAWMxcpuGHQDr894nRemvcCEnhNYvHsxM96cwa2rb2XdoXV6ZUwL0KJyFlR6/Ww9UqgnPWraLfNHzSfKHlWnLsoexfxR8y2yKHiICKO6jeIPE//AmuvW8P2R3+dA4QEWvLeAjDcyeHrb05wuO221mecNWlTOgu3HCqn0+hmjF+XStFMy+2aycPxCUmJTEISU2BQWjl/Y6OivjkSX6C7cduFtrJqzij9P+jN9XH14fMvjXPXaVdzz33vYcnIL55vLP9RYOqM+XNl00FjpUU961LRnMvtmdngRaQqHzcGUtClMSZvCgcID1YH9lQdWMqjTIOYOnktmeqYO7AcB3VM5Czbm5NM7KYau8VEtH6zRaCwlPSGdn479KWuvX8uvLvkVAA98/ABTlkzh4U8f5kDhAYst7FjonkobUUqxKecMEwd0sdoUjUbTBmKcMVw38DrmDJjD1lNbefnLl3ll9yu8tOslxqWM48ZBN3J5r8tx2PRj8VzQv14bOZRfyml3BaN1PEWjCUtEhBFdRzCi6wjuLrubpV8t5dU9r7Jg/QK6xXTj+oHXM2fgHLpE6xfHs0G7v9rIRjOeMlrHUzSasKdLdBduvfBWVs5eyaLJi+ib0JcnPn/CCOy/fw+bT2wO+8B+qBdA0z2VNrLpUAHxUQ4Gdo1v+WCNRhMWOGwOruh9BVf0voKDhQd5ZfcrRmD/4EoGdhrI3EFzyeqbFXaB/frJOqsWQAOCNohDz6hvBYXLlnHysT/jzc0lP7YTH0y6nnv/uCBIFp5f1P5tHSkpdP3hAhJmzLDaLI2GUk8pKw+sZPHuxXyZ/yVxzjhm9pvJ3MFz2ZW3q9EEmGeLz++j3FdOmbeMMk8Zpd5Syrw1n9Wbp6zu9/rH1NtfUFHQaHspsSmsvm51q+3TaVqaoa2iUrhsGbm/+CWqvCYtt88ZSa+HfqMffudIY7+tREWR8psH9G+raTcopdh6aiuLdy9m9cHVePwebNjwU7O6ptPm5NoB1zI4aXCdB3sDUaj34K/aXz+hZ0s4bA6iHdFEO6KJccRUl6vrnEbdK7tfafR8Qdg2b1ur29Oi0gxtFZWvrpiC99ixBvWOlBQGvPduIE077/hq0mS8xxuu7mdP7kL/VauwxXaMdCKajkNeWR4zls6g2FPc4rFNPvidjQtBfUFocr8jBqfd2Sp7m0osGsyeio6ptIA3t/FMr97cXE4++iiurCwiBw7Uqbdbib+8HPd//0vRipWNCgqA79Rpdo8egyM5mYg+fcwtrbrs7NULW0REiC0PP7RrMfB0ju6M2+NudJ8grL5udbUoOG2te/AHk/mj5jdYAC3Y6Xq0qLSAIyWl0Z6KREaS99zz5D3zLJED+uPKzMKVlUlEz54WWNm+UZWVuD/6iKIVK3Cvexd/SQn2pCRsMTH4S0sbHG/v1ImkefOozMmh8uBBiteuxVdQyzdss+FMTTVEJi2tjug4U1MRu07yWd+16D12jNxf/BKgXQpLOAlg99jujb79d4/t3mQiT6tobgG0YKHdXy3QnN8/9tJLKVq1iqLs5ZRt3gxA9MiRuLIycU2bhqPz+bsynfJ6Kf30UwpXrKB4zVr8hYXYXC7ip16FKyOD2HHjKFq5stUxFV9hoSEyOTlUHjhI5cGD1aLjL6lZ31ycTpy9etX0cGqJjqNr1w7Xo1RK4S8pwXfmDL6CM8bnmQKO/+a3+IuKGhxvi4sj6VvfQpwOsDsQh7HhsBtluwNxmnVVZbsdmtlnnO9EzGtgtyNOp3k989xmfvdwi601tvxxlD2qQ+dW0zGVZjjb0V9HH/kT6uRxfF26kvbTnzT4Y688cpSiFSsoys6mYs8esNuJHT+ehKxM4qZciT2u48cHlN9P2ebNFK1YSdE77+DLy8MWE0PclVNwZWQQd+mlSD231bm+oSql8OXlGSJTS2iM8iFUZWX1sRITY4hMWlqNO80UHUenlucdBfttWnm9+IqK8BUUmOLQ+Oat3l+Ir7AQPJ6A2RA0TPExBMhRLTjicOA5cQJ8vgan2OLj6XrP3TiSk3F27YojORl7UlK76Iku3788pG//50Ig/m61qDTD2YjKm1uO8qu3t1NY5qWbK5KfZQzhmpE9mjy+fPceipYvpyg7G8+xY0hUFHGTJ5GQlUXsZZd1qHiAUory7dspWr6CopUr8Z44gURGEjdpEq7p04m7fCK2KGtypCm/H29uLpU5OVTUEx3PkaN1HmS2hAQi+qQR2acPzjTjs0p0bLGxbX6b9peVtUIUTGEwy431LKpxOrEnJuBITMSekIi9UyL2xE7YExNrtk415UPfvhnviRMNLuNITaX/urXg86G8XpTXB16PUfb5UB4v+LzV+5TXA43uM7ba+5TP/O4x67weox2Peayv8X2Fb77Z+n9Uux1HUhKO5GRjM8XG0TW5pi45GUeXLojT+piG1QSqF6hFpRnaKipvbjnKz974gjJPzQMo2mnnd7OHNSssYDxwy7Z8TlH2MopWrsJXUIAtIQHX1Km4srKIuWgMYgu/pAZKKSr27KkWEs/hw+B0EjdhgiEkkye3+56Z8nioPHKkXu/GcK/VH5zhSE7GV1hYp9dThcTEEDdxYl3hKChAVTQ9RNQWG1tXDOpvnTo1qLPFxrTJdRdOLqXmRlj2eenfeE+exHPqFN7620nj05eXB408x+y1xaf2Vk+IbJGRbbY5VDEgpRSqvBxfcTF+txu/222Ui9343cX4it34i4vxuavq3DXl4mIqDx8Gv7/BdR2pqQx4d12r7dCi0gxtFZVLH36Xo2fKGtT3SIzmw3uvaPV1lMdDyccfU5idTfHadajSUhzduuGaPh1XViZRQ4e2e39/xf79hmtrxQoq9+83XHwXX4xr+nTir5yCPSHBahMDgr+sjMpDhwyRMUWn8I03mjw+om/fJgQioc53R6dO2BMSGrgAg0W4BL/PVQCV14s3L98UmpMNxaeq/vTpxt1sLlctwWlEhEz3W9UQ99baa8S7SvG7i40Hf7Ebf4m7puwubigQ9UTB53aDt+XVK21xcdji4rDHx2GLi8cWH4c9Lp6iFSsaP0GEIbt2tnjdmsO1qDRJW0Ul/d7ljaz0DQIcePjsfKj+sjLc771HYfZy3B98AB4PEenpuLIyScjKIiIt7ayuGwwqjxypFpKKL78EEWLGjMGVOZ34qVNxJCVZbWJIaPJtuo1vfJrGCYUAKr8fX0FBXaGp1eOpXa8aiVPZYmJwJCfjyc1tvNcaEUFEenq1GPjd7kZ7CXUvasMWH489NhZbfI0Y2OLj6wpEfDy22Liacpy5Pz4eW2xskx6PQP3dalFpBqt6Kk3hLSigePUairKzKf3sMwCiLryQhKxMXBkZOJKTz7mNtuI5cYKilSspWrmS8q3GrNvo4cMNIbl6Gs5uXUNuk9WEkztJc24opfAXFjbo7XhMESpeuarJc+OmTMEeF1dPIOJq6uJMUYiPxx4Xh8S0za3ZVnRMJQSEMqbSVjy5uRStWEnh8mwqdu4Cm43Yi8fhyswifupV2OODl8TSm5dH0TvvULxiJaWbNoFSRA4dQsL06cRPyyCiZ2DvNRwJF3eSJriEW69Vj/4KMmc7+uuRd3Zz7EwZqYnR3H31oIALSn0q9u2jMDubouzleA4fRiIiiLv8clxZWcRNuvysgov18RUWUrx2LUXLV1DyySfg9xPRrx+uzOm4MjKITE8PwJ1oNB2L87HXqkWlGc5GVKxEKUX5tm0UZi+naMUKY+5HXBzxU6eSkJVJzLhxbRq373OX4H7vXYqWr8D94Yfg8eDsHJuqlwAACoJJREFU3RvX9AxcGdOJHDig3Q8Y0Gis5nzrtWpRaYZwE5XaKK+Xkg0bKMpeTvHq1Ua6k+QuuDIySMjKImrYMIqysxv8scdfeSXu9/9rpEl5/31URQWOlBRcGRm4MjKIuuBrWkg0Gk2TaFFphnAWldr4y8txr3+fouXZuNe/j/J4sHVOwl9YVHcIot0ONht4PNi7dMF19dW4MqcTPWJEWM6R0Wg0oUdnKT4PsEVF4Zp2Na5pV+MrKqJ4zRqO//qBhmPafT4kMpJezzxNzEUXtYsUFxqNpuOiX1U7AHaXi8Q5cxodWw+gysqIvfhiLSgajSboaFHpQDhSUtpUr9FoNIFGi0oHousPFyD1kjdKVBRdf7jAIos0Gs35ho6pdCCqhjSeT0MdNRpN+0KLSgcjYcYMLSIajcYywt79JSLTRGS3iOwVkXuttkej0WjOZ8JaVETEDjwJZABDgRtFZKi1Vmk0Gs35S1iLCjAW2KuU2q+UqgQWA7Mstkmj0WjOW8JdVHoAh2t9P2LW1UFEbhORjSKy8dSpUyEzTqPRaM43wl1UWoVS6mml1Bil1JhkC9Yn0Wg0mvOFcB/9dRToVet7T7OuSTZt2nRaRHLOsr0uwOmzPDfUhJOtEF72hpOtEF72hpOtEF72noutrV6ONqwTSoqIA9gDTMEQk8+AbyildgSpvY2tTapmNeFkK4SXveFkK4SXveFkK4SXvaGyNax7Kkopr4jcBbwD2IHngiUoGo1Go2mZsBYVAKXUCmCF1XZoNBqN5jwJ1AeQp602oA2Ek60QXvaGk60QXvaGk60QXvaGxNawjqloNBqNpn2heyoajUajCRhaVDQajUYTMLSotICIRInIpyKyVUR2iMivrbapNYiIXUS2iEi21bY0h4gcFJEvRORzEdlotT0tISKJIvKaiHwpIrtE5BKrbWoMERlk/qZVW5GItOuFdUTkh+b/se0i8rKIRLV8ljWIyHzTzh3t8XcVkedE5KSIbK9VlyQia0TkK/OzUzDa1qLSMhXAFUqp4cAIYJqIXGyxTa1hPrDLaiNayWSl1IgwGe+/CFillBoMDKed/sZKqd3mbzoCGA2UAkstNqtJRKQH8ANgjFLqAowpAl+31qrGEZELgFsxcg8OB7JEpL+1VjXgn8C0enX3AuuUUgOAdeb3gKNFpQWUgdv86jS3dj26QUR6ApnAs1bb0pEQkQRgIvAPAKVUpVLqjLVWtYopwD6l1NlmkggVDiDanNQcAxyz2J6mGAJsUEqVKqW8wPvAbIttqoNS6r9Afr3qWcALZvkF4JpgtK1FpRWYrqTPgZPAGqXUBqttaoE/A/cAfqsNaQUKWC0im0TkNquNaYF04BTwvOlafFZEYq02qhV8HXjZaiOaQyl1FPgjcAjIBQqVUquttapJtgOXiUhnEYkBplM3XVR7pZtSKtcsHwe6BaMRLSqtQCnlM90IPYGxZve3XSIiWcBJpdQmq21pJROUUqMw1sS5U0QmWm1QMziAUcBflVIjgRKC5EIIFCISAcwEllhtS3OY/v1ZGMKdCsSKyE3WWtU4SqldwO+B1cAq4HPAZ6lRbUQZc0mC4nHRotIGTFfHezT0VbYnLgVmishBjPVlrhCRf1trUtOYb6gopU5i+PzHWmtRsxwBjtTqqb6GITLtmQxgs1LqhNWGtMCVwAGl1CmllAd4AxhvsU1NopT6h1JqtFJqIlCAkYOwvXNCRFIAzM+TwWhEi0oLiEiyiCSa5WjgKuBLa61qGqXUz5RSPZVSfTDcHu8qpdrlG5+IxIpIfFUZmIrhWmiXKKWOA4dFZJBZNQXYaaFJreFG2rnry+QQcLGIxIiIYPy27XIQBICIdDU/e2PEU/5jrUWt4m1gnlmeB7wVjEbCPvdXCEgBXjCXLrYBryql2vUw3TCiG7DUeIbgAP6jlFplrUkt8n3gJdOttB/4tsX2NIkp1FcBt1ttS0sopTaIyGvAZsALbKF9p0B5XUQ6Ax7gzvY2YENEXgYmAV1E5AjwK+Bh4FURuQXIAW4ISts6TYtGo9FoAoV2f2k0Go0mYGhR0Wg0Gk3A0KKi0Wg0moChRUWj0Wg0AUOLikaj0WgChhYVTdggIu+JyNX16haIyF/beJ0VVXOPmjnmvnrfP2pLG620458icl0j9YPNzMJbRKRfoNttqz2tPHeSiIyv9f2sr6UJb7SoaMKJl2mYubbVea3EwKaUmt6KeQV1REUpFcrZ3dcArymlRiql9rV0cNV9hcCu5phEO54BrwkdVv8hajRt4TUg05x4iIj0wcgT9YGIxInIOhHZbK7PMqvqGBHZLSL/wpit38tcw6WLuf9NM5nljqqEliLyMEa23M9F5CWzzm1+iog8Yq6l8YWIzDXrJ4nIeqlZa+Ulc2Y4IvJLEfnMPOfpqvrGEJHpwALguyLynln3I/Pc7WKu3dHEfblN23aIyFoRGWvatF9EZjbSlojIE+Z11gJda+0bLSLvm7/NO7XSe6wXkUXmb7PdbKMPcAfwQ7P+MvMyE0XkI7N93Ws5X1BK6U1vYbMB2cAss3wv8Eez7ABcZrkLsBcQoA9GtuaLa13jINDFLCeZn9EYD+fO5nd3vXbd5uccYA3Geh/dMNKLpGC8qRdiJB21AR9jJMusbsMsvwjMMMv/BK5r5B4XAj8xy6OBL4BYIA7YAYxs4r4UkGGWl2IkPHRirPnxeSPtzK51L6nAGeA685yPgGTzuLnAc2Z5PfCMWZ4IbK9vc617W2L+FkOBvVb/7egtNJvuqWjCjdousNquLwEeEpFtwFqgBzWpvXOUUp80cb0fiMhW4BOM9OUDWmh/AvCyMjJXn8BYS+Mic9+nSqkjSik/RubaPmb9ZBHZICJfAFcAX2vdrVa3t1QpVaKMdX3eAKp6AvXvqxIjay4YQvS+MpIzflHLltpMrHUvx4B3zfpBwAXAGjGWfPg5hlhW8TJUr9nhaiY+9aZSyq+U2kmQ0qxr2h8695cm3HgLeExERgExqibF/zeBZGC0UsojRpbmquVoSxq7kIhMwsiOe4lSqlRE1tc652yoqFX2AQ4xlsR9CmNFw8MisvAc26hN/fvyKKWq8i75q+xRSvnFWPiqtQiwQynV1FLJ9XM7NZXrqfbv0aTLT9Ox0D0VTVhhvq2/BzxH3QB9AsY6Mh4RmQykteJyCUCBKSiDgdrLRHtExNnIOR8Ac8VYuC0Z423/02baqBKQ0yISh+FeagsfANeIkb03FrjWrAsE/6XmXlKAyWb9biBZRC4BEBGniNTuXVXFkSZgLKZVCBQD8QGySxPG6J6KJhx5GSNmUHsk2EvAMtPFtJHWLU+wCrhDRHZhPEhru5KeBraJyGal1Ddr1S8FLgG2Yryh36OUOm6KUgOUUmdE5BmMeM1x4LPW3GCt8zeLyD+pEa5nlVJbzOD4ubIUwx23EyM29LHZZqUZWP+LGEsoOzBWE91hnlcuIlswYi83m3XLgNfMARLfD4BtmjBFZynWaDStxnQR/kQptdFqWzTtE+3+0mg0Gk3A0D0VjUaj0QQM3VPRaDQaTcDQoqLRaDSagKFFRaPRaDQBQ4uKRqPRaAKGFhWNRqPRBIz/D33gc7YjaFxRAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for k in range(len(var_forms)):\n", " for j in range(len(entanglements)):\n", @@ -216,7 +160,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_vqe_initial_point.ipynb b/community/aqua/chemistry/h2_vqe_initial_point.ipynb index ebb1d1f6a..e74286c0b 100644 --- a/community/aqua/chemistry/h2_vqe_initial_point.ipynb +++ b/community/aqua/chemistry/h2_vqe_initial_point.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "scrolled": true }, @@ -24,37 +24,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515974 -1.07591361 -1.09262987 -1.10591801 -1.11628598 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711706 -1.13604436\n", - " -1.13414767 -1.1315512 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133943 -1.10634211 -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591801 -1.11628598 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711706 -1.13604436\n", - " -1.13414767 -1.1315512 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133943 -1.10634212 -1.10115034]]\n", - "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", - " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", - " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [[383 375 379 364 382 389 376 382 377 345 365 320 341 391 370 340 343 389\n", - " 352 381 331]\n", - " [383 291 280 281 260 263 268 290 294 281 319 297 258 297 283 295 272 319\n", - " 317 312 297]\n", - " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]]\n" + "Processing step 16" ] } ], "source": [ "import numpy as np\n", "import pylab\n", + "import copy\n", "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", @@ -66,7 +43,7 @@ " 'two_qubit_reduction': True},\n", " 'algorithm': {'name': ''},\n", " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", - " 'variational_form': {'name': 'RYRZ', 'depth': '5', 'entanglement': 'linear'}\n", + " 'variational_form': {'name': 'RYRZ', 'depth': 5, 'entanglement': 'linear'}\n", "}\n", "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", "algorithms = [{'name': 'VQE'},\n", @@ -88,15 +65,19 @@ " d = start + i*by/steps\n", " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm'] = algorithms[j] \n", + " dict = copy.deepcopy(qiskit_chemistry_dict)\n", + " dict['algorithm'] = algorithms[j] \n", + " if algorithms[j]['name'] == 'ExactEigensolver':\n", + " del dict['optimizer']\n", + " del dict['variational_form']\n", " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", + " result = solver.run(dict)\n", " energies[j][i] = result['energy']\n", " hf_energies[i] = result['hf_energy']\n", " if algorithms[j]['name'] == 'VQE':\n", " eval_counts[j][i] = result['algorithm_retvals']['eval_count']\n", " if j == 1:\n", - " algorithms[j]['initial_point'] = result['algorithm_retvals']['opt_params']\n", + " algorithms[j]['initial_point'] = result['algorithm_retvals']['opt_params'].tolist()\n", " distances[i] = d\n", "print(' --- complete')\n", "\n", @@ -108,30 +89,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xdc1dX/wPHXYQkogiAqQ8WJqEwRB7lX5QpzpFaO0szSsm3fMlvfX8PMTFuaq8yR5bY0K3MPVFQEcaKCCIiyZMP5/XEvfNEYF7iXyzjPx+M+vPfzOZ/zed+Lj/u+5zPeR0gpURRFUZSKMjF2AIqiKErNoBKKoiiKohcqoSiKoih6oRKKoiiKohcqoSiKoih6oRKKoiiKohcqoSiKgQghJgoh9hs7DkWpLCqhKJVCCBEphOh/37KCL1whRB0hxPdCiKtCiBQhRIgQ4qFS+nQSQiwRQtwQQqQKIS4LIVYIIdoZ8r3oixDiKSHEOe37jRVC7BBC2GjXrRBCfFCGviqUvLTb52o/x8IP5/L2qdQ+KqEoVYUZcB3oBdgCbwHrhRBuRTUWQjgABwFroAdgA/gB/wADitnGTN9Bl5cQohfwX2CslNIG8ADWGTcqDkkp6933uKHPHVSlv4GifyqhKFWClPKulHKulDJSSpknpdwGXAE6FbPJLCAZeEJKeUlqJEopl0spvwQQQrgJIaR2JHAN+Eu7fJgQ4qwQIlEIsUcI4ZHfqbZ960KvC0YKQojeQogoIcTLQog4IUSMEGJSobYOQogtQohkIcRRoFUJb7kzmi/wk9r3f1tKuVJKmSKEmAqMB17TjhK2avt/QwhxSTuiCRNCBGmXewDfAN207RO1y+sIIeYJIa5pR0DfCCGsdP6jFKIdYb4ihDgthEgSQqwTQlgWWj9EO6pMFEIcFEJ43bft60KI08BdIYSZEMJPCHFS+15+1vaX/zmHCiGGFtreXAhxSwjhW57YlcqjEopSJQkhGgNtgbPFNOkPbJRS5unQXS80I4BBQoi2wBrgRcAR2AFsFUJY6BhaEzQjKBfgKWCxEKKBdt1iIANwAiZrH8U5oo3nXSFEoBCiTv4KKeV3wGrgE+0oIf/L9RKa0Zgt8C7woxDCSUoZDkzjfyMMO237j9B8hj5Aa23Mc3R8n0UZDTwItAC8gIkA2i/6ZcAzgAPwLbCl8HsCxgKDATs03zsbgRWAPZq/R1ChtquAxwu9fhiIyU++StWlEopSmTZpf8Eman9Ff1VUIyGEOZov1JVSynPF9NUQuFlom2HaflOEELvuaztXOwJKB8YA26WUf0gps4F5gBXQXcf3kA28J6XMllLuAFIBdyGEKfAoMEe7r1BgZXGdSCn3ASPQHKbbDiQIIeZr+ylum5+llDe0I7h1wAUgoKi2QggBTAVmaUc/KWgOsT1WwnvrWvjvI4S4dN/6hdr93wa2oklUaPfzrZTyiJQyV0q5EsgEut637XXt36ArmkOcC7Wf46/A0UJtfwQeFkLU175+AvihhLiVKkIlFKUyPSKltMt/ANPvbyCEMEHz5ZEFPF9CXwloRgIASCm3aPucBdw/2rhe6LkzcLXQdnna9S46vocEKWVOoddpQD00o53880D5rlICKeVv2tGHPTAczS/+p4trL4R4stBhpUSgI5rEWhRHNOeXjhdq/7t2eXEOF/77SCnvP2R3s9Dz/PcN0Bx4+b4fC03RfNb57v8bRMt7K9MWrNeetzkAPCqEsAMeQvMDQ6niVEJRqgztr+rvgcbAo9oRRHH+BB7RJqDSFP7iuoHmC7DwPpsC0dpFaWi+iPM10aF/gHggR9tXvma6bKgdcfyJ5hxPxyJiRgjRHFiCJsk6aJNnKCCKag/cAtKBDoUShK2Ush76dx348L5kZC2lXFOoTeH4YgAX7Wefr/DnBprR3ePAKDSH8qJRqjyVUJSq5Gs05zqGag+NlGQ+0AD4QQjRSmjY8L/DMMVZDwwWQvTTHlp7Gc3hmYPa9SHAOCGEqRDiQTTnX0olpcwFfgXmCiGshRDtgQnFtRdCDBdCPCaEaKCNPUC7r8PaJrFAy0Kb1EXzpRyv3X4S/0s++e1d888FaUdeS4DPhRCNtNu4CCEG6fJ+ymgJME0I0UX7XuoKIQZr/x5FOQTkAs9rT9AP59+H7jahORz4AppzKko1oBKKUiVof4E/gyYh3BT/uw9ifFHtpZS30ByLzwD2AylokoEN8Gxx+5FSRqD55fslml/xQ9EksCxtkxe0yxLRXGm1qQxv43k0h4FuojnhvLyEtneAKWjOgySjOW/wqZQy/9DO90B77SGkTVLKMOAzNF/GsYAnmsNC+f5CcwHDTSHELe2y14GLwGEhRDKwG3AvIaZu4t/3oXQu7U1LKYO172WR9n1dRHvCvpj2WWjOHz2F5nN+HNiGJrHnt0kHfkFzAcCvpcWgVA1CTbClKIqxCSGOAN9IKZcXWjYHaCulfLz4LZWqRI1QFEWpdEKIXkKIJtpDXhPQXIb8e6H19mhGMN8ZK0al7FRCURTFGNyBU2gOeb0MjJRSxgAIIaagOdH/m5Ryr/FCVMpKHfJSFEVR9EKNUBRFURS9qFWF2ho2bCjd3NyMHYaiKEq1cvz48VtSypJuigWMmFCEEKOAuWjuOwjQXnpYVLsHgS8AU2CplPKj+9YvBCbrcsOWm5sbwcFF7kZRFEUphhCixKoP+Yx5yCsUzbXoxZ5009Y1Woym9EJ7YKz2hrH89f5obm5TFEVRjMxoCUVKGa69yawkAcBFKeVl7c1Qa9HUPMpPNp8Crxk2UkVRFEUXVf2kvAv3FpWL4n9F/J4HtuRfalgcIcRUIUSwECI4Pj7eQGEqiqIoBj2HIoTYTdHF9f4jpdxcgX6d0RSN611aW+3cEt8B+Pv7q2ukFaUY2dnZREVFkZGRYexQFCOxtLTE1dUVc3Pzcm1v0IQipexfeqsSRXNvFVJX7TJfNBMGXdQWLLUWQlyUUrb+dxeKougiKioKGxsb3NzcuLcQsFIbSClJSEggKiqKFi1alKuPqn7I6xjQRgjRQltF9TE0h7m2SymbSCndpJRuQJpKJopSMRkZGTg4OKhkUksJIXBwcKjQCNVoCUUIESSEiAK6AduFEDu1y52FEDsAtBMZPQ/sBMKB9VLK4qaEVRSlglQyqd0q+vc32n0oUsqNaOaVvn/5DTRzSOe/3oFm3u+S+jLEpEEF9p6PJ/RGEtN7q0GQoihKcar6Ia8q4cDFW8zfdZ7bd7NKb6woSrnVq3fvb8MVK1bw/PMlzQT9byEhIezYUeJv0ApZsWIFjo6O+Pj44OPjw5NPPlnmPvbs2cOQIUMMEJ1xqYSig0d8XcjJk2w7fcPYoSiKUoKcnJwSE0pOTo5e9jNmzBhCQkIICQlh1So1oWQ+lVB04OFUn3ZNbNh4Uk1rrSjGsnXrVrp06YKvry/9+/cnNjYWgLlz5/LEE08QGBjIE088wZw5c1i3bh0+Pj6sW7fuX+tzc3N59dVX6dy5M15eXnz77bcF+/j0008Llr/zzjtlii8kJISuXbvi5eVFUFAQd+7cAeDixYv0798fb29v/Pz8uHTp0j3bHTt2DF9f338tr45qVXHIigjydeH/fjvHlVt3adGwrrHDURSDenfrWcJuJOu1z/bO9XlnaIcS26Snp+Pj41Pw+vbt2wwbNgyABx54gMOHDyOEYOnSpXzyySd89tlnAISFhbF//36srKxYsWIFwcHBLFq0CNAknMLrv/vuO2xtbTl27BiZmZkEBgYycOBALly4wIULFzh69ChSSoYNG8bevXvp2bPnv+Jct24d+/fvB+CFF15g0qRJPPnkk3z55Zf06tWLOXPm8O6777JgwQLGjx/PG2+8QVBQEBkZGeTl5XH9uuZ+7YMHDzJjxgw2b95Ms2bNKv4hG5lKKDoa7uPCR7+fY9PJaGYNaGvscBSlRrKysiIkJKTgdX5yAM19MmPGjCEmJoasrKx77pUYNmwYVlZWxfZbeP2uXbs4ffo0GzZsACApKYkLFy6wa9cudu3aha+vLwCpqalcuHChyIQyZsyYgoSV30diYiK9evUCYMKECYwaNYqUlBSio6MJCgoCNDcO5gsPD2fq1Kns2rULZ2fnsn1QVZRKKDpqYmtJ91YObAqJ5sX+bdTllUqNVtpIwhhmzJjBSy+9xLBhw9izZw9z584tWFe3bslHDQqvl1Ly5ZdfMmjQoHva7Ny5k9mzZ/PMM8/cs3zx4sUsWbIEQK8n+52cnMjIyODkyZM1JqGocyhlEOTrytWENE5cu2PsUBSl1klKSsLFRVPKb+XKlcW2s7GxISUlpdj1gwYN4uuvvyY7OxuA8+fPc/fuXQYNGsSyZctITU0FIDo6mri4OJ577rmCE/DFffHb2trSoEED9u3bB8APP/xAr169sLGxwdXVlU2bNgGQmZlJWloaAHZ2dmzfvp3Zs2ezZ8+esn0YVZRKKGXwYMcmWJqbqJPzimIEc+fOZdSoUXTq1ImGDRsW265Pnz6EhYUVnJS/39NPP0379u3x8/OjY8eOPPPMM+Tk5DBw4EDGjRtHt27d8PT0ZOTIkSUmpvutXLmSV199FS8vL0JCQpgzZw6gSS4LFy7Ey8uL7t27c/PmzYJtGjduzLZt23juuec4cuRIGT6NqqlWzSnv7+8vKzrB1sw1J9l7IZ6jb/bHwkzlY6XmCA8Px8PDw9hhKEZW1P8DIcRxKaV/aduqb8QyCvJzITEtmz0RccYORVEUpUpRCaWMerRuSMN6Fuqwl6Ioyn1UQikjM1MThno782d4HEnp2cYOR1EUpcpQCaUcgnxdyMrNY8eZEieLVBRFqVVUQikHTxdbWjnWZeMJddhLURQln0oo5SCEIMjXhaORt7l+O83Y4SiKolQJKqGU03AfzQ1Wm0PUKEVR9KFPnz7s3LnznmULFizg2WefBeDs2bP07dsXd3d3WrVqxTvvvENeXh7w75LyPj4+hIWF/Wsfpqam+Pj40LFjR4YOHUpiYqJeYo+MjKRjx4566auwiIgIevfujY+PDx4eHkydOlUv/c6dO5d58+bppa/CVEIpp6b21gS0sGfjyWhq0708imIoY8eOZe3atfcsW7t2LWPHjiU9PZ1hw4bxxhtvEBERwZkzZzh69ChffPFFQdvCJeVDQkJo3779v/aRXyssNDQUe3t7Fi9ebPD3VREzZ85k1qxZhISEEB4ezowZM4wdUolUQqmAIF8XLsXf5Ux0krFDUZRqb+TIkWzfvp2sLM1EdpGRkdy4cYMePXrw008/FVQFBrC2tmbRokV8+umn5d5ft27diI7WHGFITU2lX79++Pn54enpyebNmwti8PDwYMqUKXTo0IGBAweSnp4OwPHjx/H29sbb2/uexJSRkcGkSZPw9PTE19eXv//+G9CMoh555BEGDBiAm5sbixYtYv78+fj6+tK1a1du3779rxhjYmJwdXUteO3p6QlQrhL8H374IW3btuWBBx4gIiKi3J9bSVRxyAp42NOJdzafZePJaLxc7YwdjqLoz29vwM0z+u2ziSc89FGxq+3t7QkICOC3335j+PDhrF27ltGjRyOE4OzZs3Tq1Ome9q1atSI9Pb3gsFXhkvIAhw4dKrYCcW5uLn/++SdPPfUUoKkCvHHjRurXr8+tW7fo2rVrQdn8CxcusGbNGpYsWcLo0aP55ZdfePzxx5k0aRKLFi2iZ8+evPrqqwV9L168GCEEZ86c4dy5cwwcOJDz588DEBoaysmTJ8nIyKB169Z8/PHHnDx5klmzZrFq1SpefPHFe+KcNWsWffv2pXv37gwcOJBJkyZhZ2fH999/X6YS/HXr1mXt2rWEhISQk5ODn5/fvz5PfVAjlAqwtTKnn0cjtp66QU5unrHDUZRqr/Bhr/zDXbq6/5BXUckkf76VJk2aEBsby4ABAwBNBeI333wTLy8v+vfvT3R0dMEEXi1atCiYo6VTp05ERkaSmJhIYmJiQWn7J554omAf+/fv5/HHHwegXbt2NG/evCCh9OnTBxsbGxwdHbG1tWXo0KGAZuQRGRn5r3gnTZpEeHg4o0aNYs+ePXTt2pXMzEx27drFqlWr8PHxoUuXLiQkJPyrBL+fnx/nzp3jwoUL7Nu3j6CgIKytralfv35BstQ3NUKpoCBfF34Lvcm+C7fo066RscNRFP0oYSRhSMOHD2fWrFmcOHGCtLS0gl/R7du3Z+/evfe0vXz5Mg4ODtjZ6X50IP8cSlpaGoMGDWLx4sXMnDmT1atXEx8fz/HjxzE3N8fNzY2MjAwA6tSpU7C9qalpwSGv8ijcl4mJScFrExOTYqcndnZ2ZvLkyUyePJmOHTsSGhpa5hL8CxYsKHfMZaFGKBXU270RdtbmqhSLouhBvXr16NOnD5MnT75ndDJ+/Hj279/P7t27Ac1IY+bMmbz77rvl2o+1tTULFy7ks88+Iycnh6SkJBo1aoS5uTl///03V69eLXF7Ozs77OzsCg6xrV69umBdjx49Cl6fP3+ea9eu4e7uXq44f//994Iy+zdv3iQhIQEXF5cyl+Dv2bMnmzZtIj09nZSUFLZu3VqueEqjRigVZGFmwhAvJzYcjyI1M4d6ddRHqigVMXbsWIKCgu654svKyootW7YwY8YMpk+fTnR0NG+99Rbjx48vaHP/OZSvvvqK7t27F7sfX19fvLy8WLNmDePHj2fo0KF4enri7+9Pu3btSo1z+fLlTJ48GSFEwcUCANOnT+fZZ5/F09MTMzMzVqxYcc/IpCx27drFCy+8UDDT46effkqTJk14+umniYyMxM/PDykljo6ObNq0iYEDBxIeHk63bt0ATYL+8ccf8fPzY8yYMXh7e9OoUSM6d+5crnhKo8rX68Hxq7d59OtDzBvlzchOrqVvoChVUHUqX79p0yZeeukl/v77b5o3b27scGoUVb6+EiRGhRe7zq9ZA5o7WLPxZFQlRqQotdcjjzzC5cuXVTKpYlRC0cG2JwMIfXQEebm5Ra4XQvCIjwsHLyVwMymjkqNTFEWpGlRC0UHddq1xSILQzZ8X2+YRXxekVKVYFEWpvVRC0UGnSe+RZQrXNm8otk2LhnXxbWanrvZSFKXWUglFB/WdWhPVxoKGoUlkp6cW2y7I14VzN1MIj0muxOgURVGqBpVQdGTbpyu2d+Hk2g+KbTPEyxkzE6FGKYqi1EoqoejI78l3SbOAuJ1/FNvGvq4Fvd0d2RwSTW5e7bkcW1H0oTLK15eFLiXeg4ODmTlzJgB79uzh4MGDBeu++eYbVq1aVa59zJ07FxcXl4JS+1u2bCmxH132FRISwo4dO0psU1EqoejIukETYjyscApLIz0prth2Qb6uxCZncuhSQiVGpyjVX2WUr8+3Z88eJk6cWOGY/f39WbhwYUGfhRPKtGnTePLJJ8vdd37Z+p9//pnJkycXJM+i6LIvlVCqmEYD+2OdBSdWvVNsm34ejbCpY6YOeylKGVV2+fqy6N27N6+//joBAQG0bduWffv2AZokMmTIECIjI/nmm2/4/PPP8fHxYd++ffeMPpYsWULnzp3x9vbm0UcfJS1N95lePTw8MDMz49atW0RGRtK3b1+8vLzo168f165dA+4d6RQVa1ZWFnPmzGHdunX4+Piwbt06PX9CGkapEyKEGAXMBTyAACllkbevCyEeBL4ATIGlUsqPtMsF8AEwCsgFvpZSLjR03L7j5nBi8VYS/zwIxcxzY2luysOeTmw7fYMPHumIlYWpocNSFL37+OjHnLt9Tq99trNvx+sBrxe7vjLL15dHTk4OR48eZceOHbz77rsFdcUA3NzcmDZtGvXq1eOVV14B4M8//yxYP2LECKZMmQLAW2+9xffff6/zZFlHjhzBxMQER0dHhg0bxoQJE5gwYQLLli1j5syZbNq0SadY33vvPYKDg1m0aFFFPoYSGWuEEgqMAPYW10AIYQosBh4C2gNjhRD5Y9iJQFOgnZTSA1hbZCd6Zm5Vj/iONrhezCI55mKx7YL8XLiblcuusJuVEZai1BiGLl/fpUsXfHx8ePrpp9myZUvB+Zb7z90UZcSIEcD/StiXRWhoKD169MDT05PVq1dz9uzZUrfJH+288sorrFu3DiEEhw4dYty4cYCmZH7hBKqvWCvCKCMUKWU4aO4wL0EAcFFKeVnbdi0wHAgDngXGSSnztP0Vf1JDz5oOG4HF0ZUcXz6XPm/+WGSbADd7XOys2HgyumDueUWpTkoaSRiSocvXHzlyBNAcqlqxYgUrVqzQedv8Ao+mpqbFlpovzsSJE9m0aRPe3t6sWLGCPXv2lLrNrFmzCkY7ZVWRWCuiKp9DcQGuF3odpV0G0AoYI4QIFkL8JoRoU1wnQoip2nbB8fHxFQ7KM+hVbteHjP0hxbYxMREM93Fm34VbxKdkVnifilJbVFb5ekOwsbEhJSWlyHUpKSk4OTmRnZ19T6n7surevXvBCG716tX06NFDL/Hpi8ESihBitxAitIjHcD10XwfI0Fa/XAIsK66hlPI7KaW/lNLf0dGxwjs2MTUl0achTa/kcuvS8WLbBfm6kJsn2XrqRoX3qSi1ydixYzl16tQ9CSW/fH3+vOgNGzYkMDDwX+XrC182XPiKq8owdOhQNm7cWHBSvrD333+fLl26EBgYqFNp/OJ8+eWXLF++HC8vL3744Yd7rnIrTZ8+fQgLCzPoSXmklEZ7AHsA/2LWdQN2Fno9G5itfX4OaKF9LoAkXfbXqVMnqQ/hO7+TYe7t5K7/DC+x3eCFe+WQhfv0sk9FMbSwsDBjh6CzjRs3yhYtWsjIyEhjh1LjFPX/AAiWOnzHVuVDXseANkKIFkIIC+AxIP/unk1AH+3zXsD5ygysbb/JxDYEefhCie0e8XHhTHQSF+MMO8xUlNpGla+vmoySUIQQQUKIKDSjkO1CiJ3a5c5CiB0AUsoc4HlgJxAOrJdS5l8a8RHwqBDiDPB/wNOVGb+JqSnpnZxpGpVH1Infi203zMcZE4G6J0VRlFrBKAlFSrlRSukqpawjpWwspRykXX5DSvlwoXY7pJRtpZStpJQfFlqeKKUcLKX0lFJ2k1Kequz30H68ptxC6I/zi23TyMaSB9o4sunkDfJUKRZFUWq4qnzIq0prHjCcKCeBRXDJszQ+6udCdGI6/1yo+BVmiqIoVZlKKBUgu7bCKU5y8e/ii7I91NGJJvUtWbrvciVGpiiKUvlUQqkAnwmzyRMQsf77YttYmJkwKdCNAxcTCI1OqsToFEVRKpdKKBXQqF13rjc3pf7JuGLnmwcY26UZ9eqYsUSNUhSlRKampvfcS/LRRx/pre/7q+0WV/L+xo0bjBw5Um/7LY/IyEg6duxo1BjKwyilV2oSi8AONFx9mrNbF+L5yKwi29S3NOexzk1ZfjCS1x5sh4ud/grWKUpNYmVlRUhI8VUoKiIkJITg4GAefrjguh/GjBlTZLHEDRuKn+67OsnJycHMrPK+5tUIpYL8Js0l2xSubir5ztNJD7QAYPn+K5URlqLUGElJSbi7uxMREQFo7qRfsmQJAM8++yz+/v506NCBd97537QSx44do3v37nh7exMQEEBSUpLO5dsLjw7S0tIYPXo07du3JygoiC5duhAcrCmOvmvXLrp164afnx+jRo0iNVUzPbibmxvvvPMOfn5+eHp6cu6cpmrzP//8UzAS8vX1JSUlBSklr776Kh07dsTT07PIuLp27XpPMcnevXsTHBzM3bt3mTx5MgEBAfj6+rJ582ZAM/IaNmwYffv2pV+/fgBk5RQ/l4o+qRFKBdm5enCwlTkNzySRk5mOWZ2iRx8udlYM8XJizdFrzOjXBlsr80qOVFF0d/O//yUzXL/l6+t4tKPJm2+W2CY9PR0fH5+C17Nnzy4YRUycOJEXXniBO3fuFJSC//DDD7G3tyc3N5d+/fpx+vRp2rVrx5gxY1i3bh2dO3cmOTkZa2vrf5VvX7FiRZEl7wv76quvaNCgAWFhYYSGhhbEduvWLT744AN2795N3bp1+fjjj5k/fz5z5swBoGHDhpw4cYKvvvqKefPmsXTpUubNm8fixYsJDAwkNTUVS0tLfv31V0JCQjh16hS3bt2ic+fO9OzZ854YxowZw/r163n33XeJiYkhJiYGf39/3nzzTfr27cuyZctITEwkICCA/v37A3DixAlOnz6Nvb09iWlZXL+TTnN7a+ob+HtHjVD0oF6fLtjehZD1H5bYbkqPltzNymXt0WuVFJmiVC/5h7zyH2PGjAFgwIABeHp68txzz7F06dKC9uvXr8fPzw9fX1/Onj1LWFgYERERODk50blzZwDq169f7GGf0kre79+/n8ceewyAjh074uXlBcDhw4cJCwsjMDAQHx8fVq5cydWrVwu2K6p8fGBgIC+99BILFy4kMTERMzMz9u/fz9ixYzE1NaVx48b06tWLY8eO3RPD6NGjCw7BrV+/vuD8zq5du/joo4/w8fGhd+/eZGRkFEy4NWDAAOzt7bl9N4vrt9OwNjelbh3Dz82kRih64D/xfc4t78PNHb/BEx8U266jiy2BrR1YfiCSSYEtsDBT+VypmkobSVS2vLw8wsPDsba25s6dO7i6unLlyhXmzZvHsWPHaNCgARMnTiQjI6NS4pFSMmDAANasWVPk+qLKx7/xxhsMHjyYHTt2EBgYqNMcLAAuLi44ODhw+vRp1q1bxzfffFMQwy+//IK7u/s97Y8cOULdunW5lZrJjcR06tUxw82hLiYmJU4XohfqG00PrBs04Ya7FU3C0shMKXku+Sk9WnIzOUNVIVaUMvj888/x8PDgp59+YtKkSWRnZ5OcnEzdunWxtbUlNjaW3377DQB3d3diYmIKfumnpKSQk5NTrvLtgYGBrF+/HoCwsDDOnDkDaM5rHDhwgIsXNRPt3b17l/PnSy4peOnSJTw9PXn99dfp3Lkz586do0ePHqxbt47c3Fzi4+PZu3cvAQEB/9p2zJgxfPLJJyQlJRWMkgYNGsSXX36ZXzyXkydPFrRPz8rhRmI6tlbmuDWsnGQCKqHoTcOBfaibCcGr5pTYrldbR9wb27Bk3+WC/wiKomjkn0PJf7zxxhtERESwdOlSPvs1qywDAAAgAElEQVTsM3r06EHPnj354IMP8Pb2xtfXl3bt2jFu3DgCAwMBsLCwYN26dcyYMQNvb28GDBhARkZGkeXbSyt5P336dOLj42nfvj1vvfUWHTp0wNbWFkdHR1asWMHYsWPx8vKiW7duBSffi7NgwYKCw2bm5uY89NBDBAUF4eXlhbe3N3379uWTTz6hSZMm/9p25MiRBVMi53v77bfJzs7Gy8uLDh068PbbbyOlJCkti7tZudhZW9DM3hqTkicy1CtRm77U/P39Zf4VGvqWlZZESGBX4lvUYfCvJV/2+HPwdV7dcJpVkwPo2bbic7Qoij6Eh4fj4eFh7DCqlNzcXLKzs7G0tOTSpUv079+fiIgILCwsjB3av0gpiUnK4FZqJvZ1LXCxsyptVtwiFfX/QAhxXGrmnyqRGqHoiYW1LXEdbHA5n0lqXGSJbYf5ONPIpo660VFRqri0tDQeeOABvL29CQoK4quvvqqyySTqTjq3UjNpWK9OuZNJRamEokeuQ4dTJweCl79TYrs6ZqZMDHRj34VbhN1IrqToFEUpKxsbG4KDgzl16hSnT5/moYceMnZI/5InJddup3EnLYvG9S1xsrU0SjIBlVD0ynPEq9y2gfS9J0ptOz6gOdYWpqpopFKl1KZD4DVBXp7kWkIaSenZONla0bh+xZJJRf/+KqHokam5BYk+DrheySHhcslJxdbanMc6N2PLqRvEJKVXUoSKUjxLS0sSEhJUUqkmcvMkkQl3Sc7IxsXOCkebOhXqT0pJQkIClpaW5e5D3YeiZy1HPA77vuDk8g/o//6vJbadFOjGykORLD8QyZsPq5OhinG5uroSFRVFfLyau6eqy5OShNQssnLyaFDXnLgUM+L00K+lpSWurq7l3l4lFD1zHziFvQ5fkHs4otS2Te2tedjTiZ+OXOP5vq2pb6nKsSjGY25uTosWLYwdhlKKhNRMnvj+KBfiUvhyrC+dOjoZO6QC6pCXnpmYmpLm50yz63ncOLW71PZTerQgNTOHdUevV0J0iqJUZzeTMhjz3WEuxaey5El/HqxCyQRUQjGI9uOeA+D0D5+V2tbL1Y6uLe1ZduAK2bmVUxFUUZTq5/rtNEZ9e5CYxHRWTg6gt3sjY4f0LyqhGIBbtxFEOwnMj10tvTEwtWdLYpIy2H46xsCRKYpSHV2MS2XUN4dITs9h9ZSudG3pYOyQiqQSioHkBrTAOVZyce9Ppbbt3bYRrRvV47u9qhyLoij3CrmeyKhvDpKTl8faqV3xaWpn7JCKpRKKgXg/+Tp5wPm135Xa1sREMLVHS8Jikjl4qeTikoqi1B57z8czbslhbCzN+eXZ7ng41Td2SCVSCcVAmnToyfXmptQ7GVvifPP5hvs607BeHb7dq250VBQFtpy6wVMrj9HcoS4bpnWjuUNdY4dUKpVQDMi8e3sc70D4jsWltq1jZsqkQDf2no8nPEaVY1GU2mzlwUheWHsS32YNWDu1K43ql/9mw8qkEooB+U1+hxwTuLJxrU7tx3dphpW5KUv3qXnnFaU2klIy/4/zvLPlLP09GrNqckC1mi5cJRQDatC0A9dbmeNw+g45maWXV7GztmBM56ZsORXNzaTKmXlOUZSqITdP8tamUBb+eYHR/q58Pd4PS3PDT9urTyqhGFi9vl2wS4XgFbpNqTo5sAW5eZIVByMNG5iiKFVGZk4uM9acYPWRazzbuxUfP+qFmWn1+3qufhFXM12fmUdiPUjc+IdO7Zs5WPNQRydWH7lKamaOgaNTFMXYUjNzmLT8GDvO3OStwR68/mA7o5WfryiVUAzMwtqWxEBnmkfmcvHvVTptM7VnS1Iyclh3TJVjUZSa7FZqJmO/O8yRK7eZP9qbp3u0NHZIFaISSiXoPPMTskzh3NIvdWrv3dSOgBb2LNuvyrEoSk11/XYao745xIW4FJY82YkRfuWv8ltVqIRSCRq26sR1T2tcT6Vy5+oZnbaZ2qMl0Ynp7DijyrEoSk1z7mYyj359kITUTFY/3YW+7RobOyS9UAmlkrSePI06OXDki1d0at+3XSNaOtZlyT5VjkVRapLgyNuM/uYQQsDP07rTqbm9sUPSG6MlFCHEKCHEWSFEnhDCv4R2DwohIoQQF4UQbxRa3k8IcUIIESKE2C+EaF05kZdPu4FTuNbMBJt918hOTy21vYmJYEqPloRGJ7P/4q1KiFBRFEP7MzyW8UuP0LBeHX55tjvuTWyMHZJeGXOEEgqMAPYW10AIYQosBh4C2gNjhRDttau/BsZLKX2An4C3DBtuxdUb3hv7FDj87Us6tQ/ydcG1gRUfbg8nR51LUZRq7efg60z94TjuTWz4eVo3XBtYGzskvTNaQpFShkspS5vWMAC4KKW8LKXMAtYCw/O7APIrpdkCNwwTqf50eXoeCbaQvu2ATu0tzU35z8MenLuZwhp1xZeiVEtSShbsPs+rG07TraUDP03pikO9is3/XlVV9XMoLkDhb9Io7TKAp4EdQogo4Ango6I6EEJMFUIECyGCjT1XtlkdK+72bknTqDzCtpde3wvgwY5N6NrSnvm7IkhMyzJwhIqi6FNWTh6vbjjNgt0XGNnJlWUTO1OvTs2ded2gCUUIsVsIEVrEY3jpW5dqFvCwlNIVWA7ML6qRlPI7KaW/lNLf0dFRD7utmK4vzCfdAi6v/F6n9kII5gzpQFJ6Ngt2XzBwdIqi6EtyRjaTVhxlw/EoZvVvy6cjvbAwq+q/4SvGoKlSStm/gl1EA00LvXYFooUQjoC3lPKIdvk64PcK7qtS2Dq7c8OnPs2OJxN3/jCN2nYtdZv2zvUZG9CMHw5fZVyXZrRtXLNO5ClKTROdmM6k5Ue5HH+XeaO8Gdmp+t9joouqni6PAW2EEC2EEBbAY8AW4A5gK4Roq203AAg3Uoxl1n7qy5jnQvDC2Tpv8/JAd+pamPL+tjB1GbGiVGGh0UkELT5ATGIGKycH1JpkAsa9bDhIe/6jG7BdCLFTu9xZCLEDQEqZAzwP7ESTMNZLKc9ql08BfhFCnEJzDuVVY7yP8mj5wGgiW5lhf+gmmSm6zdBoX9eCWQPasu/CLXaHxxk4QkVRyuPviDhGf3sIMxPBhme7E9i6obFDqlSiNv3a9ff3l8HBwcYOA4Cjy17H5pMt3HyyE33e/FGnbbJz83j4i31k5eaxa1ZP6phVr9LWilKT/XTkGm9vDqVdExuWTexM42oyKZYuhBDHpZTF3i+YT6cRihDiVyHEYCFEVT9EVm34T/gvsQ6Qt/OETlMEA5ibmjBnaHuuJqSxbH+kYQNUFEUneXmSj38/x5sbz9CzTUPWP9OtRiWTstA1QXwFjAMuCCE+EkK4GzCmWsHE1JScvh44x0pObyjyiuci9WjjSH+Pxiz66wJxyWoSLkUxpsycXF5YF8LXey4xrkszljzpT90afFlwaXRKKFLK3VLK8YAfEAnsFkIcFEJMEkJUn/kpq5iuL37BXUuIXrO+TNu9NdiDrNw8Pv69tPtCFUUxlMS0LJ5YepStp27wxkPt+PCRjtVyUix90vndCyEcgIlobig8CXyBJsHoNnOU8i/1HJoS29mB5hFZRJ/cqfN2bg3rMvmBFvxyIoqQ64kGjFBRlKJcS0hjxNcHCbmeyMKxvkzr1araToqlT7qeQ9kI7AOsgaFSymFSynVSyhlAPUMGWNP5TH8bgJCv3i/TdjP6tsHRpg5zt5wlL6/2XFihKMYWcj2RoK8OkJCaxY9Pd2GYt7OxQ6oydB2hLJRStpdS/p+U8p4JOnQ5868Uz8V3EFfdLWh8LIHUBN3rddWrY8Zrg9wJuZ7IppBoA0aoKEq+nWdv8th3h7CuY8qv07sT0KLmlJ7XB10TSgMhxIj7Hv2EEI0MGl0t4TJ2NHUz4PDCF8u03aN+rni72vLRb+e4q+afVxSDkVKy+O+LTPvxOO5N6rNxeiCtHNXBmfvpmlCeApYC47WPJcDrwAEhxBMGiq3W8Br5BjcaC8x2h+l8CTFo5kyZM7QDcSmZfLXnogEjVJTaKz0rl5lrQ/h0ZwRDvZxZN7UrDWtoteCK0jWhmAMeUspHpZSPopmbRAJd0CQWpQJMTE0xGeRH4wQIXvWfMm3bqXkDgnxdWLLvCtcS0gwUoaLUTjFJ6Yz+9hDbTt/gtQfd+eIxHyzN1Q3FxdE1obhKKWMLvY4DmkopbwPZ+g+r9uk+4wuS6kLCL9vLvO3rD7bDzETw4Y4wA0SmKLXTiWt3GLboAJfjU1nyhD/Te7dWV3KVQteEskcIsU0IMUEIMQHYrF1WF1DXrepBHRsHbndtjNvFHK4c3FCmbZvYWvJcn9bsPBvLATVdsKJU2IbjUTz27WGszE3Z+Fwg/ds3NnZI1YKuCeU5NHOO+Ggfq4DnpJR3pZR9DBVcbeM/47/kmMDZb+eVedunHmiBawMr3tsapqYLVpRyys2TfLg9jFd+PkWn5g3Y/Fygmi6iDEpNKNp53f+SUv4ipZylfWyQtamqZCVp1K47Vzta4XwyiaQbZbsL3tLclLcGexARm8JPR68ZKEJFqbmS0rOZvOIYS/ZdYUK35qx6KoAGdS2MHVa1UmpCkVLmAnlCCNtKiKfWaznhKayy4PAXL5V520EdmtCtpQOf7TrPnbtqumBF0dWl+FSCFh/gwMVb/DfIk3eHd8S8lpdRKQ9dP7FU4IwQ4nshxML8hyEDq63aD36O664m1N1zmZzM9DJtK4TgnWHtScnIZsHu8waKUFFqln/Ox/PI4gMkpmez+ukujOvSzNghVVu6JpRfgbeBvcDxQg/FAKyGBOKQBEeWvlLmbds1qc/4Ls358cg1Im6mGCA6RakZpJQs3XeZScuP4mJnxebnAunS0sHYYVVrOk+wJYSwAppJKattiduqNMFWSbLTUznaqzOpdiYM2nW2zNvfuZtF73l76OBcn9VPd1GXOirKfTJzcvnPxlA2HI9iUIfGzB/tU6vLzpdG3xNsDQVCgN+1r32EEFsqFqJSHHOreqQ80Ixm1/I4t2tJmbdvUNeClwa05eClBH4PvWmACBWl+opLyWDsd4fZcDyKmf3a8PX4TiqZ6Imuh7zmAgFo7zmRUoYALQ0UkwJ0eWEemWZwcfk35dp+fJdmeDjV582NZ7iRWLZzMYpSUx2/eofhiw4QFpPM4nF+vDSgLSYmagSvL7omlGwpZdJ9y9TNDgbUoLknUd71aHomjYTLJ8q8vZmpCYvH+ZKVk8fzP50gW92botRiUkqW7b/CmG8PYWoi2DCtO4O9nIwdVo2ja0I5K4QYB5gKIdoIIb4EDhowLgVoN/VFzHLg8Eczy7V9S8d6fDzSixPXEvn4t3N6jk5RqoeUjGymrz7Be9vC6O3eiO0zetDRRd0FYQi6JpQZQAcgE1gDJANlq7WulFnrXuO54mmJ68EEbpzaXa4+hng5M6Fbc5buv6LOpyi1TnhMMsMWHWBXWCyzH2rHkic7YWutZi03FF3nlE+TUv5HStlZSumvfZ5h6OAU8Jn9fwgJJ/5b/qLObw72wMvVllc3nFIViZVaY33wdR5ZfIC7mTn89HQXnlHT9Bqcrld5tRVCfCeE2CWE+Cv/YejgFHD1e5Dr3expcSqNiN3fl6uPOmamLB7nhwCm/3ScjGzd51xRlOomIzuX1zac4rUNp/Fr1oDtM3uo+0sqia6HvH4GTgJvAa8WeiiVoPs735FuCZfnLyh3H03trflstA+h0cl8sF2VuVdqpiu37vLI4gOsD47i+T6t+fHpLjjaqMmwKouuCSVHSvm1lPKolPJ4/sOgkSkFGjTtwK3+brhdzuHYyrJNwFXYgPaNeaZnS348fI3Nah56pYb57UwMQ7/cz83kDJZP6swrg9wxVZcEVypdE8pWIcR0IYSTEMI+/2HQyJR79Hp7JbfrQ/KyjeRml7/w4yuD3PFv3oDZv57hYlyqHiNUFOPIysnjva1hPLv6BK0a1WP7zB70cW9k7LBqJV0TygQ0h7gO8r86XlW/hkkNYmXbiKwRnXGOlexf8Ey5+zE3NeHLcb5YmpsyffVx0rPU+RSl+rqRmM5j3x1i2YErTOzuxs/PdMPFzsrYYdVaul7l1aKIh7pTvpL1fHkpMY0EphsOk5mSUO5+nGytWDDGhwtxqby9OVSPESpK5fnnfDyDF+4j4mYKi8b5MndYByzMVMl5Yyrx0xdCvFbo+aj71v3XUEEpRTM1t6DepGE4JMGeD56sUF892zoyo28bNhyPYv2x63qKUFEMLzdPMv+P80xcfpRGNpZsmfEAQ7ycjR2WQukjlMcKPZ9937oH9RyLooOASR9xtYUp9jsvkxgVXqG+XujXhsDWDry9OZTwmGQ9RagohnP9dhpjvj3Ewj8vMMLXlU3PBdLKsZ6xw1K0SksoopjnRb1WKknzmc9jnQEH3ptSoX5MTQQLxvhia2XO9NUnSMnI1lOEiqJfUkrWB1/nwQV7ibiZwvzR3swb5YWVhamxQ1MKKS2hyGKeF/VaqSQeD03jipcVrgcSiD65s0J9OdrU4cuxvlxNuMvsX8+g6/w4ilJZElIzmfbjcV7bcJqOLrb89mIPRvi5qrveq6DSEoq3ECJZCJECeGmf57/2LO9OhRCjhBBnhRB5QohiJ20RQiwTQsQJIULvW24vhPhDCHFB+2+D8sZSXfnO/j8ATn50/5HIsuvS0oFXBrmz7XQMPxy+WuH+FEVf/joXy6AF+/j7XDxvPtyOn6Z0xbWBtbHDUopRYkKRUppKKetLKW2klGba5/mvK1JhLRQYgWZK4ZKsoOhzNW8Af0op2wB/al/XKi6+g4jqZk+LU+mc2/ldhfub1rMVfds14v1tYZy6nqiHCBWl/NKycvjPxjNMXhFMw3oWbH4+kKk9W6kbFas4o1xjJ6UM12UqYSnlXuB2EauGAyu1z1cCj+gxvGojvyTLlS8WVrgvExPBZ6O8aWRjyXM/nSApTZ1PUYzj5LU7DF64n5+OXmNqz5Zsei4QD6f6xg5L0UF1vWi7sZQyRvv8JtC4uIZCiKlCiGAhRHB8fHzlRFdJGjTtQMLAFrhdzuXYyjcr3l9dCxaN8yU2OYOXfz6lzqcolSo7N4/P/zjPyG8OkZWTx09Pd+XNhz2wNFcn3qsLgyUUIcRuIURoEY/h+tyP1HzrFfvNJ6X8Tlty39/R0VGfu64Ser/9g7Yky6YKlWTJ59usAbMf8mB3eCxf/3NJDxEqSukuxacy8uuDfPHnBYZ7O/Pbiz3o1kpVCNaHxKhwtk3sSnLMRYPvy2AJRUrZX0rZsYjHZj10HyuEcALQ/hunhz6rpTo2DmQ/GoBzrGTf/IpdRpxvUqAbQ7yc+OT3CL7ff0UvfSpKUaSU/HD4KoMX7iMyIY3F4/yYP8aH+pZqEix9OLn2A86OGEHzo0mEbqr4ofHSmBl8D4axBU19sY+0/+ojSVVbPV5awp4dPlj+cpTM6QnUsanYLzshBPNH+5CbJ3l/WxiZOblM791aT9EqikZccgav/XKaPRHx9GjTkE9HetPE1tLYYdUIWWlJ/PHyMNz2xJFiC+L/nqH7cMNPsmuUcyhCiCAhRBTQDdguhNipXe4shNhRqN0a4BDgLoSIEkI8pV31ETBACHEB6K99XWuZmltQf3IQ9smw5/0n9NKnhZkJX471ZbiPM5/8HsHnf5xX51QUvZBSsjkkmkEL9nLoUgLvDuvAqskBKpnoydWjm/lnSDda/h3HFS9rfDdvp2MlJBMAUZu+JPz9/WVwcM0tkvzbQx1xjMml1dYNNGjaQS995uZJ3vjlND8fj2Jar1a8/qC7uqFMKbfIW3d5e3Mo+y7cwsvVlvmjvWndyMbYYdUIebm57P10IvV/CkYKuDshkJ4vLdVL30KI41LKYu8ZzFddD3kpRWjx4kxyX/icg+9OZfDSA3rp09RE8PGjXliYmfDNP5fIzMllzpD2KqkoZZKZk8t3/1zmy78vYmFqwtyh7Xmim5u6r0RPkm5EsG/GGFqdzeS6qwkdPp2Pi++gSo9DJZQapN2gqWzz/oamh24TfXKn3v5DmZgIPnikI3XMTFl24ApZOXm8P7wjJurLQNHB4csJ/GfjGS7F32WwpxNvD2mvDm/pUcj6/+PuvFW4pUDkQGcGfLoNszrGmRNGJZQaxu/NT4gfN4OT/zcbl/X6+4UihODtIR7UMTfh6z2XyMzJ4+NHvdQvTKVYt+9m8eH2cH45EYVrAyuWT+xMn3ZqJkV9yU5P5Y9XhtD8r1jybCHvw6d4aMQrRo1JJZQaxtm7Pye7O9BiXwLhv32Dx0PT9Na3EILXBrljaWbK57vPk5WTx/zR3piZVtf7YxVDyMuTbDgexX9/Cyc1I4fpvVsxo28bVRlYj64d28q5N96gRXQel7ys6PnFeuo7Gf9KTJVQaqDAd5ZwYcgIEhYu0mtCAU1SeaF/GyzMTPj493Nk5eSxcKyvmilPAeB8bApvbQzlaORtOrs14MMgT9o2Vifd9WnPxxOwWX0UByDuqa4MeXW5sUMqoL4FaiA7Vw9uD2pJ8yu5HF1umLqZz/ZuxZwh7fn97E2m/XicjGw1N31tlp6Vyye/n+PhL/ZxPi6FTx71Yt3UbiqZ6FFyzEW2jfKl8fKjJDQyodHyefSqQskE1GXDNVZmSgJHBzwAgM/m7dg0bmmQ/fx4+CpvbQqlR5uGfPeEvzqsUQv9HRHHnM2hXL+dzqN+rrz5cDsc6tUxdlg1yqkNH5Hy6UrskuFaPycGfLoFc6vKm6lS18uG1Qilhqpj44DNS09inwT/vDDKYPt5vGtzPh3pxf6Lt5i04ih3M3MMti+laolNzuC51SeYtPwYFqYmrJnSlc9Ge6tkokeZKQlsn9oDs7c1xdVz35/Aw4v+qtRkUhYqodRgPqNnE9nLkVYhaRxYNN1g+xnl35QFY3w4FnmHJ5cdJVlNJVyjJaVn88nv5+j16d/8ER7LywPasuMFVcxR387tWsKBh3vQcu8trvjUxXvLdrxHVu2pn9QhrxouKzWRfYO7Uz9Z0mz1Ehq3f8Bg+/o9NIYZa07i4VSfVZMDsLO2MNi+lMqXnpXLioORfL3nIimZOQzzdublAe40c1AzKOpTTmY6u2c/gvPOa6RZgpwykG7TvjBqTLoe8lIJpRa4+M9q7j73ATeamTFoawgmpoY7z/FneCzP/niCFg3rsnCsL+5N1EnZ6i47N491x66z8M8LxKVk0rddI14Z6E57ZzXplb5dPbKRiP+8RdOoPK64WxAwfxkNW3UydlgqoRSltiYUgF3/GU7TX84TNdKdAR9sMui+Dly8xcw1J0nJyOGF/m14pmdLda9KNZSXJ9l6+gbz/zjP1YQ0/Js34PWH2tHZzd7YodU4ebm5/PXeGBx+PUueCSSP7UyvV5cb9MdfWaiEUoTanFDycnPZOcQbp+u52Hz9Dq16PGbQ/d2+m8WczaFsOx2Dl6st80Z5q0tIqwkpJXvOx/PJ7xGExyTTrokNrz3oTh/3RqqGmwHEhu3nxKvP4nYph6vNTfH6ZAHO3v2NHdY9VEIpQm1OKAA3z+7l+vhnSLIT9NxxCAtrW4Pvc8eZGN7eFKpGK9VEcORtPvk9gqORt2lmb83LA9sy1MtZ1W0zkL2fT8Fq5X4sciB2aGv6vfcLpuZV79yjSihFqO0JBWD/F9Nw+PofLvdpxOCv/6mUfSakZjJn81m2n4nBWztaaaNGK1VKeEwy83ZG8Oe5OBxt6jCzXxvG+DdVFRAM5M71sxyY9TitQjOIbiJwe+8tWvccZ+ywiqUSShFUQtHYNqYTLU6nkfP+hEq9DHH76Rje3hxKakYOLw5ow9QearRibNcS0vh893k2hURTr44Z03q1YlKgG9YWqiqToRxd/gY5izdT/y5c69eE/p9sqpSjBRWhEkoRVELRSI65yOlHhiKFYe+iL8qt1EzmbA5lx5mbarRiJFJKDl1OYOXBSP4Ii8Xc1IRJgS2Y1qulutTbgO4m3ODvWUG0OppMnD00nP0sHYbONHZYOlEJpQgqofxPyLoPMZ/7I1d8rBmy5nil73/b6RvM2XyW1IwcZg1oy5QeLdRoxcDSsnLYeDKaVQevEhGbQgNrcx4LaMbE7m40rq/mJzGkE2veJ/WLn3BMhEvd7Og7fyPWDZoYOyydqYRSBJVQ7rX9mR60/OcWt5/vQ+DzX1X6/m+lZvL2plB+C72Jd1M7PhvlpaaDNYBrCWmsOhTJ+uDrJGfk0N6pPhO7uzHMxxlL86pxWWpNlRJ7mX9eeYxWx1JIsAWrGaPo9Ph7xg6rzFRCKYJKKPfKv4veJlnituZ7GrXrXukxSCnZdjqGOZtDuZuVy0sD2jKlR0s1cVcFSSnZd+EWKw9G8ldEHCZC8GDHJkzs7oZ/8wbq8t9KcHTZ62R/swW7ZLjS1Zben/1MPYemxg6rXFRCKYJKKP9WmXfRlyQ+RTNa+f2sZrQyo09r+rRrpBJLGaVm5vDL8ShWHorkcvxdGtazYGxAM8Z3aa6m3a0kiVHh7H/lcVqFpBFnD3YvVe7FL4agEkoRVEIp2q7Zw2i68QJRo9ox4P2NRotDSsnW0zF8sC2MuJRMXOysGNelGaP9m+JooyrYluRyfCqrDl1lw/EoUjNz8Ha1ZUJ3NwZ7OVHHTB3WqiwHv5qBWLYbm7twtUdD+n76C1a21X/aY5VQiqASStFys7PYNcyv0u6iL012bh5/hMXy4+GrHLyUgLmpYFCHJjzetTldWtirwzVa8SmZ/HUulm2nY9h34RbmpoLBnk5M6O6Gb7MGxg6vVkm4fIJDrz1Fq9AMbjoKGr02rdpcwaULlVCKoBJK8YxxF70uLsWnsvrwNTYc15xQbtOoHuO7NGNEJ1fqW5obO7xKJaXkQlwqf4TFsjs8lpDriUgJLnZWjPJ3ZVyXZjSyUYe1KlNebi77F06jzg/7sc6A632b0P+jjVjUszN2aHqlEkoRVDBVkhQAABhPSURBVEIp2f4vnsHh671c6duYh7/aY+xw7pGelcvW0zdYffgqp6KSsDI35RFfZ8Z3aU5Hl6qR/AwhOzePY5G32R0Wx+7wWK7dTgPAy9WW/h6N6e/RGA8nGzVqM4K4cwcJfn0aLSKyiW4iaPrWy7j3f8rYYRmESihFUAmldNvG+NHidDo5H0zC+9HXjB1OkU5HJfLj4atsOXWDjOw8fJra8XjX5gzxcqoRl8EmZ2TzT0Q8u8Nj+ftcHMkZOViYmRDYyoH+7RvTr11jdYLdiPJyc/nn4wnYrD+OeTbEDGpGvw9/qbKzKOqDSihFUAmldMa8i76sktKy+eVEFD8eucrl+LvYWZsz0s+VXu6OtHeqX62mor1+O40/w2PZHR7H4csJ5ORJ7Ota0LddI/p7NKZHm4bUraPKoRjbjVO7OTV7Fm6Xc7juYkKruW8b/ZxjZVAJpQgqoejm5NoPsJi7miueVjy89liVmZOhOPmlRFYfvsbOszfJydP8n25S35L2zvXp4Fyf9k716eBsS1N7K6MdHpJScis1iwtxKVyMS+VCbGrB81upWQC0dKzLAI/G9G/fGL9mDdRl01VEdnoqf80dg+NvlzGREDekNX3nrsesjpWxQ6sUKqEUQSUU3e14vg8tdt/kcq+GDP52n7HD0VlS2v+3d+dxVZX5A8c/34tAICSKghIKiltaam6ZmlqaW1baMi2a6VQztm9jTVnj1NSvGmtabJvKskUrx2kzNbcs08zEDUXNUEEFERcUUGS5PL8/ztFBu+hV7+Vw4ft+ve6L557zcM73ufdyv5zznPM8JazLOsD6rDxSsw6wfmceaTkF2DmGyNBanHs0wZxNm7izaRET6dNRdY0x5OQXHU0Yv+UUkGaXcw+VHK0XGVqLFrERtIiJpFXDSHq3akBSg+p72iRQrf3iRXa/NIlGOYb0ZrVo8/enSeh6ldNhVSpNKB5oQvFemdvNrJHdSFpRwLYrmzLgn7OcDum0HS5x82t2PqlZeazfeYDUrDw27synsMQNQHCQ0CImkrZxZ1Pfw/0unv5EDL9fuP9gydEEkn+49OjyOmHBtIyNoHlMJC1iImgRG0HL2EhiIkO1M70Ky92eypJHR9E0uYADEVB2cy+63/1GlT9i9wdNKB5oQjk1pUWFzLm+G802FpM98gIueWyq0yH5jLvMsHXPQdbvtI9ksvLYsDOPvMLS31eu4Dv/+MWRZ9WieYx1xNEiNuJouX5EiCaOAFLmdvPDhNGET1tO7UJIvyiK3s9OqdL9if6mCcUDTSinrih/Lwuv6018hpu8e/rR/c6JToeklN+kLZrK5qefocm2MnY0EuIfvpdzB41xOizHeZtQdLxwdUKhkdH0/PAbshsKtV+fz4qpTzodklI+dyg3m5ljelE45h9E7yoj8/o2XDp3tSaTU+RIQhGR60QkVUTKRKTCrCci74lIjoisO275BBHZKCIpIvKFiFSv21KrmIiYRC6Y9DG5UcBzn7JhduUPda+Uv/z89oOsHHgJzb7fTUbbMBKmf0C/J6vm3O5VnVNHKOuAq4FFJ6k3GRjoYfk84DxjTDtgE/CoT6NTvxPdrCMt33yNw2dB3riJbP1putMhKXVGslIWMHNoe+r8azbuIDj0+HUM+c9KGrTo6nRoAcuRhGKM2WCM+dWLeouAfR6WzzXGHOk9/RmI93GIyoO4dn1p+OJ4xEDmA0+QnXqy/weUqnpKCguY88jlZI+4m/i0YtIHnsNFc5cG5MRXVU116EP5IzC7opUi8icRSRaR5N27d1diWNVT0sU3UPupOwgvhA1/HkNuxlqnQ1LKayumPsmPA7rS5Kst7IqvRdR7zzHo5fnVbjBHp/gtoYjIfBFZ5+HhszuCRGQcUApMqaiOMeZtY0xnY0znBg0a+GrXNVrbK+6lbOw1ROcakkffQMHe7U6HpNQJpS/9nFlXtSP8qU8JLTTsGXMxA2asrnE3KPqb3wYHMsb089e2AURkFDAE6Gtq0rXPVUTnm59m8b49xL31Az/ePIi+0xbrf3mqytm/YwNLxt9Kk6W5NAqC9AFx9P77FMLrNnQ6tGopIE95ichA4GHgSmPMIafjqal63vcW2TeeT+IWN/NG9sFdUux0SEoBVj/JvMeHsumKq0lckktGu3DiPnuHQa8s0GTiR05dNjxMRHYAFwEzRWSOvTxORGaVq/cJsBRoJSI7ROTIZAOvAZHAPBFZLSJvVXITlK3v36aRMbgJzdYXMfvWnpS53U6HpGq4XyY9zJJ+XYif/iu5DVy4XrqHIZ+uILZNT6dDq/b0TnnlEzNv60GzxfvY2q8hg19b6HQ4qgZK+2EKvz3/HIlbStkTBa4Rl3DRHRNr5NhbvqZ3yqtKNejfi9jcIZym87OZO047OlXl2btlJd+M7MrhMU8Tk1nKtisS6TpvMT1q6ECOTtKEonzCFRTEgPd/YGvLYBr/dxPf/3OU0yGpaq64YD9zHh7M1mHDSVyeT3rnSBI+/5gBE2YTGhntdHg1kiYU5TPBYRFc8tF8tjV20eD9ZXz70EDtU1E+V+Z2s+T1u/i530U0+Xoru+OCCH39rwz56BfqJ3VyOrwaTROK8qmwOjH0mDKT9NYhJMzMYPa1HSnISXc6LFUNlLndLP/gMRZc1o56E7+jLAjy/jKEQbPX0eLSW5wOT6EJRflBREwig6avJOPyBBI3FpM8bJCO/aXOyMop45k/oB0Rz35BeH4Zmde3pcf85Vx42wSnQ1PlaEJRfuEKCmLgi99y6K/DqH0I9o15gqVv3ed0WCrArP7sGeb0b0vYP6YRub+MHde0pPN3i+n35HSCw3S65KpGLxtWfrd9xUw2PTiWuF2GrX1jGfDyXB0aXJ1QyucvkPXOZBK2ujlQG/IuS6LnI+/qTYkO0cuGVZXRuNPlXPTld2xuH0bTBbuYM6wT+3dscDosVQWlzniV2ZefT/Bjk6iX7WbbFYmcP3cB/Z/7RpNJANCEoipFeN2GDJ66nB3XtKTxllJSrr2aTfPfdzosVUVsmP0Ws65oh2vsm9TPLCV9UGPazJnNgAmzqR0d53R4ykuaUFSlcQUFcdkzX+EeP4KQEjj4wD9Z9K/bnA5LOWjT/PeZObQ9PPAKMdtKSO8fR6vZMxj00lwiYhKdDk+dIu1DUY7ITl1Eyr130DizjC0969F/4hztZK1Bfp0/ibQ3JpK4vojDIbDr4li6P/omUfHnOh2a8sDbPhRNKMoxxQX7mTumP0nJ+WQkBtHljQ+JbtbR6bCUn7hLivll0lgOfLmAhHQ3h4Mhq0cDuj/6OnUTznc6PHUC2imvqryQiCiGfPwLO0e0p9F2NxtvGE7qNxOdDkv5WEFOOvPGXcWSXu2JenkuZ+9xkzG4MYnfTOPytxZpMqlG9AhFVQmpM15l/1NvEnEI9t7YgT6PfqwD+wW4rDXzWTVxPLHL91G7CDIbCSGXd6PbnS8REl7H6fDUKdBTXh5oQqna9mxeQfKdt5CQ4SYjMYjGd/+ZtkPucTosdYpSPn+B7R9/TMKGIgRIbx1C/IjhnD/0If0nIUBpQvFAE0rVV1JYwMKnbiTq2zQiC2FLm1DOe2Q8CRcOczo0dQIlhQUsfeM+imYuJT7LcCgUsrvUo/2dTxDfcaDT4akzpAnFA00ogSNvZxo/PnUr5yzOIcgNGV3qcOHjr9KgRVenQ1Pl5G5PZdlLDxL54zbq5cPuKDjctyXd73tFL/utRjSheKAJJfDsWr+Y5c88QOLKAoqDIbtXI3r97T39snKQu6SYNdOfJ2vGV8SvPUhoCWxr4iJyWF8uvO0FHVanGtKE4oEmlMC1+cdP2fjiszTbWMyB2pA/uDW9H52snbuV6LfvPmDTZ+8StWoP9fKgKBh2tAknadTtnDtojNPhKT/ShOKBJpTAl/L5C2S/8T6Nd5Sxuy7I9RfT4543tbPXT7JTF7Fm8rMEL8ugUY7BLbC9aS3Cenek8+gn9UixhtCE4oEmlOqhzO1m2TsPUvTxXGL3WJej1r39ejrdNN7p0KqFvJ1pJE96nOLF62ic7saF9RqXdUuiw+hxxLTs5nSIqpJpQvFAE0r1UlpUyKIJoznrqzXUzYf0pFo0e+B+WvW71enQAk5xwX6SP3yC3Pk/Er+piJBS2BMF+Z1iOXf43TTtfq3TISoHaULxQBNK9XQoN5tFT4+i/vwMwopge2IQQV1a0H74WGJad3c6vCqruGA/a79+hZ2zZhK7Lp+Iw5AfBjnnn02Toddx3lUP6KlEBWhC8UgTSvWWm7GWpc/fQ8SqXTTIhTIgM94FnZty3o33E9e+n9MhOspdUsym+e+SsWAGZv12Gm53c1YJFNWCHa1CqT/gUjqOGK8XOqjf0YTigSaUmqHM7SZt4YekffkhYat30XCP9Rnf0Uhwd0qgzfV30qTLFQ5H6X9lbjcZy75g8+ypFK3dTExGMRGF1rqcepDfPJK6XTrR7g9jiYxt5mywqkrThOKBJpSaacviafw6/R1CVmUSt8v6vGfFCsUXxNHymttIuvgGhyP0nezURWyY8S4HV6VSd8sh6uVby/dFQm6zcCIuaEOrIbfS6Lw+jsapAosmFA80oahty2ew/rM3CFqZQXyW9dnPri8Uto+h+bBbaH7JyIDpNygu2M+2lbPIXvUD+1esJmJzHrF7rXUFZ0FOYgih5yeRNOgmEi4cFjDtUlWPJhQPNKGo8rJSFrDuk5cxyVuI316GC+uLeH9doSg6FFfDKMIbNyG6ZTviO/Z3ZJh1d0kxO9d+R9aa7zmQtoGizF0E5RwkYl8p9Q6Ay/7zLQqGnY2DkDaNSeh7BS373aZ3rCuf0YTigSYUVZGcjT+R8sm/OLw5g1p7Conc5yYq79gJgw7ayeZwdCiumDqENbGSzTkdLqVuQvtTOgIoc7txFxdSVlpESfEhDu3NJGv1QvZtWkPhtkxkVx5he0uot98QUvq/3zscDPvqCYejQ5CGUYQ1aUL91hfQqt9oQiKifPeCKFWOJhQPNKGoU1GUv5ftK78lZ/0y8remUZK1h1p7DhGR66bugeOSTSgcrA1SZh01uMr+Vw6yy0H2cpddrkipC/ZFwcHoYExsJKHnNKJey7bEdehLTOseeupKVTpvE0qtyghGqUAUGhlN897Dad57+O/WFeXvZfuqOeSk/kx++mZKMncjB4swLgGXC4IERKyfLhe4BAlyQZALXC7E5YKgICRIEFcQrtBQzm7WgkbtehLX7jKCwyIcaLFSZ0YTilKnITQymua9bqJ5r5ucDkWpKkPnlFdKKeUTjiQUEblORFJFpExEKjwvJyLviUiOiKyrYP1DImJEpL7/olVKKeUNp45Q1gFXA4tOUm8y4HH+UBFpDPQHtvk0MqWUUqfFkYRijNlgjPnVi3qLgH0VrH4JeBioOZepKaVUFRaQfSgichWQaYxZ40XdP4lIsogk7969uxKiU0qpmslvV3mJyHygoYdV44wxX53BdsOBx7BOd52UMeZt4G2w7kM53f0qpZQ6Mb8lFGOMv8YKTwKaAmtEBCAeWCkiXY0x2X7ap1JKqZMIuPtQjDFrgZgjz0UkHehsjNnjWFBKKaWcGXpFRIYBE4EGwH5gtTFmgIjEAe8aYwbb9T4B+gD1gV3AeGPMpOO2lY6XCUVEdgMZpxl2faCmJS1tc82gba4ZzqTNCcaYBierVKPG8joTIpLszVg21Ym2uWbQNtcMldHmgLzKSymlVNWjCUUppZRPaELx3ttOB+AAbXPNoG2uGfzeZu1DUUop5RN6hKKUUsonNKEopZTyCU0oxxGRgSLyq4ikichfPawfJSK7RWS1/bjNiTh96WRttuv8QUTW29MOTK3sGH3Ni/f5pXLv8SYR2e9EnL7kRZubiMhCEVklIikiMtiJOH3Fi/YmiMgCu63fi0i8E3H6khdTfoiIvGq/Jiki0tGnARhj9GE/gCBgM9AMCAHWAG2OqzMKeM3pWCu5zS2AVUBd+3mM03H7u83H1b8HeM/puCvhfX4buMMutwHSnY7bz+39D3CLXb4U+MjpuH3Q7l5AR2BdBesHA7MBAboBy3y5fz1COVZXIM0Ys8UYUwx8ClzlcEz+5k2bbwdeN8bkAhhjcio5Rl871ff5RuCTSonMf7xpswHOtst1gKxKjM/XvGlvG+A7u7zQw/qAY0485QdYbfzQWH4GokSkka/2rwnlWOcA28s932EvO9419uHidHuir0DmTZtbAi1FZImI/CwiHic9CyDevs+ISALWYKTfeVofQLxp89+BESKyA5iFdWQWqLxp7xqsif4AhgGRIhJdCbE5yevP/unQhHLqZgCJxph2wDzgA4fjqQy1sE579cH6b/0dEYlyNKLKcwMw3RjjdjqQSnAjMNkYE491auQjEanO3xF/AXqLyCqgN5AJ1IT32W+q84fldGQC5Y844u1lRxlj9hpjiuyn7wKdKik2fzlpm7H+i/naGFNijNkKbMJKMIHKmzYfcQOBf7oLvGvzrcA0AGPMUuAsrAEFA5E3f8tZxpirjTEXAOPsZQF/8cVJnMpn/5RpQjnWcqCFiDQVkRCsL5Ovy1c47nzjlcCGSozPH07aZuBLrKMTRKQ+1imwLZUZpI9502ZEpDVQF1hayfH5gzdt3gb0BRCRc7ESSqBOc+rN33L9ckdgjwLvVXKMTvgaGGlf7dUNOGCM2emrjQfcfCj+ZIwpFZG7gTlYV4m8Z4xJFZGngGRjzNfAvSJyJVCK1fk1yrGAfcDLNs8B+ovIeqxTAmONMXudi/rMeNlmsL6EPjX25TGBzMs2P4R1OvMBrA76UYHadi/b2wd4VkQMsAi4y7GAfaT8lB92X9h4IBjAGPMWVt/YYCANOASM9un+A/TzopRSqorRU15KKaV8QhOKUkopn9CEopRSyic0oSillPIJTShKKaV8QhOKCmgiUuBFnftFJNyH+xwqIm18uL2fzuB3C+yfcSIy/QT1okTkztPdj1Le0ISiaoL7gVNKKCISdILVQ7EGFvQJY0x3H2wjyxhz7QmqRAGaUJRfaUJR1YKI9LHntJguIhtFZIp9N/C9QBywUEQW2nX7i8hSEVkpIv8RkQh7ebqIPC8iK4HrROR2EVkuImtE5L8iEi4i3bFGSJhgz5WSJCId7EEzU0TkCxGpa2/ve7HmVUkWkQ0i0kVEPheR30Tk6XKxF5QrPyIia+19PuehnU3t2Ncet43EI3NgiEhbEfnFji9FRFoAzwFJ9rIJIhIh1lwgK+1tXVVuOxtE5B2x5r6ZKyJh9rrmIjLfjm2liCTZy8far1OKiDzp0zdWBRanx+/Xhz7O5AEU2D/7AAewxiZyYQ2X0tNelw7Ut8v1se6Krm0/fwT4W7l6D5fbdnS58tPAPXZ5MnBtuXUpQG+7/BTwsl3+HnjeLt+HNRx8IyAUa3y06OPaMAj4CQi3n9fz0N6vgZF2+a5yv5uIPQcGMBEYbpdDgLDy6+3ltYCzy70maVhzZCRijQLRwV43DRhhl5cBw+zyWVhHff2x5lER+3X/Bujl9OdCH848dOgVVZ38YozZASAiq7G+HBcfV6cb1umqJSIC1hdu+bG6PitXPs8+CogCIrCG8TiGiNQBoowxP9iLPsCauOmII8O4rAVSjT1ukohswRqkr/wQNv2A940xhwCMMZ7mtegBXGOXPwKe91BnKTBOrBkIPzfG/Ga39ZjQgf8TkV5AGdYQ5rH2uq3GmNV2eQWQKCKRwDnGmC/s2A7b7eiPlVRW2fUjsAYOXeQhLlXNaUJR1UlRubIbz59vAeYZY26sYBsHy5UnA0ONMWtEZBT2AJmnGVPZcfGVVRCfN044XpIxZqqILAMuB2aJyJ/5/WCew4EGQCdjTImIpGMddZSPGazXMewEuxPgWWPMv08hflVNaR+KqgnygUi7/DPQQ0SaA4hIbRFpWcHvRQI7RSQY6wv4d9szxhwAckXkYnvdzcAPnJ55wOgjV6SJSD0PdZZgDVrJcTEdJSLNgC3GmFeBr4B2HPsagDUjY46dTC4BEk4UmDEmH9ghIkPtfYTacc4B/liuH+ocEYnxqrWq2tGEomqCt4FvRWShMWY31gjRn4hICtbpodYV/N4TWP0GS4CN5ZZ/CowVkVV2x/QtWJ30KUAHrH6UU2aM+RbrFFmyfcruLx6q3QfcJSJrqXimvT8A6+xtnIc15eterNN860RkAjAF6GxvZ+Rx7avIzVijbadg9fU0NMbMBaYCS+1tTefYxKVqEB1tWCmllE/oEYpSSimf0ISilFLKJzShKKWU8glNKEoppXxCE4pSSimf0ISilFLKJzShKKWU8on/B75JSh191qMkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -144,30 +104,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFX6+PHPQ2gBIh0poUSa9GIAUbor2Gg2YFlBRRAVcPGnK+z6VXR1bevaYFFRRBEBRaqCsIqodAKEGiBITQApAaQkkPL8/rg3cYgpA5PJpDzv12te3Ln33HOfOzPMk3vOnXNEVTHGGGOuVJFAB2CMMSZ/s0RijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonE+JWIjBORz9zlWiJyVkSC3OdXi8hPInJGRN4Qx8ciclJE1gY28isnIn1F5KB7rq0CHU9ek/5zkNd4fmaNdyyR5FEisk9E4t3/cKmP8YGOyxeqekBVy6hqsrtqGHAcuEpV/x/QAbgZCFXVtoGKMwf8GxjhnuvG3D64iKiInEv32fmbH493v4gsT7duiohcTBfDJsjwc2DyuaKBDsBkqaeqfufPA4hIUVVN8ucxslAb2K6//yq2NrBPVc9dbkUBPo/0agPbMtqQi3G2UNXduXCcrLymqs8EOIY8Q0SCCmrytCuSfCj1L0AR+bfbDLRXRG712F5WRD4SkcMiEisiL3o0J90vIitE5E0ROQGME5Egt2npuFvXCPev2qIico+IrE93/CdEZF4msYWJyI9uc9X/gEoe2+p41DsFGAz8zf1r9WHgQ6C9+/x5d587RCRSRE6JyEoRae5R3z4ReVpENgPn3Hqri8hXInLMPZdRHuXHicgXIvKpG982EQn32F5TRGa7+57wvAIUkQdFJMp9vReLSO0Mzr2EiJwFgoBNIvJLFnE2EpFl7nltE5FeHvVMEZH/isgi97VYISJVReQt9/g7rrTJTEQWisgbHs9niMhkd7muiCx1z/24iEwTkXJZvT4i0gh4z+N9O+VFDGmfA/d5mPzexPmdiEwQj6YlEbnefe9PicgmEenisW2ZiPzTfY3OiMgSEankbispIp+5sZ4SkXUicrW7rbqIzBeROBHZLSJDM4l1kYiMSLduk4jc6S5fKyL/c+vZKSL3epSbIiIT3df8HNA1u9cm31JVe+TBB7AP+FMm2+4HEoGhOF9ajwCHAHG3zwHeB0oDVYC1wMMe+yYBI3GuSIOB4cB2IBQoD3wHqLu9BBAHNPI4/kbgrkxiWwX8x92vE3AG+MzdVie1Xvf5FODFdOe13ON5K+Ao0M49z8Hu61LC4zWKBGq651EEWA88CxQHrgH2AD3c8uOABOA2t76XgdXutiBgE/Cm+7qVBDq423oDu4FG7mvyDLAyi/dOgXrp3kvPOIu59f3djbOb+zo19HhdjgPXuXEsBfYCg9w4XwR+8Pb46bZVdV/TbsBA9/UJcbfVw2laLAFUBn4C3vLi9bnkfcvovU23Lf3nYBVOc2BxnObN3/j9M1MDOOG+Z0Xc+E4Ald3ty4BfgAbua7sMeMXd9jCwACjlxn8dTjMq7rn91z2PlsAxoJvH5yT1+IOAFR6xNwZOua9RaeAg8ID7uWjlvm+NPV6D08CNbuwlA/294rfvq0AHYI9M3hjny+es+6FNfQx1t90P7PYoW8r9j1kVuBq4AAR7bB+Q+sXj7nsg3bGW4iYa9/mf0v1Hnwi85C43AU7ifpmnq6cWTpIq7bHuc648kUwE/pnuGDuBzh6v0YMe29plcG5jgY/d5XHAdx7bGgPx7nJ798ukaAbntQgY4vG8CHAeqJ3Je5dRIvGMsyNwBCjisW46MM7jdZnksW0kEOXxvBlwKovPjuJ8GXt+dnp4bL8L5wvwOG4yyKSePsBGL16fS943j3NISBfDJ+k/Bx6fmVIe+37m8Zl5Gpiaru7FwGB3eRnwjMe2R4Fv3eUHgZVA83T71wSScROou+5lYIrH5yT1+CHAudT3GngJmOwu9wN+Tlf3+8BzHq/Bp758D+SXhzVt5W19VLWcx2OSx7YjqQuqet5dLIPTPl8MOOxezp/C+XBX8dj3YLrjVE+3Lv32T4A/i4gA9wFfqOqFDOKtDpzUS/s49md9ilmqDfy/1PNwz6Wme5yMYq0NVE9X/u84yTXVEY/l80BJt4mlJrBfM+6/qA287VFnHCA4fy17yzPO6sBBVU3xWLc/XX2/eizHZ/C8TDbHa53us7PYY9sCnL/Qd6pqWie5OHfRzRCnOfQ3nC/01KbJrF6fzPw7XQyDMyhTHYjz+AzDH9/Te9K9px2Aah5l0r+nqa/NVJykM0NEDonIayJSzOOYZzz2S//6A+CW+Qbo764aAEzziK1dutgG4vxBl9G5FFjW2V7wHMS5IqmUxX/69EM+H8Zp1kpV85LCqqtF5CLOX9J/dh8ZOQyUF5HSHsmkVgbH89ZBnCuhl7Io41n3QWCvqta/wmPVkow7w1PjmJbBft7yjPMQUFNEingkk1rALh/qvxwvAVFAmIgMUNXp7vp/uXE2U9U4EekDpPYTZfX6+DKE+GGggoiU8kgmnp+/gzhXJBn2YWRFVROB54HnRaQOsBDninaJe8wQj2RSC4jNpKrpwHMi8hNOU9gPHrH9qKo3ZxXG5cadH9kVSQGjqodx/qO8ISJXiUgRtxO1cxa7fQE8LiI13M7VpzMo8ynOl0qi51+x6Y69H4jA+Y9bXEQ6AD19OJ1JwHARaSeO0iJyu4iEZFJ+LXBGnI7tYHFuImgqIm28ONZanC+1V9zjlBSRG91t7wFjRaQJpN3McI8P57UG5y/nv4lIMbfzuCcww4c6vSIinXDa9Afh9Dm9KyKpf4mH4DSnnnbXPeWxa1avz69AqIgUv9x4PD4z49zPTHsu/cx8BvQUkR7u+1lSRLqISGiGFV56rl1FpJk4N5r8htOvmKKqB3GavF5262sODHGPlZGFOFcfLwAzPZL/10ADEbnPfR+LiUgbcW5AKFQskeRtC+TS+/DneLnfIJyOy+04/RmzuLQpIL1JOMlnM05H+kKcdmvPWxWnAk3J/D9bqj/j9FXEAc/hJKAroqoRODcUjMc5j9047fGZlU8G7sDpPN2L0wfwIVDWi2Ml43yB1QMOADE4beCo6hzgVZwmkt+ArcCtmVSVLVW96B7rVjfG/wKDVHXHldaZgU3pPjtvichVOO/HCFWNVdWfgY+Aj91my+eB1jgdxN8Asz1izvT1welj2wYcEZHjHjH8LV0Mnts8DcTpgzmBcyPBTJyratwv/d44TZTHcK4CnsK7766qOJ/933CuwH7E+RyD00RVB+fqcA5Ov0aGt9q7zbizcfoOP/dYfwbojtPsdQinie1VnI74QiX1Lh9j0ohzK/F7qlrbY10wzt0+rVU1OmDBmQJPRGYCO1T1uUDHYrxjVyQGtxnoNnF+31AD50oi/dXPI8A6SyImp7nNQXXdZthbcK5A5gY6LuM962w34NyB9DxOk0I8TrPGs2kbRfa5ZfoEIjhT4FXFaTqqiNNk9ogGYGgZc+WsacsYY4xPrGnLGGOMTwpF01alSpW0Tp06gQ7DGGPyjUqVKrF48eLFqnpLdmULRSKpU6cOERERgQ7DGGPyFXEHwMyONW0ZY4zxiSUSY4wxPrFEYowxxieFoo8kI4mJicTExJCQkBDoUEwAlCxZktDQUIoVKxboUIzJ9wptIomJiSEkJIQ6dergDDNkCgtV5cSJE8TExBAWFhbocIzJ9/zatCUit4gz/eRuERmTwfYSIjLT3b7GHeoZEWkrzvSqkeJMa9nXY599IrLF3XbFt2IlJCRQsWJFSyKFkIhQsWJFuxo1Jof47YrEHbp5As7UmDHAOhGZr6rbPYoNwZkIqZ6I9McZObMfzuiq4aqaJCLVcEYyXeAxD0JXVc1sJNHLidHXKkw+Ze+9MTnHn1ckbXGmg93jDps9A2cwNk+9cWbfA2e455tERFT1vEfSKEkhmRzGGGNyyq6Tu3hr/VvkxjBY/kwkNbh0mskY/jiVZVoZN3Gcxhm4DXcyo23AFmC4R2JRYImIrBeRYZkdXESGiUiEiEQcO3YsR04oJ3Xt2pXFixdfsu6tt97ikUceAWDbtm1069aNhg0bUrduXZ577jlSUpz5dKZMmULlypVp2bJl2mP79u1/OEZQUBAtW7akadOm9OzZk1OnTuVI7Pv27aNp06Y5UpennTt30qVLF1q2bEmjRo0YNizTt/eyjBs3jn//+985UpcxeV1CUgLvbHiHfgv6MTt6Nr+e/zX7nXyUZ2//VdU1qtoEaIMzO11Jd1MHVW2NMynQY+6Mbxnt/4GqhqtqeOXKlXMpau8NGDCAGTMunRBvxowZDBgwgPj4eHr16sWYMWPYuXMnW7ZsYe3atbz99ttpZfv160dkZGTao3Hjxn84RnBwMJGRkWzdupUKFSowYcIEv5+XL0aNGsXo0aOJjIwkKiqKkSNHBjokY/KV1YdXc9f8u5i0ZRK3XXMb8/rMo2rpqtnv6CN/JpJYLp17OZQ/zomcVkZEiuLMZHfCs4CqRuFM/9nUfR7r/nsUZ86Mtn6I3e/uvvtuvvnmGy5evAg4f+UfOnSIjh078vnnn3PjjTfSvXt3AEqVKsX48eN5/fXXr/h47du3JzbWefnPnj3LTTfdROvWrWnWrBnz5s1Li6FRo0YMHTqUJk2a0L17d+Lj4wFYv349LVq0oEWLFpckpISEBB544AGaNWtGq1at+OEHZzrrKVOm0KdPH26++Wbq1KnD+PHj+c9//kOrVq24/vrriYuL+0OMhw8fJjT09xlUmzVrBkBycjJPPfUUbdq0oXnz5rz//vtpZV5//fW09c899/s8SC+99BINGjSgQ4cO7Ny584pfN2Pyg5MJJ/nH8n8wdIkztf2k7pN4qcNLlC9ZPleO78/bf9cB9UUkDCdh9MeZhtXTfJx5o1cBdwNLVVXdfQ66ne21gWuBfSJSGiiiqmfc5e448yj75PkF29h+6Ddfq7lE4+pX8VzPJplur1ChAm3btmXRokX07t2bGTNmcO+99yIibNu2jeuuu+6S8nXr1iU+Pj6teWrmzJksX/771OmrVq0iODg4w2MlJyfz/fffM2TIEMD5DcWcOXO46qqrOH78ONdffz29evUCIDo6munTpzNp0iTuvfdevvrqK/7yl7/wwAMPMH78eDp16sRTT/0+lfeECRMQEbZs2cKOHTvo3r07u3btAmDr1q1s3LiRhIQE6tWrx6uvvsrGjRsZPXo0n376KX/9618viXP06NF069aNG264ge7du/PAAw9Qrlw5PvroI8qWLcu6deu4cOFCWpKNjo4mOjqatWvXoqr06tWLn376idKlSzNjxgwiIyNJSkqidevWf3g9jSkIVJWv93zN6+te58zFMwxtNpRhzYdRsmjJ7HfOQX5LJG4SGAEsBoKAyaq6TUReACJUdT7OfNFTRWQ3zhzf/d3dOwBjRCQRSAEeVdXjInINMMe946Yo8Lmqfuuvc/C31Oat1ETy0Ucfeb1vv379GD9+fJZl4uPjadmyJbGxsTRq1Iibb74ZcD58f//73/npp58oUqQIsbGx/Pqr044aFhZGy5YtAbjuuuvYt28fp06d4tSpU3Tq5LQi3nfffSxatAiA5cuXpzVBXXvttdSuXTstkXTt2pWQkBBCQkIoW7YsPXv2BJwrjc2bN/8h3gceeIAePXrw7bffMm/ePN5//302bdrEkiVL2Lx5M7NmzQLg9OnTREdHs2TJEpYsWUKrVq0A50orOjqaM2fO0LdvX0qVKgWQliSNKUgOnjnIP1f9k1WHV9G8UnOeu+E5GpRvEJBY/PqDRFVdCCxMt+5Zj+UE4J4M9psKTM1g/R6gRU7HmdWVgz/17t2b0aNHs2HDBs6fP5/2V3Pjxo356aefLim7Z88eKlasSLly5byuP7WP5Pz58/To0YMJEyYwatQopk2bxrFjx1i/fj3FihWjTp06ab+pKFGiRNr+QUFBaU1bV8KzriJFiqQ9L1KkCElJSRnuU716dR588EEefPBBmjZtytatW1FV3n33XXr06HFJ2cWLFzN27FgefvjhS9a/9dZbVxyzMXldYkoiU7dPZWLkRIKKBPH3dn/n3gb3ElQkKGAx5dnO9sKgTJkydO3alQcffJABAwakrR84cCDLly/nu+++A5wri1GjRvH8889f0XFKlSrFO++8wxtvvEFSUhKnT5+mSpUqFCtWjB9++IH9+/dnuX+5cuUoV65cWlPatGnT0rZ17Ngx7fmuXbs4cOAADRs2vKI4v/32WxITEwE4cuQIJ06coEaNGvTo0YOJEyembdu1axfnzp2jR48eTJ48mbNnzwIQGxvL0aNH6dSpE3PnziU+Pp4zZ86wYMGCK4rHmLxm6/GtDPh6AG+uf5Mbqt/A3N5zGXDtgIAmESjEQ6TkFQMGDKBv376X3MEVHBzM/PnzGTlyJI8++iixsbE888wzDBw4MK1M+j6S//73v9xwww2ZHqdVq1Y0b96c6dOnM3DgQHr27EmzZs0IDw/n2muvzTbOjz/+mAcffBARSbsJAODRRx/lkUceoVmzZhQtWpQpU6ZcciVyOZYsWcLjjz9OyZJO++7rr79O1apVeeihh9i3bx+tW7dGValcuTJz586le/fuREVF0b59e8BJzJ999hmtW7emX79+tGjRgipVqtCmTZsriseYvOJc4jnGbxzPtKhpVA6uzFtd3uKm2jcFOqw0hWLO9vDwcE0/sVVUVBSNGjUKUESXZ+7cuTzxxBP88MMP1K5dO9DhFBj56TNgCq9lB5fx0pqX+PXcr9zb8F4eb/04IcVDcuXYIrJeVcOzK2dXJPlAnz596NOnT6DDMMbkoiPnjvDautf43/7/Ua9cPV6/9XVaVmkZ6LAyZInEGGPykMTkRKZGTeW9Te+hqoxqNYr7m9xPsaC8O+WBJRJjjMkj1h5ey0trXmLP6T10qdmFMW3HUKNM+pGl8h5LJMYYE2DHzh/j9YjXWbR3ETXK1GB8t/F0rtk50GF5zRKJMcYESFJKEtN3TGdC5AQuJl/k4eYP81Czh3L9l+m+skRijDEBsPHoRl5c/SK7Tu7ixuo3MrbdWGpflT/vyrQfJAZIbgwjfzm8GWo9IiKCUaNGAbBs2TJWrlyZtu29997j008/vaJjjBs3jho1aqQNeT9//vws6/HmWJGRkSxcuDDLMsYEQlxCHP+34v8YtGgQpy+c5j9d/sPEP03Mt0kE7IokYFLH2fIc9mPGjBm89tpracPIT5w4ke7du3P+/Hnuuusu3n77bUaPHg14N9ZWqmXLljFlyhSmTJniU8zh4eGEh4en1VmmTJm0H0EOHz7cp7pHjx7Nk08+SVRUFB07duTo0aMUKZLx3zneHCsyMpKIiAhuu+02n+IyJqckpyTzVfRXvL3hbc4nnueBpg8wvPlwShUrFejQfGZXJAGS28PIX44uXbrw9NNP07ZtWxo0aMDPP/8MOMnjjjvuYN++fbz33nu8+eabtGzZkp9//vmSq41JkybRpk0bWrRowV133cX58+e9PnajRo0oWrQox48fZ9++fXTr1o3mzZtz0003ceDAAeDSK5uMYr148SLPPvssM2fOpGXLlsycOTOHXyFjLs/W41sZuHAg/1z9TxpWaMisXrN44ronCkQSAbsicSwaA0e25GydVZvBra9kujk3h5G/EklJSaxdu5aFCxfy/PPPp437BVCnTh2GDx9OmTJlePLJJwH4/vvv07bfeeedDB3qzIvwzDPP8NFHH3k9SdWaNWsoUqQIlStXplevXgwePJjBgwczefJkRo0axdy5c72K9YUXXiAiIsLrqzZj/OFkwkne3fgus3bNomJwRV7p+Aq3hd2GO4J5gWGJJID8PYx8u3btuHDhAmfPniUuLi5tePhXX331DyPppnfnnXcCvw8lfzm2bt3KM888w6lTpzh79my2xwJ48803+eyzzwgJCWHmzJmICKtWrWL27NmAM3T93/72txyP1Rh/SExJZOaOmfx30385n3iegY0G8mjLR3NtaJPcZokEsrxy8Cd/DyO/Zs0a4Mr6SFIHXgwKCsp0yPfM3H///cydO5cWLVowZcoUli1blu0+qX0kV8KXWI3JaStjV/LqulfZc3oP7au15+m2T1O3XN1Ah+VX1kcSQLk1jLw/hISEcObMmQy3nTlzhmrVqpGYmHjJkPOX64YbbkgbFXnatGl07NgxR+Izxh/2/7afkd+P5OHvHiYxJZF3ur7D+ze/X+CTCFgiCbgBAwawadOmSxJJ6jDyqfOOV6pUiRtvvPEPw8h73v7reStubujZsydz5sxJ62z39M9//pN27dpx4403ejVEfWbeffddPv74Y5o3b87UqVN5++23vd63a9eubN++3Trbjd+dvXiW/6z/D33m9WHtkbWMvm40c3vPpWutrgWuLyQzNox8PmDDyPtHfvoMmLwnRVOYt3seb294mxMJJ+hTrw+Pt36cSsGVAh1ajrFh5AsQG0bemLwl8mgkL699me0nttO8cnPG3zSeppWaBjqsgLFEYowxXjpy7ghvrn+ThXsXUiW4Ci93fJnbw24vNE1YmfFrH4mI3CIiO0Vkt4iMyWB7CRGZ6W5fIyJ13PVtRSTSfWwSkb7e1mmMMTktISmB9ze9T6+5vfhu/3cMbTaUBX0XcMc1dxT6JAJ+vCIRkSBgAnAzEAOsE5H5quo5KNQQ4KSq1hOR/sCrQD9gKxCuqkkiUg3YJCILAPWiTmOMyREpmsK3e7/l7Q1vc+jcIW6ufTNPXPcEoSGhgQ4tT/Fn01ZbYLeq7gEQkRlAb8DzS783MM5dngWMFxFRVc8xNUriJBBv6zTGGJ9FHIngjYg32HpiKw3LN+TDGz+kXbV2gQ4rT/JnIqkBHPR4HgOkfxfSyrhXH6eBisBxEWkHTAZqA/e5272pEwARGQYMA6hVq5bvZ2OMKRT2nd7Hm+vfZOnBpVQpVYUXb3yRO665g6AiQYEOLc/Ks78jUdU1qtoEaAOMFZHLmulFVT9Q1XBVDa9cubJ/gvRRmTJlLnk+ZcoURowYcVl1+Hu49PRD1g8aNOiy60gd7NGYvCwuIY5/rfkXfef1ZfXh1YxsNZKv+35N73q9LYlkw59XJLFATY/noe66jMrEiEhRoCxwwrOAqkaJyFmgqZd1FhpJSUlZDpeelJRE0aK+v8WXM2S9MflNQlICn0V9xkdbPiI+KZ67G9zN8BbDC9TvQfzNn4lkHVBfRMJwvuz7A39OV2Y+MBhYBdwNLFVVdfc56DZn1QauBfYBp7yos0BYsGABL774IhcvXqRixYpMmzaNq6++mnHjxvHLL7+wZ88eatWqxYoVK4iPj2f58uWMHTuWqKioS7Z/9tlnjBkzhmXLlnHhwgUee+wxHn74YQBef/11vvjiCy5cuEDfvn0vawiWyMhIhg8fzvnz56lbty6TJ0+mfPny7N69m+HDh3Ps2DGCgoL48ssvL9lv3bp1DBs2jFmzZlG3bsEfOsLkXSmawjd7vuGdje9w5NwRuoR2YfR1o7mm3DWBDi3f8VsicZPACGAxEARMVtVtIvICEKGq84GPgKkishuIw0kMAB2AMSKSCKQAj6rqcYCM6vQ11lfXvsqOuB2+VnOJaytcy9Ntn86yTHx8fNqIvABxcXH06tULgA4dOrB69WpEhA8//JDXXnuNN954A4Dt27ezfPlygoODmTJlyiXDpY8bN+6S7R988AFly5Zl3bp1XLhwIW2ek+joaKKjo1m7di2qSq9evfjpp5/o1KnTH+L0HLL+8ccf54EHHmDQoEG8++67dO7cmWeffZbnn3+et956i4EDBzJmzBj69u1LQkICKSkpHDzodGutXLmSkSNHMm/ePOu3MgG19vBa/h3xb6LiomhcsTH/6vAv2lRtE+iw8i2//iBRVRcCC9Ote9ZjOQG4J4P9pgJTva0zvwoODiYyMjLteWpSAIiJiaFfv34cPnyYixcvEhYWllauV69eWc494rl9yZIlbN68mVmzZgFw+vRpoqOjWbJkCUuWLKFVq1YAnD17lujo6AwTSfqmrdOnT3Pq1Ck6d+4MwODBg7nnnns4c+YMsbGx9O3r/OynZMnfu7WioqIYNmwYS5YsoXr16pf3QhmTQ/ac2sN/1v+HH2N+pFrparzc8WVuC7uNIpJnu4vzBftlO2R75RAII0eO5IknnqBXr14sW7aMcePGpW0rXbp0lvt6bldV3n333T/MCbJ48WLGjh2b1syVasKECUyaNAkgRzvxq1WrRkJCAhs3brREYnLdsfPHeG/Te3wV/RXBRYP5a+u/MrDRQEoWvax7eEwmLA3nUadPn6ZGjRoAfPLJJ5mWy2649B49ejBx4kQSExMB2LVrF+fOnaNHjx5MnjyZs2fPAhAbG8vRo0d57LHHiIyMJDIyMtMv/LJly1K+fPm0UX+nTp1K586dCQkJITQ0NG0WwwsXLqRNs1uuXDm++eYbxo4d69X8JMbkhN8u/sbbG97m9jm3Mzt6Nv0a9uObO79hSLMhlkRykF2R5FHjxo3jnnvuoXz58nTr1o29e/dmWK5r16688sortGzZkrFjx/5h+0MPPcS+ffto3bo1qkrlypWZO3cu3bt3Jyoqivbt2wPOrcifffYZVapU8Sq+Tz75JK2z/ZprruHjjz8GnKTy8MMP8+yzz1KsWLFLOtuvvvpqvv76a2699VYmT55Mu3b24y7jH/FJ8UzfMZ2PtnzEbxd/49awWxnRcgS1rrK+OX+wYeRNoWWfgYInMSWROdFzeG/TexyLP0bHGh0Z1XoU11a48nlxCjMbRt4YU2ikaAqL9y1m/MbxHDhzgFZVWvF659e57urrAh1aoWCJxBiTb6kqy2OX887Gd9gRt4P65eszvtt4OoV2slF5c1GhTiSqah+2QqowNOkWdJFHI3lrw1us/3U9NcrU4OWOL3NrnVttOJMAKLSJpGTJkpw4cYKKFStaMilkVJUTJ05c8jsXk3/sOrmLdze8y7KYZVQsWZF/tPsHd9W/i2JBxQIdWqFVaBNJaGgoMTExHDt2LNChmAAoWbIkoaE2p0StFz0QAAAgAElEQVR+cvDMQSZGTuTrPV9TplgZRrUaxcBGAylVrFSgQyv0Cm0iKVas2CW/FjfG5E2xZ2OZtHkS83bPI6hIEPc3vZ8hTYdQtkTZQIdmXIU2kRhj8rbDZw8zacsk5uyegyDc2/BehjQbQpVS3v3WyeQeSyTGmDzlyLkjfLjlQ2ZHz0ZR7qp/Fw81e4iqpasGOjSTCUskxpg84dj5Y3y45UNm7ZpFiqbQt35fhjYbSrUy1QIdmsmGJRJjTEAdjz/O5K2T+WLnFySlJNGnXh+GNh9KjTI1Ah2a8ZIlEmNMQMQlxPHx1o+ZsWMGiSmJ3HHNHTzc/GFqXlUz+51NnmKJxBiTq04mnGTKtilM3zGdC8kXuD3sdh5u8TC1r6od6NDMFbJEYozJFXEJcUzdPpXPoz4nPimeW8NuZXiL4YSVtdvw8ztLJMYYvzp6/iifbPuEL3d9SUJSAj3q9GB4i+HULVc30KGZHGKJxBjjF4fOHmLy1snMiZ5DsiZz+zW3M6TZEK4pe02gQzM5zK+JRERuAd4GgoAPVfWVdNtLAJ8C1wEngH6quk9EbgZeAYoDF4GnVHWpu88yoBoQ71bTXVWP+vM8jDHe2//bfj7c8iFf//I1CPSp14cHmz5IzRDrRC+o/JZIRCQImADcDMQA60Rkvqpu9yg2BDipqvVEpD/wKtAPOA70VNVDItIUWAx43gs4UFUvnanKGBNQ0SejmbRlEov3LaZYkWL0u7Yf9ze5335IWAj484qkLbBbVfcAiMgMoDfgmUh6A+Pc5VnAeBERVd3oUWYbECwiJVT1gh/jNcZcgW0ntjFp8yS+P/A9pYqWYnCTwQxqPIhKwZUCHZrJJf5MJDWAgx7PY4D0k3SnlVHVJBE5DVTEuSJJdRewIV0S+VhEkoGvgBc1g8klRGQYMAygVi2bp9mYnBZ5NJL3N7/P8tjlhBQPYXiL4Qy8diDlSpYLdGgml+XpznYRaYLT3NXdY/VAVY0VkRCcRHIfTj/LJVT1A+ADcOZsz4VwjSnwVJU1R9YwafMk1h5ZS/kS5Xm89eP0a9iPkOIhgQ7PBIg/E0ks4Nm7Fuquy6hMjIgUBcridLojIqHAHGCQqv6SuoOqxrr/nhGRz3Ga0P6QSIwxOSc5JZnvDnzHx1s/ZtuJbVQOrsxT4U9xd4O7bT4Q49dEsg6oLyJhOAmjP/DndGXmA4OBVcDdwFJVVREpB3wDjFHVFamF3WRTTlWPi0gx4A7gOz+egzGFWkJSAvN/mc+UbVM4eOYgta+qzbPtn6VX3V6UCCoR6PBMHuG3ROL2eYzAueMqCJisqttE5AUgQlXnAx8BU0VkNxCHk2wARgD1gGdF5Fl3XXfgHLDYTSJBOElkkr/OwZjC6vSF08zcOZNpUdOIS4ijWaVmPHHdE3St2dXmRDd/IBn0Uxc44eHhGhFhdwsbk50j547w6fZPmbVrFvFJ8XSo0YEHmz5I+NXhiEigwzO5TETWq2p4duXydGe7MSZ3RJ+MZsq2KSzcsxBFuTXsVu5vcj8NKzQMdGgmH7BEYkwhpaqs/3U9k7dO5ufYnwkuGkz/a/tzX+P7qF6meqDDM/mIJRJjCpnklGSWHVzG5K2T2Xx8MxVKVmBEyxH0a9jPfgNiroglEmMKiXOJ55i7ey7ToqZx8MxBQsuE8ky7Z+hdrzcli5YMdHgmH7NEYkwBd/jsYT7f8Tlf7fqKM4lnaFG5BY+3fpybat1E0SL2FWB8Z58iYwqoTcc2MXX7VL7b7/zU6ubaN3Nf4/toXrl5gCMzBY0lEmMKkKSUJL4/8D2fbv+Uzcc2E1IshEGNBzHg2gFUK1Mt0OGZAsoSiTEFwJmLZ5gdPZvPoz7n0LlD1AypyZi2Y+hbr68NYWL8zhKJMfnYwd8OMm3HNOZEz+F80nnCrw7n6bZP0zm0s/0C3eQaSyTG5DOqSsSvEUyLmsbSA0sJkiBuCbuF+xrfR+OKjQMdnimELJEYk0+cTzzP13u+ZvqO6ew+tZuyJcryULOH6H9tf6qUqhLo8EwhZonEmDxu/2/7mbFjBvN2z+NM4hkaVWjECze8wK1ht9rvP0yeYInEmDwoOSWZFYdW8PmOz1kRu4KiRYrSvXZ3Blw7gBaVW9gAiiZPsURiTB5y+sJp5u6ey4wdM4g5G0OV4Co81vIx7m5wt82BbvIsSyTG5AE743Yyfcd0vtnzDQnJCbSu0prHr3N+fV6sSLFAh2dMliyRGBMgiSmJfL//e6bvmM6GoxsoGVSS26+5nQHXDrDh202+YonEmFwWcyaGr6K/Yk70HE4knCC0TChPhj9Jn3p9KFuibKDDM+ayWSIxJhckpSTxY8yPfLnrS1bGrkRE6FSjE/c0vIcONTpQRIoEOkRjrpglEmP86PDZw2lXH0fjj1IluAoPt3iYu+rfRdXSVQMdnjE5wq+JRERuAd4GgoAPVfWVdNtLAJ8C1wEngH6quk9EbgZeAYoDF4GnVHWpu891wBQgGFgIPK6FYeJ5k28kpySzPHY5X+76kp9jf0ZVubHGjfyjwT/oFNrJhm43BY7fPtEiEgRMAG4GYoB1IjJfVbd7FBsCnFTVeiLSH3gV6AccB3qq6iERaQosBmq4+0wEhgJrcBLJLcAif52HMd46ev4os6NnMzt6NofPHaZScCWGNB3CXQ3uokaZGtlXYEw+5VUiEZHZwEfAIlVN8bLutsBuVd3j1jED6A14JpLewDh3eRYwXkREVTd6lNkGBLtXLxWAq1R1tVvnp0AfLJGYAEnRFFYdWsUXO7/gx5gfSdZk2ldrz1NtnqJLzS52664pFLy9Ivkv8ADwjoh8CXysqjuz2acGcNDjeQzQLrMyqpokIqeBijhXJKnuAjao6gURqeHW41lnhn/qicgwYBhArVq1sgnVmMtz+Oxh5v4yl3m75xF7NpYKJSswqMkg7q5/N7Wuss+bKVy8SiSq+h3wnYiUBQa4yweBScBnqproj+BEpAlOc1f3y91XVT8APgAIDw+3PhTjs4vJF1l6YClzds9h1aFVKMr11a5Pm7a2eFDxQIdoTEB43UciIhWBvwD3ARuBaUAHYDDQJYNdYoGaHs9D3XUZlYkRkaJAWZxOd0QkFJgDDFLVXzzKh2ZTpzE5amfcTmZHz+abvd9w+sJpqpWuxvAWw+ldr7f1fRiD930kc4CGwFScTvDD7qaZIhKRyW7rgPoiEobzZd8f+HO6MvNxEtEq4G5gqaqqiJQDvgHGqOqK1MKqelhEfhOR63E62wcB73pzDsZcjtMXTrNo7yJmR88mKi6KYkWKcVOtm+hbvy/tqrazSaOM8eDtFck7qvpDRhtUNTyT9UkiMgLnjqsgYLKqbhORF4AIVZ2P04E/VUR2A3E4yQZgBFAPeFZEnnXXdVfVo8Cj/H777yKso93kkBRNYe2RtcyOns33+7/nYspFGpZvyJi2Y7jjmjvsV+fGZEK8+QmGiNyZwerTwBb3yz1PCw8P14iIzC6cTGGXvuM8pHgIt4fdTt/6fW3GQVOoicj6zC4WPHl7RTIEaA+kXpV0AdYDYSLygqpOvaIojQmQc4nn+N/+//H1L1+z9shaFKVdtXaMajWKbrW62YRRxlwGbxNJMaCRqv4KICJX4/wivR3wE07fiTF5WnJKMmsOr2H+nvl8v/97EpITqBlSk0daPEKver2s49yYK+RtIglNTSKuo0BNVY0TEb/c+mtMTok+Gc2CXxbwzZ5vOBp/lJDiIfSs25NedXvZbIPG5ABvE8kyEfka+NJ9fpe7rjRwyi+RGeOD4/HHWbR3EQt+WUBUXBRFpSgdanTg6bpP07lmZ0oElQh0iMYUGN4mkseAO3F+NwJOs9ZX7mCJXf0RmDGXKyEpgWUxy1jwywJWxK4gWZNpUrEJY9qO4ZY6t1AxuGKgQzSmQMo2kbiDL36nql2Br/wfkjHeS9EU1v+6nm/2fMOSfUs4k3iGKqWqcH+T++lZtyd1y9UNdIjGFHjZJhJVTRaRFBEpq6qncyMoY7Kiqmw/sZ2Fexfy7d5vORp/lOCiwdxc+2Z61u1Jm6vb2A8GjclF3jZtnQW2iMj/gHOpK1V1lF+iMiYDe07vYdHeRSzau4j9v+2naBGn3+PJsCfpHNqZUsVKBTpEYwolbxPJbPdhTK46cu5IWvKIiotCENpWbcsDTR7gT7X/ZL82NyYP8Hb0309EJBio5cXw8cb45GTCSZbsW8LCvQvZcHQDAE0rNuVvbf5Gjzo9qFKqSoAjNMZ48nbQxp7Av3Gmvg0TkZbAC6ray5/BmcLjXOI5lh5YyqK9i1h1aBVJmkRY2TAea/kYt4XdZnN8GJOHedu0NQ5nxsNlAKoaKSLX+CkmU0icSzzHsoPLWLxvMStiV3Ax5SLVSlfjvib3cVvYbTQs39B+LGhMPuBtIklU1dPp/lN7O+WuMWnOXjzLsphlLNm3JC15VAmuwj0N76F77e60rNKSIlIk0GEaYy6Dt4lkm4j8GQgSkfrAKGCl/8IyBcnZi2f54eAPLNm/hJWxKy9JHj3q9KBF5RaWPIzJx7xNJCOBfwAXgOk4c4z8019BmfzPM3msiF1BYkoiVYKrcG/De+lep7slD2MKEG/v2jqPk0j+4d9wTH525uIZlh10m60OucmjVBX6NexnycOYAszbu7YaAE8CdTz3UdVu/gnL5BfH44+z9MBSlh5Yypoja0hKSUpLHj3q9KB55eaWPIwp4Lxt2voSeA/4EEj2XzgmPzj420G+P/A93x/4nk3HNqEooWVCGXjtQP5U+0+WPIwpZLxNJEmqOtGvkZg8S1XZeXJnWvKIPhkNQMPyDXmkxSN0q9WNBuUb2K26xhRS3iaSBSLyKDAHp8MdAFWNy2onEbkFeBsIAj5U1VfSbS+BMyT9dcAJoJ+q7hORisAsoA0wRVVHeOyzDKgGxLuruueHeePzm+SUZDYd25SWPGLPxiIIraq04snwJ7mp1k2EhoQGOkxjTB7gbSIZ7P77lMc6BTL9UaI7/PwE4GYgBlgnIvNVdbtHsSHASVWtJyL9gVeBfkAC8H9AU/eR3kBVjfAyduOlC8kXWHN4DUsPLOWHgz8QlxBHsSLFuL7a9QxtNpTONTtTKbhSoMM0xuQx3t61FXYFdbcFdqvqHgARmQH0BjwTSW+cX82DcwUyXkREVc8By0Wk3hUc11yG4/HH+SnmJ5YdXMbqw6uJT4qnVNFSdArtxE21bqJDjQ6UKV4m0GEaY/KwLBOJiPxNVV9zl+9R1S89tv1LVf+exe41gIMez2OAdpmVUdUkETkNVASOZxP3xyKSjDPR1ovuTI3pYx8GDAOoVcvGaUqV2t/x48Ef+THmR7Yc3wJA1dJV6VW3F11qdqFN1TY2Fa0xxmvZXZH0B15zl8fy+5ztALcAWSUSfxmoqrEiEoKTSO7D6We5hKp+AHwAEB4e/odEU5hcSL7A2sNr+THGSR5Hzh1BEJpVasaIliPoUrOLdZYbY65YdolEMlnO6Hl6sUBNj+eh7rqMysSISFGgLE6ne6ZUNdb994yIfI7ThPaHRFLYHY8/zs8xP7Ps4DJWHV5FfFI8wUWDaV+tPY+2eJSOoR2tv8MYkyOySySayXJGz9NbB9QXkTCchNEf+HO6MvNxOvJXAXcDSzNqpkrlJptyqnpcRIoBdwDfZRNHoZCiKWw7vo3lsctZHrucLce3oGhak1Xn0M60rdbWmqyMMTkuu0TSQkR+w7n6CHaXcZ+XzGpHt89jBM64XEHAZFXdJiIvABGqOh/4CJgqIruBOJxk4xxAZB9wFVBcRPoA3YH9wGI3iQThJJFJl3PCBUlcQhwrYlew4tAKVsau5OSFk2lNVo+1fMyarIwxuUKyuAAoMMLDwzUiIv/fLZyckszWE1udq46Y5Ww7sQ1FqVCyAjdWv5Eba9zIDdVvoHzJ8oEO1RhTAIjIelUNz66ct78jMQFyIv4EKw+t5OfYn1l1aBWnLpyiiBShWaVmPNryUTrW6Eijio1sSBJjTMBYIsljElMS2XJsCysPrWR5rHPVAVChZAU6hXaiQ40OtK/WnnIlywU4UmOMcVgiCTBVZe9ve1l1aBWrD61m3a/rOJd4jiJShOaVmjOi5Qg6hHagUQW76jDG5E2WSAIgLiGO1YdWs+rwKlYfXs2Rc0cACC0Tym1ht9G+envaVm1L2RJlAxypMcZkzxJJLkhISmDD0Q1pyWNH3A4AQoqHpI1j1b56e2qG1MymJmOMyXsskfhBckoyO0/uZM3hNaw6tIoNRzdwIfkCRYsUpWXlloxsNZL21drTuGJjgooEBTpcY4zxiSWSHJCiKew+tZt1R9ax9vBaIn6N4LeLzk9u6pWrxz0N7qF99faEXx1OqWKlAhytMcbkLEskVyC1g3zd4XWsPbKWdUfWcfLCScDp5/hT7T/Rpmob2lZtS5VSVQIcrTHG+JclEi+oKjFnYlh7ZG1a4jgWfwyAq0tdTcfQjmmJo3qZ6gGO1hhjcpclkiws+GUBqw+vZu2RtWl3VlUsWZG2VdvStlpb2lZtS82QmjYEiTGmULNEkoVPt3/KkXNHaFO1DQ82fZB2VdsRVjbMEocxxniwRJKFiX+aSIWSFeyHgMYYkwVLJFmw+TqMMSZ79qe2McYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSY4wxPvFrIhGRW0Rkp4jsFpExGWwvISIz3e1rRKSOu76iiPwgImdFZHy6fa4TkS3uPu+I/TrQGGMCym+JRESCgAnArUBjYICINE5XbAhwUlXrAW8Cr7rrE4D/A57MoOqJwFCgvvu4JeejN8YY4y1/XpG0BXar6h5VvQjMAHqnK9Mb+MRdngXcJCKiqudUdTlOQkkjItWAq1R1taoq8CnQx4/nYIwxJhv+TCQ1gIMez2PcdRmWUdUk4DRQMZs6Y7Kp0xhjTC4qsJ3tIjJMRCJEJOLYsWOBDscYYwosfyaSWMBzEvJQd12GZUSkKFAWOJFNnaHZ1AmAqn6gquGqGl65cuXLDN0YY4y3/JlI1gH1RSRMRIoD/YH56crMBwa7y3cDS92+jwyp6mHgNxG53r1baxAwL+dDN8YY4y2/jf6rqkkiMgJYDAQBk1V1m4i8AESo6nzgI2CqiOwG4nCSDQAisg+4CiguIn2A7qq6HXgUmAIEA4vchzHGmACRLC4ACozw8HCNiIgIdBjGGJOviMh6VQ3PrlyB7Ww3xhiTOyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ35NJCJyi4jsFJHdIjImg+0lRGSmu32NiNTx2DbWXb9TRHp4rN8nIltEJFJEIvwZvzHGmOwV9VfFIhIETABuBmKAdSIyX1W3exQbApxU1Xoi0h94FegnIo2B/kAToDrwnYg0UNVkd7+uqnrcX7EbY4zxnj+vSNoCu1V1j6peBGYAvdOV6Q184i7PAm4SEXHXz1DVC6q6F9jt1meMMSaP8WciqQEc9Hge467LsIyqJgGngYrZ7KvAEhFZLyLDMju4iAwTkQgRiTh27JhPJ2KMMSZz+bGzvYOqtgZuBR4TkU4ZFVLVD1Q1XFXDK1eunLsRGmNMIeLPRBIL1PR4Huquy7CMiBQFygInstpXVVP/PQrMwZq8jDEmoPyZSNYB9UUkTESK43Sez09XZj4w2F2+G1iqququ7+/e1RUG1AfWikhpEQkBEJHSQHdgqx/PwRhjTDb8dteWqiaJyAhgMRAETFbVbSLyAhChqvOBj4CpIrIbiMNJNrjlvgC2A0nAY6qaLCJXA3Oc/niKAp+r6rf+OgdjjDHZE+cCoGALDw/XiAj7yYkxxlwOEVmvquHZlcuPne3GGGPyEEskxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xP/JpIROQWEdkpIrtFZEwG20uIyEx3+xoRqeOxbay7fqeI9PC2TmOMMbnLb4lERIKACcCtQGNggIg0TldsCHBSVesBbwKvuvs2BvoDTYBbgP+KSJCXdRpjjMlFRf1Yd1tgt6ruARCRGUBvYLtHmd7AOHd5FjBeRMRdP0NVLwB7RWS3Wx9e1JljVv93KCGnovxRtTHG+N2Zco24/tFJfj+OP5u2agAHPZ7HuOsyLKOqScBpoGIW+3pTJwAiMkxEIkQk4tixYz6chjHGmKz484okoFT1A+ADgPDwcL2SOnIjkxtjTH7nzyuSWKCmx/NQd12GZUSkKFAWOJHFvt7UaYwxJhf5M5GsA+qLSJiIFMfpPJ+frsx8YLC7fDewVFXVXd/fvasrDKgPrPWyTmOMMbnIb01bqpokIiOAxUAQMFlVt4nIC0CEqs4HPgKmup3pcTiJAbfcFzid6EnAY6qaDJBRnf46B2OMMdkT5wKgYAsPD9eIiIhAh2GMMfmKiKxX1fDsytkv240xxvjEEokxxhifWCIxxhjjE0skxhhjfFIoOttF5Biw/wp3rwQcz8Fw8gM758KhsJ1zYTtf8O2cjwOo6i3ZFSwUicQXIhLhzV0LBYmdc+FQ2M65sJ0v5N45W9OWMcYYn1giMcYY4xNLJNn7INABBICdc+FQ2M65sJ0v5NI5Wx+JMcYYn9gViTHGGJ9YIjHGGOMTSyQuEblFRHaKyG4RGZPB9vtF5JiIRLqPhwIRZ07J7nzdMveKyHYR2SYin+d2jDnNi/f4TY/3d5eInApEnDnJi3OuJSI/iMhGEdksIrcFIs6c5MU51xaR793zXSYioYGIM6eIyGQROSoiWzPZLiLyjvt6bBaR1jkehKoW+gfOkPS/ANcAxYFNQON0Ze4Hxgc61lw83/rARqC8+7xKoOP29zmnKz8SZ5qCgMfu5/f5A+ARd7kxsC/QcefCOX8JDHaXuwFTAx23j+fcCWgNbM1k+23AIkCA64E1OR2DXZE42gK7VXWPql4EZgC9AxyTP3lzvkOBCap6EkBVj+ZyjDntct/jAcD0XInMf7w5ZwWucpfLAodyMT5/8OacGwNL3eUfMtier6jqTzjzOWWmN/CpOlYD5USkWk7GYInEUQM46PE8xl2X3l3upeEsEamZwfb8wpvzbQA0EJEVIrJaRLIdJiGP8/Y9RkRqA2H8/mWTX3lzzuOAv4hIDLAQ50osP/PmnDcBd7rLfYEQEamYC7EFitef/StlicR7C4A6qtoc+B/wSYDj8beiOM1bXXD+Op8kIuUCGlHu6Q/MUndWzgJuADBFVUNxmkCmikhB/154EugsIhuBzkAsUBjea78p6B8Yb8UCnlcYoe66NKp6QlUvuE8/BK7Lpdj8IdvzxfmrZb6qJqrqXmAXTmLJr7w551T9yf/NWuDdOQ8BvgBQ1VVASZyB/vIrb/4vH1LVO1W1FfAPd12+v7EiC5fz2b8ilkgc64D6IhImIsVxvkjmexZI16bYC4jKxfhyWrbnC8zFuRpBRCrhNHXtyc0gc5g354yIXAuUB1blcnz+4M05HwBuAhCRRjiJ5FiuRpmzvPm/XMnjqmssMDmXY8xt84FB7t1b1wOnVfVwTh6gaE5Wll+papKIjAAW49z1MVlVt4nIC0CEqs4HRolILyAJp2Pr/oAF7CMvz3cx0F1EtuNc9j+lqicCF7VvvDxncL54Zqh7u0t+5uU5/z+cZsvROB3v9+fnc/fynLsAL4uIAj8BjwUs4BwgItNxzqmS29f1HFAMQFXfw+n7ug3YDZwHHsjxGPLxZ8YYY0weYE1bxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZITL4kIme9KPNXESmVg8fsIyKNc7C+lT7se9b9t7qIzMqiXDkRefRKj2OMNyyRmILsr8BlJRIRCcpicx+cAf9yhKrekAN1HFLVu7MoUg6wRGL8yhKJyddEpIs7p8QsEdkhItPcX/COAqoDP4jID27Z7iKySkQ2iMiXIlLGXb9PRF4VkQ3APSIyVETWicgmEflKREqJyA04Ixq87s5XUldEWroDWm4WkTkiUt6tb5k4c5tEiEiUiLQRkdkiEi0iL3rEftZj+WkR2eIe85UMzjPMjX1LujrqpM5DISJNRGStG99mEakPvALUdde9LiJlxJmLY4NbV2+PeqJEZJI4888sEZFgd1s9EfnOjW2DiNR11z/lvk6bReT5HH1jTf4S6LH07WGPK3kAZ91/uwCnccYPKoIztEkHd9s+oJK7XAnnV8yl3edPA896lPubR90VPZZfBEa6y1OAuz22bQY6u8svAG+5y8uAV93lx3GGZq8GlMAZw6xiunO4FVgJlHKfV8jgfOcDg9zlxzz2rYM7DwXwLjDQXS4OBHtud9cXBa7yeE1248xTUQdn1IaW7rYvgL+4y2uAvu5ySZyrvO44c5mI+7p/DXQK9OfCHoF52BAppiD4/+3dT4iNURjH8e9vIclMJuVPzYIkWUxSLNREKdnYTCkljX8bCwsbVrIl2dmxQTIokY2GWWhkGkQz7oxSalhMKZI0Ecl9LM4ZvffOvdPMvLvr91md7j3vuc/7dnuf+55ze86LiJgEkDRKuik+reuzjTQtNSQJ0o22WE/rdqHdlX/1dwBtpHIbNSQtAzoiYjC/dI20YdK06ZIrY8CbyLWNJE2QCugVy83sAq5ExA+AiGi0t0Q3sDe3rwPnG/QZBk4r7fh3NyLe5XOtCR04K2kHUCWVE1+V33sfEaO5/QpYK6kd6IyIezm2n/k8dpOSyUju30Yq6vmkQVzW4pxIrFifYfMAAAF7SURBVBX8KrT/0Ph7LWAgIvY3GeN7oX0V6ImI15IOk4tXLjCmal181SbxzcWs9Ywiok/Sc2AP8EDSMWYW2jwArAC2RMRvSR9ITxnFmCFdxyWzfJyAcxFxaR7xW4vyGom1simgPbefAd2S1gNIWippQ5Pj2oGPkhaRbrwzxouIb8BXSdvze73AIAszAByZ/oeZpOUN+gyRCkpSF9M/ktYBExFxEbgPbKL2GkDaBfFTTiI7gTWzBRYRU8CkpJ78GYtznA+Bo4V1pk5JK+d0ttZynEislV0G+iU9jojPpIrNNyVVSNNAG5scd4a0LjAEvC28fgs4JWkkLzgfIi2+V4DNpHWSeYuIftJU2Ms8NXeyQbcTwHFJYzTf3W4fMJ7H6CJtr/qFNJ03LukCcAPYmsc5WHd+zfSSql9XSGs5qyPiEdAHDOex7lCbsOw/4uq/ZmZWip9IzMysFCcSMzMrxYnEzMxKcSIxM7NSnEjMzKwUJxIzMyvFicTMzEr5C2IAadLMCf1XAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for i in range(2):\n", " pylab.plot(distances, np.subtract(energies[i], energies[2]), label=titles[i])\n", @@ -180,30 +119,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4leX5+D939j4JSSAkgbBnFktBlkAFVBC0Fuqog7pbqbiqrd86WquWOopYtf5ctCg4AScoQ8TBDmHvEJIQAiF7j+f3x/uecJKcJCfJWSHv57rOlXOed91n5L2f556ilMLAwMDAwKAhHq4WwMDAwMDAPTEUhIGBgYGBVQwFYWBgYGBgFUNBGBgYGBhYxVAQBgYGBgZWMRSEgYGBgYFVDAVhYGBgYGAVQ0EYdDpEJE1EfuGia3cTkY0iUiQizzvxuu+IyN8cdO4bRGSNI85t4FoMBWFQDxH5WkSesjI+S0SyRcRLf32JiKzTb3QFIrJKRAZZ7H+piNSKSHGDxxhnvh835A7gLBCilHrA1cK0FhHpJSLK/DsAUEotVUpNdaVcBo7BUBAGDXkXuFFEpMH4b4ClSqlq/Sa/BlgJRAO9gVTgBxHpZXFMllIqqMHjJ8e/BedgeZNsBXHAPmWUMDDoABgKwqAhK4BwYLx5QETCgBnAEn3oH8ASpdS/lFJFSqlzSqnHgC3A4225qG72eVBEUvUVyXIR8dO33SIimxrsr0Skn/78HRH5t4h8pa9SfhCRKBF5SUTyROSAiAxrcMlRIrJP3/62+Vr6+WaISIqI5IvIjyKS2EDOP4pIKlBiTUnoq6ut+vvYKiKXmOUEbgYe1uVsZOYSEV8R+aeIpIvIaRF5TUT89W37RWSGxb5eInJGRIbrrz/UV3kFuhlraBOfdUuf55UislNECkXkpIg8YbHrRv1vvnlF2PB8Tb1/fdsGEfmr/h0VicgaEYnQt/mJyP9EJFf/7LeKSDdr78HAORgKwqAeSqky4APgJovhOcABpdQuEQkALgE+tHL4B0B7TA1zgOloK5JE4JZWHvsYEAFUAD8BO/TXHwEvNNj/BmAa0BcYoB+LrkjeAu5EU5SvA6tExNfi2OuAK4FQpVS15UlFpAvwBbBIP/4F4AsRCVdK3QIsBf6hr6a+tfI+ntXlSQb6ATHAX/Rt7+vXNjMNOKuU2qG//groD3TV3/tS6x9Vi5Sgff+h+vu8W0Rm69sm6H9Dra0Im3v/FrtdD9yqy+kDPKiP3wyYgB76sXcBZW18DwZ2wFAQBtZ4F7jWYlZ9kz4G0AXtd3PKynGngEiL19H6TNDyEdjMdRcppbKUUueAz9BukrbyqVJqu1KqHPgUKFdKLVFK1QDLgYYriMVKqZP6tZ7m/I33DuB1pdRmpVSNUupdNIUzuoGcJ3Vl2pArgcNKqf8qpaqVUu8DB4CZLb0B3ax3B7BAX5UVAX8Hfq3v8h5wla6kQbvRvm8+Xin1lr6iqwCeAJJExNTSdRuilNqglNqtlKpVSqXq15ho4+G2vP+3lVKHLCYj5u+5Ck0x9NM/++1KqcLWym9gPwwFYdAIpdQmNEfqbBHpC1yEdnMCyANqge5WDu2uH2cmSykV2uBR0sylsy2elwJBrRD7tMXzMiuvG57rpMXzE2i+FNB8BA9YKjW0GW10E8c2JFo/nyUn0FYCLREJBADbLa79tT6OUuoIsB+YqSuJq9C/FxHxFJFnReSoiBQCafo5I2y4bj1E5GIRWa+brwrQZvK2nseW99/U9/xfYDWwTESyROQfIuLdWvkN7IehIAyaYgnayuFGYLVS6jSAfoP/CfiVlWPmABscIEsJ2o0TABGJssM5e1g87wlk6c9PAk83UGoB+kzYTHMO5iw0JWNJTyDTBpnOoimzoRbXNimlLJWb2cw0C83ZfUQfv14f+wWamaaXPt4w2ABa/jzfA1YBPZRSJuA1i/O05Fxv8/tXSlUppZ5USg1BM2POoL6p08DJGArCoCmWoN1sbue8ecnMI8DNIjJfRIJFJEy0GPvxaCYRe7MLGCoiybrZ6wk7nPN3IhKr28z/jGaGAngDuEufRYuIBOpO22Abz/slMEBErtedyHOBIcDnLR2olKrVr/+iiHQFEJEYEZlmsdsyND/P3Zxf1QEEo5nCctFu/s19Dy19nsHAOaVUuYhchKZ8zJxBW0H2aeLcbX7/IjJJRBJExBMoRDM51bZ0nIHjMBSEgVWUUmnAj0Ag2mzSctsmNAfpNWh+h3NoDsYpSqk9FrtGS+M8iF+2QZZDwFPAt8BhYFPzR9jEe2ihuseAo8Df9GttQ1OKi9HMaUdohbNcKZWLNvN9AO1m/TAwQyl1ttkDz/NH/Zo/66aib4GBFuc/hbaCu4TzSg00hX4Cbaa+D/i5GRlb+jzvAZ4SkSI0B/kHFseWovlsftDNYJa+mfa+/yi0gIJCNFPad2hmJwMXIUY4tkF7ES0MdD1wvVJqtavlMTAwsA/GCsKg3eiRLrOBBGlb8piBgYEbYqwgDAwMDAysYqwgDAwMDAys0qHNAREREapXr16uFsPAwMCgQ7F9+/azSqnIlvbr0AqiV69ebNu2zdViGBgYGHQoRKRhMqNVDBOTgYGBgYFVDAVhYGBgYGAVQ0EYGBgYGFjFUBAGBgYGBlYxFISBgYGBgVU6dBSTgYGBfVixM5OFqw+SlV9GdKg/D00byOxhtlQoN7iQMRSEgUEnZ8XOTB79ZDdlVTUAZOaX8egnuwEMJdHJMUxMBgadnIWrD9YpBzNlVTUsXH3QRRIZuAvGCsKgRQzzw4VNVr71ts9NjV8oGL/rljEUhEGzGOaHC5/oUH8yrSiD6FB/F0jjHIzftW0YJiaDZjHMDxc+D00biJ93/VuBr5cHD00b2MQRHR/jd20bhoIwaBZrM0u48M0PnYnZw2K4d3L/utcCDOgWdEHPpDurWa21GArCwCoFpVXct2xnk9svZPNDZyQiyAeAdQ9M5N7J/didWcjB7CIXS+U4mvr9Gr/r+hgKwqAR3x06w7SXNvJZ6immD+3WyPzg43lhmx86I6kZBQT7edErPJB543oT6OPJ4vVHXC2Ww3ho2kB8ver/rv29PY3fdQMMBWFQR0lFNX/+dDc3v7WFYD8vVtwzltd+M5Jnr0kkJtQfAbw8BE8PGBEX5mpxDexIakYBCTEmPDyE0AAffjOmF5+nZnH0TLGrRXMIs4fFcM3w8yY0Lw/hmWsSLmizWlswFIQBAFvTznHFou95b0s6t4/vzWf3jiMh1gRo/0w/PDKZ489eybf3T8TL04O7/red8gZOPoOOSUV1DQeyC0mMDa0bu218b3y9PHjlAl5FgBDi58VD0wZSXau4pG+4qwVyOwwF0ckpr6rhmS/3M+f1n6hVimW3j+bPVw7Bz9vT6v69IgL516+T2ZtVyJ8/3YPR07zjczC7iKoaRaI+IQCICPLl+oviWJmSRXpuqQulcxw70/NI7hnGxAFaY7XvD591sUTuR6dTEFtXvU72E/2ofdxE9hP92LrqdVeL5DL2ZBZw1eJNvL7xGL8e1ZOv/jCBi/u0PIuaPKgb9/2iPx/vyOB/m9OdIKmBI9mVUQBAQoyp3vidE/vg6SH8e8OFt4ooKq/i4OkihvcMZUj3ECKCfNh4+IyrxXI7OpWC2LrqdeK3P0YUZ/AQiOIM8dsf63RKorqmlkVrDzP7lR/IL63i7VtH8cw1CQT52p43OX9yfyYP6spTn+1l+4k8B0pr4Gh2Z+TTJdCH2LD6ETzdQvyYO7IHH+/IaDLcuaOy62QBSsHwnmF4eAjj+0fy/eGz1NYaK2JLOpWC6LFjIf5SWW/MXyrpsWOhiyRyDit2ZjL22XX0fuQLLnr6Wyb9cwMvfHOIKxK6s2bBBCYN7Nrqc3p4CC/OSSY61J97lm4np6jcoXKPfXYdK3Zm2v0aBucd1CLSaNtdl/ZFKXj9u6MukMxx7EjPQwSSe2p+lwkDIjhXUsnerEIXS+ZedCoF0VVZX0J2VReu7dFcUiAzvwwF5BRVcDKvjJvHxLHoumGEBvi0+dymAG9eu3EEBWVV/H7pTqpqah0mt7kUgqEk7EtZZQ2HTheRFGuyuj0m1J9fDo9l2daT5BTafxLgKnak59G/axAhft4AjOun+SGcZWbqKJMfhykIEfETkS0isktE9orIk/r4FBHZISIpIrJJRPrp474islxEjojIZhHpZW+ZciTS6ni2hF+wzlZrJQUAvt2fY5fzD+4ewnO/TGRL2jn+/uV+u5wT4B+rDxilEJzA3qwCahUkWEQwNeSeSX2pqVW8vvGYEyVzHLW1ip3p+QzveT5UOzLYlyHdQ/jukOMVREea/DhyBVEBTFZKJQHJwHQRGQ28CtyglEoG3gMe0/f/LZCnlOoHvAg8Z2+BTg5/iDJVf8Zcqnx4tnIOD3y4i7LKCy9s0xklBWYlxzBvbG/e/iGNlSnt/5FvOX6OrHzrs9XM/DIKy6vafQ0DjVTdQZ3YxAoCIC48kFlJ0SzdfIKzxRXOEs1hHDtbQkFZVT0FATBhQCQ7TuRRXFHt0Ot3pDpQDlMQSsOcZeOtP5T+CNHHTUCW/nwW8K7+/CNgilgziraDUVfdyZ4RfyObSJSCEvzZO/yv9J08j093ZnLNqz9yIrfEnpeshyuWlc4qKfDoFYO4qHcX/vhxKvtPtc2Oe6qgjPnv72TO6z/h2cw3P+7ZdbzwzSHySyub3snAJnZnFtAtxJduIX7N7nfPpH5UVNfy5qbjTpLMcexI14IqhsfVXzVNGBBBda3ip6O5Dr1+R6oD5VAfhIh4ikgKkAN8o5TaDNwGfCkiGcBvgGf13WOAkwBKqWqgALB75sqoq+4k6okjSHgfAodOZ9Ssu/jDL/rz1i2jyMovY+bLm1h34LS9L+uyZeWvRsY2GnNESQFvTw8WXz8Mk783d/53OwWlts/yy6tqeGX9ESb/8zu+3pvN/Cn9eeaaRPwb5GL4e3vywNQBjOkbzqK1hxn33Hqe+/oAuRfArNZV7MrIJyGmafOSmX5dg7gyoTtLfkzr8Ip5Z3oeIX5e9IkIqjc+Mq4LAT6ebHSwmakj1YFyqIJQStXopqRY4CIRiQcWAFcopWKBt4EXWnNOEblDRLaJyLYzZ9rxRYbEQGFW3ctJA7vy+b3j6NElgHnvbOOFbw5RY8eQt4UusKkrpfju0BmCfT3pbvJD0JyOjiop0DXYj3/fMIJTBWXct3xniyGDSim+2XeaqS9uZOHqg0wcEMna+ydy/2UDmDOqB89ck1BX4sMs972T+/P6b0by9X3juXRgJK99d5Rxz63nb5/vu6CcqM6gqLyKY2dKmnRQN+T3k/tRUlnDWz+kOVYwB7PjRD7D9PBWS3y8PBjTJ9zhjuo7J/ZuNOaudaCc0jBIKZUvIuuBy4EkfSUBsBz4Wn+eCfQAMkTEC8381Gitp5T6D/AfgJEjR7b9Dh4SA2mb6g316BLAx3dfwv+t2MOitYdJOZnPv+YmExbY9kifgtIqVqRkktmETd2Ry8pVu7LYmZ7PwmsT+dXIHg67jiUj4sL4y8yh/N+KPfxr7WEWXDbA6n5Hcop56vN9bDx0hv5dg/jfby9mXP+IevvMHhbTpCIbFBXC4uuHc19OMf9ef4S3f0xjyc8nuG5UD+6c2Jctx88Z3cJaYHemniBno4IYFBXC1CHdePuH49w2vnddBFBHorC8ikM5RVyR0N3q9vH9I1h7IIcTuSXEhQc6RIZqfZ7o5+1BeVUt0SY/Hp4+yC1/n46MYooUkVD9uT9wGbAfMImI+a5hHgNYBdysP78WWKccGVpkioGiU1Bbf1bv5+3JP65N5O9XJ/Dz0VxmLt7EHv0fyVaUUvx8LJf7lu3kor9/y+Or9uLdhFHdUcvKssoanvvqAPExIfxyeGMzkyO58eKeXDsiln+tPcza/fXNdUXlVTz9xT6mv7SRnel5/GXGEL78w/hGysFW+nUN4oW5yax7YCJXJ8ewdHM6455bxwMf7uoQUSKuZHedg7plE5OZeyf3p6i8miU/pjlIKsey62S+liAXZ/09T9DLbjjSzLRyVxZDuofw8nXDAXj5+mFuqRzAsSuI7sC7IuKJpog+UEp9LiK3Ax+LSC2QB8zT938T+K+IHAHOAb92oGwQEg2qBopPa88tEBGuv7gnQ6NDuPt/27nm1R/52+x45rQwC88pLOejHRl8sPUkabmlBPt5MWdkD+aO6sGRnOJ6LQ4BvD3FYcvKN74/RlZBOS/9elijpbSjERH+NjueA9mF3LN0O6EBPuQUVmAK8Ka6ppaSyhrmjuzBg9MGEhHka5drxoUH8ty1idw7pR/TXtxISaV1c567/iO6gtSMAmLD/OnSihVyQqyJSQMjeXPTcW4d25vAVmTfuwM7TuRrCXI9rCuI3hGBxIb5892hs/xmTC+7X//42RJ2ncznT1cMqoscS80oYERcF7tfyx447NtVSqUCw6yMfwp8amW8HPiVo+RpRIg+qy7MaqQgzCT1COWze8cxf9lOHv4olZ3peQzvGcZL3x6uM108cFl/TAE+LNt6knUHcqipVVzUuwvzp/Tn8vju+PtojtZ4vc6N2ezh4+VBba1q8ofaHk4XlvPqhqNckRDFRb1d88Pz8/bk6mEx/PXz/Zwu1JzI+aVViMCCX/Rn/hTrpqf2EhsWQGkT4cruGCXiSlIz80lqxerBzL1T+nPNv39k6eYT3DGhrwMkcxw70vMY0DWY4CbMYyLChAGRrNyZSVVNLd6e9jWyrErJQgRmJkXTLcSPbiG+daHG7kinyqSuh1kpFGQ0u1t4kC9L5l3MPZf25f0tJ3n449R6pov7P0zlt+9uY2d6HreN783aBybywZ1juGZ4bJ1yMGNZNnvDQ5fi5+PJAx/usqszHOAfXx+kplbxyPTBdj1va3lrU1qjMaVg+dbmP/P20pGiRFxFXkklJ8+V2ex/sGR4zzDG9YvgPxuPd6iS71qCXF6T5iUzE/pHUlJZww471xhTSrFyVyYX9+5Cd5P2W0yICSU1I9+u17EnnVdBmCxWEC3g6SE8PH0QXQJ9sOYV6RLow0+PTuHRywfTNzKo8Q5W6G7y56lZQ9l+Io83vrdfhmpqRj4f78hg3rje9AwPsNt524Kr4r0fmjbQaoisO0aJuIpU3a+WGNN6BQFaRNPZ4gre39JxqvkeO1tMYXk1w3o23+zqkn7heHqI3aOZ9mQWcuxMCbOSz5s5k2JNHDtbQpGbJn92XgXhHwZeflBou+Myr8R6/HdeSWWblqKzk2OYPjSKF9Yc4kB2+4uEKaX46+f7iAjy4XeTXL/0d9VMfvawmLoQWTOPXTnY8D9YsFuftca3YQUBMLpPOBf16sLr3x2jorpjrCJ2nNDe8/Ceza8gQvy8GdYjlI2H7FujbWVKJt6ewuXxUXVjCbEmlNKUhzvSeRWEiJ4LYbuCsPcNT0R4+up4Qvy9uH/5Liqr21fs7svd2WxNy+OBqQObtLE6E1fO5M3mvFW/HwtoMe4G59mVUUCfiMB2hareO6Uf2YXlfLjNsSZDe7GjiQQ5a0wYEMmerAK7JWHW1CpW7cri0oFd6xXINEeQuauZqXP/14REQ4HtCsIRN7zwIF+evjqBfacKeXnd4Tafp7yqhme+2s+gqOAWo62cheVM3tFJek2REGMi2uTH6r32z47vyOzOKGi2/pItjOsXQXKPUF7dcNSulXwdxY70PKsJctaYMEArx7PpiH1WEZuP5ZJTVMGs5PoBMeY+HKmtDKV3Fp1bQZhibfJBmHHUDW/a0CiuGR7DvzccJeVk22YSb/1wnIy8Mv4yYwieTg5rbQ5Lx/wPj0x2uplHRJgWH8XGw2cocXARto5CTmE52YXlzVZwtQURYf6UfmTml/Gpm+eYFJZXcTinuFGBvqZIiDERGuBtNzPTypQsAn08+cXgbo22Jcaa6nJS3I3OrSBCoq0myzWHo254j88cStdgXx74IKXVkSE5ReW8su4Ilw3pxiX92pZwdiEzfWgUldW1bDhotJSE8xVcbS2x0RyTBnYlJtSPRz/Z7da9DVLSm0+Qa4inhzCuXwTfHz7T7lYA5VU1fLnnFNPio6z2ek+MDSX9XGmTPk5X0skVRMz5ZDkXY/L3ZuG1SRw9U8I/vm5dfaYX1hyisqaWP13h2rBWd2Vkry6EB/rw9d5sV4viFqRmFuAhMCQ6pOWdW2BlShZniiqoqVVunbVe10GuFXlHEwZEklNUwYHsonZde8PBMxSVV9eLXrLEHEm22w3NTIaCgFb5IRzJuP4R3DQmjrd+OG5zyeG9WQUs33aSm8f0oneEY2rHdHQ8PYSpQ7uxbv/pDhW37yhSM/Lp3zWYAJ/258kuXH2Qypr6M2x37G2wIz2/2QQ5a4zXy7+0t+zGql2ZRAT5MLav9eLU8XUZ1e7nqO7cCsKkK4hWRDI5mkcuH0Sv8AAe/HBXi7HR5rDWUH9v7p3S30kSdkymDY2ipLKGH49euO1lbUEpZRcHtZmO0NvA1gS5hnQ3+TOgW1C78iEKy6v4dn8OMxKj8WoiFD7Ez5s+EYFumVHduRVEiPspiAAfL56fk8SpgjKe/qL5Fp5r9p3m52PnuP+yAZj8XR/W6s5c0jeCYF8vvt7Tuc1Mmfll5JZU2k1BdISs9aNniimyIUHOGhP6R7L1eB6llW0LcFi9J5vK6tpG0UsNSYg1GQrC7fAPAy//VkUyOYMRcV24Y0Jfvb6Tdf9IRXUNf/9yP/27BnHdRT2dLGHHw8fLg8mDu/LNvtNUd4CQTEfRlgquzWEt9NvP28OtstbrOsi1RUEMiKSyppbNx8+16dorU7Lo2SWgRd9HYmwo2YXlbtfTpHMrCBE9F8L9En0WXNafgd2C+ePHu61GN7z7Yxonckt5bMaQJpeuBvWZPjSKvNIqtqS17Z/9QiA1swBvT2FQ92C7nM9a1voNF8e5Vdb6jhP5mPw1M05ruah3F3y9PNrkh8gpLOfHo2eZlRxNS92TzSs6d3NUG3cWU4zbrSAAfL08eX5OEnkllfzfyj31tuUWV/Dy2iNMGhjJRL1+vUHLTBwYia+XB6s7sZkpNSOfQVEh+Ho1DrdsK+bQ78NPX05ogDdnityrBayWIBfaprL3ft6eXNwnvE0K4vPUU9QqWjQvAQyNDsFDtAx3d8JQEK0st+FM4mNM/GFKfz5PPcVnu84rsRe+OURpVQ1/vnKIC6XreAT4eDFxQCSr955usR1qe1ixM5Oxz65zu7wApRSpGQVtquBqC96eHlweH8W3+09T1kTJdWdTUNa6BDlrTOgfwdEzJWS20vG+MiWTodEh9Ova8motwMeL/l2D62pkuQuGggiJgaJsqHHPLNu7L+1LUo9QHv5oF6P/vpbej3zB0s3pXNI3nH5dbasca3Ce6fFRZBeWs8tB/4grdmby6Ce73bKbXVpuKUXl1W2u4GoLMxKjKa2sYf3BHIddozWYKxO0S0G0ocvc8bMl7MooYHYTuQ/WSNQd1Y5spNlaDAVh2VnODfHy9OCK+CjKqmrJLizH/NPZmnbOLW46HY0pg7rh5SEOq820cPXBel0DwX3yAsxx9vZyUFtjdJ9wIoJ86614XcmOE1qCXFKPtivF/l2DiArxa5WCMDcGmpFkvfe1NRJjTeSWVJJV4D6OakNBtKIvhKtY8tOJRmPlVbVucdPpaJgCvBnTN5yv95xyyEzNnfMCUjMK8PXyoH83x608PT2EKxKiWHcgh2I3qH21Iz2Pgd1alyDXEK3LXASbjpy1KQJOKcXKlPqNgWzBXBsrtY312ByBoSDMneUK3S+SyYw733Q6ItPjo0jLLeXQ6WK7n7tbiJ/VcXfIC9idUcDQ6BC7t9FsyIzEaCqqa1m737Wr8tpaRcrJ/DblPzRkwoBIisqrbXIi78ks5NjZklaZlwAGdw/G21PcqrKroSDqkuXcdwXREZKROhKXDemGCA5Jmusb2biLnzt0s6upVezJKnCoecnMyLgwokL8XG5mOqInyLXUIMgWxvWLQMQ2P8TKlEx8PD24PN528xJokYsDo4LdqrKroSDMyXJuUo/JGkYLTfvSNdiPkXFhdi/el5FXypa0PMb07UJYgGbSiAz2dXoPDGscPVNMaWWN3TKom8PDQ7gysTvfHTpDQZnrWmmae0oPj2v/CiI0wIfE2NAWy26cbwwUiSmg9WatxFitR7W7OKodpiBExE9EtojILhHZKyJP6uMiIk+LyCER2S8i8y3GF4nIERFJFZHhjpKtgaB6LoT7Kgh3aLxzoTFtaBT7TxVyIrfEbud8ee0RBOH5XyXz2b3jALh3cj+3+J5S6zKoHa8gAGYmRVNVo1jjwgq6O9LzCA1oW4KcNSb2j2DXyXwKSptWeucbA7XtO0+MMVFYXs2J3NK2imlXHLmCqAAmK6WSgGRguoiMBm4BegCDlFKDgWX6/pcD/fXHHcCrDpStPiHRbq0gwPWNdy40pg3V+gKvttMNLO1sCR/tyOD6i3sSHepPTKg/3UJ82a7PYl1NakY+gT6eNrXbtAdJsSZ6dPHns9RTTrmeNXak5zOsR2iLWcy2MmFAJLUtdJlbkZJJkK8XUwZ3bdM1zCZAR4VhtxaHKQilYfYCeusPBdwNPKWUqtX3MwdMzwKW6Mf9DISKSOuMeG0lpHWd5Qw6Pj26BDA0OsRufohFaw/j5SHcc2lfQIt8GRnXhW1p7qIgCoiPMbUpm7gtiAhXJkTzw5GznHNBI5yC0iqOtDNBriHJPUIJ9vNq0g9RXlXDV3uymTbUemMgW+jfLQhfLw+38UM41AchIp4ikgLkAN8opTYDfYG5IrJNRL4SEXOd6hjgpMXhGfpYw3PeoR+77cwZO3UIM3eWc9NkOQPHMH1oFDvS8zndzgJpR3KKWZGSyU1j4uhqEcU0PC6MzPwysl0c115ZXcu+U4VOMy+ZmZnUnZpa5ZIKujtP2s//YMbL04OxfZvuMne+MVDLpTWawtvTg6HRIW5T2dWhCkIpVaOUSgZigYtEJB7wBcqVUiOBN4C3WnnO/yilRiqlRkZG2qkOkSkGVK3bJssZOIbp8ZqZqb128pe+PYSftyd3Texbb3yEfnMyVxN1FYdOF1FZXeuUCCZLhnS9CWzNAAAgAElEQVQPoU9EoEuimXak5+MhkNSKDnK2MGFAJFkF5Rw90zhEemVKJhFBvlzSRGMgW0mMDWVPVgE1DiwHYytOiWJSSuUD64HpaCuDT/RNnwKJ+vNMNN+EmVh9zPF0gFBXA/vTr2sQfSID2xXNdCC7kM9TT3HLJb0ID/Ktt21I9xB8vTxc7ocwVwh19gpCRJiR2J2fj+c6vYz1zvQ8BnQLJsi3/V3zLDF3mfvuUH0/RGF5FWsP5DAjsXu7qysnxJgorayxqoScjSOjmCJFJFR/7g9cBhwAVgCT9N0mAof056uAm/RoptFAgVLKOR6uOgXhvslyBvZHRJg+NIqfj51rc8P4F785RLCvF3dM6NNom4+XB0k9QtnmYgWRmqGVu+7ZpXGOhqOZmRSNUvDlbuc5q2trFSnp+XY1L5np0SWAPhGBjfwQ5sZA9ggeMZcFcQczkyNXEN2B9SKSCmxF80F8DjwL/FJEdgPPALfp+38JHAOOoJme7nGgbPWpy6Y2VhCdjenxUdTUKtYeaH1xuT2ZBazee5p543oTGuBjdZ8RcWHszSxwaS/sVL3FqL2ieVpD/27BDOwWzOdOjGY6nFNMUUW1XR3UlkwYEMnm47n1vtOVKVnEhQeQZIdVWu+IIAJ9PN2isqsjo5hSlVLDlFKJSql4pdRT+ni+UupKpVSCUmqMUmqXPq6UUr9TSvXVt21zlGyN8A8D7wC3TpYzcAwJMSaiTX5tcqS+8M0hTP7e/HZ87yb3GdEzjOpa5bLZYHlVDQezi5xuXrJkZlJ3tp3Ic1ppmPMd5Bzjc5kwIILyqlq26o2n6hoDJbXcGMgWPD2E+BiTW/SGMDKp4XxnOTfPhTCwPyLCtPgoNh4+Q0krisvtSM9j3YEc7pjQh5BmCsGZzRyu8kPsP1VIda0iIca5DmpLZiRqK/QvnLSK2JmeR1iAN73tlCDXkNF9wvHx9OD7w5of4jO9MdBVbUyOs0ZirIl9pwqpcnF7XENBmHHjxkEGjmX60Cgqq2vZcND2sOkXvzlEeKAPt1zSq9n9ugT60CcykO0nXNPm1NkZ1NboFRFIfEwIn6c6x4S7I10r0Ocok1qAjxcje4XV+SFWpWQSHxNi1/4sibGhVFbXcjC7yG7nbAuGgjAT4p6tRw0cz8heXQgP9LE5mmnL8XN8f/gsd03sS6ANUTIjeoax/USeS+rrpGYUEBHkS3eT9SqzzmJmYjS7MgpId3AJifMJco5dMY3vH8mB7CI2H8ttdWMgW3CXHtWGgjBjijGS5Topnh7C1KHdWLf/dIvOZKUUz685SGSwLzeOjrPp/CPiwsgrreL4WfvVfbKV3Zn5LnNQW3JlolYU4TMHryLqEuQc5KA2U6MVgmDuf34GwMvTvp9vzy4BmPy965o8uQpDQZgJiTaS5Tox04ZGUVJZw49Hm66zA/Dj0Vw2Hz/H7y7ti7+PbeUURrjID1FSUc2RnGKXmpfMxIYFMKxnqMOjmRyVIGfJip2ZvLLuSL2x5746aNcOjyJS14LUlRgKwkyIubOc4YfojFzSN4JgX69mo5nMq4fuJj9+fVFPm8/dNzIIk7+30xXE3qxCapVr/Q+WzEyMZv+pQo7kOC4BbGd6HgOjQmwy/bUVra1sfeexI9rKJsSYOJhd5NIQaUNBmKnLhTAURGfEx8uDyYO78s2+0022ldxw8Aw70vP5/eR+rSrG5uEhDO8Z6nQFYTZPuDKCyZIrE7sjgsOc1XUJcg72Pzirw2NibCjVtYr9pwrtet7WYCgIMybdyWTkQnRapg+NIq+0ii1pjSOOlFK88M0hYsP8+dWIHlaObp4RcWEczilutpeAvUnNKCDa5EdksG/LOzuBbiF+XNSrC5/tynKIw97RCXJmnNXh0R0c1YaCMOMXqiXLGZFMnZaJAyPx9fJgtRUz05p9p9mdWcD8Kf3x8Wr9v405H2LHSeetIlIz8klwE/OSmRlJ0Rw9U8IBB4Rv1iXIOaDEhiXO6vDY3eRHRJAvu04aCsL1iOihrkY9ps5KgI8XEwdEsnrvaWotKmnW1ipe/OYQvSMCuaaNtXaSe4Ti6SFsd1J/iILSKtJyS51ewbUlLo+PwsNBZqYdJ/LoEuhDr3DH1pxyVodHs6N6d6brIpkc58npiIREGyuITs70+CjW7DtNamYByXokzJd7TnEgu4iX5ia3uVJngI8XQ7qHOM0PsSfL9Qly1ogI8mVsvwg+Tz3Fg1MH2jX8dkd6nl07yDXH7GExTunqmBBjYsPBHEoqqh3qeG8KYwVhiSnW8EF0cqYM6oaXh9RFM9XUKl769jD9uwYxM6ntjWBA80OknMxv0gluT8wtKxPdxEFtyYzE7pzILbWrbT2/tJKjZ0ocbl5yNkk9TNQqLSLNFRgKwpKQaCjONpLlOjGmAG/G9A3n6z2nUEqxalcmR3KKue8XA/BsZ7vO4XFhlFXVOMT+3pDdGQXEhQdgCmi6TpSrmDY0Ci8PsWtOxM6TmkIc5uAIJmdjjkBzVcKcoSAsCTF3lnN+i0QD92F6fBRpuaXsO1XIv749zKCoYC7Xu8+1B3PC3DYrUVL2Rivx7Z43y9AAHyYMiOSL1FP1fD3tYeeJPC1Bzk3fc1uJDPYl2uTnsoQ5Q0FYYnSWMwBqajUT0JWLNpGWW8rYfhF4tHP1AJozs7vJj+3pjp0Nni2uIDO/jMQY9/I/WDIjsTuZ+WV1pTHay470fAY5OEHOVSTEmlwW6mooCEvqciGMSKbOyoqdmTzzZf2M2Pc2n7BbGYXhcWHscLCjerc+23S3EFdLLhvSDR8vDz7b1X4zU02tIuVkPsPjLqzVg5nE2FCOny2hoMx5OTRmDAVhidFZrtOjlVGoX9qgrKrWbmUURvQMIzO/jFMFjmuek5pRgAjEu/EKItjPm0kDI/ly9ylq2mlmOpxTRLETEuRchTkSbY8LVhGGgrDELxS8A41yG50YR5dRcEbhvt2Z+fSNDCLIzc0tMxKjySmqYMvxtvtkVuzM5NevaxVVn/v6gF0L5rkLCbqi3+UCR7WhICwxOst1ehxdRmFIdAh+3h4OUxBKKXbpPajdnSmDu+Lv7dnmpLkVOzN59JPd5Ouml9OFFTz6ye4LTkmEBvgQFx5QZzp0JoaCaIgpxsiF6MQ4uoyCt6cHSbGhDvNDnC6s4ExRhVs7qM0E+HgxZXBXvtqT3arckNpaRWpGPv+3co8Vc6D9q6q6Awkxrin9bSiIhhid5To1ziijMCIujL1ZhZRV2reM84qdmVyx6HsAXll/tEPMpGckRnOupJIfj+Y2u19ReRVf7T7FQx/u4uJn1nLV4h8oKreer2TvqqruQFJsKJn5ZeQWVzj1ujYZKUWkL5ChlKoQkUuBRGCJUqpJo5iI+AEbAV/9Oh8ppR632L4ImKeUCtJf+wJLgBFALjBXKZXWljfVLiyT5Tzd24Zr4BgcXUZhRFwY1bWKXRn5jO4Tbpdzms0t5hn1mWLN3AI4pSREW7l0YCS+nsJd/9tOWWUN0aH+PDRtILOSozl2toT1B3JYdyCHrWnnqKpRhPh5MWFAJJMHdeUfqw+SXVDe6Jz2rqrqDpgj0lIzC5g0sKvTrmvrHfBjYKSI9AP+A6wE3gOuaOaYCmCyUqpYRLyBTSLylVLqZxEZCTQMOfgtkKeU6icivwaeA+a25s3YBctkOVOs0y9vcOFjjrbZfiLPbgrCevSVZm5xZwXx9Z5sqmuhokaTPTO/jAc+3MVfP99LbonmWxjQLYh543ozeWBXRsSF1dXD8hCppxTBMVVV3YH4GBMikHrSPRVErVKqWkSuBl5WSr0sIjubO0BpBd/NraO89YcSEU9gIXA9cLXFIbOAJ/TnHwGLRUSUszu9h1j0hTAUhIEDCAv0oW9koF39EM5qYmNvFq4+SE2Df/GaWkVxRQ1/nTWUSwd2pUcX69VZzYpv4eqDZOWX1a0+3FkhtpUgXy/6RgY5vbKrrQqiSkSuA24GZupjLRZ50ZXBdqAf8IpSarOI/AFYpZQ61aDqYgxwEkBXRgVAOHC2wTnvAO4A6NnT9raPNmNOljMimQwcyIi4MNbsO41Syi7VR6ND/cm0ogzc3dzSlAKrrK7lN2N6tXi8s6qqugOJMSa+P3LWbr8ZW7DVSX0rMAZ4Wil1XER6A/9t6SClVI1SKhmIBS4SkQnAr4CX2yqwUuo/SqmRSqmRkZGRbT1N0xitRw2cwIi4MPJLqzh6psQu57tmeOObZEcwtzirO9uFQGKsiTNFFZwudJ6j2iYFoZTap5Sar5R6X399XCn1nK0X0Z3Z64FJaKuJIyKSBgSIyBF9t0ygB4CIeAEmNGe1c6lLljMimQwcx4i4LgB2MzOlnMwnyNeTaJOfQ5vY2BtndWe7EEjQCxE6M2HO1iimsWj+gTj9GEFzM/Rp5phIoEoplS8i/sBlwHNKqSiLfYqVUv30l6vQTFg/AdcC65zuf9CE0lYRRj0mAwfSJyKQ0ABvtp/IY86o1ve4tiTlZD7fHz7LI5cP4q6Jfe0koXPoTH6E9jI0OgRPD2F3RgHThra/urAt2OqDeBNYgOZPsDV4uzvwru6H8AA+UEp93sI1/quvKM4Bv7bxOvbHZORCGDgWDw9heM8wtqe3fwXx8trDhAZ4c+PoODtI5nw6kx+hPfh5ezKgWzCpTqzJZKuCKFBKfdWaEyulUoFhLewTZPG8HM0/4XpCYuDoOldLYXCBMyIujHUHcsgvrSQ0wKdN59iTWcDaAzk8cNkAt6+9ZNB+kmJNfL0322mOalud1OtFZKGIjBGR4eaHQyVzJSExUJQNNc4vr2vQeTAX7tvRjlXE4nVHCPb14qZLetlJKgN3JiHWRH5pFRl5zglftnXKcbH+d6TFmAIm21ec9lNVVUVGRgbl5Y0zLG2my1SYNhIOHAAPY1bW0fDz8yM2NhZvb/drt2lJUmwonh7C9hN5TB7UrdXHHzpdxNd7s7l3cj9M/u79Xg3sQ5KFo7qp/BB7YtPdTyk1ydGC2IuMjAyCg4Pp1atX25dg5YVw7iiE9wbfoJb3N3AblFLk5uaSkZFB7969XS1Os/j7eDI0OqTNlV0XrztCoI8n88a69/s0sB8DugXj4+nB7owCZiRGO/x6NpmYRMQkIi+IyDb98byIuGW5yPLycsLDw9tnn/PUZ2O1hompoyEihIeHt28F6USG9wwj5WQ+Va2oZgpw7Ewxn6dmceOYOMIC2+a/MOh4+Hh5MLh7sNNCXW31QbwFFAFz9Ech8LajhGov7XbemBVETWX7hTFwOs7KMrUHI3uFUV5Vy/5Tha067pX1R/Hx8uD28U1GmhtcoAT5erH52Dl6P/IFY59d59CqvbYqiL5KqceVUsf0x5PAhfvLFE8QjzY5qSdNmsTq1avrjb300kvcfffdAOzdu5fJkyczcOBA+vbty+OPP05trTZ7fOedd4iMjCQ5ObnusW/fvkbX8PT0JDk5mfj4eGbOnEl+vn1mE2lpacTHx9vlXJYcPHiQSy+9lOTkZAYPHswdd9xhl/M+8cQT/POf/7TLuVxFWzrMpeeWsiIlk+sviiMiyNdRohm4ISt2ZrIl7RwKzQmcmV/m0CZJtiqIMhEZZ36hJ865dxUwG1mxM5Oxz66rr41FtFVEG1YQ1113HcuWLas3tmzZMq677jrKysq46qqreOSRRzh48CC7d+9my5Yt/Otf/6rbd+7cuaSkpNQ9hgwZ0uga/v7+pKSksGfPHrp06cIrr7zS+jfuRObPn8+CBQtISUlh//793Hvvva4WyW3obvIn2uTXKgXx6ndH8RThjgkX7hzNwDoLVx+kqqZ+/rAjmyTZqiDuBl4RkTQROQEsBu5yiEROxFxDPzO/rLE29vBp0wri2muv5YsvvqCyUlMuaWlpZGVlMX78eN577z3Gjh3L1KlTAQgICGDx4sUsXLiwze9hzJgxZGZqs4fi4mKmTJnC8OHDSUhIYOXKlXUyDB48mNtvv52hQ4cydepUyso0/b59+3aSkpJISkqqp2jKy8u59dZbSUhIYNiwYaxfvx7QVjmzZ8/msssuo1evXixevJgXXniBYcOGMXr0aM6da9xf+NSpU8TGnq+Mm5CQAEBNTQ0PPfQQo0aNIjExkddff71un4ULF9aNP/54XRsRnn76aQYMGMC4ceM4ePDC6Bw2PC7MZgWRlV/GR9tPMmdULFEmPwdLZuBuOLtqr61RTClAkoiE6K9bZzB1EU9+tpd9WU2LujM9n8oGzsGyqhoe/iiV96P9oLYGfOrf8IZEh/D4zKFNnrNLly5cdNFFfPXVV8yaNYtly5YxZ84cRIS9e/cyYsSIevv37duXsrKyOjPR8uXL2bRpU932n376CX9/64XLampqWLt2Lb/97W8BLbzz008/JSQkhLNnzzJ69GiuuuoqAA4fPsz777/PG2+8wZw5c/j444+58cYbufXWW1m8eDETJkzgoYceqjv3K6+8goiwe/duDhw4wNSpUzl06BAAe/bsYefOnZSXl9OvXz+ee+45du7cyYIFC1iyZAn33XdfPTkXLFjA5MmTueSSS5g6dSq33noroaGhvPnmm5hMJrZu3UpFRUWd8jx8+DCHDx9my5YtKKW46qqr2LhxI4GBgSxbtoyUlBSqq6sZPnx4o8+zIzIiLozPU0/VlZpojte/O4pSdLiSGgb2wdlVe5tdQYjIjfrf+0XkfuA24DaL1x2ahsqh3rh4oFn5Wo+lmclsXrKVhiYma8qhrKyM5ORkoqKiOH36NJdddhmghXj+6U9/IjExkV/84hdkZmZy+vRpAHr37k1ycjIAI0aMIC0tjfz8fPLz85kwYQIAv/nNb+qusWnTJm688UYABg0aRFxcXJ2CmDRpEsHBwURGRmIymZg5U6sAn5CQQFpaWiN5b731Vvbv38+vfvUrNmzYwOjRo6moqGDNmjUsWbKE5ORkLr74YnJzczl8+DBr1qxhzZo1DBs2jOHDh3PgwAEOHz7M999/z9VXX01AQAAhISF1yq+jM1Iv3NfSKiKnsJz3t57kl8NjiQ1zfAy8gfvh7OKGLa0gAvW/wVa2Ob+QXitpbqYPMPbZdVa1cUyoP8tvHgoFJ6HrUPBqXRjhrFmzWLBgATt27KC0tLRuljtkyBA2btxYb99jx44RHh5OaGiozec3+yBKS0uZNm0ar7zyCvPnz2fp0qWcOXOG7du34+3tTa9everCPX19zzszPT0960xMbcHyXB4eHnWvPTw8qK623ic4OjqaefPmMW/ePOLj49mzZw9KKV5++WWmTZtWb9/Vq1fz6KOPcuedd9Ybf+mll9osszszqHsw/t6ebD+Rx8ykpmPb/7PxGDW1insmGauHzoqzixs2u4JQSpmNwt8qpZ60fABrHSKRE2lWG3vqSqENjuqgoCAmTZrEvHnz6q0ebrjhBjZt2sS3334LaCuB+fPn8+STT7ZJ/oCAABYtWsTzzz9PdXU1BQUFdO3aFW9vb9avX8+JEyeaPT40NJTQ0NA6k9bSpUvrto0fP77u9aFDh0hPT2fgwLbNUr7++muqqjR/TnZ2Nrm5ucTExDBt2jReffXVum2HDh2ipKSEadOm8dZbb1FcrDUkzMzMJCcnhwkTJrBixQrKysooKiris88+a5M87oa3pwdJPUzNriByiytYujmdWUnRxIUHNrmfwYXP7GEx/PDIZI4/eyU/PDLZoYUObXVSW2vw0+amP+7C7GExPHNNAjGh/o1r6LczWe66665j165d9RSEv78/q1atqnO0RkREMHbsWG644Ya6fZYvX14vzPXHH39s9jrDhg0jMTGR999/nxtuuIFt27aRkJDAkiVLGDRoUItyvv322/zud78jOTkZy+rq99xzD7W1tSQkJDB37lzeeeedeiuH1rBmzRri4+NJSkpi2rRpLFy4kKioKG677TaGDBnC8OHDiY+P584776S6upqpU6dy/fXXM2bMGBISErj22mspKipi+PDhzJ07l6SkJC6//HJGjRrVJnnckRFxYew7VUhppfUV2JubjlNeXcM9k/pZ3W5g4AikuZYLIjIGuAS4D3jRYlMIcLVSKsmx4jXPyJEj1bZt2+qN7d+/n8GDB7f/5LXVkL1b6w0R1Po6ObawYsUK7r//ftavX09cXMcs1eyu2O134CTWH8jh1ne28v7toxnTN7zetvzSSsY9t56JAyN55foLt0amgfMQke1KqZEt7dfSCsIHCELzVQRbPArRmvpcuLQjWc5WZs+ezbFjxwzlYMCwnpoPylpl17d/SKO4opp7JxurBwPn0qyTWin1HfCdiLyjlGreoH2h0Y5kOQOD1hIa4EO/rkFsS6sfVl1UXsXbPxxn6pBuDIoKcZF0Bp0VW2tZl4rIQmAoUJedo5Ryu3LfdqWNyXIGBm1hRM8wvt6bTW2twsNDqye15KcTFJZXc+/k/i6WzqAzYquTeilwAOgNPAmkAVsdJJP74OltKAgDpzGiVxgFZVUcO6tFb5VWVvPmpuNMGhhJQqxbFk82uMCxVUGEK6XeBKqUUt8ppebhhs2C7I6njxbFpFpXitnAoC00LNy39Od0zpVU8ntj9WDgImxVEOZp9CkRuVJEhgFdHCST+1BX9ttYRRg4nj4RgYQGeLMtLY/yqhpe33iMsf3C6xSHgYGzsVVB/E1vEPQA8CDw/4AFDpPKXahLlrNdQTij3HdrsKUk9rZt25g/fz4AGzZsqJd78dprr7FkyZI2XeOJJ54gJiamrjT5qlWrmj2PLddKSUnhyy+/bHafjoqIMKJnGNvT81i2JZ2zxRWG78HApdikIJRSnyulCpRSe5RSk5RSI5RSzf63i4ifiGwRkV0isldEntTHl4rIQRHZIyJviYi3Pi4iskhEjohIqog4J+A79QN4MR6eCNX+pn5wflsbGgc5o9y3mQ0bNnDLLbfYLFtTjBw5kkWLFtWd01JB3HXXXdx0001tPre5zPeHH37IvHnz6pShNWy51oWsIAD8fTw4dqaEJz7bh4+nB9kFHaMznsGFia0tR9/Wb+b1Hi0cVgFM1pPpkoHpIjIazeE9CEgA/NEKAAJcDvTXH3cAr7b+7bSS1A/gs/lazSWU9vez+eeVRBuyqZ1d7rs1XHrppfzxj3/koosuYsCAAXz//feAphRmzJhBWloar732Gi+++CLJycl8//339VYHb7zxBqNGjSIpKYlf/vKXlJaW2nztwYMH4+XlxdmzZ0lLS2Py5MkkJiYyZcoU0tPTgforEWuyVlZW8pe//KUu23z58uV2/oTsRHOTjmZYsTOTNfty6l5X1tQ6tBlMp6eN31NnwtYw188tnvsBVwNZzR2gtBTtYv2lt/5QSqm66Z+IbAHMjQJmAUv0434WkVAR6a6UOmWjjI356hEtG7opMrZCTUX9saoyWPl72P4uoKCyRFMUnnqZiagEuPzZJk/pzHLfbaG6upotW7bw5Zdf8uSTT9bVhQLo1asXd911F0FBQTz44IMArF17vuTWNddcw+233w7AY489xptvvmlz85/Nmzfj4eFBZGQkV111FTfffDM333wzb731FvPnz2fFihU2yfrUU0+xbds2Fi9e3J6PwXGYJx1VejFE86QDIHFOs4cuXH2QyurG5ecXrj7o0Ho7nZJ2fE+dCVv7QXxs+VpE3gc2NbG75X6ewHagH/CKUmqzxTZv4DfAH/ShGOCkxeEZ+lg9BSEid6CtMOjZs6ct4jdNQ+XQaFy0hLlWRjGZzUxmBfHmm2/afOzcuXNbvPldfPHFVFRUUFxczLlz5+rKeD/33HONKqM25JprrgHOl/xuDXv27OGxxx4jPz+f4uLiFq8F8OKLL/K///2P4OBgli9fjojw008/8cknnwBaifGHH37Y7rK6jLVPnb/pmKkq08ZbuPE4uxlMp6Yd31NnwtYVREP6A11b2kkpVQMki0go8KmIxCul9uib/w1sVEp935oLK6X+A/wHtFpMze7czEwf0JaVBScbj5t6wK1faM/PHgFVA5G2VzJ1dLnvzZs1Pbthwwbeeecd3nnnHZuPNRfc8/T0bLI0d1PccsstrFixgqSkJN555x02bNjQ4jELFiyoW420lvbI6jIKMlo3boGzm8F0apr8nk7Ch7dC96TzjwArAZupH2jKpCADTLEw5S8XpGKx1QdRJCKF5r/AZ8Afbb2IUiofWA9M18/3OBAJWDYdygR6WLyO1cccx5S/gHeDfz5vf23cjFfrk+WcVe7bEQQHB1NUVGR1W1FREd27d6eqqqpeafDWcskll9Q58pcuXcr48ePtIp9bYIpt3bgFzm4G06lp6vvw8ofMbfDt4/Df2fCP3vBiAiy7Ab5bCIfWwJY3mvddXkDYGsUUrJQKsfg7oKHZqSEiEqmvHBARf+Ay4ICI3AZMA65Tqp7tZhVwkx7NNBooaJf/wRYS58DMRdqKAdH+zlxUfybg0bZkOWeV+7Y3M2fO5NNPP61zUlvy17/+lYsvvpixY8faVEq8KV5++WXefvttEhMT+e9//1sviqslJk2axL59+9zXST3lL5pZ0pKGk44maLb8vIF9mfIX8GrQ09vbH65aBPfthoePw00r4bKnoMcoOHMA1v8N3vsVfPlg0+apC4yWyn03G2qqlNrRzLGJwLuAJ5oi+kAp9ZSIVAMnAPM08BN9XIDFaKuMUuBWpdQ2K6euw6Hlvs2UnNU7yw0Br7b1Q2gKo9y343BZue+yPHiuF/iGQEWhVhH4qpdh2I3Ol8WgeT5/ALb9P7TJoQ1movJCOL0H3r68iR0Ensh3hKR2x9Zy3y35IJ5vZpuimXIbSqlUYJiVcavX1KOXfteCPM7HMlnOzgpi9uzZzJ49267nNHAxx3Uf0/UfaCvPd2dCdRPBEAauxdMLvAPgkZPa85bwC4G4SzRLgzXfJQq+eADG3gehPaxs73i0VO57krMEcVvakCxn0Ik5uh58giF2JHh4QfRw+Jr7ulYAACAASURBVPFlGHELeHi2eLiBE8nYqn0/tigHS6b8pX6ILGjmqphRWnj89nch+ToYdz906W1fmZ2MraU2EJF4EZkjIjeZH44UzG1oZ+tRg07GsfXQa5z2uxGBcfdB3nHYt9LVkhlYUlUOp1I1Rd5arPkur3oZbv0c5u/UJgO7lsPLI+DTu+DsYXtL7zRsUp161NGlwBDgS7Ss501A84VzXIRSCmnoKGwrHl4O7yxnYF+a86s5lHPHIS8NRt9zfmzQDOjSF354CYZe3diBbeAaslO1SV9sG/uaJ86x7q8I7QFX/hPGPwA/LoJtb8OuZRB/DYx/ELo1XTrHHbF1BXEtMAXIVkrdCiQBblmg3s/Pj9zcXPveJDx9DBNTB0EpRW5uLn5+fi3vbG+Ordf+9rGwzHp4wtj5cGoXHNvgfJkMrJOhB7e0ZQVhCyHdYfozWkTU2Plw8Gt4dQwsv1H7LXSQMh+2Gt/KlFK1IlItIiFADvVzFtyG2NhYMjIyOHPmjP1OWpwDSkGw4WzsCPj5+REb23Legd05uh5CYiCiQQXWpOtg/TPaKqKv4dZzCzK2aqah4CjHXicoUguVHXsf/Pxv2Pw67P9Ms0qYQ+fduMyHrQpim57T8AZa6Yxi4CeHSdUOvL296d3bzo6hlYvh8Lfw4EH7ntfgwqG2RotgGjSjsRnJyxdG360lX2XthOhGwX0GziZjm+NWD9YI6AKTH4Mxv4eXErQQaEvctMyHrYly9yil8pVSr6ElvN2sm5o6ByGxUHwaqg0zk0ETZKVAeX7TK4SRt2q5EZtecq5cBo0pyoaC9Lb7H9qDfyhUNFEJwIZyLM7G1lIbq0TkehEJVEql6TkOnYeQaEBBcbarJTFwV46t0/72nmh9u58JRs6D/asg96jz5DJojNn/EOPEFYQl7SjH4mxsdVI/D4wD9onIRyJyrYi4wAvoIkx6qYMCoy6/QRMc3aCVgg+KbHqf0XdrUXE/vuw0sQyskLkNPLyhe6Jrrm+tBpyHt03lWJyNrSam75RS9wB9gNeBOWiO6s5BiK4gCg0FYWCFimI4ubl+9JI1gqM0h3XKe1B02jmyGTQmY5umzBvepJ1FwzwKc4WGmBHNHuYKWpMo5w/8ErgLGIVWZ6lzYCgIg+Y48aMWU29LhNIl87WQ6c2vOV4ug8bUVEPmDtf4HyxJnAML9mi1m+7dqZX8WHGPFuzgRtjqg/gA2I9We2kx0FcpZVsrsQsBvxCtfEJhs030DDorx9ZrHQd7jml534h+MOQq2PqmVvzNwLmc2Q9VJc6NYGoJUwxc8Q84+bPbmR9tXUG8iaYU7lJKrW9QprtzYIpxyygDAzfg6HqIG2O7yWLsfVBRANvfcahYBlZwdIJcW0mcq4VIr38aTu9ztTR1NKsgRORhAKXUauCaBtv+7kC53I+QaGMFYdCYwlParLQl/4MlMcOh9wT46RWj0quzydgGAeEQ5mZF9ERg5r+0UOhP73SbkPqWVhC/tnj+aINt0+0si3sTEmP4IAwaYy6f0doM6bH3aWHTqW7Y9OhCJmOr5n9wx5pYgRGakshOhY0LXS0N0LKCkCaeW3t9YRMSo5XccBPNbuAmHFsPARHQLaF1x/WdDFGJ8MMiqO18FluXUJYPZw+6n3nJksEzIPHX8P3zkLnd1dK0qCBUE8+tvb6wMcUACooc2wXVoAOhlLaC6DMRPGwOCNQQgbF/gNzDcPALh4hn0IAsvQGmqxLkbOXy57SQ6E/vatza1Mm09KtOEpFCESkCEvXn5tetnDJ1cEKitb+GH8LATM4+rQRLa/wPlgyZDaFxWvkNV5Uo70xkbANE8wG5M/6hMGsxnD0Ea//qUlGaVRBKKU+lVIhSKlgp5aU/N7/2dpaQbkGIngZv+CEMzBzVy3u3tUKrp5dWCjpzG5z4wX5yGVgnYytEDtLKnrg7fSfDqNu0CrBpm1wmRivXxZ2YuhWEoSAMdI6th/D+7auhk3wDBEYaRfwcjVK6g9rNzUuWXPYUhPWCFXc3XeDPwThMQYiIn4hsEZFdIrJXRJ7Ux3uLyGYROSIiy0XERx/31V8f0bf3cpRsbcKcLGfUYzIALTw17Yf293fw9oeL74Qj30D2bvvIZtCYc8egLK9jKQifQLj6Ncg/Cav/7BIRHLmCqAAmK6WSgGRguoiMBp4DXlRK9QPygN/q+/8WyNPHX9T3cy9MRqirgc7JzVBd1nb/gyWjbgOfIPjhX+0/l4F16hLkXFxio7X0HK2ZIXe8C4fWOP3yDlMQSqNYf+mtPxRauY6P9PF3gdn681mcr+/0ETBF7NZY2k6ERBsKwkDj6HoQT+g1rv3n8g/TGt3v+QTyTrT/fAaNydiqKeHIQa6WpPVM+jN0HQKr7oXSc069tEN9ECLiKSIpaJVfvwGOAvlKqWp9lwxAr4RHDHASQN9eAIRbOecdIrJNRLbZta2oLYTEGFFMBhrH1muzUb8Q+5xv9D1aG8qfFtvnfAb1ydiqRS95/P/2zjw8qvJc4L837Gsim+yQqKCIAorIoiRqLy7VqpW61bVVWqXuUtvb1lu5ti6116Xa1g0XqlJUVLRapRiCIlvYIohVSEACVJAlyL7ku3+8Z2BIJmEmc85seX/Pk2fOnPX9ZibnPd+7Nki2JLHTsImamrZ/A+/emdBLB6ognHP7nHP9ga7AICBu9e2ce8o5N9A5N7B9+1pq7weBJcsZoE9xaxb62186u4tW+Jw/HrZ94995Dc0l+Hpx+pmXwunUD/LvgsWv60wzQSQkisk5txkoBIYAOSIS6oXdFQjZbFYD3QC87dnAhkTIFzWWLGcAlBUBzh//QzjDblG/xmMD4Lc58HBfKJno7zVqomSiXi/R100EaxdB5d7UT5A7FKfcDp1PgLd+Bn88JiHfVZBRTO1FJMdbbob2sl6KKoqR3m5XA295y5O993jbP3QuxbKHLNTVAPU/NGntf4OXtYvUr7FrC+CgYhW8fXPwN+uSiXqdilWJvW6iKJ+rr+kUwRSJBg3h2Au0XPm3a0jEdxXkDKITUCgiJcBcYIpz7h3gLuB2EVmG+hie9fZ/Fmjrrb8d+EWAstWN/cly5oeotzin/oeep+o/rJ9MHQuuSsOYPTt0fZBMHVu9pEMirpsoyudqxnrLDsmWJH7mPF19XYDflc+/8AM450qAARHWl6L+iKrrdwI/CEoeXwjNIKwvRP1lYyls/ko7w/lNTb+roH9vybpuiJKJeoOrKNekwzPuVn+MX5QXR9fMKR1I8HdlmdSx0LS1mhZsBpH6BGVTL/XKa/jtf4CaM7LjydRO5etC8OatLWvUJJzu5qUQCf6uTEHEiuVCpD5B3nSWF2qz+bZHxH+uqpxxd/WudI2a6fogOeNuDaWsypDRwV4XgjdvpWuCXE0k+DdiCiJWrHFQ6hPUTadyH5R9BHkFwTScOf5iOO8x/Y0BNGml7/00t9R03aPP9d4ItOqkPbaXvAn79tZ6aNwEbTIpnwsNGkPHDCk+HfqNZHcDRF8D/I0E5oPIWFp3tpo5qcyeHd7MIQLx3nTWLNBe0n7mP1Tl+Iv179kzoXJP8MohxI7N0K43/GyOvi+ZCJOuh6L74fRfB3NN5/Tpd8/26tv8MpmUF2sOQaQZUroS+o0kAJtBxEp2V9hmyXIpx9oS+Med8MfeNe8T701neSEgkFsQ33miIS9fFdKOzcFfa+8uWPmJzoxCHH+xVpqd/hCUTQ/mukUPqHLIqtI5wC+Tyb49+hmme/5DEjEFESsh89K9HTIvoSjd2FkBc5+FJ/PhyVNh/otw1Ag49Y7qdlrJgtPifBIuLYROx0OLahVg/Cc3H1xlYnoBlM/1Cg/mH7z+7Aeh7ZEwaRRs8zlntWQiTLsP+l0OF/zZM5l4nPE//jwhr/tMx5UpDuokYAoiFkomwqJQk/kMTChKNSJFIjkHK2fCGzfAQ73hH7frk+LZD8Idn8NFz+jTZ7idtlkbvdl+HYdpcNdWWDUnmOilSHQ9CRo197K2A6a0SBVoj2EHr2/SEkaOg+0btCeBX3mrX82Ct0ZDj1PgvEdVGdy2GG5drImCfvofIHMc1EnAfBCxMHUs7Nt18LqQ8zNRtuL6QigSKeRsrlgFb94IH/wGtv5HK3P2uwROuErLD1R1Gle10747RgvhdR4Ax40kZlbOUJ9AkP6HcBo2hh5D9eYdNGVF+rk0y6m+rdPx8F//C/+8C2b9BYbcGN+1NpbChMshpztcMl7HGSKnm2YKz39R6w7FWwixvBhadNBrGXXCZhCxkOyEovpEpEikyj2wYyOc/wTc8W99+uxyYnQRRSN+B90Ga8nkr5fELs/yQmjYVM+RKHLz4Zt/w5YAa3/t3KI30tz8mvc5+SfQ62yYcrcWKawrOzbBSxfrbO7yidC8TfV9Bo/WUiML/lb364Qon6uzhxTrGpBOmIKIhWQmFNU3alK6+/bAgCvU/BELDRvDxS9o6Ojfr4jd+VtaqE/0jZrGdlw8hHwCQZqZVn6i5T3yCmreR0T9BC3aw2s/qlv7y7274e9XwqYVcOnLNeeRdD1Rs55n/yW+ENvtG2HDMj2fUWdMQcRCpCQVgIE/SrwsmU4QyrhVR/jBC1oq442fQGVldMdtWQPrP0+c/yHE4cep/yRIM1NZkTczOrn2/Zq3gYuehk1laq6LBefgH7fBio909tdjaO37Dxmt39Hn78R2nXBWz9dX8z/EhSmIWKiapNKqEzTJUdvshuXJli6zOO3XQBXTgB/hjz2GwJn3wRf/hI8eiu6Y0mn6mij/Q4isLMg9VW/iQRU2Li1S5RDNzKjnKTB8DCx6BRZNiP4aHz+sJqP8u9RvdCh6nwOH9YSZT0R/jaqUz1XHe+dq5eCMGDAFESuhiIvfbtaomes+0Frz4y+wGk1+0qAh4KB5O3zPGB10PRx/CRT+Pro+v8sL1bzS4dj4rx0reQUaWh3EA8jW9bBuSfXw1toY/nPoPhTeuT06mZa8CVPvgb4joeCX0V0jq4F22Cufo5FjdaF8rrbpbNKqbscbgCmI+GnfG654XW2e4y9MeM/YjMQ5+PgRzey980tVxrct9i9STATOfQQO7wuTrtPImtpkKZ2mN+qsJPy7hJzHZdP8P3fIt5FXEP0xDRqqqalBI3jtWk2yq4nyeWrK63aympZicRb3/yE0ya7bLKKyElbP879fRz3EFIQfdDkBLnsFNpbBSyPr5sQzDrBsquYsDLs5uJty4+YaZomo83R3hHIPoBFP29Yl3v8Qok2ezp5CZi4/KZ0GTbOhU//Yjsvuqk7rtYvgX/dE3mfzV/DKper3ufTl2J37TVrCwGtg6WTYtDK2Yzcuh52bzf/gA6Yg/CJ3OPzgOQ0DnHA57NmZbInSlxmPQKvOcFzAuSVtcuGiZ1UJvH1zZDt/qLx3ov0PIUR0FlH2kRYL9JOyIm18lNUg9mOP/i6cdD3MegK+eP/gbTsrNJx17y64/FVo0a5u8g36ifoRZj8Z23GWIOcbpiD85Ojv6lS6bDq8/uPgK2FmIuXzNNplyI0HJ1EFxVHfgdN+BZ++GvlGtLxQTV2hZlHJIK9An4j/U+LfOTeW6VN+bfkPh2LEvWqme/OGA7ka+/bCq9fChi/hkhehfa+6nz+7Cxx7oSbO7ayI/rjyudq3pV0c1zYAUxD+0/8yOOsBDdF7++boQykNZcbDavY48ZrEXfPUOzRy5oNfaV5AiD079X2yZg8hcofrq5/hrvv9D3EoiEZNYeRzmmz3aD8tifJAd1g+Fc59ODbfRk0MvhF2fwvzx0d/TPlc9T8kw2eUYdgnGASDf6oRGwtf0ptOUCGKmcY3X8LSd+Ck6xIbfZKVBRf+VfsWT7z6wNPwqtleEbskK4hWh0P7Y/xNmCst0jDteJ+y1y7UaOR9uwAHu7dBVkPNrfCDLidojajZf41uRr57G3z9mRXo8wlTEEGRfxec/FOY9WctmWwcmk8e07r9J/808ddumg2X/E1vMK9erZm/pYV6s+s57NDHB01evhYprC1qKFoqK1XZ5ObHX4Zi6ljNbj/o/Hv96wgHmjhXsUod1odizULNDDf/gy+YgggKEU3I6ncZFN4Ls5+K73xB9VhOFbas1eSr/j+Elh2SI8PhfeD8x3Xm8GCuJnhJA/j3e8mRJ5zcfJ3N1DUvIJx1S7RCazzmpRCJqE/W6yyN5pr5+KFn4yEHtfWA8IXAFISIdBORQhH5TESWiMgt3vr+IjJLRBaKSLGIDPLWi4g8JiLLRKRERE4ISraEkZUF33tc7dvvjdHkorrc5INu7J4KzPqzPnkOvSm5clTu1VnD7q36ft+u1Pisew5TZeWHmSnky4jHQR0iEfXJQolzq+cdWkGWz1VlkoieHfWAIGcQe4E7nHN9gMHAaBHpAzwI3OOc6w/c7b0HOBs4yvsbBfwlQNkSR4OG6shr1xuKn418k6+shK3rtCval1PUITf9D9oh7e9XaO38IBu7J5sdm6H4OehzgYaeJpOpY1VJhJMKn3XTbLXH++GoLivSRkDZXeI/V6T6ZH51hAun/+XQNEdnETXhnFamtdmDbwTWD8I5txZY6y1/KyJLgS6AA0KF3rOBUH2K84EXnXMOmCUiOSLSyTtPetOo6YEn0nD27NBM0zd+qnbTqjTNhpYdYV8N7U0zpcx48TiNVDnl1mRLktol3XPz1ey1c0vdeyXs2wMrZmi0nR+EstunjtXPKLurKge/+6M0bgEDr4UZj2qIbqQHiS2rtVeI+R98IyENg0SkJzAAmA3cCrwvIg+hM5hQaccuQHi3+XJv3UEKQkRGoTMMundPo0YgNdVpcpUaZtmyo0ar7H89/MCT2cN9vZlHFTKhzPienVrsMO80bS6fbLK7pu5nnZevBQZXzoDeZ9ftHOXFsGebP+alEFWbMwXFoFHwyZ80X+Xs+6tv358gZzMIvwjcSS0iLYHXgVudc1uAG4DbnHPdgNuAZ2M5n3PuKefcQOfcwPbt2/svcFDUaKvtpk9cJ4+CPudD95O1kmX4tD3SNL5BE/+n8clg0StayuKU25ItiZIok0ld6DoIGjaLz8xUVgSIVmZNN1p3hr4XwYLxkft5lBdreO3hfRMvW4YSqIIQkUaocnjJOTfJW301EFp+FRjkLa8GwjqX09VblxnEc+OpWmZcslSJpHub08p9GtraecCBZLBkU/Wz9rOKbLw0agrdB8fnqC4t0plapG5u6cDgG9VcO//F6tvKi7WuVCIy8OsJQUYxCTo7WOqc+7+wTWuA0Pz2dOBLb3kycJUXzTQYqMgI/0OIeG884WXGR9yrrSi/mhWoyIGz9G2tpDrs1tRqCxn+WftZRdYP8vJh3Wca1BAru7epGcaP8NZk0bm/1o+a/eTBiXN7d2vSnpmXfCXIGcQw4ErgdC+kdaGInANcD/xRRBYBv8fzJwDvAqXAMuBpIM7u6CmIXzeeE6/VPglFDx5631TFOXW4tjkCjjkv2dKkD/vLf0+P/diVM7Wvd16BnxIlniGjYUs5LH3rwLqvF8PenaYgfCbIKKaPqdYSbD/VCrV70Uujg5Ino2jcHIb+DP71Wy1ul459d8uK9Inv3EfqVk20vtKpn0a3lRbCcSNjO7a0EBo0hm6Dg5EtURx1pj5YfPI4HPt9nX2WF+s2i2DyFcukTldOug6aHab5EunIx49Aiw6aaW5ET1YD9deUTo+9xleZ1160cfNgZEsUWVkw+AZYM1+z3kFNZ606QWsfcjuM/ZiCSFeatFKH3RfvaYJdOrFmoT7NDrkx9kYyhpqZKr6CTWXRH7NtA/znU3/DW5NJ1cS51cVawTWVfFkZgCmIdGbQKK17/1GaFQOc8ajKPfBHyZYkPckr0NdYwl1XeD6LdHZQh9O4hf5+lr6jZtaNpWZeCgBTEOlMsxxVEp9NhnWfJ1ua6NhYCp+9qVmxTbOTLU160vZI7bgXSxvS0mnQuBV0Tv8SZ/sZNAoQGDdC3898Ivk1szIMUxDpzuAboVHz9JlFfPK4FsMbnHlBaglDRGcRZdOjb0hVWqTJcQ0SUjwhMaz4SD+LUO2sbetSo7BiBmEKIt1p0RZO+jEsfh02LE+2NLWzdR0s+Bv085rZG3UnLx92bNTwzkOx2fNXZIp5KcTUsdVrmKVCYcUMwhREJjD0Ji298dEfky1J7cz+qxYeHHpLsiVJf/bnQ0Thh/CzvHcqkcqFFTMEUxCZQMsO2sN50QTYtDLZ0kRm17cw9xlNimt3ZLKlSX9ae+1Co3FUlxVpSHGHY4KXK5EkohdFPccURKYw7GaNkf/44WRLEpl5z8POitQo6Z0p5OZrZde9NZSDB82VKC1S81KmhYCmcmHFDMEURKbQujMMuAIWvgQVKVTjsGQiPHwsfPBrNYOlup8kncgrgD3bNQegJtYtVedtppmXILULK2YIGRTSYHDKbVrlcsajcE4K1GkKtUoNdcMLte8E+yf2g56naGXf0iLoMTTyPiEfRaY5qEMkqhdFPcVmEJlETneNEJr/Anz7dbKl0WiSTG6Vmmya5Wh569oc1aVFcFiu/jYMI0ZMQWQap9yukUIz/5RcOcrnRe7MBhZl4id5+VqHaFeElrb79sKKj9O/equRNExBZBptj4C+I2HuOK2/k2hWzoTxF8Izp6v5IxIWZeIfeQWaKLbyk+rb1szXXt+Zal4yAscURCYy/E51Xs56IjHXC0XKPH8uPHeWFg/8zj1w3qMWZRI03U5W538kM1MoBLZninTrM9IOc1JnIu17a3/r2U9pEl2zw4K5jnOwbCpMf1DLLrfsCGfepzkZoZLSDZuqz6GiXGcOZ9xtTkU/adRM+5hHyocoK4KOx2m2vWHUAVMQmcrwMVoUb/aTUPCL+M5VMrH6Tb5xS+1FsWY+tO4K5zwEA66sXr7bokyCJzcfPvxf2PYNtGin63ZvV6U9aFTtxxpGLZiJKVPp2Bd6fxdm/Rl2bqn7eUKhqhWrAKevk0bBhMtg+wY1I928AAZdb70dkkVegb6GtyFdNUuDFfJOS4ZERoZgCiKTGX6nZi/Pfabu54gUqoqDZm3gpnlqTmrYOB4pjXjp1B+aZB9c/rt0GmQ1gh5DkiWVkQGYgshkupwAR35Hu27t3hbbsZtWqA+jplDVHZugQaO4RTR8oEFDTZoLd1SXFmkDncYtkieXkfaYgsh0hv9cTUHFz9W+3749GjP/wW/g8UHwaD94b4z2boiEhaqmFnn5qtQ3rYTtG2HtIgtvNeImMCe1iHQDXgQOBxzwlHPuUW/bTcBoYB/wD+fcz731vwR+7K2/2Tn3flDy1Ru6nwztesOU32g9pPBIom3fwJdT4Mv3YdmHsKtCzRI9h6npqNeZsHreweUywEJVU5Hw8t9NcwCXmfWXjIQSZBTTXuAO59x8EWkFzBORKajCOB/o55zbJSIdAESkD3ApcCzQGfiXiPRyrmpHECMmSibqk6XzOo9VrII3b4APfw+bVwAOWh4Ofc6DXmepw7NJqwPHtz1CXy1UNbVp31vDjEuLtARH45bQdWCypTLSnMAUhHNuLbDWW/5WRJYCXYDrgfudc7u8beu8Q84HJnjry0RkGTAImBmUjPWCqWO1SF44lXvh29VQ8EvoNQI69oOsWqyNFqqa+oioSWn5h9CktRbvMx+REScJ8UGISE9gADAb6AWcKiKzRaRIRE7ydusChHtEy711Vc81SkSKRaR4/fr1wQqeCdRU92jfHii4CzoPqF05GOlDw2awbT1sXA6r5lhvZiNuAr8ziEhL4HXgVufcFnTW0gYYDIwBJopE38nEOfeUc26gc25g+/btA5E5o7CuW/WDkolQMuHA+52b1XdkSsKIg0AVhIg0QpXDS865Sd7qcmCSU+YAlUA7YDXQLezwrt46Ix6s61b9YOpY2Lvz4HVWWt2Ik8AUhDcreBZY6pz7v7BNbwKnefv0AhoD3wCTgUtFpImI5AJHAXOCkq/eYF236gc1mRKttLoRB0FGMQ0DrgQ+FZGF3rr/BsYB40RkMbAbuNo554AlIjIR+AyNgBptEUw+YU7mzCe7a+SkRjMlGnEQZBTTx0BNvoUrajjmd8DvgpLJMDKWM+62fBXDdyx8xTAyATMlGgFg5b4NI1MwU6LhMzaDMAzDMCJiCsIwDMOIiCkIwzAMIyKmIAzDMIyImIIwDMMwIiKao5aeiMh6YGUdD2+HZnDXJ2zM9QMbc/0gnjH3cM4dsphdWiuIeBCRYudcvSqYb2OuH9iY6weJGLOZmAzDMIyImIIwDMMwIlKfFcRTyRYgCdiY6wc25vpB4GOutz4IwzAMo3bq8wzCMAzDqAVTEIZhGEZEMl5BiMhZIvJvEVkmIr+IsP0aEVkvIgu9v+uSIaefHGrM3j4Xi8hnIrJERF5OtIx+E8X3/HDYd/yFiGxOhpx+EsWYu4tIoYgsEJESETknGXL6SRRj7iEiU73xThORtO6YJCLjRGSd12At0nYRkce8z6NERE7wVQDnXMb+AQ2A5UAe2tp0EdCnyj7XAI8nW9YEj/koYAFwmPe+Q7LlDnrMVfa/CRiXbLkT8D0/BdzgLfcBViRb7gSM+VW0SyXA6cD4ZMsd55iHAycAi2vYfg7wHtqcbTAw28/rZ/oMYhCwzDlX6pzbDUwAzk+yTEETzZivB55wzm0CcM6tS7CMfhPr93wZ8EpCJAuOaMbsgNbecjawJoHyBUE0Y+4DfOgtF0bYnlY456YDG2vZ5XzgRafMAnJEpJNf1890BdEFCG/UW+6tq8pF3vTsNRHplhjRAiOaMfcCeonIDBGZJSJnJUy6YIj2e0ZEegC5HLiJpCvRjPm3wBUiUg68i86c0ploxrwI+L63fCHQSkTaJkC2ZBH1b78uZLqCiIa3gZ7OueOBKcALSZYnETREzUwF6NP00yKSk1SJEselwGvOuX3JFiQBXAY875zripoixotIpv/P3wnki8gCIB9YDdSH/my/UQAABZJJREFU7zoQMv3HshoInxF09dbtxzm3wTm3y3v7DHBigmQLikOOGX3KmOyc2+OcKwO+QBVGuhLNmENcSvqblyC6Mf8YmAjgnJsJNEULvKUr0fw/r3HOfd85NwD4lbcu7QMSaiGW337MZLqCmAscJSK5ItIYvTlMDt+hir3ue8DSBMoXBIccM/AmOntARNqhJqfSRArpM9GMGRE5GjgMmJlg+YIgmjF/BZwBICLHoApifUKl9Jdo/p/bhc2SfgmMS7CMiWYycJUXzTQYqHDOrfXr5A39OlEq4pzbKyI/A95HIyDGOeeWiMhYoNg5Nxm4WUS+B+xFnUHXJE1gH4hyzO8DI0TkM3T6PcY5tyF5UsdHlGMGvaFMcF74RzoT5ZjvQM2Ht6EO62vSeexRjrkAuE9EHDAdGJ00gX1ARF5Bx9TO8yX9D9AIwDn3V9S3dA6wDNgOXOvr9dP492IYhmEESKabmAzDMIw6YgrCMAzDiIgpCMMwDCMipiAMwzCMiJiCMAzDMCJiCsJIKURkaxT73CoizX285gUi0sfH830Sx7FbvdfOIvJaLfvliMiNdb2OYUSDKQgjHbkViElBiEiDWjZfgBZ58wXn3FAfzrHGOTeyll1yAFMQRqCYgjBSEhEp8Or5vyYin4vIS1626M1AZ6BQRAq9fUeIyEwRmS8ir4pIS2/9ChF5QETmAz8QketFZK6ILBKR10WkuYgMRTPo/+D1ijhCRPp7RQxLROQNETnMO9800b4SxSKyVEROEpFJIvKliNwbJvvWsOW7RORT75r3Rxhnrif7p1XO0TPUA0BEjhWROZ58JSJyFHA/cIS37g8i0lK0D8J871znh51nqYg8Ldr74wMRaeZtO1JE/uXJNl9EjvDWj/E+pxIRucfXL9ZIL5Jd79z+7C/8D9jqvRYAFWhtmSy0PMYp3rYVQDtvuR2aMdvCe38XcHfYfj8PO3fbsOV7gZu85eeBkWHbSoB8b3ks8Ii3PA14wFu+BS2f3Qlogta3altlDGcDnwDNvfdtIox3MnCVtzw67NieeD0AgD8BP/SWGwPNwrd76xsCrcM+k2Voj4CeaJWA/t62icAV3vJs4EJvuSk6KxuB9pEQ73N/Bxie7N+F/SXnL6NLbRhpzxznXDmAiCxEb3YfV9lnMGoemiEioDfQ8FpLfw9b7us9pecALdGSDQchItlAjnOuyFv1AtqEJkSobMenwBLn1b0RkVK0aFp4yZLvAM8557YDOOci1fUfBlzkLY8HHoiwz0zgV6Ld0SY55770xnqQ6MDvRWQ4UImWfD7c21bmnFvoLc8DeopIK6CLc+4NT7ad3jhGoEpigbd/S7SQ4/QIchkZjikII5XZFba8j8i/VwGmOOcuq+Ec28KWnwcucM4tEpFr8AoW1lGmyiryVdYgXzTUWu/GOfeyiMwGvgu8KyI/oXpxxR8C7YETnXN7RGQFOisIlxn0c2xWy+UEuM8592QM8hsZivkgjHTkW6CVtzwLGCYiRwKISAsR6VXDca2AtSLSCL2hVjufc64C2CQip3rbrgSKqBtTgGtDEVci0ibCPjPQIoJUkWk/IpIHlDrnHgPeAo7n4M8AtGPcOk85nAb0qE0w59y3QLmIXOBdo4kn5/vAj8L8OF1EpENUozUyDlMQRjryFPBPESl0zq1HK/C+IiIlqDnm6BqO+w1qd58BfB62fgIwRkQWeI7aq1GndQnQH/VDxIxz7p+oSarYM5HdGWG3W4DRIvIpNXcCuxhY7J2jL9picgNqVlssIn8AXgIGeue5qsr4auJKtJpxCeor6eic+wB4GZjpnes1DlZERj3CqrkahmEYEbEZhGEYhhERUxCGYRhGRExBGIZhGBExBWEYhmFExBSEYRiGERFTEIZhGEZETEEYhmEYEfl/FeewyqnVA+4AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for i in range(2):\n", " pylab.plot(distances, eval_counts[i], '-o', label=titles[i])\n", @@ -237,7 +155,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/lih_uccsd.ipynb b/community/aqua/chemistry/lih_uccsd.ipynb index c72f282fe..66b200343 100644 --- a/community/aqua/chemistry/lih_uccsd.ipynb +++ b/community/aqua/chemistry/lih_uccsd.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "scrolled": true }, @@ -24,29 +24,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step 22 --- complete\n", - "Distances: [0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9\n", - " 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. ]\n", - "Energies: [[-7.3133458 -7.50092208 -7.63097824 -7.72081237 -7.78224239 -7.82359926\n", - " -7.85069836 -7.86756328 -7.87700148 -7.8810157 -7.88107204 -7.87826816\n", - " -7.87344027 -7.86723396 -7.8601532 -7.8410427 -7.82307661 -7.80861236\n", - " -7.79836339 -7.79175315 -7.78771692 -7.78531925 -7.78391762]\n", - " [-7.31334583 -7.50092209 -7.63097825 -7.72081241 -7.7822424 -7.82359928\n", - " -7.85069838 -7.86756329 -7.87700149 -7.88101572 -7.88107204 -7.87826817\n", - " -7.87344029 -7.86723396 -7.86015321 -7.84104271 -7.82307664 -7.8086124\n", - " -7.79836343 -7.79175325 -7.78771697 -7.78531972 -7.78391847]]\n", - "Hartree-Fock energies: [-7.29954105 -7.48594487 -7.61577016 -7.70575334 -7.76736214 -7.80874318\n", - " -7.83561583 -7.85195386 -7.86053866 -7.86335762 -7.86186477 -7.85714496\n", - " -7.8500187 -7.84111204 -7.83090558 -7.80193896 -7.77087367 -7.74000074\n", - " -7.7108299 -7.68437642 -7.6612016 -7.64145387 -7.62497563]\n", - "VQE num evaluations: [ 217. 180. 201. 188. 191. 144. 190. 159. 182. 175. 195. 184.\n", - " 168. 196. 209. 179. 231. 211. 268. 569. 216. 948. 1032.]\n" + "Processing step __\b\b 0" ] } ], "source": [ "import numpy as np\n", "import pylab\n", + "import copy\n", "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", @@ -77,9 +62,14 @@ " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", + " dict = copy.deepcopy(qiskit_chemistry_dict)\n", + " dict['algorithm']['name'] = algorithms[j] \n", + " if algorithms[j] == 'ExactEigensolver':\n", + " del dict['optimizer']\n", + " del dict['variational_form']\n", + " del dict['initial_state']\n", " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", + " result = solver.run(dict)\n", " energies[j][i] = result['energy']\n", " hf_energies[i] = result['hf_energy']\n", " dipoles[j][i] = result['total_dipole_moment'] / 0.393430307\n", @@ -96,32 +86,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd81fX1+PHXO3uHkB2SkLAChBEgIBCGDAFRcVSJSKs4irXU2tpaR39V7Ff7tVZbay36dSDWBSgqqKiIihCGECAECIEAScjee997378/7oWGmIQAubkZ5/l43HLvZ557Y++576201gghhBAdZWfrAIQQQvQskjiEEEJcFEkcQgghLookDiGEEBdFEocQQoiLIolDCCHERZHEIaxKKTVdKXXc1nFYm1JKK6WG2DoOIbqCJA7RKZRSGUqpuS23a613aK2j2jtOKbVMKZXQzrWVUupXSqlkpVStUipfKbVNKXVr574L61BKRSultiilSpVS5Uqp/UqphZZ9Vyqlsi/yepeVpCzn1yilqps9/nCp1xN9j4OtAxCiA14ErgbuAxKARmAKcA+wtuXBSikFKK21qSuDbMenwMvAtZbXEwFlu3AAGKu1PmnNGyilHLTWBmveQ9iGlDiEVV3KL+oW5w8DfgncqrX+Wmtdp7U2aq0TtNbLmh23TSn1tFJqJ1ALDFJKhSilNll+6Z9USv282fFrlFJPtRWnpWT0e0spp0IptU4p5dJs/0NKqTylVK5S6q524vcDIoHXtNaNlsdOrXWCUsod+AIIafbLP0QpNUkptdtSOslTSr2klHKyXG+75dKHLMfHW7Zfq5RKspyzSyk15hI/75VKqfVKqf8opaqUUkeVUrHN9ocopTYopYqUUulKqV+3OPdDpdQ7SqlKYJlSylUp9ZZSqkwpdUwp9Yezn7PlM9zQ4v4vKqX+eSmxi64jiUN0d7OBLK11YgeO/RmwHPAEMjGXRrKBEOBm4C9KqdkXce/FwALMX/xjgGUASqkFwO+Bq4ChwI+q6JopAU4C7yilblBKBZ7dobWuwVySytVae1geuYAR+C3gh7lkNQdz8kRrPcNy+ljL8euUUuOA1cC9gC/wf8AmpZTzRbzX5hZh/uz6AZuAlyzv2w5z6ekQMMAS12+UUvObnXs98KHl3HeBJ4AIYBDmz+unzY59B1iglOpnub4DcCvwn0uMW3QRSRzCFj6x/DIuV0qVA6vaOdYPyG++QSmVbTm3Xik1sNmuNVrro5bqkSAgDnhYa12vtU4CXgduv4g4X9Ra52qtSzF/YcZYti8G3tRaH7F8+a9s6wLaPBncLCADeB7IU0ptV0oNbeec/VrrPVprg9Y6A3MimNlOnMuB/9Na/2Apjb0FNACT2znnQPO/QYsv/wSt9WattRF4Gxhr2T4R8Nda/9lScjoNvIb5y/6s3VrrT7TWJq11HebP6i9a6zKtdTbmasez7zMP2A7cYtm0ACjWWu9vJ27RDUjiELZwg9a639kHll/TbSgBgptv0FqHYk4ozpzfVpDV7HkIUKq1rmq2LRPzL+WOap6wagGPZtdufq/M9i6itc7WWv9Kaz0YGAjU0M6vaqXUMKXUZ5ZOAJXAXzC/37YMBH7XIhmHWeJsy/jmfwOt9VfN9rV83y6W0sBAzNVqze/zGBDY7Pjmnwv8+LNquf8t/lsK+SnmRCW6OUkcorv7FghtXs/ejuZTPecC/ZVSns22hQM5luc1gFuzfUEXEVMe5i/m5tftEK11FvBvYNTZTa0c9jKQCgzVWnth/nJurzE9C3i6RSJw01q/39G4OigLSG9xH0+t9cJmx7R8P3lAaLPXYS32fwKMUUqNwtx54N1OjllYgSQO0ZkclVIuzR6X3WtPa30cc1XNWqXUVZbGVntg6gXOywJ2Af9riWUMcDfmenWAJGChUqq/UioI+M1FhLUec8PvSKWUG+Z6/FYppXyUUk8qpYYopewsjeV3AXsshxQAvkop72aneQKVQLVSajjm3mTNFWBuMzjrNeAXSqkrlJm7UuqaFkmzM+wFqpRSD5/9OyilRimlJrZzznrgUcvnMAD4VfOdWut6zG0i7wF7tdZnOjlmYQWSOERn2gzUNXus7KTrrsBcN/53oBRzg/f/APFAe180SzA3zOYCHwNPaK23Wva9jbmRNwPYAqzraDBa6y+AFzCXhk5a/m1LoyWGrZiTwRHM7Q/LLNdKBd4HTluqf0IwN7zfBlRhTgotY1sJvGU5frGl48DPMTdil1liWnaBt3G2V9bZxwsdeN9GzKWCGCAdKMbcbuTdzml/xvz3Srd8Bh9a3n9zbwGjkWqqHkPJQk5CiK6ilLoPc9fqmc22hWOumgvSWlfaLDjRYVLiEEJYjVIqWCkVZ6mmiwJ+h7n0d3a/HfAgsFaSRs8hI8eFENbkhLmNKhIoxzw+ZBWAMg+ALMDcK22BrQIUF0+qqoQQQlwUqaoSQghxUXplVZWfn5+OiIiwdRhCCNFj7N+/v1hr7d+RY3tl4oiIiCAxsSNTGwkhhABQSrU7A0JzUlUlhBDiokjiEEIIcVEkcQghhLgovbKNQwhx6ZqamsjOzqa+vt7WoQgrcHFxITQ0FEdHx0u+hiQOIcR5srOz8fT0JCIiAqVsvcKt6Exaa0pKSsjOziYyMvKSr2OTqiplXoYzyfLIUEoltXKMi1Jqr1LqkGX5yidtEasQfU19fT2+vr6SNHohpRS+vr6XXZq0SYlDax1/9rlS6nmgopXDGoDZWutqpZQjkKCU+kJrvaeVY4UQnUiSRu/VGX9bmzaOK/M7WIx5WunzaLNqy0tHy8Nq86MYTZp/f3eS7SeKrHULIYToFWzdq2o6UKC1Tmttp2WhmCSgEPhaa/1DWxdSSi1XSiUqpRKLii7+y9/eTvHq9tNsScm/8MFCCKvy8PA47/WaNWv41a9+1cbRrUtKSmLz5s2dGdZ51qxZg7+/PzExMcTExHD77ReznL3Ztm3buPbaa60QnXVZrapKKbWV1pfj/KPWeqPl+RJaKW2cZVk4JkYp1Q/4WCk1Smt9pI1jXwVeBYiNjb2kkkmErxuZJbWXcqoQohsxGAwkJSWRmJjIwoULW93v4HD5X3/x8fG89NJLl32dnsZqiUNrPbe9/ZZlRW8CJnTgWuVKqe8wT73cauLoDAN93TmYVWatywshOsGnn37KU089RWNjI76+vrz77rsEBgaycuVKTp06xenTpwkPD2fnzp3U1dWRkJDAo48+yrFjx87b/8477/DII4+wbds2GhoaWLFiBffeey8Af/vb31i/fj0NDQ3ceOONPPlkx/vmJCUl8Ytf/ILa2loGDx7M6tWr8fHx4eTJk/ziF7+gqKgIe3t7Pvjgg/PO27dvH8uXL+fDDz9k8ODBnfqZdTZbdsedC6RqrbNb26mU8geaLEnDFbgK+Ks1A4rwdeOz5FwaDSacHGxdiyeE7T356VFScjt3faWRIV48cV10u8fU1dURExNz7nVpaSmLFi0CYNq0aezZswelFK+//jrPPvsszz//PAApKSkkJCTg6urKmjVrSExMPFciWLly5Xn7X331Vby9vdm3bx8NDQ3ExcUxb9480tLSSEtLY+/evWitWbRoEdu3b2fGjBk/inPdunUkJCQA8MADD3DnnXdy++23869//YuZM2fy+OOP8+STT/LCCy+wdOlSHnnkEW688Ubq6+sxmUxkZWUBsGvXLu6//342btxIeHj45X/IVmbLxHErLaqpLOstv661XggEY15X2R5zW8x6rfVn1grGaGjkh6x4pvaPILtsJoP8PS58khDCKlxdXUlK+m8v/bNJAMzjTOLj48nLy6OxsfG88QiLFi3C1dW1zes2379lyxaSk5P58MMPAaioqCAtLY0tW7awZcsWxo0bB0B1dTVpaWmtJo6WVVUVFRWUl5czc6Z5Zdw77riDW265haqqKnJycrjxxhsB8yC8s44dO8by5cvZsmULISEhF/dB2YjNEofWelkr23KBhZbnycC4rorH3sGJEmUgyCWfzJJaSRxCwAVLBrZw//338+CDD7Jo0SK2bdvGypUrz+1zd3dv99zm+7XW/Otf/2L+/PnnHfPVV1/x6KOPnqu2Ouvf//43r732GkCnNroHBwdTX1/PwYMHe0zikPqYZsKUCzWOtaQX19g6FCFEGyoqKhgwYAAAb731VpvHeXp6UlVV1eb++fPn8/LLL9PU1ATAiRMnqKmpYf78+axevZrqavNogJycHAoLC1mxYgVJSUkkJSW1+QXv7e2Nj48PO3bsAODtt99m5syZeHp6EhoayieffAJAQ0MDtbXmjjj9+vXj888/59FHH2Xbtm0X92HYiCSOZsJd+lPiaCSzRBKHEN3VypUrueWWW5gwYQJ+fn5tHjdr1ixSUlKIiYlh3bp1P9p/zz33MHLkSMaPH8+oUaO49957MRgMzJs3j9tuu40pU6YwevRobr755nYTUEtvvfUWDz30EGPGjCEpKYnHH38cMCeRF198kTFjxjB16lTy8//b9T8wMJDPPvuMFStW8MMPbY466DZ65ZrjsbGx+lIWcnrj0zt5oTSRK5r+xuv3LLBCZEJ0f8eOHWPEiBG2DkNYUWt/Y6XUfq11bEfOlxJHM2H9zF3gasoP2jgSIYToviRxNBMeMAYAU9MpmowmG0cjhBDdkySOZsIGTALAyTGP3PI6G0cjhBDdkySOZtw9gvA1arRTmfSsEkKINkjiaCFUOVHnVCNzVgkhRBskcbQw0NmHUkcDGdIlVwghWiWJo4Vw9xCKHezILpLp1YWwhVmzZvHVV1+dt+2FF17gvvvu4+jRo8yePZuoqCgGDx7ME088gclk7sjScprzmJgYUlJSbPEWej1JHC2EW7rkVpVJl1whbGHJkiWsXbv2vG1r167l1ltvZdGiRTzyyCMcP36cw4cPs3fvXv75z3+eOy4+Pv7c6O6kpCRGjhzZ1eH3CZI4WggPGA2AqfEEBumSK0SXu/nmm/n8889pbGwEICMjg9zcXE6ePHluBlsANzc3XnrpJf72t7/ZMtw+yZaz43ZLoSETAXB2zCOvop6w/m42jkgIG/riEcg/3LnXDBoNVz/T5u7+/fszadIkvvjiC66//nrWrl3L4sWLOXr0KBMmnL98z+DBg6mrq6O8vBw4f5pzgN27d7c7W664NFLiaMHbO5x+RhM4lUoDuRA20ry6au3atSxZsqRD57WsqpKkYR1S4mhFqHKi3rGGjJJapg+1dTRC2FA7JQNruv766/ntb3/LgQMHqK2tZcKECRw8eJDt27efd9zp06fx9fWlX79+Nomzr5ISRysGOvWjzLGJTBkEKIRNeHh4MGvWLO66665zpY2lS5eSkJDA1q1bAfMqgb/+9a8vallX0TkkcbQi3C2IIgfFmeIiW4ciRJ+1ZMkSDh06dC5xuLq6smnTJp5++mmGDRuGn58fcXFxLF269Nw569atO6877q5du2wVfq8mVVWtCOs3GFPlESpLDgEzbR2OEH3SDTfcQMtlH0aNGsV3330HwCeffMKDDz7IbbfdxsCBA1m2bBnLli2zQaR9j5Q4WhHuPwoAY/1xjKbet16JEL3BDTfcwOnTpxk4cKCtQ+lzJHG0IizEvJaJs2MO+ZX1No5GCCG6F0kcrfDpNwgPkwnlVCIN5EII0YIkjlYoOztCtSMNjtVkyCy5QghxHkkcbRjo5EW5UxOZMghQCCHOI4mjDeFugRQ5QEZRia1DEUKIbkUSRxvCvCMxKEVlSSfP0yOEuCB7e/vzxmM880znjWBPSkpi8+bN5163NR17bm4uN998c6fd91JkZGQwatQom8bQGpuM41BKrQOiLC/7AeVa65g2jrUHEoEcrfW1XRQi4X7RkP0FTQ3HMJk0dnaqq24tRJ/n6upKUlKSVa6dlJREYmIiCxcuPLctPj6el1566UfHfvjhh1aJoasZDAYcHDrv694mJQ6tdbzWOsaSLDYAH7Vz+APAsa6J7L/Cgy1dcu1zKKxq6OrbCyFaqKioICoqiuPHjwPmkeWvvfYaAPfddx+xsbFER0fzxBNPnDtn3759TJ06lbFjxzJp0iQqKip4/PHHz40wX7duXZv3a/5rv7a2lsWLFzNy5EhuvPFGrrjiChITEwHYsmULU6ZMYfz48dxyyy1UV1cDEBERwRNPPMH48eMZPXo0qampAHz//ffnSjbjxo2jqqoKrTUPPfQQo0aNYvTo0a3GNXnyZI4ePXru9ZVXXkliYiI1NTXcddddTJo0iXHjxrFx40bAXJJatGgRs2fPZs6cOZf8ubfGpiPHlVIKWAzMbmN/KHAN8DTwYBeGhp/fCFxMGnunYjJKagjydunK2wvRLfx1719JLU3t1GsO7z+chyc93O4xdXV1xMT8txLi0UcfPVcqWLZsGQ888ABlZWX8/Oc/B+Dpp5+mf//+GI1G5syZQ3JyMsOHDyc+Pp5169YxceJEKisrcXNz489//jOJiYnnShhr1qxpdTr25latWoWPjw8pKSkcOXLkXGzFxcU89dRTbN26FXd3d/7617/y97//nccffxwAPz8/Dhw4wKpVq3juued4/fXXee655/j3v/9NXFwc1dXVuLi48NFHH5GUlMShQ4coLi5m4sSJzJgx47wY4uPjWb9+PU8++SR5eXnk5eURGxvLY489xuzZs1m9ejXl5eVMmjSJuXPnAnDgwAGSk5Pp37//pfyp2mTrKUemAwVa67Q29r8A/AHwvNCFlFLLgeUA4eHhlx2YsrMjTNvT4FRFZkkNkwf5XvY1hRAd01ZV1VVXXcUHH3zAihUrOHTo0Lnt69ev59VXX8VgMJCXl0dKSgpKKYKDg5k40bzGjpeXV5v3a6uq6qyEhAQeeOABwDztyZgxYwDYs2cPKSkpxMXFAdDY2MiUKVPOnXfTTTcBMGHCBD76yFyxEhcXx4MPPsjSpUu56aabCA0NJSEhgSVLlmBvb09gYCAzZ85k37595+4DsHjxYubNm8eTTz7J+vXrz7W/bNmyhU2bNvHcc88BUF9fz5kzZ859Xp2dNMCKiUMptRUIamXXH7XWGy3PlwDvt3H+tUCh1nq/UurKC91Pa/0q8CpAbGxsp8wTEu7oyXFjOenFMpZD9E0XKhl0NZPJxLFjx3Bzc6OsrIzQ0FDS09N57rnn2LdvHz4+Pixbtoz6+q6Z8UFrzVVXXcX777f6NYazszNgbuw3GAwAPPLII1xzzTVs3ryZuLi4H62v3pYBAwbg6+tLcnIy69at45VXXjkXw4YNG4iKijrv+B9++AF3d/dLfWvtslobh9Z6rtZ6VCuPjQBKKQfgJqCtSsY4YJFSKgNYC8xWSr1jrXhbE+4WQIEjZBaVd+VthRBt+Mc//sGIESN47733uPPOO2lqaqKyshJ3d3e8vb0pKCjgiy++ACAqKoq8vDz27dsHQFVVFQaDAU9PT6qqqi7qvnFxcaxfvx6AlJQUDh8297acPHkyO3fu5OTJkwDU1NRw4sSJdq916tQpRo8ezcMPP8zEiRNJTU1l+vTprFu3DqPRSFFREdu3b2fSpEk/Ojc+Pp5nn32WioqKc6WR+fPn869//evchJAHDx68qPd2KWxZVTUXSNVaZ7e2U2v9KPAogKXE8Xut9U+7LjwI94qgqTqNstKjwOSuvLUQfVrLNo4FCxZw55138vrrr7N37148PT2ZMWMGTz31FE8++STjxo1j+PDhhIWFnas2cnJyYt26ddx///3U1dXh6urK1q1bmTVrFs888wwxMTE8+uijwI+XnF21ahUhISHnXv/yl7/kjjvuYOTIkQwfPpzo6Gi8vb3x9/dnzZo1LFmyhIYGcyeap556imHDhrX53l544QW+++477OzsiI6O5uqrr8bJyYndu3czduxYlFI8++yzBAUFkZGRcd65N998Mw888AB/+tOfzm3705/+xG9+8xvGjBmDyWQiMjKSzz777NI//A5QLact7ipKqTXAHq31K822hQCva60Xtjj2SsyJo0PdcWNjY/XZHg+XY+/B17k7+Z9E5V7FB488j7ktX4je7dixY4wYMcLWYXQrRqORpqYmXFxcOHXqFHPnzuX48eM4OTnZOrRL0trfWCm1X2sd25HzbVbi0Fova2VbLrCwle3bgG1WD6qF8KAJkAxO9tkUVTcQ4Ck9q4Toi2pra5k1axZNTU1orVm1alWPTRqdwda9qrq1gIDROGmNg2MxmSW1kjiE6KM8PT3pjFqM3kKmHGmHnb0DA0x2NDlVki7Tq4s+xFZV2ML6OuNvK4njAsId3Kl0rJdZckWf4eLiQklJiSSPXkhrTUlJCS4ul1d7IlVVFxDuGsAeYxXpRdW2DkWILhEaGkp2djZFRUW2DkVYgYuLC6GhoZd1DUkcFxDuGU5D7WnKSlOADnU4EKJHc3R0JDIy0tZhiG5MqqouINx3OACNNUel6C6EEEjiuKCwoPEAONmdoaSm0cbRCCGE7UniuIDgoHE4aI2jU6E0kAshBJI4LsjB0YUQk8LgWEmGTHYohBCSODoi3N6NKifpkiuEECCJo0PCXf0pdDRJl1whhEASR4eEe4ZRa2dHcWlb600JIUTfIYmjA8L6m7vkNlQfli65Qog+TxJHB4QHmtcFcFIZlNc22TgaIYSwLUkcHTAgOBY7rXFyKiJDGsiFEH2cJI4OcHR2J9ikMDqVk1kiXXKFEH2bJI4OCrN3pdqxTkocQog+TxJHB4U796fI0SQlDiFEnyeJo4PCPcOosrcjr/C0rUMRQgibksTRQWE+QwFoqE62cSRCCGFbkjg66FyXXNKpkC65Qog+TBJHB4WGTATA2amAzFJpIBdC9F2SODrIxdWHQKPG5FROhjSQCyH6MEkcFyHMzoUax1pOy2SHQog+TBLHRRjo3J8SJyNHciptHYoQQtiMgy1uqpRaB0RZXvYDyrXWMa0clwFUAUbAoLWO7bIgWxHmMYCyxjxO5pwGbBqKEELYjE0Sh9Y6/uxzpdTzQEU7h8/SWhdbP6oLC/cZCqWJODYeo7CyngAvF1uHJIQQXc6mVVVKKQUsBt63ZRwdFR4wBoB+Tpkczmkv1wkhRO9l6zaO6UCB1rqtFZI0sEUptV8ptby9CymlliulEpVSiUVFRZ0eKEBYyCQAXJ3zSc6WxCGE6JusVlWllNoKBLWy649a642W50tov7QxTWudo5QKAL5WSqVqrbe3dqDW+lXgVYDY2FirrLbk5hFAqBFwK5YShxCiz7Ja4tBaz21vv1LKAbgJmNDONXIs/xYqpT4GJgGtJo6uEu3kwyFdSll2BVprzLVtQgjRd9iyqmoukKq1zm5tp1LKXSnlefY5MA840oXxtSq631DyHRSGukzyK+ttHY4QQnQ5WyaOW2lRTaWUClFKbba8DAQSlFKHgL3A51rrL7s4xh+JHjAFgAjXJGnnEEL0STbpjgugtV7WyrZcYKHl+WlgbBeHdUEjBl8Nyf/Ey/UUh7MrmB/dWjOOEEL0XrbuVdXjeHoNIMII2r2IZGkgF0L0QZI4LsFIZ19yHes4nF2O1lbpwCWEEN2WJI5LMLLfMAodFHYNmWSX1dk6HCGE6FKSOC5B9ICpAIS7HZTxHEKIPkcSxyUYMWQBSmu8XE9LzyohRJ8jieMSuHsEEWmyw+hWzOGccluHI4QQXUoSxyWKdvYj26mOZMsIciGE6CskcVyi6P5RlNjb4WI4TaYsJSuE6EMkcVyi6NBpAIS7HpIGciFEnyKJ4xJFDb4aO63xcDstiUMI0ad0KHEopT5SSl2jlJJEY+Hq1p9B2h6DWwnJ2dJALoToOzqaCFYBtwFpSqlnlFJRFzqhL4h29ifLsZ4jOeWYTNJALoToGzqUOLTWW7XWS4HxQAawVSm1Syl1p1LK0ZoBdmfR/YdTZm+Hu/EU6SU1tg5HCCG6RIernpRSvsAy4B7gIPBPzInka6tE1gNEh00HIMztEIdlIKAQoo/oaBvHx8AOwA24Tmu9SGu9Tmt9P+BhzQC7s2GD5uGgNR5u6TKCXAjRZ3R0PY4XtdbftbZDax3bifH0KC6uPgzW9jS6lsoIciFEn9HRxOGjlLqpxbYK4LDWurCTY+pRol0C+EbnUpJejtGksbeTNciFEL1bR9s47gZeB5ZaHq8BDwM7lVI/s1JsPUJ0/5FU2Nvho9I4VVRt63CEEMLqOpo4HIERWuufaK1/AowENHAF5gTSZ0WHzwBggEuytHMIIfqEjiaOUK11QbPXhUCY1roUaOr8sHqOoZYGcnf3DA7LQEAhRB/Q0TaObUqpz4APLK9/YtnmDvTpb0snZ0+GaQfqXUplDXIhRJ/Q0cSxArgJmGZ5/R9ggzbPJz7LGoH1JNGuQXxJFiWnyjEYTTjYy8wsQoje64KJQyllD2zVWs8CNlg/pJ5npO9IPsjNwc/uOGmF0xkR7GXrkIQQwmou+NNYa20ETEop7y6Ip0eKDp8JwADXwzKCXAjR63W0TqUaOKyUekMp9eLZhzUD60mGRMzFSWvc3DJJloGAQoherqNtHB9ZHp1CKbUOODvDbj+gXGsd08px/TCPHxmFufvvXVrr3Z0VR2dxdHYnSjtS51omJQ4hRK/XocShtX5LKeUKhGutj1/uTbXW8WefK6WexzwKvTX/BL7UWt+slHLCPFdWtzTSLZjPajMpyyyj0WDCyUEayIUQvVNHJzm8DkgCvrS8jlFKbbrcmyulFLAYeL+Vfd7ADOANAK11o9a629YDRfuNosbOjkCHY5woqLJ1OEIIYTUd/Vm8EpiEZcyG1joJGNQJ958OFGit01rZFwkUAW8qpQ4qpV63jBtplVJquVIqUSmVWFRU1AmhXZzogeZeycEuR2QEuRCiV+to4mjSWrf8NjS1d4JSaqtS6kgrj+ubHbaEVkobFg6Y1/t4WWs9DqgBHmnrflrrV7XWsVrrWH9//wu/o042aOAsXEwaN/czMlOuEKJX62jj+FGl1G2AvVJqKPBrYFd7J2it57a3XynlgHlQ4YQ2DskGsrXWP1hef0g7icPWHBxdiMKJGpdyKXEIIXq1jpY47geigQbMJYRK4DeXee+5QKrWOru1nVrrfCCr2frmc4CUy7ynVUW7h5DhaCAtv4xY08DOAAAgAElEQVT6JqOtwxFCCKvo6JrjtVrrP2qtJ1qqg/6ota6/zHvfSotqKqVUiFJqc7NN9wPvKqWSgRjgL5d5T6uK9htDnZ0ixPEoqfnSQC6E6J06VFWllBoG/B6IaH6O1nr2pd5Ya72slW25wMJmr5OAHrPCYPTAWZD1KUGuR0g6U0ZMWD9bhySEEJ2uo20cHwCvYB6MJ3UwbYgYOBPX7Rp3jxy2pxWzLC7S1iEJIUSn62jiMGitX7ZqJL2AvYMTI5QzVc7lJJ8qpr7JiIujva3DEkL0ESaTxq4Llq/uaOL4VCn1S+BjzA3kAFgWchLNjHQfwIfVp2lqqmf3qRJmDQ+wdUhCiF6qvslIUlY5e06XsOd0CVX1Bj7/9XSr37ejieMOy78PNdum6ZxBgL1KtP9Y3qlNZ6j7Mb5NHSqJQwjRaVomigNnymk0mFAKokO8mDLIF6NJY2/lUkdH56qSyvoOio6YA5mfEO2fxnfHC9FaY55ZRQghLs6FEsXtkwcyeZAvEyP74+3q2GVxtZs4lFJ/0Fo/a3l+i9b6g2b7/qK1fszaAfY0A8Om4WvU1DudILusjpOF1QwN9LR1WEKIHqDBYCTpTDl7TpdaEkUZDd0gUbR0oRLHrcCzlueP8t81xwEWAJI4WrCzd2CaSxDfNuRjTyPfphZK4hBCtOpCieJnZxNFRH+83WyXKFq6UOJQbTxv7bWwmBF2JRtPr2Nm8AG+TQ3i3pmDbR2SEKIbMBhNHMwqZ9fJkh8lipHBXvzUkigmdbNE0dKFEodu43lrr4XFlLF34nBqLb4e+/n+1BQq6ppsWqwUQthOZX0T3x8v4ptjBWw7UUR5bVOPSxQtXShxjFVKVWIuXbhanmN57WLVyHowT68BjMeFNJWN0aTZkVbEtWNCbB2WEKKLZBTX8E1qId8cK2BveikGk8bHzZHZwwOYMzyQaUP8elSiaKndxKG1ltFrl2iG/zieK97DEI9Mvk0dIIlDiF7MYDRx4Ew53xwrYOuxAk4V1QAwLNCDe6YPYu6IAMaF+1i9m2xX6eg4DnGRpo9cwnPb9zA+cDffHB/aZSM6hRBdo7UqKEd7xRWRvvx08kDmDA8k3LfbrnZ9WSRxWEnkwCsJNUKp/XFKaho5lF3OuHAfW4clhLgMGcU1bD1WwLephT+qgpo7IpDpQ/3wdOm5VVAdJYnDSpSdHTM8BvJRTQaudjV8l1ooiUOIHqa9KqifzxjEnOG9qwqqoyRxWNHMyKt5L+UVZof8wLfHg3lwXtSFTxJC2FSjwcT3J4r4PDm3z1VBdZQkDiuKHXM7rkdextktiSMnZlNYWU+Al3RGE6K7MZk0P6SXsulQDpsP51NR19Qnq6A6ShKHFTk5ezLZ3pvDhgLAxLbjRSyeGGbrsIQQgNaao7mVbDqUy6akXPIr63Fzsmd+dBCLYkKYNsQPR/uOrq7dt0jisLIZwVfwXe7XTPA5xrepIZI4hLCxjOIaNh3KZWNSDqeKanCwU1wZ5c9j14xg7ogA3Jzka/FC5BOysuljlkHu1wzx3cvnJ8fSaDDh5CC/YoToSoVV9XyenMcnSbkcyioH4IrI/tw9bRBXjwrCx93JxhH2LJI4rCwwcAzDTXZkq9NUNxjYl1FK3BA/W4clRK9XWd/EV0fy2XQol50nizFp88SBjy0czrVjQgjp52rrEHssSRxdYLp3FKsrU/B1KuHb1EJJHEJYSX2TkW3HC9mYlMs3qYU0GkyE93djxawhXB8TwpAAmam6M0ji6AIzht3Aa/uPMSt4N9+lhvOna0faOiQheg2jSbPndAkbk3L44kg+VfUG/DycuG1SONfHhBAT1k8WU+tkkji6wOjhN+Oz7y80OR/hdOa1ZBTXEOHnbuuwhOjRThdVs3ZfFh8fzKGoqgEPZwcWjAri+pgQpgzyxUF6RFmNJI4uYO/gRJyTPwmNhdhh4NvUQu6aJqvxCnGxGgxGvjpawPs/nGH36RIc7BSzhwdww7gBzB4egIujzMvaFSRxdJEZoTP5LGMD0wIP8t3xIEkcQlyEjOIa3t97hg/2Z1Na00hYf1cemh/FLbGhBHjKoNquZpPEoZRaB5ydf6MfUK61jmlxTBSwrtmmQcDjWusXuibKzjU15i7s0z8k0CuRjaevoKbBgLuz5G0h2tJoMPF1SgHv7c1k58kS7O0Uc0cEcNsVA5k+xE9mm7Yhm3xzaa3jzz5XSj0PVLRyzHEgxnKMPZADfNxVMXY2b+9wxuLMKbJoNJrYebKYedFBtg5LiG4ns6SG9/dm8eH+LIqrGxnQz5XfzxvG4tgwmbKnm7DpT15l7uqwGJh9gUPnAKe01pnWj8p6ZviO4YXSRCLccvjueJgkDiEsmowmtqYU8N7eM+xIK8be0nZx2xXhzBjq3+dmn+3ubF1XMh0o0FqnXeC4W4H32ztAKbUcWA4QHh7eOdF1shkj4nlhZyITg3byXepgtNbSTVD0aVmltby/9wzrE7Mprm4gxNuFB68yly6CvKV00V1ZLXEopbYCrf2k/qPWeqPl+RIunBCcgEXAo+0dp7V+FXgVIDY2Vl90wF1gyKB5BG//PRX2x8mvrCclr5LoEG9bhyVEl2oymvjmWKGldFGEgnOli5nDAqR00QNYLXForee2t18p5QDcBEy4wKWuBg5orQs6KzZbUXZ2zHALY1NdFq729WxKypXEIfqM7LJa1u7NYn1iFoVVDQR5ufDr2UOJnxgm03/0MLasqpoLpGqtsy9w3AVLJT3JjMh5rEtdzaKIA6zd58lv5g7D1Un6noveSWvNjrRi3tyZzrYTRQDMigpgyaRwZkX5yyC9HsqWieNH7RZKqRDgda31Qstrd+Aq4N6uD886Jo6+A+eUN3ByPUBF3VQ+ScphyaTu2SYjxKWqbzKyMSmHNxLSOVFQjZ+HM/fPGkL8pHAGSOmix7NZ4tBaL2tlWy6wsNnrGsC3C8OyOle3/kyy92B/YzYjgjx4a1cGt04Mk0Zy0SsUVTXwzp5M3tmTSUlNIyOCvXjulrFcNzYYZwcpWfcWtu5V1SfNDJzEjvzv+P3IQp741o09p0uZMrhX5UfRxxzPr+KNhNN8cjCXRqOJOcMDuHt6JFMG+cqPol5IEocNzBh9B+R/R3XNx/i4LeOtXRmSOESPYzJpvk8rYnVCOjvSinFxtGPxxFDujItksL+HrcMTViSJwwaCQyYQhxsbypKJn+DPqwm55JTXSd2v6BHqm4x8dCCH1TvTOVlYTaCXMw/Nj+K2SeGykl4fIYnDRpaOWMovj73GYKcNwBTe3p3JI1cPt3VYQrSpsKqet3dn8u4PZyitaWTUAC9eiI9h4ehgWQ65j1Fad8uxcpclNjZWJyYm2jqMdpmMBha9NY5+yhFPx9fYfbqEPY/OkWmhRbeTklvJGwnpbDqUg8GkmTsikHumRTIpsr+0X/QiSqn9WuvYjhwrJQ4bsbN3YEnwNJ4pTOB/wpL54kgAG5NyiJ8oXXOF7ZlMmu+OF/JGQjq7TpXg5mTPbZPCuTMuUhYhE1LisKXqqjzmfHgVs538OVj0JEopNv96mvyKEzZT22hgw4Ec3kxI53RxDcHeLtwxNYIlE8PxdnO0dXjCiqTE0UN4eAZzg3sEH9Rm8NuxRv70VS1700u5YpD0sBJdq6S6gTW7Mnh7TybltU2MDfXmxSXjuHpUEI4yulu0IInDxpZMeoj3vv8VVeWv4+16B2/tzpDEIbpMVmktr+84zbrELBoMJuaNDOTn0wcxYaCPlHxFmyRx2FhExEzivnfjw7JDxE/w441d+eSW18mkb8KqjudX8cr3p9h0KBc7BTeOG8DyGYMZEiDjL8SFSeLoBs52zR3itAGtp/LOnkz+sEC65orOl5hRysvbTvFNaiFuTvbcOTWCu6dHEuwtP1REx0njeDfQvGuum/2r7MsoZbd0zRWdRGvNtuNFrNp2kn0ZZfi4OXJnXCS3TxlIPzcZsCfMpHG8h2neNffP4YfZkhLApkO5LI4Ns3VoogczGE18fjiPl7edIjW/igH9XFl53UgWTwzDzUn+ry8unXSX6Caun/Y4bibN3pz/EBXoyVu7MuiNpUFhffVNRt7encGVz23jgbVJGE2avy8ey7aHrmRZXKQkDXHZ5L+gbuJs19z1tRn8NsbI41/VkphZxsSI/rYOTfQQFXVNvLMnk9UJ6ZTUNDI+vB8rr4tm9vAA7GQ5VtGJJHF0I8275nq53M6aXRmSOMQFFVTWszohnXd/OEN1g4Ero/y5b+ZgmRJEWI0kjm7kbNfcDWWHWDzejzf35JNXUSc9XkSr0otreHX7KTbsz8FgMnHtmBB+MXMwI0O8bB2a6OUkcXQzZ7vmDnP+CDsVx7NfHucf8TG2Dkt0I0dyKnh52yk2H8nD0d68Bsby6YMJ93WzdWiij5DE0c3ETfglA4+8xsbcL7jvyjt48Zs0bhg3gJnD/G0dmrAhrTV7TpeyattJdqQV4+nswH0zB3NnXCT+ns62Dk/0MZI4upnmXXN/F5TEZ/4B/PHjw2z57QzpDdMHmUyarccKWLXtFElZ5fh5OPPwguEsnRyOl4tMOihsQ7rjdkNnu+Z+mPwKz9w0huyyOv7x9QlbhyW6UJPRxEcHslnwz+0sf3s/JTUN/M8No0h4eBb3XTlYkoawKfkJ2w0175r7oEcBSyaF80ZCOovGDmB0qLetwxNWVNdoZH1iFq9uP01OeR3Dgzz5560xXDM6GAeZpVZ0EzLlSDeVkfE9N2xbwQ3OIfz2hs+56u/f4+/pzMYVcfIF0gu1HIMxYaAPv7xyMLOHB0iX2h7CaGikob6cuvpyGhorqW8wPxoaq6lvqqa+sZqGphrqm2ppNDZgMDXRZGwy/2tqwmAynPvXoI00mQwYtIEmk9H8WhsxaNO5fw1omlr866UcePfOg5cUv0w50gtERMzkZx5DWVNzkmuOv82Ti67mvncP8EZCOvfOHGzr8EQnKayq542EdN7d898xGL+8cgiTImX8jjU1NlRRVZVHVXUeVTWFVNUVUVVXQlV9GdUNlVQ2VlLdVEODqZE6YyMN2kCDyUCdNtCgjTRoE3VoGtA0KKhTYOiEBO+oNQ4aHDF/OTtqcECZXys7HFE4oszPlR2uygFHZY+DssNB2eHt2DWzG0uJoxurqy3lxrUzcQQ+uG0H968/yY60Irb8ZqZ0vezhzpTU8n/bT/HB/mwMRhMLRwdz35WDiQ6RqsiOqq0upLD4GOVV2VTWFlNVV0J1QzlVDRVUNlVR3VRLlaGWKmMDVaZGqrSRKkxUKWi4wEh6O61x1+CqwRmFi7LDBTtclD3OygEXOwdc7BxxtnPExd4ZF3tnnO2dcXFwwcXBFRcHV5wd3XBxdMfF0R1nJw9cnD1xcfTE2dkTJ0cPHB1dcXBwwcHBFUdHN+ztnVB2tqtNuJgSh00Sh1JqHRBledkPKNda/2iwglLqt8A9gAYOA3dqresvdP3ekjgAdiWu4t6jL7PcayS3zH6LuX//npiwfrx99ySpwuiBjuVV8sr3p/j0UC4Odnb8ZEIo984YJOt4N1NbW0xR0TEKy9IorjhDYXUuRbWFFDWWU9RUTZGpgUKlqW3ny99Razw1eGmFp3LAw84RT3tnPO1d8XR0x9PJA08nbzxdfMwPVz883QPwdA/E0zMYN7cAm36J20K3r6rSWseffa6Ueh6oaHmMUmoA8GtgpNa6Tim1HrgVWNNVcXYHU2N/yXXHP2R1xVEWFG3j4QXD+dPGo3x0IIefTAi1dXiigxIzSlm17RTfphbi7mTPz6cP4q5pkQR6udg6tC5TW1tMcXEqhaUnKa7MpLA6h6LaIooayilqqqLQ1EiRMlHTSkJwNmn8tSLAzolhTv2Y5tQPf1d//D2C8XEPwss9AA83f7w8gvH0DMHZRUpu1mTTNg5l/sm8GJjdxiEOgKtSqglwA3K7Krbu5KGrXyNh4/Ws3PEYa5bu5uODOTz1eQpXRvnj6yGDv7qrlutg9Hd34ndXDeP2KRF4u/XO7rRNDTVk5e4hPXcf6aWppFdlkdFQSjpNVLWSEJy0xt90NiF4E+fUD39XPwI8QvDzCiOg32D8/Ybj6Tmgz5UAujNbN45PBwq01mktd2itc5RSzwFngDpgi9Z6S1sXUkotB5YDhIeHWylc2/DpP5iHIm7gsTMb+eDbB3nmJ89wzYs7+J/PUnjh1nG2Dk+00Ggw8VlyLq/tSOdYXiUh3i48cd1I4nvROhgV5RmkZ+0kvSCJ9PKTpNcWkGGoIstOY2xWhRpg1ETau7LQOYgg90AC3EPw8wolwGcI/n7D8fIMlYTQA1mtjUMptRUIamXXH7XWGy3HvAyc1Fo/38r5PsAGIB4oBz4APtRav3Ohe/emNo6ztMnEfW9P4aCpho0L3ua9w268+O1J3rprkkxH0k2UVDfw3g9n+M+eTIqqGhga4MG9MwdzfUwIjj2wC7XR0Ehu3j7Sc/eSXpxCemUm6Q0lZOgGSpuVHhy1ZqDJjkhHLyLcQ4j0GcagoHEMDJ2Kh2ewDd+BuBjdvnEcQCnlAOQAE7TW2a3svwVYoLW+2/L6dmCy1vqXF7p2b0wcANnZe7jp63u4wt6LZ+O/55qXdtJoMPHVb2bg7tw7fsn2RMfzq3hzZzofH8yhwWBi5jB/7p4WyfShfj2mA0NhwRGS0z4lpfAgGTW5pBuqyFRGmprF72PSRCpnIp19ifQaSKTfSCJDJhESPBF7B1mCtqfr9o3jFnOB1NaShsUZYLJSyg1zVdUcoPdlg4sQGjqZFQFTeK54D9v3PsMzN63g1ld38/P/JLJ62URZo7wLmUya79OKWJ2Qzo60YlwczT2k7oqLYEiAp63Da1djQxUpaZ+SfGYbyaWpJDeWkmdvThD2WhNqUkQ6eDLdLZDIfkOIDIwhInQq/XwibRy56C5sWeJYA+zRWr/SbFsI8LrWeqHl9ZOYq6oMwEHgHq11w4Wu3VtLHACGpnqWvjOZAm1g4082880pO373wSGmDfHjtdtjJXlYWV2jkQ0HsnlzZzqnimoI8HTmjqkR3DYpHB/37verW5tM5OUf4FDaZyQX7Ce5JptjqulcSSLYqBnr1J8x/UcwJnwWw4dcLT2S+qgeUVVlTb05cQAcO76RJbv/yA3OIaxcsoX1+7L4w4ZkZkX588rPJuDsIMmjs+VX1PPW7gze33uG8tomRg/w5u5pkSwcHYyTQ/dpv6itLSblxGccyvqe5PITJDdVUGwpTbiYNCOVM2M9BzI2aBKjh1xLQOAoG0csuoueUlUlLtGIqOu5/fAa3qw5yTVJq1k88S4MJs1jHx/mV+8dZNXS8T2yMbY7OpRVzuqd6XyenIdJa+aNDOLu6ZHEDvSxefuFNpk4k7WT5NNfcqjgAMl1eZxQhnO9msKNMNnZn7G+oxgTMYehg+fh6CgzDojLJyWOHqqutpSb1s7EHvhwyXZcXH34z+4MHt94lKtHBfHiknGSPC6RwWji65QC3khIJzGzDA9nB+InhrFsagRh/W33xWsyGjh2YiO70zZxoPw4ycZqKiy9m9xNmlF2roz1GsTYkMmMHroIn/4yp5noOKmq6gOJA2D3/ldYfuTfXKk8+Xv81zg6u7M6IZ0/f5bCtWOCeSE+RmbSvQiV9U2s35fFmzszyCmvI6y/K3dOjeSW2FA8bbT+RX7eQXYffY9d+T+wp6mUckuiGGRUjHUNYKzfWMZEXsWgiNnSs0lcFqmq6iOmTPgF/684hafyv+Ph9fN59tat3DUtEoPJxF82p+Jgp3h+cQz2F5jQra/LLKnhzZ0ZfJCYRU2jkUmR/fnTtSO5amRgl392tdWFJB59l12Z37KrOpN0e/MPO3+jZoZLIFND4rhi1G34+Q3v0riEaE4SRw8XP/9FGjffy7NFu3hs3Xz+99avWT5jME1Gzd++Oo6DvR3P/mQMdpI8ztNkNPHNsULWJ2bx3fFCHOwU144J4a64yC5dLKt59dOu0qMcpB6DUjibNLH27vzEbyxTo25iyKB5MsJadBuSOHqBny38Pxo/vZMXShNxWr+QP8d/yYpZQzAYNf/YegIHO8XTN46WkgdwsrCa9YlZfHQgm+LqRgI8nfnVrCH8dPLALptwsK3qp+Hajp95DWNKxDzGRy+RbrGi25LE0Uvcfd2bNH6ylFUVyTh+cA2PL/6CX88ZQpPRxEvfnSQlr5K/3DiaUQP63pdRTYOBzw/nsX5fFomZZTjYKWYPDyB+Yhgzh/lbvR3obPXTbkv102lL9ZOfUTPDJYApIXFMHrVUqp9EjyGN472INpn41yfxvFaVym2uA3nk5k2gFJ8m5/HnT1MorWngjqkR/G5eFB69fIoSk0mz/0wZHx3IZlNSLjWNRgb5uxMfG8ZN40Px97TerMLaZOLEyc3sSP3gx9VPdu5M8RvLlKgbGTpovlQ/iW5DelX10cQB5i+t5zbcyH9qT7PMfQgP3rQBZWdHRV0Tf/sqlXd/OEOgpwsrF41kfnSQzccidCatNQfOlPN5ch6bD+eRX1mPq6M914wJJn5imFXHXtRU57Pn0Bp2nPmWHXW5FFoG3UWZ7JjqOYgpkfOl+kl0a5I4+nDiAHPy+N8PruP9+jP83HMEv75p/bl9B8+U8djHRziWV8mc4QGsXBRt07EJl0trTXJ2BZ8fzuPz5DxyyutwsrdjZpQ/144JZs6IQKuUrrTJRMaZ7Ww/+h47ig+yX9dhUAoPk2aKgw/TQ6YwbfQd+AdEd/q9hbAGSRx9PHGAubfOn9cvZENjHiv6jeUX1/93NnqD0cSbOzP4x9YTaA0PzB3K3dMie8yAQYPRxKHscr5OKeTzw7lkldbhaK+YPtScLOaODMTLCuMu6uvKSDz8DtvTv2RHzRmyLTO7DDEqpnsNZvrga4kZtURGZ4seSRKHJA7AnDz+tG4+m5oKmW/vwyMLXj2vATanvI6Vm47ydUoBwwI9uHViOAtGBRHSz9WGUf+Y1pqMkloS0orYkVbM7lMlVDUYcLBTxA3x45oxwcwfGWSVVfVycxPZcfg/bC/Yx15jFfV2CheT5gp7T6YHTmTaqJ8yYMCkTr+vEF1NEockjnOMhkZWb76HV0oP4KLh9+ELuWHWM+c1ym45ms/fvz5Ban4VADFh/bh6VBBXjwom3Nc2v57LaxvZebKEhJNFbD9RTE55HQChPq5MH+rHtCH+xA3xpZ9b546WbmqqJenI+2w/9Rk7Kk9xytIDKtQIMzwGMj1iPrGjf4qLq0+n3lcIW5PEIYnjR9IztvHktt+zXzVwBS48MfsFwsLizjvmdFE1XxzJ58sj+RzOqQAgOsSLhaODWTAqiMH+Hp0el8mkySmv41heJcfzq0jNr+JYfiXpxTVoDZ7ODkwZ7Mv0oX5MH+rPQF+3Tm/gLio8SsLht9iRu4vdhnKq7RQOWhOr3JjuH8P0kbcRET5DekCJXk0ShySOVpmMBjZ88xB/z/maJmCF/xX8bP6/cXD88cC3rNJavjySz+YjeRw8Uw7AID93IvzcCfRyIdjbhSAvF4K8//vwdHY496WutabBYKKyvomqegPV9Qbzvw1NFFU1kGpJEsfzq6huMJy770BfN4YHeRId4k3cEF/Ghvbr9HEW9XVlHDj6PnsyvmZ31WlS7UyAeX3s6a4hTB84h8lj7sDdo7WVj4XonSRxSOJoV0FBMn/Zch/fmioZYbJn5ZSVjBx+Q5vH51XU8eWRfHaeLCa3vJ6CynpKahp/dJybkz0+bk7UNpqThMHU9n9bXi4ODA/2YkSQJ1FBXgwP9iQq0NMqS+CajAZS0z5jd9pGdpce4aCuo1GZSxXjcGFK/5HMGL6YYUMWSqlC9FmSOCRxdMjWhP/l6RPvUmYHP/MYytJpTxAUFNOhcxsMRgorG8ivrCevop6CinryK+spq23E3ckBTxcHPFwc8HRxxNPZ8trZ/Lq/uxOBXs5WG1NhMho4nfEtB05tZl/hAX5oKqXMMq3HEJMdUzwimDJwDhNG3Yabm59VYhCip5HEIYmjwyoqzvCPzfewoTEPpTUTceHa0FnMnfQbPL0G2Dq8DmlsqCLlxCYOZHzDgbJjHDRWUWlJFP5GzWTnAKaETGFy9G0yrkKINkjikMRx0c6cSeDzA6v4vPQwmfbgpDUz7X24dvB1TJ+wAkdnd1uHCJgH3mXn/MCJM99ztGA/ByrTOaLrabAkiggjjHcNYlzAeMYPvY6w0KlS/SREB0jikMRxybTJxJFjG/js6Ft8WZNBqZ3C26SZ5xrKgqibiRo0D2/v8C6Jpba2mJPp33A8Zw/Hy45zoq6AE7qBGkuSsNeaEdqR8R7hjA+ZQkzUTfj6DeuS2ITobSRxSOLoFE1Ntew5+DqfpX3Et43F1Fu+sPubNBHKmUhnXyI8w4nwG0FEUCwDBkzs8KhpbTJRUZFJQXEKhWWnKKjIoLA6j4L6YgoaK8kx1pJpp9Hqv0ujDlPODHMNJMoniqgBkxkaeRWubv2t9v6F6EskcUji6HS11YXsPfI26cUpZFSdIaOhlAzdQGmzNT4ctCbQpM7N1a9+9L/mfxvRFCl9rnrpLKU1/U0QoBwIcXBnmEc4UQFjGRY+kwEhE7Gz790z+gphS7J0rOh0bh4BXDn5d1zZYntFxRkysnaRUfj/2zv7YKvKKg4/P5FviKt8qSBeQRo/GCUthiTMihyjBijJcFDEJmvSEsZJrZxschyTcSrH+sNITDNEFDGJQQQVtRBQRD7D4kY0kUwQGYrmB7D6432v7nvY53IO956z9zmsZ2bPffd513n3b697zl5nv3vvtday7bUmdry9mwMWnoswLP6lxXoHjqJf52Po370//XoOpH/DYPr3PpU+fU/zPE+OUwN44HDaRK9egzir1yDOYlLWUhzHqRJ+u4njOI5TFpkEDklzJa2NyzZJa4vYTZO0UdImSdOrrdNxHMc5mEymqszsK81tSV/hsYUAAAkDSURBVD8B9hTaSBoGXAmMAN4FFktaaGZNVRPqOI7jHESmU1UKOScuBuakdJ8GrDKzt8xsH/As8KVq6nMcx3EOJutrHKOBf5nZlpS+jcBoSb0ldQPGAicWG0jS1yWtlrR6165dFZLrOI7jVGyqStKTQFpe6hvN7LHYvoT0sw3MbLOkGcAS4E1gLbC/2PbMbCYwE8JzHG2Q7jiO47RCxQKHmY1prV/S0YSpp3NaGWMWMCva3wpsb0+NjuM4Tvlk+RzHGOAVMysaDCT1M7OdkgYRgszIqqlzHMdxUsks5Yike4GVZnZX4rUTgLvNbGxc/wPQG3gPuNbMnipx7F3A31O6+gD/bqP0alNrmmtNL7jmalFrmmtNL7RN80lm1rcUw7rMVVUMSatLzcWSF2pNc63pBddcLWpNc63pheppzvquKsdxHKfG8MDhOI7jlMWRFjhmZi3gMKg1zbWmF1xztag1zbWmF6qk+Yi6xuE4juO0nSPtjMNxHMdpIx44HMdxnLKoy8Ah6UJJf5bUJOm7Kf1TJe1KpHb/WhY6E3rukbRT0sYi/ZJ0Z9yf9ZLOrrbGAj2H0nu+pD0J/95UbY0pmk6UtEzSn2Ka/mkpNnnzcymac+NrSV0kvSBpXdT7oxSbzrGsQpOkVZIaq6+0hZ5SNOfqeNGMpA6SXpa0MKWvsn42s7pagA7AX4HBQCdgHXB6gc1U4BdZa03oOQ84G9hYpH8s8DihZPdIQtbgPOs9H1iYtV8LNB0PnB3bPYG/pHwu8ubnUjTnxtfRbz1iuyOwChhZYHMVcFdsTwLm1oDmXB0vErquBR5I+/9X2s/1eMYxAmgys61m9i7wIDA+Y02tYmbPAf9pxWQ88BsLrAQaJB1fHXUHU4Le3GFmO8xsTWy/AWwGBhSY5c3PpWjODdFve+Nqx7gU3n0zHrgvtucBn4nlFTKhRM25Q9JA4PPA3UVMKurnegwcA4B/JNa3k/5luyhOR8yTVDRde04odZ/yxMfj6f/jks7IWkySeNr+EcKvyyS59XMrmiFHvo7TJ2uBncBSMyvqYwt1dvYQ0gplRgmaIX/HizuA64EDRfor6ud6DByl8Hug0czOBJbyQWR22oc1hLw3ZwE/B36XsZ73kdQDeASYbmavZ62nFA6hOVe+NrP9ZjYcGAiMUKjkmWtK0Jyr44WkLwA7zeylrDTUY+D4Jy0LPg2Mr72Pme02s3fi6t20kto9Jxxyn/KEmb3efPpvZouAjpL6ZCwLSR0JB+DZZjY/xSR3fj6U5rz62sz+CywDLizoet/HCqUVegG7q6sunWKac3i8GAWMk7SNMBX/aUm/LbCpqJ/rMXC8CAyVdLKkToQLQwuSBgXz1uMIc8d5ZgEwJd71MxLYY2Y7shZVDEnHNc+nShpB+JxlenCIemYBm83sp0XMcuXnUjTnydeS+kpqiO2uwGeBVwrMFgCXx/ZE4GmLV3CzoBTNeTtemNn3zGygmTUSjm9Pm9mlBWYV9XOW9Tgqgpntk/Qt4AnCHVb3mNkmSTcDq81sAXCNpHHAPsJF3qmZCQYkzSHcHdNH0nbgh4SLdFhIO7+IcMdPE/AWcEU2SgMl6J0IfFPSPuB/wKQsDw6RUcBlwIY4nw3wfWAQ5NPPlKY5T74+HrhPUgdCAHvIzBYWfPdmAfdLaiJ89yZlpLWZUjTn6nhRjGr62VOOOI7jOGVRj1NVjuM4TgXxwOE4juOUhQcOx3Ecpyw8cDiO4zhl4YHDcRzHKQsPHE7ukbS3BJvpkrq14zYnSDq9Hcd7vg3v3Rv/niBpXit2DZKuOtztOE6peOBw6oXpQFmBI967X4wJQLsFDjM7tx3GeNXMJrZi0kDIiuo4FcUDh1MzKNSeeCYmmntF0uz4lPc1wAnAMknLou0FklZIWiPp4ZjvCUnbJM2QtAb4sqQrJb0YkwQ+IqmbpHMJTwjfrlB/YYik4ZJWxkR3j0o6Jo73jKSfSVotabOkj0maL2mLpFsS2vcm2jdI2hC3eVvKfp4ctW8oGKNRsQaKpDMU6kisjZqGArcBQ+Jrt0vqIemp6IMNksYnxtks6VcKNSiWxKemkXSKpCejtjWShsTXr4t+Wq+UmhXOEUZ75mj3xZdKLMDe+Pd8QpbPgYQfPSuAT8S+bUCf2O4DPAd0j+s3ADcl7K5PjN070b4F+HZs3wtMTPStBz4Z2zcDd8T2M8CM2J4GvEp4GrkzIbtu74J9+BzwPNAtrh+bsr8LgCmxfXXivY3EGiiEhIaTY7sT0DXZH18/GvhQwidNhPoTjYSnoIfHvoeAS2N7FfDF2O5COIu7AJgZ33sUsBA4L+vPhS/ZLXWXcsSpe14ws+0AMQ1HI/DHApuRhGmm5TGNUydCkGlmbqI9LP6qbwB6EFLVtEBSL6DBzJ6NL90HPJwwac6FtgHYZDG/laSthERzydxRY4Bfm9lbAGaWVtdkFHBRbN8PzEixWQHcqFCXYb6ZbdHB5RYE3CrpPEL67QFA/9j3NzNrTmPyEtAoqScwwMwejdrejvtxASF4vBztewBDCcHZOQLxwOHUGu8k2vtJ/wyLUFfhkiJjvJlo3wtMMLN1kqYSzmoOV9OBAn0HiugrhVZzAZnZA5JWEYr5LJL0DWBrgdlkoC9wjpm9p5BNtUuBZgh+7NrK5gT82Mx+WYZ+p47xaxxOvfAGobwqwEpglKRTACR1l/ThIu/rCexQSF8+OW08M9sDvCZpdOy7DHiWw2MpcEXzHWCSjk2xWc4HSekmp/QjaTCw1czuBB4DzqSlDyCk0t4Zg8angJNaE2ahyuB2SRPiNjpHnU8AX01cJxogqV9Je+vUJR44nHphJrBY0jIz20XIYDpH0nrCtM6pRd73A8K8/nJaptN+ELhO0svxAvHlhIvl64HhhOscZWNmiwlTW6vjVNt3UsymAVdL2kDxCoQXAxvjGMMIJW93E6bnNkq6HZgNfDSOM4WDU5yncRkhG+x6wrWY48xsCaG29Yo41jxaBijnCMOz4zqO4zhl4WccjuM4Tll44HAcx3HKwgOH4ziOUxYeOBzHcZyy8MDhOI7jlIUHDsdxHKcsPHA4juM4ZfF/G284OAnJc3YAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -134,30 +103,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XecVNX5x/HPd3eBXXoVpSMggoKUpSjGFmMXNEEFkWIJamyJv2j0l/wUTTMxxVgSRaSIBZSoIYqixhaVtsACAiIroiy997Ll+f1xLziMu+wCOzszu8/79ZrX3rn33HufuTM7z9xz7j1HZoZzzjl3KCnxDsA551zi82ThnHOuRJ4snHPOlciThXPOuRJ5snDOOVciTxbOOedK5MnClQlJIyQ9F063kLRDUmr4vLGkjyRtl/RnBcZI2ixpZnwjP3KSLpe0InytXeMdT6KJ/hwkmsjPrCuZJ4s4k7Rc0u7wn2r/4/F4x3U0zOwbM6tpZgXhrOHABqC2mf0PcDrwA6CZmfWMV5xl4E/AreFrnVveO5dkknZGfXbujuH+hkn6OGreWEn7omKYB0V+DlwSS4t3AA6AS83s3VjuQFKameXHch+H0BJYZN/eAdoSWG5mOw93Q3F+HdFaAguLWlCOcZ5iZjnlsJ9D+aOZ/SrOMSQMSakVMUH6mUUC2/9LTtKfwiqbryRdGLG8jqRnJK2WtFLSbyKqfoZJ+kTSXyVtBEZISg2rgTaE27o1/HWaJukKSbOj9n+npH8VE1trSR+GVUvvAA0jlrWK2O5YYChwd/ir80ZgFHBq+PyBcJ1LJGVL2iLpU0mdI7a3XNIvJM0HdobbbSLpn5LWh6/l9ojyIyS9JOnZML6FkjIjljeX9Eq47sbIMzlJ10laHB7vqZJaFvHaq0naAaQC8yR9eYg4O0j6IHxdCyX1jdjOWEl/l/RmeCw+kXSspEfC/X9+pNVbkqZI+nPE8wmSRofTbSS9F772DZKel1T3UMdHUgfgyYj3bUspYjjwOQift9a31ZHvSnpCEdVAknqH7/0WSfMknRWx7ANJvw6P0XZJb0tqGC5Ll/RcGOsWSbMkNQ6XNZE0WdImSTmSflxMrG9KujVq3jxJPwynT5T0TridJZKujCg3VtI/wmO+Ezi7pGOTlMzMH3F8AMuBc4tZNgzIA35M8MV0M7AKULj8VeApoAZwDDATuDFi3XzgNoIzyAzgJmAR0AyoB7wLWLi8GrAJ6BCx/7nAj4qJbRrwl3C9M4DtwHPhslb7txs+Hwv8Jup1fRzxvCuwDugVvs6h4XGpFnGMsoHm4etIAWYD9wFVgeOBZcD5YfkRwB7gonB7vwemh8tSgXnAX8Pjlg6cHi7rB+QAHcJj8ivg00O8dwa0jXovI+OsEm7vf8M4zwmPU/uI47IB6B7G8R7wFTAkjPM3wPul3X/UsmPDY3oOMCg8PrXCZW0JqgGrAY2Aj4BHSnF8Dnrfinpvo5ZFfw6mEVTdVSWoitzGt5+ZpsDG8D1LCePbCDQKl38AfAmcEB7bD4CHwmU3Av8Gqofxdyeo8iR8bX8PX0cXYD1wTsTnZP/+hwCfRMTeEdgSHqMawArg2vBz0TV83zpGHIOtQJ8w9vR4f6/E5Lsq3gFU9kf4BbMj/GDuf/w4XDYMyIkoWz385zsWaAzsBTIilg/c/+USrvtN1L7eI0wm4fNzo/6Z/wH8Npw+CdhM+IUdtZ0WBImoRsS8FzjyZPEP4NdR+1gCnBlxjK6LWNariNd2LzAmnB4BvBuxrCOwO5w+NfzCSCvidb0JXB/xPAXYBbQs5r0rKllExvk9YA2QEjHvRWBExHF5OmLZbcDiiOedgC2H+OwYwRdu5Gfn/IjlPyL4kttA+IVfzHYuA+aW4vgc9L5FvIY9UTGMi/4cRHxmqkes+1zEZ+YXwPiobU8FhobTHwC/ilj2E+CtcPo64FOgc9T6zYECwiQZzvs9MDbic7J//7WAnfvfa+C3wOhw+irgv1Hbfgq4P+IYPHs03wPJ8PBqqMRwmZnVjXg8HbFszf4JM9sVTtYkqC+vAqwOT723EHyAj4lYd0XUfppEzYtePg64WpKAwcBLZra3iHibAJvt4DaHrw/9Eg+pJfA/+19H+Fqah/spKtaWQJOo8v9LkED3WxMxvQtID6tDmgNfW9HtCS2Bv0VscxMggl+9pRUZZxNghZkVRsz7Omp7ayOmdxfxvGYJ++sW9dmZGrHs3wS/tJeY2YGGaQVXp01QUHW5jeBLe3814qGOT3H+FBXD0CLKNAE2RXyG4bvv6RVR7+npwHERZaLf0/3HZjxBYpkgaZWkP0qqErHP7RHrRR9/AMIybwADwlkDgecjYusVFdsggh9tRb2WCskbuJPXCoIzi4aH+MeO7lJ4NUEV1H7NDypsNl3SPoJfxFeHj6KsBupJqhGRMFoUsb/SWkFwRvPbQ5SJ3PYK4Csza3eE+2qhohug98fxfBHrlVZknKuA5pJSIhJGC+CLo9j+4fgtsBhoLWmgmb0Yzv9dGGcnM9sk6TJgf7vNoY7P0XRRvRqoL6l6RMKI/PytIDizKLJN4VDMLA94AHhAUitgCsGZ6dvhPmtFJIwWwMpiNvUicL+kjwiqrd6PiO1DM/vBocI43LiTjZ9ZJCkzW03wz/BnSbUlpYQNl2ceYrWXgDskNQ0bNH9RRJlnCb448iJ/jUbt+2sgi+Cfs6qk04FLj+LlPA3cJKmXAjUkXSypVjHlZwLbFTQmZyhouD9ZUo9S7GsmwRfXQ+F+0iX1CZc9Cdwr6SQ4cAHBFUfxumYQ/AK+W1KVsMH2UmDCUWyzVCSdQVDHPoSgDegxSft/UdciqPrcGs67K2LVQx2ftUAzSVUPN56Iz8yI8DNzKgd/Zp4DLpV0fvh+pks6S1KzIjd48Gs9W1InBRd3bCNo5ys0sxUE1VO/D7fXGbg+3FdRphCcRTwITIxI8K8DJ0gaHL6PVST1UNDoX2l4skgM/9bB16m/Wsr1hhA0Fi4iaF+YxMGn7dGeJkgw8wkar6cQ1CNHXuY3HjiZ4v+h9ruaoO1gE3A/QZI5ImaWRdCI/zjB68ghqB8vrnwBcAlBg+VXBHXyo4A6pdhXAcGXVFvgGyCXoE4aM3sV+ANBdcY24DPgwmI2VSIz2xfu68Iwxr8DQ8zs8yPdZhHmRX12HpFUm+D9uNXMVprZf4FngDFhFeMDQDeCRtk3gFciYi72+BC0eS0E1kjaEBHD3VExRC6LNIigTWQjQeP9RIKzY8Iv9n4E1YnrCX7N30XpvqOOJfjsbyM4k/qQ4HMMQXVSK4KzvFcJ2hmKvEw9rHJ9haAt74WI+duB8wiqqFYRVIf9gaDxu9LYf1WNq4QUXIb7pJm1jJiXQXAVTTczWxq34FyFJ2ki8LmZ3R/vWFzJ/MyiEgmrbC5ScP1/U4IzguizmJuBWZ4oXFkLq27ahFWmFxCcSbwW77hc6XgDd+WyvwpiIsGVNm8Q3KsQLJSWh2Uui0dwrsI7lqCapwFB9dbNFoduUtyR8Woo55xzJfJqKOeccyWqMNVQDRs2tFatWsU7DOecSyqzZ8/eYGaNSipXYZJFq1atyMrKincYzjmXVCSVqvcFr4ZyzjlXIk8WzjnnSuTJwjnnXIkqTJtFUfLy8sjNzWXPnj3xDsUB6enpNGvWjCpVqsQ7FOfcYYppsgjv0vwbQTfJo8zsoajlZwCPAJ2BAWY2KWJZC4L+fpoT9Oh4kZktP5z95+bmUqtWLVq1akXQJY6LFzNj48aN5Obm0rp163iH45w7TDGrhgp7gHyCoBO1jsBASR2jin1D0GHcC3zXs8DDZtYB6EnQX9Fh2bNnDw0aNPBEkQAk0aBBAz/Lcy5JxfLMoifBKG/LIBgDmKAvmEX7C+w/U5AUOTgMYVJJM7N3wnI7jjQITxSJw98L55JXLBu4m3Lw6FG5lH7EsROALQoGjZ8r6eHwTOUgkoZLypKUtX79+jII2Tnnkss7i9byclbsB+pL1Kuh0ghGa/s50AM4niLGNzCzkWaWaWaZjRqVeANiXNSsefComGPHjuXWW289rG1kZ2czZcqUsgzrIGPHjqVRo0Z06dKFLl26MGTIkMPexgcffMAll1wSg+icc0UxM5768EuGj8/ixZnfUFAY237+YlkNtZKDh01sRvHDGUbLBbIjqrBeA3oTDOBSqeTn55OdnU1WVhYXXXRRkcvT0o7+bbzqqqt4/PHHSy7onIu7ffmF/PLVBbw8O5eLOx3Hn644hdSU2FbzxvLMYhbQTlLrcBjGAcDkw1i3rqT9pwvnENHWUVH8+9//plevXnTt2pVzzz2XtWvXAjBixAgGDx5Mnz59GDx4MPfddx8TJ06kS5cuTJw48TvLCwoKuOuuu+jRowedO3fmqaeeOrCPhx9++MD8++8/vDFmsrOz6d27N507d+byyy9n8+bNAOTk5HDuuedyyimn0K1bN7788suD1ps1axZdu3b9znzn3NHbtHMf14yawcuzc7nj++14bGBXMqp+p5a+zMXszMLM8iXdCkwluHR2tJktlPQgkGVmk8Mxk18F6hGMv/uAmZ1kZgWSfg78JxwGcjbBkKBH7IF/L2TRqm1H96KidGxSm/svPemQZXbv3k2XLl0OPN+0aRN9+/YF4PTTT2f69OlIYtSoUfzxj3/kz3/+MwCLFi3i448/JiMjg7Fjx5KVlXXgl/+IESMOWj5y5Ejq1KnDrFmz2Lt3L3369OG8885j6dKlLF26lJkzZ2Jm9O3bl48++ogzzjjjO3FOnDiRjz8Ohty+4447uPbaaxkyZAiPPfYYZ555Jvfddx8PPPAAjzzyCIMGDeKee+7h8ssvZ8+ePRQWFrJiRVBn+umnn3Lbbbfxr3/9ixYtWhz9QXbOHbB07XauH5fFmm17eHRgV/qe0qTc9h3T+yzMbArBOM+R8+6LmJ5FUD1V1LrvENx/kdQyMjLIzs4+8Hz/Fz8E94FcddVVrF69mn379h10/0Hfvn3JyMgodruRy99++23mz5/PpEnBbSpbt25l6dKlvP3227z99tt07doVgB07drB06dIik0V0NdTWrVvZsmULZ555JgBDhw7liiuuYPv27axcuZLLL78cCG6022/x4sUMHz6ct99+myZNyu9D7Fxl8MGSddz2wlyqVUll4vDedG1Rr1z3X6Hv4I5U0hlAPNx2223ceeed9O3blw8++IARI0YcWFajRo1Drhu53Mx47LHHOP/88w8qM3XqVO69915uvPHGg+Y/8cQTPP10cKJWlg3nxx13HHv27GHu3LmeLJwrI2bGuE+X8+Dri2h/bG2eGZpJk7rF/5CMlUS9GqpS2Lp1K02bBlcTjxs3rthytWrVYvv27cUuP//88/nHP/5BXl4eAF988QU7d+7k/PPPZ/To0ezYEdymsnLlStatW8ctt9xCdnY22dnZxX6p16lTh3r16vHf//4XgPHjx3PmmWdSq1YtmjVrxmuvBUMn7927l127dgFQt25d3njjDe69914++OCDwzsYzrnvyCso5FevfcaIfy/i+x0aM+mmU+OSKMCTRVyNGDGCK664gu7du9OwYcNiy5199tksWrToQAN3tBtuuIGOHTvSrVs3Tj75ZG688Uby8/M577zzuPrqqzn11FPp1KkT/fv3P2TSiTZu3DjuuusuOnfuTHZ2NvfdF9Qgjh8/nkcffZTOnTtz2mmnsWbNmgPrNG7cmNdff51bbrmFGTNmHMbRcM5F2rorj2FjZvL8jG+4+aw2PHVNd2pUi19lUIUZgzszM9OiBz9avHgxHTp0iFNErij+njhXsq827OT6sbNYsXkXv/9hZ/p3L7Jpt0xImm1mmSWVqzRtFs45lww+zdnAzc/PITVFvPDj3vRoVT/eIQGeLJxzLmG8MOMb7vvXZxzfqAbPDO1B8/rV4x3SAZ4snHMuzvILCvntlMWM+WQ5Z7dvxKMDu1IrPbHGffFk4ZxzcbRtTx63vziXD5as5/rTW/O/F3WIedcdR8KThXPOxck3G3dx/bhZfLVhJ7//YScG9kzcXg88WTjnXBzM/GoTNz03m4JC49nre3Jam+Ivn08Efp9FjJ199tlMnTr1oHmPPPIIN998MwsXLuScc86hffv2tGnThvvvv5/CwmAcqOhuw7t06cKiRRWuL0XnKqWXs1YwaNR06mZU4bVb+iR8ogBPFjE3cOBAJkyYcNC8CRMmMGDAAPr27cs999zDkiVLWLBgATNnzuRvf/vbgXJXXXXVgTuts7Oz6dgxelRa51wyKSw0fv/mYu6aNJ9erRvw6k/60Lrhobv2SRSeLGKsf//+vPHGG+zbtw+A5cuXs2rVKnJycg70DgtQvXp1Hn/8cR5++OF4huuci5Gde/O58bnZPPXhMgb3bsmYa3tQp3piXfF0KJWnzeLNe2DNgrLd5rGd4MKHDlmkfv369OzZkzfffJN+/foxYcIErrzyShYuXEj37t0PKtumTRt2797Nli1bgIO7DQeYNm3aIXuidc4lpnXb9zB09Cy+WLudB/udxJBTW8U7pMPmZxblILIqasKECQwcOLBU60VXQ3micC75rN66mwFPTefrjTsZPaxHUiYKqExnFiWcAcRSv379+NnPfsacOXPYtWsX3bt3Z+7cuXz00UcHlVu2bBkNGjSgbt26cYrUOVeWVmzaxdWjprNlZx7jr+9J95aJ0XXHkYjpmYWkCyQtkZQj6Z4ilp8haY6kfEn9i1heW1KupKQeHLpmzZqcffbZXHfddQfOKgYNGsTHH3/Mu+++CwQj6t1+++088MAD8QzVOVdGvtqwkyufmsa23fk8/+NeSZ0oIIbJQlIq8ARwIdARGCgp+nKeb4BhwAvFbObXwEfFLEsqAwcOZN68eQeSRUZGBpMnT+a3v/0tJ5xwAg0bNqRPnz4MGjTowDr7x93e//j000/jFb5z7jAsXbudK5+axr78QiYM703nZslfWxDLaqieQI6ZLQOQNAHoBxy4WcDMlofLCqNXltQdaAy8BZTYfW6iu+yyy4juDv7kk0/m/fffB+C1117jzjvv5Oqrr6Zly5YMGzaMYcOGxSFS59zRWLhqK4OfmUlaiph4Y2/aHlMr3iGViVhWQzUFVkQ8zw3nlUhSCvBn4OcllBsuKUtS1vr164840ERw2WWXsWzZMlq2bBnvUJxzRyh7xRYGjpxORpVUXrrx1AqTKCBxr4b6CTDFzHIPVcjMRppZppllNmrUqJxCc86575q1fBPXjJpB3epVmXhjb1olyc12pRXLaqiVQPOI583CeaVxKvA9ST8BagJVJe0ws+80kpfEzJASrwfHyqiijMroXLRPcjZww7gsmtRN5/kbenNsnfR4h1TmYpksZgHtJLUmSBIDgKtLs6KZHWjllTQMyDySRJGens7GjRtp0KCBJ4w4MzM2btxIenrF+ydyldv7n6/jxudmc3zDGoy/vheNalWLd0gxEbNkYWb5km4FpgKpwGgzWyjpQSDLzCZL6gG8CtQDLpX0gJmdVFYxNGvWjNzcXJK9PaOiSE9Pp1mz2I0l7Fx5e+uzNdz24hzaH1uL8df1ol6NqvEOKWZUUaoGMjMzLSsrK95hOOcqicnzVvGzidmc0qwOY67tSZ2M5OnnKZKk2WZW4hWnlecObuecKyMvZ63g7n/Op2er+jwzrAc1q1X8r9KK/wqdc64MjZ/+Nf/32md8r11DRg7OJKNqarxDKheeLJxzrpRG/XcZv3ljMed2OIbHr+5GepXKkSjAk4VzzpXKE+/n8PDUJVzU6VgeuaorVdMS9Ta12PBk4Zxzh2Bm/OWdL3jsvRwu79qUh/t3Ji21ciUK8GThnHPFMjN+N2UxT//3Kwb0aM7vLu9ESkrlvGfLk4VzzhWhsNC4f/JCxk//mmGnteK+SzpW2kQBniycc+47CgqNe1+Zz0tZudx45vHcc8GJlb4XCE8WzjkXIa+gkP95aR6T563iju+346fntqv0iQI8WTjn3AH78gu57cU5TF24ll9ccCI3n9Um3iElDE8WzjkH5Bd8myjuv7Qj1/ZpHe+QEkrlu/7LOeeiFBYad/9zvieKQ/Bk4Zyr1MyMB19fxCtzVnLnD07wRFEMTxbOuUrtL+98wdhPl3PD6a257Zy28Q4nYXmycM5VWiM/+pLH3sthQI/m/PLiDn7V0yF4snDOVUovzPiG3035nEs6H8dvL+/kiaIEMU0Wki6QtERSjqTvDIsq6QxJcyTlS+ofMb+LpGmSFkqaL+mqWMbpnKtcJs9bxS9fW8DZ7Rvxlyu7kFqJ78wurZglC0mpwBPAhUBHYKCkjlHFvgGGAS9Ezd8FDAmHWL0AeERS3VjF6pyrPN77fC13TsymR6v6/H1Q90rXe+yRiuV9Fj2BHDNbBiBpAtAPWLS/gJktD5cVRq5oZl9ETK+StA5oBGyJYbzOuQpu2pcbufm5OXRsUptnhlaegYvKQixTalNgRcTz3HDeYZHUE6gKfFnEsuGSsiRlrV+//ogDdc5VfPNWbOGGcbNoUb86Y6/tSa305BwzO14S+vxL0nHAeOBaMyuMXm5mI80s08wyGzVqVP4BOueSwpI12xk6Zib1a1bluRt6Ub9G1XiHlHRimSxWAs0jnjcL55WKpNrAG8AvzWx6GcfmnKskvt64k2uemUG1tBSev743jWunxzukpBTLZDELaCeptaSqwABgcmlWDMu/CjxrZpNiGKNzrgJbvXU3g0bNIL+gkOeu70WLBtXjHVLSilmyMLN84FZgKrAYeMnMFkp6UFJfAEk9JOUCVwBPSVoYrn4lcAYwTFJ2+OgSq1idcxXPxh17uWbUDLbsymPcdT1p17hWvENKajKzeMdQJjIzMy0rKyveYTjnEsC2PXlc/fR0lq7dwbPX9aTX8Q3iHVLCkjTbzDJLKpfQDdzOOXe4du8r4Pqxs/h89XaevKa7J4oy4uNZOOcqjH35hdz03Gyyvt7MowO6cvaJx8Q7pArDzyyccxVCQaHxs4nZfPjFen5/eScuPaVJvEOqUDxZOOeSXmGhce8r83ljwWp+dXEHBvRsEe+QKhxPFs65pGZm/OaNxbyUlcvt32/HDd87Pt4hVUieLJxzSe1v/1nK6E++YthprfjZue3iHU6F5cnCOZe0nvn4Kx55dyn9uzfjvks6+pgUMeTJwjmXlF6atYJfv76IC08+lod+2IkUH5MipjxZOOeSzhvzV3PPK/P5XruGPDKgC2mp/lUWa36EnXNJ5eOlG/jpxLl0a1GPpwZ3p1qaj0lRHjxZOOeSxoLcrdw4Pos2jWryzLAeVK/q9xWXF08Wzrmk8NWGnQwbM5O61asy7rqe1MnwwYvKkycL51zCW7d9D0NGz6DQjGev7+ljUsSBn8M55xLatj15DB09iw3b9/Hi8N60aVQz3iFVSn5m4ZxLWHvyChj+bBZL127nycHd6dK8brxDqrRimiwkXSBpiaQcSfcUsfwMSXMk5UvqH7VsqKSl4WNoLON0ziWegkLjzpeymb5sE3+64hTOPKFRvEOq1GKWLCSlAk8AFwIdgYGSOkYV+wYYBrwQtW594H6gF9ATuF9SvVjF6pxLLGbGiMkLmbJgDb+6uAOXdW0a75AqvVieWfQEcsxsmZntAyYA/SILmNlyM5sPFEatez7wjpltMrPNwDvABTGM1TmXQB79Tw7jp3/NjWce7x0DJohYJoumwIqI57nhvFiv65xLYs/P+Jq/vvsFP+rWjHsuODHe4bhQUjdwSxouKUtS1vr16+MdjnPuKL312Wr+77XPOLt9Ix76USfvGDCBxDJZrASaRzxvFs4rs3XNbKSZZZpZZqNG3vjlXDKbvmwjt0/I5pTmdXliUDeqeH9PCSWW78YsoJ2k1pKqAgOAyaVcdypwnqR6YcP2eeE851wFtGjVNn48LosW9aszeqh345GIYpYszCwfuJXgS34x8JKZLZT0oKS+AJJ6SMoFrgCekrQwXHcT8GuChDMLeDCc55yrYFZs2sXQMTOpmZ7Gs9f1pF6NqvEOyRVBZhbvGMpEZmamZWVlxTsM59xh2LhjL/2fnMamnft4+aZTOaFxrXiHVOlImm1mmSWV80pB51xc7Nybz7VjZ7F6625GD8v0RJHgvGLQOVfu9uUXctNzs1m4ahsjB3ene8v68Q7JlcDPLJxz5aqw0Pj5y/P479INPPTDTny/Q+N4h+RKwZOFc67cmBm/fmMRk+et4hcXnMgVmc1LXsklBE8Wzrly8+SHyxjzyXKu69Oam870bjySSamShaRXJF0syZOLc+6IvJS1gj+89Tl9T2nCry7u4HdnJ5nSfvn/HbgaWCrpIUntYxiTc66C+c/itdz7ygK+164hf7riFFJSPFEkm1IlCzN718wGAd2A5cC7kj6VdK0kHwjXOVes2V9v4pYX5nBSk9r845ruVE3zCopkVOp3TVIDgrEnbgDmAn8jSB7vxCQy51zSW7p2O9eNzeK4OhmMGdaDmtX8av1kVap3TtKrQHtgPHCpma0OF02U5LdNO+e+Y+WW3QwZPZNqaSk8e11PGtSsFu+Q3FEobZp/1MzeL2pBaW4Td85VLuu27WHQ09PZuTefCcNPpXn96vEOyR2l0iaLepJ+GDVvK7DAzNaVcUzOuSS2eec+rnlmBuu27+W5G3rRsUnteIfkykBpk8X1wKnA/rOLs4DZQGtJD5rZ+BjE5pxLMtv25DFk9Ey+3riLMdf2oFuLevEOyZWR0iaLKkAHM1sLIKkx8CzQC/iIoC3DOVeJ7dqXz/VjZ7F49TZGDunOaW0axjskV4ZKezVUs/2JIrQOaB6OMZFX9mE555LJnrwCbhw/m9lfb+ZvA7pyzone31NFU9oziw8kvQ68HD7/UTivBrAlJpE555JCXkEht704l/8u3cCfrjiFizsfF++QXAyU9sziFmAM0CV8PAvcYmY7zezs4laSdIGkJZJyJN1TxPJqkiaGy2dIahXOryJpnKQFkhZLuvdwX5hzLvYKwh5k31m0lgf7nUT/7s3iHZKLkRLPLCSlAu+GSeGfpd1wuN4TwA+AXGCWpMlmtiii2PXAZjNrK2kA8AfgKoJhVquZWSdJ1YFFkl40s+Wl3b9zLrbMjF++uoB/ZQcru7vFAAAbyklEQVQ9yA45tVW8Q3IxVOKZhZkVAIWS6hzmtnsCOWa2zMz2AROAflFl+gHjwulJwPcV9C5mQA1JaUAGsA/Ydpj7d87FiJnx69cXM2HWCm49uy03n9Um3iG5GCttm8UOYIGkd4Cd+2ea2e2HWKcpsCLieS7B1VNFljGzfElbgQYEiaMfsBqoDvwsbEw/iKThwHCAFi1alPKlOOeO1l/f+YLRn3zFtX1a8T/nnRDvcFw5KG2yeCV8lJeeQAHQBKgH/FfSu2a2LLKQmY0ERgJkZmZaOcbnXKX15Idf8uh7OVyV2Zz7LunoXY1XEqVKFmY2TlIG0MLMlpRy2yuByGGwmoXziiqTG1Y51QE2EnSH/paZ5QHrJH0CZALLcM7Fzfhpy3nozc+59JQm/O6HnTxRVCKlHfzoUiAbeCt83kXS5BJWmwW0k9RaUlVgABC9zmRgaDjdH3jPzAz4Bjgn3FcNoDfweWlidc7FxqTZufzfvxZybofG/OXKU0j1MSkqldJeOjuCoGpoC4CZZQOHHBPRzPKBW4GpwGLgJTNbKOlBSX3DYs8ADSTlAHcC+y+vfQKoKWkhQdIZY2bzS/2qnHNlasqC1dw9aR6nt23I41d3pUqqj0lR2ZS2zSLPzLZGnXIWlrSSmU0BpkTNuy9ieg/BZbLR6+0oar5zrvy9//k67pgwl24t6jFySHfSq6TGOyQXB6VNFgslXQ2kSmoH3A58GruwnHOJYNqXG7npudm0P7YWo6/tQfWqPnhRZVXac8nbgJOAvcCLBPc8/DRWQTnn4m/uN5u5YdwsWtSvzrPX9aJ2uo+gXJmV9mqoXcAvw4dzroJbtGobQ0fPpGGtajx/Qy/q16ga75BcnJV2WNUTgJ8DrSLXMbNzYhOWcy5ectbtYPAzM6hZLY3nb+jFMbXT4x2SSwClrYB8GXgSGEVws5xzrgJasWkX14yagSSeu6EXzer5cKguUNpkkW9m/4hpJM65uFqzdQ9Xj5rO7rwCJt7Ym+Mb1Yx3SC6BlLaB+9+SfiLpOEn19z9iGplzrtxs3LGXQaOms3lnHs9e15MTj/Vxs93BSntmsf8u67si5hkl3JjnnEt8W3fnMfiZmazcsptx1/bklOZ14x2SS0ClvRqqdawDcc6Vv/Xb93Lt2JnkrNvB00Mz6XV8g3iH5BLUIauhJN0dMX1F1LLfxSoo51zsrdi0iyue/JScdTt4akh3zjyhUbxDcgmspDaLARHT0UObXlDGsTjnysmiVdv44T8+ZfOuPJ6/oTdntz8m3iG5BFdSNZSKmS7quXMuCcxYtpEbxmVRMz2NF246lXaNa8U7JJcESkoWVsx0Uc+dcwnu7YVruPXFuTSvl8H463vRpG5GvENySaKkZHGKpG0EZxEZ4TThc7+t07kkMnHWN9z7ygI6N6vLmGE9qOddeLjDcMhkYWbeF7FzSc7M+PsHX/Lw1CWccUIjnrymm/ce6w6bf2Kcq8AKC41fv7GIMZ8sp1+XJjzc/xSqpvnARe7wxfRTI+kCSUsk5Ui6p4jl1SRNDJfPkNQqYllnSdMkLZS0QJJXezl3GPblF/Kzl7IZ88lyruvTmr9e2cUThTtiMTuzkJRKMDzqD4BcYJakyWa2KKLY9cBmM2sraQDwB+AqSWnAc8BgM5snqQGQF6tYnatodu3L56bn5vDRF+u5+4L23HxmG6JGunTusMTyZ0ZPIMfMlpnZPmAC0C+qTD9gXDg9Cfi+gk/0ecB8M5sHYGYbzcx7u3WuFDbv3MfVT8/g46XreeiHnfjJWW09UbijFstk0RRYEfE8N5xXZBkzywe2Ag2AEwCTNFXSnMg7ySNJGi4pS1LW+vXry/wFOJdsVm7ZTf8nP2XR6m3845ruDOjZIt4huQoiURu404DTgR7ALuA/kmab2X8iC5nZSGAkQGZmpt/34Sq1pWu3M2T0THbszWf8dT29nydXpmJ5ZrESaB7xvFk4r8gyYTtFHWAjwVnIR2a2IRzSdQrQLYaxOpfUZn+9mf5PTiO/0HjpxlM9UbgyF8tkMQtoJ6m1pKoE/UxNjiozmW+7P+8PvGdmBkwFOkmqHiaRM4FFOOe+4/0l6xg0ajr1qlfhlZtPo8NxPhaFK3sxq4Yys3xJtxJ88acCo81soaQHgSwzmww8A4yXlANsIuy40Mw2S/oLQcIxYIqZvRGrWJ1LVq/OzeWul+fT/thajL22J41qVYt3SK6CUvBDPvllZmZaVlZWvMNwrtyM+u8yfvPGYk5r04CnBnenVnqVeIfkklDYHpxZUrlEbeB2zhXDzHjorc956sNlXNTpWP56VReqpXnPPC62PFk4l0TyCwq595UFvDw7l0G9WvBgv5NJTfF7KFzsebJwLknsySvg1hfm8O7iddzx/Xb89Nx2frOdKzeeLJxLAmu27uGWF+Yw55vN/LrfSQw+tVW8Q3KVjCcL5xLcO4vWctekeezLL+Txgd24uPNx8Q7JVUKeLJxLUHvyCvj9lMWMm/Y1JzWpzaMDu9KmUc14h+UqKU8WziWgnHXbufWFuXy+ZjvX9WnNLy5s71c8ubjyZOFcAjEzXspawYjJi8iomsroYZmcc2LjeIflnCcL5xLF1t15/PLVBbw+fzWntWnAX6/qQuPaPuaXSwyeLJxLALO/3swdE+ayeuse7r6gPTee0cbvn3AJxZOFc3FUUGg8+eGX/OWdLziuTjov33Qq3VrUi3dYzn2HJwvn4mTttj38bGI2n365kUs6H8fvftiJ2t6/k0tQniyci4P/LF7Lz1+ex568Qv74o85ckdnM78Z2Cc2ThXPlaG9+Ab+f8jljP11Oh+Nq89jArrQ9xu+dcInPk4Vz5eTL9Tu47YW5LFq9jWGnteKeC08kvYrfO+GSgycL52LMzHh5di73/2sh6VVSGDUkk3M7+r0TLrnEclhVJF0gaYmkHEn3FLG8mqSJ4fIZklpFLW8haYekn8cyTudiZduePG6fkM3dk+ZzSvM6vHnHGZ4oXFKK2ZmFpFTgCeAHQC4wS9JkM4scS/t6YLOZtZU0APgDcFXE8r8Ab8YqRudiae43m7l9wlxWbdnDz887gZvPauv3TrikFctqqJ5AjpktA5A0AegHRCaLfsCIcHoS8LgkmZlJugz4CtgZwxidK3OFhcaTH33JX97+gsa103npxt50b1k/3mE5d1RimSyaAisinucCvYorY2b5krYCDSTtAX5BcFZSbBWUpOHAcIAWLVqUXeTOHaEVm3Zx7ysL+DhnAxd3Cu6dqJPh90645JeoDdwjgL+a2Y5DXXtuZiOBkQCZmZlWPqE5911bdu3jifdzGPfp16SkwEM/7MRVPZr7vROuwohlslgJNI943iycV1SZXElpQB1gI8EZSH9JfwTqAoWS9pjZ4zGM17nDtievgGenLefx93LYvjef/t2aced5J3BcnYx4h+ZcmYplspgFtJPUmiApDACujiozGRgKTAP6A++ZmQHf219A0ghghycKl0gKC41/zVvJn6Z+wcotuzmrfSPuufBETjy2drxDcy4mYpYswjaIW4GpQCow2swWSnoQyDKzycAzwHhJOcAmgoTiXEL7JGcDv5uymIWrtnFy09r8sX9n+rRtGO+wnIspBT/kk19mZqZlZWXFOwxXgS1evY2H3vycD79YT9O6Gdx1fnv6ntKEFL8c1iUxSbPNLLOkconawO1cwli9dTd/fvsL/jknl1rV0vjlRR0YfGpL76rDVSqeLJwrxrY9eTz5wZc88/FXmMGPv3c8PzmrDXWrV413aM6VO08WzkXZl1/I8zO+5tH/LGXzrjwu69KE/zmvPc3rV493aM7FjScL50JmxpQFa/jj1M/5euMuTmvTgP+9qAMnN60T79CciztPFs4BM7/axO+mLCZ7xRbaN67FmGt7cNYJjfymOudCnixcpZazbgcPvfk57y5ey7G10/lj/878qFsz7/DPuSieLFyltG7bHh75z1ImzlpBRpVU7jq/Pdf1aU1GVb/CybmieLJwlcqC3K2M+eQr/j1/FWYwuHdLbjunLQ1qVot3aM4lNE8WrsLLLyjk7UVrGfPJV8xavpnqVVO5umcLrju9NS0b1Ih3eM4lBU8WrsLasmsfE2atYPy0r1m5ZTfN62fwq4s7cGWP5tRO927DnTscnixchbNkzXaenbacV+asZHdeAb2Pr8/9l3bk+x0ae8O1c0fIk4WrEDbv3MfkeauYNDuXBSu3UjUthcu6NGHYaa3p2MR7gnXuaHmycEkrv6CQD79Yz6TZuby7eC15BcZJTWpz3yUduaxrU+rX8G45nCsrnixc0lmyZjuTZq/g1bmr2LBjL/VrVGVw71b0797MzyKcixFPFi7hmRlL1m7nrc/W8NZna/h8zXbSUsQ5Jx5D/+7NOKv9MVRNS4l3mM5VaJ4sXEIqLDSyc7cw9bM1TF24huUbdyFBZst63HdJR/p1aeL3RjhXjmKaLCRdAPyNYKS8UWb2UNTyasCzQHeCsbevMrPlkn4APARUBfYBd5nZe7GM1cVfXkEhs77axFsLgwSxdtte0lLEaW0bMvyMNpzb8RiOqZUe7zCdq5RiliwkpQJPAD8AcoFZkiab2aKIYtcDm82sraQBwB+Aq4ANwKVmtkrSyQRDszaNVawuPsyMnHU7+DhnA5/kbGD6sk3s2JtPepUUzjrhGM4/uTHnnNiYOhl+T4Rz8RbLM4ueQI6ZLQOQNAHoB0Qmi37AiHB6EvC4JJnZ3IgyC4EMSdXMbG8M43XlYO22PXySs+FAgli7LXhLWzWoTr8uTfheu0aceUIj76PJuQQTy2TRFFgR8TwX6FVcGTPLl7QVaEBwZrHfj4A5RSUKScOB4QAtWrQou8hdmSgsNL5cv4O5K7aQvWILs77axNJ1OwCoX6Mqp7VpwOltG9KnbUMfWMi5BJfQDdySTiKomjqvqOVmNhIYCZCZmWnlGJorwvrte8lesYXsFZvJXrGF+Su2sn1vPgC10tPo2qIeV2Q2o0/bhnQ4tjYpfje1c0kjlsliJdA84nmzcF5RZXIlpQF1CBq6kdQMeBUYYmZfxjBOd5j25BXw5fodLF27g6XrtvPF2h0sXr2N3M27AUhNESceW4u+XZrQtUU9ujSvy/ENa3hycC6JxTJZzALaSWpNkBQGAFdHlZkMDAWmAf2B98zMJNUF3gDuMbNPYhijK0ZhobFu+15WbtnNN5t2snTtDr5Yu4Ocddv5ZtMuCsPzuLQU0aphDU5pXpehp7aiS4u6nNykjrc5OFfBxCxZhG0QtxJcyZQKjDazhZIeBLLMbDLwDDBeUg6wiSChANwKtAXuk3RfOO88M1sXq3grCzNjd14Bm3flsXnnPjbu3MfqLbtZuf+xeTertu5mzdY95BV8W7OXliJaN6zBSU3q0K9LU05oXIt2jWvSqkENvyHOuUpAZhWjqj8zM9OysrLKdJuFhcbKLbvJWbeDL9fvYOfeAvbmF7A3vzD4m1fInvxC9uYF8/blF5KaItJSRVpKClXTgr9pqaJKSgpV0vbPT6FqagpVUoPpKqk6aF6VtBQESCAU/g0EQ0IHz/YVfLvvvfmF7MmLii2vgM279rFlVx5bduUF07vz2Jdf+J3XmiI4tnY6Tetl0KRuBk3rfvu3Wb0MWnpScK5CkjTbzDJLKpfQDdzlJb+gkG827WLpuh3khI+l67bz5bqd7M4rOKhsWoqolpZCepVUqqWlUC3ib9VUsTffyC808gqMvIJC8gsKySsw8gsLD8zLC+cVFMYmUVdLSzkQY93qVahbvSqtGlanS0Zd6taoQr3qValXvQp1MqrSoGZVmtTNoHGtaqSlejJwzhWt0ieLVVt2c9bDH7Cv4Ntf203qpNO2cS169mxAu8Y1aXdMTY5vVJPa6Wll+oVaUBgkj30FwVlJXsRfMzAI/wZJxezg59XS9ieqFKqlpZJeJTg7kbwh2TlXtip9smhcO53rTm9N22OCpNDmmJrUrFY+hyU1RaSmpJJexRuDnXOJrdIni9QUcc+FJ8Y7DOecS2heSe2cc65Eniycc86VyJOFc865EnmycM45VyJPFs4550rkycI551yJPFk455wrkScL55xzJfJk4ZxzrkSeLJxzzpXIk4VzzrkSebJwzjlXopgmC0kXSFoiKUfSPUUsryZpYrh8hqRWEcvuDecvkXR+LON0zjl3aDFLFpJSgSeAC4GOwEBJHaOKXQ9sNrO2wF+BP4TrdiQYYvUk4ALg7+H2nHPOxUEsuyjvCeSY2TIASROAfsCiiDL9gBHh9CTgcQUj9/QDJpjZXuCrcIzunsC0Mo9y1yYYc2GZb9Y5l6SScajpxifBFWNiuotYJoumwIqI57lAr+LKmFm+pK1Ag3D+9Kh1m0bvQNJwYDhAixYtjizKlFRo1P7I1nXOVVBJNtpk/dYx30VSD35kZiOBkQCZmZlH9nMgvQ5c+WxZhuWccxVOLBu4VwLNI543C+cVWUZSGlAH2FjKdZ1zzpWTWCaLWUA7Sa0lVSVosJ4cVWYyMDSc7g+8Z2YWzh8QXi3VGmgHzIxhrM455w4hZtVQYRvErcBUIBUYbWYLJT0IZJnZZOAZYHzYgL2JIKEQlnuJoDE8H7jFzApiFatzzrlDkyVjy38RMjMzLSsrK95hOOdcUpE028wySyrnd3A755wrkScL55xzJfJk4ZxzrkSeLJxzzpWowjRwS1oPfF3M4obAhnIM52glW7zgMZcXjzn2ki1eOLqYW5pZo5IKVZhkcSiSskrT2p8oki1e8JjLi8cce8kWL5RPzF4N5ZxzrkSeLJxzzpWosiSLkfEO4DAlW7zgMZcXjzn2ki1eKIeYK0WbhXPOuaNTWc4snHPOHQVPFs4550pUYZKFpAskLZGUI+meIpYPk7ReUnb4uCEecUbFNFrSOkmfFbNckh4NX9N8Sd3KO8aoeEqK9yxJWyOO8X3lHWMRMTWX9L6kRZIWSrqjiDKJdpxLE3PCHGtJ6ZJmSpoXxvtAEWWqSZoYHuMZklqVf6QHxVOamBPuOwNAUqqkuZJeL2JZ7I6zmSX9g6AL9C+B44GqwDygY1SZYcDj8Y41KqYzgG7AZ8Usvwh4k2CMx97AjASP9yzg9Xgf16iYjgO6hdO1gC+K+Gwk2nEuTcwJc6zD41YznK4CzAB6R5X5CfBkOD0AmJgEMSfcd0YY153AC0W9/7E8zhXlzKInkGNmy8xsHzAB6BfnmEpkZh8RjONRnH7AsxaYDtSVdFz5RPddpYg34ZjZajObE05vBxbz3fHcE+04lybmhBEetx3h0yrhI/rKmX7AuHB6EvB9SXEb6LqUMSccSc2Ai4FRxRSJ2XGuKMmiKbAi4nkuRf9z/SisZpgkqXkRyxNNaV9XIjk1PLV/U9JJ8Q4mUnhK3pXgV2SkhD3Oh4gZEuhYh1Uj2cA64B0zK/YYm1k+sBVoUL5RHqwUMUPifWc8AtwNFBazPGbHuaIki9L4N9DKzDoD7/Bt9nVlZw5BPzOnAI8Br8U5ngMk1QT+CfzUzLbFO57SKCHmhDrWZlZgZl2AZkBPSSfHM57SKEXMCfWdIekSYJ2ZzY7H/itKslgJRGb9ZuG8A8xso5ntDZ+OArqXU2xHo8TXlUjMbNv+U3szmwJUkdQwzmEhqQrBl+7zZvZKEUUS7jiXFHOiHmsz2wK8D1wQtejAMZaUBtQBNpZvdEUrLuYE/M7oA/SVtJygqv0cSc9FlYnZca4oyWIW0E5Sa0lVCRp2JkcWiKqD7ktQD5zoJgNDwqt1egNbzWx1vIMqjqRj99ePSupJ8PmK6xdCGM8zwGIz+0sxxRLqOJcm5kQ61pIaSaobTmcAPwA+jyo2GRgaTvcH3rOwFTYeShNzon1nmNm9ZtbMzFoRfMe9Z2bXRBWL2XFOK4uNxJuZ5Uu6FZhKcGXUaDNbKOlBIMvMJgO3S+oL5BM00g6LW8AhSS8SXNXSUFIucD9BQxtm9iQwheBKnRxgF3BtfCINlCLe/sDNkvKB3cCAeH4hhPoAg4EFYf00wP8CLSAxjzOlizmRjvVxwDhJqQRJ6yUzez3q/+8ZYLykHIL/vwFxinW/0sSccN8ZRSmv4+zdfTjnnCtRRamGcs45F0OeLJxzzpXIk4VzzrkSebJwzjlXIk8WzjnnSuTJwiUsSTtKUeankqqX4T4vk9SxDLf36VGsuyP820TSpEOUqyvpJ0e6H+dKw5OFS3Y/BQ4rWYTX1hfnMqDMkoWZnVYG21hlZv0PUaQuQW+jzsWMJwuX8BSM3fBB2Jnb55KeD++2vh1oArwv6f2w7HmSpkmaI+nlsH8lJC2X9AdJc4ArJP1Y0qywI75/Sqou6TSCO3UfVjB+QRtJXSRNDzuTe1VSvXB7H0j6q6QsSYsl9ZD0iqSlkn4TEfuOiOlfSFoQ7vOhIl5n6zD2BVHbaKVwDBFJJykYhyE7jKkd8BDQJpz3sKSakv4THoMFkvpFbGexpKcVjOHwdnj3MpLaSno3jG2OpDbh/LvC4zRfRYz54CqRsurr3B/+KOsHsCP8exZB75nNCH7gTANOD5ctBxqG0w2Bj4Aa4fNfAPdFlLs7YtsNIqZ/A9wWTo8F+kcsmw+cGU4/CDwSTn8A/CGcvgNYRXBXcDWCXmsbRL2GC4FPgerh8/pFvN7JwJBw+paIdVsRjiFC0GngoHC6KpARuTycnwbUjjgmOQTjN7QiuBu5S7jsJeCacHoGcHk4nU5wtnYeMDJcNwV4HTgj3p8Lf8TnUSG6+3CVwkwzywUIu8BoBXwcVaY3QRXSJ2G3SVUJEst+EyOmTw5/vdcFahJ0FXMQSXWAumb2YThrHPByRJH9/Y8tABZa2J+UpGUEnblF9tV0LjDGzHYBmFlR44L0AX4UTo8H/lBEmWnALxWMa/CKmS3Vd4crEPA7SWcQdGXdFGgcLvvKzPZ3ITIbaCWpFtDUzF4NY9sTvo7zCBLG3LB8TaAdQUJ2lYwnC5cs9kZMF1D0Z1cE4xIMLGYbOyOmxwKXmdk8ScMIzl6ONKbCqPgKi4mvNA7Z/46ZvSBpBsEAOFMk3Qgsiyo2CGgEdDezPAW9lKZHxQzBccw4xO4E/N7MnjqM+F0F5W0WLtltJxh6FGA60EdSWwBJNSSdUMx6tYDVCroCH1TU9sxsK7BZ0vfCZYOBDzky7wDX7r9yS1L9Isp8wrcdvw0qYjmSjgeWmdmjwL+Azhx8DCDolnpdmCjOBloeKjALRuPLlXRZuI9qYZxTgesi2n2aSjqmVK/WVTieLFyyGwm8Jel9M1tP0DPoi5LmE1TZnFjMev9HUE//CQd3TT0BuEvS3LCRdyhBg/d8oAtBu8VhM7O3CKqtssJqtJ8XUewO4BZJCyh+pL4rgc/CbZxMMBzsRoKqt88kPQw8D2SG2xnCd7sLL8pggl5W5xO0rRxrZm8TjPU8LdzWJA5OSq4S8V5nnXPOlcjPLJxzzpXIk4VzzrkSebJwzjlXIk8WzjnnSuTJwjnnXIk8WTjnnCuRJwvnnHMl+n+pZqdBysmRoAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", @@ -169,30 +117,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8FHX+x/HXJyGVhAAh1AChSe8hNEVAxHaiKIqIBfTshyh2z3L6U8+Cimc5xYZ6SrF3RU8sdAKElgDSq3RSSAIpn98fO3AhJmGBbGaT/Twfj3lkZmd25r0D+WT2OzPfEVXFGGNM1RfkdgBjjDEVwwq+McYECCv4xhgTIKzgG2NMgLCCb4wxAcIKvjHGBAgr+ManROQ0EVlVAdv5VkSuLof1/ENE/lMemYzxN1bwTbkQkQ0iMqj466r6m6q2Lms5ERklIjPLWLeKyAERyRKRPSLyXxEZXmw756jqO+XxWU6U89kOiUidYq8vdj5DgjvJSiYik0TkMbdzmIpjBd9UFp1VNQpoDUwCXhKRh92NVKL1wIjDEyLSEYh0L44x/2MF3/iUiPQXkS3ltT5V3a2q7wE3AfeJSKyznZ9F5K/O+CgRmSUiL4lIuoisFJEzimRqKCJfiMheEVkjIteVkb+XiMwWkf0iskRE+h8j4nvAVUWmrwbeLbbOGBF5V0R2ichGEXlARIKKZX/e2eY6EenjvL5ZRHYWbboSkTARGS8im0Rkh4i8KiIRzrz+IrJFRO5w3rddREY7864HRgJ3O9+cvjzG5zJVgBV8U1l9DlQDkkqZ3xNYC9QBHgY+EZHazrwpwBagITAMeEJEBhZfgYg0Ar4GHgNqA3cCH4tIXBm55gI1RKStiAQDlwHFzwm8CMQAzYHT8fyBGF0s+1IgFvjAydsDaAlcgefbTZSz7JPAKUAXZ34j4KEi66rvbKsRcC3wsojUUtWJwPvA06oaparnl/GZTBVhBd+44TPn6HW/iOwHXjneFahqHrAbTyEuyU5ggqrmqepUYBVwnog0BvoC96hqrqqmAG9w9FH5YVcA36jqN6paqKo/AMnAuceId/go/0wgDdh6eEaRPwL3qWqmqm4AngWuLPL+9ar6tqoWAFOBxsCjqnpQVacDh4CWIiLA9cDtqrpXVTOBJ5z1H5bnvDdPVb8BsvA0i5kAVM3tACYgXaiqPx6eEJFRwF+PZwUiEgLEAXtLWWSrHt0z4EY8R/QNgcPFsei8xBLW0RS4RESKHv2GADOOEe894FegGcWac/B84whxtll0+42KTO8oMp4DoKrFX4vC8/kjgYWe2g+AAMFFlt2jqvlFprOd95oAZEf4prK6AMgH5pcyv5EUqYJAE2CbM9QWkehi87byZ5uB91S1ZpGhuqo+WVYwVd2I5+TtucAnxWbvxnPU3dSL7R/LbjzFv32RfDHOyW1vWFe5AcYKvilPISISXmQo92+QIlJbREYCLwNPqeqeUhatC9wqIiEicgnQFk/zzGZgNvBPJ2MnPG3bJV17/x/gfBE5S0SCneX7i0i8F1GvBQaq6oGiLzrNNNOAx0UkWkSaAuNK2X6ZVLUQeB14XkTqgue8g4ic5eUqduA5j2AChBV8U56+wXPEeXj4Rzmue4mIZAFr8DT/3K6qD5Wx/DygFZ6j4MeBYUX+OIwAEvAc7X8KPFy0iekw54/DBcD9wC48R/x34cXvjaquVdXkUmaPAQ4A64CZeE7MvnWsdZbiHjz7ZK6IZAA/4n0b/ZtAO+dcymcnuH1TiYg9AMVUNYfPCajqqW5nMcaf2BG+McYECCv4xhgTIKxJxxhjAoQd4RtjTIDwqxuv6tSpowkJCW7HMMaYSmPhwoW7VbWs7j6O8KuCn5CQQHJyaVeyGWOMKU5ENh57KQ9r0jHGmABhBd8YYwKEFXxjjAkQftWGb4w5cXl5eWzZsoXc3Fy3oxgfCA8PJz4+npCQkBNehxV8Y6qILVu2EB0dTUJCAkd3FGoqO1Vlz549bNmyhWbNmp3weqxJx5gqIjc3l9jYWCv2VZCIEBsbe9Lf3qzgG1OFWLGvusrj37bSF/zCggLmTrqf31N+czuKMcb4tUpf8DPT95KwYSpRn41m/+4/3I5jTEALDg6mS5cuR4Ynnyzz4WDHJSUlhW+++ebI9KRJk4iLiztqe6mpqWzbto1hw4aV23ZPxIYNG+jQoYOrGUpS6U/axtSOY8eQt0j4/CJWvT6C6Lt+ILhapf9YxlRKERERpKSk+GTdKSkpJCcnc+65/3uG/PDhw3nppZf+tOxHH33kkwwVLT8/n2rlWM8q/RE+wCndTiel49/peHAR89++0+04xpgi0tPTad26NatWrQJgxIgRvP766wDcdNNNJCYm0r59ex5++OEj71mwYAF9+vShc+fOJCUlkZ6ezkMPPcTUqVPp0qULU6dOLXV7RY+us7OzufTSS2nXrh1Dhw6lZ8+eR7pvmT59Or1796Zbt25ccsklZGVlAZ4uXh5++GG6detGx44dWblyJQC//PLLkW8SXbt2JTMzE1XlrrvuokOHDnTs2LHEXL169WLFihVHpvv3709ycjIHDhzgmmuuISkpia5du/L5558Dnm8uQ4YMYeDAgZxxxhknvN9LUmUOhZOGjWP+1mR6b32bxdMT6Tr4CrcjGeOaR75cQeq2jHJdZ7uGNXj4/PZlLpOTk0OXLl2OTN93331HjsJHjRrF2LFj2bdvH9dddx0Ajz/+OLVr16agoIAzzjiDpUuX0qZNG4YPH87UqVPp0aMHGRkZREZG8uijj5KcnHzkiH7SpElMnTqVmTNnHtnenDlzjsrzyiuvUKtWLVJTU1m+fPmRbLt37+axxx7jxx9/pHr16jz11FM899xzPPSQ56mZderUYdGiRbzyyiuMHz+eN954g/Hjx/Pyyy/Tt29fsrKyCA8P55NPPiElJYUlS5awe/duevToQb9+/Y7KMHz4cKZNm8YjjzzC9u3b2b59O4mJidx///0MHDiQt956i/3795OUlMSgQYMAWLRoEUuXLqV27don8k9VqipT8AE6Xf86vz97Oi1n3cnmZh1p3Kqz25GMCSilNemceeaZfPjhh9xyyy0sWbLkyOvTpk1j4sSJ5Ofns337dlJTUxERGjRoQI8ePQCoUaNGqdsrrUnnsJkzZzJ27FgAOnToQKdOnQCYO3cuqamp9O3bF4BDhw7Ru3fvI++76KKLAOjevTuffPIJAH379mXcuHGMHDmSiy66iPj4eGbOnMmIESMIDg6mXr16nH766SxYsODIdgAuvfRSBg8ezCOPPMK0adOOnF+YPn06X3zxBePHjwc8l9Vu2rTpyP4q72IPVazgh0dUJ+rK98l/+wwKJl/Bgdt/o3p0TbdjGVPhjnUkXtEKCwtJS0sjMjKSffv2ER8fz/r16xk/fjwLFiygVq1ajBo1qsLuElZVzjzzTCZPnlzi/LCwMMBzEjo/Px+Ae++9l/POO49vvvmGvn378v3333u1rUaNGhEbG8vSpUuZOnUqr7766pEMH3/8Ma1bH/3M+Xnz5lG9evUT/WhlqhJt+EU1aNqaLQNfpnHBZlZOHIUWFrodyZiA9/zzz9O2bVs++OADRo8eTV5eHhkZGVSvXp2YmBh27NjBt99+C0Dr1q3Zvn07CxYsACAzM5P8/Hyio6PJzMw8ru327duXadOmAZCamsqyZcsAT7v6rFmzWLNmDQAHDhxg9erVZa5r7dq1dOzYkXvuuYcePXqwcuVKTjvtNKZOnUpBQQG7du3i119/JSkp6U/vHT58OE8//TTp6elHjv7POussXnzxRQ4/dXDx4sXH9dlORJUr+AAd+13A/Oa30D1zBvMmP+Z2HGMCxuE2/MPDvffey6pVq3jjjTd49tlnOe200+jXrx+PPfYYnTt3pmvXrrRp04bLL7/8SPNKaGgoU6dOZcyYMXTu3JkzzzyT3NxcBgwYQGpq6lEnbQ+fxD08zJ49+6g8N998M7t27aJdu3Y88MADtG/fnpiYGOLi4pg0aRIjRoygU6dO9O7d+8jJ2dJMmDDhSLNQSEgI55xzDkOHDqVTp0507tyZgQMH8vTTT1O/fv0/vXfYsGFMmTKFSy+99MhrDz74IHl5eXTq1In27dvz4IMPnuzuPya/eqZtYmKiltcDULSwkJRnz6dj1mxWn/0B7XqfUy7rNcZfpaWl0bZtW7dj+JWCggLy8vIIDw9n7dq1DBo0iFWrVhEaGup2tBNS0r+xiCxU1URv3l+l2vCLkqAgWl7/HtteOJW639/Irqa/ENcwwe1YxpgKlJ2dzYABA8jLy0NVeeWVVyptsS8PVbbgA0TH1GbvJe8ROeUcNr11GTF3/UxoWLjbsYwxFSQ6Otoem1qET9vwRWSDiCwTkRQRcWWvN23bnbSeT9EmP43Vz53Frm0b3IhhjDGuq4iTtgNUtYu3bUy+0P3c0czv+AjNc9MImdiXxd+/41YUY4xxTZW8SqckSRffxp4rfmBXtQZ0nXMr8yeM4EDmfrdjGWNMhfF1wVdguogsFJHrS1pARK4XkWQRSd61a5dPwzRu1ZmEu2cxp9EoEvd9y77nerIq+SefbtMYY/yFrwv+qaraDTgHuEVE+hVfQFUnqmqiqibGxcX5OA6EhIbR+7oXWHnOFIK1gBZfXsyct+4mP++Qz7dtTFU2YMCAP919OmHCBG666SZWrFjBwIEDad26NS1atODhhx+m0LkpsrRujk3582nBV9Wtzs+dwKfAn29Bc0m7XmdT/bZ5pMScQe9Nr7HmqX5sXZfmdixjKq0RI0YwZcqUo16bMmUKl112GUOGDDlyE9ayZcuYP38+L7zwwpHlhg8fTkpKypGhXbt2FR0/IPis4ItIdRGJPjwODAaW+2p7J6JGzVgSx31Eco/xNMzfSM13+jPntTFsSLPLuIw5XsOGDePrr7/m0CHPt+UNGzawbds21qxZQ9++fRk8eDAAkZGRvPTSSzzzzDNuxg1IvrwOvx7wqfMcxmrAB6r6nQ+3d8ISz7uOPzr2Z/uUsfTY9h+qTX2XNcEt2N38QloOHEWdBk3cjmjM8fn2XvhjWfmus35HOKf0J1jVrl2bpKQkvv32Wy644IIjXQmsWLGC7t27H7VsixYtyMnJYf9+z4UTJXVzHBERUb75je+O8FV1nap2dob2qvq4r7ZVHuo3aUXXu78h/eZlzG19NypB9Pr9WWq92omlT57Bgi9e5UBmutsxjfFrRZt1pkyZwogRI7x6X/EmHSv2vlGl77Q9EbH14okd8Xfg72xcuZjtv00iYdvX1F90DwcWPsz8mNPRpn2p3bIHTdp0JSzM/mMaP1TGkbgvXXDBBdx+++0sWrSI7OxsunfvzuLFi/n111+PWm7dunXExsZSs6Z1X16RrOCXoWmbrjRt05XCgudYueB7Mue9T5t9P1Fj2fewDA5pMGuqNWVvVGsK63WkRrNuNG7Xk+iY8n9wgTGVQVRUFAMGDOCaa645cnQ/cuRInnjiCX788UcGDRpETk4Ot956K4888ojLaQOPFXwvBAUH06bXudDrXArz89myfgU7Vy/g0NYlVN+7gpbps6id/i2sBr6HrVKPvaENyY1oQEF0Q4JrxhNepwk16jUjrlEzIqNruf2RjPGZESNGMHTo0CNNOxEREXzxxReMGTOGm2++ma1bt/LAAw8wcuTII+8p3ob/yiuv0KdPnwrPXtVV2e6RK5Qqu7dvZOvK+WRvWkTo7jSicrdTK38XdXQfQXL0Ps4kkt1BcRwIqc3B0Frkh9dGI+sQFBVHSI26hNesS/Va9YmJbUBUTCzB5fjUelN1VZbukT/77DPGjRvHjBkzaNq0qdtxKhXrHtkfiFCnYQJ1GiYAlx4169DBg+zevoH929eRvXsTh/ZuJihzK2HZfxBxaB81s9KokZFODckucdWFKmRIJJkSRXZQFLnB0RwKqUFeaAyFYTXR8BiCwmsQHFGDahHRhEbGEBoZQ3h0DJHVaxJZoyYRkdFIUMD0omH83IUXXsiFF17odoyAZAXfx0LDwmiY0JqGCa3LXC43J5v0vX+QuecPsvft4FD6DvKzdkHOfiR3P8EH0wnNSycsP5OYnHVUP5BFtGYRKvnHzFCgQraEk00kuUGe4VBwJHnB1ckPiaIgpDoaGg1h0QSF1yAovAbVImt4/nhUjyE8qiYR0TFE14glPCKyvHaNMaaCWcH3E+ERkYQ3ak69Rs29f5Mqh3IPkJ25n5ys/eRkpZObtZ+87AzycjIoyMmg8GAmmptB0KEDBOVlEZyXRUjBAUILsonO20N4Tg6Rmk2k5lBNjv383wMaRoZEcyC4BtnBMRwMrUl+WC0Kw2tBZG2Co+KIrNOEGnWbUKdhAlE+ehizKZmq4tz7YqqY8mh+t4JfmYkQGhFFaEQUNevGn9y6VDmYm8WBjH3kOH9ADmVnkHcgnfycDPJzMtCc/UjOXoIP7iP00H7C8/YTm/0HUVmZxJBV4mr3aA32BtchKzSO3Mj6FEQ1pFqtJsQ07Uh8q05ER8ecXG5zRHh4OHv27CE2NtaKfhWjquzZs4fw8JN7gJMVfOMhQlhENGER0VDv+O8s1oI8DmTsIWPXNjJ2biJnzyby9m8jKHMbYdl/EHNwF832plJzbyZsApZ4zk9slbrsDG9GTs1WBNdvS62mnWjUqjPVo2qU/2es4uLj49myZQu+7nXWuCM8PJz4+JM7sLOrdEyFys89wM7Nq9m1bim521YQunc1tQ6so2HBFkKlAPD8IdgS1IDttXoQ3OJ0miaeRVy9k/wGY0wVdTxX6VjBN36hIO8Q29ansnvdEg5uTyVi52JaZC8lSnIAWBuUwI7YJMJa9qd5j7OoVbuOy4mN8Q9W8E2VUJCfx7qlM9m7/Eeqb5tNy5xlhEseBSr8Xq0VuxsNpN2QcdSuU8/tqMa4xgq+qZLyDmazbvHPpKf+l5g/ZtP6UCqZGsGShsNpPfQe4uo2dDuiMRXOCr4JCJtS57P328fplPELOYSyuP4wTrnwPuo2aOx2NGMqzPEUfLv90lRaTdol0eWOz9k+cgara55G7z8+IPrVbsx6+Xq2b93gdjxj/I4VfFPpNTqlK11v/5idV/1Gau0z6LnzQ2pPTGTWi9ewdeMat+MZ4zes4Jsqo0GLjnQfO4U9o2ezvM5ZJO3+jDpv9WT2C1exae1Kt+MZ4zor+KbKqZfQlu5j3if9unksq3s+iXu/psG7fZjz/Ag2rC7nx/4ZU4lYwTdVVp34ViTeMomsG5NZUv8iuu7/gfj3+zH32UtYm7bY7XjGVDgr+KbKq92gGYk3vUHOzYtIaXgZnTN+JmHKAOY9M5Tfl813O54xFcYKvgkYteo1IfGGf5P3tyUsanwlHQ/MosVHg1nw9PmsXDzL7XjG+JwVfBNwasQ1pMdfX6Tg1qUsanoNbbIX0Obzc1n41NmkJv/idjxjfMYKvglY0bXrk3jNcwTdtpzkhBtolbOUdl8NYdE/z+QPu47fVEFW8E3Aq16zDomjnibkjhUkt/gbbXKXkPfG2WzdsNrtaMaUKyv4xjgiomuReOXjbB8yhZqaTtCkc9j4u13GaaoOK/jGFNOi+0B2X/wRERwk8v3zWZtq/TuZqsEKvjElaNaxLxmXfY6g1Jp2IatTZrodyZiTZgXfmFI0adOdvKu+Jk/CqP/ppaTN/6/bkYw5KVbwjSlDg+YdkGu+JTMomiZfX86yWV+7HcmYE+bzgi8iwSKyWES+8vW2jPGFuo1PIfz66ewOjqPV9KtJmfGh25GMOSEVcYQ/FkirgO0Y4zOxDZoSc9N0tlZrTLufb2Dhd++5HcmY4+bTgi8i8cB5wBu+3I4xFaFmXEPixkxnQ2hLOs+5lQVfTnQ7kjHHxddH+BOAu4FCH2/HmApRo2YcjcZ8z+qwDnRPvpt5H09wO5IxXvNZwReRvwA7VXXhMZa7XkSSRSR5165dvopjTLmpXqMWzW/7hhUR3em57GHmfPCE25GM8Yovj/D7AkNEZAMwBRgoIv8pvpCqTlTVRFVNjIuL82EcY8pPeGQ0p9z2JYur96X36qeY887f3Y5kzDH5rOCr6n2qGq+qCcBlwE+qeoWvtmdMRQsLj6Tj2E9ZWOMMeq9/iblv3I4WWuul8V92Hb4xJ6FaaBhdbp3Gglrn0WvLW8x77SYr+sZveVXwRaSpiAxyxiNEJPp4NqKqP6vqX04koDH+LrhaNbr/7T3mxQ2j144pzH95NIUFBW7HMuZPjlnwReQ64CPgNeeleOAzX4YyprIJCg4m6abXmdPgKnru+YxF/xpBQX6e27GMOYo3R/i34DkBmwGgqr8DdX0ZypjKSIKC6HXdC8xpeiOJ6d+zZMLF5B3KdTuWMUd4U/APquqhwxMiUg1Q30UypvKSoCB6j36KOS3voFvWL6Q+P4TcnANuxzIG8K7g/yIi9wMRInIm8CHwpW9jGVO59b7iIea2e4CO2fNZM+E8crIy3I5kjFcF/15gF7AMuAH4BnjAl6GMqQp6XXoXC7o+TtvcFDa+cBZZ6XvdjmQCnDcF/zzgTVW9RFWHqerrqmpNOsZ4oeeFt7Co5/O0OLSKP148k4w9O9yOZAKYNwV/OPC7iDwtIm18HciYqqbHuaNZdtorNM7byNbXLqYwP9/tSCZAHbPgO3fHdgXWApNEZI7T/81xXYtvTCDrNugyUrr8g7aHlrHgg4fdjmMClFc3XqlqBp5r8acADYChwCIRGePDbMZUKUkX3MyCqAF0W/tv1qb86nYcE4C8ufFqiIh8CvwMhABJqnoO0Bm4w7fxjKk6JCiIVqMnskdqEfb59eRkpbsdyQQYb47wLwaeV9WOqvqMqu4EUNVs4FqfpjOmiqkZW5edg/5Fw8I/WPHWzW7HMQHGmzb8q4HVzpH++SJSv8i8//o0nTFVUKdTz2N2g6tI3PsVS6e/63YcE0C8adK5FpgPXAQMA+aKyDW+DmZMVdZj9NOsDm5J09n3sWfberfjmADhTZPO3UBXVR3lHO13B+7xbSxjqrawsHBCLn2LEM1j5zuj0ELrXdP4njcFfw+QWWQ603nNGHMSmrXuzOL299L2YAqLpvyf23FMAKhW2gwRGeeMrgHmicjneDpNuwBYWgHZjKny+gy7jQXP/ETnVf9i0/LBNOnQx+1Ipgor6wg/2hnW4un//nB3Cp8D1uhoTDmQoCASRr/OPolBPrmOg9nWyZrxnVKP8FX1kaLTIhLpXIppjClHcXUbsPD05+n68yhS3r6VbrdMcjuSqaK8uUqnt4ikAiud6c4i8orPkxkTQLoPuJCZdUfQbdenpM2Y7HYcU0V5c9J2AnAWzolaVV0C9PNlKGMCUeI1z7I6qAUNfrmL9B2b3I5jqiBv+9LZXOwlu4bMmHIWGREJF71OmB5km12qaXzAm4K/WUT6ACoiISJyJ5Dm41zGBKRTOnRnXus7aZu9kCUfPel2HFPFeFPwb8TzIPNGwFagizNtjPGB04bfxYKw3rRb8RzbVs53O46pQrzpS2e3qo5U1XqqWldVr1BVu/HKGB8JDg4iftQbpEsU+R9eS36uPQTdlI+ybrx6kf9de/8nqnqrTxIZY2jQIJ45fcbTe/ZfSZk0li43vuF2JFMFlHWEnwwsBMKBbsDvztAFCPV9NGMCW+/Bl/Bz7Uvo8seHrJn5odtxTBUgx3oeuYjMBU5V1XxnOgT4TVV7lXeYxMRETU5OLu/VGlNpZWZlsuPZU4nVvYSMmUtUbCO3Ixk/IyILVTXRm2W9OWlbC6hRZDrKec0Y42PRUdHkDnmNCM1h89uj4RgHaMaUxZuC/ySwWEQmicg7wCLgCd/GMsYc1qFrL2Y1v422WfNY/tkzbscxlZg3V+m8DfQEPgU+AXqr6ju+DmaM+Z9+I+8jObQHrZY8zc41i9yOYyopb++0/UNVP3eGP7x5j4iEi8h8EVkiIitE5JFjv8sYU5KQasHUveJNMjWSnCmjKTiU43YkUwl5VfBP0EFgoKp2xnNlz9kiUu4neo0JFE2aNCU16Uma5m9gxbu3ux3HVEI+K/jqkeVMhjiDnXEy5iScdu4IfooZSqctk9kw93O345hKxquCLyLBItJQRJocHo7jfSnATuAHVZ1XwjLXi0iyiCTv2rXr+NIbE2BEhK6jX2CtNKbG97eSs2+H25FMJeJNf/hjgB3AD8DXzvCVNytX1QJV7QLEA0ki0qGEZSaqaqKqJsbFxR1XeGMCUa2aMaSf8yrVCw+wwS7VNMfBmyP8sUBrVW2vqh2dodPxbERV9wMzgLNPJKQx5mjdkk7l5ya30DZjFiu/muB2HFNJeNU9MpB+vCsWkTgRqemMRwBn4jw1yxhz8vpf9QDJ1bqRsPAJ9m5Y5nYcUwl4U/DXAT+LyH0iMu7w4MX7GgAzRGQpsABPG75XTUHGmGMLCwmh1uWvk61hZL5/NZp/0O1Ixs95U/A34Wm/DwWiiwxlUtWlqtpVVTupagdVffTkohpjimvRvCWLuzxK07y1rJhmv2KmbKV2j3yYqtoNU8b4sQEXjGbWqs9IWv1vdq+7hDrNu7gdyfipUo/wRWSC8/NLEfmi+FBxEY0xZQkKEhpd/iKZGknG1BvRgny3Ixk/VdYR/nvOz/EVEcQYc+ISmjTlx/b3MSj1flZ8+jTth93vdiTjh0ot+Kq60Pn5S8XFMcacqP4X3cj8NZ/Rcfnz7Os5lFqN27odyfgZX/alY4ypQNWqBRN76cvkazC7P7gRCgvdjmT8jBV8Y6qQFi1PYV6rO2iVk0LqV/9yO47xM950rXCJN68ZY/xDv+HjWFytE00WPUnGjg1uxzF+xJsj/Pu8fM0Y4wdCQ4KJuOhlgrSQre/dYH3tmCNKPWkrIucA5wKNRKTod8MagF33ZYwfa9OuE/9NuIkzNk5g5fQ3aHPWdW5HMn6grCP8bUAykAssLDJ8AZzl+2jGmJPR9/K/syKoNQ3m/IMDe7e5Hcf4gVILvqoucZ5d21JV3ykyfKKq+yowozHmBISHhcIFLxGuuax/9xa34xg/4E0bfpKI/CAiq0VknYisF5F1Pk9mjDlp7TsnMavRNXTY/xOrf/7A7TjGZd4U/DeB54BTgR5AovPTGFMJ9LryUVZLM2LU/O/VAAAVnUlEQVR/uZ+c9D1uxzEu8qbgp6vqt6q6U1X3HB58nswYUy4iIyLIOecFYgrTWf3eGLfjGBd5U/BniMgzItJbRLodHnyezBhTbjonnc5vdUfSeffXrJ1jfR8GqmN2jwz0dH4mFnlNgYHlH8cY4yvdr/4nG579ierT7+Bg59MJi4xxO5KpYMc8wlfVASUMVuyNqWRqREWz54znqFu4i9R373A7jnGBN10r1BORN0XkW2e6nYhc6/toxpjy1v3Us5lZ+yK6/vEh6xf96HYcU8G8acOfBHwPNHSmVwO3+SqQMca3Ol09nq3UJeSrW8nLPeB2HFOBvCn4dVR1GlAIoKr5QIFPUxljfKZmzdpsPfVJ4gu3svR96xYrkHhT8A+ISCyeE7WISC8g3aepjDE+lTToYmbVOJfOm95j8/JZbscxFcSbgj8OT/85LURkFvAuYBfzGlPJtb7yBfZKDAWf3UJB3kG345gK4M1VOouA04E+wA1Ae1Vd6utgxhjfqhNXl7VJj5KQv56Uyf9wO46pAN5cpROMp5vkM4DBwBgRGefrYMYY3+t1zpXMqz6AjmtfY9vqRW7HMT7mTZPOl8AoIBaILjIYYyo5ESHhihfJIpIDH95EYb496qIq8+ZO23hV7eTzJMYYV9Rr0JjZXR+gT8o9LPzon3S/7EG3Ixkf8eYI/1sRGezzJMYY1/Qecj0Lw3vRLu1f7NiQ6nYc4yPeFPy5wKcikiMiGSKSKSIZvg5mjKk4EhREg8tfIZ9g9k6+ES20W22qIm8K/nNAbyBSVWuoarSq1vBxLmNMBWvYpAVL2t1F24NLSPnsBbfjGB/wpuBvBparqvo6jDHGXX2G3c7S0C60Wvo0u7eudTuOKWfeFPx1wM8icp+IjDs8HOtNItJYRGaISKqIrBCRsScf1xjjS0HBQcQM/zdBWsi2928GO86rUrwp+OuB/wKhHN9lmfnAHaraDugF3CIi7U40qDGmYjRt0Y5FrcbQKXsuKd+87nYcU47E25YaEYkCUNWsE9qQyOfAS6r6Q2nLJCYmanJy8oms3hhTjvLz8vj9qVNpkL8FvXketerGux3JlEJEFqpq4rGX9O5O2w4ishhYAawQkYUi0v44AyUAXYF5Jcy7XkSSRSR5165dx7NaY4yPVAsJIeziVwjXg2x7cyQF+XluRzLlwJsmnYnAOFVtqqpNgTsAr7/nOd8MPgZuU9U/Xc6pqhNVNVFVE+Pi4rxdrTHGx5q37c6iTg/R/mAKi96yR2BUBd4U/OqqOuPwhKr+DFT3ZuUiEoKn2L+vqp+cUEJjjGt6XzSG2bWH0mPbf0j57i2345iT5NVVOiLyoIgkOMMDeK7cKZOICPAmkKaqz51sUGNMxRMRul3/b9KqteWUOfeyKc3OsVVm3hT8a4A44BNniHNeO5a+wJXAQBFJcYZzTzipMcYV4eER1Bo1mWyJIGjalWSl73E7kjlBXl+lUxHsKh1j/NeyOd/R5rvLSaveg453foMEBbsdyXB8V+mU2lumiHxR1htVdcjxBjPGVF4de5/NrPV30Xf1k8x/9z6SRj3tdiRznMrqHrk3nm4VJuO5nFIqJJExxm/1uewe5k1YTI/1E1k+I5EOAy51O5I5DmW14dcH7gc6AC8AZwK7VfUXVf2lIsIZY/yLBAXR8YY3WVetGU1+Gcv2dSvcjmSOQ6kFX1ULVPU7Vb0aT9cIa/D0qfO3CktnjPE7kdWjCb9iMgUEc/A/I8jJSnc7kvFSmVfpiEiYiFwE/Ae4BfgX8GlFBDPG+K/4Zm3Y2P9fNC7YRNrEUWhhoduRjBdKLfgi8i4wB+gGPKKqPVT1/1R1a4WlM8b4rS79L2Jus1volvETCyb/n9txjBfKOsK/AmgFjAVmO0+7sideGWOO6H3l/5EceRrdVz9P2qwv3Y5jjqGsNvwg5+lW0c6Trg4P9sQrYwzg6T//lBveZXNwPPV/uJmdm9e4HcmUwZs7bY0xplQ1YmrDpf+hmuaR/s5lHMw94HYkUwor+MaYk5bQpgur+4ynVf7vLJt4nT0py09ZwTfGlIvuZ13B7EajSdz7NckfP+t2HFMCK/jGmHLTc/R4loT3oNOyJ1i98Ce345hirOAbY8pNcLVqNL3uA3YF1aHWl9eyZ8cmtyOZIqzgG2PKVc3YumQPfZcozWLnmyPIP3TQ7UjGYQXfGFPuWnXqxbLuj9H20HIWvWG9sfgLK/jGGJ9IGnIDc+oOJ2nnNBZ++W+34xis4BtjfCjxry+yIqQj7ZIfYt2yOW7HCXhW8I0xPhMSGkbdaz8gU6KI+OQqMvbsdDtSQLOCb4zxqbj6TdjzlzeJLdzLxtcvoyA/3+1IAcsKvjHG59omDmRRh/vpmLuQ5LfvcDtOwLKCb4ypED2HjWNerfPpuXUSKdPfcztOQLKCb4ypECJC5+snsqraKbScdRebVqe4HSngWME3xlSY8IhIalw9hUMSQugHw9i0MtntSAHFCr4xpkI1aNyCPRdOIZh8ak35C2mzvnA7UsCwgm+MqXCtuvQlb/R0dgXVpeX0USz6/CW3IwUEK/jGGFc0bHoKsWNmkBbWiW6L/07y23faw9B9zAq+McY1MbViaX3Hd8yJOZfEja+T8uJl5B/McTtWlWUF3xjjqrCwcHre+j6/Nr6Rrvu+5/fnz+LA/t1ux6qSrOAbY1wXFBxEv2ufYlbnf9I8ZwV7Xzyd3VtWuR2ryrGCb4zxG32H3syKM96hRv4+gt44k01Lf3U7UpXis4IvIm+JyE4RWe6rbRhjqp5u/f7CH5d8RTZhxH1yMat+/sDtSFWGL4/wJwFn+3D9xpgqqnWHbshf/8uG4ARazbiZZR/90+1IVYLPCr6q/grs9dX6jTFVW6P4JjS89UcWRPSh4/InWfr69WiB9bR5MlxvwxeR60UkWUSSd+3a5XYcY4wfiYmJocsdn/NT7UvptHUqaROGkJ+T6XasSsv1gq+qE1U1UVUT4+Li3I5jjPEzYSEh9P/bRH5sdietM2az+fkBZO/Z6nasSsn1gm+MMccSFCQMuvpBfkt8kXoHN5H5cn/2rLPeNo+XFXxjTKXR//wrWXHWFIIKDhH67jlsXvid25EqFV9eljkZmAO0FpEtInKtr7ZljAkcPfoMZO/l37KTWOp/eTm/T3/N7UiVhi+v0hmhqg1UNURV41X1TV9tyxgTWFq3bkf4jT+yLLgDrWbfzcrJ94Kq27H8njXpGGMqpUb169Pi9m+ZETGYNqv+zcpXR6L5B92O5des4BtjKq2YqOr0GTeZr+tcQ5sdX7Pu+bPIz7Lbf0pjBd8YU6mFhVTj3Fue4+uWj9A4ayk7J/Rjz4qf3I7ll6zgG2MqPRHhvCtu49deryN5B4j9cCirXxhC1rY0t6P5FSv4xpgqY9A5F1Nw8wK+qnMtDffOI2xiX9LeupG8TLuLH6zgG2OqmPh6dfjL355j08iZ/Bx5FqdsnMLBZzuz8qPH0LzAfpqWFXxjTJXU7pRWDLrrAxac+zUrqrWlzfJn2PnPzqyb8U7AXsJpBd8YU2WJCL169qX7fT/wU9JE0gvDaf7Lrax/sjfbls1wO16Fs4JvjKnyqgUHMfDc4TS6ZwHTWz1I9dw/aPjxhaROuIB9W1a6Ha/CWME3xgSM6hFhDB55J4xdyI/1riVh3xyiXu9Dyus3kZtR9R+cbgXfGBNw6taOZdBNz7Fj1GzmRg+m05bJHHquM0umPU7BoVy34/mMFXxjTMBq1qwlp905heVDvmJNyCl0Tn2anU92Ju2/71bJE7tW8I0xAa9T91Ppct9PzOkzkRwNoe1vY1j9ZF/Wp/zidrRyZQXfGGPwPGSl9+DhNLpvIb+1eZDaB7fQ7LMhLH5uKDs3VY0Tu1bwjTGmiLDQME677E5CxqbwW8PRtEmfSc03+zL/tZvZt3OL2/FOiqgftVMlJiZqcnKy2zGMMeaIbRvXsOnjv5OU/j0KrArvRFaL82hx+ghi6zVxOx4islBVE71a1gq+McYc2/q0RWyf+R6Ntk2nqW6hUIWVYR3JbPEXWpw+gjr13Sn+VvCNMcZHtLCQ9WnJ7JgzlQbbviOh8HDx7+AU/8srtPhbwTfGmAqgqv8r/lu/I6Fw8/+Kf/PzaN7vcuIaNvVpBiv4xhjjgg1pyWyfPeXo4h/anozmf6F5v8up26j8i78VfGOMcdnGlQvZPnsK9bd8R0LhpiPFP73ZeTTrN4L68c3KZTtW8I0xxo9sXLmY7bMnU2/LdzQr3OgU/3akNzuXpqeNoGHjFie8biv4xhjjpzavWsy22ZOpt/k7EpzinxbanlPu+omQ0LDjXt/xFPxqx712Y4wxJ6xx6640bt0VeJqtv6ewZdZkgjO2nlCxP15W8I0xxiWNWnWhUasuFbY961rBGGMChBV8Y4wJEFbwjTEmQFjBN8aYAGEF3xhjAoRPC76InC0iq0RkjYjc68ttGWOMKZvPCr6IBAMvA+cA7YARItLOV9szxhhTNl8e4ScBa1R1naoeAqYAF/hwe8YYY8rgyxuvGgGbi0xvAXoWX0hErgeudyazRGRVCeuqA+wu94S+VdkyV7a8YJkrSmXLXNnywsll9roLTtfvtFXVicDEspYRkWRv+4rwF5Utc2XLC5a5olS2zJUtL1RcZl826WwFGheZjndeM8YY4wJfFvwFQCsRaSYiocBlwBc+3J4xxpgy+KxJR1XzReRvwPdAMPCWqq44wdWV2eTjpypb5sqWFyxzRalsmStbXqigzH7VH74xxhjfsTttjTEmQFjBN8aYAOFXBf9YXTGIyCgR2SUiKc7wVzdyFsnzlojsFJHlpcwXEfmX83mWiki3is5YLM+x8vYXkfQi+/ehis5YQqbGIjJDRFJFZIWIjC1hGX/bz95k9pt9LSLhIjJfRJY4eR8pYZkwEZnq7ON5IpJQ8UmPyuNNZr+qF4eJSLCILBaRr0qY59v9rKp+MeA5sbsWaA6EAkuAdsWWGQW85HbWInn6Ad2A5aXMPxf4FhCgFzDPz/P2B75ye78Wy9QA6OaMRwOrS/h/4W/72ZvMfrOvnf0W5YyHAPOAXsWWuRl41Rm/DJhaCTL7Vb0okmsc8EFJ//6+3s/+dIRf6bpiUNVfgb1lLHIB8K56zAVqikiDikn3Z17k9Tuqul1VFznjmUAanru4i/K3/exNZr/h7LcsZzLEGYpfzXEB8I4z/hFwhohIBUX8Ey8z+x0RiQfOA94oZRGf7md/KvgldcVQ0i/Jxc7X9o9EpHEJ8/2Jt5/Jn/R2viZ/KyLt3Q5TlPP1tiueo7mi/HY/l5EZ/GhfO80MKcBO4AdVLXUfq2o+kA7EVmzKo3mRGfyvXkwA7gYKS5nv0/3sTwXfG18CCaraCfiB//0lNOVjEdBUVTsDLwKfuZznCBGJAj4GblPVDLfzeOMYmf1qX6tqgap2wXNHfJKIdHAzjze8yOxX9UJE/gLsVNWFbmXwp4J/zK4YVHWPqh50Jt8AuldQthNVqbqXUNWMw1+TVfUbIERE6rgcCxEJwVM431fVT0pYxO/287Ey++u+VtX9wAzg7GKzjuxjEakGxAB7KjZdyUrL7If1oi8wREQ24GmyHigi/ym2jE/3sz8V/GN2xVCsXXYInrZRf/YFcJVzFUkvIF1Vt7sdqjQiUv9we6GIJOH5/+HqL7WT500gTVWfK2Uxv9rP3mT2p30tInEiUtMZjwDOBFYWW+wL4GpnfBjwkzpnFt3gTWZ/qxeqep+qxqtqAp769pOqXlFsMZ/uZ9d7yzxMS+mKQUQeBZJV9QvgVhEZAuTjOfk4yrXAgIhMxnO1RR0R2QI8jOfkEar6KvANnitI1gDZwGh3knp4kXcYcJOI5AM5wGVu/lI7+gJXAsuc9lqA+4Em4J/7Ge8y+9O+bgC8I56HFgUB01T1q2K/e28C74nIGjy/e5e5lPUwbzL7Vb0oTUXuZ+tawRhjAoQ/NekYY4zxISv4xhgTIKzgG2NMgLCCb4wxAcIKvjHGBAgr+MZnRCTLi2VuE5HIctzmhSLSrhzXN/sk3pvl/GwoIh+VsVxNEbn5RLdjjLes4Bu33QYcV8F3rr0uzYVAuRV8Ve1TDuvYpqrDylikJp5eEo3xKSv4xufE0/f7z04HVitF5H3nrthbgYbADBGZ4Sw7WETmiMgiEfnQ6Y8GEdkgIk+JyCLgEhG5TkQWOJ2PfSwikSLSB88dlc+Ip//zFiLSRUTmOh1ofSoitZz1/Swiz4tIsoikiUgPEflERH4XkceKZM8qMn6PiCxztvlkCZ+zmZN9WbF1JIjzDAIRaS+eftxTnEytgCeBFs5rz4hIlIj819kHy0TkgiLrSROR18XTB/x05y5TRKSliPzoZFskIi2c1+9y9tNSKaHPeBNgyrOvZRtsKDoAWc7P/nh6/YvHc5AxBzjVmbcBqOOM1wF+Bao70/cADxVZ7u4i644tMv4YMMYZnwQMKzJvKXC6M/4oMMEZ/xl4yhkfC2zDc/dmGJ7eNmOLfYZzgNlApDNdu4TP+wVwlTN+S5H3JuA8gwBPR2kjnfFQIKLofOf1akCNIvtkDZ7+3xPw3DXaxZk3DbjCGZ8HDHXGw/F8axqM5+HY4uz3r4B+bv+/sMG9wW+6VjBV3nxV3QLgdDeQAMwstkwvPM0xs5xuZkLx/HE4bGqR8Q7OUXRNIApPlxxHEZEYoKaq/uK89A7wYZFFDvfVtAxYoU7/OyKyDk8HVkX7thkEvK2q2QCqWtJzBfoCFzvj7wFPlbDMHODv4ukX/RNV/V3+3N25AE+ISD883eg2Auo589ar6uHuGhYCCSISDTRS1U+dbLnO5xiMp+gvdpaPAlrh+aNqApAVfFNRDhYZL6Dk/3uCp1/zEaWs40CR8UnAhaq6RERG4fkWcaKZCovlKywlnzfK7KtEVT8QkXl4HoLxjYjcAKwrtthIIA7orqp54uldMbxYZvDsx4gyNifAP1X1tePIb6owa8M3bsvE8xhAgLlAXxFpCSAi1UXklFLeFw1sF083xCNLWp+qpgP7ROQ0Z96VwC+cmB+A0YevKBKR2iUsM4v/dXY1soT5iEhzYJ2q/gv4HOjE0fsAPF3i7nSK/QCgaVnB1PNUrS0icqGzjTAn5/fANUXOgzQSkbpefVpTJVnBN26bCHwnIjNUdReeHg0ni8hSPM0fbUp534N42q1ncXS3uFOAu8TzkOgWeLqafcZZXxc87fjHTVW/w9MElOw0Sd1ZwmJjgVtEZBmlP3HrUmC5s44OeB7NuAdPM9ZyEXkGeB9IdNZzFX/uqrgkV+LpHXIpnnMN9VV1Op5np85x1vURR/9hMQHGess0xpgAYUf4xhgTIKzgG2NMgLCCb4wxAcIKvjHGBAgr+MYYEyCs4BtjTICwgm+MMQHi/wE7X0kFfMxr0AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for j in reversed(range(len(algorithms))):\n", " pylab.plot(distances, dipoles[j], label=algorithms[j])\n", @@ -204,30 +131,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VPW5+PHPk32FkIQ1oAFcWkUFRUWxXKHW1tYKV61VbCtqa7XeWrV1a++vVq9Wrbet2o3a2rpUBKvYAmqtC8pVEQVEcRchkRASsgDZyUzy/P44Z8IwTJKZZPY879crr5w558w5zxzCeea7nO9XVBVjjDEmVGnxDsAYY0xyscRhjDEmLJY4jDHGhMUShzHGmLBY4jDGGBMWSxzGGGPCYonDGGNMWCxxGOMSkQoROSVO5x4tIqtEpFlEfhnD894vIrdE6djni8i/o3FsE1+WOExIRORfInJzkPVzRaRGRDLc1yeKyAvuDXC3iCwTkc/47X+yiHSLSEvAzwmx/DwJ6BKgHhimqj+MdzDhEpFyEVHf3wGAqj6sqqfGMy4THZY4TKgeAL4hIhKw/pvAw6rqdW/+/wb+CYwDJgJvA6+ISLnfe6pVtSDgZ3X0P0Js+N88w3Ag8J7aUA4mCVjiMKH6B1ACfM63QkRGAKcDD7qrfgE8qKp3q2qzqjaq6n8DrwM3DuSkbvXRj0TkbbcEs0REctxtC0Tk5YD9VUQOcpfvF5Hfi8jTbqnmFREZIyJ3ichOEflARKYFnPJYEXnP3f5X37nc450uIhtEZJeIvCoiRwbEeZ2IvA20BksebmnsDfdzvCEiJ/riBC4ArnXj3K+6TESyReR/ReRTEakVkYUikutue19ETvfbN0NE6kTkaPf1391S4W63OuzwXq51f9fzKyLypog0ichWEfmZ366r3N+7fCXIwOP19vndbS+KyP+4/0bNIvJvESl1t+WIyN9EpMG99m+IyOhgn8HEhiUOExJVbQceBb7lt/oc4ANVfUtE8oATgb8HefujwGCqLM4BvoRTgjkSWBDme/8bKAX2AKuB9e7rx4BfBex/PvBFYDJwiPte3ATzF+C7OAn0j8AyEcn2e+95wFeAIlX1+h9URIqBJ4F73Pf/CnhSREpUdQHwMPALt/T1XJDPcbsbz1TgIKAM+Km77RH33D5fBOpVdb37+mngYGCU+9kfDn6p+tWK8+9f5H7Oy0Rknrttlvu7KFgJsq/P77fbfOBCN84s4Efu+guA4cAE972XAu0D/AwmAixxmHA8AJzt9y38W+46gGKcv6ftQd63HRjp93qc+83R/ye/j/Peo6rVqtoILMe5eYbqCVVdp6odwBNAh6o+qKpdwBIgsMTxW1Xd6p7rVvbekC8B/qiqa1S1S1UfwElEMwLi3Oom2UBfAT5W1YdU1auqjwAfAF/t7wO41YOXAFe5pbhm4OfAue4ui4Az3OQNzg34Ed/7VfUvbglwD/Az4CgRGd7feQOp6ouqulFVu1X1bfcc/xHi20P5/H9V1Y/8vqT4/p09OAnjIPfar1PVpnDjN5FjicOETFVfxmnAnScik4HjcG5aADuBbmBskLeOdd/nU62qRQE/rX2cusZvuQ0oCCPsWr/l9iCvA4+11W+5EqetBpw2iB/6Jzucb8DjenlvoHHu8fxV4pQc+jMSyAPW+Z37X+56VHUT8D7wVTd5nIH77yIi6SJyu4h8IiJNQIV7zNIQzrsPETleRFa61WC7cb75h3qcUD5/b//ODwHPAItFpFpEfiEimeHGbyLHEocJ14M4JY1vAM+oai2Ae+NfDXwtyHvOAV6MQiytODdUAERkTASOOcFv+QCg2l3eCtwakOzy3G/OPn01bFfjJB9/BwDbQoipHifJHe537uGq6p/0fNVVc3Ea2Te56+e7607Bqe4pd9cHdnKA/q/nImAZMEFVhwML/Y7TX6P+gD+/qnpU9SZVPQynOvR09q0yNTFmicOE60Gcm9B32FtN5XM9cIGIXCEihSIyQpxnBD6HU7USaW8Bh4vIVLf67GcROOblIjLerZP/CU51FsCfgEvdb90iIvluY3FhiMd9CjhEROa7jddfBw4DVvT3RlXtds//axEZBSAiZSLyRb/dFuO0I13G3lIgQCFOlVoDTlLo69+hv+tZCDSqaoeIHIeTlHzqcEqck3o59oA/v4jMFpEjRCQdaMKpuuru730meixxmLCoagXwKpCP8+3Tf9vLOA2zZ+K0azTiNGx+XlXf8dt1nOz/HMdZA4jlI+Bm4DngY+Dlvt8RkkU4XYo3A58At7jnWouTLH+LUy23iTAa6VW1Aeeb8g9xbuLXAqeran2fb9zrOvecr7lVTs8Bh/odfztOie9E9iY7cBJ9Jc43+/eA1/qIsb/r+T3gZhFpxmmYf9TvvW04bUKvuNVp/m0/g/38Y3A6MjThVMm9hFN9ZeJErNu4iRZxuquuBOar6jPxjscYExlW4jBR4/a8mQccIQN7KM4Yk4CsxGGMMSYsVuIwxhgTlpSsPigtLdXy8vJ4h2GMMUll3bp19ao6sr/9UjJxlJeXs3bt2niHYYwxSUVEAh/SDMqqqowxxoTFEocxxpiwWOIwxhgTlpRs4wjG4/FQVVVFR0dHvEOJipycHMaPH09mpo39ZoyJriGTOKqqqigsLKS8vBzZbxK75KaqNDQ0UFVVxcSJE+MdjjEmxQ2ZqqqOjg5KSkpSLmkAiAglJSUpW5oyxvSvadVSNl96LB99rYzNlx5L06qlUTvXkClxACmZNHxS+bMZY/rWtGoptQuvQTudOcS89duoXXgNAMNmnRnx8w2ZEocxxqSq+kW39SQNH+1sp37RbVE5nyWOGJk9ezbPPLPvALF33XUXl112Ge+++y5z5szh0EMPZfLkydx44410dzvTDdx///2MHDmSqVOn9vy899578fgIxpgE5W2oDmv9YFni6EWk6wvPO+88Fi9evM+6xYsXc+6553LGGWdw/fXX8+GHH7Jx40Zef/117r777p79vv71r7Nhw4aen8MOO2xQsRhjUkdXaxOSkRV0W0bJuKDrB8sSRxC++kJv/TZQ7akvHEzyOPvss3nyySfp7OwEoKKigurqajZt2sTMmTM59dRTAcjLy+O3v/0td955Z0Q+izEmdXXWVLD1J19FvZ2QsW9XfMnKpXT+DVE575BqHPfZ8defsmfLu71u7/honfMP4Uc726n9/dXsfu7hoO/Jnng4oy68uddjFhcXc9xxx/H0008zd+5cFi9ezDnnnMO7777LMcccs8++kydPpr29nV27dgGwZMkSXn5572Rsq1evJjc3t9/PaYxJXW3vrqb6zm8DyvgbH8XbWEv9otvwNlSTUTKO0vk3RKVhHKJY4hCRv4jIDhF5x29dsYg8KyIfu79HuOtFRO4RkU0i8raIHO33ngvc/T8WkQuiFa+/wKTR3/pQ+VdXLV68mPPOOy+k9wVWVVnSMGZo2/38Iqr+51zShxVzwG0ryJsyk2GzzmTSwjc45O/bmLTwjaglDYhuieN+nPmZH/Rbdz3wvKreLiLXu6+vA04DDnZ/jgf+ABwvIsXAjcB0QIF1IrJMVXcOJrC+SgYAmy891qmmCpBRWsaEmx8f8Hnnzp3LVVddxfr162lra+OYY47hzTffZNWqVfuef/NmSkpKKCoqGvC5jDGpR7u6qP/bLexc/kfyjvoPxl69kPT84TGPI2olDlVdBTQGrJ4LPOAuP4Azrahv/YPqeA0oEpGxwBeBZ1W10U0WzwJfilbMPqXzb0Cy9v1WH4n6woKCAmbPns1FF13UU9o4//zzefnll3nuuecAaG9v54orruCmm24a1LmMMamlq62Z6jsWsHP5Hyk67ULKfvxQXJIGxL5xfLSqbneXa4DR7nIZsNVvvyp3XW/r9yMil4jIWhFZW1dXN6ggh806k9GX3klGaRmIkFFaxuhL74xI0e+8887jrbfe6kkcubm5LFu2jFtvvZVDDjmE0tJSZs6cyfnnn9/zniVLluzTHffVV18ddBzGmOThqf2UrT85g9YNLzLqO7cx6uJbkfT4NVHH7cyqqiISsQnPVfVe4F6A6dOnD/q4w2adGZU6wnnz5hE4z/uUKVNYuXIlAP/4xz+4+uqrmT9/PgceeCALFixgwYIFEY/DGJMc2t9fQ/WdF6NdXZT998PkHzkr3iHFvMRR61ZB4f7e4a7fBkzw22+8u6639Slr3rx5bN68mQMPPDDeoRhj4mz3yiVsvekc0vKLOOC2FQmRNCD2iWMZ4OsZdQHwT7/133J7V80AdrtVWs8Ap4rICLcH1qnuOmOMSVna1UXdQ7dQ+7uryPvs8Rxw2wqyxk2Od1g9olZVJSKPACcDpSJShdM76nbgURG5GKgEznF3fwr4MrAJaAMuBFDVRhH5H+ANd7+bVTWwwT1kqpqygwEGVn8ZY5JTd3sL2+/+L1rX/pvhX7yAURfejGQk1jw7UUscqtrbQwqfD7KvApf3cpy/AH8ZbDw5OTk0NDSk5NDqvvk4cnJy4h2KMWYQPHVVbLt9AZ1bP2Dkxbcw4rSL4h1SUEPmyfHx48dTVVXFYHtcJSrfDIDGmOTU/uFaqn9xEerppOzHfyN/6snxDqlXQyZxZGZm2ux4xpiE1PTSY9T+4UdklI6j7OYHyCo7ON4h9WnIJA5jjEk02t1NwyN30PjEb8g9/ETG/ehe0guL4x1WvyxxGGNMDDWtWuoMRlhfjWRlo50dDD/lfOehvszgw6MnGkscxhgTI4FTvGpnB6RnknPYjKRJGmDzcRhjTMwEm+KVLg8Ni26PT0ADZInDGGNiJNZTvEaLJQ5jjImR3qZyjdYUr9FiicMYY2KkdP4NkJa+z7poTvEaLZY4jDEmRobNOpPMsoOd+cEjPGVDLFmvKmOMiSVPB4XHncbYqxfGO5IBsxKHMcbEiHZ58dRVkTmmPN6hDIolDmOMiRFP/Tbo8pI5Ornn27HEYYwxMeKpqQCwEocxxpjQeGoqAcgcYyUOY4wxIfDUbEEys8kYMSbeoQyKJQ5jjImRztpKMkcfiKQl9603uaM3xpgk4qmpTPpqKrDEYYwxMaGqeHZUkjm6PN6hDJolDmOMiYGuXXVoR5uVOIwxxoTGU1sBQJaVOIwxxoSis+cZDitxGGOMCYGnpgLS0sgcOSHeoQyaJQ5jjIkBT00lGaVlSTVFbG8scRhjTAx4aivJSvIxqnwscRhjTAx4aiuSfowqH0scxhgTZV2tTXQ1NSb9qLg+ljiMMSbKfF1xrcRhjDEmJD2j4lqJwxhjTCh6Hv6zEocxxphQdNZUkj68lLTcgniHEhGWOIwxJso87nDqqcIShzHGRJmnJnW64oIlDmOMiapuzx68DdVW4jDGGBMa745PQTVlGsbBEocxxkRVp68rriWOwRGRq0TkXRF5R0QeEZEcEZkoImtEZJOILBGRLHffbPf1Jnd7eTxiNsaYgfD0DKdeHtc4IinmiUNEyoArgOmqOgVIB84F7gB+raoHATuBi923XAzsdNf/2t3PGGOSgqe2EsnJJ31YSbxDiZh4VVVlALkikgHkAduBOcBj7vYHgHnu8lz3Ne72z4uIxDBWY4wZME9NJVljDiSVblsxTxyqug34X+BTnISxG1gH7FJVr7tbFVDmLpcBW933et3990vdInKJiKwVkbV1dXXR/RDGGBMiT20FmSkwXay/eFRVjcApRUwExgH5wJcGe1xVvVdVp6vq9JEjRw72cMYYM2ja1YWn9tOUmC7WXzyqqk4Btqhqnap6gKXATKDIrboCGA9sc5e3ARMA3O3DgYbYhmyMMeHzNm5HvZ1kjpkY71AiKh6J41NghojkuW0VnwfeA1YCZ7v7XAD8011e5r7G3f6CqmoM4zXGmAHx1DpdcVNl5j+feLRxrMFp5F4PbHRjuBe4DrhaRDbhtGHc577lPqDEXX81cH2sYzbGmIFIxa644PRuijlVvRG4MWD1ZuC4IPt2AF+LRVzGGBNJnbWVkJFJRsm4eIcSUfbkuDHGRImnppLMkROQ9PR4hxJRljiMMSZKPDVbUmpwQx9LHMYYEwWqiqe2kqyx5fEOJeIscRhjTBR0NzfS3daccg//gSUOY4yJir2j4lpVlTHGmBB4aisArMRhjDEmNB5fiWPUhDhHEnmWOIwxJgo8NRVkFI8lLTs33qFEnCUOY4yJgs7aipRs3wBLHMYYExWemsqUG2rExxKHMcZEWHdHG127dqRkwzhY4jDGmIjrGRXXqqqMMcaEIpW74oIlDmOMibhUfvgPLHEYY0zEeWoqSCsoIr2gKN6hREVIiUNEJotItrt8sohcISKpeUWMMWaQPDUVKdujCkIvcTwOdInIQTiz9U0AFkUtKmOMSWKe2sqUmy7WX6iJo1tVvcB/Ar9R1WuAsdELyxhjkpN6PXjqqqzEAXhE5DzgAmCFuy4zOiEZY0zy8tRvg+6ulJzAySfUxHEhcAJwq6puEZGJwEPRC8sYY5KTp6YCIKVLHBmh7KSq7wFX+L3eAtwRraCMMSZZ9SSOFC5xhJQ4RGQm8DPgQPc9AqiqTopeaMYYk3w8tZVIVg4ZI0bHO5SoCSlxAPcBVwHrgK7ohWOMMcmts6aCzNEHImmp+5hcqIljt6o+HdVIjDEmBXhqK1O6mgpCTxwrReROYCmwx7dSVddHJSpjjElCqoqntpK8I2fFO5SoCjVxHO/+nu63ToE5kQ3HGGOSV9euHeie9pR++A9C71U1O9qBGGNMsuvcXgGkdldcCH2squEi8isRWev+/FJEhkc7OGOMSSY9w6mn6Ki4PqE2+/8FaAbOcX+agL9GKyhjjElGnppKSEsns3R8vEOJqlDbOCar6ll+r28SkQ3RCMgYY5KVp7aCzNIyJDMr3qFEVagljnYROcn3wn0gsD06IRljTHLy1FSmfDUVhF7iuAx4wG3XEKARWBCtoIwxJhl11lZQOOP0eIcRdaH2qtoAHCUiw9zXTVGNyhhjkkxX6266m3daiUNEvqGqfxORqwPWA6Cqv4pibMYYkzQ8vnnGR5fHN5AY6K/Eke/+LgyyTSMcizHGJC1fV9ysFH+GA/pJHKr6R3fxOVV9xX+b20A+IO585X8GpuAkoIuAD4ElQDlQAZyjqjvFKd7cDXwZaAMW2FAnxphEs7fEkfpVVaH2qvpNiOtCdTfwL1X9DHAU8D5wPfC8qh4MPO++BjgNONj9uQT4wyDOa4wxUdFZW0F60UjScvP73znJ9dfGcQJwIjAyoJ1jGJA+kBO6PbNm4fbKUtVOoFNE5gInu7s9ALwIXAfMBR5UVQVeE5EiERmrqtsHcn5jjIkGT03qj4rr01+JIwsowEkwhX4/TcDZAzznRKAO+KuIvCkifxaRfGC0XzKoAXyzoJQBW/3eX+Wu24eIXOIbEqWurm6AoRljzMB4arYMiYZx6L+N4yXgJRG5X1UrI3jOo4Hvq+oaEbmbvdVSvvOqiITV+K6q9wL3AkyfPt0a7o0xMdPd2YG3sYasIdAVF0J/ALDNnY/jcCDHt1JVBzKsehVQpapr3NeP4SSOWl8VlIiMBXa427cBE/zeP95dZ4wxCcGzYyuokjlmYrxDiYlQG8cfBj7AqWa6CafX0xsDOaGq1gBbReRQd9XngfeAZcAF7roLgH+6y8uAb4ljBs5shNa+YYxJGJ6aCiD1R8X1CbXEUaKq94nID/yqrwaUOFzfBx4WkSxgM3AhThJ7VEQuBipxRuEFeAqnK+4mnO64Fw7ivMaYFNK0ain1i27D21BNRsk4SuffwLBZZ8Y8Dk/t0Hn4D0JPHB7393YR+QpQDRQP9KTuECbTg2z6fJB9Fbh8oOcyxqSmplVLqV14DdrpjLfqrd9G7cJrAGKePDw1FaTlFpA+bMC3xaQSalXVLW432h8CP8J5eO+qqEVljDH9qF90W0/S8NHOduoX3RbzWDy1Tldc33BMqS7UQQ5XuIu7AZtG1hgTd96G6rDWR1NnzRayD/hszM8bLyElDhH5K0HGplLViyIekTHGhCCjZBze+v07WGaUjItpHNrVhWfHVgqOOy2m542nUKuqVgBPuj/P4zw53hKtoIwxpj+l828A2fcWJlm5zvoY8jZuB69nyDSMQ+hVVY/7vxaRR4CXoxKRMcaEIG/KiaDdSE4+2tFKWv5wRl18a1waxoEh8/AfhF7iCHQwMCqSgRhjTDiaX3sSgANuf4qsAz5L9sQj4tIVt9M3Ku4QGE7dJ6TEISLNItLk+w0sxxmA0Bhj4qLl1eVkHfAZsscfTP60k2n/YA3d7bGvQffUVkBGJhnFY2N+7ngJKXGoaqGqDvP7fUhg9ZUxxsSKp2E77R++QeEJXwUgf9oc8Hpo2xj7GnRPTQWZoyYg6QMaMDwp9Tes+tF9bbcJlYwx8dDy2pOgSuGJpwOQe+ixSE4+rW+upOC4L8U0Fk9NxZBqGIf+G8d/2cc2BQYyyKExxgxKy+oVZB3wWbLKDgZAMrPIO/JztL75AqoaswfxVBVPbSW5nz0+JudLFP0Nq24P+xljEoqnYTvtH7xOydev2Wd9/rQ5tL7+LzqrPiZ7wiExiaWrqZHu9pYh1TAOoY9VhYhMAQ5j32HVH4xGUMYY05sWtzeVr5rKJ3+a8z239c0XYpY4PLUVwNCYZ9xfqL2qbsSZY/w3OEOO/AI4I4pxGWNMUM2rl+9TTeWTWVpG1oRDaXvzhZjF4hmCXXEh9Oc4zsYZubZGVS8EjgKGRy0qY4wJwtOwnY4P3qDwxK8G3Z4/bTbt779Od3trbOKp2QIiZI6a0P/OKSTUxNGuqt2AV0SG4czON7SulDEm7nqqqU44Pej2/GlzUG8nbe/EpltuZ00lGcVjSMvK6X/nFBJq4lgrIkXAn4B1wHpgddSiMsaYIJpXLyfrwMPIKjso6PbczxzX0y03Fjy1FUNmulh/oT4A+D1V3aWqC4EvABe4VVbGGBMTnoZqp5qql9IGuN1yjziJ1g0rceaAi3JMtZVDZrpYf6E2ji8Tkfkikq+qFar6drQDM8YYfy2vPQX0Xk3lkz91Nt4dW/FUb4pqPN3trXTtqiNriD38B6FXVf0SOAl4T0QeE5GzRWRoVeoZY+Kq+dVlfVZT+eQf7TyX3Lo+utVVPfOMW4kjOFV9SVW/B0wC/gicg9NAbowxUedpqKbjw7W99qbylzlyPFnjD6Y1yt1yO93h1IfacCMQxrDqIpILnAVcChwLPBCtoIwxxl/L6r57UwXKnzaH9vdeo7ujLWox9Tz8ZyWO4ETkUeB9nLGpfgtMVtXvRzMwY4zxaV69nOzyw8gaNzmk/fOmzXa75b4StZg8NZWkFY4gPX/oPdIWaonjPpxkcamqrnSf6TDGmKjz1G+j48O1FJzQfzWVT+5nj0dy8qJaXeWprRiSDePQT+IQkWsBVPUZ4MyAbT+PYlzGGAOE3pvKX1pmNnlTZtL2ZvS65XpqhmZXXOi/xHGu33LgDPCxHfTeGDMkNb+6LKxqKp/8aXPw7PgUT/UnEY9JPZ146quGZMM49J84pJflYK+NMSaiPPXb6PhoHQUnhD+mav40t1tuFJ4i99RXQXe3lTh6ob0sB3ttjDER1dOb6sTQq6l8MkdNIKvsoKi0c/SMijtESxz9zcdxlIg04ZQuct1l3Nf2AKAxJqqc3lSHkzV20oDenzdtDrufeYDuPW2kZedFLC6P+wxHlpU49qeq6ao6TFULVTXDXfa9zoxVkMaYoWdvNVXovakC5U89GfXsoe3dyI7J2llbiWTlkD5idESPmyxCfgDQGGNiaTDVVD65h81AsnMjPrmTp6aCzDHlMZvbPNFY4jDGJKTBVlMBpGXlkHf4zIg3kHtqK4fcdLH+LHEYYxKOp66Kjo/WUXji4Geozp82G09NBZ3bN0cgMtDubjy1lWQNseli/VniMMYkHN9MfwVhPPTXm7ye0XIjU13l3VmLdnZYicMYYxJJ8+oVZE+cQtbYwc+ulzX6QDLHTYpYddXe4dTLI3K8ZGSJwxiTUHqqqQbRmyqQM1ruarr3tA/6WL6uuJY4jDEmQUSymsonf9octLOD9gh0y/XUVkJaOpmlZRGILDnFLXGISLqIvCkiK9zXE0VkjYhsEpElIpLlrs92X29yt5fHK2ZjTPQ1v7o8YtVUPrmHzUCyciLyFLmnpoLMkeORjKH7KFs8Sxw/wJnjw+cO4NeqehCwE7jYXX8xsNNd/2t3P2NMCvLUVdHx8fqQZvoLR1pWDnlTItMtt3OId8WFOCUOERkPfAX4s/tacCaJeszd5QFgnrs8l72zDT4GfF6G6lM3xqS45tUrAAb1tHhv8qbNxlOzhc7tWwZ1HN/Df0NZvEocdwHXAr4JoUqAXarqdV9XAb4KxDJgK4C7fbe7/z5E5BIRWSsia+vq6qIZuzEmSlpWryB70hFReUYif+psAFo3DLzU0dWyi+6WXVbiiPUJReR0YIeqrovkcVX1XlWdrqrTR44cGclDG2NioKeaKgqlDYCssRPJHDORtkFUV/lGxc0aWx6hqJJTPEocM4EzRKQCWIxTRXU3UCQivtF6xwPb3OVtwAQAd/twoCGWARtjoq+nmirC7Rv+8qfNpu2dV+ju7BjQ+z21FcDQHU7dJ+aJQ1VvUNXxqlqOM8PgC6p6PrASONvd7QLgn+7yMvc17vYXNFpzQRpj4qbl1eVkTzqSrChWA/V0y33vtQG9v7NnHg6rqkoU1wFXi8gmnDaM+9z19wEl7vqrgevjFJ8xJko8dVV0bHozrHnFByL38BMG1S3XU1tBetEo0nIiN7dHMupvIqeoUtUXgRfd5c3AcUH26QC+FtPAjDExFYtqKoC07FxyDzvBSRwX3hz2+50eVUO7tAGJVeIwxgxRsaim8smfNhtP9WY63TGnwuGpqSRriLdvgCUOY0yceXZsdaqpolza8Ml3R8ttC3O03O497Xgbtw/5ZzjAEocxJs581VTR6oYbKGvsJDLHlIf9FLlnx1YAq6rCEocxJs5aVq8ge/JRZI4+IGbndLrlvhxWt1zriruXJQ5jTNz0VFNFuTdVoLyps8Pultvz8J+VOCxxGGPiJ9bVVD55U05EMrNp3fBiyO/prNlCWl4haYXF0QssSVjEx9t1AAAXfklEQVTiMMbETfPq5TGvpgJIy84j97AZtIXxPIenxhkV18ZYtcRhjIkTz46t7Nm0IWa9qQLlT5tD57ZNPY3e/fHUVlr7hssShzEmLppXLwegcEZs2zd88qe5o+WGUOrQri48dVvJHOKDG/pY4jDGxEXz6hVkHzQ15tVUPpnjJpM56oCQEoe3oRq8npg8oJgMLHEYY2LOU/upU00V495U/kSEPN9ouZ49fe7rqakAsIf/XJY4jDEx1/xafHpTBcqfNgftaKP9/TV97ucbnmSoj4rrY4nDGBNzza8ud6qpRk2Iaxx5U2YiGVn9Tu7kqdmCZGSRUTw2RpElNkscxpiY8tR+yp5P3op7aQMgLcfplttfO4enppKMUROQ9PQYRZbYLHEYY2KqpzdVHNs3/OVPm0Nn1cd46qp63cdTW0HWmIkxjCqxWeIwxsRU8+oV5Bw0Le7VVD55vm65vYyWq6p01lTa4IZ+LHEYY2Kms7aSPZ+8RUGClDYAssoOImPkeFo3BG/n6GpqQDtarWHcjyUOY0zMtPjGporT0+LBiAj50+bQtvFl1NO533brirs/SxzGmJhpfnW5U001cny8Q9lH/rTZaEcr7R+8vt82X+KwUXH3ssRhjImJztpK9mx+O+rzig9E3pSTkIysoL2rOmsqQISMUfF5wj0RWeIwxkRV06qlbL70WCouP8FZkZ4R34CCSMvNJ/ezxwWdFdBTW0lGyTjSMrPjEFlissRhjImaplVLqV14Dd76bT3rGh6+jaZVS+MYVXB50+bQufVDPH6xglNVZe0b+7LEYYyJmvpFt6Gd7fus08526hfdFqeIepc/bQ7AfqUOZzh1a9/wZ4nDGBM13vrq4Osbgq+Pp6zxB5NRWrZPO0d3ewtdu+utYTyAJQ5jTMSpKk0vPwFpwW8xGSXjYhxR/3q65b79fz3dcjt9XXFtAqd9WOIwxkRU+0fr2PqTM6i563LSi8ciAY3KkpVL6fwb4hRd33q65X74BuBUUwH21HgASxzGmIjw1FWx/a7L2frjr+LZsZXR3/sVk363mtGX/ZKM0jKnS2tpGaMvvZNhs86Md7hB5R1xEmRk9lRXeazEEVTi9YszxiSV7vZWGv/xO3YuXwhA8VlXUjzvctJy8wEYNuvMhE0UgdJyC8j9jNMtd+Q3/x+e2krShxWTnj8s3qElFEscxpgB0e5uml58lPpH7qBrZy2FJ82j9PwfJ9xT4eHKnzab+oduwdNQ7XTFtdLGfqyqypgk43ug7qOvlbH50mPj8kxE27ur+fS6L1H7+6vJHDmeCT9fztgrf5/0SQP2dstte3MlndYVNygrcRiTRHwP1PmejfDWb6N24TUAMakO6qypoP7B/6Hl9afJKB3HmCt/R+HMeYhI1M8dK1kTDiWjZCwtbzyDt34bmbPOindICccShzFJpO7Bm4M+ULfjvp+QUTyG7IlTolIf39XaROPjd7HzqfuQjExKzruOEadfQlp2bsTPFW++brm7X3gEurvtqfEgLHH4aVq1lPpFt+FtqCajZByl829ImkY9k9r2fPoBDYvvpGvXjqDbu1t3U/WzswHIHDuJnElHkD3pSHImH+kmk+EDOq92edn93MM0LLmTruadDDv5HErnX0/GiNED/ixJITsXursBqH/oViQtw+4FfixxuOJdBWDiI9G/LHRu30zDkl/S/Mo/SMstIC1vGN1tTfvtl1EyltHfvZOOzW/Tsflt2j98g+ZX/tmzPXNMOdmTjiBn0pHkTDqS7ElHkF5QtM8xAq9FwUlzaVv3PJ1bPyT3sBMYueBGciYdGfXPHG9Nq5bS9Ozfel537a6ze0EAUdV4xxBx06dP17Vr14b1ns2XHrvPQGw+GaVlTFr4RqRCMwkk8MsCOA+nJcJzBp66Khoe+zVNKx9FMrMo+vLFFJ9xGa1vrgw5Zu/uBvZs2UjHJ2+zx00oXr95tTNHH+iUSiYdgbetid1P/hnt7NjnGGnDShh9yR0UHH9aSrVj9GUo3wtEZJ2qTu9vv5iXOERkAvAgMBpQ4F5VvVtEioElQDlQAZyjqjvF+Wu9G/gy0AYsUNX1kY6rt7Fzwh1TJ9G/wZq9+hqAL17/Zt6dtTQ8fje7n3sYQSg67UKK//P7ZBSNBPZ+4w3lbyxjeAkZU08mf+rJPeu6mhro2LyRPZs3OqWTTzbQsnp5r/GkZeVQOOPLkf2QCS5S94JUFo+qKi/wQ1VdLyKFwDoReRZYADyvqreLyPXA9cB1wGnAwe7P8cAf3N8RlVEyLvi3jDDG1LHqrsTSWxLXLi/t768J+u8NzsB86vUgGZkxi7WrqYHGf/yOXf+6H+3yMnzOuRSf9QMyS8v223cwD9SlDyshPzCZNDfyyYVTgu4/FG+WkbgXpLqYJw5V3Q5sd5ebReR9oAyYC5zs7vYA8CJO4pgLPKhOndprIlIkImPd40RM6fwb9qsCAEgrKKJ7T3tIvUci+Q02VUsusfpcQZP4769m13MP46n6kK6mxj7erXxy0RTypp5MwfRTyZ82m/TC4ojHCNDVupudy//IzhV/Qve0Ufi5syg552qyYtiTJ72wmIzSMrtZuoLdCxJ5fK14iGvjuIiUA9OANcBov2RQg1OVBU5S2er3tip33T6JQ0QuAS4BOOCA8Kd4DFYFkHvETJpf/DvbbpnPuOvv77dnSq9DSNdvo+2dV8n97PFIenq/N89IllwSKQHFskQWNIl7O+l4/zUKZ86jYMZX6Gptou6+nwTcIHIYfuo36W5voXXdc7S8uhzS0sg9ZDr5x5xC/vRTyRp/8KDr+7vbW9n19F9oXPYHult2UXDCVyk554dkTzhkUMcdKLtZ7hVOdeBQFbfGcREpAF4CblXVpSKyS1WL/LbvVNURIrICuF1VX3bXPw9cp6q9tn4PpHG8N82vLmP7Pd8ne/zBlP1kERkjRu23j3d3PY1L72HXk3/u81jpw0rIHH8Iez5ah3o7e9b7N26q18OW783A27h/gSrcxrlINv5GIgFt/u4xeBv2/1zpw0uZ+Ps1PaW6SJzro7PLcJrQAohwyN/3frPu61za3c2ezW/Tsu5ZWtc+y54t7wCQOeoAN4l8gdzDZoQ1pWh3Zwe7//0QjU/8hq7d9eQfcwolX7+GnElHhPX5oiGRvmSY+Ai1cTwuiUNEMoEVwDOq+it33YfAyaq6XUTGAi+q6qEi8kd3+ZHA/Xo7fiQTB0Drhhep/t9vI1l5SHoGXbtqySgZR/GZP8BbX8XOp5zeKDmfOZ49m97cp2eKZOUy8uJbSc8roOW1J2l+ZRlBb2hp6aTl5NHd1tx7IAE3vf5EqnfIYBNQV/NOdj75Jxofu6vXfSQzm9zPHk9aYTGtrz+NevYM6FwA7R+tZ+t/z4Nu737bBtMzxtOwndb1z9O69t+0bXwZ7exAcvKdNoNjTiH/6M+TMbwU2P8mXPL1a9DODhofvxtv43byjjiJknOvJffQfv+PGhMzCZs43F5SDwCNqnql3/o7gQa/xvFiVb1WRL4C/BdOr6rjgXtU9bi+zhHpxAFQv+SXNP79l0G3FZ54BiVf/xFZZQf1+62t12/CQNFpF5E+rJidK/5Md+uu/baHe9P76GtlEOzfN0oJKPCzF595Bd6G7ex66s90t7cgWTn7dfcESB9WSuGsM2l76yU6t34YNIZQPrt6PTQ8fheNj9+D5BXCnraeCXkgsl1tu/e00bbxFVrXPUfruuecEqIIOQcfTXrJWNrWPrtP8gMBlJxDjqF0/vXkTZk56BiMibSE7Y4LzAS+CWwUkQ3uuh8DtwOPisjFQCVwjrvtKZyksQmnO+6FsQ3X0bRycdD16UWjGHv1wp7X/fV4ySjtpcdGaRmjLr4FcMb+D9ZQX3RaeB89rWAE3c37NwJLeibenbUhP/3bV9tN3QM3kXXAZ/DUV7Pzid/0JAZv/TZ23HsdAAUzTqfk7CvZ8+kHQUsuIxf8rOea9ZZYvfXb6Gpt6nU4jc5tm9j+myvYs2kDhbPOZtTFt9C67rmoVb2kZedRMP0LFEz/AqrKni3vOG0i656ldfWKIO9Q0oeVMOHWZUPmeQiTuuwBwBBF6tt7qNU+/t/e00eMpru9hYzCYibc9iQZw0v6PU/be69RdePXAAXt3rshIxMU0guLGHvVQvIOP6HXY6gqLWueZvuvvgvdXfvvkJGJpKUHLUX4pI8YxeQ/beh53V+JrLfSDYBk51I4cy7DT/kGnTVbaFh0O96GatLyh9Pd3kJabiGjL7mdwhO/2vuFiYFQ21eMSTSJXOJISpHq2x1qj43Akkv7R+up+tnZVP/iQsbf+ChpWTm9nmNP1cdU33EhWeMmUvSV79C49J59zpVdfhjV//ttqm46h9Lzb2DEGZft9y14T8W77PjrjbS/+yrpxWPobm4MWu1TOHMuntoKKq74XNBYunbV9fm5AvXWu2fEf/4XXQ3VNL38BE0vLAaRnkTe3bILJI2Sr/8w7kkD+ihVDsGurSY1WYkjRIkwPEXz6hVs/+UlFM6cy5gf/A5J2386Fe/OHXz6k6+inR0ccOtyMkcH75rc1dZM7e9/SMtrK8iadCTdu+vxNm4no3gMmWMm0v7eatIKiig991qGn3I+za8sG1BJYSCN0X2VSrrbW9h82XFOsojAuaIhEf5WjBmIhG0cj4VoJA5IjO6KjU/8lvqHf07xWVdSet61+2zr7mhj60/PpHPbx0y4aSk5Bx3V57FUlZp7vk/z/+0/EVDu1NmMu/J3+w2E15tY3iwjVW0YTYnwt2JMuKyqKgoSYe7kEfMup7NmC42P30Xm2HKGn+z0IdAuL9t/fSl7Kt5h3LV/7TdpgDPvQPv7a4Ju81R9FHLSgNg+NJUMQ0Ikwt+KMdFiiSPJiAijv3M73h1bqf3d1dQ/dAtdTQ1Idh7a0cqob/+cgulfCPl4kRzQLVY3S3vK2Zj4sjnHk5BkZFJw4hmA0rW7HlTRjlZIzyAtL7zZ33r7lp5I394DDZt1JqMvvZOM0jIQIaO0zNoPjIkhK3EkqcbH796/nr/LG/aAisn67d2qgoyJH0scSSpSVUw2oJsxJlyWOJJUJBuI7du7MSYc1saRpErn34Bk7TtHSDJUMRljkp+VOJKUVTEZY+LFEkcSsyomY0w8WFWVMcaYsFjiMMYYExZLHMYYY8JiicMYY0xYLHEYY4wJS0oOqy4idTjTzwZTCtTHMJzBSrZ4wWKOlWSLOdnihaEX84GqOrK/nVIycfRFRNaGMt58oki2eMFijpVkiznZ4gWLuTdWVWWMMSYsljiMMcaEZSgmjnvjHUCYki1esJhjJdliTrZ4wWIOasi1cRhjjBmcoVjiMMYYMwiWOIwxxoQlJROHiHxJRD4UkU0icn2Q7QtEpE5ENrg/345HnAEx/UVEdojIO71sFxG5x/1Mb4vI0bGOMSCe/uI9WUR2+13jn8Y6xiAxTRCRlSLynoi8KyI/CLJPwlznEONNqOssIjki8rqIvOXGfFOQfbJFZIl7jdeISHnsI90nnlBiTsR7RrqIvCkiK4Jsi+41VtWU+gHSgU+ASUAW8BZwWMA+C4DfxjvWgJhmAUcD7/Sy/cvA04AAM4A1CR7vycCKeF/XgJjGAke7y4XAR0H+NhLmOocYb0JdZ/e6FbjLmcAaYEbAPt8DFrrL5wJLkiDmRLxnXA0sCvbvH+1rnIoljuOATaq6WVU7gcXA3DjH1C9VXQU09rHLXOBBdbwGFInI2NhEt78Q4k04qrpdVde7y83A+0BZwG4Jc51DjDehuNetxX2Z6f4E9sCZCzzgLj8GfF5EJEYh7ifEmBOKiIwHvgL8uZddonqNUzFxlAFb/V5XEfw/21luVcRjIjIhNqENSqifK5Gc4Bb/nxaRw+MdjD+36D4N59ulv4S8zn3ECwl2nd0qlA3ADuBZVe31GquqF9gNlMQ2yn2FEDMk1j3jLuBaoLuX7VG9xqmYOEKxHChX1SOBZ9mbmU3krMcZ9+Yo4DfAP+IcTw8RKQAeB65U1aZ4x9OffuJNuOusql2qOhUYDxwnIlPiHVN/Qog5Ye4ZInI6sENV18UrhlRMHNsA/28D4911PVS1QVX3uC//DBwTo9gGo9/PlUhUtclX/FfVp4BMESmNc1iISCbOTfhhVV0aZJeEus79xZuo1xlAVXcBK4EvBWzqucYikgEMBxpiG11wvcWcYPeMmcAZIlKBUxU/R0T+FrBPVK9xKiaON4CDRWSiiGThNAwt898hoM76DJy640S3DPiW2+tnBrBbVbfHO6jeiMgYX52qiByH87cW15uDG899wPuq+qtedkuY6xxKvIl2nUVkpIgUucu5wBeADwJ2WwZc4C6fDbygbituPIQScyLdM1T1BlUdr6rlOPe3F1T1GwG7RfUaZ0TqQIlCVb0i8l/AMzg9rP6iqu+KyM3AWlVdBlwhImcAXpwG3gVxC9glIo/g9JApFZEq4EacRjpUdSHwFE6Pn01AG3BhfCJ1hBDv2cBlIuIF2oFz43lzcM0EvglsdOuzAX4MHAAJeZ1DiTfRrvNY4AERScdJYo+q6oqA/3/3AQ+JyCac/3/nxi9cILSYE+6eESiW19iGHDHGGBOWVKyqMsYYE0WWOIwxxoTFEocxxpiwWOIwxhgTFkscxhhjwmKJwyQFEWkJYZ8rRSQvguecJyKHRfB4rw7ivS3u73Ei8lgf+xWJyPcGeh5jQmGJw6SSK4GwEofbd78384CIJQ5VPTECx6hW1bP72KUIZ2RUY6LGEodJKuLMP/GiO9DcByLysPuU9xXAOGCliKx09z1VRFaLyHoR+bs75hMiUiEid4jIeuBrIvIdEXnDHSjwcRHJE5ETcZ4QvlOc+Rcmi8hUEXnNHejuCREZ4R7vRRH5tYisFZH3ReRYEVkqIh+LyC1+sbf4LV8nIhvdc94e5HNOdGPfGHCMcnHnQBGRw8WZR2KDG9PBwO3AZHfdnSJSICLPu9dgo4jM9TvO+yLyJ3HmoPi3+9Q0InKQiDznxrZeRCa7669xr9PbEmTOCjOERHKMdvuxn2j9AC3u75NxRvocj/PFZzVwkrutAih1l0uBVUC++/o64Kd++13rd+wSv+VbgO+7y/cDZ/ttexv4D3f5ZuAud/lF4A53+QdANc7TyNk4o+uWBHyG04BXgTz3dXGQz7sM+Ja7fLnfe8tx50DBGdTwfHc5C8j13+6uzwCG+V2TTTjzT5TjPAU91d32KPANd3kN8J/ucg5OKe5U4F73vWnACmBWvP8u7Cc+Pyk35IgZEl5X1SoAdyiOcuDlgH1m4FQzveIO5ZSFk2R8lvgtT3G/1RcBBTjD1exDRIYDRar6krvqAeDvfrv4xkPbCLyr7vhWIrIZZ7A5//GjTgH+qqptAKoabF6TmcBZ7vJDwB1B9lkN/EScuRmWqurHsv+UCwL8XERm4QzBXQaMdrdtUVXfUCbrgHIRKQTKVPUJN7YO93OcipM83nT3LwAOxknOZoixxGGS0R6/5S6C/x0LzrwK5/VyjFa/5fuBear6logswCnVDDSm7oD4unuJLxR9jgekqotEZA3OhD5Pich3gc0Bu50PjASOUVWPOCOq5gTEDM51zO3jdALcpqp/DCN+k6KsjcOkkmacKVYBXgNmishBACKSLyKH9PK+QmC7OEOYnx/seKq6G9gpIp9zt30TeImBeRa40NcDTESKg+zzCnsHpjs/yHZEZBKwWVXvAf4JHMm+1wCc4bR3uEljNnBgX4GpM9NglYjMc8+R7cb5DHCRXztRmYiMCunTmpRjicOkknuBf4nISlWtwxnB9BEReRunWuczvbzv/+HU67/CvsNpLwauEZE33QbiC3Aay98GpuK0c4RNVf+FU7W11q1q+1GQ3X4AXC4iG+l9BsJzgHfcY0zBmfK2Aad67h0RuRN4GJjuHudb7D/EeTDfxBkN9m2ctpgxqvpvnPmtV7vHeox9E5QZQmx0XGOMMWGxEocxxpiwWOIwxhgTFkscxhhjwmKJwxhjTFgscRhjjAmLJQ5jjDFhscRhjDEmLP8fGZSdCvEcyzwAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", @@ -260,7 +166,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/nah_uccsd.ipynb b/community/aqua/chemistry/nah_uccsd.ipynb index 8195f5fd2..ce3c7da82 100644 --- a/community/aqua/chemistry/nah_uccsd.ipynb +++ b/community/aqua/chemistry/nah_uccsd.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": { "scrolled": false }, @@ -24,41 +24,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step 23 --- complete\n", - "Distances: [1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3\n", - " 2.4 2.5 2.75 3. 3.25 3.5 3.75 4. 4.25 4.5 ]\n", - "Energies: [[-160.0584908 -160.15699853 -160.22568738 -160.27202157 -160.30172257\n", - " -160.31895195 -160.32675454 -160.32741543 -160.32269884 -160.31400293\n", - " -160.30245857 -160.2889906 -160.27435549 -160.25916613 -160.24391108\n", - " -160.22897215 -160.19475712 -160.16708738 -160.14746324 -160.13627081\n", - " -160.1312006 -160.12966451 -160.12935288 -160.1272386 ]\n", - " [-160.05849084 -160.15699856 -160.22568741 -160.2720216 -160.30172261\n", - " -160.31895199 -160.32675458 -160.32741545 -160.32269886 -160.31400297\n", - " -160.30245861 -160.28899063 -160.27435552 -160.25916618 -160.24391112\n", - " -160.22897222 -160.19475719 -160.16708762 -160.14746354 -160.13627173\n", - " -160.13150727 -160.12988489 -160.12941537 -160.12738873]]\n", - "Hartree-Fock energies: [-160.04320295 -160.14360744 -160.21336733 -160.26022033 -160.29007462\n", - " -160.30721237 -160.31476208 -160.31507193 -160.30995602 -160.30085169\n", - " -160.28891892 -160.2751014 -160.26016389 -160.24471683 -160.2292359\n", - " -160.21408033 -160.17913095 -160.14978812 -160.12634274 -160.10810649\n", - " -160.09400858 -160.08298959 -160.07419396 -160.0607817 ]\n", - "Dipoles: [[2.97283503 3.47766098 3.89571273 4.26007211 4.59366828 4.91064169\n", - " 5.21881014 5.52062327 5.82225205 6.12073518 6.41351277 6.70026841\n", - " 6.97550548 7.22874789 7.45326529 7.64302302 7.80687793 7.21426635\n", - " 5.34909309 2.7107585 1.0689969 0.21149191 0.05667558 0.03530844]\n", - " [2.97335246 3.47789485 3.89561999 4.26006188 4.59374084 4.91025573\n", - " 5.21772576 5.52078168 5.82151088 6.11992744 6.41423476 6.70095324\n", - " 6.97491033 7.22906568 7.45413201 7.63797444 7.80073442 7.19343854\n", - " 5.31627389 2.65735429 0.91782197 0.26885135 0.07470177 0.0219034 ]]\n", - "VQE num evaluations: [ 542. 570. 598. 579. 511. 546. 545. 519. 544. 555.\n", - " 562. 610. 591. 642. 695. 758. 982. 1400. 2393. 5254.\n", - " 10000. 10000. 3549. 10000.]\n" + "Processing step __\b\b 0" ] } ], "source": [ "import numpy as np\n", "import pylab\n", + "import copy\n", "from qiskit.chemistry import QiskitChemistry\n", "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", @@ -89,9 +62,14 @@ " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", + " dict = copy.deepcopy(qiskit_chemistry_dict)\n", + " dict['algorithm']['name'] = algorithms[j] \n", + " if algorithms[j] == 'ExactEigensolver':\n", + " del dict['optimizer']\n", + " del dict['variational_form']\n", + " del dict['initial_state']\n", " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", + " result = solver.run(dict)\n", " energies[j][i] = result['energy']\n", " hf_energies[i] = result['hf_energy']\n", " dipoles[j][i] = result['total_dipole_moment'] / 0.393430307\n", @@ -109,30 +87,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VFX6wPHvOzPpnSSUJCIIJNQQICAIiiiKioKogMii2LCv5WdfC66662LvgsoisgqoYKEI4i4iICVAaKEFCJCQAOm9zMz5/TEXDGESAmQyKefzPPMwc++5974zSebllHuOKKXQNE3TNHcwuTsATdM0rfnSSUjTNE1zG52ENE3TNLfRSUjTNE1zG52ENE3TNLfRSUjTNE1zG52ENK0BE5EZIvKKu+PQNFfRSUhrEEQkRUSOiohfpW13icjyWh4/WURmOdmuRKRjDcfFi8gCEckRkVwRSRKRV0Uk5KzeSD0SEU8ReVNEUkWk0PgM36m0P0VEhp7B+c4p4RnHlxuxHH9sPtvzac2DTkJaQ2IGHq6vi4nIRcByYBXQWSkVDFwFWIGe1Rxjqa/4auEZIB7oBwQAlwIb3RkQMEUp5V/p4fRzPBcN7GegnSOdhLSG5HXgcREJdrZTRN4VkUMiki8iG0Tk4nO83hTg30qpfyqljgAopQ4qpV5USi03rjlRRFaJyNsikgVMFhGTiDwnIgeM2ttMEQkyyl8qIqlV4j5RIzFqbHONYwpEZLuIxFcq20tENhr75gDeNcTfF5ivlDqsHFKUUjON83wJtAV+MmokTxrbvxGRDBHJE5EVItLN2D4JGA88aZT/ydgeISLficgxEdkvIn89mw9aRNoZtdLbROSgiGSKyN8q7TeJyNMisldEsozPqEWVY+8UkYPAf43ttxo/gywRef745ywirUWkWERCK52/t/EePM4mfs11dBLSGpIEHDWTx6vZvx6IA1oAXwHfiEhNX9LVMpr9BgDf1aL4hcA+oBXwKjDReAwBLgD8gQ/O4PIjgNlAMPDj8WNFxBP4HvgSx3v8BrixhvOsAR4TkftFpIeIyPEdSqkJwEHgOqNGMsXYtRjoBLTEUWv6j1F+mvH8eE3mOhExAT8Bm4FI4HLgEREZdgbvtapBQIxxrhdEpIux/SHgemAwEAHkAB9WOXYw0AUYJiJdgY9wJM42QJARI0qpDBy/R2MqHTsBmK2UqjiH2DVXUErph364/QGkAEOB7kAeEA7cBSyv4ZgcoKfxfDJQDuRWeSigo5Njo4x9nSttm2IcUwQ8Z2ybCByscuyvwP2VXscAFYAFR5NYqrP3VinOZZX2dQVKjOeXAIcBqbR/NfBKNe/fDDyAozmxzDj2NmfXreb4YOMzCDJez6h8LRzJt+p7fwZH7dHZ+WYApVU+/y+Mfe2Ma0VVKr8OuNl4vgO4vNK+NpU+0+PHXlBp/wvA15Ve+xo//+Of81hgVaXPKQPo5+7fc/049aFrQlqDopTaBiwAnq66T0QeF5EdRlNSLo7//YZVKjJXKRVc+VHDpXIAO44vu+PXftI4Zj6OL7/jDlU5NgI4UOn1AaN8q9O/Q8DxhXhcMeBt9HNEAGnK+OasdG6nlFI2pdSHSqmBOBLKq8D0SrWLk4iIWUReM5q88nEkKTj5M6zsfCDCGLCRa3zmz1Lz+3yjys/gtir7q753/0rXml/pOjsAW5VrVf45RFR+rZQqBrIq7f8B6Coi7YErgDyl1Loa4tbcRCchrSF6Ebgbo3kFwOj/eRJHE0uIkSzyAHF6htNQShUBa4EbalO8yuvDOL40j2uLYzDDERy1KN9KcZtx1OpqIx2IrNysZpz79AEqVaKU+hBHcu1aTdy3ACNx1DiDcNQw4M/PsGr5Q8D+KkklQCl1Ta3ezZk5BFxd5VreSqm0SmUqx5eOozbreAMiPsCJPiClVCkwF/gLjqa4L10Qs1YHdBLSGhylVDIwB6jcCR6A44v+GGARkReAwHO81JPAHUaHeEsAEYkC2p/muK+BR0WkvYj4A/8A5iilrMBuHDWb4UYn+HOAVy3j+QPHe/yriHiIyA04Rr45JSKPGAMhfETEIiK34ficNhlFjuDoszouAEezXRaORPmPKqesWn4dUCAiTxnXMItIdxHpW8v3cyY+AV4VkfMBRCRcREbWUP5b4DoRucjoS5vMqf8hmYmjOXUEOgk1WDoJaQ3V3wG/Sq+XAD/j+JI/gKPvoWoz2RlRSq0ELsPRF7PbaAb6GUen9vs1HDodx5faCmC/EctDxjnzgPuBz4A0HDWjVOenOSWechw1s4lANo5+jXk1HFIMvImjiSsTR//QjUqpfcb+fwLPGU1cj+P4Uj5gxJWEY2BDZZ/jaMLKFZHvlVI24Focg0H2G9f4DEctqjrHR9cdf2TW5r0D7+IYpLFURAqM2C6srrBSajuOz3w2jlpRIXAUR5I9XmYVjibXjUqpaps1NfeSk5ufNU3TGh+jRpoLdFJK7a+0/b/AV0qpz9wWnFYjXRPSNK1REpHrRMTXGG7/BrCVPwdbYDQb9sbRtKs1UDoJaZrWWI3EMUjkMI57n24+PrJQRL4AlgGPKKUK3Beidjq6OU7TNE1zG10T0jRN09xGTwR4GmFhYapdu3buDkPTNK3R2LBhQ6ZSqlb3x+kkdBrt2rUjISHB3WFomqY1GiJS6yHxujlO0zRNcxudhDRN0zS30UlI0zRNcxvdJ6RpmstUVFSQmppKaWmpu0PRXMDb25uoqCg8PM5+rUCdhDRNc5nU1FQCAgJo164dJ08OrjV2SimysrJITU2lffvTzflbPd0cp2may5SWlhIaGqoTUBMkIoSGhp5zLVcnIU3TXEonoKarLn62Ogm5gM2u+PB/yazYfczdoWiapjVoOgm5gNkkTP1tL8t2HHF3KJrWrPn7+5/0esaMGTz44INndI7ExEQWLVpUl2GdZMaMGYSHhxMXF0dcXBy33nrrGZ9j+fLlXHvttS6IzvX0wAQXiQrxJTWnxN1haJp2DqxWK4mJiSQkJHDNNaeuam61WrFYzv1rdOzYsXzwwQfnfJ7GyC01IREZLSLbRcQuIvFV9sWKyB/G/q0i4m1s72O8ThaR98RJY6Q4vGeU2SIivSvts4lIovH40dXvMSrEh9ScYldfRtO0s/TTTz9x4YUX0qtXL4YOHcqRI46Wi8mTJzNhwgQGDhzIhAkTeOGFF5gzZw5xcXHMmTPnlP02m40nnniCvn37Ehsby9SpU09c4/XXXz+x/cUXXzyj+BITE+nfvz+xsbGMGjWKnJwcAJKTkxk6dCg9e/akd+/e7N2796Tj1q9fT69evU7Z3lC5qya0DccyxlMrbxQRCzALmKCU2iwioUCFsftj4G5gLbAIuApYXOW8V+NYV6QTjqWBP+bPJYJLlFJxdf9WnIsK8WVlciZKKd0xq2nASz9tJ+lwfp2es2tEIC9e163a/SUlJcTF/flnn52dzYgRIwAYNGgQa9asQUT47LPPmDJlCm+++SYASUlJrFy5Eh8fH2bMmEFCQsKJmsrkyZNP2j9t2jSCgoJYv349ZWVlDBw4kCuvvJI9e/awZ88e1q1bh1KKESNGsGLFCi655JJT4pwzZw4rV64E4OGHH+b222/n1ltv5f3332fw4MG88MILvPTSS7zzzjuMHz+ep59+mlGjRlFaWordbufQIcdK96tXr+ahhx7ihx9+oG3btnXzIbuYW5KQUmoHOB1ZcSWwRSm12SiXZZRrAwQqpdYYr2cC13NqEhoJzDQWtlojIsEi0kYple6yN1ONqBAfistt5BRX0MLPs74vr2ka4OPjQ2Ji4onXxxMKOO5hGjt2LOnp6ZSXl590r8uIESPw8fGp9ryV9y9dupQtW7bw7bffApCXl8eePXtYunQpS5cupVevXgAUFhayZ88ep0moanNcXl4eubm5DB48GIDbbruN0aNHU1BQQFpaGqNGjQIcN4set2PHDiZNmsTSpUuJiIg4sw/KjRpan1A0oERkCRAOzFZKTQEigdRK5VKNbVVFAoeclEsHvEUkAbACrymlvq8uCBGZBEwCzvp/E1Ehjl/Q1JxinYQ0DWqssbjDQw89xGOPPcaIESNYvnw5kydPPrHPz8+vxmMr71dK8f777zNs2LCTyixZsoRnnnmGe+6556TtH374IZ9++ilAnQ54aNOmDaWlpWzatKlRJSGX9QmJyDIR2ebkMbKGwyzAIGC88e8oEbm8jkI6XykVD9wCvCMiHaorqJSappSKV0rFh4fXakmMU0SF+ALowQma1kDl5eURGen4v+wXX3xRbbmAgAAKCqpfIXzYsGF8/PHHVFQ4eg52795NUVERw4YNY/r06RQWFgKQlpbG0aNHeeCBB0hMTCQxMbHaZBEUFERISAi///47AF9++SWDBw8mICCAqKgovv/e8X/osrIyiosdfc/BwcEsXLiQZ555huXLl5/Zh+FGLktCSqmhSqnuTh4/1HBYKrBCKZWplCrG0ffTG0gDoiqVizK2VZUGnOesnFLq+L/7gOVAr7N8a7USWakmpGlawzN58mRGjx5Nnz59CAsLq7bckCFDSEpKOjEwoaq77rqLrl270rt3b7p3784999yD1Wrlyiuv5JZbbmHAgAH06NGDm266qcZkVtUXX3zBE088QWxsLImJibzwwguAIyG99957xMbGctFFF5GRkXHimFatWrFgwQIeeOAB1q5dewafhhsppdz2wJEM4iu9DgE2Ar44akXLgOHGvnVAf0Bw9AVd4+R8w419YpRdV+m8XsbzMGAP0LU2Mfbp00edre4v/qxe+H7rWR+vaY1dUlKSu0PQXMzZzxhIULXMA27pExKRUcD7OPp9FopIolJqmFIqR0TeAtYDCliklFpoHHY/MAPwwZFoFhvnuhdAKfUJjprTNUAyUAzcbhzbBZgqInYctb/XlFJJrn6f+l4hTdO0mrlrdNx8YH41+2bhGKZddXsC0N3J9k8qPVfAA07KrAZ6nEPIZ8RmLeeGmfHEeHVgR86j9XVZTdO0RkdP2+MCZosnRdgpM2eSmlN8vKlQ0zStUaiw2SkorTh9wTrQ0IZoNxmRJi/y7EUUldvILa4gRA/T1jStgSsut5JZWE5eSQUmgS5tAjG5+GZ7nYRcJNIjiPX2o4BjmLZOQpqmNUR2pcgvqSCzsJzicitmEUL9PAn183R5AgKdhFwmwrclRyuOYqGM1JxiekQFuTskTdO0EypsdrKLyskqKsdqs+NlMRMR7EOIrydmU/1NNab7hFwkMrAtdhFaeqboEXKa5iZDhgxhyZIlJ2175513uO+++9i+fTuXXXYZMTExdOjQgRdffBG73Q6curxCXFwcSUkuH1BbL4rLrRzKLmZnRgFH8kvx8TDTPsyP6Fb+hPl71WsCAp2EXCayRbTjX5800nJ1EtI0dxg3bhyzZ88+advs2bO5+eabGTFiBE8//TS7du1i69atrFu3jnffffdEubFjx56Y2SAxMZGuXbvWd/h1xq4UucXlJB8tJPloIXklFYT6eRLTKoD2YX4EeHu4baJlnYRcJLJlLABhfkf1rAma5iY33XQTCxcupLy8HICUlBQOHz5McnLyidmuAXx9ffnggw94/fXX3Rlunauw2TmSX8qujAIOZhdjsysign3o0iaAiGAfvDzM7g5R9wm5SquWsZiVwsMzi/26OU7TYPHTkLG1bs/Zugdc/Vq1u1u0aEG/fv1YvHgxI0eOZPbs2YwZM4bt27fTp0+fk8p26NCBkpIScnNzgZOXVwD4448/apxZuyEpLreSVVhObkkFSikCvD2IDPEhwMvS4JaW0TUhF7F4eNPaLpSb80jNKdH3Cmmam1Rukps9ezbjxo2r1XFVm+MaegJy1uTWws+TaKPJLdCNTW410TUhF4oweZFrL6KwzEpeSQXBvnqYttaM1VBjcaWRI0fy6KOPsnHjRoqLi+nTpw+bNm1ixYoVJ5Xbt28foaGhBAcHuyXOs3V8lFt2UTkVNjteFpMxys0Ds6nh1zMafoSNWKRnMEdNVkAv6aBp7uLv78+QIUO44447TtSCxo8fz8qVK1m2bBngWIH1r3/9Ky+99JI7Q60VpRSlFTaOFZSx71jhiVFu3h5m2oX6Ed0qwBjl1ji+3htHlI1UhG8rjpkFLynSgxM0zY3GjRvH5s2bTyQhHx8ffvzxR1599VWio6MJCwtj4MCBjB8//sQxc+bMOWmI9urVq90VPja7nbySclJzHEOrdx8pID2vBKtNEVa5yc2nYTa51UQ3x7lQVFA7yNtCK48DpObEuzscTWu2rr/++lP6Zbt3787//vc/AL7//nsee+wxbrnlFs4//3wmTpzIxIkT3RCpw/HaTkGplYIyK8VlNhQKswj+3hb8vb0I8PLA09L46xE6CblQRItoOAitfVN1c5ymNWDXX389119/vVtjsNrsFJZZHYmn1IrVuHHWx8NMeIAn/t4e+Hqa62Uqnfqkk5ALRbbqCUCo7zGdhDRNO4lSiuJyGwVlVgpLrRSXO/qPLSbB38uDAG8L/t4WPMyNv7ZTE52EXCg8rCsWpbB4ZrFf9wlpWrPnWCLBSkFpBYVlVmx2hQA+nhZaBXoT4G3Bx8Pc6Pp1zoVOQi5ktngSYRfKzPmkGfcKNadfLk3ToNxqI7ekgtziCkorbAB4mE0Eehu1HS8LliZe26mJTkIuFmH2IcdeTEGZlfwSK0G+Hu4OSdM0F7Pa7OQZiafIaGbz9bTQOsibAC8PvD1M+j+kBp2EXCzSM5jdtsMAHMopJshXL+mgaU2Rza7IL3UknsJSKwqFt8VM60Bvgnw98LK4f562hqj51gHrSaRfa7LNgo/k68EJmlbPzGbzSff6vPZa3c3akJiYyIKFC8kvqeBgVjH/fPdjOpwXwdWDB3Dz1Rfzl+GXUpF1EGthNuNvHltn1z0bKSkpdO/e3a0xVEfXhFwsIrAd5GyilWeKvmFV0+qZj48PiYmJdXrO46Pa/rdqLesTNtC250DMJsHX08zoMWP45KMPT2lq+/bbb+s0BnexWq1YLHWbNnRNyMUiwzoD0MonVa8rpGkNQF5eHjExMezatQtwzKbw6aefAnDfffcRHx9Pt27dePHFF08cs27dOvoPGEC37rH07B1P4t40pvzjFZb8NJ+/XDOYLSsW08LPCw/zqX09lWshxcXFjBkzhq5duzJq1CguvPBCEhISAFi6dCkDBgygd+/ejB49msLCQgDatWvHiy++SO/evenRowc7d+4E4LfffjtRw+vVqxcFBQUopXjiiSfo3r07PXr0YM6cOae8//79+7N9+/YTry+99FISEhIoKirijjvuoF+/fvTq1YsffvgBcCzwN2LECC677DIuv/zyOvkZVKZrQi4W2dJxr1CIb6ZujtOatX+t+xc7s3fW6Tk7t+jMU/2eqnZ/SUkJcXFxJ14/88wzjB07lg8++ICJEyfy8MMPk5OTw9133w3Aq6++SosWLbDZbFx++eVs2LiJVm07cOPosfzrw8/pEdcHVVFMm9AgXn3572zcuIEPPvgAcHxZO1v+obKPPvqIkJAQkpKS2LZt24nYMjMzeeWVV1i2bBl+fn7861//4q233uKFF14AICwsjI0bN/LRRx/xxhtv8Nlnn/HGG2/w4YcfMnDgQAoLC/H29mbevHkkJiayefNmMjMz6du3L5dccslJMYwdO5a5c+fy0ksvkZ6eTnp6OvHx8Tz77LNcdtllTJ8+ndzcXPr168fQoUMB2LhxI1u2bKFFixZn+6Oqlk5CLhYW1gUvu8Limc0BnYQ0rV5V1xx3xRVX8M033/DAAw+wefPmE9vnzp3L1GnTKC+vID0jnWV/bKRjVjEtW7Vi2KUDCfLxwGJ2DC4yOVkG+3iCq87KlSt5+OGHAce0QbGxjsUv16xZQ1JSEgMHDgSgvLycAQMGnDjuhhtuAKBPnz7MmzcPgIEDB/LYY48xfvx4brjhBqKioli5ciXjxo3DbDbTqlUrBg8ezPr1609cB2DMmDFceeWVvPTSS8ydO5ebbroJcNTEfvzxR9544w0ASktLOXjw4InPyxUJCHQScjkxmWijTJSYC3SfkNas1VRjqW92u50dO3bg6+tLTk4OUVFR7NydzGtTXuc/P/2XgKAgJv/fA/iY7bQP88Pbw0yov5fL4lFKccUVV/D111873e/l5bi22WzGanUM+X766acZPnw4ixYtYuDAgSxZsqRW14qMjCQ0NJQtW7YwZ84cPvnkkxMxfPfdd8TExJxUfu3atfj5+Z3tWzst3SdUDyLNPuSYSigodawrpGmae7399tt06dKF//znP9w2cSJ70nPZmpKOl7cP57UOJVAVs2r5MgK9PejerSvp6emsX78egIKCAqxWKwEBARQUFJzRdQcOHMjcuXMBSEpKYutWx0qz/fv3Z9WqVSQnJwNQVFTE7t27azzX3r176dGjB0899RR9+/Zl586dXHzxxcyZMwebzcaxY8dYsWIF/fr1O+XYsWPHMmXKFPLy8k7UkoYNG8b7779/YqLXTZs2ndF7O1tuSUIiMlpEtouIXUTiq+yLFZE/jP1bRcTb2N7HeJ0sIu+Jkzu9RKSzcWyZiDxeZd9VIrLLOP5p177Dk0V6hVRaV0jXhjStvhzvEzr+ePrpp9m1axefffYZz7/8T9rE9KJb7/68/fprXNK/Lxf27cPQAb25c+KEE01jnp6ezJkzh4ceeoiePXtyxRVXUFpaypAhQ0hKSiIuLu7EAIDTLf9w//33c+zYMbp27cpzzz1Ht27dCAoKIjw8nBkzZjBu3DhiY2MZMGDAiQEI1XnnnXdONOl5eHhw9dVXM2rUKGJjY+nZsyeXXXYZU6ZMoXXr1qcce9NNN51Y6vy4559/noqKCmJjY+nWrRvPP//8uX78tSLuWHZaRLoAdmAq8LhSKsHYbgE2AhOUUptFJBTIVUrZRGQd8FdgLbAIeE8ptbjKeVsC5wPXAzlKqTeM7WZgN3AFkAqsB8YppZJOF2t8fLw6PnrlbE3/6Q7ezl6P2vUUb44fyrBup/5SaFpTtGPHDrp06eLuME6w2e1kF1WQVVhGuc2Ol8VMmL8nIb6eTvt46vz6NhsVFRV4e3uzd+9ehg4dyq5du/D0bLyrLjv7GYvIBqVUrdavcUufkFJqB+Bs2oorgS1Kqc1GuSyjXBsgUCm1xng9E0eiOSkJKaWOAkdFZHiV8/YDkpVS+4zjZwMjgdMmoboQEdQOstfTynO/HiGnaW5QbrWTVVRGdmE5NqXw87IQEexDgLelXqfPKS4uZsiQIVRUVKCU4qOPPmrUCaguNLSBCdGAEpElQDgwWyk1BYjEUYM5LtXYVluRwKEqx19YXWERmQRMAmjbtu0ZXMa5qLAusB/CvdNI00lI0+pNSbmVY4Xl5BU7+mKDfCyEBXjh6+mer76AgADOtWWlqXHZT0JElgHO2p3+ppT6oYZ4BgF9gWLgVxHZAOS5JkrnlFLTgGngaI471/NFtO4FQLBvpu4T0pqd+p49XilFQZmVzIIyCsusmEQI9fckzN8TTz1/W52qi+4clyUhpdTQszgsFVihlMoEEJFFQG9gFhBVqVwUkHYG500DzjuH489JSPAF+NgVJs8cDuqakNaMeHt7k5WVRWhoqMsTkd2uyC0pJ7OgnFKrDQ+zidZB3rTw88Ri0gOB65pSiqysLLy9vc/pPA2tOW4J8KSI+ALlwGDgbaVUuojki0h/HAMTbgXeP4Pzrgc6iUh7HMnnZuCWug29emIyEanvFdKaoaioKFJTUzl27JjLrmG3KwrLrRSV2bDZFZ5mwd/bgsXDTFaukOWyK2ve3t5ERUWdvmAN3JKERGQUjiQSDiwUkUSl1DClVI6IvIUjaShgkVJqoXHY/cAMwAfHgITFxrnuBVBKfSIirYEEIBCwi8gjQFelVL6IPIgjyZmB6UqpPydPqgeRFj9SVRH5xr1CQT56XSGt6fPw8KB9+/YuOXdabgmfLN/LNxsOUVphZ3B0OJMuuYCLOri+1qXVHXeNjpsPzK9m3ywczW9VtycAp8xFrpT6pNLzDE5utqtcbhGOod1uEeHVgg22fMBOWk6JTkKadpZKym1MXbGXj5fvRSkYGRfBXRdfQEzrAHeHpp2FhtYc12RF+kdSWHqQQFMWqTnFdI0IdHdImtaoKKVYtDWDfyzaQVpuCdfGtuGZa7oQGezj7tC0c6CTUD2JDGoPmX/oe4U07SzsSM/npZ+2s2ZfNl3aBPLWmJ5ceEGou8PS6oBOQvUkMrwr7IVQ78N6XSFNq6WconLe+mU3/1l7gCAfD165vjvj+rXFXA+zG2j1QyeheqLvFdK02rPa7Hy97iBv/rKbglIrE/qfz6NXRBPs27xnF2iKdBKqJ0FBbQmwK8Qzl0O6OU7TqvXH3ixe+mk7OzMKuKhDKC9e100POmjCdBKqRxGYKTYX6j4hTXMiNaeYfy7aycKt6UQG+/Dx+N5c1b21Hm7dxOkkVI8iLf7ss+eTV1JBfmkFgd56mLamlVbY+OQ3x5BrEXh0aDT3DL4Abw89xU5zoJNQPYrwDmW1NY/j9woFttFJSGu+lFIs3pbBqwv1kOvmTCehehTlH0lp8X5amDNIzSmhSxt9r5DWPO3MyGfyj44h151bBzB7Un/66yHXzZJOQvUoIrgDHF1JuGeKHiGnNUu5xY4h17PWHCDQx4OXr+/OuL7nYTHrCUabK52E6lFkeDfYDS28D+t1hbRmxWZXfLXuIG8u3UV+SYUecq2doJNQPYo07hUK9M3WI+S0ZmNbWh6Pf7OZnRkFDLgglBdHdKVza90U3aBZy6G8EHxbuPxSOgnVIz//1gTbFeKRS2qubo7TmjalFP9Ze5C/L0gixNeDj8b35mo95Lr+2G3YSrIpyE+loCCD/KJ08oszyS/JJL80h4KyPPIrCimoKCLfVkqBvYx8u5V87BSYwAcTP9+xzeVh6iRUzyKwUGQuJPWorglpTVdBaQXPzNvKgi3pXBIdzttjehLq7+XusFzveA2ivBBbaT7FJVkUlWRRVJpNcWkeFbZybHYrNmU78a/VbjvpteO5Dauy//n6xMOO1W7HpuzYsGGz2ylXVgqtxY5EYisnX/1OXgbhAAAgAElEQVSZSApPs5ifRSkCMRGImQCLJ4GmAKIsvgR4+hPmXT8DRXQSqmeRlgB22nPJLa6goLSCAH2vkNbEbEvL48GvNnIop4Qnr4rh3ks6YGosc70VZVKSsZXsvP0UleZSXJZLYVk+ReUFFFcUUVhRTJG1mGJbGUW2MgpVBcV2K0XKSqEoigWKxESRSShx8WquFqUwAxYFAQgBYiHQ7EkbSwAxFl8CPfwJ9Awk0CuYAJ8WBPqGE+DbkkD/1gQGRBLgG4aPxcftNVOdhOpZpE8Yv9lyEKyk5ZbQubVOQlrTULX57eu7+9Ovvev7FM6YUtjzUslIXUPKkY3sz95FSuFhUirySDFDhuX0X4teCvzMJnyx4G/yw9fkQZjZC3+LD74WX/w8fPHz8MfPKxA/zyD8vILw8w7Gw+KN2eSB2WTBbPbAYvLEbDJjNntiMXlgMnlgNluwmD0xmzwxmyxYzB6YxYxJTFhMlhPP3Z086opOQvUs0j+K8qJkwiyHSc0u0R20WpPQIJvf7DYKj+0gJfUP9h/dTErePlKKj5JiL+Kg2URppZqKvwjtfEOI921Nu5COtAw8Hz+fEPy8W+DnE4qfdzB+Hn74efjh6+GLh0n/57Gu6CRUzyJCOsKR5YR5HtD3CmlNgrub32zlJRxOW8v+9HXsz0wipeAgKWXZpFBOpvnPqX/MShFp9qCdTxv6+0fRLrQL7drE075VHKE+YU2mZtHY6CRUz6JadoedEOKVrtcV0ho1dzW/KbudLUlzWLh9FuuKDnHQZKeiUgIJtkM7szeDfCJoF9SeduE9aB/Zn/PCuuFh1jWYhkYnoXrWppXjXqEAnyx9r5DWaLmj+e3AgRUs3PgxC3K2ccgMXnZFf0sAg/0jaRfcifate9HuvEEEB0S4NA6tbukkVM98fFsQalMozzydhLRGqT6b37Iyd/Hz+ndYmLGGrSYrohQXmn2YFHUZQ/s9gn9AG5dcV6s/Ogm5QaR4UGQuIvWo7hPSGo/6an4rLs7kv+veZeGBpfyhirCJ0BkTj4f156r4h2jVKrbOr6m5j05CbhDpEchmexY5xRUUllnx99I/Bq1hc3Xzm7WilDWbPmXhnnn8Wn6MEpPQxqa4Pagzw+Mm0bHDlXV2La1h0d9+bhDhE84v1ixMWEnNKdbDtLUGzVXNb8puZ/vO71iwbSaLi/aTbRIC7IrhPpFc23kcvXr8BZNZf0U1dfon7AaRAedhLdxFS8tB9h8r0klIa5Bc1fx26NAqFmz4iEXZW0gxg4dSXGoJZniH67i4z/14egXUQfRaY+GWJCQio4HJQBegn1IqodK+WGAqEAjYgb5KqVIR6QPMAHyARcDDSilV5bydgX8DvYG/KaXeqLQvBSgAbIBVKRXvqvd3OpEhHSF9GWFeB9iRUcDVPXTnqtaw1HXzW3Z2MkvWvcPC9NVsNlUA0NfkxcSIwVzR7xECg86rq9C1RsZdNaFtwA04ks0JImIBZgETlFKbRSQUqDB2fwzcDazFkYSuAhZXOW828Ffg+mquO0QplVkn7+AcRLaMhSSICDzGzvR8d4ejaSepy+a3kuJsPll8NzMLdmEVoSMmHmkRzzV9HqRNRJ86jlxrjNyShJRSOwBndyhfCWxRSm02ymUZ5doAgUqpNcbrmTgSzUlJSCl1FDgqIsNd+gbOUZvWcYhS+HnnsCGjwN3haNoJX609yOSfttdJ89uq9R/w8tappJlhpGdrJvR9lJhODfpPU3ODhtYnFA0oEVkChAOzlVJTgEggtVK5VGPbmVDAUhFRwFSl1LS6CPhseHoFEG6HCnMuB7OL9Qg5ze2UUry5dDcf/C/5nJvfMjN3MuXne1hsy6YdwvSej9A37o46jlhrKlz2zSciy4DWTnb9TSn1Qw3xDAL6AsXAryKyAcirg5AGKaXSRKQl8IuI7FRKragm9knAJIC2bdvWwaVPFWnyIo9CAHZlFNDn/BCXXEfTTsduV0z+aTsz/zjAuH7n8cr1PTCfRfOb3WZl3n+f5K3UpZQK3BfUg7uumaYHGmg1clkSUkoNPYvDUoEVx/ttRGQRjkEGs4CoSuWigLQzjCfN+PeoiMwH+gFOk5BRS5oGEB8fr5yVOVeRHoEklB0DdBLS3Mdqs/PEt1uYvymNSZdcwDNXdz6riTz37v2Fv//+NBulnHjx5vnBU7ig/WUuiFhraly76tKZWwL0EBFfY5DCYCBJKZUO5ItIf3H8hdwKVFebOoWI+IlIwPHnOPqeXL9ubQ0ifFty1ARBXjZ2ZujBCVr9K62wcd9/NjJ/UxqPXxl9VgmorDSP9+eP5abfHyVZlfH3yKuYfus6nYC0WnPXEO1RwPs4+n0WikiiUmqYUipHRN4C1uPow1mklFpoHHY/fw7RXmw8EJF7AZRSn4hIayABY3i3iDwCdAXCgPnGH5gF+Eop9XO9vNlqRAW0xZ6fRHz4EXamh7szFK0ZKiqzMunLBFYlZ/HSiG7cdlG7Mz7H2o3TeDnxfQ6Y4VqPcB4fNpXQsOi6D1Zr0tw1Om4+ML+afbNwNL9V3Z4AdHey/ZNKzzM4udnuuHyg59nG6wpRoZ0h7WfODzjEd/vbopTS65lo9SK3uJzbZ6xnS2oeb47uyY19nP3JVC8ney9v/DyJHyuOch4wtdt9XBR/v2uC1Zo8PSTLTTqefylseQeLOZmC0gs5nFdKZLCPu8PSmrijBaXc+vk69h0r4qPxvRnWzdnYIeeU3c6Py5/ljQMLKBS4O7ALk66ehreP7s/Uzp5OQm4S0qIDLW2KbGN8xc70fJ2ENJdKzSnmL5+t5Uh+GdMn9mVQp7BaH3vgwApe/t//sVZKiRNPXhj0Dzp1vMqF0WrNhU5CbhRt9ueALReAnRkFXN6llZsj0pqq5KOFTPh8LUVlVmbddWGtR2NWlBUy/ed7mZaTiJeC5yOGctPlb+iJRbU6o3+T3CjaP5I1Bbs4Pxh26Ol7NBfZlpbHbdPXIQKzJw2ga0TtJszduHkmL214g31mxTBLC5668mPCW3ZzcbRac1OrJCQi84DPgcVKKbtrQ2o+YsK6Yy3cTe+wvWzN8Hd3OFoTtD4lmzv+vZ5AHw9m3XUh7cP8TntMXu4B3l58N9+VpxMBfNj5Li658GHXB6s1S7W9T+gj4BZgj4i8JiIxLoyp2YiJGgRAqOcu9mcWUVphc3NEWlPy2+5jTPh8LeEBXsy9d0CtEtDPK15i5LzhfF92mNv9OjL/5v/pBKS5VK1qQkqpZcAyEQkCxhnPDwGfArOUUhU1nkBz6vy2F+OpFGWSgs2uSD5aSPfIIHeHpTUBi7am8/DsTXRqGcDMO/sRdpp54JTdzrvzx/B54S66iwefDHiJzjEj6ilarTmr9YwJxrIKE4G7gE3Auzim1PnFJZE1AxYPbzooC4dtRwHH4ARNO1dz1x/iwa82EhsVzNeT+p82AVWUFfHs15fzeeEubvRsw5d/+UMnIK3e1LZPaD4QA3wJXGdMowMwR0QSqj9SO51orzB+L8vAy2LSawtp5+zzlft5eUESF3cKY+qEPvh61vwnXliQzqPzRrKGEh4KiePua79ATA1tNi+tKavt6Lj3lFL/c7bDnSuUNgUxwR344dgRerfKYWfGuS+drDVPSine/XUP7yzbw9XdW/POzXF4Wcw1HnP0yDbuWzSefWLjlbbXMvKy1+opWk37U22TUIiI3FBlWx6w1VhITjtLMW36wrHVdPBP4uc0PYecdubsdsUrC3cwfdV+buoTxWs39MBirrk2k7x3Kff99hj5Ah92u4+L+j5QT9Fq2slqW+++E/gMGG88PgWeAlaJyAQXxdYsRLe7HABP814yC8s5VlDm5oi0xsRqs/PUd1uYvmo/tw9sx5QbY0+bgNYnTufWFY9hBWZc9KpOQJpb1bYm5AF0UUodARCRVsBM4EIca/J86Zrwmr7gkPa0tClyzIcB2JmRT3iArhFpp1dmtfHI7EQWb8vg4cs78cjQTqedBPfnFX/n2X1ziVImPh72GZGR/eopWk1zrrY1oajjCchwFDhPKZUN6OHZ5yjG4s8BWw4AO9P1CDnt9IrLrdw9cwOLt2Xw3PAuPHpF9GkT0MxFk3hi/zf0wIsvb/hRJyCtQahtTWi5iCwAvjFe32hs8wNyXRJZMxLtF8UfBTtp42/Xw7S10yqtsHHHjPWs25/NlBtjGdP3vBrL221WXp93A7OK93OFKYh/jl6Il7e+H01rGGqbhB4AbgAGGa9nAt8ppRQwxBWBNSeO6Xt20Sd8Lzszgt0djtaA2eyKx+YmsmZfNu+MjeP6XpE1li8rzeOZb67lF3su433a8cQN32G2eNZTtJp2eqdNQiJiBpYppYYA37k+pOYnOmogpHxHuPculh6MwWqzn7ZzWWt+lFK8vCCJRVsdTXCnS0B5uSn89fsb2SjlPB7Wn1uvnqrvAdIanNP+RiqlbDiWytb1dxc5Pn1POQcot9nZn1nk7pC0BuiT3/YxY3UKdw1qz10XX1Bj2cOHE7h13gi2UsaUdjdy2/BPdQLSGqTaNscVAltF5BfgxDekUuqvLomqmbF4eNNRWUhXxwDYkVFAp1YBbo5Ka0jmbUzlXz/vZETPCJ69pkuNZXfu+pH7Vz1LqcDUno/St9ed9RSlpp252iahecZDc5ForzBWlGVgMQk70/MZ0TPC3SFpDcRvu4/x5LdbuKhDKK+PjsVkqn4U3OqEj3hs60f4AzMveYuOHa6sv0A17SzUdhbtL0TEB2irlNrl4piapZiQjnx/9Ahx4dnszND3CWkOW1PzuG/WBjq1CmDqhD41TsXz43+f5cWDP9IeMx8P/5JWrWLrMVJNOzu1aiQWkeuAROBn43WciPzoysCam+jWjin4OgUm6YlMNQAOZBVx+4x1hPh68sXtfQnw9nBaTtntfPrjrfzt0E/0ER++uHGRTkBao1HbnsrJQD+Me4KUUolAzT2j2hmJaT8UAC/LPg7nlZJXrO8Bbs4yC8u4bfo6rHbFzDv70TLQ22k5a0Upr8y9hvdyNjHcEsbHNy8nILDmUXOa1pDUNglVKKXyqmzTy3zXoaDgdrSyKXKVY/qeXUf0TavNVVGZlTtnrCcjv5TPb+tLh3DnS7+XFGfz6NeXMbcsjTv9Y/jHzb/g4XX61VM1rSGpbRLaLiK3AGYR6SQi7wOrXRhXsxRt8eeA3TEBxc4M3STXHFXY7Dzw1Ua2puXx/rje9Dk/xGm57Oxk7ppzOb/Z83m21WAeufFbTObajjPStIajtknoIaAbUAZ8DeQDj7gqqOYqxi+KFJOdMB8rO/Qccs2OUopn5m1l+a5jvDqqB1d0beW0XG7Ofu74/gZ2UcHb0RMYd9UH9RypptWdWiUhpVSxUupvSqm+Sql443np2V5UREaLyHYRsYtIfJV9sSLyh7F/q4h4G9v7GK+TReQ9cTJbo4iMF5EtRrnVItKz0r6rRGSXcfzTZxu7K0WHdccqQt+Wybom1Ay9uXQ3325I5eHLOzGuX1unZYqLM3ng+xs4ZLLzcdyjXH7RU/UcpabVrdqOjosWkWkislRE/nv8cQ7X3YZjLroVVa5jAWYB9yqlugGX8ucs3R8DdwOdjMdVTs67HxislOoBvAxMM85rBj4Erga6AuNEpOs5xO8SMW0vBqCldzK7Mgqw25WbI9Lqy5drDvDB/5K5ue95PDK0k9MyFRXFPPbNcLZJBVOiJ+ibULUmobaNyN8An+BY2M52rhdVSu0AnE09fyWwRSm12SiXZZRrAwQqpdYYr2cC1wOLq5y3cj/VGiDKeN4PSFZK7TOOnw2MBJLO9b3UpbZRA/GyKypMKRSX2ziUU8z5obqjuan7eVsGL/ywjcs7t+SV67s7XZLBbrPy/NzhrKKYyZHDdA1IazJqm4SsSqmPXRqJQzSgRGQJEA7MVkpNASKB1ErlUo1tNbmTP5NUJHCoyvEXVnegiEwCJgG0beu8WcQVLB7edMBChj0TgB3pBToJNXHrU7L56+xN9IwK5v1bejmduFbZ7bz+3SgWWjN5OKQ3N17xphsi1TTXqO3AhJ9E5H4RaSMiLY4/ajpARJaJyDYnj5E1HGbBsVzEeOPfUSJyeS1jrHztITiS0Fn9d1EpNc3o+4oPD6/f2QtivMNIpgQRu+4XauL2HCngzhnriQr2YfrEvvh6Ov8/4ecLbmdWSQp/8W3Pndf+u56j1DTXqm1N6Dbj3ycqbVPUcMOqUmroWcSTCqxQSmUCiMgioDeOfqKoSuWigDRnJxCRWBzNhlcfb84zylZe+ava490tOrgj848eITY0W6+y2oSl55Vw2/R1eHmY+eKOfrTwc77Gz3e//B/v5mxkuCWMJ26Yp2fC1pqc2o6Oa+/k4YoZE5YAPUTE1xikMBhIUkqlA/ki0t8YFXcr8EPVg0WkLY6JVicopXZX2rUe6CQi7UXEE7gZaJDTDsW07gtAdNAufcNqE5VXUsHE6evJL7Xy74l9Oa+Fr9Nyv656jb+nLWEQfrw8ZqG+D0hrkmpMQiLyZKXno6vs+8fZXlRERolIKjAAWGj0AaGUygHewpE0EoGNSqmFxmH346jhJAN7Mfp7ROReEbnXKPMCEAp8JCKJIpJgnNcKPIgjye0A5iqltp9t/K4U3d7R+ujjsZeUrCKKy61ujkirS6UVNibNTGBfZiGf/KUP3SOdL9O1PnE6T+6ZRXflyZujF+Dh4TxRaVpjJ44VuqvZKbJRKdW76nNnr5uq+Ph4lZCQUK/XHDq9O90khB92Pc33Dwwk7jy95HdTYLcrHvp6Ewu3pvPuzXGMjHM+tmbnrh+5ffWztFQmvhj1A8Eh7es5Uk07NyKyQSkVf/qSp2+Ok2qeO3ut1ZEYSwAHjKn69IzaTYNSir8vSGLh1nSevaZztQno0KFV3LvqWfwVTL36C52AtCbvdElIVfPc2WutjsT4R3HAZCfIs5ydGbpfqCmYusKxNPcdA9tzdzVLc2ce28GkX+7FJjB1yHu0btOrnqPUtPp3up7OniKSj6PW42M8x3jtfG557ZxFh3XHWrCT/i2T2ZHe2t3haOdo3sZUXlu8k2tj2/Dc8C5Ob0YtyE/j3gU3kyWKz/u9yAXtL3NDpJpW/2qsCSmlzEqpQKVUgFLKYjw//tr5ClvaOYs+zzF9TyvfZJLS87Hp6XsarZV7Mnny2y0MuCCUN8f0dLo0d1lpHg/NG8lesfFO9/vo0W20kzNpWtOkbzpogNpGXYSXXaHMhygotbL9cNWlnLTGYN+xQu7/zwY6hPsz9VbnS3NbK0p58ptr2Egpr7a/kYv6PuCGSDXNfXQSaoAsHt50xEKGOgbAyuRMN0eknam8kgru+iIBi9nEZ7fFE+hkaW5lt/Pyt9fxX3s+T7W6hGsGv+SGSDXNvXQSaqBivMPZo0qIaeXHKp2EGhWrzc5DX2/iYHYxH4/vXe3NqO/NH8O88gwmBXZl/NUf1XOUmtYw6CTUQEUHdyTHJAw+r4D1KTmUVpzz5OVaPfnn4p2s2H2Ml6/vzoUXhDot8+Wie/iscBc3eUXw4Miv6zlCTWs4dBJqoKLbOKbvifLdTrnVzvqUbDdHpNXG3PWH+HzlfiZe1K7ahekWLH+eKcdWM9QUxHM3/aTng9OaNf3b30BFt3fM/1pm3YWHWXS/UCOwPiWbv32/lUEdw3hueBenZX5f9x7Pp8ynn/LitdELMVucT1yqac2FTkINVFBQW1rbFMkF++ndNoSVe3QSashSc4q598sNRIX48uEtvZ2uC5S47Sse2z6NTsrCuzf+hJe383njNK050UmoAYuxBLC7LJtBHcPYfjif7KJyd4ekOVFUZuXumRsot9n59NZ4gnxPHQmXvHcpD6z/By2V8NF1s/EPaOOGSDWt4dFJqAHrGtCOfSY78RFlAKzeq2tDDY3drvi/uZvZlZHP++N60bGl/yll0g9v4J7fHsNTwdQrPyUsrLMbItW0hkknoQas/wVXYxchP/MHArwtukmuAXrn1z38vD2DZ6/pwqUxLU/Zn5O9l0k/306JwCcX/4uoqP5uiFLTGi6dhBqwHl1vws+uWJv2OwMuCOX3PZnUtPSGVr8WbU3nvV/3cFOfKO4cdOps1+VlBTz84xgOm+y81+txYjoNd0OUmtaw6STUgHl4+NLXHMgfxWkM6hRGWm4JB7OL3R2WBuxIz+f/5m6mV9tgXh3V/ZRJSZXdzkvfjWSTlPPqBWOIj5vonkA1rYHTSaiB6x8eR6oZYgL2AfC7bpJzu5yiciZ9mUCAt4VP/uJ8Trh/L7yLHyuOcX9QD6665AU3RKlpjYNOQg3cgM43AXDg8I9EBHnrKXzczGqz8+DXGzmSV8bUCX1oFXjqiia/rv4X72St42pzC+4dMcsNUWpa46GTUAPX/vxLaWVTrDmSwMCOYazem6WXdnCjfy7eyarkLF4Z1Z1ebUNO2b9z1488s+tLuikP/n7j93o2BE07Df0X0sCJycQA79asteZyUYdA8koq2Jaml3Zwh+82pJ6YkmdM/Hmn7M88toOHVj1LgIL3hs/C2+fUJKVp2sl0EmoEBkQOJN8ktFR/AHppB3fYfCiXZ+Zvpf8FLfibkyl5SktyeHjBLeQJfDDwVcJbdnNDlJrW+Ogk1Aj07zEBgO1pi+ncOkD3C9WzYwVl3PPlBsL9vfjwlt54VJmSR9ntvPDd9WwxWfln9F/oEjPSTZFqWuOjk1Aj0KJFR7rYzfyRvYOLO4WRkJJDSble2qE+lFvt3DdrA7kl5Uy7tQ+h/l6nlJn2020stmXzcEhvLh/4tBui1LTGSyehRqJ/4AUkUkq/KCi36aUd6svkn7aTcCCH12/qSbeIUyccXfr7K3yQm8i1ljDuvPbfbohQ0xo3nYQaiQHtrsQqghQtxtNs0k1y9eA/aw/w1dqD3Du4A9f1jDhlf9LO7/lb8mzilAeT9Ug4TTsr+q+mkejdbRxedsWG1OX0Pj9Y37TqYutTsnnxh+0Mjg7niWExp+zPPLaDv65+jmAFb1/7lV6WQdPOkluSkIiMFpHtImIXkfgq+2JF5A9j/1YR8Ta29zFeJ4vIe1J1nhRHmfEissUot1pEelbal2JsTxSRBNe/y7rl5R1Eb5MvfxQeYFDHMJLS88kqLHN3WE3S4dwS7pu1gagQH967uRdm08m/auVlBTyyYDz5Au8P/IeeFVvTzoG7akLbgBuAFZU3iogFmAXcq5TqBlwKVBi7PwbuBjoZj6ucnHc/MFgp1QN4GZhWZf8QpVScUir+1EMbvgGhPdhrVsSGHgVg9d4sN0fU9JRW2Ljnyw2UVjhfG0jZ7bz83Sg2myp4ueNYOseMcFOkmtY0uCUJKaV2KKV2Odl1JbBFKbXZKJellLKJSBsgUCm1RjmmkZ4JXO/kvKuVUjnGyzVAlIveglsM6OQY+puV+ZNe2sEFlFI8M28rW9PyeHtsHJ1aBZxS5j9L7uf7iiPcE9iNYRc/74YoNa1paWh9QtGAEpElIrJRRJ40tkcCqZXKpRrbanInsLjSawUsFZENIjKppgNFZJKIJIhIwrFjx87wLbhOdMdraGFXrM1Yy0UdQlmZrJd2qEuf/b6f+ZvSeOyKaK7o2uqU/avXf8jrR1ZymSmQ+/WccJpWJyyuOrGILANaO9n1N6XUDzXEMwjoCxQDv4rIBuCM5qkRkSE4ktCgSpsHKaXSRKQl8IuI7FRKrXB2vFJqGkZTXnx8fIP5ljeZLVzoEcqasmPcEdOCJduPcCCrmHZhfu4OrdFbsfsY/1y8g6u6tebBIR1P2X/gwO88vu1jOmDmn6PmYzK77E9H05oVl9WElFJDlVLdnTyqS0DgqOGsUEplKqWKgUVAbyCNk5vWooxtpxCRWOAzYKRS6kSniVIqzfj3KDAf6Hcu789dBrS5kCyz0N57E6Cn8KkLB7KKeOjrTXRqGcCbY3piqjIQoSA/jYd+fQAz8N4VU/H1P3UFVU3Tzk5Da45bAvQQEV9jkMJgIEkplQ7ki0h/Y1TcrcApyUxE2gLzgAlKqd2VtvuJSMDx5zj6nra5/u3UvQHdbgFgb/piIoN9dL/QOSoss3L3zARE4NNb4/HzOrmGY7OW89T3N3LIZOetuEf18tyaVsfcNUR7lIikAgOAhSKyBMAYVPAWsB5IBDYqpRYah92Po4aTDOzF6O8RkXtF5F6jzAtAKPBRlaHYrYCVIrIZWAcsVEr97Or36QqtW8fR3iasydrKwI6hrN6bqZd2OEt2u+L/5iaSfLSQD8b1pm2o7yll3v3hZn5XRTzd5jL69rrTDVFqWtPmloZtpdR8HE1izvbNwjFMu+r2BKC7k+2fVHp+F3CXkzL7gJ5VtzdWA/zb8l1RCs+e78XcBCvb0vLoeV6wu8NqdN777x6WbD/Cc8O7MKhT2Cn7Fyx/nn8X7mGMVyRjh73nhgg1relraM1xWi0MaDuEMpMQZP0V0P1CZ2PJ9gzeWbaHG3pHcueg9qfs37r9G15MmU8f5cXTo75zQ4Sa1jzoJNQI9e0+HotSbDn8X3qeF8wPiWl6qPYZ2H44j0fnJNIzKoh/jOpB1ck3jhzZwsNrXyLcLrw9Yg4eXnr0oaa5ik5CjZCff2ti8eKP/L2M79eW3UcKWbtfz6pdG0cLSrn7iwQCvT349NZ4vD3MJ+0vLcnhkUW3USTw3iVT/r+9+46Pqkr/OP55UiEBEiKhl1BEKSJghNAEG4Il9OLSRGV1dVUUV9eKuqxYfrrYVmSxgIggHZSqICg9QGgGMID0HgiEkDZzfn/MDQ7JBAIkuTPJ83695pWbuWfufOeQ5GHuPXMO5SPq2pRUqZJBi5CPalW+Adski3Y10wgrHcj4lX/YHcnrpWU6+Ov4dZxMzWTsoGgqlit1wX7jdDJ8eje2+GUx8rqB1K/X2aakSpUcWoR8VKu692JE2Lh9In1ursGCrUc4nJxmdyyvZYzhuambiN93iv/0uUrTwswAABc8SURBVJHG1XLPev35Dw8yN+sET5Rvym2tn/NwFKVUQdMi5KMaXdeVsk7DygO/0r9lLZzGMHHNXrtjea2PFycye+NB/nHXdXRqXCXX/p9XvceHJ+Lo7B/BkHvH2ZBQqZJJi5CPCggsRYuAMFaeO0SN8qXoUD+Sb9fsJSPLaXc0rzN38yHeW7SDbs2q8ViH3Nd4Encu5PmEL2lgAni9+wxdnE6pIqS/bT6sVcWbOOQv7Nn7CwNbRXHsTDoLth62O5ZX2bw/mWe+i6d5zXBGds89Eu7Uyd08sXQYIQY+6PwVpUMibEqqVMmkRciHtWrQG4CV26bQvn4kNSNCdICCm8PJaTw8fi3XhAbz2YDcI+EyM1N5ZlYvjvoZRrV4mcqVm9qUVKmSS4uQD6tRvTU1HLDo8Cr8/IQBMbVY+8dJEg6dtjua7c5lOBgyPo6UtCzGDoomsmxwrjZvT+vBWklneM1Ybmzc14aUSiktQj5M/PzoERnNWkkncedCekVXJzjAj/Er99gdzVZOp2HYlHi2HEzmg77NaFClXK42kxc8yeT0/TwQWo/Y2960IaVSCrQI+bzubV4myBgmxY0iPCSILk2rMnPDAZLPZV76wcXU2wu2MXfzYV7ofD13eFicbvnajxl5aDHtJJShXSfbkFAplU2LkI8rH1GXTkGVmJ26lzOnDzCwVRTnMh1MW7f/0g8uhsb+sovPlu5iQEwthrSrk2v/74nzGbZlNHWNP+92n4l/QJANKZVS2bQIFQN/afYY5/yE2cv/TeNqYTSvGc6EVXtwlrAlHmZuOMCIHxK4+4bKvBbbKNdIuOPHEnh82bOEGPik01eElvG08K9SqihpESoGGjXoQRNnAJMO/YpxOhnYKopdx8+WqNm1l+04xrNTNhJTJ4L3ezfFP8fqqOdSk3ji+79wSuCj1m9QuUozm5IqpdxpESom+kbdwx/+hlUbxtD5hspcExpUYgYobNx3ikcnrOPaSmUZ42FSUqcji5emxbJVMnnruoE0ur67TUmVUjlpESom7mr9PBFOw7dbvyY4wJ++LWqweNsR9p9MtTtaodp1LIXBX60lIjSIcYNvplypwFxtPpjZh0XOZIZFttY54ZTyMlqEiomg4LL0CGvAUmcyBw6soV/LWgB8s7r4zid39HQaA79YgwBfP9Qy16zYANMWDeOLlB30Cq7GwM6jcx9EKWUrLULFSO9WLwLw3aq3qRpemjsbVmLy2n2kZTpsTlbwTqdlMvCLNSSdzeDLwTdTu0LuhedWrfuMEQcW0JrSvNBjus4Jp5QX0t/KYqRylWbc5h/O9NPbSU9LZmCrKJLOZvDDpkN2RytQaZkOhoyLI/FoCqP730ST6uG52uza/RPPbPqIKKcf/9dtBoGBITYkVUpdihahYqZvo4Gc8hPmrxhJ67rXUDcylPGris8AhUyHk6GT4lm9O4n3et/ILfUjc7U5cXwHjy0ZSiDwSacvKFuuWtEHVUrlixahYqZF04ep4xAm7pkPxjAgphYb951i7R++v/x3epaDx75Zz/yth3n13oZ0aZq7uJw5fYBH5/TihBg+avEKVatG25BUKZVfWoSKGfHz4/6q7fnNz8HmhCn0jK5B1bBSPDtlI2fSfHcqn3MZDh4eF8ei347wemwjHmxbO3eb1CT+Pj2WRHHwn0aP0KRRHxuSKqUuhxahYui+ti8R6jRMiv+MMsEBfHB/M/YlpfLKzC0Y43uzKJxJy2TQF2tYnnicd3o2YVDrqFxtMjNTeXbqPWwgnZF1etG2xRNFH1Qpddm0CBVDoWUqExtSi/mZRzlxfAc3R0Uw9I76zIw/yPT1B+yOd1lOpWbQf+xq1u89yQd9m9E7ukauNk5HFi9/dzfLTAovV7mdTrcMtyGpUupKaBEqpvq2GEamCNNXjADg8Vvr0bJ2BK/M2sKuYyk2p8ufY2fS6TtmFQmHzvBp/5u478aqudoYp5ORU2OZm3WCp8o3p/ddH9iQVCl1pWwrQiLSS0S2iohTRKJz7GsiIiut/ZtFpJR1/03W94ki8qHknKHS1aaLiGwSkXgRiRORtm77BonI79ZtUOG/SvvUqX0bMZTmu+PrycpMw99PGNW3KUEBfjzx7QbSs7z7s0OHks/RZ8xK9pxI5YsHbuZOD0syAPx3Vj8mpe1jUEhdHrr3yyJOqZS6Wna+E9oCdAeWud8pIgHABOBRY0wjoAOQfUX9U2AIcK116+ThuD8BNxpjmgIPAmOt40YAw4GWQAtguIiUL9iX5F3uv7Ynh/2FpWtGAVAlrDTv9ryRrQdP8/a87Tany9veE6n0Gr2So6fTGf9QC9peW8Fju6/nPsLo01voFlSJYfphVKV8km2/tcaYBGOMp7+EHYFNxpiNVrsTxhiHiFQByhljVhnX1fXxQFcPx00xf159DwWyt+8CFhljkowxJ4FFeC5ixUb7FkOp4jB8mzjt/H13NqzEA62j+GL5bhZvO2JjOs8Sj56h92crSUnPYuKQltwcFeGx3ezFL/LOsRXc4RfGqz2/1wKklI/yxt/c+oARkQUisl5EsmecrAa4r9S237ovFxHpJiLbgB9wvRvKfvy+fD7+r9apvLhjx45dxUuxl39AEL0jo1lNGtt//+H8/f/sfD0NqpTj2SmbOHI6zcaEF5q54QBdPl5OltMw6a8xHmdCAFi84h1e3TublpTi7d7zCAjMPWecUso3FGoREpEfRWSLh1uXizwsAGgL9LO+dhOR2y/neY0xM4wx1+N6p/Svy81tjBljjIk2xkRHRub+RL4v6dl2OOFOw8u/vkhG+hkASgX689H9zTiX4eDpyfE4bF78LiU9i2e+i2fo5HgaVi3HrL+34frK5Ty2/fHXkTy7YzwNTSAf9JhDUHDZIk6rlCpIhVqEjDF3GGMae7jNusjD9gPLjDHHjTGpwFygOXAAqO7Wrrp138WefxlQR0QqWG3dx/de8vHFQXj52vyrwWC2+TkZNbv/+fvrVSzD67GNWLHzBKOX7rQt3+b9ydz30a/M3HCAp26/lm+HxFAtvLTHttMWDWNY4jc0NEF82m2GroyqVDHgjafjFgA3iEiINUihPfCbMeYQcFpEYqxRcQOBXMVMROplj5oTkeZAMHDCOm5HESlvDUjoaN1X7HWIGcb9pWrydeoulq3+cwhzr+jq3NukCu8v2sG6PSeLNJPTaRj7yy66f7qctEwHE4fE8PSd9Qnw9/wj+fmcwbx2cCGtJJQxfRYSFh5VpHmVUoXDziHa3URkP9AK+EFEFgBYgwbeB9YC8cB6Y0z2BY3HcI12SwR2AvOsYz0qIo9abXoAW0QkHvgE6GNcknCdmltr3d6w7isRhnWZyLVOP1757X8cO7oVABHhze43UDW8FI9/s55lO4rm+tfxlHQeHLeWET8k0OG6isx9sh0xda7x2NY4nbw/tRujkuLo7B/BR30XExLiebScUsr3iC9O41KUoqOjTVxcnN0xCsTOnYvou+xpmvqF8Fn/Ffj5BwCw9WAyf5+4gd3Hz3L3DZV55d6GVAnzfErsav3y+zGenryR02mZvHJPA/rH1MLDx70AyMpM442p9zIj4wh9StXghR4z8Q8IKpRcSqmCIyLrjDH5mj3YG0/HqUJSt+6dPF+9I6s4x7h5j5y/v1HVMOYPbcewO+vzU8JRbn9vKaOX7iQjy1kgz+t0Gn7efpQh4+MY8PkawkMCmf33NgxoFZVnAUpPS2bYpNuZkXGER8s15qVe32sBUqoY0ndCl1Cc3gmB6/TWsG/as8Rxkq9bDKdxw14X7N+XlMrrc37jx4Qj1KtYhje6NKJ13Ss7/XUiJZ0p6/YzcfVe9ialck1oEPe3qMnjt9ajdJB/no9LOXOIp6bdxxpJ558V29Kv86dX9PxKKXtczjshLUKXUNyKEEBy8l56TbubAITvei2kTNkqudr8lHCE1+ZsZV/SOWJvrMpL9zSgUrlLfx7HGEPcnpNMWLWHeZsPk+Fw0qJ2BP1janFXo0oEB+RdfACSkhL526yebJcs/lWrK/fdOuKKX6dSyh5ahApQcSxCABs2TeCB9W9xd2AkI/st8dgmLdPBpz/v5NOlOwny96Njw0oEB/oT5C8E+vsRFOB3/muQvx8ZDiez4w+y/cgZygYH0L15NfrF1KJ+pfx9lmfNhrG8tGEUJwXea/Ag7WOeKciXrJQqIlqEClBxLUIAo2f155NTG3mzZiz33frvPNv9cfwsb85NYOvB02Q4nGRkOcl0ZN8u/PlpXK0c/VvWIrZpVUKCAvKVIz0tmQ/nDGR86i5qOeCtmFdznSZUSvkOLUIFqDgXIUdWBg9NaE2CSWPK7aOpWbPtpR+Ug9NpyHS6ipHDYShXOiDPwQaebNs+mxeWv0yiv6FPqRo8c994HYKtlI/T0XEqX/wDgnjrrv8RAAz76XH271912cfw8xOCA/wpExxAWEhgvguQIyuDz+cM5v6VL3IKJ/9tMISX+8zVAqRUCaNFqISrXKUZIxsOYS8Oui16mM/nDCYzM7VQn/PAgTU8OKEVo5LiuNU/nBnd5tCuxZOF+pxKKe+kRUhxS8unmNV5Am0CwhiVFEefCa2I3zKxwJ/HOJ3M/Ol5eix8kB0mnTdrxvJev2WEl69d4M+llPINek3oEorzNSFPFq94h5HbxnPYX+gVXI2nOo8hLKzmVR3z6JEtzFnzHrOOrWO3vyHaBPPvjqOpWjVfp4yVUj5GByYUoJJWhABSU47yybwhTDi7k/JOeK5uDzq3G35ZC8elpyWzZM0HzNo9lxUmBacIzU0Q3WveyX3tR5yfMkgpVfxoESpAJbEIZftt20zeWPkaW/0ctKY0AxoMoFxoRUJLRRAaGkmZ0EqEhESeLyjG6eS37TOYselz5qXu5bSfUMlhiA1vSNfoJ69o9J1SyvdoESpAJbkIgWsU2+Qfn+bDQ0s56+d55FuI0xBqQICj/kKw03B7UAW6XNeblk0f1jnflCphLqcI6TkRdVH+AUH8pdMndE7aye59y0lJO0lq+ilS0pM5m5HC2YwznM1K5WzWOc45M7gpsimdWg6jXFiNSx9cKVXiaRFS+VI+oi7lI+raHUMpVczoEG2llFK20SKklFLKNlqElFJK2UaLkFJKKdtoEVJKKWUbLUJKKaVso0VIKaWUbbQIKaWUso1O23MJInIM2HOFD68AHC/AOIXJl7KCb+X1pazgW3l9KSv4Vt6ryVrLGBOZn4ZahAqRiMTld/4ku/lSVvCtvL6UFXwrry9lBd/KW1RZ9XScUkop22gRUkopZRstQoVrjN0BLoMvZQXfyutLWcG38vpSVvCtvEWSVa8JKaWUso2+E1JKKWUbLUJKKaVso0XoKonIFyJyVES25LFfRORDEUkUkU0i0ryoM7pluVTWDiKSLCLx1u3Vos6YI08NEVkiIr+JyFYRecpDG6/o33xm9Zr+FZFSIrJGRDZaeV/30CZYRCZbfbtaRKKKPmm+sz4gIsfc+vZhO7K65fEXkQ0i8r2HfV7RrzkyXSxv4fatMUZvV3EDbgGaA1vy2H83MA8QIAZY7cVZOwDf292nbnmqAM2t7bLADqChN/ZvPrN6Tf9a/VXG2g4EVgMxOdo8Boy2tvsCk7046wPAx3b3q1ueZ4CJnv69vaVfLyNvofatvhO6SsaYZUDSRZp0AcYbl1VAuIhUKZp0F8pHVq9ijDlkjFlvbZ8BEoBqOZp5Rf/mM6vXsPorxfo20LrlHKXUBRhnbU8FbhcRKaKI5+Uzq9cQkerAPcDYPJp4Rb9my0feQqVFqPBVA/a5fb8fL/7jBLSyTnvME5FGdofJZp2yaIbrf8HuvK5/L5IVvKh/rVMw8cBRYJExJs++NcZkAcnANUWb0iUfWQF6WKdkp4pIjSKO6G4U8BzgzGO/1/Sr5VJ5oRD7VouQcrce15xPNwIfATNtzgOAiJQBpgFDjTGn7c5zMZfI6lX9a4xxGGOaAtWBFiLS2M48F5OPrHOAKGNME2ARf77TKFIici9w1Bizzo7nv1z5zFuofatFqPAdANz/51Ddus/rGGNOZ5/2MMbMBQJFpIKdmUQkENcf9W+MMdM9NPGa/r1UVm/sXyvLKWAJ0CnHrvN9KyIBQBhwomjTXSivrMaYE8aYdOvbscBNRZ3N0gaIFZE/gEnAbSIyIUcbb+rXS+Yt7L7VIlT4ZgMDrVFcMUCyMeaQ3aE8EZHK2eemRaQFrp8P2/7oWFk+BxKMMe/n0cwr+jc/Wb2pf0UkUkTCre3SwJ3AthzNZgODrO2ewGJjXakuSvnJmuM6YCyua3JFzhjzgjGmujEmCtegg8XGmP45mnlFv0L+8hZ23wYU5MFKIhH5Fteopwoish8YjuvCKcaY0cBcXCO4EoFUYLA9SfOVtSfwNxHJAs4Bfe365bC0AQYAm63rAQAvAjXB6/o3P1m9qX+rAONExB9XMfzOGPO9iLwBxBljZuMqql+LSCKuAS19vTjrkyISC2RZWR+wKatHXtqveSrKvtVpe5RSStlGT8cppZSyjRYhpZRSttEipJRSyjZahJRSStlGi5BSSinbaBFSJYqIpOSjzVARCSnA5+wqIg0L8HgrruKxKdbXqiIy9SLtwkXksSt9HqXyS4uQUrkNBS6rCFmfYclLV6DAipAxpnUBHOOgMabnRZqE45rtWalCpUVIlUjiWtvnZ2tCxm0i8o0168KTQFVgiYgssdp2FJGVIrJeRKZY88MhIn+IyNsish7oJSJDRGStNUHpNBEJEZHWuD5l/q641mKpKyJNRWSVNSHkDBEpbx3vZxH5j4jEiUiCiNwsItNF5HcRGeGWPcVt+3kR2Ww951seXmdtK/vmHMeIEmtdKRFpJK71euKtTNcCbwF1rfveFZEyIvKT1QebRaSL23ESROR/4lrrZ6E1qwEiUk9EfrSyrReRutb9/7D6aZN4WBtIlTCFtUaE3vTmjTcgxfraAdfsxdVx/WdsJdDW2vcHUMHargAsA0Kt758HXnVr95zbsa9x2x4BPGFtfwX0dNu3CWhvbb8BjLK2fwbetrafAg7imi0gGNfs4NfkeA2dgRVAiPV9hIfXOxsYaG0/7vbYKKx1pXBNptrP2g4CSrvvt+4PAMq59UkirnV+onB9kr6pte87oL+1vRroZm2XwvXusiMwxnqsH/A9cIvdPxd6s++m0/aokmyNMWY/gDXVThTwa442MbhOpS23pn0LwlWwsk12225svdsIB8oAC3I+oYiEAeHGmKXWXeOAKW5NZltfNwNbjTUPnojswjXppftcc3cAXxpjUgGMMZ7WimoD9LC2vwbe9tBmJfCSuNaVmW6M+V1yL28jwJsicguuKf+rAZWsfbuNMdlTFa0DokSkLFDNGDPDypZmvY6OuArRBqt9GeBaXIVelUBahFRJlu627cDz74PgWr/m/jyOcdZt+yugqzFmo4g8gOvd1pVmcubI58wjX35cdG4uY8xEEVmNa2GzuSLyCLArR7N+QCRwkzEmU1yzLpfKkRlc/Vj6Ik8nwEhjzGeXkV8VY3pNSKnczuBaohtgFdBGROoBiEioiNTP43FlgUPiWtKhn6fjGWOSgZMi0s7aNwBYypVZBAzOHsknIhEe2iznzwky+3nYj4jUAXYZYz4EZgFNuLAPwLXcwFGrAN0K1LpYMONaXXa/iHS1niPYyrkAeNDtulo1EamYr1eriiUtQkrlNgaYLyJLjDHHcM0a/K2IbMJ16ur6PB73Cq7rIMu5cKmBScA/RGSDdXF+EK6BCpuApriuC102Y8x8XKfv4qzTic96aPYU8LiIbCbvFWd7A1usYzTGtVz6CVynILeIyLvAN0C0dZyB5F72wZMBuGZg3oTr2lVlY8xCYCKw0jrWVC4sdqqE0Vm0lVJK2UbfCSmllLKNFiGllFK20SKklFLKNlqElFJK2UaLkFJKKdtoEVJKKWUbLUJKKaVs8//7auByBCIM+AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -145,30 +102,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8FPX5wPHPQ05ycIVwhksOEQQ5ImhFLSpeVZCKcgmeRa1Xa39W7M8qWtt61GoVj+IF4gEWj6KgoD/BCwUChFsgIEe4CRBykPv5/TETXJZNdoFsdpM879drX5md73dmnp3d7LPz/c58R1QVY4wxpjL1Qh2AMcaY8GfJwhhjjF+WLIwxxvhlycIYY4xfliyMMcb4ZcnCGGOMX5YsTJUQkQki8pY73VZEckUkwn3eXES+FpEcEXlaHG+IyAERWRTayE+ciAwVkW3ua+0d6njCjffnINx4fmaNf5YsQkxENovIYfefqvwxMdRxnQxV3aqqCapa6s4aB+wDGqjqH4ABwCAgRVX7hSrOKvAP4E73tS6r7o2LiIpIntdn549B3N4NIvKt17zJIlLkFcNy8Pk5MDVYZKgDMABcqapfBHMDIhKpqiXB3EYl2gFr9OcrQNsBm1U173hXFOLX4a0dsNpXQTXGeYaqZlTDdirzpKo+GOIYwoaIRNTGBGlHFmGs/JeciPzDbbL5SUQu8yhvKCKvichOEdkuIo95NP3cICLficgzIpIFTBCRCLcZaJ+7rjvdX6eRInKNiCzx2v69IvLfCmLrICJfuU1LnwNNPcrae6x3MnA98Ef3V+etwKvA2e7zR9xlrhCRdBE5KCILRKSnx/o2i8j9IrICyHPX20pE3heRve5ruduj/gQReU9E3nTjWy0iqR7lbUTkA3fZLM8jORG5SUTWuvt7joi08/HaY0QkF4gAlovIxkriPE1E5ruva7WIDPZYz2QReVFEPnX3xXci0kJEnnW3/+OJNm+JyGwRedrj+TQRed2d7igiX7qvfZ+IvC0ijSrbPyJyGvCyx/t2MIAYjnwO3Ocd5OfmyC9E5AXxaAYSkbPc9/6giCwXkV96lM0Xkb+4+yhHROaKSFO3LFZE3nJjPSgii0WkuVvWSkRmish+EckQkd9UEOunInKn17zlIvJrd7qriHzurmediFzrUW+yiLzk7vM8YKC/fVMjqao9QvgANgMXVVB2A1AM/Abni+l2YAcgbvmHwL+BeKAZsAi41WPZEuAunCPI+sBtwBogBWgMfAGoWx4D7AdO89j+MuDqCmL7Hvinu9x5QA7wllvWvny97vPJwGNer+tbj+e9gT1Af/d1Xu/ulxiPfZQOtHFfRz1gCfAQEA2cAmwCLnHrTwAKgMvd9f0d+MEtiwCWA8+4+y0WGOCWDQEygNPcffIgsKCS906BTl7vpWecUe76/uTGeYG7n0712C/7gL5uHF8CPwFj3TgfA+YFun2vshbuPr0AGO3un0S3rBNOM2AMkAx8DTwbwP456n3z9d56lXl/Dr7HabqLxmmKPMTPn5nWQJb7ntVz48sCkt3y+cBGoIu7b+cDj7tltwIfA3Fu/H1xmjxxX9uL7uvoBewFLvD4nJRvfyzwnUfs3YCD7j6KB7YBN7qfi97u+9bNYx9kA+e4sceG+nslKN9VoQ6grj/cL5hc94NZ/viNW3YDkOFRN87952sBNAcKgfoe5SPLv1zcZbd6betL3GTiPr/I65/5JeCv7nR34ADuF7bXetriJKJ4j3nvcOLJ4iXgL17bWAec77GPbvIo6+/jtT0AvOFOTwC+8CjrBhx2p892vzAifbyuT4GbPZ7XA/KBdhW8d76ShWec5wK7gHoe894FJnjsl1c8yu4C1no87wEcrOSzozhfuJ6fnUs8yq/G+ZLbh/uFX8F6rgKWBbB/jnrfPF5DgVcMU7w/Bx6fmTiPZd/y+MzcD0z1Wvcc4Hp3ej7woEfZb4HP3OmbgAVAT6/l2wCluEnSnfd3YLLH56R8+4lAXvl7DfwVeN2dHg5847XufwMPe+yDN0/me6AmPKwZKjxcpaqNPB6veJTtKp9Q1Xx3MgGnvTwK2Okeeh/E+QA381h2m9d2WnnN8y6fAowSEQHGAO+paqGPeFsBB/ToPoctlb/ESrUD/lD+OtzX0sbdjq9Y2wGtvOr/CSeBltvlMZ0PxLrNIW2ALeq7P6Ed8C+Pde4HBOdXb6A842wFbFPVMo95W7zWt9tj+rCP5wl+ttfH67Mzx6PsY5xf2utU9UjHtDhnp00Tp+nyEM6XdnkzYmX7pyL/8Irheh91WgH7PT7DcOx7eo3XezoAaOlRx/s9Ld83U3ESyzQR2SEiT4pIlMc2czyW897/ALh1ZgEj3Fkjgbc9YuvvFdtonB9tvl5LrWQd3DXXNpwji6aV/GN7Dym8E6cJqlyboyqr/iAiRTi/iEe5D192Ao1FJN4jYbT1sb1AbcM5ovlrJXU8170N+ElVO5/gttqK7w7o8jje9rFcoDzj3AG0EZF6HgmjLbD+JNZ/PP4KrAU6iMhIVX3Xnf83N84eqrpfRK4CyvttKts/JzNE9U6giYjEeSQMz8/fNpwjC599CpVR1WLgEeAREWkPzMY5Mp3rbjPRI2G0BbZXsKp3gYdF5GucZqt5HrF9paqDKgvjeOOuaezIooZS1Z04/wxPi0gDEanndlyeX8li7wH3iEhrt0Pzfh913sT54ij2/DXqte0tQBrOP2e0iAwArjyJl/MKcJuI9BdHvIj8SkQSK6i/CMgRpzO5vjgd96eLyJkBbGsRzhfX4+52YkXkHLfsZeABEekOR04guOYkXtdCnF/AfxSRKLfD9kpg2kmsMyAich5OG/tYnD6g50Wk/Bd1Ik7TZ7Y77z6PRSvbP7uBFBGJPt54PD4zE9zPzNkc/Zl5C7hSRC5x389YEfmliKT4XOHRr3WgiPQQ5+SOQzj9fGWqug2neerv7vp6Aje72/JlNs5RxKPAdI8E/wnQRUTGuO9jlIicKU6nf51hySI8fCxHn6f+YYDLjcXpLFyD078wg6MP2729gpNgVuB0Xs/GaUf2PM1vKnA6Ff9DlRuF03ewH3gYJ8mcEFVNw+nEn4jzOjJw2scrql8KXIHTYfkTTpv8q0DDALZVivMl1QnYCmTitEmjqh8CT+A0ZxwCVgGXVbAqv1S1yN3WZW6MLwJjVfXHE12nD8u9PjvPikgDnPfjTlXdrqrfAK8Bb7hNjI8AfXA6ZWcBH3jEXOH+wenzWg3sEpF9HjH80SsGzzJPo3H6RLJwOu+n4xwd436xD8FpTtyL82v+PgL7jmqB89k/hHMk9RXO5xic5qT2OEd5H+L0M/g8Td1tcv0Apy/vHY/5OcDFOE1UO3Caw57A6fyuM8rPqjF1kDin4b6squ085tXHOYumj6puCFlwptYTkenAj6r6cKhjMf7ZkUUd4jbZXC7O+f+tcY4IvI9ibgcWW6IwVc1tuunoNpleinMk8VGo4zKBCWqyEJFLxbmAJUNExvsojxGR6W75QrdzChEZLc4FWuWPMhHpFcxY64jyJogDOM1Qa3GuVXAKRTYD9wB/CEVwptZrgXMKbC7wHHC7hmCYFHNigtYM5XY2rce5uCYTWAyMVNU1HnV+i3Nu9G0iMgIYqqrDvdbTA/hIVTsGJVBjjDF+BfPIoh/OBWWb3I6+aTiHnZ6G4JzbD04H1YVuB5ynkVTD2SPGGGMqFszrLFpz9IUqmThnz/iso6olIpINJOGcOVJuOMcmGQBEZBzOiKbEx8f37dq1a9VEbowxdcSSJUv2qWqyv3phfVGeiPQH8lV1la9yVZ0ETAJITU3VtLS06gzPGGNqPBEJaPSFYDZDbefoKzRTOPbKySN1xBmKoSHOOdjlRuBcVWmMMSaEgpksFgOdxRmWOBrni3+mV52ZOFeXAgwDvlS3x11E6gHXYv0VxhgTckFrhnL7IO7EGeArAmcEx9Ui8iiQpqozca4qnSoiGThXAo/wWMV5OIOwbQpWjMYYYwJTa67g9tVnUVxcTGZmJgUFBSGKyniKjY0lJSWFqKioUIdijHGJyBJVTfVXL6w7uE9WZmYmiYmJtG/fnmPPyDXVSVXJysoiMzOTDh06hDocY8xxqtXDfRQUFJCUlGSJIgyICElJSXaUZ0wNVauTBWCJIozYe2FMzVXrk4UxxtRmUxZs5psNe4O+HUsWQZaQcPRdMSdPnsydd955XOtIT09n9uzZVRnWUSZPnkxycjK9evWiV69ejB079rjXMX/+fK644oogRGeMqciPuw7xl0/W8OHSim7+V3VqdQd3bVBSUkJ6ejppaWlcfvnlPssjI0/+bRw+fDgTJ070X9EYExZKy5T7319Jw/pR/PmKbkHfnh1ZhNDHH39M//796d27NxdddBG7d+8GYMKECYwZM4ZzzjmHMWPG8NBDDzF9+nR69erF9OnTjykvLS3lvvvu48wzz6Rnz578+9//PrKNp5566sj8hx8+vnvMpKenc9ZZZ9GzZ0+GDh3KgQMHAMjIyOCiiy7ijDPOoE+fPmzcuPGo5RYvXkzv3r2PmW+MqTqTF2xm+baDPDy4O43jj/tOt8etzhxZPPLxatbsOFSl6+zWqgEPX9m90jqHDx+mV6+fb8Wxf/9+Bg8eDMCAAQP44YcfEBFeffVVnnzySZ5++mkA1qxZw7fffkv9+vWZPHkyaWlpR375T5gw4ajySZMm0bBhQxYvXkxhYSHnnHMOF198MRs2bGDDhg0sWrQIVWXw4MF8/fXXnHfeecfEOX36dL791rnl9j333MONN97I2LFjef755zn//PN56KGHeOSRR3j22WcZPXo048ePZ+jQoRQUFFBWVsa2bc6YkQsWLOCuu+7iv//9L23btj35nWyMOca2/fn8Y846LujajCt7VnYn5apTZ5JFqNSvX5/09PQjz8u/+MG5DmT48OHs3LmToqKio64/GDx4MPXr169wvZ7lc+fOZcWKFcyYMQOA7OxsNmzYwNy5c5k7dy69e/cGIDc3lw0bNvhMFt7NUNnZ2Rw8eJDzzz8fgOuvv55rrrmGnJwctm/fztChQwHnQrtya9euZdy4ccydO5dWrVod344yxgREVfnThyuJqCc8dtXp1XaWYZ1JFv6OAELhrrvu4t5772Xw4MHMnz+fCRMmHCmLj4+vdFnPclXl+eef55JLLjmqzpw5c3jggQe49dZbj5r/wgsv8MorrwBUacd5y5YtKSgoYNmyZZYsjAmSD5Zu55sN+/jLkO60alTxD8qqZn0WIZSdnU3r1q0BmDJlSoX1EhMTycnJqbD8kksu4aWXXqK4uBiA9evXk5eXxyWXXMLrr79Obm4uANu3b2fPnj3ccccdpKenk56eXuGXesOGDWncuDHffPMNAFOnTuX8888nMTGRlJQUPvrIuXVyYWEh+fn5ADRq1IhZs2bxwAMPMH/+/OPbGcYYv/blFvKXWWtIbdeY0f3bVeu2LVmE0IQJE7jmmmvo27cvTZs2rbDewIEDWbNmzZEObm+33HIL3bp1o0+fPpx++unceuutlJSUcPHFFzNq1CjOPvtsevTowbBhwypNOt6mTJnCfffdR8+ePUlPT+ehh5zbdU+dOpXnnnuOnj178otf/IJdu3YdWaZ58+Z88skn3HHHHSxcuPA49oYxxp8JM1eTX1jK41f3pF696r3ItVYPJLh27VpOO+20EEVkfLH3xJgT88Wa3dzyZhp/GNSFuy7sXGXrDXQgQTuyMMaYMJdTUMyDH62ia4tEbj2/Y0hiqDMd3MYYU1M98dmP7Mkp4OUxfYmODM1vfDuyMMaYMLbop/289cNWbjynA73aNApZHJYsjDEmTBUUlzL+gxW0aVKfP1zcJaSxWDOUMcaEqYlfZrBpbx5Tb+5HXHRov67tyMIYY8LQ2p2HePmrjVzdJ4VzOyeHOhxLFsE0cOBA5syZc9S8Z599lttvv53Vq1dzwQUXcOqpp9KxY0cefvhhysrKgGOHDO/Vqxdr1qwJxUswxoRASWkZ97+/gkZxUfz5ivA41dySRRCNHDmSadOmHTVv2rRpjBgxgsGDBzN+/HjWrVvHypUrWbRoEf/617+O1Bs+fPiRq6zT09Pp1i34QxAbY8LD5AWbWZGZzYTB3WkUF/wRZQMR1GQhIpeKyDoRyRCR8T7KY0Rkulu+UETae5T1FJHvRWS1iKwUkVjv5cPdsGHDmDVrFkVFRQBs3ryZHTt2kJGRcWRkWIC4uDgmTpzIU089FcpwjTFhYGtWPv+Yu46LTmvGr3pUz4iygQhaj4mIRAAvAIOATGCxiMxUVc/2lJuBA6raSURGAE8Aw0UkEngLGKOqy0UkCSg+qYA+HQ+7Vp7UKo7Rogdc9niFxU2aNKFfv358+umnDBkyhGnTpnHttdeyevVq+vbte1Tdjh07cvjwYQ4ePAgcPWQ4wPfff1/pKLTGmJqvfETZyHr1+Es1jigbiGAeWfQDMlR1k6oWAdOAIV51hgDlI+jNAC4UZ+9cDKxQ1eUAqpqlqqVBjDVoPJuipk2bxsiRIwNazrsZyhKFMbXfjCWZfJuxj/GXdaVlw/D6nw/muVitgW0ezzOB/hXVUdUSEckGkoAugIrIHCAZmKaqT3pvQETGAeMA/zfaqeQIIJiGDBnC73//e5YuXUp+fj59+/Zl2bJlfP3110fV27RpE0lJSTRqFLqLbowxobM3p5DHZq2lX/smjOoXfjcOC9cO7khgADDa/TtURC70rqSqk1Q1VVVTk5NDf2qZLwkJCQwcOJCbbrrpyFHF6NGj+fbbb/niiy8A5256d999N4888kgoQzXGhNCEmas5XFzK36/uUe0jygYimMliO9DG43mKO89nHbefoiGQhXMU8rWq7lPVfGA20CeIsQbVyJEjWb58+ZFkUb9+fWbOnMlf//pXunTpQtOmTTnnnHMYPXr0kWXK77ld/liwYEGowjfGBNnc1buYtXIn91zYmY7JCaEOx6egDVHufvmvBy7ESQqLgVGqutqjzh1AD1W9ze3g/rWqXisijYH/wzmqKAI+A55R1VkVba8mD1H+0Ucfce+99zJv3jzataveG5pUt5rynhhTXQ4VFDPon1/ROC6aj+8aQFRE9Tb4BDpEedD6LNw+iDuBOUAE8LqqrhaRR4E0VZ0JvAZMFZEMYD8wwl32gIj8EyfBKDC7skRR01111VVcddVVoQ7DGBMCj3/6I3tzCnllbGq1J4rjEdTBRlR1Nk4Tkue8hzymC4BrKlj2LZzTZ40xplb6YVMW7yzcym/O7UDPlPA+uSV801gVqS13AqwN7L0w5mcFxaU88MFK2jaJ495Bp4Y6HL9qdbKIjY0lKyvLvqTCgKqSlZVFbGyNuxDfmKB47v828NO+PP42tAf1oyNCHY5ftXqI8pSUFDIzM9m7d2+oQzE4yTslJSXUYRgTcqt3ZPPvrzdxTd8UBnRuGupwAlKrk0VUVBQdOnQIdRjGGHNESWkZ499fSeO4aB78Vc0ZILRWJwtjjAk3r3/3Eyu3Z/Pi6D40jIsKdTgBq9V9FsYYE062ZOXxz8/XM6hbcy47vUWowzkuliyMMaYaqCoPfLCSqHr1+MuQ8BpRNhCWLIwxphq8vXArCzZm8cDlp9GiYc07K9CShTHGBNk3G/YyYeZqzu3clBFntvG/QBiyZGGMMUG0Zschbn9rKZ2aJfDC6D5hOaJsICxZGGNMkOw4eJgbJy8iISaSN248kwaxNefsJ2+WLIwxJgiyDxdzwxuLyC8sZfJNZ4bdne+Ol11nYYwxVaywpJTbpi7hp315TLmxH11bNAh1SCfNkoUxxlQhVeX+GSv4flMWzww/g190qhnDefhjzVDGGFOFnpqzjo/Sd3DfJacytHftGQvNkoUxxlSRt37YwovzNzKqf1t++8uOoQ6nSlmyMMaYKvDFmt089N9VXNi1GY8O7l7jrtD2x5KFMcacpOXbDnLXu8s4vXVDnh/Vm8gwvj3qiap9r8gYY6rR1qx8bp6ymKaJ0bx2/ZnERdfO84YsWRhjzAnan1fE9W8soqRMmXxjP5ITY0IdUtAENVmIyKUisk5EMkRkvI/yGBGZ7pYvFJH27vz2InJYRNLdx8vBjNMYY45XQXEpt0xZzPaDh3l1bCodkxNCHVJQBe14SUQigBeAQUAmsFhEZqrqGo9qNwMHVLWTiIwAngCGu2UbVbVXsOIzxpgTVVqm/G5aOsu2HeTFUX1Ibd8k1CEFXTCPLPoBGaq6SVWLgGnAEK86Q4Ap7vQM4EKpbacQGGNqncdmreGz1bt48FfduKxHy1CHUy2CmSxaA9s8nme683zWUdUSIBtIcss6iMgyEflKRM4NYpzGGBOwV7/ZxBvfbeamczpw84AOoQ6n2oRrt/1OoK2qZolIX+AjEemuqoc8K4nIOGAcQNu2bUMQpjGmLpm1YiePzVrL5T1a8OCvTgt1ONUqmEcW2wHPu3ykuPN81hGRSKAhkKWqhaqaBaCqS4CNQBfvDajqJFVNVdXU5OTkILwEY4xxLN68n9+/l05qu8b889peNfa+FCcqmMliMdBZRDqISDQwApjpVWcmcL07PQz4UlVVRJLdDnJE5BSgM7ApiLEaY0yFMvbkcsuUNFIa1+eVsanERkWEOqRqF7RmKFUtEZE7gTlABPC6qq4WkUeBNFWdCbwGTBWRDGA/TkIBOA94VESKgTLgNlXdH6xYjTGmIntyCrjhjUVERQhTbuxH4/joUIcUEqKqoY6hSqSmpmpaWlqowzDG1CJ5hSUMn/Q9G/fkMf3Ws+iZ0ijUIVU5EVmiqqn+6tkV3MYY40NJaRl3vrOUNTsO8cLo3rUyURyPcD0byhhjQkZV+fN/VzFv3V7+NrQHF3RtHuqQQs6OLIwxxssL8zJ4d9E27hjYkVH97bR8sGRhjDFH+Xj5Dv4xdz1De7fmfy4+NdThhA1LFsYY41q/O4f7319B33aNeeLqnrXuBkYnw5KFMcYAOQXF3DZ1CXHRkbw4ug/Rkfb16Mk6uI0xdZ6qct9/VrBlfz5v39Kf5g1iQx1S2LHUaYyp8yZ9vYnPVu9i/KVdOeuUJP8L1EGWLIwxddqCjft44rMfubxHC245t+6MInu8LFkYY+qsndmHueudZXRoGs+Tw86wDu1KWLIwxtRJRSVl/PbtpRQUl/LvMX1JiLEu3MrY3jHG1El/nbWGZVsP8sKoPnRqlhjqcMKeHVkYY+qcj5ZtZ8r3W7hlQAd+1bNu3Bb1ZFmyMMbUKWt3HmL8Byvo16EJ91/WNdTh1BiWLIwxdUb24WJuf2sJDWKjmDiqN1ER9hUYKOuzMMbUCWVlyh/eW07mgcO8O+4smiXahXfHw9KqMaZOeOmrjXyxdjd/uvw0zmzfJNTh1DiWLIwxtd63G/bx9Nx1XHlGK248p32ow6mRLFkYY2q17QcPc/e0ZXRMTuDxX/ewC+9OkCULY0ytVVhSym/fWkJRSRkvj+lLvF14d8Jszxljaq1HP17D8sxsXr6uLx2TE0IdTo0W1CMLEblURNaJSIaIjPdRHiMi093yhSLS3qu8rYjkisj/BDNOY0zt85+0bby9cCu3nn8Kl57eItTh1HhBSxYiEgG8AFwGdANGikg3r2o3AwdUtRPwDPCEV/k/gU+DFaMxpnZavSObBz9axdmnJHGf3Rq1SgTzyKIfkKGqm1S1CJgGDPGqMwSY4k7PAC4Ut/dJRK4CfgJWBzFGY0wtk51fzG1vLaFxXDTPj+pNpF14VyWCuRdbA9s8nme683zWUdUSIBtIEpEE4H7gkco2ICLjRCRNRNL27t1bZYEbY2qmsjLld9OXsSu7gBdG96FpQkyoQ6o1wjXlTgCeUdXcyiqp6iRVTVXV1OTk5OqJzBgTtibOy2Deur38+Ypu9G3XONTh1CrBPBtqO9DG43mKO89XnUwRiQQaAllAf2CYiDwJNALKRKRAVScGMV5jTA02f90envliPUN7t2bMWe1CHU6tE8xksRjoLCIdcJLCCGCUV52ZwPXA98Aw4EtVVeDc8goiMgHItURhjKnItv353DMtnVObJ/K3oXbhXTAELVmoaomI3AnMASKA11V1tYg8CqSp6kzgNWCqiGQA+3ESijHGBKyguJTb315CmSovX9eX+tERoQ6pVgooWYjIBzhf7J+qalmgK1fV2cBsr3kPeUwXANf4WceEQLdnjKl7Hv7valZtP8QrY1Np3zQ+1OHUWoF2cL+I04S0QUQeFxE7cdkYE3LTFm1leto27hjYkUHdmoc6nFotoGShql+o6migD7AZ+EJEFojIjSISFcwAjTHGlxWZB3lo5moGdGrKvYPs92uwBXzqrIgkATcAtwDLgH/hJI/PgxKZMcZUYH9eEbe/tZTkhBieG9mbiHrWoR1sgfZZfAicCkwFrlTVnW7RdBFJC1ZwxhjjrbRMufvdZezNLWTGbWfTJD461CHVCYGeDfWcqs7zVaCqqVUYjzHGVOrpuev4NmMfT1zdg54pjUIdTp0RaLJoLCK/9pqXDaxU1T1VHJMxxvg0Z/UuXpy/kRFntmH4mW1DHU6dEmiyuBk4Gyg/uvglsAToICKPqurUIMRmjDFHbNybyx/eW07PlIZMGNw91OHUOYEmiyjgNFXdDSAizYE3cYbl+BqnL8MYY4Iir7CE26YuITqyHi9d15fYKLvwrroFejZUSnmicO0B2qjqfqC46sMyxhiHqvLHGSvYuDeX50f2pnWj+qEOqU4K9Mhivoh8AvzHfX61Oy8eOBiUyIwxBnj1m5+YtXIn91/alXM6NQ11OHVWoMniDuDXwAD3+ZvA++6gfwODEZgxxny/MYvHP/uRS7u34LbzTwl1OHWa32Th3h71C1UdCLwf/JCMMQZ2Zh/mzneW0j4pjqeu6WkjyYaY3z4LVS3FuZ9Ew2qIxxhjKCwp5fa3llJQXMq/x/QlMdZGFQq1QJuhcoGVIvI5kFc+U1XvDkpUxpg67dGP15C+7SAvju5Dp2aJoQ7HEHiy+MB9GGNMUP0nbRtvL9zKreedwuU9WoY6HOMKKFmo6hQRqQ+0VdV1QY7JGFNHrdqezf9+tIqzT0nivktsJNlwEtB1FiJyJZAOfOY+7yUiM4MZmDGmbjnG+QgtAAAabklEQVSQV8StU5eQFB/N86N6ExkR8KDYphoE+m5MAPrhXlOhqumAncdmjKkSpWXK3dOWsTenkJeu60vThJhQh2S8BJosilU122tewLdXNcaYyjzz+Xq+2bCPCYO706uNjSQbjgLt4F4tIqOACBHpDNwNLAheWMaYuuLzNbuZOC+Da1NTGNmvTajDMRUI9MjiLqA7UAi8CxwCfhesoIwxdcNP+/K4d3o6PVo35NEhp9uFd2Es0Htw56vq/6rqmaqa6k4X+FtORC4VkXUikiEi432Ux4jIdLd8oYi0d+f3E5F097FcRIYe7wszxoS3/CJnJNnICOGl6/rYSLJhLtDbqnYB/gdo77mMql5QyTIRwAvAICATWCwiM1V1jUe1m4EDqtpJREYATwDDgVVAqqqWiEhLYLmIfKyqJcf16owxYUlVuf/9lazfk8ObN/UjpXFcqEMyfgTaZ/Ef4GXgVaA0wGX6ARmquglARKYBQwDPZDEE50wrgBnARBERVc33qBMLaIDbNMbUAK9/t5mPl+/gvktO5dzOyaEOxwQg0GRRoqovHee6WwPbPJ5n4twsyWcd9ygiG0gC9olIf+B1oB0wxtdRhYiMA8YBtG1rt1g0piZYuCmLv81ey6Buzbn9/I6hDscEKNAO7o9F5Lci0lJEmpQ/ghmYqi5U1e7AmcADIhLro84ktw8lNTnZfp0YE+52HyrgjneW0a5JHE9fewb16lmHdk0R6JHF9e7f+zzmKZVfmLcd8DwPLsWd56tOpohEAg2BLM8KqrpWRHKB04G0AOM1xoSZopIybn9rCflFJbzzm/40sJFka5RAx4bqcALrXgx0FpEOOElhBDDKq85MnET0PTAM+FJV1V1mm9s01Q7oCmw+gRiMMWHisVlrWLr1IBNH9aZLcxtJtqaptBlKRP7oMX2NV9nfKlvW7WO4E5gDrAXeU9XVIvKoiAx2q70GJIlIBnAvUH567QCcM6DSgQ+B36rqvsBfljEmnLy/JJM3v9/CLQM6cEXPVqEOx5wAce6MWkGhyFJV7eM97et5qKWmpmpamrVSGRNuPl6+g99PTye1fWPeurm/DRAYZkRkiaqm+qvn712TCqZ9PTfGmKPMWJLJPdOW0adtY14Zm2qJogbz12ehFUz7em6MMUdM/WELf/5oFQM6NWXS2L7ERQd6Po0JR/7evTNE5BDOUUR9dxr3+TGnshpjDMCr32zisVlruaBrM14cbUN51AaVJgtVtXfYGHNcJn65gX/MXc/lPVrw7PDeREda01NtYMeFxpgqoar8Y+46Xpi3kaG9W/PUsJ7WR1GLWLIwxpw0VeUvn6zl9e9+YmS/Nvz1qh52dXYtY8nCGHNSysqUB/+7incWbuWGX7Tn4Su72X0paiFLFsaYE1ZSWsYf31/BB0u3c9v5Hbn/0lMtUdRSliyMMSekuLSM301PZ9aKndw7qAt3XdDJEkUtZsnCGHPcCktKuePtZXyxdjd/urwr486zocZrO0sWxpjjcriolHFT0/hmwz4eHdKdsWe3D3VIphpYsjDGBCy3sISbJy9m0eb9PHl1T649s43/hUytYMnCGBOQ7MPF3PDGIlZkZvPs8F4M6dU61CGZamTJwhjj1/68Isa8tpD1u3N4YVRvLj29ZahDMtXMkoUxplJ7cgoY8+oiNmflMWlMKgO7Ngt1SCYELFkYYyq0M/swo19ZyM7sAt644Ux+0alpqEMyIWLJwhjj07b9+Yx85QcO5hcz9eZ+pLZvEuqQTAhZsjDGHGPT3lxGvbKQw8WlvH1Lf85o0yjUIZkQs2RhjDnKul05jH51IarKu785i26tGoQ6JBMGLFkYY45YkLGPO95ZSnRkPd6+5Sw6NUsMdUgmTAR1sHkRuVRE1olIhoiM91EeIyLT3fKFItLenT9IRJaIyEr37wXBjNOYum75toOMeW0ho15dSEJsJO/derYlCnOUoB1ZiEgE8AIwCMgEFovITFVd41HtZuCAqnYSkRHAE8BwYB9wparuEJHTgTmAXQFkTBVbvzuHp+euY87q3TSJj+bBX53GdWe1s9ugmmMEsxmqH5ChqpsARGQaMATwTBZDgAnu9AxgooiIqi7zqLMa5/7fMapaGMR4jakztmTl8ewXG/gofTsJ0ZHcO6gLNw3oQEKMtUwb34L5yWgNbPN4ngn0r6iOqpaISDaQhHNkUe5qYKklCmNO3q7sAp77cgPvLd5GZIRw63kdufW8U2gcHx3q0EyYC+ufESLSHadp6uIKyscB4wDatm1bjZEZU7Nk5Rby0vyNvPnDFlSV0f3bcsfATjRrEBvq0EwNEcxksR3wHJIyxZ3nq06miEQCDYEsABFJAT4ExqrqRl8bUNVJwCSA1NRUrdLojakFDhUU8+rXm3jt2584XFzK1X1SuPvCzrRpEhfq0EwNE8xksRjoLCIdcJLCCGCUV52ZwPXA98Aw4EtVVRFpBMwCxqvqd0GM0ZhaKb+ohCkLtvDyVxvJPlzMr3q05PeDutCpWUKoQzM1VNCShdsHcSfOmUwRwOuqulpEHgXSVHUm8BowVUQygP04CQXgTqAT8JCIPOTOu1hV9wQrXmNqg8KSUqYt2sbEeRnszSlk4KnJ/OHiUzm9dcNQh2ZqOFGtHa03qampmpaWFuowjAmJktIyPli2nX99sYHtBw/Tr0MT/njJqTaek/FLRJaoaqq/emHdwW2MqVxZmTJ71U7++fl6Nu3No2dKQ/7+6x6c27kpIhLq8EwtYsnCmBqouLSMr9fv5em561mz8xBdmifw8nV9uaR7c0sSJigsWRhTAxzML2LZ1oOkbdnPki0HWL4tm8PFpbRtEsczw89g8BmtiahnScIEjyULY8KMqvLTvjyWbDlw5LFhTy4AEfWE7q0aMPzMNvTr0IRB3ZoTFRHUId6MASxZGBNyBcWlrNyezZItB0jbfIClWw+wP68IgAaxkfRt15ghvVrRt10TzmjTkLho+7c11c8+dcZUsz05BSx1jxjSthxg1fZsikudsxJPaRrPBV2bkdquMX3bNaZjcgL1rHnJhAFLFsYESVmZkpVXxM7sw6zIzD7SpLR1fz4A0ZH1OCOlITcN6EBquyb0aduIpISYEEdtjG+WLIBvN+zjnE5JdhaJCUh5Eth9qIC9OYXsPlTA7kOF7Mlx/u4t/5tbSGnZz9cxNU2IIbVdY8ac1Y6+7RvTvVUDYiJtKHBTM9T5ZPHthn1c99pCzu3clL8N7WFj5tRh5UlgT04Bew45SWBPzs9/97hJYV9uISVlx17M2iQ+mmaJMTRrEEuX5ok0axBD8waxNEuMoVvLhrRpUt9+kJgaq85fwV1Wpry9aCuPz15LmcJ9l5zK9b9ob6ch1nBFJWUczC9if34R+/OKOJhf7P4t4kB+MQfynXmef7MPF+Pr36FxXBTNG8SSnOh8+TdvEEOzRPevmwySE2PsKMHUSIFewV3nk0W57QcP8+CHK5m3bi+92zbiyat70rm53VYyXBSXlrE/r4h9uYXsyy0iK9f5hZ+VW8Re9++BfPeRV0xuYUmF64qLjqBxXDSN4qKO+ts4Loom8dG0aBhLspsMLAmY2s6SxQlQVWYu38GEmavJLSzhzoGduf2XHYmOtPPYg8Wz/X/3oQJ2uU09u7ML2J1TwK5spwmo/FRSb9ER9WiaEE1SQgxN4qNpEu98+TeJi6ZxfLSTBOKdJFCeGOzL35ifWbI4CVm5hTzy8RpmLt/Bqc0TeWJYT3q1aVQl665rCopL2ZldwI6Dh9l+4DDbDzqPHe7fnQcLKCotO2oZEaczuHmDGFo0cH7lN0uMoWliDE3jo52/CTEkJUSTGBNp/QDGnARLFlXg/9bu5n8/XMWenAKuO6sdY85qZ01TXlSVvTmFbN2ff9Rjm/t396Gj74YrAs0TY2nVKJbWjeNo1SiWVg3r07xBLC0auk0/CTFE2lXJxlQLSxZV5FBBMU98+iPTFm+jtEw5vXUDft07hcG9WtG0jpwTX1Jaxo6DBWzOymPL/ny27Mtjc1Y+W/fnsXV/PgXFPx8ZiECLBrG0aRJH2yZxtGkcR0rj+rRqVJ+Uxk5SsGY9Y8KHJYsqtjenkI+X7+CDZZms2n6IiHrC+V2SGdq7NYO6NSc2qma3gx8uKmXr/ny2ZOUdOTrYkuU8zzxw+KhTRWOj6tGuSTxtk+Jon+QkhRQ3ObRuVL/G7wtj6hJLFkG0fncOHyzdzkfLtrPrUAGJMZFc3qMlF5zWjK4tEmnTOC7shmgoLi1jV3aB02fg9h1scY8OtmTlsyfn6OaixJhINxnE087jb7ukeJolxoTd6zPGnBhLFtWgtEz5YVMW7y/N5LNVu8gvKgWcUzO7NE/ktJaJnNo8ka4tG9C1RSKN4qKrPAZV5dDhEvblOaePlp9SuiO7gO0Hfu5I3n2oAO/ryFo0iKVtkzjaJsXRrvxvUjztmsTRKC7KOo6NqQMsWVSzw0Wl/LjrED/uymHdrpwj0wfzi4/UaZYYQ1JCDAkxEcTHRJLgPjynY6PqUVhS5vEopbDYY7qkjJyCErLcawuy8gqPDELnKbKe0LJRLK0b1ad1ozhaN4qldWNnulWjWFpZc5ExBrutarWrHx1B77aN6d228ZF5qsqenEJ+3JXDjzsPsWFPLtmHi8krLGF/XhFb9+eTW1BCXmEJee5RibeYyHrOIyriyHRCTCQtGsTSvVUDkhJiSIqPJjkxhqR453TSpHjnugO7Ct0YU1UsWQSRiLjDQ8RyfpfkSuuWlSl5RSUUFJcRE+UkheiIetYUZIwJC0E9h1FELhWRdSKSISLjfZTHiMh0t3yhiLR35yeJyDwRyRWRicGMMVzUqyckxkaRnBhDg1jnKmNLFMaYcBG0ZCEiEcALwGVAN2CkiHTzqnYzcEBVOwHPAE+48wuAPwP/E6z4jDHGBC6YRxb9gAxV3aSqRcA0YIhXnSHAFHd6BnChiIiq5qnqtzhJwxhjTIgFM1m0BrZ5PM905/mso6olQDaQFOgGRGSciKSJSNrevXtPMlxjjDEVqdHjLqjqJFVNVdXU5OTKO5CNMcacuGAmi+1AG4/nKe48n3VEJBJoCGQFMSZjjDEnIJjJYjHQWUQ6iEg0MAKY6VVnJnC9Oz0M+FJry1WCxhhTiwTtOgtVLRGRO4E5QATwuqquFpFHgTRVnQm8BkwVkQxgP05CAUBENgMNgGgRuQq4WFXXBCteY4wxFQvqRXmqOhuY7TXvIY/pAuCaCpZtH8zYjDHGBK5Gd3AbY4ypHpYsjDHG+GXJwhhjjF+WLIwxxvhlycIYY4xfliyMMcb4ZcnCGGOMX5YsjDHG+GXJwhhjjF+WLIwxxvhlycIYY4xfliyMMcb4ZcnCGGOMX5YsjDHG+GXJwhhjjF+WLIwxxvhlycIYY4xfliyMMcb4ZcnCGGOMX5YsjDHG+GXJwhhjjF9BTRYicqmIrBORDBEZ76M8RkSmu+ULRaS9R9kD7vx1InJJMOM0xhhTuchgrVhEIoAXgEFAJrBYRGaq6hqPajcDB1S1k4iMAJ4AhotIN2AE0B1oBXwhIl1UtTRY8RpjqpEqlBRCcb7zKMqvYDoPig97Tee5ddz5KEgE1Ivw+FvP6/lxzq8X6TwioiEiynnUi3Kfu/PrRf1c5vN5+fIey0g9KCsFLXX/lh39vKzEnS7zqOP5t4L58c2gZc+gvmVBSxZAPyBDVTcBiMg0YAjgmSyGABPc6RnARBERd/40VS0EfhKRDHd931d5lLtXw4ybqny1xhyhGuoIwoBCaZHHl3ye80V5PCKiIao+RMVDdJw7HQdIYF+oPueXHVvveOMKB91/Dde8EdRNBDNZtAa2eTzPBPpXVEdVS0QkG0hy5//gtWxr7w2IyDhgHEDbtm1PLMrIWEg+9cSWNSZgEuoAQi8i2v2Sdx9HTcf//OXvczre+XVeHVTdX/nFUOo+yoqdZHfM8xLnr2fd0iLnCKG06Ng6ZaWVHNlEnvjRUXzToO+Watr7waGqk4BJAKmpqSf28y2pI1z7ZlWGZYypyUTcZqNIJ1EZILgd3NuBNh7PU9x5PuuISCTQEMgKcFljjDHVJJjJYjHQWUQ6iEg0Tof1TK86M4Hr3elhwJeqqu78Ee7ZUh2AzsCiIMZqjDGmEkFrhnL7IO4E5gARwOuqulpEHgXSVHUm8Bow1e3A3o+TUHDrvYfTGV4C3GFnQhljTOiI1pIzNVJTUzUtLS3UYRhjTI0iIktUNdVfPbuC2xhjjF+WLIwxxvhlycIYY4xfliyMMcb4VWs6uEVkL7DlJFbRFNhXReEEW02KFWpWvBZr8NSkeGtSrHBy8bZT1WR/lWpNsjhZIpIWyBkB4aAmxQo1K16LNXhqUrw1KVaonnitGcoYY4xfliyMMcb4ZcniZ5NCHcBxqEmxQs2K12INnpoUb02KFaohXuuzMMYY45cdWRhjjPHLkoUxxhi/6lSyEJHXRWSPiKyqoFxE5DkRyRCRFSLSp7pj9IjFX6y/FJFsEUl3Hw9Vd4wesbQRkXkiskZEVovIPT7qhNO+DSTesNi/IhIrIotEZLkb6yM+6sSIyHR33y4UkfbVH+mRWAKJ9wYR2euxb28JRawe8USIyDIR+cRHWdjsWzeeymIN7n5V1TrzAM4D+gCrKii/HPgU5x6YZwELwzjWXwKfhHqfurG0BPq404nAeqBbGO/bQOINi/3r7q8EdzoKWAic5VXnt8DL7vQIYHqYx3sDMDHU+9YjnnuBd3y93+G0bwOINaj7tU4dWajq1zj3zajIEOBNdfwANBKRltUT3dECiDVsqOpOVV3qTucAazn2nunhtG8DiTcsuPsr130a5T68z0oZAkxxp2cAF4pISG76HWC8YUNEUoBfAa9WUCVs9m0AsQZVnUoWAWgNbPN4nkmYfom4znYP9z8Vke6hDgbAPUzvjfOL0lNY7ttK4oUw2b9u00M6sAf4XFUr3LeqWgJkA0nVG+XPAogX4Gq3OXKGiLTxUV5dngX+CJRVUB5O+9ZfrBDE/WrJouZaijOmyxnA88BHIY4HEUkA3gd+p6qHQh2PP37iDZv9q6qlqtoL5170/UTk9FDFEogA4v0YaK+qPYHP+fmXe7USkSuAPaq6JBTbPx4BxhrU/WrJ4mjbAc9snOLOCzuqeqj8cF9VZwNRItI0VPGISBTOF+/bqvqBjyphtW/9xRtu+9eN4yAwD7jUq+jIvhWRSKAhkFW90R2ronhVNUtVC92nrwJ9qzs21znAYBHZDEwDLhCRt7zqhMu+9RtrsPerJYujzQTGumfunAVkq+rOUAfli4i0KG87FZF+OO9lSL4g3DheA9aq6j8rqBY2+zaQeMNl/4pIsog0cqfrA4OAH72qzQSud6eHAV+q2+NZ3QKJ16uvajBOn1G1U9UHVDVFVdvjdF5/qarXeVULi30bSKzB3q+RVbmycCci7+Kc5dJURDKBh3E64FDVl4HZOGftZAD5wI2hiTSgWIcBt4tICXAYGBGqLwicXz1jgJVuWzXAn4C2EH77lsDiDZf92xKYIiIROAnrPVX9REQeBdJUdSZO4psqIhk4J0WMCEGc5QKJ924RGQyU4MR7Q8ii9SGM9+0xqnO/2nAfxhhj/LJmKGOMMX5ZsjDGGOOXJQtjjDF+WbIwxhjjlyULY4wxflmyMGFLRHIDqPM7EYmrwm1eJSLdqnB9C05i2Vz3bysRmVFJvUYi8tsT3Y4xgbBkYWq63wHHlSzcawAqchVQZclCVX9RBevYoarDKqnSCGd0VGOCxpKFCXvi3Ftivjs42o8i8rZ7JfjdQCtgnojMc+teLCLfi8hSEfmPO/4TIrJZRJ4QkaXANSLyGxFZ7A4U+L6IxInIL3CufH1KnPsBdBSRXiLygzs424ci0thd33wReUZE0kRkrYicKSIfiMgGEXnMI/Zcj+n7RWSlu83HfbzODm7sK73W0V7c+5qISHdx7heR7sbUGXgc6OjOe0pEEkTk/9x9sFJEhnisZ62IvCLOvSbmuldZIyKdROQLN7alItLRnX+fu59WiI97U5g6JFhjn9vDHif7AHLdv7/EGe0zBecHzvfAALdsM9DUnW4KfA3Eu8/vBx7yqPdHj3UneUw/BtzlTk8GhnmUrQDOd6cfBZ51p+cDT7jT9wA7cK5ejsEZUTfJ6zVcBiwA4tznTXy83pnAWHf6Do9l2+Pe1wRnUMPR7nQ0UN+z3J0fCTTw2CcZOPeZaI9zdW8vt+w94Dp3eiEw1J2OxTlauxiY5C5bD/gEOC/Unwt7hOZRp4b7MDXaIlXNBHCH6GgPfOtV5yycJqTv3GGdonESS7npHtOnu7/eGwEJwBzvDYpIQ6CRqn7lzpoC/Mejykz370pgtbpjXYnIJpzB5zzHkroIeENV8wFU1de9Ss4BrnanpwJP+KjzPfC/4tzb4ANV3SDH3l5BgL+JyHk4w1m3Bpq7ZT+pavkQJ0uA9iKSCLRW1Q/d2Arc13ExTsJY5tZPADrjJGRTx1iyMDVFocd0Kb4/u4Jz/4SRFawjz2N6MnCVqi4XkRtwjl5ONKYyr/jKKogvEJWOv6Oq74jIQpyb4MwWkVuBTV7VRgPJQF9VLRZnpNJYr5jB2Y/1K9mcAH9X1X8fR/ymlrI+C1PT5eDcGhXgB+AcEekEICLxItKlguUSgZ3iDFU+2tf6VDUbOCAi57plY4CvODGfAzeWn7klIk181PmOnweqG+2jHBE5Bdikqs8B/wV6cvQ+AGcY7T1uohgItKssMHXuFpgpIle524hx45wD3OTR79NaRJoF9GpNrWPJwtR0k4DPRGSequ7FGWnzXRFZgdNk07WC5f6M007/HUcPoT0NuE9ElrmdvNfjdHivAHrh9FscN1X9DKfZKs1tRvsfH9XuAe4QkZVUfBfBa4FV7jpOx7lVbRZO09sqEXkKeBtIddczlmOHNPdlDM6opStw+lZaqOpcnPs9f++uawZHJyVTh9ios8YYY/yyIwtjjDF+WbIwxhjjlyULY4wxflmyMMYY45clC2OMMX5ZsjDGGOOXJQtjjDF+/T+DCJZLh70nxwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", @@ -180,30 +116,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4VGX6//H3nR5CIBBCDb33EEIXkCKCuoIuCoir4K6sHcW+RRe/uj9XXcS1rIoFu6CiIoogCiqd0HsRkN4hBJKQMvfvjxnYCEkYQiZnJnO/rutcmXLKZw56z5nnnPM8oqoYY4wp+0KcDmCMMaZ0WME3xpggYQXfGGOChBV8Y4wJElbwjTEmSFjBN8aYIGEF35Q5IjJcRGaWwHrqiYiKSFhJ5DLGaVbwTbGJyHYROSAiMfle+5OIzPFy+X+IyPsFvK4i0qiQZSaKSLaIpHumNSLy/0Sk4ul5VPUDVe1XjI9UYjyfTUVk9Fmvj/a8/g+HohVIRC4VkV1O5zC+ZQXfXKxQYPR55ypZz6hqLJAAjAQ6A/Pyf/H4iU3ATWe9drPndWNKnRV8c7GeBR4QkbiC3hSRF0Rkp4gcF5GlItK9pDasqlmqugS4GojHXfwRkREiMjdfBhWRe0Rkq4gcEpFnRSTE816IiPxNRH71/Fp5N/+vhbM+S0UReVNE9orIbhF5UkRCi4i4BCgnIi09y7cEojyv51/vrSKyRUSOiMhUEal5VvY7RGSz5xfN/4lIQxGZ79mnk0UkIt/8V4nIChE55pmnTb73tovIAyKySkTSRGSSiER5viinAzVF5IRnqokpc6zgm4uVCswBHijk/SVAElAZ+BD4RESiSjKAqqYD3wFFfZlcA6QAycBA4BbP6yM8Uy+gAVAeeKmQdUwEcoFGQDugH/Cn88R7j/8d5d/seX6GiPQG/h9wPVAD+BX4+Kx1XA60x/1L5iHgdeBGoDbQChjmWVc74C3gz7i/AF8DpopIZL51XQ/0B+oDbYARqnoSGADsUdXynmnPeT6XCUBW8E1JeAy4W0QSzn5DVd9X1cOqmquq/wYigab5ZrneczR6Zipmhj24v1QK8y9VPaKqO4DxeIokMBwYp6pbVfUE8Cgw9OwTtSJSDbgCuFdVT6rqAeB5YOh5cr0PDBORcM+8Z5+zGA68parLVPWUZ/tdRKRevnmeUdXjqroWWAPM9ORNw31k3s4z3yjgNVVdpKp5qvoOcAr3F8Vp/1HVPap6BPgK95exCRJW8M1FU9U1wDTgkbPf8zQhrPc0IRwDKgJV8s0yWVXj8k/FjFELOFLE+zvzPf4VON1kUdPzPP97YUC1s5avC4QDe/N9Mb0GVC0qlOcLZgvwT2Czqu48a5bfbN/zpXPY83lO25/vcWYBz8vny3j/WV+etfN9VoB9+R5n5FvWBAEr+KakPA7cSr5C5Wmvfwh3M0IlTzFPA6QkNywi5YG+wM9FzFY73+M6uH8R4Plb96z3cvltUQX3F8YpoEq+L6cKqtrSi4jvAvd7/p7tN9v3tKfHA7u9WO/ZdgJPnfUFWk5VP/JiWes2NwhYwTclQlW3AJOAe/K9HIu7eB4EwkTkMaBCSW1TRCJFpD3wBXAUeLuI2R8UkUoiUhv3VUWTPK9/BNwnIvU9Xxz/BCapam7+hVV1LzAT+LeIVPCc7G0oIj29iDoJd3v/5ALe+wgYKSJJnrb2fwKLVHW7F+s92wTgNhHpJG4xInKliMR6sex+IL6wE9ambLCCb0rSE0D+SyNnAN/ivgzxVyCL3zatFNdDIpKOu+njXWAp0NVz8rEwX3rmWwF8Dbzpef0t3CdSfwK2eTLeXcg6bgIigHW4v2A+xX2itUiqmqmqs1Q1s4D3ZgF/Bz4D9gINOf95gcK2k4r7V9ZLnnxbcJ+Q9mbZDbi/fLZ6moPsKp0ySGwAFFPWiYgCjT2/QowJWnaEb4wxQcIKvjHGBAlr0jHGmCBhR/jGGBMk/Krb1ypVqmi9evWcjmGMMQFj6dKlh1T1nLvcC+JXBb9evXqkpqY6HcMYYwKGiPx6/rncfNqkIyL3ichaT5/lH5V0p1nGGGO857OCLyK1cN91maKqrXD3m16sG0qMMcZcPF+ftA0Doj09D5bjf/2XGGOMKWU+a8NX1d0i8hywA3ePfjNV9ZxxRkVkFO5uXalTp46v4hhT5uXk5LBr1y6ysrKcjmJ8ICoqisTERMLDw4u9Dp8VfBGphHugifrAMdwDX9yoqr/pD1xVX8c9oAMpKSl2U4AxxbRr1y5iY2OpV68eIiXaIalxmKpy+PBhdu3aRf369Yu9Hl826fQFtqnqQVXNAaYAXX24PWOCWlZWFvHx8VbsyyARIT4+/qJ/vfmy4O8AOotIOXH/F9gHWO/D7RkT9KzYl10l8W/ryzb8RSLyKbAMd5/oy/E03RgTELKOc2zbMg7/spTytZpTrd0VTicy5qL49MYrVX0c90hIxvg1Td/HgU1LOLY1FfauIu74Bqrl7iEOiANIhY2LB9L4phcJibYxQgoTGhpK69atzzwfOnQojzxyzsiXxbJixQr27NnDFVe4v3gnTpzIgw8+SK1a/xsN8sMPPyQuLo577rmHTz/9tES2Wxzbt2/nqquuYs2aNY5lKIhf3WlrjM+pkn1wK/s3LebE9qWEHVhDlRMbqOQ6SjXcA9n+qlXZFNGIpQlXEFKzDZXqJ3Fw9msM2PMhh59bSOjvX6Nyi15OfxK/FB0dzYoVK3yy7hUrVpCamnqm4AMMGTKEl1566Zx5nSz2JSk3N5ewsJIr09Z5mim78nLI2LmSrbMmsO6t29n6TA9OPlGTiFeSqT3rNhpvfhNX2m5WRCTzTc17+L7TW6y5aTXV/raB7n+dzhV3/pv+19xMp6S2XHnvy8zq8g4ZuRA3+Rq2fTQGck85/QkDQlpaGk2bNmXjxo0ADBs2jAkTJgBw++23k5KSQsuWLXn88f81BixZsoSuXbvStm1bOnbsSFpaGo899hiTJk0iKSmJSZMmFbgtcB9dt2rVCoCMjAyuv/56WrRowTXXXEOnTp3OdN8yc+ZMunTpQnJyMtdddx0nTpwA3F28PP744yQnJ9O6dWs2bNgAwI8//khSUhJJSUm0a9eO9PR0VJUHH3yQVq1a0bp16wJzde7cmbVr1555fumll5KamsrJkye55ZZb6NixI+3atePLL78E3L9crr76anr37k2fPn2Kvd8LYkf4pszIOrqHX+dNInfXCsofXUeNU9soRw4NgAyNZIvUZWtMb3KqtqZc3WRqN02mUbV4moac/2SYiHB5/4H80rozM969hwEb32Tvc7OJu3Ei0Yltff/hLtDYr9aybs/xEl1ni5oVePx3RY/ZnpmZSVJS0pnnjz766Jmj8BEjRjB69GiOHj3KrbfeCsBTTz1F5cqVycvLo0+fPqxatYpmzZoxZMgQJk2aRIcOHTh+/DjlypXjiSeeIDU19cwR/cSJE5k0aRJz5849s70FCxb8Js8rr7xCpUqVWLduHWvWrDmT7dChQzz55JPMmjWLmJgY/vWvfzFu3Dgee+wxAKpUqcKyZct45ZVXeO6553jjjTd47rnnePnll+nWrRsnTpwgKiqKKVOmsGLFClauXMmhQ4fo0KEDPXr0+E2GIUOGMHnyZMaOHcvevXvZu3cvKSkp/OUvf6F379689dZbHDt2jI4dO9K3b18Ali1bxqpVq6hcuXJx/qkKZQXfBLzczHTWTfknjTa/RVOyOKLl+SW0IZvirsFVrQ0VGyRTv2kSrSuWu+grHRrWqkbtBz/ik0/epueGJwh7ozd7OzxAjQEPQUhoCX2iwFVYk85ll13GJ598wp133snKlSvPvD558mRef/11cnNz2bt3L+vWrUNEqFGjBh06dACgQoXCx70vrEnntLlz5zJ69GgAWrVqRZs2bQBYuHAh69ato1u3bgBkZ2fTpUuXM8tde+21ALRv354pU6YA0K1bN8aMGcPw4cO59tprSUxMZO7cuQwbNozQ0FCqVatGz549WbJkyZntAFx//fX069ePsWPHMnnyZAYPHgy4f2FMnTqV5557DnBfVrtjx44z+6ukiz1YwTcBTPNyWfPNf6mx7N+00aPMi7yEsD5/pXnrFDpER/hsuxFhIVw37I8sWduDNZ/dRe8lT7Nn47dUu3kiofHFvymmJJ3vSLy0uVwu1q9fT7ly5Th69CiJiYls27aN5557jiVLllCpUiVGjBhRancJqyqXXXYZH330UYHvR0ZGAu6T0Lm5uQA88sgjXHnllXzzzTd069aNGTNmeLWtWrVqER8fz6pVq5g0aRKvvvrqmQyfffYZTZs2/c38ixYtIiYmprgfrUjWhm8C0vqfP2fHP5NpvfRv7A+pxqJeH9H1kWl06tiVCj4s9vl1aNmY9vd/xTvVH6V82kayX+rCkZ/fABtF7hzPP/88zZs358MPP2TkyJHk5ORw/PhxYmJiqFixIvv372f69OkANG3alL1797JkyRIA0tPTyc3NJTY2lvT09Avabrdu3Zg8eTIA69atY/Xq1YC7XX3evHls2eIe1/7kyZNs2rSpyHX98ssvtG7dmocffpgOHTqwYcMGunfvzqRJk8jLy+PgwYP89NNPdOzY8ZxlhwwZwjPPPENaWtqZo//LL7+cF198kdOjDi5fvvyCPltx2BG+CShb1ywkY9qjtMpaxk6qMy/533S6YiRhYc40p1SMieCmPz/M9Lm9iZ91L52+v5+9a6dR48YJUN6rMSnKlLPb8Pv378/IkSN54403WLx4MbGxsfTo0YMnn3ySsWPH0q5dO5o1a0bt2rXPNK9EREQwadIk7r77bjIzM4mOjmbWrFn06tWLp59+mqSkJB599FGAc9rwX3nlFWrWrHnm+R133MHNN99MixYtaNasGS1btqRixYokJCQwceJEhg0bxqlT7pPvTz75JE2aNCn0s40fP57Zs2cTEhJCy5YtGTBgABERESxYsIC2bdsiIjzzzDNUr16d7du3/2bZwYMHM3r0aP7+97+fee3vf/879957L23atMHlclG/fn2mTZtW/J3vBb8a0zYlJUVtABRTkIP7d7H1wwfocOxbjksMaxvdRvvBDxAVFe10tDN2HDrBrIn/YHj6RLLDYggd+B/KtRlYattfv349zZs3L7XtBYK8vDxycnKIioril19+oW/fvmzcuJGIiNL5FVjSCvo3FpGlqprizfJ2hG/8mrpcLPn6DRotfYJ2msGSmjfQ7LqxdKvsf0fPdaqU56b7nuHDaX1IXvoIrabcxMFV15EweBxEFX7i0fhORkYGvXr1IicnB1XllVdeCdhiXxKs4Bu/tX/3dna/fzsdM+ezOawJJwa/Sqdm7Z2OVaSw0BBuGjiAZa2TeffDvzJ886ekPT+XmCETCGvQ3el4QSc2NtaGTc3HTtoav6MuF4um/Ifo17vSImMJixvfR4NH5lPHz4t9fskNqnHtg6/ySoOXOZLpIuTd35H25SN2s5ZxlBV841f2/LqJ1f+6jE6r/s7uyPocvmk2HYf/g9Cw4g/64JTykWHcffNwNg76hk/pS8Xl/+XYC93QfaudjmaClBV84xdceXksnPwMFd/qTqOs1Sxu/heaPvwTtRq2Pv/Cfq5/ciMuufc9nq78BNnHD5L36qVk/PAcuPKcjmaCjBV847gDu7ez7l+96bzuKbZFNSftlp/pOORhQkLLzp2rNeOiefCue/jmks/4ztWecj/9H2n/7Qfp+5yOZoKIFXzjqJU/fEL4hEtocGo9S1r/g5YP/0CNuk3Pv2AACg0RRlyWQu1Rk/ln1H1EHFjFzskPOB2rxPTq1eucu0/Hjx/P7bffztq1a+nduzdNmzalYcOGPP7447hcLsDdJ05CQsKZjsmSkpJYt26dEx+hzLOCbxyRk53FwlfvoO1Pf+JoSDyHhs+kw+/vQ0LK/n+SrRLjuG/M35keNYCaO7/GdXSH05FKxLBhw/j4449/89rHH3/M0KFDufrqq3nkkUfYuHEjq1evZvHixbzwwgtn5hsyZAgrVqw4M7Vo0aK04weFsv9/l/E7e7ZtYNsz3em87wMWxQ+i5gPzqNMk6fwLliHREaGU73k3qrBz+r+djlMiBg8ezNdff012djbg7qZ4z549bNmyhW7dutGvXz8AypUrx0svvcSzzz7rZNyg5LPr8EWkKZC/c+gGwGOqOt5X2zT+b/m3b9Nw4V+IVWVZ5/F0GjDS6UiO6d2pPbNmdefSzR9D5j8gulLJrXz6I1DSVwNVbw0Dni707cqVK9OxY0emT5/OwIED+fjjj7n++utZu3Yt7dv/9pLahg0bkpmZybFjx4Bzu0hYsGAB0dH+cxd1WeGzI3xV3aiqSaqaBLQHMoDPfbU949+yMk+y+KURtFt4L/vCEjl+8xySg7jYg/smrawOdxClWeye9bLTcUpE/madjz/+mGHDhnm13NlNOlbsfaO07rTtA/yiqr+W0vaMH9m1eSXZH99Ex7ztLKg2jPa3jCciMsrpWH7hst59mbeoLa1WvAH9H4DwEtovRRyJ+9LAgQO57777WLZsGRkZGbRv357ly5fz008//Wa+rVu3Eh8fT1xcnCM5g1VpteEPBQrseFpERolIqoikHjx4sJTimNKy6vuPiPvgcirlHWb5Ja/R5fZXrdjnExMZxs7mt1Ix7yiH5r/rdJyLVr58eXr16sUtt9xy5uh++PDhzJ07l1mzZgHuHjXvuecexo4d62TUoOTzgi8iEcDVwCcFva+qr6tqiqqmJCT4X4dYpnjUlcfCtx+mzc+3sS+0Jpkjf6Bd36FOx/JLvfsPZo3WR+e/CJ5LFQPZsGHDWLly5ZmCHx0dzdSpU3nqqado0qQJVapUoVu3bgwfPvzMMqfHqj09zZ8/36n4ZZrPu0cWkYHAnara73zzWvfIZcOJ40fZ/NqNtDs5lyUVLqPVnycSHVPe6Vh+7cM3xnHDrrEcH/QOFZIGFWsdgdI98hdffMGYMWOYPXs2devWdTpOQLnY7pFLo0lnGIU055iyZ+eWNRwa353WJ+azsPH9pNw72Yq9FzpeNZKdrgROfF82LtEsyqBBg9i6dasVewf4tOCLSAxwGTDFl9sx/mHl7E+p+H4/4lxH2dh3Ip2HPxYUN1KVhEbVK/FTleupmb6KU7/MczqOKaN8+n+jqp5U1XhVTfPldoyz1OViwTt/pfWcP3EwtCoZN39Py+6lN9JTWdHk8ts5quU5MKP4NyT50wh2pmSVxL+tHX6Zi3IyPY2l466hy7aXWFHhUmre9xM16zdzOlZASmmSyMyY31HrwBzyDmy84OWjoqI4fPiwFf0ySFU5fPgwUVEXd4WbjXhlim3vzl84MfE62uVuZVHje+l4w+PWhHMRRIT4XneRPe1TDn7zLLVHvHFByycmJrJr1y7s8uayKSoqisTExItahxV8Uywbls4h/qsR1NAs1l36Op16Xe90pDKhV/uWfDWjD1du/xxNfxKJre71suHh4dSvX9+H6Uygs8Mxc8GWfP0G9aYOJlfCOTL0K1pbsS8xoSGCdr6TUM1j78wXzr+AMRfACr7xmivPxfw3H6DDkvvZFtGE6Dt+pE7zDk7HKnP69+jGD9KRimvfhVPpTscxZYgVfOOVjJPpLHv+WrrunEBqXH8a3v89cQk1nY5VJkVHhHKgzW3EuE5w8KcJTscxZYgVfHNeB3b/yq5xvUhOn8PiRqNpf89HRERZb4a+1K/flSzW5oQv/i/k5Tgdx5QRVvBNkTatmItO6EVi7g7WdH+Jjjc+YVfilIIq5SNZ32AkcTkHSEuddP4FjPGC/Z9rCrVs5vskfn4tiHDguqm06Xuj05GCSo8rbmCTqxanfnwe7Np6UwKs4JtzqMvFgvfHkjTvLnaH1yXsttnUa9XZ6VhBp35CLPOr3UDVjC1kbfjO6TimDLCCb34jNyebRS+PpMuWcayM7U7tMT8QX62O07GCVpsBt7JPK3Hku+ecjmLKACv45oz0tCOs+/cAOh/+goU1/kDb+74gqlys07GCWnKDasyMvZaaRxaRu2u503FMgLOCbwDYv2MTh164lOaZy1nc6nE6//klQkJDnY5lgFp9byddo9n/7TNORzEBzgq+Ycvynwh76zLi8w6yoc9bdBw8xulIJp9ebRrxdUR/qu/6Fj2yzek4JoBZwQ9yK2e+S60vfs8pieDI0Gm07lG80ZaM74SECJGX3EmeCvtmjHM6jglgVvCDlSqL33+ctvPv5tfwBoTf9gP1mrd3OpUpxICuyXwb0oPKmyZDxhGn45gA5esRr+JE5FMR2SAi60Wkiy+3Z7yTl5vDkpdH0nHLeFJjelL3vu9JqFbb6VimCFHhoRxvdxuRmsWh2S87HccEKF8f4b8AfKuqzYC2wHofb8+cR+aJNNaOu5IOhz5nXrUbaTfmcxtzNkBc2ac3czSZqGVvQE6m03FMAPJZwReRikAP4E0AVc1W1WO+2p45v8P7d7B7fG9anlzM/GZ/odvtLxNqV+IEjEoxEWxtfAvl846RtuBdp+OYAOTLI/z6wEHgbRFZLiJveAY1/w0RGSUiqSKSaiP1+M6OjcvIfrU3NXJ2sqL7q3Qd+rDTkUwx9O1/LStcDXHN+w+48pyOYwKMLwt+GJAM/FdV2wEngUfOnklVX1fVFFVNSUhI8GGc4LV+/tdU+uhKwjWHXYM+o33foU5HMsVUp0oMqTX/QKVTu8hc/aXTcUyA8WXB3wXsUtVFnuef4v4CMKVo2Vev0nDGHzgcEs+pm2fStF13pyOZi9RhwE1sd1Uj/ft/W6dq5oL4rOCr6j5gp4g09bzUB1jnq+2Z31KXi0UTHyV56cNsimxFpbtmU6t+0/MvaPxe27rxzIq7jqrH15C7ba7TcUwA8fVVOncDH4jIKiAJ+KePt2eA3OxTpL50E522v8LiCv1oNGYGFStbc1lZ0qjfKA5pBQ7NeNbpKCaAhPly5aq6Akjx5TbMb2WcOMaWl6+jQ+Zi5tUcSZc/jiMk1O6vK2t6tKjDu1FXMWL/h+j+dUi1Fk5HMgHAKkEZcmjfDvY835sWGaksaPkY3UaNt2JfRoWECHE97iBDI9k/w7pONt6xalBG7Ni0guzX+lAzdxere7xKl+vudzqS8bEBnVowLbQ3VbZ+Ccf3OB3HBAAr+GXAhkUzqPjhFUTqKXYN/JR2fYY4HcmUgsiwUE51uB3RPA7NesHpOCYAWMEPcMumv039b4aTJnFk3TSTJsk9nI5kStHVPbsyg87ErHkPstKcjmP8nBX8ALbwgydIWngfWyMaU+HOH6jVoJnTkUwpq1gunN3NRxHtOkna3AlOxzF+zquCLyJ1RaSv53G0iNi4dw7Ky8tj4Suj6Lz536wo3536931HXJXqTscyDhlweX/mu1oii/4LudlOxzF+7LwFX0RuxX2X7GuelxKBL3wZyhQuK+MEK8cNovOBSSysej1JY74gqpz1dhnMEiuVY2Wdm6mQc4iMZR87Hcf4MW+O8O8EugHHAVR1M1DVl6FMwdIO72Pb85eRdOJnFja+n853TLBxZw0A3fsPYb2rDllzngeXy+k4xk95U/BPqeqZ34kiEgZYBx6lbM+2DaS93JsG2ZtZ3ul5Og9/zOlIxo+0SoxjdvxQKmdsJWfjDKfjGD/lTcH/UUT+AkSLyGXAJ8BXvo1l8tuy4ici37mciq5j/DLgA9pfMdLpSMYPtbp8JLs1nmPf2Y1YpmDeFPxHcPdrvxr4M/AN8DdfhjL/s3r2J9T8fDDZhHN06Ne06Hy505GMn+retAZfRw8i4Ugqunel03GMH/Km4F8JvKmq16nqYFWdoGp9spaG1M+ep/mcUewOSyTszz9Qr1k7pyMZPyYiVO8xklwNYc98O3lrzuVNwR8CbBaRZ0TELvQuBepysfjNMaSs/gdro5OpPvp7EmrUcTqWCQB92jdniTYnctM06yvfnOO8BV9VbwTaAb8AE0VkgWdYQrsW3wdys0+x7MUb6LjzTRbGXUnz+74htkIlp2OZABETGcbWhD5UObUD1/71TscxfsarG69U9Tjua/E/BmoA1wDLRORuH2YLOpkn0lj//JW0PzqduYm30ume94mIjHQ6lgkwldpfi0uF/Ys/cTqK8TPe3Hh1tYh8DswBwoGOqjoAaAtYl4wl5NjBPewa39fTtfHjXPKn55AQ6/nCXLhuSa1Ypk0I2TDV6SjGz3gzAMrvgedV9af8L6pqhoj8sagFRWQ7kA7kAbmqaoOhFGDv9g3kvXMNtV0HWdH1ZbpcPtzpSCaAVSwXzsbKvUg59ip6+BckvqHTkYyf8KYN/2Zgk+dI/3ciUj3fe997sY1eqppkxb5g29bMJ3zi5cRqGr8M+JD2VuxNCYhJuhaAg9asY/Lxpknnj8Bi4FpgMLBQRG7xdbBgsG7eVyR8ei25hHF4yFe07NzP6UimjOjWPomVrga41n7pdBTjR7xpJH4IaKeqIzxH++2Bh71cvwIzRWSpiIwqbsiyaPk3b9Jo5s0cDKkKf/qOBs3bOx3JlCEJsZGsqXgp1U+sg2M7nI5j/IQ3Bf8w7nb409I9r3njElVNBgYAd4rIOaNzeC7xTBWR1IMHD3q52sC26KOnaLvofjZHNKfyXd9TPbGB05FMGRTRehAAh5d86nAS4y8KLfgiMkZExgBbgEUi8g8ReRxYCGzyZuWqutvz9wDwOdCxgHleV9UUVU1JSEgozmcIGOpysXDCaDptfIblMZfQcMxMKlYu25/ZOKdbx46sd9Uhe7U16xi3oo7wYz3TL7j7vz99296XwLbzrVhEYk7fnCUiMUA/YM1FpQ1gebm5LHnpZjrvnsiiygNpe9/nREXHOB3LlGE146JZXr471Y6vhPR9TscxfqDQyzJVdWz+5yJSTlUzLmDd1YDPReT0dj5U1W+LlTLAZWdlsualIXQ88SPza42kyx/H2TX2plSEtBxEyJIPOLZsCnE973A6jnGYN1fpdBGRdcAGz/O2IvLK+ZZT1a2q2tYztVTVp0ogb8A5mX6Mjc9fQfKJH1nQaAxdbx1vxd6Umo4duvCLqwYZKz53OorxA95UnvHA5XhO1KrqSuCck6/mXGmH97PrhctpnrWCxW2fpMsQ5V8CAAAeuElEQVSNjzsdyQSZBlVjWRx9CdWOpsJJb6+1MGWVt33p7DzrpTwfZClTDuzeztGX+1Iv5xdWdXuRjtdYt0PGGa5mVxOKi/SVdvI22HlT8HeKSFdARSRcRB4ArBu+IuzcsobcNy6jSt5BNvd7m+R+NzodyQSx5E492elKIH35Z05HMQ7zpuDfhnsg81rAbiDJ89wUYMvqBUS/fyXRmsXeaz6hVbffOR3JBLlmNSowP6IrVQ8uhMxjTscxDvKmL51DqjpcVaupalVVvVFVrTGwABuWfE/Vz9xdJRwf9hWNk7o7HckYRIRTTa4ijFwy1nztdBzjoEIvyxSRF/nftffnUNV7fJIoQK1bMJ26347gaEglwkZ+Rd06jZ2OZMwZbTr3Zd/aSuQt/YxyHayDvmBV1BF+KrAUiAKSgc2eKQmI8H20wLFm7lTqfXszh0KrEHnrt1S3Ym/8TJvESvwU1oWE/T/DqRNOxzEOKbTgq+o7qvoO0Aa4VFVfVNUXgT64i74BVs35jEbf3cL+0OrEjPqWhJr1nI5kzDlCQoSTDa4kQrPJWh+U9z8avDtpWwmokO95ec9rQW/F9x/TbPYodofVJu72GVSpXtvpSMYUqnmnfhzUChyxztSCljcjXj0NLBeR2YDgvunqH74MFQiWzXiPVvNH82t4A6re/jUV46s5HcmYInVokMAXIZ24as9syMmE8GinI5lS5s1VOm8DnXD3djkF6OJp6glaS79+gzbz72FreBOq3TXDir0JCKEhQlq9/kRqFtkbZzkdxzjA2ztt96nql54pqLvdS536X5IWP8CmiBYk3jOdCnHxTkcyxmsNOw7gmMZweIkNfRiMrBevC7D48/+QvPRR1ke1pd7obyhfwU5lmMDSpXENfpQU4nZ+D7nZTscxpcwKvpdSp71OyorHWBOdTKPRX1OufEWnIxlzwSLCQjiYeDnRrhPk/jLH6TimlHlV8EUkVERqikid05Ovg/mTFd9/TNslj7AhshVN7plKVLnyTkcyptjqdLiKExrFocXWrBNsznuVjojcDTwO7AdcnpcV9/X5Zd7aeV/T7Ke72B7egNp3WrE3ga9780R+0GQu3T4T8nIh1JuL9UxZ4M2/9GigaTD2n7Np2RzqzbyFfaHVSbhtGrEVKzsdyZiLFh0Ryu6alxGzbz6u7fMIadjT6UimlHjVPTKQVtwNeJqDlovItOKuwwnb1i2h2tQbSAupSMyfphFXpbrTkYwpMTVTfkemRnDIrtYJKt4c4W8F5ojI18Cp0y+q6jgvtzEad//5Fc43o7/YvXUtsZMHc4pI9A9fWncJpszp2aoeP09tS5dfpoPLBTbsZlDw5l95B/Ad7g7TYvNN5yUiicCVwBvFDVjaDuzairw3iFDyyBzyKbUaNHc6kjElLjYqnO1V+xKbcwjducjpOKaUnPcIX1XHXsT6xwMPUcQXhIiMAkYB1Knj7MU/Rw7sJvOt3xHvSmfvoMk0bt7e0TzG+FJC8tWcmvEs6Us+pUrdLk7HMaWg0CN8ERnv+fuViEw9ezrfikXkKuCAqi4taj5VfV1VU1Q1JSEh4YI/QEk5fuwwR177HdXy9rOj/9s0bmfjtJuyrWfbRszT1oRv/hq00KEvTBlS1BH+e56/zxVz3d2Aq0XkCtx96lcQkfdV1e8GeM3NyWbHf39P09ztrOv5Km27DHA6kjE+Vzkmgs2Ve9H72DjYsxxqJTsdyfhYUf3hL/X8/bGg6XwrVtVHVTVRVesBQ4Ef/LHYA6ROuJNWp5azou3jtO19vdNxjCk1ce0GkqshHEm1LpODQdCfml8y5QU6H5jMwqrX0+Ha0U7HMaZUXdquGQtcLZANX1mzThAolYKvqnNU9arS2NaF2LBoJm1XjmVNZDtSbn3Z6TjGlLpqFaJYG9eTSpk74MA6p+MYHztvwReR67x5LdDs27mFhOl/4kBIVeqMmkxYuA3Ta4JT+TaDcKmQtvQzp6MYH/PmCP9RL18LGJkn0zkx8XoiNZu8IR9SIb6q05GMcUzP9q1Yok3JW/ul01GMjxV6lY6IDACuAGqJyH/yvVUByPV1MF9Rl4u1r/6B5NytrO75Km2b2ZUJJrjVrlyOb8p3p9PJCXBoC1Rp5HQk4yNFHeHvAVKBLGBpvmkqcLnvo/nGwnf/Skr6bBY3vJu2vYc6HccYvxDRaiAA6SusWacsK/QIX1VXAitF5ENVzSnFTD6z/LsP6LTtv6RW7EunGy/mBmJjypZL2iexYmFDEld9QWzfh52OY3zEmzb8jiLynYhsEpGtIrJNRLb6PFkJ27YulSZzx/BLeCNa3fYOYp1FGXNG42qxLI66hCrH18HR7U7HMT7iTdV7ExgHXAJ0AFI8fwNG2pEDRHxyA5kSRcWRn9ggJsYUQFpeDUDGyi8cTmJ8xZuCn6aq01X1gKoePj35PFkJ2vz27VR1HeLwVW9RtVZ9p+MY45e6pHRgnasuGSumOB3F+Ig3BX+2iDwrIl1EJPn05PNkJWTp9ImkpM8itd6tNE3p43QcY/xWy5oVmBfRjSrHVsLxPU7HMT7gzQAonTx/U/K9pkDvko9Tsg7t30WDRX9jc1gjUoY/4XQcY/yaiJDb9Hew9kMyV39JdLfbnY5kSpg3/eH3Ko0gJU1dLna+M4oWmkXE718jPCLS6UjG+L0OHTqzeXUt4pZPsYJfBnnTtUI1EXlTRKZ7nrcQkT/6PtrFSf3qNdplzGN547uo2zzl/AsYY0iuU4mfwroQfygVTh5yOo4pYd604U8EZgA1Pc83Aff6KlBJ2L97K02X/x8bwlvQYejfnI5jTMAICREyG11JCC6y15x3nCMTYLwp+FVUdTLgAlDVXCDPp6kugrpc7HvvVsI0l9ihEwgN8+Y0hTHmtKSU7vzqqkraMrvrtqzxpuCfFJF43CdqEZHOQJpPU12ERVOep21WKqtbjKFWw1ZOxzEm4HRqGM/skM5U3r8AMo86HceUIG8K/hjc/ec0FJF5wLvA3T5NVUy7t22k9epnWBuZRIfBDzodx5iAFB4awvH6VxBKHrnrpzsdx5Sg8xZ8VV0G9AS6An8GWqrqqvMtJyJRIrJYRFaKyFoR8WnnNa68PI5+9CcUIX74BEJCQ325OWPKtJYdLmWPVubYUhv6sCzx5iqdUNzdJPcB+gF3i8gYL9Z9Cuitqm2BJKC/pznIJxZNeppW2atY3/ZRqtdp4qvNGBMUujWuyvd0ouKen+FUutNxTAnxpknnK2AEEA/E5puKpG4nPE/DPZNPBs38ddNKkjaOZ1V0R1IG+WVrkzEBJSo8lEO1Lydcs3FtnOF0HFNCvLmEJVFV2xRn5Z5fB0uBRsDLqrqogHlGAaMA6tSpc8HbyM3JIXPyKLIlnJp/mGC9YBpTQpp0uIyDOysQsvRT4tsMdjqOKQHeVMfpItKvOCtX1TxVTQIScXezfM5lM6r6uqqmqGpKQkLCBW8j8+RxTkVUYkvKWKrUrFecmMaYAlzarDrfa0did86G7Ayn45gS4M0R/kLgcxEJAXIAwd1iU8HbjajqMRGZDfQH1hQraSFi4+Jp88A3iEhJrtaYoBcTGcaemv2I2DcL15ZZhLS42ulI5iJ5c4Q/DugClFPVCqoa602xF5EEEYnzPI4GLgM2XFTawrYVEgJW8I0pcfXa9+OolufYUrsJqyzwpuDvBNao6oWecK2Bu2vlVcAS4DtVnXahAY0xzunTMpFZrvaU2/4d5J5yOo65SN406WwF5ng6TzvzL66q44payHOtfruLi2eMcVLFcuH8Wq0vUYd+RLfOQZpc7nQkcxG8OcLfBnwPRHABl2UaY8qGxOQrOK7RpFmzTsDzpj/8sQAiUt7z/ETRSxhjypI+rWvzw/R29P9luvsmrEg73gtU3txp20pElgNrgbUislREWvo+mjHGHyTERrKo6hCico+jC15xOo65CN406bwOjFHVuqpaF7gfmODbWMYYf5LUuTcz8lLIm/cfyDjidBxTTN4U/BhVnX36iarOAWJ8lsgY43euaZfIe1HDCck5ic57wek4ppi8KfhbReTvIlLPM/0N95U7xpggEREWwuV9+vBlXldcC1+F9H1ORzLF4E3BvwVIAKZ4pgTPa8aYIHJ9SiIfRN2A5uXAz/92Oo4pBm/6wz+qqveoarJnGq2qNgyOMUEmMiyUqy7txuTcnrhS34ajvzodyVygQi/LFJEiRzBWVetYw5ggM7RjHX4/eyiDc38m4sdnYNDLTkcyF6Co6/C74O5W4SNgEe5O04wxQSwqPJRrenbg3Rl9+ePKD5FuoyHBBhwKFEU16VQH/gK0Al7A3fnZIVX9UVV/LI1wxhj/M7xTXT6OHEwWkTDnn07HMReg0ILv6cv+W1W9GegMbMHdp85dpZbOGON3oiNCua5HOybkXA5rP4e9K52OZLxU5ElbEYkUkWuB94E7gf8An5dGMGOM/7qxc10+CR/EyZDy8MNTTscxXiq04IvIu8ACIBkYq6odVPX/VHV3qaUzxvilmMgwhvZozUunroLNM2DHOaOXGj9U1BH+jUBjYDQwX0SOe6Z0ETleOvGMMf7qpi51+Tz8StJCK8H3T8AFD5lhSltRbfghntGtYj0jXZ2evBrxyhhTtsVGhXND9+aMy7oafp0LW2effyHjKG/utDXGmALd3LUeX4X343BYVfj+/+wo38/5rOCLSG0RmS0i60RkrYiM9tW2jDHOqBgdzo3dmvB05iDYsww2fO10JFMEXx7h5wL3q2oL3Jd13ikiLXy4PWOMA27pVo+ZYb3YH14bZj8FrjynI5lC+Kzgq+peVV3meZwOrAdq+Wp7xhhnxJWL4MauDfi/jEFwYB2ssaEQ/VWptOGLSD3cA5qfc+2WiIwSkVQRST148GBpxDHGlLA/XtKA2aFd2RXZEGb/E/JynI5kCuDzgu8ZC/cz4F5VPedyTlV9XVVTVDUlISHB13GMMT5QOSaCG7vU5x8nroGj22D5+05HMgXwacEXkXDcxf4DVZ3iy20ZY5x1a/cGzA1pz/boFvDjM5CT5XQkcxZfXqUjwJvAelUd56vtGGP8Q5XykdzYqR5/PX4tpO+B1DedjmTO4ssj/G7AH4DeIrLCM13hw+0ZYxw2qkcDUqUVm2Paw8/j4FS605FMPr68SmeuqoqqtlHVJM/0ja+2Z4xxXtUKUQzrWIdHjg2CjEOw8FWnI5l87E5bY0yJuq1nQ1bTmHUVLoH5L0LGEacjGQ8r+MaYElW9YhRDOtTmocNXoaeOw/z/OB3JeFjBN8aUuNsubchG6rI6ri8seg3S9zsdyWAF3xjjA7Xiohncvjb3H7wCzT0FP//b6UgGK/jGGB+549KGbNPqLKt8BSx9G47tcDpS0LOCb4zxidqVy3Ftci3G7L8cBfjxX05HCnpW8I0xPnNnr0bscsWzOH4QrPgIDm12OlJQs4JvjPGZuvExDEyqyZi9vdGwSHfHasYxVvCNMT51Z69G7M2twPyE62DtFNi32ulIQcsKvjHGpxomlOd3bWty/64euCIrwg9POh0paFnBN8b43F29GrE/J5q5VW+ATd/CzsVORwpKVvCNMT7XuFosV7Suwf07uuAqlwDfP+F0pKBkBd8YUyru7t2Ig6fC+LHaH2D7z7B1jtORgo4VfGNMqWhWvQL9W1bngW3JuGJruY/yVZ2OFVSs4BtjSs3dfRpxOCuE2dVHwu6lsHG605GCihV8Y0ypaVmzIn2bV+OhzS1xVWrgvmLH5XI6VtDw5RCHb4nIARFZ46ttGGMCzz19GnE4S5lV/Y9wYC2s+czpSEHDl0f4E4H+Ply/MSYAtUmMo1fTBB7Z0Ii8am1g2n12mWYp8eUQhz8BNtSNMeYcd/dpzJHMPD5s+AyUT4D3rrWiXwocb8MXkVEikioiqQcPHnQ6jjGmFCTXqUT3xlUYv+gEmcOnWtEvJY4XfFV9XVVTVDUlISHB6TjGmFIyuk9jDp/MZsKKLBjxdb6iv8TpaGWW4wXfGBOcUupVpl+Laoz7bhN//f4wWcO/9BT9a6zo+4gVfGOMY14ensyfezbgg0U7+P0Hv7Jr4GSIqQLv25G+L/jyssyPgAVAUxHZJSJ/9NW2jDGBKTw0hEcHNOeNm1LYdTSTAW9tZXaXt6FcvBV9H/DlVTrDVLWGqoaraqKqvumrbRljAlvfFtWYdvclNEiIYeSUPTyfOB49XfR3pTodr8ywJh1jjF+oXbkcn9zWlRFd6/HCkpP8ScaSG1XZ3aZvRb9EWME3xviNiLAQ/nF1S14Znsyiw1FcefxhMsLjrOiXECv4xhi/c0XrGnx19yWExNWmz6EHOUos+t4g2LXU6WgBzQq+McYv1a8Sw+d3dOXSju24Iu0R9ueWx/XuQCv6F8EKvjHGb0WFh/L/rm3NQ0N6Myz7b+zJLkfuO1b0i8sKvjHG713TLpHX7xrIQ+X/ye7saE69fTV5O61N/0JZwTfGBITG1WJ5455BvNP4JfbllCPrras5tnmh07ECihV8Y0zAKBcRxt+H92Nln/c54ooh9INrWLtkttOxAoYVfGNMQBERru7ZiczhU0mXWGpPu4HPvpqKy2Xj456PFXxjTEBq0qQ5FW6bQXZ4RS5L/TNPTviAYxnZTsfya1bwjTEBq3y1+sTfOQMpV4l79zzI/eMnsnzHUadj+S0r+MaYgCaV6hL752+JrBDP+OzHeeL193l73jZr4imAqPrPTklJSdHUVLvUyhhTDMd24Hr7SjLTjzA08xF+jWxCct1KtK9TifZ1K9G2dhwxkWFOpyxxIrJUVVO8mtcKvjGmzDi2A514JTknjzG30iDmnajO7KNV2a7VQUJoXqMC7eu6vwCS61QisVI0IuJ06otiBd8YE7yO7YBPb4Hdy0DzAMgLjeJgdAPWu+ow/0R1VuXUZoPWJjI2/swXQPu6lWhZsyIRYYHV0m0F3xhjcrLg0EbYtwb2r4X9a9xTxuEzsxwNS2Cdqw4rsmuxwVWHLSH1qVCrKUn1qtC+TiWS61aiSvlIBz/E+flNwReR/sALQCjwhqo+XdT8VvCNMT6lCif2e4r/Wve0bw16aCPiygUgm3A2aSLr82qzXutyNLYx5eu0pVnD+rRNjCO+fAQVosIpFxHqF81BflHwRSQU2ARcBuwClgDDVHVdYctYwTfGOCI3Gw5tOvMrIG/fGvL2riEi8+CZWfZrHJtdtcgkimxCySUcDY1AwtxTSFgkIWERhIZHERYRSXhEJOERUURERhERGU1UVBRRUdFERUVTLjqa6KgoQsKjIDQcwstBQpNiRb+Qgu/LU9YdgS2qutUT6mNgIFBowTfGGEeERUD1Vu4Jd5NEKMCJg7B/Dbp/DTE7VtHywEbIOQF52ZCXQ4grmxBXDiHZOYRl5RBGDqG4Lnjzx0IqEffY9pL8RAXyZcGvBezM93wX0OnsmURkFDAKoE6dOj6MY4wxF6h8ApTvhTTsRfmuXi7jyoO8bHKzsziZkcGJjExOZGSQkZlBRkYWGVkZZGVmkpWVRfapTE6dyiIkJJQRvvwcHo5flKqqrwOvg7tJx+E4xhhzcUJCISSasPBoKsZUoqLTefLx5fVHu4Ha+Z4nel4zxhjjAF8W/CVAYxGpLyIRwFBgqg+3Z4wxpgg+a9JR1VwRuQuYgfv8x1uqutZX2zPGGFM0n7bhq+o3wDe+3IYxxhjvBNY9xMYYY4rNCr4xxgQJK/jGGBMkrOAbY0yQ8KveMkXkIPBrMRevAhwqwTi+FEhZIbDyBlJWCKy8gZQVAivvxWStq6oJ3szoVwX/YohIqrcdCDktkLJCYOUNpKwQWHkDKSsEVt7SympNOsYYEySs4BtjTJAoSwX/dacDXIBAygqBlTeQskJg5Q2krBBYeUsla5lpwzfGGFO0snSEb4wxpghW8I0xJkgEVMEXkbdE5ICIrCnkfRGR/4jIFhFZJSLJpZ0xX5bzZb1URNJEZIVneqy0M56Vp7aIzBaRdSKyVkRGFzCPX+xfL7P6zf4VkSgRWSwiKz15xxYwT6SITPLs20UiUq/0k3qddYSIHMy3b//kRNZ8eUJFZLmITCvgPb/Yr2dlKiqvb/etqgbMBPQAkoE1hbx/BTAdEKAzsMiPs14KTHN6n+bLUwNI9jyOxT0AfQt/3L9eZvWb/evZX+U9j8OBRUDns+a5A3jV83goMMmPs44AXnJ6v+bLMwb4sKB/b3/ZrxeQ16f7NqCO8FX1J+BIEbMMBN5Vt4VAnIjUKJ10v+VFVr+iqntVdZnncTqwHve4xPn5xf71Mqvf8OyvE56n4Z7p7KslBgLveB5/CvQRESmliGd4mdVviEgicCXwRiGz+MV+Pc2LvD4VUAXfCwUNnO63hQDo4vnpPF1EWjod5jTPz952uI/u8vO7/VtEVvCj/ev5Gb8COAB8p6qF7ltVzQXSgPjSTenmRVaA33ua9T4VkdoFvF9axgMPAa5C3veb/epxvrzgw31b1gp+IFmGuw+MtsCLwBcO5wFARMoDnwH3qupxp/MU5TxZ/Wr/qmqeqibhHtu5o4i0cjJPUbzI+hVQT1XbAN/xvyPoUiUiVwEHVHWpE9u/UF7m9em+LWsFP2AGTlfV46d/Oqt7ZLBwEaniZCYRCcddQD9Q1SkFzOI3+/d8Wf1x/3qyHANmA/3PeuvMvhWRMKAicLh00/1WYVlV9bCqnvI8fQNoX9rZPLoBV4vIduBjoLeIvH/WPP60X8+b19f7tqwV/KnATZ6rSToDaaq61+lQBRGR6qfbEkWkI+5/C8f+B/dkeRNYr6rjCpnNL/avN1n9af+KSIKIxHkeRwOXARvOmm0qcLPn8WDgB/WcxStN3mQ967zN1bjPoZQ6VX1UVRNVtR7uE7I/qOqNZ83mF/sVvMvr633r0zFtS5qIfIT76osqIrILeBz3SSVU9VXc4+deAWwBMoCRziT1Kutg4HYRyQUygaFO/Yfo0Q34A7Da034L8BegDvjd/vUmqz/t3xrAOyISivuLZ7KqThORJ4BUVZ2K+wvsPRHZgvtk/1A/znqPiFwN5HqyjnAoa4H8dL8WqjT3rXWtYIwxQaKsNekYY4wphBV8Y4wJElbwjTEmSFjBN8aYIGEF3xhjgoQVfOMzInLCi3nuFZFyJbjNQSLSogTXN/8ilj3h+VtTRD4tYr44EbmjuNsxxltW8I3T7gUuqOB7rhEvzCCgxAq+qnYtgXXsUdXBRcwSh7tXR2N8ygq+8Tlx900/x9MZ1AYR+cBzt+49QE1gtojM9szbT0QWiMgyEfnE018OIrJdRP4lIsuA60TkVhFZ4ukc7TMRKSciXXHfnfisuPsSbygiSSKy0NMZ1eciUsmzvjki8ryIpIrIehHpICJTRGSziDyZL/uJfI8fFpHVnm0+XcDnrO/JvvqsddQTz7gIItJS3P3Nr/Bkagw8DTT0vPasiJQXke89+2C1iAzMt571IjJB3H3Vz/TcDYuINBKRWZ5sy0Skoef1Bz37aZUU0Le9CTK+6nfZJpuAE56/l+LupTAR90HGAuASz3vbgSqex1WAn4AYz/OHgcfyzfdQvnXH53v8JHC35/FEYHC+91YBPT2PnwDGex7PAf7leTwa2IP7LtNI3L2Axp/1GQYA84FynueVC/i8U4GbPI/vzLdsPTzjIuDuyG2453EEEJ3/fc/rYUCFfPtkC+5+6uvhvgMzyfPeZOBGz+NFwDWex1G4fzX1wz04tnj2+zSgh9P/Xdjk3BRQXSuYgLZYVXcBeLpDqAfMPWuezribY+Z5usGJwP3lcNqkfI9beY6i44DywIyzNygiFYE4Vf3R89I7wCf5Zpnq+bsaWKuefoFEZCvuDrfy973TF3hbVTMAVLWgsQ66Ab/3PH4P+FcB8ywA/iruftGnqOpmObd7dgH+KSI9cHejWwuo5nlvm6qe7k5iKVBPRGKBWqr6uSdbludz9MNd9Jd75i8PNMb9pWqCkBV8U1pO5XucR8H/7Qnu/teHFbKOk/keTwQGqepKERmB+1dEcTO5zsrnKiSfN4rsq0RVPxSRRbgHwfhGRP4MbD1rtuFAAtBeVXPE3bti1FmZwb0fo4vYnAD/T1Vfu4D8pgyzNnzjtHTcwxQCLAS6iUgjABGJEZEmhSwXC+wVdzfJwwtan6qmAUdFpLvnvT8AP1I83wEjT19RJCKVC5hnHv/rnGt4Ae8jIg2Arar6H+BLoA2/3Qfg7sL3gKfY9wLqFhVM3aN+7RKRQZ5tRHpyzgBuyXcepJaIVPXq05oyyQq+cdrrwLciMltVD+LuHfAjEVmFu/mjWSHL/R13u/U8ftt978fAg+IeJLoh7q5xn/WsLwl3O/4FU9VvcTcBpXqapB4oYLbRwJ0isprCRwK7HljjWUcr3ENGHsbdjLVGRJ4FPgBSPOu5iXO7Ui7IH3D3tLgK97mG6qo6E/fYqQs86/qU336xmCBjvWUaY0yQsCN8Y4wJElbwjTEmSFjBN8aYIGEF3xhjgoQVfGOMCRJW8I0xJkhYwTfGmCDx/wFMORe7LqTscQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "for j in reversed(range(len(algorithms))):\n", " pylab.plot(distances, dipoles[j], label=algorithms[j])\n", @@ -215,30 +130,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xt8XHWZ+PHPk0kmSZukaZPSS5KSXlJZQIFSEEWriAussLQCIhQU1JVlF0VBUXF/K4IgsqyIyksRRblIKVCqVBSRS2mXO23K/ZKE0tIkvd+SNplMknl+f5zvpNN0kkySmTkzyfN+veaVM+f6zKHMM9/L+X5FVTHGGGOSIcfvAIwxxowcllSMMcYkjSUVY4wxSWNJxRhjTNJYUjHGGJM0llSMMcYkjSUVY4wxSWNJxZgBiMg6Efm0T9eeJCIrRaRVRH6axuveISLXpujc54nIP1JxbuM/SypmWETk7yJyTZz180Vkk4jkuvcfFZEn3ZfjbhFZJiKHxOz/SRGJiMieXq+PpPPzZKCLgG1Aiap+y+9gBktEqkVEo/8OAFT1HlU9yc+4TOpYUjHDdSdwvohIr/VfAO5R1S6XGP4BPARMBaYDrwLPiEh1zDHNqlrU6/Vc6j9CesR+sQ7CwcCbakNfmCxhScUM15+BMuDj0RUiMh44DbjLrfof4C5V/bmqtqrqDlX9f8CLwFVDuairkvq2iLzqSj73iUiB23ahiDzda38VkVlu+Q4R+ZWIPOJKQ8+IyGQRuVlEdorI2yJyVK9LHiMib7rtf4hey53vNBF5WUR2icizIvKhXnF+V0ReBfbGSyyuFPeS+xwvichHo3ECFwDfcXEeUAUnIvki8r8i8r6IbBaRW0Wk0G17S0ROi9k3V0S2isgc9/4BV5rc7arYDuvjXg90P08VkTUi0iIiG0TkhzG7rnR/d0VLnr3P19fnd9ueEpEfuf9GrSLyDxEpd9sKROSPIrLd3fuXRGRSvM9g0seSihkWVW0H7ge+GLP6bOBtVX1FRMYAHwUeiHP4/cBwqkHOBk7BK/l8CLhwkMf+P6Ac6ACeA2rd+yXATb32Pw84GZgJzHbH4pLP74F/x0uuvwGWiUh+zLHnAqcCparaFXtSEZkA/BX4hTv+JuCvIlKmqhcC9wD/40ptj8f5HD9x8RwJzAIqgB+4bfe6a0edDGxT1Vr3/hGgBjjIffZ74t+qAe3F++9f6j7nf4jIArdtnvtbGq/k2d/nj9ltIfAlF2cQ+LZbfwEwDqhyx14MtA/xM5gksaRikuFO4KyYX+9fdOsAJuD9O9sY57iNwMSY91PdL87Y19h+rvsLVW1W1R3AX/C+WBP1J1Vdraoh4E9ASFXvUtVu4D6gd0nlFlXd4K51Hfu+rC8CfqOqL6hqt6reiZekjusV5waXgHs7FahX1btVtUtV7wXeBv51oA/gqhwvAi5zpb9W4MfAOW6XRcDpLrGD9+V8b/R4Vf29Kzl2AD8EjhCRcQNdtzdVfUpVX1PViKq+6q7xiQQPT+Tz/0FV62J+wET/O3fiJZNZ7t6vVtWWwcZvksuSihk2VX0arzF5gYjMBI7F+0ID2AlEgClxDp3ijotqVtXSXq+9/Vx6U8xyG1A0iLA3xyy3x3nf+1wbYpbX47UNgdfm8a3YRIj3y3lqH8f2NtWdL9Z6vBLHQCYCY4DVMdf+u1uPqjYAbwH/6hLL6bj/LiISEJGfiMi7ItICrHPnLE/guvsRkQ+LyHJXtbYbr8SQ6HkS+fx9/Xe+G3gUWCwizSLyPyKSN9j4TXJZUjHJchdeCeV84FFV3QzgksJzwOfiHHM28FQKYtmL92ULgIhMTsI5q2KWpwHNbnkDcF2vRDjG/eKO6q+RvRkvMcWaBjQlENM2vAR4WMy1x6lqbEKMVoHNx2vwb3DrF7p1n8arQqp263t3uICB7+ciYBlQparjgFtjzjNQB4Mhf35V7VTVq1X1ULwq1tPYvxrW+MCSikmWu/C+oL7KvqqvqO8BF4jIpSJSLCLjxXsG4uN41TXJ9gpwmIgc6arkfpiEc14iIpWuDeC/8KrIAH4LXOx+rYuIjHUN18UJnvdvwGwRWega0j8PHAo8PNCBqhpx1/+ZiBwEICIVInJyzG6L8dqt/oN9pUeAYrxquu14CaO//w4D3c9iYIeqhkTkWLyEFbUVr6Q6o49zD/nzi8gJIvJBEQkALXjVYZGBjjOpZUnFJIWqrgOeBcbi/WqN3fY0XiPxGXjtKDvwGllPVNXXY3adKgc+p3LmEGKpA64BHgfqgaf7PyIhi/C6Ra8F3gWudddahZdIb8Gr6mtgEB0GVHU73i/sb+F9wX8HOE1Vt/V74D7fddd83lVjPQ58IOb8G/FKih9lXyIE70fAerwSwZvA8/3EOND9/E/gGhFpxeskcH/MsW14bVDPuCq62Lam4X7+yXidKlrwqvlW4FWJGR+JdX836SZel9vlwEJVfdTveIwxyWMlFZN2rofQAuCDMrQHAo0xGcpKKsYYY5LGSirGGGOSZtRVPZSXl2t1dbXfYRhjTNZYvXr1NlWdOPCeozCpVFdXs2rVKr/DMMaYrCEivR9Q7ZNVfxljjEkaSyrGGGOSxpKKMcaYpBl1bSrxdHZ20tjYSCgU8juUpCsoKKCyspK8PBtnzxiTepZUgMbGRoqLi6murkYOmMAwe6kq27dvp7GxkenTp/sdjjFmFEhZ9ZeI/F5EtojI6zHrJojIYyJS7/6Od+tFRH4hIg3izeQ3J+aYC9z+9SJyQcz6o0XkNXfML2QY2SAUClFWVjaiEgqAiFBWVjYiS2DGJKJl5VLWXnwMdZ+rYO3Fx9CycmlGnzcV0h1rKttU7sCblS/W94AnVLUGeMK9B/gXvBnoavAmHfo19MwKdxXwYbw5Oq6KJiK3z1djjut9rUEZaQklaqR+LmMG0rJyKZtvvYKubU2gSte2JjbfesWwv1RTdd5U8CPWlFV/qepKEanutXo+8Em3fCfeXBrfdevvUm/MmOdFpFREprh9H3Oz7SEijwGniMhTQImqPu/W34U3ltQjqfo8xpjssm3R9Wh4/8k2NdzOlt9dSbi5oY+jBrbrb7fHPe+2RddTMu+MIZ83Ffq6B6mMNd1tKpPcUNzgzeY2yS1XsP/seI1uXX/rG+Osj0tELsIrATFt2rRhhJ8aJ5xwAt/73vc4+eR902DcfPPNvPPOO3zta1/j61//Ok1NTXR1dXH++edz1VVXkZOTwx133MEVV1xBRcW+j75o0SIOPfRQPz6GMRmla3tz3PWRtlZ2PPjzoZ+4j/ES+7qen/qKKZWx+tZQr6oqImkZzVJVbwNuA5g7d+6wr9mycinbFl1P1/ZmcsumUr7wymFl/XPPPZfFixfvl1QWL17MDTfcwOmnn86vf/1rTjrpJNra2jjzzDP5+c9/zmWXXQbA5z//eW655ZbhfiRjRpzcsqletU/v9eUVzLj1pSGfd+3Fx8Q/b9nUOHv7q897kMJY0/2cymZXrYX7u8Wtb2L/6Vor3br+1lfGWZ9yqaijPOuss/jrX/9KOBwGYN26dTQ3N9PQ0MDxxx/PSSedBMCYMWO45ZZbuPHGG5PyWYwZycoXXgm5wf3WSbDQWz/M80qwMOnnTQU/Yk13SWUZ3ox/P3F/H4pZ/zURWYzXKL9bVTeKyKPAj2Ma508CrlTVHSLS4maRewFvXupfJiPALX/4AR3vvdHn9lDdarQrvN86Dbez+VeXs/vxe+Iekz/9MA760jV9nnPChAkce+yxPPLII8yfP5/Fixdz9tln88Ybb3D00Ufvt+/MmTNpb29n165dANx33308/fS+ifiee+45Cgv3/0dkzGhUMu8MWv5vKW1rngSRpNQqRM8LsPm330Pb95BbXpGU86ZCybwz6Nq9jW13/hAgLbGmLKmIyL14De3lItKI14vrJ8D9IvIVvKlMz3a7/w34DN60qG3AlwBc8vgREC2rXhNttMebwvQOoBCvgT4tjfS9E8pA6xMVrQKLJpXbb7+de+6Jn6RiWfWXMX2LtLVQcMgxTLv2oYF3HoSSeWcQ6Whjy2++Q9U1S8k7qGrgg3wSnOI9o1Z17UMUHnJMyq+Xyt5f5/ax6cQ4+ypwSR/n+T3w+zjrVwGHDyfGePorUUA/9anlFVRd8+CQrzt//nwuu+wyamtraWtr4+ijj2bNmjWsXLly/+uvXUtZWRmlpaVDvpYxo4F2hulY+xqlp1yYkvPnV9YAEG6sz+ikEm6qByDo4k01G/trkFJVR1lUVMQJJ5zAl7/8Zc4918vH5513Hk8//TSPP/44AO3t7Vx66aVcffXVw7qWMaNBaN0baGcHBbOPHnjnIYh+SXc01qXk/MkSbqwjUHoQgaL0/BC1pDJIJfPOYNLFN5JbXuHV05ZXMOniG5NSR3nuuefyyiuv9CSVwsJCli1bxnXXXcfs2bMpLy/n+OOP57zzzus55r777uPII4/seT377LPDjsOYkSBUtxogZUklUDyBwLjynpJApgo3NqStlAI29teQlMw7IyUNXQsWLEB79YE//PDDWb58OQB//vOfufzyy1m4cCEHH3wwF154IRdeeGHS4zBmJAjVrSa3bAp5ZVNSdo1gRQ3hDZlbUlFVwk31FM87M23XtJJKFlmwYAFr167l4IMP9jsUYzJee30tBTWpKaVEBatmE25qOODHYKbo2rGJSFsr+RXpK6lYUjHGjDhdO7fQtWUDhR9IcVKpmEVk7266d21N6XWGqqeRvmp22q5pScXJ1F8awzVSP5cx/QnV1wJQUDNngD2HJ9jTAywzq8CiVXNBK6mkV0FBAdu3bx9xX8DR+VQKCgr8DsWYtGqvWw25eeRPT/pTB/vJr/RKAOHGzGysDzc1kFNUSqB0YtquaQ31QGVlJY2NjWzdmplF2OGIzvxozGgSqqslv/owcvJTO7pEYPwkcsYUZ2y34nBjPcGKWWmdAsOSCpCXl2czIxozQmh3F6F3X2bciQtTfi0RIVjpNdZnonBjHWOPOSmt17TqL2PMiNKx/i20o52C2altT4kKVszKyDaV7pbtdLds76miSxdLKsaYESXaSF+Y4u7EUcHKGrp3baV7z660XC9RHY1e6SmdjfRgScUYM8KE6moJlE4kN03jcQUztLHej+7EYEnFGDPCtNevpqBmTtoapzO1W3G4sR7JL0z75GGWVIwxI0Z36w46m9dSmKb2FIC88kokWJBxjfXhxjqv51dOer/mLakYY0aM9vo1ACkfniWWBAIEp86kI8PGAAs31fdUzaWTJRVjzIgRqlsNOTkUzDoyrdcNVtZk1GjFkfY9dG1rTnsjPVhSMcaMIKG61eRP+ydyCsak9brBytl0bW0kEmpL63X7Eq2Ky6+ypGKMMUOi3d2E6tekbP6U/vQ01mdIu0q0J5qVVIwxZojCzQ1E2vdQ6EtScd2KM6QKrKOxDnLzyJtcnfZrW1IxxowIoXdWAaTtSfpYwcnVEMjNmAm7wo31BKfMQALpH4nLkooxZkRor68lp6iUvCkz0n5tyc0jOGU6HRlSUvEGkkx/1RdYUjHGjBChutq0PvTYW7CiJiMegIyEQ3RuWU/Qh0Z6sKRijBkBuve2EG6s86U9JSpYWUPnpvVoZ9i3GAA6m9dCJGIlFWOMGapQwxpQ9aU9JSpYWQORbsKb3vMtBtjXWSDdoxNHWVIxxmS9UF0tiFAw6yjfYoiWDPxurO9orIecHPKmpr9tCSypGGNGgFB9LcHK2QTGlvgWQ7BiJoj43q043FhP3kHTyAn6M424JRVjTFZTVdrran2t+gLIyR9D3sQq30sq3phf/rSngCUVY0yW69y4lsienRTW+JtUwGtX6fDxqXrt7iLc/K5vjfRgScUYk+VCdd5Mj34Mz9JbsLKGzuZ30e5uX67fuXk9dHWmfWKuWJZUjDFZrb2+lpwxxb4M895bsKIG7eygc8v7vlzfzzG/oiypGGOyWuidVRTMOjLtk1HFEy0h+NVYvy+pzPLl+mBJxRiTxSKhNjrefyutk3L1x+9uxR2N9eSWTSEwptiX64MlFWNMFgu9+wpEIhR8IDOSSmBsCYHxk3wbAt+bQti/qi/wKamIyGUi8oaIvC4i94pIgYhMF5EXRKRBRO4TkaDbN9+9b3Dbq2POc6Vb/46InOzHZzHG+CdU541MXFjj30OPveVX1nhDz6eZRiKEmxt8baQHH5KKiFQAlwJzVfVwIACcA9wA/ExVZwE7ga+4Q74C7HTrf+b2Q0QOdccdBpwC/EpEAun8LMYYf7XX1ZI3ZQaB4gl+h9IjWFlDZ1MDqprW63Ztb0ZDbaOzpALkAoUikguMATYCnwKWuO13Agvc8nz3Hrf9RPGGIZ0PLFbVDlV9D2gAjk1T/MYYn6kqoXpvZOJMEqyc7c0Rv2NjWq/b00jvcy+4tCcVVW0C/hd4Hy+Z7AZWA7tUtcvt1ghUuOUKYIM7tsvtXxa7Ps4x+xGRi0RklYis2rp1a3I/kDHGF11bNtC9ayuFGdKeEuVXY300qeRX+tfzC/yp/hqPV8qYDkwFxuJVX6WMqt6mqnNVde7EiRNTeSljTJq0168GyMCSij/z1Xc01hEomUCgpCyt1+3Nj+qvTwPvqepWVe0ElgLHA6WuOgygEmhyy01AFYDbPg7YHrs+zjHGmBEuVFeL5BeSf/A/+R3KfgLjyskpGp/2Cbu8Mb/8fwDUj6TyPnCciIxxbSMnAm8Cy4Gz3D4XAA+55WXuPW77k+q1gC0DznG9w6YDNcCLafoMxhifhepqKZh5pC/zsPdHRAhWzuqpjkoHVfV1CuFYfrSpvIDX4F4LvOZiuA34LnC5iDTgtZnc7g65HShz6y8HvufO8wZwP15C+jtwiar6M+COMSatIuEQoXWv+z4ycV/yK2en9an67t3biOzZ5evoxFG+pHhVvQq4qtfqtcTpvaWqIeBzfZznOuC6pAdojMloHWtfg65OCjM0qQQrauhuuYeu3dvJHZf6No59Pb/8Tyr2RL0xJuuE6t3IxBkyPEtv6R4DLNp+Y0nFGGOGoP2d1eQeVEXu+IP8DiWu6ICO6epWHG6qJ6ewiNwJU9Jyvf5YUjHGZJ1Q/eqMmJSrL7nlFUjBmLSVVDo2eI30Xt8nf1lSMcZklc7tzXRt35gRk3L1RUQIVtSkrQdYuKmeYJX/VV9gScUYk2VC9WuAzJjpsT/pSirde3fTvXNzRnQnBksqxpgsE3pnFZKXT0H1YX6H0q/8qhq6dmyku601pdfJpJ5fYEnFGJNl2utryZ9+OJIX9DuUfvWMAZbi0kqmDCQZZUnFGJM1tDNMx9rXMr7qC2LHAEt1UqlD8vLJm1g18M5pYEnFGJM1Ota/iYZDFGZBUsmbdDCSG0z5GGDhpgaCFTORQGZMJ2VJxRiTNdrr3MjEGfokfSwJ5JI3dUZaqr8ypZEeLKkYY7JIqK6WwITJ5JZN9TuUhAQra1I6BH6ko43OrRsypj0FLKkYY7JIqG41hbOPzoiH/BIRrKihc/N6Ih3tKTl/uOldUM2Ynl9gScUYkyW6dm2lc8v7GTcpV3/yK2tAlc6Na1Ny/kzrTgyWVIwxWSI6iGSmjkwcT7RaqiNFjfXhpnrICRCcPD0l5x8KSyrGmKwQqquFQC75Mz7kdygJy5s6A3JyUtZYH26sJ29ydUY9s2NJxRiTFdrrVpNffRg5+YV+h5KwnLx88iZVE25MTWN9uLGO/AxqpAdLKsaYLKDdXYTefTmrqr6ighWzUvKsinaGCW9al1HtKWBJxRiTBcIb3kFDbRk7KVd/glWzCW96D+3qTOp5w5vWQXeXJRVjjBms9nfcQ48fyL6kkl9RA12ddG5el9TzRod/saRijDGDFKqvJVBSRt5B0/wOZdCiX/odSW5X6elOPHVWUs87XJZUjDEZr71uNQWz52TNQ4+xeqYWTnK7SrixjtyDqsgpGJPU8w6XJRVjTEbrbt1JZ/O7WdmeAnhzx5dPTXq34kwb8yvKkooxJqNFZ3oszML2lKhg5eykDoGv3d2Em9/1ntjPMJZUjDEZrb1+NeTkUDDzCL9DGbLo1MIaiSTlfJ3bGtFwKOMa6cGSijEmw4XqaglWHUJOYZHfoQxZsLIGDYfo2taUlPOFN3jtM1lb/SUiM0Uk3y1/UkQuFZHS1IZmjBntNBIhVL8mKybl6k9+Tw+w5DTWZ2p3Yki8pPIg0C0is4DbgCpgUcqiMsYYvFkNI20tWTEpV396phZOUmN9uLGeQOlBBIoy77d9okkloqpdwGeBX6rqFcCU1IVljDHe/CmQXSMTxxMonkBgXHnSGuvDjfUZNTFXrESTSqeInAtcADzs1uWlJiRjjPG0160mZ+w48qbM9DuUYQtW1PS0hQyHqhJuqidYmVkPPUYlmlS+BHwEuE5V3xOR6cDdqQvLGGO8J+kLauYgOdnfpyg6tbCqDus8XTs2EWlr9YZ/yUC5ieykqm8Cl8a8fw+4IVVBGWNMd1sr4Q3vUHzcqX6HkhTByhoie3fTvWsLueMnDfk8PY30VVlc/SUix4vIYyJSJyJrReQ9EUnN/JjGGAN0NLwMqhRkec+vqGQ11veM+ZWhJZVEy5S3AzcBHwOOAea6v0MiIqUiskRE3haRt0TkIyIywSWuevd3vNtXROQXItIgIq+KyJyY81zg9q8XkQuGGo8xJvO0u0b6gpqjfI4kOfKTNLVwuLGenKJSAqUTkxFW0iWaVHar6iOqukVVt0dfw7juz4G/q+ohwBHAW8D3gCdUtQZ4wr0H+Begxr0uAn4NICITgKuADwPHAldFE5ExJvuF6moJVtYQGDvO71CSIjB+EjljipNSUglWzMrYwTUTTSrLReRGV6KYE30N5YIiMg6Yh1f6QVXDqroLmA/c6Xa7E1jglucDd6nneaBURKYAJwOPqeoOVd0JPAacMpSYjDGZRVVpr19NQU12dyWOJSJeD7Cm4Q2BH26sy8iHHqMSaqjHKw2AV+0VpcCnhnDN6cBW4A8icgSwGvgGMElVN7p9NgHRlqwKYEPM8Y1uXV/rjTFZrnPTe0Rad1Iwe+7AO2eRYGUNe9c8OeTju1t30N2yPePmpY+VaO+vE5J8zTnA11X1BRH5OfuquqLXUxEZXr+7GCJyEV7VGdOmZd8kP8aMNqG6WiD7H3rsLVhZQ8vy++hu3UmgePC19ZneSA+J9/4aJyI3icgq9/qpq8YaikagUVVfcO+X4CWZza5aC/d3i9vehDcsTFSlW9fX+gOo6m2qOldV506cmJmNW8aYfdrrViMFYzP2qfGhin6eoT5Z39GY2d2JIfE2ld8DrcDZ7tUC/GEoF1TVTcAGEfmAW3Ui8CawDO+Jfdzfh9zyMuCLrhfYcXidBjYCjwInich410B/kltnjMlyofpaCmYdhQQCfoeSVMPtVhxurEfyC8ktm5rMsJIq0TaVmap6Zsz7q0Xk5WFc9+vAPSISBNbiPbGfA9wvIl8B1uMlL4C/AZ8BGoA2ty+qukNEfgS85Pa7RlV3DCMmY0wGiITa6Fj3JhM++zW/Q0m6vPJKJFgw5Mb6cGOd1/Mrg0cYSDSptIvIx1T1afAehgTah3pRVX2Z/Rv9o06Ms68Cl/Rxnt/jlaKMMSNEaO2rEOkeUT2/oiQQIDh1Jh1DHAMs3FRP4aEfSXJUyZVoUvkP4E7XjiLADuDCVAVljBm9Qj0PPY68pAJeFVj7O6sGfVykfQ9d25ozupEeEu/99TJwhIiUuPctKY3KGDNqtdetJm/ydHLHlfkdSkoEK2fT+vSfibTvJadwbMLHRavM8quyOKmIyPmq+kcRubzXegBU9aYUxmaMGWVUlVBdLWM+9HG/Q0mZnsb65ncpmPmhhI/Lhu7EMHDvr2gaLY7zyt4Jo40xGalrWxPdu7ZQOEKrvmDo3Yo7GusgN4+8ydUpiCp5+i2pqOpv3OLjqvpM7DbXWG+MMUkTbWsYKSMTxxOcXA2B3EFP2BVurCc4ZQYSSLQp3B+J9kv7ZYLrjDFmyEL1tUiwgPyD/8nvUFJGcvMITq6mY5AlFW8gycyu+oKB21Q+AnwUmNirXaUEGFlPJRljfBeqq6Vg5hFI7sierTxYOZuODW8nvH8kHKJzy3qKP75g4J19NlBJJYjXdpLL/u0pLcBZqQ3NGDNatKxcytqLjyFUX0vHujdoWbnU75BSKlhZQ+em9UQ6OxLav3PjexCJZH9JRVVXACtE5A5VXZ+mmIwxo0jLyqVsvvUKNOw9Tx1p38PmW68AoGTeGX6GljLByhqIdNO58T3ypx0y4P5hN7FXJo9OHJVom0qbm0/lbyLyZPSV0siMMaPCtkXX9ySUKA23s23R9T5FlHrREkeiY4B1NNZDTg55U2ekMqykSDSp3AO8jTcXytXAOvaNuWWMMUPWtb15UOtHgmDFTBBJuFtxuLGevIOmkRMsSHFkw5doUilT1duBTlVdoapfZmgTdBljzH76GnE3k0fiHa6c/DHkTaxKuFtxuKk+o2d7jJVoUul0fzeKyKkichQwIUUxGWNGkfKFV0KvZy8kWOitH8GClTV0JDBasXZ30dm8Nisa6SHxpHKtG0zyW8C3gd8Bl6UsKmPMqFH88c+SUzwByQ2CCLnlFUy6+MYR20gfFaysobP5XbS7u9/9OjevR7vCGT0xV6xEB5R82C3uBpI5tbAxZpTrePcVIru2MOniGxn36fP8DidtghU1aGcHnVveJzhlep/7ZcuYX1EJJRUR+QNwwJzxrm3FGGOGrGXFEiQvn6KPnOZ3KGkVLXmEm+oTTCqz0hLXcCU6iMzDMcsFwGeBkds1wxiTFtrVSeszf2bsMScRGDvO73DSqqdb8YY6mHtSn/t1NNaTWzaFwJjidIU2LIlWfz0Y+15E7gWeTklExphRY+/Ly+lu2UHJvNE3QEdgbAmB8ZMGnFo43JQdY35FDXWi4xrgoGQGYowZfVqeWkKgpIyxR37S71B8kV9Z4w1p3weNRLykkiWN9JBgUhGRVhFpif4F/gJ8N7WhGWNGsu69u9m7+jGKP7ZgxA8g2ZdgZQ3hxnpUD2iyBrwHQDXUllUllUSrv7KjMs8YkzVan30Y7ewYlVVfUcHK2WhoL13bm8krrzhge08jfRb+4ALPAAAZh0lEQVSM+RU10ND3/U6/pqq1yQ3HGDNatK54gGBlDfmDmFJ3pIkdA6y/pJJfmR09v2DgkspP+9mm2FAtxpgh6Nz8Pu1vv0j5wisREb/D8U3PfPVNDXHblcJN9QRKJhAoKUtzZEM30ND39qCjMSbpWlZ6HUqLP/5ZnyPxV2BcOTlF43uGtu+to7Euq6q+IPHnVBCRw4FD8Z5TAUBV70pFUMaYkUtVaVmxhMLDjydvYqXf4fhKRAhWzoo7BL6qEm6sp/gj/+pDZEOXaO+vq/DmpP8l3jAt/wOcnsK4jDEjVKi+ls5N71Ey70y/Q8kI+ZWz43Yr7t69jcieXVkzOnFUos+pnAWcCGxS1S8BRwCj6/FXY0xStKxYggQLKDruVL9DyQjBihoirTvp2r19v/X7en6NzKTSrqoRoEtESoAtQFXqwjLGjETaGab1mWUUHXtK1gw7kmr7Guv3rwKLtrOM1KSySkRKgd8Cq4Fa4LmURWWMGZH2rnmCyJ6do/rZlN56kkqvCbvCTfXkFBaRO2GKH2ENWaIPP/6nW7xVRP4OlKjqq6kLyxgzErU8tYRA6UTGHDHP71AyRm55BVIwJk5JxRvzK9u6XCfaUL9MRBaKyFhVXWcJxRgzWN2tO9lT+zjFH/ssEki44+mIJyIEK2oO6Fbc0VhPsCq7qr4g8eqvnwIfA94UkSUicpaIFAx0kDHGRLU++xfo6rReX3F4SWXfaMXde3fTvXNzVo35FZVQUlHVFa4KbAbwG+BsvMZ6Y4xJSMuKBwhOO4T86Yf7HUrGya+qoWvHRrr3tgDZ2/MLBjH0vYgUAmcCFwPHAHcO58IiEhCRNSLysHs/XUReEJEGEblPRIJufb573+C2V8ec40q3/h0ROXk48RhjUie88T1CdaspmXdm1rURpEPPGGBubpVsHEgyKtE2lfuBt/DG+roFmKmqXx/mtb/hzhl1A/AzVZ0F7AS+4tZ/Bdjp1v/M7YeIHAqcAxwGnAL8SkQCw4zJGJMCLSuXgMioH5alL727FYeb6pG8fPImZt+TG4mWVG7HSyQXq+py98zKkIlIJXAq8Dv3XvAS1hK3y53AArc8n32loiXAiW7/+cBiVe1Q1feABuDY4cRljEk+VaV15VLGfPBj5JVN9TucjJQ36WAkN9jTWO/1/JqJBLLvd3K/SUVEvgOgqo8CZ/Ta9uNhXPdm4DtANDmVAbtUtcu9bwSi40BXABtcHF3Abrd/z/o4x/T+HBeJyCoRWbV169ZhhG2MGazQOy/RuXm9PZvSDwnkkjd1Rk+1V7Q7cTYaqKRyTszylb22nTKUC4rIacAWVV09lOOHQlVvU9W5qjp34sSJ6bqsMQY3LEt+IUUf/ozfoWS06CyQkY42OrduyMr2FBg4qUgfy/HeJ+p44HQRWQcsxqv2+jlQKiLRzuuVQJNbbsINCeO2jwO2x66Pc4wxJgNEwiFan/0LRR/+DDmFY/0OJ6MFK2ro3PI+HeveBNWs7PkFAycV7WM53vuEqOqVqlqpqtV4JaEnVfU8YDnewJUAFwAPueVl7j1u+5PqTei8DDjH9Q6bDtQALw4lJmNMauytfYLI3t32bEoC8itrQJU9L/4dyM7uxDDwMC1HiEgLXqmk0C3j3if74cfvAotF5FpgDV7nANzfu0WkAdiBq5JT1Tdcr7Q3gS7gElXtTnJMxphhaHnqAQLjJzHmgx/3O5SMF63u2vP8XyEnQHDydJ8jGpqBZn5MadcDVX0KeMotryVO7y1VDQGf6+P464DrUhehMWaoulu2s3fNk4w/9d+yshdTuuVNnQE5OXRuXk/e1JlIXtDvkIYk4YcfjTFmMFqfWQbdXdbrK0E5efnkTaoGvIm7spUlFWNMSrSsWEJ+9aHkVx/qdyhZoWXlUrq2NwPQ9trTtKxc6nNEQ2NJxRiTdOGmBkINayi2UkpCWlYuZfOtV6DhEACR9lY233pFViYWSyrGmKRrWfkg5ORQYsOyJGTbouvRcPt+6zTczrZF1/sU0dBZUjHGJJVGIrSsfJAxH5pH7vhJfoeTFaLVXomuz2SWVIwxSdX+9ot0bW20BvpByO1jTLS+1mcySyrGmKRqWfEAUjCWomOHNJLTqFS+8EokWLjfOgkWUr6w9+hYmc/m9DTGJE2ko509zz1M8XGnklMwxu9wskbJPG+83m2LrqdrezO5ZVMpX3hlz/psYknFGJM0e1c/RqSt1YZlGYKSeWdkZRLpzaq/jDFJ0/LUEnLLplB42Ef9DsX4xJKKMSYpunZvY+/Lyyn++Bk2LMsoZknFGJMUrU//GSLdlHzCen2NZpZUjDFJ0bJiCfkzPkh+1Qf8DsX4yJKKMWbYOjbU0bH2VXs2xVhSMcYMX8vKJZAToPhjC/wOxfjMkooxZlg0EqH1/5Yy9shPkls60e9wjM8sqRhjhqX9zefo2tZMsT2bYrCkYowZppYVD5AzppiiY072OxSTASypGGOGLNLRRutzf6XouFPJyS8c+AAz4llSMcYM2Z4X/46G9lqvL9PDkooxZshaVjxIbnkFhYce53coJkNYUjHGDEnXzi20vbqCknlnIjn2VWI89i/BGDMkrU//CSIRSj5hvb7MPpZUjDFD0rJiCfmzjiRYUeN3KCaDWFIxxgxax/q36Fj3hs2bYg5gk3QZYxLWsnKpNzvhtiZvRU6evwGZjGNJxRiTkJaVS9l86xVouL1n3ba7riYwpmhEzFhoksOqv4wxCdm26Pr9EgqAhtvZtuh6nyIymciSijEmIV3bmwe13oxOllSMMQNSVXIKiuJuyy2bmuZoTCazpGKM6ZeqsvWOq4i0t0LO/nPPS7CQ8oVX+hSZyUSWVIwxfdLubjbf+m12/fV3lJ76VSZ97WZyyytAhNzyCiZdfKM10pv9WO8vY0xc2tXJpl9eSuszDzHhrG9S9vkrEBHG2bMpph9pL6mISJWILBeRN0XkDRH5hls/QUQeE5F693e8Wy8i8gsRaRCRV0VkTsy5LnD714vIBen+LMaMVJFwiOb//SqtzzxE+fn/Rfk530FE/A7LZAE/qr+6gG+p6qHAccAlInIo8D3gCVWtAZ5w7wH+Bahxr4uAX4OXhICrgA8DxwJXRRORMWboIqE2mn9yAXtX/YOD/u3HTFhwid8hmSyS9qSiqhtVtdYttwJvARXAfOBOt9udwAK3PB+4Sz3PA6UiMgU4GXhMVXeo6k7gMeCUNH4UY0ac7r0tNF57Lm2vP8Okr91M6SkX+h2SyTK+tqmISDVwFPACMElVN7pNm4BJbrkC2BBzWKNb19f6eNe5CK+Uw7Rp05ITvDEjTHfLdhqvXUjH+28z5bJbKf7IaX6HZLKQb72/RKQIeBD4pqq2xG5TVQU0WddS1dtUda6qzp04cWKyTmvMiNG1czMbfnAm4cZ6pn7n95ZQzJD5klREJA8vodyjqkvd6s2uWgv3d4tb3wRUxRxe6db1td4YMwidWxvZ8N+fpXNbIxXfv5uiOSf6HZLJYn70/hLgduAtVb0pZtMyINqD6wLgoZj1X3S9wI4DdrtqskeBk0RkvGugP8mtM8YkKNz8Lhv+ewHdrTup/MF9jDn8eL9DMlnOjzaV44EvAK+JyMtu3feBnwD3i8hXgPXA2W7b34DPAA1AG/AlAFXdISI/Al5y+12jqjvS8xGMyX4d69+i8UfnQCRC5Q8foGD64X6HZEYA8ZovRo+5c+fqqlWr/A7DGF+FGl6h8dqFSDCfqqvus9kbTb9EZLWqzk1kXxumxZhRpu3NF2i8+nMExhRT9aM/WUIxSWVJxZhRZO/LT9F07bkExk+i8kdLCU462O+QzAhjScWYUWLPi4/Q/JMLCU6dQdWP/kSeDVlvUsAGlDRmhOqZT357MzlFpURad1FQcxQV//VHAkWlfodnRihLKsaMQL3nk4+07gTJoeTEhZZQTEpZ9ZcxI1C8+eTRCDuW/MyfgMyoYUnFmBEmvGkdXdviDy5h88mbVLPqL2NGAO3qZM9Lj7L7sT/S9urKPvez+eRNqllSMSaLhTevZ/fj99Cy/D66d20lt3wqZZ//NjK2lO1/vG6/KjCbT96kgyUVY7KMdnWyZ9U/2P2Pu71SSU4OY+d8mnH/fD5jjzwBCQQAyC0q7en9lVs2lfKFV9p88iblLKkYkyXCm9fT8vgidi9fvF+ppORT58R95qRk3hmWREzaWVIxJoP1lEoe+yNtr6xwpZITGffPX9ivVGJMprCkYozPYh9SjFZTFX5gLrufWMTuJxfTvWsLuWVTKDv7W16ppDzuBKfGZARLKsb4qPdDil3bmtj0y0tBI16p5KhPeaWSo05AAva/q8l89q/UGJ+oKlvv/lHchxRzxhRz8E1PWqnEZB1LKsakSfeeXYQaXiZUX0uofg2hhjV0t8SfVy7SvscSislKllSMSQHtDNOx/k3a62sJ1b9MqKGWzua13kYRghU1jD36n9nz0qNE9uw64Hh7SNFkK0sqxiQoXoN6ybwzUFU6t7y/rwRSv4aO915HOzsACJROpGDWUZR84mwKa44if+YRBMaW9Jwztk0F7CFFk91sOmFjnL6SRnRb7y9/ArkEKz9A985NdLdsB0CCBRTM+BAFNUe51xxyyysQkSFd15hMMJjphC2pmFFhoC/u+CWGAsZ95svkjZ/MtntvQEN7DzxxIJeSeWdQMGsOBTVHkT/tECQ3Lx0fyZi0GUxSseqvNEnk16j9Yj1QMu5bvG67m2+9gkhnmMLZc+jc8j5bbv9/B/TC0nCIXX/+Vf8BRrqZfMnNyfmwxowAllQSkMiX1lC+1IA+q1fi7ZOMWBPdJ13XGUyV02DvW9Gxp9C5tZGtd1wVJ2G0s+XXlyfwSYUZv13D+1eeGnc4eWtQN2Z/Vv01gL4aUiddfCMl886Ivz0vn3Gn/huF0w+ne89utt3zYyJtLQecO2dMMRPO/CY5BWPZtvgGb3a+XnLLK5hx60v7xTOYev/YWBPdJ13X6evelXx6IXkTq9h+/0/jVjlJbpDCw48np2AMe9csRzvaDtgHyfEeIBzA5G/cQt7EKjbedDFdOzYesD16/xO9b8aMRNam0o/BJpW1Fx8T9xeq5OUTrJpNx7o3IdKdzBAPMOHMbxKsqqFz8wZ2PPjzA+r9J3zuWxTWHEnzT/+dSOuBzz1IYRHjTlwIQMsTi4i07zlgn5ySCUz95q/JGTuOtjefY/u9N6Dh0L5z5OUzfv5/UFAzh023fCNuApSCMRQd+xm0q4O9qx7b7/gegTyCU2eg3V10blo35HuXP+tINNRGuLGuz33KF15J7sQKtt5xNd27tx6wPTZhJ5oErXrSjEaWVPox2KRS97kK6OMejZ1zIntrn+jjSOHgm54gUFTK+98/ja5tB864l1teQfXPlhMJtbH+OyfTvXPzgacJ5Hq/uCMD/+ruT05hEaoav7E5ifIOmga5eXQ2v9vnPkUf/gwEAux59i997CHMvPNN1n/r0/GrnGKSQV9Jf7AJI7qfJQ1jDjSYpGLTCQ+grzrz3PIKKr5/N7l9PPWcWz6V/GmHkDthMuULv48EC/fbHn0WIaewiNzxBzHxC/8dd5/Jl9zMrHve5eCbnuw3zsofPkBg/EF9xjrr7jpq/ljfZ7yB8QdRec1Spn73D/1cRai6/q8Exk/q8zrTf/U803/xf/3clwqmXvE7pl7+m37vXWDsOMoXXtnnfYtKZJ+SeWcw6eIbveuJkFteEbfaqmTeGcy49SVmP9DEjFtfsoRizBBYUhnAQF9ayfpS62+fnLx8L0H180U95vDjmfiFHwz5S3jiF37AmEOPo+iYk/v9si+sOarPBDjYL/uB9hnufYtlCcOY9LDqrwQMt/dXsiSr3n9oz2wk/zqJ7mOM8Ze1qfQj2x9+TGcCsy97YwxYUulXticVY4xJN2uoN8YY4wtLKsYYY5LGkooxxpiksaRijDEmaSypGGOMSZpR1/tLRLYC64d4eDmwLYnhpFI2xQrZFW82xQrZFW82xQrZFe9wYj1YVScmsuOoSyrDISKrEu1W57dsihWyK95sihWyK95sihWyK950xWrVX8YYY5LGkooxxpiksaQyOLf5HcAgZFOskF3xZlOskF3xZlOskF3xpiVWa1MxxhiTNFZSMcYYkzSWVIwxxiSNJZVeROT3IrJFRF7vY7uIyC9EpEFEXhWROemOMSaWgWL9pIjsFpGX3esH6Y6xVzxVIrJcRN4UkTdE5Btx9smI+5tgrBlzf0WkQEReFJFXXLxXx9knX0Tuc/f2BRGpTn+kCcd6oYhsjbm3/+ZHrDHxBERkjYg8HGdbRtzXXjH1F29q762q2ivmBcwD5gCv97H9M8AjgADHAS9kcKyfBB72+57GxDMFmOOWi4E64NBMvL8Jxpox99fdryK3nAe8ABzXa5//BG51y+cA92VwrBcCt/h9X2PiuRxYFO+/d6bc10HEm9J7ayWVXlR1JbCjn13mA3ep53mgVESmpCe6/SUQa0ZR1Y2qWuuWW4G3gN5zF2fE/U0w1ozh7tce9zbPvXr3wpkP3OmWlwAnioikKcQeCcaaMUSkEjgV+F0fu2TEfY1KIN6UsqQyeBXAhpj3jWTwlw3wEVfN8IiIHOZ3MFGuiuAovF+psTLu/vYTK2TQ/XVVHi8DW4DHVLXPe6uqXcBuoCy9UXoSiBXgTFcFukREqtIcYqybge8AkT62Z8x9dQaKF1J4by2pjGy1eGP2HAH8Evizz/EAICJFwIPAN1W1xe94+jNArBl1f1W1W1WPBCqBY0XkcD/j6U8Csf4FqFbVDwGPsa8kkFYichqwRVVX+3H9wUow3pTeW0sqg9cExGb2Srcu46hqS7SaQVX/BuSJSLmfMYlIHt6X9D2qujTOLhlzfweKNRPvr4tlF7AcOKXXpp57KyK5wDhge3qj219fsarqdlXtcG9/Bxyd7tic44HTRWQdsBj4lIj8sdc+mXRfB4w31ffWksrgLQO+6HopHQfsVtWNfgcVj4hMjtbtisixeP+9ffsScbHcDrylqjf1sVtG3N9EYs2k+ysiE0Wk1C0XAv8MvN1rt2XABW75LOBJdS236ZRIrL3a0U7Ha9NKO1W9UlUrVbUarxH+SVU9v9duGXFfIbF4U31vc5N5spFARO7F69VTLiKNwFV4DYmo6q3A3/B6KDUAbcCX/Ik0oVjPAv5DRLqAduAcv/6xO8cDXwBec/XpAN8HpkHG3d9EYs2k+zsFuFNEAnjJ7X5VfVhErgFWqeoyvCR5t4g04HXwOCeDY71URE4HulysF/oUa1wZel/7lM57a8O0GGOMSRqr/jLGGJM0llSMMcYkjSUVY4wxSWNJxRhjTNJYUjHGGJM0llRMVhORPQns800RGZPEay4QkUOTeL5nh3HsHvd3qogs6We/UhH5z6Fex5hEWVIxo8E3gUElFfcMRV8WAElLKqr60SSco1lVz+pnl1K80XSNSSlLKmZEEG9uk6fcAHlvi8g97qn8S4GpwHIRWe72PUlEnhORWhF5wI3vhYisE5EbRKQW+JyIfFVEXnIDRj4oImNE5KN4TyHfKN5cFDNF5EgRed4N0PcnERnvzveUiPxMRFaJyFsicoyILBWRehG5Nib2PTHL3xWR19w1fxLnc053sb/W6xzV4ubVEZHDxJuv5GUXUw3wE2CmW3ejiBSJyBPuHrwmIvNjzvOWiPxWvLlO/uGeekdEZonI4y62WhGZ6dZf4e7TqxJnbhQzyqRqTH172SsdL2CP+/tJvNFhK/F+LD0HfMxtWweUu+VyYCUw1r3/LvCDmP2+E3Puspjla4Gvu+U7gLNitr0KfMItXwPc7JafAm5wy98AmvGeJs/HG325rNdn+BfgWWCMez8hzuddBnzRLV8Sc2w1bl4dvMEtz3PLQaAwdrtbnwuUxNyTBrx5TqrxnrQ+0m27HzjfLb8AfNYtF+CV/k4CbnPH5gAPA/P8/ndhL/9eNkyLGUleVNVGADe0SjXwdK99jsOrunrGDdsVxEtAUffFLB/uSgOlQBHwaO8Lisg4oFRVV7hVdwIPxOyyzP19DXhD3ThmIrIWbxDC2LHCPg38QVXbAFQ13lw5xwNnuuW7gRvi7PMc8F/izauxVFXr5cDpPQT4sYjMwxsivQKY5La9p6rRoWlWA9UiUgxUqOqfXGwh9zlOwkssa9z+RUANXuI2o5AlFTOSdMQsdxP/37fgzd9xbh/n2BuzfAewQFVfEZEL8UpDQ40p0iu+SB/xJaLfsZVUdZGIvIA3UdPfROTfgbW9djsPmAgcraqd4o1qW9ArZvDuY2E/lxPgelX9zSDiNyOYtamY0aAVb0pggOeB40VkFoCIjBWR2X0cVwxsFG8I/PPinU9VdwM7ReTjbtsXgBUMzWPAl6I91URkQpx9nmHfgIXnxdmOiMwA1qrqL4CHgA+x/z0Ab3j2LS6hnAAc3F9g6s1+2SgiC9w18l2cjwJfjmmXqhCRgxL6tGZEsqRiRoPbgL+LyHJV3Yo3Kuu9IvIqXlXRIX0c99947QjPsP/Q7IuBK0RkjWusvgCv4f5V4Ei8dpVBU9W/41WXrXLVd9+Os9s3gEtE5DX6nhHzbOB1d47D8aZn3o5X5fe6iNwI3APMdef5IgcOkx/PF/BGuH0Vr+1nsqr+A28u9OfcuZawf/Iyo4yNUmyMMSZprKRijDEmaSypGGOMSRpLKsYYY5LGkooxxpiksaRijDEmaSypGGOMSRpLKsYYY5Lm/wOM6oX8lz8LBwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", @@ -271,7 +165,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.7" } }, "nbformat": 4, From c19b78d2df0b6d46bbb6d58503a80b95ffecad2b Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Mon, 25 Feb 2019 17:36:30 -0500 Subject: [PATCH 013/116] Shots defaults for statevector_simulator --- community/aqua/general/input_files/H2-0.735.json | 1 - community/aqua/general/input_files/eoh.json | 1 - community/aqua/general/input_files/vqe.json | 1 - community/aqua/optimization/input_files/maxcut.json | 1 - 4 files changed, 4 deletions(-) diff --git a/community/aqua/general/input_files/H2-0.735.json b/community/aqua/general/input_files/H2-0.735.json index f93007ca8..560f20117 100644 --- a/community/aqua/general/input_files/H2-0.735.json +++ b/community/aqua/general/input_files/H2-0.735.json @@ -7,7 +7,6 @@ "backend": { "provider": "qiskit.BasicAer", "name": "statevector_simulator", - "shots": 1, "skip_transpiler": false }, "initial_state": { diff --git a/community/aqua/general/input_files/eoh.json b/community/aqua/general/input_files/eoh.json index 2b6d0014d..11e2cd71c 100644 --- a/community/aqua/general/input_files/eoh.json +++ b/community/aqua/general/input_files/eoh.json @@ -10,7 +10,6 @@ "backend": { "provider": "qiskit.BasicAer", "name": "statevector_simulator", - "shots": 1024, "skip_transpiler": false }, "initial_state": { diff --git a/community/aqua/general/input_files/vqe.json b/community/aqua/general/input_files/vqe.json index c9e792e9e..ffdf3968f 100644 --- a/community/aqua/general/input_files/vqe.json +++ b/community/aqua/general/input_files/vqe.json @@ -7,7 +7,6 @@ "backend": { "provider": "qiskit.BasicAer", "name": "statevector_simulator", - "shots": 1024, "skip_transpiler": false }, "initial_state": { diff --git a/community/aqua/optimization/input_files/maxcut.json b/community/aqua/optimization/input_files/maxcut.json index 9ca120f25..f14958c22 100644 --- a/community/aqua/optimization/input_files/maxcut.json +++ b/community/aqua/optimization/input_files/maxcut.json @@ -7,7 +7,6 @@ "backend": { "provider": "qiskit.BasicAer", "name": "statevector_simulator", - "shots": 1024, "skip_transpiler": false }, "initial_state": { From 00df8c39a11be257d50d0f1c3ac355d00545dcc2 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Tue, 26 Feb 2019 11:24:17 -0500 Subject: [PATCH 014/116] add example: 3-Coloring oracle by reduction to SAT --- ...Coloring Oracle via Reduction to SAT.ipynb | 225 ++++++++++++++++++ 1 file changed, 225 insertions(+) create mode 100644 community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb diff --git a/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb b/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb new file mode 100644 index 000000000..8b041dc44 --- /dev/null +++ b/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb @@ -0,0 +1,225 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Constructing Quantum Oracles for 3-Coloring Problems via NP-Reduction\n", + "\n", + "In this notebook, we demonstrate how to easily construct quantum oracles for [3-Coloring problems](https://en.wikipedia.org/wiki/Graph_coloring) using Qiskit Aqua via simple NP-Reduction to [SAT problems](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem).\n", + "\n", + "3-Coloring is the decision problem of determining whether a graph's vertices can be colored using only 3 different colors s.t. no neighboring vertices have the same color. SAT is also a decision problem where we want to see if an \n", + "given conjunctive normal form (CNF) can have a satisfying assignment.\n", + "\n", + "Aqua already provides an `LogicExpressionOracle` class capable of building Quantum Oracle circuits from arbitrary logic expressions, with support for the [DIMACS CNF format](https://www.satcompetition.org/2009/format-benchmarks2009.html). So, to take advantage of that, we in this notebook aim to reduce 3-coloring problems to SAT problems, and then directly use the `LogicExpressionOracle` class to build the Oracle circuit.\n", + "\n", + "For 3-coloring problem instances, we work with the [DIMACS graph coloring format](https://mat.tepper.cmu.edu/COLOR/instances.html), which basically indicates the number of vertices and edges on the `'p edge'` line, followed by the `'e'` lines listing all edges (vertex pairs). For example we can have the following toy instance, and easily parse it." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The input 3-coloring instance has 3 vertices and 3 edges: [[1, 2], [1, 3], [2, 3]].\n" + ] + } + ], + "source": [ + "three_coloring_instance = '''\n", + "c This is an example DIMACS 3-coloring file\n", + "p edge 3 3\n", + "e 1 2\n", + "e 1 3\n", + "e 2 3\n", + "'''\n", + "\n", + "import itertools\n", + "\n", + "def parse_3_coloring_instance(instance):\n", + " ls = [\n", + " l.strip() for l in instance.split('\\n')\n", + " if len(l) > 0 and not l.strip()[0] == 'c'\n", + " ]\n", + " headers = [l for l in ls if l[0] == 'p']\n", + " if len(headers) == 1:\n", + " p, sig, nv, ne = headers[0].split()\n", + " assert p == 'p' and sig == 'edge'\n", + " elif len(headers) > 1:\n", + " raise RuntimeError('Invalid input format for 3-Coloring.')\n", + " h_nv, h_ne = int(nv), int(ne)\n", + " edges = [[int(v) for v in l.split()[1:]] for l in ls if l[0] == 'e']\n", + " nv = len(set(list(itertools.chain.from_iterable(edges))))\n", + " ne = len(edges)\n", + " if not h_nv == nv:\n", + " print((\n", + " 'Warning: inaccurate vertex count {} in header. '\n", + " 'Actual vertex count is {}.'\n", + " ).format(h_nv, nv))\n", + " if not h_ne == ne:\n", + " print((\n", + " 'Warning: inaccurate edge count {} in header. '\n", + " 'Actual edge count is {}.'\n", + " ).format(h_ne, ne))\n", + "\n", + " return nv, ne, edges\n", + "\n", + "nv, ne, edges = parse_3_coloring_instance(three_coloring_instance)\n", + "\n", + "print('The input 3-coloring instance has {} vertices and {} edges: {}.'.format(nv, ne, edges))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For any 3-coloring problem instance, we can use the following simple strategy to reduce it to a SAT problem:\n", + "\n", + "- For each vertex $v$, we create three boolean variables $v_r$, $v_g$, and $v_b$, corresponding to the vertex $v$ being of color red, green, and blue, respectively.\n", + "- For each vertex $v$, we then have the constraint that it needs to be of one and only one color. Therefore, $v_r \\vee v_g \\vee v_b = True$, and $v_i \\wedge v_j = False$ for $i,j \\in \\{r,g,b\\}, i \\ne j$.\n", + "- For each edge $(v, t)$, we have constraint that they cannot both be of the same color. Therefore, $v_i \\wedge t_i = False$ for $i \\in \\{r, g, b\\}$.\n", + "\n", + "With this simple strategy and the help of the [De Morgan's Law](https://en.wikipedia.org/wiki/De_Morgan%27s_laws), we can carry out the reduction as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The input 3-Coloring instance can be reduced to the following SAT instance:\n", + "\n", + "p cnf 9 21\n", + "1 2 3 0\n", + "-1 -2 0\n", + "-1 -3 0\n", + "-2 -3 0\n", + "4 5 6 0\n", + "-4 -5 0\n", + "-4 -6 0\n", + "-5 -6 0\n", + "7 8 9 0\n", + "-7 -8 0\n", + "-7 -9 0\n", + "-8 -9 0\n", + "-1 -4 0\n", + "-2 -5 0\n", + "-3 -6 0\n", + "-1 -7 0\n", + "-2 -8 0\n", + "-3 -9 0\n", + "-4 -7 0\n", + "-5 -8 0\n", + "-6 -9 0.\n" + ] + } + ], + "source": [ + "def reduce_to_three_sat(nv, ne, edges):\n", + "\n", + " def _get_vertex_rgb(v):\n", + " return 3 * v - 2, 3 * v - 1, 3 * v\n", + "\n", + " def _get_vertex_constraints(v):\n", + " r, g, b = _get_vertex_rgb(v)\n", + " return [\n", + " '{0} {1} {2} 0'.format(r, g, b),\n", + " '{} {} 0'.format(-r, -g),\n", + " '{} {} 0'.format(-r, -b),\n", + " '{} {} 0'.format(-g, -b)\n", + " ]\n", + "\n", + " def _get_edge_constraints(v1, v2):\n", + " r1, g1, b1 = _get_vertex_rgb(v1)\n", + " r2, g2, b2 = _get_vertex_rgb(v2)\n", + " return [\n", + " '{0} {1} 0'.format(-r1, -r2),\n", + " '{0} {1} 0'.format(-g1, -g2),\n", + " '{0} {1} 0'.format(-b1, -b2)\n", + " ]\n", + "\n", + " buf = list()\n", + " buf.append('p cnf {0} {1}'.format(nv * 3, nv * 4 + ne * 3))\n", + " buf.extend(itertools.chain.from_iterable([\n", + " _get_vertex_constraints(v)\n", + " for v in range(1, nv + 1)])\n", + " )\n", + " buf.extend(itertools.chain.from_iterable([\n", + " _get_edge_constraints(v1, v2)\n", + " for v1, v2 in edges])\n", + " )\n", + " return '\\n'.join(buf)\n", + "\n", + "sat_instance_cnf = reduce_to_three_sat(nv, ne, edges)\n", + "print('The input 3-Coloring instance can be reduced to the following SAT instance:\\n\\n{}.'.format(sat_instance_cnf))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we have successfully reduced the 3-Coloring problem instance to its equivalent SAT instance, we can go ahead using Aqua's `LogicExpressionOracle` to build the oracle and construct the quantum circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AABdJCAYAAAAWXWQkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XtUHPXdP/D3ssR4yV6s5LQnl4WANqF5lMF1DSKy5FFcbZJuUqStbTliYtOnv4NKzUl3s7ZKxPJsKNpEe2KkraHNzcdU6iJUgo1Abs0uCy5ovDbgYhJDpGFZwHIJO78/cpg6QpIdMrMzsJ/XOXNO9rvf/c5n57OZD7MzO18Vy7IsCCGEEBKWGLkDIIQQQqYSKpyEEEKIAFQ4CSGEEAGocBJCCCECUOEkhBBCBKDCSQghhAhAhZMQQggRgAonIYQQIgAVTkIIIUQAKpyEEEKIAFQ4CSGEEAGocBJCCCECUOEkhBBCBKDCSQghhAgQK3cAkVBYWAifzyd3GByGYbB582a5w4goygEhZLqIiiNOn88naKc9PDyMxsZG9PX18doHBwfR2NiIgYGBiMUyXUzmfUuVh2jNASFEJKyItm/fzprNZkGvufnmm9na2loxwxjHbDYLiqu6upq96qqr2JGREV77K6+8wmo0GnZ0dDRisUwXk3nfUuUhWnNACBGHpEeco6OjWL9+PWbPng2NRoOcnBx0d3fz+litVlRVVUkZhmBerxcMwyA2lv9NtsfjgdFoRExMVByoy47yQAhRIkn3PE6nEy6XC263GydOnAAA5OXl8footXCaTKZx7R6PZ8J2qfT19aGtrW3cHxtKEAwG0dbWhrNnz0q2DiXkIRQK4aOPPsLHH3+MUCh02eP19PSgra0Nvb29IkRHCJGDpIWzvLwcNpsNiYmJ0Ol0KC0tRW1tLfx+P9cnJSUFarUazc3NUoYiyEQ77FAohJaWFphMJnR1dSE9PR1ZWVlYsmQJ9u/fL3oMR44cQXx8PFJSUjBnzhzs2LFD9HVM1ltvvYV58+Zxse3du1eS9cidh3//+9+49957sXDhQnzzm9/EihUrMDQ0NOnx/vrXv2LOnDlISUnBvHnz8Oabb4oYLSEkYsL9Tvd///d/2RtvvPGifb58jrOnp4cFwL799tu8PlqtlnW5XLy2Rx55hP3Vr34VbiiCCTmndeLECRYA+9577/Ham5ubWQBsZ2cne+7cOfbcuXMsy7Ls8ePH2VtuuUXUWEKhEDtnzhw2JiaGBcACYGNjY9lTp06FvR6pnDt3jr322mu52FQqFTtz5kz2X//610VfJ/S8opR5CDeWjRs3ctt/bCkpKQn7PXxZb28ve+WVV7IqlYoFwMbExLBarXbc+VtCSOQ9+uij7KOPPsp7fDGSXRzU2dnJAmDb29t5fQwGA7tjxw5e2759+9ibb75Z0Lq+ukO71BLuTvvo0aMsgHFFat26dWxaWtq4/s3Nzezq1avDjttsNguOfbosQgqnlHmI5hzQQgst4S0XI9lXtRqNBgDGncsJBALQarW8Nr/fD4PBIGh89nzRD2sxm81hj5ucnAydTgen04lAIICzZ89i27Zt2Lp1K5xOJ9evo6MDGRkZsFgsWLVqlaDYzWbzJWO+4YYbeBe/XH311fj8888FvW8pllAohHnz5vFi02q16O3tFS0HkchDODl45plnxr3uueeem9R26+/vh16v57ZbTEwMvvGNb+DcuXOy55QWWqJ9MZvNvH3CpfZXkhVOvV4Pg8GAlpYWrq29vR3BYBA33XQTr29VVRWsVqtUoQii1WpRXV0Nr9eLefPmYdGiRaisrERtbS1vYy5YsACHDh2C2+1GQUGB6HG89tpriI+P5x6/+uqriIuLE309QqlUKrz++uuYO3cu1+Zyucb9MXS5lJCHRx55BA8++CD3+Cc/+Qn+3//7f5Ma65prrkFVVRW+9rWvAQC+8Y1voLq6Gmq1WpRYCSGRI+mdg9auXYtNmzZh6dKluO6662Cz2WCxWJCQkMD1GRgYQH19PbZv3y5lKIJkZGTg8OHDF3x+aGgIM2fOBHB+Bz9r1izRY/jWt76F48ePIxAI4Gtf+xruuece0dcxWQzDwO/3c7FlZWVJsh658xAbG4uXXnoJzz//PGbNmoXy8vLLGu+OO+5AV1cX1Go1Tpw4AZVKJVKkhJBICrtwlpSUYNeuXTh27FjYg9vtdvT09MBkMmFoaAjZ2dnYuXMnr09dXR1SU1MVcTQVrqamJjgcDqjVaoyMjGDLli2SrEelUuHaa6+VZOzLpYTYIpWHa665RrSxxr6qpaJJyNQVduF0OBxwOByCBler1SgrK0NZWdkF+yjpa9pwZWRk4MCBA3KHEfUoD4QQOch+k/f4+Hjk5uZKvh6fzyfZV4pC42AYRu4wZEE5IIRMB6IWToZhkJ+fL+g1RUVFYoYwISXtJBmGUVQ8kaKk9xytOSCEiEPFsiwrdxDk4lQqFZSaJiXHJiYx32e0bDNCpoqxb8IaGhq4x2P/ngjdJZsQQggRgAonIYQQIgAVTkIIIUQAKpyEEEKIALL/HCUSCgsL4fP55A6DwzAMNm/eLHcYEUU5IIRMF6IecVZUVAj+nZ7RaMS+ffvEDGMcn88naKc9PDyMxsZG9PX18doHBwfR2NiIgYGBiMUyXUzmfUuVh2jNASFEHJIecY6OjsJut6OiogKDg4O4++678eKLL/Jur2e1WlFVVQWLxSJlKGAY5qKXF39ZTU0NcnNz4Xa7ERv7n020d+9erFmzBm63mzc7iBBKuAGAXITkAJAuD9GcA0LI5ZP0HKfT6YTL5YLb7caJEycAAHl5ebw+Y4VTSbxeLxiG4e2sAcDj8cBoNE66aBJhKA+EECWSdM9TXl4Om82GxMRE6HQ6lJaWora2Fn6/n+uTkpICtVqN5uZmKUMRxOv1wmQyjWv3eDwTtkthZGQETz31FJYvXw4A6Onpich6wzE0NIRf/epXXGzBYFCS9SghD/v378d9990HAIKOliPhb3/7G3JycvC9730PR44ckTscQqJG2IXT6XSOm0fzYgKBADo7O2E0Grm2pKQkaLVatLa28vparVa4XK6wx5baRDvsUCiElpYWmEwmdHV1IT09HVlZWViyZAn2798vegw/+clP8OSTT+KNN94AANx1110YHh4WfT2T8aMf/QhPP/00F9u9996Lc+fOib4eufPQ2NiIu+++G3/9618BAHfeeedFpzmLpNraWixfvhyvvfYaXn31VWRlZSnqj09CprOwC6fdbkdbW1vYA49d0KHT6Xjter1+3BHKsmXLUFNTE/bYUjp58iROnz7NK/jA+QtK+vv7kZaWhri4OBw8eBANDQ3Ys2cP7Ha7qDGMjIxgx44dAM4XCgBoaWnBu+++K+p6JqOvrw+vvvoqgP/EduTIERw/flzU9SghD1/NAYBx0+LJ5U9/+hNUKhVCoRBCoRDOnTuH3bt3yx0WIVFBsouDNBoNAKC3t5fXHggEoNVqeW1+vx8Gg0HQ+ELnMzSbzWH1GzsXq9free27d+9GWloa5s+fz2sPBAKCjsSB80cyk5mP8atFREkWLVp0yT7h5gCQPg+TyUEoFMK2bduwbds2Qa+biNjzcbIsi2effRbPPvusqOMSEk3C/X8p2TlOvV4Pg8GAlpYWrq29vR3BYHDcDm4yc3KyLBv2ImSHnZycDJ1OB6fTiUAggLNnz2Lbtm3YunUrnE4n16+jowMZGRmwWCxYtWqVoNjNZvMlY37iiScA/CeR3/nOdzA6OirofUu1rFu3jhfb/fffj1AoJFoOIpGHcHLw7rvv8iax1mg0+OCDDy57+wHCPr8TLc3Nzbjyyiu52K699lp0dHTI/tmghZapuJjNZt4+4ZL7K1ZE27dvZ81mM/f46aefZr/5zW+y7e3tbG9vL3vfffexFouF95r+/n72mmuuYT///HMxQ+Exm828uC7l4MGDbHp6OnvNNdews2fPZrOzs9nGxsYJ+x4/fpyNj48XPZZQKMS+/PLL7Lp161gA7PDwcNjrkFooFGJ37NjBxXbu3LlLvkZoDlhWujwIieWDDz5gH3/8cRYA+/HHH4cZ+cWJ9d/unXfeYR0OBwuA/eSTT0QZk5Bo9NV9wqX2D2EfcZaUlGDx4sVh/0UPnD8vumLFCphMJsydOxejo6PjzhHV1dUhNTWV99tOuWVkZODw4cPo7+/HmTNnUFdXh8zMTO75oaEh7t9arRazZs0SPQaVSoXvf//7KCsrAwDMmDFD9HVMlkqlwo9//GMuNrVaLcl6lJCHhQsX4umnnwYAXH/99aKPfzn+67/+C7/+9a8BnJ8QnhASGWGf43Q4HHA4HIIGV6vVKCsr43awE5nM17Rya2pqgsPhgFqtxsjICLZs2SJ3SFGJ8kAIkYPs96qNj49Hbm6u5Ovx+Xyi3jEmJiYGLMsiNjYWxcXFKC4uDjsOhmFEi2MqETsHwOTyEM05IIRcPlELJ8MwyM/PF/SaoqIiMUOYkJJ2kgzDKCqeSFHSe47WHBBCxKFiWZaVOwhycSqVCkpNk5JjE5OY71PsbRYtOSBEKmPfhI3dHSwrK+uidwqjm30SQgghAlDhJIQQQgSgwkkIIYQIQIWTEEIIEUD2n6NEQmFhIXw+n9xhcBiGwebNm+UOI6IoB4SQ6SIqjjh9Pp+gnfbw8DAaGxu5GV7GDA4OorGxEQMDAxGLZbqYzPuWKg/RmgNCiDhEPeKsqKhARUWFoAl/jUYjSkpKYLFYxAxlHIZhwo6rpqYGubm5cLvdiI39zybau3cv1qxZA7fbjZiYyf3NIfYNAKYSITkApMtDNOeAEHL5JD3iHB0dxfr16zF79mxoNBrk5OSgu7ub18dqtaKqqkrKMATzer1gGIa3swYAj8cDo9E46aJJhKE8EEKUSNI9j9PphMvlgtvt5uZXzMvL4/VRauE0mUzj2j0ez4TtU0EoFEJbWxuam5sxPDwsdzhhmY55+OyzzwAAZ86cueyxhoeHuWn7vjzZNiFEWpIWzvLycthsNiQmJkKn06G0tBS1tbXw+/1cn5SUFKjVajQ3N0sZiiAT7bBDoRBaWlpgMpnQ1dWF9PR0ZGVlYcmSJdi/f79MkYZnZGQEVqsVKSkpuOWWW5CWloaenh65w7qk6ZaHPXv2cLOYxMfH4/XXX5/0WL29vcjIyOAmN1+2bNmU+YOIkKku7MLpdDrHTUB9MYFAAJ2dndx/bABISkqCVqtFa2srr6/VaoXL5Qp7bCmdPHkSp0+f5sUNnL+gpL+/H2lpaYiLi8PBgwfR0NCAPXv2wG63yxRteF588UVUV1dzj99++208+eSTMkZ0adMtD4FAAPn5+RgZGQFwfkq0+++/n3ssVHFxMZqamrjHtbW1+N3vfidKrISQSxBzMtAvT2Td2dnJAmDb29t5fQwGA7tjxw5e2759+9ibb75Z0LoACFrCnbj46NGjLAD21KlTvPZ169axaWlp4/o3Nzezq1evDjtus9ksOPbpsgiZyFrKPERzDmihhZbwlouR7KtajUYD4PxXSl8WCASg1Wp5bX6/HwaDQdD4LMuGvZjN5rDHTU5Ohk6ng9PpRCAQwNmzZ7Ft2zZs3boVTqeT69fR0YGMjAxYLBasWrVKUOxms1lQ/ELf71eXl19+eVwMTz311GWNKTQ2ITmIRB4inYOBgQHExcVxFzTFxMRg/vz5GB0dndR4X94GY/785z+LklNaaIm2xWw28/YJl9pfSVY49Xo9DAYDd/ECALS3tyMYDI77yldJk1lrtVpUV1fD6/Vi3rx5WLRoESorK1FbW8vbmAsWLMChQ4fgdrtRUFAgY8SX9r3vfQ9PPPEEZsyYAQB44IEHFP21JjD98nD11VejpqYGc+fOBQAkJiaipqZm0lcGr1u3Dg899BDUajWA8xPN//jHPxYtXkLIhUl656C1a9di06ZNWLp0Ka677jrYbDZYLBYkJCRwfQYGBlBfX4/t27dLGYogGRkZOHz48AWfHxoawsyZMwGc38HPmjUrUqFNikqlwsaNG/HEE08gNjYWFRUVcocUlumWh1tvvRWdnZ1QqVT4+OOPL2us2NhY/P73v8cLL7yAGTNm4Ne//rVIURJCLiXswllSUoJdu3bh2LFjYQ9ut9vR09MDk8mEoaEhZGdnY+fOnbw+dXV1SE1NRVxcXPhRy6ypqQkOhwNqtRojIyPYsmWL3CGFZezoZLqYqnkQ01d/40oIkV7Y/+scDgccDoegwdVqNcrKylBWVnbBPkr6mjZcGRkZOHDggNxhRD3KAyFEDrL/uRofH4/c3FzJ1+Pz+RRxqzWfzweGYeQOQxaUA0LIdCBq4WQYBvn5+YJeU1RUJGYIE1LSTpJhGEXFEylKes/RmgNCiDhULMuycgdBLk6lUkGsNIk5lhTjKRXlgJDpa+ybsLFJKLKysi46IQXdJZsQQggRgAonIYQQIgAVTkIIIUQAKpyEEEKIALL/HIUQEhmFhYXw+Xxyh8HDMAw2b94sdxgRpbQ8RGMOLpeoR5wVFRWCf6dnNBqxb98+McMghEzA5/MJ3mEPDw+jsbERfX19vPbBwUE0NjZiYGAgovFMB0LfN+VAeSQ94hwdHYXdbkdFRQUGBwdx991348UXX+TdXs9qtaKqqgoWi0XKUAghOH90cbHL7L+qpqYGubm5cLvdvNv77d27F2vWrIHb7Z70jeqVcDMMuQjJA+VAeSQ9x+l0OuFyueB2u3HixAkAQF5eHq/PWOEkhCiP1+sFwzDj7onr8XhgNBonvcMm4aMcKI+kW7y8vBw2mw2JiYnQ6XQoLS1FbW0t/H4/1yclJQVqtRrNzc1ShkIImQSv1wuTyTSu3ePxTNguhdOnT+PBBx/Ef//3f8PhcGBoaCgi6w3HiRMnkJeXhzvvvBNPPvkkRkZGRF+HEnLAsiy2bNmCu+66C7m5uXjvvfcua7yPP/4Y3//+93HXXXfhN7/5DUKhkEiRRkbYX9U6nU7s3r0bbW1tYfUPBALo7OyE0Wjk2pKSkqDVatHa2or4+Hiu3Wq1wuVy8foSQuTn9Xrx/e9/n9cWCoXQ0tKCgoICdHV1YdWqVbjiiivw73//GyUlJbjzzjtFW/+///1vLF26FB9++CFYlkV9fT0+/fRT7NixQ7R1TFZfXx/uuOMOdHZ2IhQK4a233kJXVxe2bdsm6nrkzgEAbNq0CRs2bIBKpYJKpcLf//53vPPOO5g3b57gsbq6upCeno6zZ8+CZVns378ffX19eOqpp0SNWUphH3Ha7fawiyYA7kS2Tqfjtev1egSDQV7bsmXLUFNTE/bYhBDpnTx5EqdPnx73B63P50N/fz/S0tIQFxeHgwcPoqGhAXv27BF9gnSfz4cPPviAd0vBPXv2YHR0VNT1TIbH48Enn3zCO1oSu6ArIQcA8Oc//xnA+SPPUCiEQCAw6Ys633rrLXR3dyMUCnF5HRt/qpDs4iCNRgMA6O3t5bUHAgFotVpem9/vh8FgEDS+SqW6vACnGDHfr9jbLlpyMR1yYDabwx5z7LoEvV7Pa9+9ezfS0tIwf/58XnsgEMBNN90U9vgA0NjYKHhbjI6OKnYe0i+++CKs9xNuHpSaAwB46KGH8NBDDwl+3UT8fr8i9iPhxiDZOU69Xg+DwYCWlhaurb29HcFgcFxiJzMnJ8uyUbOI+X7F3nbRkovpkAMhRRMAkpOTodPp4HQ6EQgEcPbsWWzbtg1bt26F0+nk+nV0dCAjIwMWiwWrVq0StA6z2XzRmEOhEL773e/yXvPMM8/I/nlgWRbnzp3DPffcw4vthRdeEDUPSsgBy7J4/fXXeRchMQyDgYGBSW23wcFB3HrrrdxYMTEx2Lt3r6y5NJvNvO1wyRyxItq+fTtrNpu5x08//TT7zW9+k21vb2d7e3vZ++67j7VYLLzX9Pf3s9dccw37+eefixnKtCJmmkROuejjKdV0yIHZbOb9/wzHwYMH2fT0dPaaa65hZ8+ezWZnZ7ONjY0T9j1+/DgbHx8f9tjhxjMyMsL+8Y9/ZAGwf/vb38IePxKGh4fZF198kQXA1tXVhfUaoXlQQg5YlmWPHj3KFhUVsQDYvr6+sNcxkS+++IJ9/vnnWQDsoUOHLmssMXx1O1xqm4R9xFlSUoLFixeH2x3A+fOiK1asgMlkwty5czE6OoqdO3fy+tTV1SE1NZX3205CiDJkZGTg8OHD6O/vx5kzZ1BXV4fMzEzu+S9f4arVajFr1izRY4iNjcXq1asBAPfee6/o41+OGTNmYO3atQCA7OxsSdahhBwAwJIlS/Dkk08CwGWv46qrrkJBQQEA4Pbbb7/s2CIt7BMFDocDDodD0OBqtRplZWUoKyu7YJ/JfE1LCFGGpqYmOBwOqNVqjIyMYMuWLXKHFHUoB5En+xn2+Ph45Obmyh0GIVHB5/OJfreYmJgYsCyL2NhYFBcXo7i4OOxYGIYRNZapQuw8UA4iS9TCyTAM8vPzBb2mqKhIzBAIIRegtB0kwzCKiykSlPSeozUHl0vFsix76W5ETiqVCmKlScyxpBhPqSgH8lPy+1RybGJT8v+FyRo7+h+7f3BWVtZF7yVMNzkkhBBCBKDCSQghhAhAhZMQQggRgAonIYQQIoDsP0chhERGYWEhfD6f3GHwMAyDzZs3yx1GRCktD9GYg8tFR5yERAmfzyd4hz08PIzGxkZutqMxg4ODaGxsxMDAQETjmQ6Evm/KgfKIesRZUVGBioqKi17G+1VGoxElJSWwWCxihkIImQDDMIL+f9bU1CA3Nxdut5s3I8nevXuxZs0auN1u3s2/hRD7RgxTiZA8UA6UR9IjztHRUaxfvx6zZ8+GRqNBTk4Ouru7eX2sViuqqqqkDIMQMklerxcMw4ybxsvj8cBoNE56h03CRzlQHkm3uNPphMvlgtvt5uaVy8vL4/WhwkmIcnm9XphMpnHtHo9nwnapfPTRRwCAzz77LGLrDNf7778PAOjq6pJkfKXkIBAI4K233gIARdy04Mv+9a9/4a233kJbW1tE1idp4SwvL4fNZkNiYiJ0Oh1KS0tRW1sLv9/P9UlJSYFarUZzc7OUoRBCJmGinXYoFEJLSwtMJhO6urqQnp6OrKwsLFmyBPv37xc9hrKyMixcuBAAcP311+Pvf/+76OuYrKeeegrf+ta3AAA33HADDh48KPo6lJCD999/H4sWLcKdd94JAFi7dq1iimdraysWLlyIO++8EykpKXj00Ucljy3swul0OgXNLB4IBNDZ2Qmj0ci1JSUlQavVorW1ldfXarXC5XKFPTYhRHonT57E6dOnef+HgfMXlPT39yMtLQ1xcXE4ePAgGhoasGfPHtjtdlFjOH78ONavX889HhwcHPetlVzeffddbpotABgYGMADDzwg6jqUkAMAePjhh/H5559zj//whz/gjTfeEH09k/HTn/4UPT093OPnnnsOjY2Nkq4z7IuD7Ha7oISMXQGm0+l47Xq9HsFgkNe2bNkybNiwAU899VTY46tUqrD7Tgdivl+xt1205GI65OCSM9t/ydjpFb1ez2vfvXs30tLSMH/+fF57IBAQ9Mc1ADQ2NgraFqFQCKdPn1bkZy4UCqGjoyOs2MLNgxJzMGbZsmWCXzMRKXK5dOnSSb0u3Fgk+6pWo9EAAHp7e3ntgUAAWq2W1+b3+2EwGASNz7Js1Cxivl+xt1205GI65EBI0QSA5ORk6HQ6OJ1OBAIBnD17Ftu2bcPWrVvhdDq5fh0dHcjIyIDFYsGqVasErcNsNl805s8//xxarZa7ACYmJga33nqr7J8HlmVx8uRJXH311bzYli5dKmoelJADlmWxevVqXlGJiYnB22+/rYj/C9/73vd4scXGxuL9998XNIbZbOZth0vlSLLCqdfrYTAY0NLSwrW1t7cjGAyO+4uIJrMmRHm0Wi2qq6vh9Xoxb948LFq0CJWVlaitreXtWBYsWIBDhw7B7XajoKBA1Bji4uJQU1PD/WGdlpaGv/zlL6KuY7LmzJmDqqoqzJkzBwBwxx13YPfu3aKuQwk5AIDNmzdj5cqVmDFjBgBg165dipmObNu2bfj2t7/NxfbKK69g0aJFkq5T0jsHrV27Fps2bcLSpUtx3XXXwWazwWKxICEhgeszMDCA+vp6bN++XcpQCCGTkJGRgcOHD1/w+aGhIcycORPA+Z38rFmzJIlh7CvQi8UihzvvvBOffvopVCqVoN/HCqGEHGg0GlRWVoJlWcTExOAHP/iB6OuYrGuvvRbV1dVcbEKPuCcj7MJZUlKCXbt24dixY2EPbrfb0dPTA5PJhKGhIWRnZ2Pnzp28PnV1dUhNTUVcXFz4URNCFKGpqQkOhwNqtRojIyPYsmWL3CFFnUjmQInnlsdEMrawC6fD4YDD4RA0uFqtRllZGcrKyi7Yh76mJWTqysjIwIEDB+QOI6pRDiJP9pu8x8fHIzc3V+4wCIkKPp9PMbdZ8/l8ijlPFmlKyUM05+ByiFo4GYZBfn6+oNcUFRWJGQIh5AKUtoNkGEZxMUWCkt5ztObgcqnYsWuCiWKpVCqIlSYxx5JiPKWiHMhPye9TybGJbTr+Xxg7+h+7wCsrK+uiF3vR3YEJIYQQAahwEkIIIQJQ4SSEEEIEoMJJCCGECCD7z1EIIZFRWFgIn88ndxg8DMNg8+bNcocRUUrLQzTm4HKJesRZUVEh+LdJRqMR+/btEzMMQsgEfD6f4B328PAwGhsbudmOxgwODqKxsREDAwMRjWc6EPq+KQfKI+kR5+joKOx2OyoqKjA4OIi7774bL774Iu/2elarFVVVVbBYLFKGQgjB+aMLIfdUrampQW5uLtxuN2Jj/7O72Lt3L9asWQO3283NDiKUEm4AIBcheaAcKI+k5zidTidcLhfcbjc3r9xXJ6EdK5yEEOXxer1gGIa3wwYAj8cDo9E46R02CR/lQHkk3eLl5eWw2WxITEyETqdDaWkpamtr4ff7uT4pKSlQq9Vobm6WMhRCyCR4vV6YTKZx7R6PZ8J2pWNZFs8//zzS09ORnZ09Je7xOt1yAADvvvsuli9fDuD83ePOnTs36bHOnTuHoqIipKWlcWNLLezC6XQ6Bc0sHggE0NkfL7aQAAAgAElEQVTZCaPRyLUlJSVBq9WitbWV19dqtcLlcoU9NiEkMibaaYdCIbS0tMBkMqGrqwvp6enIysrCkiVLsH//fpkiDc/WrVvxyCOP4B//+AfeeustZGdn45133pE7rIuabjk4deoUMjMz8cYbbwAANm7ciMcff3zS423YsAEbN26E2+0GAGRmZuKzzz4TJdYLCbtw2u12tLW1hT3w2IlsnU7Ha9fr9QgGg7y2ZcuWoaamJuyxCSHSO3nyJE6fPs374xc4f0FJf38/0tLSEBcXh4MHD6KhoQF79uyB3W6XKdrw/OUvf+GmnwqFQhgeHkZ1dbXMUV3YdMxBQ0MDenp6EAqFuLaXX3550uP93//9H+9xT0+PZHOjjpHs4iCNRgMA6O3t5bUHAgFotVpem9/v52Z4D5eS54WTgpjvV+xtFy25mA45MJvNYY85dl2CXq/nte/evRtpaWmYP38+rz0QCAj6VgoAGhsbBW0LKT5rk5kycSJCYgs3D0rMASB+Hjo7O0Ud84c//CF++MMfCn5duDFIdo5Tr9fDYDCgpaWFa2tvb0cwGByX2MnMycmybNQsYr5fsbddtORiOuRASNEEgOTkZOh0OjidTgQCAZw9exbbtm3D1q1b4XQ6uX4dHR3IyMiAxWLBqlWrBK3DbDZHdLu53W5cddVV3PoXLlyIQCAQ0ZwKyYPSciBGHoaHh5GZmcmtX61Ww+VyTXq81157DWq1mhsvMzMTw8PDgsYwm8287XCpHEl6cdDatWuxadMmdHR0IBgMwmazwWKxICEhgeszMDCA+vp67kQxIUQZtFotqqur4fV6MW/ePCxatAiVlZWora3l7VgWLFiAQ4cOwe12o6CgQMaIL+3WW2/F22+/jWeeeQbA+Qtsvno6SUmmYw5mzJiBN998Ey+99BIAwO124zvf+c6kx7NarXC73SgtLQUAvPnmm5gxY4YosV5I2F/VlpSUYNeuXTh27FjYg9vtdvT09MBkMmFoaAjZ2dnYuXMnr09dXR1SU1N5v+0khChDRkYGDh8+fMHnh4aGMHPmTADnd/KzZs2KVGiTtnDhQixcuBDr1q0bd9pIiaZjDq644go8+OCDWL169bjzt5NhNBphNBrxi1/8AldccYUIEV5c2IVzMucB1Go1ysrKUFZWdsE+k/malhCiDE1NTXA4HFCr1RgZGcGWLVvkDinqUA4iT/Z71cbHxyM3N1fuMAiJCj6fT/S7xcTExIBlWcTGxqK4uBjFxcVhx8IwjKixTBVi54FyEFmiFk6GYZCfny/oNUVFRWKGQAi5AKXtIBmGUVxMkaCk9xytObhcKnbsMimiWCqVCmKlScyxpBhPqSgH8lPydouWHADK3m6THW/s6H/s959ZWVkX/S0o3eSQEEIIEYAKJyGEECIAFU5CCCFEACqchBBCiABUOAkhhBABqHASQgghAohaOCsqKgT/qNdoNGLfvn1ihkEIIYRIRtIjztHRUaxfvx6zZ8+GRqNBTk4Ouru7eX2sViuqqqqkDIMQQggRjaSF0+l0wuVywe12c/PK5eXl8fpQ4SSEEDKVSFo4y8vLYbPZkJiYCJ1Oh9LSUtTW1sLv93N9UlJSoFar0dzcLGUohBBCiCjCLpxOp1PQzOKBQACdnZ28KWOSkpKg1WrR2trK62u1WuFyucIemxBCCJFL2Dd5t9vtsNvtYQ/c19cHAOMmidXr9QgGg7y2ZcuWYcOGDXjqqafCHl+lUoXddzoQ8/2Kve2iJReUA/kpebtFSw4AZW+3yxkv3NdKNq2YRqMBAPT29vLaA4HAuMlj/X4/DAaDoPGj5YbKwPS8qfJUQzmQn5K3W7TkAFD2dhPzJu8XI9k5Tr1eD4PBgJaWFq6tvb0dwWBw3Fe+NJk1IYSQqULSi4PWrl2LTZs2oaOjA8FgEDabDRaLBQkJCVyfgYEB1NfXY/ny5VKGQgghhIgi7MJZUlKCxYsXCxrcbrdjxYoVMJlMmDt3LkZHR7Fz505en7q6OqSmpiIuLk7Q2IQQQogcwi6cDocDx44dEzS4Wq1GWVkZuru70dfXh8rKynEFkr6mJYQQMpXIfq/a+Ph45Obmyh0GIYQQEhZRr6plGAb5+fmCXlNUVCRmCIQQQoikRC+cDMOIOSQhhBCiKLJ/VUsIIYRMJVQ4CSGEEAGocBJCCCECUOEkhBBCBKDCSQghhAggauGsqKi45M1xv8poNGLfvn1ihkEIIYRIRtIjztHRUaxfvx6zZ8+GRqNBTk4Ouru7eX2sViuqqqqkDIMQQggRjaSF0+l0wuVywe1248SJEwCAvLw8Xh8qnIQQQqYSSQtneXk5bDYbEhMTodPpUFpaitraWvj9fq5PSkoK1Go1mpubpQyFEEIIEUXYhdPpdI6bR/NiAoEAOjs7YTQaubakpCRotVq0trby+lqtVrhcrrDHJoQQQuQSduG02+1oa2sLe+C+vj4AgE6n47Xr9XoEg0Fe27Jly1BTUxP22IQQQohcRL1X7ZdpNBoAQG9vL689EAhAq9Xy2vx+PwwGg6DxVSrV5QU4xYj5fsXedtGSC8qB/JS83aIlB4Cyt9vljBfuayUrnHq9HgaDAS0tLdyN39vb2xEMBsd95VtVVYWcnBxB47MsK1qsSqdSqUR7v2KOJcV4SkU5kJ+St1u05ABQ9nab7HhjP6NsaGjgPb4QSS8OWrt2LTZt2oSOjg4Eg0HYbDZYLBYkJCRwfQYGBlBfX4/ly5dLGQohhBAiirALZ0lJCRYvXixocLvdjhUrVsBkMmHu3LkYHR3Fzp07eX3q6uqQmpqKuLg4QWMTQgghcgi7cDocDhw7dkzQ4Gq1GmVlZeju7kZfXx8qKyvHFciqqipYrVZB4xJCCCFykf1etfHx8cjNzZU7DEIIISQsol4cxDAM8vPzBb2mqKhIzBAIIYQQSYleOMeuoCWEEEKmI9m/qiWEEEKmEiqchBBCiABUOAkhhBABqHASQgghAlDhJIQQQgSgwkkIIYQIIGrhrKiouOTNcb/KaDRi3759YoZBCCGESEbSI87R0VGsX78es2fPhkajQU5ODrq7u3l9rFYrqqqqpAyDEEIIEY2khdPpdMLlcsHtduPEiRMAgLy8PF4fKpyEEEKmEkkLZ3l5OWw2GxITE6HT6VBaWora2lr4/X6uT0pKCtRqNZqbm6UMhRBCCBFF2IXT6XSOm4D6YgKBADo7O2E0Grm2pKQkaLVatLa28vparVa4XK6wxyaEEELkEva9au12O+x2e9gD9/X1AQB0Oh2vXa/XIxgM8tqWLVuGDRs24Kmnngp7fJVKFXbf6UDM9yv2touWXFAO5Kfk7RYtOQCUvd0uZ7xwXyvqTd6/TKPRAAB6e3t57YFAAFqtltfm9/thMBgEjc+y7OUFOIWoVCrR3q+YY0kxnlJRDuSn5O0WLTkAlL3dJjve2K9BGhoaeI8vRLJznHq9HgaDAS0tLVxbe3s7gsHguK98aTJrQgghU4WkFwetXbsWmzZtQkdHB4LBIGw2GywWCxISErg+AwMDqK+vx/Lly6UMhRBCCBFF2IWzpKQEixcvFjS43W7HihUrYDKZMHfuXIyOjmLnzp28PnV1dUhNTUVcXJygsQkhhBA5hF04HQ4Hjh07JmhwtVqNsrIydHd3o6+vD5WVleMKJH1NSwghZCqR/V618fHxyM3NlTsMQgghJCyiXlXLMAzy8/MFvaaoqEjMEAghhBBJiV44GYYRc0hCCCFEUWT/qpYQQgiZSqhwEkIIIQJQ4SSEEEIEkOyWe0pSWFgIn88ndxgchmGwefNmucMghBAyCVFxxOnz+RRTOJUUCyGEEOFEPeKsqKhARUUFd6PccBiNRpSUlMBisYgZyjgMw4Qd15kzZ/D1r38dLS0tSE1N5dr9fj8SEhLw3nvvITk5eVJxXOrmwVL56KOPcODAAQBAc3Mzb7o3Qggh4ZP8iHN0dBTr16/H7NmzodFokJOTg+7ubu55q9WKqqoqqcMQpKmpCVdddRVuvPFGXrvH44FGo8HChQtliky4kydP4p577sHChQvxk5/8BABwyy234NZbb0VbW5vM0RFCyNQjeeF0Op1wuVxwu904ceIEACAvL497XomF0+v1gmEYxMbyD8g9Hg+MRiNiYqbGN9yff/45MjMzceTIERQXF+Of//wnAOD555/HiRMnYDab8f7778scJSGETC2SV4Dy8nLYbDYkJiZCp9OhtLQUtbW18Pv9AICUlBSo1Wo0NzdLHUrYvF4vTCbTuHaPxzNhu1L95je/gd/vx5tvvolf/vKXSEpKAgAUFBTgyJEjiImJgcPhkDlKQgiZWgQVTqfTOW4uzYsJBALo7OzknU9LSkqCVqtFa2sr12a1WuFyuYSEIqmJCmcoFEJLSwtMJhO6urqQnp6OrKwsLFmyBPv375cp0gsbGRnBH//4R6xatQpLliwZ93xCQgJ++tOfoqqqCqdOnZIhQkIImZoEFU673S7ovFhfXx8AQKfT8dr1ej2CwSD3eNmyZaipqRESimROnjyJ06dPj7t4xufzob+/H2lpaYiLi8PBgwfR0NCAPXv2wG63yxTthZ09exZnz5696MVIS5cuRSgUwvHjxyMXGCGETHGS/o5To9EAAHp7e3ntgUAAWq2We+z3+2EwGASNrVKpBPU3m81h9Rs7D6vX63ntu3fvRlpaGubPn89rDwQCgo7CAaCxsVFw/EL7jykoKEBBQcFFx8rMzJzU2Bcab7oS832Kvc0oB/KPFy05AJS93S5nvHBfK2nh1Ov1MBgMaGlp4W7+3t7ejmAwyCs2VVVVyMnJETQ2y7Jh9xXyE5Dk5GTodDo4nU5s3LgRoVAIr7zyCrZu3Yo33niD69fR0YG8vDx8+OGH2L59u5DQYTabBf1kR6VSCXq/X17Pp59+io8++oi70GlsLJZlkZ2djY8++gjt7e3jLoSSOrapRsz3KfY2oxzIP1605ABQ9nab7HhjNWJsv3ypmiH5xUFr167Fpk2b0NHRgWAwCJvNBovFgoSEBADAwMAA6uvrsXz5cqlDCYtWq0V1dTW8Xi/mzZuHRYsWobKyErW1tbyj1gULFuDQoUNwu93jjuiU4rHHHkNHRwdWr16NL774gmsfGRnBk08+if379+ORRx6ZdNEkhJBoJGiPWVJSgl27duHYsWNhv8Zut6OnpwcmkwlDQ0PIzs7Gzp07uefr6uqQmpqKuLg4IaFIKiMjA4cPH77g80NDQ5g5cyaA84V21qxZkQpNEKvViqeffhq//OUvUVVVhe985zsAzk8e/tlnnyE/Px+PPfaYzFESQsjUIuiI0+FwCCqaAKBWq1FWVobu7m709fWhsrKSVySrqqpgtVoFjSm3pqYmZGZmYunSpVi5ciW2bNkid0gX9Pjjj+PQoUP49re/jb///e8Azt9FqaqqCi+99NKU+U0qIYQohezf0cXHxyM3N1fy9fh8PlFvdxcTEwOWZREbG4vi4mIUFxeHHUekJ/u+/fbbcfvttwM4fw7gb3/7W0TXTwgh04mohZNhGOTn5wt6TVFRkZghTCjShepiGIZRVDyEEEKEEb1wKrEo0BRehBBCxEInuAghhBABqHASQgghAlDhJIQQQgSgwkkIIYQIIPvPUUh0KCwshM/nkzsMDsMwdNEYIWRS6IiTRITP5xNcOIeHh9HY2MjNsjNmcHAQjY2NGBgYiFgshBAyRtQjzoqKClRUVAi6gbnRaERJSQksFouYoRAFYhhG0GejpqYGubm5cLvdvPvp7t27F2vWrIHb7Z7UnY/CuREGy7LYt28ftm7diiNHjkCtVsNqtaKgoADZ2dmC10kImT4kP+IcHR3F+vXrMXv2bGg0GuTk5KC7u5t73mq1oqqqSuowyBTk9XrBMMy4m9B7PB4YjUbJbhfIsiweffRR3HvvvfB4PPjud7+L0dFR/OMf/8Ddd9+NdevWRc1MGISQ8SQvnE6nEy6XC263m5vrMi8vj3ueCie5EK/XC5PJNK7d4/FM2C6W3//+93j++efx85//HJ2dnSgvLwcAfPrppygoKMCzzz6LP/3pT5KtnxCibJIXzvLycthsNiQmJkKn06G0tBS1tbXw+/0AgJSUFKjVajQ3N0sdCpliJiqcoVAILS0tMJlM6OrqQnp6OrKysrBkyRLs37//stfJsix++9vfwmQy4ZlnnsEVV1zBPTdz5kxs2bIFKSkp+O1vf0tHnYREKUGF0+l08iagvpRAIIDOzk4YjUauLSkpCVqtFq2trVyb1WqFy+USEgqZ5k6ePInTp0/zPjvA+Qt7+vv7kZaWhri4OBw8eBANDQ3Ys2cP7Hb7Za/3+PHj+OCDD7B69eoJZ4OPiYnBgw8+iLa2Nnz66aeXvT5CyBTEimj79u2s2WzmHnd2drIA2Pb2dl4/g8HA7tixg3u8b98+9uabbxa0LgC0TLHly5+NSzl69CgLgD116hSvfd26dWxaWtq4/s3Nzezq1avDGttsNsu+LWihhRZlLxcj6Ve1Go0GANDb28trDwQC0Gq13GO/3w+DwSBobJZlo2YR8/2Kve3CHc9sNgvKb3JyMnQ6HZxOJwKBAM6ePYtt27Zh69atcDqdXL+Ojg5kZGTAYrFg1apVYY9vNpsnjDMQCODKK6/E//zP/1zwfa5evRpXX301+vr6plQOpvqi5O0WLTlQ+nab7Hhms5m3T7jU/krSwqnX62EwGNDS0sK1tbe3IxgM8r7ynYqTWRNpabVaVFdXw+v1Yt68eVi0aBEqKytRW1vL+1AvWLAAhw4dgtvtRkFBwWWvV6fT4Qc/+AH+/Oc/Tzhpe1tbG3bv3o0f//jHmDVr1mWvjxAy9Uh+cdDatWuxadMmdHR0IBgMwmazwWKxICEhAQAwMDCA+vp6LF++XOpQyBSTkZGBw4cPo7+/H2fOnEFdXR0yMzO554eGhrh/a7Va0QpZUVERtFotMjMzUVpaiuPHjwM4f44/KysLX/va1/CrX/1KlHURQqYeQYWzpKQEixcvFrQCu92OFStWwGQyYe7cuRgdHcXOnTu55+vq6pCamoq4uDhB4xLS1NSEzMxMLF26FCtXrsSWLVtEGTc+Ph6HDh3CTTfdBJvNhuuvvx4AsGHDBqSmpuLQoUOYN2+eKOsihEw9gu4c5HA44HA4BK1ArVajrKwMZWVlEz5PX9OSycrIyMCBAwckGTspKQn19fU4duwYjh49ioceegjvvfcekpOTJVkfIWTqkP0m7/Hx8cjNzZU7DBIBPp8vrNvdRSIOhmHC6rt48WIsXrwYa9askTgqQshUIWrhZBgG+fn5gl5TVFQkZghEocItVJHAMIyi4iGETC2iF07aIZGJ0BRehJDpgqYVI4QQQgSgwkkIIYQIQIWTEEIIEUD2q2pJdCgsLITP55M7DA7DMHTelRAyKXTESSLC5/MppnAqKRZCyNQj6hFnRUUFKioq0NDQEPZrjEYjSkpKYLFYxAyFKBDDMII+G2fOnMHXv/51tLS0IDU1lWv3+/1ISEiY9A0J5PotaSAQwGuvvQYA2LlzJ6xWKzcRAiFk6pD8iHN0dBTr16/H7NmzodFokJOTg+7ubu55q9WKqqoqqcMgU1BTUxOuuuoq3Hjjjbx2j8cDjUaDhQsXyhSZMKOjo9iwYQPmzJmDBx98EACQl5eHuXPn4umnn+ZmdSCETA2SF06n0wmXywW3240TJ04AOL/TGEOFk1yI1+sFwzCIjeV/MeLxeGA0GhETMzXONDz88MNwOp1YtWoVmpqaAABHjhzBXXfdhV/96ld4/PHHZY6QECKE5Hue8vJy2Gw2JCYmQqfTobS0FLW1tfD7/QCAlJQUqNVqNDc3Sx0KmWK8Xi9MJtO4do/HM2G7Eh07dgwvvPACCgsLsWvXLtxyyy0AgNtuuw2vvvoq8vPzsWnTJnz66acyR0oICZegwul0OnnzaF5KIBBAZ2cnjEYj15aUlAStVovW1lauzWq1wuVyCQmFRIGJCmcoFEJLSwtMJhO6urqQnp6OrKwsLFmyBPv375cp0gv7wx/+gJkzZ054VKlSqfDkk0+CZVm89NJLMkRHCJkMQYXTbrejra0t7P59fX0Azk8O/GV6vR7BYJB7vGzZMtTU1AgJhUxzJ0+exOnTp3l/dAHnr4jt7+9HWloa4uLicPDgQTQ0NGDPnj2w2+0yRXth//znP5GcnHzBafMSEhJgMBi4OT8JIcon6e84x64Y7O3t5bUHAgFotVrusd/vh8FgEDS2SqW6/ACnEDHfr9jbLtzxzGZz2GOOnQ/X6/W89t27dyMtLQ3z58/ntQcCAUHfhjQ2Nkb0M/TVdX318Y4dO7Bjxw7Rxp+u5PrsRnospVPydruc8cJ9raTnOPV6PQwGA1paWri29vZ2BINB3k5uMnNysiwbNYuY71fsbRfueEKKJgAkJydDp9PB6XQiEAjg7Nmz2LZtG7Zu3Qqn08n16+joQEZGBiwWC1atWhX2+GazOSK5e/nllwEAr7/++oTbbKxY7tu3TzE5Veoi12eXcjB1tttkxzObzbx9wqX2V5JfHLR27Vps2rQJHR0dCAaDsNlssFgsSEhIAAAMDAygvr4ey5cvlzoUMoVotVpUV1fD6/Vi3rx5WLRoESorK1FbW8v7UC9YsACHDh2C2+1GQUGBjBFPbNWqVUhMTMSaNWtw9OhR3nP19fV4+OGHcdNNN+Guu+6SKUJCiFCCvqotKSnBrl27cOzYsbBfY7fb0dPTA5PJhKGhIWRnZ2Pnzp3c83V1dUhNTb3gOSASvTIyMnD48OELPj80NISZM2cCOF9oZ82aFanQwnbFFVegpqYG2dnZuO2223DbbbcBAG655RY0Nzfj+uuvR1VV1ZT5aQ0hROARp8PhEFQ0AUCtVqOsrAzd3d3o6+tDZWUlr0hO5mtaQoDzN0jIzMzE0qVLsXLlSmzZskXukCa0aNEitLW14ZlnnsHg4CAAICYmBr/73e/Q3NyM+Ph4mSMkhAgh+03e4+PjkZubK3cYJAJ8Pp/ot7uLiYkBy7KIjY1FcXExiouLw4oj0hOuX3vttXjsscfw2GOPRXS9hBDxiVo4GYZBfn6+oNcUFRWJGQJRqEgXqothGEZR8RBCphbRCyftkMhEaAovQsh0QVckEEIIIQJQ4SSEEEIEoMJJCCGECECFkxBCCBFA9p+jkOhQWFgIn88ndxgchmHogiVCyKTQESeJCJ/PJ7hwDg8Po7GxkZtlZ8zg4CAaGxsxMDAQsVgIIWSMqEecFRUVqKioQENDQ9ivMRqNKCkpgcViETMUokAMwwj6bNTU1CA3Nxdutxuxsf/5qO7duxdr1qyB2+2e1K3qxL4JQ6SFQiG88sor2Lp1K5qamhATE4N7770XBQUF+Pa3vx1Vs3QQIgfJjzhHR0exfv16zJ49GxqNBjk5Oeju7uaet1qtqKqqkjoMMgV5vV4wDMMrmgDg8XhgNBqj8v6uo6Oj+NGPfoT7778fp06dws9+9jOEQiG0tbVh+fLlWLduHTdLBCFEGpLveZxOJ1wuF9xuNzfHYl5eHvc8FU5yIV6vFyaTaVy7x+OZsD0alJWV4eWXX8avf/1rfPTRR3j22WcBAJ988gkefvhh/Pa3v8WuXbtkjpKQ6U3ywlleXg6bzYbExETodDqUlpaitrYWfr8fAJCSkgK1Wo3m5mapQyFTzESFMxQKoaWlBSaTCV1dXUhPT0dWVhaWLFmC/fv3yxRpZJw7dw7PP/887rrrLjgcDt4R94wZM7B582Z861vfUuzN7gmZLgQVTqfTyZuA+lICgQA6OzthNBq5tqSkJGi1WrS2tnJtVqsVLpdLSChkmjt58iROnz7N++wA5y/s6e/vR1paGuLi4nDw4EE0NDRgz549sNvtMkUbGe+++y5OnjyJBx54YMLnY2Ji8MADD8Dr9eLzzz+PcHSERBFWRNu3b2fNZjP3uLOzkwXAtre38/oZDAZ2x44d3ON9+/axN998s6B1AaBlii1f/mxcytGjR1kA7KlTp3jt69atY9PS0sb1b25uZlevXh3W2GazWfZtQQsttCh7uRhJf8ep0WgAAL29vbz2QCAArVbLPfb7/TAYDILGZqPoAgiVSiXa+xVzLCHjCb2SNTk5GTqdDk6nExs3buRdSfrGG29w/To6OpCXl4cPP/wQ27dvD3t8s9ks6ApfJeju7sacOXPws5/9jPd17JdzcN9996G+vh6fffYZrrjiCrlClYRcn91Ij6V0St5ukx1vbP80tk+41P5K0nOcer0eBoMBLS0tXFt7ezuCwSDvK1+azJp8lVarRXV1NbxeL+bNm4dFixahsrIStbW1MJvNXL8FCxbg0KFDcLvdKCgokDFi6cXFxeG+++7DSy+9NOGE8ocOHcJrr72GNWvWTLuiSYiSSH5x0Nq1a7Fp0yZ0dHQgGAzCZrPBYrEgISEBADAwMID6+nosX75c6lDIFJORkYHDhw+jv78fZ86cQV1dHTIzM7nnh4aGuH9rtVrMmjVLjjAjqqSkBNdccw3uuOMOFBcX49133wUAbNiwAXfffTcSExNhs9lkjpKQ6U1Q4SwpKcHixYsFrcBut2PFihUwmUyYO3cuRkdHsXPnTu75uro6pKamIi4uTtC4hDQ1NSEzMxNLly7FypUro+Jq0oSEBBw+fBi33HILnnjiCdx4440AgNLSUtx77704ePAgrrvuOpmjJGR6E3SO0+FwwOFwCFqBWq1GWVkZysrKJnyevqYlk5WRkYEDBw7IHUbEJSUloa6uDh9//DGam5tx//3345NPPsH8+fPlDo2QqCD7Td7j4+ORm5srdxgkAnw+nyJud+fz+cAwjNxhXLYbbrgBN9xwA37wgx/IHQohUUXUwskwDPLz8wW9pqioSMwQiEIpqVAxDKOoeAghU4vohZN2SGQiNIUXIWS6iL67ZBNCCCGXgQonIYQQIgAVTkIIIUQA2a+qJUfVyB4AACAASURBVNGhsLAQPp9P7jA4DMPQeVdCyKTQESeJCJ/Pp5jCqaRYCCFTj6hHnBUVFaioqBB082yj0YiSkhJYLBYxQyEKxDCMoM/GmTNn8PWvfx0tLS1ITU3l2v1+PxISEvDee+8hOTlZcBxK+C0pkce5c+dQU1ODtrY2AEBzc/O4qesIuRTJjzhHR0exfv16zJ49GxqNBjk5Oeju7uaet1qtqKqqkjoMMgU1NTXhqquu4m4rN8bj8UCj0WDhwoUyRUamon379mHBggVYuXIlnnjiCQDALbfcgttvvx1+v1/m6MhUInnhdDqdcLlccLvdOHHiBAAgLy+Pe54KJ7kQr9cLhmEQG8v/YsTj8cBoNCImhs40kPA0NDRgxYoVuPbaa/HXv/6VmyDgueeew7Fjx5CVlUWTf5OwSb7nKS8vh81mQ2JiInQ6HUpLS1FbW8v9hZeSkgK1Wo3m5mapQyFTjNfrhclkGtfu8XgmbCfkQmw2G+bPn48DBw5g5cqV3LRrDz/8MN588034/X4899xzMkdJpgpBhdPpdPLm0byUQCCAzs5O3jmEpKQkaLVatLa2cm1WqxUul0tIKCQKTFQ4Q6EQWlpaYDKZ0NXVhfT0dGRlZWHJkiXYv3+/TJESJXvnnXfg8XhQWFgIvV4/7nmTyYRly5bhD3/4gwzRkalIUOG02+3cSfVw9PX1AQB0Oh2vXa/XIxgMco+XLVuGmpoaIaGQae7kyZM4ffr0uAs3fD4f+vv7kZaWhri4OBw8eBANDQ3Ys2cP7Ha7TNESJevo6AAA3HbbbRfsk5aWhtOnT/PmeCXkQiT9HadGowEA9Pb28toDgQC0Wi332O/3w2AwCBpbpVJdfoBTiJjvV+xtF+54ZrM57DHHzod/9Qhh9+7dSEtLGzeFViAQEPRtSGNjY9R9hqaDy8nZRF/vf3W8K6+8ctLjR9PnaTrsjy7ntZIWTr1eD4PBgJaWFu7m7+3t7QgGg7ydXFVVFXJycgSNzbKsqLEqmUqlEu39ijmWkPGE/gQkOTkZOp0OTqcTGzduRCgUwiuvvIKtW7fijTfe4Pp1dHQgLy8PH374IbZv3x72+GazWdBPY4j8JvvZHR4exvz582E0GlFTU8PtHMfGCwaDiI+Pxz333IM9e/ZENLapaDrsj75qbP80tk+41P5K8ouD1q5di02bNqGjowPBYBA2mw0WiwUJCQkAgIGBAdTX12P58uVSh0KmEK1Wi+rqani9XsybNw+LFi1CZWUlamtreUeuCxYswKFDh+B2u1FQUCBjxESprrjiCvz85z/HG2+8AZvNhi+++IJ77tSpU7Barejr68PPf/5zGaMkU4mgI86SkhLs2rULx44dC/s1drsdPT09MJlMGBoaQnZ2Nnbu3Mk9X1dXh9TUVMTFxQkJhUSBjIwMHD58+ILPDw0NYebMmQDOF9pZs2ZFKjQyxfziF7/AJ598gt/85jf4/e9/j6VLlwIADAYDYmJisGPHDtx6660yR0mmCkFHnA6HQ1DRBAC1Wo2ysjJ0d3ejr68PlZWVvCJZVVUFq9UqaExCgPM3SMjMzMTSpUuxcuVKbNmyRe6QiELFxMTghRdewIEDB3Dvvffiww8/BAA89thjeP/993H//ffLHCGZSmS/yXt8fDxyc3PlDoNEgM/nE/12dzExMWBZFrGxsSguLkZxcXFYcdCE69FHpVLhjjvuwB133ME9Li0tlTkqMhWJWjgZhkF+fr6g1xQVFYkZAlEoJRUqhmEUFQ8hZGoRvXDSDolMhKbwIoRMF3SzT0IIIUQAKpyEEEKIAFQ4CSGEEAGocBJCCCECyP5zFEIIiSaFhYXw+Xxyh8FhGIYu3hNI1CPOiooKwb/TMxqN2Ldvn5hhEEKIYvl8PkGFc3h4GI2NjdxsU2MGBwfR2NiIgYGBiMVy7ty5Sa9rOpH8iHN0dBR2ux0VFRUYHBzE3XffjRdffJG7e5DVakVVVRUsFovUoRBCiCIwDBP2JAM1NTXIzc2F2+1GbOx/dtl79+7FmjVr4Ha7ERMzuWOgcA50+vv7sW3bNrz44ov45z//CZVKhZUrV6KwsFD0G5pMFZKf43Q6nXC5XHC73dxUUXl5edzzY4WTEELIeF6vFwzD8IomAHg8HhiNxkkXzXD09PQgMzMT69evx5w5c7Bx40awLIsjR45g6dKlUXubS8kLZ3l5OWw2GxITE6HT6VBaWora2lr4/X4AQEpKCtRqNZqbm6UOhRBCphyv1zvhXKIej2fCdjH97Gc/w7Fjx1BdXY3GxkY88cQTAIDOzk5897vfRWFhIY4ePSppDEokqHA6nU5BkwUHAgF0dnbCaDRybUlJSdBqtWhtbeXarFYrXC6XkFAIISQqTFQ4Q6EQWlpaYDKZ0NXVhfT0dGRlZWHJkiXYv3+/KOs9efIk/vKXv+CRRx75/+zdcXAjZ30+8EengwtwWgliQztOZMdm2gRPsIwQHOHI3TEkKpHdTaIaWqYuJhRDOhkaJjHaM+3U3IF+a9fABIYQPIEIMElbpgZpYrDdgnRcUkaXszibmgCTSpXrkBwRF3l1hlxAt78/Di9Z54z1nndvrfPzmdEf++7q3e9qJT/e1epdRCIR07zLLrsMX/nKVyBJEj73uc9Zsr56IhSciqJgfn6+5uVXv8z2er2mdp/PB03TjOlIJILJyUmRUoiILnlPPvkknn76adPBB3Duop7Tp09jz549aGhowNGjR5HJZPDQQw9BURRL1p1Op1GtVk1frb3Q7t27ceutt27LizttvTjI4/EAAJaXl03t5XIZkiQZ08ViEX6/X6jv1bu4bxdWbq/Vr9122xfknK383hXp64U3Y/9DVq8L8fl8pvYHH3wQe/bswZVXXmlqL5fLQmcFAeDIkSN/sPaOjo4Xta1dfjOv41bap7U+19bvOH0+H/x+P3K5nNGWz+ehaZpp517IPTl1Xd82Dyu31+rXbrvtCz6ce2zl965IX7WGJgBcc8018Hq9UFUV5XIZp06dwn333Yd7770XqqoayxUKBezduxfhcBi33HKL0N/Sffv2nbfOxx57DADw+c9//rzbWq1W8drXvhZ79+7dEvtgM/3t27fP9DpstI9svziov78fw8PDKBQK0DQNsVgM4XAYLS0tAICVlRWk02l0dXXZXQoRUV2RJAkPP/wwjh8/jiuuuAJXX301JiYmMDU1ZfrjftVVV+GRRx5BNpvFHXfcYcm6g8EggsEgVFXFU0899aL5X/jCF/DEE0/g9ttvt2R99UToVG08HsfXv/51LCws1PwcRVHw7LPPIhQK4cyZM7jhhhswPj5uzJ+ZmUFnZ6fxu04iIvq9vXv34tFHH113/pkzZ7Br1y4A54J29+7dlqzX5XLhC1/4Ag4cOIA3vvGNuPPOO/GOd7wDAPCe97wHDz30ECKRCN71rndZsr56InTEOTg4KBSaAOB2uzE6OopSqYRKpYKJiQlTSF7IaVoiIjrnsccew/XXX48DBw7g5ptvtvS3laFQCEeOHMFrX/tafPSjH8Ub3vAGAOcGZbj77rvx7//+7y/6fel24PgWNzc3o6enx+kyiIgumhMnTlg66s6OHTug6zp27tyJw4cP4/DhwzXXEQgE/uAywWAQR44cweOPP46f/vSnuOWWW/Dkk09admRbjywNzkAggL6+PqHnDA0NWVkCEdGWtlFQXUyBQKDmeq655hpcc801xkU425nlwbmV3hRERFsN70RS/3g/TiIiIgEMTiIiIgEMTiIiIgEMTiIiIgGO/xyFiGg7ufPOO3HixAmnyzAEAgFesCSIR5xERBfRiRMntkxwbqVa6omlR5yJRAKJRAKZTKbm5wSDQcTjcYTDYStLISLasgKBQM1/J3/xi1/gNa95DXK5HDo7O432YrGIlpYW/PjHP8Y111xzQXVYOQiDiFwuh1QqBQC4//778e53v9u4m1Y9sP2Is1qtYmBgAI2NjfB4PIhGoyiVSsZ8WZaNF5CIiMwee+wxvOxlL8O1115raj927Bg8Hg/+9E//1KHKxJ08eRIHDhxAMBjEoUOHAAAf+MAH0NTUhPvuu8/h6mpne3CqqopkMolsNmvcW+6FN0ZlcBIRre/48eMIBAIvGhP22LFjCAaD2LGjPr5xW1lZwQ033IBsNotPf/rTOHXqFADgBz/4Afbs2YPbb78dX/7ylx2usja2v+JjY2OIxWJobW2F1+vFyMgIpqamUCwWAZy7Sarb7cbs7KzdpRAR1Z3jx48jFAq9qP3YsWPnbd+qvvrVr+JHP/oRvvGNb+AjH/mIcXPuPXv24Nvf/jbe9ra34WMf+xief/55hyvdmFBwqqoqdHfxcrmMxcVFBINBo62trQ2SJGFubs5ok2UZyWRSpBQiom3hfMF59uxZ5HI5hEIhnDx5Etdddx3279+PN7/5zfjud7/rUKV/2Je//GV0dnbipptuetG8nTt3QlEUPP300/jOd77jQHVihIJTURTMz8/XvHylUgEAeL1eU7vP54OmacZ0JBLB5OSkSClERJe8J598Ek8//bTp4AM4dzXs6dOnsWfPHjQ0NODo0aPIZDJ46KGHoCiKQ9X+YYuLiwiFQnC5XOedv/rPweLi4sUs64LY+jvO1auklpeXTe3lchmSJBnTxWIRfr9fqO/1XvxLlZXba/Vrt932BTlnK793Rfrat29fTcutXheyelpz1YMPPog9e/bgyiuvNLWXy2Whs4IAcOTIkYvyGd6xYwfGxsYwNjZmal+77g9/+MP48Ic/fMHr2cy21PpcW7/j9Pl88Pv9yOVyRls+n4emaaadeyE3s9Z1fds8rNxeq1+77bYv+HDusZXfuyJ91RqawLlbeXm9XqiqinK5jFOnTuG+++7DvffeC1VVjeUKhQL27t2LcDiMW265Rehv6b59+y7K/jt48CBcLhd+9rOfnfd1u+2223DZZZfhl7/85UXfp/v27TO9DhvtI9svDurv78fw8DAKhQI0TUMsFkM4HEZLSwuAc1dapdNpdHV12V0KEVFdkSQJDz/8MI4fP44rrrgCV199NSYmJjA1NWX6437VVVfhkUceQTabxR133OFgxev70Ic+BEmS0NXVZRp04de//jU+8YlP4Mtf/jI++MEP4lWvepWDVdZG6FRtPB7H17/+dSwsLNT8HEVR8OyzzyIUCuHMmTO44YYbMD4+bsyfmZlBZ2cnGhoaREohItoW9u7di0cffXTd+WfOnMGuXbsAnAva3bt3X6zShFxxxRWYnJxEV1cXOjs7je9tm5qa8Oyzz+Jd73oX/vmf/9nhKmsjdMQ5ODgoFJoA4Ha7MTo6ilKphEqlgomJCVNIXshpWiIiOuexxx7D9ddfjwMHDuDmm2/GPffc43RJ63rrW9+KJ554AqOjo3jFK14BAPizP/szZDIZ/Mu//Ate8pKXOFxhbRwf5L25uRk9PT1Ol0FEdNGcOHHC0uHuduzYAV3XsXPnThw+fBiHDx+uuY5AIGBZHbW4/PLLcdddd+Guu+66qOu1kqXBGQgE0NfXJ/ScoaEhK0sgItrSLnZQ/SGBQGBL1VMvLA9O7gQiovXxFl71rz4GOSQiItoiGJxEREQCGJxEREQCGJxEREQCHP85ChHRdnLnnXeaRs5xWiAQ4AVLgiw94kwkEsK/TQoGg5ienrayDCKiLevEiRNCwfn888/jyJEjxt2mVj333HM4cuQIVlZWLlotW9XZs2dfdDMRO9l+xFmtVqEoChKJBJ577jnceOON+OIXv2iMHiTLMlKpFMLhsN2lEBFtCYFAAJlMpqZlJycn0dPTg2w2i507f/8n+xvf+Abe//73I5vNYseOCzsGsnIQBif88pe/xGc+8xncf//9OHnyJADgpptuwkc+8hHccMMNtq3X9u84VVVFMplENps1bpHT29trzF8NTiIierHjx48jEAiYQhMAjh07hmAweMGhWe9+/vOfY8+ePYjH43jTm95kjHN74sQJ3HjjjfjsZz9r27ptf8XHxsYQi8XQ2toKr9eLkZERTE1NoVgsAgA6OjrgdrsxOztrdylERHXn+PHjxk2eX+jYsWPnbd8ubrvtNjz99NM4evQoUqkU7r77bgDnbrF266234u///u9tyxWh4FRVVegmqeVyGYuLi6a7l7e1tUGSJMzNzRltsiwjmUyKlEJEtC2cLzjPnj2LXC6HUCiEkydP4rrrrsP+/fvx5je/Gd/97ncdqvTi+elPf4rp6WkoioK3vvWtpnm7du3CAw88gFe84hX4/Oc/b8v6hYJTURTMz8/XvPzql9ler9fU7vP5oGmaMR2JRDA5OSlSChHRJe/JJ5/E008/bTr4AM6djjx9+jT27NmDhoYGHD16FJlMBg899BAURXGo2osnnU4DAN7znvecd74kSeju7sZ//ud/2rJ+Wy8O8ng8APCiq53K5TIkSTKmi8Ui/H6/UN8ul2vzBdYRK7fX6tduu+0Lcs5Wfu+K9PXCm1D/IavXhfh8PlP7gw8+iD179uDKK680tZfLZaGzggBw5MiRuv0Mt7a2vqht7baIbFuty9r6HafP54Pf70culzPa8vk8NE0z7dwLuSenruvb5mHl9lr92m23fcGHc4+t/N4V6avW0ASAa665Bl6vF6qqolwu49SpU7jvvvtw7733QlVVY7lCoYC9e/ciHA7jlltuEfpbum/fPsf3rejjkUceAQDcf//9590Pzz//PP74j/8YN910U8375IWvw0b7yPaLg/r7+zE8PIxCoQBN0xCLxRAOh9HS0gIAWFlZQTqdRldXl92lEBHVFUmS8PDDD+P48eO44oorcPXVV2NiYgJTU1OmP+5XXXUVHnnkEWSzWdxxxx0OVnxxXHfddbj22mtx+PBhPPXUUy+aH4/H8dRTT+H222+3Zf1Cp2rj8Ti+/vWvY2FhoebnKIqCZ599FqFQCGfOnMENN9yA8fFxY/7MzAw6OzuN33USEdHv7d27F48++ui688+cOYNdu3YBOBe0u3fvvlilOcblcuH+++/H29/+drzhDW/AHXfcYfwjEYlE8O1vfxu9vb2IRCK2rF/oiHNwcFAoNAHA7XZjdHQUpVIJlUoFExMTppC8kNO0RER0zmOPPYbrr78eBw4cwM0334x77rnH6ZIuije96U04evQorr32WvzDP/wD3va2twEAZmdn8clPfhIPPPCAbd/dOj5WbXNzM3p6epwug4joojlx4oSlo/bs2LEDuq5j586dOHz4MA4fPlxzHYFAwLI6LrbOzk7MzMwgn8/jiSeeQDgcxuLiIl760pfaul5LgzMQCKCvr0/oOUNDQ1aWQES0pW2loAoEAluqngvV2tqK1tZW4wIhu1kenJfCTiAisgvvRFL/tucgh0RERBeIwUlERCSAwUlERCSAwUlERCTA8Z+jEBFtJ3feeSdOnDjhdBmGQCDAC5YE8YiTiOgiOnHihFBwPv/88zhy5Ihxt6lVzz33HI4cOYKVlZWLVgudY+kRZyKRQCKRQCaTqfk5wWAQ8Xgc4XDYylKIiLasQCBQ89/JyclJ9PT0IJvNYufO3//J/sY3voH3v//9yGaz2LHjwo6BrByEYTux/YizWq1iYGAAjY2N8Hg8iEajKJVKxnxZlpFKpewug4ioLh0/fhyBQMAUmgBw7NgxBIPBCw5NunC2v+KqqiKZTCKbzRr3luvt7TXmMziJiNZ3/PhxhEKhF7UfO3bsvO1kP9uDc2xsDLFYDK2trfB6vRgZGcHU1BSKxSIAoKOjA263G7Ozs3aXQkRUd84XnGfPnkUul0MoFMLJkydx3XXXYf/+/Xjzm9+M7373uw5Vun0IBaeqqkJ3Fy+Xy1hcXEQwGDTa2traIEkS5ubmjDZZlpFMJkVKISK65D355JN4+umnTX9DgXMX9Zw+fRp79uxBQ0MDjh49ikwmg4ceegiKojhU7fYhFJyKomB+fr7m5VevAvN6vaZ2n88HTdOM6UgkgsnJSZFSiIgueatfb/l8PlP7gw8+iD179uDKK6+E2+2G2+0GcO5gReTghi6Mrb/j9Hg8AIDl5WVTe7lchiRJxnSxWITf7xfq2677rG1VVm6v1a/ddtsX5Jyt/N4V6Wv1pssbueaaa+D1eqGqKj7+8Y/j7Nmz+Ld/+zfce++9+M53vmMsVygU0Nvbi5/+9Kd44IEHhOo+cuQIP8O/U+vrYGtw+nw++P1+5HI5464p+XwemqaZ/itKpVKIRqNCfV+s28dsBS6Xy7LttbIvO/ojWs9Wfu+K9CXyExBJkvDwww8jFovhiiuuwMtf/nIEAgFMTU3h+uuvN5a76qqr8MgjjyCfz+Ptb387urq6al7Hvn37hH5CeCla3Serr8NG+8j2kYP6+/sxPDyMAwcO4PLLL0csFkM4HEZLSwsAYGVlBel0Wvi/JCKi7WDv3r149NFH151/5swZ7Nq1C8C5oN29e/fFKm3bEvqOMx6Po729XWgFiqKgu7sboVAITU1NqFarGB8fN+bPzMygs7MTDQ0NQv0SERHw2GOP4frrr8eBAwdw880345577nG6pEue0BHn4OAgBgcHhVbgdrsxOjqK0dHR885PpVKQZVmoTyIiOmfv3r34/ve/73QZ24rjg7w3Nzejp6fH6TKIiC6aEydObInh7k6cOGFcf0K1szQ4A4EA+vr6hJ4zNDRkZQlERFvaVgqqQCCwpeqpF5YHJ3cCEdH6eAuv+sfRgYmIiAQwOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJREL4t0nBYBDT09NWlkFERGQb2484q9UqBgYG0NjYCI/Hg2g0ilKpZMyXZRmpVMruMoiIiCxhe3CqqopkMolsNmvcW663t9eYz+AkIqJ6Yntwjo2NIRaLobW1FV6vFyMjI5iamkKxWAQAdHR0wO12Y3Z21u5SiIiINk0oOFVVFbq7eLlcxuLiIoLBoNHW1tYGSZIwNzdntMmyjGQyKVIKERGRI4SCU1EUzM/P17x8pVIBAHi9XlO7z+eDpmnGdCQSweTkpEgpREREjrD17igejwcAsLy8bGovl8uQJMmYLhaL8Pv9Qn27XK7NF1hHrNxeq1+77bYvyDlb+b3Lz0H9q3Uf2hqcPp8Pfr8fuVzOGPw9n89D0zTTKd9UKoVoNCrUt67rlta6lblcLsu218q+7OiPaD1b+b3Lz0F9W/0ZZSaTMU2vx/aLg/r7+zE8PIxCoQBN0xCLxRAOh9HS0gIAWFlZQTqdRldXl92lEBERbZpQcMbjcbS3twutQFEUdHd3IxQKoampCdVqFePj48b8mZkZdHZ2oqGhQahfIiIiJwgF5+DgIBYWFoRW4Ha7MTo6ilKphEqlgomJCVNIplIpyLIs1CcREZFTHB+rtrm5GT09PU6XQUREVBNLLw4KBALo6+sTes7Q0JCVJRAREdnK8uBcvXqWiIjoUuT4qVoiIqJ6wuAkIiISwOAkIiISwOAkIiISwOAkIiISwOAkIiISYGlwJhKJDQfHXSsYDGJ6etrKMoiIiGxj+xFntVrFwMAAGhsb4fF4EI1GUSqVjPmyLCOVStldBhERkSVsD05VVZFMJpHNZrG0tAQA6O3tNeYzOImIqJ7YHpxjY2OIxWJobW2F1+vFyMgIpqamUCwWAQAdHR1wu92YnZ21uxQiIqJNEwpOVVVNN6DeSLlcxuLiIoLBoNHW1tYGSZIwNzdntMmyjGQyKVIKERGRI4SCU1EUzM/P17x8pVIBAHi9XlO7z+eDpmnGdCQSweTkpEgpREREjrB0kPe1PB4PAGB5ednUXi6XIUmSMV0sFuH3+4X6drlcmy+wjli5vVa/dtttX5BztvJ7l5+D+lfrPrQ1OH0+H/x+P3K5nHHXlHw+D03TTKd8U6kUotGoUN+6rlta61bmcrks214r+7KjP6L1bOX3Lj8H9W31Z5SZTMY0vR7bLw7q7+/H8PAwCoUCNE1DLBZDOBxGS0sLAGBlZQXpdBpdXV12l0JERLRpQsEZj8fR3t4utAJFUdDd3Y1QKISmpiZUq1WMj48b82dmZtDZ2YmGhgahfomIiJwgFJyDg4NYWFgQWoHb7cbo6ChKpRIqlQomJiZMIZlKpSDLslCfRERETnF8rNrm5mb09PQ4XQYREVFNLL04KBAIoK+vT+g5Q0NDVpZARERkK8uDc/XqWSIiokuR46dqiYiI6gmDk4iISACDk4iISACDk4iISACDk4iISIClwZlIJDYc42+tYDCI6elpK8sgIiKyje1HnNVqFQMDA2hsbITH40E0GkWpVDLmy7KMVCpldxlERESWsD04VVVFMplENpvF0tISAKC3t9eYz+AkIqJ6Yntwjo2NIRaLobW1FV6vFyMjI5iamkKxWAQAdHR0wO12Y3Z21u5SiIiINk0oOFVVNd1HcyPlchmLi4sIBoNGW1tbGyRJwtzcnNEmyzKSyaRIKURERI4QCk5FUTA/P1/z8pVKBQDg9XpN7T6fD5qmGdORSASTk5MipRARETnC0rFq1/J4PACA5eVlU3u5XIYkScZ0sViE3+8X6tvlcm2+wDpi5fZa/dptt31BztnK711+DupfrfvQ1uD0+Xzw+/3I5XLG4O/5fB6applO+aZSKUSjUaG+dV23tNatzOVyWba9VvZlR39E69nK711+Durb6s8oM5mMaXo9tl8c1N/fj+HhYRQKBWiahlgshnA4jJaWFgDAysoK0uk0urq67C6FiIho04SCMx6Po729XWgFiqKgu7sboVAITU1NqFarGB8fN+bPzMygs7MTDQ0NQv0SERE5QSg4BwcHsbCwILQCt9uN0dFRlEolVCoVTExMmEIylUpBlmWhPomIiJzi+Fi1zc3N6OnpcboMIiKimlh6cVAgEEBfX5/Qc4aGhqwsgYiIyFaWB+fq1bNERESXIsdP1RIREdUTBicREZEABicREZEABicREZEABicREZEABicREZEAS4MzkUhsxEn1cgAAIABJREFUODjuWsFgENPT01aWQUREZBvbjzir1SoGBgbQ2NgIj8eDaDSKUqlkzJdlGalUyu4yiIiILGF7cKqqimQyiWw2i6WlJQBAb2+vMZ/BSURE9cT24BwbG0MsFkNrayu8Xi9GRkYwNTWFYrEIAOjo6IDb7cbs7KzdpRAREW2aUHCqqmq6AfVGyuUyFhcXEQwGjba2tjZIkoS5uTmjTZZlJJNJkVKIiIgcIRSciqJgfn6+5uUrlQoAwOv1mtp9Ph80TTOmI5EIJicnRUohIiJyhKWDvK/l8XgAAMvLy6b2crkMSZKM6WKxCL/fL9S3y+XafIF1xMrttfq12277gpyzld+7/BzUv1r3oa3B6fP54Pf7kcvljLum5PN5aJpmOuWbSqUQjUaF+tZ13dJatzKXy2XZ9lrZlx39Ea1nK793+Tmob6s/o8xkMqbp9dh+cVB/fz+Gh4dRKBSgaRpisRjC4TBaWloAACsrK0in0+jq6rK7FCIiok0TCs54PI729nahFSiKgu7uboRCITQ1NaFarWJ8fNyYPzMzg87OTjQ0NAj1S0RE5ASh4BwcHMTCwoLQCtxuN0ZHR1EqlVCpVDAxMWEKyVQqBVmWhfokIiJyiuNj1TY3N6Onp8fpMoiIiGpi6cVBgUAAfX19Qs8ZGhqysgQiIiJbWR6cq1fPEhERXYocP1VLRERUTxicREREAhicREREAhicREREAhicREREAiwNzkQiseEYf2sFg0FMT09bWQYREZFtbD/irFarGBgYQGNjIzweD6LRKEqlkjFflmWkUim7yyAiIrKE7cGpqiqSySSy2SyWlpYAAL29vcZ8BicREdUT24NzbGwMsVgMra2t8Hq9GBkZwdTUFIrFIgCgo6MDbrcbs7OzdpdCRES0aULBqaqq6T6aGymXy1hcXEQwGDTa2traIEkS5ubmjDZZlpFMJkVKISIicoRQcCqKgvn5+ZqXr1QqAACv12tq9/l80DTNmI5EIpicnBQphYiIyBGWjlW7lsfjAQAsLy+b2svlMiRJMqaLxSL8fr9Q3y6Xa/MF1hErt9fq12677QtyzlZ+7/JzUP9q3Ye2BqfP54Pf70culzMGf8/n89A0zXTKN5VKIRqNCvWt67qltW5lLpfLsu21si87+iNaz1Z+7/JzUN9Wf0aZyWRM0+ux/eKg/v5+DA8Po1AoQNM0xGIxhMNhtLS0AABWVlaQTqfR1dVldylERESbJhSc8Xgc7e3tQitQFAXd3d0IhUJoampCtVrF+Pi4MX9mZgadnZ1oaGgQ6peIiMgJQsE5ODiIhYUFoRW43W6Mjo6iVCqhUqlgYmLCFJKpVAqyLAv1SURE5BTHx6ptbm5GT0+P02UQERHVxNKLgwKBAPr6+oSeMzQ0ZGUJREREtrI8OFevniUiIroUOX6qloiIqJ4wOImIiAQwOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJRGLDwXHXCgaDmJ6etrIMIiIi29h+xFmtVjEwMIDGxkZ4PB5Eo1GUSiVjvizLSKVSdpdBRERkCduDU1VVJJNJZLNZLC0tAQB6e3uN+QxOIiKqJ7YH59jYGGKxGFpbW+H1ejEyMoKpqSkUi0UAQEdHB9xuN2ZnZ+0uhYiIaNOEglNVVdMNqDdSLpexuLiIYDBotLW1tUGSJMzNzRltsiwjmUyKlEJEROQIobFqFUWBoig1L1+pVAAAXq/X1O7z+aBpmjEdiURw8OBBHDp0qOa+XS5XzcteCqzcXqtfu+22L8g5W/m9y89B/at1H1o6yPtaHo8HALC8vGxqL5fLkCTJmC4Wi/D7/UJ967q++QLrhMvlsmx7rezLjv6I1rOV37v8HNS31V+DZDIZ0/R6bP2O0+fzwe/3I5fLGW35fB6applO+fJm1kREVC9svziov78fw8PDKBQK0DQNsVgM4XAYLS0tAICVlRWk02l0dXXZXQoREdGmCQVnPB5He3u70AoURUF3dzdCoRCamppQrVYxPj5uzJ+ZmUFnZycaGhqE+iUiInKCUHAODg5iYWFBaAVutxujo6MolUqoVCqYmJgwhSRP0xIRUT1xfKza5uZm9PT0OF0GERFRTSy9qjYQCKCvr0/oOUNDQ1aWQEREZCvLgzMQCFjZJRER0Zbi+KlaIiKiesLgJCIiEsDgJCIiEsDgJCIiEsDgJCIiEmBpcCYSiQ0Hx10rGAxienrayjKIiIhsY/sRZ7VaxcDAABobG+HxeBCNRlEqlYz5siwjlUrZXQYREZElbA9OVVWRTCaRzWaxtLQEAOjt7TXmMziJiKie2B6cY2NjiMViaG1thdfrxcjICKamplAsFgEAHR0dcLvdmJ2dtbsUIiKiTRMKTlVVTffR3Ei5XMbi4iKCwaDR1tbWBkmSMDc3Z7TJsoxkMilSChERkSOEglNRFMzPz9e8fKVSAQB4vV5Tu8/ng6ZpxnQkEsHk5KRIKURERI6wdKzatTweDwBgeXnZ1F4ulyFJkjFdLBbh9/uF+na5XJsvsI5Yub1Wv3bbbV+Qc7bye5efg/pX6z60NTh9Ph/8fj9yuZwx+Hs+n4emaaZTvqlUCtFoVKhvXdctrXUrc7lclm2vlX3Z0R/Rerbye5efg/q2+jPKTCZjml6P7RcH9ff3Y3h4GIVCAZqmIRaLIRwOo6WlBQCwsrKCdDqNrq4uu0shIiLaNKHgjMfjaG9vF1qBoijo7u5GKBRCU1MTqtUqxsfHjfkzMzPo7OxEQ0ODUL9EREROEArOwcFBLCwsCK3A7XZjdHQUpVIJlUoFExMTppBMpVKQZVmoTyIiIqc4PlZtc3Mzenp6nC6DiIioJpZeHBQIBNDX1yf0nKGhIStLICIispXlwbl69SwREdGlyPFTtURERPWEwUlERCSAwUlERCSAwUlERCSAwUlERCSAwUlERCTA0uBMJBIbDo67VjAYxPT0tJVlEBER2cb2I85qtYqBgQE0NjbC4/EgGo2iVCoZ82VZRiqVsrsMIiIiS9genKqqIplMIpvNYmlpCQDQ29trzGdwEhFRPbE9OMfGxhCLxdDa2gqv14uRkRFMTU2hWCwCADo6OuB2uzE7O2t3KURERJsmFJyqqppuQL2RcrmMxcVFBINBo62trQ2SJGFubs5ok2UZyWRSpBQiIiJHCI1VqygKFEWpeflKpQIA8Hq9pnafzwdN04zpSCSCgwcP4tChQzX37XK5al72UmDl9lr92m23fUHO2crvXX4O6l+t+9DSQd7X8ng8AIDl5WVTe7lchiRJxnSxWITf7xfqW9f1zRdYJ1wul2Xba2VfdvRHtJ6t/N7l56C+rf4aJJPJmKbXY+t3nD6fD36/H7lczmjL5/PQNM10ypc3syYionph+8VB/f39GB4eRqFQgKZpiMViCIfDaGlpAQCsrKwgnU6jq6vL7lKIiIg2TSg44/E42tvbhVagKAq6u7sRCoXQ1NSEarWK8fFxY/7MzAw6OzvR0NAg1C8REZEThIJzcHAQCwsLQitwu90YHR1FqVRCpVLBxMSEKSR5mpaIiOqJ42PVNjc3o6enx+kyiIiIamLpVbWBQAB9fX1CzxkaGrKyBCIiIltZHpyBQMDKLomIiLYUx0/VEhER1RMGJxERkQAGJxERkQAGJxERkQAGJxERkQBLgzORSGw4OO5awWAQ09PTVpZBRERkG9uPOKvVKgYGBtDY2AiPx4NoNIpSqWTMl2UZqVTK7jKIiIgsYXtwqqqKZDKJbDaLpaUlAEBvb68xn8FJRET1xPbgHBsbQywWQ2trK7xeL0ZGRjA1NYVisQgA6OjogNvtxuzsrN2lEBERbZpQcKqqarqP5kbK5TIWFxcRDAaNtra2NkiShLm5OaNNlmUkk0mRUoiIiBwhFJyKomB+fr7m5SuVCgDA6/Wa2n0+HzRNM6YjkQgmJydFSiEiInKEpWPVruXxeAAAy8vLpvZyuQxJkozpYrEIv98v1LfL5dp8gXXEyu21+rXbbvuCnLOV37v8HNS/WvehrcHp8/ng9/uRy+WMwd/z+Tw0TTOd8k2lUohGo0J967puaa1bmcvlsmx7rezLjv6I1rOV37v8HNS31Z9RZjIZ0/R6bL84qL+/H8PDwygUCtA0DbFYDOFwGC0tLQCAlZUVpNNpdHV12V0KERHRpgkFZzweR3t7u9AKFEVBd3c3QqEQmpqaUK1WMT4+bsyfmZlBZ2cnGhoahPolIiJyglBwDg4OYmFhQWgFbrcbo6OjKJVKqFQqmJiYMIVkKpWCLMtCfRIRETnF8bFqm5ub0dPT43QZRERENbH04qBAIIC+vj6h5wwNDVlZAhERka0sD87Vq2eJiIguRY6fqiUiIqonDE4iIiIBDE4iIiIBDE4iIiIBDE4iIiIBDE4iIiIBlgZnIpHYcHDctYLBIKanp60sg4iIyDa2H3FWq1UMDAygsbERHo8H0WgUpVLJmC/LMlKplN1lEBERWcL24FRVFclkEtlsFktLSwCA3t5eYz6Dk4iI6ontwTk2NoZYLIbW1lZ4vV6MjIxgamoKxWIRANDR0QG3243Z2Vm7SyEiIto0oeBUVdV0A+qNlMtlLC4uIhgMGm1tbW2QJAlzc3NGmyzLSCaTIqUQERE5QmisWkVRoChKzctXKhUAgNfrNbX7fD5ommZMRyIRHDx4EIcOHaq5b5fLVfOylwIrt9fq12677QtyzlZ+7/JzUP9q3YeWDvK+lsfjAQAsLy+b2svlMiRJMqaLxSL8fr9Q37qub77AOuFyuSzbXiv7sqM/ovVs5fcuPwf1bfXXIJlMxjS9Hlu/4/T5fPD7/cjlckZbPp+HpmmmU768mTUREdUL2y8O6u/vx/DwMAqFAjRNQywWQzgcRktLCwBgZWUF6XQaXV1ddpdCRES0aULBGY/H0d7eLrQCRVHQ3d2NUCiEpqYmVKtVjI+PG/NnZmbQ2dmJhoYGoX6JiIicIBScg4ODWFhYEFqB2+3G6OgoSqUSKpUKJiYmTCHJ07RERFRPHB+rtrm5GT09PU6XQUREVBNLr6oNBALo6+sTes7Q0JCVJRAREdnK8uAMBAJWdklERLSlOH6qloiIqJ4wOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJRGLDwXHXCgaDmJ6etrIMIiIi29h+xFmtVjEwMIDGxkZ4PB5Eo1GUSiVjvizLSKVSdpdBRERkCduDU1VVJJNJZLNZLC0tAQB6e3uN+QxOIiKqJ7YH59jYGGKxGFpbW+H1ejEyMoKpqSkUi0UAQEdHB9xuN2ZnZ+0uhYiIaNOEglNVVdN9NDdSLpexuLiIYDBotLW1tUGSJMzNzRltsiwjmUyKlEJEROQIoeBUFAXz8/M1L1+pVAAAXq/X1O7z+aBpmjEdiUQwOTkpUgoREZEjLB2rdi2PxwMAWF5eNrWXy2VIkmRMF4tF+P1+ob5dLtfmC6wjVm6v1a/ddtsX5Jyt/N7l56D+1boPbQ1On88Hv9+PXC5nDP6ez+ehaZrplG8qlUI0GhXqW9d1S2vdylwul2Xba2VfdvRHtJ6t/N7l56C+rf6MMpPJmKbXY/vFQf39/RgeHkahUICmaYjFYgiHw2hpaQEArKysIJ1Oo6ury+5SiIiINk0oOOPxONrb24VWoCgKuru7EQqF0NTUhGq1ivHxcWP+zMwMOjs70dDQINQvERGRE4SCc3BwEAsLC0IrcLvdGB0dRalUQqVSwcTEhCkkU6kUZFkW6pOIiMgpjo9V29zcjJ6eHqfLICIiqomlFwcFAgH09fUJPWdoaMjKEoiIiGxleXCuXj1LRER0KXL8VC0REVE9YXASEREJYHASEREJYHASEREJYHASEREJYHASEREJsDQ4E4nEhoPjrhUMBjE9PW1lGURERLax/YizWq1iYGAAjY2N8Hg8iEajKJVKxnxZlpFKpewug4iIyBK2B6eqqkgmk8hms1haWgIA9Pb2GvMZnEREVE9sD86xsTHEYjG0trbC6/ViZGQEU1NTKBaLAICOjg643W7Mzs7aXQoREdGmCQWnqqqmG1BvpFwuY3FxEcFg0Ghra2uDJEmYm5sz2mRZRjKZFCmFiIjIEUJj1SqKAkVRal6+UqkAALxer6nd5/NB0zRjOhKJ4ODBgzh06FDNfbtcrpqXvRRYub1Wv3bbbV+Qc7bye5efg/pX6z60dJD3tTweDwBgeXnZ1F4ulyFJkjFdLBbh9/uF+tZ1ffMF1gmXy2XZ9lrZlx39Ea1nK793+Tmob6u/BslkMqbp9dj6HafP54Pf70culzPa8vk8NE0znfLlzayJiKhe2H5xUH9/P4aHh1EoFKBpGmKxGMLhMFpaWgAAKysrSKfT6OrqsrsUIiKiTRMKzng8jvb2dqEVKIqC7u5uhEIhNDU1oVqtYnx83Jg/MzODzs5ONDQ0CPVLRETkBKHgHBwcxMLCgtAK3G43RkdHUSqVUKlUMDExYQpJnqYlIqJ64vhYtc3Nzejp6XG6DCIioppYelVtIBBAX1+f0HOGhoasLIGIiMhWlgdnIBCwsksiIqItxfFTtURERPWEwUlERCSAwUlERCSAwUlERCSAwUlERCTA0uBMJBIbDo67VjAYxPT0tJVlEBER2cb2I85qtYqBgQE0NjbC4/EgGo2iVCoZ82VZRiqVsrsMIiIiS9genKqqIplMIpvNYmlpCQDQ29trzGdwEhFRPbE9OMfGxhCLxdDa2gqv14uRkRFMTU2hWCwCADo6OuB2uzE7O2t3KURERJsmFJyqqpruo7mRcrmMxcVFBINBo62trQ2SJGFubs5ok2UZyWRSpBQiIiJHCAWnoiiYn5+veflKpQIA8Hq9pnafzwdN04zpSCSCyclJkVKIiIgcYelYtWt5PB4AwPLysqm9XC5DkiRjulgswu/3C/Xtcrk2X2AdsXJ7rX7tttu+IOds5fcuPwf1r9Z9aGtw+nw++P1+5HI5Y/D3fD4PTdNMp3xTqRSi0ahQ37quW1rrVuZyuSzbXiv7sqM/ovVs5fcuPwf1bfVnlJlMxjS9HtsvDurv78fw8DAKhQI0TUMsFkM4HEZLSwsAYGVlBel0Gl1dXXaXQkREtGlCwRmPx9He3i60AkVR0N3djVAohKamJlSrVYyPjxvzZ2Zm0NnZiYaGBqF+iYiInCAUnIODg1hYWBBagdvtxujoKEqlEiqVCiYmJkwhmUqlIMuyUJ9EREROcXys2ubmZvT09DhdBhERUU0svTgoEAigr69P6DlDQ0NWlkBERGQry4Nz9epZIiKiS5Hjp2qJiIjqCYOTiIhIAIOTiIhIAIOTiIhIAIOTiIhIAIOTiIhIgKXBmUgkNhwcd61gMIjp6Wkry6h7v/rVr/ClL30Je/fuRUtLC3bs2AFVVVEqlZwuDadPn8Z9992Ht7zlLUZtn/rUp3Dq1CmnS6NL0C9+8QvE43Hjhvdve9vb8MADD+DXv/6106XhqaeewqFDh3DttdfC7XZj//79+NrXvoYzZ844XRrZzPYjzmq1ioGBATQ2NsLj8SAajZoCQJZlpFIpu8uoGydPnsRb3vIW/O3f/i2Wl5dx/fXX4+zZszh48CDa29tx4sQJx2pbWlrCG9/4Rtx+++349a9/bdR299134/Wvfz1+/OMfO1YbXXqOHz+O9vZ2fOxjH4PP50O1WsWpU6dw22234a1vfSueeeYZx2r7r//6L7zuda/DP/3TP6GxsRHVahVPPfUU/uZv/gb79u3Ds88+61htZD/bg1NVVSSTSWSzWSwtLQEAent7jfkMzt/TdR09PT144oknkEqlMD8/j69+9asAgB/+8IfYtWsX3vnOd+L06dPCfZ85cwbf/va3AZy7H+qF1HbzzTfj5z//Oaanp/HDH/7QqC2bzaJareKd73wn/9smSywvL+Omm27C7t27MT8/jyNHjgAA/vu//xvf/OY38fjjj+Mv//IvL6jvUqmEb37zmwCA3/72t8LPf+aZZxCJRNDY2IjHH38c3/ve9wAAP/nJT/DQQw8hl8vhve997wXVRnVCt9ADDzyg79u3z9Tm9/v1+++/35h+4okndAD6//7v/xptzc3N+vHjx60spS5ls1kdgP7Zz37W1L66m77//e/rAPQvfvGLQv2ePn1af+Mb36gD0AHofr9fX1paEurje9/7ng7AtC9fWNt3vvMdHYA+Pj4u1C/R+Xzuc5/TAeg/+MEPjLYX/rkaHR3VAei5XE6o35/97Gf6q1/9auOzsH//fv3MmTNCfaiqqgPQ5+fnz1vboUOHdAD6T37yE6F+yTn79u0zZdfaHFtL6IhTVVXTDag3Ui6Xsbi4iGAwaLS1tbVBkiTMzc0ZbbIsI5lMipRySfrmN7+Jl7zkJeuO97t3715cffXVxn/Ltbr33ntx/PhxY/r//u//hMcI/ta3voWXv/zleM973nPe+TfeeCP8fj8mJiaE+iU6n29961u49tprsWfPnvPOf//7348dO3YIfxYGBwdNXxVlMhl85StfEa5tz549uPbaa887/wMf+ICxHF2irEzttUeci4uLOgA9n8+blvP7/frXvvY1Y3p6elp/wxveILQu/O4/Rj744OPSe7hcLsdrWO+xY8cOx2vgw/7HH2Lrd5wejwfAue8rXqhcLkOSJGO6WCzC7/cL9a3r+iX3+MxnPgMA+NGPfmRqX93eSqUCSZLQ19cn1O/qd5svdM899wj18clPfhIA8MQTT5y3tlOnTuFlL3sZ/u7v/s7x15GP+n/81V/9FV75ylfiV7/6ldH2ws/97OwsAODzn/+8UL8vPNPicrngcrnwyCOPCPXR3d2NP/qjP8Lzzz9/3tqOHj0K4NyvDJx+Hfmo7bFv3z7s27fPNL1RAFlmve84v/SlLxnT//M//6MD0AuFgtHW1dWlP/DAA1aWUpeeeeYZfdeuXfqtt96qV6tVo311N3384x/XAeiPPvqocN9f/OIX9SuvvFJ/zWteo3/sYx8z9V+LJ598Une73fpf//Vf62fPnn1RbR/96Ed1APoPf/hD4dqI1kqn0zoA/f/9v/9ntK2+16rVqt7d3a2//OUv15999lmhfn/zm9/oH/nIR/RXv/rVenNzs/7ggw8K1/bwww/rAPR77rnnRbX95je/0d/xjnfoXq9XP336tHDf5AzR7zhtD85PfOIT+p/8yZ/o+XxeX15e1v/iL/5CD4fDxvzTp0/rr3jFK/RnnnnGylLq1uqFB+985zv1I0eO6JVKRQegf+ADH9AB6O9+97tNwXUx/eM//qMOQJdlWX/00UeN2t773vfqAPTbbrvNkbro0nP27Fn91ltv1QHoH/rQh/Qf/ehHOgA9nU7rN954ow5A/9SnPuVIbb/97W/1m266SXe5XPqHP/xh/fHHH9cB6P/xH/+h79+/Xweg33fffY7URhfG1uD85Cc/qb/uda9bd/75gvO3v/2tftddd+mXX365vnv3bv2WW24xheTExIS+d+9ekTIuaWfPntU//elP616v13S+/aUvfal+xx136M8//7yjtcXjcd3j8Zhqu+yyy/S77rpL/81vfuNYbXTpee655/QPfehD+kte8hLT++2Vr3zli648v9h+9atf6e973/v0nTt3mmq7/PLL9bGxMUdrI3GiwenS9d+doLdAIpFAIpFAJpOp+Tnve9/70N7ejrvvvtuqMi4JKysrSCaTWFpaQiwWwy9+8Qs0NjY6XRYAoFKp4Fvf+haeeuopxGIx/PKXv8SrXvUqp8uiS9TJkyeRTCbxwQ9+EA8++CBuvvlmvOxlL3O6LADAz3/+c6RSKdx+++3413/9V/z5n/85LrvsMqfLIkGrI96tZtf+/fv/YI45HpxDQ0N43/veh+bmZqvKICIiqplocO60cuWBQGDd3yCuR/T3hERERE6yPDgDgYCVXRIREW0pvK0YERGRAAYnERGRAAYnERGRAAYnERGRAAYnERGRAEuDM5FIGL+HqVUwGMT09LSVZRAREdnG9iPOarWKgYEBNDY2wuPxIBqNmu6HJ8syUqmU3WUQERFZwvbgVFUVyWQS2WwWS0tLAIDe3l5jPoOTiIjqie3BOTY2hlgshtbWVni9XoyMjGBqagrFYhEA0NHRAbfbbdxfj4iIaCsTCk5VVfH617++5uXL5TIWFxcRDAaNtra2NkiShLm5OaNNlmUkk0mRUoiIiBwhFJyKomB+fr7m5SuVCgDA6/Wa2n0+HzRNM6YjkQgmJydFSiEiInKEpWPVruXxeAAAy8vLpvZyuQxJkozpYrEIv98v1LfL5dp8gURERL9Ta67YGpw+nw9+vx+5XM4Y/D2fz0PTNNMp31QqhWg0KtS3hXdDIyKibex8txX7Q2y/OKi/vx/Dw8MoFArQNA2xWAzhcBgtLS0Azt2wOZ1Oo6ury+5SiIiINk0oOOPxONrb24VWoCgKuru7EQqF0NTUhGq1ivHxcWP+zMwMOjs70dDQINQvERGRE4SCc3BwEAsLC0IrcLvdGB0dRalUQqVSwcTEhCkkU6kUZFkW6pOIiMgpjo9V29zcjJ6eHqfLICIiqomlFwcFAgH09fUJPWdoaMjKEoiIiGxleXCuXj1LRER0KXL8VC0REVE9YXASEREJYHASEREJYHASEREJYHASEREJYHASEREJsDQ4E4nEhoPjrhUMBjE9PW1lGURERLax/YizWq1iYGAAjY2N8Hg8iEajKJVKxnxZlpFKpewug4iIyBK2B6eqqkgmk8hms1haWgIA9Pb2GvMZnEREVE9sD86xsTHEYjG0trbC6/ViZGQEU1NTKBaLAICOjg643W7Mzs7aXQoREdGmCQWnqqqmG1BvpFwuY3FxEcFg0Ghra2uDJEmYm5sz2mRZRjKZFCmFiIjIEUJj1SqKAkVRal6+UqkAALxer6nd5/NB0zRjOhKJ4ODBgzh06FDNfbtcrpqXJSIi2kituWLpIO9reTweAMDy8rKpvVwuQ5KFJeiSAAAgAElEQVQkY7pYLMLv9wv1rev65gskIqJtb/XXIJlMxjS9Hlu/4/T5fPD7/cjlckZbPp+HpmmmU768mTUREdUL2y8O6u/vx/DwMAqFAjRNQywWQzgcRktLCwBgZWUF6XQaXV1ddpdCRES0aULBGY/H0d7eLrQCRVHQ3d2NUCiEpqYmVKtVjI+PG/NnZmbQ2dmJhoYGoX6JiIicIBScg4ODWFhYEFqB2+3G6OgoSqUSKpUKJiYmTCHJ07RERFRPHB+rtrm5GT09PU6XQUREVBNLr6oNBALo6+sTes7Q0JCVJRAREdnK8uAMBAJWdklERLSlOH6qloiIqJ4wOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJRGLDwXHXCgaDmJ6etrIMIiIi29h+xFmtVjEwMIDGxkZ4PB5Eo1GUSiVjvizLSKVSdpdBRERkCduDU1VVJJNJZLNZLC0tAQB6e3uN+QxOIiKqJ7YH59jYGGKxGFpbW+H1ejEyMoKpqSkUi0UAQEdHB9xuN2ZnZ+0uhYiIaNOEglNVVdN9NDdSLpexuLiIYDBotLW1tUGSJMzNzRltsiwjmUyKlEJEROQIoeBUFAXz8/M1L1+pVAAAXq/X1O7z+aBpmjEdiUQwOTkpUgoREZEjLB2rdi2PxwMAWF5eNrWXy2VIkmRMF4tF+P1+ob5dLtfmCyQiIvqdWnPF1uD0+Xzw+/3I5XLG4O/5fB6applO+aZSKUSjUaG+dV23tFYiItqeVn9GmclkTNPrsf3ioP7+fgwPD6NQKEDTNMRiMYTDYbS0tAAAVlZWkE6n0dXVZXcpREREmyYUnPF4HO3t7UIrUBQF3d3dCIVCaGpqQrVaxfj4uDF/ZmYGnZ2daGhoEOqXiIjICULBOTg4iIWFBaEVuN1ujI6OolQqoVKpYGJiwhSSqVQKsiwL9UlEROQUx8eqbW5uRk9Pj9NlEBER1cTSi4MCgQD6+vqEnjM0NGRlCURERLayPDhXr54lIiK6FDl+qpaIiKieMDiJiIgEMDiJiIgEMDiJiIgEMDiJiIgEMDiJiIgEWBqciURiw8Fx1woGg5ienrayDCIiItvYfsRZrVYxMDCAxsZGeDweRKNRlEolY74sy0ilUnaXQUREZAnbg1NVVSSTSWSzWSwtLQEAent7jfkMTiIiqie2B+fY2BhisRhaW1vh9XoxMjKCqakpFItFAEBHRwfcbjdmZ2ftLoWIiGjThIJTVVXTDag3Ui6Xsbi4iGAwaLS1tbVBkiTMzc0ZbbIsI5lMipRCRETkCKGxahVFgaIoNS9fqVQAAF6v19Tu8/mgaZoxHYlEcPDgQRw6dKjmvl0uV83LEhERbaTWXLF0kPe1PB4PAGB5ednUXi6XIUmSMV0sFuH3+4X61nV98wUSEdG2t/prkEwmY5pej63fcfp8Pvj9fuRyOaMtn89D0zTTKV/ezJqIiOqF7RcH9ff3Y3h4GIVCAZqmIRaLIRwOo6WlBQCwsrKCdDqNrq4uu0shIiLaNKHgjMfjaG9vF1qBoijo7u5GKBRCU1MTqtUqxsfHjfkzMzPo7OxEQ0ODUL9EREROEArOwcFBLCwsCK3A7XZjdHQUpVIJlUoFExMTppDkaVoiIqonjo9V29zcjJ6eHqfLICIiqomlV9UGAgH09fUJPWdoaMjKEoiIiGxleXAGAgEruyQiItpSHD9VS0REVE8YnERERAIYnERERAIYnERERAIYnERERAIsDc5EIrHh4LhrBYNBTE9PW1kGERGRbWw/4qxWqxgYGEBjYyM8Hg+i0ShKpZIxX5ZlpFIpu8sgIiKyhO3BqaoqkskkstkslpaWAAC9vb3GfAYnERHVE9uDc2xsDLFYDK2trfB6vRgZGcHU1BSKxSIAoKOjA263G7Ozs3aXQkREtGlCwamqquk+mhspl8tYXFxEMBg02tra2iBJEubm5ow2WZaRTCZFSiEiInKEUHAqioL5+fmal69UKgAAr9dravf5fNA0zZiORCKYnJwUKYWIiMgRlo5Vu5bH4wEALC8vm9rL5TIkSTKmi8Ui/H6/UN8ul2vzBRIREf1Orblia3D6fD74/X7kcjlj8Pd8Pg9N00ynfFOpFKLRqFDfuq5bWisREW1Pqz+jzGQypun12H5xUH9/P4aHh1EoFKBpGmKxGMLhMFpaWgAAKysrSKfT6OrqsrsUIiKiTRMKzng8jvb2dqEVKIqC7u5uhEIhNDU1oVqtYnx83Jg/MzODzs5ONDQ0CPVLRETkBKHgHBwcxMLCgtAK3G43RkdHUSqVUKlUMDExYQrJVCoFWZaF+iQiInKK42PVNjc3o6enx+kyiIiIamLpxUGBQAB9fX1CzxkaGrKyBCIiIltZHpyrV88SERFdihw/VUtERFRPGJxEREQCGJxEREQCGJxEREQCGJxEREQCGJxEREQCLA3ORCKx4eC4awWDQUxPT1tZBhERkW1sP+KsVqsYGBhAY2MjPB4PotEoSqWSMV+WZaRSKbvLICIisoTtwamqKpLJJLLZLJaWlgAAvb29xnwGJxER1RPbg3NsbAyxWAytra3wer0YGRnB1NQUisUiAKCjowNutxuzs7N2l0JERLRpQsGpqqrpBtQbKZfLWFxcRDAYNNra2togSRLm5uaMNlmWkUwmRUohIiJyhNBYtYqiQFGUmpevVCoAAK/Xa2r3+XzQNM2YjkQiOHjwIA4dOlRz3y6Xq+ZliYiINlJrrlg6yPtaHo8HALC8vGxqL5fLkCTJmC4Wi/D7/UJ967q++QKJiGjbW/01SCaTMU2vx9bvOH0+H/x+P3K5nNGWz+ehaZrplC9vZk1ERPXC9ouD+vv7MTw8jEKhAE3TEIvFEA6H0dLSAgBYWVlBOp1GV1eX3aUQERFtmlBwxuNxtLe3C61AURR0d3cj9P/Zu/+oqM47f+DvYdyYROeHCbRpsIBgNnH9wdApCRq2Q4wpbcVMOVNMty0pSRptt8ZqU8uU2m+pdjmjIV3NaUxKu5WckHo2aWlmDA2QGGaiRgeB8qOYbDUgLFpN0Awz0oAy83z/cJ064o+5cC+XH+/XOfcc55lnnvsZHp2393LnuenpiI+PRzAYREVFRfj52tpapKWlITY2VtK4REREapAUnEVFRWhvb5e0A61Wi9LSUvT29iIQCKCysjIiJHmaloiIJhLV16pNTExEXl6e2mUQERFFRdarak0mEwoKCiS9pri4WM4SiIiIFCV7cJpMJjmHJCIiGldUP1VLREQ0kTA4iYiIJGBwEhERScDgJCIikoDBSUREJIGswVleXn7dxXEvZzabUVNTI2cZREREilH8iDMYDGLDhg2Ii4uDTqeDzWZDb29v+Hmr1QqXy6V0GURERLJQPDgdDgecTie8Xi96enoAAPn5+eHnGZxERDSRKB6cZWVlKCwsRHJyMgwGA7Zu3Yrq6mp0dXUBAFJTU6HVatHY2Kh0KURERKMmKTgdDkfEfTSvx+fzobu7G2azOdyWkpICvV6PlpaWcJvVaoXT6ZRSChERkSokBafdbkdra2vU/QOBAADAYDBEtBuNRvj9/vDj5cuXo6qqSkopREREqpB1rdrL6XQ6AEBfX19Eu8/ng16vDz/u6upCQkKCpLE1Gs3oCyQiIvo/0eaKosFpNBqRkJCApqam8OLvHR0d8Pv9Ead8XS4XbDabpLGFELLWSkREU9PFr1G63e6Ix1ej+MVBq1atwpYtW9DZ2Qm/34/CwkJkZ2cjKSkJANDf34+6ujrk5OQoXQoREdGoSQrOkpISzJ8/X9IO7HY7VqxYgfT0dMTHxyMYDKKioiL8fG1tLdLS0hAbGytpXCIiIjVICs6ioiK0t7dL2oFWq0VpaSl6e3sRCARQWVkZEZIulwtWq1XSmERERGpRfa3axMRE5OXlqV0GERFRVGS9OMhkMqGgoEDSa4qLi+UsgYiISFGyB+fFq2eJiIgmI9VP1RIREU0kDE4iIiIJGJxEREQSMDiJiIgkYHASERFJIGtwlpeXX3eNv8uZzWbU1NTIWQYREZFiFD/iDAaD2LBhA+Li4qDT6WCz2dDb2xt+3mq1wuVyKV0GERGRLBQPTofDAafTCa/Xi56eHgBAfn5++HkGJxERTSSKB2dZWRkKCwuRnJwMg8GArVu3orq6Gl1dXQCA1NRUaLVaNDY2Kl0KERHRqEkKTofDEXEfzevx+Xzo7u6G2WwOt6WkpECv16OlpSXcZrVa4XQ6pZRCRESkCknBabfb0draGnX/QCAAADAYDBHtRqMRfr8//Hj58uWoqqqSUgoREZEqZF2r9nI6nQ4A0NfXF9Hu8/mg1+vDj7u6upCQkCBpbI1GM/oCiYiI/k+0uaJocBqNRiQkJKCpqSm8+HtHRwf8fn/EKV+XywWbzSZpbCGErLUSEdHUdPFrlG63O+Lx1Sh+cdCqVauwZcsWdHZ2wu/3o7CwENnZ2UhKSgIA9Pf3o66uDjk5OUqXQkRENGqSgrOkpATz58+XtAO73Y4VK1YgPT0d8fHxCAaDqKioCD9fW1uLtLQ0xMbGShqXiIhIDZKCs6ioCO3t7ZJ2oNVqUVpait7eXgQCAVRWVkaEpMvlgtVqlTQmERGRWlRfqzYxMRF5eXlql0FERBQVWS8OMplMKCgokPSa4uJiOUsgIiJSlOzBefHqWSIioslI9VO1REREEwmDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCSQNTjLy8uvuzju5cxmM2pqauQsg4iISDGKH3EGg0Fs2LABcXFx0Ol0sNls6O3tDT9vtVrhcrmULoOIiEgWigenw+GA0+mE1+tFT08PACA/Pz/8PIOTiIgmEsWDs6ysDIWFhUhOTobBYMDWrVtRXV2Nrq4uAEBqaiq0Wi0aGxuVLoWIiGjUJAWnw+GIuAH19fh8PnR3d8NsNofbUlJSoNfr0dLSEm6zWq1wOp1SSiEiIlKFpOC02+1obW2Nun8gEAAAGAyGiHaj0Qi/3x9+vHz5clRVVUkphYiISBWyLvJ+OZ1OBwDo6+uLaPf5fNDr9eHHXV1dSEhIkDS2RqMZfYFERET/J9pcUTQ4jUYjEhIS0NTUFL5rSkdHB/x+f8QpX5fLBZvNJmlsIYSstRIR0dR08WuUbrc74vHVKH5x0KpVq7BlyxZ0dnbC7/ejsLAQ2dnZSEpKAgD09/ejrq4OOTk5SpdCREQ0apKCs6SkBPPnz5e0A7vdjhUrViA9PR3x8fEIBoOoqKgIP19bW4u0tDTExsZKGpeIiEgNkoKzqKgI7e3tknag1WpRWlqK3t5eBAIBVFZWRoSky+WC1WqVNCYREZFaVF+rNjExEXl5eWqXQUREFBVZLw4ymUwoKCiQ9Jri4mI5SyAiIlKU7MF58epZIiKiyUj1U7VEREQTCYOTiIhIAgYnERGRBAxOIiIiCRicREREEsganOXl5ddd4+9yZrMZNTU1cpZBRESkGEWPOIPBIDZs2IC4uDjodDrYbDb09vZG9LFarXC5XEqWQUREJBtFg9PhcMDpdMLr9aKnpwcAkJ+fH9GHwUlERBOJosFZVlaGwsJCJCcnw2AwYOvWraiurkZXV1e4T2pqKrRaLRobG5UshYiISBaSgtPhcETcR/NafD4furu7YTabw20pKSnQ6/VoaWmJ6Gu1WuF0OqWUQkREpApJwWm329Ha2hpV30AgAAAwGAwR7UajEX6/P6Jt+fLlqKqqklIKERGRKmRdq/ZSOp0OANDX1xfR7vP5oNfrI9q6urqQkJAgaXyNRjO6AomIiC4Rba4oFpxGoxEJCQloamoKL/ze0dEBv98/7HSvy+WCzWaTNL4QQrZaiYho6rr4NUq32x3x+GoUvTho1apV2LJlCzo7O+H3+1FYWIjs7GwkJSWF+/T396Ourg45OTlKlkJERCQLScFZUlKC+fPnR93fbrdjxYoVSE9PR3x8PILBICoqKiL61NbWIi0tDbGxsVJKISIiUoWk4CwqKkJ7e3vU/bVaLUpLS9Hb24tAIIDKysphAelyuWC1WqWUQUREpBrV16pNTExEXl6e2mUQERFFRdaLg0wmEwoKCiS9pri4WM4SiIiIFCV7cF68gpaIiGgyUv1ULRER0UTC4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJZA3O8vLy6y6Oezmz2Yyamho5yyAiIlKMokecwWAQGzZsQFxcHHQ6HWw2G3p7eyP6WK1WuFwuJcsgIiKSjaLB6XA44HQ64fV60dPTAwDIz8+P6MPgJCKiiUTR4CwrK0NhYSGSk5NhMBiwdetWVFdXo6urK9wnNTUVWq0WjY2NSpZCREQkC0nB6XA4ht2E+mp8Ph+6u7thNpvDbSkpKdDr9WhpaYnoa7Va4XQ6pZRCRESkCknBabfb0draGlXfQCAAADAYDBHtRqMRfr8/om358uWoqqqSUgoREZEqZF3k/VI6nQ4A0NfXF9Hu8/mg1+sj2rq6upCQkCBpfI1GM7oCiYiILhFtrigWnEajEQkJCWhqagrfMaWjowN+v3/Y6V6XywWbzSZpfCGEbLUSEdHUdfFrlG63O+Lx1Sh6cdCqVauwZcsWdHZ2wu/3o7CwENnZ2UhKSgr36e/vR11dHXJycpQshYiISBaSgrOkpATz58+Pur/dbseKFSuQnp6O+Ph4BINBVFRURPSpra1FWloaYmNjpZRCRESkCknBWVRUhPb29qj7a7ValJaWore3F4FAAJWVlcMC0uVywWq1SimDiIhINaqvVZuYmIi8vDy1yyAiIoqKrBcHmUwmFBQUSHpNcXGxnCUQEREpSvbgvHgFLRER0WSk+qlaIiKiiYTBSUREJAGDk4iISAIGJxERkQQMTiIiIglkDc7y8vLrrvF3ObPZjJqaGjnLICIiUoyiR5zBYBAbNmxAXFwcdDodbDYbent7I/pYrVa4XC4lyyAiIpKNosHpcDjgdDrh9XrR09MDAMjPz4/ow+AkIqKJRNHgLCsrQ2FhIZKTk2EwGLB161ZUV1ejq6sr3Cc1NRVarRaNjY1KlkJERCQLScHpcDiG3Uvzanw+H7q7u2E2m8NtKSkp0Ov1aGlpiehrtVrhdDqllEJERKQKScFpt9vR2toaVd9AIAAAMBgMEe1GoxF+vz+ibfny5aiqqpJSChERkSpkXav2UjqdDgDQ19cX0e7z+aDX6yPaurq6kJCQIGl8jUYzugKJiIguEW2uKBacRqMRCQkJaGpqCi/83tHRAb/fP+x0r8vlgs1mkzS+EEK2WomIaOq6+DVKt9sd8fhqFL04aNWqVdiyZQs6Ozvh9/tRWFiI7OxsJCUlhfv09/ejrq4OOTk5SpZCREQkC0nBWVJSgvnz50fd3263Y8WKFUhPT0d8fDyCwSAqKioi+tTW1iItLQ2xsbFSSiEiIlKFpOAsKipCe3t71P21Wi1KS0vR29uLQCCAysrKYQHpcrlgtVqllEFERKQa1deqTUxMRF5entplEBERRUXWi4NMJhMKCgokvaa4uFjOEoiIiBQle3BevIKWiIhoMlL9VC0REdFEwuAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCWQNzvLy8usujns5s9mMmpoaOcsgIiJSjKJHnMFgEBs2bEBcXBx0Oh1sNht6e3sj+litVrhcLiXLICIiko2iwelwOOB0OuH1etHT0wMAyM/Pj+jD4CQioolE0eAsKytDYWEhkpOTYTAYsHXrVlRXV6OrqyvcJzU1FVqtFo2NjUqWQkREJAtJwelwOIbdhPpqfD4furu7YTabw20pKSnQ6/VoaWmJ6Gu1WuF0OqWUQkREpApJwWm329Ha2hpV30AgAAAwGAwR7UajEX6/P6Jt+fLlqKqqklIKERGRKmRd5P1SOp0OANDX1xfR7vP5oNfrI9q6urqQkJAgaXyNRjO6AomIiC4Rba4oFpxGoxEJCQloamoK3zGlo6MDfr9/2Olel8sFm80maXwhhGy1EhHR1HXxa5Rutzvi8dUoenHQqlWrsGXLFnR2dsLv96OwsBDZ2dlISkoK9+nv70ddXR1ycnKULIWIiEgWkoKzpKQE8+fPj7q/3W7HihUrkJ6ejvj4eASDQVRUVET0qa2tRVpaGmJjY6WUQkREpApJwVlUVIT29vao+2u1WpSWlqK3txeBQACVlZXDAtLlcsFqtUopg4iISDWqr1WbmJiIvLw8tcsgIiKKiqwXB5lMJhQUFEh6TXFxsZwlEBERKUr24Lx4BS0REdFkpPqpWiIioomEwUlERCQBg5OIiEgCBicREZEEDE4iIiIJZA3O8vLy667xdzmz2Yyamho5yyAiIlKMokecwWAQGzZsQFxcHHQ6HWw2G3p7eyP6WK1WuFwuJcsgIiKSjaLB6XA44HQ64fV60dPTAwDIz8+P6MPgJCKiiUTR4CwrK0NhYSGSk5NhMBiwdetWVFdXo6urK9wnNTUVWq0WjY2NSpZCREQkC0nB6XA4ht1L82p8Ph+6u7thNpvDbSkpKdDr9WhpaYnoa7Va4XQ6pZRCRESkCknBabfb0draGlXfQCAAADAYDBHtRqMRfr8/om358uWoqqqSUgoREZEqZF2r9lI6nQ4A0NfXF9Hu8/mg1+sj2rq6upCQkCBpfI1GM7oCiYiILhFtrigWnEajEQkJCWhqagov/N7R0QG/3z/sdK/L5YLNZpM0vhBCtlqJiGjquvg1SrfbHfH4ahS9OGjVqlXYsmULOjs74ff7UVhYiOzsbCQlJYX79Pf3o66uDjk5OUqWQkREJAtJwVlSUoL58+dH3d9ut2PFihVIT09HfHw8gsEgKioqIvrU1tYiLS0NsbGxUkohIiJShaTgLCoqQnt7e9T9tVotSktL0dvbi0AggMrKymEB6XK5YLVapZRBRESkGtXXqk1MTEReXp7aZRAREUVF1ouDTCYTCgoKJL2muLhYzhKIiIgUJXtwXryCloiIaDJS/VQtERHRRMLgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIglkDc7y8vLrLo57ObPZjJqaGjnLICIiUoyiR5zBYBAbNmxAXFwcdDodbDYbent7I/pYrVa4XC4lyyAiIpKNosHpcDjgdDrh9XrR09MDAMjPz4/ow+AkIqKJRNHgLCsrQ2FhIZKTk2EwGLB161ZUV1ejq6sr3Cc1NRVarRaNjY1KlkJERCQLScHpcDiG3YT6anw+H7q7u2E2m8NtKSkp0Ov1aGlpiehrtVrhdDqllEJERKQKSWvV2u122O32qPoGAgEAgMFgiGg3Go3w+/0RbcuXL8ePfvQjbNq0KepaNBpN1H2JiIiuJ9pckXWR90vpdDoAQF9fX0S7z+eDXq+PaOvq6kJCQoKk8YUQoyuQiIgICH8bxO12Rzy+GsV+x2k0GpGQkICmpqZwW0dHB/x+/7DTvbyZNRERTRSKXhy0atUqbNmyBZ2dnfD7/SgsLER2djaSkpLCffr7+1FXV4ecnBwlSyEiIpKFpOAsKSnB/Pnzo+5vt9uxYsUKpKenIz4+HsFgEBUVFRF9amtrkZaWhtjYWCmlEBERqUJScBYVFaG9vT3q/lqtFqWlpejt7UUgEEBlZeWwgORpWiIimkhUX6s2MTEReXl5apdBREQUFVmvqjWZTCgoKJD0muLiYjlLICIiUpTswWkymeQckoiIaFxR/VQtERHRRMLgJCIikoDBSUREJAGDk4iISAIGJxERkQSyBmd5efl1F8e9nNlsRk1NjZxlEBERKUbRI85gMIgNGzYgLi4OOp0ONpsNvb29EX2sVitcLpeSZRAREclG0eB0OBxwOp3wer3o6ekBAOTn50f0YXASEdFEomhwlpWVobCwEMnJyTAYDNi6dSuqq6vR1dUV7pOamgqtVovGxkYlSyEiIpKFpOB0OBzD7qV5NT6fD93d3TCbzeG2lJQU6PV6tLS0RPS1Wq1wOp1SSiEiIlKFpOC02+1obW2Nqm8gEAAAGAyGiHaj0Qi/3x/Rtnz5clRVVUkphYiISBWyrlV7KZ1OBwDo6+uLaPf5fNDr9RFtXV1dSEhIkDS+RqMZXYFERESXiDZXFAtOo9GIhIQENDU1hRd+7+jogN/vH3a61+VywWazSRpfCCFbrURENHVd/Bql2+2OeHw1il4ctGrVKmzZsgWdnZ3w+/0oLCxEdnY2kpKSwn36+/tRV1eHnJwcJUshIiKShaTgLCkpwfz586Pub7fbsWLFCqSnpyM+Ph7BYBAVFRURfWpra5GWlobY2FgppRAREalCUnAWFRWhvb096v5arRalpaXo7e1FIBBAZWXlsIB0uVywWq1SyiAiIlKN6mvVJiYmIi8vT+0yiIiIoiLrxUEmkwkFBQWSXlNcXCxnCURERIqSPTgvXkFLREQ0Gal+qpaIiGgiYXASERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBLIGZ3l5+XUXx72c2WxGTU2NnGUQEREpRtEjzmAwiA0bNiAuLg46nQ42mw29vb0RfaxWK1wul5JlEBERyUbR4HQ4HHA6nfB6vejp6QEA5OfnR/RhcBIR0USiaHCWlZWhsLAQycnJMBgM2Lp1K6qrq9HV1RXuk5qaCq1Wi8bGRiVLISIikoWk4HQ4HMNuQn01Pp8P3d3dMJvN4baUlBTo9Xq0tLRE9LVarXA6nVJKISIiUoWktWrtdjvsdntUfQOBAADAYDBEtBuNRvj9/oi25cuX40c/+hE2bdoUdS0ajSbqvkRERNcTba7Iusj7pXQ6HQCgr68vot3n80Gv10e0dXV1ISEhQdL4QojRFUhERASEvw3idrsjHl+NYr/jNBqNSEhIQFNTU7ito6MDfr9/2Ole3syaiIgmCkUvDlq1ahW2bNmCzs5O+P1+FBYWIjs7G0lJSeE+/f39qKurQ05OjpKlEBERyUJScJaUlGD+/PlR97fb7VixYgXS09MRH45Wi5MAACAASURBVB+PYDCIioqKiD61tbVIS0tDbGyslFKIiIhUISk4i4qK0N7eHnV/rVaL0tJS9Pb2IhAIoLKyclhA8jQtERFNJKqvVZuYmIi8vDy1yyAiIoqKrFfVmkwmFBQUSHpNcXGxnCUQEREpSvbgNJlMcg5JREQ0rqh+qpaIiGgiYXASERFJwOAkIiKSgMFJREQkAYOTiIhIAlmDs7y8/LqL417ObDajpqZGzjKIiIgUo+gRZzAYxIYNGxAXFwedTgebzYbe3t6IPlarFS6XS8kyiIiIZKNocDocDjidTni9XvT09AAA8vPzI/owOImIaCJRNDjLyspQWFiI5ORkGAwGbN26FdXV1ejq6gr3SU1NhVarRWNjo5KlEBERyUJScDocjmH30rwan8+H7u5umM3mcFtKSgr0ej1aWloi+lqtVjidTimlEBERqUJScNrtdrS2tkbVNxAIAAAMBkNEu9FohN/vj2hbvnw5qqqqpJRCRESkClnXqr2UTqcDAPT19UW0+3w+6PX6iLauri4kJCRIGl+j0YyuQCIioktEmyuKBafRaERCQgKamprCC793dHTA7/cPO93rcrlgs9kkjS+EkK1WIiKiaCl6cdCqVauwZcsWdHZ2wu/3o7CwENnZ2UhKSgr36e/vR11dHXJycpQshYiISBaSgrOkpATz58+Pur/dbseKFSuQnp6O+Ph4BINBVFRURPSpra1FWloaYmNjpZRCRESkCo2Q8ZxneXk5ysvL4Xa7o37NI488gvnz5+MHP/iBXGUQEREpRvW1ahMTE5GXl6d2GURERFGR9YizubkZzc3NKCgokGtIIiKicUXW4CQiIprsVD9VS0RENJEwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgmmqV0AEdF4tm7dOjQ3N6tdRgSTyYRt27apXcaUxSNOIqJraG5ulhyc586dg8fjQSAQiGgfGBiAx+NBf3//mNZD8lLsiDMUCkGn02H37t1YunRpuN1msyE+Ph7PPPOMUrsmIpKVyWSC2+2Oun9VVRXy8vLg9Xoxbdo/PmZfeeUVPPbYY/B6vYiJGdlxS1ZW1oheR/JRLDhjYmKwYMECtLW1hYPT4/HA4/HgyJEjSu2WiEh1DQ0NMJlMEaEJAPX19TCbzSMOTRofFJ291NRUtLW1AbhwBLp+/Xps2rQJs2bNQkVFBRYvXozFixejrq5OyTKI6Do+/PBDPPbYY8jKysKTTz6Jv//972qXpAghBH7zm99g2bJlePDBB+H1ehXZT0NDA9LT04e119fXX7GdJhZFLw4ymUx44YUXAAA7d+7E0NAQVq9eDZ/Ph9LSUhw8eBBnz57FsmXL0NTUxP+FEang3LlzWLZsGdra2iCEgMfjQUdHB/74xz+qXZrsfvOb32DVqlXQaDTQaDR444030NTUhHnz5sm6n4aGBjz00EMRbaFQCE1NTVizZg1OnTqF3Nxc3HDDDfj4449RUlKC+++/X9YaSDmKH3G2t7fD7/dj48aN2LZtG7RaLbxeLywWC2688UbExsbi9ttvx7Fjx6Ied926dVi3bt1VHxNR9N577z20trZCCBFue/XVV/Hxxx+rWJUydu3aBY1GAyEEQqEQBgYG4HQ6Zd3H8ePHcfLkSZjN5oj25uZmnD17FhkZGYiNjcXevXvhdruxa9cu2O12WWsgaa6UKdckFOT3+4VGoxErV64Uubm54faXXnpJ/PSnPw0//trXvibq6+ujHtdisQgA3Lhx4zYmm8Viifrz6eDBgwKAOHHiRET7k08+KTIyMob1b2xsFI8++ig//8bZdi2KHnHqdDokJyfD6XTi6aefDrffeuut+Oijj8KPfT4fbr31VkljWywWCCEghIDFYol4zI0bt+i3UCiEb37zmxH/vn7+85+rXpcS2759+zB9+vTw+0xOTsaZM2eu+RqLxSLps2nevHkwGAxwOBzw+Xw4c+YMnn/+eezYsQMOhyPcr7OzE5mZmcjOzkZubu6IP/+4jX67PEOuN+eK/1Lx6NGjGBgYwJw5c8Jt99xzD/bu3YvBwUGcOXMGx48fR1JSktKlENEVaDQa/Pa3v8WLL74IAHC5XPjxj3+sclXKuPfee3Ho0CH8/Oc/B3Dhd5GzZs2SdR96vR6vvfYaGhoaMHv2bNx1112orKxEdXV1xAfynDlzsG/fPni9XqxZs0bWGkhZqqwcZDQasW7duvD3kZ5++mleGESkopiYGHzjG99Afn4+VqxYoXY5ilq4cCEWLlyIjRs3yh6aF2VmZmL//v1XfX5wcDB85KvX6zFz5kxF6iBlqLbk3sMPP4yHH35Yrd0TEanm0KFDKCoqglarxfnz57F9+3a1SyIJuFYtEdF1NDc3y75iT0xMDIQQmDZtGjZv3ozNmzdHXYvJZJK1FpKGwUlEdA3jLaRMJtO4q2mqYXASEV0D70JCl+MVOURERBIwOImIiCRgcBIREUnA4CQiIpKAFwcREY2hdevWobm5We0ywkwmEy+AkohHnEREY6i5uVlScJ47dw4ejweBQCCifWBgAB6PB/39/WNWC12g6BFnKBSCTqfD7t27sXTp0nC7zWZDfHw8nnnmGSV3T0Q0LplMJrjd7qj6VlVVIS8vD16vF9Om/eMj+5VXXsFjjz0Gr9c74iVL5V7UYapQNDhjYmKwYMECtLW1hYPT4/HA4/HgyJEjSu6aiGhSaGhogMlkighNAKivr4fZbOY63ypQ/CeempqKtrY2ABeOQNevX49NmzZh1qxZWLZsGeLi4sJ3KiCiyaG/vx9utxvvvPMOgsGg2uUoqr29HW+88QZOnjypyPgNDQ1IT08f1l5fX3/FdlKe4sFpMpnCwblz504MDQ1h9erVAIDy8nI89dRTSpdARGPo5MmTMJlMuO+++3Dvvffii1/8Is6dO6d2WYooLi7GggUL8PnPfx533HEH3n77bdn3caXgDIVCaGpqQnp6Ok6dOoUlS5YgKysL99xzD/bs2SN7DRRpTI4429vb4ff7sXHjRmzbtg1arRYAMHv2bKV3T0RjbOPGjXj//ffDj9944w38+te/VrEiZfzlL3/Bz372s/Djv//97ygoKJB1H8ePH8fJkydhNpsj2pubm3H27FlkZGQgNjYWe/fuhdvtxq5du2C322WtgYZT/OsoixYtwt///nc8/vjjWLx4ccRFQqPh8Xig0Wgi2i5/TETSKfHvaM2aNePyZs1yvtdQKITOzs6oxrz0htbX0tPTA+DCPYwv9bvf/Q4ZGRn49Kc/HdHu8/mwaNGiKCu+4EqfpVNVtD8HxY84dTodkpOT4XQ68fTTT8s2rsVigRACQghYLJaIx9y4cRvZBmDUY1zp9livvfaa6u9N7vd6/PhxzJgxI3xxTkxMDJYuXXrd10UbmgAwb948GAwGOBwO+Hw+nDlzBs8//zx27NgBh8MR7tfZ2YnMzExkZ2cjNzd3xJ+lU3W7PEOuN0djcjnW0aNHMTAwgDlz5ozF7ohIRXa7Hd/5zndw0003AQD+8z//E8uXL1e5Kvndfvvt2L17d/hXThaLBb/73e9k3Yder8drr72GhoYGzJ49G3fddRcqKytRXV0d8eE+Z84c7Nu3D16vd1we2U82qq4c9Oijj8Lr9WJwcBBerxe7d+9WsxwiksG0adOwY8cOPPvss4iJicG6devULkkx9913H7q6uqDRaPDWW28pso/MzEzs37//qs8PDg5i+vTpAC4E7cyZMxWpg/5B1eD87W9/q+buiUhB/L3Z2Dh06BCKioqg1Wpx/vx5bN++Xe2SJj2uVUtENIFlZmYq8jUYujoGJxHRGGtubh4Xy901NzfDZDKpXcaEw+AkIhpD4ymoTCbTuKpnomBwEhGNId7Ca+Lj6sBEREQSMDiJiIgkYHASERFJwOAkIiKSgBcHERFNUOvWrUNzc7PaZUQwmUyT/gIoHnESEU1Qzc3NkoPz3Llz8Hg8CAQCEe0DAwPweDzo7+8f03omIkWPOEOhEHQ6HXbv3h1xOzGbzYb4+Hg888wzSu6eiGjSM5lMcLvdUfevqqpCXl4evF4vpk37RwS88soreOyxx+D1esN3fJFqPCzqMBYUDc6YmBgsWLAAbW1t4eD0eDzweDw4cuSIkrsmIqIraGhogMlkighNAKivr4fZbB5xaE4liv+EUlNT0dbWBuDCEej69euxadMmnDlzBp/73Ofwr//6r8jMzERDQ4PSpRDRBNTd3Y2vfOUrMJvNeOKJJ0Z1KnE8C4VCeOqpp5CRkYEHHngABw4cUGQ/DQ0NSE9PH9ZeX19/xXYaTvGLg0wmE1544QUAwM6dOzE0NITVq1fD5/Phj3/8I2699VYcPnwYq1evxt69e5Uuh4gmkLNnz8JisaC7uxuhUAhNTU3429/+ht///vdqlya7p556Cna7HcCFs3X79u1Dc3Mz7rzzTln309DQgIceeiii7eLPds2aNTh16hRyc3Nxww034OOPP0ZJSQnuv/9+WWuY6BQPztTUVLS3t8Pv92Pjxo146aWXoNVqceutt4b7TJ8+HVqtVulSiGiCaW1txbFjxyLaXn31VQSDwUn3mfHKK6+E/xwKhTAwMICamhpZg/P48eM4efIkzGZzRHtzczPOnj2LjIwMxMbGYu/evdBqtejo6MBDDz2EQ4cOyVbDpCAU5vf7hUajEStXrhS5ubnDnh8aGhJf+tKXxOuvvx71mBaLRQDgxo0btym/WSyWqD87Dx48KACIEydORLQ/+eSTIiMjY1j/xsZG8eijj07Jz+ZrUTw4hRAiJSVFTJ8+XXR0dES0h0Ih8fDDD4sdO3ZIGs9isUT8Zbn8MRGNzPU+MMZ6vFAoJPLz8yM+0J577rlxUZvcY+3du1dMnz49/D5NJpPo7++/5mukfvb19fUJg8Eg1q5dKz766CNx+vRp8dxzz4mbbrpJuN3ucL+Ojg5x7733itjYWLF79+6ox5+on8VXypRrGZPLp44ePYqBgQHMmTMnov2JJ57A3Llz8Z3vfGcsyiCiCUaj0aC8vBwvv/wygAtX5X/7299WuSplZGZm4s9//jN+8YtfAAD279+Pm2++WdZ96PV6vPbaa2hoaMDs2bNx1113obKyEtXV1bBYLOF+c+bMwb59++D1erFmzRpZa5gMVFs5yO12o6ysDEuWLMGePXtwyy23oLKyUq1yiGiciomJQV5eHgDgc5/7nMrVKGvevHmYN28evv/978semhdlZmZi//79V31+cHAQ06dPB3AhaGfOnKlIHROZasGZlZWFc+fOqbV7IiK6gkOHDqGoqAharRbnz5/H9u3b1S5p3OFatUREE1hzc7PsK/bExMRACIFp06Zh8+bN2Lx5c9S1mEwmWWsZjxicREQT1HgLKZPJNO5qUgKDk4hogprsdyEZr7goIRERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpJA0eAMhUKYMWMG3nrrrYh2m82GtWvXKrlrIiIiRSj6Pc6YmBgsWLAAbW1tWLp0KYALizR7PB4cOXJEyV0TEREpQvFTtampqWhrawNw4Qh0/fr12LRpE86dO4clS5YgKysL99xzD/bs2aN0KUR0DS0tLQAu3M2IJj4hBA4ePAin04menh61y5lUFA9Ok8kUDs6dO3diaGgIq1evDt9l3O12Y9euXbDb7UqXQkRX8dRTT4WXSps3bx5eeeUVlSui0RBCYM2aNVi8eDG+/OUv46677sLevXvVLmvSGJMjzvb2dvj9fmzcuBHbtm2DVqsNbwDg8/mwaNEipUshoivo6elBYWFh+HEwGMQjjzyCUCikYlU0GgcOHMCOHTvCjz/++GOsXr1axYomGQVvqi2EEMLv9wuNRiNWrlwpcnNzI54bzV3Gcckd4blx48aNGzc5t2vRCCEEFDZ37lz09PTg3XffxZw5c4Y939HRgaVLl+LYsWNRjXfxFjput/uKj4koemfPnsXcuXPx4YcfIhQKISYmBmlpaWhoaBj12BqNBnJ9xMg5ltzjjbfauru7MW/ePAwMDCAUCkGj0cBms/EU/FVcKVOulSdj8j3Oo0ePYmBgICI0BwcHw3/mXcaJ1DNz5ky88cYbSE1NBQBYLBY4nU6Vq6LRSEhIQFVVFVJSUgAAubm5+PWvf61yVZOHarcV413GicaPhQsXoqmpCRqNZtj3rmliysrKwl//+ldoNBr84Q9/ULucSUW14MzMzMTbb7+t1u6JiIhGhEvuERERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpJAseAMhUKYMWPGsHUvbTYb1q5dq9RuiYiIFKXYWrUxMTFYsGAB2trasHTpUgCAx+OBx+PBkSNHlNotERGRohQ9VZuamoq2tjYAF45A169fj02bNmHWrFkAgNOnT2PWrFmoqKhQsgwiGkNCCPziF7/AokWLAACvvvqqyhXRaJ0/fx4/+tGPMG/ePGRmZuKdd95RuyRVKRqcJpMpHJw7d+7E0NAQVq9eHX7+5z//OTIzM5UsgYjG2K9+9Ss8+eST4X/7NpsN+/fvV7kqGo2f/OQncDgceO+993DgwAEsW7YMR48eVbss1Sh+xNne3g6/34+NGzdi27Zt0Gq1AC7c3Pr06dMwm81KlkBEY2z37t3QaDThx6FQCH/6059UrIhG69KzBqFQCB9//DHq6upUrEhdGiGEUGrwQCAAg8GAvLw8nD9/HpWVleHnvva1r2Hz5s148cUXMXfuXHzjG9+IetysrCx4PB4lSiYiIsK1olHRG1nrdDokJyfD6XTi3XffDbe/8847uPXWW5GSkjLisS0WC9xuN4ALQQog/JiIRkaj0VzzAyMa//M//4PFixfjo48+AgDcddddOHjwIAwGg+q1KTXeZK/t7bffRnZ2NgYGBgBc+Mytra3FP/3TP8lRououz5CLj69G0eAEcMXz4A0NDWhtbcUXvvAFHD16FDNmzEBKSgoWL16sdDlEpLA777wTbW1teP311/H444/j0KFDmDlzptpl0Sh87nOfQ0tLC+rq6vDtb397UoXmSCh6qjYaxcXFIzpVCwz/3wGPOIlGZ7IfOSk1Hmub2K6UKdfKE8WPOK+nuLhY7RKIiIiixiX3iIiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRQNDhDoRBmzJiBt956K6LdZrNh7dq1Su6aiIhIEYouuRcTE4MFCxagra0NS5cuBQB4PB54PB4cOXJEyV0TEREpQvFTtampqeE7wYdCIaxfvx6bNm3CrFmzcNNNNyErKwtZWVkoKytTuhQimqD27dsHABG3J6SJKxQKoba2Frt27UJXV5fa5Uim+CLvJpMJL7zwAgBg586dGBoawurVqwEA8fHxvKMJEV3TD3/4Qzz11FMAgEWLFmHXrl34yle+onJVNFKhUAj/9m//hpdffhkAcPPNN6OmpgaZmZkqVxa9MTnibG9vh9/vx8aNG7Ft2zZotVoAwMmTJ2GxWPDlL38ZHR0dSpdCRBPMe++9Fw5NAAgGg1i1apWKFdFo1dbWhkMTAAYGBvC9731PxYpGQCjM7/cLjUYjVq5cKXJzcyOe+/DDD4UQQrz55pvCYrFEPabFYhEAuHHjxo0bN0W2axmTG1nPnTsXPT09ePfddzFnzpyr9jl69GhU4/FG1kTKGG83Pfb5fPjnf/5nnD59GqFQCBqNBvfddx/27Nmjem1KjSX3eOOtto6ODsyfPx/nzp1DKBQCADz++OOqXuci9UbWY/I9zqNHj2JgYCAiNM+ePYtgMAgA+Mtf/oJbbrllLEohognEaDRiz549uPvuuwEAubm5Eaf5aOJJTk5GdXU1FixYAAD41re+hW3btqlclTSKXxx0NYcPH8bq1auh0+kAAL/61a/UKoWIxrGFCxfiwIED0Gg0+MMf/qB2OSQDi8WClpYWaDQa/PrXv1a7HMlUC867774bf/7zn9XaPRER0YhwyT0iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIAtW+xzmW1q1bh+bmZrXLCDOZTBNupYzR4hwQ0WQxJY44m5ubx82H9niqZSyNp/c9nmohoolnShxxAheOMKJdBP6DDz7AJz/5STQ1NSEtLS3c3tXVhaSkJBw+fBjz5s0bUR0XFxOeiqTMAaDcPEzlOSCi0VPsiDMUCmHGjBl46623ItptNhvWrl2r1G5lcejQIdx0001YuHBhRHt9fT10Oh3uvPNOlSqbWjgPRDQeKXbEGRMTgwULFqCtrQ1Lly4FAHg8Hng8Hhw5ckSp3cqioaEBJpMJ06ZF/njq6+thNpsREzMlznCrjvNAROORop88qampaGtrA3DhCHT9+vXYtGkTZs2ahZaWFnzhC1/A0qVL8cgjjyhZhmQNDQ1IT08f1l5fX3/FdiWcPn0aX/nKVzB79mxYLBa89957Y7LfaJw6dQpWqxWzZ8/G/fffj/fff1+R/YyHefjlL3+JuXPn4o477sDzzz8/qrGOHTuGBx54ALNnz0ZOTg5OnDghU5UUrWAwiB//+MdISkoCAPzxj39UtyAFXfrv5JFHHkF/f7/KFU0i17zN9Sg9++yz4u677xZCCPGb3/xGLFy4UAwNDYnBwUGxbNky4fP5RjSuxWIRFovlqo+v1/96brvtNvHiiy9GtAWDQTFz5kzx8ssvi5MnT4rFixcLi8Ui7r77bvHmm2+OuParycrKEhqNRgAQMTEx4vbbbxeBQCDq/SglFAqJ9PR0ERMTE65tzpw54uOPP77m66TOgRDKzUO0tezatWvYXeF///vfS3oPFw0ODoq5c+dG/NxMJpMIhUIjGk8pcn8kyDmeHGOVlJREzGdMTIw4ePDguKhNzvGOHz8u9Hp9+O8bAJGfnz8ualNqrNG4UqZci+JHnO3t7fD7/di4cSO2bdsGrVaLgwcPQqfT4eGHH0ZWVhZee+01JcuQ5Pjx4zh58iTMZnNEe3NzM86ePYuMjAzExsZi7969cLvd2LVrF+x2u6w1DA4Owu12h++yHgqFcOLECRw+fFjW/YxEX18fDh06FL5zeygUQmdnp+xHneNhHqqrqyNOB8fExKC6unpEYx07dgxHjx6N+Lk1Nzfjww8/lKVWis7l8xcKhfDmm2+qVI1yvF4v/H5/+O8bgHH1OTvhKZnifr9faDQasXLlSpGbmxtu/93vficSExPFRx99JM6cOSPmzZsn+vr6oh7XYrEMOxK43hbt0c7BgwcFAHHixImI9ieffFJkZGQM69/Y2CgeffRRRWufLJuUI04l52EqzwE3btyi265F0SNOnU6H5ORkOJ1OPP300+H2W265BRkZGTAajZg1axYWLVqEo0ePShrbYrFACAEhBCwWS8TjyzeLxRL1uPPmzYPBYIDD4YDP58OZM2fw/PPPY8eOHXA4HOF+nZ2dyMzMRHZ2NnJzc0dc+9W2F198MeJox263X/c1Y7WVlZVBo9GEa9u0adN1XyNlDsZiHqKZg5MnT4Z/FwYAKSkp+PDDD0f8cyspKQmPpdFo8Oyzz6o+l5dvAMbteHKMdfjwYdxyyy3hecjIyMDHH388LmqTc7xQKIT8/Pzw+7zhhhtQU1MzLmpT8uc20u3yDLnu55VQgc/nE2azWZw7d04MDg6KRYsWid7e3qhfr/TvOPfu3SuWLFkiZsyYIeLi4sQDDzwgPB7PFfu+//77IjExMeqxpdTS2toqXnjhhev+70cNTU1Nkmobye84lZoHKbX4fD7x3//93wKApLMiV3PgwAEBQDQ0NIx6LCXI/XdNzvHkGuvEiRPipZdeEgDE4OCgLGOOx59bKBQSNTU1AoD461//KkNVF4zHOR0tqb/jVGUBBIPBgB/84Ae47777cO7cOaxduxa33nqrGqVcUWZmJvbv33/V5wcHBzF9+nQAgF6vx8yZMxWpY+HChVi4cCG++c1vKjL+aKSlpSEtLU3R2sbDPBgMBqxcuRIPPfQQ9Hr9qMfLyMgAgGG/u6Wx86lPfQpf+9rX8PWvfx033HCD2uUoRqPR4POf/zwA4I477lC5mslFtZWDvvrVr+KrX/2qWrsflUOHDqGoqAharRbnz5/H9u3b1S5pSuI8EJEapsySe83NzbIutRYTEwMhBKZNm4bNmzdj8+bNUddhMplkq2MikXsOgJHNw1SeAyIavSkRnOPpQ9JkMo2resbKeHrPU3UOiEgeUyI4efso9XEOiGiy4GKfREREEjA4iYiIJGBwEhERScDgJCIikmBKXBy0bt06NDc3q11GmMlkmnIXy3AOiGiymBJHnM3NzZI+tM+dOwePx4NAIBDRPjAwAI/HM6r72kmtZbIYyftWah6m6hwQkTwUPeIMhULQ6XTYvXs3li5dGm632WyIj4/HM888o+TuI5hMJrjd7qj6VlVVIS8vD16vF9Om/eNH9Morr+Cxxx6D1+uNWIBdCrkXAJhIpMwBoNw8TOU5IKLRUzQ4Y2JisGDBArS1tYWD0+PxwOPx4MiRI0ruelQaGhpgMpkiPqyBC3dUN5vNIw5NkobzQETjkeK/40xNTUVbWxuAC0eg69evx6ZNm3DkyBH88Ic/BHDh1NuRI0dw+vRppcuJSkNDA9LT04e119fX45577hmzOhobG9HY2Ajgwq13Lr2Vl9q8Xi9aWloU3cd4mIczZ86EbwD80UcfYdasWWOy32h88MEHeP3116HVavHggw/Ksgg9SSOEwJ/+9CcAQGtryRPqJQAAIABJREFUKxYtWqRyRcp5//33UVdXBwAYGhoa9h/aqUTx/7KbTKZwcO7cuRNDQ0NYvXo17r77brjdbrjdbqxduxYPPfSQ0qVE7Uof2KFQCE1NTUhPT8epU6ewZMkSZGVl4Z577sGePXtkr2Hnzp1IT0/H6tWrAQDf//73Zd/HSD377LPIyMgI17Zx40ZF9qP2PJw4cQKpqanhO8CkpaXh1KlTsu5jpLq6urBo0SIUFBQgPz8fn/3sZ3HmzBm1y5pShBB49NFHkZOTAwD4zGc+g9///vcqV6WMffv2YeHChXj88ccBAF/4whcwNDSkclUqUuwGZ/9n3759YsaMGaKvr0/cdtttYs+ePcP6ZGdni3feeSfqMZW8H2dPT48AIA4fPhzR3tjYKACI7u5uMTQ0JIaGhoQQF+4D+dnPfnbEtV9JMBgUN99887A7kst5T72RGhwcFNOmTRtWW09PzzVfJ/V+nErOQ7S1fO973xMajSbifW7YsCHq93A1cvyze/zxx4fV9tOf/nRc1KbUeOOttvr6+oifv0ajEbfddtu4qE3usTIyMkRMTEzE+3355ZfHRW1ykHo/TsWr9vv9QqPRiJUrV4rc3Nxhz//tb38Td955p6QxLRbLsA/u623RfmgfPHhQABAnTpyIaH/yySdFRkbGsP6NjY3i0UcfVbT2ybJJCU4l52EqzwE3btyi265lTOI+JSVFTJ8+XXR0dAx7rrS0VBQXF0saT8kjzr6+PmEwGMTatWvFRx99JE6fPi2ee+45cdNNNwm32x3u19HRIe69914RGxsrdu/ePeLar2bZsmURRxSf/vSnxdmzZ6Pej1JCoZDIyMiIqG3u3LliYGDgmq+TesSp5DxEW8vLL7887B/Tq6++GvV7uJrr/aOMRnl5+bDaampqxkVtSo033mrr7e0VsbGxEUdieXl546I2ucfasGFDxN+1G2+8UZYzYHLP6UiNuyPO6zGZTOLo0aOSXqNkcAohxN69e8WSJUvEjBkzRFxcnHjggQeEx+O5Yt/3339fJCYmRj12tLWcOXNGfP3rXxcpKSkCgDhy5EjU+1DaBx98IPLy8sK1HTt27LqvkToHQig3D1Jq+dWvfiUWLFggAIj/+q//irLya5PjwyIUCont27eLefPmCQDipZdekqGy8RdOSo0l13htbW0iKytLABCPPfaYCAQCMlQ2/n5u586dEz/4wQ/EHXfcIQCIt99+W4bKJm5waoQQAippa2vDt7/9bezfv1/S6y5+D+/idwIvf3y9/qM1ODiI6dOnAwB6e3uRlZWFv/zlL1G9diS1aDQaqDhN1xRtbXLPATDyeVB7DuSeT9am/nisTf2xRuNKmXKtzwdVrydeuHCh5NAcDw4dOoSioiJotVqcP38e27dvV7ukKYnzQERqmLpfxBmFzMxMvP3222qXMeVxHohIDVMmOJubm8fFUmvNzc0wmUxql6EKzgERTQZTIjjH04ekyWQaV/WMlfH0nqfqHBCRPKZEcPL2UerjHBDRZMFVsomIiCRgcBIREUnA4CQiIpJgSvyOc926dWhubla7jDCTyTTlfufHOSCiyWJKHHE2NzePmw/t8VTLWBpP73s81UJEE8+UOOIELhxhRLvE2gcffIBPfvKTaGpqQlpaWri9q6sLSUlJOHz4MObNmzeiOsbD9xjVImUOAOXmYSrPARGNnqJHnKFQCDNmzMBbb70V0W6z2bB27Voldz0qhw4dwk033YSFCxdGtNfX10On0+HOO+9UqbKphfNAROORokecMTExWLBgAdra2rB06VIAgMfjgcfjwZEjR5Tc9ag0NDTAZDJh2rTIH099fT3MZjNiYqbEGW7VcR6IaDxS/JMnNTUVbW1tAC4cga5fvx6bNm2C0WjEmjVrsHjxYqSnp6OiokLpUqLW0NCA9PT0Ye319fVXbJ8IysrK8OlPfxq33XYbNm7ciFAopHZJ1zXZ5uGvf/0rlixZAgC477770N3dPeKxhBD42c9+hk996lMAgB07dshSI6nn3Llz+O53v4tPfOITAIDKykqVK1LOm2++GT5j9PDDD6O/v1/liqRRPDhNJlM4OHfu3ImhoSGsXr0a7e3taG9vx4EDB+B2u/H//t//U7qUqF3pAzsUCqGpqQnp6ek4deoUlixZgqysLNxzzz3Ys2ePSpVG5/XXX8fq1avR09ODU6dO4T/+4z/wy1/+Uu2yrmsyzcPg4CA+//nPw+v1AgDefvttfOlLXxrxLZWef/55FBcX4+TJkwCA7373u3C5XLLVS2PvJz/5CXbs2IEPP/wQAJCXl4fGxkaVq5Lf0aNHkZOTg6NHjwIAXnzxRTzxxBMqVyXNmBxxtre3w+/3Y+PGjdi2bRu0Wi1uv/123HDDDTh//jwCgQBuueUWpUuJyvHjx3Hy5EmYzeaI9ubmZpw9exYZGRmIjY3F3r174Xa7sWvXLtjtdpWqjc6ePXug0WjCj2NiYsZ1yACTbx6OHTuGrq6u8JF+KBRCe3t7+ENSqj179kScqtZoNON+Tuna3njjjYjHoVBoUt7958CBAxgcHIw463X5ex/35LyL9pX4/X6h0WjEypUrRW5ubrg9FAqJ73znOyIpKUnExcWJysrKqMe0WCwCgKTtenf0vujgwYMCgDhx4kRE+5NPPikyMjKG9W9sbBSPPvqoorVPli3aOVB6HqbyHHDjxi267VoUD04hhEhJSRHTp08XHR0d4bbq6mrx4IMPiqGhIXH69Gkxb948MTAwENV4Fosl4kP48sfX638tfX19wmAwiLVr14qPPvpInD59Wjz33HPipptuEm63O9yvo6ND3HvvvSI2Nlbs3r07qrGl1nLR9Sbxes6ePSvS09PDfyESEhJET0/PqMaUWpvU963kPKgxB0IIsW3btvAcxMTEiN/+9rcjHutvf/ubmDNnTni8z3zmM8Lv94+6Rjnep1LjTfba2tvbxa233hqe0y996Uvi/Pnz46I2OccLhUIiPz8//D51Op04cOCATNWNzJUy5VrG5LLEo0ePYmBgAHPmzIlov+WWW6DVaqHT6XD+/HkEg8GxKOea9Ho9XnvtNTQ0NGD27Nm46667UFlZierqalgslnC/OXPmYN++ffB6vVizZo2KFV/fjBkzsHfvXvzpT38CALS0tCA+Pl7lqq5tMs7D9773vfDCC21tbXjkkUdGPNZtt92G5uZmOJ1OAMD+/fuh0+lkqZPU8S//8i84fPhw+KIgl8s17IryyUCj0eCFF14If6f73XffRUZGhrpFSaTarCxbtgy7du3Cvffei3PnzuGJJ57AzTffrFY5ETIzM7F///6rPj84OIjp06cDuPABP3PmzLEqbcSmT5+OL37xiwAAo9GocjXRmYzzkJqaCuDCh+Ro6fV6PPjggwCAG2+8cdTjkfo+8YlPIDc3FwCg1WpVrkY5Go0m/B/g8f6f+CtRLTi1Wi3Ky8vV2v2oHDp0CEVFRdBqtTh//jy2b9+udklTEueBiNQw+c4DXEVzc7OsS63FxMRACIFp06Zh8+bN2Lx5c9R1mEwm2eqYSOSeA2Bk8zCV54CIRm9KBOd4+pA0mUzjqp6xMp7e81SdAyKSx5QITt4+Sn2cAyKaLLjYJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpJgTIJz//79uP/++6HX62E0GpGXlzcWuyUiIpKd4sH5hz/8Abm5ufj3f/93fPDBB/jf//1ffOtb31J6t0RERIpQNDj7+/uxevVqlJWVwWaz4cYbb4ROp0N2djYAoKKiAosXL8bixYtRV1enZClERDRJtbS0YPv27XjppZdw/vx5xfen6MpBHo8HGo0GVqt12HM+nw+lpaU4ePAgzp49i2XLlqGpqSnirvZERETXUlVVhS9/+csYGhoCAOzcuRPV1dWK3pJN0ZTq7e3FrFmzoNFohj3n9XphsVhw4403IjY2FrfffjuOHTumZDlERDTJ/PCHP4y4l/OePXtQXV2t6D4VPeL8zGc+g87OTuzevRvLly+H3++H1+tFdnY2Tp8+jVmzZoX7zpo1C6dPn0by/2fv/qOiqvP/gT8HMMmcgVFs+4GrZqfkLLETRIw0ORgQmu3ShHySPquTyEYSmu3S5tLGWkJLaltsLSHxcbFMPy1Cm+hHateNEaa6MNGk/XIzcRdJJFRCZr8Cyf3+0XHWEVAu3pk7DM/HOfcc533vvO+Lmes8uXcu7/d11w2r77Nns+caLKB9hZw/m9yvky+/7ucaK+8Ba1O+L7n7G0u1AcBPfvKTET1vuLW49YwzPDwcZWVlyMnJgUajQVhYGPbu3QsAmDx5Mk6ePOnctrOzE5MnTx5230ajEaIoQhRFGI1Gl8e+tgDwyr7c0Z+3LmPlPWBtyvfF2qQtjz76qEs2BAUF4ciRI5L6OD9Dzk6yPRS3z45iNpthNpsHtMfExODXv/41enp64HA40NraiunTp7u7HCIi8iHPPvssAgMDsXv3btjtdtTW1uLaa6916z4Vm1YsODgYq1atck5s/Nxzz/HGICIikmTcuHF45pln8Mwzz0ClUnlkrl1F5+NcsmQJlixZomQJREREkvAUj4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEHglOq9WK+Ph4aDQaBAcHIzU11RO7JSIikp3bg7OyshImkwlZWVlob29HS0sLMjIy3L1bIiIit3BrcDocDmRmZqK0tBQpKSkIDAyEWq1GUlISACAhIQFTpkxBfn6+O8sgIiIf9e233+Lee+/FhAkTAAA7d+50+z7dGpwWiwUqlQrJycmDri8vL8f69evdWQIREfmw5cuX4y9/+Qv+3//7fwCAlJQU/OMf/3DrPt0anB0dHdBqtVCpVIOuDw0NdefuiYjIx1ksFoii6Hzc29uLhoYGt+7TrfNxRkZGorm5GdXV1ViwYAG6urogCILzUu2lOHs2e66hAtoXyPmzyf06+fLrfq6x8h6wNuX7kru/sVQbACxevBiLFy92Wy1uPeMMDw9HWVkZcnJyoNFoEBYWhr1798rSt9FohCiKEEURRqPR5bGvLQC8si939Oety1h5D1ib8n2xNmmLzWaDVqt1ZkNmZib6+/sl9XF+hhiNxgvmj1vPOAHAbDbDbDa7ezdERDQGRUVF4YsvvkBTUxPmz5+Pl19+2e1XwdwenBeSnp4OQRDQ09MDQRBQXV2tZDlERDQKXXnllZg3bx4Az3x1pGhwbtq0ScndExERScYh94iIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgk8EhwWq1WxMfHQ6PRIDg4GKmpqZ7YLRERkezcHpyVlZUwmUzIyspCe3s7WlpakJGR4e7dEhERuYVbg9PhcCAzMxOlpaVISUlBYGAg1Go1kpKS8NVXX2HOnDm4/fbbYTAYYLPZ3FkKERGRLNw6yPvZyaaTk5MHrAsODsabb76JyZMn47PPPkNmZibq6urcWQ4REdElc2twdnR0QKvVDjrNy+TJk53/Hj9+PPz9/d1ZChERkTxEN9q/f78YEBAg7tixQzxz5ox48uRJsaamxmWb7777TrzrrrvE3bt3D7tfo9EoAuDChQsXLlzcslyIW884w8PDUVZWhpycHKSlpUGtViM9PR1JSUnA95UhPT0dd999t3MS0uEyGo2ora0FAMTFxQGA87GvUalUEEXR6/pyR3/eaqy8B6xN+b7k7o+1Xdz5GXL28VDcPpG12WyG2WwedN2KFStw/fXXY/ny5e4ug4iISBaKDYBQW1uL0tJS7NmzB3Fxcbj33nuVKoWIiGjY3H7GOZS4uDj09vYqtXsiIqIR4ZB7REREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCTwSHBarVbEx8dDo9EgODgYqampntgtERGR7NwenJWVlTCZTMjKykJ7eztaWlqQkZHh7t0SERG5hVuD0+FwIDMzE6WlpUhJSUFgYCDUajWSkpJw7NgxxMbGIi4uDjExMdizZ487SyEiIpKFW2dHsVgsUKlUSE5OHrAuJCQEdXV18Pf3x6FDh3DfffehsbHRneUQERFdMrcGZ0dHB7RaLVQq1YB1/v7+zn93dnYiIiLCnaUQERHJQ3Sj/fv3iwEBAeKOHTvEM2fOiCdPnhRramqc6w8dOiTedtttYkhIiFhdXT3sfo1GowiACxcuXLhwcctyISpRFEW40ebNm/HMM8+gtbUVarUa6enpKCgocNnm0KFDuOOOO3D48OFh9RkXFwcAqK2tHfSxr1GpVJDrbZKzL3f0563GynvA2pTvS+7+WNvFDZYpF8oTt16qBQCz2Qyz2TygvaenB+PHjwcAaDQaTJw40d2lEBERXTK3B+dQGhsbkZubC39/f/T19aGoqEipUoiIiIZNseA0GAzYu3evUrsnIiIaEQ65R0REJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCSBR4LTarUiPj4eGo0GwcHBSE1N9cRuiYiIZOf24KysrITJZEJWVhba29vR0tKCjIwMd++WiIjILdwanA6HA5mZmSgtLUVKSgoCAwOhVquRlJTk3Ob48ePQarXYsmWLO0shIiKShVuD02KxQKVSITk5echt8vPzYTAY3FkGERGRbNwanB0dHdBqtVCpVIOuP3jwII4fP46oqCh3lkFERCQbt04rFhkZiebmZlRXV2PBggXo6uqCIAjOS7V5eXlYu3YtXnvtNcl9nz2bPddQAe0L5PzZ5H6dfPl1P9dYeQ9Ym/J9yd0fa5P3uW4NzvDwcJSVlSEnJwdpaWlQq9VIT09HUlIS3nvvPUyePBkzZ84cUd9GoxG1tbUAgLi4OABwPvY1KpUKoih6XV/u6M9bjZX3gLUp35fc/bG2izs/Q84+HorbJ7I2m80wm80D2m02G/bt24d58+bh4MGDuOKKKzBz5kzMnj3b3SURERGNmNuDcygrV67EypUrAQBr1qzB9ddfz9AkIiKvp1hwnmvNmjVKl0BERDQsHHKPiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAKPBKfVakV8fDw0Gg2Cg4ORmprqid0SERHJzu3BWVlZCZPJhKysLLS3t6OlpQUZGRnu3i0REZFbuHWsWofDgczMTJSVleGee+4BAAQGBjrn47z88ssRExMDALj//vvx4IMPurMcIiKiS+bW4Dw72XRycvKg66+99lqfnUOTiIh8k1sv1XZ0dECr1Q45q3ZbWxuMRiPuueceHDp0yJ2lEBERycKtwRkZGYnm5mZUV1ejv78fnZ2dePvtt53rDx8+DIvFghUrViA9Pd2dpRAREclDdLPy8nLxhhtuEK+44grxqquuEnNzcwfdbubMmcPu02g0igC4cOHChQsXtywX4vaJrM1mM8xm84D27u5uXH755fD398cnn3yCSZMmSerXaDQ6vx+Ni4sDAJ/9vlSlUkEURa/ryx39eaux8h6wNuX7krs/1nZx52fI2cdDcXtwDuWzzz5DZmYm1Go1AGDjxo1KlUJERDRsigXnrbfeio8++kip3RMREY0Ih9wjIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJIFHgtNqtSI+Ph4ajQbBwcFITU31xG6JiIhk5/bgrKyshMlkQlZWFtrb29HS0oKMjAx375aIiMgt3BqcDocDmZmZKC0tRUpKCgIDA6FWq5GUlAQA+PjjjzFv3jzccccdWLp0qTtLISIikoVbZ0exWCxQqVRITk4esK63txc5OTnYvn07goKC3FkGERGRbNx6xtnR0QGtVguVSjVg3QcffAC1Wo0lS5YgLi4OO3fudGcpRERE8hDdaP/+/WJAQIC4Y8cO8cyZM+LJkyfFmpoaURRFcevWreK0adPEkydPiidOnBDDwsLEb7/9dlj9Go1GEQAXLly4cOHiluVC3HqpNjw8HGVlZcjJyUFaWhrUajXS09ORlJSESZMmQa/XIzg4GAAQERGBgwcPIjIyclh9G41G1NbWAgDi4uIAwPnY16hUKoii6HV9uaM/bzVW3gPWpnxfcvfH2i7u/Aw5+3gobg1OADCbzTCbzQPa9Xo9nnjiCfT19UEURXz++eeYNm2au8shIiK6JG4PzqEEBQUhJycHc+fORW9vL1auXInJkycrVQ4REdGwKBacALBo0SIsWrRIyRKIiIgk4ZB7REREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBJ4JDitVivi4+Oh0WgQHByM1NRUT+yWiIhIdm4PzsrKSphMJmRlZaG9vR0tLS3IyMhw926JiIjcwq1j1TocDmRmZqKsrAz33HMPACAwMBBJSUloaGjAr371KwDA6dOn8eWXX+L48ePuLIeIiOiSuTU4LRYLVCoVkpOTB6y79dZbnXOfbd26FfX19e4shYiISBZuvVTb0dEBrVYLlUp1we1effVVLF682J2lEBERycKtwRkZGYnm5mZUV1ejv78fnZ2dePvtt122aWtrw+HDhzF79mx3lkJERCQLt16qDQ8PR1lZGXJycpCWlga1Wo309HQkJSU5t3n99deRlpYmue+zl4HPdbEz29FMzp9N7tfJl1/3c42V94C1Kd+X3P2xNnmfqxJFURzxXmRw8803Y/v27Zg5c+awnxMXFwcAzu9Iz3/sa1QqFeR6m+Tsyx39eaux8h6wNuX7krs/1nZxg2XKhfJE0QEQ9u/fjwkTJkgKTSIiIiUpGpw33XQTrFarkiUQERFJwiH3iIiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcI4RZ86cwaFDhwAAPT09CldDRDR6eSQ4rVYr4uPjodFoEBwcjNTUVE/slgD09fVh3bp1mDlzpnNM4NDQUPz617/GqVOnFK6OiGj0cXtwVlZWwmQyISsrC+3t7WhpaUFGRoa7d0sAvvvuOyxcuBCPP/44rrvuOmzcuBEAcPvtt2PdunWIi4tDV1eXwlUSEY0ubg1Oh8OBzMxMlJaWIiUlBYGBgVCr1UhKSoIoisjOzsbs2bMRHR2NLVu2uLOUMam4uBg7duzAiy++iL///e948MEHAQBVVVXYsWMH9u3bhyeeeELhKomIRhe3BufZyaaTk5MHrPv000/x6aef4v3330dtbS3y8vLcWcqYI4oiiouLodfrkZ2dPWD9ggULkJaWhs2bN/OSLRGRBG4Nzo6ODmi12kFn1b7mmmtw2WWXoa+vD6dOncKkSZPcWcqYc/z4cRw4cAALFy4ccpvU1FScOnUKn3zyiQcrIyIa5UQ32r9/vxgQECDu2LFDPHPmjHjy5EmxpqZGFEVR7O/vF5cvXy5Onz5dnDJlilhVVTXsfo1GowiACxcuXLhwcctyIQFwo/DwcJSVlSEnJwdpaWlQq9VIT09HUlIS3nnnHbS2tuLgwYP49ttvYTAYcNddd2H8+PHD6ttoNKK2thYAEBcXBwDOx75GpVJBFEVJz+nv78eNN96Iq666CnV1dYP2lZ6ejj//+c/4+uuvodFoPFbbaCTnzyn3a8balO+PtSnf16X0d36GnH08FLffVWs2m3HgwAF0d3fj6NGjKCgocK6bNGkS/P39oVar0dfXhzNnzri7nDHDz88PWVlZqK+vxyuvvDJg/V//+lds2bIFixcvHnFoEhGNRYoNgJCQkABRFHHbbbchNjYWK1aswIQJE5Qqxyc9/PDDmDdvHh588EHMnz8fmzdvBgCkpaXhrrvuwqxZs/DMM88oXCUR0eji1ku1F+Lv74/y8nKldj8mXHbZZXjrrbdQWFiIjRs3oqamBgCwe/duPPzww1izZg2Cg4MVrpKIaHThkHs+7rLLLkNeXh4OHz6Mzz77DADw9ddf44UXXmBoEhGNAINzjBg3bhzCwsIAgJfEiYguAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJFDs7zhpbFm1ahXsdrvSZTjpdDq88MILSpdBRKMQzzjJI+x2u+Tg7O3thcViGTDt2enTp2GxWOBwODxWCxHRWR4547RarcjLy0NjYyP8/PyQmJiIiooKT+yavIhOp5M0EP+uXbuQmpoKQRAQEPCfQ7WiogLLli2DIAjw85P+u9/FBnA+6+TJk9i8eTPef/99AMAf/vAHLFmyhANHEI1xbj/jrKyshMlkQlZWFtrb29HS0oKMjAx375Z8gM1mg06ncwlNAGhoaEBUVNSIQnO4tm/fjtDQUDz66KOw2WwAgEceeQShoaH4y1/+4rb9EpH3c2twOhwOZGZmorS0FCkpKQgMDIRarUZSUhIA4Le//S1iY2MRFxfHyZRpAJvNhujo6AHtDQ0Ng7bLpba2FosWLYJOp0NTUxO++uorZz3h4eFITU1FfX292/ZPRN7NrcFpsVigUqmQnJw8YJ3dbkdDQwPee+89lJeX45FHHnFnKTQKDRac/f39aGpqQnR0NI4dO+b8xSsmJgZ79uyRZb/5+fm4+uqrUVNTg5tvvtnZHhUVhbfffhtTpkzhrDJEY5hbg7OjowNarRYqlWrAun/84x+IiooCAEyfPh2ff/45vvvuO3eWQ6NIa2sr2tranMfIWXa7Hd3d3dDr9QgJCUFdXR1qa2uxbds2rF69+pL3+/XXX2PPnj3IzMyEWq0esD4oKAgZGRmoqanBN998c8n7I6JRSHSj/fv3iwEBAeKOHTviVEYwAAAgAElEQVTEM2fOiCdPnhRrampEURTFTz75RIyNjRV7enrEDz/8UFSpVOI333wzrH6NRqMIgMsoW4xG47CPnQ8++EAEIH799dcu7b/85S9FvV4/YPsPP/xQTE9P5/HDhQsXWZYLcesZZ3h4OMrKypCTkwONRoOwsDDs3bsXAPCjH/0IaWlpSEhIQHFxMW666SZMnjx52H0bjUaIoghRFGE0Gl0e+9oCwCv7ktKf0WiUdOyEhYUhKCgIhYWF6OzsxIkTJ1BSUoLi4mIUFhY6t2tubobBYEBSUhJMJtOIjp9zl6+//hoA8PTTTw/5c/7mN7+BSqXCN998M6reA9bG2rytP2+p7fwMudjnldvvqjWbzThw4AC6u7tx9OhRFBQUONdlZ2dj7969WLVqFXQ63aCXdGls0mg02LlzJ2w2G0JDQzFr1ixUVVWhpqbG5aCeMWMG6uvrIQgCsrOzL3m/V199NRISErBx40Z0dXUNWN/Z2YmysjLMnz8fISEhl7w/Ihp9FB056M4778R3332HkJAQ/PGPf1SyFPJCBoMBVqt1yPU9PT0YP348gO+DduLEibLs98knn8Qdd9yBefPm4cUXX3R+z9rY2Ijs7GwcP34cTzzxhCz7IqLRR9HgfOedd5TcPY1yjY2NyM3Nhb+/P/r6+lBUVCRLv3PmzMGf//xnLFmyBLfccgumTZsGALj11luhVquxfft2xMbGyrIvIhp9OFYtjVoGg8H5nbnc7r33XsTHx+PVV1/F+++/j3/+85946aWXsHjxYmg0Grfsk4hGBwYneYzdbh/2cHfurkOn0110u6CgIKxYsQIrVqzA1q1bPVAZEY0GDE7yiOEElafodDqvqoeIRhcGJ3kEp/AiIl/BacWIiIgkYHASERFJwOAkIiKSgMFJREQkAW8OIo9YtWoV7Ha70mU46XQ63rBERCPCM07yCLvdLjk4e3t7YbFYcOrUKZf206dPw2KxwOFweKwWufzrX/8C8P20aUQ0Osl6xmm1WpGXl4fGxkb4+fkhMTERFRUVcu6CRjGdTofa2tphb79r1y6kpqZCEAQEBPznUK2oqMCyZcsgCAL8/KT/7qfEIAxvv/028vPzUV9fDwAIDQ1FfHw88vLyMGfOHI/XQ0QjJ9sZZ2VlJUwmE7KystDe3o6WlhZkZGTI1T2NQTabDTqdziU0AaChoQFRUVEjCk0lvPbaa5g/fz5aW1vx7LPPAgDWrl2LAwcOID4+Hm+99ZbCFRKRFLJ88jgcDmRmZqK0tBQpKSkIDAyEWq1GUlISACAhIQFTpkxBfn6+8zlbtmzB7NmzMXv2bLz77rtylEE+xmazITo6ekB7Q0PDoO3eqL29HRkZGZg7dy4++eQT/OpXvwIA/OY3v8Enn3yCyMhILFmyBN3d3QpXSkTDJUtwWiwWqFQqJCcnD7q+vLwc69evdz7u7OzEhg0b8O6776K6uhqPPvoo+vv75SiFfMhgwdnf34+mpiZER0fj2LFjiI2NRVxcHGJiYrBnzx6FKh3apk2b0Nvbiz/+8Y+YMGGCy7qgoCAUFRWhq6sLW7ZsUahCIpJKluDs6OiAVqsdciLq0NBQl8eCIMBoNCIwMBAhISG45pprcPjwYTlKIR/R2tqKtrY251yYZ9ntdnR3d0Ov1yMkJAR1dXWora3Ftm3bsHr1aoWqHdoHH3yAsLAwzJo1a9D1MTExuPrqqyEIgocrI6KRkuXmoMjISDQ3N6O6uhoLFixAV1cXBEFwXqo93/Hjx6HVap2PtVotjh8/juuuu27Y+zx7lnuuoYLbF8j5s8n9Og23P6PROOw+jxw5AgAIDg52ad+6dSv0ej2mTp3q0t7Z2YmIiIhh9z/Y8eNOFztWy8vLUV5eLlv/l0Kp48PTfcndH2tTvq9L7W+4z5XljDM8PBxlZWXIycmBRqNBWFjYBedJnDx5Mk6ePOl83NnZicmTJ0vap9FohCiKEEURRqPR5bGvLQC8si8p/UkJTQAICwtDUFAQCgsL0dnZiRMnTqCkpATFxcUoLCx0btfc3AyDwYCkpCSYTKYRHT/uXDZs2AAA+Pjjjwd9zSwWCwCgrKzMK95TpY4P1sbalOzv/Ay52OeVbLclms1mHDhwAN3d3Th69CgKCgqG3DYmJgZ1dXXo6enBiRMn0NraiunTp8tVCvkAjUaDnTt3wmazITQ0FLNmzUJVVRVqampcDuoZM2agvr4egiAgOztbwYoHt3TpUlx++eV46KGH0NXV5bKuo6MDK1euxKRJk5CWlqZQhUQklUdGDkpPT4cgCOjp6YEgCKiursaqVaucf0/33HPPjZo/LSDPMRgMsFqtQ67v6enB+PHjAXwftBMnTvRUacM2adIkvPbaa1i0aBFuvPFG559oPf7449i0aRNOnTqFHTt2DLhxiIi8l0eCc9OmTQPalixZgiVLlnhi9+SjGhsbkZubC39/f/T19aGoqEjpkgaVkpKCd999F4WFhc4rMc899xx++tOfIjc3F7fccovCFRKRFByrljzGbrfLPmqPn58fRFFEQEAA1q5di7Vr1w6rDp1OJ2sdF2MwGLBz506cOHECJ06cQEhIyIAbn4hodGBwkkd4OqguRKfTKVbPpEmTMGnSJEX2TUTyYHCSR3AmEiLyFbwjh4iISAIGJxERkQQMTiIiIgkYnERERBLw5iDyiFWrVsFutytdhpNOp+MNS0Q0IjzjJI+w2+2Sg7O3txcWiwWnTp1yaT99+jQsFgscDofHaiEiOkv2M06r1Yq8vDw0NjbCz88PiYmJqKiokHs3NArpdDrU1tYOe/tdu3YhNTUVgiAgIOA/h2pFRQWWLVsGQRBGNFSj3IMwKOHrr7/GK6+8gsbGRgDAhg0bsHTpUsmTJRCRdLKecVZWVsJkMiErKwvt7e1oaWlxjs1JJJXNZoNOp3MJTQBoaGhAVFTUmB3fuLS0FNOmTcNTTz2FlpYWAMBjjz2GH/7wh3jzzTcVro7I98n2yeNwOJCZmYnS0lKkpKQgMDAQarXaOSdnQkICpkyZgvz8fOdzBmsjOstmsyE6OnpAe0NDw6DtY8Fbb72FzMxMJCYm4ssvv8THH38MANi/fz8iIiLwX//1X/jggw8UrpLIt8kWnGcnBk5OTh50fXl5OdavX3/RNqKzBgvO/v5+NDU1ITo6GseOHUNsbCzi4uIQExODPXv2KFSp5+Tn5+PGG2/Em2++iZkzZzrbw8PDsXv3bgQHB+PZZ59VsEIi3yfbd5wdHR3QarVDzqAdGho6rDYiAGhtbUVbWxuioqJc2u12O7q7u6HX6xESEoK6ujr4+/vj0KFDuO+++5zf+fmiL7/8EjabDUVFRc7p1M4VHByM9PR0bNiwAV1dXdBoNApUSeT7ZAvOyMhINDc3o7q6GgsWLEBXVxcEQXBeqpXb2TPccw0V2r5Azp9N7tdpuP1dbFb1cx05cgQABswgsnXrVuj1ekydOtWlvbOzExEREcPuf7DjZ7R45JFH8Mgjj7i0nf+zBAUFjbh/pY4PT/cld3+sTfm+LrW/4T5Xtku14eHhKCsrQ05ODjQaDcLCwrB37165uh/AaDRCFEWIogij0ejy2NcWAF7Zl5T+pIQmAISFhSEoKAiFhYXo7OzEiRMnUFJSguLiYhQWFjq3a25uhsFgQFJSEkwm04iOn9GyNDc3AwAKCwuHfA9WrlyJcePG4dSpU6Pq+GBtrE3J/s7PkIt9Xsl6W6LZbMaBAwfQ3d2No0ePOiftJZJKo9Fg586dsNlsCA0NxaxZs1BVVYWamhqXg3rGjBmor6+HIAjIzs5WsGL3mz59OubMmYOXX355wN+2AkBbWxs2b96M1NRUTJw4UYEKicYGj40clJ6eDkEQ0NPTA0EQUF1dPWgb0VkGgwFWq3XI9T09Pc7v+jQazZgIizVr1iAxMRGJiYl4/vnnodfrAQB/+9vfsGLFCvT19WH16tUKV0nk2zwWnJs2bRpWG9FwNTY2Ijc3F/7+/ujr60NRUZHSJbnd3LlzUVFRgQceeACxsbG48sorAQCJiYm48sorsXv3btx0000KV0nk2zhWLY1aBoPBrd+jeyuTyYTExERs3boVjY2NKCsrw5YtW7Bw4cJB77YlInkxOMlj7Ha7Vwx3Z7fbodPplC7jkkycOBEPPvggHnzwQbzyyitKl0M0pjA4ySO8Kah0Op1X1UNEowuDkzyCU3gRka8Ym6NkExERjRCDk4iISAIGJxERkQQMTiIiIgl4cxB5xKpVq2C325Uuw0mn0/GGJSIaEZ5xkkfY7XbJwdnb2wuLxTJgXNbTp0/DYrHA4XB4rBZfJ4oiPv30UwDAV199pXA1RN5N9jNOq9WKvLw8NDY2ws/PD4mJiaioqJB7NzQK6XQ61NbWDnv7Xbt2ITU1FYIgICDgP4dqRUUFli1bBkEQ4Ocn/Xc/bxiEwZu88cYbKCgowP79+wEA119/PW6//XY89dRTmDt3rsLVEXkfWc84KysrYTKZkJWVhfb2drS0tCAjI0POXdAYYrPZoNPpXEITABoaGhAVFTWi0CRXL7zwAhYtWgQAePnllwEA69atw7/+9S8kJibirbfeUrI8Iq8k2yePw+FAZmYmSktLkZKSgsDAQKjVaudE1gkJCZgyZQry8/MBfH85aM6cObj99tthMBhgs9nkKoV8hM1mQ3R09ID2hoaGQdtJmubmZvziF7+AyWTChx9+iIceeggA8Nhjj2Hfvn24+eab8cADD+Df//63wpUSeRfZgtNisUClUiE5OXnQ9eXl5Vi/fr3zcXBwMN58803U1dWhtLQUjz76qFylkI8YLDj7+/vR1NSE6OhoHDt2DLGxsYiLi0NMTAz27NmjUKWj08aNG6FSqVBUVIRx48a5rNNoNNiwYQM6OzvxxhtvKFQhkXeS7TvOjo4OaLVaqFSqQdeHhoa6PJ48ebLz3+PHj4e/v79cpZAPaG1tRVtbG6Kiolza7XY7uru7odfrERISgrq6Ovj7++PQoUO477770NjYqFDFo8+HH36IW265BVOnTh10/Zw5cxAcHAybzYalS5d6uDoi7yVbcEZGRqK5uRnV1dVYsGABurq6IAiC81LtUM6cOYOVK1dKnnz37BnuuYYKbV8g588m9+s03P6MRuOw+zxy5AiA769MnGvr1q3Q6/UDPuw7OzsREREx7P4HO37Gqov9PyouLkZxcbFs/V8KpY5dT/cld3+sTd7nynapNjw8HGVlZcjJyYFGo0FYWNhF50oURRHp6em4++67MW/ePEn7MxqNEEURoijCaDS6PPa15exr5W19SelPSmgCQFhYGIKCglBYWIjOzk6cOHECJSUlKC4uRmFhoXO75uZmGAwGJCUlwWQyjej4GavLM888AwD4/PPPB30/d+zYAQDYvn27VxxvSh27rM33azs/Qy72eSXrbYlmsxkHDhxAd3c3jh49ioKCggtuv2LFClx//fVYvny5nGWQD9BoNNi5cydsNhtCQ0Mxa9YsVFVVoaamxuWgnjFjBurr6yEIArKzsxWsePRZtmwZAgMDsWzZMnz77bcu61paWrBq1SqEhobipz/9qUIVEnknj40clJ6eDkEQ0NPTA0EQ8Mtf/hKlpaWIjY3Fnj17MGnSJFRVVXmqHBoFDAYDrFbrkOt7enowfvx4AN8H7cSJEz1Vmk+48sor8dprryEtLQ3XX389HnjgAQDAQw89hNdffx1+fn54++23B9w4RDTWeSw4N23aNKCtt7fXU7snH9TY2Ijc3Fz4+/ujr68PRUVFSpc06ixcuBChoaFYt24dfv/73wMANm/ejEWLFuHxxx/HrFmzFK6QyPtwrFryGLvdLvuoPX5+fhBFEQEBAVi7di3Wrl07rDp0Op2sdYxmer0eVVVV6O7uRldXF7RaLS6//HKlyyLyWgxO8ghvCiqdTudV9XiLiRMn8nI30TAwOMkjOBMJEfkKDvZJREQkAYOTiIhIAgYnERGRBAxOIiIiCXhzEHnEqlWrYLfblS7DSafT8YYlIhoRnnGSR9jtdsnB2dvbC4vFglOnTrm0nz59GhaLBQ6Hw2O1EBGdJesZp9VqRV5eHhobG+Hn54fExERUVFTIuQsaxXQ6HWpra4e9/a5du5CamgpBEBAQ8J9DtaKiAsuWLYMgCPDzk/67n9yDMJCrf/zjHygpKUFTUxMAoKCgABkZGfjBD36gcGVE8pDtjLOyshImkwlZWVlob29HS0sLMjIy5OqexiCbzQadTucSmgDQ0NCAqKioEYUmudfvfvc73HjjjXjppZfw3XffAQB+85vfYPr06XjzzTcVro5IHrJ88jgcDmRmZqK0tBQpKSkIDAyEWq12zsWZkJCAKVOmID8/HwBw7NgxxMbGIi4uDjExMdizZ48cZZCPsdlsiI6OHtDe0NAwaDspa/PmzcjNzUVaWhr+9a9/ob6+HsD305bpdDpONE4+Q5bgPDspcHJy8qDry8vLsX79eufjkJAQ1NXVoba2Ftu2bZM8iTWNDYMFZ39/P5qamhAdHc1fwLxIf38/CgoKcMstt+C1117DVVdd5Vw3a9Ys7N69GxMnTsSGDRsUrJJIHrJ8x9nR0QGtVjvk7NmhoaEuj/39/Z3/7uzsREREhBxlkA9pbW1FW1sboqKiXNrtdju6u7uh1+udv4D5+/vj0KFDPKNRkN1ux5dffok//elPLv+/zwoODsbixYtRXFzsMh0c0WgkS3BGRkaiubkZ1dXVWLBgAbq6uiAIgvNS7WCam5uxePFiHDhwAH/6058k7/PsWe65hgpuXyDnzyb36zTc/i42q/q5jhw5AuD7D9xzbd26FXq9HlOnTnVpl/oL2GDHD126pUuXYunSpS5t57/OgYGBI+5fqWPX033J3R9rk/e5slyqDQ8PR1lZGXJycqDRaBAWFoa9e/de8DkzZsxAfX09BEFAdna25H0ajUaIoghRFGE0Gl0e+9oCwCv7ktKflNAEgLCwMAQFBaGwsBCdnZ04ceIESkpKUFxcjMLCQud2zc3NMBgMSEpKgslkGtHxw+XSl88//xwA8Pzzzw95fJjNZkycOBG9vb1uPdaU6I+1Kd/XpfR3foZc7PNKttsSzWYzDhw4gO7ubhw9ehQFBQVDbtvT0+P8t0aj4VRGNIBGo8HOnTths9kQGhqKWbNmoaqqCjU1NS4H9aX+AkbymDVrFvR6PV566aUBf3cLAF999RXeeOMNLF68GOPGjVOgQiL5eGTkoPT0dAiCgJ6eHgiCgMcffxy5ubnw9/dHX18fioqKPFEGjTIGgwFWq3XI9ed+V8ZfwJSXn5+PpKQkxMfHY926dc5fcLZv345f/OIXmDBhAnJychSukujSeSQ4N23aNKDtYpdyiS6msbGRv4B5kfj4eGzfvh3p6emYO3cu1Go1ACA1NRUzZszA3/72N1x33XUKV0l06ThWLY1aBoOBv4B5mXvuuQdJSUl444038NFHH+EPf/gDqqurMX/+/EHvtiUajRic5DF2u90rhruz2+3Q6XRKl+GzLr/8cjzwwAN44IEHeBWAfBKDkzzCm4JKp9N5VT1ENLowOMkjOIUXEfkKjpJNREQkAYOTiIhIAgYnERGRBAxOIiIiCXhzEHnEqlWrYLfblS7DSafT8YYlIhoRnnGSR9jtdsnB2dvbC4vFMmDs09OnT8NiscDhcHisFlLOmTNn8MEHHwAAPvvsM4WrIZL5jNNqtSIvLw+NjY3w8/NDYmIiKioq5NwFjWI6nQ61tbXD3n7Xrl1ITU2FIAgICPjPoVpRUYFly5ZBEAT4+Un/3c8bBmGgixNFERs3bsSzzz6Lw4cPAwB+9KMfISYmBs888wzuuOMOZQukMUu2M87KykqYTCZkZWWhvb0dLS0tyMjIkKt7GoNsNht0Op1LaAJAQ0MDoqKiRhSaNHo8+eSTWL58Oa699lq8/vrrAICioiJ0dHTgzjvvxI4dOxSukMYqWT55HA4HMjMzUVpaipSUFAQGBkKtVjsnsk5ISMCUKVOQn5/v8rzjx49Dq9Viy5YtcpRBPsZmsyE6OnpAe0NDw6Dt5Dv279+PgoICpKenY+/evbj//vsBACtXrkRTUxN0Oh2WLVvmMkUhkafIEpwWiwUqlQrJycmDri8vL8f69esHtOfn58NgMMhRAvmgwYKzv78fTU1NiI6OxrFjxxAbG4u4uDjExMRgz549ClVKcispKUFgYCDWrVs34MqCRqPB7373O3R0dGD79u0KVUhjmSzfcXZ0dECr1UKlUg26PjQ0dEDbwYMHcfz4cURFRclRAvmY1tZWtLW1DTg+7HY7uru7odfrERISgrq6Ovj7++PQoUO477770NjYqFDFJKePPvoIs2fPxuTJkwddHx8fj8DAQNjtdvz3f/+3h6ujsU6W4IyMjERzczOqq6uxYMECdHV1QRAE56XaweTl5WHt2rV47bXXRrTPs2e55xoquH2BnD+b3K/TcPs7O7HxcBw5cgQAEBwc7NK+detW6PV6TJ061aW9s7MTERERw+5/sOOHvM/F/o9v2LABGzZskK3/S6HU/ytP9yV3f95U23CfK8ul2vDwcJSVlSEnJwcajQZhYWEXnCfxvffew+TJkzFz5swR79NoNEIURYiiCKPR6PLY1xYAXtmXlP6khCYAhIWFISgoCIWFhejs7MSJEydQUlKC4uJiFBYWOrdrbm6GwWBAUlISTCbTiI4fLt63rFmzBgDw5ZdfDnqsvfrqqwCAv/71ryPehy/8v2Jt8vR3foZc7PNKtj9HMZvNMJvNw9rWZrNh3759mDdvHg4ePIgrrrgCM2fOxOzZs+Uqh0Y5jUaDnTt34vHHH0doaCgmTJgAnU6HmpoazJkzx7ndjBkzUF9fj0OHDuGOO+7A3XffrWDVJJef//zneOaZZ2A2m/F///d/CAoKcq774osv8Ktf/QphYWH8kxRShEdGDkpPT4cgCOjp6YEgCKiursbKlSsBAGvWrMH111/P0KQBDAYDrFbrkOt7enowfvx4AN8H7cSJEz1VGrnZNddcg9dffx1paWmYPn06fvaznwEA0tLSUFlZCa1Wi+3bt/NPkkgRHgnOTZs2Dbnu7CUZIqkaGxuRm5sLf39/9PX1oaioSOmSSEYLFy7EtGnT8Nxzz6GkpAQAsHv3bjz88MP4xS9+MeB7biJP4Vi15DF2u132UXv8/PwgiiICAgKwdu1arF27dlh16HQ6Wesg94iOjsb//u//oq+vD//+97+hVqt5lkmKY3CSR3hTUOl0Oq+qhy5u3LhxLt9zEimJwUkewZlIiMhX8JoHERGRBAxOIiIiCRicREREEjA4iYiIJODNQeQRq1atgt1uV7oMJ51OxxuWiGhEeMZJHmG32yUHZ29vLywWC06dOuXSfvr0aVgsFjgcDo/VQkR0lqxnnFarFXl5eWhsbISfnx8SExNRUVEh5y5oFNPpdKitrR329rt27UJqaioEQUBAwH8O1YqKCixbtgyCIIzoj+HlHoSBRg+bzYaSkhLs27cPwPcjl/385z/Htddeq3BlNJrIdsZZWVkJk8mErKwstLe3o6WlBRkZGXJ1T2OQzWaDTqdzCU0AaGhoQFRUFEeQoWETRRGPPvqocyQirVYLAHj66acxc+ZMVFVVKVwhjSayfPI4HA5kZmaitLQUKSkpCAwMhFqtds7HmZCQgClTpiA/P9/5nMsvvxxxcXGIi4tDaWmpHGWQj7HZbIiOjh7Q3tDQMGg70VBeeOEFvPDCC3j44YfR2tqKt99+G8D305ZFRkZi0aJFaGpqUrhKGi1kCc6zkwInJycPur68vBzr1693abv22mtRW1uL2tpaPPjgg3KUQT5msODs7+9HU1MToqOjcezYMcTGxiIuLg4xMTHYs2ePQpWSN+vr68OGDRuQkJCAF1980WXovpkzZ2LXrl0IDAzE888/r2CVNJrIEpwdHR3QarVDzp4dGho6oK2trQ1GoxH33HMPDh06JEcZ5ENaW1vR1taGqKgol3a73Y7u7m7o9XqEhISgrq4OtbW12LZtG1avXq1QteTN3nvvPXz99ddYvnz5oJ9RWq0W999/PyoqKpyTIRNdiCw3B0VGRqK5uRnV1dVYsGABurq6IAiC81LtYA4fPoyQkBDs2bMH6enpkm4aAf5zlnuuoYLbF8j5s8n9Og23v4vNqn6uI0eOAACCg4Nd2rdu3Qq9Xj9gSqnOzk5EREQMu//Bjh/ybSkpKQPazj8GLuV7c6X+X3m6L7n786bahvtcWc44w8PDUVZWhpycHGg0GoSFhWHv3r0XfE5ISAgAID4+3vkhKYXRaIQoihBFEUaj0eWxry0AvLIvKf1JCU0ACAsLQ1BQEAoLC9HZ2YkTJ06gpKQExcXFKCwsdG7X3NwMg8GApKQkmEymER0/XHx7+eijjwAAxcXFLu3nHrv33HMPpkyZgv7+/hHtQ6n/V6xNnv7Oz5CLfV7Jdlui2WzGgQMH0N3djaNHj6KgoGDIbbu7u3HmzBkAwCeffIJJkybJVQb5CI1Gg507d8JmsyE0NBSzZs1CVVUVampqXA7qGTNmoL6+HoIgIDs7W8GKyVv9+Mc/xs0334wXXnhhwN8EA8DHH3+MHTt2YNmyZbwKQcPikZGD0tPTIQgCenp6IAgCnnzySWRmZkKtVgMANm7c6IkyaJQxGAywWq1Dru/p6cH48eMBfB+0EydO9FRpNIqoVCoUFhbirrvuwh133IGCggIkJCQAAMrKyrB69WpcffXVeOSRRxSulEYLjwTnpk2bBrSdvXxCNFKNjY3Izc2Fv78/+vr6UFRUpHRJ5KXuvPNObN++HQ8++CCSkpIwbtw4AMDPf/5z6HQ6VFRU4KqrrlK4ShotOFYtjVoGg+Gi36UTnXXPPfdg/vz5qKqqwr59+1BYWIi9e/fCYDDwEi1JwuAkj7Hb7V4x3J3dbodOp1O6DFLA+PHjkZaWhrS0NDDcP+wAACAASURBVPzud79TuhwapRic5BHeFFQ6nc6r6iGi0YXBSR7BKbyIyFdwlGwiIiIJGJxEREQSMDiJiIgkYHASERFJwJuDyCNWrVoFu92udBlOOp2ONywR0YjwjJM8wm63Sw7O3t5eWCyWAeOLnj59GhaLBQ6Hw2O1EA2mp6cHf/3rXwEATU1NzoHGybfJesZptVqRl5eHxsZG+Pn5ITExERUVFXLugkYxnU4nafq4Xbt2ITU1FYIgICDgP4dqRUUFli1bBkEQRjQNlDcMwkCjW39/P5599lk8//zz+OabbwAAUVFR0Ol0WLduHRITExWukNxJtjPOyspKmEwmZGVlob29HS0tLcjIyJCrexqDbDYbdDqdS2gCQENDA6Kioi5p7kSikRJFEcuXL0dubi5uvfVWVFdXAwBefvll/Pvf/8b8+fOdbeSbZPnkcTgcyMzMRGlpKVJSUhAYGAi1Wu2cyDohIQFTpkxBfn6+8zkff/wx5s2bhzvuuANLly6VowzyMTabDdHR0QPaGxoaBm0n8gSr1YrS0lI89thjqK6uxt133w0AeOihh2Cz2RAREYHMzEz09fUpXCm5iyzBabFYoFKpkJycPOj68vJyrF+/3vm4t7cXOTk5eOONN/D3v/8df/rTn+Qog3zMYMHZ39+PpqYmREdH49ixY4iNjUVcXBxiYmKwZ88ehSqlsaSkpARBQUH47W9/O2BweLVajbVr1+Lo0aN46623FKqQ3E2W4Ozo6IBWqx1yhoHQ0FCXxx988AHUajWWLFmCuLg47Ny5U44yyIe0traira0NUVFRLu12ux3d3d3Q6/UICQlBXV0damtrsW3bNqxevVqhamks2b9/P+bMmYMrrrhi0PVnr7Tt37/fk2WRB8lyc1BkZCSam5tRXV2NBQsWoKurC4IgOA+g87W2tqKpqQl2ux2iKOK2227DnDlzoNFohr3Ps2e55/LlqYHk/Nnkfp2G25/RaBx2n0eOHAEABAcHu7Rv3boVer0eU6dOdWnv7OxERETEsPsf7PghGg6VSoV9+/Zd9PPn6aefxtNPP31J+5GLUv/nPd3XpfY33OfKcsYZHh6OsrIy5OTkQKPRICws7ILzJE6aNAl6vR7BwcHQarWIiIjAwYMHJe3TaDRCFEWIogij0ejy2NcWAF7Zl5T+pIQmAISFhSEoKAiFhYXo7OzEiRMnUFJSguLiYhQWFjq3a25uhsFgQFJSEkwm04iOHy5cpCyrV6+Gn58f/vnPfzrbzv1/8NJLLwH4/rv4ke7DF/7Pj6bazs+Qi31eyXZbotlsxoEDB9Dd3Y2jR4+ioKBgyG31ej0OHjyIvr4+9Pb24vPPP8e0adPkKoV8gEajwc6dO2Gz2RAaGopZs2ahqqoKNTU1Lgf1jBkzUF9fD0EQkJ2drWDFNFZkZmYiICAA999/P06ePOmyrqGhAU888QRmz57NG9h8mEdGDkpPT4cgCOjp6YEgCKiurkZOTg7mzp2L3t5erFy5EpMnT/ZEKTSKGAwGWK3WIdf39PRg/PjxAL4P2okTJ3qqNBrDpk2bhtdffx33338/pk2bhkWLFgEA7rrrLtTU1GDatGnYtm2bwlWSO3kkODdt2jSgbdGiRc4DjmgkGhsbkZubC39/f/T19aGoqEjpkmiMWLhwIa677jq88MIL2LJlCwBg3759ePLJJ5GdnY0pU6YoXCG5E8eqJY+x2+2yj9rj5+cHURQREBCAtWvXYu3atcOqQ6fTyVoHjT2RkZF49dVXsXnzZpw5c2bAQB3ku/hOk0d4U1DpdDqvqodGN5VKxdAcY/huk0dwJhIi8hUc7JOIiEgCBicREZEEDE4iIiIJGJxEREQS8OYg8ohVq1bBbrcrXYaTTqfjDUtENCI84ySPsNvtkoOzt7cXFosFp06dcmk/ffo0LBYLHA6Hx2ohIjpL1jNOq9WKvLw8NDY2ws/PD4mJiaioqJBzFzSK6XQ61NbWDnv7Xbt2ITU1FYIguPydXEVFBZYtWwZBEODnJ/13P7kHYSC6VKIo4u9//ztKSkrw2Wefwc/PD7/+9a+RmZmJ6dOnK10enUe2M87KykqYTCZkZWWhvb0dLS0tyMjIkKt7GoNsNht0Ot2APy5vaGhAVFTUiEKTyNucOXMGZrMZCQkJePfddzFr1iz09/dj3bp1zskNyLvI8snjcDiQmZmJ0tJSpKSkIDAwEGq12jkfZ0JCAqZMmYL8/HwA33/wxcXFIS4uDnq9ngO806BsNtugM0w0NDRw5gnyGWvWrMFrr72GvLw8HDlyBJWVlQC+nzIvMjISixYtwr59+xSuks4lS3CenRQ4OTl50PXl5eVYv3698/Gtt96K2tpa1NbWYuXKlbjvvvvkKIN8zGDB2d/fj6amJkRHR+PYsWOIjY1FXFwcYmJisGfPHoUqJRoZh8OBF198ESkpKXjqqacQGBjoXPfDH/4Q1dXVGDduHP7whz8oWCWdT5bg7OjogFarHXL27NDQ0CGf++qrr2Lx4sVylEE+pLW1FW1tbYiKinJpt9vt6O7uhl6vR0hICOrq6lBbW4tt27Zh9erVClVLNDLvvvsuvv32Wzz00EODrp88eTJSU1Oxfft2D1dGFyLLzUGRkZFobm5GdXU1FixYgK6uLgiC4LxUO5S2tjYcPnwYs2fPlrzPs2e55xoquH2BnD+b3K/TcPu72Kzq5zpy5AgAIDg42KV969at0Ov1mDp1qkt7Z2cnIiIiht3/YMcPkVISExMHtMn5+abU/3lP93Wp/Q33ubKccYaHh6OsrAw5OTnQaDQICwvD3r17L/q8119/HWlpaSPap9FohCiKEEURRqPR5bGvLQC8si8p/UkJTQAICwtDUFAQCgsL0dnZiRMnTqCkpATFxcUoLCx0btfc3AyDwYCkpCSYTKYRHT9cuCi1vP/++wCA//mf/3FpP/f/1dy5czFz5swR70Op//OjqbbzM+Rin1ey3ZZoNptx4MABdHd34+jRoygoKLjoc7Zs2YKf/exncpVAPkSj0WDnzp2w2WwIDQ113l1YU1PjclDPmDED9fX1EAQB2dnZClZMJF1MTAx+9KMfYf369eju7h6wfu/evXj33Xf5FwpexiMjB6Wnp0MQBPT09EAQBFRXV2P//v2YMGECZs6c6YkSaBQyGAywWq1Dru/p6cH48eMBfB+0EydO9FRpRLJQqVTYsGEDFixYAKPRiKeeesr5Fddzzz2HNWvW4IYbbkBmZqbCldK5PBKcmzZtGtB20003XfBDkehiGhsbkZubC39/f/T19aGoqEjpkogkmzdvHt5880089NBD+MlPfuJsz8nJwdy5c7FlyxZotVoFK6TzcaxaGrUMBsOwvksn8nY//elPMX/+fFRXV+PTTz9FXl4e7HY7fvzjHytdGg2CwUkeY7fbvWK4O7vdDp1Op3QZRC7GjRuHe++9F/feey+efPJJpcuhC2Bwkkd4U1DpdDqvqoeIRhcGJ3kEp/AiIl/BUbKJiIgkYHASERFJwOAkIiKSgN9xkkesWrUKdrtd6TKcdDodv3clohHhGSd5hN1u95rg9KZaiGj04RkneYxOp0Ntbe2wt29vb8cPfvADNDU14eabb3a2//Of/8T06dPx2WefISwsTHId3vC3pETu1tXV5Zyj9r333sPs2bM5I5BMZD3jtFqtiI+Ph0ajQXBwMFJTU+XsnsaYxsZGXH755bjppptc2hsaGqBWq3HjjTcqVBmR9+rr68Njjz2Ga6+9Fvfeey8A4LbbbkN4eDjefvtthavzDbIFZ2VlJUwmE7KystDe3o6WlhaO6E+XxGazQafTISDA9cJIQ0MDoqKi4OfHbxqIztXf34/7778fGzZsQHJyMiwWC4Dvxwvv7+/HggULsGvXLoWrHP1k+eRxOBzIzMxEaWkpUlJSEBgYCLVa7RzlPyEhAVOmTEF+fj6A7+dLy87OxuzZsxEdHY0tW7bIUQb5GJvNhujo6AHtDQ0Ng7YTjXW7d+/G9u3b8eyzz2LLli2YM2cOAGDp0qVoaGhAeHg4li9fjjNnzihc6egmS3BaLBaoVCokJycPur68vBzr1693Pv7000/x6aef4v3330dtbS3y8vLkKIN8zGDB2d/fj6amJkRHR+PYsWOIjY1FXFwcYmJinN/nEI1VJSUluPrqq/Hoo48OWKdWq5GXl4eWlhbs3r1bgep8hyw3B3V0dECr1Q75xXNoaKjL42uuuQaXXXYZ+vr6cOrUKUyaNEmOMsiHtLa2oq2tDVFRUS7tdrsd3d3d0Ov1CAkJQV1dHfz9/XHo0CHcd999aGxsVKhiIuV99tlniIuLw7hx4wZdf+eddzq3u/vuuz1Zmk+RJTgjIyPR3NyM6upqLFiwAF1dXRAEwXmp9nxarRYzZ87EDTfcAIfDgY0bN0re59mz3HP58h1jcv5scr9Ow+3PaDQOu88jR44AAIKDg13at27dCr1ej6lTp7q0d3Z2IiIiYtj9D3b8EI12fn5+OHToELZt2+bSfv6x/vjjj+Pxxx8f8X584fPoUp4ry6Xa8PBwlJWVIScnBxqNBmFhYRecJ/Gdd95Ba2srDh48iC+++AJPPPEEenp6JO3TaDRCFEWIogij0ejy2NcWAF7Zl5T+pIQmAISFhSEoKAiFhYXo7OzEiRMnUFJSguLiYhQWFjq3a25uhsFgQFJSEkwm04iOHy5cfGV59NFHERAQgCNHjjjbzv0/unbtWgDAF198MeJ9+MLn0fnL+Rlysc8r2W5LNJvNOHDgALq7u3H06FEUFBRccPtJkybB398farUafX19/LKaXGg0GuzcuRM2mw2hoaGYNWsWqqqqUFNT43JQz5gxA/X19RAEAdnZ2QpWTKS85cuXw8/PD/fddx+OHz/usu6dd95BQUEB7rrrLv4p1yXyyAAI6enpEAQBPT09EAQBf/nLX7Bt2zbcdttt6O3txYoVKzBhwgRPlEKjiMFggNVqHXJ9T08Pxo8fD+D7oJ04caKnSiPySjNnzsTrr7+O+++/Hz/84Q+xcOFCAN//Hed7772H8PBwlJeXK1ukD/BIcG7atGlAG988ulSNjY3Izc2Fv78/+vr6UFRUpHRJRIpbuHAhbrjhBrz44ouoqqoCAJw8eRK///3vkZGRAbVarXCFox+H3COPsdvtsg935+fnB1EUERAQgLVr1zq/w7lYHTqdTtY6iLxJREQEXnnlFfx/9u4/Oqrq3v//a2ZcgpKQHAJtEmMDkmu18iNKKCQGZ4ppS/xxW0t7k9iSxFjLtY1T5uK6o9Zqr6Yr9qpUvNpWaiEqtFlXa8TYGg1gRvw1gRKagNSASCu01ApkEqJOgDnfP/ww3xt+OQfOyQB9PtY6a7n3nLP3W4zzYs+c7PPLX/4y2aWclghODImTKajy8/NPqnoAnFoITgwJHuEF4HTBZp8AAFhAcAIAYAHBCQCABQQnAAAWcHMQhsS8efO0fv36ZJcRl5+fzw1LAI4LK04MifXr11sOzoGBAYVCIfX19Q3q/+ijjxQKhdTf3z9ktQDAQbauOF999VXdcccdWrNmjdxut774xS/qySeftHMKnMLy8/PV1taW8Pm/+93v9I1vfEPhcFhnnPH//6g++eSTuv766xUOh+V2W/+7n92bMACnswMHDmj58uV65JFH9Kc//Ulut1vz58/XjTfeqLy8vGSXlxS2rTh/+9vf6pprrtF3v/tdvffee3r33Xf17W9/267h8U9o7dq1ys/PHxSaktTe3q4pU6YcV2gCSFw0GtVXvvIVzZ49W3/605/k8/kUi8X04IMP6qKLLopv6ffPxpZ3nv7+fs2dO1eLFi3S7NmzNXz4cKWmpsafx1lSUqIxY8aorq4ufs2dd96poqIi+Xw+bdiwwY4ycJpZu3atpk6delh/e3v7EfsB2Gv+/Pn63e9+pwcffFBbt27VY489Jkn685//rClTpqiiokJvvvlmkqscerYE58GHAn/lK1854usNDQ2699574+3169ervb1dr732mhoaGvT973/fjjJwmjlScMZiMa1bt05Tp07V3//+9/hfvqZNm6aVK1cmqVLg9LN792796le/0vXXX6+bbrpJHo8n/lp2draeeeYZuVwuPfTQQ0msMjlsCc73339fhmEc9enZOTk5g9rd3d2aMmWKJGns2LHatGmT9u/fb0cpOE3s2LFDO3fujP+cHLR+/Xrt3btX06dP1+jRo7V69Wq1tbXpN7/5jW655ZYkVQucfl588UV99NFHuuGGG474+qc+9Sldc801ampqGuLKks+Wm4MuueQSvfPOO2pubtaVV16p3t5ehcPh+Ee1h7rooou0cOFCDQwMaMOGDdq5c6d6eno0evTohOc8uMr9v44W3KcDO//d7P5zSnS8T3qq+v+1fft2SVJ6evqg/l//+teaPn26zj333EH9PT09mjRpUsLjH+nnB8Dhpk+fflifne+9yXo/OpFrbVlxTpgwQY8++qhuvvlmjRw5UhdeeKFefvnlo55/0UUXqaKiQiUlJfrZz36miRMnKiMjw9KcXq9XpmnKNE15vd5B7dPtkHRSjmVlPCuhKUkXXnih0tLSdM8996inp0e7d+/WL37xC/3sZz/TPffcEz/vnXfeUXFxsb785S/rmmuuOa6fHw4OjsOPg3fAP/HEE4P6D/4/H4vFdPHFFys/P/+450jW+9Ghx6EZ8knvV7bdllhVVaW33npLe/fu1d/+9jf9+Mc/Pub5tbW1evnllzVv3jzl5+fzt38MMnLkSD333HNau3atcnJydMEFF+jpp59WS0vLoB/qcePG6ZVXXlE4HFZtbW0SKwZOLzNmzND555+ve+65R3v37j3s9eXLl6ujo0Pf+c53klBdcg3JzkE1NTUKh8OKRqMKh8Nqbm7Wl770Je3fv1+jR4/Www8/PBRl4BRTXFysV1999aivR6NRDRs2TNLHQZuSkjJUpQGnPbfbrZ/+9Ke6+uqrVVxcrB/+8IcqKSmRJP3whz/Uf//3f2vKlCmqqqpKcqVDb0iCc/HixYf1vfjii0MxNU5ja9as0W233SaPx6N9+/Zp4cKFyS4JOK1cccUVeuaZZ1RbW6uvf/3r8f4f//jHuuaaa/Too4/q7LPPTmKFycFetThlFRcXH/O7dAAn7uqrr9YVV1yhlpYW/elPf9LNN9+st99+W+PGjUt2aUlDcGLIrF+//qTY7m79+vXKz89PdhnAKcPj8ejKK6/UlVdeqfnz5ye7nKQjODEkTqagys/PP6nqAXBqITgxJHiEF4DTBbtkAwBgAcEJAIAFBCcAABbwHSeGxLx587R+/fpklxGXn5/P964AjgsrTgyJ9evXnzTBeTLVAuDUw4oTQyY/Pz++cXQi3nvvPX3605/WunXrdPHFF8f7//znP2vs2LF68803deGFF1qu42T4XVLgn9l7772nF154QZL00ksvyev1yu0+ddZxtlb66quv6vLLL9fIkSOVnp6ub3zjG3YOj38ya9as0VlnnaWJEycO6m9vb1dqaqo++9nPJqkyAMfjgw8+0PXXX6+cnBxVVlZKkmbOnKnPfvazev7555NcXeJsC87f/va3uuaaa/Td735X7733nt599119+9vftmt4/BNau3at8vPzdcYZgz8YaW9v15QpU06pv6EC/+z27dunq6++WkuWLNF3vvMdrVu3TpK0dOlSDRs2TFdffbV+97vfJbnKxNjyztPf36+5c+dq0aJFmj17toYPH67U1FR9+ctf1ttvv63LLrtMM2bMUHFxsdauXSvp4z+swsJCFRYW6qWXXrKjDJxm1q5dq6lTpx7W397efsR+ACevJ598UqtWrdKiRYv00EMPxb9++eY3v6nXX39dF154ofx+v2KxWJIr/WS2BGcoFJLL5dJXvvKVw15LT09XU1OTVq9erUWLFikQCKinp0f33XefXnrpJTU3NysQCJwSf1gYWkcKzlgspnXr1mnq1Kn6+9//rqKiIvl8Pk2bNk0rV65MUqUAPskjjzyivLw81dTUHPZaamqqfvCDH2jr1q2nxP/Httwc9P7778swjCM+jDojIyP+z8OGDZPH41E4HJbX69Xw4cM1fPhwZWdna9u2bTrvvPPsKAengR07dmjnzp2aMmXKoP7169dr7969mj59ukaPHq3Vq1fL4/Fo69atKisr05o1a5JUMYBjeeutt/Sv//qvR/2KZebMmfHzvvjFLw5ladaZNujq6jLPOOMM89lnnzUPHDhg7tmzx2xpaRl0zv79+80rrrjCfP75581ly5aZd955Z/y1a6+91mxvb094Pq/Xa0riOMUOr9eb8H/jN954w5Rk/vWvfx3UP3/+fHP69OmHnf+HP/zBrKmp4eeHg+MkPTweT9JrsHIciy0f1U6YMEGPPvqobr75Zo0cOVIXXnjhoOckmqapmpoaXXXVVZo1a5YyMjK0Z8+e+Os9PT2DVqaJ8Hq9Mk1TpmnK6/UOap9ux8E/w5NtLCvjeb1eS/99L7zwQqWlpemee+5RT0+Pdu/erV/84hf62c9+pnvuuSd+3jvvvKPi4mJ9+ctf1jXXXHNcPz8cHBzOHzfeeKPOPPNM7dy5M973f98/5s+fL4/Ho+3btx/3HMf7/nZohnzS+5VttyVWVVXprbfe0t69e/W3v/1NP/7xj+Ov3XTTTcrLy9ONN94oSZo2bZpWr16taDSq3bt3a8eOHRo7dqxdpeA0MHLkSD333HNau3atcnJydMEFF+jpp59WS0vLoB/qcePG6ZVXXlE4HFZtbW0SKwZwLN/73vdkmqZmz56tf/zjH/F+0zT1m9/8Rg888IDKysp0zjnnJLHKxDi+AUJbW5sWLVqkoqIirVy5UqNGjdLTTz+tefPmxX8R/f777+dXC3CY4uJivfrqq0d9PRqNatiwYZI+DtqUlJShKg2ARRdccIGWLVumb37zmzr33HPjN5NOnDhRGzduVFFRkX7+858nucrEOB6cPp9PAwMDh/VXVlbGfwEWOB5r1qzRbbfdJo/Ho3379mnhwoXJLgnAMXzjG9/QRRddpIcffljLly+XJI0YMUK/+tWvdO2112r48OFJrjAxbLmHIbN+/Xrbt7tzu90yTVNnnHGG7r77bt19990J1ZGfn29rHQAS87nPfU4PP/ywHn744WSXctwITgyJkymo8vPzT6p6AJxaCE4MCR7hBeB0wR05AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCB48HZ2Nio/Px8paam6oILLtAzzzzj9JQAADjG0eBctGiRbr31Vv3yl79UX1+ffvrTn6qiokJ/+ctfnJwWAADHOBacfX19uvXWW7V48WJNnTpVklRaWqoxY8Zo7dq1Wrp0qQoLC1VYWKiXXnrJqTIAALCVYzsHrVq1Sh6PR1/4whfifaZp6v3335fb7dZ9992nN954Q3v37lVJSYnWrVvHE1IAACc9x5Kqt7dXhmEM6mtubtZZZ50ll8slr9er4cOHa/To0crOzta2bducKgUAANs4tuKcNm2atm3bppdfflmXXnqpQqGQ/v3f/13333+/+vv7B4WqYRjatWuXzjvvvITHD4VCcrlcg/oObZ9O7Px3s/vP6XT+cwdwajmR96NEr3UsOM8//3w9+uijuu6667Rz506df/75evDBB/X1r39dL7zwgvbs2RM/t6enRxkZGZbG93q9amtrk6T4o6oOtk83LpdLpmmedGM5MR4AHK/jfT86NEM+6fGHjj4dZc6cOZozZ85h/dOmTdOtt96qaDSq/v5+7dixQ2PHjnWyFAAAbJGUx4qlp6dr3rx58VS///77uTEIAHBKSNrzOCsrK1VZWZms6QEAOC4s8wAAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsCBpOwfh2D788EM1Nzdr+/btkqRdu3ZZ3gjfKf39/Xr22Wf1t7/9TdLHm/Snp6cnuSoA/4z279+vlpYWdXd3S5LeffddnXvuuY7O6eiKMxaLqbKyUrm5uUpJSVFeXp4aGxudnPKUZ5qmHnroIeXk5KisrEzz58+XJOXk5CgQCGjfvn1Jre3ee+/VOeeco2uvvTZe2znnnKNbbrlFBw4cSFptAP75PP300xo3bpyuvvrq+PvR2LFjde2116qvr8+xeR0NzkgkotLSUnV2dqq3t1eBQEDV1dUaGBhwctpT2v3336+bbrpJBQUFWrVqVfzxa9dee60eeOABVVdXJ+0xXnfddZf+8z//UzNmzFAoFIrX9rWvfU0/+clPdOONNyalLgD/fJ5++ml9/etf16c//Wk988wz2r17tyRp/vz5+t///V9dccUVikajzkxuDqG+vj5Tkrl7927ziSeeMKdPn25Onz7dXLVqlaVxvF6v6fV6j9o+Vb3//vvm8OHDza9+9avmgQMH4v0H/zPdcccdpiTztddeszz2r371K3Ps2LGmJPPOO+80Y7GYpev/+te/mmeccYZ57bXXDrr2YG3z5883JZnr16+3XBsAWLF//37z3HPPNS+55BKzv78/3n/w/eiJJ54wJZmPP/54QuMdKVOOxdHgfPHFF81Zs2aZ55xzjjly5EgzJSXFzMrKMvfs2WNOnjzZ/PDDD81//OMf5uTJkwcFxSc5XYNz4cKFpiTzj3/846D+gz8MfX19ZmpqqnnddddZGvf55583JQ06/ud//sfSGPX19aYks7u7+4i17dq1yxw+fLj5ve99z9K4AGDV73//e1OS+dvf/nZQ/8H3o1gsZn72s581i4uLExrPanA69lFte3u7ysvL5ff71d3drUgkomAwqIKCAoXDYXm9Xg0fPlyjR49Wdna2tm3b5lQpp4zNmzcrLS1NkyZNOuLrKSkpuuSSS7RlyxZL465YsUIulyvedrvdam1ttVxbVlaW/uVf/uWIr48aNUoTJ07U22+/bWlcALBq8+bNkqQZ3cIg3gAAIABJREFUM2Yc8XWXy6UZM2ZYfq9MlGN31XZ0dMgwDBUVFcnj8aihoUH19fUKBoPatWuXDMOIn2sYhnbt2qXzzjsv4fFDodCgMJB0WPtUdaR/Dzv/XWOxmJ599tnjGsPp2gAgUZ/61KcO6zuR96NEz3VsxVlWVqa8vDxlZ2frc5/7nPbs2SPDMFRQUKCMjIz4jSXSx7/OYPVXLbxer8yPP2qW1+sd1D5Vj9dff12S9NBDDw3qlz6+o/WVV16RJP385z+3NG5fX58uvvji+J/dOeeco7/85S+WxlixYoUkacmSJUes7YUXXpAkPf7440n/c+Tg4Di9j7/+9a8644wz9P3vf39Q/8H3o3fffVdnnHGG5s+fn9B4h2aI1+s9dgCZSbBnzx7z4osvNj/66CNz165dfMf5/8RiMfPSSy81R4wYYf7+97+P34Qjyezs7DRzc3PNT33qU2Zvb6/lsT/88EPz2WefNZ966ilz9+7dx1Vbfn6+mZaWZq5cuTLeL8n8wx/+YGZnZ5vnnnuu+eGHH1oeGwCsqqqqMt1ut/noo4/G80OS+Ze//MWcMmWKOXz4cHPLli0JjWX1O86kbICQnp6uefPmyefzSfr4VzDcbjYxcrlcevLJJ/XFL35RV1xxhSZPnqxLLrlEkjRp0iSNGTNGzz//vFJTUy2PPXz4cF199dUnVNvy5ctVUlKiyy+/XFOmTIl/FztlyhRlZWXp97//vYYPH37ccwBAoh5++GG9++67+va3v636+vr4953jxo3TmWeeqaeeekrjx493ZO6kpVVlZaVef/11vf7667r88suTVcZJJysrS+FwWI888oiGDx+uF198UZJUV1enDRs2aMqUKUmr7TOf+Yz+8Ic/6KGHHpLL5YrX9pOf/ERdXV2aMGFC0moD8M9lxIgRamlpUWNjoz7zmc/Ev076j//4D23YsEFXXnmlY3O7/t/y9pRycKXa1tZ2xDYAAIk6UqYcK0/4fBQAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACR4MzFoupsrJSubm5SklJUV5enhobG52cEgAARzkanJFIRKWlpers7FRvb68CgYCqq6s1MDDg5LQAADjG0eA0DEMVFRVKS0uT2+1WVVWVotGo+vv7VVJSojFjxqiurs7JEgAAsJWjwdna2qrS0lLl5OQoLS1NWVlZysrKkmEYamho0L333uvk9AAA2M6x4Gxvb1d5ebn8fr+6u7sViUQUDAZVUFAgScrJyXFqagAAHOPY8zg7OjpkGIaKiork8XjU0NCg+vp6BYNBW8YPhUJyuVyD+g5tAwCQqEQzxLHgLCsrU1NTk7Kzs5WZmana2loZhhFfcZ4or9fLY8UAACfsaI+qPBrHgjM9PV0tLS2D+gKBgFPTAQAwJBwLzk9SU1OjcDisaDSqcDis5ubmZJUCAEDCkhacixcvTtbUAAAcN7bcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA/OWCymyspK5ebmKiUlRXl5eWpsbHR6WgAAHOF4cEYiEZWWlqqzs1O9vb0KBAKqrq7WwMCA01MDAGA7x4PTMAxVVFQoLS1NbrdbVVVVikaj6urq0mWXXaYZM2aouLhYa9eudboUAABOmONPR2ltbdWCBQvU1dWlvr4+xWIxZWVlaezYsWpqalJGRobefPNNzZ07V6tXr3a6HAAAToijwdne3q7y8nItXbpUXq9XZ599turq6tTe3q6MjIz4ecOGDZPH43GyFAAAbOFocHZ0dMgwDBUVFcnj8aihoUH19fUKBoPxcw4cOCC/369bbrnF0tihUEgul2tQ36FtAAASlWiGOBqcZWVlampqUnZ2tjIzM1VbWyvDMFRQUCBJMk1TNTU1uuqqqzRr1ixLY3u9XrW1tUmSfD6fJMXbAAAk6tAMOdg+GkeDMz09XS0tLYP6AoFA/J9vuukm5eXl6cYbb3SyDAAAbJO0DRDa2tq0aNEirVy5Uj6fT1/72teSVQoAAAlz/K7ao/H5fPwuJwDglMOWewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWOBocMZiMVVWVio3N1cpKSnKy8tTY2Ojk1MCAOAoR4MzEomotLRUnZ2d6u3tVSAQUHV1NVvtAQBOWY4Gp2EYqqioUFpamtxut6qqqhSNRrVnzx4VFRXJ5/Np2rRpWrlypZNlAABgG0c3eW9tbdWCBQvU1dWlvr4+xWIxZWVlafTo0Vq9erU8Ho+2bt2qsrIyrVmzxslSAACwhWMrzvb2dpWXl8vv96u7u1uRSETBYFAFBQXyeDzyeDySpJ6eHk2aNMmpMgAAsJVjK86Ojg4ZhqGioiJ5PB41NDSovr5ewWBQkvTOO+9ozpw5euutt7RkyRLL44dCIblcrkF9h7YBAEhUohniWHCWlZWpqalJ2dnZyszMVG1trQzDUEFBgSRp3LhxeuWVV7R161bNnDlTV111laXxvV6v2traJH38bE9J8TYAAIk6NEMOto/GseBMT09XS0vLoL5AICBJikajGjZsmCRp5MiRSklJcaoMAABs5ejNQUezZs0a3XbbbfJ4PNq3b58WLlyYjDIAALAsKcFZXFysl19+ORlTAwBwQthyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAscDQ4Y7GYKisrlZubq5SUFOXl5amxsdHJKQEAcJSjwRmJRFRaWqrOzk719vYqEAiourpaAwMDTk4LAIBjHA1OwzBUUVGhtLQ0ud1uVVVVKRqNqr+/X5K0a9cuGYahpUuXOlkGAAC2cTQ4W1tbVVpaqpycHKWlpSkrK0tZWVkyDEOSVFdXp+LiYidLAADAVo4FZ3t7u8rLy+X3+9Xd3a1IJKJgMKiCggJJ0pYtW7Rr1y5NmTLFqRIAALCdY8/j7OjokGEYKioqksfjUUNDg+rr6xUMBiVJd9xxh+6++2498cQTxzV+KBSSy+Ua1HdoGwCARCWaIY4FZ1lZmZqampSdna3MzEzV1tbKMAwVFBTotddeU0ZGhsaPH3/c43u9XrW1tUmSfD6fJMXbAAAk6tAMOdg+GseCMz09XS0tLYP6AoGAJOnBBx9UZ2enZs2apS1btmjEiBEaP368CgsLnSoHAABbOBacx+L3++X3+yVJP/rRj5SXl0doAgBOCUkJzv/rRz/6UbJLAAAgYWy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABY4GZywWU2VlpXJzc5WSkqK8vDw1NjY6OSUAAI5yNDgjkYhKS0vV2dmp3t5eBQIBVVdXa2BgwMlpAQBwjKPBaRiGKioqlJaWJrfbraqqKkWjUfX39+uss86Sz+eTz+fTokWLnCwDAADbOLrJe2trqxYsWKCuri719fUpFospKytLhmHonHPO4fmZAIBTjmMrzvb2dpWXl8vv96u7u1uRSETBYFAFBQWSpJ07d8rr9eqrX/2qtm7d6lQZAADYy3TIL37xC3P8+PFmT0+P+dFHH5lLliwxzz77bPO//uu/TNM0zX/84x+maZrmihUrTK/Xa2lsr9drSuLg4ODg4HDkOBbHPqotKytTU1OTsrOzlZmZqdraWhmGEV9xjh49WpJ0+eWXa+7cuZbH93q98Y96fT6fJPHRLwDAskMz5GD7aBwLzvT0dLW0tAzqCwQCkqS9e/fqrLPOksfj0YYNGzRq1CinygAAwFaO3hx0NG+++abmzp2r1NRUSdIjjzySjDIAALAsKcH5+c9/Xh0dHcmYGgCAE8KWewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWOBocMZiMVVWVio3N1cpKSnKy8tTY2Ojk1MCAOAoR4MzEomotLRUnZ2d6u3tVSAQUHV1tQYGBpycFgAAxzganIZhqKKiQmlpaXK73aqqqlI0GlV/f7/++Mc/atasWZo5c6auu+46J8sAAMA2jm7y3traqgULFqirq0t9fX2KxWLKysrSiBEjdPPNN+upp55SWlqakyUAAGArx1ac7e3tKi8vl9/vV3d3tyKRiILBoAoKCvTGG28oNTVVlZWV8vl8eu6555wqAwAAWzm24uzo6JBhGCoqKpLH41FDQ4Pq6+sVDAa1Y8cOrVu3TuvXr5dpmrr00kt12WWXaeTIkU6VAwCALRwLzrKyMjU1NSk7O1uZmZmqra2VYRgqKCiQx+PR9OnTlZ6eLkmaNGmStmzZoksuuSTh8UOhkFwu16C+Q9sAACQq0QxxmaZpOlzLYSKRiC6//HK9/vrrMk1TU6dO1apVq5SRkZHQ9T6fT5LU1tZ2xDYAAIk6UqYcK08cvTnoaNLS0nTzzTfrC1/4ggYGBuT3+xMOTQAAkikpwSlJ5eXlKi8vT9b0AAAcF7bcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA3OWCymyspK5ebmKiUlRXl5eWpsbHRySgAAHOVocEYiEZWWlqqzs1O9vb0KBAKqrq7WwMCAk9MCAOAYR4PTMAxVVFQoLS1NbrdbVVVVikaj6ujokM/nk8/n0/Tp03kyCgDglOHo01FaW1u1YMECdXV1qa+vT7FYTFlZWZo2bVr8WWe//vWv9corrzhZBgAAtnFsxdne3q7y8nL5/X51d3crEokoGAyqoKBg0HmPP/645syZ41QZAADYyrEVZ0dHhwzDUFFRkTwejxoaGlRfX69gMBg/Z+fOndq2bZsKCwstjx8KheRyuQb1HdoGACBRiWaIY8FZVlampqYmZWdnKzMzU7W1tTIMY9CKc9myZaqoqDiu8b1eb/zjXp/PJ0nxNgAAiTo0Qw62j8ax4ExPT1dLS8ugvkAgMKi9dOlSPfXUU06VAACA7ZK2AUJXV5fOPvtsjR8/PlklAABgWdKCc+LEiXr11VeTNT0AAMeFLfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALDA0eCMxWKqrKxUbm6uUlJSlJeXp8bGRienBADAUY4GZyQSUWlpqTo7O9Xb26tAIKDq6moNDAw4OS0AAI5xNDgNw1BFRYXS0tLkdrtVVVWlaDSq/v5+1dbWqrCwUFOnTtXSpUudLAMAANs49lgxSWptbdWCBQvU1dWlvr4+xWIxZWVlaceOHdq4caNef/119ff3a+LEifrWt77lZCkAANjCsRVne3u7ysvL5ff71d3drUgkomAwqIKCAmVnZ+vMM8/Uvn371NfXp1GjRjlVBgAAtnIsODs6OmQYhoqKiuTxeNTQ0KD6+noVFBTIMAyNHz9e559/viZNmqQf/OAHTpUBAICtHPuotqysTE1NTcrOzlZmZqZqa2tlGIYKCgr04osvaseOHdqyZYsikYiKi4t1xRVXaNiwYQmPHwqF5HK5BvUd2gYAIFGJZohjwZmenq6WlpZBfYFAQJL0wgsvaNSoUfJ4PEpNTdW+fft04MABS+N7vV61tbVJknw+nyTF2wAAJOrQDDnYPpqkbIBQUlIi0zR16aWXqqioSDfddJPOPvvsZJQCAIAljt5VezQHv/MEAOBUw5Z7AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZi8VUWVmp3NxcpaSkKC8vT42NjU5OCQCAoxwNzkgkotLSUnV2dqq3t1eBQEDV1dUaGBhwcloAABzjaHAahqGKigqlpaXJ7XarqqpK0WhU/f39uvPOO1VUVCSfz6cNGzY4WQYAALZxNDhbW1tVWlqqnJwcpaWlKSsrS1lZWfrzn/+s9vZ2vfbaa2poaND3v/99J8sAAMA2jgVne3u7ysvL5ff71d3drUgkomAwqIKCAnV3d2vKlCmSpLFjx2rTpk3av3+/U6UAAGAbx57H2dHRIcMwVFRUFH/+Zn19vYLBoC666CItXLhQAwMD2rBhg3bu3Kmenh6NHj064fFDoZBcLtegvkPbAAAkKtEMcSw4y8rK1NTUpOzsbGVmZqq2tlaGYaigoEAXXXSRKioqVFJSovPPP18TJ05URkaGpfG9Xq/a2tokST6fT5LibQAAEnVohhxsH41jwZmenq6WlpZBfYFAIP7PtbW1qq2t1YYNG3TvvfeyWgQAnBIcC85P8qUvfUn79+/X6NGj9fDDDyerDAAALElacL744ovJmhoAgOPGlnsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhgS3DGYjFVVlYqNzdXKSkpysvLU2Njox1DAwBwUrElOCORiEpLS9XZ2ane3l4FAgFVV1drYGDAjuEBADhp2BKchmGooqJCaWlpcrvdqqqqUjQaVX9/v0pKSjRmzBjV1dUNumbp0qUqLCxUYWGhXnrpJTvKAADAcbZs8t7a2qoFCxaoq6tLfX19isViysrKkmEYamho0IoVK7R9+/b4+T09Pbrvvvv0xhtvaO/evSopKdG6devkdvOVKwDg5HbCSdXe3q7y8nL5/X51d3crEokoGAyqoKBAkpSTk3PYNeFwWF6vV8OHD9fo0aOVnZ2tbdu2nWgpAAA47oSDs6OjQ4ZhqKioSB6PRw0NDaqvr48H55Hs2rVLhmHE24ZhaNeuXSdaCgAAjjvhj2rLysrU1NSk7OxsZWZmqra2VoZhHDM4MzIytGfPnni7p6dHGRkZluYNhUJyuVyD+g5tAwCQqEQz5ISDMz09XS0tLYP6AoHAMa+ZNm2abr311vgNRDt27NDYsWMtzev1etXW1iZJ8vl8khRvAwCQqEMz5GD7aGy5OehYampqFA6HFY1GFQ6H1dzcrPT0dM2bNy9e3P3338+NQQCAU4Ljwbl48eIj9ldWVqqystLp6QEAsBXLPAAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwLbgjMViqqysVG5urlJSUpSXl6fGxka7hgcA4KRgW3BGIhGVlpaqs7NTvb29CgQCqq6u1sDAgF1TAACQdLYFp2EYqqioUFpamtxut6qqquKPDSspKdGYMWNUV1c36Jqj9QMAcLKy7ekora2tWrBggbq6utTX16dYLKasrCwZhqGGhgatWLFC27dvH3TN0foBADhZ2bLibG9vV3l5ufx+v7q7uxWJRBQMBlVQUCBJysnJOeJ1R+sHAOBkZcuKs6OjQ4ZhqKioSB6PRw0NDaqvr1cwGLRj+CMKhUJyuVyD+g5tAwCQqEQzxJbgLCsrU1NTk7Kzs5WZmana2loZhhFfcTrB6/Wqra1NkuTz+SQp3gYAIFGHZsjB9tHYEpzp6elqaWkZ1BcIBOwYGgCAk4ptNwcdS01NjcLhsKLRqMLhsJqbm4/ZDwDAyWpIgnPx4sWW+gEAOFmx5R4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABbYFpyxWEyVlZXKzc1VSkqK8vLy1NjYaNfwAACcFGwLzkgkotLSUnV2dqq3t1eBQEDV1dUaGBiwawoAAJLOtuA0DEMVFRVKS0uT2+1WVVWVotGo+vv7VVJSojFjxqiuri5+/ttvv63LLrtMM2bMUHFxsdauXWtXKQAAOMa2Td5bW1u1YMECdXV1qa+vT7FYTFlZWTIMQw0NDVqxYoW2b98ePz89PV1NTU3KyMjQm2++qblz52r16tV2lQMAgCNsCc729naVl5dr6dKl8nq9Ovvss1VXV6f29nZJUk5OzmHXZGRkxP952LBh8ng8dpQCAICjbAnOjo4OGYahoqIieTweNTQ0qL6+XsFg8BOvPXDggPx+v2655RZLc4ZCIblcrkF9h7YBAEhUohliS3CWlZWpqalJ2dnZyszMVG1trQzDUEFBwTGvM01TNTU1uuqqqzRr1ixLc3q9XrW1tUmSfD6fJMXbAAAk6tAMOdg+GluCMz09XS0tLYP6AoHAJ1530003KS8vTzfeeKMdZQAA4Djbbg46lpqaGoXDYUWjUYXDYTU3N6utrU2LFi1SUVGRVq5cqVGjRunpp58einIAADhuQxKcixcvPqzP5/PxO54AgFMOW+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAW2BWcsFlNlZaVyc3OVkpKivLw8NTY22jU8AAAnBduCMxKJqLS0VJ2dnert7VUgEFB1dTX70QIATiu2BadhGKqoqFBaWprcbreqqqoUjUbV39+vkpISjRkzRnV1dfHz//73v6uoqEg+n0/Tpk3TypUr7SoFAADH2PZ0lNbWVi1YsEBdXV3q6+tTLBZTVlaWDMNQQ0ODVqxYoe3bt8fPHz16tFavXi2Px6OtW7eqrKxMa9assascAAAcYcuKs729XeXl5fL7/eru7lYkElEwGFRBQYEkKScn57BrPB6PPB6PJKmnp0eTJk2yoxQAABxly4qzo6NDhmGoqKhIHo9HDQ0Nqq+vVzAYPOZ177zzjubMmaO33npLS5YssTRnKBSSy+Ua1HdoGwCARCWaIbYEZ1lZmZqampSdna3MzEzV1tbKMIz4ivNoxo0bp1deeUVbt27VzJkzddVVVyU8p9frVVtbm6SPH4otKd4GACBRh2bIwfbR2BKc6enpamlpGdQXCASOeU00GtWwYcMkSSNHjlRKSoodpQAA4Cjbbg46lpqaGoXDYUWjUYXDYTU3N2vNmjW67bbb5PF4tG/fPi1cuHAoSgEA4IQMSXAuXrz4sL7i4mK9/PLLQzE9AAC2Ycs9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU4Y7GYKisrlZubq5SUFOXl5amxsdGOoQEAOKnYEpyRSESlpaXq7OxUb2+vAoGAqqurNTAwYMfwAACcNGwJTsMwVFFRobS0NLndblVVVSkajaq/v18lJSUaM2aM6urqDrtu165dMgxDS5cutaMMAAAcZ0twtra2qrS0VDk5OUpLS1NWVpaysrJkGIYaGhp07733HvG6uro6FRcX21ECAABD4oSDs729XeXl5fL7/eru7lYkElEwGIw/xDonJ+eI123ZskW7du3SlClTTrQEAACGzAk/Vqyjo0OGYaioqEgej0cNDQ2qr69XMBg85nV33HGH7r77bj3xxBPHNW8oFJLL5RrUd2gbAIBEJZohJxycZWVlampqUnZ2tjIzM1VbWyvDMOIrziN57bXXlJGRofHjxx/3vF6vV21tbZIkn88nSfE2AACJOjRDDraP5oSDMz09XS0tLYP6AoHAMa9Zu3atOjs7NWvWLG3ZskUjRozQ+PHjVVhYeKLlAADgqBMOzk9SU1OjcDisaDSqcDis5uZm+f1++f1+SdKPfvQj5eXlEZoAgFOC48G5ePHiY77+ox/9yOkSAACwDVvuAQBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFtgVnLBZTZWWlcnNzlZKSory8PDU2Nto1PAAAJwXbgjMSiai0tFSdnZ3q7e1VIBBQdXW1BgYG7JoCAICksy04DcNQRUWF0tLS5Ha7VVVVpWg0qv7+fpWUlGjMmDGqq6sbdM1ZZ50ln88nn8+nRYsW2VUKAACOse3pKK2trVqwYIG6urrU19enWCymrKwsGYahhoYGrVixQtu3bx90zTnnnMPDpwEApxRbVpzt7e0qLy+X3+9Xd3e3IpGIgsGgCgoKJEk5OTlHvG7nzp3yer366le/qq1bt9pRCgAAjrJlxdnR0SHDMFRUVCSPx6OGhgbV19crGAwe87pt27Zp9OjRWrlypWpqaiytPkOhkFwu16C+Q9sAACQq0QyxJTjLysrU1NSk7OxsZWZmqra2VoZhxFecRzN69GhJ0uWXX665c+damtPr9caD1ufzSRIf+wIALDs0Qw62j8aW4ExPT1dLS8ugvkAgcMxr9u7dq7POOksej0cbNmzQqFGj7CgFAABH2XZz0LHU1NQoHA4rGo0qHA6rublZb775pubOnavU1FRJ0iOPPDIUpQAAcEKGJDgXL158WN/nP/95dXR0DMX0AADYhi33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwJbgjMViqqysVG5urlJSUpSXl6fGxkY7hgYA4KRiS3BGIhGVlpaqs7NTvb29CgQCqq6u1sDAgB3DAwBw0rAlOA3DUEVFhdLS0uR2u1VVVaVoNKr+/n6VlJRozJgxqqurG3TNH//4R82aNUszZ87UddddZ0cZAAA4zpZN3ltbW7VgwQJ1dXWpr69PsVhMWVlZMgxDDQ0NWrFihbZv3x4/f2BgQDfffLOeeuoppaWl2VECAABD4oRXnO3t7SovL5ff71d3d7cikYiCwWD8IdY5OTmHXfPGG28oNTVVlZWV8vl8eu655060DAAAhsQJrzg7OjpkGIaKiork8XjU0NCg+vp6BYPBo16zY8cOrVu3TuvXr5dpmrr00kt12WWXaeTIkQnPGwqF5HK5BvUd2gYAIFGJZsgJB2dZWZmampqUnZ2tzMxM1dbWyjCM+IrzSEaNGqXp06crPT1dkjRp0iRt2bJFl1xyScLzer1etbW1SZJ8Pp8kxdsAACTq0Aw52D6aEw7O9PR0tbS0DOoLBALHvGb69On6wQ9+oH379sk0TW3atEm5ubknWgoAAI6z5eagY6mpqVHyQfeaAAAgAElEQVQ4HFY0GlU4HFZzc7PS0tJ088036wtf+IIGBgbk9/uVkZHhdCkAAJwwx4Nz8eLFR+wvLy9XeXm509MDAGArttwDAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAtsC85YLKbKykrl5uYqJSVFeXl5amxstGt4AABOCrYFZyQSUWlpqTo7O9Xb26tAIKDq6moNDAzYNQUAAElnW3AahqGKigqlpaXJ7XarqqpK0WhU/f39Kikp0ZgxY1RXVxc/v729XT6fTz6fT9OnT+fpKACAU4JtT0dpbW3VggUL1NXVpb6+PsViMWVlZckwDDU0NGjFihXavn17/PzPf/7z8YeG/vrXv9Yrr7xiVykAADjGlhVne3u7ysvL5ff71d3drUgkomAwqIKCAklSTk7OMa9//PHHNWfOHDtKAQDAUbasODs6OmQYhoqKiuTxeNTQ0KD6+noFg8FPvHbnzp3atm2bCgsLLc0ZCoXkcrkG9R3aBgAgUYlmiC3BWVZWpqamJmVnZyszM1O1tbUyDCO+4jyWZcuWqaKiwvKcXq83/lGvz+eTpHgbAIBEHZohB9tHY0twpqenq6WlZVBfIBBI6NqlS5fqqaeesqMMAAAcZ9vNQcdSU1OjcDisaDSqcDis5uZmSVJXV5fOPvtsjR8/fijKAADghA1JcC5evPiI/RMnTtSrr746FCUAAGALttwDAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMAC24IzFoupsrJSubm5SklJUV5enhobG+0aHgCAk4JtwRmJRFRaWqrOzk719vYqEAiourpaAwMDdk0BAEDS2RachmGooqJCaWlpcrvdqqqqUjQaVX9/v0pKSjRmzBjV1dXFzzdNU7W1tSosLNTUqVO1dOlSu0oBAMAxtm3y3traqgULFqirq0t9fX2KxWLKysqSYRhqaGjQihUrtH379vj5Gzdu1MaNG/X666+rv79fEydO1Le+9S27ygEAwBG2rDjb29tVXl4uv9+v7u5uRSIRBYPB+IOsc3JyDrsmOztbZ555pvbt26e+vj6NGjXKjlIAAHCULSvOjo4OGYahoqIieTweNTQ0qL6+XsFg8KjXGIah8ePH6/zzz1d/f78eeeSRhOfLz8/XwoUL5XK5BvUf2gYAIFGJZogtwVlWVqampiZlZ2crMzNTtbW1MgwjvuI8khdffFE7duzQli1bFIlEVFxcrCuuuELDhg37xPkeeOABPfDAA3aUDgCAJbYEZ3p6ulpaWgb1BQKBT7xu1KhR8ng8Sk1N1b59+3TgwAE7ygEAwDEu0zRNpyepqalROBxWNBrVhRdeqObmZh04cEDXX3+9Nm/erIGBAc2ZM0d+v9/pUgAAOCFDEpwAAJwu2HIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHAvOWCymESNGaNWqVYP6Z8+eLb/f79S0AAA46gynBna73ZowYYK6uro0c+ZMSVIoFFIoFNLmzZudmhYAAEc5+lHt5MmT1dXVJenjFWggENBdd90lwzC0dOlSFRYWqrCwUC+99JKTZQAAYBvHVpySlJ+fr8cee0yStGTJEu3fv19z585VT0+P7rvvPr3xxhvau3evSkpKtG7dOrndfOUKADi5Ob7i3Lhxo3p7e3X77bfrgQcekMfjUTgcltfr1fDhwzV69GhlZ2dr27ZtCY87b948zZs376htAAASdaRMOSbTQb29vabL5TL/7d/+zbzmmmvi/cuWLTPvvPPOePvaa68129vbEx7X6/Wakjg4ODg4OBw5jsXRj2pTU1N13nnnafny5dq0aVO8PyMjQ3v27Im3e3p6lJGRYWlsr9ertrY2SZLP55OkeBsAgEQdmiEH20fj+JeKW7Zs0UcffaRx48bF+6ZNm6bVq1crGo1q9+7d2rFjh8aOHet0KQAAnDBHV5xHk56ernnz5sVT/f777+fGIADAKSEpwSlJlZWVqqysTNb0AAAcF5Z5AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZi8U0YsQIrVq1alD/7Nmz5ff7nZwaAABHOLpXrdvt1oQJE9TV1aWZM2dKkkKhkEKhkDZv3uzk1AAAOMLxj2onT56srq4uSR+vQAOBgO666y4ZhqGSkhKNGTNGdXV1TpcBAIAtHA/O/Pz8eHAuWbJE+/fv19y5cyVJDQ0Nuvfee50uAQAA2zj+WLHJkydr48aN6u3t1e23365ly5bJ4/FIknJycpyeHgAAWzkenJMmTdIHH3ygG264QYWFhfHvOk9UKBSSy+Ua1HdoGwCARCWaIY4HZ2pqqs477zwtX75cmzZtsm1cr9ertrY2SZLP55OkeBsAgEQdmiEH20fjeHBK0pYtW4ZiGgAAHDckwXk0NTU1CofDikajCofDam5uTmY5AAB8oqQG5+LFi5M5PQAAlrHlHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFjganLFYTCNGjNCqVasG9c+ePVt+v9/JqQEAcISjW+653W5NmDBBXV1d8ceJhUIhhUIhbd682cmpAQBwhOMf1U6ePFldXV2SPl6BBgIB3XXXXdq9e7cuu+wyzZgxQ8XFxVq7dq3TpQAAcMIc3+Q9Pz9fjz32mCRpyZIl2r9/v+bOnauenh41NTUpIyNDb775pubOnavVq1c7XQ4AACfE8eCcPHmyNm7cqN7eXt1+++1atmyZPB6PMjIy4ucMGzZMHo/H6VIAADhhjgfnpEmT9MEHH+iGG25QYWFh/LvOgw4cOCC/369bbrnF0rihUEgul2tQ36FtAAASlWiGOB6cqampOu+887R8+XJt2rRp0GumaaqmpkZXXXWVZs2aZWlcr9ertrY2SZLP55OkeBsAgEQdmiEH20czJA+y3rJlyxH7b7rpJuXl5enGG28cijIAADhhSdsAoa2tTYsWLdLKlSvl8/n0ta99LVmlAACQsCFZcR6Jz+fTwMBAsqYHAOC4sOUeAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFjgaHDGYjGNGDFCq1atGtQ/e/Zs+f1+J6cGAMARju5V63a7NWHCBHV1dcWfwxkKhRQKhbR582YnpwYAwBGOf1Q7efJkdXV1Sfp4BRoIBHTXXXdpYGBARUVF8vl8mjZtmlauXOl0KQAAnDDHn46Sn5+vxx57TJK0ZMkS7d+/X3PnzpUkrV69Wh6PR1u3blVZWZnWrFnjdDkAAJwQx4Nz8uTJ2rhxo3p7e3X77bdr2bJl8ng8g87p6enRpEmTnC4FAIAT5nhwTpo0SR988IFuuOEGFRYWxr/rlKR33nlHc+bM0VtvvaUlS5ZYGjcUCsnlcg3qO7QNAECiEs0Ql2mapsO1KC8vT9u3b9emTZs0bty4w17funWrZs6cqW3btiU0ns/nkyS1tbUdsQ0AQKKOlCnHyhPHV5yStGXLlsP6otGohg0bJkkaOXKkUlJShqIUAABOyJAE55GsWbNGt912mzwej/bt26eFCxcmqxQAABKWtOAsLi7Wyy+/nKzpAQA4Lmy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABY4FZywW04gRI7Rq1apB/bNnz5bf73dqWgAAHOXYlntut1sTJkxQV1dX/FFioVBIoVBImzdvdmpaAAAc5ehHtZMnT1ZXV5ekj1eggUBAd911lwzDkCTt2rVLhmFo6dKlTpYBAIBtHA3O/Pz8eHAuWbJE+/fv19y5c+Ov19XVqbi42MkSAACwlaNPR5k8ebI2btyo3t5e3X777Vq2bJk8Ho+kj5/RuWvXLk2ZMsXJEgAAsJWjwTlp0iR98MEHuuGGG1RYWBj/rlOS7rjjDt1999164oknjmvsUCgkl8s1qO/QNgAAiUo0QxwNztTUVJ133nlavny5Nm3aFO9/7bXX9P+xd//BUdX3/sdfJ0EI4C7ZBHqvgCMFKkUjIsiPAGVXkjEoOCE3RolTs5qmRjPCld58/dFadRT6Y6rVtlNviSkExR+1xCrREZEfCRJlEQENiEj40YYIDQmBkFWSkD3fP/yyX4EEc8I52YDPx8xnxrNn9/151Xvh1bNJz4mPj9ewYcM6Pdvr9aq0tFSS5PP5JCl8DABAR53eISeP2+P4g6wrKyvPeG3Tpk365JNPNH36dFVWVqpv374aNmyYEhMTnY4DAMA5cbw42zJ37tzw/5bzscce0/DhwylNAMB5ISLF+U2PPfZYpCMAANBh3HIPAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACxwtDhDoZD69u2rNWvWnPJ6enp6+F61AACcTxy9V21UVJQSEhJUUVERfhZnWVmZysrKtGvXLie3BgDAEY5/VXv11VeroqJC0tdXoPPmzdPjjz8uj8ej3r17y+fzyefzqaCgwOkoAACcM8efjjJ69GgtWbJEkrR48WKdOHFCubm5kqRBgwbx8GkAwHmlS644t2/froaGBj388MN65plnFB0dLUk6ePCgvF6vZs2apT179jgdBQCAc2c6rKGhwTQMw7zlllvMtLS0U84dOnTINE3TXLVqlen1ejs80+v1mpJYLBaLxXJknY1hmqYphw0fPlz79+/Xjh079P3vf7/d91RWVnZons/nk6Tw17ynHwMA0FFtdcrZ+sTxn3FKarMQGxsb1bt3b0VHR2vbtm2Ki4vriigAAJyTLinOtnz66afKzc2Vy+WSJC1cuDBSUQAA6LCIFef48eO1ZcuWSG0PAECncMs9AAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAscKw4Q6GQ+vbtqzVr1pzyenp6uubOnevUtgAAOMqxW+5FRUUpISFBFRUVmjZtmiSprKxMZWVl2rVrl1PbAgDgKEe/qr366qtVUVEh6esr0Hnz5unxxx+Xx+PRxx9/rOnTp2vatGm68847nYwBAIBtHL3J++jRo7VkyRJJ0uLFi3XixAnl5uaqublZ+fn5WrZsmfr16+dkBAAAbOX4Fef27dvV0NCghx9+WM8884yio6O1YcMGuVwuZWVlyefz6c0333QyBgAAtnH0inPUqFH68ssv9dOf/lSJiYnhn3VWV1dr8+bN2rp1q0zT1OTJkzV16lS53e4Ozy4rK5NhGKe8dvoxAAAd1dEOcbQ4XS6Xhg4dqjfeeEM7duwIvx4XF6eJEycqNjZW0tcFW1lZqTFjxnR4ttfrVWlpqSTJ5/NJUvgYAICOOr1DTh63x/H/HWdlZaWOHz+u73//++HXJk6cqMrKSrW0tKi5uVk7duzQZZdd5nQUAADOmaNXnO3p16+f8vPzdd1116m5uVlz585VfHx8JKIAAGBJRIpTkmbPnq3Zs2dHansAADqFW+4BAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAWOFmcoFFLfvn21Zs2aU15PT0/X3LlzndwaAABHOHqv2qioKCUkJKiioiL8LM6ysjKVlZVp165dTm4NAIAjHL/J+9VXX62KigpJX1+Bzps3T48//rh27dql+++/X5J0/Phx7dq1S3V1dU7HAQDgnDhenKNHj9aSJUskSYsXL9aJEyeUm5ur6Ojo8ENDX3rpJa1fv97pKAAAnDPHfzno6quv1vbt29XQ0KCHH35YzzzzjKKjo095z/PPP6/bb7/d6SgAAJwzwzRN08kNjh07pn79+ikjI0MtLS167bXXTjl/8OBB+Xw+ffbZZx2e6fP5VFZWZndUAAAkSWerRse/qnW5XBo6dKjeeOMN7dix44zzL774ojIzMy3P9Xq94a96fT6fJIWPAQDoqNM75ORxexwvTkmqrKxs99zSpUu1bNmyrogBAMA5i+gNECoqKtSnTx8NGzYskjEAAOiwiBbnVVddpfLy8khGAADAEm65BwCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABY4WZygUUt++fbVmzZpTXk9PT9fcuXOd3BoAAEc4epP3qKgoJSQkqKKiQtOmTZMklZWVqaysTLt27XJyawAAHNElD7KuqKiQ9PUV6Lx58/T4448rNjZW9957rxITEzVu3DgtXbrU6SgAAJwzx4tz9OjR4eJcvHixTpw4odzcXG3fvl3bt2/XBx98oNLSUj3yyCNORwEA4Jw5/jzOq6++Wtu3b1dDQ4Mefvhhvfjii4qOjtbAgQPVs2dPtbS06NixY4qLi3M6CgAA58zx4hw1apS+/PJL/fSnP1ViYmL4Z50ej0fDhg3T5ZdfrmAwqIULF1qaW1ZWJsMwTnnt9GMAADqqox3ieHG6XC4NHTpUb7zxhnbs2BF+feXKlaqurlZlZaWOHj2qKVOm6MYbb1SvXr06NNfr9aq0tFSS5PP5JCl8DABAR53eISeP2+N4cUpSZWVlm6/HxcUpOjpaLpdLLS0tam1t7Yo4AAB0WsRugJCcnCzTNDV58mRNmjRJc+bMUZ8+fSIVBwCADumSK862REdHq6ioKFLbAwDQKdxyDwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAs6JLiLC8vV1JSktxut2JjY5WRkdEV2wIAYDvHi7O4uFhpaWnKy8tTTU2NqqqqlJOT4/S2AAA4wtHiDAaDys3NVUFBgdLT0xUTEyOXy6WUlBRJ0tKlS5WYmKjExEStXbvWySgAANjC0aejlJWVyTAMpaamnnHuyJEjevLJJ7VhwwY1NjYqOTlZmzdvVlQUP3YFAHRfjrZUbW2tPB6PDMM441wgEJDX61VMTIz69++vgQMHat++fU7GAQDgnDl6xTlmzBjt3btXJSUlmjFjhhoaGhQIBJSSkqK6ujp5PJ7wez0ej+rq6jR06NAOzT55NftNbRU0AAAd0dEOcbQ4ExISVFhYqPz8fGVmZsrlcik7O1spKSmKj49XfX19+L1HjhxRfHx8h2d7vV6VlpZKknw+nySFjwEA6KjTO+TkcXscLU5J8vv98vv9Z7w+YcIEPfTQQ2pqalIwGFR1dbWGDBnidBwAAM6J48XZntjYWN13333hZn/qqaf4xSAAQLcXseKUpKysLGVlZUUyAgAAlnCJBwCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABV1SnOXl5UpKSpLb7VZsbKwyMjK6YlsAAGzneHEWFxcrLS1NeXl5qqmpUVVVlXJycpzeFgAARzhanMFgULm5uSooKFB6erpiYmLkcrmUkpIiSUpOTtaAAQM0f/58J2MAAGAbR2/yfvJh06mpqW2eLyoq0qpVq7R//34nYwAAYBtHrzhra2vl8Xjafar24MGDndweAADbOXrFOWbMGO3du1clJSWaMWOGGhoaFAgEwl/VnouTV7Pf1F5BAwDwbTraIY4WZ0JCggoLC5Wfn6/MzEy5XC5lZ2fbUpxer1elpaWSFH4Y9sljAAA66vQOOXncHscfZO33++X3+53eBgCALuF4cZ5Ndna2AoGAmpqaFAgEVFJSEsk4AAB8q4gW56JFiyK5PQAAlnHLPQAALKA4AQCwgOIEAMACihMAAAsoTgAALKA4AQCwgOIEAMACihMAAAsoTgAALOiS4iwvL1dSUpLcbrdiY2OVkZHRFdsCAGA7x4uzuLhYaWlpysvLU01NjaqqqpSTk+P0tgAAOMLR4gwGg8rNzVVBQYHS09MVExMjl8ullJQU7d69W1OnTtWPfvQjTZkyRZs2bXIySrtM01RDQ4NCoVBE9gcAnF8cLc6TD5tOTU0941xsbKz+8Y9/6L333lNBQYHmzZvnZJQ27dmzRwkJCerXr588Ho/efPPNLs8AADi/OFqctbW18ng8bT5VOz4+XvHx8ZKkXr16KTo62skobbrlllv02WefSZKOHTumm2++WV988UWX5wAAnD8cLc4xY8Zo7969KikpUSgU0pEjR/TOO++c8p7W1lbNnTtXDz74oJNRzmCaprZu3Rr+itY0TTU1NWnHjh1dmgMAcJ4xHVZUVGRefvnlZt++fc3//M//NH/+85+Hz4VCITMrK8t89tlnLc30er2mJBaLxWKxHFlnY5imaSpC7r33Xv3Hf/yHfvnLX1r6nM/nkySVlpa2edxRGzdu1I033qi6ujpJ0rPPPqt77rnH0gwAwPmtrU45W59E7AYIpaWlKigo0OrVq+Xz+fRf//VfXZ5h/Pjx2rNnjzZv3ixJlCYA4Fv1iNTGPp9Pzc3Nkdo+zO1265prrol0DADAeYJb7gEAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABV1SnOXl5UpKSpLb7VZsbKwyMjK6YlsAAGzneHEWFxcrLS1NeXl5qqmpUVVVlXJycpzeFgAARzh6k/dgMKjc3FwVFhZq1qxZkqSYmBilpKTo3//+t9LS0tSzZ0999dVX+tWvfqWkpCQn4ziuqqpK//u//6vjx4/rlltu0cSJEyMdCQBgM0eLs6ysTIZhKDU19Yxz/fv313vvvafo6Gjt2bNHt956qz788EMn4ziqurpaY8eO1aFDh2QYhv74xz9q5cqVmjZtWqSjAQBs5OhXtbW1tfJ4PDIM44xz0dHRio6OliQdOXJEo0aNcjKK41544QUdOnRIkmSapkzT1NNPPx3hVAAA25kOqqioMHv06GEuX77cbG1tNevr680VK1aEz+/Zs8ecPHmy2b9/f7OkpKTDc71erymJxWKxWCxH1tkYpmmactCSJUv0q1/9StXV1XK5XMrOztaCBQtOec+ePXs0bdo07du3r0MzfT6fJKm0tLTN484wDEPn8q9i165duuaaa/TVV18pFApJkpYtW6b09PROzwQAOK+tTjlbnzj+W7V+v187d+5UY2OjDhw4EC7Npqam8Hvcbrcuvvhip6M46gc/+IE2bNigrKwsSdLy5cspTQC4AEXsBggffvihpk6dquuuu06zZs3SH/7wh0hFsU1CQoIWL14sSbrpppsinAYA4ARHf6v2bKZMmaJ169ZFansAADqFW+4BAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFlCcAABYQHECAGBBlxRneXm5kpKS5Ha7FRsbq4yMjK7YFgAA2zlenMXFxUpLS1NeXp5qampUVVWlnJwcp7cFAMARjhZnMBhUbm6uCgoKlJ6erpiYGLlcLqWkpITfU1dXJ4/Ho6VLlzoZ5bzU2tqqgwcPqrm5OdJRAAD/j6PFWVZWJsMwlJqa2u575s+frylTpjgZ47xUUVGhIUOG6JJLLlFcXJzefPPNSEcCAMjh4qytrZXH45FhGG2er6ysVF1dncaOHetkjPNSWlqavvjiC0nSl19+qYyMDB06dCjCqQAAjhbnmDFjtHfvXpWUlCgUCunIkSN65513wucfeeQRPfroo05GOC8dP35cu3fvVigUkiSZpqnjx49rz549EU4GAHD0eZwJCQkqLCxUfn6+MjMz5XK5lJ2drZSUFL3//vuKj4/XsGHDOjX75NfA39TelW1HnevnnZp10sSJE22fCQD4Wkf/3jZM0zQdztKmP/7xjyouLlbv3r1VWVmpvn376i9/+YsSExO/9bM+n0+SVFpa2uZxZxiGIbv+Vdgxa+PGjZoxY4Zqa2slSa+88opuvfVWO+IBAL6hrU45W584esV5NnPnztXcuXMlSY899piGDx/eodL8rhg/frz++c9/qqqqSj/84Q8pTQDoJiJWnN/02GOPRTpCt9SnTx+NGDEi0jEAAN/ALfcAALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwIIuKc7y8nIlJSXJ7XYrNjZWGRkZXbEtAAC2c7w4i4uLlZaWpry8PNXU1Kiqqko5OTlObwsAgCMcvcl7MBhUbm6uCgsLNWvWLElSTEyMUlJSJEm9e/fWhAkTJEm33Xab7rrrLifjfKd99tln+vOf/6yWlhbdfvvtmjx5cqQjAcB5ydHiPPmw6dTU1DbPDxo06JyeoYmO2bVrl8aNG6dgMCjDMPTcc89p1apVuu666yIdDQDOO45+VVtbWyuPx9PuU7UPHjwor9erWbNmac+ePU5G+U5bsmSJGhsbZZqmQqGQJOkvf/lLhFMBwHnKdFBFRYXZo0cPc/ny5WZra6tZX19vrlixInz+0KFDpmma5qpVq0yv19vhuV6v15TEYrFYLJYj62wM0zRNOWjJkiX61a9+perqarlcLmVnZ2vBggVnvG/48OGqrKzs0EyfzydJ4a95Tz/uDMMwZNe/Cjtn2TFv586dGjt2rL788kuZpqmoqCitXLlSSUlJtmUEgPNVW51ytj5x/Ldq/X6/du7cqcbGRh04cCBcmo2NjWptbZUkbdu2TXFxcU5H+c4aMWKENm7cqLvvvluStHbtWkoTADopYjdA+PTTT3Xttddq6tSpysvL08KFCyMV5Tvhiiuu0LPPPitJmjp1aoTTAMD5y9Hfqj2b8ePHa8LsD8cAACAASURBVMuWLZHaHgCATuGWewAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWNAlxVleXq6kpCS53W7FxsYqIyOjK7YFAMB2jhdncXGx0tLSlJeXp5qaGlVVVSknJ8fpbQEAcISjxRkMBpWbm6uCggKlp6crJiZGLpdLKSkpkqSPP/5Y06dP17Rp03TnnXc6GQU2O378uHbv3q1gMBjpKADQpRy9yXtZWZkMw1BqauoZ55qbm5Wfn69ly5apX79+TsaAzd5//33ddNNNOnz4sPr06aO//e1vmjlzZqRjAUCXcPSKs7a2Vh6PR4ZhnHFuw4YNcrlcysrKks/n05tvvulkFNgkFApp1qxZOnLkiCTpq6++0i233BI+BoALnumgiooKs0ePHuby5cvN1tZWs76+3lyxYoVpmqb50ksvmZdddplZX19vHj582Bw5cqR59OjRDs31er2mJBaLxWKxHFln4+hXtQkJCSosLFR+fr4yMzPlcrmUnZ2tlJQUxcXFaeLEiYqNjZUkjRo1SpWVlRozZkyHZnu9XpWWlkqSfD6fJIWPO8MwDJmm2enPOzXL7nnnOisUCmngwIE6dOiQQqGQJKlv376qrq7mK3cA56XTO+TkcXsc/61av9+vnTt3qrGxUQcOHNCCBQskSRMnTlRlZaVaWlrU3NysHTt26LLLLnM6Ds5RVFSU3njjDcXHx4df4+fUAL5LHL3iPJt+/fopPz9f1113nZqbmzV37txT/jJG9zVhwgRVV1fr3//+ty699FJNnz490pEAoMtErDglafbs2Zo9e3YkI6CTLrroIg0ePDjSMQCgy3HLPQAALKA4AQCwgOIEAMACihMAAAsoTgAALKA4AQCwgOIEAMACihMAAAsoTgAALKA4AQCwoEuKs7y8XElJSXK73YqNjVVGRkZXbAsAgO0cL87i4mKlpaUpLy9PNTU1qqqqUk5OjtPbAgDgCEdv8h4MBpWbm6vCwkLNmjVLkhQTE6OUlBRt3LhR999/vyTp+PHj2rVrl+rq6pyMg27qww8/1LPPPqtQKKScnBz96Ec/inQkAGiXo8VZVlYmwzCUmpp6xrnx48eHHxr60ksvaf369U5GQTe1ZcsWTZkyRSdOnJAkLV26VKWlpZQngG7L0a9qa2tr5fF4ZBjGWd/3/PPP6/bbb3cyCrqpoqIitbS0KBQKKRQKSZL++te/RjgVAJyF6aCKigqzR48e5vLly83W1lazvr7eXLFixSnvOXDggDlixAhLc71erymJxWKxWCxH1tk4+lVtQkKCCgsLlZ+fr8zMTLlcLmVnZyslJSX8nhdffFGZmZmWZ3u93vBXvT6fT5LCx51hGIZM0+z0552aZfe87pZtx44dGjdunL788kuZpqlevXpp/fr1uvbaa23LCABnc3qHnDxuj6PFKUl+v19+v7/d80uXLtWyZcucjoFuauTIkfrwww9VWFio3//+9/rggw90zTXXRDoWALQrojdAqKioUJ8+fTRs2LBIxkCEjRw5Uk899ZQkUZoAur2IFudVV12l8vLySEYAAMASbrkHAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFXVKc5eXlSkpKktvtVmxsrDIyMrpiWwAAbOd4cRYXFystLU15eXmqqalRVVWVcnJynN4WAABHOFqcwWBQubm5KigoUHp6umJiYuRyuZSSkiLTNHXvvfcqMTFR48aN09KlS52Mgu+QI0eO6JNPPlF9fX2kowC4ADlanGVlZTIMQ6mpqWec2759u7Zv364PPvhApaWleuSRR5yMgu+It99+W4MGDdLVV1+tQYMGqaSkJNKRAFxgHC3O2tpaeTweGYZxxrmBAweqZ8+eamlp0bFjxxQXF+dkFHwHNDU16ZZbbtFXX30lSTp+/Lhmz56tYDAY4WQALiSOPsh6zJgx2rt3r0pKSjRjxgw1NDQoEAgoJSVFHo9Hw4YN0+WXX65gMKiFCxdamn3yavab2ipoK871807NsnvedyWbaZr68ssvdfHFF9s2E8CFq6N//zhanAkJCSosLFR+fr4yMzPlcrmUnZ2tlJQUrVy5UtXV1aqsrNTRo0c1ZcoU3XjjjerVq1eHZnu9XpWWlkqSfD6fJIWPO8MwDJmm2enPOzXL7nkXcraWlhYNGjRIdXV1CoVCkqT4+Hjt379fMTExtmQEcOE5vUNOHrfH0eKUJL/fL7/f3+a5uLg4RUdHy+VyqaWlRa2trU7HwQXsoosu0ptvvqnU1FQdPHhQkrR8+XJKE4CtInYDhOTkZJmmqcmTJ2vSpEmaM2eO+vTpE6k4uECMHz9eX3zxherq6iRJkyZNinAiABcax6842xMdHa2ioqJIbY8LmGEY/LIZAMdwyz0AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsKBLirO8vFxJSUlyu92KjY1VRkZGV2wLAIDtHC/O4uJipaWlKS8vTzU1NaqqqlJOTo7T2wIA4AhHizMYDCo3N1cFBQVKT09XTEyMXC6XUlJSJEmPPvqoJk2aJJ/Pp23btjkZBeiU1atXKyMjQ7fccss5Pe8VwIXD0aejlJWVyTAMpaamnnFu69at2rhxo95//33t27dPP/nJT7R69Won4wCWlJWV6frrrw8fFxcXa926dZo8eXIEUwGINEevOGtra+XxeGQYxhnnPv/8c40dO1aSNGTIEO3YsUMnTpxwMg5gyQsvvCBJCoVCCoVCkqSlS5dGMhKA7sB0UEVFhdmjRw9z+fLlZmtrq1lfX2+uWLHCNE3T3LZtmzlp0iSzqanJ/Oijj0zDMMxDhw51aK7X6zUlsVgsFovlyDobR7+qTUhIUGFhofLz85WZmSmXy6Xs7GylpKToyiuvVGZmppKTk3X55ZfrqquuUnx8fIdne73e8M+cfD6fJJ3Tz6AMw5Bpmp3+vFOz7J5Hto7bvn27JkyYoGAwKElyuVz68MMPNWLECLsiAugGTu+Qk8ftcfy3av1+v3bu3KnGxkYdOHBACxYsCJ+79957tW7dOt13330aPXp0m1/pApFy5ZVX6qOPPtIvfvELSdLmzZspTQDO/nLQt7n++ut14sQJ9e/fX3/+858jGQVo04gRIzR//nwtWLBAw4cPj3QcAN1ARItz5cqVkdweAADLuOUeAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAW2Fqc5eXlSkpKktvtVmxsrDIyMuwcDwBAxNlWnMXFxUpLS1NeXp5qampUVVWlnJwcu8YDANAt2FKcwWBQubm5KigoUHp6umJiYuRyuZSSkiJJSk5O1oABAzR//vzwZ5YuXarExEQlJiZq7dq1dsQAur0DBw7ogw8+UE1NTaSjAOgkW27yXlZWJsMwlJqa2ub5oqIirVq1Svv375ckHTlyRE8++aQ2bNigxsZGJScna/PmzYqK4keuuHC9/PLL8vv9amlpUUxMjP7+979r5syZkY4FwCJbmqq2tlYej6fd52kOHjz4lONAICCv16uYmBj1799fAwcO1L59++yIAnRLR44c0R133KETJ05IkpqamjR79my1tLREOBkAq2y54hwzZoz27t2rkpISzZgxQw0NDQoEAuGvak9XV1cnj8cTPvZ4PKqrq9PQoUM7vOfJq9xvOtcHYdv5IG27H8pNtsjPs3OWaZoKBoPq2bOnbTMBnJuO/hm3pTgTEhJUWFio/Px8ZWZmyuVyKTs7u93ijI+PV319ffj4yJEjio+Pt7Sn1+tVaWmpJMnn80lS+LgzDMOQaZqd/rxTs+yeR7bIzPryyy912WWX6fDhwwqFQoqKitKgQYO0b98+fkQBRNjpHXLyuD22/Yn1+/3auXOnGhsbdeDAAS1YsKDd906YMEHvvfeempqadPjwYVVXV2vIkCF2RQG6nT59+uitt97SoEGDJElDhw7VW2+9RWkC5yFbrji/TXZ2tgKBgJqamhQIBFRSUqL77rsv3OpPPfUUf4Hggjd+/Hj961//kmEY2rVrV6TjAOikLinORYsWnfFaVlaWsrKyumJ7AABsw2UeAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhge3GWl5crKSlJbrdbsbGxysjIsHsLAAAixtbiLC4uVlpamvLy8lRTU6Oqqirl5OTYuQUAABFlW3EGg0Hl5uaqoKBA6enpiomJkcvlCj+TMzk5WQMGDND8+fPDn2nrNQAdU1xcrBtuuEEzZ87UmjVrIh0H+M6w7ekoZWVlMgxDqampbZ4vKirSqlWrtH///rO+BuDbLV++XDfffLMMw5BhGFqxYoXWr1+viRMnRjoacMGz7YqztrZWHo9HhmG0eX7w4MEdeg3At3vppZcUFRUl0zQVCoUUCoX06quvRjoW8J1g2xXnmDFjtHfvXpWUlGjGjBlqaGhQIBAIf1Vrt5NXuN/UXml31Ll+3qlZds8j24U1S5JM09TTTz+tp59+2ta5wHdJR/9c2lacCQkJKiwsVH5+vjIzM+VyuZSdne1YcXq9XpWWlkqSfD6fJIWPO8MwDJmmee7BbJ5l9zyyXRiztm3bpokTJyoYDEqSBgwYoM2bN/MtDtAJp3fIyeP22FackuT3++X3++0cCaANCQkJ2rJli1599VU9/PDD2rp1qwYOHBjpWMB3gq3FeTbZ2dkKBAJqampSIBBQSUlJm68B6Jgf/OAH+sUvfqGHH36Y0gS6UJcV56JFizr0GgAA3Rm33AMAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwALbi7O8vFxJSUlyu92KjY1VRkaG3VsAABAxthZncXGx0tLSlJeXp5qaGlVVVSknJ8fOLQAAiCjbijMYDCo3N1cFBQVKT09XTEyMXC5X+LFiycnJGjBggObPny9J2r17t6ZOnaof/ehHmjJlijZt2mRXFACdUFlZqdWrV6u6ujrSUYBuzbabvJ98sHRqamqb54uKirRq1Srt379fkhQbG6t//OMfio+P16effqrc3Fy99957dsUBYMGzzz6rOXPmKBQKqVevXlq2bJlmzpwZ6VhAt2RbcdbW1srj8bT7BO3TH7AbHx8f/udevXopOjrarigALPjiiy/CpSlJzc3N+vGPf6z6+vp2/zwD32W2FeeYMWO0d+9elZSUaMaMGWpoaFAgEAh/Vdue1tZWzZ07Vw8++KCl/U5e4X7Tuf4ht/MvCbv/wiFb5Od111l2zzNNU0ePHlVUFL90j++Wjv45sq04ExISVFhYqPz8fGVmZsrlcik7O/usxWmaprKzszVz5kxNnz7d0n5er1elpaWSJJ/PJ0nh484wDEOmaXb6807Nsnse2S6sWXbMa2ho0NChQ1VfX69QKKSoqChdccUVqqiosC0j0J2d3iEnj9tj64Os/X6//H5/h98/Z84cDR8+XPfcc4+dMQBY4Ha79fbbbyszM1O7d+/WmDFj9Le//S3SsYBuy9biPJvs7GwFAgE1NTUpEAjof/7nf1RQUKBJkyZp9erViouL02uvvdZVcQB8w7hx41RZWSnDMPThhx9GOg7QrXVZcS5atOiM15qbm7tqewAAbMFP/wEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAluLs7y8XElJSXK73YqNjVVGRoad4wEAiDjbirO4uFhpaWnKy8tTTU2NqqqqlJOTY9d4AAC6BVuKMxgMKjc3VwUFBUpPT1dMTIxcLlf4WZzJyckaMGCA5s+fL0n697//rUmTJsnn82nChAlavXq1HTEAdAOmaeq5557TlClTlJSUpHfffTfSkQBb2fJ0lLKyMhmGodTU1DbPFxUVadWqVdq/f78kqX///nrvvfcUHR2tPXv26NZbb+VRRsAFYsmSJbrrrrskSVFRUSorK9MHH3ygcePGRTgZYA9brjhra2vl8XhkGEab5wcPHnzKcXR0tKKjoyVJR44c0ahRo+yIAaAbWLZsWfjvglAopNbWVr3xxhsRTgXYyLRBRUWF2aNHD3P58uVma2urWV9fb65YseKU9yxevNh84oknwsd79uwxJ0+ebPbv398sKSmxtJ/X6zUlsVgsFovlyDobW76qTUhIUGFhofLz85WZmSmXy6Xs7Ozwzzjb8v3vf1/r16/Xnj17NG3aNM2cOdPSnl6vV6WlpZIkn88nSeHjzjAMQ6ZpdvrzTs2yex7ZLqxZds+zY9Ynn3yiyZMnq7GxUZI0ZMgQbdq0SfHx8XZEBGx3eoecPG6PLcUpSX6/X36/v0PvbWpqUq9evSRJbrdbF198sV0xAETYqFGjtHXrVi1fvlw/+9nPtHnzZnk8nkjHAmxjW3GeTXZ2tgKBgJqamhQIBPTAAw/o5z//uaKjo9XS0qI//OEPXREDQBcZNmyY5s2bp5/97GeUJi44XVKcixYtOuO1devWdcXWAADYilvuAQBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgga3FWV5erqSkJLndbsXGxiojI8PO8QAARJxtxVlcXKy0tDTl5eWppqZGVVVVysnJsWs8AADdgi3FGQwGlZubq4KCAqWnpysmJkYulyv8WLHk5GQNGDBA8+fPP+VzdXV18ng8Wrp0qR0xAFygPv74Yy1fvlz//Oc/Ix0FsKc4y8rKZBiGUlNT2zxfVFSk3/3ud2e8Pn/+fE2ZMsWOCAAuUE888YRGjx6t1NRUjRgxQm+99VakI+E7zpbirK2tlcfjkWEYbZ4fPHjwGa9VVlaqrq5OY8eOtSMCgAvQrl279Mgjj4SPm5ubdccdd0QuECCbHis2ZswY7d27VyUlJZoxY4YaGhoUCATCX9W25ZFHHtETTzyhF154oVN7nrzK/ab2irujzvXzTs2yex7ZLqxZds/rztlM01Rtba3tGQGp4/+/aktxJiQkqLCwUPn5+crMzJTL5VJ2dna7xfn+++8rPj5ew4YN6/SeXq9XpaWlkiSfzydJ4ePOMAxDpml2+vNOzbJ7HtkurFl2z+tu2Q4fPqzhw4fr6NGjCoVCioqKUmJiotavX29bRuD0Djl53B7bHmTt9/vl9/s79N5Nmzbpk08+0fTp01VZWam+fftq2LBhSkxMtCsOgAtAXFyc3nnnHd1xxx369NNPNW3atE5/SwXYxbbiPJvs7GwFAgE1NTUpEAiopKREc+fOlSQ99thjGj58OKUJoE3jxo3T9u3bZRiG3n333UjHAbqmOBctWtTuuccee6wrIgAAYAtuuQcAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFthanOXl5UpKSpLb7VZsbKwyMjLsHA8AQMTZVpzFxcVKS0tTXl6eampqVFVVpZycHLvGAwDQLdhSnMFgULm5uSooKFB6erpiYmLkcrnCz+NMTk7WgAEDNH/+/PBnevfuLZ/PJ5/Pp4KCAjtiAMBZmaap3/zmNxo1apQSExO1cuXKSEfCeciWp6OUlZXJMAylpqa2eb6oqEirVq3S/v37w68NGjTonB48DQBWPfPMM3rooYckff2Q7RkzZmjjxo265pprIpwM5xNbrjhra2vl8XhkGEab5wcPHnzGawcPHpTX69WsWbO0Z88eO2IAwFm98cYb4X82TVMnTpzQ22+/HcFEOC+ZNqioqDB79OhhLl++3GxtbTXr6+vNFStWnPKexYsXm0888UT4+NChQ6ZpmuaqVatMr9draT+v12tKYrFYLBbLkXU2tlxxJiQkqLCwUPn5+XK73Ro5cqTWrVt31s/0799fkpSUlHTKV7gd5fV6ZZqmTNOU1+s95bgzS9I5fd6pWWTrHvO66yyyWVtbtmyRy+UK/z1y9dVXq7Gx0db/zKzzb53eIV6v96z9Y8vPOCXJ7/fL7/d36L2NjY3q3bu3oqOjtW3bNsXFxdkVAwDaNXr0aH3yySdasWKF7rnnHr3//vvq06dPpGPhPGNbcZ5Ndna2AoGAmpqaFAgE9Mtf/lK5ubnh/+a3cOHCrogBABoyZIjuvvtu3XPPPZQmOqVLinPRokVnvLZly5au2BoAAFtxyz0AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACywtTjLy8uVlJQkt9ut2NhYZWRk2DkeAICIs604i4uLlZaWpry8PNXU1Kiqqko5OTl2jQcAoFuwpTiDwaByc3NVUFCg9PR0xcTEyOVyKSUlRZKUnJysAQMGaP78+eHPfPzxx5o+fbqmTZumO++8044YANClTNPUunXr9Morr6iysjLScdBFbLnJe1lZmQzDUGpqapvni4qKtGrVqvBzN5ubm5Wfn69ly5apX79+dkQAgC733//93/rTn/4kSerZs6dee+01zZgxI8Kp4DRbrjhra2vl8XhkGEab5wcPHnzK8YYNG+RyuZSVlSWfz6c333zTjhgA0GU2b94cLk1JamlpUW5ubgQToavYcsU5ZswY7d27VyUlJZoxY4YaGhoUCATCX9Werrq6Wps3b9bWrVtlmqYmT56sqVOnyu12d3jPk1e539RecXfUuX7eqVl2zyPbhTXL7nlk6xzTNFVdXW17RnSdjv7fzpYrzoSEBBUWFio/P19ut1sjR47UunXr2n1/XFycJk6cqNjYWHk8Ho0aNcryzwe8Xq9M05RpmvJ6vaccd2ZJOqfPOzWLbN1jXnedRbbIzaupqVFsbKyior7+a9QwDN100022ZmR1zTq9Q7xe71n7x7bfqvX7/dq5c6caGxt14MABLViwoN33Tpw4UZWVlWppaVFzc7N27Nihyy67zK4oAOC4AQMG6N1339Xo0aMlSTfffLOWLFkS4VToCrZ8VfttsrOzFQgE1NTUpEAgoJKSEuXn5+u6665Tc3Oz5s6dq/j4+K6IAgC2ufbaa/XRRx/JMAy9+uqrkY6DLtIlxblo0aIzXps9e7Zmz57dFdsDAGAbbrkHAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABbYWpzl5eVKSkqS2+1WbGysMjIy7BwPAEDE2VacxcXFSktLU15enmpqalRVVaWcnBy7xgMA0C3YUpzBYFC5ubkqKChQenq6YmJi5HK5wg+yTk5O1oABAzR//nxJ0saNG+Xz+eTz+TRx4kSejALgO+/EiRN68MEHNWzYMI0ePVrvvPNOpCOhHbY8HaWsrEyGYSg1NbXN80VFRVq1apX2798vSRo/frxKS0slSS+99JLWr19vRwwAOG89/vjj+u1vfyvp/z8Ue9OmTRo1alSEk+F0tlxx1tbWyuPxyDCMNs8PHjy43c8+//zzuv322+2IAQDnrbfeeiv8z6ZpqqWlRWvWrIlgIrTLtEFFRYXZo0cPc/ny5WZra6tZX19vrlix4pT3LF682HziiSdOee3AgQPmiBEjLO/n9XpNSSwWi8ViObLOxpYrzoSEBBUWFio/P19ut1sjR47UunXrvvVzL774ojIzMzu1p9frlWmaMk1TXq/3lOPOLEnn9HmnZpGte8zrrrPI1j3m2TFr8+bNcrvdp/wd19TUZOt/Zlbb6/QO8Xq9Z+0fW37GKUl+v19+v9/SZ5YuXaply5bZFQEAzlvXXHONtm3bprVr18rv9+vdd9/VRRddFOlYaINtxXk22dnZCgQCampqUiAQUElJiSoqKtSnTx8NGzasKyIAQLd36aWXKisrS36/n9LsxrqkOBctWnTGa1dddZXKy8u7YnsAAGzDLfcAALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALDA1uIsLy9XUlKS3G63YmNjlZGRYed4AAAizrbiLC4uVlpamvLy8lRTU6Oqqirl5OTYNR4AgG7BluIMBoPKzc1VQUGB0tPTFRMTI5fLpZSUFElScnKyBgwYoPnz50v6+vE79957rxITEzVu3DgtXbrUjhgAgP8nFArpzTff1F//+ld99tlnkY5zQbHlJu9lZWUyDEOpqaltni8qKtKqVau0f/9+SdL27du1fft2ffDBBwoGg7rqqqv04x//2I4oAPCdZ5qmbrvtNv3tb3+TJPXs2VOvv/66brjhhggnuzDYcsVZW1srj8cjwzDaPD948OBTjgcOHKiePXuqpaVFx44dU1xcnB0xAACS1q1bFy5NSTpx4oTmzJkTwUQXFluuOMeMGaO9e/eqpKREM2bMUENDgwKBQPir2tN5PB4NGzZMl19+uYLBoBYuXGh5z5NXud/UXnF31Ll+3qlZds8j24U1y+55ZIv8LLvnhUIh7d692/aMF5qO/vuxpTgTEhJUWFio/Px8ZWZmyuVyKTs7u93iXLlypaqrq1VZWamjR49qypQpuvHGG9WrV68O7+n1elVaWipJ8vl8khQ+7gzDMGSaZqc/79Qsu+eR7cKaZfc8skV+lh3zDhw4oJEjR+rYsWMKhUKSJL/fr6KiIpsSXlhO75CTx+2x7bdq/X6/du7cqcbGRh04cEALFiw46/vj4uIUHR0tl8ullpYWtba22hUFAL7TLrnkEq1evVoTJ06UJOXm5urZZ5+NcKoLhy1XnN8mOztbgUBATU1NCgQCev311/Xyyy9r8uTJam5u1pw5c9SnT5+uiAIA3wljx45VeXm5DMPQX/7yl0jHuaB0SXEuWrTojNf4ygAAcD7ilnsAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYIGtDFz2ZgAAIABJREFUxVleXq6kpCS53W7FxsYqIyPDzvEAAEScbcVZXFystLQ05eXlqaamRlVVVcrJybFrPAAA3YItxRkMBpWbm6uCggKlp6crJiZGLpcr/DzO5ORkDRgwQPPnzw9/5tFHH9WkSZPk8/m0bds2O2IAABxw/Phx3XXXXfre976nESNG6O233450pLBgMKg77rhD3/ve93TllVdqzZo1ju9py9NRysrKZBiGUlNT2zxfVFSkVatWaf/+/ZKkrVu3auPGjXr//fe1b98+/eQnP9Hq1avtiAIAsNn999+v5557TpJUV1en1NRUbd26VVdccUWEk0lz5szR888/L9M0VVdXpxkzZmj79u0aOnSoY3vacsVZW1srj8cjwzDaPD948OBTjj///HONHTtWkjRkyBDt2LFDJ06csCMKAMBmK1asCP9zKBRSS0uL1q9fH8FE/98777wj0zQlfZ3t+PHj+uCDD5zd1LRBRUWF2aNHD3P58uVma2urWV9fb65YseKU9yxevNh84oknTNM0zW3btpmTJk0ym5qazI8++sg0DMM8dOhQh/fzer2mJBaLxWKxHFlnY8sVZ0JCggoLC5Wfny+3262RI0dq3bp17b7/yiuvVGZmppKTk/Xss8/qqquuUnx8vKU9vV6vTNOUaZryer2nHHdmSTqnzzs1i2zdY153nUW27jHvQs+2adMm9evXL/z3b1pamlpbW239z9zZVV5erosvvjic7bbbblMoFLI04/QO8Xq9Z+0f236r1u/3a+fOnWpsbNSBAwe0YMGCs77/3nvv1bp163Tfffdp9OjR7X7NCwCIrLFjx+rTTz/V3//+d0nSsmXLFBXVPW4DMGnSJH366ad69dVXJUlLly51vE9s+eWgb5Odna1AIKCmpiYFAgGVlJTo+uuv14kTJ9S/f3/9+c9/7ooYAIBOGjhwoG6++WZJ6jaledKll16qSy+9VJK65CKsS4pz0aJFZ7y2cuXKrtgaAABbda//2gAAQDdHcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhga3GWl5crKSlJbrdbsbGxysjIsHM8AAARZ1txFhcXKy0tTXl5eaqpqVFVVZVycnLsGg8AQLdgS3EGg0Hl5uaqoKBA6enpiomJkcvlUkpKinbv3q2pU6fqRz/6kaZMmaJNmzZJ+voO9omJiUpMTNTatWvtiAEAOA+0tLTo5Zdf1p/+9CdVVFREOo5lttzkvaysTIZhKDU19YxzsbGx+sc//qH4+Hh9+umnys3NVUlJiZ588klt2LBBjY2NSk5O1ubNm7vdHfcBAPY6ceKEbrzxRq1atUqSdNFFF2n58uWaPn16hJN1nC1NVVtbK4/H0+bjXOLj48MPqe7Vq5eio6MVCATk9XoVExOj/v37a+DAgdq3b58dUQAA3djbb78dLk3p6yL9P//n/0QwkXW2XHGOGTNGe/fuVUlJiWbMmKGGhgYFAgGlpKSE39Pa2qq5c+fqwQcfVF1dnTweT/icx+NRXV2dhg4d2uE9T17lftO5PofNzue42f1MOLJFfl53nWX3PLJFfpbd87pzNtM0tW3bNttmnsucjn7WlivOhIQEFRYWKj8/X263WyNHjtS6devC503TVHZ2tmbOnKnp06crPj5e9fX14fNHjhwJX5V2lNfrlWmaMk1TXq/3lOPOrJM57Vh2ziJb95jXXWeRrXvMI1vHV1VVlfr163fKj+bmzZsX0Wynd4jX6z1r/9j2Q0W/36+dO3eqsbFRBw4c0IIFC8Ln5syZo+HDh+uee+6RJE2YMEHvvfeempqadPjwYVVXV2vIkCF2RQEAdFODBw/W2rVr5fP5JEkPPPCAfvvb30Y2lEW2fFV7NqWlpSooKNCkSZO0evVqxcXF6bXXXtN9990X/hf31FNP8YtBAPAdcc0112j16tUyDEO/+c1vIh3HMseL0+fzqbm5+YzXs7KylJWV5fT2AADYiss8AAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBAF1q586d+t3vfidJevnll3X8+PEIJ7LG8eJ85ZVXNHr0aLlcLv3whz/U66+/7vSWAIBu6PDhw5o5c6Z++MMf6v7775ck3XbbbRo8eLBeeOGFCKfrOEeLs6CgQA899JCee+45HTt2TE8//bQyMzP1r3/9y8ltAQDdzFdffaXrr79e7777rp544gl98cUXkqRVq1bpiiuuUFZWll588cUIp+wYx4rz2LFjeuihh7Ro0SKNGzdOknTDDTdowIAB2rRpk5YuXarExEQlJiZq7dq1TsUAAHQDL774oj766CO9/PLLevjhh3XJJZdIkpKSkvTuu+9qwoQJuv/++9XS0hLhpN/OseJcs2aNoqOjdd1114VfM01TtbW1ioqK0pNPPqm1a9eqpKRE8+bNUygUcioKACDCCgsLddVVVyktLe2Mc7169dLPf/5zffHFF3rnnXcikM4ax4qzoaFBHo/nlNdKSkrUu3dvGYYhr9ermJgY9e/fXwMHDtS+ffucigIAiLC9e/cqMTFRhmG0eX7ixImSdH50gemQnTt3mj179jTLysrMEydOmKtXrzYvueQSc/HixeaLL75oPvroo+H33nbbbebGjRs7PNvr9ZqSWCwWi3WerKioqIhnsLLOxrEHWV9++eUqLCzUnXfeqYMHD+ryyy/XH//4R91888165513VF9fH37vkSNHFB8fb2m+1+tVaWmppK8fli0pfNwZhmHINM1Of96pWXbPI9uFNcvueWSL/Cy753WXbA888ICeeuopVVZWasiQIWfMuvvuu1VUVKT9+/erf//+XZrt9A45edweR3+r9vbbb9fu3bsVDAa1ZcsW3XzzzZKkCRMm6L333lNTU5MOHz6s6urq8L9IAMCF55577lHv3r1100036fPPPw+/3tzcrKeffloLFy7UnXfe2enS7EqOXXGeTWxsrO67775wqz/11FOKiuJeDABwoRoyZIhef/11zZo1SyNGjNDUqVMlSZdddpkOHjyomTNn6plnnolwyo6JSHFKUlZWlrKysiK1PQCgiyUlJWnnzp0qLCzU8uXLJUnjx4/XXXfdpenTpys6OjrCCTsmYsUJAPjuGThwoB555BE98sgjMgxDb7zxRqQjWcb3owAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABY4WpyhUEhZWVm67LLLdPHFF2v48OF65ZVXnNwSAABHOVqcR48e1Q033KBPPvlEDQ0Nmjdvnu644w41Nzc7uS0AAI5xtDg9Ho8yMzPVr18/RUVFye/3q6mpScFgUEuXLlViYqISExO1du1aJ2OcVWlpqX79619LklpbWyOWAwBwfnD0XrXvvvuufv/736uiokLHjh1TKBTSJZdcIsMw9OSTT2rDhg1qbGxUcnKyNm/e3OVPSFm4cKHuvvvu8PGtt96qv//97+0+oRwAAMeaauPGjZo9e7bmzp2rzz//XEePHtUDDzyga6+9VoFAQF6vVzExMerfv78GDhyoffv2ORWlXQ888MApx8XFxfroo4+6PAcA4Pzh2BXnli1b5PF4NGnSJEVHR6uoqEi//vWv9cADD6iurk4ejyf8Xo/Ho7q6Og0dOrTD88vKys64MrTjSnHcuHHnPEOyJ4tT88h2Yc2yex7ZIj/L7nlks/ez/5e9e4+Lss7///9gxiNCw2i2C7KLq9O20WF3i0rpMOSSOnawtAS0ACkt3WSdTxplB0+obZ7KajNNITXFTXPLzUXRTStNqNYWSltWOxjuupXioCQDMtfvj77NLzzFJTMO4vN+u71uN65r5npdLwrmySXD9Q5acKakpLBq1SpiYmL46U9/yv3334/dbichIQGr1UplZaX/uQcOHKBTp06m+judTjZu3AjgXxD7++3Guuuuu1iyZIl/Oy4ujrKyMiIjI031OVpYWBiGYTSpR7D6abaW1SvQ/TRb6HsFup9m+3FHZ8j32ycStOCMioqisLCwwT632w18F5QPP/yw/41Ce/bsoWvXrsEa5YTmz5/PT37yEzZv3szWrVt56623mhyaIiLSsoVkIeuoqChGjx7tT/WZM2ee9jcGAbRr144ZM2YA3/2k8vOf//y0zyAiImeWkAQnQHp6Ounp6aE6vYiIyCnRLfdERERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOERERExScIiIiJig4RURETAjZnYOag3379rFs2TK+/PJLAP71r39xwQUXhHgqERFpzoJ6xenz+UhPTycuLo6IiAgcDgcFBQXBPGWjGIbB5MmTiY2NZdSoUTz99NMA/OpXv2LAgAFUVVWFeEIREWmughqcHo8Hl8tFaWkpVVVVuN1uMjMzqa2tDeZpf9SUKVN4/PHHufnmm/nnP/9JTU0NAOPHj+f111+nf//+1NfXn1LvQC6RIyIizU9Qg9Nut5OWlobNZsNisZCRkeFfSiw5OZnOnTuTm5sbzBGOsX//fqZMmcLtt9/O8uXLufTSS/2PTZgwgeeff56NGzeyZs0a072feuop/7JkWVlZIf8BQUREAi+owVlUVITL5SI2NhabzUZ0dDTR0dHY7Xby8/OZPn16ME9/XAUFBdTU1PDoo48ed7XvzMxMYmJiWLBggam+hYWFuN1uqqurAcjLy2Py5MkBmVlERJqPoAVnSUkJqampZGdnU15ejsfjIScnh4SEBABiY2ODdeqT2r17N61bt+bXv/71cR9v3bo1v/3tb9m9e7epvlu2bGmwHRYWdsw+ERE58wXtXbXbtm3DbreTmJiI1WolPz+fadOmkZOTE5D+mzZtOuaK8XhXkCdyvOc2pd/RDMPg73//e5N6BGqWYPYKdL+zZbaz5fMMdD/NFvpege7XnGZr7LFBu+JMSUnB4XAQExNDfHw8lZWV2O12/xVnUzmdTgzDwDAMnE5ng+2TVXl5OQCPPfZYg/3wXdi9/fbbADz//PON6vd91dXVcfPNN/vnO//88/nPf/5jqseJ6vvZmlsvzRb6XpqtefTTbKHv1ZR+R2eI0+k8af4E7YozKiqKwsLCBvvcbnewTtdo559/PrfffjtTp04lJiaGu+++m9atWwPw9ttvk5KSQpcuXRgyZIipvq1ateIvf/kL//jHP7jiiiv48MMPCQ8PD8anICIiIRSyGyBkZWVRXFyM1+uluLiY1atXn7ZzL1y4kP379zNixAgmTpzIb3/7WwCuu+46unTpwtq1a/3vjjXDYrH4r6gVmiIiLVPIgnPhwoWhOjWRkZGsW7eOwsJCFi5cyBdffAHA3LlzGTx48CmFpoiInB3O2lvuWa1WbrzxRm688cZQjyIiImcQ3eRdRETEBAWniIiICQpOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBGWCHDx8GtKC1iEhLFfTg9Pl8pKenExcXR0REBA6Hg4KCgmCf9rQyDIOCggISExP9t9o7//zzmTFjhj9IRUSkZQh6cHo8HlwuF6WlpVRVVeF2u8nMzKS2tjbYpz4tDMMgOzubtLQ0vvnmG8aPHw9ATEwMY8eOpXfv3v7FrUVE5MwX9OC02+2kpaVhs9mwWCxkZGTg9XopKyvjuuuu49prr+Waa67h/fffD/YoQfHnP/+ZZ599FrfbzSeffMKECRMAeOuttygoKGDLli08/PDDp9T79ddf59FHHwWgvr4+UCOLiEgTBD04i4qKcLlcxMbGYrPZiI6OJjo6mq5du7Jq1Srefvtt5s2b1yyWHDsVzzzzDA6HgxkzZmCxNPzPmZKSwpAhQ8jLy+PgwYOm+k6dOpX+/fszZcoUAFJTU/V7UxGRZiCowVlSUkJqairZ2dmUl5fj8XjIyckhISGBTp060alTJwDatm2L1WoN5ihBUVNTw+bNm0lLSzsmNL935513cujQIUpKShrdt76+3n/l+r0VK1awffv2powrIiKBYATR3Llzje7duxsHDhwwampqjLy8PCM8PNyYOHGi/zlHjhwx+vXrZ/ztb39rdF+n02kAKpVKpVIFpU4mqFecKSkpOBwOYmJiiI+Pp7KyErvd7l/s2TAMsrKyuOmmm+jbt6+p3k6nE8MwMAwDp9PZYPt0lc/n4/zzz+fqq69usP/7z80wDMaOHYvVamXPnj2meqelpQEQFhYGwCWXXEJNTU2TZ/7hbIGoQPY7W2Y7Wz5PzdY8+mm2H6+jM8TpdJ40f4K6HmdUVBSFhYUN9v3wd5mjRo3C4XAwYsSIYI4RNGFhYdx333088MADLF26lMGDBzd4vKysjLlz59K/f39iYmJM9V64cCFdu3blvffeY/369WzYsIG2bdsGcnwRETkFIbsBwsaNG5k3bx4bNmwgKSmJAQMGhGqUJhk5ciTXXnstd955J3fddRd/+9vfABg7dixXX301kZGRzJo1y3Tfdu3aMXXqVIqKigDo3LlzQOcWEZFTE9QrzpNJSkpqEX/L2a5dOwoLC3nkkUdYuHAhS5YsAWD27NnceuutzJw5k7i4uBBPKSIigaJb7gVAeHg4s2fPZs+ePbz55psAfPnll6xYsUKhKSLSwoTsirMlioiIICkpyf9LahERaXl0xSkiImKCglNERMQEBaeIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYENTg9Pl8pKenExcXR0REBA6Hg4KCgmCessWoqKhg2rRp3H///cB3970VEZHQC2pwejweXC4XpaWlVFVV4Xa7yczMbBG32guW+vp63G43Xbt2Zdy4cSxduhSASy+9lFtuuYWqqqoQTygicnYLanDa7XbS0tKw2WxYLBYyMjLwer1UVlaSmJhIUlISV111FRs2bAjmGGeUMWPG8NRTT3H33Xfz6aefsn//fgByc3NZs2YNt956Kz6f75R6HzlyJJCjioiclYIanEVFRbhcLmJjY7HZbERHRxMdHc25557L22+/zcaNG1m2bBkPPfRQMMc4Y1RUVPDMM88wbNgwXnjhBX7xi1/4H3vkkUd45plnePPNN/0rpjSWYRg89thjtGvXDoD09HRd9YuInKKgBWdJSQmpqalkZ2dTXl6Ox+MhJyeHhIQErFYrVqsVgAMHDnDppZcGa4wzypIlS6ivrz/hDxJZWVl07tyZ/Px8U32XL19Obm4u9fX1ACxevJgnnniiqeOKiJyVghac27Ztw263k5iYiNVqJT8/n2nTppGQkADAZ599xjXXXEOfPn247bbbgjXGGWXPnj1ERUXRrVu34z7etm1bLrroIioqKkz1fe+99wgLC/NvWywW3n///SbNKiJy1jKCpLKy0ujTp48RHh5udOvWzZg1a5bRpUsX44033mjwvF27dhlxcXGmejudTgNQqVQqlSoodTJBC86Tqamp8X/89ddfGxdddJGp451Op+F0Ok+4fab66KOPDMCYOHFig/3f/0987bXXDMBYunSpqb61tbXGLbfc4v+CuPzyy43KysqAzPxjX2Ch6hXofs21V6D7abbQ9wp0P832446XKScTkvU433vvPcaNG4fVaqWuro6nn346FGM0OxdddBG33norkyZNomPHjgwbNoy2bdsC8Prrr5ORkcEvf/lLBgwYYKpv69atWbVqFTt27ODiiy9my5YttGnTJhifgohIixeS4Lzmmmt46623QnHqZm/RokUMGDCAUaNGMXHiRC666CIA+vfvzy9/+UvWrl3rD1MzLBaLv5dCU0Tk1OmWe81MZGQka9eupaioiBtuuMH/N5tLly6lrKyMrl27hnZAEZGzXEiuOOXkLBYLycnJJCcnh3oUERE5iq44RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMUnGcJwzD4+uuvAfzLi4mIiHlBDU6fz0d6ejpxcXFERETgcDgoKCgI5inlKD6fj7lz53LJJZdw3nnnAdCtWzemTp3K4cOHQzydiMiZJ6jB6fF4cLlclJaWUlVVhdvtJjMzk9ra2mCeVv4fn8/HnXfeyYgRI2jfvj0zZswA4Je//CWPPPIIN9xwA9XV1SGeUkTkzBLU4LTb7aSlpWGz2bBYLGRkZOD1ev0v1vv27cNut7NkyZJgjnHWmj9/PsuWLWPq1Km89957PPDAAwAUFRWxfPly3n33XR5//HHTfQ3DYNGiRbjdbgCOHDkS0LlFRJqzoAZnUVERLpeL2NhYbDYb0dHRREdHY7fbAcjNzeWaa64J5ghnLcMwePbZZ7n88st56KGHjnl80KBBDBo0iIULF/Ltt9+a6v3AAw+QkZHhXw7uzjvv5Lul8EREWr6gBWdJSQmpqalkZ2dTXl6Ox+MhJyeHhIQEAHbu3Mm+ffu4/PLLgzXCWW3//v189NFHpKSkEBYWdtznpKamcuDAAUpLSxvd9/Dhw8yePRvAH5bLly/ns88+a/rQIiJnglNaLrsR5s6da3Tv3t04cOCAUVNTY+Tl5Rnh4eHGxIkTDcMwjLS0NGPnzp3G+PHjjcWLF5vq7XQ6DUClUqlUqqDUyQTtijMlJQWHw0FMTAzx8fFUVlZit9tJSEhgy5YtdOrUie7du59yf6fTiWEYGIaB0+lssK0yqK+vJy4ujuuvv77BfsD/8fDhw2nXrh379+831fuOO+4Avlv+DODqq6/myJEjTZ75h7MFogLZr7n20mzNo59mC32vpvQ7OkOcTudJ8ydo63FGRUVRWFjYYN/3byaZM2cOpaWl9O3bl507d9KhQwe6d+9Oz549gzXOWcdisXDffffx8MMPs2zZMtLS0ho8/s477/DSSy8xZMgQ/++cG2vx4sXEx8fz4Ycf8tprr/G3v/0Nq9UayPFFRJqtkCxknZ2dTXZ2NgATJkzA4XAoNINg9OjRrFmzhiFDhrBq1SpSU1MBGD58OIsWLeLnP/85TzzxhOm+bdu2ZcKECQCEhYURGRkZyLFFRJq1kN85aMKECdx5552hHqNFateuHYWFhTzwwAOsX7+egQMHArBkyRKGDBnCO++8Q+fOnUM8pYjImSUkV5xy+oSHhzN9+nQmTZpEWVkZ9fX1XHjhhURFRYV6NBGRM5KC8yzRvn17rrzyylCPISJyxgv5P9WKiIicSRScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExISgBqfP5yM9PZ24uDgiIiJwOBwUFBQE85RyGnzyySeMGzeOoUOHAvCPf/wjxBOJiJw+QQ1Oj8eDy+WitLSUqqoq3G43mZmZ1NbWBvO0EiRer5f09HQuvPBCpk+fzvr16wG4/PLLufHGG6mqqgrxhCIiwRfU4LTb7aSlpWGz2bBYLGRkZOD1eqmurqZ9+/YkJSWRlJTEvHnzgjmGBMiwYcNYvHgxDz30EHv27OHLL78E4I9//CPr1q1jwIAB/qV9zKqurg7kqCIiQRPU4CwqKsLlchEbG4vNZiM6Opro6GjsdjtdunRh48aNbNy4keHDhwdzDAmATz75hMWLF5OTk8O0adM477zz/I89+OCDzJo1iw0bNrBp0yZTfX0+H/fddx8REREA3HnnndTV1QV0dhGRQApacJaUlJCamkp2djbl5eV4PB5ycnJISEgAYO/evTidTm699VY+/fTTYI0hAbJ48WJatWrlX1P1aPfccw92u538/HxTfefNm8cLL7zg33755ZeZOXNmU0YVEQmqoAXntm3bsNvtJCYmYrVayc/PZ9q0af7g/Pzzz9m0aROjRo0iKysrWGNIgOzdu5fzzjuPn/zkJ8d9vH379px//vns3bvXVN8PP/wQi+X//zK0Wq18+OGHTZpVRCSojCCprKw0+vTpY4SHhxvdunUzZs2aZXTp0sV44403jnlu9+7dTfV2Op0GoFKpVCpVUOpkghacJ3Pw4EHjyJEjhmEYRllZmXHFFVeYOt7pdBpOp/OE2xJ427ZtMwBj6tSpDfZ//wWWn59vAMf9wehkvF6v0b9/f/8Xa3JyslFdXR2QmX/si78l9Ap0P80W+l6B7qfZftzxMuVkQrIe5/bt27n33nuJjIwEaPA7LmmefvOb33DTTTfx2GOPER4ezrBhwwgPDwfgpZdeYuTIkSQkJNCnTx9Tfdu0acOqVav4/PPP6datG2vXrm3wT7ciIs1NSILzyiuvZNu2baE4tTTB0qVLuf322xk9ejQTJkzA4XAAkJmZyRVXXMHq1auxWq2m+4aFhfGLX/wCQKEpIs2eXqWk0SIjIyksLGTTpk3cdtttnHvuuQCsWbOGrVu3nvCNQyIiLUlIrjjlzBUWFsZ1113HddddF+pRRERCQlecIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKTgm5+vp6Pv/8cwCtxSkizV5Qg9Pn85Genk5cXBwRERE4HA4KCgqCeUo5g9TW1jJt2jS6devmv+VeXFwcEyZM4Ntvvw3xdCIixxfU4PR4PLhcLkpLS6mqqsLtdpOZmUltbW0wTytngNraWm655RbGjRvH+eef77/R/29/+1smTpxI7969FZ4i0iwFNTjtdjtpaWnYbDYsFgsZGRl4vV6qq6v55z//Sd++fenVqxdDhw4N5hjSDM2ePZu1a9cyf/581q9fz/DhwwF44403WL58OVu2bGHSpEmm+x45coQ5c+Zw7733+rdFRAIpqPeqLSoqYtasWZSVlXHw4EF8Ph/R0dF06NCBMWPGsGLFCmw2WzBHkGaovr6eP/3pT/Tq1Yt77rnnmMcHDRpEQUEBCxYsYMKECbRr165RfQ3DICsri8WLF/tXWbnrrrtYunQpYWFhAf0cROTsFbQrzpKSElJTU8nOzqa8vByPx0NOTg4JCQls3bqVyMhI0tPTSUpK4q9//WuwxpBmqKKigt27d3PHHXec8DmDBg32Us66AAAgAElEQVTim2++oby8vNF99+3bx+LFi4Hvfr8OUFBQwN69e5s2sIjID53SctmNMHfuXKN79+7GgQMHjJqaGiMvL88IDw83Jk6caCxdutSIi4szKisrjf379xsXXnih4fF4Gt3b6XQagEqlUqlUQamTCdoVZ0pKCg6Hg5iYGOLj46msrMRut5OQkEDHjh3p0aMHUVFR2O12Lr30Unbu3Gmqv9PpxDAMDMPA6XQ22FY176qrq6NLly707du3wX7A/3FKSgpRUVFUV1c3uq/P52PAgAEA/gW1b775Znw+X5Nn/uFszamXZmse/TRb6Hs1pd/RGeJ0Ok+aP0ELzqioKAoLC6murmbXrl243W4qKiro168fPXr0YOfOndTV1VFbW8uOHTuIi4sL1ijSzLRq1Yrhw4dTWFjIsmXLjnn8jTfeYMWKFQwdOpTw8PBG9w0LC2PZsmVMmTKFQYMGAfDKK6/o95siElAhWcjaZrMxZswYrr/+empra8nOzqZTp06hGEVCZOzYsaxfv54hQ4awfPlyf9ClpKSwcuVKfv3rXzNhwgTTfdu0acO4ceMAWLZsGW3btg3k2CIioQlOgNTUVFJTU0N1egmx9u3bs3btWnJzc5k/fz6vvfYa8N07sf/whz8wYcIEIiMjQzyliMixQhacIu3bt2fKlCk8/vjj/Pvf/8bn8+FwOEz986yIyOmm4JSQa9u2LRdffHGoxxARaRTd5F1ERMQEBaeIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExIajB6fP5SE9PJy4ujoiICBwOBwUFBcE8pZzFDMOguLiY+++/338Lv3fffdd/82cRkUAIanB6PB5cLhelpaVUVVXhdrvJzMyktrY2mKeVs9ChQ4e4+eab6dGjB3l5eZSVlQGQmJiIy+WiqqoqxBOKSEsR1OC02+2kpaVhs9mwWCxkZGTg9XrZtm0bSUlJJCUl0aNHD93gXZrEML5bhqywsJAnn3ySvXv3smPHDgBmzpzJhg0buOOOO07pytMwDP73v//5PxYRCWpwFhUV4XK5iI2NxWazER0dTXR0NFdddRUbN25k48aNZGdnk5KSEswxpIV77733WLNmDVOnTmXs2LENbg7/f//3fzz55JOsW7eOd99911Tf2tpaBg0axE9/+lMAhgwZwpEjRwI6u4iceYIWnCUlJaSmppKdnU15eTkej4ecnBwSEhIaPG/RokXcddddwRpDzgJLliwhPDyc++6777iPDx8+nMjISBYtWmSq76xZs1ixYoV/e9myZcyZM6dJs4rImS9owblt2zbsdjuJiYlYrVby8/OZNm1ag+Dcu3cvn3/+OT179gzWGHIW+Oqrr4iNjeWcc8457uMdOnTg5z//OV999ZWpvtu3b8dqtfq3LRYLH3/8cZNmFZEWwAiSyspKo0+fPkZ4eLjRrVs3Y9asWUaXLl2MN954w/+cGTNmGBMmTDDd2+l0GoBKpVKpVEGpkwlacDbGb37zG2Pnzp2mj3M6nYbT6Tzhtpxdtm7dagDGk08+2WD/91/8Tz31lAEY77zzjqm+Xq/XuO222/zfSCkpKUZtbW2T5/2xb8pQ9tNsoe8V6H6a7ccdL1NOJmQ3QCgrKyM8PJzu3buHagRpIa688kpcLhcPP/wwM2bM4ODBg/7HnnrqKcaMGcMNN9xAYmKiqb5t2rRh5cqV/Pe//wW++x1n69atAzq7iJx5Qhacl1xyCZs3bw7V6aUFCQsLY/ny5dxwww2MHTuW6Oho4uPjAXC73SQlJfHKK68QFhZ2Sr2/f1ftqRwvIi1Pq1APIBIIkZGRrFmzhuLiYhYtWsRXX33Fjh072Lx5Mz179lToiUjAKDilxQgLC6NHjx706NEj1KOISAumm7yLiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOERERExScIiIiJujvOEVOoqamhp07dwLg9Xpp27ZtiCcSkVAL6hWnz+cjPT2duLg4IiIicDgcFBQUBPOUIgFRXV3NQw89RGxsLJdccgkAP/vZzxg3bhzffvttiKcTkVAKanB6PB5cLhelpaVUVVXhdrvJzMyktrY2mKcVaZLq6mp+97vfMX36dJxOJy+//DIAV199NU888QS9e/dWeIqcxYIanHa7nbS0NGw2GxaLhYyMDLxeL9XV1dx///307NmTK664giVLlgRzDBFTcnNzKSkp4ZVXXmHlypUMHjwYgFWrVlFQUMCWLVt44oknTPetqalh8uTJADz55JPU1dUFdG4ROT2CGpxFRUW4XC5iY2Ox2WxER0cTHR3Nnj17+Pjjj3n33XfZuHEjjz/+eDDHEGm0mpoaXnzxRW699VYGDBhwzOODBg2iX79+zJ8/31Tw+Xw+Bg4c6P9az8nJITMzM1Bji8hpFLTgLCkpITU1lezsbMrLy/F4POTk5JCQkEBMTAxt2rShrq6OgwcP0rFjx2CNIWLKp59+yjfffMPAgQNP+JyBAweyd+9evvjii0b33b17N2vWrGmwb+nSpRw4cOCUZxWREDml5bIbYe7cuUb37t2NAwcOGDU1NUZeXp4RHh5uTJw40fD5fMaIESOMrl27Gp07dzZeffVVU72dTqcBqFQqlUoVlDqZoF1xpqSk4HA4iImJIT4+nsrKSux2OwkJCaxbt449e/awc+dOPvnkEx555BG8Xq+p/k6nE8MwMAwDp9PZYFulOtXyer2cd9553HzzzQ32A/6P+/TpQ0xMDHV1dY3u6/P5uPXWWxt8DWdmZgZk5h/O1px6abbm0U+z/XgdnSFOp/Ok+RO04IyKiqKwsJDq6mp27dqF2+2moqKCfv36AdCxY0esViuRkZHU1dVRX18frFFEGq1NmzYMGzaM1atXs2zZsmMeX7x4MWvXruXee++lVavG/xl0WFgYy5cvZ/r06QDMmTOHF198MWBzi8jpE5I7ByUnJ2MYBldffTWJiYmMGjWK8PDwUIwicoxHHnmEa6+9lsGDB9OvXz8WLFgAQN++fUlPT+f666/nwQcfNN23TZs2jBkzBoBRo0ZhtVoDOreInB4huXOQ1WolPz8/FKcW+VHt27dn7dq1PPnkk7zwwgv87W9/A+Cjjz5i0qRJPPjgg7qDkMhZTLfcEzmO9u3bM378eMaNG8fu3bsJCwvj5z//ual/nhWRlkmvAiIn0bp1a7p37x7qMUSkGdHqKCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJQQ1On89Heno6cXFxRERE4HA4KCgoCOYpRZoln8/HunXryMjIAODuu+9m06ZN/htTi8iZI6jB6fF4cLlclJaWUlVVhdvtJjMzk9ra2mCeVqRZ+eabb7jmmmvo06cPf/3rXwFYuXIlSUlJ9O7dm6qqqhBPKCJmBDU47XY7aWlp2Gw2LBYLGRkZeL1eqqurGT9+PImJiSQlJfHRRx8FcwyRkPH5fPTv359t27Yxf/58/vOf/wDwn//8h6effpqNGzeSlpZ2Sr3r6+vZtWsXgK5cRU6joAZnUVERLpeL2NhYbDYb0dHRREdH88UXX1BSUsKWLVvIz8/nD3/4QzDHEAmZv//972zZsoU5c+Zwzz33+G8OHx4eTnZ2NlOnTmXNmjW8//77pvpWV1fTu3dvHA4HAGlpaRw5ciTg84vIsYIWnCUlJaSmppKdnU15eTkej4ecnBwSEhIoLy/n8ssvB6Br167s2LFD3/TSIi1ZsoSOHTuSnp5+3MeHDx9Ou3btePnll031nTJlCn//+9/928uXL2fu3LlNmlVEGskIkrlz5xrdu3c3Dhw4YNTU1Bh5eXlGeHi4MXHiROOjjz4yEhMTDa/Xa3zwwQdGWFiY8fXXXze6t9PpNACVSqVSqYJSJxO0K86UlBQcDgcxMTHEx8dTWVmJ3W4nISGBiy66iLS0NJKTk/nTn/7EJZdcQqdOnUz1dzqdGIaBYRg4nc4G2ypVc6l77rmHc845h0OHDvn3Af6Pv/nmG/8C12b6Tpw48ZjviRdffLHJ8/5wtkBUIPtpttD3aqmzHZ0hTqfzpPkTtOCMioqisLCQ6upqdu3ahdvtpqKign79+gFw//3389ZbbzF69Gh+85vfEBYWFqxRREImPT2dqqoq5s+ff9zH58yZQ21trf/PVBorJyeHO+64w7/9+9//nqFDhzZpVhFpnJCtx9m7d2+OHDnCueeey3PPPReqMUSC6vs/QxkzZgw1NTXcd999wHd/ojJnzhxyc3NJSUnh4osvNtW3bdu2/PnPf8bj8RAVFcWzzz4bjPFF5DhCFpzr1q0L1alFTpuwsDBeeeUVBg8ezMMPP8yECRMA6NKlC7W1taSkpJCXl3fK/W02W4AmFZHG0i33RIIsMjKS1atX88EHH/D73/8egNGjR1NWVkZBQQHt27cP8YQiYkbIrjhFzjaXXXYZl112GTNnzgz1KCLSBLriFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVEREzQ33GKnKGqqqrYsWMHAIcPH9aNFEROk4Bccfp8PtLT04mLiyMiIgKHw0FBQUEgWovIUfbt28d9991HTEwMPXr0AL67hd/YsWP59ttvQzydSMsXkOD0eDy4XC5KS0upqqrC7XaTmZlJbW1tINqLyP+zb98+rr32WvLy8hg0aBCvvfYa8N2iCTNnzqR3794cPnw4xFOKtGwBCU673U5aWho2mw2LxUJGRgZer5fq6mqSk5Pp3Lkzubm5DY5ZsmQJPXv2pGfPnrz55puBGEOkxXv00UfZuXMnhYWFLFy4kFtuuQWAgoICCgoK2Lx58ynd0q+qqooxY8YAkJubS11dXUDnFmlJAhKcRUVFuFwuYmNjsdlsREdHEx0djd1uJz8/n+nTpzd4/oEDB5gxYwZvvvkmq1evxu124/P5AjGKSIt18OBBFi9ezJAhQ7j++uuPeXzQoEEkJyfzwgsvUF9f3+i+R44coU+fPv7Afeyxx8jKygrY3CItTZODs6SkhNTUVLKzsykvL8fj8ZCTk0NCQgIAsbGxxxxTXFyM0+mkXbt2nHvuucTExPD55583dRSRFu2TTz6hurqa/v37n/A5t912GxUVFfzvf/8z1Xfr1q0N9r388svU1NSc8qwiLVmT31W7bds27HY7iYmJWK1W8vPzmTZtGjk5OSc8Zt++fdjtdv+23W5n3759dOvWrdHn3bRpE2FhYQ32Hb0t0hLddtttx+w7+mu/S5cuTTqHYRgBe5duIL8vA/09rtlC3685zdbYY5t8xZmSkoLD4SAmJob4+HgqKyux2+3+K87j6dSpE5WVlf7tAwcO0KlTJ1PndTqdGIaBYRg4nc4G2ypVS6zDhw/TsWNHbr/99gb7Af/HPXr04IILLsDn8zW6b319/TFXsWPHjg3IzD+crTn10mzNo19zme3oDHE6nSfNnyYHZ1RUFIWFhVRXV7Nr1y7cbjcVFRX069fvhMdcddVVvP3223i9Xvbv38+ePXvo2rVrU0cRadHatWvHPffcw8qVK1m2bNkxj8+ePZutW7cycuRIUz91WywWXnnlFebMmQPASy+9xB//+MeAzS3S0gT9BghZWVkUFxfj9XopLi5m9erVREVFMXr0aJKSkgCYOXMmFotuYiTyYyZMmMC7777L4MGDefHFF/3/bNuzZ0+2bt3KgAED+P3vf2+6b+vWrRk1ahTZ2dmkp6cHemyRFiXowblw4cLj7k9PT9c3qIhJ7du3Z926dcyePZu5c+cyatQoACorK3nmmWcYMWIEVqs1xFOKtGy65Z7IGaZdu3Y8/PDDPPjgg3z99deEhYVx3nnn6c1xIqeJglPkDGW1WvnpT38a6jFEzjr6xaKIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJiQsCC0+fzkZ6eTlxcHBERETgcDgoKCgLVXkSCpK6ujldeeYWBAwcCMGTIEIqKirRGrsgJBCw4PR4PLpeL0tJSqqqqcLvdZGZmUltbG6hTiEiAffnll/z2t79l0KBBlJSUALB27Vp69+5NcnIyVVVVIZ5QpPkJWHDa7XbS0tKw2WxYLBYyMjLwer1UV1eTnJxM586dyc3NbXDMifaLSPDV1dXhcrn48ssvWbFihX8x+T179vDcc8/x1ltvMWTIkFPqXVtbS2lpKYB/uSeRliJgwVlUVITL5SI2NhabzUZ0dDTR0dHY7Xby8/OZPn36McecaL+IBN9rr73Gxx9/zIIFCxg4cKD/5vBt27Zl5MiRTJo0ib/+9a/+AGys/fv307NnT379618D363ZW19fH/D5RUIlIMFZUlJCamoq2dnZlJeX4/F4yMnJ8S9mHRsbe9zjTrRfRIJv2bJldOnSxb802dHuu+8+WrVqZfq9Co8++ijbtm3zb7/yyisnXCVJ5EwUkJu8b9u2DbvdTmJiIlarlfz8fKZNm0ZOTk4g2h/Xpk2bjlkNQqtDiJjXqlXDl4Gjv4+mTZvGtGnTmnSO4cOHM3z48Cb1gMB/jweyn2YLfa+m9mvssQG54kxJScHhcBATE0N8fDyVlZXY7Xb/FWcwOJ1ODMPAMAycTmeDbZVK9eM1ZMgQOnbsyOHDh/37AP/Hu3fvJiwsjEmTJpnq+8gjjxzz/bpixYomz/vD2QJRgeyn2ULfqyn9js4Qp9N50vwJSHBGRUVRWFhIdXU1u3btwu12U1FRQb9+/QLRXkSCYOjQoezfv5/58+cf9/Enn3wSwPSC84899hgpKSn+7ccff5wBAwac+qAizcxpWY8zKyuL4uJivF4vxcXFrF69+qT7RST4evXqRXJyMm63mwMHDjBy5EgAdu/ezfTp03n22WcZMWIEcXFxpvq2bduWgoIC8vPzad++PRMnTgzG+CIhc1qC80RvDNAbBkRCJywsjFdffZW77rqLxx9/nEmTJgHQtWtXwsLCGDlyJE8//fQp92/Xrl2gRhVpVnTLPZGzWGRkJH/5y18oKyvjwQcfBGDixIl8+umnPPfcc8e8cUhETtMVp4g0bxdffDFTpkxhypQpoR5FpNnTFaeIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigv6OU0QC7n//+x8fffQRAIcOHSIiIiLEE4kETsCuOH0+H+np6cTFxREREYHD4TC9jp+InNkqKipIS0vjZz/7GcnJyQDExMTwhz/8gerq6hBPJxIYAQtOj8eDy+WitLSUqqoq3G43mZmZ1NbWBuoUItKMVVRUkJiYyOrVq7n//vv5+9//DkD//v159tln6dOnD4cPHw7xlCJNF7DgtNvtpKWlYbPZsFgsZGRk4PV6qa6uJjk5mc6dO5Obm+t//q5du7juuuu49tprueaaa3j//fcDNYqIhMCDDz7I/v37eeutt5g1axbXX389AIsXL2bZsmVs3ryZZ555xnTfr776imHDhgHfLVGmH8Yl1AIWnEVFRbhcLmJjY7HZbERHRxMdHY3dbic/P5/p06c3eH5UVBSrVq3i7bffZt68ebjd7kCNIiKn2VdffcWKFSsYNmwYl1122TGPDxo0CKfTydy5c/H5fI3ue/jwYa6//noWLFgAwOTJkxk+fHjA5hY5FQEJzpKSElJTU8nOzqa8vByPx0NOTg4JCQkAxMbGHnNMp06d6NSpE/Dd+n1WqzUQo4hICHz88cfU1dVx0003nfA5N998M5999hlVVVWN7vvPf/6T7du3YxiGf9/LL79MfX19k+YVaYqAvKt227Zt2O12EhMTsVqt5OfnM23aNHJycn702Pr6erKzs3nooYdMnXPTpk2EhYU12Hf0toicXt+/IeiHjv6+tNvtTTrHkSNHArbcWSBfMwL9+qPZTn+/xh4bkCvOlJQUHA4HMTExxMfHU1lZid1u919xnohhGGRlZXHTTTfRt29fU+d0Op0YhoFhGDidzgbbKpXq9NahQ4c455xzGDx4cIP933+f+3w+LrzwQq644gpTfevr67nlllsafO//8Y9/DMjM38/W3HppttPf7+gMcTqdJ82fgPzYFhUVRWFhYYN9jfmd5ahRo3A4HIwYMSIQY4hIiHTo0IG7776bp556ihtvvJHBgwf7HzMMg3HjxrFjxw4WLVpkqq/FYmHlypUsXLiQe++9l9dff52bb7450OOLmHJaboCQlZVFcXExXq+X4uJiVq9ezcaNG5k3bx6JiYls2LCBjh078uqrr56OcUQkCHJzc3n//fcZMmQIzz//vP9KMT4+nk8++YRhw4Zx5513mu7bqlUrhg8fzr333qvQlGbhtATnwoULj9mXlJSkt5WLtCDh4eGsW7eOZ599lrlz5/Lggw8CcM4557Bo0SLuvPNOvQ9BWgTdck9EAqZdu3aMGTOGBx54gIMHD2K1WunQoUOoxxIJKAWniARcWFgY55xzTqjHEAkKrY4iIiJigoJTRETEBAWniIiICQpOERERExScIiIiJig4RURETFBwioiImBCw4PT5fKSnpxMXF0dERAQOh4OCgoJAtReRs1B1dTUvvvgiN9xwA2FhYQwcOJA33nhDy4pJSAUsOD0eDy6Xi9LSUqqqqnC73WRmZuq2eiJySv71r39x0UUXMWzYMCoqKjAMgy1btnDTTTeRnJzMwYMHQz2inKUCFpx2u520tDRsNhsWi4WMjAy8Xi/V1dUkJyfTuXNncnNz/c//3//+R2JiIklJSVx11VVs2LAhUKOIyBnu22+/pU+fPhw+fJgNGzawfft2AHbv3s0LL7zA22+/TXp6+in1rq6uZvPmzQD+pahEzAjYLfeKioqYNWsWZWVlHDx4EJ/PR3R0NHa7nfz8fNavX09FRYX/+eeeey5vv/02VquVTz/9lJSUFN57771AjSMiZ7Bly5bxxRdfsH79enr16uXf37p1a4YPH87evXsZP348O3bs4MILL2x03z179uB0Otm1axcAgwYNoqCgAKvVGvDPQVqugFxxlpSUkJqaSnZ2NuXl5Xg8HnJycvwLWcfGxh5zjNVq9X+xHjhwgEsvvTQQo4hIC/DnP/+ZCy64oEFo/tCIESMICwvjlVdeMdU3JyeHzz77zL+9YsUKXn755SbNKmchIwDmzp1rdO/e3Thw4IBRU1Nj5OXlGeHh4cbEiRP9z8nLyzMmT57c4LhPP/3UuPrqq41zzz3XWL16daPP53Q6DUClUrXQCgsLC/kMqrO7TiYgV5wpKSk4HA5iYmKIj4+nsrISu93uv+I8kV/84he88847FBcXc//995s6p9PpxDAMDMPA6XQ22FapVGd2DRw4kPPOOw+v1+vfB/g//vjjjwGYPXu2qb5jx4495rWkqKioyfP+cLZAVCD7abYfr6MzxOl0njR/AhKcUVFRFBYWUl1dza5du3C73VRUVNCvX78THuP1ev0fn3POOURERARiFBFpAbKysvjqq69YsGDBMY8ZhsGUKVNo06YNQ4YMMdV30qRJDBkyhFatvnt7x5w5c0hOTg7IzHL2OC3rcWZlZVFcXIzX66W4uJjVq1fz3nvvMW7cOKxWK3V1dTz99NOnYxQROQP06dOHXr16MWrUKPbu3cvIkSMB2L59O1OnTmXp0qU8+uijdO7c2VTfdu3asWTJEl566SVatWrFqFGjgjG+tHCnJTgXLlx4zL5rrrmGt95663ScXkTOMBaLhb/85S8MHTqUSZMmMWnSJAAuuugi2rRpw2OPPcaECRNOub/eRStNoVvuiUizFBkZyYoVK/jkk0+YPHkyAE899RQVFRVMmjQJi0UvXxIap+WKU0TkVF1wwQU8+uijPProo6EeRQTQFaeIiIgpCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigv6OU0TOKp999hkfffQRAB6PB5vNFuKJ5EwTkCtOn89Heno6cXFxRERE4HA4KCgoCERrEZGA+Ne//oXL5aJ79+7ccsstAMTExDBy5Eiqq6tDPJ2cSQISnB6PB5fLRWlpKVVVVbjdbjIzM6mtrQ1EexGRJikvL+fqq6+mpKSE8ePHU1JSAkBqaiovvPACffr04fDhwyGeUs4UAQlOu91OWloaNpsNi8VCRkYGXq+X6upqkpOT6dy5M7m5uccct2/fPux2O0uWLAnEGCIixzV69GgMw2Dr1q2MHz+eK664AoAFCxbw8ssvs3nzZubNm2e67xdffEFKSgoADz/8cIPlEqXlCkhwFhUV4XK5iI2NxWazER0dTXR0NHa7nfz8fKZPn37c43Jzc7nmmmsCMYKIyHF99tlnFBYWMmrUKM4///xjHk9NTaVHjx48//zzpvpWVVVx7bXXsmLFCgCeeOIJfv/73wdkZmnemhycJSUlpKamkp2dTXl5OR6Ph5ycHBISEgCIjY097nE7d+5k3759XH755U0dQUTkhD7++GMMw8Dlcp3wOf369eNf//qXqV8vlZSU8OWXX+Lz+fz7li1b1qRZ5czQ5HfVbtu2DbvdTmJiIlarlfz8fKZNm0ZOTs5Jj3v88ceZPHkyixcvPqXzbtq0ibCwsAb7jt4WEflejx49jtl39GtG27Ztm3SOb7/9NmCvQ4F8PQv0a2NLna2xxzb5ijMlJQWHw0FMTAzx8fFUVlZit9v9V5zHs2XLFjp16kT37t1P+bxOpxPDMDAMA6fT2WBbpVKpvq8DBw7QoUMHMjMzG+wHMAyDuro6fvazn5GcnGyqb319PTfffHOD16X58+cHZObvZ2tuvVrqbEdniNPpPGn+NPmKMyoqisLCwgb73G73SY95//33KS0tpW/fvuzcuZMOHTrQvXt3evbs2dRxREQasNlsDB06lOeee44bbriBwYMH+x87cuQII0eO5Msvv+S5554z1ddisfDqq6+yZMkShg4dysaNG3/0BVdahqDfACErK4vi4mK8Xi/FxQLTqUUAACAASURBVMWsXr2a7OxssrOzAZgwYQIOh0OhKSJB88c//pHS0lKGDBnC008/zY033gjAL37xCyoqKhg3btwxV4+N0apVKzIzMxk6dKhC8ywS9OBcuHDhSR+fMGFCsEcQkbNceHg4a9euZf78+Tz//POMHz8egAsvvJA//elPpxSacvbSLfdE5KzQrl07Ro0axahRo6irq8NqtWKx6HbdYp6CU0TOOq1btw71CHIG049bIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkBC06fz0d6ejpxcXFERETgcDgoKCgIVHsRkWZl//79zJw5kx49emC1Wrnxxht59dVXOXLkSKhHkyALWHB6PB5cLhelpaVUVVXhdrvJzMw0tb6diMiZ4IMPPuBXv/oVY8aM8a+UUlZWxsCBA0lOTubgwYOhHlGCKGDBabfbSUtLw2azYbFYyMjIwOv1Ul1dTXJyMp07dyY3N7fBMe3btycpKYmkpCTmzZsXqFFERIJm//799O3blw4dOvDBBx9QXFwMwGeffcaLL77IO++8Q1ZW1in1rqysZN26dQD+ZbKk+QnYLfeKioqYNWsWZWVlHDx4EJ/PR3R0NHa7nfz8fNavX09FRUWDY7p06cLGjRsDNYKISNDl5+fzzTffUFhYyGWXXebfb7Vaufvuu/n888/Jzc1l165dptYc/ve//811113H3r17AbjjjjtYvnw5Vqs14J+DNE1ArjhLSkpITU0lOzub8vJyPB4POTk5/sWsY2Njj3vc3r17cTqd3HrrrXz66aeBGEVEJKhWrFjBFVdcweWXX37cx++77z4AXn31VVN9/+///o+vvvrKv71y5UpWrFhx6oNK8BgBMHfuXKN79+7GgQMHjJqaGiMvL88IDw83Jk6c6H9OXl6eMXny5AbHff3114ZhGMb69esNp9PZ6PM5nU4DUKlUqtNeFosl5DOogl8nE5ArzpSUFBwOBzExMcTHx1NZWYndbvdfcZ7IueeeC8Dvfve7Y/4Z98c4nU4Mw8AwDJxOZ4NtlUqlClb169ePLl26UFdX598H+D9+9913AViwYIGpvqNHj27wGmexWNi6dWuT5/3hbIGoQPZrLrMdnSE/tih5QIIzKiqKwsJCqqur2bVrF263m4qKCvr163fCYw4dOkR9fT0AH330ER07dgzEKCIiQXX33XezZ88eFi5ceMxjPp+P3NxcIiMjueOOO0z1nTZtGpmZmXTo0AGARYsWcdVVVwVkZgms07IeZ1ZWFsXFxXi9XoqLi1m9ejXbt2/n3nvvJTIyEoAXXnjhdIwiItIkN910E7169WLEiBF8/vnnjBgxAoB3332X3Nxc1qxZw+zZs/2vbY3Vrl078vLyyMvLIywsjCFDhgRjfAmA0xKcx/vJ7Morr2Tbtm2n4/QiIgHTqlUrXnvtNe6++26eeOIJpk2bBkBiYiKRkZHMnj2bP/zhDyGeUoJJt9wTETEpIiKC5cuXs3PnTmbMmAF8d4Hwn//8h9GjRxMWFhbiCSWYFJwiIqeoW7duPPDAAxiGwdChQ4mIiAj1SHIaKDhFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOERERE07LnYNEROTHlZWV8fHHHwOwb98+OnXqFOKJ5HgCcsXp8/lIT08nLi6OiIgIHA4HBQUFgWgtItLiffDBByQmJnLppZeSlpYGQJcuXRg2bBiHDh0K8XRytIAEp8fjweVyUVpaSlVVFW63m8zMTGprawPRXkSkxfrggw9wOp3s3r2b2bNn+684hw4dysKFC3G5XNTU1IR4SvmhgASn3W4nLS0Nm82GxWIhIyMDr9dLdXU1ycnJdO7cmdzc3AbH/POf/6Rv37706tWLoUOHBmIMEZEzTnZ2NlFRUZSUlDB69Gji4+MBeP7551myZAnvvPMOeXl5pvt+/PHHuFwuAMaMGYPX6w3o3GezgPyOs6ioiFmzZlFWVsbBgwfx+XxER0djt9vJz89n/fr1DRaqrq2tZcyYMaxYsQKbzRaIEUREzjhlZWVs2bKFWbNmERMTc8zjqampzJgxg7lz5/qXL2uMr776CqfTSWVlJQAzZ87k0KFDzJ07N2Czn82afMVZUlJCamoq2dnZlJeX4/F4yMnJISEhAYDY2Nhjjtm6dSuRkZGkp6eTlJTEX//616aOISJyxtm+fTsAvXv3Pu7jYWFh9O7dm+3bt2MYRqP7btmyhX379uHz+fz7VqxY0bRhxa/JV5zbtm3DbreTmJiI1WolPz+fadOmkZOTc8Jj9uzZwz/+8Q8+/PBDDMPg6quv5rrrruOcc85p9Hk3bdp0zNI9WspHRM5EF1988TH7jn49s1iadp2zb9++gL1GBvK1NtCv203p19hjm3zFmZKSgsPhICYmhvj4eCorK7Hb7f4rzuPp2LEjPXr0ICoqCrvdzqWXXsrOnTtNndfpdGIYBoZh4HQ6G2yrVCrVmVD79u2jXbt2DBs2rMF+AMMw+Pbbb+nYsSO33367qb719fXcdNNN/tdLi8XCypUrAzLz97M1t15N6Xd0hjidzpPmT5ODMyoqisLCQqqrq9m1axdut5uKigr69et3wmN69OjBzp07qauro7a2lh07dhAXF9fUUUREzigdO3YkIyODBQsWsGTJEv+LP8Dhw4dJT09n//79jBo1ylRfi8XCqlWrWLZsGQDvvfceAwYMCOjsZ7Og3wAhKyuL4uJivF4vxcXFrF69GpvNxpgxY7j++uupra0lOztbf+grImelmTNnsmPHDu666y5mzpxJnz59gO/eH7J//35mzZrFddddZ7pvq1atSE1NJS0tjcsuuyzQY5/Vgh6cCxcuPO7+1NRUUlNTg316EZFmrUOHDqxbt46XXnqJ559/nlmzZgHQq1cvsrOzufbaa0M8oRxNt9wTEQmxtm3bMnz4cIYPHx7qUaQRdJN3ERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkBC06fz0d6ejpxcXFERETgcDgoKCgIVHsREWmkiooKHnvsMS6++GKsViu/+93vKCgooLa2NtSjtQgBC06Px4PL5aK0tJSqqircbjeZmZn6HyUichq9+eabXHjhhUyZMoXo6Gjq6+v5/PPPSUtL44YbbuDgwYOhHvGMF7DgtNvtpKWlYbPZsFgsZGRk4PV6qa6uJjk5mc6dO5Obm+t/fklJCUlJSSQlJdGjRw/d5F1EpIn27NlD//79iYuLo7y8nKKiIgD+/e9/k5eXx+bNm7n33ntPqfd///tfVq5cCdBggezmoKKiwj/bD1eYCZaABWdRUREul4vY2FhsNhvR0dFER0djt9vJz89n+vTpDZ5/5ZVXsnHjRjZu3Eh2djYpKSmBGkVE5Kw0b948Dh06xF/+8hccDod/v8ViITMzkzFjxrB8+XJ2795tqu+2bduIj4/n9ttvB2DQoEHNJjzfffddLrzwQv9sGRkZQQ/PgARnSUkJqampZGdnU15ejsfjIScnx7+YdWxs7EmPX7RoEXfddVcgRhEROWutWrWKXr16NQjNHxo2bBg+n4/XX3/dVN/Ro0dTVVXl3165ciWrV69u0qyBcv/99/Ptt9/6txcvXsyGDRuCe1IjAObOnWt0797dOHDggFFTU2Pk5eUZ4eHhxsSJE/3PycvLMyZPnnzMsf/973+NCy64wNT5nE6nAahUKpXqB2W1WkM+Q0upkwnIFWdKSgoOh4OYmBji4+Op/P/Yu/foqMp7/+OfySBEYIYMAdsqPSqw7IqNQMELQWSPJDZUtDFN4+UUGYVwpkZMpU29IvVwUVe1VmsvmqYQFGx7NFoIbdECZsAogxSQIYBNBNpAhZAIRIIkIdm/P1jMr4EQs2HvTID3a63vWt17T57nmxry4dkz7GffPvl8vuiKsz0LFy7UHXfcYXlOwzBkmqZM05RhGK2OKYqizsW6/vrrdemll+rIkSPRc5Ki/3vp0qWSpNdee83SuPfee2+r37/nnXeeysvLT7vf/+ztVOuuu+5q1VuPHj1UWVlpaYzjM8QwjHbzx5b9OBMSEqL/QY6ZNm1ah752wYIFev311+1oAwDOaVOmTNFtt92moqIiTZ48udW1xsZGzZ49WxdccIFuvvlmS+M+/fTTOnz4sBYtWqSamhr96U9/0uWXX25n66fshRdeUHNzs/7yl7+otrZWS5Ys0aBBgxyds1M2sp40aZLC4bAaGhoUDoej98YjkYh69uzp+DcJAOeCzMxMXX/99fqf//kfbd26Nbox9tKlSzV79myVlZXp5ZdfVo8ePSyNe/7556uwsFCFhYVyuVy68cYbnWj/lPTu3Vsvv/yyJMnlciktLc3xOTslOOfOndvm+SuuuEJlZWWd0QIAnPXOO+88LV68WN///vf17LPP6plnnpEkfetb39IFF1zABzFtwiP3AOAs0rt3by1YsEA7duzQr371K0nS66+/rqqqKkLTJgQnAJyFvvrVryo3N1emaSorK0vdu3ePdUtnDYITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsKBTnhwEADhzmaapsrIybd26VZK0Z88efelLX4pxV0eZpqmVK1fqH//4hySppqZG/fr1c3RO21acLS0tmjhxoi6++GL17t1bgwcP1h/+8Ae7hgcAxMA777yjK664Qtddd52mTJki6ejDFe6++24dPHgwpr0tXbpUSUlJ8vv90efyDhgwQMFgUJ9//rlj89oWnAcOHNC3vvUtbdy4UXV1dZo2bZruuusuNTY22jUFAKATvfPOO0pPT1dTU5Pmzp2rf/7zn5Kke+65Ry+//LJuvPFGNTQ0xKS3v/71r7rpppvkdrv1yiuvRHu7++679dvf/lYZGRlqampyZG7bgtPn8+mOO+5Qnz59FBcXp0AgoIaGBtXX1ystLU39+/fX7Nmzo683TVNTp05VSkqKrrrqKi1YsMCuVgAAp8k0Td1333265JJLtHr1at199936r//6L0nS888/r/nz52vVqlVauHCh5bFXr16tlJQUSdIPfvADy+Hb0tKiqVOnKikpSatXr9aECROivf3mN7/Riy++qL/97W964403LPfWEbYF59/+9jd961vf0oABA9SnTx995Stf0Ve+8hX5fD4VFRXp6aefbvX68vJylZeX6/3331dpaalmzJhhVysAgNP03nvvqby8XA899JB8Pt8J17/3ve/p61//ul588UVL4/7zn//UDTfcoDVr1kiSfvGLXyg/P9/SGMuXL9e2bds0ffp0eTyeE67n5ORo4MCBlnvrKFuCc82aNbr99tuVl5enf/zjHzpw4IAefPBBXXnllZKO3nM+3oUXXqju3burqalJn332mfr27WtHKwAAG3z00UeSpLFjx7Z5/djel8c+MNRRq1at0sGDB9XS0hI9t2jRIktjHJvzZL3FxcVp7NixlnvrKFs+Vbt+/Xr5fD6NGjVKbrdbRUVFevLJJ/Xggw+e9Gt8Pp8GDRqkyy67TPX19XrppZc6PN+wYcP0/PPPy+VytTp//DEA4PRceumlJ5yz+3dvVVXVKY1xwQUXnHDudHrr6GttWXHedtttGjx4sC688EJdfvnl2rdvn3w+X3TF2Za3335bu3btUmVlpbZu3apHH320w/e5n3vuOZmmSVEURTlUe/bsUffu3XXvvfe2Oi8dff/z008/Vc+ePTV58mRL4x45ckQ33XRT9Pd5jx49tGzZMktjVFVVye1264EHHmizt927d6t79+7Ky8s75e+/PbasOBMSErR06dJW56ZNm/aFX9e3b1+53W55PB41NTWpubnZjnYAAKfpggsu0IQJE/Sb3/xGV199te68887oimzfvn3Kzs5WQ0ODpk6damlct9utP/3pTyopKVFNTY3GjBmjyy67zNIYAwYMUHZ2tp599lmNGDFC2dnZ0d5qamr03e9+V6ZpKjc319K4HeUyvyhabTBp0iSFw2E1NDQoKSlJJSUlam5u1uTJk1VRUaHGxkbdeeedysvLc7oVAEAH1dfXa/z48QqFQrr88suVmpqqF154QT179lRDQ4Pmzp2riRMnxqS3AwcOaNy4cVq9erWGDBkiwzD0wgsvKD4+Xs3NzVq4cKGys7MdmbtTghMAcGZqbGzUq6++qhdffFFbt27VgQMHlJOTo6lTp2ro0KEx7e3w4cNasGCBXnrpJVVUVOjAgQP6/ve/r6lTp+rrX/+6Y/MSnAAAWMBD3gEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACxwLDhbWlrUq1cvrVixotX5rKws5eXlOTUtAACO6ubUwHFxcUpOTlYkEtHYsWMlSaFQSKFQSBUVFU5NCwCAoxy9VTt06FBFIhFJR1eg06ZN08yZM+Xz+bRgwQKlpKQoJSVF77zzjpNtAABgG8dWnJI0bNgwzZ8/X5I0b948HTlyRMFgUPv379czzzyj1atX6+DBg0pLS9O6desUF8dbrgCArs3xFWd5ebnq6uo0ffp0Pffcc3K73QqHwzIMQ/Hx8erXr58uvPBC7dixo8Pj3n///br//vtPegwAQEe1lSntMh1UV1dnulwu89ZbbzUzMzOj5xcuXGj+5Cc/iR7/93//t7lmzZoOj2sYhimJoiiKohyp9jh6q9bj8WjgwIFatGiRtmzZEj2fmJioffv2RY/379+vxMRES2MbhqHS0lJJkt/vl6ToMQAAHXV8hhw7PhnH31SsrKzU4cOHdemll0bPXXPNNVq1apUaGhr06aefateuXbrkkkucbgUAgNPm6IrzZBISEnT//fdHU/1nP/sZHwwCAJwRYhKckjRx4kRNnDgxVtMDAHBKWOYBAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8HZ0tKiXr16acWKFa3OZ2VlKS8vz8mpAQBwhKOP3IuLi1NycrIikYjGjh0rSQqFQgqFQqqoqHByagAAHOH4rdqhQ4cqEolIOroCnTZtmmbOnCmfz6e0tDT1799fs2fPdroNAABs4XhwDhs2LBqc8+bN05EjRxQMBiVJRUVFevrpp51uAQAA2zi+O8rQoUNVXl6uuro6TZ8+XQsXLpTb7ZYkDRgwwOnpAQCwlePBOWTIEB06dEhTpkxRSkpK9L3O0xUKheRyuVqdO/4YAICO6miGOB6cHo9HAwcO1KJFi7RlyxbbxjUMQ6WlpZIU3RD72DEAAB11fIYcOz6ZTtnIurKysjOmAQDAcZ0SnCczadIkhcNhNTQ0KBwOq6SkJJbtAADwhWIanHPnzo3l9AAAWMYj9wAAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAkeDs6WlRb169dKKFStanc/KylJeXp6TUwMA4AhHn1UbFxen5ORkRSKR6D6coVBIoVBIFRUVTk4NAIAjHL9VO3ToUEUiEUlHV6DTpk3TzJkz9emnn2rMmDG67rrrNHr0aK1du9bpVgAAOG2O744ybNgwzZ8/X5I0b948HTlyRMFgUPv379ebb76pxMREbd68WcFgUKtWrXK6HQAATovjwTl06FCVl5errq5O06dP18KFC+V2u5WYmBh9TY8ePeR2u51uBQCA0+Z4cA4ZMkSHDh3SlClTlJKSEn2v85jm5mbl5eXpoYcesjRuKBSSy+Vqde74YwAAOqqjGeJ4cHo8Hg0cOFCLFi3Sli1bWl0zTVOTJk3STTfdpHHjxlka1zAMlZaWSpL8fr8kRY8BAOio4zPk2PHJOB6cklRZWdnm+fvuu0+DBw/WPffc0xltAABw2mL2AITS0lIVFBRo+fLl8vv9+s53vhOrVgAA6LBOWXG2xe/3q7GxMVbTAwBwSnjkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFjganC0tLerVq5dWrFjR6nxWVpby8vKcnBoAAEc4+si9uLg4JScnKxKJRLcTC4VCCoVCqqiocHJqAAAc4fit2qFDhyoSiUg6ugKdNm2aZs6cqcbGRo0aNUp+v1/XXHONli9f7nQrAACcNscf8j5s2DDNnz9fkjRv3jwdOXJEwWBQkrRq1Sq53W5t27ZNt912mz744AOn2wEA4LQ4HpxDhw5VeXm56urqNH36dC1cuFBut7vVa/bv368hQ4Y43QoAAKfN8eAcMmSIDh06pClTpiglJSX6Xqckbd++XXfeeac++ugjzZs3z9K4oVBILper1bnjjwEA6KiOZojLNE3T4V40ePBg7dy5U1u2bNGll156wvVt27Zp7Nix2rFjR4fG8/v9ko5uht3WMQAAHdVWprSXJ52ykXVlZeUJ5xoaGtSjRw9JktfrVe/evTujFQAATkunBGdbPvjgAz3yyCNyu91qamrS888/H6tWAADosJgF5+jRo7Vy5cpYTQ8AwCnhkXsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYIFjwdnS0qJevXppxYoVrc5nZWUpLy/PqWkBAHCUY8+qjYuLU3JysiKRSHQPzlAopFAopIqKCqemBQDAUY7eqh06dKgikYikoyvQadOmaebMmfL5fJKk2tpa+Xw+LViwwMk2AACwjaPBOWzYsGhwzps3T0eOHFEwGIxenz17tkaPHu1kCwAA2MrRbcWGDh2q8vJy1dXVafr06Vq4cKHcbreko5tb19bWasSIEU62AACArRwNziFDhujQoUOaMmWKUlJSou91StKMGTM0a9YsvfLKK6c0digUksvlanXu+GMAADqqoxniaHB6PB4NHDhQixYt0pYtW6Ln33vvPSUmJmrQoEGnPLZhGCotLZUk+f1+SYoeAwDQUcdnyLHjk3E0OKWjt2SPt3btWm3cuFHjxo1TZWWlevXqpUGDBiklJcXpdgAAOC2OB2db8vLyov+W8/HHH9fgwYMJTQDAGSEmwfmfHn/88Vi3AABAh/HIPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALHA0OFtaWtSrVy+tWLGi1fmsrKzoI/cAADiTOPrIvbi4OCUnJysSiUS3FAuFQgqFQqqoqHByagAAHOH4rdqhQ4cqEolIOroCnTZtmmbOnCmfz6fzzz9ffr9ffr9fBQUFTrcCAMBpc/wh78OGDdP8+fMlSfPmzdORI0cUDAYlSRdddBF7aAIAziidsuIsLy9XXV2dpk+frueee05ut1uStHv3bhmGoVtuuUXbtm1zuhUAAE6f6bC6ujrT5XKZt956q5mZmdnq2t69e03TNM1ly5aZhmF0eEzDMExJFEVRFOVItcdlmqYphw0ePFg7d+7Uli1bdOmll570NZWVlR0az+/3S1L0Nu/xxwAAdFRbmdJennTKRtZtBeLBgwd1/vnny+12a9OmTerbt29ntAIAwGnplOBsy+bNmxUMBuXxeCRJL730UqxaAQCgw2IWnFdffbXWr18fq+kBADglPHIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHAvOlpYW9erVSytWrGh1PisrS3l5eU5NCwCAoxx75F5cXJySk5MViUQ0duxYSVIoFFIoFFJFRYVT0wIA4ChHb9UOHTpUkUhE0tEV6LRp0zRz5kz5fD59+OGHGjdunMaOHau7777byTYAALCNow95HzZsmObPny9Jmjdvno4cOaJgMKjGxkbl5+fr9ddfV58+fZxsAQAAWzm+4iwvL1ddXZ2mT5+u5557Tm63W6tXr5bH49HEiRPl9/u1ZMkSJ9sAAMA2jq44hwwZokOHDmnKlClKSUmJvte5a9curVu3Ths2bJBpmrr22ms1ZswYeb1eJ9sBAOC0ORqcHo9HAwcO1KJFi7Rly5bo+b59+2rkyJFKSEiQdDRgKysrNXz48A6PHQqF5HK5Wp07/hgAgI7qaIY4vpF1ZWXlCedGjhypRx99VE1NTTJNU1u2bNHFF19saVzDMFRaWipJ8vv9khQ9BgCgo47PkGPHJ+N4cLalT58+ys/P1/XXX6/Gxkbl5eUpMTExFq0AAGBJTIJTkm6//XbdfvvtsZoeAIBTwiP3AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACR4OzpaVFvXr10ooVK1qdz8rKUl5enpNTAwDgCEefVRsXF6fk5GRFIpHoXpyhUEihUEgVFRVOTg0AgCMcf8j70KFDFYlEJB1dgU6bNk0zZ85URUWFHnjgAUnS4cOHVVFRodraWqfbAQDgtDgenMOGDdP8+fMlSfPmzdORI0cUDAbldruje5+9+uqrevfdd51uBQCA0+b4h4OGDh2q8vJy1dXVafr06Xruuefkdrtbvebll1/WnXfe6XQrAACcNpdpmqaTE3z22Wfq06ePsrOz1dTUpDfeeKPV9d27d8vv92vr1q0dHtPv9ysUCtndKgAAkqT2otHxW7Uej0cDBw7UokWLtGXLlhOuL1y4UHfccYflcQ3DiN7q9fv9khQ9BgCgo47PkGPHJ+N4cEpSZWXlSa8tWLBAr7/+eme0AQDAaYvpAxAikYh69uypQYMGxbINAAA6LKbBecUVV6isrCyWLQAAYAmP3AMAwAKCEwAACwhOAAAsIDgBALCA4AQAS+HVogAAIABJREFUwAKCEwAACwhOAAAsIDgBALCA4AQAwAJHg7OlpUW9evXSihUrWp3PyspSXl6ek1MDAOAIRx/yHhcXp+TkZEUiEY0dO1aSFAqFFAqFVFFR4eTUAAA4olM2so5EIpKOrkCnTZummTNnKiEhQVOnTlVKSoquuuoqLViwwOlWAAA4bY4H57Bhw6LBOW/ePB05ckTBYFDl5eUqLy/X+++/r9LSUs2YMcPpVgAAOG2O78c5dOhQlZeXq66uTtOnT9fChQvldrt14YUXqnv37mpqatJnn32mvn37Ot0KAACnzfHgHDJkiA4dOqQpU6YoJSUl+l6nz+fToEGDdNlll6m+vl4vvfSS060AAHDaHA9Oj8ejgQMHatGiRdqyZUv0/Ntvv61du3apsrJSBw4c0OjRo3XjjTeqR48eHRo3FArJ5XK1Onf8MQAAHdXRDHE8OCWpsrKyzfN9+/aV2+2Wx+NRU1OTmpubOzymYRgqLS2VJPn9fkmKHgMA0FHHZ8ix45OJ2QMQ0tLSZJqmrr32Wo0aNUr33XefevbsGat2AADokE5ZcbbF7XarqKgoVtMDAHBKeOQeAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABTF7AAIA4Ox1//33a8OGDbFuo5Vhw4bpueeeO+1xWHECAGy3YcMGy8HZ2NioUCikzz77rNX5w4cPKxQKqb6+vlP7OZlOWXGWlZVpxowZ+uCDDxQXF6cbbrhBr732WmdMDQCIkWHDhlnafOPPf/6zsrOzFQ6H1a3b/4+n1157TZMnT1Y4HFZc3Kmt977owe1WOL7iLC4uVmZmpnJzc1VdXa2qqirl5OQ4PS0A4Ayzdu1aDRs2rFVoStKaNWs0YsSIUw5NuznaRX19vYLBoAoKCpSVlaX4+Hh5PB6lp6dLkhYsWKCUlBSlpKTonXfecbIVAMBpeOutt3TfffdpxowZqq2tdWSOtWvX6qqrrjrh/Jo1a9o8HyuO3qo9ttl0RkbGCdf279+vZ555RqtXr9bBgweVlpamdevWdZm/UQAAjlq4cKEmTJggl8sl0zS1cOFCrVu3Tn369LF1nrVr1+q2225rda6lpUXr1q3T1KlTtWfPHmVmZqp79+76/PPP9cQTTyg1NdXWHjrC0ZSqqamRz+drc1ftcDgswzAUHx+vfv366cILL9SOHTucbAcAcAqefvrpaGhK0rZt27R48WJb59i1a5d2796tESNGtDq/YcMGHTx4UCNHjlS/fv20atUqlZaW6ve//70eeughW3voKEdXnMOHD9f27dtVUlKi8ePHq66uTuFwWOnp6aqtrZXP54u+1ufzqba2VgMHDuzQ2MdWs/+prYAGANhv4sSJmjhxYruvMQyjw+Pt3LlTkpSQkNDq/KuvvqqRI0fqq1/9aqvz+/fv15AhQzo8vtR2bvynjmaIoyvO5ORkFRYWKj8/X16vV0lJSVq5cqUkKTExUfv27Yu+dv/+/UpMTOzw2IZhyDRNmaYpwzBaHVMURVH21S9/+UtJir6V9qUvfUl79uxp92ushKYkJSUlqU+fPnrqqae0f/9+ffrpp3rxxRf161//Wk899VT0ddu3b9fo0aOVnp6uzMxMS3OcLCeOz5Av6t3xf44SCAQUCAROOH/NNdfo4YcfVkNDg+rr67Vr1y5dcsklTrcDALDo3nvvVZ8+fbRkyRL98Y9/1Jo1a3TBBRfYOofX69WSJUv04IMPasCAAerZs6eGDRumpUuXasyYMdHXXXrppXr33Xe1bds2jR07VjfddJOtfXREzJ4clJCQoPvvvz/6b2t+9rOf8cEgAOiiJkyYoAkTJuiPf/yj/uu//suROUaPHq2ysrKTXm9oaFCPHj0kHQ3a3r17O9LHF4npI/c6co8cAABJ+uCDD/TII4/I7XarqalJzz//fEz64Fm1AABHbNiwwdYn9khH32c1TVPdunXTrFmzNGvWrA73MmzYMFt6IDgBALazK6TsMmzYMIITANB12bELSVfFp3EAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwIJOCc6ysjKlpqbK6/UqISFB2dnZnTEtAAC2czw4i4uLlZmZqdzcXFVXV6uqqko5OTlOTwsAgCMcDc76+noFg0EVFBQoKytL8fHx8ng8Sk9PlySlpaWpf//+mj17tpNtAABOk2ma2r17d6zb6BIcDc5jm4ZmZGS0eb2oqEhPP/20ky0AAE7Tnj17dOWVV+orX/mKpKO7WZ3LHA3Ompoa+Xy+k+6qPWDAACenBwDY4N5779X69eujx/n5+e1u/3W2czQ4hw8fru3bt6ukpEQtLS3av3+/3nrrLSenBADY7MMPP5Rpmq3Obdq0KUbddAGmw4qKiszLLrvM7NWrl/nlL3/ZfOSRR1pdnzdvnjlr1ixLYxqGYUqiKIqiKEeqPY7vjhIIBBQIBGwf1zAMlZaWSlJ0v7djxwAA++zatUvp6ekqLy+XJM2cOVOPPfZYjLuyz/EZ8kV7iMZ0W7FJkyYpHA6roaFB4XBYJSUlsWwHANCGiy66SBs2bNC//vUvDRo06KwKzVMR0+CcO3duLKcHAHRQt27dNHDgwFi30SXwyD0AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsKBTgrOsrEypqanyer1KSEhQdnZ2Z0wLAIDtHA/O4uJiZWZmKjc3V9XV1aqqqlJOTo7T0wIA4AhHH/JeX1+vYDCowsJC3XLLLZKk+Ph4paen6+OPP9bdd98t0zRlmqaee+45XXnllU62AwDnjE8//VQ//elPtWfPHo0dO1YTJkyQy+WKdVtnBUeDMxQKyeVyKSMj44RrCQkJevPNN5WYmKjNmzcrGAxq1apVTrYDAOeE+vp6XXfdddq8ebPi4uJUVFSkf//733rwwQdj3dpZwdFbtTU1NfL5fG3+LScxMVGJiYmSpB49esjtdjvZCgCcM0KhkDZv3ixJamlpkSQ999xzsWzp7GI6KBKJmN26dTMXL15sNjc3m/v27TOXLl3a6jVHjhwxb7zxRvOvf/1rh8c1DMOURFEURVGOVHscXXEmJyersLBQ+fn58nq9SkpK0sqVK6PXTdPUpEmTdNNNN2ncuHGWxjYMI/r+qGEYrY4piqLO5Tp48KAuv/zyVr8zn3rqKVvGPva7+2yq4zPEMIx288fR9zglKRAIKBAItHntvvvu0+DBg3XPPfc43QYAnDN69eqlVatW6emnn9ZTTz2lV155Rd/73vdi3dZZI2YPQCgtLVVBQYGWL18uv9+v73znO7FqBQDOOn379tWTTz4pSXyi1maOrzhPxu/3q7GxMVbTAwBwSnjkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFnRKcJaVlSk1NVVer1cJCQnKzs7ujGkBALCd48FZXFyszMxM5ebmqrq6WlVVVcrJyXF6WgAAHOFocNbX1ysYDKqgoEBZWVmKj4+Xx+NRenq69uzZo1GjRsnv9+uaa67R8uXLnWwFALq8I0eOaPv27dq7d2+sW0E7HA3OUCgkl8uljIyME67169dPq1atUmlpqX7/+9/roYcecrIVAOjSqqurdfXVV2vgwIG64IIL9PDDD0f3v0TX4mhw1tTUyOfztbmdjdvtltvtliTt379fQ4YMcbIVAOjSpk2bpg0bNkSPn3rqKf31r3+NYUc4KdNBkUjE7Natm7l48WKzubnZ3Ldvn7l06dLo9W3btpnXXnut2a9fP7OkpKTD4xqGYUqiKIqiKEeqPS7TdPZewPz58/XEE09o165d8ng8mjRpkubMmdPqNdu2bdPYsWO1Y8eODo3p9/slHd0Mu61jADjTBAIBvfLKK61uz7711lv65je/eVrjulwuW2/52j1eV9BWprSXJ45vZB0IBBQIBE4439DQoB49ekiSvF6vevfu7XQrANBlPfvss6qoqND7778vSZo5c+Zphyac4XhwnswHH3ygRx55RG63W01NTXr++edj1QoAxFxiYqLKyspUXV2tL3/5y3rsscdi3RJOImbBOXr0aK1cuTJW0wNAl+NyufSlL30p1m3gC/DIPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwoFOCs6ysTKmpqfJ6vUpISFB2dnZnTAsAgO0cD87i4mJlZmYqNzdX1dXVqqqqUk5OjtPTAgDgCEeDs76+XsFgUAUFBcrKylJ8fLw8Ho/S09Ojr6mtrZXP59OCBQucbAUAbFdbW6v7779ft956q1544QW1tLTEuiV0Akd3RwmFQnK5XMrIyDjpa2bPnq3Ro0c72QYA2O7zzz+X3+/Xpk2bFBcXp9dee01VVVX66U9/GuvW4DBHV5w1NTXy+XxyuVxtXq+srFRtba1GjBjhZBsAYLvVq1dr06ZNkhRdab744ouxbAmdxNEV5/Dhw7V9+3aVlJRo/PjxqqurUzgcjt6qnTFjhmbNmqVXXnnF8tjHVrP/6WQBDQCd4bPPPrPt95Cdv8/s/t14tv6u7ej35eiKMzk5WYWFhcrPz5fX61VSUlJ08+r33ntPiYmJGjRo0CmNbRiGTNOUaZoyDKPVMUVRlNPV2NiolJSUVr+XnnjiCVvGlmRbn3aO5cR4XaGOzxDDMNrNH0dXnJIUCAQUCAROOL927Vpt3LhR48aNU2VlpXr16qVBgwad8IMIAF3Reeedp2XLlun555/XI488oj/84Q+67bbbYt0WOkHMHoCQl5enUCikpUuXasKECfrxj39MaAI4o/Ts2VMPP/ywJBGa5xDHV5wd8fjjj8e6BQAAOoRH7gEAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYEGnBGdZWZlSU1Pl9XqVkJCg7OzszpgWAADbOR6cxcXFyszMVG5urqqrq1VVVaWcnBynpwUAwBGOBmd9fb2CwaAKCgqUlZWl+Ph4eTye6H6c559/vvx+v/x+vwoKCpxsBQAkSY2Njdq0aZO2bdsW3SYLsMLRh7wf22w6IyOjzesXXXSRSktLnWwBAKL27t2rtLQ0bdy4UZI0efJkFRQUKC6Oj3ug4xz9aampqZHP5zvprtq7d++WYRi65ZZbtG3bNidbAQA98MADikQi0ePf/e53+r//+78YdoQzkumgSCRiduvWzVy8eLHZ3Nxs7tu3z1y6dGn0+t69e03TNM1ly5aZhmF0eFzDMExJFEVRFOVItcdlms7e5J8/f76eeOIJ7dq1Sx6PR5MmTdKcOXNOeN3gwYNVWVnZoTH9fr8kRW/zHn8MAG35wQ9+oF/84hetzi1ZskTjx48/rXFdLpet75faOV5X7q2raCtT2ssTxzeyDgQCCgQCJ5w/ePCgzj//fLndbm3atEl9+/Z1uhUA57g5c+bo448/1p///GdJ0qxZs047NHHucTw4T2bz5s0KBoPyeDySpJdeeilWrQA4R/Tu3VtLlizRwYMH5fF4NH369Fi3hDNQzILz6quv1vr162M1PYBzWO/evWPdAs5gfAYbAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACzolOAsKytTamqqvF6vEhISlJ2d3RnTAgBgO8eDs7i4WJmZmcrNzVV1dbWqqqqUk5Pj9LQAADjC0eCsr69XMBhUQUGBsrKyFB8fL4/Ho/T0dEnShx9+qHHjxmns2LG6++67nWwFwBmqpqZGubm5Gj9+vGbNmqWmpqZYt4RznKO7o4RCIblcLmVkZJxwrbGxUfn5+Xr99dfVp08fJ9sAcIY6fPiwxo4dq02bNsnlcukvf/mLduzYod/97nexbg3nMEdXnDU1NfL5fHK5XCdcW716tTwejyZOnCi/368lS5Y42QqAM9CGDRsUiURkmqZaWlokSS+//LKam5tj3BnOaaaDIpGI2a1bN3Px4sVmc3OzuW/fPnPp0qWmaZrmq6++al588cXmvn37zE8//dRMSkoyDxw40KFxDcMwJVEURVGUI9UeR1ecycnJKiwsVH5+vrxer5KSkrRy5UpJUt++fTVy5EglJCTI5/NpyJAhqqys7PDYhmHINE2ZpinDMFodUxR1dlRzc7PGjx/f6s/+nDlzbBlbkm192jnWudRbV6njM8QwjHbzx/FP1QYCAX300Uc6ePCgPvnkE82ZM0eSNHLkSFVWVqqpqUmNjY3asmWLLr74YqfbAXAGiYuL05tvvqlf/vKXko5+Sv+RRx6JcVc418XsAQh9+vRRfn6+rr/+eo0ePVp5eXlKTEyMVTsAuqjzzjtP9957ryTpO9/5Toy7ARz+VO0Xuf3223X77bfHsgUAACzhkXsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFjQKcFZVlam1NRUeb1eJSQkKDs7uzOmBQDAdo4HZ3FxsTIzM5Wbm6vq6mpVVVUpJyfH6WkBAHCEo8+qra+vVzAYVGFhoW655RZJUnx8vNLT07VmzRo98MADko7u8l5RUaHa2lon2wHQSQ4fPqxIJKLu3bvriiuuUFwc7wrh7OFocIZCIblcLmVkZJxw7eqrr1Zpaakk6dVXX9W7777rZCsAOklNTY3Gjh2rSCQiSfr2t7+t4uJidesW0z0lANs4+tfAmpoa+Xw+uVyudl/38ssv684773SyFQCdZPr06dq0aVP0ePHixSosLIxhR4DNTAdFIhGzW7du5uLFi83m5mZz37595tKlS1u95pNPPjG/9rWvWRrXMAxTEkVRFEU5Uu1xdMWZnJyswsJC5efny+v1KikpSStXrmz1moULF+qOO+6wPLZhGDJNU6ZpyjCMVscURcWuZsyYccKf1zfeeOO0x5Vka592jkdvZ3YdnyGGYbSbP46/6RAIBBQIBE56fcGCBXr99dedbgNAJ3n00Ue1Y8cOLVy4UM3NzZo9e7YyMzNj3RZgm5h+1C0Siahnz54aNGhQLNsAYKPu3btr/vz5Onz4sKSjQQqcTWIanFdccYXKyspi2QIAh/ApWpyt+MdVAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGBBpwRnWVmZUlNT5fV6lZCQoOzs7M6YFgAA2zkenMXFxcrMzFRubq6qq6tVVVWlnJwcp6cFAMARjgZnfX29gsGgCgoKlJWVpfj4eHk8HqWnp8s0TU2dOlUpKSm66qqrtGDBAidbAdCOvXv3avLkyfL7/frRj36kQ4cOxboloMtydPuCUCgkl8uljIyME66Vl5ervLxc77//vurr63XFFVdowoQJTrYDoA2NjY1KS0tTJBKRaZoKhULatm2b3nzzzVi3BnRJjq44a2pq5PP55HK5Trh24YUXqnv37mpqatJnn32mvn37OtkKgJPYunWrNm7cKNM0o+f+9Kc/6fPPP49hV0DX5eiKc/jw4dq+fbtKSko0fvx41dXVKRwOKz09XT6fT4MGDdJll12m+vp6vfTSS5bGPraa/U9tBTSAU9OzZ09bxrHzz6Xdf8bprWuM11V09PtydMWZnJyswsJC5efny+v1KikpSStXrpQkvf3229q1a5cqKyu1detWPfroo2poaOjw2IZhyDRNmaYpwzBaHVMU1fFqaWnRxIkTW/35mjVrli1jS7KtTzvHoreuM15XqOMzxDCMdvPH8S3aA4GAAoFAm9f69u0rt9stj8ejpqYmNTc3O90OgOO4XC7NmzdPN9xwg+68804tXrxYN998c6zbArqsmD0AIS0tTaZp6tprr9WoUaN033332XZrCIA1cXFx0Q/nEZpA+xxfcZ6M2+1WUVFRrKYHAOCU8Mg9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAs6JTgLCsrU2pqqrxerxISEpSdnd0Z0wIAYDvHg7O4uFiZmZnKzc1VdXW1qqqqlJOT4/S0AAA4wtHgrK+vVzAYVEFBgbKyshQfHy+Px6P09HRJ0k9+8hONGjVKfr9fmzZtcrIV4Kzz+eefKxQKqaysTEeOHIl1O8A5w9GHvB/bbDojI+OEaxs2bNCaNWv03nvvaceOHZo8ebKWL1/uZDvAWaO2trbVXzivu+46vfXWWzr//PNj3Blw9nN0xVlTUyOfz9fmrtr/+Mc/NGLECEnSJZdcoi1btvC3ZqCDZs2apfLy8ujxqlWr9MILL8SwI+AcYjooEomY3bp1MxcvXmw2Nzeb+/btM5cuXWqapmlu2rTJHDVqlNnQ0GD+/e9/N10ul7l3794OjWsYhimJoiiKohyp9jh6qzY5OVmFhYXKz8/XHXfcIY/Ho0mTJik9PV1f//rXdccddygtLU2XXXaZrrjiCiUmJnZ4bMMwVFpaKkny+/2SFD0GznY///nP9cMf/rDVuT/+8Y+69dZbT2tcl8sl0zRPawynxqO32I/lxHhdwfEZcuz4ZBzfyDoQCCgQCLR5berUqZo6dao2bdqkp59+us1bugBO9IMf/ED/+te/VFBQoEOHDumJJ5447dAE0DGOB2d7vvnNb+rIkSPq16+ffvWrX8WyFeCMEhcXp5///Od69tlnFRcXp4cffjjWLQHnjJgG59tvvx3L6YEzHndpgM7HI/cAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAJbg7OsrEypqanyer1KSEhQdna2ncMDABBztgVncXGxMjMzlZubq+rqalVVVSknJ8eu4QEA6BJsCc76+noFg0EVFBQoKytL8fHx8ng8Sk9PlySlpaWpf//+mj17dvRrFixYoJSUFKWkpOidd96xow2gS6uurtaECRM0YsQITZ48Wfv27Yt1SwBOgS27o4RCIblcLmVkZLR5vaioSMuWLdPOnTslSfv379czzzyj1atX6+DBg0pLS9O6desUF8dbrjg7HTlyROnp6frwww9lmqbWr1+vioqK6J8dAGcOW5KqpqZGPp/vpL8ABgwY0Oo4HA7LMAzFx8erX79+uvDCC7Vjxw47WgG6pB07dmjDhg0yTVOSZJqmVq1apdra2hh3BsAqW1acw4cP1/bt21VSUqLx48errq5O4XA4eqv2eLW1tfL5fNFjn8+n2tpaDRw4sMNztvU3df7mjjNN//79bRnHzp99u/8c0Vvsx+vKvXUlHf2+bFlxJicnq7CwUPn5+fJ6vUpKStLKlStP+vrExMRW7+/s379fiYmJluY0DEOmaco0TRmG0eqYorpi/fCHP2z1Mzxr1ixbxpVkW492jkVvXWO8rtxbV6njM8QwjHbzx5YVpyQFAgEFAoEOvfaaa67Rww8/rIaGBtXX12vXrl265JJL7GoF6JKeeeYZ+f1+ffvb39bSpUtPekcGQNdmW3C2Z9KkSQqHw2poaFA4HFZJSYnuv/9++f1+SdLPfvYzPhiEs57L5dLNN98sSYQmcAbrlOCcO3fuCecmTpyoiRMndsb0AADYhmUeAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAW2B6cZWVlSk1NldfrVUJCgrKzs+2eAgCAmLE1OIuLi5WZmanc3FxVV1erqqpKOTk5dk4BAEBM2Rac9fX1CgaDKigoUFZWluLj4+XxeKIPs05LS1P//v01e/bs6Ne0dQ7oSg4dOqSlS5fqrbfe0ueffx7rdgB0AbY95P3YxtIZGRltXi8qKtKyZcu0c+fOds8BXcWnn36q6667Tps3b5YkDRkyRKFQSAkJCTHuDEAs2bbirKmpkc/nO+kO2gMGDOjQOaCreOqpp6KhKUkbN27UM888E8OOAHQFtq04hw8fru3bt6ukpETjx49XXV2dwuGwY/sOHlvh/qeThTZglzlz5mjOnDmnPY7dP6t2jkdvsR/L7vG6cm9dSUe/L9tWnMnJySosLFR+fr68Xq+SkpK0cuVKu4Y/gWEYMk1TpmnKMIxWxxRlR7W1j+wrr7xy2uNKsrVPO8ejt9iPdS711lXq+AwxDKPd/LF1I+tAIKBAIGDnkEDM3HXXXdq1a5d+8YtfaO/evXryySf1ve99L9ZtAYgxW4OzPZMmTVI4HFZDQ4PC4bBKSkraPAd0FS6XS9OnT9f06dPlcrn00EMPxbolAF1ApwVnW7e92joHAEBXxiP3AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMAC24OzrKxMqamp8nq9SkhIUHZ2tt1TAAAQM7YGZ3FxsTIzM5Wbm6vq6mpVVVUpJyfHzikAAIgp24Kzvr5ewWBQBQUFysrKUnx8vDweT3Qj67S0NPXv31+zZ8+WJH388ccaM2aMrrvuOo0ePVpr1661qxWcw/bs2aNbb71VX/va15SVlaVPPvkk1i0BOMvYtjtKKBSSy+VSRkZGm9eLioq0bNky7dy5U5KUkJCgN998U4mJidq8ebOCwaBWrVplVzs4B7W0tOjGG2/U+vXrZZqmKisrVVlZqXXr1sntdse6PQBnCdtWnDU1NfL5fHK5XG1eHzBgQKvjxMREJSYmSpJ69OjBLzactt27d2vdunXRXepbWlq0ceNGVVVVxbgzAGcT21acw4cP1/bt21VSUqLx48errq5O4XA4eqv2ZJqbm5WXl2d5k+BjK9z/dLLQxrnt0ksvtWUcO3++7P5ZpbfYj0dvZ76Ofl+2rTiTk5NVWFio/Px8eb1eJSUlaeXKle1+jWmamjRpkm666SaNGzfO0nyGYcg0TZmmKcMwWh1T5249+eSTrX5OZs6cacvQDeRLAAAgAElEQVS4x35eu9pY9NY1xqO3M7uOzxDDMNrNH9tWnJIUCAQUCAQ6/Pr77rtPgwcP1j333GNnGziHPfTQQxo1apQ2bdqke++9V4899lisWwJwlrE1ONszadIkhcNhNTQ0KBwO60c/+pEKCgo0atQoLV++XH379tUbb7zRWe3gLDZmzBiNGTNG9957b6xbAXAW6rTgnDt37gnnGhsbO2t6AABswSP3AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwNbgLCsrU2pqqrxerxISEpSdnW3n8AAAxJxtwVlcXKzMzEzl5uaqurpaVVVVysnJsWt4AAC6BFuCs76+XsFgUAUFBcrKylJ8fLw8Hk90L860tDT1799fs2fPliTt2bNHo0aNkt/v1zXXXKPly5fb0QbOUPX19XrzzTdVXFysAwcOxLodAGiXLQ95P7apdEZGRpvXi4qKtGzZMu3cuVOS1K9fP61atUput1vbtm3Tbbfdpg8++MCOVnCG2bdvn0aNGqWtW7dKki655BK9//77+vKXvxzjzgCgbbasOGtqauTz+U66e/aAAQNaHbvdbrndbknS/v37NWTIEDvawBno5z//eTQ0Jemf//znCZtRA0CXYtogEomY3bp1MxcvXmw2Nzeb+/btM5cuXdrqNfPmzTNnzZoVPd62bZt57bXXmv369TNLSkoszWcYhimJoiiKohyp9tiy4kxOTlZhYaHy8/Pl9XqVlJSklStXtvs1l156qd59912Fw2FNnTrV8pyGYcg0TZmmKcMwWh1TZ069+eabJ/y3nTdvni1jS7Ktz646Fr11jfHo7cyu4zPEMIx288e2T9UGAgF99NFHOnjwoD755BPNmTPnpK9taGiI/m+v16vevXvb1QbOMLfccot+/etfa+DAgZKkn/70pwoEAjHuCgBOzpYPB32RSZMmKRwOq6GhQeFwWA8++KAeeeQRud1uNTU16fnnn++MNtBF3XPPPbrnnnvkcrn04x//ONbtAEC7OiU4586de8K5L7qVCwBAV8Qj9wAAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAluDs6ysTKmpqfJ6vUpISFB2dradwwMAEHO2BWdxcbEyMzOVm5ur6upqVVVVKScnx67hAQDoEmwJzvr6egWDQRUUFCgrK0vx8fHyeDxKT0+XJKWlpal///6aPXt2q6+rra2Vz+fTggUL7GgDnWTPnj265ZZb9NWvflVpaWnatm1brFsCgE5jy+4ooVBILpdLGRkZbV4vKirSsmXLtHPnzlbnZ8+erdGjR9vRAjqJaZq6+eab9fe//10tLS3697//rbS0NG3evFnx8fGxbg8AHGfLirOmpkY+n08ul6vN6wMGDDjhXGVlpWprazVixAg7WkAnOXDggD744AO1tLRIklpaWrR9+3Z9/PHHMe4MADqHLSvO4cOHa/v27SopKdH48eNVV1encDgcvVXblhkzZmjWrFl65ZVXTmnOY6vc/3Sy4IbzkpOTbRnH7v+Gdo7XVceyezx6i/1Ydo/XlXvrSjr6fdmy4kxOTlZhYaHy8/Pl9XqVlJTU7kbV7733nhITEzVo0KBTntMwDJmmKdM0ZRhGq2PK2SooKGj1AzZz5kxbxpVka592jtdVx6K3rjEevZ3ZdXyGGIbRbv7YsuKUpEAgoEAg0KHXrl27Vhs3btS4ceNUWVmpXr16adCgQUpJSbGrHThoypQpuvLKK7Vx40bdddddeuyxx2LdEgB0GtuCsz2TJk1SOBxWQ0ODwuGwSkpKlJeXJ0l6/PHHNXjwYELzDPONb3xD3/jGN3TXXXfFuhUA6FSdEpxz58496bXHH3+8M1oAAMAWPHIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALbA3OsrIypaamyuv1KiEhQdnZ2XYODwBAzNkWnMXFxcrMzFRubq6qq6tVVVWlnJwcu4YHAKBLsCU46+vrFQwGVVBQoKysLMXHx8vj8UT340xLS1P//v01e/bs6Necf/758vv98vv9KigosKMNtOPgwYNauHChioqKtGfPnli3AwBnLFse8n5sU+mMjIw2rxcVFWnZsmXauXNn9NxFF12k0tJSO6bHF9i/f79SUlK0detWSVL//v31/vvvn9Z+qABwrrJlxVlTUyOfz3fS3bMHDBhwwrndu3fLMAzdcsst2rZtmx1t4CR+/etfR0NTkmprazVr1qwYdgQAZzDTBpFIxOzWrZu5ePFis7m52dy3b5+5dOnSVq+ZN2+eOWvWrOjx3r17TdM0zWXLlpmGYViazzAMUxJFURRFOVLtsWXFmZycrMLCQuXn58vr9SopKUkrV65s92v69esnSUpNTW11C7ejDMOQaZoyTVOGYbQ6plrXihUr5HK5Wt0R+O1vf2vL2JJs69POsbpyb+fK90lvXWO8rtxbV6njM8QwjHbzx7ZP1QYCAX300Uc6ePCgPvnkE82ZM+ekrz148KCam5slSZs2bVLfvn3tagNtuP766/WHP/xBQ4YMkSQ988wzmjx5coy7AoAzky0fDvoikyZNUjgcVkNDg8LhsB577DEFg0F5PB5J0ksvvdQZbZzTbr31Vt16661yuVz60Y9+FOt2AOCM1SnBOXfu3BPOrV+/vjOmBgDAVjxyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssDU4y8rKlJqaKq/Xq4SEBGVnZ9s5PAAAMWdbcBYXFyszM1O5ubmqrq5WVVWVcnJy7BoeAIAuwZbgrK+vVzAYVEFBgbKyshQfHy+Px6P09HRJUlpamvr376/Zs2dHv+bDDz/UuHHjNHbsWN199912tHFW2b17t2688Ub17dtXV155pTZu3BjrlgAAsml3lFAoJJfLpYyMjDavFxUVadmyZdENqxsbG5Wfn6/XX39dffr0saOFs05WVpZWr16tlpYWrV+/XjfccIMqKirk9Xpj3RoAnNNsWXHW1NTI5/PJ5XK1eX3AgAGtjlevXi2Px6OJEyfK7/dryZIldrRx1jh8+LDee+89tbS0SJJaWlpUXV2trVu3xrgzAIAtK87hw4dr+/btKikp0fjx41VXV6dwOBy9VXu8Xbt2ad26ddqwYYNM09S1116rMWPGWFpNHVvl/qeTBffZ4pprrrFlHLv/f7JzvHOlt3Pl+7R7PHqL/VhOjNdVdPT7smXFmZycrMLCQuXn58vr9SopKUkrV6486ev79u2rkSNHKiEhQT6fT0OGDFFlZaWlOQ3DkGmaMk1ThmG0Oj4b6rXXXlO3bv//7zX/+7//a8u4kmzt087xzpXezpXvk966xnhdubeuUsdniGEY7eaPbZ+qDQQC+uijj3Tw4EF98sknmjNnzklfO3LkSFVWVqqpqUmNjY3asmWLLr74YrtaOSt897vfVXl5uV577TX9P/buPSzKOv//+HNA8xAKI1qCJCqTFam5RSlaDiodwA6WFtAmILZZpuSULZ12y123tjUzO5p5CRWZrplr1EahialtkKaRHSSPiR1Mg8Hmuw7q3L8/vJrfeswb7nEAX4/r+lxXc9/zed9vwHjxGYb7A/DnP/85yB2JiAhY9FLtb8nJyaGsrAyv10tZWRlFRUVMmjSJwYMHU1dXR25uLpGRkSejlSalZ8+e9OzZM9htiIjI/zgpwTlnzpwjjqWnp5Oenn4yLi8iImIZ3XJPRETEBAWniIiICQpOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExARLg3PVqlUMHTqU9u3bExERwY033mhleRERkaCzLDgXLlzI9ddfz7hx49i5cyfbt2/n1ltvtaq8iIhIo2BJcHo8HsaOHcusWbMYMWIErVu3pl27dv79OJOTk+nUqRNTpkwBoLy8nKSkJJKSkujfv3+zucH7nj17mD17Ns8++yxbtmwJdjsiIhIAltzk/ddNpa+77rqjni8oKGDJkiVUVVUBcMkll1BaWgrA3LlzWblypRVtBJXb7aZ///58/fXXADzwwAOsXLmSPn36BLkzERGxkiUrzl27dmG324+5e3ZMTMwx577yyiuMGjXKijaCas6cOf7QhIOr8MmTJwexIxERCQRLVpwXXnghW7ZsoaioiGHDhlFbW0tZWZn/pdpj+eGHH9i6dSuJiYmmr/nrKvd/HSu4g8Hn8/Hmm29a1pOVH5vVnyf1FtxaVtdTb8GvZXW9xtxbY3KiH5clK85evXoxe/ZsJk2aRPv27TnvvPP48MMPf3Pea6+9RkZGRr2u6XQ6MQwDwzBwOp2HPA7GWL16NS1atDjkE//8889bUhuwrE8ra6m34NdSb42jnnpr2uPwDHE6ncfNH8veVZuVlcWGDRv45Zdf+P777/nb3/72m3MKCwu55ZZbrGohqC666CLeeecdBg4cCMBTTz3F7bffHuSuRETEapa8VPtbcnJyKCsrw+v1UlZWRlFREZ9//jlt27YlLi7uZLRwUlxxxRVcccUV2Gw27rrrrmC3IyIiAXBSgnPOnDlHHOvduzerVq06GZcXERGxjG65JyIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQES4Nz1apVDB06lPbt2xMREcGNN95oZXkREZGgsyw4Fy5cyPXXX8+4cePYuXMn27dv59Zbb7WqvIiISKNgSXB6PB7Gjh3LrFmzGDFiBK1bt6Zdu3b+jayTk5Pp1KkTU6ZMAQ7u5TZ+/HgSExO5+OKLKSwstKIN03744QeGDh1K69atcTgcuum8iIj8Jkt2R1m+fDk2m43rrrvuqOcLCgpYsmQJVVVVAHzxxRd88cUX/Oc//8Hj8dC7d++g7MuZlpbGypUr8fl8bNmyhdTUVL755hvOOOOMk96LiIg0DZasOHft2oXdbsdmsx31fExMzCGPo6OjOe2009i3bx979uyhQ4cOVrRhimEYrFq1Cp/PB4DP56O2tpb169ef9F5ERKTpsGTFeeGFF7JlyxaKiooYNmwYtbW1lJWV+V+qPZzdbicuLo6ePXvi8Xh48cUXTV/z11Xu/zpWcJsxdOjQBtcAa3oJVD311rxqWV1PvQW/ltX1GnNvjcmJflyWrDh79erF7NmzmTRpEu3bt+e8887jww8/PObz33//fXbs2MHGjRv5+uuvefDBB/F6vaau6XQ6MQwDwzBwOp2HPD7R8f7779OmTRt/zcmTJ5uucbQBWFInEPXUW/Oqpd4aRz311rTH4RnidDqPmz+WrDgBsrKyyMrKOuHnd+jQgdDQUNq1a8e+ffs4cOCAVa2csMsvv5zKyko+//xzUlNT+fOf/3zSexARkabFsuA8npycHMrKyvB6vZSVlfGvf/2L119/nYEDB1JXV8eECRNo27btyWjlCDExMUf8DlZERORYTkpwzpkz54hjBQUFJ+PSIiIiltIt90RERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJCk4RERETFJwiIiImKDhFRERMsDQ4V61axdChQ2nfvj0RERHceOONVpYXEREJOsuCc+HChVx//fWMGzeOnTt3sn37dm699VaryouIiDQKlgSnx+Nh7NixzJo1ixEjRtC6dWvatWvn348zOTmZTp06MWXKFP+chx9+mAEDBpCUlKTNo0VEpMmw5Cbvv24qfd111x31fEFBAUuWLKGqqgqAdevWUV5ezkcffcTWrVsZM2YMS5cutaIVERGRgLJkxblr1y7sdvsxd88+fNuuyspKLrroIgC6devGV199xf79+61oRUREJKAsWXFeeOGFbNmyhaKiIoYNG0ZtbS1lZWX+l2oPd/755zNjxgzq6upYv349P/zwAzU1NXTs2PGEr/nrKvd/HSu4T1RD5weqltX11FvzqmV1PfUW/FpW12vMvTUmJ/pxWRKcvXr1Yvbs2UyaNImMjAzatWtHTk7OcYMzIyOD5ORkevbsSe/evYmMjDR1TafTSWlpKQBJSUkA/sf1YbPZMAyj3vMDVcvqeuqtedWyup56C34tq+s15t4ai8Mz5NfHx2LZRtZZWVlkZWWd8PPHjx/P+PHjWb9+PVOnTm22P8GIiEjzYllwHk9OTg5lZWV4vV7KysooKiriiiuuYP/+/XTs2JHnnnvuZLQhIiLSYCclOOfMmXPEsffff/9kXFpERMRSuuWeiIiICQpOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMsDc5Vq1YxdOhQ2rdvT0REBDfeeKOV5UVERILOsuBcuHAh119/PePGjWPnzp1s376dW2+91aryIiIijYIlwenxeBg7diyzZs1ixIgRtG7dmnbt2nHllVeyadMmBg0axGWXXcall17K6tWrASgsLCQxMZHExESWLVtmRRsiIiIBZ8nuKMuXL8dms3HdddcdcS4iIoJFixYRGRnJl19+ydixYykqKuKJJ57g448/5pdffiE5OZlPP/2UkBD9ylVERBo3S5Jq165d2O32o25GHRkZSWRkJACtWrUiNDSUsrIynE4nrVu3pmPHjkRHR7N161YrWhEREQkoS1acF154IVu2bKGoqIhhw4ZRW1tLWVkZV155pf85Bw4cIDc3l/vuu4/du3djt9v95+x2O7t376ZHjx4nfM1fV7n/62jBbUZD5weqltX11FvzqmV1PfUW/FpW12vMvTUmJ/pxWRKcvXr1Yvbs2UyaNImMjAzatWtHTk6OPzgNwyAnJ4err76aq666ivfee4/q6mr//JqaGv+q9EQ5nU5KS0sBSEpKAvA/rg+bzYZhGPWeH6haVtdTb82rltX11Fvwa1ldrzH31lgcniG/Pj4WS4ITICsri6ysrKOemzBhAg6HgzvuuAOAfv36cf/99+P1evF4POzYsYNu3bpZ1YqIiEjAWBacx1JaWsqsWbMYMGAAS5cupUOHDrz55ptMnDjRn+rTpk3TG4NERKRJCHhwJiUlUVdXd8TxzMxMMjMzA315ERERS2mZJyIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImJCwINz3rx59O3bl3bt2nHuuefyr3/9K9CXFBERCZiABuesWbO4//77eemll9izZw/Tp08nIyODb7/9NpCXFRERCZiABeeePXu4//77mTNnDhdffDEAKSkpdOrUidWrV1NYWEhiYiKJiYksW7YsUG2IiIhYKmA3ef/ggw8IDQ1l8ODB/mOGYbBr1y5CQkJ44okn+Pjjj/nll19ITk7m008/1Q4pIiLS6AUsqWpra7Hb7YccKyoqok2bNthsNpxOJ61bt6Zjx45ER0ezdevWQLUiIiJimYCtOPv168fWrVv58MMPGThwIMuXL+f2229n2rRpeDyeQ0LVbreze/duevToccL1ly9fjs1mO+TY4Y/Nauj8QNWyup56a161rK6n3oJfy+p6jbm3xuREP66ABWfPnj2ZPXs2o0eP5ocffqBnz548/fTTjBw5kvfee4/q6mr/c2tqaoiMjDRV3+l0UlpaCuDfEPvXx/Vhs9kwDKPe8wNVy+p66q151bK6nnoLfi2r6zXm3hqLwzPk18fHEtCNrEeNGsWoUaOOON6vXz/uv/9+vF4vHo+HHTt20K1bt0C2IiIiYomABuexREREMHHiRH+qT5s2TW8MEhGRJiEowQmQmZlJZmZmsC4vIiJSL1rmiYiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJgQ0OD0+XxkZmYSGxtLWFgYDoeDefPmBfKSIiJiserqap555hnuvPNOAJYtW9bsbvRuRkCD0+12k5KSQkVFBbW1tbhcLrKzs6mrqwvkZUVExCLPPvssXbp0ITc317/wGTJkCL/73e/YsmVLkLsLjoAGp91uJyMjg/DwcEJCQsjKyvLviFJYWEhiYiKJiYksW7YskG2IiJySfD5fg+bPmTOHCRMmMHjwYNauXcvu3bv9x7/99luGDBnCzz//bEWrTUpAg7OkpISUlBRiYmIIDw8nKiqKqKgobDYbTzzxBMuWLaOoqAiXy9XgL7CIiPx///znPwkPDwfgkksu4bvvvjM1f9++ffzpT39i4MCBLF68mL59+/rPjR49mnfeeYetW7fy0ksvWdp3UxCw4CwvLyc9PZ3c3FwqKytxu93k5eWRkJBAWVkZTqeT1q1b07FjR6Kjo9m6dWugWhEROaV88803/P73v8fj8QCwZs0asrOzTdVYsmQJ3333Hffeey8tWhy5kVZiYiJOp5P8/HwrWm5SAhaca9euxW63M2DAAEJDQykoKOCxxx4jISGB3bt3Y7fb/c+12+3+lwBERKRhKioq2L9/v/8NPD6fj08++cRUjV9XqP+70jzc7373O3bs2FH/RpuogO3HmZaWxqJFi4iOjqZz586MHz8eu91OQkICoaGhVFdX+59bU1NDZGSkqfrLly/HZrMdcuzwx2Y1dH6galldT701r1pW11Nvwa8ViHo1NTX1qtmtW7cjjln9vbexOOGPwwiC6upq43e/+52xd+9eY/fu3cYFF1xgHDhw4ITnO51Ow+l0HvNxfVj5qbD606regl+vsdayup56C34tq+o9+uijBmAAxplnnmlUVFSYmu/xeIzw8HDj+uuvN3w+3xG9ffPNN0ZISIiRl5fX4F6D7WiZcjxBuQFCREQEEydOJCkpiWHDhjFt2jRCQnQvBhERq9x///1s27YNOPg7z969e5ua37ZtW+6++24WLVqEy+U65FXCjz/+mJSUFNq3b8+4ceMs7bspCNhLtb8lMzOTzMzMYF1eRKTZ69q1KwDt2rWr1/yHHnqIH3/8kRkzZjBr1iwuuugi4OAbgyIjI/n3v//tv8apRMs8ERE5qpCQEJ577jnWrl1LVlYWLVu2BOC5555j8+bNJCYmBrnD4AjailNERJqGvn378sILLwS7jUZDK04RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniEgz9ett8rxeb5A7aV4CGpw+n4/MzExiY2MJCwvD4XAwb968QF5SROSU98477zB48GA6dOgAQKdOnRg/fjxVVVVB7qx5CGhwut1uUlJSqKiooLa2FpfLRXZ2NnV1dYG8rIjIKWv69OlcffXVbN26lUceeQSA4cOHM3v2bC655BI2btwY3AabgYAGp91uJyMjg/DwcEJCQsjKysLr9eLxeEhOTqZTp05MmTIlkC2IiDQZH374Iffccw8AP/30k+n569at4+6772bkyJFs2LCBhx9+GIBXXnmF1atXU1dXxy233GJpz6eigAZnSUkJKSkpxMTEEB4eTlRUFFFRUdjtdgoKCpg6dWogLy8i0mS89dZbDB48mOnTpwOQkJDAzz//bKrG888/T5s2bXjppZc47bTTDjnXq1cvHnnkEcrKyli9erVlfZ+KAhac5eXlpKenk5ubS2VlJW63m7y8PBISEgCIiYkJ1KVFRJqcf/zjHxiGgWEYAHz77bf885//NFVj+fLlXHnllURERBz1fFpaGnBwZSsNEKgdtWfOnGnExcUZNTU1xt69e438/Hyjbdu2xuTJk/3Pyc/PN/7617+aru10Ov07m2toaGhoHByhoaFB76G5jOMJ2IozLS0Nh8NBdHQ08fHxVFdXY7fb/SvOhnI6nf6fzpxO5yGP6zOABs0PVC311jjqNdZa6q1x1LOi1uzZs4GDe2DCwfeIfPvtt6Zq3HjjjURERODxeI7aW35+PgDLli2z9HPZ1MfhGeJ0Oo+bPwELzoiICIqLi/F4PGzatAmXy0VVVRWpqamBuqSISJM1ZswY5s6dyw033ABAWVkZZ511lqka48aNo6amhry8PH9o/mrHjh088sgjnHfeeb8ZDHJ8QdvIOicnh7KyMrxeL2VlZRQVFQWrFRGRRiEjI4OMjAxsNhtnn3226fmXXXYZd999N08++SRr1qzhD3/4AwAPPfQQL774Inv37uWNN97AZrNZ3fopJWjBOWfOnGBdWkSk2XriiSc4++yzmTZtGjk5OQA89thjDBs2jClTptCnT58gd9j0BS04RUTEejabjdtvv53bbruN9evX4/F4iI2NJTo6OtitNRsKThGRZigkJESrywDRTd5FRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEREREwIenD6fj8zMTGJjYwkLC8PhcDBv3rxAX1ZEpEn56aefmDp1KqNHjwZg0aJF7N+/P8hdydEEPDjdbjcpKSlUVFRQW1uLy+UiOzuburq6QF9aRKRJeOaZZ4iJieGPf/wjS5YsAeCGG26gZ8+efP7550HuTg4X8OC02+1kZGQQHh5OSEgIWVlZeL1ePv/8cwYNGsRll13GpZdeqh3JRaRJ+nURcPhuJCfq5ZdfJjc3lyuuuIIvvviC7du3AwdXnF6vl+TkZHbs2GFZv9JwAQ/OkpISUlJSiImJITw8nKioKKKioujWrRuLFi1ixYoVzJo1C5fLFehWREQsNX/+fCIiIgA455xz2Lhxo6n5Bw4c4OGHH6Z///4sWrSI+Ph4/7nhw4dTUlLCrl27eO655yztWxomoMFZXl5Oeno6ubm5VFZW4na7ycvLIyEhgcjISCIjIwFo1aoVoaGhgWxFRMRSW7du5ZZbbmHv3r0AbNq0iYyMDFM1PvzwQ7Zt28bdd99NixZH3jo8Pj6eYcOG8fLLL1vSs1gjoMG5du1a7HY7AwYMIDvWgtEAACAASURBVDQ0lIKCAh577DESEhL8zzlw4AC5ubncd999gWxFRMRSX3/9Nfv37/e/ROvz+aioqDBV44cffgCgV69ex3xO7969+eGHH+r9UrBYL6C7o6SlpbFo0SKio6Pp3Lkz48ePx263+4PTMAxycnK4+uqrueqqq0zVXr58+RGbsTZ0c1YrN3e1eqNY9Rb8eo21ltX11Fv91dXV1avm/75E+6vD64SE6K8HA+1Ev3Y2I4g/xowfP54zzzyTP/3pT6bmJSUlAVBaWnrUx/Vhs9ks+4nOylpW11NvzauW1fXUmzkvvvgid955JwcOHKBz58689957prby2rdvH7GxsZx77rksWbLEH46/9rZlyxZ69uzJhAkTePLJJxvUqxzb0TLleHkStB9hSktLmTVrFkuXLiUpKYkbbrghWK2IiNTL2LFj+fHHHwHYvHmz6f0vW7ZsyQMPPMCyZcvIzs4+5N2zK1as4IorruD0009nwoQJlvYtDRO0jayTkpL0t5wi0uT9+ibHNm3a1Gv+nXfeya5du/jLX/7C3Llz6d27NwCDBg2iU6dOvPvuu3Tv3t2yfqXh9KK5iEgQ2Ww2HnnkETZu3MikSZOIiYkB4KWXXmLLli0kJiYGuUM5XNBWnCIi8v/16NGDv//978FuQ06AVpwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEZEG+P777wFwu91B7kROloAGp8/nIzMzk9jYWMLCwnA4HMybNy+QlxQROSkWL17MgAEDiI6OBuCMM87glltuYcOGDUHuTAItoMHpdrtJSUmhoqKC2tpaXC4X2dnZuketiDRp06dPZ/jw4fz000/+u/3cdtttvPXWW/Tv359169YFuUMJpIAGp91uJyMjg/DwcEJCQsjKysLr9VJdXc2AAQNISkqiX79+LF26NJBtiIj4ffDBB9xxxx0AbNu2zfT8L774grvvvpsRI0bwxRdfkJeXB8AzzzxDRUUF7dq1IyMjQxtPN2MBDc6SkhJSUlKIiYkhPDycqKgooqKi6NixIytWrKC0tJTXX3+d++67L5BtiIgA8Pbbb5OcnMysWbMASEhIOGQrrxPxwgsv0KpVK2bOnMlpp512yLlu3brxt7/9ja+//poPPvjAsr6lcQlYcJaXl5Oenk5ubi6VlZW43W7y8vJISEggNDSU0NBQAGpqakzvYSciUh9PP/00cPD9FwC7du0y/b6LVatWkZSURMeOHY96fuTIkf7nSTNlBMjMmTONuLg4o6amxti7d6+Rn59vtG3b1pg8ebJhGIaxefNmY+DAgUbHjh2NoqIiU7WdTqcBaGhoaJz0ERISEvQeNAI/jidgK860tDQcDgfR0dHEx8dTXV2N3W4nISEBgO7du7Ny5UrKysoYP3686fpOpxPDMDAMA6fTecjj+gygQfMDVUu9NY56jbWWejM3Fi5cCEBIyMFvfXa7nW3btpmq8Yc//IHWrVuze/fuo/Y2d+5cAIqLiy39XGoEbhyeIU6n87j5E7DgjIiIoLi4GI/Hw6ZNm3C5XFRVVZGamorX6/U/r3379oSFhQWqDRERvxtuuIF33nmHUaNGAQd/pdS1a1dTNcaNG8fevXuZMGEC+/fvP+Tcjh07ePDBB3E4HFx++eWW9S2NS1BugPDJJ58waNAgBg8ezPDhw5kxY0Yw2hCRU1BqaioFBQUAOBwO0/P79OnDo48+yty5c+nbt6//+9cf//hHevfuza5du3jttdf8q1ppfloE46KXXnopH374YTAuLSLSYPfffz89evTg8ccfZ+LEiQA8+eSTDB8+nEceeYRevXoFuUMJpKAEp4hIU5eWlsZNN93E1q1bqa2tpUuXLsd8p600LwpOEZF6stlsdO/ePdhtyEmmF+FFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEREREwIanD6fj8zMTGJjYwkLC8PhcJjewkdExCrff/89U6ZM4aabbgKgoKCA//73v0HuSpqagAan2+0mJSWFiooKamtrcblcZGdnU1dXF8jLiogc4emnn6Zr16786U9/4rPPPgNg9OjRdOvWjY8++ijI3UlTEtDgtNvtZGRkEB4eTkhICFlZWXi9XjweDwC7d+/GbrdTWFgYyDZEpIn79XtGfX/oLiws5K677iI1NZXKyko2bNgAwAcffEB4eDgpKSl88803lvUrzVtAg7OkpISUlBRiYmIIDw8nKiqKqKgo7HY7AFOmTOHSSy8NZAsi0sTNnz+fyMhIALp16+ZfLZ4on8/H5MmTSUhI4I033uDss8/2nxs8eDBLlizB6/Uyffp0S/uW5itgwVleXk56ejq5ublUVlbidrvJy8vzb2S9ceNGdu/ezUUXXRSoFkSkiduxYwejRo3yrzR//PFHRo4caapGWVkZGzdu5K677qJly5ZHnO/atSs33ngjhYWF/k2pRY7LCJCZM2cacXFxRk1NjbF3714jPz/faNu2rTF58mTDMAwjIyPD2Lhxo/Hwww8br776qqnaTqfTADQ0NDQ0NAIyjidgK860tDQcDgfR0dHEx8dTXV2N3W4nISGBjz76iMjISOLi4upd3+l0YhgGhmHgdDoPeVyfATRofqBqqbfGUa+x1mruvVVVVXHaaadhs9kACAkJ4eyzzzZV4z//+Q8Ar7zyyjF7u+WWW2jXrh0+n8/Sj1+jaYzDM8TpdB43fwK2rVhERATFxcWHHHO5XMDBd7dVVFRw1VVXsXHjRk4//XTi4uJITEwMVDsi0gR16dKFwsJCMjMz2bt3L507d+aNN94wVeOSSy7h7LPP5umnnyY9Pf2Il2u3bdvGggULGDNmjD+gRY4nKDdAyM3NZfny5RQXF3PLLbdw7733KjRF5KhuvPFGdu/eDcDWrVvp06ePqfkhISE88sgjrF69mhEjRvjfUQuwdOlShg4dSuvWrf0/2Iv8lqBvZP3II48EuwURaeTatm0LcNQ395yIm2++mZ9//pm7776boqIiHA4HAMnJyZx55pkUFxf7j4n8Ft1yT0ROCePHj2f79u08+uij/nfzv/LKK2zdupX+/fsHuTtpSoK+4hQROVnOPPNM7r//fgDd/lPqTStOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4g0eps3bwYObismEmwBDU6fz0dmZiaxsbGEhYXhcDj0R8cicsIWLlzIxRdf7N9JKSoqimuuuYY1a9YEuTM5lQU0ON1uNykpKVRUVFBbW4vL5SI7O9u/Ka2IyLFMnz6dkSNH4vF4mD59OgAPPPAAZWVlXHbZZSxfvjzIHcqpKqDBabfbycjIIDw8nJCQELKysvB6vXg8Htq0aUNSUhJJSUnMmjUrkG2IyElWUlJCdnY2AF988YXp+ZWVldxzzz3ccMMNfPbZZ0ycOBGAKVOmsH79emJjY/n973/Pvn37rGxb5IQE9F61JSUlPPnkk3z++efs2bMHn89HVFQUdrudLl26UFpaGsjLi0gQvPvuuwwbNsy/t2W/fv349NNP6dmz5wnXmDlzJqGhoTz33HNH7Ihyxhln8Pjjj3Pdddfx1ltvMWLECEv7F/ktAVtxlpeXk56eTm5uLpWVlbjdbvLy8khISADghx9+wOl0Mnz4cP8v/kWk6XvxxRex2Wz4fD4APB4Pc+fONVWjrKyMAQMG0Llz56OeHzZsGK1ataKsrKzB/YqYZgTIzJkzjbi4OKOmpsbYu3evkZ+fb7Rt29aYPHmyYRiG8dNPPxmGYRhLliwxnE6nqdpOp9MANDQ0NDQ0AjKOJ2ArzrS0NBwOB9HR0cTHx1NdXY3dbvevODt27AjA0KFDqaqqMl3f6XRiGAaGYeB0Og95XJ8BNGh+oGqpt8ZRr7HWaoy9LV26lJCQEP9LtREREWzZssVUjby8PEJDQ9m+fftRe3vjjTcAWLx4saWfS41TcxyeIU6n87j5E7DgjIiIoLi4GI/Hw6ZNm3C5XFRVVZGamsovv/zCgQMHAFi/fj0dOnQIVBsicpINGTKEDz/8kHHjxgGwevVqunXrZqrG2LFjMQyD2267jb179x5yrqqqij/+8Y/ExsYybNgwq9oWOWFB2cj6yy+/ZOzYsbRr1w44+DsREWk+Bg4cyMCBA3nuuef8f4NpRvfu3XnhhRcYO3Ys5557LmPGjAHgrrvu4uWXX8bn81FSUkJoaKjVrYv8pqAE5yWXXMLatWuDcWkRaSJuu+02YmNjefzxx/nzn/8MwAsvvMCNN97Igw8+SHx8fJA7lFNVUIJTROREXHnllVx55ZXs3LkTt9vNmWeeSfv27YPdlpziFJwi0uidccYZnHHGGcFuQwTQTd5FRERMUXCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEREREwIanD6fj8zMTGJjYwkLC8PhcDBv3rxAXlJEgmz79u386U9/8t9H9qmnnqKmpibIXYlYJ6DB6Xa7SUlJoaKigtraWlwuF9nZ2dTV1QXysiISJDNmzKBbt2787W9/47vvvgPA5XJx1lln8e677wa5OxFrBDQ47XY7GRkZhIeHExISQlZWFl6vF4/Hw2effcZVV13FkCFDGD16dCDbEJET8PPPPwOwZ8+ees2fN28eEydO5Nprr2Xz5s3++1GvWbOGs88+m+uvv55169ZZ1q9IsAQ0OEtKSkhJSSEmJobw8HCioqKIiori9NNPZ9KkScyfP58PPviA/Pz8QLYhIr9h/vz5REVFAdC1a1dWrlxpar5hGPz1r3+lb9++/POf/zxkG7ELL7yQ999/n1atWvHEE09Y2bZIUAQsOMvLy0lPTyc3N5fKykrcbjd5eXkkJCTw8ccf065dOzIzM0lKSuLtt98OVBsi8ht27txJZmYm+/btA6C2tpaRI0diGMYJ1/jss8/48ssvufPOO2nZsuUR5zt27MioUaNYsGABXq/Xst5FgsIIkJkzZxpxcXFGTU2NsXfvXiM/P99o27atMXnyZGPu3LlGbGysUV1dbfz888/GeeedZ7jd7hOu7XQ6DUBDQ0NDQyMg43gCtuJMS0vD4XAQHR1NfHw81dXV2O12EhIS6NChA/379yciIgK73U6fPn3YuHGjqfpOpxPDMDAMA6fTecjj+gygQfMDVUu9NY56jbWWFfV2797N6aefTkjIwW8HISEhdOvWDZ/Pd8I11q9fD8AzzzxzzN7GjBlDmzZtqKurs/Tj19Bo6Dg8Q5xO53HzJ2DBGRERQXFxMR6Ph02bNuFyuaiqqiI1NZX+/fuzceNG9u3bR11dHV999RWxsbGBakVEjqNDhw4sWrSIdu3aAdClSxcWL16MzWY74Rrx8fFcdNFFPPvss/zf//3fEee3b9/O3Llz+f3vf3/Ul3JFmpKg3AAhPDycSZMmMXjwYC699FJyc3OJjIwMRisiAlx++eXs3r0bgG3bttGnTx9T8202G3/5y1+orKzkqquu4pNPPvGfe/fddxk8eDAtW7bk3nvvtbRvkWAI2kbW6enppKenB+vyInKY0NBQAFMrzf+VmppKYWEht912G5dccgmdO3f2H4+KiuK9996jZ8+elvUrEiy65Z6IWObmm2/mu+++49lnn/XfOWjevHls3bqV/v37B7k7EWsEbcUpIs1T+/btufPOOwGYPXt2kLsRsZ5WnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJCk4RwTAMvvzySwA2b94c5G5EGreABqfP5yMzM5PY2FjCwsJwOBzMmzcvkJcUEZMWLFhA3759Of/88wGIi4tj0KBBlJaWBrcxkUYqoMHpdrtJSUmhoqKC2tpaXC4X2dnZ1NXVBfKyInKCZsyYwU033YRhGLzwwgsA/OMf/+Dbb7/l8ssvZ/HixUHuUKTxCWhw2u12MjIyCA8PJyQkhKysLLxeL2vXriUpKYmkpCT69++vnVFE6qG4uJibbroJgI8//tj0/K1bt+Jyubj++utZs2YNt99+OwD33nsvFRUV9O3bl+zs7KNuEyZyKgtocJaUlJCSkkJMTAzh4eFERUURFRVFv379KC0tpbS0lNzcXNLS0gLZhkiz895775GamsrChQuBgxu7f/rpp6ZqvPjii9hsNmbMmHHEHpnt27fniSeeoKamhvnz51vWt0hzELDgLC8vJz09ndzcXCorK3G73eTl5ZGQkHDI81555RVGjRoVqDZEmqWXX34Zm82Gz+cDYN++fcydO9dUjdWrV5OQkMBZZ5111PODBg0iIiKCNWvWNLhfkWbFCJCZM2cacXFxRk1NjbF3714jPz/faNu2rTF58mT/c77//nvjnHPOMV3b6XQagIaGhoaGRkDG8QRsxZmWlobD4SA6Opr4+Hiqq6ux2+2HrDhfe+01MjIy6lXf6XRiGAaGYeB0Og95XJ8BNGh+oGqpt8ZRr7HVWr16Na1atfL//xAREcGmTZtM1Xj00UcB+Oqrr47a21tvvQXAG2+8YenXRUOjsY3DM8TpdB43fwIWnBERERQXF+PxeNi0aRMul4uqqipSU1P9zyksLOSWW24JVAsizdZFF13EJ598Ql5eHgCffvopPXr0MFVjzJgxtG7dmjFjxuB2uw85t337diZOnEhMTAzXXnutZX2LNAdBuwHC559/Ttu2bYmLiwtWCyJNWu/evfn73/8OQPfu3U3PP+OMM3j11VcpLy/H4XBw7733AnD77bcTHx/Prl27WLBgwRFvHBI51QUtOHv37s2qVauCdXkRAUaOHMmKFSu47LLLePLJJ4GDbzwaOXIkZWVl9O/fP8gdijQ+LYLdgIgEV//+/XnzzTf55ZdfqK2txW6306ZNm2C3JdJoKThFBICwsDDCwsKC3YZIo6ebvIuIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJCk4RERETFJwiIiImBDQ4fT4fmZmZxMbGEhYWhsPhYN68eYG8pMgpYfPmzeTl5TFkyBAA/vKXv/Ddd98FuSuRU0NAg9PtdpOSkkJFRQW1tbW4XC6ys7Opq6sL5GVFmrWnnnoKh8PBtGnT+O9//wvAww8/TPfu3Xn99deD3J1I8xfQ4LTb7WRkZBAeHk5ISAhZWVl4vV48Hg/jx48nMTGRiy++mMLCwkC2IdJo/PjjjwDs2rWrXvMXLFiAy+Vi+PDhbNu2jf/85z8AfPPNNyQmJjJq1ChWrFhhWb8icqSABmdJSQkpKSnExMQQHh5OVFQUUVFR7Nixgy+++IL//Oc/lJaW8uc//zmQbYg0CvPnz6dr164AdO3alXfeecfUfMM4uIfm+eefz/z58+nSpYv/nMPh4O2336ZTp048/vjjlvYtIocKWHCWl5eTnp5Obm4ulZWVuN1u8vLySEhIIDo6mtNOO419+/axZ88eOnToEKg2RBoFt9tNVlYW+/btA2Dv3r2kp6f7H5+IyspK1q1bxx133HHUrb7CwsIYPXo0//73v4/YX1NELGQEyMyZM424uDijpqbG2Lt3r5Gfn2+0bdvWmDx5suHz+Yw77rjD6Natm9GpUyfjzTffNFXb6XQagIaGhoaGRkDG8QRsxZmWlobD4SA6Opr4+Hiqq6ux2+0kJCTw/vvvs2PHDjZu3MjXX3/Ngw8+iNfrNVXf6XRiGAaGYeB0Og95XJ8BNGh+oGqpt8ZRr6G1PB4PkZGRhIQc/F8uJCSELl26cODAgROusW3bNgCmTJlyzN7uuOMOWrVqxS+//GLp51JDozmPwzPE6XQeN38CFpwREREUFxfj8XjYtGkTLpeLqqoqUlNTAejQoQOhoaG0a9eOffv2ceDAgUC1IhJ0bdu25Z133iEqKgqA2NhY/v3vf/uD9ER07dqVIUOGMHPmTKqrq484v337dl599VXS0tI4/fTTLetdRA4VlBsgJCcnYxgGAwcOZMCAAUyYMIG2bdsGoxWRk6Zfv35s374dOPh3mH369DFd4y9/+Qs//vgjQ4YMYcmSJRjGwRXn4sWLSUpKIiQkhPvuu8/SvkXkUEHZyDo0NJSCgoJgXFokqGw2W4PmDxw4kMWLF5OZmcnll19Ou3btABg+fDhnnXUW77//Puedd54VrYrIMeiWeyJNTEpKiv9l2dGjRwPw5ptvsnnzZvr16xfk7kSaPwWnSBPUunVrbrnlFmbMmIFhGFx//fW0aBGUF5BETjkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBafISWIYBmvWrAHgs88+898uT0SaloAGp8/nIzMzk9jYWMLCwnA4HMybNy+QlxRplF5//XXi4+NJSEgAoG/fvvTt25fFixcHuTMRMSugwel2u0lJSaGiooLa2lpcLhfZ2dnU1dUF8rIijcqMGTO4+eabadOmDXPmzAHgxRdf5MCBAwwfPlz3bRZpYgIanHa7nYyMDMLDwwkJCSErKwuv14vH4+Hhhx9mwIABJCUlsX79+kC2IVJv77zzDldffTUA7733nun5VVVV3HPPPVx33XWUlZX57y172223sXr1aoYOHcq4ceOOuk2YiDROAQ3OkpISUlJSiImJITw8nKioKKKioti2bRvl5eV89NFHFBQUcNdddwWyDZF6WbJkCddccw3vvvsuAKmpqZSWlpqqMXv2bHw+H9OnT6dly5aHnGvdujVPPPEE//3vf3n55ZetaltEAixgwVleXk56ejq5ublUVlbidrvJy8sjISGByspKLrroIgC6devGV199xf79+wPViki9vP7669hsNnw+n/+Y2d/Rr127lvPPP5/u3bsf9Xzfvn2JiYlh3bp1DepVRE4iI0BmzpxpxMXFGTU1NcbevXuN/Px8o23btsbkyZON9evXGwMGDDC8Xq+xZs0aw2azGT/99NMJ13Y6nQagoaGhoaERkHE8AVtxpqWl4XA4iI6OJj4+nurqaux2OwkJCZx//vlkZGSQnJzM888/T+/evYmMjDRV3+l0YhgGhmHgdDoPeVyfATRofqBqqbfg1duwYQPt27f3/5uLiIhg48aNpmo899xzAJSVlR21r19/bzp37lxLP3YNDY0TH4dniNPpPG7+2AzDMEwllsXWr1/P1KlTTf2OJykpCcD/+6bDH9eHzWbDqk+FlbWsrqfezNm8eTOvv/46Dz30EFu3biU2NtbU/NraWrp27UrXrl0pKSnhzDPP9Pf17bffMmTIEP7v//6PLVu20KpVqwb1KiL1c7RMOV6eBG3n2yuuuIL9+/fTsWNH/0/lIo1Njx49ePDBB3nooYdMhyZA+/btWbhwIddccw0Oh4Obb74ZgNGjRzN//nxatmzJe++9p9AUaUKCFpzvv/9+sC4tclINHTqU8vJypk2bxiuvvALAggULGDVqFPfccw89e/YMcociYkbQglPkVNKrVy/y8/N56aWX8Hg8hIWFERoaGuy2RKQeFJwiJ1GLFi0IDw8Pdhsi0gC6ybuIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigiXB6fP5yMzMJDY2lrCwMBwOh+ntl0Qamw0bNjBx4kT69euHzWbj7rvvprKyMthtiUiQWRKcbreblJQUKioqqK2txeVykZ2dTV1dnRXlRU66p556inPPPZfnn3+esLAwDMPgmWee4dxzz+XZZ58NdnsiEkSWBKfdbicjI4Pw8HBCQkLIysrC6/Xi8XhITk6mU6dOTJky5ZA5hYWFJCYmkpiYyLJly6xoQwSA7du3N+jf1KJFi3C5XNxwww1s376dpUuX+utee+21TJgwgbffftuqdkWkibEkOEtKSkhJSSEmJobw8HCioqKIiorCbrdTUFDA1KlTD3l+TU0NTzzxBMuWLaOoqAiXy4XP57OiFTnFzZ8/n7i4OIYMGQLAa6+9ZrrG3//+d8455xzmzZvHmWee6T/euXNnf/3HH3/csp5FpGlpcHCWl5eTnp5Obm4ulZWVuN1u8vLySEhIACAmJuaIOWVlZTidTlq3bk3Hjh2Jjo5m69atDW1FTnH//e9/ycrKYv/+/f5jOTk57Nmz54RrbNu2jfLycm677TZatmx5xPlWrVpx6623snLlSr7//ntL+haRpqXBN3lfu3YtdrudAQMGEBoaSkFBAY899hh5eXnHnLN7927sdrv/sd1uZ/fu3fTo0eOEr7t8+XJsNtshxw5/bFZD5weqltX1TqXe6urqaN++vel599xzD/fcc88hxw7vLTo6ukG9iUjjcqLffxq84kxLS8PhcBAdHU18fDzV1dXY7Xb/ivNoIiMjqa6u9j+uqakhMjLS1HWdTieGYWAYBk6n85DH9RlAg+YHqpZ6O/Gxb98+zjrrLEJC/v8/66ioKLxe7wnX+OmnnwgNDeWPf/zjMXubOHEiLVu2pLq62tLPpYaGRnDG4RnidDqPmz8NDs6IiAiKi4vxeDxs2rQJl8tFVVUVqampx5zTr18/VqxYgdfr5eeff2bHjh1069atoa3IKa5Fixa8++67nHvuuf7wLC4u5rTTTjvhGh07duTaa69l9uzZfPfdd0ecr6qqIj8/nxEjRhAREWFZ7yLSdAT8Bgg5OTlMnTqVgoICrrnmGuBg2E6cOJGkpCSGDRvGtGnTDlkliNTX+eefzxdffMG+ffsA6NOnj+kaDz/8MF6vF6fTycKFC/21FixYgNPpxOfz8dBDD1nat4g0HQHfyHrOnDlHPZ6ZmUlmZmagLy+nqIb8IHbBBRdQUlJCRkYGI0eOpEWLg/+b3HTTTXTv3p0lS5Zw/vnnW9WqiDQxWuaJHEViYiKbNm3irbfe4t577wXg7bff5ptvvuGSSy4JcnciEkwBX3GKNFWhoaFcc801XHPNNTz66KPBbkdEGgmtOEVERExQcIqIiJig4BQRETFBwSkiImKCUCjr2gAAIABJREFUglNERMQEBaeIiIgJCk4RERET9Hec0qz4fD4++ugjdu7cCcCBAwcIDQ0Nclci0pxYtuL0+XxkZmYSGxtLWFgYDoeDefPmWVVe5De9+uqrnH322Vx22WWMGDECAIfDQUFBQXAbE5FmxbLgdLvdpKSkUFFRQW1tLS6Xi+zsbOrq6qy6hMgxPf3002RmZhIZGclrr73GunXrAOjcuTOjR49m2rRpQe5QRJoLy4LTbreTkZFBeHg4ISEhZGVl4fV68Xg8JCcn06lTJ6ZMmXLInGMdl1NLUVERQ4cOBajXqxQ//PADkyZN4tprr2XVqlXcfPPNXHDBBQCsWLGCESNGkJeXd9RtwkREzLIsOEtKSkhJSSEmJobw8HCioqKIiorCbrdTUFDA1KlTj5hzrONy6li2bBnXXXcdy5YtAyAjI4O33nrLVI38/Hz27dvHP/7xD1q2bHnIuRYtWvD444/j8/mYPXu2ZX2LyKnLkuAsLy8nPT2d3NxcKisrcbvd5OXlkZCQAEBMTMxR5x3ruJw6Fi5cCIBhGMDB7cAWLFhgqsbnn39Ojx49OOecc456Pi4ujnPOOYeKioqGNSsigkXvql27di12u50BAwYQGhpKQUEBjz32GHl5eVaUP6rly5djs9kOOXb4Y7MaOj9Qtayu15h78/l8FBYWUlhYaEkf/3vs66+/tvxjF5Hm40S/P1iy4kxLS8PhcBAdHU18fDzV1dXY7Xb/ijMQnE4nhmFgGAZOp/OQx/UZQIPmB6pWc++tqqqKM8880/91tdvtfPPNN6Zq/Bqy77333lF7+/Vl4Pz8fEs/dg0NjeYxDs8Qp9N53PyxJDgjIiIoLi7G4/GwadMmXC4XVVVVpKamWlFemrEuXbqwbt06nnrqKQDWrVuHw+EwVWPkyJFERUVx++23s3nz5kPObdu2jT/84Q+cccYZpKWlWda3iJy6TsoNEHJycigrK8Pr9VJWVkZRUdFxj8uppXPnztx1111MnDiRrl27mp7fqlUrFi9ezBVXXMG5557LiBEjiI+PB6Bnz560adOGd999lzZt2ljduoicgk5KcM6ZM8fUcRGzLr74Yj799FNmzJjBK6+84v+zlrFjx3LXXXcRFxcX5A5FpLnQLfek2ejevTtPPfUUTz31FPv376dFC/3zFhHr6Sbv0iwpNEUkUBScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAmWBafP5yMzM5PY2FjCwsJwOBz12pRYTi3r169n3Lhx9O7dm5CQEMaMGcOaNWuC3ZaIyDFZFpxut5uUlBQqKiqora3F5XKRnZ1NXV2dVZeQZmb69On07t2b/Px8YmNj8fl8zJs3j4SEBCZPnhzs9kREjsqy4LTb7WRkZBAeHk5ISAhZWVl4vV48Hg/Jycl06tSJKVOm+J+/adMmBg0axGWXXcall17K6tWrrWpFToLNmzfz9ttv13v+W2+9xd13382IESOoqqry1/ruu+/Izs7mkUce4dVXX7WqXRERy1gWnCUlJaSkpBATE0N4eDhRUVFERUVht9spKChg6tSphzw/IiKCRYsWsWLFCmbNmoXL5bKqFQmw+fPnc84553DNNdcA8Mwzz5iuMXXqVOLi4pg7dy6RkZH+4+Hh4cyePZsLLriAqVOnYhiGZX2LiFjBkuAsLy8nPT2d3NxcKisrcbvd5OXl+TeyjomJOWJOZGSk/xtmq1atCA0NtaIVCbD9+/czevRoDhw44D82ceJEdu7cecI1du7cycqVK8nJyeG000474nxoaCi33XYbn3/+Od98840lfYuIWMawwMyZM424uDijpqbG2Lt3r5Gfn2+0bdvWmDx5sv85+fn5xl//+tcj5u7fv99ITU013n333RO+ntPpNAANDQ0NDY2AjOOxZMWZlpaGw+EgOjqa+Ph4qqursdvt/hXnsRiGQU5ODldffTVXXXWVqWs6nU4Mw8AwDJxO5yGP6zN+7ceKYWWtxtabz+cjPj6ekJD//0+nc+fOeDyeE66xZ88eWrduzdixY4/ZW15eHqGhofz444+Wfi41NDQ0Dh+HZ4jT6Txu/lgSnBERERQXF+PxeNi0aRMul4uqqipSU1OPO2/ChAk4HA7uuOMOK9qQk8Bms/HOO+/Qv39/2rZtC8D777/v/+8TERYWRkZGBoWFhWzcuPGI8zt27OCll17i2muv5YwzzrCsdxERK5yUGyDk5OQwdepUCgoK/G8oKS0tZdasWSxdupSkpCRuuOGGk9GKWKBbt26sWrUKj8cDQO/evU3XePDBB2ndujWDBg1izpw5/PLLLwAUFhZy6aWXsm/fPv1Jiog0Sidlt985c+YccSwpKUl/43kKi4uLo7S0lJtvvpkxY8YwZswYAEaNGkXPnj1ZunRpvQJZRCTQdMs9CZpevXrx2WefsXz5cv72t78BB1/2/eqrr7j44ouD3J2IyNGdlBWnyLHYbDYGDRrEoEGDeOCBB4LdjojIb9KKU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBf8cpph04cIDS0lK+//57ALxeL61atQpyVyIiJ4dlK06fz0dmZiaxsbGEhYXhcDiYN2+eVeWlkSgoKKBHjx4kJyczatQoALp27cqTTz6JYRhB7k5EJPAsC063201KSgoVFRXU1tbicrnIzs7W/WibkWeeeYbRo0fTpUsXFixYwIYNGwDo27cv99xzD/fff3+QOxQRCTzLgtNut5ORkUF4eDghISFkZWXh9XrxeDwkJyfTqVMnpkyZ4n/+jz/+yIABA0hKSqJfv34sXbrUqlbkKBYvXkxiYiIAzz//vOnV4e7du7n33nsZNmwYH374ISNHjqRnz54AFBcXM2bMGB5//HF/mIqINFeWBWdJSQkpKSnExMQQHh5OVFQUUVFR2O12CgoKmDp16iHP79ixIytWrKC0tJTXX3+d++67z6pW5DArVqzghhtuoKysDIA777yTV155xVSNl19+Ga/Xy9///ndatDj0V+M2m40pU6bQsmVLZs2aZVnfIiKNkSXBWV5eTnp6Orm5uVRWVuJ2u8nLyyMhIQGAmJiYI+aEhoYSGhoKQE1NDX369LGiFTmKoqIi/87mACEhISxatMhUjS+//JLOnTvTq1evo57v3LkzF1xwAV999VWD+xURacwseVft2rVrsdvtDBgwgNDQUAoKCnjsscfIy8s77rwtW7YwatQoNmzYQH5+vqlrLl++HJvNdsixwx+b1dD5gapldT2fz8fixYvrVfNoc6z+OoiIBMOJfu+yZMWZlpaGw+EgOjqa+Ph4qqursdvt/hXnsXTv3p2VK1dSVlbG+PHjTV3T6XT6V1FOp/OQx/UZQIPmB6qWFfV2795Njx49/J87u93Ohg0bTNUoKioCYP78+UftbeXKlQC8+OKLln7sGhoaGoEeh2eI0+k8bv5YsuKMiIiguLj4kGMul+u4c/73b//at29PWFiYFa3IUXTo0IFPP/2UN954g1tvvZWKioqjvnx+PCkpKZx99tnk5uZyzjnncMEFF/jPbdmyhezsbDp27MjNN99sdfsiIo3KSbkBQk5ODmVlZXi9XsrKyigqKuKTTz7hgQceIDQ09P+xd/dxUVb5//hfM4PhDXej+EkFNW8+bRTBVYTcyDZkmtrqGmuEdqMGmd9tDSVNW3MrRcsyTW293RK2vCktWxf9SBnujEo6MOEoUmsg2iatVsq9cTvn9wc/p0ZR54LrYgZ8PR+P83g4Z67rnDfXGebNmbk8B/X19Vi5cmVbhHLD8vX1RVJSEp566inZSRNo+k56586duP/++3HXXXdh1KhR9u+lb731VnTr1g179uzhH0BE1OG1SeLcuHHjFXUxMTHYv39/W3RPCgkKCsKRI0ewZs0apKen4/PPPwcAzJgxA9OnT8ctt9zi2gCJiNoAl9wjWW6++WYsWLAACxYscHUoREQuwUXeiYiIZGDiJCIikoGJk4iISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZFEmcNpsNkyZNQv/+/eHl5YXBgwfjgw8+UKJpUkBeXh6SkpIwaNAg6HQ6PPzww9i3bx+EkLeZNRERKZQ4y8vLMXr0aBw7dgwVFRVISUnBlClTUFdXp0Tz1ApvvfUWwsLC8MEHH+Duu+9GY2MjjEYj7r//fjz77LNMnkREMimSOPV6PSZOnAhfX19otVpMnjwZtbW1qK6uxvDhw9GzZ08sWrToivPOnz8PvV6PTZs2KRFGh3PixAl8+OGHLT5/z549eO655/Dwww+jpKQE27dvBwB89913eO6557B69Wr89a9/VSpcIqIbgiKJc+/evRg9ejQCAwPh6+uL3r17o3fv3tDr9UhPT8fSpUubPW/RokWIiYlRIoQOZ/v27QgODsaECRMAAK+88orsNpYtW4Z+/fph8+bN8PPzs9d36dIFb775Ju69914sX74cjY2NSoVNRNThtTpx5uTkYMKECUhOTsY333yD8vJyzJ07176J9dW2sCoqKsL58+cRFhbW2hA6HCEEkpKSHBLaggULcOrUKafbqKioQFZWFiZPnoybbrrpiuc1Gg2mTp2K06dP4+jRo4rETUR0I2j17ihHjhyBXq9HdHQ0dDod0tPT8dprr2Hu3LnXPO+ll15Camoq3n///Rb1azKZoNFoHOoufyxXa89Xq61LBg4cKPuc1NRUpKamOtRdHhv/eCEicv59u9UzzoSEBAwePBh9+vTB7bffjtLSUuj1evuMszlffPEFevTogUGDBrW4X4PBACEEhBAwGAwOj1tSALTqfKXbGjp0KLTaX4bn5ptvRkVFhdPn19XVwc/PDxMmTLhqbH/5y1+g0Wjw3XffKfazs7CwsLS3cnkOMRgM18w/rZ5x+vn5ITMz06EuJSXlmudYLBYcO3YMo0aNQlFREbp164ZBgwYhKiqqteF0GB9//DGSkpJgNpvx008/Ye/evfD29nb6/E6dOmHKlClYvXo1rFYrJElyeL6kpATr1q3Dgw8+eNWP04mI6EqqL4CQmJiIpUuXIj09HWPHjgUAJCcnw2QyITMzE48//jief/55Js3L3Hzzzdi1axd+/PFHAMCdd94pu405c+agV69eGDZsGJYvX47vv/8eALBx40YMHToUP//8MxYvXqxo3EREHZ1GCNHu/iNfbGwsAMBoNDb7uCU0Gg2UuhRKttXa9k6dOoVJkybh4MGDDvV33HEH0tLSEB4erkSIRETtVnM55Vr5hEvudXADBgzAgQMHYLVasXLlSgBNN1bl5+czaRIRtUCrv+Ok9iE0NBShoaFITk52dShERO0aZ5xEREQyMHESERHJwMRJREQkAxMnERGRDEycREREMjBxEhERycDESUREJAP/H6ebqq+vx6effoqSkhIAQGVlpay1aomISB2KzThtNhsmTZqE/v37w8vLC4MHD8YHH3ygVPM3lI0bN6J///4YO3Ys/t//+38AgICAAMyfP5+bThMRuZhiibO8vByjR4/GsWPHUFFRgZSUFEyZMgV1dXVKdXFDWL16NZKSkjB48GBkZGTgzJkzAIAHH3wQixcvxrRp01wcIRHRjU2xxKnX6zFx4kT4+vpCq9Vi8uTJqK2tRXV1NYYPH46ePXti0aJFDud06dIFsbGxiI2NxYYNG5QKxWU++eQThIaGAgAWLVoEm80m6/yysjLMmTMHo0ePxr59+zBmzBgEBAQAAD744APMmTMH7777LnJzcxWPnYiInKPYd5x79+7F8uXLkZ+fj8rKSthsNvTu3Rt6vR7p6en4/PPP7bOnSwICAlq1o4k7OXToEB5++GH7LiZ/+ctf4OXlhZkzZzrdxubNm3Hx4kUsWrQIHh5XDs28efOwevVqbNiwgQu0ExG5iCIzzpycHEyYMAHJycn45ptvUF5ejrlz5+Kee+4BgKtulHz27FkYDAY89NBDKC4uViIUl/n0009hs9nsiVOj0WD37t2y2jhx4gR8fX1x9913N/u8r68v7rnnHpw4caLV8RIRUcsoMuM8cuQI9Ho9oqOjodPpkJ6ejtdeew1z58695nmnT5+Gv78/srKykJiYKGv2aTKZoNFoHOoufyxXa8//NSEEPv/88xa12dw5Sv+sRETkyNn3VUVmnAkJCRg8eDD69OmD22+/HaWlpdDr9fYZ59X4+/sDAO6///4rPsa9HoPBACEEhBAwGAwOj1tSALTq/KqqKtx11132+Lp3746vv/5aVhv79+8HAKxfv77Z2MxmMwDg7bffblWsLCwsLCy/lMtziMFguGb+UWTG6efnh8zMTIe6lJSUa55TVVWFLl26QKfT4fjx4+jevbsSobhMt27dkJ2djYyMDCQkJOD48ePo3bu3rDZiYmJwzz334Pnnn8dvfvMbh8ErKirCY489hu7du+OJJ55QOnwiInJSmyyAkJiYCLPZjNraWpjNZmRkZOCrr77CtGnT7P+pf/369W0Riqq6dOmCRx55BAkJCbKTJtD0McHHH3+M4cOHIzY2FtHR0fbvO3/zm9/Ax8cHu3fvhq+vr9KhExGRk9okcW7cuPGKuiFDhuDIkSNt0X270q9fP+Tm5mLjxo3YuHEjNm3aBACYO3cu/vjHP6Jv374ujpCI6MbGJffckK+vL1JSUq77cTcREbU9LvJOREQkAxMnERGRDEycREREMjBxEhERycDESUREJAMTJxERkQxMnERERDIwcRIREcmgSOK02WyYNGkS+vfvDy8vLwwePBgffPCBEk23G2azGU888QT69OkDnU6HBx54ADt27JC9mTUREbk3RRJneXk5Ro8ejWPHjqGiogIpKSmYMmUK6urqlGje7S1fvhyRkZHYuXMn7r//fjQ2NuLf//43xo8fj0cffRQNDQ2uDpGIiBSiSOLU6/WYOHEifH19odVqMXnyZNTW1qK6uhrDhw9Hz549sWjRIodzjh49ilGjRmHYsGF48sknlQijRY4fP460tDQATVt3ybV3717MmjULDz/8MEpKSvD+++8DAIqLi/Hqq6/iww8/xOLFixWNmYiIXEeRxLl3716MHj0agYGB8PX1Re/evdG7d2/o9Xqkp6dj6dKlDsfX1dVh9uzZ+PDDD7Fv3z574mpr27dvhyRJSExMBABMnz5ddhtvvfUWevfujU2bNtl3egEADw8P/PnPf8bvf/97rF69GrW1tYrFTURErtPqxJmTk4MJEyYgOTkZ33zzDcrLyzF37lz7JtaBgYFXnHP48GF4e3tj0qRJiI2Nxa5du1obRos888wzDt9BrlmzBseOHXP6/Pr6emRmZuLxxx+Hp6dns8ckJibixx9/xOHDh1sdLxERuQHRSuvWrRODBg0SZWVloqamRqSlpYmuXbuKBQsW2I9JS0sTqamp9sdbtmwR/fv3F6WlpeLChQsiKChIlJeXO92nwWAQAFhYWFhYWFQp19LqGWdCQgIGDx6MPn364Pbbb0dpaSn0er19xtmc7t27IzIyEn5+ftDr9QgJCUFRUZGsfg0GA4QQEELAYDA4PHa2jB07FhqNxt7m//zP/+DChQtOn2+z2dC7d2+MHj3aoR6A/d+pqakAgKKiItnxsbCwsLCoXy7PIQaD4Zr5p9WJ08/PD5mZmaiursbJkyeRkpKCM2fO4MEHH7zqOZGRkSgqKkJ9fT3q6urw9ddfo3///q0NRbb3338fjz76KPr16wcAyMrKgl6vd/p8jUaDp59+GpmZmTCZTFc8X1JSgr/+9a8YMWIEBg0apFjcRETkOqpvZJ2YmAiz2Yza2lqYzWZkZGTA19cXs2fPxn333Ye6ujokJyejR48eaodyBV9fX2zatAlAUxIMDg6W3caMGTPw4YcfYvTo0Xj++efx2GOPAQDWrVuHV199FdXV1XjjjTcUjZuIiFxHI4QQrg5CrtjYWACA0Whs9nFLaDQatPRSnDt3DlOnTsWuXbsc2rjrrruwYcOGa35sTURErtVcTrlWPuGSewq4+eab8c9//hNFRUV45513ADTdOfzll18yaRIRdTCqf1R7Ixk4cCAGDhyIpKQkV4dCREQq4YyTiIhIBiZOIiIiGZg4iYiIZGDiJCIikoGJk4iISAYmTiIiIhmYOImIiGS4of8fZ21tLTIyMvCf//wHAPDjjz+iZ8+eLo6KiIjcmWIzTpvNhkmTJqF///7w8vLC4MGD8cEHHyjVvOL+9re/ITAwEPHx8Zg1axaApr1Dn3nmGdTV1bk4OiIicleKJc7y8nKMHj0ax44dQ0VFBVJSUjBlyhS3TEJr167F008/jeDgYHz66acoLS0F0LQg/dq1azFhwoQWr1tLREQdm2KJU6/XY+LEifD19YVWq8XkyZNRW1uL6upqDB8+HD179sSiRYvsx+fk5CA2NhaxsbGIjIxss91RKisrMXfuXDzwwAPYu3cvHnjgAfj5+QFoSqivv/46PvnkE+zbt69N4iEiovZFscS5d+9ejB49GoGBgfD19UXv3r3Ru3dv6PV6pKenY+nSpQ7HDxkyBEajEUajEcnJyUhISFAqlGvatm0bKisrsWDBAnh4XPkV76UtzjZs2NAm8RARUfuiSOLMycnBhAkTkJycjG+++Qbl5eWYO3eufWeQwMDAa57/3nvv4YknnlAilOsqLCxEp06dEBER0ezznTt3RkREBIqKitokHiIial8Uuav2yJEj0Ov1iI6Ohk6nQ3p6Ol577TXMnTv3uueePXsWp0+fRlRUlKw+TSYTNBqNQ93lj69Fq73yb4bWtEdERO2bs+/5isw4ExISMHjwYPTp0we33347SktLodfrndqLcvPmzZg4caLsPg0GA4QQEELAYDA4PL5WOXr0KADgjTfecKgHACEEjhw5AgBYtmyZU+2xsLCwsLTvcnkOMRgM18w/isw4/fz8kJmZ6VCXkpLi1LmbNm3CRx99pEQYTgkJCcGIESPw0ksvYfDgwXjooYfsf2WcOHEC8fHx6N69O6ZMmdJmMRERUfvRJgsgJCYmwmw2o7a2FmazGRkZGQCA/Px8dO3aFYMGDWqLMOy2bNmCBx54AH/4wx8QHByM8PBwAEBQUBB8fX3xf//3f+jevXubxkRERO1DmyTOjRs3Nlt/5513Ijs7uy1CcODv74/s7Gxs2bIFGzduxGeffQYAeOmll/D000+jT58+bR4TERG1DzfskntdunRBUlISkpKSXB0KERG1I1zknYiISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZmDiJiIhkYOIkIiKSQbHEabPZMGnSJPTv3x9eXl4YPHgwPvjgA6WaJyIicguKJc7y8nKMHj0ax44dQ0VFBVJSUjBlyhTU1dUp1QUREZHLKZY49Xo9Jk6cCF9fX2i1WkyePBm1tbWorq7G8OHD0bNnTyxatMh+vBAC06dPR1RUFMLDw7Fp0yalQiEiIlKNYmvV7t27F8uXL0d+fj4qKyths9nQu3dv6PV6pKen4/PPP8eZM2fsxxcUFKCgoACHDh1CdXU17rzzTjz++ONKhUNERKQKRWacOTk5mDBhApKTk/HNN9+gvLwcc+fOtW9kHRgYeMU5ffr0wU033YT6+npUVlZyGy8iImoXFJlxHjlyBHq9HtHR0dDpdEhPT8drr72GuXPnXvUcvV6PQYMG4dZbb0V1dTXWr1/vdH+SJGHlypX2DagvufwxERGRs5zNIYokzoSEBHzyySfo06cPevXqhenTp0Ov19tnnM357LPPUFJSgqKiIpSXlyMmJgYPPvggPD09r9vfihUrsGLFCiVCJyIikkWRxOnn54fMzEyHupSUlOue1717d+h0Onh7e6O+vh6NjY1KhENERKQajRBCqN1JYmIizGYzamtrERQUhIyMDDQ2NiIpKQmFhYWoq6vDE088geTkZLVDISIiapU2SZxEREQdBZfcIyIikoGJk4iISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZmDiJiIhkYOIkIiKSgYmTiIhIBiZOIiIiGZg4iYiIZGDiJCIikoGJk4iISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZmDiJiIhkYOIkIiKSgYmTiIhIBiZOIiIiGZg4iYiIZGDiJCIikoGJk4iISAYmTiIiIhk8XB0AKWfmzJmwWq2uDsOBJElYsWKFq8MgIlIMZ5wdiNVqlZ046+rqYDKZUFlZ6VBfU1MDk8mE6urqNo2HiMjdqTbjtNls8Pb2RkZGBoYNG2avHz9+PAICArBq1Sq1ur6hSZIEo9Ho9PG7d+9GfHw8zGYzPDx+eTls374dSUlJMJvN0Gpb9vdVbGxsi84jInJnqiVOrVaL4OBg5Ofn2xOnyWSCyWRCYWGhWt2STBaLBZIkOSRNAMjJyUFYWFiLkyYRUUel6necoaGhyM/PB9A0A01JScHChQuh1+uxadMmrF69GgDw6quv4r777lMzlKvav38/Dh06hL59+yIhIQE6nc4lcTRn3759yM3NxYABA/Dwww+rksQsFgvCw8OvqM/JyUFERITi/TXn3Llz2LZtG2w2G/7whz+gb9++rWpv9+7dOH78OIKCgjB27FhoNBqFIiUiAiBUtHr1ajFkyBAhhBDvvPOOuPPOO0VDQ4MoLS0VoaGh4ueffxY//vijCA0NFY2NjWqG0qz169cLAPYSHx8vbDZbm8fRnBUrVjjENmXKlOvGZjAYhMFgkNVPr169xPvvv+9Q19jYKLy8vMS2bdvE2bNnRVRUlDAYDGLIkCHi888/d7ptZ+I5c+aMuPnmm+0/Z/fu3UVhYaGsn+HXXnzxRYfrNmfOnBa3RUTUHFUT58GDB0W3bt1EeXm56NWrl8jKyhJCCJGZmSmSk5Ptx40ePVqcPHnS6XZnzJghZsyYcdXHzvL19XV4kwVLGUtGAAAgAElEQVQgLBaL7HaU1tjYKDw9Pa+I7euvv77meXIT55kzZwQA8dVXXznUf/nllwKA+M9//iMaGhpEQ0ODEEKIkydPinvuucfp9p2JZ86cOQ4/o0ajEdOmTXO6j18rKyu74poBED/++GOL2iOiG0NzOeVaVE2cFRUVQqPRiEceeUTExcXZ6zdv3ixefvll++NHH31U5OTkON2uwWBo9g2SBbIS5+HDhwUA8f333zvUz5o1S0RGRl5x/JdffikSExM5TiwsLB2+XIuqd354e3tj4MCB2LlzJ5YtW2av79GjB0pLS+2Py8rK0KNHD1ltGwwGiKbED4PB4PDY2fLoo486tNmvXz9UVFTIbkeNMm7cOIfYbr31Vly8ePGa5xgMBlnXMCgoCL6+vliyZAnKyspw4cIFrFu3DmvWrMGSJUvsx506dQoxMTEYOXIk4uLiWjxOzZWsrCxoNBqH7yE/+eSTFl2zxsZGREdHO7QVHh6OhoYGl48nCwuL+5bLc8j13ktVv2WyqKgINTU1GDBggL0uIiICBw4cQG1tLS5cuICSkhLccsstaodyhXfeeQcpKSkYMmQIgKa7fr29vds8juZs3rwZ06dPt8e2b98+dOnSRdE+fHx8sGvXLlgsFgQGBuK2227Djh07kJmZ6fDCGTBgAA4ePAiz2Yzp06crGsOwYcPwySef2P/ryubNm/HQQw+1qC2tVotdu3bhySeftN/wtGfPHre64YuI2j+XrBzk5+eHmTNn2t8sly1b5pL/9tClSxcsX74cAKDRaFySvK+mW7duePvttwE0xRYQEKBKPzExMcjOzr7q87W1tfD09ATQlGi9vLwUj2HcuHEYN24cNBrNFZ8CyKXX6/Huu+8CaLpucj/JICK6HpctuTdp0iRMmjTJVd2Tk3JzczFv3jzodDrU19dj5cqVrg6JiMiluFZtB2O1WhVfsUer1UIIAQ8PD6SmpiI1NdXpWCRJUjQWIiJXY+LsQNwtSUmS5HYxERG1FhNnB8JdSIiI1MeFSImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZeHNQBzJz5kxYrVZXh+FAkiTetEREHQpnnB2I1Wp1q8TpbvEQESmBM84ORpIkGI1Gp4//4YcfcPPNNyMvLw933XWXvf7bb7/FLbfcgq+++gpBQUEtikXphRiIiNyBqjNOm82Gbt26Yd++fQ7148ePR3Jysppdk5Nyc3PRpUsX3HnnnQ71OTk58Pb2xm9+8xsXRUZE5J5UnXFqtVoEBwcjPz8fw4YNA9C0A4nJZEJhYaGaXcsihHB1CFeldmwWiwWSJMHDw/GlkJOTg7CwsDZbfL89jMGvtysjohuX6u+KoaGhyM/PB9A0A01JScHChQuh1+sxfPhw9OzZE4sWLVI7jGaVlJTgt7/9LTp16gSgKam7i2+//RaRkZH22A4dOqRKPxaLxb4F16/l5OQ0W680IQReeeUV+3Zus2fPhs1mU71fZwgh8MILL8DLywteXl6YP3++Wyd4ImobqidOSZLsiTMtLQ0NDQ2YNm0aACA9PR1Lly5VO4SrSkhIwBdffIHGxkYAwJgxY3Du3DmXxfNrcXFxyM3Ntcf24IMPoqysTPF+mkucNpsNeXl5CA8Px7lz5xAdHY3Y2FhEREQgKytL0f43bdqEBQsWoLq6GkDTFnNr1qxRtI+W2rBhA15//XVcvHgRFy9exOLFi5GWlubqsIjIxdpkxllQUICKigrMnz8fK1assG8sHBgYqHb3VyWEwOHDhx1mN1VVVSgoKHBZTJfU1NTgyJEjDrGVlZXhxIkTivZTUlKCs2fPIiwszKHearWiqqoKkZGR8Pf3x4EDB2A0GrF161a88MILisbwxRdfOHwcrNPprrk/aFvKzs52iE2r1eKLL75wYURE5BaEyioqKoRGoxGPPPKIiIuLu+L5tLQ0kZqaKqtNg8EgALA0UwwGg9PX8fDhwwKA+P777x3qZ82aJSIjI684/ssvvxSJiYkcJxYWlg5frkX1Gae3tzcGDhyInTt3YtmyZYq1azAYIISAEAIGg8HhsbPlX//6F7p162Zv89VXX5Xdhlplz5496Ny5sz22FStWXPccg8Eg6xoGBQXB19cXS5YsQVlZGS5cuIB169ZhzZo1WLJkif24U6dOISYmBiNHjkRcXFyLx6m5Ul1djejoaPvxkiShtLRUkWsIoFXnl5eX45577rHHFhERgcrKSpe/NlhYWJQtl+eQ672Xtsktk0VFRaipqcGAAQPaojunxcbGoqioCJ9//jkA4M9//rOLI/rFqFGjcPLkSXtsM2bMULwPHx8f7Nq1CxaLBYGBgbjtttuwY8cOZGZmOrxwBgwYgIMHD8JsNmP69OmKxtC1a1cYjUb7R6CHDh2Cn5+fon20lI+PDw4ePIiDBw8CAPbv3w8vLy8XR0VErubSBRASExNhNptRW1sLs9mMjIyMNo+hV69e6NWrV5v364w+ffqgT58+qvYRExNzze8Ua2tr4enpCaApkaiRODp16oSoqCgAcJhluwNPT08MHToUAHDTTTe5OBoicgcuTZwbN250ZffkhNzcXMybNw86nQ719fVYuXKlq0MiInIpLrnXwVitVsWXutNqtRBCwMPDA6mpqUhNTXU6FkmSFI2FiMjVmDg7EHdLUpIkuV1MREStxcTZgXD7LiIi9XFbMSIiIhmYOImIiGRg4iQiIpKBiZOIiEgG3hzUgcycORNWq9XVYTiQJIk3LRFRh8IZZwditVplJ866ujqYTCZUVlY61NfU1MBkMtm3+2qreIiI3J2qM06bzQZvb29kZGRg2LBh9vrx48cjICAAq1atUrP7G5IkSTAajU4fv3v3bsTHx8NsNsPD45eXw/bt25GUlASz2eywtZYcSi/EQETkDlRNnFqtFsHBwcjPz7cnTpPJBJPJhMLCQjW7JidZLBZIkuSQNAEgJycHYWFhLU6aREQdlerfcYaGhiI/Px9A0ww0JSUFCxcuxIULFzBu3Dj7Ni4rVqxw2MKpPfrpp5+QlpaGmpoa/OEPf8Add9zh6pCuy2KxIDw8/Ir6nJwcREREuCCi1hFCYPv27Th+/Lj9sUajaXF7p0+fxpYtWwAA//nPf9CvXz9F4iSi9kv16YQkSfbEmZaWhoaGBkybNg1+fn745JNPcODAAWzYsAEpKSlqh6Kqn376CXfffTfmzJmDl156CWFhYTCbza4O67qaS5w2mw15eXkIDw/HuXPnEB0djdjYWERERCArK8tFkTpn9uzZSEhIsK+n25rt2AoLCyFJEl588UUATa/l4uJiReIkovZL9cQZGhqKgoICVFRUYP78+VixYgV0Oh169OiBHj16AGjaukmn06kdiqrS0tLw3Xff2R/X19fjtddec2FE11dSUoKzZ88iLCzMod5qtaKqqgqRkZHw9/fHgQMHYDQasXXrVrzwwgsuivb6ysrKsHz5coe6t99+Gz/++GOL2nvrrbdQUVHh0D6/lyciCJVVVFQIjUYjHnnkEREXF3fF8w0NDeLBBx8Ue/bscbpNg8EgALA0UwwGg9PX8fDhwwKA+P777x3qZ82aJSIjI684/ssvvxSJiYkcJxYWlg5frkX1xCmEEIMGDRKenp6iuLjYod5ms4lJkyaJNWvWyGrPYDA4JIjLH7fE9S7U9eTn5wtPT0+h1WrtF/7vf/97q9qUG5vc61BeXi58fX1FcnKyKC0tFefPnxdr164VXbp0EUaj0X5ccXGxGDp0qPD39xcZGRlOty83ntaOgc1mE8OGDXN48f/2t78VjY2NLWrvs88+ExqNxj6mWq1W7Nu3r1UxEpH7aS6nXEub3DJZVFSEmpoaDBgwwKH+2WefxeDBg/HHP/6xLcJQVXBwMIxGI8aOHQsAeO+99zBp0iQXR3VtPj4+2LVrFywWCwIDA3Hbbbdhx44dyMzMhMFgsB83YMAAHDx4EGazGdOnT3dhxNem0Wjwj3/8A88++yzuu+8+AEBGRkaL7wweMWIE/vnPf2LUqFEAgF27dtnbJaIbl8tWDjIajdiwYQOio6ORlZWF7t27Y8eOHa4KRxGRkZH4xz/+AY1GgyeeeMLV4TglJiYG2dnZV32+trYWnp6eAJoSrZeXV1uF1iLe3t727yE1Gg18fX1b1d6YMWMwZswYaDQajB49WokQiaidc1nijI2NRV1dnau6Jyfl5uZi3rx50Ol0qK+vx8qVK10dEhGRS3Gt2g7GarUqvmKPVquFEAIeHh5ITU21/1cPZ2KRJEnRWIiIXI2JswNxtyQlSZLbxURE1FpMnB0IdyEhIlIfFyIlIiKSgYmTiIhIBiZOIiIiGZg4iYiIZODNQUQKmjlzJqxWq6vDcCBJ0g1345i7jcONOAYdGWecRAqyWq2y37Dr6upgMplQWVnpUF9TUwOTyYTq6uo2jacjkPtzcwxIDlVnnDabDd7e3sjIyMCwYcPs9ePHj0dAQAC3aKIOSZIkGI1Gp4/fvXs34uPjYTab4eHxy6/k9u3bkZSUBLPZ3OL1dpVeDKM9kTMOHAOSQ9XEqdVqERwcjPz8fHviNJlMMJlMKCwsVLNronbDYrFAkiSHN2wAyMnJQVhYWIvfsMl5HAOSo002ss7PzwfQNANNSUnBwoULUVdXh+joaMTGxiIiIgJZWVlqh0LkliwWC8LDw6+oz8nJabZeLUII1NbWtll/cqgdm7uMAdD0sbHNZlOkLXce0/ZM9cQpSZI9caalpaGhoQHTpk2Dv78/Dhw4AKPRiK1bt+KFF15QOxQit9Tcm7bNZkNeXh7Cw8Nx7tw51f/IPHjwIAICAtC5c2cEBQXhxIkTivfRUllZWejVqxc6d+6M0NBQFBcXK96HO4xBZWUlfv/736Nz587w8vLCmjVrWtXexx9/DL1ej86dOyM6Ohpnz55VKFJS/a7a0NBQFBQUoKKiAvPnz8fmzZuh0+kcjikrK0NISIjaoRC5nZKSEpw9exZhYWEO9VarFVVVVYiMjLT/kanT6VBcXIyEhATk5uYqFkNZWRnGjBljvzHmm2++wdixY/HNN98o1kdL/fDDDxg3bhx+/vlnAMDx48fx8MMPIy8vT7E+3GEMAOD5559HRkYGAODnn3/Gn/70JwQHB+Pee++V3VZRUREmTpyIhoYGAIDZbMaUKVOQmZmpaMw3KtVnnCEhIbh48SKmTp2KqKgoh5uETp06hZiYGIwcORJxcXFqh0Lkds6cOQMA8PPzc6jfsmULIiMj0bdvX+h0Ovsfm2r8kXny5EmUl5fbPx602WwoLCxEVVWVov20xIkTJ1BdXe0Q25EjR9DY2KhYH+4wBkBTcrvcl19+2aK2jh49ivr6egghADRdt+bapxYSbWDQoEHC09NTFBcXN/v8yZMnRf/+/Z1uz2AwCAAsLG5ZDAaD06/l8vJy4evrK5KTk0Vpaak4f/68WLt2rejSpYswGo3244qLi8XQoUOFv7+/yMjI4O+KguPAMWBprlxLmyTO5tTU1Nj//eOPP4o77rjD6XMNBoPDL8Xlj1viehfKVW2p0Z67cufr5mxbLXktHjhwQERHR4tu3bqJnj17ihEjRgiTydTssS35I9OZeDZu3Ch0Op0AILp16yY+++wzp/tQ21//+leh1WoFAOHj4yP2799/3XPkjoM7jMG3334rBg4caH/jfuqpp4TNZnO6n8stWLDA3lbPnj2F1WptcVsdXXM55VpctnJQbm4u5s2bB51Oh/r6eqxcudJVoRC5VExMDLKzs6/6fG1tLTw9PQEAPj4+8PLyUjyGJ598Eg888AACAwNx+vRp+Pv7K95HS/3pT3/C73//e/Tr1w+nTp1C9+7dFe/DHcagX79+yM/PR0FBAYYMGYINGzZAo9G0uL2XXnoJjz/+OAYNGoTCwkL4+voqGO2NzWWJMyYmBvv373dV90TtRlv9kRkQEAAAbpU0L+nbty8AqJI0ndFWY9C1a1f73b2tSZqXDBw4EACYNBXGtWqJ3Bz/yHQ9jgH9GhMnkcKsVqvbLLNmtVohSZKrw3AJdxmHG3kMOiomTiIFudsbpCRJbhdTW3Cnn/lGHYOOjImTSEHcOso9cBxITVy5mIiISAYmTiIiIhmYOImIiGRg4iQiIpKBNwcRKWjmzJmwWq2uDsOBJEk33M0y7jYON+IYdGSccRIpyGq1yn7Drqurg8lksm/rdUlNTQ1MJhOqq6vbNJ6OQO7PzTEgOVSbcdpsNnh7eyMjI8NhK7Hx48cjICAAq1atUqtrIpeSJAlGo9Hp43fv3o34+HiYzWZ4ePzyK7l9+3YkJSXBbDZDq23Z37jusACAq8gZB44ByaFa4tRqtQgODkZ+fr49cZpMJphMJhQWFqrVLVG7Y7FYIEmSwxs2AOTk5CAsLKzFb9jkPI4ByaHqqyE0NBT5+fkAmmagKSkpWLhwIfR6PQDg/Pnz0Ov12LRpk5phELk1i8ViX9j713JycpqtV0NDQwPWrl0LoGkDZ/H/b4DsDurq6uyfUH300Ueq9OEOYwAA2dnZmDt3LgDgp59+arN+nWE0GjFnzhy8+uqrKCsrc3U4LqVq4pQkyZ4409LS0NDQgGnTptmfX7RoEWJiYtQMgcjtNfembbPZkJeXh/DwcJw7dw7R0dGIjY1FREQEsrKyFO1fCIGEhAQ888wzAIDHHnsML774oqJ9tFRjYyMeeughzJgxAwAQHx+PRYsWKd6Pq8cAaPq4+N5778Ubb7wBABgyZAhKS0sV76clPvroIwwbNgxLly7Fiy++iKioqCu+D76RqD7jLCgoQEVFBebPn48VK1ZAp9MBAIqKinD+/HmEhYWpGQKRWyspKcHZs2ev+D2wWq2oqqpCZGQk/P39ceDAARiNRmzduhUvvPCCojGcOHECO3bscKh7/fXXUV9fr2g/LXH06FHs2bPHoW7x4sWKzojdYQwAYMmSJQ4/16lTp7Bt2zbF+2mJxYsXOzz+97//jZ07d7ooGjeg3p7aQlRUVAiNRiMeeeQRERcX5/DcxIkTRVFRkXj55ZfF+++/L6tdg8Fg39mchcXdyvV2j/+1w4cPCwDi+++/d6ifNWuWiIyMvOL4L7/8UiQmJvJ3RcFx4BiwNFeuRdUZp7e3NwYOHIidO3di2bJl9vovvvgCPXr0wKBBg1rctsFggBACQggYDAaHxy0pAFp1vlptqdGeuxZ3vm7OtmUwGGS9joOCguDr64slS5agrKwMFy5cwLp167BmzRosWbLEftypU6cQExODkSNHIi4ursW/K82Vuro6DBkyxOGciRMnuvz1IITAzz//jJCQEIdNnZ966ilFx8EdxkAIgfXr1wOA/UYkPz8/fPvtt27xe7B8+XKH2Pz9/fHf//7X5a8PpcrlOeR6rx/VbxUrKipCTU0NBgwYYK+zWCw4duwYRo0ahU2bNmHp0qU4dOiQ2qEQuR0fHx/s2rULFosFgYGBuO2227Bjxw5kZmY6/PIOGDAABw8ehNlsxvTp0xWNoVOnTvjss8/s3yO+/PLLSE9PV7SPlurcuTP27dtn//510aJF9puYlOIOYwAATz/9NP7+979j7NixAIBDhw6hX79+ivfTEjNnzsTf/vY3jBkzBgBw+PBh9OrVy8VRuY5GXPqTxEVeeeUVDB48GI8//rjT51z6f1GX/o/W5Y9bQqPRQKlLoWRbarTnrtz5ujnblhKvxcvV1tbC09MTQNOdlrGxsTh+/LhT58qNx51fa3JiU3oc2nIMAL4ftbXmcsq1xsvlS+698sorrg6ByK3l5uZi3rx50Ol0qK+vx8qVK10d0g2HY0C/5vLESdTRWK1WxVeL0Wq1EELAw8MDqampSE1NdToWSZIUjaW9UHocOAZ0CRMnkYLc7Q1SkiS3i6ktuNPPfKOOQUfGxEmkIO6A4R44DqQmLsBIREQkAxMnERGRDEycREREMjBxEhERycCbg4gUNHPmTFitVleH4UCSpBvuZhl3G4cbcQw6Ms44iRRktVplv2HX1dXBZDJdsU1TTU0NTCYTqqur2zSejkDuz80xIDlUnXHabDZ4e3sjIyMDw4YNs9ePHz8eAQEB9s1piToSSZJkLa+2e/duxMfHw2w2w8Pjl1/J7du3IykpCWaz2b64tlxKL8TQnsgZB44ByaFq4tRqtQgODkZ+fr49cZpMJphMJhQWFqrZNVG7YbFYIEmSwxs2AOTk5CAsLKzFb9jkPI4ByaH6qyE0NBT5+fkAmmagKSkpWLhwIfR6Pbp06YLY2FjExsZiw4YNaodC5JYsFgvCw8OvqM/JyWm2vr2orKxETU2Nq8NwSkcdg4aGBgBQbFH28vJyRdpp71RPnJIk2RNnWloaGhoaMG3aNABAQEAAjEYjjEYjnn76abVDIXJLzb1p22w25OXlITw8HOfOnUN0dDRiY2MRERGBrKwsF0XqnJ9//hlxcXHw8fFB165d8cILL7j9bhodbQwAYNOmTfD29gbQ9D783Xfftbitn376CUOHDoWfnx8AYPXq1YrE2F6pfldtaGgoCgoKUFFRgfnz52Pz5s3Q6XQAgLNnz8JgMECv12P58uUYOHCg2uEQuZWSkhKcPXsWYWFhDvVWqxVVVVWIjIyEv78/Dhw4AJ1Oh+LiYiQkJCA3N9dFEV/fwoUL8Y9//ANA00zn9ddfx1133YWEhAQXR9a8jjgGJ06cwOTJk+1/sBw/fhyTJ0/Gvn37WtTes88+67Bn8vTp0xEWFobIyEhF4m1vVJ9xhoSE4OLFi5g6dSqioqIcbhI6ffo0TCYTnn32WSQmJqodCpHbOXPmDADY/5K/ZMuWLYiMjETfvn2h0+nsf2yWlZUhJCSkzeOU48iRI9BoNA517nxXaUccg+PHj8Nms9kTp81mw5EjR1rcnsViueJTg6NHj7YqxnZNtIFBgwYJT09PUVxcfM1jnGUwGAQAFha3LAaDwenXcnl5ufD19RXJycmitLRUnD9/Xqxdu1Z06dJFGI1G+3HFxcVi6NChwt/fX2RkZPB3RcFx4BiwNFeupU0SZ3MqKytFQ0ODEEKI/Px8ER4e7vS5BoPB4Zfi8sctcb0L5aq21GjPXbnzdXO2rZa8Fg8cOCCio6NFt27dRM+ePcWIESOEyWRq9tiTJ0+K/v37O9223HiUuGalpaViyJAh9jegxx9/3P673hpyYpP7c7vTGAihzDi8+eabQqPRCAAiICBAFBQUtLit06dPi8GDB9vHdN68ea2Oz500l1OuxWUrB3311VeYNm2a/cvr9evXuyoUIpeKiYlBdnb2VZ+vra2Fp6cnAMDHxwdeXl5tFVqL+Pn5ITs7G0VFRQgKCsJ77713xUe37qajjQEAzJo1C4899hh69+6NwsJCdOnSpcVt9e/fH8ePH0dRURGCg4OxePFiBSNtf1yWOIcMGdKqz9yJbhS5ubmYN28edDod6uvrsXLlSleHdF0eHh647bbbAMDtk6Yz2uMYAECvXr0AoFVJ8xJPT0/ccccdrW6nI+BatURuLiYmBvv373d1GDc0jgH9GhMnkcKsVqvbLLNmtVohSZKrw3AJdxmHG3kMOiomTiIFudsbpCRJbhdTW3Cnn/lGHYOOjImTSEHcOso9cBxITVy5mIiISAYmTiIiIhmYOImIiGRg4iQiIpKBNwcREZHiZs6c6XaL+0uSpMiNY5xxEhGR4qxWq+zEWVdXB5PJhMrKSof6mpoamEwmVFdXt2k8V6PajNNms8Hb2xsZGRkOW4mNHz8eAQEBWLVqlVpdExGRG5AkCUaj0enjd+/ejfj4eJjNZnh4/JKetm/fjqSkJJjNZmi1LZvvKbkYhmqJU6vVIjg4GPn5+fbEaTKZYDKZUFhYqFa3RETUTlksFkiS5JA0ASAnJwdhYWEtTppKUzWK0NBQ5OfnA2iagaakpGDhwoXQ6/U4evQoRo0ahWHDhuHJJ59UMwwiImoHLBYLwsPDr6jPyclptt5VVE2ckiTZE2daWhoaGhowbdo01NXVYfbs2fjwww+xb98+pKWlqRkGERG1A80lTpvNhry8PISHh+PcuXOIjo5GbGwsIiIikJWV5ZI4Vb2rNjQ0FAUFBaioqMD8+fOxefNm6HQ6ZGdnw9vbG5MmTUJ5eTlmz56NMWPGqBkKERG5sZKSEpw9exZhYWEO9VarFVVVVYiMjIS/vz8OHDgAnU6H4uJiJCQkIDc3t81jVTVxhoSE4OLFi5g6dSqioqLs33WWlJQgLy8PVqsVQggMHToU9957L3x8fJxu22QyXbHPX2v3/VNy30Cl9yDsCHsaOsOdrxvHwPXt3ShjALj3dXO2PYPB4HSbZ86cAdC0EfqvbdmyBZGRkejbt69DfVlZGUJCQpxuH2g+b/yasz+XqonT29sbAwcOxM6dO/H111/b67t3747IyEj7BQoJCUFRURHuvvtup9s2GAz2u7Uu3S0l5+6ty2k0GgghWny+Wm2p0Z67cufrxjFwfXs3yhgA7n3dnG1P7l2sQUFB8PX1xZIlS7BgwQLYbDZs27YNa9aswZ49e+zHnTp1Ck888QROnDgh+2u+X+eN5mK9PKdcjeq3KBUVFaGmpgYDBgyw10VGRqKoqAj19fWoq6vD119/jf79+6sdChERuSkfHx/s2rULFosFgYGBuO2227Bjxw5kZmY6zFwHDBiAgwcPwmw2Y/r06S6J1SUrB/n6+mL27Nm47777UFdXh+TkZPTo0cMVoRARkZuIiYlBdnb2VZ+vra2Fp6cngKZE6+Xl1VahOXDZknsTJkzAhAkTXNU9ERG1M7m5uZg3bx50Oh3q6+uxcuVKl8TBtWqJiEgVVqtV0RV7gKbFdYQQ8PDwQGpqKlJTU52ORZIkRWJg4iQiIsUplaSUIkkSEycREbkvJXYhcVfusfAfERFRO8HESUREJAMTJxERkQxMnERERDLw5iAiIlLczJkzYbVaXR2GA0mSFLlpiTNOIiJSnNVqlZ046+rqYC554XgAACAASURBVDKZUFlZ6VBfU1MDk8mE6urqNo3nalSdcdpsNnh7eyMjI8O+MwoAjB8/HgEBAVi1apWa3RMRkQtJkiRr843du3cjPj4eZrMZHh6/pKft27cjKSkJZrMZWm3L5ntKLsSgauLUarUIDg5Gfn6+PXGaTCaYTCYUFhaq2TUREbUzFosFkiQ5JE0AyMnJQVhYWIuTptJU/44zNDQU+fn5AJpmoCkpKVi4cCEKCwsxZ84cAE3T8MLCQpw/f17tcIiIyE1ZLBaEh4dfUZ+Tk4OIiAgXRNQ81dO3JEn2xJmWloaGhgZMmzYNQ4YMgdFohNFoRHJyMhISEtQOhYiI3FhzidNmsyEvLw/h4eE4d+4coqOjERsbi4iICGRlZbkkzjaZcRYUFKCiogLz58/H5s2bodPpHI5577338PLLL6sdChERuamSkhKcPXsWYWFhDvVWqxVVVVWIjIyEv78/Dhw4AJ1Oh+LiYiQkJCA3N7fNY1U9cYaEhODixYuYOnUqoqKiHG4SAoCzZ8/i9OnTiIqKUjsUIiJyU2fOnAEA+Pn5OdRv2bIFkZGR6Nu3r0N9WVkZQkJC2iw+B6INDBo0SHh6eori4uIrnnvzzTfFK6+8Iqs9g8EgALCwsLCwuHExGAxOv6+Xl5cLX19fkZycLEpLS8X58+fF2rVrRZcuXYTRaLQfV1xcLIYOHSr8/f1FRkaGannjWjRCCAEXuuuuu/DRRx9h0KBBTp9z6bbiS7c5X/64JTQaDZS6FEq2pUZ77sqdrxvHwPXt3ShjALj3dXO2vZa8Lx88eBBz587F0aNH0bVrV0iShPnz5+Pee++94tji4mIMGzYMp0+fdqrta8XTXE65VtwuXTkoPz8fXbt2lZU0iYioY4qJiUF2dvZVn6+trYWnpycAwMfHB15eXm0VmgOXJs4777zzmheJiIjoktzcXMybNw86nQ719fVYuXKlS+LgWrVERNQuxMTEYP/+/a4Og4mTiIjUYbVaFV3qrjWsViskSVKkLSZOIiJSnFJJSimSJDFxEhGR+1Ji+y535R4r5hIREbUTTJxEREQyMHESERHJwMRJREQkA28OIiIixc2cORNWq9XVYTiQJEmRm5Y44yQiIsVZrVbZibOurg4mkwmVlZUO9TU1NTCZTKiurm7TeK5G1RmnzWaDt7c3MjIyHLYTGz9+PAICArBq1So1uyciIheSJEnWIu+7d+9GfHw8zGYzPDx+SU/bt29HUlISzGYztNqWzfeUXIhB1cSp1WoRHByM/Px8e+I0mUwwmUwoLCxUs2siImpnLBYLJElySJoAkJOTg7CwsBYnTaWpHkVoaCjy8/MBNM1AU1JSsHDhQvj5+WH69OmIiopCeHg4Nm3apHYoRETkxiwWC8LDw6+oz8nJabbeVVRPnJIk2RNnWloaGhoaMG3aNBQUFKCgoACHDh2C0WjESy+9pHYoRETkxppLnDabDXl5eQgPD8e5c+cQHR2N2NhYREREICsryyVxqn5XbWhoKAoKClBRUYH58+dj8+bN0Ol06NOnD2666SbU19ejsrIS3bt3VzsUIiJyUyUlJTh79izCwsIc6q1WK6qqqhAZGQl/f38cOHAAOp0OxcXFSEhIQG5ubpvHqnriDAkJwcWLFzF16lRERUXZv+vU6/UYNGgQbr31VlRXV2P9+vWy2jWZTNBoNA51lz+Wq7Xnq9WWGu25K3e+bhwD17d3o4wB4N7Xzdn2DAaD022eOXMGAODn5+dQv2XLFkRGRqJv374O9WVlZQgJCXG6faD5vPFrzv5cqidOb29vDBw4EDt37sTXX39tr//ss89QUlKCoqIilJeXIyYmBg8++KB9d+/rMRgM9ru1Lt0tJefurctpNBoIIVp8vlptqdGeu3Ln68YxcH17N8oYAO593ZxtT+5drEFBQfD19cWSJUuwYMEC2Gw2bNu2DWvWrMGePXvsx506dQpPPPEETpw4gbS0NFl9/DpvNBfr5TnlatpkAYSioqJm67t37w6dTgdvb2/U19ejsbGxLcIhIiI34+Pjg127dmHu3LkIDAxE165dIUkSMjMzce+999qPGzBgAA4ePIji4mIMGzYMY8aMafNYXbZy0PDhw7F161YMHToUdXV1ePbZZ9G1a1dXhUNERC4WExOD7Ozsqz5fW1tr/1TSx8cHXl5ebRWaA5clTp1Oh/T0dFd1T0RE7Uxubi7mzZsHnU6H+vp6rFy50iVxcK1aIiJShdVqVXTFHqBpYR0hBDw8PJCamorU1FSnY5EkSZEYmDiJiEhxSiUppUiSxMRJRETuS4ldSNyVeyz8R0RE1E4wcRIREcnAxElERCQDEycREZEMTJxEREQyMHESERHJ0CaJMzs7G/fffz98fHzg5+eH+Pj4tui2TVVWVmLt2rV4+OGHAQCvvPKKfbV/IiLqOFRPnB9//DHi4uLwzDPP4IcffsB3332Hp556Su1u29S+ffvQr18/PPPMM8jLywMALFy4ELfccgveeustF0dHRERKUjVxVldXY9q0adiwYQPGjx+Pzp07w9vbGyNHjgQAbNq0CVFRUYiKisK//vUvNUNRTUFBAcaOHYuAgAAcOnQIJ0+eBNC0I8zYsWPx3HPPYcuWLS6OkoiIlKLqykGXNg0dN27cFc+VlZXhzTffxOHDh1FVVYXhw4cjLy8PWm37+tp12bJl0Gg0+Pzzz9GrVy97/cCBA7Ft2zZERkZi4cKFmDhx4g21CS8RUUelapb66aefoNfrm00YZrMZBoMBnTt3hr+/P/r06YPTp0+rGY7iGhsbsXXrVkycONEhaV7SqVMnPPvsszhx4gQsFosLIiQiIqWpOuO8++67cerUKWRkZOB3v/sdKioqYDabMXLkSJw/fx56vd5+rF6vx/nz5zFw4ECn2r40m/211s7oWnr+O++8g3feeeeabQ0ZMqTFcTXXXkel9M+pZHscA9e3d6OMAeDe162jjoOzP5eqM87g4GC88847mD17Nnx8fBAUFIT9+/cDAHr06IHS0lL7sWVlZejRo4fTbRsMBgghIISAwWBweNySAkD2OY2NjejWrRsmT5581bY2bNgAAMjLy2vT2NpjUfrnVLI9joHr27tRxsDdr1tHHIfLc4jBYLhm/lH9C8XJkyfjxIkTqKqqwn//+18sXrwYABAREYEDBw6gtrYWFy5cQElJCW655Ra1w1GUVqvF448/jg8//BDffvvtFc/X1NRg1apVCA4OdrstdoiIqGVcdieOn58fZs6cidjYWPzud7/DsmXL2t2NQQAwa9Ys3HTTTRg2bBg+/fRT2Gw2AMDRo0cxduxYHD9+HAsXLuywH20QEd1oXLof56RJkzBp0iRXhtBq//u//4vPPvsMcXFxGDVqFHr27AmgadPUzp07491330VcXJyLoyQiIqW0vymeG4qIiMCpU6ewZcsWjB07FgCwfPlylJSUIDEx0cXRERGRkpg4FeLp6YmJEyfi3XffBQCkpKSge/fuLo6KiIiUxsRJREQkAxMnERGRDEycREREMjBxEhERycDESUREJAMTJxERkQwuXQCBlDVz5kxYrVZXh+FAkiSsWLHC1WEQESmGM84OxGq1yk6cdXV1MJlMqKysdKivqamByWRCdXW16vFcvHjRvu1aVVVVi/sjImoLbTLjzM7OxksvvYTc3FxotVqMGDEC27dvb4uubziSJMFoNDp9/O7duxEfHw+z2QwPj19eDtu3b0dSUhLMZnOL1xCOjY295vPV1dV4+eWXsXHjRvtOOX369MHkyZORmpoKPz+/FvVLRKQm1WecH3/8MeLi4vDMM8/ghx9+wHfffYennnpK7W7JSRaLBZIkOSRNAMjJyUFYWJhqC+9fvHgRI0aMwFtvvYURI0bgo48+AgA89NBDWLduHQwGA8rKylTpm4ioNVRNnNXV1Zg2bRo2bNiA8ePHo3PnzvD29sbIkSMBAMOHD0fPnj2xaNEiNcOga7BYLAgPD7+iPicnp9l6pbzxxhs4fPgwtm3bhg8//BDjx48HALz33nvYtWsXvvrqK7z88suq9U9E1FKqJk6TyQSNRoNx48Y1+3x6ejqWLl2qZgh0Hc0lTpvNhry8PISHh+PcuXOIjo5GbGwsIiIikJWV1eo+6+vrsX79eowePdqeMH9t5MiRiI+Px9///vdWfcdKRKQGVRPnTz/9BL1ef9W9KAMDA9Xsnq6jpKQEZ8+eRVhYmEO91WpFVVUVIiMj4e/vjwMHDsBoNGLr1q144YUXFOv3oYceuuoxcXFxKC8vR1FRUav7IyJSkqo3B9199904deoUMjIy8Lvf/Q4VFRUwm832j2pb49Js9tdau1m0kptNK71xtbPtGQwGp9s8c+YMAFxxE86WLVsQGRmJvn37OtSXlZUhJCTE6faB5sfpkqeffhpPP/20Q93lx0qSJKu/y7nzmLorV71227otd+fO162jjoOzP5eqM87g4GC88847mD17Nnx8fBAUFIT9+/cr0rbBYIAQAkIIGAwGh8ctKQBadb5abclpT07SBICgoCD4+vpiyZIlKCsrw4ULF7Bu3TqsWbMGS5YssR936tQpxMTEYOTIkbI35W5uXBoaGjBgwADExsZe9eccN24cevbsiZqaGrcYB6XH1F2Lq167HIP2c9064jhcnkOu916q+l21kydPxokTJ1BVVYX//ve/WLx4sdpdkpN8fHywa9cuWCwWBAYG4rbbbsOOHTuQmZnp8MIZMGAADh48CLPZjOnTp7e6X51Oh2eeeQZGoxFr1qy54vlNmzZh586dmDp1Kjw9PVvdHxGRkly6clBiYiLMZjNqa2thNpuRkZHhynBuSDExMcjOzr7q87W1tfbk5ePjAy8vL0X6nTFjBkwmE/70pz9h69atiI+PBwDcf//92LdvH2JjY/GXv/xFkb6IiJTk0sS5ceNGV3ZPTsjNzcW8efOg0+lQX1+PlStXKtJup06dsGPHDrz99ttYs2YNZsyYAQAoKirC4sWL8dxzz6Fz586K9EVEpCSuVdvBWK3W667YI5dWq4UQAh4eHkhNTUVqaqrTsVzr5p5OnTrhueeew8yZM3Hu3DkIIXDzzTdDp9MpFToRkeKYODuQ1t6BqjRJkpyKSavVonfv3m0QERFR6zFxdiDchYSISH3cHYWIiEgGJk4iIiIZmDiJiIhkYOIkov+PvfuPi6rM+8f/GqBEcwZGoDaju0xXo8WahSUQ0ZkEw8JCIm6lTWcb2dhIve0jrebuaqXtuvfW7m2taSw3sWVaa5grupFJDirKANKUmmuSWIAigSAyJSBe3z/6MnfIjM2Bc2ZGfD0fj+vx6Py6rndwZl6cmeO5iEgC3hw0iCxcuBBWq9XTZfSi0+l40xIRDSq84hxErFar5ODs7OxESUkJzp0712v9+fPnUVJSMqBpvfpTDxGRt3PLFWdpaSmWLVuGiooK+Pj4YOrUqdi0aZM7hr7q6HQ6mM1ml/ffvn070tLSYLFY4Of3f6fDpk2bMHfuXFgsFvj49O/vK7kfxPBDLl68iKKiIrz55ptobGwEAGzbtg333XcfH6pARLJR/IqzoKAAKSkpyMrKQmNjI2pra5GRkaH0sOSiyspK6HS6XqEJAOXl5YiMjOx3aLpbc3Mz4uLikJSUhI8++ggdHR0AgAceeACxsbH4+uuvPVwhEQ0Wir4r2mw2ZGZmIicnB6mpqfD394darUZiYiK++OILTJ48GZMmTUJcXBwqKyuVLIWcqKysRFRUVJ/15eXlDtd7IyEEHnroIVRVVeF///d/UVtbi7179wIA8vPz8emnnyI5Odk+JRIR0UAoGpw9kxgnJyf32RYYGIj33nsPe/bsQU5ODp566iklSyEnHAXnxYsXUVVVhaioKJw+fRqxsbEwGAyIjo5GcXGxhyp1bs+ePdi9ezf+/Oc/w2Qy4dprr7VvMxqNePnll7F//37s2rXLg1US0WChaHA2NTVBq9U6nFU7KCgIQUFBAIAhQ4bwOygPqK+vR0NDAyIjI3utt1qtaG9vR0xMDIKDg7Fnzx6YzWZs3LgRS5Ys8VC1zr399tsYPnw4fvGLXzjcPnv2bAQGBmLDhg3uLYyIBiehoIMHDwo/Pz+xdetW0d3dLVpaWkRRUVGvfS5cuCDuv/9+8f7777vcr16vFwDYHDS9Xu/yz7GsrEwAECdPnuy1ftGiRSImJqbP/gcOHBAmk4m/JzY2tkHfLkfRK87w8HDk5uYiOzsbGo0GYWFh2L17t327EAImkwnTp0/HtGnTJPWt1+shhIAQAnq9vtdyf1pPPXI0OfuS0p9er5f0MwwLC0NAQABWrVqF1tZWnDlzBuvWrcOrr76KVatW2ferqalBXFwcEhMTkZKS0u/fk1LtqaeewpAhQ9Dc3Ozw59ba2ophw4bhySef9Jrfqbc2T527/B1cOT+3wfh7uDRDfui9VPFbJo1GI44ePYr29nacOnUKL7zwgn3b/PnzMWbMGDzxxBNKl0EOaDQabNu2DZWVlQgNDcXtt9+OzZs3o6ioqNeJM2rUKOzduxcWiwXz5s3zYMWOGY1GdHR0OJ1k+69//Su++eYbPPbYY26ujIgGI489OchsNiMnJwexsbEoLi7GiBEjsHnzZk+Vc9WKi4tDaWmp0+0dHR0YMmQIgO+Cdvjw4e4qzWV33XUXZs6cieeffx6dnZ1YuHAhbrjhBgDA7373O7zwwgt46KGH+nyXS0TUHx4LToPBgM7OTk8NTy6qqKjA0qVL4evri66uLqdXdZ6Wn5+Pa665BqtWrcKf/vQn+41nK1euxKxZs5CXl+fhColosOCzaumy4uLien0v7a38/f3x5ptv4re//S3Wr1+PxsZG5OTk4MiRI7j99ts9XR4RDSIMzkHGarW6/VF3zlitVuh0OreOOW7cOKxYsQIA8Nprr7l1bCK6OjA4BxF3h9QP0el0XlcTEdFAMTgHEU7fRUSkvCvjCd5ERERegsFJREQkAYOTiIhIAgYnERGRBLw5aBBZuHAhrFarp8voRafT8aYlIhpUeMU5iFitVsnB2dnZiZKSEpw7d67X+vPnz6OkpAQ2m82t9Xib1tZWlJSUAADOnj3r4WqIyBu45YqztLQUy5YtQ0VFBXx8fDB16lRs2rTJHUNfdXQ6Hcxms8v7b9++HWlpabBYLPDz+7/TYdOmTZg7dy4sFgt8fPr395W3PIihP86cOYPFixfjrbfewrfffgsAGDlyJB599FH88Y9/RGBgoIcrJCJPUfyKs6CgACkpKcjKykJjYyNqa2uRkZGh9LDkosrKSuh0ul6hCQDl5eWIjIzsd2heyVpaWjBp0iS88cYbePTRR1FUVAQASE9Px+uvvw69Xs+rT6KrmKLvijabDZmZmcjJyUFqair8/f2hVquRmJiI06dPIzY2FgaDAdHR0SguLlayFHKisrISUVFRfdaXl5c7XH81eO655/D555/j/fffR05ODhITEwEAubm52LZtGw4fPoyVK1d6uEoi8hRFg7OkpAQqlQrJycl9tgUHB2PPnj0wm83YuHEjlixZomQp5ISj4Lx48SKqqqoQFRV11f2B88033yA/Px9paWmYMmVKn+333nsvZsyYgby8PHR0dHigQiLyNEWDs6mpCVqtFiqVqs82X19f+Pr6AvjuBow777xTyVLIgfr6ejQ0NPSZp9JqtaK9vR0xMTFX3R84NTU1OHv2LB544AGn+zzwwAM4c+YMvvrqKzdWRkReQyjo4MGDws/PT2zdulV0d3eLlpYWUVRUZN9+/PhxMXHiRBEcHCwKCwtd7lev1wsAbA6aXq93+edYVlYmAIiTJ0/2Wr9o0SIRExPTZ/8DBw4Ik8nE3xMbG9ugb5ejaHAKIUR+fr4YO3asuO6668SPfvQjsXTp0j77fPHFF+KWW25xuU+9Xt8rIC5d7o8f+kF5qi8p/Un9OZw9e1YEBASIBQsWiJaWFtHc3CzWrl0rhg4dKsxms32/gfyBM9Dfi7t1dXWJm266SUydOrXX+u//DvR6vRg1apS4cOGCu8tTnKfOXXf35e28+ec2GH8PjjLlchS/ZdJoNOLo0aNob2/HqVOn8MILLwBAr++HNBoNhg8frnQpdAmNRoNt27ahsrISoaGhuP3227F582YUFRVBr9fb9xs1ahT27t0Li8WCefPmebBi5fn5+SErKwsffvghXn311V7bhBBYvXo1SkpKkJWVZf+qgYiuLh57clBFRQWWLl0KX19fdHV1YfXq1Z4q5aoWFxeH0tJSp9s7OjowZMgQAFfPHzhPP/009u/fjyeffBJ///vfkZqaCgCIiorCgQMHMGPGDCxcuNDDVRKRp3gsOOPi4rB7925PDU8uuhr/wLnmmmvw3nvvYd26dVizZg0WL14MAPj222+xZs0aPP74433+3SsRXT346h9krFar7E/s8fHxgRACfn5+WLFiBVasWOFyLTqdTtZa3MXPzw/z5s3Dk08+iba2NqhUKqjVaod3iBPR1YXBOYh4W0jpdDqvq0kqlUqFgIAAT5dBRF6EwTmIcBYSIiLlXX0PIiUiIhoABicREZEEDE4iIiIJGJxEREQS8OagQWThwoWwWq2eLqMXnU7Hm5aIaFDhFecgYrVaJQdnZ2cnSkpKcO7cuV7rz58/j5KSEthsNrfWQ0Tk7dxyxVlaWoply5ahoqICPj4+mDp1KjZt2uSOoa86Op0OZrPZ5f23b9+OtLQ0WCyWXk/D2bRpE+bOnQuLxQIfn/79fSX3gxjoynD48GGsXbsWVVVVAIDly5fj8ccfx0033eThyojkofgVZ0FBAVJSUpCVlYXGxkbU1tYiIyND6WHJRZWVldDpdH0eIVdeXo7IyMh+hyZdfYQQePbZZxEeHo7c3Fz4+/sDAFasWIHbbrsN//jHPzxcIZE8FH1XtNlsyMzMRE5ODlJTU+Hv7w+1Wo3ExET7Ps3NzdBqtVi/fr2SpZATlZWViIqK6rO+vLzc4XoiZ/Ly8vDcc8/BaDSirq4OH330EQCguroa0dHR+PnPf46ysjIPV0k0cIoGZ0lJCVQqFZKTk53us3LlSsTFxSlZBl2Go+C8ePEiqqqqEBUVhdOnTyM2NhYGgwHR0dEoLi72UKXkzS5evIhVq1YhOjoaeXl5CA4Otm+77bbbsG3bNgQEBOCll17yYJVE8lD0O86mpiZotVqnD8aurq5Gc3MzIiMjlSyDnKivr0dDQ0Ofn7/VakV7eztiYmIQHByMPXv2wNfXF8ePH8fMmTNRUVHhoYrJW3388ceorq7G7373O4cf72s0GsyePRuvvPIKzp8/b/8Yl+iKpOCk2uLgwYPCz89PbN26VXR3d4uWlhZRVFRk356eni6qq6vF8uXLxZtvvulyv3q9XgBgc9B+aOby7ysrKxMAxMmTJ3utX7RokYiJiemz/4EDB4TJZOLviY2NbdC3y1H0o9qemwSys7Oh0WgQFhZmn4Nz3759CAoKwujRo/vVt16vhxACQgjo9fpey/1pAAZ0vFJ9SelPr9dL+hmGhYUhICAAq1atQmtrK86cOYN169bh1VdfxapVq+z71dTUIC4uDomJiUhJSen374nN+1t/z91///vfAICXXnrJaX+PPvoo1Go1urq63FrbldgGw/vRldQuzZAfei9V/J+jGI1GGI3GPusrKyvx6aefYtq0aaiursZ1112H0aNHY8KECUqXRP8/jUaDbdu2YfHixQgNDcWwYcOg0+lQVFSEyZMn2/cbNWoU9u7di+PHj2PKlCmYPn26B6smbzRu3DjExsbilVdewdy5c/tMxXbs2DFs2rQJGRkZnAScrngeO4MXLFiABQsWAACeffZZjBkzhqHpAXFxcSgtLXW6vaOjA0OGDAHwXdAOHz7cXaXRFeaFF17A1KlTcc8992DVqlVISEgAAGzYsAFPP/001Go1srOzPVwl0cB5xZ9+zz77rKdLICcqKiqwdOlS+Pr6oqurC6tXr/Z0SeSlDAYDtmzZgsceewyJiYn2G4B+/vOfY+zYsXj33Xdx6623erZIIhl4RXCS94qLi7N/L030Q5KSklBbW4uCggJ8/PHHePHFF/HBBx8gISGBD9OgQYPBOchYrVavedSd1WqFTqfzdBnkZkOGDMEjjzyCRx55BC+++CLuvfdeT5dEJCsG5yDibSGl0+m8riYiooFicA4inL6LiEh5/NKBiIhIAgYnERGRBAxOIiIiCRicREREEvDmICIadBYuXAir1erpMux0Oh1v3htEeMVJRIOO1WqVFJydnZ0oKSnBuXPneq0/f/48SkpKYLPZ3FLL8ePHsX37dgBAe3t7v8ckZbnlirO0tBTLli1DRUUFfHx8MHXqVGzatMkdQxPRVUqn08FsNru07/bt25GWlgaLxdLrIfSbNm3C3LlzYbFY+v3kI1ceSPLZZ5/hqaeewo4dO+zrRo4ciYyMDPz+97/n/KVeRvErzoKCAqSkpCArKwuNjY2ora1FRkaG0sMSEbmssrISOp2uz8wt5eXliIyMVPRxgYcOHcLEiRPx8ccf4/nnn0dZWRkA4MEHH8Rf/vIXPPjgg+js7FRsfJJO0StOm82GzMxM5ObmYsaMGQAAf39/JCYmAgCGDh2K6OhoAMAjjzyCxx9/XMlyiIgcqqysRFRUVJ/15eXl9vcopcybNw/XXnstysrKMGrUKPv69evXw2Aw4Je//CXefPNNzJ07V9E6yHWKXnGWlJRApVIhOTnZ4fabbroJZrMZZrOZoUlEHuMoOC9evIiqqipERUXh9OnTiI2NhcFgQHR0NIqLi2UZ98iRIygpKcGiRYt6hWaPuXPnIjw8HGvXrpVlPJKHosHZ1NQErVYLlUrlcHtDQwP0ej1mzJiB48ePK1kKEZFD9fX1aGhoQGRkZK/1VqsV7e3tiImJQXBwMPbs2QOz2YyNGzdiyZIlsox98OBBAMD999/vcLtKpUJSUhI+TNyKtQAAIABJREFU+eQTCCFkGZNkIBR08OBB4efnJ7Zu3Sq6u7tFS0uLKCoqsm//+uuvhRBC7Ny5U+j1epf71ev1AgAbGxub0+bqe0pZWZkAIE6ePNlr/aJFi0RMTEyf/Q8cOCBMJhPfrwZ5uxxFrzjDw8ORm5uL7OxsaDQahIWF9ZrbMTg4GAAQHx+Puro6SX3r9XoIISCEgF6v77XcnwZgQMcr1ZcS/bGxOWvefO5K6Uuv17v8XhIWFoaAgACsWrUKra2tOHPmDNatW4dXX30Vq1atsu9XU1ODuLg4JCYmIiUlpd/vV99vjY2NuPbaa/Hkk086/H89f/48rr/+ejz44INe8TtQoj9vaJdmyA+dP4r/cxSj0Qij0dhnfXt7O4YOHQpfX18cOnQII0aMULoUIqI+NBoNtm3bhsWLFyM0NBTDhg2DTqdDUVERJk+ebN9v1KhR2Lt3L44fP44pU6Zg+vTpAx47JCQEjzzyCF577TVMnTq11/0gXV1dePzxx9HY2Ij58+cPeCySj8eeHPTZZ58hMzMTarUaAPDaa695qhQiusrFxcWhtLTU6faOjg4MGTIEwHdBO3z4cNnG/p//+R8cPnwYM2bMwKRJk+z/6mDUqFGor6/H888/j4SEBNnGo4HzWHDefffd+Pjjjz01PBGRyyoqKrB06VL4+vqiq6sLq1evlq3vgIAA7Nq1C+vWrcPatWvx29/+FsB3X3X97W9/w3333SfbWCQPPquWiAYlq9Xq0lN7XOXj4wMhBPz8/LBixQqsWLHC5Tp0Ot1l97nuuuuwaNEiLFq0CB0dHfDz84Ovr68cZZMCGJxENOj8UFC5k06nk1RPz0fC5L0YnEQ06HAmElISZ0chIiKSgMFJREQkAYOTiIhIAgYnERGRBLw5iIgGnYULF8JqtXq6DDudTscblgYRXnES0aBjtVolBWdnZydKSkpw7ty5XuvPnz+PkpIS2Gw2t9VC3s8tV5ylpaVYtmwZKioq4OPjg6lTp2LTpk3uGJqIrlI6nQ5ms9mlfbdv3460tDRYLBb4+f3f2+KmTZswd+5cWCwW+Pj07zpDzocwuKqpqQl5eXl477334OPjgxkzZuCXv/wlpk2bxgcryEDxK86CggKkpKQgKysLjY2NqK2tRUZGhtLDEhG5rLKyEjqdrldoAkB5eTkiIyP7HZqesH//fowdOxaLFy+GEAIXL16ExWLB9OnTMX36dHz77beeLvGKp+jZYLPZkJmZiZycHKSmpsLf3x9qtdr+EONPPvkE06ZNw5QpU/DYY48pWQoRkVOVlZWIiorqs768vNzhem91+vRpJCUlISgoCFarFWVlZQCAr776Ci+//DI++OADPPnkkx6u8sqnaHCWlJRApVL1miqnR2dnJ7Kzs/HOO+/go48+wuuvv65kKURETjkKzosXL6KqqgpRUVE4ffo0YmNjYTAYEB0djeLiYg9Venl/+9vf0NLSgn/+85+466677OuvueYazJ8/H//1X/+FN954AydPnvRglVc+RYOzqakJWq0WKpWqz7aysjKo1WrMmTMHBoMB27ZtU7IUIiKH6uvr0dDQgMjIyF7rrVYr2tvbERMTg+DgYOzZswdmsxkbN27EkiVLPFTt5b377rvQ6/W44447HG7/1a9+he7ubmzZssXNlQ0yQkEHDx4Ufn5+YuvWraK7u1u0tLSIoqIiIYQQGzZsELfccotoaWkRZ86cEWFhYeLs2bMu9avX6wUANjY2NqdNr9e79H5SVlYmAIiTJ0/2Wr9o0SIRExPTZ/8DBw4Ik8nkUt/ufr/y9fX1+M99sLTLUfSKMzw8HLm5ucjOzoZGo0FYWBh2794NABgxYgRiYmIQGBgIrVaLO++8E9XV1S73rdfrIYSAEAJ6vb7Xcn8agAEdr1RfSvTHxuasefO5K6UvvV7v8ntJWFgYAgICsGrVKrS2tuLMmTNYt24dXn31Vaxatcq+X01NDeLi4pCYmIiUlBSX+7/0/UrJNmnSJPz4xz9Gd3e3w59bz0fMGzdu9Irfqbe0SzPkh84fxW8VMxqNOHr0KNrb23Hq1Cm88MILAICYmBhUV1ejq6sLnZ2dOHLkCG655RalyyEi6kWj0WDbtm2orKxEaGgobr/9dmzevBlFRUW93kBHjRqFvXv3wmKxYN68eR6s2LmMjAwcO3YM77zzTp9tFy5cwO9//3uMGDECM2bM8EB1g4fHnhwUEBCA7Oxs3HPPPejs7MSCBQsQFBTkqXKI6CoWFxeH0tJSp9s7Ojrs82RqNBoMHz7cXaVJ8vDDD+Ovf/0rjEYjjh07hscffxzAd/+W/vnnn0dxcTHWrVsHf39/D1d6ZfPoI/dmzZqFWbNmebIEIqIfVFFRgaVLl8LX1xddXV1YvXq1p0tyaMiQIXj//fdhNBqxfPlyLF++HMB3fxhoNBqsWbMGmZmZHq7yysdn1RIR/YC4uDj7/RneLjAwEP/85z9x9OhRbNmyBUuWLMHrr7+OtLQ0XHfddZ4ub1BgcBLRoGS1Wj3yuDtHdeh0OrePO27cOCxevBiLFy92+9iDHYOTiAYdTwSVMzqdzqvqoYFjcBLRoMMpvEhJV86Ti4mIiLwAg5OIiEgCBicREZEE/I6TiAadhQsXwmq1eroMO51Ox+9dBxFecRLRoGO1Wr0mOL2pFpIHrziJaFDS6XQwm80u7dvY2IgbbrgBVVVV+OlPf2pf/+WXX+LWW2/FZ599hrCwsH7V4Q3/llQOn3zyCf79738DAM6ePYuAgAAPV+Q5brniLC0tRXx8PDQaDQIDA5GWluaOYYmIXFJRUYGhQ4di/PjxvdaXl5dDrVZj3LhxHqrM8ywWC2JiYqDT6eyPSB05ciQWLFiA8+fPe7g6z1A8OAsKCpCSkoKsrCw0NjaitrYWGRkZSg9LROSyyspK6HQ6+Pn1/hCuvLwckZGR8PG5Or/V2r9/P+655x6cOnUKq1evxqFDhwAAM2fOxCuvvILk5GR0dXV5uEr3U/SjWpvNhszMTOTm5tqnsfH390diYiLKy8vx61//GgBw/vx5HDt2DM3NzUqWQ0TkUGVlJaKiovqsLy8vR3R0tAcq8jwhBLKysnDDDTegrKwMN9xwg31bXl4eYmJikJmZibfffhuzZ8/2YKXup+ifUSUlJVCpVEhOTu6z7e6774bZbIbZbMaCBQswc+ZMJUshInLKUXBevHgRVVVViIqKwunTpxEbGwuDwYDo6Gj7hNCDWUVFBaxWK5YsWdIrNHv88pe/xLhx47B27VoPVOdZil5xNjU1QavVQqVSXXa/N954wz79DRGRO9XX16OhoQGRkZG91lutVrS3tyMmJgbBwcHYs2cPfH19cfz4ccycORMVFRUeqtg9Dh8+DAC49957HW5XqVRITExEfn6+G6vyDooGZ0REBGpqalBYWIikpCS0tbXBYrEgMTHRvk9DQwNOnDiBCRMmSOq752r2+34ooH/IQI9Xqi8l+iNyxpvPXSl96fV6l/arq6sD8N10XN+3YcMGxMTE4Oabb+61vrW1FXfeeafLdQCO36+uFLfddlufdXK/93oLV/8/FP2oNjw8HLm5ucjOzoZGo0FYWFifOe3eeustpKenS+5br9dDCAEhBPR6fa/l/jQAAzpeqb6U6I+NzVnz5nNXSl+uhiYAhIWFISAgAKtWrUJrayvOnDmDdevW4dVXX8WqVavs+9XU1CAuLg6JiYlISUnp9/vVldJOnjwJPz8//L//9/8c/h7a2tqgVqsxe/Zsj9c60HZphvzQ+aP4v+M0Go0wGo1Ot69fvx7vvvuu0mUQETmk0Wiwbds2LF68GKGhoRg2bBh0Oh2KioowefJk+36jRo3C3r17cfz4cUyZMgXTp0/3YNXKu/HGGzFz5ky8/PLLiIuL6/XHgs1mw89//nO0t7dj3rx5HqzSMzz6AISDBw9i2LBhGD16tCfLIKKrXFxcHEpLS51u7+jowJAhQwB8F7TDhw93V2ketWbNGhw7dgwPPfQQ7r77biQkJAAAbr75ZrS2tmLNmjW4++67PVyl+3n0HyeNHz/+sicrEZE3qKiowOTJk3HPPfdgxowZWL16tadLcouAgADs2rULL7/8Mtrb2/HHP/4RwHc3DO3duxdPPPGEhyv0DD5yj4gGJavVKuvj7nx8fCCEgJ+fH1asWIEVK1a4XIdOp5OtDncbNmwY5s+fj/nz50MIMWhuBBoIBicRDTreFFQ6nc6r6hkIhuZ3GJxENOhwCi9S0tX5AEYiIqJ+YnASERFJwOAkIiKSgMFJREQkAW8OIqJBZ+HChbBarZ4uw06n0/GGpUGEV5xENOhYrVZJwdnZ2YmSkhKcO3eu1/rz58+jpKQENpvNbbWQ93PLFWdpaSmWLVuGiooK+Pj4YOrUqdi0aZM7hiaiq5ROp4PZbHZp3+3btyMtLQ0WiwV+fv/3trhp0ybMnTsXFosFPj79u86Q8yEM5B0Uv+IsKChASkoKsrKy0NjYiNraWmRkZCg9LBGRyyorK6HT6XqFJgCUl5cjMjKy36FJg5OiZ4PNZkNmZiZycnKQmpoKf39/qNVqJCYmQgiBefPmYcKECYiKisL69euVLIWIyKnKykpERUX1WV9eXu5wPV3dFA3Onslbk5OT+2w7fPgwDh8+jP3798NsNmPZsmVKlkJE5JSj4Lx48SKqqqoQFRWF06dPIzY2FgaDAdHR0SguLvZQpeQNFP2Os6mpCVqt1uHzDUeOHIlrr70WXV1dOHfuHEaMGKFkKUREDtXX16OhoQGRkZG91lutVrS3tyMmJgbBwcHYs2cPfH19cfz4ccycORMVFRUeqpg8TdHgjIiIQE1NDQoLC5GUlIS2tjZYLBYkJiZCq9Vi9OjRGDt2LGw2G1577TVJffdczX7fQB9ALOcDjOV+GDIfrkzu4s3nrpS+9Hq9S/vV1dUBAAIDA3ut37BhA2JiYnDzzTf3Wt/a2oo777zT5ToAx+9X5H1c/R0pGpzh4eHIzc1FdnY20tPToVarYTKZkJiYiB07dqC+vh7V1dU4e/Ys4uLicP/999sni/0her3efsdcz11rrt5B54hKpYIQot/HK9WXEv0ROePN566UvqTcyRoWFoaAgACsWrUKzz33HC5evIh//OMfePXVV/H+++/b96upqcHs2bNx9OhRvP7665Jq//77FXmfSzPkh84fxf85itFohNFodLhtxIgR8PX1hVqtRldXF7q7u5Uuh4ioF41Gg23btmHx4sUIDQ3FsGHDoNPpUFRUhMmTJ9v3GzVqFPbu3Yvjx49jypQpmD59ugerJk/y2JODEhISsHHjRkycOBGdnZ2YP38+hg0b5qlyiOgqFhcXh9LSUqfbOzo67J+GaTQaDB8+3F2lkRfyWHD6+voiPz/fU8MTEbmsoqICS5cuha+vL7q6urB69WpPl0QexGfVEhH9gLi4OOzevdvTZZCXYHAS0aBktVq94nF3VqsVOp3O02WQjBicRDToeFNQ6XQ6r6qHBo7BSUSDDqfwIiXxycVEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIArcEZ2lpKeLj46HRaBAYGIi0tDR3DEtERCQ7xYOzoKAAKSkpyMrKQmNjI2pra5GRkaH0sERERIpQNDhtNhsyMzORk5OD1NRU+Pv7Q61WIzExEQCwfPlyxMbGwmAw4NChQ0qWQkREJAtFnxzUM+t5cnJyn21WqxXl5eXYt28fTpw4gblz56K4uFjJcoiIiAZM0SvOpqYmaLVaqFSqPts+//xzREZGAgBuvfVWHDlyBBcuXFCyHCIiooETCjp48KDw8/MTW7duFd3d3aKlpUUUFRUJIYQ4dOiQiI2NFR0dHeLAgQNCpVKJr7/+2qV+9Xq9AMDGxsbGxqZIuxxFP6oNDw9Hbm4usrOzkZ6eDrVaDZPJhMTERPzkJz9Beno6EhISMHbsWIwfPx5BQUEu963X62E2mwHAPnVQz3J/qFQqCCH6fbxSfSnRH5Ez3nzu8nVASrk0Q35oOjrFZ0cxGo0wGo0Ot82bNw/z5s3DoUOH8Kc//cnhR7pERETexKPTit177724cOECgoODsWbNGk+WQkRE5BKPBueOHTs8OTwREZFkfOQeERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQSyBmdpaSni4+Oh0WgQGBiItLQ0ObsnIiLyONmCs6CgACkpKcjKykJjYyNqa2uRkZEhV/dEREReQZbgtNlsyMzMRE5ODlJTU+Hv7w+1Wo3ExEQAQEJCAkJCQrBy5Ur7MevXr8eECRMwYcIE7Nq1S44yiIiIFCfLQ95LSkqgUqmQnJzscHt+fj527tyJuro6AEBraytefPFFlJWVob29HQkJCaiqqoKPD79yJSIi7yZLUjU1NUGr1TqdTzM0NLTXssVigV6vh7+/P4KDgzFy5EicOHFCjlKIiIgUJcsVZ0REBGpqalBYWIikpCS0tbXBYrHYP6q9VHNzM7RarX1Zq9WiubkZt912m8tj9lzlft9AJ8KWcyJtuSfl5iTf5C7efO7ydUBKcvX8kiU4w8PDkZubi+zsbKSnp0OtVsNkMjkNzqCgILS0tNiXW1tbERQUJGlMvV4Ps9kMADAYDABgX+4PlUoFIUS/j1eqLyX6I3LGm89dvg5IKZdmSM+yM7JNZG00GmE0Gl3aNzo6Gs888ww6Ojpgs9lQX1+PW2+9Va5SiIiIFCNbcF6OyWSCxWJBR0cHLBYLCgsLsXDhQnuqv/TSS7wxiIiIrghuCc68vLw+6+bMmYM5c+a4Y3giIiLZ8DKPiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQSyB2dpaSni4+Oh0WgQGBiItLQ0uYcgIiLyGFmDs6CgACkpKcjKykJjYyNqa2uRkZEh5xBEREQeJVtw2mw2ZGZmIicnB6mpqfD394darbbPyZmQkICQkBCsXLnSfoyjdURERN5MttlRSkpKoFKpkJyc7HB7fn4+du7cibq6usuuIyIi8mayXXE2NTVBq9VCpVI53B4aGurSOiIiIm8m2xVnREQEampqUFhYiKSkJLS1tcFisdg/qpVbzxXu9zkLbVcN9Hil+lKiPyJnvPnc5euAlOTq+SVbcIaHhyM3NxfZ2dlIT0+HWq2GyWRSLDj1ej3MZjMAwGAwAIB9uT9UKhWEEAMvTOa+lOiPyBlvPnf5OiClXJohPcvOyBacAGA0GmE0GuXskoiIyKvIGpyXYzKZYLFY0NHRAYvFgsLCQofriIiIvJnbgjMvL8+ldURERN6Mj9wjIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikkD24CwtLUV8fDw0Gg0CAwORlpYm9xBEREQeI2twFhQUICUlBVlZWWhsbERtbS0yMjLkHIKIiMijZAtOm82GzMxM5OTkIDU1Ff7+/lCr1fZpxRISEhASEoKVK1cCAL744gtMnjwZkyZNQlxcHCorK+UqhYiISDGyPeS9Z2Lp5ORkh9vz8/Oxc+dO1NXVAQACAwPx3nvvISgoCJ999hkyMzOxZ88eucohIiJShGzB2dTUBK1W63QG7dDQ0F7LQUFB9v8eMmQIfH195SqFiIhIMbIFZ0REBGpqalBYWIikpCS0tbXBYrHYP6p1pru7GwsWLMCSJUskjddzhft9zkLbVQM9Xqm+lOiPyBlvPnf5OiAluXp+yRac4eHhyM3NRXZ2NtLT06FWq2EymS4bnEIImEwmTJ8+HdOmTZM0nl6vh9lsBgAYDAYAsC/3h0qlghCi38cr1ZcS/RE5483nLl8HpJRLM6Rn2RlZJ7I2Go0wGo0u7z9//nyMGTMGTzzxhJxlEBERKUbW4Lwck8kEi8WCjo4OWCwWLFq0CDk5OYiNjUVxcTFGjBiBzZs3u6scIiKifnFbcObl5fVZ19nZ6a7hiYiIZMFH7hEREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSQNbgLC0tRXx8PDQaDQIDA5GWliZn90RERB4nW3AWFBQgJSUFWVlZaGxsRG1tLTIyMuTqnoiIyCvIEpw2mw2ZmZnIyclBamoq/P39oVar7XNxJiQkICQkBCtXrgQAnD59GrGxsTAYDIiOjkZxcbEcZRARESlOltlRSkpKoFKpkJyc7HB7fn4+du7cibq6OgBAcHAw9uzZA19fXxw/fhwzZ85ERUWFHKUQEREpSpbgbGpqglarhUqlcrg9NDS017Kvr6/9v1tbW3HnnXfKUQYREZHiZAnOiIgI1NTUoLCwEElJSWhra4PFYrF/VOtITU0NZs+ejaNHj+L111+XPGbPVe73OQtuVw30eKX6UqI/Ime8+dzl64CU5Or5JUtwhoeHIzc3F9nZ2UhPT4darYbJZLpscI4aNQp79+7F8ePHMWXKFEyfPl3SmHq9HmazGQBgMBgAwL7cHyqVCkKIfh+vVF9K9EfkjDefu3wdkFIuzZCeZWdkCU4AMBqNMBqNLu3b0dGBIUOGAAA0Gg2GDx8uVxlERESKki04L8dkMsFisaCjowMWiwWLFy/G0qVL4evri66uLqxevdodZRAREQ2YW4IzLy+vz7rdu3e7Y2giIiJZ8ZF7REREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBLIGpylpaWIj4+HRqNBYGAg0tLS5OyeiIjI42QLzoKCAqSkpCArKwuNjY2ora1FRkaGXN0TERF5BVmC02azITMzEzk5OUhNTYW/vz/UarV9WrGEhASEhIRg5cqVvY5rbm6GVqvF+vXr5SiDiIhIcbI85L1nUunk5GSH2/Pz87Fz507U1dX1Wr9y5UrExcXJUQIREZFbyHLF2dTUBK1W63T27NDQ0D7rqqur0dzcjMjISDlKICIicgtZrjgjIiJQU1ODwsJCJCUloa2tDRaLxf5RrSPLli3DihUr8Oabb/ZrzJ6r3O9zFtyuGujxSvWlRH9EznjzucvXASnJ1fNLluAMDw9Hbm4usrOzkZ6eDrVaDZPJ5DQ49+3bh6CgIIwePbrfY+r1epjNZgCAwWAAAPtyf6hUKggh+n28Un0p0R+RM9587vJ1QEq5NEN6lp2RbSJro9EIo9Ho0r6VlZX49NNPMW3aNFRXV+O6667D6NGjMWHCBLnKISIiUoRswXk5JpMJFosFHR0dsFgsKCwsxIIFCwAAzz77LMaMGcPQJCKiK4JbgjMvL8/ptmeffdYdJRAREcmCj9wjIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJIGswVlaWor4+HhoNBoEBgYiLS1Nzu6JiIg8TrbgLCgoQEpKCrKystDY2Ija2lpkZGTI1T0REZFXkCU4bTYbMjMzkZOTg9TUVPj7+0OtVtvn40xISEBISAhWrlxpP2bo0KEwGAwwGAzIycmRowwiIiLFyTI7SklJCVQqFZKTkx1uz8/Px86dO1FXV2dfd9NNNw1o4mkiIiJPkOWKs6mpCVqtFiqVyuH20NDQPusaGhqg1+sxY8YMHD9+XI4yiIiIFCfLFWdERARqampQWFiIpKQktLW1wWKx2D+qdeTEiRMIDg5GcXExTCaT5KvPnqvc73MW3K4a6PFK9aVEf0TOePO5y9cBKcnV80uW4AwPD0dubi6ys7ORnp4OtVoNk8l02eAMDg4GAMTHxyMzM1PymHq93h62BoMBAAb00a9KpYIQot/HK9WXEv0ROePN5y5fB6SUSzOkZ9kZWYITAIxGI4xGo0v7tre3Y+jQofD19cWhQ4cwYsQIucogIiJSlGzBeTkmkwkWiwUdHR2wWCz43e9+h8zMTKjVagDAa6+95o4yiIiIBswtwZmXl9dn3ccff+yOoYmIiGTFR+4RERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERSSBrcJaWliI+Ph4ajQaBgYFIS0uTs3siIiKPky04CwoKkJKSgqysLDQ2NqK2thYZGRlydU9EROQVZAlOm82GzMxM5OTkIDU1Ff7+/lCr1fZpxRISEhASEoKVK1faj/nkk08wbdo0TJkyBY899pgcZRARESlOloe890wqnZyc7HB7fn4+du7cibq6OgBAZ2cnsrOz8e677yIgIECOEoiIiNxClivOpqYmaLVap7Nnh4aG9louKyuDWq3GnDlzYDAYsG3bNjnKICIiUpwsV5wRERGoqalBYWEhkpKS0NbWBovFYv+o9lL19fWoqqqC1WqFEAITJ07E5MmTodFoXB6z5yr3+5wFt6sGerxSfSnRH5Ez3nzu8nVASnL1/JIlOMPDw5Gbm4vs7Gykp6dDrVbDZDI5Dc4RI0YgJiYGgYGBAIA777wT1dXViIiIcHlMvV4Ps9kMADAYDABgX+4PlUoFIUS/j1eqLyX6I3LGm89dvg5IKZdmSM+yM7JNZG00GmE0Gl3aNyYmBr/5zW/Q1dUFIQSOHDmCW265Ra5SiIiIFCNbcF6OyWSCxWJBR0cHLBYLCgsLkZ2djXvuuQednZ1YsGABgoKC3FEKERHRgLglOPPy8vqsmzVrFmbNmuWO4YmIiGTDR+4RERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikkDW4CwtLUV8fDw0Gg0CAwORlpYmZ/dEREQeJ1twFhQUICUlBVlZWWhsbERtbS0yMjLk6p6IiMgryBKcNptGj5EgAAAgAElEQVQNmZmZyMnJQWpqKvz9/aFWq+3zcSYkJCAkJAQrV64EAJSXl8NgMMBgMCAmJoYzoxAR0RVDltlRSkpKoFKpkJyc7HB7fn4+du7cibq6OgDA3XffbZ8wdMOGDdi7d68cZRARESlOlivOpqYmaLVaqFQqh9tDQ0OdHvvGG29g9uzZcpRBRESkOFmuOCMiIlBTU4PCwkIkJSWhra0NFovF/lGtMw0NDThx4gQmTJggecyeq9zvcxbcrhro8Ur1pUR/RM5487nL1wEpydXzS5bgDA8PR25uLrKzs5Geng61Wg2TyfSDwfnWW28hPT29X2Pq9Xr7x70GgwEA7Mv9oVKpIITo9/FK9aVEf0TOePO5y9cBKeXSDOlZdkaW4AQAo9EIo9Eo6Zj169fj3XfflasEIiIixckWnJdjMplgsVjQ0dEBi8WCwsJCHDx4EMOGDcPo0aPdUQIREZEs3BKceXl5fdaNHz8epaWl7hieiIhINnzkHhERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEsgZnaWkp4uPjodFoEBgYiLS0NDm7JyIi8jjZgrOgoAApKSnIyspCY2MjamtrkZGRIVf3REREXkGW4LTZbMjMzEROTg5SU1Ph7+8PtVptn1YsISEBISEhWLlyJQBACIF58+ZhwoQJiIqKwvr16+Uog4iISHGyPOS9Z1Lp5ORkh9vz8/Oxc+dO1NXVAQAOHz6Mw4cPY//+/bDZbBg/fjweffRROUohIiJSlCxXnE1NTdBqtU5nzw4NDe21PHLkSFx77bXo6urCuXPnMGLECDnKICIiUpwsV5wRERGoqalBYWEhkpKS0NbWBovFYv+o9lJarRajR4/G2LFjYbPZ8Nprr0kes+cq9/ucBberBnq8Un0p0R+RM9587vJ1QEpy9fySJTjDw8ORm5uL7OxspKenQ61Ww2QyOQ3OHTt2oL6+HtXV1Th79izi4uJw//33Y8iQIS6PqdfrYTabAQAGgwEA7Mv9oVKpIITo9/FK9aVEf0TOePO5y9cBKeXSDOlZdka2iayNRiOMRqPL+48YMQK+vr5Qq9Xo6upCd3e3XKUQEREpRrbgvByTyQSLxYKOjg5YLBZs2bIFGzduxMSJE9HZ2Yn58+dj2LBh7iiFiIhoQNwSnHl5eX3W5efnu2NoIiIiWfGRe0RERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSyBqcpaWliI+Ph0ajQWBgINLS0uTsnoiIyONkC86CggKkpKQgKysLjY2NqK2tRUZGhlzdExEReQVZgtNmsyEzMxM5OTlITU2Fv78/1Gq1fVqxhIQEhISEYOXKlfZjli9fjtjYWBgMBhw6dEiOMoiIiBQny0PeeyaVTk5Odrg9Pz8fO3fuRF1dHQDAarWivLwc+/btw4kTJzB37lwUFxfLUQoREZGiZLnibGpqglardTp7dmhoaK/lzz//HJGRkQCAW2+9FUeOHMGFCxfkKIWIiEhRsgRnREQEampqUFhYiIsXL6K1tRUffPCB0/1/8pOfYNeuXejs7ERVVRUaGhrQ2toqRylERESKkuWj2vDwcOTm5iI7Oxvp6elQq9UwmUz27zgv9ZOf/ATp6elISEjA2LFjMX78eAQFBUkas+fj4e9zdsXrqoEer1RfSvRH5Iw3n7t8HZCSXD2/ZJvI2mg0wmg0urz/vHnzMG/ePBw6dAh/+tOfJL8g9Ho9zGYzAMBgMACAfbk/VCoVhBD9Pl6pvpToj8gZbz53+TogpVyaIT3LzsgWnJdjMplgsVjQ0dEBi8WCwsJC3Hvvvbhw4QKCg4OxZs0ad5RBREQ0YG4Jzry8vD7rduzY4Y6hiYiIZMVH7hEREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSQNbgLC0tRXx8PDQaDQIDA5GWliZn90RERB4nW3AWFBQgJSUFWVlZaGxsRG1tLTIyMuTqnoiIyCvIEpw2mw2ZmZnIyclBamoq/P39oVarkZiYiC+++AKTJ0/GpEmTEBcXh8rKSgDA+vXrMWHCBEyYMAG7du2SowwiIiLFyTI7Ss+k0snJyX22BQYG4r333kNQUBA+++wzZGZmorCwEC+++CLKysrQ3t6OhIQEVFVVwceHX7kSEZF3kyWpmpqaoNVqHU5GHRQUhKCgIADAkCFD4OvrC4vFAr1eD39/fwQHB2PkyJE4ceKEHKUQEREpSpYrzoiICNTU1KCwsBBJSUloa2uDxWJBYmKifZ/u7m4sWLAAS5YsQXNzM7RarX2bVqtFc3MzbrvtNpfH7LnK/T5HwS3FQI9Xqi8l+iNyxpvPXb4OSEmunl+yBGd4eDhyc3ORnZ2N9PR0qNVqmEwme3AKIWAymTB9+nRMmzYNH3zwAVpaWuzHt7a22q9KXaXX62E2mwEABoMBAOzL/aFSqSCE6PfxSvWlRH9EznjzucvXASnl0gzpWXZGluAEAKPRCKPR6HDb/PnzMWbMGDzxxBMAgOjoaDzzzDPo6OiAzWZDfX09br31VrlKISIiUoxswemM2WxGTk4OYmNjUVxcjBEjRmDz5s1YuHChPdVfeukl3hhERERXBMWD02AwoLOzs8/6OXPmYM6cOUoPT0REJCte5hEREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJoHhwvv3229DpdFCr1bj99tuxZcsWpYckIiJSjKLBmZOTg2eeeQZ/+9vfcO7cOfzlL39Beno6vvrqKyWHJSIiUoxiwXnu3Dk888wzyMvLQ1RUFADgvvvuQ0hICCorK7F+/XpMmDABEyZMwK5du5Qqg4iISFaKPeT9o48+gq+vL+655x77OiEEmpqa4OPjgxdffBFlZWVob29HQkICqqqqOEMKERF5PcWSqq2tDVqttte6wsJCDB06FCqVCnq9Hv7+/ggODsbIkSNx4sQJpUohIiKSjWLBGR0djRMnTmD37t3o7u7GRx99hF/96ld46aWXYLPZeoWqVqtFc3OzUqUQERHJRrGPaseOHYvc3Fw89thjaGhowNixY/Hyyy/j4YcfxgcffICWlhb7vq2trQgKCpLUf0lJCVQqVa91ly5LNdDjlepLif6InPHmc5evA1KSq+eXSgghFK6lj9bWVkyZMgX79++HzWbDlClTJH3HaTAYAABms9nhcn+oVCrI9aOQsy8l+iNyxpvPXb4OSCmOMuVyeaLYFeflBAYGYuHChfZiX3rpJd4YREREVwSPBCcAzJkzB3PmzPHU8ERERP3CyzwiIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCa764GxtbcW///1vT5fh0JkzZ3DkyBFPl0FXiYaGBgDwypmKTp48CQC9Jocg8hRFg/PixYuYM2cObrnlFgwfPhxjxozB22+/reSQLjt8+DBmzZqFkJAQhIWFAQAmTpyIrVu3ergy4JNPPsHDDz+M66+/HnfccQeA7x46XFRU5OHKaDD68MMPMWXKFNx4440AgOuvvx4PPfQQqqqqPFwZsH37dkyaNAk33XQTgO9q+8///E8cPHjQw5XR1UzR4Dx79izuu+8+fPrpp2hra8NTTz2FX/ziF+js7FRy2B9UUVGBCRMmoKioCPPmzcOGDRsAAI2NjUhOTsYrr7zisdr27NmD2NhY7Nq1C0899ZS9ti+//BL33XcfcnNzPVYbDT5///vfkZiYiC+++AIrVqwAADz99NPYvXs34uLisGvXLo/VtnbtWkyfPh0nT57EH/7wBwDAggULsHPnTsTGxmL//v0eq42ucsKNzp07JwCIM2fOiDfffFPExMSImJgY8dFHH0nqR6/XC71e73T5crq7u8Xo0aPFqFGjxFdffWVfD0B0dHSIGTNmCJVKJY4ePSqpJiGEqK6uFgsWLBAAxK5duyQf39nZKUaOHCnGjRsnTp061au2b775RkybNk34+vqKL7/8UnLfRJeqr68X11xzjUhISBA2m00I8d25JoQQp0+fFnfccYe4/vrrxfnz5yX3XVJSIjIzMwUA8fnnn0s+vrq6Wvj4+Ijp06fbx++prb6+XowZM0b8x3/8h7hw4YLkvoku5ShTLkfR4NyxY4eYNm2auOmmm4RGoxHDhw8XN954o2hpaRF33XWX+Pbbb8XXX38t7rrrLtHd3e1yvwMJzu3btwsA4p133um1vudFeerUKXHNNdeIhQsXulyPEEJ8+eWXQqvVCpVKJQAIHx8f8a9//UtSH//4xz8EAFFYWOiwthMnTgiVSiV+85vfSOqXyJHly5cLlUolqqur7eu+/7d0UVGRACA2bNggqd8PP/xQ+Pj4CB8fHwFABAQEiC+++EJSH08//bTw9fUVdXV1DmsrKCgQAMSWLVsk9UvkiNTgVOyj2vLycsyaNQsLFizA559/jrNnz2Lx4sX42c9+BovFAr1eD39/fwQHB2PkyJE4ceKEUqX0sm/fPvj4+GDGjBkOt//oRz/CpEmTsG/fPkn9vvXWW2hpaek10e6aNWsk1zZs2DDcd999DrffcsstuPvuuyXXRuTIvn37EBERgdGjRzvcPnXqVGg0GsnnW895f/HiRQDffWWzfv16ybXFxsbav9u81IMPPohrr72WH9eSZyiV4OvWrROjR48Wra2t4vz58+L1118Xw4YNE88995x46623xPLly+37PvLII6K8vNzlvvV6vQDAxsbGxsamSLscxa44Z86ciTFjxmDkyJG444470NLSAq1Wi5/97GcICgrqdVt5a2srgoKCJPWv1+shvvuoGXq9vtfy5dq2bdsAAJs2beq1HgCEEDh9+jSuueYaLFiwwKX+elpNTQ0CAgKgUqng4+MDlUqFwsJCSX288847AL67k9BRbV9++SV8fHzwzDPPSOqXjc1RW7ZsGVQqFY4fP25f13OuCSGwY8cOAMD69esl9VtUVAQfHx/760CtVuPYsWOS+li0aBH8/PxQX1/vsLb33nsPALB582aP/xzZrvx2aYbo9frLB5DwgJaWFvHTn/5UnD9/XjQ3N7v1O84LFy6IUaNGidGjR4v6+nr7egCis7NTPPzwwwKAOHLkiMv19Dh69KjIysoSJpNJfPjhh5KP7+joEDfeeKMICwsTp0+f7lXb+fPnRVJSkvDx8RE1NTWS+ya6VG1trfDz8xOJiYnim2++EUII+1/aX3/9tRg/frwICQnp181BxcXFYu7cueKJJ57o12vp2LFjQqVSieTkZNHR0dGrtlOnTomxY8eKm2++WXR1dUnum+hSXnVz0OX8/e9/t99Vu3PnTknHDiQ4hRBi//79Yvjw4UKr1Yrs7Gz7TTnjxo0TAMSf//xnSfXIadeuXWLo0KEiODhYLFmyxF7b6NGjBQCxdu1aj9VGg09ubq4AIEaNGiX+8Ic/CABi6dKl4vrrrxdDhgzp1x+Acnn55ZcFAPHjH/9Y/Pd//7cAIH7961+LoKAgMWzYMLFnzx6P1UaDyxUTnAMx0OAUQohPPvlEpKamCl9fX/tn2nfffbcoKCiQt9h+OHDggEhOTrbflQhATJw4sc/dtkRy+Ne//iUmTZpkP9dUKpV44IEHJN13oJQtW7aICRMm2Gvz8fERKSkp4uOPP/Z0aTSISA1OlRBCSPpy0QsYDAYAgNlsdrgsRXNzM06ePImAgAD8x3/8hzwFyuTrr79GQ0MDAgMDcfPNN3u6HBrk6uvrcebMGdxwww24/vrrPV1OL7W1tWhtbcWNN96I4OBgT5dDg4yjTLlcnvgpX5J3CwoKknxjkruEhIQgJCTE02XQVeKmm25y+s8/PO3mm2/mH4/kNa76h7wTERFJweCk/4+9+4+Oqr7zP/6amSoCweTyY01iahSydm35kUoUiNSZIrVEPd1aVpNsa5LG40k9G6eM5exYSitiTuNZNQue6lZqIVbUuPWYdWO70QDNiL8S0GAGpAYEdKHSCsokRJlJMvf7B4fZb/jlXHIvE/D5OOeew+eTuZ/POwnJK5/J5PMBAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYIGjwRmPx1VWVqbc3FylpaUpLy9PDQ0NTk4JAICjHA3OSCSioqIidXZ2qru7W4FAQBUVFYrFYk5OCwCAYxwNTsMwVFpaqvT0dLndbpWXlysajaq3t1dz587VhAkTVFNT42QJAADYytHgbGlpUVFRkXJycpSenq6srCxlZWXJMAzV19fr/vvvd3J6AABs51hwtre3q6SkRH6/X11dXYpEIgoGgyooKJAk5eTkODU1AACOcWyT946ODhmGocLCQnk8HtXX16u2tlbBYNCW8UOhkFwu16C+o9sAACQr2QxxLDiLi4vV2Nio7OxsZWZmqrq6WoZhJFacQ+X1em05VgwA8MV2oqMqT8Sx4MzIyFBzc/OgvkAg4NR0AACcFik7j7OyslJtbW2KRqNqa2tTU1NTqkoBACBpKQvOlStXpmpqAABOGVvuAQBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFjgdnPB5XWVmZcnNzlZaWpry8PDU0NDg9LQAAjnA8OCORiIqKitTZ2anu7m4FAgFVVFQoFos5PTUAALZzPDgNw1BpaanS09PldrtVXl6uaDSqcDisq6++Wt/4xjc0e/Zsbdy40elSAAAYMsdPR2lpaVFdXZ3C4bB6enoUj8eVlZWliy++WI2NjRo3bpzeeecdVVVVaf369U6XAwDAkDganO3t7SopKdHq1avl9Xo1atQo1dTUqL29XePGjUs8bsSIEfJ4PE6WAgCALRwNzo6ODhmGocLCQnk8HtXX16u2tlbBYDDxmIGBAfn9ft11112Wxg6FQnK5XIP6jm4DAJCsZDPE0eAsLi5WY2OjsrOzlZmZqerqahmGoYKCAkmSaZqqrKzUDTfcoHnz5lka2+v1qrW1VZLk8/kkKdEGACBZR2fIkfaJOBqcGRkZam5uHtQXCAQS/77jjjuUl5en22+/3ckyAACwTco2QGhtbdWKFSu0du1a+Xw+fe9730tVKQAAJM3xV9WeiM/n4285AQBnHLbcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAkeDMx6Pq6ysTLm5uUpLS1NeXp4aGhqcnBIAAEc5GpyRSERFRUXq7OxUd3e3AoGAKioq2GoPAHDGcjQ4DcNQaWmp0tPT5Xa7VV5ermg0qk8++USFhYXy+XyaMWOG1q5d62QZAADYxtFN3ltaWlRXV6dwOKyenh7F43FlZWVp/PjxWr9+vTwej3bs2KHi4mJt2LDByVIAALCFYyvO9vZ2lZSUyO/3q6urS5FIRMFgUAUFBfJ4PPJ4PJKkAwcOaOrUqU6VAQCArRxbcXZ0dMgwDBUWFsrj8ai+vl61tbUKBoOSpJ07d+qWW27Ru+++q1WrVlkePxQKyeVyDeo7ug0AQLKSzRDHgrO4uFiNjY3Kzs5WZmamqqurZRiGCgoKJEmXXHKJXnnlFe3YsUNz5szRDTfcYGl8r9er1tZWSYfP9pSUaAMAkKyjM+RI+0QcC86MjAw1NzcP6gsEApKkaDSqESNGSJLOP/98paWlOVUGAAC2cvTFQSeyYcMGLVq0SB6PR319fVq+fHkqygAAwLKUBOfs2bP18ssvp2JqAACGhC33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACR4MzHo+rrKxMubm5SktLU15enhoaGpycEgAARzkanJFIREVFRers7FR3d7cCgYAqKioUi8WcnBYAAMc4GpyGYai0tFTp6elyu90qLy9XNBpVb2+vJGn//v0yDEOrV692sgwAAGzjaHC2tLSoqKhIOTk5Sk9PV1ZWlrKysmQYhiSppqZGs2fPdrIEAABs5Vhwtre3q6SkRH6/X11dXYpEIgoGgyooKJAkbd++Xfv379f06dOdKgEAANs5dh5nR0eHDMNQYWGhPB6P6uvrVVtbq2AwKEn6xS9+oXvvvVdPPPHEKY0fCoXkcrkG9R3dBgAgWclmiGPBWVxcrMbGRmVnZyszM1PV1dUyDEMFBQV67bXXNG7cOE2aNOmUx/d6vWptbZUk+Xw+SUq0AQBI1tEZcqR9Io4FZ0ZGhpqbmwf1BQIBSdJDDz2kzs5OzZs3T9u3b9fo0aM1adIkzZo1y6lyAACwhWPBeTJ+v19+v1+StGTJEuXl5RGaAIAzQkqC8/+3ZMmSVJcAAEDS2HIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA3OeDyusrIy5ebmKi0tTXl5eWpoaHBySgAAHOVocEYiERUVFamzs1Pd3d0KBAKqqKhQLBZzcloAABzjaHAahqHS0lKlp6fL7XarvLxc0WhUvb29GjlypHw+n3w+n1asWOFkGQAA2MbRTd5bWlpUV1encDisnp4exeNxZWVlyTAMXXjhhZyfCQA44zi24mxvb1dJSYn8fr+6uroUiUQUDAZVUFAgSdq7d6+8Xq+++93vaseOHU6VAQCAvUyH/PrXvzYnTZpkHjhwwDx06JC5atUqc9SoUeY999xjmqZpfvTRR6ZpmuaaNWtMr9draWyv12tK4uLi4uLicuQ6Gceeqi0uLlZjY6Oys7OVmZmp6upqGYaRWHGOHz9eknTNNdeoqqrK8vherzfxVK/P55MknvoFAFh2dIYcaZ+IY8GZkZGh5ubmQX2BQECSdPDgQY0cOVIej0ebN2/W2LFjnSoDAABbOfrioBN55513VFVVpTFjxkiSHn300VSUAQCAZSkJziuvvFIdHR2pmBoAgCFhyz0AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsMDR4IzH4yorK1Nubq7S0tKUl5enhoYGJ6cEAMBRjgZnJBJRUVGROjs71d3drUAgoIqKCsViMSenBQDAMY4Gp2EYKi0tVXp6utxut8rLyxWNRtXb26u3335b8+bN05w5c/TDH/7QyTIAALCNo6ejtLS0qK6uTuFwWD09PYrH48rKytLo0aO1cOFCPfvss0pPT3eyBAAAbOXYirO9vV0lJSXy+/3q6upSJBJRMBhUQUGB3njjDY0ZM0ZlZWXy+Xx64YUXnCoDAABbObbi7OjokGEYKiwslMfjUX19vWpraxUMBrVnzx699dZb2rRpk0zT1FVXXaWrr75a559/ftLjh0IhuVyuQX1HtwEASFayGeJYcBYXF6uxsVHZ2dnKzMxUdXW1DMNQQUGBPB6PZs6cqYyMDEnS1KlTtX37dl1++eVJj+/1etXa2ipJ8vl8kpRoAwCQrKMz5Ej7RBwLzoyMDDU3Nw/qCwQCkg6/2vZnP/uZ+vr6ZJqmtm7dqtzcXKdKAQDANo6+OOhE0tPTtXDhQn3zm99ULBaT3+/XuHHjUlEKAACWpCQ4JamkpEQlJSWpmh4AgFPClnsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFjgaHDG43GVlZUpNzdXaWlpysvLU0NDg5NTAgDgKEeDMxKJqKioSJ2dneru7lYgEFBFRYVisZiT0wIA4BhHg9MwDJWWlio9PV1ut1vl5eWKRqPq6OiQz+eTz+fTzJkz2eAdAHDGcHST95aWFtXV1SkcDqunp0fxeFxZWVmaMWNG4tyzp556Sq+88oqTZQAAYBvHVpzt7e0qKSmR3+9XV1eXIpGIgsGgCgoKBj3ud7/7nW655RanygAAwFaOrTg7OjpkGIYKCwvl8XhUX1+v2tpaBYPBxGP27t2rXbt2adasWZbHD4VCcrlcg/qObgMAkKxkM8Sx4CwuLlZjY6Oys7OVmZmp6upqGYYxaMX55JNPqrS09JTG93q9iad7fT6fJCXaAAAk6+gMOdI+EceCMyMjQ83NzYP6AoHAoPbq1av17LPPOlUCAAC2S9kGCOFwWKNGjdKkSZNSVQIAAJalLDinTJmiV199NVXTAwBwSthyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAscDQ44/G4ysrKlJubq7S0NOXl5amhocHJKQEAcJSjwRmJRFRUVKTOzk51d3crEAiooqJCsVjMyWkBAHCMo8FpGIZKS0uVnp4ut9ut8vJyRaNR9fb2qrq6WrNmzdIVV1yh1atXO1kGAAC2cew8TklqaWlRXV2dwuGwenp6FI/HlZWVpT179mjLli16/fXX1dvbqylTpugHP/iBk6UAAGALx1ac7e3tKikpkd/vV1dXlyKRiILBoAoKCpSdna1zzz1XfX196unp0dixY50qAwAAWzm24uzo6JBhGCosLJTH41F9fb1qa2sVDAZlGIYmTZqkSy+9VL29vXr00Uctjx8KheRyuQb1Hd0GACBZyWaIY8FZXFysxsZGZWdnKzMzU9XV1TIMQwUFBXrppZe0Z88ebd++XZFIRLNnz9Z1112nESNGJD2+1+tVa2urJMnn80lSog0AQLKOzpAj7RNxLDgzMjLU3Nw8qC8QCEiSXnzxRY0dO1Yej0djxoxRX1+fBgYGnCoFAADbpGQDhLlz58o0TV111VUqLCzUHXfcoVGjRqWiFAAALHH0VbUncuR3ngAAnGnYcg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACgq3FhbgAACAASURBVBMAAAscDc54PK6ysjLl5uYqLS1NeXl5amhocHJKAAAc5WhwRiIRFRUVqbOzU93d3QoEAqqoqFAsFnNyWgAAHONocBqGodLSUqWnp8vtdqu8vFzRaFS9vb26++67VVhYKJ/Pp82bNztZBgAAtnE0OFtaWlRUVKScnBylp6crKytLWVlZev/999Xe3q7XXntN9fX1+vGPf+xkGQAA2Max4Gxvb1dJSYn8fr+6uroUiUQUDAZVUFCgrq4uTZ8+XZJ08cUXa+vWrerv73eqFAAAbOPYsWIdHR0yDEOFhYWJY8Rqa2sVDAb1ta99TcuXL1csFtPmzZu1d+9eHThwQOPHj096/FAoJJfLNajv6DYAAMlKNkMcC87i4mI1NjYqOztbmZmZqq6ulmEYKigo0Ne+9jWVlpZq7ty5uvTSSzVlyhSNGzfO0vher1etra2SJJ/PJ0mJNgAAyTo6Q460T8Sx4MzIyFBzc/OgvkAgkPh3dXW1qqurtXnzZt1///2sFgEAZwTHgvPzXHvtterv79f48eP18MMPp6oMAAAsSVlwvvTSS6maGgCAU8aWewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBggS3BGY/HVVZWptzcXKWlpSkvL08NDQ12DA0AwLBiS3BGIhEVFRWps7NT3d3dCgQCqqioUCwWs2N4AACGDVuC0zAMlZaWKj09XW63W+Xl5YpGo+rt7dXcuXM1YcIE1dTUDLpn9erVmjVrlmbNmqU//elPdpQBAIDjbDkdpaWlRXV1dQqHw+rp6VE8HldWVpYMw1B9fb3WrFmj3bt3Jx5/4MABPfDAA3rjjTd08OBBzZ07V2+99Zbcbn7lCgAY3oacVO3t7SopKZHf71dXV5cikYiCwaAKCgokSTk5Ocfc09bWJq/Xq/POO0/jx49Xdna2du3aNdRSAABw3JBXnB0dHTIMQ4WFhfJ4PKqvr1dtba2CweAJ79m/f78Mw0i0DcPQ/v37NXHixKTnDYVCcrlcg/qObgMAkKxkM2TIwVlcXKzGxkZlZ2crMzNT1dXVMgwjseI8nnHjxumTTz5JtA8cOKBx48ZZmtfr9aq1tVWS5PP5JCnRBgAgWUdnyJH2iQw5ODMyMtTc3DyoLxAInPSeGTNm6Kc//WniBUR79uzRxRdfPNRSAABwnC0vDjqZyspKtbW1KRqNqq2tTU1NTcrIyNCCBQsSqf7ggw/ywiAAwBnB8eBcuXLlcfvLyspUVlbm9PQAANiKZR4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABbYFpzxeFxlZWXKzc1VWlqa8vLy1NDQYNfwAAAMC7YFZyQSUVFRkTo7O9Xd3a1AIKCKigrFYjG7pgAAIOVsC07DMFRaWqr09HS53W6Vl5cnTj+ZO3euJkyYoJqamkH3nKgfAIDhyrZN3ltaWlRXV6dwOKyenh7F43FlZWXJMAzV19drzZo12r1796B7TtQPAMBwZcuKs729XSUlJfL7/erq6lIkElEwGEwcZp2Tk3Pc+07UDwDAcGXLirOjo0OGYaiwsFAej0f19fWqra1VMBi0Y/jjCoVCcrlcg/qObgMAkKxkM8SW4CwuLlZjY6Oys7OVmZmp6upqGYaRWHE6wev1qrW1VZISB2IfaQMAkKyjM+RI+0RsCc6MjAw1NzcP6gsEAnYMDQDAsGLbi4NOprKyUm1tbYpGo2pra1NTU9NJ+wEAGK5OS3CuXLnSUj8AAMMVW+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAW2BWc8HldZWZlyc3OVlpamvLw8NTQ02DU8AADDgm3BGYlEVFRUpM7OTnV3dysQCKiiokKxWMyuKQAASDnbgtMwDJWWlio9PV1ut1vl5eWKRqPq7e3V3LlzNWHCBNXU1CQe/9577+nqq6/WN77xDc2ePVsbN260qxQAABxj2+koLS0tqqurUzgcVk9Pj+LxuLKysmQYhurr67VmzRrt3r078fiMjAw1NjZq3Lhxeuedd1RVVaX169fbVQ4AAI6wJTjb29tVUlKi1atXy+v1atSoUaqpqVF7e7skKScn55h7xo0bl/j3iBEj5PF47CgFAABH2RKcHR0dMgxDhYWF8ng8qq+vV21trYLB4OfeOzAwIL/fr7vuusvSnKFQSC6Xa1Df0W0AAJKVbIbYEpzFxcVqbGxUdna2MjMzVV1dLcMwVFBQcNL7TNNUZWWlbrjhBs2bN8/SnF6vV62trZIkn88nSYk2AADJOjpDjrRPxJbgzMjIUHNz86C+QCDwuffdcccdysvL0+23325HGQAAOM62FwedTGVlpdra2hSNRtXW1qampia1trZqxYoVKiws1Nq1azV27Fg999xzp6McAABO2WkJzpUrVx7T5/P5+BtPAMAZhy33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwLbgjMfjKisrU25urtLS0pSXl6eGhga7hgcAYFiwLTgjkYiKiorU2dmp7u5uBQIBVVRUsK0eAOCsYltwGoah0tJSpaeny+12q7y8XNFoVL29vZo7d64mTJigmpqaxOP/+te/qrCwUD6fTzNmzNDatWvtKgUAAMfYtsl7S0uL6urqFA6H1dPTo3g8rqysLBmGofr6eq1Zs0a7d+9OPH78+PFav369PB6PduzYoeLiYm3YsMGucgAAcIQtK8729naVlJTI7/erq6tLkUhEwWAwcZB1Tk7OMfd4PB55PB5J0oEDBzR16lQ7SgEAwFG2rDg7OjpkGIYKCwvl8XhUX1+v2tpaBYPBk963c+dO3XLLLXr33Xe1atUqS3OGQiG5XK5BfUe3AQBIVrIZYktwFhcXq7GxUdnZ2crMzFR1dbUMw0isOE/kkksu0SuvvKIdO3Zozpw5uuGGG5Ke0+v1qrW1VdLhsz0lJdoAACTr6Aw50j4RW4IzIyNDzc3Ng/oCgcBJ74lGoxoxYoQk6fzzz1daWpodpQAA4CjbXhx0MpWVlWpra1M0GlVbW5uampq0YcMGLVq0SB6PR319fVq+fPnpKAUAgCE5LcG5cuXKY/pmz56tl19++XRMDwCAbdhyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU44/G4ysrKlJubq7S0NOXl5amhocGOoQEAGFZsCc5IJKKioiJ1dnaqu7tbgUBAFRUVisVidgwPAMCwYUtwGoah0tJSpaeny+12q7y8XNFoVL29vZo7d64mTJigmpqaY+7bv3+/DMPQ6tWr7SgDAADH2RKcLS0tKioqUk5OjtLT05WVlaWsrCwZhqH6+nrdf//9x72vpqZGs2fPtqMEAABOiyEHZ3t7u0pKSuT3+9XV1aVIJKJgMKiCggJJUk5OznHv2759u/bv36/p06cPtQQAAE6bIZ/H2dHRIcMwVFhYKI/Ho/r6etXW1ioYDJ70vl/84he699579cQTT5zSvKFQSC6Xa1Df0W0AAJKVbIYMOTiLi4vV2Nio7OxsZWZmqrq6WoZhJFacx/Paa69p3LhxmjRp0inP6/V61draKkny+XySlGgDAJCsozPkSPtEhhycGRkZam5uHtQXCAROes/GjRvV2dmpefPmafv27Ro9erQmTZqkWbNmDbUcAAAcNeTg/DyVlZVqa2tTNBpVW1ubmpqa5Pf75ff7JUlLlixRXl4eoQkAOCM4HpwrV6486duXLFnidAkAANiGLfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALDAtuCMx+MqKytTbm6u0tLSlJeXp4aGBruGBwBgWLAtOCORiIqKitTZ2anu7m4FAgFVVFQoFovZNQUAAClnW3AahqHS0lKlp6fL7XarvLxc0WhUvb29mjt3riZMmKCamppB94wcOVI+n08+n08rVqywqxQAABxj2ybvLS0tqqurUzgcVk9Pj+LxuLKysmQYhurr67VmzRrt3r170D0XXnghZ2gCAM4otqw429vbVVJSIr/fr66uLkUiEQWDwcRh1jk5Oce9b+/evfJ6vfrud7+rHTt22FEKAACOsmXF2dHRIcMwVFhYKI/Ho/r6etXW1ioYDJ70vl27dmn8+PFau3atKisrLa0+Q6GQXC7XoL6j2wAAJCvZDLElOIuLi9XY2Kjs7GxlZmaqurpahmEkVpwnMn78eEnSNddco6qqKktzer3eRND6fD5J4mlfAIBlR2fIkfaJ2BKcGRkZam5uHtQXCAROes/Bgwc1cuRIeTwebd68WWPHjrWjFAAAHGXbi4NOprKyUm1tbYpGo2pra1NTU5PeeecdVVVVacyYMZKkRx999HSUAgDAkJyW4Fy5cuUxfVdeeaU6OjpOx/QAANiGLfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAJbgjMej6usrEy5ublKS0tTXl6eGhoa7BgaAIBhxZbgjEQiKioqUmdnp7q7uxUIBFRRUaFYLGbH8AAADBu2BKdhGCotLVV6errcbrfKy8sVjUbV29uruXPnasKECaqpqRl0z9tvv6158+Zpzpw5+uEPf2hHGQAAOM6W01FaWlpUV1encDisnp4exeNxZWVlyTAM1dfXa82aNdq9e3fi8bFYTAsXLtSzzz6r9PR0O0oAAOC0GPKKs729XSUlJfL7/erq6lIkElEwGFRBQYEkKScn55h73njjDY0ZM0ZlZWXy+Xx64YUXhloGAACnxZBXnB0dHTIMQ4WFhfJ4PKqvr1dtba2CweAJ79mzZ4/eeustbdq0SaZp6qqrrtLVV1+t888/P+l5Q6GQXC7XoL6j2wAAJCvZDBlycBYXF6uxsVHZ2dnKzMxUdXW1DMNIrDiPZ+zYsZo5c6YyMjIkSVOnTtX27dt1+eWXJz2v1+tVa2urJMnn80lSog0AQLKOzpAj7RMZcnBmZGSoubl5UF8gEDjpPTNnztTPfvYz9fX1yTRNbd26Vbm5uUMtBQAAx9ny4qCTqaysVFtbm6LRqNra2tTU1KT09HQtXLhQ3/zmNxWLxeT3+zVu3DinSwEAYMgcD86VK1cet7+kpEQlJSVOTw8AgK3Ycg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAtsC854PK6ysjLl5uYqLS1NeXl5amhosGt4AACGBduCMxKJqKioSJ2dneru7lYgEFBFRYVisZhdUwAAkHK2BadhGCotLVV6errcbrfKy8sVjUbV29uruXPnasKECaqpqUk8vr29XT6fTz6fTzNnzmSTdwDAGcG2Td5bWlpUV1encDisnp4exeNxZWVlyTAM1dfXa82aNdq9e3fi8VdeeWXi7LOnnnpKr7zyil2lAADgGFtWnO3t7SopKZHf71dXV5cikYiCwWDiMOucnJyT3v+73/1Ot9xyix2lAADgKFtWnB0dHTIMQ4WFhfJ4PKqvr1dtba2CweDn3rt3717t2rVLs2bNsjRnKBSSy+Ua1Hd0GwCAZCWbIbYEZ3FxsRobG5Wdna3MzExVV1fLMIzEivNknnzySZWWllqe0+v1Jp7q9fl8kpRoAwCQrKMz5Ej7RGwJzoyMDDU3Nw/qCwQCSd27evVqPfvss3aUAQCA42x7cdDJVFZWqq2tTdFoVG1tbWpqapIkhcNhjRo1SpMmTTodZQAAMGSnJThXrlx53P4pU6bo1VdfPR0lAABgC7bcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALbAvOeDyusrIy5ebmKi0tTXl5eWpoaLBreAAAhgXbgjMSiaioqEidnZ3q7u5WIBBQRUWFYrGYXVMAAJBytgWnYRgqLS1Venq63G63ysvLFY1G1dvbq7lz52rChAmqqalJPN40TVVXV2vWrFm64oortHr1artKAQDAMbadjtLS0qK6ujqFw2H19PQoHo8rKytLhmGovr5ea9as0e7duxOP37Jli7Zs2aLXX39dvb29mjJlin7wgx/YVQ4AAI6wZcXZ3t6ukpIS+f1+dXV1KRKJKBgMqqCgQJKUk5NzzD3Z2dk699xz1dfXp56eHo0dO9aOUgAAcJQtK86Ojg4ZhqHCwkJ5PB7V19ertrZWwWDwhPcYhqFJkybp0ksvVW9vrx599NGk58vPz9fy5cvlcrkG9R/dBgAgWclmiC3BWVxcrMbGRmVnZyszM1PV1dUyDCOx4jyel156SXv27NH27dsViUQ0e/ZsXXfddRoxYsTnzrds2TItW7bMjtIBALDEluDMyMhQc3PzoL5AIPC5940dO1Yej0djxoxRX1+fBgYG7CgHAADHuEzTNJ2epLKyUm1tbYpGo7rsssvU1NSkgYEB3Xrrrdq2bZtisZhuueUW+f1+p0sBAGBITktwAgBwtmDLPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAscC854PK7Ro0dr3bp1g/rnz58vv9/v1LQAADjqS04N7Ha7NXnyZIXDYc2ZM0eSFAqFFAqFtG3bNqemBQDAUY4+VTtt2jSFw2FJh1eggUBAS5culWEYWr16tWbNmqVZs2bpT3/6k5NlAMOGaZr67LPPUl3GaRGLxTQwMJDqMgDbORqc+fn5ieBctWqV+vv7VVVVpQMHDuiBBx7Qn/70JzU1NSkQCCgejztZCpBybW1t+vKXv6xRo0Zp4sSJ6uzsTHVJjohGo/r+97+v8847T+edd57uuecemaaZ6rIA2zi+4tyyZYu6u7u1ePFiLVu2TB6PR21tbfJ6vTrvvPM0fvx4ZWdna9euXU6WAqTUp59+quuvv14ffvihJOn999/Xddddd1b+wFhTU6OnnnpKpmmqv79fS5Ys0XPPPZfqsgDbOBqcU6dO1aeffqrbbrtNs2bNSvyuc//+/TIMI/E4wzC0f//+pMddsGCBFixYcMI2MNx88MEH2r9/fyIo4/G49uzZo48++ijFldlvw4YNcrlcg/o2btyYomoAB5gOmzRpkjlixAhzx44dib7m5mbT7/cn2tddd5353nvvJT2m1+s1JXFxcXFxcTlynYzLNE//Lx8OHDigOXPm6PXXX1dvb6/mzJmjt956S253cgtgn88nSWptbT1uGxiOGhoaVFZWpr6+Po0cOVK///3vdf3116e6LNvt379fc+fO1aZNmyRJ3/ve9/TMM8/oS19y7EX8wGmVkv/JGRkZWrBgQSLwHnzwwaRDEzhTlZSU6Jvf/KYyMzP1/vvva8KECakuyRHjxo1TW1ubtmzZossvv1zPPvvsMU/dAmeylKw4h4oVJ85kLpfrC/Mq0y/S+4ovDpZ5AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZj8c1evRorVu3blD//Pnz5ff7nZwaAABHOLrJu9vt1uTJkxUOhxNncYZCIYVCIW3bts3JqQEAcITjT9VOmzZN4XBY0uEVaCAQ0NKlS2UYhubOnasJEyaopqbG6TKAs044HNZdd92lxYsXa+fOnakuxzGxWEzLli3TnXfeqWeeeYZN45Fyjh8rlp+fr8cff1yStGrVKvX396uqqkqSVF9frzVr1mj37t1OlwGcVd58801dddVVikajkqSHH35Yb731li655JIUV2avgYEBfec739GLL76YOGmlq6tLP//5z1NdGr7ATsuKc8uWLeru7tbixYu1bNkyeTweSVJOTo7T0wNnpeXLl6uvry/RPnDggFasWJHCipzx9ttv68UXX5SkxErzl7/8JatOpJTj53H29PQoPT1dN910k/r6+vTcc88Nent9fb12796txYsXJz2mz+dTKBSyu1QAACTppD+cOf5U7ZgxYzRx4kQ9//zz2rp1q23jer1eDrLGGcmOw51feuklzZs3Ty6XS/F4XOeee65ef/11XX755TZVaY+hvq/RaFQzZsxQZ2dnYpzbbrvtrFxd48xxWv6Oc/v27Tp06NBZ9/sXIFWuvfZa/fGPf9T8+fMlHX61+nALTTuMGDFC69atU3V1taTDT9M+8sgjKa4KX3SOP1V7MpWVlWpra1M0GtVll12mpqampO47eoXJihNnEjtWnE6OZyc7axvO7ye+WBx/qvZkVq5cmcrpAQCwjC33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwNHgjMfjGj16tNatWzeof/78+fL7/U5ODQCAIxzdcs/tdmvy5MkKh8OaM2eOpMObUYdCIW3bts3JqQEAcMRpOcg6HA5LOrwCDQQCWrp0qT7++GNdffXV+sY3vqHZs2dr48aNTpcC4CQGBga0b98+xePxVJfiuEgkos8++yzVZeAM5Xhw5ufnJ4Jz1apV6u/vV1VVlTIyMtTY2Kj169drxYoVCgQCTpcC4ARaWlo0btw4TZgwQRdffLE6OztTXZIjenp69O1vf1sZGRkaPXq0lixZkuqScAY6LSvOLVu2qLu7W4sXL9ayZcvk8Xg0btw4jRs3TtLhM/c8Ho/TpQA4jo8//lg33nijenp6JEl79uzRP/7jP56VR3gtWrRIL730kiTJNE3dc889SR9nCBzheHBOnTpVn376qW677TbNmjUr8bvOIwYGBuT3+3XXXXc5XQqA49i5c6d6e3sTT9HG43Ht2rVLBw8eTHFl9tu0aVNSfcDJnJaDrPPy8rR7925t3bpVl1xySaLfNE1VVFRo5syZuv3225Mez+fzKRQKOVEqAAAnfcbltATniVRXV+uCCy7Qz3/+c0v3+Xw+SVJra+tx28Bw5nK5bH0a1I7xnnnmGZWVlSkWiykjI0NNTU2aPXv2sKjNzrH27duna6+9Vh0dHZKkqqoq/cd//IdcLpcdJeILImXB2draqmuvvVaFhYWSpLFjx+q5555L6l6CE2ey4RickvTJJ59o7Nix6unpUVpamg2VDb/glKS+vj7t2LFD//AP/3BW/h4XznP07zhPxufzKRaLpWp6AEcxDEOSbAvN4eqcc87RV77ylVSXgTMYW+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAWOBmc8Htfo0aO1bt26Qf3z58+X3+93cmoAABzh6F61brdbkydPVjgcTpzDGQqFFAqFtG3bNienBgDAEY4/VTtt2jSFw2FJh1eggUBAS5cuVSwWU2FhoXw+n2bMmKG1a9c6XQqQUn19faqrq5MkPfzwwxoYGEhxRRiqgwcPaunSpfrRj36k1atXc9rKF4Tjp6Pk5+fr8ccflyStWrVK/f39qqqqkiStX79eHo9HO3bsUHFxsTZs2OB0OUBKmKapkpKSxNF51dXV6ujo0GOPPZbiynCqYrGYrrnmGrW3t8vtduvRRx/Vrl27tHjx4lSXBoedlhXnli1b1N3drcWLF2vZsmXyeDyJS5IOHDigqVOnOl0KkDIffPDBMefN/va3v1V3d3eKKsJQvf7662pvb5d0+Nk0SXrggQdSWRJOF9Nh3d3dpsvlMm+++WbzxhtvHPS2HTt2mFdddZU5fvx4s6mpKekxvV6vKYmLi4uLi8uR62Rcpun8k/J5eXnavXu3tm7dqksuueSYt+/YsUNz5szRrl27khrP5/NJklpbW4/bBoabeDyu66+/Xs3NzYm+4uJiNTQ0DHlsl8tl2+/W7BzL7vGGW22fffaZZs6cqc7OzkRfMBjUfffdZ0d5GMZOy99xbt++XYcOHRoUmtFoNPHv888//6w/dR5fbG63W88995yWLFkiSaqtrdUTTzyR2qIwJCNHjlRra6sWLlwoSXrkkUdUW1ub4qpwOpyWFefxvPLKK1q0aJE8Ho/6+vp0zz336JprrknqXlacOJMNt5WTU2PZPd4XqTYMb46/qvZEZs+erZdffjlV0wMAcErYcg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAscC854PK7Ro0dr3bp1g/rnz58vv9/v1LQAADjKsS333G63Jk+erHA4rDlz5kiSQqGQQqGQtm3b5tS0AAA4ytGnaqdNm6ZwOCzp8Ao0EAho6dKlMgxDkrR//34ZhqHVq1c7WQZwVjJNU3v37k11GbBRPB7Xnj17dODAgVSXgpNwNDjz8/MTwblq1Sr19/erqqoq8faamhrNnj3byRKAs9KhQ4f0ne98R1lZWZKkW2+9VfF4PMVVYSj27dunWbNmKScnR4ZhJI6gw/Dj+Ipzy5Yt6u7u1uLFi7Vs2TJ5PB5Jh8/o3L9/v6ZPn+5kCcBZ6Ze//KVeeOGFRHvlypX6zW9+k8KKMFR33nmnNmzYkGjfc889evHFF1NYEU7E0eCcOnWqPv30U912222aNWtW4nedkvSLX/xCd999t5PTA2etLVu2yO3+vy9fl8ulLVu2pLAiDFU4HD7mTE8+p8OU6bBJkyaZI0aMMHfs2JHoe/XVV83q6mrTNE3z7rvvNp944glLY3q9XlMSFxcXFxeXI9fJOH6Q9fbt24/p27hxozo7OzVv3jxt375do0eP1qRJkzRr1qykx/V6rP7NwQAAIABJREFUvWptbZUk+Xw+SUq0geHM5XIds7Kw6rPPPtP8+fP1P//zP5Kk8vJy/fa3v038KiSVtTk13tle20cffaTrrrtOGzdulCQtXrxY9957rx3lwWYu087/iadgyZIlysvL0w9+8IOk7zk6KAlOnEns+oZtmqY+/PBDXXjhhYrH43K5XMOmNifG+yLUNjAwoL/85S+66KKLbH1fYS/HV5yfh1eOAafG5XIpOzs78W+c+Twej7785S+nugx8DrbcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA3OeDyu0aNHa926dYP658+fL7/f7+TUAAA4wtG9at1utyZPnqxwOJw4izMUCikUCmnbtm1OTg0AgCMcf6p22rRpCofDkg6vQAOBgJYuXSrDMDRy5Ej5fD75fD6tWLHC6VIAnMCnn36aOFj+3//93zUwMJDiijBU+/fv18KFC3XLLbdo1apVnLZiI8dPR8nPz9fjjz8uSVq1apX6+/tVVVUlSbrwwgs5CgxIsYGBAV1//fWJr8U777xTW7du5YfZM9jBgwd11VVX6d1335Xb7dbq1av14YcfatGiRaku7axwWlacW7ZsUXd3txYvXqxly5YlDtvdu3evvF6vvvvd72rHjh1OlwLgOP785z8f8wPsY489pmg0mpqCMGShUEjvvvuupMPP9EnSQw89lMqSzi6mw7q7u02Xy2XefPPN5o033jjobR999JFpmqa5Zs0a0+v1Jj2m1+s1JXFxcXFxcTlynYzLNJ1/4jsvL0+7d+/W1q1bdckll5zwMdu3b09qPJ/PJ0mJn5KPbgPDmcvlsvX3TUMdLx6P67rrrtOLL76Y6PuXf/kX/epXv0p5bU6NZfd4w622Tz/9VDNmzNDmzZsTfffff78WLlxoR3lfeKfl7zi3b9+uQ4cODQrNgwcPJl6AsHnzZo0dO/Z0lALgKG63W//1X/+l2tpaSdIjjzzC03pnuFGjRmn9+vVavHixJOnpp58mNG10Wlacx9Pe3q6qqiqNGTNGkrR8+XJ9/etfT+peVpw4kw231YlTY9k9HrWlfiwc5virak/kyiuvVEdHR6qmBwDglLDlHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGBByv6OE/ZbsGCBNm3alOoyBsnPz9eyZctSXQYA2IYV51lk06ZNloMzFospFAqpp6dnUP+hQ4cUCoXU29t7WusBgOHOsRVnPB7XmDFj1NTUpDlz5iT658+frwsvvJC9MB2Sn59vaevBP/zhD7rpppvU1tamL33p//47/P73v9ett96qtrY2ud2n9vPVka0QAeBs4lhwut1uTZ48WeFwOBGcoVBIoVBI27Ztc2paWLRx40bl5+cPCk3p8F7C06dPP+XQBICzlaPfFadNm6ZwOCzp8Ao0EAho6dKlMgxDb7/9tubNm6c5c+bohz/8oZNlnNRnn32mrVu36uOPP05ZDSfy6aefauvWrTpw4IBjc2zcuFFXXHHFMf3t7e3H7XeCaZp6//33tXPnzsShu0PR09OjrVu3qru724bqcCoGBgb03nvvSdJZv8H4/v37JR3+XoIvBkeDMz8/PxGcq1atUn9/v6qqqhSLxbRw4UI988wzWrdunVatWuVkGSfU0dGhiy++WF/96ld1wQUXaOXKlSmp43ja2tp00UUXJWp7+umnHZnneMEZj8f11ltv6YorrtBf//pXFRYWyufzacaMGVq7dq2t8/f19emf/umfdPHFF2vixIkqKioa0jeglpYWZWdn66tf/aqysrL0xz/+0cZqkYxIJKKrr75aeXl5kqTKykpbfiAajlasWKELLrhAkjRx4kR1dnamuCKcFic95nqIXnnlFXP06NFmJBIxMzMzzbVr15qmaZqhUMi88cYbze985zum1+s1m5qaLI3r9XpNr9d7wnayLr30UtPtdidO/Ha73ebOnTstj+OEnJycRG0ul8s855xzzA8//PCk91j9OOzevduUZL7zzjuD+t98801TkvnBBx+Y/f39Zn9/v2mapvnee++ZBQUFSY+fTD11dXXHnLx+9913Jz3H/+/QoUPmmDFjBn3cRo8ebfb29p7SeE6x+8vOzvHsGMvv9x/zOV21atWwqM3O8bq6uo75/jFlypRhUZtTY+EwRz+i3d3dpsvlMm+++WbzxhtvTPQ/9dRTZm5urvnJJ5+YH3/8sXnZZZeZkUgk6XG9Xu8xX5hchy8rwfnGG2+Yksy//OUvg/p/8pOfmDNnzjzm8W+++aZZWVnJ54mLi+usv07G0adqx4wZo4kTJ+r555/Xgw8+mOgfO3asZs6cqYyMDBmGoalTp2r79u2WxvZ6vTIPB7+8Xu+gdrLXtGnTBr345dxzz9X//u//Wh7HiWvSpEmDahs5cqT+9re/nfQer9dr6WN42WWXKT09Xffdd58OHDigjz/+WL/+9a/1yCOP6L777ks8bufOnZo9e7a+/e1v68Ybbzzlz9PxrkceeeSYe375y1+e0scsGo1q/Pjxgz5uhmHos88+S/nn8/+/JA3b8ewY61//9V+P+Zw+9dRTw6I2O8fbuXOnzjnnHLlcLkmHXxBZUFAwLGpz8uP2RblOykyBAwcOmNOnTzdjsZgZjUbNqVOnmvv27Uv6frueqv3zn/9sTpw4MfETxrPPPmt5DKeEw2HzoosuStT2wgsvfO49p/JxWL9+vVlYWGiOHj3anDBhgvmtb33LDIVCx33se++9Z+bm5iY9djL1DAwMmLfddlvi/SwpKTFjsZiF92Cw1157zZwwYUJivJdffvmUx3KK3V92do5nx1i9vb3m9ddfn/gc/OQnPzHj8fiwqM3u8Z555hnzvPPOMyWZf//3f29u27bNhsqG3+cUg7lM8/Oi1RkNDQ361a9+pVgspqqqKt16661J33vk7wOP/L3i0W0r4vG49u3bpwsuuODzf8o4zazWNpSPw4lEo1GNGDFCkrRv3z75fD5t3rw5qXut1NPT06Pzzz/fls/BwMCA9u3bp8zMzGH3OZUkl8tla112jmfnWJ988onGjh07LGuzc7xYLKYRI0YoHo8nVp9DNVw/pzgsZVvulZSUqKSkJFXTJ7jdbv3d3/1dqss4ruFQ24YNG7Ro0SJ5PB719fVp+fLljswzZswY28byeDyJVzoidQzDSHUJp8W5554rSbaFJoY/9qrFSc2ePVsvv/xyqssAgGGD4DzLbNq0adhsdbdp0ybl5+enugwAsBXBeRYZbiGVn58/7GoCgKEiOM8iHN8FAM5jB28AACwgOAEAsIDgBADAAoITAAALeHHQWWTBggXatGlTqssYJD8/nxctATirsOI8i2zatMlycMZiMYVCIfX09AzqP3TokEKhkHp7e09rPQAw3Dm64ozH4xozZoyampo0Z86cRP/8+fN14YUX6qGHHnJy+i+k/Px8S3vV/uEPf9BNN92ktrY2felL//ff4fe//71uvfVWtbW1DTptxIrhshEDANjJ0eB0u92aPHmywuFwIjhDoZBCoZC2bdvm5NRI0saNG5Wfnz8oNCWpvb1d06dPP+XQBICzlePfFadNm6ZwOCzp8Ao0EAho6dKl2rZtm3w+n3w+n2bOnKlx48Y5XcoxBgYG9MADDyTOmPz4449Pew0n0t/fr9ra2kRtkUjEkXk2btyoK6644pj+9vb24/Y74fXXX9f3v/99SdK6detOy5zJCoVCKi0t1T//8z/rlVdeSXU5X0iffPKJFixYIEn6t3/7Nw0MDKS4Iuc8/fTTuummmySJxcVw5vS5ZQ8//LB55ZVXmqZpmo899pg5ZcoUs7+/f9BjnnzySfP2229Peky7zuO84447TEmm2+02JZlTpkwxP/vsM8vjOKGysnJQbVdccYUZjUZPes+pfBwyMzPNJ554YlDfwMCAmZaWZv7nf/6nuXfvXnPWrFmm1+s1r7zySnPNmjVJj51MPe3t7eY555yTeD/dbre5bt06S+/DiQz1v/fLL79sut3uxOXxeMzXXnst5XU5Od5wq+3QoUPm17/+9cTZnpLMqqqqYVGb3WM99thjg77mDcMwP/jgg2FRGwY7LSvOLVu2qLu7W4sXL9ayZcvk8XgGPeZ3v/udbrnlFqdLGcQ0Tf3mN7+RdHglLEnhcFgbN248rXUcT19fn+rr6yX9X20bNmzQli1bbJ1nz5492rt3r6ZPnz6of9OmTTp48KBmzpyp8ePHa/369WptbdXTTz+tu+66y9YaVq9erf7+/sT7KSnxvqfa448/Lunw5yAej8s0TT3xxBMpruqLZdOmTero6BjUt3LlyrNy1Xn096NPPvlE//3f/53KknAiTidzd3e36XK5zJtvvtm88cYbj3n7hx9+aH7lK1+xNKbX6x30EyjX/11WVpxvvPGGKcn8y1/+Mqj/Jz/5iTlz5sxjHv/mm2+alZWVfJ64uLjO+utkHF9xjhkzRhMnTtTzzz+vBx988Ji3P/nkkyotLbU8rtfrlWmaMk1TXq93UDvZq6amRtL/HUDr8/nU19dneRwnrkWLFg2q7brrrtPAwMBJ7/F6vZY+hpdddpnS09N133336cCBA/r444/161//Wo888ojuu+++xON27typ2bNn69vf/nbid66n8nk63vXuu+8OOsT6vPPOU0dHhy0fQ0lDur+zs1MjR45M1DZ69Gi98847Ka/LyfGGW239/f361re+Nej/1N133z0sarN7rOeff15utzvxNX/RRRdp//79w6K2L+J1UmaK5efnm9u3b7d0j12/44zH4+Yzzzxj/vjHPzYlDZvfb5rm4dpWr16dqO3zfr9pmqf2cVi/fr1ZWFhojh492pwwYYL5rW99ywyFQsd97HvvvWfm5uYmPXay9XR1dZk//elPTUlmOBxOevzPY8d/7y1btpjBYNCUZP75z3+2oSp76nJqvOFY26FDh8y6ujpTkvn000+b8XjchsqG58ctFAqZd955pynJ/Nvf/mbLmMPg2/xZx2WanxetzgmHw/rRj36kV1991dJ9R/4+8MjfKx7dPhUul+vzf8pIkWRrs+PjcLRoNKoRI0ZIkvbt2yefz6fNmzcnda/Veuz+HNg53nAdy+7xqC31Y9k93nD+3namSumWe1OmTLEcmji9NmzYoEWLFsnj8aivr0/Lly9PdUkAkFLsVXuW2bRpk+079rjdbpmmqS996Uu69957de+99yZdS35+vq21AECqEZxnkeEWUvn5+cOuJgAYKoLzLMIpJADgPDYiBQDAAoITAAALCE4AACwgOAEAsIAXB51FFixYoE2bNqW6jEHy8/N50RKAsworzrPIpk2bLAdnLBZTKBRST0/PoP5Dhw4pFAqpt7f3tNYDAMOdoyvOeDyuMWPGqKmpSXPmzEn0z58/XxdeeKEeeughJ6f/QsrPz7e05d4f/vAH3XTTTWpr+3/s3X9YU+fdP/B3CC34IxEU11axau1W2ZAnlVFRU5MKjrb4lGZc1DKrqYijUsqspdNZZ3/443F13Wqt1DGK1Fp9HMX2KrjRXXUjYloDkaW1P+ZGwRaZyANClawCwvn+4ZesKaCccE5ODO/Xdd3XZe5z8rk/5oR8OIeT+7YhMPA/b4eioiIsX74cNpsNAQGe/X4l9UQMRES+QNbCGRAQgMjISJw4ccJVOC0WCywWC1c39xF2ux06nc6taAJAZWUloqOjPS6aRET+yisLWZ84cQLA5TPQxx9/HM899xxCQkKQlZWF2bNnIyYmBnv37pU7FdkJwuVlsj788EN0dnYqnc6g2O12xMTE9OmvrKzst/9a0NzcLNmC5N3d3a5J7f1x8eThqKOjw/UnBH+f/Ly+vh4A0N7ernAm/kX2wqnT6VyFc/fu3bh06RIyMjLwySef4JNPPsEHH3yA8vJybNiwQe5UZNXd3Y2HHnoI06dPh06nwx133IHm5mal07qq/gpnT08PqqurERMTg7Nnz2LOnDkwGo2YNWsWDh8+rFCmg1NSUoJJkya5/k9vvfWWx7H+/e9/Iz4+HjNmzAAA3HPPPbh48aIkeZIyzp49i+joaNx+++0AgGXLlqGnp0fhrOSxZcsW3HzzzQCAW2+91fU5TBKQe92yo0ePCqNGjRK++uor4cYbbxQOHz4sCIIgtLS0CD/60Y+Ezs5O4cyZM0J0dPSgY0q1Huc3DfWl2L17t9vq4SqVSkhPTx9STLG5iX0dTp8+LQAQPv30U7f+48ePCwCEL7/8Urh06ZJw6dIlQRAur8f5wx/+cNDxxeYz1GPw9ddfCyNHjhRUKpXrOIwYMUK4cOGCR/GefvrpPqvCb9q0aUg5CoJvrnkpRyyp40kRa+nSpW7vDwDCG2+84RO5SRmvurra7f8YEBAg6jOWrkz2wnn+/HlBpVIJDzzwgGAymVz9PT09wsqVK4UpU6YI48ePFw4ePDjomAaDoc8HGtvlJqZQHTt2TAAg/Otf/3Lrf+KJJ4TY2Ng++x8/flxIS0vjcWJjY/P7diVeWRp82rRpQlBQkFBbW+vqKysrE+677z7h0qVLQktLixARESFcvHhxUPF88Yzz7bff7vPCP/nkk0OKKTY3sa/DV199JYwZM0bIzs4WWltbhZaWFuGVV14RRowYIZSXl7v2q62tFebOnSuEhYUJJSUlg47v7TPOzs5O4cYbbxQCAgJcx2D8+PHC119/7VG8F198sc8x3blz55ByFATfOzuRK5bU8aSI9bOf/azPMf3jH//oE7lJGe/kyZNCYGCg6+w6ICBAiI+Plyg78sotkzU1Nbh48SKmTp3q1j927Fio1WpoNBp0dXVd0zdfJCUlYePGja67U5OTk/Hss88qnNWVabValJaWwm63Izw8HNOnT8fBgwdRVlYGg8Hg2m/q1Kk4evQobDYbsrKyFMz4yq677jqUlpZi4sSJrr7S0lIEBwd7FC8rKwsZGRmuO4sfffRRPPLII5LkSsrYvHkzkpKSXI//53/+B/fcc4+CGcnje9/7Ht544w2MHDkSABAdHY3XXntN4az8h0oQlLmtrLu7G8uXL8c///lPdHZ2YsmSJcjOzh7Uc3u/H9j7fcVvP/aESqWS5A67S5cu4brrrpP0br3B5ibF6/BtHR0dCAoKAnD5blWj0ei6y1TqfKQ6BoIgwOl0QqPRSBKvo6MDwcHBkh1Tqf6fcsQbLrl9/fXXGDlypE/mJmW8np4eqNVqv7972NsUm3JPrVajsLBQqeFl8+3vQ17rqqqqsG7dOqjVanR1dWH79u1Kp3RVKpUKo0ePlixe7y8O5D9GjBihdApewe9hy8O/PuVJcnq9HkeOHFE6DSIin8HC6WccDofPTHXncDig0+mUToOISFIsnH7E14qUTqfzuZyIiIaKhdOPcPkuIiL58S/HREREIrBwEhERicDCSUREJAILJxERkQgsnERERCKwcBIREYnglcJptVoRFxcHrVaLkJAQpKSkeGNYIiIiycleOIuLi2EymZCZmYmmpibU19cjPT1d7mGJiIhkIWvhdDqdyMjIQF5eHpKTkxEcHAyNRoOEhAQAwN69ezF79mzMnj0bf/3rX+VMhYiISBKyzhxksVigUqnc1r/r1dbWhl//+tc4duwY2tvbER8fj+rqas7mT0REPk3WKtXc3IzQ0FCoVKo+22w2GwwGA4KDgxEWFoYJEybg1KlTcqZDREQ0ZLKecc6cORN1dXUoKSlBYmIizp8/D5vNhoSEBLS0tCA0NNS1b2hoKFpaWnDLLbcMKnbv2ew39VegxRjq8+WKJUc8X+XLr5uvxpI6HnNTPpbU8YbL54eUrrT4t6yFMzIyEvn5+cjJyUFqaio0Gg3S0tKQkJCAcePGobW11bVvW1sbxo0bN+jYBoMB5eXlAOBaRqv3sSd8daV6OeL5Kl9+3Xw1ltTxmJvysaSON1w+P7xJ9tVRzGYzzGZzn/5Zs2bhF7/4BTo6OuB0OtHQ0IApU6bInQ4REdGQKLasWEhICFatWuU6W3zhhRd4YxAREfk8RdfjXLp0KZYuXapkCkRERKLwFI+IiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBBZOIiIiEVg4iYiIRGDhJCIiEoGFk4iISASvFE6r1Yq4uDhotVqEhIQgJSXFG8MSERFJTvbCWVxcDJPJhMzMTDQ1NaG+vh7p6elyD0tERCQLWQun0+lERkYG8vLykJycjODgYGg0GiQkJAAA4uPjMX78eGzatEnONIiIiCQj6yTvvYtNJyUl9bu9sLAQ7733Hk6fPi1nGkRERJKR9YyzubkZoaGhA64+Hh4eLufwREREkpP1jHPmzJmoq6tDSUkJEhMTcf78edhsNtel2qHoPZv9poEK9GAN9flyxZIjnq/y5dfNV2NJHY+5KR9L6njD5fNDSoIgDLhN1sIZGRmJ/Px85OTkIDU1FRqNBmlpaZIUToPBgPLycgBwLYbd+9gTKpXqii+UUrHkiOerfPl189VYUsdjbsrHkjrecPn88CbZF7I2m80wm81yD0NEROQVshfOK0lLS4PNZkNHRwdsNhtKSkqUTIeIiOiqFC2cBQUFSg5PREQkGqfcIyIiEoGFk4iISAQWTiIiIhFYOImIiERg4SQiIhKBhZOIiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBK8UTqvViri4OGi1WoSEhCAlJcUbwxIREUlO9sJZXFwMk8mEzMxMNDU1ob6+Hunp6XIPS0REJAtZC6fT6URGRgby8vKQnJyM4OBgaDQaJCQk4PPPP8e8efNw5513Qq/Xw263y5kKERGRJGRdHcVisUClUiEpKanPtpCQELz11lsYN24cPv30U2RkZKCiokLOdIiIiIZM1sLZ3NyM0NBQqFSqPtvGjRvn+ndQUBDUarWcqRAREUlDkNGJEyeEwMBA4Z133hG6u7uF1tZWoayszG2fS5cuCffee6/wpz/9adBxDQaDAICNjY2NjU2WdiUqQRAEyOi1117Dli1b0NDQAI1Gg7S0NGzevBm4nBkefvhhxMbGYuXKlYOOaTQaAQDl5eX9PvaESqWCVC+FlLHkiOerfPl189VYUsdjbsrHkjrecPn88CZZL9UCgNlshtls7nfbY489hltvvVVU0SQiIlKSYhMglJeXIy8vD4cPH4bRaMSPf/xjpVIhIiIaNNnPOAdiNBrR2dmp1PBEREQe4ZR7REREIrBwEhERicDCSUREJAILJxERkQgsnERERCKwcBIREYnAwklERCQCCycREZEILJxEREQieKVwWq1WxMXFQavVIiQkBCkpKd4YloiISHKyF87i4mKYTCZkZmaiqakJ9fX1SE9Pl3tYIiIiWchaOJ1OJzIyMpCXl4fk5GQEBwdDo9EgISEBZ8+exZw5c2A0GjFr1iwcPnxYzlSIiIgkIesk7xaLBSqVCklJSX22hYWFoaKiAmq1GrW1tVi0aBGqqqrkTIeIiGjIZC2czc3NCA0NhUql6rNNrVa7/t3W1oaoqCg5UyEiIpKGIKMTJ04IgYGBwjvvvCN0d3cLra2tQllZmWt7bW2tMHfuXCEsLEwoKSkZdFyDwSAAYGNjY2Njk6VdiUoQBAEyeu2117BlyxY0NDRAo9EgLS0NmzdvdtuntrYW8+fPx6lTpwYV02g0Ari8GHZ/jz2hUqkg1UshZSw54vkqX37dfDWW1PGYm/KxpI43XD4/vEn2hazNZjPMZnOf/o6ODgQFBQEAtFotRo8eLXcqREREQyZ74RxIVVUV1q1bB7Vaja6uLmzfvl2pVIiIiAZNscKp1+tx5MgRpYYnIiLyCKfcIyIiEoGFk4iISAQWTiIiIhFYOImIiERg4SQiIhKBhZOIiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBK8UTqvViri4OGi1WoSEhCAlJcUbwxIREUlO9sJZXFwMk8mEzMxMNDU1ob6+Hunp6XIPS0REJAtZC6fT6URGRgby8vKQnJyM4OBgaDQaJCQkuPZpaWlBaGgo9u7dK2cqREREkpC1cFosFqhUKiQlJQ24z6ZNm6DX6+VMg4iISDKyFs7m5maEhoZCpVL1u72mpgYtLS2Ijo6WMw0iIiLJyLoe58yZM1FXV4eSkhIkJibi/PnzsNlsrku1GzZswMaNG/H666+Ljt17NvtNAxXowRrq8+WKJUc8X+XLr5uvxpI6HnNTPpbU8YbL54eUBEEYcJushTMyMhL5+fnIyclBamoqNBoN0tLSkJCQgPfffx/jxo3DtGnTPIptMBhQXl4OADAajQDgeuwJlUp1xRdKqVhyxPNVvvy6+WosqeMxN+VjSR1vuHx+eJOshRMAzGYzzGZzn3673Y6PPvoId999N2pqajBq1ChMmzYNs2fPljslIiIij8leOAeSnZ2N7OxsAMAzzzyDW2+9lUWTiIh8nmKF85ueeeYZpVMgIiIaFE65R0REJAILJxERkQgsnERERCKwcBIREYnAwklERCQCCycREZEILJxEREQisHASERGJwMJJREQkglcKp9VqRVxcHLRaLUJCQpCSkuKNYYmIiCQne+EsLi6GyWRCZmYmmpqaUF9fj/T0dLmHJSIikoWsc9U6nU5kZGQgPz8f999/PwAgODjYtR7niBEjMGvWLADAT37yE/z0pz+VMx0iIqIhk7Vw9i42nZSU1O/2iRMnDmkNTSIiIm+T9VJtc3MzQkNDB1x9vLGxEQaDAffffz9qa2vlTIWIiEgagoxOnDghBAYGCu+8847Q3d0ttLa2CmVlZa7t//d//ycIgiC89957gsFgGHRcg8EgAGBjY2NjY5OlXYlKEAQBMnrttdewZcsWNDQ0QKPRIC0tDZs3b+6z36233oqamppBxTQajQDgusz77ceeUKlUkOqlkDKWHPF8lS+/br4aS+p4zE35WFLHGy6fH94k+0LWZrMECxU6AAAgAElEQVQZZrO5T397eztGjBgBtVqNjz/+GGPHjpU7FSIioiGTvXAO5NNPP0VGRgY0Gg0A4He/+51SqRAREQ2aYoXzjjvuwN/+9jelhiciIvIIp9wjIiISgYWTiIhIBBZOIiIiEVg4iYiIRGDhJCIiEoGFk4iISAQWTiIiIhFYOImIiERg4SQiIhKBhZOIiEgErxROq9WKuLg4aLVahISEICUlxRvDEhERSU72wllcXAyTyYTMzEw0NTWhvr4e6enpcg9LREQkC1kLp9PpREZGBvLy8pCcnIzg4GBoNBokJCQAAD788EPcfffdmD9/PpYtWyZnKkRERJKQdXUUi8UClUqFpKSkPts6OzuRk5ODN998E2PGjJEzDSIiIsnIesbZ3NyM0NBQqFSqPtuOHTsGjUaDpUuXwmg0orS0VM5UiIiIpCHI6MSJE0JgYKDwzjvvCN3d3UJra6tQVlYmCIIg7Nu3T5g8ebLQ2toqnDt3ToiIiBC++uqrQcU1GAwCADY2NjY2Nlnalch6qTYyMhL5+fnIyclBamoqNBoN0tLSkJCQgLFjxyI2NhYhISEAgKioKNTU1GDmzJmDim0wGFBeXg4AMBqNAOB67AmVSgVBEDx+vlyx5Ijnq3z5dfPVWFLHY27Kx5I63nD5/PAmWQsnAJjNZpjN5j79sbGxeOqpp9DV1QVBEPDZZ59h8uTJcqdDREQ0JLIXzoGMGTMGOTk5uOuuu9DZ2Yns7GyMGzdOqXSIiIgGRbHCCQAPPvggHnzwQSVTICIiEoVT7hEREYnAwklERCQCCycREZEILJxEREQisHASERGJwMJJREQkAgsnERGRCCycREREIrBwEhERieCVwmm1WhEXFwetVouQkBCkpKR4Y1giIiLJyV44i4uLYTKZkJmZiaamJtTX1yM9PV3uYYmIiGQh61y1TqcTGRkZyM/Px/333w8ACA4ORkJCAiorK/Hzn/8cAHDx4kX885//REtLi5zpEBERDZmshdNisUClUiEpKanPtjvuuMO1fua+fftw9OhROVMhIiKShKyXapubmxEaGgqVSnXF/fbs2YMlS5bImQoREZE0BBmdOHFCCAwMFN555x2hu7tbaG1tFcrKytz2OXPmjHDbbbeJimswGAQAbGxsbGxssrQrkfVSbWRkJPLz85GTk4PU1FRoNBqkpaUhISHBtc8bb7yB1NRU0bENBoPrUq/RaAQA12NPqFQqCILg8fPliiVHPF/ly6+br8aSOh5zUz6W1PGGy+eHN8m+kLXZbIbZbB5w+969e/Hmm2/KnQYREZEkFJ0A4cSJExg5ciSmTZumZBpERESDpmjhnDFjBqxWq5IpEBERicIp94iIiERg4SQiIhKBhZOIiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBBZOIiIiEVg4iYiIRGDhlNDJkyfxyiuvAAAqKio4sTIRkR/ySuG0Wq2Ii4uDVqtFSEgIUlJSvDGs1/zrX/9CQkICpk+fjszMTADAvHnzMGPGDBw7dkzh7IiISEqyF87i4mKYTCZkZmaiqakJ9fX1SE9Pl3tYr2lpaYHBYIDVasWmTZtQV1cHACgoKMC///1vxMXF4fjx4wpnSUREUpG1cDqdTmRkZCAvLw/JyckIDg6GRqNBQkICBEFAVlYWZs+ejZiYGOzdu1fOVGSzfft2fP7553j33Xfx1FNPYcqUKQCAZcuW4f3338eYMWPw85//XNkkiYhIMrIWTovFApVKhaSkpD7bPvnkE3zyySf44IMPUF5ejg0bNsiZiiwEQcDvf/973HvvvZg7d26f7TfeeCMee+wx/OUvf0FNTY0CGRIRkdRkLZzNzc0IDQ2FSqXqs23ChAm4/vrr0dXVhQsXLmDs2LFypiKL9vZ2NDY2Yt68eQPuYzAYAICFk4jIXwgyOnHihBAYGCi88847Qnd3t9Da2iqUlZUJgiAIPT09wsqVK4UpU6YI48ePFw4ePDjouAaDQQDAxsbGxsYmS7uSQMgoMjIS+fn5yMnJQWpqKjQaDdLS0pCQkIA///nPaGhoQE1NDb766ivo9Xrce++9CAoKGlRsg8GA8vJyAIDRaAQA12NPqFQqj74+snDhQtjtdpw6dQrBwcF9YiUmJsJut6O+vh7XX3+9V3O71kj9/5Qynq/Gkjoec1M+ltTxhsvnhzfJflet2WzGyZMn0d7ejjNnzmDz5s2ubWPHjoVarYZGo0FXVxe6u7vlTkdyq1evxtmzZ/Hggw+ira3N1d/V1YVnn30Wf/zjH5Gdne1x0SQiIt8i6xnnlcTHx2P//v2YO3cuOjs78dhjj2HkyJFKpeOx+fPnY8eOHcjOzsbEiROxcOFCAMDNN9+MxsZGPPTQQ1i7dq3CWRIRkVQUK5xqtRqFhYVKDS+prKwszJ07Fzt37sR7770HAIiOjsYjjzyCxMTEfm+OIiKia5NihdPf3H777cjPzwdw+W8KpaWlCmdERERy4Fy1REREIrBwEhERicDCSUREJAILJxERkQgsnERERCKwcBIREYnAr6P4kVWrVsHhcCidhhudTocXX3xR6TSIiCTDM04/4nA4RBfOzs5OWCwWXLhwwa3/4sWLsFgscDqdXs2HiMjXeeWM02q1YsOGDaiqqkJAQAAWLFiAoqIibww97Oh0OlGT3R86dAgpKSmw2WwIDPzP26GoqAjLly+HzWZDQIBnv1/1Tr4/EEEQUFZWhp07d6KiosL13nj00UeRlJTEGZeIyCfJfsZZXFwMk8mEzMxMNDU1ob6+Hunp6XIPS4Nkt9uh0+nciiYAVFZWIjo62uOieTWCIOCJJ57Avffei+PHj2Px4sXo6enByZMnYTKZkJ6ejp6eHlnGJiIaClkLp9PpREZGBvLy8pCcnIzg4GBoNBokJCQAAJ5++mnMmTMHRqMRH3/8sZyp0ADsdjtiYmL69FdWVvbbL5XXX38dv/3tb/HYY4/hyy+/RG5uLgCgtrYWTz31FAoKCrBjxw7Zxici8pSshdNisUClUiEpKanPNofDgcrKSrz//vsoLCzEz372MzlToQH0Vzh7enpQXV2NmJgYnD171vXLzaxZs3D48OEhjykIAn77298iKioKL774Iq677jrXtsDAQGzcuBF33nknXnrpJZ51EpHPkbVwNjc3IzQ0tN+/Vf3jH/9AdHQ0AGDKlCn47LPPcOnSJTnToW9paGhAY2Oj6zj0cjgcaG9vR2xsLMLCwlBRUYHy8nLs379fkiXSzpw5A4fDAbPZ3O+lYJVKhYcffhi1tbX4+9//PuTxiIgkJcjoxIkTQmBgoPDOO+8I3d3dQmtrq1BWViYIgiB8/PHHwpw5c4SOjg7h+PHjgkqlEv7v//5vUHENBoMAgK2fZjAYBn18jh07JgAQ/vWvf7n1P/HEE0JsbGyf/Y8fPy6kpaUNOj6PExsb27XarkTWM87IyEjk5+cjJycHWq0WEREROHLkCADgBz/4AVJTUxEfH4/c3FzMmDED48aNG3Rsg8EAQRAgCAIMBoPbY08agCE9X65YYuIZDAZRxyciIgJjxozB1q1b0dbWhnPnzmHXrl3Izc3F1q1bXfvV1dVBr9cjISEBJpNJ1Bj9HZd///vf0Gq1WLx48YD/z8zMTAQFBeHcuXM+cRx8NRZz8414wym34dKuRPa7as1mM06ePIn29nacOXMGmzdvdm3LysrCkSNHsGrVKuh0On79wMu0Wi1KS0tht9sRHh6O6dOn4+DBgygrK3MrwlOnTsXRo0dhs9mQlZU15HFHjBgBs9mMoqIiVFVV9dn+ySef4LXXXsMDDzyA0NDQIY9HRCQlRWcO+tGPfoRLly4hLCwMO3fuVDKVYUuv18NqtQ64vaOjA0FBQQAuF9rRo0dLMu5TTz2FkpISxMXFYfXq1UhJSQEAbNmyBS+88AI0Gg2ee+45ScYiIpKSooXzz3/+s5LD0yBUVVVh3bp1UKvV6Orqwvbt2yWJe8MNN6CiogIZGRl47rnn8OyzzwK4XFDnz5+PvLw8TJkyRZKxiIikxLlq6Yr0er3r79JSCw8Px6FDh/D555/jgw8+wJIlS/DZZ59h+vTpsoxHRCQFFk4/43A4rjrVnbc4HA7odLqr7jdt2jRMmzYNDz30kBeyIiIaGhZOPzKYIuVNOp3O53IiIhoqFk4/wuW7iIjkx2XFiIiIRGDhJCIiEoGFk4iISAT+jdOPrFq1Cg6HQ+k03Oh0Ov7tlYj8Cs84/YjD4fCpwulr+RARSYFnnH5Gp9OhvLx80Ps3NTXhhhtuQHV1NW6//XZX/xdffIEpU6bg008/RUREhEe5KPF90tbWVhQXF6OpqQkAcO7cOYwdO9breRCR/5L0jNNqtSIuLg5arRYhISGu+UfJd1VVVWHEiBGYMWOGW39lZSU0Gg1uu+02hTITp6enB0899RQmTpyIFStW4KmnngIATJw4EWvWrEF3d7fCGRKRv5CscBYXF8NkMiEzMxNNTU2or69Henq6VOFJJna7HTqdDoGB7hcfKisrER0d3e9C075o9erV2LJlC0wmE6qrq3Hx4kUAQEpKCp5//nlkZ2crnCER+QtJPhWdTicyMjKQl5eH5ORkBAcHQ6PRICEhAQAQHx+P8ePHY9OmTa7n7N27F7Nnz8bs2bPx17/+VYo0yAN2ux0xMTF9+isrK/vt90U1NTXYvn07Vq5cib179+L22293reiyZ88e/OxnP0Nubi7+/ve/K5wpEfkDSQqnxWKBSqVCUlJSv9sLCwuxbds21+O2tjb8+te/xl//+leUlJTg8ccfR09PjxSpkEj9Fc6enh5UV1cjJiYGZ8+exZw5c2A0GjFr1iwcPnxYoUwHVlBQALVajfXr1/e7puu6detw3XXX4dVXX1UgOyLyN5LcHNTc3IzQ0NABF6IODw93e2yz2WAwGBAcHIzg4GBMmDABp06dwi233CJFOjRIDQ0NaGxsRHR0tFu/w+FAe3s7YmNjERYWhoqKCqjVatTW1mLRokX9Lj6tpNraWtxyyy2YMGFCv9u/853v4Lvf/S5qa2u9nBkR+SNJCufMmTNRV1eHkpISJCYm4vz587DZbK5Ltd/W0tKC0NBQ1+PQ0FC0tLSIKpy9Z7nfNFDhHqyhPl+uWGLiGQyGQcc8ffo0ACAkJMStf9++fYiNjcWkSZPc+tva2hAVFTXo+ED/x0ku/Y3zzb5PP/10SLn4w/vD27GkjsfclI81XAiCMOA2SS7VRkZGIj8/Hzk5OdBqtYiIiLjiGo7jxo1Da2ur63FbWxvGjRsnakyDwQBBECAIAgwGg9tjTxqAIT1frlhi4okpmgAQERGBMWPGYOvWrWhra8O5c+ewa9cu5ObmYuvWra796urqoNfrkZCQAJPJ5PFxkqsdOnQIAPDGG2/0+7oVFRUBAN5++22fOKZKvT+YG3NjE/e6DUSy73GazWaYzeZB7Ttr1iz84he/QEdHB5xOJxoaGjBlyhSpUqFB0mq1KC0txZo1axAeHo6RI0dCp9OhrKwM8+bNc+03depUHD16FLW1tZg/fz4WLlyoYNZ9JSQkIDIyEo8++ii+853vIC4uzvUbdnl5OTIyMjB9+nQkJiYqnCkR+QOvTICQlpYGm82Gjo4O2Gw2lJSUYNWqVa4vyL/wwgvXzNce/I1er4fVah1we0dHh+sOVa1Wi9GjR3srtUFTq9UoLS3FggULsGDBAvzXf/0Xvv/97wMA7rrrLtxyyy04dOhQn6/cEBF5wiufJAUFBX36li5diqVLl3pjeBqCqqoqrFu3Dmq1Gl1dXdi+fbvSKfVr8uTJqK6uxhtvvIE9e/agsrISALBz504sWbIEGo1G4QyJyF+ohKtdzPVBvWeqvVPLffuxJ1Qq1VWvaysRS0w8o9EIh8MBnU4n2dhD0ZvLUI6Lr/CH94e3Y0kdj7kpH4su47UrP+IrBbOXTqfzuZyIiIaKhdOPcPkuIiL58Y4cIiIiEVg4iYiIRGDhJCIiEoGFk4iISATeHORHVq1aBYfDoXQabnQ6HW9aIiK/wjNOP+JwOEQXzs7OTlgsFly4cMGt/+LFi7BYLHA6nV7NxxfxO3BE9E2Sn3FarVZs2LABVVVVCAgIwIIFC1yTbJP8xE44cOjQIaSkpMBms7lNSVdUVITly5fDZrN5PB1i78QU16Kenh4cOHAAubm5OHbsGFQqFebNm4esrCykpKRwtQmiYUzSM87i4mKYTCZkZmaiqakJ9fX1SE9Pl3IIkpjdbodOp+szj2tlZSWio6OH5RzCPT09ePjhh/GTn/wEjY2NWL16NQRBQENDAxYtWoTly5dz4XWiYUyyT0Wn04mMjAzk5eUhOTkZwcHB0Gg0rjU54+PjMX78eGzatMn1nP76yLvsdjtiYmL69FdWVvbbPxzs2LEDr7/+Op599lmcPHkSv/rVrwAA//znP7F+/Xrs3r0bu3btUjhLIlKKZIWzd8HipKSkfrcXFhZi27ZtV+0j7+qvcPb09KC6uhoxMTE4e/Ys5syZA6PRiFmzZuHw4cMKZeodPT09eOmll6DX6/HLX/7S7Yw7ICAAzz33HO644w689NJL/Nsn0TAlWeFsbm5GaGjogH/7CQ8PH1QfeU9DQwMaGxsRHR3t1u9wONDe3o7Y2FiEhYWhoqIC5eXl2L9/P9auXatQtt5RU1OD2tpamM3mft/LKpUKS5cuxcmTJ/HFF18okCERKU2ym4NmzpyJuro6lJSUIDExEefPn4fNZnNdqpVa7xnuNw31hg0pb/iQ+uaRwcYzGAyDjnn69GkAQEhIiFv/vn37EBsbi0mTJrn1t7W1ISoqatDxgf6P07VgxYoVWLFihVvft/8fU6dO9Ti+Uu8Pb8eSOh5zUz7WcHGlK0qSnXFGRkYiPz8fOTk50Gq1iIiIwJEjR6QK34fBYIAgCBAEAQaDwe2xJw3AkJ4vVywx8cQUTQCIiIjAmDFjsHXrVrS1teHcuXPYtWsXcnNzsXXrVtd+dXV10Ov1SEhIgMlk8vg4XQvt/PnzGDVqFJYtWzbgMVi8eDG0Wi2cTuc19f5gbsyNTdzrNhBJb5k0m804efIk2tvbcebMGWzevFnK8CQxrVaL0tJS2O12hIeHY/r06Th48CDKysrcivDUqVNx9OhR2Gw2ZGVlKZix/DQaDR566CHs27cPVVVVfbYfO3YMf/jDH2A2mzFy5EgFMiQipXlt5qC0tDTYbDZ0dHTAZrOhpKSk3z7yLr1eD6vVOuD2jo4OBAUFAbhcaEePHu2t1BTzzDPP4N1338X8+fORlZWF5ORkAMCaNWuwc+dOTJo0CevXr1c4SyJSitcKZ0FBwaD6yLdUVVVh3bp1UKvV6Orqwvbt25VOSXY33ngjjh49iqysLDz//POuy9YvvPACkpKS8PLLL+M73/mOwlkSkVI4Vy1dkV6vl/Vv1b5q4sSJeOutt1BfX4+qqiokJyfj1KlTvBOciFg4/Y3D4fCZqe4cDgd0Op3SaQzJpEmTMGnSpKveLEBEwwcLpx/xtSKl0+l8LicioqFi4fQjXL6LiEh+w28GbyIioiFg4SQiIhKBhZOIiEgE/o3Tj6xatQoOh0PpNNzodDr+7ZWI/ArPOP2Iw+HwqcLpa/kQEUmBZ5x+RqfToby8fND7NzU14YYbbkB1dTVuv/12V/8XX3yBKVOm4NNPP0VERIRHufjK90l9RUNDA/7whz8AuLxY9qJFizgDEdE1SPIzTqvViri4OGi1WoSEhCAlJUXqIUhCVVVVGDFiBGbMmOHWX1lZCY1Gg9tuu02hzPxHZ2cnVq5cicmTJ2P16tUAgOzsbISHhyMnJwfd3d0KZ0hEYkhaOIuLi2EymZCZmYmmpibU19cjPT1dyiFIYna7HTqdDoGB7hcfKisrER0djYAAXs0fquXLl2PXrl145JFHUFNTAwD47LPPsGTJErzwwgtYtWqVwhkSkRiSfSo6nU5kZGQgLy8PycnJCA4OhkajcS1kHR8fj/Hjx2PTpk0AgM8//xzz5s3DnXfeCb1eD7vdLlUqJILdbkdMTEyf/srKyn77SZzq6mrs3bsX69evx8svv4xp06YBAKZPn45XX30Vjz76KHbu3InPP/9c4UyJaLAkK5wWiwUqlQpJSUn9bi8sLMS2bdtcj0NCQvDWW2+hoqICeXl5ePzxx6VKhUTor3D29PSguroaMTExOHv2LObMmQOj0YhZs2bh8OHDCmV6bSooKMCIESPwxBNP9Lv9F7/4BQICAlBYWOjdxIjIY5LdHNTc3IzQ0FCoVKp+t397VYlx48a5/h0UFAS1Wi1VKjRIDQ0NaGxsRHR0tFu/w+FAe3s7YmNjERYWhoqKCqjVatTW1mLRokX9LvBM/fviiy9w2223ISQkpN/tEydOxKRJk/DFF194OTMi8pRkhXPmzJmoq6tDSUkJEhMTcf78edhsNtel2oF0d3cjOzsba9euFTVe7xnuNw1UtAdrqM+XK5aYeAaDYdAxT58+DQB9PtT37duH2NhYTJo0ya2/ra0NUVFRg44P9H+chqOrvVdPnTqF119/XbL4Q6HUe9fbsaSON5xyGw6utCKSZJdqIyMjkZ+fj5ycHGi1WkRERFx1HUdBEJCWloaFCxfi7rvvFjWewWCAIAgQBAEGg8HtsSetNx8pmpSxxMQTUzQBICIiAmPGjMHWrVvR1taGc+fOYdeuXcjNzXUt3gwAdXV10Ov1SEhIgMlk8vg4Dcf21ltvAQCKior6PZ55eXkAgPLycp94vyn13mVu105uw6VdiaTf4zSbzTCbzYPe/7HHHsOtt96KlStXSpkGDZJWq0VpaSnWrFmD8PBwjBw5EjqdDmVlZZg3b55rv6lTp+Lo0aOora3F/PnzsXDhQgWzvrYsXLgQ3//+97FixQqMHj3adQWmp6cHb7/9Nh5//HHMmjXL7fUmIt/mtQkQ0tLSYLPZ0NHRAZvNhieeeAJ5eXmYM2cODh8+jLFjx+LgwYPeSof+P71eD6vVOuD2jo4OBAUFAbhcaEePHu2t1PxCYGAgDh06hB/96Ee45557MH36dADAbbfdhpqaGkRFReHtt9/mpTSia4jXCmdBQUGfvs7OTm8NTx6qqqrCunXroFar0dXVhe3btyud0jVnypQpcDgcOHDgAPbu3Yu///3vuOWWW/Dss88iOTnZ9YsJEV0bVMLVLub6oN6p3Hqnlvv2Y0+oVKqrXtdWIpaYeEajEQ6HAzqdTrKxh6I3l6EcF7o6f3jvejuW1PGGU27EuWr9iq8UzF46nc7nciIiGioWTj/C5buIiOTHiUiJiIhEYOEkIiISgYWTiIhIBBZOIiIiEXhzkB9ZtWoVHA6H0mm40el0vGmJiPwKzzj9iMPhEF04Ozs7YbFYcOHCBbf+ixcvwmKxwOl0ejUfEqejo0PpFIiGHUnPOK1WKzZs2ICqqioEBARgwYIFKCoqknIIugqxEw4cOnQIKSkpsNlsCAz8z9uhqKgIy5cvh81mQ0CAZ79f9U5MQdLq6urCq6++itzcXJw4cQIAMHv2bDz66KNYvHgxp+8jkplkZ5zFxcUwmUzIzMxEU1MT6uvrkZ6eLlV4kondbodOp3MrmgBQWVmJ6Ohoj4smyaOzsxP3338/Vq5cicDAQDz77LMAgNbWVixZsgTLly9HT0+PwlkS+TdJPhWdTicyMjKQl5eH5ORkBAcHQ6PRuFaCiI+Px/jx47Fp0yYAwNmzZzFnzhwYjUbMmjULhw8fliIN8oDdbkdMTEyf/srKyn77SVlbtmzBH//4R+zcuRPHjx/Hhg0bAACfffYZ1q9fj927d+PVV19VOEsi/yZJ4exdrDgpKanf7YWFhdi2bZvrcVhYGCoqKlBeXo79+/eLXsSapNNf4ezp6UF1dTViYmL4S44P6ezsxK5du5CYmIjMzEy3S7IqlQrPPfccbr/9duzYsYNzkxLJSJK/cTY3NyM0NHTAv62Eh4e7PVar1a5/t7W1ISoqSoo0SKSGhgY0NjYiOjrard/hcKC9vR2xsbGuX3LUajVqa2uxaNEiVFVVKZTx8Pbxxx/j7NmzeOihh/rdrlKpsHjxYuTk5KCpqQk33HCDlzMkGh4kKZwzZ85EXV0dSkpKkJiYiPPnz8Nms7ku1fanrq4OS5YswcmTJ7F7927RY/ae5X7TUG+KkPKmCqlv0BhsPIPBMOiYp0+fBgCEhIS49e/btw+xsbGYNGmSW78nv+T0d5xoaFJTU5GamurW9+3X+MYbb/Q4vlLvXW/HkjrecMptOLjSVRtJLtVGRkYiPz8fOTk50Gq1iIiIwJEjR674nKlTp+Lo0aOw2WzIysoSPabBYIAgCBAEAQaDwe2xJw3AkJ4vVywx8cQUTQCIiIjAmDFjsHXrVrS1teHcuXPYtWsXcnNzsXXrVtd+dXV10Ov1SEhIgMlk8vg4sQ2tnTt3DsHBwcjIyBjw/bFw4ULccMMN6OzsvKbeu8zt2sltuLQrkeyWSbPZjJMnT6K9vR1nzpzB5s2bB9z3m98902q1GD16tFRpkAharRalpaWw2+0IDw/H9OnTcfDgQZSVlbkV4aH+kkPSCA0NRWpqKvbs2dPv5fKysjIcOnQIK1aswHXXXadAhkTDg1dmDkpLS4PNZkNHRwdsNhvWrFmDdevWQa1Wo6urC9u3b/dGGtQPvV4Pq9U64PaOjg4EBQUB4C85vmDz5s34y1/+grvuugsZGRmuKwCPPPIICgoKEBUVhSeffFLhLIn8m1cKZ0FBQZ++q13KJd9QVVXFX3J8yE033YT3338fjz/+OF566SX85je/AQC89tprWLp0KX79619Dq9UqnCWRf+NctX7G4XBIPmNPQEAABEFAYGAgNm7ciI0bNw46F51OJ2kuBEyYMAEHDhzAmTNn8OGHH+Kee+5BQ0MDxo4dq3RqRMMCC6cf8bUipdPpfC4nf3LTTTfhpptuuuqNDEQkLRZOPzZsbJ8AACAASURBVMJVSIiI5MeJSImIiERg4SQiIhKBhZOIiEgEFk4iIiIReHOQH1m1ahUcDofSabjR6XS8aYmI/ArPOP2Iw+EQXTg7OzthsVhw4cIFt/6LFy/CYrHA6XR6NR8iIl8n6Rmn1WrFhg0bUFVVhYCAACxYsABFRUVSDkFXodPpUF5ePuj9Dx06hJSUFNhsNgQG/uftUFRUhOXLl8NmsyEgwLPfr6SeiIHk849//AP/+7//CwB4/vnnsXjxYkycOFHhrIh8k2RnnMXFxTCZTMjMzERTUxPq6+uRnp4uVXiSid1uh06ncyuaAFBZWYno6GiPiyZdG5xOJxYtWoTbbrsNzzzzDABgzZo1mDx5Mh5//HF0d3crmyCRD5LkU9HpdCIjIwN5eXlITk5GcHAwNBqNaz3O+Ph4jB8/Hps2bXJ7XktLC0JDQ7F3714p0iAP2O12xMTE9OmvrKzst5/8hyAISElJwZtvvolf/vKXOHPmDACgpqYGy5cvx4svvojVq1crnCWR75GkcPYuVpyUlNTv9sLCQmzbtq1P/6ZNm6DX66VIgTzUX+Hs6elBdXU1YmJicPbsWcyZMwdGoxGzZs3C4cOHFcqUpGaxWPCnP/0J27Ztw3PPPYcbbrgBADBt2jT87ne/wyOPPIKXX34ZX375pcKZEvkWSQpnc3MzQkNDB1xlPDw8vE9fTU0NWlpaEB0dLUUK5IGGhgY0Njb2OQYOhwPt7e2IjY1FWFgYKioqUF5ejv3792Pt2rUKZUtSKygoQGhoKFauXNnv9rVr10IQBOzZs8fLmRH5NkkK58yZM1FXV4eSkhL09PSgra0N77777hWfs2HDBjz99NNSDE8eOn36NAAgJCTErX/fvn2IjY3FpEmToFaroVarAQBtbW2Iioryep4kj9OnT+P73/8+RowY0e/2yZMnIywszPU+IaL/T5BIYWGh8L3vfU8YNWqUcOONNwrr1q1z2757925h48aNgiAIgtVqFbKysgRBEISnn35aeP3110WNZTAYBABs/TSDwTDo1/Grr74SxowZI2RnZwutra1CS0uL8MorrwgjRowQysvLXfvV1tYKc+fOFcLCwoSSkhIeJzY2Nr9vVyLZ11HMZjPMZvOg9rXb7fjoo49w9913o6amBqNGjcK0adMwe/bsQY9nMBhcX7vo/dqDmK9hfJtKpZJseSYpY4mJJ/brH1qtFqWlpVizZg3Cw8MxcuRI6HQ6lJWVYd68ea79pk6diqNHj6K2thbz58/HwoULBz3GN48T+ZYDBw7gwQcfxFtvvYX7778fgPt77fnnn8eaNWvwt7/9zePl4fzh58rbsaSOJ3Vu5KWZg9LS0mCz2dDR0QGbzYaSkhJkZ2cDAJ555hnceuutooomSUev18NqtQ64vaOjA0FBQQAuF9rRo0d7KzWSmclkwm233YZly5ZBrVYjMTERANDV1YXXXnsN69evx9133801VYm+xSuFs6CgYMBtvd8dI99UVVWFdevWQa1Wo6urC9u3b1c6JZLI9ddfj7KyMiQkJOC+++7DLbfcAgC4+eab0djYCL1ej/379yucJZHv4Vy1dEV6vR5HjhxROg2SyZQpU/DRRx/hzTffxP79+1FbW4u5c+di2bJluPvuu103hhHRf7Bw+hmHw+EzU905HA5e5rsGBAUFYfHixVi8eLHSqRBdE1g4/YivFSmdTudzORERDRULpx/h8l1ERPLjDN5EREQisHASERGJwMJJREQkAgsnERGRCLw5yI+sWrUKDodD6TTc6HQ63rRERH6FZ5x+xOFwiC6cnZ2dsFgsuHDhglv/xYsXYbFY4HQ6vZoP+Yeenh60tLQAAOdJJb8j6Rmn1WrFhg0bUFVVhYCAACxYsABFRUVSDkFXodPpRE2qfujQIaSkpMBmsyEw8D9vh6KiIixfvhw2mw0BAZ79fuUrEzGQ93z99dd46aWXsGvXLpw6dQoA8MMf/hBZWVl4+OGHB1yzl+haItkZZ3FxMUwmEzIzM9HU1IT6+nqkp6dLFZ5kYrfbodPp3IomAFRWViI6OtrjoknDj9PpxIIFC7B27VpMnToVv/nNbwBcvqqRlpaG9PR0nn2SX5DkU9HpdCIjIwN5eXlITk5GcHAwNBoNEhISAADx8fEYP348Nm3a5HrOiBEjYDQaYTQakZeXJ0Ua5AG73Y6YmJg+/ZWVlf32Ew3kqaeewgcffIADBw7gL3/5Cx5//HEAwEcffYT169ejoKAAe/bsUThLoqGTpHBaLBaoVCokJSX1u72wsBDbtm1z65s4cSLKy8tRXl6On/70p1KkQR7or3D29PSguroaMTExOHv2LObMmQOj0YhZs2bh8OHDCmVKvqy9vR27d+9GamoqHnjgAbdtKpUKzz33HH7wgx9gx44dPOuka54khbO5uRmhoaED/v0iPDy8T19jYyMMBgPuv/9+1NbWSpEGidTQ0IDGxkZER0e79TscDrS3tyM2NhZhYWGoqKhAeXk59u/fj7Vr1yqULfmy6upqnD9/Hqmpqf1uV6lUSE1NxfHjx9He3u7l7IikJcnNQTNnzkRdXR1KSkqQmJiI8+fPw2azuS7V9ufUqVMICwvD4cOHkZaWJuqGFuA/Z7nfNNQbD6S8cUHqmyAGG89gMAw65unTpwEAISEhbv379u1DbGwsJk2a5Nbf1taGqKioQccH+j9O5L8WLlzYp+/bx1+r1XocX6mfK2/HkjoefwbFu9KVEUnOOCMjI5Gfn4+cnBxotVpERERcdQ3HsLAwAEBcXJzrA1wMg8EAQRAgCAIMBoPbY08agCE9X65YYuKJKZoAEBERgTFjxmDr1q1oa2vDuXPnsGvXLuTm5mLr1q2u/erq6qDX65GQkACTyeTxcWLz39bU1ITrr78e2dnZbv3ffO/eeeedmDZtGnp6ejwaQ6mfK+Y2PNuVSHbLpNlsxsmTJ9He3o4zZ85g8+bNA+7b3t6O7u5uAMDHH3+MsWPHSpUGiaDValFaWgq73Y7w8HBMnz4dBw8eRFlZmVsRnjp1Ko4ePQqbzYasrCwFMyZfNX78eKSkpCA/Px9VVVV9tu/btw8VFRV45JFHePZD1zyvzByUlpYGm82Gjo4O2Gw2/PKXv0RGRgY0Gg0A4He/+5030qB+6PV6WK3WAbd3dHQgKCgIwOVCO3r0aG+lRteY559/HlarFUajEWlpabjvvvsAAKmpqThw4ADmzZvHX7zIL3ilcBYUFPTp+9vf/uaNoWmIqqqqsG7dOqjVanR1dWH79u1Kp0Q+asKECXj//ffx85//HHl5eXj55ZcBAGVlZVi9ejU2btyI4OBghbMkGjqVcLWLuT6od0aa3huKvv3YEyqV6qrXtZWIJSae0WiEw+GATqeTbOyh6M1lKMeFrk3Nzc349NNPYTAY4HQ6MXLkyCHHVOrnytuxpI4ndW7ESd79iq8UzF46nc7nciLvCAsLw7x58/iBTX6JhdOPcBUSIiL5cSJSIiIiEVg4iYiIRGDhJCIiEoGFk4iISATeHORHVq1aBYfDoXQabnQ6HW9aIiK/wjNOP+JwOEQXzs7OTlgsFly4cMGt/+LFi7BYLHA6nV7Nh4jI10l6xmm1WrFhwwZUVVUhICAACxYsQFFRkZRD0FWInXDg0KFDSElJgc1mQ2Dgf94ORUVFWL58OWw2GwICPPv9qndiCqKhsNvtOHDgAABg48aNWLp0KSZPnqxwVjScSXbGWVxcDJPJhMzMTDQ1NaG+vh7p6elShSeZ2O126HQ6t6IJAJWVlYiOjva4aBIN1blz57BgwQLExMRgx44dAIBnnnkGt9xyC7Kzs10LRRB5mySfik6nExkZGcjLy0NycjKCg4Oh0Whc63HGx8dj/Pjx2LRpk+s5H374Ie6++27Mnz8fy5YtkyIN8oDdbkdMTEyf/srKyn77ibzh0qVLWLhwIY4cOYIXXngBTU1NAC4vcZeRkYEdO3bgySefVDhLGq4kuVTbu1hxUlJSv9sLCwvx3nvvudbd7OzsRE5ODt58802MGTNGihTIQ3a7HYsWLXLr6+npQXV1NbKysnD27FmYTCZcf/31+Prrr7FlyxbExcUplC0NF4cOHcIHH3yA3bt34+GHH3b133zzzcjNzUVXV5ereN50003KJUrDkiRnnM3NzQgNDR1wnb3w8HC3x8eOHYNGo8HSpUthNBpRWloqRRokUkNDAxobGxEdHe3W73A40N7ejtjYWISFhaGiogLl5eXYv38/1q5dq1C2NJwUFhZiwoQJeOihh/rdvmbNGly6dAlvvPGGlzMjkuiMc+bMmairq0NJSQkSExNx/vx52Gw216Xab2toaEB1dTUcDgcEQcDcuXMxb948aLVaKdKhQeq9AhASEuLWv2/fPsTGxmLSpElu/W1tbYiKivJafjR8nTlzBj/4wQ/6/O2916233opRo0bhzJkzXs6MCIAgkcLCQuF73/ueMGrUKOHGG28U1q1b57Z99+7dwsaNGwVBEISysjJh0aJFrm2LFi0Sjh8/PuixDAaDAICtn2YwGAb9On711VfCmDFjhOzsbKG1tVVoaWkRXnnlFWHEiBFCeXm5a7/a2lph7ty5QlhYmFBSUsLjxMbG5vftSiQrnFfzzcLZ1tYmREdHC52dnUJHR4cQFRUlNDc3DzqWwWBwKxDffuyJq71QSsUSE8+T16GiokKYM2eOMGrUKGH8+PHCggULBIvF0u++n3/+uTB58uRBx5biuNDwtGfPHgGAUFpa6ur75s/B2rVrBQBCTU2Nx2P4w8+8t2PRZV6ZOSgtLQ02mw0dHR2w2WwoKSlBTk4O7rrrLnR2diI7Oxvjxo3zRir0LXq9HlardcDtHR0dCAoKAgBotVqMHj3aW6nRMJaSkoJNmzbhoYceQkFBAe677z4Al+/gz83Nxa9+9Sv85Cc/wbRp0xTOlIYjrxTOgoKCPn0PPvggHnzwQW8MT0NQVVWFdevWQa1Wo6urC9u3b1c6JRoGgoOD8e677+Kee+7Bj3/8Y9cNhhMnTsRXX32F//7v/8bvf/97hbOk4Ypz1dIV6fV6HDlyROk0aBiaMmUKPvroI7z99ts4cOAATp8+DZPJhOXLl2Pu3LkD3sVPJDcWTj/jcDh8Zqo7h8MBnU6ndBp0DbvuuuuQkpKClJQUpVMhcmHh9CO+VqR0Op3P5URENFQsnH6Ey3cREcmPM3gTERGJwMJJREQkAgsnERGRCCycREREIvDmID+yatUqOBwOpdNwo9PpeNMSEfkVnnH6EYfDIbpwdnZ2wmKx4MKFC279Fy9ehMVigdPp9Go+RHLr7OzEl19+CQAQBEHhbOhaJOkZp9VqxYYNG1BVVYWAgAAsWLAARUVFUg5BV6HT6VBeXj7o/Q8dOoSUlBTYbDa3JZyKioqwfPly2Gw2BAR49vuVr0zEQARcXhbvV7/6FfLz89Hc3AwAmDFjBrKzs5Genu7x+5yGH8neKcXFxTCZTMjMzERTUxPq6+uRnp4uVXiSid1uh06n67PuYWVlJaKjo/lhQn7h3LlzuPPOO/H8889Dr9cjLy8PwOU5cTMyMrBixQqefdKgSfKp6HQ6kZGRgby8PCQnJyM4OBgajca1kHV8fDzGjx+PTZs2Abj8oWw0GmE0GhEbG8uVURRkt9sRExPTp7+ysrLffqJr0erVq/GPf/wD7777Lt566y2sWLECwOVFDNavX4+CggLs27dP4SzpWiFJ4bRYLFCpVEhKSup3e2FhIbZt2+Z6fMcdd6C8vBzl5eXIzs7GokWLpEiDPNBf4ezp6UF1dTViYmJw9uxZzJkzB0ajEbNmzcLhw4cVypTIM83Nzdi/fz9WrFiB+Ph4t20qlQrPPvssvvvd72Lnzp0KZUjXGkkKZ3NzM0JDQwdcraB3SaD+7NmzB0uWLJEiDRKpoaEBjY2NiI6Odut3OBxob29HbGwswsLCUFFRgfLycuzfvx9r165VKFsiz1RWVqKzsxMPPPBAv9sDAgLwwAMP4IMPPsClS5e8nB1diyS5OWjmzJmoq6tDSUkJEhMTcf78edhsNtel2oE0Njbi1KlTmD17tugxe89yv2moywxJuUyR1EseDTaewWAYdMzTp08DAEJCQtz69+3bh9jYWEyaNMmtv62tDVFRUYOOD/R/nIiU0N/Pxrffm9ddd53H8ZX6mfd2rOHiSn/zluSMMzIyEvn5+cjJyYFWq0VERMSg1nB84403kJqa6tGYBoMBgiBAEAQYDAa3x540AEN6vlyxxMQTUzQBICIiAmPGjMHWrVvR1taGc+fOYdeuXcjNzcXWrVtd+9XV1UGv1yMhIQEmk8nj48TGpkRraGiAWq3Gk08+6dbf+3PV09ODqKgo6HQ6j8dQ6mdeidyGS7sSyb6OYjabYTabRT1n7969ePPNN6VKgUTSarUoLS3FmjVrEB4ejpEjR0Kn06GsrAzz5s1z7Td16lQcPXoUtbW1mD9/PhYuXKhg1kTiTJgwASaTCbm5uUhJSenzN/0dO3bgo48+ct1pS3Q1Xpk5KC0tDTabDR0dHbDZbCgpKcGJEycwcuRITJs2zRsp0AD0ej2sVuuA2zs6OhAUFATgcqEdPXq0t1Ijksz27dtht9sxb948LFmyBImJiQCAe+65B2VlZUhKSsKyZcsUzpKuFV4pnAUFBX36ZsyYccUPbPINVVVVWLduHdRqNbq6urB9+3alUyISbcKECXj//fexfv167N27F7///e8BAB999BE2btyINWvW9PkuM9FAVMLVLub6oN4ZaXpnyPn2Y0+oVKqrXtdWIpaYeEajEQ6HAzqdTrKx/1979x8VZ3nn//81TGtiJBnuQFpA+iEaNkdrtawhJhB0phY1WFvrrwXOUSBom6o4zazujsau2koXtypt3Go1tXFUqrTR0F3sHipJBZOoQ3KEgj9WNiZRwza2YhjIbB1I5v7+kZP5Sn5gbrhvwPh8nHOf433dc1/X+wThxTVzc13jcbCW8XxdALv19/dr27Zt+vznP68vf/nL43og6KDJ+p6f6L5wAL9iHUemSmAelJubO+VqAlJSUpSXlzfZZeBTjOA8jrALCQA4j4VIAQCwgOAEAMACghMAAAsITgAALODhoOPIihUr1NnZOdlljJCbm8tDSwCOK8w4jyOdnZ2Wg3NoaEhtbW0aHBwc0f7RRx+pra1N0Wh0QusBgKnO1hnn5s2bdccdd2jLli1KSkrSBRdcoLVr19o5BD6B1QUHfv/73+uqq65SOBwesXLK2rVrde211yocDispaWy/Xx1cmAI4HsXjcf3xj39MrLd9++23a9myZcrJyZnkyuA022aczz77rC677DLdcMMN+stf/qL33ntP1113nV3dwyFbt25Vbm7uYcuNtbe3a8GCBWMOTeB49r//+78655xzdMEFF+jpp5+WJP3kJz/R3/3d36m6ulr79++f5ArhJFt+KkajUS1fvlyrV6/WFVdcoenTp2vmzJmJ/TiLioo0Z84c1dTUSDqwxU11dbXy8/O1cOFC1dfX21EGxmDr1q2H7RYhHQjOI7UDn3V/+9vfdOGFF+qtt97SmjVr9P7770uS3nnnHVVXV+vBBx9kw/fjnC3BeXCz4ksvvfSI10OhkO69997E+euvv67XX39dL7/8slpbW3XHHXfYUQbG4EjBGY/H9eqrr2rhwoV6//33VVBQIJ/Pp0WLFmnDhg2TVCkwNfz2t7/V66+/rl//+tdatmyZpk+fLunAQvL//u//rmXLlumBBx7QX//610muFE6xJTg/+OADGYZx1F3Gs7KyRpxnZmbqhBNO0PDwsAYHBzV79mw7yoBFvb292r17txYsWDCivbOzU3v37tXixYuVlpamjRs3qrW1VU8//TS/SeMz78knn9T8+fP1zW9+84jXb7nlFg0NDek3v/nNBFeGiWJLcJ599tnasWOHmpqaFI/H1d/frz/84Q9Hfb1hGJo3b57mz5+vs846S7fffrsdZcCiXbt2STqw6PXHPfXUU1q8eLG+9KUvye12y+12Szqwq8RZZ5014XUCU8n777+vM84446gThdNPP10ulyvxFi6OQ6ZNQqGQOX/+fPOkk04y09PTzZUrV464/thjj5l33323aZqm2dzcbH7rW98y9+3bZ/b19Zmnn366+dFHHx3zWF6v15TEcYTD6/Ue879jJBIxPR6P6ff7zT179ph9fX3mL37xC/PEE080W1tbE6/bvn27uWTJEjMtLc1samri68TBwXHcH6Ox7c9RKioqVFFRccyvnz17ttxut2bOnKnh4WHLT6F5vV724zyE1T//mDVrlp577jkFg0FlZWVpxowZys3NVXNzs84777zE60455RRt2rRJ27dv1/nnn69LLrnkmMf4+NcJOB48+uij+s53vqPm5ubEA5Af/x793ve+p1/96ld67733lJ6ePqYxpvLPI0zQykFVVVUKh8OKxWIKh8P63e9+p6efflpLlizR0NCQbrrpJs2YMWMiSsEhCgsLtXnz5qNej8VimjZtmqQDQZucnDxRpQFTUllZmX7yk5+otLRUjzzyiC6//HJJ0ocffqh7771XjzzyiKqrq8ccmpj6JiQ416xZc1hbKBSaiKExTlu2bNHKlSvldrs1PDysVatWTXZJwKQ66aST1NLSoosvvlglJSX6whe+IEk6+eST9dFHH6myslJ1dXWTXCWcxFq1GFVhYaFefPHFyS4DmFKys7P1pz/9Sf/1X/+ltWvXqr6+Xt/97nd17bXX8gDdZwDBeZzp7OycMkvddXZ2Kjc3d7LLABzxuc99Tt/61rf0rW99S08++eRkl4MJRHAeR6ZaSOXm5k65mgBgvAjO4wjbdwGA81jBGwAACwhOAAAsIDgBALCA4AQAwAIeDjqOrFixQp2dnZNdxgi5ubk8tATguMKM8zjS2dlpOTiHhobU1tamwcHBEe0fffSR2traFI1GJ7Qe4LMsGo3qzTfflHRgX1xMTbbOODdv3qw77rhDW7ZsUVJSki644AKtXbvWziHwCXJzcy0tqv773/9eV111lcLhsD73uf//f4e1a9fq2muvVTgcVlLS2H6/mioLMQBT3e7du/WjH/1ITz75pPbu3SvpwPZkfr9f119//Zi/B+EM274azz77rC677DLdcMMN+stf/qL33ntP1113nV3dwyFbt25Vbm7uiNCUpPb2di1YsIBvWMBhvb29ys/P169+9StdccUVeuqppyQd2EGqurpa3/nOd9jdZIqx5adiNBrV8uXLtXr1al1xxRWaPn26Zs6cmdhyp6ioSHPmzFFNTU3injvvvFMFBQXy+Xx67bXX7CgDY7B161YtXLjwsPb29vYjtgOw14033qgPPvhAmzZtUigUUllZmSTppZde0g9+8AOtWbNGzzzzzCRXiY+zJTjb2trkcrl06aWXHvF6KBTSvffemzjv7OxUe3u7XnrpJYVCIX3/+9+3owyMwZGCMx6P69VXX9XChQv1/vvvJ37BWbRokTZs2DBJlQLHn3feeUdNTU3y+/2HfR+6XC7dddddmjt3rh566KFJqhBHYstnnB988IEMw5DL5Tri9aysrBHnPT09WrBggSRp7ty5evPNN7Vv377D3i6Es3p7e7V79+7E1+Kgzs5O7d27V4sXL1ZaWpo2btwot9ut7du3q6SkRFu2bJmkioHjy5YtWxSPx3XllVce8brb7dbll1+uBx98UKZpHvVnLCaWLUl19tlna8eOHWpqatI3vvENDQwMKBwOJ96qPdQZZ5yhVatWaWhoSK+99pp2796t/v5+paWlHfOYB2e5Hzfe/6ns/J/S7v/Bj7U/r9d7zH3u2rVLkpSSkjKi/amnntLixYv1pS99aUR7f3+/5S2TjvR1AjDS2WeffVjbod8343negO9B60b7XNmWt2q/8pWv6NFHH9Utt9yiWbNm6fTTTx91D8czzjhDZWVlKioq0kMPPaQzzzxTqamplsb0er0yTVOmacrr9Y44H8shaVz3O9WXlf6shKZ04Kk9j8eje+65R/39/frwww/18MMP66GHHtI999yTeN2OHTtUWFioiy66SJdddtmYv04cHBwjj507d8rlcmnlypUj2g9+z+/bt09z584d1/eR3T+PPivHaGx7ZLKiokJvvfWW9u7dqz//+c/68Y9/POrrq6ur9eKLL2rFihXKzc3lN6JJMGvWLD333HPaunWrsrKydNppp2ndunVqbm4eEcKnnHKKNm3apHA4rOrq6kmsGDi+ZGdn65vf/KYeeOCBwz4CMU1TP/zhD7Vz507deOONk1QhjmRCPlSsqqpSOBxWLBZTOBxWU1OTLrzwQu3bt09paWl68MEHJ6IMHEFhYaE2b9581OuxWEzTpk2TdCBok5OTJ6o04DPhoYce0pIlS3TuueeqtLQ08RFXQUGBXnnlFS1btuyon4FickxIcK5Zs+awtueff34ihsY4bdmyRStXrpTb7dbw8LBWrVo12SUBx5WTTz5Zr7zySmIBhMcff1yS1NfXp5///Oe6/vrreUduinGZn/Rm7hR0cEWagyvkHHo+Fi6X6xPf156Mvqz05/P51NnZqdzcXNvGHo+DtYzn6wJ8lkSjUb377rs64YQTdMopp9iyAIndP4/AIu/HlakSmAfl5uZOuZqAqeykk07S6aefPtll4BMQnMcRdiEBAOexECkAABYQnAAAWEBwAgBgAcEJAIAFPBx0HFmxYoU6Ozsnu4wRcnNzeWgJwHGFGedxpLOz03JwDg0Nqa2tTYODgyPaP/roI7W1tSkajU5oPQAw1dk649y8ebPuuOMObdmyRUlJSbrgggu0du1aO4fAJ7C64MDvf/97XXXVVQqHwyO2dVu7dq2uvfZahcPhMf8R9sGFKQBMrOHhYf3nf/6nGhsbJUk333yzrrvuOv5G1Ca2zTifffZZXXbZZbrhhhv0l7/8Re+9956uu+46u7qHQ7ZuINnapgAAIABJREFU3arc3NzD9kJtb2/XggULbFm5BMDE2bZtm8444wxdeeWVWr9+vSTp5z//ub785S/rhhtu0P79+ye5wk8/W34qRqNRLV++XKtXr9YVV1yh6dOna+bMmbrooov09ttv67zzztO5556rwsJCbd26VZJUX1+v/Px85efn64UXXrCjDIzB1q1bD9t5XjoQnEdqBzB1RSIRFRUVac+ePVq3bp16e3slHdh7d8WKFfrFL36hH/zgB5Nc5aefLcF5cLPiSy+99LBrKSkpamxs1MaNG7V69WoFAgH19/frvvvu0wsvvKCmpiYFAgHF43E7SoFFRwrOeDyuV199VQsXLtT777+vgoIC+Xw+LVq0SBs2bJikSgF8kieeeELvvPOO1q1bp8suu0xut1uSNGfOHP30pz/V1VdfrVWrVmnPnj2TXOmnmy3B+cEHH8gwjCOu4J+amprYpHratGlyu90Kh8Pyer2aPn260tLSlJmZqZ07d9pRCizo7e3V7t27tWDBghHtnZ2d2rt3rxYvXqy0tDRt3LhRra2tevrpp3XrrbdOUrUAPkl9fb3y8vJ07rnnHvH6P/7jP+pvf/ub1q1bN8GVHV9seTjo7LPP1o4dO9TU1KRvfOMbGhgYUDgcTuwrJ0n79++X3+/Xrbfeqr6+PhmGkbhmGIb6+vp06qmnHvOYB2e5HzferXfs3LrH7m2AjrW/j29A/Ul27dol6cC7Ah/31FNPafHixfrSl740or2/v19nnXXWMfcvHfnrBMAZbrdb+/fv/8Sfjddddx3PoHyC0XaUsWXG+ZWvfEWPPvqobrnlFs2aNUunn366XnzxxREFVFVV6ZJLLtHSpUuVmpo64q2C/v7+xKz0WHm9XpmmKdM05fV6R5yP5ThYpx2HnX1Z6c9KaErS6aefLo/Ho3vuuUf9/f368MMP9fDDD+uhhx7SPffck3jdjh07VFhYqIsuukiXXXbZmL9OHBwczh4LFy7U3//93ysejyfaPv7zo729XdKBPZInu9apfozGtkcmKyoq9NZbb2nv3r3685//rB//+MeJazfddJNycnJ0/fXXS5IWLVqkjRs3KhaL6cMPP1Rvb6/mzp1rVyk4RrNmzdJzzz2nrVu3KisrS6eddprWrVun5ubmESF8yimnaNOmTQqHw6qurp7EigGMpry8XB0dHfrjH/942DXTNHXffffppJNO0uWXXz4J1R0/HF85qLW1VatXr1ZBQYE2bNig2bNna926dVqxYkXi7/zuv/9+/uxhkhQWFmrz5s1HvR6LxTRt2jRJB4I2OTl5okoDYNHVV1+turo6XXnllfr5z3+uq666StKBj2Xuvvtu/fa3v9Wdd94pj8czyZV+ujkenD6fT0NDQ4e1l5eXq7y83OnhMU5btmzRypUr5Xa7NTw8rFWrVk12SQCOYubMmVq/fr2++c1v6uqrr9aNN94oSZo7d67i8bhuvvlm3XHHHZNc5acfa9ViVIWFhSM+rwYwtWVnZ6uzs1PPP/+81q1bp1/+8pe67bbbdO211/KRmE0IzuNMZ2fnlFnqrrOzU7m5uZNdBvCZk5SUpKVLl2rp0qVavXr1ZJdz3CE4jyNTLaRyc3OnXE0AMF4E53GE7bsAwHk8ygoAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFjgenA0NDcrNzdXMmTN12mmn6Xe/+53TQwIA4BhHg3P16tW67bbb9Mtf/lKDg4P66U9/qrKyMr377rtODgsAgGMcC87BwUHddtttWrNmjRYuXChJKi4u1pw5c7R161bV19crPz9f+fn5euGFF5wqAwAAWzm2ctAf//hHud1ufe1rX0u0maapDz74QElJSbrvvvv0yiuvaO/evSoqKtKrr77K1mIAgCnPsaQaGBiQYRgj2pqamnTiiSfK5XLJ6/Vq+vTpSktLU2Zmpnbu3OlUKQAA2MaxGeeiRYu0c+dOvfjii1qyZIna2tr0ve99T/fff7+i0eiIUDUMQ319fTr11FOPuf+2tja5XK4RbYeeWzXe+53qy4n+AABHZ5rmUa85Fpzz58/Xo48+qmXLlmn37t2aP3++HnjgAV155ZX6wx/+oD179iRe29/fr9TUVEv9e71etba2SlJiG62D52PhcrlG/YearL6c6A8AMHaO7o5yzTXX6JprrjmsfdGiRbrtttsUi8UUjUbV29vLBqsAgE+FSdlWLCUlRStWrEjMFO+//34eDAIAfCpM2n6c5eXlKi8vn6zhAQAYE6Z5AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABY4GhwxuNxlZeXKzs7W8nJycrJyVFDQ4OTQx4z0zT10ksv6dprr9UFF1wgSfrNb36joaGhSa7sQG0vvviili1blqjt2Wef1b59+ya5MgCAo8EZiURUXFysrq4uDQwMKBAIqLKyctLD6aOPPtIVV1yhJUuW6JlnntHevXslSaWlpfrKV76i7du3T1pt0WhUl1xyibxer373u98larvyyiuVm5ur9957b9JqAwA4HJyGYaisrEwej0dJSUmqqKhI7IhSX1+v/Px85efn64UXXnCyjMNcf/31amxs1L/+67+qt7dXL7/8siTpP/7jP9TX16cLL7xQ//d//2e5X9M09fbbb0uShoeHx1TbsmXL1NzcrPvvv39EbWvXrtV7772npUuXTvovHgDwmWY66PnnnzeXLl1qnnzyyeasWbPM5ORkMyMjw9yzZ4/51a9+1fzb3/5m/vWvfzW/+tWvmvv37z/mfr1er+n1eo96PpodO3aYLpfLvPnmm0e0H/ynaG5uNiWZa9asOeZ6TNM09+/fb5aXl5uSTEnm2WefbX7wwQeW+njjjTdMSea//Mu/HLG2Z5991pRkNjQ0WOoXAGAfx2ac7e3tKi0tld/vV09PjyKRiILBoPLy8hQOh+X1ejV9+nSlpaUpMzNTO3fudKqUEX7729/KNE35/f4jXr/wwgt12mmn6amnnrLUb319vZ544onEeUdHh1auXGmpj4aGBiUlJam6uvqI17/97W/r//2//6enn37aUr8AAPs4tq1YR0eHDMNQQUGB3G63QqGQamtrFQwG1dfXJ8MwEq81DEN9fX069dRTj7n/trY2uVyuEW2Hno8mOzv7sLaP3//f//3flvo7lGmaWr16tVavXm353i9+8Yuj1vbuu++OqzYAwOhM0zzqNcdmnCUlJcrJyVFmZqa+/OUva8+ePTIMQ3l5eUpNTdWePXsSr+3v71dqaqql/r1er0zTlGma8nq9I85HO372s59Jkt58880R7dKBf6h9+/YpOztb3/jGN46pv4NHY2PjYTXefPPNlvr48Y9/LJfLpR07dhyxtlgspi9+8Yv6h3/4B0v9cnBwcHBYO0bjWHCmpKSoublZ0WhUb7/9tgKBgHbt2qWLL75YixYt0saNGxWLxfThhx+qt7dXc+fOdaqUEcrKyvT5z39e//Zv/3bE67/5zW/0zjvvqLKy0lK/l156qe68804lJSUlzn/0ox9Z6uPqq6+Wy+XSvffee8Trjz/+uN5//31VVFRY6hcAYCNzkjz++OPm4sWLzcWLF5vr16+3dO94Hg4yTdP853/+Z1OS+d3vftfcuXOnaZqmKclctWqVOW3aNHPhwoXm0NCQpZoOisVi5t69e8d0r2ma5o033mhKMm+66SbzvffeS9T2k5/8xPz85z9vFhYWmvv27Rtz/wCA8XGZ5ifMSacgn88nSWptbT3i+SfZv3+//umf/kmrVq2SaZr64he/qN27dyf6Wrt2rdLS0myu+tjs27dPfr9fDz/8sFwul77whS8karvooovU0NCglJSUSakNACB9JoPzoHfffVdPPPGE3nnnHT366KMKh8NauHDhlHjwZseOHXriiSe0a9cuPfroo9q6dasWLFgw2WUBwGfeZzo4AQCwikXeAQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALHA0OOPxuMrLy5Wdna3k5GTl5OSooaHBySEBAHCUo8EZiURUXFysrq4uDQwMKBAIqLKyUkNDQ04OCwCAYxwNTsMwVFZWJo/Ho6SkJFVUVCgWiykajaqoqEhz5sxRTU2NkyUAAGArR4OzpaVFxcXFysrKksfjUUZGhjIyMmQYhkKh0FH3nQQAYKpyLDjb29tVWloqv9+vnp4eRSIRBYNB5eXlSZKysrKcGhoAAMd8zqmOOzo6ZBiGCgoK5Ha7FQqFVFtbq2AwaEv/bW1th23/NRW2AwMAfPqNtnGYY8FZUlKixsZGZWZmKj09XdXV1TIMIzHjHC+v18u2YgCACedYcKakpKi5uXlEWyAQcGo4AAAmhGPB+UmqqqoUDocVi8UUDofV1NQ0WaUAAHDMJi0416xZM1lDAwAwZiy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABY4HZzweV3l5ubKzs5WcnKycnBw1NDQ4PSwAAI5wPDgjkYiKi4vV1dWlgYEBBQIBVVZWamhoyOmhAQCwnePBaRiGysrK5PF4lJSUpIqKCsViMXV3d+u8887Tueeeq8LCQm3dutXpUgAAGDfHF3lvaWlRXV2duru7NTg4qHg8royMDM2dO1eNjY1KTU3VG2+8oeXLl2vjxo1OlwMAwLg4Gpzt7e0qLS1VfX29vF6vZsyYoZqaGrW3tys1NTXxumnTpsntdjtZCgAAtnA0ODs6OmQYhgoKCuR2uxUKhVRbW6tgMJh4zf79++X3+3Xrrbda6rutrU0ul2tE26HnAACMhWmaR73maHCWlJSosbFRmZmZSk9PV3V1tQzDUF5eXqKwqqoqXXLJJVq6dKmlvr1er1pbWyVJPp9PkhLnAAA4xdHgTElJUXNz84i2QCCQ+O+bbrpJOTk5uv76650sAwAA20zaAgitra1avXq1NmzYIJ/Pp8svv3yySgEA4Jg5/lTt0fh8Pv6WEwDwqcOSewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBggaPBGY/HVV5eruzsbCUnJysnJ0cNDQ1ODgkAgKMcDc5IJKLi4mJ1dXVpYGBAgUBAlZWVrFELAPjUcjQ4DcNQWVmZPB6PkpKSVFFRoVgspj179qigoEA+n0+LFi3Shg0bnCwDAADbOLo7SktLi+rq6tTd3a3BwUHF43FlZGQoLS1NGzdulNvt1vbt21VSUqItW7Y4WQoAALZwbMbZ3t6u0tJS+f1+9fT0KBKJKBgMKi8vT263W263W5LU39+vs846y6kyAACwlWMzzo6ODhmGoYKCArndboVCIdXW1ioYDEqSduzYoWuuuUZvvfWWHnvsMcv9t7W1yeVyjWg79BwAgLEwTfOo1xwLzpKSEjU2NiozM1Pp6emqrq6WYRjKy8uTJJ1yyinatGmTtm/frvPPP1+XXHKJpf69Xq9aW1slHdgUW1LiHAAApzgWnCkpKWpubh7RFggEJEmxWEzTpk2TJM2aNUvJyclOlQEAgK0cfTjoaLZs2aKVK1fK7XZreHhYq1atmowyAACwbFKCs7CwUC+++OJkDA0AwLiw5B4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABY4GpzxeFzl5eXKzs5WcnKycnJy1NDQ4OSQAAA4ytHgjEQiKi4uVldXlwYGBhQIBFRZWamhoSEnhwUAwDGOBqdhGCorK5PH41FSUpIqKioUi8UUjUYlSX19fTIMQ/X19U6WAQCAbRwNzpaWFhUXFysrK0sej0cZGRnKyMiQYRiSpJqaGhUWFjpZAgAAtnIsONvb21VaWiq/36+enh5FIhEFg8HERtbbtm1TX1+fFixY4FQJAADYzrFtxTo6OmQYhgoKCuR2uxUKhVRbW6tgMChJuuOOO3T33XfrySefHFP/bW1tcrlcI9oOPQcAYCxM0zzqNceCs6SkRI2NjcrMzFR6erqqq6tlGIby8vL00ksvKTU1VfPmzRtz/16vV62trZIkn88nSYlzAACc4lhwpqSkqLm5eURbIBCQJD3wwAPq6urS0qVLtW3bNp100kmaN2+e8vPznSoHAABbOBaco/H7/fL7/ZKku+66Szk5OYQmAOBTYVKC8+PuuuuuyS4BAIBjxpJ7AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZj8dVXl6u7OxsJScnKycnRw0NDU4OCQCAoxwNzkgkouLiYnV1dWlgYECBQECVlZUaGhpyclgAABzjaHAahqGysjJ5PB4lJSWpoqJCsVhM0WhUJ554onw+n3w+n1avXu1kGQAA2MbR3VFaWlpUV1en7u5uDQ4OKh6PKyMjQ4Zh6OSTT2bjaQDAp45jM8729naVlpbK7/erp6dHkUhEwWBQeXl5kqTdu3fL6/Xq29/+trZv3+5UGQAA2Mt0yMMPP2zOmzfP7O/vNz/66CPzscceM2fMmGH+8Ic/NE3TNP/617+apmma69evN71er6W+vV6vKYmDg4ODg8ORYzSOvVVbUlKixsZGZWZmKj09XdXV1TIMIzHjTEtLkyR9/etf1/Llyy337/V6E2/1+nw+SeKtXwCA4xwLzpSUFDU3N49oCwQCkqS9e/fqxBNPlNvt1muvvabZs2c7VQYAALZy9OGgo3njjTe0fPlyzZw5U5L0yCOPTEYZAABYNinBec4556ijo2MyhgYAYFxYcg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAscDc54PK7y8nJlZ2crOTlZOTk5amhocHJIAAAc5WhwRiIRFRcXq6urSwMDAwoEAqqsrNTQ0JCTwwIA4BhHg9MwDJWVlcnj8SgpKUkVFRWKxWKKRqP605/+pKVLl+r888/XsmXLnCwDAADbOLrIe0tLi+rq6tTd3a3BwUHF43FlZGTopJNO0i233KJnnnlGHo/HyRIAALCVYzPO9vZ2lZaWyu/3q6enR5FIRMFgUHl5eXrllVc0c+ZMlZeXy+fz6bnnnnOqDAAAbOXYjLOjo0OGYaigoEBut1uhUEi1tbUKBoPq7e3Vq6++qs7OTpmmqSVLlui8887TrFmzjrn/trY2uVyuEW2HngMAMBamaR71mmPBWVJSosbGRmVmZio9PV3V1dUyDEN5eXlyu91avHixUlJSJElnnXWWtm3bprPPPvuY+/d6vWptbZUk+Xw+SUqcAwDgFMeCMyUlRc3NzSPaAoGApANP295+++0aHh6WaZp68803lZ2d7VQpAADYxtGHg47G4/Holltu0de+9jUNDQ3J7/crNTV1MkoBAMCSSQlOSSotLVVpaelkDQ8AwJiw5B4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWOBocMbjcZWXlys7O1vJycnKyclRQ0ODk0MCAOAoR4MzEomouLhYXV1dGhgYUCAQUGVlpYaGhpwcFgAAxzganIZhqKysTB6PR0lJSaqoqFAsFlNHR4d8Pp98Pp8WL17MzigAgE8NR3dHaWlpUV1dnbq7uzU4OKh4PK6MjAwtWrQosen0U089pU2bNjlZBgAAtnFsxtne3q7S0lL5/X719PQoEokoGAwqLy9vxOueeOIJXXPNNU6VAQCArRybcXZ0dMgwDBUUFMjtdisUCqm2tlbBYDDxmt27d2vnzp3Kz8+33H9bW5tcLteItkPPAQAYC9M0j3rNseAsKSlRY2OjMjMzlZ6erurqahmGMWLG+etf/1plZWVj6t/r9Sbe7vX5fJKUOAcAwCmOBWdKSoqam5tHtAUCgRHn9fX1euaZZ5wqAQAA203aAgjd3d2aMWOG5s2bN1klAABg2aQF55lnnqnNmzdP1vAAAIwJS+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZj8dVXl6u7OxsJScnKycnRw0NDU4OCQCAoxwNzkgkouLiYnV1dWlgYECBQECVlZUaGhpyclgAABzjaHAahqGysjJ5PB4lJSWpoqJCsVhM0WhU1dXVys/P18KFC1VfX+9kGQAA2MaxbcUkqaWlRXV1deru7tbg4KDi8bgyMjLU29ur119/XS+//LKi0ajOPPNMXX311U6WAgCALRybcba3t6u0tFR+v189PT2KRCIKBoPKy8tTZmamTjjhBA0PD2twcFCzZ892qgwAAGzl2Iyzo6NDhmGooKBAbrdboVBItbW1CgaDMgxD8+bN0/z58xWNRvXII49Y7r+trU0ul2tE26HnAACMhWmaR73mWHCWlJSosbFRmZmZSk9PV3V1tQzDUF5enp5//nn19vZq27ZtikQiKiws1MUXX6xp06Ydc/9er1etra2SJJ/PJ0mJcwAAnOJYcKakpKi5uXlEWyAQkCT94Q9/0OzZs+V2uzVz5kwNDw9r//79TpUCAIBtJmUBhKKiIpmmqSVLlqigoEA33XSTZsyYMRmlAABgiaNP1R7Nwc88AQD4tGHJPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwNHgjMfjKi8vV3Z2tpKTk5WTk6OGhgYnhwQAwFGOBmckElFxcbG6uro0MDCgQCCgyspKDQ0NOTksAACOcTQ4DcNQWVmZPB6PkpKSVFFRoVgspmg0qjvvvFMFBQXy+Xx67bXXnCwDAADbOBqcLS0tKi4uVlZWljwejzIyMpSRkaF33nlH7e3teumllxQKhfT973/fyTIAALCNY8HZ3t6u0tJS+f1+9fT0KBKJKBgMKi8vTz09PVqwYIEkae7cuXrzzTe1b98+p0oBAMA2ju3H2dHRIcMwVFBQkNh/s7a2VsFgUGeccYZWrVqloaEhvfbaa9q9e7f6+/uVlpZ2zP23tbXJ5XKNaDv0HACAsTBN86jXHAvOkpISNTY2KjMzU+np6aqurpZhGMrLy9MZZ5yhsrIyFRUVaf78+TrzzDOVmppqqX+v16vW1lZJks/nk6TEOQAATnGZo8XqBHjttdd077336vHHHz/mew4NSoITADBRHJtxfpILL7xQ+/btU1pamh588MHJKgMAAEsmLTiff/75yRoaAIAxY8k9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU44/G4ysvLlZ2dreTkZOXk5KihocGOrgEAmFJsCc5IJKLi4mJ1dXVpYGBAgUBAlZWVGhoasqN7AACmDFuC0zAMlZWVyePxKCkpSRUVFYrFYopGoyoqKtKcOXNUU1Mz4p76+nrl5+crPz9fL7zwgh1lAADgOFsWeW9paVFdXZ26u7s1ODioeDyujIwMGYahUCik9evXa9euXYnX9/f367777tMrr7yivXv3qqioSK+++qqSkvjIFQAwtY07qdrb21VaWiq/36+enh5FIhEFg0Hl5eVJkrKysg67JxwOy+v1avr06UpLS1NmZqZ27tw53lIAAHDcuGecHR0dMgxDBQUFcrvdCoVCqq2tVTAYPOo9fX19MgwjcW4Yhvr6+nTqqace87htbW1yuVwj2g49BwBgLEzTPOq1cQdnSUmJGhsblZmZqfT0dFVXV8swjMSM80hSU1O1Z8+exHl/f79SU1Mtjev1etXa2ipJ8vl8kpQ4BwDAKeMOzpSUFDU3N49oCwQCo96zaNEi3XbbbYkHiHp7ezV37tzxlgIAgONseThoNFVVVQqHw4rFYgqHw2pqalJKSopWrFiRmCnef//9PBgEAPhUcJmjvZE7RR361ixv1QIAJgrTPAAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwLbgjMfjKi8vV3Z2tpKTk5WTk6OGhga7ugcAYEqwLTgjkYiKi4vV1dWlgYEBBQIBVVZWamhoyK4hAACYdLYFp2EYKisrk8fjUVJSkioqKhLbhhUVFWnOnDmqqakZcc/R2gEAmKps21aspaVFdXV16u7u1uDgoOLxuDIyMmQYhkKhkNavX69du3aNuOdo7QAATFW2zDjb29tVWloqv9+vnp4eRSIRBYNB5eXlSZKysrKOeN/R2gEAmKpsmXF2dHTIMAwVFBTI7XYrFAqptrZWwWDQju6PqK2tTS6Xa0TboecAAIzFaFtV2xKcJSUlamxsVGZmptLT01VdXS3DMBIzTid4vV42sgYATDhbgjMlJUXNzc0j2gKBgB1dAwAwpdj2cNBoqqqqFA6HFYvFFA6H1dTUNGo7AABT1YQE55o1ayy1AwAwVbHkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFtgWnPF4XOXl5crOzlZycrJycnLU0NBgV/cAAEwJtgVnJBJRcXGxurq6NDAwoEAgoMrKSg0NDdk1BAAAk8624DQMQ2VlZfJ4PEpKSlJFRYVisZii0aiKioo0Z84c1dTUJF7/9ttv67zzztO5556rwsJCbd261a5SAABwjG2LvLe0tKiurk7d3d0aHBxUPB5XRkaGDMNQKBTS+vXrtWvXrsTrU1JS1NjYqNTUVL3xxhtavny5Nm7caFc5AAA4wpbgbG9vV2lpqerr6+X1ejVjxgzV1NSovb1dkpSVlXXYPampqYn/njZtmtxutx2lAADgKFuCs6OjQ4ZhqKCgQG63W6FQSLW1tQoGg5947/79++X3+3XrrbdaGrOtrU0ul2tE26HnAACMhWmaR71mS3CWlJSosbFRmZmZSk9PV3V1tQxl5KKGAAAMpUlEQVTDUF5e3icWVlVVpUsuuURLly61NKbX61Vra6skyefzSVLiHAAAp9gSnCkpKWpubh7RFggEPvG+m266STk5Obr++uvtKAMAAMfZ9nDQaKqqqhQOhxWLxRQOh9XU1KTW1latXr1aBQUF2rBhg2bPnq1169ZNRDkAAIzZhATnmjVrDmvz+Xz8jScA4FOHJfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwALbgjMej6u8vFzZ2dlKTk5WTk6OGhoa7OoeAIApwbbgjEQiKi4uVldXlwYGBhQIBFRZWcl6tACA44ptwWkYhsrKyuTxeJSUlKSKigrFYjFFo1EVFRVpzpw5qqmpSbz+/fffV0FBgXw+nxYtWqQNGzbYVQoAAI6xbXeUlpYW1dXVqbu7W4ODg4rH48rIyJBhGAqFQlq/fr127dqVeH1aWpo2btwot9ut7du3q6SkRFu2bLGrHAAAHGHLjLO9vV2lpaXy+/3q6elRJBJRMBhUXl6eJCkrK+uwe9xut9xutySpv79fZ511lh2lAADgKFtmnB0dHTIMQwUFBXK73QqFQqqtrVUwGBz1vh07duiaa67RW2+9pccee8zSmG1tbXK5XCPaDj0HAGAsTNM86jVbgrOkpESNjY3KzMxUenq6qqurZRhGYsZ5NKeccoo2bdqk7du36/zzz9cll1xyzGN6vV61trZKOrAptqTEOQAATrElOFNSUtTc3DyiLRAIjHpPLBbTtGnTJEmzZs1ScnKyHaUAAOAo2x4OGk1VVZXC4bBisZjC4bCampq0ZcsWrVy5Um63W8PDw1q1atVElAIAwLhMSHCuWbPmsLbCwkK9+OKLEzE8AAC2Yck9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU44/G4ysvLlZ2dreTkZOXk5KihocGOrgEAmFJsCc5IJKLi4mJ1dXVpYGBAgUBAlZWVGhoasqN7AACmDFuC0zAMlZWVyePxKCkpSRUVFYrFYopGoyoqKtKcOXNUU1Nz2H19fX0yDEP19fV2lAEAgONsCc6WlhYVFxcrKytLHo9HGRkZysjIkGEYCoVCuvfee494X01NjQoLC+0oAQCACTHu4Gxvb1dpaan8fr96enoUiUQUDAYTm1hnZWUd8b5t27apr69PCxYsGG8JAABMmHFvK9bR0SHDMFRQUCC3261QKKTa2loFg8FR77vjjjt0991368knnxzTuG1tbXK5XCPaDj0HAGAsTNM86rVxB2dJSYkaGxuVmZmp9PR0VVdXyzCMxIzzSF566SWlpqZq3rx5Yx7X6/WqtbVVkuTz+SQpcQ4AgFPGHZwpKSlqbm4e0RYIBEa9Z+vWrerq6tLSpUu1bds2nXTSSZo3b57y8/PHWw4AAI4ad3B+kqqqKoXDYcViMYXDYTU1Ncnv98vv90uS7rrrLuXk5BCaAIBPBceDc82aNaNev+uuu5wuAQAA27DkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYYFtwxuNxlZeXKzs7W8nJycrJyVFDQ4Nd3QMAMCXYFpyRSETFxcXq6urSwMCAAoGAKisrNTQ0ZNcQAABMOtuC0zAMlZWVyePxKCkpSRUVFYrFYopGoyoqKtKcOXNUU1Mz4p4TTzxRPp9PPp9Pq1evtqsUAAAcY9vuKC0tLaqrq1N3d7cGBwcVj8eVkZEhwzAUCoW0fv167dq1a8Q9J598MptPAwA+VWyZcba3t6u0tFR+v189PT2KRCIKBoPKy8uTJGVlZR3xvt27d8vr9erb3/62tm/fbkcpAAA4ypYZZ0dHhwzDUEFBgdxut0KhkGpraxUMBke9b+fOnUpLS9OGDRtUVVVlafbZ1tYml8s1ou3QcwAAxsI0zaNesyU4S0pK1NjYqMzMTKWnp6u6ulqGYSRmnEeTlpYmSfr617+u5cuXWxrT6/Umgtbn80kSb/sCABxnS3CmpKSoubl5RFsgEBj1nr179+rEE0+U2+3Wa6+9ptmzZ9tRCgAAjrLt4aDRVFVVKRwOKxaLKRwOq6mpSW+88YaWL1+umTNnSpIeeeSRiSgFAIBxmZDgXLNmzWFt55xzjjo6OiZieAAAbMOSewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWGBLcMbjcZWXlys7O1vJycnKyclRQ0ODHV0DADCl2BKckUhExcXF6urq0sDAgAKBgCorKzU0NGRH9wAATBm2BKdhGCorK5PH41FSUpIqKioUi8UUjUZVVFSkOXPmqKamZsQ9f/rTn7R06VKdf/75WrZsmR1lAADgOFsWeW9paVFdXZ26u7s1ODioeDyujIwMGYahUCik9evXa9euXYnXDw0N6ZZbbtEzzzwjj8djRwkAAEyIcc8429vbVVpaKr/fr56eHkUiEQWDwcQm1llZWYfd88orr2jmzJkqLy+Xz+fTc889N94yAACYEOOecXZ0dMgwDBUUFMjtdisUCqm2tlbBYPCo9/T29urVV19VZ2enTNPUkiVLdN5552nWrFnHPG5bW5tcLteItkPPAQAYC9M0j3pt3MFZUlKixsZGZWZmKj09XdXV1TIMIzHjPJLZs2dr8eLFSklJkSSdddZZ2rZtm84+++xjHtfr9aq1tVWS5PP5JClxDgCAU8YdnCkpKWpubh7RFggERr1n8eLFuv322zU8PCzTNPXmm28qOzt7vKUAAOA4Wx4OGk1VVZXC4bBisZjC4bCamprk8Xh0yy236Gtf+5qGhobk9/uVmprqdCkAAIybyxztjdwp6tC3ZnmrFgAwUVhyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAAC2wLzng8rvLycmVnZys5OVk5OTlqaGiwq3sAAKYE24IzEomouLhYXV1dGhgYUCAQUGVlpYaGhuwaAgCASWdbcBqGobKyMnk8HiUlJamiokKxWEzRaFRFRUWaM2eOampqEq9vb2+Xz+eTz+fT4sWLWeQdAPCpYNvuKC0tLaqrq1N3d7cGBwcVj8eVkZEhwzAUCoW0fv167dq1K/H6c845J7Eo+1NPPaVNmzbZVQoAAI6xZcbZ3t6u0tJS+f1+9fT0KBKJKBgMJjazzsrKGvX+J554Qtdcc40dpQAA4ChbgrOjo0OGYaigoEBut1uhUEi1tbWJ4BzN7t27tXPnTuXn59tRCgAAjrLlrdqSkhI1NjYqMzNT6enpqq6ulmEYxxScv/71r1VWVmZ5zLa2NrlcrhFth54DADAWo21VbUtwpqSkqLm5eURbIBA4pnvr6+v1zDPPWB7T6/WykTUAYMLZ9nDQaKqqqhQOhxWLxRQOh9XU1CRJ6u7u1owZMzRv3ryJKAMAgHGbkOBcs2bNEdvPPPNMbd68eSJKAADAFiy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAW2Bac8Xhc5eXlys7OVnJysnJyctTQ0GBX9wAATAm2BWckElFxcbG6uro0MDCgQCCgyspKDQ0N2TUEAACTzrbgNAxDZWVl8ng8SkpKUkVFhWKxmKLRqIqKijRnzhzV1NQkXm+apqqrq5Wfn6+FCxeqvr7erlIAAHCMbbujtLS0qK6uTt3d3RocHFQ8HldGRoYMw1AoFNL69eu1a9euxOtff/11vf7663r55ZcVjUZ15pln6uqrr7arHAAAHGHLjLO9vV2lpaXy+/3q6elRJBJRMBhUXl6eJCkrK+uwezIzM3XCCSdoeHhYg4ODmj17th2lAADgKFtmnB0dHTIMQwUFBXK73QqFQqqtrVUwGDzqPYZhaN68eZo/f76i0ageeeSRYx4vNzdXq1atksvlGtF+6DkAAGNhmuZRr9kSnCUlJWpsbFRmZqbS09NVXV0twzASM84jef7559Xb26tt27YpEomosLBQF198saZNm/aJ4/3sZz/Tz372MztKBwDAEluCMyUlRc3NzSPaAoHAJ943e/Zsud1uzZw5U8PDw9q/f78d5QAA4BiXOdp81CZVVVUKh8OKxWI6/fTT1dTUpP379+vaa6/V//zP/2hoaEjXXHON/H6/06UAADAuExKcAAAcL1hyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwIL/D1Dqf/JuLdNzAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from qiskit.aqua.components.oracles import LogicExpressionOracle\n", + "\n", + "oracle = LogicExpressionOracle(expression=sat_instance_cnf)\n", + "oracle.circuit.draw(output='mpl', scale=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 7b66e9f6c8a88af72daa241f84fd3d4ce6f12346 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Wed, 27 Feb 2019 09:35:40 -0500 Subject: [PATCH 015/116] minor edits --- .../3-Coloring Oracle via Reduction to SAT.ipynb | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb b/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb index 8b041dc44..2f72efc93 100644 --- a/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb +++ b/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb @@ -8,8 +8,8 @@ "\n", "In this notebook, we demonstrate how to easily construct quantum oracles for [3-Coloring problems](https://en.wikipedia.org/wiki/Graph_coloring) using Qiskit Aqua via simple NP-Reduction to [SAT problems](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem).\n", "\n", - "3-Coloring is the decision problem of determining whether a graph's vertices can be colored using only 3 different colors s.t. no neighboring vertices have the same color. SAT is also a decision problem where we want to see if an \n", - "given conjunctive normal form (CNF) can have a satisfying assignment.\n", + "3-Coloring is the decision problem of determining whether a graph's vertices can be colored using only 3 different colors s.t. no neighboring vertices share the same color. SAT is also a decision problem where we want to see if an \n", + "given conjunctive normal form (CNF) has a satisfying assignment.\n", "\n", "Aqua already provides an `LogicExpressionOracle` class capable of building Quantum Oracle circuits from arbitrary logic expressions, with support for the [DIMACS CNF format](https://www.satcompetition.org/2009/format-benchmarks2009.html). So, to take advantage of that, we in this notebook aim to reduce 3-coloring problems to SAT problems, and then directly use the `LogicExpressionOracle` class to build the Oracle circuit.\n", "\n", @@ -81,7 +81,7 @@ "\n", "- For each vertex $v$, we create three boolean variables $v_r$, $v_g$, and $v_b$, corresponding to the vertex $v$ being of color red, green, and blue, respectively.\n", "- For each vertex $v$, we then have the constraint that it needs to be of one and only one color. Therefore, $v_r \\vee v_g \\vee v_b = True$, and $v_i \\wedge v_j = False$ for $i,j \\in \\{r,g,b\\}, i \\ne j$.\n", - "- For each edge $(v, t)$, we have constraint that they cannot both be of the same color. Therefore, $v_i \\wedge t_i = False$ for $i \\in \\{r, g, b\\}$.\n", + "- For each edge $(v, t)$, we have the constraint that they cannot both be of the same color. Therefore, $v_i \\wedge t_i = False$ for $i \\in \\{r, g, b\\}$.\n", "\n", "With this simple strategy and the help of the [De Morgan's Law](https://en.wikipedia.org/wiki/De_Morgan%27s_laws), we can carry out the reduction as follows." ] @@ -123,7 +123,7 @@ } ], "source": [ - "def reduce_to_three_sat(nv, ne, edges):\n", + "def reduce_to_sat(nv, ne, edges):\n", "\n", " def _get_vertex_rgb(v):\n", " return 3 * v - 2, 3 * v - 1, 3 * v\n", @@ -158,7 +158,7 @@ " )\n", " return '\\n'.join(buf)\n", "\n", - "sat_instance_cnf = reduce_to_three_sat(nv, ne, edges)\n", + "sat_instance_cnf = reduce_to_sat(nv, ne, edges)\n", "print('The input 3-Coloring instance can be reduced to the following SAT instance:\\n\\n{}.'.format(sat_instance_cnf))" ] }, From e6bc7dd1ccd28aaff2200ff70bec3fea3831c1be Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Wed, 27 Feb 2019 09:41:36 -0500 Subject: [PATCH 016/116] remove period --- .../optimization/3-Coloring Oracle via Reduction to SAT.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb b/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb index 2f72efc93..3ff37dcf9 100644 --- a/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb +++ b/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb @@ -118,7 +118,7 @@ "-3 -9 0\n", "-4 -7 0\n", "-5 -8 0\n", - "-6 -9 0.\n" + "-6 -9 0\n" ] } ], @@ -159,7 +159,7 @@ " return '\\n'.join(buf)\n", "\n", "sat_instance_cnf = reduce_to_sat(nv, ne, edges)\n", - "print('The input 3-Coloring instance can be reduced to the following SAT instance:\\n\\n{}.'.format(sat_instance_cnf))" + "print('The input 3-Coloring instance can be reduced to the following SAT instance:\\n\\n{}'.format(sat_instance_cnf))" ] }, { From 7f33fa66c13f3bf1c79c90bb910e84284d8e3c6b Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Thu, 28 Feb 2019 22:57:55 -0500 Subject: [PATCH 017/116] Remove RunConfig from QuantumInstance parameters --- .../qsvm_kernel_directly.ipynb | 10 +-- .../qsvm_variational.ipynb | 51 +++--------- community/aqua/chemistry/h2_qpe.ipynb | 18 +---- community/aqua/general/eoh.ipynb | 45 ++++++----- community/aqua/general/vqe2iqpe.ipynb | 4 +- community/aqua/optimization/grover.ipynb | 4 +- .../08_Sampling a Thermal State.ipynb | 10 +-- ...e Optimization and Ensemble Learning.ipynb | 4 +- ...timization and Unsupervised Learning.ipynb | 39 ++------- .../qsvm_kernel_classification.ipynb | 51 +++--------- .../aqua/finance/portfolio_optimization.ipynb | 11 +-- qiskit/aqua/optimization/maxcut_and_tsp.ipynb | 79 +++++++++---------- 12 files changed, 108 insertions(+), 218 deletions(-) diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb index b3b4c830b..601c0fc37 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb @@ -29,7 +29,6 @@ "source": [ "from datasets import *\n", "from qiskit import Aer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", "from qiskit.aqua.input import SVMInput\n", @@ -140,7 +139,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYVWX3/u9HVFDAWXBElHBOHHPI1NTMstehzKHJKcvSsmzS8k0t9c0sKxssU8tG1Mox05xLCycIB5wQUVFxHlHB4fn9wfH747juXSSK4l6f6/KCc7v2Ofts9mJz1l7PvYy1FoqiuI9c13sHFEW5PmjyK4pL0eRXFJeiya8oLkWTX1Fciia/orgUTX5FcSma/IriUrKU/MaY1saYLcaYeGPMwKu1U4qiXHvMlXb4GWN8AGwFcBeAJACrAXS11sb9zTbixQIDi9LYoDJBQtubmERjQ28JFdqZ1DQae+HCBaGlHD1FY/0L+Qvt6IEjQitWWu4rAJw6clJoISElaezZNLm/STv30tgiJeQxSzvD3++Jo8eF5pc/P43NlcsIrVjxwjLOyDgASE4+LLRgsq8AkHL2rNAKOOzX4aMnhOZ03gYEyuc4cUz+fPPmy0u3T02R+1WwcCCN9fHxka91gp9LQUXlcTydmkpjz5FztEC+fDT2WEqK1+NDyck4efw4/wFdRu7MBDlwG4B4a20CABhjIgG0A+CY/IwGDdpSvd9b/YQ2pNdLNHbi9IlC27BzF409eVgm5B8zVvB9+08DoU378Buh9R7+DN1+2ZRlQhs3dhCNjduzR2gv9x5GYx8e+JjQdsbx97tw6s9Cq1wzgsb65vMV2uN9HxRavjx56Pbv/O8LoT3/SjcaG7Vpq9Ba161FY7/6ab7Qzjn8cm/UpLbQFs6RP9+QKiF0+61r5X7d+2BzGls0IEBov/z6B419rtsDQotOTKSx+44dE1qLatVo7Myo1V6Phz39JI1jZOXP/tIAdmd4nOTRFEXJAWTlyp8pjDFPAHjiWr+Ooij/jqwk/x4AZTM8LuPRvLDWjgcwHuCf+RVFuT5kJflXAwg3xpRHetJ3AfDQ320QGFhUfMZfsEB+TgSAkZ8OFlq+fAVo7K7DstC0e/NuEgmE1aggtMIlitDY+JjtQlu5crbQZtSeRLef+9lcoZ07f57GFiQFnbx5eZGnc+NGQntp/loam5S0WWjNO95DY6eOGy+0Do+1Flqj8HC6/flz8r35OdQHUo6nCC313Dkau/D7eUKrVIt/Bi7VThbWDiYdFFqfXvfT7fMXlAXDpfOiaGzXLvLYrP2V/xxOdW4jtIYOx/HHVauEtvPQIRrbuHoVr8cBfn40jnHFyW+tPW+M6QdgPgAfAJOstRuv9PkURclesvSZ31o7F4C8vCmKcsOjHX6K4lI0+RXFpWjyK4pLueL23ivhlqpV7ZhvvDvkShUqRGPrhYUJjbXAAkDycdnC+s7oyTT20zGvCi1qq6yIA0C5YsWElkaq9SP/JzsMAWDHxnih1biDd7GdOCxbWIf8l7dHNGsgq/Wx63+nsbE7dwqtdBF+d2M/OY6Ll8vq9eP387sFyzZvEpqP4deXKR9NF9rLQ3vT2FRyzCuX5G3SU5f/KbR8/rICHlSA3znaul3eJTq4W94tAIA+j7YT2sING2jsrWXLCq1amTI09rW3PxfaSdIqDgC9nu7o9fih++7DxnXrMtXeq1d+RXEpmvyK4lI0+RXFpWjyK4pLueYLezKyNzFJLMt1atllxT2/vHwN9s8xMUKr1ZIX1na/ekBobw6Xba0A0LBtQ6ENekgWpeIT1tHtx8/4RWg1qvOWzrDgYKF17/IyjV0ds1hor438jMbO+lYWPkNCqtJYX1/ZTjxj5kdCi93Flw/HxWwT2ks9OtHY4NcKCq1yqVI0tlvP14VW+y65dBcA+nSUbbSf/iCXNYfUl8VcACgfKvfBN79c6gwAPrnktZMVbgGgeDXpCbD36FEa+2r/R4WWy6FweuikdyGQ7ZMTeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZWu0PvSVUmG0yIw6At+yyqj4AtKklK/sNGsjWSwCo8vU7QrtwTrqlAoBvXmlE8ePSOTSWUbWqbFEOdHBhXb5li9Da9ulAY/PlldXnLo/eS2M7dG0ltHdeGUdjmSnviE+kYenq+dzcgt0ZOEVcegGgkL90Rn7ymZE09ouJ0sjUyUH48CnZBlundhWhFSGvD/C2Yf8qcnsAyJtbpk+XFk1obLPb5flYu6FDbJdmUqvG79DkvsxB2DgcF4Ze+RXFpWjyK4pL0eRXFJeiya8oLiVLBT9jTCKAkwAuADhvra37d/FnUtPEJB0nl91FU5cKzalllxX3oqJm0tjRL0v33sAifBxTCeI1ELVWepQ6rQ1/f+DHQuv4PG93PX5ItoVWqyYLhgAwLzZWaCHF+Fisxb+tEZpTu+rBZDk1qEFTecwLB3MPhhgygaaiw7r7Ratk8fapFx+msau2Sxfl2qGhNDbQTxZUzxBX4AMneBsuK1AynwMAaB0hJx+xYwAArTt3FFqL+26nsQG+8uezZscOGluf+F5klqtR7b/TWst9hRVFuWHRP/sVxaVkNfktgF+NMWs9Y7kExpgnjDFrjDFrTh6XAwgVRbk+ZPXP/sbW2j3GmCAAC4wxm621v2UMyDiuq3ylyjquS1FuELJ05bfW7vF8PQBgOtLHdiuKkgO44iu/McYfQC5r7UnP960AvPF321y4cAEnD3u3X7LZeQAwtF9PoTEjDoC37LKqPgBMn/6e0CL/lI6vAFCWuNxevFWacbzxOm+X3bxZzlzbE9+YxqYck7Pr7r6jHo19pG0voUWt5G3HmyvLOfS3N6pJY/ccOSK0LZtllblnW9kyDABTf5fHMe0Cb51e+M0iod3zMb9ZlEjm1J08e4bGzouRd0LshYtCq1Ca34WIiokT2tFkbrrRqGJFocVtTaSxvXq0F1pYUBCNHfzOBKH55PYhkUC10qW9Hl+8KN+rE1n5sz8YwHRPL3FuAN9Za+VERUVRbkiyMqgzAYC80akoSo5Ab/UpikvR5FcUl5Kt6/lTjp7CHzNWeGmFS/DRUWyElpPLLluP79Syy4p7XRpKl14AGD7ua6Gx0U19X5ZuqwBQsrwsKvXsLN1lAd5W+mr/d2ns3EWRQuv4wAs0tuWjLYW26Hvp/gsAJ8hIqEkThgptxdatdPvjB2Ub7Pa8/BT7bOIQ+fpneBFvbbQcA7YihXs7hFYrJ7S2taXT7y/ruOPyrjg53iziTl4gnRklC7oXSXERAKbNkse8Rt3KNPaNF2RBd52DY/Kcxd7n87GTsnDshF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKtlb7/Qv5o8F/Gnhp8THSqAEAyhWTs9TY7DyAu+wyIw6At+yyqj4ADH5KVvH/O2ai0Kzl65VubyXbc3+OkuYaALBxhTQJOXuaV7+PnT4ttHwB3BWY7duQoU/R2I8n/CC0DUlJQitNjiEA5K4lq9fhJUrQWGam4U9MLAAgIkK20W5L4CYwLapVE9q7E6YKrWkL3jpdvcmtQmtftw6NHfHBV0Kr14LPELQhchYjMwMBgGhi3HHwpLwTAwBlwrxnC+b1lbnghF75FcWlaPIrikvR5FcUl6LJryguJVsLfkcPHMG0D73HP61cOZvGvvJSd6ENeqg3jWUjtJjLLsDX47OWXYAX994cIFsvBz7NR1JNGCsLTQNfk9sDQJsGci179868ZTe0eHGhlSjPC2ujB7witPhH+XGMWihbUHs91lZoTm7Fb78p16G//gYvLkZtkuPJ2tTjhbWhT8lxXdVv42v/m9apIbQjydKnoEqpUkIDgMT90jPi9bc+p7FPPSWdmIcP5t4O48cNFppToTglNVVoToXTy8dz5XcomjL0yq8oLkWTX1Fciia/orgUTX5FcSn/WPAzxkwCcB+AA9ba6h6tCIApAEIBJALoZK3lLocZKFY6CL2HP+Olzag9ica+/sanQotP4GuwGU5FKWa26bQenxVkWHHP38+Pbt/3pdFCW7aeFyLz5pOFmh5DH6ex9ercJbSxkZ/Q2BGD+wjtnIOpZsCb/cnzyrFnD7dpTrcvHFxYaLOXcnNUX395zCZOm0tjx0e+L7QzaWk09okuz8nnnTpWaE7dhL6+eYXmVEzdeVAWioNCuSknG/m16C9+Pm+LjhdaeO1baGxICe/XSzt/nsYxMnPl/xJA68u0gQAWWWvDASzyPFYUJQfxj8nvGcJx+b2SdgAme76fDED6EiuKckNzpZ/5g621+zzfJyPdxpviNa7rmI7rUpQbhSwX/Gz6B2PHMVzW2vHW2rrW2rqBDivtFEXJfq40+fcbY0oCgOcrH6WjKMoNy5W2984C0A3AW56vsiRMOHXkJJZNWealzf2MV3hPHJM3D8bP+IXGVq0aJrT3B35MY9kILeayC/D1+Kxll1X1AeDj0S8JbVlP6UQL8PXtp1P4ev5mbf4jtOCCBWnskFGy5bZo6aI0dsc6uY484k655ry4w52UDX/+JbTm7fh4soU//Sa0p/t2prE/zF4i96GsbHEGgKbt5CixectXC61dM+4NkUjce9ct41X5dq3ke1u1YDmN9XvmEaF1atyIxn6QkCy0woX4MS8SEOD1OHeuzF/P/zHSGPM9gD8BVDLGJBljeiE96e8yxmwD0NLzWFGUHMQ/XvmttV0d/qvFVd4XRVGyEe3wUxSXosmvKC7FOK0pvhbUqVvXRq1c6aWdc2hHfPO9L4XWul0TGhuYT5pXrk9IpLF74vcKzWmEFjPbbFFbrhd3atktX0q2hTatUoXGliol2zcXrV5GIoEpPy4QWt/u99PY42QEllNRiJmmniRjxH76I4puf3+jBkJbuGEDjWUjtJwYN10Whe9rUp/GLomVr1c6WL6vOypVotufPCuP17jJM2gsO+a5fXxobExiotAaO+zD2XPnhHbeoSX78vX8dzZujJjoaEODL0Ov/IriUjT5FcWlaPIrikvR5FcUl6LJryguJVvde8+mpSFuzx4vrSCp1APAicOy3TUsmC8eXL5FOsEePyS3B4CUYylCO0Uq2gAfocVcdpkRB8BbdllVHwD27pUGDqu2SQ2QFV7A2aCjcP78QnOqSMfv3y80Zg7hdGz98shRURUdXGcPn5LjpwJ8uSlKozrVhVbA4bypFV5BaEtWRAvNqdqfO5c8Ni3v5q3A7Ng4mYQwM4+087Kq7xRbymFRnM9ld25ykXPDCb3yK4pL0eRXFJeiya8oLkWTX1FcSra29xYsWMw2aNDOS8ublxduJn47Qmjdu7xMY9v26SC08LCyNLYMmS3/3+ffo7FnT8tWz7Q0qTm57KaekWOXbqskx4UBvLjXrVlTGjt9jWw7njz8GxIJlL+1vND8C/rT2Nhlcj3+rFkfCu3CxYt0+8g/pFNvp4ay5Rfg7arHTp+msYs3yMIrKwgDQIdmco38n9u2Ca1eBVkYBIBdhw8LrXJJ7vfAYuOS9pBIoF6YfL2il63Fv0Qhf/nzSXawwLu8/fqB1q2xITZW23sVRXFGk19RXIomv6K4FE1+RXEpmfHwm2SMOWCM2ZBBG2qM2WOM+cvz795ru5uKolxtMtPe+yWAjwB8dZn+nrX2nX/zYkVKFMXDAx/z0jo7OJjWipCV7tUxi2lsvryypXJebCyNfaRtL6HNXRRJY1n1ObS4dI1ls/MA7rK7Y0MijWUtu6yqDwAd6soW492k8gwABUl775k0eRcCAIo+30NoH/0wW2j9Osr3BQAF/OWdm9id0g0XAKZFzhdaRFPpFAwADSrKOyRhQXwm3sjx3wmt3b3SBMbJHIPNAPzxdz5vsFfrlkI77nDHgrkrX3S408bmI+4lJjQAMGhAN6/HeRxatxlXOq5LUZQcTlY+8/czxqzzfCyQ41kVRbmhudLkHwcgDEBNAPsAvOsU6DWrj6xWUhTl+nBFyW+t3W+tvWCtvQjgcwC3/U3s/5/V5zBVRlGU7OeK1vMbY0pmmNLbAQC3aL2MtDNp2Bm3y0t7af5aGhu7/nehvTbyMxrb5VF5syGkGB9JFbVyjtA6PvACjc0XIAtYJcrL9eljIz+h27Mij1NLJ1uP/3SPYTSWFffKFuXvd+xUWTxqSNbHA8DMFXKUGSvubUuW46QAIOWsLCQmXZRj1wDg+b4PCa0IaWsFgLfHy4Lsyl+4g/CYzwcLrTB53shfuTPy/kTpadCuw500tnff4UK7syuPLRoof+5b9vHj+EzntkIbNYEXpQcP9T739uzN/NjMf0x+z7iuZgCKGWOSAAwB0MwYUxPp03kTATyZ6VdUFOWG4ErHdU28BvuiKEo2oh1+iuJSNPkVxaVo8iuKS8lW994TR49j4dSfvbSkpM009rEn2gtt1reTaWyHrq2Etvg33hq7uXKI0Fo+Kts0AYAZnYwe8IrQRgzuQ7cfMmqC0J58siONZS67zIgD4C27rKoPAM92aie0vi+NprEbV8cIreGtlYVWsQQ3t5i96A+hDXiYzxB8bvD7QnvT4TjuTZCtrb2H9aSx7A7LCy+NEZpTVb5SpVChxe3cTWOHj3xGaNN+/Y3GhtWXd8OrlCpNY1clJAitgsO50Lm997n724JvaRxDr/yK4lI0+RXFpWjyK4pL0eRXFJeSrQU/v/z5Ubmm95rt5h3vobGlictuSEhVGvvOK+OE5pufj026vVFNoS36nvsEDBn6lNDiH+0tNKdRWUVLy5bb3Ln471s2QsvJZZetx3dq2WXFvY9Hv0RjW7WSRbRigQWENoW49AJAyQq8EMh4/rlHhLZlL1+z3qprC6HdFhZGY9m4rNFvPy805ugLABEh0vW5gB8fI1YsMFBodWtVobGRv60QWrmS3JPgjsqyyHqbg9twSqr3ueB0fjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUrK12p8rl4FvPu9q7NRx42lsu7bNhObry+f6EeNbHEzmM9P2HJFepCeOnKSxH0/4QWhRC+WdgYA3+9Ptd6zbIbRyPYvR2Pj90kSCzc4DuMsuM+IAeMsuq+oDwK+/ThJawoGBQrujiqxGA8DCtdIx2cmh9re4TUIrWkBWzwHg4AH5M9tV6BCNZW3S05YuF1rzuvKuDwCcTpXuvadSudtxLnLirVoj5woCQOHgQkILKijvpADAxqQk+VoOVfzw4GCvx8wF2gm98iuKS9HkVxSXosmvKC4lM+O6yhpjlhhj4owxG40x/T16EWPMAmPMNs9X9e5XlByEYWvWvQKMKQmgpLU22hgTCGAtgPYAugM4Yq19yxgzEEBha61c7J6BajVq2O9/9l7Pf/gkL7bFxMh1/v27yjX+ADDik2+E1qBpLRq7ZbMswj3RnrcYbyCFF+a+O2OhbN0EeIvxI3fzdeTMkbdqab7e+9+M0NqQJNeis5ZdAEg4IJ1fb69YUWg9+nBX4cb3NxZanUq30NgPRnwhtLVRS2nstz9fPimOOwUDQFyifL+/T5Nr7IeM6Eu3jyHjxZwcl4uT9t65S7ir8IJv5gmtTgvueD9qkNy30V9NobH3NKvv9fiB1q2xITY2U1W/zIzr2metjfZ8fxLAJgClAbQDcMldYzLSfyEoipJD+Fef+Y0xoQBqAVgJIDiDd38ygGCHzRRFuQHJdPIbYwIA/AjgOWvtiYz/Z9M/O9DPDxnHdR0l99gVRbk+ZCr5jTF5kJ7431prf/LI+z31gEt1AToqJOO4rsJkma6iKNeHzEzsMUgf0rHJWpvRCXEWgG4A3vJ85Q6SGchlDPLlyeOlNQqXs9cBoE55aVgYu2sXiQRWz5dFFtZRBQA920qzzxVbt9JY5ikQVEAWyx5u05xuX5zETl68lMYeP3RCaJU68vXx/2aEFjPbdFqPzzr3WHHvi0+H0O37vBgvtFNnz9LYYSP7Ca1fT1n0BIDYRPlzT9yYSGObNKsrtKQaci183B7eAeqbW6ZEiMMotONnzgitbh3uOTFvshwTNy9SdpACwKBRcvxb3068oDsrOtrr8Zk02aHoRGbae28H8CiA9caYS/2mryI96acaY3oB2AmgU6ZfVVGU605mxnUtB+B060BarCiKkiPQDj9FcSma/IriUjT5FcWl/GN779WkeHAZe38X79bF8+fO09j2vdsILS6GO66+2P1BocUkJtLY9QmyffP4weM0tnYtWf2ePHaa0AoH82UNG/6U6/GnzfiIxvpddhcEAKb+yVtFC/hLXwOndte9CfuE5uSym3I8RWi5fOT1oXqFcnT7+rfIVt5XR3G/hvA68i5PXr+8NHbeJNkau2s7PxeKFZct0SFV5Ii2l1/oRref/KN8rdgl0qcAAO7pLdvCn24jx6MBwN6D0pl46jLeFn5w90GhDejOx7x9vWiZ1+M3n3kaiVu3XJ32XkVRbk40+RXFpWjyK4pL0eRXFJeSrQW/6hER9odffvHSWKEL4O2XrSMiSKRzCymDrdHfvo+3xrascavQ0s7LAuXspbxdtsItcvRTKtkeACqWKCG1krwwF0vWnCcdPUpj29epQ3UGM9tcv1uuj3c63nNnLBPayFeeoLHsvHv3mx9pbG7Schu9MJpEAiuXy4JddKxcz9+923/p9gnx64RWpkwlGnv8uDQRDb+1Go19Z5QcGdav3/9obLcBnYVWpVQpGntHXe/W8qSkLUhNPa0FP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lGwd15Vy9iyiNnkbZ7CWUgBYNVeOnwp+rSCNLeTvL7RFq+SYKgBY+M0ioX02kZtTHDghDTaiNm0Rmq+/H3+tn2SVefRQaWIBAIdPSRfj8xcu0NhpkfOF9nzfh2jsc4Pfl7HPPUJj2QitJd/K8WTMiAPgLbtOd5PYWKmvlsnjBQBVysiW3T4P3Etjtx+Qdxd6dH9daPf25tuHl31caE4jx5jJR7RDW/mUJb8LbeyHchQaADzV+02hbY7j49hWRC/1enx3s2Y0jqFXfkVxKZr8iuJSNPkVxaVkZVzXUGPMHmPMX55//EOUoig3JFkZ19UJwClr7TuZfbGIWrXs/KVLvbTUc+doLGshrezQ4vjkMyOF9tSLD9NY5r7rVNDxITPRWTvyxGlz6fYPtGkmtPLFi9NYdhyYOywALNkYJ7SO9fnoJ9ZOvGWvXFsO8ALnoG6yLTU0VLY9A0Dnl7sIbd8O6ScAAEEhQUJ7rGkTGrtowwahnUrl/gXzv5cF3ZrNawqtRrh0hwaALbtlW7mTz0DjSrLtd9o82eIMAGvmrxHapvWraSzjg+8/pPr+495eFK9064btmzZlqr03Mwae+wDs83x/0hhzaVyXoig5mKyM6wKAfsaYdcaYSTqlV1FyFlkZ1zUOQBiAmkj/y+Bdh+3+b1zXYTKJVlGU68MVj+uy1u631l6w1l4E8DkA+qEz47iuog6TTxRFyX4yU+2n47ouzenz0AGArMooinLDkpVxXV2NMTWRPp03EcCT//REh4+ewFc/ebemLvxemi8AwFvjZUtmt55SA4AvJsp5cqu2b6exiYekAcPaaNnWCgARERWFNvQp+VrjI2ULLQD8MHuJ0AIKB9DYRnWqC21TEp8n16CibKN9e3wkjd2bICv7rbryQUsHD8gpyt/+/JXQ2Ow8gLvs1rmLm4mwll1W1QeAFtXlsalf/z4a+2C/7kJLOyPn1wXmkw7IALAnXh6vL0aPIZHA9/OnCi1qNndc/uqr4UJblZBAY9m8vUA/3kK+84C30++/MefJyrgufn9LUZQcgXb4KYpL0eRXFJeiya8oLiVb1/Nba3Eu1buYUakWdzutTJxra99Vm8bmImvDa4eG0tiTZ2XL7IoUvvZ/W4J0rq1+W12hsQINABQvK1t5W9SuQWMLkALUylheiAwLkq2xK3/hhabew3oK7bawMBq7q5AshrIxYIkbE/n2ZIQWW7cP8PX489evp7GsuLdy5Rwa2/qhB4RWtKS8xbxkpRylBgB/zJIjtBo1laPjAODjt78W2u6dW0kkcP6i9Gb4hbgdA0CjVvWEFuBQ8Jszzvs4HHMYPcfQK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8nWan9AYH40auJdsS/Vjq8Enrpczr/r05FXXZnzbaAfb9+cFxMrtNBq5Whsi2ryTkTTOrJa/0SX5+j2Tdu1EtoSH/77tlZ4BaF1aNaIxo4c/53Qxnw+mMYGF5SOx/6+vjS2cP78Qvtu2XKhNWkm73gAQMxCedeEzc4DuMsuM+IAeMsuq+oDwLD+PYS2m6wmXRgjZ/IBQKFi8nzcS2YjAsA93dsKLWl7Io09eEKeo8kJ3OhkU2y80Ni5CMh2cR+H84uhV35FcSma/IriUjT5FcWlaPIrikv5R/feq0nJMqG257OveWkHkw7S2BYPNRfanu3cdbZO7SpCO+PgCrz/kFyz/uDtDWnsuxPkeu0jyXL7vv2kay0AzFsu3VkrVuTFxY3rZZEntGJZGluxRAmhscIeAAwaNFZoo9+WjrwAMG2pLO79OVMWXsvXkMVJADi6/6jQhr/GbR7YCK2Wj7WksWw9vn9BOaINAFrWkgXZssRB6mgKHxN3NOWU0FIcnILDgoKFNupTWYwFAL/8sj23SVPudTDxPenN8FDf+2lsk8qVvR43qF8fa9esyZR7r175FcWlaPIrikvR5FcUl5IZA08/Y8wqY0ysZ1zXMI9e3hiz0hgTb4yZYozhY00URbkhycy4LgPA31p7ymPhvRxAfwADAPxkrY00xnwKINZaO+7vnqtceEX76hjvsUP3NuLdYvH79wvNLy///VLEXxZ/2OgpJ5xiiwcGCq0KGRnm1DF3+JQsHhUjz+kE2x4Azl+Qa8Pn/LaSRAJFShQRWuEAXiyrSDwUcpORZXF7uLFoLeKh8OyTI2jsvb3lev4q5crQWGa26bQenxUC2zeUrvKFyTkDALVq3SW0L2ZMoLHd28luwi9nfkFjI0JChDbwf5/S2Db33ym06JjNNPat5wd4PT50KAnnzqVenYKfTefSWZjH888CaA7gB48+Genz+xRFySFkdmiHj8e2+wCABQC2Azhmrb00BTIJOr9PUXIUmUp+z2SemgBiRJ/wAAALvUlEQVTKIH0yT+V/2OT/yDiu69TxzFsMKYpybflX1X5r7TEASwA0BFDIGHNpVWAZAPSDYMZxXQEOjSiKomQ/man2FzfGFPJ8nw/AXQA2If2XQEdPWDcAM6/VTiqKcvXJzHr+kgAmG2N8kP7LYqq1do4xJg5ApDFmOIAYpM/z+1tSU85i61pvd9P8BeUacgA4ffy00MqHyko7wJ1+T509S2OjYuKEtiuOr9eu3uRWoSXuPyA0X19+FyKRPG+Pjq1pbO5cPnK/HKYaM7fg/Yny7ggAVKoUKrSIEN42fDpVPm8MWcvum5ufNpN/lGv3E+L5uvnwso8LbctufheBjdBiLrsAX4/ftEZVobGqPgDExCwQ2nff/ExjAwLknZRxY3h77yfvvSK0Ew5OuzGxW4RWk4yOyyqZGde1DkAtoifAYTKvoig3PtrhpyguRZNfUVyKJr+iuJRsNfAsWDgQ9z7ovU5/6Tw+Zso3n2yZ9c3P22j9q8j1/PsdegqOJss15xF31qSx7evK9davv/W50EqUl+vrAWDdMlnsGpfCC5Et75aeAqyVGAB+/F2usW/XQbaEAkDcTjlyrIDD6KdTZN160YAAoYWQ9fEA8PU7U4RWpkwlGnuRtJXn9eOF0y9GjxGa0wgtZrbJ1uM7teyy4t7brz1NYxdv3Ci0d1/+kERyHuglx5ABwO5k6XHhNK7rjUneLcIjnu2b6dfXK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8lW996qNWrY72bP9tLyOrSKBhUoIDQfYiwBcGMGVk0GgBNnzghtZtQqGrt1zTah9ezeTmg7D3IHYuYa62QikXb+vNCcTEZqEGOI3n2H09jhI58RmpOhSC4jPSC2JScLLY2YiQBA7I5EoU0awg0rvpz2gdCcfr7szs3Hb39NY2+9Q7ZkszFvjerfQ7dnLbtvfDaMxjYnI7Q+nDaLxvZqe7fQPv2Btw3XrSPbkTdv5y3o/+3p7Y58+PDeq2fmoSjKzYkmv6K4FE1+RXEpmvyK4lKyteBXJrSC7fuat5vr2l/X0tiOA+T89ROHeQGsS4smQotJTKSxcVulfvHCRRpbupxs25352RyhBYUG0e1XLZDjr6b/LNuDAb5GfvrqNXy/isg167sP8bX/R/bJ8WJ1a8l2aABYtUa2q168KI8NK0gBQJt6jYTWtceLNPaex1oJLXGrbEUGgKjZsgV8986tJBIICJDHptF98vzo0F6OgwP4evykeF5sa91dOhA/82BbGptKxsd9Nn0ujd27fZ/QXh8gnYIB4KPvvD10Phg2EEk7tmvBT1EUZzT5FcWlaPIrikvR5FcUl5KVWX1fGmN2GGP+8vzji+IVRbkhycqsvj4A5lhrf/jbJ8hA7Tp17Io/vY0onFx2WWtr8QK8LbV1swel1rkjiQR69ZBTxabNWkxjK9W8RWj31RJepo7GIX558ght/W5e0WbPUad8eRobTOYf7Dp8iMaGBQULLfI37nybK5csEkeOltXvCxdkKzIA/DjrE6E5nV9TlvwutKVTltHYSROGCu38Rd5ifPDESaFFzlwktIGPd6HbO7WFM1gF36lF2ZecC0M+4HP99u+QLdW176pNYx+7y9vEpVGDBli7dm2mqv2Zce+1ANisPkVRcjBXNKvPWntpJOwIY8w6Y8x7xhjqsZVxXNehQ/zqpChK9nNFs/qMMdUBDEL6zL56AIoAkFMJ4D2uq1ixYldptxVFySpXOquvtbV2n2d8dyqAL6ADPBQlR/GPn/mNMcUBnLPWHsswq2+UMaaktXafpyDYHsCGf3qu06mpiL6s7bZheDiNLU7W8+89Kp13AaB2Q9m+2eK+22lsWJBsxa1Rlw8dbh0RITRWwFr0Fx9J1amxbHdtXIm72aadl8Wj1HO8sMaKUlv2ySIRAFQpJSenlyvJ25GDCspjvq2F/J0+L5LXeKcuk4XEZVN5EW/shwOFNm7wOzR2VUKC0H6ZwZ83OUG2xj7+4kNCG/g/7jPARmg5ueyui5UtxrnzyLFrAC/uDevPW3aHjv1SaJcX9v5Pf2yw1+MdO/jIM0ZWZvUt9vxiMAD+Qnr1X1GUHEJWZvXxlRGKouQItMNPUVyKJr+iuBRNfkVxKdlq5hFWpYodNXmyl+b0+n+ROXev9n+Uxk5fJU0vwkvy+XmzZywV2hsv9KKx0Tt2CI3NfVvwM2+XDSgk59z1fUS2FwO8vbcCuTMBAGMjZwrtmc7cRIJVyus6tA1vTEoSWr1bKgpt0CjZxgsA+QtIZ+J6DaWbLgBMGPmN0LZs4sYub01+V2jM7RgANsXGC23zqs1C696/E90+JnaL0AoUlXdBACCsTEmhzZ2+lMYe2y/vVJWoILcHgKHPdhfamG9/orE1Irx/Pk936oQtGzeqmYeiKM5o8iuKS9HkVxSXosmvKC4lMx1+V40C+fKhxWUjjnY6rPT7/YgsouUy/HdVs2rSTXYNKdYBgE9u2X65btcuGnvwpFwbHl5CFhLDa8t1/wBQuJAsFJ13GHVVqlAhoSUfO0Zj98bvFdqoCZE0tsKtsrh3W4UKNDYXWYs++qspQuvb6T90e1a8PUSOIQBsjpMj0sZG8kJioJ+f0AKIBkCcXwDwRz15fkTHyCIgANSMkAVOp9eK3iTHuTm57H6zcKnQnFp2WYFxwMP309ipUd7OxueJ27ITeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZ2t5bvlIlO+STz7y0xtX53DjWRlvEX7aPAkBuH26gwGBuwXMW/0kigTJhpYRWm7TG7nK4Y1EkQLb3lnOwMstH3F0THZ43iBidDB7KK+UDXuomtOKB3AU5DzmOuw7LGYAbSBswABw7Ih2XRz7NZ/WtiF4qtOVbZGstAJxNTRPanHFyZiIABBSWx3zc2EFCCykjq/pOvDGJG3/8t8cTQnvhrbdp7LMPy7buy404LvHE4MeEduTUKRIJdGrQQGjWWm3vVRTFGU1+RXEpmvyK4lI0+RXFpWRrwc8YcxDATs/DYgBuxike+r5yHjfTeytnrS2emcBsTX6vFzZmjbW27nV58WuIvq+cx8383v4O/bNfUVyKJr+iuJTrmfzjr+NrX0v0feU8bub35sh1+8yvKMr1Rf/sVxSXku3Jb4xpbYzZYoyJN8bIaY05CGPMJGPMAWPMhgxaEWPMAmPMNs/XwtdzH68EY0xZY8wSY0ycMWajMaa/R8/R780Y42eMWWWMifW8r2EevbwxZqXnnJxijMl7vfc1O8jW5PcM+/wYwD0AqgLoaoyRHks5hy8BtL5MGwhgkbU2HMAiz+OcxnkAL1hrqwJoAKCv5+eU099bKoDm1toIADUBtDbGNAAwCsB71tpbABwFwAc53GRk95X/NgDx1toEa20agEgA7bJ5H64a1trfABy5TG4H4NJkkslIH1+eo7DW7rPWRnu+PwlgE4DSyOHvzaZzaXlcHs8/C6A5gEtzx3Pc+7pSsjv5SwPYneFxkke7mQi21l4aEp8MIPh67kxWMcaEIn1K80rcBO/NGONjjPkLwAEACwBsB3DMWntpBNDNeE5StOB3DbHpt1Jy7O0UY0wAgB8BPGet9Vqsn1Pfm7X2grW2JoAySP9LtPJ13qXrRnYn/x4AZTM8LuPRbib2G2NKAoDn64HrvD9XhDEmD9IT/1tr7aVBcTfFewMAa+0xAEsANARQyBhzycb+ZjwnKdmd/KsBhHuqq3kBdAEwK5v34VozC8Al+5xuAORUzRscY4wBMBHAJmvtmAz/laPfmzGmuDGmkOf7fADuQno9YwmAjp6wHPe+rpRsb/IxxtwL4H0APgAmWWtHZOsOXEWMMd8DaIb0VWH7AQwBMAPAVAAhSF/B2Mlae3lR8IbGGNMYwO8A1gO4NAXiVaR/7s+x780YUwPpBT0fpF/4plpr3zDGVEB68bkIgBgAj1hrpY/cTYZ2+CmKS9GCn6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1Fcyv8DfxiZ/STZuJQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4Tff2xt+viAhREUOShiSImiPmKlUNWvRX1YFSVb06T3Sk1eFWq+Mt7b1uJ701lKq61V4tLTXWULMSIghJEBIRJEIiEr6/P3Lcx7HeXbmiId3r8zye5LzWztl7n7Oyc9Ze33cZay0URXEf5S71DiiKcmnQ5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaWUKPmNMT2MMduNMTuNMc9frJ1SFOWPx1xoh58xxgfADgDdAaQCWAtggLV26+9sI54ssFowjS04eUJoNa50iM0vEFpwjWo0dmv8NqHVCruSxpbzMUILqlJFaIeP5tDt8/PyhZZ5II3GVqkSRJ6f/272q1RRaCdPnKSxNWrJ81DOyOMCgIz0Q0KrFVJdaMdPyNcGAAL8/YWWlc3PTa3qcr+ycnNpLCM/V55bAPD18xWaDzmP5csV/7qXfYQfA3uuGtWq0tijeXlCy83hx1u9eqDQThYW0lifc44jbd8+ZB0+zF/gcyhfnCAH2gHYaa1NAgBjzHQAtwBwTH5G1653Uz1173ahPTDqSRqbnpIutKf/0pfGtoy+VmiPj36JxlYMkG/mgbGdhTZ1wRK6ffLmFKF99t7rNLZLbH+hVapSicY2bNdQaLvjd9PYIU/I81CxQgUa+893pwjtyecHC23lFvkLFACuad5YaN//tIzGPjGoj4zd8BuNZSTFJVE9tF6o0KpcUVloQQEBdHuWNT9+s5jGhkTKi9H9fW+isQu2bBHahsUbaezge24WWvLBgzS2aiXv98iQW2+lcYyS/NkfBmDvWY9TPZqiKGWAklz5i4Ux5kEAD/7Rz6Moyv9GSZJ/H4A6Zz2u7dG8sNaOBzAe4J/5FUW5NJQk+dcCaGCMqYuipO8P4K7f2yCwWrD4jD/zmzE0tnfvJ4SWtosXy+pG1xVaxtGjNPam/rLGsG/nfhpbP6a+0OL27BFa+Qqy8AMAjchn83seG05ja4XXEtqJ47yw9sPEGUJr3rYdjS3v4yO0pIwMGlstWBbhWH1gy3L5+RUAMlMzhcbqMQCQnSsLYN2aNqWx036Un7l9Hc75sn/LGkNMbIzQApvJ1xYAVixaJ7TgCF5oXvatfK5H+/emsVPf/FJonW7tRGMbhsq6xTMPvEZj/z5hlNdj9no7ccHJb60tNMY8DmAeAB8AE6y18Rf68xRFKV1K9JnfWvsjgB8v0r4oilKKaIeforgUTX5FcSma/IriUv7w+/xnU3DyhOjcY1V9APj++3FCa9dTdqABwJTRE4XW9NOXaeyeBFmtD60rq6sAMPfzuULrM+GvQtu0bRfdPri2rBKXc2gr/eDFkXL74Aga+9TYV4SWmijusgIAFi9bL7S6jfnP/fQ9eWzhTcKFdmifbAMG+N0Cp85DX1KVHvvRVzQ2PUneMajXoh6NZZX9Q/vlXYg5m3mHIOt273WT7AoFgONHjwttRWIijQ1vJM95dKtGNHbvIXl+G7ZpQmNnzFro9fhIFr/LxdArv6K4FE1+RXEpmvyK4lI0+RXFpVzwev4LIfKqhvblcR95aU4tu4b8WnrpkUE09rnXPpTaML5U+I13PhfatvW8MbFJu2ihPfuU3IdXXpLPDwCfjpNFvC+XLaex2RlZQtuTsJdEAl37yALU2Gc/oLFhkbLQVLGyH42NbC7bpO+57UahVfbj2x8+dkxoFvz9VdFXtg3XuuIKGptfIP0anNq3w4KkL0J6ljy3/g7LmlMPHxZaGtkeAK5rJAt2xsErIZ+sx/8tJYXGZpO1/y0jeJG2WmXv5crXdeyI3zZsKNZ6fr3yK4pL0eRXFJeiya8oLkWTX1Fciia/oriU0m3vzS8Q5g7MiAPgLbusqg8Af3vlMRnrUO2vRMwcOzi0b8YtiRNafqGsPD/5gjS5BIDCU6eEVj80hMb2HTBEaK1b96Cx9z9wm9A69OLHkLRJtrFWrcXNKT578x2hXRklnY1rBnKH2gYh8thmzllCY6+7tpXQZi1dRWMDqkmzzdOF8twCQLcYeYfmp5XSoMPHl7/1a9aULcrt6nPjj+P50kF41q9raGx4mDznzWrXprEffvaN0Or2r0ljlyV4m6lm/w8OyHrlVxSXosmvKC5Fk19RXIomv6K4lBK19xpjUgDkADgFoNBa2+b34lu1bm1XrFzppTm1aR45LtdKh1XjI7gYtaryohQrwq3exdfjs3XVox8YIbT+jz1At49uL9dgt4yIpLGHSGusU/Emeb9c394luhmNnbNcFqB8K/BiV1SkLEAdJq/DvmTeku3nL9t+w8N5gbNbM7m/7/5rOo0NrCnHV2VlHKGxLzw0UGjLtskJQzuSeet00wayAL2PtPwCwG1t2wrtzY+lSy8AhNaXnhE+5bnTbrtGDYTG3h8AkHLA24n5rw8+iOTt2/7wcV1nuN5aK90SFEW5rNE/+xXFpZQ0+S2An40x6z1juQTGmAeNMeuMMesyM/UPBEW5XChp8ney1rYC0BPAY8YYMcLWWjveWtvGWtumRo0aJXw6RVEuFiVKfmvtPs/XDADfoWhst6IoZYALLvgZYyoDKGetzfF8fwMAPlDMw9b4bWgZ7d2GymbnAdxlN4y0mgK8ZZdV9QE+y2zSQj5/Pe+YnJW3KW6J0D6b/TPd/sRJ2Qp8Ry/eCtw+NlZoCetkezEA3P3CvULr0/1OGjvwyYeFFlCtCo39dekGuf3t0syjkoMRxlVkxpzTHYs95E5KjxuuobHMTCPeYV5gYrq8E5JJKuUdW/C5gH6+cgbgh6Mn0djyT8j30rAhd9DY+H3SXfmfr02gsZUe9Rdae4cW4zrVvc1LAvwr0jhGSar9wQC+8ziXlAcwzVorva4VRbksKcmgziQALS7iviiKUororT5FcSma/IriUkrVvTe8fgM7/J2xXtq+nftp7PEs2Va6Y+NWGsvW43fvwYtHiXtl4eXertfT2Hr15Kea1RuXCW36z7/Q7a9vL0dHrduxk8bu/E22GMct3URjR7wnR5z9upLHJsXJ9fwPDxtAYz8eK1tTa9SW68hje3ag2/+yQLYS120WSWNzc6RDbWAt2cYLANkHs4U2uIcskALAVlJYYyPLCvJlMRYA0pNlwfCFEdJrAQDWJclz61QMLTx9Wmgdr5JtvADg6yM/jU+ez4vSmanevTMfvvEiUlOS1L1XURRnNPkVxaVo8iuKS9HkVxSXosmvKC6lVN17y/kYVAzwbl2sH8PbFud+LpsF2ew8gLvsNmrbkMayll1W1QeApCRZQT92Qm7fuoWc2QYAWaS1tVZ1bkjy0/pEoSUmStdZgM+0a9qCV45nT5gptILCvjR29/ZkoWXul224IXW5QUfeUXm8VavyVuLkLSlCS1iZQGPz86RLblidWjT2ioqyNXb7mu1Cy9zHV5hWripbxUMcjGFYK/CqFfyuS+NWVwmtQnm5PQDsPyKNSgICpYMxAMw7J0+OZ6t7r6Io50GTX1Fciia/orgUTX5FcSml2t7L3Hvj9sh1+wBQP1iONzpZWEhj2Qit3rG8qMXW4x92cEZlxb26tWSh6fm3PuH7lSsLVQP/cjONDago12H7lOO/m8f9fZrQRr30EI2dvV6u0d+0mBelHnukn9AqknbVA9my3RYAgirLYpnTMVQkxbLtZC0+AESRc758xw4ae4W/LPg1JWOxqlWqRLdnrNrJW7L9yblZvoqf22bRsiBb3uHcxDaVXgML4+NpbNQ5eXJzt26I27hR23sVRXFGk19RXIomv6K4FE1+RXEp5+3wM8ZMAPB/ADKstc08WhCArwFEAkgB0M9ay+cnncXhozmYumCJ9w5U4F1Om7bJ9e1rflpLY598QZpiOo3QYmabBcRoE+Cde6y49/YL0iQTAFaTQtGaODk6CgCaNpRjotas3kxjn3pKmp4u3y672AAgOU527fn48jFRCfult0JXUnzadeAA3Z6Zpu51GHXVOjJSaE7F59yTJ4VWJyiIRAJt6tUT2imylt7J4DWfFJXDHJ4rvHp1+XPJcwGAj5E1OFZMBYDj+bLQ7FTBq3JOobicQxGRUZzISQB6nKM9D2ChtbYBgIWex4qilCHOm/zW2qUAzv31fQuAyZ7vJwPoc5H3S1GUP5gL/cwfbK09M6o1HUU23pSzx3XlONwfVhSl9Clxwc8WfVBz7BQ6e1xXFYfVUYqilD4XmvwHjDGhAOD5mnGeeEVRLjMudD3/9wAGA3jb83VWcTbKz8tH8uYUL61RO77uPri2/CRx37iRNJZVbqPbN6GxbIRWk7AwGsvW47OWXVbVB4D2UVFCu2vQCzT2mtGyql49jA82fXn4P4T21pinaGz1KnI9vdMILVa9Hj9L+iq0iuavGavWO1XlkzLk9WJzPD+PeY1lBb+dw/iq3r2ls/HAkQNpLONYtnSN7ti8MY3td8czQmPOygCQnSfdioMd/hI2pLZ/xOE1mzbX29X3cHYOjWOc98pvjPkKwEoADY0xqcaY+1CU9N2NMYkAunkeK4pShjjvld9ay03ega4XeV8URSlFtMNPUVyKJr+iuJRSXc/v61vBBgZ6F/LueWw4jWVtis2va05j64dKQ8mIGrxYdkcv2Qr8yJuycANws01mnunUsrt8phztNW3KWzT2HzNkzTR1eyqNrddCFrtSd/DYnr07C4211gLA18t/FVqP1nLk2IaU3XR79nPnb95CY29p00pom/bspbGsNTYuUbYtA0B5X/lJNrq+3K+gAOk94MTfiX8CAES1lAXdR27tRWPXJ8v9/e7fC2jsK0//RWisQAoAlfy8W4R7d78Bm3U9v6Iov4cmv6K4FE1+RXEpmvyK4lI0+RXFpZTquK4qVYLQJba/l1YrnI9d+uBF2co7svH7NLbvgCFC+2nVIhrbPjZWaDt/k8YhAB+hNWrMMKExIw6At+xeffPVNHZov1uEduON99HYAYNuElpuDm//jEuQx7Ynk4+qerCnrFS/9+XXQjtxTLaqAkBV4og7c6wcFwYA138u269nf7uYRAKBtQKFFtE4nMY2CJF3frbulXdCdm/ldyxq1akptBHP3ktjU8h5nDBvIY015I7F0IfvpLHjv/1JaCGRfOFsxl7vuwDZOdyJmqFXfkVxKZr8iuJSNPkVxaVo8iuKSynVgl85n3KoVMW7KHTiuHQqBYDg4Aih7Ung7Z+tW5/rL+q8Zj1hXZzQ/P35DPnExHVC8ykn1807ueyy9fhOLbusuDdv3uc09h3zitBOnpAOtwAwY9xkoT34uixaAkDnzrIAdfTQUaE5zYrfECcdhAeM4EWttUlJQivI5y7KB/ceFJqfvx+NrUH8C1hx70i6g9k0aXc/1oq/RxP37hOa07k5mSd9IPYf4fvQrVNr+VwOjslpSd4jzpzOIUOv/IriUjT5FcWlaPIrikvR5FcUl1IcD78JxpgMY8yWs7RXjTH7jDEbPf/4ImZFUS5bzmvmYYzpDOAYgC/OmtX3KoBj1tr3/pcnC4uoZx97cbSX9sPEGTT24TeeFFpwDe4EW7embMlclcBn17E2y6jaV9JYZtwxjhg7sNl5AHfZ7XRbJxrbPlrOBWT7CgAxEfJOyDOvjqOx77z8qNCmLllKY+uFhQqtdpA0NFmfnEK3r0Rmzzk51Fb2k9X6OtX565uYLivd6xJk6zUArPlxjdA63S7PefcW0XR7NvNw27odNJYZqAx9bhCNXbB8vdCc7tDc31deS8dN5G3Sg+70vtN1Uc08HMZ1KYpSxinJZ/7HjTFxno8F8vKgKMplzYUm/8cA6gOIAZAGYIxT4Nmz+o4fK/5AAUVR/lguKPmttQestaestacBfAag3e/E/ndWX+UA3kmnKErpUyz3XmNMJIDZZxX8Qs9M6TXGPAWgvbW2v/NPKKJmcG17W//HvDSn549oKotav8zka6U79LpWaEPuvpnG9uku200HPvUIjW3aooF8rgZSY0UigBfmPp34HY0NCpXFLqeCEGt3HfMqHxM1aaFcI+/kX1A/RroCD+wiz+3xfNmqCvCC324H7wC27t6JXPJ8H03/nsY+dKd83cuR8ldlv4p0+/wC2R7b9/anaez4KaOF5le++B3zD9//GtVjYqVj8iMDpd8DAFzh7+/1uF3btli3bl2xCn7n3VPPuK4uAGoYY1IB/BVAF2NMDIqm86YAeKg4T6YoyuXDhY7r4itOFEUpM2iHn6K4FE1+RXEpmvyK4lJKdVZf4+bN7aTvvKvd5X18aOziZbIdMn55PI0tLCgUWodbOtDY3OzjQkvazOe+bV33m9Duf/0xoSXH8e273Sj3wel8M5fdyW99QmOXr/hWaE4tu/d2vV5oA+5+gcYyZ2HmZtu8Th26/ba0NKH1aS2NKQBgXpw0VckvlK8jwCvoTrFdGjcW2oodsj33tMPrEEgciNvU5e7M2XnSxXjjbu4KzM7ZqdOnaexX/5Ez/O7rx5fP/BznbSTz8v33IWnbNp3VpyiKM5r8iuJSNPkVxaVo8iuKSynVgl/T6Gg7bfZsLy0pI4PGsoLMgmm8vbcqGedUv0U9GnuqUBZZrmkpx2oBQAEpKk2f8qPQfHx50bLLTdcI7XpSkAKA79ZJp+A8B2fjcqRf1alld9dGqX819S0aO+3XX4XWs0ULofmU49cMtkY/+aBsRQaA6gHS5fZkIXeereovi3BTF/ECZ6doOQasXi05Eq6cg1cCY2E8LzS3JO3b+7OyaGydINm+7fRzU3ftF9odN3amsX6+3sXQG67rgo2//aYFP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lFKt9tesFWb79PN2k60WzO3/Pn3vr0Ib+f4/aexnb74jte+n0thfl24QmtP8vN3bZdvuR5OlgUPCflmdBYCIGnJW37odO2nsgz1l+yabnQcAL48bIbRdqbK1FuCz9mqSll0AuOsaeXfirc++Etr+nfx465E7LPO+kHdHAGA8uePw7ruTaGw+mXPHWpEBoHx5eedl+1rZ3rsvUc7ZA/i5efHZv9DYGYuWCc0w5xAAW1cmCG3Es/fS2Lg9e4S26hfZag4A+bne52bCP95AWmqKVvsVRXFGk19RXIomv6K4lOKM66pjjFlsjNlqjIk3xgzz6EHGmPnGmETPV/XuV5QyRHGsRgsBPGOt3WCMqQJgvTFmPoB7ASy01r5tjHkewPMAZCXqLGqFVMeTzw/20ioSx1cACG8SLrTbu/JRV1dGyXFbh4/LdfsAMPD2G4X2+RfcCTZz/yGhsf3t2pS3B4+fNVdo/bpLN1wAeO/Lr4XGinUAH6F1dVQUjZ25Ro6v6kFadgFe3HvhAWnhOPKd8XT7uCWbhPbQaO7tev9dw4UWHy8LaAAQGdlcaK27c5+Ao8fkOVv6w89C27KFP1dEhGwPHjykN409kiFbeedO4e+lvsMGCi0+lReab2gujzfzKJ95MbBTR6oXh+KM60qz1m7wfJ8DIAFAGIBbAEz2hE0G0OeC90JRlFLnf/rM7/HvbwlgNYDgM979ANIBBF/UPVMU5Q+l2MlvjAkAMBPAk9Zar7+tbFGzAG0YOHtc15HDOu9TUS4XipX8xhhfFCX+l9baMwZyB4wxoZ7/DwVA1+aePa6rGlnWqCjKpaE4E3sMioZ0JFhrx571X98DGAzgbc/XWef7WcdPnMDKLdu8tC3Lt9DYQ/tkse2eXl1pbM1AOQN+x7YUGstGSsX25GafIXXlSKkD2dlC23VAzo8HgFbRDYW2IYUbPJ44Js0gAwLlmncAWJ+cIrRqlXksM450Wo/POvdYce/NEQ/S7VvGdBMaK4oBwD8myU7Jd177jMbOnilnxCyYyv0aCvLliDM/P3+htWghjU0BwBh5brbt592TC6fPE9qQUQ/T2Ed6yTFir306gcbWJ/4DY4fx0V7PvDrO6/HUT9+lcYziVPs7AhgEYLMxZqNHG4mipJ9hjLkPwG4A/Yr9rIqiXHKKM65rOQCnXmF+KVYU5bJHO/wUxaVo8iuKS9HkVxSXUpyC30UjwN8f1zT3dq/NTM2ksWyd/+Fjx2hsgxBZld+9m1dorwoNFdqU6XzNed7RXKEFXSfXkReeOkW3Z14JrSMjaWxVMiZqQ9x2GsvuWDAN4CO0GoeF0Vi2Hp+17LKqPgD8tlGOmWrdsQuNnfLlHKE1bCvvjgDAhpX1hRZ7VyyNnTdRtlQfPLhXaNWr83OwebN0BW5d930ay1pbrm3ciEZGRbUSWucOMTQ2jdxRyszkrcA5h73bfk+d4iPAGHrlVxSXosmvKC5Fk19RXIomv6K4lFIt+GVl5+D7n7zXUaenpNPY3fGyDfae/j1p7Mw5S4TWvBUvHmXnyiJe3WaRNLZq1SpCY62xex0WLLERTfM383bmmWNnCm3ACG7gGVxVtjPvzuSF0z6t5bp3pxFazGyTrcd3atllxb1/ffgSjWWvwxc/8nFssb3lavHYdrxYtmmxLFDeOvRWoaU6GHg2ipFr6UOqynFwABDVTBb3LF/fhtq15fuxpUPx9/2p3wotPFz6DADAtXd4+0PMnzeZxjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUkp1XFer1q3tsl9XeGnZudLEAgB8feTYpcLTvHVxD6l0t6pbl8cekiYhP69cT2MP7JYmHUOH3CG04/lynBQAJGVIc6M29fh+Hc07IbS1SUk09irSztzoSulgDAA/btwotGuuuorG5uTJ14K57DIjDoC37A5/TLrWAryd+aX3/kVjq4XIVu+QSHkOnJg7Qbb8Vqoinx8A/Cr5Ce32e/hdpoM50lF39dy1NPa+++UdhywHh2n2Pk8+QI2yMOcT73M+b+4kHD6UpuO6FEVxRpNfUVyKJr+iuJSSjOt61Rizzxiz0fNPzphWFOWypSTjugDgfWvte8V9sqzcXHy/wXvOeDeHUVdjP5Kjo0YPf4DGzlq6SmgLFq6msT1ukDPoA2vx9s0EMlN9e7psR3Yqmm6O3yk03/L8lM/+drHQCvILaGzXEfdRnZFfWCi0k4X857777iShsRFaTi67bD2+U8suK+6NfvZ+Gsucdm+6S44RA4CoVnJsWZEBtTdzZvI22M6xtwktoGJFGrs9WfoELPlBFj0BILS+9JFo2IQXf7uTcV2HHLws5s/7wuvx0WxZ0HaiOAaeaQDSPN/nGGPOjOtSFKUMU5JxXQDwuDEmzhgzQaf0KkrZoiTjuj4GUB9ADIr+MhjjsN1/x3XlHDlyEXZZUZSLwQWP67LWHrDWnrLWngbwGYB2bNuzx3VVqaZ/HCjK5UJxqv10XNeZOX0ebgXAF6orinJZUpJxXQOMMTEosjBNASBdH4rBtB9llRsA0pNkVT2/gFepA6rJOXWnCrmjblqWNKLIPijdUgEgP0+27UaROWq5J+V8OADIayzdcH1I5RngdxwO7uWmG4npsu2YtfwCgB+5u1DVn7e2suONjJSVZzY7D3Bw2SVGHABQu2FtoTnNz9u0Sb5HmrfsSGOzDsrX95cF0iglN5e/5it+kSMn+xzoTWMXTV0ktN738rsQU/72kdCGvDiUxp4md8Amvj6FxkZENPN6nJcn73w5UZJxXdzvWlGUMoF2+CmKS9HkVxSXosmvKC6lVNfzh0XUs4+OfN1L863gS2Pzc2XxaVC/HjR26ZatQtu7XbZeAsC+HdK1dczbT9HYBfHyBkYhGYfEXHoBoCFZYz99sWyXBYArqkmn4PQUWdgDgMqBlYWWdYD3UNRvKltIDx/ixS5TTpZ2Ck7IIuuCqXIsF8BHaDm57K5PShZa/Ip4GrsnYY/Qpjp4Cizdtk1oEz/4Wmi1G/Am1YbtpCPvmKGjaOyoz98W2vI5vOBWnrzPp308jsau3CjfIyt27KCx6Xu91/m/M/xJ7NmZqOv5FUVxRpNfUVyKJr+iuBRNfkVxKZr8iuJSSnVWn6+fL0LreZsaLPs3r37HxMoqcZhDVb1bTLTQQrp0prGJxIxj6z4+t+2Kiv5CY86qberJNl4A6N37CaHdOlSaRQBAA9KeW6OKvAMAAF9/KltQx7z7NI0tPCXbnDOOHqWxq7fJivLRYzK2IJ+3M8+bKF1y2ew8AOjcV74+zIgD4C27rKoPAJ0byWr9oCEvC+2kg1HKv16Wbbgz502lsVEh8m5OgYNRyjUdZIvwzyt/prHs9Xl58DAae8/T3i3Cpx3a2hl65VcUl6LJryguRZNfUVyKJr+iuJRSLfj5+JRDlSu8W1NZYQ8ADu2XI7jSyVp8APhp5TqhNawfTmMziQtqcsJuGrt9zXahvf7G40I75TBGbOBIOaoqKjiYxm7dmyq03Vv5fnW6vZPQSGcuAN4WemO0LJACwBdTZgtt6Q+yKOXnJwuhAHDwoGypvnWoHFMF8BFazGUX4Ovx847xMW+suDdlwutCa9pUnkMAOH5ctj5vSOGvQ987nxXajFW8vTcoSBYHl27i7cz3dOsitGbRfH9XzFrq9fhYFnf5ZeiVX1Fciia/orgUTX5FcSnFMfCsaIxZY4zZ5BnXNcqj1zXGrDbG7DTGfG2MqfDH766iKBeL4hT88gHEWmuPeSy8lxtjfgLwNIrGdU03xnwC4D4Uefk7P1m5cggK8DbbDGwmTR8BYM5mOZvevwL//eLjKw9jBxmlBAAdW0hzxB0b5VgtAMjcJ4uO1chcedZF50RQgFyLD/Di3pF0vkZ/yJ03Ca2yHx8pdZr4NZRzKKztS5Sdjlu2yA5MJ6PN6tXlGvlU8jMBoFIVeR6dRmgxs02n9fisc48V9+Ljl9Ptw8ObCK0+MW0FgIgmsqi8YCofT1YrTI7rujKkBo1l49TqteBdpB++OdLrcW4u795knPfKb4s4U0L09fyzAGIBfOPRJwPgNq2KolyWFHdoh4/HtjsDwHwAuwBkWWvPTIFMhc7vU5QyRbGS3zOZJwZAbRRN5pGrJxw4e1xXlo7rUpTLhv+p2m+tzQKwGEAHAIHy2b4fAAALa0lEQVTGmDMftmsDoB/uzh7XFajjuhTlsqE41f6axphAz/f+ALoDSEDRL4E7PGGDAch1poqiXLYUp9ofCmCyMcYHRb8sZlhrZxtjtgKYbowZDeA3FM3zOy/n1plXLJKtuQDATIVTDx+msTVryr8onNbC+/lKF9X0ZLnGHwAqV+WV+XPJLyyk+rHs48XaHgBq1akpRQdn5eXbZdtx71ataGwguTvhRE2yDxERsvptDL9mbN68VGiNYuS4LwDwq+QntM6x3OuAjdBiLrsAX4/PWnZZVR8A9uyRTtANQnhL9vKfpIvx0x+8QGPHPTdWaI2JuzMA5BfI99OSWXxAVqNGV3s93rp1BY1jFGdcVxyAlkRPgsNkXkVRLn+0w09RXIomv6K4FE1+RXEppTquK+TKcHv3Q8O9tOAIXky57lpZwDpE1uIDQMvISKEtczB4/M9H3wttzD+Gk0ggpGpVof2SkCA0J2NR1vb7yUczaOyIZ+8V2rETJ2js9JnzhbZ23hoe++/3hLbcYfRTu/qy1Tr18CGhbdufRrdvXTdSaCFVA2ns2iTZvh1Qkbco7zogx5a99Yhctw9ws022Ht+pZZcV9wKIkSsAJBDj12UOa/Qj68j23p4xopQGANi+X/7cqv58Hw5kexcz+/Xqhfi4OB3XpSiKM5r8iuJSNPkVxaVo8iuKS9HkVxSXUurjukIivaupy77l47qOH5WtscMfGsBj8/OFdlvbtjS2/BM+QltHKs8AbwVmVdfw6tXp9v3ueEZo3QZ1p7EpmdI4JHEvN8JI3SGdfsdPGU1js/Oky23LiAgaO2ORfC2OZEjH5IXT59Hti2wevIlqxttwuw6IFdp2BwOWRVMXCW3U52/TWDZCi7nsMiMOgLfssqo+ADQOk6vYnYxd2ra+UWirE/ldlwLSLn5Na3m+AOCBkd53qrJzit9Srld+RXEpmvyK4lI0+RXFpWjyK4pLKdWCX41qVXF/X2/n2Uf7y7nlALAiMVFoTuOcZv0qW1vTdvEW1GFD7hCaU8Fv1Qo5W75iZdmCWugwrmvEe08IrV097sI6YZ50fQ0IDCCRwNDnBgnNrzx/KVftlM7EVzo4Khky82vuFNkOPWTUw3T7axvL4p4lRUAA+PiTb4S25Ic5NLb3vbLQu3wOH4tVQJxv2QgtJ5ddth7fqWWXFffK+8iCMgBs3C1bjBcsXUtjH+13s9DiE/jx9v6/R7we5xy+iO69iqL8OdHkVxSXosmvKC5Fk19RXEpJZvVNMsYkG2M2ev7F/PG7qyjKxaIks/oA4DlrrSzbOnA0Lw8Ltmzx0qa++SWNDW8kW1DbvsIr5eFh3BCEEU9aNZ2q9Y1bXSW0yn7SddbH4S4Ea61dn5xMY9mdjJN5sm0ZABYsXy+0e27uRmOb16kjtEoOMw8nrZRGJX2HDRTaI71kNRoAoqKkAUvt2g1p7JjPXhFaaH1peAEAU/4mHXl7DuhHY6/pIO8eBQXJll82Ow/gLrsv/vNFGstadllVHwBiSEv1lKW8tX1XhjQv6diUuzOP+uQzr8dbtstWaCeK495rAbBZfYqilGEuaFaftXa157/eMMbEGWPeN8bISyK8x3UdzZKLRBRFuTRc0Kw+Y0wzAC+gaGZfWwBBAEY4bPvfcV1XBHI/N0VRSp8LndXXw1qb5hnfnQ9gInSAh6KUKc7r3muMqQmgwFqb5ZnV9zOAdwCst9ammaJK1fsATlhrn/+9nxVaO8L+5Qnv4klQCG81jW4lW0V9HVonG4bK4s289Rtp7IIvpPPteFJ8AoAK5eV6fuYKXN1hNBhb+//p59/S2KEP3ym0/Q5TjRf9IkecrZvHx569O+45oa3ZtYvGXttInvP4VOkdsGmjHBcGAJ07yBs+zFkZ4C3VTu7MSTvlOv8xz/Ei3M8rfxbaUtKee2VIDbo9G6EVFcrHarH1+EtWbKCxzKV6UOdraeyONNmafsqhKH3ue+SRfv2wPT6+WO69JZnVt8jzi8EA2AiAN3wrinJZUpJZfdxaRFGUMoF2+CmKS9HkVxSXosmvKC6lVGf1NWvRws6cO9dLY5V6ANh7SM6IW5+SQmPXLpQV1rvu6kljt5Dq9a1t2tDYNNKUFFFDVomP5/OZegay6OpkSDL+25+E1q1TaxrLzDg+mSZNN5yez68S7cdC0+ZRQruheXOhpRw8SLdPO2duHACs+JXfdelwdbTQ2KxAADhNKt1HcnNpbMZRaWbBKvgniekHAOQXSOdcp+diLrvs/QHwll0/cjcJAK4iObGKmNsAQKu6db0eX92+PdavW6ez+hRFcUaTX1Fciia/orgUTX5FcSml6t57srAQyecUi5554DUa27BNE6ENfZyP66rbv6bQnFpF25Oi0uT5i2ksc8/deUAWbpyqK6xQ1MihwHnuGDMASCTPBQAz/yPXbA8lrsQAL0qdKODFrolfSffczKM5Qhs7jL9mmZmymBoeLl9HAAipGyI0p9ds4utThHb3yLto7MuDhwmtWXQnodVrwb0hlsz6UWiz53PPCTZCy8lll63HX50g3aEBXty7ukEDGjt50RKvx4dz5OvlhF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKqVb7fcqVQ9VKlby0v08YRWNnzJKz1KpVrkxjlyVIgw3WEgoAdaoHCS0zNZPGzvt8rtDGfCJnuVWpKOf3AcC0ufIuQqtI6eIKABl7M4SWlpROYx8Y0kdoVxDjEAD4asWvQuse3YzG5udKt+CBnToK7ZlXx9Htcw7LSvO1d3DDijmfyDsL8+d9QWMjIuT+ppPzBQD3PD1UaCtmLRXah2+OpNs3anS10A6QtmUAeGDkcKGdOzvvDOe67ALOZi3MVOXcqv4ZBsd2oXpx0Cu/orgUTX5FcSma/IriUjT5FcWllOp6fmPMQQBn5hnVAMArbWUbPa6yx5/p2CKstbLfnVCqye/1xMass9ZyF40yjB5X2ePPfGy/h/7ZryguRZNfUVzKpUz+8Zfwuf9I9LjKHn/mY3Pkkn3mVxTl0qJ/9iuKSyn15DfG9DDGbDfG7DTG/O5gz8sdY8wEY0yGMWbLWVqQMWa+MSbR85VPIr2MMcbUMcYsNsZsNcbEG2OGefQyfWzGmIrGmDXGmE2e4xrl0esaY1Z73pNfG2MqXOp9LQ1KNfk9wz4/BNATQBMAA4wx3OepbDAJQI9ztOcBLLTWNgCw0PO4rFEI4BlrbRMAVwN4zPM6lfVjywcQa61tASAGQA9jzNUomjr9vrU2CsARAPddwn0sNUr7yt8OwE5rbZK19iSA6QBuKeV9uGhYa5cCOHyOfAuAyZ7vJwOQS/Auc6y1adbaDZ7vcwAkAAhDGT82W8QZo0Bfzz8LIBbANx69zB3XhVLayR8G4Oxh66ke7c9EsLX2zID1dADSmbMMYYyJRNGU5tX4ExybMcbHGLMRQAaA+QB2Aciy1p5xOv0zvicpWvD7A7FFt1LK7O0UY0wAgJkAnrTWes3BKqvHZq09Za2NAVAbRX+JysXzLqG0k38fgDpnPa7t0f5MHDDGhAKA5yt3nbjMMcb4oijxv7TWfuuR/xTHBgDW2iwAiwF0ABBojDljbPNnfE9SSjv51wJo4KmuVgDQHwCfMFl2+R7AYM/3gwHMuoT7ckGYoumenwNIsNaOPeu/yvSxGWNqGmMCPd/7A+iOonrGYgBnBh+UueO6UEq9yccY0wvABwB8AEyw1r5RqjtwETHGfAWgC4pWhR0A8FcA/wEwA0A4ilYw9rPWnlsUvKwxxnQCsAzAZgBn/NBGouhzf5k9NmNMNIoKej4ouvDNsNa+Zoyph6LicxCA3wDcba2VnmZ/MrTDT1Fcihb8FMWlaPIrikvR5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJS/h/l3KikFmmUawAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -194,10 +193,9 @@ "source": [ "backend = Aer.get_backend('qasm_simulator')\n", "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entangler_map=[[0, 1]])\n", - "svm = QSVMKernel(feature_map, training_input, test_input, None)# the data for prediction can be feeded later.\n", + "svm = QSVMKernel(feature_map, training_input, test_input, None)# the data for prediction can be fed later.\n", "svm.random_seed = random_seed\n", - "run_config = RunConfig(shots=shots, max_credits=10, memory=False, seed=random_seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=random_seed)\n", + "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_mapper=random_seed)\n", "result = svm.run(quantum_instance)" ] }, @@ -222,7 +220,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYVWX3/u9HVFDAWXBElHBOHHPI1NTMstehzKHJKcvSsmzS8k0t9c0sKxssU8tG1Mox05xLCycIB5wQUVFxHlHB4fn9wfH747juXSSK4l6f6/KCc7v2Ofts9mJz1l7PvYy1FoqiuI9c13sHFEW5PmjyK4pL0eRXFJeiya8oLkWTX1Fciia/orgUTX5FcSma/IriUrKU/MaY1saYLcaYeGPMwKu1U4qiXHvMlXb4GWN8AGwFcBeAJACrAXS11sb9zTbixQIDi9LYoDJBQtubmERjQ28JFdqZ1DQae+HCBaGlHD1FY/0L+Qvt6IEjQitWWu4rAJw6clJoISElaezZNLm/STv30tgiJeQxSzvD3++Jo8eF5pc/P43NlcsIrVjxwjLOyDgASE4+LLRgsq8AkHL2rNAKOOzX4aMnhOZ03gYEyuc4cUz+fPPmy0u3T02R+1WwcCCN9fHxka91gp9LQUXlcTydmkpjz5FztEC+fDT2WEqK1+NDyck4efw4/wFdRu7MBDlwG4B4a20CABhjIgG0A+CY/IwGDdpSvd9b/YQ2pNdLNHbi9IlC27BzF409eVgm5B8zVvB9+08DoU378Buh9R7+DN1+2ZRlQhs3dhCNjduzR2gv9x5GYx8e+JjQdsbx97tw6s9Cq1wzgsb65vMV2uN9HxRavjx56Pbv/O8LoT3/SjcaG7Vpq9Ba161FY7/6ab7Qzjn8cm/UpLbQFs6RP9+QKiF0+61r5X7d+2BzGls0IEBov/z6B419rtsDQotOTKSx+44dE1qLatVo7Myo1V6Phz39JI1jZOXP/tIAdmd4nOTRFEXJAWTlyp8pjDFPAHjiWr+Ooij/jqwk/x4AZTM8LuPRvLDWjgcwHuCf+RVFuT5kJflXAwg3xpRHetJ3AfDQ320QGFhUfMZfsEB+TgSAkZ8OFlq+fAVo7K7DstC0e/NuEgmE1aggtMIlitDY+JjtQlu5crbQZtSeRLef+9lcoZ07f57GFiQFnbx5eZGnc+NGQntp/loam5S0WWjNO95DY6eOGy+0Do+1Flqj8HC6/flz8r35OdQHUo6nCC313Dkau/D7eUKrVIt/Bi7VThbWDiYdFFqfXvfT7fMXlAXDpfOiaGzXLvLYrP2V/xxOdW4jtIYOx/HHVauEtvPQIRrbuHoVr8cBfn40jnHFyW+tPW+M6QdgPgAfAJOstRuv9PkURclesvSZ31o7F4C8vCmKcsOjHX6K4lI0+RXFpWjyK4pLueL23ivhlqpV7ZhvvDvkShUqRGPrhYUJjbXAAkDycdnC+s7oyTT20zGvCi1qq6yIA0C5YsWElkaq9SP/JzsMAWDHxnih1biDd7GdOCxbWIf8l7dHNGsgq/Wx63+nsbE7dwqtdBF+d2M/OY6Ll8vq9eP387sFyzZvEpqP4deXKR9NF9rLQ3vT2FRyzCuX5G3SU5f/KbR8/rICHlSA3znaul3eJTq4W94tAIA+j7YT2sING2jsrWXLCq1amTI09rW3PxfaSdIqDgC9nu7o9fih++7DxnXrMtXeq1d+RXEpmvyK4lI0+RXFpWjyK4pLueYLezKyNzFJLMt1atllxT2/vHwN9s8xMUKr1ZIX1na/ekBobw6Xba0A0LBtQ6ENekgWpeIT1tHtx8/4RWg1qvOWzrDgYKF17/IyjV0ds1hor438jMbO+lYWPkNCqtJYX1/ZTjxj5kdCi93Flw/HxWwT2ks9OtHY4NcKCq1yqVI0tlvP14VW+y65dBcA+nSUbbSf/iCXNYfUl8VcACgfKvfBN79c6gwAPrnktZMVbgGgeDXpCbD36FEa+2r/R4WWy6FweuikdyGQ7ZMTeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZWu0PvSVUmG0yIw6At+yyqj4AtKklK/sNGsjWSwCo8vU7QrtwTrqlAoBvXmlE8ePSOTSWUbWqbFEOdHBhXb5li9Da9ulAY/PlldXnLo/eS2M7dG0ltHdeGUdjmSnviE+kYenq+dzcgt0ZOEVcegGgkL90Rn7ymZE09ouJ0sjUyUH48CnZBlundhWhFSGvD/C2Yf8qcnsAyJtbpk+XFk1obLPb5flYu6FDbJdmUqvG79DkvsxB2DgcF4Ze+RXFpWjyK4pL0eRXFJeiya8oLiVLBT9jTCKAkwAuADhvra37d/FnUtPEJB0nl91FU5cKzalllxX3oqJm0tjRL0v33sAifBxTCeI1ELVWepQ6rQ1/f+DHQuv4PG93PX5ItoVWqyYLhgAwLzZWaCHF+Fisxb+tEZpTu+rBZDk1qEFTecwLB3MPhhgygaaiw7r7Ratk8fapFx+msau2Sxfl2qGhNDbQTxZUzxBX4AMneBsuK1AynwMAaB0hJx+xYwAArTt3FFqL+26nsQG+8uezZscOGluf+F5klqtR7b/TWst9hRVFuWHRP/sVxaVkNfktgF+NMWs9Y7kExpgnjDFrjDFrTh6XAwgVRbk+ZPXP/sbW2j3GmCAAC4wxm621v2UMyDiuq3ylyjquS1FuELJ05bfW7vF8PQBgOtLHdiuKkgO44iu/McYfQC5r7UnP960AvPF321y4cAEnD3u3X7LZeQAwtF9PoTEjDoC37LKqPgBMn/6e0CL/lI6vAFCWuNxevFWacbzxOm+X3bxZzlzbE9+YxqYck7Pr7r6jHo19pG0voUWt5G3HmyvLOfS3N6pJY/ccOSK0LZtllblnW9kyDABTf5fHMe0Cb51e+M0iod3zMb9ZlEjm1J08e4bGzouRd0LshYtCq1Ca34WIiokT2tFkbrrRqGJFocVtTaSxvXq0F1pYUBCNHfzOBKH55PYhkUC10qW9Hl+8KN+rE1n5sz8YwHRPL3FuAN9Za+VERUVRbkiyMqgzAYC80akoSo5Ab/UpikvR5FcUl5Kt6/lTjp7CHzNWeGmFS/DRUWyElpPLLluP79Syy4p7XRpKl14AGD7ua6Gx0U19X5ZuqwBQsrwsKvXsLN1lAd5W+mr/d2ns3EWRQuv4wAs0tuWjLYW26Hvp/gsAJ8hIqEkThgptxdatdPvjB2Ub7Pa8/BT7bOIQ+fpneBFvbbQcA7YihXs7hFYrJ7S2taXT7y/ruOPyrjg53iziTl4gnRklC7oXSXERAKbNkse8Rt3KNPaNF2RBd52DY/Kcxd7n87GTsnDshF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKtlb7/Qv5o8F/Gnhp8THSqAEAyhWTs9TY7DyAu+wyIw6At+yyqj4ADH5KVvH/O2ai0Kzl65VubyXbc3+OkuYaALBxhTQJOXuaV7+PnT4ttHwB3BWY7duQoU/R2I8n/CC0DUlJQitNjiEA5K4lq9fhJUrQWGam4U9MLAAgIkK20W5L4CYwLapVE9q7E6YKrWkL3jpdvcmtQmtftw6NHfHBV0Kr14LPELQhchYjMwMBgGhi3HHwpLwTAwBlwrxnC+b1lbnghF75FcWlaPIrikvR5FcUl6LJryguJVsLfkcPHMG0D73HP61cOZvGvvJSd6ENeqg3jWUjtJjLLsDX47OWXYAX994cIFsvBz7NR1JNGCsLTQNfk9sDQJsGci179868ZTe0eHGhlSjPC2ujB7witPhH+XGMWihbUHs91lZoTm7Fb78p16G//gYvLkZtkuPJ2tTjhbWhT8lxXdVv42v/m9apIbQjydKnoEqpUkIDgMT90jPi9bc+p7FPPSWdmIcP5t4O48cNFppToTglNVVoToXTy8dz5XcomjL0yq8oLkWTX1Fciia/orgUTX5FcSn/WPAzxkwCcB+AA9ba6h6tCIApAEIBJALoZK3lLocZKFY6CL2HP+Olzag9ica+/sanQotP4GuwGU5FKWa26bQenxVkWHHP38+Pbt/3pdFCW7aeFyLz5pOFmh5DH6ex9ercJbSxkZ/Q2BGD+wjtnIOpZsCb/cnzyrFnD7dpTrcvHFxYaLOXcnNUX395zCZOm0tjx0e+L7QzaWk09okuz8nnnTpWaE7dhL6+eYXmVEzdeVAWioNCuSknG/m16C9+Pm+LjhdaeO1baGxICe/XSzt/nsYxMnPl/xJA68u0gQAWWWvDASzyPFYUJQfxj8nvGcJx+b2SdgAme76fDED6EiuKckNzpZ/5g621+zzfJyPdxpviNa7rmI7rUpQbhSwX/Gz6B2PHMVzW2vHW2rrW2rqBDivtFEXJfq40+fcbY0oCgOcrH6WjKMoNy5W2984C0A3AW56vsiRMOHXkJJZNWealzf2MV3hPHJM3D8bP+IXGVq0aJrT3B35MY9kILeayC/D1+Kxll1X1AeDj0S8JbVlP6UQL8PXtp1P4ev5mbf4jtOCCBWnskFGy5bZo6aI0dsc6uY484k655ry4w52UDX/+JbTm7fh4soU//Sa0p/t2prE/zF4i96GsbHEGgKbt5CixectXC61dM+4NkUjce9ct41X5dq3ke1u1YDmN9XvmEaF1atyIxn6QkCy0woX4MS8SEOD1OHeuzF/P/zHSGPM9gD8BVDLGJBljeiE96e8yxmwD0NLzWFGUHMQ/XvmttV0d/qvFVd4XRVGyEe3wUxSXosmvKC7FOK0pvhbUqVvXRq1c6aWdc2hHfPO9L4XWul0TGhuYT5pXrk9IpLF74vcKzWmEFjPbbFFbrhd3atktX0q2hTatUoXGliol2zcXrV5GIoEpPy4QWt/u99PY42QEllNRiJmmniRjxH76I4puf3+jBkJbuGEDjWUjtJwYN10Whe9rUp/GLomVr1c6WL6vOypVotufPCuP17jJM2gsO+a5fXxobExiotAaO+zD2XPnhHbeoSX78vX8dzZujJjoaEODL0Ov/IriUjT5FcWlaPIrikvR5FcUl6LJryguJVvde8+mpSFuzx4vrSCp1APAicOy3TUsmC8eXL5FOsEePyS3B4CUYylCO0Uq2gAfocVcdpkRB8BbdllVHwD27pUGDqu2SQ2QFV7A2aCjcP78QnOqSMfv3y80Zg7hdGz98shRURUdXGcPn5LjpwJ8uSlKozrVhVbA4bypFV5BaEtWRAvNqdqfO5c8Ni3v5q3A7Ng4mYQwM4+087Kq7xRbymFRnM9ld25ykXPDCb3yK4pL0eRXFJeiya8oLkWTX1FcSra29xYsWMw2aNDOS8ublxduJn47Qmjdu7xMY9v26SC08LCyNLYMmS3/3+ffo7FnT8tWz7Q0qTm57KaekWOXbqskx4UBvLjXrVlTGjt9jWw7njz8GxIJlL+1vND8C/rT2Nhlcj3+rFkfCu3CxYt0+8g/pFNvp4ay5Rfg7arHTp+msYs3yMIrKwgDQIdmco38n9u2Ca1eBVkYBIBdhw8LrXJJ7vfAYuOS9pBIoF6YfL2il63Fv0Qhf/nzSXawwLu8/fqB1q2xITZW23sVRXFGk19RXIomv6K4FE1+RXEpmfHwm2SMOWCM2ZBBG2qM2WOM+cvz795ru5uKolxtMtPe+yWAjwB8dZn+nrX2nX/zYkVKFMXDAx/z0jo7OJjWipCV7tUxi2lsvryypXJebCyNfaRtL6HNXRRJY1n1ObS4dI1ls/MA7rK7Y0MijWUtu6yqDwAd6soW492k8gwABUl775k0eRcCAIo+30NoH/0wW2j9Osr3BQAF/OWdm9id0g0XAKZFzhdaRFPpFAwADSrKOyRhQXwm3sjx3wmt3b3SBMbJHIPNAPzxdz5vsFfrlkI77nDHgrkrX3S408bmI+4lJjQAMGhAN6/HeRxatxlXOq5LUZQcTlY+8/czxqzzfCyQ41kVRbmhudLkHwcgDEBNAPsAvOsU6DWrj6xWUhTl+nBFyW+t3W+tvWCtvQjgcwC3/U3s/5/V5zBVRlGU7OeK1vMbY0pmmNLbAQC3aL2MtDNp2Bm3y0t7af5aGhu7/nehvTbyMxrb5VF5syGkGB9JFbVyjtA6PvACjc0XIAtYJcrL9eljIz+h27Mij1NLJ1uP/3SPYTSWFffKFuXvd+xUWTxqSNbHA8DMFXKUGSvubUuW46QAIOWsLCQmXZRj1wDg+b4PCa0IaWsFgLfHy4Lsyl+4g/CYzwcLrTB53shfuTPy/kTpadCuw500tnff4UK7syuPLRoof+5b9vHj+EzntkIbNYEXpQcP9T739uzN/NjMf0x+z7iuZgCKGWOSAAwB0MwYUxPp03kTATyZ6VdUFOWG4ErHdU28BvuiKEo2oh1+iuJSNPkVxaVo8iuKS8lW994TR49j4dSfvbSkpM009rEn2gtt1reTaWyHrq2Etvg33hq7uXKI0Fo+Kts0AYAZnYwe8IrQRgzuQ7cfMmqC0J58siONZS67zIgD4C27rKoPAM92aie0vi+NprEbV8cIreGtlYVWsQQ3t5i96A+hDXiYzxB8bvD7QnvT4TjuTZCtrb2H9aSx7A7LCy+NEZpTVb5SpVChxe3cTWOHj3xGaNN+/Y3GhtWXd8OrlCpNY1clJAitgsO50Lm997n724JvaRxDr/yK4lI0+RXFpWjyK4pL0eRXFJeSrQU/v/z5Ubmm95rt5h3vobGlictuSEhVGvvOK+OE5pufj026vVFNoS36nvsEDBn6lNDiH+0tNKdRWUVLy5bb3Ln471s2QsvJZZetx3dq2WXFvY9Hv0RjW7WSRbRigQWENoW49AJAyQq8EMh4/rlHhLZlL1+z3qprC6HdFhZGY9m4rNFvPy805ugLABEh0vW5gB8fI1YsMFBodWtVobGRv60QWrmS3JPgjsqyyHqbg9twSqr3ueB0fjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUrK12p8rl4FvPu9q7NRx42lsu7bNhObry+f6EeNbHEzmM9P2HJFepCeOnKSxH0/4QWhRC+WdgYA3+9Ptd6zbIbRyPYvR2Pj90kSCzc4DuMsuM+IAeMsuq+oDwK+/ThJawoGBQrujiqxGA8DCtdIx2cmh9re4TUIrWkBWzwHg4AH5M9tV6BCNZW3S05YuF1rzuvKuDwCcTpXuvadSudtxLnLirVoj5woCQOHgQkILKijvpADAxqQk+VoOVfzw4GCvx8wF2gm98iuKS9HkVxSXosmvKC4lM+O6yhpjlhhj4owxG40x/T16EWPMAmPMNs9X9e5XlByEYWvWvQKMKQmgpLU22hgTCGAtgPYAugM4Yq19yxgzEEBha61c7J6BajVq2O9/9l7Pf/gkL7bFxMh1/v27yjX+ADDik2+E1qBpLRq7ZbMswj3RnrcYbyCFF+a+O2OhbN0EeIvxI3fzdeTMkbdqab7e+9+M0NqQJNeis5ZdAEg4IJ1fb69YUWg9+nBX4cb3NxZanUq30NgPRnwhtLVRS2nstz9fPimOOwUDQFyifL+/T5Nr7IeM6Eu3jyHjxZwcl4uT9t65S7ir8IJv5gmtTgvueD9qkNy30V9NobH3NKvv9fiB1q2xITY2U1W/zIzr2metjfZ8fxLAJgClAbQDcMldYzLSfyEoipJD+Fef+Y0xoQBqAVgJIDiDd38ygGCHzRRFuQHJdPIbYwIA/AjgOWvtiYz/Z9M/O9DPDxnHdR0l99gVRbk+ZCr5jTF5kJ7431prf/LI+z31gEt1AToqJOO4rsJkma6iKNeHzEzsMUgf0rHJWpvRCXEWgG4A3vJ85Q6SGchlDPLlyeOlNQqXs9cBoE55aVgYu2sXiQRWz5dFFtZRBQA920qzzxVbt9JY5ikQVEAWyx5u05xuX5zETl68lMYeP3RCaJU68vXx/2aEFjPbdFqPzzr3WHHvi0+H0O37vBgvtFNnz9LYYSP7Ca1fT1n0BIDYRPlzT9yYSGObNKsrtKQaci183B7eAeqbW6ZEiMMotONnzgitbh3uOTFvshwTNy9SdpACwKBRcvxb3068oDsrOtrr8Zk02aHoRGbae28H8CiA9caYS/2mryI96acaY3oB2AmgU6ZfVVGU605mxnUtB+B060BarCiKkiPQDj9FcSma/IriUjT5FcWl/GN779WkeHAZe38X79bF8+fO09j2vdsILS6GO66+2P1BocUkJtLY9QmyffP4weM0tnYtWf2ePHaa0AoH82UNG/6U6/GnzfiIxvpddhcEAKb+yVtFC/hLXwOndte9CfuE5uSym3I8RWi5fOT1oXqFcnT7+rfIVt5XR3G/hvA68i5PXr+8NHbeJNkau2s7PxeKFZct0SFV5Ii2l1/oRref/KN8rdgl0qcAAO7pLdvCn24jx6MBwN6D0pl46jLeFn5w90GhDejOx7x9vWiZ1+M3n3kaiVu3XJ32XkVRbk40+RXFpWjyK4pL0eRXFJeSrQW/6hER9odffvHSWKEL4O2XrSMiSKRzCymDrdHfvo+3xrascavQ0s7LAuXspbxdtsItcvRTKtkeACqWKCG1krwwF0vWnCcdPUpj29epQ3UGM9tcv1uuj3c63nNnLBPayFeeoLHsvHv3mx9pbG7Schu9MJpEAiuXy4JddKxcz9+923/p9gnx64RWpkwlGnv8uDQRDb+1Go19Z5QcGdav3/9obLcBnYVWpVQpGntHXe/W8qSkLUhNPa0FP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lGwd15Vy9iyiNnkbZ7CWUgBYNVeOnwp+rSCNLeTvL7RFq+SYKgBY+M0ioX02kZtTHDghDTaiNm0Rmq+/H3+tn2SVefRQaWIBAIdPSRfj8xcu0NhpkfOF9nzfh2jsc4Pfl7HPPUJj2QitJd/K8WTMiAPgLbtOd5PYWKmvlsnjBQBVysiW3T4P3Etjtx+Qdxd6dH9daPf25tuHl31caE4jx5jJR7RDW/mUJb8LbeyHchQaADzV+02hbY7j49hWRC/1enx3s2Y0jqFXfkVxKZr8iuJSNPkVxaVkZVzXUGPMHmPMX55//EOUoig3JFkZ19UJwClr7TuZfbGIWrXs/KVLvbTUc+doLGshrezQ4vjkMyOF9tSLD9NY5r7rVNDxITPRWTvyxGlz6fYPtGkmtPLFi9NYdhyYOywALNkYJ7SO9fnoJ9ZOvGWvXFsO8ALnoG6yLTU0VLY9A0Dnl7sIbd8O6ScAAEEhQUJ7rGkTGrtowwahnUrl/gXzv5cF3ZrNawqtRrh0hwaALbtlW7mTz0DjSrLtd9o82eIMAGvmrxHapvWraSzjg+8/pPr+495eFK9064btmzZlqr03Mwae+wDs83x/0hhzaVyXoig5mKyM6wKAfsaYdcaYSTqlV1FyFlkZ1zUOQBiAmkj/y+Bdh+3+b1zXYTKJVlGU68MVj+uy1u631l6w1l4E8DkA+qEz47iuog6TTxRFyX4yU+2n47ouzenz0AGArMooinLDkpVxXV2NMTWRPp03EcCT//REh4+ewFc/ebemLvxemi8AwFvjZUtmt55SA4AvJsp5cqu2b6exiYekAcPaaNnWCgARERWFNvQp+VrjI2ULLQD8MHuJ0AIKB9DYRnWqC21TEp8n16CibKN9e3wkjd2bICv7rbryQUsHD8gpyt/+/JXQ2Ow8gLvs1rmLm4mwll1W1QeAFtXlsalf/z4a+2C/7kJLOyPn1wXmkw7IALAnXh6vL0aPIZHA9/OnCi1qNndc/uqr4UJblZBAY9m8vUA/3kK+84C30++/MefJyrgufn9LUZQcgXb4KYpL0eRXFJeiya8oLiVb1/Nba3Eu1buYUakWdzutTJxra99Vm8bmImvDa4eG0tiTZ2XL7IoUvvZ/W4J0rq1+W12hsQINABQvK1t5W9SuQWMLkALUylheiAwLkq2xK3/hhabew3oK7bawMBq7q5AshrIxYIkbE/n2ZIQWW7cP8PX489evp7GsuLdy5Rwa2/qhB4RWtKS8xbxkpRylBgB/zJIjtBo1laPjAODjt78W2u6dW0kkcP6i9Gb4hbgdA0CjVvWEFuBQ8Jszzvs4HHMYPcfQK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8nWan9AYH40auJdsS/Vjq8Enrpczr/r05FXXZnzbaAfb9+cFxMrtNBq5Whsi2ryTkTTOrJa/0SX5+j2Tdu1EtoSH/77tlZ4BaF1aNaIxo4c/53Qxnw+mMYGF5SOx/6+vjS2cP78Qvtu2XKhNWkm73gAQMxCedeEzc4DuMsuM+IAeMsuq+oDwLD+PYS2m6wmXRgjZ/IBQKFi8nzcS2YjAsA93dsKLWl7Io09eEKeo8kJ3OhkU2y80Ni5CMh2cR+H84uhV35FcSma/IriUjT5FcWlaPIrikv5R/feq0nJMqG257OveWkHkw7S2BYPNRfanu3cdbZO7SpCO+PgCrz/kFyz/uDtDWnsuxPkeu0jyXL7vv2kay0AzFsu3VkrVuTFxY3rZZEntGJZGluxRAmhscIeAAwaNFZoo9+WjrwAMG2pLO79OVMWXsvXkMVJADi6/6jQhr/GbR7YCK2Wj7WksWw9vn9BOaINAFrWkgXZssRB6mgKHxN3NOWU0FIcnILDgoKFNupTWYwFAL/8sj23SVPudTDxPenN8FDf+2lsk8qVvR43qF8fa9esyZR7r175FcWlaPIrikvR5FcUl5IZA08/Y8wqY0ysZ1zXMI9e3hiz0hgTb4yZYozhY00URbkhycy4LgPA31p7ymPhvRxAfwADAPxkrY00xnwKINZaO+7vnqtceEX76hjvsUP3NuLdYvH79wvNLy///VLEXxZ/2OgpJ5xiiwcGCq0KGRnm1DF3+JQsHhUjz+kE2x4Azl+Qa8Pn/LaSRAJFShQRWuEAXiyrSDwUcpORZXF7uLFoLeKh8OyTI2jsvb3lev4q5crQWGa26bQenxUC2zeUrvKFyTkDALVq3SW0L2ZMoLHd28luwi9nfkFjI0JChDbwf5/S2Db33ym06JjNNPat5wd4PT50KAnnzqVenYKfTefSWZjH888CaA7gB48+Genz+xRFySFkdmiHj8e2+wCABQC2Azhmrb00BTIJOr9PUXIUmUp+z2SemgBiRJ/wAAALvUlEQVTKIH0yT+V/2OT/yDiu69TxzFsMKYpybflX1X5r7TEASwA0BFDIGHNpVWAZAPSDYMZxXQEOjSiKomQ/man2FzfGFPJ8nw/AXQA2If2XQEdPWDcAM6/VTiqKcvXJzHr+kgAmG2N8kP7LYqq1do4xJg5ApDFmOIAYpM/z+1tSU85i61pvd9P8BeUacgA4ffy00MqHyko7wJ1+T509S2OjYuKEtiuOr9eu3uRWoSXuPyA0X19+FyKRPG+Pjq1pbO5cPnK/HKYaM7fg/Yny7ggAVKoUKrSIEN42fDpVPm8MWcvum5ufNpN/lGv3E+L5uvnwso8LbctufheBjdBiLrsAX4/ftEZVobGqPgDExCwQ2nff/ExjAwLknZRxY3h77yfvvSK0Ew5OuzGxW4RWk4yOyyqZGde1DkAtoifAYTKvoig3PtrhpyguRZNfUVyKJr+iuJRsNfAsWDgQ9z7ovU5/6Tw+Zso3n2yZ9c3P22j9q8j1/PsdegqOJss15xF31qSx7evK9davv/W50EqUl+vrAWDdMlnsGpfCC5Et75aeAqyVGAB+/F2usW/XQbaEAkDcTjlyrIDD6KdTZN160YAAoYWQ9fEA8PU7U4RWpkwlGnuRtJXn9eOF0y9GjxGa0wgtZrbJ1uM7teyy4t7brz1NYxdv3Ci0d1/+kERyHuglx5ABwO5k6XHhNK7rjUneLcIjnu2b6dfXK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS8lW996qNWrY72bP9tLyOrSKBhUoIDQfYiwBcGMGVk0GgBNnzghtZtQqGrt1zTah9ezeTmg7D3IHYuYa62QikXb+vNCcTEZqEGOI3n2H09jhI58RmpOhSC4jPSC2JScLLY2YiQBA7I5EoU0awg0rvpz2gdCcfr7szs3Hb39NY2+9Q7ZkszFvjerfQ7dnLbtvfDaMxjYnI7Q+nDaLxvZqe7fQPv2Btw3XrSPbkTdv5y3o/+3p7Y58+PDeq2fmoSjKzYkmv6K4FE1+RXEpmvyK4lKyteBXJrSC7fuat5vr2l/X0tiOA+T89ROHeQGsS4smQotJTKSxcVulfvHCRRpbupxs25352RyhBYUG0e1XLZDjr6b/LNuDAb5GfvrqNXy/isg167sP8bX/R/bJ8WJ1a8l2aABYtUa2q168KI8NK0gBQJt6jYTWtceLNPaex1oJLXGrbEUGgKjZsgV8986tJBIICJDHptF98vzo0F6OgwP4evykeF5sa91dOhA/82BbGptKxsd9Nn0ujd27fZ/QXh8gnYIB4KPvvD10Phg2EEk7tmvBT1EUZzT5FcWlaPIrikvR5FcUl5KVWX1fGmN2GGP+8vzji+IVRbkhycqsvj4A5lhrf/jbJ8hA7Tp17Io/vY0onFx2WWtr8QK8LbV1swel1rkjiQR69ZBTxabNWkxjK9W8RWj31RJepo7GIX558ght/W5e0WbPUad8eRobTOYf7Dp8iMaGBQULLfI37nybK5csEkeOltXvCxdkKzIA/DjrE6E5nV9TlvwutKVTltHYSROGCu38Rd5ifPDESaFFzlwktIGPd6HbO7WFM1gF36lF2ZecC0M+4HP99u+QLdW176pNYx+7y9vEpVGDBli7dm2mqv2Zce+1ANisPkVRcjBXNKvPWntpJOwIY8w6Y8x7xhjqsZVxXNehQ/zqpChK9nNFs/qMMdUBDEL6zL56AIoAkFMJ4D2uq1ixYldptxVFySpXOquvtbV2n2d8dyqAL6ADPBQlR/GPn/mNMcUBnLPWHsswq2+UMaaktXafpyDYHsCGf3qu06mpiL6s7bZheDiNLU7W8+89Kp13AaB2Q9m+2eK+22lsWJBsxa1Rlw8dbh0RITRWwFr0Fx9J1amxbHdtXIm72aadl8Wj1HO8sMaKUlv2ySIRAFQpJSenlyvJ25GDCspjvq2F/J0+L5LXeKcuk4XEZVN5EW/shwOFNm7wOzR2VUKC0H6ZwZ83OUG2xj7+4kNCG/g/7jPARmg5ueyui5UtxrnzyLFrAC/uDevPW3aHjv1SaJcX9v5Pf2yw1+MdO/jIM0ZWZvUt9vxiMAD+Qnr1X1GUHEJWZvXxlRGKouQItMNPUVyKJr+iuBRNfkVxKdlq5hFWpYodNXmyl+b0+n+ROXev9n+Uxk5fJU0vwkvy+XmzZywV2hsv9KKx0Tt2CI3NfVvwM2+XDSgk59z1fUS2FwO8vbcCuTMBAGMjZwrtmc7cRIJVyus6tA1vTEoSWr1bKgpt0CjZxgsA+QtIZ+J6DaWbLgBMGPmN0LZs4sYub01+V2jM7RgANsXGC23zqs1C696/E90+JnaL0AoUlXdBACCsTEmhzZ2+lMYe2y/vVJWoILcHgKHPdhfamG9/orE1Irx/Pk936oQtGzeqmYeiKM5o8iuKS9HkVxSXosmvKC4lMx1+V40C+fKhxWUjjnY6rPT7/YgsouUy/HdVs2rSTXYNKdYBgE9u2X65btcuGnvwpFwbHl5CFhLDa8t1/wBQuJAsFJ13GHVVqlAhoSUfO0Zj98bvFdqoCZE0tsKtsrh3W4UKNDYXWYs++qspQuvb6T90e1a8PUSOIQBsjpMj0sZG8kJioJ+f0AKIBkCcXwDwRz15fkTHyCIgANSMkAVOp9eK3iTHuTm57H6zcKnQnFp2WYFxwMP309ipUd7OxueJ27ITeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSnZ2t5bvlIlO+STz7y0xtX53DjWRlvEX7aPAkBuH26gwGBuwXMW/0kigTJhpYRWm7TG7nK4Y1EkQLb3lnOwMstH3F0THZ43iBidDB7KK+UDXuomtOKB3AU5DzmOuw7LGYAbSBswABw7Ih2XRz7NZ/WtiF4qtOVbZGstAJxNTRPanHFyZiIABBSWx3zc2EFCCykjq/pOvDGJG3/8t8cTQnvhrbdp7LMPy7buy404LvHE4MeEduTUKRIJdGrQQGjWWm3vVRTFGU1+RXEpmvyK4lI0+RXFpWRrwc8YcxDATs/DYgBuxike+r5yHjfTeytnrS2emcBsTX6vFzZmjbW27nV58WuIvq+cx8383v4O/bNfUVyKJr+iuJTrmfzjr+NrX0v0feU8bub35sh1+8yvKMr1Rf/sVxSXku3Jb4xpbYzZYoyJN8bIaY05CGPMJGPMAWPMhgxaEWPMAmPMNs/XwtdzH68EY0xZY8wSY0ycMWajMaa/R8/R780Y42eMWWWMifW8r2EevbwxZqXnnJxijMl7vfc1O8jW5PcM+/wYwD0AqgLoaoyRHks5hy8BtL5MGwhgkbU2HMAiz+OcxnkAL1hrqwJoAKCv5+eU099bKoDm1toIADUBtDbGNAAwCsB71tpbABwFwAc53GRk95X/NgDx1toEa20agEgA7bJ5H64a1trfABy5TG4H4NJkkslIH1+eo7DW7rPWRnu+PwlgE4DSyOHvzaZzaXlcHs8/C6A5gEtzx3Pc+7pSsjv5SwPYneFxkke7mQi21l4aEp8MIPh67kxWMcaEIn1K80rcBO/NGONjjPkLwAEACwBsB3DMWntpBNDNeE5StOB3DbHpt1Jy7O0UY0wAgB8BPGet9Vqsn1Pfm7X2grW2JoAySP9LtPJ13qXrRnYn/x4AZTM8LuPRbib2G2NKAoDn64HrvD9XhDEmD9IT/1tr7aVBcTfFewMAa+0xAEsANARQyBhzycb+ZjwnKdmd/KsBhHuqq3kBdAEwK5v34VozC8Al+5xuAORUzRscY4wBMBHAJmvtmAz/laPfmzGmuDGmkOf7fADuQno9YwmAjp6wHPe+rpRsb/IxxtwL4H0APgAmWWtHZOsOXEWMMd8DaIb0VWH7AQwBMAPAVAAhSF/B2Mlae3lR8IbGGNMYwO8A1gO4NAXiVaR/7s+x780YUwPpBT0fpF/4plpr3zDGVEB68bkIgBgAj1hrpY/cTYZ2+CmKS9GCn6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1Fcyv8DfxiZ/STZuJQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4Tff2xt+viAhREUOShiSImiPmKlUNWvRX1YFSVb06T3Sk1eFWq+Mt7b1uJ701lKq61V4tLTXWULMSIghJEBIRJEIiEr6/P3Lcx7HeXbmiId3r8zye5LzWztl7n7Oyc9Ze33cZay0URXEf5S71DiiKcmnQ5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaWUKPmNMT2MMduNMTuNMc9frJ1SFOWPx1xoh58xxgfADgDdAaQCWAtggLV26+9sI54ssFowjS04eUJoNa50iM0vEFpwjWo0dmv8NqHVCruSxpbzMUILqlJFaIeP5tDt8/PyhZZ5II3GVqkSRJ6f/272q1RRaCdPnKSxNWrJ81DOyOMCgIz0Q0KrFVJdaMdPyNcGAAL8/YWWlc3PTa3qcr+ycnNpLCM/V55bAPD18xWaDzmP5csV/7qXfYQfA3uuGtWq0tijeXlCy83hx1u9eqDQThYW0lifc44jbd8+ZB0+zF/gcyhfnCAH2gHYaa1NAgBjzHQAtwBwTH5G1653Uz1173ahPTDqSRqbnpIutKf/0pfGtoy+VmiPj36JxlYMkG/mgbGdhTZ1wRK6ffLmFKF99t7rNLZLbH+hVapSicY2bNdQaLvjd9PYIU/I81CxQgUa+893pwjtyecHC23lFvkLFACuad5YaN//tIzGPjGoj4zd8BuNZSTFJVE9tF6o0KpcUVloQQEBdHuWNT9+s5jGhkTKi9H9fW+isQu2bBHahsUbaezge24WWvLBgzS2aiXv98iQW2+lcYyS/NkfBmDvWY9TPZqiKGWAklz5i4Ux5kEAD/7Rz6Moyv9GSZJ/H4A6Zz2u7dG8sNaOBzAe4J/5FUW5NJQk+dcCaGCMqYuipO8P4K7f2yCwWrD4jD/zmzE0tnfvJ4SWtosXy+pG1xVaxtGjNPam/rLGsG/nfhpbP6a+0OL27BFa+Qqy8AMAjchn83seG05ja4XXEtqJ47yw9sPEGUJr3rYdjS3v4yO0pIwMGlstWBbhWH1gy3L5+RUAMlMzhcbqMQCQnSsLYN2aNqWx036Un7l9Hc75sn/LGkNMbIzQApvJ1xYAVixaJ7TgCF5oXvatfK5H+/emsVPf/FJonW7tRGMbhsq6xTMPvEZj/z5hlNdj9no7ccHJb60tNMY8DmAeAB8AE6y18Rf68xRFKV1K9JnfWvsjgB8v0r4oilKKaIeforgUTX5FcSma/IriUv7w+/xnU3DyhOjcY1V9APj++3FCa9dTdqABwJTRE4XW9NOXaeyeBFmtD60rq6sAMPfzuULrM+GvQtu0bRfdPri2rBKXc2gr/eDFkXL74Aga+9TYV4SWmijusgIAFi9bL7S6jfnP/fQ9eWzhTcKFdmifbAMG+N0Cp85DX1KVHvvRVzQ2PUneMajXoh6NZZX9Q/vlXYg5m3mHIOt273WT7AoFgONHjwttRWIijQ1vJM95dKtGNHbvIXl+G7ZpQmNnzFro9fhIFr/LxdArv6K4FE1+RXEpmvyK4lI0+RXFpVzwev4LIfKqhvblcR95aU4tu4b8WnrpkUE09rnXPpTaML5U+I13PhfatvW8MbFJu2ihPfuU3IdXXpLPDwCfjpNFvC+XLaex2RlZQtuTsJdEAl37yALU2Gc/oLFhkbLQVLGyH42NbC7bpO+57UahVfbj2x8+dkxoFvz9VdFXtg3XuuIKGptfIP0anNq3w4KkL0J6ljy3/g7LmlMPHxZaGtkeAK5rJAt2xsErIZ+sx/8tJYXGZpO1/y0jeJG2WmXv5crXdeyI3zZsKNZ6fr3yK4pL0eRXFJeiya8oLkWTX1Fciia/oriU0m3vzS8Q5g7MiAPgLbusqg8Af3vlMRnrUO2vRMwcOzi0b8YtiRNafqGsPD/5gjS5BIDCU6eEVj80hMb2HTBEaK1b96Cx9z9wm9A69OLHkLRJtrFWrcXNKT578x2hXRklnY1rBnKH2gYh8thmzllCY6+7tpXQZi1dRWMDqkmzzdOF8twCQLcYeYfmp5XSoMPHl7/1a9aULcrt6nPjj+P50kF41q9raGx4mDznzWrXprEffvaN0Or2r0ljlyV4m6lm/w8OyHrlVxSXosmvKC5Fk19RXIomv6K4lBK19xpjUgDkADgFoNBa2+b34lu1bm1XrFzppTm1aR45LtdKh1XjI7gYtaryohQrwq3exdfjs3XVox8YIbT+jz1At49uL9dgt4yIpLGHSGusU/Emeb9c394luhmNnbNcFqB8K/BiV1SkLEAdJq/DvmTeku3nL9t+w8N5gbNbM7m/7/5rOo0NrCnHV2VlHKGxLzw0UGjLtskJQzuSeet00wayAL2PtPwCwG1t2wrtzY+lSy8AhNaXnhE+5bnTbrtGDYTG3h8AkHLA24n5rw8+iOTt2/7wcV1nuN5aK90SFEW5rNE/+xXFpZQ0+S2An40x6z1juQTGmAeNMeuMMesyM/UPBEW5XChp8ney1rYC0BPAY8YYMcLWWjveWtvGWtumRo0aJXw6RVEuFiVKfmvtPs/XDADfoWhst6IoZYALLvgZYyoDKGetzfF8fwMAPlDMw9b4bWgZ7d2GymbnAdxlN4y0mgK8ZZdV9QE+y2zSQj5/Pe+YnJW3KW6J0D6b/TPd/sRJ2Qp8Ry/eCtw+NlZoCetkezEA3P3CvULr0/1OGjvwyYeFFlCtCo39dekGuf3t0syjkoMRxlVkxpzTHYs95E5KjxuuobHMTCPeYV5gYrq8E5JJKuUdW/C5gH6+cgbgh6Mn0djyT8j30rAhd9DY+H3SXfmfr02gsZUe9Rdae4cW4zrVvc1LAvwr0jhGSar9wQC+8ziXlAcwzVorva4VRbksKcmgziQALS7iviiKUororT5FcSma/IriUkrVvTe8fgM7/J2xXtq+nftp7PEs2Va6Y+NWGsvW43fvwYtHiXtl4eXertfT2Hr15Kea1RuXCW36z7/Q7a9vL0dHrduxk8bu/E22GMct3URjR7wnR5z9upLHJsXJ9fwPDxtAYz8eK1tTa9SW68hje3ag2/+yQLYS120WSWNzc6RDbWAt2cYLANkHs4U2uIcskALAVlJYYyPLCvJlMRYA0pNlwfCFEdJrAQDWJclz61QMLTx9Wmgdr5JtvADg6yM/jU+ez4vSmanevTMfvvEiUlOS1L1XURRnNPkVxaVo8iuKS9HkVxSXosmvKC6lVN17y/kYVAzwbl2sH8PbFud+LpsF2ew8gLvsNmrbkMayll1W1QeApCRZQT92Qm7fuoWc2QYAWaS1tVZ1bkjy0/pEoSUmStdZgM+0a9qCV45nT5gptILCvjR29/ZkoWXul224IXW5QUfeUXm8VavyVuLkLSlCS1iZQGPz86RLblidWjT2ioqyNXb7mu1Cy9zHV5hWripbxUMcjGFYK/CqFfyuS+NWVwmtQnm5PQDsPyKNSgICpYMxAMw7J0+OZ6t7r6Io50GTX1Fciia/orgUTX5FcSml2t7L3Hvj9sh1+wBQP1iONzpZWEhj2Qit3rG8qMXW4x92cEZlxb26tWSh6fm3PuH7lSsLVQP/cjONDago12H7lOO/m8f9fZrQRr30EI2dvV6u0d+0mBelHnukn9AqknbVA9my3RYAgirLYpnTMVQkxbLtZC0+AESRc758xw4ae4W/LPg1JWOxqlWqRLdnrNrJW7L9yblZvoqf22bRsiBb3uHcxDaVXgML4+NpbNQ5eXJzt26I27hR23sVRXFGk19RXIomv6K4FE1+RXEp5+3wM8ZMAPB/ADKstc08WhCArwFEAkgB0M9ay+cnncXhozmYumCJ9w5U4F1Om7bJ9e1rflpLY598QZpiOo3QYmabBcRoE+Cde6y49/YL0iQTAFaTQtGaODk6CgCaNpRjotas3kxjn3pKmp4u3y672AAgOU527fn48jFRCfult0JXUnzadeAA3Z6Zpu51GHXVOjJSaE7F59yTJ4VWJyiIRAJt6tUT2imylt7J4DWfFJXDHJ4rvHp1+XPJcwGAj5E1OFZMBYDj+bLQ7FTBq3JOobicQxGRUZzISQB6nKM9D2ChtbYBgIWex4qilCHOm/zW2qUAzv31fQuAyZ7vJwPoc5H3S1GUP5gL/cwfbK09M6o1HUU23pSzx3XlONwfVhSl9Clxwc8WfVBz7BQ6e1xXFYfVUYqilD4XmvwHjDGhAOD5mnGeeEVRLjMudD3/9wAGA3jb83VWcTbKz8tH8uYUL61RO77uPri2/CRx37iRNJZVbqPbN6GxbIRWk7AwGsvW47OWXVbVB4D2UVFCu2vQCzT2mtGyql49jA82fXn4P4T21pinaGz1KnI9vdMILVa9Hj9L+iq0iuavGavWO1XlkzLk9WJzPD+PeY1lBb+dw/iq3r2ls/HAkQNpLONYtnSN7ti8MY3td8czQmPOygCQnSfdioMd/hI2pLZ/xOE1mzbX29X3cHYOjWOc98pvjPkKwEoADY0xqcaY+1CU9N2NMYkAunkeK4pShjjvld9ay03ega4XeV8URSlFtMNPUVyKJr+iuJRSXc/v61vBBgZ6F/LueWw4jWVtis2va05j64dKQ8mIGrxYdkcv2Qr8yJuycANws01mnunUsrt8phztNW3KWzT2HzNkzTR1eyqNrddCFrtSd/DYnr07C4211gLA18t/FVqP1nLk2IaU3XR79nPnb95CY29p00pom/bspbGsNTYuUbYtA0B5X/lJNrq+3K+gAOk94MTfiX8CAES1lAXdR27tRWPXJ8v9/e7fC2jsK0//RWisQAoAlfy8W4R7d78Bm3U9v6Iov4cmv6K4FE1+RXEpmvyK4lI0+RXFpZTquK4qVYLQJba/l1YrnI9d+uBF2co7svH7NLbvgCFC+2nVIhrbPjZWaDt/k8YhAB+hNWrMMKExIw6At+xeffPVNHZov1uEduON99HYAYNuElpuDm//jEuQx7Ynk4+qerCnrFS/9+XXQjtxTLaqAkBV4og7c6wcFwYA138u269nf7uYRAKBtQKFFtE4nMY2CJF3frbulXdCdm/ldyxq1akptBHP3ktjU8h5nDBvIY015I7F0IfvpLHjv/1JaCGRfOFsxl7vuwDZOdyJmqFXfkVxKZr8iuJSNPkVxaVo8iuKSynVgl85n3KoVMW7KHTiuHQqBYDg4Aih7Ung7Z+tW5/rL+q8Zj1hXZzQ/P35DPnExHVC8ykn1807ueyy9fhOLbusuDdv3uc09h3zitBOnpAOtwAwY9xkoT34uixaAkDnzrIAdfTQUaE5zYrfECcdhAeM4EWttUlJQivI5y7KB/ceFJqfvx+NrUH8C1hx70i6g9k0aXc/1oq/RxP37hOa07k5mSd9IPYf4fvQrVNr+VwOjslpSd4jzpzOIUOv/IriUjT5FcWlaPIrikvR5FcUl1IcD78JxpgMY8yWs7RXjTH7jDEbPf/4ImZFUS5bzmvmYYzpDOAYgC/OmtX3KoBj1tr3/pcnC4uoZx97cbSX9sPEGTT24TeeFFpwDe4EW7embMlclcBn17E2y6jaV9JYZtwxjhg7sNl5AHfZ7XRbJxrbPlrOBWT7CgAxEfJOyDOvjqOx77z8qNCmLllKY+uFhQqtdpA0NFmfnEK3r0Rmzzk51Fb2k9X6OtX565uYLivd6xJk6zUArPlxjdA63S7PefcW0XR7NvNw27odNJYZqAx9bhCNXbB8vdCc7tDc31deS8dN5G3Sg+70vtN1Uc08HMZ1KYpSxinJZ/7HjTFxno8F8vKgKMplzYUm/8cA6gOIAZAGYIxT4Nmz+o4fK/5AAUVR/lguKPmttQestaestacBfAag3e/E/ndWX+UA3kmnKErpUyz3XmNMJIDZZxX8Qs9M6TXGPAWgvbW2v/NPKKJmcG17W//HvDSn549oKotav8zka6U79LpWaEPuvpnG9uku200HPvUIjW3aooF8rgZSY0UigBfmPp34HY0NCpXFLqeCEGt3HfMqHxM1aaFcI+/kX1A/RroCD+wiz+3xfNmqCvCC324H7wC27t6JXPJ8H03/nsY+dKd83cuR8ldlv4p0+/wC2R7b9/anaez4KaOF5le++B3zD9//GtVjYqVj8iMDpd8DAFzh7+/1uF3btli3bl2xCn7n3VPPuK4uAGoYY1IB/BVAF2NMDIqm86YAeKg4T6YoyuXDhY7r4itOFEUpM2iHn6K4FE1+RXEpmvyK4lJKdVZf4+bN7aTvvKvd5X18aOziZbIdMn55PI0tLCgUWodbOtDY3OzjQkvazOe+bV33m9Duf/0xoSXH8e273Sj3wel8M5fdyW99QmOXr/hWaE4tu/d2vV5oA+5+gcYyZ2HmZtu8Th26/ba0NKH1aS2NKQBgXpw0VckvlK8jwCvoTrFdGjcW2oodsj33tMPrEEgciNvU5e7M2XnSxXjjbu4KzM7ZqdOnaexX/5Ez/O7rx5fP/BznbSTz8v33IWnbNp3VpyiKM5r8iuJSNPkVxaVo8iuKSynVgl/T6Gg7bfZsLy0pI4PGsoLMgmm8vbcqGedUv0U9GnuqUBZZrmkpx2oBQAEpKk2f8qPQfHx50bLLTdcI7XpSkAKA79ZJp+A8B2fjcqRf1alld9dGqX819S0aO+3XX4XWs0ULofmU49cMtkY/+aBsRQaA6gHS5fZkIXeereovi3BTF/ECZ6doOQasXi05Eq6cg1cCY2E8LzS3JO3b+7OyaGydINm+7fRzU3ftF9odN3amsX6+3sXQG67rgo2//aYFP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lFKt9tesFWb79PN2k60WzO3/Pn3vr0Ib+f4/aexnb74jte+n0thfl24QmtP8vN3bZdvuR5OlgUPCflmdBYCIGnJW37odO2nsgz1l+yabnQcAL48bIbRdqbK1FuCz9mqSll0AuOsaeXfirc++Etr+nfx465E7LPO+kHdHAGA8uePw7ruTaGw+mXPHWpEBoHx5eedl+1rZ3rsvUc7ZA/i5efHZv9DYGYuWCc0w5xAAW1cmCG3Es/fS2Lg9e4S26hfZag4A+bne52bCP95AWmqKVvsVRXFGk19RXIomv6K4lOKM66pjjFlsjNlqjIk3xgzz6EHGmPnGmETPV/XuV5QyRHGsRgsBPGOt3WCMqQJgvTFmPoB7ASy01r5tjHkewPMAZCXqLGqFVMeTzw/20ioSx1cACG8SLrTbu/JRV1dGyXFbh4/LdfsAMPD2G4X2+RfcCTZz/yGhsf3t2pS3B4+fNVdo/bpLN1wAeO/Lr4XGinUAH6F1dVQUjZ25Ro6v6kFadgFe3HvhAWnhOPKd8XT7uCWbhPbQaO7tev9dw4UWHy8LaAAQGdlcaK27c5+Ao8fkOVv6w89C27KFP1dEhGwPHjykN409kiFbeedO4e+lvsMGCi0+lReab2gujzfzKJ95MbBTR6oXh+KM60qz1m7wfJ8DIAFAGIBbAEz2hE0G0OeC90JRlFLnf/rM7/HvbwlgNYDgM979ANIBBF/UPVMU5Q+l2MlvjAkAMBPAk9Zar7+tbFGzAG0YOHtc15HDOu9TUS4XipX8xhhfFCX+l9baMwZyB4wxoZ7/DwVA1+aePa6rGlnWqCjKpaE4E3sMioZ0JFhrx571X98DGAzgbc/XWef7WcdPnMDKLdu8tC3Lt9DYQ/tkse2eXl1pbM1AOQN+x7YUGstGSsX25GafIXXlSKkD2dlC23VAzo8HgFbRDYW2IYUbPJ44Js0gAwLlmncAWJ+cIrRqlXksM450Wo/POvdYce/NEQ/S7VvGdBMaK4oBwD8myU7Jd177jMbOnilnxCyYyv0aCvLliDM/P3+htWghjU0BwBh5brbt592TC6fPE9qQUQ/T2Ed6yTFir306gcbWJ/4DY4fx0V7PvDrO6/HUT9+lcYziVPs7AhgEYLMxZqNHG4mipJ9hjLkPwG4A/Yr9rIqiXHKKM65rOQCnXmF+KVYU5bJHO/wUxaVo8iuKS9HkVxSXUpyC30UjwN8f1zT3dq/NTM2ksWyd/+Fjx2hsgxBZld+9m1dorwoNFdqU6XzNed7RXKEFXSfXkReeOkW3Z14JrSMjaWxVMiZqQ9x2GsvuWDAN4CO0GoeF0Vi2Hp+17LKqPgD8tlGOmWrdsQuNnfLlHKE1bCvvjgDAhpX1hRZ7VyyNnTdRtlQfPLhXaNWr83OwebN0BW5d930ay1pbrm3ciEZGRbUSWucOMTQ2jdxRyszkrcA5h73bfk+d4iPAGHrlVxSXosmvKC5Fk19RXIomv6K4lFIt+GVl5+D7n7zXUaenpNPY3fGyDfae/j1p7Mw5S4TWvBUvHmXnyiJe3WaRNLZq1SpCY62xex0WLLERTfM383bmmWNnCm3ACG7gGVxVtjPvzuSF0z6t5bp3pxFazGyTrcd3atllxb1/ffgSjWWvwxc/8nFssb3lavHYdrxYtmmxLFDeOvRWoaU6GHg2ipFr6UOqynFwABDVTBb3LF/fhtq15fuxpUPx9/2p3wotPFz6DADAtXd4+0PMnzeZxjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUkp1XFer1q3tsl9XeGnZudLEAgB8feTYpcLTvHVxD6l0t6pbl8cekiYhP69cT2MP7JYmHUOH3CG04/lynBQAJGVIc6M29fh+Hc07IbS1SUk09irSztzoSulgDAA/btwotGuuuorG5uTJ14K57DIjDoC37A5/TLrWAryd+aX3/kVjq4XIVu+QSHkOnJg7Qbb8Vqoinx8A/Cr5Ce32e/hdpoM50lF39dy1NPa+++UdhywHh2n2Pk8+QI2yMOcT73M+b+4kHD6UpuO6FEVxRpNfUVyKJr+iuJSSjOt61Rizzxiz0fNPzphWFOWypSTjugDgfWvte8V9sqzcXHy/wXvOeDeHUVdjP5Kjo0YPf4DGzlq6SmgLFq6msT1ukDPoA2vx9s0EMlN9e7psR3Yqmm6O3yk03/L8lM/+drHQCvILaGzXEfdRnZFfWCi0k4X857777iShsRFaTi67bD2+U8suK+6NfvZ+Gsucdm+6S44RA4CoVnJsWZEBtTdzZvI22M6xtwktoGJFGrs9WfoELPlBFj0BILS+9JFo2IQXf7uTcV2HHLws5s/7wuvx0WxZ0HaiOAaeaQDSPN/nGGPOjOtSFKUMU5JxXQDwuDEmzhgzQaf0KkrZoiTjuj4GUB9ADIr+MhjjsN1/x3XlHDlyEXZZUZSLwQWP67LWHrDWnrLWngbwGYB2bNuzx3VVqaZ/HCjK5UJxqv10XNeZOX0ebgXAF6orinJZUpJxXQOMMTEosjBNASBdH4rBtB9llRsA0pNkVT2/gFepA6rJOXWnCrmjblqWNKLIPijdUgEgP0+27UaROWq5J+V8OADIayzdcH1I5RngdxwO7uWmG4npsu2YtfwCgB+5u1DVn7e2suONjJSVZzY7D3Bw2SVGHABQu2FtoTnNz9u0Sb5HmrfsSGOzDsrX95cF0iglN5e/5it+kSMn+xzoTWMXTV0ktN738rsQU/72kdCGvDiUxp4md8Amvj6FxkZENPN6nJcn73w5UZJxXdzvWlGUMoF2+CmKS9HkVxSXosmvKC6lVNfzh0XUs4+OfN1L863gS2Pzc2XxaVC/HjR26ZatQtu7XbZeAsC+HdK1dczbT9HYBfHyBkYhGYfEXHoBoCFZYz99sWyXBYArqkmn4PQUWdgDgMqBlYWWdYD3UNRvKltIDx/ixS5TTpZ2Ck7IIuuCqXIsF8BHaDm57K5PShZa/Ip4GrsnYY/Qpjp4Cizdtk1oEz/4Wmi1G/Am1YbtpCPvmKGjaOyoz98W2vI5vOBWnrzPp308jsau3CjfIyt27KCx6Xu91/m/M/xJ7NmZqOv5FUVxRpNfUVyKJr+iuBRNfkVxKZr8iuJSSnVWn6+fL0LreZsaLPs3r37HxMoqcZhDVb1bTLTQQrp0prGJxIxj6z4+t+2Kiv5CY86qberJNl4A6N37CaHdOlSaRQBAA9KeW6OKvAMAAF9/KltQx7z7NI0tPCXbnDOOHqWxq7fJivLRYzK2IJ+3M8+bKF1y2ew8AOjcV74+zIgD4C27rKoPAJ0byWr9oCEvC+2kg1HKv16Wbbgz502lsVEh8m5OgYNRyjUdZIvwzyt/prHs9Xl58DAae8/T3i3Cpx3a2hl65VcUl6LJryguRZNfUVyKJr+iuJRSLfj5+JRDlSu8W1NZYQ8ADu2XI7jSyVp8APhp5TqhNawfTmMziQtqcsJuGrt9zXahvf7G40I75TBGbOBIOaoqKjiYxm7dmyq03Vv5fnW6vZPQSGcuAN4WemO0LJACwBdTZgtt6Q+yKOXnJwuhAHDwoGypvnWoHFMF8BFazGUX4Ovx847xMW+suDdlwutCa9pUnkMAOH5ctj5vSOGvQ987nxXajFW8vTcoSBYHl27i7cz3dOsitGbRfH9XzFrq9fhYFnf5ZeiVX1Fciia/orgUTX5FcSnFMfCsaIxZY4zZ5BnXNcqj1zXGrDbG7DTGfG2MqfDH766iKBeL4hT88gHEWmuPeSy8lxtjfgLwNIrGdU03xnwC4D4Uefk7P1m5cggK8DbbDGwmTR8BYM5mOZvevwL//eLjKw9jBxmlBAAdW0hzxB0b5VgtAMjcJ4uO1chcedZF50RQgFyLD/Di3pF0vkZ/yJ03Ca2yHx8pdZr4NZRzKKztS5Sdjlu2yA5MJ6PN6tXlGvlU8jMBoFIVeR6dRmgxs02n9fisc48V9+Ljl9Ptw8ObCK0+MW0FgIgmsqi8YCofT1YrTI7rujKkBo1l49TqteBdpB++OdLrcW4u795knPfKb4s4U0L09fyzAGIBfOPRJwPgNq2KolyWFHdoh4/HtjsDwHwAuwBkWWvPTIFMhc7vU5QyRbGS3zOZJwZAbRRN5pGrJxw4e1xXlo7rUpTLhv+p2m+tzQKwGEAHAIHy2b4fAAALa0lEQVTGmDMftmsDoB/uzh7XFajjuhTlsqE41f6axphAz/f+ALoDSEDRL4E7PGGDAch1poqiXLYUp9ofCmCyMcYHRb8sZlhrZxtjtgKYbowZDeA3FM3zOy/n1plXLJKtuQDATIVTDx+msTVryr8onNbC+/lKF9X0ZLnGHwAqV+WV+XPJLyyk+rHs48XaHgBq1akpRQdn5eXbZdtx71ataGwguTvhRE2yDxERsvptDL9mbN68VGiNYuS4LwDwq+QntM6x3OuAjdBiLrsAX4/PWnZZVR8A9uyRTtANQnhL9vKfpIvx0x+8QGPHPTdWaI2JuzMA5BfI99OSWXxAVqNGV3s93rp1BY1jFGdcVxyAlkRPgsNkXkVRLn+0w09RXIomv6K4FE1+RXEppTquK+TKcHv3Q8O9tOAIXky57lpZwDpE1uIDQMvISKEtczB4/M9H3wttzD+Gk0ggpGpVof2SkCA0J2NR1vb7yUczaOyIZ+8V2rETJ2js9JnzhbZ23hoe++/3hLbcYfRTu/qy1Tr18CGhbdufRrdvXTdSaCFVA2ns2iTZvh1Qkbco7zogx5a99Yhctw9ws022Ht+pZZcV9wKIkSsAJBDj12UOa/Qj68j23p4xopQGANi+X/7cqv58Hw5kexcz+/Xqhfi4OB3XpSiKM5r8iuJSNPkVxaVo8iuKS9HkVxSXUurjukIivaupy77l47qOH5WtscMfGsBj8/OFdlvbtjS2/BM+QltHKs8AbwVmVdfw6tXp9v3ueEZo3QZ1p7EpmdI4JHEvN8JI3SGdfsdPGU1js/Oky23LiAgaO2ORfC2OZEjH5IXT59Hti2wevIlqxttwuw6IFdp2BwOWRVMXCW3U52/TWDZCi7nsMiMOgLfssqo+ADQOk6vYnYxd2ra+UWirE/ldlwLSLn5Na3m+AOCBkd53qrJzit9Srld+RXEpmvyK4lI0+RXFpWjyK4pLKdWCX41qVXF/X2/n2Uf7y7nlALAiMVFoTuOcZv0qW1vTdvEW1GFD7hCaU8Fv1Qo5W75iZdmCWugwrmvEe08IrV097sI6YZ50fQ0IDCCRwNDnBgnNrzx/KVftlM7EVzo4Khky82vuFNkOPWTUw3T7axvL4p4lRUAA+PiTb4S25Ic5NLb3vbLQu3wOH4tVQJxv2QgtJ5ddth7fqWWXFffK+8iCMgBs3C1bjBcsXUtjH+13s9DiE/jx9v6/R7we5xy+iO69iqL8OdHkVxSXosmvKC5Fk19RXEpJZvVNMsYkG2M2ev7F/PG7qyjKxaIks/oA4DlrrSzbOnA0Lw8Ltmzx0qa++SWNDW8kW1DbvsIr5eFh3BCEEU9aNZ2q9Y1bXSW0yn7SddbH4S4Ea61dn5xMY9mdjJN5sm0ZABYsXy+0e27uRmOb16kjtEoOMw8nrZRGJX2HDRTaI71kNRoAoqKkAUvt2g1p7JjPXhFaaH1peAEAU/4mHXl7DuhHY6/pIO8eBQXJll82Ow/gLrsv/vNFGstadllVHwBiSEv1lKW8tX1XhjQv6diUuzOP+uQzr8dbtstWaCeK495rAbBZfYqilGEuaFaftXa157/eMMbEGWPeN8bISyK8x3UdzZKLRBRFuTRc0Kw+Y0wzAC+gaGZfWwBBAEY4bPvfcV1XBHI/N0VRSp8LndXXw1qb5hnfnQ9gInSAh6KUKc7r3muMqQmgwFqb5ZnV9zOAdwCst9ammaJK1fsATlhrn/+9nxVaO8L+5Qnv4klQCG81jW4lW0V9HVonG4bK4s289Rtp7IIvpPPteFJ8AoAK5eV6fuYKXN1hNBhb+//p59/S2KEP3ym0/Q5TjRf9IkecrZvHx569O+45oa3ZtYvGXttInvP4VOkdsGmjHBcGAJ07yBs+zFkZ4C3VTu7MSTvlOv8xz/Ei3M8rfxbaUtKee2VIDbo9G6EVFcrHarH1+EtWbKCxzKV6UOdraeyONNmafsqhKH3ue+SRfv2wPT6+WO69JZnVt8jzi8EA2AiAN3wrinJZUpJZfdxaRFGUMoF2+CmKS9HkVxSXosmvKC6lVGf1NWvRws6cO9dLY5V6ANh7SM6IW5+SQmPXLpQV1rvu6kljt5Dq9a1t2tDYNNKUFFFDVomP5/OZegay6OpkSDL+25+E1q1TaxrLzDg+mSZNN5yez68S7cdC0+ZRQruheXOhpRw8SLdPO2duHACs+JXfdelwdbTQ2KxAADhNKt1HcnNpbMZRaWbBKvgniekHAOQXSOdcp+diLrvs/QHwll0/cjcJAK4iObGKmNsAQKu6db0eX92+PdavW6ez+hRFcUaTX1Fciia/orgUTX5FcSml6t57srAQyecUi5554DUa27BNE6ENfZyP66rbv6bQnFpF25Oi0uT5i2ksc8/deUAWbpyqK6xQ1MihwHnuGDMASCTPBQAz/yPXbA8lrsQAL0qdKODFrolfSffczKM5Qhs7jL9mmZmymBoeLl9HAAipGyI0p9ds4utThHb3yLto7MuDhwmtWXQnodVrwb0hlsz6UWiz53PPCTZCy8lll63HX50g3aEBXty7ukEDGjt50RKvx4dz5OvlhF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKqVb7fcqVQ9VKlby0v08YRWNnzJKz1KpVrkxjlyVIgw3WEgoAdaoHCS0zNZPGzvt8rtDGfCJnuVWpKOf3AcC0ufIuQqtI6eIKABl7M4SWlpROYx8Y0kdoVxDjEAD4asWvQuse3YzG5udKt+CBnToK7ZlXx9Htcw7LSvO1d3DDijmfyDsL8+d9QWMjIuT+ppPzBQD3PD1UaCtmLRXah2+OpNs3anS10A6QtmUAeGDkcKGdOzvvDOe67ALOZi3MVOXcqv4ZBsd2oXpx0Cu/orgUTX5FcSma/IriUjT5FcWllOp6fmPMQQBn5hnVAMArbWUbPa6yx5/p2CKstbLfnVCqye/1xMass9ZyF40yjB5X2ePPfGy/h/7ZryguRZNfUVzKpUz+8Zfwuf9I9LjKHn/mY3Pkkn3mVxTl0qJ/9iuKSyn15DfG9DDGbDfG7DTG/O5gz8sdY8wEY0yGMWbLWVqQMWa+MSbR85VPIr2MMcbUMcYsNsZsNcbEG2OGefQyfWzGmIrGmDXGmE2e4xrl0esaY1Z73pNfG2MqXOp9LQ1KNfk9wz4/BNATQBMAA4wx3OepbDAJQI9ztOcBLLTWNgCw0PO4rFEI4BlrbRMAVwN4zPM6lfVjywcQa61tASAGQA9jzNUomjr9vrU2CsARAPddwn0sNUr7yt8OwE5rbZK19iSA6QBuKeV9uGhYa5cCOHyOfAuAyZ7vJwOQS/Auc6y1adbaDZ7vcwAkAAhDGT82W8QZo0Bfzz8LIBbANx69zB3XhVLayR8G4Oxh66ke7c9EsLX2zID1dADSmbMMYYyJRNGU5tX4ExybMcbHGLMRQAaA+QB2Aciy1p5xOv0zvicpWvD7A7FFt1LK7O0UY0wAgJkAnrTWes3BKqvHZq09Za2NAVAbRX+JysXzLqG0k38fgDpnPa7t0f5MHDDGhAKA5yt3nbjMMcb4oijxv7TWfuuR/xTHBgDW2iwAiwF0ABBojDljbPNnfE9SSjv51wJo4KmuVgDQHwCfMFl2+R7AYM/3gwHMuoT7ckGYoumenwNIsNaOPeu/yvSxGWNqGmMCPd/7A+iOonrGYgBnBh+UueO6UEq9yccY0wvABwB8AEyw1r5RqjtwETHGfAWgC4pWhR0A8FcA/wEwA0A4ilYw9rPWnlsUvKwxxnQCsAzAZgBn/NBGouhzf5k9NmNMNIoKej4ouvDNsNa+Zoyph6LicxCA3wDcba2VnmZ/MrTDT1Fcihb8FMWlaPIrikvR5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJS/h/l3KikFmmUawAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/community/aqua/artificial_intelligence/qsvm_variational.ipynb b/community/aqua/artificial_intelligence/qsvm_variational.ipynb index 9d62d274e..ed80f5fc3 100644 --- a/community/aqua/artificial_intelligence/qsvm_variational.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_variational.ipynb @@ -33,7 +33,6 @@ "from datasets import *\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit import Aer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.input import SVMInput\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", "from qiskit.aqua.algorithms import QSVMVariational\n", @@ -53,12 +52,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFm9JREFUeJztnW2oZtV1x//LcdLRmRsF7zQ1GesILSFBaNSLpRg0NSRMG6n9kA8RInTUzJdGDCmEpFCG+VDafgkRKqXXeamhJiH4giWkJkLMWKWZ5I4xRGeMBFGcMWG8DZJ7W1NfsvrhPo858/Q55+y9z9ovZ9//D4a5d+Y8Z69z9rP3f62130RVQQipk3NyG0AIiQcbOCEVwwZOSMWwgRNSMWzghFQMGzghFcMGTkjFsIETUjFs4IRUzLkxbrqwbatetLCt85oXV9fP+v3SxR0AgMXFBedyVlfXeu/bxrQ8H3xsazJrp4uNIe+jr1xrhtSVaz018amzLtt83kufnU2bLOtqWm7bM//X2q+w9qs3pO++URr4RQvbsP/GqzqvueXQ0bN+n16/97brnMs5cvDo//u32fu20WffPHxsazJrp4uNIe+jr1xrhtSVaz018amzLtt83kufnU2bLOtqWm7bMx946LjTfaM08C6mhh++1f5llETsxpUSizpLzfT9z2t0bQ1xXp1Nn9nlO9ZVpi9W75oxOCEVk1zB23oml17PQrlDesahYYMrVr12Td5DSpr17PoOm9/Baf2FKPn0Wuu6o4ITUjFs4IRUjJOLLiIXAjgI4HIACuAWVf3PIQX3uS9drkqJSTUXxmr3mGl+j4Ykv1ySbbPJSMukWyiuMfidAB5W1Y+LyDsAnB/RJkKIEb0NXEQuAHAtgL8AAFV9HcDroQWGKLeF8pWcXBtaNrEnVtIrNS4x+GUAXgFwRER+KCIHRWT77EUisk9EVkRkZf21N8wNJYT44+KinwvgSgC3q+oxEbkTwOcB/E3zIlVdBrAMALt3Lpy1k6PPrKJUceq84Y3YtMVxOSeQ5FKq5jOnqnOL4avYsXhXfYS8JxcFPwXglKoem/x+HzYaPCGkcHoVXFV/LiIvich7VfUnAD4M4ETXZxYXF7xj7di9uM/9Y8fesRR7iArXEnOmwmcK65R579bnuxZSpmsW/XYA904y6M8D2OtcAiEkG04NXFWfArBkUeC0F/PphdoUz1r1mbkeHyGeh+VU0q5cgssinTZbrDwqzmQjpGKSLDZp9kKuqhs7szz0/iXFqiG2lOSthMSWs6RS8i4slkC3KXnzmsO3Xue8HpwKTkjFsIETUjFRXPTV1TVvt7yEyR59pHTL+9zHlLaUspOL1drrIcQeTnTdieauJ55zuh8VnJCKiZpkC1HueT2X5aSYUtTIlZKSeSH42F9Lss0CK5uo4IRUTBQFf3F1vbcXnvbWqWJMF0+hjbGraCxiKZ+FkofgMpU09Xdh6IYVVHBCKibJRJd5cW+IcpfQo5N0dCl535JMq2x3Sd+BEI+JCk5IxURVcCvl7rof0K3sQ2JvEo6l8oWcLlIzRw4edT5fjQpOSMWwgRNSMVFc9EsXd2D/jVcFHUdUAiXa5BOGlMyQgwznrb0e48GIXVhPhaWCE1IxURQ8ZE+2EmizKYdK+AwJxjiS2Zq23U6AYWqe67SYWAuoZofCuKMLIaSV5Du6WGLVe/cpdyo269llFh5IKi8rxLOa4mPbvEktIe2ICk5IxSTZ8MEHl9hjSPzjYlfqk0c2q3JbMBuLx1byIbH/vM/02dm22IQbPhBC0sTgXfhMHU2tdFRuP4bmWtrU18WrS63kVvjYycUmhJCzcFJwEXkBwBqAtwC8qaqDTznxWXRicQqKD5tBuUuch9CHS0Y51fi4dTm+Su662MTHRf9jVV31uJ4Qkhm66IRUjKuCK4Bvi4gC+GdVXQ4t0NU1L8GNHQulJ5J86dutpflzn6s+NqyTg64N/IOqelpEfhvAIyLyrKo+1rxARPYB2AcAF23/LRPjCCHDcD0++PTk7zMi8iCAqwE8NnPNMoBlANi9c0Gb/+ey1/mUEOW23jmGhDF0WuUY6To+uAR6Y3AR2S4iC9OfAXwUwNOxDSOEDMdFwd8F4EERmV7/FVV92KeQkOmhLvgodwmU2MMPIfa7bovFm2XHPivMB8uhM6tYvLeBq+rzAP5gUCmEkCxkm6pqodghClJSj7+ZsJ4YUuJ5YlNyb0bRhOPghFRM9sUmLsTY23wzZnznETLakFo1u+LRWHUX8oyztszaO3SJaUg8TgUnpGLYwAmpmGJc9C73o8RESu0MfedjTGZaPfOULpc9VQKOCk5IxWRT8L6EAVW7TkoaQopNl6KHJOBCJr9QwQmpmGJi8NSKPabYkKShbQdTK7oWXbkcjc1hMkLIWWRXcMbaddOWTS99mWWqqbB9E42GLjahghNSMdkUPJdyW8feYxzvLY2SM+uz9Zrqe+uzSUoXVHBCKiZ7DJ4KC4UN7b1jK9NYTvHoo03JYz1XyBl3uRR9tiyeTUYIYQMnpGaSu+ipXBrLpNdYhvJqc9VLoC9c8Pme5fgeUcEJqRhR1f6rPNm9c0H333jV27+n7LlSK3esHWMtcFFCThG2qx9Lz6OvXpb23o2Vky9L332o4IRUTJQYfHFxIYky5FSDvrJLnLSRk1R11fW9i33ksEWdz9sDfhaftkUFJ6RiRjXRJbcKlBg/dlFLVt0FF1UrcUulWbrKbar76uqa0/2o4IRUjHMWXUS2AFgBcFpVb+i6dul979aVI58KMmhsKjlLibF3zmx66vq02M98HiXWq6qaZtHvAHAy3BxCSGqcYnAR2QXgYwD+FsBnLQ0Yu2LP0pWRDYmFS1QOF8ZUry5LM1PlMazr21XBvwTgcwB+3XaBiOwTkRURWXnl1f8xMY4QMozeBi4iNwA4o6rHu65T1WVVXVLVpZ0Xnm9mICEknN4km4j8HYCbAbwJYBuAdwJ4QFU/2faZ2amqJBzLyRNdWCTZSnLLrZOGJT0bABx46DheeGVteJJNVb+gqrtUdTeATwD4TlfjJoSUw6gmupAwXCa8hOwiWpqqNbHeFXWsk5+8GriqfhfAd6NYQggxpwoFr0V1SsBF+cb0DufZahmfW+1+GgtOVSWkYkal4CVvnVSbFxHbxqFnbg0h9s6oJe2VTwUnpGJGpeBDiHWiyZDPdtk01imqU3zsD3lWS9W32lyhRKjghFQMGzghFTMqFz130sLKXcv9HLFIGVYMKcvHvW+rq1Su+9B3SgUnpGJGpeC5GEtvnYux2R1y6OAsqbywNjsOPNS5uPNtqOCEVAwV3AGrhQttvf7YFHDKWO12oe/ZxrJTLRWckIoZtYKnPlPKZeGCT2w2VgUcq92WWO251+cVDo31qeCEVEyU00VFRAG7OCW1YsSOr0o+bdSFkhXc6pwxS6y3zDpy8Kjdlk2EkPGS5HxwH8bW8/qQ+9lqVnCXZyvJ7qF1QQUnhLCBE1IzxQyTleQ+WVDb89TArFucs45my46V2KWCE1Ix2RW8RKUb0pvW9jw1U9KQWixFp4ITUjHZFLyEXnMKFc6PkpRvisvpLW3M+0zuZxvyPE1cThfdJiLfF5EficgzInJgUImEkGS4KPj/ArheVddFZCuAx0Xk31X1eyEF5u4Zp8RS7ZLULbZnUtKzWlNSxn0IvQ1cN6a6rU9+3Tr5Yz/9jRBijlMMLiJbABwH8HsA7lLVY1GtishmiLdTP2NJSm4Vu84Seyps1nFwVX1LVT8AYBeAq0Xk8tlrRGSfiKyIyMr6a29Y20kICcBrmExVXwXwKIA9c/5vWVWXVHVpx3lbrewjhAyg10UXkZ0A3lDVV0XkPAAfAfAPoQXmSl7kcluBMlxXEp8Swz+XGPxiAPdM4vBzAHxdVb8R1yxCiAXFrQefh6UC5uxlYyt5SQqS22sp6V1YM323qsr14IRsZqIo+NL73q0rRz4V9NmQXSRzHz8bSupdYXMw1v3nYp9mM2S3VCo4IQRAgQrugkvvN0ZVtzgzKxTfXT19KXm0JNXZc/MIVXLuyUYISZ9Fj9Fb1qroKQmpl5JOcfGpq5yKPQsVnBASTDHj4Fa9al+PWOKCgJxYvPccSt5XFyWptAtt77DtOZb23o2Vky9TwQnZzLCBE1IxUfZke3F1PUpSxcLtGrJ2ufmZGt31UKb1MvSo2z6sD/HLyey7imU3FZyQism+L/qULkWd9tyWCjF0OWesnUPIbxibYsf2YEKgghNSMVGGyUQk6qaMsVXTR9HHruCxFHDIcGWJyp1KnV2fi8NkhJB8E11q2cShFqwVMYbipVTtEuPpJpyqSgiJk0VfXFxo7W2nPWOb6sZalODS+5fea29WcuUJaoAKTkjFsIETUjHJJ7pYuFup3PjN4MJtJjZjfVLBCamYqMNkqdZ4+xB755KxwzobBxwmI4TEjcHn9aIhvXHfkFtsUi2HHMpmziGU/KxDvKLmczXvc9cTzzl9vlfBReQSEXlURE6IyDMickeAnYSQDLgo+JsA/kpVnxSRBQDHReQRVT0RUqDlQvd5n+3ryaf/P9STKFkxasPiFJB5lLDHfOx79Sq4qv5MVZ+c/LwG4CSA9wwqlRCSBK8YXER2A7gCwDErA6y3rnGNl9tim5ikXoY6ltyBBbnOQMs1jXZ1dc3pPs5ZdBHZAeB+AJ9R1V/O+f99IrIiIivrr73heltCSEScFFxEtmKjcd+rqg/Mu0ZVlwEsAxvj4KEGDYmRm/iol1WZbeTeEqoWJc995niTMSyvBdyy6ALgEICTqvrFKFYQQqLg4qJfA+BmANeLyFOTP38a2S5CiAG9LrqqPg6gd0rcPEKGsawJcdVnPxuClTvp46rHDjUsyeluDwl7xuKaT+FUVUIqJslU1Wavl2vaaUiiqaSklEXSrYSJOmNVbmtSvX8qOCEVk2TDB5dFJ2OIG0vAavgsxtBZ171yKbeValstGEkNFZyQisl2NpnvgedWxJ70kUqprE46rWUSzCybXbmnUMEJqZhiThed0tXrMU53I2Q8vJZ326Xcbd6VldqHnMcWO7NPBSekYtjACamY4lz0LmLtBlNCMmQIlivPrImddBzyzF2fdf1uDR0ajL1HABWckIrJruAuPVhbz2W1aysZRg4PyFXNYnkQ8545trcS4qlRwQmpmOwK7oLP8Ib1Hm++TG0qafeRWrDKMbTdp+u70ualpKxnxuCEkLPIruBDFM8lJmlT9LFnzkug5HfoM6nER7lTe2ZDvRYqOCEVE/V00SEM7Sljjwn7bFyRq9e3Pik05Owzi2fPeQLJ9BlLUO6mvUt778bKyZd5uighm5nsMXgbzR4s977iPtQS48+zP/UzlaDcqZl95uhnkxFCxgsbOCEVE8VFX1xcMF3MMfbJI7nsH9M+6U1yueY5E6TWidEpVHBCKiZJks3qhJPZnj3n5P4+dZznwYzdE4lNDOUOTaiNXbmnuBw+eFhEzojI01EsIIREw0XB/wXAPwL4smXBIZMmZokVq8323kP30hoydJZa9a2Hh0rchMKCkL3f5n3eR7mbdbO6uub0mV4FV9XHAPzC2QpCSDGYxeAisg/APgD43d+5wPvzJU0Q8VHNkEx1iCozfvcjJPbuercWnkjzHqky+mZZdFVdVtUlVV3aeeH5VrclhAwgShZ9dXUNRw4eDcoMlqTkXcxm2F2U3OfZ2hSDSt6NdTbaR7n7Niax9ipc4Dg4IRXTq+Ai8lUAHwKwKCKnAOxX1UMuNx/rTKopLmo5ZFEL1TgPbR6UyzbKPp6ly3ciRLEP33odDjx03MmG3gauqjc53YkQUhx00QmpmCRTVZtuSMjwwBiYda1SDZv5fo74ERJe+uzjP2XI+QBdUMEJqZjkO7qUvMtpmy0hCtvltfSV44tFsq6E9x8bn2d0Ve7Qd+76Oe6qSghpJfuebCUqh4vCtvXA84bNUg0X1rqww2Uo0meXW997dNnkQ+yTROdBBSekYrIruA+xMo1tDMkPNG31mc7aZ8uUEj2feQyxu2vZ7mw9W77beQyx2wdrL4wKTkjFjErBXRgydbRNBeYp+ZDM9RjU12qTC6uyfbF6x7HPJgv5nvrYQAUnpGLYwAmpmOpc9CmzboyPK9Tnqjevib3irA3LfedLIbVrHntYrIu2I4pcprP6rCajghNSMVEU/MXVddxy6Kh5yj/XDqNWE1RyHYjYxZDdZWYZ67r/ecTwivqOBJ5H19CgC1RwQiqm2hh8Fuvhs9mYyce78LEllyqm9DJSL3dNFXv7TK0N2WXGBSo4IRUTVcFDVLOrd7U448s6Dk6l5D42kDCa789Sua29sL23XYe7nnjO6VoqOCEVE0XBL13cgf03XhX02a7M9RC1nCUkO+mz9RTpJsc2UxZLSrsIUe6+sttO5jU7m4wQMl5GmUW3jjktYuE276J5/5jldzHPK0odr48hPxDiVYSMbbvQpty+UMEJqRg2cEIqxslFF5E9AO4EsAXAQVX9+6hWwS+hVdIe4Tl3gekrewxucighCbQh7yOVaz60znoVXES2ALgLwJ8AeD+Am0Tk/YNKJYQkwUXBrwbwU1V9HgBE5GsAbgRwIqZhLljvtNKW7BraM/OQwd+Q8x1YeDDW343Ye+25xODvAfBS4/dTk38jhBSOqGr3BSIfB7BHVW+b/H4zgD9U1U/PXLcPwL7Jr5cDeNreXG8WAazmNmJCKbaUYgdAW+bhaselqrqz7yIXF/00gEsav++a/NtZqOoygGUAEJEVVV1yuHdUSrEDKMeWUuwAaEsKO1xc9B8A+H0RuUxE3gHgEwD+zcoAQkg8ehVcVd8UkU8D+BY2hskOq+oz0S0jhAzGaRxcVb8J4Jse910OM8ecUuwAyrGlFDsA2jIPUzt6k2yEkPHCqaqEVIxpAxeRPSLyExH5qYh83vLennYcFpEzIpJ1qE5ELhGRR0XkhIg8IyJ3ZLRlm4h8X0R+NLHlQC5bJvZsEZEfisg3Mtvxgoj8WESeEpGVzLZcKCL3icizInJSRP5o8D2tXPTJlNbnAHwEG5NhfgDgJlVNPuNNRK4FsA7gy6p6eeryG3ZcDOBiVX1SRBYAHAfw55neiQDYrqrrIrIVwOMA7lDV76W2ZWLPZwEsAXinqt6Qw4aJHS8AWFLV7GPgInIPgP9Q1YOTEavzVfXVIfe0VPC3p7Sq6usAplNak6OqjwH4RY6yZ+z4mao+Ofl5DcBJZJoFqBusT37dOvmTJQEjIrsAfAzAwRzll4iIXADgWgCHAEBVXx/auAHbBs4prR2IyG4AVwA4ltGGLSLyFIAzAB5R1Vy2fAnA5wD8OlP5TRTAt0Xk+GQ2Zi4uA/AKgCOT0OWgiGwfelMm2RIgIjsA3A/gM6r6y1x2qOpbqvoBbMxGvFpEkocvInIDgDOq6na4Vnw+qKpXYmO15F9OwrscnAvgSgD/pKpXAPhvAIPzWJYN3GlK62ZjEu/eD+BeVX0gtz0AMHH9HgWwJ0Px1wD4s0ns+zUA14vIv2awAwCgqqcnf58B8CA2Qs0cnAJwquFV3YeNBj8IywbOKa0zTBJbhwCcVNUvZrZlp4hcOPn5PGwkQ59NbYeqfkFVd6nqbmx8R76jqp9MbQcAiMj2SfITE3f4o8i0SEpVfw7gJRF57+SfPgyDJdlmmy6WNKVVRL4K4EMAFkXkFID9qnoogynXALgZwI8nsS8A/PVkZmBqLgZwz2S04xwAX1fVrENUBfAuAA9u9MM4F8BXVPXhjPbcDuDeiUA+D2Dv0BtyJhshFcMkGyEVwwZOSMWwgRNSMWzghFQMGzghFcMGTkjFsIETUjFs4IRUzP8BWHZX30xiqhAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFWFJREFUeJztnV+sZlV5xp+HYSwwMzpJz9RMHcKQtDE1k1TghKbBgMVoqBLxwgtJJOlYPDeVYLww2qQhc9GkvTFyQZqenmGCETUGSqYhFmsiMkoqeg5iBQaJoUMYqpk5tcRzWi2Iby/Ot+Fj9/v2Xnvv9W+v7/klk5kzZ/959157red913rXWjQzCCHK5ILUBgghwqEKLkTBqIILUTCq4EIUjCq4EAWjCi5EwaiCC1EwquBCFIwquBAFc2GIiy7tv8QOH9zf6ZzNza3511va53zu85vbne7bl8uW9jber/p9E0221s9vewcxqZdVF9uqc2OX0zT1ew8pq+lzY5XR5uYW/nPrV9j61StsOzZIBT98cD/WT3y80zkn1h6Z+7ujt17nfO7Hjs+/jk/uuOmqxvtVv2+iydb6+W3vICb1supiW3Vu7HKapn7vIWU1fW6sMjqx9giOndxwOjZIBd/c3MKJtUecHnhexR5ybhN3//nOdX19YL6vVyfmRxPzfl0Y8o6nz6muU79e9Xf1/31tyPEdKgYXomCCKLgLQ9y8Oi4te1Pr7IpLCx/q+qHo4gXNO7aPck0/q6sy9znH5XpdrjVP/ad/l5OSS8GFKBhVcCEKxslFJ7kfwBqAIwAMwMfM7F/73NCHa+7SE5vC3e1KSht9uttdqK7bp4N0mj7u9bzOtD7l4HJODq66awx+J4CHzOzDJN8E4JKANgkhPNFawUm+BcC1AP4MAMzsZQAvu1x8Vis9pDVzafXHoNyp6NuhFlqBhgyDDVHy+jVC4VvJj956He569FmnY11i8MsBnAdwguQPSK6R3FM/iOQKyXWS69u/fKWbxUKIILi46BcCuBLAbWb2GMk7AXwGwF9NH2RmqwBWAeDwgX0G+Gux6sozpAUeohKLSpvyh1L4RX/vPnBR8LMAzprZY5Of78NOhRdCZE6rgpvZz0i+QPLtZvZjAO8B8HTTOUtL+wa36k2qoZa9G0N7rEMw/X1U9g0pVx/prLFicSBez7prL/ptAO6d9KA/B+BoOJOEEL5wquBm9gSA5cC2AAinNoq938i89zH2Z/Y9MSUUscbIlckmRMEkm2xSJ8c4cQizWubYz9jnfl3i0ZQZWvV715916DTe2HF5qHcpBReiYFTBhSiYbOaDjx0XF8vXRIu+9E3nzKXjrekdp363QwnlqkvBhSiY6Ao+r4WNPQGgiZw6mPq07L5VzGeHk4ttQ95tXcmHrgITq7OtwudKR4AUXIiiCargTa11W2vqOwZ0GTaZd59Qk2Z84+odpSB2bDwrJg+9Am4XXBONhqa3SsGFKJig66JXDG0xfcRBfWzIYVXMiqZYPJY6xo5HQ+FzuSffNPVFTZdz005A00jBhSiYIAr+/OZ2lDinSWG7qFq9Vfat3D4Vtsu1QpdBqLFbn9edNS21IqeYfB6zbOviRUjBhSgYVXAhCiab2WRNdHGhx5qquGgMdT37MC+dNYWr7mveehtScCEKJlsFn9Wa9+l06bJyic/OopSeRM6dRk3Uh6JCdeK1Kfksm8aKFFyIgslOwfso6yy1TKXcKYmlNqGTPnJKqAn9jKGRggtRMNkoeJ9kkyHKHUq1U8TeqeNEl1h5yIIMsWPxkpCCC1EwyRV8yBj32CeQDCG1ag/FZSGGWLF4yUouBReiYJwUnOQZAFsAXgXwazMbvMtJLOWu7lOKci8yoff2apqYMo/cPakuLvqfmNlmMEuEEN6Riy5EwdDM2g8i/x3AfwEwAH9vZqstx7/hokM7SYZsHBjbNY+9ukoOdEke6jK0OeQ+vshp/n0dM2PbMa4u+rvM7EWSvwPgGySfMbNT0weQXAGw0sNOIUQgXLcPfnHy9zmSDwC4GsCp2jGrAFaB1xW8j3IPbQVL71TLSbn74Hu109Cb97Vtcpg7rTE4yT0k91X/BvA+AE+GNkwIMRwXBX8rgAdIVsd/ycwe8mXAEEUqeeLI2OmjrGNYI60pKSZH+1sruJk9B+API9gihPBM0FTVUC1ZrIkjIg19lDB0LF5nLEqucXAhCsZpHLzzRWvj4EMJvWeYDxZx/Lti6G6sId5dym8j1h5xLuPgUnAhCkYVXIiCST4ffB4aAktDqA6i2J1gKZmXHOMyB943UnAhCiabTramjpqcW/3YqYuhW/4+a4N3SUnOqbPN5X6x1srvU67qZBNiwUmm4L5a/VT4VJsua4LFit26KHmfSUV9Vk/pg2+PIdbW0i7lLAUXYsEZhYJXpFZy30rTZypiikSXHHYY8UHoqZ9Dvs8+C0tIwYVYcJL3ovtQh7HuUtJnPe6UqaqlKHkq+u7WM4tjJzdw5vyWFFyIRSa5glcMUQdfCj6G5XhymGwiJU+PFFwIoQouRMlkM9lkyEZzXba0GeKGT7vHclNFG0PW8/eFFFyIgsmmk60iB2XMoeVtQ51tO/TZiDI2ocpKiS5CLDjZKHhKNfDZwsZ6jkVXcJWZFFyIhWdUk018kmLhhFCkUvNSFHwWY1B1KbgQC46zgpPcBWAdwItmdmPLsb13Fw1NygUTQrNISh77WXNUdN8KfjuA0x2OF0IkximTjeQhAB8A8NcAPtV2/GVLe3HHTVcNMmxWRpqvLDQhujIk07ILTdfv8w27KvjnAXwawG/mHUByheQ6yfXtX77S2RAhhH9aKzjJGwGcM7ONpuPMbNXMls1see/Fu70ZKIToj4uLfg2AD5J8P4CLALyZ5BfN7KNtJ/peaaXPCihjwNdKHzltWyuamVfmTeU87b4fO9mot6/RquBm9lkzO2RmhwF8BMA3XSq3ECI9QaaLLi3tS74Cap1Y6hZqvfdSvZexEGvtQJ/rtgEdK7iZfQvAt7qcI4RIRzYLPoyV2Ou7uyi5YvHh5LBGYNP173r0WadjlaoqRMEsnIL3SSQYGn/l1h8xVkJ5JGPcZccVKbgQBTMqBQ/dg+wzDTGHFj50LJ7jZKLQ5FCuXZCCC1EwquBCFEy2LvpYEzpydOFmudJD3PbSVpDtMlOs+i5zLOdZSMGFKJjkCj5WpR47Y+ggi52oM+t+897TrO82R1WXggtRMEFWVV3+g9+19RMfn/m7RVRsny37Iry/MaTYpk6OWT76D1g//R9aVVWIRSZ5DD6EnKZ+NrEIqrtouHx79e+nz3cwVPWl4EIUzKgUPIde1Yox9EKPjTHE3l3oo/J15qn+5uaWkw1ScCEKJoqClxiDtrXOUnjhQv078v3dSMGFKBhVcCEKZlSdbHX3JedOmbF20DUNy4QKtXIux9CE/hak4EIUTPRU1Tq+VWHMapBS2bskVKjMXidVmR07uYEz57eUqirEIpM8Bve9k8O8FnUMKjFtYyxlyHGKY06ELoe+79/buugkLyL5PZI/JPkUyWO9LBJCRMdFwf8XwPVmtk1yN4DvkPxnM/tuYNteo97K9YkBx9QDH5P6u5ylKCF6z3N8/77VOgfvqLWC204v3Pbkx92TP/575oQQ3nGKwUnuArAB4PcA3GVmjwW1ag4+laTPDiehyWF8PHRasZQ7Lk696Gb2qpm9E8AhAFeTPFI/huQKyXWS6+df+h/fdgohetBpmMzMXgLwMIAbZvxu1cyWzWz5wP5LfNknhBhAq4tO8gCAV8zsJZIXA3gvgL/tcpOxzSbLwVUW4QlVzjmtne4Sgx8EcM8kDr8AwFfN7MGwZgkhfODSi/5vAK4YcpPplmxsai7KY5E8NKWqClEw0VNVfSStNOFzGGaRWvrQaAvjNEjBhSiYbCeb5BCrh14va5HQu0uDFFyIgkm+4EMXuqh6rJTIMSlTzDTRMb0X38QY/9beZEKI9DF4F7r0wFcKElq1quvnqFg5TuwQcZGCC1EwquBCFMyoXPQ+yFWPx9ifPcWaeKGRggtRMEEUfHNzq3VIK4epdCHIQcnH2rnW9k34Sn5yeT9Dkpxymi4qBReiYJLF4DmkooakxHhuHkOfL6Ry+/JmcvDMKk6sPYLNzS2nY6XgQhRMEAV/fnO7teXMoSWMRU6tfy743tGmIqf+B5c15+cd6wspuBAFkywGl6qNnz5l51vFclLsNlI8nxRciIJRBReiYIpPVc0JhSVxk1XGiO/nkoILUTDJFTyWqsWadLIIxPZAciiz0M8c6hml4EIUTHIFd6FP0v68WG9WS5yDQvhk7N7KIm/f7JtWBSd5KcmHST5N8imSt8cwTAgxnNZVVUkeBHDQzB4nuQ/ABoAPmdnTDef0Xqq1qRX1Mf3OpRe3lF04fD/HmOLQsajxkGc2s+GrqprZT83s8cm/twCcBvC23lYJIaLRaV10kocBnAJwxMx+0XDc4MXWQyv5NKVOXc1ZwX3ZNhalnkdoBXfuZCO5F8D9AD45q3KTXAGw0slCIURQnBSc5G4ADwL4upl9ru34wwf22R03XRW8lS5FyZvekw+FGloOUu75zPoGY+3A4yUGJ0kAxwGcdqncQoh8cEl0uQbALQCuJ/nE5M/7A9slhPBAkM0HKxe9iT6uSSxXvSKWy+7yLlK66qlddJf7d/kG+pSr7+v7CFW8uOhCiPGSTMHrdGnRYg6hTRNK0UOp2pB7+u7EGqJYqcq7K23fh+9hSym4EAtOEAWvJ7r4VhvfMVloXJXflxfj416+FNyncudUphUpU5+l4EIsOFEUfBaxEhVyavVDxWhD3uW8e6ZU8NijJX1oKstY012l4EIsOFoXPSKVAuU0uSWnxSHGrtw5IgUXomBUwYUomORrsslVf53pd5CDyyxeZ8hwWNO3HbqcpeBCFExyBa8YouQ5dcKkIIQXNK0ssdasr5NDuXbpVMvRC5WCC1Ew2Sj42Omy2Xv9mFkqkdPw1RAPYd5z5Kh2JSIFF6Jgoit4iJZ7WgFziNuAPG1KydgUO3RCy9AU3mMnN5zOkYILUTDFTjZJpZouLX/dNl9TDvu80xSLTXQlRVmGUHCf04GPndzAmfNbmmwixCJT7GSTPr3aseijDk296mOLb3MlxUSS0GUnBReiYFTBhSiYZJ1sdUrruBnLvOExdLJVqMx2qMpMK7oIseAsbKpq6ESU6WuORRlEfgxNVXbZfPBukudIPjnoTkKI6LTG4CSvBbAN4AtmdsTlokO2D85hyGfse525EGqnkZAsQrlUuJSPlxjczE4B+LmbWUKInPAWg5NcAbACAL+957cA9JvymMMSTlWLnlNyzCIj5e6Pt150M1s1s2UzW9578W5flxVCDMBpHJzkYQAPdo3BZ5E6Lm+6f9t9fCnJEOXwtU+1YvB+7yfUs/cpD42DC7HgtMbgJL8M4N0AlkieBXCHmR1vOmdpad/cceB6C5jDkkQVbcsK+Ro7z3GHE9/0mRIbi7otKb/BvlNIXRd8aK3gZnazswVCiKyQiy5EwURJVW1K28xp9dA6TUN2Oc83r4gdCuT4DqYZ4pr77lxru3fT/Y7eeh3uevRZp/tIwYUomOiTTeZ1vuSQojoPl1VUfK+LLv4/fTo5Z73blMo95Lp9PCQpuBAFk3y6aGwV8xXzxxpSy4khaha7nIcq9xB8pFv7+mak4EIUTHIFrxh7POrS4z6vVR77s6dg3jv19Q5d1beLV5DCk5OCC1Ew2Sh4RSw1m26hfcZmodctTzGV1Yf9ocqz7bq+e8z77DCTsg9GCi5EwaiCC1Ew2bnoJePa2TZ9bGxiJWCExveQ2Nhc8wopuBAFk62Cx1Sz0BNe6kNoOaz5Vn/mHFOFY9nWdP0+k0L6rLoT6luQggtRMNkq+FBir6nlQo5qmZMtFfWy6zL0mHIiSZsKz/JEQ3txUnAhCiaIgm9ubuHE2iNZ9CLWaVLRPrH4kPi9Kf4aQ/qqS/mGsj+0N+Qae8d8B9PX2dzccjpHCi5EwQSNwZtartTq3hTXhVbyHGPxRWJI/N6lzHx8/0PVXwouRMEk60XvssRRn3jUx75osWLyHMbFu5CznUPKvQtN72Ded+prV5ouSMGFKBhVcCEKxslFJ3kDgDsB7AKwZmZ/49sQFzd1nqseeg52yrXbfQyXdbnGrPef81DdEHwnxeTkmle0KjjJXQDuAvCnAN4B4GaS7/BqhRAiCC4KfjWAn5jZcwBA8isAbgLwdNuJKdWg3mE2pLOtossqMC7H5jRc1mUddxdirsjTFR+emO/n6+pd+dzZ5G0AXpj6+ezk/4QQmUMzaz6A/DCAG8zs1snPtwD4IzP7RO24FQArkx+PAHjSv7mdWQKwmdqICbnYkosdgGyZhasdl5nZgbaDXFz0FwFcOvXzocn/vQEzWwWwCgAk181s2eHaQcnFDiAfW3KxA5AtMexwcdG/D+D3SV5O8k0APgLgn3wZIIQIR6uCm9mvSX4CwNexM0x2t5k9FdwyIcRgnMbBzexrAL7W4bqr/czxTi52APnYkosdgGyZhVc7WjvZhBDjRamqQhSM1wpO8gaSPyb5E5Kf8XntjnbcTfIcyaRDdSQvJfkwyadJPkXy9oS2XETyeyR/OLHlWCpbJvbsIvkDkg8mtuMMyR+RfILkemJb9pO8j+QzJE+T/OPB1/Tlok9SWp8F8F7sJMN8H8DNZtaa8eYbktcC2AbwBTM7Evv+U3YcBHDQzB4nuQ/ABoAPJXonBLDHzLZJ7gbwHQC3m9l3Y9sysedTAJYBvNnMbkxhw8SOMwCWzSz5GDjJewB828zWJiNWl5jZS0Ou6VPBX0tpNbOXAVQprdExs1MAfp7i3jU7fmpmj0/+vQXgNBJlAdoO25Mfd0/+JOmAIXkIwAcArKW4f46QfAuAawEcBwAze3lo5Qb8VnCltDZA8jCAKwA8ltCGXSSfAHAOwDfMLJUtnwfwaQC/SXT/aQzAv5DcmGRjpuJyAOcBnJiELmsk9wy9qDrZIkByL4D7AXzSzH6Ryg4ze9XM3omdbMSrSUYPX0jeCOCcmW3Evvcc3mVmV2JntuRfTMK7FFwI4EoAf2dmVwD4bwCD+7F8VnCnlNZFYxLv3g/gXjP7x9T2AMDE9XsYwA0Jbn8NgA9OYt+vALie5BcT2AEAMLMXJ3+fA/AAdkLNFJwFcHbKq7oPOxV+ED4ruFJaa0w6to4DOG1mn0tsywGS+yf/vhg7naHPxLbDzD5rZofM7DB2vpFvmtlHY9sBACT3TDo/MXGH34dEk6TM7GcAXiD59sl/vQcOU7Lb8LboYk4prSS/DODdAJZIngVwh5kdT2DKNQBuAfCjSewLAH85yQyMzUEA90xGOy4A8FUzSzpElQFvBfDATjuMCwF8ycweSmjPbQDunQjkcwCODr2gMtmEKBh1sglRMKrgQhSMKrgQBaMKLkTBqIILUTCq4EIUjCq4EAWjCi5EwfwfixeNGe+8BZQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -70,7 +69,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGCdJREFUeJzt3XGMnHd95/H3h82WDgndBeJD8drFadVuL7UNRnuRWnMRh69dKDF1U8lHaYGjf1inawuolVFc6UwatY111pHWd707uQkplADdgrMqhGJQDKWcIHSdza1DEqtA07PH5LwU1knaLTjLt388z8S7m5mdZ3bnmed5Zj4vyZqdZ5559vus5M/85vf8fs9PEYGZmVXHC4ouwMzMOuPgNjOrGAe3mVnFOLjNzCrGwW1mVjEObjOzinFwW6lI+o+SvrjG638i6Xd7WZNZ2Ti4rSckfV7SdyS9sOha2kk/PJYkPZP++ztJ90j68Q6O4Q8Yy42D23InaRvwb4EA3lRoMdl9KSKuAUaAfw8sAqclbS+2LDMHt/XG24AvA38CvH35C5JeJukvJD0l6SvAj2Y43ksk3S/paUkPSnruPZJ+WtLfSLqUPv70stdemracL6St/+l2vygiliLi6xHxn4G/Am5bdrw/l/Rk+ru+IOkn0+0HgF8G3pO22D+Rbr9V0tfTuh+V9AsZztXseRzc1gtvA+5N/01Kevmy1/4I+GfgOuBX03/tvBn4HeAlwNeA34MkmIH7gWPAy4D3AfdLeln6vj8FXgT8JPCvgDs7PI8TJN8cGv4S+LH0WA+l50dEHE9//q8RcU1E7E33/3r6/pG0/g9Juq7DGswc3JYvSa8BXgFMRcRpkvB6S/raEPCLwOGI+MeIeAT4QIbD3hcRX4mIZ0kC8lXp9jcCfxsRfxoRz0bER4DHgb1pQL4B+E8R8Z2IuBwRf9Xh6VwAXtp4EhHvj4inI+K7JC3xV0oaafXmiPjziLgQEd+PiD8D/ha4scMazBzclru3A5+JiG+lzz/Mle6STcBVwLll+/994wdJv73sAuH/XrbPk8t+/ifgmvTnzcvfv+x4Y8BW4NsR8Z0NnMsY8O20tiFJR9Kuj6eAJ9J9rm31Zklvk/SwpAVJC8D2tfY3a+Wqoguw/iWpBuwHhiQ1wvaFwKikVwKPAM+ShOrj6es/3Hh/RPw+8Psd/MoLJK375X4Y+DTJh8NLJY1GxEKn55L6BeCv05/fAvw8yYXLJ0i6P74DKH19xW03Jb0C+GNgD8mFzyVJDy/b3ywzt7gtT/uAJeAGku6MVwH/miT83hYRSyT9xrdJepGkG1h18bJDnwJ+XNJbJF0l6T+kv/uTEfFNkj7p/ynpJZKGJd3U7oBpy/p6Sf8deC1J3zTAi4HvAv9A0m+++gPm/wM/suz51SRhPp8e9x0kLW6zjjm4LU9vB+6JiP8XEU82/gH/A/hlSVcBv07S1fEkyaiTe9b7yyLiH4Cbgd8iCdT3ADcv66Z5K3CZpHV/EXj3Gof7KUnPAE8Bnwd+CPg3EXEmff2DJN0wdeBRklEzy90N3JB2i0xHxKPAfwO+RBLqO4D/s95ztcEmL6RgZlYtbnGbmVWMg9vMrGIc3GZmFePgNjOrmFzGcV977bWxbdu2PA5tZtaXTp8+/a2I2JRl31yCe9u2bczMzORxaDOzviRp9azfltxVYmZWMQ5uM7OKcXCbmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFOLjNzCrGwW1WhLkpuHM73DaaPM5NFV2RVYiXLjPrtbkp+MQ74fJi8vzSueQ5wM79xdVlleEWt1mvPXD7ldBuuLyYbDfLwMFt1muXzne23WwVd5WYtTA9W+foybNcWFhk82iNg5Pj7Ns1tvEDj2xJukeabTfLwC1usyamZ+scOnGG+sIiAdQXFjl04gzTs/WNH3zPYRiurdw2XEu2m2Xg4Laem56ts/vIKa6/9X52HznVnTDssqMnz7J4eWnFtsXLSxw9eXbjB9+5H/Yeg5GtgJLHvcd8YdIyy9RVImkUuAvYDgTwqxHxpTwLs/7UaMk2QrHRkgW60w3RJRcWFjva3rGd+x3Utm5ZW9x/CHw6In4CeCXwWH4lWT/LtSXbRZtHax1tN+ultsEtaQS4CbgbICK+FxELeRdm/Sn3lmyXHJwcpzY8tGJbbXiIg5PjBVVkdkWWFvf1wDxwj6RZSXdJunr1TpIOSJqRNDM/P9/1Qq0/VKUlu2/XGHfcsoOx0RoCxkZr3HHLjlJ159jgUkSsvYM0AXwZ2B0RD0r6Q+CpiPgvrd4zMTERXnPSmlndxw1JS9ahaINO0umImMiyb5YW93ngfEQ8mD7/GPDq9RZng80tWbONazuqJCKelHRO0nhEnAX2AI/mX5r1q327xhzUZhuQdebkbwD3SvoB4BvAO/IryczM1pIpuCPiYSBT34vZIMttmrzZMr5XiVmXVGVykVWfg9usS9aaXDSowe1vIPlwcJt1SVUmF/WKv4HkxzeZMuuSqkwu6pWq3N6gihzcZl3iafIr+RtIftxVYtYlja//7tNNbB6tUW8S0s2+gbgvvDMObrMu8uSiKw5Ojje9vcHqbyDuC++cu0rMLBdZb2/gvvDOucVtZrnJ8g3EfeGdc4vbzArl0Tidc3CbWaE8Gqdzg91VMjcFD9wOl87DyJZklW2vA2gZeBRE93g0TucGN7jnpuAT74TLaT/apXPJc3B425o8CqL7PBqnM4PbVfLA7VdCu+HyYrLdbA0eBWFFG9zgvnS+s+1mKY+CsKINbnCPbOlsu1nKoyCsaIMb3HsOw/Cq/2jDtWS72Ro8CsKKNrgXJxsXID2qxDrkURAF8kgwABQRXT/oxMREzMzMdP24ZjbAVo8Eg+Rb8t5jfRHekk5HRKYlIge3q8TMqsUjwZ7j4DazavBIsOc4uM2sGjwS7DkObjOrBo8Ee46D28yqYef+5ELkyFZAyWOfXJjsVKbhgJKeAJ4GloBns175NDPrqp37BzKoV+tkHPe/i4hv5VZJVh7HaWYDrloTcHxHPzOzzH3cAXxG0mlJB5rtIOmApBlJM/Pz892rcDmP4zQzyxzcr4mIVwNvAH5N0k2rd4iI4xExERETmzZt6mqRz/E4TjOzbMEdEfX08SJwH3BjnkW15HGcZmbtg1vS1ZJe3PgZ+FngkbwLa8rjOM3MMl2cfDlwn6TG/h+OiE/nWlUrvqOfmVn74I6IbwCv7EEt2Xgcp5kNOM+cNDOrGAe3WRHmpuDO7XDbaPI4N1V0RVYh1ZqAY9YPPJHMNsgtbrNe80Qy2yAHt1mveSKZbZC7SqyvTM/Wy7+I78iWpHuk2XazDNzitr4xPVvn0Ikz1BcWCaC+sMihE2eYnq0XXdpKnkhmG+TgzmB6ts7uI6e4/tb72X3kVPmCoKx6PHLi6MmzLF5eWrFt8fISR0+ezfX3dswLAtgGuaukjUYrrhEIjVYcUL6v4GVSwMiJCwuLHW0vlCeS2Qa4xd1GZVpxZVPAyInNo7WOtptVlYO7jUq14sqkgJETByfHqQ0PrdhWGx7i4OR4br/TrAgO7jbcilunAm7Bu2/XGHfcsoOx0RoCxkZr3HHLDndpWd9xH3cbByfHV/Rxg1txmew5vLKPG3oycmLfrjEHtfU9B3cbjRAo/djgsvEteM1yo4jo+kEnJiZiZmam68c1M+tXkk5HxESWfd3HbWZWMQ5uM7OKcXCbmVWMg9vMrGIc3GZWXl4pqCkPBzSzcvJKQS25xW1m5eSVglpycJtZOXmloJYc3GZWTgXc76YqMge3pCFJs5I+mWdBZmaAVwpaQyct7ncBj+VViJnZCl4pqKVMo0okbQHeCPwe8Ju5VmRm1uCVgprK2uL+A+A9wPdb7SDpgKQZSTPz8/NdKc7MzJ6vbXBLuhm4GBGn19ovIo5HxERETGzatKlrBZqZ2UpZWty7gTdJegL4KPA6SR/KtSozM2upbXBHxKGI2BIR24A3A6ci4ldyr8zMzJryOG4zs4rp6F4lEfF54PO5VGJmZpm4xW1mVjEObjOzinFwm5lVjIPbzKxiHNxmZhXjFXAqaHq2ztGTZ7mwsMjm0RoHJ8fZt2us6LKsnbmpZBGAS+eTW5PuOez7cNi6OLgrZnq2zqETZ1i8vARAfWGRQyfOADi8y8zLcFkXuaukYo6ePPtcaDcsXl7i3X/2MLuPnGJ6tl5QZbYmL8NlXeTgrpgLC4stX2u0vh3eJeRluKyLHNwVs3m0tubri5eXOHrybI+qscy8DJd1kYO7Yg5OjlMbHlpzn7Va5VYQL8NlXeSLkxXTuAB59ORZ6i0Cul2r3ArQuADpUSXWBQ7uCtq3a4x9u8aeN8IEoDY8xMHJ8QKrs5a8DJd1iYO7wpa3vj2m22xwOLgrrtH6NrPB4YuTZlaMuSm4czvcNpo8zk0VXVFluMVtZr3nmaQbMngtbn/KmxXPM0k3ZLBa3P6UNysHzyTdkMFqcftT3qwcPJN0QwYruP0pb1YOnkm6IYMV3P6UNyuHnfth7zEY2Qooedx7zF2WGQ1WH/eewyv7uMGf8mZF8UzSdRusFrc/5c2sD7RtcUv6QeALwAvT/T8WEe/Nu7Dc+FPezCouS1fJd4HXRcQzkoaBL0r6y4j4cs61mZlZE22DOyICeCZ9Opz+izyLMjOz1jL1cUsakvQwcBH4bEQ82GSfA5JmJM3Mz893u04zM0tlCu6IWIqIVwFbgBslbW+yz/GImIiIiU2bNnW7TjMzS3U0qiQiFoDPAa/PpxwzM2unbXBL2iRpNP25BvwM8HjehZmZWXNZRpVcB3xA0hBJ0E9FxCfzLcvMzFrJMqpkDtiVdyHTs/Xil+Cam/JirmZWeqWY8r560dv6wiKHTpwB6F14+5avZlYRpZjyfvTk2RUrlQMsXl7i6MmzvSvCt3w1s4ooRXBfWFjsaHsufMtXM6uIUnSVbB6tUW8S0ptHa032zsnIlqR7pNl2M+uKjV7LKsW1sBIoRYv74OQ4teGhFdtqw0McnBzvXRG+sbtZrhrXsuoLiwRXrmVNz9Z78v5+UooWd+MTs9BP0sYFSI8qMcvFWteyWv1fX97CfoHEUkRH7+9XpQhuSMK78D++b/lqlptOr2WtHm22OrTbvb+flaKrxMwymJuCO7fDbaPJ49xU0RV1pNU1q1bbm7XQO3l/P3Nwm1VBY57BpXNAXJlnUKHw7vRaVpaWdM+vhZWEg9usCvpgnsG+XWPcccsOxkZrCBgbrXHHLTtadpG2akkPSZne389K08dtZmvok3kGnVzLOjg5vqKPG5IW9qCG9XIObrMWSjVmeADnGZRitFlJObjNmijF/XOW23N45b10YCDmGZRitFkJuY/brIlS3D9nuZ37Ye8xGNkKKHnce8zDVweUW9xmTZTi/jmreZ6BpdziNmui0zHHZr3k4DZrohT3zzFrwV0lZk14RIOVmYPbrAWPaLCycleJmVnFOLjNzCrGwW1mVjEObjOzinFwm5lVTNvglrRV0uckPSrpq5Le1YvCzMysuSzDAZ8FfisiHpL0YuC0pM9GxKM512ZmZk20bXFHxDcj4qH056eBxwAPbjUzK0hHfdyStgG7gAebvHZA0oykmfn5+e5UZ2Zmz5N55qSka4CPA++OiKdWvx4Rx4HjABMTE82XY85RqW56b2aWo0zBLWmYJLTvjYgT+ZbUudLd9N7MLEdZRpUIuBt4LCLel39JnSvdTe/NzHKUpY97N/BW4HWSHk7//VzOdXWklDe9NzPLSduukoj4IqAe1LJum0dr1JuEtG96n5O5KXjg9mSF8ZEtybqHXpnFusTXq9rri5mTvul9D81NJYvWXjoHRPL4iXcm2802qHG9qr6wSHDletX0bL3o0kqlL4J7364x7rhlB2OjNQSMjda445Yd/pTOwwO3r1xpHJLnD9xeTD2Dam4K7twOt40mj33ywenrVdn0zUIKvul9j1w639l2677Gt57GB2jjWw9UvsvK16uy6YsWt/XQyJbOtlv39fG3Hi/SnI2D2zqz5zAMr/pPNFxLtltv9PG3Hl+vysbBbZ3ZuR/2HoORrYCSx73HKv8VvVL6+FuPr1dlo4juz06fmJiImZmZrh/XzHh+Hzck33r8AVppkk5HxESWfd3iNuumXoz28Leegdc3o0rMCtfL0R479zuoB5hb3Gbd0sejPaxcHNxm3dLHoz2sXBzcZt3Sx6M9rFwc3Gbd4jHu1iMObrNu8WgP6xGPKjHrJo/2sB5wi9vMrGIc3GZmFePgHkRF3Mu5T+8f3RH/DaxL3Mc9aIq4l3Mf3z86M/8NrIvc4h40Rczu84xC/w2sqxzcg6aI2X2eUei/gXWVu0oGzciWdKHfJtv76XeWjf8GpVa1leXd4h40Rczu84xC/w1KrIory7cNbknvl3RR0iO9KMhyVsTsPs8orOzfYHq2zu4jp7j+1vvZfeRUqcNsvaq4snzbFXAk3QQ8A3wwIrZnOahXwDGrvkZLdHmo1YaH+m4psetvvZ9mKSjg7468sWd1dHUFnIj4AvDtDVdlZpVSxZboeqx7ZfkCx+W7j9vMmrqwsNjR9qpa18ryjXH5l84BcWVcfo/Cu2vBLemApBlJM/Pz8906rJkVZN0t0YpZ18ryBY/L79pwwIg4DhyHpI+7W8c1s2IcnBxv2se9Zku0ovbtGuus377gcfkex21mTTWCrErjm3um4HH5bYNb0keA1wLXSjoPvDci7s67MDMrXsct0UGx5/DKe89AT8fltw3uiPilXhRiZlYZjfH3D9yedI+MbElCu0fj8t1VYma2HgWuduThgGZmFePgNjOrGAe3mVnFOLjNzCrGwW1mVjEObjOzinFwm5lVjIPbzKxiHNxmZhXj4DYzqxgHt5lZxTi4+1WByyqZWb58k6l+1FhWqXHLycaySlD6VcXNrD0Hdz9aa1klB7et0/Rs3YsqlISDux8VvKyS9Z/p2fqKZczqC4scOnEGwOFdAPdx96NWyyf1aFkl6z9HT55dsfYkwOLlJY6ePFtQRYPNwd2P9hxOllFarofLKln/ubCw2NF2y5eDux/t3A97j8HIVkDJ495j7t+2dds8Wutou+XLfdz9qsBllaz/HJwcX9HHDVAbHuLg5HiBVQ0uB7eZtdW4AOlRJeXg4DazTPbtGnNQl4T7uM3MKsbBbWZWMZmCW9LrJZ2V9DVJt+ZdlJmZtdY2uCUNAX8EvAG4AfglSTfkXZiZmTWXpcV9I/C1iPhGRHwP+Cjw8/mWZWZmrWQJ7jHg3LLn59NtK0g6IGlG0sz8/Hy36jMzs1W6NhwwIo4DxwEkzUv6+24du2DXAt8quogu6adzgf46n346F+iv8+nVubwi645ZgrsObF32fEu6raWI2JS1gLKTNBMRE0XX0Q39dC7QX+fTT+cC/XU+ZTyXLF0lfwP8mKTrJf0A8GbgL/Ity8zMWmnb4o6IZyX9OnASGALeHxFfzb0yMzNrKlMfd0R8CvhUzrWU1fGiC+iifjoX6K/z6adzgf46n9KdiyKi6BrMzKwDnvJuZlYxDm4zs4pxcLcg6f2SLkp6pOhaNkrSVkmfk/SopK9KelfRNa2XpB+U9BVJ/zc9l98puqaNkjQkaVbSJ4uuZaMkPSHpjKSHJc0UXc9GSRqV9DFJj0t6TNJPFV0TuI+7JUk3Ac8AH4yI7UXXsxGSrgOui4iHJL0YOA3si4hHCy6tY5IEXB0Rz0gaBr4IvCsivlxwaesm6TeBCeCHIuLmouvZCElPABMR0ReTbyR9APjriLgrHQ79oohYKLout7hbiIgvAN8uuo5uiIhvRsRD6c9PA4/R5LYFVRCJZ9Knw+m/yrY+JG0B3gjcVXQttpKkEeAm4G6AiPheGUIbHNwDR9I2YBfwYLGVrF/atfAwcBH4bERU9lyAPwDeA3y/6EK6JIDPSDot6UDRxWzQ9cA8cE/alXWXpKuLLgoc3ANF0jXAx4F3R8RTRdezXhGxFBGvIrn9wo2SKtmVJelm4GJEnC66li56TUS8muQ20L+WdjlW1VXAq4H/FRG7gH8ESrEegYN7QKT9wR8H7o2IE0XX0w3p19bPAa8vupZ12g28Ke0X/ijwOkkfKrakjYmIevp4EbiP5LbQVXUeOL/sG93HSIK8cA7uAZBe0LsbeCwi3ld0PRshaZOk0fTnGvAzwOPFVrU+EXEoIrZExDaSewCdiohfKbisdZN0dXrxm7RL4WeByo7KiogngXOSxtNNe4BSXND3Ku8tSPoI8FrgWknngfdGxN3FVrVuu4G3AmfSvmGA305vZVA11wEfSFdmegEwFRGVH0bXJ14O3Je0E7gK+HBEfLrYkjbsN4B70xEl3wDeUXA9gIcDmplVjrtKzMwqxsFtZlYxDm4zs4pxcJuZVYyD28ysYhzcZmYV4+A2M6uYfwGOvQagv0YUXQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFzpJREFUeJzt3X+QXWV9x/HPxyXqCppVWR2yAUM7ulNNkHVumdFYxjG1wQoa0w5FVNR2JtNptWidMMQ/IjrVMM1U1NbaSfkhKmojhowCEhkBkY6iG5YmCKQqxZKNNIuy/LBbCfHbP87ZZHfdH+dm77nnPPe+XzM7u3v37M132ctnn/vc5/k+jggBANLxjKoLAAA0h+AGgMQQ3ACQGIIbABJDcANAYghuAEgMwY1asf1u23fM8/XP2f67dtYE1A3BjbawfZvtR20/q+paFpL/8Ths+8n87b9sX2X7ZU3cB39gUBqCG6WzvULSH0gKSW+utJjivhcRJ0haKukPJU1I2m17ZbVlAQQ32uMCSd+X9DlJ75r6BdsvtP1124/b/oGk3y1wf8+3fYPtJ2zfafvI99h+je0f2n4sf/+aKV97QT5yPpCP/ncu9A9FxOGI+GlE/JWk70i6ZMr9fdX2w/m/dbvtV+S3b5D0dkkX5SP2b+S3X2z7p3nd99p+a4GfFfgtBDfa4QJJ1+Rva22/eMrXPiPp/ySdJOnP87eFnCfpI5KeL+knkj4mZcEs6QZJn5b0QkmfkHSD7Rfm3/cFSc+R9ApJL5J0WZM/xw5lzxwmfVPSS/P7uiv/+RQR2/KP/z4iToiIc/Lrf5p//9K8/i/aPqnJGgCCG+Wy/VpJL5G0PSJ2Kwuv8/Ov9Uj6E0mbI+JXEXGPpKsL3O11EfGDiHhaWUCent/+Jkk/jogvRMTTEfFlSfdLOicPyDdK+suIeDQiDkXEd5r8cQ5IesHkJxFxZUQ8ERG/VjYSf6XtpXN9c0R8NSIORMRvIuLfJP1Y0hlN1gAQ3CjduyR9KyIeyT//ko5Ol/RLOk7SQ1Ou/9nkB7Y/NOUFwn+Zcs3DUz7+X0kn5B8vm/r9U+5vQNLJkn4ZEY8u4mcZkPTLvLYe25fmUx+PS3owv+bEub7Z9gW277Y9bntc0sr5rgfmclzVBaBz2e6VdK6kHtuTYfssSX22XynpHklPKwvV+/OvnzL5/RHxcUkfb+KfPKBsdD/VKZJuUvbH4QW2+yJivNmfJfdWSd/NPz5f0luUvXD5oLLpj0clOf/6tLabtl8i6V8lrVH2wudh23dPuR4ojBE3yrRO0mFJL1c2nXG6pN9TFn4XRMRhZfPGl9h+ju2Xa8aLl026UdLLbJ9v+zjbf5b/29dHxM+VzUn/s+3n215i+8yF7jAfWZ9q+x8lvU7Z3LQkPVfSryX9Qtm8+cw/MP8j6XemfH68sjAfy+/3PcpG3EDTCG6U6V2SroqI/46IhyffJP2TpLfbPk7Se5VNdTysbNXJVcf6j0XELySdLemDygL1IklnT5mmeaekQ8pG9wclvX+eu3u17SclPS7pNknPk/T7EbE3//rnlU3DjEq6V9mqmamukPTyfFpkZ0TcK+kfJH1PWaivkvTvx/qzoruZgxQAIC2MuAEgMQQ3ACSG4AaAxBDcAJCYUtZxn3jiibFixYoy7hoAOtLu3bsfiYj+IteWEtwrVqzQ8PBwGXcNAB3J9sxdv3NiqgQAEkNwA0BiCG4ASAzBDQCJIbgBIDGFgtt2n+1rbd9v+z7bry67MADA7IouB/yUpJsi4k9tP1NZG0sA6Co7R0a1ddc+HRif0LK+Xm1cO6h1QwNtr2PB4M6PYjpT0rslKSKekvRUuWUBQL3sHBnVph17NXHosCRpdHxCm3ZkXX7bHd5FpkpOVdb8/SrbI7Yvt338zItsb7A9bHt4bGys5YUCQDN2joxq9aW36NSLb9DqS2/RzpHRRd3f1l37joT2pIlDh7V1175F3e+xKBLcx0l6laTPRsSQpF9JunjmRRGxLSIaEdHo7y+0axMASjE5Oh4dn1Do6Oh4MeF9YHyiqdvLVCS490vaHxF35p9fqyzIAaCWyhgdL+vrber2Mi0Y3PlRUw/ZHsxvWqPsqCYAqKUyRscb1w6qd0nPtNt6l/Ro49rBOb6jPEVXlbxP0jX5ipIHJL2nvJIAYHGW9fVqdJaQXszoePIFyCRWlUhSRNwtqVFyLQDQEhvXDk5bASK1ZnS8bmigkqCeqZS2rgBQpTqNjstAcAPoSHUZHZeBXiUAkBiCGwASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJAYghsAEkNwt9Oe7dJlK6VL+rL3e7ZXXRGABNGrpF32bJe+8TfSobzV5GMPZZ9L0mnnVlcXgOQw4m6Xb3/0aGhPOjSR3Y5jwzMYdClG3O3y2P7mbsf8eAaDLsaIu12WLm/udsyPZzDoYoy422XN5ukjREla0pvdvgg7R0YXbBZf5Jrk8AwGXYzgbpfJp+/f/mgWLkuXZ6G9iKf1O0dGpx3PNDo+oU079ko6egJIkWuStHR5Nj0y2+1Ah2OqpJ1OO1f6wD3SJePZ+0XOxW7dtW/amXqSNHHosLbu2tfUNUlaszl7xjJVC57BACkguBN2YJZTrGfeXuSaJJ12rnTOp6WlJ0ty9v6cT/PCJLoCUyUJW9bXq9FZAnhZX29T1yTrtHMJanQlRtwJ27h2UL1Leqbd1rukRxvXDjZ1DYC0FBpx235Q0hOSDkt6OiIaZRaFYiZfXJxvxUiRawCkxRGx8EVZcDci4pEid9poNGJ4eHiRpQFA97C9u+igmKkSAEhM0eAOSd+yvdv2hjILAgDMr+iqktdGxKjtF0m62fb9EXH71AvyQN8gSaecckqLywQATCo04o6I0fz9QUnXSTpjlmu2RUQjIhr9/f2trRIAcMSCI27bx0t6RkQ8kX/8R5Lo5FOhjuw9AqCwIlMlL5Z0ne3J678UETeVWhXm1LG9RwAUtmBwR8QDkl7ZhlpQwHy9RwjuEuzZ3tLGYEArsOU9MR3be6SOOKwBNcU67sTM1WOkI3qP1A2HNaCmCO7E0HukjTisATXFVEli6D3SRhzWgJoiuBO0bmiAoG6Hko6bAxaLqRJgLhzWgJpixA3Mh8MaUEOMuAEgMQQ3ACSG4AaAxBDcAJAYghsAEkNwA0BiCG4ASAzBjc6wZ7t02Urpkr7s/Z7tVVcElIYNOEgf7VfRZRhxI320X0WXIbiRPtqvosvUM7iZr0Qz5mqzSvtVdKj6BffkfOVjD0mKo/OVhDfmsmZz1m51KtqvooPVL7iZr0SzaL+KLlO/VSXMV+JY0H4VXaR+I27mKwFgXvULbuYrAWBehYPbdo/tEdvXl1kQ85UAML9m5rgvlHSfpOeVVMtRzFcCwJwKjbhtL5f0JkmXl1sOAGAhRadKPinpIkm/KbEWAEABCwa37bMlHYyI3Qtct8H2sO3hsbGxlhUItAw7ctEhioy4V0t6s+0HJX1F0uttf3HmRRGxLSIaEdHo7+9vcZnAIrEjFx1kweCOiE0RsTwiVkg6T9ItEfGO0isDWokduegg9VvHDZSBHbnoIE1teY+I2yTdVkolQBn2bM9H1TH719mR29V2joxq6659OjA+oWV9vdq4dlDrhgaqLmtB9etVArTKzJNxZmJHblfbOTKqTTv2auLQYUnS6PiENu3YK0m1D2+CG5LSHXkcMTmyfmx/Nopes3n2ee1JS0/OrmGjV9faumvfkdCeNHHosLbu2lf7xz7BjaRHHpLmPnNyrtCWpQ/c07byUE8Hxmd/fMx1e53w4iTmHXkkYa4VI+6Z/XrmtSFpWV9vU7fXCcGNpEcekuZeGRKH6TSJOW1cO6jeJdP/uPcu6dHGtYMVVVQcwY2kRx6S5unhfjKdJjGndUMD2rJ+lQb6emVJA3292rJ+VRLTg8xxQxvXDk6b45bSGXlIykbQM+e0J0fWdJrEPNYNDSQR1DMR3DjywE12VclkMM9cVUJgo0M5Yo6NCYvQaDRieHi45fcLAJ3K9u6IaBS5ljluAEgMUyUAcAyq3LRGcANAk6retMZUCQA0qepNawQ3ADSp6k1rBDcANKnqTWsENwA0qert8rw4OZfZ2oSyoQOAqt+0RnDPZq42oRLhDUBStdvlmSqZDQfLAqgxgns2HCwLoMYI7tnM2SaUBvwAqkdwz2bNZhrwA6gtgns2p51LA34AtcWqkrnQgB9ATS0Y3LafLel2Sc/Kr782Ij5cZlFVdt0CgLorMuL+taTXR8STtpdIusP2NyPi+2UUVHXXLQCouwWDO7Ijcp7MP12Sv7X+2JzcfF23pgY3o3IA3arQi5O2e2zfLemgpJsj4s6yCirSdWtyVD46PqHQ0VH5zpHRssoCgNooFNwRcTgiTpe0XNIZtlfOvMb2BtvDtofHxsaOuaAiXbeq7oULAFVqajlgRIxLulXSWbN8bVtENCKi0d/ff8wFFem6VXUvXACo0oLBbbvfdl/+ca+kN0i6v6yC1g0NaMv6VRro65UlDfT1asv6VdPmr6vuhQsAVSqyquQkSVfb7lEW9Nsj4voyi1qo69bGtYPTVp5I7e2FCwBVKrKqZI+koTbUUljVvXABoErJ7pysshcuAFSJXiV1sGe7dNlK6ZK+7P2e7VVXBKDGkh1xdwxO2wHQpK4J7trutJzvtB2CuxqcN4qa64rgrnX/E07bqReeASEBXTHHXeudlpy2Uy+cN4oEdEVw13qnJaft1AvPgJCArgjuWu+05LSdeuEZEBLQFXPctd9pyWk79bFm8/Q5bolnQKidrghudlqisMk/oKwqQY05OyehtRqNRgwPD7f8fgGgU9neHRGNItd2xRw3AHQSghsAEkNwA0BiCO66oeEUgAV0xaqSZLDdGkABjLjrhO3WAAoguOuE7dYACiC466Qd262ZQweSR3DXSdkNpybn0B97SFIcnUMnvIGkENx1UnbDKebQgY7AqpK6KbPhFHPoQEdgxN1NaFkKdASCu5twaAPQERYMbtsn277V9r22f2T7wnYUhhJwaAPQEYrMcT8t6YMRcZft50rabfvmiLi35NpQBg5tAJK34Ig7In4eEXflHz8h6T5JnEAAABVpao7b9gpJQ5LuLKMYAMDCCge37RMkfU3S+yPi8Vm+vsH2sO3hsbGxVtaIlLAzE3XXAY/RQsFte4my0L4mInbMdk1EbIuIRkQ0+vv7W1kjUsHOTNRdhzxGi6wqsaQrJN0XEZ8ovyQki52Z7dWikePOkVGtvvQWnXrxDVp96S3aOTLa4kJrpJWP0QpH7kVWlayW9E5Je23fnd/2oYi4sbyykCR2ZrZPi3q37xwZ1aYdezVx6LAkaXR8Qpt27JUkrRvqwDUIrXqMVtw7v8iqkjsiwhFxWkScnr8R2vht7MxsnxaNHLfu2ncktCdNHDqsrbv2TbutY0blrXqMVvzskp2TaB12ZrZPi0aOB8YnFrx9clQ+Oj6h0NFReZLh3arHaMXPLglutA47M9unRSPHZX29C95edFSehFY9Rit+dkl3QLQWOzPbY83m6XOs0jGNHDeuHZw2xy1JvUt6tHHt4JHPi4zKk9KKx2iL/vsfK0bcQIpaNHJcNzSgLetXaaCvV5Y00NerLetXTXthssiovOtU/OzSEdHyO200GjE8PNzy+wXQfjNXnkjZqHxmwGNxbO+OiEaRa5kqATCvyXDeumufDoxPaFlfrzauHSS0K0Rwd4GdI6P8T4dFWTc0wGOmRgjuDtd1GyyALsCLkx2uo5ZyAZBEcHe8jlvKBYCpkk63rK9Xo7OEdFcv5arCnu3ZdujH9mebNNZsrv16d14bqS9G3B1u49pB9S7pmXbbzA0WKFmCrUQ7apt7ByK4O1yRDRYoWYLtbnltpN6YKukCLOWqWILtbnltpN4YcQNlS7DdLdvc643gBsqWYLtbXhupN6ZK0D2qWtkx+W8ktKqEbe71RpMpdIeZR01J2aiXfuGoiWaaTDFVgu6Q4MoOYC4EN7pDgis7gLkQ3OgOCa7sAOZCcKM7JLiyA5gLwY3uwEHG6CAsB0T34CBjdIgFR9y2r7R90PY97SgIADC/IlMln5N0Vsl1AAAKWnCqJCJut72i/FIwH3ojA5jUsjlu2xskbZCkU045pVV3C3FuJIDpWraqJCK2RUQjIhr9/f2tuluI3sgApmM5YALojQxgKoI7AfRGBjBVkeWAX5b0PUmDtvfb/ovyy8JU9EZugz3bpctWSpf0Ze9rfB4kUGRVydvaUQjmRm/kks1s+Tp5mK/Ehh3UEv24gctW5iewz7D0ZOkD7DtDe9CPG2gGLV+RGIIboOUrEkNwA7R8RWIIboCWr0gMbV0BiZavSArBDaCrdELDNoIbQNfolIZtzHED6Bqd0rCN4AbQNTqlYRtTJailTpiHRP0s6+vV6CwhnVrDNkbcqJ3JecjR8QmFjs5D7hwZrbo0JK5TGrYR3KidTpmHRP2sGxrQlvWrNNDXK0sa6OvVlvWrkns2x1QJaqdT5iFRT+uGBpIL6pkYcaN2ODgCmB/BjdrplHlIoCxMlaB2ODgCmB/BjVrqhHlIoCxMlQBAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEFFoOaPssSZ+S1CPp8oi4tNSqgITQyTAtnfD7WjC4bfdI+oykN0jaL+mHtr8eEfeWXRxQd51yokq36JTfV5GpkjMk/SQiHoiIpyR9RdJbyi0LSAOdDNPSKb+vIsE9IOmhKZ/vz2+bxvYG28O2h8fGxlpVH1BrdDJMS6f8vlr24mREbIuIRkQ0+vv7W3W3QK3RyTAtnfL7KhLco5JOnvL58vw2oOvRyTAtnfL7KrKq5IeSXmr7VGWBfZ6k80utCkgEnQzT0im/L0fEwhfZfyzpk8qWA14ZER+b7/pGoxHDw8OtqRAAuoDt3RHRKHJtoXXcEXGjpBsXVRUAoCXYOQkAiSG4ASAxBDcAJIbgBoDEENwAkJhCywGbvlN7TNLPWnBXJ0p6pAX3UxXqrxb1V4v6m/OSiCi07byU4G4V28NF1zXWEfVXi/qrRf3lYaoEABJDcANAYuoe3NuqLmCRqL9a1F8t6i9Jree4AQC/re4jbgDADAQ3ACSmlsFt+yzb+2z/xPbFVdfTLNtX2j5o+56qa2mW7ZNt32r7Xts/sn1h1TU1w/azbf/A9n/k9X+k6pqOhe0e2yO2r6+6lmbZftD2Xtt3206uv7PtPtvX2r7f9n22X111TTPVbo47P1X+PzXlVHlJb0vpVHnbZ0p6UtLnI2Jl1fU0w/ZJkk6KiLtsP1fSbknrUvnvb9uSjo+IJ20vkXSHpAsj4vsVl9YU238rqSHpeRFxdtX1NMP2g5IaEZHk5hvbV0v6bkRcbvuZkp4TEeNV1zVVHUfcyZ8qHxG3S/pl1XUci4j4eUTclX/8hKT7NMvh0HUVmSfzT5fkb/UanSzA9nJJb5J0edW1dBvbSyWdKekKSYqIp+oW2lI9g7vQqfIon+0VkoYk3VltJc3JpxnulnRQ0s0RkVT9yk6bukjSb6ou5BiFpG/Z3m17Q9XFNOlUSWOSrsqnqi63fXzVRc1Ux+BGDdg+QdLXJL0/Ih6vup5mRMThiDhd2cHWZ9hOZrrK9tmSDkbE7qprWYTXRsSrJL1R0l/nU4epOE7SqyR9NiKGJP1KUu1eZ6tjcHOqfMXyueGvSbomInZUXc+xyp/i3irprKpracJqSW/O54m/Iun1tr9YbUnNiYjR/P1BSdcpm/5MxX5J+6c8S7tWWZDXSh2D+8ip8vkLA+dJ+nrFNXWN/MW9KyTdFxGfqLqeZtnut92Xf9yr7EXu+6utqriI2BQRyyNihbLH/i0R8Y6KyyrM9vH5i9rKpxj+SFIyq6si4mFJD9kezG9aI6l2L8wXOiy4nSLiadvvlbRLR0+V/1HFZTXF9pclvU7Sibb3S/pwRFxRbVWFrZb0Tkl783liSfpQfmB0Ck6SdHW+OukZkrZHRHJL6hL2YknXZX//dZykL0XETdWW1LT3SbomHzg+IOk9FdfzW2q3HBAAML86TpUAAOZBcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDE/D/M94jD9blJRQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -117,7 +116,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -147,18 +146,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n", - "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], + "outputs": [], "source": [ "result = run_algorithm(params, svm_input, backend=backend)\n", "print(\"testing success ratio: \", result['testing_accuracy'])\n", @@ -186,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -196,8 +186,7 @@ "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2)\n", "var_form = RYRZ(num_qubits=feature_dim, depth=3)\n", "svm = QSVMVariational(optimizer, feature_map, var_form, training_input, test_input)\n", - "run_config = RunConfig(shots=shots, max_credits=10, memory=False, seed=random_seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=random_seed)" + "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_mapper=random_seed)" ] }, { @@ -209,17 +198,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n" - ] - } - ], + "outputs": [], "source": [ "result = svm.run(quantum_instance)\n", "print(\"testing success ratio: \", result['testing_accuracy'])" @@ -236,17 +217,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "prediction: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n" - ] - } - ], + "outputs": [], "source": [ "predicted_probs, predicted_labels = svm.predict(datapoints[0])\n", "predicted_classes = map_label_to_class_name(predicted_labels, svm.label_to_class)\n", diff --git a/community/aqua/chemistry/h2_qpe.ipynb b/community/aqua/chemistry/h2_qpe.ipynb index f7e9bdc2e..ff7148d0c 100644 --- a/community/aqua/chemistry/h2_qpe.ipynb +++ b/community/aqua/chemistry/h2_qpe.ipynb @@ -26,7 +26,6 @@ "source": [ "from collections import OrderedDict\n", "from qiskit import BasicAer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.transpiler import PassManager\n", "from qiskit.aqua import AquaError\n", "from qiskit.aqua import QuantumInstance\n", @@ -121,8 +120,7 @@ " expansion_mode='suzuki',\n", " expansion_order=2, shallow_circuit_concat=True)\n", "backend = BasicAer.get_backend('qasm_simulator')\n", - "run_config = RunConfig(shots=100, max_credits=10, memory=False)\n", - "quantum_instance = QuantumInstance(backend, run_config, pass_manager=PassManager())\n", + "quantum_instance = QuantumInstance(backend, shots=100, pass_manager=PassManager())\n", "result_qpe = qpe.run(quantum_instance)\n", "print('The ground state energy as computed by QPE is: {}'.format(result_qpe['energy']))" ] @@ -182,19 +180,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The groundtruth total ground state energy is -1.8572750302023806.\n", - "The total ground state energy as computed by QPE is -1.857136875325887.\n", - "In comparison, the Hartree-Fock ground state energy is -1.8369679912029842.\n" - ] - } - ], + "outputs": [], "source": [ "result_qpe = QiskitChemistry().run(qiskit_chemistry_qpe_dict, backend=backend)\n", "result_ees = QiskitChemistry().run(qiskit_chemistry_ees_dict)\n", diff --git a/community/aqua/general/eoh.ipynb b/community/aqua/general/eoh.ipynb index 82511a425..54dace550 100644 --- a/community/aqua/general/eoh.ipynb +++ b/community/aqua/general/eoh.ipynb @@ -17,23 +17,10 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "ename": "ImportError", - "evalue": "cannot import name 'QuantumInstance'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtranspiler\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mPassManager\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrun_algorithm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moperator\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mOperator\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0malgorithms\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mEOH\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minitial_states\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCustom\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mImportError\u001b[0m: cannot import name 'QuantumInstance'" - ] - } - ], + "outputs": [], "source": [ "import numpy as np\n", "from qiskit import BasicAer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.transpiler import PassManager\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", "from qiskit.aqua.operator import Operator\n", @@ -57,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -76,9 +63,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The result is\n", + "{'avg': (0.36883301800844187+2.342013271062652e-17j), 'std_dev': 0.0}\n" + ] + } + ], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", @@ -96,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -126,9 +122,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The result is\n", + "{'avg': (0.36883301800844187+2.342013271062652e-17j), 'std_dev': 0.0}\n" + ] + } + ], "source": [ "ret = run_algorithm(params, algo_input, backend=backend)\n", "print('The result is\\n{}'.format(ret))" diff --git a/community/aqua/general/vqe2iqpe.ipynb b/community/aqua/general/vqe2iqpe.ipynb index 3d559f5b6..48fd89215 100644 --- a/community/aqua/general/vqe2iqpe.ipynb +++ b/community/aqua/general/vqe2iqpe.ipynb @@ -19,7 +19,6 @@ "source": [ "import numpy as np\n", "from qiskit import BasicAer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.transpiler import PassManager\n", "from qiskit.aqua import Operator, QuantumInstance, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", @@ -164,8 +163,7 @@ "iqpe = IQPE(algo_input.qubit_op, state_in, num_time_slices, num_iterations,\n", " expansion_mode='suzuki', expansion_order=2,\n", " shallow_circuit_concat=True)\n", - "run_config = RunConfig(shots=100, max_credits=10, memory=False, seed=random_seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, pass_manager=PassManager(), seed_mapper=random_seed)\n", + "quantum_instance = QuantumInstance(backend, shots=100, seed=random_seed, pass_manager=PassManager(), seed_mapper=random_seed)\n", "result_iqpe = iqpe.run(quantum_instance)\n", "print(\"Continuing with VQE's result, IQPE estimated the ground energy to be {}.\".format(\n", " result_iqpe['energy']))" diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index e4248107e..63cda2b44 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -22,7 +22,6 @@ "import pylab\n", "import numpy as np\n", "from qiskit import BasicAer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.tools.visualization import plot_histogram\n", "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import run_algorithm\n", @@ -117,8 +116,7 @@ ], "source": [ "backend = BasicAer.get_backend('qasm_simulator')\n", - "run_config = RunConfig(shots=100, max_credits=10, memory=False)\n", - "quantum_instance = QuantumInstance(backend, run_config)\n", + "quantum_instance = QuantumInstance(backend, shots=100)\n", "result = grover.run(quantum_instance)\n", "print(result['result'])" ] diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb index 030f36603..b6a57fc5d 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/08_Sampling a Thermal State.ipynb @@ -119,7 +119,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD5CAYAAAAHtt/AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8lNW9x/HPmUwyE5KQsCQssoMsCojgSkUBq9al1Cp2u9aldatWba29L9vbXrto9Xptq9UqrXutvXXDXdu6gAtqlU1BEGUnbAkBEsiemXP/eGYykxCSSTLPTGbm+369HufZ5jkntK/fc+b3nOccY61FRERShyfZFRARkc5R4BYRSTEK3CIiKUaBW0QkxShwi4ikGAVuEZEUo8AtIpJiFLhFRFKMAreISIrxunHR/v372xEjRrhxaRGRtLVkyZJd1trijs5zJXCPGDGCxYsXu3FpEZG0ZYzZFMt5SpWIiKQYBW4RkRSjwC0ikmJcyXGLiLitsbGR0tJS6urqkl2VTvP7/QwZMoTs7OwufV+BW0RSUmlpKQUFBYwYMQJjTLKrEzNrLRUVFZSWljJy5MguXUOpEhFJSXV1dfTr1y+lgjaAMYZ+/fp165eCK4F7X10jy7fsdePSIiLNUi1oh3W33q4E7o0VNfzlvY1uXFpEJOO5lirZWZV6DwxERFKBa4F7R6UCt4ikt/vvv58pU6YwZcoUPB5P8/oPf/hDV8t1rVdJWVW9W5cWEekRLrnkEi655BK2bt3K9OnTWb58eULKda3Fva++ier6JrcuLyLSY6xcuZJJkyYlrDxXuwPuUJ5bRDLAihUrmDhxYsLKc/UFnJ1VdYwuznezCBERRtzwkmvX3njrmR2es3LlSk455ZTm7fXr13PzzTdTWVnJU089Ffc6udriVs8SEckErVvco0aN4oEHHnCtPHdTJZV6QCki6S0YDPL5558zYcKEhJXpeqpERMRtsaQz3LJ27VqGDBlCTk5OwspUqkREpBvGjh3LqlWrWuyrqKjgiiuuYNmyZdxyyy1xL9PVFrd6lYhIJurXrx/z5s1z7frutrj19qSISNy5GrjL9tUTDFo3ixARyTiuBO4sjzNkYVPQUlHd4EYRIiIZy5XAne2JXFYPKEVE4suVwO3NigwSrlECRUTiy50Wd1bksupZIiISXy4F7kiLu0yBW0QkrtTiFhFJMe7nuDWhgohIXLne4tZLOCKSrtJq6rIWgXufAreIpKe0mrrM6zF4Qy/h7K1ppK4x4EYxIiI9QtpMXVZS4Gte10s4IpLO0mbqsgGFfraF8ts7KusY3i/PraJEJNP9otDFa1d2eErrqcueffZZXnrpJaqqqvjud7/LqaeeGtcqudbiHtjb37y+c596lohI+mrd4j777LO57777mDdvHo8//njcy3MtcA+IDtzqWSIiaaq9qctuuukmrrrqqriX6V6qJCpw6yUcEXFVDOkMt7Q1dZm1lhtuuIHTTz+dqVOnxr1M1wL3wMLIw0kFbhFJV21NXXbXXXfx2muvUVlZydq1a7niiiviWmZCWtwar0REMsk111zDNddc49r1E5LjVotbRCR+EtOrpKoeazWFmYhIPLgWuPN8Xgp8TiamoSnInppGt4oSEckork4WXNJbb0+KiMSbq4F7YKHy3CIi8eZq4NZLOCIi8edui1s9S0RE4i5xLW7NhCMiEhcJDNxqcYuIxEPiHk4qxy0iaSatpi4LG6gWt4iksbSauiysf34OoRnMqKhuoKEp6GZxIiJJkeipy1xtcXuzPPTP91EWmkihbF8dQ/r0crNIEclAkx5xL2iuuHBFx+ckeOoyV1vc0DLPrXSJiKSj1i3u1atXc8UVVzB37lzuvffeuJfneuBuMUpgpboEikj6ad3injBhAvPmzeOJJ55g0aJFcS/P1VQJwACNVyIiLoslneGWg01d9vzzz3Pvvffy7W9/O+5lup8qUc8SEUljbU1dBjBnzhxeeeUVHnvssbiXmYAWt157F5H01dbUZQsXLmT+/PnU19dzxhlnxL1M1wO3XsIRkUwzc+ZMZs6c6dr1E/pwMtwtUEREui7BvUrqNIWZiEg3uR64e/u95GZnAVDbGKCqrsntIkVE0prrgdsYoy6BIiJx5HrgBg3vKiLuSNXUa3frnZDArZ4lIhJvfr+fioqKlAve1loqKirw+/0dn3wQrncHBL2EIyLxN2TIEEpLSykvL092VTrN7/czZMiQLn8/IYG7RC/hiEicZWdnM3LkyGRXIykSkyrR3JMiInGTkMA9qCgSuLfsrklEkSIiaSshgXt0//zm9Q27qgkEU+thgohIT5KQwF3YK5v++U5f7vqmINv21iaiWBGRtJSQwA0wujiveX1t2f5EFSsiknYSF7hLIumSdeUK3CIiXZXAFrcCt4hIPCQlVbKurDpRxYqIpJ2EBe4xSpWIiMSFO4G7bu8BuwYX5uLPdoqrqG5gT3WDK0WLiKQ7dwL37g3w4g+hMdLtz+MxjOqvVreISHe5lypZ/CDcNxvKVjfvUs8SEZHuczfHXbYK/jwLFj8E1jKmRc8SPaAUEekKdwJ30VDwhsYnaaqFF38AT17IuKJA8yl6CUdEpGvcCdy9+sNlC6HksMi+Vc8xe+G5HGU+BZQqERHpKvdSJSUT4NI34KjvNu/K2V/KEzm/5gbv39i5u5K6xkA7FxARkba4m+POzoWzfgdfexT8RU6BxnKF90Wezf4ZO9Z86GrxIiLpKDEv4Bw2B773Loya1bxrvGcLw54+C966HQJNCamGiEg6iClwG2PmG2PONMZ0PdAXHgLffoZXhl1Prc1xCreN8Mav4aEvQcW6Ll9aRCSTxBqI7wG+BXxujLnVGDOuS6UZw96JF3J6wy0sDY6J7C/9EOadAB/cByk2Y7OISKLFFLitta9Za/8DmApsBF4zxrxrjLnYGJPdmQJHF+ez0Q7ivIYbeaTXBeAJfb2xBl6+Hh79KlRu7dxfISKSQWJOfRhj+gEXAZcAy4A7cQL5q50pMDzYVIAsbt13JsFLXm/ZbXD9ArjnePj4CbW+RUTaEGuO+xngbaAX8GVr7Rxr7ePW2quB/Pa/3VLfvBz69HJa2bWNAXb0Guv0+f7CtYBxTqqvhPmXwpMXQnVFZy4vIpL2Ym1x32etPcxae4u1djuAMcYHYK09qrOFRk+qsLZsP3h9cMqv4OKXoWh45MRVz8E9x8Gaf3S2CBGRtBVr4L6pjX3vdbXQg86GM3w6fG8RTLsosq+6DP7v6/D81VC/r6tFioikjXYDtzFmoDFmGpBrjDnSGDM1tMzESZt0yeiSqNlwWr/67iuAL98J33oS8gdE9i/9i5P7/uxfXS1WRCQteDs4fhrOA8khwO+i9u8DftrVQlvMhnOwaczGngpXvg8vXQefPOPsq9wCfzsPJs6FL90K+cVdrYKISMpqN3Bbax8BHjHGnGutfTpehcY8cXCvvnDewzD+LHj5x1C729m/8ilY9zqc9hs44ptgTLyqJiLS43WUKjk/tDrCGHNd66WrhQ7p04ucLKfosn31VNU1tv+FSXPh+x/C5K9H9tXugWe/B4+eDbvXd7UqIiIpp6OHk+FkdD5Q0MbSJVkew8j+0bO+xzDEa15/OOfPcP7TUDQssn/9QrhnOiy6U2OeiEhG6ChV8qfQ5y/jXfCYknzW7HR6iawrr+bIYX1i/OIXndz3gt/A+/eADTqTNbz637DiKZhzFwyeEu/qioj0GO0GbmPMH9o7bq29pqsFjy5up2dJR3Ly4LSbYeK58Pw1sHOFs3/Hx848l8d9D2be4PRQERFJMx31KlniVsHREwd3eRqzQ6bCZQvg3bvgzf+BpjqwAXjvblj5tBPcDz9HDy9FJK3E0qvEFTH3LOlIVjbMuA4O+wq8cC1sfNvZv287PPUdWPIInHE7FI/tZo1FRHqGjnqV3BH6fMEY83zrpTsFj4pKlWyuqKExEOzO5aDfaLjwBfjqnyGvJLJ/w5tw73R49UZo0MzyIpL6OkqVPBr6vD3eBffK8XJIUS5b99bSFLRsqqhp8WJOlxgDR3wdxn0JFtwCH/zJeXgZbIRFdzgPL7/0G5gwR+kTEUlZ7ba4rbVLQp9v4oxNsgfYDbwX2tcto7rzgLI9/kI4/Va4/C0Yelxkf1UpPHEB/PUc2LU2fuWJiCRQrMO6ngmsA/4A3A2sNcac3t3CDxglMN4GToKLX4Gz74W8qNfj170B9x4Pr/8K6l0oV0TERbGODvhbYJa1dqa19iRgFvD77hYe3bMkri3uaB4PTPkWfH8xHHMZhKfNDDTA27+Fu6bB8r9BsJs5dhGRBIk1cO+z1kbnFtbjDDTVLWNa9Cxx+cFhbhGc8b/OpA1Djons37/DeXX+/tmwqcsj1YqIJExHvUrOMcacAyw2xrxsjLnIGHMh8ALwYXcLjx7edX3ZfmwipiobdAR8559O+iR/YGT/tmXObPNPXgR7NrlfDxGRLuqoxf3l0OIHdgInATOBciC3u4UX5/so8DsdW/bVN1G+r767l4xNOH1y9RI48cfg9UeOffIM3H00vPZLTdwgIj1SRy/gXOxm4cYYRhfns3zLXsB5QFnS29/Bt+LIlw+zfwZTL4DXfuG8bQkQqId3fgfL/gon/xym/Ad4shJXLxGRdsTaq8RvjLnKGHOPMebB8BKPCsTtDcruKBoGcx+E7/wLBk+N7K8uc6ZMmzfDmXlHs86LSA8Q68PJR4GBODPivIkzI05c8ggtZsNx+wFlR4YdC5e87rx9WTA4sr/sE2fmnYfPgtLFyaufiAixB+4x1tqfA9Wh8UvOBI6NRwW6NUqgGzwe5+3LqxfDSTdAdqR+bHoH7j8ZHv827Po8eXUUkYwWa+AOT1Gz1xgzESgESto5P2Yt+nK78RJOV+XkwayfwLXL4ehLwRP1OGD18/DHY+GFH8C+Hcmro4hkpFgD95+NMX2AnwPPA6uA/4lHBYb17YXX44wbsq2yjur6HjaLTX4JnHk7XPWBM0RsmA3AkofgzinOG5h1lcmro4hklJgCt7X2fmvtHmvtm9baUdbakvDsON2VneVhRNQ0ZuuTnec+mH6j4byH4NIFMPLEyP6mWucNzDunwDt3aARCEXFdrL1K+hlj7jLGLDXGLDHG3GGM6RevSvS4PHd7DpkKFzwP5893xkIJq90Nr93oBPD37oHGuuTVUUTSWqypkr8DZcC5wFxgF/B4vCrRI7oEdoYxMOZkuOwtOOd+KBoeOVZdBv/8CfzhSPjwfmhqSF49RSQtxRq4B1lrf22t3RBabgIGxKsSro8S6BaPByaf5wxgddbvofchkWP7tsFLP4K7pjqz8AQaD34dEZFOiDVw/8sY8w1jjCe0fA34Z7wqkZBRAt3kzYGjvgNXL4XTb4P8qHta5RZ44RrnNfplf1UAF5Fu62iQqX3GmCrgUuBvQENo+TtwWbwqEZ3j3rirhqbuTmOWLNl+OPZyuGY5nHoT9Ip6DLBnAzx3FfxhKnz4ADQlaFwWEUk7Hc2AU2Ct7R369FhrvaHFY63tHa9KFPizGVTojFHSEAjyeSqlS9qS0wumXw3Xfgwn/zf4iyLHKjfDS9fBnUfA+/dCQ03y6ikiKSnWVAnGmDnGmNtDy1nxrsiRwyLBbfHG3fG+fHL48mHGj+AHK5wAHt0C37cd/nED3DnZ6UaokQhFJEaxdge8FbgW58WbVcC1xphb4lmRo4b3bV5fvGlPPC+dfP7ekQB+6s0tc+DV5U43wjsmwZu3Qe3e5NVTRFJCrC3uM4BTrLUPWmsfBL6EM15J3Bw1ok/z+uKNaRa4w3LyYPr34dqP4PT/bdkLpXYPLLgZfj8R/vUzqNyavHqKSI8Wc6oEiErUUhjvihw2qDe9cpwxr7furWXb3tp4F9FzZOfCsZc5DzG/fGfLfuAN++Ddu5wc+LNXQtnq5NVTRHqkWAP3LcAyY8zDxphHgCXAzfGsiDfL0zLPnW7pkrZ4c2DaRc5MPGfPg/5jI8eCjbD8MbjnOHjsa7BxkcYDFxEghsBtjDHAO8BxwHzgaeB4a23c3pwMmxad506XB5SxyMqGKd+EK/8N3/w7DDu+5fHP/wkPnwH3fxFWPQfBQHLqKSI9QrtTlwFYa60x5mVr7SSckQFdc3RUnvvDdM1zt8fjgXGnO8vmf8O7f4BPXwJCLe2ti+GJC6DvKDj++3DEN52uhyKSUWJNlSw1xhztak2AI4f1ITTCK2t2VFFVl8FvGQ47Fr7xGHz/Q5h6IWTlRI7tXu/0Bf/9YfDqjVBZmrx6ikjCxRq4jwXeN8asM8Z8bIxZYYz5ON6Vyfd5mTDIea8naGHZZnWNo/+hMOcP8IOVcMJ14I96Lly7BxbdAXdMhicuhM3vKw8ukgFiDdynAaOA2cCXgbNCn3F39IgMzXN3pGAAfPFG+OEncNotLXui2ACsehYePA3umwUfPa5RCUXSWEdjlfiNMT8AfozTd3urtXZTeHGjQtOGZ0B/7u7wFcDxV8I1y+Abf4MRM1oe37YMnrkM7pgIC/8H9pclp54i4pqOWtyPAEcBK4DTgd+6XaHoF3GWbdlDY6oOOOU2TxaMPxMuehGuWARHng9Zvsjx/Tth4W/gd4fBU99Rd0KRNNJR4D7MWnt+aJqyucCMDs7vtkGFuQzpkwtAXWOQVduq3C4y9Q2cCF/5I1y3Cmb/DAoGRY4FG2Hl0053wnuOhw/ugzr9m4qkso4Cd3O3DmttwmbxPWp4dLdA5bljltcfTvyxMyrhuQ/AkFYdgcpXw8vXw2/HwwvXwva4P18WkQToKHAfYYypCi37gMnh9dA43a44qsUDSuW5O82bA5PmwiWvweVvO29nZkfGPKexGpY8DH+a4bzUs/z/NEemSArpaDzurNB43OExub1R63Ebj7u1FgNObdqDVW626wZNdsZD+dFqOON2KJ7Q8njph/DsFfDbcfDyj9UKF0kBnRlkKmHGlhRQ4Hde6ty1v55NFZpsoNv8hXDMpXDle3DxKzBxLniyI8fr9sIHf3Za4X860cmFa4hZkR6pRwZuj8coz+0WY2D4dJj7AFy3Gk6+sWWfcIDtH4Vy4eNg/mWw4W31SBHpQXpk4IaWee4lmTBSYDLkF8OM65zhZS94Hiad17JLYVMdfPw4PHIW/OFIeOt2qNqWvPqKCADGjfxx4ZhCO/u3s/Fn+fF7/fi8vuZ1f5YfX5YPn9dHblYuPq8PX5aPXG8uviznPJ/Xx4ayBm587jOw2QwrKuTJy09qvk62Jxtn0EKJu9o98PGTsOwvsGPFgceNB0ae5AxwNeEsZ3IIEYkLY8wSa+1RHZ7nRuDOHZlrx/xiTNyvG+YxnuYg7/c6N4Lmm0IouLe1r/ncGG8o4X1ZnizX/pYebdtyWPoXWPEU1FceeDw7Dw6bA5O/DiNPdF4KEpEuS+vAnWjZnuy2bwBRAd/vbePGEMMNJfpXh9/rJ8eT0/N+TTTUwOoXYNmjsPEdmoeZjVYwGCaf57TESyYceFxEOpTUwD35yMn2ydefpD5QT32gntqmWuoD9dQ11VEXqKO+qZ66QB11TXXN+1scD61v3L2X8ur9GNNIri9ItjdAXaCOpmDC3gVKOINp88ZwsNRSizRTF24onf41sXcLrHjCGchq15q2zxk42QngE8+BgoHd/0cRyRBJDdxHHXWUXbx4cbev8+HG3Zw37z0ABhX6efeG2RhjaAo2tXkjaL5JNLW8YbS+ebR1k2jrhhL+XjrzGm/zzSC8hIP7wbZ9Xh9+j4+cmgr8O1bi27Ycf/0+coIWv7X4rPOZY8E/eCq+safjG38WvvwB+LP8eD3enverQqQHiDVwdzgDTjIdObSI3n4vVXVNbK+s47Od+xk3sACvx4vX4yUv2/0HY9ZaGoINTnAPB/02fi20dZOob4q6YRzkl0brm0eif0002SaaGpuobqzu+kV6+wDfQQ5ug88fcJaQ8DOKdm8MWX5ysnJa/HJobzs6FXXANXpqCkqki3p04PZmeZhxaDEvrdgOwII1ZYwbWJDQOhhjmoNBoS/uk9sfoCnYREOgoUXAbxHoo24erW8EB7t5tLhGq+vZtvLVLgvaILVNtQn9NWNw/ndsDvad/JXR4c2ljW1flg+P6bE9biWF9ejADXDSuEjgXrimjCtOGp3kGrkr/GuiV7b7c0laa2kMNjYH++gUUSzb4ZtCQ6ChxY2kebthP/U1u6lvqKI+2EidMdQbQyAJLV+LdW5agTqqSNzoiNEPtrt7YwgfC+/Lyco56LZuGOmtxwfumWOLm9cXb9xDZW0jhbnZ7XxDYmWMIScrh5ysHApw+ZfMnk3wyTOw8mmadnxMvTFOIPc4wbzeGOq8fuqHTKN+6LHUDzycOo8nchMI3SiabyKhG8XBtsM3mvD3G4PJmb+0MdhIY7CRfY37ElpujicSxMM3ghbbWW1vH/TGELqxHOxmEf1d3TTc16MfToZ9+a53WLHV6Ud8+3lHMHfakLhdW5Jg1+ewcj6sfAp2fdb2OVk5MGomTJjjTBjRq2/b58UoEAxQH6hvcSOIDuydvTF0dKMI78tE2Z7stm8O0TcPj69TvyJi+X46pKbSoldJ2Lw313HrK58CMHNcMQ9ffEzcri1JZC3s/ARWPQern4fyT9s+z2TBiC9EgnjvwYmtZxdFP9iOTi81B/5W2w2BhhbPIqK3wzed6BtF6+3ofZkqfNM42C8Jn9fnBP2oXxId/Yo44Obj8R3w6yNeL+qlVeDesruGGbctAMDrMSz+2Rcp6pUTt+tLD1H+mRPAVz/vDHR1MIOmwLgzYNyXnD7j6i3SQviG0fwLI/RL4GBBvvV29PnhG0/zdugXhW4aB/Ia7wHBPPomEMu+y4+4PPW7A4YN7duLKUOLWL5lL01Byz8/2cHXjx6W7GpJvBWPheLr4cTrYc9G523NVc9D6Qctz9u+3FkW/gZ6D3EC+NjTYeQM8B6sW2LmiO4JlWitbxqtU1CtA3+bN4LQ+eHrNG/38JtGk22iqamJmib3h6FOicANcNbkQSzf4owP/eLH2xW4012fETD9amep2gafvuQE8k2LILqve1UpfHi/s+Tkw+jZMO50OPQ0yOuXtOpnqnS+aUQ/32gINLS4Tn2gPqFda1MiVQKwbW8t0299A4Asj+GDn55Mv3y1rjJOXSWsfQ3WvAKf/8vZbovxwJBj4NBTnGXAJPCk9oMr6bmstTTZpgOC+cHWD7bv2mnXpk+OO2zuve+yODQ2901nT+T844Z38A1Ja4FG2Py+E8TXvAx7Nhz83LwSGPNFGHOy0yrvZi8VETek1cPJsIcXbeAXL6wC4LhRffn7ZcfHvQxJUdY6XQvXvAxr/gFb/k2boxiC0xo/ZBqMOcUJ5oOPVGtceoS0DNxlVXUce8vrWOt0JPj3T0+mpMAf93IkDVTvclIqa1+Dta9DbTvT3/Xq57TCx5wCo2dBfkni6ikSJS0GmWqtpLefY0f25f31u7EWXlmxgwunj0h2taQnyusPR3zDWYIBZ1KIta86gbx0MS1a4zUVsOJJZwEoORxGneS8ADR8OvgSOz6OSEdSqsUN8Oj7m/j5sysBOHpEH568Yror5Ugaq9kN696ItMiryw9+rscLhxzlBPFRJznrXr1DIO5Iy1QJwK799Rxz82sEQ9V+7yezGVSY60pZkgGCQdjxcSSlUvohtDeuSXae0wofNdMJ5CWHKz8ucZOWqRKA/vk+po/uzztrdwEwf+lWrpqVPtOkSYJ5PDB4irOceD3U74fN78H6hbD+TdjZasLkxupQyuVVZ7tXPyeQDz/BeS1fgVwSIOVa3ADzl5Zy3RPOK9FD+uTy1o9n4fHotWdxwf5y2PhWKJAvhL2b2z/fXxQK5F9wAvnAyZpEWWKWtqkSgLrGAMfd8jp7a5yftA9ffDQzx6kngCTA7g2w4U0niG94y3mw2R5fbxh2XCiQnwCDjoAsDUssbUvbVAmAPzuLc6cO4YF3nBcu/vbvzQrckhh9RzrLtIuc/Hj5p85r+BvfcT5bP+isr3Le8Pz8X852dh4MmQZDj4Ohx8LQo8Hv/sxKkl5SssUNsK58Pyf/9k3AeQX+7f+cxeAiPaSUJLLWGWt80zuwcZETyPdt7+BLBkomhIL4sTDsWOgzUiMeZqi0TpWEfeu+93l3nfNT9bITR/HTMya4XqZIzKyF3eth07uhVvkiqOwgRw7O6/lDjwkF8uOc9IpGPcwIGRG4X1+9k+8+4pRT4PPy7k9mU+BX/lB6sMpS53X8zf92PnesABto/ztZOc4Y5IdMCy1Toe8otcrTUFrnuMNmjSthVHEe68ur2VffxOMfbuGSGaOSXS2Rgysc4iwTz3W26/fDtqWRQL7lA6hvNeJhoMEZkzx6XPLcPlGBfBoMngr5xUhmSOkWN8D/fbCZn8x3+toOLvTz5n/OIjtL/WglRQWDsGuNM+rhlg9gy/tOuiUWRcNaBvNBR0BOnrv1lbjKiFQJOF0Dv3DrG1RUNwBw6zmT+MYxmmRB0sj+cqdVvnVJZKnd0/H3jAf6HeoE8MFTnM+Bk9SLpQfLmMANcM/Ctdz2jzUAHFKUy4LrZ5LjVatb0lT4oefWqGC+/SOIdequvqOcIN68TNH45D1ERgXu6vomZty2gN2hVvdvvjqJbx2rVrdkkKYGKFsFWxdHAvquz8AGY/t+4TAYNNkJ4oMmw4CJ0HuwHoAmWEYFboA/vbmOW175FHBy3W9cPxN/tl41lgzWUA07P3Fa49uXw7aPoHx1yzk72+MvcgL4gMNDy0QoGa+8uYsyLnDXNDRx4m0L2LXfaXX/6JSxXH3yoQmtg0iP11jntMy3fxRZdn4Se5oF46RawoE8HNSLhmtwrTjIuMANLcfq9md7eO26kxjSp1fC6yGSUgKNUL4m0jLfsdIJ5q27JbYnJx9KDnOCeMkEKB4HxeMhf4DSLZ2QkYE7ELR8+a53WLW9CoDTJw7k3vOnJbweIinPWudloZ2fwM6VoeUTqFgbe94cnB4sxeMjgTz82fsQBfQ2ZGTgBli8cTdz573XvP3od49hxqF6MUEkLhprnYG1dn4SCeo7VrY/p2dbcgqgeGwomI+PBPXCoRmdcsnYwA1w3RPLmb++PfeKAAAJX0lEQVR0KwCji/N45doT1T1QxC3Wwv6doVb5KucFovLQUl/VuWtl94J+o53+5/3GQP/QZ78x4O/tTv17kIwO3GX76ph9+5vsr3eenv/k9PFcftLopNVHJCNZ64yOWP5pKJCHPstWQ93ezl8vf0AkiDcH9EOhz/C0GeM8owM3wP1vr+eml1YD4PN6eOmaGYwpyU9qnUQEJ6BXlx8Y0Ms/bX/i5oPxeJ1eLX1HhcZLH+UMjdt3lBPUU2hkxYwP3I2BIHPuXsTq0IPKwwf3Zv6V0/F51bdbpMeq2e2MaV7xufMgdNfnULEOdq9zBtvqNOM8CA1PgNEc1Ec6nz0s/ZLxgRtg9fYqvnL3IhoCzlPwS2eM5L/OPCzJtRKRTgsGnPk+K9a1CuproWpr16/bq3+kpd5nhNNyLxrmtNR7H5Lw+UIVuEMefGcDv3pxVfP2H781lTMnD0pijUQkrhqqnblAd6+HPaHP3Rucpaq0c90Xo3m8zhC8RcOcgN5neCiwh9bzSuLeAyYjxuOOxcVfGMHbn5ezYI2TO/vRk8sZ2jeXyUOKklwzEYmLnDwYONFZWmuqd1rquze0CurrYe+m9tMvwSbYs9FZ2pKV44znUjjUCfC9DwmNtz4UCkPrvoJ4/IUHSPsWN8Demga+es+7bNhVDcCA3j6eu+oEBhb6k1wzEUmaYMBJs0QH8r2bYU/os7qs+2X4C51A3hzUWy0Fg1r0iFGqpJX15fs5+4+LqKpzughOOqSQJy4/ntwcPawUkTY01DgBfO9mJ6jv2RhZ37s5tjHRO2I8kD+wOZCbrz2swN3aorW7uODBDwgEnb/55PElzPv2NM2YIyKd11ANlVuhcoszPEBlqdOCb97e2onBuxzml1XKcbf2hTH9+eWcw/lZaCCq1z8t48rHlnL3t45UN0ER6ZycvNBr+2PbPm4tVO9yAnnV1khwr9wSCvilsH9Hl4rOqBZ32G3/+JR7Fq5r3p45rph7/2Oa0iYiklhNDbBvW3NQN1O+GVOLOyNzBD8+bRyXnxSZDX7hmnK+8ef3KKuqS2KtRCTjeHOc/uMjToAjvhHz1zIycBtjuOFL47lm9pjmfR+VVjLn7kWs3NqJMYhFRJIgIwM3OMH7ulPH8auvHE6WxxkXeEdVHefNe4/5S0txI4UkIhIPGRu4wy44fgQPXXQ0BX7nOW1tY4DrnviIKx9bSsX+zj0RFhFJhIwP3AAnji3mmSunM6JfZJqzV1bu4LQ73uLVVTuTWDMRkQMpcIeMKSngxWtm8M1jhjXv27W/gUv/spjL/rKYzRU1SaydiEiEAneUfJ+XW86ZxEMXHU1JQWQM33+t2skXf/cmNz63kp3qeSIiSabA3YZZ40v45w9O5JyphzTvawgEeeS9TZx42wJufG4l68v3J7GGIpLJMvIFnM5YtnkPv35xFUs3HzjV0klji7lw+nBOPLQYr16bF5Fu0iBTcWStZeFn5dzx6md8VHpgP+/++T7mHDGYMycPYsrQoubuhSIinaHA7QJrLe+s3cUj727k9U/LaOufrl9eDrPGl/DFCSUcP6o/hb3SYxJTEXGfArfLNlfU8Nd/b2L+0q3sOkh/b2Ng3IACjhnZl6NH9GXK0CKG9MnFGLXIReRACtwJ0hQI8u66Cl74aBsL1pSxa3/7E5oW+L1MGNibCYMKmDCoN6OK8xnRrxfFBT4FdJEMp8CdBMGg5aPSvby+uoy3Py9n5baq5rG/O9IrJ4vh/fI4pCiXgYU+Bvb2M6C3n4GFfgb29lNc4KO3PxuP8uciaUuBuweorm9i2ea9fLChgiWb97BqWxV7ahq7fD1joDA3m6LcbAp75VCUm01RL2c7z+elV04WuTle8nKyyM3JoldOeF+W85mdRY7XQ3aWs+RkecjOMmR5jFr7Ij2AJgvuAfJ8Xk44tD8nHNofcB5u7qiqY/X2KlZtq2LNzv1sqqhmw65q9oWmVGuPtbC3ppG9NY0Q5zc5w0E823tgUM/yGDwmtHggyziB3mNoDvpZoWPh85zv0OJ74ZuDoeU6ODelyLppXsdAeKvlOeHDJrJuIlds69yjhvfl7CMjffNFUpUCdwIZYxhUmMugwlxmjx/QvN9ay56aRjZWVLOjso4dlXXsrKpjR1VkvaK6Iabg3lUNgSANAXD+k54am6wCt6QFBe4ewBhD37wc+ubltHteYyBIVW0je2udVndlbQN7qp3tmvomahoD1DYEqGlooqYhvB4I7W+itjFAY5OlMRCkIRCkMRCkMWBjzsOnOmWDJF0ocKeQ7CwP/fJ99Mv3dXxyJwSDlsagE8Qbm4JRgd3SFAgStBAIWoI2vDjbttV6ILQdDJ3rfIfmdQALB4x1bi1YbGQ9dDj6XNv8n1bnHuwa0RcPfXVMcX5c/91EkkWBW/B4DD5PFj4vEN97goi4QANsiIikGAVuEZEUo8AtIpJiFLhFRFKMAreISIpR4BYRSTEK3CIiKcaVQaaMMeXAprhfWEQkvQ231hZ3dJIrgVtERNyjVImISIpR4BYRSTEaq0RSijEmAKyI2vV3a+2tyaqPSDIoxy0pxRiz31ob12H+jDFea617g52LxJlSJZIWjDEbjTG/NMYsNcasMMaMD+3PM8Y8aIz5wBizzBjzldD+i4wxzxtj3gBeN8Z4jDH3GGM+Nca8aox52Rgz1xgz2xjzbFQ5pxhjnknSnykCKHBL6sk1xiyPWr4edWyXtXYqcC9wfWjffwFvWGuPAWYB/2uMyQsdmwrMtdaeBJwDjAAOA74NHB86ZwEw3hgT7qJ1MfCgS3+bSEyU45ZUU2utnXKQY/NDn0twAjHAqcAcY0w4kPuBYaH1V621u0PrJwBPWmuDwA5jzAIAa601xjwKnG+MeQgnoF8Qvz9HpPMUuCWd1Ic+A0T+v22Ac621a6JPNMYcC1THeN2HgBeAOpzgrny4JJVSJZLu/glcbULTyhtjjjzIeYuAc0O57gHAzPABa+02YBvwM5wgLpJUanFLqsk1xiyP2v6HtfaGds7/NXAH8LExxgNsAM5q47yngZOBVcAWYClQGXX8MaDYWru6O5UXiQd1BxQJMcbkW2v3G2P6AR8AX7DW7ggduxtYZq19IKmVFEEtbpFoLxpjioAc4NdRQXsJTj78R8msnEiYWtwiIilGDydFRFKMAreISIpR4BYRSTEK3CIiKUaBW0QkxShwi4ikmP8HIXKwUENqnN0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD5CAYAAAAHtt/AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4VFXewPHvmZJMKiWhIx2ki4i6oCDYsWABVyxYsbyri6+u6/qu666uurrNXTsWsKJiQQUBEQURuzRpoRepEgIkpE857x9nJjMJKZMwkzsz+X2e5z6Ze+aWQ4DfPfdUpbVGCCFE/LBZnQEhhBD1I4FbCCHijARuIYSIMxK4hRAizkjgFkKIOCOBWwgh4owEbiGEiDMSuIUQIs5I4BZCiDjjiMZFs7OzdZcuXaJxaSGESFhLly7dr7VuVddxUQncXbp0YcmSJdG4tBBCJCyl1PZwjpOqEiGEiDMSuIUQIs5I4BZCiDgTlTpuIYSINrfbzc6dOyktLbU6K/Xmcrno2LEjTqezQedL4BZCxKWdO3eSkZFBly5dUEpZnZ2waa3Jy8tj586ddO3atUHXkKoSIURcKi0tJSsrK66CNoBSiqysrKN6U4hO4M7fAT5fVC4thBAB8Ra0A44239EJ3EX74fMHonJpIYRo6qJXVfL1E7DstahdXgghmqro1nF/fCdsXRzVWwghhFVeeuklBg0axKBBg7DZbBWf77zzzqjeNzq9Spwp5qfPA9OvhpsWQFb3qNxKCCGsMnHiRCZOnMiuXbsYNmwYK1asaJT7RqfE3bIbpLcxn0sPwbTLoPhAVG4lhBBWW716NQMGDGi0+0UncNuTYPxb4HCZ/QOb4Z1rwFMeldsJIYSVVq1aRf/+/RvtftEbgNPxBLhkMrx7ndnfthhm3wVjnoI47cIjhIhNXe6dHbVrb3vs/DqPWb16NWeddVbF/pYtW3jkkUfIz8/nvffei3ieots42e8SOP1Pwf3lr8M3T0X1lkII0diqlri7devGlClTona/6I+cHH43DBwf3J//Z1gXvaejEEI0Jp/Px8aNG+nTp0+j3TP6c5UoBWOehIPbYMd3gIb3J8INn0C746J+eyFE4gunOiNaNm3aRMeOHUlKSmq0ezbOXCWOZBg/DVp0MfvuYnhzPBTsaZTbCyFEtPTq1Yu1a9dWSsvLy+PWW29l+fLlPProoxG/Z+PNDpiWDVe+Ay+dBWX5cHg3vDUerp8LSamNlg0hhIi2rKwsJk+eHLXrN+7sgK2OhcteBmU3+3tWwAe3yIRUQghRD40/rWuPM+C8fwT3c2bCgocaPRtCCBGvrJmP+8SJcPL/BPe/ehxWvGlJVoQQIt5Yt5DCOY9Az7OD+zMnwfZvLMuOEELEC+sCt80OY6dA675m3+eGt6+CvM2WZUkIIeKBtUuXuTLhyumQ1srslxyANy+HkoOWZksIIWKZ9WtONu9kJqSyJ5v9vI1mfhOv29JsCSFErLI+cAMccyJc8lxwf8sXMOf3oLVlWRJCiFgVG4EboP9YGPnH4P7Sl+G752o+XgghmqjYCdwAp90DAy4L7s/7I6z/xLr8CCFELRJr6bKGUgrGPA0Ht8POHzATUt1oJqRq23irSwghRDgSa+myo+F0wfg3TaMlQHkhvDHOzC4ohBAxKDGWLjta6a3giumQnGn2C/fC65dAYa61+RJCiGokztJlR6tNX1PyfmMseMvgwBZ441K4brbp/y2EEAEPNIvitfPrPKTq0mUffvghs2fPpqCggBtvvJGzzz67lrPrLzZL3AFdh8O4qaD82dy7Et6+Etyl1uZLCCFCVC1xX3zxxbz44otMnjyZ6dOnR/x+sR24AfpcABc+EdzfthhmTASf17o8CSGEX21Llz388MPcdtttEb9n7FaVhBp8DRTnwWcPmP2cWfDx/8KFT8qK8UKIsKozoqW6pcu01tx7772MHj2awYMHR/ye8RG4AU75XyjaD98+bfaXvQap2XDmX6zNlxCiSatu6bKnnnqKzz77jPz8fDZt2sStt94a0XvGT+BWCs56yJS8f3rLpH31uFn2bMTvrc2bEEKEmDRpEpMmTYra9WO/jjuUzQZjnoJeo4NpCx6Gr5+0Lk9CCNHI4itwA9idcNkr0G1kMG3+/fD98xZlSAghGlf8BW7wj658CzqfGkybew8sedm6PAkhRCOJz8ANpm77yulwzMnBtI/vlLUrhRAJL34DN0ByOlz1LrQPdLfR8NFtsOo9S7MlhBDRFN+BG8DVDCbMCM4eqH0w42ZY+5G1+RJCiCiJ/8ANkNICJnwIrfwjl7QX3rsB1s+1Nl9CCBEFiRG4AdKy4ZqPIKuH2fd54J1rYNNn1uZLCCEiLHECN0BGG7h2FrToYva95fD2VbD1S0uzJYQQkZRYgRsgs70J3s2OMfueUnjzctj+rbX5EkIkHKuWLlM6CiupDxkyRC9ZsiTi162XA1vg5fPh8G6zn5QBEz4wK8oLIeJeTk5OtTPyWSGwdNn27dvDPqe6/Cullmqth9R1buKVuANadoNrZ0Jaa7NfftisoiMlbyFEhDX20mXxM8lUQ2T3NMH7lfPN5FTlh80qOle8Dd1Oszp3QogIGfBq9ILmqmtX1X1MIy9dlrgl7oDWfcxyZ4GSt7sY3vy19DYRQkRM1RJ3Tk4Ot956K+PGjeO5556L+P0SP3CDCd7Xz4WM9mbfUwpvXSH9vIUQEVG1xN2nTx8mT57MO++8w9dffx3x+yV2VUmo7B5w/Rx4dQzk/2y6Ck6/GsZOgX4XW507IcRRCKc6I1pqWrps5syZPPfcc0yYMCHi92waJe6All3h+tnQoqvZ93ngveth5TvW5ksIEbeqW7oMYMyYMcydO5dp06ZF/J5Np8Qd0LxTsOSdtzE4t4mnDAZH/skohEhs1S1d9sUXXzBjxgzKyso477zzIn7Pphe4wQzSCQTv3BxAw8zboTQfht1ude6EEHFu5MiRjBw5MmrXb1pVJaHSW5veJm1DuhF9eh989iBEYVCSEEJEStMN3ABpWXDtx9BpaDDtq8dh1h3g81qXLyGEqEXTDtwAKc3h6hnQ85xg2rJX4d3rTL23EELEGAncYJZBGz8NBo4PpuXMhGmXQdlh6/IlhBDVkMAdYHfCxc/Br34TTNu6CF69EIr2W5cvIUSNojFJXmM42nxHJXBrDQWl7mhcOrpsNjjnb3D6/cG03cth6rlwaId1+RJCHMHlcpGXlxd3wVtrTV5eHi6Xq8HXiMq0rsnteuqHX5nF78/pHfFrN5olU+HjuwD/7yezg5kWttWxlmZLCGG43W527txJaWmp1VmpN5fLRceOHXE6nZXSw53WNWr9uNfsLojWpRvHkBsgpSXMuMkMjy/YBVPPgSumQ6eTrc6dEE2e0+mka9euVmfDElGr4169K84DN5g5TK58B5xpZr/koKnzXvOhtfkSQjRpUQvc+wvL2FcQf68wR+g+Cq6bBanZZt9bZroKfvO0DNQRQlgiqr1K4r66JKDDCTBxfnAFebQZZTn3HhmoI4RodFEO3PnRvHzjatkNbpxfeZTlDy+YqWHLi6zLlxCiyZESd32ktoQJH0K/S4Jp6+fAKxdA4T7r8iWEaFIkcNeX0wVjp8KwScG03cvgpTMhd711+RJCNBlRCdzK//PnA8Xkl8ThQJy62Gxw9kNw/r9B+X+Fh7ab4C1rWQohoiwqgTvZaa/4vDYRS90BJ06E8W+BM9XslxWY+U2+f156nAghoiYqgTslJHAnVANldY49F274xIysBLOiztx7YPbvwJuAbxtCCMtFKXAHL5vQJe6AdsfBTQtMt8GAJVPgjbFQfMC6fAkhElJUArcrKbTE3QQCN0BGW7OiTv+xwbSti0y99/6N1uVLCJFwolZVovwtlJtyCyl1N5FBKs4UGDsFRt0XTDuwGV48A9Z/Yl2+hBAJJSqB26YUXbPM/B5en2b93ia0GIFScNo9cNkr4EgxaWX58Nbl8MVj4PNZmj0hRPyLWj/uvu0zKz6vTvQGyur0uwRumAuZHYNpXzwKb18BJYesy5cQIu5FLXD3a9+s4nOTqeeuqv3xcMsi6DoimLbhE3jxdNiXY12+hBBxLYqBO1jibrKBGyAtG67+AIb9NpgWqPde84F1+RJCxK1GCdzr9hTg8Tbhul27A85+GMZNDQ7WcReZ6WHn/xm8HkuzJ4SIL1EL3FnpybTNNGuqlXl8bNkvM+jRfyxM/NzMNBjw9RPwxqVQlGddvoQQcSWswK2UmqGUOl8pVa9AX7m6pAk2UFanTV+4aSH0PCeYtnURvDASdq+wLFtCiPgRbiB+FrgS2KiUekwpFdaKuf06BBsoE2Ips0hJaQ5XvA2n3RtMy//ZrGm59FWZ50QIUauwArfW+jOt9VXAYGAb8JlS6hul1PVKKWdN50mJuxY2G4z6PxPAk/2/J08pzJpkFigua0J934UQ9RJ21YdSKgu4DpgILAeewATy+TWdExq41+4uQEtJ8kjHjoabv4DWfYNpq941VSd7VlqUKSFELAu3jvsDYDGQClyotR6jtZ6utf4tkF7TeR2ap9AsxRTIC0o97DxYEoEsJ6Cs7qbR8vgJwbS8TWaekx9fkqoTIUQl4Za4X9Ra99VaP6q13gOglEoG0FoPqekkpZRUl4QrKRUuehoufRGcZroAvGVmetj3rodS+d0JIYxwA/fD1aR9G86JMhCnngb+Gm75EtoMCKat+QCeHwG7l1uXLyFEzKg1cCul2iqlTgBSlFLHK6UG+7eRmGqTOsnQ9wbI7gET58OQG4JpB7fBlLPhu8lSdSJEE+eo4/tzMA2SHYHHQ9IPA38M5wb9O4RMNrVLXvfD5kyBC/4DXYbDzElQfhi85fDJH2DTfLjoWchoY3UuhRAWqLXErbV+VWs9CrhOaz0qZBujtZ4Rzg26ZqdXLGW273AZuYfLjj7XTUn/S+HWL80qOwGbPoPnhsL6udblSwhhmbqqSq72f+yilLqr6hbODew2Re92GRX70kDZAC27wY3zK09UVZwHb42Hj++E8mLr8iaEaHR1NU76uzeQDmRUs4VFGigjwJFsJqq65iPIaB9MXzJVGi6FaGJqrePWWj/v//ng0dwktIGySSweHE3dRsL/fA2z7oCcmSYtb6Pp8z3qPhg2ycxGKIRIWLX+D1dKPVnb91rrSeHcRPpyR1hqS/j1a7BiGsy5x0wR6/PA5w/CutlwyWTI7ml1LoUQUVJX0WxpJG7Sq00GDpvC49NsyyumoNRNpqvGKU5EOJSC46+GTkPN3Ca7/H9Vu5bA5FPh9PvhV/8DNru1+RRCRFxdVSWvRuImLqedHq3TWedfNDhndwEnd8uKxKVFVne4YR58/V/44u/gc5vJqj69D3JmwcXPmmOEEAmjrl4l//X/nKWUmll1q8+NZCBOFNmdMOL3ZrKqtiEjLnd8B8+dYgbtyOryQiSMuqpKXvf//NfR3qhf+0zeX2Y+S+COkrb9zSINi/8NX/7T1Ht7SsygnZxZZi6Ull2tzqUQ4ijVNQBnqf/nIszcJAeBA8C3/rSwSQNlI7E7YeS9ZrbB1v2C6du/MqXvH1+S0rcQcS7caV3PBzYDTwJPA5uUUqPrc6O+IYF7075Cyjze+pwu6qv9ILh5IQy/G5S/gdJdZGYbfG0M5G22Nn9CiAYLd3bAfwOjtNYjtdanAaOA/9TnRhkuJ52zzLxUHp9mw97CemVUNIAjGc6430xY1ap3MH3bYnhumKlS8bqty58QokHCDdyHtdabQva3YCaaqpf+IQ2Uq6W6pPF0OAFuXgSn/C8E1nv2lMLnf4XnT4OdS6zNnxCiXurqVXKpUupSYIlSao5S6jql1LXALODH+t6sr9RzW8fpgrMeNI2XoRNW7VtjRl3OuUfWuRQiTtRV4r7Qv7mAX4DTgJFALpBS35vJnCUxoP0gmLgAzn4EnIEp1TX88Dw8czKsm2Np9oQQdatrAM71kbxZaF/udXsO4/Vp7DYVyVuIcNgdMOx26HOBaazc9JlJL9gFb18BfcbAuY9Bsw7W5lMIUa1we5W4lFK3KaWeVUpNDWz1vVmrjGRaZyQDUOL2snW/NFBaqkUXuOo9GDsFUrOD6Tkz4ekT4esnwFNuWfaEENULt3HydaAtZkWcRZgVcRpUISrVJTFGKRgwDm7/0cx9EuAugvl/NvOebP3SuvwJIY4QbuDuobW+Hyjyz19yPnByQ24YWl0iS5nFkNSWcNEzcN1saNUnmL5/Pbx6Ibx3IxTssS5/QogK4QbuQGffQ0qp/kAzoHVDbhi6BqWUuGNQl1Ph1sWm8TIpPZi++j14egh885T0/RbCYuEG7heUUi2A+4GZwFrg7w25YdXJprSsWB577E7TeHn7EhhwWTC9vBA+/ZOpPtnyhWXZE6KpCytwa61f0lof1Fov0lp301q3DqyOU18dW6SQ6TKdWfJL3Ow6VNKQy4jGkNkOxr4E135ceeRl7jp47SJ46woZOi+EBcLtVZKllHpKKbVMKbVUKfVfpVSDJtRWSlUZiCPVJTGv63C49Suz5mVo9cn6Oabv97z7oOSQdfkTookJt6rkbWAfMBYYB+wHpjf0pjI3dxyyO80q87cvgUFXBdN9bvj2aXhqsJl50OuxLo9CNBHhBu52WuuHtNZb/dvDQJuG3jS0S+BaGfoeXzLbmVV1blpolk0LKM4zg3kmnwqbF1iXPyGagHAD96dKqfFKKZt/+zUwr6E3rdwlUErccanDYLh+Llz2CjTrFEzPzYHXL4Fpl8Evay3LnhCJrK5Jpg4rpQqAm4A3gXL/9jZwc0Nv2r1VGskOc+u9BaXkFZY19FLCSkpBv0vM4J0z/gzOtOB3Gz+FyafAh7dB/i7r8ihEAqprBZwMrXWm/6dNa+3wbzatdWZt59bGYbfRu500UCYMpwuG/w4mLYNBVwP++We0D1a8Yeq/5/9FGjCFiJBwq0pQSo1RSv3Lv11wtDeWoe8JKKMtXPyMGcDT48xguqfUrEL/5CD45mnwyBuWEEcj3O6AjwF3YAberAXuUEo9ejQ3ljUoE1jbAXD1+3DNTGg3KJhechA+vQ+eGgLLXpceKEI0ULgl7vOAs7TWU7XWU4FzMfOVNFhoA+VaKXEnpm6nmd4n46aamQgD8n+GmbfDMyfBynfBJ+uPClEfYVeVAM1DPjer8agw9W6bUTEX95b9RRSWSekrIdls0H8s3PYjjP4HpIaM2zqwGWZMNOtfrv1IVp8XIkzhBu5HgeVKqVeUUq8CS4FHjubGLqedHq2Co/By9kipO6E5kuDkW+COn+D0+8EV8uzPXQfvXAMvnAbrPwGZv0aIWtUZuJVSCvgK+BUwA3gfGKq1rnHkZH5ZPot2LOLHvT+yJm8NW/O3sq94H4Xlhfh0sFRVqZ5bpnhtGpIzYMTdcMdKGHFP5SH0e1fCW5ebNTA3L5AALkQNVDiz8ymlVmmtB4R70ZSuKbrHAz1q/t6RQqojFY/HyYFChfYl0zY9k8HHtCXVmUqaM41URyqpzlRSHf79kM8pjpSKtDRnGkm2JMzzRcSdojz45gn4/gXwVJlwrNNQE+S7n2H6jAuR4JRSS7XWQ+o8LszA/SrwtNY6rJXd6wrckWZX9orAnupMJc3hD/ShgT/0ARA4tpq0wIPBYat1OU4RaYd/ga/+A0umgLfKcmntB8OI38OxoyWAi4QW6cC9DugJbAOKMCMstNZ6YHXHtz22rb70mUspchdR4imhyF1Esae4Yj8euOwuUp2pwdJ9lZJ/dW8GoWmVvnOm4rK75K0gHPm74Mt/wvI3zARWodr0NwN9+l4ENrs1+RMiiiIduDtXl6613l5d+pAhQ/SSJUuqvZZP+yjxlFDsLqbYU8z4l75g3+ECsJdz7+iutMzQFUG+2FNsjvMfWzWtyFNEsbsYd9X/4DHIpmwVpfxAMK+pSijwxlCpSsgRrBoKpCf0W0H+Tvj6SVj2qhnAEyq7lwng/ceZFeuFSBARCdxKKRdwK9ADWAVM0VrX2W+vtsBd1a2vL+WTNXsB+PvYAVx+Yqc6zjiS2+uuCOihpfvqgnx1aVXfDIrdxWhiv2EsyZZUKZiHVgEFAn/ogyH0mBRnypFpjhRSHCmx9WZw+Bf49in4capZwDhUiy5mqtlBV4EzxZLsCRFJ4Qbuuoorr2LWm1wMjAb6YkZQRkz/DpkVgbuhQ9+ddifN7M1olnzU3csB0FqbtwJPldK+P9iXuEsqp4U+JGp4WyjzRn6Yd7mvnPKycg6VRW4OEIWqCOY1Bf66vg88PAIPh1RnasMbkDPamAUcTrkTvn8Ovn8eyvz/Tg5uM1PJLvwbnHQLnDgR0hq0vocQcaWuwN030JtEKTUF+CHSGYjFRRWUUhXVGUSoIOf2uYNVRLW8GYSmFbnNQyL0bSE0LbRrZaRoTFVVsac4ote1K3ulQB8o3Vcb9Gt6KAy8mNR+F5C6+kNSlr5CavFBnGDmAv/ib6Zx8/irYeht0LJrRPMvRCypK3BXVB5rrT3ReIUO7cuds6cAr09XjKhMJE6bE2eSk8ykBk+qWInWmjJvWaXAH9p2UOwprngzqPq54tiQz4FzS72ldd+8AbzaS6G7kEJ3IUSifbpNBpCBQ0Oqz0uK1qT6NKm7ZpL6zkekpLUhtVVvUjM7HPm2EPo2UM2DQnoViVhX17/O4/zzcYPpSZLi3w/0KjnqKNQ600V2ejL7C8soLveyLa+I7iEjKkX1lFK4HC5cDhdZRK56wOvzBgN5SPVPpYdCNYG/0sMh9Hv/frQakD0KCux2jnhX8+XDL9/DLw27bqD9oOobQmjgD02rbqvuPJfDhU3VZ6YJIY5Ua+DWWjdKn6t+7TNZtCEXMNUlEritY7fZSU9KJz0psn8HlaqKQh4ElX6G+aAI/d6rozNBVTTaDwJcdleNwT3ch0BNDxF5KDQNMfE+WClw78pnzHHtLc6RiLRIVxWBqS5y+9xHBvZ9ayhZ/R7FO76lWGlKlI1im6JYKYodyZRkdae4ZWeKbYoSd/VvF9FoPwgo9ZZS6i3lYNnBiF879KFQsVXzdhDai6jq96HfBR4YLrsLu/SdjxkxErhjr4FSxD6lFEn2JJLsSTQPnbyy1QDoNx4O7YAfXjB9wUtD5sLJ3Qd8Bz3PNhNfdT+90ojMQPtBaGk/0GW0ti20vaC2LZqi+VBItifX+42g6sOgpuPkoVA/MRG4+3eovKiC1jq2+hKL+NT8GDj7IRh5L6ycbroS5q7zf6lh4zyzZR8LJ90EAy8HV2al9oOWrpYRzZJP+yj1lFaU7Ctt7ioPgqrH1PV9lB8KZd4yyrxlUak+SrIlHVHyd9ldJs3u33cE3yZCP1c61v850J4QODbRGpvDGjlZX/UZgAPg82mOe/BTDvvn5P7m3tNp31wGVIgI0xq2LDQBfMM8qDrIypkGAy+DITdCu2pnc4hpgYdCQ94IKj0E3Ec+FEo9pXExKK0mTpuzIpBXCup2V7UPgtC0iu/sKZUeDoHvUh2pOGyOiBQ2IzUAp1HYbIo+7TP5YesBwFSXSOAWEaeUqRbpfjrkbTbVKMunQflh8727CJa+YrYOQ2DIDdD/0rgZlWlTtuD4gwjTWlPqLa01uNf0kAjn7SLaDwW3z4273M3hwN91hAXGKdQY8Ot6Y/DvhysmAjeYBspg4M7nrL5tLM6RSGhZ3WH032HUffDT27BkKuTmBL/ftcRs8/7PDKk/4Xpo1cu6/FpMKVURZCIttE0hULqvWto/It1rgn/gYVLdm0ZoWrQfDJXGKTSCGArc0kApLODKhJNvNnXcP39nppVd+1FwatnSfPjuWbN1GQ7HT4A+F0JS5Eu1TVVom0I0aK0p95VXBPpiT3H1D4OqD4rAG4bb/6Co6SHiKYlat9SaxFDgltVwhIWUgs5DzXbuY7BimimFH9wWPGbbYrPNyTTraA6eYOYKl4b0mKaUItmeTLI9OWr3cHvdR7wF1PnWEPjOW1pRdbSa1eH9mWKhcRLA7fXR7y/zKPeY/rPL7z+LFmlJEc+bEGHz+Uxj5pKpsH4uVFeqat3XzI8y8HJIy278PIqEEm7jZMwMs3LabfRum1GxL9UlwnI2G/Q4A8ZPgztXwxl/hpbdKh+zby3M+yP8uzdMv9r0VvHWOfOxEEclZgI3VKku2S3VJSKGZLY3izf8dhlcP9c/B3hIPbfPDTmz4M1fw3/6wbz7YM9KWfBYREVMBe6+0kApYp1S0HkYXPws3L0BxjwFx5xc+ZjCvfDt0/D8cHh2KCx+3IziFCJCYipwS4lbxJXkDBh8Ddz4Kdz2I5xyB6S1rnxMbg58/iD8tz+8fD4sfRVKIj/yUDQtMRW4+7TNJDAV95b9RRSVSV2hiBOtesFZf4W7cuCq92HArytXpQBs/wpmTYJ/9YTpE0zVijs685+LxBYz3QEBUpLsdGuVzqZ9hWgN6/YWcELnyM4VIURU2R3Q80yzlRXCutlmnpQtCyEw46C3HHJmmi0pA3qfB/0uhe6jwBG9LmsiccRU4Abo3z6TTfvM6KM1uyVwiziWnA7HXW62w7/A6vdNEN+zInhM+WGTtnI6JDeD3udDv0ug20hwSHdYUb2YqiqBKiMod0kDpUgQGW1g6G/glkVw2w8w/G5oUWVdzLJ8+OlNePMy+FcP+PA22PgZeKOzepCIXzFX4q7UQLlHGihFAmp1LJxxP5z+J9i7ElbPgDUfwKHtwWNK82HFG2ZLaWFK4r0vgG6jwBmdoeEifsRc4O4bErg37C3E7fXhtMfci4EQR08paHec2c58AHYvNwF8zYeQ/3PwuJKDsPwNsznTTP157wvMQhApzWu6ukhgMRe4m6cm0aF5CrsOlVDu9bHxl8JKwVyIhKQUdBhstrP+CruWwZoZJogX7Awe5y4yk2Ct/QhsDug6wpTGjz0fMttZl3/RqGIucIOpLtl1yKzmsXp3vgRu0bQoBR1PMNtZD8GupbDuY7PlbQoe5/PA5gVmm/076HiiCeK9RpvqGJn8KmHFaOBuxqdrfwFgrYygFE2ZzQbHnGi2Mx+A3PXBIL57eeVjd/5ots8egOadoNe50PMc6HKq1IsnmJgM3FXXoBRCYErQrXubbcTdkL8T1s1ZnJS1AAAMZklEQVSBdbNg29eVZy889LNZ4eeHF8xAoG6joNfZJpBLlUrci8nAHdolcO3uAnw+jc0mr31CVNKso1kE4uSbofiAmZlwwyem6qQs5E3VXQzrZ5sNoO1A07DZ4wxTvWJ3WpN/0WAxGbjbZCaTlZZEXlE5ReVeth8opmt2mtXZEiJ2pbaEQVeYzVMOP38LGz81gTy0XhxMF8S9K2Hxv8zIza4joId/Lc6q09aKmBSTgVspRd/2mSzeuB8w1SUSuIUIkyMJup1mtnMeMQsjB0rj278xU9AGlB+uXBpv0dUE8B5nmKXaXNIxIBbFZOAGU10SDNwFXDCwvcU5EiJOZXU3ozaH/gZKC8y8KZsXwKYFlfuLAxzcatbdXDLFdDfseJIJ5N1PN/3N7TEbMpqUmP1bCB1B+d2WPAtzIkQCcWVC34vMprWpRtm8ADZ9btbTdBcHj/V54OdvzLbwYUjOhM6nmKqVrsOhdT/T60U0upgN3Cd3a4nDpvD4NMt/PsTynw9yfKcWVmdLiMShFGT3NNvJt4CnDHZ8b4L45gWmHjxUWQFsmGs2gJSWJoB3HQFdRpjrSN/xRhEziwVX567pK5ixfBcA5w9oxzNXDT7qawohwlS4DzYvhM2fw9Yv4fCe2o9Pb2sCeedTzCpB2b0kkNdTuIsFx3TgztlTwOgnFgNgU/DF3aPolJVax1lCiIjT2jRybl1kqlS2Lobi/bWfk5oFnYaarfNQaCt15HVJiMANMGHK9xWNlNcO7cyDF/WPyHWFEEfB5zPLsm1dbErj278yMxrWJind9BvvPMwE845DwJnSOPmNEwkTuBdvzGXClB8ASHHa+ebe02mRJhPMCxFTfF5TJ77tK9j+relHXnKg9nNsTmh/PHQ62QT0jidCZtPuPRZu4I7595ZTe2TTp10mOXsKKHF7mfb9dm4/vafV2RJChLLZTRBufzwM+60pke/fYHqkBAJ5fpWV7n1u2PmD2QIyO5qS+DEnmUDe7jhZzq0aMV/iBvhg+U7unP4TANnpyXz1h1G4nPaIXV8I0QgO/ewP4v5gvn993efYk8wQ/Y7+ibY6ngjNjknYRs+EqSoBcHt9DP/7QvYWmBWxH7t0AONP6hSx6wshLFCUBzu+MzMa7vgRdi+r3I+8JultocMJ0MFfwm8/2Az5TwAJFbgBXvhyM3+bsw6A7q3SmH/naTLxlBCJxOuBfWv91SdLYMcPcGBzeOc272yCeIfB5me748DVrO7zYkzCBe6CUjfDHl1AYZkHgJeuGcKZfdtE9B5CiBhTlAe7lgTnGt+51MyvEo6snv6l4Qaa6pZ2x8V8yTzhAjfA3+bk8MKXWwA4qWtL3rllaMTvIYSIYT6vWUxi93JTtbJ7OexdBd7y8M5vdowJ4G0HmoDe7jjIaBczdeYJGbh3HyphxD8W4vGZPH942ykMOkYWSxWiSfOUmyqWQCDftdzshy4sUZvUbLO60OAJ0cxlWBKmO2Co9s1TuPC49nzgHwb/4pdbZBi8EE2dIwnaDzJbgLsE9q6GvT/Bnp9gz0oTzKsrmRfvh+T0xstvBMRV4Aa4aXi3isA9Z/UeVuw4JKVuIURlzpTgWp0BXjfkrjNBfO9KE9D3roLyQlNlEkfiLnD3bZ/JqGNbsXB9LlrDH95byazfnkqSQ6aXFELUwu6EtgPMxlUmzeeDA1ugeRcrc1ZvcRnt/npRf1L8A3DW/3KYZxZuquMMIYSohs0G2T3ibl7x+Mqt3zEtU/n9OcdW7D/7xSbW7S2o5QwhhEgccRm4Aa4d1oXBnUzdttur+cN7K/F4fRbnSgghoi9uA7fdpvjHuIEk2c0f4aed+Uz9eqvFuRJCiOiL28AN0KN1BpPO6FGx/+9PN7Btf5GFORJCiOiL68ANcMtp3enTziwsXObxcdc7Kyh1h9nxXggh4lDcB26n3cY/xw3E7p9watnPh/jNtGWUe6S+WwiRmOI+cAP079CM/xvdu2J/wbp93PXOCry+yA/nF0IIqyVE4AaYOLwbt48K1nd/vHIP932wimjMxSKEEFZKmMAN8Luze3HdsC4V+2//uIO/zcmR4C2ESCgJFbiVUvz5gr6MHdyxIu3FxVt5aoGMrBRCJI6ECtwANpvi72MHcE6/4CILj8/fwNSvpI+3ECIxJFzgBnDYbTx5xfEM75ldkfbXj9fy0uItUm0ihIh7CRm4AZIddp6fcAIndG5Rkfbw7Bxuem0JB4rCXC1DCCFiUMIGboDUJAdTrzuR40Lm6/4sZx/nPbGY77bkWZgzIYRouIQO3ADNUpy8c8uvuOGUrhVpewtKufLF73h8/gbcMjGVECLOJHzgBlNt8ucL+zLl2iG0SHUC4NPw5OcbOfe/X7JoQ67FORRCiPA1icAdcEafNsy9YwS/6tayIm1zbhHXTv2BCVO+55tN+6XxUggR8+JqlfdI8fo0U7/ayhOfb6SwzFPpu/4dMrl5RHfO698Wh71JPdeEEBYLd5X3Jhm4A/YdLuVf89bz7tKdVP01dGyRwhUndeLCge3plJVqTQaFEE2KBO562La/iJe+2sK7S3ZSVs2sggM7NuOCge0Y3b8dx7SUIC6EiA4J3A2QV1jGa99u57Vvt3Gw2F3tMV2z0xjeM5sTu7Tk+E7N6dA8BaVU42ZUCJGQJHAfhZJyL/PW7OXjlbtZtCEXt7fm31F2ejKDjmnOcR2b0bNNOj1ap9M5Kw2n1I8LIepJAneE5Be7mbd2L3NW7eG7LXmUuuvu9+2wKTplpdKjVTqdWqbSJtNFdkYS2enJFVvLtKSKxR+EEAIkcEdFqdvL0u0H+XZzHst3HOSnHflH9EoJl01By7TQYJ5Ei7Qk0pMdpCU7SEuyk5bsIDXJQXqyg9RkO+nJDlwOO06HIsluw+mwkWQ3m00eAkLEvXADt6MxMpMoXE47p/TI5pQeZvIqr0+zObeQFT8fYu2eAjbnFrIlt4hdh0rqvJZPw/7CcvYXlgOHjzpvDpvCabeR5LDhtNtIdthw2hUOuw2bAptS2JTCblPYbAqbArsK+WxTlY+pcg7+50Lg8aCUCvkc/C5Q31/xGKn4TlU6LnBe4CoV34WcWPX4ZilO7jk3uNKREE2VBO6jYLcperXJoFebjErpRWUetu4vYnNuIbsOlZB7uIz9heXkHi71B+syDtXQ+NlQHp/G4/NSksALJbfNdEngFgIJ3FGRluygf4dm9O/QrMZjyj0+DhSZIJ5bWEbu4TLyi90UlXsoKvNQVO6luMxDYZmX4nKzX1Tmoczjpdzjw+3VlHt8lHt9TWZhZOm8I4QhgdsiSQ4bbZu5aNvMddTX0lrj8fkDuceH2+ujzB/UfT6NV2u8Po3WpnrHp83m9WE++zQ+Dd6Kz9p/HBWfAbT/XpXv7f+JDn6uSAvmr+Ks6o6v7VohN0pJkn+uQoAE7oSglMJpN3XcaclW50YIEW3S2VgIIeKMBG4hhIgzEriFECLOSOAWQog4I4FbCCHijARuIYSIMxK4hRAizkRlkimlVC6wPeIXFkKIxNZZa92qroOiEriFEEJEj1SVCCFEnJHALYQQcUbmKhFxRSnlBVaFJL2ttX7MqvwIYQWp4xZxRSlVqLVOj/A1HVrrhi1lJIQFpKpEJASl1Dal1INKqWVKqVVKqd7+9DSl1FSl1A9KqeVKqYv86dcppWYqpRYAnyulbEqpZ5VS65RS85VSc5RS45RSpyulPgy5z1lKqQ8s+mMKAUjgFvEnRSm1ImS7POS7/VrrwcBzwN3+tPuABVrrk4BRwD+VUmn+7wYD47TWpwGXAl2AvsAEYKj/mIVAb6VUoIvW9cDUKP3ZhAiL1HGLeFOitR5Uw3cz/D+XYgIxwNnAGKVUIJC7gE7+z/O11gf8n08F3tVa+4C9SqmFAFprrZR6HbhaKfUyJqBfE7k/jhD1J4FbJJIy/08vwX/bChirtV4feqBS6mSgKMzrvgzMAkoxwV3qw4WlpKpEJLp5wG+Vf/l5pdTxNRz3NTDWX9fdBhgZ+EJrvRvYDfwJE8SFsJSUuEW8SVFKrQjZ/0RrfW8txz8E/BdYqZSyAVuBC6o57n3gDGAtsANYBuSHfD8NaKW1zjmazAsRCdIdUAg/pVS61rpQKZUF/ACcorXe6//uaWC51nqKpZkUAilxCxHqY6VUcyAJeCgkaC/F1If/zsrMCREgJW4hhIgz0jgphBBxRgK3EELEGQncQggRZyRwCyFEnJHALYQQcUYCtxBCxJn/B2BGOA6aYFi0AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -186,7 +186,6 @@ "from functools import reduce\n", "from qiskit import Aer, BasicAer, QuantumRegister, QuantumCircuit, ClassicalRegister\n", "from qiskit import execute\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.quantum_info import Pauli\n", "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua.operator import Operator\n", @@ -462,8 +461,8 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_thermal_state\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mget_thermal_state\u001b[0;34m(weights, p)\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mrun_config\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mRunConfig\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0mquantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrun_config\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 10\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mqaoa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mquantum_instance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 11\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Results of QAOA\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_thermal_state\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mget_thermal_state\u001b[0;34m(weights, p)\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mbackend\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mAer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_backend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'statevector_simulator'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mquantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mqaoa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mquantum_instance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Results of QAOA\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/quantum_algorithm.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, quantum_instance, **kwargs)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcircuit_summary\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 305\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 306\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_solve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 307\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_ground_state_energy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_aux_ops\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_solve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 221\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_solve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 223\u001b[0;31m \u001b[0mopt_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mopt_val\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind_minimum_eigenvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 224\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'eigvals'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mopt_val\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'opt_params'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopt_params\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", @@ -487,8 +486,7 @@ " optimizer = COBYLA()\n", " qaoa = MyQAOA(Hc, optimizer, initial_state, p, operator_mode=\"matrix\")\n", " backend = Aer.get_backend('statevector_simulator')\n", - " run_config = RunConfig(shots=100)\n", - " quantum_instance = QuantumInstance(backend, run_config)\n", + " quantum_instance = QuantumInstance(backend, shots=100)\n", " result = qaoa.run(quantum_instance)\n", " print(\"Results of QAOA\", result)\n", " \n", diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb index 1853fc0f8..d86ef9342 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/09_Discrete Optimization and Ensemble Learning.ipynb @@ -529,15 +529,13 @@ "source": [ "from qiskit.aqua import QuantumInstance\n", "from qiskit import Aer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.algorithms import QAOA\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "p = 1\n", "optimizer = COBYLA()\n", "qaoa = QAOA(ising_model, optimizer, p, operator_mode='matrix')\n", "backend = Aer.get_backend('statevector_simulator')\n", - "run_config = RunConfig(shots=100)\n", - "quantum_instance = QuantumInstance(backend, run_config)\n", + "quantum_instance = QuantumInstance(backend, shots=100)\n", "result = qaoa.run(quantum_instance)" ] }, diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb index 12e444040..f19f08a76 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb @@ -23,7 +23,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGvFJREFUeJzt3XtsVGXeB/DvOdPpnUKBUqBQBCv3i73QVYmXuLbuLnslcS/GbDbZ5I1/qCTgqot4YwlWFhRZCRAlsmqQ3Q0ryy5egq7o+gqlFAiKLohcBQoCTqeXuZ05z/tH3zNOp9dpZ845zznfT0JoKB1+LTPf/vp7zvMcRQgBIiIyh2p1AUREbsLQJSIyEUOXiMhEDF0iIhMxdImITJTRx/t5aQMRUfKUnt7BTpeIyEQMXSIiEzF0iYhMxNAlIjIRQ5eIyEQMXSIiEzF0iYhMxNAlIjIRQ5eIyEQMXSIiEzF0iYhMxNAlIjIRQ5eIyER9nTJG1CMhBHRdRygUgqZpyMjIgKqq8Hg8UFUVqqpCUXo8bInIlZQ+bkzJox2pCyEEotEoNE3r9LbxvvigNULY+MUwJpfo8QnO0KV+SwxbRVGgKAo0TYOmaVBVtcvfj//FMCYX6fGJzPEC9UkIAU3TEI1GY+GZGLDdMUK5u8cDAE3TEIlEOr2PYUxOx9ClHhlha4wO+hu2fTECNDFIE8M4vjtWFAUejyc2NzbCmWFMsmHoUhe6rnea0/bUsRpSFXx9hXHiaEMI0WtnzEAmO2LoUoyu67ExAtB32Jqlv2Gc+DGqqiIjI4NhTLbC0HU5Y5ErEolA13UA9gnbvvQVxsblbIkfY3TH8aMKWT5nkh9D16WMa2w1TZMubPvSUxgD337e0WgU4XC40/vixxRGd+yUrwnZB0PXZRLD1ggVtwRLb1dUGGGceHlbdzNjXlFBA8XQdYmerrFlcHQYSBjz8jYaCG6OcLiewjaVotEoIpFISi4nkwU3flAfuDnCbQa6oYH6hxs/aKAYug6Trg0NvWFofKu/Gz/iGeHLjR/uwNB1iGQ3NJC5uPGDDAxdydl1QwP1Dzd+uA9DV0Iyb2ig/uHGD+di6ErEyRsaqH+48UN+DF0JuH1DA/VPMtcaG79z44f5GLo2xg0NlArc+GEv3BxhQ2ZsaEglXdcRiURsXSP1Hzd+pARv1yOD7jY0yPBkZui6g5EVRhjHYxh3wdC1s+42NMj0ZNV1HeFwmDveXKqvMO7p8jaH4zZgO3LShgZZ66bBG8zGj/hL29xyRQVD1wJO29Agc+2UPtz40T2Grkm4oYGog9s3fnCmm2Zu2NAghEA4HHbU50T2En81RaL4BTyjqSkoKLCgyk56fDFw5SNNjMu+wuEwwuFwp+MVGU5EyYnvdBOvkjAWcgOBAHbu3Im6ujqry+0Vxwspxg0NROZJfG01Nzdj6NChFlbUN4ZuinQXtryEishczc3NGDZsmNVl9IqpMEjG4lgoFIodTs0RApE1mpubUVhYaHUZvWKnO0BW3KGBiHonQ6fL0E2SkzY0EDmN3+9n6DqF0zY0EDmR3+/nQprMuKGBSC6c6UrKDRsaiJyIM13JGJd9RaNR3qGBSELRaBRer9fqMnrF0AU3NBA5QR9HGtiGq0OXGxqInMMIXbs3S64MXV5jm3p2f6KT8wWDQeTm5lpdRp9cFbqy36GBiHrm8/nscLpYn1wRutzQQOR8Mly5ADg8dB27oaGlBZ5Vq6B88QX0efOg33sv4PFYWlLiXWOJzCbDCWOAA0PX8RsaQiF477gDyvHjgKZBffdd6IcOQXvxRasrI7KUz+eTotN1zOpR/KHhoVAodp2t0078Uj7+GMrp04AQQEZGR/Bu2wY0N1tdmjSX7JAzcbxgEtdtaNA0QFE6fhkUpePPLWJ8vRm6ZCUZDrsBJO50jSsRjHNs3bKpQdxwA0RBAaDrQDQKKAr0G28Ehg+3ujQiS8nS6UoXuolhC0Dau4IOyJAhiLz7LvTvfQ9i6lRE77kH2l/+0rnzJXIhWUJXuvFCNBpFJBJx94aG8eOhvf661VUQ2QpDN02M+90TEcWTJXSZXkTkCH6/3/Zn6QISdrpEZL5DFw/hyOUjmDh0Im4ad5PV5XRLlk5XutB1xWIZkY2sa1yHZf+7DKqiQkDgnhn3YNXtq1L+7wx2V2MkEkFWVlYKK0oPjhcoJfjN0Jl8QR+e+OgJBLQA2iJtaI+049VPX8Xnlz9P2b+x/8J+/PbN3+Ln23+OVfWr0BpuTfoxZLpGXLrQ5YubyDxXAlfgVTvficGretHU1pSSxz/dfBrP7H0GHngwNn8s9pzbgxcPDXxLuwz5IF3oAnJ8YYmcYHzBeGR7sjv9WVREMWPkjJQ8/pe+LyEgkJeZB1VRMTZ/LPY37U/6cYLBoBSjBUDS0CUic2R6MrHjrh0Ykz8GHsWDoVlDsfUnWzEqb1RKHj/fmx87pAoA2iJtGJ6d/O5KWU4YAyRcSCNyi5ZwC1pCLSjOK4ZHte7ozllFs3D0f46iPdKOnIyclP6kWTG6ApWjK9HY1AiP4oFH9WBx9eKkH0eWKxcASUOXh6uQ0204sAFrG9dCgYKxQ8bi5fkvY9yQcZbWlOtN/a1wMtQMPHTDQzh86TACWgDXDrsWo/NHJ/04fr9fmk6X4wUim6k/X4+1jWuRk5GDvMw8nPWfxaJ3F1ldVtpkqBmoGF2BeePmDShwgY6zdBm6acSFNHKyY1ePQRd6bKSQn5mPI1eOWFyVvck0XpAydMl++I0wdUqGlEBVVOii484n7ZF2jB8y3uKq7E2Wu0YAkoYuX+DkZLeV3oYflf0IAS2AoBZEnjcPq29fbXVZtibLuQuApAtpRE6mKirqbqvDb2b9Bv6wH5OHT0ZhthyBYhWZxgsMXUoZ3hE4dRRFwbSR06wuQxqy3KoH4HiBiBxAps0RUoYuEVG85uZmaWa6UoYuO10iisfQJSIyUSgUQk5OjtVl9AtDl1KCP32QVWQ7EkDK0OULnIgSyZILUoYuIM8XmIjSKxKJwOv19v0XbULa0CUiAjoW0QoKCqwuo9+kDV12ukQEyLUbDZA4dImIALk2RgAShy47XSIC5DphDJA4dImIALk2RgAMXUoR/uRBVvH7/VxIMwNf5EQEsNMlIjIVZ7omYadLRIBcZ+kCEocuERHA63SJiEzFma5JOF4gIkCum1ICEocu2Q+/EZIV2tvbpTlLF5A4dPkCJyLjLF1VlSfK5Km0Gwxee5HtMGlyDpmyQOrQJXuR6YlPzqBpGjwej9VlJIWhSynBwCUryLYFGJA8dPlCJ3I32a7RBSQPXSJyN9nO0gUkD112ukTuxtAlIjIRxwsmY6dL5G4yhm6G1QUQUfqEtBDePPEmjl45ijH5Y/CT636CYdlyhVRvfD4fSkpKrC4jKVJ3ukTUMyEE/vzJn/Hm8TdxNXAVe8/txZqGNQhpIatLSxnZjnUEJA9d140X2tqgfPEF0NxsdSUkgbZIG/Zf3I/SglIUZBWgZEgJmtqacLblrNWlpYzf7+dCGqWH0tAA7803I2PBAnjnzYO6fbvVJZHNeRQPFCjQhQ6go/PVhQ6PItcOrt7IONOVOnRd0+mGw8i4915A04C8PCAzE56lS4GvvrK6MrKxHG8OaifW4oz/DJramnDafxozRs5AaUGp1aWljGxn6QJcSJPD118DgQBgbHfMzAQiESinT0OMG2dtbWRrP5v8M4wfMh4nmk+gOLcY88bNg0d1VqfL0KXUGzkSyMrqCN6cHCASAXSdgUt9UhUV1WOrUT222upS0qK1tRX5+flWl5EUjhfMdP48lCNHkl8Iy8qCtnZtx9ttbUAwiOijjwITJqS+xkHQdd3qEshFZDxLF3BAp6soihTnuKqvvw7PSy9BqCqUzExodXUQs2b1++PFzTcj8v77UM6ehSguBkaPTmO1yRFCQNd1CCEQiURif66qKhRFke5FQXKRrfmSPnSl8OWXUF96CWLkSMDrhfD74XnsMWhvvAEk84QZPhxi+PD01ZkkI2yNDtfr9XYKYOPtaDQa+/sejyf2ImEY02Doui5d4AIOCF0ZOl3l4kVAVQGvt+MPCgqgnDvXMSqQbB4FoEuwKorS6ckff6i0EchGOBsfCyAWxsbHsyumZLS0tGDIkCFWl5E06UNXBmLcOEAIIBgEsrOBq1chRo/uuPxLIsY3t2g0GgvbvkLSeH/i34sPYAYxDYTP55PuGl1A8oU0QJJ5Tmkpog89BMXvB5qagLw8aMuXJzdasJgRjJqmAUCX7jZZqqrC4/HA6/UiMzMT2dnZyMzMhNfrjXXKxmgiEokgEolA0zREo1Eu2BEAOTdGAOx0TSNqaxGZNw/w+zsuATNGDTaXOLcdbNj2xuhoE8cT3XXEmqZ1mg1zTuw+Mp6lCzB0zZWXJ81Iwcyw7U1PQQx8O+ZIHE8IIaCqao+jDXIGdroWkWK8IJG+FsnsoLsw7W7BLn72DHBO7DQyHnYDOCB0KTUGskhmJ1ywcx+fz4eioiKry0ia9KFrty5MRvGjhPgQcoK+5sTxIxQGsVz8fj/KysqsLiNp0ocuDZxd5rZmS2bBzghi4+OctmD3xdUvsPXzrQhqQcy/dj5uGneT1SX1m4yH3QAMXVdya9j2xo0Ldid8J3DvO/ciHA3Do3jwwZkPsPyW5bhtwm1Wl9YvXEiziNvDIhkyLJLZSV8LdonbnGUbT7x94m0EI0EU5xcDAPwhP1478ppUoctOl2wrcTXfzmFgZwNZsDM6YrsFsRACSPieK2DvLfXxZL16wR7/+4PATq13RthqmsbuNo1622GXkdHR2yTusItEIpbusLtz0p3I9GTicvtl+II+BLQAfjX9V5bUMhAtLS1Shq4jOl0ZDr0xG+e21uvPgp2VJ7GVFZZh/Z3rseXIFgS0AH5Y9kPcWnpr2v69VNN1vdPXVhZKH2ElRZKFw2GG7v9j2MqnuwW7+Oez7At26SCEwC233IKDBw/a9fndY1HsdB2Ci2Ty6m1O7IQFu3QwXu8yPscdEbpux0UyZ4rvbg0yLtilQ2trq5Rn6QIMXalxlOA+g93Y4ZQgbm5uRoFxd2zJOCJ03RY0DFuKZ/cFu3SQ9VhHwCGh6xYMW+qv3nbY9XXrJBkW7GS9awTgkNB1evBwkYxSoT8Ldsb6AGDvBTtZtwADDgldJ+MiGaWbjAt2DF1KOY4SyEp2X7Bj6FrMSWHEsCW7stOCnd/vxzXXXJOSxzKbI0LXCRi2JKPBLNgNZjzBTtdiMocTF8nIacy4dZLf72foUvK4SEZukspbJ8l6li7gkNCVrTPkKIGow0AX7C5evMhOl/rGsCXqW29z4mAwiGeffRZnz55FVlaWJfUNlmN+nrVzeMUfJG7ccTf+JodE1DtVVXH48GF8//vfR05ODk6ePMmzF6ir+EtouEhGNDChUAgrV67E7t27sWnTJsyePdvqkgbFMaE7qDN1z5+H+vbbQCAAMW8exPXXD7oeyxfJvvkG6qefAqEQRFkZhKTXNJK7HTx4EAsXLsSCBQvw4Ycfwuv1Wl3SoDnizhEAEIlEBnavqYsXkfHIIx3hlJEBJRBAdPFiiBtuGFAdtpjb+v3wvPFGx9teLxS/H9GaGohrrzW3DqIBCoVCqKurw0cffYSNGzdi5syZVpeUrB5f9K6f6ap79wJtbRAlJUBxMURhIdR//CPpx7HT3Fb56isgEgGKioBhwyBGjIBy+LDpdRANRGNjI+644w4UFhbigw8+kDFwe+WY8cKACQEkBmMSHbMtOttEitLxeRl0HeA1wGRzwWAQTz/9NPbs2YNXXnkFM2bMsLqktHD9K1GvrgaysoALF4ArV6B88w30+fP7/Lj4PeZWd7ZdaistBXJzgaamjs/J54MoL7e6LKIeNTQ0oKamBkVFRdi9e7djAxdw0EzX+NF+QE6dgvqvfwHt7RC33ALxne907X7jJC6S2SFou2hpgXL0KBAKAZMmQYwZY3VFRF0EAgGsWLECDQ0N2LhxI6ZNm2Z1SanSYygwdJNgy1ECkaTq6+vx4IMP4u6778bChQuRkeGoaaezb8EOpHdzBMOWKHUCgQCWL1+OAwcOYMuWLZgyZYrVJZnK9TPd3tjpigQiJ9izZw9qampQWlqKf//7364LXICdbre4k4wotdrb27Fs2TIcPnwYW7duxeTJk60uyTLsdBMY3a1xohE7W6KBE0Lg448/Rk1NDcrKyvDee++5OnABB3W6g8W5LVFqtbW14amnnsJnn32Gv/3tbygrK7O6JFtwTKc70IDk3JYotYQQ+M9//oOamhpMnToVu3btYuDGcVSnm8yhN+xsiVKvtbUVTzzxBI4dO4Zt27bhWp730YVjOt3+svNOMiJZCSHw4Ycfora2FrNmzcKuXbsYuD1wVadr+XGLRA7U0tKCxx9/HCdOnMD27dulvTW6WVyROvFzW14CRpQaQgjs3r0btbW1KC8vxzvvvMPA7QdHdbqJOLclSo+WlhYsXboUZ86cwY4dOzBhwgSrS5KGozpdI1B5RQJReggh8P7776O2thbV1dV46623GLhJclSnG9/ZcoxAlFp+vx9Lly7FuXPn8M9//hOlpaVWlyQlR3W6S5Ysid3ArrW11epyiBxBCIH33nsPtbW1uPHGG7Fz504G7iA45mhHADh69Cj27t2L+vp6HDhwAOFwGDNnzkRlZSXmzp2LGTNmOOLGdkRmaW5uxpIlS3Dp0iVs2LAB48ePt7okWTj/PN3uBINBHDp0CHv37kVDQwOOHDmC3NxcVFZWoqqqClVVVZgwYQIvHSNKIITArl278Pjjj2PRokX49a9/zddJctwZuomEELh69SoaGhpiQXz69GmMGzcOc+fOjYVxYWEhZ8HkWj6fD7///e9x9epVbNiwASUlJVaXJCOGbk90XcepU6dQX1+P+vp67N+/Hy0tLZg2bVoshOfMmYPs7GyrSyVKKyEE3nnnHTz55JN48MEHcc8997C7HTiGbjIikQg++eSTWBAfPnwYGRkZqKioQEVFBaqqqnDdddfB4/FYXSpRSnzzzTd45JFH4Pf7sX79eowdO9bqkmTH0B0MIQRaWlqwf/9+1NfXY9++fTh+/DhGjRrVaT5cXFzMsQRJRQiBt956C0899RQefvhh3H333exuU4Ohm2pCCJw/fz7WDe/btw+XL1/Gddddh6qqKlRWVqKiogK5ubkMYrKlq1ev4uGHH0YgEMC6deswhneMTiWGrhmi0Sg+//xz1NfXo6GhAQcOHEA0GsXs2bNj3fC0adOcdtdTkowQAjt37sQf/vAHLFmyBL/85S/ZGKQeQ9cKQggEAgE0NjZi3759qK+vx3//+18MHTo0du1wVVUVSkpK+CMdmeLKlSv43e9+B03TsG7dOhQXF1tdklMxdO1CCIHLly93GkucO3cO11xzTawbrqiowNChQ9l9UMoIIbBjxw6sWLECjz76KH7xi1/w+ZVeDF0703Udx48fj4VwY2Mj2tvbMWPGjFgQz5w5E1lZWVaXShK6fPkyFi9eDEVR8MILL2DUqFFWl+QGDF3ZhMNhHDp0KBbEn376KbKzs1FeXh4L4kmTJnEsQT0SQmD79u2oq6vDY489hrvuuovdrXkYurITQsDn86GhoSG2UHfixAmUlJSgoqIitqNu5MiRfGERLl26hMWLF8Pr9eJPf/oTioqKrC7JbRi6TqTrOs6ePYu9e/di3759aGhogM/nw5QpU2ILdXPmzEFOTg6D2CWEEPj73/+OlStX4sknn8SCBQv4f28Nhq5baJqGI0eOxM6WOHToEBRFwfXXXx/byDFlyhTupnOgixcvYvHixcjJycHzzz+PkSNHWl2SmzF03UoIgdbWVjQ2NsbGEseOHcOIESNQWVmJyspKVFdXY/To0eyIJKXrOrZt24ZVq1Zh2bJl+OlPf8r/S+sxdOlbQgg0NTVh3759sY64qakJZWVlsbFEeXk58vPz+eK1uaamJixatAhDhgzBmjVrMGLECKtLog4MXepdNBrFsWPHYvPhgwcPIhwOY9asWbEgnj59Og+Btwld1/HXv/4Vzz33HJYvX44f//jH/AZpLwxdSl4wGMTBgwc7HQKfn5/f6ZCf0tJSXrZmsqamJixcuBDDhw/Hc889h+HDh1tdEnXF0KXBE0LgypUrnQ6BP3PmDEpLS2OH/FRWVvIQ+DTRdR1bt27F2rVrsWLFCsyfP59fZ/ti6FJ66LqOkydPdjoEvrW1FdOnT491xLNnz+Yh8IN04cIFLFy4EEVFRXj22WdRWFhodUnUO4YumSccDnc6BP6TTz6B1+tFeXl5bD5cVlbGsUQ/6LqOLVu24IUXXsDTTz+NH/zgB+xu5cDQJesIIeD3+zsdAv/ll1+iuLi403x41KhRDJQ458+fxwMPPIAxY8Zg9erVGDZsmNUlUf8xdMlehBA4d+4c6uvrY/PhK1euYPLkybH5cHl5uSsPgdd1Ha+99hrWr1+PZ555BnfeeafrvgYOwNAl+4tGo/jss89i3fDBgwchhOh0CPzUqVMdfQj8V199hQceeADjx4/HqlWrMHToUKtLooFh6JJ8hBBob2/vdAj80aNHUVhYGLtSYu7cuSgpKZG+E9R1Ha+88go2btyIP/7xj6ipqZH+c3I5hi45gxACX3/9dadD4M+fP4+JEyd2OgS+oKBAmtA6e/Ys7r//fkyaNAkrV65EQUGB1SXR4DF0ybmMQ+CN3XSNjY0IBoNdDoHPzMy0utROdF3H5s2b8eKLL2L16tX47ne/K803CuoTQ5fcJRQKxQ6Bb2hoiB0CX1FREQviiRMnWnbZ2pkzZ3Dfffdh8uTJWLlyJfLz8y2pg9KGoUvuZhwCb8yGGxoacPLkSZSUlMRCuLKyEiNGjEhrt6nrOjZt2oSXX34Zq1evxu23387u1pkYukSJdF3HmTNnOh0C39zcjKlTp3Y5BD4VTp06hfvuuw/Tp09HXV0du1tnY+gS9UckEulyCLyqqrHddFVVVZg8eXJSh8BHo1Fs2rQJmzdvxpo1a3Drrbeyu3U+hi7RQMQfAm8E8bFjx1BUVBQL4blz56K4uLjbID158iTuv/9+zJo1CytWrEBeXp4FnwVZgKFLlCpCCFy4cKHTIfCXLl2KHQJfVVWFOXPm4PXXX8err76K559/HjfffDO7W3dh6BKlUzQaxdGjR2PXD7/99tuorq7G5s2bkZuba3V5ZD6GLpGZhBDsbN2tx/98nq1HlAYMXOoJQ5eIyEQMXSIiEzF0iYhMxNAlIjIRQ5eIyEQMXSIiEzF0iYhMxNAlIjIRQ5eIyEQMXSIiEzF0iYhMlNHH+7mBnIgohdjpEhGZiKFLRGQihi4RkYkYukREJmLoEhGZiKFLRGSi/wP4Yi2WOnmIRQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGvhJREFUeJzt3XtsVvX9B/D3eS692T5taUuFQpGucr/YGxm/Zb8latnUbBKzBXWLicZ/yLg42IKiU1ADjIGC0+BlzAaNMheMPw0RY2DMuElbbikToUFAKlAKhfZpaZ/bOd/fH/U5Pi29PE/79JzzPef9SoxCaf0Afd799Pv9fr5HEUKAiIiM4TK7ACIiJ2HoEhEZiKFLRGQghi4RkYEYukREBvIM8XYebSAiSpwy0BvY6RIRGYihS0RkIIYuEZGBGLpERAZi6BIRGYihS0RkIIYuEZGBGLpERAZi6BIRGYihS0RkIIYuEZGBGLpERAZi6BIRGWioW8aIBiSEgKZpCAaDiEQi8Hg8cLlccLvdcLlccLlcUJQBL1siciRliAdT8mpHuoEQAqqqIhKJ9Prv6NtigzYawtF/GMbkEAN+gjN0KW59w1ZRFCiKgkgkgkgkApfLdcOvj/2HYUwOMuAnMpcXaEhCCEQiEaiqqodn34DtTzSU+/t4ABCJRBAOh3u9jWFMdsfQpQFFwza6dBBv2A4lGqB9g7RvGMd2x4qiwO126+vG0XBmGJNsGLp0A03Teq3TDtSxRiUr+IYK475LG0KIQTtjBjJZEUOXdJqm6csIwNBha5R4w7jv+7hcLng8HoYxWQpD1+Gim1zhcBiapgGwTtgOZagwjh5n6/s+0e44dqlClt8zyY+h61DRM7aRSES6sB3KQGEMfP/7VlUVoVCo19tilymi3bFd/kzIOhi6DtM3bKOh4pRgGexERTSM+x5v62/NmCcqaLgYug4x0BlbBkeP4YQxj7fRcHA4wuYGCttkUlUV4XA4KcfJZMHBDxoChyOcZrgDDRQfDn7QcDF0bWa0BhoGw9D4XryDH7Gi4cvBD2dg6NpEogMNZCwOflAUQ1dyVh1ooPhw8MN5GLoSknmggeLDwQ/7YuhKxM4DDRQfDn7Ij6ErAacPNFB8EjlrHP03Bz+Mx9C1MA40UDJw8MNaOBxhQUYMNCSTpmkIh8OWrpHix8GPpODjemTQ30CDDJ/MDF1niGZFNIxjMYxvwNC1sv4GGmT6ZNU0DaFQiBNvDjVUGA90vM3mOAZsRXYaaJC1bhq5kQx+xB5tc8qJCoauCew20CBz7TR6OPjRP4auQTjQQNTD6YMfXNMdZU4YaBBCIBQK2er3RNYSe5qir9gNvGhT4/P5TKiylwFfDNz5GCXRY1+hUAihUKjX9YoMJ6LExHa6fU9JRDdyu7u7sXv3bmzYsMHscgfF5YUkk2qgIRAALl8GfD4gO9vsaogS1ve11d7ejmyLfy4zdJOkv7C19BGqM2fgWb8e6OgAFAXqww9DVFebXRXRiLS3tyMnJ8fsMgZl4VSQQ3RzLBgM6pdTW34JQQh4Nm+GUFWICRMg8vPh3r4daGoyuzKiEWlvb0dubq7ZZQyKoTtM0bANBAL6sRfLh21UMAi0tABjxvT8ODUVUBQoly+bWxfRCLHTtaHoyGs0bKXcHEtNBQoKgKtXe34cCgFCQBQUmFsXOZqqqfAH/f2eUIiX3+9n6NpFdIc0GAzKG7ZRioLIypVQXC4o334LpaUF6iOPABMnml0ZOdTh5sNYuGshFu5aiEUfLMKpa6eG9XH8fr/lN9J4TncQth9oCAR6lhl8PmAE3QHP6dJIXAtcw4P/9yA8Lg8yUzJxLXANmd5MvHvvu/C6vQl9rHvvvRc7d+7E2LFjR6nauPGcbiJiz9gGg0H94nBpO9uBpKUBxcUjClyikWryNyGiRZCZkgkAyE3LxbXgNbR2tyb8sWRY0+WRsRjRsFVVlU9oIDJIXnoeNKEhrIXhdXkRiATgVtzwpSY+VaaqKrzexLpjo7HTxfdXK0aPfVl+qIHIRoqyivDI3EfQ2t2Ky12X0RHqwKofrkKGNyOhjzOSDTgjObrTlW6ggcimfj3z15hfNB8t11sw0TcRRVlFCX+MaOhavVFyZOj2d2k4w3ZkrP6JTtZXklOCkpySYb9/IBBARkZi3bEZHBW6sj+hgYgG1tbWZoXbxYbkiNC10xMaiKh/MpxcAGweunZ7QoOV9X1qLJHRZLhhDLBh6Np+oIGI+tXW1sZO10hOeEKD1bHbJTNxecEgHGgwX/TPW5ZzkmRPMlx2A0g8HMGBBiKKxU53lHCggYj6I0voSpdWqqrK84QGIjKMLKErXacbfd49EVEshi4RGa7uQh1eOvgSOsOd+Nnkn+HR2x6Fx+WMl7nf77f889EAhi6RbZxsPYnf7f0dvC4vvG4v/nbsb1Ch4rflvzW7NEPI0ulK930613CJ+nfgwgGE1TB8qT6ke9KRk5qDPV/vMbssw4TDYaSmpppdxpCkC12yJn4xNF+GJ6PXQ2LCWjjhO2llJdMZcelCly9uov5VT67G+MzxaO5sxqXrlxBUg1hasdTssgwlQz5IuabL6SeiG+Wk5aDmnhrsOb0HneFOzB8/HzMLZppdliECgYAUSwuApKFLRP3LScvB/TPuN7sMw8lywxjA0CWyveNXjqPJ34S89DxU3FwhxbfgiZLl5AIgaehyeYEoPh82fog3j72p/7h6cjUWly22XfD6/X5pOl3pNtKIKD5d4S689eVbGHfTOBT7ijEhawL2nt2Lb/zfmF1a0rW1tTF0R5PdvkoTjYbuSDc0aPpEmktxwe1yozvcbXJlySfT8oKUoUvWwy+E1pOblouS7BJcvH4RYTWMy12XkenNxETfRLNLSzpZnhoBSBq6fIGTnQkh8NqR13D7O7dj4a6FONx8eFgfx6W48MT8J3Bb4W3oCHWgOLsYa368BpkpmUmu2Hyy3LsASLqRRmRnm+s2Y1PtJnRFugD0jPfuf3A/puVNS/hjjUkfgyf/58lkl2g5XF4gR+KJkuR4/ejreuACQHe4G++deM/EiqxPlkf1AJKGrq2XF4QAurp6/k2O1PfzW1EUuOE2qRo5yDQcIWXo2pVy4gQ8Dz8MzwMPwLN4MfCN/Y720NAeq3ys5/IaAAoUZHgy8MDMB0yuytra29u5pjuabNnpdnTAvXYt4PEAEycCV67A89xziGzbBni9ZldHBlpcvhhj0sfg71/9Hb4UHx6f/zhKckrMLsvSGLqUMOXiRSAUAvLyen4iPx+4cAG4ehUoLDS3ODLcoumLsGj6IrPLkEYwGER6errZZcSFywsWIbKzAVUFvnvoJgIBQFGArCxzC4uTLb/7ICnItoErZeja8gVeWAjtoYeA5mbg/HmgtRXqkiVAhjMuoSYaKVlyQdrlBTteeqPddx+0sjIoV65AjB8PFBWZXRI5lCY01DTU4KNTHyHDm4Hllcsxb/w8s8vqVzgchleifQ8pO11bmzwZoqqKgUum+uvRv2LLwS240HkBJ1pPYPEni/HVla/MLqtf7e3t8Pl8ZpcRN2lDV5ZvJYhk9H7j+8jwZCDdk46slCyE1BD2fbPP7LL6JdM0GiBx6BLR6El1p0IVqv5jAYE0T5qJFQ1MpsEIQOLQZadLNHqWVS5DRIvgavdVtHa3Ij89Hz8v/bnZZfVLphvGAIk30oho9Nxxyx144643sPfsXtyUchN+OfWXGHvTWLPL6pdMgxEAQ5eShN952E/luEpUjqs0u4wh+f1+bqQZgS9yIgLk63SlDV0iIkC+NV1pQ5edLhEBct2lC0gcukREAM/pEhEZimu6BuHyAhEBcj2UEpA4dMl6+IWQzNDV1SXNXbqAxKHLFzgRRW8adLnkiTJ5Ku0Hg9da7HbVJslDpiyQOnTJWmT6xCd7iEQicLvlelIyQ5eSgoFLZpBtBBiQPHT5QidyNtnO6AKShy4ROZtsd+kCkocuO10iZ2PoEhEZiMsLBmOnS+RsDF0iIgO1tbVJNQIMMHSJSGKyXesISB66XF4gcja/38+NNCIio3BN12DsdImcTba7dAHJQ5eInI2hS0RkoM7OTmRmZppdRkKkDl0uL1iLpmlml0AOIuNdugDgMbuAkVIUhfe4mkwIAU3TIIRAOBzWf97lckFRFOleFCQX2Zov6UOXzBMN22iH6/V6ewVw9L9VVdV/vdvt1l8kDGMaCU3TpAtcwAahy07XeH2DVVGUXp/8sZdKRwM5Gs7R9wWgh3H0/dkVUyI6OjqQlZVldhkJkz50yTjRL26qquphO1RIRt/e99fFBjCDmIajra1NujO6gA1CV8ZvL2QUu5QQG4jDFQ3Svl1x7P+HQUyDkXEwArBB6NLo6rtuO9KwHcxQQRzbEUcikV5rw1wndh4Z79IFGLo0ACPDdjADBTHw/TJH3+UJIQRcLteASxtkD+x0TcLlheQaapPMCvoL0/427GLXngEuT9iNjJfdADYIXUqO4WySWQk37Jynra0NBQUFZpeRMOlD12pdmIySvUlmJdywsy+/34/S0lKzy0iY9KFLw2eVdVujJbJhFw3i6Ptxw846ZLzsBmDoOpJTw3Yw3LCTDzfSTOL0sEiEDJtkVjLUhl3fMWcuTxiLnS6Z4/p1KPX1wOXLwM03Q1RVAWlpN/yyvrv5DIPhGc6GXbQjZhAnF08vmMTRnVokAmXPHijt7YDPB5w8Cfj9EHffDXz358KlBGMMZ8Mu+n4M4uHp6Ohg6JrFsZfe+P1QWluBoqKeH6enQzl/HqKrCyIjg2Frsng27HgT2/Bpmtbrz1YWtghdx4p+wmka4HIB330rqwLQIhEADFur4YZdcsjcZNkidB3b6fp8EDNmQGlogEhJgQgGoVVWQktJYdhKZLB1Ym7Y9S/6epfxc9wWoetYigLxox9BTJgA9do1iJwcYMIEx70A7Sq2u43ihl2Pzs5OKe/SBRi6UtM3aYqKgKIidrcOMNLBDrsEcXt7O3w+n9llDIstQtdpQcMTCRTLiRt2sl7rCNgkdJ2CYUvxGmzDbqhHJ8mwYSfrUyMAm4Su3YNHCAEtEoG4fBkAoOTnQ5HwqAyZK54Nu+gQDWDtDTtZR4ABm4SunQkhoHZ3w/Xee/A0NvZsnpWUQH3gASA11ezyyAZk3LBj6FLSxS4luOrq4D55Epg0CVAUKF9/Dde//w3t9tvNLpNsyuobdgxdk9lpeaG/dVtXSwuQmamP9iIrC2huNrFKciIrbdj5/X7ccsstSflYRrPGAg3pa2mRSES/TFy/v3XCBKCjo2fyTAigvb3n54hM5nK54Ha74fV6kZKSgtTUVKSkpCAlJQUejwdut1v/3FZVFeFwGOFwGJFIBKqq6s1FotjpmkzmTjee6xa1igrg/Hm4jh7teZ+5c6HNn29GuURDMuLRSX6/n6FLiYv7ukWPB9p990G7886eH2dlfb/UQCSJZD46Sda7dAGbhK5sne6wz9tKOoFDNJDhbthdunSJnS4NjcMNREMbbLAjEAjghRdeQFNTE1IlPTJpm400K4fXoJtkRDQkl8uFhoYG3HXXXUhPT8eZM2d49wLdKPYIDZ9JRjQ8wWAQGzduxP79+7F9+3bMmTPH7JJGhJ3uKIk9JgOAnS3RMBw5cgTV1dXIysrCZ599Jn3gAux0k47rtkQjFwwGsWHDBnz++eeoqanBrFmzzC4padjpJgnXbYmS49ChQ7jzzjuRm5uLf/3rX7YKXICd7oixsyVKjkAggPXr1+OLL77Ajh07MHPmTLNLGhW26XSNFjtjzs6WaGTq6+tRXV2NgoIC7N+/37aBC9io0zUy7OKeJCOiQXV3d2PdunWor6/H22+/jenTp5td0qhjWiQgdt2WR8CIRqa2thYLFizA+PHjsW/fPkcELsBONy5ctyVKnu7ubjz//PM4fPgw3nnnHUydOtXskgzFTncQPJFAlFxffPEFqqurUVxcjH379jkucAF2uv3iJBlRcnV1deHZZ59FQ0MDdu7ciSlTpphdkmnY6fbBSTKi5BFC4D//+Q+qq6tRWlqKvXv3OjpwARt1uiM14LqtEFAaGuA6exYiPx/aD38I8Em8REO6fv061q5di+PHj+Mf//gHSktLzS7JEmwTusPtRofaJHN/+CHcO3b0BK2qQps/H5EVKwAeEyPqlxACn3/+OVatWoVHH30UW7du7XVNo9PZJnSBnsAUQsT1a+M6kRAMwv3uuxBFRYDXCwgBV20tlNOnIfhVm+gGnZ2deOaZZ9DY2Ihdu3bhBz/4gdklWY7j2rWEJslCoZ6HQXq++9qkKD0dbzBobNFEFieEwGeffYYFCxZg9uzZ+PTTTxm4A3BUp5vwJFlmJsTs2VAaGiAKCqD4/UB2NsSkSUmunEheHR0dePrpp3H69Gl88MEH0j4a3SiO6HSHPUmmKAg/9hjU//1fKEJAmzoV4WeeATIzR79oIosTQmD//v1YsGABysrK8MknnzBw46AMsQYa3wKpRYTDYX2NFuAkGdFo6ejowFNPPYVz587h9ddfxyR+99fXgEFjq043GqicJCMaHUII/POf/8SCBQswb948fPzxxwzcBNlqTTe2s+UkGVFy+f1+PPXUUzh//jw++ugjFBcXm12SlGzV6a5evVp/gF1nZ6fZ5RDZghACe/fuxYIFCzB//nzs3r2bgTsCtlrTPXnyJA4cOIDa2locPnwYoVAIs2bNQkVFBaqqqjBz5kx4vV6zyySSRnt7O1avXo2Wlha8+uqrmDhxotklyWLAb7FtFbp9BQIBHD16FAcOHEB9fT2+/PJLZGRkoKKiApWVlaisrMSkSZN4CTlRH0IIfPrpp3j66aexYsUKPPTQQ3ydJMaZoduXEAJXr15FfX29HsTffPMNJkyYgKqqKj2Mc3NzuRZMjtXW1oYnnngCV69exauvvoqioiKzS5IRQ3cgmqbh7NmzqK2tRW1tLQ4ePIiOjg5Mnz5dD+G5c+ciLS3N7FKJRpUQAp988gnWrFmD3//+9/jNb37D7nb4GLqJCIfDOHbsmB7EDQ0N8Hg8KC8vR3l5OSorK3HrrbfyEg+yjWvXruHxxx+H3+/Htm3bMH78eLNLkh1DdySEEOjo6MDBgwdRW1uLuro6nDp1CmPHju21PlxYWMhlCZKKEAIff/wx1q5di1WrVuHBBx9kd5scDN1kE0LgwoULejdcV1eHK1eu4NZbb0VlZSUqKipQXl6OjIwMBjFZ0tWrV7Fq1Sp0d3fjlVdewbhx48wuyU4YukZQVRVfffUVamtrUV9fj8OHD0NVVcyZM0fvhqdPnw6Px1YzKSQZIQR2796N5557DqtXr8b999/PxiD5GLpmEEKgu7sbhw4dQl1dHWpra3HixAlkZ2frZ4crKytRVFTEb+nIEK2trfjDH/6ASCSCV155BYWFhWaXZFcMXasQQuDKlSu9liXOnz+PW265Re+Gy8vLkZ2dze6DkkYIgQ8//BDr1q3Dk08+iUWLFvHza3QxdK1M0zScOnVKD+FDhw6hq6sLM2fO1IN41qxZSE1NNbtUktCVK1ewcuVKKIqCl19+GWPHjjW7JCdg6MomFArh6NGjehD/97//RVpaGsrKyvQgLikp4bIEDUgIgQ8++AAbNmzAH//4R/zqV79id2schq7shBBoa2tDfX29vlF3+vRpFBUVoby8XJ+oy8/P5wuL0NLSgpUrV8Lr9eIvf/kLCgoKzC7JaRi6dqRpGpqamnDgwAHU1dWhvr4ebW1tmDp1qr5RN3fuXKSnpzOIHUIIgffffx8bN27EmjVrcN999/Hv3hwMXaeIRCL48ssv9bsljh49CkVRcNttt+mDHFOnTuU0nQ1dunQJK1euRHp6OrZu3Yr8/HyzS3Iyhq5TCSHQ2dmJQ4cO6csSjY2NyMvLQ0VFBSoqKjBv3jzcfPPN7IgkpWkadu3ahU2bNuHZZ5/FwoUL+XdpPoYufU8IgebmZtTV1ekdcXNzM0pLS/VlibKyMmRmZvLFa3HNzc1YsWIFsrKysGXLFuTl5ZldEvVg6NLgVFVFY2Ojvj585MgRhEIhzJ49Ww/iGTNm8BJ4i9A0De+99x5efPFFPP/88/jFL37BL5DWwtClxAUCARw5cqTXJfCZmZm9LvkpLi7msTWDNTc3Y/ny5RgzZgxefPFFjBkzxuyS6EYMXRo5IQRaW1t7XQJ/7tw5FBcX65f8VFRU8BL4UaJpGnbu3ImXXnoJ69atwz333MM/Z+ti6NLo0DQNZ86c6XUJfGdnJ2bMmKF3xHPmzOEl8CN08eJFLF++HAUFBXjhhReQm5trdkk0OIYuGScUCvW6BP7YsWPwer0oKyvT14dLS0u5LBEHTdPwzjvv4OWXX8b69etx9913s7uVA0OXzCOEgN/v73UJ/Ndff43CwsJe68Njx45loMS4cOECli1bhnHjxmHz5s3IyckxuySKH0OXrEUIgfPnz6O2tlZfH25tbcWUKVP09eGysjJHXgKvaRrefvttbNu2DX/605/w05/+1HF/BjbA0CXrU1UVx48f17vhI0eOQAjR6xL4adOm2foS+G+//RbLli3DxIkTsWnTJmRnZ5tdEg0PQ5fkI4RAV1dXr0vgT548idzcXP2kRFVVFYqKiqTvBDVNw44dO/Daa6/hz3/+M6qrq6X/PTkcQ5fsQQiBy5cv97oE/sKFC5g8eXKvS+B9Pp80odXU1ISlS5eipKQEGzduhM/nM7skGjmGLtlX9BL46DTdoUOHEAgEbrgEPiUlxexSe9E0DTU1NXjjjTewefNm3HHHHdJ8oaAhMXTJWYLBoH4JfH19vX4JfHl5uR7EkydPNu3Y2rlz57BkyRJMmTIFGzduRGZmpil10Khh6JKzRS+Bj64N19fX48yZMygqKtJDuKKiAnl5eaPabWqahu3bt+PNN9/E5s2bcfvtt7O7tSeGLlFfmqbh3LlzvS6Bb29vx7Rp0264BD4Zzp49iyVLlmDGjBnYsGEDu1t7Y+gSxSMcDt9wCbzL5dKn6SorKzFlypSELoFXVRXbt29HTU0NtmzZgp/85Cfsbu2PoUs0HLGXwEeDuLGxEQUFBXoIV1VVobCwsN8gPXPmDJYuXYrZs2dj3bp1uOmmm0z4XZAJGLpEySKEwMWLF3tdAt/S0qJfAl9ZWYm5c+fi3XffxVtvvYWtW7fixz/+MbtbZ2HoEo0mVVVx8uRJ/fzwnj17MG/ePNTU1CAjI8Ps8sh4DF0iIwkh2Nk624B/+bxbj2gUMHBpIAxdIiIDMXSJiAzE0CUiMhBDl4jIQAxdIiIDMXSJiAzE0CUiMhBDl4jIQAxdIiIDMXSJiAzE0CUiMpBniLdzgJyIKInY6RIRGYihS0RkIIYuEZGBGLpERAZi6BIRGYihS0RkoP8H7gbrU9fyTBwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -115,19 +115,9 @@ "start_time": "2018-11-19T20:10:21.412811Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/pwittek/.anaconda3/envs/qiskit/lib/python3.7/site-packages/marshmallow/schema.py:364: ChangedInMarshmallow3Warning: strict=False is not recommended. In marshmallow 3.0, schemas will always be strict. See https://marshmallow.readthedocs.io/en/latest/upgrading.html#schemas-are-always-strict\n", - " ChangedInMarshmallow3Warning\n" - ] - } - ], + "outputs": [], "source": [ "from qiskit import Aer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua.algorithms import QAOA\n", "from qiskit.aqua.components.optimizers import COBYLA\n", @@ -177,8 +167,7 @@ "outputs": [], "source": [ "backend = Aer.get_backend('statevector_simulator')\n", - "run_config = RunConfig(shots=100)\n", - "quantum_instance = QuantumInstance(backend, run_config)\n", + "quantum_instance = QuantumInstance(backend, shots=100)\n", "result = qaoa.run(quantum_instance)\n", "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", "graph_solution = maxcut.get_graph_solution(x)\n", @@ -206,7 +195,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2018-11-19T20:12:37.587621Z", @@ -214,25 +203,7 @@ }, "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Energy of samples:\n", - "Energy: -13.331477071582572 Sample: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: -1, 6: -1, 7: -1, 8: -1, 9: -1}\n", - "Energy: -13.331477071582572 Sample: {0: -1, 1: -1, 2: -1, 3: -1, 4: -1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}\n", - "Energy: -13.331477071582572 Sample: {0: -1, 1: -1, 2: -1, 3: -1, 4: -1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}\n", - "Energy: -13.331477071582572 Sample: {0: -1, 1: -1, 2: -1, 3: -1, 4: -1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}\n", - "Energy: -13.331477071582572 Sample: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: -1, 6: -1, 7: -1, 8: -1, 9: -1}\n", - "Energy: -13.331477071582572 Sample: {0: -1, 1: -1, 2: -1, 3: -1, 4: -1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}\n", - "Energy: -13.331477071582572 Sample: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: -1, 6: -1, 7: -1, 8: -1, 9: -1}\n", - "Energy: -13.331477071582572 Sample: {0: -1, 1: -1, 2: -1, 3: -1, 4: -1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1}\n", - "Energy: -13.331477071582572 Sample: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: -1, 6: -1, 7: -1, 8: -1, 9: -1}\n", - "Energy: -13.331477071582572 Sample: {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: -1, 6: -1, 7: -1, 8: -1, 9: -1}\n" - ] - } - ], + "outputs": [], "source": [ "import dimod\n", "\n", diff --git a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb index 94ea0b51e..85d27cca5 100644 --- a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb +++ b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb @@ -47,7 +47,6 @@ "from qsvm_datasets import *\n", "\n", "from qiskit import Aer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit.aqua.input import SVMInput\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", @@ -96,7 +95,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFiFJREFUeJztnW2sZVV5x/9/htGBmSsk3KlFh86QtDEakgre0DQYsBoNtUT84AdJJHEA50slGJtYbdLQ+dCkTRojSUnTcV6KETUGSmiIQUnEoZiK3kGswCAxBMKgZubWEO9UDS8+/XDPoWc25+y99l6ve93/L5kwZ9gvz95rr/V/1rPWehbNDEKIOjkrtwFCiHioggtRMargQlSMKrgQFaMKLkTFqIILUTGq4EJUjCq4EBWjCi5ExZwd46JL27baBUvbXvu9vLzUec7a2noMU15379D3cXm2LubZ9Nzaae/rurB7eccZv0sqq9D3C1lWucpnyv+s/xbrv32ZXedHqeAXLG3Drde+67Xfe2+6qvOcIwePxjDldfcOfR+XZ+tink03HIrzPprMlhNQVlmFvl/IsspVPlP233vM6fwoFXxKiBfqS6yPMQRN21J9NKUSu6ym1w/xXR6+ceMascts3vWn93ZBfXAhKiaqgrvg0mp3tZJ9WjSRhlrLbKr+0+929jlSeWB97iMFF6JiVMGFqBgnF53k+QAOArgEgAG4wcz+a9Hxy8tL0SOiufEJ1NTyDpr0cR1nj03trocMtpWOax/8NgD3m9lHSL4BwLkRbRJCBKKzgpM8D8CVAD4OAGb2EoCXXC7uo1SxAha+ww4x2OzDY9Pn71MOzXeWugybwbZZG0oqT5c++MUATgE4QvKHJA+S3N48iOQ+kqskV0+9+Ovghgoh+uPiop8N4DIAN5vZIyRvA/BZAH87e5CZHQBwAAD27FyyFP1Ml1bbpTUdoiBDKKnvPeRZF9kfSrFSlcOUWH3xkpTcRcFPADhhZo9Mft+FjQovhCicTgU3s1+QfJ7k28zsJwDeB+DJWAaFVoPNTGwlLOkdp1b/HMw+W+i56DcDuHMSQX8GwN6+xgkh0uNUwc3sMQArrhd9bu00bjh01Csq2kauVnpoXy113zv0+0lt/xj64i7vpIS+uGayCVExURab7F7esXAdqw+houalUUJL3wcXO5tllXohxrxvpUuhSxrlCIUUXIiKUQUXomKyrwcf4u4NuYbP9VPhu7Y45HOEdldDd0NidGtmXfiQzx/K1iHBRym4EBWTJCfbkKSCsQNqpU9L7dPql+KB5GBMAcpQ2V+U0UUIASCSgk8TPvRRsVQqNOQ+vosRfJJfpHovqZIf9FHc0BNe+kxoafM+Q5DK85CCC1Ex2aLoi1rlea2rT/7wktMB5dyUIXfaotDZSGOVcyolnxJa0aXgQlQMzSz4RffsXDLXqap9+qepldtn8YGvMvooRqztlKbEiuynTsM05D3lWngzDzPr3JtMCi5ExaiCC1Ex2YJsIV3z0K5c6HXBPjb0uf7Y83yPYdJK7MBok3nftia6CCEAFLR98JCW0GXNbywFTBVsGbsqT3EZspvSxyPzGcYKMVToMqzrep7ruYdvvMo5J5sUXIiKiTpV1YU+ubabLXtqdasx48cQFvWVh8ZCQsQbYk9I6UNoj2DKkGeTggtRMcmj6K6tUJsahFbuzZirqwuX5AexRi9Sv+/c03ZdmbXv9u8+7XSOFFyIiomi4Gtr60Fb4dRTCkPYPnuNkpUhtnoNua6PkoeIqs9eZ+xIwYWoGKfFJiSfBbAO4FUAr5hZ6y4nfRabLKLEXUTaZhCljBmEYNF7Ch3Fzf3svt9DbvvnceTgUey/9xiePbXeudikj4v+Z2a25mGXECIxctGFqBhXBTcA3yJpAP7VzA7EMqik6aKhFj2UMgwT2l1tu17uZw1FKWUHDCs/1wr+bjN7geTvAXiA5FNm9tDsAST3AdgHABdsf2NvQ4QQ4emd0YXk3wE4bWb/tOiYIUG2UModYvpkrHzruVRgjMGxGITw+HK+l1n7XYNsnX1wkttJLk3/DuADAB73sFMIkQgXF/3NAO4hOT3+K2Z2fygDhiyb66OwLrm1UyUYSNWf24xTa10IMRU2dO69ruv70lnBzewZAH8c9K5CiCRk313UpcUKobAlbEAfGyl3ekofSdA4uBAVk13Bm5SccK8kpNbDSbUstQR1l4ILUTGq4EJUTHYXXS55Pzazax56vXbOPG6p7ikFF6Jisim4lLsfm1G525459oSTRcSaxrwIl9x4bUjBhaiY5Apeu3KHXmySS7lz5ifLtUtJbFxy/behrKpCiDNIruBj2EFyCKmV2+X95Zgu60PIbLahlTzW99q1vNnXk5KCC1ExvRM+uOCTVXVsyu6ikr77tAHpo7ezxOjXlrg7a6z3P4Quj3Bl7xexevxn/gkfhBDjJftMtiY5+41drfTQiGcXJSlHbDbjeP4Q2pYdHzl4FGtr607XkYILUTGq4EJUTHEuek5CdA/kmp9Jbpc81ISdsQ7vSsGFqBgpuCchJ7GMTR2a5FZrX3wXdoQkVLBZCi5ExWRT8JyL7UMwBuUOpQLN6Z9jLbM+LHrW2H3x0MPEUnAhKiabgm8GFZgy9j53Lco9ZCFKLiUPhRRciIpxXmxCcguAVQAvmNk1bcf6LDbZDMRu9X36cW3qNnYFn+IzHp5q7kKOxSa3ADje43ghRGacFJzkLgB3APh7AJ/uq+CbQRVcSNVf803u10UtZRYrhVYKJQ+2P/iELwD4DIDfLTqA5D6SqyRXT//mZcfLCiFi0lnBSV4D4KSZHWs7zswOmNmKma3sOGdrMAOFEMNxGSa7AsCHSH4QwDYAbyL5ZTP72KITlpeXis5umZpaXPMSadrfp/sQq6sRcght9hpDyrdTwc3sc2a2y8z2APgogG+3VW4hRDlosQnKn6zQReosOLkmvrh4Gz6KHprQk2HasrwsolcFN7PvAPhOn3OEEPmIklV15e1vsdUjn2g9JlfLKrXeIGTfO1ZZhrCx1CG9EN+hmSmrqhCbmah98FJbz1KJ3ZeOFTGfd12fss8V2fdV1T7l51vW++9tHbV+DSm4EBUTRcHX1ta91dulFR+rh5Aq6p1zjHtM4+uho9xNcub6l4ILUTGq4EJUTHETXYZk25ily23PkYkjdb51URZDJqiEQgouRMVEmehC8oyLhtxi15UhAbgQqr4ZF3yUTJ/voIRMO67fgrYPFkKU1wcPxZBFB80Wtq1Fj5X3TORjtkxT5VebEuubkIILUTFJ+uCzdLVmsdUt5+SYkpR70XsoycYhpCrf0JHxvu9dfXAhRDlR9CY1KXkpqtjnmUux2ZWxTVv2fb9ScCFEnCj67uUdKH1nk9h7QY9NAZvMvpOSnyW3cpf8bgApuBBVowouRMUUN9GldJdnjPi6sUO23Y1NKte8pGceghRciIrJpuC5W8bYClBCkCp3ACo0m2Fo0/UZ19bWnY6TggtRMdnyoudiM0xVjf2MqdWttueZZeizBds+mOQ2kt8n+SOST5DcP8giIURyOhWcJAFsN7PTJLcCeBjALWb2vUXnlKTgY+iHxtqIPhUlJOvoQ+74D+D+jG3LVl12NukMstlGC3B68nPr5E94v14IERynPjjJLQCOAfhDALeb2V+3HZ9awUtSM1EWY1JroF+iiWB7k5nZq2b2TgC7AFxO8pLmMST3kVwluXrqxV87GymEiEevYTIzexHAgwCunvP/DpjZipmt7Dz/3FD2CSE86OyDk9wJ4GUze5HkOQDeD+AfYxsmt1v0oQRXvEkJGV1dZrJdCOCOST/8LABfN7P7olgjhAiKSxT9vwFc2ueiITYfdCFWq5dzszgxfkpQ7imaqipExRS3XDTlnmFC+DLUU031nUvBhaiY4hRcnEmflr7E2MEQpSrxOZrk6GfPvpf99x5zOkcKLkTFRFkuumfnkvlmVc3RFy9JOXyev4TnqG2n1hIi400FD7JcVAgxXopV8HmUsH9zKnIpoA8lzUvwVfJc+8u7cPjGq6TgQghVcCGqZlTDZFNXLbQrFNsFHOLuxXrWzULbO2+W3dgWNvX5JqTgQlTMqIJsi0g1mSLUEEzqIZc+zzrvGUPkDwtBSUHQNlJ5XcEyugghxkkVCh6bsU+ecFE+l2fssnesCt727D7989jvQwouxCYnexR97FMyfegTzS05ql6iTW308cgWHeui7CWUmRRciIrJruA+zGsZx6zqs2qxSCFKUIXUhCrTkLGUPqMNoctsOlXVBSm4EBWjCi5ExURx0ZeXl5zczRhM3aAxu+rA/7uAXW4fUK+7HqIMU+ZLj11mQ96HFFyIikkSZGsLSDRbpVBqVIuSu7AoiDPWZx+bcg8hVZlJwYWomKhTVX2mP8bIROlKia3/kGmtvotMuu6dc9luiWXUJHTsafaZV/Z+EavHf+Y/VZXkRSQfJPkkySdI3uJppxAiES598FcA/JWZPUpyCcAxkg+Y2ZNdJ85rwZot76LpmvNa81jR4jGoQVeEdpax9b277B1D+cwSUrl9n71Twc3s52b26OTv6wCOA3ir112FEEnoFUUnuQcbO40+MvSG09ZtUcuUI+IuXk/suQttqu2jWkPszpHIo4uumMja2rrTdZyj6CR3ALgbwKfM7Fdz/v8+kqskV0//5mXXywohIuIURSe5FcB9AL5pZp93ON6AcIkGpri0kK4R5LH165rkTBQYK41UauVuw9WWHPc9cvBouLzoJAngEIDjLpVbCFEOLi76FQCuB/Beko9N/nwwsl1CiAB0BtnM7GEAna7ALLuXdyBGTjaXoSLXIaLZa4zdXR8ToYfwYnVVUneBQuTEm4emqgpRMdkzunQNmw2lloUXm4EYHlSfQGDObyO29ygFF6Jisiv4kBasz7TNKW3DZ7G8iNooaWJRyAUwJS8t9o0FSMGFqJhsCp5LLaXk46VNzUryLlzwybfeBym4EBWTvQ/uw5C++JS2nOpS8vDE6t+OTbmbxB5vl4ILUTGq4EJUTDYXPbYbPGS7mGYAriRXPefqsdzkXJsei1TlKQUXomKyB9lCqGToXVQWKfmie8ZgMyv2lNjDYiVObGlj9pu7/btPO50jBReiYrIr+JRmax1KIWNtt1tS/3zsNN9ljX3uoUTPqiqEGC/FKHiTEhIyuCxCWKQ2NSr7EG+oj1pKucMjBReiYopV8FlCqGSsvvgihkTeFTkPz9hVe9E3ETwvuhBifIxCwRcxRPFSK/kssUYKUuOyw0xu5cx9/1KQggtRMargQlTMqF10H2ZduEXuemw3r5agWknucEm2lIAUXIiK2bQKPkuMVr/EwFMfQi/gCc0Y3mUJC2JcNh88TPIkyce97iSESI6Lgv8bgH8G8KUQN2wODZWoDrEYw24r84buaiuzITEXl4UwIYdeQ30bnQpuZg8B+GWQuwkhkhKsD05yH4B9APAHv38e9t501dzWrrk0MIQ6jLW/W/KOGm2kWtYZAhdVdVFun+vnJFgU3cwOmNmKma3sPP/cUJcVQnhAM+s+iNwD4D4zu8Tloitvf4utHvnEa7/bWvoQOzz4ttJD6ON5uLbyJSi5z/TZkhTdd0lrV/mGVu6+Zb//3mN49tQ6u47TOLgQFdPZByf5VQDvAbBM8gSAW83sUJ+btI2pLlqA0Wcc1mVWWgja1C1Ev3TW9tRqPtaFL018yj/lO0hVvp0V3MyuS2GIECI8ctGFqBinIFtfmkG2eXS5svPcpRCBNxfXaFGApY8LN8/WWLnMQhDaPc0VcPN5xy7f3JAuQKiynB1WVZBNCFHuYpN5WVX7DE2FzNwyL4AWOyAz1kkwuQit3CGv34fQQWIpuBAVE0XB19bWk6idy9BUU8lDKWNXv3zeMF/OfHDi9bR9lz75/voQ+1uQggtRMUn64L5qPkQtm+Tco6zpaZSk5CVOcAkxfXkeXQo7ZORjyDTXoQzxEKTgQlRMFAV/bu00bjh0dG6LE3t81HXKaNu0UJ9x71C7rYSMnpeo0vNIZWeIqLmLcvtcv+s+2h9cCKEKLkTNFDvRxZdFrnqqXOdtuc1S2ZTaNS9pPfgUl3fbx+4+k2R8prn6dgGmSMGFqJgoCr57eQduvfZdwadbDglk+azTHnK/5rnzzh9DTjMX20J5CDE8jSHK3aawQ6a3hsD3PlJwISomah+8pIUSIZQ8NCUqeR9bSrJ7ypDc5n36xrGVO3SdkYILUTGjjKL79I1j0bZrSZ+pts1zXO4XotVPrcahyy50tLzPdWPcJ9T7kYILUTGjVHAfUvV7U2ZIVXKIYZTQ945dZlJwISpm1ApeYl+8jT72lhRhH8OuqKHJ9Yyhv2UpuBAVowouRMU4uegkrwZwG4AtAA6a2T+0Hb+8vLRw++ApId2+IRlj+myN5EuqIFjzPj5dmLYA1GYK6oVwmWNkEVpbW3c6tlPBSW4BcDuAPwfwDgDXkXyHl4VCiCS4KPjlAH5qZs8AAMmvAbgWwJNdJ7YFinyynfpMKmkeF4o+edbGGmyrBZ9db0LcZyhDvgGXPvhbATw/8/vE5N+EEIXTuTcZyY8AuNrMbpr8vh7An5jZJxvH7QOwb/LzEgCPhze3N8sA1nIbMaEUW0qxA5At83C1Y7eZ7ew6yMVFfwHARTO/d03+7QzM7ACAAwBActXMVhyuHZVS7ADKsaUUOwDZksIOFxf9BwD+iOTFJN8A4KMA/iOUAUKIeHQquJm9QvKTAL6JjWGyw2b2RHTLhBDeOI2Dm9k3AHyjx3UPDDMnOKXYAZRjSyl2ALJlHkHt6AyyCSHGi6aqClExQSs4yatJ/oTkT0l+NuS1e9pxmORJklmH6kheRPJBkk+SfILkLRlt2Uby+yR/NLFlfy5bJvZsIflDkvdltuNZkj8m+RjJ1cy2nE/yLpJPkTxO8k+9rxnKRZ9MaX0awPuxMRnmBwCuM7POGW+hIXklgNMAvmRml6S+/4wdFwK40MweJbkE4BiAD2d6JwSw3cxOk9wK4GEAt5jZ91LbMrHn0wBWALzJzK7JYcPEjmcBrJhZ9jFwkncA+E8zOzgZsTrXzF70uWZIBX9tSquZvQRgOqU1OWb2EIBf5rh3w46fm9mjk7+vAziOTLMAbYPTk59bJ3+yBGBI7gLwFwAO5rh/iZA8D8CVAA4BgJm95Fu5gbAVXFNaWyC5B8ClAB7JaMMWko8BOAngATPLZcsXAHwGwO8y3X8WA/AtkscmszFzcTGAUwCOTLouB0lu972ogmwJILkDwN0APmVmv8plh5m9ambvxMZsxMtJJu++kLwGwEkzO5b63gt4t5ldho3Vkn856d7l4GwAlwH4FzO7FMD/AvCOY4Ws4E5TWjcbk/7u3QDuNLN/z20PAExcvwcBXJ3h9lcA+NCk7/s1AO8l+eUMdgAAzOyFyX9PArgHG13NHJwAcGLGq7oLGxXei5AVXFNaG0wCW4cAHDezz2e2ZSfJ8yd/PwcbwdCnUtthZp8zs11mtgcb38i3zexjqe0AAJLbJ8FPTNzhDyDTIikz+wWA50m+bfJP74PDkuwugiVdLGlKK8mvAngPgGWSJwDcamaHMphyBYDrAfx40vcFgL+ZzAxMzYUA7piMdpwF4OtmlnWIqgDeDOCejXYYZwP4ipndn9GemwHcORHIZwDs9b2gZrIJUTEKsglRMargQlSMKrgQFaMKLkTFqIILUTGq4EJUjCq4EBWjCi5Exfwf0nzSKjdNxaIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFjlJREFUeJztnX+IXcd1x7/HsoIcaRNDVg12ZCRDS3EQNLEWl+JgpSkNamKi/pE/Yoih68j7T2IcUhqSQlH0R6GFEuI/ROlaP3CIkxDsGJUQXBviyLFpnOw6DrEtRwQjE9lJpW0w2S0Olp3TP/Ze9+n1vXvn3jnz4877fkBIu7pv7rkzb+Z7zpm5M6KqIISUyRWpDSCEhIMdnJCCYQcnpGDYwQkpGHZwQgqGHZyQgmEHJ6Rg2MEJKRh2cEIK5soQhc5t26rvmtvWeM38/JxzeWtr685lTLv2pbUNAMDu+R29bZlW9mj5KZj0TKM0Pfs0LNqnqTyXuhy318qmVG3lUv+ubfXf67/D+u8uSVt5QTr4u+a24fDBfY3XLB7a71zeyWOnncuYdu0dxzd/P8kuV1umlT1afgra6rrp2adh0T5N5bnU5bi9VjalaiuX+ndtqyOnVp3uGaSDN2HRmbowrTG7fFmGzolPdX/W0fqPVVcpB8kYjD7ftDbp01ZNMAYnpGCiK3gbVu7euBr4jIw5unuTbLAe/S2p67CLN+DzXPV9JrVdXV7KtrP8fjZBBSekYNjBCSkYJxddRK4GcAzAXgAK4A5V/U8LA7ok0yxc86FnYlPQx70OaQfgbsvodePtmYOrXhMqzHKNwe8B8LCqflxE3gbg7aZWEEKC0NrBReSdAG4B8DcAoKqvA3i97w1dFbtphB4vw2UEtlCfHEb6WSR0ErFkJXeJwa8HcBHASRH5iYgcE5Ht4xeJyJKIrIjIysZrl0yMI4T44eKiXwngRgB3qepTInIPgC8A+IfRi1R1GcAyAIiI3nH8tNf0hi/1vfuU18dD6IOVcrjWc1M86kIusTjQz5amqTNgcj2mUnUrJXdR8PMAzqvqU9XPD2CzwxNCMkdctk0WkR8AOKSqPxeRLwHYrqp/13D91EKnjUguI7FPxt2FtnXsvrSNxn3v01Zul3xGaNpUFHCrBx8PrSb0s1ur/2g7Hzm1inMX181eNrkLwP1VBv1FAIu9LCSERMVJwTsXOqbgTQoT+q0ln3JjKXcT02xwKdO6bi2wVvDxcn0IVQchlNxVwbmSjZCCSfayiaW6WKq2FVbzmDm/QNKF8TbyzeiPZ5ktMvy+Nk0j5Tw7FZyQgmEHJ6RggrroFlMZo5+3cMNycM27bF/Uhz7145L8miVCtNHod8PHXe/yWSo4IQUTRMF3z+/A4YP7zJc05phMq/GZtuqyeSRpJtRyWmsPJ1bijQpOSMEEWeiycMO1unLyTvNyXbBUvj4LLiYRO2cQetFHn8U3XZYi91E1nyXQsXBpyy7Prqpc6ELILJPdrqpd8FE366WS0+7jy5Cy2y77frtgGZ+m2N99Gi65FuvYnApOSMEMSsF9VMxiqWToeJuEJacNK2qmzbdbbT5BBSekYNjBCSmYbF30LkmwPtMzXdz9objmljZYv+3V5Z7WbTNOjq56TdMS2T4JOCo4IQWTnYK7nFbigs/o3Ed1QjOk6bJJ9FHN0Ms5c1bymmm2uZ4PTgUnpGCSK7jPHuSTlLZtNLZSwNijfpPdOSuQxf7eOZ08kgOLh/bj6JNnna6lghNSMNEV3OLUkD47alood5fXOnNW1ZS4xL3T8g2+J+VMa6tQsfj4/VJ8J6jghBRMUAW3Pl87tXJ3KcvqJQd6CP2YVD9t2zCFbrMUL75QwQkpGNezyc4BWAfwJoA3VHWh6fo9O+f08MF9b/0c6vTMLjFxl9VvobDI8KdQbsvTVmPNfPjuux/rpJS+91lYvBcrZ14xO5sMAP5cVdd6WUMISQJddEIKxlXBFcAj1aGC/6aqy00Xv7S2EeVQe+skXmiGusw0NDkuGY1lU+ipNNcO/gFVfVlE/gDAoyLygqo+PnqBiCwBWDK1jhDiReddVUXkSwA2VPVfGq7pvVVrn+SX5S6cuRNL5UJ7R11e8e3i+YTawTa3nXFdk2ytMbiIbBeRufrfAD4M4FlHOwkhCXFx0d8N4CERqa//uqo+bG1IF0W1nqbpg8VLFF3IQbljkYMN48TOE1hN3bV2cFV9EcCfdC6ZEJKc5K+Luihg6ox46vvHILZqWu2hPk5ope1TvtVmHaOfX1tbd/oM58EJKZhkCj5t1M5JLZtsKSX27qMqpW7A0GWjyVDLW2uscjxUcEIKhh2ckIIJcnzw+EKXWFNgTXBhy+VYJNWs2ypEG/Wtv1RTdTw+mBDiTJAk2+75HRh9HzwlVO7Zpu8uKkPfh76GCk5IwQSJwcd3dPHFd6/0oRBTtUMoU9+YPHab9annWErOGJwQ4kwQBV+44VpdOXmn07VDj3EsGbqCD43YSm4960AFJ2TGSf6ySSnZSh+YMU+Dz4sj42XkChWckIJJHoOPk3JEjHUyqev9rMldbVLj2x596tcnLmcMTsiMww5OSMEkT7KlImVii0m1PPE9HLBPAi70vghUcEIKJhsFD5UAykktU9vSZccS4k9Te7fVf9vy3SOnVp1soIITUjBBFHxtbT25Qliqpe+zpFbuSeS4wCinNguN67P6PgcVnJCCGcTrol2IdXB7F3JU8C6EVsOh108KzM4mI4QMF+cYXES2AFgB8LKq3hrOpPiEViifM6AtbPNVSCrscOmi4HcDOBPKEEKIPU4KLiK7AHwUwD8C+FxQi3oQWxF9ycEGMhu4KvhXAHwewO+nXSAiSyKyIiIrG69dMjGOEOJHawcXkVsBXFDVxqUzqrqsqguqurDjqq1mBhJC+uPiot8M4GMi8hEA2wC8Q0S+pqqfnPaBl9Y2cMfx0+a7Zfoke+gWkxzp873s0g9aFVxVv6iqu1R1D4BPAPheU+cmhORDdieb5DglE+uY3CHv6U664eNRnjx2Gmtr607Xdurgqvp9AN/vbhIhJAXJXxfNUbFrYh9w33S/Puqec91Oos8upzmTQ96HS1UJKZgoCj60ETm2crtQ2zQLcfoQlDwHdXaBCk5IwQRV8JxG4Bw3OCDDYajfGyo4IQXDDk5IwQR10Se5NTm57UNiFpJrOdLFNfdJzoZqXyo4IQUTfaHLtBGRyj675JjAcrUpxynVUajghBRM8qWqNTktbqjjoRxG56HH3r4vVQDxvhN9bB1tn1jfl8VD+3H0ybNO11LBCSmYIApeb/hQ00WFclJy0kys2DnUbIy1/aG9rT7PTAUnpGCyicHHsRq1fUbplLF46tg7x8z2KLnb54uVB0sFJ6RgstuyqYnSR21rWF/DIVTOiQpOSMGwgxNSMNkm2XIiVrItdWKNpMPngMomqOCEFAwVPCP6Lg4i04k5xWnZZm0JUtd90anghBSMqKp5oXt2zmmIabKc4GknzeTwok5qQrbdkVOrOHdxXdquczlddJuI/EhEfioiz4nIERsTCSGhaVVwEREA21V1Q0S2AngCwN2q+sNpn5kFBa+hkv8fVO3JhGg7VwVvTbLp5giwUf24tfpj79cTQsxxyqKLyBYAqwD+EMBRVX2q7w1zeQ3Uahnn+OgcSsXGyx2Cos86ObSRUxZdVd9U1fcB2AXgJhHZO36NiCyJyIqIrGy8dsnaTkJIDzpNk6nqqwAeA3Bgwv8tq+qCqi7suGqrlX2EEA9ckmw7AVxS1VdF5CoAjwD4Z1X9zrTPNCXZcnHRXbBy42d5iWvpibdUdW+WZANwDYD7qjj8CgDfaurchJB8SLbQZUhKXkNF708pSp5L3ZotdCGEDJcgCi4iCnQb7Yao6KP4qHsodctFbUYZqpLnVpdUcEJIWAWfhM9IOCSV943XLZQuN9UZJXclz7nuACo4IQSRFDzmaJijyqeKz63qva1Oc/BWLEip2n3qQFWp4ITMMjOz4UNOyh5L0fsoklU9dXnG1AqeQrktnpkKTsiMww5OSMEEcdEXbrhWV07eaVZeiCN4SnHZAZt3xUPVR46ueqgFWLGflS46ITPOIPZFDzFNE+pQ+T7U9+2r5LkvykhJTsulUyQTqeCEFMwgYvA+9FHDnOLymtBHAMd65ljxaQ6K7fKsjMEJId4MIgbvQ45q3Aff+HyIhMopxPpO5NRmVHBCCqZYBS8Na1XIMfa2YCiem89++ic+tR9HTq06XUsFJ6Rg2MEJKRi66AMjpwROSobgio/b2NRmoRKLVHBCCmYQCm6pVkMY+V0YfY4c1Zxt9v/p02bTnv3ok2edPk8FJ6RgBqHgluT0kokVrnF56Occ2hReSmI9Y6uCi8h1IvKYiDwvIs+JyN0xDCOE+OOi4G8A+FtVfVpE5gCsisijqvr8tA+sra1fNpr7jlZtCuWySKApS1mXOwvKEYIccwAuzEK7tyq4qv5KVZ+u/r0O4AyA94Q2jBDiT6fXRUVkD4DHAexV1d82XNe6L7rPqNmkGG1q7jLfOPQR3UVRLZ8xx9jb16bcvwMLi/di5cwrJueDAwBEZAeABwF8dlLnFpElAEudrCSEBMWpg4vIVmx27vtV9duTrlHVZQDL1fWXKbhLjNxlxGyKyWuFnnbP+vcptjkatzd3lWgjp9jb2pZS4nOXLLoAOA7gjKp+ObxJhBArXBa63AzgdgAfEpFnqj8fCWwXIcSAVhddVZ8A0BrMd6XNbXdxjXxc9Sas3bNp7mNKl93nGX32HLMOjXIKE2qm2ZTC3edSVUIKJpulql2UtstI6LNzRmx8FwelVjPfum3zKqx3ZnXxJqbZ1MWWlIk6KjghBRNkX/TxaTJfUp3ckeIoXR8bQt/HZ6lwTai2zMGGcayVe7T+j5xaxbmL69wXnZBZJkgMvnt+Bw4f3GcW71qcntmHHBY7xMq0x3rWlAuNQpPTUtsaKjghBRM0i+4zF91EbBXIQclrUmfKcyNV7D2Uc82o4IQUDDs4IQUTZJpsz845PXxw38T/C7HQZCjTHl2mmSyfqU/5k57VYppsEkNIuMV2yV3qlMcHEzLjBEmyzc/PYfHQfvOXQELhOg1nuc/cpPuN2mGRSMypjodKrKmvUG1FBSekYILE4As3XKsrJ+986+fQI5dvDOezj5vlSyFNdvR5Rp8XLpqea5ZicQsFn1RfFt97xuCEzDhRFHyUEKO/1cifi5L72mKx+COmgs+KclvH2VRwQmac6Ao+TqjTSnwIFbtOI1SM5oLPc1jlVkpT8NDKXUMFJ2TGSa7gNX3UIPTIH0vJU8yP1ozbb73BRKq2m0SXtQUWnljotqOCEzLjsIMTUjBBXzbJcWfQtqOIm+i7EMW1HlIk23xc9Joc31H3TdLm3mbck40QEnZHlz47ofgobBe6vA5ZM2nEr0frpgSOaz2M/n/9mRxfzolFn73IY9VTLK/FNxnpcvjgCRG5ICLPet2JEBKd1hhcRG4BsAHgq6q616nQal/0SaNP6hgv1j7jvjaEeqGjxnKhTo1VffmcbNKnfvrE4r7P2mf6cNSWhcV7sXLmFf8YXFUfB/CbtusIIflhFoOLyBKApdHfTYpLfeLy8TJCE+q+LnUQKxcxfj+rMvrY7WODdewdegdd19ja1w6zDq6qywCWAfujiwgh/cjmdNEuxFa38fuOEnojRctnjbk8tIvdbSqV4zx7aKw8CM6DE1IwLln0bwD4IIB5AP8F4LCqHm/5zGWFWm+UME7seK+rDW2bOvbJqsfKFlvhc8Za6Pnvul5Sz/CM0maLaxa91UVX1ds62EUIyQi66IQUzCCTbOP4Ts9Y2tDFnaxdw9DTZildc5/7hG5L66SjZdjR9v9ra+tO96GCE1Iw0c8mm0bMpFfoe0+7f5fliV2WSMbeDTYWXdrQJ+mYog58vRO+LkoIKSMGJ90pRbn7kEq5U+SHqOCEFEwUBU+hFqmWs47ff9SGaZs3dHkpZ9JzTSs3x/3GU5KqPlwWQYWyjQpOSMEUH4O7KHmfV1hDMKrAIUb01M+XCz5z8j5z3Sm23aKCE1Iw7OCEFEwUF33UVUnlJqZMuvncO4fwwedNsNT4hjo+bZbyAM0aKjghBRNEwV9a28Adx0977RHehUmjbKxESij6TJ9YqsEQkpJN+O7o66rcfU82iTVlRwUnpGCCKPju+R04fHCfyWkfffGJtUPb1ue0kliqOdT9zywUscuzW7/004XFQ/tx9MmzTtdSwQkpmKBZdJcRy0KZQm340MW2WMqXk8IOIRa3brs+i1cslbsrVHBCCiabpapWahBivjulUoV+GcECq/rJyTtpI6dMeRNUcEIKJoiCz8/PYfHQfq9VQJPIOdbLiT6qb6GeOaxY7EKfZ7Z+YcRiz/wmqOCEFAw7OCEF4+Sii8gBAPcA2ALgmKr+U1CrptAlmRMy2eZqQ27EtH8IU2hd6OKau4RGPq7+yWOn7fZFF5EtAI4C+CsA7wVwm4i8t7d1hJBouCj4TQB+oaovAoCIfBPAQQDPhzSsidBK7rJ/+bgNLvcJvaOHy15vNUOakkqB9eGOfcv0bSeXGPw9AH458vP56neEkMxxOT744wAOqOqh6ufbAfypqn5m7LolAEvVj3sBPGtvbmfmAaylNqIiF1tysQOgLZNwtWO3qu5su8jFRX8ZwHUjP++qfncZqroMYBkARGRFVRccyg5KLnYA+diSix0AbYlhh4uL/mMAfyQi14vI2wB8AsC/WxlACAlHq4Kr6hsi8hkA/4HNabITqvpccMsIId44zYOr6ncBfLdDucv9zDEnFzuAfGzJxQ6AtkzC1I4gxwcTQvKAS1UJKRjTDi4iB0Tk5yLyCxH5gmXZHe04ISIXRCTpVJ2IXCcij4nI8yLynIjcndCWbSLyIxH5aWXLkVS2VPZsEZGfiMh3EttxTkR+JiLPiMhKYluuFpEHROQFETkjIn/mXaaVi14taT0L4C+xuRjmxwBuU9XoK95E5BYAGwC+qqp7Y99/xI5rAFyjqk+LyByAVQB/nahOBMB2Vd0Qka0AngBwt6r+MLYtlT2fA7AA4B2qemsKGyo7zgFYUNXkc+Aich+AH6jqsWrG6u2q+qpPmZYK/taSVlV9HUC9pDU6qvo4gN+kuPeYHb9S1aerf68DOINEqwB1k43qx63VnyQJGBHZBeCjAI6luH+OiMg7AdwC4DgAqOrrvp0bsO3gXNLagIjsAfB+AE8ltGGLiDwD4AKAR1U1lS1fAfB5AL9PdP9RFMAjIrJarcZMxfUALgI4WYUux0Rku2+hTLJFQER2AHgQwGdV9bep7FDVN1X1fdhcjXiTiEQPX0TkVgAXVHU19r2n8AFVvRGbb0t+ugrvUnAlgBsB/Kuqvh/A/wDwzmNZdnCnJa2zRhXvPgjgflX9dmp7AKBy/R4DcCDB7W8G8LEq9v0mgA+JyNcS2AEAUNWXq78vAHgIm6FmCs4DOD/iVT2AzQ7vhWUH55LWMarE1nEAZ1T1y4lt2SkiV1f/vgqbydAXYtuhql9U1V2qugeb35HvqeonY9sBACKyvUp+onKHP4xEL0mp6q8B/FJE/rj61V/A4JVss00Xc1rSKiLfAPBBAPMich7AYVU9nsCUmwHcDuBnVewLAH9frQyMzTUA7qtmO64A8C1VTTpFlQHvBvDQ5jiMKwF8XVUfTmjPXQDurwTyRQCLvgVyJRshBcMkGyEFww5OSMGwgxNSMOzghBQMOzghBcMOTkjBsIMTUjDs4IQUzP8CS1BH043ZwoQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -108,7 +107,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFwdJREFUeJzt3X+Q3HV9x/HXy+OqK+AdyOmQS2JoRzPVEIlzpaNYx5JqsIBGOpP6E2s7zXRaBa0ThvhHikwrTDMVh9a2k/JDVNSeGjICamQARToKXggm/Er9hU0u0AThAuhVj/juH9/vkrvjLrd7t9/9fj+7z8fMzd1+b3fzXrh73Wc/Px0RAgCk43llFwAAaA7BDQCJIbgBIDEENwAkhuAGgMQQ3ACQGIIblWL7z2zfeZTvf9r237ezJqBqCG60he1v2X7C9vPLrmUu+R+Pw7afzj9+avta269o4jn4A4PCENwonO1lkv5AUkh6a6nFNO67EXGcpD5JfyRpXNIO2yvKLQsguNEe50v6nqRPS3rf5G/YfrHtr9p+0vbdkn6ngec7wfbNtp+yfZftZx9j+3W2v2/7UP75dZO+d2Lect6ft/63zfUPRcThiPhxRPy1pG9LumTS833J9qP5v3WH7Vfl19dLereki/IW+4359Ytt/ziv+wHbb2/gtQLPQXCjHc6XdH3+scb2Syd971OS/k/SyZL+PP+YyzskfUzSCZJ+JOkfpCyYJd0s6UpJL5b0CUk3235x/rjPSnqhpFdJeomkK5p8HVuVvXOo+7qkl+fPdU/++hQRW/Kv/zEijouIc/P7/zh/fF9e/+dsn9xkDQDBjWLZfr2kl0kajogdysLrXfn3eiT9iaRNEfGLiLhP0nUNPO0NEXF3RDyjLCBPy6+fLemHEfHZiHgmIr4g6SFJ5+YB+RZJfxURT0TERER8u8mXs1/SifUbEXFNRDwVEb9S1hJ/te2+2R4cEV+KiP0R8ZuI+E9JP5R0epM1AAQ3Cvc+Sd+MiMfy25/Xke6SAUnHSNo76f4/q39h+6OTBgj/fdJ9Hp309S8lHZd/vWjy4yc936CkJZIej4gnFvBaBiU9ntfWY/vyvOvjSUkP5/c5abYH2z7f9r22x2yPSVpxtPsDszmm7ALQuWzXJK2T1GO7HrbPl9Rv+9WS7pP0jLJQfSj//tL64yPi45I+3sQ/uV9Z636ypZK+oeyPw4m2+yNirNnXknu7pO/kX79L0tuUDVw+rKz74wlJzr8/ZdtN2y+T9B+SVisb+Dxs+95J9wcaRosbRVor6bCkVyrrzjhN0u8qC7/zI+Kwsn7jS2y/0PYrNW3wsklfk/QK2++yfYztP83/7Zsi4hFlfdL/avsE27223zDXE+Yt61Ns/7OkNyrrm5ak4yX9StLPlfWbT/8D87+SfnvS7WOVhfnB/Hnfr6zFDTSN4EaR3ifp2oj4n4h4tP4h6V8kvdv2MZI+oKyr41Fls06une8/FhE/l3SOpI8oC9SLJJ0zqZvmvZImlLXuD0j60FGe7rW2n5b0pKRvSXqRpN+LiN359z+jrBtmVNIDymbNTHa1pFfm3SLbIuIBSf8k6bvKQv1USf8139eK7mYOUgCAtNDiBoDEENwAkBiCGwASQ3ADQGIKmcd90kknxbJly4p4agDoSDt27HgsIgYauW8hwb1s2TKNjIwU8dQA0JFsT1/1Oyu6SgAgMQQ3ACSG4AaAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJIbgBQJJ2DUtXrJAu6c8+7xouu6JZcXQZAOwalm68QJoYz24f2pvdlqSV68qraxa0uAHg1kuPhHbdxHh2vYIIbgA4tK+56yUjuAGgb3Fz10tGcAPA6k1Sb23qtd5adr2CCG4AWLlOOvdKqW+JJGefz72ykgOTErNKACCzcl1lg3o6WtwAkBiCGwASQ3ADQGIIbgBIDMENAIlhVgk6wrado9q8fY/2j41rUX9NG9Ys19pVg2WXBRSC4Ebytu0c1catuzU+cViSNDo2ro1bd0sS4Y2ORFcJkrd5+55nQ7tufOKwNm/fU1JFQLEIbiRv/9h4U9eB1BHcSN6i/lpT14HU0ceNtmv1QOKGNcun9HFLUq23RxvWLG9FuehyVRz4JrjRVkUMJNYfV7VfLqSvqgPfBDfa6mgDiQv5RVi7apCgRssV9fO6UA0Ft+2HJT0l6bCkZyJiqMii0LkYSERKqvrz2kyL+w8j4rHCKkFXWNRf0+gMP/QMJKLVWtE3XdWfV2aVoK02rFmuWm/PlGsMJKLV6n3To2PjCh3pm962c7Sp56nqz2ujwR2Svml7h+31M93B9nrbI7ZHDh482LoK0Zhdw9IVK6RL+rPPu4bLrmhGa1cN6rLzTtVgf02WNNhf02XnnUr/NFqqVYuyqvrz6oiY+072YESM2n6JpFskfTAi7pjt/kNDQzEyMtLCMnFUu4alGy+QJia9peutVfroJaBIp1x8s2ZKNkv66eVnt7uchtje0ej4YUMt7ogYzT8fkHSDpNPnXx5a7tZLp4a2lN2+9dJy6gFK1umLsuYMbtvH2j6+/rWkN0u6r+jC0IRD+5q7DnS4qvZNt0ojs0peKukG2/X7fz4ivlFoVWhO32Lp0N6ZrwNdqNMXZc0Z3BHxE0mvbkMtmK/Vm2bu4169qbyaUHlVXMrdSp28KIuVk52gPgB566VZ90jf4iy0GZjELKq6lBuNIbg7xcp1BDUa1oql3J3eYq8yghvoQgtdyk2LvVysnAS60EKny3HqULkIbqALLXS6XFU3X+oWBDfQhRa6lLvTF7hUHX3cQJdayHQ5Th0qF8ENoGmdvsCl6ghuAPPSyQtcqo4+bgBITLrBncj+0wDQaml2lUzff/rQ3uy2xOpBAB0vzRZ3avtP8+4AQAul2eJOaf9p3h0AaLE0W9yz7TNdxf2nU3t3AKDy0gzu1Zuy/aYnq+r+0ym9OwCQhDSDe+W67CDcviWSnH2u6sG4Kb07AJCENPu4pXT2n+Z0GgAtlmaLOyUpvTsAkIR0W9wpSeXdAYAk0OIGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiWk4uG332N5p+6YiCwIAHF0zLe4LJT1YVCEAgMY0FNy2F0s6W9JVxZYDAJhLoy3uT0q6SNJvZruD7fW2R2yPHDx4sCXFAQCea87gtn2OpAMRseNo94uILRExFBFDAwMDLSsQADBVIy3uMyS91fbDkr4o6Uzbnyu0KgDArOYM7ojYGBGLI2KZpHdIui0i3lN4Zd2slWdUct4lUIwSf7fYHbBqWnlGJeddAsUo+XerqQU4EfGtiDinqGKg1pxRWW8JbP1LzrsEilDyWbK0uKtmoWdUTm8JLOS5AMys5LNkWfJeNQs9o3KmlsB8nwvAzEo+S5bgrpqFnmA/1198zrsEFm6hv6cLRHBXzULPqDzaX3zOuwRao+SzZB0RLX/SoaGhGBkZafnzogEz9XH31ghsoOJs74iIoUbuS4u703CqPNDxmFXSiRI9VX7bzlFt3r5H+8fGtai/pg1rlmvtqsGyywIqh+BGJWzbOaqNW3drfOKwJGl0bFwbt+6WJMIbmIbgRiVs3r7n2dCuG584rM3b93RtcPMOBLMhuFEJ+8dmnns+2/VOxzsQHE01ByfZGKnrLOqvNXW90x3tHQhQveCuT2c7tFdSHNm8hfDuaBvWLFett2fKtVpvjzasWV5SReXiHQiOpnpdJUfbvCXBmRJoTP3tf4p9ukX0RS/qr2l0hpDu1ncgmKp6wV3y5i0oz9pVg0kE9WRF9UVvWLN8yvNK3f0OBFNVr6uk5M1bgGYU1Re9dtWgLjvvVA3212RJg/01XXbeqcn9YUMxqtfiXr1p5iXbbIzUVao4FW6mmorsi07xHQjao3rBXe/HvvXSrHukb3EW2vRvd40qToWbraa+Wq/Gxieec3/6olGk6gW3lOySbbRGFRfjzFbTC3qfp1pvD33RaKvq9XGj61VxKtxs//bYLyfoi0bbVbPFja5WxalwR6uJvmi0Gy1uVE4VF+NUsSZ0L1rcqJwqLsapYk2pqeJMoVRxAg6Awk2flSNl71gYDziCE3AAVAqbZrUWwQ2gcFWcKZQyghtA4di2t7XmDG7bL7B9t+0f2L7f9sfaURjSs23nqM64/DadcvHNOuPy27Rt52jZJaEimJXTWo3MKvmVpDMj4mnbvZLutP31iPhewbUhIVVcpo7qYFZOa80Z3JFNO3k6v9mbf7R+KgqSVsVl6qgWFiq1TkN93LZ7bN8r6YCkWyLirhnus972iO2RgwcPtrpOVByDT0D7NBTcEXE4Ik6TtFjS6bZXzHCfLRExFBFDAwMDra4TFcfgE9A+Tc0qiYgxSbdLOquYcpAqBp+A9mlkVsmA7f7865qkN0l6qOjCkBZObAHap5FZJSdLus52j7KgH46Im4otCyli8Aloj0ZmleyStKoNtQAAGsDKSQBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJAYghsAEkNwA0BiCG6Ua9ewdMUK6ZL+7POu4bIrAiqvkSXvQDF2DUs3XiBN5Fu/Htqb3ZaklevKqwuoOFrcKM+tlx4J7bqJ8ew6gFkR3CjPoX3NXQcgieBGmfoWN3cdgCSCG2VavUnqnX5CjrO+bgYqgVkR3CjPynXSuVdKfUvyC9az51DXByoJb+A5CG6Ua+U66cP35eEdU7/HQCUwI4Ib1cBAJdCwzgtuFnSkiYFKoGGdFdz1BR2H9koK+klTMtNAZW8tuw5gis4KbhZ0pGvKQKWzz+deyQpKYAadteSdftK0rVxHUAMN6KwWN/2kALpAZwU3/aQAukBnBTf9pAC6QGf1cUv0kwLoeJ3V4gaALjBncNteYvt22w/Yvt/2he0oDAAws0a6Sp6R9JGIuMf28ZJ22L4lIh4ouDYAwAzmDO6IeETSI/nXT9l+UNKgJIK7QrbtHNXm7Xu0f2xci/pr2rBmudauGiy7LAAFaGpw0vYySask3TXD99ZLWi9JS5cubUFpaNS2naPauHW3xicOS5JGx8a1cetuSSK8gQ7U8OCk7eMkfUXShyLiyenfj4gtETEUEUMDAwOtrBFz2Lx9z7OhXTc+cVibt+8pqSIARWoouG33Kgvt6yNia7EloVn7x8abug4gbY3MKrGkqyU9GBGfKL4kNGtR//Tjv45+HUDaGmlxnyHpvZLOtH1v/vHHBdeFJmxYs1y13p4p12q9PdqwZnlJFXUZ9oBHmzUyq+ROZYcBoqLqA5DMKilBfQ/4+nbC9T3gJVbwojCOiLnv1aShoaEYGRlp+fMClXPFivzgjmn6lmRnaQINsr0jIoYauS9L3oGFYA94lKDzNpkq067h7LSdQ/uk2gnZtfEnsv3AV2/irXMn6ls8S4ubPeBRHFrcrTL9vMvxx7MPzr7sbOwBjxIQ3K0y03mXk3H2ZWdiD3iUgK6SVmmkT5N+z87EHvBos44O7oVsvNT0Y2fr65x+nw7GRlddbPL4DmM6hevYrpL6xkujY+MKHdl4advO0WIeO1Nf52Qd3u+5kP/eSNz08R3GdArXscG9kI2X5vXY6X2dtROzjy7p92Sjqy420/gOYzqF6tiukoVsvDTvx3ZxXycbXXUx5rK3Xce2uBey8RKbNjWP/2ZdbLaxmw4f0ylTxwb3QjZeYtOm5vHfrIsxl73tOrarZCEbL7FpU/P4b9bF6t2DzCppGzaZKhNTqADkmtlkqmNb3JXHdqAA5qlj+7grjylUAOaJ4C4LU6gAzBPBXRamUAGYJ4K7LEyhAjBPBHdZ2A4UwDwxq6RMXbxEHsD80eIGgMQQ3EC32jWcnVJ/SX/2mW1Yk0FXCdCNWACWNFrcQDdiAVjSCG6gG7EALGlzBrfta2wfsH1fOwoC0AYsAEtaIy3uT0s6q+A6ALQTC8CSNufgZETcYXtZ8aUA5em6E+rZQztpLZtVYnu9pPWStHTp0lY9LVC4+gn19cOO6yfUS+r88Caok9SywcmI2BIRQxExNDAw0KqnBQrHCfVIDbNK0PU4oR6pIbjR9TihHqlpZDrgFyR9V9Jy2/ts/0XxZSEZHbBsmhPqkZpGZpW8sx2FIEEdsmyaE+qRGk55x/xdsSIL6+n6lkgfZr0W0IxmTnmnjxvzx7JpoBQEN+aPZdNAKQhuzB/LpoFSENyYP87NBErBQQpYGJZNA21HixsAEkNwA0BiCG4ASAzBDQCJIbgBIDEENwAkhuAGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIZtXdGQbTtHOUwXqAiCG3PatnNUG7fu1vjEYUnS6Ni4Nm7dLUmEN1ACukowp83b9zwb2nXjE4e1efuekioCFmDXsHTFCumS/uzzruGyK2oaLW7Maf/YeFPXgcraNSzdeIE0kf/sHtqb3ZaSOsmJFjfmtKi/1tR1tMa2naM64/LbdMrFN+uMy2/Ttp2jZZeUvlsvPRLadRPj2fWEENyY04Y1y1Xr7Zlyrdbbow1rlpdUUeerjyuMjo0rdGRcgfBeoEP7mrteUQ0Ft+2zbO+x/SPbFxddFKpl7apBXXbeqRrsr8mSBvtruuy8UxmYLBDjCgXpW9zc9Yqas4/bdo+kT0l6k6R9kr5v+6sR8UDRxaE61q4aJKjbiHGFgqzeNLWPW5J6a9n1hDTS4j5d0o8i4icR8WtJX5T0tmLLArob4woFWblOOvdKqW+JJGefz70yqYFJqbFZJYOS9k66vU/S7xdTDgApG1eYPHdeYlyhZVauSy6op2vZdEDb6yWtl6SlS5e26mmBrlTvlmK1KmbSSHCPSloy6fbi/NoUEbFF0hZJGhoaipZUB3QxxhUwm0b6uL8v6eW2T7H9W5LeIemrxZYFAJjNnC3uiHjG9gckbZfUI+maiLi/8MoAADNqqI87Ir4m6WsF1wIAaAArJwEgMQQ3ACSG4AaAxDii9TP3bB+U9LN5PPQkSY+1uJx264TXIHXG6+A1VAOvoTEvi4iBRu5YSHDPl+2RiBgqu46F6ITXIHXG6+A1VAOvofXoKgGAxBDcAJCYqgX3lrILaIFOeA1SZ7wOXkM18BparFJ93ACAuVWtxQ0AmAPBDQCJqUxwp36upe1rbB+wfV/ZtcyX7SW2b7f9gO37bV9Ydk3Nsv0C23fb/kH+Gj5Wdk3zZbvH9k7bN5Vdy3zYftj2btv32h4pu575sN1v+8u2H7L9oO3Xll2TVJE+7vxcy//WpHMtJb0zpXMtbb9B0tOSPhMRK8quZz5snyzp5Ii4x/bxknZIWpvY/wdLOjYinrbdK+lOSRdGxPdKLq1ptv9W0pCkF0XEOWXX0yzbD0saiohkF9/Yvk7SdyLiqnxb6xdGxFjZdVWlxZ38uZYRcYekx8uuYyEi4pGIuCf/+ilJDyo7ui4ZkXk6v9mbf5TfOmmS7cWSzpZ0Vdm1dCvbfZLeIOlqSYqIX1chtKXqBPdM51omFRidxvYySask3VVuJc3LuxjulXRA0i0RkdxrkPRJSRdJ+k3ZhSxASPqm7R350YapOUXSQUnX5l1WV9k+tuyipOoENyrE9nGSviLpQxHxZNn1NCsiDkfEacqO2TvddlJdV7bPkXQgInaUXcsCvT4iXiPpLZL+Ju9OTMkxkl4j6d8iYpWkX0iqxPhbVYK7oXMtUby8X/grkq6PiK1l17MQ+dva2yWdVXYtTTpD0lvzPuIvSjrT9ufKLal5ETGafz4g6QZlXaIp2Sdp36R3bF9WFuSlq0pwc65lBeQDe1dLejAiPlF2PfNhe8B2f/51TdmA90PlVtWciNgYEYsjYpmy34XbIuI9JZfVFNvH5gPcyrsX3iwpqRlXEfGopL22l+eXVkuqxEB9Q0eXFa0TzrW0/QVJb5R0ku19kv4uIq4ut6qmnSHpvZJ2533EkvTR/Oi6VJws6bp8ptLzJA1HRJLT6RL3Ukk3ZG0BHSPp8xHxjXJLmpcPSro+b1D+RNL7S65HUkWmAwIAGleVrhIAQIMIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJCY/weh1dxCRXPbhgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF69JREFUeJzt3X2QXXddx/H3h+0ql7bsBRqZZtOSqrCKTSDM2hkMMkiURWgxxJmIKCDOmHFQgVHDNM4YS0dNx4wg9bm2FJSCBkh3KFUC0xYRRwobtialbeTBarKhNgibtrrS7fL1j3M22Wz34dy799zz9HnN7Ozec+/e+z23zWd/9/v7nXMUEZiZWXU8pegCzMysMw5uM7OKcXCbmVWMg9vMrGIc3GZmFePgNjOrGAe3lYqkX5D02RXuf5+k3+1nTWZl4+C2vpD0aUnfkvTdRdeymvSPx5ykx9Kvf5d0s6TndfAc/gNjuXFwW+4kbQR+FAjgNYUWk92/RMQFwBDw48AMcFjS5cWWZebgtv54I/A54H3AmxbeIelZkj4m6RFJnwe+L8PzPUPS7ZIelXS3pDO/I+lHJH1B0un0+48suO+Z6cj5ZDr6H1/thSJiLiK+GhFvAf4RuGbB831Y0kPpa31G0g+l23cBPwe8Ix2x35Zuv1rSV9O675P02gz7avYkDm7rhzcCt6RfY5KeveC+PwX+D7gY+MX0azWvA94JPAP4CvB7kAQzcDtwPfAs4F3A7ZKelf7e3wBPA34I+B7g3R3ux0GSTw7z/gF4bvpcX0z3j4i4If35DyLigoi4Kn38V9PfH0rr/4CkizuswczBbfmS9BLgOcCBiDhMEl6vT+8bAH4a2BsR/xMR9wLvz/C0t0bE5yPiCZKAfGG6/dXAlyPibyLiiYj4EPAAcFUakD8J/HJEfCsiZiPiHzvcnZPAM+dvRMR7I+LRiPg2yUj8BZKGlvvliPhwRJyMiO9ExN8BXwau6LAGMwe35e5NwCcj4hvp7Q9ytl2yDjgPOL7g8f8x/4Ok31owQfgXCx7z0IKf/xe4IP15/cLfX/B8w8AlwDcj4ltr2Jdh4JtpbQOSrktbH48AD6aPuWi5X5b0Rkn3SJqWNA1cvtLjzZZzXtEFWH1JagE7gQFJ82H73UBb0guAe4EnSEL1gfT+S+d/PyJ+H/j9Dl7yJMnofqFLgU+Q/HF4pqR2REx3ui+p1wL/lP78euCnSCYuHyRpf3wLUHr/OafdlPQc4K+AbSQTn3OS7lnweLPMPOK2PG0H5oDnk7QzXgj8IEn4vTEi5kj6xtdIepqk57No8rJDfw88T9LrJZ0n6WfS1/54RHydpCf9Z5KeIWlQ0ktXe8J0ZH2ZpD8GXkbSmwa4EPg28N8kffPFf2D+C/jeBbfPJwnzU+nzvplkxG3WMQe35elNwM0R8Z8R8dD8F/AnwM9JOg/4VZJWx0Mkq05u7vbFIuK/gSuB3yAJ1HcAVy5o07wBmCUZ3T8MvH2Fp3uxpMeAR4BPA08Hfjgijqb3/zVJG2YKuI9k1cxCNwHPT9si4xFxH/CHwL+QhPom4J+73VdrNvlCCmZm1eIRt5lZxTi4zcwqxsFtZlYxDm4zs4rJZR33RRddFBs3bszjqc3Maunw4cPfiIh1WR6bS3Bv3LiRiYmJPJ7azKyWJC0+6ndZbpWYmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFOLjNzCrG5+NexfjkFPsPHePk9Azr2y12j42wfctw0WWZWYM5uFcwPjnFnoNHmZmdA2BqeoY9B5Ozejq8zawobpWsYP+hY2dCe97M7Bz7Dx3ry+uPT06x9bo7uezq29l63Z2MT0715XXNOnLkALz7crimnXw/cqDoimrPI+4VnJye6Wh7L3m0b5Vw5ADc9laYTf9NnD6e3AbYvLO4umrOI+4VrG+3OtreS0WP9s0yuePas6E9b3Ym2b6YR+Y9kym4JbUlfUTSA5Lul/TivAsrg91jI7QGB87Z1hocYPfYSO6vXeRo3yyz0yeybZ8fmZ8+DsTZkbnDuytZR9zvAT4RET8AvAC4P7+SymP7lmH27djEcLuFgOF2i307NvWlVVHkaN8ss6EN2bZ3MjK3Va3a45Y0BLwU+AWAiHgceDzfsspj+5bhQnrKu8dGzulxQ/9G+2aZbdt7bo8bYLCVbF8o68jcMsky4r4MOAXcLGlS0o2Szl/8IEm7JE1Imjh16lTPC22aIkf7Zplt3glXXQ9DlwBKvl91/ZMnJrOOzC2TVa/yLmkU+BywNSLulvQe4JGI+O3lfmd0dDR8Pm4zO2Px6hNIRuZLhXxDSTocEaNZHptlxH0COBERd6e3PwK8qNvizKyBso7MLZNVe9wR8ZCk45JGIuIYsA24L9eqjhxIJi1On0g+Sm3b6//AZlW3eaf/HfdI1gNwfg24RdJ3AV8D3pxbRV7Qb2a2okzBHRH3AJl6L2u20rIhB7eZWQmPnPSyITOzFZUvuL1syMxsReUL7m17k2VCCy21oN/MrKHKF9xeNmRmtqJyntbVy4bMzJZVvhG3mZmtyMFtZtaNAs8vXs5WiZlZmRV8oKBH3GZmnSr4/OIObjOzThV8oKBbJWZmK1nqpHdDG9LLsC3SpwMFPeI2M1vOctfKfO4rCj1Q0MFtZrac5XrZX/5koQcKulViZraclXrZBR4o6BG3mdlySnrSOwe3mdlySnrSOwe3mdlySnrSO/e4zcxWUsKT3nnEbWZWMQ5uM7OKcXCbmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFOLjNzCom0wE4kh4EHgXmgCciYjTPoszMbHmdHDn5YxHxjdwqMTOzTNwqMTOrmKwj7gA+KSmAv4yIGxY/QNIuYBfApZde2rsKzcwyGp+cYv+hY5ycnmF9u8XusRG2bxkuuqyeyxrcL4mIKUnfA3xK0gMR8ZmFD0jD/AaA0dHR6HGdZmYrGp+cYs/Bo8zMzgEwNT3DnoNHAWoX3plaJRExlX5/GLgVuCLPoszMOrX/0LEzoT1vZnaO/YeOFVRRflYNbknnS7pw/mfgFcC9eRdmZtaJk9MzHW2vsiytkmcDt0qaf/wHI+ITuVZlZtah9e0WU0uE9Pp2a4lHV9uqwR0RXwNe0IdazMyWlGXScffYyDk9boDW4AC7x0b6XW7ufAUcMyu1rJOO8z97VYmZWcFWmnRcHMrbtwzXMqgX8wE4ZlZqTZp0zMrBbWalttzkYh0nHbNycJtZqe0eG6E1OHDOtrpOOmblHreZlVqTJh2zcnCbWek1ZdIxKwe3lVotThp05ADccS2cPgFDG2DbXti8s+iqrMIc3FZatThp0JEDcNtbYTZdAXH6eHIbHN7WNU9OWmnV4qRBd1x7NrTnzc4k28265OC20qrF+t3TJzrbbpaBg9tKqxbrd4c2dLbdLAMHt5VWLdbvbtsLg4v+0Ay2ku1mXfLkpJVWLdbvzk9AelWJ9ZAien+VsdHR0ZiYmOjod2qx7MvMrEuSDkfEaJbHlmLEXYtlX2ZmfVKKHnctln2ZmfVJKYK7Fsu+zMz6pBTBXYtlX2ZmfVKK4K7Fsi8zsz4pxeRkLZZ9mZn1SSmCG3zaRjOzrEoT3Gbd8jEA1jQObqs0HwNgTVSKyUmzbvkYAGuizMEtaUDSpKSP51mQWSd8DIA1UScj7rcB9+dViFk3fAyANVGm4Ja0AXg1cGO+5Zh1xscAJMYnp9h63Z1cdvXtbL3uTsYnp4ouqRBNeR+yTk7+EfAO4MLlHiBpF7AL4NJLL117ZWYZ+BgAT9DOa9L7sOppXSVdCbwqIt4i6WXAb0bElSv9TjendTWz7my97k6mlujpD7db/PPVL8/0HHVYUtmL96FIvT6t61bgNZJeBTwVeLqkD0TEz6+lSDPrjbVO0NZlpNqkiepVe9wRsSciNkTERuB1wJ0ObbPyWOsEbV2WVDZpotrruM0qbq0TtHUZqTZporqjIycj4tPAp3OpxKym8u4fr3WCdn27tWRvuBcj1X72zps0UV2aa06a1dHi/jEko8B9OzaVJlDyqrEK+14mnUxOulVilqMq9I+3bxlm345NDLdbiGQVRi/CtQr7XlU+yZRZjqrSP87jtMpV2fcq8ojbLEdNWumwWJP3PW8ObrMcNWmlw2JN3ve8uVVilqMmrXRYrMn7njevKjEzKwGvKjEzq7HGtkrqcFIdM2umRgZ3XU6qY2bN1MhWSWUODDhyAN59OVzTTr4fOVB0RWZWAo0ccVfiwIAjB+C2t8JsWtPp48ltgM07i6vLzArXyBF3JQ4MuOPas6E9b3Ym2d4rHtGbVVIjg7sSBwacPtHZ9k7Nj+hPHwfi7Ije4W1Weo0M7rxOqtNTQxs6296pfozozSwXjexxQz4n1empbXvP7XEDDLaS7b2Q94jezHLTyBF3JWzeCVddD0OXAEq+X3V97yYm8x7Rm1luGjviroTNO/NbQZL3iN7McuMRd1PlPaI3s9x4xN1keY7ozSw3HnGbmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFrBrckp4q6fOS/lXSlyS9sx+FmZnZ0rIsB/w28PKIeEzSIPBZSf8QEZ/LuTYzM1vCqiPuSDyW3hxMv3p/hWEzy18ZT+VbxppKLtMBOJIGgMPA9wN/GhF351qVmfVeGS/OUcaaKiDT5GREzEXEC4ENwBWSLl/8GEm7JE1Imjh16lSv6zSztSrjqXyXq+ngL3n0vYKOVpVExDRwF/DKJe67ISJGI2J03bp1varPzHqljKfyXem1fXGPZWVZVbJOUjv9uQX8BPBA3oWZWY/18lS+vepLr/baRX8iKKksI+6LgbskHQG+AHwqIj6eb1lm1nPb9ian7l2om1P59vKyd0vVtJgv7vEkq05ORsQRYEsfajGzPM1P9t1xbRKGQxuS4Ox0EnClXnmnz3VOTceXfowv7vEkPq2r5evIgbUHhfVOL07l2+te+XxNi1eYgC/usQwf8m758ZXk6ymvy9754h6ZecRt+enlR2orj217Yfwt8J3Zs9ueMtibkbEv7pGJR9yWnzIuP7PekFa+bblycFt+fCX5errjWph7/Nxtc4972V4fObgtP71afmbl4k9ShXNwW3482VRP/iRVOE9OWr482VQ/2/Z62V7BPOI2s874k1ThPOI2s875k1ShPOI2M6sYB7eZWcU4uM3MKsbBbWZWMQ5uM7OKcXCbmVWMg9vMrGK8jtt6Ynxyiv2HjnFyeob17Ra7x0bYvmW46LLMasnBbWs2PjnFnoNHmZmdA2BqeoY9B48COLzNcuBWia3Z/kPHzoT2vJnZOfYfOlZQRWb15uC2NTs5PdPRdjNbG7dKbM3Wt1tMLRHS69utJR5ttjaeT/GI23pg99gIrcGBc7a1BgfYPTZSUEVWV/PzKVPTMwRn51PGJ6eKLq2vHNy2Ztu3DLNvxyaG2y0EDLdb7NuxqXGjIMuf51MSbpVYT2zfMuygttx5PiXhEbeZVcZy8yZNm09ZNbglXSLpLkn3SfqSpLf1ozAzs8U8n5LI0ip5AviNiPiipAuBw5I+FRH35Vybmdk55ttxTV9VsmpwR8TXga+nPz8q6X5gGHBwm1nfeT6lwx63pI3AFuDuJe7bJWlC0sSpU6d6U52ZmT1J5uCWdAHwUeDtEfHI4vsj4oaIGI2I0XXr1vWyRjMzWyBTcEsaJAntWyLiYL4lmZnZSrKsKhFwE3B/RLwr/5LMzGwlWUbcW4E3AC+XdE/69aqc6zIzs2VkWVXyWUB9qMXMzDLwkZNmZhXj4DYzqxgHt5lZxTi4zcwqxsFtZlYxDm4zs4pxcJuZVYyD28ysYhzcZmYV4+A2M6sYXyy4wcYnpxp/JRGzjhw5AHdcC6dPwNAG2LYXNu/sexkO7oYan5xiz8GjzMzOATA1PcOeg0cBHN5mSzlyAG57K8ymV5Q/fTy5DX0Pb7dKyuTIAXj35XBNO/l+5EBuL7X/0LEzoT1vZnaO/YeO5faaa9bH98fsSe649mxoz5udSbb3mUfcZdHnv+Ynp2c62l64Eo12rKFOn+hse4484i6LPv81X99udbS9cCUa7VhDDW3obHuOHNxl0ee/5rvHRmgNDpyzrTU4wO6xkVxeb81KNNqxhtq2FwYXDWwGW8n2PnNwl0Wf/5pv3zLMvh2bGG63EDDcbrFvx6byTkyWaLRjDbV5J1x1PQxdAij5ftX1hbTqFBE9f9LR0dGYmJjo+fPW2uIeLiR/zQv6H6N0/P5YzUk6HBGjWR7rEXdZlOiveSn5/TE7wyNuM7MS8IjbzKzGHNxmZhXj4DYzqxgHt9WLD4vvjt+3SvEh71YfPiy+O37fKmfVEbek90p6WNK9/SjIrGs+LL47y71vB3/Jo++SytIqeR/wypzrMFs7HxbfnZXen/nRt8O7VFYN7oj4DPDNPtRitjY+LL47q70//tRSOj2bnJS0S9KEpIlTp0716mnNsivRSYAqZan3bTF/aimVngV3RNwQEaMRMbpu3bpePa1Zdj4svjvnvG/L8KeWUvGqEquXzTsd1N2Yf9+WO5mXP7WUitdxm9lZ/tRSCauOuCV9CHgZcJGkE8DvRMRNeRdmZgXxp5bSWzW4I+Jn+1GImZll4x43MD45xf5Dxzg5PcNQaxAJpv93lvXtFrvHRsp7VRgza6TGB/f45BR7Dh5lZnYOgOmZ2TP3TU3PsOfgUQCHt5mVRuMnJ/cfOnYmtJcyMzvH/kPH+liRmdnKGh/cJ6dnevIYM7N+aXyrZH27xdQqwby+vcpRZSW0sG/vXr1ZvTR+xL17bITW4MCy97cGB9g9NtLHitZuvm8/NT1DcLZXPz45VXRpZtYDjQ/u7VuG2bdjE8PtFgLarUGe8bRBBAy3W+zbsalyI9Wl+vbu1ZvVR+NbJZCEd9XCeSXL9eTdqzerh8aPuOtouZ58FXv1ZvZkDu4aWqpvX8VevZktrVGtkqastJjfpybsq1kTNSa4Fx8hWfejIuvWtzezsxrTKvFKCzOri8YEt1damFldNCa4vdLCzOqiMcHtlRZmVheNmZz0Sgszq4vGBDd4pYWZ1UNjWiVmZnXh4DYzqxgHt5lZxTi4zcwqxsFtZlYxDm4zs4pRRPT+SaVTwH908CsXAd/oeSH9V4f98D6URx32ow77AP3Zj+dExLosD8wluDslaSIiRouuY63qsB/eh/Kow37UYR+gfPvhVomZWcU4uM3MKqYswX1D0QX0SB32w/tQHnXYjzrsA5RsP0rR4zYzs+zKMuI2M7OMHNxmZhVTeHBLeqWkY5K+IunqouvplKT3SnpY0r1F17IWki6RdJek+yR9SdLbiq6pU5KeKunzkv413Yd3Fl1TtyQNSJqU9PGia+mWpAclHZV0j6SJouvphqS2pI9IekDS/ZJeXHRNUHCPW9IA8G/ATwAngC8APxsR9xVWVIckvRR4DPjriLi86Hq6Jeli4OKI+KKkC4HDwPaK/bcQcH5EPCZpEPgs8LaI+FzBpXVM0q8Do8DTI+LKouvphqQHgdGIqOwBOJLeD/xTRNwo6buAp0XEdNF1FT3ivgL4SkR8LSIeB/4W+KmCa+pIRHwG+GbRdaxVRHw9Ir6Y/vwocD9QqatOROKx9OZg+lW52XdJG4BXAzcWXUuTSRoCXgrcBBARj5chtKH44B4Gji+4fYKKhUUdSdoIbAHuLraSzqUthnuAh4FPRUTl9gH4I+AdwHeKLmSNAvikpMOSdhVdTBcuA04BN6dtqxslnV90UVB8cFvJSLoA+Cjw9oh4pOh6OhURcxHxQmADcIWkSrWvJF0JPBwRh4uupQdeEhEvAn4S+JW0rVgl5wEvAv48IrYA/wOUYh6u6OCeAi5ZcHtDus0KkPaFPwrcEhEHi65nLdKPtHcBryy6lg5tBV6T9of/Fni5pA8UW1J3ImIq/f4wcCtJa7RKTgAnFnxq+whJkBeu6OD+AvBcSZeljf/XAR8ruKZGSif2bgLuj4h3FV1PNyStk9ROf26RTHo/UGxVnYmIPRGxISI2kvx7uDMifr7gsjom6fx0kpu0vfAKoFIrryLiIeC4pJF00zagFJP1hV7lPSKekPSrwCFgAHhvRHypyJo6JelDwMuAiySdAH4nIm4qtqqubAXeABxNe8QAvxURf19gTZ26GHh/ulrpKcCBiKjscrqKezZwazIe4DzggxHxiWJL6sqvAbekA8uvAW8uuB7Ah7ybmVVO0a0SMzPrkIPbzKxiHNxmZhXj4DYzqxgHt5lZxTi4zcwqxsFtZlYx/w+kWsXj3U1s3AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -176,8 +175,7 @@ "qsvm = QSVMKernel(feature_map, training_input, test_input, datapoints[0])\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "run_config = RunConfig(shots=1024, max_credits=10, memory=False, seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", "\n", @@ -187,7 +185,7 @@ " 'algorithm': {\n", " 'name': 'QSVM.Kernel'\n", " },\n", - " 'backend': {'name': 'qasm_simulator', 'shots': 1024},\n", + " 'backend': {'provider': 'qiskit.Aer', 'name': 'qasm_simulator', 'shots': 1024},\n", " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", "}\n", "algo_input = SVMInput(training_input, test_input, datapoints[0])\n", @@ -214,7 +212,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd0VWXWxp+XkISSkAChBAIJhN6bCAiCdBgULKCMOIgwtgELY0EdxzL6WUZFnWJHUVFgYEQQEJBepHdCCxAgISRAGkkgBd7vj9zM4mY/R2OCF+LZv7VYyX3Y595zTu7Oyd1nv8821looiuI+yl3pHVAU5cqgya8oLkWTX1Fciia/orgUTX5FcSma/IriUjT5FcWlaPIrikspVfIbYwYaY/YbY2KNMZMu104pivLrY0ra4WeM8QNwAEA/APEANgEYaa2N+YltxItVrBhEYwMCKgktIrJ2sffv6OHjVI9uHCW01IyzNDYzNVNoQVXl/mamZdHtK4dUFlpSfAKNDQyUx3vx4gUaW768v9CiGkbQ2LjD8ULzK1+extauEya0igEBQrtw8SLdPjWTnAeH91dYSBWhHTx4lMZWJ/uVncHPed75PKFVCpHntmqVYLp9Qnyy0MLr1qCxaenyfRMawp+3gr/8mWWeP09jKwUGCi0nTx4XAKSmZnjvU8oZZGedNTS4CPxdUDw6A4i11h4GAGPMdABDATgmP6NRo45Ub9CgjdBee4//cWGMPNY/3v4wjZ2zYIrQZixdTWPXzJZ691t7CG3dnHV0+2uHXCu0yU/8hcZGR3cQWmZmKo2tVk3+Evx8+t9p7OiR8pyFhlWlsY+/eK/Q2tSrJ7SMc+fo9rPXrhdafi5/0/5xcH+hDRw4jsaOfm6s0LYu2UpjEw7KX64dB8j32IhBvej2Tz/2ttCeefkBGvvN/JVCGzr4ehrbom5doa3ev5/GdoyKElpssvylBACzZi3xevzxWy/SOEZp/uyvC+DSy2u8R1MUpQxQmit/sTDG3AtAXlIURbmilCb5EwBc+jdhhEfzwlr7IYAPAf6ZX1GUK0Npkn8TgMbGmAYoSPo7APz+pzaoWDFIfMbftUt+bgKAIXfKpwoL5sWUKhUrCs2pWHYyPV1o+zfuo7FterUVWla6LDQNue93dPtNizYLLTi4Go2Nj5f70KlrXxqbTfahXDn+CS4p6YjQUlJO8H04c0ZoTWvL+kJlUpACgH4d5PmKSeAFzrwL8ufT89Y+NLZ9ZKTQEiJlIRMA6jSqI7RGzeX2p87yIm/r61sLbXc8f61m7RsLLTKsOo3Nzc+Xr0XqKQAwfdVaoWWlyeIzAFSt5V2/8fMvfkqXOPmttfnGmPEAFgHwAzDFWrunpM+nKIpvKdVnfmvtAgALLtO+KIriQ7TDT1Fciia/orgUTX5FcSm/+n3+SwkIqCQ691hVHwBemXSf0P7vSd4u8MhfZFdWtwG8crztSJzQut7YlcaO7Had0D5bukxoT9/JO8Aeevl5oaWknKSxXboNEdrBmJ00lvG31z+hemSDFkJr3UNWtAGgYc2aQvvvZnnHIqoGb3f96M2vhDbigWE0dtoK2T0Zf4BX1TdEHxCaf6BsOwaAC+QuQsMa8rjCQ0Pp9nG75N2Rh0fdTGNfnPyZ0FgbLwCkZWcLbWRX/r7r2LSR0NrWr09jvyny8wmswM8LQ6/8iuJSNPkVxaVo8iuKS9HkVxSX4tOCX0RkbbEs16lllxX32NJdAFi1T7bGnnZo3zx1Uraw+jsUSViL8H0PvyK0vfs30e0/XbhUaIeO7KKxBxIThVY/TK5jB4A80iq6JS6OxvqRc1aTrKUHgLW79gqtTwe5tLqGw1r4uybcJrR2pDUXAJLIsTWN5J4EB47JQmCPLrKVGAACiVcBa/+ev3Ub3f7WsbLwupK8vwAg+6ws4sUnJNHYRlHy2BLT0mhseGiI0JzapPOLFDh/iT+HXvkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIpPq/2ArNizSizAW3ZZVR8Arm/WTGhrD8iWUACoWUVWuotWTAt58LHXhdb91u5CG9j/brr9U+9K88zvtvEqc/M60oTiy0XLaWzlUOkKPPHWkTR25srFQqsexKv1I3rKduap3y0R2tJpssUZAO57YYzQgipUoLHTf1gltGE9ebtrI9J2vI/cHQGAetWkWUp1ckdp6DWd6PasAu/UCtzucdlyezI9g0QCy9ZsEdqBQ9xh+q7+vYQWFszv0BTNHyejFYZe+RXFpWjyK4pL0eRXFJeiya8oLqXE47oAwBgTB+AsgAsA8q21vIriITi4mm3f3tuR1slll63H7zqoM42tFSLbIa9r0oTGZpERSetjY2ns7M+kPeGW1bJQdftD99Dt+19/jdDuH/koje3USxYSW3RtTmMTD0tPgIfuka21ANCovnSYnfTWOzT2vhGytbUc6ahOz+YTe/adkK7AoZVlcRLgBc4Zq/nko+tayoKu08iwrJwcoYVUkuO6Gjh4EizYsV1oXRvJcwgA6w4eFBorPgNAJTL27MipUzR2wz5ZrO7YOJrGLlzmPSXpneeexPEjh371cV2F3GCtPX0ZnkdRFB+if/YrikspbfJbAIuNMVs8Y7kExph7jTGbjTGb8/Lkn2SKolwZSvtnf3drbYIxpiaAJcaYfdZarw/Fl47rCg6upuO6FOUqoVRXfmttgudrMoBvUDC2W1GUMkCJq/3GmMoAyllrz3q+XwLgRWvt907btOvQwS5b5V0tZ7PzAO6y6zSvrGWTBkJj890AoDJpN523lc96P58nZ8v3biHdcJ1muW3aLKeX1Y2WVW4AyMuTBh21qvK20upBQULLIQYfAHeT3ZfAZ/W9/5Rsqa5YUbbGjnrmbrr9vvWy/fquUXyO4fg/yNbn/877gMZOmbNIaBNuv4nGMsOX1aQtfNUy6UoMAHffMVho363ZSGMTD8nzGLvtEI09kyxNPv7276dp7N6jsu3XaQZf92ZNvR7f1K8fdm7f/qtX+2sB+MZzsssD+OqnEl9RlKuL0gzqPAyAeykpinLVo7f6FMWlaPIrikspVXvvLyWyUWM76c13vbT9G/kafTZCKzuTt5U2rFtbaE7tn9m5uUK7sUMHGvvD7t1C69G0qdDYcwLA2LueFRrzAwCAg5tlS+e1Q66lscnHZFvo6XjeKjrsjv5Cmzebr8ePaimLpCP79hRaWlYW3T6QFKWmfcdfa/RN/YT23N94wa9FN1lknfn2lzS2cz95fisFy/beCWNupdtPfPQNob377pM0dtriFUK7uVc3GpuSKYvVbIQXwB2InXwRJox+xuvx+vVzkZFxulgFP73yK4pL0eRXFJeiya8oLkWTX1Fciia/orgUn7r3ZqZmYs3s1V5am168T2hkN+kk62T8wVx2neb63TBcVq9ZVR8A+rZqJbT3vl0otBfvH0+3f+GT94T26vgnaOyNI0cL7ctXPqWx5ctLh9aWXeRMPQB475XPhdZ5kDQZAYA+ndsLbe5m6TpbNYgbdMz+cJ7Qxk3krsLzNsr2WuZKDACBleTx/v5xeb4A4FymNGvp2aWd0PId3kuhNaUxzEWHO2JsVt9+YmgCAEdOyPbeu/v0orFbjhwRWuPa8o4WAEx84xGvxw+N3EDjGHrlVxSXosmvKC5Fk19RXIomv6K4lCve3puVzltFa9aT7qpr53B3V9Yy+68nZBEQABb88LXQnFonpyz4QWgPDB0ktC9Xr6Hbd4puKLTvV/K14WERYUJrHlGXxu45Jtd7t46Uo6MA4P7bJwjt4clP0dhaZJRZM+Kyy9ySAWDj4cNCC67Ax0fVqiKfw2l0G2vVDiQ+BQDgV05ez+JTUoTmNILLqS2cwUaGRYXJn6MTTu+7lXv3Co39HBgDb7gBO7Zt0/ZeRVGc0eRXFJeiya8oLkWTX1Fcys92+BljpgAYAiDZWtvKo1UDMANAFIA4ACOstak/91yZaVlYV6RoN+Q+bvD49J0PCG3v/k00dmD/u4XmNEKLmW22qc+LZaxzjxX3RvXga/S/3SK7476fOp/G9rlDrm//95Nv0tgmLWVX5I9BvHjU9zZpdHk+S3bBAUDdqCihHT9zRmgfTJ1Dtw+pIYt4N/fn5+YMWd8+a/laGsuK0t3at6SxyRkZQmsVESE0dlwA8CMZ3TagdWsae4AU/KqS0WAAP95ypDgJAE3Dw4VWkxRjAVnM/CUF/OJc+T8DMLCINgnAUmttYwBLPY8VRSlD/Gzye4ZwFL1XMhTAVM/3UwEMu8z7pSjKr0xJP/PXstYW/s1zEgU23pRLx3XlnOf39BVF8T2lLvjZgg8Zjh80rLUfWms7WWs7BVbgq7YURfE9JU3+JGNMOAB4viZfvl1SFMUXlHQ9/1wAowG86vn6bXE2qhxSWTjSblrExyY99PLzQvt04VIa+9S7st5Yx6F98/sVcr3zO898RGPZenzWssuq+gAwtGNHoX0wjw81ev9Z6RpbP1K61gLAOeJiHNmKjydr3rmZ0J6+834a27mLbF1+5e2JQmvVle9XbXLOz57nk5lZ22/SUbnmHQB69JH+A199zu+a1IysKV+LtA13aiBHvAHAjhU7hOZU7d++aqfQmpBKPcAr+/WrV6exjMPJ/Pq649gxr8dZOcWfhP2zV35jzNcAfgTQ1BgTb4wZi4Kk72eMOQigr+exoihliJ+98ltruRUL0Ocy74uiKD5EO/wUxaVo8iuKS/GpgWdSfAImP/EXLy04uBqNTUk5KbRDR3bR2O+2bRPa/SMfpbF/el0WsJxGaDGzzWxSiHRq2WXFvftuLNosWUC/fmOElp5+msbm5QULrc8AOd4MAJ64W46a6j1oOI0d98jtQsvMka3A3cnIMgCYs/JHoVWrVZXGspbblBNy3T0AxMTImffh0bywdpGsx2fjxdi6fwCwF+T2rGAIAJEtZFu4Uxvu6bOy7dgJZuDZ3GE9/+71MV6Pzzm0bjP0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUnxa7Q8MrITo6A5eWnz8PhrbpdsQoTHzBIBXQjv14hX8vLx8oR3cfIDGshFazGWXGXEAvGWXVfUBYMkSOZqrSRM+Vis/P1doadl8xWR4uGxH/vyjl2hsnUbyPP7+dnl34nyefH0ACI+QrbVt69ejsRcuyrVglUK4EUbXjnJs2oo1W2lshcrS1KRRLbno9Fwub4P1rxAgtKT0dBqbclL61+Rf4GPAAstLt2Ent+LqQUFCO+TQ3luvqff5DSD774Re+RXFpWjyK4pL0eRXFJeiya8oLsWnBb+LFy8gM9O7SNKpa18aezBGrpWu7zAK6ctFy4XWomtzGlurqlxzXtRj4H/P+4oswv1hnLQrdHLZZevxnVp2WXHvwAHuVhwRIdfoH94vR3gBQPMu8jzExvLjrRNdvNFcK8g4KQBISzsrtPggburcjKx7TzzEC7p74xOElnueFx1TEmWL8MlWsmDnNJYr47Rswz2Xy1/LP1AW8ZyelxXxnNbet64ni6R7EuQ5AID2TaO9HldyGI/G0Cu/orgUTX5FcSma/IriUjT5FcWlFMfDb4oxJtkYs/sS7XljTIIxZrvn3+BfdzcVRbncFKfa/xmAfwL4vIg+2Vor+1d/6sXK+6NatdpeWnZ68Qd55OXL1lwAqBwq5wHE7YqjsR2aNxbaji28xbh8eVk53XNMVtXZ7DyAu+wyIw6At+yyqj7AW6IzSaUdAOIPyNmEQUHcYKNrO3l3Yv+JE0KrFMBbSFcs3y60NuOiaOwxh1l5jB7N5Xn4ah+/u8HeCw1q1BCaU8suMwPJyc+jsezuxB4yCxIA6lSV59zJoIPdMWD7BQAnUr3vpjjlCKOk47oURSnjlOYz/3hjzE7PxwJ+KVEU5aqlpMn/HoBoAO0AJALgXS7wntWXmyv/DFYU5cpQouS31iZZay9Yay8C+AhA55+I/d+svoAAvoRRURTfU6L2XmNM+CVTem8GsPun4guJahiBz6f/3UtjY4wA4G+vfyK0LXFxNHbirXKuSOyxgzQ2hrRJno4/RWNbdmkjtNaR0rH1xyC5hhzgI7ScXHbZenynll1W3PvLA3fR2NgkOQJrZ5ERT4WEkRbUBXv2C23jgo10+2H3yJs+4Q5j02b/sFpot4+/mcbWrSYdngMr8TbW7l1k8bVqZekTUCOYF15Zq3d0TT6Eesjw3kLLdyjMLVi0Vmgb6/BxXfcOGSC0NvXl+w4AUjIzvR6XM4bGMX42+T3junoBCDPGxAN4DkAvY0w7FEznjQNwX7FfUVGUq4KSjuuSl2VFUcoU2uGnKC5Fk19RXIomv6K4FJ+aecQdjsfokZO8tKQkOZcMACIbyFZTP4dK5syVi4XWqL5s4wWAxZtl1XXYHf1p7HuvFO1oBu6/fYLQ+t52E92+eWfZlspm5wHcZZcZcQC8ZZdV9QHuXDvm3udpbJ3H7xRai2h5x2Lcu9yA5dMfpKlKSHN+DN06tRaaU8svc8Qd1r8Hjc3Jk624AcQ519/Pj27PzF7yHBx548/IxteeLfjxhg2UdxeYoQkAfLRwidA6NGvE9yHZ2xwm93K29yqK8ttEk19RXIomv6K4FE1+RXEpPi34+ZUvj9Aw7wWAKSlyvTgAtO4hC0I1Q6rQ2OpBspgy6a13aOy+BPl6u9fw7uTOg6Sj7qBxg4R2Pus83f7pO+8XWu9Bw2ksG6Hl5LLL1uM7teyy4t6nH0oNAKrXle7IEx+SRcCtDm3WLaKk62z6Ob6Yi62xX7ZqM41lhbGVW3bRWP8KsrhXMUBqBrx4vHunbAsPc2gFzkzNFFpQBd7qHVheppqT029RR14A2H+COxvXqOZdoCxPXscJvfIrikvR5FcUl6LJryguRZNfUVyKJr+iuBRjrfXZi7Vs08Z+PX++lxbv0NLZsGZNoa3dxWfEjeh5XbH34Xf9/yC0UU+MpbF9OrcX2tFT0viDmU0AwPOPvSu0R17gr7XgO2luwWbnAdxllxlxAMBxcn5nfbWIxr7x3HihvT/3e6HVr19baABvJf528RoaGxQq9/d318m7KwAwb/UGoXVs1YTG+pNq9/QvFghtxJ0D6fb1w6TBRno2v2PB2n6PnuazGFMzpVlLKDEZAYDmdeXP/cxZeWeBxfbodh22btlSLEcPvfIrikvR5FcUl6LJrygupTjjuuoZY5YbY2KMMXuMMQ979GrGmCXGmIOer+rdryhliJ8t+BljwgGEW2u3GmOCAWwBMAzA3QBSrLWvGmMmAahqreWL1T106tTJbt7s3cLJ1l8DwH83y1bPro34mubvVq4X2pgb+9HYW276k9BmffsvGjt38xah3dBSFttYUQ0AaoWECC0zh7cC+/vJQhXbHuAjtHbFxtFYth6ftdYCwFxSWLv/JlkY+2KVLE4CwOd/myK0Ca/JIiIA3NSho9Bmrpc/RwAY0l4WXtcd5O7MJ8ga+zrVZUF2yVx+DI07SB+IwzsO09isdFmE+27GFzT2+HFZrH7q7+/R2DDSZm0cvCyaNY3yevzgiBHYv2fP5Sn4WWsTrbVbPd+fBbAXQF0AQwFM9YRNRcEvBEVRygi/6DO/MSYKQHsAGwDUusS7/yQAbm6uKMpVSbGT3xgTBGA2gEestRmX/p8t+OxAPz9cOq7rFLlHrijKlaFYyW+M8UdB4k+z1v7XIyd56gGFdYFktu2l47pqOHzWVBTF9xRnYo9BwZCOvdbaty75r7kARgN41fP12597rgsXLyKjyPruyoF87FIU+UVRowpfV7102jKh3dKnO40d9czdQkvLkt1XAFA1SM56Z0W4D6bOodu36iqLg92bNqWx5/NyhbZiL+9orBQQIDSnEVrMbNNpPT7r3GPFvbuu5+aZbDZ9dk4Ojf1k8VKhDb+W+xe8NmWG0Mbcxjv0ehHD0AU7tgtt3D18NFg90q15sqMcAeZE/+E3UD2FdOjNfms2jX3jg6eEFlKRz7nc4eDjUByKs/L/OgB3AdhljCk8i0+jIOlnGmPGAjgKYESJ90JRFJ9TnHFdawAH2xOgz+XdHUVRfIV2+CmKS9HkVxSXosmvKC7Fp+69qZlZmL3Wu4WzXwdeSf3oza+EdteE22jsfS+MEdo+0gILAPvW7xPagHZtaOzsD+cJrepEuQ49pAZvw60dKkc/zVn5I40Nj5D+BWlpZ2nsiuWyej3snsE0lo3QYi67AF+PP/lx6YLMqvoA0DIiQmg/7ObOyF+99pnQ1s1ZR2MffHyU0Oas4q3AcXuOCm3sGNl8+ldyXABQMUhW1auHc7+GhTNnCi0/X961AYCmTeWdjJf+8Wcau/mwbCfOzeVt8H5Fxo45jRZj6JVfUVyKJr+iuBRNfkVxKZr8iuJSfGrgGdW4iX3mnX96aZH1+Izyi2S/ro2WY4wAPiJp1/HjNJa1xi5cIdexA0CXznJkWHAF2Y7s1KJ89rxsbd2bkEBjO0c3FFp8SiqNZa8XToqLAG8LdRqhNW3uD0Jr2lruV3gIfy32vH1btaKxC7bLouW0yf+hseEN5Xtk7fdyX53YsEEWbhNTuQfDM0//U2h/ef4+GpuWnS20pPR0Gsveo19/PJfGvvnyw0LLPM99IN752PucffTmCzhxPE4NPBVFcUaTX1Fciia/orgUTX5FcSma/IriUnxa7WfuvU7tiNNWSBOJLs35iKblm3YI7e5BfLXxjYPHCW3mnH/T2HkbpYPw4E4dhHYmk49SCvSX3dPZObz9M9DfX2hOBg7HiFvwj1t4G223TvKOhZN774yl8pw/MHSQ0JgRB8Bbdv/8Jm9hHdyundCcXIFv6SzHeC2N2UNjU1IzhNawrrxbMOMTeQcAANreINvN96zlr2UvytyZP5O798bF7RLas5M/prGsxTj3HH/fXN+7k9fje2+7Dft279Zqv6IozmjyK4pL0eRXFJdSmnFdzxtjEowx2z3/+JpSRVGuSkozrmsEgExr7RvFfbGQkBq2a9ehXlrPW3lhLv6AXDM+6j7uuBoVJscbLdoi20cB4JZucl31M8/zgl/lUOne+8JjY4U2ZQFvNU06miS0lBNynBQAVAqRs9oTDyWSSM7t4/m5ySUF1dg9R/hz/E46z66PjRWak8vuuD+9JLTzWbwtdeBY6b7r5Ar8j//INtg3HpMOtwCQnCzdbO+d+KLQbhzJx7kNaCsLkQu2baWxL49/WWjX9r2exrboJp2cnRjYSY4nO5mWRmP//uwHXo+/n/8pzpxJLFbBrzgGnokAEj3fnzXGFI7rUhSlDFOacV0AMN4Ys9MYM0Wn9CpK2aI047reAxANoB0K/jJ402G7/43rys3lq8kURfE9JR7XZa1NstZesNZeBPARgM5s20vHdQUE8KYVRVF8T3Gq/XRcV+GcPg83A+AtZoqiXJWUZlzXSGNMOxRM540DwB0PLqF6nTCMfs67Wt4+MpLGbog+ILQDx7hrbKOa0vn2upbNaOyUOYuE5lSJDawkTTMuXLwoNKc7Jj36yLbUmJhDNLZrR2l6sTeeG3/0aC6PrS6ZMQcA+aTa3yycG6jMWy1NTcYMlrP+2Ow8gLvsfv35fBrLWnbTSFUfACYMv0loU5etoLHlyvsJbeWMlULLyeNuuO9/t1BowQ5t1g+8Kk03erfk7yV/P5lq87duo7Hz1sm5iz3atqSxzbt4v96KlcX/67o047oWFPtVFEW56tAOP0VxKZr8iuJSNPkVxaX4dFxXdkYWti7xbpVMiORFPP9A6bLbowsf7bUvUbbB1ggOprETbpfFo7597qKxv398tNDYuvtu7Xkx5itS7AqP5sW2FWtkC2nueb6G+6t90pmYFScBYFh/2TK7cotcWw4AHVtJv4R1Bw8KbcxtsjUX4CO0nFx2l97YVWhOLbusuDe6dy8aGxYmR5G1bi1bbltG8Pr0uMFyJNz3G+TIMwDYvHiL0DLTs2hsrVqyIJufm09jxw6URdbjxMMBAGK3ebdf52TzdmqGXvkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIpPq/155/OQcNC7ZbVOozo09gJpSw0sz3e3HmltZQ63AFCwVMGbzv2609hzmbJy6ldO/r5MzpCOsQBQM1K2HV8k7cEAUKGynOWWksiNP5jJSHeHOyGsjdW/grxjAQD+5PyeOCHvpPRq3pxuH7fnKNUZzGWXGXEAvGWXVfUB4PRpeSckOFi+PzYe4m3WWVly1t72w9z8JOWEfI8d2cljTVv5vstyuDOQQtygY5OkMQwAlCtXLN8Ovm2Jt1QUpUyjya8oLkWTX1Fciia/orgUn47rqtcw2j7y4uteWpOWDWhswxqyWFbFYV01W8t+ODmZxiakyCLaih/k+mkAGDZUutlWDwoSWjlSRASAo6TomJbFizyNatUS2sl0WXwC+LitqpWl+y8ABJSXxb34FF4Mfe/9WUIbcEtPoWXn5tDtW9SNEFqTcF7QXUHGbc3+Qq6lB4CsNHnODsXspbGsuDd37j+Eluxwbl+b/LnQ/vyw9CkAuFdCksPzhlaWRdp//XM6jX3jhQlCyzjHLfA+me19zt557kkcP3JIx3UpiuKMJr+iuBRNfkVxKcUx8KxgjNlojNnhGdf1gkdvYIzZYIyJNcbMMMbINbiKoly1FKfDLwdAb2ttpsfCe40xZiGAiQAmW2unG2PeBzAWBV7+jlStEowRg3p5aafOnqWx4aGhQnMyPBx6TSehOc2g/3rWYqFNGHMrjc2/KAs61YOkT4DTWutODWQxk3UIAsA5UkRjZqEALyo5+Rf4+8nuOEMtGYERd8p1+rNmyPM17h4+Guyvj78jtMRUfm5efOkjod08ehCNZV2KTuvxWefex1/IMWI1Q0Lo9itiYoQWXac+jX32nQ+EtnL2Uhrbrqd8j/510jgaO2zoeKHt3r2Gxm7audbr8Zdv/x+NY/zsld8WUNhv6O/5ZwH0BlBYHp6Kgvl9iqKUEYo7tMPPY9udDGAJgEMA0qy1hVYk8dD5fYpSpihW8nsm87QDEIGCyTzcFJ9w6biuFIc/jxVF8T2/qNpvrU0DsBxAVwChxpjCmkEEADph4tJxXdWqVy/VziqKcvkoTrW/hjEm1PN9RQD9AOxFwS+BQrfD0QC+/bV2UlFmvSnoAAALOUlEQVSUy09xqv3hAKYaY/xQ8MtiprX2O2NMDIDpxpiXAGxDwTy/nyQhPhlPP/a2l9b6+tY0Nm6XXBd969ghNDYxLU1oB07KdegAcPcdg4U28dE3aGxoTVkRfp20Xv4YGys0ANixYofQ7AVewfevIO+UZpzmPgHME+DaIdfS2FpV5V2T3TulIy8AjLqxj9Aad2gsNOafAAAVg2T79TNP/5PGdv6dnOs6oG07GstGaDGXXYCvx//jxOeExqr6ANCrhRy3tfaAHB0HAA+NlO+Fbn3709iIJrL1+dv1m2jslGmvCi0nnzv9jhr+qNfjI4ekn4ETxRnXtRNAe6IfhsNkXkVRrn60w09RXIomv6K4FE1+RXEpPjXwDK9bA8+8/ICXtjuej+t6eJRsIV25bx9/XtIKzNbdA8B/lsk2yXfffZLGXiym18GA1rxoyXSnWe+sZfdcLh/XlZMv212ja0o/AADII2vOwxxagdOz5ZrxwzsOC+1kR24WWj1cFgIfvH8EjZ389pdCW7BNjiwD+DlzGqHFzDb7tW0jNKeWXVbcu66JHGMGAJ/+IPdhyVTZDg0AiYfkOX98/J00dmDv24W2Y8cKGpuW4e1P0a0Lb4Fn6JVfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaX4tNqfln4W38xf6aU1ay/bRwHgxcmfCS37bDaNbfe4rNyuj+XjmBIPnRDatMUraCx7vX49ZVPjgUTeSrx91U6hRbbgVeaUk6lC8w/kY7USD8nXGzK8N42NPyPdijNT5TgoAOjRoZXQstJ5LGPhzJlC+/0feEu2vSjvpLw8/mUa+8CrDwtt8+ItNJaN0LqhVUuhMSMOgLfssqo+AIzpK92dO3Tg7b0gDs9OI8Pe+XIyfw7C+Ee93bCPHT9Z7G31yq8oLkWTX1Fciia/orgUTX5FcSk+LfiFhgRj6ODrvbTIMO7uU8GfjJlK4DPKT6bLde/XN+NOY9Mny5FUD47la8P3n5DFwaiwMKFVrcRHZTUJDxdazSpVaCwb/eTk3ruHtETnO8T2bNFcaEEVKtDYHw/Kdf7fzfhCaP2Hy0IXAOTny3Zkp/FV82fK571lNHez7d1SrrHPdJhtf2SnbO9l++DkssvW4zu17LLi3tatPDY7W75Hr9l9DY2tHSVbtQ9s4R4Mve/0LvQuXSrbpp3QK7+iuBRNfkVxKZr8iuJSNPkVxaWUZlbfZ8aYI8aY7Z5/3H1RUZSrktLM6gOAx621snzuQAV/f7So6z3YJ9fBlTQtW7bWNoqSDqgAsGyNbPV8cDhvKz2TLO8YpGTyFtYjJ2Rs+6go+ZwO25cjc/lOn+WOvIHl5d0NJ0OSOlWrCm3BorUkEggbKE0kAsvzH3tqpqygHz++V2gpZ/nxNm0qHYSd7izExe0SWotusqoPAP5+cn9r1eIOwqatbKMNrVxZaGx2HsBddpkRR8GLyddiVX0A2LdvvdDST/M7Iaz9ulIwN4HJy/U2dmFt004Ux73XAmCz+hRFKcOUaFaftXaD579eNsbsNMZMNsYEOmz7v3Fdp06duky7rShKaSnRrD5jTCsAT6FgZt81AKoBoEZ4l47rquEwNltRFN9T0ll9A621iZ7x3TkAPoUO8FCUMoWxP+NQa4ypASDPWpvmmdW3GMBrALZYaxONMQbAZADnrbWTfuq5mrVqZT+aPdtLa12vHo0NJS2zbCwXAMxdvUFovTpJx1YASCeFRKfW2G6NpdcAc/R1ciCu/wsGk1YhDrVZOTk0NsDPT2hTFy2jsaMHyHX+Tm3DK/bK4t7GVduFtmO5HEMGAC/9489Ce/8fM2hsWIRsk45sEUljywfI0lR+Li8UZ5yRBbcjZPTbXyfxVmI2QmtYV35dY+vxY3bzNfqsuPf8Q3fT2L0JcuYtK/ICwLgx3qPIflj8OVJSTspKJKE0s/qWeX4xGADbAdxfnBdUFOXqoDSz+rh1jKIoZQLt8FMUl6LJryguRZNfUVzKz1b7LycdOna0a9at89Kmr+JtqR2bNhJaeGgIjQ0KlC2ks9bJdkoAYMfbqgGvMjMyzsl5dk2JaQcAVAqUfU9bjsjKM8BbeZ3uhLBqfYBDy+5HC5cIrX3TaL4PwXIf5q/aKLRBPXj1e/NhOdfv5k68jfbtL/4rtD/cMoDGzlsn92HswL40lrVqVyXtvcOGjqfbT5n2qtBu7M9n6jGX3SMOjWyx2+RdgNuG8bJZ8yIt8ADQosV1NPaVL971ejxx1CjExsQUq9qvV35FcSma/IriUjT5FcWlaPIrikvxqXtvTl4eYpOTvbSsNL42vG19OdYqhrQ9AkBYsHTE7diYF7W2HYkTmtOa88a1awuNOcE6OfIeLnKsANC8Th0ae4jE7nE43ouk4NeGnC8A6NBMFk73n+DjxZpAHq8ha9ZDSCsyAOQWWVsOAJnnz/PYc9Lp96RD+3aPtnLc1vEzciwXAMQmSQ+GDsSDYffuNXT7HOIvsWPHChrLcHLZZevxnVp2WXEvJoYXxge0bu312Olnw9Arv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL8Wm1PzU1A7NmebebVq3FK57fbN4sNDbPDuBGGAuX8fbe2wb1FNq9d1IHMkx84xGhsbsQ8SkpdPsdx44Jbff6GBpbr6ls5XVqwz2Rmio0Jwfi+OTTQqtRLZTGNq8r70Skk3ZmdlwA4EdMRt75+D80ts/ArkL7+7Mf8P3qIl19Y7fF0thy5eTdiW3XybsFm3by6vmo4Y8KLS2D/3zHP/q60IrOziukqMsuII04CinasgvIqn4hFQICqF4c9MqvKC5Fk19RXIomv6K4FE1+RXEpPl3Pb4w5BeCo52EYAFmNKvvocZU9fkvHFmmtLdaADJ8mv9cLG7PZWsudHsowelxlj9/ysf0U+me/orgUTX5FcSlXMvk/vIKv/Wuix1X2+C0fmyNX7DO/oihXFv2zX1Fcis+T3xgz0Biz3xgTa4z5ycGeVzvGmCnGmGRjzO5LtGrGmCXGmIOer3zxwlWMMaaeMWa5MSbGGLPHGPOwRy/Tx2aMqWCM2WiM2eE5rhc8egNjzAbPe3KGMabkDfNlCJ8mv2fY578ADALQAsBIY4xctVF2+AzAwCLaJABLrbWNASz1PC5r5AP4s7W2BYAuAP7k+TmV9WPLAdDbWtsWQDsAA40xXVAwdXqytbYRgFQAY6/gPvoMX1/5OwOItdYettbmApgOYKiP9+GyYa1dBaDokq+hAKZ6vp8KYJhPd+oyYK1NtNZu9Xx/FsBeAHVRxo/NFlC4/NHf888C6A1glkcvc8dVUnyd/HUBHL/kcbxH+y1Ry1pb6JB5EkCtK7kzpcUYE4WCKc0b8Bs4NmOMnzFmO4BkAEsAHAKQZq0tdO78Lb4nKVrw+xWxBbdSyuztFGNMEIDZAB6x1mZc+n9l9distReste0ARKDgL9FmV3iXrhi+Tv4EAJe6VkR4tN8SScaYcADwfJWe3GUAY4w/ChJ/mrW2cLDeb+LYAMBamwZgOYCuAEKNMYXGNr/F9yTF18m/CUBjT3U1AMAdAOb6eB9+beYCGO35fjSAb6/gvpQIU2DW/wmAvdbaty75rzJ9bMaYGsaYUM/3FQH0Q0E9YzmA2zxhZe64SorPm3yMMYMBvA3AD8AUa+3LPt2By4gx5msAvVCwKiwJwHMA5gCYCaA+ClYwjrDWch+oqxRjTHcAqwHsAlA4IeRpFHzuL7PHZoxpg4KCnh8KLnwzrbUvGmMaoqD4XA3ANgCjrLU5V25PfYN2+CmKS9GCn6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLkWTX1Fcyv8DkG9ma3wjJZIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd4VWW2xt+P9ATSgEBooYQighSpilIMAqIIYgHEC6LiWEZFR0cZy+jVa7mIc3UABwRERwWkiIOoFCmOCEjvICUkICSkJxBSv/tHDvNwst6tMYFA2Ov3PDxwXtY+e+9zzsrOWXt97zLWWiiK4j6qXewDUBTl4qDJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS6lQ8htj+htj9hljDhhjnj1fB6UoyoXHlLfDzxjjA2A/gL4AjgL4CcBwa+3uX9lG7Kxu/UY0tnatiDIfS/LJNKH5+vvR2MK8AqFFRUXS2NP5+ULLOJkhtAYN69Lt07NzhJafm0djbbF8H3z8fGlszYhQofn6+NDY40kpQjPG0Fj/IH+hhQYHC62wuJhuH+wvt888fZrGsuP1qcavRafOnBFaeEgIjWXkkO39HF6vauQYTuXx9yzAV74/p07LfQFAeA15vE6ZV0xeX6f3rPR5JCYkIDU1lQeXgn+6ykYXAAestYc8BzcbwK0AHJOfMeqR56j+0AO3l/k5/j55jtCiGkXR2BPxJ4T22KPDaey2hAShLZjypdAmTHyKbj9/1Vqhxe+Kp7H5Z+QPmsho/kNp1B0DZKxDMrwycabQ/AP4D8ZGrWOE1r9LR6ElZ2XR7ds1kj/Il2zbSmOjasgfYGHkBw0ArNuzX2iDu3ehsexi9u/9+4RWL5xfXILID7BNBw/R2Jio2kLbuIl//G+54RqhFTtceOkPK/KDBgCiw8K8Hvft2ZPGMSrya399AInnPD7q0RRFqQJU5MpfJowxYwGMvdD7URTl91GR5D8GoOE5jxt4NC+stVMBTAX4d35FUS4OFUn+nwA0N8Y0QUnSDwMw4tc2qFu/kfiO/+b4h2hsRpIsrI19YhiNZd+X502ZRWPv/+vjQlu+aRuNTU9KF9qiee8L7ckX76PbZ6XK78bzpk+jsazQ5OPD355hQ/oKbfXevTR27dffCS0nW54XAIz686NCW7VLfodNOSqLiACQlJkptJ6trqCxH321XGhD466jsf2ubi+0HYmJJBLYvuuA0MJqhwntxjZt6fbsfagbJrcHgInvzxZa6jH+2uxsKeshn02YS2NrRNYQ2vi/PkhjZ3+7yutxWlY2jWOUO/mttYXGmEcBfAvAB8AMa+2u8j6foiiVS4W+81trlwBYcp6ORVGUSkQ7/BTFpWjyK4pL0eRXFJdywe/zn0vtWhGic49V9QHgH/8nO//uGjuIP28D2WnV8ZoeNHb0jX2EdlP/MTS2az9ZfR7z+F+E9ubz8g4AAPQb009oA4byGyInE08KrU6TOjR22brNQpvx6ns0tv/woUIrzC+ksQN7d5PHQCrdO+rySjtrg91zTNz9BQA0jW0otLCgIBqbX1QktL0Hj9DYbavknZv33n5aaOkObccM1nEHAPf+l/w8vvXadBrbqUkToSWNkJ9FAHjn6ReF1mTS8zQ2Osa7tdzPoa2doVd+RXEpmvyK4lI0+RXFpWjyK4pLKfd6/vJwVfv29l/Lvds6U3PkmneArwPvc+WVNHb8m1OF9ojDkuBN8YeFtmLeahrb8carhdawdi2hRVavTre/+VpZ8HvqrddpbFPS/pmSyouhE8e9JLQJn06isV99skxodZty/wH/ALmcNThULrPt36Mz3Z613Pa6grf3ss8d8wMAeMvttiO84MfW+W8lsbdeLd9bAMjOzRVaoB8voi3Y8JPQRl7HC80zl68UWh0Hz4q+bWXr8dRF39DYveu927rnzPobkk8klmk9v175FcWlaPIrikvR5FcUl6LJryguRZNfUVxKpbb3Jp9ME2abzIgD4C27rKoPAP/zZ+kS1v/W62ns6i+lqWZWCjekbBMjK/BvPDtZaM//7x/p9i1byqr44ukLaCwjOJibSMTGSlNNJzfaNd8sFlpUFHdMfvC1R4TG2lL/8qe/0e0nTZGtz06mGzMnSiOMwQ/eQmP375QGmg/fxWMt8cR9/eVvhda8Lr/jERIQILSVm7fT2M6tWwjtyRffpbGvvyBNa8Y99w6NPdorSWhjbpYGLgDwQanW58B58vid0Cu/orgUTX5FcSma/IriUjT5FcWlVKi91xgTDyAbQBGAQmttp1+Lb9CkmX38pTe8NCeXXbYe/4UXuYPpweRkoV3fqhWNXb5zp9CyHdZrT31BFhjDIuQUneadmtPt+w2U57Bi6Toae+aUPIbqEbxt+P5hA4W2cHXZn7cgjxdZr7lGuuS2adBAaD8d4hNsusfGCi3L4bU9kSFbl9l4NIAXHad/JduWnbi997VC+4XsHwCKyKistg2l9wAAbDh4UGhO48ka1KwpNCevg+OH5VSpEQN709h1B7yP4cmRI3Fg9+4LPq7rLL2ttdyvWFGUSxb9tV9RXEpFk98CWGqM2eQZyyUwxow1xmw0xmw8lc3vpyuKUvlU9Nf+HtbaY8aYKADLjDF7rbVrzg04d1xXgybNdFyXolwiVOjKb6095vk7GcBClIztVhSlClDuar8xJgRANWtttuffywC8Yq3lrgMA6tZrZO8e6+2k2qorr8ozl91vtvOZeqxld8DtvDoa16aN0D74Rs6NA4Ch13UX2oeLlgqtML+Abh9UQxphODnnRtQJF1p2Ojc6qUNan52MMHZv+1lofsS0AwD2b9ovtI5xspU4L1e69ALAbaSqvmTDJhp7OvOU0Bo15RPet66Vd2jGjLiZxtaLkAYZEz78XGjRzaLp9g1qyar8li18DiJ7L9t0kC2/AFCDOBNv3b6Pxo4irbz5hfxz41uqrbt3jx7YsnnzBa/21wGw0Bhz9nk+/bXEVxTl0qIigzoPAWh3Ho9FUZRKRG/1KYpL0eRXFJdSqev5o6Ii8dijw7205Zt4EY+N0Lqyi2w/Bfh6fKeWXVbcu79/HI3d+/LfhRZaM1TGrd9Dt2e11NPZstAFACFhvJWXERAoC3brvpdr1gEgNla61AYG87FYXQZI/4F+nTsI7VhaGt0+N18WAn39+UfsqjayJbp7c94m7e8rn+PHn2UhEwASD8iW2c5dZZHXqUDKxpNltpKOvgDQo4Us7n32jXTpBYBHbpf+A/vjj9LYVyfMFNpjjwyjsQu+9t5fambZe2n0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUiq12n86Px/bEhK8tPSkdBrbtd91QmvRmbdOMpfd5x/mM/E+nScdU1lVHwAmvPSo0CZ+It13U5Kk2yoA3HTvIKHlZPKW3RoRNYQWVD2QxlYnsX7kDgDAX7OAIO7w+tCQm4QWnyKtGroS0w4A2HRYzkFsWb8eje3crJnQssicPABoGS2ddhNSUmlsZHt516RpVJTQMh32VURu0bDtAaDYSuOPMYNupLHrifHHoO585uGeGNnmvGjVjzS2RavGXo8DA9W9V1GU30CTX1Fciia/orgUTX5FcSkVcu/9vdSqXc/ePNjb7WvRvPdp7JjH5einm++8gcZOeeVDofk4jK/qenNXoWWnZdNY5p775N23CS05M5Nu/9bfPhba+//7Ao0tKpLrtT3LpQWrd2wRmpPz7b0DZVtoRoZ0OwaAFydNEVpAsCwg+fjya0aD+nWE5vT5SkyURdI7iB8AAGwgbsFdScEQAFbtka3Waany/RnWi+/Lt5r83Pxri3y9AWD1/O+FlvoLL0QOeGCA0FbNXkVjA0Nkofe20bIYCwBpOd4F5GdHj8bBPXvKtJ5fr/yK4lI0+RXFpWjyK4pL0eRXFJfymwU/Y8wMADcDSLbWtvFokQDmAGgMIB7AndZa3qp3Du07drTLV6/20pzGJr35vCwEPvPffFwXK4zNm8fHOYVGyu64LSt4QYd17v3zc9khGEXWgAPA/uPHhZZbwM0+favJn8OsgwwANu6T3WKvPvgkjV206kuhBfj50VgG624741BcZN1xK3btorF9WrcWWuni1VmOkC7DRIcOv9wc2bl3d5/rhbaRdCMCgB/xDkhyKOj2JCPhnLoUc4i/RPO6snMRAP6xcInQ7hnIPSdKjwe7JS4O27duPW8Fvw8B9C+lPQtghbW2OYAVnseKolQhfjP5PUM4Slu33Arg7ITNWQAGn+fjUhTlAlPe7/x1rLVnf6c9gRIbb8q547pSya9viqJcHCpc8LMlRQPHwoG1dqq1tpO1tlPNWrUqujtFUc4T5U3+JGNMNAB4/uYtY4qiXLKUdz3/lwBGAXjD8/eismyUnp2D+au8R2tlpXK30X5j+gnt5mulBgAtW8p10S9Pfp7Gbt0pXV+dbniw9fisZZdV9QGgRbQcCTVkyDgaW7+5XMPt9NokHpLV/nfnzaCxQ+OGCq1x47Y0dvgzI4X21cp1Qru2C9+++HeshWc+AW0aNKCxlvxi2awO/6bJ7l5NXfC10MbeJtttASCQuPruSEyksQvXrhdaz3bSKRgANu4/ILQftvI7IUPjpJfF5H9+QWML8rzvHqWk8TsTjN+88htjPgPwI4CWxpijxpj7UJL0fY0xPwOI8zxWFKUK8ZtXfmvtcIf/4qtsFEWpEmiHn6K4FE1+RXEplWrgmZ+bh/hd8V7avOnTaOyAoSOE9tRb3JRz8XRpqrliqSxUAUBYLdmK6zRCi5ltsvX495DCIMCLewsXyvZgAPDxkW9FUVERjf2oVIs0wNfHl+hytvy+fT/R2LjhsqAaVCNYaLviE4QGAKGh0v8gK4u37Pr4yfONdSgOrj8gC5xOo71W75BFtPCocKGdzOYeDhEhIULbvF/uHwBSjsqi5etfTKWxtz8oPyNzJy2ksazd/IbhfWhsZrr3efg7GLky9MqvKC5Fk19RXIomv6K4FE1+RXEpmvyK4lIqtdpviy3yz3gbQVQjJhYAcDLxpNDi7uxV5n2dOSXNEwCg8ZUxQgsJk1VqgI/QYi67zIgD4C27rKrv+Ly+vHIbVl1WpG0RN/4IC6st91XIDUX8yRgvX1KVzzudR7cPqV1TaCdPc9ONvFzZupxXKF8DACgokHqNQD7KrJqvdN/1IWYvTiY2rEW5MJ+/XsXkNU88wE1CgknbcEg4/9wlHZF3bqLD5R0LAAgsZcziR87fCb3yK4pL0eRXFJeiya8oLkWTX1FcSqUW/Hz8fBEZHemtORTA6jSR67VTUrnTb3CwbNllo7YAIDudt5sygqrLohJzCnZy2WXr8Z1adllxr7CQu+T6E4fZwkL+vLm58nzzC3jB7nTWaaHl58rYmvW5IxNz3w0Kle3BAD9ep/FkgQHytSkq5q95YT4vGpZ1Xz4OxVsGG80VFiGLngBwJFkWsJ38Glg7cmIqL5yWLqAXOny+GHrlVxSXosmvKC5Fk19RXIomv6K4lLJ4+M0wxiQbY3aeo/3VGHPMGLPV84cPD1cU5ZKlLNX+DwH8HcBHpfR3rLUTfs/OakaEYtQd3q6pw4b0pbHL1m0W2sRxL9HY2NiOQrt/2EAau2bvPqEFOBggVCftvat3SKMFNjsP4C67zIgD4C27rKoPAAPatRPawo0baeyf3nhbaM2uakpjWRvtzVfL13b28jV0+xE9ewjNqSo/5/u1QktwqGjHkHkPWWT2HQDc2aO70KZ8vlhotXvI99bpeQd060Rj776hp9BSHeYNsrsI4Y/I9xwAOsQ0FlqAw2fh+RcmeT3OyeDGNIzyjutSFKWKU5Hv/I8aY7Z7vhZEnLcjUhSlUihv8k8B0AxAewDHAcjfLT2cO6svzeHXOkVRKp9yJb+1NslaW2StLQYwDUCXX4n9z6y+yJq8+0lRlMqnXO29xpjoc6b0DgGw89fi/7MzHx9ElnJHXb1XussCwIxX3xPahE8nkUjAz0euYV64mrv3Nmwo24bXff8tf15SCKz/0BChvfrgk3R7NkLLyWWXrcd3atllxb0hnXhRaubylUI7Rdp4AaBFYzkuKyxYtufeN5AXaY+QEVxrtvGRVMN6XSu0tBxerDp8Survvfspjc1Iki3gH077q9C+2LSJbl+NtP3m5PLi4rBrZHHxh/37aewNV14ptOgwvkb/5RenCO3diU/T2I5x3gXZb5bwdmrGbya/Z1xXLwC1jDFHAbwEoJcxpj1KpvPGA3iwzHtUFOWSoLzjuqZfgGNRFKUS0Q4/RXEpmvyK4lI0+RXFpRgnF9MLQXSDGDvqkee8tLVff0djew3pL7T0E+k0ds03sn1zzHNP0NiCPGmQsWY+b1ftSdyCJ7/030L7crXcPwAMjRsqNDY7D+Auu8yIA+Atu/VjpVMwANwb11tofn7SpRcAJn76udB8/f2EFhzGK8qtG8q7BU4z8U5mZAptcJfONHbFLnnHoEeLFjR2R2Ki0H5aL29GjRoqP18AxN0oAJiz9kcae+LQCaHl5uTS2NZdWglt5ee81btpO9l+XdvBQCWllKHIOy88g8RDB7hTSSn0yq8oLkWTX1Fciia/orgUTX5FcSmV6t5rjIF/gHcBKSebF/GYC2vdpnVpbFRUI6Gxwh4A+BEn2MDgIBobQMZXZWQkyzg/WRQDgMaN2wpt376faCwboeXkssvW4zu17LLiXoHD854hY7iKs2UBKyCYFwx/TpKty0UOLcoFZ+T5OjnqMkdaC16ozsyVx1sjUq7dP5XHX4MagfLcnByBU45KR97cHN4KfKad/Dyeclh7n50mi6R1YmRbOgAEVff+7FarVqZaX0lsmSMVRbms0ORXFJeiya8oLkWTX1Fciia/oriUSq32+wf5o1HrGC9t1J8fpbEDe3cT2sKveRvug689IrR6EdxW8JOpXwitywDeVvrQEOlIXlQgjRacGP7MSKHFDe9HY/3JnQU2Ow/gLrvMiAPgLbusqg8AT4+6Q2hbjxwRGjPtAID65DWvHijnHTo9hz8xZQGAW6++Wmib4uNp7C8J8o7DwOuk0VTtUAf3XmLccUtXbpRSq6acEXnk0C80tkerlkLbEbOdxsZ2iBXand1lPgDA2zO931+nuysMvfIrikvR5FcUl6LJrygupSzjuhoaY1YaY3YbY3YZYx736JHGmGXGmJ89f6t3v6JUIcpS8CsE8JS1drMxpgaATcaYZQBGA1hhrX3DGPMsgGcB/PnXnig0OBj9u3i7ja7atZvG1gmTxZTgUL6OvFOTJkKLrF6dxpZ2OwWAfp070Nh4UpRira1No6Lo9l+tlA7CQTX4Ofj6ybciP5cX5tgILeayCwC79h0WGmvZBXhxr31MjNAWOTjf3j1gmNCeeudVGsuYk1L2wVC3dOFFOPZZ+J/J/xRas/bN6PZR4fJzd+jwMRr7zMi7hTZx7hwa2/eaAUIb+dgfaWxoiHwvO1/NHZO/Wb3Q6/HsyW/ROEZZxnUdt9Zu9vw7G8AeAPUB3ApglidsFoDBZd6roigXnd/1nd8Y0xhABwDrAdQ5x7v/BAC+8kBRlEuSMie/MaY6gPkAnrDWZp37f7bEC4wus9JxXYpyaVKm5DfG+KEk8T+x1i7wyEnGmGjP/0cDkGtdoeO6FOVSpSwTewxKhnTssdZOPOe/vgQwCsAbnr8X/dZzFRYXIznL65cGpBzl3WI76kojxv49eCfeX/70N6GNeWYEjc0jRbRjabzQ1DVWdlp95yt/Xp7J594B13aR6/l3xSfw4yJddzUdTBtnL5edjk4jtJjZptN6fNZ1x4p7rOMOAKYvXSG00DBeeL2zmxx11bOnLBgCwBUdrhJaaePKswzsI5937WL5euXn8vdsP3l/I6P5RWvWd3LM27ql3K9h/ZZVQrspjs3DAVp2kuakHy/+iMZO/9TbPDYlTRqjOlGWav+1AO4BsMMYs9WjjUdJ0s81xtwH4AiAO8u8V0VRLjplGdf1bwBO9iA3nN/DURSlstAOP0VxKZr8iuJSNPkVxaVU6riuTp062fUbNnhpS3fsoLG+ZG23k+NqryuuEJrT2vCsM3K9dm4+f960HOmuWvpuBQD0aCnXagPAnmOyLfRYOncrDgmQFfi0HD6ua0gn2dqa4NBDkXlaegIwl10AaFFXuiOzlt1n3nudbn/fjbIEtJOMzwKAr1fIEVjXXcvbrJknQKt69WgsG9e1cc/PQuvVQd6JAYBA4sScdoq77I4bPV5obbvJ1msA2Ll+i9BadZR3MQDA109+dtetWEljJ89+1+vxyEGDsHv7dh3XpSiKM5r8iuJSNPkVxaVo8iuKS6lUA8/M06exZNtWL61nK1msA3ixrHNTOaYK4EWe5qR4BQBLNsh2VV9//jK0rC+LSqxAyubHA3ydf1YWL+KdPC0LdkEO/gVFxcVCW7ONH0O9urJF2MnkkRXW2Hp8p5ZdVtxr07AhjZ313SqhPT1GFtAAYM8eWRzsN3AUja3for7QAoPleXUbybcPCgoVWlKS9EQAgA+WLRVaVEQ4jb3nfrniPaYWb9/OIUXpFdfz4qC/r3dxsOzDuvTKryiuRZNfUVyKJr+iuBRNfkVxKZr8iuJSKrXa7+vjg6ga3tXUj75aTmObxsoqsVMr8syJs4X22PjRNPZ0pmzVvKpNcxrbuZl0eJ22WFZ4h8ddT7dn7r8+xKUXAPJyZdtwoUNVfs73a4U2rNe1NHb+ug1CKzhTQGOdxnCVhhlxAMBbM+X7wKr6ADCqTy+hXX89t4S4Y5R0ue02sCuN7dn2SqGNG/s/Qrv/qRfo9qE1ZbXfiaBA2ZK9cPpXNPbp8WOEdsuN99DYkU8/ILSmzfg4tn9v9r7Lk3Na3ilwQq/8iuJSNPkVxaVo8iuKS6nIuK6/GmOOGWO2ev7IedaKolyyVGRcFwC8Y62dUNad+VSrJsZKDY27jsaGBQXR7RmDH7xFaKcdHHUbNZXtn92b84JfVq4ca3VHb1lYc1p336aBLNLEOoz2yissFFqJcbKErd1n3gMAMLiLdDx2el7mgcBGaDm57LL1+E4tu6y4t2bNXBqbkLBHaDs3bKSxGY+OFFp+vnwfp098jW5fVCTfh5YteXFx/OQXhTb2Cf7asNd8+DhZBASAPwyWo73+tUX6AQBA/hnvz7m1svXbibIYeB4HcNzz72xjzNlxXYqiVGEqMq4LAB41xmw3xszQKb2KUrWoyLiuKQCaAWiPkt8M3nbY7j/jutJ1XJeiXDKUe1yXtTbJWltkS75kTAPQhW177riuCB3XpSiXDGWp9tNxXWfn9HkYAmDn+T88RVEuFBUZ1zXcGNMeJdN54wE8+FtPdOrMGazbs99L63d1exqbXyRbW0N8+eHu33lIaP1HSPMEAHjj/U+F5u/wvC2jpSHIvuMnhBZEHF8BwJLBxesPHKSxBQWyyhwY4E9jmQnEYQeH2VRyJ6KQvLaA8wy+0rDZeQA3A2FGHABv2WVVfQCIj5cOz3eNfZjGNo6Vd1gKCuSdH2P4dS8iQr7nWzbLlm4ASM8YJ7SUVD4rL468Zg2bcgdi5lIdSl5bAOjcsbXX45BgeZfMiYqM61pS5r0oinLJoR1+iuJSNPkVxaVo8iuKS6nU9fzhISEY3N37jiBz3gWAvQePCK1Dq1ga+/Bdsr13+lfLSCQwZsTNQvvxZznOCQASUmRfQleyxv+rzbz1slmdOkJzaiWuQQo6zKUX4CPH3ntXFjIB4C/PyBZSVogEgE3x8UK7pYscDZbyC+/XYCO0nFx22Xp8p5ZdVtx7c/xDNPaq2b2E9ujrzwkt85Vkun16uhxlNnacdDAGgEFdZet0KGlLd2IXcagGgG0JCULr5OBcPWqEd/v0iaP8vBh65VcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZVa7QekA+/2XQdo3LZV24TW++p2/DkdqteMehFy5XHiAV51jWwvZ9Kt2iNbUHNzpFkEwN2GV+/gM/Wq+UojjcJ82fILAHf2kO65GUkZNJbdTckkJiUA8EuCrHR3atJEaAP7cPdeti82Ow/gLrvMiAPgLbusqg8A27evElrHK2YI7dBgedcHAHLSZTt0i84taCwzP5m/QbolA0Dftm2FlpBwnMauXyKfY9qk52lsQJC3g7BxMLxh6JVfUVyKJr+iuBRNfkVxKZr8iuJSjNMIrAtB89at7cRP/umlZeacprF3dJPtn04Opl9/+K3Q3njjcRo7c/43QuvctQ2NbUqcdpdvkoXI4b160O2nLvhaaOFR4TTWL0B6AhTk8bFaqcdle+1TI4fS2DdnzBFajcgaNPama2W76qzZcuX22sVr6PZ3jBsutMS9vH17xxq5Rp+57AJ8Pf7tj99FYzteIdunWWvsvX94mW4fWTdSaNlp2TS2SVtZDO3TW76GABASIEd7/emBV2jsx3OlI966A7ww/t3C770ef/LBBCT9ksDtmUuhV35FcSma/IriUjT5FcWllMXAM9AYs8EYs80zrutlj97EGLPeGHPAGDPHGMMN5xRFuST5zYKfx703xFqb47Hw/jeAxwE8CWCBtXa2MeZ9ANustVN+7blat21rP/7ySy+NjbQCgPTTshBYs7rsuAOA3Q7rohnb46VPQIt60SQSCCJFmmZRtYW26XA83Z51x53M5sUj9j44jdWqXUMW7Jbu5ObJ3WKlBwIziASAumFyNv1CssZ+z4/caPPeUYPk/q/sSGPvf+oFoTmN0GJmm02bchPR3qRzL+mI7Fyc+f5LdPsAf7kePzCIf+7mfr9CaI0c7OmZuWmKw2eheV3pA7F6z14am3HKO0+ev28MDu3de34KfraEsz2Pfp4/FkAfAPM8+iwA3C5XUZRLkrIO7fDx2HYnA1gG4CCADGvt2ebzo9D5fYpSpShT8nsm87QH0AAlk3lalXUHXuO60uTEV0VRLg6/q9pvrc0AsBJAdwDhxpizqwIbAKBfvL3GdUXKBgpFUS4OZan21zbGhHv+HQSgL4A9KPkhcLsnbBSARRfqIBVFOf+UZT1/NIBZxhgflPywmGutXWyM2Q1gtjHmVQBbUDLP71epVq0agvz9hVZWsh3WobPWySyH2Aa1ZDW2TlgYjS0iFXjfanKVjj0eAAAK90lEQVQNt5/DuK9Af3n3MyIkhMYWk335OLw2zL23msOdgUiyvxqB8vUCgKxc+bxR4fK12e/LjyuQjC0LCpJ3EAAgtKbUi4q4fwEbocVcdgG+Hp+17LKqPgDkkRbjBg35t9zw4GChOb1nTPf14bHVyN0NdrcAADb94N0mnXea38lhlGVc13YAHYh+CA6TeRVFufTRDj9FcSma/IriUjT5FcWlVKqB56m8PGw6eMhLq+tQbMshRa164Xwt/MrN24U2+sY+NPa92fKmRGYrXhxk6/mZp4AvMXIEuKHl5v0HaWxhPl+7zxjQTY7QyiHFOgCYs/ZHsi9eWLulq3zeQ4flHdzIaN7CmnbqlNCSkg7TWEbLltLDAQC2bF4qNKcRWsxsk3kHOLXssuLewYPcR2L/L9KAs6iAv7bdrmgptGKHzvoTmdKMNTkri8aOHnaT1+PPp0kvACf0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUiq12h/g64uYUmYYE9+fTWPv/S9pDLFgw080tnNrWeHdcNCpqi6rsT1a8HFMxbZYaNP+Pldor7z4B7r9wrXrhZZyNIXvq0juK/UX6dILAHff0FNow67hI7TenjVPaClHT9LYWjXlnZdnRt4ttFnfSbdkABg3erzQPlgmK/UAEERajMdPfpHGpmeME9qgrtwll43Qepe0/DIjDoC37LKqPgDcc/11Qpv8hXQ7BoBbe0u7i6Fj7qexLckdi0/e+IjGXjN7gtdjJwMYhl75FcWlaPIrikvR5FcUl6LJrygupXLbe0+fwcZNu7201GO8APbWa9Ie4B//9xyNffLFd4UWd9v1NLZNB1lM+eyblTR2zKAbhcaKcE7eAT3byTFgr38xlcYmHpBtsGERvI02NUcWsH7Yv5/G5ubIY8vN4a3ARw79IrSJc+W4r3VLeeG1bTfp1BsVwVuyF07/SmhjnxhGY1NSM4UWGsTX48/fIGfbsxFaTtuzdfdOLbusuPfw4JtIJLCCuCt/OnkhjV30kSzufbLkExobXMrLwsnXgaFXfkVxKZr8iuJSNPkVxaVo8iuKS6nIrL4PjTGHjTFbPX/aX/jDVRTlfFGRWX1/ALDYWiv7Rx1o266dXfCtd2vozqNHaSybc7d8izTtAIARPXsIbd+JEzQ2k8wAvNahvXc9aRE+QFo9OzaVxwoAG/cfEFqdWnx2QTBx+j2SzNtwb2gr7yL4ORiKrN4rZ7ydycunsT1aScOJvtcMENr6Lavo9ncOflhob057mcaGkTZap9ZU1rJb32EGBLvzcowMi2H7B3i13+luDmvZnTx/Bo29oY18z9b9/DONZe3Ez9/DW8g37Vzn9TiuZ09s3by5TCX/srj3WgBsVp+iKFWYcs3qs9aeXbHymjFmuzHmHWMMNYM/d1xXWipfqKIoSuVTrll9xpg2AJ5Dycy+zgAiAfzZYdv/jOuKdBhfrChK5VPeWX39rbXHPeO78wDMhA7wUJQqxW9+5zfG1AZQYK3NOGdW35vGmGhr7XFPQXAwANm/WAoLOZbqswlyfTwAJI2Q7ruNGsmxTQAw7rl3hNbzdt7em5yYLLT98bzoOKi7bAv9YOJnQrvrXb6W/oetu4Q2dxJv6QwJl26yWancsTX8ETmCKzrMwdn489VCO5UhXXYBYEeMLKiOfOyPQrspbjjdvtP10mcgplYtGnvLjfcIbfi4MTS2YdN6Qtt1jM6FRUKCLJYtnDRfaK+//xe6PRuh5eSyy9bjO7XssuJet+bNaexjz00U2vyV/6Kxf3rS2633aCIvdDMqMqvvO88PBgNgK0qq/4qiVBEqMquPG+MrilIl0A4/RXEpmvyK4lI0+RXFpVSqmUdxcbGYwVcjsgaNfedp6eS6c7ecOwcAR3slCe34YV71HDO4n9BenTCTxu6JqS+0wJBAof1jIXdsHRon3V23rOBz35KOyHMIj+IV/A4xjYX28otTaGyrbnL2XHZaNo2N7RArtNAQ2QbbshNvh163eJ3Q2MxFABj59ANC+8Ng2UoMlMx4LM22hAQau36JNPP4eK6cXxfk70e3r2bk9ZDNzgO4yy4z4gCAnnfJOyGsqg8A777+pNDGPnwHjR32x9u8Hq9d+zmNY+iVX1Fciia/orgUTX5FcSma/IriUn5zPf/55MqrrrKffeXt2hoSQBcDoknt2kKb4lBYG3NzX6Fln+FrsFlB50xBAY1dtEoWGFu1bCy0q4n3AABM/ucXQmvRXhbVACA6XBb3Eh1WQd5w5ZVCqx4oC5EA8PkP8hyq+fK1/3d27ya0zlfL1/bjxbyoNfaOR4T2wMuP09h6dWXbb14hd8kNJefWqWlTGstehyVbtwrNyeWWbZ+cxdusp73wD6G9Ne0lGjvoOlnMdGrZDSLeDm0aNqSx6ae8W7V79+iBLWVcz69XfkVxKZr8iuJSNPkVxaVo8iuKS9HkVxSXUqntvX4+PogOC/PSZn+7isZGx0jjjr3rpRMtAHxQVCS0mGYNaOz1rWS764Kv+ay+Fq0aCy2NzMljjsAAUJAn7yJkpvPW2kA/2W6af4a77D7/wiShdYyTc/IA4FSWNO4Iqs7n1L09U7aGfrNamlNM/3Qx3X7ybDkz0d/hzsK/N0ujE6fz7dyxtdBGjRhPYwOC5N2jerHSDKRTv050+00/7BDa6GF8/t41sycIrfTsvP88707Z+lzaiOMspVt2AVnVP0tEiDR2KSt65VcUl6LJryguRZNfUVyKJr+iuJRKbe81xpwEcMTzsBaAlErbeeWh51X1uJzOLcZaK3vjCZWa/F47NmajtZaXXKswel5Vj8v53H4N/bVfUVyKJr+iuJSLmfxTL+K+LyR6XlWPy/ncHLlo3/kVRbm46K/9iuJSKj35jTH9jTH7jDEHjDHPVvb+zyfGmBnGmGRjzM5ztEhjzDJjzM+evyMu5jGWB2NMQ2PMSmPMbmPMLmPM4x69Sp+bMSbQGLPBGLPNc14ve/Qmxpj1ns/kHGOMtNK5DKnU5PcM+5wEYACA1gCGG2Pkqo2qw4cA+pfSngWwwlrbHMAKz+OqRiGAp6y1rQF0A/CI532q6ueWB6CPtbYdgPYA+htjugF4E8A71tpYAOkA7ruIx1hpVPaVvwuAA9baQ9bafACzAdxaycdw3rDWrgGQVkq+FcAsz79noWR8eZXCWnvcWrvZ8+9sAHsA1EcVPzdbwtllmX6ePxZAHwDzPHqVO6/yUtnJXx9A4jmPj3q0y4k61tqzQ+JPAKhzMQ+mohhjGqNkSvN6XAbnZozxMcZsBZAMYBmAgwAyrLVn3UMvx88kRQt+FxBbciulyt5OMcZUBzAfwBPWWi8L26p6btbaImttewANUPKbqDR4cAmVnfzHAJzrQdzAo11OJBljogHA83fyRT6ecmGM8UNJ4n9irV3gkS+LcwMAa20GgJUAugMIN8acNba5HD+TlMpO/p8ANPdUV/0BDAPwZSUfw4XmSwCjPP8eBWDRRTyWcmGMMQCmA9hjrT13mmSVPjdjTG1jTLjn30EA+qKknrESwO2esCp3XuWl0pt8jDE3AfgbAB8AM6y1r1XqAZxHjDGfAeiFklVhSQBeAvAFgLkAGqFkBeOd1trSRcFLGmNMDwDfA9gBoNgjj0fJ9/4qe27GmKtQUtDzQcmFb6619hVjTFOUFJ8jAWwBMNJaK0cDX2Zoh5+iuBQt+CmKS9HkVxSXosmvKC5Fk19RXIomv6K4FE1+RXEpmvyK4lI0+RXFpfw/WwRa35IzsTsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -267,17 +265,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 0.9\n" - ] - } - ], + "outputs": [], "source": [ "seed = 10598\n", "\n", @@ -285,8 +275,7 @@ "qsvm = QSVMKernel(feature_map, training_input, test_input)\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "run_config = RunConfig(shots=1024, max_credits=10, memory=False, seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", "\n", @@ -299,29 +288,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4lOX1/u+H7CQsCUtIIEBAkNUEBAQERRBBiiK2UHHffmoVF+q3auni3mrda20tWitaC8qmgAgiorLvAQJhSTBAICSQELKR/fn9kUmvTM79ykhgIL7nc11cZG7OM/O+M3MyzHnPcx9jrYWiKO6j0bk+AEVRzg2a/IriUjT5FcWlaPIrikvR5FcUl6LJryguRZNfUVyKJr+iuJR6Jb8xZrQxZrcxJtUY88SZOihFUc4+5nQ7/IwxAQD2ABgJIAPABgCTrLU7f2CNeLDg4DAaGxHRTGitY1vS2EP7M4UW2jiUxhYXFgktsnUUjQ0KDhJaWWm50IryCun65q0jhWYaGRoL8joUHuf3W0ViK8rkcQH8eSguLKaxgUHyfEPCQoRmHE6hoqxCaI0CA2hsVUWlvF+n54Zgq/j7lr6fyd0Gh8rzAoDS4hKhBTicQ2VlldACgwJpbEnRSaGFhvP3KHsenfK0UYD353dBfh5KThb59ETyI/WNAQBSrbX7AMAYMxPAOACOyc9o27YL1QcN+ZnQJv/xThr75P1/ElqXhO40dsuq1UL7+f0309g2HdsI7XDqYaGtmb+Grr/u4euEFkx+oQD8jbRyzgoaW1pSJrSjGdk09sJ+3YS2bdUmGhvVMlponRM7C63uG66GYxlHhdYkqimNLTxeILSg0GAayygnzwEAlJPEYb9U2ndrT9fv25omtIjIJjS2KF9+kLSIaUFjU9YnC61b/540NvuAfC0ryS9LAGjctLHX7Xkfv0XjGPX5b39bAAdr3c7waIqiNADq88nvE8aYewDcc7YfR1GUH0d9kv8QgLhat9t5NC+stdMATAP4d35FUc4N9Un+DQC6GGPiUZ30NwC48YcWBAeHie/433+/jcaO+cUtQis4KYsmANCokfz20rFnR34M5HvlwAG9aezWnalC69K7k9CcClVHD8rvwONGDqGxqVlZQhtz61U0Nm3XAaHtXMNLLTGdY4S2Yy2vOwy6dpDQAgLlc2vI8w0AkW1kgZO9NgBgSNUwLIIXwHKPHJf361B3aERei0BSZwkO872+EN48nOonjp0QWiQp8jrdR4tYXh+o+z0eAMKb8WOoW5BdvJAX0BmnnfzW2gpjzGQASwAEAHjPWrvjdO9PURT/Uq/v/NbaRQAWnaFjURTFj2iHn6K4FE1+RXEpmvyK4lLO+nX+2kRENBOde6yqDwBvvfQboY2YOIzGfv31f4S2d+9GGtu79+VC69JGdrYBQHq2rNYP6dpVaN/vltV3AIiMlpVfpzbNLm1kN+GqHSk0lnWAfTDteRobs0B26GVlpdPYy66/QmivTn1MaN26DaTrk5NlR+IVV/ALQK3btxbaqmVf0NiEi4cKLbZzLI1lnYNH0uWVlIHX8HMoK5Wdg7Ne/BeNnXDvXUJ757mXaezNjzwgtBWzeQdn35F9hcbOCwCmv/xXr9tHM4/QOIZ+8iuKS9HkVxSXosmvKC5Fk19RXMpp7+c/Hbr37m3fmzfPS3Nq2S0qLRXa9f3709gFmzfLx2rLNxhWVcmts2nZfDvsuP6XCG3OWrkluFssLz6FBMp66uJ1fDtteLMIoV0YK1tzASAiVLbBJmdk0NiE9nLr6vaDB0kk0Km1LMKVlMkCWNso7n9QWCL3wsdG8nZX5kmwcvduGntZN7ktuaKSb3Fl7cSNSCtx+rFjdH3LCPk6OLUos/dukzDeXsuem5ZN+Fbh40XSxyEogNfmtx3wLjY/fOON2Ltzp0/7+fWTX1Fciia/orgUTX5FcSma/IriUjT5FcWl+LXa37RpSztw4LVemlMllbXszl3HjTKv6SvbIXv25KYZF1wgY9//759p7JwV8vFuvEK2mr414zO6Pry5rBwPH5BIYwPI85C0fz+NTfpOGqC89fzvaWxcnKyUb9/+LY19+cPZQnv7afncsPsEgPT07ULr2/dKGhsdL9uZk9fzKyHtO0mT1zZkPcCdlL9PkaacrJUZAApyZRvtl7Pm0tirJlwvtK/m8PfC6Btk7Ial62jskOtkC3ppkbxaAADffrbU6/bmzV+ioCBXq/2Kojijya8oLkWTX1Fciia/oriUeu3nN8akAygAUAmgwlrb74fiQxuHikk6Ti67bD++U8suK+7t2LGSxvYfLAtQjYO5k+vPBsrTCSEjrbZ+wx2Ib5oyQWird+yisSeOSifY3MwcGsscahMTR9DYb7+dKbQ+fUbS2NXzZOtyYaF0zt24ke+7Ly2VY8AKCuR6AGi5Q76W/Qfz41q2eIbQnIqOxcWyYMcKkQNGSadiAEj6VhYdN236ksZ27S6Lxxs3LqaxHTvJ6TxOz2OrWFnMZIVIALgw4SKv2zt3cY8Axpkw87jCWssbpRVFOW/R//Yrikupb/JbAF8aYzZ5xnIJjDH3GGM2GmM2niyWgw0VRTk31Pe//UOstYeMMa0BLDXG7LLWflc7oPa4rtZt2um4LkU5T6jXJ7+19pDn72wA81A9tltRlAbAaX/yG2PCATSy1hZ4fr4KwDM/tKa4sAhbVnlXlNnsPIC77DIjDoC37LKqPgC8/85TQvvl5PE0tqxCznpvS8wpdm5bT9cHBdwgtOSVck47APQY1ENo20gbLwDMnfE3oXXtyo1OJj/2ktAOpx2msfvT5by/62++T2hBIXzWH0ireGEe/6qXdUAeQ1aGmPMKABg2Ql41KS7gJjDs/dR/iLwS8tn7H9L1TZrI+Xl33c/f1ilJ0kTm7snP0tgFs6QD8MTbH6Kxm1bIin1IiJzfBwCHD+/1ul1c6PtX6/r8tz8awDzPwMVAAP+11vLrHIqinHfUZ1DnPgAJZ/BYFEXxI3qpT1Fciia/orgUv+7nj+vU2T7yzF+8tIEDetNYNkJrczrf3z7wgguE5tSy+/VOWdS6OoF/e/mGxA7vJY93zR7uOptbJIsvrZs2pbEXRMvzfeSRv5BIYOozsgiXmZdHYwd3kXvhC4iTLAAsJ+d7RQ9ZiGzq4FDLHHUNcc4FuPPt8hQ+nmwMeX2YI68TzCmYuUMDvH2buTADzg7CjE3p6UK7lIx+A7hjcjHRAOCrZO8C8tQ778S+lBTdz68oijOa/IriUjT5FcWlaPIrikvR5FcUl3Im9vP7TFBwENp09DYq2LozlcamZx8V2p0jeMvu3+cvFBoz4gB4yy6r6gPAMFLp/mLrVqHFNG9O17OK9OZd/HzZLDdW1QeAA2TO3K69/EpIlzbSGGKRg0vuZRdJw4m0rCyh9Y6Lo+tTDsuWXafYZo1lu+qJPG5YwSrwrCLuFFtJ2sLrzrirgRnGVJD7BIATxdK8pFVTPn8vjsw3dLrSxuYIOl1hyc/J97pdWeH7FQj95FcUl6LJryguRZNfUVyKJr+iuBS/FvzKSstxONW7KNSldycaO4S0Ps5ZK91lAWBET1moYoUfgO/HH3CBbIEFeHGPtQJv3LePrj9MWm5HXHwRiQSahMqCznMvvEtjp0y5RWjNw8NpLGsnnjB0MI3dkCbHWvXrJF+fYId2117t2gmtnBRYAd5eGxfTmsaWlpdT3ddYNgptaDfu/suO1+m9FMpagR1ic4uOCK19y5Y0tiPRKxy8LOI7ehcoQ4IdvBYI+smvKC5Fk19RXIomv6K4FE1+RXEppyz4GWPeAzAWQLa1tpdHiwLwMYCOANIBTLTW8rlMtSjKK8Sa+d4z7w0ZPQUA3++WHVjXjOCFqrdmyJnoTiO0mNmm03581rnHinusKAYAi5KShPbmm3J8FgCkbZWdf8ePyyIRAIyaI+/jjsd+TWNfX/We0BKu4P4F/3eLNMp85T+zhbZ5qTSuBIDOiZ2FtvYLPjYtLW2L0B595Xka+ywx0Cx0GANmIQtjkZExRJP+CQCwa9c6oXXpcjGNTUlZI7SEPsNo7OxPXhHayJG309gDB2THaXk59x+4749TvW6fLOZeDQxfPvnfBzC6jvYEgGXW2i4AlnluK4rSgDhl8nuGcOTWkccBmO75eTqA687wcSmKcpY53e/80dbaTM/PR1Bt402pPa6rtJR7rSuK4n/qXfCz1VuTHI0ArbXTrLX9rLX9QkL4ziRFUfzP6SZ/ljEmBgA8f2efuUNSFMUf+OTea4zpCGBhrWr/SwByrLUvGGOeABBlrX3sVPcTf2E3+/S0aV7a0YNy3z4AtIiRY5NGJHKn34UrZQU/Pl7uywaAoIAAoZU7uLC2jIgQGmvZZfcJAGMSE4WWW1hIY5nTL2u3BYC2ZG/4ody6ZZlq4lrI5zF59/c0NjpWtpVGN2smNCcH4r1H5NUJ1qoKABGhoULbk5lJIvkee6fnnLUNnyR7/9s4eDAwp97Ve/eSSGBY9+5CY+7QAG877tmOv0fbt5DPGfMkAIA1dY7tngkTsDs5+cy49xpjZgBYA+BCY0yGMeYuAC8AGGmM2QvgSs9tRVEaEKe8zm+tneTwT3L6oaIoDQbt8FMUl6LJryguxa/7+U0jg+A6+43HjRxCY1khcvE6bjw5fIAsrK3esYvGJq9MFtpNt19DY5nZJtuP79Syy4p7UaSICADP/O0DoR1O5fPqw5pI88urJw6nsTtT04U2amBfGvvGX/8rtMuvk6/PqtWybRkA4rt3ENrM2V/S2Mw0WdwbMGYAjV2+eK3Qco/wAmdwqBzTFtNJtvd++s4Muj4mRrZqj7iFf8N99bE3hXbtfeNp7J5Ne4S2MYqbfa5asFxogYEhNHb8Az/3ul1Syo1NGfrJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJS/Frth7WorPRuU0wl46AAPmYqvBmvlDN31hNHT9DYHoPkCK4LovmmRDZCi7nsMiMOgLfssqo+APxx8q1C+/uni2js8SxpZJHYvj2NTU07KDTrsA/rwE5poNLpHumou3qRNLwAgIS+0hF331bubJxzRG4HeW0YNyS56W05ji0zk7c+s81jPYvk1Y2f3fpzoQHAgvc/FtrRg9xxOT8/R2jHDvF29ez98nxzDsn1APBjdr9OuvJyr9tvO4wLY+gnv6K4FE1+RXEpmvyK4lI0+RXFpfi14Fd4vBAr56zw0sbcehWNXbUjRWg9O/KiVtJ+OZs+N5MXU7Z9J119V83lDrNTn7lPaGyElpPLLtuP79Syy4p79183hsZO+cMbQvtik3TDBYBjGXLW+44MfgyHDsl96zsyMoTWoq30CACA3bvThRZ7QSyNZXyyUrrhAkDXi+U4tQ4lspUYAEDawkMjZBEwwGHkWL/LLhdaXrb0cACAoWNHCu3E0Xwam5MlC36Dxw6lsdHxsgB9/Ah3K5759Xdet3PzC2gcQz/5FcWlaPIrikvR5FcUl6LJryguxRcPv/eMMdnGmORa2lPGmEPGmCTPH16ZUhTlvMWXav/7AP4GoG5f6mvW2pd/zINVWYvSEm+zgbRdsqUUALIPyOroJd260tgkUsFv5DADcO6Mvwlt4+7tNPbAMVkpnzLlFqGx2XkAd9llRhwAb9llVX0AeO3Zh4V2R9ZTNLZzHzk/L2nNDhpbVibbmQ/tlVcGivOL6Xpj5HNeUVZBY5m+9IOlNLZ1e9li7OT6HNJYml6wav+0P/2Zru/efZDQ+g7vT2NXLPhKaEOvuZLGbt4sTU36jbyExq5d8q3QAgODSKR8Hk4c423tjNMd16UoSgOnPt/5Jxtjtnm+FkSesSNSFMUvnG7y/wNAZwCJADIByPnDHmrP6is5KXe5KYpybjit5LfWZllrK621VQDeAcCdF+E9qy80LPx0j1NRlDPM6Y7riqmZ0muMmQLgEmvtDae6n+bNW9uhQyd6aTHxvP3zg2nPC+2jFd/Q2Luvku67iYnccbWoSLZqvvLhqzR2e4pszx2YKP0Aln7N97d36C7bkVs04fut2X58p5bdb2Z+I7R/T3uKxl5+uXxZdu5cTWOnviELjK898TuhDRnGJ7Jv37JKPv7V3Bm5cTNZ+Jz20tM09o4HpwqtaUs+MqyqUo61yjksW70DHMZ9seLihiVyHBwADLpmsNBWfiqLdQDQc6AcNVfkUDhtESvbpwMC+fG+9NtHvG4XF+ejsrLCp3Fdp6z2e8Z1DQPQ0hiTAeBJAMOMMYmons6bDuBeXx5MUZTzh9Md1/Wvs3AsiqL4Ee3wUxSXosmvKC5Fk19RXIpfzTxCG4fiwn7eDq8xneUcNQCIWSDbUhMcHGrj4qRr7Lff8pbbyY+9JLTBXaRZBMAdhFs3lVXm11e9R9cPGdJHaGx2HsBddpkRB8BbdllVH+DPw8UXj6KxW5dvFRpr+Z37yV/p+ooKOScuM5O797Zq1U5o42+4n8bOfFc+Xnw8d9TNyZHtyFlZ0uzl4adfoOvXLpJXLD7//J80NoK4STvFtop9UmgL5/HS2eixtwkt7xg387jxzt943Z478y0ax9BPfkVxKZr8iuJSNPkVxaVo8iuKS/Frwa+4sBjbVm3y0nas5fuUs7LShbb9oCyKAcD27bKlsk8f6awKAIfTDgutgIzlAoBF6zcJbcJQ2dKZcEUCXZ+8+3uhjRooR0cBfISWk8su24/v1LLLinubNi2hsTc/Kt2KV30jPQl6976Mrt+1S7Y5D7qUt/e2imsltN1buK/CqLHSQ4GtB4CThXLUVdZ+ORIujOzxB4C+I+Te/dxc7s584QBZaB6UOo7Gtu3aVmjDhv+SxvYa2ktoBbnclXf5PG/X55NkRJwT+smvKC5Fk19RXIomv6K4FE1+RXEpmvyK4lJ8MvM4U0S1iLFXjfJuXRx0rXRLBYDiAml0MGbUpTT2q+82CG31PF79PnBAzgCc+o9naGzvuDi5njj6jugljRoAYN5GeVzffsrnAh7YKV2M2ew8gLfc3vob3hrLWnadrk5MuXG80N6cvUBo6xZy8xJWgU9eyw1J0tKk/vgbL9LYma9+KLRjx+QMQQAIDAyWx9VKvo7h4c3o+j175GsWH89f37S0JKH16MHfz599Jl2jhw3jLdmHD0sTmZISXsV/8DnvtuFXfvd/OLgv1SczD/3kVxSXosmvKC5Fk19RXIov47rijDHLjTE7jTE7jDEPe/QoY8xSY8xez9/q3a8oDYhTFvyMMTEAYqy1m40xTQBsAnAdgNsB5FprXzDGPAEg0lr7+A/dV0y7jvbOh7zdYGM6yT3zAPD0r2QBa+Ga5TT25qtl4aSwkO9/vv5m2cL6/NMP0Ni0LNkWyvb4vzv3C7p+0CVyz3nWCT5OqVNr6Rq7I4MXtdgIrTf/IPeLA7w42KSJbNkFgIf+LO/jwV8wZ+ThdP2uXdLlduDAa2lsm1jpzZC+TxZjASA2VvoXtO0i22UBoPBEodB2b5OFuatvup6uP3ZYFnS/mPVfGjvxHulb+9Fb3Ovg3t9LB+JvZi2jsQPHyMJ2ZTkfe7bk43let5OTV6KoKO/MFPystZnW2s2enwsApABoC2AcgOmesOmo/oWgKEoD4Ud95/f49/cBsA5AdI13P4AjAKLP6JEpinJW8Tn5jTERAOYAeMRam1/732z1dwf6/aH2uK7iIr4zSVEU/+NT8htjglCd+B9Za+d65CxPPaCmLiBnasN7XFfjcD6tRlEU/+PLxB6D6iEdKdba2nOt5gO4DcALnr8/O/V9AY0CvH/fmEb890+3bgOFxubdA9zAc+NGXoQLCpH+AU3D+N5u1uEXHCifss1LN9P140YOEdqq1bL4BACrF8muuRZt5dgmACgmY56cRmgxs02n/fisc48V95KSvqbrW7SQo9dWrpxNY5s2lef26J9fprHPPiwLa1FRvFB88qQs+J04cVRog0fxcW4rFy8WGutGBIDv5i8V2qFDe2js9u+kV8HSpf+msZWVsriXny/PAQBGT/q51+2DryTTOIYvZh6XArgFwHZjTM07dyqqk/4TY8xdAPYDmOiwXlGU8xBfxnWtBOB06YD/+lQU5bxHO/wUxaVo8iuKS9HkVxSX4lf33oqyChzL8K5aRrbhWwKSk1cIrdDBZTc9XVZSS0tlRRwAQNqZKyoraWjKYen026udHDPVOVG2nwLA3iPS9TW+ewcam9BXXrHYvTudxlZfgPFm+xY5ZgrgI7SYyy4A9Boox4vtmilbdllVHwBycuTz1bWrdMMF+B779eSKBwAkJAwTWnR0PI09eVL2kqSmyqsxsRfwc0i8RF6h2btXujgDQMKgAULbvPlLGhvbWT6e01WXxKH9hHb0IK/2b17mfWzMB8MJ/eRXFJeiya8oLkWTX1Fciia/orgUvxb8GgUGoEmU93z7Rg7tvVdccaPQYiN5cbBv3yuFVlDA9/MX5kkjRFZAA3h7b3mFbL1c+wU35Zw0UY7KmjmbF4T2bZVz7J2KUhVl8hguv5qPxcrMlPfrNEKLmW2y/fhOLbusuMcMMQHg4MFdQnvmH3xe/WN3SPPLiIjmNJYZXZaXlwotPTmdrl8y/yOhMU8EAFg2f47Qqqp48XjXBulV4NQmzcjL4wW/e3/n7ROwZfsiGsfQT35FcSma/IriUjT5FcWlaPIrikvR5FcUl+LXan9VRSUKj3u3XzpV2lu3l262VQ5Ow9Hx0tih5Q7u7pp1QLagFpw8SWObNW4stKJSWTl2MnuICA0VWmZaJokEco5QIyQKq/bHdZdXJgCgVSvZjszGagHAxvVLhDZg4NVCY0Yc1Y8lj4FV9QHehhsUIkdtAUBAgHybOrVvMyOM0NAIoe1N4seVmyvfHxER/CpT9lE5Yi0ykpuMpJEW47Aw7myVkSHHtJU5nG9dcxzn3fdkrc+RiqL8pNDkVxSXosmvKC6lPuO6njLGHDLGJHn+jDn7h6soypnCl4JfBYBHa4/rMsbU2Ja+Zq3llqsE08ggKNS7qBMWIYtiALBqmXTfXblbtssCQPJ6ud+6/+CRNDYrQ466Wp7Cx0SdyJNFqbgYWYh89JXn6fo9mbK4N2CM3AMOAK8N+7XQPlm5hsYu/UC6xk576WkaO/4GOfZs9xbpfwAAj7/xotD+/fw/hObkssv24zu17LLi3iOTuAPxW/M+F1pYBHdcLi+R/gXFBbKgu2cTd9kdc5ds783eL8e2Abwonbollca2IrERzWQhEgAqib9ESFgIjX1owjiv207txQxfDDwzAWR6fi4wxtSM61IUpQFTn3FdADDZGLPNGPOeTulVlIZFfcZ1/QNAZwCJqP6fwSsO6/43rutksdxxpSjKueG0x3VZa7OstZXW2ioA7wCgX2Zrj+sKaxx+po5bUZR64ku1n47rqpnT52E8AN/nBCmKcs6pz7iuScaYRFRP500HIAeq+UDuEW66kXDxUKFd1k063ALAx526CG3Z4hk0dtiICUIbk5BAY0OC5Fy/0vJyoT17/zP8uOZPE9ryxWtp7E1vLxRa14vleQG8ynzHg1NJJDDzXTmrb9TYW3jsqx8KLTZWOhOz2XkAd9llRhwAb9llVX0AeGD8z4QWEuxQ7SduxayF/N4pf6Lrn7pXnlt5ubxPgLsYHz/Orwz06SMNZ5Yvl1cWAKBzZ+miXFR0gsb+ZfrHXrdf/+NjNI5Rn3FdvluGKIpy3qEdforiUjT5FcWlaPIrikvx635+W2VF+6Xcj1wNG2/kNFarDdnPHxfHi4Os1bORg6dASRkv9NSl0MEpOCggQGi5R3JpbGZmmtA6lPDRXmx0UxeH4mB8/EVCc9rPv2ntcqH1GtBXaFFRfM86G6Hl5LLL9uM7teyy4l5pGfdgMEa+n9h+/Iw9B+l69lq279CTxrLXrE2bTjSW+QSEhzejsXl5smhYXCxbzQEgMtr73AICfU9p/eRXFJeiya8oLkWTX1Fciia/orgUTX5FcSn+rfZbi/I6zrONGvFKe12X3+pY/ruqKK9QaE7V0eBQ7hDL8LW916KKHxdx+nV6/JAQUul2cCsOaSyNHaoq+THk5EjzkpOFvFIeGCiPrfCEfG5PnpRatS6fczY7D+Auu8yIA3Bq2eXvhep9Zt6wWXuNI/gms8Ag+Rw4nW9oqLyPoqI8GtusWUuhVTi0DQc3lbFO8wLzsr0fr7LCdzMP/eRXFJeiya8oLkWTX1Fciia/orgUvxb8YKodfL0OIFgW1QDgSLpscXRqw/0+RbZZpqdzh9r+Q0YIzWkMWGWVLB4FkKJjZGSM0ADgJGkPjunEY3sWyTbaUId2V6bnHM6hsVlZ+6Xm4EbLxm3t3pYktBMnZHsxAKSSkVTl5bLoCfARWqz1GuD78Z1GaLHCWEmJLNhFx0fT9axF+eBB7u7cs+elQtu5czWN7dVL+lOwQibAW4Tz84/R2NJi7+fXkvesE/rJryguRZNfUVyKJr+iuBRfDDxDjTHrjTFbPeO6nvbo8caYdcaYVGPMx8YY37tnFEU55xjrUOz6X0B1tSXcWlvosfBeCeBhAL8GMNdaO9MY8zaArdZaOdupFm07dLK/etzb7DIqNorGFh6XRZrRVw6isZ8vXim0kiLeEfXZ+9Kk8qsVn9HYbQfk/PWhxET0honcNPFfHz4rtDFX3kRjf3brz4XmtDd72p/+LLSxE2+jsez5ddo3v26hHLfV90pZiDxxjJtJxl4gPRjSk9Np7N6kXULr2EOahQK84Oe0H5917rHi3hvPT6Hr+/a9SmhXT5KmrwAw6x1p0HrzQw/S2GWzpOVl4qV8dNu8/7wrNCcPhQu79/e6/eWS6cjNyeSV8Tqc8pPfVlOTiUGePxbAcACzPfp0AHzQmqIo5yW+Du0I8Nh2ZwNYCiANQJ61tqZBOwM6v09RGhQ+Jb9nMk8igHaonszDPbIItcd1FRXmn+ZhKopypvlR1X5rbR6A5QAGAWhujKn5UtoOgNw+Bu9xXeERTet1sIqinDl8qfa3MsY09/wcBmAkgBRU/xL4hSfsNgC8aqYoynmJL+29MQCmG2MCUP3L4hNr7UJjzE4AM40xzwHYgup5fj9IaXEJ9m2VrbiMslLZ+tgyQraEAkBBrtxHnvTtJhrbpEkLobHEU+CtAAALBElEQVR9+wDQva0sY5RXyH3ou3bJKjkAhJBqfUwMd3dd8P7HQut32eX8uLrLqx5shBcArF20Smh9R/QnkcCePRuE1r5He6GtXLyYrk+8ZIjQlsznI6mYm+2Yu3gsG6Hl5JjM9uOzll1W1QeAzZu/FFpYGH/fsXbmJTM+pbE5OfJ8Z0/n71HWkn3gwE4aO/H+u71ur1zNr+QwfBnXtQ2AGB5mrd0Hh8m8iqKc/2iHn6K4FE1+RXEpmvyK4lL8up8/IDAAEZFNvLTw5txIcdaLsn54/52yBRYAvpw1V2ibNsnCDQDcdf8zQmOFOQCoIIVAVhzs0uViun713r1CG3GL9BMAgKMH5VituuaMNfQdLgt2G5asp7Gff/5PoeXmHqGx8fG9hfbFrP8KLS1tC12/d68sYDkZT7L9+NkOPgPlxOjSaYQWM9tk+/En/eoBup4V91atku8vABg79ldCW7iQd7hPvEG2gH++QL42ADBq1J1CKyzk74XcTO/xbxXlsiDthH7yK4pL0eRXFJeiya8oLkWTX1Fciia/orgUv1b7KyurUJTvPb7JyRhiwr13Ca3gJHd3vWrC9ULr2l2aUABASpJsyayo5COOThQXCy2UVPtTUtbQ9cO6vya0Vx97k8bm50v33aFjR9LYFQu+Etrom8fR2Ihmsnp94QC+KXPm398W2sR7ZGvtd/OX0vUJg2TD57L5c2hs9lFplOLUotyihTQJyczkbeJshBZz2WVGHABv2WVVfYBX9seNe4jGbtogn7MOHXrR2M8/l6+D03iysXd4v/eDHNywGfrJryguRZNfUVyKJr+iuBRNfkVxKX4t+AUGBaJFjPd++sjWfOzSO8+9LLS7b7qGxn41R/qIbNzI95zfPVk66jrRqmkTobH23oQ+w+j6r3fKPdjX3jeexh47JEdgnTjKbc+GXnOl0FZ++i2NZe29g1J5cbBHD+kT8NFbfxXaoUN76Hq2F76qihdTIyOlG23qllQae/y4bPtlI60AoKhItsGyEVq/f5UX/Nh+fKeWXVbc++wz+XwBwC13/kFoc2a+QWMn/PI3QsvL5SPSjh701svLtL1XUZRToMmvKC5Fk19RXIomv6K4lPrM6nvfGPO9MSbJ8yfx7B+uoihnCl+q/aUAhtee1WeM+cLzb7+x1s7+gbVelBSdRMr6ZC/Nyczj5kek2UJhCTeGGH2DbO/t2ImbPSyYJU1CbnmAm4TERck5d7lF0ghj9iev0PW3Pj5JaHs28Up59v5soeVkSQ3gVfXbJssKMQC0in1SaG278uFKL/5WPufP/fMDoW3/bjtdH9tZtuHu2iCNNAAgjbTRtnJo7+3TR17dYO6/ANCsWUuh9eo1VGhsdh7AXXaZEQfAW3ZZVR8APnxPXmW67rpHaOzmjbJ922mm5kWXXlw3kMYxfHHvtQDYrD5FURowpzWrz1pbY1T/vDFmmzHmNWNMiMPa/43rKivjG3MURfE/pzWrzxjTC8BvUT2zrz+AKACPO6z937iu4GDfBwooinJ2Od1ZfaOttZme8d2lAP4NHeChKA2KU37nN8a0AlBurc2rNavvRWNMjLU20xhjAFwHIPkH7whAaHgouvX3LsS1iJXjswBgxewVQrvvxmtp7IalclzWxo1fkEhg4u2yJfPSrl1pLCuytG8pC0ojR95O1/dsJwtrG6NkyzAA5ByS+/kHj5WFKgDoN/ISodV1ca1h4TxZ4Bw2/Jc0dtiwG4T2zaxlQlu69N90fe/elwktKelrGhsWJp8H5j0AAMuXyzFe4eHNaGwFcfotr5Dag0+8RNezEVpOLrtsP75Tyy4r7n366es0lo0SY34PANAqrpXX7cAfsZ+/PrP6vvb8YjAAkgDc5/OjKopyzqnPrL7hZ+WIFEXxC9rhpyguRZNfUVyKJr+iuBS/mnlUlFUg+4B3y2rjpo1pbN+R0n33eJGcwwYAQ667XGitYqVZBABsWiGvIpSUccfV9GPHhNaRVPsPHJCmHQDQvoWMXbVgOY0tLZUNUNHx0TR27RJp3DFs/CgaO3rsbULrNZS7xn7winQWnnjf/xNaZSU3jEgc2o/qjIwMOcew0sFFuXNnUXJCXh6f6xfcVD7nzPhj3n/epeuzsvYLjc3OA7jLLjPiAHjLLqvqA7x928m911bVvSLle/OtfvIrikvR5FcUl6LJryguRZNfUVyKXwt+1lpUVngXdcKb8f38hccLhBYUwA+3tEju8y/IlesBICREFhiLy2T7JwA0DZMbkSqqqoRWXl5K11eS2MBAuvmRcvzIcaoHBsoWzoDAABqbd0zeh9NzU1JSJLTKclncy8/3zUkWAPLyeGxZqRyFFhLGn5uiIjnSrbiYn0NZmXwv5OfLwm1UFC8Is+JtYaF0BAZ4Ec7JZZe1iju17LL7tVa+lwDANDJ1FRrH0E9+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJdinFxBzwatotva8b/0dojtOZi77E57VpotvPTR32jsiw+/ILQLEy6isVvXybltU17/HY3Nz5Gz8uI7SoOOrZt30fX9+8tz2512gMZOulK2KM/8+jsau+gdaVTy1VfTaeyNd8p20+SNG2jshMm3Cm3G67INdvQk7na8eZk0wrh03BAa2yhAfu789u4baexfpn8stMhoPuMxL1tW5kuL5dWYrcu30vUJVyQIzckoJbqDdBtmVzwAoLJSVuvrGnHUIFt2WVW/mifukgYs1lqfSv76ya8oLkWTX1Fciia/orgUTX5FcSl+LfgZY44CqNkw3RKA7Lts+Oh5NTx+SufWwVrLK4l18Gvyez2wMRuttb67PzQQ9LwaHj/lc/sh9L/9iuJSNPkVxaWcy+Sfdg4f+2yi59Xw+CmfmyPn7Du/oijnFv1vv6K4FL8nvzFmtDFmtzEm1RjzhL8f/0xijHnPGJNtjEmupUUZY5YaY/Z6/uZN6Ocxxpg4Y8xyY8xOY8wOY8zDHr1Bn5sxJtQYs94Ys9VzXk979HhjzDrPe/JjY0zwuT5Wf+DX5PcM+3wLwNUAegCYZIzp4c9jOMO8D2B0He0JAMustV0ALPPcbmhUAHjUWtsDwEAAD3hep4Z+bqUAhltrEwAkAhhtjBkI4EUAr1lrLwBwHMBd5/AY/Ya/P/kHAEi11u6z1pYBmAlgnJ+P4Yxhrf0OQN0tX+MA1Gyxm47q8eUNCmttprV2s+fnAgApANqigZ+braZm8kuQ548FMBzAbI/e4M7rdPF38rcFcLDW7QyP9lMi2lqb6fn5CAA+dqeBYIzpiOopzevwEzg3Y0yAMSYJQDaApQDSAORZa2ucSn+K70mKFvzOIrb6UkqDvZxijIkAMAfAI9ZaL3ODhnpu1tpKa20igHao/p9ot3N8SOcMfyf/IQBxtW6382g/JbKMMTEA4Pk7+xTx5yXGmCBUJ/5H1tq5HvkncW4AYK3NA7AcwCAAzY0xNb7wP8X3JMXfyb8BQBdPdTUYwA0A5vv5GM428wHUTMe8DcBn5/BYTgtjjAHwLwAp1tpXa/1Tgz43Y0wrY0xzz89hAEaiup6xHMAvPGEN7rxOF783+RhjxgB4HUAAgPestc/79QDOIMaYGQCGoXpXWBaAJwF8CuATAO1RvYNxorWW+0CdpxhjhgBYAWA7gBr/qamo/t7fYM/NGHMRqgt6Aaj+4PvEWvuMMaYTqovPUQC2ALjZWssnsfyE0A4/RXEpWvBTFJeiya8oLkWTX1Fciia/orgUTX5FcSma/IriUjT5FcWlaPIrikv5/5NgzbP5U4CPAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "print(\"kernel matrix during the training:\")\n", "kernel_matrix = result['kernel_matrix_training']\n", diff --git a/qiskit/aqua/finance/portfolio_optimization.ipynb b/qiskit/aqua/finance/portfolio_optimization.ipynb index 8ff3543c5..3858359da 100644 --- a/qiskit/aqua/finance/portfolio_optimization.ipynb +++ b/qiskit/aqua/finance/portfolio_optimization.ipynb @@ -61,7 +61,6 @@ "outputs": [], "source": [ "from qiskit import BasicAer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", @@ -168,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -230,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -271,8 +270,7 @@ "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full', initial_state=init_state)\n", "vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", "vqe.random_seed = seed\n", - "run_config = RunConfig(seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -326,8 +324,7 @@ "cobyla.set_options(maxiter=250)\n", "qaoa = QAOA(qubitOp, cobyla, 3, operator_mode='matrix')\n", "qaoa.random_seed = seed\n", - "run_config = RunConfig(seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", "\n", "result = qaoa.run(quantum_instance)\n", "\n", diff --git a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb index d5cf1f79c..17522c9fb 100644 --- a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb +++ b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb @@ -109,7 +109,6 @@ "import networkx as nx\n", "\n", "from qiskit import Aer\n", - "from qiskit.qobj import RunConfig\n", "from qiskit.tools.visualization import plot_histogram\n", "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", @@ -167,7 +166,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX+//HXSSeBEAIJhBKKlARdQWSxK4qL2MtKF3GlK1VZWvytwFJFBBVpgkpTQRYQ7AjqV5dVRLEnoYQWCJAeSM/M+f1xJ5iBJJOQmbmT5PN8PPJIZubO3E/mkeSde+49n6O01gghhBDFvMwuQAghhGeRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELYkWAQQghhR4JBCCGEHQkGIYQQdiQYhBBC2PExu4DL0ahRI92qVSuzyxBCiGrlhx9+SNFahznarloGQ6tWrdi3b5/ZZQghRLWilDpWke1kKEkIIYSdannE4DQWC6SmQmEh+PtDw4aglNlVCSGEqWpfMJw6Be+9B7t2QXw8WK1GGGgNvr5w5ZVw773w0EMQEmJ2tUII4Xa1JxjOnIHp02HnTiME/PwgMBC8vf/cpqgIfv0V9u+HuXOhb1+YNAnq1jWtbCGEcLfacY5h+3a44w747DMIDoYGDSAoyD4UAHx8jBAICTFCY8MG6NED9u41p24hhDBBzQ+GZctgwgRjuKhBA/Cq4Lfs7W1sn5UFAwfCJ5+4tk4hhPAQNTsY3nkHFiyAevUgIODyXiMoyHjumDHw7bfOrU8IITxQzQ2GY8eMcwp16xpDRFXh72+8xpgxxhGEEELUYDUzGLSGiRONy1H9/JzzmkFBkJYG8+c75/WEEMJD1cxg+PVX+OknqF+/3M02paUx6MgRboiLY/qpU45fNzjYuNQ1Lc1JhQohhOepmcGwZs2f8xPK0cjHhyGNGvGAgwC5wNvbeN0tW5xQpBBCeKaaFwxaG5elVmDuwR3BwXSvV4/6F1+2Wh5fX/jwwyoUKIQQnq3mBcPp05CXZ/wBd4WAAIiNNY4chBCiBqp5wXDkSNWvQipP8XDS6dOu24cQQpio5rXEyMszhpMqSANp6elkWq0k+/kREBBAnYAAfMoLFy8vyM+veq1CCOGBal4w+PpWqkOqApRSaK2xWq2kpaWRl5eHUoo6AQEEBAQQUKcOAQEB+BaHhdXquqEqIYQwWc0LhmbNKjz+b9Eai9bUCw7mVHIyAXXr0igsDC+lKCwsJC8vj7zcXNLT0si1hUWAvz/1tebnuDii/PwICwtDSatuIUQNUvOCoVUr44jBYrm0Sd5FVqeksDIlBQCLUtx84ACjmzVjRFgYfr6++Pn6ElyvHmAMORUVFpKfmUlanTps3r6d2PnzUUoRFRVFdHT0hc+NGzeWsBBCVFtKV2I83lN07dpVl7u05+OPw//+53CCW0kaOHH8OIFBQTRq2LDsDdPTYdgwmDIFrTVnz54lLi6O2NjYCx9Wq5Xo6OgLYREVFUVERISEhRDCVEqpH7TWXR1u54xgUEr1Al4GvIFVWut5Fz2+CLjddjMQCNdah9geswC/2h47rrV+wNH+HAbDV18Zf7yDgyv1fRQUFHDk6FFat26NX2nnEKxWo1fSrl3QsmWpr6G1Jjk5mbi4OLvAKCwsvHBEUfwhYSGEcCe3BYNSyhs4APwNSAS+B/prrf8oY/sxwDVa6ydtt89rrSu1Eo7DYLBY4LbbICWl0ovspKSmkpOdTYvISC75k52RATfeCGvXVuo1AVJSUi6ERHFo5OXlXTiiKA6LZs2aSVgIIVzCncFwAzBda32X7fZUAK313DK23wM8r7Xeabvt/GAAY3GdAQOMltuVmNmstSbhyBEaNWpE/ZJHHAUFxsfOndCiRWXKLVNaWprdEFRsbCy5ubl2YREVFUXz5s3xqug6EkIIUYaKBoMzTj43A06UuJ0IXFdGUS2B1sDuEncHKKX2AUXAPK31tjKeOxwYDhAZGem4qm7d4LHHjP/uGzSo8CWsSikiIiJITEykblAQ3t7exhFIdjbMmuW0UAAIDQ3lpptu4qabbrpwX1pa2oUjip07d/LKK69w/vx5OnToYHfeokWLFhIWQgiXcMYRw6NAL631UNvtQcB1WuvRpWw7GWiutR5T4r5mWuuTSqk2GIHRQ2t9uLx9VuiIAYw1nEePNv7LDw6u1JHD6dOnsWpN00aN4Nw5GDXKaOVtwjBPRkaG3fmKuLg4MjIyLhmGioyMlLAQQpTJnUcMJ4GS/0Y3t91Xmn7A0yXv0FqftH1OUEp9CVwDlBsMFebjA0uWwL//bazfXLymcwWEhYWRdOAAeT4+BPzrX/Dkk6aEAkBISAjXX389119//YX7MjMzLxxZfPXVVyxfvpz09HTat29vd2TRqlUrCQshRKU444jBB+Pkcw+MQPgeGKC1/v2i7aKAT4DW2rZTpVQDIEdrna+UagT8D3iwrBPXxSp8xFDSd98Zaz+npBgtM+rVK339Z4vFuPLIy4uUhg2ZHhzMSx98gJ+zFvxxoaysLLuroeLi4khNTaVt27Z2V0O1atXKGCITQtQq7r5c9R5gMcblqm9orWcrpWYC+7TW223bTAcCtNZTSjzvRmAFYMVo6LdYa73a0f4uKxjAGFr6v/+D11+HH34wjgCUMoJCKeNyVC8vuP12GDIE3aULz06cSFRUFMOHD6/8/jzAuXPniI+PtxuGSk5Opl27dnZDUW3atJGwEKKGc2swuNtlB0NJRUWQkACJiVBYaKzr3Lq1cXK5xJHEmTNnGDBgAKtXr6ZVq1ZV26eHyM7OtguL2NhYzpw5Y3dkERUVRZs2bcpvJiiEqFYkGJzonXfe4YsvvmDFihU1do5BTk7OhbAoHopKSkqiTZs2dsNQbdq0wVcaCApRLUkwOJHVauWJJ57g0Ucf5YEHHE7MrjFycnI4cOCAXVicPHnyQlgUD0NdccUV1eIcjBC1nQSDk8XHxzN69Gg2btxIaGioW/ftSXJzczl48KDdOYsTJ07QunVru0tn27ZtK2EhhIeRYHCBl19+meTkZGbNmuX2fXuyvLy8C2FRfGRx/PhxWrZsaXdk0a5dO/z9/c0uV4haS4LBBXJzc+nbty9Tp07lhhtucPv+q5OCggK7I4vY2FiOHTtGZGSkXdfZ9u3bExAQYHa5QtQKEgwusmfPHubNm8emTZvkD1olFRQUcOjQIbtZ3EeOHKF58+Z2J7jbtWtHnTp1zC5XiBpHgsGFpk2bRkREBGPGjHG8sShXQUEBhw8ftus6e/jwYZo1a2Z3zqJ9+/YEBgaaXa4Q1ZoEgwulpqbSt29fli1bRrt27Uyro6YqLCwkISHBbhgqISGBiIgIu66zUVFREhZCVIIEg4tt2bKF7du388Ybb0gvIjcoKioiISHBbhjq0KFDNG7c2O4Ed1RUFEFBQWaXK4RHkmBwMavVyrBhw7jrrrvo06ePqbXUVhaLhSNHjthdOnvw4EHCwsLshqE6dOhAPdva3ULUZhIMbpCQkMDw4cN5++23CQ8PN7scgREWR48etTuyOHjwIKGhoZeswx1cyaVfhajuJBjcZPny5Rw+fJgFCxaYXYoog9VqtQuLuLg44uPjCQkJsbsaKioqivr165tdrhAuI8HgJgUFBfTr149x48Zx2223mV2OqCCr1crx48cvWYc7JCTkkgWQQkJCzC5XCKeQYHCjffv28fzzz/Pee+/JVTLVmNVqJTEx0e5qqPj4eOrWrXvJMFRtbosiqi8JBjebMWMGQUFBTJw40exShBNZrVZOnjxp1+4jLi6OOnXqXDIM1bBhQ7PLdb6EBGORq7174eBByM+HgADo0AH++le47jqoIe3oawMJBjfLzMykd+/eLF68mI4dO5pdjnAhrXWpYeHv72936Wx0dDSNGjUyu9zK0xq+/NJYFvfnn/+838/PWKvEajUCorgFfdeuxtrqN99sSrmi4iQYTPDRRx+xfv161q1bJ6uh1TJaa5KSkuzOWcTGxuLj43PJkUVYWJjnruuRmgrTpsHnn4O3t7EEbnm1ag3nzhlhce+9MGMGyDkZjyXBYAKtNU8//TQ33HADgwYNMrscYTKtNadPn7YLitjYWLy8vC45sggPDzc/LA4ehP79ISMDgoNLXxO9LFYrZGZCWBi8+64ML3koCQaTnDhxgieeeIJ169bRtGlTs8sRHkZrzdmzZ+1OcMfFxaG1tju5HR0dTZMmTdwXFkePwsMPQ3a2EQqXKysL6teHbdugWTOnlSecw63BoJTqBbwMeAOrtNbzLnr8CWABcNJ21xKt9SrbY4OB52z3z9Jar3G0P08OBoA333yT/fv38/LLL5v/X6DweFprkpOT7Y4qYmNjsVgsdkcVUVFRREREOP9nqrAQ7r8fDh82/qhXVXo6XHUVbNliDEcJj+G2YFBKeQMHgL8BicD3QH+t9R8ltnkC6Kq1Hn3Rc0OBfUBXQAM/ANdqrdPL26enB0NRUREDBw5kyJAh9OzZ0+xyRDWVnJxsN8ciNjaW/Px8u7CIjo6madOmVQuLJUtg0SLj3IAzQkdrYzhq2jQYMqTqryecxp3BcAMwXWt9l+32VACt9dwS2zxB6cHQH+iutR5hu70C+FJr/U55+/T0YAD45ZdfmDRpEps2bZLWC8JpUlNTLznBnZuba9dEMDo6mubNm1csLLKyoFs38PcHX1/nFVpQABYL7NsHsraGx6hoMPg4YV/NgBMlbicC15Wy3d+VUrdiHF1M0FqfKOO5NWJg8uqrr6Z79+68+uqrxMTEmF2OqCEaNmzIzTffzM0lLg1NS0u7EBKfffYZL7/8MtnZ2ZfM4G7evPmlnYC3b4eiIqhbt9z9FlitzDt9mr05OWRZLDT39WV0eDg3lvU8Pz/jZPRHH8Hf/17Vb1u4mTOCoSJ2AO9orfOVUiOANcAdlXkBpdRwYDhAZGSk8yt0gdGjR9O7d2/279/PNddcY3Y5ooYKDQ3lxhtv5MYbb7xwX3p6+oWw2LVrF0uWLCErK4sOHTrYnbNouWEDqgJHChagia8vKyMjaeLry3/Pn2fKyZO827o1Tf38Sn+Slxe8844EQzXklqGki7b3BtK01vVr8lBSsV27drF8+XI2bNiAX1m/QEK4QUZGBvHx8ReGog78/juv7tqFJSgI/zp1qBMQQEBAAH7+/lTkTEO/hASGN2rEHWUNlVoskJsLf/xRuUtfhcu4cyjpe6CdUqo1xlVH/YABFxUTobVOst18AIi1ff0pMEcp1cB2uycw1Qk1eYw77riDDz74gLVr1zJ06FCzyxG1WEhICNdddx3XXWcb6T1wAMu995Ln40NuXh7nzp8nOTmZIouFAH9/AurUISAggDqlhEVaURHHCwpo4+9f9g69vY35DYmJUE2O8oWhysGgtS5SSo3G+CPvDbyhtf5dKTUT2Ke13g6MVUo9ABQBacATtuemKaX+jREuADO11mlVrcmTKKWYPHkyAwcOpGfPntVmGEzUApmZePv4EBQUZLfqncVqJS83l9y8PM6fP09KSgpFRUX4+/lRt25dQho14rlTp7ivfn1alRcMYBwpZGW5+BsRziYT3Nzk7bff5quvvmL58uUyt0F4hn37YNAgqMBSqAWFhRw7epSCoiJW+flh8fXlpRYt8HH0s3z+vDGfQfqHeYSKDiXJwJ+b9OvXj5ycHHbs2GF2KUIYQkONoR4HCouKOHHiBPWCg3m3bl1OZWczp0kTx6EAxnmGBg0cbyc8igSDm3h5eRETE8OSJUtITy93/p4Q7tGypfHZYilzk+IjhfrBway2WjlhsTC/cWMyzp51/PpFRcb8iCZNnFSwcBcJBjeKiori7rvvZtGiRWaXIoRxcviqqyAnp9SH8/PzOXb0KKENG1JYvz5bMzI4kJfHoPR0Hk5J4cY//uDjzMyyXz8nB7p0cc5sauFWEgxuNmLECPbv3893331ndilCwOOPlzqclJuXx7FjxwgPDye0QQMifH3ZFx3Nnqgovo6K4st27Vjj50fPevXKf/3HHnNR4cKVJBjcLDAwkMmTJzN37lzy8/PNLkfUdnfdZazIVuJnMTsnhxPHjxPRtCn1y2iqFxQURGBgICnJyaW/bl6eMZv69ttdUbVwMQkGE9x8881ERUWxatUqs0sRtV1AAMTEGBPRtObc+fOcTEykWbNm1HPQJqNx48ZkZmaSl5dn/4DWxus9/7xz+y8Jt5FgMMnEiRPZunUrhw4dMrsUUdv16QN//SvZSUkknTpFixYt7OY1lMXH25vwxo1JSkrC7qL3jAy49VZ44AGXlSxcS4LBJI0aNWLUqFHMmTMHawUuGRTCZby8+OCuuziSl0erBg2oU4luqPXr10d5eZGelvZnu+3WrY023nLSudqSYDDRww8/DMCWLVtMrkTUZmvXrmXlli2E7t6NX/v2xkI7RUUVeq4CIiIiSE1Opig1Fdq3h02bZN3nak6CwUReXl4899xzLF++nOSyTuIJ4SJaa1577TV27NjBqlWraNq5M+zYAUOHGkt8pqeXO8cBgKIi/LOzCQ8M5KPWrY0lPUND3fMNCJeRYDBZmzZteOSRR1iwYIHZpYhaxGq1Mn/+fL799ltef/11wsPDjQcCAmDqVCMgHn7YmItw/jykpRnrK2RlGZ/T0oz78/Kgb1/q7N7NWw0a8NX//mfuNyacQnoleYD8/Hz69evHhAkTuPXWW80uR9RwRUVFzJgxgzNnzrBo0aLyTzRnZcFPPxmts3//3bisNSAArrzS+OjUCWxzGX744Qf+9a9/8d577xEYGOim70ZUhtuW9jRDTQsGgL179zJz5kw2bdokv1TCZQoKCpgyZQoWi4UXXngBf0fdUStpxowZ1KtXj2eeecapryucQ5roVTPdunXj2muvZfny5WaXImqonJwcxo4dS0BAAC+++KLTQwFg/PjxfPLJJ8TGxjreWHgsCQYPMmHCBPmlEi6RlZXFqFGjiIyMZNasWfi6aOJZ/fr1GTduHLNnz8bi6MS18FgSDB4kJCSEsWPHMmvWLPmlEk6TkpLCsGHDuPbaa5k6dSpeLl5m85577qFevXps3LjRpfsRriPB4GHuvfdegoODeffdd80uRdQAp06dYujQofTq1YsxY8a4ZZEopRRTp05l9erVnDlzxuX7E84nweBhin+p3njjDU6dOmV2OaIaS0hIYOjQoQwcOJB//OMfbl05MDIykv79+zN//nyq4wUutZ0EgweKjIxk4MCB8kslLtsff/zByJEjGT16NL179zalhscff5zjx4/z5ZdfmrJ/cfmcEgxKqV5KqXil1CGl1JRSHn9GKfWHUuoXpdQupVTLEo9ZlFI/2T62O6OemmDQoEEkJSXx+eefm12KqGZ+/PFHxo0bR0xMDPfcc49pdfj5+TFt2jQWLFhAdna2aXWIyqtyMCilvIHXgLuBjkB/pdTFK3/vB7pqra8GNgMvlHgsV2vd2fYh7RhtfH19iYmJYeHChZw7d87sckQ18c033zB58mRmz57NbbfdZnY5dOnShRtuuIGlS5eaXYqoBGccMXQDDmmtE7TWBcC7wIMlN9Baf6G1Ll4/8FuguRP2W+N16tSJW2+9lVdffdXsUkQ18NlnnzFz5kwWLVpEt27dzC7ngnHjxrFz507++OMPs0sRFeSMYGgGnChxO9F2X1mGAB+XuB2glNqnlPpWKfWQE+qpUcaMGcPXX3/Nzz//bHYpwoNt2bKFRYsWsXTpUq666iqzy7ETHBzM+PHj5TLsasStJ5+VUo8BXYGSHeNa2qZoDwAWK6WuKOO5w20Bsq82dSItbi8we/ZsCgsLzS5HeKC1a9fy1ltvsXLlStq2bWt2OaW6++67CQkJkcuwqwlnBMNJoEWJ281t99lRSt0JxAAPaK0vLDCrtT5p+5wAfAlcU9pOtNYrtdZdtdZdw8LCnFB29XHnnXcSERHBunXrzC5FeBCtNUuXLmX79u2sWrWKFi1aOH6SSUpehp2UlGR2OcIBZwTD90A7pVRrpZQf0A+wu7pIKXUNsAIjFM6WuL+BUsrf9nUj4CZABiIvopRiypQpbNiwgePHj5tdjvAAVquVF154gT179ti3zfZgLVq0kMuwq4kqB4PWuggYDXwKxAKbtNa/K6VmKqWKrzJaANQF3rvostRoYJ9S6mfgC2Ce1lqCoRQRERE8+eSTzJkzR36parmioiKmT5/OoUOHWL58OQ0aNDC7pAobNGgQp06d4osvvjC7FFEOabtdjVgsFgYPHky/fv247777zC5HmKC4bXZRUREvvPACAQEBZpdUaT/99BPTpk1j06ZN1K1b1+xyahVpu10DeXt7ExMTwyuvvEJGRobZ5Qg3y8nJYdy4cQQEBLBw4cJqGQoAnTt35qabbpK5DR5MgqGaiY6OplevXixatMjsUoQbZWVl8dRTT9G8eXOXts12lzFjxrB7925+++03s0sRpZBgqIZGjhzJDz/8wN69e80uRbhBcdvsa665hmnTprm8bbY7BAcHM2HCBGbPnk1RUZHZ5YiLVP+fsFooMDCQSZMmMXfuXPLz8x0/QVRbxW2z77rrLsaOHevWDqmu1rNnTxo2bMjbb79tdiniIhIM1dStt95Ku3btWL16tdmlCBc5cuQIQ4cOZcCAATz55JM1KhTgz8uw16xZIy3mPYwEQzX2z3/+ky1btpCQkGB2KcLJYmNjL7TN7tOnj9nluEzz5s157LHHZG6Dh5FgqMbCwsIYOXIks2bNwmq1ml2OcJIff/yRsWPHMnXqVFPbZrvLoEGDOH36tLSY9yASDNXcI488AsDWrVtNrkQ4w3//+98LbbO7d+9udjlu4ePjQ0xMDC+99JK0mPcQEgzVnJeXFzExMSxbtoyUlBSzyxFV8NlnnzFjxgxeeuklj2qb7Q5XX301t9xyC6+99prZpQgkGGqEK664gocffpgXX3zR7FLEZdq6dSuLFi3itdde4y9/+YvZ5ZhizJgxfPnll/zyyy9ml1LrSTDUEEOHDiUuLo5vvvnG7FJEJa1du5Y333yTlStX0q5dO7PLMU3JFvMyt8FcEgw1hL+/P9OmTWP+/Pnk5OQ4foIwXXVqm+0uf/vb32jcuDEbNmwwu5RaTYKhBunWrRvXXHMNK1asMLsU4UB1bJvtDsVzG9auXcvJk5cs6yLcRIKhhpkwYQIff/wxcXFxZpciylCd22a7Q9OmTRk8eDDz5s2TuQ0mkWCoYRo0aMCYMWOYPXu2rK/rgQoKCpg0aRIZGRm8+uqr0na6DAMGDCA5OZmdO3eaXUqtJMFQA913330EBQWxceNGs0sRJdSUttnuUHJuQ1ZWltnl1DoSDDWQUopp06axevVqTp8+bXY5gprXNtsd/vKXv3D77bezZMkSs0updSQYaqjIyEj69+8vPWg8QE1sm+0uTz/9NF9//TU///yz2aXUKvITWoMNHjyYxMREdu/ebXYptVZNbpvtDnXr1uXZZ59l9uzZFBYWml1OrSHBUIP5+voSExPDiy++yPnz580up9ap6W2z3aVHjx40bdqU9evXm11KreGUYFBK9VJKxSulDimlppTyuL9SaqPt8e+UUq1KPDbVdn+8UuouZ9Qj/tS5c2duvvlmGad1s9rSNtsdlFJMmjSJ9evXk5iYaHY5tUKVg0Ep5Q28BtwNdAT6K6U6XrTZECBda90WWATMtz23I9APuBLoBSy1vZ5wIulB4161rW22OzRt2pQnnniCuXPnyjkzN3DGEUM34JDWOkFrXQC8Czx40TYPAmtsX28GeijjuPpB4F2tdb7W+ghwyPZ6womCg4OlB42b1Ma22e7Sv39/0tPT+fTTT80upcZzRjA0A06UuJ1ou6/UbbTWRUAm0LCCzwVAKTVcKbVPKbUvOTnZCWXXLsU9aNatW2d2KTVWbW6b7Q7FcxsWLVokcxtcrNqcfNZar9Rad9Vadw0LCzO7nGqnuAfN+vXrOXHihOMniEqRttnuceWVV9KjRw9eeeUVs0up0ZwRDCeBkm0hm9vuK3UbpZQPUB9IreBzhZPIOK1rrFu3Ttpmu9HTTz/Nnj172L9/v9ml1FjOCIbvgXZKqdZKKT+Mk8nbL9pmOzDY9vWjwG5t/GXaDvSzXbXUGmgH7HVCTaIMAwYMICMjg48//tjsUqq94rbZ77//vrTNdqOgoCAmTpzInDlzZG6Di1Q5GGznDEYDnwKxwCat9e9KqZlKqQdsm60GGiqlDgHPAFNsz/0d2AT8AXwCPK21ls5vLuTt7c1zzz3H4sWLycjIMLucastqtbJgwQJpm22S22+/nRYtWrB27VqzS6mRVHUcUujatavet2+f2WVUay+++CLZ2dk8//zzZpdS7VgsFmbMmEFSUhKLFi2SDqkmOX36NAMHDuTNN98kMjLS7HKqBaXUD1rrro62qzYnn4VzPfXUU+zduxcJ2MqRttmeo0mTJgwZMkTWbXABCYZaKjAwkMmTJzNnzhwKCgrMLqdaKG6b7efnJ22zPUTfvn3JzMyUc2ZOJsFQi9166620bduWN954w+xSPF5x2+xmzZoxe/ZsaZvtIby9vYmJiWHx4sVkZmaaXU6NIcFQy02cOJHNmzeTkJBgdikeKzU1leHDh9O5c2diYmKkbbaH6dixIz179uTll182u5QaQ37Ca7nw8HCGDx/O7NmzsVqtZpfjcYrbZvfs2ZNx48ZJh1QP9dRTT/Htt9/y448/ml1KjSDBIHj00UexWCxs27bN7FI8ypEjRxg2bBj9+/eXttkeLjAwkEmTJjF79mw5Z+YEEgwCLy8vYmJiWLp0KampqWaX4xHi4uIYOXIkTz31lLTNria6d+9Oq1atWLNmjeONRbkkGAQA7dq148EHH2ThwoVml2K6/fv3M2bMGKZOncq9995rdjmiEiZNmsTGjRs5fvy42aVUaxIM4oJhw4bx+++/s2fPHrNLMc2ePXv45z//KW2zq6nGjRszZMgQ5syZI3MbqkCCQVwQEBDA1KlTmTdvHrm5uWaX43Y7d+5k+vTp0ja7muvbty/Z2dl8+OGHZpdSbUkwCDvXX389nTp1YuXKlWaX4lbbtm3jpZde4rXXXuPqq682uxxRBcXnzF555RXpB3aZJBjEJSZMZ2CWAAAaqElEQVRMmMCHH37IgQMHzC7FLdavX8/q1atZsWKFtM2uIaKioujVqxeLFy82u5RqSYJBXCI0NJTRo0cza9asGj23QWvNsmXL2Lp1K6tWrZJGbDXMyJEj+f7776Uf2GWQYBCluv/++wkICGDjxo1ml+ISxW2zv/nmG1atWkXjxo3NLkk4mfQDu3wSDKJUSiliYmJYtWoVZ86cMbscp7JYLEyfPp0DBw6wYsUKGjRoYHZJwkWK+4G99dZbZpdSrUgwiDK1bNmSvn37Mn/+/Bpz6V9BQQGTJ08mIyODJUuWSNvsWmDixIls2rSJo0ePml1KtSHBIMr1xBNPcPz4cb744guzS6mynJwcxo8fj4+Pj7TNrkXCw8MZNmyYzG2oBAkGUS4/Pz+mTZvGiy++yPnz580u57JlZWXx9NNPExERwZw5c6Rtdi3Tu3dv8vLy2LFjh9mlVAsSDMKhLl26cOONN7J06VKzS7ksxW2zO3XqxHPPPSdts2shLy8vnnvuOZYsWUJ6errZ5Xi8Kv2GKKVClVI7lVIHbZ8vOYunlOqslPqfUup3pdQvSqm+JR57Syl1RCn1k+2jc1XqEa4zduxYdu/eza+//mp2KZWSlJQkbbMFAO3bt+eee+5h0aJFZpfi8ar6r9MUYJfWuh2wy3b7YjnA41rrK4FewGKlVEiJx/+pte5s+/ipivUIFwkODmbChAnMnj2boqIis8upkKNHjzJ06FBpmy0uGD58OPv372fv3r1ml+LRqhoMDwLFPW7XAA9dvIHW+oDW+qDt61PAWSCsivsVJujZsydhYWGsX7/e7FIciouLY8SIEdI2W9gpXrdh7ty5MrehHFUNhsZa6yTb16eBcmcJKaW6AX7A4RJ3z7YNMS1SSvmX89zhSql9Sql9ycnJVSxbXA6lFFOnTmXdunUkJiaaXU6Z9u/fz9ixY6VttijVLbfcQvv27Vm9erXZpXgsh8GglPpcKfVbKR8PltxOG9eBlXktmFIqAlgH/ENrXdxnYSoQBfwVCAUml/V8rfVKrXVXrXXXsDA54DBL06ZNGTx4MHPnzvXIS//27NnDpEmTmDVrlrTNFmWaOHEi//nPf2St8zI4DAat9Z1a66tK+XgfOGP7g1/8h/9saa+hlAoGPgRitNbflnjtJG3IB94EpNdxNTBgwADS0tL45JNPzC7Fzueff8706dNZuHChtM0W5QoLC2PEiBHMmTOnRvcDu1xVHUraDgy2fT0YeP/iDZRSfsBWYK3WevNFjxWHisI4P/FbFesRbuDj48Nzzz3H4sWLycrKMrscAN5//30WLlwobbNFhf3973+nqKiI7du3m12Kx6lqMMwD/qaUOgjcabuNUqqrUmqVbZs+wK3AE6VclrpBKfUr8CvQCJhVxXqEm1x55ZXceeedHtHWeMOGDdI2W1Sal5cX06ZN47XXXiMtLc3scjyK8sRxYke6du2qpZWu+bKzs+nduzezZs2iS5cubt+/1poVK1awc+dOli5dKh1SxWV55ZVXSE5O5t///rfZpbicUuoHrXVXR9vJFFBx2YKCgpg0aRKzZ892+6V/VquVF198ka+//lraZosqGTZsGD///DPfffed2aV4DAkGUSXdu3endevWbm1rbLFYmDFjBvHx8dI2W1RZnTp1mDJlCnPmzCE/P9/scjyCBIOoskmTJrFx40aOHDni8n0Vt81OT0+XttnCaW688UY6duwocxtsJBhElYWHhzN8+HCXX/onbbOFKz377LNs3bpV5jYgwSCcpHfv3hQUFLjs0j9pmy1crVGjRowcObLGr3VeERIMwim8vLyIiYkp/9I/raGgACyWSr12amoqI0aM4Oqrr5a22cKlHn74YbTWbNu2zexSTCW/YcJp2rdvz/3338/ChQuNO6xW+PprmDoV/vY3aNsWOnSAK66Azp1h8GBYtQrK6X2VlJTEsGHDuPPOOxk/frx0SBUuVfwPzrJly0hNTTW7HNPIPAbhVLm5ufTr04f5119P1I4dkJpqHCHUqQP+/uDlZRw5FBVBbq4RHkrB3XfDtGnQpMmF1zp69CijR49m0KBB9O3bt5y9CuFcS5Ys4dSpU8yZM8fsUpxK5jEIU9TJzGRVfj7158zBmpUF9etDaKgRDMVDQEqBry8EB0NICNStCx9+CD16wH/+A1oTHx/PyJEjGTVqlISCcLuhQ4fy22+/sWfPHrNLMYUEg3CehAS4/37CEhKw1qtHckXXiPb2hgYNjOCYNImTEyYwZvRoJk+eLG2zhSkCAgKYOnUq8+bNIy8vz+xy3E6CQTjHmTPQty9kZkJICI2bNCEzI6Nyv1T+/pz38kKtWMGKzp25/fbbXVevEA7ccMMN/OUvf2HVqlWON65hJBhE1WkNEydCWpoxPITRgTUsPJykpKSyF+m4SFZWFqfOnCGkZUtab9sGv/ziupqFqIBnnnmG999/n0OHDpldiltJMIiq27YN9uwxzheUEBISgvLyIj093eFLZGRkcPrMGSIjIwmsW9c4DzFuHBQWuqpqIRxq2LAho0aNYvbs2bVqboMEg6gaqxUWLjSuOLroUlIFRDRpQnJyMoVFRWW+RGpaGskpKbRs2fLP2czBwZCYCF9+6brahaiAhx56CC8vL7Zu3Wp2KW4jwSCqZu9e4/xCnTqlPuzv709ogwacPn2aLIuFiYmJ3BwXx32HDvFxZiZnk5NJT0+nVcuW+Pv52T9ZKVi50g3fhBBlKzm3ISUlxexy3EKCQVTNp58a8xTKmXjWsFEj8vPzmXn8OL5K8Vn79vy7aVNmHj/OH5mZtGrZsvQWF/XqwY8/goesEidqrzZt2vDII4/8OXmzhpNgEFXz/ffgoJmdl1KENG7M55mZDG/YkDpeXoRnZPBXb29+rlcPHx+f0p9YPN8hPt4FhQtROUOGDCE2Npb//ve/ZpfichIMomoOHjTOLziQ6uODr5cXARkZJCYmYikq4trwcI46WuCnsBBq2RUhwjP5+/szdepU5s+fT25urtnluJQEg7h8WkNe3p8zmsuRY7USEhBAVmYm58+dIzAwEL+iIs47aqhnsRitM4TwANdddx2dOnXi9ddfN7sUl6pSMCilQpVSO5VSB22fS11KSyllUUr9ZPvYXuL+1kqp75RSh5RSG5VSfqU9X3gopYxZyxUQ6OVFjtXKFW3bEtG0KUUWC6czMynIyuLgoUMkJiaSkpLC+exsikqGRSX2IYQ7TJgwgR07dnDgwAGzS3GZqh4xTAF2aa3bAbtst0uTq7XubPt4oMT984FFWuu2QDowpIr1CHdr3Nhope1ApJ8fFuCUxUJI/fo0adyY9Hr1uLZJEyIjI6kXHIzFYiE1JYVDhw5x8OBBTiQmkpGby2+pqbXmahDh+UJDQxk9erTLF6YyU1WD4UFgje3rNcBDFX2iMvon3wFsvpznCw/RubMxnORAHS8v7qhXj+XJyeRarfyck8NX585xX/36+Pv5UT84mMaNG9OyZUs6dOhAy5YtqR8cjLZYeGf/fvr06UOvXr0YP348K1as4KuvvuLs2bNUx+7Aovq7//778fX1ZfPmzY43roaq1HZbKZWhtQ6xfa2A9OLbF21XBPwEFAHztNbblFKNgG9tRwsopVoAH2utr3K0X2m77UHeeQf+3/+7ZNZzabIsFmacOsV32dnU9/ZmTHg4verXL/sJ+fnGVUn79qGVIikpibi4uAsfsbGxAERFRREdHU1UVBRRUVFERETIug3C5RISEhg+fDjvvPMOYWFhZpdTIRVtu+0wGJRSnwNNSnkoBlhTMgiUUula60vOMyilmmmtTyql2gC7gR5AJpUIBqXUcGA4QGRk5LXHjh1z9L0Jd8jKgr/+1ZjgVtZlp5crPR0mTIDRo0t9WGtNcnLyhZAo/lxQUHAhJIpDo1mzZrLym3C6ZcuWcfToUebPn292KRXitGBwsJN4oLvWOkkpFQF8qbXu4OA5bwEfAP8BkoEmWusipdQNwHSt9V2O9itHDB5m6lTYtMlone0shYXGENX//Z9xHqMSUlJSLjmyyM7OpkOHDnZHF5GRkRIWokoKCgro27cvzzzzDLfccovZ5TjkrmBYAKRqrecppaYAoVrrSRdt0wDI0Vrn24aP/gc8qLX+Qyn1HvAfrfW7SqnlwC9a66WO9ivB4GHS0uD2241V2cpojVEpWkNGBkyaBCNGVP31gPT09EvCIiMjg/bt29uFRatWrfCWq6BEJezdu5eZM2eyadMmAgMDzS6nXO4KhobAJiASOAb00VqnKaW6AiO11kOVUjcCKwArxsnuxVrr1bbntwHeBUKB/cBjWut8R/uVYPBAn30Go0YZbSyqOqSUkQHR0bB1q/OHp0rIysqyC4u4uDjOnj1Lu3bt7MKiTZs2Zc/OFgL417/+RWhoKOPHjze7lHK5JRjMIsHgoVasgPnzjXAorfeRI1obC/00bQpbtkCjRs6v0YHz589z4MABu/MWp06d4oorrrA7b9G2bVv8Lm76J2qt9PR0+vbty6uvvkqHDuWOpptKgkGYY906mDXLaMcdHFxucz07hYWQnQ1XXgmrV5sSCmXJycnh4MGDdmFx4sQJWrZseeGoIjo6mnbt2uFfgfYgombavn07mzdv5q233vLYc1cSDMI8Bw/C+PFw4IBxFBAcXHrbDK2NS1Lz8owho2efhSefrBYznfPz8y8Ji6NHj9K8efNLwsLTx52Fc2itGTFiBD169KBv375ml1MqCQZhLqvVWNXt9dfhm2+MoSWLxbgfjNtFRRAaaoTBo4961FHC5SgoKODw4cMXgiIuLo7Dhw/TtGlTu0tn27dvT926dc0uV7jA0aNHGTp0KG+//Tbh4eFml3MJCQbhOfLzjaOHQ4cgJ8c4ImjcGDp2hPDwig83VUNFRUUkJCTYXQ118OBBwsPD7c5ZREVFEWxbL1tUbytXruTgwYMsWLDA7FIuIcEghIeyWCwcO3bMblLegQMHCAkJuWQWdwNnzg0RblFQUEC/fv0YN24ct912m9nl2JFgEKIasVqtHD9+3O7IIi4ujrp169qFRXR0NA0bNjS7XOHAvn37eP7553nvvfc86hyTBIMQ1ZzVauXkyZN2QREXF4efn5/dUUV0dDRhYWHSH8rDzJgxg3r16vHMM8+YXcoFEgxC1EBa6zKbCZYMC2kmaL6MjAz69OnDyy+/THR0tNnlABIMQtQaFWkmWBwa0kzQvT744APeffdd1qxZ4xGtViQYhKjlUlJSiI+PtwsLaSboXlprRo0axW233Ub//v3NLkeCQQhxqfKaCZYcipJmgs5z/Phx/vGPf/D222/TuJKdgp1NgkEIUSGlNRNMTk6mbdu2dmEhzQQv3+uvv05cXBwLFy40tQ4JBiHEZcvOziY+Pr7cZoLR0dFcccUV0kywAgoKChgwYACjR4+me/fuptUhwSCEcKqymgm2atXKLiykmWDpfvzxR5577jk2b95s2twGCQYhhMuV1UywRYsWl4SFJ030MsvMmTMJDAxk4sSJpuxfgkEIYYrSmgkmJCQQERFhdzVUhw4dCAoKMrtct8rMzKR3794sXryYjh07un3/EgxCCI8hzQT/9NFHH7FhwwbWrl3r9iu/JBiEEB6tvGaCF7f8CAkJMbtcp9Fa8/TTT3PTTTcxcODAix+E1FRITze+DgmBsDCndSCWYBBCVDtWq5UTJ07YhUV8fDxBQUGXhEV1biZYPLdh/fr1RISFwVdfwdtvww8/wLlzfy6Na7FAYCB06gQDBsAdd0AVrgJzSzAopUKBjUAr4CjQR2udftE2twOLStwVBfTTWm9TSr0F3AZk2h57Qmv9k6P9SjAIUXuUbCZY8iR3yWaCxZ+rUzPB1atWYd2+naGnTqEybX8CAwON1QyLvwetjQWtcnP/fDwmBv7+99JXRXTAXcHwApCmtZ6nlJoCNNBaTy5n+1DgENBca51jC4YPtNabK7NfCQYhareymgkqpS45Z+GRzQQzMrBMmEDye+9Rt1Ej6lZ09cL8fGOxq+uvh8WLjWGmSnBXMMQD3bXWSUqpCOBLrXWHcrYfDtymtR5ou/0WEgxCCCeoTDPB5s2bmxcWqanQpw8cPUqOnx8nT52izRVX4F3RIwCtISMDmjSBzZshIqLCu3ZXMGRorUNsXysgvfh2GdvvBl7SWn9gu/0WcAOQD+wCpmit8x3tV4JBCFFR5TUTLDkU1aJFC9c3E8zPh4cegoMHjRPLwKmkJLyUokmTJpV7rYwMaN4cPvwQKnjZr9OCQSn1OVBaxTHAmpJBoJRK11qXuhah7YjiF6Cp1rqwxH2nAT9gJXBYaz2zjOcPB4YDREZGXnvs2DEH35oQQpQuPT39krC4uJlgdHQ0LVu2dO4lpS+8ACtWGKFgO2KxWCwcTkigRfPm1KlTp7LfiHFS+t//rtDmHjeUpJQaB1yptR5exuPdgYla6/sc7VeOGIQQzubyZoJxcXD//cZ/9xc9PzMri9TUVFq3alW5IS6LxbiKadMm6NLF4eYVDYaqtkrcDgwG5tk+v1/Otv2BqSXvUEpF2EJFAQ8Bv1WxHiGEuCzBwcF069aNbt26XbivZDPB77//nnXr1pGUlESbNm0q30zw9deNP+SlhEpwcDAZGRmkpaWxOC+PvTk55FqtNPLx4fGGDXmorHkcxUczy5YZr+8kVT1iaAhsAiKBYxiXq6YppboCI7XWQ23btQL+C7TQWltLPH83EAYo4Cfbc8472q8cMQghzOKomWDx0YVdM8GMDLjuOuNy0zKGpgoKCjhy9Ci6aVPaBAbi5+XF0fx8hh87xsstWhBd1jCT1QpZWfDNN8YJ6XK45YhBa50K9Cjl/n3A0BK3jwLNStnujqrsXwgh3C0wMJBOnTrRqVOnC/dd3Exw69atds0Eb7NYuCE/H7+gIMo6ve3n50fD0FBy0tPxrVsXMP5jVkqRWFhYdjB4eRkfe/fCAw845XuUVTeEEKKK/P39ueqqq7jqqqsu3FeymWDh6tVkpaaSlpKCr58fAQEBdh/Fl6qGNmxI5pEjzDh6lJ15eeRrTYeAAG6yBUWZCgvhp58kGIQQwpMVz8yOjo6Gjz+GiAjC6tUjPz+fvLw88vLyOJeVRV5+Pj4+PhdCIiQkhAEpKcS0a8fv+fn8kJODn6MT0v7+8JvzTtFKMAghhKvl5oKXF0qpCwFQTAMF+fnk2sIiLy+PgoICigoK6BwYyEeZmWxOT6dfaGjZr+/l9WfbDCeQYBBCCFfz9zdOEpdCYQxF+fv7Q/36gBEWxccIFiCxoKD819fa2IeTuHianxBCCKKijPMADqQVFfFZVha5VitWrfnf+fN8mplJN0czm/PzoUOZ3YgqTY4YhBDC1a6+ukLtshWwOT2dOUlJWIEIX1+ebdyYW+vVK/+J3t5w7bVOKRUkGIQQwvW6dDGGkqzWcttlN/DxYWXLlpV7bavVGErq6nB6QoXJUJIQQrhaWBj06GFMRHO2c+egWzeIjHTaS0owCCGEOwy3tYkr4yT0ZSk+Whg1ynmviQSDEEK4R5cu0Ls3FK/W5gyZmdCrF9xyi/NeEwkGIYRwn5gYo5+RM8IhKwsaNoSZpa5UUCUSDEII4S5168I770CDBkZjvctpYqq1ESxBQfD221DexLfLJMEghBDuFBkJ27ZBx45GOFRgfsMFhYXGc1q3hq1boW1bl5QowSCEEO7WtKnxh33KFCgoMP7YZ2eXfmLaaoWcHGObvDwYO9ZYzrNVK5eVJ/MYhBDCDN7eMGwY9OsHO3bAunXGWtA+PheW/URr4yihTRt47DFjvWhb2wxXkmAQQggz1atnrNs8YIBx9HDokHF0AEYItG3r1D5IFSHBIIQQnsLPzzj3YDI5xyCEEMKOBIMQQgg7Sl/OdbQmU0olA8ec+JKNgBQnvl5NJe+TY/IeVYy8T4654j1qqbUOc7RRtQwGZ1NK7dNaO681YQ0l75Nj8h5VjLxPjpn5HslQkhBCCDsSDEIIIexIMBhWml1ANSHvk2PyHlWMvE+OmfYeyTkGIYQQduSIQQghhJ1aGQxKqd5Kqd+VUlalVJln/ZVSvZRS8UqpQ0qpKe6s0RMopUKVUjuVUgdtnxuUsZ1FKfWT7WO7u+s0g6OfDaWUv1Jqo+3x75RSrdxfpfkq8D49oZRKLvHzM9SMOs2klHpDKXVWKfVbGY8rpdQrtvfwF6VUF1fXVCuDAfgNeAT4v7I2UEp5A68BdwMdgf5KKfPnqrvXFGCX1rodsMt2uzS5WuvOto8H3FeeOSr4szEESNdatwUWAfPdW6X5KvE7tLHEz88qtxbpGd4CepXz+N1AO9vHcGCZqwuqlcGgtY7VWsc72KwbcEhrnaC1LgDeBR50fXUe5UFgje3rNcBDJtbiSSrys1HyvdsM9FCquGVmrSG/QxWgtf4/IK2cTR4E1mrDt0CIUirClTXVymCooGbAiRK3E2331SaNtdZJtq9PA43L2C5AKbVPKfWtUqo2hEdFfjYubKO1LgIygYZuqc5zVPR36O+2IZLNSqkW7imtWnH736Ia211VKfU50KSUh2K01u+7ux5PVd77VPKG1lorpcq6hK2l1vqkUqoNsFsp9avW+rCzaxU10g7gHa11vlJqBMZR1h0m11Tr1dhg0FrfWcWXOAmU/O+lue2+GqW890kpdUYpFaG1TrIdup4t4zVO2j4nKKW+BK4BanIwVORno3ibRKWUD1AfSHVPeR7D4fuktS75nqwCXnBDXdWN2/8WyVBS2b4H2imlWiul/IB+QK244qaE7cBg29eDgUuOtJRSDZRS/ravGwE3AX+4rUJzVORno+R79yiwW9e+SUMO36eLxsofAGLdWF91sR143HZ10vVAZokhXtfQWte6D+BhjHG6fOAM8Knt/qbARyW2uwc4gPHfb4zZdZvwPjXEuBrpIPA5EGq7vyuwyvb1jcCvwM+2z0PMrttN780lPxvATOAB29cBwHvAIWAv0Mbsmj30fZoL/G77+fkCiDK7ZhPeo3eAJKDQ9ndpCDASGGl7XGFc3XXY9jvW1dU1ycxnIYQQdmQoSQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELYkWAQQghh5/8D+Hbjig77/OkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4FFX28PHvzZ6QlX0JkIRNEVGEQVFAQRjAUUCQdEZ/giAwDqKOEBYRN8RhZxwZddwYlnc0lQTEgAqKiIwLKjrusm8hAVkSEsjWSfq+f1RgImZPpyudPp/nyUO6u9J9CsKpqnNv3aO01gghhPAsXlYHIIQQwvUk+QshhAeS5C+EEB5Ikr8QQnggSf5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4IEn+QgjhgXysDqA8TZs21VFRUVaHIYQQbuWrr746rbVuVtl29Tb5R0VFsWvXLqvDEEIIt6KUOlKV7ept8hdCWCg/H44eNf/08YHISAgNtToq4USS/IUQprQ0eOMNeOcdOHIEfH1BKdAaCguhWTO48Ua4+2644grzNeG2JPkL4enOnIEnnoAtW8DhgIAACAsDr1LzQbSGnBxITob16+Hyy2HJEujSxbq4Ra3IbB8hPNkHH8DAgbB5M4SEQEQEBAb+OvGDeZbv72++HhoKu3fDbbfBCy+YBwbhdiT5C+Gp1q+HP/0JioogPPy3Cb88SpkHgMBAWLYM5s41rxiEW5HkL4Qn2rEDZs2CoCAzideEr69ZHnrjDfj7350bn6hzkvyF8DRnz8JDD5nJ28+vdu/l5WVeBbzwAnz3nXPiEy4hyV8IT7NwIWRnm2f9zuDjY5aCHn5Yyj9uRJK/EJ4kI8Os9VcyZz8xI4O7Dx2iz+7dPJmeXvn7hoaa9wV89pmTAhV1TZK/EJ5k3Trz7Nzbu8LNmvr4cG/TpgwPC6v6e2sNr75aywCFqzgl+SulViqlTiqlfijndaWUek4ptV8p9Z1S6hpnfK4Qopq2bDHLNJUYGBrKTSEhhFVykPiVkBD49FMp/bgJZ535rwKGVvD6MKBTyddk4EUnfa4QoqocDvjxR/Mmrrpw4UBx+HDdvL9wKqckf631DiCjgk1GAGu0aScQrpRq5YzPFkJUUUaGOae/Cmf+NaaUJH834aqafxsgtdTjYyXPCSFcxW6v8o1cdrudE7/8wpmMDOx2e9U/Q2soKKhhgMKV6tXaPkqpyZhlIdq1a2dxNEI0ML6+FdbjNZCTk0NGRgZ5eXmEh4cTFBTEyaws7IWF+Pn6Vv4ZStX+3gHhEq46808D2pZ6HFny3K9orV/WWvfSWvdq1qzSXgRCiOpo0sSsyxcX/+rpYoeDjMxMDhw4wMmTJwkNCSGmY0cimjbFPyCAgKAgDh49SuElP1cmraF9+zraAeFMrjrzTwGmKqUSgGuBLK31cRd9thACzJJP167w008QHEyB3U5mRgZZ2dk0CgqidatWBAYFoYCXT53i5dOnL/7oe4WF3HnwIDM7daLchZwvXFVER9f1nggncEryV0q9AdwENFVKHQOeAHwBtNb/BN4BbgH2A7nAeGd8rhCiehyDBlHw+eecyswkPy+P8IgIYqKj8b2kpDO5WTMml7r6dmjNkcOHOXPmDE2bNCn7zc+dgz59Kr2HQNQPTkn+Wus/VvK6Bu53xmcJIarv/PnzbNy4kc2bNrEoO5vQ5s2JjIzEq4oNWbyUIrJtWw4dOkSAvz/BwcFlbzhxohOjFnVJ7vAVogE7dOgQixYtYvjw4Xz//fdMX7iQFpMmEQ5VTvwX+Pr4EBkZSXp6OgWXzgA6dw5at4a+fZ0XvKhT9Wq2jxCi9hwOBx9//DEJCQns37+f0aNHYxgGFydRzJ0L27ZBXl61l3MOCgykWfPmHDt2jKioKLy9vMwB5OJiePbZqvcEEJaT5C9EA5GdnU1KSgqJiYlERERgs9kYNGgQfpdOvWzcGJYvh8mTzfp8NadmRoSHk5+XR3p6OpGtW6Oys8336tHDiXsj6pokfyHc3IEDBzAMg/fff59+/fqxYMECrrjiiop/aOBAmDcPHnvsf317q6FFy5YcO3SIc6mphI4bBzNm1GIPhBUk+QvhhoqLi9mxYweGYXD48GFGjx5NcnIyTcqbiVOWO+80e/LOmGE2eAkLM2/SqozWeJ07R5vwcF4LCKDzLbdwk5R73I4kfyHcSFZWFhs2bCApKYnmzZsTFxfHgAEDfjNVs8qGDYOePWHOHNi+3bwKaNTILAWVPhBoba4LlJNjPh8Tg/eyZfT18uLBBx+kXVQUMTExTtlH4RrKnIVZ//Tq1Uvv2rXL6jCEqBf27t2LYRhs27aNG2+8EZvNxuWXX+7cDzl0CF5/Hd59F44fN5eDuHAAKCw0G7bccAOMH2/W90te27RpEytXrmT16tWEhIQ4NyZRbUqpr7TWvSrdTpK/EPVTUVER27dvxzAM0tLSuOOOO7j99tuJiIio+w8/d85cnTM/3zwItGkDFSy5smzZMo4cOcKzzz6Ll5SALCXJXwg3lZmZyZtvvklycjJt2rTBZrNx00034VOXSzHXUlFREVOnTqVbt25MnTrV6nA8WlWTf/39bRLCw/z8888YhsFHH33EwIEDefbZZ+ncubPVYVWJj48PCxcuZOzYsXTp0oXBgwdbHZKohCR/ISxUVFTEtm3bSEhI4OTJk4wZM4aHH36YsOr0zq0nwsPDWbp0KVOmTKF9+/Zuc+DyVJL8hbBARkYG69atY/369bRv3567776b/v374+3mi6J17tyZmTNnEh8fz5o1awgPD7c6JFEOSf5CuNAPP/yAYRh8/PHHDB48mBUrVtCxY0erw3Kq3//+9+zevZtHHnmEf/zjH25/QGuoZMBXiDpmt9vZunUrhmGQmZlJbGwsw4cPJzQ01OrQ6ozD4eChhx4iOjqaadOmWR2OR5EBXyEsdurUqYulnY4dO3LvvffSt29fj5gK6eXlxTPPPMO4cePo0qULf/jDH6wOSVxCkr8QTqS15vvvvychIYGdO3cyZMgQXnrpJaI9sLtVaGgoy5YtY/LkyURHR9O1a1erQxKlSPIXwgnsdjtbtmzBMAxycnKIjY1lzpw55Tc98RAxMTE8+uijzJgxg7Vr19K4cWOrQxIlJPkLUQsnT54kOTmZDRs2cNlll/HnP/+ZPn36eERpp6oGDBjA3r17mTlzJi+++GLN1yESTiW/oUJUk9aar7/+mlmzZhEXF0dubi6vvvoqzz33HDfccIMk/jJMmjSJ0NBQli5danUoooTM9hGiigoKCti8eTOGYVBQUIDNZuPWW28lKCjI6tDcQk5ODuPGjePOO+9k1KhRVofTYMlsHyGc5Pjx4yQlJZGSkkK3bt148MEH6d27t5zhV1OjRo1Yvnw59957Lx07dqR79+5Wh+TRJPkLUQatNV999RUJCQl8/fXX3HrrraxatYrIyEirQ3Nr7dq148knn2TWrFmsXr2a5s2bWx2Sx5KyjxCl5OXl8e6772IYBlprbDYbw4YNk9KOk/3rX/9i+/btvPLKK7/tMSxqRZZ0FqIa0tLSSEpKYuPGjVx99dXExcXRq1cvVFXaGopq01rzyCOPEBgYyOOPPy5/z04kNX8hKqG15osvvsAwDL777juGDx/O2rVrad26tdWhNXhKKZ544gnGjx9PYmIiNpvN6pA8jiR/4XFyc3PZtGkTiYmJ+Pj4YLPZ+Otf/0pAQIDVoXmUwMBAli9fzj333EPHjh3p2bOn1SF5FEn+wmMcPXqUpKQk3n77bXr16sWcOXPo0aOHlBws1Lp1a+bPn8+cOXNYtWoVrVq1sjokjyHJXzRoDoeDnTt3kpCQwM8//8yIESN4/fXXadmypdWhiRK9e/dm3LhxTJ8+nZUrV8oVmIvIgK9okHJycti4cSOJiYkEBgZis9kYMmQI/v7+VocmyqC15oknnqC4uJj58+fL1VgtyGwf4ZEOHz5MYmIimzdv5tprr8Vms3HVVVdJMnEDBQUFTJw4kcGDBzN27Firw3FbMttHeAyHw8Enn3yCYRjs3buX22+/nYSEBLmByM34+/uzdOlSxo0bR6dOnejTp4/VITVokvyF2zp37hwpKSkkJiYSFhZGXFwcy5cvl5uG3FiLFi1YsGABs2bN4rXXXqNt27ZWh9RgSfIXbufgwYMYhsF7773HDTfcwPz58+nWrZuUdhqIHj16MHnyZKZPn86qVavk7uo6IslfuAWHw8GOHTswDIODBw8yevRokpKSaNq0qdWhiTowevRodu/ezRNPPMGiRYtkEb06IAO+ol7Lzs5mw4YNFxO9zWbj5ptvloYgHsBut3Pfffdx/fXXM3HiRKvDcRsy4Cvc2r59+zAMgw8++IB+/fqxaNEi6QHrYfz8/Fi8eDFjx46lc+fO9O/f3+qQGhRJ/qLeKC4uZvv27RiGQWpqKnfccQfr1q2Tvq8erGnTpixevJiHH36YV155haioKKtDajAk+QvLnT17ljfffJPk5GRatWqFzWZjwIAB+PjIr6eAbt268cADDzBt2jRWr15NSEiI1SE1CE4ZRVFKDVVK7VFK7VdKzS7j9XuUUqeUUt+UfEkBT7B7926eeuopbr/9dlJTU1m+fDmvvvoqgwcPlsQvfmX48OFcd911zJ07F4fDYXU4DUKtB3yVUt7AXmAwcAz4Evij1vqnUtvcA/TSWk+t6vvKgG/DVFRUxLZt2zAMgxMnTjBmzBhGjhxJeHi41aGJeq6oqIgpU6Zw9dVXM2XKFKvDqbdcOeDbG9ivtT5Y8sEJwAjgpwp/SniUjIwM1q9fz7p162jbti133XUXN954I97e3laHJtyEj48PixYtYuzYsXTp0oWbb77Z6pDcmjOSfxsgtdTjY8C1ZWw3WinVH/Mq4WGtdeqlGyilJgOTwez1KdzfTz/9REJCAv/5z38YNGgQzz33HJ06dbI6LOGmIiIiWLJkCVOnTqVdu3byu1QLriqsbgTe0FoXKKX+BKwGBl66kdb6ZeBlMMs+LopNOFlhYSFbt27FMAzOnDnDmDFjiI+PJzQ01OrQRANw2WWXER8fT3x8PGvXrpXfqxpyRvJPA0ovwBFZ8txFWuszpR6+Cix2wueKeub06dMXSzsdOnRg/Pjx9OvXT+7OFE43dOhQ9uzZw+zZs1mxYoWUD2vAGf8rvwQ6KaWilVJ+QByQUnoDpVTp9jzDgZ+d8LmiHtBa89133/Hoo48yZswYzpw5w4svvsgLL7zAjTfeKIlf1JmpU6eilGLFihVWh+KWan3mr7UuUkpNBbYA3sBKrfWPSql5wC6tdQrwoFJqOFAEZAD31PZzhbXsdjvvv/8+CQkJZGdnY7PZmD17tszBFi7j7e3NggULLg4ADxs2zOqQ3Iqs7SOq5eTJkyQnJ7NhwwY6d+5MXFwc119/vZzhC8scOHCAP/3pT6xYsYLLL7/c6nAsJ2v7CKfRWvPtt99iGAaff/45Q4cO5ZVXXqF9+/ZWhyYEHTp0YM6cOcyYMYM1a9bIciBVJMlflKugoIAtW7aQkJBAfn4+sbGxzJ07l0aNGlkdmhC/MnDgwIsDwC+88ILcIV4FUvYRv3HixAmSkpJISUmha9eu2Gw2rrvuOintiHrN4XAwffp0WrVqxcyZM60OxzJS9hHVorXm66+/xjAMdu3axR/+8Adee+01udlOuA0vLy+efvppxo0bx1tvvcWIESOsDqlek+Tv4fLz83nnnXdITEykuLiY2NhYnnzySWmdJ9xScHAwy5cvZ+LEicTExHDllVdaHVK9JcnfQ6Wnp18s7Vx11VVMmzaN3/3ud9IHV7i99u3b8/jjjzNr1ixWr15Ns2bNrA6pXpLk70G01nz55ZckJCTw7bffctttt7FmzRratGljdWhCOFW/fv3Yt28fM2fO5KWXXsLPz8/qkOodGfD1ALm5uRdLOwBxcXEMGzaMwMBAiyMTou5orZk1axYhISHMnTvXY65qqzrgK8m/AUtNTSUpKYlNmzbRs2dPbDYbPXv29Jj/BELk5uYyfvx47rjjDsaMGWN1OC4hs308lMPh4PPPPychIYEff/yRESNG8O9//5tWrVpV/sNCNDBBQUEsW7aMCRMm0KFDB6655hqrQ6o3JPk3EDk5OWzatAnDMAgICMBms7F48WL8/f2tDk0IS0VGRvL000/zyCOPsHr1alq2bGl1SPWCJH83d/ToUQzD4N1336V379489thjXH311VLaEaKUa6+9lrvvvpv4+Hhee+01OSlCkr9bcjgcfPrppxiGwZ49exg5ciQJCQk0b97c6tCEqLfuuusudu/ezfz585k3b57HnyDJgK8bOXfuHBs3biQxMZGQkBBsNhu///3vZRqbEFWUn5/Pvffeyy233MJdd91ldTh1QgZ8G5CDBw+SmJjIli1b6NOnD/PmzePKK6/0+DMXIaorICCAZcuWMW7cODp16kTv3r2tDskykvzrKYfDwX/+8x8Mw+DAgQOMGjWKxMREuVtRiFpq2bIlCxYsYPbs2fzrX//y2JscJfnXM9nZ2bz11lskJSURERGBzWZj0KBBUtoRwomuueYaJk6cyPTp01m5cqVHrmUlNf96Yv/+/RiGwdatW+nXrx82m40rrrjC6rCEaLC01jz99NPk5OSwcOHCBlNGlTt83UBxcTEfffQRhmFw5MgRRo8ezahRo2jSpInVoQnhEex2O5MnT6Z///5MmDDB6nCcQgZ867GzZ8+yYcMGkpOTad68OXFxcQwYMABfX1+rQxPCo/j5+bFkyRLGjRtH586d6du3r9UhuYxnJX+t4fvv4b33YOdO2LMH8vJAKWjRAnr0gH79YOhQCA11+sfv3buXhIQEPvzwQ2666SaWLl3KZZdd5vTPEUJUXbNmzVi4cCHTp0/n1Vdf9Zje1J5R9tEatm2DxYvh4EEoKgJ/fwgIgAutCe12yM83v/fxgVGjYPp0qGUJpqioiA8//BDDMEhPT+eOO+7g9ttvJyIiopY7JYRwpg0bNrB27VpWr15NcHCw1eHUmNT8L8jMhLlzYfNm8PWFRo3MM/2KFBXBuXMQHAyLFplXAtWUkZFxsbTTpk0b4uLiuOmmm/D29q7hjggh6tqiRYv45ZdfWLp0qdv2rJbkD5CeDnFxkJYGYWH/O8uvqrw882rgL3+BqVMrP2gAP/30E4ZhsGPHDgYOHIjNZqNz58413AEhhCsVFhYyZcoUevbsyX333Wd1ODUiA76ZmWbiT0+HmpZYAgPNq4W//Q2CguDee8vcrLCwkG3btmEYBidPnmTMmDFMmzaNsLCwWuyAEMLVfH19WbRoEWPHjqVz584MHDjQ6pDqTMNM/lrDo4+aZ/y1ra37+EBICCxcCH36QNeuF186c+YM69atY/369URFRXH33XfTv39/Ke0I4cYaN27MkiVLeOCBB2jfvj0dOnSwOqQ60TCT/7ZtsGWLWepxBl9fs+Tz4IOweTM/7N5NQkICn3zyCYMHD+b5559vsL8gQniiyy+/nGnTpjF9+nTWrFlDaB3M/rNaw6v5aw1DhsDRo+aArZM4HA5yT5zg+a5d+SQoiNjYWIYPH94gfymEEKa//e1vHDhwgOeee85tBoA9d8D322/hjjvMefoVDNDaHQ4WnjjBF7m5ZBcXE+nry9Tmzbn+kgNGYVERmZmZnM3MJMzLC6+rr6bJtm1u84sghKi54uJiHnjgAS677DIefPBBq8Opkqom/4aXwd57z5yqWcnMnGKgpa8vL7drx/bOnflzs2bMTksj3W5HA7l5eRxLS+PgwYMUFxfTvn17WnToQLPUVLzOn3fJrgghrOXt7c2CBQvYunUrW7ZssTocp2p4Nf+dO80buCoR6OXF5FLLI/cLCaGVry+7zpyhW34+DoeDiIgIWrVqhXfps3xfX9i9Gzx4HXAhPElYWBjLli3jz3/+M1FRUXTp0sXqkJyi4Z3579lj3rlbDYWFhew5fpx9WVk0KSigebNmdOjQgSaNG/868Zsbw759TgxYCFHfderUidmzZxMfH09mZqbV4ThFw0v+ubnVupnr9JkzfPfjjzx16hSDg4Lo1KgR+QUFnD17luzsbM7n5JCXl0eB3U5hURGOwkK0lH2E8DiDBg1i6NChzJ49m6KiIqvDqbWGN+DbqZM5L7+KB4CMs2eZfeQIBAUxv3FjlNY4iospdjjK/DPYbudfrVvzYUwMwcHBhISEEBwc/JvvL/269DVZwVMI9+NwOHj44Ydp27Yt8fHxVodTJs+9w7d5c8jOrlLdX2vNitxc8gMCmOPjQ9PGjfGqbAmH7GxmLlzIn2+6ifPnz3P+/HnOnTv3m+/T09PLfe38+fP4+vpWePCo7EDSqFEjmXEkhIt5eXkxf/58xo0bR0pKCsOHD7c6pBpreMm/Rw/zBq8qJP8FJ05wyG7nxU6dyExP58SJE7Rq1YoK079S+HbvTuPGjWncuHGNQtRak5eXd/FAcOnXhYPEqVOnyj145OXlERAQUOEBo7KDSWBgYIPpXiSEq4SEhLBs2TImT55MTEwM3bp1szqkGml4yb9vX3MFz0ocLyxk/dmz+CnF0H370FpTUFDADIeD2PIaOtvt5myf6OhahaiUIigoiKCgIJo3b16j93A4HOTk5JR5YLjwlZWVxbFjx8q9QiksLKywPFWV76W3sPBE0dHRPPbYY8ycOZO1a9dW3H2voADOnzennwcHQz35P+OUmr9Saijwd8AbeFVrvfCS1/2BNUBP4Axg01ofrug9a1zzz8oyp2EGBprr8lSDvbCQw4cO0SYykkZlNXTOzIRJk2D27OrHVQ8VFRVVWLoq74qk9GMvL68qjXNUdBUiayEJd/XKK6/w2Wef8c9//vN/J0IOhznlfP16+PJLSE2FC7/jWpsnj9ddZ96M2r17lVYLrg6X3eGrlPIG9gKDgWPAl8AftdY/ldpmCtBda32fUioOuF1rbavofWu1pPPs2ZCUVKNF3XJyckhLSyMqOhq/0oOyRUXmTKKtW6Fdu5rF1cBorbHb7RUePMo7kFx4LScnB39//0rHOioqaQUFBcn4h7CEw+Fg1qxZREREMOeRR8ybTJ9+Gn75xTwIBAaaJegLCd7hMK8E8vLMA0JMjLm9E+8bcmXy7wM8qbUeUvL4EQCt9YJS22wp2eYzpZQPcAJopiv48Fol/9OnYeBAKC42//Kr6UxGBllZWUS1b/+/pJKZCX/6E8ycWbOYRJkujH9U9eBR1sEkPz+foKCgGs++CgkJwd/fX8Y/RI3k5uYy5c47eSw/nw7795tlncDAys/otTbLQcXFcOedMGdOte9RKosrZ/u0AVJLPT4GXFveNlrrIqVUFtAEOO2Ez/+tpk3NJZgfeMCs0Vez/NO4cWMK8vNJP36cNm3aoLKyzLP9hx6qk3A9WenxjxYtWtToPYqLiysc/zh37hwZGRkcPXq03ANLcXFxpQePyq5KZPquZwrKzeWfp0+T8dVX5EZFEVRWybgsSpnT0ouL4f/9P3PlgFWrzN4hLlCvBnyVUpOByQDtaltaueUW2LsXVqww/4KrcQBQQMtWrThy+DDZqamEtW8Pa9dWaQaRcD1vb29CQ0NrtcLqhfJVRWMdx48fr/AKxcfHp8ozrso7kEj5ys3k5sKddxJw4gShUVEcS08nOjoa3+qccHp7myXqr76CyZNhzZrqdx2sAWck/zSgbanHkSXPlbXNsZKyTxjmwO+vaK1fBl4Gs+xT68geesg8ii5Z8r+jbBUv7b2Ki2kbEsKP585RMHs2vSMjax2OqL/8/PxqPX03Pz+/0rGO06dPl7tNbm4uAQEBtZp9JdN3XWzpUjhwAMLDCVaKxo0bcyw1lfZRUZXfM1SaUhAeDp99Zib/e+6ps5AvfqQTav4+mAO+N2Mm+S+BO7XWP5ba5n7gylIDvqO01rEVva/TGrgD/PCD2YglNbXyg0BhoVmH8/KCSZP4fuBApj3yCK+++irt27d3TjxClMHhcJCbm1vtQfPS39vt9mrPvipr+q4cQKrgm29gzBhz+mbJbB4NpKWloZSidevWFd8zVBa73RwQ/uADqOEJp0vX81dK3QI8iznVc6XW+hml1Dxgl9Y6RSkVAKwFegAZQJzW+mBF7+nU5A9mUv/wQ3j5Zfjvf82xALvdrLcpZQ7SKGU+f9dd5gBMSbLfsGEDa9euZfXq1QQHO69BjBDOVlRURE5OTo1nX50vWbeqNrOvgoOD8anmOJtbmjTJzCnh4b962qE1hw8fJiwsjCaNG5NdXMy848fZef484T4+TG3WjKEVdRnMzDT7hc+ZU6OwPLeZS1WcPWsOruzbBzk55nhA8+Zmf97o6P/NyS1l8eLFpKens3z5cqnLigbNbrdXecZVeQcTPz+/Ws2+qvfTd0+cMG8oDQ0tsz5vLyzk8OHDtGndmmfOnkUDj7Vqxd78fB5KTeVfUVHElDeGWFhoTi3ftatGsxUl+TtZUVERU6ZM4eqrr2bKlClWhyNEvXXp8iVVPXiU/j4/P5/AwMBqL1lS+vmAgIC6K1+tXw+zZlXYJzwnN5cDqalMcjhI6tCBdiU3gT2enk4zHx8eqOju/vPnYfVquPbSiZOV89yF3eqIj48PixYtYuzYsXTu3JlBgwZZHZIQ9ZKzli+prDyVmZnJ0aNHyz3IFBUV0ahRo2oPmpf+Knf5kq+/NkvGFWgUFEReWBhFv/xCZKkyWCd/f77Oza34L6CwEH78sUbJv6ok+VdDREQES5cu5f7776ddu3Z07tzZ6pCEaJC8vLxqPX23sLCw0vLUiRMnKrwq8fb2LvOqYkJKCk1zcnA4HHh7eeHl7V3mn74hIQSfOvW/e4aAYC8vchyOioNXCr7/vsb7XhWS/KupS5cuzJgxg/j4eNasWUP4JYM9Qoj6wdfXl4iICCJqsMwLcHGxx7IOCuGbN+Pl40NxyRIn5fX/OF5URHZREadPnaJF8+b4+vqS43DQqLLxDC8vOHeuRnFXlST/GhgyZAh79+5l9uzZ/OMf//CMmQ1CeBilFAEBAQQEBNC0adNfv/jss2Zpppy7cYsdDs6ePYv9zBkoLES1bo1PyR3gewsKyh/svUDrOr+ptB4Pp9dv999/P35+fjz77LOsIdMDAAAXkElEQVRWhyKEcLWYGHOq+CXyCwo4fvw4+/ftIz8vjw6RkQxt1gyjsJB8h4Nvc3P56Nw5/lDRVE8wZ/t06lRHwZsk+deQl5cXzzzzDJ9++ikpKSlWhyOEcKXevc2zc8wbu7LPnePIkSMcPXoUHx8fYjp0oE2bNgQFBvJIy5YUOBwM3ruXOWlpPNKyZeVn/v7+5nLPdUjqFbVwoaPPpEmTiI6O5sorr7Q6JCGEK/TqRTGQefo0mWfP4uPjQ+PGjQkJCfnNsg6h3t4sa9u27Pcpi8NhziSq4+QvZ/61FB0dzeOPP86sWbM4deqU1eEIIerY3r17mZeUxFeZmejz54mMjCQ6Koqw0NDqredTnuxsc0n6S8cZnEySvxP079+f0aNHM3PmTOxl1AGFEO6tqKiI999/n4kTJ/KXv/yFyLZtufy552gWFkagMwdmL0wBnTTJee9ZDin7OMmECRPYs2cPCxcu5LHHHpOFsYRoADIyMli/fj3r1q2jbdu2xMXFcdNNN5kz/BwOSEkxb/hy1pTvrCwYORJ6VXqDbq3J8g5OlJuby4QJExg1ahSxsRUuWiqEqMd++uknEhIS+M9//sPNN99MbGxs2Td1pqbCsGFmjb5Ro9p9aHa2eRDZutVcM6iGZHkHCwQFBbFs2TLGjx9PTEwMvVxw9BZCOIfdbmfr1q0kJiZy5swZxowZQ3x8fMV3Gbdta3bfuvtucz2emq76m5Vl/uwbb9Qq8VeHnPnXgS+++IK5c+eyatUqWrdubXU4QogKnDp1inXr1rF+/Xo6duyIzWajX79+1VtV9JtvzDp9Roa52FtVf7aoyLyTt107WLnSXFW4lmRVT4u9/vrrbNq0iddee43AGizLKoSoO1prvvvuOwzD4LPPPmPIkCHExsYSExNT8zc9dw7mzzdX/HQ4zDKQr+9vG0dpbTZsycszl4+fNMlsNuWkgWNJ/hbTWvPUU09RUFDAX//6VxkAFqIesNvtbN68GcMwyMnJITY2lttuu42QkBDnfciRI/D662AYZinIx8dM+Fqbyb6wEJo0MUtFsbFmLxEnkuRfD9jtdiZOnMiAAQMYP3681eEI4bFOnDhBcnIyb731Fpdffjk2m40+ffrUbcMYreHkSdizx6zpKwWNG8Nll5l/1hEZ8K0H/Pz8WLp0KePGjaNTp0707dvX6pCE8Bhaa77++msMw2DXrl3ccsstvPbaa7Rr1841ASgFLVqYX/WQnPm7wHfffcf06dOlCbwQLpCXl8e7775LYmIiRUVFxMbGcuuttxJUzgqcDY2c+dcj3bt35/7772fatGnSBF6IOpKWlkZSUhIbN27kqquu4uGHH6Z3794y3lYOSf4uMnLkSPbs2cPcuXOlCbwQTqK15osvvsAwDL799luGDx/OmjVraNOmjdWh1XtS9nEhaQIvhHPk5uayadMmEhMT8fHxwWazMWzYMAICAqwOzXJS9qmHpAm8ELVz9OhREhMTeeedd+jVqxdz5syhR48eUtqpAUn+LiZN4IWoHofDwWeffYZhGPz888+MHDmSN954gxb1dBaNu5DkbwFpAi9E5c6dO8fGjRtJTEwkODgYm83G0qVL8fPzszq0BkGSv0WkCbwQZTt48CCGYfDee+/Rp08f5s2bx5VXXimlHSeTAV8LORwO/vKXv9CuXTvi4+OtDkcIyzgcDnbs2IFhGBw8eJBRo0YxatQomjVrZnVobkcGfN3AhSbw48aNIyUlheHDh1sdkhAulZWVxVtvvUVSUhJNmjTBZrMxaNAgfH19rQ6twZPkb7ELTeAnT55MTEwM3bp1szokIerc3r17MQyDbdu20a9fPxYtWkTXrl2tDsujSPKvB6Kjo3nssceYOXMmq1evlktd0SAVFRWxfft2DMMgLS2N0aNHs27dOhrX4SJnonyS/OuJ/v37s2/fPmbOnMlLL70kMxpEg5GRkcGGDRtITk6mdevW2Gw2BgwYIJMcLCYDvvWI1ppZs2YRHBwsTeCF2/vpp58wDIMdO3YwcOBAbDab3NfiArKev5uSJvDCnRUWFvLBBx9gGAanT59mzJgxjBgxgrCwMKtD8xgy28dNSRN44Y5Onz7N+vXrWbduHTExMYwbN47+/fvLAob1mCT/eqhNmzbMnz+fOXPmSBN4UW9prfn+++8xDINPP/2U3//+97z44ou164MrXEbKPvWYNIEX9ZHdbmfLli0YhsH58+frpg+uqDEp+zQAf/zjH9m7dy/z5s2TJvDCcidPniQ5OZkNGzbQpUsX7rvvPq6//nop7bgp+Verx5RSzJkzh7S0NFatWmV1OMIDXeiDO2vWLOLi4sjJyeGVV15hxYoV9O3bVxK/G6vVmb9SqjFgAFHAYSBWa51ZxnbFwPclD49qrWUdgyqSJvDCCvn5+Rf74Nrtdmw2G0888YTH9MH1BLWq+SulFgMZWuuFSqnZQITWelYZ253XWlerca3U/H9NmsALV0hPTycpKYmUlBS6d++OzWajd+/ecobvRlwyz18ptQe4SWt9XCnVCtiute5SxnaS/J1gw4YNrF27VprAC6fSWvPll1+SkJDAN998w2233UZsbKz0wXVTrkr+Z7XW4SXfKyDzwuNLtisCvgGKgIVa6w2Vvbck/7ItWrSI48ePSxN4UWu5ubm8/fbbJCYm4uXldbEPrswsc29OS/5Kqa1AyzJeehRYXTrZK6UytdYRZbxHG611mlIqBtgG3Ky1PlDGdpOByQDt2rXreeTIkcri9zjSBF7U1tGjR0lKSuLtt9+mV69e2Gw2rrnmGplN1kA4baqn1rrcLuNKqV+UUq1KlX1OlvMeaSV/HlRKbQd6AL9J/lrrl4GXwTzzryw2TyRN4EVNOBwOdu7cSUJCAj///DMjRozg9ddfp2XLss7rhCeo7Tz/FGAcsLDkz7cu3UApFQHkaq0LlFJNgRuAxbX8XI8mTeBFVZ0/f56NGzeSlJREYGAgNpuNJUuW4O/vb3VowmK1rfk3ARKBdsARzKmeGUqpXsB9WuuJSqnrgZcAB+Z9Bc9qrV+r7L2l5l+5LVu28Pzzz0sTePEbhw4dIjExkS1btnDddddhs9no3r27lHY8gKzq6SFWrFjBjz/+KE3gBQ6Hg48//piEhAT279/PqFGjGD16tDQH8jCS/D2ENIEX2dnZF/vgRkREXOyDKw2BPJOs7eMhpAm859q3bx+JiYls3bqVfv36sWDBAq644gqrwxJuQpJ/AyBN4D1HcXHxxT64qamp0gdX1Jgk/wZCmsA3bJmZmbz55pvSB1c4jfzmNCDSBL7h+fnnnzEMg48++ogBAwbwt7/9jS5dfrOCihDVJgO+DYw0gXd/hYWFbNu2DcMwOHnyJGPGjGHkyJHSB1dUiQz4eiilFE8++SQTJkwgKSlJmsC7kTNnzrBu3TrWr19PVFQUd999N/3798fb29vq0EQDJMm/AZIm8O5Da80PP/yAYRh88sknDB48mOeff54OHTpYHZpo4CT5N1DSBL5+s9vtvP/++xiGQVZWFrGxscycOZPQ0FCrQxMeQpJ/A9a7d2/uuece4uPjpQl8PVG6D27nzp2ZNGkSN9xwgyzPLVxOkn8Dd6EJ/NNPP80zzzwjA8AW0FrzzTffYBgGX3zxBUOHDuWVV16RjmzCUjLbxwPY7XYmTpzIwIEDueeee6wOx2MUFBSwefNmDMMgPz8fm83GrbfeSqNGjawOTTRgMttHXFS6CXzHjh2lCXwdS09PJzk5mZSUFLp168YDDzzAtddeK6UdUa9I8vcQzZs3Z9GiRdIEvo5c6INrGAb//e9/ufXWW1m1ahWRkZFWhyZEmaTs42GkCbxz5ebm8s4775CYmAhAXFyc9MEVlpKyjyjTyJEj2bNnD3PnzpUm8LWQmppKUlISmzZtomfPnsycOZOePXvKgLpwG/I/3wNNnz6d3Nxc/vnPf1odiltxOBx8+umnPPTQQ4wfPx5fX1/+/e9/s2TJEnr16iWJX7gVOfP3QNIEvnpycnLYuHEjiYmJBAQEEBcXx+LFi6UPrnBrkvw9lDSBr9zhw4dJTExk8+bNXHvttTz++ONcddVVcoYvGgRJ/h6sS5cuzJgxg/j4eGkCX+JCH1zDMNi3bx+33347CQkJNG/e3OrQhHAqSf4ebsiQIezZs4fZs2d7dBP47OxsUlJSSExMJDw8nLi4OOmDKxo0meopPLoJ/P79+0lMTOT999+nb9++2Gw2aYMp3JpM9RRV5mlN4IuLi/noo48wDIMjR44wevRokpOTadKkidWhCeEykvwF4BlN4M+ePcuGDRtITk6mRYsWF/vg+vr6Wh2aEC4nyV9c1FCbwO/evRvDMNi+fTsDBgxg6dKlXHbZZVaHJYSlJPmLX2koTeCLioou9sE9ceIEY8aM4c0335QZTUKUkOQvfmPChAns2bOHhQsXul0T+IyMjIt9cNu1a8ddd93FjTfeKH1whbiEzPYRZcrNzWXChAmMGjXKLZrAX+iD+/HHHzN48GBiY2Pp2LGj1WEJ4XIy20fUSukm8B06dKBnz57lb1xcDNnZ5p9BQeaXC9jtdrZu3UpCQgJnz54lNjaWGTNmSB9cIapAkr8o14Um8I888shvm8AfOgTJybBjB+zdCw6H+XxxMbRoAT16wMiRMGAAOHk2zcmTJ1m3bh1vvvkmnTp1YuLEifTt21dWKBWiGqTsIyr1+uuvs2nTJrMJfHo6PPYYfPGFmfD9/SEgAC7U1LUGux3y8sDLy7wKePhhuPtu83ENaa359ttvMQyDzz//nKFDhxIbG0tUVJRzdlKIBqKqZR9J/qJSWmvmPfkk3b/4gpEHDqAcDggLg6oMBBcUQG4uXHUV/P3v0LZttT67oKCALVu2kJCQQH5+PrGxsdx2223SB1eIckjNXziN0pq52dmc+fhjMsLDadKiRdV/2N8f/Pzgu+9gxAhISIAqrCB6/Pjxi31wu3btytSpU7nuuuuktCOEk0jyF5WbPx/vlBQioqM5dOQIfo0aEVKdFpBKQXi4OSgcFwebNkHp8YMSWmu++uorDMPgq6++4tZbb2XlypW0rebVghCicpL8RcU++QRWr4bQUHy9vYmMjORYaip+UVH4V/cGsNBQOHsWZsyAtWsvjgHk5eXx7rvvYhgGWmtsNhtPPfUUQS6aNSSEJ5LkL8qXl2cO1vr5XRzQDQoMpFnz5qSmphIdHY13dcswYWGwcyds2EDatdeSmJjIpk2b6NGjB/Hx8dIOUQgXkeQvyvfOO5CZaSbsUiLCw8nPzyctLY22bdvyeFoaX+Tmkudw0NTHh7FNmjCynGUUtFLkORwcf+AB7rvsMm4bMYK1a9f+ehqpEKLOSfIXZdMaXnoJymnu0rJFC44cPcqpU6cY37Qpj/n64uflxeGCAiYfOUIXf38uDwy8uH2xw0FWVhYZGRl4KUWLgAA2PfEE/v37u2qPhBCl1GrqhFJqjFLqR6WUQylV7tQipdRQpdQepdR+pdTs2nymcJFTp+DgwXLv1lVKEdmmDVlZWTQtKMCvpPyjSl47VlgIQIHdzokTJ9i/fz+5ubm0btWK6JgYgv398f/kE1ftjRDiErU98/8BGAW8VN4GSilv4HlgMHAM+FIplaK1/qmWny3q0u7d5ll/BfV3Hx8f2kZGcuToUf6elcXmnBwKtKZLQADdgaNHj5Kfn094RAQxMTH4lr6KCAiAzz+v+/0QQpSpVslfa/0zUNkAXW9gv9b6YMm2CcAIQJJ/fXbggHmDViVTOgMCAmjZsiVxJ08yIzqanRkZfJaZSfbp0zRr0oTItm3xKuv3w98f9u+vo+CFEJVxxR0zbYDUUo+PlTwn6rPc3P+t11OJsNBQwsLCSD16lE4OB/bgYHaFhxMeFlZ24gdzmmdBgRMDFkJUR6Vn/kqprUDLMl56VGv9ljODUUpNBiYDtGvXzplvLarLz69qyzeUaN6sGc2aNUMBXsePk2a3V/wDWv9vPSAhhMtVmvy11oNq+RlpQOlbNCNLnivrs14GXgZzbZ9afq6ojTZtzNJMJTKKitiVm0vf4GAClGJnTg5bsrL4a5tKLu7sdvMzhBCWcMVUzy+BTkqpaMykHwfc6YLPFbVx+eVV2kwByZmZ/PX4cRxAK19fprdoQf+QkIp/MD8felW69pQQoo7UKvkrpW4HVgDNgLeVUt9orYcopVoDr2qtb9FaFymlpgJbAG9gpdb6x1pHLupW+/bmNM+CggqvACJ8fHi5ffvqv7+XF/TtW4sAhRC1UasBX631m1rrSK21v9a6hdZ6SMnz6VrrW0pt947WurPWuoPW+pnaBi1cwMsL7rnHHPh1NrvdPKAMHuz89xZCVImsjyvKZ7OZc/1LbthymtxcGDvWnOsvhLCEJH9RvpYtYfp0OH/enJ3jDOfPQ9OmcP/9znk/IUSNSPIXFbv3XrjySsjKqv172e1mj9+//x2kE5cQlpLkLyrm7Q0rV5oDwGfP1vwKID8fcnJg0SK49lrnxiiEqDZJ/qJyjRtDUhL07GkeACq7gas0rc2fcTjgH/+AUaPqLk4hRJVJ8hdV07gxvPEGzJsHRUVmQs/NLf9KoKjI7AWQnQ19+sAHH8CwYa6NWQhRLlnPX1SdlxfcdRfcdhukpJjloCNHwNfXPAhobS4JcWHphlGjzOmiXbtWa6kIIUTdk+Qvqi80FP7v/8yvc+fM5Z9PnjQHcxs1gk6dIDLyYo9eIUT9I8lf1E5ICPzud1ZHIYSoJjk1E0IID6S0s27ecTKl1CngiNVx1FBT4LTVQbiQp+0vyD57Anfd3/Za62aVbVRvk787U0rt0lp7zJKVnra/IPvsCRr6/krZRwghPJAkfyGE8ECS/OvGy1YH4GKetr8g++wJGvT+Ss1fCCE8kJz5CyGEB5Lk7wRKqcZKqfeVUvtK/oyoYNtQpdQxpdQ/XBmjM1Vlf5VSVyulPlNK/aiU+k4pZbMi1tpSSg1VSu1RSu1XSs0u43V/pZRR8vrnSqko10fpPFXY32lKqZ9K/k0/UErVoIdn/VLZPpfabrRSSiulGsQMIEn+zjEb+EBr3Qn4oORxeZ4GdrgkqrpTlf3NBcZqra8AhgLPKqXCXRhjrSmlvIHngWFAV+CPSqmul2x2L5Cpte4I/A1Y5NoonaeK+/tfoJfWujuQDCx2bZTOVcV9RikVAjwEfO7aCOuOJH/nGAGsLvl+NTCyrI2UUj2BFsB7LoqrrlS6v1rrvVrrfSXfpwMngUpvPKlnegP7tdYHtdZ2IAFz30sr/XeRDNyslNuuYlfp/mqtP9RaX2jsvBOIdHGMzlaVf2MwT9oWAfmuDK4uSfJ3jhZa6+Ml35/ATPC/opTyApYB8a4MrI5Uur+lKaV6A37AgboOzMnaAKmlHh8rea7MbbTWRUAW0MQl0TlfVfa3tHuBd+s0orpX6T4rpa4B2mqt33ZlYHVNFnarIqXUVqBlGS89WvqB1lorpcqaQjUFeEdrfcwdTgydsL8X3qcVsBYYp7V2ODdKYRWl1P8BvYAbrY6lLpWctC0H7rE4FKeT5F9FWutB5b2mlPpFKdVKa328JNmdLGOzPkA/pdQUIBjwU0qd11pXND5gGSfsL0qpUOBt4FGt9c46CrUupQFtSz2OLHmurG2OKaV8gDDgjGvCc7qq7C9KqUGYJwE3aq0LXBRbXalsn0OAbsD2kpO2lkCKUmq41nqXy6KsA1L2cY4UYFzJ9+OAty7dQGt9l9a6ndY6CrP0s6a+Jv4qqHR/lVJ+wJuY+5nswtic6Uugk1IqumR/4jD3vbTSfxd3ANu0+948U+n+KqV6AC8Bw7XWZR703UyF+6y1ztJaN9VaR5X8392Jue9unfhBkr+zLAQGK6X2AYNKHqOU6qWUetXSyOpGVfY3FugP3KOU+qbk62prwq2Zkhr+VGAL8DOQqLX+USk1Tyk1vGSz14AmSqn9wDQqnulVr1Vxf5dgXrkmlfybXnowdCtV3OcGSe7wFUIIDyRn/kII4YEk+QshhAeS5C+EEB5Ikr8QQnggSf5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4oP8PYLwVDsB/KS4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -232,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -261,7 +260,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX+//HXSSeNEEgglFCkJOgKIl/siuIq9rLSRVzpSlWWFn8rsFQVQUUFBJViAVlAsCOoq8sqotiTUEILBEwPpGfm/P64k5iBVDIzdyb5PB+PPJKZuTP3k3kkeeeee8/nKK01QgghRCkvswsQQgjhXiQYhBBC2JFgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2fMwu4EI0a9ZMt2vXzuwyhBDCo3z//fdpWuuI6rbzyGBo164de/fuNbsMIYTwKEqpozXZToaShBBC2PHIIwaHsVggPR2Ki8HfH5o2BaXMrkoIIUzV8ILh5El4913YuRMSE8FqNcJAa/D1hYsvhjvugHvvhbAws6sVQgiXazjBcPo0zJoFO3YYIeDnB4GB4O395zYlJfDLL7BvHyxYAAMGwNSpEBxsWtlCCOFqDeMcw7ZtcNNN8OmnEBoKTZpAUJB9KAD4+BghEBZmhMabb0KfPrBnjzl1CyGECep/MLzyCkyebAwXNWkCXjX8lr29je1zcmDIEPj4Y+fWKYQQbqJ+B8Pbb8Mzz0BICAQEXNhrBAUZzx0/Hr75xrH1CSGEG6q/wXD0qHFOITjYGCKqC39/4zXGjzeOIIQQoh6rn8GgNUyZYlyO6ufnmNcMCoKMDFi0yDGvJ4QQbqp+BsMvv8CPP0LjxlVutjEjg6GHD3NVQgKzTp6s/nVDQ41LXTMyHFSoEEK4n/oZDGvW/Dk/oQrNfHwY3qwZd1cTIGW8vY3X3bzZAUUKIYR7qn/BoLVxWWoN5h7cFBpK75AQGp972WpVfH3hgw/qUKAQQri3+hcMp05BQYHxB9wZAgIgPt44chBCiHqo/gXD4cN1vwqpKqXDSadOOW8fQghhovrXEqOgwBhOqiENZGRmkm21kurnR0BAAI0CAvCpKly8vKCwsO61CiGEG6p/weDrW6sOqQpQSqG1xmq1kpGRQUFBAUopGgUEEBAQQECjRgQEBOBbGhZWq/OGqoQQwmT1Lxhatarx+L9FayxaExIaysnUVAKCg2kWEYGXUhQXF1NQUEBBfj6ZGRnk28IiwN+fxlrzU0ICMX5+REREoKRVtxCiHql/wdCunXHEYLGc3yTvHKvT0liZlgaARSmu3b+fca1aMToiAj9fX/x8fQkNCQGMIaeS4mIKs7PJaNSITdu2Eb9oEUopYmJiiI2NLfvcvHlzCQshhMdSuhbj8e6iZ8+eusqlPR96CP73v2onuJWngePHjhEYFESzpk0r3zAzE0aOhOnT0Vrzxx9/kJCQQHx8fNmH1WolNja2LCxiYmKIioqSsBBCmEop9b3Wume12zkiGJRSfYHnAW9gldZ64TmPLwFutN0MBCK11mG2xyzAL7bHjmmt765uf9UGw5dfGn+8Q0Nr9X0UFRVx+MgR2rdvj19F5xCsVqNX0s6d0LZtha+htSY1NZWEhAS7wCguLi47oij9kLAQQriSy4JBKeUN7Af+CiQD3wGDtNa/V7L9eOAyrfUjtttntda1Wgmn2mCwWOCGGyAtrdaL7KSlp5OXm0ub6GjO+5OdlQVXXw1r19bqNQHS0tLKQqI0NAoKCsqOKErDolWrVhIWQgincGUwXAXM0lrfars9A0BrvaCS7XcDT2mtd9huOz4YwFhcZ/Bgo+V2LWY2a61JOnyYZs2a0bj8EUdRkfGxYwe0aVObciuVkZFhNwQVHx9Pfn6+XVjExMTQunVrvGq6joQQQlSipsHgiJPPrYDj5W4nA1dUUlRboD2wq9zdAUqpvUAJsFBrvbWS544CRgFER0dXX1WvXvDgg8Z/902a1PgSVqUUUVFRJCcnExwUhLe3t3EEkpsLc+c6LBQAwsPDueaaa7jmmmvK7svIyCg7otixYwcvvPACZ8+epUuXLnbnLdq0aSNhIYRwCkccMTwA9NVaj7DdHgpcobUeV8G204DWWuvx5e5rpbU+oZTqgBEYfbTWh6raZ42OGMBYw3ncOOO//NDQWh05nDp1CqvWtGzWDM6cgbFjjVbeJgzzZGVl2Z2vSEhIICsr67xhqOjoaAkLIUSlXHnEcAIo/290a9t9FRkIPFb+Dq31CdvnJKXUF8BlQJXBUGM+PrBsGfzrX8b6zaVrOtdAREQEKfv3U+DjQ8A//wmPPGJKKACEhYVx5ZVXcuWVV5bdl52dXXZk8eWXX7J8+XIyMzPp3Lmz3ZFFu3btJCyEELXiiCMGH4yTz30wAuE7YLDW+rdztosBPgbaa9tOlVJNgDytdaFSqhnwP+Ceyk5cl6rxEUN5335rrP2clma0zAgJqXj9Z4vFuPLIy4u0pk2ZFRrKc++/j5+jFvxxopycHLuroRISEkhPT6djx452V0O1a9fOGCITQjQorr5c9XZgKcblqq9precppeYAe7XW22zbzAICtNbTyz3vamAFYMVo6LdUa726uv1dUDCAMbT0n//Aq6/C998bRwBKGUGhlHE5qpcX3HgjDB+O7tGDJ6ZMISYmhlGjRtV+f27gzJkzJCYm2g1Dpaam0qlTJ7uhqA4dOkhYCFHPuTQYXO2Cg6G8khJISoLkZCguNtZ1bt/eOLlc7kji9OnTDB48mNWrV9OuXbu67dNN5Obm2oVFfHw8p0+ftjuyiImJoUOHDlU3ExRCeBQJBgd6++23+fzzz1mxYkW9nWOQl5dXFhalQ1EpKSl06NDBbhiqQ4cO+EoDQSE8kgSDA1mtVh5++GEeeOAB7r672onZ9UZeXh779++3C4sTJ06UhUXpMNRFF13kEedghGjoJBgcLDExkXHjxrFhwwbCw8Ndum93kp+fz4EDB+zOWRw/fpz27dvbXTrbsWNHCQsh3IwEgxM8//zzpKamMnfuXJfv250VFBSUhUXpkcWxY8do27at3ZFFp06d8Pf3N7tcIRosCQYnyM/PZ8CAAcyYMYOrrrrK5fv3JEVFRXZHFvHx8Rw9epTo6Gi7rrOdO3cmICDA7HKFaBAkGJxk9+7dLFy4kI0bN8oftFoqKiri4MGDdrO4Dx8+TOvWre1OcHfq1IlGjRqZXa4Q9Y4EgxPNnDmTqKgoxo8fX/3GokpFRUUcOnTIruvsoUOHaNWqld05i86dOxMYGGh2uUJ4NAkGJ0pPT2fAgAG88sordOrUybQ66qvi4mKSkpLshqGSkpKIioqy6zobExMjYSFELUgwONnmzZvZtm0br732mvQicoGSkhKSkpLshqEOHjxI8+bN7U5wx8TEEBQUZHa5QrglCQYns1qtjBw5kltvvZX+/fubWktDZbFYOHz4sN2lswcOHCAiIsJuGKpLly6E2NbuFqIhk2BwgaSkJEaNGsVbb71FZGSk2eUIjLA4cuSI3ZHFgQMHCA8PP28d7tBaLv0qhKeTYHCR5cuXc+jQIZ555hmzSxGVsFqtdmGRkJBAYmIiYWFhdldDxcTE0LhxY7PLFcJpJBhcpKioiIEDBzJx4kRuuOEGs8sRNWS1Wjl27Nh563CHhYWdtwBSWFiY2eUK4RASDC60d+9ennrqKd599125SsaDWa1WkpOT7a6GSkxMJDg4+LxhqIbcFkV4LgkGF5s9ezZBQUFMmTLF7FKEA1mtVk6cOGHX7iMhIYFGjRqdNwzVtGlTs8t1uKQkY42rPXvgwAEoLISAAOjSBf7v/+CKK6CedKNvECQYXCw7O5t+/fqxdOlSunbtanY5wom01hWGhb+/v92ls7GxsTRr1szscmtNa/jiC2NV3J9++vN+Pz9jqRKr1QiI0g70PXsaS6tfe60p5YpakGAwwYcffsj69etZt26drIbWwGitSUlJsTtnER8fj4+Pz3lHFhEREW67rkd6OsycCZ99Bt7exgq4VZWqNZw5Y4TFHXfA7Nkgp2TclwSDCbTWPPbYY1x11VUMHTrU7HKEybTWnDp1yi4o4uPj8fLyOu/IIjIy0vSwOHAABg2CrCwIDa14SfTKWK2QnQ0REfDOOzK85K4kGExy/PhxHn74YdatW0fLli3NLke4Ga01f/zxh90J7oSEBLTWdie3Y2NjadGihcvC4sgRuO8+yM01QuFC5eRA48awdSu0auWw8oSDuDQYlFJ9gecBb2CV1nrhOY8/DDwDnLDdtUxrvcr22DDgSdv9c7XWa6rbnzsHA8Drr7/Ovn37eP75503/L1C4P601qampdkcV8fHxWCwWu6OKmJgYoqKiHP4zVVwMd90Fhw4Zf9TrKjMTLrkENm82hqOE+3BZMCilvIH9wF+BZOA7YJDW+vdy2zwM9NRajzvnueHAXqAnoIHvgcu11plV7dPdg6GkpIQhQ4YwfPhwbrnlFrPLER4qNTXVbo5FfHw8hYWFdmERGxtLy5Yt6xQWy5bBkiXGuQFHZI7WxnDUzJkwfHjdX084jiuD4Spgltb6VtvtGQBa6wXltnmYioNhENBbaz3adnsF8IXW+u2q9unuwQDw888/M3XqVDZu3CitF4TDpKenn3eCOz8/366JYGxsLK1bt65RWOTkQK9e4O8Pvr6Oq7OoCCwW2LsXZGkN91HTYPBxwL5aAcfL3U4Grqhgu78ppa7HOLqYrLU+Xslz68XI5KWXXkrv3r158cUXiYuLM7scUU80bdqUa6+9lmvLXRuakZFRFhKffvopzz//PLm5uefN4G7duvV5nYC3bYOSEggOrnq/VmsRp04tJC9vDxZLDr6+rYmMHEdw8NUVbu/nZ5yM/vBD+Nvf6vxtCxdzRDDUxHbgba11oVJqNLAGuKk2L6CUGgWMAoiOjnZ8hU4wbtw4+vXrx759+7jsssvMLkfUU+Hh4Vx99dVcffWff6QzMzPLwmLnzp0sW7aMnJwcunTpYnfO4s032+LrW5PxIwu+vi2Ijl6Jr28Lzp79LydOTKd9+3fw86v4IgsvL3j7bQkGT+SSoaRztvcGMrTWjevzUFKpnTt3snz5ct588038/PzMLkc0YFlZWSQmJpYNRf3223527nyRoCALjRr5ExDQiICAAPz9/YDqwyIpaSDNmo0iNLTi//EsFsjPh99/r92lr8J5XDmU9B3QSSnVHuOqo4HA4HOKidJap9hu3g3E277+BJivlGpiu30LMMMBNbmNm266iffff5+1a9cyYsQIs8sRDVhYWBhXXHEFV1xhjPTu3w933GHBx6eAgoJ8zp49Q2pqKhZLCf7+ATRqFEBAQAABAY3OC4uSkgyKio7h79+h0v15exvzG5KTwUMO8oVNnYNBa12ilBqH8UfeG3hNa/2bUmoOsFdrvQ2YoJS6GygBMoCHbc/NUEr9CyNcAOZorTPqWpM7UUoxbdo0hgwZwi233OIxw2Ci/svOBh8fb4KCguxWvbNaLeTnl4bFWdLS0igpKcHPz5/g4GCaNQvj5Mknadz4Tvz921W5Dy8v4wS38Cwywc1F3nrrLb788kuWL18ucxuEW9i7F4YOhZqshFpcXMSRI0cpKSnCz28Vvr4W2rR5DqWq/t/y7FljPoO0D3MPNR1KkpE/Fxk4cCB5eXls377d7FKEACA83BjqqU5JSTHHjx8nNDSE4OB3yM09SYsW86sNBTDOMzRpUu1mws1IMLiIl5cXcXFxLFu2jMzMKufvCeESbdsany2WyrcpPVIIDW2M1boai+U4zZsv4o8/sqp9/ZISY35EixYOKli4jASDC8XExHDbbbexZMkSs0sRAm9vo3VFXl7FjxcWFnLkyFGaNg2nceNisrK2UFCwn8zMoaSl3cfvv19NdvZHlb5+Xh706OGY2dTCtSQYXGz06NHs27ePb7/91uxShOChhyoeTiooyOfo0aNERkbSpEk4vr5RxMbuJSZmNzExX9Gp0xf4+a0hJKTqli8PPuikwoVTSTC4WGBgINOmTWPBggUUFhaaXY5o4G691ViRrfyPYl5eLseOHadlyygaV9JVLygoiMDAQFJT0yp8vKDAmE19443OqFo4mwSDCa699lpiYmJYtWqV2aWIBi4gAOLijIloWsPZs2dITj5Bq1atCA4OqfK5zZs3Jzs7m4KCArv7tTZe76mnHNt/SbiOBINJpkyZwpYtWzh48KDZpYgGrn9/Y/3mlJRcTp5MoU2bNnbzGirj7e1D8+aRpKSkYDRHNmRlwfXXw913O7Fo4VQSDCZp1qwZY8eOZf78+Vhrcs2gEE7i5QW33vo+BQWHadKkHY1q0Q61cePGeHkpMjIyy9ptt29vtPGWk86eS4LBRPfddx8AmzdvNrkS0ZCtXbuWzZtXsmtXOJ07+5GZaVxqWjOKqKgoUlPTSU8voXNn2LhR1n32dBIMJvLy8uLJJ59k+fLlpKamml2OaGC01rz00kts376dVatW0b17S7ZvhxEjjCU+MzOrnuMARoDk5voTGBhJ+/YfsnWrMXFOeDYJBpN16NCB+++/n2eeecbsUkQDYrVaWbRoEd988w2vvvoqkZGRgHEyesYM2L7dWAM6L89oa5GRYfRWyskxPmdkGPcXFMCAAbBrVyOaNHmD//3vS5O/M+EI0ivJDRQWFjJw4EAmT57M9ddfb3Y5op4rKSlh9uzZnD59miVLllR5ojknB3780Wid/dtvxmWtAQFw8cXGR7duEGK7eOn777/nn//8J++++y6BgYEu+m5EbbhsaU8z1LdgANizZw9z5sxh48aN8kslnKaoqIjp06djsVh4+umn8ff3d+jrz549m5CQEB5//HGHvq5wDGmi52F69erF5ZdfzvLly80uRdRTeXl5TJgwgYCAAJ599lmHhwLApEmT+Pjjj4mPj69+Y+G2JBjcyOTJk+WXSjhFTk4OY8eOJTo6mrlz5+LrpJlnjRs3ZuLEicybNw9LdWeuhduSYHAjYWFhTJgwgblz58ovlXCYtLQ0Ro4cyeWXX86MGTPwcvI6m7fffjshISFs2LDBqfsRziPB4GbuuOMOQkNDeeedd8wuRdQDJ0+eZMSIEfTt25fx48e7ZJEopRQzZsxg9erVnD592un7E44nweBmSn+pXnvtNU6ePGl2OcKDJSUlMWLECIYMGcLf//53l64cGB0dzaBBg1i0aBGeeIFLQyfB4Iaio6MZMmSI/FKJC/b7778zZswYxo0bR79+/Uyp4aGHHuLYsWN88cUXpuxfXDiHBINSqq9SKlEpdVApNb2Cxx9XSv2ulPpZKbVTKdW23GMWpdSPto9tjqinPhg6dCgpKSl89tlnZpciPMwPP/zAxIkTiYuL4/bbbzetDj8/P2bOnMkzzzxDbm6uaXWI2qtzMCilvIGXgNuArsAgpdS5S3/vA3pqrS8FNgFPl3ssX2vd3fYh/RhtfH19iYuLY/HixZw5c8bscoSH+Prrr5k2bRrz5s3jhhtuMLscevTowVVXXcXLL79sdimiFhxxxNALOKi1TtJaFwHvAPeU30Br/bnWunQBwW+A1g7Yb73XrVs3rr/+el588UWzSxEe4NNPP2XOnDksWbKEXr16mV1OmYkTJ7Jjxw5+//13s0sRNeSIYGgFHC93O9l2X2WGA+UXig1QSu1VSn2jlLrXAfXUK+PHj+err77ip59+MrsU4cY2b97MkiVLePnll7nkkkvMLsdOaGgokyZNksuwPYhLTz4rpR4EegLlO8a1tU3RHgwsVUpdVMlzR9kCZG9D6kRa2l5g3rx5FBcXm12OcENr167ljTfeYOXKlXTs2NHscip02223ERYWJpdhewhHBMMJoE25261t99lRSt0MxAF3a63LVpjVWp+wfU4CvgAuq2gnWuuVWuueWuueERERDijbc9x8881ERUWxbt06s0sRbkRrzcsvv8y2bdtYtWoVbdq0qf5JJil/Gbax4ptwZ44Ihu+ATkqp9kopP2AgYHd1kVLqMmAFRij8Ue7+Jkopf9vXzYBrABmIPIdSiunTp/Pmm29y7Ngxs8sRbsBqtfL000+ze/duu7bZ7qxNmzZyGbaHqHMwaK1LgHHAJ0A8sFFr/ZtSao5SqvQqo2eAYODdcy5LjQX2KqV+Aj4HFmqtJRgqEBUVxSOPPML8+fPll6qBKykpYdasWRw8eJDly5fTpEkTs0uqsaFDh3Ly5Ek+//xzs0sRVZC22x7EYrEwbNgwBg4cyJ133ml2OcIEpW2zS0pKePrppwkICDC7pFr78ccfmTlzJhs3biQ4ONjschoUabtdD3l7exMXF8cLL7xAVlaW2eUIF8vLy2PixIkEBASwePFijwwFgO7du3PNNdfI3AY3JsHgYWJjY+nbty9LliwxuxThQjk5OTz66KO0bt3aqW2zXWX8+PHs2rWLX3/91exSRAUkGDzQmDFj+P7779mzZ4/ZpQgXKG2bfdlllzFz5kynt812hdDQUCZPnsy8efMoKSkxuxxxDs//CWuAAgMDmTp1KgsWLKCwsLD6JwiPVdo2+9Zbb2XChAku7ZDqbLfccgtNmzblrbfeMrsUcQ4JBg91/fXX06lTJ1avXm12KcJJDh8+zIgRIxg8eDCPPPJIvQoF+PMy7DVr1kiLeTcjweDB/vGPf7B582aSkpLMLkU4WHx8fFnb7P79+5tdjtO0bt2aBx98UOY2uBkJBg8WERHBmDFjmDt3Llar1exyhIP88MMPTJgwgRkzZpjaNttVhg4dyqlTp6TFvBuRYPBw999/PwBbtmwxuRLhCP/973/L2mb37t3b7HJcwsfHh7i4OJ577jlpMe8mJBg8nJeXF3FxcbzyyiukpaWZXY6og08//ZTZs2fz3HPPuVXbbFe49NJLue6663jppZfMLkUgwVAvXHTRRdx33308++yzZpciLtCWLVtYsmQJL730En/5y1/MLscU48eP54svvuDnn382u5QGT4KhnhgxYgQJCQl8/fXXZpciamnt2rW8/vrrrFy5kk6dOpldjmnKt5iXuQ3mkmCoJ/z9/Zk5cyaLFi0iLy+v+icI03lS22xX+etf/0rz5s158803zS6lQZNgqEd69erFZZddxooVK8wuRVTDE9tmu0Lp3Ia1a9dy4sR5y7oIF5FgqGcmT57MRx99REJCgtmliEp4cttsV2jZsiXDhg1j4cKFMrfBJBIM9UyTJk0YP3488+bNk/V13VBRURFTp04lKyuLF198UdpOV2Lw4MGkpqayY8cOs0tpkCQY6qE777yToKAgNmzYYHYpopz60jbbFcrPbcjJyTG7nAZHgqEeUkoxc+ZMVq9ezalTp8wuR1D/2ma7wl/+8hduvPFGli1bZnYpDY4EQz0VHR3NoEGDpAeNG6iPbbNd5bHHHuOrr77ip59+MruUBkV+QuuxYcOGkZyczK5du8wupcGqz22zXSE4OJgnnniCefPmUVxcbHY5DYYEQz3m6+tLXFwczz77LGfPnjW7nAanvrfNdpU+ffrQsmVL1q9fb3YpDYZDgkEp1VcplaiUOqiUml7B4/5KqQ22x79VSrUr99gM2/2JSqlbHVGP+FP37t259tprZZzWxRpK22xXUEoxdepU1q9fT3JystnlNAh1DgallDfwEnAb0BUYpJTqes5mw4FMrXVHYAmwyPbcrsBA4GKgL/Cy7fWEA0kPGtdqaG2zXaFly5Y8/PDDLFiwQM6ZuYAjjhh6AQe11kla6yLgHeCec7a5B1hj+3oT0EcZx9X3AO9orQu11oeBg7bXEw4UGhoqPWhcpCG2zXaVQYMGkZmZySeffGJ2KfWeI4KhFXC83O1k230VbqO1LgGygaY1fC4ASqlRSqm9Sqm9qampDii7YSntQbNu3TqzS6m3GnLbbFconduwZMkSmdvgZB5z8llrvVJr3VNr3TMiIsLscjxOaQ+a9evXc/z48eqfIGpF2ma7xsUXX0yfPn144YUXzC6lXnNEMJwAyreFbG27r8JtlFI+QGMgvYbPFQ4i47TOsW7dOmmb7UKPPfYYu3fvZt++fWaXUm85Ihi+AzoppdorpfwwTiZvO2ebbcAw29cPALu08ZdpGzDQdtVSe6ATsMcBNYlKDB48mKysLD766COzS/F4pW2z33vvPWmb7UJBQUFMmTKF+fPny9wGJ6lzMNjOGYwDPgHigY1a69+UUnOUUnfbNlsNNFVKHQQeB6bbnvsbsBH4HfgYeExrLZ3fnMjb25snn3ySpUuXkpWVZXY5HstqtfLMM89I22yT3HjjjbRp04a1a9eaXUq9pDxxSKFnz5567969Zpfh0Z599llyc3N56qmnzC7F41gsFmbPnk1KSgpLliyRDqkmOXXqFEOGDOH1118nOjra7HI8glLqe611z+q285iTz8KxHn30Ufbs2YMEbO1I22z30aJFC4YPHy7rNjiBBEMDFRgYyLRp05g/fz5FRUVml+MRSttm+/n5SdtsNzFgwACys7PlnJmDSTA0YNdffz0dO3bktddeM7sUt1faNrtVq1bMmzdP2ma7CW9vb+Li4li6dCnZ2dlml1NvSDA0cFOmTGHTpk0kJSWZXYrbSk9PZ9SoUXTv3p24uDhpm+1munbtyi233MLzzz9vdin1hvyEN3CRkZGMGjWKefPmYbVazS7H7ZS2zb7llluYOHGidEh1U48++ijffPMNP/zwg9ml1AsSDIIHHngAi8XC1q1bzS7FrRw+fJiRI0cyaNAgaZvt5gIDA5k6dSrz5s2Tc2YOIMEg8PLyIi4ujpdffpn09HSzy3ELCQkJjBkzhkcffVTaZnuI3r17065dO9asWVP9xqJKEgwCgE6dOnHPPfewePFis0sx3b59+xg/fjwzZszgjjvuMLscUQtTp05lw4YNHDt2zOxSPJoEgygzcuRIfvvtN3bv3m12KabZvXs3//jHP6Rttodq3rw5w4cPZ/78+TK3oQ4kGESZgIAAZsyYwcKFC8nPzze7HJfbsWMHs2bNkrbZHm7AgAHk5ubywQcfmF2Kx5JgEHauvPJKunXrxsqVK80uxaW2bt3Kc889x0svvcSll15qdjmiDkrPmb3wwgvSD+wCSTCI80yePJkPPviA/ftWT0PVAAAan0lEQVT3m12KS6xfv57Vq1ezYsUKaZtdT8TExNC3b1+WLl1qdikeSYJBnCc8PJxx48Yxd+7cej23QWvNK6+8wpYtW1i1apU0YqtnxowZw3fffSf9wC6ABIOo0F133UVAQAAbNmwwuxSnKG2b/fXXX7Nq1SqaN29udknCwaQf2IWTYBAVUkoRFxfHqlWrOH36tNnlOJTFYmHWrFns37+fFStW0KRJE7NLEk5S2g/sjTfeMLsUjyLBICrVtm1bBgwYwKJFi+rNpX9FRUVMmzaNrKwsli1bJm2zG4ApU6awceNGjhw5YnYpHkOCQVTp4Ycf5tixY3z++edml1JneXl5TJo0CR8fH2mb3YBERkYycuRImdtQCxIMokp+fn7MnDmTZ599lrNnz5pdzgXLycnhscceIyoqivnz50vb7AamX79+FBQUsH37drNL8QgSDKJaPXr04Oqrr+bll182u5QLUto2u1u3bjz55JPSNrsB8vLy4sknn2TZsmVkZmaaXY7bq9NviFIqXCm1Qyl1wPb5vLN4SqnuSqn/KaV+U0r9rJQaUO6xN5RSh5VSP9o+utelHuE8EyZMYNeuXfzyyy9ml1IrKSkp0jZbANC5c2duv/12lixZYnYpbq+u/zpNB3ZqrTsBO223z5UHPKS1vhjoCyxVSoWVe/wfWuvuto8f61iPcJLQ0FAmT57MvHnzKCkpMbucGjly5AgjRoyQttmizKhRo9i3bx979uwxuxS3VtdguAco7XG7Brj33A201vu11gdsX58E/gAi6rhfYYJbbrmFiIgI1q9fb3Yp1UpISGD06NHSNlvYKV23YcGCBTK3oQp1DYbmWusU29engCpnCSmlegF+wKFyd8+zDTEtUUr5V/HcUUqpvUqpvampqXUsW1wIpRQzZsxg3bp1JCcnm11Opfbt28eECROkbbao0HXXXUfnzp1ZvXq12aW4rWqDQSn1mVLq1wo+7im/nTauA6v0WjClVBSwDvi71rq0z8IMIAb4PyAcmFbZ87XWK7XWPbXWPSMi5IDDLC1btmTYsGEsWLDALS/92717N1OnTmXu3LnSNltUasqUKfz73/+Wtc4rUW0waK1v1lpfUsHHe8Bp2x/80j/8f1T0GkqpUOADIE5r/U25107RhkLgdUB6HXuAwYMHk5GRwccff2x2KXY+++wzZs2axeLFi6VttqhSREQEo0ePZv78+fW6H9iFqutQ0jZgmO3rYcB7526glPIDtgBrtdabznmsNFQUxvmJX+tYj3ABHx8fnnzySZYuXUpOTo7Z5QDw3nvvsXjxYmmbLWrsb3/7GyUlJWzbts3sUtxOXYNhIfBXpdQB4GbbbZRSPZVSq2zb9AeuBx6u4LLUN5VSvwC/AM2AuXWsR7jIxRdfzM033+wWbY3ffPNNaZstas3Ly4uZM2fy0ksvkZGRYXY5bkW54zhxdXr27Kmlla75cnNz6devH3PnzqVHjx4u37/WmhUrVrBjxw5efvll6ZAqLsgLL7xAamoq//rXv8wuxemUUt9rrXtWt51MARUXLCgoiKlTpzJv3jyXX/pntVp59tln+eqrr6RttqiTkSNH8tNPP/Htt9+aXYrbkGAQddK7d2/at2/v0rbGFouF2bNnk5iYKG2zRZ01atSI6dOnM3/+fAoLC80uxy1IMIg6mzp1Khs2bODw4cNO31dp2+zMzExpmy0c5uqrr6Zr164yt8FGgkHUWWRkJKNGjXL6pX/SNls40xNPPMGWLVtkbgMSDMJB+vXrR1FRkdMu/ZO22cLZmjVrxpgxY+r9Wuc1IcEgHMLLy4u4uLgqL/3TGoqKwGKp3Wunp6czevRoLr30UmmbLZzqvvvuQ2vN1q1bzS7FVPIbJhymc+fO3HXXXSxevBgAqxW++gpmzIC//hU6doQuXeCii6B7dxg2DFatgqpaX6WkpDBy5EhuvvlmJk2aJB1ShVOV/oPzyiuvkJ6ebnY5ppF5DMKh8vPz6d9/IFdeuYjt22NITzeOEBo1An9/8PIyjhxKSiA/3wgPpeC222DmTGjR4s/XOnLkCOPGjWPo0KEMGDCg8p0K4WDLli3j5MmTzJ8/3+xSHErmMQhTZGc3orBwFfPnNyYnx0rjxhAebgRD6QiQUuDrC6GhEBYGwcHwwQfQpw/8+99GcCQmJjJmzBjGjh0roSBcbsSIEfz666/s3r3b7FJMIcEgHCYpCe66C5KSIggJsXL2bM3ao3t7Q5MmRnBMnQqTJ59g3LjxTJs2TdpmC1MEBAQwY8YMFi5cSEFBgdnluJwEg3CI06dhwADIzjaOAlq0aE5WVnatfqmMoaazrFih6N59BTfeeKMTKxaialdddRV/+ctfWLVqVfUb1zMSDKLOtIYpUyAjwxgeAqMDa2RkBCkpKVSxTIednJwcTp8+Sdu2YWzd2p6ff3ZezULUxOOPP857773HwYMHzS7FpSQYRJ1t3Qq7dxtHCuWFhYXh5aXIzMys9jWysrI4ffoU0dHRBAcHohRMnAjFxU4qWogaaNq0KWPHjmXevHkNam6DBIOoE6sVFi82hoHOv5JU0aJFFKmpqZSUVP4XPiMjnbS0VNq2bVs2mzk0FJKT4YsvnFa6EDVy77334uXlxZYtW8wuxWUkGESd7NljnF9o1Kjix/39/WnSJJxTp05hseSQnDyFhIRrOXjwTrKzPyI19Q8yMzNp27Ydfn72S34rBStXuuCbEKIK5ec2pKWlmV2OS0gwiDr55BNjnkJV886aNWtKYWEhx47NQSlfOnf+lJYt/8WxY3PIzv6dtm3bVdjiIiQEfvgB3GSRONGAdejQgfvvv79s8mZ9J8Eg6uS776C6XnZKedG8eRjZ2Z/RtOkovLwakZUVibf3/xES8hM+Pj6VPM+Y75CY6ITChail4cOHEx8fz3//+1+zS3E6CQZRJwcOGOcXquPjk46Xly9ZWQEkJydTUmIhMvJyioqOVPm84mJoYBeECDfl7+/PjBkzWLRoEfn5+WaX41QSDOKCaQ0FBX/OaK6K1ZpHQEAY2dk5nDlzlsDAQEpK/LBYzlb5PIvFaJ0hhDu44oor6NatG6+++qrZpThVnYJBKRWulNqhlDpg+1zhUlpKKYtS6kfbx7Zy97dXSn2rlDqolNqglPKrSz3CtZQyZi3XhJdXIFZrHh07XkTLllFYLCVkZ58iJ6eIgwcPkJycTFpaGrm5Z7FYSi5oH0K4wuTJk9m+fTv79+83uxSnqesRw3Rgp9a6E7DTdrsi+Vrr7raPu8vdvwhYorXuCGQCw+tYj3Cx5s2NVtrV8fOLBixYLCdp3DiM5s1bEBKSSYsWlxMdHU1oaAgWi4W0tHQOHjzIgQMHSE4+Tn5+FunpvzaYq0GE+wsPD2fcuHFOX5jKTHUNhnuANbav1wD31vSJyuiffBOw6UKeL9xD9+7GcFJ1vLwaERJyE6mpy7Fa88nL+4kzZ76kceM78fPzJzS0Mc2bN6dt27Z06dKFtm3bEhraGItFs2/f2/Tv35++ffsyadIkVqxYwZdffskff/yBJ3YHFp7vrrvuwtfXl02bNlW/sQeqU9ttpVSW1jrM9rUCMktvn7NdCfAjUAIs1FpvVUo1A76xHS2glGoDfKS1vqS6/Urbbffx9tvw//7f+bOeK2Kx5HDy5Gxyc7/F27sxkZHjady4b6XbFxYaVyXt3QtKaVJSUkhISCj7iI+PByAmJobY2FhiYmKIiYkhKipK1m0QTpeUlMSoUaN4++23iYiIMLucGqlp2+1qg0Ep9RnQooKH4oA15YNAKZWptT7vPINSqpXW+oRSqgOwC+gDZFOLYFBKjQJGAURHR19+9OjR6r434QI5OfB//2dMcKvkqtMLlpkJkyfDuHEVP661JjU1tSwkSj8XFRWVhURpaLRq1UpWfhMO98orr3DkyBEWLVpkdik14rBgqGYniUBvrXWKUioK+EJr3aWa57wBvA/8G0gFWmitS5RSVwGztNa3VrdfOWJwLzNmwMaNRutsRykuNoao/vMf4zxGbaSlpZ13ZJGbm0uXLl3sji6io6MlLESdFBUVMWDAAB5//HGuu+46s8uplquC4RkgXWu9UCk1HQjXWk89Z5smQJ7WutA2fPQ/4B6t9e9KqXeBf2ut31FKLQd+1lq/XN1+JRjcS0YG3HijsSpbZa0xakNryMoy1mYYPbrurweQmZl5XlhkZWXRuXNnu7Bo164d3nIZlKiFPXv2MGfOHDZu3EhgYKDZ5VTJVcHQFNgIRANHgf5a6wylVE9gjNZ6hFLqamAFYMU42b1Ua73a9vwOwDtAOLAPeFBrXVjdfiUY3M+nn8LYsUYbi7oOKWVlQWwsbNni+OGp8nJycuzCIiEhgT/++INOnTrZhUWHDh0qnZ0tBMA///lPwsPDmTRpktmlVMklwWAWCQb3tGIFLFpkhEMFrY+qpbWx0E/LlrB5MzRr5vgaq3P27Fn2799vd97i5MmTXHTRRXbnLTp27Iifn0y7EYbMzEwGDBjAiy++SJcuVY6mm0qCQZhi3TqYO9doxx0aWnVzvfKKiyE3Fy6+GFavNicUKpOXl8eBAwfswuL48eO0bdu27KgiNjaWTp064V+T/iCiXtq2bRubNm3ijTfecNtzVxIMwjQHDsCkSbB/v3EUEBpacdsMrY1LUgsKjCGjJ56ARx7xjJnOhYWF54XFkSNHaN269Xlh4e7jzsIxtNaMHj2aPn36MGDAALPLqZAEgzCV1Wqs6vbqq/D118bQksVi3A/G7ZISCA83wuCBB9zrKOFCFBUVcejQobKgSEhI4NChQ7Rs2dLu0tnOnTsTHBxsdrnCCY4cOcKIESN46623iIyMNLuc80gwCLdRWGgcPRw8CHl5xhFB8+bQtStERtZ8uMkTlZSUkJSUZHc11IEDB4iMjLQ7ZxETE0No6YLZwqOtXLmSAwcO8Mwzz5hdynkkGIRwUxaLhaNHj9pNytu/fz9hYWHnzeJu4sjJIcIlioqKGDhwIBMnTuSGG24wuxw7EgxCeBCr1cqxY8fsjiwSEhIIDg62C4vY2FiaNm1qdrmiGnv37uWpp57i3XffdatzTBIMQng4q9XKiRMn7IIiISEBPz8/u6OK2NhYIiIipD+Um5k9ezYhISE8/vjjZpdSRoJBiHpI68qbCZYPC2kmaL6srCz69+/P888/T2xsrNnlABIMQjQYNWkmWBoa0kzQtd5//33eeecd1qxZ4xatViQYhGjg0tLSSExMtAsLaSboWlprxo4dyw033MCgQYPMLkeCQQhxvqqaCZYfipJmgo5z7Ngx/v73v/PWW2/RvLatgh1MgkEIUSMVNRNMTU2lY8eOdmEhzQQv3KuvvkpCQgKLFy82tQ4JBiHEBcvNzSUxMbHKZoKxsbFcdNFF0kywBoqKihg8eDDjxo2jd+/eptUhwSCEcKjKmgm2a9fOLiykmWDFfvjhB5588kk2bdpk2twGCQYhhNNV1kywTZs254WFO030MsucOXMIDAxkypQppuxfgkEIYYqKmgkmJSURFRVldzVUly5dCAoKMrtcl8rOzqZfv34sXbqUrl27unz/EgxCCLchzQT/9OGHH/Lmm2+ydu1al1/5JcEghHBrVTUTPLflR1hYmNnlOozWmscee4xrrrmGIUOGnPsgpKdDZqbxdVgYREQ4rAWxBIMQwuNYrVaOHz9uFxaJiYkEBQWdFxae3EywdG7D+vXriYqIgC+/hLfegu+/hzNn/lwb12KBwEDo1g0GD4abboI6XAXmkmBQSoUDG4B2wBGgv9Y685xtbgSWlLsrBhiotd6qlHoDuAHItj32sNb6x+r2K8EgRMNRvplg+ZPc5ZsJln72pGaCq1etwrptGyNOnkRl2/4EBgYayxmWfg9aGyta5ef/+XhcHPztbxUvi1gNVwXD00CG1nqhUmo60ERrPa2K7cOBg0BrrXWeLRje11pvqs1+JRiEaNgqayaolDrvnIVbNhPMysIyeTKp775LcLNmBNd0+cLCQmO1qyuvhKVLjWGmWnBVMCQCvbXWKUqpKOALrXWXKrYfBdygtR5iu/0GEgxCCAeoTTPB1q1bmxcW6enQvz8cOUKenx8nTp6kw0UX4V3TIwCtISsLWrSATZsgKqrGu3ZVMGRprcNsXysgs/R2JdvvAp7TWr9vu/0GcBVQCOwEpmutC6vbrwSDEKKmqmomWH4oqk2bNs5vJlhYCPfeCwcOGCeWgZMpKXgpRYsWLWr3WllZ0Lo1fPAB1PCyX4cFg1LqM6CiiuOANeWDQCmVqbWucC1C2xHFz0BLrXVxuftOAX7ASuCQ1npOJc8fBYwCiI6Ovvzo0aPVfGtCCFGxzMzM88Li3GaCsbGxtG3b1rGXlD79NKxYYYSC7YjFYrFwKCmJNq1b06hRo9p+I8ZJ6X/9q0abu91QklJqInCx1npUJY/3BqZore+sbr9yxCCEcDSnNxNMSIC77jL+uz/n+dk5OaSnp9O+XbvaDXFZLMZVTBs3Qo8e1W5e02Coa6vEbcAwYKHt83tVbDsImFH+DqVUlC1UFHAv8Gsd6xFCiAsSGhpKr1696NWrV9l95ZsJfvfdd6xbt46UlBQ6dOhQ+2aCr75q/CGvIFRCQ0PJysoiIyODpQUF7MnLI99qpZmPDw81bcq9lc3jKD2aeeUV4/UdpK5HDE2BjUA0cBTjctUMpVRPYIzWeoRtu3bAf4E2WmtruefvAiIABfxoe87Z6vYrRwxCCLNU10yw9OjCrplgVhZccYVxuWklQ1NFRUUcPnIE3bIlHQID8fPy4khhIaOOHuX5Nm2IrWyYyWqFnBz4+mvjhHQVXHLEoLVOB/pUcP9eYES520eAVhVsd1Nd9i+EEK4WGBhIt27d6NatW9l95zYT3LJli10zwRssFq4qLMQvKIjKTm/7+fnRNDycvMxMfIODAeM/ZqUUycXFlQeDl5fxsWcP3H23Q75HWXVDCCHqyN/fn0suuYRLLrmk7L7yzQSLV68mJz2djLQ0fP38CAgIsPsovVQ1vGlTsg8fZvaRI+woKKBQa7oEBHCNLSgqVVwMP/4owSCEEO6sdGZ2bGwsfPQRREURERJCYWEhBQUFFBQUcCYnh4LCQnx8fMpCIiwsjMFpacR16sRvhYV8n5eHX3UnpP394VfHnaKVYBBCCGfLzwcvL5RSZQFQSgNFhYXk28KioKCAoqIiSoqK6B4YyIfZ2WzKzGRgeHjlr+/l9WfbDAeQYBBCCGfz9zdOEldAYQxF+fv7Q+PGgBEWpccIFiC5qKjq19fa2IeDOHmanxBCCGJijPMA1cgoKeHTnBzyrVasWvO/s2f5JDubXtXNbC4shC6VdiOqNTliEEIIZ7v00hq1y1bApsxM5qekYAWifH15onlzrg8JqfqJ3t5w+eUOKRUkGIQQwvl69DCGkqzWKttlN/HxYWXbtrV7bavVGErqWe30hBqToSQhhHC2iAjo08eYiOZoZ85Ar14QHe2wl5RgEEIIVxhlaxNXyUnoC1J6tDB2rONeEwkGIYRwjR49oF8/KF2tzRGys6FvX7juOse9JhIMQgjhOnFxRj8jR4RDTg40bQpzKlypoE4kGIQQwlWCg+Htt6FJE6Ox3oU0MdXaCJagIHjrLahq4tsFkmAQQghXio6GrVuha1cjHGowv6FMcbHxnPbtYcsW6NjRKSVKMAghhKu1bGn8YZ8+HYqKjD/2ubkVn5i2WiEvz9imoAAmTDCW82zXzmnlyTwGIYQwg7c3jBwJAwfC9u2wbp2xFrSPT9myn2htHCV06AAPPmisF21rm+FMEgxCCGGmkBBj3ebBg42jh4MHjaMDMEKgY0eH9kGqCQkGIYRwF35+xrkHk8k5BiGEEHYkGIQQQthR+kKuozWZUioVOOrAl2wGpDnw9eoreZ+qJ+9Rzcj7VD1nvEdttdYR1W3kkcHgaEqpvVprx7UmrKfkfaqevEc1I+9T9cx8j2QoSQghhB0JBiGEEHYkGAwrzS7AQ8j7VD15j2pG3qfqmfYeyTkGIYQQduSIQQghhJ0GGQxKqX5Kqd+UUlalVKVn/ZVSfZVSiUqpg0qp6a6s0R0opcKVUjuUUgdsn5tUsp1FKfWj7WObq+s0Q3U/G0opf6XUBtvj3yql2rm+SvPV4H16WCmVWu7nZ4QZdZpJKfWaUuoPpdSvlTyulFIv2N7Dn5VSPZxdU4MMBuBX4H7gP5VtoJTyBl4CbgO6AoOUUubPVXet6cBOrXUnYKftdkXytdbdbR93u648c9TwZ2M4kKm17ggsARa5tkrz1eJ3aEO5n59VLi3SPbwB9K3i8duATraPUcArzi6oQQaD1jpea51YzWa9gINa6yStdRHwDnCP86tzK/cAa2xfrwHuNbEWd1KTn43y790moI9SpS0zGwz5HaoBrfV/gIwqNrkHWKsN3wBhSqkoZ9bUIIOhhloBx8vdTrbd15A011qn2L4+BTSvZLsApdRepdQ3SqmGEB41+dko20ZrXQJkA01dUp37qOnv0N9sQySblFJtXFOaR3H536J6211VKfUZ0KKCh+K01u+5uh53VdX7VP6G1lorpSq7hK2t1vqEUqoDsEsp9YvW+pCjaxX10nbgba11oVJqNMZR1k0m19Tg1dtg0FrfXMeXOAGU/++lte2+eqWq90kpdVopFaW1TrEduv5RyWucsH1OUkp9AVwG1OdgqMnPRuk2yUopH6AxkO6a8txGte+T1rr8e7IKeNoFdXkal/8tkqGkyn0HdFJKtVdK+QEDgQZxxU0524Bhtq+HAecdaSmlmiil/G1fNwOuAX53WYXmqMnPRvn37gFgl254k4aqfZ/OGSu/G4h3YX2eYhvwkO3qpCuB7HJDvM6htW5wH8B9GON0hcBp4BPb/S2BD8ttdzuwH+O/3ziz6zbhfWqKcTXSAeAzINx2f09gle3rq4FfgJ9sn4ebXbeL3pvzfjaAOcDdtq8DgHeBg8AeoIPZNbvp+7QA+M328/M5EGN2zSa8R28DKUCx7e/ScGAMMMb2uMK4uuuQ7Xesp7NrkpnPQggh7MhQkhBCCDsSDEIIIexIMAghhLAjwSCEEMKOBIMQQgg7EgxCCCHsSDAIIYSwI8EghBDCzv8HZPTjillfG1oAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX++PHXhx1kdV9QAbcys0zHstTSdNSm1DS5TH3TNHUas5rcM9vMxt1pcqppc1x+UxxAM7TSMsecFitr2nPfEDQXEGS9wP38/jhoZOxc7uFy38/Hgwdc7uHe90F8n3Pen8/5vJXWGiGEEJ7Fy+oAhBBCuJ4kfyGE8ECS/IUQwgNJ8hdCCA8kyV8IITyQJH8hhPBAkvyFEMIDSfIXQggPJMlfCCE8kI/VAZSnadOmOioqyuowhBDCrXz55ZdntNbNKtuu3ib/qKgodu/ebXUYQgjhVpRSR6uyXb1N/kIIC+Xnw7Fj5mcfH4iMhNBQq6MSTiTJXwhhSk2FN96Ad96Bo0fB1xeUAq2hsBCaNYMbb4S774YrrjCfE25Lkr8Qnu7sWXjiCdi6FRwOCAiAsDDwKjUfRGvIyYGkJNiwAS6/HJYuhS5drItb1IrM9hHCk33wAQwcCFu2QEgIRERAYOCvEz+YZ/n+/ubzoaGwZw/cdhu88IJ5YBBuR5K/EJ5qwwb405+gqAjCw3+b8MujlHkACAyE5cth3jzzikG4FUn+QniinTth9mwICjKTeE34+prloTfegL//3bnxiTonyV8IT3PuHDz0kJm8/fxq91peXuZVwAsvwLffOic+4RKS/IXwNIsWQVaWedbvDD4+Zino4Yel/ONGJPkL4UnS081afyVz9hPS07n78GH67NnDk2lplb9uaKh5X8CnnzopUFHXJPkL4UnWrzfPzr29K9ysqY8P9zZtyvCwsKq/ttbw6qu1DFC4ilOSv1JqlVLqlFLq+3KeV0qp55RSB5RS3yqlrnHG+wohqmnrVrNMU4mBoaHcFBJCWCUHiV8JCYFPPpHSj5tw1pn/amBoBc8PAzqVfEwGXnTS+wohqsrhgB9+MG/iqgsXDhRHjtTN6wunckry11rvBNIr2GQEsFabdgHhSqlWznhvIUQVpaebc/qrcOZfY0pJ8ncTrqr5twFSSj0+XvI9IYSr2O1VvpHLbrdz8uefOZuejt1ur/p7aA0FBTUMULhSvVrbRyk1GbMsRLt27SyORogGxte3wnq8BnJyckhPTycvL4/w8HCCgoI4lZmJvbAQP1/fyt9DqdrfOyBcwlVn/qlA21KPI0u+9yta65e11r201r2aNau0F4EQojqaNDHr8sXFv/p2scNBekYGBw8e5NSpU4SGhBDTsSMRTZviHxBAQFAQh44do/CSnyuT1tC+fR3tgHAmV535JwNTlVLxwLVAptb6hIveWwgBZsmna1f48UcIDqbAbicjPZ3MrCwaBQXRulUrAoOCUMDLp0/z8pkzF3/0vcJC7jx0iFmdOlHuQs4Xriqio+t6T4QTOCX5K6XeAG4CmiqljgNPAL4AWut/Au8AtwAHgFxgvDPeVwhRPY5Bgyj47DNOZ2SQn5dHeEQEMdHR+F5S0pncrBmTS119O7Tm6JEjnD17lqZNmpT94ufPQ58+ld5DIOoHpyR/rfUfK3leA/c7472EENWXnZ3Npk2b2LJ5M4uzsght3pzIyEi8qtiQxUspItu25fDhwwT4+xMcHFz2hhMnOjFqUZfkDl8hGrDDhw+zePFihg8fznfffcf0RYtoMWkS4VDlxH+Br48PkZGRpKWlUXDpDKDz56F1a+jb13nBizpVr2b7CCFqz+Fw8NFHHxEfH8+BAwcYPXo0hmFwcRLFvHmwfTvk5VV7OeegwECaNW/O8ePHiYqKwtvLyxxALi6GZ5+tek8AYTlJ/kI0EFlZWSQnJ5OQkEBERAQ2m41Bgwbhd+nUy8aNYcUKmDzZrM9Xc2pmRHg4+Xl5pKWlEdm6NSory3ytHj2cuDeirknyF8LNHTx4EMMweP/99+nXrx8LFy7kiiuuqPiHBg6E+fPhscd+6dtbDS1atuT44cOcT0khdNw4mDmzFnsgrCDJXwg3VFxczM6dOzEMgyNHjjB69GiSkpJoUt5MnLLceafZk3fmTLPBS1iYeZNWZbTG6/x52oSH81pAAJ1vuYWbpNzjdiT5C+FGMjMz2bhxI4mJiTRv3py4uDgGDBjwm6maVTZsGPTsCXPnwo4d5lVAo0ZmKaj0gUBrc12gnBzz+zExeC9fTl8vLx588EHaRUURExPjlH0UrqHMWZj1T69evfTu3butDkOIemHfvn0YhsH27du58cYbsdlsXH755c59k8OH4fXX4d134cQJczmICweAwkKzYcsNN8D48WZ9v+S5zZs3s2rVKtasWUNISIhzYxLVppT6Umvdq9LtJPkLUT8VFRWxY8cODMMgNTWVO+64g9tvv52IiIi6f/Pz583VOfPzzYNAmzZQwZIry5cv5+jRozz77LN4SQnIUpL8hXBTGRkZvPnmmyQlJdGmTRtsNhs33XQTPnW5FHMtFRUVMXXqVLp168bUqVOtDsejVTX519+/JiE8zE8//YRhGHz44YcMHDiQZ599ls6dO1sdVpX4+PiwaNEixo4dS5cuXRg8eLDVIYlKSPIXwkJFRUVs376d+Ph4Tp06xZgxY3j44YcJq07v3HoiPDycZcuWMWXKFNq3b+82By5PJclfCAukp6ezfv16NmzYQPv27bn77rvp378/3m6+KFrnzp2ZNWsWM2bMYO3atYSHh1sdkiiHJH8hXOj777/HMAw++ugjBg8ezMqVK+nYsaPVYTnV73//e/bs2cMjjzzCP/7xD7c/oDVUMuArRB2z2+1s27YNwzDIyMggNjaW4cOHExoaanVodcbhcPDQQw8RHR3NtGnTrA7Ho8iArxAWO3369MXSTseOHbn33nvp27evR0yF9PLy4plnnmHcuHF06dKFP/zhD1aHJC4hyV8IJ9Ja89133xEfH8+uXbsYMmQIL730EtEe2N0qNDSU5cuXM3nyZKKjo+natavVIYlSJPkL4QR2u52tW7diGAY5OTnExsYyd+7c8pueeIiYmBgeffRRZs6cybp162jcuLHVIYkSkvyFqIVTp06RlJTExo0bueyyy/jzn/9Mnz59PKK0U1UDBgxg3759zJo1ixdffLHm6xAJp5K/UCGqSWvNV199xezZs4mLiyM3N5dXX32V5557jhtuuEESfxkmTZpEaGgoy5YtszoUUUJm+whRRQUFBWzZsgXDMCgoKMBms3HrrbcSFBRkdWhuIScnh3HjxnHnnXcyatQoq8NpsGS2jxBOcuLECRITE0lOTqZbt248+OCD9O7dW87wq6lRo0asWLGCe++9l44dO9K9e3erQ/JokvyFKIPWmi+//JL4+Hi++uorbr31VlavXk1kZKTVobm1du3a8eSTTzJ79mzWrFlD8+bNrQ7JY0nZR4hS8vLyePfddzEMA601NpuNYcOGSWnHyf71r3+xY8cOXnnlld/2GBa1Iks6C1ENqampJCYmsmnTJq6++mri4uLo1asXqiptDUW1aa155JFHCAwM5PHHH5ffsxNJzV+ISmit+fzzzzEMg2+//Zbhw4ezbt06WrdubXVoDZ5SiieeeILx48eTkJCAzWazOiSPI8lfeJzc3Fw2b95MQkICPj4+2Gw2/vrXvxIQEGB1aB4lMDCQFStWcM8999CxY0d69uxpdUgeRZK/8BjHjh0jMTGRt99+m169ejF37lx69OghJQcLtW7dmgULFjB37lxWr15Nq1atrA7JY0jyFw2aw+Fg165dxMfH89NPPzFixAhef/11WrZsaXVookTv3r0ZN24c06dPZ9WqVXIF5iIy4CsapJycHDZt2kRCQgKBgYHYbDaGDBmCv7+/1aGJMmiteeKJJyguLmbBggVyNVYLMttHeKQjR46QkJDAli1buPbaa7HZbFx11VWSTNxAQUEBEydOZPDgwYwdO9bqcNyWzPYRHsPhcPDxxx9jGAb79u3j9ttvJz4+Xm4gcjP+/v4sW7aMcePG0alTJ/r06WN1SA2aJH/hts6fP09ycjIJCQmEhYURFxfHihUr5KYhN9aiRQsWLlzI7Nmzee2112jbtq3VITVYkvyF2zl06BCGYfDee+9xww03sGDBArp16yalnQaiR48eTJ48menTp7N69Wq5u7qOSPIXbsHhcLBz504Mw+DQoUOMHj2axMREmjZtanVoog6MHj2aPXv28MQTT7B48WJZRK8OyICvqNeysrLYuHHjxURvs9m4+eabpSGIB7Db7dx3331cf/31TJw40epw3IYM+Aq3tn//fgzD4IMPPqBfv34sXrxYesB6GD8/P5YsWcLYsWPp3Lkz/fv3tzqkBkWSv6g3iouL2bFjB4ZhkJKSwh133MH69eul76sHa9q0KUuWLOHhhx/mlVdeISoqyuqQGgxJ/sJy586d48033yQpKYlWrVphs9kYMGAAPj7y5ymgW7duPPDAA0ybNo01a9YQEhJidUgNglNGUZRSQ5VSe5VSB5RSc8p4/h6l1Gml1NclH1LAE+zZs4ennnqK22+/nZSUFFasWMGrr77K4MGDJfGLXxk+fDjXXXcd8+bNw+FwWB1Og1DrAV+llDewDxgMHAe+AP6otf6x1Db3AL201lOr+roy4NswFRUVsX37dgzD4OTJk4wZM4aRI0cSHh5udWiinisqKmLKlClcffXVTJkyxepw6i1XDvj2Bg5orQ+VvHE8MAL4scKfEh4lPT2dDRs2sH79etq2bctdd93FjTfeiLe3t9WhCTfh4+PD4sWLGTt2LF26dOHmm2+2OiS35ozk3wZIKfX4OHBtGduNVkr1x7xKeFhrnXLpBkqpycBkMHt9Cvf3448/Eh8fz3//+18GDRrEc889R6dOnawOS7ipiIgIli5dytSpU2nXrp38LdWCqwqrm4A3tNYFSqk/AWuAgZdupLV+GXgZzLKPi2ITTlZYWMi2bdswDIOzZ88yZswYZsyYQWhoqNWhiQbgsssuY8aMGcyYMYN169bJ31UNOSP5pwKlF+CILPneRVrrs6UevgosccL7inrmzJkzF0s7HTp0YPz48fTr10/uzhRON3ToUPbu3cucOXNYuXKllA9rwBn/K78AOimlopVSfkAckFx6A6VU6fY8w4GfnPC+oh7QWvPtt9/y6KOPMmbMGM6ePcuLL77ICy+8wI033iiJX9SZqVOnopRi5cqVVofilmp95q+1LlJKTQW2At7AKq31D0qp+cBurXUy8KBSajhQBKQD99T2fYW17HY777//PvHx8WRlZWGz2ZgzZ47MwRYu4+3tzcKFCy8OAA8bNszqkNyKrO0jquXUqVMkJSWxceNGOnfuTFxcHNdff72c4QvLHDx4kD/96U+sXLmSyy+/3OpwLCdr+win0VrzzTffYBgGn332GUOHDuWVV16hffv2VocmBB06dGDu3LnMnDmTtWvXynIgVSTJX5SroKCArVu3Eh8fT35+PrGxscybN49GjRpZHZoQvzJw4MCLA8AvvPCC3CFeBVL2Eb9x8uRJEhMTSU5OpmvXrthsNq677jop7Yh6zeFwMH36dFq1asWsWbOsDscyUvYR1aK15quvvsIwDHbv3s0f/vAHXnvtNbnZTrgNLy8vnn76acaNG8dbb73FiBEjrA6pXpPk7+Hy8/N55513SEhIoLi4mNjYWJ588klpnSfcUnBwMCtWrGDixInExMRw5ZVXWh1SvSXJ30OlpaVdLO1cddVVTJs2jd/97nfSB1e4vfbt2/P4448ze/Zs1qxZQ7NmzawOqV6S5O9BtNZ88cUXxMfH880333Dbbbexdu1a2rRpY3VoQjhVv3792L9/P7NmzeKll17Cz8/P6pDqHRnw9QC5ubkXSzsAcXFxDBs2jMDAQIsjE6LuaK2ZPXs2ISEhzJs3z2Ouaqs64CvJvwFLSUkhMTGRzZs307NnT2w2Gz179vSY/wRC5ObmMn78eO644w7GjBljdTguIbN9PJTD4eCzzz4jPj6eH374gREjRvDvf/+bVq1aVf7DQjQwQUFBLF++nAkTJtChQweuueYaq0OqNyT5NxA5OTls3rwZwzAICAjAZrOxZMkS/P39rQ5NCEtFRkby9NNP88gjj7BmzRpatmxpdUj1giR/N3fs2DEMw+Ddd9+ld+/ePPbYY1x99dVS2hGilGuvvZa7776bGTNm8Nprr8lJEZL83ZLD4eCTTz7BMAz27t3LyJEjiY+Pp3nz5laHJkS9ddddd7Fnzx4WLFjA/PnzPf4ESQZ83cj58+fZtGkTCQkJhISEYLPZ+P3vfy/T2ISoovz8fO69915uueUW7rrrLqvDqRMy4NuAHDp0iISEBLZu3UqfPn2YP38+V155pcefuQhRXQEBASxfvpxx48bRqVMnevfubXVIlpHkX085HA7++9//YhgGBw8eZNSoUSQkJMjdikLUUsuWLVm4cCFz5szhX//6l8fe5CjJv57JysrirbfeIjExkYiICGw2G4MGDZLSjhBOdM011zBx4kSmT5/OqlWrPHItK6n51xMHDhzAMAy2bdtGv379sNlsXHHFFVaHJUSDpbXm6aefJicnh0WLFjWYMqrc4esGiouL+fDDDzEMg6NHjzJ69GhGjRpFkyZNrA5NCI9gt9uZPHky/fv3Z8KECVaH4xQy4FuPnTt3jo0bN5KUlETz5s2Ji4tjwIAB+Pr6Wh2aEB7Fz8+PpUuXMm7cODp37kzfvn2tDsllPCr5aw3ffQfvvQe7dsHevZCXB0pBixbQowf06wdDh0JoqPPff9++fcTHx/Of//yHm266iWXLlnHZZZc5/42EEFXWrFkzFi1axPTp03n11Vc9pje1R5R9tIbt22HJEjh0CIqKwN8fAgLgQmdCux3y882vfXxg1CiYPh1qW4EpKiriP//5D4ZhkJaWxh133MHtt99ORERE7V5YCOFUGzduZN26daxZs4bg4GCrw6kxqfmXyMiAefNgyxbw9YVGjcwz/YoUFcH58xAcDIsXm1cC1ZWenn6xtNOmTRvi4uK46aab8Pb2rtmOCCHq3OLFi/n5559ZtmyZ2/asluQPpKVBXBykpkJY2C9n+VWVl2deDfzlLzB1auUHDYAff/wRwzDYuXMnAwcOxGaz0blz55rtgBDCpQoLC5kyZQo9e/bkvvvuszqcGvH4Ad+MDDPxp6VBTSssgYHm1cLf/gZBQXDvvWVvV1hYyPbt2zEMg1OnTjFmzBimTZtGWFhYzXdACOFyvr6+LF68mLFjx9K5c2cGDhxodUh1pkEmf63h0UfNM/7altZ9fCAkBBYtgj59oGvXX547e/Ys69evZ8OGDURFRXH33XfTv39/Ke0I4cYaN27M0qVLeeCBB2jfvj0dOnSwOqQ60SCT//btsHWrWepxBl9fs+Tz4IPm2MGePd8THx/Pxx9/zODBg3n++ecb7B+IEJ7o8ssvZ9q0aUyfPp21a9cSWhfT/yzW4Gr+WsOQIXDsmDlg6ywOh4OTJ3Pp2vV5goI+JjY2luHDhzfIPwohhOlvf/sbBw8e5LnnnnObAWCPHfD95hu44w5znn5FA7QOh52TJxeRm/s5xcVZ+PpG0rz5VIKDr//VdkVFhWRkZJCRcQ4vrzCuvtqL7dubuM0fghCi5oqLi3nggQe47LLLePDBB60Op0qqmvwbXAZ77z1zqmblM3OK8fVtSbt2L9O58w6aNfszqalzsNvTAE1eXi6pqcc5dOgQxcXFJbW/FqSkNCM7u8H92oQQZfD29mbhwoVs27aNrVu3Wh2OUzW4mv+uXeYNXJXx8gqkWbPJFx+HhPTD17cVZ8/uJj+/Gw6Hg4iICFq1aoWX1y8DuL6+sGcPePAy4EJ4lLCwMJYvX86f//xnoqKi6NKli9UhOUWDO4Xdu9e8c7c6CgsLOXFiL5mZ+ykoaEKzZs3p0KEDjRs3+VXiN7eF/fudGLAQot7r1KkTc+bMYcaMGWRkZFgdjlM0uOSfm1u9m7nOnj3DDz98y+nTTxEUNJhGjTpRUJDPuXPnyMrKIicnm7y8POz2AoqKCiksdJCdXT/HSYQQdWfQoEEMHTqUOXPmUFRUZHU4tdbgBnw7dTLn5Vf1AHDuXDpHj84hKAgaN16A1oriYgcOR3GZn+32YFq3/hcxMf8hODiYkJAQgoODf/P1pR+XPicreArhfhwOBw8//DBt27ZlxowZVodTJo+9w7d5c8jKqlrdX2tNbu5KAgLy8fGZS+PGTVGq4qNGVhYsWjSLm276M9nZ2WRnZ3P+/PnffJ2Wllbuc9nZ2fj6+lZ48KjsQNKoUSOZcSSEi3l5ebFgwQLGjRtHcnIyw4cPtzqkGmtwyb9HD/MGr6ok/5MnF2K3H6ZTpxdJS8vg5MmTtGrVCih/qpBS0L27L40bN6Zx48Y1ilFrTV5e3sUDwaUfFw4Sp0+fLvfgkZeXR0BAQIUHjMoOJoGBgQ2me5EQrhISEsLy5cuZPHkyMTExdOvWzeqQaqTBJf++fc27cCtTWHiCc+c2oJQf+/cPRWtNQUEBDsdM2rSJLfNn7HZztk90dO1iVEoRFBREUFAQzZs3r9FrOBwOcnJyyjwwXPjIzMzk+PHj5V6hFBYWVlieqsrX0ltYeKLo6Ggee+wxZs2axbp16yrsvldQANnZ5oljcDDUl/8yTqn5K6WGAn8HvIFXtdaLLnneH1gL9ATOAjat9ZGKXrOmNf/MTHMaZmCguS5PdRQW2jl8+AiRkW0ICmr0m+czMmDSJJgzp9ph1UtFRUUVlq7KuyIp/djLy6tK4xwVXYXIWkjCXb3yyit8+umn/POf/7x4IuRwmFPON2yAL76AlBS48CeutXnyeN115s2o3btXbbXg6nDZHb5KKW9gHzAYOA58AfxRa/1jqW2mAN211vcppeKA27XWtopetzZLOs+ZA4mJNVvULScnh9TUVKKjo/D1/eUQXVRkziTatg3atatRWA2O1hq73V7hwaO8A8mF53JycvD39690rKOiklZQUJCMfwhLOBwOZs+eTUREBI88Mpf33oOnn4affzYPAoGBZgn6QoJ3OMwrgbw884AQE2Nu78z7hlyZ/PsAT2qth5Q8fgRAa72w1DZbS7b5VCnlA5wEmukK3rw2yf/MGRg4EIqLzV9+daWnnyUzM5P27aMuJpWMDPjTn2DWrBqFJMpxYfyjqgePsg4m+fn5BAUF1Xj2VUhICP7+/jL+IWokNzeXO++cQn7+Yxw40AE/PzPvVPbnpLVZDiouhjvvhLlzq3+PUllcOdunDZBS6vFx4NryttFaFymlMoEmwBknvP9vNG1qLsH8wANmjb665Z/GjRuTn1/AiRNptGnThsxMRbt28NBDdRGtZys9/tGiRYsavUZxcXGF4x/nz58nPT2dY8eOlXtgKS4urvTgUdlViUzf9Uy5uUGcOfNPvvwynaioXIKCgqr0c0qZ09KLi+H//T9z5YDVq83eIa5QrwZ8lVKTgckA7WpZW7nlFti3D1auNH/B1TsAKFq1asmRI0dJScmiffsw1q2r2gwi4Xre3t6EhobWaoXVC+WrisY6Tpw4UeEVio+PT5VnXJV3IJHylXvJzTXP2k+eDCAqKpS0tONER0fj41P1EwFvb7NE/eWXMHkyrF1b/a6DNeGM5J8KtC31OLLke2Vtc7yk7BOGOfD7K1rrl4GXwSz71Dawhx4yj6JLl/5ylK3qlX1xsRchIW05f/4H5swpIDJSFvNpyPz8/Go9fTc/P7/SsY4zZ86Uu01ubi4BAQG1mn0l03dda9kyOHgQwsNBqWAaN25MSspxoqLaV3rPUGlKma/x6adm8r/nnrqL+eJ7OqHm74M54HszZpL/ArhTa/1DqW3uB64sNeA7Smtd9nzKEs5q4A7w/fdmI5aUlMoPAoWFZh3Oy8uc2TNw4Hc88sg0Xn31Vdq3b++UeIQoi8PhIDc3t9qD5qW/ttvt1Z59Vdb0XTmAVO7rr2HMGHP65i8T1jSpqakopWjdujUV3TNUFrvdHBD+4AOIjKxZXC5dz18pdQvwLOZUz1Va62eUUvOB3VrrZKVUALAO6AGkA3Fa60MVvaYzkz+YSf0//4GXX4b//c8cC7DbzXqbUubcW6XM7991l3kpdyHXb9y4kXXr1rFmzRqCg53YIUYIJysqKiInJ6fGs6+ys7MBajX7Kjg4GJ/qDrS5oUmTzJwSHv7r72vt4MiRI4SFhdG4cROKi7M4cWI+2dm78PEJp1mzqYSFDS33dTMyzH7hc+fWLC6PbeZSFefOmYMr+/dDTo45HtC8udmfNzq69FH8F0uWLCEtLY0VK1ZIXVY0aHa7vcozrso7mPj5+dVq9lV9n7578qR5Q2loaNn1+cJCO0eOHKF16zacO/cMoGnV6jHy8/eRkvIQUVH/wt8/pszXLiw0p5bv3l2z2YqS/J2sqKiIKVOmcPXVVzNlyhSrwxGi3rp0+ZKqHjxKf52fn09gYGC1lywp/f2AgIA6K19t2ACzZ1fcJzw3N4eUlIM4HJPo0CERPz9zEkta2uP4+DSjefMHyv3Z7GxYswauvXTeZBV47MJudcXHx4fFixczduxYOnfuzKBBg6wOSYh6yVnLl1RWnsrIyODYsWPlHmSKiopo1KhRtQfNS3+Ut3zJV1+ZJeOKBAU1Iiwsj59/LsLH55cCvr9/J3Jzv6rwZwsL4Ycfapb8q0qSfzVERESwbNky7r//ftq1a0fnzp2tDkmIBsnLy6vW03cLCwsrLU+dPHmywqsSb2/vMq8qkpMnkJPTFIfDgZeXN97eXmV+Dgnx5fTp4Iv3DIHCyysYhyOnwtiVgu++q/GuV4kk/2rq0qULM2fOZMaMGaxdu5bwS0d7hBD1gq+vLxEREUTUZJ0XuLjYY1kHhS1bwvHx8ULrYux2e7n9P4qKTlBUlMXp02do3rwFvr6+OBw5eHn9du2w0ry84Pz5GoVdZZL8a2DIkCHs27ePOXPm8I9//MMjZjYI4WmUUgQEBBAQEEDTpk1/9dyzz5qlmfLuxnU4ijl37hxnz9opLITWrRW+vmaeKCjYV+5g7wVa1/1eMgw1AAAXnUlEQVRNpfV3OL2eu//++/Hz8+PZZ5+1OhQhhIvFxJhTxS9VUJDPiRMn2L//AHl5+URGdqBZs6EUFho4HPnk5n7D+fMfEhb2hwpfv6jI7EpYlyT515CXlxfPPPMMn3zyCcnJyVaHI4Rwod69zbNzk+b8+SyOHj3KsWPH8PHxoUOHGNq0aUNgYBAtWz6Cw1HAvn2DSU2dS8uWj1R65u/vby73XJekXlELFzr6TJo0iejoaK688kqrQxJCuECvXgDFnDmTwblzGfj4+NC4cWNCQkJ+s6yDt3cobdsur/JrOxzmTKK6Tv5y5l9L0dHRPP7448yePZvTp09bHY4Qoo7t27ePxMT5ZGR8SXa2JjIykqioaEJDw6q1nk95srLMJekvGWZwOkn+TtC/f39Gjx7NrFmzsJdVCBRCuLWioiLef/99Jk6cyF/+8hfato3kuecuJyysGf7+NbgNtxwOh/l50iSnvWS5pOzjJBMmTGDv3r0sWrSIxx57TBbGEqIBSE9PZ8OGDaxfv562bdsSFxfHTTfdhI+PDw4HJCebN3w5a8Z3ZiaMHHmhrFS3ZHkHJ8rNzWXChAmMGjWK2NgKFy0VQtRjP/74I/Hx8fz3v//l5ptvJjY2tsybOlNSYNgws0bfqOKp+5XKyjIPItu2mWsG1ZQs72CBoKAgli9fzvjx44mJiaGXKw7fQginsNvtbNu2jYSEBM6ePcuYMWOYMWNGhXcZt21rdt+6+25zPZ6aLvqbmWn+7Btv1C7xV4ec+deBzz//nHnz5rF69eqSNb2FEPXV6dOnWb9+PRs2bKBjx47YbDb69etXrVVFv/7arNOnp5uLvVX1R4uKzDt527WDVavMVYVrS1b1tNjrr7/O5s2bee211wisybqsQog6o7Xm22+/xTAMPv30U4YMGUJsbCwxMRXPv6/I+fOwYIG54qfDYZaBfH1/2zhKa7NhS16euXz8pElmsyln3dEryd9iWmueeuopCgoK+Otf/yoDwELUA3a7nS1btmAYBjk5OcTGxnLbbbcREhLitPc4ehRefx0MwywF+fiYCV9rM9kXFkKTJmapKDbW7CXiTJL86wG73c7EiRMZMGAA48ePtzocITzWyZMnSUpK4q233uLyyy/HZrPRp0+fOm0YozWcOgV795o1faWgcWO47DLzc12RAd96wM/Pj2XLljFu3Dg6depE3759rQ5JCI+htearr77CMAx2797NLbfcwmuvvUa7du1c8v5KQYsW5kd9JGf+LvDtt98yffp0aQIvhAvk5eXx7rvvkpCQQFFREbGxsdx6660ElbcEZwMjZ/71SPfu3bn//vuZNm2aNIEXoo6kpqaSmJjIpk2buOqqq3j44Yfp3bu3jLeVQ5K/i4wcOZK9e/cyb948aQIvhJNorfn8888xDINvvvmG4cOHs3bt2pKuWaIiUvZxIWkCL4Rz5ObmsnnzZhISEvDx8cFmszFs2DACAgKsDs1yUvaph6QJvBC1c+zYMRISEnjnnXfo1asXc+fOpUePHlLaqQFJ/i4mTeCFqB6Hw8Gnn36KYRj89NNPjBw5kjfeeIMW9XUajZuQ5G8BaQIvROXOnz/Ppk2bSEhIIDg4GJvNxrJly/Dz87M6tAZBkr9FpAm8EGU7dOgQhmHw3nvv0adPH+bPn8+VV14ppR0nkwFfCzkcDv7yl7/Qrl07ZsyYYXU4QljG4XCwc+dODMPg0KFDjBo1ilGjRtGsWTOrQ3M7MuDrBi40gR83bhzJyckMHz7c6pCEcKnMzEzeeustEhMTadKkCTabjUGDBuHr62t1aA2eJH+LXWgCP3nyZGJiYujWrZvVIQlR5/bt24dhGGzfvp1+/fqxePFiunbtanVYHkWSfz0QHR3NY489xqxZs1izZo1c6ooGqaioiB07dmAYBqmpqYwePZr169fTuC5XORPlkuRfT/Tv35/9+/cza9YsXnrpJZnRIBqM9PR0Nm7cSFJSEq1bt8ZmszFgwACZ5GAxGfCtR7TWzJ49m+DgYGkCL9zejz/+iGEY7Ny5k4EDB2Kz2eS+FheQ9fzdlDSBF+6ssLCQDz74AMMwOHPmDGPGjGHEiBGEhYVZHZrHkNk+bkqawAt3dObMGTZs2MD69euJiYlh3Lhx9O/fXxYwrMck+ddDbdq0YcGCBcydO1eawIt6S2vNd999h2EYfPLJJ/z+97/nxRdfrFUfXOE6Uvapx6QJvKiP7HY7W7duxTAMsrOz66QPrqg5Kfs0AH/84x/Zt28f8+fPlybwwnKnTp0iKSmJjRs30qVLF+677z6uv/56Ke24KflXq8eUUsydO5fU1FRWr15tdTjCA13ogzt79mzi4uLIycnhlVdeYeXKlfTt21cSvxur1Zm/UqoxYABRwBEgVmudUcZ2xcB3JQ+Paa1lHYMqkibwwgr5+fkX++Da7XZsNhtPPPGEx/TB9QS1qvkrpZYA6VrrRUqpOUCE1np2Gdtla62r1bhWav6/Jk3ghSukpaWRmJhIcnIy3bt3x2az0bt3bznDdyMumeevlNoL3KS1PqGUagXs0Fp3KWM7Sf5OsHHjRtatWydN4IVTaa354osviI+P5+uvv+a2224jNjZW+uC6KVcl/3Na6/CSrxWQceHxJdsVAV8DRcAirfXGyl5bkn/ZFi9ezIkTJ6QJvKi13Nxc3n77bRISEvDy8rrYB1dmlrk3pyV/pdQ2oGUZTz0KrCmd7JVSGVrriDJeo43WOlUpFQNsB27WWh8sY7vJwGSAdu3a9Tx69Ghl8XscaQIvauvYsWMkJiby9ttv06tXL2w2G9dcc43MJmsgnDbVU2tdbpdxpdTPSqlWpco+p8p5jdSSz4eUUjuAHsBvkr/W+mXgZTDP/CuLzRNJE3hREw6Hg127dhEfH89PP/3EiBEjeP3112nZsqzzOuEJajvPPxkYBywq+fzWpRsopSKAXK11gVKqKXADsKSW7+vRpAm8qKrs7Gw2bdpEYmIigYGB2Gw2li5dir+/v9WhCYvVtubfBEgA2gFHMad6piulegH3aa0nKqWuB14CHJj3FTyrtX6tsteWmn/ltm7dyvPPPy9N4MVvHD58mISEBLZu3cp1112HzWaje/fuUtrxALKqp4dYuXIlP/zwgzSBFzgcDj766CPi4+M5cOAAo0aNYvTo0dIcyMNI8vcQ0gReZGVlXeyDGxERcbEPrjQE8kyyto+HkCbwnmv//v0kJCSwbds2+vXrx8KFC7niiiusDku4CUn+DYA0gfccxcXFF/vgpqSkSB9cUWOS/BsIaQLfsGVkZPDmm29KH1zhNPKX04BIE/iG56effsIwDD788EMGDBjA3/72N7p0+c0KKkJUmwz4NjDSBN79FRYWsn37dgzD4NSpU4wZM4aRI0dKH1xRJTLg66GUUjz55JNMmDCBxMREaQLvRs6ePcv69evZsGEDUVFR3H333fTv3x9vb2+rQxMNkCT/BkiawLsPrTXff/89hmHw8ccfM3jwYJ5//nk6dOhgdWiigZPk30BJE/j6zW638/7772MYBpmZmcTGxjJr1ixCQ0OtDk14CEn+DVjv3r255557mDFjhjSBrydK98Ht3LkzkyZN4oYbbpDluYXLSfJv4C40gX/66ad55plnZADYAlprvv76awzD4PPPP2fo0KG88sor0pFNWEpm+3gAu93OxIkTGThwIPfcc4/V4XiMgoICtmzZgmEY5OfnY7PZuPXWW2nUqJHVoYkGTGb7iItKN4Hv2LGjNIGvY2lpaSQlJZGcnEy3bt144IEHuPbaa6W0I+oVSf4eonnz5ixevFiawNeRC31wDcPgf//7H7feeiurV68mMjLS6tCEKJOUfTyMNIF3rtzcXN555x0SEhIAiIuLkz64wlJS9hFlGjlyJHv37mXevHnSBL4WUlJSSExMZPPmzfTs2ZNZs2bRs2dPGVAXbkP+53ug6dOnk5ubyz//+U+rQ3ErDoeDTz75hIceeojx48fj6+vLv//9b5YuXUqvXr0k8Qu3Imf+HkiawFdPTk4OmzZtIiEhgYCAAOLi4liyZIn0wRVuTZK/h5Im8JU7cuQICQkJbNmyhWuvvZbHH3+cq666Ss7wRYMgyd+DdenShZkzZzJjxgxpAl/iQh9cwzDYv38/t99+O/Hx8TRv3tzq0IRwKkn+Hm7IkCHs3buXOXPmeHQT+KysLJKTk0lISCA8PJy4uDjpgysaNJnqKTy6CfyBAwdISEjg/fffp2/fvthsNmmDKdyaTPUUVeZpTeCLi4v58MMPMQyDo0ePMnr0aJKSkmjSpInVoQnhMpL8BeAZTeDPnTvHxo0bSUpKokWLFhf74Pr6+lodmhAuJ8lfXNRQm8Dv2bMHwzDYsWMHAwYMYNmyZVx22WVWhyWEpST5i19pKE3gi4qKLvbBPXnyJGPGjOHNN9+UGU1ClJDkL35jwoQJ7N27l0WLFrldE/j09PSLfXDbtWvHXXfdxY033ih9cIW4hMz2EWXKzc1lwoQJjBo1yi2awF/og/vRRx8xePBgYmNj6dixo9VhCeFyMttH1ErpJvAdOnSgZ8+e5W9cXAxZWebnoCDzwwXsdjvbtm0jPj6ec+fOERsby8yZM6UPrhBVIMlflOtCE/hHHnnkt03gDx+GpCTYuRP27QOHw/x+cTG0aAE9esDIkTBgADh5Ns2pU6dYv349b775Jp06dWLixIn07dtXVigVohqk7CMq9frrr7N582azCXxaGjz2GHz+uZnw/f0hIAAu1NS1Brsd8vLAy8u8Cnj4Ybj7bvNxDWmt+eabbzAMg88++4yhQ4cSGxtLVFSUc3ZSiAaiqmUfSf6iUlpr5j/5JN0//5yRBw+iHA4IC4OqDAQXFEBuLlx1Ffz979C2bbXeu6CggK1btxIfH09+fj6xsbHcdttt0gdXiHJIzV84jdKaeVlZnP3oI9LDw2nSokXVf9jfH/z84NtvYcQIiI+HKqwgeuLEiYt9cLt27crUqVO57rrrpLQjhJNI8heVW7AA7+RkIqKjOXz0KH6NGhFSnRaQSkF4uDkoHBcHmzdD6fGDElprvvzySwzD4Msvv+TWW29l1apVtK3m1YIQonKS/EXFPv4Y1qyB0FB8vb2JjIzkeEoKflFR+Ff3BrDQUDh3DmbOhHXrLo4B5OXl8e6772IYBlprbDYbTz31FEEumjUkhCeS5C/Kl5dnDtb6+V0c0A0KDKRZ8+akpKQQHR2Nd3XLMGFhsGsXbNxI6rXXkpCQwObNm+nRowczZsyQdohCuIgkf1G+d96BjAwzYZcSER5Ofn4+qamptG3blsdTU/k8N5c8h4OmPj6MbdKEkeUso6CVIs/h4MQDD3DfZZdx24gRrFu37tfTSIUQdU6Svyib1vDSS1BOc5eWLVpw9NgxTp8+zfimTXnM1xc/Ly+OFBQw+ehRuvj7c3lg4MXtix0OMjMzSU9Px0spWgQEsPmJJ/Dv399VeySEKKVWUyeUUmOUUj8opRxKqXKnFimlhiql9iqlDiil5tTmPYWLnD4Nhw6Ve7euUorINm3IzMykaUEBfiXlH1Xy3PHCQgAK7HZOnjzJgQMHyM3NpXWrVkTHxBDs74//xx+7am+EEJeo7Zn/98Ao4KXyNlBKeQPPA4OB48AXSqlkrfWPtXxvUZf27DHP+iuov/v4+NA2MpKjx47x98xMtuTkUKA1XQIC6A4cO3aM/Px8wiMiiImJwbf0VURAAHz2Wd3vhxCiTLVK/lrrn4DKBuh6Awe01odKto0HRgCS/OuzgwfNG7QqmdIZEBBAy5YtiTt1ipnR0exKT+fTjAyyzpyhWZMmRLZti1dZfx/+/nDgQB0FL4SojCvumGkDpJR6fLzke6I+y839Zb2eSoSFhhIWFkbKsWN0cjiwBwezOzyc8LCwshM/mNM8CwqcGLAQojoqPfNXSm0DWpbx1KNa67ecGYxSajIwGaBdu3bOfGlRXX5+VVu+oUTzZs1o1qwZCvA6cYJUu73iH9D6l/WAhBAuV2ny11oPquV7pAKlb9GMLPleWe/1MvAymGv71PJ9RW20aWOWZiqRXlTE7txc+gYHE6AUu3Jy2JqZyV/bVHJxZ7eb7yGEsIQrpnp+AXRSSkVjJv044E4XvK+ojcsvr9JmCkjKyOCvJ07gAFr5+jK9RQv6h4RU/IP5+dCr0rWnhBB1pFbJXyl1O7ASaAa8rZT6Wms9RCnVGnhVa32L1rpIKTUV2Ap4A6u01j/UOnJRt9q3N6d5FhRUeAUQ4ePDy+3bV//1vbygb99aBCiEqI1aDfhqrd/UWkdqrf211i201kNKvp+mtb6l1HbvaK07a607aK2fqW3QwgW8vOCee8yBX2ez280DyuDBzn9tIUSVyPq4onw2mznXv+SGLafJzYWxY825/kIIS0jyF+Vr2RKmT4fsbHN2jjNkZ0PTpnD//c55PSFEjUjyFxW791648krIzKz9a9ntZo/fv/8dpBOXEJaS5C8q5u0Nq1aZA8DnztX8CiA/H3JyYPFiuPZa58YohKg2Sf6ico0bQ2Ii9OxpHgAqu4GrNK3Nn3E44B//gFGj6i5OIUSVSfIXVdO4MbzxBsyfD0VFZkLPzS3/SqCoyOwFkJUFffrABx/AsGGujVkIUS5Zz19UnZcX3HUX3HYbJCeb5aCjR8HX1zwIaG0uCXFh6YZRo8zpol27VmupCCFE3ZPkL6ovNBT+7//Mj/PnzeWfT50yB3MbNYJOnSAy8mKPXiFE/SPJX9ROSAj87ndWRyGEqCY5NRNCCA+ktLNu3nEypdRp4KjVcdRQU+CM1UG4kKftL8g+ewJ33d/2WutmlW1Ub5O/O1NK7dZae8ySlZ62vyD77Aka+v5K2UcIITyQJH8hhPBAkvzrxstWB+Binra/IPvsCRr0/krNXwghPJCc+QshhAeS5O8ESqnGSqn3lVL7Sz5HVLBtqFLquFLqH66M0Zmqsr9KqauVUp8qpX5QSn2rlLJZEWttKaWGKqX2KqUOKKXmlPG8v1LKKHn+M6VUlOujdJ4q7O80pdSPJf+mHyilatDDs36pbJ9LbTdaKaWVUg1iBpAkf+eYA3ygte4EfFDyuDxPAztdElXdqcr+5gJjtdZXAEOBZ5VS4S6MsdaUUt7A88AwoCvwR6VU10s2uxfI0Fp3BP4GLHZtlM5Txf39H9BLa90dSAKWuDZK56riPqOUCgEeAj5zbYR1R5K/c4wA1pR8vQYYWdZGSqmeQAvgPRfFVVcq3V+t9T6t9f6Sr9OAU0ClN57UM72BA1rrQ1prOxCPue+llf5dJAE3K+W2q9hVur9a6/9orS80dt4FRLo4Rmeryr8xmCdti4F8VwZXlyT5O0cLrfWJkq9PYib4X1FKeQHLgRmuDKyOVLq/pSmlegN+wMG6DszJ2gAppR4fL/lemdtorYuATKCJS6Jzvqrsb2n3Au/WaUR1r9J9VkpdA7TVWr/tysDqmizsVkVKqW1AyzKeerT0A621VkqVNYVqCvCO1vq4O5wYOmF/L7xOK2AdME5r7XBulMIqSqn/A3oBN1odS10qOWlbAdxjcShOJ8m/irTWg8p7Tin1s1Kqldb6REmyO1XGZn2AfkqpKUAw4KeUytZaVzQ+YBkn7C9KqVDgbeBRrfWuOgq1LqUCbUs9jiz5XlnbHFdK+QBhwFnXhOd0VdlflFKDME8CbtRaF7gotrpS2T6HAN2AHSUnbS2BZKXUcK31bpdFWQek7OMcycC4kq/HAW9duoHW+i6tdTutdRRm6WdtfU38VVDp/iql/IA3MfczyYWxOdMXQCelVHTJ/sRh7ntppX8XdwDbtfvePFPp/iqlegAvAcO11mUe9N1Mhfustc7UWjfVWkeV/N/dhbnvbp34QZK/sywCBiul9gODSh6jlOqllHrV0sjqRlX2NxboD9yjlPq65ONqa8KtmZIa/lRgK/ATkKC1/kEpNV8pNbxks9eAJkqpA8A0Kp7pVa9VcX+XYl65Jpb8m156MHQrVdznBknu8BVCCA8kZ/5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4IEn+QgjhgST5CyGEB5LkL4QQHkiSvxBCeKD/D8KpFQ7JzLDOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -299,7 +298,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +315,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -331,7 +330,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4VGX6//H3k04aISSBUEKRQIKuILLYFcVV7GWlq7jSlaosLf5WYKkqgoo0QaVYQFYUuyjqV5dVRLEnoYQWCJAeSM/M8/vjTDADSSYhM3Mmyf26rrky5cw5d+ZK8sl5zjn3o7TWCCGEEOW8zC5ACCGEZ5FgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELY8TG7gPMRERGh27dvb3YZQghRr/zwww8ZWutIR8vVy2Bo3749u3btMrsMIYSoV5RSh2qynAwlCSGEsFMv9xicxWKBzEwoLQV/f2jeHJQyuyohhDBXowuGY8fgrbfg888hORmsViMMtAZfX7jwQrjtNrj7bggLM7taIYRwv0YTDCdOwMyZsG2bEQJ+fhAYCN7efy5TVga//gq7d8P8+TBgAEyZAsHBppUthBBu1yiOMWzdCjfcAJ9+CqGh0KwZBAXZhwKAj48RAmFhRmi89hr06QM7d5pTtxBCmKHBB8Py5TBpkjFc1KwZeNXwO/b2NpbPy4MhQ+Djj11bpxBCeIoGHQxvvAFPPw0hIRAQcH7rCAoy3jtuHHz7rXPrE0IIT9Rgg+HQIeOYQnCwMURUF/7+xjrGjTP2IIQQoiFrkMGgNUyebJyO6ufnnHUGBUFWFixc6Jz1CSGEp2qQwfDrr/DTT9C0afXLZWVt4sCBB0hKuoJjx2Y6XG9oqHGqa1aWc+oUQghP1CCDYe3aP69PqI6PTwQREcNo2vTOGq3X29tY79tvO6FIIYTwUA0uGLQ2TkutybUHoaE3EBLSG29vB7sWFfj6wgcf1KFAIYTwcA0uGI4fh6Ii4w+4KwQEQGKisecghBANUYMLhgMH6n4WUnXKh5OOH3fdNoQQwkwNriVGUZExnFRzmuzsLKzWXPz80gkICCAgoAk+1aSLlxcUF9e5VCGE8EgNLhh8fWvbIVWhlEJrjdVqJSsri6KiIpRSBAQ0ISAggCZNAggICMDHxxifslpdN1QlhBBma3DB0Lp1zcf/tbagtYXQ0BDS048RHBxAZGQESnlRWlpKUVERhYVFZGVlU1RUiFIKf/8AtG5KUtLP+PnFERkZiZJe3UKIBqTBBUP79sYeg8VybpO8s2VkrCEjYxUASlnYs+dqWrceS2TkKHx9/fD19SMkJNS2tKa0tIzc3GKaNMli69bNLFyYiFKKuLg44uPjz3xt0aKFhIUQot5SunYD8h6hZ8+eurqpPR98EP73P8cXuNnTHD58hKCgQJo3j6hyqexsGDECpk0DrTUnT54kKSmJxMTEMzer1Up8fPyZsIiLiyM6OlrCQghhKqXUD1rrng6Xc0YwKKX6As8B3sBqrfWCs15fDFxvexgIRGmtw2yvWYBfba8d1lo7vNrMUTB89ZXxxzs0tMpFKlVSUsLBgwfo0KEDvr7n9tKwWo1eSZ9/Du3aVb4OrTXp6ekkJSXZBUZpaemZPYrym4SFEMKd3BYMSilvYA/wNyAV+B4YpLX+o4rlxwGXaK0ftj0+rbWu1VQ4joLBYoHrroOMjNpPspOZmUF+fgExMW0B+z/aOTlw5ZWwbl3t1gmQkZFxJiTKQ6OoqOjMHkV5WLRu3VrCQgjhEu4MhiuAmVrrm22PpwNoredXsfwO4Emt9TbbY6cHAxiT6wwebLTcdnSsoSKtNQcOpBAREUFo6J9jUSUlxm3bNmjbtjbVVi0rK8tuCCoxMZHCwkK7sIiLi6NNmzZ41XQiCSGEqEJNg8EZB59bA0cqPE4FLquiqHZAB2B7hacDlFK7gDJggdb6nSreOxIYCRATE+OwqF694P77jf/umzWr+SmsSimio6NJTU0lKCgYb29vLBbIz4c5c5wXCgDh4eFcddVVXHXVVWeey8rKOrNHsW3bNp5//nlOnz5Nly5d7I5btG3bVsJCCOESzthjuA/oq7Uebnv8AHCZ1npsJctOBdporcdVeK611vqoUqojRmD00Vrvr26bNdljAGMO57Fjjf/yQ0Nrt+dw/PhxtLYSEdGKU6dgzBijlbcZozw5OTl2xyuSkpLIyck5ZxgqJiZGwkIIUSV37jEcBSr+H93G9lxlBgKPVnxCa33U9jVFKfUlcAlQbTDUlI8PLF0K//63MX9z+ZzONREZGcmePWn4+BTxr38F8PDD5oQCQFhYGJdffjmXX375medyc3PP7Fl89dVXrFixguzsbDp37my3Z9G+fXsJCyFErThjj8EH4+BzH4xA+B4YrLX+/azl4oCPgQ7atlGlVDOgQGtdrJSKAP4H3FXVgetyNd1jqOi774y5nzMyjJYZISGVz/9ssRhnHnl5QfPmGYSGzuT995/Fz1kz/rhQXl6e3dlQSUlJZGZm0qlTJ7uzodq3b493bXafhBANgrtPV70VWIJxuurLWuu5SqnZwC6t9VbbMjOBAK31tArvuxJYCVgxGvot0VqvcbS98wkGMIaW/u//4KWX4IcfjD0ApYygUMo4HdXLC66/HoYNgx49NJMnP05cXBwjR46s9fY8walTp0hOTrYbhkpPTyc2NtZuKKpjx44SFkI0cG4NBnc732CoqKwMUlIgNRVKS415nTt0MA4uV9yTOHHiBIMHD2bNmjW0b9++boV7iPz8fLuwSExM5MSJE3Z7FnFxcXTs2LHaZoJCiPpFgsGJ3njjDb744gtWrlzZYK8xKCgoOBMW5UNRaWlpdOzY0W4YqmPHjvhKB0Eh6iUJBieyWq089NBD3Hfffdx5Z82mAW0ICgoK2LNnj11YHD169ExYlA9DXXDBBfXiGIwQjZ0Eg5MlJyczduxYNm7cSHh4uFu37UkKCwvZu3ev3TGLI0eO0KFDB7tTZzt16iRhIYSHkWBwgeeee4709HTmzJnj9m17sqKiojNhUb5ncfjwYdq1a2e3ZxEbG4u/v7/Z5QrRaEkwuEBhYSEDBgxg+vTpXHHFFW7ffn1SUlJit2eRmJjIoUOHiImJses627lzZwICAswuV4hGQYLBRXbs2MGCBQvYtGmT/EGrpZKSEvbt22d3FfeBAwdo06aN3QHu2NhYmjRpYna5QjQ4EgwuNGPGDKKjoxk3bpzjhUW1SkpK2L9/v13X2f3799O6dWu7YxadO3cmMDDQ7HKFqNckGFwoMzOTAQMGsHz5cmJjY02ro6EqLS0lJSXFbhgqJSWF6Ohou66zcXFxEhZC1IIEg4u9/fbbbN26lZdffll6EblBWVkZKSkpdsNQ+/bto0WLFnYHuOPi4ggKCjK7XCE8kgSDi1mtVkaMGMHNN99M//79Ta2lsbJYLBw4cMDu1Nm9e/cSGRlpNwzVpUsXQkJCzC5XCNNJMLhBSkoKI0eO5PXXXycqKsrscgRGWBw8eNBuz2Lv3r2Eh4efMw93aG3nfhWinpNgcJMVK1awf/9+nn76abNLEVWwWq12YZGUlERycjJhYWF2Z0PFxcXRtGlTxysUop6SYHCTkpISBg4cyIQJE7juuuvMLkfUkNVq5fDhw+fMwx0WFnbOBEhhYWFmlyuEU0gwuNGuXbt48skneeutt+QsmXrMarWSmppqdzZUcnIywcHB5wxDNea2KKL+kmBws1mzZhEUFMTkyZPNLkU4kdVq5ejRo3btPpKSkmjSpMk5w1DNmzc3u1znS0kxZrnauRP27oXiYggIgC5d4K9/hcsugwbSjr4xkGBws9zcXPr168eSJUvo2rWr2eUIF9JaVxoW/v7+dqfOxsfHExERYXa5tac1fPmlMS/uzz//+byfnzFZidVqBER5C/qePY3J1a++2pRyRc1JMJjgww8/ZMOGDaxfv15mQ2tktNakpaXZHbNITEzEx8fnnD2LyMhIz53XIzMTZsyAzz4Db29jDtzqatUaTp0ywuK222DWLJBjMh5LgsEEWmseffRRrrjiCh544AGzyxEm01pz/Phxu6BITEzEy8vrnD2LqKgo88Ni714YNAhyciA0tPJJ0atitUJuLkRGwptvyvCSh5JgMMmRI0d46KGHWL9+Pa1atTK7HOFhtNacPHnS7gB3UlISWmu7g9vx8fG0bNnSfWFx8CDccw/k5xuhcL7y8qBpU3jnHWjd2mnlCedwazAopfoCzwHewGqt9YKzXn8IeBo4antqqdZ6te21ocATtufnaK3XOtqeJwcDwCuvvMLu3bt57rnnzP8vUHg8rTXp6el2exWJiYlYLBa7vYq4uDiio6Od/zNVWgp33AH79xt/1OsqOxsuugjeftsYjhIew23BoJTyBvYAfwNSge+BQVrrPyos8xDQU2s99qz3hgO7gJ6ABn4ALtVaZ1e3TU8PhrKyMoYMGcKwYcO46aabzC5H1FPp6el211gkJiZSXFxsFxbx8fG0atWqbmGxdCksXmwcG3BG6GhtDEfNmAHDhtV9fcJp3BkMVwAztdY32x5PB9Baz6+wzENUHgyDgN5a61G2xyuBL7XWb1S3TU8PBoBffvmFKVOmsGnTJmm9IJwmMzPznAPchYWFdk0E4+PjadOmTc3CIi8PevUCf3/w9XVeoSUlYLHArl0gc2t4jJoGg48TttUaOFLhcSpwWSXL/V0pdS3G3sUkrfWRKt7bIAYmL774Ynr37s0LL7xAQkKC2eWIBqJ58+ZcffXVXF3h1NCsrKwzIfHpp5/y3HPPkZ+ff84V3G3atDm3E/DWrVBWBsHB1W63xGplwfHj7CwoIM9ioY2vL2Ojoriyqvf5+RkHoz/8EP7+97p+28LNnBEMNfEe8IbWulgpNQpYC9xQmxUopUYCIwFiYmKcX6ELjB07ln79+rF7924uueQSs8sRDVR4eDhXXnklV1555ZnnsrOzz4TF559/ztKlS8nLy6NLly52xyzavfYaqgZ7Chagpa8vq2JiaOnry39Pn2ba0aO82aEDrfz8Kn+Tlxe88YYEQz3klqGks5b3BrK01k0b8lBSuc8//5wVK1bw2muv4VfVL5AQbpCTk0NycvKZoag9v//OC59/jiUoCP8mTWgSEEBAQAB+/v7U5EjDwJQURkZEcENVQ6UWCxQWwh9/1O7UV+Ey7hxK+h6IVUp1wDjraCAw+KxiorXWabaHdwKJtvufAPOUUs1sj28CpjuhJo9xww038P7777Nu3TqGDx9udjmiEQsLC+Oyyy7jsstsI7179mC57TaKfHwoLCri1OnTpKenU2axEODvT0CTJgQEBNCkkrDIKivjcEkJHf39q96gt7dxfUNqKtSTvXxhqHMwaK3LlFJjMf7IewMva61/V0rNBnZprbcC45VSdwJlQBbwkO29WUqpf2OEC8BsrXVWXWvyJEoppk6dypAhQ7jpppvqzTCYaARyc/H28SEoKMhu1juL1UpRYSGFRUWcPn2ajIwMysrK8PfzIzg4mLCICJ44dozbmzalfXXBAMaeQl6ei78R4WxygZubvP7663z11VesWLFCrm0QnmHXLnjgAajBVKglpaUcOniQkrIyVvv5YfH15dm2bfFx9LN8+rRxPYP0D/MINR1KkoE/Nxk4cCAFBQW89957ZpcihCE83BjqcaC0rIwjR44QEhrKm8HBHMvPZ17Llo5DAYzjDM2aOV5OeBQJBjfx8vIiISGBpUuXkp1d7fV7QrhHu3bGV4ulykXK9xSahoayxmrliMXCwhYtyDl50vH6y8qM6yNatnRSwcJdJBjcKC4ujltuuYXFixebXYoQxsHhiy6CgoJKXy4uLubQwYOEN29OadOmbMnJYU9REQ9kZ3NPRgZX/vEHH+XmVr3+ggLo0cM5V1MLt5JgcLNRo0axe/duvvvuO7NLEQIefLDS4aTCoiIOHTpEVFQU4c2aEe3ry674eHbExfF1XBxfxsay1s+Pm0JCql///fe7qHDhShIMbhYYGMjUqVOZP38+xcXFZpcjGrubbzZmZKvws5hfUMCRw4eJbtWKplU01QsKCiIwMJCM9PTK11tUZFxNff31rqhauJgEgwmuvvpq4uLiWL16tdmliMYuIAASEowL0bTm1OnTHE1NpXXr1oQ4aJPRokULcnNzKSoqsn9Ba2N9Tz7p3P5Lwm0kGEwyefJktmzZwr59+8wuRTR2/fvDX/9KfloaaceO0bZtW7vrGqri4+1NVIsWpKWlYXfSe04OXHst3Hmny0oWriXBYJKIiAjGjBnDvHnzsNbglEEhXMbLi/dvvpkDRUW0b9aMJrXohtq0aVOUlxfZWVl/ttvu0MFo4y0HnestCQYT3XPPPQC8/fbbJlciGrN169ax6u23Cd++Hb/OnY2JdsrKavReBURHR5OZnk5ZZiZ07gybNsm8z/WcBIOJvLy8eOKJJ1ixYgXpVR3EE8JFtNa8+OKLvPfee6xevZpW3bvDe+/B8OHGFJ/Z2dVe4wBAWRn++flEBQbyYYcOxpSe4eHu+QaEy0gwmKxjx47ce++9PP3002aXIhoRq9XKwoUL+fbbb3nppZeIiooyXggIgOnTjYC45x7jWoTTpyEry5hfIS/P+JqVZTxfVAQDBtBk+3ZebdaMr/73P3O/MeEU0ivJAxQXFzNw4EAmTZrEtddea3Y5ooErKytj1qxZnDhxgsWLF1d/oDkvD376yWid/fvvxmmtAQFw4YXGrVs3sF3L8MMPP/Cvf/2Lt956i8DAQDd9N6I23Da1pxkaWjAA7Ny5k9mzZ7Np0yb5pRIuU1JSwrRp07BYLDz11FP4O+qOWkuzZs0iJCSExx57zKnrFc4hTfTqmV69enHppZeyYsUKs0sRDVRBQQHjx48nICCAZ555xumhADBx4kQ+/vhjEhMTHS8sPJYEgweZNGmS/FIJl8jLy2PMmDHExMQwZ84cfF104VnTpk2ZMGECc+fOxeLowLXwWBIMHiQsLIzx48czZ84c+aUSTpORkcGIESO49NJLmT59Ol4unmbz1ltvJSQkhI0bN7p0O8J1JBg8zG233UZoaChvvvmm2aWIBuDYsWMMHz6cvn37Mm7cOLdMEqWUYvr06axZs4YTJ064fHvC+SQYPEz5L9XLL7/MsWPHzC5H1GMpKSkMHz6cIUOG8I9//MOtMwfGxMQwaNAgFi5cSH08waWxk2DwQDExMQwZMkR+qcR5++OPPxg9ejRjx46lX79+ptTw4IMPcvjwYb788ktTti/On1OCQSnVVymVrJTap5SaVsnrjyml/lBK/aKU+lwp1a7Caxal1E+221Zn1NMQPPDAA6SlpfHZZ5+ZXYqoZ3788UcmTJhAQkICt956q2l1+Pn5MWPGDJ5++mny8/NNq0PUXp2DQSnlDbwI3AJ0BQYppc6e+Xs30FNrfTGwGXiqwmuFWuvutpu0Y7Tx9fUlISGBRYsWcerUKbPLEfXEN998w9SpU5k7dy7XXXed2eXQo0cPrrjiCpYtW2Z2KaIWnLHH0AvYp7VO0VqXAG8Cd1VcQGv9hda6fP7Ab4E2Tthug9etWzeuvfZaXnjhBbNLEfXAp59+yuzZs1m8eDG9evUyu5wzJkyYwLZt2/jjjz/MLkXUkDOCoTVwpMLjVNtzVRkGfFThcYBSapdS6lul1N1OqKdBGTduHF9//TU///yz2aUID/b222+zePFili1bxkUXXWR2OXZCQ0OZOHGinIZdj7j14LNS6n6gJ1CxY1w72yXag4ElSqkLqnjvSFuA7GpMnUjL2wvMnTuX0tJSs8sRHmjdunW8+uqrrFq1ik6dOpldTqVuueUWwsLC5DTsesIZwXAUaFvhcRvbc3aUUjcCCcCdWuszE8xqrY/avqYAXwKXVLYRrfUqrXVPrXXPyMhIJ5Rdf9x4441ER0ezfv16s0sRHkRrzbJly9i6dSurV6+mbdu2jt9kkoqnYaelpZldjnDAGcHwPRCrlOqglPIDBgJ2ZxcppS4BVmKEwskKzzdTSvnb7kcAVwEyEHkWpRTTpk3jtdde4/Dhw2aXIzyA1WrlqaeeYseOHfZtsz1Y27Zt5TTseqLOwaC1LgPGAp8AicAmrfXvSqnZSqnys4yeBoKBt846LTUe2KWU+hn4AligtZZgqER0dDQPP/ww8+bNk1+qRq6srIyZM2eyb98+VqxYQbNmzcwuqcYeeOABjh07xhdffGF2KaIa0na7HrFYLAwdOpSBAwdy++23m12OMEF52+yysjKeeuopAgICzC6p1n766SdmzJjBpk2bCA4ONrucRkXabjdA3t7eJCQk8Pzzz5OTk2N2OcLNCgoKmDBhAgEBASxatKhehgJA9+7dueqqq+TaBg8mwVDPxMfH07dvXxYvXmx2KcKN8vLyeOSRR2jTpo1L22a7y7hx49i+fTu//fab2aWISkgw1EOjR4/mhx9+YOfOnWaXItygvG32JZdcwowZM1zeNtsdQkNDmTRpEnPnzqWsrMzscsRZ6v9PWCMUGBjIlClTmD9/PsXFxY7fIOqt8rbZN998M+PHj3drh1RXu+mmm2jevDmvv/662aWIs0gw1FPXXnstsbGxrFmzxuxShIscOHCA4cOHM3jwYB5++OEGFQrw52nYa9eulRbzHkaCoR775z//ydtvv01KSorZpQgnS0xMPNM2u3///maX4zJt2rTh/vvvl2sbPIwEQz0WGRnJ6NGjmTNnDlar1exyhJP8+OOPjB8/nunTp5vaNttdHnjgAY4fPy4t5j2IBEM9d++99wKwZcsWkysRzvDf//73TNvs3r17m12OW/j4+JCQkMCzzz4rLeY9hARDPefl5UVCQgLLly8nIyPD7HJEHXz66afMmjWLZ5991qPaZrvDxRdfzDXXXMOLL75odikCCYYG4YILLuCee+7hmWeeMbsUcZ62bNnC4sWLefHFF/nLX/5idjmmGDduHF9++SW//PKL2aU0ehIMDcTw4cNJSkrim2++MbsUUUvr1q3jlVdeYdWqVcTGxppdjmkqtpiXaxvMJcHQQPj7+zNjxgwWLlxIQUGB4zcI09Wnttnu8re//Y0WLVrw2muvmV1KoybB0ID06tWLSy65hJUrV5pdinCgPrbNdofyaxvWrVvH0aPnTOsi3ESCoYGZNGkSH330EUlJSWaXIqpQn9tmu0OrVq0YOnQoCxYskGsbTCLB0MA0a9aMcePGMXfuXJlf1wOVlJQwZcoUcnJyeOGFF6TtdBUGDx5Meno627ZtM7uURkmCoQG6/fbbCQoKYuPGjWaXIipoKG2z3aHitQ15eXlml9PoSDA0QEopZsyYwZo1azh+/LjZ5QgaXttsd/jLX/7C9ddfz9KlS80updGRYGigYmJiGDRokPSg8QANsW22uzz66KN8/fXX/Pzzz2aX0qjIT2gDNnToUFJTU9m+fbvZpTRaDblttjsEBwfz+OOPM3fuXEpLS80up9GQYGjAfH19SUhI4JlnnuH06dNml9PoNPS22e7Sp08fWrVqxYYNG8wupdFwSjAopfoqpZKVUvuUUtMqed1fKbXR9vp3Sqn2FV6bbns+WSl1szPqEX/q3r07V199tYzTulljaZvtDkoppkyZwoYNG0hNTTW7nEahzsGglPIGXgRuAboCg5RSXc9abBiQrbXuBCwGFtre2xUYCFwI9AWW2dYnnEh60LhXY2ub7Q6tWrXioYceYv78+XLMzA2cscfQC9intU7RWpcAbwJ3nbXMXcBa2/3NQB9l7FffBbyptS7WWh8A9tnWJ5woNDRUetC4SWNsm+0ugwYNIjs7m08++cTsUho8ZwRDa+BIhceptucqXUZrXQbkAs1r+F4AlFIjlVK7lFK70tPTnVB241Leg2b9+vVml9JgNea22e5Qfm3D4sWL5doGF6s3B5+11qu01j211j0jIyPNLqfeKe9Bs2HDBo4cOeL4DaJWpG22e1x44YX06dOH559/3uxSGjRnBMNRoGJbyDa25ypdRinlAzQFMmv4XuEkMk7rGuvXr5e22W706KOPsmPHDnbv3m12KQ2WM4LheyBWKdVBKeWHcTB561nLbAWG2u7fB2zXxl+mrcBA21lLHYBYYKcTahJVGDx4MDk5OXz00Udml1LvlbfNfvfdd6VtthsFBQUxefJk5s2bJ9c2uEidg8F2zGAs8AmQCGzSWv+ulJqtlLrTttgaoLlSah/wGDDN9t7fgU3AH8DHwKNaa+n85kLe3t488cQTLFmyhJycHLPLqbesVitPP/20tM02yfXXX0/btm1Zt26d2aU0SKo+Din07NlT79q1y+wy6rVnnnmG/Px8nnzySbNLqXcsFguzZs0iLS2NxYsXS4dUkxw/fpwhQ4bwyiuvEBMTY3Y59YJS6getdU9Hy9Wbg8/CuR555BF27tyJBGztSNtsz9GyZUuGDRsm8za4gARDIxUYGMjUqVOZN28eJSUlZpdTL5S3zfbz85O22R5iwIAB5ObmyjEzJ5NgaMSuvfZaOnXqxMsvv2x2KR6vvG1269atmTt3rrTN9hDe3t4kJCSwZMkScnNzzS6nwZBgaOQmT57M5s2bSUlJMbsUj5WZmcnIkSPp3r07CQkJ0jbbw3Tt2pWbbrqJ5557zuxSGgz5CW/koqKiGDlyJHPnzsVqtZpdjscpb5t90003MWHCBOmQ6qEeeeQRvv32W3788UezS2kQJBgE9913HxaLhXfeecfsUjzKgQMHGDFiBIMGDZK22R4uMDCQKVOmMHfuXDlm5gQSDAIvLy8SEhJYtmwZmZmZZpfjEZKSkhg9ejSPPPKItM2uJ3r37k379u1Zu3at44VFtSQYBACxsbHcddddLFq0yOxSTLd7927GjRvH9OnTue2228wuR9TClClT2LhxI4cPHza7lHpNgkGcMWLECH7//Xd27Nhhdimm2bFjB//85z+lbXY91aJFC4YNG8a8efPk2oY6kGAQZwQEBDB9+nQWLFhAYWGh2eW43bZt25g5c6a0za7nBgwYQH5+Ph988IHZpdRbEgzCzuWXX063bt1YtWqV2aW41TvvvMOzzz7Liy++yMUXX2x2OaIOyo+ZPf+oyTT5AAAauElEQVT889IP7DxJMIhzTJo0iQ8++IA9e/aYXYpbbNiwgTVr1rBy5Uppm91AxMXF0bdvX5YsWWJ2KfWSBIM4R3h4OGPHjmXOnDkN+toGrTXLly9ny5YtrF69WhqxNTCjR4/m+++/l35g50GCQVTqjjvuICAggI0bN5pdikuUt83+5ptvWL16NS1atDC7JOFk0g/s/EkwiEoppUhISGD16tWcOHHC7HKcymKxMHPmTPbs2cPKlStp1qyZ2SUJFynvB/bqq6+aXUq9IsEgqtSuXTsGDBjAwoULG8ypfyUlJUydOpWcnByWLl0qbbMbgcmTJ7Np0yYOHjxodin1hgSDqNZDDz3E4cOH+eKLL8wupc4KCgqYOHEiPj4+0ja7EYmKimLEiBFybUMtSDCIavn5+TFjxgyeeeYZTp8+bXY55y0vL49HH32U6Oho5s2bJ22zG5l+/fpRVFTEe++9Z3Yp9YIEg3CoR48eXHnllSxbtszsUs5Ledvsbt268cQTT0jb7EbIy8uLJ554gqVLl5KdnW12OR6vTr8hSqlwpdQ2pdRe29dzjuIppborpf6nlPpdKfWLUmpAhddeVUodUEr9ZLt1r0s9wnXGjx/P9u3b+fXXX80upVbS0tKkbbYAoHPnztx6660sXrzY7FI8Xl3/dZoGfK61jgU+tz0+WwHwoNb6QqAvsEQpFVbh9X9qrbvbbj/VsR7hIqGhoUyaNIm5c+dSVlZmdjk1cvDgQYYPHy5ts8UZI0eOZPfu3ezcudPsUjxaXYPhLqC8x+1a4O6zF9Ba79Fa77XdPwacBCLruF1hgptuuonIyEg2bNhgdikOJSUlMWrUKGmbLeyUz9swf/58ubahGnUNhhZa6zTb/eNAtVcJKaV6AX7A/gpPz7UNMS1WSvlX896RSqldSqld6enpdSxbnA+lFNOnT2f9+vWkpqaaXU6Vdu/ezfjx46VttqjUNddcQ+fOnVmzZo3ZpXgsh8GglPpMKfVbJbe7Ki6njfPAqjwXTCkVDawH/qG1Lu+zMB2IA/4KhANTq3q/1nqV1rqn1rpnZKTscJilVatWDB06lPnz53vkqX87duxgypQpzJkzR9pmiypNnjyZ//znPzLXeRUcBoPW+kat9UWV3N4FTtj+4Jf/4T9Z2TqUUqHAB0CC1vrbCutO04Zi4BVAeh3XA4MHDyYrK4uPP/7Y7FLsfPbZZ8ycOZNFixZJ22xRrcjISEaNGsW8efMadD+w81XXoaStwFDb/aHAu2cvoJTyA7YA67TWm896rTxUFMbxid/qWI9wAx8fH5544gmWLFlCXl6e2eUA8O6777Jo0SJpmy1q7O9//ztlZWVs3brV7FI8Tl2DYQHwN6XUXuBG22OUUj2VUqtty/QHrgUequS01NeUUr8CvwIRwJw61iPc5MILL+TGG2/0iLbGr732mrTNFrXm5eXFjBkzePHFF8nKyjK7HI+iPHGc2JGePXtqaaVrvvz8fPr168ecOXPo0aOH27evtWblypVs27aNZcuWSYdUcV6ef/550tPT+fe//212KS6nlPpBa93T0XJyCag4b0FBQUyZMoW5c+e6/dQ/q9XKM888w9dffy1ts0WdjBgxgp9//pnvvvvO7FI8hgSDqJPevXvToUMHt7Y1tlgszJo1i+TkZGmbLeqsSZMmTJs2jXnz5lFcXGx2OR5BgkHU2ZQpU9i4cSMHDhxw+bbK22ZnZ2dL22zhNFdeeSVdu3aVaxtsJBhEnUVFRTFy5EiXn/onbbOFKz3++ONs2bJFrm1AgkE4Sb9+/SgpKXHZqX/SNlu4WkREBKNHj27wc53XhASDcAovLy8SEhKqP/VPaygpAYulVuvOzMxk1KhRXHzxxdI2W7jUPffcg9aad955x+xSTCW/YcJpOnfuzB133MGiRYuMJ6xW+PprmD4d/vY36NQJunSBCy6A7t1h6FBYvRqq6X2VlpbGiBEjuPHGG5k4caJ0SBUuVf4PzvLly8nMzDS7HNPIdQzCqQoLCxnYvz8LL7+cuPfeg8xMYw+hSRPw9wcvL2PPoawMCguN8FAKbrkFZsyAli3PrOvgwYOMHTuWBx54gAEDBlSzVSGca+nSpRw7dox58+aZXYpTyXUMwhRNcnNZXVxM03nzsOblQdOmEB5uBEP5EJBS4OsLoaEQFgbBwfDBB9CnD/znP6A1ycnJjB49mjFjxkgoCLcbPnw4v/32Gzt27DC7FFNIMAjnSUmBO+4gMiUFa0gI6TWdI9rbG5o1M4JjyhSOTprEuLFjmTp1qrTNFqYICAhg+vTpLFiwgKKiIrPLcTsJBuEcJ07AgAGQmwthYbRo2ZLcnJza/VL5+3Paywu1ciUru3fn+uuvd129QjhwxRVX8Je//IXVq1c7XriBkWAQdac1TJ4MWVnG8BBGB9bIqCjS0tKqnqTjLHl5eRw7cYKwdu3o8M478MsvrqtZiBp47LHHePfdd9m3b5/ZpbiVBIOou3fegR07jOMFFYSFhaG8vMjOzna4ipycHI6fOEFMTAyBwcHGcYgJE6C01FVVC+FQ8+bNGTNmDHPnzm1U1zZIMIi6sVph0SLjjKOzTiVVQHTLlqSnp1NaVlblKjKzskjPyKBdu3Z/Xs0cGgqpqfDll66rXYgauPvuu/Hy8mLLli1ml+I2EgyibnbuNI4vNGlS6cv+/v6EN2vG8ePHybNYmJyaytVJSdy+bx8f5eZyMj2d7Oxs2rdrh7+fn/2blYJVq9zwTQhRtYrXNmRkZJhdjltIMIi6+eQT4zqFai48ax4RQXFxMbMPH8ZXKT7t3Jl/t2rF7MOH+SM3l/bt2lXe4iIkBH78ETxkljjReHXs2JF77733z4s3GzgJBlE3338PDprZeSlFWIsWfJaby8jmzWni5UVUTg5/9fbm55AQfHx8Kn9j+fUOyckuKFyI2hk2bBiJiYn897//NbsUl5NgEHWzd69xfMGBTB8ffL28CMjJITU1FUtZGZdGRXHQ0QQ/paXQyM4IEZ7J39+f6dOns3DhQgoLC80ux6UkGMT50xqKiv68orkaBVYrYQEB5OXmcvrUKQIDA/ErK+O0o4Z6FovROkMID3DZZZfRrVs3XnrpJbNLcak6BYNSKlwptU0ptdf2tdKptJRSFqXUT7bb1grPd1BKfaeU2qeU2qiU8qvs/cJDKWVctVwDgV5eFFitXNCpE9GtWlFmsXA8N5eSvDz27ttHamoqGRkZnM7Pp6xiWNRiG0K4w6RJk3jvvffYs2eP2aW4TF33GKYBn2utY4HPbY8rU6i17m673Vnh+YXAYq11JyAbGFbHeoS7tWhhtNJ2IMbPDwtwzGIhrGlTWrZoQXZICJe2bElMTAwhoaFYLBYyMzLYt28fe/fu5UhqKjmFhfyWmdlozgYRni88PJyxY8e6fGIqM9U1GO4C1trurwXurukbldE/+QZg8/m8X3iI7t2N4SQHmnh5cUNICCvS0ym0Wvm5oICvTp3i9qZN8ffzo2loKC1atKBdu3Z06dKFdu3a0TQ0FG2x8Mbu3fTv35++ffsyceJEVq5cyVdffcXJkyepj92BRf13xx134Ovry+bNmx0vXA/Vqe22UipHax1mu6+A7PLHZy1XBvwElAELtNbvKKUigG9tewsopdoCH2mtL3K0XWm77UHeeAP+3/8756rnyuRZLMw6dozv8vNp6u3NuKgo+jZtWvUbiouNs5J27UIrRVpaGklJSWduiYmJAMTFxREfH09cXBxxcXFER0fLvA3C5VJSUhg5ciRvvPEGkZGRZpdTIzVtu+0wGJRSnwEtK3kpAVhbMQiUUtla63OOMyilWmutjyqlOgLbgT5ALrUIBqXUSGAkQExMzKWHDh1y9L0Jd8jLg7/+1bjArarTTs9XdjZMmgRjx1b6staa9PT0MyFR/rWkpORMSJSHRuvWrWXmN+F0y5cv5+DBgyxcuNDsUmrEacHgYCPJQG+tdZpSKhr4UmvdxcF7XgXeB/4DpAMttdZlSqkrgJla65sdbVf2GDzM9OmwaZPROttZSkuNIar/+z/jOEYtZGRknLNnkZ+fT5cuXez2LmJiYiQsRJ2UlJQwYMAAHnvsMa655hqzy3HIXcHwNJCptV6glJoGhGutp5y1TDOgQGtdbBs++h9wl9b6D6XUW8B/tNZvKqVWAL9orZc52q4Eg4fJyoLrrzdmZauiNUataA05OTBlCowaVff1AdnZ2eeERU5ODp07d7YLi/bt2+MtZ0GJWti5cyezZ89m06ZNBAYGml1OtdwVDM2BTUAMcAjor7XOUkr1BEZrrYcrpa4EVgJWjIPdS7TWa2zv7wi8CYQDu4H7tdbFjrYrweCBPv0Uxowx2ljUdUgpJwfi42HLFucPT1WQl5dnFxZJSUmcPHmS2NhYu7Do2LFj1VdnCwH861//Ijw8nIkTJ5pdSrXcEgxmkWDwUCtXwsKFRjhU1vvIEa2NiX5atYK334aICOfX6MDp06fZs2eP3XGLY8eOccEFF9gdt+jUqRN+Zzf9E41WdnY2AwYM4IUXXqBLl2pH000lwSDMsX49zJljtOMODa22uZ6d0lLIz4cLL4Q1a0wJhaoUFBSwd+9eu7A4cuQI7dq1O7NXER8fT2xsLP41aA8iGqatW7eyefNmXn31VY89diXBIMyzdy9MnAh79hh7AaGhlbfN0No4JbWoyBgyevxxePjhenGlc3Fx8TlhcfDgQdq0aXNOWHj6uLNwDq01o0aNok+fPgwYMMDsciolwSDMZbUas7q99BJ8840xtGSxGM+D8bisDMLDjTC47z6P2ks4HyUlJezfv/9MUCQlJbF//35atWpld+ps586dCQ4ONrtc4QIHDx5k+PDhvP7660RFRZldzjkkGITnKC429h727YOCAmOPoEUL6NoVoqJqPtxUD5WVlZGSkmJ3NtTevXuJioqyO2YRFxdHqG2+bFG/rVq1ir179/L000+bXco5JBiE8FAWi4VDhw7ZXZS3Z88ewsLCzrmKu5kzrw0RblFSUsLAgQOZMGEC1113ndnl2JFgEKIesVqtHD582G7PIikpieDgYLuwiI+Pp3nz5maXKxzYtWsXTz75JG+99ZZHHWOSYBCinrNarRw9etQuKJKSkvDz87Pbq4iPjycyMlL6Q3mYWbNmERISwmOPPWZ2KWdIMAjRAGmtq2wmWDEspJmg+XJycujfvz/PPfcc8fHxZpcDSDAI0WjUpJlgeWhIM0H3ev/993nzzTdZu3atR7RakWAQopHLyMggOTnZLiykmaB7aa0ZM2YM1113HYMGDTK7HAkGIcS5qmsmWHEoSpoJOs/hw4f5xz/+weuvv06LWnYKdjYJBiFEjVTWTDA9PZ1OnTrZhYU0Ezx/L730EklJSSxatMjUOiQYhBDnLT8/n+Tk5GqbCcbHx3PBBRdIM8EaKCkpYfDgwYwdO5bevXubVocEgxDCqapqJti+fXu7sJBmgpX78ccfeeKJJ9i8ebNp1zZIMAghXK6qZoJt27Y9Jyw86UIvs8yePZvAwEAmT55syvYlGIQQpqismWBKSgrR0dF2Z0N16dKFoKAgs8t1q9zcXPr168eSJUvo2rWr27cvwSCE8BjSTPBPH374Ia+99hrr1q1z+5lfEgxCCI9WXTPBs1t+hIWFmV2u02itefTRR7nqqqsYMmTIWa9BZiZkZxv3w8IgMtJ5DYglGIQQ9Y7VauXIkSN2YZGcnExQUNA5YVGfmwmWX9uwYcMGIiOj+eoreP11+OEHOHXqz5lxLRYIDIRu3WDwYLjhBqjLSWBuCQalVDiwEWgPHAT6a62zz1rmemBxhafigIFa63eUUq8C1wG5ttce0lr/5Gi7EgxCNB4VmwlWPMhdsZlg+df61Exw9eo1bN1q5dix4eTmGjUHBhqTGZZ/C1ob81kVFnLm9YQE+PvfK58U0RF3BcNTQJbWeoFSahrQTGs9tZrlw4F9QButdYEtGN7XWm+uzXYlGIRo3KpqJqiUOueYhSc2E8zJgUmTLLz1VjoREcFERNRsRr/iYmOuq8svhyVLjGGm2nBXMCQDvbXWaUqpaOBLrXWXapYfCVyntR5ie/wqEgxCCCeoTTPBNm3amBYWmZnQvz8cPAh+fgUcO3aUCy7oiJdXzQ5Ea20ES8uWsHkzREfXfNvuCoYcrXWY7b4CsssfV7H8duBZrfX7tsevAlcAxcDnwDStdbGj7UowCCFqqrpmghWHotq2bevyZoLFxXD33bB3r3FgGSAt7RhKedGyZctarSsnB9q0gQ8+gJqe9eu0YFBKfQZUVnECsLZiECilsrXWlc5FaNuj+AVopbUurfDcccAPWAXs11rPruL9I4GRADExMZceOnTIwbcmhBCVy87OPicszm4mGB8fT7t27Zx6SulTT8HKlUYolO+wWCwWUlL206ZNW5o0aVLL78M4KP3vf9dseY8bSlJKTQAu1FqPrOL13sBkrfXtjrYrewxCCGdzdTPBpCS44w7jv/uz356Xl0tmZibt23eo1RCXxWKcxbRpE/To4Xj5mgZDXVslbgWGAgtsX9+tZtlBwPSKTyilom2hooC7gd/qWI8QQpyX0NBQevXqRa9evc48V7GZ4Pfff8/69etJS0ujY8eOtW4m+NJLxh/yyjIlNDSUnJwcsrKyKCpaQkHBTqzWQnx8Imje/EHCwu6udJ3lOzPLlxvrd5a67jE0BzYBMcAhjNNVs5RSPYHRWuvhtuXaA/8F2mqtrRXevx2IBBTwk+09px1tV/YYhBBmcdRMsHzvomIzwZwcuOwy43TTqkamSkpKOHjwAK1aaQIDO+Ll5Udx8UEOHRpJ27bP0aRJ5dODWq2QlwfffGMckK6OW/YYtNaZQJ9Knt8FDK/w+CDQupLlbqjL9oUQwt0CAwPp1q0b3bp1O/Pc2c0Et2zZYtdM0GK5juLiKwgK8gMqP8Dt5+dHeHhzsrMLCA62XeGGQilFaWlqlcHg5WXcdu6EO+90zvcos24IIUQd+fv7c9FFF3HRRRedea5iM8E1a0rJzMwjIyMLPz9fAgIC7G7lp6o2bx7OgQO5HDw4i6KibWhdTEBAF4KDr6p2+6Wl8NNPEgxCCOHRyq/Mjo+P56OPjOsNQkIiKS4upqioiKKiIvLyTlFcXISPj8+ZkAgLCyMjYzCxsQkUF/9OQcEPKFX98Qt/f/jNiUdoJRiEEMLFCguN4R6l1JkA+JOmuLiEoqLCM4FRUlJCSUkZgYHdyc39kOzszYSHD6xy/V5ef7bNcAYJBiGEcDF/f+MgceUU/v7++Pv707Rp+XMa45wcAAslJanVrl9rYxvO4trL/IQQQhAXZxwHcKSsLIu8vE+xWgvR2srp0/8jN/cTgoJ6Vfu+4mLoUmUzotqTPQYhhHCxiy+uabtsRXb2ZtLS5gFWfH2jadHicUJCrq32Xd7ecOmlzqjUIMEghBAu1qOHMZRktVbfLtvHpxnt2q2q1bqtVmMoqafDqxNqToaShBDCxSIjoU8f40I0Zzt1Cnr1gpgY561TgkEIIdxgpK1LXNUHoWuvfG9hzBjnrRMkGIQQwi169IB+/SA31/GyNZWbC337wjXXOG+dIMEghBBuk5Bg9DNyRjjk5UHz5jC70okK6kaCQQgh3CQ4GN54A5o1MxrrnU8PU62NYAkKgtdfh/Bw59cpwSCEEG4UEwPvvANduxrhUJPrG8qVlhrv6dABtmyBTp1cU6MEgxBCuFmrVsYf9mnToKTE+GOfn1/5gWmrFQoKjGWKimD8eGM6z/btXVefXMcghBAm8PaGESNg4EB47z1Yv96YC9rH589pP7U29hI6doT77zfmi/6zbYbrSDAIIYSJQkKMeZsHDzb2HvbtM/YOwAiBTp2c2wepJiQYhBDCQ/j5GccezCbHGIQQQtiRYBBCCGFH6fM5kdZkSql04JATVxkBZDhxfQ2VfE6OyWdUM/I5OeaKz6id1jrS0UL1MhicTSm1S2vtxN6EDZN8To7JZ1Qz8jk5ZuZnJENJQggh7EgwCCGEsCPBYKjdzBiNl3xOjslnVDPyOTlm2mckxxiEEELYkT0GIYQQdhplMCil+imlfldKWZVSVR71V0r1VUolK6X2KaWmubNGT6CUCldKbVNK7bV9bVbFchal1E+221Z312kGRz8bSil/pdRG2+vfKaXau79K89Xgc3pIKZVe4ednuBl1mkkp9bJS6qRS6rcqXldKqedtn+EvSqkerq6pUQYD8BtwL/B/VS2glPIGXgRuAboCg5RSHnCxultNAz7XWscCn9seV6ZQa93ddrvTfeWZo4Y/G8OAbK11J2AxsNC9VZqvFr9DGyv8/Kx2a5Ge4VWgbzWv3wLE2m4jgeWuLqhRBoPWOlFrnexgsV7APq11ita6BHgTuMv11XmUu4C1tvtrgbtNrMWT1ORno+Jntxnoo1R5z8xGQ36HakBr/X9AVjWL3AWs04ZvgTClVLQra2qUwVBDrYEjFR6n2p5rTFpordNs948DLapYLkAptUsp9a1SqjGER01+Ns4so7UuA3KB5m6pznPU9Hfo77Yhks1KqbbuKa1ecfvfogbbXVUp9RnQspKXErTW77q7Hk9V3edU8YHWWiulqjqFrZ3W+qhSqiOwXSn1q9Z6v7NrFQ3Se8AbWutipdQojL2sG0yuqdFrsMGgtb6xjqs4ClT876WN7bkGpbrPSSl1QikVrbVOs+26nqxiHUdtX1OUUl8ClwANORhq8rNRvkyqUsoHaApkuqc8j+Hwc9JaV/xMVgNPuaGu+sbtf4tkKKlq3wOxSqkOSik/YCDQKM64qWArMNR2fyhwzp6WUqqZUsrfdj8CuAr4w20VmqMmPxsVP7v7gO268V005PBzOmus/E4g0Y311RdbgQdtZyddDuRWGOJ1Da11o7sB92CM0xUDJ4BPbM+3Aj6ssNytwB6M/34TzK7bhM+pOcbZSHuBz4Bw2/M9gdW2+1cCvwI/274OM7tuN3025/xsALOBO233A4C3gH3ATqCj2TV76Oc0H/jd9vPzBRBnds0mfEZvAGlAqe3v0jBgNDDa9rrCOLtrv+13rKera5Irn4UQQtiRoSQhhBB2JBiEEELYkWAQQghhR4JBCCGEHQkGIYQQdiQYhBBC2JFgEEIIYUeCQQghhJ3/D2c+44qmjAljAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4FFX28PHvzZ6QnR0CJGFTRBRhQBRQEAZwFBAkndGfIAiMg6gjhEXEDXHYGUdGHRcYlnc0lQTEgAqKDDIuqOi4y76FBGRJSCBbJ+n7/lEBI2ZPJ5VOn8/z5CHdXek6BeFU9bm37lFaa4QQQrgXD6sDEEIIUfck+QshhBuS5C+EEG5Ikr8QQrghSf5CCOGGJPkLIYQbkuQvhBBuSJK/EEK4IUn+QgjhhrysDqAsTZo00ZGRkVaHIYQQLuXLL788o7VuWtF29Tb5R0ZGsnv3bqvDEEIIl6KUOlqZ7ept8hdCWCcvD44dM//08oKICAgOtjoq4UyS/IUQAKSmwhtvwDvvwNGj4O0NSoHWUFAATZvCTTfBPffAVVeZrwnXJclfCDd39iw8+SRs3QoOB/j5QUgIeJSYDqI1ZGdDUhJs2ABXXglLlkDnztbFLWpGZvsI4cY++AAGDoQtWyAoCMLCwN//14kfzKt8X1/z9eBg2LMHbr8dXnzRPDEI1yPJXwg3tWED/OlPUFgIoaG/TfhlUco8Afj7w7JlMHeu+YlBuBZJ/kK4oZ07YdYsCAgwk3h1eHub5aE33oC//9258YnaJ8lfCDdz7hw8/LCZvH18avZeHh7mp4AXX4Rvv3VOfKJuSPIXws0sXAhZWeZVvzN4eZmloEcekfKPK5HkL4QbSU83a/0VzdlPT0/g8OF72LOnD2lpT1X4vsHB5n0Bn37qnDhF7ZPkL4QbWb/evDr39Cx/Oy+vJjRpch8hIcMr/d5aw2uv1TBAUWeckvyVUquUUqeUUt+X8bpSSj2vlDqglPpWKXWdM/YrhKiarVvNMk1FgoMHEhR0M56eIZV+76Ag+OQTKf24Cmdd+a8Ghpbz+jCgY/HXZOAlJ+1XCFFJDgf88IN5E1dtuPhp4siR2nl/4VxOSf5a651AejmbjADWatMuIFQp1dIZ+xZCVE56ujmnvzJX/tWllCR/V1FXNf/WQEqJx8eLnxNC1BG7vfI3ctntdn7++STp6Wex2+2V3ofWkJ9fzQBFnapXa/sopSZjloVo27atxdEI0bB4e1dUj9dkZ2eTnp5Obm4uoaGhBAQEkJl5ioICO97eFd8UoFTN7x0QdaOurvxTgTYlHkcUP/crWutXtNY9tdY9mzatsBeBEKIKGjc26/JFRb9+3uEoIiMjnYMHD3Lq1CmCgoLp0CGaJk3C8PPzJSDAj2PHDlFUVFDhPrSGdu1q6QCEU9XVlX8yMFUpFQ/0BjK11ifqaN9CCMyST5cu8OOPEBgIdns+6ekZZGVlEhDQiJYtWxEQ4A8oTp9+hTNnXrn0swUF73Ho0F107DgTKH0t54ufKqKiav9YRM05Jfkrpd4AbgaaKKWOA08C3gBa638C7wC3AgeAHGC8M/YrhKiaQYMcfPZZPhkZp8nNzSMsLJSoqGi8vb1/tV3TppNp2nTypcdaOzhy5Chnz56lceMmpb73+fPQp0/F9xCI+sEpyV9r/ccKXtfAA87YlxCi6i5cuMCmTZvYvHkLWVmLaNYsmIiICJSqXOVXKQ/atIng8OHD+Pr6ERgYWOp2Eyc6M2pRm+QOXyEasMOHD7No0SKGDx/Od999x8KF05k0qTkQWunEf5GXlzcRERGkpaVht/96Ss/589CqFfTt68TgRa2qV7N9hBA153A4+Oijj4iPj+fAgQOMHj0awzC4OIli7lzYvh1yc6u+nLO/fwDNmjXl+PHjREZG4uHhSVGROYj83HOVn0oqrCfJX4gGIisri+TkZBISEggLC8NmszFo0CB8Lpt7GR4Oy5fD5Mlmfb6qUzNDQ8PIzc0jLS2NVq0iyMpSTJ4M3bs78WBErZPkL4SLO3jwIIZh8P7779OvXz8WLFjAVVddVe7PDBwI8+bB44//0re3Klq0aM7hw8dJSTnPuHHBzJhRgwMQlpDkL4QLKioqYufOnRiGwZEjRxg9ejRJSUk0bty40u9x111mT94ZM8wGLyEh5k1aFdEazp/3IDS0NX5+K7n11k54eNxc7WMR1pDkL4QLyczMZOPGjSQmJtKsWTNiY2MZMGDAb6ZqVtawYdCjB8yZAzt2mJ8CGjUyS0ElTwRam+sCZWebz0dHw7Jlnnh49OWhhx4iMrIt0dHRzjlIUSeUOQuz/unZs6fevXu31WEIUS/s27cPwzDYvn07N910EzabjSuvvNKp+zh8GF5/Hd59F06cMJeDuHgCKCgwG7bceCOMH2/W9y++tnnzZlatWsWaNWsICgpyakyi6pRSX2qte1a4nSR/IeqnwsJCduzYgWEYpKamcuedd3LHHXcQFhZW6/s+f95cnTMvzzwJtG4N5a24smzZMo4ePcpzzz2Hh0z5sZQkfyFcVEZGBm+++SZJSUm0bt0am83GzTffjFdtrsVcQ4WFhUydOpWuXbsydepUq8Nxa5VN/vX3t0kIN/PTTz9hGAYffvghAwcO5LnnnqNTp05Wh1UpXl5eLFy4kLFjx9K5c2cGDx5sdUiiApL8hbBQYWEh27dvJz4+nlOnTjFmzBgeeeQRQkIq3z6xvggNDWXp0qVMmTKFdu3aucyJy11J8hfCAunp6axfv54NGzbQrl077rnnHvr374+ni6+K1qlTJ2bOnElcXBxr164lNDTU6pBEGST5C1GHvv/+ewzD4KOPPmLw4MGsWLGCDh06WB2WU/3+979nz549PProo/zjH/9w+RNaQyUDvkLUMrvdzrZt2zAMg4yMDGJiYhg+fDjBwcFWh1ZrHA4HDz/8MFFRUUybNs3qcNyKDPgKYbHTp09fKu106NCB++67j759+7rFVEgPDw+effZZxo0bR+fOnfnDH/5gdUjiMpL8hXAirTXfffcd8fHx7Nq1iyFDhvDyyy8T5YbtrYKDg1m2bBmTJ08mKiqKLl26WB2SKEGSvxBOYLfb2bp1K4ZhkJ2dTUxMDHPmzCmz6Ym7iI6O5rHHHmPGjBmsW7eO8PBwq0MSxST5C1EDp06dIikpiY0bN3LFFVfw5z//mT59+rhFaaeyBgwYwL59+5g5cyYvvfRStdchEs4lv6FCVJHWmq+++opZs2YRGxtLTk4Or732Gs8//zw33nijJP5STJo0ieDgYJYuXWp1KKKYzPYRopLy8/PZsmULhmGQn5+PzWbjtttuIyAgwOrQXEJ2djbjxo3jrrvuYtSoUVaH02DJbB8hnOTEiRMkJiaSnJxM165deeihh+jVq5dc4VdRo0aNWL58Offddx8dOnSgW7duVofk1iT5C1EKrTVffvkl8fHxfPXVV9x2222sXr2aiIgIq0NzaW3btuWpp55i1qxZrFmzhmbNmlkdktuSso8QJeTm5vLuu+9iGAZaa2w2G8OGDZPSjpP961//YseOHbz66qu/6TEsakaWdBaiClJTU0lMTGTTpk1ce+21xMbG0rNnT1Rl+hqKKtNa8+ijj+Lv788TTzwhf89OJDV/ISqgtebzzz/HMAy+/fZbhg8fzrp162jVqpXVoTV4SimefPJJxo8fT0JCAjabzeqQ3I4kf+F2cnJy2Lx5MwkJCXh5eWGz2fjrX/+Kn5+f1aG5FX9/f5YvX869995Lhw4d6NGjh9UhuRVJ/sJtHDt2jMTERN5++2169uzJnDlz6N69u5QcLNSqVSvmz5/PnDlzWL16NS1btrQ6JLchyV80aA6Hg127dhEfH89PP/3EiBEjeP3112nRooXVoYlivXr1Yty4cUyfPp1Vq1bJJ7A6IgO+okHKzs5m06ZNJCQk4O/vj81mY8iQIfj6+lodmiiF1ponn3ySoqIi5s+fL5/GakBm+wi3dOTIERISEtiyZQu9e/fGZrNxzTXXSDJxAfn5+UycOJHBgwczduxYq8NxWTLbR7gNh8PBxx9/jGEY7Nu3jzvuuIP4+Hi5gcjF+Pr6snTpUsaNG0fHjh3p06eP1SE1aJL8hcs6f/48ycnJJCQkEBISQmxsLMuXL5ebhlxY8+bNWbBgAbNmzWLlypW0adPG6pAaLEn+wuUcOnQIwzB47733uPHGG5k/fz5du3aV0k4D0b17dyZPnsz06dNZvXq13F1dSyT5C5fgcDjYuXMnhmFw6NAhRo8eTWJiIk2aNLE6NFELRo8ezZ49e3jyySdZtGiRLKJXC2TAV9RrWVlZbNy48VKit9ls3HLLLdIQxA3Y7Xbuv/9+brjhBiZOnGh1OC5DBnyFS9u/fz+GYfDBBx/Qr18/Fi1aJD1g3YyPjw+LFy9m7NixdOrUif79+1sdUoMiyV/UG0VFRezYsQPDMEhJSeHOO+9k/fr10vfVjTVp0oTFixfzyCOP8OqrrxIZGWl1SA2GJH9huXPnzvHmm2+SlJREy5YtsdlsDBgwAC8v+fUU0LVrVx588EGmTZvGmjVrCAoKsjqkBsEpoyhKqaFKqb1KqQNKqdmlvH6vUuq0Uurr4i8p4An27NnD008/zR133EFKSgrLly/ntddeY/DgwZL4xa8MHz6c66+/nrlz5+JwOKwOp0Go8YCvUsoT2AcMBo4DXwB/1Fr/WGKbe4GeWuuplX1fGfBtmAoLC9m+fTuGYXDy5EnGjBnDyJEjCQ0NtTo0Uc8VFhYyZcoUrr32WqZMmWJ1OPVWXQ749gIOaK0PFe84HhgB/FjuTwm3kp6ezoYNG1i/fj1t2rTh7rvv5qabbsLT09Pq0ISL8PLyYtGiRYwdO5bOnTtzyy23WB2SS3NG8m8NpJR4fBzoXcp2o5VS/TE/JTyitU65fAOl1GRgMpi9PoXr+/HHH4mPj+e///0vgwYN4vnnn6djx45WhyVcVFhYGEuWLGHq1Km0bdtWfpdqoK4Kq5uAN7TW+UqpPwFrgIGXb6S1fgV4BcyyTx3FJpysoKCAbdu2YRgGZ8+eZcyYMcTFxREcHGx1aKIBuOKKK4iLiyMuLo5169bJ71U1OSP5pwIlF+CIKH7uEq312RIPXwMWO2G/op45c+bMpdJO+/btGT9+PP369ZO7M4XTDR06lL179zJ79mxWrFgh5cNqcMb/yi+AjkqpKKWUDxALJJfcQClVsj3PcOAnJ+xX1ANaa7799lsee+wxxowZw9mzZ3nppZd48cUXuemmmyTxi1ozdepUlFKsWLHC6lBcUo2v/LXWhUqpqcBWwBNYpbX+QSk1D9ittU4GHlJKDQcKgXTg3pruV1jLbrfz/vvvEx8fT1ZWFjabjdmzZ8scbFFnPD09WbBgwaUB4GHDhlkdkkuRtX1ElZw6dYqkpCQ2btxIp06diI2N5YYbbpArfGGZgwcP8qc//YkVK1Zw5ZVXWh2O5WRtH+E0Wmu++eYbDMPgs88+Y+jQobz66qu0a9fO6tCEoH379syZM4cZM2awdu1aWQ6kkiT5izLl5+ezdetW4uPjycvLIyYmhrlz59KoUSOrQxPiVwYOHHhpAPjFF1+UO8QrQco+4jdOnjxJYmIiycnJdOnSBZvNxvXXXy+lHVGvORwOpk+fTsuWLZk5c6bV4VhGyj6iSrTWfPXVVxiGwe7du/nDH/7AypUr5WY74TI8PDx45plnGDduHG+99RYjRoywOqR6TZK/m8vLy+Odd94hISGBoqIiYmJieOqpp6R1nnBJgYGBLF++nIkTJxIdHc3VV19tdUj1liR/N5WWlnaptHPNNdcwbdo0fve730kfXOHy2rVrxxNPPMGsWbNYs2YNTZs2tTqkekmSvxvRWvPFF18QHx/PN998w+23387atWtp3bq11aEJ4VT9+vVj//79zJw5k5dffhkfHx+rQ6p3ZMDXDeTk5Fwq7QDExsYybNgw/P39LY5MiNqjtWbWrFkEBQUxd+5ct/lUW9kBX0n+DVhKSgqJiYls3ryZHj16YLPZ6NGjh9v8JxAiJyeH8ePHc+eddzJmzBirw6kTMtvHTTkcDj777DPi4+P54YcfGDFiBP/+979p2bJlxT8sRAMTEBDAsmXLmDBhAu3bt+e6666zOqR6Q5J/A5Gdnc3mzZsxDAM/Pz9sNhuLFy/G19fX6tCEsFRERATPPPMMjz76KGvWrKFFixZWh1QvSPJ3cceOHcMwDN5991169erF448/zrXXXiulHSFK6N27N/fccw9xcXGsXLlSLoqQ5O+SHA4Hn3zyCYZhsHfvXkaOHEl8fDzNmjWzOjQh6q27776bPXv2MH/+fObNm+f2F0gy4OtCzp8/z6ZNm0hISCAoKAibzcbvf/97mcYmRCXl5eVx3333ceutt3L33XdbHU6tkAHfBuTQoUMkJCSwdetW+vTpw7x587j66qvd/spFiKry8/Nj2bJljBs3jo4dO9KrVy+rQ7KMJP96yuFw8N///hfDMDh48CCjRo0iISFB7lYUooZatGjBggULmD17Nv/617/c9iZHSf71TFZWFm+99RaJiYmEhYVhs9kYNGiQlHaEcKLrrruOiRMnMn36dFatWuWWa1lJzb+eOHDgAIZhsG3bNvr164fNZuOqq66yOiwhGiytNc888wzZ2dksXLiwwZRR5Q5fF1BUVMSHH36IYRgcPXqU0aNHM2rUKBo3bmx1aEK4BbvdzuTJk+nfvz8TJkywOhynkAHfeuzcuXNs3LiRpKQkmjVrRmxsLAMGDMDb29vq0IRwKz4+PixZsoRx48bRqVMn+vbta3VIdca9kr/W8N138N57sGsX7N0LubmgFDRvDt27Q79+MHQoBAc7fff79u0jPj6e//znP9x8880sXbqUK664wun7EUJUXtOmTVm4cCHTp0/ntddec5ve1O5R9tEatm+HxYvh0CEoLARfX/Dzg4utCe12yMszv/fyglGjYPp0qGEJprCwkP/85z8YhkFaWhp33nknd9xxB2FhYTU8KCGEM23cuJF169axZs0aAgMDrQ6n2qTmf1FGBsydC1u2gLc3NGpkXumXp7AQzp+HwEBYtMj8JFBF6enpl0o7rVu3JjY2lptvvhlPT89qHogQorYtWrSIn3/+maVLl7psz2pJ/gBpaRAbC6mpEBLyy1V+ZeXmmp8G/vIXmDq14pMG8OOPP2IYBjt37mTgwIHYbDY6depUzQMQQtSlgoICpkyZQo8ePbj//vutDqdaZMA3I8NM/GlpUN0Si7+/+Wnhb3+DgAC4775SNysoKGD79u0YhsGpU6cYM2YM06ZNIyQkpAYHIISoa97e3ixatIixY8fSqVMnBg4caHVItaZhJn+t4bHHzCv+mtbWvbwgKAgWLoQ+faBLl0svnT17lvXr17NhwwYiIyO555576N+/v5R2hHBh4eHhLFmyhAcffJB27drRvn17q0OqFQ0z+W/fDlu3mqUeZ/D2Nks+Dz0EW7bw/Z49xMfH8/HHHzN48GBeeOGFBvsLIoQ7uvLKK5k2bRrTp09n7dq1BNfC7D+rNbyav9YwZAgcO2YO2DqJw+Eg5+RJXujShY8DAoiJiWH48OEN8pdCCGH629/+xsGDB3n++eddZgDYfQd8v/kG7rzTnKdfzgCt3eFg4cmTfJ6TQ1ZRERHe3kxt1owbLjthFBQWkpGRwbmMDEI8PPC49loab9/uMr8IQojqKyoq4sEHH+SKK67goYcesjqcSqls8m94Gey998ypmhXMzCkCWnh780rbtuzo1Ik/N23K7NRU0ux2NJCTm8vx1FQOHTpEUVER7dq1o3n79jRNScHjwoU6ORQhhLU8PT1ZsGAB27ZtY+vWrVaH41QNr+a/a5d5A1cF/D08mFxieeR+QUG09PZm99mzdM3Lw+FwEBYWRsuWLfEseZXv7Q179oAbrwMuhDsJCQlh2bJl/PnPfyYyMpLOnTtbHZJTNLwr/717zTt3q6CgoIC9J06wPzOTxvn5NGvalPbt29M4PPzXid/cGPbvd2LAQoj6rmPHjsyePZu4uDgyMjKsDscpGl7yz8mp0s1cZ86e5dsffuDp06cZHBBAx0aNyMvP59y5c2RlZXEhO5vc3Fzy7XYKCgtxFBSgpewjhNsZNGgQQ4cOZfbs2RQWFlodTo01vAHfjh3NefmVPAGknzvH7KNHISCA+eHhKK1xFBVR5HCU+meg3c6/WrXiP9HRBAYGEhQURGBg4G++v/zr8tdkBU8hXI/D4eCRRx6hTZs2xMXFWR1Oqdz3Dt9mzSArq1J1f601K3JyyPPzY46XF03Cw/GoaAmHrCxmLlzIn2++mQsXLnDhwgXOnz//m+/T0tLKfO3ChQt4e3uXe/Ko6ETSqFEjmXEkRB3z8PBg/vz5jBs3juTkZIYPH251SNXW8JJ/9+7mDV6VSP4LTp7ksN3OSx07kpGWxsmTJ2nZsiXlpn+l8O7WjfDwcMLDw6sVotaa3NzcSyeCy78uniROnz5d5skjNzcXPz+/ck8YFZ1M/P39G0z3IiHqSlBQEMuWLWPy5MlER0fTtWtXq0OqloaX/Pv2NVfwrMCJggI2nDuHj1IM3b8frTX5+fnMcDiIKauhs91uzvaJiqpRiEopAgICCAgIoFmzZtV6D4fDQXZ2dqknhotfmZmZHD9+vMxPKAUFBeWWpyrzvfQWFu4oKiqKxx9/nJkzZ7Ju3bryu+/l58OFC+b088BAqCf/Z5xS81dKDQX+DngCr2mtF172ui+wFugBnAVsWusj5b1ntWv+mZnmNEx/f3NdniqwFxRw5PBhWkdE0Ki0hs4ZGTBpEsyeXfW46qHCwsJyS1dlfSIp+djDw6NS4xzlfQqRtZCEq3r11Vf59NNP+ec///nLhZDDYU4537ABvvgCUlLg4u+41ubF4/XXmzejdutWqdWCq6LO7vBVSnkC+4DBwHHgC+CPWusfS2wzBeimtb5fKRUL3KG1tpX3vjVa0nn2bEhMrNaibtnZ2aSmphIZFYVPyUHZwkJzJtG2bdC2bfXiamC01tjt9nJPHmWdSC6+lp2dja+vb4VjHeWVtAICAmT8Q1jC4XAwa9YswsLCmPPoo+ZNps88Az//bJ4E/P3NEvTFBO9wmJ8EcnPNE0J0tLm9E+8bqsvk3wd4Sms9pPjxowBa6wUlttlavM2nSikv4CTQVJez8xol/zNnYOBAKCoy//Kr6Gx6OpmZmUS2a/dLUsnIgD/9CWbOrF5MolQXxz8qe/Io7WSSl5dHQEBAtWdfBQUF4evrK+MfolpycnKYctddPJ6XR/sDB8yyjr9/xVf0WpvloKIiuOsumDOnyvcolaYuZ/u0BlJKPD4O9C5rG611oVIqE2gMnHHC/n+rSRNzCeYHHzRr9FUs/4SHh5Ofl0faiRO0bt0alZlpXu0//HCthOvOSo5/NG/evFrvUVRUVO74x/nz50lPT+fYsWNlnliKiooqPHlU9KlEpu+6p4CcHP555gzpX35JTmQkAaWVjEujlDktvagI/t//M1cOWL3a7B1SB+rVgK9SajIwGaBtTUsrt94K+/bBihXmX3AVTgAKaNGyJUePHCErJYWQdu1g3bpKzSASdc/T05Pg4OAarbB6sXxV3ljHiRMnyv2E4uXlVekZV2WdSKR85WJycuCuu/A7eZLgyEiOp6URFRWFd1UuOD09zRL1l1/C5Mmwdm3Vuw5WgzOSfyrQpsTjiOLnStvmeHHZJwRz4PdXtNavAK+AWfapcWQPP2yeRZcs+eUsW8mP9h5FRbQJCuKH8+fJnz2bXhERNQ5H1F8+Pj41nr6bl5dX4VjHmTNnytwmJycHPz+/Gs2+kum7dWzpUjh4EEJDCVSK8PBwjqek0C4ysuJ7hkpSCkJD4dNPzeR/7721FvKlXTqh5u+FOeB7C2aS/wK4S2v9Q4ltHgCuLjHgO0prHVPe+zqtgTvA99+bjVhSUio+CRQUmHU4Dw+YNInvBg5k2qOP8tprr9GuXTvnxCNEKRwOBzk5OVUeNC/5vd1ur/Lsq9Km78oJpBK+/hrGjDGnbxbP5tFAamoqSilatWpV/j1DpbHbzQHhDz6Aal5w1ul6/kqpW4HnMKd6rtJaP6uUmgfs1lonK6X8gHVAdyAdiNVaHyrvPZ2a/MFM6v/5D7zyCvzvf+ZYgN1u1tuUMgdplDKfv/tucwCmONlv3LiRdevWsWbNGgIDndcgRghnKywsJDs7u9qzry4Ur1tVk9lXgYGBeFVxnM0lTZpk5pTQ0F897dCaI0eOEBISQuPwcLKKiph34gS7Llwg1MuLqU2bMrS8LoMZGWa/8DlzqhWW+zZzqYxz58zBlf37ITvbHA9o1szszxsV9cuc3BIWL15MWloay5cvl7qsaNDsdnulZ1yVdTLx8fGp0eyrej999+RJ84bS4OBS6/P2ggKOHDlC61atePbcOTTweMuW7MvL4+GUFP4VGUl0WWOIBQXm1PLdu6s1W1GSv5MVFhYyZcoUrr32WqZMmWJ1OELUW5cvX1LZk0fJ7/Py8vD396/ykiUln/fz86u98tWGDTBrVrl9wrNzcjiYksIkh4PE9u1pW3wT2BNpaTT18uLB8u7uv3AB1qyB3pdPnKyY+y7sVku8vLxYtGgRY8eOpVOnTgwaNMjqkISol5y1fElF5amMjAyOHTtW5kmmsLCQRo0aVXnQvORXmcuXfPWVWTIuR6OAAHJDQij8+WciSpTBOvr68lVOTvl/AQUF8MMP1Ur+lSXJvwrCwsJYunQpDzzwAG3btqVTp05WhyREg+Th4VHj6bsFBQUVlqdOnjxZ7qcST0/PUj9VTEhOpkl2Ng6HA08PDzw8PUv90zsoiMDTp3+5ZwgI9PAg2+EoP3il4Lvvqn3slSHJv4o6d+7MjBkziIuLY+3atYReNtgjhKgfvL29CQsLI6way7wAlxZ7LO2kELplCx5eXhQVL3FSVv+PE4WFZBUWcub0aZo3a4a3tzfZDgeNKhrP8PCA8+erFXdlSfKvhiFDhrBv3z5mz57NP/7xD/eY2SCEm1FK4efnh5+fH02aNPn1i889Z5Zmyrgbt8jh4Ny5c9jPnoWCAlSrVngV3wG+Lz+/7MHei7Su9ZtK6/Fwev32wANGw3bOAAAXoUlEQVQP4OPjw3PPPWd1KEKIuhYdbU4Vv0xefj4nTpzgwP795OXm0j4igqFNm2IUFJDncPBNTg4fnj/PH8qb6gnmbJ+OHWspeJMk/2ry8PDg2Wef5ZNPPiE5OdnqcIQQdalXL/PqHPPGrqzz5zl69CjHjh3Dy8uL6Pbtad26NQH+/jzaogX5DgeD9+1jTmoqj7ZoUfGVv6+vudxzLZJ6RQ1c7OgzadIkoqKiuPrqq60OSQhRF3r2pAjIOHOGjHPn8PLyIjw8nKCgoN8s6xDs6cmyNm1Kf5/SOBzmTKJaTv5y5V9DUVFRPPHEE8yaNYvTp09bHY4Qopbt27ePeYmJfJmRgb5wgYiICKIiIwkJDq7aej5lycoyl6S/fJzByST5O0H//v0ZPXo0M2fOxF5KHVAI4doKCwt5//33mThxIn/5y1+IaNOGK59/nqYhIfg7c2D24hTQSZOc955lkLKPk0yYMIG9e/eycOFCHn/8cVkYS4gGID09nQ0bNrB+/XratGlDbGwsN998sznDz+GA5GTzhi9nTfnOzISRI6FnhTfo1pgs7+BEOTk5TJgwgVGjRhETU+6ipUKIeuzHH38kPj6e//73v9xyyy3ExMSUflNnSgoMG2bW6Bs1qtlOs7LMk8i2beaaQdUkyztYICAggGXLljF+/Hiio6PpWQdnbyGEc9jtdrZt20ZCQgJnz55lzJgxxMXFlX+XcZs2Zvete+4x1+Op7qq/mZnmz77xRo0Sf1XIlX8t+Pzzz5k7dy6rV6+mVatWVocjhCjH6dOnWb9+PRs2bKBDhw7YbDb69etXtVVFv/7arNOnp5uLvVX2ZwsLzTt527aFVavMVYVrSFb1tNjrr7/O5s2bWblyJf7VWJZVCFF7tNZ8++23GIbBp59+ypAhQ4iJiSE6Orr6b3r+PMyfb6746XCYZSBv7982jtLabNiSm2suHz9pktlsykkDx5L8Laa15umnnyY/P5+//vWvMgAsRD1gt9vZsmULhmGQnZ1NTEwMt99+O0FBQc7bydGj8PrrYBhmKcjLy0z4WpvJvqAAGjc2S0UxMWYvESeS5F8P2O12Jk6cyIABAxg/frzV4Qjhtk6ePElSUhJvvfUWV155JTabjT59+tRuwxit4dQp2LvXrOkrBeHhcMUV5p+1RAZ86wEfHx+WLl3KuHHj6NixI3379rU6JCHchtaar776CsMw2L17N7feeisrV66kbdu2dROAUtC8uflVD8mVfx349ttvmT59ujSBF6IO5Obm8u6775KQkEBhYSExMTHcdtttBJSxAmdDI1f+9Ui3bt144IEHmDZtmjSBF6KWpKamkpiYyKZNm7jmmmt45JFH6NWrl4y3lUGSfx0ZOXIke/fuZe7cudIEXggn0Vrz+eefYxgG33zzDcOHD2ft2rW0bt3a6tDqPSn71CFpAi+Ec+Tk5LB582YSEhLw8vLCZrMxbNgw/Pz8rA7NclL2qYekCbwQNXPs2DESEhJ455136NmzJ3PmzKF79+5S2qkGSf51TJrAC1E1DoeDTz/9FMMw+Omnnxg5ciRvvPEGzevpLBpXIcnfAtIEXoiKnT9/nk2bNpGQkEBgYCA2m42lS5fi4+NjdWgNgiR/i0gTeCFKd+jQIQzD4L333qNPnz7MmzePq6++Wko7TiYDvhZyOBz85S9/oW3btsTFxVkdjhCWcTgc7Ny5E8MwOHToEKNGjWLUqFE0bdrU6tBcjgz4uoCLTeDHjRtHcnIyw4cPtzokIepUZmYmb731FomJiTRu3BibzcagQYPw9va2OrQGT5K/xS42gZ88eTLR0dF07drV6pCEqHX79u3DMAy2b99Ov379WLRoEV26dLE6LLciyb8eiIqK4vHHH2fmzJmsWbNGPuqKBqmwsJAdO3ZgGAapqamMHj2a9evXE16Li5yJsknyryf69+/P/v37mTlzJi+//LLMaBANRnp6Ohs3biQpKYlWrVphs9kYMGCATHKwmAz41iNaa2bNmkVgYKA0gRcu78cff8QwDHbu3MnAgQOx2WxyX0sdkPX8XZQ0gReurKCggA8++ADDMDhz5gxjxoxhxIgRhISEWB2a25DZPi5KmsALV3TmzBk2bNjA+vXriY6OZty4cfTv318WMKzHJPnXQ61bt2b+/PnMmTNHmsCLektrzXfffYdhGHzyySf8/ve/56WXXqpZH1xRZ6TsU49JE3hRH9ntdrZu3YphGFy4cKF2+uCKapOyTwPwxz/+kX379jFv3jxpAi8sd+rUKZKSkti4cSOdO3fm/vvv54YbbpDSjouSf7V6TCnFnDlzSE1NZfXq1VaHI9zQxT64s2bNIjY2luzsbF599VVWrFhB3759JfG7sBpd+SulwgEDiASOADFa64xStisCvit+eExrLesYVJI0gRdWyMvLu9QH1263Y7PZePLJJ92mD647qFHNXym1GEjXWi9USs0GwrTWs0rZ7oLWukqNa6Xm/2vSBF7UhbS0NBITE0lOTqZbt27YbDZ69eolV/gupE7m+Sul9gI3a61PKKVaAju01p1L2U6SvxNs3LiRdevWSRN44VRaa7744gvi4+P5+uuvuf3224mJiZE+uC6qrpL/Oa11aPH3Csi4+Piy7QqBr4FCYKHWemNF7y3Jv3SLFi3ixIkT0gRe1FhOTg5vv/02CQkJeHh4XOqDKzPLXJvTkr9SahvQopSXHgPWlEz2SqkMrXVYKe/RWmudqpSKBrYDt2itD5ay3WRgMkDbtm17HD16tKL43Y40gRc1dezYMRITE3n77bfp2bMnNpuN6667TmaTNRBOm+qptS6zy7hS6melVMsSZZ9TZbxHavGfh5RSO4DuwG+Sv9b6FeAVMK/8K4rNHUkTeFEdDoeDXbt2ER8fz08//cSIESN4/fXXadGitOs64Q5qOs8/GRgHLCz+863LN1BKhQE5Wut8pVQT4EZgcQ3369akCbyorAsXLrBp0yYSExPx9/fHZrOxZMkSfH19rQ5NWKymNf/GQALQFjiKOdUzXSnVE7hfaz1RKXUD8DLgwLyv4Dmt9cqK3ltq/hXbunUrL7zwgjSBF79x+PBhEhIS2Lp1K9dffz02m41u3bpJaccNyKqebmLFihX88MMP0gRe4HA4+Oijj4iPj+fAgQOMGjWK0aNHS3MgNyPJ301IE3iRlZV1qQ9uWFjYpT640hDIPcnaPm5CmsC7r/3795OQkMC2bdvo168fCxYs4KqrrrI6LOEiJPk3ANIE3n0UFRVd6oObkpIifXBFtUnybyCkCXzDlpGRwZtvvil9cIXTyG9OAyJN4Buen376CcMw+PDDDxkwYAB/+9vf6Nz5NyuoCFFlMuDbwEgTeNdXUFDA9u3bMQyDU6dOMWbMGEaOHCl9cEWlyICvm1JK8dRTTzFhwgQSExOlCbwLOXv2LOvXr2fDhg1ERkZyzz330L9/fzw9Pa0OTTRAkvwbIGkC7zq01nz//fcYhsHHH3/M4MGDeeGFF2jfvr3VoYkGTpJ/AyVN4Os3u93O+++/j2EYZGZmEhMTw8yZMwkODrY6NOEmJPk3YL169eLee+8lLi5OmsDXEyX74Hbq1IlJkyZx4403yvLcos5J8m/gLjaBf+aZZ3j22WdlANgCWmu+/vprDMPg888/Z+jQobz66qvSkU1YSmb7uAG73c7EiRMZOHAg9957r9XhuI38/Hy2bNmCYRjk5eVhs9m47bbbaNSokdWhiQZMZvuIS0o2ge/QoYM0ga9laWlpJCUlkZycTNeuXXnwwQfp3bu3lHZEvSLJ3000a9aMRYsWSRP4WnKxD65hGPzvf//jtttuY/Xq1URERFgdmhClkrKPm5Em8M6Vk5PDO++8Q0JCAgCxsbHSB1dYSso+olQjR45k7969zJ07V5rA10BKSgqJiYls3ryZHj16MHPmTHr06CED6sJlyP98NzR9+nRycnL45z//aXUoLsXhcPDJJ5/w8MMPM378eLy9vfn3v//NkiVL6NmzpyR+4VLkyt8NSRP4qsnOzmbTpk0kJCTg5+dHbGwsixcvlj64wqVJ8ndT0gS+YkeOHCEhIYEtW7bQu3dvnnjiCa655hq5whcNgiR/N9a5c2dmzJhBXFycNIEvdrEPrmEY7N+/nzvuuIP4+HiaNWtmdWhCOJUkfzc3ZMgQ9u7dy+zZs926CXxWVhbJyckkJCQQGhpKbGys9MEVDZpM9RRu3QT+wIEDJCQk8P7779O3b19sNpu0wRQuTaZ6ikpztybwRUVFfPjhhxiGwdGjRxk9ejRJSUk0btzY6tCEqDOS/AXgHk3gz507x8aNG0lKSqJ58+aX+uB6e3tbHZoQdU6Sv7ikoTaB37NnD4ZhsGPHDgYMGMDSpUu54oorrA5LCEtJ8he/0lCawBcWFl7qg3vy5EnGjBnDm2++KTOahCgmyV/8xoQJE9i7dy8LFy50uSbw6enpl/rgtm3blrvvvpubbrpJ+uAKcRmZ7SNKlZOTw4QJExg1apRLNIG/2Af3o48+YvDgwcTExNChQwerwxKizslsH1EjJZvAt2/fnh49epS5bVERZGWZfwYEmF91wW63s23bNuLj4zl37hwxMTHMmDFD+uAKUQmS/EWZLjaBf/TRR3/TBP7wYUhKgp07Yd8+cDjM54uKoHlz6N4dRo6EAQPA2ZNpTp06xfr163nzzTfp2LEjEydOpG/fvrJCqRBVIGUfUaHXX3+dzZs3s3LlStLS/Hn8cfj8czPh+/qCnx9cLKlrDXY75OaCh4f5KeCRR+Cee8zH1aW15ptvvsEwDD777DOGDh1KTEwMkZGRTjlGIRqKypZ9JPmLCmmteeqpeXz+eTcOHhyJw6EICYHKjAPn50NODlxzDfz979CmTdX2nZ+fz9atW4mPjycvL4+YmBhuv/126YMrRBmk5i+cRmtFVtZcPvroLKGh6TRvXvk7YX19wccHvv0WRoyA+HiozAKiJ06cuNQHt0uXLkydOpXrr79eSjtCOIkkf1Gh+fMhOdmTqKgwjh49TKNGPgQGBlX655WC0FBzUDg2FjZvhhLDB5dorfnyyy8xDIMvv/yS2267jVWrVtGmqh8XhBAVkuQvyvXxx7BmDQQHg6enNxEREaSkHCcy0gcfn6o1MwkOhnPnYMYMWLfulzGA3Nxc3n33XQzDQGuNzWbj6aefJqCupg0J4YYk+Ysy5eaag7U+Pr8M6Pr7B9CsWVNSUlKIiorCw6NqN0+FhMCuXbBxI/TunUpCQgKbN2+me/fuxMXFSTtEIeqIJH9RpnfegYwMM2GXFBoaRl5eHqmpqbRp04bU1CfIyfkchyMXL68mNG48ltDQkaW+p1IahyOXBx88wRVX3M+IEbezbt26X00jFULUPkn+olRaw8svQ1m9XZo3b8GxY0c5ffo0TZqMx9v7cTw8fMjPP8LRo5Px9e2Mv/+Vl7Z3OIrIzMwkPT0dpTzw82vOk09upn9/6YMrhBVqNHVCKTVGKfWDUsqhlCpzapFSaqhSaq9S6oBSanZN9inqxunTcOhQ2XfrKqVo3TqCzMxM8vOb4OFxcQE4hVKKgoLjANjt+Zw8eZIDBw6Qk5NDy5atiI6Owtc3kI8/lsQvhFVqeuX/PTAKeLmsDZRSnsALwGDgOPCFUipZa/1jDfctatGePeZVf3nldy8vLyIi2nDs2FEyM/9OdvYWtM7Hz68z0I1jx46Rl5dHWFgo0dHReHn9cquvnx989lntH4cQonQ1Sv5a65+AigboegEHtNaHireNB0YAkvzrsYMHzRu0AgPL387Pz48WLVpw6lQsUVEzSE/fRUbGp5w5k0Xjxk1p0yYCpX77AdPXFw4cqKXghRAVqos7ZloDKSUeHy9+TtRjOTm/rNdTkeDgEEJCQjh2LAWHoyOBgXZCQ3cTEhJaauIHc5pnfr4TAxZCVEmFV/5KqW1Ai1Jeekxr/ZYzg1FKTQYmA7Rt29aZby2qyMencss3XNS0abPizl+KEyc8sNtTy91e61+mjwoh6l6FyV9rPaiG+0gFSt6iGVH8XGn7egV4Bcy1fWq4X1EDrVubpZmKFBamk5Ozm8DAvijlR3b2LjIzt9K69V/L/Tm73dyHEMIadTHV8wugo1IqCjPpxwJ31cF+RQ1ceWXF25gUGRlJnDjxV8CBt3dLmjefTlBQ/3J/Ki8Pela49JQQorbUKPkrpe4AVgBNgbeVUl9rrYcopVoBr2mtb9VaFyqlpgJbAU9gldb6hxpHLmpVu3bmNM/8/PI/AXh5hdGu3StVfn8PD+jbtwYBCiFqpEYDvlrrN7XWEVprX611c631kOLn07TWt5bY7h2tdSetdXut9bM1DVrUPg8PuPdec+DX2ex284QyeLDz31sIUTmyPq4ok81mzvUvKHDu++bkwNix5lx/IYQ1JPmLMrVoAdOnw4UL5uwcZ7hwAZo0gQcecM77CSGqR5K/KNd998HVV0NmZs3fy243e/z+/e8gjbiEsJYkf1EuT09YtcocAD53rvqfAPLyIDsbFi2C3r2dG6MQouok+YsKhYdDYiL06GGeAOz2yv+s1ubPOBzwj3/AqFG1F6cQovIk+YtKCQ+HN96AefOgsNBM6Dk5ZX8SKCw0ewFkZUGfPvDBBzBsWN3GLIQom6znLyrNwwPuvhtuvx2Sk81y0NGj4O1tngS0NpeEuLh0w6hR5nTRLl2qtlSEEKL2SfIXVRYcDP/3f+bX+fPm8s+nTpmDuY0aQceOEBHxS49eIUT9I8lf1EhQEPzud1ZHIYSoKrk2E0IIN6S0s+7ecTKl1GngqNVxVFMT4IzVQdQhdztekGN2B656vO201k0r2qjeJn9XppTarbV2mzUr3e14QY7ZHTT045WyjxBCuCFJ/kII4YYk+deOqi9w79rc7XhBjtkdNOjjlZq/EEK4IbnyF0IINyTJ3wmUUuFKqfeVUvuL/wwrZ9tgpdRxpdQ/6jJGZ6rM8SqlrlVKfaqU+kEp9a1SymZFrDWllBqqlNqrlDqglJpdyuu+Simj+PXPlFKRdR+l81TieKcppX4s/jf9QCnVzoo4namiYy6x3WillFZKNYgZQJL8nWM28IHWuiPwQfHjsjwD7KyTqGpPZY43Bxirtb4KGAo8p5QKrcMYa0wp5Qm8AAwDugB/VEp1uWyz+4AMrXUH4G/AorqN0nkqebz/A3pqrbsBScDiuo3SuSp5zCilgoCHgc/qNsLaI8nfOUYAa4q/XwOMLG0jpVQPoDnwXh3FVVsqPF6t9T6t9f7i79OAU0CFN57UM72AA1rrQ1prOxCPeewllfy7SAJuUcpll7Gr8Hi11v/RWl/s7LwLiKjjGJ2tMv/GYF60LQLy6jK42iTJ3zmaa61PFH9/EjPB/4pSygNYBsTVZWC1pMLjLUkp1QvwAQ7WdmBO1hpIKfH4ePFzpW6jtS4EMoHGdRKd81XmeEu6D3i3ViOqfRUes1LqOqCN1vrtugystsnCbpWklNoGtCjlpcdKPtBaa6VUaVOopgDvaK2Pu8KFoROO9+L7tATWAeO01g7nRimsopT6P6AncJPVsdSm4ou25cC9FofidJL8K0lrPais15RSPyulWmqtTxQnu1OlbNYH6KeUmgIEAj5KqQta6/LGByzjhONFKRUMvA08prXeVUuh1qZUoE2JxxHFz5W2zXGllBcQApytm/CcrjLHi1JqEOZFwE1a6/w6iq22VHTMQUBXYEfxRVsLIFkpNVxrvbvOoqwFUvZxjmRgXPH344C3Lt9Aa3231rqt1joSs/Sztr4m/kqo8HiVUj7Am5jHmVSHsTnTF0BHpVRU8fHEYh57SSX/Lu4EtmvXvXmmwuNVSnUHXgaGa61LPem7mHKPWWudqbVuorWOLP6/uwvz2F068YMkf2dZCAxWSu0HBhU/RinVUyn1mqWR1Y7KHG8M0B+4Vyn1dfHXtdaEWz3FNfypwFbgJyBBa/2DUmqeUmp48WYrgcZKqQPANMqf6VWvVfJ4l2B+ck0s/je9/GToUip5zA2S3OErhBBuSK78hRDCDUnyF0IINyTJXwgh3JAkfyGEcEOS/IUQwg1J8hdCCDckyV8IIdyQJH8hhHBD/x/PAxUO8owGIwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -387,16 +386,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -1.4986779698866395\n", - "time: 28.347098112106323\n", - "maxcut objective: -3.9986779698866393\n", - "solution: [0. 1. 0. 1.]\n", + "energy: -1.4991857466693328\n", + "time: 35.49838590621948\n", + "maxcut objective: -3.999185746669333\n", + "solution: [1. 0. 1. 0.]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4VGX6//H3k04aISSBUEKRQIKuILLYFcVV7GWlq7jSlaosLf5WYKkqgoo0QaVYQFYUuyjqV5dVRLEnoYQWCJAeSM/M8/vjTDADSSYhM3Mmyf26rrky5cw5d+ZK8sl5zjn3o7TWCCGEEOW8zC5ACCGEZ5FgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2JBiEEELY8TG7gPMRERGh27dvb3YZQghRr/zwww8ZWutIR8vVy2Bo3749u3btMrsMIYSoV5RSh2qynAwlCSGEsFMv9xicxWKBzEwoLQV/f2jeHJQyuyohhDBXowuGY8fgrbfg888hORmsViMMtAZfX7jwQrjtNrj7bggLM7taIYRwv0YTDCdOwMyZsG2bEQJ+fhAYCN7efy5TVga//gq7d8P8+TBgAEyZAsHBppUthBBu1yiOMWzdCjfcAJ9+CqGh0KwZBAXZhwKAj48RAmFhRmi89hr06QM7d5pTtxBCmKHBB8Py5TBpkjFc1KwZeNXwO/b2NpbPy4MhQ+Djj11bpxBCeIoGHQxvvAFPPw0hIRAQcH7rCAoy3jtuHHz7rXPrE0IIT9Rgg+HQIeOYQnCwMURUF/7+xjrGjTP2IIQQoiFrkMGgNUyebJyO6ufnnHUGBUFWFixc6Jz1CSGEp2qQwfDrr/DTT9C0afXLZWVt4sCBB0hKuoJjx2Y6XG9oqHGqa1aWc+oUQghP1CCDYe3aP69PqI6PTwQREcNo2vTOGq3X29tY79tvO6FIIYTwUA0uGLQ2TkutybUHoaE3EBLSG29vB7sWFfj6wgcf1KFAIYTwcA0uGI4fh6Ii4w+4KwQEQGKisecghBANUYMLhgMH6n4WUnXKh5OOH3fdNoQQwkwNriVGUZExnFRzmuzsLKzWXPz80gkICCAgoAk+1aSLlxcUF9e5VCGE8EgNLhh8fWvbIVWhlEJrjdVqJSsri6KiIpRSBAQ0ISAggCZNAggICMDHxxifslpdN1QlhBBma3DB0Lp1zcf/tbagtYXQ0BDS048RHBxAZGQESnlRWlpKUVERhYVFZGVlU1RUiFIKf/8AtG5KUtLP+PnFERkZiZJe3UKIBqTBBUP79sYeg8VybpO8s2VkrCEjYxUASlnYs+dqWrceS2TkKHx9/fD19SMkJNS2tKa0tIzc3GKaNMli69bNLFyYiFKKuLg44uPjz3xt0aKFhIUQot5SunYD8h6hZ8+eurqpPR98EP73P8cXuNnTHD58hKCgQJo3j6hyqexsGDECpk0DrTUnT54kKSmJxMTEMzer1Up8fPyZsIiLiyM6OlrCQghhKqXUD1rrng6Xc0YwKKX6As8B3sBqrfWCs15fDFxvexgIRGmtw2yvWYBfba8d1lo7vNrMUTB89ZXxxzs0tMpFKlVSUsLBgwfo0KEDvr7n9tKwWo1eSZ9/Du3aVb4OrTXp6ekkJSXZBUZpaemZPYrym4SFEMKd3BYMSilvYA/wNyAV+B4YpLX+o4rlxwGXaK0ftj0+rbWu1VQ4joLBYoHrroOMjNpPspOZmUF+fgExMW0B+z/aOTlw5ZWwbl3t1gmQkZFxJiTKQ6OoqOjMHkV5WLRu3VrCQgjhEu4MhiuAmVrrm22PpwNoredXsfwO4Emt9TbbY6cHAxiT6wwebLTcdnSsoSKtNQcOpBAREUFo6J9jUSUlxm3bNmjbtjbVVi0rK8tuCCoxMZHCwkK7sIiLi6NNmzZ41XQiCSGEqEJNg8EZB59bA0cqPE4FLquiqHZAB2B7hacDlFK7gDJggdb6nSreOxIYCRATE+OwqF694P77jf/umzWr+SmsSimio6NJTU0lKCgYb29vLBbIz4c5c5wXCgDh4eFcddVVXHXVVWeey8rKOrNHsW3bNp5//nlOnz5Nly5d7I5btG3bVsJCCOESzthjuA/oq7Uebnv8AHCZ1npsJctOBdporcdVeK611vqoUqojRmD00Vrvr26bNdljAGMO57Fjjf/yQ0Nrt+dw/PhxtLYSEdGKU6dgzBijlbcZozw5OTl2xyuSkpLIyck5ZxgqJiZGwkIIUSV37jEcBSr+H93G9lxlBgKPVnxCa33U9jVFKfUlcAlQbTDUlI8PLF0K//63MX9z+ZzONREZGcmePWn4+BTxr38F8PDD5oQCQFhYGJdffjmXX375medyc3PP7Fl89dVXrFixguzsbDp37my3Z9G+fXsJCyFErThjj8EH4+BzH4xA+B4YrLX+/azl4oCPgQ7atlGlVDOgQGtdrJSKAP4H3FXVgetyNd1jqOi774y5nzMyjJYZISGVz/9ssRhnHnl5QfPmGYSGzuT995/Fz1kz/rhQXl6e3dlQSUlJZGZm0qlTJ7uzodq3b493bXafhBANgrtPV70VWIJxuurLWuu5SqnZwC6t9VbbMjOBAK31tArvuxJYCVgxGvot0VqvcbS98wkGMIaW/u//4KWX4IcfjD0ApYygUMo4HdXLC66/HoYNgx49NJMnP05cXBwjR46s9fY8walTp0hOTrYbhkpPTyc2NtZuKKpjx44SFkI0cG4NBnc732CoqKwMUlIgNRVKS415nTt0MA4uV9yTOHHiBIMHD2bNmjW0b9++boV7iPz8fLuwSExM5MSJE3Z7FnFxcXTs2LHaZoJCiPpFgsGJ3njjDb744gtWrlzZYK8xKCgoOBMW5UNRaWlpdOzY0W4YqmPHjvhKB0Eh6iUJBieyWq089NBD3Hfffdx5Z82mAW0ICgoK2LNnj11YHD169ExYlA9DXXDBBfXiGIwQjZ0Eg5MlJyczduxYNm7cSHh4uFu37UkKCwvZu3ev3TGLI0eO0KFDB7tTZzt16iRhIYSHkWBwgeeee4709HTmzJnj9m17sqKiojNhUb5ncfjwYdq1a2e3ZxEbG4u/v7/Z5QrRaEkwuEBhYSEDBgxg+vTpXHHFFW7ffn1SUlJit2eRmJjIoUOHiImJses627lzZwICAswuV4hGQYLBRXbs2MGCBQvYtGmT/EGrpZKSEvbt22d3FfeBAwdo06aN3QHu2NhYmjRpYna5QjQ4EgwuNGPGDKKjoxk3bpzjhUW1SkpK2L9/v13X2f3799O6dWu7YxadO3cmMDDQ7HKFqNckGFwoMzOTAQMGsHz5cmJjY02ro6EqLS0lJSXFbhgqJSWF6Ohou66zcXFxEhZC1IIEg4u9/fbbbN26lZdffll6EblBWVkZKSkpdsNQ+/bto0WLFnYHuOPi4ggKCjK7XCE8kgSDi1mtVkaMGMHNN99M//79Ta2lsbJYLBw4cMDu1Nm9e/cSGRlpNwzVpUsXQkJCzC5XCNNJMLhBSkoKI0eO5PXXXycqKsrscgRGWBw8eNBuz2Lv3r2Eh4efMw93aG3nfhWinpNgcJMVK1awf/9+nn76abNLEVWwWq12YZGUlERycjJhYWF2Z0PFxcXRtGlTxysUop6SYHCTkpISBg4cyIQJE7juuuvMLkfUkNVq5fDhw+fMwx0WFnbOBEhhYWFmlyuEU0gwuNGuXbt48skneeutt+QsmXrMarWSmppqdzZUcnIywcHB5wxDNea2KKL+kmBws1mzZhEUFMTkyZPNLkU4kdVq5ejRo3btPpKSkmjSpMk5w1DNmzc3u1znS0kxZrnauRP27oXiYggIgC5d4K9/hcsugwbSjr4xkGBws9zcXPr168eSJUvo2rWr2eUIF9JaVxoW/v7+dqfOxsfHExERYXa5tac1fPmlMS/uzz//+byfnzFZidVqBER5C/qePY3J1a++2pRyRc1JMJjgww8/ZMOGDaxfv15mQ2tktNakpaXZHbNITEzEx8fnnD2LyMhIz53XIzMTZsyAzz4Db29jDtzqatUaTp0ywuK222DWLJBjMh5LgsEEWmseffRRrrjiCh544AGzyxEm01pz/Phxu6BITEzEy8vrnD2LqKgo88Ni714YNAhyciA0tPJJ0atitUJuLkRGwptvyvCSh5JgMMmRI0d46KGHWL9+Pa1atTK7HOFhtNacPHnS7gB3UlISWmu7g9vx8fG0bNnSfWFx8CDccw/k5xuhcL7y8qBpU3jnHWjd2mnlCedwazAopfoCzwHewGqt9YKzXn8IeBo4antqqdZ6te21ocATtufnaK3XOtqeJwcDwCuvvMLu3bt57rnnzP8vUHg8rTXp6el2exWJiYlYLBa7vYq4uDiio6Od/zNVWgp33AH79xt/1OsqOxsuugjeftsYjhIew23BoJTyBvYAfwNSge+BQVrrPyos8xDQU2s99qz3hgO7gJ6ABn4ALtVaZ1e3TU8PhrKyMoYMGcKwYcO46aabzC5H1FPp6el211gkJiZSXFxsFxbx8fG0atWqbmGxdCksXmwcG3BG6GhtDEfNmAHDhtV9fcJp3BkMVwAztdY32x5PB9Baz6+wzENUHgyDgN5a61G2xyuBL7XWb1S3TU8PBoBffvmFKVOmsGnTJmm9IJwmMzPznAPchYWFdk0E4+PjadOmTc3CIi8PevUCf3/w9XVeoSUlYLHArl0gc2t4jJoGg48TttUaOFLhcSpwWSXL/V0pdS3G3sUkrfWRKt7bIAYmL774Ynr37s0LL7xAQkKC2eWIBqJ58+ZcffXVXF3h1NCsrKwzIfHpp5/y3HPPkZ+ff84V3G3atDm3E/DWrVBWBsHB1W63xGplwfHj7CwoIM9ioY2vL2Ojoriyqvf5+RkHoz/8EP7+97p+28LNnBEMNfEe8IbWulgpNQpYC9xQmxUopUYCIwFiYmKcX6ELjB07ln79+rF7924uueQSs8sRDVR4eDhXXnklV1555ZnnsrOzz4TF559/ztKlS8nLy6NLly52xyzavfYaqgZ7Chagpa8vq2JiaOnry39Pn2ba0aO82aEDrfz8Kn+Tlxe88YYEQz3klqGks5b3BrK01k0b8lBSuc8//5wVK1bw2muv4VfVL5AQbpCTk0NycvKZoag9v//OC59/jiUoCP8mTWgSEEBAQAB+/v7U5EjDwJQURkZEcENVQ6UWCxQWwh9/1O7UV+Ey7hxK+h6IVUp1wDjraCAw+KxiorXWabaHdwKJtvufAPOUUs1sj28CpjuhJo9xww038P7777Nu3TqGDx9udjmiEQsLC+Oyyy7jsstsI7179mC57TaKfHwoLCri1OnTpKenU2axEODvT0CTJgQEBNCkkrDIKivjcEkJHf39q96gt7dxfUNqKtSTvXxhqHMwaK3LlFJjMf7IewMva61/V0rNBnZprbcC45VSdwJlQBbwkO29WUqpf2OEC8BsrXVWXWvyJEoppk6dypAhQ7jpppvqzTCYaARyc/H28SEoKMhu1juL1UpRYSGFRUWcPn2ajIwMysrK8PfzIzg4mLCICJ44dozbmzalfXXBAMaeQl6ei78R4WxygZubvP7663z11VesWLFCrm0QnmHXLnjgAajBVKglpaUcOniQkrIyVvv5YfH15dm2bfFx9LN8+rRxPYP0D/MINR1KkoE/Nxk4cCAFBQW89957ZpcihCE83BjqcaC0rIwjR44QEhrKm8HBHMvPZ17Llo5DAYzjDM2aOV5OeBQJBjfx8vIiISGBpUuXkp1d7fV7QrhHu3bGV4ulykXK9xSahoayxmrliMXCwhYtyDl50vH6y8qM6yNatnRSwcJdJBjcKC4ujltuuYXFixebXYoQxsHhiy6CgoJKXy4uLubQwYOEN29OadOmbMnJYU9REQ9kZ3NPRgZX/vEHH+XmVr3+ggLo0cM5V1MLt5JgcLNRo0axe/duvvvuO7NLEQIefLDS4aTCoiIOHTpEVFQU4c2aEe3ry674eHbExfF1XBxfxsay1s+Pm0JCql///fe7qHDhShIMbhYYGMjUqVOZP38+xcXFZpcjGrubbzZmZKvws5hfUMCRw4eJbtWKplU01QsKCiIwMJCM9PTK11tUZFxNff31rqhauJgEgwmuvvpq4uLiWL16tdmliMYuIAASEowL0bTm1OnTHE1NpXXr1oQ4aJPRokULcnNzKSoqsn9Ba2N9Tz7p3P5Lwm0kGEwyefJktmzZwr59+8wuRTR2/fvDX/9KfloaaceO0bZtW7vrGqri4+1NVIsWpKWlYXfSe04OXHst3Hmny0oWriXBYJKIiAjGjBnDvHnzsNbglEEhXMbLi/dvvpkDRUW0b9aMJrXohtq0aVOUlxfZWVl/ttvu0MFo4y0HnestCQYT3XPPPQC8/fbbJlciGrN169ax6u23Cd++Hb/OnY2JdsrKavReBURHR5OZnk5ZZiZ07gybNsm8z/WcBIOJvLy8eOKJJ1ixYgXpVR3EE8JFtNa8+OKLvPfee6xevZpW3bvDe+/B8OHGFJ/Z2dVe4wBAWRn++flEBQbyYYcOxpSe4eHu+QaEy0gwmKxjx47ce++9PP3002aXIhoRq9XKwoUL+fbbb3nppZeIiooyXggIgOnTjYC45x7jWoTTpyEry5hfIS/P+JqVZTxfVAQDBtBk+3ZebdaMr/73P3O/MeEU0ivJAxQXFzNw4EAmTZrEtddea3Y5ooErKytj1qxZnDhxgsWLF1d/oDkvD376yWid/fvvxmmtAQFw4YXGrVs3sF3L8MMPP/Cvf/2Lt956i8DAQDd9N6I23Da1pxkaWjAA7Ny5k9mzZ7Np0yb5pRIuU1JSwrRp07BYLDz11FP4O+qOWkuzZs0iJCSExx57zKnrFc4hTfTqmV69enHppZeyYsUKs0sRDVRBQQHjx48nICCAZ555xumhADBx4kQ+/vhjEhMTHS8sPJYEgweZNGmS/FIJl8jLy2PMmDHExMQwZ84cfF104VnTpk2ZMGECc+fOxeLowLXwWBIMHiQsLIzx48czZ84c+aUSTpORkcGIESO49NJLmT59Ol4unmbz1ltvJSQkhI0bN7p0O8J1JBg8zG233UZoaChvvvmm2aWIBuDYsWMMHz6cvn37Mm7cOLdMEqWUYvr06axZs4YTJ064fHvC+SQYPEz5L9XLL7/MsWPHzC5H1GMpKSkMHz6cIUOG8I9//MOtMwfGxMQwaNAgFi5cSH08waWxk2DwQDExMQwZMkR+qcR5++OPPxg9ejRjx46lX79+ptTw4IMPcvjwYb788ktTti/On1OCQSnVVymVrJTap5SaVsnrjyml/lBK/aKU+lwp1a7Caxal1E+221Zn1NMQPPDAA6SlpfHZZ5+ZXYqoZ3788UcmTJhAQkICt956q2l1+Pn5MWPGDJ5++mny8/NNq0PUXp2DQSnlDbwI3AJ0BQYppc6e+Xs30FNrfTGwGXiqwmuFWuvutpu0Y7Tx9fUlISGBRYsWcerUKbPLEfXEN998w9SpU5k7dy7XXXed2eXQo0cPrrjiCpYtW2Z2KaIWnLHH0AvYp7VO0VqXAG8Cd1VcQGv9hda6fP7Ab4E2Tthug9etWzeuvfZaXnjhBbNLEfXAp59+yuzZs1m8eDG9evUyu5wzJkyYwLZt2/jjjz/MLkXUkDOCoTVwpMLjVNtzVRkGfFThcYBSapdS6lul1N1OqKdBGTduHF9//TU///yz2aUID/b222+zePFili1bxkUXXWR2OXZCQ0OZOHGinIZdj7j14LNS6n6gJ1CxY1w72yXag4ElSqkLqnjvSFuA7GpMnUjL2wvMnTuX0tJSs8sRHmjdunW8+uqrrFq1ik6dOpldTqVuueUWwsLC5DTsesIZwXAUaFvhcRvbc3aUUjcCCcCdWuszE8xqrY/avqYAXwKXVLYRrfUqrXVPrXXPyMhIJ5Rdf9x4441ER0ezfv16s0sRHkRrzbJly9i6dSurV6+mbdu2jt9kkoqnYaelpZldjnDAGcHwPRCrlOqglPIDBgJ2ZxcppS4BVmKEwskKzzdTSvnb7kcAVwEyEHkWpRTTpk3jtdde4/Dhw2aXIzyA1WrlqaeeYseOHfZtsz1Y27Zt5TTseqLOwaC1LgPGAp8AicAmrfXvSqnZSqnys4yeBoKBt846LTUe2KWU+hn4AligtZZgqER0dDQPP/ww8+bNk1+qRq6srIyZM2eyb98+VqxYQbNmzcwuqcYeeOABjh07xhdffGF2KaIa0na7HrFYLAwdOpSBAwdy++23m12OMEF52+yysjKeeuopAgICzC6p1n766SdmzJjBpk2bCA4ONrucRkXabjdA3t7eJCQk8Pzzz5OTk2N2OcLNCgoKmDBhAgEBASxatKhehgJA9+7dueqqq+TaBg8mwVDPxMfH07dvXxYvXmx2KcKN8vLyeOSRR2jTpo1L22a7y7hx49i+fTu//fab2aWISkgw1EOjR4/mhx9+YOfOnWaXItygvG32JZdcwowZM1zeNtsdQkNDmTRpEnPnzqWsrMzscsRZ6v9PWCMUGBjIlClTmD9/PsXFxY7fIOqt8rbZN998M+PHj3drh1RXu+mmm2jevDmvv/662aWIs0gw1FPXXnstsbGxrFmzxuxShIscOHCA4cOHM3jwYB5++OEGFQrw52nYa9eulRbzHkaCoR775z//ydtvv01KSorZpQgnS0xMPNM2u3///maX4zJt2rTh/vvvl2sbPIwEQz0WGRnJ6NGjmTNnDlar1exyhJP8+OOPjB8/nunTp5vaNttdHnjgAY4fPy4t5j2IBEM9d++99wKwZcsWkysRzvDf//73TNvs3r17m12OW/j4+JCQkMCzzz4rLeY9hARDPefl5UVCQgLLly8nIyPD7HJEHXz66afMmjWLZ5991qPaZrvDxRdfzDXXXMOLL75odikCCYYG4YILLuCee+7hmWeeMbsUcZ62bNnC4sWLefHFF/nLX/5idjmmGDduHF9++SW//PKL2aU0ehIMDcTw4cNJSkrim2++MbsUUUvr1q3jlVdeYdWqVcTGxppdjmkqtpiXaxvMJcHQQPj7+zNjxgwWLlxIQUGB4zcI09Wnttnu8re//Y0WLVrw2muvmV1KoybB0ID06tWLSy65hJUrV5pdinCgPrbNdofyaxvWrVvH0aPnTOsi3ESCoYGZNGkSH330EUlJSWaXIqpQn9tmu0OrVq0YOnQoCxYskGsbTCLB0MA0a9aMcePGMXfuXJlf1wOVlJQwZcoUcnJyeOGFF6TtdBUGDx5Meno627ZtM7uURkmCoQG6/fbbCQoKYuPGjWaXIipoKG2z3aHitQ15eXlml9PoSDA0QEopZsyYwZo1azh+/LjZ5QgaXttsd/jLX/7C9ddfz9KlS80updGRYGigYmJiGDRokPSg8QANsW22uzz66KN8/fXX/Pzzz2aX0qjIT2gDNnToUFJTU9m+fbvZpTRaDblttjsEBwfz+OOPM3fuXEpLS80up9GQYGjAfH19SUhI4JlnnuH06dNml9PoNPS22e7Sp08fWrVqxYYNG8wupdFwSjAopfoqpZKVUvuUUtMqed1fKbXR9vp3Sqn2FV6bbns+WSl1szPqEX/q3r07V199tYzTulljaZvtDkoppkyZwoYNG0hNTTW7nEahzsGglPIGXgRuAboCg5RSXc9abBiQrbXuBCwGFtre2xUYCFwI9AWW2dYnnEh60LhXY2ub7Q6tWrXioYceYv78+XLMzA2cscfQC9intU7RWpcAbwJ3nbXMXcBa2/3NQB9l7FffBbyptS7WWh8A9tnWJ5woNDRUetC4SWNsm+0ugwYNIjs7m08++cTsUho8ZwRDa+BIhceptucqXUZrXQbkAs1r+F4AlFIjlVK7lFK70tPTnVB241Leg2b9+vVml9JgNea22e5Qfm3D4sWL5doGF6s3B5+11qu01j211j0jIyPNLqfeKe9Bs2HDBo4cOeL4DaJWpG22e1x44YX06dOH559/3uxSGjRnBMNRoGJbyDa25ypdRinlAzQFMmv4XuEkMk7rGuvXr5e22W706KOPsmPHDnbv3m12KQ2WM4LheyBWKdVBKeWHcTB561nLbAWG2u7fB2zXxl+mrcBA21lLHYBYYKcTahJVGDx4MDk5OXz00Udml1LvlbfNfvfdd6VtthsFBQUxefJk5s2bJ9c2uEidg8F2zGAs8AmQCGzSWv+ulJqtlLrTttgaoLlSah/wGDDN9t7fgU3AH8DHwKNaa+n85kLe3t488cQTLFmyhJycHLPLqbesVitPP/20tM02yfXXX0/btm1Zt26d2aU0SKo+Din07NlT79q1y+wy6rVnnnmG/Px8nnzySbNLqXcsFguzZs0iLS2NxYsXS4dUkxw/fpwhQ4bwyiuvEBMTY3Y59YJS6getdU9Hy9Wbg8/CuR555BF27tyJBGztSNtsz9GyZUuGDRsm8za4gARDIxUYGMjUqVOZN28eJSUlZpdTL5S3zfbz85O22R5iwIAB5ObmyjEzJ5NgaMSuvfZaOnXqxMsvv2x2KR6vvG1269atmTt3rrTN9hDe3t4kJCSwZMkScnNzzS6nwZBgaOQmT57M5s2bSUlJMbsUj5WZmcnIkSPp3r07CQkJ0jbbw3Tt2pWbbrqJ5557zuxSGgz5CW/koqKiGDlyJHPnzsVqtZpdjscpb5t90003MWHCBOmQ6qEeeeQRvv32W3788UezS2kQJBgE9913HxaLhXfeecfsUjzKgQMHGDFiBIMGDZK22R4uMDCQKVOmMHfuXDlm5gQSDAIvLy8SEhJYtmwZmZmZZpfjEZKSkhg9ejSPPPKItM2uJ3r37k379u1Zu3at44VFtSQYBACxsbHcddddLFq0yOxSTLd7927GjRvH9OnTue2228wuR9TClClT2LhxI4cPHza7lHpNgkGcMWLECH7//Xd27Nhhdimm2bFjB//85z+lbXY91aJFC4YNG8a8efPk2oY6kGAQZwQEBDB9+nQWLFhAYWGh2eW43bZt25g5c6a0za7nBgwYQH5+Ph988IHZpdRbEgzCzuWXX063bt1YtWqV2aW41TvvvMOzzz7Liy++yMUXX2x2OaIOyo+ZPf+oyTT5AAAauElEQVT889IP7DxJMIhzTJo0iQ8++IA9e/aYXYpbbNiwgTVr1rBy5Uppm91AxMXF0bdvX5YsWWJ2KfWSBIM4R3h4OGPHjmXOnDkN+toGrTXLly9ny5YtrF69WhqxNTCjR4/m+++/l35g50GCQVTqjjvuICAggI0bN5pdikuUt83+5ptvWL16NS1atDC7JOFk0g/s/EkwiEoppUhISGD16tWcOHHC7HKcymKxMHPmTPbs2cPKlStp1qyZ2SUJFynvB/bqq6+aXUq9IsEgqtSuXTsGDBjAwoULG8ypfyUlJUydOpWcnByWLl0qbbMbgcmTJ7Np0yYOHjxodin1hgSDqNZDDz3E4cOH+eKLL8wupc4KCgqYOHEiPj4+0ja7EYmKimLEiBFybUMtSDCIavn5+TFjxgyeeeYZTp8+bXY55y0vL49HH32U6Oho5s2bJ22zG5l+/fpRVFTEe++9Z3Yp9YIEg3CoR48eXHnllSxbtszsUs5Ledvsbt268cQTT0jb7EbIy8uLJ554gqVLl5KdnW12OR6vTr8hSqlwpdQ2pdRe29dzjuIppborpf6nlPpdKfWLUmpAhddeVUodUEr9ZLt1r0s9wnXGjx/P9u3b+fXXX80upVbS0tKkbbYAoHPnztx6660sXrzY7FI8Xl3/dZoGfK61jgU+tz0+WwHwoNb6QqAvsEQpFVbh9X9qrbvbbj/VsR7hIqGhoUyaNIm5c+dSVlZmdjk1cvDgQYYPHy5ts8UZI0eOZPfu3ezcudPsUjxaXYPhLqC8x+1a4O6zF9Ba79Fa77XdPwacBCLruF1hgptuuonIyEg2bNhgdikOJSUlMWrUKGmbLeyUz9swf/58ubahGnUNhhZa6zTb/eNAtVcJKaV6AX7A/gpPz7UNMS1WSvlX896RSqldSqld6enpdSxbnA+lFNOnT2f9+vWkpqaaXU6Vdu/ezfjx46VttqjUNddcQ+fOnVmzZo3ZpXgsh8GglPpMKfVbJbe7Ki6njfPAqjwXTCkVDawH/qG1Lu+zMB2IA/4KhANTq3q/1nqV1rqn1rpnZKTscJilVatWDB06lPnz53vkqX87duxgypQpzJkzR9pmiypNnjyZ//znPzLXeRUcBoPW+kat9UWV3N4FTtj+4Jf/4T9Z2TqUUqHAB0CC1vrbCutO04Zi4BVAeh3XA4MHDyYrK4uPP/7Y7FLsfPbZZ8ycOZNFixZJ22xRrcjISEaNGsW8efMadD+w81XXoaStwFDb/aHAu2cvoJTyA7YA67TWm896rTxUFMbxid/qWI9wAx8fH5544gmWLFlCXl6e2eUA8O6777Jo0SJpmy1q7O9//ztlZWVs3brV7FI8Tl2DYQHwN6XUXuBG22OUUj2VUqtty/QHrgUequS01NeUUr8CvwIRwJw61iPc5MILL+TGG2/0iLbGr732mrTNFrXm5eXFjBkzePHFF8nKyjK7HI+iPHGc2JGePXtqaaVrvvz8fPr168ecOXPo0aOH27evtWblypVs27aNZcuWSYdUcV6ef/550tPT+fe//212KS6nlPpBa93T0XJyCag4b0FBQUyZMoW5c+e6/dQ/q9XKM888w9dffy1ts0WdjBgxgp9//pnvvvvO7FI8hgSDqJPevXvToUMHt7Y1tlgszJo1i+TkZGmbLeqsSZMmTJs2jXnz5lFcXGx2OR5BgkHU2ZQpU9i4cSMHDhxw+bbK22ZnZ2dL22zhNFdeeSVdu3aVaxtsJBhEnUVFRTFy5EiXn/onbbOFKz3++ONs2bJFrm1AgkE4Sb9+/SgpKXHZqX/SNlu4WkREBKNHj27wc53XhASDcAovLy8SEhKqP/VPaygpAYulVuvOzMxk1KhRXHzxxdI2W7jUPffcg9aad955x+xSTCW/YcJpOnfuzB133MGiRYuMJ6xW+PprmD4d/vY36NQJunSBCy6A7t1h6FBYvRqq6X2VlpbGiBEjuPHGG5k4caJ0SBUuVf4PzvLly8nMzDS7HNPIdQzCqQoLCxnYvz8LL7+cuPfeg8xMYw+hSRPw9wcvL2PPoawMCguN8FAKbrkFZsyAli3PrOvgwYOMHTuWBx54gAEDBlSzVSGca+nSpRw7dox58+aZXYpTyXUMwhRNcnNZXVxM03nzsOblQdOmEB5uBEP5EJBS4OsLoaEQFgbBwfDBB9CnD/znP6A1ycnJjB49mjFjxkgoCLcbPnw4v/32Gzt27DC7FFNIMAjnSUmBO+4gMiUFa0gI6TWdI9rbG5o1M4JjyhSOTprEuLFjmTp1qrTNFqYICAhg+vTpLFiwgKKiIrPLcTsJBuEcJ07AgAGQmwthYbRo2ZLcnJza/VL5+3Paywu1ciUru3fn+uuvd129QjhwxRVX8Je//IXVq1c7XriBkWAQdac1TJ4MWVnG8BBGB9bIqCjS0tKqnqTjLHl5eRw7cYKwdu3o8M478MsvrqtZiBp47LHHePfdd9m3b5/ZpbiVBIOou3fegR07jOMFFYSFhaG8vMjOzna4ipycHI6fOEFMTAyBwcHGcYgJE6C01FVVC+FQ8+bNGTNmDHPnzm1U1zZIMIi6sVph0SLjjKOzTiVVQHTLlqSnp1NaVlblKjKzskjPyKBdu3Z/Xs0cGgqpqfDll66rXYgauPvuu/Hy8mLLli1ml+I2EgyibnbuNI4vNGlS6cv+/v6EN2vG8ePHybNYmJyaytVJSdy+bx8f5eZyMj2d7Oxs2rdrh7+fn/2blYJVq9zwTQhRtYrXNmRkZJhdjltIMIi6+eQT4zqFai48ax4RQXFxMbMPH8ZXKT7t3Jl/t2rF7MOH+SM3l/bt2lXe4iIkBH78ETxkljjReHXs2JF77733z4s3GzgJBlE3338PDprZeSlFWIsWfJaby8jmzWni5UVUTg5/9fbm55AQfHx8Kn9j+fUOyckuKFyI2hk2bBiJiYn897//NbsUl5NgEHWzd69xfMGBTB8ffL28CMjJITU1FUtZGZdGRXHQ0QQ/paXQyM4IEZ7J39+f6dOns3DhQgoLC80ux6UkGMT50xqKiv68orkaBVYrYQEB5OXmcvrUKQIDA/ErK+O0o4Z6FovROkMID3DZZZfRrVs3XnrpJbNLcak6BYNSKlwptU0ptdf2tdKptJRSFqXUT7bb1grPd1BKfaeU2qeU2qiU8qvs/cJDKWVctVwDgV5eFFitXNCpE9GtWlFmsXA8N5eSvDz27ttHamoqGRkZnM7Pp6xiWNRiG0K4w6RJk3jvvffYs2eP2aW4TF33GKYBn2utY4HPbY8rU6i17m673Vnh+YXAYq11JyAbGFbHeoS7tWhhtNJ2IMbPDwtwzGIhrGlTWrZoQXZICJe2bElMTAwhoaFYLBYyMzLYt28fe/fu5UhqKjmFhfyWmdlozgYRni88PJyxY8e6fGIqM9U1GO4C1trurwXurukbldE/+QZg8/m8X3iI7t2N4SQHmnh5cUNICCvS0ym0Wvm5oICvTp3i9qZN8ffzo2loKC1atKBdu3Z06dKFdu3a0TQ0FG2x8Mbu3fTv35++ffsyceJEVq5cyVdffcXJkyepj92BRf13xx134Ovry+bNmx0vXA/Vqe22UipHax1mu6+A7PLHZy1XBvwElAELtNbvKKUigG9tewsopdoCH2mtL3K0XWm77UHeeAP+3/8756rnyuRZLMw6dozv8vNp6u3NuKgo+jZtWvUbiouNs5J27UIrRVpaGklJSWduiYmJAMTFxREfH09cXBxxcXFER0fLvA3C5VJSUhg5ciRvvPEGkZGRZpdTIzVtu+0wGJRSnwEtK3kpAVhbMQiUUtla63OOMyilWmutjyqlOgLbgT5ALrUIBqXUSGAkQExMzKWHDh1y9L0Jd8jLg7/+1bjArarTTs9XdjZMmgRjx1b6staa9PT0MyFR/rWkpORMSJSHRuvWrWXmN+F0y5cv5+DBgyxcuNDsUmrEacHgYCPJQG+tdZpSKhr4UmvdxcF7XgXeB/4DpAMttdZlSqkrgJla65sdbVf2GDzM9OmwaZPROttZSkuNIar/+z/jOEYtZGRknLNnkZ+fT5cuXez2LmJiYiQsRJ2UlJQwYMAAHnvsMa655hqzy3HIXcHwNJCptV6glJoGhGutp5y1TDOgQGtdbBs++h9wl9b6D6XUW8B/tNZvKqVWAL9orZc52q4Eg4fJyoLrrzdmZauiNUataA05OTBlCowaVff1AdnZ2eeERU5ODp07d7YLi/bt2+MtZ0GJWti5cyezZ89m06ZNBAYGml1OtdwVDM2BTUAMcAjor7XOUkr1BEZrrYcrpa4EVgJWjIPdS7TWa2zv7wi8CYQDu4H7tdbFjrYrweCBPv0Uxowx2ljUdUgpJwfi42HLFucPT1WQl5dnFxZJSUmcPHmS2NhYu7Do2LFj1VdnCwH861//Ijw8nIkTJ5pdSrXcEgxmkWDwUCtXwsKFRjhU1vvIEa2NiX5atYK334aICOfX6MDp06fZs2eP3XGLY8eOccEFF9gdt+jUqRN+Zzf9E41WdnY2AwYM4IUXXqBLl2pH000lwSDMsX49zJljtOMODa22uZ6d0lLIz4cLL4Q1a0wJhaoUFBSwd+9eu7A4cuQI7dq1O7NXER8fT2xsLP41aA8iGqatW7eyefNmXn31VY89diXBIMyzdy9MnAh79hh7AaGhlbfN0No4JbWoyBgyevxxePjhenGlc3Fx8TlhcfDgQdq0aXNOWHj6uLNwDq01o0aNok+fPgwYMMDsciolwSDMZbUas7q99BJ8840xtGSxGM+D8bisDMLDjTC47z6P2ks4HyUlJezfv/9MUCQlJbF//35atWpld+ps586dCQ4ONrtc4QIHDx5k+PDhvP7660RFRZldzjkkGITnKC429h727YOCAmOPoEUL6NoVoqJqPtxUD5WVlZGSkmJ3NtTevXuJioqyO2YRFxdHqG2+bFG/rVq1ir179/L000+bXco5JBiE8FAWi4VDhw7ZXZS3Z88ewsLCzrmKu5kzrw0RblFSUsLAgQOZMGEC1113ndnl2JFgEKIesVqtHD582G7PIikpieDgYLuwiI+Pp3nz5maXKxzYtWsXTz75JG+99ZZHHWOSYBCinrNarRw9etQuKJKSkvDz87Pbq4iPjycyMlL6Q3mYWbNmERISwmOPPWZ2KWdIMAjRAGmtq2wmWDEspJmg+XJycujfvz/PPfcc8fHxZpcDSDAI0WjUpJlgeWhIM0H3ev/993nzzTdZu3atR7RakWAQopHLyMggOTnZLiykmaB7aa0ZM2YM1113HYMGDTK7HAkGIcS5qmsmWHEoSpoJOs/hw4f5xz/+weuvv06LWnYKdjYJBiFEjVTWTDA9PZ1OnTrZhYU0Ezx/L730EklJSSxatMjUOiQYhBDnLT8/n+Tk5GqbCcbHx3PBBRdIM8EaKCkpYfDgwYwdO5bevXubVocEgxDCqapqJti+fXu7sJBmgpX78ccfeeKJJ9i8ebNp1zZIMAghXK6qZoJt27Y9Jyw86UIvs8yePZvAwEAmT55syvYlGIQQpqismWBKSgrR0dF2Z0N16dKFoKAgs8t1q9zcXPr168eSJUvo2rWr27cvwSCE8BjSTPBPH374Ia+99hrr1q1z+5lfEgxCCI9WXTPBs1t+hIWFmV2u02itefTRR7nqqqsYMmTIWa9BZiZkZxv3w8IgMtJ5DYglGIQQ9Y7VauXIkSN2YZGcnExQUNA5YVGfmwmWX9uwYcMGIiOj+eoreP11+OEHOHXqz5lxLRYIDIRu3WDwYLjhBqjLSWBuCQalVDiwEWgPHAT6a62zz1rmemBxhafigIFa63eUUq8C1wG5ttce0lr/5Gi7EgxCNB4VmwlWPMhdsZlg+df61Exw9eo1bN1q5dix4eTmGjUHBhqTGZZ/C1ob81kVFnLm9YQE+PvfK58U0RF3BcNTQJbWeoFSahrQTGs9tZrlw4F9QButdYEtGN7XWm+uzXYlGIRo3KpqJqiUOueYhSc2E8zJgUmTLLz1VjoREcFERNRsRr/iYmOuq8svhyVLjGGm2nBXMCQDvbXWaUqpaOBLrXWXapYfCVyntR5ie/wqEgxCCCeoTTPBNm3amBYWmZnQvz8cPAh+fgUcO3aUCy7oiJdXzQ5Ea20ES8uWsHkzREfXfNvuCoYcrXWY7b4CsssfV7H8duBZrfX7tsevAlcAxcDnwDStdbGj7UowCCFqqrpmghWHotq2bevyZoLFxXD33bB3r3FgGSAt7RhKedGyZctarSsnB9q0gQ8+gJqe9eu0YFBKfQZUVnECsLZiECilsrXWlc5FaNuj+AVopbUurfDcccAPWAXs11rPruL9I4GRADExMZceOnTIwbcmhBCVy87OPicszm4mGB8fT7t27Zx6SulTT8HKlUYolO+wWCwWUlL206ZNW5o0aVLL78M4KP3vf9dseY8bSlJKTQAu1FqPrOL13sBkrfXtjrYrewxCCGdzdTPBpCS44w7jv/uz356Xl0tmZibt23eo1RCXxWKcxbRpE/To4Xj5mgZDXVslbgWGAgtsX9+tZtlBwPSKTyilom2hooC7gd/qWI8QQpyX0NBQevXqRa9evc48V7GZ4Pfff8/69etJS0ujY8eOtW4m+NJLxh/yyjIlNDSUnJwcsrKyKCpaQkHBTqzWQnx8Imje/EHCwu6udJ3lOzPLlxvrd5a67jE0BzYBMcAhjNNVs5RSPYHRWuvhtuXaA/8F2mqtrRXevx2IBBTwk+09px1tV/YYhBBmcdRMsHzvomIzwZwcuOwy43TTqkamSkpKOHjwAK1aaQIDO+Ll5Udx8UEOHRpJ27bP0aRJ5dODWq2QlwfffGMckK6OW/YYtNaZQJ9Knt8FDK/w+CDQupLlbqjL9oUQwt0CAwPp1q0b3bp1O/Pc2c0Et2zZYtdM0GK5juLiKwgK8gMqP8Dt5+dHeHhzsrMLCA62XeGGQilFaWlqlcHg5WXcdu6EO+90zvcos24IIUQd+fv7c9FFF3HRRRedea5iM8E1a0rJzMwjIyMLPz9fAgIC7G7lp6o2bx7OgQO5HDw4i6KibWhdTEBAF4KDr6p2+6Wl8NNPEgxCCOHRyq/Mjo+P56OPjOsNQkIiKS4upqioiKKiIvLyTlFcXISPj8+ZkAgLCyMjYzCxsQkUF/9OQcEPKFX98Qt/f/jNiUdoJRiEEMLFCguN4R6l1JkA+JOmuLiEoqLCM4FRUlJCSUkZgYHdyc39kOzszYSHD6xy/V5ef7bNcAYJBiGEcDF/f+MgceUU/v7++Pv707Rp+XMa45wcAAslJanVrl9rYxvO4trL/IQQQhAXZxwHcKSsLIu8vE+xWgvR2srp0/8jN/cTgoJ6Vfu+4mLoUmUzotqTPQYhhHCxiy+uabtsRXb2ZtLS5gFWfH2jadHicUJCrq32Xd7ecOmlzqjUIMEghBAu1qOHMZRktVbfLtvHpxnt2q2q1bqtVmMoqafDqxNqToaShBDCxSIjoU8f40I0Zzt1Cnr1gpgY561TgkEIIdxgpK1LXNUHoWuvfG9hzBjnrRMkGIQQwi169IB+/SA31/GyNZWbC337wjXXOG+dIMEghBBuk5Bg9DNyRjjk5UHz5jC70okK6kaCQQgh3CQ4GN54A5o1MxrrnU8PU62NYAkKgtdfh/Bw59cpwSCEEG4UEwPvvANduxrhUJPrG8qVlhrv6dABtmyBTp1cU6MEgxBCuFmrVsYf9mnToKTE+GOfn1/5gWmrFQoKjGWKimD8eGM6z/btXVefXMcghBAm8PaGESNg4EB47z1Yv96YC9rH589pP7U29hI6doT77zfmi/6zbYbrSDAIIYSJQkKMeZsHDzb2HvbtM/YOwAiBTp2c2wepJiQYhBDCQ/j5GccezCbHGIQQQtiRYBBCCGFH6fM5kdZkSql04JATVxkBZDhxfQ2VfE6OyWdUM/I5OeaKz6id1jrS0UL1MhicTSm1S2vtxN6EDZN8To7JZ1Qz8jk5ZuZnJENJQggh7EgwCCGEsCPBYKjdzBiNl3xOjslnVDPyOTlm2mckxxiEEELYkT0GIYQQdhplMCil+imlfldKWZVSVR71V0r1VUolK6X2KaWmubNGT6CUCldKbVNK7bV9bVbFchal1E+221Z312kGRz8bSil/pdRG2+vfKaXau79K89Xgc3pIKZVe4ednuBl1mkkp9bJS6qRS6rcqXldKqedtn+EvSqkerq6pUQYD8BtwL/B/VS2glPIGXgRuAboCg5RSHnCxultNAz7XWscCn9seV6ZQa93ddrvTfeWZo4Y/G8OAbK11J2AxsNC9VZqvFr9DGyv8/Kx2a5Ge4VWgbzWv3wLE2m4jgeWuLqhRBoPWOlFrnexgsV7APq11ita6BHgTuMv11XmUu4C1tvtrgbtNrMWT1ORno+Jntxnoo1R5z8xGQ36HakBr/X9AVjWL3AWs04ZvgTClVLQra2qUwVBDrYEjFR6n2p5rTFpordNs948DLapYLkAptUsp9a1SqjGER01+Ns4so7UuA3KB5m6pznPU9Hfo77Yhks1KqbbuKa1ecfvfogbbXVUp9RnQspKXErTW77q7Hk9V3edU8YHWWiulqjqFrZ3W+qhSqiOwXSn1q9Z6v7NrFQ3Se8AbWutipdQojL2sG0yuqdFrsMGgtb6xjqs4ClT876WN7bkGpbrPSSl1QikVrbVOs+26nqxiHUdtX1OUUl8ClwANORhq8rNRvkyqUsoHaApkuqc8j+Hwc9JaV/xMVgNPuaGu+sbtf4tkKKlq3wOxSqkOSik/YCDQKM64qWArMNR2fyhwzp6WUqqZUsrfdj8CuAr4w20VmqMmPxsVP7v7gO268V005PBzOmus/E4g0Y311RdbgQdtZyddDuRWGOJ1Da11o7sB92CM0xUDJ4BPbM+3Aj6ssNytwB6M/34TzK7bhM+pOcbZSHuBz4Bw2/M9gdW2+1cCvwI/274OM7tuN3025/xsALOBO233A4C3gH3ATqCj2TV76Oc0H/jd9vPzBRBnds0mfEZvAGlAqe3v0jBgNDDa9rrCOLtrv+13rKera5Irn4UQQtiRoSQhhBB2JBiEEELYkWAQQghhR4JBCCGEHQkGIYQQdiQYhBBC2JFgEEIIYUeCQQghhJ3/D2c+44qmjAljAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX++PHXhx1kdV9QAbcys0zHstTSdNSm1DS5TH3TNHUas5rcM9vMxt1pcqppc1x+UxxAM7TSMsecFitr2nPfEDQXEGS9wP38/jhoZOxc7uFy38/Hgwdc7uHe90F8n3Pen8/5vJXWGiGEEJ7Fy+oAhBBCuJ4kfyGE8ECS/IUQwgNJ8hdCCA8kyV8IITyQJH8hhPBAkvyFEMIDSfIXQggPJMlfCCE8kI/VAZSnadOmOioqyuowhBDCrXz55ZdntNbNKtuu3ib/qKgodu/ebXUYQgjhVpRSR6uyXb1N/kIIC+Xnw7Fj5mcfH4iMhNBQq6MSTiTJXwhhSk2FN96Ad96Bo0fB1xeUAq2hsBCaNYMbb4S774YrrjCfE25Lkr8Qnu7sWXjiCdi6FRwOCAiAsDDwKjUfRGvIyYGkJNiwAS6/HJYuhS5drItb1IrM9hHCk33wAQwcCFu2QEgIRERAYOCvEz+YZ/n+/ubzoaGwZw/cdhu88IJ5YBBuR5K/EJ5qwwb405+gqAjCw3+b8MujlHkACAyE5cth3jzzikG4FUn+QniinTth9mwICjKTeE34+prloTfegL//3bnxiTonyV8IT3PuHDz0kJm8/fxq91peXuZVwAsvwLffOic+4RKS/IXwNIsWQVaWedbvDD4+Zino4Yel/ONGJPkL4UnS081afyVz9hPS07n78GH67NnDk2lplb9uaKh5X8CnnzopUFHXJPkL4UnWrzfPzr29K9ysqY8P9zZtyvCwsKq/ttbw6qu1DFC4ilOSv1JqlVLqlFLq+3KeV0qp55RSB5RS3yqlrnHG+wohqmnrVrNMU4mBoaHcFBJCWCUHiV8JCYFPPpHSj5tw1pn/amBoBc8PAzqVfEwGXnTS+wohqsrhgB9+MG/iqgsXDhRHjtTN6wunckry11rvBNIr2GQEsFabdgHhSqlWznhvIUQVpaebc/qrcOZfY0pJ8ncTrqr5twFSSj0+XvI9IYSr2O1VvpHLbrdz8uefOZuejt1ur/p7aA0FBTUMULhSvVrbRyk1GbMsRLt27SyORogGxte3wnq8BnJyckhPTycvL4/w8HCCgoI4lZmJvbAQP1/fyt9DqdrfOyBcwlVn/qlA21KPI0u+9yta65e11r201r2aNau0F4EQojqaNDHr8sXFv/p2scNBekYGBw8e5NSpU4SGhBDTsSMRTZviHxBAQFAQh44do/CSnyuT1tC+fR3tgHAmV535JwNTlVLxwLVAptb6hIveWwgBZsmna1f48UcIDqbAbicjPZ3MrCwaBQXRulUrAoOCUMDLp0/z8pkzF3/0vcJC7jx0iFmdOlHuQs4Xriqio+t6T4QTOCX5K6XeAG4CmiqljgNPAL4AWut/Au8AtwAHgFxgvDPeVwhRPY5Bgyj47DNOZ2SQn5dHeEQEMdHR+F5S0pncrBmTS119O7Tm6JEjnD17lqZNmpT94ufPQ58+ld5DIOoHpyR/rfUfK3leA/c7472EENWXnZ3Npk2b2LJ5M4uzsght3pzIyEi8qtiQxUspItu25fDhwwT4+xMcHFz2hhMnOjFqUZfkDl8hGrDDhw+zePFihg8fznfffcf0RYtoMWkS4VDlxH+Br48PkZGRpKWlUXDpDKDz56F1a+jb13nBizpVr2b7CCFqz+Fw8NFHHxEfH8+BAwcYPXo0hmFwcRLFvHmwfTvk5VV7OeegwECaNW/O8ePHiYqKwtvLyxxALi6GZ5+tek8AYTlJ/kI0EFlZWSQnJ5OQkEBERAQ2m41Bgwbhd+nUy8aNYcUKmDzZrM9Xc2pmRHg4+Xl5pKWlEdm6NSory3ytHj2cuDeirknyF8LNHTx4EMMweP/99+nXrx8LFy7kiiuuqPiHBg6E+fPhscd+6dtbDS1atuT44cOcT0khdNw4mDmzFnsgrCDJXwg3VFxczM6dOzEMgyNHjjB69GiSkpJoUt5MnLLceafZk3fmTLPBS1iYeZNWZbTG6/x52oSH81pAAJ1vuYWbpNzjdiT5C+FGMjMz2bhxI4mJiTRv3py4uDgGDBjwm6maVTZsGPTsCXPnwo4d5lVAo0ZmKaj0gUBrc12gnBzz+zExeC9fTl8vLx588EHaRUURExPjlH0UrqHMWZj1T69evfTu3butDkOIemHfvn0YhsH27du58cYbsdlsXH755c59k8OH4fXX4d134cQJczmICweAwkKzYcsNN8D48WZ9v+S5zZs3s2rVKtasWUNISIhzYxLVppT6Umvdq9LtJPkLUT8VFRWxY8cODMMgNTWVO+64g9tvv52IiIi6f/Pz583VOfPzzYNAmzZQwZIry5cv5+jRozz77LN4SQnIUpL8hXBTGRkZvPnmmyQlJdGmTRtsNhs33XQTPnW5FHMtFRUVMXXqVLp168bUqVOtDsejVTX519+/JiE8zE8//YRhGHz44YcMHDiQZ599ls6dO1sdVpX4+PiwaNEixo4dS5cuXRg8eLDVIYlKSPIXwkJFRUVs376d+Ph4Tp06xZgxY3j44YcJq07v3HoiPDycZcuWMWXKFNq3b+82By5PJclfCAukp6ezfv16NmzYQPv27bn77rvp378/3m6+KFrnzp2ZNWsWM2bMYO3atYSHh1sdkiiHJH8hXOj777/HMAw++ugjBg8ezMqVK+nYsaPVYTnV73//e/bs2cMjjzzCP/7xD7c/oDVUMuArRB2z2+1s27YNwzDIyMggNjaW4cOHExoaanVodcbhcPDQQw8RHR3NtGnTrA7Ho8iArxAWO3369MXSTseOHbn33nvp27evR0yF9PLy4plnnmHcuHF06dKFP/zhD1aHJC4hyV8IJ9Ja89133xEfH8+uXbsYMmQIL730EtEe2N0qNDSU5cuXM3nyZKKjo+natavVIYlSJPkL4QR2u52tW7diGAY5OTnExsYyd+7c8pueeIiYmBgeffRRZs6cybp162jcuLHVIYkSkvyFqIVTp06RlJTExo0bueyyy/jzn/9Mnz59PKK0U1UDBgxg3759zJo1ixdffLHm6xAJp5K/UCGqSWvNV199xezZs4mLiyM3N5dXX32V5557jhtuuEESfxkmTZpEaGgoy5YtszoUUUJm+whRRQUFBWzZsgXDMCgoKMBms3HrrbcSFBRkdWhuIScnh3HjxnHnnXcyatQoq8NpsGS2jxBOcuLECRITE0lOTqZbt248+OCD9O7dW87wq6lRo0asWLGCe++9l44dO9K9e3erQ/JokvyFKIPWmi+//JL4+Hi++uorbr31VlavXk1kZKTVobm1du3a8eSTTzJ79mzWrFlD8+bNrQ7JY0nZR4hS8vLyePfddzEMA601NpuNYcOGSWnHyf71r3+xY8cOXnnlld/2GBa1Iks6C1ENqampJCYmsmnTJq6++mri4uLo1asXqiptDUW1aa155JFHCAwM5PHHH5ffsxNJzV+ISmit+fzzzzEMg2+//Zbhw4ezbt06WrdubXVoDZ5SiieeeILx48eTkJCAzWazOiSPI8lfeJzc3Fw2b95MQkICPj4+2Gw2/vrXvxIQEGB1aB4lMDCQFStWcM8999CxY0d69uxpdUgeRZK/8BjHjh0jMTGRt99+m169ejF37lx69OghJQcLtW7dmgULFjB37lxWr15Nq1atrA7JY0jyFw2aw+Fg165dxMfH89NPPzFixAhef/11WrZsaXVookTv3r0ZN24c06dPZ9WqVXIF5iIy4CsapJycHDZt2kRCQgKBgYHYbDaGDBmCv7+/1aGJMmiteeKJJyguLmbBggVyNVYLMttHeKQjR46QkJDAli1buPbaa7HZbFx11VWSTNxAQUEBEydOZPDgwYwdO9bqcNyWzPYRHsPhcPDxxx9jGAb79u3j9ttvJz4+Xm4gcjP+/v4sW7aMcePG0alTJ/r06WN1SA2aJH/hts6fP09ycjIJCQmEhYURFxfHihUr5KYhN9aiRQsWLlzI7Nmzee2112jbtq3VITVYkvyF2zl06BCGYfDee+9xww03sGDBArp16yalnQaiR48eTJ48menTp7N69Wq5u7qOSPIXbsHhcLBz504Mw+DQoUOMHj2axMREmjZtanVoog6MHj2aPXv28MQTT7B48WJZRK8OyICvqNeysrLYuHHjxURvs9m4+eabpSGIB7Db7dx3331cf/31TJw40epw3IYM+Aq3tn//fgzD4IMPPqBfv34sXrxYesB6GD8/P5YsWcLYsWPp3Lkz/fv3tzqkBkWSv6g3iouL2bFjB4ZhkJKSwh133MH69eul76sHa9q0KUuWLOHhhx/mlVdeISoqyuqQGgxJ/sJy586d48033yQpKYlWrVphs9kYMGAAPj7y5ymgW7duPPDAA0ybNo01a9YQEhJidUgNglNGUZRSQ5VSe5VSB5RSc8p4/h6l1Gml1NclH1LAE+zZs4ennnqK22+/nZSUFFasWMGrr77K4MGDJfGLXxk+fDjXXXcd8+bNw+FwWB1Og1DrAV+llDewDxgMHAe+AP6otf6x1Db3AL201lOr+roy4NswFRUVsX37dgzD4OTJk4wZM4aRI0cSHh5udWiinisqKmLKlClcffXVTJkyxepw6i1XDvj2Bg5orQ+VvHE8MAL4scKfEh4lPT2dDRs2sH79etq2bctdd93FjTfeiLe3t9WhCTfh4+PD4sWLGTt2LF26dOHmm2+2OiS35ozk3wZIKfX4OHBtGduNVkr1x7xKeFhrnXLpBkqpycBkMHt9Cvf3448/Eh8fz3//+18GDRrEc889R6dOnawOS7ipiIgIli5dytSpU2nXrp38LdWCqwqrm4A3tNYFSqk/AWuAgZdupLV+GXgZzLKPi2ITTlZYWMi2bdswDIOzZ88yZswYZsyYQWhoqNWhiQbgsssuY8aMGcyYMYN169bJ31UNOSP5pwKlF+CILPneRVrrs6UevgosccL7inrmzJkzF0s7HTp0YPz48fTr10/uzhRON3ToUPbu3cucOXNYuXKllA9rwBn/K78AOimlopVSfkAckFx6A6VU6fY8w4GfnPC+oh7QWvPtt9/y6KOPMmbMGM6ePcuLL77ICy+8wI033iiJX9SZqVOnopRi5cqVVofilmp95q+1LlJKTQW2At7AKq31D0qp+cBurXUy8KBSajhQBKQD99T2fYW17HY777//PvHx8WRlZWGz2ZgzZ47MwRYu4+3tzcKFCy8OAA8bNszqkNyKrO0jquXUqVMkJSWxceNGOnfuTFxcHNdff72c4QvLHDx4kD/96U+sXLmSyy+/3OpwLCdr+win0VrzzTffYBgGn332GUOHDuWVV16hffv2VocmBB06dGDu3LnMnDmTtWvXynIgVSTJX5SroKCArVu3Eh8fT35+PrGxscybN49GjRpZHZoQvzJw4MCLA8AvvPCC3CFeBVL2Eb9x8uRJEhMTSU5OpmvXrthsNq677jop7Yh6zeFwMH36dFq1asWsWbOsDscyUvYR1aK15quvvsIwDHbv3s0f/vAHXnvtNbnZTrgNLy8vnn76acaNG8dbb73FiBEjrA6pXpPk7+Hy8/N55513SEhIoLi4mNjYWJ588klpnSfcUnBwMCtWrGDixInExMRw5ZVXWh1SvSXJ30OlpaVdLO1cddVVTJs2jd/97nfSB1e4vfbt2/P4448ze/Zs1qxZQ7NmzawOqV6S5O9BtNZ88cUXxMfH880333Dbbbexdu1a2rRpY3VoQjhVv3792L9/P7NmzeKll17Cz8/P6pDqHRnw9QC5ubkXSzsAcXFxDBs2jMDAQIsjE6LuaK2ZPXs2ISEhzJs3z2Ouaqs64CvJvwFLSUkhMTGRzZs307NnT2w2Gz179vSY/wRC5ObmMn78eO644w7GjBljdTguIbN9PJTD4eCzzz4jPj6eH374gREjRvDvf/+bVq1aVf7DQjQwQUFBLF++nAkTJtChQweuueYaq0OqNyT5NxA5OTls3rwZwzAICAjAZrOxZMkS/P39rQ5NCEtFRkby9NNP88gjj7BmzRpatmxpdUj1giR/N3fs2DEMw+Ddd9+ld+/ePPbYY1x99dVS2hGilGuvvZa7776bGTNm8Nprr8lJEZL83ZLD4eCTTz7BMAz27t3LyJEjiY+Pp3nz5laHJkS9ddddd7Fnzx4WLFjA/PnzPf4ESQZ83cj58+fZtGkTCQkJhISEYLPZ+P3vfy/T2ISoovz8fO69915uueUW7rrrLqvDqRMy4NuAHDp0iISEBLZu3UqfPn2YP38+V155pcefuQhRXQEBASxfvpxx48bRqVMnevfubXVIlpHkX085HA7++9//YhgGBw8eZNSoUSQkJMjdikLUUsuWLVm4cCFz5szhX//6l8fe5CjJv57JysrirbfeIjExkYiICGw2G4MGDZLSjhBOdM011zBx4kSmT5/OqlWrPHItK6n51xMHDhzAMAy2bdtGv379sNlsXHHFFVaHJUSDpbXm6aefJicnh0WLFjWYMqrc4esGiouL+fDDDzEMg6NHjzJ69GhGjRpFkyZNrA5NCI9gt9uZPHky/fv3Z8KECVaH4xQy4FuPnTt3jo0bN5KUlETz5s2Ji4tjwIAB+Pr6Wh2aEB7Fz8+PpUuXMm7cODp37kzfvn2tDsllPCr5aw3ffQfvvQe7dsHevZCXB0pBixbQowf06wdDh0JoqPPff9++fcTHx/Of//yHm266iWXLlnHZZZc5/42EEFXWrFkzFi1axPTp03n11Vc9pje1R5R9tIbt22HJEjh0CIqKwN8fAgLgQmdCux3y882vfXxg1CiYPh1qW4EpKiriP//5D4ZhkJaWxh133MHtt99ORERE7V5YCOFUGzduZN26daxZs4bg4GCrw6kxqfmXyMiAefNgyxbw9YVGjcwz/YoUFcH58xAcDIsXm1cC1ZWenn6xtNOmTRvi4uK46aab8Pb2rtmOCCHq3OLFi/n5559ZtmyZ2/asluQPpKVBXBykpkJY2C9n+VWVl2deDfzlLzB1auUHDYAff/wRwzDYuXMnAwcOxGaz0blz55rtgBDCpQoLC5kyZQo9e/bkvvvuszqcGvH4Ad+MDDPxp6VBTSssgYHm1cLf/gZBQXDvvWVvV1hYyPbt2zEMg1OnTjFmzBimTZtGWFhYzXdACOFyvr6+LF68mLFjx9K5c2cGDhxodUh1pkEmf63h0UfNM/7altZ9fCAkBBYtgj59oGvXX547e/Ys69evZ8OGDURFRXH33XfTv39/Ke0I4cYaN27M0qVLeeCBB2jfvj0dOnSwOqQ60SCT//btsHWrWepxBl9fs+Tz4IPm2MGePd8THx/Pxx9/zODBg3n++ecb7B+IEJ7o8ssvZ9q0aUyfPp21a9cSWhfT/yzW4Gr+WsOQIXDsmDlg6ywOh4OTJ3Pp2vV5goI+JjY2luHDhzfIPwohhOlvf/sbBw8e5LnnnnObAWCPHfD95hu44w5znn5FA7QOh52TJxeRm/s5xcVZ+PpG0rz5VIKDr//VdkVFhWRkZJCRcQ4vrzCuvtqL7dubuM0fghCi5oqLi3nggQe47LLLePDBB60Op0qqmvwbXAZ77z1zqmblM3OK8fVtSbt2L9O58w6aNfszqalzsNvTAE1eXi6pqcc5dOgQxcXFJbW/FqSkNCM7u8H92oQQZfD29mbhwoVs27aNrVu3Wh2OUzW4mv+uXeYNXJXx8gqkWbPJFx+HhPTD17cVZ8/uJj+/Gw6Hg4iICFq1aoWX1y8DuL6+sGcPePAy4EJ4lLCwMJYvX86f//xnoqKi6NKli9UhOUWDO4Xdu9e8c7c6CgsLOXFiL5mZ+ykoaEKzZs3p0KEDjRs3+VXiN7eF/fudGLAQot7r1KkTc+bMYcaMGWRkZFgdjlM0uOSfm1u9m7nOnj3DDz98y+nTTxEUNJhGjTpRUJDPuXPnyMrKIicnm7y8POz2AoqKCiksdJCdXT/HSYQQdWfQoEEMHTqUOXPmUFRUZHU4tdbgBnw7dTLn5Vf1AHDuXDpHj84hKAgaN16A1oriYgcOR3GZn+32YFq3/hcxMf8hODiYkJAQgoODf/P1pR+XPicreArhfhwOBw8//DBt27ZlxowZVodTJo+9w7d5c8jKqlrdX2tNbu5KAgLy8fGZS+PGTVGq4qNGVhYsWjSLm276M9nZ2WRnZ3P+/PnffJ2Wllbuc9nZ2fj6+lZ48KjsQNKoUSOZcSSEi3l5ebFgwQLGjRtHcnIyw4cPtzqkGmtwyb9HD/MGr6ok/5MnF2K3H6ZTpxdJS8vg5MmTtGrVCih/qpBS0L27L40bN6Zx48Y1ilFrTV5e3sUDwaUfFw4Sp0+fLvfgkZeXR0BAQIUHjMoOJoGBgQ2me5EQrhISEsLy5cuZPHkyMTExdOvWzeqQaqTBJf++fc27cCtTWHiCc+c2oJQf+/cPRWtNQUEBDsdM2rSJLfNn7HZztk90dO1iVEoRFBREUFAQzZs3r9FrOBwOcnJyyjwwXPjIzMzk+PHj5V6hFBYWVlieqsrX0ltYeKLo6Ggee+wxZs2axbp16yrsvldQANnZ5oljcDDUl/8yTqn5K6WGAn8HvIFXtdaLLnneH1gL9ATOAjat9ZGKXrOmNf/MTHMaZmCguS5PdRQW2jl8+AiRkW0ICmr0m+czMmDSJJgzp9ph1UtFRUUVlq7KuyIp/djLy6tK4xwVXYXIWkjCXb3yyit8+umn/POf/7x4IuRwmFPON2yAL76AlBS48CeutXnyeN115s2o3btXbbXg6nDZHb5KKW9gHzAYOA58AfxRa/1jqW2mAN211vcppeKA27XWtopetzZLOs+ZA4mJNVvULScnh9TUVKKjo/D1/eUQXVRkziTatg3atatRWA2O1hq73V7hwaO8A8mF53JycvD39690rKOiklZQUJCMfwhLOBwOZs+eTUREBI88Mpf33oOnn4affzYPAoGBZgn6QoJ3OMwrgbw884AQE2Nu78z7hlyZ/PsAT2qth5Q8fgRAa72w1DZbS7b5VCnlA5wEmukK3rw2yf/MGRg4EIqLzV9+daWnnyUzM5P27aMuJpWMDPjTn2DWrBqFJMpxYfyjqgePsg4m+fn5BAUF1Xj2VUhICP7+/jL+IWokNzeXO++cQn7+Yxw40AE/PzPvVPbnpLVZDiouhjvvhLlzq3+PUllcOdunDZBS6vFx4NryttFaFymlMoEmwBknvP9vNG1qLsH8wANmjb665Z/GjRuTn1/AiRNptGnThsxMRbt28NBDdRGtZys9/tGiRYsavUZxcXGF4x/nz58nPT2dY8eOlXtgKS4urvTgUdlViUzf9Uy5uUGcOfNPvvwynaioXIKCgqr0c0qZ09KLi+H//T9z5YDVq83eIa5QrwZ8lVKTgckA7WpZW7nlFti3D1auNH/B1TsAKFq1asmRI0dJScmiffsw1q2r2gwi4Xre3t6EhobWaoXVC+WrisY6Tpw4UeEVio+PT5VnXJV3IJHylXvJzTXP2k+eDCAqKpS0tONER0fj41P1EwFvb7NE/eWXMHkyrF1b/a6DNeGM5J8KtC31OLLke2Vtc7yk7BOGOfD7K1rrl4GXwSz71Dawhx4yj6JLl/5ylK3qlX1xsRchIW05f/4H5swpIDJSFvNpyPz8/Go9fTc/P7/SsY4zZ86Uu01ubi4BAQG1mn0l03dda9kyOHgQwsNBqWAaN25MSspxoqLaV3rPUGlKma/x6adm8r/nnrqL+eJ7OqHm74M54HszZpL/ArhTa/1DqW3uB64sNeA7Smtd9nzKEs5q4A7w/fdmI5aUlMoPAoWFZh3Oy8uc2TNw4Hc88sg0Xn31Vdq3b++UeIQoi8PhIDc3t9qD5qW/ttvt1Z59Vdb0XTmAVO7rr2HMGHP65i8T1jSpqakopWjdujUV3TNUFrvdHBD+4AOIjKxZXC5dz18pdQvwLOZUz1Va62eUUvOB3VrrZKVUALAO6AGkA3Fa60MVvaYzkz+YSf0//4GXX4b//c8cC7DbzXqbUubcW6XM7991l3kpdyHXb9y4kXXr1rFmzRqCg53YIUYIJysqKiInJ6fGs6+ys7MBajX7Kjg4GJ/qDrS5oUmTzJwSHv7r72vt4MiRI4SFhdG4cROKi7M4cWI+2dm78PEJp1mzqYSFDS33dTMyzH7hc+fWLC6PbeZSFefOmYMr+/dDTo45HtC8udmfNzq69FH8F0uWLCEtLY0VK1ZIXVY0aHa7vcozrso7mPj5+dVq9lV9n7578qR5Q2loaNn1+cJCO0eOHKF16zacO/cMoGnV6jHy8/eRkvIQUVH/wt8/pszXLiw0p5bv3l2z2YqS/J2sqKiIKVOmcPXVVzNlyhSrwxGi3rp0+ZKqHjxKf52fn09gYGC1lywp/f2AgIA6K19t2ACzZ1fcJzw3N4eUlIM4HJPo0CERPz9zEkta2uP4+DSjefMHyv3Z7GxYswauvXTeZBV47MJudcXHx4fFixczduxYOnfuzKBBg6wOSYh6yVnLl1RWnsrIyODYsWPlHmSKiopo1KhRtQfNS3+Ut3zJV1+ZJeOKBAU1Iiwsj59/LsLH55cCvr9/J3Jzv6rwZwsL4Ycfapb8q0qSfzVERESwbNky7r//ftq1a0fnzp2tDkmIBsnLy6vW03cLCwsrLU+dPHmywqsSb2/vMq8qkpMnkJPTFIfDgZeXN97eXmV+Dgnx5fTp4Iv3DIHCyysYhyOnwtiVgu++q/GuV4kk/2rq0qULM2fOZMaMGaxdu5bwS0d7hBD1gq+vLxEREUTUZJ0XuLjYY1kHhS1bwvHx8ULrYux2e7n9P4qKTlBUlMXp02do3rwFvr6+OBw5eHn9du2w0ry84Pz5GoVdZZL8a2DIkCHs27ePOXPm8I9//MMjZjYI4WmUUgQEBBAQEEDTpk1/9dyzz5qlmfLuxnU4ijl37hxnz9opLITWrRW+vmaeKCjYV+5g7wVa1/1eMgw1AAAXnUlEQVRNpfV3OL2eu//++/Hz8+PZZ5+1OhQhhIvFxJhTxS9VUJDPiRMn2L//AHl5+URGdqBZs6EUFho4HPnk5n7D+fMfEhb2hwpfv6jI7EpYlyT515CXlxfPPPMMn3zyCcnJyVaHI4Rwod69zbNzk+b8+SyOHj3KsWPH8PHxoUOHGNq0aUNgYBAtWz6Cw1HAvn2DSU2dS8uWj1R65u/vby73XJekXlELFzr6TJo0iejoaK688kqrQxJCuECvXgDFnDmTwblzGfj4+NC4cWNCQkJ+s6yDt3cobdsur/JrOxzmTKK6Tv5y5l9L0dHRPP7448yePZvTp09bHY4Qoo7t27ePxMT5ZGR8SXa2JjIykqioaEJDw6q1nk95srLMJekvGWZwOkn+TtC/f39Gjx7NrFmzsJdVCBRCuLWioiLef/99Jk6cyF/+8hfato3kuecuJyysGf7+NbgNtxwOh/l50iSnvWS5pOzjJBMmTGDv3r0sWrSIxx57TBbGEqIBSE9PZ8OGDaxfv562bdsSFxfHTTfdhI+PDw4HJCebN3w5a8Z3ZiaMHHmhrFS3ZHkHJ8rNzWXChAmMGjWK2NgKFy0VQtRjP/74I/Hx8fz3v//l5ptvJjY2tsybOlNSYNgws0bfqOKp+5XKyjIPItu2mWsG1ZQs72CBoKAgli9fzvjx44mJiaGXKw7fQginsNvtbNu2jYSEBM6ePcuYMWOYMWNGhXcZt21rdt+6+25zPZ6aLvqbmWn+7Btv1C7xV4ec+deBzz//nHnz5rF69eqSNb2FEPXV6dOnWb9+PRs2bKBjx47YbDb69etXrVVFv/7arNOnp5uLvVX1R4uKzDt527WDVavMVYVrS1b1tNjrr7/O5s2bee211wisybqsQog6o7Xm22+/xTAMPv30U4YMGUJsbCwxMRXPv6/I+fOwYIG54qfDYZaBfH1/2zhKa7NhS16euXz8pElmsyln3dEryd9iWmueeuopCgoK+Otf/yoDwELUA3a7nS1btmAYBjk5OcTGxnLbbbcREhLitPc4ehRefx0MwywF+fiYCV9rM9kXFkKTJmapKDbW7CXiTJL86wG73c7EiRMZMGAA48ePtzocITzWyZMnSUpK4q233uLyyy/HZrPRp0+fOm0YozWcOgV795o1faWgcWO47DLzc12RAd96wM/Pj2XLljFu3Dg6depE3759rQ5JCI+htearr77CMAx2797NLbfcwmuvvUa7du1c8v5KQYsW5kd9JGf+LvDtt98yffp0aQIvhAvk5eXx7rvvkpCQQFFREbGxsdx6660ElbcEZwMjZ/71SPfu3bn//vuZNm2aNIEXoo6kpqaSmJjIpk2buOqqq3j44Yfp3bu3jLeVQ5K/i4wcOZK9e/cyb948aQIvhJNorfn8888xDINvvvmG4cOHs3bt2pKuWaIiUvZxIWkCL4Rz5ObmsnnzZhISEvDx8cFmszFs2DACAgKsDs1yUvaph6QJvBC1c+zYMRISEnjnnXfo1asXc+fOpUePHlLaqQFJ/i4mTeCFqB6Hw8Gnn36KYRj89NNPjBw5kjfeeIMW9XUajZuQ5G8BaQIvROXOnz/Ppk2bSEhIIDg4GJvNxrJly/Dz87M6tAZBkr9FpAm8EGU7dOgQhmHw3nvv0adPH+bPn8+VV14ppR0nkwFfCzkcDv7yl7/Qrl07ZsyYYXU4QljG4XCwc+dODMPg0KFDjBo1ilGjRtGsWTOrQ3M7MuDrBi40gR83bhzJyckMHz7c6pCEcKnMzEzeeustEhMTadKkCTabjUGDBuHr62t1aA2eJH+LXWgCP3nyZGJiYujWrZvVIQlR5/bt24dhGGzfvp1+/fqxePFiunbtanVYHkWSfz0QHR3NY489xqxZs1izZo1c6ooGqaioiB07dmAYBqmpqYwePZr169fTuC5XORPlkuRfT/Tv35/9+/cza9YsXnrpJZnRIBqM9PR0Nm7cSFJSEq1bt8ZmszFgwACZ5GAxGfCtR7TWzJ49m+DgYGkCL9zejz/+iGEY7Ny5k4EDB2Kz2eS+FheQ9fzdlDSBF+6ssLCQDz74AMMwOHPmDGPGjGHEiBGEhYVZHZrHkNk+bkqawAt3dObMGTZs2MD69euJiYlh3Lhx9O/fXxYwrMck+ddDbdq0YcGCBcydO1eawIt6S2vNd999h2EYfPLJJ/z+97/nxRdfrFUfXOE6Uvapx6QJvKiP7HY7W7duxTAMsrOz66QPrqg5Kfs0AH/84x/Zt28f8+fPlybwwnKnTp0iKSmJjRs30qVLF+677z6uv/56Ke24KflXq8eUUsydO5fU1FRWr15tdTjCA13ogzt79mzi4uLIycnhlVdeYeXKlfTt21cSvxur1Zm/UqoxYABRwBEgVmudUcZ2xcB3JQ+Paa1lHYMqkibwwgr5+fkX++Da7XZsNhtPPPGEx/TB9QS1qvkrpZYA6VrrRUqpOUCE1np2Gdtla62r1bhWav6/Jk3ghSukpaWRmJhIcnIy3bt3x2az0bt3bznDdyMumeevlNoL3KS1PqGUagXs0Fp3KWM7Sf5OsHHjRtatWydN4IVTaa354osviI+P5+uvv+a2224jNjZW+uC6KVcl/3Na6/CSrxWQceHxJdsVAV8DRcAirfXGyl5bkn/ZFi9ezIkTJ6QJvKi13Nxc3n77bRISEvDy8rrYB1dmlrk3pyV/pdQ2oGUZTz0KrCmd7JVSGVrriDJeo43WOlUpFQNsB27WWh8sY7vJwGSAdu3a9Tx69Ghl8XscaQIvauvYsWMkJiby9ttv06tXL2w2G9dcc43MJmsgnDbVU2tdbpdxpdTPSqlWpco+p8p5jdSSz4eUUjuAHsBvkr/W+mXgZTDP/CuLzRNJE3hREw6Hg127dhEfH89PP/3EiBEjeP3112nZsqzzOuEJajvPPxkYBywq+fzWpRsopSKAXK11gVKqKXADsKSW7+vRpAm8qKrs7Gw2bdpEYmIigYGB2Gw2li5dir+/v9WhCYvVtubfBEgA2gFHMad6piulegH3aa0nKqWuB14CHJj3FTyrtX6tsteWmn/ltm7dyvPPPy9N4MVvHD58mISEBLZu3cp1112HzWaje/fuUtrxALKqp4dYuXIlP/zwgzSBFzgcDj766CPi4+M5cOAAo0aNYvTo0dIcyMNI8vcQ0gReZGVlXeyDGxERcbEPrjQE8kyyto+HkCbwnmv//v0kJCSwbds2+vXrx8KFC7niiiusDku4CUn+DYA0gfccxcXFF/vgpqSkSB9cUWOS/BsIaQLfsGVkZPDmm29KH1zhNPKX04BIE/iG56effsIwDD788EMGDBjA3/72N7p0+c0KKkJUmwz4NjDSBN79FRYWsn37dgzD4NSpU4wZM4aRI0dKH1xRJTLg66GUUjz55JNMmDCBxMREaQLvRs6ePcv69evZsGEDUVFR3H333fTv3x9vb2+rQxMNkCT/BkiawLsPrTXff/89hmHw8ccfM3jwYJ5//nk6dOhgdWiigZPk30BJE/j6zW638/7772MYBpmZmcTGxjJr1ixCQ0OtDk14CEn+DVjv3r255557mDFjhjSBrydK98Ht3LkzkyZN4oYbbpDluYXLSfJv4C40gX/66ad55plnZADYAlprvv76awzD4PPPP2fo0KG88sor0pFNWEpm+3gAu93OxIkTGThwIPfcc4/V4XiMgoICtmzZgmEY5OfnY7PZuPXWW2nUqJHVoYkGTGb7iItKN4Hv2LGjNIGvY2lpaSQlJZGcnEy3bt144IEHuPbaa6W0I+oVSf4eonnz5ixevFiawNeRC31wDcPgf//7H7feeiurV68mMjLS6tCEKJOUfTyMNIF3rtzcXN555x0SEhIAiIuLkz64wlJS9hFlGjlyJHv37mXevHnSBL4WUlJSSExMZPPmzfTs2ZNZs2bRs2dPGVAXbkP+53ug6dOnk5ubyz//+U+rQ3ErDoeDTz75hIceeojx48fj6+vLv//9b5YuXUqvXr0k8Qu3Imf+HkiawFdPTk4OmzZtIiEhgYCAAOLi4liyZIn0wRVuTZK/h5Im8JU7cuQICQkJbNmyhWuvvZbHH3+cq666Ss7wRYMgyd+DdenShZkzZzJjxgxpAl/iQh9cwzDYv38/t99+O/Hx8TRv3tzq0IRwKkn+Hm7IkCHs3buXOXPmeHQT+KysLJKTk0lISCA8PJy4uDjpgysaNJnqKTy6CfyBAwdISEjg/fffp2/fvthsNmmDKdyaTPUUVeZpTeCLi4v58MMPMQyDo0ePMnr0aJKSkmjSpInVoQnhMpL8BeAZTeDPnTvHxo0bSUpKokWLFhf74Pr6+lodmhAuJ8lfXNRQm8Dv2bMHwzDYsWMHAwYMYNmyZVx22WVWhyWEpST5i19pKE3gi4qKLvbBPXnyJGPGjOHNN9+UGU1ClJDkL35jwoQJ7N27l0WLFrldE/j09PSLfXDbtWvHXXfdxY033ih9cIW4hMz2EWXKzc1lwoQJjBo1yi2awF/og/vRRx8xePBgYmNj6dixo9VhCeFyMttH1ErpJvAdOnSgZ8+e5W9cXAxZWebnoCDzwwXsdjvbtm0jPj6ec+fOERsby8yZM6UPrhBVIMlflOtCE/hHHnnkt03gDx+GpCTYuRP27QOHw/x+cTG0aAE9esDIkTBgADh5Ns2pU6dYv349b775Jp06dWLixIn07dtXVigVohqk7CMq9frrr7N582azCXxaGjz2GHz+uZnw/f0hIAAu1NS1Brsd8vLAy8u8Cnj4Ybj7bvNxDWmt+eabbzAMg88++4yhQ4cSGxtLVFSUc3ZSiAaiqmUfSf6iUlpr5j/5JN0//5yRBw+iHA4IC4OqDAQXFEBuLlx1Ffz979C2bbXeu6CggK1btxIfH09+fj6xsbHcdttt0gdXiHJIzV84jdKaeVlZnP3oI9LDw2nSokXVf9jfH/z84NtvYcQIiI+HKqwgeuLEiYt9cLt27crUqVO57rrrpLQjhJNI8heVW7AA7+RkIqKjOXz0KH6NGhFSnRaQSkF4uDkoHBcHmzdD6fGDElprvvzySwzD4Msvv+TWW29l1apVtK3m1YIQonKS/EXFPv4Y1qyB0FB8vb2JjIzkeEoKflFR+Ff3BrDQUDh3DmbOhHXrLo4B5OXl8e6772IYBlprbDYbTz31FEEumjUkhCeS5C/Kl5dnDtb6+V0c0A0KDKRZ8+akpKQQHR2Nd3XLMGFhsGsXbNxI6rXXkpCQwObNm+nRowczZsyQdohCuIgkf1G+d96BjAwzYZcSER5Ofn4+qamptG3blsdTU/k8N5c8h4OmPj6MbdKEkeUso6CVIs/h4MQDD3DfZZdx24gRrFu37tfTSIUQdU6Svyib1vDSS1BOc5eWLVpw9NgxTp8+zfimTXnM1xc/Ly+OFBQw+ehRuvj7c3lg4MXtix0OMjMzSU9Px0spWgQEsPmJJ/Dv399VeySEKKVWUyeUUmOUUj8opRxKqXKnFimlhiql9iqlDiil5tTmPYWLnD4Nhw6Ve7euUorINm3IzMykaUEBfiXlH1Xy3PHCQgAK7HZOnjzJgQMHyM3NpXWrVkTHxBDs74//xx+7am+EEJeo7Zn/98Ao4KXyNlBKeQPPA4OB48AXSqlkrfWPtXxvUZf27DHP+iuov/v4+NA2MpKjx47x98xMtuTkUKA1XQIC6A4cO3aM/Px8wiMiiImJwbf0VURAAHz2Wd3vhxCiTLVK/lrrn4DKBuh6Awe01odKto0HRgCS/OuzgwfNG7QqmdIZEBBAy5YtiTt1ipnR0exKT+fTjAyyzpyhWZMmRLZti1dZfx/+/nDgQB0FL4SojCvumGkDpJR6fLzke6I+y839Zb2eSoSFhhIWFkbKsWN0cjiwBwezOzyc8LCwshM/mNM8CwqcGLAQojoqPfNXSm0DWpbx1KNa67ecGYxSajIwGaBdu3bOfGlRXX5+VVu+oUTzZs1o1qwZCvA6cYJUu73iH9D6l/WAhBAuV2ny11oPquV7pAKlb9GMLPleWe/1MvAymGv71PJ9RW20aWOWZiqRXlTE7txc+gYHE6AUu3Jy2JqZyV/bVHJxZ7eb7yGEsIQrpnp+AXRSSkVjJv044E4XvK+ojcsvr9JmCkjKyOCvJ07gAFr5+jK9RQv6h4RU/IP5+dCr0rWnhBB1pFbJXyl1O7ASaAa8rZT6Wms9RCnVGnhVa32L1rpIKTUV2Ap4A6u01j/UOnJRt9q3N6d5FhRUeAUQ4ePDy+3bV//1vbygb99aBCiEqI1aDfhqrd/UWkdqrf211i201kNKvp+mtb6l1HbvaK07a607aK2fqW3QwgW8vOCee8yBX2ez280DyuDBzn9tIUSVyPq4onw2mznXv+SGLafJzYWxY825/kIIS0jyF+Vr2RKmT4fsbHN2jjNkZ0PTpnD//c55PSFEjUjyFxW791648krIzKz9a9ntZo/fv/8dpBOXEJaS5C8q5u0Nq1aZA8DnztX8CiA/H3JyYPFiuPZa58YohKg2Sf6ico0bQ2Ii9OxpHgAqu4GrNK3Nn3E44B//gFGj6i5OIUSVSfIXVdO4MbzxBsyfD0VFZkLPzS3/SqCoyOwFkJUFffrABx/AsGGujVkIUS5Zz19UnZcX3HUX3HYbJCeb5aCjR8HX1zwIaG0uCXFh6YZRo8zpol27VmupCCFE3ZPkL6ovNBT+7//Mj/PnzeWfT50yB3MbNYJOnSAy8mKPXiFE/SPJX9ROSAj87ndWRyGEqCY5NRNCCA+ktLNu3nEypdRp4KjVcdRQU+CM1UG4kKftL8g+ewJ33d/2WutmlW1Ub5O/O1NK7dZae8ySlZ62vyD77Aka+v5K2UcIITyQJH8hhPBAkvzrxstWB+Binra/IPvsCRr0/krNXwghPJCc+QshhAeS5O8ESqnGSqn3lVL7Sz5HVLBtqFLquFLqH66M0Zmqsr9KqauVUp8qpX5QSn2rlLJZEWttKaWGKqX2KqUOKKXmlPG8v1LKKHn+M6VUlOujdJ4q7O80pdSPJf+mHyilatDDs36pbJ9LbTdaKaWVUg1iBpAkf+eYA3ygte4EfFDyuDxPAztdElXdqcr+5gJjtdZXAEOBZ5VS4S6MsdaUUt7A88AwoCvwR6VU10s2uxfI0Fp3BP4GLHZtlM5Txf39H9BLa90dSAKWuDZK56riPqOUCgEeAj5zbYR1R5K/c4wA1pR8vQYYWdZGSqmeQAvgPRfFVVcq3V+t9T6t9f6Sr9OAU0ClN57UM72BA1rrQ1prOxCPue+llf5dJAE3K+W2q9hVur9a6/9orS80dt4FRLo4Rmeryr8xmCdti4F8VwZXlyT5O0cLrfWJkq9PYib4X1FKeQHLgRmuDKyOVLq/pSmlegN+wMG6DszJ2gAppR4fL/lemdtorYuATKCJS6Jzvqrsb2n3Au/WaUR1r9J9VkpdA7TVWr/tysDqmizsVkVKqW1AyzKeerT0A621VkqVNYVqCvCO1vq4O5wYOmF/L7xOK2AdME5r7XBulMIqSqn/A3oBN1odS10qOWlbAdxjcShOJ8m/irTWg8p7Tin1s1Kqldb6REmyO1XGZn2AfkqpKUAw4KeUytZaVzQ+YBkn7C9KqVDgbeBRrfWuOgq1LqUCbUs9jiz5XlnbHFdK+QBhwFnXhOd0VdlflFKDME8CbtRaF7gotrpS2T6HAN2AHSUnbS2BZKXUcK31bpdFWQek7OMcycC4kq/HAW9duoHW+i6tdTutdRRm6WdtfU38VVDp/iql/IA3MfczyYWxOdMXQCelVHTJ/sRh7ntppX8XdwDbtfvePFPp/iqlegAvAcO11mUe9N1Mhfustc7UWjfVWkeV/N/dhbnvbp34QZK/sywCBiul9gODSh6jlOqllHrV0sjqRlX2NxboD9yjlPq65ONqa8KtmZIa/lRgK/ATkKC1/kEpNV8pNbxks9eAJkqpA8A0Kp7pVa9VcX+XYl65Jpb8m156MHQrVdznBknu8BVCCA8kZ/5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4IEn+QgjhgST5CyGEB5LkL4QQHkiSvxBCeKD/D8KpFQ7JzLDOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -415,12 +414,11 @@ "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", "backend = Aer.get_backend('statevector_simulator')\n", - "run_config = RunConfig(seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", - "\"\"\"declarative apporach\n", + "\"\"\"declarative approach\n", "algorithm_cfg = {\n", " 'name': 'VQE',\n", " 'operator_mode': 'matrix'\n", @@ -442,7 +440,7 @@ " 'algorithm': algorithm_cfg,\n", " 'optimizer': optimizer_cfg,\n", " 'variational_form': var_form_cfg,\n", - " 'backend': {'name': 'statevector_simulator'}\n", + " 'backend': {provider': 'qiskit.Aer', 'name': 'statevector_simulator'}\n", "}\n", "\n", "result = run_algorithm(params, algo_input)\n", @@ -469,15 +467,15 @@ "output_type": "stream", "text": [ "energy: -1.5\n", - "time: 63.78048515319824\n", + "time: 41.23837685585022\n", "maxcut objective: -4.0\n", - "solution: [1 0 1 0]\n", + "solution: [0 1 0 1]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX+//HXSSeNEEgglFCkJOgKIl/siuIq9rLSRVzpSlWWFn8rsFQVQUUFBJViAVlAsCOoq8sqotiTUEILBEwPpGfm/P64k5iBVDIzdyb5PB+PPJKZuTP3k3kkeeeee8/nKK01QgghRCkvswsQQgjhXiQYhBBC2JFgEEIIYUeCQQghhB0JBiGEEHYkGIQQQtiRYBBCCGFHgkEIIYQdCQYhhBB2fMwu4EI0a9ZMt2vXzuwyhBDCo3z//fdpWuuI6rbzyGBo164de/fuNbsMIYTwKEqpozXZToaShBBC2PHIIwaHsVggPR2Ki8HfH5o2BaXMrkoIIUzV8ILh5El4913YuRMSE8FqNcJAa/D1hYsvhjvugHvvhbAws6sVQgiXazjBcPo0zJoFO3YYIeDnB4GB4O395zYlJfDLL7BvHyxYAAMGwNSpEBxsWtlCCOFqDeMcw7ZtcNNN8OmnEBoKTZpAUJB9KAD4+BghEBZmhMabb0KfPrBnjzl1CyGECep/MLzyCkyebAwXNWkCXjX8lr29je1zcmDIEPj4Y+fWKYQQbqJ+B8Pbb8Mzz0BICAQEXNhrBAUZzx0/Hr75xrH1CSGEG6q/wXD0qHFOITjYGCKqC39/4zXGjzeOIIQQoh6rn8GgNUyZYlyO6ufnmNcMCoKMDFi0yDGvJ4QQbqp+BsMvv8CPP0LjxlVutjEjg6GHD3NVQgKzTp6s/nVDQ41LXTMyHFSoEEK4n/oZDGvW/Dk/oQrNfHwY3qwZd1cTIGW8vY3X3bzZAUUKIYR7qn/BoLVxWWoN5h7cFBpK75AQGp972WpVfH3hgw/qUKAQQri3+hcMp05BQYHxB9wZAgIgPt44chBCiHqo/gXD4cN1vwqpKqXDSadOOW8fQghhovrXEqOgwBhOqiENZGRmkm21kurnR0BAAI0CAvCpKly8vKCwsO61CiGEG6p/weDrW6sOqQpQSqG1xmq1kpGRQUFBAUopGgUEEBAQQECjRgQEBOBbGhZWq/OGqoQQwmT1Lxhatarx+L9FayxaExIaysnUVAKCg2kWEYGXUhQXF1NQUEBBfj6ZGRnk28IiwN+fxlrzU0ICMX5+REREoKRVtxCiHql/wdCunXHEYLGc3yTvHKvT0liZlgaARSmu3b+fca1aMToiAj9fX/x8fQkNCQGMIaeS4mIKs7PJaNSITdu2Eb9oEUopYmJiiI2NLfvcvHlzCQshhMdSuhbj8e6iZ8+eusqlPR96CP73v2onuJWngePHjhEYFESzpk0r3zAzE0aOhOnT0Vrzxx9/kJCQQHx8fNmH1WolNja2LCxiYmKIioqSsBBCmEop9b3Wume12zkiGJRSfYHnAW9gldZ64TmPLwFutN0MBCK11mG2xyzAL7bHjmmt765uf9UGw5dfGn+8Q0Nr9X0UFRVx+MgR2rdvj19F5xCsVqNX0s6d0LZtha+htSY1NZWEhAS7wCguLi47oij9kLAQQriSy4JBKeUN7Af+CiQD3wGDtNa/V7L9eOAyrfUjtttntda1Wgmn2mCwWOCGGyAtrdaL7KSlp5OXm0ub6GjO+5OdlQVXXw1r19bqNQHS0tLKQqI0NAoKCsqOKErDolWrVhIWQgincGUwXAXM0lrfars9A0BrvaCS7XcDT2mtd9huOz4YwFhcZ/Bgo+V2LWY2a61JOnyYZs2a0bj8EUdRkfGxYwe0aVObciuVkZFhNwQVHx9Pfn6+XVjExMTQunVrvGq6joQQQlSipsHgiJPPrYDj5W4nA1dUUlRboD2wq9zdAUqpvUAJsFBrvbWS544CRgFER0dXX1WvXvDgg8Z/902a1PgSVqUUUVFRJCcnExwUhLe3t3EEkpsLc+c6LBQAwsPDueaaa7jmmmvK7svIyCg7otixYwcvvPACZ8+epUuXLnbnLdq0aSNhIYRwCkccMTwA9NVaj7DdHgpcobUeV8G204DWWuvx5e5rpbU+oZTqgBEYfbTWh6raZ42OGMBYw3ncOOO//NDQWh05nDp1CqvWtGzWDM6cgbFjjVbeJgzzZGVl2Z2vSEhIICsr67xhqOjoaAkLIUSlXHnEcAIo/290a9t9FRkIPFb+Dq31CdvnJKXUF8BlQJXBUGM+PrBsGfzrX8b6zaVrOtdAREQEKfv3U+DjQ8A//wmPPGJKKACEhYVx5ZVXcuWVV5bdl52dXXZk8eWXX7J8+XIyMzPp3Lmz3ZFFu3btJCyEELXiiCMGH4yTz30wAuE7YLDW+rdztosBPgbaa9tOlVJNgDytdaFSqhnwP+Ceyk5cl6rxEUN5335rrP2clma0zAgJqXj9Z4vFuPLIy4u0pk2ZFRrKc++/j5+jFvxxopycHLuroRISEkhPT6djx452V0O1a9fOGCITQjQorr5c9XZgKcblqq9precppeYAe7XW22zbzAICtNbTyz3vamAFYMVo6LdUa726uv1dUDCAMbT0n//Aq6/C998bRwBKGUGhlHE5qpcX3HgjDB+O7tGDJ6ZMISYmhlGjRtV+f27gzJkzJCYm2g1Dpaam0qlTJ7uhqA4dOkhYCFHPuTQYXO2Cg6G8khJISoLkZCguNtZ1bt/eOLlc7kji9OnTDB48mNWrV9OuXbu67dNN5Obm2oVFfHw8p0+ftjuyiImJoUOHDlU3ExRCeBQJBgd6++23+fzzz1mxYkW9nWOQl5dXFhalQ1EpKSl06NDBbhiqQ4cO+EoDQSE8kgSDA1mtVh5++GEeeOAB7r672onZ9UZeXh779++3C4sTJ06UhUXpMNRFF13kEedghGjoJBgcLDExkXHjxrFhwwbCw8Ndum93kp+fz4EDB+zOWRw/fpz27dvbXTrbsWNHCQsh3IwEgxM8//zzpKamMnfuXJfv250VFBSUhUXpkcWxY8do27at3ZFFp06d8Pf3N7tcIRosCQYnyM/PZ8CAAcyYMYOrrrrK5fv3JEVFRXZHFvHx8Rw9epTo6Gi7rrOdO3cmICDA7HKFaBAkGJxk9+7dLFy4kI0bN8oftFoqKiri4MGDdrO4Dx8+TOvWre1OcHfq1IlGjRqZXa4Q9Y4EgxPNnDmTqKgoxo8fX/3GokpFRUUcOnTIruvsoUOHaNWqld05i86dOxMYGGh2uUJ4NAkGJ0pPT2fAgAG88sordOrUybQ66qvi4mKSkpLshqGSkpKIioqy6zobExMjYSFELUgwONnmzZvZtm0br732mvQicoGSkhKSkpLshqEOHjxI8+bN7U5wx8TEEBQUZHa5QrglCQYns1qtjBw5kltvvZX+/fubWktDZbFYOHz4sN2lswcOHCAiIsJuGKpLly6E2NbuFqIhk2BwgaSkJEaNGsVbb71FZGSk2eUIjLA4cuSI3ZHFgQMHCA8PP28d7tBaLv0qhKeTYHCR5cuXc+jQIZ555hmzSxGVsFqtdmGRkJBAYmIiYWFhdldDxcTE0LhxY7PLFcJpJBhcpKioiIEDBzJx4kRuuOEGs8sRNWS1Wjl27Nh563CHhYWdtwBSWFiY2eUK4RASDC60d+9ennrqKd599125SsaDWa1WkpOT7a6GSkxMJDg4+LxhqIbcFkV4LgkGF5s9ezZBQUFMmTLF7FKEA1mtVk6cOGHX7iMhIYFGjRqdNwzVtGlTs8t1uKQkY42rPXvgwAEoLISAAOjSBf7v/+CKK6CedKNvECQYXCw7O5t+/fqxdOlSunbtanY5wom01hWGhb+/v92ls7GxsTRr1szscmtNa/jiC2NV3J9++vN+Pz9jqRKr1QiI0g70PXsaS6tfe60p5YpakGAwwYcffsj69etZt26drIbWwGitSUlJsTtnER8fj4+Pz3lHFhEREW67rkd6OsycCZ99Bt7exgq4VZWqNZw5Y4TFHXfA7Nkgp2TclwSDCbTWPPbYY1x11VUMHTrU7HKEybTWnDp1yi4o4uPj8fLyOu/IIjIy0vSwOHAABg2CrCwIDa14SfTKWK2QnQ0REfDOOzK85K4kGExy/PhxHn74YdatW0fLli3NLke4Ga01f/zxh90J7oSEBLTWdie3Y2NjadGihcvC4sgRuO8+yM01QuFC5eRA48awdSu0auWw8oSDuDQYlFJ9gecBb2CV1nrhOY8/DDwDnLDdtUxrvcr22DDgSdv9c7XWa6rbnzsHA8Drr7/Ovn37eP75503/L1C4P601qampdkcV8fHxWCwWu6OKmJgYoqKiHP4zVVwMd90Fhw4Zf9TrKjMTLrkENm82hqOE+3BZMCilvIH9wF+BZOA7YJDW+vdy2zwM9NRajzvnueHAXqAnoIHvgcu11plV7dPdg6GkpIQhQ4YwfPhwbrnlFrPLER4qNTXVbo5FfHw8hYWFdmERGxtLy5Yt6xQWy5bBkiXGuQFHZI7WxnDUzJkwfHjdX084jiuD4Spgltb6VtvtGQBa6wXltnmYioNhENBbaz3adnsF8IXW+u2q9unuwQDw888/M3XqVDZu3CitF4TDpKenn3eCOz8/366JYGxsLK1bt65RWOTkQK9e4O8Pvr6Oq7OoCCwW2LsXZGkN91HTYPBxwL5aAcfL3U4Grqhgu78ppa7HOLqYrLU+Xslz68XI5KWXXkrv3r158cUXiYuLM7scUU80bdqUa6+9lmvLXRuakZFRFhKffvopzz//PLm5uefN4G7duvV5nYC3bYOSEggOrnq/VmsRp04tJC9vDxZLDr6+rYmMHEdw8NUVbu/nZ5yM/vBD+Nvf6vxtCxdzRDDUxHbgba11oVJqNLAGuKk2L6CUGgWMAoiOjnZ8hU4wbtw4+vXrx759+7jsssvMLkfUU+Hh4Vx99dVcffWff6QzMzPLwmLnzp0sW7aMnJwcunTpYnfO4s032+LrW5PxIwu+vi2Ijl6Jr28Lzp79LydOTKd9+3fw86v4IgsvL3j7bQkGT+SSoaRztvcGMrTWjevzUFKpnTt3snz5ct588038/PzMLkc0YFlZWSQmJpYNRf3223527nyRoCALjRr5ExDQiICAAPz9/YDqwyIpaSDNmo0iNLTi//EsFsjPh99/r92lr8J5XDmU9B3QSSnVHuOqo4HA4HOKidJap9hu3g3E277+BJivlGpiu30LMMMBNbmNm266iffff5+1a9cyYsQIs8sRDVhYWBhXXHEFV1xhjPTu3w933GHBx6eAgoJ8zp49Q2pqKhZLCf7+ATRqFEBAQAABAY3OC4uSkgyKio7h79+h0v15exvzG5KTwUMO8oVNnYNBa12ilBqH8UfeG3hNa/2bUmoOsFdrvQ2YoJS6GygBMoCHbc/NUEr9CyNcAOZorTPqWpM7UUoxbdo0hgwZwi233OIxw2Ci/svOBh8fb4KCguxWvbNaLeTnl4bFWdLS0igpKcHPz5/g4GCaNQvj5Mknadz4Tvz921W5Dy8v4wS38Cwywc1F3nrrLb788kuWL18ucxuEW9i7F4YOhZqshFpcXMSRI0cpKSnCz28Vvr4W2rR5DqWq/t/y7FljPoO0D3MPNR1KkpE/Fxk4cCB5eXls377d7FKEACA83BjqqU5JSTHHjx8nNDSE4OB3yM09SYsW86sNBTDOMzRpUu1mws1IMLiIl5cXcXFxLFu2jMzMKufvCeESbdsany2WyrcpPVIIDW2M1boai+U4zZsv4o8/sqp9/ZISY35EixYOKli4jASDC8XExHDbbbexZMkSs0sRAm9vo3VFXl7FjxcWFnLkyFGaNg2nceNisrK2UFCwn8zMoaSl3cfvv19NdvZHlb5+Xh706OGY2dTCtSQYXGz06NHs27ePb7/91uxShOChhyoeTiooyOfo0aNERkbSpEk4vr5RxMbuJSZmNzExX9Gp0xf4+a0hJKTqli8PPuikwoVTSTC4WGBgINOmTWPBggUUFhaaXY5o4G691ViRrfyPYl5eLseOHadlyygaV9JVLygoiMDAQFJT0yp8vKDAmE19443OqFo4mwSDCa699lpiYmJYtWqV2aWIBi4gAOLijIloWsPZs2dITj5Bq1atCA4OqfK5zZs3Jzs7m4KCArv7tTZe76mnHNt/SbiOBINJpkyZwpYtWzh48KDZpYgGrn9/Y/3mlJRcTp5MoU2bNnbzGirj7e1D8+aRpKSkYDRHNmRlwfXXw913O7Fo4VQSDCZp1qwZY8eOZf78+Vhrcs2gEE7i5QW33vo+BQWHadKkHY1q0Q61cePGeHkpMjIyy9ptt29vtPGWk86eS4LBRPfddx8AmzdvNrkS0ZCtXbuWzZtXsmtXOJ07+5GZaVxqWjOKqKgoUlPTSU8voXNn2LhR1n32dBIMJvLy8uLJJ59k+fLlpKamml2OaGC01rz00kts376dVatW0b17S7ZvhxEjjCU+MzOrnuMARoDk5voTGBhJ+/YfsnWrMXFOeDYJBpN16NCB+++/n2eeecbsUkQDYrVaWbRoEd988w2vvvoqkZGRgHEyesYM2L7dWAM6L89oa5GRYfRWyskxPmdkGPcXFMCAAbBrVyOaNHmD//3vS5O/M+EI0ivJDRQWFjJw4EAmT57M9ddfb3Y5op4rKSlh9uzZnD59miVLllR5ojknB3780Wid/dtvxmWtAQFw8cXGR7duEGK7eOn777/nn//8J++++y6BgYEu+m5EbbhsaU8z1LdgANizZw9z5sxh48aN8kslnKaoqIjp06djsVh4+umn8ff3d+jrz549m5CQEB5//HGHvq5wDGmi52F69erF5ZdfzvLly80uRdRTeXl5TJgwgYCAAJ599lmHhwLApEmT+Pjjj4mPj69+Y+G2JBjcyOTJk+WXSjhFTk4OY8eOJTo6mrlz5+LrpJlnjRs3ZuLEicybNw9LdWeuhduSYHAjYWFhTJgwgblz58ovlXCYtLQ0Ro4cyeWXX86MGTPwcvI6m7fffjshISFs2LDBqfsRziPB4GbuuOMOQkNDeeedd8wuRdQDJ0+eZMSIEfTt25fx48e7ZJEopRQzZsxg9erVnD592un7E44nweBmSn+pXnvtNU6ePGl2OcKDJSUlMWLECIYMGcLf//53l64cGB0dzaBBg1i0aBGeeIFLQyfB4Iaio6MZMmSI/FKJC/b7778zZswYxo0bR79+/Uyp4aGHHuLYsWN88cUXpuxfXDiHBINSqq9SKlEpdVApNb2Cxx9XSv2ulPpZKbVTKdW23GMWpdSPto9tjqinPhg6dCgpKSl89tlnZpciPMwPP/zAxIkTiYuL4/bbbzetDj8/P2bOnMkzzzxDbm6uaXWI2qtzMCilvIGXgNuArsAgpdS5S3/vA3pqrS8FNgFPl3ssX2vd3fYh/RhtfH19iYuLY/HixZw5c8bscoSH+Prrr5k2bRrz5s3jhhtuMLscevTowVVXXcXLL79sdimiFhxxxNALOKi1TtJaFwHvAPeU30Br/bnWunQBwW+A1g7Yb73XrVs3rr/+el588UWzSxEe4NNPP2XOnDksWbKEXr16mV1OmYkTJ7Jjxw5+//13s0sRNeSIYGgFHC93O9l2X2WGA+UXig1QSu1VSn2jlLrXAfXUK+PHj+err77ip59+MrsU4cY2b97MkiVLePnll7nkkkvMLsdOaGgokyZNksuwPYhLTz4rpR4EegLlO8a1tU3RHgwsVUpdVMlzR9kCZG9D6kRa2l5g3rx5FBcXm12OcENr167ljTfeYOXKlXTs2NHscip02223ERYWJpdhewhHBMMJoE25261t99lRSt0MxAF3a63LVpjVWp+wfU4CvgAuq2gnWuuVWuueWuueERERDijbc9x8881ERUWxbt06s0sRbkRrzcsvv8y2bdtYtWoVbdq0qf5JJil/Gbax4ptwZ44Ihu+ATkqp9kopP2AgYHd1kVLqMmAFRij8Ue7+Jkopf9vXzYBrABmIPIdSiunTp/Pmm29y7Ngxs8sRbsBqtfL000+ze/duu7bZ7qxNmzZyGbaHqHMwaK1LgHHAJ0A8sFFr/ZtSao5SqvQqo2eAYODdcy5LjQX2KqV+Aj4HFmqtJRgqEBUVxSOPPML8+fPll6qBKykpYdasWRw8eJDly5fTpEkTs0uqsaFDh3Ly5Ek+//xzs0sRVZC22x7EYrEwbNgwBg4cyJ133ml2OcIEpW2zS0pKePrppwkICDC7pFr78ccfmTlzJhs3biQ4ONjschoUabtdD3l7exMXF8cLL7xAVlaW2eUIF8vLy2PixIkEBASwePFijwwFgO7du3PNNdfI3AY3JsHgYWJjY+nbty9LliwxuxThQjk5OTz66KO0bt3aqW2zXWX8+PHs2rWLX3/91exSRAUkGDzQmDFj+P7779mzZ4/ZpQgXKG2bfdlllzFz5kynt812hdDQUCZPnsy8efMoKSkxuxxxDs//CWuAAgMDmTp1KgsWLKCwsLD6JwiPVdo2+9Zbb2XChAku7ZDqbLfccgtNmzblrbfeMrsUcQ4JBg91/fXX06lTJ1avXm12KcJJDh8+zIgRIxg8eDCPPPJIvQoF+PMy7DVr1kiLeTcjweDB/vGPf7B582aSkpLMLkU4WHx8fFnb7P79+5tdjtO0bt2aBx98UOY2uBkJBg8WERHBmDFjmDt3Llar1exyhIP88MMPTJgwgRkzZpjaNttVhg4dyqlTp6TFvBuRYPBw999/PwBbtmwxuRLhCP/973/L2mb37t3b7HJcwsfHh7i4OJ577jlpMe8mJBg8nJeXF3FxcbzyyiukpaWZXY6og08//ZTZs2fz3HPPuVXbbFe49NJLue6663jppZfMLkUgwVAvXHTRRdx33308++yzZpciLtCWLVtYsmQJL730En/5y1/MLscU48eP54svvuDnn382u5QGT4KhnhgxYgQJCQl8/fXXZpciamnt2rW8/vrrrFy5kk6dOpldjmnKt5iXuQ3mkmCoJ/z9/Zk5cyaLFi0iLy+v+icI03lS22xX+etf/0rz5s158803zS6lQZNgqEd69erFZZddxooVK8wuRVTDE9tmu0Lp3Ia1a9dy4sR5y7oIF5FgqGcmT57MRx99REJCgtmliEp4cttsV2jZsiXDhg1j4cKFMrfBJBIM9UyTJk0YP3488+bNk/V13VBRURFTp04lKyuLF198UdpOV2Lw4MGkpqayY8cOs0tpkCQY6qE777yToKAgNmzYYHYpopz60jbbFcrPbcjJyTG7nAZHgqEeUkoxc+ZMVq9ezalTp8wuR1D/2ma7wl/+8hduvPFGli1bZnYpDY4EQz0VHR3NoEGDpAeNG6iPbbNd5bHHHuOrr77ip59+MruUBkV+QuuxYcOGkZyczK5du8wupcGqz22zXSE4OJgnnniCefPmUVxcbHY5DYYEQz3m6+tLXFwczz77LGfPnjW7nAanvrfNdpU+ffrQsmVL1q9fb3YpDYZDgkEp1VcplaiUOqiUml7B4/5KqQ22x79VSrUr99gM2/2JSqlbHVGP+FP37t259tprZZzWxRpK22xXUEoxdepU1q9fT3JystnlNAh1DgallDfwEnAb0BUYpJTqes5mw4FMrXVHYAmwyPbcrsBA4GKgL/Cy7fWEA0kPGtdqaG2zXaFly5Y8/PDDLFiwQM6ZuYAjjhh6AQe11kla6yLgHeCec7a5B1hj+3oT0EcZx9X3AO9orQu11oeBg7bXEw4UGhoqPWhcpCG2zXaVQYMGkZmZySeffGJ2KfWeI4KhFXC83O1k230VbqO1LgGygaY1fC4ASqlRSqm9Sqm9qampDii7YSntQbNu3TqzS6m3GnLbbFconduwZMkSmdvgZB5z8llrvVJr3VNr3TMiIsLscjxOaQ+a9evXc/z48eqfIGpF2ma7xsUXX0yfPn144YUXzC6lXnNEMJwAyreFbG27r8JtlFI+QGMgvYbPFQ4i47TOsW7dOmmb7UKPPfYYu3fvZt++fWaXUm85Ihi+AzoppdorpfwwTiZvO2ebbcAw29cPALu08ZdpGzDQdtVSe6ATsMcBNYlKDB48mKysLD766COzS/F4pW2z33vvPWmb7UJBQUFMmTKF+fPny9wGJ6lzMNjOGYwDPgHigY1a69+UUnOUUnfbNlsNNFVKHQQeB6bbnvsbsBH4HfgYeExrLZ3fnMjb25snn3ySpUuXkpWVZXY5HstqtfLMM89I22yT3HjjjbRp04a1a9eaXUq9pDxxSKFnz5567969Zpfh0Z599llyc3N56qmnzC7F41gsFmbPnk1KSgpLliyRDqkmOXXqFEOGDOH1118nOjra7HI8glLqe611z+q285iTz8KxHn30Ufbs2YMEbO1I22z30aJFC4YPHy7rNjiBBEMDFRgYyLRp05g/fz5FRUVml+MRSttm+/n5SdtsNzFgwACys7PlnJmDSTA0YNdffz0dO3bktddeM7sUt1faNrtVq1bMmzdP2ma7CW9vb+Li4li6dCnZ2dlml1NvSDA0cFOmTGHTpk0kJSWZXYrbSk9PZ9SoUXTv3p24uDhpm+1munbtyi233MLzzz9vdin1hvyEN3CRkZGMGjWKefPmYbVazS7H7ZS2zb7llluYOHGidEh1U48++ijffPMNP/zwg9ml1AsSDIIHHngAi8XC1q1bzS7FrRw+fJiRI0cyaNAgaZvt5gIDA5k6dSrz5s2Tc2YOIMEg8PLyIi4ujpdffpn09HSzy3ELCQkJjBkzhkcffVTaZnuI3r17065dO9asWVP9xqJKEgwCgE6dOnHPPfewePFis0sx3b59+xg/fjwzZszgjjvuMLscUQtTp05lw4YNHDt2zOxSPJoEgygzcuRIfvvtN3bv3m12KabZvXs3//jHP6Rttodq3rw5w4cPZ/78+TK3oQ4kGESZgIAAZsyYwcKFC8nPzze7HJfbsWMHs2bNkrbZHm7AgAHk5ubywQcfmF2Kx5JgEHauvPJKunXrxsqVK80uxaW2bt3Kc889x0svvcSll15qdjmiDkrPmb3wwgvSD+wCSTCI80yePJkPPviA/ftWT0PVAAAan0lEQVT3m12KS6xfv57Vq1ezYsUKaZtdT8TExNC3b1+WLl1qdikeSYJBnCc8PJxx48Yxd+7cej23QWvNK6+8wpYtW1i1apU0YqtnxowZw3fffSf9wC6ABIOo0F133UVAQAAbNmwwuxSnKG2b/fXXX7Nq1SqaN29udknCwaQf2IWTYBAVUkoRFxfHqlWrOH36tNnlOJTFYmHWrFns37+fFStW0KRJE7NLEk5S2g/sjTfeMLsUjyLBICrVtm1bBgwYwKJFi+rNpX9FRUVMmzaNrKwsli1bJm2zG4ApU6awceNGjhw5YnYpHkOCQVTp4Ycf5tixY3z++edml1JneXl5TJo0CR8fH2mb3YBERkYycuRImdtQCxIMokp+fn7MnDmTZ599lrNnz5pdzgXLycnhscceIyoqivnz50vb7AamX79+FBQUsH37drNL8QgSDKJaPXr04Oqrr+bll182u5QLUto2u1u3bjz55JPSNrsB8vLy4sknn2TZsmVkZmaaXY7bq9NviFIqXCm1Qyl1wPb5vLN4SqnuSqn/KaV+U0r9rJQaUO6xN5RSh5VSP9o+utelHuE8EyZMYNeuXfzyyy9ml1IrKSkp0jZbANC5c2duv/12lixZYnYpbq+u/zpNB3ZqrTsBO223z5UHPKS1vhjoCyxVSoWVe/wfWuvuto8f61iPcJLQ0FAmT57MvHnzKCkpMbucGjly5AgjRoyQttmizKhRo9i3bx979uwxuxS3VtdguAco7XG7Brj33A201vu11gdsX58E/gAi6rhfYYJbbrmFiIgI1q9fb3Yp1UpISGD06NHSNlvYKV23YcGCBTK3oQp1DYbmWusU29engCpnCSmlegF+wKFyd8+zDTEtUUr5V/HcUUqpvUqpvampqXUsW1wIpRQzZsxg3bp1JCcnm11Opfbt28eECROkbbao0HXXXUfnzp1ZvXq12aW4rWqDQSn1mVLq1wo+7im/nTauA6v0WjClVBSwDvi71rq0z8IMIAb4PyAcmFbZ87XWK7XWPbXWPSMi5IDDLC1btmTYsGEsWLDALS/92717N1OnTmXu3LnSNltUasqUKfz73/+Wtc4rUW0waK1v1lpfUsHHe8Bp2x/80j/8f1T0GkqpUOADIE5r/U25107RhkLgdUB6HXuAwYMHk5GRwccff2x2KXY+++wzZs2axeLFi6VttqhSREQEo0ePZv78+fW6H9iFqutQ0jZgmO3rYcB7526glPIDtgBrtdabznmsNFQUxvmJX+tYj3ABHx8fnnzySZYuXUpOTo7Z5QDw3nvvsXjxYmmbLWrsb3/7GyUlJWzbts3sUtxOXYNhIfBXpdQB4GbbbZRSPZVSq2zb9AeuBx6u4LLUN5VSvwC/AM2AuXWsR7jIxRdfzM033+wWbY3ffPNNaZstas3Ly4uZM2fy0ksvkZGRYXY5bkW54zhxdXr27Kmlla75cnNz6devH3PnzqVHjx4u37/WmhUrVrBjxw5efvll6ZAqLsgLL7xAamoq//rXv8wuxemUUt9rrXtWt51MARUXLCgoiKlTpzJv3jyXX/pntVp59tln+eqrr6RttqiTkSNH8tNPP/Htt9+aXYrbkGAQddK7d2/at2/v0rbGFouF2bNnk5iYKG2zRZ01atSI6dOnM3/+fAoLC80uxy1IMIg6mzp1Khs2bODw4cNO31dp2+zMzExpmy0c5uqrr6Zr164yt8FGgkHUWWRkJKNGjXL6pX/SNls40xNPPMGWLVtkbgMSDMJB+vXrR1FRkdMu/ZO22cLZmjVrxpgxY+r9Wuc1IcEgHMLLy4u4uLgqL/3TGoqKwGKp3Wunp6czevRoLr30UmmbLZzqvvvuQ2vN1q1bzS7FVPIbJhymc+fO3HXXXSxevBgAqxW++gpmzIC//hU6doQuXeCii6B7dxg2DFatgqpaX6WkpDBy5EhuvvlmJk2aJB1ShVOV/oPzyiuvkJ6ebnY5ppF5DMKh8vPz6d9/IFdeuYjt22NITzeOEBo1An9/8PIyjhxKSiA/3wgPpeC222DmTGjR4s/XOnLkCOPGjWPo0KEMGDCg8p0K4WDLli3j5MmTzJ8/3+xSHErmMQhTZGc3orBwFfPnNyYnx0rjxhAebgRD6QiQUuDrC6GhEBYGwcHwwQfQpw/8+99GcCQmJjJmzBjGjh0roSBcbsSIEfz666/s3r3b7FJMIcEgHCYpCe66C5KSIggJsXL2bM3ao3t7Q5MmRnBMnQqTJ59g3LjxTJs2TdpmC1MEBAQwY8YMFi5cSEFBgdnluJwEg3CI06dhwADIzjaOAlq0aE5WVnatfqmMoaazrFih6N59BTfeeKMTKxaialdddRV/+ctfWLVqVfUb1zMSDKLOtIYpUyAjwxgeAqMDa2RkBCkpKVSxTIednJwcTp8+Sdu2YWzd2p6ff3ZezULUxOOPP857773HwYMHzS7FpSQYRJ1t3Qq7dxtHCuWFhYXh5aXIzMys9jWysrI4ffoU0dHRBAcHohRMnAjFxU4qWogaaNq0KWPHjmXevHkNam6DBIOoE6sVFi82hoHOv5JU0aJFFKmpqZSUVP4XPiMjnbS0VNq2bVs2mzk0FJKT4YsvnFa6EDVy77334uXlxZYtW8wuxWUkGESd7NljnF9o1Kjix/39/WnSJJxTp05hseSQnDyFhIRrOXjwTrKzPyI19Q8yMzNp27Ydfn72S34rBStXuuCbEKIK5ec2pKWlmV2OS0gwiDr55BNjnkJV886aNWtKYWEhx47NQSlfOnf+lJYt/8WxY3PIzv6dtm3bVdjiIiQEfvgB3GSRONGAdejQgfvvv79s8mZ9J8Eg6uS776C6XnZKedG8eRjZ2Z/RtOkovLwakZUVibf3/xES8hM+Pj6VPM+Y75CY6ITChail4cOHEx8fz3//+1+zS3E6CQZRJwcOGOcXquPjk46Xly9ZWQEkJydTUmIhMvJyioqOVPm84mJoYBeECDfl7+/PjBkzWLRoEfn5+WaX41QSDOKCaQ0FBX/OaK6K1ZpHQEAY2dk5nDlzlsDAQEpK/LBYzlb5PIvFaJ0hhDu44oor6NatG6+++qrZpThVnYJBKRWulNqhlDpg+1zhUlpKKYtS6kfbx7Zy97dXSn2rlDqolNqglPKrSz3CtZQyZi3XhJdXIFZrHh07XkTLllFYLCVkZ58iJ6eIgwcPkJycTFpaGrm5Z7FYSi5oH0K4wuTJk9m+fTv79+83uxSnqesRw3Rgp9a6E7DTdrsi+Vrr7raPu8vdvwhYorXuCGQCw+tYj3Cx5s2NVtrV8fOLBixYLCdp3DiM5s1bEBKSSYsWlxMdHU1oaAgWi4W0tHQOHjzIgQMHSE4+Tn5+FunpvzaYq0GE+wsPD2fcuHFOX5jKTHUNhnuANbav1wD31vSJyuiffBOw6UKeL9xD9+7GcFJ1vLwaERJyE6mpy7Fa88nL+4kzZ76kceM78fPzJzS0Mc2bN6dt27Z06dKFtm3bEhraGItFs2/f2/Tv35++ffsyadIkVqxYwZdffskff/yBJ3YHFp7vrrvuwtfXl02bNlW/sQeqU9ttpVSW1jrM9rUCMktvn7NdCfAjUAIs1FpvVUo1A76xHS2glGoDfKS1vqS6/Urbbffx9tvw//7f+bOeK2Kx5HDy5Gxyc7/F27sxkZHjady4b6XbFxYaVyXt3QtKaVJSUkhISCj7iI+PByAmJobY2FhiYmKIiYkhKipK1m0QTpeUlMSoUaN4++23iYiIMLucGqlp2+1qg0Ep9RnQooKH4oA15YNAKZWptT7vPINSqpXW+oRSqgOwC+gDZFOLYFBKjQJGAURHR19+9OjR6r434QI5OfB//2dMcKvkqtMLlpkJkyfDuHEVP661JjU1tSwkSj8XFRWVhURpaLRq1UpWfhMO98orr3DkyBEWLVpkdik14rBgqGYniUBvrXWKUioK+EJr3aWa57wBvA/8G0gFWmitS5RSVwGztNa3VrdfOWJwLzNmwMaNRutsRykuNoao/vMf4zxGbaSlpZ13ZJGbm0uXLl3sji6io6MlLESdFBUVMWDAAB5//HGuu+46s8uplquC4RkgXWu9UCk1HQjXWk89Z5smQJ7WutA2fPQ/4B6t9e9KqXeBf2ut31FKLQd+1lq/XN1+JRjcS0YG3HijsSpbZa0xakNryMoy1mYYPbrurweQmZl5XlhkZWXRuXNnu7Bo164d3nIZlKiFPXv2MGfOHDZu3EhgYKDZ5VTJVcHQFNgIRANHgf5a6wylVE9gjNZ6hFLqamAFYMU42b1Ua73a9vwOwDtAOLAPeFBrXVjdfiUY3M+nn8LYsUYbi7oOKWVlQWwsbNni+OGp8nJycuzCIiEhgT/++INOnTrZhUWHDh0qnZ0tBMA///lPwsPDmTRpktmlVMklwWAWCQb3tGIFLFpkhEMFrY+qpbWx0E/LlrB5MzRr5vgaq3P27Fn2799vd97i5MmTXHTRRXbnLTp27Iifn0y7EYbMzEwGDBjAiy++SJcuVY6mm0qCQZhi3TqYO9doxx0aWnVzvfKKiyE3Fy6+GFavNicUKpOXl8eBAwfswuL48eO0bdu27KgiNjaWTp064V+T/iCiXtq2bRubNm3ijTfecNtzVxIMwjQHDsCkSbB/v3EUEBpacdsMrY1LUgsKjCGjJ56ARx7xjJnOhYWF54XFkSNHaN269Xlh4e7jzsIxtNaMHj2aPn36MGDAALPLqZAEgzCV1Wqs6vbqq/D118bQksVi3A/G7ZISCA83wuCBB9zrKOFCFBUVcejQobKgSEhI4NChQ7Rs2dLu0tnOnTsTHBxsdrnCCY4cOcKIESN46623iIyMNLuc80gwCLdRWGgcPRw8CHl5xhFB8+bQtStERtZ8uMkTlZSUkJSUZHc11IEDB4iMjLQ7ZxETE0No6YLZwqOtXLmSAwcO8Mwzz5hdynkkGIRwUxaLhaNHj9pNytu/fz9hYWHnzeJu4sjJIcIlioqKGDhwIBMnTuSGG24wuxw7EgxCeBCr1cqxY8fsjiwSEhIIDg62C4vY2FiaNm1qdrmiGnv37uWpp57i3XffdatzTBIMQng4q9XKiRMn7IIiISEBPz8/u6OK2NhYIiIipD+Um5k9ezYhISE8/vjjZpdSRoJBiHpI68qbCZYPC2kmaL6srCz69+/P888/T2xsrNnlABIMQjQYNWkmWBoa0kzQtd5//33eeecd1qxZ4xatViQYhGjg0tLSSExMtAsLaSboWlprxo4dyw033MCgQYPMLkeCQQhxvqqaCZYfipJmgo5z7Ngx/v73v/PWW2/RvLatgh1MgkEIUSMVNRNMTU2lY8eOdmEhzQQv3KuvvkpCQgKLFy82tQ4JBiHEBcvNzSUxMbHKZoKxsbFcdNFF0kywBoqKihg8eDDjxo2jd+/eptUhwSCEcKjKmgm2a9fOLiykmWDFfvjhB5588kk2bdpk2twGCQYhhNNV1kywTZs254WFO030MsucOXMIDAxkypQppuxfgkEIYYqKmgkmJSURFRVldzVUly5dCAoKMrtcl8rOzqZfv34sXbqUrl27unz/EgxCCLchzQT/9OGHH/Lmm2+ydu1al1/5JcEghHBrVTUTPLflR1hYmNnlOozWmscee4xrrrmGIUOGnPsgpKdDZqbxdVgYREQ4rAWxBIMQwuNYrVaOHz9uFxaJiYkEBQWdFxae3EywdG7D+vXriYqIgC+/hLfegu+/hzNn/lwb12KBwEDo1g0GD4abboI6XAXmkmBQSoUDG4B2wBGgv9Y685xtbgSWlLsrBhiotd6qlHoDuAHItj32sNb6x+r2K8EgRMNRvplg+ZPc5ZsJln72pGaCq1etwrptGyNOnkRl2/4EBgYayxmWfg9aGyta5ef/+XhcHPztbxUvi1gNVwXD00CG1nqhUmo60ERrPa2K7cOBg0BrrXWeLRje11pvqs1+JRiEaNgqayaolDrvnIVbNhPMysIyeTKp775LcLNmBNd0+cLCQmO1qyuvhKVLjWGmWnBVMCQCvbXWKUqpKOALrXWXKrYfBdygtR5iu/0GEgxCCAeoTTPB1q1bmxcW6enQvz8cOUKenx8nTp6kw0UX4V3TIwCtISsLWrSATZsgKqrGu3ZVMGRprcNsXysgs/R2JdvvAp7TWr9vu/0GcBVQCOwEpmutC6vbrwSDEKKmqmomWH4oqk2bNs5vJlhYCPfeCwcOGCeWgZMpKXgpRYsWLWr3WllZ0Lo1fPAB1PCyX4cFg1LqM6CiiuOANeWDQCmVqbWucC1C2xHFz0BLrXVxuftOAX7ASuCQ1npOJc8fBYwCiI6Ovvzo0aPVfGtCCFGxzMzM88Li3GaCsbGxtG3b1rGXlD79NKxYYYSC7YjFYrFwKCmJNq1b06hRo9p+I8ZJ6X/9q0abu91QklJqInCx1npUJY/3BqZore+sbr9yxCCEcDSnNxNMSIC77jL+uz/n+dk5OaSnp9O+XbvaDXFZLMZVTBs3Qo8e1W5e02Coa6vEbcAwYKHt83tVbDsImFH+DqVUlC1UFHAv8Gsd6xFCiAsSGhpKr1696NWrV9l95ZsJfvfdd6xbt46UlBQ6dOhQ+2aCr75q/CGvIFRCQ0PJysoiIyODpQUF7MnLI99qpZmPDw81bcq9lc3jKD2aeeUV4/UdpK5HDE2BjUA0cBTjctUMpVRPYIzWeoRtu3bAf4E2WmtruefvAiIABfxoe87Z6vYrRwxCCLNU10yw9OjCrplgVhZccYVxuWklQ1NFRUUcPnIE3bIlHQID8fPy4khhIaOOHuX5Nm2IrWyYyWqFnBz4+mvjhHQVXHLEoLVOB/pUcP9eYES520eAVhVsd1Nd9i+EEK4WGBhIt27d6NatW9l95zYT3LJli10zwRssFq4qLMQvKIjKTm/7+fnRNDycvMxMfIODAeM/ZqUUycXFlQeDl5fxsWcP3H23Q75HWXVDCCHqyN/fn0suuYRLLrmk7L7yzQSLV68mJz2djLQ0fP38CAgIsPsovVQ1vGlTsg8fZvaRI+woKKBQa7oEBHCNLSgqVVwMP/4owSCEEO6sdGZ2bGwsfPQRREURERJCYWEhBQUFFBQUcCYnh4LCQnx8fMpCIiwsjMFpacR16sRvhYV8n5eHX3UnpP394VfHnaKVYBBCCGfLzwcvL5RSZQFQSgNFhYXk28KioKCAoqIiSoqK6B4YyIfZ2WzKzGRgeHjlr+/l9WfbDAeQYBBCCGfz9zdOEldAYQxF+fv7Q+PGgBEWpccIFiC5qKjq19fa2IeDOHmanxBCCGJijPMA1cgoKeHTnBzyrVasWvO/s2f5JDubXtXNbC4shC6VdiOqNTliEEIIZ7v00hq1y1bApsxM5qekYAWifH15onlzrg8JqfqJ3t5w+eUOKRUkGIQQwvl69DCGkqzWKttlN/HxYWXbtrV7bavVGErqWe30hBqToSQhhHC2iAjo08eYiOZoZ85Ar14QHe2wl5RgEEIIVxhlaxNXyUnoC1J6tDB2rONeEwkGIYRwjR49oF8/KF2tzRGys6FvX7juOse9JhIMQgjhOnFxRj8jR4RDTg40bQpzKlypoE4kGIQQwlWCg+Htt6FJE6Ox3oU0MdXaCJagIHjrLahq4tsFkmAQQghXio6GrVuha1cjHGowv6FMcbHxnPbtYcsW6NjRKSVKMAghhKu1bGn8YZ8+HYqKjD/2ubkVn5i2WiEvz9imoAAmTDCW82zXzmnlyTwGIYQwg7c3jBwJAwfC9u2wbp2xFrSPT9myn2htHCV06AAPPmisF21rm+FMEgxCCGGmkBBj3ebBg42jh4MHjaMDMEKgY0eH9kGqCQkGIYRwF35+xrkHk8k5BiGEEHYkGIQQQthR+kKuozWZUioVOOrAl2wGpDnw9eoreZ+qJ+9Rzcj7VD1nvEdttdYR1W3kkcHgaEqpvVprx7UmrKfkfaqevEc1I+9T9cx8j2QoSQghhB0JBiGEEHYkGAwrzS7AQ8j7VD15j2pG3qfqmfYeyTkGIYQQduSIQQghhJ0GGQxKqX5Kqd+UUlalVKVn/ZVSfZVSiUqpg0qp6a6s0R0opcKVUjuUUgdsn5tUsp1FKfWj7WObq+s0Q3U/G0opf6XUBtvj3yql2rm+SvPV4H16WCmVWu7nZ4QZdZpJKfWaUuoPpdSvlTyulFIv2N7Dn5VSPZxdU4MMBuBX4H7gP5VtoJTyBl4CbgO6AoOUUubPVXet6cBOrXUnYKftdkXytdbdbR93u648c9TwZ2M4kKm17ggsARa5tkrz1eJ3aEO5n59VLi3SPbwB9K3i8duATraPUcArzi6oQQaD1jpea51YzWa9gINa6yStdRHwDnCP86tzK/cAa2xfrwHuNbEWd1KTn43y790moI9SpS0zGwz5HaoBrfV/gIwqNrkHWKsN3wBhSqkoZ9bUIIOhhloBx8vdTrbd15A011qn2L4+BTSvZLsApdRepdQ3SqmGEB41+dko20ZrXQJkA01dUp37qOnv0N9sQySblFJtXFOaR3H536J6211VKfUZ0KKCh+K01u+5uh53VdX7VP6G1lorpSq7hK2t1vqEUqoDsEsp9YvW+pCjaxX10nbgba11oVJqNMZR1k0m19Tg1dtg0FrfXMeXOAGU/++lte2+eqWq90kpdVopFaW1TrEduv5RyWucsH1OUkp9AVwG1OdgqMnPRuk2yUopH6AxkO6a8txGte+T1rr8e7IKeNoFdXkal/8tkqGkyn0HdFJKtVdK+QEDgQZxxU0524Bhtq+HAecdaSmlmiil/G1fNwOuAX53WYXmqMnPRvn37gFgl254k4aqfZ/OGSu/G4h3YX2eYhvwkO3qpCuB7HJDvM6htW5wH8B9GON0hcBp4BPb/S2BD8ttdzuwH+O/3ziz6zbhfWqKcTXSAeAzINx2f09gle3rq4FfgJ9sn4ebXbeL3pvzfjaAOcDdtq8DgHeBg8AeoIPZNbvp+7QA+M328/M5EGN2zSa8R28DKUCx7e/ScGAMMMb2uMK4uuuQ7Xesp7NrkpnPQggh7MhQkhBCCDsSDEIIIexIMAghhLAjwSCEEMKOBIMQQgg7EgxCCCHsSDAIIYSwI8EghBDCzv8HZPTjillfG1oAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4FFX28PHvzZ6QnR0CJGFTRBRhQBRQEAZwFBAkndGfIAiMg6gjhEXEDXHYGUdGHRcYlnc0lQTEgAqKDDIuqOi4y76FBGRJSCBbJ+n7/lEBI2ZPJ5VOn8/z5CHdXek6BeFU9bm37lFaa4QQQrgXD6sDEEIIUfck+QshhBuS5C+EEG5Ikr8QQrghSf5CCOGGJPkLIYQbkuQvhBBuSJK/EEK4IUn+QgjhhrysDqAsTZo00ZGRkVaHIYQQLuXLL788o7VuWtF29Tb5R0ZGsnv3bqvDEEIIl6KUOlqZ7ept8hdCWCcvD44dM//08oKICAgOtjoq4UyS/IUQAKSmwhtvwDvvwNGj4O0NSoHWUFAATZvCTTfBPffAVVeZrwnXJclfCDd39iw8+SRs3QoOB/j5QUgIeJSYDqI1ZGdDUhJs2ABXXglLlkDnztbFLWpGZvsI4cY++AAGDoQtWyAoCMLCwN//14kfzKt8X1/z9eBg2LMHbr8dXnzRPDEI1yPJXwg3tWED/OlPUFgIoaG/TfhlUco8Afj7w7JlMHeu+YlBuBZJ/kK4oZ07YdYsCAgwk3h1eHub5aE33oC//9258YnaJ8lfCDdz7hw8/LCZvH18avZeHh7mp4AXX4Rvv3VOfKJuSPIXws0sXAhZWeZVvzN4eZmloEcekfKPK5HkL4QbSU83a/0VzdlPT0/g8OF72LOnD2lpT1X4vsHB5n0Bn37qnDhF7ZPkL4QbWb/evDr39Cx/Oy+vJjRpch8hIcMr/d5aw2uv1TBAUWeckvyVUquUUqeUUt+X8bpSSj2vlDqglPpWKXWdM/YrhKiarVvNMk1FgoMHEhR0M56eIZV+76Ag+OQTKf24Cmdd+a8Ghpbz+jCgY/HXZOAlJ+1XCFFJDgf88IN5E1dtuPhp4siR2nl/4VxOSf5a651AejmbjADWatMuIFQp1dIZ+xZCVE56ujmnvzJX/tWllCR/V1FXNf/WQEqJx8eLnxNC1BG7vfI3ctntdn7++STp6Wex2+2V3ofWkJ9fzQBFnapXa/sopSZjloVo27atxdEI0bB4e1dUj9dkZ2eTnp5Obm4uoaGhBAQEkJl5ioICO97eFd8UoFTN7x0QdaOurvxTgTYlHkcUP/crWutXtNY9tdY9mzatsBeBEKIKGjc26/JFRb9+3uEoIiMjnYMHD3Lq1CmCgoLp0CGaJk3C8PPzJSDAj2PHDlFUVFDhPrSGdu1q6QCEU9XVlX8yMFUpFQ/0BjK11ifqaN9CCMyST5cu8OOPEBgIdns+6ekZZGVlEhDQiJYtWxEQ4A8oTp9+hTNnXrn0swUF73Ho0F107DgTKH0t54ufKqKiav9YRM05Jfkrpd4AbgaaKKWOA08C3gBa638C7wC3AgeAHGC8M/YrhKiaQYMcfPZZPhkZp8nNzSMsLJSoqGi8vb1/tV3TppNp2nTypcdaOzhy5Chnz56lceMmpb73+fPQp0/F9xCI+sEpyV9r/ccKXtfAA87YlxCi6i5cuMCmTZvYvHkLWVmLaNYsmIiICJSqXOVXKQ/atIng8OHD+Pr6ERgYWOp2Eyc6M2pRm+QOXyEasMOHD7No0SKGDx/Od999x8KF05k0qTkQWunEf5GXlzcRERGkpaVht/96Ss/589CqFfTt68TgRa2qV7N9hBA153A4+Oijj4iPj+fAgQOMHj0awzC4OIli7lzYvh1yc6u+nLO/fwDNmjXl+PHjREZG4uHhSVGROYj83HOVn0oqrCfJX4gGIisri+TkZBISEggLC8NmszFo0CB8Lpt7GR4Oy5fD5Mlmfb6qUzNDQ8PIzc0jLS2NVq0iyMpSTJ4M3bs78WBErZPkL4SLO3jwIIZh8P7779OvXz8WLFjAVVddVe7PDBwI8+bB44//0re3Klq0aM7hw8dJSTnPuHHBzJhRgwMQlpDkL4QLKioqYufOnRiGwZEjRxg9ejRJSUk0bty40u9x111mT94ZM8wGLyEh5k1aFdEazp/3IDS0NX5+K7n11k54eNxc7WMR1pDkL4QLyczMZOPGjSQmJtKsWTNiY2MZMGDAb6ZqVtawYdCjB8yZAzt2mJ8CGjUyS0ElTwRam+sCZWebz0dHw7Jlnnh49OWhhx4iMrIt0dHRzjlIUSeUOQuz/unZs6fevXu31WEIUS/s27cPwzDYvn07N910EzabjSuvvNKp+zh8GF5/Hd59F06cMJeDuHgCKCgwG7bceCOMH2/W9y++tnnzZlatWsWaNWsICgpyakyi6pRSX2qte1a4nSR/IeqnwsJCduzYgWEYpKamcuedd3LHHXcQFhZW6/s+f95cnTMvzzwJtG4N5a24smzZMo4ePcpzzz2Hh0z5sZQkfyFcVEZGBm+++SZJSUm0bt0am83GzTffjFdtrsVcQ4WFhUydOpWuXbsydepUq8Nxa5VN/vX3t0kIN/PTTz9hGAYffvghAwcO5LnnnqNTp05Wh1UpXl5eLFy4kLFjx9K5c2cGDx5sdUiiApL8hbBQYWEh27dvJz4+nlOnTjFmzBgeeeQRQkIq3z6xvggNDWXp0qVMmTKFdu3aucyJy11J8hfCAunp6axfv54NGzbQrl077rnnHvr374+ni6+K1qlTJ2bOnElcXBxr164lNDTU6pBEGST5C1GHvv/+ewzD4KOPPmLw4MGsWLGCDh06WB2WU/3+979nz549PProo/zjH/9w+RNaQyUDvkLUMrvdzrZt2zAMg4yMDGJiYhg+fDjBwcFWh1ZrHA4HDz/8MFFRUUybNs3qcNyKDPgKYbHTp09fKu106NCB++67j759+7rFVEgPDw+effZZxo0bR+fOnfnDH/5gdUjiMpL8hXAirTXfffcd8fHx7Nq1iyFDhvDyyy8T5YbtrYKDg1m2bBmTJ08mKiqKLl26WB2SKEGSvxBOYLfb2bp1K4ZhkJ2dTUxMDHPmzCmz6Ym7iI6O5rHHHmPGjBmsW7eO8PBwq0MSxST5C1EDp06dIikpiY0bN3LFFVfw5z//mT59+rhFaaeyBgwYwL59+5g5cyYvvfRStdchEs4lv6FCVJHWmq+++opZs2YRGxtLTk4Or732Gs8//zw33nijJP5STJo0ieDgYJYuXWp1KKKYzPYRopLy8/PZsmULhmGQn5+PzWbjtttuIyAgwOrQXEJ2djbjxo3jrrvuYtSoUVaH02DJbB8hnOTEiRMkJiaSnJxM165deeihh+jVq5dc4VdRo0aNWL58Offddx8dOnSgW7duVofk1iT5C1EKrTVffvkl8fHxfPXVV9x2222sXr2aiIgIq0NzaW3btuWpp55i1qxZrFmzhmbNmlkdktuSso8QJeTm5vLuu+9iGAZaa2w2G8OGDZPSjpP961//YseOHbz66qu/6TEsakaWdBaiClJTU0lMTGTTpk1ce+21xMbG0rNnT1Rl+hqKKtNa8+ijj+Lv788TTzwhf89OJDV/ISqgtebzzz/HMAy+/fZbhg8fzrp162jVqpXVoTV4SimefPJJxo8fT0JCAjabzeqQ3I4kf+F2cnJy2Lx5MwkJCXh5eWGz2fjrX/+Kn5+f1aG5FX9/f5YvX869995Lhw4d6NGjh9UhuRVJ/sJtHDt2jMTERN5++2169uzJnDlz6N69u5QcLNSqVSvmz5/PnDlzWL16NS1btrQ6JLchyV80aA6Hg127dhEfH89PP/3EiBEjeP3112nRooXVoYlivXr1Yty4cUyfPp1Vq1bJJ7A6IgO+okHKzs5m06ZNJCQk4O/vj81mY8iQIfj6+lodmiiF1ponn3ySoqIi5s+fL5/GakBm+wi3dOTIERISEtiyZQu9e/fGZrNxzTXXSDJxAfn5+UycOJHBgwczduxYq8NxWTLbR7gNh8PBxx9/jGEY7Nu3jzvuuIP4+Hi5gcjF+Pr6snTpUsaNG0fHjh3p06eP1SE1aJL8hcs6f/48ycnJJCQkEBISQmxsLMuXL5ebhlxY8+bNWbBgAbNmzWLlypW0adPG6pAaLEn+wuUcOnQIwzB47733uPHGG5k/fz5du3aV0k4D0b17dyZPnsz06dNZvXq13F1dSyT5C5fgcDjYuXMnhmFw6NAhRo8eTWJiIk2aNLE6NFELRo8ezZ49e3jyySdZtGiRLKJXC2TAV9RrWVlZbNy48VKit9ls3HLLLdIQxA3Y7Xbuv/9+brjhBiZOnGh1OC5DBnyFS9u/fz+GYfDBBx/Qr18/Fi1aJD1g3YyPjw+LFy9m7NixdOrUif79+1sdUoMiyV/UG0VFRezYsQPDMEhJSeHOO+9k/fr10vfVjTVp0oTFixfzyCOP8OqrrxIZGWl1SA2GJH9huXPnzvHmm2+SlJREy5YtsdlsDBgwAC8v+fUU0LVrVx588EGmTZvGmjVrCAoKsjqkBsEpoyhKqaFKqb1KqQNKqdmlvH6vUuq0Uurr4i8p4An27NnD008/zR133EFKSgrLly/ntddeY/DgwZL4xa8MHz6c66+/nrlz5+JwOKwOp0Go8YCvUsoT2AcMBo4DXwB/1Fr/WGKbe4GeWuuplX1fGfBtmAoLC9m+fTuGYXDy5EnGjBnDyJEjCQ0NtTo0Uc8VFhYyZcoUrr32WqZMmWJ1OPVWXQ749gIOaK0PFe84HhgB/FjuTwm3kp6ezoYNG1i/fj1t2rTh7rvv5qabbsLT09Pq0ISL8PLyYtGiRYwdO5bOnTtzyy23WB2SS3NG8m8NpJR4fBzoXcp2o5VS/TE/JTyitU65fAOl1GRgMpi9PoXr+/HHH4mPj+e///0vgwYN4vnnn6djx45WhyVcVFhYGEuWLGHq1Km0bdtWfpdqoK4Kq5uAN7TW+UqpPwFrgIGXb6S1fgV4BcyyTx3FJpysoKCAbdu2YRgGZ8+eZcyYMcTFxREcHGx1aKIBuOKKK4iLiyMuLo5169bJ71U1OSP5pwIlF+CIKH7uEq312RIPXwMWO2G/op45c+bMpdJO+/btGT9+PP369ZO7M4XTDR06lL179zJ79mxWrFgh5cNqcMb/yi+AjkqpKKWUDxALJJfcQClVsj3PcOAnJ+xX1ANaa7799lsee+wxxowZw9mzZ3nppZd48cUXuemmmyTxi1ozdepUlFKsWLHC6lBcUo2v/LXWhUqpqcBWwBNYpbX+QSk1D9ittU4GHlJKDQcKgXTg3pruV1jLbrfz/vvvEx8fT1ZWFjabjdmzZ8scbFFnPD09WbBgwaUB4GHDhlkdkkuRtX1ElZw6dYqkpCQ2btxIp06diI2N5YYbbpArfGGZgwcP8qc//YkVK1Zw5ZVXWh2O5WRtH+E0Wmu++eYbDMPgs88+Y+jQobz66qu0a9fO6tCEoH379syZM4cZM2awdu1aWQ6kkiT5izLl5+ezdetW4uPjycvLIyYmhrlz59KoUSOrQxPiVwYOHHhpAPjFF1+UO8QrQco+4jdOnjxJYmIiycnJdOnSBZvNxvXXXy+lHVGvORwOpk+fTsuWLZk5c6bV4VhGyj6iSrTWfPXVVxiGwe7du/nDH/7AypUr5WY74TI8PDx45plnGDduHG+99RYjRoywOqR6TZK/m8vLy+Odd94hISGBoqIiYmJieOqpp6R1nnBJgYGBLF++nIkTJxIdHc3VV19tdUj1liR/N5WWlnaptHPNNdcwbdo0fve730kfXOHy2rVrxxNPPMGsWbNYs2YNTZs2tTqkekmSvxvRWvPFF18QHx/PN998w+23387atWtp3bq11aEJ4VT9+vVj//79zJw5k5dffhkfHx+rQ6p3ZMDXDeTk5Fwq7QDExsYybNgw/P39LY5MiNqjtWbWrFkEBQUxd+5ct/lUW9kBX0n+DVhKSgqJiYls3ryZHj16YLPZ6NGjh9v8JxAiJyeH8ePHc+eddzJmzBirw6kTMtvHTTkcDj777DPi4+P54YcfGDFiBP/+979p2bJlxT8sRAMTEBDAsmXLmDBhAu3bt+e6666zOqR6Q5J/A5Gdnc3mzZsxDAM/Pz9sNhuLFy/G19fX6tCEsFRERATPPPMMjz76KGvWrKFFixZWh1QvSPJ3cceOHcMwDN5991169erF448/zrXXXiulHSFK6N27N/fccw9xcXGsXLlSLoqQ5O+SHA4Hn3zyCYZhsHfvXkaOHEl8fDzNmjWzOjQh6q27776bPXv2MH/+fObNm+f2F0gy4OtCzp8/z6ZNm0hISCAoKAibzcbvf/97mcYmRCXl5eVx3333ceutt3L33XdbHU6tkAHfBuTQoUMkJCSwdetW+vTpw7x587j66qvd/spFiKry8/Nj2bJljBs3jo4dO9KrVy+rQ7KMJP96yuFw8N///hfDMDh48CCjRo0iISFB7lYUooZatGjBggULmD17Nv/617/c9iZHSf71TFZWFm+99RaJiYmEhYVhs9kYNGiQlHaEcKLrrruOiRMnMn36dFatWuWWa1lJzb+eOHDgAIZhsG3bNvr164fNZuOqq66yOiwhGiytNc888wzZ2dksXLiwwZRR5Q5fF1BUVMSHH36IYRgcPXqU0aNHM2rUKBo3bmx1aEK4BbvdzuTJk+nfvz8TJkywOhynkAHfeuzcuXNs3LiRpKQkmjVrRmxsLAMGDMDb29vq0IRwKz4+PixZsoRx48bRqVMn+vbta3VIdca9kr/W8N138N57sGsX7N0LubmgFDRvDt27Q79+MHQoBAc7fff79u0jPj6e//znP9x8880sXbqUK664wun7EUJUXtOmTVm4cCHTp0/ntddec5ve1O5R9tEatm+HxYvh0CEoLARfX/Dzg4utCe12yMszv/fyglGjYPp0qGEJprCwkP/85z8YhkFaWhp33nknd9xxB2FhYTU8KCGEM23cuJF169axZs0aAgMDrQ6n2qTmf1FGBsydC1u2gLc3NGpkXumXp7AQzp+HwEBYtMj8JFBF6enpl0o7rVu3JjY2lptvvhlPT89qHogQorYtWrSIn3/+maVLl7psz2pJ/gBpaRAbC6mpEBLyy1V+ZeXmmp8G/vIXmDq14pMG8OOPP2IYBjt37mTgwIHYbDY6depUzQMQQtSlgoICpkyZQo8ePbj//vutDqdaZMA3I8NM/GlpUN0Si7+/+Wnhb3+DgAC4775SNysoKGD79u0YhsGpU6cYM2YM06ZNIyQkpAYHIISoa97e3ixatIixY8fSqVMnBg4caHVItaZhJn+t4bHHzCv+mtbWvbwgKAgWLoQ+faBLl0svnT17lvXr17NhwwYiIyO555576N+/v5R2hHBh4eHhLFmyhAcffJB27drRvn17q0OqFQ0z+W/fDlu3mqUeZ/D2Nks+Dz0EW7bw/Z49xMfH8/HHHzN48GBeeOGFBvsLIoQ7uvLKK5k2bRrTp09n7dq1BNfC7D+rNbyav9YwZAgcO2YO2DqJw+Eg5+RJXujShY8DAoiJiWH48OEN8pdCCGH629/+xsGDB3n++eddZgDYfQd8v/kG7rzTnKdfzgCt3eFg4cmTfJ6TQ1ZRERHe3kxt1owbLjthFBQWkpGRwbmMDEI8PPC49loab9/uMr8IQojqKyoq4sEHH+SKK67goYcesjqcSqls8m94Gey998ypmhXMzCkCWnh780rbtuzo1Ik/N23K7NRU0ux2NJCTm8vx1FQOHTpEUVER7dq1o3n79jRNScHjwoU6ORQhhLU8PT1ZsGAB27ZtY+vWrVaH41QNr+a/a5d5A1cF/D08mFxieeR+QUG09PZm99mzdM3Lw+FwEBYWRsuWLfEseZXv7Q179oAbrwMuhDsJCQlh2bJl/PnPfyYyMpLOnTtbHZJTNLwr/717zTt3q6CgoIC9J06wPzOTxvn5NGvalPbt29M4PPzXid/cGPbvd2LAQoj6rmPHjsyePZu4uDgyMjKsDscpGl7yz8mp0s1cZ86e5dsffuDp06cZHBBAx0aNyMvP59y5c2RlZXEhO5vc3Fzy7XYKCgtxFBSgpewjhNsZNGgQQ4cOZfbs2RQWFlodTo01vAHfjh3NefmVPAGknzvH7KNHISCA+eHhKK1xFBVR5HCU+meg3c6/WrXiP9HRBAYGEhQURGBg4G++v/zr8tdkBU8hXI/D4eCRRx6hTZs2xMXFWR1Oqdz3Dt9mzSArq1J1f601K3JyyPPzY46XF03Cw/GoaAmHrCxmLlzIn2++mQsXLnDhwgXOnz//m+/T0tLKfO3ChQt4e3uXe/Ko6ETSqFEjmXEkRB3z8PBg/vz5jBs3juTkZIYPH251SNXW8JJ/9+7mDV6VSP4LTp7ksN3OSx07kpGWxsmTJ2nZsiXlpn+l8O7WjfDwcMLDw6sVotaa3NzcSyeCy78uniROnz5d5skjNzcXPz+/ck8YFZ1M/P39G0z3IiHqSlBQEMuWLWPy5MlER0fTtWtXq0OqloaX/Pv2NVfwrMCJggI2nDuHj1IM3b8frTX5+fnMcDiIKauhs91uzvaJiqpRiEopAgICCAgIoFmzZtV6D4fDQXZ2dqknhotfmZmZHD9+vMxPKAUFBeWWpyrzvfQWFu4oKiqKxx9/nJkzZ7Ju3bryu+/l58OFC+b088BAqCf/Z5xS81dKDQX+DngCr2mtF172ui+wFugBnAVsWusj5b1ntWv+mZnmNEx/f3NdniqwFxRw5PBhWkdE0Ki0hs4ZGTBpEsyeXfW46qHCwsJyS1dlfSIp+djDw6NS4xzlfQqRtZCEq3r11Vf59NNP+ec///nLhZDDYU4537ABvvgCUlLg4u+41ubF4/XXmzejdutWqdWCq6LO7vBVSnkC+4DBwHHgC+CPWusfS2wzBeimtb5fKRUL3KG1tpX3vjVa0nn2bEhMrNaibtnZ2aSmphIZFYVPyUHZwkJzJtG2bdC2bfXiamC01tjt9nJPHmWdSC6+lp2dja+vb4VjHeWVtAICAmT8Q1jC4XAwa9YswsLCmPPoo+ZNps88Az//bJ4E/P3NEvTFBO9wmJ8EcnPNE0J0tLm9E+8bqsvk3wd4Sms9pPjxowBa6wUlttlavM2nSikv4CTQVJez8xol/zNnYOBAKCoy//Kr6Gx6OpmZmUS2a/dLUsnIgD/9CWbOrF5MolQXxz8qe/Io7WSSl5dHQEBAtWdfBQUF4evrK+MfolpycnKYctddPJ6XR/sDB8yyjr9/xVf0WpvloKIiuOsumDOnyvcolaYuZ/u0BlJKPD4O9C5rG611oVIqE2gMnHHC/n+rSRNzCeYHHzRr9FUs/4SHh5Ofl0faiRO0bt0alZlpXu0//HCthOvOSo5/NG/evFrvUVRUVO74x/nz50lPT+fYsWNlnliKiooqPHlU9KlEpu+6p4CcHP555gzpX35JTmQkAaWVjEujlDktvagI/t//M1cOWL3a7B1SB+rVgK9SajIwGaBtTUsrt94K+/bBihXmX3AVTgAKaNGyJUePHCErJYWQdu1g3bpKzSASdc/T05Pg4OAarbB6sXxV3ljHiRMnyv2E4uXlVekZV2WdSKR85WJycuCuu/A7eZLgyEiOp6URFRWFd1UuOD09zRL1l1/C5Mmwdm3Vuw5WgzOSfyrQpsTjiOLnStvmeHHZJwRz4PdXtNavAK+AWfapcWQPP2yeRZcs+eUsW8mP9h5FRbQJCuKH8+fJnz2bXhERNQ5H1F8+Pj41nr6bl5dX4VjHmTNnytwmJycHPz+/Gs2+kum7dWzpUjh4EEJDCVSK8PBwjqek0C4ysuJ7hkpSCkJD4dNPzeR/7721FvKlXTqh5u+FOeB7C2aS/wK4S2v9Q4ltHgCuLjHgO0prHVPe+zqtgTvA99+bjVhSUio+CRQUmHU4Dw+YNInvBg5k2qOP8tprr9GuXTvnxCNEKRwOBzk5OVUeNC/5vd1ur/Lsq9Km78oJpBK+/hrGjDGnbxbP5tFAamoqSilatWpV/j1DpbHbzQHhDz6Aal5w1ul6/kqpW4HnMKd6rtJaP6uUmgfs1lonK6X8gHVAdyAdiNVaHyrvPZ2a/MFM6v/5D7zyCvzvf+ZYgN1u1tuUMgdplDKfv/tucwCmONlv3LiRdevWsWbNGgIDndcgRghnKywsJDs7u9qzry4Ur1tVk9lXgYGBeFVxnM0lTZpk5pTQ0F897dCaI0eOEBISQuPwcLKKiph34gS7Llwg1MuLqU2bMrS8LoMZGWa/8DlzqhWW+zZzqYxz58zBlf37ITvbHA9o1szszxsV9cuc3BIWL15MWloay5cvl7qsaNDsdnulZ1yVdTLx8fGp0eyrej999+RJ84bS4OBS6/P2ggKOHDlC61atePbcOTTweMuW7MvL4+GUFP4VGUl0WWOIBQXm1PLdu6s1W1GSv5MVFhYyZcoUrr32WqZMmWJ1OELUW5cvX1LZk0fJ7/Py8vD396/ykiUln/fz86u98tWGDTBrVrl9wrNzcjiYksIkh4PE9u1pW3wT2BNpaTT18uLB8u7uv3AB1qyB3pdPnKyY+y7sVku8vLxYtGgRY8eOpVOnTgwaNMjqkISol5y1fElF5amMjAyOHTtW5kmmsLCQRo0aVXnQvORXmcuXfPWVWTIuR6OAAHJDQij8+WciSpTBOvr68lVOTvl/AQUF8MMP1Ur+lSXJvwrCwsJYunQpDzzwAG3btqVTp05WhyREg+Th4VHj6bsFBQUVlqdOnjxZ7qcST0/PUj9VTEhOpkl2Ng6HA08PDzw8PUv90zsoiMDTp3+5ZwgI9PAg2+EoP3il4Lvvqn3slSHJv4o6d+7MjBkziIuLY+3atYReNtgjhKgfvL29CQsLI6way7wAlxZ7LO2kELplCx5eXhQVL3FSVv+PE4WFZBUWcub0aZo3a4a3tzfZDgeNKhrP8PCA8+erFXdlSfKvhiFDhrBv3z5mz57NP/7xD/eY2SCEm1FK4efnh5+fH02aNPn1i889Z5Zmyrgbt8jh4Ny5c9jPnoWCAlSrVngV3wG+Lz+/7MHei7Su9ZtK6/Fwev32wANGw3bOAAAXoUlEQVQP4OPjw3PPPWd1KEKIuhYdbU4Vv0xefj4nTpzgwP795OXm0j4igqFNm2IUFJDncPBNTg4fnj/PH8qb6gnmbJ+OHWspeJMk/2ry8PDg2Wef5ZNPPiE5OdnqcIQQdalXL/PqHPPGrqzz5zl69CjHjh3Dy8uL6Pbtad26NQH+/jzaogX5DgeD9+1jTmoqj7ZoUfGVv6+vudxzLZJ6RQ1c7OgzadIkoqKiuPrqq60OSQhRF3r2pAjIOHOGjHPn8PLyIjw8nKCgoN8s6xDs6cmyNm1Kf5/SOBzmTKJaTv5y5V9DUVFRPPHEE8yaNYvTp09bHY4Qopbt27ePeYmJfJmRgb5wgYiICKIiIwkJDq7aej5lycoyl6S/fJzByST5O0H//v0ZPXo0M2fOxF5KHVAI4doKCwt5//33mThxIn/5y1+IaNOGK59/nqYhIfg7c2D24hTQSZOc955lkLKPk0yYMIG9e/eycOFCHn/8cVkYS4gGID09nQ0bNrB+/XratGlDbGwsN998sznDz+GA5GTzhi9nTfnOzISRI6FnhTfo1pgs7+BEOTk5TJgwgVGjRhETU+6ipUKIeuzHH38kPj6e//73v9xyyy3ExMSUflNnSgoMG2bW6Bs1qtlOs7LMk8i2beaaQdUkyztYICAggGXLljF+/Hiio6PpWQdnbyGEc9jtdrZt20ZCQgJnz55lzJgxxMXFlX+XcZs2Zvete+4x1+Op7qq/mZnmz77xRo0Sf1XIlX8t+Pzzz5k7dy6rV6+mVatWVocjhCjH6dOnWb9+PRs2bKBDhw7YbDb69etXtVVFv/7arNOnp5uLvVX2ZwsLzTt527aFVavMVYVrSFb1tNjrr7/O5s2bWblyJf7VWJZVCFF7tNZ8++23GIbBp59+ypAhQ4iJiSE6Orr6b3r+PMyfb6746XCYZSBv7982jtLabNiSm2suHz9pktlsykkDx5L8Laa15umnnyY/P5+//vWvMgAsRD1gt9vZsmULhmGQnZ1NTEwMt99+O0FBQc7bydGj8PrrYBhmKcjLy0z4WpvJvqAAGjc2S0UxMWYvESeS5F8P2O12Jk6cyIABAxg/frzV4Qjhtk6ePElSUhJvvfUWV155JTabjT59+tRuwxit4dQp2LvXrOkrBeHhcMUV5p+1RAZ86wEfHx+WLl3KuHHj6NixI3379rU6JCHchtaar776CsMw2L17N7feeisrV66kbdu2dROAUtC8uflVD8mVfx349ttvmT59ujSBF6IO5Obm8u6775KQkEBhYSExMTHcdtttBJSxAmdDI1f+9Ui3bt144IEHmDZtmjSBF6KWpKamkpiYyKZNm7jmmmt45JFH6NWrl4y3lUGSfx0ZOXIke/fuZe7cudIEXggn0Vrz+eefYxgG33zzDcOHD2ft2rW0bt3a6tDqPSn71CFpAi+Ec+Tk5LB582YSEhLw8vLCZrMxbNgw/Pz8rA7NclL2qYekCbwQNXPs2DESEhJ455136NmzJ3PmzKF79+5S2qkGSf51TJrAC1E1DoeDTz/9FMMw+Omnnxg5ciRvvPEGzevpLBpXIcnfAtIEXoiKnT9/nk2bNpGQkEBgYCA2m42lS5fi4+NjdWgNgiR/i0gTeCFKd+jQIQzD4L333qNPnz7MmzePq6++Wko7TiYDvhZyOBz85S9/oW3btsTFxVkdjhCWcTgc7Ny5E8MwOHToEKNGjWLUqFE0bdrU6tBcjgz4uoCLTeDHjRtHcnIyw4cPtzokIepUZmYmb731FomJiTRu3BibzcagQYPw9va2OrQGT5K/xS42gZ88eTLR0dF07drV6pCEqHX79u3DMAy2b99Ov379WLRoEV26dLE6LLciyb8eiIqK4vHHH2fmzJmsWbNGPuqKBqmwsJAdO3ZgGAapqamMHj2a9evXE16Li5yJsknyryf69+/P/v37mTlzJi+//LLMaBANRnp6Ohs3biQpKYlWrVphs9kYMGCATHKwmAz41iNaa2bNmkVgYKA0gRcu78cff8QwDHbu3MnAgQOx2WxyX0sdkPX8XZQ0gReurKCggA8++ADDMDhz5gxjxoxhxIgRhISEWB2a25DZPi5KmsALV3TmzBk2bNjA+vXriY6OZty4cfTv318WMKzHJPnXQ61bt2b+/PnMmTNHmsCLektrzXfffYdhGHzyySf8/ve/56WXXqpZH1xRZ6TsU49JE3hRH9ntdrZu3YphGFy4cKF2+uCKapOyTwPwxz/+kX379jFv3jxpAi8sd+rUKZKSkti4cSOdO3fm/vvv54YbbpDSjouSf7V6TCnFnDlzSE1NZfXq1VaHI9zQxT64s2bNIjY2luzsbF599VVWrFhB3759JfG7sBpd+SulwgEDiASOADFa64xStisCvit+eExrLesYVJI0gRdWyMvLu9QH1263Y7PZePLJJ92mD647qFHNXym1GEjXWi9USs0GwrTWs0rZ7oLWukqNa6Xm/2vSBF7UhbS0NBITE0lOTqZbt27YbDZ69eolV/gupE7m+Sul9gI3a61PKKVaAju01p1L2U6SvxNs3LiRdevWSRN44VRaa7744gvi4+P5+uuvuf3224mJiZE+uC6qrpL/Oa11aPH3Csi4+Piy7QqBr4FCYKHWemNF7y3Jv3SLFi3ixIkT0gRe1FhOTg5vv/02CQkJeHh4XOqDKzPLXJvTkr9SahvQopSXHgPWlEz2SqkMrXVYKe/RWmudqpSKBrYDt2itD5ay3WRgMkDbtm17HD16tKL43Y40gRc1dezYMRITE3n77bfp2bMnNpuN6667TmaTNRBOm+qptS6zy7hS6melVMsSZZ9TZbxHavGfh5RSO4DuwG+Sv9b6FeAVMK/8K4rNHUkTeFEdDoeDXbt2ER8fz08//cSIESN4/fXXadGitOs64Q5qOs8/GRgHLCz+863LN1BKhQE5Wut8pVQT4EZgcQ3369akCbyorAsXLrBp0yYSExPx9/fHZrOxZMkSfH19rQ5NWKymNf/GQALQFjiKOdUzXSnVE7hfaz1RKXUD8DLgwLyv4Dmt9cqK3ltq/hXbunUrL7zwgjSBF79x+PBhEhIS2Lp1K9dffz02m41u3bpJaccNyKqebmLFihX88MMP0gRe4HA4+Oijj4iPj+fAgQOMGjWK0aNHS3MgNyPJ301IE3iRlZV1qQ9uWFjYpT640hDIPcnaPm5CmsC7r/3795OQkMC2bdvo168fCxYs4KqrrrI6LOEiJPk3ANIE3n0UFRVd6oObkpIifXBFtUnybyCkCXzDlpGRwZtvvil9cIXTyG9OAyJN4Buen376CcMw+PDDDxkwYAB/+9vf6Nz5NyuoCFFlMuDbwEgTeNdXUFDA9u3bMQyDU6dOMWbMGEaOHCl9cEWlyICvm1JK8dRTTzFhwgQSExOlCbwLOXv2LOvXr2fDhg1ERkZyzz330L9/fzw9Pa0OTTRAkvwbIGkC7zq01nz//fcYhsHHH3/M4MGDeeGFF2jfvr3VoYkGTpJ/AyVN4Os3u93O+++/j2EYZGZmEhMTw8yZMwkODrY6NOEmJPk3YL169eLee+8lLi5OmsDXEyX74Hbq1IlJkyZx4403yvLcos5J8m/gLjaBf+aZZ3j22WdlANgCWmu+/vprDMPg888/Z+jQobz66qvSkU1YSmb7uAG73c7EiRMZOHAg9957r9XhuI38/Hy2bNmCYRjk5eVhs9m47bbbaNSokdWhiQZMZvuIS0o2ge/QoYM0ga9laWlpJCUlkZycTNeuXXnwwQfp3bu3lHZEvSLJ3000a9aMRYsWSRP4WnKxD65hGPzvf//jtttuY/Xq1URERFgdmhClkrKPm5Em8M6Vk5PDO++8Q0JCAgCxsbHSB1dYSso+olQjR45k7969zJ07V5rA10BKSgqJiYls3ryZHj16MHPmTHr06CED6sJlyP98NzR9+nRycnL45z//aXUoLsXhcPDJJ5/w8MMPM378eLy9vfn3v//NkiVL6NmzpyR+4VLkyt8NSRP4qsnOzmbTpk0kJCTg5+dHbGwsixcvlj64wqVJ8ndT0gS+YkeOHCEhIYEtW7bQu3dvnnjiCa655hq5whcNgiR/N9a5c2dmzJhBXFycNIEvdrEPrmEY7N+/nzvuuIP4+HiaNWtmdWhCOJUkfzc3ZMgQ9u7dy+zZs926CXxWVhbJyckkJCQQGhpKbGys9MEVDZpM9RRu3QT+wIEDJCQk8P7779O3b19sNpu0wRQuTaZ6ikpztybwRUVFfPjhhxiGwdGjRxk9ejRJSUk0btzY6tCEqDOS/AXgHk3gz507x8aNG0lKSqJ58+aX+uB6e3tbHZoQdU6Sv7ikoTaB37NnD4ZhsGPHDgYMGMDSpUu54oorrA5LCEtJ8he/0lCawBcWFl7qg3vy5EnGjBnDm2++KTOahCgmyV/8xoQJE9i7dy8LFy50uSbw6enpl/rgtm3blrvvvpubbrpJ+uAKcRmZ7SNKlZOTw4QJExg1apRLNIG/2Af3o48+YvDgwcTExNChQwerwxKizslsH1EjJZvAt2/fnh49epS5bVERZGWZfwYEmF91wW63s23bNuLj4zl37hwxMTHMmDFD+uAKUQmS/EWZLjaBf/TRR3/TBP7wYUhKgp07Yd8+cDjM54uKoHlz6N4dRo6EAQPA2ZNpTp06xfr163nzzTfp2LEjEydOpG/fvrJCqRBVIGUfUaHXX3+dzZs3s3LlStLS/Hn8cfj8czPh+/qCnx9cLKlrDXY75OaCh4f5KeCRR+Cee8zH1aW15ptvvsEwDD777DOGDh1KTEwMkZGRTjlGIRqKypZ9JPmLCmmteeqpeXz+eTcOHhyJw6EICYHKjAPn50NODlxzDfz979CmTdX2nZ+fz9atW4mPjycvL4+YmBhuv/126YMrRBmk5i+cRmtFVtZcPvroLKGh6TRvXvk7YX19wccHvv0WRoyA+HiozAKiJ06cuNQHt0uXLkydOpXrr79eSjtCOIkkf1Gh+fMhOdmTqKgwjh49TKNGPgQGBlX655WC0FBzUDg2FjZvhhLDB5dorfnyyy8xDIMvv/yS2267jVWrVtGmqh8XhBAVkuQvyvXxx7BmDQQHg6enNxEREaSkHCcy0gcfn6o1MwkOhnPnYMYMWLfulzGA3Nxc3n33XQzDQGuNzWbj6aefJqCupg0J4YYk+Ysy5eaag7U+Pr8M6Pr7B9CsWVNSUlKIiorCw6NqN0+FhMCuXbBxI/TunUpCQgKbN2+me/fuxMXFSTtEIeqIJH9RpnfegYwMM2GXFBoaRl5eHqmpqbRp04bU1CfIyfkchyMXL68mNG48ltDQkaW+p1IahyOXBx88wRVX3M+IEbezbt26X00jFULUPkn+olRaw8svQ1m9XZo3b8GxY0c5ffo0TZqMx9v7cTw8fMjPP8LRo5Px9e2Mv/+Vl7Z3OIrIzMwkPT0dpTzw82vOk09upn9/6YMrhBVqNHVCKTVGKfWDUsqhlCpzapFSaqhSaq9S6oBSanZN9inqxunTcOhQ2XfrKqVo3TqCzMxM8vOb4OFxcQE4hVKKgoLjANjt+Zw8eZIDBw6Qk5NDy5atiI6Owtc3kI8/lsQvhFVqeuX/PTAKeLmsDZRSnsALwGDgOPCFUipZa/1jDfctatGePeZVf3nldy8vLyIi2nDs2FEyM/9OdvYWtM7Hz68z0I1jx46Rl5dHWFgo0dHReHn9cquvnx989lntH4cQonQ1Sv5a65+AigboegEHtNaHireNB0YAkvzrsYMHzRu0AgPL387Pz48WLVpw6lQsUVEzSE/fRUbGp5w5k0Xjxk1p0yYCpX77AdPXFw4cqKXghRAVqos7ZloDKSUeHy9+TtRjOTm/rNdTkeDgEEJCQjh2LAWHoyOBgXZCQ3cTEhJaauIHc5pnfr4TAxZCVEmFV/5KqW1Ai1Jeekxr/ZYzg1FKTQYmA7Rt29aZby2qyMencss3XNS0abPizl+KEyc8sNtTy91e61+mjwoh6l6FyV9rPaiG+0gFSt6iGVH8XGn7egV4Bcy1fWq4X1EDrVubpZmKFBamk5Ozm8DAvijlR3b2LjIzt9K69V/L/Tm73dyHEMIadTHV8wugo1IqCjPpxwJ31cF+RQ1ceWXF25gUGRlJnDjxV8CBt3dLmjefTlBQ/3J/Ki8Pela49JQQorbUKPkrpe4AVgBNgbeVUl9rrYcopVoBr2mtb9VaFyqlpgJbAU9gldb6hxpHLmpVu3bmNM/8/PI/AXh5hdGu3StVfn8PD+jbtwYBCiFqpEYDvlrrN7XWEVprX611c631kOLn07TWt5bY7h2tdSetdXut9bM1DVrUPg8PuPdec+DX2ex284QyeLDz31sIUTmyPq4ok81mzvUvKHDu++bkwNix5lx/IYQ1JPmLMrVoAdOnw4UL5uwcZ7hwAZo0gQcecM77CSGqR5K/KNd998HVV0NmZs3fy243e/z+/e8gjbiEsJYkf1EuT09YtcocAD53rvqfAPLyIDsbFi2C3r2dG6MQouok+YsKhYdDYiL06GGeAOz2yv+s1ubPOBzwj3/AqFG1F6cQovIk+YtKCQ+HN96AefOgsNBM6Dk5ZX8SKCw0ewFkZUGfPvDBBzBsWN3GLIQom6znLyrNwwPuvhtuvx2Sk81y0NGj4O1tngS0NpeEuLh0w6hR5nTRLl2qtlSEEKL2SfIXVRYcDP/3f+bX+fPm8s+nTpmDuY0aQceOEBHxS49eIUT9I8lf1EhQEPzud1ZHIYSoKrk2E0IIN6S0s+7ecTKl1GngqNVxVFMT4IzVQdQhdztekGN2B656vO201k0r2qjeJn9XppTarbV2mzUr3e14QY7ZHTT045WyjxBCuCFJ/kII4YYk+deOqi9w79rc7XhBjtkdNOjjlZq/EEK4IbnyF0IINyTJ3wmUUuFKqfeVUvuL/wwrZ9tgpdRxpdQ/6jJGZ6rM8SqlrlVKfaqU+kEp9a1SymZFrDWllBqqlNqrlDqglJpdyuu+Simj+PXPlFKRdR+l81TieKcppX4s/jf9QCnVzoo4namiYy6x3WillFZKNYgZQJL8nWM28IHWuiPwQfHjsjwD7KyTqGpPZY43Bxirtb4KGAo8p5QKrcMYa0wp5Qm8AAwDugB/VEp1uWyz+4AMrXUH4G/AorqN0nkqebz/A3pqrbsBScDiuo3SuSp5zCilgoCHgc/qNsLaI8nfOUYAa4q/XwOMLG0jpVQPoDnwXh3FVVsqPF6t9T6t9f7i79OAU0CFN57UM72AA1rrQ1prOxCPeewllfy7SAJuUcpll7Gr8Hi11v/RWl/s7LwLiKjjGJ2tMv/GYF60LQLy6jK42iTJ3zmaa61PFH9/EjPB/4pSygNYBsTVZWC1pMLjLUkp1QvwAQ7WdmBO1hpIKfH4ePFzpW6jtS4EMoHGdRKd81XmeEu6D3i3ViOqfRUes1LqOqCN1vrtugystsnCbpWklNoGtCjlpcdKPtBaa6VUaVOopgDvaK2Pu8KFoROO9+L7tATWAeO01g7nRimsopT6P6AncJPVsdSm4ou25cC9FofidJL8K0lrPais15RSPyulWmqtTxQnu1OlbNYH6KeUmgIEAj5KqQta6/LGByzjhONFKRUMvA08prXeVUuh1qZUoE2JxxHFz5W2zXGllBcQApytm/CcrjLHi1JqEOZFwE1a6/w6iq22VHTMQUBXYEfxRVsLIFkpNVxrvbvOoqwFUvZxjmRgXPH344C3Lt9Aa3231rqt1joSs/Sztr4m/kqo8HiVUj7Am5jHmVSHsTnTF0BHpVRU8fHEYh57SSX/Lu4EtmvXvXmmwuNVSnUHXgaGa61LPem7mHKPWWudqbVuorWOLP6/uwvz2F068YMkf2dZCAxWSu0HBhU/RinVUyn1mqWR1Y7KHG8M0B+4Vyn1dfHXtdaEWz3FNfypwFbgJyBBa/2DUmqeUmp48WYrgcZKqQPANMqf6VWvVfJ4l2B+ck0s/je9/GToUip5zA2S3OErhBBuSK78hRDCDUnyF0IINyTJXwgh3JAkfyGEcEOS/IUQwg1J8hdCCDckyV8IIdyQJH8hhHBD/x/PAxUO8owGIwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -497,13 +495,13 @@ "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "run_config = RunConfig(shots=1024, seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", "\"\"\"declarative approach, update the param from the previous cell.\n", "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", + "params['backend']['provider'] = 'qiskit.Aer'\n", "params['backend']['name'] = 'qasm_simulator'\n", "params['backend']['shots'] = 1024\n", "result = run_algorithm(params, algo_input)\n", @@ -565,14 +563,14 @@ "output_type": "stream", "text": [ "distance\n", - " [[ 0. 18. 90.]\n", - " [18. 0. 93.]\n", - " [90. 93. 0.]]\n" + " [[ 0. 11. 23.]\n", + " [11. 0. 33.]\n", + " [23. 33. 0.]]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGL5JREFUeJzt3X2UVfV97/H3dx5hYBgERp4JWBXjSgXj1IerTVqIxQeWslov1SZZNAtDmuZetbmNl5ibriZNl7pSr7FN00j1JrPSqBiq1XpblRCT2MSFd3jIrfKgRAF5GBgRBgRhmDnf/vHbI2Q6M2efM+cwe37zea0165y9z96//eWsw2d+8zu/vbe5OyIiMvRVDHYBIiJSGgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkElVn8mATJkzwmTNnnslDlteJE7B9O5w8CRUVYJZuP3fo6oKaGpg5E2pry1mliAxx69ate9vdG/Ntd0YDfebMmbS0tJzJQ5bP1q2weDFMmgQNDcW1cfgwVFbCI4/A+eeXtj4RiYaZ7UiznYZcinHgAPzBH8Dx48WHOcCYMfDee/Dxj8M775SuPhEZlhTohXKHL30JDh2C+vqBt1dfH8L8y18ObYuIFEmBXqgXX4Qf/nBgPfOeGhrguefg5z8vXZsiMuwo0Av17W+HLz8r+n/rHn/nHT755ptcsWULf75nT/9tdn+h+uCDJSxURIYbBXoh3noLXn451VDLhKoqlk6YwA1pe/L19fDSS7B79wCLFJHhSoFeiPXrQ286T+8cYN6YMfxWfT0NlZXp2u7upa9fP8AiRWS4UqAXYv166OwsX/snT8KGDeVrX0SipkAvxGuvhZOByqWmJhxDRKQICvRCdHSkPxu0GBUV4RgiIkVQoBdi5EjI5crXfi4HdXXla19EoqZAL8ScOal70F3udORy5IAc0JHL0ZXvxKGODrjoogGXKSLD0xm9lsuQd9FFqcfQH377bVa8/fb7y//S3s6yCRNY1tjP9XVqauDXf32gVYrIMKVAL8Rv/MapKyXmmY64rLGx//Duqavr1DFERIqQasjFzP7EzF41s1fM7FEzG2Fms8xsrZltM7OVZlbG6R8ZMW4cXHttuEpiqR0+DAsXwtixpW9bRIaFvIFuZlOB24Amd/8QUAncDNwL3O/u5wIHgaXlLDQzPvOZMBullPPROztDm5/+dOnaFJFhJ+2XolXASDOrAuqAvcA8YFXyejOwqPTlZdCFF8Ktt8KRI6W5OqJ7aOszn4ELLhh4eyIybOUNdHffDfwVsJMQ5O3AOuCQu3d3U3cBU8tVZObccQfMng3t7QNrxz20ccEFcNttpalNRIatNEMuZwE3ArOAKcAo4Jq0BzCzZWbWYmYtbW1tRReaKbW18A//ALNmwcGDxc1Nz+XCvr/2a/C975X3DFQRGRbSDLl8DHjT3dvc/STwBHAlMDYZggGYBvR6mUB3X+HuTe7e1FjIrI+sGzcOVq2CBQtCL/vYsXT7uYdt29vhuuvgBz8IbYmIDFCaQN8JXG5mdWZmwHxgE/ACcFOyzRLgqfKUmGENDfC3fwvf+laYndLeHnrdJ0786vi6e1h38GCYzTJ2bLiu+je/GW5DJyJSAuYpvtgzs68Avw90AhuAWwlj5o8B45J1n3D3E/2109TU5NHcJLqnXC7ccWjlSli3Dvbtg6rkD5iuLpg4ES65BG6+GS6/PNUleEVEAMxsnbs35d0uTaCXStSB3tO774Yeu1nohY8ePdgVicgQlTbQdaZouYwerRAXkTNKf/eLiERCgS4iEgkFuohIJBToIiKRUKCLiERCgS4iEgkFuohIJBToIiKRUKCLiERCgS4iEgkFuohIJBToIiKRUKCLiEQiu1dbzOVgxw7YvBna2sI1xUePhnPPDffgrKsb7ApFRDIle4H+1lvw6KPhnp3Hj4d1J0+Gx8rKcNOIkyfhqqvg1lvhyit1swgREbIU6CdOwAMPwN//feidjxrV9+3Zuu8O9POfw+zZ8I1vhJ67iMgwlo2u7c6dcM018OCDIcjPOgtqavrevqIi3M9zzBjYuhWuvx4ee+zM1SsikkF5A93MZpvZxtN+DpvZHWY2zsxWm9nryeNZRVWwcyf83u/Brl0hyKsK+KPBLAR7bS186Uvw3e8WVYKISAzyBrq7b3X3ue4+F7gEOAY8CSwH1rj7ecCaZLkw770Hn/wkHDoUgrlYNTXhC9OvfQ1++tPi2xERGcIKHXKZD/zS3XcANwLNyfpmYFHBR7/vvtAzH0iYd6uuDsH++c/D4cMDb09EZIgpNNBvBh5Nnk90973J81ZgYkEtvfEGNDf3/cVnMerq4OBB+OY3S9emiMgQkTrQzawGuAH4Qc/X3N0B72O/ZWbWYmYtbW1tp1743vfCbJXKyn6Pe7iriz/dtYurtmxh4bZtPNve3n+ho0fD978fhnNERIaRQnro1wLr3X1fsrzPzCYDJI/7e9vJ3Ve4e5O7NzU2NoaVHR2wcmUI3zzuaW2l2oznzz+fr02Zwt2trbxx4kTfO1RXh/ZXry7gnyYiMvQVEui3cGq4BeBpYEnyfAnwVOqWtm0LvfPq6n43ey+X40dHjvDZxkbqKiqYW1fHR+vr+b/5eum5HLz0UupyRERikCrQzWwUcDXwxGmr7wGuNrPXgY8ly+ls2hRO5c9jZ0cHlcCM0+akn1db238PHWDECGhpSV2OiEgMUk36dvejwPge6w4QZr0Ubs+eU6fz9+NYLseoHqf1j66o4Ggu1/+O1dWwd2//24iIRGZwzhTt7AwnBeVR10t4H+0l5P8Ts1R/AYiIxGRwAr2+PtVmM2pq6CIMvXR77cQJzqmt7X/Hrq5wCQERkWFkcAL9vPPC6fp5jKyoYF59Pd9ua+O9XI5fHDvGT44c4fp8JyKdOBEusSsiMowMTqB/8INh2MV7nbr+K5ZPmsSJXI6rX3uNu3bv5ouTJuXvoXd0wGWXlahYEZGhYXAun3v22aGX/uabeeeij6ms5L7p09O37R5OVppf3Pe1IiJD1eD00M3gj/6oPF9cvvtuGG658MLSty0ikmGDdz30BQtCT/3dd0vXZi4XhnK+8IXStSkiMkQMXqCPGBHuUNTZWbqeens7LFwIH/1oadoTERlCBveORU1N8LnPhcvdDjTU29th+nT46ldLU5uIyBAz+Legu+MO+NSnQqjnO6W/N7lcuGTulCnhNnSluLa6iMgQNPiBbhZuH3fvvafCOU1v3R2OHg098wUL4J/+CSZNKn+9IiIZNfiBDiHUb7oJfvjDcMPno0dDsB8+HOaUu4efrq7w2oED4bWpU8ONpb/1rXA/UhGRYWxw5qH3ZfJk+Ou/DoH9z/8MP/sZbNwIb78dAn3kSJg9Gy69FK67DubMSXVNGBGR4SBbgd5t/Hj4wz8MP3DqjFKFt4hIn7IZ6D0pyEVE8srGGLqIiAyYAl1EJBIKdBGRSCjQRUQikfYm0WPNbJWZbTGzzWZ2hZmNM7PVZvZ68qiJ4CIigyhtD/0B4Fl3vwCYA2wGlgNr3P08YE2yLCIigyRvoJtZA/AR4GEAd+9w90PAjUBzslkzsKhcRYqISH5peuizgDbgO2a2wcweMrNRwER335ts0wpMLFeRIiKSX5pArwI+DPydu18MHKXH8Iq7O9DrDULNbJmZtZhZS1tb20DrFRGRPqQJ9F3ALndfmyyvIgT8PjObDJA87u9tZ3df4e5N7t7U2NhYippFRKQXeQPd3VuBt8xsdrJqPrAJeBpYkqxbAjxVlgpFRCSVtNdy+e/A982sBngD+BThl8HjZrYU2AEsLk+JIiKSRqpAd/eNQFMvL80vbTkiIlIsnSkqIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikUh1T1Ez2w4cAbqATndvMrNxwEpgJrAdWOzuB8tTpoiI5FNID/233X2uu3ffLHo5sMbdzwPWJMsiIjJIBjLkciPQnDxvBhYNvBwRESlW2kB34HkzW2dmy5J1E919b/K8FZjY245mtszMWsyspa2tbYDliohIX1KNoQNXuftuMzsbWG1mW05/0d3dzLy3Hd19BbACoKmpqddtRERk4FL10N19d/K4H3gSuBTYZ2aTAZLH/eUqUkRE8ssb6GY2yszqu58DvwO8AjwNLEk2WwI8Va4iRUQkvzRDLhOBJ82se/tH3P1ZM/t/wONmthTYASwuX5kiIpJP3kB39zeAOb2sPwDML0dRIiJSOJ0pKiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkUge6mVWa2QYzeyZZnmVma81sm5mtNLOa8pUpIiL5FNJDvx3YfNryvcD97n4ucBBYWsrCRESkMKkC3cymAdcDDyXLBswDViWbNAOLylGgiIikk7aH/g3gTiCXLI8HDrl7Z7K8C5ha4tpERKQAeQPdzBYC+919XTEHMLNlZtZiZi1tbW3FNCEiIimk6aFfCdxgZtuBxwhDLQ8AY82sKtlmGrC7t53dfYW7N7l7U2NjYwlKFhGR3uQNdHf/ortPc/eZwM3Aj9z948ALwE3JZkuAp8pWpYiI5DWQeej/E/i8mW0jjKk/XJqSRESkGFX5NznF3X8M/Dh5/gZwaelLEhGRYuhMURGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYlE3kA3sxFm9rKZ/cLMXjWzryTrZ5nZWjPbZmYrzaym/OWKiEhf0vTQTwDz3H0OMBe4xswuB+4F7nf3c4GDwNLylSkiIvnkDXQP3k0Wq5MfB+YBq5L1zcCislQoIiKppBpDN7NKM9sI7AdWA78EDrl7Z7LJLmBqH/suM7MWM2tpa2srRc0iItKLVIHu7l3uPheYBlwKXJD2AO6+wt2b3L2psbGxyDJFRCSfgma5uPsh4AXgCmCsmVUlL00Ddpe4NhERKUCaWS6NZjY2eT4SuBrYTAj2m5LNlgBPlatIERHJryr/JkwGms2skvAL4HF3f8bMNgGPmdnXgA3Aw2WsU0RE8sgb6O7+/4GLe1n/BmE8XUREMkBnioqIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgkFOgiIpFQoIuIREKBLiISiTQ3iZ5uZi+Y2SYze9XMbk/WjzOz1Wb2evJ4VvnLFRGRvqTpoXcC/8PdLwQuBz5nZhcCy4E17n4esCZZFhGRQZI30N19r7uvT54fATYDU4EbgeZks2ZgUbmKFBGR/AoaQzezmcDFwFpgorvvTV5qBSaWtDIRESlI6kA3s9HAPwJ3uPvh019zdwe8j/2WmVmLmbW0tbUNqFgREelbqkA3s2pCmH/f3Z9IVu8zs8nJ65OB/b3t6+4r3L3J3ZsaGxtLUbOIiPQizSwXAx4GNrv7/z7tpaeBJcnzJcBTpS9PRETSqkqxzZXAJ4F/N7ONybq7gHuAx81sKbADWFyeEkVEJI28ge7u/wZYHy/PL205IiJSLJ0pKiISCQW6iEgkFOgiIpFQoIuIREKBLiISCQW6iEgk0sxDFxGRtA4fhn/9V3jxRdi4Efbtg64uqKuD88+Hyy6DBQtgzhywvmaEF0eBLiJSCgcOwH33wRNPQGdnWDdyJNTXh+Du6oLNm2HDBnjoIfjAB+DOO+Hqq0sW7BpyEREZqOeeg3nzYOVKGDECxo4NP7W1UFERAruqCkaNgvHjYcwY2L0bPvtZ+OM/hnfeKUkZCnQRkWK5w9/8TQjlzk4466wQ3PmYhXBvaIDnn4cbboA9ewZcjgJdRKRY3/kO3H9/GFYZObLw/Ssqwi+B1lZYvHjAPXUFuohIMTZtgrvvDmGeplfen7FjYe9euOuu0OsvkgJdRKRQnZ1w++1h6KS6ujRtNjTA6tVhCKZICnQRkUL95CewfXvonZdKRQXU1MDXv150L13TFkVECrViReid9zPdsCOX457WVl4+dozDXV1Mq67mv519Nv9l9Oi+262rgx07wvz1iy8uuCz10EVECnH4MLS05O2ddwGTqqtZMWMGPz7/fD7b2Mjy3bvZ09HR905mYTjnueeKKk09dBGRQmzZEsbN85wMNLKigmWn3Uf5N+vrmVJdzZbjx5lSU9P3jiNGwNq1RZWmHrqISCG2bYOTJwve7Z3OTnZ2dHBObW3/G9bWwtatRZWmQBcRKcTRo+E0/gJ0uvO/9uxhYUMDM/MFemUlvPdeUaXlDXQz+z9mtt/MXjlt3TgzW21mryePZxV1dBGRoaaysqBrr+Tc+bM9e6gC7pw0Kf8O7uEYRUjTQ/8ucE2PdcuBNe5+HrAmWRYRid/EiWF6YQruzl/s3cuBzk6+Pm0aVWl+EZw8CWefXVRpeQPd3X8K9Dwf9UagOXneDCwq6ugiIkPNBz+YetO7W1t5s6OD+6dPp7Yi5Qj38eNFTVmE4me5THT3vcnzVmBiXxua2TJgGcCMGTOKPJyISEbMnBm+uOzo6LenvvfkSZ44dIgaMxa8/vr76++aNIlrGxr6bt8drrqqqNIGPG3R3d3M+jytyd1XACsAmpqair9IgYhIFlRUwCc+AQ8+2G+gT66upqWA3jwQ5qBXVsJ11xVXWlF7wT4zmwyQPO4vsh0RkaHnlltC8HbfyKJUjhyBRYvCdV2KUGygPw0sSZ4vAZ4qsh0RkaFn+nRYtiwE8ACujvgrjh8P10j/wheKbiLNtMVHgZeA2Wa2y8yWAvcAV5vZ68DHkmURkeHjttvgnHPCpQAGqrMzzD2/+26YMKHoZvKOobv7LX28NL/oo4qIDHU1NdDcHIZIDh4sepiEzs7wS+G22+D66wdUks4UFREp1pQp8OST4YbPBw8WNqbuHoL86FFYvjxcX32AzEs1/pPmYGZtwI4zdsDeTQDeHuQa0lKt5TOU6lWt5TNU6v2Auzfm2+iMBnoWmFmLuzcNdh1pqNbyGUr1qtbyGWr15qMhFxGRSCjQRUQiMRwDfcVgF1AA1Vo+Q6le1Vo+Q63efg27MXQRkVgNxx66iEiUog10MxthZi+b2S/M7FUz+0qyfpaZrTWzbWa20szSXdj4DDCzSjPbYGbPJMtZrnW7mf27mW00s5ZkXSZvfGJmY81slZltMbPNZnZFhmudnbyn3T+HzeyODNf7J8n/r1fM7NHk/10mP7dmdntS56tmdkeyLpPva7GiDXTgBDDP3ecAc4FrzOxy4F7gfnc/FzgILB3EGnu6Hdh82nKWawX4bXefe9q0r6ze+OQB4Fl3vwCYQ3iPM1mru29N3tO5wCXAMeBJMlivmU0FbgOa3P1DQCVwMxn83JrZh4BPA5cSPgMLzexcMvi+Doi7R/8D1AHrgcsIJxFUJeuvAJ4b7PqSWqYRPlDzgGcAy2qtST3bgQk91m0FJifPJwNbM1BnA/AmyfdFWa61l9p/B/hZVusFpgJvAeMIlxF5BliQxc8t8F+Bh09b/jJwZxbf14H8xNxD7x7C2Ei4vO9q4JfAIXfvPj93F+FDmQXfIHzAcsnyeLJbK4ADz5vZuuQmJlDAjU/OoFlAG/CdZDjrITMbRTZr7elm4NHkeebqdffdwF8BO4G9QDuwjmx+bl8BftPMxptZHXAdMJ0Mvq8DEXWgu3uXhz9dpxH+1LpgkEvqlZktBPa7+7rBrqUAV7n7h4Frgc+Z2UdOf9FDlycLU6iqgA8Df+fuFwNH6fFndYZqfV8y7nwD8IOer2Wl3mS8+UbCL80pwCj+8/2HM8HdNxOGgp4HngU2Al09tsnE+zoQUQd6N3c/BLxA+PNvrJl1X2VyGrB70Ao75UrgBjPbDjxGGHZ5gGzWCrzfO8Pd9xPGeC8lmzc+2QXscve1yfIqQsBnsdbTXQusd/d9yXIW6/0Y8Ka7t7n7SeAJwmc5k59bd3/Y3S9x948QxvZfI5vva9GiDXQzazSzscnzkcDVhC/DXgBuSjbLxM053P2L7j7N3WcS/sz+kbt/nAzWCmBmo8ysvvs5Yaz3FTJ44xN3bwXeMrPZyar5wCYyWGsPt3BquAWyWe9O4HIzqzMz49R7m9XP7dnJ4wzgd4FHyOb7WrRoTywys4uAZsI37xXA4+7+VTM7h9ALHgdsAD7h7icGr9JfZWa/Bfypuy/Maq1JXU8mi1XAI+7+l2Y2HngcmEG4quZid39nkMp8n5nNBR4CaoA3gE+RfCbIWK3w/i/JncA57t6erMvqe/sV4PeBTsJn9FbCmHkWP7cvEr6bOgl83t3XZPV9LVa0gS4iMtxEO+QiIjLcKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEv8BP2MHC9hYLwwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFfVJREFUeJzt3XmQXeV55/Hv04sWhBZADRIIRkAgNjZGcho54AwhchnwUghSScr2xMGUHWEKJyaOJwZCDaQGHGfKmBlXJRCxBLDxSsB2jOMKZQMeyhimJQQGSWYHIyTUDLQWkFq9PPPHuQIN7u679G119+nvp+pW33vuWZ4+derXb7/nPedEZiJJmvxaxrsASVJzGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkm01TpjRLQCXcDGzPxwRBwJfAs4CFgNfDwzd4+0jvnz5+fixYuH/nL3bnj+edi5E1pailc1mTAwUMy7aBHMnVvrryNJk8bq1atfzsyOavPVHOjAZ4H1wJzK538Ars7Mb0XEtcAngWtGWsHixYvp6ur6zS8eeww+9jGYP78I5Yg6ygJ27Sr+EJx7LlxwQX3LStIEFxHP1TJfTV0uEbEI+BBwfeVzAMuB2yqz3AycVX+ZwLPPFmG+axfMm1d/mAPMmAGzZ8NXvgK33NJQGZI02dXah/4/gb8BBiufDwJ6MrO/8vkF4LC6tz4wAH/5l/Daa0Ugj0ZbG+y/P1x5JTzxxOjWJUmTUNVAj4gPA1syc3UjG4iIlRHRFRFd3d3d//+Xt9wC69Y1r++7vR0GB+HCC4ufkjSF1NJCfy9wZkQ8S3ESdDnwv4B5EbGnD34RsHGohTNzVWZ2ZmZnR8deffp9ffDVr8LMmY11swxnzhx4/HH4xS+at05JmgSqBnpmXpyZizJzMfAR4KeZ+V+Au4E/qsx2DvD9urZ8992wYwdMnz7ibN955RU+/swznLRhA5e/+GL19UYUo19uuKGuciRpshvNOPQvAJ+LiCcp+tTrS9A77yyCt4r5bW18cv58zqynW2bOHLj33mIopCRNEfUMWyQz7wHuqbx/GljW8JbXrClGp1SxfE4xSnLdzp1s6e+vMndFSwu0tsJTT8Hb395wiZI0mYzPlaJ9ffDCC1W7W0YlE558cuzWL0kTzPgEem9v0Ypu5snQt8osLjaSpClifAK9tXXshxVGFGPTJWmKGJ9AnzGjuAior2/sttHSAgsWjN36JWmCGZ9Aj4Djjy8u969iIJPdg4MMUlymuntwkIFqo2Myiz8Wxx3XlHIlaTIYvz6JU0+FBx6oOtsNL7/MqpdffuPzj7ZuZeX8+azsGOHGYzt3FndfnDevCYVK0uQwfoF+1lnw5S8Xfekj3Cp3ZUfHyOE9lL4++NSnRlmgJE0u4/eAi4MPhtNOg61bm7ve3t7ini4rVjR3vZI0wY3vE4suvbQ4Qdrb25z17RmqeNllxdWikjSFjG+gL1gAV1wBr78OtV4FOpzMorX/nvfAH/9xc+qTpElk/J8pevbZxVOGtm1rfBhjJvT0wDHHwDXX1Pb4OkkqmYmRfH/1V3DxxUV3ybZtNd206w29vW+2zL/9bbtaJE1ZEyPQI+DP/xy+9z1YvBi2by9CerirSff0lff0FE89uuIK+PrXDXNJU9rEujb+uOPgxz+G++6D666Dn/+8GLEyMFCEeERx24D+fli4sBiaeNZZzXvikSRNYhMr0KHo/z7llOLV21s8feipp4oWeWsrHHZYcUvcAw8c70olaUKZeIG+t+nTi1sEHH/8eFciSRPexOhDlySNmoEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSVQN9IiYEREPRsTDEfFYRPxdZfpNEfFMRKytvJaMfbmSpOHU8oCLXmB5Zu6IiHbgvoj498p3/zUzbxu78iRJtaoa6JmZwI7Kx/bKK8eyKElS/WrqQ4+I1ohYC2wB7srMBypfXRkRj0TE1RExfcyqlCRVVVOgZ+ZAZi4BFgHLIuKdwMXA24ATgQOBLwy1bESsjIiuiOjq7u5uUtmSpLeqa5RLZvYAdwNnZOamLPQC/wIsG2aZVZnZmZmdHR0do69YkjSkWka5dETEvMr7mcD7gQ0RsbAyLYCzgEfHslBJ0shqGeWyELg5Ilop/gB8JzN/GBE/jYgOIIC1wKfHsE5JUhW1jHJ5BFg6xPTlY1KRJKkhXikqSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUElUDPSJmRMSDEfFwRDwWEX9XmX5kRDwQEU9GxLcjYtrYlytJGk4tLfReYHlmngAsAc6IiN8F/gG4OjN/C3gV+OTYlSlJqqZqoGdhR+Vje+WVwHLgtsr0m4GzxqRCSVJNaupDj4jWiFgLbAHuAp4CejKzvzLLC8BhY1OiJKkWbbXMlJkDwJKImAfcAbyt1g1ExEpgJcARRxzRSI2Tw65dsGYNrFsHa9fC1q3Q1gZHHQVLlsAJJ0CZf39J466mQN8jM3si4m7gJGBeRLRVWumLgI3DLLMKWAXQ2dmZo6x34tm0CW66CW69Ffr6ildrK7RU/vm55x5ob4fBQVi6FD79aVi+HCLGs2pJJVTLKJeOSsuciJgJvB9YD9wN/FFltnOA749VkRPS4CB861tFOF9/fRHgs2fDgQfC3LnF+9mz4aCDYM6cYtrDD8N558Gf/Rls3jzev4GkkqmlD30hcHdEPAL8H+CuzPwh8AXgcxHxJHAQcMPYlTnB9PYWLe2//duiW+WAA2BalVGbEW8G+/33w2mnwerV+6ZeSVNC1S6XzHwEWDrE9KeBZWNR1ITW11eE+c9+BvPm1d91ElEs99pr8Kd/Ct/4RtEVI0mj5JWi9frHf4R7720szPc2axZkwqc+BT09zatP0pRloNdj3Tr4p38quk6acVJz//2LML/sstGvS9KUZ6DX44oripOhbXUNDhrZ3Llw552wfn3z1ilpSjLQa/Xcc/Dgg0XrvIptAwN8/oUX+L0NG/jwk0/y461bh5+5paXoernlliYWK2kqMtBr9YMfFK3zluq77EubN9MewX8ceyxXHHoof795M0/39g6/wOzZcMcd0N8//DySVIWBXqv77y8uEKpi5+AgP92+nfM7OtivpYUl++3H78+ezZ0jtdLb2opW+tNPN7FgSVONgV6rRx+FGTOqzvb87t20AkfsNS79mOnTR26hQxHoGzaMskhJU5mBXotM2LatppOhrw8OMust3TL7t7Tw2uDgyAv29zt8UdKoGOi1ytpuQ7PfEOH92hAhP+T6q4W+JI3AQK9FRHHicmCg6qxHTJvGAEXXyx6P9/Zy1PTpIy/Y1lYMYZSkBhnotXrHO4pb5FYxs6WF5bNnc213NzsHB3n49de5d/t2PlQtrFta4G0135VYkn6DgV6rk06CvVrdI7lowQJ6Bwd5/+OPc8nGjVy8YMHILfSBgaLL5eijm1SspKmoiZc8ltyHPlTcxyWz6mX/c1pbuerww2tf97ZtsGJF9Ts2StIIbKHX6phj4F3vKsK3mTKL7pZPfKK565U05Rjo9bj00iKAazg5WrOtW+HUU+H445u3TklTkoFej6VL4dxzixCucRjjiF5/HfbbD774RR9JJ2nUDPR6ff7zcOKJxUVAown1nTuLi4muvRY6OppXn6Qpy0Cv1/TpcOONsGxZEep9ffUtn1ksNzhYPIv05JPHpk5JU46B3ohZs+BrXyta6zt3wquvVr9TYmbx2LmenmJM+513wimn7Jt6JU0JDltsVFsbnH8+nH46/PM/w/e+V0zfvbtoxe+5z3lfX/GztRUWLy6eR7piRfFZkpooshkn92rU2dmZXV1d+2x7+9TWrfCLX8DDD8NDD8GOHW+G+LJlcMIJcNxxnvyUVLeIWJ2ZndXms4XeLHPnFq31008f70okTVH2oUtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJVA30iDg8Iu6OiHUR8VhEfLYy/fKI2BgRayuvD459uZKk4dRy6X8/8NeZuSYiZgOrI+KuyndXZ+aXx648SVKtqgZ6Zm4CNlXeb4+I9cBhY12YJKk+dfWhR8RiYCnwQGXSZyLikYi4MSIOaHJtkqQ61BzoEbE/8K/AhZm5DbgGOBpYQtGCv2qY5VZGRFdEdHV3dzehZEnSUGoK9IhopwjzWzPzdoDMfCkzBzJzELgOWDbUspm5KjM7M7Ozw2dnStKYqWWUSwA3AOsz8yt7TV+412xnA482vzxJUq1qGeXyXuDjwC8jYm1l2iXARyNiCZDAs8B5Y1KhJKkmtYxyuQ8Y6rlpP2p+OZKkRnmlqCSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUklUDfSIODwi7o6IdRHxWER8tjL9wIi4KyKeqPw8YOzLlSQNp5YWej/w15l5HPC7wAURcRxwEfCTzDwG+EnlsyRpnFQN9MzclJlrKu+3A+uBw4AVwM2V2W4GzhqrIiVJ1dXVhx4Ri4GlwAPAIZm5qfLVZuCQplYmSapLzYEeEfsD/wpcmJnb9v4uMxPIYZZbGRFdEdHV3d09qmIlScOrKdAjop0izG/NzNsrk1+KiIWV7xcCW4ZaNjNXZWZnZnZ2dHQ0o2ZJ0hBqGeUSwA3A+sz8yl5f/QA4p/L+HOD7zS9PklSrthrmeS/wceCXEbG2Mu0S4EvAdyLik8BzwJ+MTYmSpFpUDfTMvA+IYb5+X3PLkSQ1yitFJakkDHRJKgkDXZJKwkCXpJIw0CWpJAx0SSoJA12SSsJAl6SSMNAlqSQMdEkqCQNdkkrCQJekkjDQJakkDHRJKgkDXZJKwkCXpJIw0CWpJAx0SSoJA12SSsJAl6SSMNAlqSQMdEkqCQNdkkrCQJekkjDQJakk2sa7AEkqpb4+eOYZ6OmBTJg3D448EqZNG7NNGuiS1CyvvQb/9m/w9a/Dr34Fra0QUXw3OAgDA3DssfCxj8GZZ8KcOU3dfGRmU1c4ks7Ozuzq6tpn25OkfWJgAG66Ca66qmiZt7XBzJnQ8pZe7cFB2LmzmKe9Hf7iL2DlymL+EUTE6szsrFaGfeiSNBovvgh/+IfwxS8WwTx3Lsya9ZthDsW0WbOK7pdp04o/ACtWwPPPN6UUA12SGvXrX8PZZ8Njj70Z0rVqby+W+dWvij8Izzwz6nIMdElqxI4dRV/4K68Uwbynr7weEcWy27bBRz5SnEAdhaqBHhE3RsSWiHh0r2mXR8TGiFhbeX1wVFVI0mRz5ZWwaVPRxTJac+bAyy/D5ZePajW1tNBvAs4YYvrVmbmk8vrRqKqQpMlkzRr47nebO0pl7lz44Q/h5z9veBVVhy1m5s8iYnHDW5Ckslm1qvg51InPit2Dg3xp82YefP11tg0MsKi9nc8cfDAn77//0Au0tBRdMNdeCyef3FBZo+lD/0xEPFLpkjlgFOuRpMljyxb4yU+qts4HgAXt7aw64gjuOfZYzu/o4KKNG3lx9+7hF5o9G+6/HzZubKi0RgP9GuBoYAmwCbhquBkjYmVEdEVEV3d3d4Obk6QJYs2aojU9QuscYGZLCys7Ojh02jRaIvjPs2dzaHs7G3btGn6hPa30Bq/XaSjQM/OlzBzIzEHgOmDZCPOuyszOzOzs6OhoqEhJmjAefhhGamUP45X+fp7fvZujpk8fecb+fnjooYZKayjQI2LhXh/PBh4dbl5JKpUNG+q+H0t/Jpe++CIfnjuXxdUCfdo0WL++odKqnhSNiG8CpwLzI+IF4DLg1IhYAiTwLHBeQ1uXpMlm1666xpwPZvLfXnyRNuBvFiyovkBLS7GNBtQyyuWjQ0y+oaGtSdJkN2NGcU+WGmQm/33TJv5vfz9fPfxw2mr5QzA4WGyjAV4pKkn1eOc7i5tr1eDvN2/mmd27ufrww5le5STqG3p7i200wNvnSlI93vWumvrQN/X1cXtPD9MiOP2JJ96YfsmCBXxgpKtL29th6dKGSjPQJakev/M7xQMrBgaK+50PY2F7O11vf3t96x4cLF4nnthQaXa5SFI9DjwQzjijuKFWs23bBn/wB3DIIQ0tbqBLUr3OO68YjTIw0Lx17lnX+ec3vAoDXZLq9Y53wCc+Adu3N2+d27cXt9B997sbXoWBLkmN+Nznioc+j/Ie5gBs3QqHHQYXXzyq1RjoktSImTPh1lth0SJ49dXiRGm9MotlDz4YvvnN4vF0o2CgS1KjDj4Ybr+9uN1tT099V3j29hbLnHgi3HEHHHroqMuJbOSvSqMbi+gGnmtg0fnAy00upwzcL0NzvwzN/TK0ybBf/lNmVr274T4N9EZFRFdmdo53HRON+2Vo7pehuV+GVqb9YpeLJJWEgS5JJTFZAn3VeBcwQblfhuZ+GZr7ZWil2S+Tog9dklTdZGmhS5KqmJCBHhHPRsQvI2JtRHRVph0YEXdFxBOVnweMd5372jD75fKI2FiZtjYiPjjede5rETEvIm6LiA0RsT4iTprqx8sw+2RKHysR8dt7/e5rI2JbRFxYpmNlQna5RMSzQGdmvrzXtP8BvJKZX4qIi4ADMvML41XjeBhmv1wO7MjML49XXeMtIm4G/ndmXh8R04D9gEuYwsfLMPvkQqb4sbJHRLQCG4H3ABdQkmNlQrbQh7ECuLny/mbgrHGsRRNERMwFTqHyWMTM3J2ZPUzh42WEfaI3vQ94KjOfo0THykQN9AT+IyJWR8TKyrRDMnNT5f1moLEbBk9uQ+0XgM9ExCMRceNk/nexQUcC3cC/RMRDEXF9RMxiah8vw+0TmNrHyt4+Anyz8r40x8pEDfTfy8x3Ax8ALoiIU/b+Mot+oonXVzT2htov1wBHA0uATcBV41jfeGgD3g1ck5lLgdeAi/aeYQoeL8Ptk6l+rABQ6YI6E/juW7+b7MfKhAz0zNxY+bkFuANYBrwUEQsBKj+3jF+F42Oo/ZKZL2XmQGYOAtdR7Kup5AXghcx8oPL5Noowm8rHy5D7xGPlDR8A1mTmS5XPpTlWJlygR8SsiJi95z1wGvAo8APgnMps5wDfH58Kx8dw+2XPgVhxNsW+mjIyczPw64j47cqk9wHrmMLHy3D7ZKofK3v5KG92t0CJjpUJN8olIo6iaH1C8a/jNzLzyog4CPgOcATFHRv/JDNfGacy97kR9svXKP6FTuBZ4Ly9+gOnhIhYAlwPTAOeBs6laKxM5eNlqH3yVTxWZgHPA0dl5tbKtNJky4QLdElSYyZcl4skqTEGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkn8P+uQdiWoAcK2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -613,13 +611,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "order = (0, 1, 2) Distance = 201.0\n", - "Best order from brute force = (0, 1, 2) with total distance = 201.0\n" + "order = (0, 1, 2) Distance = 67.0\n", + "Best order from brute force = (0, 1, 2) with total distance = 67.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1OX+///HxaYiCqIognuZR3/p6aQtx5ZTWVq24ZKZwUFRkUGPmkcB9+2omGXZUUDchdwi4NjJj+nX6pOdyjVTP7mVW+ICpIiKyDLX748ZyzoqAw68Z4bX/Xbzxsww854ncxtfXFxzvV+X0lojhBDC+bkZHUAIIYR9SEEXQggXIQVdCCFchBR0IYRwEVLQhRDCRUhBF0IIFyEFXQghXIQUdCGEcBFS0IUQwkV4VOWTNWjQQLdo0aIqn7JyXbsGx49DcTG4uYFStj1OaygtBS8vaNECatSozJRCCCe3a9euXK11QFn3q9KC3qJFC3bu3FmVT1l5Dh2CPn0gMBB8fSt2jPx8cHeHVavgnnvsm08I4TKUUidsuZ9MuVTEzz9Dv35QWFjxYg5Qty5cvQqvvw7nz9svnxCiWpKCXl5aw/jxkJcHderc+fHq1LEU84kTLccWQogKkoJeXlu3wv/7f3c2Mv89X1/45BP46iv7HVMIUe1IQS+vpCTLh59ut3/p1p0/T9ixY/z54EGmnD59+2Ne/0B14UI7BhVCVDdS0Mvjp59g+3abploaeHgwsEEDXrJ1JF+nDnz9NWRl3WFIIUR1JQW9PHbvtoymyxidAzxVty5P1KmDr7u7bce+PkrfvfsOQwohqisp6OWxezeUlFTe8YuL4dtvK+/4QgiXJgW9PA4ftpwMVFm8vCzPIYQQFVClJxY5vaIim88GLSkp4VRWFrkFBZT6+Nh2fDc3y3MIIUQFyAi9PGrVArO5zLsVFRVx/PhxvL29qVWrFnl5eeRfulT28c1m8Pa2Q1AhRHUkBb08/vjHMkfQVwsLOX7iBH7+/vjVr08tb298fH356exZTp89i77dyUNFRdChg51DCyGqC5lyKY8OHW47h3758mWyTp8mqHFjVhcWknzo0C/f26w1vfPz6VtYSHCTJnh63OSl9/KC9u0rI7kQohqQgl4eDzzwa6fE3y1HzLt4kexz52jatCnetWoRWacOkQG/bY6mgZ9zczl27BhBQUH41K796zdLS399DiGEqACbplyUUm8opf5PKbVfKbVaKVVTKdVSKbVNKfWDUmqtUqoSl384CH9/eO45S5dEKw3k5uaSk5ND8xYt8K5V65YPV0CDBg0IDg7m9OnT5OTk8MsETH4+vPAC+PlV5k8ghHBhZRZ0pVQwMBzopLW+F3AH+gKzgXe01ncDF4CBlRnUYQwZYlmNUlKCBs6ePUv+pUu0aNGCGjYuaazt7U3Lli25UlDATydPUnLtmuWYgwdXbnYhhEuz9UNRD6CWUsoD8AbOAE8BadbvrwBC7B/PAbVrB4MGYc7P59RPP1FUVETz5s1vPid+G54eHjRv3pwaNWqQffQop198Ef7wh0oKLYSoDsos6FrrLOAt4CSWQn4R2AXkaa2vnzZ5CgiurJCO5uKAAewvKsK7qIimTZvibkMrgJtRWtOoRg1qdOjAwO++Y9WqVbdfBSOEELdhy5RLPeBloCUQBNQGnrX1CZRSkUqpnUqpnTk5ORUO6ijOnDnDwOhovoqOxr9TJ9zy8mxam/5fzGa4cAHuuov6H3/MkpQU/ud//ofY2FguX75s/+BCCJdny9DyaeCY1jpHa10MpAOPAH7WKRiAJsBN2wRqrZO11p201p0CAsrcEs+hHT58mIEDB9KzZ0+ixo1DpaVBt25w8SIUFNh2EK0t9714Ebp3hw8+AH9/goKCWLJkCf7+/oSFhXFYWgAIIcrJloJ+EnhYKeWtlFJAF+B74DOgt/U+4cC/KieiY9ixYwdDhw7ljTfeoF+/fpYbfX1hwQJISLCsTrl40TLqvnbtt7sPaW257cIFy2oWPz9LX/X58y3b0Fl5eXkRFxfHkCFDiI6OZv369VX8UwohnJmyZc5WKTUVeBUoAb4FBmGZM18D+FtvC9VaX7vdcTp16qSdcZPoTz75hLfeeov4+Hg6dux48zuZzZYdh9auhV274Nw5uP5BaWkpNGoEHTtC377w8MNltuA9evQosbGxtG/fnpiYGGrWrGnnn0oI4SyUUru01p3KvF9VfgjnjAU9NTWVVatW8d5773H33Xfb/sDLly0jdqUso3BbG3TdoKCggJkzZ/Ljjz8ye/ZsmjVrVu5jCCGcn60FXXq53ILZbGbu3LmsX7+eZcuWla+Yg6WABwdDUFCFijmAt7c306dPp3fv3kRERLBly5YKHUcIUT3Iqf83UVRUxOTJk8nNzWXx4sXUvWGeu6oppejVqxdt27YlLi6OPXv2MHz4cDw9PQ3LJIRwTDJC/51Lly7xt7/9jdLSUhYsWGBoMb9Ru3btSE1N5dSpU0RGRnLu3DmjIwkhHIwU9BtkZ2czePBg7rrrLuLj4/GqzN2JKqBu3bq8/fbbPPHEE4SFhfH1118bHUkI4UCkoFsdPXqUiIgInnvuOcaMGYNbBc/+rGxubm6Eh4cTHx/PtGnTWLhwIeaKnNgkhHA5jlm1qtiePXuIiooiOjqa8PBwlI3bzBnp/vvvJzU1ld27dzNs2DDOnz9vdCQhhMGqfUH/9NNPGT16NNOmTaN79+5GxymX+vXrk5CQwL333ktoaCjfffed0ZGEEAaq1qtc1q1bx7Jly5g/fz5/cNJOh+7u7kRHR9OhQwfGjBnDX//6V15//XWn+CtDCGFf1XKErrVmwYIFrFmzhsWLFzttMb/Ro48+yvLly9m0aRMxMTFcsmVTaiGES6l2Bb2kpIQpU6awY8cOli5dSnCw63T9DQoKYvHixQQEBEiDLyGqoWpV0AsKChg5ciT5+fkkJSXh54LbvXl5eRETE0N0dDTR0dFkZmZKj3UhqolqU9B//vlnIiMjady4MW+99ZbLN7vq2rUrixYtYtWqVUydOpXCwkKjIwkhKlm1KOgnT55kwIABPP7444wbNw53d3ejI1WJli1bsmLFCsxmM+Hh4Zw4ccLoSEKISuTyBX3//v0MGjSIAQMGEBkZWe1Wf9SqVYupU6fy6quvMnDgQDZv3mx0JCFEJXHcZYtmM5w4AQcOQE6Opae4jw/cfbdlM2Vv7zIP8eWXXzJlyhQmT57MY489VgWhHZNSip49e9KuXTtiY2PZs2cPI0eOlAZfQrgYx+uH/tNPsHo1pKbC9Xnf4mLLV3d3y6YRxcXw6KMwaBA88shNN4vIzMwkISGBuXPncu+999r5J3Fe+fn5TJkyhfPnzxMfH09gYKDRkYQQZXC+DS6uXYN582DRIsvovHZtuFVzLLMZrq+zbtMG3n3XMnLHssZ88eLFfPTRR8yfP182hbgJrTUpKSmkpqYyZcoUOnfubHQkIcRtOFdBP3kSwsMtX+vU+XXrtrJobdmj080Npk6l9JVXiI+P58CBA8ybN4/69evb9wdwMd9++y3jx4/nxRdfZMiQIQ7bkEyI6s5uOxYppdoopfbc8C9fKTVSKeWvlNqslDpi/VqvQklPnoReveDUKahXz/Zibgln2ai5Rg3M48axrnt3zpw5Q3JyshRzG/zpT38iNTWVvXv3MnToUGnwJYSTK7Oga60Paa3v01rfB3QECoAMIA7YorVuDWyxXi+fq1chLAzy8iyFuYJK3N35KS+Prjt28G7Pnnjb8IGpsPD392fBggV06NCB0NBQvv32W6MjCSEqqLx/Y3cBftRanwBeBlZYb18BhJT72d9+2zIyv4NiXlRczPHjx6nl44N/YCAeMTGWaRhhMzc3N0wmExMmTCA2NpaVK1fK2aVCOKHyFvS+wGrr5UZa6zPWy2eBRuU60tGjsGIF3MEWb4WFhRw/fhx/f38aNmyI8vaGCxdg/vwKH7M669y5MytXrmTLli2MHj1aGnwJ4WRsLuhKKS/gJeCD339PW4ZzNx3SKaUilVI7lVI7c3Jyfv1GSopltUoZZ23ml5Yy+tQpHj14kBd++IGNFy8CcPnKFU6ePElgYCD+9W6Yvvfxgffft0zniHILDAxk8eLFBAYGEhoaysGDB42OJISwUXlG6M8Bu7XW13cnPqeUagxg/Zp9swdprZO11p201p0CAgIsNxYVwdq1luJbhvizZ/FUik333MM/goKYdfYs3+XmcjoriyZNmlC3Tp3fPsDT03J8OSOywjw9PRkzZgzDhg1j2LBhpKenyxSMEE6gPAX9NX6dbgFYD4RbL4cD/7L5SD/8YBmdl3Gm4lWzmU8vXcIUEIC3mxt/9PbmAXd30s6do3nz5rf+8NNsBtlA+Y4988wzLFmyhLVr1zJ58mSuyl89Qjg0mwq6Uqo28AyQfsPN8cAzSqkjwNPW67b5/nvLqfxlOFlUhDvQzMsLDZw7e5bA4mLyfXyoUaPGrR9YsyaUdUaqsEnz5s1ZsWIFSinCw8M5fvy40ZGEELdgU0HXWl/RWtfXWl+84baftdZdtNattdZPa61tX8R8+vSvp/PfRoHZTG03N7TWnPrpJ65du0bLRo0oc5zo6QlnzpR1L2GjmjVrMmXKFPr168egQYPYtGmT0ZGEEDdhTHOukhLLSUFl8HZz44rZDEpxpaCAOj4+XCoupnZZZzQqZdNfAMJ2SilCQkJo27btbxp8ed2qPYMQosoZc6737z/IvIVmXl6UAj8VFdG6dWu8atRgR3Y29QsLKb7dCL+01NILRthdmzZtSElJITs7m0GDBnH69GmjIwkhrIwp6K1bw+3mwK1qubnxVJ06JOXkUASc9vZmn6cnXX18OHrsGGfPnqW4pOS/H3jtmqXFrqgUderUYc6cOXTr1o3+/fvz5ZdfGh1JCIFRBb1tW8u0iw1L4eICA7lmNvPM4cOMy8piXOPGPNi4MXe1aoVSiqNHj3IuO5uSG6dYiorgoYcq8QcQSilef/113nzzTWbOnMmCBQsolWkuIQxlTLdFraF7dzh2zKa16LdTXFJCbm4u+fn51KtXj/r+/rhfugTr10O7dnZKLm7n/PnzTJgwgdLSUmbOnCmN0YSwM7t1W6wUSkFUlF0+uPT08KBxYCAtW7akpKSErEOHOFm7NgUtWtx5TmETf39/5s+fz/33309oaCi7d+82OpIQ1ZJxDbC7dYOGDeHyZbsczsvTk6BGjWgcEMDmP/6RkJAQUlJSZLf7KuLm5saQIUOYNGkScXFxv2xOLYSoOsYV9Jo1LTsUlZTYb4nhxYt4hoQwcOVKkpKS2L9/PyEhIaxdu5aioiL7PIe4rT//+c+kpKTw+eef8/e//5186XwpRJUxdouaTp1g6FBLu9s7LeoXL0LTpjBtGgCtWrVi9uzZzJs3j2+++YYePXqQkZFByc1WxQi7atSoEcnJyTRt2pTQ0FC+//57oyMJUS0YvwWd1jBjBixbBt7eNi1n/A2z2VLMmzSxNPy6xabH+/btIzExkaysLCIjI3nuuedky7UqsGXLFmbNmkVUVBS9evVC2XBCmRDit5xrT1Gt4cMPYfJkKCy09Egvo60uWkNBgWWJYrdull8K9creBW/37t0kJiZy4cIFhgwZQpcuXaSwV7KTJ08SGxvLXXfdxbhx42RHKSHKybkK+nVnzsCsWbBxo2UKxt3dMtd+vSuj2Wwp+IWFlr1HmzeHuDh4+uly5dBas23bNhITEykqKsJkMvHYY4/J6LESFRYW8uabb7Jv3z5mz55Nq1atjI4khNNwzoJ+3c8/w0cfwX/+A3v2QG6uZUReqxa0aQMPPmhZx/7HP9rUE+ZWtNZs3bqVpKQkPDw8MJlMPPzww1LYK9H69et57733GD16NM8++6zRcYRwCs5d0H/vesZKKrRms5lPP/2UpKQk/Pz8iI6O5v7776+U5xJw+PBhYmNjeeihhxg1apQ0+BKiDI59YlF5KVVpxRwsa6iffvpp1q1bR8+ePZk2bRrR0dHs27ev0p6zOrvnnntISUnh/Pnz0uBLCDtyjoJeRdzc3OjevTtpaWl07dqVsWPHMnLkSNlXsxL4+Pgwe/Zsnn32Wfr378/WrVuNjiSE03OOKReDFBUVkZmZybJly2jfvj1DhgzhrrvuMjqWy9m7dy9xcXF0794dk8mEe1krnISoZlxrysUgXl5e9OnTh4yMDDp06IDJZGLChAmcPHnS6GgupUOHDrz//vscOHAAk8lEbm6u0ZGEcEpS0G1Qs2ZNQkNDyczMpFWrVkRERDBt2jSZ+7WjevXq8c9//pNOnToRFhbGrl27jI4khNOxdZNoP6VUmlLqoFLqgFLqz0opf6XUZqXUEevXss/qcXLe3t5ERESQkZFBw4YNCQ0NJT4+nuzsbKOjuQQ3NzciIyOZPHkyY8eOZdmyZdLgS4hysHWEPg/YqLX+A/BH4AAQB2zRWrcGtlivVwt16tQhKiqK9PR0vL296du3L3PnzuX8edv3yRa39vDDD5OamsrWrVsZNWqUNPgSwkZlFnSllC/wOLAEQGtdpLXOA14GVljvtgIIqayQjsrPz4/hw4fzwQcfYDab6d27N/Pnz5cCZAcNGzYkOTmZZs2aSYMvIWxkywi9JZADLFNKfauUWqyUqg000lqfsd7nLNCoskI6uvr16zN69GhWr15Nfn4+PXr0IDk5mct26vVeXXl4eDBq1ChGjhzJiBEj+OCDD6jKVVlCOBtbCroHcD+QqLX+E3CF302vaMv/spv+T1NKRSqldiqldubk5NxpXofWqFEjxo0bx8qVKzl9+jQ9evRg+fLlXL161ehoTu2pp55iyZIlpKenM378eAoKCoyOJIRDsqWgnwJOaa23Wa+nYSnw55RSjQGsX2/6yaDWOllr3Ulr3SkgIMAemR1ecHAwU6ZMYdGiRRw+fJiQkBBWrVolm2zcgWbNmrF8+XJq1arFX//6V44ePWp0JCEcTpkFXWt9FvhJKdXGelMX4HtgPRBuvS0c+FelJHRiLVq0YObMmcyfP5/du3cTEhJCWloaxcXFRkdzSjVq1GDixIn89a9/JTIykg0bNhgdSQiHYtOZokqp+4DFgBdwFBiA5ZfBOqAZcALoo7W+7TIPZztT1N6+//57kpKSOH78OIMGDeL555+XsyIr6MiRI8TGxtKpUydGjx4tDb6ES3Otbosu5rvvviMhIYGcnBwiIyPp2rWrbLJRAVeuXGHatGlkZWUxe/ZsgoODjY4kRKWQgu4EduzYQWJiIpcvXyYqKoonn3xSerGXk9aatWvXsmTJEiZOnMjjjz9udCQh7E4KupPQWvPVV1+RkJAAgMlk4pFHHpHCXk579+5l7NixdOvWjaFDh8pUlnApUtCdjNaazz//nMTERGrXro3JZOKBBx6Qwl4OeXl5TJw4kcLCQmbOnEl1WVUlXJ90W3QySimefPJJ1qxZQ9++fYmPjycqKoo9e/YYHc1p+Pn5MW/ePB566CHCwsLYsWOH0ZGEqFIyQndQpaWlbNiwgUWLFtG8eXNMJhPt2rUzOpbT2L59OxMnTuTVV1+lf//+8qGzcGoy5eIiiouLWb9+PUuWLKFt27ZERUXRunVro2M5hezsbMaOHUvt2rWZPn06vr6+RkcSokJkysVFeHp60qtXLzIzM+nUqRPDhg1j7NixHDt2zOhoDq9hw4YsXLiQVq1aERoayv79+42OJESlkhG6k7l69Srr1q0jNTWVzp07M3jwYJo0aWJ0LIf32WefMXPmTAYPHswrr7wiHzYLpyIjdBdVq1YtwsPDyczMpEmTJoSHhzNjxgzOnj1rdDSH9uSTT7Js2TIyMzMZN26cNPgSLkkKupOqXbs2gwcPJiMjAz8/P/r168ecOXNkP87baNKkCcuWLcPHx4ewsDB+/PFHoyMJYVdS0J1c3bp1GTp0KGlpabi7u9OnTx/mzZtHXl6e0dEcUo0aNRg/fjwREREMGTKEjz/+2OhIQtiNFHQX4e/vz6hRo1izZg2FhYX07NmTxMRELl26ZHQ0h/T888+TlJTEkiVLmDFjhrQ2Fi5BCrqLadiwIbGxsaSmppKTk0NISAhLliyROeObuPvuu0lNTeXy5cv079+fU6dOGR1JiDsiBd1FBQUFMWnSJJYtW8bx48cJCQkhJSWFwsJCo6M5FG9vb2bOnElISAgDBgzg888/NzqSEBUmyxariaNHj5KUlMTevXsZMGAAPXr0kB7iv7N//37Gjh1Lly5dGDZsGB4eHkZHEgKQZYvid1q1asWbb77JvHnz+Oabb+jRowcZGRmUlJQYHc1h3HvvvaSmpnL06FGGDBlCdvZNd1UUwmFJQa9m2rRpwzvvvEN8fDybN2+mV69ebNiwAbPZbHQ0h+Dr68u7777LI488QlhYGNu3bzc6khA2kymXam737t0kJCSQl5fHkCFD6NKlizSystqxYwcTJ06kd+/eREREyOsiDCPNuYTNtNZs27aNhIQEiouLMZlMPPbYY3J6PJCTk8O4ceOoWbMm06dPx8/Pz+hIohqya0FXSh0HLgGlQInWupNSyh9YC7QAjmPZJPrC7Y4jBd2xaa3ZunUrSUlJeHh4YDKZePjhh6t9YS8tLWXBggVs2rSJWbNm0b59e6MjiWqmMgp6J6117g23vQmc11rHK6XigHpa69jbHUcKunMwm818+umnJCUl4efnR3R0NPfff7/RsQz3xRdfMH36dCIiIujbt2+1/0Unqk5VFPRDwBNa6zNKqcbA51rrNrc7jhR052I2m9m4cSPJyckEBQVhMpmq/eg0KyuL2NhYgoODmTRpErVr1zY6kqgG7L1sUQOblFK7lFKR1tsaaa3PWC+fBRrdIkikUmqnUmpnTk6OjU8nHIGbmxvdu3cnLS2Nrl27EhcXx8iRIzl48KDR0QwTHBzM0qVL8fX1JSwsjCNHjhgdSYhf2DpCD9ZaZymlGgKbgb8B67XWfjfc54LWut7tjiMjdOdWVFREZmYmS5cupUOHDgwZMoS77rrL6FiG2bBhA3PnzmXEiBG8+OKLRscRLsyuI3StdZb1azaQATwInLNOtWD9KmdhuDgvLy/69OlDZmYmHTp0wGQyMWHCBE6ePGl0NEN0796d5ORkVqxYwbRp07h27ZrRkUQ1V2ZBV0rVVkrVuX4Z6ArsB9YD4da7hQP/qqyQwrHUrFmT0NBQMjMzadWqFREREUybNo3Tp08bHa3KtWrVipUrV1JYWMiAAQOq7S834RhsGaE3Ar5USn0HbAc+1lpvBOKBZ5RSR4CnrddFNeLt7U1ERAQZGRk0bNiQ0NBQ4uPjq90p897e3syYMYMePXowcOBAPv30U6MjiWpKTiwSdpOXl8fKlSvJzMzkhRdeoH///vj7+xsdq0p9//33xMXF8cQTTzB8+HBp8CXsQppziSrn5+fH8OHD+eCDDzCbzfTu3Zv58+eTn59vdLQq065dO1JTUzl58iSRkZHV7q8VYSwp6MLu6tevz+jRo1m9ejX5+fn06NGD5ORkLl++bHS0KlG3bl3mzp3L448/TmhoKN98843RkUQ1IVMuotKdOnWKRYsW8dVXX/H666/z6quvUqtWLaNjVYldu3Yxfvx4evbsyaBBg6TBl6gQmXIRDqNJkyZMnTqVRYsWcfjwYV5++WVWrVpVLfbx7NixI6mpqezcuZO//e1vXLhw23ZHQtwRKeiiyrRo0YKZM2eyYMECdu3aRUhICGlpaRQXFxsdrVI1aNCAxMRE2rZtS2hoKHv37jU6knBRMuUiDPP999+TlJTE8ePHGTRoEM8//zzu7u5Gx6pUW7duZfr06fTv35/XXntNGnwJm0g/dOE09uzZQ0JCArm5uURGRtK1a1eXnms+ffo0sbGxNG7cmEmTJuHj42N0JOHgZA5dOI377ruPhQsXEhcXx7p16+jbty+ffvopVTnYqEpBQUEsWbKE+vXrExYWxuHDh42OJFyEjNCFQ9Fa89VXX5GQkIBSiqioKB555BGXnZrYuHEjb731FsOHD+ell14yOo5wUDLlIpya1prPP/+cxMREateujclk4oEHHnDJwn7s2DFiYmJo3749MTEx1KxZ0+hIwsHIlItwakopnnzySdasWUPfvn2Jj48nKiqKPXv2GB3N7lq2bMmKFSsoLi6WBl/ijsgIXTiF0tJSNmzYwKJFi2jevDkmk4l27doZHcuutNakp6eTlJREXFwcXbp0MTqScBAy5SJcUnFxMevXr2fJkiW0bduWqKgoWrdubXQsuzpw4ACxsbH85S9/Yfjw4Xh6ehodSRhMplyES/L09KRXr15kZGTQsWNHhg0bxtixYzl27JjR0eymbdu2pKamcurUKSIjIzl37pzRkYSTkIIunFKNGjXo168fmZmZ/OEPfyAyMpLJkydz6tQpo6PZRd26dXn77bd54oknCAsL4+uvvzY6knACMuUiXMLly5dZtWoVa9eu5amnnmLgwIEEBgYaHcsudu/ezfjx4wkJCWHw4MEufdKVuDmZchHVio+PD5GRkWRkZODn50e/fv2YM2cOubm5Rke7Y/fffz+pqans3r2bYcOGcf78eaMjCQclBV24lLp16zJ06FDS0tJwd3enT58+zJs3j7y8PKOj3ZH69euTkJDAvffeS2hoKN99953RkYQDsrmgK6XclVLfKqX+bb3eUim1TSn1g1JqrVLKq/JiClE+/v7+jBo1ijVr1lBYWEjPnj1JTEzk0qVLRkerMHd3d6Kjoxk3bhxjxowhNTXVZdsjiIopzwh9BHDghuuzgXe01ncDF4CB9gwmhD00bNiQ2NhYUlNTycnJoUePHixZsoSCggKjo1XYo48+yvLly9m0aRMxMTFO/UtK2JdNBV0p1QR4Hlhsva6Ap4A0611WACGVEVAIewgKCmLSpEksXbqU48ePExISQkpKCoWFhUZHq5CgoCAWL15MQECANPgSv7B1hP4uEAOYrdfrA3la6xLr9VNAsJ2zCWF3zZo1Y/r06SQlJbFv3z5CQkJYu3atU+6e5OXlRUxMDNHR0URHR5OZmSlTMNVcmQVdKfUCkK213lWRJ1BKRSqldiqldubk5FTkEELYXatWrXjzzTcaIo+AAAAY40lEQVSZN28e33zzDT169CAjI4OSkpKyH+xgunbtyqJFi1i1ahVTp0512r86xJ2zZYT+CPCSUuo4sAbLVMs8wE8p5WG9TxMg62YP1lona607aa07BQQE2CGyEPbTpk0b3nnnHeLj49m8eTO9evViw4YNmM3msh/sQK43+DKbzYSHh3PixAmjIwkDlOvEIqXUE8BorfULSqkPgA+11muUUknAXq11wu0eLycWCUe3a9cuEhMTycvLY8iQIXTp0sWpTuTRWpORkUFCQgKxsbE888wzRkcSdlApzbl+V9BbYRmx+wPfAqFa62u3e7wUdOEMtNZs27aNhIQEiouLMZlMPPbYY07Vi/3gwYPExsby6KOPMnLkSGnw5eSk26IQd0hrzdatW0lMTMTT0xOTycTDDz/sNIU9Pz+fKVOmcP78eeLj412mFUJ1JAVdCDsxm81s2bKFhQsX4ufnR3R0NPfff7/RsWyitSYlJYXU1FSmTJlC586djY4kKkAKuhB2Zjab2bhxIwsXLiQ4OBiTyUT79u2NjmWTb7/9lvHjx/Piiy8yZMgQp/pcQEhBF6LSlJSU8NFHH7F48WJat26NyWSiTZs2Rscq0/nz5xk/fjwAM2bMwN/f3+BEwlbSbVGISuLh4fHLuvXOnTszYsQIYmJiOHr0qNHRbsvf358FCxbQoUMHQkND+fbbb42OJOxMRuhC3KHCwkLS0tJYuXIlDz74IJGRkTRr1szoWLf11VdfMWXKFEJDQwkLC3OaD3qrKxmhC1FFatasSWhoKJmZmbRq1YqIiAimTZvG6dOnjY52S507d2blypVs2bKF0aNHS4MvFyEFXQg78fb2JiIigvT0dAICAggNDSU+Pp7s7Gyjo91UYGAgixcvJjAwkNDQUA4ePGh0JHGHpKALYWd169bFZDKRnp6Ot7c3ffv2Ze7cuQ6505Cnpydjxoxh2LBhDBs2jPT0dGnw5cSkoAtRSfz8/Bg+fDjr1q2jtLSU3r17M3/+fPLz842O9l+eeeYZlixZwtq1a5k8eTJXr141OpKoACnoQlSyBg0aMGbMGFatWkV+fj49evQgOTmZy5cvGx3tN5o3b86KFStQShEeHs7x48eNjiTKSQq6EFUkMDCQcePGsWLFCrKysujRowfLly93qNFwzZo1mTJlCv369WPQoEFs2rTJ6EiiHGTZohAGOX78OMnJyezatYvw8HB69+6Nl5fjbM176NAhYmNj6dy5MyNHjnSobNWNLFsUwsG1aNGCmTNnMn/+fHbt2kVISAhpaWkUFxcbHQ2w9IpPSUkhOzubQYMGOfQyTGEhBV0Ig7Vu3Zq3336bt956iy+++IJevXqxfv16SktLjY5GnTp1mDNnDt26daN///58+eWXRkcStyFTLkI4mD179pCQkEBubi6RkZF07drVIZpp7dmzh3HjxvH8888TFRWFu7u70ZGqDWnOJYQT01qzY8cOEhMTuXLlClFRUTz55JOGn6J//vx5JkyYQGlpKTNnzqR+/fqG5qkupKAL4QK01nz11VckJCSglCIqKopHHnnE0MJuNptZtGgRmZmZzJgxw2l6wzszKehCuBCtNZ999hlJSUnUrl0bk8nEAw88YGhh//rrr5k8eTKvv/46YWFhDjEt5KqkoAvhgsxmM5s3b2bhwoUEBARgMpm47777DMtz7tw54uLi8PPzY+rUqdStW9ewLK7MbssWlVI1lVLblVLfKaX+Tyk11Xp7S6XUNqXUD0qptUopWaQqRCVzc3OjW7dufPDBBzz//PNMnDiRv/3tb3z//feG5GnUqBHJyck0bdqU0NBQw3IIizJH6MryN11trfVlpZQn8CUwAhgFpGut1yilkoDvtNaJtzuWjNCFsK/i4mL+9a9/sXTpUtq2bUtUVBStW7c2JMuWLVuYNWsWUVFR9OrVy/APcF2J3Ubo2uJ60wlP6z8NPAWkWW9fAYRUMKsQooI8PT3p3bs3GRkZdOzYkaFDhzJu3DhD+rB06dKFpUuX8uGHHzJx4kQKCgqqPEN1Z9OnGEopd6XUHiAb2Az8CORprUusdzkFBN/isZFKqZ1KqZ05OTn2yCyE+J0aNWrQr18/MjMzueeeexg8eDCTJ0/m1KlTVZqjWbNmLFu2DC8vL8LDwx1+Wz5XY1NB11qXaq3vA5oADwJ/sPUJtNbJWutOWutOAQEBFYwphLCFt7c3/fv3JyMjg+DgYMLDw5kxYwZnz56tsgw1a9Zk0qRJhIWFERkZycaNG6vsuau7cq0z0lrnAZ8Bfwb8lFIe1m81AbLsnE0IUUE+Pj5ERkaSnp6Or68v/fr1Y86cOeTm5lZZhpdeeomEhAQWLlxIfHw8RUVFVfbc1ZUtq1wClFJ+1su1gGeAA1gKe2/r3cKBf1VWSCFExfj6+jJs2DDS0tJwd3enT58+zJs3j7y8vCp5/nvuuYeUlBTOnz/PwIEDpcFXJbNlhN4Y+EwptRfYAWzWWv8biAVGKaV+AOoDSyovphDiTvj7+zNq1CjWrFlDYWEhPXv2JDExsUo2h/bx8WH27Nk899xz9O/fny+++KLSn7O6khOLhKiGTp8+zeLFi/niiy947bXXeO211/D29q705927dy9jx47l2WefJTo6Whp82Uj6oQshbikoKIhJkyaxdOlSjh07RkhICCkpKRQWFlbq83bo0IHU1FQOHTqEyWSq0jn96kAKuhDVWLNmzfjHP/5BUlIS+/btIyQkhHXr1lXqB5j16tXjvffeo1OnToSGhiJ/tduPTLkIIX5x8OBBkpKSOHLkCIMGDeLFF1/Ew8Oj7AdW0LZt25g0aRJ9+/YlPDxcGnzdgjTnEkJU2N69e0lKSiIrK4shQ4bw7LPPVlqxzc7OJi4ujjp16jB9+nRp8HUTMocuhKiwDh06kJCQwKRJk0hPT6dPnz5s3rwZs9ls9+dq2LAhycnJtGjRgtdff10afN0BGaELIW5La80333xDYmIixcXFmEwmHnvssUppvvXpp58ya9YsBg8ezCuvvCINvqxkykUIYVdaa7Zu3UpiYiKenp6YTCYefvhhuxfdn376idjYWFq0aMGECROqZDmlo5MpFyGEXSmlePzxx3n//fcJCwvj7bffZvDgwezevduuz9O0aVOWLVtGrVq1CAsLkwZf5SAjdCFEhZjNZjZu3MjChQsJDg7GZDLRvn17uz7HRx99xLx58xg1ahTdu3e367GdiUy5CCGqRElJCR999BGLFy+mdevWmEwm2rRpY7fj//DDD8TExNCpUydGjx6Nl1f12xxNplyEEFXCw8ODHj16kJGRQefOnRkxYgQxMTF2myq5++67SUlJIT8/n4iICLKypLHrrUhBF0LYhZeXF3369CEzM5P27dsTFRXFhAkTOHny5B0fu3bt2syaNYsXXnhBGnzdhky5CCEqRUFBAatXr2b16tU8/vjjDBo0iKCgoDs+7vUGX926dWPo0KHVosGXTLkIIQzl7e3NwIEDSU9PJyAggNDQUOLj48nOzr6j43bo0IH333+fI0eOEBUVhWxt+Ssp6EKISlW3bl1MJhPp6el4e3vTt29f5s6dy/nz5yt8TD8/P+bNm8dDDz1EWFgYO3bssGNi5yUFXQhRJfz8/Bg+fDjr1q2jtLSU3r17s2DBAvLz8yt0PDc3NwYNGsS0adOYMGECS5curZTWBM5ECroQoko1aNCAMWPGsGrVKvLy8ujRowfJyclcvny5Qsd78MEHSUlJ4T//+Q8jR47k4sWLdk7sPKSgCyEMERgYyPjx41mxYgVZWVn06NGD5cuXc/Xq1XIfq2HDhixcuJBWrVoRGhrK/v37KyGx47Nlk+imSqnPlFLfK6X+Tyk1wnq7v1Jqs1LqiPVrvcqPK4RwNU2aNGHq1KkkJydz6NAhQkJCWLVqVbk32fDw8GDkyJGMGjWKN954g3Xr1lGVq/gcQZnLFpVSjYHGWuvdSqk6wC4gBOgPnNdaxyul4oB6WuvY2x1Lli0KIcpy+PBhFi5cyIEDB4iIiODll1/G09OzXMc4deoUMTExNG/enIkTJzp9gy+7LVvUWp/RWu+2Xr4EHACCgZeBFda7rcBS5IUQ4o7cc889vP3228yZM4f//d//pVevXqxfv57S0lKbj9GkSROWLVuGj48PYWFh/Pjjj5WY2HGU68QipVQL4AvgXuCk1trPersCLly/fisyQhdClNeePXtISEggNzeXyMhIunbtWq7dkz7++GPeeecd3njjDZ5//vlKTFp57N6cSynlA/wvMENrna6UyruxgCulLmit/2seXSkVCUQCNGvWrOOJEyds/RmEEAKw9GLfsWMHiYmJXLlyhaioKJ588kmbe7Ffb/DVsWNHxowZ43QNvuxa0JVSnsC/gU+01nOttx0CntBan7HOs3+utb5tizUZoQsh7oTWmv/85z8kJiailMJkMtG5c2ebCntBQQHTp0/nxIkTvPnmmzRp0qQKEtuH3ebQrdMpS4AD14u51Xog3Ho5HPhXRYIKIYStlFI8+uijpKamEhERwbx584iIiGD79u1lrmjx9vZm5syZhISEMGDAAD7//POqCV2FbFnl8iiwFdgHXD8NaxywDVgHNANOAH201rc9l1dG6EIIezKbzWzatImFCxfSsGFDTCYT9913X5mP279/P2PHjqVLly4MGzYMDw+PKkhbcbLBhRCi2igtLeXjjz9m0aJFtGjRApPJRLt27W77mIsXLzJx4kSuXLnCrFmzaNiwYRWlLT/ptiiEqDbc3d156aWXSE9P5y9/+QujR4/m73//O0eOHLnlY3x9fXn33Xd55JFHCAsLY/v27VWYuHLICF0I4XKuXbvGhx9+yPLly+nUqRORkZG0aNHilvffsWMHEydOpHfv3kRERJRrWWRVkBG6EKLaqlGjBv369SMzM5N77rmHwYMHM3nyZE6dOnXT+z/wwAOkpKSwbds2RowYQV5eXhUntg8p6EIIl+Xt7U3//v3JyMggODiY8PBwZsyYwdmzZ//rvgEBASQlJdG6dWtCQ0PZt2+fAYnvjBR0IYTL8/HxITIykvT0dHx9fenXrx9z5swhNzf3N/dzd3dn+PDhxMTEMGrUKFavXu1UDb6koAshqg1fX1+GDRtGWloa7u7u9OnTh/fee++/plgef/xxli9fzscff0xcXBxXrlwxKHH5SEEXQlQ7/v7+jBo1ijVr1lBQUEDPnj1JTEzk0qVLv9wnODiYpUuX4uvrS1hY2G1XzPxGfj6sXQvDhsGjj0Lr1tCqFdx7L/TsCbNnw549UAkjf1nlIoSo9k6fPs3ixYv54osv6NevH3379v1Ny90NGzYwd+5cRowYwYsvvnjzg/z8M7z9NqSnQ0mJ5bZatcDTE5SC0lK4dg0KC8HDA5o3h5gYeOYZy/dvQ04sEkKIcjp58iTJycls376dsLAwXnnlFWrWrAnA0aNHiYmJoUOHDsTGxlKjRo1fH/jJJ5bifPky1KljKdi3ozUUFEBREXTtCjNmgL//Le8uyxaFEKKcmjVrxj/+8Q8SExPZt28fISEhrFu3jqKiIlq1asXKlSspLCxkwIABnDx50lKY//lPiI62jMrr1Su7mINlRF67Nvj6wqZN8NJLcPr0HeeXEboQQtzCwYMHSUpK4siRIwwaNIgXX3wRd3d30tLSSE5OZt5999Huww+hbl3bCvmt5OVBYCCsX3/TkbpMuQghhJ3s3buXpKQksrKyGDJkCM8++yxH//1vvF97DQ9fXwIaN7a5N/stXbhgmU9PTPyvOXUp6EIIYWe7du0iISGBSxcukHj8OH75+WRduoS5tJTgJk3wvJNRutkMFy9CQgJ06/abb8kcuhBC2FnHjh1ZvHgxk598kuIffuDEzz9Tz88PHx8fjh09yuU7Wa/u5gZeXjBnToWXNDp2E2AhhHAwSin+vy+/RAcGctnNjZzsbJRS+Pv7c/r0aer5+dEgIIBis5n4s2fZXlBAfmkpTTw9GdawIZ19fG59cG9vOHHCsk79T38qdzYp6EIIUR75+bBzJ8rPjzpK4ePjw6X8fLJzcvDw8OBifj4FV6/i37gxgZ6eJDdrRqCnJ/+5fJm4rCzWtGxJ0K32NFXKslrmk08qVNBlykUIIcrj4MFfTxYCFFC3bl3uuusu/P390Vpz9epVso4eJdTHhyAvL9yU4rE6dQjy9ORgYeHtj1+zJmzbVqFoUtCFEKI8fvgBiov/62YF+Pn6cvddd9GoUSO01vzwww+cPXcODZwvKeFkURGtbjwh6WZq1IBDhyoUTaZchBCiPK5csZzGfwtKKer5+eHr60tubi5nzpzBrBT/KCzkBV9fWpRV0N3d4erVCkUrc4SulFqqlMpWSu2/4TZ/pdRmpdQR69d6FXp2IYRwNu7uZfZeAXBTioYBAbRr145/FhXhAcQEBpZ9fK0tz1EBtky5LAee/d1tccAWrXVrYIv1uhBCuL5GjSzLC22gtWZmdjbnS0uZ06QJHracfFRcDBXcsLrMgq61/gI4/7ubXwZWWC+vAEIq9OxCCOFs2ra1+a6zzp7lWFER7zRtSg1b9yktLKzQCheo+Bx6I631Gevls0CjW91RKRUJRIKl8Y0QQji1Fi0sH1wWFd12pH6muJj0vDy8lKLbDb3UxwUG8pyv762Pr7Wlj3oF3PGHolprrZS65WlNWutkIBksp/7f6fMJIYSh3NwgNBQWLrxtQW/s6cnOcozmAcsadHd36N69YtEq9Cg4p5RqDGD9ml3B4wghhPN57TVL4b2+kYW9XLoEISGWtroVUNGCvh4It14OB/5VweMIIYTzadoUIiMtBdheDQ4LCy090seMqfAhbFm2uBr4GmijlDqllBoIxAPPKKWOAE9brwshRPUxfLhlr9D8/Ds/VkmJZe35rFnQoEGFD1PmHLrW+rVbfKtLhZ9VCCGcnZcXrFhhmSK5cKHC0ySUlFh+KQwfDs8/f0eR5NR/IYSoqKAgyMiwbPh84UL55tS1thTyK1cgLg5GjLjjOFW6wYVSKgc4UWVPeHMNgFyDM9hKslYeZ8orWSuPs+RtrrUOKOtOVVrQHYFSaqctO384AslaeZwpr2StPM6Wtywy5SKEEC5CCroQQriI6ljQk40OUA6StfI4U17JWnmcLe9tVbs5dCGEcFXVcYQuhBAuyWULulKqplJqu1LqO6XU/ymlplpvb6mU2qaU+kEptVYpZVtj4yqglHJXSn2rlPq39bojZz2ulNqnlNqjlNppvc0hNz5RSvkppdKUUgeVUgeUUn924KxtrK/p9X/5SqmRDpz3Dev/r/1KqdXW/3cO+b5VSo2w5vw/pdRI620O+bpWlMsWdOAa8JTW+o/AfcCzSqmHgdnAO1rru4ELwEADM/7eCODADdcdOSvAk1rr+25Y9uWoG5/MAzZqrf8A/BHLa+yQWbXWh6yv6X1AR6AAyMAB8yqlgoHhQCet9b2AO9AXB3zfKqXuBQYDD2J5D7yglLobB3xd74jW2uX/Ad7AbuAhLCcReFhv/zPwidH5rFmaYHlDPQX8G8uesw6Z1ZrnONDgd7cdAhpbLzcGDjlATl/gGNbPixw5602ydwX+46h5gWDgJ8AfSxuRfwPdHPF9C7wCLLnh+kQgxhFf1zv558oj9OtTGHuwtPfdDPwI5Gmtr5+fewrLm9IRvIvlDWa2Xq+P42YF0MAmpdQu6yYmUI6NT6pQSyAHWGadzlqslKqNY2b9vb7Aautlh8urtc4C3gJOAmeAi8AuHPN9ux94TClVXynlDXQHmuKAr+udcOmCrrUu1ZY/XZtg+VPrDwZHuiml1AtAttZ6l9FZyuFRrfX9wHPAUKXU4zd+U1uGPI6whMoDuB9I1Fr/CbjC7/6sdqCsv7DOO78EfPD77zlKXut888tYfmkGAbX57/2HHYLW+gCWqaBNwEZgD1D6u/s4xOt6J1y6oF+ntc4DPsPy55+fUup6l8kmQJZhwX71CPCSUuo4sAbLtMs8HDMr8MvoDK11NpY53gdxzI1PTgGntNbbrNfTsBR4R8x6o+eA3Vrrc9brjpj3aeCY1jpHa10MpGN5Lzvk+1ZrvURr3VFr/TiWuf3DOObrWmEuW9CVUgFKKT/r5VrAM1g+DPsM6G29m0NszqG1Hqu1bqK1boHlz+xPtdav44BZAZRStZVSda5fxjLXux8H3PhEa30W+Ekp1cZ6Uxfgexww6++8xq/TLeCYeU8CDyulvJVSil9fW0d93za0fm0G9ARW4Ziva4W57IlFSqkOwAosn7y7Aeu01tOUUq2wjIL9gW+BUK31NeOS/pZS6glgtNb6BUfNas2VYb3qAazSWs9QStUH1gHNsHTV7KO1Pm9QzF8ope4DFgNewFFgANb3BA6WFX75JXkSaKW1vmi9zVFf26nAq0AJlvfoICxz5o74vt2K5bOpYmCU1nqLo76uFeWyBV0IIaobl51yEUKI6kYKuhBCuAgp6EII4SKkoAshhIuQgi6EEC5CCroQQrgIKehCCOEipKALIYSL+P8BjAYnXF/vJ/4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtclGX+//HXxRkRRQRTE6Ny1a/mpqWuablRaWSuouIMnlrNRP2m5U8rzQPtAqm12q753TxknlLjHik1NVN3UzPrG6tU6jfNs3lc8gAqIiBz/f4YdK1UBhi4h5nP8/HgITPch8/cj/HNxTXXfV1Ka40QQoiqz8fsAoQQQriGBLoQQngICXQhhPAQEuhCCOEhJNCFEMJDSKALIYSHkEAXQggPIYEuhBAeQgJdCCE8hJ+zGyqlfIHtwAmtdVel1N1AGlAb2AEM0FoX3O4YEREROjo6+uY/LCiAH3+EvDzw8XF8lURrKCpybNugAdSs6ezLEUKIKmPHjh1ntNaRJW3ndKADLwJ7gBrFj98A/qq1TlNKzQYGA7Nud4Do6Gi2b9/+6x/83/9B374QEeEIZaVKURZw5YrjF8GgQfD886XbVwgh3JxS6qgz2znV5aKUagA8DcwrfqyAx4D04k0WAXGlLxM4csQR5leuQFhY6cMcICgIQkPhrbdg8eIylSGEEFWds33ofwNeAezFj2sD2Vrrq8WPjwN3lvrsRUXwwguQm+sI5PLw84Pq1eH112H//vIdSwghqqASA10p1RXI0lrvKMsJlFKJSqntSqntP/30089/uHgxfP+96/q+/f3BbodRoxz/CiGEF3Gmhd4B6KaUOoLjQ9DHgBlAmFLqWh98A+DEzXbWWs/VWrfWWreOjLyhT7+wEN5+G4KDy9bNcis1asC+ffC//+u6YwohRBVQYqBrrV/VWjfQWkcDCcBnWut+wCYgvnizPwKrSnXmTZvg0iUIDLztZrZz5xhw+DAP7d3Ln06eLPm4SjlGv7z3XqnKEUKIqq4849DHAqOVUgdw9KmXLkHXrnUEbwki/PwYHBFBt9J0y9SoAVu2OIZCCiGElyjNsEW01puBzcXfHwLalvnMmZmO0SkleKyGY5Tk93l5ZF29WsLWxXx8wNcXDh6E//qvMpcohBBViTl3ihYWwvHjJXa3lIvWcOBAxR1fCCHcTKla6C6Tn+9oRZfiw9DLeXlcLixEA07tpbXjZiMhhPAS5rTQfX1LPaywsLCQS5cucezHHykoLCx5B6UcY9OFEMJLmBPoQUGOm4CcCeZioaGh+Pj64h8QwOHDhzl3/jy3/UjVxwfq1i13qUIIUVWYE+hKQYsWjtv9S1CkNQV2OyhFUHAweYWFRN11Fxdycjh65Aj5+fm/3klrxy+LZs0qoHghhHBP5vVJPPoofP11iZu9d+YMc8+cuf7404sXGe7ry39HR3P+/HmOHD1K7fBwateujbrWJ5+X55h9MSysgooXQgj3Y16gx8XBtGmOvvTbTJWbGBlJ4g13mJ49d47LubkoILxWLapXr87p06e5cPgw9erXJzgoyNE6f+65SngRQgjhPsxb4KJOHejcGXJySrVbrVq1uHLlCnnF3TUB/v5ERUVRu3Ztjv34Iz+dPIndzw+6d6+IqoUQwm2Zu2LRxImOD0hv1g9+Cz5KUTsighsn+lJAzZo1uefuu/HJy+Ot0FAyZQy6EMLLmBvodetCaipcvgzO3gUKhIWFkZ+fz+Ubx5lrjV9uLrW7dKH11KlMmDCBKVOmkJubWwGFCyGE+zF/TdEePRyrDF244PQwRh+liLixla41ZGfDb34Ds2bx6GOPYbPZKCoqwmKx8MUXX1TgCxBCCPegtBMTZLlK69at9U2XoNMa5s2Dv/zF8Tg0tMS7SLXWHDx4kPqRkVTTGtq2hdmzHRNz3SAjI4PXX3+dFi1aMGbMGGrVquWqlyOEEJVCKbVDa926pO3Mb6GDI7yHDIGVKyE6Gi5edHxYequ7SbVGXblCvWrVyD5zBp2SAkuW/CrMAdq2bUtaWhq1a9fGarWyYcMGKvOXmBBCVBb3CPRrmjWDTz91tNbbtXOE+qVLjn+zs3/+ODyc4Ndf55WHH+Zf995726GPwcHB/L//9/946623mDdvHmPGjCErK6sSX5gQQlQ89+hyuZX8fMfqQwcPOm4W8vWFO+90TIkbHg7Ap59+is1m47333vvPjUW3UVhYyIIFC7DZbPz3f/83cXFx+Nzml4EQQpjN2S4X9w50J9jtdhISEhg1ahTt27d3er8DBw6QnJxMcHAwEydOJCoqyqV1CSGEq1StPvRy8PHxITExkdmzZ5eqb7xRo0YsXLiQjh07MnDgQN5//32KiooqsFIhhKhYVT7QAR577DEKCwvZunVrqfbz8fGhX79+LFq0iG3btjFo0CD2799fQVUKIUTF8ohA9/HxYdiwYcyePRt7KedZB2jQoAGzZs2iZ8+eDB8+nNmzZ1Mg65EKIaoYjwh0gI4dO+Lr68vmzZvLtL9Siri4OJYtW8a+ffvo168fO3fudG2RQghRgTwm0JVS5WqlX1OnTh2mT59OYmIiL7/8MtOnTydPlrITQlQBHhPoAO3btyckJIR//OMf5TqOUopOnTphs9nIycnBarWSkZHhoiqFEKJieFSgX2ulz5kzxyUjVmrWrElycjLjxo0jOTmZ5ORkLly44IJKhRDC9Twq0MFxq394eDiffvqpy47Zvn17DMMgMDAQq9XKpk2bXHZsIYRwFY8L9Gut9HfffZerpZiStyQhISGMHTuWyZMnM3PmTMaOHcvZs2dddnwhhCgvjwt0gAcffJB69eqxdu1alx+7VatWpKWlERUVRUJCAmvWrJHJvoQQbsEjAx1g2LBhzJs3j0In51gvjYCAAEaMGMHMmTNZtmwZI0eO5OTJky4/jxBClIbHBvr9999PdHQ0H3/8cYWdo2nTpixevJgHH3yQAQMGYBhGuYZMCiFEeXhsoIOjlf7ee+9V6F2ffn5+DBo0iPfee48NGzbw3HPPcfjw4Qo7nxBC3IpHB3rz5s1p2rQpK1asqPBzRUdH8+677xIbG8tzzz3H/PnzXfqhrBBClMSjAx1g6NChLFiwgCtXrlT4uXx8fLBYLCxZsoRvv/2WZ555hj179lT4eYUQApwIdKVUkFIqQyn1nVLq/5RSfy5+fqFS6rBS6tvir5YVX27pNWnShN/+9rekp6dX2jnr1avHjBkz6N+/Py+++CIzZ84kPz+/0s4vhPBOzrTQ84HHtNb3Ay2BWKVUu+Kfvay1bln89W2FVVlOiYmJLF68mMuXL1faOZVSdOnShbS0NE6ePEmfPn3IzMystPMLIbxPiYGuHS4VP/Qv/qpSA68bNWpE69atsdlslX7u8PBwpkyZwgsvvMCECROYOnUqubm5lV6HEMLzOdWHrpTyVUp9C2QBG7XWXxf/6HWl1E6l1F+VUoEVVqULJCYmsnTpUtPC9NFHH8UwDAoLC7FYLGzbts2UOoQQnqtUa4oqpcKAFcBI4CxwGggA5gIHtdbJN9knEUgEaNiw4YNHjx51Qdllk5SURMOGDXnuuedMqwEgIyOD1NRU7r//fsaMGUNYWJip9Qgh3FuFrCmqtc4GNgGxWutTxd0x+cACoO0t9pmrtW6ttW4dGRlZmtO53JAhQ/jggw9MnzGxbdu2GIZBrVq1sFgsbNiwQaYPEEKUmzOjXCKLW+YopYKBTsBepVS94ucUEAfsrshCXSEqKorf//73LFu2zOxSCA4OZvTo0UyfPp158+YxZswYsrKyzC5LCFGFOdNCrwdsUkrtBP6Fow99DbBUKbUL2AVEAKkVV6brPPfccyxfvpycnByzSwGgRYsWLFmyhKZNm9K3b18++ugjmT5ACFEmpepDL6/WrVvr7du3V9r5bmXy5MmEhoYycuRIs0v5mQMHDpCcnExwcDATJ04kKirK7JKEEG6gQvrQPcXgwYNZsWIF586dM7uUn2nUqBELFy6kY8eODBw4kPfff98lKy8JIbyDVwb6HXfcQWxsLIsWLTK7lF/x8fGhX79+LFq0iG3btjFo0CAOHDhgdllCiCrAKwMdYNCgQaxevZozZ86YXcpNNWjQgFmzZtGzZ0+GDRvG7NmzK3TWSCFE1ee1gR4ZGUnXrl1ZsGCB2aXcklKKuLg4li1bxr59++jfvz+7du0yuywhhJvy2kAHGDhwIOvWrePf//632aXcVp06dZg+fTpDhgzhpZde4q233iIvL8/ssoQQbsarAz08PJwePXowf/58s0spkVKKTp06YbPZyM7Oxmq1kpGRYXZZQgg34tWBDjBgwAA2btxYZdYErVmzJsnJyYwdO5Y///nPJCcnm37nqxDCPXh9oIeFhdG7d2/mzZtndiml0qFDB2w2G4GBgVitVjZt2mR2SUIIk3l9oAP069ePLVu2cOzYMbNLKZWQkBDGjh3L5MmTmTlzJmPHjuXs2bNmlyWEMIkEOlCjRg0SEhJ49913zS6lTFq1asUHH3xAVFQUffr0Yc2aNTLZlxBeSAK9WN++ffnqq684cuSI2aWUSWBgICNGjODtt99m2bJljBw5ssp8LiCEcA0J9GIhISH07duXuXPnml1KuTRt2pTFixfz4IMPMmDAAAzDkMm+hPASEug3sFqtbN++nYMHD5pdSrn4+fkxaNAg3nvvPTZs2MCQIUOq7F8eQgjnSaDfoFq1agwYMIA5c+aYXYpLREdH8+677/Lkk08yePBg5s+fz9WrV80uSwhRQSTQf6F3797s3LmTffv2mV2KS/j4+GCxWFiyZAnffPMNzzzzDHv37jW7LCFEBZBA/4WgoCAGDhzI7NmzzS7FperVq8fbb79Nv379eOGFF5g5cyb5+flmlyWEcCEJ9Jvo2bMne/fu5fvvvze7FJdSSvH000+TlpbGiRMn6NOnD5mZmWaXJYRwEQn0mwgICODZZ5/1uFb6NeHh4UydOpWRI0cyYcIEpk6dSm5urtllCSHKSQL9Frp3787hw4fZuXOn2aVUmJiYGAzDoLCwEIvFwrZt28wuSQhRDhLot+Dv78/gwYM9tpV+TY0aNZg0aRKvvfYab7zxBpMmTSI7O9vssoQQZSCBfhtdu3blxIkTXtHP3LZtWwzDoFatWlitVjZs2CDTBwhRxUig34afnx9Dhgxh9uzZXhFuwcHBjB49mmnTpjFv3jzGjBlDVlaW2WUJIZwkgV6Cp556ijNnzvCvf/3L7FIqTYsWLViyZAlNmzalb9++rFixwit+oQlR1Umgl8DX15ehQ4cya9Ysrwq1gIAAEhMTmT17NitWrGD48OFVbnphIbyNBLoTOnXqRG5uLl999ZXZpVS6Ro0asXDhQh555BEGDhzIkiVLKCoqMrssIcRNSKA7wcfHh6FDh3pNX/ov+fj40K9fPxYtWsQXX3zBoEGDOHDggNllCSF+QQLdSTExMVy9epWtW7eaXYppGjRowKxZs+jRowfDhg1jzpw5FBQUmF2WEKKYBLqTbmyle/P84kopevTowbJly/jhhx/o378/u3btMrssIQQS6KXSsWNHfH19ZUFmoE6dOkyfPp3nnnuOMWPG8NZbb5GXl2d2WUJ4NQn0UlBKXe9q8OZW+jVKKTp37ozNZiM7Oxur1UpGRobZZQnhtSTQS6l9+/aEhISwceNGs0txG2FhYSQnJzN27Fj+/Oc/k5yczIULF8wuSwivU2KgK6WClFIZSqnvlFL/p5T6c/HzdyulvlZKHVBKGUqpgIov13xKKYYPH86cOXNk+N4vdOjQAZvNRmBgIFarVbqmhKhkzrTQ84HHtNb3Ay2BWKVUO+AN4K9a60bAeWBwxZXpXtq0aUPt2rX59NNPzS7F7YSEhDB27Fhef/11Zs6cybhx4zh37pzZZQnhFUoMdO1wqfihf/GXBh4D0oufXwTEVUiFbuhaK33u3LmyRuctPPDAA3zwwQc0aNCAhIQE1q5d65Vj+IWoTE71oSulfJVS3wJZwEbgIJCttb6WZseBOyumRPf0wAMPcOedd7J27VqzS3FbgYGBjBgxgrfffpulS5fywgsvcOrUKbPLEsJj+Tmzkda6CGiplAoDVgBNnT2BUioRSARo2LBhWWp0W8OGDWPChAl06dIF/6IiyMyE77+Hb7+FnBzw84N77oGWLeH++8HDXr+zmjZtyuLFi3n//ffp378/Q4cOJT4+Hh8f+UxeCFdSpf0zWCmVBOQBY4G6WuurSqmHgD9prZ+83b6tW7fW27dvL3Ox7mji4MFY8/JosXMnFBY6vnx94VpYFRSAvz/Y7dCqFQwbBo89BkqZW7hJjhw5QnJyMkopJk2aRHR0tNklCeH2lFI7tNatS9rOmVEukcUtc5RSwUAnYA+wCYgv3uyPwKqyl1sF2e2QlsbETZuovXIldqUgNBTCw6FmTcf3oaFQuzbUqOF47rvvYOhQeOYZOH3a7FdgiujoaObNm8eTTz7J4MGDmT9/vnwOIYSLOPM3bz1gk1JqJ/AvYKPWeg2OFvpopdQBoDbwXsWV6Wby8x0t7QkTCAoJoSg0lOySFllW6j/B/tVX0Lkz7NhROfW6GR8fHywWC0uWLOGbb77hmWeeYe/evWaXJUSVV+oul/LwiC6XwkJITITPP4ewMFCKK1eu8OOxYzRq1AgfZ7tSrv0CWLbM0RXjpbTWfPLJJ/ztb3+jW7duJCYmEhgYaHZZQrgVl3W5iF/4+99hy5brYQ4QFBREteBgzp8/7/xxQkJAa3juOfDiRZmVUjz99NMYhsGJEyfo06cP33zzjdllCVElSaCXxvffwzvvOLpOftESj4iM5OyZMxSVZo6X6tUdYf7aay4utOoJDw9n6tSpjBw5kvHjxzN16lRyS+rGEkL8jAR6aaSmOj4M9fv1aM+gwECqhYSUrpUOjj71tWthzx4XFVm1xcTEYBgGhYWFWCwWtm3bZnZJQlQZEujOOnoUMjIcrfNbiIyM5NzZs5wvLOSl48d5eO9euh44wKc5Obc+ro+Po+tl8eIKKLpqqlGjBpMmTeK1117jjTfeICkpiWwv7pYSwlkS6M76+GNH6/w2N8MEBgQQUr06fz5yBH+l2NC4Man16zPl9GkO5eff+tihobBiBcjwvZ9p27YthmEQFhaG1Wplw4YNMn2AELchge6sr75y3CBUgurh4Wy+dInE8HCq+fjQslo1fh8aytrbtdL9/Byt9EOHXFiwZwgODmb06NFMmzaNefPmMWbMGLKysswuSwi3JIHurN27ISioxM1OA/6+voRcunT9ud8EBt6+hQ6OQJex2LfUokULlixZQpMmTejbty8rVqyQ1roQvyCB7gyt4cKFm34Y+kuX7XZqBgZy/tw5LhcvyVbdx4fckka/XL3q1cMXnREQEHB9XdcVK1YwfPhwjh8/bnZZQrgNCXRnOdkarObjQ57W1L/zTk4cP86Ro0c5k5tLtZImotLa0UcvStSoUSMWLFjAww8/zB//+EeWLFkiSwIKgQS6c67N0+LECkUNAwIoAs4HBNCoUSPCa9Vi14ULhF64wJkzZ249b4mfn2MIo3CKr68v/fv3Z+HChWzdupWBAwdy4MABs8sSwlQS6M5q3hyuXClxs2AfHx4LDWX2Tz9xRWsO+/nxna8vfaOiKCgs5ODBg5w4eZK8Xx7LxweaOj0rsSgWFRXF7Nmz6dGjx/UFvAsKCswuSwhTSKA766GHHFPhOmFc3brk2+102reP8SdO8GrduvxXjRrUr1ePexs1IjAwkOPHj3P4yBFyLlzAfvWqo8vl3nsr+EV4JqUUPXr0YNmyZfzwww/079+f3bt3m12WEJVOJudy1v790KXLTW/7LwsNXLp4kXPnz+N/6RJn2renfloaERER5a/Vi2mt2bhxI9OnT+fJJ59k+PDhBAcHm12WEOUik3O52m9+A7/9rWO0iwsoIDQ0lLuiooisU4eMZs3o3bs3EyZMYOfOnTIkr4yUUnTu3BnDMMjOzsZqtZKRkWF2WUJUCmmhl8Y330Dv3o4PSH19XXPM7GyIiYG5c7l46RKrV6/GMAxq1KiB1Wqlc+fOBAQEuOZcXmjbtm1MnjyZdu3aMWrUKEJDQ80uSYhSkxZ6RWjVCgYNcqwX6opfhJcvQ7VqMHkyKEVoaOj1m2aGDh3K+vXr6dq1K++8847cHVlGHTp0wGazERAQgMViYfPmzWaXJESFkRZ6aeXnO5aQ2779Z3Oil1penmOxjIULoX37W2529OhRDMPg008/pU2bNlitVlq1aoXy0jVJyyMzM5PU1FQaN27MK6+8Qnh4uNklCeEUZ1voEuhlkZvrWJgiI8Mxp7kTc7xcp7Wjhe/vD3PmQMeOTp4ylzVr1mAYBkFBQVgsFmJjYwlyYjoC8R/5+fnMnTuX1atX8+KLL9KlSxf55SjcngR6Rbt6Fd59F/76V8cNR6Ght58aQGtHF0tBAdx3n2O/e+4p9Wntdjtff/01hmGwe/duunXrRnx8PPXr1y/Hi/E+e/fuJTk5mdq1azN+/Hjq1atndklC3JIEemU5dMjR0l650vG4oAACA/8zz3lhoeNfX1+IjnYsLt29u0s+VD1+/Dg2m401a9bQqlUrrFYrbdq0kRank65evcrixYtZunQpQ4cOJT4+Hp+SpmgQwgQS6JUtJwf+93/hu+8co2EuXfpPiLdtC/ffD82auWQM+y9dvnyZdevWYRgGAFarlaeeeopq1aq5/Fye6MiRIyQnJ6OUYtKkSURHR5tdkhA/I4HuhbTWbN++HcMwyMzMpGvXrlgsFho0aGB2aW7PbreTnp7OnDlz6NevH8888wx+TsyuKURlkED3cidPniQ9PZ2PP/6Y++67D6vVyu9+9zvpUijBqVOnmDx5MmfPniUpKYmmMr+OcAMS6AKAK1eusH79egzD4MqVK1itVrp27UpISIjZpbktrTWffPIJM2bMoFu3bgwZMoTAwECzyxJeTAJd/IzWmm+//RbDMMjIyCA2Nhar1cpdd91ldmlu69y5c7zxxhvs37+fSZMm0apVK7NLEl5KAl3cUlZWFunp6axcuZLGjRtjtVrp0KGDdMfcwqZNm3jzzTd59NFHGTFihPx1IyqdBLooUUFBARs3bsQwDHJycrBYLHTr1k3mO7mJCxcuMGPGDL7++mteffVVOnToYHZJwotIoAunaa3ZvXs3hmGwbds2OnXqhNVq5V6Zn/1XMjIySE1NpWXLlowePZqwsDCzSxJeQCbnEk5TStGiRQtSU1NZvnw5ERERPP/88wwbNoxNmzZR5MTSe96ibdu2GIZBWFgYVquVDRs2yFTHwm1IC13cVGFhIZ999hmGYZCVlUXv3r2Ji4ujpqx7et2uXbtISUmhQYMGjBs3jjp16phdkvBQ0uUiXOb777/HMAw+//xzYmJiSEhIoHHjxmaX5RYKCgpYsGABy5cv5/nnnycuLk6mXhAu57JAV0pFAYuBO3CsnDZXaz1DKfUnYAjwU/Gm47XWn9zuWBLoVdu5c+dYuXIl6enp1K9fH6vVSkxMjNxRCezfv5+UlBSqVavGxIkT5e5c4VKuDPR6QD2tdaZSKhTYAcQBFuCS1nqas0VJoHuGq1evsnnzZgzD4MSJE/Tq1YsePXp4/fziRUVFfPDBByxYsIBnn32WPn36yFBQ4RIV1uWilFoF/A/QAQl0r7dv3z4Mw+Czzz7jkUceISEhgWbNmpldlqmOHTtGamoqV65cISkpSUYLiXKrkEBXSkUDnwP3AaOBgcAFYDswRmt9/nb7S6B7rpycHFatWnV9lIzVauXxxx/HvzSLf3gQu93OqlWr+Pvf/47FYmHgwIGyNqwoM5cHulKqOrAFeF1r/ZFS6g7gDI5+9RQc3TLP3mS/RCARoGHDhg8ePXrU+Vchqhy73c7nn3+OYRgcOnSIXr160bNnTyIiIswuzRRZWVlMnTqV48ePk5SUxH333Wd2SaIKcmmgK6X8gTXAeq31Wzf5eTSwRmt923ertNC9y6FDhzAMgw0bNtC+fXusVistWrTwulEgWms2btzItGnTiI2NZfjw4QQHB5tdlqhCXHZjkXL873sP2HNjmBd/WHpND2B3WQoVnuuee+7h1Vdf5eOPP6Z58+YkJSXxzDPPsGbNGgoKCswur9IopejcuTM2m43z589jtVrJyMgwuyzhgZwZ5fIwsBXYBdiLnx4P9AFa4uhyOQIM1Vqfut2xpIXu3ex2O19++SWGYfDDDz8QFxdHfHy8192Q88UXXzBlyhTatWvHqFGjZO4cUSK5sUi4taNHj2Kz2Vi3bh1t2rTBarXSqlUrr+mOyc3NZebMmWzZsoWxY8fy6KOPml2ScGMS6KJKyM3NZe3atRiGQWBgIBaLhdjYWIKCgswurVJkZmaSmppK48aNeeWVV7x+LL+4OQl0UaXY7XYyMjIwDINdu3bRrVs34uPjqV+/vtmlVbj8/Hzmzp3L6tWrefHFF+nSpYvX/KUinCOBLqqs48ePs3z5clavXk2rVq2wWq20adPG40Nuz549pKSkEBERwauvvkq9evVK3kl4BQl0UeXl5eWxbt060tLSALBYLHTp0oVq1aqZXFnFuXr1KosXL2bp0qUMHTqU+Ph4mT5ASKALz6G1Zvv27RiGQWZmJl27dqV3795ERUWZXVqFOXLkCMnJySilSEpKkrVfvZwEuvBIp06dYvny5dfHtlutVtq1a+eRrVi73U56ejpz5syhf//+DBgwQGa29FIS6MKj5efn8+mnn2IYBleuXMFisfCHP/zBIxdwPnXqFJMnT+bs2bO89tprNGnSxOySRCWTQBdeQWvNt99+i2EYZGRkEBsbi8ViITo62uzSXEprzdq1a5kxYwbdu3dnyJAhBAYGml2WqCQS6MLrZGVlkZ6ezsqVK2ncuDFWq5UOHTp4VHfM2bNnefPNN9m/fz+TJk2iVatWZpckKoEEuvBaBQUFbNy4EcMwyMnJwWKx0K1bN4+6xX7Tpk28+eabPProo4wcOdKjR/4IF07OJURVExAQwNNPP82iRYtITU1lz549dOvWjcmTJ3Pw4EGzy3OJmJgYDMMgPz8fi8XCl19+aXZJwg1IC114hbNnz/Lhhx/y0UcfER0djdV253YdAAAUvklEQVRqpWPHjvj6+ppdWrllZGSQmppKy5YtGT16NGFhYWaXJFxMulyEuInCwkI+++wzDMMgKyuL3r17ExcXR82aNc0urVzy8vKYNWsW69ev56WXXuKJJ57w+DtrvYkEuhAl2LNnD4ZhsGXLFmJiYkhISKBx48Zml1Uuu3btIiUlhaioKMaNG0dkZKTZJQkXkEAXwknnz59nxYoVpKenU79+faxWKzExMVX2Jp6CggIWLFjA8uXLGTFiBN27d5fWehUngS5EKRUVFbF582YMw+D48eP06tWLHj16VNkpbffv309KSgrVqlVj4sSJNGjQwOySRBlJoAtRDvv27cNms/HPf/6TRx55hISEBJo1a2Z2WaVWVFTEsmXLWLhwIc8++yx9+vTxqHH53kICXQgXyMnJYdWqVSxfvpyIiAisViuPP/44/v7+ZpdWKseOHSM1NZUrV66QlJTEvffea3ZJohQk0IVwIbvdzueff45hGBw6dIhevXrRs2dPIiIizC7NaXa7nZUrV/LOO+9gsVgYNGhQlfvF5K0k0IWoIIcOHcIwDDZs2ED79u2xWq20aNGiynzwmJWVxZQpUzhx4gRJSUncd999ZpckSiCBLkQFu3jxIqtXr8ZmsxEaGorVaqVz584EBASYXVqJtNZs3LiRadOmERsby/DhwwkODja7LHELEuhCVBK73c6XX36JYRj88MMPxMXFER8fT506dcwurUTZ2dlMnz6dnTt3MnHiRNq0aWN2SeImJNCFMMHRo0ex2WysW7eONm3aYLVaadWqldt3x3zxxRdMmTKFhx56iBdffNGjJjLzBBLoQpjo8uXLrFmzBsMwCAgIwGq1EhsbS1BQkNml3VJubi4zZ87k888/Z+zYsfz+9783uyRRTAJdCDdgt9vJyMjAMAx27dpFt27diI+Pp379+maXdkuZmZmkpqbSpEkTXn755Sp7Y5UnkelzhXADPj4+tGvXjr/+9a8sXLiQoqIiBgwYwJgxY8jIyKAyG1TOeuCBB/jggw+oX78+CQkJfPLJJ25Zp/g1aaELUcny8vJYt24daWlpAFgsFrp06eKWi1Ts2bOHlJQUIiIiGD9+PHXr1jW7JK8kXS5CuDmtNTt27MAwDHbs2EHXrl3p3bs3UVFRZpf2M1evXmXx4sUsXbqUoUOHEh8fL9MHVDIJdCGqkFOnTpGens6qVato3rw5VquVdu3auVVwHj58mJSUFHx8fJg0aRJ33XWX2SV5DQl0Iaqg/Px81q9fT1paGleuXMFisfCHP/yBkJAQs0sDHB/ypqenM2fOHPr378+AAQOq7DTDVYkEuhBVmNaa7777jrS0NDIyMoiNjcVisRAdHW12aQCcPHmSyZMnc+7cOV577TWaNGlidkkezWWBrpSKAhYDdwAamKu1nqGUCgcMIBo4Ali01udvdywJdCFKLysri/T0dFauXEnjxo2xWq106NDB9O4YrTVr165lxowZdO/encTExCox7UFV5MpArwfU01pnKqVCgR1AHDAQOKe1nqqUGgfU0lqPvd2xJNCFKLuCggI2btyIYRjk5ORgsVjo1q2b6Xd1nj17ljfffJP9+/eTlJREy5YtTa3HE1VYl4tSahXwP8Vfj2qtTxWH/mat9W3/7pJAF6L8tNbs3r0bwzDYtm0bnTp1wmq1mj7H+WeffcZf/vIXYmJiGDFihFsOw6yqKuTGIqVUNNAK+Bq4Q2t9qvhHp3F0yQghKphSihYtWpCamkp6ejqRkZE8//zzDBs2jE2bNlFUVGRKXY899hiGYVz/MPfLL780pQ5v5nQLXSlVHdgCvK61/kgpla21Drvh5+e11rVusl8ikAjQsGHDB48ePeqayoUQ1xUWFvLZZ59hGAZZWVn07t2buLg4atasaUo9GRkZpKam0rJlS8aMGWNaHZ7CpV0uSil/YA2wXmv9VvFzPyBdLkK4nT179mAYBlu2bCEmJoaEhAQaN25c6XVcvnyZ2bNns379el566SWeeOIJt5910l258kNRBSzC8QHoqBue/wtw9oYPRcO11q/c7lgS6EJUnvPnz7NixQrS09OpX78+VquVmJiYSh83vnPnTlJTU4mKimLcuHFERkZW6vk9gSsD/WFgK7ALsBc/PR5HP7oNaAgcxTFs8dztjiWBLkTlKyoqYvPmzRiGwfHjx+nVqxc9evSo1FkUCwoKmD9/Punp6YwYMYLu3btLa70U5MYiIcSv7Nu3D5vNxj//+U8eeeQREhISaNasWaWdf//+/aSkpBASEsKECRNo0KBBpZ27KpNAF0Lc0oULF1i5ciXLly+ndu3aWK1WnnjiCfz9/Sv83EVFRSxbtoyFCxfy7LPP0qdPH9NvknJ3EuhCiBLZ7Xa2bt2KYRgcPHiQnj170qtXLyIiIir83MeOHSMlJYX8/HySkpJMH0fvziTQhRClcujQIWw2G+vXr+ehhx4iISGBFi1aVGhft91uZ+XKlbzzzjtYLBYGDRpUKX8lVDUS6EKIMrl48SKrV6/GZrNRvXp1rFYrTz75ZIXO05KVlcWUKVM4ceIEr732Gs2bN6+wc1VFEuhCiHKx2+18+eWXGIbBDz/8QFxcHPHx8dSpU6dCzqe1ZuPGjUybNo2nnnqKYcOGERwcXCHnqmpkTVEhRLn4+Pjw8MMPM3PmTN59911yc3NJSEhg7NixZGZmunydUaUUnTt3xmazce7cORISEvjXv/7l0nN4OmmhCyGcdvnyZdasWYNhGAQEBGC1WomNjSUoKMjl5/riiy+YMmUKDz30EC+++KLps0qaSVroQgiXq1atGhaLhfT0dEaNGsXnn39O165defvttzl58qRLz/Xwww9js9nw8/PDarWyZcsWlx7fE0kLXQhRLidOnMBms7FmzRpatmyJ1WqlTZs2Lh0dk5mZSWpqKk2aNOHll1+u1Ltc3YF8KCqEqFR5eXmsW7eOtLQ0ACwWC126dHHZvOj5+fnMmTOHNWvWMGrUKJ566imvmT5AAl0IYQqtNTt27MAwDHbs2EHXrl3p3bs3UVFRLjn+999/T0pKCpGRkYwfP566deu65LjuTAJdCGG6U6dOkZ6ezqpVq2jevDlWq5V27dqV+1b/q1evsnjxYpYuXcrQoUOJj4/36OkDJNCFEG4jPz+f9evXk5aWdn1Foz/84Q+EhISU67iHDx8mJSUFHx8fJk2axF133eWiit2LBLoQwu1orfnuu+8wDIOvv/6a2NhYLBYL0dHRZT6m3W5n+fLlzJ07lwEDBtC/f/9Kn/O9okmgCyHcWlZWFh9++CErVqygcePGWK1WOnToUOauk5MnTzJ58mTOnz9PUlISTZrcdgG1KkUCXQhRJRQUFPCPf/yDtLQ0cnJyrnfH1KhRo9TH0lqzdu1aZsyYQVxcHEOGDKnQOWgqiwS6EKLK2b17N4Zh8MUXX9CpUyesVmuZptU9e/Ysb775Jvv37ycpKYmWLVtWQLWVRwJdCFFlnT17lo8++ogPP/yQu+66i4SEBDp27Iivr2+pjvPZZ5/xl7/8hZiYGEaMGOGyMfGVTQJdCFHlFRYWsmnTJtLS0sjKyqJ3797ExcVRs2ZNp49x4cIF/va3v5GRkcH48eNp3759BVZcMSTQhRAeZe/evRiGwebNm4mJiSEhIYHGjRs7vf/XX3/N66+/TsuWLRkzZkypfimYTQJdCOGRzp8/f3091Pr162O1WomJiXFqqOLly5eZPXs2GzZs4KWXXuLxxx+vEtMHSKALITxaUVERW7ZsIS0tjePHj9OrVy969Ojh1MRdO3fuJCUlhYYNGzJu3DgiIyMroeKyk0AXQniN/fv3YxgG//znP3nkkUdISEigWbNmt92noKCA+fPn8+GHHzJixAi6devmtq11CXQhhNe5cOECK1euJD09nfDwcKxWK0888cRtF57ev38/KSkphISEMHHiRO68885KrNg5EuhCCK9lt9vZunUrhmFw8OBBevbsSa9evYiIiLjp9kVFRSxbtoyFCxcyePBgEhIS3GqyLwl0IYQADh06hM1mY8OGDbRr146EhARatGhx0+6VY8eOkZKSQn5+PklJSWW6qem6wkI4fBiys0FrCAuDu++GMty5KoEuhBA3uHjxIqtXr8Zms1G9enWsVitPPvnkr6YGsNvtrFy5knfeeQeLxcKgQYNu22XzM7m5sHo1LFkCP/wAvr5w7ReH3Q5FRdC4MfTtC926gZPTG0igCyHETdjtdr766isMw2Dv3r3ExcURHx9PnTp1frZdVlYWU6ZM4eTJkyQlJdG8efNbH7SoCBYuhOnTHS1zPz8IDoZfdtvY7ZCX59jG3x9GjoTERMf2tyGBLoQQJfjxxx+x2Wx88skntGnTBqvVSqtWra53x2it2bhxI9OmTeOpp55i+PDhBAUF/fwgJ0/C8OGwezeEhDjfpVJYCJcuQdOmMGsWNGx4y00l0IUQwkmXL19mzZo12Gw2/P39sVqtxMbGXg/v7Oxspk2bxq5du5g4cSJt2rRx7HjsGMTHw9mzULPmf7pXnKU15OQ4+teXL3f0sd+EBLoQQpSS1pqMjAwMw2Dnzp1069aN+Ph46tevD8DWrVuZMmUK7du358XBgwm1WOD0aUeYl8eFC1CrFqxf7wj3X3A20Escl6OUmq+UylJK7b7huT8ppU4opb4t/upS6hcghBBuRinF7373O9566y0WLVqE3W5nwIABjBkzhoyMDB5++GGWL1+Or68vn3ToQN6hQ+UPc3B8OHrmDPzpT+Wrv6QWulKqI3AJWKy1vq/4uT8Bl7TW00pzMmmhCyGqmry8PNatW4dhGGitsVgsPF2vHiohgRMXLxIYHEzdO+4o/7J3drujpb54MfxiRkhnW+glVqC1/lwpFV3mIoUQogoLDg6mZ8+e9OjRg8zMTAzDIGDJEh4pKODOqChycnI4dOgQd9xxBzVq1uRaL3qB3c7U06fJuHyZC0VFNPD3Z0SdOrSvXv3mJ/LxcfTBz579q0B3VnluhRqhlNpZ3CVTqxzHEUIIt6eU4sEHH+TNl16iS1AQhUFB/Hj0KPn5+dSOiODM2bMcO3aMwsJCAIqAuv7+zG3YkM2NGzM8MpJxJ05wsqDg1icJDYWvvoITJ8pUY1kDfRZwL9ASOAVMv9WGSqlEpdR2pdT2n376qYynE0IIN5GZiZ+/P3Xq1qXRb35DjdBQcnJy0HY72m7n0KFDnDt/niAfHxIjI6kfEICPUjwSGkp9f3/2Xrly62Nfa6WXsWu6TIGutf631rpIa20H3gXa3mbbuVrr1lrr1u4+RaUQQpTou++guJXtoxRhYWHcfffd1K9fH18/P+xac/r0aQ4dOkT+Da3xc1ev8mNBAfcEBt7++FevwjfflKm0MvXiK6Xqaa1PFT/sAey+3fZCCOEx9u791c1DCqhWrRrVqlWj8OpVzp87x09nzrB3715q165NnXr1mHjyJF1r1iS6pEAPCIA9e8pUWomBrpT6AHgUiFBKHQdeAx5VSrUENHAEGFqmswshRFVz5cptbyDy9/OjTp06RERGcv7cOU6dPs3MoiL8gFfq1i35+D4+jnOUgTOjXPrc5On3ynQ2IYSo6oKCHEMMS+CjFOHh4fxPfj7ZhYW8HRWFnzN3ktrtjnOUgftM+CuEEFXBffc55mFxwpTTpzlcUMBfo6IIdHZ+9fx8xznKoJwj4YUQwsv89rdOTcB1qrCQj7KzCVCKJ/fvv/78+Lp1eep2d5f6+0OrVmUqTQJdCCFK48EHHZNqFRU55ju/hXr+/mz/r/8q3bHtdsfXtcm/Skm6XIQQojTCwyE21nGbvqtduAAxMXDHHWXaXQJdCCFKa+hQx2iUoiLXHfPasYYPL/MhJNCFEKK0mjeHgQPh4kXXHfPiRUhIgAceKPMhJNCFEKIsRo92LEiRnV3+Y+XkwJ13wquvluswEuhCCFEWwcGwdCk0aADnzzs+KC0trR371qkDH3zgWMKuHCTQhRCirOrUgY8+ckx3m51dujs88/Md+7RpAytWQPGqSOVRqUvQKaV+Ao6WYdcI4IyLy/EEcl1uTq7Lzcl1ubmqcF3u0lqXOLthpQZ6WSmltjuzWoe3ketyc3Jdbk6uy8150nWRLhchhPAQEuhCCOEhqkqgzzW7ADcl1+Xm5LrcnFyXm/OY61Il+tCFEEKUrKq00IUQQpTALQNdKXVEKbVLKfWtUmp78XPhSqmNSqn9xf/WMrvOynaL6/InpdSJ4ue+VUp1MbvOyqaUClNKpSul9iql9iilHvL298strolXv1eUUk1ueO3fKqUuKKVGedJ7xS27XJRSR4DWWuszNzz3JnBOaz1VKTUOqKW1HmtWjWa4xXX5E3BJaz3NrLrMppRaBGzVWs9TSgUA1YDxePH75RbXZBRe/l65RinlC5wAfgc8j4e8V9yyhX4L3YFFxd8vAuJMrEW4CaVUTaAjxcsiaq0LtNbZePH75TbXRPzH48BBrfVRPOi94q6BroENSqkdSqnE4ufu0FqfKv7+NFC2CYOrtptdF4ARSqmdSqn5VfnPxTK6G/gJWKCU+kYpNU8pFYJ3v19udU3Au98rN0oAPij+3mPeK+4a6A9rrR8AngKeV0p1vPGH2tFP5H59RRXvZtdlFnAv0BI4BUw3sT4z+AEPALO01q2AXGDcjRt44fvlVtfE298rABR3QXUDlv/yZ1X9veKWga61PlH8bxawAmgL/FspVQ+g+N8s8yo0x82ui9b631rrIq21HXgXx7XyJseB41rrr4sfp+MIM29+v9z0msh75bqngEyt9b+LH3vMe8XtAl0pFaKUCr32PdAZ2A18DPyxeLM/AqvMqdAct7ou196IxXrguFZeQ2t9GjimlGpS/NTjwPd48fvlVtfE298rN+jDf7pbwIPeK243ykUpdQ+O1ic4/nRcprV+XSlVG7ABDXHM2GjRWp8zqcxKd5vr8j6OP6E1cAQYekN/oFdQSrUE5gEBwCFgEI7Gije/X252Td5G3ishwI/APVrrnOLnPCZb3C7QhRBClI3bdbkIIYQoGwl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHkICXQghPMT/B9jFcDvYi0EzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -698,15 +696,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -600100.5\n", + "energy: -600033.5\n", "feasible: True\n", "solution: [1, 2, 0]\n", - "solution objective: 201.0\n" + "solution objective: 67.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1OX+///HxaYiCqIognuZR3/p6agtx5ZTWVq24ZKZwUERkUGPmkcB9+2omGXZUUDchdwi4Nipj+nX6pOdylwy9eNabokLkCJuyDLX748ZyzoqAw68Z4bX/Xbzxsww854ncxtfXFxzvV+X0lojhBDC+bkZHUAIIYR9SEEXQggXIQVdCCFchBR0IYRwEVLQhRDCRUhBF0IIFyEFXQghXIQUdCGEcBFS0IUQwkV4VOWTNWjQQLdo0aIqn7JyXbsGx45BcTG4uYFStj1OaygtBS8vaNECatSozJRCCCe3Y8eOPK11QFn3q9KC3qJFC7Zv316VT1l5Dh6Evn0hMBB8fSt2jIICcHeHVavgnnvsm08I4TKUUsdtuZ9MuVTEzz9D//5QWFjxYg5Qty5cvQqvvQbnztkvnxCiWpKCXl5aw/jxkJ8Pderc+fHq1LEU84kTLccWQogKkoJeXlu2wP/7f3c2Mv89X1/45BP46iv7HVMIUe1IQS+v5GTLh59ut3/p1p07R9jRo/z5wAGmnDp1+2Ne/0B14UI7BhVCVDdS0Mvjp5/g229tmmpp4OHBoAYNeNHWkXydOvD115CdfYchhRDVlRT08ti50zKaLmN0DvBk3bo8XqcOvu7uth37+ih95847DCmEqK6koJfHzp1QUlJ5xy8uhu++q7zjCyFcmhT08jh0yHIyUGXx8rI8hxBCVECVnljk9IqKbD4btKSkhJPZ2eRduUKpj49tx3dzszyHEEJUgIzQy6NWLTCby7xbUVERx44dw9vbm1q1apGfn0/BxYtlH99sBm9vOwQVQlRHUtDL449/LHMEfbWwkGPHj+Pn749f/frU8vbGx9eXn86c4dSZM+jbnTxUVAQdOtg5tBCiupApl/Lo0OG2c+iXLl0i+9Qpgho3ZnVhISkHD/7yvU1a06eggH6FhQQ3aYKnx01eei8vaN++MpILIaoBKejlcf/9v3ZK/N1yxPwLF8g5e5amTZviXasWUXXqEBXw2+ZoGvg5L4+jR48SFBSET+3av36ztPTX5xBCiAqwacpFKfW6Uur/lFJ7lVKrlVI1lVItlVJblVI/KKXWKqUqcfmHg/D3h2eftXRJtNJAXl4eubm5NG/RAu9atW75cAU0aNCA4OBgTp06RW5uLr9MwBQUwPPPg59fZf4EQggXVmZBV0oFA8OBzlrrewF3oB8wG3hba303cB4YVJlBHcaQIZbVKCUlaODMmTMUXLxIixYtqGHjksba3t60bNmSy1eu8NOJE5Rcu2Y55uDBlZtdCOHSbP1Q1AOopZTyALyB08CTQLr1+yuAEPvHc0Dt2kFkJOaCAk7+9BNFRUU0b9785nPit+Hp4UHz5s2pUaMGOUeOcOqFF+APf6ik0EKI6qDMgq61zgbeBE5gKeQXgB1Avtb6+mmTJ4HgygrpaC4MHMjeoiK8i4po2rQp7ja0ArgZpTWNatSgRocODPr+e1atWnX7VTBCCHEbtky51ANeAloCQUBt4Blbn0ApFaWU2q6U2p6bm1vhoI7i9OnTDIqJ4auYGPw7d8YtP9+mten/xWyG8+fhrruo/9FHLElN5X/+53+Ii4vj0qVL9g8uhHB5tgwtnwKOaq1ztdbFQAbwMOBnnYIBaALctE2g1jpFa91Za905IKDMLfEc2qFDhxg0aBC9evUietw4VHo6dO8OFy7AlSu2HURry30vXIAePeD998Hfn6CgIJYsWYK/vz9hYWEckhYAQohysqWgnwAeUkp5K6UU0BXYB3wG9LHeJxz4V+VEdAzbtm1j6NChvP766/Tv399yo68vLFgAiYmW1SkXLlhG3deu/Xb3Ia0tt50/b1nN4udn6as+f75lGzorLy8v4uPjGTJkCDExMaxfv76Kf0ohhDNTtszZKqWmAq8AJcB3QCSWOfM1gL/1tlCt9bXbHadz587aGTeJ/uSTT3jzzTdJSEigU6dON7+T2WzZcWjtWtixA86ehesflJaWQqNG0KkT9OsHDz1UZgveI0eOEBcXR/v27YmNjaVmzZp2/qmEEM5CKbVDa925zPtV5YdwzljQ09LSWLVqFe+++y5333237Q+8dMkyYlfKMgq3tUHXDa5cucLMmTP58ccfmT17Ns2aNSv3MYQQzs/Wgi69XG7BbDYzd+5c1q9fz7Jly8pXzMFSwIODISioQsUcwNvbm+nTp9OnTx8iIiLYvHlzhY4jhKge5NT/mygqKmLy5Mnk5eWxePFi6t4wz13VlFL07t2btm3bEh8fz65duxg+fDienp6GZRJCOCYZof/OxYsX+dvf/kZpaSkLFiwwtJjfqF27dqSlpXHy5EmioqI4e/as0ZGEEA5GCvoNcnJyGDx4MHfddRcJCQl4VebuRBVQt25d3nrrLR5//HHCwsL4+uuvjY4khHAgUtCtjhw5QkREBM8++yxjxozBrYJnf1Y2Nzc3wsPDSUhIYNq0aSxcuBBzRU5sEkK4HMesWlVs165dREdHExMTQ3h4OMrGbeaM1LFjR9LS0ti5cyfDhg3j3LlzRkcSQhis2hf0Tz/9lNGjRzNt2jR69OhhdJxyqV+/PomJidx7772Ehoby/fffGx1JCGGgar3KZd26dSxbtoz58+fzByftdOju7k5MTAwdOnRgzJgx/PWvf+W1115zir8yhBD2VS1H6FprFixYwJo1a1i8eLHTFvMbPfLIIyxfvpyNGzcSGxvLRVs2pRZCuJRqV9BLSkqYMmUK27ZtY+nSpQQHu07X36CgIBYvXkxAQIA0+BKiGqpWBf3KlSuMHDmSgoICkpOT8XPB7d68vLyIjY0lJiaGmJgYsrKypMe6ENVEtSnoP//8M1FRUTRu3Jg333zT5ZtddevWjUWLFrFq1SqmTp1KYWGh0ZGEEJWsWhT0EydOMHDgQB577DHGjRuHu7u70ZGqRMuWLVmxYgVms5nw8HCOHz9udCQhRCVy+YK+d+9eIiMjGThwIFFRUdVu9UetWrWYOnUqr7zyCoMGDWLTpk1GRxJCVBLHXbZoNsPx47B/P+TmWnqK+/jA3XdbNlP29i7zEF9++SVTpkxh8uTJPProo1UQ2jEppejVqxft2rUjLi6OXbt2MXLkSGnwJYSLcbx+6D/9BKtXQ1oaXJ/3LS62fHV3t2waUVwMjzwCkZHw8MM33SwiKyuLxMRE5s6dy7333mvnn8R5FRQUMGXKFM6dO0dCQgKBgYFGRxJClMH5Nri4dg3mzYNFiyyj89q14VbNscxmuL7Ouk0beOcdy8gdyxrzxYsX8+GHHzJ//nzZFOImtNakpqaSlpbGlClT6NKli9GRhBC34VwF/cQJCA+3fK1T59et28qitWWPTjc3mDqV0pdfJiEhgf379zNv3jzq169v3x/AxXz33XeMHz+eF154gSFDhjhsQzIhqju77ViklGqjlNp1w78CpdRIpZS/UmqTUuqw9Wu9CiU9cQJ694aTJ6FePduLuSWcZaPmGjUwjxvHuh49OH36NCkpKVLMbfCnP/2JtLQ0du/ezdChQ6XBlxBOrsyCrrU+qLW+T2t9H9AJuAJkAvHAZq11a2Cz9Xr5XL0KYWGQn28pzBVU4u7OT/n5dNu2jXd69cLbhg9MhYW/vz8LFiygQ4cOhIaG8t133xkdSQhRQeX9G7sr8KPW+jjwErDCevsKIKTcz/7WW5aR+R0U86LiYo4dO0YtHx/8AwPxiI21TMMIm7m5uWEymZgwYQJxcXGsXLlSzi4VwgmVt6D3A1ZbLzfSWp+2Xj4DNCrXkY4cgRUr4A62eCssLOTYsWP4+/vTsGFDlLc3nD8P8+dX+JjVWZcuXVi5ciWbN29m9OjR0uBLCCdjc0FXSnkBLwLv//572jKcu+mQTikVpZTarpTanpub++s3UlMtq1XKOGuzoLSU0SdP8siBAzz/ww9suHABgEuXL3PixAkCAwPxr3fD9L2PD7z3nmU6R5RbYGAgixcvJjAwkNDQUA4cOGB0JCGEjcozQn8W2Km1vr478VmlVGMA69ecmz1Ia52ite6ste4cEBBgubGoCNautRTfMiScOYOnUmy85x7+ERTErDNn+D4vj1PZ2TRp0oS6der89gGenpbjyxmRFebp6cmYMWMYNmwYw4YNIyMjQ6ZghHAC5Snor/LrdAvAeiDcejkc+JfNR/rhB8vovIwzFa+azXx68SKmgAC83dz4o7c397u7k372LM2bN7/1h59mM8gGynfs6aefZsmSJaxdu5bJkydzVf7qEcKh2VTQlVK1gaeBjBtuTgCeVkodBp6yXrfNvn2WU/nLcKKoCHegmZcXGjh75gyBxcUU+PhQo0aNWz+wZk0o64xUYZPmzZuzYsUKlFKEh4dz7NgxoyMJIW7BpoKutb6sta6vtb5ww20/a627aq1ba62f0lrbvoj51KlfT+e/jStmM7Xd3NBac/LkSa5du0bLRo0oc5zo6QmnT5d1L2GjmjVrMmXKFPr3709kZCQbN240OpIQ4iaMac5VUmI5KagM3m5uXDabQSkuX75MHR8fLhYXU7usMxqVsukvAGE7pRQhISG0bdv2Nw2+vG7VnkEIUeWMOdf79x9k3kIzLy9KgZ+KimjdujVeNWqwLSeH+oWFFN9uhF9aaukFI+yuTZs2pKamkpOTQ2RkJKdOnTI6khDCypiC3ro13G4O3KqWmxtP1qlDcm4uRcApb2/2eHrSzceHI0ePcubMGYpLSv77gdeuWVrsikpRp04d5syZQ/fu3RkwYABffvml0ZGEEBhV0Nu2tUy72LAULj4wkGtmM08fOsS47GzGNW7MA40bc1erViilOHLkCGdzcii5cYqlqAgefLASfwChlOK1117jjTfeYObMmSxYsIBSmeYSwlDGdFvUGnr0gKNHbVqLfjvFJSXk5eVRUFBAvXr1qO/vj/vFi7B+PbRrZ6fk4nbOnTvHhAkTKC0tZebMmdIYTQg7s1u3xUqhFERH2+WDS08PDxoHBtKyZUtKSkrIPniQE7Vrc6VFizvPKWzi7+/P/Pnz6dixI6GhoezcudPoSEJUS8Y1wO7eHRo2hEuX7HI4L09Pgho1onFAAJv++EdCQkJITU2V3e6riJubG0OGDGHSpEnEx8f/sjm1EKLqGFfQa9a07FBUUmK/JYYXLuAZEsKglStJTk5m7969hISEsHbtWoqKiuzzHOK2/vznP5Oamsrnn3/O3//+dwqk86UQVcbYLWo6d4ahQy3tbu+0qF+4AE2bwrRpALRq1YrZs2czb948vvnmG3r27ElmZiYlN1sVI+yqUaNGpKSk0LRpU0JDQ9m3b5/RkYSoFozfgk5rmDEDli0Db2+bljP+htlsKeZNmlgaft1i0+M9e/aQlJREdnY2UVFRPPvss7LlWhXYvHkzs2bNIjo6mt69e6NsOKFMCPFbzrWnqNbwwQcweTIUFlp6pJfRVhet4coVyxLF7t0tvxTqlb0L3s6dO0lKSuL8+fMMGTKErl27SmGvZCdOnCAuLo677rqLcePGyY5SQpSTcxX0606fhlmzYMMGyxSMu7tlrv16V0az2VLwCwste482bw7x8fDUU+XKobVm69atJCUlUVRUhMlk4tFHH5XRYyUqLCzkjTfeYM+ePcyePZtWrVoZHUkIp+GcBf26n3+GDz+E//wHdu2CvDzLiLxWLWjTBh54wLKO/Y9/tKknzK1ordmyZQvJycl4eHhgMpl46KGHpLBXovXr1/Puu+8yevRonnnmGaPjCOEUnLug/971jJVUaM1mM59++inJycn4+fkRExNDx44dK+W5BBw6dIi4uDgefPBBRo0aJQ2+hCiDY59YVF5KVVoxB8sa6qeeeop169bRq1cvpk2bRkxMDHv27Km056zO7rnnHlJTUzl37pw0+BLCjpyjoFcRNzc3evToQXp6Ot26dWPs2LGMHDlS9tWsBD4+PsyePZtnnnmGAQMGsGXLFqMjCeH0nGPKxSBFRUVkZWWxbNky2rdvz5AhQ7jrrruMjuVydu/eTXx8PD169MBkMuFe1gonIaoZ15pyMYiXlxd9+/YlMzOTDh06YDKZmDBhAidOnDA6mkvp0KED7733Hvv378dkMpGXl2d0JCGckhR0G9SsWZPQ0FCysrJo1aoVERERTJs2TeZ+7ahevXr885//pHPnzoSFhbFjxw6jIwnhdGzdJNpPKZWulDqglNqvlPqzUspfKbVJKXXY+rXss3qcnLe3NxEREWRmZtKwYUNCQ0NJSEggJyfH6Gguwc3NjaioKCZPnszYsWNZtmyZNPgSohxsHaHPAzZorf8A/BHYD8QDm7XWrYHN1uvVQp06dYiOjiYjIwNvb2/69evH3LlzOXfO9n2yxa099NBDpKWlsWXLFkaNGiUNvoSwUZkFXSnlCzwGLAHQWhdprfOBl4AV1rutAEIqK6Sj8vPzY/jw4bz//vuYzWb69OnD/PnzpQDZQcOGDUlJSaFZs2bS4EsIG9kyQm8J5ALLlFLfKaUWK6VqA4201qet9zkDNKqskI6ufv36jB49mtWrV1NQUEDPnj1JSUnhkp16vVdXHh4ejBo1ipEjRzJixAjef/99qnJVlhDOxpaC7gF0BJK01n8CLvO76RVt+V920/9pSqkopdR2pdT23NzcO83r0Bo1asS4ceNYuXIlp06domfPnixfvpyrV68aHc2pPfnkkyxZsoSMjAzGjx/PlStXjI4khEOypaCfBE5qrbdar6djKfBnlVKNAaxfb/rJoNY6RWvdWWvdOSAgwB6ZHV5wcDBTpkxh0aJFHDp0iJCQEFatWiWbbNyBZs2asXz5cmrVqsVf//pXjhw5YnQkIRxOmQVda30G+Ekp1cZ6U1dgH7AeCLfeFg78q1ISOrEWLVowc+ZM5s+fz86dOwkJCSE9PZ3i4mKjozmlGjVqMHHiRP76178SFRXFxx9/bHQkIRyKTWeKKqXuAxYDXsARYCCWXwbrgGbAcaCv1vq2yzyc7UxRe9u3bx/JyckcO3aMyMhInnvuOTkrsoIOHz5MXFwcnTt3ZvTo0dLgS7g01+q26GK+//57EhMTyc3NJSoqim7duskmGxVw+fJlpk2bRnZ2NrNnzyY4ONjoSEJUCinoTmDbtm0kJSVx6dIloqOjeeKJJ6QXezlprVm7di1Llixh4sSJPPbYY0ZHEsLupKA7Ca01X331FYmJiQCYTCYefvhhKezltHv3bsaOHUv37t0ZOnSoTGUJlyIF3clorfn8889JSkqidu3amEwm7r//fins5ZCfn8/EiRMpLCxk5syZVJdVVcL1SbdFJ6OU4oknnmDNmjX069ePhIQEoqOj2bVrl9HRnIafnx/z5s3jwQcfJCwsjG3bthkdSYgqJSN0B1VaWsrHH3/MokWLaN68OSaTiXbt2hkdy2l8++23TJw4kVdeeYUBAwbIh87CqcmUi4soLi5m/fr1LFmyhLZt2xIdHU3r1q2NjuUUcnJyGDt2LLVr12b69On4+voaHUmICpEpFxfh6elJ7969ycrKonPnzgwbNoyxY8dy9OhRo6M5vIYNG7Jw4UJatWpFaGgoe/fuNTqSEJVKRuhO5urVq6xbt460tDS6dOnC4MGDadKkidGxHN5nn33GzJkzGTx4MC+//LJ82CyciozQXVStWrUIDw8nKyuLJk2aEB4ezowZMzhz5ozR0RzaE088wbJly8jKymLcuHHS4Eu4JCnoTqp27doMHjyYzMxM/Pz86N+/P3PmzJH9OG+jSZMmLFu2DB8fH8LCwvjxxx+NjiSEXUlBd3J169Zl6NChpKen4+7uTt++fZk3bx75+flGR3NINWrUYPz48URERDBkyBA++ugjoyMJYTdS0F2Ev78/o0aNYs2aNRQWFtKrVy+SkpK4ePGi0dEc0nPPPUdycjJLlixhxowZ0tpYuAQp6C6mYcOGxMXFkZaWRm5uLiEhISxZskTmjG/i7rvvJi0tjUuXLjFgwABOnjxpdCQh7ogUdBcVFBTEpEmTWLZsGceOHSMkJITU1FQKCwuNjuZQvL29mTlzJiEhIQwcOJDPP//c6EhCVJgsW6wmjhw5QnJyMrt372bgwIH07NlTeoj/zt69exk7dixdu3Zl2LBheHh4GB1JCECWLYrfadWqFW+88Qbz5s3jm2++oWfPnmRmZlJSUmJ0NIdx7733kpaWxpEjRxgyZAg5OTfdVVEIhyUFvZpp06YNb7/9NgkJCWzatInevXvz8ccfYzabjY7mEHx9fXnnnXd4+OGHCQsL49tvvzU6khA2kymXam7nzp0kJiaSn5/PkCFD6Nq1qzSystq2bRsTJ06kT58+REREyOsiDCPNuYTNtNZs3bqVxMREiouLMZlMPProo3J6PJCbm8u4ceOoWbMm06dPx8/Pz+hIohqya0FXSh0DLgKlQInWurNSyh9YC7QAjmHZJPr87Y4jBd2xaa3ZsmULycnJeHh4YDKZeOihh6p9YS8tLWXBggVs3LiRWbNm0b59e6MjiWqmMgp6Z6113g23vQGc01onKKXigXpa67jbHUcKunMwm818+umnJCcn4+fnR0xMDB07djQ6luG++OILpk+fTkREBP369av2v+hE1amKgn4QeFxrfVop1Rj4XGvd5nbHkYLuXMxmMxs2bCAlJYWgoCBMJlO1H51mZ2cTFxdHcHAwkyZNonbt2kZHEtWAvZctamCjUmqHUirKelsjrfVp6+UzQKNbBIlSSm1XSm3Pzc218emEI3Bzc6NHjx6kp6fTrVs34uPjGTlyJAcOHDA6mmGCg4NZunQpvr6+hIWFcfjwYaMjCfELW0fowVrrbKVUQ2AT8Ddgvdba74b7nNda17vdcWSE7tyKiorIyspi6dKldOjQgSFDhnDXXXcZHcswH3/8MXPnzmXEiBG88MILRscRLsyuI3Stdbb1aw6QCTwAnLVOtWD9KmdhuDgvLy/69u1LVlYWHTp0wGQyMWHCBE6cOGF0NEP06NGDlJQUVqxYwbRp07h27ZrRkUQ1V2ZBV0rVVkrVuX4Z6AbsBdYD4da7hQP/qqyQwrHUrFmT0NBQsrKyaNWqFREREUybNo1Tp04ZHa3KtWrVipUrV1JYWMjAgQOr7S834RhsGaE3Ar5USn0PfAt8pLXeACQATyulDgNPWa+LasTb25uIiAgyMzNp2LAhoaGhJCQkVLtT5r29vZkxYwY9e/Zk0KBBfPrpp0ZHEtWUnFgk7CY/P5+VK1eSlZXF888/z4ABA/D39zc6VpXat28f8fHxPP744wwfPlwafAm7kOZcosr5+fkxfPhw3n//fcxmM3369GH+/PkUFBQYHa3KtGvXjrS0NE6cOEFUVFS1+2tFGEsKurC7+vXrM3r0aFavXk1BQQE9e/YkJSWFS5cuGR2tStStW5e5c+fy2GOPERoayjfffGN0JFFNyJSLqHQnT55k0aJFfPXVV7z22mu88sor1KpVy+hYVWLHjh2MHz+eXr16ERkZKQ2+RIXIlItwGE2aNGHq1KksWrSIQ4cO8dJLL7Fq1apqsY9np06dSEtLY/v27fztb3/j/PnbtjsS4o5IQRdVpkWLFsycOZMFCxawY8cOQkJCSE9Pp7i42OholapBgwYkJSXRtm1bQkND2b17t9GRhIuSKRdhmH379pGcnMyxY8eIjIzkueeew93d3ehYlWrLli1Mnz6dAQMG8Oqrr0qDL2ET6YcunMauXbtITEwkLy+PqKgounXr5tJzzadOnSIuLo7GjRszadIkfHx8jI4kHJzMoQuncd9997Fw4ULi4+NZt24d/fr149NPP6UqBxtVKSgoiCVLllC/fn3CwsI4dOiQ0ZGEi5ARunAoWmu++uorEhMTUUoRHR3Nww8/7LJTExs2bODNN99k+PDhvPjii0bHEQ5KplyEU9Na8/nnn5OUlETt2rUxmUzcf//9LlnYjx49SmxsLO3btyc2NpaaNWsaHUk4GJlyEU5NKcUTTzzBmjVr6NevHwkJCURHR7Nr1y6jo9ldy5YtWbFiBcXFxdLgS9wRGaELp1BaWsrHH3/MokWLaN68OSaTiXbt2hkdy6601mRkZJCcnEx8fDxdu3Y1OpJwEDLlIlxScXEx69evZ8mSJbRt25bo6Ghat25tdCy72r9/P3FxcfzlL39h+PDheHp6Gh1JGEymXIRL8vT0pHfv3mRmZtKpUyeGDRvG2LFjOXr0qNHR7KZt27akpaVx8uRJoqKiOHv2rNGRhJOQgi6cUo0aNejfvz9ZWVn84Q9/ICoqismTJ3Py5Emjo9lF3bp1eeutt3j88ccJCwvj66+/NjqScAIy5SJcwqVLl1i1ahVr167lySefZNCgQQQGBhodyy527tzJ+PHjCQkJYfDgwS590pW4OZlyEdWKj48PUVFRZGZm4ufnR//+/ZkzZw55eXlGR7tjHTt2JC0tjZ07dzJs2DDOnTtndCThoKSgC5dSt25dhg4dSnp6Ou7u7vTt25d58+aRn59vdLQ7Ur9+fRITE7n33nsJDQ3l+++/NzqScEA2F3SllLtS6jul1L+t11sqpbYqpX5QSq1VSnlVXkwhysff359Ro0axZs0aCgsL6dWrF0lJSVy8eNHoaBXm7u5OTEwM48aNY8yYMaSlpblsewRRMeUZoY8A9t9wfTbwttb6buA8MMiewYSwh4YNGxIXF0daWhq5ubn07NmTJUuWcOXKFaOjVdgjjzzC8uXL2bhxI7GxsU79S0rYl00FXSnVBHgOWGy9roAngXTrXVYAIZURUAh7CAoKYtKkSSxdupRjx44REhJCamoqhYWFRkerkKCgIBYvXkxAQIA0+BK/sHWE/g4QC5it1+sD+VrrEuv1k0CwnbMJYXfNmjVj+vTpJCcns2fPHkJCQli7dq1T7p7k5eVFbGwsMTExxMTEkJWVJVMw1VyZBV0p9TyQo7XeUZEnUEpFKaW2K6W25+bmVuQQQthdq1ateOONN5iQEQ72AAAY4klEQVQ3bx7ffPMNPXv2JDMzk5KSkrIf7GC6devGokWLWLVqFVOnTnXavzrEnbNlhP4w8KJS6hiwBstUyzzATynlYb1PEyD7Zg/WWqdorTtrrTsHBATYIbIQ9tOmTRvefvttEhIS2LRpE7179+bjjz/GbDaX/WAHcr3Bl9lsJjw8nOPHjxsdSRigXCcWKaUeB0ZrrZ9XSr0PfKC1XqOUSgZ2a60Tb/d4ObFIOLodO3aQlJREfn4+Q4YMoWvXrk51Io/WmszMTBITE4mLi+Ppp582OpKwg0ppzvW7gt4Ky4jdH/gOCNVaX7vd46WgC2egtWbr1q0kJiZSXFyMyWTi0Ucfdape7AcOHCAuLo5HHnmEkSNHSoMvJyfdFoW4Q1prtmzZQlJSEp6enphMJh566CGnKewFBQVMmTKFc+fOkZCQ4DKtEKojKehC2InZbGbz5s0sXLgQPz8/YmJi6Nixo9GxbKK1JjU1lbS0NKZMmUKXLl2MjiQqQAq6EHZmNpvZsGEDCxcuJDg4GJPJRPv27Y2OZZPvvvuO8ePH88ILLzBkyBCn+lxASEEXotKUlJTw4YcfsnjxYlq3bo3JZKJNmzZGxyrTuXPnGD9+PAAzZszA39/f4ETCVtJtUYhK4uHh8cu69S5dujBixAhiY2M5cuSI0dFuy9/fnwULFtChQwdCQ0P57rvvjI4k7ExG6ELcocLCQtLT01m5ciUPPPAAUVFRNGvWzOhYt/XVV18xZcoUQkNDCQsLc5oPeqsrGaELUUVq1qxJaGgoWVlZtGrVioiICKZNm8apU6eMjnZLXbp0YeXKlWzevJnRo0dLgy8XIQVdCDvx9vYmIiKCjIwMAgICCA0NJSEhgZycHKOj3VRgYCCLFy8mMDCQ0NBQDhw4YHQkcYekoAthZ3Xr1sVkMpGRkYG3tzf9+vVj7ty5DrnTkKenJ2PGjGHYsGEMGzaMjIwMafDlxKSgC1FJ/Pz8GD58OOvWraO0tJQ+ffowf/58CgoKjI72X55++mmWLFnC2rVrmTx5MlevXjU6kqgAKehCVLIGDRowZswYVq1aRUFBAT179iQlJYVLly4ZHe03mjdvzooVK1BKER4ezrFjx4yOJMpJCroQVSQwMJBx48axYsUKsrOz6dmzJ8uXL3eo0XDNmjWZMmUK/fv3JzIyko0bNxodSZSDLFsUwiDHjh0jJSWFHTt2EB4eTp8+ffDycpyteQ8ePEhcXBxdunRh5MiRDpWtupFli0I4uBYtWjBz5kzmz5/Pjh07CAkJIT09neLiYqOjAZZe8ampqeTk5BAZGenQyzCFhRR0IQzWunVr3nrrLd58802++OILevfuzfr16yktLTU6GnXq1GHOnDl0796dAQMG8OWXXxodSdyGTLkI4WB27dpFYmIieXl5REVF0a1bN4doprVr1y7GjRvHc889R3R0NO7u7kZHqjakOZcQTkxrzbZt20hKSuLy5ctER0fzxBNPGH6K/rlz55gwYQKlpaXMnDmT+vXrG5qnupCCLoQL0Frz1VdfkZiYiFKK6OhoHn74YUMLu9lsZtGiRWRlZTFjxgyn6Q3vzKSgC+FCtNZ89tlnJCcnU7t2bUwmE/fff7+hhf3rr79m8uTJvPbaa4SFhTnEtJCrkoIuhAsym81s2rSJhQsXEhAQgMlk4r777jMsz9mzZ4mPj8fPz4+pU6dSt25dw7K4MrstW1RK1VRKfauU+l4p9X9KqanW21sqpbYqpX5QSq1VSskiVSEqmZubG927d+f999/nueeeY+LEifztb39j3759huRp1KgRKSkpNG3alNDQUMNyCIsyR+jK8jddba31JaWUJ/AlMAIYBWRordcopZKB77XWSbc7lozQhbCv4uJi/vWvf7F06VLatm1LdHQ0rVu3NiTL5s2bmTVrFtHR0fTu3dvwD3Bdid1G6NrietMJT+s/DTwJpFtvXwGEVDCrEKKCPD096dOnD5mZmXTq1ImhQ4cybtw4Q/qwdO3alaVLl/LBBx8wceJErly5UuUZqjubPsVQSrkrpXYBOcAm4EcgX2tdYr3LSSD4Fo+NUkptV0ptz83NtUdmIcTv1KhRg/79+5OVlcU999zD4MGDmTx5MidPnqzSHM2aNWPZsmV4eXkRHh7u8NvyuRqbCrrWulRrfR/QBHgA+IOtT6C1TtFad9Zadw4ICKhgTCGELby9vRkwYACZmZkEBwcTHh7OjBkzOHPmTJVlqFmzJpMmTSIsLIyoqCg2bNhQZc9d3ZVrnZHWOh/4DPgz4KeU8rB+qwmQbedsQogK8vHxISoqioyMDHx9fenfvz9z5swhLy+vyjK8+OKLJCYmsnDhQhISEigqKqqy566ubFnlEqCU8rNergU8DezHUtj7WO8WDvyrskIKISrG19eXYcOGkZ6ejru7O3379mXevHnk5+dXyfPfc889pKamcu7cOQYNGiQNviqZLSP0xsBnSqndwDZgk9b630AcMEop9QNQH1hSeTGFEHfC39+fUaNGsWbNGgoLC+nVqxdJSUlVsjm0j48Ps2fP5tlnn2XAgAF88cUXlf6c1ZWcWCRENXTq1CkWL17MF198wauvvsqrr76Kt7d3pT/v7t27GTt2LM888wwxMTHS4MtG0g9dCHFLQUFBTJo0iaVLl3L06FFCQkJITU2lsLCwUp+3Q4cOpKWlcfDgQUwmU5XO6VcHUtCFqMaaNWvGP/7xD5KTk9mzZw8hISGsW7euUj/ArFevHu+++y6dO3cmNDQU+avdfmTKRQjxiwMHDpCcnMzhw4eJjIzkhRdewMPDo+wHVtDWrVuZNGkS/fr1Izw8XBp83YI05xJCVNju3btJTk4mOzubIUOG8Mwzz1Rasc3JySE+Pp46deowffp0afB1EzKHLoSosA4dOpCYmMikSZPIyMigb9++bNq0CbPZbPfnatiwISkpKbRo0YLXXntNGnzdARmhCyFuS2vNN998Q1JSEsXFxZhMJh599NFKab716aefMmvWLAYPHszLL78sDb6sZMpFCGFXWmu2bNlCUlISnp6emEwmHnroIbsX3Z9++om4uDhatGjBhAkTqmQ5paOTKRchhF0ppXjsscd47733CAsL46233mLw4MHs3LnTrs/TtGlTli1bRq1atQgLC5MGX+UgI3QhRIWYzWY2bNjAwoULCQ4OxmQy0b59e7s+x4cffsi8efMYNWoUPXr0sOuxnYlMuQghqkRJSQkffvghixcvpnXr1phMJtq0aWO34//www/ExsbSuXNnRo8ejZdX9dscTaZchBBVwsPDg549e5KZmUmXLl0YMWIEsbGxdpsqufvuu0lNTaWgoICIiAiys6Wx661IQRdC2IWXlxd9+/YlKyuL9u3bEx0dzYQJEzhx4sQdH7t27drMmjWL559/Xhp83YZMuQghKsWVK1dYvXo1q1ev5rHHHiMyMpKgoKA7Pu71Bl/du3dn6NCh1aLBl0y5CCEM5e3tzaBBg8jIyCAgIIDQ0FASEhLIycm5o+N26NCB9957j8OHDxMdHY1sbfkrKehCiEpVt25dTCYTGRkZeHt7069fP+bOncu5c+cqfEw/Pz/mzZvHgw8+SFhYGNu2bbNjYuclBV0IUSX8/PwYPnw469ato7S0lD59+rBgwQIKCgoqdDw3NzciIyOZNm0aEyZMYOnSpZXSmsCZSEEXQlSpBg0aMGbMGFatWkV+fj49e/YkJSWFS5cuVeh4DzzwAKmpqfznP/9h5MiRXLhwwc6JnYcUdCGEIQIDAxk/fjwrVqwgOzubnj17snz5cq5evVruYzVs2JCFCxfSqlUrQkND2bt3byUkdny2bBLdVCn1mVJqn1Lq/5RSI6y3+yulNimlDlu/1qv8uEIIV9OkSROmTp1KSkoKBw8eJCQkhFWrVpV7kw0PDw9GjhzJqFGjeP3111m3bh1VuYrPEZS5bFEp1RhorLXeqZSqA+wAQoABwDmtdYJSKh6op7WOu92xZNmiEKIshw4dYuHChezfv5+IiAheeuklPD09y3WMkydPEhsbS/PmzZk4caLTN/iy27JFrfVprfVO6+WLwH4gGHgJWGG92wosRV4IIe7IPffcw1tvvcWcOXP43//9X3r37s369espLS21+RhNmjRh2bJl+Pj4EBYWxo8//liJiR1HuU4sUkq1AL4A7gVOaK39rLcr4Pz167ciI3QhRHnt2rWLxMRE8vLyiIqKolu3buXaPemjjz7i7bff5vXXX+e5556rxKSVx+7NuZRSPsD/AjO01hlKqfwbC7hS6rzW+r/m0ZVSUUAUQLNmzTodP37c1p9BCCEASy/2bdu2kZSUxOXLl4mOjuaJJ56wuRf79QZfnTp1YsyYMU7X4MuuBV0p5Qn8G/hEaz3XettB4HGt9WnrPPvnWuvbtliTEboQ4k5orfnPf/5DUlISSilMJhNdunSxqbBfuXKF6dOnc/z4cd544w2aNGlSBYntw25z6NbplCXA/uvF3Go9EG69HA78qyJBhRDCVkopHnnkEdLS0oiIiGDevHlERETw7bfflrmixdvbm5kzZxISEsLAgQP5/PPPqyZ0FbJllcsjwBZgD3D9NKxxwFZgHdAMOA701Vrf9lxeGaELIezJbDazceNGFi5cSMOGDTGZTNx3331lPm7v3r2MHTuWrl27MmzYMDw8PKogbcXJBhdCiGqjtLSUjz76iEWLFtGiRQtMJhPt2rW77WMuXLjAxIkTuXz5MrNmzaJhw4ZVlLb8pNuiEKLacHd358UXXyQjI4O//OUvjB49mr///e8cPnz4lo/x9fXlnXfe4eGHHyYsLIxvv/22ChNXDhmhCyFczrVr1/jggw9Yvnw5nTt3JioqihYtWtzy/tu2bWPixIn06dOHiIiIci2LrAoyQhdCVFs1atSgf//+ZGVlcc899zB48GAmT57MyZMnb3r/+++/n9TUVLZu3cqIESPIz8+v4sT2IQVdCOGyvL29GTBgAJmZmQQHBxMeHs6MGTM4c+bMf903ICCA5ORkWrduTWhoKHv27DEg8Z2Rgi6EcHk+Pj5ERUWRkZGBr68v/fv3Z86cOeTl5f3mfu7u7gwfPpzY2FhGjRrF6tWrnarBlxR0IUS14evry7Bhw0hPT8fd3Z2+ffvy7rvv/tcUy2OPPcby5cv56KOPiI+P5/LlywYlLh8p6EKIasff359Ro0axZs0arly5Qq9evUhKSuLixYu/3Cc4OJilS5fi6+tLWFjYbVfM/EZBAaxdC8OGwSOPQOvW0KoV3Hsv9OoFs2fDrl1QCSN/WeUihKj2Tp06xeLFi/niiy/o378//fr1+03L3Y8//pi5c+cyYsQIXnjhhZsf5Oef4a23ICMDSkost9WqBZ6eoBSUlsK1a1BYCB4e0Lw5xMbC009bvn8bcmKREEKU04kTJ0hJSeHbb78lLCyMl19+mZo1awJw5MgRYmNj6dChA3FxcdSoUePXB37yiaU4X7oEdepYCvbtaA1XrkBREXTrBjNmgL//Le8uyxaFEKKcmjVrxj/+8Q+SkpLYs2cPISEhrFu3jqKiIlq1asXKlSspLCxk4MCBnDhxwlKY//lPiImxjMrr1Su7mINlRF67Nvj6wsaN8OKLcOrUHeeXEboQQtzCgQMHSE5O5vDhw0RGRvLCCy/g7u5Oeno6KSkpzLvvPtp98AHUrWtbIb+V/HwIDIT16286UpcpFyGEsJPdu3eTnJxMdnY2Q4YM4ZlnnuHIv/+N96uv4uHrS0Djxjb3Zr+l8+ct8+lJSf81py4FXQgh7GzHjh0kJiZy8fx5ko4dw6+ggOyLFzGXlhLcpAmedzJKN5vhwgVITITu3X/zLZlDF0IIO+vUqROLFy9m8hNPUPzDDxz/+Wfq+fnh4+PD0SNHuHQn69Xd3MDLC+bMqfCSRsduAiyEEA5GKcX/9+WX6MBALrm5kZuTg1IKf39/Tp06RT0/PxoEBFBsNpNw5gzfXrlCQWkpTTw9GdawIV18fG59cG9vOH7csk79T38qdzYp6EIIUR4FBbB9O8rPjzpK4ePjw8WCAnJyc/Hw8OBCQQFXrl7Fv3FjAj09SWnWjEBPT/5z6RLx2dmsadmSoFvtaaqUZbXMJ59UqKDLlIsQQpTHgQO/niwEKKBu3brcdddd+Pv7o7Xm6tWrZB85QqiPD0FeXrgpxaN16hDk6cmBwsLbH79mTdi6tULRpKALIUR5/PADFBf/180K8PP15e677qJRo0Zorfnhhx84c/YsGjhXUsKJoiJa3XhC0s3UqAEHD1Yomky5CCFEeVy+bDmN/xaUUtTz88PX15e8vDxOnz6NWSn+UVjI876+tCiroLu7w9WrFYpW5ghdKbVUKZWjlNp7w23+SqlNSqnD1q/1KvTsQgjhbNzdy+y9AuCmFA0DAmjXrh3/LCrCA4gNDCz7+FpbnqMCbJlyWQ4887vb4oHNWuvWwGbrdSGEcH2NGlmWF9pAa83MnBzOlZYyp0kTPGw5+ai4GCq4YXWZBV1r/QVw7nc3vwSssF5eAYRU6NmFEMLZtG1r811nnTnD0aIi3m7alBq27lNaWFihFS5Q8Tn0Rlrr09bLZ4BGt7qjUioKiAJL4xshhHBqLVpYPrgsKrrtSP10cTEZ+fl4KUX3G3qpjwsM5Flf31sfX2tLH/UKuOMPRbXWWil1y9OatNYpQApYTv2/0+cTQghDublBaCgsXHjbgt7Y05Pt5RjNA5Y16O7u0KNHxaJV6FFwVinVGMD6NaeCxxFCCOfz6quWwnt9Iwt7uXgRQkIsbXUroKIFfT0Qbr0cDvyrgscRQgjn07QpREVZCrC9GhwWFlp6pI8ZU+FD2LJscTXwNdBGKXVSKTUISACeVkodBp6yXhdCiOpj+HDLXqEFBXd+rJISy9rzWbOgQYMKH6bMOXSt9au3+FbXCj+rEEI4Oy8vWLHCMkVy/nyFp0koKbH8Uhg+HJ577o4iyan/QghRUUFBkJlp2fD5/PnyzalrbSnkly9DfDyMGHHHcap0gwulVC5wvMqe8OYaAHkGZ7CVZK08zpRXslYeZ8nbXGsdUNadqrSgOwKl1HZbdv5wBJK18jhTXslaeZwtb1lkykUIIVyEFHQhhHAR1bGgpxgdoBwka+VxpryStfI4W97bqnZz6EII4aqq4whdCCFckssWdKVUTaXUt0qp75VS/6eUmmq9vaVSaqtS6gel1FqllG2NjauAUspdKfWdUurf1uuOnPWYUmqPUmqXUmq79TaH3PhEKeWnlEpXSh1QSu1XSv3ZgbO2sb6m1/8VKKVGOnDe163/v/YqpVZb/9855PtWKTXCmvP/lFIjrbc55OtaUS5b0IFrwJNa6z8C9wHPKKUeAmYDb2ut7wbOA4MMzPh7I4D9N1x35KwAT2it77th2ZejbnwyD9igtf4D8Ecsr7FDZtVaH7S+pvcBnYArQCYOmFcpFQwMBzprre8F3IF+OOD7Vil1LzAYeADLe+B5pdTdOODreke01i7/D/AGdgIPYjmJwMN6+5+BT4zOZ83SBMsb6kng31j2nHXIrNY8x4AGv7vtINDYerkxcNABcvoCR7F+XuTIWW+SvRvwH0fNCwQDPwH+WNqI/Bvo7ojvW+BlYMkN1ycCsY74ut7JP1ceoV+fwtiFpb3vJuBHIF9rff383JNY3pSO4B0sbzCz9Xp9HDcrgAY2KqV2WDcxgXJsfFKFWgK5wDLrdNZipVRtHDPr7/UDVlsvO1xerXU28CZwAjgNXAB24Jjv273Ao0qp+kopb6AH0BQHfF3vhEsXdK11qbb86doEy59afzA40k0ppZ4HcrTWO4zOUg6PaK07As8CQ5VSj934TW0Z8jjCEioPoCOQpLX+E3CZ3/1Z7UBZf2Gdd34ReP/333OUvNb55pew/NIMAmrz3/sPOwSt9X4sU0EbgQ3ALqD0d/dxiNf1Trh0Qb9Oa50PfIblzz8/pdT1LpNNgGzDgv3qYeBFpdQxYA2WaZd5OGZW4JfRGVrrHCxzvA/gmBufnAROaq23Wq+nYynwjpj1Rs8CO7XWZ63XHTHvU8BRrXWu1roYyMDyXnbI963WeonWupPW+jEsc/uHcMzXtcJctqArpQKUUn7Wy7WAp7F8GPYZ0Md6N4fYnENrPVZr3URr3QLLn9mfaq1fwwGzAiilaiul6ly/jGWudy8OuPGJ1voM8JNSqo31pq7APhww6++8yq/TLeCYeU8ADymlvJVSil9fW0d93za0fm0G9AJW4Ziva4W57IlFSqkOwAosn7y7Aeu01tOUUq2wjIL9ge+AUK31NeOS/pZS6nFgtNb6eUfNas2Vab3qAazSWs9QStUH1gHNsHTV7Ku1PmdQzF8ope4DFgNewBFgINb3BA6WFX75JXkCaKW1vmC9zVFf26nAK0AJlvdoJJY5c0d8327B8tlUMTBKa73ZUV/XinLZgi6EENWNy065CCFEdSMFXQghXIQUdCGEcBFS0IUQwkVIQRdCCBchBV0IIVyEFHQhhHARUtCFEMJF/P+XqCdcLvWBGgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtclGX+//HXxRkRRQRTE6Ny1a/mpqWuablRaWSuouIMnlrNRP2m5U8rzQPtAqm12q753TxknlLjHik1NVN3UzPrG6tU6jfNs3lc8gAqIiBz/f4YdK1UBhi4h5nP8/HgITPch8/cj/HNxTXXfV1Ka40QQoiqz8fsAoQQQriGBLoQQngICXQhhPAQEuhCCOEhJNCFEMJDSKALIYSHkEAXQggPIYEuhBAeQgJdCCE8hJ+zGyqlfIHtwAmtdVel1N1AGlAb2AEM0FoX3O4YEREROjo6+uY/LCiAH3+EvDzw8XF8lURrKCpybNugAdSs6ezLEUKIKmPHjh1ntNaRJW3ndKADLwJ7gBrFj98A/qq1TlNKzQYGA7Nud4Do6Gi2b9/+6x/83/9B374QEeEIZaVKURZw5YrjF8GgQfD886XbVwgh3JxS6qgz2znV5aKUagA8DcwrfqyAx4D04k0WAXGlLxM4csQR5leuQFhY6cMcICgIQkPhrbdg8eIylSGEEFWds33ofwNeAezFj2sD2Vrrq8WPjwN3lvrsRUXwwguQm+sI5PLw84Pq1eH112H//vIdSwghqqASA10p1RXI0lrvKMsJlFKJSqntSqntP/30089/uHgxfP+96/q+/f3BbodRoxz/CiGEF3Gmhd4B6KaUOoLjQ9DHgBlAmFLqWh98A+DEzXbWWs/VWrfWWreOjLyhT7+wEN5+G4KDy9bNcis1asC+ffC//+u6YwohRBVQYqBrrV/VWjfQWkcDCcBnWut+wCYgvnizPwKrSnXmTZvg0iUIDLztZrZz5xhw+DAP7d3Ln06eLPm4SjlGv7z3XqnKEUKIqq4849DHAqOVUgdw9KmXLkHXrnUEbwki/PwYHBFBt9J0y9SoAVu2OIZCCiGElyjNsEW01puBzcXfHwLalvnMmZmO0SkleKyGY5Tk93l5ZF29WsLWxXx8wNcXDh6E//qvMpcohBBViTl3ihYWwvHjJXa3lIvWcOBAxR1fCCHcTKla6C6Tn+9oRZfiw9DLeXlcLixEA07tpbXjZiMhhPAS5rTQfX1LPaywsLCQS5cucezHHykoLCx5B6UcY9OFEMJLmBPoQUGOm4CcCeZioaGh+Pj64h8QwOHDhzl3/jy3/UjVxwfq1i13qUIIUVWYE+hKQYsWjtv9S1CkNQV2OyhFUHAweYWFRN11Fxdycjh65Aj5+fm/3klrxy+LZs0qoHghhHBP5vVJPPoofP11iZu9d+YMc8+cuf7404sXGe7ry39HR3P+/HmOHD1K7fBwateujbrWJ5+X55h9MSysgooXQgj3Y16gx8XBtGmOvvTbTJWbGBlJ4g13mJ49d47LubkoILxWLapXr87p06e5cPgw9erXJzgoyNE6f+65SngRQgjhPsxb4KJOHejcGXJySrVbrVq1uHLlCnnF3TUB/v5ERUVRu3Ztjv34Iz+dPIndzw+6d6+IqoUQwm2Zu2LRxImOD0hv1g9+Cz5KUTsighsn+lJAzZo1uefuu/HJy+Ot0FAyZQy6EMLLmBvodetCaipcvgzO3gUKhIWFkZ+fz+Ubx5lrjV9uLrW7dKH11KlMmDCBKVOmkJubWwGFCyGE+zF/TdEePRyrDF244PQwRh+liLixla41ZGfDb34Ds2bx6GOPYbPZKCoqwmKx8MUXX1TgCxBCCPegtBMTZLlK69at9U2XoNMa5s2Dv/zF8Tg0tMS7SLXWHDx4kPqRkVTTGtq2hdmzHRNz3SAjI4PXX3+dFi1aMGbMGGrVquWqlyOEEJVCKbVDa926pO3Mb6GDI7yHDIGVKyE6Gi5edHxYequ7SbVGXblCvWrVyD5zBp2SAkuW/CrMAdq2bUtaWhq1a9fGarWyYcMGKvOXmBBCVBb3CPRrmjWDTz91tNbbtXOE+qVLjn+zs3/+ODyc4Ndf55WHH+Zf995726GPwcHB/L//9/946623mDdvHmPGjCErK6sSX5gQQlQ89+hyuZX8fMfqQwcPOm4W8vWFO+90TIkbHg7Ap59+is1m47333vvPjUW3UVhYyIIFC7DZbPz3f/83cXFx+Nzml4EQQpjN2S4X9w50J9jtdhISEhg1ahTt27d3er8DBw6QnJxMcHAwEydOJCoqyqV1CSGEq1StPvRy8PHxITExkdmzZ5eqb7xRo0YsXLiQjh07MnDgQN5//32KiooqsFIhhKhYVT7QAR577DEKCwvZunVrqfbz8fGhX79+LFq0iG3btjFo0CD2799fQVUKIUTF8ohA9/HxYdiwYcyePRt7KedZB2jQoAGzZs2iZ8+eDB8+nNmzZ1Mg65EKIaoYjwh0gI4dO+Lr68vmzZvLtL9Siri4OJYtW8a+ffvo168fO3fudG2RQghRgTwm0JVS5WqlX1OnTh2mT59OYmIiL7/8MtOnTydPlrITQlQBHhPoAO3btyckJIR//OMf5TqOUopOnTphs9nIycnBarWSkZHhoiqFEKJieFSgX2ulz5kzxyUjVmrWrElycjLjxo0jOTmZ5ORkLly44IJKhRDC9Twq0MFxq394eDiffvqpy47Zvn17DMMgMDAQq9XKpk2bXHZsIYRwFY8L9Gut9HfffZerpZiStyQhISGMHTuWyZMnM3PmTMaOHcvZs2dddnwhhCgvjwt0gAcffJB69eqxdu1alx+7VatWpKWlERUVRUJCAmvWrJHJvoQQbsEjAx1g2LBhzJs3j0In51gvjYCAAEaMGMHMmTNZtmwZI0eO5OTJky4/jxBClIbHBvr9999PdHQ0H3/8cYWdo2nTpixevJgHH3yQAQMGYBhGuYZMCiFEeXhsoIOjlf7ee+9V6F2ffn5+DBo0iPfee48NGzbw3HPPcfjw4Qo7nxBC3IpHB3rz5s1p2rQpK1asqPBzRUdH8+677xIbG8tzzz3H/PnzXfqhrBBClMSjAx1g6NChLFiwgCtXrlT4uXx8fLBYLCxZsoRvv/2WZ555hj179lT4eYUQApwIdKVUkFIqQyn1nVLq/5RSfy5+fqFS6rBS6tvir5YVX27pNWnShN/+9rekp6dX2jnr1avHjBkz6N+/Py+++CIzZ84kPz+/0s4vhPBOzrTQ84HHtNb3Ay2BWKVUu+Kfvay1bln89W2FVVlOiYmJLF68mMuXL1faOZVSdOnShbS0NE6ePEmfPn3IzMystPMLIbxPiYGuHS4VP/Qv/qpSA68bNWpE69atsdlslX7u8PBwpkyZwgsvvMCECROYOnUqubm5lV6HEMLzOdWHrpTyVUp9C2QBG7XWXxf/6HWl1E6l1F+VUoEVVqULJCYmsnTpUtPC9NFHH8UwDAoLC7FYLGzbts2UOoQQnqtUa4oqpcKAFcBI4CxwGggA5gIHtdbJN9knEUgEaNiw4YNHjx51Qdllk5SURMOGDXnuuedMqwEgIyOD1NRU7r//fsaMGUNYWJip9Qgh3FuFrCmqtc4GNgGxWutTxd0x+cACoO0t9pmrtW6ttW4dGRlZmtO53JAhQ/jggw9MnzGxbdu2GIZBrVq1sFgsbNiwQaYPEEKUmzOjXCKLW+YopYKBTsBepVS94ucUEAfsrshCXSEqKorf//73LFu2zOxSCA4OZvTo0UyfPp158+YxZswYsrKyzC5LCFGFOdNCrwdsUkrtBP6Fow99DbBUKbUL2AVEAKkVV6brPPfccyxfvpycnByzSwGgRYsWLFmyhKZNm9K3b18++ugjmT5ACFEmpepDL6/WrVvr7du3V9r5bmXy5MmEhoYycuRIs0v5mQMHDpCcnExwcDATJ04kKirK7JKEEG6gQvrQPcXgwYNZsWIF586dM7uUn2nUqBELFy6kY8eODBw4kPfff98lKy8JIbyDVwb6HXfcQWxsLIsWLTK7lF/x8fGhX79+LFq0iG3btjFo0CAOHDhgdllCiCrAKwMdYNCgQaxevZozZ86YXcpNNWjQgFmzZtGzZ0+GDRvG7NmzK3TWSCFE1ee1gR4ZGUnXrl1ZsGCB2aXcklKKuLg4li1bxr59++jfvz+7du0yuywhhJvy2kAHGDhwIOvWrePf//632aXcVp06dZg+fTpDhgzhpZde4q233iIvL8/ssoQQbsarAz08PJwePXowf/58s0spkVKKTp06YbPZyM7Oxmq1kpGRYXZZQgg34tWBDjBgwAA2btxYZdYErVmzJsnJyYwdO5Y///nPJCcnm37nqxDCPXh9oIeFhdG7d2/mzZtndiml0qFDB2w2G4GBgVitVjZt2mR2SUIIk3l9oAP069ePLVu2cOzYMbNLKZWQkBDGjh3L5MmTmTlzJmPHjuXs2bNmlyWEMIkEOlCjRg0SEhJ49913zS6lTFq1asUHH3xAVFQUffr0Yc2aNTLZlxBeSAK9WN++ffnqq684cuSI2aWUSWBgICNGjODtt99m2bJljBw5ssp8LiCEcA0J9GIhISH07duXuXPnml1KuTRt2pTFixfz4IMPMmDAAAzDkMm+hPASEug3sFqtbN++nYMHD5pdSrn4+fkxaNAg3nvvPTZs2MCQIUOq7F8eQgjnSaDfoFq1agwYMIA5c+aYXYpLREdH8+677/Lkk08yePBg5s+fz9WrV80uSwhRQSTQf6F3797s3LmTffv2mV2KS/j4+GCxWFiyZAnffPMNzzzzDHv37jW7LCFEBZBA/4WgoCAGDhzI7NmzzS7FperVq8fbb79Nv379eOGFF5g5cyb5+flmlyWEcCEJ9Jvo2bMne/fu5fvvvze7FJdSSvH000+TlpbGiRMn6NOnD5mZmWaXJYRwEQn0mwgICODZZ5/1uFb6NeHh4UydOpWRI0cyYcIEpk6dSm5urtllCSHKSQL9Frp3787hw4fZuXOn2aVUmJiYGAzDoLCwEIvFwrZt28wuSQhRDhLot+Dv78/gwYM9tpV+TY0aNZg0aRKvvfYab7zxBpMmTSI7O9vssoQQZSCBfhtdu3blxIkTXtHP3LZtWwzDoFatWlitVjZs2CDTBwhRxUig34afnx9Dhgxh9uzZXhFuwcHBjB49mmnTpjFv3jzGjBlDVlaW2WUJIZwkgV6Cp556ijNnzvCvf/3L7FIqTYsWLViyZAlNmzalb9++rFixwit+oQlR1Umgl8DX15ehQ4cya9Ysrwq1gIAAEhMTmT17NitWrGD48OFVbnphIbyNBLoTOnXqRG5uLl999ZXZpVS6Ro0asXDhQh555BEGDhzIkiVLKCoqMrssIcRNSKA7wcfHh6FDh3pNX/ov+fj40K9fPxYtWsQXX3zBoEGDOHDggNllCSF+QQLdSTExMVy9epWtW7eaXYppGjRowKxZs+jRowfDhg1jzpw5FBQUmF2WEKKYBLqTbmyle/P84kopevTowbJly/jhhx/o378/u3btMrssIQQS6KXSsWNHfH19ZUFmoE6dOkyfPp3nnnuOMWPG8NZbb5GXl2d2WUJ4NQn0UlBKXe9q8OZW+jVKKTp37ozNZiM7Oxur1UpGRobZZQnhtSTQS6l9+/aEhISwceNGs0txG2FhYSQnJzN27Fj+/Oc/k5yczIULF8wuSwivU2KgK6WClFIZSqnvlFL/p5T6c/HzdyulvlZKHVBKGUqpgIov13xKKYYPH86cOXNk+N4vdOjQAZvNRmBgIFarVbqmhKhkzrTQ84HHtNb3Ay2BWKVUO+AN4K9a60bAeWBwxZXpXtq0aUPt2rX59NNPzS7F7YSEhDB27Fhef/11Zs6cybhx4zh37pzZZQnhFUoMdO1wqfihf/GXBh4D0oufXwTEVUiFbuhaK33u3LmyRuctPPDAA3zwwQc0aNCAhIQE1q5d65Vj+IWoTE71oSulfJVS3wJZwEbgIJCttb6WZseBOyumRPf0wAMPcOedd7J27VqzS3FbgYGBjBgxgrfffpulS5fywgsvcOrUKbPLEsJj+Tmzkda6CGiplAoDVgBNnT2BUioRSARo2LBhWWp0W8OGDWPChAl06dIF/6IiyMyE77+Hb7+FnBzw84N77oGWLeH++8HDXr+zmjZtyuLFi3n//ffp378/Q4cOJT4+Hh8f+UxeCFdSpf0zWCmVBOQBY4G6WuurSqmHgD9prZ+83b6tW7fW27dvL3Ox7mji4MFY8/JosXMnFBY6vnx94VpYFRSAvz/Y7dCqFQwbBo89BkqZW7hJjhw5QnJyMkopJk2aRHR0tNklCeH2lFI7tNatS9rOmVEukcUtc5RSwUAnYA+wCYgv3uyPwKqyl1sF2e2QlsbETZuovXIldqUgNBTCw6FmTcf3oaFQuzbUqOF47rvvYOhQeOYZOH3a7FdgiujoaObNm8eTTz7J4MGDmT9/vnwOIYSLOPM3bz1gk1JqJ/AvYKPWeg2OFvpopdQBoDbwXsWV6Wby8x0t7QkTCAoJoSg0lOySFllW6j/B/tVX0Lkz7NhROfW6GR8fHywWC0uWLOGbb77hmWeeYe/evWaXJUSVV+oul/LwiC6XwkJITITPP4ewMFCKK1eu8OOxYzRq1AgfZ7tSrv0CWLbM0RXjpbTWfPLJJ/ztb3+jW7duJCYmEhgYaHZZQrgVl3W5iF/4+99hy5brYQ4QFBREteBgzp8/7/xxQkJAa3juOfDiRZmVUjz99NMYhsGJEyfo06cP33zzjdllCVElSaCXxvffwzvvOLpOftESj4iM5OyZMxSVZo6X6tUdYf7aay4utOoJDw9n6tSpjBw5kvHjxzN16lRyS+rGEkL8jAR6aaSmOj4M9fv1aM+gwECqhYSUrpUOjj71tWthzx4XFVm1xcTEYBgGhYWFWCwWtm3bZnZJQlQZEujOOnoUMjIcrfNbiIyM5NzZs5wvLOSl48d5eO9euh44wKc5Obc+ro+Po+tl8eIKKLpqqlGjBpMmTeK1117jjTfeICkpiWwv7pYSwlkS6M76+GNH6/w2N8MEBgQQUr06fz5yBH+l2NC4Man16zPl9GkO5eff+tihobBiBcjwvZ9p27YthmEQFhaG1Wplw4YNMn2AELchge6sr75y3CBUgurh4Wy+dInE8HCq+fjQslo1fh8aytrbtdL9/Byt9EOHXFiwZwgODmb06NFMmzaNefPmMWbMGLKysswuSwi3JIHurN27ISioxM1OA/6+voRcunT9ud8EBt6+hQ6OQJex2LfUokULlixZQpMmTejbty8rVqyQ1roQvyCB7gyt4cKFm34Y+kuX7XZqBgZy/tw5LhcvyVbdx4fckka/XL3q1cMXnREQEHB9XdcVK1YwfPhwjh8/bnZZQrgNCXRnOdkarObjQ57W1L/zTk4cP86Ro0c5k5tLtZImotLa0UcvStSoUSMWLFjAww8/zB//+EeWLFkiSwIKgQS6c67N0+LECkUNAwIoAs4HBNCoUSPCa9Vi14ULhF64wJkzZ249b4mfn2MIo3CKr68v/fv3Z+HChWzdupWBAwdy4MABs8sSwlQS6M5q3hyuXClxs2AfHx4LDWX2Tz9xRWsO+/nxna8vfaOiKCgs5ODBg5w4eZK8Xx7LxweaOj0rsSgWFRXF7Nmz6dGjx/UFvAsKCswuSwhTSKA766GHHFPhOmFc3brk2+102reP8SdO8GrduvxXjRrUr1ePexs1IjAwkOPHj3P4yBFyLlzAfvWqo8vl3nsr+EV4JqUUPXr0YNmyZfzwww/079+f3bt3m12WEJVOJudy1v790KXLTW/7LwsNXLp4kXPnz+N/6RJn2renfloaERER5a/Vi2mt2bhxI9OnT+fJJ59k+PDhBAcHm12WEOUik3O52m9+A7/9rWO0iwsoIDQ0lLuiooisU4eMZs3o3bs3EyZMYOfOnTIkr4yUUnTu3BnDMMjOzsZqtZKRkWF2WUJUCmmhl8Y330Dv3o4PSH19XXPM7GyIiYG5c7l46RKrV6/GMAxq1KiB1Wqlc+fOBAQEuOZcXmjbtm1MnjyZdu3aMWrUKEJDQ80uSYhSkxZ6RWjVCgYNcqwX6opfhJcvQ7VqMHkyKEVoaOj1m2aGDh3K+vXr6dq1K++8847cHVlGHTp0wGazERAQgMViYfPmzWaXJESFkRZ6aeXnO5aQ2779Z3Oil1penmOxjIULoX37W2529OhRDMPg008/pU2bNlitVlq1aoXy0jVJyyMzM5PU1FQaN27MK6+8Qnh4uNklCeEUZ1voEuhlkZvrWJgiI8Mxp7kTc7xcp7Wjhe/vD3PmQMeOTp4ylzVr1mAYBkFBQVgsFmJjYwlyYjoC8R/5+fnMnTuX1atX8+KLL9KlSxf55SjcngR6Rbt6Fd59F/76V8cNR6Ght58aQGtHF0tBAdx3n2O/e+4p9Wntdjtff/01hmGwe/duunXrRnx8PPXr1y/Hi/E+e/fuJTk5mdq1azN+/Hjq1atndklC3JIEemU5dMjR0l650vG4oAACA/8zz3lhoeNfX1+IjnYsLt29u0s+VD1+/Dg2m401a9bQqlUrrFYrbdq0kRank65evcrixYtZunQpQ4cOJT4+Hp+SpmgQwgQS6JUtJwf+93/hu+8co2EuXfpPiLdtC/ffD82auWQM+y9dvnyZdevWYRgGAFarlaeeeopq1aq5/Fye6MiRIyQnJ6OUYtKkSURHR5tdkhA/I4HuhbTWbN++HcMwyMzMpGvXrlgsFho0aGB2aW7PbreTnp7OnDlz6NevH8888wx+TsyuKURlkED3cidPniQ9PZ2PP/6Y++67D6vVyu9+9zvpUijBqVOnmDx5MmfPniUpKYmmMr+OcAMS6AKAK1eusH79egzD4MqVK1itVrp27UpISIjZpbktrTWffPIJM2bMoFu3bgwZMoTAwECzyxJeTAJd/IzWmm+//RbDMMjIyCA2Nhar1cpdd91ldmlu69y5c7zxxhvs37+fSZMm0apVK7NLEl5KAl3cUlZWFunp6axcuZLGjRtjtVrp0KGDdMfcwqZNm3jzzTd59NFHGTFihPx1IyqdBLooUUFBARs3bsQwDHJycrBYLHTr1k3mO7mJCxcuMGPGDL7++mteffVVOnToYHZJwotIoAunaa3ZvXs3hmGwbds2OnXqhNVq5V6Zn/1XMjIySE1NpWXLlowePZqwsDCzSxJeQCbnEk5TStGiRQtSU1NZvnw5ERERPP/88wwbNoxNmzZR5MTSe96ibdu2GIZBWFgYVquVDRs2yFTHwm1IC13cVGFhIZ999hmGYZCVlUXv3r2Ji4ujpqx7et2uXbtISUmhQYMGjBs3jjp16phdkvBQ0uUiXOb777/HMAw+//xzYmJiSEhIoHHjxmaX5RYKCgpYsGABy5cv5/nnnycuLk6mXhAu57JAV0pFAYuBO3CsnDZXaz1DKfUnYAjwU/Gm47XWn9zuWBLoVdu5c+dYuXIl6enp1K9fH6vVSkxMjNxRCezfv5+UlBSqVavGxIkT5e5c4VKuDPR6QD2tdaZSKhTYAcQBFuCS1nqas0VJoHuGq1evsnnzZgzD4MSJE/Tq1YsePXp4/fziRUVFfPDBByxYsIBnn32WPn36yFBQ4RIV1uWilFoF/A/QAQl0r7dv3z4Mw+Czzz7jkUceISEhgWbNmpldlqmOHTtGamoqV65cISkpSUYLiXKrkEBXSkUDnwP3AaOBgcAFYDswRmt9/nb7S6B7rpycHFatWnV9lIzVauXxxx/HvzSLf3gQu93OqlWr+Pvf/47FYmHgwIGyNqwoM5cHulKqOrAFeF1r/ZFS6g7gDI5+9RQc3TLP3mS/RCARoGHDhg8ePXrU+Vchqhy73c7nn3+OYRgcOnSIXr160bNnTyIiIswuzRRZWVlMnTqV48ePk5SUxH333Wd2SaIKcmmgK6X8gTXAeq31Wzf5eTSwRmt923ertNC9y6FDhzAMgw0bNtC+fXusVistWrTwulEgWms2btzItGnTiI2NZfjw4QQHB5tdlqhCXHZjkXL873sP2HNjmBd/WHpND2B3WQoVnuuee+7h1Vdf5eOPP6Z58+YkJSXxzDPPsGbNGgoKCswur9IopejcuTM2m43z589jtVrJyMgwuyzhgZwZ5fIwsBXYBdiLnx4P9AFa4uhyOQIM1Vqfut2xpIXu3ex2O19++SWGYfDDDz8QFxdHfHy8192Q88UXXzBlyhTatWvHqFGjZO4cUSK5sUi4taNHj2Kz2Vi3bh1t2rTBarXSqlUrr+mOyc3NZebMmWzZsoWxY8fy6KOPml2ScGMS6KJKyM3NZe3atRiGQWBgIBaLhdjYWIKCgswurVJkZmaSmppK48aNeeWVV7x+LL+4OQl0UaXY7XYyMjIwDINdu3bRrVs34uPjqV+/vtmlVbj8/Hzmzp3L6tWrefHFF+nSpYvX/KUinCOBLqqs48ePs3z5clavXk2rVq2wWq20adPG40Nuz549pKSkEBERwauvvkq9evVK3kl4BQl0UeXl5eWxbt060tLSALBYLHTp0oVq1aqZXFnFuXr1KosXL2bp0qUMHTqU+Ph4mT5ASKALz6G1Zvv27RiGQWZmJl27dqV3795ERUWZXVqFOXLkCMnJySilSEpKkrVfvZwEuvBIp06dYvny5dfHtlutVtq1a+eRrVi73U56ejpz5syhf//+DBgwQGa29FIS6MKj5efn8+mnn2IYBleuXMFisfCHP/zBIxdwPnXqFJMnT+bs2bO89tprNGnSxOySRCWTQBdeQWvNt99+i2EYZGRkEBsbi8ViITo62uzSXEprzdq1a5kxYwbdu3dnyJAhBAYGml2WqCQS6MLrZGVlkZ6ezsqVK2ncuDFWq5UOHTp4VHfM2bNnefPNN9m/fz+TJk2iVatWZpckKoEEuvBaBQUFbNy4EcMwyMnJwWKx0K1bN4+6xX7Tpk28+eabPProo4wcOdKjR/4IF07OJURVExAQwNNPP82iRYtITU1lz549dOvWjcmTJ3Pw4EGzy3OJmJgYDMMgPz8fi8XCl19+aXZJwg1IC114hbNnz/Lhhx/y0UcfER0djdV253YdAAAUvklEQVRqpWPHjvj6+ppdWrllZGSQmppKy5YtGT16NGFhYWaXJFxMulyEuInCwkI+++wzDMMgKyuL3r17ExcXR82aNc0urVzy8vKYNWsW69ev56WXXuKJJ57w+DtrvYkEuhAl2LNnD4ZhsGXLFmJiYkhISKBx48Zml1Uuu3btIiUlhaioKMaNG0dkZKTZJQkXkEAXwknnz59nxYoVpKenU79+faxWKzExMVX2Jp6CggIWLFjA8uXLGTFiBN27d5fWehUngS5EKRUVFbF582YMw+D48eP06tWLHj16VNkpbffv309KSgrVqlVj4sSJNGjQwOySRBlJoAtRDvv27cNms/HPf/6TRx55hISEBJo1a2Z2WaVWVFTEsmXLWLhwIc8++yx9+vTxqHH53kICXQgXyMnJYdWqVSxfvpyIiAisViuPP/44/v7+ZpdWKseOHSM1NZUrV66QlJTEvffea3ZJohQk0IVwIbvdzueff45hGBw6dIhevXrRs2dPIiIizC7NaXa7nZUrV/LOO+9gsVgYNGhQlfvF5K0k0IWoIIcOHcIwDDZs2ED79u2xWq20aNGiynzwmJWVxZQpUzhx4gRJSUncd999ZpckSiCBLkQFu3jxIqtXr8ZmsxEaGorVaqVz584EBASYXVqJtNZs3LiRadOmERsby/DhwwkODja7LHELEuhCVBK73c6XX36JYRj88MMPxMXFER8fT506dcwurUTZ2dlMnz6dnTt3MnHiRNq0aWN2SeImJNCFMMHRo0ex2WysW7eONm3aYLVaadWqldt3x3zxxRdMmTKFhx56iBdffNGjJjLzBBLoQpjo8uXLrFmzBsMwCAgIwGq1EhsbS1BQkNml3VJubi4zZ87k888/Z+zYsfz+9783uyRRTAJdCDdgt9vJyMjAMAx27dpFt27diI+Pp379+maXdkuZmZmkpqbSpEkTXn755Sp7Y5UnkelzhXADPj4+tGvXjr/+9a8sXLiQoqIiBgwYwJgxY8jIyKAyG1TOeuCBB/jggw+oX78+CQkJfPLJJ25Zp/g1aaELUcny8vJYt24daWlpAFgsFrp06eKWi1Ts2bOHlJQUIiIiGD9+PHXr1jW7JK8kXS5CuDmtNTt27MAwDHbs2EHXrl3p3bs3UVFRZpf2M1evXmXx4sUsXbqUoUOHEh8fL9MHVDIJdCGqkFOnTpGens6qVato3rw5VquVdu3auVVwHj58mJSUFHx8fJg0aRJ33XWX2SV5DQl0Iaqg/Px81q9fT1paGleuXMFisfCHP/yBkJAQs0sDHB/ypqenM2fOHPr378+AAQOq7DTDVYkEuhBVmNaa7777jrS0NDIyMoiNjcVisRAdHW12aQCcPHmSyZMnc+7cOV577TWaNGlidkkezWWBrpSKAhYDdwAamKu1nqGUCgcMIBo4Ali01udvdywJdCFKLysri/T0dFauXEnjxo2xWq106NDB9O4YrTVr165lxowZdO/encTExCox7UFV5MpArwfU01pnKqVCgR1AHDAQOKe1nqqUGgfU0lqPvd2xJNCFKLuCggI2btyIYRjk5ORgsVjo1q2b6Xd1nj17ljfffJP9+/eTlJREy5YtTa3HE1VYl4tSahXwP8Vfj2qtTxWH/mat9W3/7pJAF6L8tNbs3r0bwzDYtm0bnTp1wmq1mj7H+WeffcZf/vIXYmJiGDFihFsOw6yqKuTGIqVUNNAK+Bq4Q2t9qvhHp3F0yQghKphSihYtWpCamkp6ejqRkZE8//zzDBs2jE2bNlFUVGRKXY899hiGYVz/MPfLL780pQ5v5nQLXSlVHdgCvK61/kgpla21Drvh5+e11rVusl8ikAjQsGHDB48ePeqayoUQ1xUWFvLZZ59hGAZZWVn07t2buLg4atasaUo9GRkZpKam0rJlS8aMGWNaHZ7CpV0uSil/YA2wXmv9VvFzPyBdLkK4nT179mAYBlu2bCEmJoaEhAQaN25c6XVcvnyZ2bNns379el566SWeeOIJt5910l258kNRBSzC8QHoqBue/wtw9oYPRcO11q/c7lgS6EJUnvPnz7NixQrS09OpX78+VquVmJiYSh83vnPnTlJTU4mKimLcuHFERkZW6vk9gSsD/WFgK7ALsBc/PR5HP7oNaAgcxTFs8dztjiWBLkTlKyoqYvPmzRiGwfHjx+nVqxc9evSo1FkUCwoKmD9/Punp6YwYMYLu3btLa70U5MYiIcSv7Nu3D5vNxj//+U8eeeQREhISaNasWaWdf//+/aSkpBASEsKECRNo0KBBpZ27KpNAF0Lc0oULF1i5ciXLly+ndu3aWK1WnnjiCfz9/Sv83EVFRSxbtoyFCxfy7LPP0qdPH9NvknJ3EuhCiBLZ7Xa2bt2KYRgcPHiQnj170qtXLyIiIir83MeOHSMlJYX8/HySkpJMH0fvziTQhRClcujQIWw2G+vXr+ehhx4iISGBFi1aVGhft91uZ+XKlbzzzjtYLBYGDRpUKX8lVDUS6EKIMrl48SKrV6/GZrNRvXp1rFYrTz75ZIXO05KVlcWUKVM4ceIEr732Gs2bN6+wc1VFEuhCiHKx2+18+eWXGIbBDz/8QFxcHPHx8dSpU6dCzqe1ZuPGjUybNo2nnnqKYcOGERwcXCHnqmpkTVEhRLn4+Pjw8MMPM3PmTN59911yc3NJSEhg7NixZGZmunydUaUUnTt3xmazce7cORISEvjXv/7l0nN4OmmhCyGcdvnyZdasWYNhGAQEBGC1WomNjSUoKMjl5/riiy+YMmUKDz30EC+++KLps0qaSVroQgiXq1atGhaLhfT0dEaNGsXnn39O165defvttzl58qRLz/Xwww9js9nw8/PDarWyZcsWlx7fE0kLXQhRLidOnMBms7FmzRpatmyJ1WqlTZs2Lh0dk5mZSWpqKk2aNOHll1+u1Ltc3YF8KCqEqFR5eXmsW7eOtLQ0ACwWC126dHHZvOj5+fnMmTOHNWvWMGrUKJ566imvmT5AAl0IYQqtNTt27MAwDHbs2EHXrl3p3bs3UVFRLjn+999/T0pKCpGRkYwfP566deu65LjuTAJdCGG6U6dOkZ6ezqpVq2jevDlWq5V27dqV+1b/q1evsnjxYpYuXcrQoUOJj4/36OkDJNCFEG4jPz+f9evXk5aWdn1Foz/84Q+EhISU67iHDx8mJSUFHx8fJk2axF133eWiit2LBLoQwu1orfnuu+8wDIOvv/6a2NhYLBYL0dHRZT6m3W5n+fLlzJ07lwEDBtC/f/9Kn/O9okmgCyHcWlZWFh9++CErVqygcePGWK1WOnToUOauk5MnTzJ58mTOnz9PUlISTZrcdgG1KkUCXQhRJRQUFPCPf/yDtLQ0cnJyrnfH1KhRo9TH0lqzdu1aZsyYQVxcHEOGDKnQOWgqiwS6EKLK2b17N4Zh8MUXX9CpUyesVmuZptU9e/Ysb775Jvv37ycpKYmWLVtWQLWVRwJdCFFlnT17lo8++ogPP/yQu+66i4SEBDp27Iivr2+pjvPZZ5/xl7/8hZiYGEaMGOGyMfGVTQJdCFHlFRYWsmnTJtLS0sjKyqJ3797ExcVRs2ZNp49x4cIF/va3v5GRkcH48eNp3759BVZcMSTQhRAeZe/evRiGwebNm4mJiSEhIYHGjRs7vf/XX3/N66+/TsuWLRkzZkypfimYTQJdCOGRzp8/f3091Pr162O1WomJiXFqqOLly5eZPXs2GzZs4KWXXuLxxx+vEtMHSKALITxaUVERW7ZsIS0tjePHj9OrVy969Ojh1MRdO3fuJCUlhYYNGzJu3DgiIyMroeKyk0AXQniN/fv3YxgG//znP3nkkUdISEigWbNmt92noKCA+fPn8+GHHzJixAi6devmtq11CXQhhNe5cOECK1euJD09nfDwcKxWK0888cRtF57ev38/KSkphISEMHHiRO68885KrNg5EuhCCK9lt9vZunUrhmFw8OBBevbsSa9evYiIiLjp9kVFRSxbtoyFCxcyePBgEhIS3GqyLwl0IYQADh06hM1mY8OGDbRr146EhARatGhx0+6VY8eOkZKSQn5+PklJSWW6qem6wkI4fBiys0FrCAuDu++GMty5KoEuhBA3uHjxIqtXr8Zms1G9enWsVitPPvnkr6YGsNvtrFy5knfeeQeLxcKgQYNu22XzM7m5sHo1LFkCP/wAvr5w7ReH3Q5FRdC4MfTtC926gZPTG0igCyHETdjtdr766isMw2Dv3r3ExcURHx9PnTp1frZdVlYWU6ZM4eTJkyQlJdG8efNbH7SoCBYuhOnTHS1zPz8IDoZfdtvY7ZCX59jG3x9GjoTERMf2tyGBLoQQJfjxxx+x2Wx88skntGnTBqvVSqtWra53x2it2bhxI9OmTeOpp55i+PDhBAUF/fwgJ0/C8OGwezeEhDjfpVJYCJcuQdOmMGsWNGx4y00l0IUQwkmXL19mzZo12Gw2/P39sVqtxMbGXg/v7Oxspk2bxq5du5g4cSJt2rRx7HjsGMTHw9mzULPmf7pXnKU15OQ4+teXL3f0sd+EBLoQQpSS1pqMjAwMw2Dnzp1069aN+Ph46tevD8DWrVuZMmUK7du358XBgwm1WOD0aUeYl8eFC1CrFqxf7wj3X3A20Escl6OUmq+UylJK7b7huT8ppU4opb4t/upS6hcghBBuRinF7373O9566y0WLVqE3W5nwIABjBkzhoyMDB5++GGWL1+Or68vn3ToQN6hQ+UPc3B8OHrmDPzpT+Wrv6QWulKqI3AJWKy1vq/4uT8Bl7TW00pzMmmhCyGqmry8PNatW4dhGGitsVgsPF2vHiohgRMXLxIYHEzdO+4o/7J3drujpb54MfxiRkhnW+glVqC1/lwpFV3mIoUQogoLDg6mZ8+e9OjRg8zMTAzDIGDJEh4pKODOqChycnI4dOgQd9xxBzVq1uRaL3qB3c7U06fJuHyZC0VFNPD3Z0SdOrSvXv3mJ/LxcfTBz579q0B3VnluhRqhlNpZ3CVTqxzHEUIIt6eU4sEHH+TNl16iS1AQhUFB/Hj0KPn5+dSOiODM2bMcO3aMwsJCAIqAuv7+zG3YkM2NGzM8MpJxJ05wsqDg1icJDYWvvoITJ8pUY1kDfRZwL9ASOAVMv9WGSqlEpdR2pdT2n376qYynE0IIN5GZiZ+/P3Xq1qXRb35DjdBQcnJy0HY72m7n0KFDnDt/niAfHxIjI6kfEICPUjwSGkp9f3/2Xrly62Nfa6WXsWu6TIGutf631rpIa20H3gXa3mbbuVrr1lrr1u4+RaUQQpTou++guJXtoxRhYWHcfffd1K9fH18/P+xac/r0aQ4dOkT+Da3xc1ev8mNBAfcEBt7++FevwjfflKm0MvXiK6Xqaa1PFT/sAey+3fZCCOEx9u791c1DCqhWrRrVqlWj8OpVzp87x09nzrB3715q165NnXr1mHjyJF1r1iS6pEAPCIA9e8pUWomBrpT6AHgUiFBKHQdeAx5VSrUENHAEGFqmswshRFVz5cptbyDy9/OjTp06RERGcv7cOU6dPs3MoiL8gFfq1i35+D4+jnOUgTOjXPrc5On3ynQ2IYSo6oKCHEMMS+CjFOHh4fxPfj7ZhYW8HRWFnzN3ktrtjnOUgftM+CuEEFXBffc55mFxwpTTpzlcUMBfo6IIdHZ+9fx8xznKoJwj4YUQwsv89rdOTcB1qrCQj7KzCVCKJ/fvv/78+Lp1eep2d5f6+0OrVmUqTQJdCCFK48EHHZNqFRU55ju/hXr+/mz/r/8q3bHtdsfXtcm/Skm6XIQQojTCwyE21nGbvqtduAAxMXDHHWXaXQJdCCFKa+hQx2iUoiLXHfPasYYPL/MhJNCFEKK0mjeHgQPh4kXXHfPiRUhIgAceKPMhJNCFEKIsRo92LEiRnV3+Y+XkwJ13wquvluswEuhCCFEWwcGwdCk0aADnzzs+KC0trR371qkDH3zgWMKuHCTQhRCirOrUgY8+ckx3m51dujs88/Md+7RpAytWQPGqSOVRqUvQKaV+Ao6WYdcI4IyLy/EEcl1uTq7Lzcl1ubmqcF3u0lqXOLthpQZ6WSmltjuzWoe3ketyc3Jdbk6uy8150nWRLhchhPAQEuhCCOEhqkqgzzW7ADcl1+Xm5LrcnFyXm/OY61Il+tCFEEKUrKq00IUQQpTALQNdKXVEKbVLKfWtUmp78XPhSqmNSqn9xf/WMrvOynaL6/InpdSJ4ue+VUp1MbvOyqaUClNKpSul9iql9iilHvL298strolXv1eUUk1ueO3fKqUuKKVGedJ7xS27XJRSR4DWWuszNzz3JnBOaz1VKTUOqKW1HmtWjWa4xXX5E3BJaz3NrLrMppRaBGzVWs9TSgUA1YDxePH75RbXZBRe/l65RinlC5wAfgc8j4e8V9yyhX4L3YFFxd8vAuJMrEW4CaVUTaAjxcsiaq0LtNbZePH75TbXRPzH48BBrfVRPOi94q6BroENSqkdSqnE4ufu0FqfKv7+NFC2CYOrtptdF4ARSqmdSqn5VfnPxTK6G/gJWKCU+kYpNU8pFYJ3v19udU3Au98rN0oAPij+3mPeK+4a6A9rrR8AngKeV0p1vPGH2tFP5H59RRXvZtdlFnAv0BI4BUw3sT4z+AEPALO01q2AXGDcjRt44fvlVtfE298rABR3QXUDlv/yZ1X9veKWga61PlH8bxawAmgL/FspVQ+g+N8s8yo0x82ui9b631rrIq21HXgXx7XyJseB41rrr4sfp+MIM29+v9z0msh75bqngEyt9b+LH3vMe8XtAl0pFaKUCr32PdAZ2A18DPyxeLM/AqvMqdAct7ou196IxXrguFZeQ2t9GjimlGpS/NTjwPd48fvlVtfE298rN+jDf7pbwIPeK243ykUpdQ+O1ic4/nRcprV+XSlVG7ABDXHM2GjRWp8zqcxKd5vr8j6OP6E1cAQYekN/oFdQSrUE5gEBwCFgEI7Gije/X252Td5G3ishwI/APVrrnOLnPCZb3C7QhRBClI3bdbkIIYQoGwl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHkICXQghPMT/B9jFcDvYi0EzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -760,16 +758,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -594841.9262828702\n", - "time: 56.990293979644775\n", + "energy: -595242.8232593088\n", + "time: 66.49582099914551\n", "feasible: True\n", - "solution: [2, 0, 1]\n", - "solution objective: 201.0\n" + "solution: [1, 0, 2]\n", + "solution objective: 67.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xlc1OX+///HxaYiCqIognuZR3/p6agtx5ZTWVq24ZKZwUERkUGPmkcB9+2omGXZUUDchdwi4Nipj+nX6pOdylwy9eNabokLkCJuyDLX748ZyzoqAw68Z4bX/Xbzxsww854ncxtfXFxzvV+X0lojhBDC+bkZHUAIIYR9SEEXQggXIQVdCCFchBR0IYRwEVLQhRDCRUhBF0IIFyEFXQghXIQUdCGEcBFS0IUQwkV4VOWTNWjQQLdo0aIqn7JyXbsGx45BcTG4uYFStj1OaygtBS8vaNECatSozJRCCCe3Y8eOPK11QFn3q9KC3qJFC7Zv316VT1l5Dh6Evn0hMBB8fSt2jIICcHeHVavgnnvsm08I4TKUUsdtuZ9MuVTEzz9D//5QWFjxYg5Qty5cvQqvvQbnztkvnxCiWpKCXl5aw/jxkJ8Pderc+fHq1LEU84kTLccWQogKkoJeXlu2wP/7f3c2Mv89X1/45BP46iv7HVMIUe1IQS+v5GTLh59ut3/p1p07R9jRo/z5wAGmnDp1+2Ne/0B14UI7BhVCVDdS0Mvjp5/g229tmmpp4OHBoAYNeNHWkXydOvD115CdfYchhRDVlRT08ti50zKaLmN0DvBk3bo8XqcOvu7uth37+ih95847DCmEqK6koJfHzp1QUlJ5xy8uhu++q7zjCyFcmhT08jh0yHIyUGXx8rI8hxBCVECVnljk9IqKbD4btKSkhJPZ2eRduUKpj49tx3dzszyHEEJUgIzQy6NWLTCby7xbUVERx44dw9vbm1q1apGfn0/BxYtlH99sBm9vOwQVQlRHUtDL449/LHMEfbWwkGPHj+Pn749f/frU8vbGx9eXn86c4dSZM+jbnTxUVAQdOtg5tBCiupApl/Lo0OG2c+iXLl0i+9Qpgho3ZnVhISkHD/7yvU1a06eggH6FhQQ3aYKnx01eei8vaN++MpILIaoBKejlcf/9v3ZK/N1yxPwLF8g5e5amTZviXasWUXXqEBXw2+ZoGvg5L4+jR48SFBSET+3av36ztPTX5xBCiAqwacpFKfW6Uur/lFJ7lVKrlVI1lVItlVJblVI/KKXWKqUqcfmHg/D3h2eftXRJtNJAXl4eubm5NG/RAu9atW75cAU0aNCA4OBgTp06RW5uLr9MwBQUwPPPg59fZf4EQggXVmZBV0oFA8OBzlrrewF3oB8wG3hba303cB4YVJlBHcaQIZbVKCUlaODMmTMUXLxIixYtqGHjksba3t60bNmSy1eu8NOJE5Rcu2Y55uDBlZtdCOHSbP1Q1AOopZTyALyB08CTQLr1+yuAEPvHc0Dt2kFkJOaCAk7+9BNFRUU0b9785nPit+Hp4UHz5s2pUaMGOUeOcOqFF+APf6ik0EKI6qDMgq61zgbeBE5gKeQXgB1Avtb6+mmTJ4HgygrpaC4MHMjeoiK8i4po2rQp7ja0ArgZpTWNatSgRocODPr+e1atWnX7VTBCCHEbtky51ANeAloCQUBt4Blbn0ApFaWU2q6U2p6bm1vhoI7i9OnTDIqJ4auYGPw7d8YtP9+mten/xWyG8+fhrruo/9FHLElN5X/+53+Ii4vj0qVL9g8uhHB5tgwtnwKOaq1ztdbFQAbwMOBnnYIBaALctE2g1jpFa91Za905IKDMLfEc2qFDhxg0aBC9evUietw4VHo6dO8OFy7AlSu2HURry30vXIAePeD998Hfn6CgIJYsWYK/vz9hYWEckhYAQohysqWgnwAeUkp5K6UU0BXYB3wG9LHeJxz4V+VEdAzbtm1j6NChvP766/Tv399yo68vLFgAiYmW1SkXLlhG3deu/Xb3Ia0tt50/b1nN4udn6as+f75lGzorLy8v4uPjGTJkCDExMaxfv76Kf0ohhDNTtszZKqWmAq8AJcB3QCSWOfM1gL/1tlCt9bXbHadz587aGTeJ/uSTT3jzzTdJSEigU6dON7+T2WzZcWjtWtixA86ehesflJaWQqNG0KkT9OsHDz1UZgveI0eOEBcXR/v27YmNjaVmzZp2/qmEEM5CKbVDa925zPtV5YdwzljQ09LSWLVqFe+++y5333237Q+8dMkyYlfKMgq3tUHXDa5cucLMmTP58ccfmT17Ns2aNSv3MYQQzs/Wgi69XG7BbDYzd+5c1q9fz7Jly8pXzMFSwIODISioQsUcwNvbm+nTp9OnTx8iIiLYvHlzhY4jhKge5NT/mygqKmLy5Mnk5eWxePFi6t4wz13VlFL07t2btm3bEh8fz65duxg+fDienp6GZRJCOCYZof/OxYsX+dvf/kZpaSkLFiwwtJjfqF27dqSlpXHy5EmioqI4e/as0ZGEEA5GCvoNcnJyGDx4MHfddRcJCQl4VebuRBVQt25d3nrrLR5//HHCwsL4+uuvjY4khHAgUtCtjhw5QkREBM8++yxjxozBrYJnf1Y2Nzc3wsPDSUhIYNq0aSxcuBBzRU5sEkK4HMesWlVs165dREdHExMTQ3h4OMrGbeaM1LFjR9LS0ti5cyfDhg3j3LlzRkcSQhis2hf0Tz/9lNGjRzNt2jR69OhhdJxyqV+/PomJidx7772Ehoby/fffGx1JCGGgar3KZd26dSxbtoz58+fzByftdOju7k5MTAwdOnRgzJgx/PWvf+W1115zir8yhBD2VS1H6FprFixYwJo1a1i8eLHTFvMbPfLIIyxfvpyNGzcSGxvLRVs2pRZCuJRqV9BLSkqYMmUK27ZtY+nSpQQHu07X36CgIBYvXkxAQIA0+BKiGqpWBf3KlSuMHDmSgoICkpOT8XPB7d68vLyIjY0lJiaGmJgYsrKypMe6ENVEtSnoP//8M1FRUTRu3Jg333zT5ZtddevWjUWLFrFq1SqmTp1KYWGh0ZGEEJWsWhT0EydOMHDgQB577DHGjRuHu7u70ZGqRMuWLVmxYgVms5nw8HCOHz9udCQhRCVy+YK+d+9eIiMjGThwIFFRUdVu9UetWrWYOnUqr7zyCoMGDWLTpk1GRxJCVBLHXbZoNsPx47B/P+TmWnqK+/jA3XdbNlP29i7zEF9++SVTpkxh8uTJPProo1UQ2jEppejVqxft2rUjLi6OXbt2MXLkSGnwJYSLcbx+6D/9BKtXQ1oaXJ/3LS62fHV3t2waUVwMjzwCkZHw8MM33SwiKyuLxMRE5s6dy7333mvnn8R5FRQUMGXKFM6dO0dCQgKBgYFGRxJClMH5Nri4dg3mzYNFiyyj89q14VbNscxmuL7Ouk0beOcdy8gdyxrzxYsX8+GHHzJ//nzZFOImtNakpqaSlpbGlClT6NKli9GRhBC34VwF/cQJCA+3fK1T59et28qitWWPTjc3mDqV0pdfJiEhgf379zNv3jzq169v3x/AxXz33XeMHz+eF154gSFDhjhsQzIhqju77ViklGqjlNp1w78CpdRIpZS/UmqTUuqw9Wu9CiU9cQJ694aTJ6FePduLuSWcZaPmGjUwjxvHuh49OH36NCkpKVLMbfCnP/2JtLQ0du/ezdChQ6XBlxBOrsyCrrU+qLW+T2t9H9AJuAJkAvHAZq11a2Cz9Xr5XL0KYWGQn28pzBVU4u7OT/n5dNu2jXd69cLbhg9MhYW/vz8LFiygQ4cOhIaG8t133xkdSQhRQeX9G7sr8KPW+jjwErDCevsKIKTcz/7WW5aR+R0U86LiYo4dO0YtHx/8AwPxiI21TMMIm7m5uWEymZgwYQJxcXGsXLlSzi4VwgmVt6D3A1ZbLzfSWp+2Xj4DNCrXkY4cgRUr4A62eCssLOTYsWP4+/vTsGFDlLc3nD8P8+dX+JjVWZcuXVi5ciWbN29m9OjR0uBLCCdjc0FXSnkBLwLv//572jKcu+mQTikVpZTarpTanpub++s3UlMtq1XKOGuzoLSU0SdP8siBAzz/ww9suHABgEuXL3PixAkCAwPxr3fD9L2PD7z3nmU6R5RbYGAgixcvJjAwkNDQUA4cOGB0JCGEjcozQn8W2Km1vr478VmlVGMA69ecmz1Ia52ite6ste4cEBBgubGoCNautRTfMiScOYOnUmy85x7+ERTErDNn+D4vj1PZ2TRp0oS6der89gGenpbjyxmRFebp6cmYMWMYNmwYw4YNIyMjQ6ZghHAC5Snor/LrdAvAeiDcejkc+JfNR/rhB8vovIwzFa+azXx68SKmgAC83dz4o7c397u7k372LM2bN7/1h59mM8gGynfs6aefZsmSJaxdu5bJkydzVf7qEcKh2VTQlVK1gaeBjBtuTgCeVkodBp6yXrfNvn2WU/nLcKKoCHegmZcXGjh75gyBxcUU+PhQo0aNWz+wZk0o64xUYZPmzZuzYsUKlFKEh4dz7NgxoyMJIW7BpoKutb6sta6vtb5ww20/a627aq1ba62f0lrbvoj51KlfT+e/jStmM7Xd3NBac/LkSa5du0bLRo0oc5zo6QmnT5d1L2GjmjVrMmXKFPr3709kZCQbN240OpIQ4iaMac5VUmI5KagM3m5uXDabQSkuX75MHR8fLhYXU7usMxqVsukvAGE7pRQhISG0bdv2Nw2+vG7VnkEIUeWMOdf79x9k3kIzLy9KgZ+KimjdujVeNWqwLSeH+oWFFN9uhF9aaukFI+yuTZs2pKamkpOTQ2RkJKdOnTI6khDCypiC3ro13G4O3KqWmxtP1qlDcm4uRcApb2/2eHrSzceHI0ePcubMGYpLSv77gdeuWVrsikpRp04d5syZQ/fu3RkwYABffvml0ZGEEBhV0Nu2tUy72LAULj4wkGtmM08fOsS47GzGNW7MA40bc1erViilOHLkCGdzcii5cYqlqAgefLASfwChlOK1117jjTfeYObMmSxYsIBSmeYSwlDGdFvUGnr0gKNHbVqLfjvFJSXk5eVRUFBAvXr1qO/vj/vFi7B+PbRrZ6fk4nbOnTvHhAkTKC0tZebMmdIYTQg7s1u3xUqhFERH2+WDS08PDxoHBtKyZUtKSkrIPniQE7Vrc6VFizvPKWzi7+/P/Pnz6dixI6GhoezcudPoSEJUS8Y1wO7eHRo2hEuX7HI4L09Pgho1onFAAJv++EdCQkJITU2V3e6riJubG0OGDGHSpEnEx8f/sjm1EKLqGFfQa9a07FBUUmK/JYYXLuAZEsKglStJTk5m7969hISEsHbtWoqKiuzzHOK2/vznP5Oamsrnn3/O3//+dwqk86UQVcbYLWo6d4ahQy3tbu+0qF+4AE2bwrRpALRq1YrZs2czb948vvnmG3r27ElmZiYlN1sVI+yqUaNGpKSk0LRpU0JDQ9m3b5/RkYSoFozfgk5rmDEDli0Db2+bljP+htlsKeZNmlgaft1i0+M9e/aQlJREdnY2UVFRPPvss7LlWhXYvHkzs2bNIjo6mt69e6NsOKFMCPFbzrWnqNbwwQcweTIUFlp6pJfRVhet4coVyxLF7t0tvxTqlb0L3s6dO0lKSuL8+fMMGTKErl27SmGvZCdOnCAuLo677rqLcePGyY5SQpSTcxX0606fhlmzYMMGyxSMu7tlrv16V0az2VLwCwste482bw7x8fDUU+XKobVm69atJCUlUVRUhMlk4tFHH5XRYyUqLCzkjTfeYM+ePcyePZtWrVoZHUkIp+GcBf26n3+GDz+E//wHdu2CvDzLiLxWLWjTBh54wLKO/Y9/tKknzK1ordmyZQvJycl4eHhgMpl46KGHpLBXovXr1/Puu+8yevRonnnmGaPjCOEUnLug/971jJVUaM1mM59++inJycn4+fkRExNDx44dK+W5BBw6dIi4uDgefPBBRo0aJQ2+hCiDY59YVF5KVVoxB8sa6qeeeop169bRq1cvpk2bRkxMDHv27Km056zO7rnnHlJTUzl37pw0+BLCjpyjoFcRNzc3evToQXp6Ot26dWPs2LGMHDlS9tWsBD4+PsyePZtnnnmGAQMGsGXLFqMjCeH0nGPKxSBFRUVkZWWxbNky2rdvz5AhQ7jrrruMjuVydu/eTXx8PD169MBkMuFe1gonIaoZ15pyMYiXlxd9+/YlMzOTDh06YDKZmDBhAidOnDA6mkvp0KED7733Hvv378dkMpGXl2d0JCGckhR0G9SsWZPQ0FCysrJo1aoVERERTJs2TeZ+7ahevXr885//pHPnzoSFhbFjxw6jIwnhdGzdJNpPKZWulDqglNqvlPqzUspfKbVJKXXY+rXss3qcnLe3NxEREWRmZtKwYUNCQ0NJSEggJyfH6Gguwc3NjaioKCZPnszYsWNZtmyZNPgSohxsHaHPAzZorf8A/BHYD8QDm7XWrYHN1uvVQp06dYiOjiYjIwNvb2/69evH3LlzOXfO9n2yxa099NBDpKWlsWXLFkaNGiUNvoSwUZkFXSnlCzwGLAHQWhdprfOBl4AV1rutAEIqK6Sj8vPzY/jw4bz//vuYzWb69OnD/PnzpQDZQcOGDUlJSaFZs2bS4EsIG9kyQm8J5ALLlFLfKaUWK6VqA4201qet9zkDNKqskI6ufv36jB49mtWrV1NQUEDPnj1JSUnhkp16vVdXHh4ejBo1ipEjRzJixAjef/99qnJVlhDOxpaC7gF0BJK01n8CLvO76RVt+V920/9pSqkopdR2pdT23NzcO83r0Bo1asS4ceNYuXIlp06domfPnixfvpyrV68aHc2pPfnkkyxZsoSMjAzGjx/PlStXjI4khEOypaCfBE5qrbdar6djKfBnlVKNAaxfb/rJoNY6RWvdWWvdOSAgwB6ZHV5wcDBTpkxh0aJFHDp0iJCQEFatWiWbbNyBZs2asXz5cmrVqsVf//pXjhw5YnQkIRxOmQVda30G+Ekp1cZ6U1dgH7AeCLfeFg78q1ISOrEWLVowc+ZM5s+fz86dOwkJCSE9PZ3i4mKjozmlGjVqMHHiRP76178SFRXFxx9/bHQkIRyKTWeKKqXuAxYDXsARYCCWXwbrgGbAcaCv1vq2yzyc7UxRe9u3bx/JyckcO3aMyMhInnvuOTkrsoIOHz5MXFwcnTt3ZvTo0dLgS7g01+q26GK+//57EhMTyc3NJSoqim7duskmGxVw+fJlpk2bRnZ2NrNnzyY4ONjoSEJUCinoTmDbtm0kJSVx6dIloqOjeeKJJ6QXezlprVm7di1Llixh4sSJPPbYY0ZHEsLupKA7Ca01X331FYmJiQCYTCYefvhhKezltHv3bsaOHUv37t0ZOnSoTGUJlyIF3clorfn8889JSkqidu3amEwm7r//fins5ZCfn8/EiRMpLCxk5syZVJdVVcL1SbdFJ6OU4oknnmDNmjX069ePhIQEoqOj2bVrl9HRnIafnx/z5s3jwQcfJCwsjG3bthkdSYgqJSN0B1VaWsrHH3/MokWLaN68OSaTiXbt2hkdy2l8++23TJw4kVdeeYUBAwbIh87CqcmUi4soLi5m/fr1LFmyhLZt2xIdHU3r1q2NjuUUcnJyGDt2LLVr12b69On4+voaHUmICpEpFxfh6elJ7969ycrKonPnzgwbNoyxY8dy9OhRo6M5vIYNG7Jw4UJatWpFaGgoe/fuNTqSEJVKRuhO5urVq6xbt460tDS6dOnC4MGDadKkidGxHN5nn33GzJkzGTx4MC+//LJ82CyciozQXVStWrUIDw8nKyuLJk2aEB4ezowZMzhz5ozR0RzaE088wbJly8jKymLcuHHS4Eu4JCnoTqp27doMHjyYzMxM/Pz86N+/P3PmzJH9OG+jSZMmLFu2DB8fH8LCwvjxxx+NjiSEXUlBd3J169Zl6NChpKen4+7uTt++fZk3bx75+flGR3NINWrUYPz48URERDBkyBA++ugjoyMJYTdS0F2Ev78/o0aNYs2aNRQWFtKrVy+SkpK4ePGi0dEc0nPPPUdycjJLlixhxowZ0tpYuAQp6C6mYcOGxMXFkZaWRm5uLiEhISxZskTmjG/i7rvvJi0tjUuXLjFgwABOnjxpdCQh7ogUdBcVFBTEpEmTWLZsGceOHSMkJITU1FQKCwuNjuZQvL29mTlzJiEhIQwcOJDPP//c6EhCVJgsW6wmjhw5QnJyMrt372bgwIH07NlTeoj/zt69exk7dixdu3Zl2LBheHh4GB1JCECWLYrfadWqFW+88Qbz5s3jm2++oWfPnmRmZlJSUmJ0NIdx7733kpaWxpEjRxgyZAg5OTfdVVEIhyUFvZpp06YNb7/9NgkJCWzatInevXvz8ccfYzabjY7mEHx9fXnnnXd4+OGHCQsL49tvvzU6khA2kymXam7nzp0kJiaSn5/PkCFD6Nq1qzSystq2bRsTJ06kT58+REREyOsiDCPNuYTNtNZs3bqVxMREiouLMZlMPProo3J6PJCbm8u4ceOoWbMm06dPx8/Pz+hIohqya0FXSh0DLgKlQInWurNSyh9YC7QAjmHZJPr87Y4jBd2xaa3ZsmULycnJeHh4YDKZeOihh6p9YS8tLWXBggVs3LiRWbNm0b59e6MjiWqmMgp6Z6113g23vQGc01onKKXigXpa67jbHUcKunMwm818+umnJCcn4+fnR0xMDB07djQ6luG++OILpk+fTkREBP369av2v+hE1amKgn4QeFxrfVop1Rj4XGvd5nbHkYLuXMxmMxs2bCAlJYWgoCBMJlO1H51mZ2cTFxdHcHAwkyZNonbt2kZHEtWAvZctamCjUmqHUirKelsjrfVp6+UzQKNbBIlSSm1XSm3Pzc218emEI3Bzc6NHjx6kp6fTrVs34uPjGTlyJAcOHDA6mmGCg4NZunQpvr6+hIWFcfjwYaMjCfELW0fowVrrbKVUQ2AT8Ddgvdba74b7nNda17vdcWSE7tyKiorIyspi6dKldOjQgSFDhnDXXXcZHcswH3/8MXPnzmXEiBG88MILRscRLsyuI3Stdbb1aw6QCTwAnLVOtWD9KmdhuDgvLy/69u1LVlYWHTp0wGQyMWHCBE6cOGF0NEP06NGDlJQUVqxYwbRp07h27ZrRkUQ1V2ZBV0rVVkrVuX4Z6AbsBdYD4da7hQP/qqyQwrHUrFmT0NBQsrKyaNWqFREREUybNo1Tp04ZHa3KtWrVipUrV1JYWMjAgQOr7S834RhsGaE3Ar5USn0PfAt8pLXeACQATyulDgNPWa+LasTb25uIiAgyMzNp2LAhoaGhJCQkVLtT5r29vZkxYwY9e/Zk0KBBfPrpp0ZHEtWUnFgk7CY/P5+VK1eSlZXF888/z4ABA/D39zc6VpXat28f8fHxPP744wwfPlwafAm7kOZcosr5+fkxfPhw3n//fcxmM3369GH+/PkUFBQYHa3KtGvXjrS0NE6cOEFUVFS1+2tFGEsKurC7+vXrM3r0aFavXk1BQQE9e/YkJSWFS5cuGR2tStStW5e5c+fy2GOPERoayjfffGN0JFFNyJSLqHQnT55k0aJFfPXVV7z22mu88sor1KpVy+hYVWLHjh2MHz+eXr16ERkZKQ2+RIXIlItwGE2aNGHq1KksWrSIQ4cO8dJLL7Fq1apqsY9np06dSEtLY/v27fztb3/j/PnbtjsS4o5IQRdVpkWLFsycOZMFCxawY8cOQkJCSE9Pp7i42OholapBgwYkJSXRtm1bQkND2b17t9GRhIuSKRdhmH379pGcnMyxY8eIjIzkueeew93d3ehYlWrLli1Mnz6dAQMG8Oqrr0qDL2ET6YcunMauXbtITEwkLy+PqKgounXr5tJzzadOnSIuLo7GjRszadIkfHx8jI4kHJzMoQuncd9997Fw4ULi4+NZt24d/fr149NPP6UqBxtVKSgoiCVLllC/fn3CwsI4dOiQ0ZGEi5ARunAoWmu++uorEhMTUUoRHR3Nww8/7LJTExs2bODNN99k+PDhvPjii0bHEQ5KplyEU9Na8/nnn5OUlETt2rUxmUzcf//9LlnYjx49SmxsLO3btyc2NpaaNWsaHUk4GJlyEU5NKcUTTzzBmjVr6NevHwkJCURHR7Nr1y6jo9ldy5YtWbFiBcXFxdLgS9wRGaELp1BaWsrHH3/MokWLaN68OSaTiXbt2hkdy6601mRkZJCcnEx8fDxdu3Y1OpJwEDLlIlxScXEx69evZ8mSJbRt25bo6Ghat25tdCy72r9/P3FxcfzlL39h+PDheHp6Gh1JGEymXIRL8vT0pHfv3mRmZtKpUyeGDRvG2LFjOXr0qNHR7KZt27akpaVx8uRJoqKiOHv2rNGRhJOQgi6cUo0aNejfvz9ZWVn84Q9/ICoqismTJ3Py5Emjo9lF3bp1eeutt3j88ccJCwvj66+/NjqScAIy5SJcwqVLl1i1ahVr167lySefZNCgQQQGBhodyy527tzJ+PHjCQkJYfDgwS590pW4OZlyEdWKj48PUVFRZGZm4ufnR//+/ZkzZw55eXlGR7tjHTt2JC0tjZ07dzJs2DDOnTtndCThoKSgC5dSt25dhg4dSnp6Ou7u7vTt25d58+aRn59vdLQ7Ur9+fRITE7n33nsJDQ3l+++/NzqScEA2F3SllLtS6jul1L+t11sqpbYqpX5QSq1VSnlVXkwhysff359Ro0axZs0aCgsL6dWrF0lJSVy8eNHoaBXm7u5OTEwM48aNY8yYMaSlpblsewRRMeUZoY8A9t9wfTbwttb6buA8MMiewYSwh4YNGxIXF0daWhq5ubn07NmTJUuWcOXKFaOjVdgjjzzC8uXL2bhxI7GxsU79S0rYl00FXSnVBHgOWGy9roAngXTrXVYAIZURUAh7CAoKYtKkSSxdupRjx44REhJCamoqhYWFRkerkKCgIBYvXkxAQIA0+BK/sHWE/g4QC5it1+sD+VrrEuv1k0CwnbMJYXfNmjVj+vTpJCcns2fPHkJCQli7dq1T7p7k5eVFbGwsMTExxMTEkJWVJVMw1VyZBV0p9TyQo7XeUZEnUEpFKaW2K6W25+bmVuQQQthdq1ateOONN5iQEQ72AAAY4klEQVQ3bx7ffPMNPXv2JDMzk5KSkrIf7GC6devGokWLWLVqFVOnTnXavzrEnbNlhP4w8KJS6hiwBstUyzzATynlYb1PEyD7Zg/WWqdorTtrrTsHBATYIbIQ9tOmTRvefvttEhIS2LRpE7179+bjjz/GbDaX/WAHcr3Bl9lsJjw8nOPHjxsdSRigXCcWKaUeB0ZrrZ9XSr0PfKC1XqOUSgZ2a60Tb/d4ObFIOLodO3aQlJREfn4+Q4YMoWvXrk51Io/WmszMTBITE4mLi+Ppp582OpKwg0ppzvW7gt4Ky4jdH/gOCNVaX7vd46WgC2egtWbr1q0kJiZSXFyMyWTi0Ucfdape7AcOHCAuLo5HHnmEkSNHSoMvJyfdFoW4Q1prtmzZQlJSEp6enphMJh566CGnKewFBQVMmTKFc+fOkZCQ4DKtEKojKehC2InZbGbz5s0sXLgQPz8/YmJi6Nixo9GxbKK1JjU1lbS0NKZMmUKXLl2MjiQqQAq6EHZmNpvZsGEDCxcuJDg4GJPJRPv27Y2OZZPvvvuO8ePH88ILLzBkyBCn+lxASEEXotKUlJTw4YcfsnjxYlq3bo3JZKJNmzZGxyrTuXPnGD9+PAAzZszA39/f4ETCVtJtUYhK4uHh8cu69S5dujBixAhiY2M5cuSI0dFuy9/fnwULFtChQwdCQ0P57rvvjI4k7ExG6ELcocLCQtLT01m5ciUPPPAAUVFRNGvWzOhYt/XVV18xZcoUQkNDCQsLc5oPeqsrGaELUUVq1qxJaGgoWVlZtGrVioiICKZNm8apU6eMjnZLXbp0YeXKlWzevJnRo0dLgy8XIQVdCDvx9vYmIiKCjIwMAgICCA0NJSEhgZycHKOj3VRgYCCLFy8mMDCQ0NBQDhw4YHQkcYekoAthZ3Xr1sVkMpGRkYG3tzf9+vVj7ty5DrnTkKenJ2PGjGHYsGEMGzaMjIwMafDlxKSgC1FJ/Pz8GD58OOvWraO0tJQ+ffowf/58CgoKjI72X55++mmWLFnC2rVrmTx5MlevXjU6kqgAKehCVLIGDRowZswYVq1aRUFBAT179iQlJYVLly4ZHe03mjdvzooVK1BKER4ezrFjx4yOJMpJCroQVSQwMJBx48axYsUKsrOz6dmzJ8uXL3eo0XDNmjWZMmUK/fv3JzIyko0bNxodSZSDLFsUwiDHjh0jJSWFHTt2EB4eTp8+ffDycpyteQ8ePEhcXBxdunRh5MiRDpWtupFli0I4uBYtWjBz5kzmz5/Pjh07CAkJIT09neLiYqOjAZZe8ampqeTk5BAZGenQyzCFhRR0IQzWunVr3nrrLd58802++OILevfuzfr16yktLTU6GnXq1GHOnDl0796dAQMG8OWXXxodSdyGTLkI4WB27dpFYmIieXl5REVF0a1bN4doprVr1y7GjRvHc889R3R0NO7u7kZHqjakOZcQTkxrzbZt20hKSuLy5ctER0fzxBNPGH6K/rlz55gwYQKlpaXMnDmT+vXrG5qnupCCLoQL0Frz1VdfkZiYiFKK6OhoHn74YUMLu9lsZtGiRWRlZTFjxgyn6Q3vzKSgC+FCtNZ89tlnJCcnU7t2bUwmE/fff7+hhf3rr79m8uTJvPbaa4SFhTnEtJCrkoIuhAsym81s2rSJhQsXEhAQgMlk4r777jMsz9mzZ4mPj8fPz4+pU6dSt25dw7K4MrstW1RK1VRKfauU+l4p9X9KqanW21sqpbYqpX5QSq1VSskiVSEqmZubG927d+f999/nueeeY+LEifztb39j3759huRp1KgRKSkpNG3alNDQUMNyCIsyR+jK8jddba31JaWUJ/AlMAIYBWRordcopZKB77XWSbc7lozQhbCv4uJi/vWvf7F06VLatm1LdHQ0rVu3NiTL5s2bmTVrFtHR0fTu3dvwD3Bdid1G6NrietMJT+s/DTwJpFtvXwGEVDCrEKKCPD096dOnD5mZmXTq1ImhQ4cybtw4Q/qwdO3alaVLl/LBBx8wceJErly5UuUZqjubPsVQSrkrpXYBOcAm4EcgX2tdYr3LSSD4Fo+NUkptV0ptz83NtUdmIcTv1KhRg/79+5OVlcU999zD4MGDmTx5MidPnqzSHM2aNWPZsmV4eXkRHh7u8NvyuRqbCrrWulRrfR/QBHgA+IOtT6C1TtFad9Zadw4ICKhgTCGELby9vRkwYACZmZkEBwcTHh7OjBkzOHPmTJVlqFmzJpMmTSIsLIyoqCg2bNhQZc9d3ZVrnZHWOh/4DPgz4KeU8rB+qwmQbedsQogK8vHxISoqioyMDHx9fenfvz9z5swhLy+vyjK8+OKLJCYmsnDhQhISEigqKqqy566ubFnlEqCU8rNergU8DezHUtj7WO8WDvyrskIKISrG19eXYcOGkZ6ejru7O3379mXevHnk5+dXyfPfc889pKamcu7cOQYNGiQNviqZLSP0xsBnSqndwDZgk9b630AcMEop9QNQH1hSeTGFEHfC39+fUaNGsWbNGgoLC+nVqxdJSUlVsjm0j48Ps2fP5tlnn2XAgAF88cUXlf6c1ZWcWCRENXTq1CkWL17MF198wauvvsqrr76Kt7d3pT/v7t27GTt2LM888wwxMTHS4MtG0g9dCHFLQUFBTJo0iaVLl3L06FFCQkJITU2lsLCwUp+3Q4cOpKWlcfDgQUwmU5XO6VcHUtCFqMaaNWvGP/7xD5KTk9mzZw8hISGsW7euUj/ArFevHu+++y6dO3cmNDQU+avdfmTKRQjxiwMHDpCcnMzhw4eJjIzkhRdewMPDo+wHVtDWrVuZNGkS/fr1Izw8XBp83YI05xJCVNju3btJTk4mOzubIUOG8Mwzz1Rasc3JySE+Pp46deowffp0afB1EzKHLoSosA4dOpCYmMikSZPIyMigb9++bNq0CbPZbPfnatiwISkpKbRo0YLXXntNGnzdARmhCyFuS2vNN998Q1JSEsXFxZhMJh599NFKab716aefMmvWLAYPHszLL78sDb6sZMpFCGFXWmu2bNlCUlISnp6emEwmHnroIbsX3Z9++om4uDhatGjBhAkTqmQ5paOTKRchhF0ppXjsscd47733CAsL46233mLw4MHs3LnTrs/TtGlTli1bRq1atQgLC5MGX+UgI3QhRIWYzWY2bNjAwoULCQ4OxmQy0b59e7s+x4cffsi8efMYNWoUPXr0sOuxnYlMuQghqkRJSQkffvghixcvpnXr1phMJtq0aWO34//www/ExsbSuXNnRo8ejZdX9dscTaZchBBVwsPDg549e5KZmUmXLl0YMWIEsbGxdpsqufvuu0lNTaWgoICIiAiys6Wx661IQRdC2IWXlxd9+/YlKyuL9u3bEx0dzYQJEzhx4sQdH7t27drMmjWL559/Xhp83YZMuQghKsWVK1dYvXo1q1ev5rHHHiMyMpKgoKA7Pu71Bl/du3dn6NCh1aLBl0y5CCEM5e3tzaBBg8jIyCAgIIDQ0FASEhLIycm5o+N26NCB9957j8OHDxMdHY1sbfkrKehCiEpVt25dTCYTGRkZeHt7069fP+bOncu5c+cqfEw/Pz/mzZvHgw8+SFhYGNu2bbNjYuclBV0IUSX8/PwYPnw469ato7S0lD59+rBgwQIKCgoqdDw3NzciIyOZNm0aEyZMYOnSpZXSmsCZSEEXQlSpBg0aMGbMGFatWkV+fj49e/YkJSWFS5cuVeh4DzzwAKmpqfznP/9h5MiRXLhwwc6JnYcUdCGEIQIDAxk/fjwrVqwgOzubnj17snz5cq5evVruYzVs2JCFCxfSqlUrQkND2bt3byUkdny2bBLdVCn1mVJqn1Lq/5RSI6y3+yulNimlDlu/1qv8uEIIV9OkSROmTp1KSkoKBw8eJCQkhFWrVpV7kw0PDw9GjhzJqFGjeP3111m3bh1VuYrPEZS5bFEp1RhorLXeqZSqA+wAQoABwDmtdYJSKh6op7WOu92xZNmiEKIshw4dYuHChezfv5+IiAheeuklPD09y3WMkydPEhsbS/PmzZk4caLTN/iy27JFrfVprfVO6+WLwH4gGHgJWGG92wosRV4IIe7IPffcw1tvvcWcOXP43//9X3r37s369espLS21+RhNmjRh2bJl+Pj4EBYWxo8//liJiR1HuU4sUkq1AL4A7gVOaK39rLcr4Pz167ciI3QhRHnt2rWLxMRE8vLyiIqKolu3buXaPemjjz7i7bff5vXXX+e5556rxKSVx+7NuZRSPsD/AjO01hlKqfwbC7hS6rzW+r/m0ZVSUUAUQLNmzTodP37c1p9BCCEASy/2bdu2kZSUxOXLl4mOjuaJJ56wuRf79QZfnTp1YsyYMU7X4MuuBV0p5Qn8G/hEaz3XettB4HGt9WnrPPvnWuvbtliTEboQ4k5orfnPf/5DUlISSilMJhNdunSxqbBfuXKF6dOnc/z4cd544w2aNGlSBYntw25z6NbplCXA/uvF3Go9EG69HA78qyJBhRDCVkopHnnkEdLS0oiIiGDevHlERETw7bfflrmixdvbm5kzZxISEsLAgQP5/PPPqyZ0FbJllcsjwBZgD3D9NKxxwFZgHdAMOA701Vrf9lxeGaELIezJbDazceNGFi5cSMOGDTGZTNx3331lPm7v3r2MHTuWrl27MmzYMDw8PKogbcXJBhdCiGqjtLSUjz76iEWLFtGiRQtMJhPt2rW77WMuXLjAxIkTuXz5MrNmzaJhw4ZVlLb8pNuiEKLacHd358UXXyQjI4O//OUvjB49mr///e8cPnz4lo/x9fXlnXfe4eGHHyYsLIxvv/22ChNXDhmhCyFczrVr1/jggw9Yvnw5nTt3JioqihYtWtzy/tu2bWPixIn06dOHiIiIci2LrAoyQhdCVFs1atSgf//+ZGVlcc899zB48GAmT57MyZMnb3r/+++/n9TUVLZu3cqIESPIz8+v4sT2IQVdCOGyvL29GTBgAJmZmQQHBxMeHs6MGTM4c+bMf903ICCA5ORkWrduTWhoKHv27DEg8Z2Rgi6EcHk+Pj5ERUWRkZGBr68v/fv3Z86cOeTl5f3mfu7u7gwfPpzY2FhGjRrF6tWrnarBlxR0IUS14evry7Bhw0hPT8fd3Z2+ffvy7rvv/tcUy2OPPcby5cv56KOPiI+P5/LlywYlLh8p6EKIasff359Ro0axZs0arly5Qq9evUhKSuLixYu/3Cc4OJilS5fi6+tLWFjYbVfM/EZBAaxdC8OGwSOPQOvW0KoV3Hsv9OoFs2fDrl1QCSN/WeUihKj2Tp06xeLFi/niiy/o378//fr1+03L3Y8//pi5c+cyYsQIXnjhhZsf5Oef4a23ICMDSkost9WqBZ6eoBSUlsK1a1BYCB4e0Lw5xMbC009bvn8bcmKREEKU04kTJ0hJSeHbb78lLCyMl19+mZo1awJw5MgRYmNj6dChA3FxcdSoUePXB37yiaU4X7oEdepYCvbtaA1XrkBREXTrBjNmgL//Le8uyxaFEKKcmjVrxj/+8Q+SkpLYs2cPISEhrFu3jqKiIlq1asXKlSspLCxk4MCBnDhxwlKY//lPiImxjMrr1Su7mINlRF67Nvj6wsaN8OKLcOrUHeeXEboQQtzCgQMHSE5O5vDhw0RGRvLCCy/g7u5Oeno6KSkpzLvvPtp98AHUrWtbIb+V/HwIDIT16286UpcpFyGEsJPdu3eTnJxMdnY2Q4YM4ZlnnuHIv/+N96uv4uHrS0Djxjb3Zr+l8+ct8+lJSf81py4FXQgh7GzHjh0kJiZy8fx5ko4dw6+ggOyLFzGXlhLcpAmedzJKN5vhwgVITITu3X/zLZlDF0IIO+vUqROLFy9m8hNPUPzDDxz/+Wfq+fnh4+PD0SNHuHQn69Xd3MDLC+bMqfCSRsduAiyEEA5GKcX/9+WX6MBALrm5kZuTg1IKf39/Tp06RT0/PxoEBFBsNpNw5gzfXrlCQWkpTTw9GdawIV18fG59cG9vOH7csk79T38qdzYp6EIIUR4FBbB9O8rPjzpK4ePjw8WCAnJyc/Hw8OBCQQFXrl7Fv3FjAj09SWnWjEBPT/5z6RLx2dmsadmSoFvtaaqUZbXMJ59UqKDLlIsQQpTHgQO/niwEKKBu3brcdddd+Pv7o7Xm6tWrZB85QqiPD0FeXrgpxaN16hDk6cmBwsLbH79mTdi6tULRpKALIUR5/PADFBf/180K8PP15e677qJRo0Zorfnhhx84c/YsGjhXUsKJoiJa3XhC0s3UqAEHD1Yomky5CCFEeVy+bDmN/xaUUtTz88PX15e8vDxOnz6NWSn+UVjI876+tCiroLu7w9WrFYpW5ghdKbVUKZWjlNp7w23+SqlNSqnD1q/1KvTsQgjhbNzdy+y9AuCmFA0DAmjXrh3/LCrCA4gNDCz7+FpbnqMCbJlyWQ4887vb4oHNWuvWwGbrdSGEcH2NGlmWF9pAa83MnBzOlZYyp0kTPGw5+ai4GCq4YXWZBV1r/QVw7nc3vwSssF5eAYRU6NmFEMLZtG1r811nnTnD0aIi3m7alBq27lNaWFihFS5Q8Tn0Rlrr09bLZ4BGt7qjUioKiAJL4xshhHBqLVpYPrgsKrrtSP10cTEZ+fl4KUX3G3qpjwsM5Flf31sfX2tLH/UKuOMPRbXWWil1y9OatNYpQApYTv2/0+cTQghDublBaCgsXHjbgt7Y05Pt5RjNA5Y16O7u0KNHxaJV6FFwVinVGMD6NaeCxxFCCOfz6quWwnt9Iwt7uXgRQkIsbXUroKIFfT0Qbr0cDvyrgscRQgjn07QpREVZCrC9GhwWFlp6pI8ZU+FD2LJscTXwNdBGKXVSKTUISACeVkodBp6yXhdCiOpj+HDLXqEFBXd+rJISy9rzWbOgQYMKH6bMOXSt9au3+FbXCj+rEEI4Oy8vWLHCMkVy/nyFp0koKbH8Uhg+HJ577o4iyan/QghRUUFBkJlp2fD5/PnyzalrbSnkly9DfDyMGHHHcap0gwulVC5wvMqe8OYaAHkGZ7CVZK08zpRXslYeZ8nbXGsdUNadqrSgOwKl1HZbdv5wBJK18jhTXslaeZwtb1lkykUIIVyEFHQhhHAR1bGgpxgdoBwka+VxpryStfI4W97bqnZz6EII4aqq4whdCCFckssWdKVUTaXUt0qp75VS/6eUmmq9vaVSaqtS6gel1FqllG2NjauAUspdKfWdUurf1uuOnPWYUmqPUmqXUmq79TaH3PhEKeWnlEpXSh1QSu1XSv3ZgbO2sb6m1/8VKKVGOnDe163/v/YqpVZb/9855PtWKTXCmvP/lFIjrbc55OtaUS5b0IFrwJNa6z8C9wHPKKUeAmYDb2ut7wbOA4MMzPh7I4D9N1x35KwAT2it77th2ZejbnwyD9igtf4D8Ecsr7FDZtVaH7S+pvcBnYArQCYOmFcpFQwMBzprre8F3IF+OOD7Vil1LzAYeADLe+B5pdTdOODreke01i7/D/AGdgIPYjmJwMN6+5+BT4zOZ83SBMsb6kng31j2nHXIrNY8x4AGv7vtINDYerkxcNABcvoCR7F+XuTIWW+SvRvwH0fNCwQDPwH+WNqI/Bvo7ojvW+BlYMkN1ycCsY74ut7JP1ceoV+fwtiFpb3vJuBHIF9rff383JNY3pSO4B0sbzCz9Xp9HDcrgAY2KqV2WDcxgXJsfFKFWgK5wDLrdNZipVRtHDPr7/UDVlsvO1xerXU28CZwAjgNXAB24Jjv273Ao0qp+kopb6AH0BQHfF3vhEsXdK11qbb86doEy59afzA40k0ppZ4HcrTWO4zOUg6PaK07As8CQ5VSj934TW0Z8jjCEioPoCOQpLX+E3CZ3/1Z7UBZf2Gdd34ReP/333OUvNb55pew/NIMAmrz3/sPOwSt9X4sU0EbgQ3ALqD0d/dxiNf1Trh0Qb9Oa50PfIblzz8/pdT1LpNNgGzDgv3qYeBFpdQxYA2WaZd5OGZW4JfRGVrrHCxzvA/gmBufnAROaq23Wq+nYynwjpj1Rs8CO7XWZ63XHTHvU8BRrXWu1roYyMDyXnbI963WeonWupPW+jEsc/uHcMzXtcJctqArpQKUUn7Wy7WAp7F8GPYZ0Md6N4fYnENrPVZr3URr3QLLn9mfaq1fwwGzAiilaiul6ly/jGWudy8OuPGJ1voM8JNSqo31pq7APhww6++8yq/TLeCYeU8ADymlvJVSil9fW0d93za0fm0G9AJW4Ziva4W57IlFSqkOwAosn7y7Aeu01tOUUq2wjIL9ge+AUK31NeOS/pZS6nFgtNb6eUfNas2Vab3qAazSWs9QStUH1gHNsHTV7Ku1PmdQzF8ope4DFgNewBFgINb3BA6WFX75JXkCaKW1vmC9zVFf26nAK0AJlvdoJJY5c0d8327B8tlUMTBKa73ZUV/XinLZgi6EENWNy065CCFEdSMFXQghXIQUdCGEcBFS0IUQwkVIQRdCCBchBV0IIVyEFHQhhHARUtCFEMJF/P+XqCdcLvWBGgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtclGX+//HXxRkRRQRTE6Ny1a/mpqWuablRaWSuouIMnlrNRP2m5U8rzQPtAqm12q753TxknlLjHik1NVN3UzPrG6tU6jfNs3lc8gAqIiBz/f4YdK1UBhi4h5nP8/HgITPch8/cj/HNxTXXfV1Ka40QQoiqz8fsAoQQQriGBLoQQngICXQhhPAQEuhCCOEhJNCFEMJDSKALIYSHkEAXQggPIYEuhBAeQgJdCCE8hJ+zGyqlfIHtwAmtdVel1N1AGlAb2AEM0FoX3O4YEREROjo6+uY/LCiAH3+EvDzw8XF8lURrKCpybNugAdSs6ezLEUKIKmPHjh1ntNaRJW3ndKADLwJ7gBrFj98A/qq1TlNKzQYGA7Nud4Do6Gi2b9/+6x/83/9B374QEeEIZaVKURZw5YrjF8GgQfD886XbVwgh3JxS6qgz2znV5aKUagA8DcwrfqyAx4D04k0WAXGlLxM4csQR5leuQFhY6cMcICgIQkPhrbdg8eIylSGEEFWds33ofwNeAezFj2sD2Vrrq8WPjwN3lvrsRUXwwguQm+sI5PLw84Pq1eH112H//vIdSwghqqASA10p1RXI0lrvKMsJlFKJSqntSqntP/30089/uHgxfP+96/q+/f3BbodRoxz/CiGEF3Gmhd4B6KaUOoLjQ9DHgBlAmFLqWh98A+DEzXbWWs/VWrfWWreOjLyhT7+wEN5+G4KDy9bNcis1asC+ffC//+u6YwohRBVQYqBrrV/VWjfQWkcDCcBnWut+wCYgvnizPwKrSnXmTZvg0iUIDLztZrZz5xhw+DAP7d3Ln06eLPm4SjlGv7z3XqnKEUKIqq4849DHAqOVUgdw9KmXLkHXrnUEbwki/PwYHBFBt9J0y9SoAVu2OIZCCiGElyjNsEW01puBzcXfHwLalvnMmZmO0SkleKyGY5Tk93l5ZF29WsLWxXx8wNcXDh6E//qvMpcohBBViTl3ihYWwvHjJXa3lIvWcOBAxR1fCCHcTKla6C6Tn+9oRZfiw9DLeXlcLixEA07tpbXjZiMhhPAS5rTQfX1LPaywsLCQS5cucezHHykoLCx5B6UcY9OFEMJLmBPoQUGOm4CcCeZioaGh+Pj64h8QwOHDhzl3/jy3/UjVxwfq1i13qUIIUVWYE+hKQYsWjtv9S1CkNQV2OyhFUHAweYWFRN11Fxdycjh65Aj5+fm/3klrxy+LZs0qoHghhHBP5vVJPPoofP11iZu9d+YMc8+cuf7404sXGe7ry39HR3P+/HmOHD1K7fBwateujbrWJ5+X55h9MSysgooXQgj3Y16gx8XBtGmOvvTbTJWbGBlJ4g13mJ49d47LubkoILxWLapXr87p06e5cPgw9erXJzgoyNE6f+65SngRQgjhPsxb4KJOHejcGXJySrVbrVq1uHLlCnnF3TUB/v5ERUVRu3Ztjv34Iz+dPIndzw+6d6+IqoUQwm2Zu2LRxImOD0hv1g9+Cz5KUTsighsn+lJAzZo1uefuu/HJy+Ot0FAyZQy6EMLLmBvodetCaipcvgzO3gUKhIWFkZ+fz+Ubx5lrjV9uLrW7dKH11KlMmDCBKVOmkJubWwGFCyGE+zF/TdEePRyrDF244PQwRh+liLixla41ZGfDb34Ds2bx6GOPYbPZKCoqwmKx8MUXX1TgCxBCCPegtBMTZLlK69at9U2XoNMa5s2Dv/zF8Tg0tMS7SLXWHDx4kPqRkVTTGtq2hdmzHRNz3SAjI4PXX3+dFi1aMGbMGGrVquWqlyOEEJVCKbVDa926pO3Mb6GDI7yHDIGVKyE6Gi5edHxYequ7SbVGXblCvWrVyD5zBp2SAkuW/CrMAdq2bUtaWhq1a9fGarWyYcMGKvOXmBBCVBb3CPRrmjWDTz91tNbbtXOE+qVLjn+zs3/+ODyc4Ndf55WHH+Zf995726GPwcHB/L//9/946623mDdvHmPGjCErK6sSX5gQQlQ89+hyuZX8fMfqQwcPOm4W8vWFO+90TIkbHg7Ap59+is1m47333vvPjUW3UVhYyIIFC7DZbPz3f/83cXFx+Nzml4EQQpjN2S4X9w50J9jtdhISEhg1ahTt27d3er8DBw6QnJxMcHAwEydOJCoqyqV1CSGEq1StPvRy8PHxITExkdmzZ5eqb7xRo0YsXLiQjh07MnDgQN5//32KiooqsFIhhKhYVT7QAR577DEKCwvZunVrqfbz8fGhX79+LFq0iG3btjFo0CD2799fQVUKIUTF8ohA9/HxYdiwYcyePRt7KedZB2jQoAGzZs2iZ8+eDB8+nNmzZ1Mg65EKIaoYjwh0gI4dO+Lr68vmzZvLtL9Siri4OJYtW8a+ffvo168fO3fudG2RQghRgTwm0JVS5WqlX1OnTh2mT59OYmIiL7/8MtOnTydPlrITQlQBHhPoAO3btyckJIR//OMf5TqOUopOnTphs9nIycnBarWSkZHhoiqFEKJieFSgX2ulz5kzxyUjVmrWrElycjLjxo0jOTmZ5ORkLly44IJKhRDC9Twq0MFxq394eDiffvqpy47Zvn17DMMgMDAQq9XKpk2bXHZsIYRwFY8L9Gut9HfffZerpZiStyQhISGMHTuWyZMnM3PmTMaOHcvZs2dddnwhhCgvjwt0gAcffJB69eqxdu1alx+7VatWpKWlERUVRUJCAmvWrJHJvoQQbsEjAx1g2LBhzJs3j0In51gvjYCAAEaMGMHMmTNZtmwZI0eO5OTJky4/jxBClIbHBvr9999PdHQ0H3/8cYWdo2nTpixevJgHH3yQAQMGYBhGuYZMCiFEeXhsoIOjlf7ee+9V6F2ffn5+DBo0iPfee48NGzbw3HPPcfjw4Qo7nxBC3IpHB3rz5s1p2rQpK1asqPBzRUdH8+677xIbG8tzzz3H/PnzXfqhrBBClMSjAx1g6NChLFiwgCtXrlT4uXx8fLBYLCxZsoRvv/2WZ555hj179lT4eYUQApwIdKVUkFIqQyn1nVLq/5RSfy5+fqFS6rBS6tvir5YVX27pNWnShN/+9rekp6dX2jnr1avHjBkz6N+/Py+++CIzZ84kPz+/0s4vhPBOzrTQ84HHtNb3Ay2BWKVUu+Kfvay1bln89W2FVVlOiYmJLF68mMuXL1faOZVSdOnShbS0NE6ePEmfPn3IzMystPMLIbxPiYGuHS4VP/Qv/qpSA68bNWpE69atsdlslX7u8PBwpkyZwgsvvMCECROYOnUqubm5lV6HEMLzOdWHrpTyVUp9C2QBG7XWXxf/6HWl1E6l1F+VUoEVVqULJCYmsnTpUtPC9NFHH8UwDAoLC7FYLGzbts2UOoQQnqtUa4oqpcKAFcBI4CxwGggA5gIHtdbJN9knEUgEaNiw4YNHjx51Qdllk5SURMOGDXnuuedMqwEgIyOD1NRU7r//fsaMGUNYWJip9Qgh3FuFrCmqtc4GNgGxWutTxd0x+cACoO0t9pmrtW6ttW4dGRlZmtO53JAhQ/jggw9MnzGxbdu2GIZBrVq1sFgsbNiwQaYPEEKUmzOjXCKLW+YopYKBTsBepVS94ucUEAfsrshCXSEqKorf//73LFu2zOxSCA4OZvTo0UyfPp158+YxZswYsrKyzC5LCFGFOdNCrwdsUkrtBP6Fow99DbBUKbUL2AVEAKkVV6brPPfccyxfvpycnByzSwGgRYsWLFmyhKZNm9K3b18++ugjmT5ACFEmpepDL6/WrVvr7du3V9r5bmXy5MmEhoYycuRIs0v5mQMHDpCcnExwcDATJ04kKirK7JKEEG6gQvrQPcXgwYNZsWIF586dM7uUn2nUqBELFy6kY8eODBw4kPfff98lKy8JIbyDVwb6HXfcQWxsLIsWLTK7lF/x8fGhX79+LFq0iG3btjFo0CAOHDhgdllCiCrAKwMdYNCgQaxevZozZ86YXcpNNWjQgFmzZtGzZ0+GDRvG7NmzK3TWSCFE1ee1gR4ZGUnXrl1ZsGCB2aXcklKKuLg4li1bxr59++jfvz+7du0yuywhhJvy2kAHGDhwIOvWrePf//632aXcVp06dZg+fTpDhgzhpZde4q233iIvL8/ssoQQbsarAz08PJwePXowf/58s0spkVKKTp06YbPZyM7Oxmq1kpGRYXZZQgg34tWBDjBgwAA2btxYZdYErVmzJsnJyYwdO5Y///nPJCcnm37nqxDCPXh9oIeFhdG7d2/mzZtndiml0qFDB2w2G4GBgVitVjZt2mR2SUIIk3l9oAP069ePLVu2cOzYMbNLKZWQkBDGjh3L5MmTmTlzJmPHjuXs2bNmlyWEMIkEOlCjRg0SEhJ49913zS6lTFq1asUHH3xAVFQUffr0Yc2aNTLZlxBeSAK9WN++ffnqq684cuSI2aWUSWBgICNGjODtt99m2bJljBw5ssp8LiCEcA0J9GIhISH07duXuXPnml1KuTRt2pTFixfz4IMPMmDAAAzDkMm+hPASEug3sFqtbN++nYMHD5pdSrn4+fkxaNAg3nvvPTZs2MCQIUOq7F8eQgjnSaDfoFq1agwYMIA5c+aYXYpLREdH8+677/Lkk08yePBg5s+fz9WrV80uSwhRQSTQf6F3797s3LmTffv2mV2KS/j4+GCxWFiyZAnffPMNzzzzDHv37jW7LCFEBZBA/4WgoCAGDhzI7NmzzS7FperVq8fbb79Nv379eOGFF5g5cyb5+flmlyWEcCEJ9Jvo2bMne/fu5fvvvze7FJdSSvH000+TlpbGiRMn6NOnD5mZmWaXJYRwEQn0mwgICODZZ5/1uFb6NeHh4UydOpWRI0cyYcIEpk6dSm5urtllCSHKSQL9Frp3787hw4fZuXOn2aVUmJiYGAzDoLCwEIvFwrZt28wuSQhRDhLot+Dv78/gwYM9tpV+TY0aNZg0aRKvvfYab7zxBpMmTSI7O9vssoQQZSCBfhtdu3blxIkTXtHP3LZtWwzDoFatWlitVjZs2CDTBwhRxUig34afnx9Dhgxh9uzZXhFuwcHBjB49mmnTpjFv3jzGjBlDVlaW2WUJIZwkgV6Cp556ijNnzvCvf/3L7FIqTYsWLViyZAlNmzalb9++rFixwit+oQlR1Umgl8DX15ehQ4cya9Ysrwq1gIAAEhMTmT17NitWrGD48OFVbnphIbyNBLoTOnXqRG5uLl999ZXZpVS6Ro0asXDhQh555BEGDhzIkiVLKCoqMrssIcRNSKA7wcfHh6FDh3pNX/ov+fj40K9fPxYtWsQXX3zBoEGDOHDggNllCSF+QQLdSTExMVy9epWtW7eaXYppGjRowKxZs+jRowfDhg1jzpw5FBQUmF2WEKKYBLqTbmyle/P84kopevTowbJly/jhhx/o378/u3btMrssIQQS6KXSsWNHfH19ZUFmoE6dOkyfPp3nnnuOMWPG8NZbb5GXl2d2WUJ4NQn0UlBKXe9q8OZW+jVKKTp37ozNZiM7Oxur1UpGRobZZQnhtSTQS6l9+/aEhISwceNGs0txG2FhYSQnJzN27Fj+/Oc/k5yczIULF8wuSwivU2KgK6WClFIZSqnvlFL/p5T6c/HzdyulvlZKHVBKGUqpgIov13xKKYYPH86cOXNk+N4vdOjQAZvNRmBgIFarVbqmhKhkzrTQ84HHtNb3Ay2BWKVUO+AN4K9a60bAeWBwxZXpXtq0aUPt2rX59NNPzS7F7YSEhDB27Fhef/11Zs6cybhx4zh37pzZZQnhFUoMdO1wqfihf/GXBh4D0oufXwTEVUiFbuhaK33u3LmyRuctPPDAA3zwwQc0aNCAhIQE1q5d65Vj+IWoTE71oSulfJVS3wJZwEbgIJCttb6WZseBOyumRPf0wAMPcOedd7J27VqzS3FbgYGBjBgxgrfffpulS5fywgsvcOrUKbPLEsJj+Tmzkda6CGiplAoDVgBNnT2BUioRSARo2LBhWWp0W8OGDWPChAl06dIF/6IiyMyE77+Hb7+FnBzw84N77oGWLeH++8HDXr+zmjZtyuLFi3n//ffp378/Q4cOJT4+Hh8f+UxeCFdSpf0zWCmVBOQBY4G6WuurSqmHgD9prZ+83b6tW7fW27dvL3Ox7mji4MFY8/JosXMnFBY6vnx94VpYFRSAvz/Y7dCqFQwbBo89BkqZW7hJjhw5QnJyMkopJk2aRHR0tNklCeH2lFI7tNatS9rOmVEukcUtc5RSwUAnYA+wCYgv3uyPwKqyl1sF2e2QlsbETZuovXIldqUgNBTCw6FmTcf3oaFQuzbUqOF47rvvYOhQeOYZOH3a7FdgiujoaObNm8eTTz7J4MGDmT9/vnwOIYSLOPM3bz1gk1JqJ/AvYKPWeg2OFvpopdQBoDbwXsWV6Wby8x0t7QkTCAoJoSg0lOySFllW6j/B/tVX0Lkz7NhROfW6GR8fHywWC0uWLOGbb77hmWeeYe/evWaXJUSVV+oul/LwiC6XwkJITITPP4ewMFCKK1eu8OOxYzRq1AgfZ7tSrv0CWLbM0RXjpbTWfPLJJ/ztb3+jW7duJCYmEhgYaHZZQrgVl3W5iF/4+99hy5brYQ4QFBREteBgzp8/7/xxQkJAa3juOfDiRZmVUjz99NMYhsGJEyfo06cP33zzjdllCVElSaCXxvffwzvvOLpOftESj4iM5OyZMxSVZo6X6tUdYf7aay4utOoJDw9n6tSpjBw5kvHjxzN16lRyS+rGEkL8jAR6aaSmOj4M9fv1aM+gwECqhYSUrpUOjj71tWthzx4XFVm1xcTEYBgGhYWFWCwWtm3bZnZJQlQZEujOOnoUMjIcrfNbiIyM5NzZs5wvLOSl48d5eO9euh44wKc5Obc+ro+Po+tl8eIKKLpqqlGjBpMmTeK1117jjTfeICkpiWwv7pYSwlkS6M76+GNH6/w2N8MEBgQQUr06fz5yBH+l2NC4Man16zPl9GkO5eff+tihobBiBcjwvZ9p27YthmEQFhaG1Wplw4YNMn2AELchge6sr75y3CBUgurh4Wy+dInE8HCq+fjQslo1fh8aytrbtdL9/Byt9EOHXFiwZwgODmb06NFMmzaNefPmMWbMGLKysswuSwi3JIHurN27ISioxM1OA/6+voRcunT9ud8EBt6+hQ6OQJex2LfUokULlixZQpMmTejbty8rVqyQ1roQvyCB7gyt4cKFm34Y+kuX7XZqBgZy/tw5LhcvyVbdx4fckka/XL3q1cMXnREQEHB9XdcVK1YwfPhwjh8/bnZZQrgNCXRnOdkarObjQ57W1L/zTk4cP86Ro0c5k5tLtZImotLa0UcvStSoUSMWLFjAww8/zB//+EeWLFkiSwIKgQS6c67N0+LECkUNAwIoAs4HBNCoUSPCa9Vi14ULhF64wJkzZ249b4mfn2MIo3CKr68v/fv3Z+HChWzdupWBAwdy4MABs8sSwlQS6M5q3hyuXClxs2AfHx4LDWX2Tz9xRWsO+/nxna8vfaOiKCgs5ODBg5w4eZK8Xx7LxweaOj0rsSgWFRXF7Nmz6dGjx/UFvAsKCswuSwhTSKA766GHHFPhOmFc3brk2+102reP8SdO8GrduvxXjRrUr1ePexs1IjAwkOPHj3P4yBFyLlzAfvWqo8vl3nsr+EV4JqUUPXr0YNmyZfzwww/079+f3bt3m12WEJVOJudy1v790KXLTW/7LwsNXLp4kXPnz+N/6RJn2renfloaERER5a/Vi2mt2bhxI9OnT+fJJ59k+PDhBAcHm12WEOUik3O52m9+A7/9rWO0iwsoIDQ0lLuiooisU4eMZs3o3bs3EyZMYOfOnTIkr4yUUnTu3BnDMMjOzsZqtZKRkWF2WUJUCmmhl8Y330Dv3o4PSH19XXPM7GyIiYG5c7l46RKrV6/GMAxq1KiB1Wqlc+fOBAQEuOZcXmjbtm1MnjyZdu3aMWrUKEJDQ80uSYhSkxZ6RWjVCgYNcqwX6opfhJcvQ7VqMHkyKEVoaOj1m2aGDh3K+vXr6dq1K++8847cHVlGHTp0wGazERAQgMViYfPmzWaXJESFkRZ6aeXnO5aQ2779Z3Oil1penmOxjIULoX37W2529OhRDMPg008/pU2bNlitVlq1aoXy0jVJyyMzM5PU1FQaN27MK6+8Qnh4uNklCeEUZ1voEuhlkZvrWJgiI8Mxp7kTc7xcp7Wjhe/vD3PmQMeOTp4ylzVr1mAYBkFBQVgsFmJjYwlyYjoC8R/5+fnMnTuX1atX8+KLL9KlSxf55SjcngR6Rbt6Fd59F/76V8cNR6Ght58aQGtHF0tBAdx3n2O/e+4p9Wntdjtff/01hmGwe/duunXrRnx8PPXr1y/Hi/E+e/fuJTk5mdq1azN+/Hjq1atndklC3JIEemU5dMjR0l650vG4oAACA/8zz3lhoeNfX1+IjnYsLt29u0s+VD1+/Dg2m401a9bQqlUrrFYrbdq0kRank65evcrixYtZunQpQ4cOJT4+Hp+SpmgQwgQS6JUtJwf+93/hu+8co2EuXfpPiLdtC/ffD82auWQM+y9dvnyZdevWYRgGAFarlaeeeopq1aq5/Fye6MiRIyQnJ6OUYtKkSURHR5tdkhA/I4HuhbTWbN++HcMwyMzMpGvXrlgsFho0aGB2aW7PbreTnp7OnDlz6NevH8888wx+TsyuKURlkED3cidPniQ9PZ2PP/6Y++67D6vVyu9+9zvpUijBqVOnmDx5MmfPniUpKYmmMr+OcAMS6AKAK1eusH79egzD4MqVK1itVrp27UpISIjZpbktrTWffPIJM2bMoFu3bgwZMoTAwECzyxJeTAJd/IzWmm+//RbDMMjIyCA2Nhar1cpdd91ldmlu69y5c7zxxhvs37+fSZMm0apVK7NLEl5KAl3cUlZWFunp6axcuZLGjRtjtVrp0KGDdMfcwqZNm3jzzTd59NFHGTFihPx1IyqdBLooUUFBARs3bsQwDHJycrBYLHTr1k3mO7mJCxcuMGPGDL7++mteffVVOnToYHZJwotIoAunaa3ZvXs3hmGwbds2OnXqhNVq5V6Zn/1XMjIySE1NpWXLlowePZqwsDCzSxJeQCbnEk5TStGiRQtSU1NZvnw5ERERPP/88wwbNoxNmzZR5MTSe96ibdu2GIZBWFgYVquVDRs2yFTHwm1IC13cVGFhIZ999hmGYZCVlUXv3r2Ji4ujpqx7et2uXbtISUmhQYMGjBs3jjp16phdkvBQ0uUiXOb777/HMAw+//xzYmJiSEhIoHHjxmaX5RYKCgpYsGABy5cv5/nnnycuLk6mXhAu57JAV0pFAYuBO3CsnDZXaz1DKfUnYAjwU/Gm47XWn9zuWBLoVdu5c+dYuXIl6enp1K9fH6vVSkxMjNxRCezfv5+UlBSqVavGxIkT5e5c4VKuDPR6QD2tdaZSKhTYAcQBFuCS1nqas0VJoHuGq1evsnnzZgzD4MSJE/Tq1YsePXp4/fziRUVFfPDBByxYsIBnn32WPn36yFBQ4RIV1uWilFoF/A/QAQl0r7dv3z4Mw+Czzz7jkUceISEhgWbNmpldlqmOHTtGamoqV65cISkpSUYLiXKrkEBXSkUDnwP3AaOBgcAFYDswRmt9/nb7S6B7rpycHFatWnV9lIzVauXxxx/HvzSLf3gQu93OqlWr+Pvf/47FYmHgwIGyNqwoM5cHulKqOrAFeF1r/ZFS6g7gDI5+9RQc3TLP3mS/RCARoGHDhg8ePXrU+Vchqhy73c7nn3+OYRgcOnSIXr160bNnTyIiIswuzRRZWVlMnTqV48ePk5SUxH333Wd2SaIKcmmgK6X8gTXAeq31Wzf5eTSwRmt923ertNC9y6FDhzAMgw0bNtC+fXusVistWrTwulEgWms2btzItGnTiI2NZfjw4QQHB5tdlqhCXHZjkXL873sP2HNjmBd/WHpND2B3WQoVnuuee+7h1Vdf5eOPP6Z58+YkJSXxzDPPsGbNGgoKCswur9IopejcuTM2m43z589jtVrJyMgwuyzhgZwZ5fIwsBXYBdiLnx4P9AFa4uhyOQIM1Vqfut2xpIXu3ex2O19++SWGYfDDDz8QFxdHfHy8192Q88UXXzBlyhTatWvHqFGjZO4cUSK5sUi4taNHj2Kz2Vi3bh1t2rTBarXSqlUrr+mOyc3NZebMmWzZsoWxY8fy6KOPml2ScGMS6KJKyM3NZe3atRiGQWBgIBaLhdjYWIKCgswurVJkZmaSmppK48aNeeWVV7x+LL+4OQl0UaXY7XYyMjIwDINdu3bRrVs34uPjqV+/vtmlVbj8/Hzmzp3L6tWrefHFF+nSpYvX/KUinCOBLqqs48ePs3z5clavXk2rVq2wWq20adPG40Nuz549pKSkEBERwauvvkq9evVK3kl4BQl0UeXl5eWxbt060tLSALBYLHTp0oVq1aqZXFnFuXr1KosXL2bp0qUMHTqU+Ph4mT5ASKALz6G1Zvv27RiGQWZmJl27dqV3795ERUWZXVqFOXLkCMnJySilSEpKkrVfvZwEuvBIp06dYvny5dfHtlutVtq1a+eRrVi73U56ejpz5syhf//+DBgwQGa29FIS6MKj5efn8+mnn2IYBleuXMFisfCHP/zBIxdwPnXqFJMnT+bs2bO89tprNGnSxOySRCWTQBdeQWvNt99+i2EYZGRkEBsbi8ViITo62uzSXEprzdq1a5kxYwbdu3dnyJAhBAYGml2WqCQS6MLrZGVlkZ6ezsqVK2ncuDFWq5UOHTp4VHfM2bNnefPNN9m/fz+TJk2iVatWZpckKoEEuvBaBQUFbNy4EcMwyMnJwWKx0K1bN4+6xX7Tpk28+eabPProo4wcOdKjR/4IF07OJURVExAQwNNPP82iRYtITU1lz549dOvWjcmTJ3Pw4EGzy3OJmJgYDMMgPz8fi8XCl19+aXZJwg1IC114hbNnz/Lhhx/y0UcfER0djdV253YdAAAUvklEQVRqpWPHjvj6+ppdWrllZGSQmppKy5YtGT16NGFhYWaXJFxMulyEuInCwkI+++wzDMMgKyuL3r17ExcXR82aNc0urVzy8vKYNWsW69ev56WXXuKJJ57w+DtrvYkEuhAl2LNnD4ZhsGXLFmJiYkhISKBx48Zml1Uuu3btIiUlhaioKMaNG0dkZKTZJQkXkEAXwknnz59nxYoVpKenU79+faxWKzExMVX2Jp6CggIWLFjA8uXLGTFiBN27d5fWehUngS5EKRUVFbF582YMw+D48eP06tWLHj16VNkpbffv309KSgrVqlVj4sSJNGjQwOySRBlJoAtRDvv27cNms/HPf/6TRx55hISEBJo1a2Z2WaVWVFTEsmXLWLhwIc8++yx9+vTxqHH53kICXQgXyMnJYdWqVSxfvpyIiAisViuPP/44/v7+ZpdWKseOHSM1NZUrV66QlJTEvffea3ZJohQk0IVwIbvdzueff45hGBw6dIhevXrRs2dPIiIizC7NaXa7nZUrV/LOO+9gsVgYNGhQlfvF5K0k0IWoIIcOHcIwDDZs2ED79u2xWq20aNGiynzwmJWVxZQpUzhx4gRJSUncd999ZpckSiCBLkQFu3jxIqtXr8ZmsxEaGorVaqVz584EBASYXVqJtNZs3LiRadOmERsby/DhwwkODja7LHELEuhCVBK73c6XX36JYRj88MMPxMXFER8fT506dcwurUTZ2dlMnz6dnTt3MnHiRNq0aWN2SeImJNCFMMHRo0ex2WysW7eONm3aYLVaadWqldt3x3zxxRdMmTKFhx56iBdffNGjJjLzBBLoQpjo8uXLrFmzBsMwCAgIwGq1EhsbS1BQkNml3VJubi4zZ87k888/Z+zYsfz+9783uyRRTAJdCDdgt9vJyMjAMAx27dpFt27diI+Pp379+maXdkuZmZmkpqbSpEkTXn755Sp7Y5UnkelzhXADPj4+tGvXjr/+9a8sXLiQoqIiBgwYwJgxY8jIyKAyG1TOeuCBB/jggw+oX78+CQkJfPLJJ25Zp/g1aaELUcny8vJYt24daWlpAFgsFrp06eKWi1Ts2bOHlJQUIiIiGD9+PHXr1jW7JK8kXS5CuDmtNTt27MAwDHbs2EHXrl3p3bs3UVFRZpf2M1evXmXx4sUsXbqUoUOHEh8fL9MHVDIJdCGqkFOnTpGens6qVato3rw5VquVdu3auVVwHj58mJSUFHx8fJg0aRJ33XWX2SV5DQl0Iaqg/Px81q9fT1paGleuXMFisfCHP/yBkJAQs0sDHB/ypqenM2fOHPr378+AAQOq7DTDVYkEuhBVmNaa7777jrS0NDIyMoiNjcVisRAdHW12aQCcPHmSyZMnc+7cOV577TWaNGlidkkezWWBrpSKAhYDdwAamKu1nqGUCgcMIBo4Ali01udvdywJdCFKLysri/T0dFauXEnjxo2xWq106NDB9O4YrTVr165lxowZdO/encTExCox7UFV5MpArwfU01pnKqVCgR1AHDAQOKe1nqqUGgfU0lqPvd2xJNCFKLuCggI2btyIYRjk5ORgsVjo1q2b6Xd1nj17ljfffJP9+/eTlJREy5YtTa3HE1VYl4tSahXwP8Vfj2qtTxWH/mat9W3/7pJAF6L8tNbs3r0bwzDYtm0bnTp1wmq1mj7H+WeffcZf/vIXYmJiGDFihFsOw6yqKuTGIqVUNNAK+Bq4Q2t9qvhHp3F0yQghKphSihYtWpCamkp6ejqRkZE8//zzDBs2jE2bNlFUVGRKXY899hiGYVz/MPfLL780pQ5v5nQLXSlVHdgCvK61/kgpla21Drvh5+e11rVusl8ikAjQsGHDB48ePeqayoUQ1xUWFvLZZ59hGAZZWVn07t2buLg4atasaUo9GRkZpKam0rJlS8aMGWNaHZ7CpV0uSil/YA2wXmv9VvFzPyBdLkK4nT179mAYBlu2bCEmJoaEhAQaN25c6XVcvnyZ2bNns379el566SWeeOIJt5910l258kNRBSzC8QHoqBue/wtw9oYPRcO11q/c7lgS6EJUnvPnz7NixQrS09OpX78+VquVmJiYSh83vnPnTlJTU4mKimLcuHFERkZW6vk9gSsD/WFgK7ALsBc/PR5HP7oNaAgcxTFs8dztjiWBLkTlKyoqYvPmzRiGwfHjx+nVqxc9evSo1FkUCwoKmD9/Punp6YwYMYLu3btLa70U5MYiIcSv7Nu3D5vNxj//+U8eeeQREhISaNasWaWdf//+/aSkpBASEsKECRNo0KBBpZ27KpNAF0Lc0oULF1i5ciXLly+ndu3aWK1WnnjiCfz9/Sv83EVFRSxbtoyFCxfy7LPP0qdPH9NvknJ3EuhCiBLZ7Xa2bt2KYRgcPHiQnj170qtXLyIiIir83MeOHSMlJYX8/HySkpJMH0fvziTQhRClcujQIWw2G+vXr+ehhx4iISGBFi1aVGhft91uZ+XKlbzzzjtYLBYGDRpUKX8lVDUS6EKIMrl48SKrV6/GZrNRvXp1rFYrTz75ZIXO05KVlcWUKVM4ceIEr732Gs2bN6+wc1VFEuhCiHKx2+18+eWXGIbBDz/8QFxcHPHx8dSpU6dCzqe1ZuPGjUybNo2nnnqKYcOGERwcXCHnqmpkTVEhRLn4+Pjw8MMPM3PmTN59911yc3NJSEhg7NixZGZmunydUaUUnTt3xmazce7cORISEvjXv/7l0nN4OmmhCyGcdvnyZdasWYNhGAQEBGC1WomNjSUoKMjl5/riiy+YMmUKDz30EC+++KLps0qaSVroQgiXq1atGhaLhfT0dEaNGsXnn39O165defvttzl58qRLz/Xwww9js9nw8/PDarWyZcsWlx7fE0kLXQhRLidOnMBms7FmzRpatmyJ1WqlTZs2Lh0dk5mZSWpqKk2aNOHll1+u1Ltc3YF8KCqEqFR5eXmsW7eOtLQ0ACwWC126dHHZvOj5+fnMmTOHNWvWMGrUKJ566imvmT5AAl0IYQqtNTt27MAwDHbs2EHXrl3p3bs3UVFRLjn+999/T0pKCpGRkYwfP566deu65LjuTAJdCGG6U6dOkZ6ezqpVq2jevDlWq5V27dqV+1b/q1evsnjxYpYuXcrQoUOJj4/36OkDJNCFEG4jPz+f9evXk5aWdn1Foz/84Q+EhISU67iHDx8mJSUFHx8fJk2axF133eWiit2LBLoQwu1orfnuu+8wDIOvv/6a2NhYLBYL0dHRZT6m3W5n+fLlzJ07lwEDBtC/f/9Kn/O9okmgCyHcWlZWFh9++CErVqygcePGWK1WOnToUOauk5MnTzJ58mTOnz9PUlISTZrcdgG1KkUCXQhRJRQUFPCPf/yDtLQ0cnJyrnfH1KhRo9TH0lqzdu1aZsyYQVxcHEOGDKnQOWgqiwS6EKLK2b17N4Zh8MUXX9CpUyesVmuZptU9e/Ysb775Jvv37ycpKYmWLVtWQLWVRwJdCFFlnT17lo8++ogPP/yQu+66i4SEBDp27Iivr2+pjvPZZ5/xl7/8hZiYGEaMGOGyMfGVTQJdCFHlFRYWsmnTJtLS0sjKyqJ3797ExcVRs2ZNp49x4cIF/va3v5GRkcH48eNp3759BVZcMSTQhRAeZe/evRiGwebNm4mJiSEhIYHGjRs7vf/XX3/N66+/TsuWLRkzZkypfimYTQJdCOGRzp8/f3091Pr162O1WomJiXFqqOLly5eZPXs2GzZs4KWXXuLxxx+vEtMHSKALITxaUVERW7ZsIS0tjePHj9OrVy969Ojh1MRdO3fuJCUlhYYNGzJu3DgiIyMroeKyk0AXQniN/fv3YxgG//znP3nkkUdISEigWbNmt92noKCA+fPn8+GHHzJixAi6devmtq11CXQhhNe5cOECK1euJD09nfDwcKxWK0888cRtF57ev38/KSkphISEMHHiRO68885KrNg5EuhCCK9lt9vZunUrhmFw8OBBevbsSa9evYiIiLjp9kVFRSxbtoyFCxcyePBgEhIS3GqyLwl0IYQADh06hM1mY8OGDbRr146EhARatGhx0+6VY8eOkZKSQn5+PklJSWW6qem6wkI4fBiys0FrCAuDu++GMty5KoEuhBA3uHjxIqtXr8Zms1G9enWsVitPPvnkr6YGsNvtrFy5knfeeQeLxcKgQYNu22XzM7m5sHo1LFkCP/wAvr5w7ReH3Q5FRdC4MfTtC926gZPTG0igCyHETdjtdr766isMw2Dv3r3ExcURHx9PnTp1frZdVlYWU6ZM4eTJkyQlJdG8efNbH7SoCBYuhOnTHS1zPz8IDoZfdtvY7ZCX59jG3x9GjoTERMf2tyGBLoQQJfjxxx+x2Wx88skntGnTBqvVSqtWra53x2it2bhxI9OmTeOpp55i+PDhBAUF/fwgJ0/C8OGwezeEhDjfpVJYCJcuQdOmMGsWNGx4y00l0IUQwkmXL19mzZo12Gw2/P39sVqtxMbGXg/v7Oxspk2bxq5du5g4cSJt2rRx7HjsGMTHw9mzULPmf7pXnKU15OQ4+teXL3f0sd+EBLoQQpSS1pqMjAwMw2Dnzp1069aN+Ph46tevD8DWrVuZMmUK7du358XBgwm1WOD0aUeYl8eFC1CrFqxf7wj3X3A20Escl6OUmq+UylJK7b7huT8ppU4opb4t/upS6hcghBBuRinF7373O9566y0WLVqE3W5nwIABjBkzhoyMDB5++GGWL1+Or68vn3ToQN6hQ+UPc3B8OHrmDPzpT+Wrv6QWulKqI3AJWKy1vq/4uT8Bl7TW00pzMmmhCyGqmry8PNatW4dhGGitsVgsPF2vHiohgRMXLxIYHEzdO+4o/7J3drujpb54MfxiRkhnW+glVqC1/lwpFV3mIoUQogoLDg6mZ8+e9OjRg8zMTAzDIGDJEh4pKODOqChycnI4dOgQd9xxBzVq1uRaL3qB3c7U06fJuHyZC0VFNPD3Z0SdOrSvXv3mJ/LxcfTBz579q0B3VnluhRqhlNpZ3CVTqxzHEUIIt6eU4sEHH+TNl16iS1AQhUFB/Hj0KPn5+dSOiODM2bMcO3aMwsJCAIqAuv7+zG3YkM2NGzM8MpJxJ05wsqDg1icJDYWvvoITJ8pUY1kDfRZwL9ASOAVMv9WGSqlEpdR2pdT2n376qYynE0IIN5GZiZ+/P3Xq1qXRb35DjdBQcnJy0HY72m7n0KFDnDt/niAfHxIjI6kfEICPUjwSGkp9f3/2Xrly62Nfa6WXsWu6TIGutf631rpIa20H3gXa3mbbuVrr1lrr1u4+RaUQQpTou++guJXtoxRhYWHcfffd1K9fH18/P+xac/r0aQ4dOkT+Da3xc1ev8mNBAfcEBt7++FevwjfflKm0MvXiK6Xqaa1PFT/sAey+3fZCCOEx9u791c1DCqhWrRrVqlWj8OpVzp87x09nzrB3715q165NnXr1mHjyJF1r1iS6pEAPCIA9e8pUWomBrpT6AHgUiFBKHQdeAx5VSrUENHAEGFqmswshRFVz5cptbyDy9/OjTp06RERGcv7cOU6dPs3MoiL8gFfq1i35+D4+jnOUgTOjXPrc5On3ynQ2IYSo6oKCHEMMS+CjFOHh4fxPfj7ZhYW8HRWFnzN3ktrtjnOUgftM+CuEEFXBffc55mFxwpTTpzlcUMBfo6IIdHZ+9fx8xznKoJwj4YUQwsv89rdOTcB1qrCQj7KzCVCKJ/fvv/78+Lp1eep2d5f6+0OrVmUqTQJdCCFK48EHHZNqFRU55ju/hXr+/mz/r/8q3bHtdsfXtcm/Skm6XIQQojTCwyE21nGbvqtduAAxMXDHHWXaXQJdCCFKa+hQx2iUoiLXHfPasYYPL/MhJNCFEKK0mjeHgQPh4kXXHfPiRUhIgAceKPMhJNCFEKIsRo92LEiRnV3+Y+XkwJ13wquvluswEuhCCFEWwcGwdCk0aADnzzs+KC0trR371qkDH3zgWMKuHCTQhRCirOrUgY8+ckx3m51dujs88/Md+7RpAytWQPGqSOVRqUvQKaV+Ao6WYdcI4IyLy/EEcl1uTq7Lzcl1ubmqcF3u0lqXOLthpQZ6WSmltjuzWoe3ketyc3Jdbk6uy8150nWRLhchhPAQEuhCCOEhqkqgzzW7ADcl1+Xm5LrcnFyXm/OY61Il+tCFEEKUrKq00IUQQpTALQNdKXVEKbVLKfWtUmp78XPhSqmNSqn9xf/WMrvOynaL6/InpdSJ4ue+VUp1MbvOyqaUClNKpSul9iql9iilHvL298strolXv1eUUk1ueO3fKqUuKKVGedJ7xS27XJRSR4DWWuszNzz3JnBOaz1VKTUOqKW1HmtWjWa4xXX5E3BJaz3NrLrMppRaBGzVWs9TSgUA1YDxePH75RbXZBRe/l65RinlC5wAfgc8j4e8V9yyhX4L3YFFxd8vAuJMrEW4CaVUTaAjxcsiaq0LtNbZePH75TbXRPzH48BBrfVRPOi94q6BroENSqkdSqnE4ufu0FqfKv7+NFC2CYOrtptdF4ARSqmdSqn5VfnPxTK6G/gJWKCU+kYpNU8pFYJ3v19udU3Au98rN0oAPij+3mPeK+4a6A9rrR8AngKeV0p1vPGH2tFP5H59RRXvZtdlFnAv0BI4BUw3sT4z+AEPALO01q2AXGDcjRt44fvlVtfE298rABR3QXUDlv/yZ1X9veKWga61PlH8bxawAmgL/FspVQ+g+N8s8yo0x82ui9b631rrIq21HXgXx7XyJseB41rrr4sfp+MIM29+v9z0msh75bqngEyt9b+LH3vMe8XtAl0pFaKUCr32PdAZ2A18DPyxeLM/AqvMqdAct7ou196IxXrguFZeQ2t9GjimlGpS/NTjwPd48fvlVtfE298rN+jDf7pbwIPeK243ykUpdQ+O1ic4/nRcprV+XSlVG7ABDXHM2GjRWp8zqcxKd5vr8j6OP6E1cAQYekN/oFdQSrUE5gEBwCFgEI7Gije/X252Td5G3ishwI/APVrrnOLnPCZb3C7QhRBClI3bdbkIIYQoGwl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHkICXQghPMT/B9jFcDvYi0EzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -788,8 +786,7 @@ "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", "backend = Aer.get_backend('statevector_simulator')\n", - "run_config = RunConfig(seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\"\"\"\n", @@ -814,7 +811,7 @@ " 'algorithm': algorithm_cfg,\n", " 'optimizer': optimizer_cfg,\n", " 'variational_form': var_form_cfg,\n", - " 'backend': {'name': 'statevector_simulator'}\n", + " 'backend': {'provider': 'qiskit.Aer', 'name': 'statevector_simulator'}\n", "}\n", "result = run_algorithm(parahms,algo_input)\n", "\"\"\"\n", @@ -844,13 +841,13 @@ "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis', batch_mode=True)\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "run_config = RunConfig(shots=1024, seed=seed)\n", - "quantum_instance = QuantumInstance(backend, run_config, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", "\"\"\"update params in the previous cell\n", "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", + "params['backend']['provider'] = 'qiskit.Aer'\n", "params['backend']['name'] = 'qasm_simulator'\n", "params['backend']['shots'] = 1024\n", "result = run_algorithm(params,algo_input)\n", From 2f60a373de7d60d495ea396063dc7668ee78ec52 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Fri, 1 Mar 2019 11:23:32 -0500 Subject: [PATCH 018/116] remove cnf - its str content will be used directly --- community/aqua/optimization/3sat3-5.cnf | 7 ------- 1 file changed, 7 deletions(-) delete mode 100644 community/aqua/optimization/3sat3-5.cnf diff --git a/community/aqua/optimization/3sat3-5.cnf b/community/aqua/optimization/3sat3-5.cnf deleted file mode 100644 index 99ec81eec..000000000 --- a/community/aqua/optimization/3sat3-5.cnf +++ /dev/null @@ -1,7 +0,0 @@ -c This is an example DIMACS 3-sat file with 3 satisfying solutions: 1 -2 3 0, -1 -2 -3 0, 1 2 -3 0 -p cnf 3 5 --1 -2 -3 0 -1 -2 3 0 -1 2 -3 0 -1 -2 -3 0 --1 2 3 0 From af5418774bd4bd633150160cdf3a71cd37cfeb7e Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Fri, 1 Mar 2019 11:26:26 -0500 Subject: [PATCH 019/116] Update grover.ipynb --- community/aqua/optimization/grover.ipynb | 115 ++++++++++++++--------- 1 file changed, 69 insertions(+), 46 deletions(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index 63cda2b44..b225f72a5 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -6,9 +6,9 @@ "collapsed": true }, "source": [ - "## _*Using Grover Search for 3SAT problems*_\n", + "## _*Using Grover's Search to Find a Solution to a SAT problem*_\n", "\n", - "This notebook demonstrates how to use the `Qiskit Aqua` library Grover algorithm and process the result.\n", + "This notebook demonstrates how to use the `Qiskit Aqua` library `Grover` search algorithm and process the result.\n", "\n", "Further information is available for the algorithms in the github repo qiskit/aqua/readme.md" ] @@ -26,47 +26,51 @@ "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.algorithms import Grover\n", - "from qiskit.aqua.components.oracles import SAT" + "from qiskit.aqua.components.oracles import LogicExpressionOracle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We have a SAT problem to which we want to find solutions using Grover and SAT oracle combination. The SAT problem is specified in the DIMACS CNF format. We read one of the sample cnf files to load the problem." + "Suppose we have a [Satisfiability (SAT) problem](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem), for which we would like to use `Grover` search algorithm to find a satisfying solution. SAT problems are usually expressed in [Conjunctive Normal Forms (CNF)](https://en.wikipedia.org/wiki/Conjunctive_normal_form) and written in the [DIMACS-CNF](https://www.satcompetition.org/2009/format-benchmarks2009.html) format. For example:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "c This is an example DIMACS 3-sat file with 3 satisfying solutions: 1 -2 3 0, -1 -2 -3 0, 1 2 -3 0\n", - "p cnf 3 5\n", - "-1 -2 -3 0\n", - "1 -2 3 0\n", - "1 2 -3 0\n", - "1 -2 -3 0\n", - "-1 2 3 0\n", - "\n" - ] - } - ], + "outputs": [], "source": [ - "with open('3sat3-5.cnf', 'r') as f:\n", - " sat_cnf = f.read()\n", - "print(sat_cnf)" + "sat_instance = '''\n", + "c example DIMACS-CNF SAT\n", + "p cnf 3 5\n", + "-1 -2 -3 0\n", + "1 -2 3 0\n", + "1 2 -3 0\n", + "1 -2 -3 0\n", + "-1 2 3 0\n", + "'''" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "With this problem input, we create the corresponding `oracle` component:" + "The CNF of this SAT instance contains 3 variables and 5 clauses:\n", + "\n", + "$(\\neg v_1 \\vee \\neg v_2 \\vee \\neg v_3) \\wedge (v_1 \\vee \\neg v_2 \\vee v_3) \\wedge (v_1 \\vee v_2 \\vee \\neg v_3) \\wedge (v_1 \\vee \\neg v_2 \\vee \\neg v_3) \\wedge (\\neg v_1 \\vee v_2 \\vee v_3)$\n", + "\n", + "It can be verified that this SAT problem instance has three satisfying solutions:\n", + "\n", + "$(v_1, v_2, v_3) = (T, F, T)$ or $(F, F, F)$ or $(T, T, F)$\n", + "\n", + "Or, expressed using the DIMACS notation:\n", + "\n", + "`1 -2 3`, or `-1 -2 -3`, or `1 2 -3`.\n", + "\n", + "\n", + "With this example problem input, we then create the corresponding `oracle` for our `Grover` search. In particular, we use the `LogicExpressionOracle` component provided by Aqua, which supports parsing DIMACS-CNF format strings and constructing the corresponding oracle circuit." ] }, { @@ -75,7 +79,7 @@ "metadata": {}, "outputs": [], "source": [ - "sat_oracle = SAT(sat_cnf)" + "oracle = LogicExpressionOracle(sat_instance)" ] }, { @@ -91,7 +95,7 @@ "metadata": {}, "outputs": [], "source": [ - "grover = Grover(sat_oracle)" + "grover = Grover(oracle)" ] }, { @@ -116,7 +120,7 @@ ], "source": [ "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=100)\n", + "quantum_instance = QuantumInstance(backend, shots=1024)\n", "result = grover.run(quantum_instance)\n", "print(result['result'])" ] @@ -125,9 +129,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As seen above, a satisfying solution to the specified sample SAT problem is obtained, with the absolute values indicating the variable indices, and the signs the `True/False` assignments, similar to the DIMACS format.\n", + "As seen above, a satisfying solution to the specified SAT problem is obtained. And it is indeed one of the three satisfying solutions.\n", "\n", - "A measurements result is also returned where it can be seen, below in the plot, that `result['result']` was the highest probability. But the other solutions were very close in probability too." + "Since we used the `'qasm_simulator'`, the complete measurement result is also returned, as shown in the plot below, where it can be seen that the binary strings `000`, `011`, and `101` (note the bit order in each string), corresponding to the three satisfying solutions all have high probabilities associated with them." ] }, { @@ -136,19 +140,19 @@ "metadata": {}, "outputs": [ { - "ename": "KeyError", - "evalue": "'measurements'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplot_histogram\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'measurements'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mKeyError\u001b[0m: 'measurements'" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt8FPW9//HXR24KAhJMaSIGRDQGsBhBRRS8QUVs1arVWq21rbVqtXqox7aeHsFebIvValtvtaVaradqwXv9lWPpMSp4aZKiQERouAhEjIJIEROIn98f30lcYgLZSfaWvJ+Pxz7Ynfnu8JnZzX7mO9/LmLsjIiIiydkt0wGIiIjkIiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCSG7pkOIJMGDhzoRUVFmQ5DRESyyD//+c+33T1/V+W6dAItKipi3rx5mQ5DRESySF5e3qq2lNMlXBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGNKeQM3sUjNbYWYfmFm5mU3YSdljzGy+mb1jZlvN7DUzu6pZma+b2bNmttHM3jWzv5vZ0anfExER6crSmkDN7GzgFuB6oBSYDzxlZkWtvOXfwC+BicAI4EfAdWZ2aUKZY4EHgOOBI4ClwF/N7IBU7IOIiAikvwY6Dbjb3e9y9yp3vxyoAS5pqbC7l7v7n9x9sbuvcPf7gL8CExLKnOvuv3b3SndfGm1rMzAl9bsjEs/TTz/N4YcfzpgxY7j55ps/tv7WW29l3LhxHH300Zx22mm88cYbTetmzJjB+PHjGT9+PHPmzGla7u786Ec/4rDDDuOII47gzjvvTMu+iHRV3dP1H5lZT2AM8PNmq+YC49u4jdKo7IydFOsJ7A5sTD5KkdRraGjg6quvZs6cORQWFnLCCScwZcoUDjrooKYyn/rUp5g3bx69e/dm1qxZTJ8+nVmzZjF37lwWLlxIWVkZdXV1nHLKKUyaNIl+/fpx//33s3btWl588UV22203amtrM7iXIp1f2hIosDfQDVjfbPl6YNLO3mhma4B8QrzXufsdOyn+I8Kl38da2dZFwEUABQUFVFRUAFBYWEjv3r1Zvnw5AP3792fYsGFUVlYC0K1bN0aPHs3SpUvZsmULACUlJWzYsIH168MuDR48mJ49e1JdXQ3AgAEDKCoqYuHChQD06NGDgw8+mKqqKrZu3QrAiBEjqK2tbfqxGzJkCGbGypUrARg4cCAFBQUsWrQIgF69ejFy5EgWL15MXV0dAKNGjaKmpoZ33nkHgKFDh+LurFq1CoD8/Hzy8/NZsmQJAHvssQclJSW8+uqrbNu2DYDRo0ezevVqNm4M5x3Dhg2jvr6eNWvWADBo0CDy8vKoqqoCoE+fPhQXF7Nw4UIaGhoAKC0tpbq6mk2bNgEwfPhw3n//fdatW0fj8e7Xrx9Lly4FoG/fvhxwwAFUVlbi7pgZpaWlLFu2jM2bNwNQXFzMe++9R01NTaf5nJ599lkGDhxIv3792Lx5M0cccQS//e1vueKKK5o+pz59+rBq1SpKSkro378/y5Yto6KigqqqKkpKSnjllVeajvHDDz/MwQcfzK9//Wtuuukm6urqmj6nDRs26HPS35M+pyQ/p7Yyd29z4fYws0JgLXCMu5clLL8WONfdi3fy3v2APYFxwM+AK9z93hbKXQH8EJjk7i/tKqbS0lKfN29e0vsi0h6PPvoof/vb3/jlL38JwAMPPEB5eTkzZ85ssfzVV1/NJz7xCa666irmzZvHzJkzmTNnDlu3bmXSpEl87Wtf47LLLmP//ffn0ksv5cknn2TgwIH89Kc/Zf/990/nrol0Cnl5eeXuPnZX5dLZBvo20AAMarZ8EPDmzt4YtX++6u53ATfRwiVcM7uSUPuc2pbkKZILHnzwQSorK7n88ssBOP7445k8eTJTpkzhwgsv5LDDDqNbt24A1NfX06tXL+bNm8f555/f9B7ZUSran++66y7GjBlDXl5eU41IOr+0JVB3rwfKgcnNVk0m9MZtq92AXokLzGwaoeZ5srs/1544RVKtoKCAtWvXNr1et24dBQUFHyv3f//3f9x4443cf//99Or10Vf+29/+NmVlZTz88MO4O8OHDwfC5bjPfvazAHzmM59h8eLFKd6T3NPY/vzggw+yYMECZs+ezWuvvbZDmcb25+eee45TTjmF6dOnA+zQ/vy///u/3Hrrrbz33nsAHHHEETz88MPsu+++ad8nyZx098K9CbjAzC40sxIzuwUoBO4AMLM/mNkfGgub2eVm9hkzOyB6fA24Crgvocx/Aj8Fvga8bmafjB7907ljIm116KGHUl1dzapVq6ivr2fOnDlMmbJjp/FXXnmFadOmcf/995Ofn9+0vKGhgQ0bNgCwePFiFi9ezHHHHQfA1KlTefbZZwF4/vnnmxKrfKS8vJz99tuPoUOH0rNnT04//XSeeuqpHcpMmDCB3r17AzB27NimNsfXXnuN8ePH0717d/r06cOIESP429/+BoSkW1TU2mg86azS2YkId3/AzAYC3wcKgEWES66roiLNv4HdCG2eQ4HtwL+A7xIl3Mg3gR6EsaCJ7gEu6MDwRTpE9+7dmTlzJmeeeSYNDQ2ce+65lJSUcP3111NaWspJJ53E9OnT2bJlC1/5yleA0FHj/vvvZ9u2bUydOhUInUbuvPNOuncPf8ZXXnklF110Ebfffjt9+vThlltuydg+Zquamhr22WefpteFhYWUl5e3Wv6+++5j0qTQx3HUqFHMnDmTb37zm2zdupXnnnuO4uJWu25IF5DWBArg7rcBt7Wy7thmr28GPt5IsWOZoR0Vm0i6TJ48mcmTd2zNuOaaa5qeP/zwwy2+b/fdd+eFF15ocV3//v154IHm55ESV2P78xNPPAGE9ufKykqmTJnCwIEDd2h/lq5Jc+GKSJeRqvZn6ZqUQNupPT36pk+fzpFHHskRRxzBd7/7XRqHFJ155plMmDCBI488kmnTpjWNCxOR9klV+7N0TUqg7dCeHn0vvvgiL774Is899xzz58+noqKC559/HoBZs2bx7LPPMn/+fN5++20eeeSRtO+bSGeU2P48btw4TjvttKb258bORIntzxMnTuSLX/wiQFP787hx47jyyit3aH++8847GTlyJOvWrWPChAl861vfytg+SvqkvQ20M0ns0Qc09ehLnJJtwoSPbjYzduxYHnzwQQDMjLq6Ourr63F3tm/f3nS2269fPwC2b9/Otm3bMLM07ZFI55eK9udvfOMbfOMb3+i4ICUnqAbaDi316GucIqsliT36Dj/8cI4++mhKSkooKSnh+OOP36FH3xlnnMGBBx7Innvuyamnnpq6nRARkViUQNOk+Ywy1dXVvP766yxatIjFixdTVlbGggULmsrPnj2bqqoq6urqKCsra22zIiKSIUqg7dCeHn1PPPEEY8eOZc8992TPPfdk0qRJvPzyyzu8b/fdd2fq1KkfG+gtIiKZpwTaDu3p0Td48GDmz5/f1M45f/58DjzwQP7973/z5pthauDt27czd+5cDjhA9wYXEck26kTUDu2ZUebUU0/l2Wef5aijjsLMmu4J+dZbb3HuuedSV1fHhx9+yIQJE5reKyIi2SNttzPLRrqdmYiINJeNtzMTERHpNHQJVyRDrr5nQEq3P/PLG1O6fZGuTjVQERGRGJRARUREYlACFRERiUFtoCLS5aSy/Vltz12HaqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMagXbgfQjDIiIl2PaqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDGlPoGZ2qZmtMLMPzKzczCbspOzpZjbXzGrNbLOZvWhmp+yk/Dlm5mb2RGqiFxERCdKaQM3sbOAW4HqgFJgPPGVmRa285RhgHnByVP4vwMMtJV0zGwbcADybgtBFRER2kO4a6DTgbne/y92r3P1yoAa4pKXC7n6Fu//U3V9y9+Xufh1QDpyWWM7MegD/A/wXUJ3aXRAREUljAjWznsAYYG6zVXOB8Ulsqi+wsdmyHwMr3f2e+BGKiIi0Xfc0/l97A92A9c2WrwcmtWUDZvZNYDBwb8KyTwNnAYe0cRsXARcBFBQUUFFRAUBhYSG9e/dm+fLlAPTv359hw4ZRWVkJQLdu3Rg9ejRLly5ly5YtAJSUlLBhwwZgQFv+69jq6+tZtGgRAL169WLkyJEsXryYuro6AEaNGkVNTQ3vvPMOAEOHDsXdWbVqFQD5+fnk5+ezZMkSAPbYYw9KSkp49dVX2bZtGwCjR49m9erVbNwYzk2GDRtGfX09a9asAWDQoEHk5eVRVVUFQJ8+fSguLmbhwoU0NDQAUFpaSnV1NZs2bQJg+PDhvP/++6xbtw4Ix7tfv34sXboUgL59+3LAAQdQWVmJu2NmlJaWsmzZMjZv3gxAcXEx7733HjU1NUD7Pqf168NXb/DgwfTs2ZPq6nCxYsCAARQVFbFw4UIAevTowcEHH0xVVRVbt24FYMSIEdTW1lJbWwvAkCFDMDNWrlwJwMCBAykoKEjqc4ITkvsiJKmiokKfUyufUypVVFTo7ykDf08d+bvXVububS7cHmZWCKwFjnH3soTl1wLnunvxLt5/BiFxnu3uj0fL8oGFwDnu/ky07G5gb3f/zK5iKi0t9Xnz5sXco49cfU9qE+jMLzevcEtnoO9N5qTy2Ou45768vLxydx+7q3LprIG+DTQAg5otHwS8ubM3mtmZwB+A8xuTZ2QkUAD8zcwal+0WvWc7MNLdl7Y/dBERkR2lrQ3U3esJHYAmN1s1mdAbt0Vmdhah5nmBu/+52eqXgYMJl28bH48ReuIeAqzokOBFRESaSWcNFOAm4F4zewl4HrgYKATuADCzPwC4+/nR6y8QkudVQJmZfTLaTr27b3D3LcCixP/AzN4Furv7DstFREQ6UloTqLs/YGYDge8TLr0uAqa6+6qoSPPxoBcTYrw5ejR6Bjg2tdGKiIi0Lt01UNz9NuC2VtYdu7PXbdz+BXHiEhERSYbmwhUREYlBCVRERCSGpBKomZ0VTVzQ+PpaM1tjZn81s9SOThYREckiydZAZzQ+MbNDgWuAXwI9gBs7LiwREZHslmwnoiFA48QEnwMecfeZZjYX+GuHRiYiIpLFkq2BfkCYzB3CRJ5PR883JSwXERHp9JKtgT4L3GhmzwFjgTOj5QcCb3RkYCIiItks2RroZUA9IXFe7O7rouUnoUu4IiLShSRVA3X3NcBnW1h+ZYdFJCIikgOSHgdqZrub2Zlm9h0z2ytatr+Z5XV8eCIiItkpqRqomQ0ndBzaE9gLeAh4F7gken1hRwcoIiKSjZKtgd4MzCXcw3NrwvLHgOM6KigREZFsl2wv3PHAOHdvSLiBNcBqwm3JREREuoQ4c+H2aGFZEWEsqIiISJeQbAKdC0xLeO1m1g+4Dniyw6ISERHJcslewp0G/N3MlgK7Aw8Aw4H1wFkdHJuIiEjWSnYc6DozOwQ4BziUUIP9DfBHd9+60zeLiIh0IsnWQIkS5azoISIi0iXtMoGa2enA4+6+LXreKnef02GRiYiIZLG21ED/DHwSeCt63hoHunVEUCIiItlulwnU3Xdr6bmIiEhXllRCNLOJZvaxpGtm3cxsYseFJSIikt2SrVH+HWhp0vi9onUiIiJdQrIJ1Ahtnc0NBLa0PxwREZHc0KZhLGb2WPTUgfvMrC5hdTdgFDC/g2MTERHJWm0dB/pO9K8BG9nxTiz1wHPAXR0Yl4iISFZrUwJ1968AmNlK4Ofursu1IiLSpSU7ld91qQpEREQkl7RlJqJXgGPcfaOZvUrLnYgAcPdPdWRwIiIi2aotNdDZQGOnoZ3NRCQiItJltGUmoutaei4iItKVaWo+ERGRGNrSBrrTds9EagMVEZGuoq13YxEREZEESbWBioiISKA2UBERkRg0DlRERCQGjQMVERGJQeNARUREYkhqLtxGZrY/UBK9rHL3f3VcSCIiItkvqQRqZgOB3wGnAB9+tNieAL7q7u+0+mYREZFOJNleuL8FhgMTgN2jx0RgP3Q/UBER6UKSvYR7InCCuy9IWPa8mX0DeLrjwhIREcluydZAa4GWbqb9PqDLtyIi0mUkm0B/ANxsZvs0Loie3xitExER6RLiTCa/H7DSzNZGr/cBPgA+QWgjFRER6fQ0mbyIiEgMmkxeREQkBk0mLyIiEkNSCdTMeprZdWb2upl9YGYNiY9UBSkiIpJtkq2B/hD4MqHX7YfAfwK3EoawXNqxoYmIiGSvZBPoWcDF7n4n0AA86u7fAqYDk9uyATO71MxWRDXYcjObsJOyBWZ2v5m9FtVy726lXD8z+6WZrTOzOjNbbmZnJblvIiIibZZsAh0ELIme/xvYK3r+/4BP7+rNZnY2cAtwPVAKzAeeMrOiVt7SC3gb+CnwYivb7AH8L3AAIcEXAxcAK3a5NyIiIjElO5XfaqAw+nc5YWq/cuBIYGsb3j8NuNvdG+fNvdzMpgCXAN9rXtjdVwLfAjCzM1vZ5leAfGCCu9dHy1a2IRYREZHYkq2BPgycED2/BbjOzFYAd7OLSRTMrCcwBpjbbNVcYHyScSQ6DXge+JWZvWlmS8xsRlQzFRERSYmkaqDu/r2E5382szWE5Pe6uz+xi7fvDXQD1jdbvh6YlEwczQwDjgfuB04GhhI6Nu0JXNW8sJldBFwEUFBQQEVFBQCFhYX07t2b5cuXA9C/f3+GDRtGZWUlAN26dWP06NEsXbqULVvCdMAlJSVs2LABGNCO8Hetvr6eRYsWAdCrVy9GjhzJ4sWLqaurA2DUqFHU1NTwzjthOuKhQ4fi7qxatQqA/Px88vPzWbIkXH3fY489KCkp4dVXX2Xbtm0AjB49mtWrV7Nx40YAhg0bRn19PWvWrAFg0KBB5OXlUVVVBUCfPn0oLi5m4cKFNDSEDtilpaVUV1ezadMmAIYPH87777/PunXrgHC8+/Xrx9KlSwHo27cvBxxwAJWVlbg7ZkZpaSnLli1j8+bNABQXF/Pee+9RU1MDtO9zWr8+fPUGDx5Mz549qa6uBmDAgAEUFRWxcOFCAHr06MHBBx9MVVUVW7eGCysjRoygtraW2tpaAIYMGYKZsXLlSgAGDhxIQUFBUp/TR+eiqVFRUaHPqZXPKZUqKir095SBv6eO/N1rK3P3XZfqAGZWCKwFjnH3soTl1wLnunvxLt7/BPC2u1/QbPnrhNuq7efuDdGyi4BfAHv6TnawtLTU582bF3OPPnL1PalNoDO/vDGl25fM0Pcmc1J57HXcc19eXl65u4/dVblk20Axs0OBK4ER0aIq4BfuXrGLt75N6Lk7qNnyQcCbycaRoAbY1pg8E2LqTaj11rZj2yIiIi1KdiKFc4GXgQLgL9FjEPCSmZ23s/dGHXzK+fhwl8mE3rhxPQ8MN7PEfTmQcIu1t9uxXRERkVYlWwP9MfDf7n594kIz+x7wI+C+Xbz/JuBeM3uJkPguJvTqvSPazh8A3P38hG0fEj3tB3wYva5398bhNLcDlwG3mNmvCW2g1wG37ezyrYiISHskm0DzgQdbWP4Q8N+7erO7P2BmA4HvE2qxi4Cp7r4qKtLSeNDKZq8/C6wiJErc/Q0z+zQhOf+TcDl4FiGhi4iIpESyCfTvwLGEMaCJjgWeacsG3P024LZW1h3bwjJrwzZfoH1DYURERJLSlhtqn57w8ingJ2Y2FnghWjYOOB2Y0eHRiYiIZKm4N9RuGkuZ4Fe0UrMUERHpbNpyQ23dM1RERKQZJUcREZEYkk6gZnaymZWZ2dtmVmtmz5jZ1FQEJyIikq2SnUjhQsKE8v8CvgN8l3DbsIfN7KsdH56IiEh2SnYYy3eAae7+64RlvzOzckIyndVhkYmIiGSxZC/hFhFunt3cU8CQ9ocjIiKSG5JNoKv5+Fy2AJ8mzA4kIiLSJSR7CffnhBtXH8pHE8AfBXwJuLwjAxMREclmyd5Q+04zewv4NmH2IQi3DjvL3R/t6OBERESyVZsTqJl1J1yqLXP3h1MXkoiISPZrcxuou28H5gB9UxeOiIhIbki2E9FCYHgqAhEREcklySbQGcCNZnaame1rZnmJjxTEJyIikpWS7YX7ZPTvHMATllv0ultHBCUiIpLtkk2gx6UkChERkRzTpgRqZr2BG4DTgB7A08C33P3tFMYmIiKStdraBnodcAHhEu7/EGYjuj1FMYmIiGS9tl7CPR34mrv/CcDM/gg8b2bd3L0hZdGJiIhkqbbWQPcFnm184e4vAduBwlQEJSIiku3amkC7AfXNlm0n+U5IIiIinUJbE6AB95lZXcKy3YG7zOz9xgXufkpHBiciIpKt2ppA72lh2X0dGYiIiEguaVMCdfevpDoQERGRXJLsVH4iIiKCEqiIiEgsSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhJD2hOomV1qZivM7AMzKzezCbsof0xU7gMzqzazi5ut72ZmP0zY5goz+5GZdU/tnoiISFeW1gRqZmcDtwDXA6XAfOApMytqpfx+wF+icqXAT4BfmdkZCcW+A3wT+BZwEHBF9Pp7KdoNERER0l1Lmwbc7e53Ra8vN7MpwCW0nPAuBta5++XR6yozOwK4CpgdLRsPPO7uj0evV5rZY8ARKdkDERER0lgDNbOewBhgbrNVcwlJsCVHtlD+r8BYM+sRvX4OOM7MDor+nxHA8YSaq4iISEqkswa6N9ANWN9s+XpgUivv+STwdAvlu0fbqwF+BvQFlphZQ7Tux+5+W0sbNLOLgIsACgoKqKioAKCwsJDevXuzfPlyAPr378+wYcOorKwEoFu3bowePZqlS5eyZcsWAEpKStiwYQMwoE0HIK76+noWLVoEQK9evRg5ciSLFy+mrq4OgFGjRlFTU8M777wDwNChQ3F3Vq1aBUB+fj75+fksWbIEgD322IOSkhJeffVVtm3bBsDo0aNZvXo1GzduBGDYsGHU19ezZs0aAAYNGkReXh5VVVUA9OnTh+LiYhYuXEhDQwMApaWlVFdXs2nTJgCGDx/O+++/z7p164BwvPv168fSpUsB6Nu3LwcccACVlZW4O2ZGaWkpy5YtY/PmzQAUFxfz3nvvUVNTA7Tvc1q/Pnz1Bg8eTM+ePamurgZgwIABFBUVsXDhQgB69OjBwQcfTFVVFVu3bgVgxIgR1NbWUltbC8CQIUMwM1auXAnAwIEDKSgoSOpzghOS+yIkqaKiQp9TK59TKlVUVOjvKQN/Tx35u9dW5u5tLtweZlYIrAWOcfeyhOXXAue6e3EL73kduM/df5CwbCLwDFDo7jVm9gXgBuA/gcXAIYR21v9099/tLKbS0lKfN29eu/ft6ntSm0BnfnljSrcvmaHvTeak8tjruOe+vLy8cncfu6ty6ayBvg00AIOaLR8EvNnKe95spfz2aHsQkufP3f1P0etXzWwIoU11pwlUREQkrrS1gbp7PVAOTG62ajKhl21LFrRS/h/uvi163ZuQmBM1oDGuIiKSQunuhXsTcK+ZvQQ8T+hlWwjcAWBmfwBw9/Oj8ncAl5nZzcCdwFHABcA5Cdt8HPiuma0gXMItJfT2/UOqd0ZERLqutCZQd3/AzAYC3wcKgEXAVHdfFRUpalZ+hZlNBX5BGOqyDviWu89OKHY58EPgNuAThI5FdwE/QEREJEXSPltP1Du2xR6y7n5sC8ueAQ7dyfY2A1dGDxERkbRQO6GIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiKSI55++mkOP/xwxowZw8033/yx9XV1dXz1q19lzJgxTJo0idWrVwNQXl7OxIkTmThxIhMmTOCJJ55oes9ll13GgQceyPjx49O2H52FEqiISA5oaGjg6quv5sEHH2TBggXMnj2b1157bYcy9913H3vttRfl5eVccsklzJgxA4CSkhLmzZtHWVkZDz30ENOmTWP79u0AfPGLX+Shhx5K9+50CkqgkrPino3//e9/57jjjuOoo47iuOOOo6ysrOk9c+bM4eijj+bII49s+vERyQbl5eXst99+DB06lJ49e3L66afz1FNP7VDmL3/5C1/4whcAOPXUUykrK8Pd6d27N927dwfC34WZNb1n/PjxDBgwIH070okogUpOas/Z+MCBA7n//vt5/vnnufXWW7nkkksA2LBhA9OnT+eRRx5hwYIFvPXWWzzzzDPp3jWRFtXU1LDPPvs0vS4sLKSmpqbVMt27d6dfv35s2LABgH/84x8ceeSRHH300dx4441NCVXiUwKVnNSes/FPfepTFBQUAOHS1tatW6mrq2PlypXsv//+7L333gAcc8wxPP744+ndsRyRitp/fX09V155JYcddhhHHHEEjz32WNr2pysYO3YsCxYs4Omnn+bmm2/mgw8+SHsMne17o1MQyUktnY2Xl5e3WibxbHzgwIFNZR577DFGjx5Nr17QqSfNAAATkUlEQVS9GDZsGMuWLWP16tUUFhby5JNPsm3btvTsUA5prP3PmTOHwsJCTjjhBKZMmcJBBx3UVCax9j979mxmzJjBrFmzmmr/BQUFLFmyhM9//vMsXrwYgBtvvJH8/HxefvllPvzwQzZu3JipXcxKBQUFrF27tun1unXrmk4Em5fZZ5992L59O++99x55eXk7lCkuLqZPnz5UVVVRWlqaltihc35vVAOVLquqqorrrruOm266CYC99tqLG2+8ka9+9atMnTqVoqIiunXrluEos08qav8Af/zjH7nyyisB2G233XY40RE49NBDqa6uZtWqVdTX1zNnzhymTJmyQ5mTTjqJP/3pTwA8+uijTJgwATNj1apVTZ2G3njjDZYtW0ZRUVFa4++M3xslUMlJyZyNAx87G1+7di3nn38+t912G/vtt1/Te6ZMmcLTTz/N3LlzGT58OPvvv38a9ia3tLctrlFi7X/Tpk0AXH/99Rx77LFccMEFvPXWWynek9zSvXt3Zs6cyZlnnsm4ceM47bTTKCkp4frrr29KROeddx4bNmxgzJgx3H777UyfPh2AF154gQkTJjBx4kS+9KUvccMNNzQlmgsvvJATTzyR5cuXM3LkSO69996UxN8Zvze6hCs5KfFsvKCggDlz5vCb3/xmhzKNZ+OHH374DmfjmzZt4gtf+ALXXnst48aN2+E9tbW15Ofn8+677zJr1ixmzZqVzt3qMhpr/7NnzwbCCc66des4/PDD+fGPf8ytt97Ktddeyx133JHhSLPL5MmTmTx58g7Lrrnmmqbnu+++O3fffffH3nf22Wdz9tlnt7jN3/72tx0aYypl2/dGNVDJSe05G7/rrrtYsWIFN9xwQ9Pg8traWgC+973vMW7cOKZMmcIVV1zB8OHDM7aP2SoVtf+8vDx69+7NZz/7WSBcvlu4cGE6dkfSpDN+b1QDlZwV92z8qquu4qqrrmpxm7l0Np4pqaj9mxknnngizz33HBMnTqSsrIzi4uJ075qkUGf83iiBikhSEmv/DQ0NnHvuuU21/9LSUk466STOO+88Lr74YsaMGcOAAQOaTkwSa/833HADALNnzyY/P58ZM2Zw8cUXc80117D33nvz61//OpO7mbWuvie1kx7M/HJqerF2xu+NuXva/rNsU1pa6vPmzWv3dnL1Cw1hXNY111xDQ0MDX/rSl5p6szWqq6vjkksuYeHChQwYMIBZs2ZRVFTEhg0buOCCC6isrOScc85h5syZAGzevJmTTz656f3r1q3j85//PD/5yU9Stg+5Kpe/N7kulcc+1cdd35vUy8vLK3f3sbsqpxpoF9aecVm9evXimmuuoaqqiqqqqqbyffv23WGQ83HHHdfUPpEKufxDKCK5TZ2IurD2jMvq06cP48aNo1evXq1uf/ny5dTW1nLkkUemdD9ERDJBNdAurKNm82nNnDlz+NznPrfDxNXSOegyosTR2b43qoFKysyZM4czzjgj02GIiKSEEmgX1t5xWTuzaNEiGhoaOOSQQzo2aBGRLKEE2oW1Z27NXZk9ezann356SuIWEckGagPtwtozLgtg9OjRbN68mW3btvHkk08ye/bsph68jzzyCA888ECmdk1EJOWUQLu4uLP5ADudMquysrJD4hMRyVa6hCsiIhKDaqBdXGfrVi4iki6qgYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMaQ9gZrZpWa2wsw+MLNyM5uwi/LHROU+MLNqM7u4vdsUERFpr7QmUDM7G7gFuB4oBeYDT5lZUSvl9wP+EpUrBX4C/MrMzkgok9Q2RUREOkK6a6DTgLvd/S53r3L3y4Ea4JJWyl8MrHP3y6PydwH3AFe1Y5siIiLtlrYEamY9gTHA3Gar5gLjW3nbkS2U/ysw1sx6xNymiIhIu5m7p+c/MisE1gLHuHtZwvJrgXPdvbiF97wO3OfuP0hYNhF4BigELMY2LwIuil4WA0s7YPeStTfwdgb+346g2DMnl+PP5dght+NX7Mkb4u75uyrU5e7G4u6/AX6TyRjM7B/uPjaTMcSl2DMnl+PP5dght+NX7KmTzgT6NtAADGq2fBDwZivvebOV8tuj7VmMbYqIiLRb2tpA3b0eKAcmN1s1mdBztiULWin/D3ffFnObIiIi7ZbuS7g3Afea2UvA84RetoXAHQBm9gcAdz8/Kn8HcJmZ3QzcCRwFXACc09ZtZqmMXkJuJ8WeObkcfy7HDrkdv2JPkbR1Imr6D80uBa4GCoBFwH80dgAys/8DcPdjE8ofA/wCGAmsA37m7ne0dZsiIiKpkPYEKiIi0hloLlwREZEYlEBFRERiUALNADOzTMfQFem4i0hHUgLNAFfDc0Y0Hncl0vQzM/3WZEjisdd3v2OpE1GamFkv4FPA54BNwGJgOfCGu28xM8v2xGpm3Qh56MNMx5IMM9sTmAh8AdgILANeBxa5+7pMxtZWZtYd+DDXjr1kBzPr6+6bMx1HZ6MEmiZm9kvgdMKdYgYAQwnDch4Bbnb36sxFt3NmNsbdy5st60b4Qc/6L5CZ3UNIoMsIx35fQiL9J3CXu8/LYHg7ZWZHu/tzzZblTDI1s32BrwKHAf8izD29GHjF3Tdm64ljYly5dLwTmVkJ4W5VpYST9dXAQqDM3d+IymTl8c8VSqBpYGYjgBeAM4Fyd3/HzPKBrwHfAD4JXEH4Mc+qD8TMDiD86C0h3OXmXnevTFhvhAk5SoF/RrNDZY3o2L9ImJ3qZXdvMLP+wFnAhcBY4AfAj8iyEwIzO4hw3LcATwK/cvfnE9Yb0AM4EXjJ3ddnJNBWRPfznQ3sAbwMjCJMs/kO8Cxwk7v/K3MRti76+yxpdpMKA7oBDdn0PWmJme1PuJfyesIEMwcRfmd6EZLpb929+V2ssoKZDSL8vf7F3TfspFwPd9+Wvsha4O56pPgBXEM462t83b3Z+uuB14DCTMfaQuzXEmpuvyBMj7iWcDJwNbBvVGYf4ENgcKbjbSH+K4HnEl73bLb+YuAN4MBMx9rK96YS+B4h4WwnzPH8c2D/qMwnomO/b6bjbSH+O4DHgU8mLCsCvgOsAmqBUzMdZyux3xod1zej5yOard8t2pfPA90yHW8L8d8eHfu+CcsGEWZyKyOclH0t03G2EvuvomO/AXgImAr0alamiHBf6F6ZiLHxoYb99KgCCsxsOIC7bzez7ma2e7T+LuB9Qg012xQTzmR/Bnyd8KO+CDgPWGBmjxOmWaxy9zUZi7J1C4EhZnYChDmZo2O/R7T+IcKP+TmtbSCD9iHUHu4ETgWOB2YBJwPLzOwV4E+EY/9GxqJs3UjgGXd/M7p/b3d3X+3uP3P3IcDTwMVmtlsWdm45jHACcDtwNLDIzJab2TVmlufhcu6XCTOjNWQy0FYMASrcfbOZdTOzbu6+3t3vdveJhH37upn1znCcLRlL+L35NqHJ5WFghZn9yswOjcp8HbjY3esyFCOgXrjpUkaoPTxhZmeZWS933+7uHwC4+wrCpaGMfhmai9p+ngTedPc33X2xu99DqH1+A/gpsJVwhnhT5iLdqQWE2v19Znaxme0RHfutAO7+DrAnWXa/xKiN+UlgibtviB5lwAzCJdtTCJemjyXUSLPR34Dzog4s26ITxx4JJy+3AgcCh3tUrcgGZjaE0Eb+EvBDwvf7JOCvhCsWb5vZ88B/EGpL2eivwFfM7CB3b/DQdNHTzHpG639HqJEekbkQPy66b/QaYIW7/x6YAowGbgEmAC+b2auEtt2MH3u1gaZJ9MX4BXAw4QvyEjAvev5N4IvAUHffkrEgd6GlNgczOx34M7Cnu7+fmch2LvrB/jGhhr+VcAn6UeDfwFcINYzibI0fwlAEb9aJxcxOBJ4iS4+9mY0hXEZ8E5jh7o81W38QoSNXXjbFb2b9CL3lV7r7MwnL9yDcqGIMcCnhe9O38WQsm0Ttz3OAvYAfuvusZutHARXAXll27PsQrrS85e4vNlvXm9COfhWhQ2bGj70SaBqZ2UDgM4QG8mGEy6MDgGeAO939TxkM72Na+tGOlncn6khhZj8HxnrCDQCySXTpqiEaynI04Sx2HHAoodb/NKHz1lMZDPNjokua1tLxTygzAzjS3U9MW2Bt1Ni7M2q2mEk45o2dh54CRhBOaFa4+1mZi3TnGjsOufv2Zsv/COyTrd97CENXgJ8A5xI6m80lfN9HEf4W/ukf3fkqK7XUS9jM7ib0AZiQmagSYlECTS0zGwwMj15uIfSq3EpIoHsS2j7f9p30NsuUhNiN0Ki/1N3fTFhvhLa5te7+cmaiTE50CSuf8BnsDmzK5lr/zpjZsUCtuy/OdCw7E7X1TyKcOB5OaBvdQGj7v8/dV2UwvDZJ7IFL6FVcBvzE3WdnNLAWRLHuFp047k646jWRULM7FFgB3AfMSfx7zgbRpA/e2iX96CrAo8Dt7v5wWoNrKR4l0NQxs0sIY+BGExJlNeGS7d+BP2dpxw/gY7FvIXR9X0O4/PmIuy/NYHi7FLV1bk14vdM/zGzSPPZcEx3rUwknKnsQxn8+6+6boh90J1x+y6p2Z/hY7L0Jvc6fcfe3Esr0Aia5+5OZiTJ5ieO2zay/u2/KdExxmFkPwhWvBZmOBZRAUya6XLscuJHQky+fcBZ+LOHy1TrgW+6+JNsGM+8i9hJCIv2PKPZu2dYL0cwGEHrfPkk4057feHwTE2k00HyNZ9EMLbuIPXFwfwlQ4+7vZizYFkSXDX8HHEe4arGWcAXjfcLlw/vcfVlUtsUmgkxpIfY1hGT/AaGZ5V53fy1zEe5clFz2A1a11Ds1235nEu0q9qzVfFyLHh02luly4MVW1h1NaAuqBvbOdKydKfaE+OsIHbUaCDWgHxA6CjWW2ZcwxnJYpuPtLLFHsf0X4QTgsOj1QYQhT7cD5YRORfmZjjNG7C8Dj2Vr7FG8VxKuFv0e+Cxh4oRuzcr0I/Qo7pHpeGPGfjLNxnJn8qFhLKlTD/SNerthZr0au5B7mJrtXMKZ7aczF2Krcjl2CHMO/57QYasUeJAwznOJmb1gZhcRfhgP8OybQjGXY4cw7OAej9rE3f01d78PuIww7OMg4N4MxrczO4v924SrL9kaO8DZhBOv4YQpQhcAN5jZ0RZm34LQ23+6Z3oGn49ra+z/7Vk025kSaOr8mXAZ6MpoHFydh0H8uwG4+2rgXWBwJoNsRc7GHrVPLSFM0v+Wu7/i7t8jDM4+MVo3gzCs5WcZC7QFuRw7NPXOXgScYWEqPKJB/Lt5GItYRhhHOdjMRmcy1uZyOXZomnpwG6FH+QTCRAq/I5yIlQHzzOw7hJrei61uKANyOfaMV4E744PQ5mPAaYRZbjYTvhBj+GgKsPOi5UMzHW9niT1hH3oRTR9H6Dm5W7P1x5K9Uw/mbOxRfOMIl51/BgxqYf2+hPG3+2Q61k4WewGhhn9iC+tKCZNWvBN9d7Iq/lyOXZ2IUsjM9iIknPGEgdlHRaveJCSpe919Rmai27lcjT1h/OEwYIsnTLCesO5a4AJ3H5a5SD8ul2OHpg5auxEmp7iecJOB2cADhDuBfIpQqxjh7odlKs6W5HLsjaIhHu7uH0RDWYAd7oP7Y2Cqu5dmKsbW5GrsSqAdzMw+AXyJ0GbyNmG84bvAc4QhID0I1/n/n7u/nqk4W5LLscMO8U8D3iJMn1hDmO92jkf3XSXMo7nO3Z/IWLDN5HLsLYlOwC4gtFsdQrhi8QGhM85PvNksM9kkx2NvsaethVl8KoDfu3vWXf6H3IxdCbSDRbNkjCT0NtwA5BEGMh9I+GH8frb+AeZy7NBq/KWEjitrgBs8e2/hdDc5Gjs0TX+3OfEHMKrV7U6YMGQUoVaddd+fXI4dWo6/hTK7Ezrq/I9nUSecXI4dlEA7VFRD2Ey41FCWsKyIMGnzhYQZiM5y94qMBdqCXI4ddhr/YELb1tcJnRPOybb4czn2RmZ2J6EX5UuEsXzvtVBmgGfhTbRzOXZoc/x7eZaNGYbcjh1QJ6KOfBBqEK8C41pZ3wv4B+EyUMbj7SyxtzH+ntkafy7HHsV3DqGDx7uE8cF3Eib7Hg7sEZXZkzA84eBMx9tZYt9J/J8D9k+Iv3H6u1GZjrezxN74UA20A0UN4U8QpgA7H/iXf/wOGpcTbmR7SAZCbFUuxw65HX8uxw5gZncRJn2YSUg+Xyb8CC4l3Ev2b4QbJ9zi7j1b204m5HLskNvx53LsjTQOtAN5mL/0vwhnTX8AzjezfS3cCaSxMfwYwnizrJLLsUNux5/LsUfjJ1cA77p7tbv/3N0PJtyQ+hnCj+KDhHs3ZtUkBLkcO+R2/LkceyLVQFPAwgw+/0246fEWwqwatYT5ZGuAC9391cxF2Lpcjh1yO/5cjd3C/L2D3P01CzNWbfOEHxYzOxv4H+BQd/9npuJsSS7HDrkdfy7H3kgJNIWioQknEyYl+IBQg3jIs3hC6ka5HDvkdvy5HHujqBerebil1tcJl+F6Zzqutsjl2CG348+12JVA08Sy7M4Tycjl2CG348/l2BuZ2TTCxOA3ZDqWZOVy7JDb8edC7EqgIpJSFm5V1ZCLJwK5HDvkdvy5ELsSqIiISAzqhSsiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDP8ftxy9AiT3qKkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "plot_histogram(result['measurements'])" + "plot_histogram(result['measurement'])" ] }, { @@ -160,11 +164,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VuWZ//HPZVgECkIwg0FkK5oGUAwwjpZNW2m1drHIz2Vwa8e6tVrHsXS0/hRra6euOA4uhdZ1nKoF9/KTUhyCSrVNkLJECg2LQKRsAmULptfvj/skfQhJyHOSZ4Pv+/V6XnnOOfc5uc55luu5z32f+5i7IyIiIsk5ItMBiIiI5CIlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkhjaZDiCTunfv7r179850GCIikkXef//9Te5ecLByh3UC7d27N3PmzMl0GCIikkXy8/NXN6ecTuGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAicliZPXs2p5xyCsOGDWPy5MkHLH/88ccZMWIEo0eP5uyzz+aDDz6oW/bAAw8wbNgwTjnlFH7729/ut15NTQ1jxozhwgsvTPk+SHZQAhWRw0ZNTQ0TJ07k+eefZ/78+UyfPn2/BAlw3nnn8fbbb1NaWsr111/PrbfeCsAHH3zAjBkzeOedd3jhhRf43ve+R01NTd16jz76KCeccEJa90cySwlURA4bZWVl9OvXj759+9KuXTvGjRvHzJkz9yvTpUuXuue7du3CzACYOXMm48aNo3379vTp04d+/fpRVlYGwLp16/jNb37DJZdckr6dkYxrk+kARETSpaqqimOPPbZuumfPnnVJMNG0adN4+OGHqa6u5uWXX65bd/jw4futW1VVBcAtt9zCpEmT+Otf/5riPZBsohqoiEg9V1xxBeXl5UyaNIn77ruvybJvvPEGBQUFnHzyyWmKTrJF2hOomV1rZivNbI+ZlZnZqCbKjjGzd8xss5ntNrMPzOymemW+ZWbzzGyrmX1sZm+a2cjU74mI5JrCwkLWrVtXN71+/XoKCwsbLT9u3Dhef/31Jtd99913mTlzJkOGDOGKK65g3rx5XHXVVanbCckaaU2gZnYB8CBwF1ACvAPMNLPejazyV+A/gdHAQOBHwB1mdm1CmdOB54DPAf8ELAPeMLPjU7EPIpK7hg4dSmVlJatXr6a6upoZM2Zw1lln7Vfmz3/+c93zWbNm8elPfxqAs846ixkzZrB3715Wr15NZWUlw4YN47bbbmPJkiUsXLiQadOmMWrUKB577LG07pdkRrrbQG8EnnD3qdH0dWZ2FnANcHP9wu5eBiQ2UKw0s3HAKODhqMyExHXM7BrgXOAsYHmr74GI5Kw2bdpw9913M378eGpqapgwYQLFxcXcddddlJSUcPbZZzN16lTmzp1L27Zt6dq1K1OmTAGguLiYc889l9NOO61uO3l5eRneI8kkc/f0/COzdsAu4CJ3fyFh/hRgsLuPacY2SoCZwCR3f7SRMu2BDcB33P2ZprZXUlLic+bMSWIvRETkUJefn1/m7sMPVi6dNdCjgTxCcku0ATizqRXNbC1QQIj3jsaSZ+RHhFO/rzSyrSuBKyG0aZSXlwOhR13Hjh1ZsWIFAEcddRT9+/dnwYIFAOTl5TFkyBCWLVvGzp07gfCLdMuWLWzYEHapV69etGvXjsrKSgC6detG7969WbhwIQBt27blxBNPpKKigt27dwMwcOBANm7cyMaNGwHo06cPZsaqVasA6N69O4WFhSxevBiA9u3bM2jQIJYsWcLevXsBGDx4MFVVVWzevBmAvn374u6sXr0agIKCAgoKCli6dCkAHTp0oLi4mEWLFrFv3z4AhgwZwpo1a9i6dSsA/fv3p7q6mrVr1wLQo0cP8vPzqaioAKBTp04UFRWxcOHCumvhSkpKqKysZNu2bQAMGDCAXbt2sX79emqPd5cuXVi2bBkAnTt35vjjj2fBggW4O2ZGSUkJy5cvZ8eOHQAUFRWxffv2ut6Oep30Oul10uuU6tepudJZA+0JrAPGuHtpwvzbgAnuXtTEuv2ATwGnAj8FvuvuTzdQ7rvAncCZ7v7ewWJSDVREROrLxhroJqAG6FFvfg/go6ZWdPeV0dNFZtYDmATsl0DN7AZC8jy7OclTRESkJdLWC9fdqwkdgsbWWzSW0Bu3uY4A2ifOMLMbCcnzHHd/qyVxioiINEe6e+HeDzxtZu8BbwNXAz2BRwHM7CkAd780mr4OWEm4NAXC5Sw3EfXAjcp8D/gxcDHwJzM7Jlq02923pXqHRETk8JTWBOruz5lZd+BWoBBYDHzJ3VdHRepfD5pHaPPsC3wC/Bn4d6KEG/k20JZwLWiiJ4HLWzF8ERGROmnrRJSN1IlIRETqa24nIo2FKyIiEoMSqIiISAxKoCIiIjEogYqIiMSgG2qLZMDs2bO55ZZbqKmp4ZJLLuGGG27Yb/mUKVN4+umnadOmDUcffTQPPfQQxx13HPPmzeMHP/hBXbnly5czbdo0zjnnHObOncvtt9/O3/72Nzp16sSUKVPo379/unctJ0x8slvKtn33ZVtTtm3JLqqBiqRZTU0NEydO5Pnnn2f+/PlMnz6dDz74YL8yJ510EnPmzOGtt97iq1/9KrfffjsAo0aNorS0lNLSUl5++WU6dOjAGWecAcBNN93EY489RmlpKePHjz/ojaBFpGWUQEXSrKysjH79+tG3b1/atWvHuHHjmDlz5n5lRo0aRceOHQEYPnx43QDiiV5++WXOPPPMunJmVjdo+Pbt2znmmGMOWEdEWo9O4YqkWVVVFccee2zddM+ePSkrK2u0/DPPPMOZZx54w6IXX3yRa6/9+73lH3zwQS644AKOPPJIOnfuzKxZs1o3cBHZj2qgLTR79mxOOeUUhg0bxuTJkw9YPmXKFE499VRGjhzJueeey4cffgjAvHnzGD16dN2jsLCQ119/HYDrrruOUaNGMXLkSC677DL++te/pnWfJHs8//zzLFiwgOuuu26/+R999BFLly7lc5/7XN28Rx55hOeee44lS5bwz//8z9x6663pDlfksKIE2gKpasv68Y9/zLx583jrrbfo1asX06ZNS/u+SeoUFhaybt26uun169dTWFh4QLn//d//5b777uPZZ5+lffv97p/ASy+9xDnnnEPbtm0B2LRpE4sXL2b48DB4yrhx43jvPd2USCSVlEBbIFVtWV26dAHA3dmzZw9mluI9kXQaOnQolZWVrF69murqambMmMFZZ521X5k//vGP3HjjjTz77LMUFBQcsI3p06dz3nnn1U137dqV7du3190Y+c033+SEE05I7Y6IHObUBtoCqWrLAvj2t7/N7NmzKSoq4s4772y9oCXj2rRpw91338348eOpqalhwoQJFBcXc9ddd1FSUsLZZ5/N7bffzs6dO/nGN74BQK9evXj22WcBWLNmDevXr2fEiBH7bXPy5MlcdtllHHHEEXTt2pWHHnooI/sncrhQAk2T2ras1157bb/5DbVlQWg7ramp4fvf/z4vvvgiEyZMSGe4kmJjx45l7Nj9b417yy231D1/8cUXG123d+/eLFmy5ID5X/7yl/nyl7/cekGKSJN0CrcFUtGWlSgvL49x48bx6quvtn7wIiLSIkqgLZCKtix3p7Kysu75zJkzOf7441O7IyIikjSdwm2BVLRluTvXXnstO3bswN0ZPHgw9957b0b2T0REGqcbauuG2iKHHY2FK03RDbVFRERSSAlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRg0kIJIhqTyWkTQ9YgiqaYaqIiISAxKoCIiIjEogYqIiMSgNtBWoLYsEZHDj2qgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhJD2hOomV1rZivNbI+ZlZnZqCbKjjOzWWa20cx2mNm7ZvbVJspfZGZuZq+lJnoREZEgrQnUzC4AHgTuAkqAd4CZZta7kVXGAHOAc6LyvwZebCjpmll/4B5gXgpCFxER2U+6a6A3Ak+4+1R3r3D364Aq4JqGCrv7d939P9z9PXdf4e53AGXAuYnlzKwt8D/AD4DK1O6CiIhIGhOombUDhgGz6i2aBXw2iU11BrbWm/djYJW7Pxk/QhERkeZrk8b/dTSQB2yoN38DcGZzNmBm3wZ6AU8nzPsCcD5wcjO3cSVwJUBhYSHl5eUA9OzZk44dO7JixQoAjjrqKPr378+CBQsAyMvLY8iQISxbtoydO3cCUFxczJYtW4BuzfnXsVVXV7N48WIA2rdvz6BBg1iyZAl79+4FYPDgwVRVVbF582YA+vbti7uzevVqAAoKCigoKGDp0qUAdOjQgeLiYhYtWsS+ffsAGDJkCGvWrGHr1vDbpH///lRXV7N27VoAevToQX5+PhUVFQB06tSJoqIiFi5cSE1NDQAlJSVUVlaybds2AAYMGMCuXbtYv349EI53ly5dWLZsGQCdO3fm+OOPZ8GCBbg7ZkZJSQnLly9nx44dABQVFbF9+3aqqqqAlr1OGzaEt16vXr1o164dlZXhZEW3bt3o3bs3CxcuBKBt27aceOKJVFRUsHv3bgAGDhzIxo0b2bhxIwB9+vTBzFi1ahUA3bt3p7CwMKnXCT6f3BshSeXl5XqdGnmdUqm8vFyfpwx8nlrze6+5zN2bXbglzKwnsA4Y4+6lCfNvAya4e9FB1j+PkDgvcPdXo3kFwELgInefG817Ajja3b98sJhKSkp8zpw5Mffo7yY+mdoEevdl9SvccijQ+yZzUnnsddxzX35+fpm7Dz9YuXTWQDcBNUCPevN7AB81taKZjQeeAi6tTZ6RQUAh8Fszq513RLTOJ8Agd1/W8tBFRET2l7Y2UHevJnQAGltv0VhCb9wGmdn5hJrn5e7+q3qLfw+cSDh9W/t4hdAT92RgZasELyIiUk9SNdAomX3s7rOi6dsI7YlLCAmu6iCbuB942szeA94GrgZ6Ao9G23sKwN0vjaYvJCTPm4BSMzsm2k61u29x953A4noxfgy0cff95ouIiLSmZGugk2qfmNlQ4BbgP4G2wH0HW9ndnwNuAG4F3gdGAl9y99VRkd7Ro9bVhCQ/mXC5S+1jRpJxi4iItKpk20D7ALVtil8HXnL3u81sFvBGczbg7g8DDzey7PSmppu5/cuTXUdERCRZydZA9xCuw4TQB3929HxbwnwREZFDXrI10HnAfWb2FjAcGB/NPwH4sDUDExERyWbJ1kC/A1QTEufV7r4+mn82zTyFKyIicihIqgbq7muBrzQw/4ZWi0hERCQHJH0dqJkdaWbjzez7ZtY1mvdpM8tv/fBERESyU7LXgQ4gdBz6FNAVeAH4mHA3la7AFa0doIiISDZKtgY6mXD3lB7A7oT5rwBntFZQIiIi2S7ZXrifBU5195qEsWcB1hBGFBIRETksxBkLt20D83oTrgUVERE5LCSbQGcBNyZMu5l1Ae4AXm+1qERERLJcsqdwbwTeNLNlwJHAc8AAwk2xz2/l2ERERLJWsteBrjezk4GLgKGEGuzPgP92991NriwiInIISfqG2lGi/EX0EBEROSwdNIGa2TjgVXffFz1vlLvrNmMiInJYaE4N9FfAMcBfoueNcSCvNYISERHJdgdNoO5+REPPRUREDmdJJUQzG21mByRdM8szs9GtF5aIiEh2S7ZG+SbQ0KDxXaNlIiIih4VkE6gR2jrr6w7sbHk4IiIiuaFZl7GY2SvRUweeMbO9CYvzgMHAO60cm4iISNZq7nWgm6O/Bmxl/zuxVANvAVNbMS4REZGs1qwE6u7fADCzVcC97q7TtSIiclhLdii/O1IViIiISC5pzkhEfwTGuPtWM1tEw52IAHD3k1ozOBERkWzVnBrodKC201BTIxGJiIgcNpozEtEdDT0XERE5nGloPhERkRia0wbaZLtnIrWBiojI4aK5d2MRERGRBEm1gYqIiEigNlAREZEYdB2oiIhIDLoOVEREJAZdByoiIhJDUmPh1jKzTwPF0WSFu/+59UISERHJfkklUDPrDvwc+Crwt7/PtteAb7r75kZXFhEROYQk2wt3GjAAGAUcGT1GA/3Q/UBFROQwkuwp3C8Cn3f3+Qnz3jazq4DZrReWiIhIdku2BroRaOhm2rsAnb4VEZHDRrIJ9IfAZDM7tnZG9Py+aJmIiMhhIc5g8v2AVWa2Lpo+FtgD/AOhjVREROSQp8HkRUREYtBg8iIiIjFoMHkREZEYkkqgZtbOzO4wsz+Z2R4zq0l8pCpIERGRbJNsDfRO4DJCr9u/Ad8DphAuYbm2dUMTERHJXskm0POBq939MaAGeNndrwduB8a2dnAiIiLZKtkE2gNYGj3/K9A1ev7/gC+0VlAiIiLZLtkEugboGT1fQRjaD+A0YHdrBSUiIpLtkk2gLwKfj54/CNxhZiuBJ2jmIApmdq2ZrYw6IZWZ2agmyhaa2bNm9kHUUemJRsp1MbP/NLP1ZrbXzFaY2flJ7ZmIiEgSkhpM3t1vTnj+KzNbC3wW+JO7v3aw9c3sAkLivRZ4K/o708wGuvuaBlZpD2wC/gO4spFttgV+A2whtNGuBXoBe5PYNRERkaTEuqF2LXf/HfC7JFa5EXjC3WtvfXadmZ0FXAPcXL+wu68Crgcws/GNbPMbQAEwyt2ro3mrkohJREQkaUkPpGBmQ83sKTP7Q/R42syGNmO9dsAwYFa9RbMItdi4zgXeBh4ys4/MbKmZTYpqpiIiIimRVA3UzCYATwFzgF9Hs08F3jOzy939mSZWPxrIAzbUm78BODOZOOrpD3wOeBY4B+hLuDb1U8BN9Qub2ZVEp4MLCwspLy8HoGfPnnTs2JEVK1YAcNRRR9G/f38WLFgAQF5eHkOGDGHZsmXs3Bnu6FZcXMyWLVuAbi0I/+Cqq6tZvHgxAO3bt2fQoEEsWbKEvXvDWerBgwdTVVXF5s3hjnJ9+/bF3Vm9ejUABQUFFBQUsHRp6EDdoUMHiouLWbRoEfv27QNgyJAhrFmzhq1btwLQv39/qqurWbt2LQA9evQgPz+fiooKADp16kRRURELFy6kpiaMoVFSUkJlZSXbtm0DYMCAAezatYv169cD4Xh36dKFZcuWAdC5c2eOP/54FixYgLtjZpSUlLB8+XJ27NgBQFFREdu3b6eqqgpo2eu0YUN46/Xq1Yt27dpRWVkJQLdu3ejduzcLFy4EoG3btpx44olUVFSwe3foGzdw4EA2btzIxo0bAejTpw9mxqpVqwDo3r07hYWFSb1Of+9OkBrl5eV6nRp5nVKpvLxcn6cMfJ5a83uvuczdD16qtrDZKuBn7n5Xvfk3A1e5e98m1u0JrAPGuHtpwvzbgAnuXnSQ//0asMndL683/0/AkUA/d6+J5l0JPAB8ypvYwZKSEp8zZ05T/7ZZJj6Z2gR692VbU7p9yQy9bzInlcdexz335efnl7n78IOVS/YUbgHwfAPzXyDczqwpmwiDL/SoN78H8FGScSSqInRiShxKsALoSKj1ioiItLpkE+ibwOkNzD8dmNvUilEHnzIOHLFoLPBOknEkehsYYGaJ+3ICsIuQtEVERFpdc26oPS5hcibwEzMbzt97354KjAMmNeP/3Q88bWbvERLf1YSBGR6N/tdTAO5+acL/Pzl62gX4WzRd7e61IyI9AnwHeNDM/ovQBnoH8HBTp29FRERaIu4Ntes64iR4CHi4qQ25+3Nm1h24FSgEFgNfcvfVUZHeDay2oN70V4DVhESJu39oZl8gJOf3CaeDfwH8qKlYREREWqI5N9Ru1XuGuvvDNJJo3f30BuZZM7b5O1p2KYyIiEhSdENtERGRGOIMpHCOmZWa2SYz22hmc83sS6kITkREJFsllUDN7ArCgPJ/Br4P/DuwEnjRzL7Z+uGJiIhkp2THwv0+cKO7/1fCvJ+bWRkhmf6i1SITERHJYsmewu1NuHl2fTOBPi0PR0REJDfEuaF2/YEQAL5AuLRERETksJDsKdx7CXc9GcrfRw8aAVwCXNeagYmIiGSzZG+o/ZiZ/QX4N8LoQxDGnT3f3V9u7eBERESyVbMTqJm1IZyqLXX3F1MXkoiISPZrdhuou38CzAA6py4cERGR3JBsJ6KFwIBUBCIiIpJLkk2gk4D7zOxcMzvOzPITHymIT0REJCsl2wv39ejvDCDxVmEWTee1RlAiIiLZLtkEekZKohAREckxzUqgZtYRuAc4F2gLzAaud/dNKYxNREQkazW3DfQO4HLCKdz/IYxG9EiKYhIREcl6zT2FOw74F3f/JYCZ/TfwtpnluXtNyqITERHJUs2tgR4HzKudcPf3gE+AnqkISkREJNs1N4HmAdX15n1C8p2QREREDgnNTYAGPGNmexPmHQlMNbNdtTPc/autGZyIiEi2am4CfbKBec+0ZiAiIiK5pFkJ1N2/kepAREREckmyQ/mJiIgISqAiIiKxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxpD2Bmtm1ZrbSzPaYWZmZjTpI+TFRuT1mVmlmV9dbnmdmdyZsc6WZ/cjM2qR2T0RE5HCW1gRqZhcADwJ3ASXAO8BMM+vdSPl+wK+jciXAT4CHzOy8hGLfB74NXA98BvhuNH1zinZDRESEdNfSbgSecPep0fR1ZnYWcA0NJ7yrgfXufl00XWFm/wTcBEyP5n0WeNXdX42mV5nZK8A/pWQPRERESGMN1MzaAcOAWfUWzSIkwYac1kD5N4DhZtY2mn4LOMPMPhP9n4HA5wg1VxERkZRIZw30aCAP2FBv/gbgzEbWOQaY3UD5NtH2qoCfAp2BpWZWEy37sbs/3NAGzexK4EqAwsJCysvLAejZsycdO3ZkxYoVABx11FH079+fBQsWAJCXl8eQIUNYtmwZO3fuBKC4uJgtW7YA3Zp1AOKqrq5m8eLFALRv355BgwaxZMkS9u7dC8DgwYOpqqpi8+bNAPTt2xd3Z/Xq1QAUFBRQUFDA0qVLAejQoQPFxcUsWrSIffv2ATBkyBDWrFnD1q1bAejfvz/V1dWsXbsWgB49epCfn09FRQUAnTp1oqioiIULF1JTUwNASUkJlZWVbNu2DYABAwawa9cu1q9fD4Tj3aVLF5YtWwZA586dOf7441mwYAHujplRUlLC8uXL2bFjBwBFRUVs376dqqoqoGWv04YN4a3Xq1cv2rVrR2VlJQDdunWjd+/eLFy4EIC2bdty4oknUlFRwe7duwEYOHAgGzduZOPGjQD06dMHM2PVqlUAdO/encLCwqReJ/h8cm+EJJWXl+t1auR1SqXy8nJ9njLweWrN773mMndvduGWMLOewDpgjLuXJsy/DZjg7kUNrPMn4Bl3/2HCvNHAXKCnu1eZ2YXAPcD3gCXAyYR21u+5+8+biqmkpMTnzJnT4n2b+GRqE+jdl21N6fYlM/S+yZxUHnsd99yXn59f5u7DD1YunTXQTUAN0KPe/B7AR42s81Ej5T+Jtgched7r7r+MpheZWR9Cm2qTCVRERCSutLWBuns1UAaMrbdoLKGXbUPmN1L+D+6+L5ruSEjMiWrQNa4iIpJC6e6Fez/wtJm9B7xN6GXbE3gUwMyeAnD3S6PyjwLfMbPJwGPACOBy4KKEbb4K/LuZrSScwi0h9PZ9KtU7IyIih6+0JlB3f87MugO3AoXAYuBL7r46KtK7XvmVZvYl4AHCpS7rgevdfXpCseuAO4GHgX8gdCyaCvwQERGRFEn7aD1R79gGe8i6++kNzJsLDG1iezuAG6KHiIhIWqidUEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVARkRwxe/ZsTjnlFIYNG8bkyZMPWL53716++c1vMmzYMM4880zWrFkDQFlZGaNHj2b06NGMGjWK1157bb/1ampqGDNmDBdeeGFa9uNQoQQqIpIDampqmDhxIs8//zzz589n+vTpfPDBB/uVeeaZZ+jatStlZWVcc801TJo0CYDi4mLmzJlDaWkpL7zwAjfeeCOffPJJ3XqPPvooJ5xwQjp355CgBCoikgPKysro168fffv2pV27dowbN46ZM2fuV+bXv/51XS3ya1/7GqWlpbg7HTt2pE2bNkCopZpZ3Trr1q3jN7/5DZdcckn6duYQoQQqIpIDqqqqOPbYY+ume/bsSVVVVaNl2rRpQ5cuXdiyZQsAf/jDHzjttNMYOXIk9913X11CveWWW5g0aRJHHKF0kCwdMRGRw8Dw4cOZP38+s2fPZvLkyezZs4c33niDgoICTj755EyHl5OUQA9zcTslvPnmm5xxxhmMGDGCM844g9LS0rp1pk+fzogRIxg5ciTjx49n8+bNiv0Q09rHfseOHXWdXEaPHs2AAQO4+eab07pP2a6wsJB169bVTa9fv57CwsJGy3zyySds376d/Pz8/coUFRXRqVMnKioqePfdd5k5cyZDhgzhiiuuYN68eVx11VUp24dD7TOrBHoYa0mnhO7du/Pss8/y9ttvM2XKFK655hogfGhvvvn3pQfgAAASFklEQVRmXnnlFd566y0GDRrE1KlTFfshJBXHvnPnzpSWltY9jjvuOL7yla+ke9ey2tChQ6msrGT16tVUV1czY8YMzjrrrP3KnH322fzyl78E4OWXX2bUqFGYGatXr67rNPThhx+yfPlyevfuzW233caSJUtYuHAh06ZNY9SoUTz22GMpif9Q/MwqgR7GWtIp4aSTTqr79VtcXMzu3bvZu3cv7o67s2vXLtydHTt2cMwxxyj2Q0gqjn2iFStWsHHjRk477bT07FCOaNOmDXfffTfjx4/n1FNP5dxzz6W4uJi77rqr7vhffPHFbNmyhWHDhvHII49w++23A/C73/2OUaNGMXr0aC655BLuueceunfvntb4D8XPbJu0/SfJOg11SigrK2u0TGKnhMQP3yuvvMKQIUNo3749APfeey8jRoygU6dO9O/fn3vuuUexH0JSdexrzZgxg69//ev79RSVYOzYsYwdO3a/ebfcckvd8yOPPJInnnjigPUuuOACLrjggia3PXLkSEaOHNkqcTbkUPzMqgYqLVJRUcEdd9zB/fffD8C+fft4/PHHmTt3LkuXLmXQoEE88MADGY6yYbkce66rf+wTzZgxg/POOy8DUUm2y7bPrBLoYaylnRLWrVvHpZdeysMPP0y/fv0AWLRoEQD9+vXDzDj33HN57733FPshJBXHvtbixYupqalRr9BD0KH4mdUp3MNYYqeEwsJCZsyYwc9+9rP9ytR2SjjllFP265Swbds2LrzwQm677TZOPfXUuvKFhYUsW7aMTZs2cfTRR/Pmm2+mZISTXI4916Xi2NeaPn0648aNS9eu5KSJT3ZL6fbvvmxrSrZ7KH5mlUAPY4mdEmpqapgwYUJdp4SSkhLOPvtsLr74Yq6++mqGDRtGt27dmDZtGgBTp05l5cqV3HPPPXVtDtOnT6ewsJCJEydyzjnn0LZtW4477jimTJmi2A8hqTj2BQUFALz00ks899xzGds3SZ1D8TNr7p62f5ZtSkpKfM6cOS3eTq7+IpTM0vsmc1J57FN93PW+Sb38/Pwydx9+sHJqAxUREYlBp3APc7n+azaXaxIih5tc/76pTwlURJJ2qH0RisShU7giIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISQ9oTqJlda2YrzWyPmZWZ2aiDlB8TldtjZpVmdnVLtykiItJSaU2gZnYB8CBwF1ACvAPMNLPejZTvB/w6KlcC/AR4yMzOi7tNERGR1pDuGuiNwBPuPtXdK9z9OqAKuKaR8lcD6939uqj8VOBJ4KYWbFNERKTF0pZAzawdMAyYVW/RLOCzjax2WgPl3wCGm1nbmNsUERFpMXP39Pwjs57AOmCMu5cmzL8NmODuRQ2s8yfgGXf/YcK80cBcoCdgMbZ5JXBlNFkELGuF3UvW0cCmDPzf1qDYMyeX48/l2CG341fsyevj7gUHK9QmHZFkE3f/GfCzTMZgZn9w9+GZjCEuxZ45uRx/LscOuR2/Yk+ddCbQTUAN0KPe/B7AR42s81Ej5T+JtmcxtikiItJiaWsDdfdqoAwYW2/RWELP2YbMb6T8H9x9X8xtioiItFi6T+HeDzxtZu8BbxN62fYEHgUws6cA3P3SqPyjwHfMbDLwGDACuBy4qLnbzFIZPYXcQoo9c3I5/lyOHXI7fsWeImnrRFT3D82uBSYChcBi4F9rOwCZ2f8CuPvpCeXHAA8Ag4D1wE/d/dHmblNERCQV0p5ARUREDgUaC1dERCQGJVAREZEYlEAzwMws0zEcjnTcRaQ1KYFmgKvhOSNqj7sSafqZmb5rMiTx2Ou937rUiShNzKw9cBLwdWAbsARYAXzo7jvNzLI9sZpZHiEP/S3TsSTDzD4FjAYuBLYCy4E/AYvdfX0mY2suM2sD/C3Xjr1kBzPr7O47Mh3HoUYJNE3M7D+BcYQ7xXQD+hIuy3kJmOzulZmLrmlmNszdy+rNyyN8oWf9G8jMniQk0OWEY38cIZG+D0x19zkZDK9JZjbS3d+qNy9nkqmZHQd8E/hH4M+EsaeXAH90963Z+sMxMa5cOt6JzKyYcLeqEsKP9TXAQqDU3T+MymTl8c8VSqBpYGYDgd8B44Eyd99sZgXAvwBXAccA3yV8mWfVC2JmxxO+9JYS7nLztLsvSFhuhAE5SoD3o9GhskZ07N8ljE71e3evMbOjgPOBK4DhwA+BH5FlPwjM7DOE474TeB14yN3fTlhuQFvgi8B77r4hI4E2Irqf73SgA/B7YDBhmM3NwDzgfnf/c+YibFz0+Syud5MKA/KAmmx6nzTEzD5NuJfyBsIAM58hfM+0JyTTae5e/y5WWcHMehA+r7929y1NlGvr7vvSF1kD3F2PFD+AWwi/+mqn29RbfhfwAdAz07E2EPtthJrbA4ThEdcRfgxMBI6LyhwL/A3olel4G4j/BuCthOl29ZZfDXwInJDpWBt53ywAbiYknE8IYzzfC3w6KvMP0bE/LtPxNhD/o8CrwDEJ83oD3wdWAxuBr2U6zkZinxId14+i5wPrLT8i2pf/A+RlOt4G4n8kOvadE+b1IIzkVkr4UfYvmY6zkdgfio79FuAF4EtA+3plehPuC90+EzHWPtSwnx4VQKGZDQBw90/MrI2ZHRktnwrsItRQs00R4ZfsT4FvEb7UFwMXA/PN7FXCMIsV7r42Y1E2biHQx8w+D2FM5ujYd4iWv0D4Mr+osQ1k0LGE2sNjwNeAzwG/AM4BlpvZH4FfEo79hxmLsnGDgLnu/lF0/9427r7G3X/q7n2A2cDVZnZEFnZu+UfCD4BHgJHAYjNbYWa3mFm+h9O5lxFGRqvJZKCN6AOUu/sOM8szszx33+DuT7j7aMK+fcvMOmY4zoYMJ3zf/BuhyeVFYKWZPWRmQ6My3wKudve9GYoRUC/cdCkl1B5eM7Pzzay9u3/i7nsA3H0l4dRQRt8M9UVtP68DH7n7R+6+xN2fJNQ+rwL+A9hN+IV4f+YibdJ8Qu3+GTO72sw6RMd+N4C7bwY+RZbdLzFqY34dWOruW6JHKTCJcMr2q4RT06cTaqTZ6LfAxVEHln3RD8e2CT9epgAnAKd4VK3IBmbWh9BG/h5wJ+H9fTbwBuGMxSYzexv4V0JtKRu9AXzDzD7j7jUemi7amVm7aPnPCTXSf8pciAeK7hu9Fljp7o8DZwFDgAeBUcDvzWwRoW0348debaBpEr0xHgBOJLxB3gPmRM+/Dfwz0Nfdd2YsyINoqM3BzMYBvwI+5e67MhNZ06Iv7B8Tavi7CaegXwb+CnyDUMMoytb4IVyK4PU6sZjZF4GZZOmxN7NhhNOIHwGT3P2Vess/Q+jIlZ9N8ZtZF0Jv+VXuPjdhfgfCjSqGAdcS3jeda3+MZZOo/XkG0BW4091/UW/5YKAc6Jplx74T4UzLX9z93XrLOhLa0W8idMjM+LFXAk0jM+sOfJnQQN6fcHq0GzAXeMzdf5nB8A7Q0Jd2NL8NUUcKM7sXGO4JNwDIJtGpq5roUpaRhF+xpwJDCbX+2YTOWzMzGOYBolOa1tDxTygzCTjN3b+YtsCaqbZ3Z9RscTfhmNd2HpoJDCT8oFnp7udnLtKm1XYccvdP6s3/b+DYbH3fQ7h0BfgJMIHQ2WwW4f0+mPBZeN//fuerrNRQL2Eze4LQB2BUZqJKiEUJNLXMrBcwIJrcSehVuZuQQD9FaPvc5E30NsuUhNiN0Ki/zN0/SlhuhLa5de7++8xEmZzoFFYB4TU4EtiWzbX+ppjZ6cBGd1+S6ViaErX1n0n44XgKoW10C6Ht/xl3X53B8JolsQcuoVdxKfATd5+e0cAaEMV6RPTD8UjCWa/RhJrdUGAl8AwwI/HznA2iQR+8sVP60VmAl4FH3P3FtAbXUDxKoKljZtcQroEbQkiUlYRTtm8Cv8rSjh/AAbHvJHR9X0s4/fmSuy/LYHgHFbV17k6YbvKDmU3qx55romP9NcIPlQ6E6z/nufu26AvdCaffsqrdGQ6IvSOh1/lcd/9LQpn2wJnu/npmokxe4nXbZnaUu2/LdExxmFlbwhmv+ZmOBZRAUyY6XbsCuI/Qk6+A8Cv8dMLpq/XA9e6+NNsuZj5I7MWERPqvUex52dYL0cy6EXrfvk74pf1O7fFNTKTRheZrPYtGaDlI7IkX9xcDVe7+ccaCbUB02vDnwBmEsxbrCGcwdhFOHz7j7sujsg02EWRKA7GvJST7PYRmlqfd/YPMRdi0KLn0A1Y31Ds1275nEh0s9qxV/7oWPVrtWqbrgHcbWTaS0BZUCRyd6VgPpdgT4t9L6KhVQ6gB/ZDQUai2zHGEayz7ZzreQyX2KLYfEH4A/GM0/RnCJU+PAGWETkUFmY4zRuy/B17J1tijeG8gnC16HPgKYeCEvHpluhB6FLfNdLwxYz+HetdyZ/Khy1hSpxroHPV2w8za13Yh9zA02wTCL9svZC7ERuVy7BDGHH6c0GGrBHiecJ3nUjP7nZldSfhiPN6zbwjFXI4dwmUHT3rUJu7uH7j7M8B3CJd9fAZ4OoPxNaWp2P+NcPYlW2MHuIDww2sAYYjQ+cA9ZjbSwuhbEHr73+6ZHsHnQM2N/f96Fo12pgSaOr8inAa6IboObq+Hi/iPAHD3NcDHQK9MBtmInI09ap9aShik/y/u/kd3v5lwcfYXo2WTCJe1/DRjgTYgl2OHut7Zi4HzLAyFR3QR/xEerkUsJVxH2cvMhmQy1vpyOXaoG3pwH6FH+SjCQAo/J/wQKwXmmNn3CTW9dxvdUAbkcuwZrwIfig9Cm48B5xJGudlBeEMM4+9DgF0cze+b6XgPldgT9qE90fBxhJ6TR9RbfjrZO/RgzsYexXcq4bTzT4EeDSw/jnD97bGZjvUQi72QUMP/YgPLSgiDVmyO3jtZFX8ux65ORClkZl0JCeezhAuzR0SLPiIkqafdfVJmomtarsaecP1hf2CnJwywnrDsNuByd++fuUgPlMuxQ10HrSMIg1PcRbjJwHTgOcKdQE4i1CoGuvs/ZirOhuRy7LWiSzzc3fdEl7IA+90H98fAl9y9JFMxNiZXY1cCbWVm9g/AJYQ2k02E6w0/Bt4iXALSlnCe//+5+58yFWdDcjl22C/+G4G/EIZPrCKMdzvDo/uuEsbRXO/ur2Us2HpyOfaGRD/ALie0W51MOGOxh9AZ5ydeb5SZbJLjsTfY09bCKD7lwOPunnWn/yE3Y1cCbWXRKBmDCL0NtwD5hAuZTyB8Md6arR/AXI4dGo2/hNBxZS1wj2fvLZyeIEdjh7rh73YkfgFGtbojCQOGDCbUqrPu/ZPLsUPD8TdQ5khCR53/8SzqhJPLsYMSaKuKagg7CKcaShPm9SYM2nwFYQSi8929PGOBNiCXY4cm4+9FaNv6FqFzwkXZFn8ux17LzB4j9KJ8j3At3/YGynTzLLyJdi7HDs2Ov6tn2TXDkNuxA+pE1JoPQg1iEXBqI8vbA38gnAbKeLyHSuzNjL9dtsafy7FH8V1E6ODxMeH64McIg30PADpEZT5FuDzhxEzHe6jE3kT8Xwc+nRB/7fB3gzMd76ESe+1DNdBWFDWEv0YYAuxS4M9+4B00riPcyPbkDITYqFyOHXI7/lyOHcDMphIGfbibkHwuI3wJLiPcS/a3hBsnPOju7RrbTibkcuyQ2/Hncuy1dB1oK/IwfukPCL+angIuNbPjLNwJpLYxfAzherOsksuxQ27Hn8uxR9dPrgQ+dvdKd7/X3U8k3JB6LuFL8XnCvRuzahCCXI4dcjv+XI49kWqgKWBhBJ//S7jp8U7CqBobCePJVgFXuPuizEXYuFyOHXI7/lyN3cL4vT3c/QMLI1bt84QvFjO7APgfYKi7v5+pOBuSy7FDbsefy7HXUgJNoejShHMIgxLsIdQgXvAsHpC6Vi7HDrkdfy7HXivqxWoebqn1LcJpuI6Zjqs5cjl2yO34cy12JdA0sSy780Qycjl2yO34czn2WmZ2I2Fg8HsyHUuycjl2yO34cyF2JVARSSkLt6qqycUfArkcO+R2/LkQuxKoiIhIDOqFKyIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgM/x99kuGEuY/DtQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "params = {\n", " 'problem': {'name': 'search'},\n", @@ -172,17 +188,24 @@ " 'name': 'Grover'\n", " },\n", " 'oracle': {\n", - " 'name': 'SAT',\n", - " 'cnf': sat_cnf\n", + " 'name': 'LogicExpression',\n", + " 'expression': sat_instance\n", " },\n", " 'backend': {\n", - " 'shots': 100\n", + " 'shots': 1000\n", " }\n", "}\n", "\n", "result_dict = run_algorithm(params, backend=backend)\n", - "plot_histogram(result_dict['measurements'])" + "plot_histogram(result_dict['measurement'])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -201,7 +224,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.2" } }, "nbformat": 4, From 5682d9dbd55d6df7f1c50a6f6b78f40eece513e3 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Fri, 1 Mar 2019 11:29:06 -0500 Subject: [PATCH 020/116] minor edit --- community/aqua/optimization/grover.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index b225f72a5..86dbe67d8 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -188,7 +188,7 @@ " 'name': 'Grover'\n", " },\n", " 'oracle': {\n", - " 'name': 'LogicExpression',\n", + " 'name': 'LogicExpressionOracle',\n", " 'expression': sat_instance\n", " },\n", " 'backend': {\n", From e280ae479336b1842ab825a3122cd69fd68841c7 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Wed, 6 Mar 2019 14:26:21 -0500 Subject: [PATCH 021/116] Change get_input_instance to get_pluggable_class --- community/aqua/general/vqe.ipynb | 62 +++++++++++++++----------------- 1 file changed, 28 insertions(+), 34 deletions(-) diff --git a/community/aqua/general/vqe.ipynb b/community/aqua/general/vqe.ipynb index 98257da86..ba86e3fc8 100644 --- a/community/aqua/general/vqe.ipynb +++ b/community/aqua/general/vqe.ipynb @@ -16,13 +16,19 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", + " 'functionality and more.', DeprecationWarning)\n" + ] + } + ], "source": [ - "from qiskit.aqua import Operator, run_algorithm\n", - "from qiskit.aqua.input import get_input_instance" + "from qiskit.aqua import Operator, run_algorithm, PluggableType, get_pluggable_class" ] }, { @@ -35,9 +41,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "pauli_dict = {\n", @@ -65,12 +69,15 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'eigvals': array([-1.85727503-7.00389617e-17j]), 'eigvecs': array([[-1.38777878e-16+2.45029691e-17j, 7.22856695e-01+6.81936898e-01j,\n", - " -8.11307233e-02-7.65380388e-02j, -2.22044605e-16+5.55111512e-17j]]), 'energy': -1.857275030202382, 'wavefunction': array([[-1.38777878e-16+2.45029691e-17j, 7.22856695e-01+6.81936898e-01j,\n", - " -8.11307233e-02-7.65380388e-02j, -2.22044605e-16+5.55111512e-17j]]), 'energies': array([-1.85727503])}\n" + "ename": "AquaError", + "evalue": "'PluggableType.INITIAL_STATE EnergyInput not registered'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAquaError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m'algorithm'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0malgorithm_cfg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m }\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0malgo_input\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_pluggable_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mPluggableType\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mINITIAL_STATE\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'EnergyInput'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqubitOp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrun_algorithm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0malgo_input\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/_discover.py\u001b[0m in \u001b[0;36mget_pluggable_class\u001b[0;34m(pluggable_type, pluggable_name)\u001b[0m\n\u001b[1;32m 356\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpluggable_name\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0m_REGISTERED_PLUGGABLES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpluggable_type\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 357\u001b[0m raise AquaError('{} {} not registered'.format(\n\u001b[0;32m--> 358\u001b[0;31m pluggable_type, pluggable_name))\n\u001b[0m\u001b[1;32m 359\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 360\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_REGISTERED_PLUGGABLES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpluggable_type\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpluggable_name\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAquaError\u001b[0m: 'PluggableType.INITIAL_STATE EnergyInput not registered'" ] } ], @@ -82,8 +89,7 @@ "params = {\n", " 'algorithm': algorithm_cfg\n", "}\n", - "algo_input = get_input_instance('EnergyInput')\n", - "algo_input.qubit_op = qubitOp\n", + "algo_input = get_pluggable_class(PluggableType.INPUT, 'EnergyInput')(qubitOp)\n", "result = run_algorithm(params,algo_input)\n", "print(result)" ] @@ -97,23 +103,11 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'eigvals': array([-1.85727503]), 'opt_params': array([ 3.14152283, -1.86138772, 2.14320588, 2.93799407, -0.28074829,\n", - " -2.77067919, -1.20632283, 0.59925957, 3.14159265, 0.82165996,\n", - " 1.00013921, -1.75350817, 2.9702609 , -1.17088041, 0.32988214,\n", - " -2.99356035]), 'eigvecs': array([[-1.98163691e-06-7.88682378e-06j, -8.93429639e-01-4.35136014e-01j,\n", - " 1.00272726e-01+4.88416830e-02j, 2.96950529e-06-1.76810183e-06j]]), 'energy': -1.8572750301062404, 'eval_count': 374, 'eval_time': 18.833309173583984}\n" - ] - } - ], + "outputs": [], "source": [ "algorithm_cfg = {\n", " 'name': 'VQE',\n", @@ -145,9 +139,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Quantum", + "display_name": "Python 3", "language": "python", - "name": "quantum" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -159,7 +153,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.7" } }, "nbformat": 4, From f5f6bf2d88666ee754b7c61f99beaf8c2c08e27c Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Mar 2019 10:11:54 -0400 Subject: [PATCH 022/116] Change set_aqua_logging to set_qiskit_aqua_logging --- .../LiH_with_qubit_tapering_and_uccsd.ipynb | 47 ++++---- .../qsvm_kernel_classification.ipynb | 31 +++-- qiskit/aqua/optimization/maxcut_and_tsp.ipynb | 107 ++++++++---------- 3 files changed, 85 insertions(+), 100 deletions(-) diff --git a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb index 6238a76c9..2e08a8734 100644 --- a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb +++ b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb @@ -4,7 +4,16 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", + " 'functionality and more.', DeprecationWarning)\n" + ] + } + ], "source": [ "# import common packages\n", "import itertools\n", @@ -12,9 +21,9 @@ "\n", "import numpy as np\n", "\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "\n", - "from qiskit.aqua import Operator, set_aqua_logging, QuantumInstance\n", + "from qiskit.aqua import Operator, set_qiskit_aqua_logging, QuantumInstance\n", "from qiskit.aqua.algorithms.adaptive import VQE\n", "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", "from qiskit.aqua.components.optimizers import COBYLA\n", @@ -24,7 +33,7 @@ "from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD\n", "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock\n", "\n", - "# set_aqua_logging(logging.INFO)" + "# set_qiskit_aqua_logging(logging.INFO)" ] }, { @@ -227,7 +236,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -252,13 +261,13 @@ "algo = VQE(the_tapered_op, var_form, optimizer, 'matrix')\n", "\n", "# setup backend\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend=backend)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -267,27 +276,9 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== GROUND STATE ENERGY ===\n", - " \n", - "* Electronic ground state energy (Hartree): -8.874303856889\n", - " - computed part: -1.078084288118\n", - " - frozen energy part: -7.796219568771\n", - " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy (Hartree): 0.992207270475\n", - "> Total ground state energy (Hartree): -7.882096586414\n", - "The parameters for UCCSD are:\n", - "[ 0.03815735 0.00366554 0.03827111 0.00369737 -0.03604811 0.0594364\n", - " -0.02741369 -0.02735108 0.05956488 -0.11497243]\n" - ] - } - ], + "outputs": [], "source": [ "result = core.process_algorithm_result(algo_result)\n", "for line in result[0]:\n", @@ -320,7 +311,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.7" } }, "nbformat": 4, diff --git a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb index 85d27cca5..df5c71642 100644 --- a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb +++ b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb @@ -42,11 +42,20 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", + " 'functionality and more.', DeprecationWarning)\n" + ] + } + ], "source": [ "from qsvm_datasets import *\n", "\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit.aqua.input import SVMInput\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", @@ -55,8 +64,8 @@ "\n", "# setup aqua logging\n", "import logging\n", - "from qiskit.aqua import set_aqua_logging\n", - "# set_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" + "from qiskit.aqua import set_qiskit_aqua_logging\n", + "# set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" ] }, { @@ -76,7 +85,7 @@ "outputs": [], "source": [ "from qiskit import IBMQ\n", - "IBMQ.load_accounts()" + "# IBMQ.load_accounts()" ] }, { @@ -95,7 +104,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFjlJREFUeJztnX+IXcd1x7/HsoIcaRNDVg12ZCRDS3EQNLEWl+JgpSkNamKi/pE/Yoih68j7T2IcUhqSQlH0R6GFEuI/ROlaP3CIkxDsGJUQXBviyLFpnOw6DrEtRwQjE9lJpW0w2S0Olp3TP/Ze9+n1vXvn3jnz4877fkBIu7pv7rkzb+Z7zpm5M6KqIISUyRWpDSCEhIMdnJCCYQcnpGDYwQkpGHZwQgqGHZyQgmEHJ6Rg2MEJKRh2cEIK5soQhc5t26rvmtvWeM38/JxzeWtr685lTLv2pbUNAMDu+R29bZlW9mj5KZj0TKM0Pfs0LNqnqTyXuhy318qmVG3lUv+ubfXf67/D+u8uSVt5QTr4u+a24fDBfY3XLB7a71zeyWOnncuYdu0dxzd/P8kuV1umlT1afgra6rrp2adh0T5N5bnU5bi9VjalaiuX+ndtqyOnVp3uGaSDN2HRmbowrTG7fFmGzolPdX/W0fqPVVcpB8kYjD7ftDbp01ZNMAYnpGCiK3gbVu7euBr4jIw5unuTbLAe/S2p67CLN+DzXPV9JrVdXV7KtrP8fjZBBSekYNjBCSkYJxddRK4GcAzAXgAK4A5V/U8LA7ok0yxc86FnYlPQx70OaQfgbsvodePtmYOrXhMqzHKNwe8B8LCqflxE3gbg7aZWEEKC0NrBReSdAG4B8DcAoKqvA3i97w1dFbtphB4vw2UEtlCfHEb6WSR0ErFkJXeJwa8HcBHASRH5iYgcE5Ht4xeJyJKIrIjIysZrl0yMI4T44eKiXwngRgB3qepTInIPgC8A+IfRi1R1GcAyAIiI3nH8tNf0hi/1vfuU18dD6IOVcrjWc1M86kIusTjQz5amqTNgcj2mUnUrJXdR8PMAzqvqU9XPD2CzwxNCMkdctk0WkR8AOKSqPxeRLwHYrqp/13D91EKnjUguI7FPxt2FtnXsvrSNxn3v01Zul3xGaNpUFHCrBx8PrSb0s1ur/2g7Hzm1inMX181eNrkLwP1VBv1FAIu9LCSERMVJwTsXOqbgTQoT+q0ln3JjKXcT02xwKdO6bi2wVvDxcn0IVQchlNxVwbmSjZCCSfayiaW6WKq2FVbzmDm/QNKF8TbyzeiPZ5ktMvy+Nk0j5Tw7FZyQgmEHJ6RggrroFlMZo5+3cMNycM27bF/Uhz7145L8miVCtNHod8PHXe/yWSo4IQUTRMF3z+/A4YP7zJc05phMq/GZtuqyeSRpJtRyWmsPJ1bijQpOSMEEWeiycMO1unLyTvNyXbBUvj4LLiYRO2cQetFHn8U3XZYi91E1nyXQsXBpyy7Prqpc6ELILJPdrqpd8FE366WS0+7jy5Cy2y77frtgGZ+m2N99Gi65FuvYnApOSMEMSsF9VMxiqWToeJuEJacNK2qmzbdbbT5BBSekYNjBCSmYbF30LkmwPtMzXdz9objmljZYv+3V5Z7WbTNOjq56TdMS2T4JOCo4IQWTnYK7nFbigs/o3Ed1QjOk6bJJ9FHN0Ms5c1bymmm2uZ4PTgUnpGCSK7jPHuSTlLZtNLZSwNijfpPdOSuQxf7eOZ08kgOLh/bj6JNnna6lghNSMNEV3OLUkD47alood5fXOnNW1ZS4xL3T8g2+J+VMa6tQsfj4/VJ8J6jghBRMUAW3Pl87tXJ3KcvqJQd6CP2YVD9t2zCFbrMUL75QwQkpGNezyc4BWAfwJoA3VHWh6fo9O+f08MF9b/0c6vTMLjFxl9VvobDI8KdQbsvTVmPNfPjuux/rpJS+91lYvBcrZ14xO5sMAP5cVdd6WUMISQJddEIKxlXBFcAj1aGC/6aqy00Xv7S2EeVQe+skXmiGusw0NDkuGY1lU+ipNNcO/gFVfVlE/gDAoyLygqo+PnqBiCwBWDK1jhDiReddVUXkSwA2VPVfGq7pvVVrn+SX5S6cuRNL5UJ7R11e8e3i+YTawTa3nXFdk2ytMbiIbBeRufrfAD4M4FlHOwkhCXFx0d8N4CERqa//uqo+bG1IF0W1nqbpg8VLFF3IQbljkYMN48TOE1hN3bV2cFV9EcCfdC6ZEJKc5K+Luihg6ox46vvHILZqWu2hPk5ope1TvtVmHaOfX1tbd/oM58EJKZhkCj5t1M5JLZtsKSX27qMqpW7A0GWjyVDLW2uscjxUcEIKhh2ckIIJcnzw+EKXWFNgTXBhy+VYJNWs2ypEG/Wtv1RTdTw+mBDiTJAk2+75HRh9HzwlVO7Zpu8uKkPfh76GCk5IwQSJwcd3dPHFd6/0oRBTtUMoU9+YPHab9annWErOGJwQ4kwQBV+44VpdOXmn07VDj3EsGbqCD43YSm4960AFJ2TGSf6ySSnZSh+YMU+Dz4sj42XkChWckIJJHoOPk3JEjHUyqev9rMldbVLj2x596tcnLmcMTsiMww5OSMEkT7KlImVii0m1PPE9HLBPAi70vghUcEIKJhsFD5UAykktU9vSZccS4k9Te7fVf9vy3SOnVp1soIITUjBBFHxtbT25Qliqpe+zpFbuSeS4wCinNguN67P6PgcVnJCCGcTrol2IdXB7F3JU8C6EVsOh108KzM4mI4QMF+cYXES2AFgB8LKq3hrOpPiEViifM6AtbPNVSCrscOmi4HcDOBPKEEKIPU4KLiK7AHwUwD8C+FxQi3oQWxF9ycEGMhu4KvhXAHwewO+nXSAiSyKyIiIrG69dMjGOEOJHawcXkVsBXFDVxqUzqrqsqguqurDjqq1mBhJC+uPiot8M4GMi8hEA2wC8Q0S+pqqfnPaBl9Y2cMfx0+a7Zfoke+gWkxzp873s0g9aFVxVv6iqu1R1D4BPAPheU+cmhORDdieb5DglE+uY3CHv6U664eNRnjx2Gmtr607Xdurgqvp9AN/vbhIhJAXJXxfNUbFrYh9w33S/Puqec91Oos8upzmTQ96HS1UJKZgoCj60ETm2crtQ2zQLcfoQlDwHdXaBCk5IwQRV8JxG4Bw3OCDDYajfGyo4IQXDDk5IwQR10Se5NTm57UNiFpJrOdLFNfdJzoZqXyo4IQUTfaHLtBGRyj675JjAcrUpxynVUajghBRM8qWqNTktbqjjoRxG56HH3r4vVQDxvhN9bB1tn1jfl8VD+3H0ybNO11LBCSmYIApeb/hQ00WFclJy0kys2DnUbIy1/aG9rT7PTAUnpGCyicHHsRq1fUbplLF46tg7x8z2KLnb54uVB0sFJ6RgstuyqYnSR21rWF/DIVTOiQpOSMGwgxNSMNkm2XIiVrItdWKNpMPngMomqOCEFAwVPCP6Lg4i04k5xWnZZm0JUtd90anghBSMqKp5oXt2zmmIabKc4GknzeTwok5qQrbdkVOrOHdxXdquczlddJuI/EhEfioiz4nIERsTCSGhaVVwEREA21V1Q0S2AngCwN2q+sNpn5kFBa+hkv8fVO3JhGg7VwVvTbLp5giwUf24tfpj79cTQsxxyqKLyBYAqwD+EMBRVX2q7w1zeQ3Uahnn+OgcSsXGyx2Cos86ObSRUxZdVd9U1fcB2AXgJhHZO36NiCyJyIqIrGy8dsnaTkJIDzpNk6nqqwAeA3Bgwv8tq+qCqi7suGqrlX2EEA9ckmw7AVxS1VdF5CoAjwD4Z1X9zrTPNCXZcnHRXbBy42d5iWvpibdUdW+WZANwDYD7qjj8CgDfaurchJB8SLbQZUhKXkNF708pSp5L3ZotdCGEDJcgCi4iCnQb7Yao6KP4qHsodctFbUYZqpLnVpdUcEJIWAWfhM9IOCSV943XLZQuN9UZJXclz7nuACo4IQSRFDzmaJijyqeKz63qva1Oc/BWLEip2n3qQFWp4ITMMjOz4UNOyh5L0fsoklU9dXnG1AqeQrktnpkKTsiMww5OSMEEcdEXbrhWV07eaVZeiCN4SnHZAZt3xUPVR46ueqgFWLGflS46ITPOIPZFDzFNE+pQ+T7U9+2r5LkvykhJTsulUyQTqeCEFMwgYvA+9FHDnOLymtBHAMd65ljxaQ6K7fKsjMEJId4MIgbvQ45q3Aff+HyIhMopxPpO5NRmVHBCCqZYBS8Na1XIMfa2YCiem89++ic+tR9HTq06XUsFJ6Rg2MEJKRi66AMjpwROSobgio/b2NRmoRKLVHBCCmYQCm6pVkMY+V0YfY4c1Zxt9v/p02bTnv3ok2edPk8FJ6RgBqHgluT0kokVrnF56Occ2hReSmI9Y6uCi8h1IvKYiDwvIs+JyN0xDCOE+OOi4G8A+FtVfVpE5gCsisijqvr8tA+sra1fNpr7jlZtCuWySKApS1mXOwvKEYIccwAuzEK7tyq4qv5KVZ+u/r0O4AyA94Q2jBDiT6fXRUVkD4DHAexV1d82XNe6L7rPqNmkGG1q7jLfOPQR3UVRLZ8xx9jb16bcvwMLi/di5cwrJueDAwBEZAeABwF8dlLnFpElAEudrCSEBMWpg4vIVmx27vtV9duTrlHVZQDL1fWXKbhLjNxlxGyKyWuFnnbP+vcptjkatzd3lWgjp9jb2pZS4nOXLLoAOA7gjKp+ObxJhBArXBa63AzgdgAfEpFnqj8fCWwXIcSAVhddVZ8A0BrMd6XNbXdxjXxc9Sas3bNp7mNKl93nGX32HLMOjXIKE2qm2ZTC3edSVUIKJpulql2UtstI6LNzRmx8FwelVjPfum3zKqx3ZnXxJqbZ1MWWlIk6KjghBRNkX/TxaTJfUp3ckeIoXR8bQt/HZ6lwTai2zMGGcayVe7T+j5xaxbmL69wXnZBZJkgMvnt+Bw4f3GcW71qcntmHHBY7xMq0x3rWlAuNQpPTUtsaKjghBRM0i+4zF91EbBXIQclrUmfKcyNV7D2Uc82o4IQUDDs4IQUTZJpsz845PXxw38T/C7HQZCjTHl2mmSyfqU/5k57VYppsEkNIuMV2yV3qlMcHEzLjBEmyzc/PYfHQfvOXQELhOg1nuc/cpPuN2mGRSMypjodKrKmvUG1FBSekYILE4As3XKsrJ+986+fQI5dvDOezj5vlSyFNdvR5Rp8XLpqea5ZicQsFn1RfFt97xuCEzDhRFHyUEKO/1cifi5L72mKx+COmgs+KclvH2VRwQmac6Ao+TqjTSnwIFbtOI1SM5oLPc1jlVkpT8NDKXUMFJ2TGSa7gNX3UIPTIH0vJU8yP1ozbb73BRKq2m0SXtQUWnljotqOCEzLjsIMTUjBBXzbJcWfQtqOIm+i7EMW1HlIk23xc9Joc31H3TdLm3mbck40QEnZHlz47ofgobBe6vA5ZM2nEr0frpgSOaz2M/n/9mRxfzolFn73IY9VTLK/FNxnpcvjgCRG5ICLPet2JEBKd1hhcRG4BsAHgq6q616nQal/0SaNP6hgv1j7jvjaEeqGjxnKhTo1VffmcbNKnfvrE4r7P2mf6cNSWhcV7sXLmFf8YXFUfB/CbtusIIflhFoOLyBKApdHfTYpLfeLy8TJCE+q+LnUQKxcxfj+rMvrY7WODdewdegdd19ja1w6zDq6qywCWAfujiwgh/cjmdNEuxFa38fuOEnojRctnjbk8tIvdbSqV4zx7aKw8CM6DE1IwLln0bwD4IIB5AP8F4LCqHm/5zGWFWm+UME7seK+rDW2bOvbJqsfKFlvhc8Za6Pnvul5Sz/CM0maLaxa91UVX1ds62EUIyQi66IQUzCCTbOP4Ts9Y2tDFnaxdw9DTZildc5/7hG5L66SjZdjR9v9ra+tO96GCE1Iw0c8mm0bMpFfoe0+7f5fliV2WSMbeDTYWXdrQJ+mYog58vRO+LkoIKSMGJ90pRbn7kEq5U+SHqOCEFEwUBU+hFqmWs47ff9SGaZs3dHkpZ9JzTSs3x/3GU5KqPlwWQYWyjQpOSMEUH4O7KHmfV1hDMKrAIUb01M+XCz5z8j5z3Sm23aKCE1Iw7OCEFEwUF33UVUnlJqZMuvncO4fwwedNsNT4hjo+bZbyAM0aKjghBRNEwV9a28Adx0977RHehUmjbKxESij6TJ9YqsEQkpJN+O7o66rcfU82iTVlRwUnpGCCKPju+R04fHCfyWkfffGJtUPb1ue0kliqOdT9zywUscuzW7/004XFQ/tx9MmzTtdSwQkpmKBZdJcRy0KZQm340MW2WMqXk8IOIRa3brs+i1cslbsrVHBCCiabpapWahBivjulUoV+GcECq/rJyTtpI6dMeRNUcEIKJoiCz8/PYfHQfq9VQJPIOdbLiT6qb6GeOaxY7EKfZ7Z+YcRiz/wmqOCEFAw7OCEF4+Sii8gBAPcA2ALgmKr+U1CrptAlmRMy2eZqQ27EtH8IU2hd6OKau4RGPq7+yWOn7fZFF5EtAI4C+CsA7wVwm4i8t7d1hJBouCj4TQB+oaovAoCIfBPAQQDPhzSsidBK7rJ/+bgNLvcJvaOHy15vNUOakkqB9eGOfcv0bSeXGPw9AH458vP56neEkMxxOT744wAOqOqh6ufbAfypqn5m7LolAEvVj3sBPGtvbmfmAaylNqIiF1tysQOgLZNwtWO3qu5su8jFRX8ZwHUjP++qfncZqroMYBkARGRFVRccyg5KLnYA+diSix0AbYlhh4uL/mMAfyQi14vI2wB8AsC/WxlACAlHq4Kr6hsi8hkA/4HNabITqvpccMsIId44zYOr6ncBfLdDucv9zDEnFzuAfGzJxQ6AtkzC1I4gxwcTQvKAS1UJKRjTDi4iB0Tk5yLyCxH5gmXZHe04ISIXRCTpVJ2IXCcij4nI8yLynIjcndCWbSLyIxH5aWXLkVS2VPZsEZGfiMh3EttxTkR+JiLPiMhKYluuFpEHROQFETkjIn/mXaaVi14taT0L4C+xuRjmxwBuU9XoK95E5BYAGwC+qqp7Y99/xI5rAFyjqk+LyByAVQB/nahOBMB2Vd0Qka0AngBwt6r+MLYtlT2fA7AA4B2qemsKGyo7zgFYUNXkc+Aich+AH6jqsWrG6u2q+qpPmZYK/taSVlV9HUC9pDU6qvo4gN+kuPeYHb9S1aerf68DOINEqwB1k43qx63VnyQJGBHZBeCjAI6luH+OiMg7AdwC4DgAqOrrvp0bsO3gXNLagIjsAfB+AE8ltGGLiDwD4AKAR1U1lS1fAfB5AL9PdP9RFMAjIrJarcZMxfUALgI4WYUux0Rku2+hTLJFQER2AHgQwGdV9bep7FDVN1X1fdhcjXiTiEQPX0TkVgAXVHU19r2n8AFVvRGbb0t+ugrvUnAlgBsB/Kuqvh/A/wDwzmNZdnCnJa2zRhXvPgjgflX9dmp7AKBy/R4DcCDB7W8G8LEq9v0mgA+JyNcS2AEAUNWXq78vAHgIm6FmCs4DOD/iVT2AzQ7vhWUH55LWMarE1nEAZ1T1y4lt2SkiV1f/vgqbydAXYtuhql9U1V2qugeb35HvqeonY9sBACKyvUp+onKHP4xEL0mp6q8B/FJE/rj61V/A4JVss00Xc1rSKiLfAPBBAPMich7AYVU9nsCUmwHcDuBnVewLAH9frQyMzTUA7qtmO64A8C1VTTpFlQHvBvDQ5jiMKwF8XVUfTmjPXQDurwTyRQCLvgVyJRshBcMkGyEFww5OSMGwgxNSMOzghBQMOzghBcMOTkjBsIMTUjDs4IQUzP8CS1BH043ZwoQAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFXtJREFUeJztnWGsZVV1x/9/htGBYYSEN7VThwJJG1NDUqEvNA2GsRgNtUT94AdJJHF0+r5UgvGD0SYNnQ9N2qQxkpQ0HWegGFFjoGQaYlETUaqpo+8hRmCQGDKGQc3MqyG+abUgrn5498Ll9Nx79jln7bP32ff/SybMHc49Z51z7t7/tfZee22aGYQQZXJeagOEEPFQAxeiYNTAhSgYNXAhCkYNXIiCUQMXomDUwIUoGDVwIQpGDVyIgjk/xkn37Nppl+7Z9fLnlZU9jd/Z3NxqPCbkPKHn//HmudbnuHzlok7XbrJ7alsXm2bpat8sy/6upsyzv8+7CrGpet15z/q/tn6FrV+9yKbzRWngl+7Zhdvf/Ucvfz546EDjd+4++o3GY0LOE3r+Dx5rvl6V2XtqQ5PdU9u62DRLV/tmWfZ3NWWe/X3eVYhN1evOe9aHj28EXTNKA59Syo9FjI/pe77rQ91/O4uYnrfN76nu2Kp9Ie2hDYrBhSiYqApeh3cPlfo6fcjRxqlNdV5TjvbGYt5zmH72ehaxPQ0puBAFowYuRMEEuegkLwFwFMBVAAzAB83sP5u+18eNaTOwFtt1XOQ+hbhsi9zeUvG85y4DWkMx+9voY18sVz00Br8DwENm9l6SrwFwoasVQogoNDZwkhcDuB7ABwDAzF4A8EKbi4RMD0xZ1OPnNMjTRZli2R9rgGbKPLur7zW2HXUMde8hg20enoa3kofE4FcCOAvgbpLfI3mU5O7qQSTXSK6TXD/3yxddjBNC9CPERT8fwDUAbjWzEyTvAPBxAH89e5CZHQFwBABIWttebCjlzjmey4lFzzyHZze0t9Ck5LPH5PQbC1Hw0wBOm9mJyef7sN3ghRCZ06jgZvYzks+SfKOZ/RDA2wA82fWC1Z63KefXmza9aqitXrQZkU0R76ZmbPfcR8m9YvHQUfRbAdw7GUF/BsDBXlcVQgxCUAM3s8cArHa9SF0vFLpqBmjuzcaSVtnmnqv3Gmue1PO8s0rV53ze6aCeLJrfj2F332eqTDYhCibqYpMuyt0mXokVE3vH3vO+36bHj6XcpZFDHkX1vXqNqnfxtqTgQhSMGrgQBRPFRb985aLGkk1tXHMPlzmWS+rh9uUwqBR7XXIOeD7nLotpvBemhCAFF6JgBq/JFlq0LmSAro4+vbPn4FqX79alPXb5fujikLYMPTAXy7PJwWMaKp1VCi5EwURR8JWVPTh46EBtDxlLufuQWrkXnSd21dkqfWLxHOL3NrFxHyWPfX4vpOBCFEwUBd/c3HpVrxUSZ/RRUa9Ekb5xcwxyKl2VithKmMpbAuLH4lJwIQomioL/ePNccI8UW7lFOWmpfWcZ2py/FKTgQhSMGrgQBTP41kVTukypzHPLvBJERDdSTI81DYwtYy36OqTgQhTM4Are1Nv3napoUzWlFIa6x5yqhU7JIZkkZ6TgQhTMIAruFaN5xlNjj81CFCuW0sZKGmq6J3lu7ZGCC1EwyUbR2xBDDWb//9jVfFlo885yeqcpxwmk4EIUzOBVVUPp2gMr9uoXe+ew5DOE0ua5Y81QSMGFKJggBSd5CsAWgJcA/NrMFu5yUi262IYU+273+f7QCpL7rp9iPrEXy9TRxkX/UzPbjGaJEMIduehCFEyoghuAr5A0AP9sZke8DfFyzee5qbEGj9q4WrHceQ/XfCyDa1VKG2zzJrSBv8XMniP5WwC+SvIpM3tk9gCSawDWAODS3a91NlMI0QWaWbsvkH8D4JyZ/cO8Y67Yu8dCB9n6VHDpolwplaqPysQeXPN4Ll4qOu89x0qRTUmfGvZmxqZjGmNwkrtJ7pn+HcA7ADzeeHUhRHJCXPTXA3iA5PT4z5nZQ30v3NTTdqmpvkws47OYved5aj62mHxeGqtX4ktjAzezZwD8Ya+rCCGSkM1iEyVw1DOm1NtYC3jq1GwZdkMF+u9IqnlwIQommYLH2gGzibH3/MvszbSh7veVc1wesqR09jd7+PhG0Hml4EIUjBq4EAWTzSDbUK7nWF3zZaJp6gh45ffSJuTyGLAcarNJr8FVKbgQBRN188GQXlXKLbqQqkb7ImWNXfW3i6pLwYUomOQx+DIoa4oqNakZKmU0p99P9Z1533uX+FwKLkTBRFHwPjXZhMiJNjF+1ZuIFa8fPHQAd37r6aBjpeBCFEzyGLxUvOOvsaaojm35Zh+a3tGswseO16dIwYUomKVTcO0nPR5yeFee8+1dztFX2aXgQhSMGrgQBdO6qmoIbaqqxqJLzbchrruIHKraxE4c6VNFNwdyeQ+Hj2/g1Nmt/lVVhRDjJfliE288lbvaW+eUFinq6VKxp83Cjup5Yyn6ovO2uTcpuBAFEyUGn+xh9jKxlC9WPOexv9nQtnkx1hh8qHeW07ty2dlECDFeRjmKnoM6po7Hx6rkOb+7WHurdWGwvcmEEOMleBSd5A4A6wCeM7Ob4pn0/4ldMGGMCzn67ngxNDktNpk30u61M4uHlxIyDx5CGwW/DcDJFscLIRITFIOT3A/gHgB/C+CjTQq++ge/Y+t3/4WPhS0JVW4v1Usdi9fhreip9g4fygtbdH85eR6zrB78NNZP/sQtBv8UgI8B+M28A0iukVwnuX72+f8JPK0QIiaNDZzkTQDOmNlCp9/MjpjZqpmt7r3kQjcDhRDdCRlkuw7Au0i+E8AuAK8j+Vkze39c0+Lg7b56JFh4k6pm+Cy5urZ11D2n6TMcqvJKLBoV3Mw+YWb7zewKAO8D8LWxNm4hlo2lq+gyFItUQSwmh2WiIVNpQP6K3qqBm9nXAXw9iiVCCHeWTsFziE/bUFWINurW5167eBu5q1kXmpYMD7VXWVeUqipEwRSn4KGVOHNM9Qzp8bvsOhnba8lBqYZi6P3I57G5uRV0nBRciIIpTsGntKmpHVvhmnr7vgroWT98rCP9Q4+tpJwl0d5kQggAauBCFE2xLvqUNtNMHhUzY9Vt86DOti5VSKd4259DgksfPKvwej1bKbgQBVO8glfpUwM7xrVTk4Nyl4pXjfY+SMGFKJhkVVVzVIEc9yvrQuxYNvb9DFWVdGg8ldy7oosQYoRkVxc9B2X3UJCU9zF2TyTn0fSU9e5mn78UXAiR3yj6tPfOQcm7MFa7RRghittG5bsuXtFiEyFEfgo+1tg1B+Uee+xdCm3i6tij/VJwIQpGDVyIgknuopeSBJJycDDnaaWxEnurpSmx15BLwYUomMEVvPRkiaGUvETVTn1PXpV15pHi/qTgQhRMVAUfSzzaNFXRJU6qs6PP80itbqI/Ie/f+z2H7C66i+R3SH6f5BMkD7taIISIRoiC/y+AG8zsHMmdAL5J8t/N7NuRbQsm9kbxXhU0pcL16Lm8gmeFXCCggdv2crNzk487J3/8l6AJIdwJisFJ7gCwAeD3ANxpZidCvhd7RDm2cottYrzHHFV71qZS0nODRtHN7CUzezOA/QCuJXlV9RiSayTXSa6f++WL3nYKITrQaprMzJ4H8DCAG2v+3xEzWzWz1Ysu2OllnxCiB40uOsm9AF40s+dJXgDg7QD+vs1FcnTH2jDW7Xy8qb7HPlsb507TvQ513b6ExOD7ANwzicPPA/BFM3vQ1QohRBSi1GQjOfekMdSw7wCaFFq0JfWuLoePb+DU2S3VZBNimRlcwXNh7KrdxmsZ+73mMM2aG1JwIUT6gg9jZaiCAB702UE0JbFHrr3TQnNECi5EwWS3s8mUIVNLQ5Ut9cjpLF7PJ0dVH+uc85AoBhdCDBODd1no7r2DRMh5hlazHGLAscbnpeLtuUrBhSgYNXAhCibqIFuKBAUPF2eeu5pTpdTYg5B1z6DLNT03ve9LjoNqfd6jmWmQTYhlZvBpshi9dCxFX6Q+OanNGKrVhCj50L+NHJCCCyE6E3WxScr4a17P7R1H5qDkUvBXiK3Y3rXNpeBCiM5ks1w0lkpKyfMgtoLnoNxVYr8zKbgQS042Cl7FWy29R9pznCtfJgUPVexFzySncYEu704KLsSSowYuRMFk66LX4eEWe7m4Te5dyjpiY3XVm56Z173nmHQjF10I0ZpRKXiVNj1xrOSDUtRgKHJ+Z2MbIJWCC7HkDFLRpU3KapueLKQaSZcEiOr56mxKXQFlVm3mVcPJWckX4Zm0kvo9paZRwUleRvJhkk+SfILkbUMYJoToT2MMTnIfgH1m9ijJPQA2ALzHzJ5c8J1XndS7F+2bvDA0qdNYc1JyvZ96ksXgZvZTM3t08vctACcBvKG1NUKIwWkVg5O8AsDVAE7EMAao7027VFxdJnKozhqKqri+mtjeVXADJ3kRgPsBfMTMflHz/9cArDnaJoToSdA8OMmdAB4E8GUz+2TT8X12NvFeUJ+KoXbnmEWxeD+G3LnG4124xOAkCeAYgJMhjVsIkQ8hiS7XAbgFwA0kH5v8eWdku4QQDmS7+WBOrnoKd7sPXVI8F7nMMVz7HF30WXKpIrQIpaoKseQMkqoai9jTQ2NT7iltnkuIko499XUohlLuNkjBhSiYbBV8tjdMpaRTG8aq5KWx6D2kmjpNsWz3rg8dwOHjG0HHSsGFKJhkCl7tjas9YRvVXLR0cpnxHqMYOhYf2nPqW/orxY6vTUjBhSiYbGLwoXvr2d62qWes660Vly8XqUbI++YLSMGFKBg1cCEKJvn2wanqh3tVhRmTq+412NbHLY31m+hzb12m31K75oePb+DU2S2lqgqxzAxSFz2FknvU1O4ywJGzontPIeawBfPQ06JeO6f04eChA1g9+Gmsn/yJFFyIZWbUy0VDGLuSe6bLxlK7lPuBpVLwoZa7znsmUnAhRL4KPsvQ6uWp5ICvMsUoRJALXrvEelL9LQwRX4cgBRdC5JOqugiPONSjCELXWDNGHJ3zaH1bcrmXLrkRXktYYz0DKbgQBTOKGHweKePRPvtRe8SafXv8nOLx0HtJMY/f5d2F2Nn3t6tMNiGEGrgQJTOKQbZ5pFyn3aa6STU5wmOgzLtmXZsEjjFtdlhHLNe8iRSJPFJwIQomGwVvqtEWytCqMqaa4X2fTfUd9ZkiGsrTGvK9eP72vGq+hWw+eBfJMyQfb312IURSQhT8XwD8I4DPxDSkGpfW9fA5x3whSh4jFu9LLIXLJXmlDXXjD0334T0lNj2f13tpVHAzewTAz12uJoQYFLcYnOQagDUA+N3fvhgHDx1wV9zUo7cpvIqQe/b0BIZeDhmLvgqYs3In2dnEzI6Y2aqZre695EKv0wohehB1FL2L4oaoUSolr5t7rtrSJRYXfniXkari/ZtrUu554wJ3fuvpoPNrHlyIgmlUcJKfB/BWACskTwO43cyOtblIrL3DUsfks8xTcsBnRDSne10mmsomdxl5nz1vW+VuS2MDN7ObW59VCJEFctGFKJjBU1VDXc02iynahABegzDzBgPr7q9p4C2HhJdFDGVXTs8hxo4mi36bMRa3AFJwIYomioJvbm7h7qPfCJrqmuI1eBRjMKrLtFadV6FpsXqq72ooJW/zPkKUu4u9sZR7ihRciILJdrmo1/mq6tBneefsd9osGPH0Khady0P5hvIyxjLd51Ejf9G9di0Csbm5FXSsFFyIgomi4Csre7IYCQXiJYh0WfqpZJV2pBxVD/XwQmxLsc/eFCm4EAWTTQw+NF6ppH1G2Mei5LnMT3ulPHvvXBOTeYVFtdhECKEGLkTJLI2Lvsgt9qiMWv3ukIMvVdq41Dm4nKnp8t5jvzuva0rBhSiYpVHwKbGVfIr3ziN9bRgjXaYcF73DqrfSZwNJb2JtMikFF6Jgoi42qSP1VMuURVMuHumsJS4s6TNdlmrHGW+8f7+xn4sUXIiCGTwGj60CXc4bY2HKLLkkiniR0/10SRrKIfbuo9xabCKEAJBwFL3ag8VKyG9zXk8lr1tauoyMfSR/isfvs8uz0P7gQoi5FD8P7ukp1ClxG1X3iF1LUcQUpIq9U74zKbgQBaMGLkTBBLnoJG8EcAeAHQCOmtnfeRvSxX0NSUfscp02Uy85bTaYU5JNKaFErHCqKVzweoeNCk5yB4A7AfwZgDcBuJnkm1yuLoSISoiCXwvgR2b2DACQ/AKAdwN4sumLdb1f6I4mXXvOas84rycMWQzireTVa8dKFAl9BstAioG1GLuidCUkBn8DgGdnPp+e/JsQInNoZosPIN8L4EYzOzT5fAuAPzazD1eOWwOwNvl4FYDH/c1tzQqAzdRGTMjFllzsAGRLHaF2XG5me5sOCnHRnwNw2czn/ZN/exVmdgTAEQAguW5mqwHnjkoudgD52JKLHYBsGcKOEBf9uwB+n+SVJF8D4H0A/s3LACFEPBoV3Mx+TfLDAL6M7Wmyu8zsieiWCSF6EzQPbmZfAvClFuc90s0cd3KxA8jHllzsAGRLHa52NA6yCSHGi1JVhSgY1wZO8kaSPyT5I5If9zx3SzvuInmGZNKpOpKXkXyY5JMknyB5W0JbdpH8DsnvT2w5nMqWiT07SH6P5IOJ7ThF8gckHyO5ntiWS0jeR/IpkidJ/knvc3q56JOU1qcBvB3byTDfBXCzmTVmvHlD8noA5wB8xsyuGvr6M3bsA7DPzB4luQfABoD3JHomBLDbzM6R3AngmwBuM7NvD23LxJ6PAlgF8DozuymFDRM7TgFYNbPkc+Ak7wHwH2Z2dDJjdaGZPd/nnJ4K/nJKq5m9AGCa0jo4ZvYIgJ+nuHbFjp+a2aOTv28BOIlEWYC2zbnJx52TP0kGYEjuB/DnAI6muH6OkLwYwPUAjgGAmb3Qt3EDvg1cKa0LIHkFgKsBnEhoww6SjwE4A+CrZpbKlk8B+BiA3yS6/iwG4CskNybZmKm4EsBZAHdPQpejJHf3PakG2QaA5EUA7gfwETP7RSo7zOwlM3sztrMRryU5ePhC8iYAZ8xsY+hrz+EtZnYNtldL/uUkvEvB+QCuAfBPZnY1gP8G0Hscy7OBB6W0LhuTePd+APea2b+mtgcAJq7fwwBuTHD56wC8axL7fgHADSQ/m8AOAICZPTf57xkAD2A71EzBaQCnZ7yq+7Dd4Hvh2cCV0lphMrB1DMBJM/tkYlv2krxk8vcLsD0Y+tTQdpjZJ8xsv5ldge3fyNfM7P1D2wEAJHdPBj8xcYffgUSLpMzsZwCeJfnGyT+9DQFLsptwK7qYU0oryc8DeCuAFZKnAdxuZscSmHIdgFsA/GAS+wLAX00yA4dmH4B7JrMd5wH4opklnaLKgNcDeGC7H8b5AD5nZg8ltOdWAPdOBPIZAAf7nlCZbEIUjAbZhCgYNXAhCkYNXIiCUQMXomDUwIUoGDVwIQpGDVyIglEDF6Jg/g8z+0pk/j+HgwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -107,7 +116,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF69JREFUeJzt3X2QXXddx/H3h+0ql7bsBRqZZtOSqrCKTSDM2hkMMkiURWgxxJmIKCDOmHFQgVHDNM4YS0dNx4wg9bm2FJSCBkh3KFUC0xYRRwobtialbeTBarKhNgibtrrS7fL1j3M22Wz34dy799zz9HnN7Ozec+/e+z23zWd/9/v7nXMUEZiZWXU8pegCzMysMw5uM7OKcXCbmVWMg9vMrGIc3GZmFePgNjOrGAe3lYqkX5D02RXuf5+k3+1nTWZl4+C2vpD0aUnfkvTdRdeymvSPx5ykx9Kvf5d0s6TndfAc/gNjuXFwW+4kbQR+FAjgNYUWk92/RMQFwBDw48AMcFjS5cWWZebgtv54I/A54H3AmxbeIelZkj4m6RFJnwe+L8PzPUPS7ZIelXS3pDO/I+lHJH1B0un0+48suO+Z6cj5ZDr6H1/thSJiLiK+GhFvAf4RuGbB831Y0kPpa31G0g+l23cBPwe8Ix2x35Zuv1rSV9O675P02gz7avYkDm7rhzcCt6RfY5KeveC+PwX+D7gY+MX0azWvA94JPAP4CvB7kAQzcDtwPfAs4F3A7ZKelf7e3wBPA34I+B7g3R3ux0GSTw7z/gF4bvpcX0z3j4i4If35DyLigoi4Kn38V9PfH0rr/4CkizuswczBbfmS9BLgOcCBiDhMEl6vT+8bAH4a2BsR/xMR9wLvz/C0t0bE5yPiCZKAfGG6/dXAlyPibyLiiYj4EPAAcFUakD8J/HJEfCsiZiPiHzvcnZPAM+dvRMR7I+LRiPg2yUj8BZKGlvvliPhwRJyMiO9ExN8BXwau6LAGMwe35e5NwCcj4hvp7Q9ytl2yDjgPOL7g8f8x/4Ok31owQfgXCx7z0IKf/xe4IP15/cLfX/B8w8AlwDcj4ltr2Jdh4JtpbQOSrktbH48AD6aPuWi5X5b0Rkn3SJqWNA1cvtLjzZZzXtEFWH1JagE7gQFJ82H73UBb0guAe4EnSEL1gfT+S+d/PyJ+H/j9Dl7yJMnofqFLgU+Q/HF4pqR2REx3ui+p1wL/lP78euCnSCYuHyRpf3wLUHr/OafdlPQc4K+AbSQTn3OS7lnweLPMPOK2PG0H5oDnk7QzXgj8IEn4vTEi5kj6xtdIepqk57No8rJDfw88T9LrJZ0n6WfS1/54RHydpCf9Z5KeIWlQ0ktXe8J0ZH2ZpD8GXkbSmwa4EPg28N8kffPFf2D+C/jeBbfPJwnzU+nzvplkxG3WMQe35elNwM0R8Z8R8dD8F/AnwM9JOg/4VZJWx0Mkq05u7vbFIuK/gSuB3yAJ1HcAVy5o07wBmCUZ3T8MvH2Fp3uxpMeAR4BPA08Hfjgijqb3/zVJG2YKuI9k1cxCNwHPT9si4xFxH/CHwL+QhPom4J+73VdrNvlCCmZm1eIRt5lZxTi4zcwqxsFtZlYxDm4zs4rJZR33RRddFBs3bszjqc3Maunw4cPfiIh1WR6bS3Bv3LiRiYmJPJ7azKyWJC0+6ndZbpWYmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFOLjNzCrG5+NexfjkFPsPHePk9Azr2y12j42wfctw0WWZWYM5uFcwPjnFnoNHmZmdA2BqeoY9B5Ozejq8zawobpWsYP+hY2dCe97M7Bz7Dx3ry+uPT06x9bo7uezq29l63Z2MT0715XXNOnLkALz7crimnXw/cqDoimrPI+4VnJye6Wh7L3m0b5Vw5ADc9laYTf9NnD6e3AbYvLO4umrOI+4VrG+3OtreS0WP9s0yuePas6E9b3Ym2b6YR+Y9kym4JbUlfUTSA5Lul/TivAsrg91jI7QGB87Z1hocYPfYSO6vXeRo3yyz0yeybZ8fmZ8+DsTZkbnDuytZR9zvAT4RET8AvAC4P7+SymP7lmH27djEcLuFgOF2i307NvWlVVHkaN8ss6EN2bZ3MjK3Va3a45Y0BLwU+AWAiHgceDzfsspj+5bhQnrKu8dGzulxQ/9G+2aZbdt7bo8bYLCVbF8o68jcMsky4r4MOAXcLGlS0o2Szl/8IEm7JE1Imjh16lTPC22aIkf7Zplt3glXXQ9DlwBKvl91/ZMnJrOOzC2TVa/yLmkU+BywNSLulvQe4JGI+O3lfmd0dDR8Pm4zO2Px6hNIRuZLhXxDSTocEaNZHptlxH0COBERd6e3PwK8qNvizKyBso7MLZNVe9wR8ZCk45JGIuIYsA24L9eqjhxIJi1On0g+Sm3b6//AZlW3eaf/HfdI1gNwfg24RdJ3AV8D3pxbRV7Qb2a2okzBHRH3AJl6L2u20rIhB7eZWQmPnPSyITOzFZUvuL1syMxsReUL7m17k2VCCy21oN/MrKHKF9xeNmRmtqJyntbVy4bMzJZVvhG3mZmtyMFtZtaNAs8vXs5WiZlZmRV8oKBH3GZmnSr4/OIObjOzThV8oKBbJWZmK1nqpHdDG9LLsC3SpwMFPeI2M1vOctfKfO4rCj1Q0MFtZrac5XrZX/5koQcKulViZraclXrZBR4o6BG3mdlySnrSOwe3mdlySnrSOwe3mdlySnrSO/e4zcxWUsKT3nnEbWZWMQ5uM7OKcXCbmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFOLjNzCom0wE4kh4EHgXmgCciYjTPoszMbHmdHDn5YxHxjdwqMTOzTNwqMTOrmKwj7gA+KSmAv4yIGxY/QNIuYBfApZde2rsKzcwyGp+cYv+hY5ycnmF9u8XusRG2bxkuuqyeyxrcL4mIKUnfA3xK0gMR8ZmFD0jD/AaA0dHR6HGdZmYrGp+cYs/Bo8zMzgEwNT3DnoNHAWoX3plaJRExlX5/GLgVuCLPoszMOrX/0LEzoT1vZnaO/YeOFVRRflYNbknnS7pw/mfgFcC9eRdmZtaJk9MzHW2vsiytkmcDt0qaf/wHI+ITuVZlZtah9e0WU0uE9Pp2a4lHV9uqwR0RXwNe0IdazMyWlGXScffYyDk9boDW4AC7x0b6XW7ufAUcMyu1rJOO8z97VYmZWcFWmnRcHMrbtwzXMqgX8wE4ZlZqTZp0zMrBbWalttzkYh0nHbNycJtZqe0eG6E1OHDOtrpOOmblHreZlVqTJh2zcnCbWek1ZdIxKwe3lVotThp05ADccS2cPgFDG2DbXti8s+iqrMIc3FZatThp0JEDcNtbYTZdAXH6eHIbHN7WNU9OWmnV4qRBd1x7NrTnzc4k28265OC20qrF+t3TJzrbbpaBg9tKqxbrd4c2dLbdLAMHt5VWLdbvbtsLg4v+0Ay2ku1mXfLkpJVWLdbvzk9AelWJ9ZAien+VsdHR0ZiYmOjod2qx7MvMrEuSDkfEaJbHlmLEXYtlX2ZmfVKKHnctln2ZmfVJKYK7Fsu+zMz6pBTBXYtlX2ZmfVKK4K7Fsi8zsz4pxeRkLZZ9mZn1SSmCG3zaRjOzrEoT3Gbd8jEA1jQObqs0HwNgTVSKyUmzbvkYAGuizMEtaUDSpKSP51mQWSd8DIA1UScj7rcB9+dViFk3fAyANVGm4Ja0AXg1cGO+5Zh1xscAJMYnp9h63Z1cdvXtbL3uTsYnp4ouqRBNeR+yTk7+EfAO4MLlHiBpF7AL4NJLL117ZWYZ+BgAT9DOa9L7sOppXSVdCbwqIt4i6WXAb0bElSv9TjendTWz7my97k6mlujpD7db/PPVL8/0HHVYUtmL96FIvT6t61bgNZJeBTwVeLqkD0TEz6+lSDPrjbVO0NZlpNqkiepVe9wRsSciNkTERuB1wJ0ObbPyWOsEbV2WVDZpotrruM0qbq0TtHUZqTZporqjIycj4tPAp3OpxKym8u4fr3WCdn27tWRvuBcj1X72zps0UV2aa06a1dHi/jEko8B9OzaVJlDyqrEK+14mnUxOulVilqMq9I+3bxlm345NDLdbiGQVRi/CtQr7XlU+yZRZjqrSP87jtMpV2fcq8ojbLEdNWumwWJP3PW8ObrMcNWmlw2JN3ve8uVVilqMmrXRYrMn7njevKjEzKwGvKjEzq7HGtkrqcFIdM2umRgZ3XU6qY2bN1MhWSWUODDhyAN59OVzTTr4fOVB0RWZWAo0ccVfiwIAjB+C2t8JsWtPp48ltgM07i6vLzArXyBF3JQ4MuOPas6E9b3Ym2d4rHtGbVVIjg7sSBwacPtHZ9k7Nj+hPHwfi7Ije4W1Weo0M7rxOqtNTQxs6296pfozozSwXjexxQz4n1empbXvP7XEDDLaS7b2Q94jezHLTyBF3JWzeCVddD0OXAEq+X3V97yYm8x7Rm1luGjviroTNO/NbQZL3iN7McuMRd1PlPaI3s9x4xN1keY7ozSw3HnGbmVWMg9vMrGIc3GZmFePgNjOrGAe3mVnFrBrckp4q6fOS/lXSlyS9sx+FmZnZ0rIsB/w28PKIeEzSIPBZSf8QEZ/LuTYzM1vCqiPuSDyW3hxMv3p/hWEzy18ZT+VbxppKLtMBOJIGgMPA9wN/GhF351qVmfVeGS/OUcaaKiDT5GREzEXEC4ENwBWSLl/8GEm7JE1Imjh16lSv6zSztSrjqXyXq+ngL3n0vYKOVpVExDRwF/DKJe67ISJGI2J03bp1varPzHqljKfyXem1fXGPZWVZVbJOUjv9uQX8BPBA3oWZWY/18lS+vepLr/baRX8iKKksI+6LgbskHQG+AHwqIj6eb1lm1nPb9ian7l2om1P59vKyd0vVtJgv7vEkq05ORsQRYEsfajGzPM1P9t1xbRKGQxuS4Ox0EnClXnmnz3VOTceXfowv7vEkPq2r5evIgbUHhfVOL07l2+te+XxNi1eYgC/usQwf8m758ZXk6ymvy9754h6ZecRt+enlR2orj217Yfwt8J3Zs9ueMtibkbEv7pGJR9yWnzIuP7PekFa+bblycFt+fCX5errjWph7/Nxtc4972V4fObgtP71afmbl4k9ShXNwW3482VRP/iRVOE9OWr482VQ/2/Z62V7BPOI2s874k1ThPOI2s875k1ShPOI2M6sYB7eZWcU4uM3MKsbBbWZWMQ5uM7OKcXCbmVWMg9vMrGK8jtt6Ynxyiv2HjnFyeob17Ra7x0bYvmW46LLMasnBbWs2PjnFnoNHmZmdA2BqeoY9B48COLzNcuBWia3Z/kPHzoT2vJnZOfYfOlZQRWb15uC2NTs5PdPRdjNbG7dKbM3Wt1tMLRHS69utJR5ttjaeT/GI23pg99gIrcGBc7a1BgfYPTZSUEVWV/PzKVPTMwRn51PGJ6eKLq2vHNy2Ztu3DLNvxyaG2y0EDLdb7NuxqXGjIMuf51MSbpVYT2zfMuygttx5PiXhEbeZVcZy8yZNm09ZNbglXSLpLkn3SfqSpLf1ozAzs8U8n5LI0ip5AviNiPiipAuBw5I+FRH35Vybmdk55ttxTV9VsmpwR8TXga+nPz8q6X5gGHBwm1nfeT6lwx63pI3AFuDuJe7bJWlC0sSpU6d6U52ZmT1J5uCWdAHwUeDtEfHI4vsj4oaIGI2I0XXr1vWyRjMzWyBTcEsaJAntWyLiYL4lmZnZSrKsKhFwE3B/RLwr/5LMzGwlWUbcW4E3AC+XdE/69aqc6zIzs2VkWVXyWUB9qMXMzDLwkZNmZhXj4DYzqxgHt5lZxTi4zcwqxsFtZlYxDm4zs4pxcJuZVYyD28ysYhzcZmYV4+A2M6sYXyy4wcYnpxp/JRGzjhw5AHdcC6dPwNAG2LYXNu/sexkO7oYan5xiz8GjzMzOATA1PcOeg0cBHN5mSzlyAG57K8ymV5Q/fTy5DX0Pb7dKyuTIAXj35XBNO/l+5EBuL7X/0LEzoT1vZnaO/YeO5faaa9bH98fsSe649mxoz5udSbb3mUfcZdHnv+Ynp2c62l64Eo12rKFOn+hse4484i6LPv81X99udbS9cCUa7VhDDW3obHuOHNxl0ee/5rvHRmgNDpyzrTU4wO6xkVxeb81KNNqxhtq2FwYXDWwGW8n2PnNwl0Wf/5pv3zLMvh2bGG63EDDcbrFvx6byTkyWaLRjDbV5J1x1PQxdAij5ftX1hbTqFBE9f9LR0dGYmJjo+fPW2uIeLiR/zQv6H6N0/P5YzUk6HBGjWR7rEXdZlOiveSn5/TE7wyNuM7MS8IjbzKzGHNxmZhXj4DYzqxgHt9WLD4vvjt+3SvEh71YfPiy+O37fKmfVEbek90p6WNK9/SjIrGs+LL47y71vB3/Jo++SytIqeR/wypzrMFs7HxbfnZXen/nRt8O7VFYN7oj4DPDNPtRitjY+LL47q70//tRSOj2bnJS0S9KEpIlTp0716mnNsivRSYAqZan3bTF/aimVngV3RNwQEaMRMbpu3bpePa1Zdj4svjvnvG/L8KeWUvGqEquXzTsd1N2Yf9+WO5mXP7WUitdxm9lZ/tRSCauOuCV9CHgZcJGkE8DvRMRNeRdmZgXxp5bSWzW4I+Jn+1GImZll4x43MD45xf5Dxzg5PcNQaxAJpv93lvXtFrvHRsp7VRgza6TGB/f45BR7Dh5lZnYOgOmZ2TP3TU3PsOfgUQCHt5mVRuMnJ/cfOnYmtJcyMzvH/kPH+liRmdnKGh/cJ6dnevIYM7N+aXyrZH27xdQqwby+vcpRZSW0sG/vXr1ZvTR+xL17bITW4MCy97cGB9g9NtLHitZuvm8/NT1DcLZXPz45VXRpZtYDjQ/u7VuG2bdjE8PtFgLarUGe8bRBBAy3W+zbsalyI9Wl+vbu1ZvVR+NbJZCEd9XCeSXL9eTdqzerh8aPuOtouZ58FXv1ZvZkDu4aWqpvX8VevZktrVGtkqastJjfpybsq1kTNSa4Fx8hWfejIuvWtzezsxrTKvFKCzOri8YEt1damFldNCa4vdLCzOqiMcHtlRZmVheNmZz0Sgszq4vGBDd4pYWZ1UNjWiVmZnXh4DYzqxgHt5lZxTi4zcwqxsFtZlYxDm4zs4pRRPT+SaVTwH908CsXAd/oeSH9V4f98D6URx32ow77AP3Zj+dExLosD8wluDslaSIiRouuY63qsB/eh/Kow37UYR+gfPvhVomZWcU4uM3MKqYswX1D0QX0SB32w/tQHnXYjzrsA5RsP0rR4zYzs+zKMuI2M7OMHNxmZhVTeHBLeqWkY5K+IunqouvplKT3SnpY0r1F17IWki6RdJek+yR9SdLbiq6pU5KeKunzkv413Yd3Fl1TtyQNSJqU9PGia+mWpAclHZV0j6SJouvphqS2pI9IekDS/ZJeXHRNUHCPW9IA8G/ATwAngC8APxsR9xVWVIckvRR4DPjriLi86Hq6Jeli4OKI+KKkC4HDwPaK/bcQcH5EPCZpEPgs8LaI+FzBpXVM0q8Do8DTI+LKouvphqQHgdGIqOwBOJLeD/xTRNwo6buAp0XEdNF1FT3ivgL4SkR8LSIeB/4W+KmCa+pIRHwG+GbRdaxVRHw9Ir6Y/vwocD9QqatOROKx9OZg+lW52XdJG4BXAzcWXUuTSRoCXgrcBBARj5chtKH44B4Gji+4fYKKhUUdSdoIbAHuLraSzqUthnuAh4FPRUTl9gH4I+AdwHeKLmSNAvikpMOSdhVdTBcuA04BN6dtqxslnV90UVB8cFvJSLoA+Cjw9oh4pOh6OhURcxHxQmADcIWkSrWvJF0JPBwRh4uupQdeEhEvAn4S+JW0rVgl5wEvAv48IrYA/wOUYh6u6OCeAi5ZcHtDus0KkPaFPwrcEhEHi65nLdKPtHcBryy6lg5tBV6T9of/Fni5pA8UW1J3ImIq/f4wcCtJa7RKTgAnFnxq+whJkBeu6OD+AvBcSZeljf/XAR8ruKZGSif2bgLuj4h3FV1PNyStk9ROf26RTHo/UGxVnYmIPRGxISI2kvx7uDMifr7gsjom6fx0kpu0vfAKoFIrryLiIeC4pJF00zagFJP1hV7lPSKekPSrwCFgAHhvRHypyJo6JelDwMuAiySdAH4nIm4qtqqubAXeABxNe8QAvxURf19gTZ26GHh/ulrpKcCBiKjscrqKezZwazIe4DzggxHxiWJL6sqvAbekA8uvAW8uuB7Ah7ybmVVO0a0SMzPrkIPbzKxiHNxmZhXj4DYzqxgHt5lZxTi4zcwqxsFtZlYx/w+kWsXj3U1s3AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFxBJREFUeJzt3X+QXWV9x/HPx5DqArqrsnXIBgztYKaYBEK3jIplrKkEC2iknVRR8UdnMp0qYuuEAWcakWmFNlNRWttOyg9RUbtiyAhYgsMP0Q4iG0I3CET8AU020izKBrBbCfHbP85Zskn2x72799xznnPfr5md3T179u737m4+efZ5vuc5jggBANLxorILAAA0h+AGgMQQ3ACQGIIbABJDcANAYghuAEgMwY1Ksf1+29+d5uOft/037awJqBqCG21h+y7bT9l+cdm1zCT/z2Of7Wfzl5/avtb2a5p4DP6DQWEIbhTO9iJJvy8pJL2t1GIad09EHCmpW9IfShqTtMX2knLLAghutMd5kr4n6fOS3jfxA7Zfafsbtp+2/X1Jv93A473c9i22n7F9r+0XPsf2G2zfZ3tP/voNEz72inzkvCsf/W+a6QtFxL6I+HFE/IWkb0u6ZMLjfc32E/nXutv2a/PjayS9W9KF+Yj9pvz4RbZ/nNf9kO13NPBcgUMQ3GiH8yRdn7+stP2qCR/7nKT/k3S0pA/mLzN5p6RPSnq5pB9J+lspC2ZJt0i6UtIrJX1a0i22X5l/3hclHS7ptZJ+U9IVTT6Pjcr+chj3H5KOzx/r/vz5KSI25G//fUQcGRFn5+f/OP/87rz+L9k+uskaAIIbxbL9RkmvljQQEVuUhde5+cfmSfpjSesi4pcR8aCk6xp42Bsj4vsR8byygDwpP36mpEcj4osR8XxEfEXSI5LOzgPyrZL+PCKeioi9EfHtJp/OLkmvGH8nIq6JiGci4lfKRuIn2u6e6pMj4msRsSsifh0R/y7pUUmnNFkDQHCjcO+TdFtEPJm//2Xtny7plXSYpB0Tzn98/A3bH5+wQPivE855YsLb/yvpyPztBRM/f8Lj9Uk6RtIvIuKpOTyXPkm/yGubZ/vyfOrjaUmP5eccNdUn2z7P9gO2R22PSloy3fnAVA4ruwDUl+0uSaslzbM9HrYvltRj+0RJD0p6XlmoPpJ//Njxz4+IT0n6VBNfcpey0f1Ex0q6Vdl/Dq+w3RMRo80+l9w7JH0nf/tcSW9XtnD5mLLpj6ckOf/4Adtu2n61pH+TtELZwuc+2w9MOB9oGCNuFGmVpH2STlA2nXGSpN9RFn7nRcQ+ZfPGl9g+3PYJOmjxsknflPQa2+faPsz2n+Zf++aI+JmyOel/tv1y2/NtnzbTA+Yj6+Ns/6OkNymbm5akl0r6laSfK5s3P/g/mP+R9FsT3j9CWZiP5I/7AWUjbqBpBDeK9D5J10bEf0fEE+Mvkv5J0rttHybpw8qmOp5Q1nVy7Wy/WET8XNJZkj6mLFAvlHTWhGma90raq2x0v1vSR6d5uNfbflbS05LukvQySb8XEdvyj39B2TTMsKSHlHXNTHS1pBPyaZFNEfGQpH+QdI+yUF8q6T9n+1zR2cyNFAAgLYy4ASAxBDcAJIbgBoDEENwAkJhC+riPOuqoWLRoUREPDQC1tGXLlicjoreRcwsJ7kWLFmlwcLCIhwaAWrJ98FW/U2KqBAASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJAY7oCDYgwNSLdfKu3ZKXUvlFask5atLruqJG3aOqz1m7dr1+iYFvR0ae3KxVq1vK+1X4SfV1IIbrTe0IB000ekvWPZ+3t2ZO9LhEGTNm0d1sUbt2ls7z5J0vDomC7emN3LoWXhzc8rOUyVoPVuv3R/CIzbO5YdR1PWb97+QmiPG9u7T+s3b2/dF0nt5zU0IF2xRLqkJ3s9NFB2RW3HiButt2dnc8cxpV2jY00dn5WUfl78dSCJETdaaXwkpCluh9e9sK3l1MGCnq6mjs/KVD+XKv68UvvroCAEN1pjfCS0Z8fkH5/flS14oSlrVy5W1/x5Bxzrmj9Pa1cubt0XWbEu+/lMVNWfV0p/HRSI4EZrTDYSGtd9jHT2lR31p2yrrFrep8vOWaq+ni5ZUl9Ply47Z2lru0qWrc5+Pt3HSHK1f14p/XVQoIbmuG33SLpK0vjfwR+MiHuKLAyJmXLEY+kvH2xrKXWzanlf69v/DrZsdTWD+mAr1h04xy1V96+DAjW6OPlZSbdGxJ/Y/g1JhxdYU1u1pUe2E3QvnHyapMNGQkX0Q/M7OsH497LDe85nDG7b3ZJOk/R+SYqI5yQ9V2xZ7dGWHtlOwUiokI4HfkcnkcpfBwVqZI77OEkjkq61vdX2VbaPOPgk22tsD9oeHBkZaXmhRWhLj2ynSGmetCgFdDzwO9piNekBb2Sq5DBJJ0s6PyLutf1ZSRdJ+uuJJ0XEBkkbJKm/v3+KfrBqaUuPbCfp9JFQAR0P/I62UI16wBsZce+UtDMi7s3fv0FZkFfSpq3DOvXyO3TcRbfo1Mvv0Katw1Oe25YeWXSOAjoe+B1toRr1gM8Y3BHxhKQdtscbR1dIeqjQqmZpfD5weHRMof3zgVOFd1t6ZNE5CuiH5ne0hWrUA95oH/f5kq63PSTpJEmfKq6k2Wt2PrAtPbLoHAXM8/M72kI16gF3ROuno/v7+2NwcLDljzuT4y66ZdKLrS3pp5ef2e5yAFTJwXPcUvYXUUUW0W1viYj+Rs6t1ZWTzAcCmFKNOp9qtTvg2pWLD+h5lZgPBDBBTTqfahXc4/N+XGUGoM5qFdxSm/Z1AIAS1WqOGwA6Qe1G3KgfNlkCDkRwo9LYZAk4FFMlqDQ2WQIORXCj0thkCTgUwY1K46Iq4FAENyqNTZaAQ7E4iUpL4qKqAm5XBkyH4EblVfqiqhptzo90ENyYk47vsZ5uc36CGwUhuDFr9FirVpvzIx0sTmLW6LFWrTbnRzoIbswaPdYq5HZlwEwIbswaPdaq1eb8SAdz3Jg1blyRq8nm/EgHwY1ZS6LHGmilivTsE9yYk0r3WAOtVKGefea4AaAR0/XstxnBDQCNqFDPPsENAI2oUM9+Q8Ft+zHb22w/YHuw6KIAoHIq1LPfzOLkH0TEk4VVAgBVNr4ASVcJACSkIj37jc5xh6TbbG+xvWayE2yvsT1oe3BkZKR1FQIADtBocL8xIk6W9FZJH7J92sEnRMSGiOiPiP7e3t6WFgkA2K+h4I6I4fz1bkk3SjqlyKIAAFObMbhtH2H7peNvSzpd0oNFFwYAmFwji5OvknSj7fHzvxwRtxZaFQBgSjMGd0T8RNKJbagFANAArpwEgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEENwAkBiCGwASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxDRy6zIAbbBp67DWb96uXaNjWtDTpbUrF2vV8r6yy0IFEdxABWzaOqyLN27T2N59kqTh0TFdvHGbJBHeOARTJUAFrN+8/YXQHje2d5/Wb95eUkWoMoIbqIBdo2NNHUdnI7iBCljQ09XUcXQ2ghuogLUrF6tr/rwDjnXNn6e1KxeXVBGqrOHgtj3P9lbbNxdZENB2QwPSFUukS3qy10MDbS9h1fI+XXbOUvX1dMmS+nq6dNk5S9u3MFmB7wEa10xXyQWSHpb0soJqAdpvaEC66SPS3nwuec+O7H1JWra6raWsWt5XTgdJhb4HaExDI27bCyWdKemqYssB2uz2S/cH1ri9Y9nxTsH3IDmNTpV8RtKFkn491Qm219getD04MjLSkuKAwu3Z2dzxOuJ7kJwZg9v2WZJ2R8SW6c6LiA0R0R8R/b29vS0rEChU98LmjtfRdN8D5r4rqZER96mS3mb7MUlflfRm218qtCqgXVask+Yf1HI3vys73imm+h4cf3o2171nh6TYP/dNeJduxuCOiIsjYmFELJL0Tkl3RMR7Cq8MaIdlq6Wzr5S6j5Hk7PXZV3bWotxU34NHb2Puu6LYqwRYtrqzgnoyk30PNq6Z/FzmvkvXVHBHxF2S7iqkEgDV0r0wnyaZ5DgO0O6dHblyEsDkmP9vyPjOjsOjYwrt39lx09bhwr4mwQ1gcsz/N6SMnR2Z4wYwNeb/Z1TGzo6MuAFgDsrY2ZHgBoA5KGNnx46fKuE+f3PD9w+dbvz3vZ3/Djo6uLnP39zw/QMy7d7ZsaOnSrjP39zw/QPK0dHBzX3+5obvH1COjg7uqVZ9Q9Kpl99RaAN9HXCfRKAcHR3ck60Gj2vH1U+p4z6JQDk6Orgn3udvMszXTq/0+yQCHcoR0fIH7e/vj8HBwZY/bpGOu+gWTfadsKSfXn5mu8sB0GFsb4mI/kbO7eh2wIkW9HRpeJJFNeZrUQb64zGdjp4qmYj5WlRFGbvNIS0Ed475WlQF/fGYCVMlE7T76idgMvTHYyaMuIGKoT8eMyG4gYphvQUzYaoEqJgydptDWghuoIJYb8F0kgpuelsBIKHgZu9nAMgkszhJb6ukoQHpiiXSJT3Z66GBsisCUIIZR9y2XyLpbkkvzs+/ISI+UXRhB+v43tahAemmj0h78+e7Z0f2vsRduIEO08iI+1eS3hwRJ0o6SdIZtl9XbFmH6vje1tsv3R/a4/aOZccBdJQZgzsyz+bvzs9fWr+l4Aw6vrd1z87mjgOorYbmuG3Ps/2ApN2SvhUR905yzhrbg7YHR0ZGWl0ne4l0L2zuOIDaamo/bts9km6UdH5EPDjVeSnux115B89xS9L8LunsK5njBmqgmf24m+oqiYhRSXdKOmM2hWEOlq3OQrr7GEnOXhPaQEdqpKukV9LeiBi13SXpLZL+rvDKcKhlqwlqAA1dgHO0pOtsz1M2Qh+IiJuLLQsAMJUZgzsihiQtb0MtrTc0kLXL7dmZLeKtWMeIFUDykrnkvWlcsAKgppK55L1pXLACoKbqG9xcsAKgpuob3FywAqCm6hvcK9ZlF6hMNL8rOw4ACatvcHPBCoCaqm9XicQFKwBqqb4jbgCoKYIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEVDO4hwakK5ZIl/Rkr4cGyq4IACqjeldOso82AEyreiNu9tEGgGlVL7jZRxsAplW94GYfbUyn6PUP1leQgOoFN/toYyrj6x97dkiK/esfrQrXoh8faJHqBTf7aGMqRa9/sL6CRFSvq0RiH21Mruj1D9ZXkIgZR9y2j7F9p+2HbP/A9gXtKAw4RNHrH6yvIBGNTJU8L+ljEXGCpNdJ+pDtE4otC5hE0esfrK8gETMGd0T8LCLuz99+RtLDkvqKLgw4RNHrH6yvIBGOiMZPthdJulvSkoh4eqrz+vv7Y3BwcM7FAUCnsL0lIvobObfhrhLbR0r6uqSPThbattfYHrQ9ODIy0ni1AICmNBTctucrC+3rI2LjZOdExIaI6I+I/t7e3lbWCACYoJGuEku6WtLDEfHp4ksCAEynkRH3qZLeK+nNth/IX/6o4LoAAFOY8QKciPiuJLehltJt2jqs9Zu3a9fomBb0dGntysVatZwGGgDVUs0rJ0uwaeuwLt64TWN790mShkfHdPHGbZJEeAOolOrtVVKS9Zu3vxDa48b27tP6zdtLqghAoRLeCZIRd27X6FhTxwEkLPE7bTHizi3o6WrqOICEJb4TJMGdW7tysbrmzzvgWNf8eVq7cnFJFQEoTOI7QTJVkhtfgKSrBOgA3QvzG2ZMcjwBBPcEq5b3EdQJoX0Ts7Zi3YFz3FJSO0ES3EgS7ZuYk/EFyNsvzaZHuhdmoZ3AwqREcCNR07VvEtxoSMJ32mJxEkmifROdjOBGkmjfRCcjuJEk2jfRyZjjRpJo30QnI7iRLNo30amYKgGAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJoR0QBxoaSHLjHXYKRCchuLFfordzYqdAdBqmSrBfordz4kbP6DQEN/ZL9HZO7BSITjNjcNu+xvZu2w+2oyCUaKrbNlX8dk7sFIhO08iI+/OSzii4DlTBinXZ7ZsmSuB2TuwUiE4z4+JkRNxte1HxpaB0Fb2d00wdI+wUiE7jiJj5pCy4b46IJdOcs0bSGkk69thjf/fxxx9vUYnoZAd3jEjZaPqyc5YSzKgV21sior+Rc1u2OBkRGyKiPyL6e3t7W/Ww6HB0jACHoqsElUbHCHAoghuVRscIcKhG2gG/IukeSYtt77T9Z8WXBWToGAEO1UhXybvaUQgwGTpGgEOxVwkqj3tLAgdijhsAEkNwA0BimCoB2oD9wtFKBDdQMPYLR6sxVZKqoQHpiiXSJT3Z66GBsivCFLj6E63GiDtFid6pplNx9SdajRF3ihK9U02n4upPtBrBnaJE71TTqbj6E63GVEmKuhdm0yOTHUflcPUnWo3gTtHxp0uDV09+HJXE1Z9oJYI7RY/e1txxoEboiSe408QcNzoUPfEZFidTlOjd2IG5oic+Q3CnKNG7sQNzRU98ptZTJbWdC6vo3diBoi3o6dLwJCHdaT3xtQ3u2s+FLVtNUKPjrF25+IB/11Jn9sTXdqqEuTCgflYt79Nl5yxVX0+XLKmvp0uXnbO0HoOxJtR2xM1cGFBP9MTXeMTN/hAA6qq2wc3+EADqqrZTJewPAaCuahvcEnNhAOqpoakS22fY3m77R7YvKrooAMDUZgxu2/MkfU7SWyWdIOldtk8oujAAwOQaGXGfIulHEfGTiHhO0lclvb3YsgAAU2kkuPskTdy1f2d+DABQgpa1A9peY3vQ9uDIyEirHhYAcJBGgntY0jET3l+YHztARGyIiP6I6O/t7W1VfQCAgzgipj/BPkzSDyWtUBbY90k6NyJ+MM3njEh6vAX1HSXpyRY8TplSfw6p1y/xHKqC5zC9V0dEQ6PeGfu4I+J52x+WtFnSPEnXTBfa+ee0ZMhtezAi+lvxWGVJ/TmkXr/Ec6gKnkPrNHQBTkR8U9I3C64FANCA2u5VAgB1VfXg3lB2AS2Q+nNIvX6J51AVPIcWmXFxEgBQLVUfcQMADkJwA0BiKhncddiN0PY1tnfbfrDsWmbD9jG277T9kO0f2L6g7JqaZfsltr9v+7/y5/DJsmuaLdvzbG+1fXPZtcyG7cdsb7P9gO3BsuuZDds9tm+w/Yjth22/vrRaqjbHne9G+ENJb1G2L8p9kt4VEQ+VWliTbJ8m6VlJX4iIJWXX0yzbR0s6OiLut/1SSVskrUrp52Dbko6IiGdtz5f0XUkXRMT3Si6tabb/SlK/pJdFxFll19Ms249J6o+IZC/AsX2dpO9ExFW2f0PS4RExWkYtVRxx12I3woi4W9Ivyq5jtiLiZxFxf/72M5IeVmKbi0Xm2fzd+flLtUYqDbC9UNKZkq4qu5ZOZbtb0mmSrpakiHiurNCWqhnc7EZYMbYXSVou6d5yK2lePsXwgKTdkr4VEck9B0mfkXShpF+XXcgchKTbbG+xvabsYmbhOEkjkq7Np6yusn1EWcVUMbhRIbaPlPR1SR+NiKfLrqdZEbEvIk5StjnaKbaTmrayfZak3RGxpexa5uiNEXGyshuyfCifSkzJYZJOlvQvEbFc0i8llbb+VsXgbmg3QhQvnxf+uqTrI2Jj2fXMRf5n7Z2Szii7liadKult+RzxVyW92faXyi2peRExnL/eLelGZVOiKdkpaeeEv9huUBbkpahicN8n6Xjbx+ULAO+U9I2Sa+o4+cLe1ZIejohPl13PbNjutd2Tv92lbMH7kXKrak5EXBwRCyNikbJ/C3dExHtKLqspto/IF7iVTy+cLimpbquIeELSDtuL80MrJJW2UF+5u7zPZjfCKrL9FUlvknSU7Z2SPhERV5dbVVNOlfReSdvyOWJJ+ni+4VgqjpZ0Xd6p9CJJAxGRZDtd4l4l6cZsLKDDJH05Im4tt6RZOV/S9fmA8ieSPlBWIZVrBwQATK+KUyUAgGkQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAx/w+lGPRpAxgJGwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -174,7 +183,7 @@ "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entanglement='linear')\n", "qsvm = QSVMKernel(feature_map, training_input, test_input, datapoints[0])\n", "\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", @@ -185,7 +194,7 @@ " 'algorithm': {\n", " 'name': 'QSVM.Kernel'\n", " },\n", - " 'backend': {'provider': 'qiskit.Aer', 'name': 'qasm_simulator', 'shots': 1024},\n", + " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'qasm_simulator', 'shots': 1024},\n", " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", "}\n", "algo_input = SVMInput(training_input, test_input, datapoints[0])\n", @@ -212,7 +221,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd4VWW2xt+P9ATSgEBooYQighSpilIMAqIIYgHEC6LiWEZFR0cZy+jVa7mIc3UABwRERwWkiIOoFCmOCEjvICUkICSkJxBSv/tHDvNwst6tMYFA2Ov3PDxwXtY+e+9zzsrOWXt97zLWWiiK4j6qXewDUBTl4qDJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS6lQ8htj+htj9hljDhhjnj1fB6UoyoXHlLfDzxjjA2A/gL4AjgL4CcBwa+3uX9lG7Kxu/UY0tnatiDIfS/LJNKH5+vvR2MK8AqFFRUXS2NP5+ULLOJkhtAYN69Lt07NzhJafm0djbbF8H3z8fGlszYhQofn6+NDY40kpQjPG0Fj/IH+hhQYHC62wuJhuH+wvt888fZrGsuP1qcavRafOnBFaeEgIjWXkkO39HF6vauQYTuXx9yzAV74/p07LfQFAeA15vE6ZV0xeX6f3rPR5JCYkIDU1lQeXgn+6ykYXAAestYc8BzcbwK0AHJOfMeqR56j+0AO3l/k5/j55jtCiGkXR2BPxJ4T22KPDaey2hAShLZjypdAmTHyKbj9/1Vqhxe+Kp7H5Z+QPmsho/kNp1B0DZKxDMrwycabQ/AP4D8ZGrWOE1r9LR6ElZ2XR7ds1kj/Il2zbSmOjasgfYGHkBw0ArNuzX2iDu3ehsexi9u/9+4RWL5xfXILID7BNBw/R2Jio2kLbuIl//G+54RqhFTtceOkPK/KDBgCiw8K8Hvft2ZPGMSrya399AInnPD7q0RRFqQJU5MpfJowxYwGMvdD7URTl91GR5D8GoOE5jxt4NC+stVMBTAX4d35FUS4OFUn+nwA0N8Y0QUnSDwMw4tc2qFu/kfiO/+b4h2hsRpIsrI19YhiNZd+X502ZRWPv/+vjQlu+aRuNTU9KF9qiee8L7ckX76PbZ6XK78bzpk+jsazQ5OPD355hQ/oKbfXevTR27dffCS0nW54XAIz686NCW7VLfodNOSqLiACQlJkptJ6trqCxH321XGhD466jsf2ubi+0HYmJJBLYvuuA0MJqhwntxjZt6fbsfagbJrcHgInvzxZa6jH+2uxsKeshn02YS2NrRNYQ2vi/PkhjZ3+7yutxWlY2jWOUO/mttYXGmEcBfAvAB8AMa+2u8j6foiiVS4W+81trlwBYcp6ORVGUSkQ7/BTFpWjyK4pL0eRXFJdywe/zn0vtWhGic49V9QHgH/8nO//uGjuIP28D2WnV8ZoeNHb0jX2EdlP/MTS2az9ZfR7z+F+E9ubz8g4AAPQb009oA4byGyInE08KrU6TOjR22brNQpvx6ns0tv/woUIrzC+ksQN7d5PHQCrdO+rySjtrg91zTNz9BQA0jW0otLCgIBqbX1QktL0Hj9DYbavknZv33n5aaOkObccM1nEHAPf+l/w8vvXadBrbqUkToSWNkJ9FAHjn6ReF1mTS8zQ2Osa7tdzPoa2doVd+RXEpmvyK4lI0+RXFpWjyK4pLKfd6/vJwVfv29l/Lvds6U3PkmneArwPvc+WVNHb8m1OF9ojDkuBN8YeFtmLeahrb8carhdawdi2hRVavTre/+VpZ8HvqrddpbFPS/pmSyouhE8e9JLQJn06isV99skxodZty/wH/ALmcNThULrPt36Mz3Z613Pa6grf3ss8d8wMAeMvttiO84MfW+W8lsbdeLd9bAMjOzRVaoB8voi3Y8JPQRl7HC80zl68UWh0Hz4q+bWXr8dRF39DYveu927rnzPobkk8klmk9v175FcWlaPIrikvR5FcUl6LJryguRZNfUVxKpbb3Jp9ME2abzIgD4C27rKoPAP/zZ+kS1v/W62ns6i+lqWZWCjekbBMjK/BvPDtZaM//7x/p9i1byqr44ukLaCwjOJibSMTGSlNNJzfaNd8sFlpUFHdMfvC1R4TG2lL/8qe/0e0nTZGtz06mGzMnSiOMwQ/eQmP375QGmg/fxWMt8cR9/eVvhda8Lr/jERIQILSVm7fT2M6tWwjtyRffpbGvvyBNa8Y99w6NPdorSWhjbpYGLgDwQanW58B58vid0Cu/orgUTX5FcSma/IriUjT5FcWlVKi91xgTDyAbQBGAQmttp1+Lb9CkmX38pTe8NCeXXbYe/4UXuYPpweRkoV3fqhWNXb5zp9CyHdZrT31BFhjDIuQUneadmtPt+w2U57Bi6Toae+aUPIbqEbxt+P5hA4W2cHXZn7cgjxdZr7lGuuS2adBAaD8d4hNsusfGCi3L4bU9kSFbl9l4NIAXHad/JduWnbi997VC+4XsHwCKyKistg2l9wAAbDh4UGhO48ka1KwpNCevg+OH5VSpEQN709h1B7yP4cmRI3Fg9+4LPq7rLL2ttdyvWFGUSxb9tV9RXEpFk98CWGqM2eQZyyUwxow1xmw0xmw8lc3vpyuKUvlU9Nf+HtbaY8aYKADLjDF7rbVrzg04d1xXgybNdFyXolwiVOjKb6095vk7GcBClIztVhSlClDuar8xJgRANWtttuffywC8Yq3lrgMA6tZrZO8e6+2k2qorr8ozl91vtvOZeqxld8DtvDoa16aN0D74Rs6NA4Ch13UX2oeLlgqtML+Abh9UQxphODnnRtQJF1p2Ojc6qUNan52MMHZv+1lofsS0AwD2b9ovtI5xspU4L1e69ALAbaSqvmTDJhp7OvOU0Bo15RPet66Vd2jGjLiZxtaLkAYZEz78XGjRzaLp9g1qyar8li18DiJ7L9t0kC2/AFCDOBNv3b6Pxo4irbz5hfxz41uqrbt3jx7YsnnzBa/21wGw0Bhz9nk+/bXEVxTl0qIigzoPAWh3Ho9FUZRKRG/1KYpL0eRXFJdSqev5o6Ii8dijw7205Zt4EY+N0Lqyi2w/Bfh6fKeWXVbcu79/HI3d+/LfhRZaM1TGrd9Dt2e11NPZstAFACFhvJWXERAoC3brvpdr1gEgNla61AYG87FYXQZI/4F+nTsI7VhaGt0+N18WAn39+UfsqjayJbp7c94m7e8rn+PHn2UhEwASD8iW2c5dZZHXqUDKxpNltpKOvgDQo4Us7n32jXTpBYBHbpf+A/vjj9LYVyfMFNpjjwyjsQu+9t5fambZe2n0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUiq12n86Px/bEhK8tPSkdBrbtd91QmvRmbdOMpfd5x/mM/E+nScdU1lVHwAmvPSo0CZ+It13U5Kk2yoA3HTvIKHlZPKW3RoRNYQWVD2QxlYnsX7kDgDAX7OAIO7w+tCQm4QWnyKtGroS0w4A2HRYzkFsWb8eje3crJnQssicPABoGS2ddhNSUmlsZHt516RpVJTQMh32VURu0bDtAaDYSuOPMYNupLHrifHHoO585uGeGNnmvGjVjzS2RavGXo8DA9W9V1GU30CTX1Fciia/orgUTX5FcSkVcu/9vdSqXc/ePNjb7WvRvPdp7JjH5einm++8gcZOeeVDofk4jK/qenNXoWWnZdNY5p775N23CS05M5Nu/9bfPhba+//7Ao0tKpLrtT3LpQWrd2wRmpPz7b0DZVtoRoZ0OwaAFydNEVpAsCwg+fjya0aD+nWE5vT5SkyURdI7iB8AAGwgbsFdScEQAFbtka3Waany/RnWi+/Lt5r83Pxri3y9AWD1/O+FlvoLL0QOeGCA0FbNXkVjA0Nkofe20bIYCwBpOd4F5GdHj8bBPXvKtJ5fr/yK4lI0+RXFpWjyK4pL0eRXFJfymwU/Y8wMADcDSLbWtvFokQDmAGgMIB7AndZa3qp3Du07drTLV6/20pzGJr35vCwEPvPffFwXK4zNm8fHOYVGyu64LSt4QYd17v3zc9khGEXWgAPA/uPHhZZbwM0+favJn8OsgwwANu6T3WKvPvgkjV206kuhBfj50VgG624741BcZN1xK3btorF9WrcWWuni1VmOkC7DRIcOv9wc2bl3d5/rhbaRdCMCgB/xDkhyKOj2JCPhnLoUc4i/RPO6snMRAP6xcInQ7hnIPSdKjwe7JS4O27duPW8Fvw8B9C+lPQtghbW2OYAVnseKolQhfjP5PUM4Slu33Arg7ITNWQAGn+fjUhTlAlPe7/x1rLVnf6c9gRIbb8q547pSya9viqJcHCpc8LMlRQPHwoG1dqq1tpO1tlPNWrUqujtFUc4T5U3+JGNMNAB4/uYtY4qiXLKUdz3/lwBGAXjD8/eismyUnp2D+au8R2tlpXK30X5j+gnt5mulBgAtW8p10S9Pfp7Gbt0pXV+dbniw9fisZZdV9QGgRbQcCTVkyDgaW7+5XMPt9NokHpLV/nfnzaCxQ+OGCq1x47Y0dvgzI4X21cp1Qru2C9+++HeshWc+AW0aNKCxlvxi2awO/6bJ7l5NXfC10MbeJtttASCQuPruSEyksQvXrhdaz3bSKRgANu4/ILQftvI7IUPjpJfF5H9+QWML8rzvHqWk8TsTjN+88htjPgPwI4CWxpijxpj7UJL0fY0xPwOI8zxWFKUK8ZtXfmvtcIf/4qtsFEWpEmiHn6K4FE1+RXEplWrgmZ+bh/hd8V7avOnTaOyAoSOE9tRb3JRz8XRpqrliqSxUAUBYLdmK6zRCi5ltsvX495DCIMCLewsXyvZgAPDxkW9FUVERjf2oVIs0wNfHl+hytvy+fT/R2LjhsqAaVCNYaLviE4QGAKGh0v8gK4u37Pr4yfONdSgOrj8gC5xOo71W75BFtPCocKGdzOYeDhEhIULbvF/uHwBSjsqi5etfTKWxtz8oPyNzJy2ksazd/IbhfWhsZrr3efg7GLky9MqvKC5Fk19RXIomv6K4FE1+RXEpmvyK4lIqtdpviy3yz3gbQVQjJhYAcDLxpNDi7uxV5n2dOSXNEwCg8ZUxQgsJk1VqgI/QYi67zIgD4C27rKrv+Ly+vHIbVl1WpG0RN/4IC6st91XIDUX8yRgvX1KVzzudR7cPqV1TaCdPc9ONvFzZupxXKF8DACgokHqNQD7KrJqvdN/1IWYvTiY2rEW5MJ+/XsXkNU88wE1CgknbcEg4/9wlHZF3bqLD5R0LAAgsZcziR87fCb3yK4pL0eRXFJeiya8oLkWTX1FcSqUW/Hz8fBEZHemtORTA6jSR67VTUrnTb3CwbNllo7YAIDudt5sygqrLohJzCnZy2WXr8Z1adllxr7CQu+T6E4fZwkL+vLm58nzzC3jB7nTWaaHl58rYmvW5IxNz3w0Kle3BAD9ep/FkgQHytSkq5q95YT4vGpZ1Xz4OxVsGG80VFiGLngBwJFkWsJ38Glg7cmIqL5yWLqAXOny+GHrlVxSXosmvKC5Fk19RXIomv6K4lLJ4+M0wxiQbY3aeo/3VGHPMGLPV84cPD1cU5ZKlLNX+DwH8HcBHpfR3rLUTfs/OakaEYtQd3q6pw4b0pbHL1m0W2sRxL9HY2NiOQrt/2EAau2bvPqEFOBggVCftvat3SKMFNjsP4C67zIgD4C27rKoPAAPatRPawo0baeyf3nhbaM2uakpjWRvtzVfL13b28jV0+xE9ewjNqSo/5/u1QktwqGjHkHkPWWT2HQDc2aO70KZ8vlhotXvI99bpeQd060Rj776hp9BSHeYNsrsI4Y/I9xwAOsQ0FlqAw2fh+RcmeT3OyeDGNIzyjutSFKWKU5Hv/I8aY7Z7vhZEnLcjUhSlUihv8k8B0AxAewDHAcjfLT2cO6svzeHXOkVRKp9yJb+1NslaW2StLQYwDUCXX4n9z6y+yJq8+0lRlMqnXO29xpjoc6b0DgGw89fi/7MzHx9ElnJHXb1XussCwIxX3xPahE8nkUjAz0euYV64mrv3Nmwo24bXff8tf15SCKz/0BChvfrgk3R7NkLLyWWXrcd3atllxb0hnXhRaubylUI7Rdp4AaBFYzkuKyxYtufeN5AXaY+QEVxrtvGRVMN6XSu0tBxerDp8Survvfspjc1Iki3gH077q9C+2LSJbl+NtP3m5PLi4rBrZHHxh/37aewNV14ptOgwvkb/5RenCO3diU/T2I5x3gXZb5bwdmrGbya/Z1xXLwC1jDFHAbwEoJcxpj1KpvPGA3iwzHtUFOWSoLzjuqZfgGNRFKUS0Q4/RXEpmvyK4lI0+RXFpRgnF9MLQXSDGDvqkee8tLVff0djew3pL7T0E+k0ds03sn1zzHNP0NiCPGmQsWY+b1ftSdyCJ7/030L7crXcPwAMjRsqNDY7D+Auu8yIA+Atu/VjpVMwANwb11tofn7SpRcAJn76udB8/f2EFhzGK8qtG8q7BU4z8U5mZAptcJfONHbFLnnHoEeLFjR2R2Ki0H5aL29GjRoqP18AxN0oAJiz9kcae+LQCaHl5uTS2NZdWglt5ee81btpO9l+XdvBQCWllKHIOy88g8RDB7hTSSn0yq8oLkWTX1Fciia/orgUTX5FcSmV6t5rjIF/gHcBKSebF/GYC2vdpnVpbFRUI6Gxwh4A+BEn2MDgIBobQMZXZWQkyzg/WRQDgMaN2wpt376faCwboeXkssvW4zu17LLiXoHD854hY7iKs2UBKyCYFwx/TpKty0UOLcoFZ+T5OjnqMkdaC16ozsyVx1sjUq7dP5XHX4MagfLcnByBU45KR97cHN4KfKad/Dyeclh7n50mi6R1YmRbOgAEVff+7FarVqZaX0lsmSMVRbms0ORXFJeiya8oLkWTX1Fciia/oriUSq32+wf5o1HrGC9t1J8fpbEDe3cT2sKveRvug689IrR6EdxW8JOpXwitywDeVvrQEOlIXlQgjRacGP7MSKHFDe9HY/3JnQU2Ow/gLrvMiAPgLbusqg8AT4+6Q2hbjxwRGjPtAID65DWvHijnHTo9hz8xZQGAW6++Wmib4uNp7C8J8o7DwOuk0VTtUAf3XmLccUtXbpRSq6acEXnk0C80tkerlkLbEbOdxsZ2iBXand1lPgDA2zO931+nuysMvfIrikvR5FcUl6LJrygupSzjuhoaY1YaY3YbY3YZYx736JHGmGXGmJ89f6t3v6JUIcpS8CsE8JS1drMxpgaATcaYZQBGA1hhrX3DGPMsgGcB/PnXnig0OBj9u3i7ja7atZvG1gmTxZTgUL6OvFOTJkKLrF6dxpZ2OwWAfp070Nh4UpRira1No6Lo9l+tlA7CQTX4Ofj6ybciP5cX5tgILeayCwC79h0WGmvZBXhxr31MjNAWOTjf3j1gmNCeeudVGsuYk1L2wVC3dOFFOPZZ+J/J/xRas/bN6PZR4fJzd+jwMRr7zMi7hTZx7hwa2/eaAUIb+dgfaWxoiHwvO1/NHZO/Wb3Q6/HsyW/ROEZZxnUdt9Zu9vw7G8AeAPUB3ApglidsFoDBZd6roigXnd/1nd8Y0xhABwDrAdQ5x7v/BAC+8kBRlEuSMie/MaY6gPkAnrDWZp37f7bEC4wus9JxXYpyaVKm5DfG+KEk8T+x1i7wyEnGmGjP/0cDkGtdoeO6FOVSpSwTewxKhnTssdZOPOe/vgQwCsAbnr8X/dZzFRYXIznL65cGpBzl3WI76kojxv49eCfeX/70N6GNeWYEjc0jRbRjabzQ1DVWdlp95yt/Xp7J594B13aR6/l3xSfw4yJddzUdTBtnL5edjk4jtJjZptN6fNZ1x4p7rOMOAKYvXSG00DBeeL2zmxx11bOnLBgCwBUdrhJaaePKswzsI5937WL5euXn8vdsP3l/I6P5RWvWd3LM27ql3K9h/ZZVQrspjs3DAVp2kuakHy/+iMZO/9TbPDYlTRqjOlGWav+1AO4BsMMYs9WjjUdJ0s81xtwH4AiAO8u8V0VRLjplGdf1bwBO9iA3nN/DURSlstAOP0VxKZr8iuJSNPkVxaVU6riuTp062fUbNnhpS3fsoLG+ZG23k+NqryuuEJrT2vCsM3K9dm4+f960HOmuWvpuBQD0aCnXagPAnmOyLfRYOncrDgmQFfi0HD6ua0gn2dqa4NBDkXlaegIwl10AaFFXuiOzlt1n3nudbn/fjbIEtJOMzwKAr1fIEVjXXcvbrJknQKt69WgsG9e1cc/PQuvVQd6JAYBA4sScdoq77I4bPV5obbvJ1msA2Ll+i9BadZR3MQDA109+dtetWEljJ89+1+vxyEGDsHv7dh3XpSiKM5r8iuJSNPkVxaVo8iuKS6lUA8/M06exZNtWL61nK1msA3ixrHNTOaYK4EWe5qR4BQBLNsh2VV9//jK0rC+LSqxAyubHA3ydf1YWL+KdPC0LdkEO/gVFxcVCW7ONH0O9urJF2MnkkRXW2Hp8p5ZdVtxr07AhjZ313SqhPT1GFtAAYM8eWRzsN3AUja3for7QAoPleXUbybcPCgoVWlKS9EQAgA+WLRVaVEQ4jb3nfrniPaYWb9/OIUXpFdfz4qC/r3dxsOzDuvTKryiuRZNfUVyKJr+iuBRNfkVxKZr8iuJSKrXa7+vjg6ga3tXUj75aTmObxsoqsVMr8syJs4X22PjRNPZ0pmzVvKpNcxrbuZl0eJ22WFZ4h8ddT7dn7r8+xKUXAPJyZdtwoUNVfs73a4U2rNe1NHb+ug1CKzhTQGOdxnCVhhlxAMBbM+X7wKr6ADCqTy+hXX89t4S4Y5R0ue02sCuN7dn2SqGNG/s/Qrv/qRfo9qE1ZbXfiaBA2ZK9cPpXNPbp8WOEdsuN99DYkU8/ILSmzfg4tn9v9r7Lk3Na3ilwQq/8iuJSNPkVxaVo8iuKS6nIuK6/GmOOGWO2ev7IedaKolyyVGRcFwC8Y62dUNad+VSrJsZKDY27jsaGBQXR7RmDH7xFaKcdHHUbNZXtn92b84JfVq4ca3VHb1lYc1p336aBLNLEOoz2yissFFqJcbKErd1n3gMAMLiLdDx2el7mgcBGaDm57LL1+E4tu6y4t2bNXBqbkLBHaDs3bKSxGY+OFFp+vnwfp098jW5fVCTfh5YteXFx/OQXhTb2Cf7asNd8+DhZBASAPwyWo73+tUX6AQBA/hnvz7m1svXbibIYeB4HcNzz72xjzNlxXYqiVGEqMq4LAB41xmw3xszQKb2KUrWoyLiuKQCaAWiPkt8M3nbY7j/jutJ1XJeiXDKUe1yXtTbJWltkS75kTAPQhW177riuCB3XpSiXDGWp9tNxXWfn9HkYAmDn+T88RVEuFBUZ1zXcGNMeJdN54wE8+FtPdOrMGazbs99L63d1exqbXyRbW0N8+eHu33lIaP1HSPMEAHjj/U+F5u/wvC2jpSHIvuMnhBZEHF8BwJLBxesPHKSxBQWyyhwY4E9jmQnEYQeH2VRyJ6KQvLaA8wy+0rDZeQA3A2FGHABv2WVVfQCIj5cOz3eNfZjGNo6Vd1gKCuSdH2P4dS8iQr7nWzbLlm4ASM8YJ7SUVD4rL468Zg2bcgdi5lIdSl5bAOjcsbXX45BgeZfMiYqM61pS5r0oinLJoR1+iuJSNPkVxaVo8iuKS6nU9fzhISEY3N37jiBz3gWAvQePCK1Dq1ga+/Bdsr13+lfLSCQwZsTNQvvxZznOCQASUmRfQleyxv+rzbz1slmdOkJzaiWuQQo6zKUX4CPH3ntXFjIB4C/PyBZSVogEgE3x8UK7pYscDZbyC+/XYCO0nFx22Xp8p5ZdVtx7c/xDNPaq2b2E9ujrzwkt85Vkun16uhxlNnacdDAGgEFdZet0KGlLd2IXcagGgG0JCULr5OBcPWqEd/v0iaP8vBh65VcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZVa7QekA+/2XQdo3LZV24TW++p2/DkdqteMehFy5XHiAV51jWwvZ9Kt2iNbUHNzpFkEwN2GV+/gM/Wq+UojjcJ82fILAHf2kO65GUkZNJbdTckkJiUA8EuCrHR3atJEaAP7cPdeti82Ow/gLrvMiAPgLbusqg8A27evElrHK2YI7dBgedcHAHLSZTt0i84taCwzP5m/QbolA0Dftm2FlpBwnMauXyKfY9qk52lsQJC3g7BxMLxh6JVfUVyKJr+iuBRNfkVxKZr8iuJSjNMIrAtB89at7cRP/umlZeacprF3dJPtn04Opl9/+K3Q3njjcRo7c/43QuvctQ2NbUqcdpdvkoXI4b160O2nLvhaaOFR4TTWL0B6AhTk8bFaqcdle+1TI4fS2DdnzBFajcgaNPama2W76qzZcuX22sVr6PZ3jBsutMS9vH17xxq5Rp+57AJ8Pf7tj99FYzteIdunWWvsvX94mW4fWTdSaNlp2TS2SVtZDO3TW76GABASIEd7/emBV2jsx3OlI966A7ww/t3C770ef/LBBCT9ksDtmUuhV35FcSma/IriUjT5FcWllMXAM9AYs8EYs80zrutlj97EGLPeGHPAGDPHGMMN5xRFuST5zYKfx703xFqb47Hw/jeAxwE8CWCBtXa2MeZ9ANustVN+7blat21rP/7ySy+NjbQCgPTTshBYs7rsuAOA3Q7rohnb46VPQIt60SQSCCJFmmZRtYW26XA83Z51x53M5sUj9j44jdWqXUMW7Jbu5ObJ3WKlBwIziASAumFyNv1CssZ+z4/caPPeUYPk/q/sSGPvf+oFoTmN0GJmm02bchPR3qRzL+mI7Fyc+f5LdPsAf7kePzCIf+7mfr9CaI0c7OmZuWmKw2eheV3pA7F6z14am3HKO0+ev28MDu3de34KfraEsz2Pfp4/FkAfAPM8+iwA3C5XUZRLkrIO7fDx2HYnA1gG4CCADGvt2ebzo9D5fYpSpShT8nsm87QH0AAlk3lalXUHXuO60uTEV0VRLg6/q9pvrc0AsBJAdwDhxpizqwIbAKBfvL3GdUXKBgpFUS4OZan21zbGhHv+HQSgL4A9KPkhcLsnbBSARRfqIBVFOf+UZT1/NIBZxhgflPywmGutXWyM2Q1gtjHmVQBbUDLP71epVq0agvz9hVZWsh3WobPWySyH2Aa1ZDW2TlgYjS0iFXjfanKVjj0eAAAK90lEQVQNt5/DuK9Af3n3MyIkhMYWk335OLw2zL23msOdgUiyvxqB8vUCgKxc+bxR4fK12e/LjyuQjC0LCpJ3EAAgtKbUi4q4fwEbocVcdgG+Hp+17LKqPgDkkRbjBg35t9zw4GChOb1nTPf14bHVyN0NdrcAADb94N0mnXea38lhlGVc13YAHYh+CA6TeRVFufTRDj9FcSma/IriUjT5FcWlVKqB56m8PGw6eMhLq+tQbMshRa164Xwt/MrN24U2+sY+NPa92fKmRGYrXhxk6/mZp4AvMXIEuKHl5v0HaWxhPl+7zxjQTY7QyiHFOgCYs/ZHsi9eWLulq3zeQ4flHdzIaN7CmnbqlNCSkg7TWEbLltLDAQC2bF4qNKcRWsxsk3kHOLXssuLewYPcR2L/L9KAs6iAv7bdrmgptGKHzvoTmdKMNTkri8aOHnaT1+PPp0kvACf0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUiq12h/g64uYUmYYE9+fTWPv/S9pDLFgw080tnNrWeHdcNCpqi6rsT1a8HFMxbZYaNP+Pldor7z4B7r9wrXrhZZyNIXvq0juK/UX6dILAHff0FNow67hI7TenjVPaClHT9LYWjXlnZdnRt4ttFnfSbdkABg3erzQPlgmK/UAEERajMdPfpHGpmeME9qgrtwll43Qepe0/DIjDoC37LKqPgDcc/11Qpv8hXQ7BoBbe0u7i6Fj7qexLckdi0/e+IjGXjN7gtdjJwMYhl75FcWlaPIrikvR5FcUl6LJrygupXLbe0+fwcZNu7201GO8APbWa9Ie4B//9xyNffLFd4UWd9v1NLZNB1lM+eyblTR2zKAbhcaKcE7eAT3byTFgr38xlcYmHpBtsGERvI02NUcWsH7Yv5/G5ubIY8vN4a3ARw79IrSJc+W4r3VLeeG1bTfp1BsVwVuyF07/SmhjnxhGY1NSM4UWGsTX48/fIGfbsxFaTtuzdfdOLbusuPfw4JtIJLCCuCt/OnkhjV30kSzufbLkExobXMrLwsnXgaFXfkVxKZr8iuJSNPkVxaVo8iuKS6nIrL4PjTGHjTFbPX/aX/jDVRTlfFGRWX1/ALDYWiv7Rx1o266dXfCtd2vozqNHaSybc7d8izTtAIARPXsIbd+JEzQ2k8wAvNahvXc9aRE+QFo9OzaVxwoAG/cfEFqdWnx2QTBx+j2SzNtwb2gr7yL4ORiKrN4rZ7ydycunsT1aScOJvtcMENr6Lavo9ncOflhob057mcaGkTZap9ZU1rJb32EGBLvzcowMi2H7B3i13+luDmvZnTx/Bo29oY18z9b9/DONZe3Ez9/DW8g37Vzn9TiuZ09s3by5TCX/srj3WgBsVp+iKFWYcs3qs9aeXbHymjFmuzHmHWMMNYM/d1xXWipfqKIoSuVTrll9xpg2AJ5Dycy+zgAiAfzZYdv/jOuKdBhfrChK5VPeWX39rbXHPeO78wDMhA7wUJQqxW9+5zfG1AZQYK3NOGdW35vGmGhr7XFPQXAwANm/WAoLOZbqswlyfTwAJI2Q7ruNGsmxTQAw7rl3hNbzdt7em5yYLLT98bzoOKi7bAv9YOJnQrvrXb6W/oetu4Q2dxJv6QwJl26yWancsTX8ETmCKzrMwdn489VCO5UhXXYBYEeMLKiOfOyPQrspbjjdvtP10mcgplYtGnvLjfcIbfi4MTS2YdN6Qtt1jM6FRUKCLJYtnDRfaK+//xe6PRuh5eSyy9bjO7XssuJet+bNaexjz00U2vyV/6Kxf3rS2633aCIvdDMqMqvvO88PBgNgK0qq/4qiVBEqMquPG+MrilIl0A4/RXEpmvyK4lI0+RXFpVSqmUdxcbGYwVcjsgaNfedp6eS6c7ecOwcAR3slCe34YV71HDO4n9BenTCTxu6JqS+0wJBAof1jIXdsHRon3V23rOBz35KOyHMIj+IV/A4xjYX28otTaGyrbnL2XHZaNo2N7RArtNAQ2QbbshNvh163eJ3Q2MxFABj59ANC+8Ng2UoMlMx4LM22hAQau36JNPP4eK6cXxfk70e3r2bk9ZDNzgO4yy4z4gCAnnfJOyGsqg8A777+pNDGPnwHjR32x9u8Hq9d+zmNY+iVX1Fciia/orgUTX5FcSma/IriUn5zPf/55MqrrrKffeXt2hoSQBcDoknt2kKb4lBYG3NzX6Fln+FrsFlB50xBAY1dtEoWGFu1bCy0q4n3AABM/ucXQmvRXhbVACA6XBb3Eh1WQd5w5ZVCqx4oC5EA8PkP8hyq+fK1/3d27ya0zlfL1/bjxbyoNfaOR4T2wMuP09h6dWXbb14hd8kNJefWqWlTGstehyVbtwrNyeWWbZ+cxdusp73wD6G9Ne0lGjvoOlnMdGrZDSLeDm0aNqSx6ae8W7V79+iBLWVcz69XfkVxKZr8iuJSNPkVxaVo8iuKS9HkVxSXUqntvX4+PogOC/PSZn+7isZGx0jjjr3rpRMtAHxQVCS0mGYNaOz1rWS764Kv+ay+Fq0aCy2NzMljjsAAUJAn7yJkpvPW2kA/2W6af4a77D7/wiShdYyTc/IA4FSWNO4Iqs7n1L09U7aGfrNamlNM/3Qx3X7ybDkz0d/hzsK/N0ujE6fz7dyxtdBGjRhPYwOC5N2jerHSDKRTv050+00/7BDa6GF8/t41sycIrfTsvP88707Z+lzaiOMspVt2AVnVP0tEiDR2KSt65VcUl6LJryguRZNfUVyKJr+iuJRKbe81xpwEcMTzsBaAlErbeeWh51X1uJzOLcZaK3vjCZWa/F47NmajtZaXXKswel5Vj8v53H4N/bVfUVyKJr+iuJSLmfxTL+K+LyR6XlWPy/ncHLlo3/kVRbm46K/9iuJSKj35jTH9jTH7jDEHjDHPVvb+zyfGmBnGmGRjzM5ztEhjzDJjzM+evyMu5jGWB2NMQ2PMSmPMbmPMLmPM4x69Sp+bMSbQGLPBGLPNc14ve/Qmxpj1ns/kHGOMtNK5DKnU5PcM+5wEYACA1gCGG2Pkqo2qw4cA+pfSngWwwlrbHMAKz+OqRiGAp6y1rQF0A/CI532q6ueWB6CPtbYdgPYA+htjugF4E8A71tpYAOkA7ruIx1hpVPaVvwuAA9baQ9bafACzAdxaycdw3rDWrgGQVkq+FcAsz79noWR8eZXCWnvcWrvZ8+9sAHsA1EcVPzdbwtllmX6ePxZAHwDzPHqVO6/yUtnJXx9A4jmPj3q0y4k61tqzQ+JPAKhzMQ+mohhjGqNkSvN6XAbnZozxMcZsBZAMYBmAgwAyrLVn3UMvx88kRQt+FxBbciulyt5OMcZUBzAfwBPWWi8L26p6btbaImttewANUPKbqDR4cAmVnfzHAJzrQdzAo11OJBljogHA83fyRT6ecmGM8UNJ4n9irV3gkS+LcwMAa20GgJUAugMIN8acNba5HD+TlMpO/p8ANPdUV/0BDAPwZSUfw4XmSwCjPP8eBWDRRTyWcmGMMQCmA9hjrT13mmSVPjdjTG1jTLjn30EA+qKknrESwO2esCp3XuWl0pt8jDE3AfgbAB8AM6y1r1XqAZxHjDGfAeiFklVhSQBeAvAFgLkAGqFkBeOd1trSRcFLGmNMDwDfA9gBoNgjj0fJ9/4qe27GmKtQUtDzQcmFb6619hVjTFOUFJ8jAWwBMNJaK0cDX2Zoh5+iuBQt+CmKS9HkVxSXosmvKC5Fk19RXIomv6K4FE1+RXEpmvyK4lI0+RXFpfw/WwRa35IzsTsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXtcVXXW/z9fUBRBERQUUPIKYorg/VY5ecmxpjKd7pOVz1gz02RPNdVTMzbNWFM9ZjU1U2ql1nQRs7LMS+Y9My+hKAoqICoXr4jiBQT9/v7g8Pw4rM9OEkVwr/fr5QvOx7XP2fucs9jnrL2+n2WstVAUxX34XOodUBTl0qDJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS6lW8htjhhtjthtj0o0xT12onVIU5eJjzrfDzxjjC2AHgKEAsgGsB3CHtXbbT2wjHiw+IYHGFpw4IbSjB4/SWN/69YR2uqiYxtb3qy80v4Z+NDaoaWN5v6WlQgsOCKDbF546JbQG9eXjA8DxoiKhNfH3p7FFJSVCO5J/jMYGBctjaOTHjzc396DQIiPDaCzj8NFCoQU2akhjG5J9MA73e4a8R0+T5wAA/Bs0EFoJec2KieYUGxIYSGNZ7rD3BwD4+MjzLHssAPD19RWaH9EA4MjJk163D+blobCgwOmp9EJmTdXpDSDdWpsJAMaYTwDcBMAx+RlLV62i+pdr1wvt66nzaWxwi2Ch7d2ZRWNDI1oKLSo2isaOuOkaoe05dEhoo3v3ptsvT00VWvswnkyrt+8Q2tC4LjR25779Qpvzn4U0dtjoQULr0aYNjZ3w7L+F9o/nHxaa0wnjwwVLhdavBz+G2IgIodVzeIOzP4y7Dso/VAAQFyVfy5z8/Cpvn5t/RGh3DRxAY4vJH6C95LEA/gc3r6CAxoYEypNJZHAIjf1svXeePH3//TSOUZ2P/ZEA9la4ne3RFEWpA1TnzF8ljDHjAIy72I+jKMrPozrJnwOgdYXbrTyaF9baqQCmAvw7v6Iol4bqFPzqoazgNxhlSb8ewJ3W2q1O2yR0724rf8d3Kqb8ZfK7Qvv9/aNo7IL1SUK7uR//Hr5p926hHS+W3ykBoHnjJkJbs3az0Pwa8CJeTnqu0H7zmxtobFgT+VhOxcGZ8xYLrXdCZxo7/2tZUxl8XT8a27tdO6Gt3L5daNvTdtHtB/WNF1rRaV6YyycF3fzjx2ns7tQ9QkvoxY+3RVCQ0Lq2bi20Zdt4aapxQ1mgzHX4bt6zbVuhbcsR5z8AwJZkWdOJ6tiKxg7v1k1ohwtlMRUA2oSGeu9Tz57YsGHDxS34WWtLjTEPAVgEwBfAez+V+Iqi1C6q9Z3fWjsfAC/BK4pSq9EOP0VxKZr8iuJSNPkVxaVc9Ov8FSk4cUJ07rGqPgD8/dGxQnvw3pE0ds5riULL3p5NY995+UWhNQuR3WYAMG+pvN+HJk8RWuc4fmWhcTPZWut0dePTZauFtodUuQGgxRUthPbyk7I7DwBSU9cKrUNCBxrLOuG+n7tGaI1D5HEBwJpGsqNxReJKGvv+9L8LbepXi2jsLSNkp2VSVhaNDSTVenaFZ3eu7JIEgOE9Zbv5ptR0GptDriy0bNqUxi7O3Ce07t1jaeyZs2flPuzh74W8o94t7yeKeVs7Q8/8iuJSNPkVxaVo8iuKS9HkVxSXct7tvedDSEhLO2TYPV7aP6c8Q2PPkqJHZAhf1phKWir/MUEW5gDgxgdke23OrjwaG9VeLlLMzpKxPbp1otvHtZbtm/M2bqKxzBMggKxNB3hbaVoeP4YOLeQS4qcm/IvGpm+WrbyTpk0QWieyHBcACn+GJ8HRSuvQAeDU6dM01p8sh23o0PqcXcXluwOiO9Lt0/cfEFqIg1+DL1mj7+TtwPwDWCsxAKzLzBSa03uh8vP421GjkJaSUqX2Xj3zK4pL0eRXFJeiya8oLkWTX1Fciia/oriUGm3v9a1fT5htMiMOgLfssqo+AMRGyqr8+yt4W+k7E6YJbeDNsn0UAKJbSrPPg/sPCy09l1fat6RlyMdK4IaWq5JShBYX257GJq75QWhJi/nz6OMr/74/95cHaCwzn/xmpTRSfceh7bhZeDOh7UnjsW9OfkJoGft5y223K64Q2uSZn9LY+0YPF9rubNlau2KBfA4BIKZPjNDah8v3AQBc2UpezZmfnExj8w9JQ5CEGP76sqs5yaRFGQC2pHq/x045uFYz9MyvKC5Fk19RXIomv6K4FE1+RXEp1WrvNcZkASgEcAZAqbW250/FBwWF2gEDbvHSPpw9mca+OeMzoaVv5Ouqh9wzRGj3XHM1jR02TE40yczkRZo1Scvk/d72uNAeeekhun38FXJ6zPc7+TGsWSDX3beNk266AHDb4KuE9v5X39LY9jFyH46dlGPEAOCVh58T2pTZbwktqrks7AHAK29+JLR77vkVje3QQnoSnHRo7808IFtu2WQegI8y8zWy25W15gLAhl3SmbgzKSg73Ud9h6lDR8notq9Wy9ccAO4cLN+7Tuv0fYz3Pgy55hpsSkq66OO6yvmFtVbOsFIUpVajH/sVxaVUN/ktgG+MMT96xnIJjDHjjDEbjDEbTp/mwzEURal5qvuxf6C1NscYEwZgsTEmzVrr1V1TcVxXUFCojutSlFpCtc781tocz88DAD5H2dhuRVHqAOd95jfGBADwsdYWen4fBuBvP7VNfb/6CI3wbpVkzqoAd9md/OkMHktadllVHwC++eY9oUVEcDdbZqBQUiK/umTtljP5AGBbimzvHXJVDxqb1V4aZDhd3Ugk1evEN2bS2NBQOafur68/SmN7DJBtzhtS5Iy5XZVatMup7ycNNt6ZMofGTvyzbDHe7OBQGxEsH29dhnxuAe6e60Nq31uzeat4ONneaf4em6/oV4+n1OIN0sQlIIg7OZ85Kz8g5xUcJZHSqOQ4MVRxojof+1sA+NyUvRHrAfjIWruwGvenKEoNUp1BnZkA5DhRRVHqBHqpT1Fciia/oriUGl3P79fQD1Gx3m2Zx4t5gYKN0HJy2WXr8WdMepXGsuJebi4vrPmQwtrGjbKN9qqswXT7uH5XCq3QYb11wUG53rv0tGxVBYCIVqFCGzxauhIDwNGDslC0fqt06QWAwsOFUsuXWru2vN01sKksYHXszoup9XxkGyxz6QV4228CWeMPAFmHZLNpA+L0OzBGrtt3YsvevVQ35P3RuhlvfY5uI9f+78qVPgMAdyY+RtqDAaBjpTbpBg4FR4ae+RXFpWjyK4pL0eRXFJeiya8oLkWTX1FcSo1W+4OaNsaIm7hTbmXmLZXuvWyGGcBddh+480Yay1p2WVUfABqS6vMeUk2e/vHXdPvgRo2EtnDeKhqbcFWc0JhTMAC89Mfnhfbu7Ddp7IFjx4T2wiOv0NjEz/8pNGb2EugwY64pOd5mjRvT2L+/LtuRJzxyL41l7bUp2dk0thsx+Sg9e0ZoTu29rFrfpz132WUGG9ty+H717SCvejjNG2R0IU7BgLwScYbMuHRCz/yK4lI0+RXFpWjyK4pL0eRXFJdSLffen0v72Fj7wvTpXlpOBl8L/+HkKUK77+k/0tgG/rIw9/mbfB05W4/PWnYBYOP2zUKLat5caL/6FXfv/fXjtwqtb3RHGrtqyzah7XEYixXTS7amWrIGHACWfrRUaIHBfB25D3GjbRwiC3axfTrR7UMC5f2WnpHFNgC4Lk4WOJ28HZoGBAiNFVMB4MjJk0IrJK2xUQ5tuEHkfr/bztuhO5JCczPyHADcFZg93wDQjxQHV6Sm0thmjb0f77YR12Pr5s1Vcu/VM7+iuBRNfkVxKZr8iuJSNPkVxaWcs8PPGPMegBsAHLDWdvFoIQBmAWgDIAvArdbaI+e6r+CAAIzu7W3w+1Y2747rHCeNgHt044Wm9Fy5zt9phBYz23Raj88691hx76uveHddazIqq+9jvOB3TbcuQltSzNfz702T68sTenWmsTu2yKLlqVPHaewL018WWsGJE0JjRTEAGNa1q9Cmzf+Gxh5sK30CmHkmwItok96dRWMfH3ub0FLIMUxL5O+764f1F1q7sDAaG0wKkZ+sWk1jo6Nkhx4r7AHAWVKEjw4Pp7EL1id53T7h4BfBqMqZfwaA4ZW0pwAssdZ2BLDEc1tRlDrEOZPfM4Qjv5J8E4Dy5uyZAG6+wPulKMpF5ny/87ew1pZ/1t6HMhtvSsVxXQcreYwrinLpqHbBz5Z1CTl2Cllrp1pre1pre4aGSu85RVEuDeeb/PuNMeEA4PkpB6grilKrOd/1/F8CGAPgRc/PuVXZqPDUKSyv1KaYk87bexs3k22lca0d1jSnydFN8fGyfRTgI7SYyy7AW0jbxrUVGqvqA8C/Jz0htJcn8hZltja8zRXSwRgou7xSmf+8NpvGZmRsFNrcVYtoLFunH+FQgWecJMdQWsLbe0NIpXzGwiU0Nqa9fH7z9/GLS4lrfhDabf37Ce2DTP6WPVwor4RUHolVzr590m+h+CSvti9Jk/vVOiSExn67UV6h6dqOuxUfyvb2lyg9XUrjGOc88xtjPgawBkCMMSbbGDMWZUk/1BizE8AQz21FUeoQ5zzzW2vvcPgvfnFcUZQ6gXb4KYpL0eRXFJdSo+v54+Lj7ZeLF3tpbBQTwNeGO61p7tpazqDfsY+PQurQQrZqOo3QYmabd9/+SxrLiAiWxbLAhv409rrrxgrNh4y0AoC7nr5HaN3a8KJjZLAsKs1ZtYbGni2Vxbkro2WBc0saN1K9YaBsyV6zcyeNLSVGk7ERvMB5JTGvZGv0AT6ui3kKOLXs7ibb13cYgZV5QF7kYu9FAMjJr9wn5zwybGNWltDySYsyIM1FrxkwABuTknQ9v6IozmjyK4pL0eRXFJeiya8oLkWTX1FcSo2O6zpeVITV23d4add14224ny6Tpgjt2kbS2FVJKULLTJZtvACQ1V5WlAsOFtBYNkKLuewyIw6At+yyqj4ALFr0rtDGPz2Zxo7uI6vqTqPMGPHR7aheWCSdjT/9YIHQio7zSvvRQ0eFxtx/AeBXV/URWuKC5TQ27PomQmOjwQDgx207hBYZISv7V7bi76XOkVJ/8yPeCtyoidyHoV14q/jsL6WLclEJN2vxJ2PiktZtpbGDYmO9bjs5AjP0zK8oLkWTX1Fciia/orgUTX5FcSk1WvBr4u+PoXHexbEGDjPK2aiqrp14oSouVs5Pd2pbTt+YLrTS07zwcnC/XK/N/AecXHbZenynll1W3Hv9hUdpbDgpWh49KIttANCyrRwpVXRCFvYAoGGAXM8fECTX3Xcb1I1uHx0li2VTXvoPjQ0Nl+OymjgUB9kc++S90sEYAGBkZysrvCZl8dFgjKZhQVRnngKpOdyfIqRlsNCcRoblHJH36/Sa5VaKLSm9gOv5FUW5PNHkVxSXosmvKC5Fk19RXEpVPPzeM8YcMMakVND+aozJMcZs8vwbcXF3U1GUC805zTyMMVcDOA7g/Qqz+v4K4Li1dtLPebBOXbrYdz/7zEvbuHk7jT1TKs0eHhzF/8Ywx9YbenTnsUu/E1pEKz5P4KU/Pi+0P/zv40Jjs/MAoGmorBIHNJUmJQBv2X3tg89IJPDU2NuF9r8zEmls0Ymqz24beeMgobF5dC2CePV7QXKy0AIaNKCxC79YIbQnH/4NjU3eI6/8NGvMrwwwR9wm/tJA5cddu+j2oU3k/Qb581ZiZkTj1LLbxF9eSVmZxt/7Q7rIdnFmSAIAX6xe63V74sO/R9aOHRfGzMNhXJeiKHWc6nznf8gYs9nztUBexFQUpVZzvsn/FoD2AOIB5AF4xSmw4qy+AtK8oCjKpeG8kt9au99ae8ZaexbANADyC+v/j/2/WX1Ng/UDgqLUFs6rvdcYE15hSu9IAHJBPeFI/jHM+c9CL+32MdfT2Jef/LfQBvVPoLFJi5OElp/LyxSJb8wU2uDRN9DYd2e/KbQfM2WhKKFXZ7o9G6H1p7/+F41l6/GdWnZZce9P995KY2+8UY4H+8+sl2nsS2/KVtyev5DPeT2HNeNZmTlCm/s2HyP24Zx/Cu2N6XNo7F23Dhfa/BVrSSTQPLK50Eb26im3/1o6MwNAQBNZ4HRq7y0ho7FY2zIAzJs2X2h3P/JrGsvclTtEcWfjiJbex+vkNMw4Z6RnXNcgAM2NMdkAngUwyBgTj7LpvFkAHqjyIyqKUis433Fd0nZGUZQ6hXb4KYpL0eRXFJeiya8oLqVGzTyCghtj2OhBXppT1TU1VVZz2Zw9APDxlX/D2sfw2XWhoXKWmlNV/cCxY0Jb+pF0Yd2xZTPdPiNjo9Bee/0JGstgRhwAcOyQ3C9W1QeAL798Q2izV91MY1llv3FD2ZZ6hszZA4Bbrh0gtLyMPBIJNG0kq+r9BvGWbNbaeij7II0d3F/eB5sL6GSOcctIOXn+5xhkpOziJiFxg6QTdLcoPtcvoqmc8cjarAHgk/nLvG4XFfHZlww98yuKS9HkVxSXosmvKC5Fk19RXMo51/NfSOITEuziFd7ruNPyeEFo9wFZ0Fk7j7d0PvcX2WC4MJkX4TqTMU3rt/J11Z+98anQYnrIVt7Vi76h2781S7YHb9rBx2qxEVpLV2ygsadPyaLO+PtH09jZq74X2thhsqgFAFO/XiS0Fi1lu2zPtm3p9s0CpVeB0+tbcOKE0GIieAsrc+/dfegQjWWOuCnZ2UILchj31T5MejvkFfCCcFgTOUYs//hxGss8BRrU5/V2A7kcP/3AARp79ORJr9u/HTUKaSkpF2Y9v6Iolyea/IriUjT5FcWlaPIrikvR5FcUl1Kj7b25uQcx4Vlvk47XXn6MxubkSzOOdAen370k9pWHn6OxPQZcI7TCw4U0NvFzaTjx7AtThfbCdG6OEUhaY8+WchfWwiLZbspm5wHA9UP7C40ZcQC8ZZdV9QFg3PXXCe00aW31IfPwAOCHdDkHkT0HAJDQpo3Qikp4a2oDYlDBXHoBoJ6vnIXIrk4cIVcbAGDOD+uEdlv/fjT2MKnsN/Tzq3Ksv0PsroPyStdVMTE0dvZa7ytgJQ4uvww98yuKS9HkVxSXosmvKC6lKuO6Whtjlhljthljthpjxnv0EGPMYmPMTs9PteZVlDpEVQp+pQAes9YmGWMaA/jRGLMYwL0AllhrXzTGPAXgKQBP/tQdRUaG4R/PP+ylrdzOi3jfz5UOppOmTaCx36xcL7Qps9+isRtSdgitMJ8X/Fjrc+MQOc6JtaoCfF32ldG8NfbTDxYILSCIr+EOHip1VtgD+Hp8H9KyC/Dinh8ptvXpw92O7336D0Jb/slyGvvBB3IU2i8Gcp+BWfPfF5pxKDo+cKccpxYQIF+Hf/ybv1WHxXcTWqfoHjQ2NlYWAmd8wou/D415RmjjJj5IY9ctku/nO96+kcZu2OpdoHQqsDKqMq4rz1qb5Pm9EEAqgEgANwEo98GeCYC/coqi1Ep+1nd+Y0wbAAkA1gJoUcG7fx+AFhd0zxRFuahUOfmNMYEA5gB4xFrr5SNlyz4f0+WBFcd1HXJYiaUoSs1TpeQ3xtRHWeJ/aK0tnxu93xgT7vn/cAB0zWHFcV3Nm/Pvmoqi1DxVmdhjUDakI9VaO7nCf30JYAyAFz0/51blASsX0ban8TnprLDWyWG99zupcn571A3X0thdLeRFiXZt5Rp/gBdPYvt0EprT2nDGljS+nr/o+CmhdRski08A0CJIjo9yGqHFzDad1uOzzj1W3Fu7dh7d/pVOcl7r54f5uK6DxBw1oe9VNLZtqFxjP2PxMhIJjLhPlp52b5WmmquTt9Lt/RrKrrurB4+ksZ37S2+H+eulaSsAlJbK7sWrHbr2jhfKAvKok7w4WNlDgXU4OlGVav8AAL8BsMUYs8mjPY2ypE80xowFsBsAHxanKEqtpCrjur4DiLVIGdwSRlGUWo92+CmKS9HkVxSXosmvKC6lRtfzHz5aiA8XeI+7GtQ3nsauaZQqNLbmHQCahUvH1lfe/IjG1veTTrCBTaXrLAA0JVX8EOJQO6xrV7r9yeJioQUN7E1jjx6SDrHRUfwqxILkZKFlZebQWDZCi7nsAnw9PmvZZVV9ABhIqtczl68gkcCCdUlCi+nFq99jH/ib0P488Xc09vMFK4U2eswIoTk9B9nEG6Jj9440NiRcegr0iulAY80zY4UWF8Nbst+alyi0mN78uUnNzfW6XXRax3UpinIONPkVxaVo8iuKS9HkVxSXUqMFv8BGDdGvRxcvreh0CY1dkSgLN2N/OZTG7kmT7b3jn7iHxr4zZY7QOnbnRZpmjWWL8aFCufZ/2nw+rqu0RJopNm/JjSdZO/OUl7gp572P3ia0uW/zNtq8DDku69bbpVEnwNuZ2Xp8p5ZdVtwbM0gapgLAhkzZ5jx9CW+NnfrWn4X24B9foLF9RvQRWnLKTqEt/5i3B4e1kYtTGzbia+T9/GUr8PR1X9DY1Qu/Fdq363kxdOf+/UI7sIeP62rUz3sfnMxVGXrmVxSXosmvKC5Fk19RXIomv6K4FE1+RXEphjnUXiy69+hhv/v+ey/tux3STRcAhnTpIrSjJ0/S2IAGDYTmdFylZ2UFvp4PN0D4++szhfbco/cL7SC5AgAAIQHSZXfOeunMCgADo6OFxtptAWDDEtka+9hDd9LYpo3kPqzZKavfAB+hxUZKMSMOgLfsxke3o7E920m91GHU1Mibxwut13W8TXr8/aOFtnPfPqEtXy33FQBOHZOmKk+Mu53GMsb9biLVp739F6E99szrNHbSxIeFVlTCr4rNWrbK6/bz4x9C1s4dVSr565lfUVyKJr+iuBRNfkVxKdUZ1/VXY0yOMWaT559cN6koSq2lOuO6AOBVa+2kqj6YgXQXzSdzywFg6ldyhvyNV8nWTQDIIO2Q7VvwGSKb98hWYKc56RMeuVdom3ZLJ9hwMpYLAGYsXCK03l2l+y8AJC5YLrQmpOUXAJ58+DdCe2O6bFsGgH6DugstLiqKxhaVyLXgbISWk8suW4/v1LLLintOzrMzly4X2pD4OBrbPkruw/jnZCvwXb8eRrc/S+rEAf58bFpoaGuhpezYRCKB1pGyhfyxF/lor/59pWNyQQFv7/12jXeevBFQdSfpqhh45gHI8/xeaIwpH9elKEodpjrjugDgIWPMZmPMezqlV1HqFtUZ1/UWgPYA4lH2yYB6O+m4LkWpnZz3uC5r7X5r7Rlr7VkA0wDQrgsd16UotZOqVPvpuK7yOX0eRgJIufC7pyjKxeKc7b3GmIEAVgHYAqB88NvTAO5A2Ud+CyALwAMVRnZT4rt3t0tXept0TEv8msbeMkKaQDQn5hoAN6FgVX0AaOLvL7STDo6n7LlpTLZvFczLHaw9tz9p4wV4y2zD+tJpGACSybG1biYdjAFeVW/pcHWiQT1Z/805ckRobHYewF12mREHAIy+5b+l9t+yNRcAxlw7SGgr09Jo7JrvpbNxp26y0t4ujB9DcUmp0LZkyis8AHCmVD63Pr78fNo9ur3Qru/PzWkmvP1PoYWE8fdY5bmNvx01CmkpKVVq763OuK75VXkARVFqJ9rhpyguRZNfUVyKJr+iuJQade89XVKCXQcPemkJvTrT2KSsLKHd2F22qgLA5JmfCu3RMbx4tC4jQ2gJV1xBY1Oys4UWTEZ4TXp3Ft0+f58slnV9XLaEAnw0WPLevTSWuQrPX7GWRAKHsg8KbdRoXmhqHSKdhQ1xg52xmDvfshFaTi67bD2+U8suK+5d3Ym3SZ85e1Zo68lr3rU1f807x/YT2g9Jsk0b4AXZoMa8MPf2gnlCW7J+OY3t2LKl0NhxAcCzk971un20gHtLMPTMryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSarTa79+ggTCS2JaTQ2NZy252fj6NvW/0cKE5uZ2y1tYsh9WG3YjpRTZpd318rJydBwCJa36o8mP9uI24GDvMXRt9dX+hNY/ki6YG95dXSCIc2pGZmcYDdz4utBH3SYMPAPh8gZyvyGbnAcAdQ64WGjPiAIA/vSz9Ypyq374+8nx215hnyPbcKZi1Q7cIbUVjT52ULdlFxdxh+mbiQJx+TTcaO+VF2SZd7HC/c9d4z/ub8wFvgWfomV9RXIomv6K4FE1+RXEpmvyK4lJqtOBXUlqKnEpFu66tebsrc8mt3Bpczu5sOY7prmtlQQkAfEgNrYHDunk22qvwlBznlHLiBN3+tv6yVZQdFwBERoQJ7URxMY1lngQje/WksaWkMOa0Dz3bthVaQIAskO7eyrcfPUa6tyen8NFgbIQWc9kF+Hp81rIL8OLehzOfF9ojE+TYNYA7Od897k809thhWfDbkJlJY++fMEZoQeR1BIDt62QBee9uPtYuI9vbQqP4NC90M/TMryguRZNfUVyKJr+iuJSqGHg2NMasM8Yke8Z1PefR2xpj1hpj0o0xs4wxfOyNoii1kqoU/IoBXGutPe6x8P7OGLMAwKMoG9f1iTHmbQBjUebl73xHpaWiaJdxgI8h2p0rR3DdRjrbAGDFAtlJ5ztkEI3dmi07CgfG8M4yFtuBjAFzMiH9IHOu0P785Fgae2UrOQQpKYsX1n7ctUto879eRSKBohNFQrvz7utp7BFSuPzHv58U2urkrXT7ZoGBQlv+MV/7X3xKFjOdRmixwqfTenzWuceKe73aS0NNAIiO7iW0H5L4MTQixcGWYbyA/fKH7wstoU8PGvvxRy8KraRUGosCwN9eneF1u/gkLxIzznnmt2WUD9Sr7/lnAVwLoNxFYyYA3vOpKEqtpKpDO3yNMZsAHACwGEAGgAJrbfmfo2zo/D5FqVNUKfk9k3niAbRC2WQe7qFEqDiu66jDwhxFUWqen1Xtt9YWAFgGoB+ApsaY8ppBKwB0eV7FcV1BxCNOUZRLQ1Wq/aHGmKae3/0BDAWQirI/AuUumWMAyOqWoii1lqpU+8MBzDTG+KLsj0WitXaeMWYbgE+MMRMBbETZPL+fpKS0FLn53uvhO4ZLp1IAGN4zQWjp+/mVgZg+slq/gVTEASDcYVQVg43ACiIuu9cP41chDhceF9puh/X8nSOM+FwPAAAKpElEQVSrXjIJbSLXbAc0CaCxt4wcLLT2DqOq5vywTmjD4uWac7+G/Kou81sIayOvjgDAqWOyTfqsw+Q4NkKLuewCfD0+a9llVX0A2LFjvdCcRtqxMW8BAUEkEmgQIP0p8goKaCzzsvCrJ70WAKDXYG+/hlkz5PvTiaqM69oMQGSitTYTDpN5FUWp/WiHn6K4FE1+RXEpmvyK4lJqdD1/SGAg7ho4wEv74scfaeymVDnb/pf9+Jr19qRo6FRAY4ahWxzGYvUhLaDfbd8utHZhci0+wP0HgkkLLAC8+ZG8WNI0jBePriTH5hTL2kLzCo7SWOY/0ClatqBePXgk3b5j945Ca9hIFq8A4IlxtwstwJ8XLactXCQ0pxFazGyTrcd3atllxT02Hg0AwsPl+yMjaxuN7Rn/C6HdOf73NPaP730s7zdjI41dvWWD1202QswJPfMrikvR5FcUl6LJryguRZNfUVyKJr+iuJQarfZba1FcaYwWc4wFgJwgWb1mo5gA4MpWssLr4zDqKqxJE6EZh1hmItGxpbyyEBzAq9T79h0W2hmHHtZGTWRbZv4+ORoM4G2lJae52QODPQcAcPi4bEeOJW20nft3ptuHhMuFW37+VTd4Cg3lRhhnSmXLrlNVm43QYi67zIgD4M8tq+oDQF6edBD2q8dTqn0HOTYtqDm/QrNzp7wC5uPw3j9e5G3WctZhjBlDz/yK4lI0+RXFpWjyK4pL0eRXFJdSowW/06Wl2FtpzXemg3tvS7Lu3qmwNj85WWgjuvHZ56wgw9btA8C2nGyhdWwhC36frFpNt2dOqk7jyYZ2uVJoqTm5NLaoRI5kCg3nx5CySzoAM5ddAGhIimAzPnlZaPPX81bTXjFyrNb0dV/Q2HG/myi0lB2baOzcH+Qa+6DGwTS2iMyxZyO0nFx22Xp8p5Zd9l6q58vX3X++YYPQnF6H/Pw8oZ1xKORNmjHb6/axQnn8TuiZX1Fciia/orgUTX5FcSma/IriUqozq2+GMWaXMWaT51/8xd9dRVEuFNWZ1QcAf7LWfvoT23rh4+Mj2iq3JO+gsYsz9wntmcfvo7H5h6QL6tFT0h0WABZvkBXl6DayPRgA+naQ1ev1pHIcHcW3X5ImZwjmOAwumf3lUqGFtOQV7Zuv7iu0edPm09i4QXFCa9Lbn8ay9t6HxjwjtNJS2QILAOYZOYdw9cJvaezK7+YIrXWkfL4BYNG6FUJ7e8E8GnvzzeOFdv+EMUJjs/MA7rLLjDgA3rLLqvoAMLKnNKJZQK5SAcD4p18V2uFc2SoOAFOm/Nnr9qx/yaszTlTFvdcCYLP6FEWpw5zXrD5r7VrPfz1vjNlsjHnVGNPAYdv/G9d12MGzXlGUmue8ZvUZY7oA+B+UzezrBSAEgJzlDO9xXc2aN79Au60oSnU531l9w621eZ7x3cUApkMHeChKneKc3/mNMaEASqy1BRVm9b1kjAm31uaZssXwNwNIOdd9lZSWihFFUR15sax791ihNSZjjAAgIUaut/5q9VoSCQQEyZbKXbmyuAjwNeNsXXU/UhgEgNZkMGlEsENbKmnZjXJoO16ZJh2E737k1zS2W5RsY21Qn7/sbKzVuIkPCu3qGDkeDQDiYuSItW/Xy2IdADz2zOtSe5EXq67vP1RoS9Yvp7Hp18i27iB/WeBM6CNdiQE+QsvJZZetx3dq2WXFvV86tKBPnf+N0EqK5fsDALZme7tRnyJ+BE5UZ1bfUs8fBgNgEwD5LlEUpdZSnVl9116UPVIUpUbQDj9FcSma/IriUjT5FcWl1KiZh6+vL0ICvQ05osN5xZOZF6wjrbUAdwCOjYxwuF/ZnPhz5psxA4ezZL4bAHy7cbPQura7gsaySnvOEe7eO6RLF6HNWbWGxkYQU5TAUH7VhM0WXLdIGmkcLzxBt39rXqLQdu7fT2MnTXxYaP373kBjJ7z9T6ExF2UAmPLi34S2fd1tQvv4oxfp9oHkihKbnQdwl11mxAHwll1W1QeAcSOGCS0hfgiNDXztL163i07zqwIMPfMrikvR5FcUl6LJryguRZNfUVxKjRb8/Hx9ERns3fKa61DU2rRnj9DahYXR2OTd0qE2qjlvjc0rOCq0Yw5r/7uQMWBrdu4UWnR4ON2eFffyT/BiWdK6rUIrOlFEIoFu90YJrUMUL3Ayx+N0B8fkq0jb7h1v3yi0USd5M2dMb7n9gT38sa7tLEd+FRTw2JAw2RLt5GZbTNx79+6WnhElpXy8mV896b6bkcHdilmrt9N+sfX4Ti27rLi3cRP3RYhv957X7UYNqj4eTc/8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC7FWIfW1ItBu9hY+8J73tXJ2/v1o7Fr0tOFVnrmDI3dkpohtFsHX0Vjv9shK78dW7SgsczNtnJ7MgCsS5VXAADgULb0LHzw9l/RWNbe63QlhDkQR7TkFmlpW2VLdK+eci4gAOwjRhZXdeokNCfDitRcOVuwsltzOct+lOYWQ3tJMxAAYr4jACz4gpuEXHejfN0zsmXLbcZG+Z4BgF6DpSNvbAS/knK8SF6N+XbZOhr70F03Ca2yEUc5aUSPbydb2AGgW5S88mOtNTS4EnrmVxSXosmvKC5Fk19RXIomv6K4lBot+BljDgIo78VtDuBynOKhx1X3uJyO7QprbWhVAms0+b0e2JgN1lo5wKyOo8dV97icj+2n0I/9iuJSNPkVxaVcyuSfegkf+2Kix1X3uJyPzZFL9p1fUZRLi37sVxSXUuPJb4wZbozZboxJN8Y8VdOPfyExxrxnjDlgjEmpoIUYYxYbY3Z6fvLJnLUYY0xrY8wyY8w2Y8xWY8x4j16nj80Y09AYs84Yk+w5ruc8eltjzFrPe3KWMabqdjh1mBpNfs+wz38B+CWAzgDuMMZIP6e6wwwAwytpTwFYYq3tCGCJ53ZdoxTAY9bazgD6AviD53Wq68dWDOBaa203APEAhhtj+gJ4CcCr1toOAI4AGHsJ97HGqOkzf28A6dbaTGvtaQCfAJDLneoI1tqVACovObsJwEzP7zNRNr68TmGtzbPWJnl+LwSQCiASdfzYbBnlSzXre/5ZANcC+NSj17njOl9qOvkjAeytcDvbo11OtLDWlq8h3QeArxeuIxhj2qBsSvNaXAbHZozxNcZsAnAAwGIAGQAKrLXljp6X43uSogW/i4gtu5RSZy+nGGMCAcwB8Ii19ljF/6urx2atPWOtjQfQCmWfRKVhgUuo6eTPAdC6wu1WHu1yYr8xJhwAPD+5H3UtxxhTH2WJ/6G19jOPfFkcGwBYawsALAPQD0BTY0y5jf3l+J6k1HTyrwfQ0VNd9QNwO4Ava3gfLjZfAhjj+X0MgLmXcF/OC2OMAfAugFRr7eQK/1Wnj80YE2qMaer53R/AUJTVM5YBGO0Jq3PHdb7UeJOPMWYEgNcA+AJ4z1r7fI3uwAXEGPMxgEEoWxW2H8CzAL4AkAggCmUrGG+11kofqlqMMWYggFUAtgAon0LxNMq+99fZYzPGxKGsoOeLshNforX2b8aYdigrPocA2Ajgbmtt8aXb05pBO/wUxaVowU9RXIomv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLuX/AZCcUsZF7GXNAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -274,7 +283,7 @@ "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entanglement='linear')\n", "qsvm = QSVMKernel(feature_map, training_input, test_input)\n", "\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", diff --git a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb index 17522c9fb..dbd9f213f 100644 --- a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb +++ b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb @@ -99,7 +99,16 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", + " 'functionality and more.', DeprecationWarning)\n" + ] + } + ], "source": [ "# useful additional packages \n", "import matplotlib.pyplot as plt\n", @@ -108,7 +117,7 @@ "import numpy as np\n", "import networkx as nx\n", "\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.tools.visualization import plot_histogram\n", "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", @@ -120,8 +129,8 @@ "\n", "# setup aqua logging\n", "import logging\n", - "from qiskit.aqua import set_aqua_logging\n", - "# set_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" + "from qiskit.aqua import set_qiskit_aqua_logging\n", + "# set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" ] }, { @@ -141,7 +150,7 @@ "outputs": [], "source": [ "from qiskit import IBMQ\n", - "IBMQ.load_accounts()" + "# IBMQ.load_accounts()" ] }, { @@ -166,7 +175,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4FFX28PHvzZ6QlX0JkIRNEVGEQVFAQRjAUUCQdEZ/giAwDqKOEBYRN8RhZxwZddwYlnc0lQTEgAqKiIwLKjrusm8hAVkSEsjWSfq+f1RgImZPpyudPp/nyUO6u9J9CsKpqnNv3aO01gghhPAsXlYHIIQQwvUk+QshhAeS5C+EEB5Ikr8QQnggSf5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4IEn+QgjhgXysDqA8TZs21VFRUVaHIYQQbuWrr746rbVuVtl29Tb5R0VFsWvXLqvDEEIIt6KUOlKV7ept8hdCWCg/H44eNf/08YHISAgNtToq4USS/IUQprQ0eOMNeOcdOHIEfH1BKdAaCguhWTO48Ua4+2644grzNeG2JPkL4enOnIEnnoAtW8DhgIAACAsDr1LzQbSGnBxITob16+Hyy2HJEujSxbq4Ra3IbB8hPNkHH8DAgbB5M4SEQEQEBAb+OvGDeZbv72++HhoKu3fDbbfBCy+YBwbhdiT5C+Gp1q+HP/0JioogPPy3Cb88SpkHgMBAWLYM5s41rxiEW5HkL4Qn2rEDZs2CoCAzideEr69ZHnrjDfj7350bn6hzkvyF8DRnz8JDD5nJ28+vdu/l5WVeBbzwAnz3nXPiEy4hyV8IT7NwIWRnm2f9zuDjY5aCHn5Yyj9uRJK/EJ4kI8Os9VcyZz8xI4O7Dx2iz+7dPJmeXvn7hoaa9wV89pmTAhV1TZK/EJ5k3Trz7Nzbu8LNmvr4cG/TpgwPC6v6e2sNr75aywCFqzgl+SulViqlTiqlfijndaWUek4ptV8p9Z1S6hpnfK4Qopq2bDHLNJUYGBrKTSEhhFVykPiVkBD49FMp/bgJZ535rwKGVvD6MKBTyddk4EUnfa4QoqocDvjxR/Mmrrpw4UBx+HDdvL9wKqckf631DiCjgk1GAGu0aScQrpRq5YzPFkJUUUaGOae/Cmf+NaaUJH834aqafxsgtdTjYyXPCSFcxW6v8o1cdrudE7/8wpmMDOx2e9U/Q2soKKhhgMKV6tXaPkqpyZhlIdq1a2dxNEI0ML6+FdbjNZCTk0NGRgZ5eXmEh4cTFBTEyaws7IWF+Pn6Vv4ZStX+3gHhEq46808D2pZ6HFny3K9orV/WWvfSWvdq1qzSXgRCiOpo0sSsyxcX/+rpYoeDjMxMDhw4wMmTJwkNCSGmY0cimjbFPyCAgKAgDh49SuElP1cmraF9+zraAeFMrjrzTwGmKqUSgGuBLK31cRd9thACzJJP167w008QHEyB3U5mRgZZ2dk0CgqidatWBAYFoYCXT53i5dOnL/7oe4WF3HnwIDM7daLchZwvXFVER9f1nggncEryV0q9AdwENFVKHQOeAHwBtNb/BN4BbgH2A7nAeGd8rhCiehyDBlHw+eecyswkPy+P8IgIYqKj8b2kpDO5WTMml7r6dmjNkcOHOXPmDE2bNCn7zc+dgz59Kr2HQNQPTkn+Wus/VvK6Bu53xmcJIarv/PnzbNy4kc2bNrEoO5vQ5s2JjIzEq4oNWbyUIrJtWw4dOkSAvz/BwcFlbzhxohOjFnVJ7vAVogE7dOgQixYtYvjw4Xz//fdMX7iQFpMmEQ5VTvwX+Pr4EBkZSXp6OgWXzgA6dw5at4a+fZ0XvKhT9Wq2jxCi9hwOBx9//DEJCQns37+f0aNHYxgGFydRzJ0L27ZBXl61l3MOCgykWfPmHDt2jKioKLy9vMwB5OJiePbZqvcEEJaT5C9EA5GdnU1KSgqJiYlERERgs9kYNGgQfpdOvWzcGJYvh8mTzfp8NadmRoSHk5+XR3p6OpGtW6Oys8336tHDiXsj6pokfyHc3IEDBzAMg/fff59+/fqxYMECrrjiiop/aOBAmDcPHnvsf317q6FFy5YcO3SIc6mphI4bBzNm1GIPhBUk+QvhhoqLi9mxYweGYXD48GFGjx5NcnIyTcqbiVOWO+80e/LOmGE2eAkLM2/SqozWeJ07R5vwcF4LCKDzLbdwk5R73I4kfyHcSFZWFhs2bCApKYnmzZsTFxfHgAEDfjNVs8qGDYOePWHOHNi+3bwKaNTILAWVPhBoba4LlJNjPh8Tg/eyZfT18uLBBx+kXVQUMTExTtlH4RrKnIVZ//Tq1Uvv2rXL6jCEqBf27t2LYRhs27aNG2+8EZvNxuWXX+7cDzl0CF5/Hd59F44fN5eDuHAAKCw0G7bccAOMH2/W90te27RpEytXrmT16tWEhIQ4NyZRbUqpr7TWvSrdTpK/EPVTUVER27dvxzAM0tLSuOOOO7j99tuJiIio+w8/d85cnTM/3zwItGkDFSy5smzZMo4cOcKzzz6Ll5SALCXJXwg3lZmZyZtvvklycjJt2rTBZrNx00034VOXSzHXUlFREVOnTqVbt25MnTrV6nA8WlWTf/39bRLCw/z8888YhsFHH33EwIEDefbZZ+ncubPVYVWJj48PCxcuZOzYsXTp0oXBgwdbHZKohCR/ISxUVFTEtm3bSEhI4OTJk4wZM4aHH36YsOr0zq0nwsPDWbp0KVOmTKF9+/Zuc+DyVJL8hbBARkYG69atY/369bRv3567776b/v374+3mi6J17tyZmTNnEh8fz5o1awgPD7c6JFEOSf5CuNAPP/yAYRh8/PHHDB48mBUrVtCxY0erw3Kq3//+9+zevZtHHnmEf/zjH25/QGuoZMBXiDpmt9vZunUrhmGQmZlJbGwsw4cPJzQ01OrQ6ozD4eChhx4iOjqaadOmWR2OR5EBXyEsdurUqYulnY4dO3LvvffSt29fj5gK6eXlxTPPPMO4cePo0qULf/jDH6wOSVxCkr8QTqS15vvvvychIYGdO3cyZMgQXnrpJaI9sLtVaGgoy5YtY/LkyURHR9O1a1erQxKlSPIXwgnsdjtbtmzBMAxycnKIjY1lzpw55Tc98RAxMTE8+uijzJgxg7Vr19K4cWOrQxIlJPkLUQsnT54kOTmZDRs2cNlll/HnP/+ZPn36eERpp6oGDBjA3r17mTlzJi+++GLN1yESTiW/oUJUk9aar7/+mlmzZhEXF0dubi6vvvoqzz33HDfccIMk/jJMmjSJ0NBQli5danUoooTM9hGiigoKCti8eTOGYVBQUIDNZuPWW28lKCjI6tDcQk5ODuPGjePOO+9k1KhRVofTYMlsHyGc5Pjx4yQlJZGSkkK3bt148MEH6d27t5zhV1OjRo1Yvnw59957Lx07dqR79+5Wh+TRJPkLUQatNV999RUJCQl8/fXX3HrrraxatYrIyEirQ3Nr7dq148knn2TWrFmsXr2a5s2bWx2Sx5KyjxCl5OXl8e6772IYBlprbDYbw4YNk9KOk/3rX/9i+/btvPLKK7/tMSxqRZZ0FqIa0tLSSEpKYuPGjVx99dXExcXRq1cvVFXaGopq01rzyCOPEBgYyOOPPy5/z04kNX8hKqG15osvvsAwDL777juGDx/O2rVrad26tdWhNXhKKZ544gnGjx9PYmIiNpvN6pA8jiR/4XFyc3PZtGkTiYmJ+Pj4YLPZ+Otf/0pAQIDVoXmUwMBAli9fzj333EPHjh3p2bOn1SF5FEn+wmMcPXqUpKQk3n77bXr16sWcOXPo0aOHlBws1Lp1a+bPn8+cOXNYtWoVrVq1sjokjyHJXzRoDoeDnTt3kpCQwM8//8yIESN4/fXXadmypdWhiRK9e/dm3LhxTJ8+nZUrV8oVmIvIgK9okHJycti4cSOJiYkEBgZis9kYMmQI/v7+VocmyqC15oknnqC4uJj58+fL1VgtyGwf4ZEOHz5MYmIimzdv5tprr8Vms3HVVVdJMnEDBQUFTJw4kcGDBzN27Firw3FbMttHeAyHw8Enn3yCYRjs3buX22+/nYSEBLmByM34+/uzdOlSxo0bR6dOnejTp4/VITVokvyF2zp37hwpKSkkJiYSFhZGXFwcy5cvl5uG3FiLFi1YsGABs2bN4rXXXqNt27ZWh9RgSfIXbufgwYMYhsF7773HDTfcwPz58+nWrZuUdhqIHj16MHnyZKZPn86qVavk7uo6IslfuAWHw8GOHTswDIODBw8yevRokpKSaNq0qdWhiTowevRodu/ezRNPPMGiRYtkEb06IAO+ol7Lzs5mw4YNFxO9zWbj5ptvloYgHsBut3Pfffdx/fXXM3HiRKvDcRsy4Cvc2r59+zAMgw8++IB+/fqxaNEi6QHrYfz8/Fi8eDFjx46lc+fO9O/f3+qQGhRJ/qLeKC4uZvv27RiGQWpqKnfccQfr1q2Tvq8erGnTpixevJiHH36YV155haioKKtDajAk+QvLnT17ljfffJPk5GRatWqFzWZjwIAB+PjIr6eAbt268cADDzBt2jRWr15NSEiI1SE1CE4ZRVFKDVVK7VFK7VdKzS7j9XuUUqeUUt+UfEkBT7B7926eeuopbr/9dlJTU1m+fDmvvvoqgwcPlsQvfmX48OFcd911zJ07F4fDYXU4DUKtB3yVUt7AXmAwcAz4Evij1vqnUtvcA/TSWk+t6vvKgG/DVFRUxLZt2zAMgxMnTjBmzBhGjhxJeHi41aGJeq6oqIgpU6Zw9dVXM2XKFKvDqbdcOeDbG9ivtT5Y8sEJwAjgpwp/SniUjIwM1q9fz7p162jbti133XUXN954I97e3laHJtyEj48PixYtYuzYsXTp0oWbb77Z6pDcmjOSfxsgtdTjY8C1ZWw3WinVH/Mq4WGtdeqlGyilJgOTwez1KdzfTz/9REJCAv/5z38YNGgQzz33HJ06dbI6LOGmIiIiWLJkCVOnTqVdu3byu1QLriqsbgTe0FoXKKX+BKwGBl66kdb6ZeBlMMs+LopNOFlhYSFbt27FMAzOnDnDmDFjiI+PJzQ01OrQRANw2WWXER8fT3x8PGvXrpXfqxpyRvJPA0ovwBFZ8txFWuszpR6+Cix2wueKeub06dMXSzsdOnRg/Pjx9OvXT+7OFE43dOhQ9uzZw+zZs1mxYoWUD2vAGf8rvwQ6KaWilVJ+QByQUnoDpVTp9jzDgZ+d8LmiHtBa89133/Hoo48yZswYzpw5w4svvsgLL7zAjTfeKIlf1JmpU6eilGLFihVWh+KWan3mr7UuUkpNBbYA3sBKrfWPSql5wC6tdQrwoFJqOFAEZAD31PZzhbXsdjvvv/8+CQkJZGdnY7PZmD17tszBFi7j7e3NggULLg4ADxs2zOqQ3Iqs7SOq5eTJkyQnJ7NhwwY6d+5MXFwc119/vZzhC8scOHCAP/3pT6xYsYLLL7/c6nAsJ2v7CKfRWvPtt99iGAaff/45Q4cO5ZVXXqF9+/ZWhyYEHTp0YM6cOcyYMYM1a9bIciBVJMlflKugoIAtW7aQkJBAfn4+sbGxzJ07l0aNGlkdmhC/MnDgwIsDwC+88ILcIV4FUvYRv3HixAmSkpJISUmha9eu2Gw2rrvuOintiHrN4XAwffp0WrVqxcyZM60OxzJS9hHVorXm66+/xjAMdu3axR/+8Adee+01udlOuA0vLy+efvppxo0bx1tvvcWIESOsDqlek+Tv4fLz83nnnXdITEykuLiY2NhYnnzySWmdJ9xScHAwy5cvZ+LEicTExHDllVdaHVK9JcnfQ6Wnp18s7Vx11VVMmzaN3/3ud9IHV7i99u3b8/jjjzNr1ixWr15Ns2bNrA6pXpLk70G01nz55ZckJCTw7bffctttt7FmzRratGljdWhCOFW/fv3Yt28fM2fO5KWXXsLPz8/qkOodGfD1ALm5uRdLOwBxcXEMGzaMwMBAiyMTou5orZk1axYhISHMnTvXY65qqzrgK8m/AUtNTSUpKYlNmzbRs2dPbDYbPXv29Jj/BELk5uYyfvx47rjjDsaMGWN1OC4hs308lMPh4PPPPychIYEff/yRESNG8O9//5tWrVpV/sNCNDBBQUEsW7aMCRMm0KFDB6655hqrQ6o3JPk3EDk5OWzatAnDMAgICMBms7F48WL8/f2tDk0IS0VGRvL000/zyCOPsHr1alq2bGl1SPWCJH83d/ToUQzD4N1336V379489thjXH311VLaEaKUa6+9lrvvvpv4+Hhee+01OSlCkr9bcjgcfPrppxiGwZ49exg5ciQJCQk0b97c6tCEqLfuuusudu/ezfz585k3b57HnyDJgK8bOXfuHBs3biQxMZGQkBBsNhu///3vZRqbEFWUn5/Pvffeyy233MJdd91ldTh1QgZ8G5CDBw+SmJjIli1b6NOnD/PmzePKK6/0+DMXIaorICCAZcuWMW7cODp16kTv3r2tDskykvzrKYfDwX/+8x8Mw+DAgQOMGjWKxMREuVtRiFpq2bIlCxYsYPbs2fzrX//y2JscJfnXM9nZ2bz11lskJSURERGBzWZj0KBBUtoRwomuueYaJk6cyPTp01m5cqVHrmUlNf96Yv/+/RiGwdatW+nXrx82m40rrrjC6rCEaLC01jz99NPk5OSwcOHCBlNGlTt83UBxcTEfffQRhmFw5MgRRo8ezahRo2jSpInVoQnhEex2O5MnT6Z///5MmDDB6nCcQgZ867GzZ8+yYcMGkpOTad68OXFxcQwYMABfX1+rQxPCo/j5+bFkyRLGjRtH586d6du3r9UhuYxnJX+t4fvv4b33YOdO2LMH8vJAKWjRAnr0gH79YOhQCA11+sfv3buXhIQEPvzwQ2666SaWLl3KZZdd5vTPEUJUXbNmzVi4cCHTp0/n1Vdf9Zje1J5R9tEatm2DxYvh4EEoKgJ/fwgIgAutCe12yM83v/fxgVGjYPp0qGUJpqioiA8//BDDMEhPT+eOO+7g9ttvJyIiopY7JYRwpg0bNrB27VpWr15NcHCw1eHUmNT8L8jMhLlzYfNm8PWFRo3MM/2KFBXBuXMQHAyLFplXAtWUkZFxsbTTpk0b4uLiuOmmm/D29q7hjggh6tqiRYv45ZdfWLp0qdv2rJbkD5CeDnFxkJYGYWH/O8uvqrw882rgL3+BqVMrP2gAP/30E4ZhsGPHDgYOHIjNZqNz58413AEhhCsVFhYyZcoUevbsyX333Wd1ODUiA76ZmWbiT0+HmpZYAgPNq4W//Q2CguDee8vcrLCwkG3btmEYBidPnmTMmDFMmzaNsLCwWuyAEMLVfH19WbRoEWPHjqVz584MHDjQ6pDqTMNM/lrDo4+aZ/y1ra37+EBICCxcCH36QNeuF186c+YM69atY/369URFRXH33XfTv39/Ke0I4cYaN27MkiVLeOCBB2jfvj0dOnSwOqQ60TCT/7ZtsGWLWepxBl9fs+Tz4IOweTM/7N5NQkICn3zyCYMHD+b5559vsL8gQniiyy+/nGnTpjF9+nTWrFlDaB3M/rNaw6v5aw1DhsDRo+aArZM4HA5yT5zg+a5d+SQoiNjYWIYPH94gfymEEKa//e1vHDhwgOeee85tBoA9d8D322/hjjvMefoVDNDaHQ4WnjjBF7m5ZBcXE+nry9Tmzbn+kgNGYVERmZmZnM3MJMzLC6+rr6bJtm1u84sghKi54uJiHnjgAS677DIefPBBq8Opkqom/4aXwd57z5yqWcnMnGKgpa8vL7drx/bOnflzs2bMTksj3W5HA7l5eRxLS+PgwYMUFxfTvn17WnToQLPUVLzOn3fJrgghrOXt7c2CBQvYunUrW7ZssTocp2p4Nf+dO80buCoR6OXF5FLLI/cLCaGVry+7zpyhW34+DoeDiIgIWrVqhXfps3xfX9i9Gzx4HXAhPElYWBjLli3jz3/+M1FRUXTp0sXqkJyi4Z3579lj3rlbDYWFhew5fpx9WVk0KSigebNmdOjQgSaNG/868Zsbw759TgxYCFHfderUidmzZxMfH09mZqbV4ThFw0v+ubnVupnr9JkzfPfjjzx16hSDg4Lo1KgR+QUFnD17luzsbM7n5JCXl0eB3U5hURGOwkK0lH2E8DiDBg1i6NChzJ49m6KiIqvDqbWGN+DbqZM5L7+KB4CMs2eZfeQIBAUxv3FjlNY4iospdjjK/DPYbudfrVvzYUwMwcHBhISEEBwc/JvvL/269DVZwVMI9+NwOHj44Ydp27Yt8fHxVodTJs+9w7d5c8jOrlLdX2vNitxc8gMCmOPjQ9PGjfGqbAmH7GxmLlzIn2+6ifPnz3P+/HnOnTv3m+/T09PLfe38+fP4+vpWePCo7EDSqFEjmXEkhIt5eXkxf/58xo0bR0pKCsOHD7c6pBpreMm/Rw/zBq8qJP8FJ05wyG7nxU6dyExP58SJE7Rq1YoK079S+HbvTuPGjWncuHGNQtRak5eXd/FAcOnXhYPEqVOnyj145OXlERAQUOEBo7KDSWBgYIPpXiSEq4SEhLBs2TImT55MTEwM3bp1szqkGml4yb9vX3MFz0ocLyxk/dmz+CnF0H370FpTUFDADIeD2PIaOtvt5myf6OhahaiUIigoiKCgIJo3b16j93A4HOTk5JR5YLjwlZWVxbFjx8q9QiksLKywPFWV76W3sPBE0dHRPPbYY8ycOZO1a9dW3H2voADOnzennwcHQz35P+OUmr9Saijwd8AbeFVrvfCS1/2BNUBP4Axg01ofrug9a1zzz8oyp2EGBprr8lSDvbCQw4cO0SYykkZlNXTOzIRJk2D27OrHVQ8VFRVVWLoq74qk9GMvL68qjXNUdBUiayEJd/XKK6/w2Wef8c9//vN/J0IOhznlfP16+PJLSE2FC7/jWpsnj9ddZ96M2r17lVYLrg6X3eGrlPIG9gKDgWPAl8AftdY/ldpmCtBda32fUioOuF1rbavofWu1pPPs2ZCUVKNF3XJyckhLSyMqOhq/0oOyRUXmTKKtW6Fdu5rF1cBorbHb7RUePMo7kFx4LScnB39//0rHOioqaQUFBcn4h7CEw+Fg1qxZREREMOeRR8ybTJ9+Gn75xTwIBAaaJegLCd7hMK8E8vLMA0JMjLm9E+8bcmXy7wM8qbUeUvL4EQCt9YJS22wp2eYzpZQPcAJopiv48Fol/9OnYeBAKC42//Kr6UxGBllZWUS1b/+/pJKZCX/6E8ycWbOYRJkujH9U9eBR1sEkPz+foKCgGs++CgkJwd/fX8Y/RI3k5uYy5c47eSw/nw7795tlncDAys/otTbLQcXFcOedMGdOte9RKosrZ/u0AVJLPT4GXFveNlrrIqVUFtAEOO2Ez/+tpk3NJZgfeMCs0Vez/NO4cWMK8vNJP36cNm3aoLKyzLP9hx6qk3A9WenxjxYtWtToPYqLiysc/zh37hwZGRkcPXq03ANLcXFxpQePyq5KZPquZwrKzeWfp0+T8dVX5EZFEVRWybgsSpnT0ouL4f/9P3PlgFWrzN4hLlCvBnyVUpOByQDtaltaueUW2LsXVqww/4KrcQBQQMtWrThy+DDZqamEtW8Pa9dWaQaRcD1vb29CQ0NrtcLqhfJVRWMdx48fr/AKxcfHp8ozrso7kEj5ys3k5sKddxJw4gShUVEcS08nOjoa3+qccHp7myXqr76CyZNhzZrqdx2sAWck/zSgbanHkSXPlbXNsZKyTxjmwO+vaK1fBl4Gs+xT68geesg8ii5Z8r+jbBUv7b2Ki2kbEsKP585RMHs2vSMjax2OqL/8/PxqPX03Pz+/0rGO06dPl7tNbm4uAQEBtZp9JdN3XWzpUjhwAMLDCVaKxo0bcyw1lfZRUZXfM1SaUhAeDp99Zib/e+6ps5AvfqQTav4+mAO+N2Mm+S+BO7XWP5ba5n7gylIDvqO01rEVva/TGrgD/PCD2YglNbXyg0BhoVmH8/KCSZP4fuBApj3yCK+++irt27d3TjxClMHhcJCbm1vtQfPS39vt9mrPvipr+q4cQKrgm29gzBhz+mbJbB4NpKWloZSidevWFd8zVBa73RwQ/uADqOEJp0vX81dK3QI8iznVc6XW+hml1Dxgl9Y6RSkVAKwFegAZQJzW+mBF7+nU5A9mUv/wQ3j5Zfjvf82xALvdrLcpZQ7SKGU+f9dd5gBMSbLfsGEDa9euZfXq1QQHO69BjBDOVlRURE5OTo1nX50vWbeqNrOvgoOD8anmOJtbmjTJzCnh4b962qE1hw8fJiwsjCaNG5NdXMy848fZef484T4+TG3WjKEVdRnMzDT7hc+ZU6OwPLeZS1WcPWsOruzbBzk55nhA8+Zmf97o6P/NyS1l8eLFpKens3z5cqnLigbNbrdXecZVeQcTPz+/Ws2+qvfTd0+cMG8oDQ0tsz5vLyzk8OHDtGndmmfOnkUDj7Vqxd78fB5KTeVfUVHElDeGWFhoTi3ftatGsxUl+TtZUVERU6ZM4eqrr2bKlClWhyNEvXXp8iVVPXiU/j4/P5/AwMBqL1lS+vmAgIC6K1+tXw+zZlXYJzwnN5cDqalMcjhI6tCBdiU3gT2enk4zHx8eqOju/vPnYfVquPbSiZOV89yF3eqIj48PixYtYuzYsXTu3JlBgwZZHZIQ9ZKzli+prDyVmZnJ0aNHyz3IFBUV0ahRo2oPmpf+Knf5kq+/NkvGFWgUFEReWBhFv/xCZKkyWCd/f77Oza34L6CwEH78sUbJv6ok+VdDREQES5cu5f7776ddu3Z07tzZ6pCEaJC8vLxqPX23sLCw0vLUiRMnKrwq8fb2LvOqYkJKCk1zcnA4HHh7eeHl7V3mn74hIQSfOvW/e4aAYC8vchyOioNXCr7/vsb7XhWS/KupS5cuzJgxg/j4eNasWUP4JYM9Qoj6wdfXl4iICCJqsMwLcHGxx7IOCuGbN+Pl40NxyRIn5fX/OF5URHZREadPnaJF8+b4+vqS43DQqLLxDC8vOHeuRnFXlST/GhgyZAh79+5l9uzZ/OMf//CMmQ1CeBilFAEBAQQEBNC0adNfv/jss2Zpppy7cYsdDs6ePYv9zBkoLES1bo1PyR3gewsKyh/svUDrOr+ptB4Pp9dv999/P35+fjz77LOsIdMDAAAXkElEQVRWhyKEcLWYGHOq+CXyCwo4fvw4+/ftIz8vjw6RkQxt1gyjsJB8h4Nvc3P56Nw5/lDRVE8wZ/t06lRHwZsk+deQl5cXzzzzDJ9++ikpKSlWhyOEcKXevc2zc8wbu7LPnePIkSMcPXoUHx8fYjp0oE2bNgQFBvJIy5YUOBwM3ruXOWlpPNKyZeVn/v7+5nLPdUjqFbVwoaPPpEmTiI6O5sorr7Q6JCGEK/TqRTGQefo0mWfP4uPjQ+PGjQkJCfnNsg6h3t4sa9u27Pcpi8NhziSq4+QvZ/61FB0dzeOPP86sWbM4deqU1eEIIerY3r17mZeUxFeZmejz54mMjCQ6Koqw0NDqredTnuxsc0n6S8cZnEySvxP079+f0aNHM3PmTOxl1AGFEO6tqKiI999/n4kTJ/KXv/yFyLZtufy552gWFkagMwdmL0wBnTTJee9ZDin7OMmECRPYs2cPCxcu5LHHHpOFsYRoADIyMli/fj3r1q2jbdu2xMXFcdNNN5kz/BwOSEkxb/hy1pTvrCwYORJ6VXqDbq3J8g5OlJuby4QJExg1ahSxsRUuWiqEqMd++uknEhIS+M9//sPNN99MbGxs2Td1pqbCsGFmjb5Ro9p9aHa2eRDZutVcM6iGZHkHCwQFBbFs2TLGjx9PTEwMvVxw9BZCOIfdbmfr1q0kJiZy5swZxowZQ3x8fMV3Gbdta3bfuvtucz2emq76m5Vl/uwbb9Qq8VeHnPnXgS+++IK5c+eyatUqWrdubXU4QogKnDp1inXr1rF+/Xo6duyIzWajX79+1VtV9JtvzDp9Roa52FtVf7aoyLyTt107WLnSXFW4lmRVT4u9/vrrbNq0iddee43AGizLKoSoO1prvvvuOwzD4LPPPmPIkCHExsYSExNT8zc9dw7mzzdX/HQ4zDKQr+9vG0dpbTZsycszl4+fNMlsNuWkgWNJ/hbTWvPUU09RUFDAX//6VxkAFqIesNvtbN68GcMwyMnJITY2lttuu42QkBDnfciRI/D662AYZinIx8dM+Fqbyb6wEJo0MUtFsbFmLxEnkuRfD9jtdiZOnMiAAQMYP3681eEI4bFOnDhBcnIyb731Fpdffjk2m40+ffrUbcMYreHkSdizx6zpKwWNG8Nll5l/1hEZ8K0H/Pz8WLp0KePGjaNTp0707dvX6pCE8Bhaa77++msMw2DXrl3ccsstvPbaa7Rr1841ASgFLVqYX/WQnPm7wHfffcf06dOlCbwQLpCXl8e7775LYmIiRUVFxMbGcuuttxJUzgqcDY2c+dcj3bt35/7772fatGnSBF6IOpKWlkZSUhIbN27kqquu4uGHH6Z3794y3lYOSf4uMnLkSPbs2cPcuXOlCbwQTqK15osvvsAwDL799luGDx/OmjVraNOmjdWh1XtS9nEhaQIvhHPk5uayadMmEhMT8fHxwWazMWzYMAICAqwOzXJS9qmHpAm8ELVz9OhREhMTeeedd+jVqxdz5syhR48eUtqpAUn+LiZN4IWoHofDwWeffYZhGPz888+MHDmSN954gxb1dBaNu5DkbwFpAi9E5c6dO8fGjRtJTEwkODgYm83G0qVL8fPzszq0BkGSv0WkCbwQZTt48CCGYfDee+/Rp08f5s2bx5VXXimlHSeTAV8LORwO/vKXv9CuXTvi4+OtDkcIyzgcDnbs2IFhGBw8eJBRo0YxatQomjVrZnVobkcGfN3AhSbw48aNIyUlheHDh1sdkhAulZWVxVtvvUVSUhJNmjTBZrMxaNAgfH19rQ6twZPkb7ELTeAnT55MTEwM3bp1szokIerc3r17MQyDbdu20a9fPxYtWkTXrl2tDsujSPKvB6Kjo3nssceYOXMmq1evlktd0SAVFRWxfft2DMMgLS2N0aNHs27dOhrX4SJnonyS/OuJ/v37s2/fPmbOnMlLL70kMxpEg5GRkcGGDRtITk6mdevW2Gw2BgwYIJMcLCYDvvWI1ppZs2YRHBwsTeCF2/vpp58wDIMdO3YwcOBAbDab3NfiArKev5uSJvDCnRUWFvLBBx9gGAanT59mzJgxjBgxgrCwMKtD8xgy28dNSRN44Y5Onz7N+vXrWbduHTExMYwbN47+/fvLAob1mCT/eqhNmzbMnz+fOXPmSBN4UW9prfn+++8xDINPP/2U3//+97z44ou164MrXEbKPvWYNIEX9ZHdbmfLli0YhsH58+frpg+uqDEp+zQAf/zjH9m7dy/z5s2TJvDCcidPniQ5OZkNGzbQpUsX7rvvPq6//nop7bgp+Verx5RSzJkzh7S0NFatWmV1OMIDXeiDO2vWLOLi4sjJyeGVV15hxYoV9O3bVxK/G6vVmb9SqjFgAFHAYSBWa51ZxnbFwPclD49qrWUdgyqSJvDCCvn5+Rf74Nrtdmw2G0888YTH9MH1BLWq+SulFgMZWuuFSqnZQITWelYZ253XWlerca3U/H9NmsALV0hPTycpKYmUlBS6d++OzWajd+/ecobvRlwyz18ptQe4SWt9XCnVCtiute5SxnaS/J1gw4YNrF27VprAC6fSWvPll1+SkJDAN998w2233UZsbKz0wXVTrkr+Z7XW4SXfKyDzwuNLtisCvgGKgIVa6w2Vvbck/7ItWrSI48ePSxN4UWu5ubm8/fbbJCYm4uXldbEPrswsc29OS/5Kqa1AyzJeehRYXTrZK6UytdYRZbxHG611mlIqBtgG3Ky1PlDGdpOByQDt2rXreeTIkcri9zjSBF7U1tGjR0lKSuLtt9+mV69e2Gw2rrnmGplN1kA4baqn1rrcLuNKqV+UUq1KlX1OlvMeaSV/HlRKbQd6AL9J/lrrl4GXwTzzryw2TyRN4EVNOBwOdu7cSUJCAj///DMjRozg9ddfp2XLss7rhCeo7Tz/FGAcsLDkz7cu3UApFQHkaq0LlFJNgRuAxbX8XI8mTeBFVZ0/f56NGzeSlJREYGAgNpuNJUuW4O/vb3VowmK1rfk3ARKBdsARzKmeGUqpXsB9WuuJSqnrgZcAB+Z9Bc9qrV+r7L2l5l+5LVu28Pzzz0sTePEbhw4dIjExkS1btnDddddhs9no3r27lHY8gKzq6SFWrFjBjz/+KE3gBQ6Hg48//piEhAT279/PqFGjGD16tDQH8jCS/D2ENIEX2dnZF/vgRkREXOyDKw2BPJOs7eMhpAm859q3bx+JiYls3bqVfv36sWDBAq644gqrwxJuQpJ/AyBN4D1HcXHxxT64qamp0gdX1Jgk/wZCmsA3bJmZmbz55pvSB1c4jfzmNCDSBL7h+fnnnzEMg48++ogBAwbwt7/9jS5dfrOCihDVJgO+DYw0gXd/hYWFbNu2DcMwOHnyJGPGjGHkyJHSB1dUiQz4eiilFE8++SQTJkwgKSlJmsC7kTNnzrBu3TrWr19PVFQUd999N/3798fb29vq0EQDJMm/AZIm8O5Da80PP/yAYRh88sknDB48mOeff54OHTpYHZpo4CT5N1DSBL5+s9vtvP/++xiGQVZWFrGxscycOZPQ0FCrQxMeQpJ/A9a7d2/uuece4uPjpQl8PVG6D27nzp2ZNGkSN9xwgyzPLVxOkn8Dd6EJ/NNPP80zzzwjA8AW0FrzzTffYBgGX3zxBUOHDuWVV16RjmzCUjLbxwPY7XYmTpzIwIEDueeee6wOx2MUFBSwefNmDMMgPz8fm83GrbfeSqNGjawOTTRgMttHXFS6CXzHjh2lCXwdS09PJzk5mZSUFLp168YDDzzAtddeK6UdUa9I8vcQzZs3Z9GiRdIEvo5c6INrGAb//e9/ufXWW1m1ahWRkZFWhyZEmaTs42GkCbxz5ebm8s4775CYmAhAXFyc9MEVlpKyjyjTyJEj2bNnD3PnzpUm8LWQmppKUlISmzZtomfPnsycOZOePXvKgLpwG/I/3wNNnz6d3Nxc/vnPf1odiltxOBx8+umnPPTQQ4wfPx5fX1/+/e9/s2TJEnr16iWJX7gVOfP3QNIEvnpycnLYuHEjiYmJBAQEEBcXx+LFi6UPrnBrkvw9lDSBr9zhw4dJTExk8+bNXHvttTz++ONcddVVcoYvGgRJ/h6sS5cuzJgxg/j4eGkCX+JCH1zDMNi3bx+33347CQkJNG/e3OrQhHAqSf4ebsiQIezZs4fZs2d7dBP47OxsUlJSSExMJDw8nLi4OOmDKxo0meopPLoJ/P79+0lMTOT999+nb9++2Gw2aYMp3JpM9RRV5mlN4IuLi/noo48wDIMjR44wevRokpOTadKkidWhCeEykvwF4BlN4M+ePcuGDRtITk6mRYsWF/vg+vr6Wh2aEC4nyV9c1FCbwO/evRvDMNi+fTsDBgxg6dKlXHbZZVaHJYSlJPmLX2koTeCLioou9sE9ceIEY8aM4c0335QZTUKUkOQvfmPChAns2bOHhQsXul0T+IyMjIt9cNu1a8ddd93FjTfeKH1whbiEzPYRZcrNzWXChAmMGjXKLZrAX+iD+/HHHzN48GBiY2Pp2LGj1WEJ4XIy20fUSukm8B06dKBnz57lb1xcDNnZ5p9BQeaXC9jtdrZu3UpCQgJnz54lNjaWGTNmSB9cIapAkr8o14Um8I888shvm8AfOgTJybBjB+zdCw6H+XxxMbRoAT16wMiRMGAAOHk2zcmTJ1m3bh1vvvkmnTp1YuLEifTt21dWKBWiGqTsIyr1+uuvs2nTJrMJfHo6PPYYfPGFmfD9/SEgAC7U1LUGux3y8sDLy7wKePhhuPtu83ENaa359ttvMQyDzz//nKFDhxIbG0tUVJRzdlKIBqKqZR9J/qJSWmvmPfkk3b/4gpEHDqAcDggLg6oMBBcUQG4uXHUV/P3v0LZttT67oKCALVu2kJCQQH5+PrGxsdx2223SB1eIckjNXziN0pq52dmc+fhjMsLDadKiRdV/2N8f/Pzgu+9gxAhISIAqrCB6/Pjxi31wu3btytSpU7nuuuuktCOEk0jyF5WbPx/vlBQioqM5dOQIfo0aEVKdFpBKQXi4OSgcFwebNkHp8YMSWmu++uorDMPgq6++4tZbb2XlypW0rebVghCicpL8RcU++QRWr4bQUHy9vYmMjORYaip+UVH4V/cGsNBQOHsWZsyAtWsvjgHk5eXx7rvvYhgGWmtsNhtPPfUUQS6aNSSEJ5LkL8qXl2cO1vr5XRzQDQoMpFnz5qSmphIdHY13dcswYWGwcyds2EDatdeSmJjIpk2b6NGjB/Hx8dIOUQgXkeQvyvfOO5CZaSbsUiLCw8nPzyctLY22bdvyeFoaX+Tmkudw0NTHh7FNmjCynGUUtFLkORwcf+AB7rvsMm4bMYK1a9f+ehqpEKLOSfIXZdMaXnoJymnu0rJFC44cPcqpU6cY37Qpj/n64uflxeGCAiYfOUIXf38uDwy8uH2xw0FWVhYZGRl4KUWLgAA2PfEE/v37u2qPhBCl1GrqhFJqjFLqR6WUQylV7tQipdRQpdQepdR+pdTs2nymcJFTp+DgwXLv1lVKEdmmDVlZWTQtKMCvpPyjSl47VlgIQIHdzokTJ9i/fz+5ubm0btWK6JgYgv398f/kE1ftjRDiErU98/8BGAW8VN4GSilv4HlgMHAM+FIplaK1/qmWny3q0u7d5ll/BfV3Hx8f2kZGcuToUf6elcXmnBwKtKZLQADdgaNHj5Kfn094RAQxMTH4lr6KCAiAzz+v+/0QQpSpVslfa/0zUNkAXW9gv9b6YMm2CcAIQJJ/fXbggHmDViVTOgMCAmjZsiVxJ08yIzqanRkZfJaZSfbp0zRr0oTItm3xKuv3w98f9u+vo+CFEJVxxR0zbYDUUo+PlTwn6rPc3P+t11OJsNBQwsLCSD16lE4OB/bgYHaFhxMeFlZ24gdzmmdBgRMDFkJUR6Vn/kqprUDLMl56VGv9ljODUUpNBiYDtGvXzplvLarLz69qyzeUaN6sGc2aNUMBXsePk2a3V/wDWv9vPSAhhMtVmvy11oNq+RlpQOlbNCNLnivrs14GXgZzbZ9afq6ojTZtzNJMJTKKitiVm0vf4GAClGJnTg5bsrL4a5tKLu7sdvMzhBCWcMVUzy+BTkqpaMykHwfc6YLPFbVx+eVV2kwByZmZ/PX4cRxAK19fprdoQf+QkIp/MD8felW69pQQoo7UKvkrpW4HVgDNgLeVUt9orYcopVoDr2qtb9FaFymlpgJbAG9gpdb6x1pHLupW+/bmNM+CggqvACJ8fHi5ffvqv7+XF/TtW4sAhRC1UasBX631m1rrSK21v9a6hdZ6SMnz6VrrW0pt947WurPWuoPW+pnaBi1cwMsL7rnHHPh1NrvdPKAMHuz89xZCVImsjyvKZ7OZc/1LbthymtxcGDvWnOsvhLCEJH9RvpYtYfp0OH/enJ3jDOfPQ9OmcP/9znk/IUSNSPIXFbv3XrjySsjKqv172e1mj9+//x2kE5cQlpLkLyrm7Q0rV5oDwGfP1vwKID8fcnJg0SK49lrnxiiEqDZJ/qJyjRtDUhL07GkeACq7gas0rc2fcTjgH/+AUaPqLk4hRJVJ8hdV07gxvPEGzJsHRUVmQs/NLf9KoKjI7AWQnQ19+sAHH8CwYa6NWQhRLlnPX1SdlxfcdRfcdhukpJjloCNHwNfXPAhobS4JcWHphlGjzOmiXbtWa6kIIUTdk+Qvqi80FP7v/8yvc+fM5Z9PnjQHcxs1gk6dIDLyYo9eIUT9I8lf1E5ICPzud1ZHIYSoJjk1E0IID6S0s27ecTKl1CngiNVx1FBT4LTVQbiQp+0vyD57Anfd3/Za62aVbVRvk787U0rt0lp7zJKVnra/IPvsCRr6/krZRwghPJAkfyGE8ECS/OvGy1YH4GKetr8g++wJGvT+Ss1fCCE8kJz5CyGEB5Lk7wRKqcZKqfeVUvtK/oyoYNtQpdQxpdQ/XBmjM1Vlf5VSVyulPlNK/aiU+k4pZbMi1tpSSg1VSu1RSu1XSs0u43V/pZRR8vrnSqko10fpPFXY32lKqZ9K/k0/UErVoIdn/VLZPpfabrRSSiulGsQMIEn+zjEb+EBr3Qn4oORxeZ4GdrgkqrpTlf3NBcZqra8AhgLPKqXCXRhjrSmlvIHngWFAV+CPSqmul2x2L5Cpte4I/A1Y5NoonaeK+/tfoJfWujuQDCx2bZTOVcV9RikVAjwEfO7aCOuOJH/nGAGsLvl+NTCyrI2UUj2BFsB7LoqrrlS6v1rrvVrrfSXfpwMngUpvPKlnegP7tdYHtdZ2IAFz30sr/XeRDNyslNuuYlfp/mqtP9RaX2jsvBOIdHGMzlaVf2MwT9oWAfmuDK4uSfJ3jhZa6+Ml35/ATPC/opTyApYB8a4MrI5Uur+lKaV6A37AgboOzMnaAKmlHh8rea7MbbTWRUAW0MQl0TlfVfa3tHuBd+s0orpX6T4rpa4B2mqt33ZlYHVNFnarIqXUVqBlGS89WvqB1lorpcqaQjUFeEdrfcwdTgydsL8X3qcVsBYYp7V2ODdKYRWl1P8BvYAbrY6lLpWctC0H7rE4FKeT5F9FWutB5b2mlPpFKdVKa328JNmdLGOzPkA/pdQUIBjwU0qd11pXND5gGSfsL0qpUOBt4FGt9c46CrUupQFtSz2OLHmurG2OKaV8gDDgjGvCc7qq7C9KqUGYJwE3aq0LXBRbXalsn0OAbsD2kpO2lkCKUmq41nqXy6KsA1L2cY4UYFzJ9+OAty7dQGt9l9a6ndY6CrP0s6a+Jv4qqHR/lVJ+wJuY+5nswtic6Uugk1IqumR/4jD3vbTSfxd3ANu0+948U+n+KqV6AC8Bw7XWZR703UyF+6y1ztJaN9VaR5X8392Jue9unfhBkr+zLAQGK6X2AYNKHqOU6qWUetXSyOpGVfY3FugP3KOU+qbk62prwq2Zkhr+VGAL8DOQqLX+USk1Tyk1vGSz14AmSqn9wDQqnulVr1Vxf5dgXrkmlfybXnowdCtV3OcGSe7wFUIIDyRn/kII4YEk+QshhAeS5C+EEB5Ikr8QQnggSf5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4oP8PYLwVDsB/KS4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXFwFZRMB9AxW3cEUETMscoWnUcoNS25txxpmmpqamdWyaZqZprMnKaZtstampfjVmmc40JdouXMR9FwUXQFQ22bnc7++Pg2fAWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNHxeFldgBBCCGtIAAghRAclASCEEB2UBIAQQnRQEgBCCNFBSQAIIUQHJQEghBAdlASAEEJ0UBIAQgjRQXlbXUBjevTooQcNGmR1GUII0aZs3rz5lNa6pzPHemwADBo0iLS0NKvLEEKINkUpleXssR4bAC6nNeTmwunT4HBAUBCEh0OnTlZXJoQQlmjfAWC3w5dfwptvwubNUFFh3PCVMkIAYMQIWLAAZs82QkEIIToI5amrgcbExOgL7gLSGv77X3joISgsND4XEAA+PvWPq6kxQsFuB29v+MUv4NZbwde3ZcULIYRFlFKbtdYxzhzb/mYBlZTAbbfBL38JpaUQHGz8OffmD0ZrIDDQ+LqvL/ztb3DVVXDokPvrFkIIN2tfAVBcbHTnfPqpcVMPCHD+e318ICQEDh+GefNg9+7Wq1MIITxA+wmAmhpYtAj27jVu5F4X8KMpZQRHRQVcd50xaCyEEO1U+wmA11+H9HTj5q9Uy84VFGR0Jd17rzGeIIQQ7VD7CIDjx+GvfzX681t68z8rOBi++w7WrnXN+YQQwsO0jwB46y1jJk8zs3f+Lz+fGw8fZtLevTySnd30OZUyZgY9+6y0AoQQ7VLbD4CqKiMAAgObPbSHtzeLevRgdnCwc+cODDRmBO3Y0cIihRDC87gkAJRSryml8pRSOxv5ulJK/U0pdVAptV0pFe2K6wLGoG91tVNz9+O7duUHQUEEO/v0r1LG4PKmTS0sUgghPI+rWgBvANOb+PoMYFjtn8XAiy66rjFd02532em+x9sbUlJa7/xCCGERlwSA1vpLIL+JQ+YAb2rDJiBEKdXXFddm//7/LevQGjp3Nq4hhBDtjLvGAPoDR+u8Plb7uXqUUouVUmlKqbSTJ086d+aysvOa+VNtt3MiL4/i4mIKCwupqq5u+huUMsYZhBCinfGoxeC01iuAFWCsBeTUN/n7n9csHS8vL7TWeHt7U1JaSl5eHl5eXgQGBhIYGEhAYCDedccItG54GQkhhGjj3BUAx4GwOq8H1H6u5YYPd7oFUKM1NUBnf3/KgF59++KlFPaqKkpLSyksKiI7JwdfX18CAwIIDAzEv6aGTjFOraskhBBtirsC4GPgdqXUu8BEoEhrneOSM0dGOv0O/dVTp1hx6hQOh4Pq6mo27tvH4h49WNyzJ36dO9O9Wze01pRXVFBaWsqp06fxPXOG9fv3U75iBXFxcYwePRpvb49qOAkhxAVxyXLQSql3gB8APYATwO8BHwCt9d+VUgp4DmOmUBnwY611k2s9O70cdGUlTJhgrOzpZBBo4PChQ/Tu3ZvApp4f0BpHYSE7Hn6YjYWFpKamcvToUaKiooiLiyMuLo6hQ4fidSHrDgkhRCs4n+WgXfJWVmt9bTNf18BtrrjW93TuDNdfD6+8AqGhTn2LAkJCQykoLGw6AMrK8Bo8mHE33cS42m6moqIi0tLSSE1NZdWqVRQXFxMbG0tsbCxxcXH0798f5arlKIQQohW1jw1hjh6Fyy8HPz+nWwE1DgcHDxxgyJAhDXfpaA1FRbBsGcyZ0+h5cnNzSU1NxWazkZqaiq+vr9k6iI2NpVu3bs79DEII4QLn0wJoHwEA8OKL8OST57UaaHZ2Nr6dO9Oje/fvf7GwEGJj4e23nV5aWmvN4cOHzTDYvHkzvXv3NsNgwoQJTbc4hBCihTpmANjtcM01xro9wcFOhUBZeTnZ2dkMGTKEekeXlBhdS+vWQf/vPa7gtJqaGvbs2WO2EHbu3MmwYcPM7qIxY8bgK9tPCiFcqGMGABjv2hcsgIMHnWoJaODQoUP06dOHwLO7hxUVGV1J//wnjBlzYcU3orKykm3btpGamkpqaiqZmZmMGTPG7DIaMWKEDCgLIVqk4wYAGNtC3n03bNxo3Mj9/Jo8PL+ggLKyMgb07g1nzkB4OLz0kvF8QSs7c+YMmzdvNlsIp0+fJiYmxmwhhIeHy4CyEOK8dOwAAGMAd+1a+N3vjO4cpYz9gc8d7HU4qCktJefIEfr270+nn/8c7rjD6P6xQF5enjnDKDU1FaDegHLPnj0tqUsI0XZIAJxVVQXJybByJWzdaiztfHaZB4fDeD1kCB/6+VE1cyYLfv7zlhfuIlprjh49SkpKCjabjbS0NLp162YGwoQJEwgKCrK6TCGEh5EAaIjDAceOwenTxsdBQTBoEPj6sm3bNv7whz/wr3/9y2O7XBwOB/v27TNnGG3fvp1BgwaZgTBu3Dg6W9RyEUJ4DgmA86S1ZsGCBdx///1MmDDBLddsqaqqKnbs2GGOHxw4cIBRo0aZgRAZGUknZze+EUK0GxIAF+Ddd99lx44d/PnPf3bbNV2ptLSU9PR0c/zgxIkTREdHm4EwePBgj23dCCFcRwLgAhQXFzN79mxWr15NSEiI267bWvLz883uotTUVKqqqszB5Li4OPr06WN1iUKIViABcIEefvhhRowYwfXXX+/W67Y2rTXHjx83u4tsNhtBQUFm6yAmJobg4GCryxRCuIAEwAXaunUrf/rTn/jggw/adXeJw+Hg4MGDZgthy5YthIWFmS2E8ePH4+/vb3WZQogLIAFwgbTWzJ8/nwcffJDo6Gi3XttK1dXV7Nq1y2wh7N27l8jISLO7aNSoUbIHghBthARAC/zzn/9kz549/OlPf3L7tT1FWVkZW7duNccPjh8/TlRUFBMnTiQ2NpYhQ4bIkhVCeCgJgBYoKipizpw5fPTRR9IvXquwsNB8Qtlms1FSUvK9PRCEEJ5BAqCFfve73xEZGcl1111nyfU9XU5OTr0ZRn5+fvUGlGUPBCGsIwHQQlu2bOHPf/4z77//frseDHaFs3sgnF2yIj09nT59+piBEB0dTcDZlVaFEK1OAqCFtNZcc801LFmyhPHjx1tSQ1tVU1PD7t27zRbCrl27GDZsmBkIo0ePlj0QhGhFEgAu8M9//pO9e/fyxz/+0bIa2oOKigpzDwSbzUZmZiZjx441A2H48OEyoCyEC0kAuMDZweCPP/6Yrl27WlZHe1NcXGzugZCamkpBQQExMTFmIISFhUm3mxAtIAHgIg899BCjRo3i2muvtbSO9iwvL8/sLrLZbCil6i1Z0aNHD6tLFKJNkQBwkfT0dJYuXcp7770n70rdQGtNVlaWGQabN2+me/fu9QaUZQ8EIZomAeAiWmuSkpL4/e9/z7hx4yytpSNyOBzs3bsXm81GSkoKO3fuZPDgwWYLISoqSgaUhTiHBIALvfXWWxw4cIA//OEPVpfS4VVVVbF9+3azhXDw4EHGjBljdhdFRkbKgLLo8CQAXKiwsJC5c+fKYLAHKikpqbcHwsmTJ4mOjjaXrBg0aJB03YkORwLAxX77298ybtw4FixYYHUpogmnT5+u94Sy3W6vN6Dcu3dvq0sUotVJALjY5s2befzxx2UwuA3RWnPs2LF6M4yCg4PrLVkhLTrRHp1PAMgav06Ijo7GbrezY8cOxo4da3U5wglKKcLCwggLCyMxMdHcAyElJYXVq1fzyCOPEB4ebgZCVFQUfn5+VpcthFtJC8BJ//jHP8jIyOCRRx6xuhThAtXV1ezcudNsIezbt4/IyEgzEEaOHCl7IIg2SbqAWkFBQQHz5s2TweB2qqysjC1btpjdRcePH2f8+PFmIAwZMkS6/0SbIF1ArSA0NJTJkyfzn//8h/nz51tdjnCxgIAALrnkEi655BLACPy0tDRsNhvvvfce5eXl9Zas6Nevn8UVC9Fy0gI4DzabjWXLlvHOO+/Iu8EOJjs7u96Asr+/vznDKDY2ltDQUKtLFAKQLqBW43A4SEpK4o9//CNjxoyxuhxhEa01GRkZZhikp6fTr18/YmNjmThxIuPHj5c9EIRlJABa0ZtvvklmZiYPP/yw1aUID2G32809EFJSUtizZw/Dhw83WwhjxozBx8fH6jJFByEB0Iry8/NJSkpizZo1dOnSxepyhAeqqKhg69atZgshKyuLqKgo84G0YcOGyZIVotVIALSyBx98kPHjx8tgsHBKcXExaWlp5hPKRUVFxMTEmEtWDBgwQMaUhMtIALSy1NRUnnrqKRkMFhckLy/PDAObzUanTp3qLVnRvXt3q0sUbZjbA0ApNR1YDnQCXtFaLz3n67cAfwWO137qOa31K02d05MDwOFwkJiYyKOPPsro0aOtLke0YVprMjMzzRlGmzdvpmfPnvX2QJCuRnE+3BoASqlOwH7gh8AxwAZcq7XeXeeYW4AYrfXtzp7XkwMAYOXKlWRlZclgsHCps3sgpKSkYLPZ2LlzJxEREWYgjB07VvZAEE1ydwBMAh7RWv+o9vWDAFrrv9Q55hbaWQDk5+eTmJjIJ598Iu/QRKupqqpi27ZtZgvh0KFDjB492gyEiy66SAaURT3uDoCrgela65/Wvr4RmFj3Zl8bAH8BTmK0Fu7SWh9t4FyLgcUA4eHhE7KyslpUW2u7//77iY2N5eqrr7a6FNFBnDlzxtwDwWazcerUKaKjo81AGDhwoIxLdXCeGADdgRKtdaVS6ufAAq11fFPn9fQWAEBKSgrLly/n7bffln90whKnTp2qtweCw+EwB5Pj4uLo1auX1SUKN3P3WkDHgbA6rwfwv8FeALTWp+u8fAV4wgXXtVxsbCwlJSXs2bOHkSNHWl2O6IB69OjBjBkzmDFjBlprjh49is1m46uvvuLpp58mJCTEnGEkeyCIc7miBeCN0a2TgHHjtwHXaa131Tmmr9Y6p/bjecD9WuuLmzpvW2gBALz++uscP36chx56yOpShKjH4XCwf/9+s7to27ZtDBw40FyyYty4cW1jD4SqKjh4EA4fhspK8PaGsDAYMQJkyY3vsWIa6EzgGYxpoK9prf+slPojkKa1/lgp9RdgNmAH8oFbtdZ7mzpnWwmA06dPc/XVV/PJJ58QGBhodTlCNKq6upodO3aYS1YcOHCAkSNHmi2EUaNG0alTJ6vLNNTUwJdfwiuvQEqKcdPXGhwO8PICpaC6GiIjYfFiuOIKaAth5gbyIJib3XfffUycOJGkpCSrSxHCaWVlZfUGlHNycoiOjjbHECIiIqwZ29q2De68E47X9iQHBRk3/XNpDaWlRlgEBcGTT0J8k0OLHYIEgJtt2rSJv/3tbzIYLNq0/Pz8ektWVFRUmN1FsbGx9O3bt3UL0BqeeQaef9644Z/PeEVZmdE9NGcOLF0KHfhZCQkAN3M4HMydO5elS5fKYLBoN7Kzs80wSEtLIyAgoN4eCCEhIa67mNbw+9/D228b7+YvZDtOhwOKiuCSS4yuow4aAhIAFnjttdfIyclhyZIlVpcihMs5HA4yMjLMKadbtmyhf//+5nTTqKiolu2B8Oqr8NhjEBzccHePs7SGwkK45hqjJdABSQBY4NSpU1xzzTWsXbtWNgMR7d7ZPRDOLlmxZ88eRowYYQbCqFGjnN8DISMDZs40BnFdsW/C2ZbAypVw6aUtP18bIwFgkXvvvZdJkyaRmJhodSlCuFV5eTlbt241WwhHjhwhKirKDIShQ4c2vmTFggWweTO4skuptNQYQ/jmmwvrTmrDZFN4i8ybN48XX3xRAkB0OP7+/kyaNIlJkyYBUFRUZA4or1q1iuLiYmJiYsxA6N+/vzFh4sAB4+YfHNzsNYpravhjTg6bSkoI8fbm9p49md7Y9wUGQn4+fPEFJCS48kdtVyQAXOjiiy/mL3/5C3v27CEyMtLqcoSwTHBwMAkJCSTU3nxzc3PN1sFLL72Er68vsbGxLDxwgAi7HW8nZs8tzc3FRyn+O3w4+ysquPPoUYb7+RHRuXPD36CUMRgsAdAoCQAX8vLyYu7cuXz44YcSAELU0adPH2bNmsWsWbPQWnP48GFsNhu88gpHT5/GUVxMYGAggYGBBAQE0Omc7qJyh4PkM2f4v4gIAry8iAoIYGpQEGuLivhVY+sdBQZCerrxnICnPODmYWQdWRebPXs2n3/+OWVlZVaXIoRHUkoRERHBgrlzGe7jw6ARI+jXty/enTqRn5/PgQMHOJyZSd7Jk5SWleHQmiNVVXQCwutM7RzWuTOHKisbv9DZm35mZqv+PG2ZtABcrGfPnkRHR/Ppp58yb948q8sRwnOdOAHe3igvL/z9/fH396cH4NCa8rIySktLyTtxgsqqKjK8vfGtqaG8ogL/2iUfunh5UepwNH0NLy/IzoYhQ1r/52mDpAXQChITE/nwww+tLkMIz2a3G/305/BSisDAQHr16sWgwYMJCwsjwMuLwspKDh8+TEVFBQClDgeBzT0zoLWxZpBokARAK7j44ovJz89n794m17sTomPz9zf658+hgbLyck6cOMHBgwfJyc5msL8/Pn5+VISEUFBYCMD+ysrGB4DPUsq4jmiQBEArqDsYLIRoRO/eRj99TQ0aKC0rIzc3lwMHDpCTk4Py8iJswACGDB3KoD59uDw4mPfsdvKKikgvKeGLM2e4sqnpo2ff/Uv3T6MkAFrJ7Nmz+eyzz2QwWIhGVNfUcKpPH04eO8b+/fs5ceIE3t7eDBw4kCEREfTq2RM/Pz/OdhI90KcPduCnlZU8cPQoD/bp03QLwG6HLl2gZ093/DhtkgwCt5JevXoRFRXFZ599xpw5c6wuRwiPUFlZyXfffUdycjJff/0119XUsMDLi8GDB+PbzDIQXTt1YllYGGdCQzl18iSDm3t4rKQE5s9vcJxBGCQAWlFiYiIvv/yyBIDo0MrKyvj6669Zv349mzZtIjIykvj4eH71q1/R08cHJk48r5t0ly5dyM3NrTcj6Hu0Ns55880u+inaJwmAVjR58mQee+wx9u/fz/Dhw60uRwi3KS4u5osvviA5OZnNmzcTFRVFQkICDz744PeXkb7+emPhttBQp86tgJCQEAoLCvBvbI+CoiK4+GK46KKW/SDtnCwG18pWrFhBQUEB999/v9WlCNGq8vPz2bhxI+vXr2fnzp3ExcUxbdo0pkyZQlBQUOPfWFZmLNdQUGD02Tuh2m7nUEYGQ4cN+95Tw1RWGv3/69dDv34t+InaJlkN1IPk5eWxcOFC1q5di79MRxPtzIkTJ0hOTiY5OZkDBw4wefJkEhISmDx58vn9fU9Ph2uvNVbudPL7jh47RpcuXQit26Korjb6/p9+GmbPPs+fpn2Q1UA9SN3B4Nkd9C+kaF+OHj1KcnIy69ev59ixY0ydOpWbbrqJiRMn4nuhu3BFR8PLL8PPfgZnzhi7gjUjNCSEvJMn/xcA5eVQUQGPPNJhb/7nSwLADebNm8err74qASDaJK01hw4dMt/pnz59mmnTpnHbbbcxYcIEvF213v5ll8H778Pttxsbwnfp0uQGMYFdulCTm0t5aSn+1dXG8c8+KxvDnwfpAnKDmpoaZs2axTPPPCODwaJN0Fqzd+9e851+ZWUl8fHxxMfHM27cuMY3d3GFigrjRv7GG1BVZczmObtbmFLGDB+7HSoqKCoowO5w0P3HP4YHH4Ru3VqvrjZCxgA80IoVKygsLOS+++6zuhQhGuRwONixYwfr169nw4YNeHt7Ex8fT0JCApGRkcYGLu5UVgbr1sF//gPbtsHp08bibg6H0UU0ZgxnJk7k+vfe451PPyUwMNC99XkoCQAPlJuby3XXXce6devwa2zushBuVlNTQ3p6OsnJyWzYsMHcyGXatGkMHTrU/Tf9ppSVGS0CHx8ICDCfHbjvvvuIi4vj6quvtrhAzyCDwB6oT58+jB07ls8++4xZs2ZZXY7owKqqqrDZbKxfv54vv/ySvn37Eh8fz4oVKwgPD7e6vMYFBBh/zpGUlMTy5ctJSkryrMBqAyQA3CgxMZE33nhDAkC4XUVFBd9++y3Jycl88803REREkJCQwM9+9jP6NvYwVRsRGxtLaWkpu3btYvTo0VaX06ZIALjRJZdcwtKlSzl48CBDhw61uhzRzpWWlppLMKSkpDBq1Cji4+P59a9/TY8ePawuz2W8vLxITExk1apVEgDnScYA3Oyll16iqKhIBoNFqygqKjKXYEhPT2f8+PEkJCRw2WWXfX8JhnYkPz+fxMRE1qxZ0/RTxx2AjAF4sDlz5nDddddxxx13yGCwcInTp0+zYcMGkpOT2bVrFxMnTmT69Ok8+uijdHFyaYW2rlu3blx88cX8+9//Zv78+VaX02ZIALhZnz59GDNmDJ9//jlXXXWV1eWINionJ8e86WdkZHDJJZdw9dVXs2zZsg675EhiYiLLli3jmmuukcFgJ0kAWCAxMZGVK1dKAIjzcuTIEfNp3OPHjzN16lRuueUW4uLiLnwJhnYkJiaGqqoqduzYwdixY60up02QALDApZdeytKlS8nIyGCIbFcnGqG1JiMjw3wat7CwkGnTpnH77bczYcIEOnXqZHWJHsXLy4t58+bxr3/9SwLASRIAFujUqROzZ8/mww8/5J577rG6HOFBtNbs2bPHfKdfVVVFfHw8Dz74IGPHjm3dJRjagVmzZjFv3jyKi4vp2rWr1eV4PAkAi8yZM4cbbriBX/3qV3Rual9T0e45HA62b99u3vR9fX2Jj4/n0UcftWYJhjYsNDSUyZMns3btWq699lqry/F4EgAW6devH6NHj2b9+vXMnDnT6nKEm9ntdtLT01m/fj0bN24kNDSU+Ph4li9fTkREhNz0WyApKYmlS5eycOFC+T02QwLAQvPmzePtt9+WAOggqqqqSElJYcOGDXzxxRf079+fhIQEXn75Zc9egqGNiY6OxuFwsG3bNqKioqwux6NJAFhoypQpPP744xw6dIiIiAiryxGtoLy8nO+++47169fz7bffMnToUKZNm8bixYvp06eP1eW1S0op88lgCYCmuSQAlFLTgeVAJ+AVrfXSc77eGXgTmACcBhZorTNdce22zNvb2xwM/s1vfmN1OcJFSkpK+Oqrr0hOTiYlJYXRo0eTkJDA3XffTffu3a0ur0O46qqrePnllykqKiI4ONjqcjxWi6cUKKU6Ac8DM4CRwLVKqZHnHLYIKNBaDwWeBh5v6XXbi7lz57Ju3ToqKyutLkW0QGFhIR9//DF33nknM2fO5L///S9TpkxhzZo1vPDCCyQlJcnN342Cg4OZMmUKa9eutboUj+aKFkAccFBrfQhAKfUuMAfYXeeYOcAjtR9/ADynlFLaUxcicqN+/foxcuRIGQxug06dOmU+jbt7924mTpzIzJkzeeyxx2RzEg+QmJjIo48+yrXXXiuDwY1wRQD0B47WeX0MmNjYMVpru1KqCOgOnHLB9du8efPm8c4770gAtAHZ2dls2LCB9evXc/jwYS699FLmz5/PpEmTZG0nDxMVFYWXlxdbtmwhOjra6nI8kkcNAiulFgOLgQ41K+Kyyy7j8ccf5/DhwwwePNjqcsQ5srKyzDn6OTk5TJ06lUWLFhEbGytLMHiws4PB//rXvyQAGuGKADgOhNV5PaD2cw0dc0wp5Q0EYwwG16O1XgGsAGM5aBfU1ibUHQy+++67rS6nw9Nac/DgQXMJhuLiYqZNm8Ydd9xBdHS0LMHQhlx55ZW89NJLFBYWtuvlsC+UKwLABgxTSg3GuNEvBK4755iPgZuB74CrgWTp/69v7ty53Hzzzdx+++3yrtICWmt2795tbohut9uJj4/noYceYvTo0bIEQxvVtWtXpk6dypo1a7jxxhutLsfjtDgAavv0bwc+xZgG+prWepdS6o9Amtb6Y+BV4B9KqYNAPkZIiDr69+/PiBEjSE5OZvr06VaX0yE4HA62bt1qDuT6+fmRkJDAY489xkUXXSQDh+1EUlISjzzyCDfccIP8Pz2HS8YAtNbrgHXnfO7hOh9XANe44lrtWWJiIu+9954EQCuy2+1s3rzZXIKhe/fuxMfH8+yzzzJ48GC5QbRDY8aMwcfHh7S0NGJjY60ux6N41CBwRzd16lQef/xxMjMzGTRokNXltBtVVVVs2rSJ5ORkvvzyS8LCwkhISODVV18lLCys+ROINk0pRVJSEqtWrZIAOIcEgAepOxh81113WV1Om1ZWVsa3335LcnIy3377LcOHDyc+Pp5bb72V3r17W12ecLMZM2bwwgsvkJ+fT7du3awux2NIAHiYuXPncsstt3DbbbfJYPB5OnPmjLkEQ2pqKmPGjCEhIYF77rlH/tF3cEFBQcTHx7NmzRpuvvlmq8vxGBIAHmbAgAEMHz6cDRs28KMf/cjqcjxeQUEBX3zxBcnJyWzdupWYmBji4+N5+OGHZUMQUU9iYiJLlizhxhtvlFldtSQAPFBiYiLvv/++BEAj8vLy2LhxI8nJyezZs4dJkyZx1VVXsXTpUgICAqwuT3ioUaNGERAQgM1mY+LEcxcr6JgkADzQ1KlTeeKJJzhy5EiHeiK6KdnZ2ebTuJmZmVx66aUsXLiQSZMmyY5qwil1nwyWADBIAHggHx8frrrqKj788EPuvPNOq8uxTGZmpvk0bl5eHlOnTuWnP/0psbGx+Pj4WF2eaINmzJjB888/z+nTp2V1ViQAPNbcuXNZtGgRt956a4cZDNZac+DAAfOd/pkzZ5g2bRp33XUX48ePlyUYRIt16dKFhIQEPvroI37yk59YXY7lJAA8VHh4OEOHDmXjxo1cccUVVpfTahwOB7t37zbf6WutZQkG0aqSkpJ44IEHuOWWWzr83y8JAA82b948Pvzww3YXAGeXYDi77k5AQADx8fE88cQTDB8+XJ7GFa0qMjKSoKAgUlJSmDRpktXlWEoCwINNmzaNJ598sl0MBtvtdmw2Gxs2bGDjxo306NGDhIQEnnvuOdkPWbhV3Seb3LjiAAAcdUlEQVSDJQCExzo7GLx69WruuOMOq8s5b5WVlaSkpLB+/Xq++uorwsPDiY+P57XXXmPAgAFWlyc6sOnTp/Pss89y8uRJevbsaXU5lpEA8HBz587lpz/9Kb/4xS/axGBwWVkZ33zzDcnJyXz33XcMHz6chIQEbrvtNnr16mV1eUIAEBAQwA9/+EM+/vhjFi1aZHU5lpEA8HDh4eEMGTyYrS++SFxREaSmwsGDUFEBnTpB374QFQWXXQYzZkBQkNtrLC4uNpdgsNlsjBs3jmnTpnHvvffKEgzCYyUmJnLPPffw4x//uMMOBitP3ZclJiZGp6WlWV2GtRwOWL2agocfpvrYMXp16wZ+ftC5M3h5gdZQXQ3l5aAUeHvDNdfA3XdDK+9+lJ+fby7BsG3bNmJiYkhISGDKlCmyBINoM2666SZ+/vOfc8kll1hdissopTZrrWOcOVZaAJ4qJwfuuQc2bSLY15eDNTWEdOlSvxtIKSMMzj4Ja7fD22/DJ5/AsmUwbZpLS8rLyzM3RN+3bx+TJ09m9uzZPP7447IEg2iTzj4Z3J4C4HxIAHiijAxYsAAKCyEkBC+lCA4JoaCwkN5N9aN7e0NoKJSVwc9+Bg89BLfc0qJSjh8/bk7XzMrKYsqUKVx//fVcfPHFsgSDaPOuuOIK/va3v5GXl9chx6gkADxNdrZx8y8urteNExIaSlZmJj179sSruXnyAQHg4wN/+hMEBhrdQufh8OHD5oNZJ0+e5Ac/+AGLFy8mJiZGlmAQ7UpAQABXXHEFq1evZvHixVaX43YyBuBJHA649lpISzPeyZ8jMyuLbt260dXZgd6qKuPPv/8Ngwc3epjWmv3797N+/XqSk5MpKytj2rRpJCQkEBUV1WEHyETHsH//fn7961+zZs2adrHciIwBtFX/93/Gzb+RAdzQ0FAKCgqcDwBfX6M76K67YNUqY+C4lsPhYOfOnea6O0opEhIS+P3vf8+oUaPkpi86jOHDh9OrVy+++eYbLrvsMqvLcSsJAE9RU2MM3Pr7G4O7DQgKCiI3N5eqqirnnwkIDoZduyAtjZoJE8wlGDZu3EhgYCDx8fE8+eSTDBs2TJZgEB1WYmIiq1atkgAQFvnqKygqgiamUHopRUDXrvwuK4tdSlFcU8MAHx9u79WLyV26NPg9DqCyvJw9t93G/SEh9OrVi4SEBJ5//nkGN9EtJERHcsUVV/DMM8+Qm5tLnz59rC7HbSQAPMWaNUYroBlBISF0OXWKvw8bRj9fX74pKeGB48d5d/Bg+tW2ChxaU1pSQvGZM5SUlODn48PQI0d44/336T9oUCv/IEK0PX5+fkyfPp3Vq1fzi1/8wupy3EY6ej3F5s1G908zQvz8uDEoiK5VVXgpxZSgIPr5+LCrvJyi4mKOHT/O/v37yc/Px9/fn4iICAYOHkzXkBD6V1S44QcRom1KSkrio48+osaJN2LthQSAJ7Db4ciR/z3Q1YzQkBAKCwqoqanhcH4+B8+cwSs7m6KiIgIDAxk6dCgDBw6kW2goPt51GnkHDrTSDyBE2zdkyBD69u3LV199ZXUpbiMB4AkqK42BXycHYYO6dqW8ooJtu3bxUHY2M7p25QcjRhAeFkZoSAjeDU1lq6kxZgQJIRp1dpnojkICwBN06mQ8A+AkL6UIDw9npb8/vl5eLKis5OiRI+SdPElpWRmOhp7tOLtWkBCiUZdffjm7du0iOzvb6lLcQgLAE3TubDyxa7c7dbjWmify86nw9eXvF13EyBEjjDXNtSbvxAn2799P1pEjnDp9mvKKCjQYIdO7d6v+GEK0dZ07d2bGjBmsXr3a6lLcQgLAEygFo0cbq3o64S+5uRyuquLpsDA6e3nhpRSBgYH06tWLwYMHM2zYMLqFhmKvriY7O5v9+/ZxKjeXj/bvJysrC099+lsIT5CYmMhHH32E3ck3ZG2Z9Al4issuA5ut2cNyqqtZVViIr1L8qM6g7m/79GFGcDAAnby8CAoKIqj2ieHqkhJKlGLLkSO8dOutAMTGxhIXF0dsbGyHXARLiMZEREQQFhbGl19+SXx8vNXltCpZC8hT5ObCpZcaD4K5ehmGggL47W9h0SK01hw9epTU1FRSU1NJS0ujW7duZhhMmDBB1vMXHd66detYt24dzz33nNWlnLfzWQtIAsCT/PznsH69azdzqaoyNo355htoYHcuh8PBvn37sNlspKamsn37dgYNGmS2EKKiomTZZ9HhVFVVMXPmTFauXEn//v2tLue8SAC0VceOwQ9/aMzWccVNV2tjT4GHHoIf/9ipb6mqqmLnzp1mC+HAgQOMGjXKbCGMHDmyXayYKERznnrqKXx9fbn99tutLuW8SAC0Ze++C0uWGF1BLb3RFhbCuHHw/vsX3K1UVlZGenq6GQi5ublER0ebLYSIiAhZRE60S5mZmSxevJi1a9e2qX0wZDnotmzBAuOJ3TfeMDZ4v5C5+1obC8sNGAAvv9yiMYWAgAAuvfRSLr30UsDYCzgtLY3U1FTeeecdKioqiIuLM1sIffv2veBrCeFJBg0axKBBg/jiiy+4/PLLrS6nVUgLwBNpDc88A88/b7QCnF3/H4z+/pISY1rpa69B9+6tVyeQnZ1ttg5sNhuBgYFmGMTGxhLSypvTC9GaPv30Uz766CNeeOEFq0txmnQBtRfp6XDnncYMIS8v6NKl8eUiKiuNpR68veE3v4FFi1rehXSeHA4HGRkZ5oDyli1b6N+/v9lCiIqKks3jRZtSVVXFlVdeyWuvvUZYWJjV5ThFAqA9qaqC5GT4+99hxw5jl6+qKmNtH6WM11ob4fCTn8D8+eAh8/rtdju7d+82Wwh79uxhxIgRZgth9OjRbapvVXRMy5cvRynFHXfcYXUpTnFbACilugHvAYOATGC+1rqggeNqgB21L49orWc3d24JgAYUFcHevZCR8b93+/36wUUXGf39Hr6NY3l5OVu3bjVbCEeOHCEqKspsIQwdOlS2ohQe58iRIyxatIi1a9c6vxOfhdwZAE8A+VrrpUqpB4BQrfX9DRxXorVueMuqRkgAtH9FRUVs3rzZbCEUFxcTExNjthAGDBggM4yER7j11luZN28eV1xxhdWlNMudAbAP+IHWOkcp1RfYqLUe0cBxEgCiWSdOnDAHk1NTU/H29q43w6h7Kw9oC9GYzz77jA8++ICXXnrJ6lKa5c4AKNRah9R+rICCs6/POc4ObAXswFKtdbNL7UkAdGxaazIzM80w2Lx5Mz179jQDITo6mi6N7IMshKtVV1dz5ZVX8vLLLzNw4ECry2mSSwNAKfU50NAuyUuAlXVv+EqpAq11aAPn6K+1Pq6UigCSgQStdUYDxy0GFgOEh4dPyMrKcuZnEB1ATU0Ne/fuNVsIO3bsYMiQIWYgjB07tk30z4q269lnn8Vut3PXXXdZXUqTPK4L6JzveQP4RGv9QVPHSQtANKWqqopt27aZLYRDhw4xevRoMxAuuugiGVAWLnXs2DFuueUW1q1b59FvNtwZAH8FTtcZBO6mtb7vnGNCgTKtdaVSqgfwHTBHa727qXNLAIjzcebMGXPJCpvNxqlTp4iOjjbHDwYNGiQDyqLFbrvtNq666ipmzJhhdSmNcmcAdAf+DwgHsjCmgeYrpWKAX2itf6qUmgy8BDgwNqB5Rmv9anPnlgAQLXHq1ClsNhs2m42UlBQcDoe5flFcXJzsgSAuSHJyMu+88w4vv/yy1aU0Sh4EE6KOs3sgnO0uSktLIzg42AyDmJgY2QNBOMVut3PllVfy4osvEhERYXU5DZIAEKIJDoeDAwcOmN1FW7duZeDAgfX2QPDz87O6TOGhXnjhBcrLy/nNb35jdSkNkgAQ4jxUV1ezY8cOs4Wwf/9+IiMjzRbCyJEj8b6QVVlFu5Sdnc2NN97IunXrPHKzJAkAIVqgrKyMLVu2mC2E7Oxsxo8fb7YQhgwZIgPKHdwdd9zB9OnTmTlzptWlfI8EgBAuVFBQYO6BkJqaSnl5ublkRVxcHP369bO6ROFmGzZs4K233uLVV5udz+J2EgBCtKLs7Gyzu8hms+Hn58fEiRPNPRBCQ7/3LKRoZ+x2O1dddRUvvPCCxw0GSwAI4SZaazIyMswwSE9Pp1+/fmZ3UXR0tOyB0E69+OKLlJSUcO+991pdSj0SAEJYpKamhl27dpkthN27dzN8+HDzgbQxY8bIHgjtRE5ODtdffz3r1q3zqFljEgBCeIiKigq2bdtGSkoKNpuNrKwsxo0bZ7YQhg8fLktWtGF33nknl19+ObNmzbK6FJMEgBAeqri4mLS0NLOFUFhYWG8PhLCwMJlh1IZ8+eWXvP7667z++utWl2KSABCijcjLyzOXq7DZbHh5eZlhEBcXR48ePawuUTShpqaGWbNmsXz5coYNG2Z1OYAEgBBtktaarKwsc0B58+bNdO/evd4eCEFBQVaXKc6xYsUKCgoKuP/+722GaAkJACHaAYfDwd69e80Wws6dOxk8eLDZQoiKivLoZYk7iry8PBYuXMjatWvx9/e3uhwJACHao6qqKrZv3262EDIyMhg1apTZQoiMjJQBZYvcfffdTJ06lTlz5lhdigSAEB1BSUkJ6enpZgvh5MmT9fZAGDx4sAwou8nXX3/NihUrePPNN60uRQJAiI7o9OnT9Z5Qrq6urrcHQu/eva0usd1yOBzMnj2bZcuWMWJEk5sitjoJACE6OK01x48fN8PAZrPRtWtXMxBiYmIIDg62usx25ZVXXiEvL4/f/va3ltYhASCEqMfhcHDw4EFzQbutW7cSFhZmtg6ioqI8YgCzLTt58iTz589n7dq1li7/IQEghGhSdXU1u3btMlsIe/fuJTIy0mwhjBo1SvZAuAD33HMPkydPJjEx0bIaJACEEOelrKyMrVu3mi2E48ePExUVZQ4oDx06VGYYOeHbb7/lhRde4K233rKsBgkAIUSLFBYWmnsg2Gw2SkpKzOWu4+Li6N+/v9UleiSHw8HcuXNZunQpI0eOtKQGCQAhhEvl5OSYM4xSU1Px8/MzwyA2NpZu3bpZXaLHeO2118jJyWHJkiWWXF8CQAjRarTWHD582AyD9PR0+vTpY4ZBdHQ0gYGBVpdpmdOnT3P11VfzySefWPJ7kAAQQrhNTU0Nu3fvNlsIu3btYtiwYWYLYcyYMR1uyYr77ruPiRMnkpSU5PZrSwAIISxTWVnJtm3bzBZCZmYmY8eONVsII0aMaPcDyikpKSxfvpy3337b7U9jn08AyDwvIYRLde7c2Xy+AIw9ENLT00lNTeV3v/sd+fn5xMTEmC2E8PDwdrdkRWxsLKWlpezevZtRo0ZZXU6jpAUghHCrvLw8c4ZRamoqgBkYsbGx9OzZ0+IKXWPlypVkZWXx8MMPu/W60gUkhGgTtNYcPXrU3BAnLS2Nbt26mWEwYcIEunbtanWZFyQ/P5+kpCTWrFlDly5d3HZdCQAhRJvkcDjYt2+fOaC8fft2Bg0aZLYQxo0bR+fOna0u02kPPPAA0dHRzJ8/323XlAAQQrQLVVVV7Ny502whHDhwwNwDITY2lpEjR9KpUyery2xUamoqTz31FO+8887/xjnOnIHKSvD1haAgcPH4hwSAEKJdKi0tNfdASE1NJTc319wDIS4uzuP2QHA4HFw/ezZLp0xh4O7dsH07FBeDlxc4HODvD6NGweWXQ2IidO/e4mtKAAghOoT8/Px6A8qVlZX1nlDu27evdcWVlcHTT1P0/PPYKyvp3r27ccP39v7fu367HSoqjP96ecGsWbBkCbTgyWoJACFEh3TuHgiBgYFm6yAmJoaQkBD3FJKeDr/6FeTmYg8IICMzk6FDhzbdXVVTY7QOgoLgySeNVsEFkAAQQnR4DoeDjIwMs7toy5Yt9O/fv94eCK2ybv/69fDLXxrv8mtn/xw7fpwAf3/n1kwqLzfGCB5+GG666bwvLwEghBDnsNvt9fZA2LNnDyNGjDADYdSoUfj4+LTsIqmpcMMNxgCvn5/56dKyMnJzc4mIiMCpEYrqaigpgaefhtmzz6sECQAhhGhGeXk5W7duxWazkZKSwtGjR809EOLi4s5/D4SSEoiPN2b5nLMInAYyMjLo17ev862OykqjW+jzz6FfP6fLkKUghBCiGf7+/kyaNIlJkyYBUFRUZA4or1q1iuLiYmJiYsxA6N+/f9MzjB5/HPLzoYFxBgWEhoZSUFjofAB07gyFhXD//fCPf1zAT9g8aQEIIUQDTpw4YXYXpaam4uPjU2+GUfe6Uzbz8+Hii413/o0M9Nprasg4eJA3AwNJKy+n3OGgh7c3N3XvztzGBqe1NgaGP/kERoxwqm7pAhJCCBc6uwfC2TBIT0+nZ8+eZusgbudO/J56qsF3/3Udz84mt1MnxvTsia+XF5mVlSzOymJ5WBiR/v4Nf1NBASxYAI895lStbusCUkpdAzwCRAJxWusG79hKqenAcqAT8IrWemlLriuEEO6klCIiIoKIiAgWLFhATU0Ne/fuJTU1lXfffRf13ntE2O34VFcTGBiIv78/Xg10F4WGhFCek4NP797GeWvPfay6uvEACAyE//zH6QA4r5+rJS0ApVQk4ABeAu5pKACUUp2A/cAPgWOADbhWa727qXNLC0AI0SY4HDguuohyoLSigtKyMiorK/H39ycwMJDAwED8/PxQGIPBhw4d4m1vbz4tK6NSa0b4+fHywIEENDbgrDUUFcGmTdCjR7PluK0FoLXeU3vBpg6LAw5qrQ/VHvsuMAdoMgCEEKJNyMnBCwjs2pXA2pVLaxwOykpLKS0tJTs7G7vdTkBAAIGBgXTp0oVF1dU8NGIE28vL2VxWhm9T91ClwMcHDh1yKgDOhztmAfUHjtZ5fQyY6IbrCiFE6ysvN5ZxqKOTlxdBQUEEBQUBUG23m4FQUloKWqOUIioggHVFRXxQUMDCph4S09q4jos1GwBKqc+BPg18aYnW+iNXFqOUWgwsBggPD3flqYUQonV4exs36Cb4eHsTHBxMcHAwGmNQ+ex7/hrgWFVV09c42wpwsWYDQGt9YQtS/M9xIKzO6wG1n2voWiuAFWCMAbTwukII0fr69DEWc3M4vtcSOFe+3U5aWRmXdumCH5BSWsqnRUU81r9/09eoqTmvh8Gc5Y4uIBswTCk1GOPGvxC4zg3XFUKI1ufnB+HhkJdnrPbZBAV8UFDAYzk5OIC+Pj78pndvLqvtKmpQTY0RLK3QK9LSaaDzgGeBnsBapdRWrfWPlFL9MKZ7ztRa25VStwOfYkwDfU1rvavFlQshhKeYNg1Wrmw2AEK9vVkxcOD5nbukBCZNarZ1cSFaOgvoQ+DDBj6fDcys83odsK4l1xJCCI+1cKGxXIPWLt/hC6XgJz9x7TlruT5ShBCioxk+HMaPN+bru1JJCfTsCVOmuPa8tSQAhBDCFZYuNdYBqq52zflqaoxzLVvW6PpCLSUBIIQQrhARAffdZ7xrdzhadq6zi8Bdd52xyFwrkQAQQghX+clPjA1hioqMqaEXwuEwloGeNs3YFawVSQAIIYSrKAWPPAJ33mm0BIqLz+/7S0uN8LjmGnjxxVZ5+KsuCQAhhHAlpeCOO2DVKhgwwAiBoqLGu4UcDmMXsbMbwr/xhjGe0Mo3f5AdwYQQonWMHWts5/j11/DKK/Ddd8Zgrtb/my6qlDHQO3YsLF4MCQnGfsJuIgEghBCtxcsLLrvM+FNdbazoefiwsd+vjw+EhRlTSDt3tqQ8CQAhhHAHHx9jW0cnt3Z0BxkDEEKIDspj9wRWSp0Ess75dA/glAXlOMvT6wOp0VWkxpbz9PqgbdY4UGvd05lv9NgAaIhSKs3Zrc6s4On1gdToKlJjy3l6fdD+a5QuICGE6KAkAIQQooNqawGwwuoCmuHp9YHU6CpSY8t5en3QzmtsU2MAQgghXKettQCEEEK4iEcHgFKqm1LqM6XUgdr/hjZy3BNKqV1KqT1Kqb8p5eoteVpcX7hS6r+19e1WSg1yR33nU2PtsV2VUseUUs+5qz5na1RKRSmlvqv9/7xdKbXADXVNV0rtU0odVEo90MDXOyul3qv9eoo7/7+eR4131/6d266UWq+UOs/9CFu/xjrHJSmltFLK7bNunKlRKTW/9ne5Syn1T0+rsfY+s0EptaX2//fMhs5Tj9baY/8ATwAP1H78APB4A8dMBr7B2G+4E/Ad8ANPqa/2axuBH9Z+3AUI8KTfYZ1jlwP/BJ7zwP/Pw4FhtR/3A3KAkFasqROQAUQAvsA2YOQ5x/wS+HvtxwuB99z8e3Omxmln/74Bt3pijbXHBQFfApuAGE+rERgGbAFCa1/38sAaVwC31n48Eshs7rwe3QIA5gAraz9eCcxt4BgN+GH8UjoDPsAJt1TnRH1KqZGAt9b6MwCtdYnWusxN9YFzv0OUUhOA3sB/3VRXXc3WqLXer7U+UPtxNpAHOPWwywWKAw5qrQ9prauAd2vrrKtu3R8ACe5qfTpbo9Z6Q52/b5uAAW6sz6kaa/0JeByocGdxtZyp8WfA81rrAgCtdZ4H1qiBrrUfBwPZzZ3U0wOgt9Y6p/bjXIwbVD1a6++ADRjvCHOAT7XWezylPox3roVKqVW1TbO/KqVaZ3+3hjVbo1LKC1gG3OPGuupy5vdoUkrFYQR+RivW1B84Wuf1sdrPNXiM1toOFAHdW7GmczlTY12LgH+3akXf12yNSqloIExrvdadhdXhzO9xODBcKfWNUmqTUmq626ozOFPjI8ANSqljwDrgV82d1PLF4JRSnwN9GvjSkrovtNZaKfW9KUtKqaFAJP97Z/OZUmqK1vorT6gP43c8BRgPHAHeA24BXnVFfS6q8ZfAOq31sdZ6A+uCGs+epy/wD+BmrXUL993rOJRSNwAxwFSra6mr9s3HUxj/JjyZN0Y30A8w7jVfKqXGaK0LLa2qvmuBN7TWy5RSk4B/KKVGN/XvxPIA0Fpf3tjXlFInlFJ9tdY5tf/wG2p2zQM2aa1Lar/n38AkwCUB4IL6jgFbtdaHar9nNXAxLgwAF9Q4CZiilPolxhiFr1KqRGvd6ICdBTWilOoKrAWWaK03uaq2RhwHwuq8HlD7uYaOOaaU8sZodp9u5boauv5ZDdWIUupyjKCdqrWudFNtZzVXYxAwGthY++ajD/CxUmq21jrNQ2oE499xita6GjislNqPEQg295ToVI2LgOlg9Iwopfww1glqtLvK07uAPgZurv34ZuCjBo45AkxVSnkrpXww3uG4qwvImfpsQIhS6mx/dTyw2w21ndVsjVrr67XW4VrrQRjdQG+68ubvhGZrVEr5Ah/W1vaBG2qyAcOUUoNrr72wts666tZ9NZCsa0fg3KTZGpVS44GXgNkW9Fs3W6PWukhr3UNrPaj279+m2lrddfNvtsZaqzHe/aOU6oHRJXTIw2o8AiTU1hiJMTZ6ssmzunMk+wJGvrsD64EDwOdAt9rPxwCv1Bkdfwnjpr8beMqT6qt9/UNgO7ADeAPw9bQa6xx/C+6fBeTM/+cbgGpga50/Ua1c10xgP8ZYw5Laz/0R4wZF7T+w94GDQCoQ4c7fm5M1fo4xKeLs7+xjT6vxnGM34uZZQE7+HhVGV9Xu2n/HCz2wxpEYMyK31f6/vqK5c8qTwEII0UF5eheQEEKIViIBIIQQHZQEgBBCdFASAEII0UFJAAghRAclASCEEB2UBIAQQnRQEgBCCNFB/T/OM3z8xUcOuQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -231,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -260,7 +269,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX++PHXhx1kdV9QAbcys0zHstTSdNSm1DS5TH3TNHUas5rcM9vMxt1pcqppc1x+UxxAM7TSMsecFitr2nPfEDQXEGS9wP38/jhoZOxc7uFy38/Hgwdc7uHe90F8n3Pen8/5vJXWGiGEEJ7Fy+oAhBBCuJ4kfyGE8ECS/IUQwgNJ8hdCCA8kyV8IITyQJH8hhPBAkvyFEMIDSfIXQggPJMlfCCE8kI/VAZSnadOmOioqyuowhBDCrXz55ZdntNbNKtuu3ib/qKgodu/ebXUYQgjhVpRSR6uyXb1N/kIIC+Xnw7Fj5mcfH4iMhNBQq6MSTiTJXwhhSk2FN96Ad96Bo0fB1xeUAq2hsBCaNYMbb4S774YrrjCfE25Lkr8Qnu7sWXjiCdi6FRwOCAiAsDDwKjUfRGvIyYGkJNiwAS6/HJYuhS5drItb1IrM9hHCk33wAQwcCFu2QEgIRERAYOCvEz+YZ/n+/ubzoaGwZw/cdhu88IJ5YBBuR5K/EJ5qwwb405+gqAjCw3+b8MujlHkACAyE5cth3jzzikG4FUn+QniinTth9mwICjKTeE34+prloTfegL//3bnxiTonyV8IT3PuHDz0kJm8/fxq91peXuZVwAsvwLffOic+4RKS/IXwNIsWQVaWedbvDD4+Zino4Yel/ONGJPkL4UnS081afyVz9hPS07n78GH67NnDk2lplb9uaKh5X8CnnzopUFHXJPkL4UnWrzfPzr29K9ysqY8P9zZtyvCwsKq/ttbw6qu1DFC4ilOSv1JqlVLqlFLq+3KeV0qp55RSB5RS3yqlrnHG+wohqmnrVrNMU4mBoaHcFBJCWCUHiV8JCYFPPpHSj5tw1pn/amBoBc8PAzqVfEwGXnTS+wohqsrhgB9+MG/iqgsXDhRHjtTN6wunckry11rvBNIr2GQEsFabdgHhSqlWznhvIUQVpaebc/qrcOZfY0pJ8ncTrqr5twFSSj0+XvI9IYSr2O1VvpHLbrdz8uefOZuejt1ur/p7aA0FBTUMULhSvVrbRyk1GbMsRLt27SyORogGxte3wnq8BnJyckhPTycvL4/w8HCCgoI4lZmJvbAQP1/fyt9DqdrfOyBcwlVn/qlA21KPI0u+9yta65e11r201r2aNau0F4EQojqaNDHr8sXFv/p2scNBekYGBw8e5NSpU4SGhBDTsSMRTZviHxBAQFAQh44do/CSnyuT1tC+fR3tgHAmV535JwNTlVLxwLVAptb6hIveWwgBZsmna1f48UcIDqbAbicjPZ3MrCwaBQXRulUrAoOCUMDLp0/z8pkzF3/0vcJC7jx0iFmdOlHuQs4Xriqio+t6T4QTOCX5K6XeAG4CmiqljgNPAL4AWut/Au8AtwAHgFxgvDPeVwhRPY5Bgyj47DNOZ2SQn5dHeEQEMdHR+F5S0pncrBmTS119O7Tm6JEjnD17lqZNmpT94ufPQ58+ld5DIOoHpyR/rfUfK3leA/c7472EENWXnZ3Npk2b2LJ5M4uzsght3pzIyEi8qtiQxUspItu25fDhwwT4+xMcHFz2hhMnOjFqUZfkDl8hGrDDhw+zePFihg8fznfffcf0RYtoMWkS4VDlxH+Br48PkZGRpKWlUXDpDKDz56F1a+jb13nBizpVr2b7CCFqz+Fw8NFHHxEfH8+BAwcYPXo0hmFwcRLFvHmwfTvk5VV7OeegwECaNW/O8ePHiYqKwtvLyxxALi6GZ5+tek8AYTlJ/kI0EFlZWSQnJ5OQkEBERAQ2m41Bgwbhd+nUy8aNYcUKmDzZrM9Xc2pmRHg4+Xl5pKWlEdm6NSory3ytHj2cuDeirknyF8LNHTx4EMMweP/99+nXrx8LFy7kiiuuqPiHBg6E+fPhscd+6dtbDS1atuT44cOcT0khdNw4mDmzFnsgrCDJXwg3VFxczM6dOzEMgyNHjjB69GiSkpJoUt5MnLLceafZk3fmTLPBS1iYeZNWZbTG6/x52oSH81pAAJ1vuYWbpNzjdiT5C+FGMjMz2bhxI4mJiTRv3py4uDgGDBjwm6maVTZsGPTsCXPnwo4d5lVAo0ZmKaj0gUBrc12gnBzz+zExeC9fTl8vLx588EHaRUURExPjlH0UrqHMWZj1T69evfTu3butDkOIemHfvn0YhsH27du58cYbsdlsXH755c59k8OH4fXX4d134cQJczmICweAwkKzYcsNN8D48WZ9v+S5zZs3s2rVKtasWUNISIhzYxLVppT6Umvdq9LtJPkLUT8VFRWxY8cODMMgNTWVO+64g9tvv52IiIi6f/Pz583VOfPzzYNAmzZQwZIry5cv5+jRozz77LN4SQnIUpL8hXBTGRkZvPnmmyQlJdGmTRtsNhs33XQTPnW5FHMtFRUVMXXqVLp168bUqVOtDsejVTX519+/JiE8zE8//YRhGHz44YcMHDiQZ599ls6dO1sdVpX4+PiwaNEixo4dS5cuXRg8eLDVIYlKSPIXwkJFRUVs376d+Ph4Tp06xZgxY3j44YcJq07v3HoiPDycZcuWMWXKFNq3b+82By5PJclfCAukp6ezfv16NmzYQPv27bn77rvp378/3m6+KFrnzp2ZNWsWM2bMYO3atYSHh1sdkiiHJH8hXOj777/HMAw++ugjBg8ezMqVK+nYsaPVYTnV73//e/bs2cMjjzzCP/7xD7c/oDVUMuArRB2z2+1s27YNwzDIyMggNjaW4cOHExoaanVodcbhcPDQQw8RHR3NtGnTrA7Ho8iArxAWO3369MXSTseOHbn33nvp27evR0yF9PLy4plnnmHcuHF06dKFP/zhD1aHJC4hyV8IJ9Ja89133xEfH8+uXbsYMmQIL730EtEe2N0qNDSU5cuXM3nyZKKjo+natavVIYlSJPkL4QR2u52tW7diGAY5OTnExsYyd+7c8pueeIiYmBgeffRRZs6cybp162jcuLHVIYkSkvyFqIVTp06RlJTExo0bueyyy/jzn/9Mnz59PKK0U1UDBgxg3759zJo1ixdffLHm6xAJp5K/UCGqSWvNV199xezZs4mLiyM3N5dXX32V5557jhtuuEESfxkmTZpEaGgoy5YtszoUUUJm+whRRQUFBWzZsgXDMCgoKMBms3HrrbcSFBRkdWhuIScnh3HjxnHnnXcyatQoq8NpsGS2jxBOcuLECRITE0lOTqZbt248+OCD9O7dW87wq6lRo0asWLGCe++9l44dO9K9e3erQ/JokvyFKIPWmi+//JL4+Hi++uorbr31VlavXk1kZKTVobm1du3a8eSTTzJ79mzWrFlD8+bNrQ7JY0nZR4hS8vLyePfddzEMA601NpuNYcOGSWnHyf71r3+xY8cOXnnlld/2GBa1Iks6C1ENqampJCYmsmnTJq6++mri4uLo1asXqiptDUW1aa155JFHCAwM5PHHH5ffsxNJzV+ISmit+fzzzzEMg2+//Zbhw4ezbt06WrdubXVoDZ5SiieeeILx48eTkJCAzWazOiSPI8lfeJzc3Fw2b95MQkICPj4+2Gw2/vrXvxIQEGB1aB4lMDCQFStWcM8999CxY0d69uxpdUgeRZK/8BjHjh0jMTGRt99+m169ejF37lx69OghJQcLtW7dmgULFjB37lxWr15Nq1atrA7JY0jyFw2aw+Fg165dxMfH89NPPzFixAhef/11WrZsaXVookTv3r0ZN24c06dPZ9WqVXIF5iIy4CsapJycHDZt2kRCQgKBgYHYbDaGDBmCv7+/1aGJMmiteeKJJyguLmbBggVyNVYLMttHeKQjR46QkJDAli1buPbaa7HZbFx11VWSTNxAQUEBEydOZPDgwYwdO9bqcNyWzPYRHsPhcPDxxx9jGAb79u3j9ttvJz4+Xm4gcjP+/v4sW7aMcePG0alTJ/r06WN1SA2aJH/hts6fP09ycjIJCQmEhYURFxfHihUr5KYhN9aiRQsWLlzI7Nmzee2112jbtq3VITVYkvyF2zl06BCGYfDee+9xww03sGDBArp16yalnQaiR48eTJ48menTp7N69Wq5u7qOSPIXbsHhcLBz504Mw+DQoUOMHj2axMREmjZtanVoog6MHj2aPXv28MQTT7B48WJZRK8OyICvqNeysrLYuHHjxURvs9m4+eabpSGIB7Db7dx3331cf/31TJw40epw3IYM+Aq3tn//fgzD4IMPPqBfv34sXrxYesB6GD8/P5YsWcLYsWPp3Lkz/fv3tzqkBkWSv6g3iouL2bFjB4ZhkJKSwh133MH69eul76sHa9q0KUuWLOHhhx/mlVdeISoqyuqQGgxJ/sJy586d48033yQpKYlWrVphs9kYMGAAPj7y5ymgW7duPPDAA0ybNo01a9YQEhJidUgNglNGUZRSQ5VSe5VSB5RSc8p4/h6l1Gml1NclH1LAE+zZs4ennnqK22+/nZSUFFasWMGrr77K4MGDJfGLXxk+fDjXXXcd8+bNw+FwWB1Og1DrAV+llDewDxgMHAe+AP6otf6x1Db3AL201lOr+roy4NswFRUVsX37dgzD4OTJk4wZM4aRI0cSHh5udWiinisqKmLKlClcffXVTJkyxepw6i1XDvj2Bg5orQ+VvHE8MAL4scKfEh4lPT2dDRs2sH79etq2bctdd93FjTfeiLe3t9WhCTfh4+PD4sWLGTt2LF26dOHmm2+2OiS35ozk3wZIKfX4OHBtGduNVkr1x7xKeFhrnXLpBkqpycBkMHt9Cvf3448/Eh8fz3//+18GDRrEc889R6dOnawOS7ipiIgIli5dytSpU2nXrp38LdWCqwqrm4A3tNYFSqk/AWuAgZdupLV+GXgZzLKPi2ITTlZYWMi2bdswDIOzZ88yZswYZsyYQWhoqNWhiQbgsssuY8aMGcyYMYN169bJ31UNOSP5pwKlF+CILPneRVrrs6UevgosccL7inrmzJkzF0s7HTp0YPz48fTr10/uzhRON3ToUPbu3cucOXNYuXKllA9rwBn/K78AOimlopVSfkAckFx6A6VU6fY8w4GfnPC+oh7QWvPtt9/y6KOPMmbMGM6ePcuLL77ICy+8wI033iiJX9SZqVOnopRi5cqVVofilmp95q+1LlJKTQW2At7AKq31D0qp+cBurXUy8KBSajhQBKQD99T2fYW17HY777//PvHx8WRlZWGz2ZgzZ47MwRYu4+3tzcKFCy8OAA8bNszqkNyKrO0jquXUqVMkJSWxceNGOnfuTFxcHNdff72c4QvLHDx4kD/96U+sXLmSyy+/3OpwLCdr+win0VrzzTffYBgGn332GUOHDuWVV16hffv2VocmBB06dGDu3LnMnDmTtWvXynIgVSTJX5SroKCArVu3Eh8fT35+PrGxscybN49GjRpZHZoQvzJw4MCLA8AvvPCC3CFeBVL2Eb9x8uRJEhMTSU5OpmvXrthsNq677jop7Yh6zeFwMH36dFq1asWsWbOsDscyUvYR1aK15quvvsIwDHbv3s0f/vAHXnvtNbnZTrgNLy8vnn76acaNG8dbb73FiBEjrA6pXpPk7+Hy8/N55513SEhIoLi4mNjYWJ588klpnSfcUnBwMCtWrGDixInExMRw5ZVXWh1SvSXJ30OlpaVdLO1cddVVTJs2jd/97nfSB1e4vfbt2/P4448ze/Zs1qxZQ7NmzawOqV6S5O9BtNZ88cUXxMfH880333Dbbbexdu1a2rRpY3VoQjhVv3792L9/P7NmzeKll17Cz8/P6pDqHRnw9QC5ubkXSzsAcXFxDBs2jMDAQIsjE6LuaK2ZPXs2ISEhzJs3z2Ouaqs64CvJvwFLSUkhMTGRzZs307NnT2w2Gz179vSY/wRC5ObmMn78eO644w7GjBljdTguIbN9PJTD4eCzzz4jPj6eH374gREjRvDvf/+bVq1aVf7DQjQwQUFBLF++nAkTJtChQweuueYaq0OqNyT5NxA5OTls3rwZwzAICAjAZrOxZMkS/P39rQ5NCEtFRkby9NNP88gjj7BmzRpatmxpdUj1giR/N3fs2DEMw+Ddd9+ld+/ePPbYY1x99dVS2hGilGuvvZa7776bGTNm8Nprr8lJEZL83ZLD4eCTTz7BMAz27t3LyJEjiY+Pp3nz5laHJkS9ddddd7Fnzx4WLFjA/PnzPf4ESQZ83cj58+fZtGkTCQkJhISEYLPZ+P3vfy/T2ISoovz8fO69915uueUW7rrrLqvDqRMy4NuAHDp0iISEBLZu3UqfPn2YP38+V155pcefuQhRXQEBASxfvpxx48bRqVMnevfubXVIlpHkX085HA7++9//YhgGBw8eZNSoUSQkJMjdikLUUsuWLVm4cCFz5szhX//6l8fe5CjJv57JysrirbfeIjExkYiICGw2G4MGDZLSjhBOdM011zBx4kSmT5/OqlWrPHItK6n51xMHDhzAMAy2bdtGv379sNlsXHHFFVaHJUSDpbXm6aefJicnh0WLFjWYMqrc4esGiouL+fDDDzEMg6NHjzJ69GhGjRpFkyZNrA5NCI9gt9uZPHky/fv3Z8KECVaH4xQy4FuPnTt3jo0bN5KUlETz5s2Ji4tjwIAB+Pr6Wh2aEB7Fz8+PpUuXMm7cODp37kzfvn2tDsllPCr5aw3ffQfvvQe7dsHevZCXB0pBixbQowf06wdDh0JoqPPff9++fcTHx/Of//yHm266iWXLlnHZZZc5/42EEFXWrFkzFi1axPTp03n11Vc9pje1R5R9tIbt22HJEjh0CIqKwN8fAgLgQmdCux3y882vfXxg1CiYPh1qW4EpKiriP//5D4ZhkJaWxh133MHtt99ORERE7V5YCOFUGzduZN26daxZs4bg4GCrw6kxqfmXyMiAefNgyxbw9YVGjcwz/YoUFcH58xAcDIsXm1cC1ZWenn6xtNOmTRvi4uK46aab8Pb2rtmOCCHq3OLFi/n5559ZtmyZ2/asluQPpKVBXBykpkJY2C9n+VWVl2deDfzlLzB1auUHDYAff/wRwzDYuXMnAwcOxGaz0blz55rtgBDCpQoLC5kyZQo9e/bkvvvuszqcGvH4Ad+MDDPxp6VBTSssgYHm1cLf/gZBQXDvvWVvV1hYyPbt2zEMg1OnTjFmzBimTZtGWFhYzXdACOFyvr6+LF68mLFjx9K5c2cGDhxodUh1pkEmf63h0UfNM/7altZ9fCAkBBYtgj59oGvXX547e/Ys69evZ8OGDURFRXH33XfTv39/Ke0I4cYaN27M0qVLeeCBB2jfvj0dOnSwOqQ60SCT//btsHWrWepxBl9fs+Tz4IPm2MGePd8THx/Pxx9/zODBg3n++ecb7B+IEJ7o8ssvZ9q0aUyfPp21a9cSWhfT/yzW4Gr+WsOQIXDsmDlg6ywOh4OTJ3Pp2vV5goI+JjY2luHDhzfIPwohhOlvf/sbBw8e5LnnnnObAWCPHfD95hu44w5znn5FA7QOh52TJxeRm/s5xcVZ+PpG0rz5VIKDr//VdkVFhWRkZJCRcQ4vrzCuvtqL7dubuM0fghCi5oqLi3nggQe47LLLePDBB60Op0qqmvwbXAZ77z1zqmblM3OK8fVtSbt2L9O58w6aNfszqalzsNvTAE1eXi6pqcc5dOgQxcXFJbW/FqSkNCM7u8H92oQQZfD29mbhwoVs27aNrVu3Wh2OUzW4mv+uXeYNXJXx8gqkWbPJFx+HhPTD17cVZ8/uJj+/Gw6Hg4iICFq1aoWX1y8DuL6+sGcPePAy4EJ4lLCwMJYvX86f//xnoqKi6NKli9UhOUWDO4Xdu9e8c7c6CgsLOXFiL5mZ+ykoaEKzZs3p0KEDjRs3+VXiN7eF/fudGLAQot7r1KkTc+bMYcaMGWRkZFgdjlM0uOSfm1u9m7nOnj3DDz98y+nTTxEUNJhGjTpRUJDPuXPnyMrKIicnm7y8POz2AoqKCiksdJCdXT/HSYQQdWfQoEEMHTqUOXPmUFRUZHU4tdbgBnw7dTLn5Vf1AHDuXDpHj84hKAgaN16A1oriYgcOR3GZn+32YFq3/hcxMf8hODiYkJAQgoODf/P1pR+XPicreArhfhwOBw8//DBt27ZlxowZVodTJo+9w7d5c8jKqlrdX2tNbu5KAgLy8fGZS+PGTVGq4qNGVhYsWjSLm276M9nZ2WRnZ3P+/PnffJ2Wllbuc9nZ2fj6+lZ48KjsQNKoUSOZcSSEi3l5ebFgwQLGjRtHcnIyw4cPtzqkGmtwyb9HD/MGr6ok/5MnF2K3H6ZTpxdJS8vg5MmTtGrVCih/qpBS0L27L40bN6Zx48Y1ilFrTV5e3sUDwaUfFw4Sp0+fLvfgkZeXR0BAQIUHjMoOJoGBgQ2me5EQrhISEsLy5cuZPHkyMTExdOvWzeqQaqTBJf++fc27cCtTWHiCc+c2oJQf+/cPRWtNQUEBDsdM2rSJLfNn7HZztk90dO1iVEoRFBREUFAQzZs3r9FrOBwOcnJyyjwwXPjIzMzk+PHj5V6hFBYWVlieqsrX0ltYeKLo6Ggee+wxZs2axbp16yrsvldQANnZ5oljcDDUl/8yTqn5K6WGAn8HvIFXtdaLLnneH1gL9ATOAjat9ZGKXrOmNf/MTHMaZmCguS5PdRQW2jl8+AiRkW0ICmr0m+czMmDSJJgzp9ph1UtFRUUVlq7KuyIp/djLy6tK4xwVXYXIWkjCXb3yyit8+umn/POf/7x4IuRwmFPON2yAL76AlBS48CeutXnyeN115s2o3btXbbXg6nDZHb5KKW9gHzAYOA58AfxRa/1jqW2mAN211vcppeKA27XWtopetzZLOs+ZA4mJNVvULScnh9TUVKKjo/D1/eUQXVRkziTatg3atatRWA2O1hq73V7hwaO8A8mF53JycvD39690rKOiklZQUJCMfwhLOBwOZs+eTUREBI88Mpf33oOnn4affzYPAoGBZgn6QoJ3OMwrgbw884AQE2Nu78z7hlyZ/PsAT2qth5Q8fgRAa72w1DZbS7b5VCnlA5wEmukK3rw2yf/MGRg4EIqLzV9+daWnnyUzM5P27aMuJpWMDPjTn2DWrBqFJMpxYfyjqgePsg4m+fn5BAUF1Xj2VUhICP7+/jL+IWokNzeXO++cQn7+Yxw40AE/PzPvVPbnpLVZDiouhjvvhLlzq3+PUllcOdunDZBS6vFx4NryttFaFymlMoEmwBknvP9vNG1qLsH8wANmjb665Z/GjRuTn1/AiRNptGnThsxMRbt28NBDdRGtZys9/tGiRYsavUZxcXGF4x/nz58nPT2dY8eOlXtgKS4urvTgUdlViUzf9Uy5uUGcOfNPvvwynaioXIKCgqr0c0qZ09KLi+H//T9z5YDVq83eIa5QrwZ8lVKTgckA7WpZW7nlFti3D1auNH/B1TsAKFq1asmRI0dJScmiffsw1q2r2gwi4Xre3t6EhobWaoXVC+WrisY6Tpw4UeEVio+PT5VnXJV3IJHylXvJzTXP2k+eDCAqKpS0tONER0fj41P1EwFvb7NE/eWXMHkyrF1b/a6DNeGM5J8KtC31OLLke2Vtc7yk7BOGOfD7K1rrl4GXwSz71Dawhx4yj6JLl/5ylK3qlX1xsRchIW05f/4H5swpIDJSFvNpyPz8/Go9fTc/P7/SsY4zZ86Uu01ubi4BAQG1mn0l03dda9kyOHgQwsNBqWAaN25MSspxoqLaV3rPUGlKma/x6adm8r/nnrqL+eJ7OqHm74M54HszZpL/ArhTa/1DqW3uB64sNeA7Smtd9nzKEs5q4A7w/fdmI5aUlMoPAoWFZh3Oy8uc2TNw4Hc88sg0Xn31Vdq3b++UeIQoi8PhIDc3t9qD5qW/ttvt1Z59Vdb0XTmAVO7rr2HMGHP65i8T1jSpqakopWjdujUV3TNUFrvdHBD+4AOIjKxZXC5dz18pdQvwLOZUz1Va62eUUvOB3VrrZKVUALAO6AGkA3Fa60MVvaYzkz+YSf0//4GXX4b//c8cC7DbzXqbUubcW6XM7991l3kpdyHXb9y4kXXr1rFmzRqCg53YIUYIJysqKiInJ6fGs6+ys7MBajX7Kjg4GJ/qDrS5oUmTzJwSHv7r72vt4MiRI4SFhdG4cROKi7M4cWI+2dm78PEJp1mzqYSFDS33dTMyzH7hc+fWLC6PbeZSFefOmYMr+/dDTo45HtC8udmfNzq69FH8F0uWLCEtLY0VK1ZIXVY0aHa7vcozrso7mPj5+dVq9lV9n7578qR5Q2loaNn1+cJCO0eOHKF16zacO/cMoGnV6jHy8/eRkvIQUVH/wt8/pszXLiw0p5bv3l2z2YqS/J2sqKiIKVOmcPXVVzNlyhSrwxGi3rp0+ZKqHjxKf52fn09gYGC1lywp/f2AgIA6K19t2ACzZ1fcJzw3N4eUlIM4HJPo0CERPz9zEkta2uP4+DSjefMHyv3Z7GxYswauvXTeZBV47MJudcXHx4fFixczduxYOnfuzKBBg6wOSYh6yVnLl1RWnsrIyODYsWPlHmSKiopo1KhRtQfNS3+Ut3zJV1+ZJeOKBAU1Iiwsj59/LsLH55cCvr9/J3Jzv6rwZwsL4Ycfapb8q0qSfzVERESwbNky7r//ftq1a0fnzp2tDkmIBsnLy6vW03cLCwsrLU+dPHmywqsSb2/vMq8qkpMnkJPTFIfDgZeXN97eXmV+Dgnx5fTp4Iv3DIHCyysYhyOnwtiVgu++q/GuV4kk/2rq0qULM2fOZMaMGaxdu5bwS0d7hBD1gq+vLxEREUTUZJ0XuLjYY1kHhS1bwvHx8ULrYux2e7n9P4qKTlBUlMXp02do3rwFvr6+OBw5eHn9du2w0ry84Pz5GoVdZZL8a2DIkCHs27ePOXPm8I9//MMjZjYI4WmUUgQEBBAQEEDTpk1/9dyzz5qlmfLuxnU4ijl37hxnz9opLITWrRW+vmaeKCjYV+5g7wVa1/1eMgw1AAAXnUlEQVRNpfV3OL2eu//++/Hz8+PZZ5+1OhQhhIvFxJhTxS9VUJDPiRMn2L//AHl5+URGdqBZs6EUFho4HPnk5n7D+fMfEhb2hwpfv6jI7EpYlyT515CXlxfPPPMMn3zyCcnJyVaHI4Rwod69zbNzk+b8+SyOHj3KsWPH8PHxoUOHGNq0aUNgYBAtWz6Cw1HAvn2DSU2dS8uWj1R65u/vby73XJekXlELFzr6TJo0iejoaK688kqrQxJCuECvXgDFnDmTwblzGfj4+NC4cWNCQkJ+s6yDt3cobdsur/JrOxzmTKK6Tv5y5l9L0dHRPP7448yePZvTp09bHY4Qoo7t27ePxMT5ZGR8SXa2JjIykqioaEJDw6q1nk95srLMJekvGWZwOkn+TtC/f39Gjx7NrFmzsJdVCBRCuLWioiLef/99Jk6cyF/+8hfato3kuecuJyysGf7+NbgNtxwOh/l50iSnvWS5pOzjJBMmTGDv3r0sWrSIxx57TBbGEqIBSE9PZ8OGDaxfv562bdsSFxfHTTfdhI+PDw4HJCebN3w5a8Z3ZiaMHHmhrFS3ZHkHJ8rNzWXChAmMGjWK2NgKFy0VQtRjP/74I/Hx8fz3v//l5ptvJjY2tsybOlNSYNgws0bfqOKp+5XKyjIPItu2mWsG1ZQs72CBoKAgli9fzvjx44mJiaGXKw7fQginsNvtbNu2jYSEBM6ePcuYMWOYMWNGhXcZt21rdt+6+25zPZ6aLvqbmWn+7Btv1C7xV4ec+deBzz//nHnz5rF69eqSNb2FEPXV6dOnWb9+PRs2bKBjx47YbDb69etXrVVFv/7arNOnp5uLvVX1R4uKzDt527WDVavMVYVrS1b1tNjrr7/O5s2bee211wisybqsQog6o7Xm22+/xTAMPv30U4YMGUJsbCwxMRXPv6/I+fOwYIG54qfDYZaBfH1/2zhKa7NhS16euXz8pElmsyln3dEryd9iWmueeuopCgoK+Otf/yoDwELUA3a7nS1btmAYBjk5OcTGxnLbbbcREhLitPc4ehRefx0MwywF+fiYCV9rM9kXFkKTJmapKDbW7CXiTJL86wG73c7EiRMZMGAA48ePtzocITzWyZMnSUpK4q233uLyyy/HZrPRp0+fOm0YozWcOgV795o1faWgcWO47DLzc12RAd96wM/Pj2XLljFu3Dg6depE3759rQ5JCI+htearr77CMAx2797NLbfcwmuvvUa7du1c8v5KQYsW5kd9JGf+LvDtt98yffp0aQIvhAvk5eXx7rvvkpCQQFFREbGxsdx6660ElbcEZwMjZ/71SPfu3bn//vuZNm2aNIEXoo6kpqaSmJjIpk2buOqqq3j44Yfp3bu3jLeVQ5K/i4wcOZK9e/cyb948aQIvhJNorfn8888xDINvvvmG4cOHs3bt2pKuWaIiUvZxIWkCL4Rz5ObmsnnzZhISEvDx8cFmszFs2DACAgKsDs1yUvaph6QJvBC1c+zYMRISEnjnnXfo1asXc+fOpUePHlLaqQFJ/i4mTeCFqB6Hw8Gnn36KYRj89NNPjBw5kjfeeIMW9XUajZuQ5G8BaQIvROXOnz/Ppk2bSEhIIDg4GJvNxrJly/Dz87M6tAZBkr9FpAm8EGU7dOgQhmHw3nvv0adPH+bPn8+VV14ppR0nkwFfCzkcDv7yl7/Qrl07ZsyYYXU4QljG4XCwc+dODMPg0KFDjBo1ilGjRtGsWTOrQ3M7MuDrBi40gR83bhzJyckMHz7c6pCEcKnMzEzeeustEhMTadKkCTabjUGDBuHr62t1aA2eJH+LXWgCP3nyZGJiYujWrZvVIQlR5/bt24dhGGzfvp1+/fqxePFiunbtanVYHkWSfz0QHR3NY489xqxZs1izZo1c6ooGqaioiB07dmAYBqmpqYwePZr169fTuC5XORPlkuRfT/Tv35/9+/cza9YsXnrpJZnRIBqM9PR0Nm7cSFJSEq1bt8ZmszFgwACZ5GAxGfCtR7TWzJ49m+DgYGkCL9zejz/+iGEY7Ny5k4EDB2Kz2eS+FheQ9fzdlDSBF+6ssLCQDz74AMMwOHPmDGPGjGHEiBGEhYVZHZrHkNk+bkqawAt3dObMGTZs2MD69euJiYlh3Lhx9O/fXxYwrMck+ddDbdq0YcGCBcydO1eawIt6S2vNd999h2EYfPLJJ/z+97/nxRdfrFUfXOE6Uvapx6QJvKiP7HY7W7duxTAMsrOz66QPrqg5Kfs0AH/84x/Zt28f8+fPlybwwnKnTp0iKSmJjRs30qVLF+677z6uv/56Ke24KflXq8eUUsydO5fU1FRWr15tdTjCA13ogzt79mzi4uLIycnhlVdeYeXKlfTt21cSvxur1Zm/UqoxYABRwBEgVmudUcZ2xcB3JQ+Paa1lHYMqkibwwgr5+fkX++Da7XZsNhtPPPGEx/TB9QS1qvkrpZYA6VrrRUqpOUCE1np2Gdtla62r1bhWav6/Jk3ghSukpaWRmJhIcnIy3bt3x2az0bt3bznDdyMumeevlNoL3KS1PqGUagXs0Fp3KWM7Sf5OsHHjRtatWydN4IVTaa354osviI+P5+uvv+a2224jNjZW+uC6KVcl/3Na6/CSrxWQceHxJdsVAV8DRcAirfXGyl5bkn/ZFi9ezIkTJ6QJvKi13Nxc3n77bRISEvDy8rrYB1dmlrk3pyV/pdQ2oGUZTz0KrCmd7JVSGVrriDJeo43WOlUpFQNsB27WWh8sY7vJwGSAdu3a9Tx69Ghl8XscaQIvauvYsWMkJiby9ttv06tXL2w2G9dcc43MJmsgnDbVU2tdbpdxpdTPSqlWpco+p8p5jdSSz4eUUjuAHsBvkr/W+mXgZTDP/CuLzRNJE3hREw6Hg127dhEfH89PP/3EiBEjeP3112nZsqzzOuEJajvPPxkYBywq+fzWpRsopSKAXK11gVKqKXADsKSW7+vRpAm8qKrs7Gw2bdpEYmIigYGB2Gw2li5dir+/v9WhCYvVtubfBEgA2gFHMad6piulegH3aa0nKqWuB14CHJj3FTyrtX6tsteWmn/ltm7dyvPPPy9N4MVvHD58mISEBLZu3cp1112HzWaje/fuUtrxALKqp4dYuXIlP/zwgzSBFzgcDj766CPi4+M5cOAAo0aNYvTo0dIcyMNI8vcQ0gReZGVlXeyDGxERcbEPrjQE8kyyto+HkCbwnmv//v0kJCSwbds2+vXrx8KFC7niiiusDku4CUn+DYA0gfccxcXFF/vgpqSkSB9cUWOS/BsIaQLfsGVkZPDmm29KH1zhNPKX04BIE/iG56effsIwDD788EMGDBjA3/72N7p0+c0KKkJUmwz4NjDSBN79FRYWsn37dgzD4NSpU4wZM4aRI0dKH1xRJTLg66GUUjz55JNMmDCBxMREaQLvRs6ePcv69evZsGEDUVFR3H333fTv3x9vb2+rQxMNkCT/BkiawLsPrTXff/89hmHw8ccfM3jwYJ5//nk6dOhgdWiigZPk30BJE/j6zW638/7772MYBpmZmcTGxjJr1ixCQ0OtDk14CEn+DVjv3r255557mDFjhjSBrydK98Ht3LkzkyZN4oYbbpDluYXLSfJv4C40gX/66ad55plnZADYAlprvv76awzD4PPPP2fo0KG88sor0pFNWEpm+3gAu93OxIkTGThwIPfcc4/V4XiMgoICtmzZgmEY5OfnY7PZuPXWW2nUqJHVoYkGTGb7iItKN4Hv2LGjNIGvY2lpaSQlJZGcnEy3bt144IEHuPbaa6W0I+oVSf4eonnz5ixevFiawNeRC31wDcPgf//7H7feeiurV68mMjLS6tCEKJOUfTyMNIF3rtzcXN555x0SEhIAiIuLkz64wlJS9hFlGjlyJHv37mXevHnSBL4WUlJSSExMZPPmzfTs2ZNZs2bRs2dPGVAXbkP+53ug6dOnk5ubyz//+U+rQ3ErDoeDTz75hIceeojx48fj6+vLv//9b5YuXUqvXr0k8Qu3Imf+HkiawFdPTk4OmzZtIiEhgYCAAOLi4liyZIn0wRVuTZK/h5Im8JU7cuQICQkJbNmyhWuvvZbHH3+cq666Ss7wRYMgyd+DdenShZkzZzJjxgxpAl/iQh9cwzDYv38/t99+O/Hx8TRv3tzq0IRwKkn+Hm7IkCHs3buXOXPmeHQT+KysLJKTk0lISCA8PJy4uDjpgysaNJnqKTy6CfyBAwdISEjg/fffp2/fvthsNmmDKdyaTPUUVeZpTeCLi4v58MMPMQyDo0ePMnr0aJKSkmjSpInVoQnhMpL8BeAZTeDPnTvHxo0bSUpKokWLFhf74Pr6+lodmhAuJ8lfXNRQm8Dv2bMHwzDYsWMHAwYMYNmyZVx22WVWhyWEpST5i19pKE3gi4qKLvbBPXnyJGPGjOHNN9+UGU1ClJDkL35jwoQJ7N27l0WLFrldE/j09PSLfXDbtWvHXXfdxY033ih9cIW4hMz2EWXKzc1lwoQJjBo1yi2awF/og/vRRx8xePBgYmNj6dixo9VhCeFyMttH1ErpJvAdOnSgZ8+e5W9cXAxZWebnoCDzwwXsdjvbtm0jPj6ec+fOERsby8yZM6UPrhBVIMlflOtCE/hHHnnkt03gDx+GpCTYuRP27QOHw/x+cTG0aAE9esDIkTBgADh5Ns2pU6dYv349b775Jp06dWLixIn07dtXVigVohqk7CMq9frrr7N582azCXxaGjz2GHz+uZnw/f0hIAAu1NS1Brsd8vLAy8u8Cnj4Ybj7bvNxDWmt+eabbzAMg88++4yhQ4cSGxtLVFSUc3ZSiAaiqmUfSf6iUlpr5j/5JN0//5yRBw+iHA4IC4OqDAQXFEBuLlx1Ffz979C2bbXeu6CggK1btxIfH09+fj6xsbHcdttt0gdXiHJIzV84jdKaeVlZnP3oI9LDw2nSokXVf9jfH/z84NtvYcQIiI+HKqwgeuLEiYt9cLt27crUqVO57rrrpLQjhJNI8heVW7AA7+RkIqKjOXz0KH6NGhFSnRaQSkF4uDkoHBcHmzdD6fGDElprvvzySwzD4Msvv+TWW29l1apVtK3m1YIQonKS/EXFPv4Y1qyB0FB8vb2JjIzkeEoKflFR+Ff3BrDQUDh3DmbOhHXrLo4B5OXl8e6772IYBlprbDYbTz31FEEumjUkhCeS5C/Kl5dnDtb6+V0c0A0KDKRZ8+akpKQQHR2Nd3XLMGFhsGsXbNxI6rXXkpCQwObNm+nRowczZsyQdohCuIgkf1G+d96BjAwzYZcSER5Ofn4+qamptG3blsdTU/k8N5c8h4OmPj6MbdKEkeUso6CVIs/h4MQDD3DfZZdx24gRrFu37tfTSIUQdU6Svyib1vDSS1BOc5eWLVpw9NgxTp8+zfimTXnM1xc/Ly+OFBQw+ehRuvj7c3lg4MXtix0OMjMzSU9Px0spWgQEsPmJJ/Dv399VeySEKKVWUyeUUmOUUj8opRxKqXKnFimlhiql9iqlDiil5tTmPYWLnD4Nhw6Ve7euUorINm3IzMykaUEBfiXlH1Xy3PHCQgAK7HZOnjzJgQMHyM3NpXWrVkTHxBDs74//xx+7am+EEJeo7Zn/98Ao4KXyNlBKeQPPA4OB48AXSqlkrfWPtXxvUZf27DHP+iuov/v4+NA2MpKjx47x98xMtuTkUKA1XQIC6A4cO3aM/Px8wiMiiImJwbf0VURAAHz2Wd3vhxCiTLVK/lrrn4DKBuh6Awe01odKto0HRgCS/OuzgwfNG7QqmdIZEBBAy5YtiTt1ipnR0exKT+fTjAyyzpyhWZMmRLZti1dZfx/+/nDgQB0FL4SojCvumGkDpJR6fLzke6I+y839Zb2eSoSFhhIWFkbKsWN0cjiwBwezOzyc8LCwshM/mNM8CwqcGLAQojoqPfNXSm0DWpbx1KNa67ecGYxSajIwGaBdu3bOfGlRXX5+VVu+oUTzZs1o1qwZCvA6cYJUu73iH9D6l/WAhBAuV2ny11oPquV7pAKlb9GMLPleWe/1MvAymGv71PJ9RW20aWOWZiqRXlTE7txc+gYHE6AUu3Jy2JqZyV/bVHJxZ7eb7yGEsIQrpnp+AXRSSkVjJv044E4XvK+ojcsvr9JmCkjKyOCvJ07gAFr5+jK9RQv6h4RU/IP5+dCr0rWnhBB1pFbJXyl1O7ASaAa8rZT6Wms9RCnVGnhVa32L1rpIKTUV2Ap4A6u01j/UOnJRt9q3N6d5FhRUeAUQ4ePDy+3bV//1vbygb99aBCiEqI1aDfhqrd/UWkdqrf211i201kNKvp+mtb6l1HbvaK07a607aK2fqW3QwgW8vOCee8yBX2ez280DyuDBzn9tIUSVyPq4onw2mznXv+SGLafJzYWxY825/kIIS0jyF+Vr2RKmT4fsbHN2jjNkZ0PTpnD//c55PSFEjUjyFxW791648krIzKz9a9ntZo/fv/8dpBOXEJaS5C8q5u0Nq1aZA8DnztX8CiA/H3JyYPFiuPZa58YohKg2Sf6ico0bQ2Ii9OxpHgAqu4GrNK3Nn3E44B//gFGj6i5OIUSVSfIXVdO4MbzxBsyfD0VFZkLPzS3/SqCoyOwFkJUFffrABx/AsGGujVkIUS5Zz19UnZcX3HUX3HYbJCeb5aCjR8HX1zwIaG0uCXFh6YZRo8zpol27VmupCCFE3ZPkL6ovNBT+7//Mj/PnzeWfT50yB3MbNYJOnSAy8mKPXiFE/SPJX9ROSAj87ndWRyGEqCY5NRNCCA+ktLNu3nEypdRp4KjVcdRQU+CM1UG4kKftL8g+ewJ33d/2WutmlW1Ub5O/O1NK7dZae8ySlZ62vyD77Aka+v5K2UcIITyQJH8hhPBAkvzrxstWB+Binra/IPvsCRr0/krNXwghPJCc+QshhAeS5O8ESqnGSqn3lVL7Sz5HVLBtqFLquFLqH66M0Zmqsr9KqauVUp8qpX5QSn2rlLJZEWttKaWGKqX2KqUOKKXmlPG8v1LKKHn+M6VUlOujdJ4q7O80pdSPJf+mHyilatDDs36pbJ9LbTdaKaWVUg1iBpAkf+eYA3ygte4EfFDyuDxPAztdElXdqcr+5gJjtdZXAEOBZ5VS4S6MsdaUUt7A88AwoCvwR6VU10s2uxfI0Fp3BP4GLHZtlM5Txf39H9BLa90dSAKWuDZK56riPqOUCgEeAj5zbYR1R5K/c4wA1pR8vQYYWdZGSqmeQAvgPRfFVVcq3V+t9T6t9f6Sr9OAU0ClN57UM72BA1rrQ1prOxCPue+llf5dJAE3K+W2q9hVur9a6/9orS80dt4FRLo4Rmeryr8xmCdti4F8VwZXlyT5O0cLrfWJkq9PYib4X1FKeQHLgRmuDKyOVLq/pSmlegN+wMG6DszJ2gAppR4fL/lemdtorYuATKCJS6Jzvqrsb2n3Au/WaUR1r9J9VkpdA7TVWr/tysDqmizsVkVKqW1AyzKeerT0A621VkqVNYVqCvCO1vq4O5wYOmF/L7xOK2AdME5r7XBulMIqSqn/A3oBN1odS10qOWlbAdxjcShOJ8m/irTWg8p7Tin1s1Kqldb6REmyO1XGZn2AfkqpKUAw4KeUytZaVzQ+YBkn7C9KqVDgbeBRrfWuOgq1LqUCbUs9jiz5XlnbHFdK+QBhwFnXhOd0VdlflFKDME8CbtRaF7gotrpS2T6HAN2AHSUnbS2BZKXUcK31bpdFWQek7OMcycC4kq/HAW9duoHW+i6tdTutdRRm6WdtfU38VVDp/iql/IA3MfczyYWxOdMXQCelVHTJ/sRh7ntppX8XdwDbtfvePFPp/iqlegAvAcO11mUe9N1Mhfustc7UWjfVWkeV/N/dhbnvbp34QZK/sywCBiul9gODSh6jlOqllHrV0sjqRlX2NxboD9yjlPq65ONqa8KtmZIa/lRgK/ATkKC1/kEpNV8pNbxks9eAJkqpA8A0Kp7pVa9VcX+XYl65Jpb8m156MHQrVdznBknu8BVCCA8kZ/5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4IEn+QgjhgST5CyGEB5LkL4QQHkiSvxBCeKD/D8KpFQ7JzLDOAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXl00WEVBxBxW3cEUETMscoWnUcoPS9pppxpmmpqamdWqapmkaa9qctslWm5rqV2OW6UxTou3CRdyXRFRcAFHZZOdyv78/Dp7AWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNH1eFldgBBCCGtIAAghRBclASCEEF2UBIAQQnRREgBCCNFFSQAIIUQXJQEghBBdlASAEEJ0URIAQgjRRflYXUBzevfurYcMGWJ1GUII0aFs3LjxuNY63JljPTYAhgwZQkZGhtVlCCFEh6KUynH2WI8NAJfTGvLz4cQJcDggOBgiI8Hb2+rKhBDCEp07AOx2+OILeOMN2LgRqqqMG75SRggAjBoFixbB3LlGKAghRBehPHU10Li4OH3WXUBaw//+B/ffD8XFxucCA8HXt/FxdXVGKNjt4OMDv/oV3Hgj+Pm1rXghhLCIUmqj1jrOmWM73yygsjK46Sb49a+hvBxCQow/p9/8wWgNBAUZX/fzg7//HS65BPbtc3/dQgjhZp0rAEpLje6cTz4xbuqBgc5/r68vhIbC/v2wYAHs3Nl+dQohhAfoPAFQVwc33AC7dxs3cq+z+NGUMoKjqgquvNIYNBZCiE6q8wTAa69BZqZx81eqbecKDja6ku680xhPEEKITqhzBMCRI/C3vxn9+W29+Z8SEgLffgurV7vmfEII4WE6RwC8+aYxk6eV2Tv/V1jINfv3M2X3bh7MzW35nEoZM4OeeUZaAUKITqnjB0BNjREAQUGtHtrbx4cbevdmbkiIc+cOCjJmBG3b1sYihRDC87gkAJRSryqlCpRS25v5ulJK/V0ptVcptVUpFeuK6wLGoG9trVNz9xN79OBHwcGEOPv0r1LG4PKGDW0sUgghPI+rWgCvAzNb+PosYET9n8XACy66rjFd02532el+wMcH0tLa7/xCCGERlwSA1voLoLCFQ+YBb2jDBiBUKdXfFddmz57vl3VoD926GdcQQohOxl1jAAOBQw1eH67/XCNKqcVKqQylVMaxY8ecO3NFxRnN/Km12zlaUEBpaSnFxcXU1Na2/A1KGeMMQgjRyXjUYnBa62XAMjDWAnLqmwICzmiWjpeXF1prfHx8KCsvp6CgAC8vL4KCgggKCiIwKAifhmMEWje9jIQQQnRw7gqAI0BEg9eD6j/XdiNHOt0CqNOaOqBbQAAVQJ/+/fFSCntNDeXl5RSXlJCbl4efnx9BgYEEBQURUFeHd5xT6yoJIUSH4q4A+Ai4WSn1DjAZKNFa57nkzNHRTr9Df+X4cZYdP47D4aC2tpb1333H4t69WRwejn+3bvTq2ROtNZVVVZSXl3P8xAn8Tp5k7Z49VC5bRkJCAmPHjsXHx6MaTkIIcVZcshy0Uupt4EdAb+Ao8EfAF0Br/Q+llAKexZgpVAH8VGvd4lrPTi8HXV0NkyYZK3s6GQQa2L9vH3379iWopecHtMZRXMy2Bx5gfXEx6enpHDp0iJiYGBISEkhISGD48OF4nc26Q0II0Q7OZDlol7yV1Vpf0crXNXCTK671A926wVVXwcsvQ1iYU9+igNCwMIqKi1sOgIoKvIYOZcK11zKhvpuppKSEjIwM0tPTWbFiBaWlpcTHxxMfH09CQgIDBw5EuWo5CiGEaEedY0OYQ4fgwgvB39/pVkCdw8HerCyGDRvWdJeO1lBSAk88AfPmNXue/Px80tPTsdlspKen4+fnZ7YO4uPj6dmzp3M/gxBCuMCZtAA6RwAAvPACPP74Ga0Gmpubi1+3bvTu1euHXywuhvh4eOstp5eW1lqzf/9+Mww2btxI3759zTCYNGlSyy0OIYRoo64ZAHY7XHaZsW5PSIhTIVBRWUlubi7Dhg2j0dFlZUbX0po1MPAHjys4ra6ujl27dpkthO3btzNixAizu2jcuHH4yfaTQggX6poBAMa79kWLYO9ep1oCGti3bx/9+vUj6NTuYSUlRlfSv/4F48adXfHNqK6uZsuWLaSnp5Oens6BAwcYN26c2WU0atQoGVAWQrRJ1w0AMLaFvP12WL/euJH7+7d4eGFRERUVFQzq2xdOnoTISHjxReP5gnZ28uRJNm7caLYQTpw4QVxcnNlCiIyMlAFlIcQZ6doBAMYA7urV8Ic/GN05Shn7A58+2OtwUFdeTt7Bg/QfOBDvX/4SbrnF6P6xQEFBgTnDKD09HaDRgHJ4eLgldQkhOg4JgFNqaiA1FZYvh82bjaWdTy3z4HAYr4cN4wN/f2pmz2bRL3/Z9sJdRGvNoUOHSEtLw2azkZGRQc+ePc1AmDRpEsHBwVaXKYTwMBIATXE44PBhOHHC+Dg4GIYMAT8/tmzZwp/+9Cf+/e9/e2yXi8Ph4LvvvjNnGG3dupUhQ4aYgTBhwgS6WdRyEUJ4DgmAM6S1ZtGiRdx9991MmjTJLddsq5qaGrZt22aOH2RlZTFmzBgzEKKjo/F2duMbIUSnIQFwFt555x22bdvGX/7yF7dd05XKy8vJzMw0xw+OHj1KbGysGQhDhw712NaNEMJ1JADOQmlpKXPnzmXlypWEhoa67brtpbCw0OwuSk9Pp6amxhxMTkhIoF+/flaXKIRoBxIAZ+mBBx5g1KhRXHXVVW69bnvTWnPkyBGzu8hmsxEcHGy2DuLi4ggJCbG6TCGEC0gAnKXNmzfz5z//mffff79Td5c4HA727t1rthA2bdpERESE2UKYOHEiAQEBVpcphDgLEgBnSWvNwoULuffee4mNjXXrta1UW1vLjh07zBbC7t27iY6ONruLxowZI3sgCNFBSAC0wb/+9S927drFn//8Z7df21NUVFSwefNmc/zgyJEjxMTEMHnyZOLj4xk2bJgsWSGEh5IAaIOSkhLmzZvHhx9+KP3i9YqLi80nlG02G2VlZT/YA0EI4RkkANroD3/4A9HR0Vx55ZWWXN/T5eXlNZph5O/v32hAWfZAEMI6EgBttGnTJv7yl7/w3nvvderBYFc4tQfCqSUrMjMz6devnxkIsbGxBJ5aaVUI0e4kANpIa81ll13Gfffdx8SJEy2poaOqq6tj586dZgthx44djBgxwgyEsWPHyh4IQrQjCQAX+Ne//sXu3bt56KGHLKuhM6iqqjL3QLDZbBw4cIDx48ebgTBy5EgZUBbChSQAXODUYPBHH31Ejx49LKujsyktLTX3QEhPT6eoqIi4uDgzECIiIqTbTYg2kABwkfvvv58xY8ZwxRVXWFpHZ1ZQUGB2F9lsNpRSjZas6N27t9UlCtGhSAC4SGZmJkuWLOHdd9+Vd6VuoLUmJyfHDIONGzfSq1evRgPKsgeCEC2TAHARrTUpKSn88Y9/ZMKECZbW0hU5HA52796NzWYjLS2N7du3M3ToULOFEBMTIwPKQpxGAsCF3nzzTbKysvjTn/5kdSldXk1NDVu3bjVbCHv37mXcuHFmd1F0dLQMKIsuTwLAhYqLi5k/f74MBnugsrKyRnsgHDt2jNjYWHPJiiFDhkjXnehyJABc7Pe//z0TJkxg0aJFVpciWnDixIlGTyjb7fZGA8p9+/a1ukQh2p0EgItt3LiRRx99VAaDOxCtNYcPH240wygkJKTRkhXSohOd0ZkEgKzx64TY2Fjsdjvbtm1j/PjxVpcjnKCUIiIigoiICJKTk809ENLS0li5ciUPPvggkZGRZiDExMTg7+9vddlCuJW0AJz0z3/+k+zsbB588EGrSxEuUFtby/bt280WwnfffUd0dLQZCKNHj5Y9EESHJF1A7aCoqIgFCxbIYHAnVVFRwaZNm8zuoiNHjjBx4kQzEIYNGybdf6JDkC6gdhAWFsbUqVP573//y8KFC60uR7hYYGAg5513Hueddx5gBH5GRgY2m413332XysrKRktWDBgwwOKKhWg7aQGcAZvNxhNPPMHbb78t7wa7mNzc3EYDygEBAeYMo/j4eMLCwqwuUQhAuoDajcPhICUlhYceeohx48ZZXY6wiNaa7OxsMwwyMzMZMGAA8fHxTJ48mYkTJ8oeCMIyEgDt6I033uDAgQM88MADVpciPITdbjf3QEhLS2PXrl2MHDnSbCGMGzcOX19fq8sUXYQEQDsqLCwkJSWFVatW0b17d6vLER6oqqqKzZs3my2EnJwcYmJizAfSRowYIUtWiHYjAdDO7r33XiZOnCiDwcIppaWlZGRkmE8ol5SUEBcXZy5ZMWjQIBlTEi4jAdDO0tPTefLJJ2UwWJyVgoICMwxsNhve3t6Nlqzo1auX1SWKDsztAaCUmgksBbyBl7XWS077+vXA34Aj9Z96Vmv9ckvn9OQAcDgcJCcn8/DDDzN27FiryxEdmNaaAwcOmDOMNm7cSHh4eKM9EKSrUZwJtwaAUsob2AP8GDgM2IArtNY7GxxzPRCntb7Z2fN6cgAALF++nJycHBkMFi51ag+EtLQ0bDYb27dvJyoqygyE8ePHyx4IokXuDoApwINa65/Uv74XQGv91wbHXE8nC4DCwkKSk5P5+OOP5R2aaDc1NTVs2bLFbCHs27ePsWPHmoFwzjnnyICyaMTdAXApMFNr/fP619cAkxve7OsD4K/AMYzWwm1a60NNnGsxsBggMjJyUk5OTptqa29333038fHxXHrppVaXIrqIkydPmnsg2Gw2jh8/TmxsrBkIgwcPlnGpLs4TA6AXUKa1rlZK/RJYpLVObOm8nt4CAEhLS2Pp0qW89dZb8o9OWOL48eON9kBwOBzmYHJCQgJ9+vSxukThZu5eC+gIENHg9SC+H+wFQGt9osHLl4HHXHBdy8XHx1NWVsauXbsYPXq01eWILqh3797MmjWLWbNmobXm0KFD2Gw2vvzyS5566ilCQ0PNGUayB4I4nStaAD4Y3TpJGDd+G3Cl1npHg2P6a63z6j9eANyttT63pfN2hBYAwGuvvcaRI0e4//77rS5FiEYcDgd79uwxu4u2bNnC4MGDzSUrJkyY0CH2QKipgb17Yf9+qK4GHx+IiIBRo0BW3PghK6aBzgaexpgG+qrW+i9KqYeADK31R0qpvwJzATtQCNyotd7d0jk7SgCcOHGCSy+9lI8//pigoCCryxGiWbW1tWzbts1csiIrK4vRo0ebLYQxY8bg7e1tdZkA1NXBF1/Ayy9DWppx09caHA7w8gKloLYWoqNh8WK46CLoAFnmFvIgmJvdddddTJ48mZSUFKtLEcJpFRUVjQaU8/LyiI2NNccQoqKiLBnb2rIFbr0VjtR3JAcHGzf902kN5eVGWAQHw+OPQ2KLI4tdgwSAm23YsIG///3vMhgsOrTCwsJGS1ZUVVWZ3UXx8fH079+/Xa+vNTz9NDz3nHHDP5PhiooKo3to3jxYsgS68qMSEgBu5nA4mD9/PkuWLJHBYNFp5ObmmmGQkZFBYGBgoz0QQkNDXXYtreGPf4S33jLezZ/NbpwOB5SUwHnnGV1HXTUEJAAs8Oqrr5KXl8d9991ndSlCuJzD4SA7O9uccrpp0yYGDhxoTjeNiYlp0x4Ir7wCjzwCISFNd/c4S2soLobLLjNaAl2RBIAFjh8/zmWXXcbq1atlMxDR6Z3aA+HUkhW7du1i1KhRZiCMGTPG6T0QsrNh9mxjENcV2yacagksXw7nn9/283U0EgAWufPOO5kyZQrJyclWlyKEW1VWVrJ582azhXDw4EFiYmLMQBg+fHizS1YsWgQbN4ILe5QoLzfGEL7++uy6kzoy2RTeIgsWLOCFF16QABBdTkBAAFOmTGHKlCkAlJSUmAPKK1asoLS0lLi4ODMQBg4ciFKKrCzj5h8S0vo16upKyct7iLKyDfj4hBIefjMhITObPDYoCAoL4fPPISnJlT9p5yIB4ELnnnsuf/3rX9m1axfR0dFWlyOEZUJCQkhKSiKp/u6bn59vtg5efPFF/Pz8iI+PJyvrcuz2KIznSVuWn78EpXwZOfJ/VFXt4dChW/H3H0m3blFNHq+UMRgsAdA8CQAX8vLyYv78+XzwwQcSAEI00K9fP+bMmcOcOXPQWrN//35sNhsvvwwnThyitNRBUFAQQUFBBAYG4uXV+IE0h6OSkydTiYr6P7y8AgkMjCE4eDolJavp0+c3TV4zKAgyM43nBDzk+TaPI+vIutjcuXP57LPPqKiosLoUITySUoqoqCjmz1+Er+9IRo0aQv/+A/D29qGwsJCsrCwOHNjPsWMFVFSUo7WDmpqDgDd+fpHmebp1G0F19b5mr3Pqpn/gQPv+PB2ZtABcLDw8nNjYWD755BMWLFhgdTlCeKyjR40BWi8vRUBAAAEBAUBvtHZQUVFJeXk5R48WUFNTjY9PNnV1flRVVeLvHwCAl1d3HI7yFq/h5QW5uTBsmBt+oA5IWgDtIDk5mQ8++MDqMoTwaHa70U9/OqW8CAoKok+fPgwdOoSIiAi8vAKpri5m//79VFVVAeBwlOPl1fL6W1obawaJpkkAtINzzz2XwsJCdu9ucb07Ibq0gACjf/6HNJWVFRw9epS9e/eSm5tHQMBQ/P19CQ2tori4CIDq6j3NDgCfopRxHdE0CYB20HAwWAjRtL59jX56IwQ0FRXl5Ofnk5WVRV5eHl5eikGDIhg+fBj9+g0hJORC7PZ3KSkpoKwsk5MnPyck5OJmz3/q3b90/zRPAqCdzJ07l08//VQGg4VoRl1dLf36Hefw4WPs2bOHo0eP4uPjw+DBg4mKGkZ4eJ/6/QqMfqJ+/e4B7FRX/5xDh+6hX797W2wB2O3QvTuEh7vn5+mIZBC4nfTp04eYmBg+/fRT5s2bZ3U5QniE6upqvv32W1JTU/nqq6+oq7sSL69FDB06FF/flldv8/buQUTEE4SFneTYseOEhAxt8fiyMli4sOlxBmGQAGhHycnJvPTSSxIAokurqKjgq6++Yu3atWzYsIHo6GgSExP5zW9+g69vOJMnn9lNunv37uTn5zeaEXQ6rY1zXnedi36ITkoCoB1NnTqVRx55hD179jBy5EiryxHCbUpLS/n8889JTU1l48aNxMTEkJSUxL333vuDZaSvuspYuC0szNmzK0JDQykqKqZ//6YDoKQEzj0XzjmnbT9HZyeLwbWzZcuWUVRUxN133211KUK0q8LCQtavX8/atWvZvn07CQkJzJgxg2nTphEcHNzs91VUGMs1FBUZffbOsNtryc7ex4gRw3/w1HB1tdH/v3YtDBjQlp+oY5LVQD1IQUEBl19+OatXr65/0EWIzuPo0aOkpqaSmppKVlYWU6dOJSkpialTp57R3/fMTLjiCuPBMGe/7fDhQ3Tv3p3Q0O+bDrW1Rt//U0/B3Lln+tN0DrIaqAdpOBg8t6v+jRSdyqFDh0hNTWXt2rUcPnyY6dOnc+211zJ58mT8znIbrthYeOkl+MUv4ORJY1ew1oSGhnHsWIEZAJWVUFUFDz7YdW/+Z0oCwA0WLFjAK6+8IgEgOiStNfv27TPf6Z84cYIZM2Zw0003MWnSJHxctOD+BRfAe+/BzTcbG8J3797yBjHduweRn19HeXkltbUBdO8OzzwjG8OfCekCcoO6ujrmzJnD008/LYPBokPQWrN7927znX51dTWJiYkkJiYyYcKEZjd3cYWqKuNG/vrrUFNjzOY5tVuYUsYMH7vdOK6oqASHw85Pf9qLe++Fnj3brawOQ8YAPNCyZcsoLi7mrrvusroUIZrkcDjYtm0ba9euZd26dfj4+JCYmEhSUhLR0dEoN0+or6iANWvgv/+FLVvgxAljcTeHw+giGjcOJk8+ybvvXsUnn7xNUFDL6wJ1FRIAHig/P58rr7ySNWvW1D/dKIT16urqyMzMJDU1lXXr1pkbucyYMYPhw4e7/abfkooKo0Xg6wuBgd8/O3DXXXeRkJDApZdeam2BHkIGgT1Qv379GD9+PJ9++ilz5syxuhzRhdXU1GCz2Vi7di1ffPEF/fv3JzExkWXLlhEZGdn6CSwSGGj8OV1KSgpLly4lJSXFowKrI5AAcKPk5GRef/11CQDhdlVVVXzzzTekpqby9ddfExUVRVJSEr/4xS/o37+/1eW1SXx8POXl5ezYsYOxY8daXU6HIgHgRueddx5Llixh7969DB8+3OpyRCdXXl5uLsGQlpbGmDFjSExM5Le//S29e/e2ujyX8fLyIjk5mRUrVkgAnCEZA3CzF198kZKSEhkMFu2ipKTEXIIhMzOTiRMnkpSUxAUXXPCDJRg6k8LCQpKTk1m1alWLTx13BTIG4MHmzZvHlVdeyS233CKDwcIlTpw4wbp160hNTWXHjh1MnjyZmTNn8vDDD9Pd2bUVOriePXty7rnn8p///IeFCxdaXU6HIQHgZv369WPcuHF89tlnXHLJJVaXIzqovLw886afnZ3Neeedx6WXXsoTTzzRZZccSU5O5oknnuCyyy6TwWAnSQBYIDk5meXLl0sAiDNy8OBB82ncI0eOMH36dK6//noSEhLOegmGziQuLo6amhq2bdvG+PHjrS6nQ5AAsMD555/PkiVLyM7OZpjsVyeaobUmOzvbfBq3uLiYGTNmcPPNNzNp0iS8vb1bP0kX4uXlxYIFC/j3v/8tAeAkCQALeHt7M3fuXD744APuuOMOq8sRHkRrza5du8x3+jU1NSQmJnLvvfcyfvz4dl2CoTOYM2cOCxYsoLS0lB49elhdjseTALDIvHnzuPrqq/nNb35Dt27drC5HWMjhcLB161bzpu/n50diYiIPP/ywJUswdGRhYWFMnTqV1atXc8UVV1hdjseTALDIgAEDGDt2LGvXrmX27NlWlyPczG63k5mZydq1a1m/fj1hYWEkJiaydOlSoqKi5KbfBikpKSxZsoTLL79cfo+tkACw0IIFC3jrrbckALqImpoa0tLSWLduHZ9//jkDBw4kKSmJl156yaOXYOhoYmNjcTgcbNmyhZiYGKvL8WgSABaaNm0ajz76KPv27SMqKsrqckQ7qKys5Ntvv2Xt2rV88803DB8+nBkzZrB48WL69etndXmdklLKfDJYAqBlLgkApdRMYCngDbystV5y2te7AW8Ak4ATwCKt9QFXXLsj8/HxMQeDf/e731ldjnCRsrIyvvzyS1JTU0lLS2Ps2LEkJSVx++2306tXL6vL6xIuueQSXnrpJUpKSggJCbG6HI/V5ikFSilv4DlgFjAauEIpNfq0w24AirTWw4GngEfbet3OYv78+axZs4bq6mqrSxFtUFxczEcffcStt97K7Nmz+d///se0adNYtWoVzz//PCkpKXLzd6OQkBCmTZvG6tWrrS7Fo7miBZAA7NVa7wNQSr0DzAN2NjhmHvBg/cfvA88qpZT21IWI3GjAgAGMHj1aBoM7oOPHj5tP4+7cuZPJkycze/ZsHnnkEdmcxAMkJyfz8MMPc8UVV8hgcDNcEQADgUMNXh8GJjd3jNbarpQqAXoBx11w/Q5vwYIFvP322xIAHUBubi7r1q1j7dq17N+/n/PPP5+FCxcyZcoUWdvJw8TExODl5cWmTZuIjY21uhyP5FGDwEqpxcBioEvNirjgggt49NFH2b9/P0OHDrW6HHGanJwcc45+Xl4e06dP54YbbiA+Pl6WYPBgpwaD//3vf0sANMMVAXAEiGjwelD955o65rBSygcIwRgMbkRrvQxYBsZy0C6orUNoOBh8++23W11Ol6e1Zu/eveYSDKWlpcyYMYNbbrmF2NhYWYKhA7n44ot58cUXKS4u7tTLYZ8tVwSADRihlBqKcaO/HLjytGM+Aq4DvgUuBVKl/7+x+fPnc91113HzzTfLu0oLaK3ZuXOnuSG63W4nMTGR+++/n7Fjx8oSDB1Ujx49mD59OqtWreKaa66xuhyP0+YAqO/Tvxn4BGMa6Kta6x1KqYeADK31R8ArwD+VUnuBQoyQEA0MHDiQUaNGkZqaysyZM60up0twOBxs3rzZHMj19/cnKSmJRx55hHPOOUcGDjuJlJQUHnzwQa6++mr5f3oal4wBaK3XAGtO+9wDDT6uAi5zxbU6s+TkZN59910JgHZkt9vZuHGjuQRDr169SExM5JlnnmHo0KFyg+iExo0bh6+vLxkZGcTHx1tdjkfxqEHgrm769Ok8+uijHDhwgCFDhlhdTqdRU1PDhg0bSE1N5YsvviAiIoKkpCReeeUVIiIiWj+B6NCUUqSkpLBixQoJgNNIAHiQhoPBt912m9XldGgVFRV88803pKam8s033zBy5EgSExO58cYb6du3r9XlCTebNWsWzz//PIWFhfTs2dPqcjyGBICHmT9/Ptdffz033XSTDAafoZMnT5pLMKSnpzNu3DiSkpK444475B99FxccHExiYiKrVq3iuuuus7ocjyEB4GEGDRrEyJEjWbduHT/5yU+sLsfjFRUV8fnnn5OamsrmzZuJi4sjMTGRBx54QDYEEY0kJydz3333cc0118isrnoSAB4oOTmZ9957TwKgGQUFBaxfv57U1FR27drFlClTuOSSS1iyZAmBgYFWlyc81JgxYwgMDMRmszF58umLFXRNEgAeaPr06Tz22GMcPHiwSz0R3ZLc3FzzadwDBw5w/vnnc/nllzNlyhTZUU04peGTwRIABgkAD+Tr68sll1zCBx98wK233mp1OZY5cOCA+TRuQUEB06dP5+c//znx8fH4+vpaXZ7ogGbNmsVzzz3HiRMnZHVWJAA81vz587nhhhu48cYbu8xgsNaarKws853+yZMnmTFjBrfddhsTJ06UJRhEm3Xv3p2kpCQ+/PBDfvazn1ldjuUkADxUZGQkw4cPZ/369Vx00UVWl9NuHA4HO3fuNN/pa61lCQbRrlJSUrjnnnu4/vrru/zfLwkAD7ZgwQI++OCDThcAp5ZgOLXuTmBgIImJiTz22GOMHDlSnsYV7So6Oprg4GDS0tKYMmWK1eVYSgLAg82YMYPHH3+8UwwG2+12bDYb69atY/369fTu3ZukpCSeffaO+a8cAAAcf0lEQVRZ2Q9ZuFXDJ4MlAITHOjUYvHLlSm655Raryzlj1dXVpKWlsXbtWr788ksiIyNJTEzk1VdfZdCgQVaXJ7qwmTNn8swzz3Ds2DHCw8OtLscyEgAebv78+fz85z/nV7/6VYcYDK6oqODrr78mNTWVb7/9lpEjR5KUlMRNN91Enz59rC5PCAACAwP58Y9/zEcffcQNN9xgdTmWkQDwcJGRkQwdOowXXthMSUkC6emwdy9UVYG3N/TvDzExcMEFMGsWBAe7v8bS0lJzCQabzcaECROYMWMGd955pyzBIDxWcnIyd9xxBz/96U+77GCw8tR9WeLi4nRGRobVZVjK4YCVK+GBB4o4fLiWnj374O8P3bqBlxdoDbW1UFkJSoGPD1x2Gdx+O7T35keFhYXmEgxbtmwhLi6OpKQkpk2bJkswiA7j2muv5Ze//CXnnXee1aW4jFJqo9Y6zpljpQXgofLy4I47YMMG8PMLoa5uL927hzbqBlLKCINTD8La7fDWW/Dxx/DEEzBjhmtrKigoMDdE/+6775g6dSpz587l0UcflSUYRId06sngzhQAZ0ICwANlZ8OiRVBcbLyTV8qL0NAQiouL6NOn+aWMfXwgLAwqKuAXv4D774frr29bLUeOHDGna+bk5DBt2jSuuuoqzj33XFmCQXR4F110EX//+98pKCjokmNUEgAeJjfXuPmXljbuxgkLC+XAgRzCw8NRquX+ysBA8PWFP/8ZgoKMbqEzsX//fvPBrGPHjvGjH/2IxYsXExcXJ0swiE4lMDCQiy66iJUrV7J48WKry3E7GQPwIA4HXHEFZGQY7+RPl5NzgJ49exIc7Fwfe02N8ec//4GhQ5s/TmvNnj17WLt2LampqVRUVDBjxgySkpKIiYnpsgNkomvYs2cPv/3tb1m1alWnWG5ExgA6qP/7P+Pm39wAblhYGEVFRU4HgJ+f0R10222wYoUxcHyKw+Fg+/bt5ro7SimSkpL44x//yJgxY+SmL7qMkSNH0qdPH77++msuuOACq8txKwkAD1FXZwzcBgQYg7tNCQ4OJj8/n5qaGqefCQgJgR07jGCZNKnOXIJh/fr1BAUFkZiYyOOPP86IESNkCQbRZSUnJ7NixQoJAGGNL7+EkhJoaQalUl706BFITs4fUGoHdXWl+PoOok+fm+nefWoz3+WgsrKam27aRWjo3fTp04ekpCSee+45hrbULyREF3LRRRfx9NNPk5+fT79+/awux20kADzEqlVGK6A1oaHBHD/enREj/oGf3wDKyr7myJF7GDr0Hfz8BgCgtYOysnJOniylrKwMX19/Dh4cznvvvc6QIQPb+ScRouPx9/dn5syZrFy5kl/96ldWl+M20tHrITZuNLp/WuPvH0pw8DXU1PRAKS+Cg6fh6zuAysodlJaWcOTIYfbs2UNhYSEBAQFERUUxdOhgQkN7UFUlN38hmpOSksKHH35InTPvxDoJCQAPYLfDwYPfP9DVmtDQMIqKiqmrq6OwcD8nT+4lN9eLkpISgoKCGD58OIMHDyYsrCc+Pt9P28zKaqcfQIhOYNiwYfTv358vv/zS6lLcRgLAA1RXGwO/zo7B9ugRTFVVJTt2bCE393569JjFqFE/IiIiktDQMLy9f9izV1dnzAgSQjTv1DLRXYUEgAfw9jaeAXCWUl5ERkYSELAcLy8/qqsXcfDgIY4dK6Ciohytf3iyU2sFCSGad+GFF7Jjxw5yc3OtLsUtJAA8QLduxhO7drtzx2utKSx8DD+/Ks455x+MGjWa8PBwtIajRwvYs2cPBw/mcOLEcaqqKgGNtzf0bX4VCSEE0K1bN2bNmsXKlSutLsUtJAA8gFIwdqyxqqcz8vP/Sk3NfiIinsLLqxtKeREUFESfPn0YOnQoI0aMICysJ7W1dnJzc/nuuz3k5x9nz54PycnJwVOf/hbCEyQnJ/Phhx9id/YdWQcmnQIe4oILwGZr/bja2jyKi1eglB9ZWT8xP9+v3+8JCZkFgJeXN8HBwQTXbw5QVlaLUmUcPLiJG298EYD4+HgSEhKIj4/vkotgCdGcqKgoIiIi+OKLL0hMTLS6nHYlawF5iPx8OP9840EwV6/CUFQEv/893HCD0X106NAh0tPTSU9PJyMjg549e5phMGnSJFnPX3R5a9asYc2aNTz77LNWl3LGzmQtIAkAD/LLX8Lata7dzKWmxtg05uuvoanNuRwOB9999x02m4309HS2bt3KkCFDzBZCTEyMLPssupyamhpmz57N8uXLGTiwYz0/IwHQQR0+DD/+sTFbxxX3XK2NPQXuvx9++lPnvqempobt27ebLYSsrCzGjBljthBGjx7dKVZMFKI1Tz75JH5+ftx8881Wl3JGJAA6sHfegfvuM7qC2nqfLS6GCRPgvffOvlupoqKCzMxMMxDy8/OJjY01WwhRUVGyiJzolA4cOMDixYtZvXp1h9oHQ5aD7sAWLTKe2H39dWOD97OZu6+1sbDcoEHw0kttG1MIDAzk/PPP5/zzzweMvYAzMjJIT0/n7bffpqqqioSEBLOF0L9//7O/mBAeZMiQIQwZMoTPP/+cCy+80Opy2oW0ADyQ1vD00/Dcc0YroH4yj1Nqa6GszJhW+uqr0KtX+9UJkJuba7YObDYbQUFBZhjEx8cT2t670wvRjj755BM+/PBDnn/+eatLcZp0AXUSmZlw663GDCEvL+jevfnlIqqrjaUefHzgd78zZvy4u6ve4XCQnZ1tDihv2rSJgQMHmi2EmJgY2TxedCg1NTVcfPHFvPrqq0RERFhdjlMkADqRmhpITYV//AO2bTN2+aqpMdb2Ucp4rbURDj/7GSxcCJ4yrd9ut7Nz506zhbBr1y5GjRplthDGjh3bofpWRde0dOlSlFLccsstVpfiFLcFgFKqJ/AuMAQ4ACzUWhc1cVwdsK3+5UGt9dzWzi0B8EMlJbB7N2Rnf/9uf8AAOOcco7/f03dxrKysZPPmzWYL4eDBg8TExJgthOHDh8tWlMLjHDx4kBtuuIHVq1c7vROfldwZAI8BhVrrJUqpe4AwrfXdTRxXprXufibnlgDo/EpKSti4caPZQigtLSUuLs5sIQwaNEhmGAmPcOONN7JgwQIuuugiq0tplTsD4DvgR1rrPKVUf2C91npUE8dJAIhWHT161BxMTk9Px8fHp9EMo17tPaItRDM+/fRT3n//fV588UWrS2mVOwOgWGsdWv+xAopOvT7tODuwGbADS7TWrS61JwHQtWmtOXDggBkGGzduJDw83AyE2NhYunc/o/cUQpy12tpaLr74Yl566SUGDx5sdTktcmkAKKU+A5raJfk+YHnDG75SqkhrHdbEOQZqrY8opaKAVCBJa53dxHGLgcUAkZGRk3Jycpz5GUQXUFdXx+7du80WwrZt2xg2bJgZCOPHj+8Q/bOi43rmmWew2+3cdtttVpfSIo/rAjrte14HPtZav9/ScdICEC2pqalhy5YtZgth3759jB071gyEc845RwaUhUsdPnyY66+/njVr1nj0mw13BsDfgBMNBoF7aq3vOu2YMKBCa12tlOoNfAvM01rvbOncEgDiTJw8edJcssJms3H8+HFiY2PN8YMhQ4bIgLJos5tuuolLLrmEWbNmWV1Ks9wZAL2A/wMigRyMaaCFSqk44Fda658rpaYCLwIOjA1ontZav9LauSUARFscP34cm82GzWYjLS0Nh8Nhrl+UkJAgeyCIs5Kamsrbb7/NSy+9ZHUpzZIHwYRo4NQeCKe6izIyMggJCTHDIC4uTvZAEE6x2+1cfPHFvPDCC0RFRVldTpMkAIRogcPhICsry+wu2rx5M4MHD260B4K/v7/VZQoP9fzzz1NZWcnvfvc7q0tpkgSAEGegtraWbdu2mS2EPXv2EB0dbbYQRo8ejc/ZLMsqOqXc3FyuueYa1qxZ45GbJUkACNEGFRUVbNq0yWwh5ObmMnHiRLOFMGzYMBlQ7uJuueUWZs6cyezZs60u5QckAIRwoaKiInMPhPT0dCorK80lKxISEhgwYIDVJQo3W7duHW+++SavvNLqfBa3kwAQoh3l5uaa3UU2mw1/f38mT55s7oEQFvaDZyFFJ2O327nkkkt4/vnnPW4wWAJACDfRWpOdnW2GQWZmJgMGDDC7i2JjY2UPhE7qhRdeoKysjDvvvNPqUhqRABDCInV1dezYscNsIezcuZORI0eaD6SNGzdO9kDoJPLy8rjqqqtYs2aNR80akwAQwkNUVVWxZcsW0tLSsNls5OTkMGHCBLOFMHLkSFmyogO79dZbufDCC5kzZ47VpZgkAITwUKWlpWRkZJgthOLi4kZ7IERERMgMow7kiy++4LXXXuO1116zuhSTBIAQHURBQYG5XIXNZsPLy8sMg4SEBHr37m11iaIFdXV1zJkzh6VLlzJixAirywEkAITokLTW5OTkmAPKGzdupFevXo32QAgODra6THGaZcuWUVRUxN13/2AzREtIAAjRCTgcDnbv3m22ELZv387QoUPNFkJMTIxHL0vcVRQUFHD55ZezevVqAgICrC5HAkCIzqimpoatW7eaLYTs7GzGjBljthCio6NlQNkit99+O9OnT2fevHlWlyIBIERXUFZWRmZmptlCOHbsWKM9EIYOHSoDym7y1VdfsWzZMt544w2rS5EAEKIrOnHiRKMnlGtraxvtgdC3b1+rS+y0HA4Hc+fO5YknnmDUqBY3RWx3EgBCdHFaa44cOWKGgc1mo0ePHmYgxMXFERISYnWZncrLL79MQUEBv//97y2tQwJACNGIw+Fg79695oJ2mzdvJiIiwmwdxMTEeMQAZkd27NgxFi5cyOrVqy1d/kMCQAjRotraWnbs2GG2EHbv3k10dLTZQhgzZozsgXAW7rjjDqZOnUpycrJlNUgACCHOSEVFBZs3bzZbCEeOHCEmJsYcUB4+fLjMMHLCN998w/PPP8+bb75pWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns2TJEkaPHm1JDRIAQgiXysvLM2cYpaen4+/vb4ZBfHw8PXv2tLpEj/Hqq6+Sl5fHfffdZ8n1JQCEEO1Ga83+/fvNMMjMzKRfv35mGMTGxhIUFGR1mZY5ceIEl156KR9//LElvwcJACGE29TV1bFz506zhbBjxw5GjBhhthDGjRvX5ZasuOuuu5g8eTIpKSluv7YEgBDCMtXV1WzZssVsIRw4cIDx48ebLYRRo0Z1+gHltLQ0li5dyltvveX2p7HPJABknpcQwqW6detmPl8Axh4ImZmZpKen84c//IHCwkLi4uLMFkJkZGSnW7IiPj6e8vJydu7cyZgxY6wup1nSAhBCuFVBQYE5wyg9PR3ADIz4+HjCw8MtrtA1li9fTk5ODg888IBbrytdQEKIDkFrzaFDh8wNcTIyMujZs6cZBpMmTaJHjx5Wl3lWCgsLSUlJYdWqVXTv3t1t15UAEEJ0SA6Hg++++84cUN66dStDhgwxWwgTJkygW7duVpfptHvuuYfY2FgWLlzotmtKAAghOoWamhq2b99uthCysrLMPRDi4+MZPXo03t7eVpfZrPT0dJ588knefvvt78c5Tp6E6mrw84PgYHDx+IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kBwOBxcNXcuS6ZNY/DOnbB1K5SWgpcXOBwQEABjxsCFF0JyMvTq1eZrSgAIIbqEwsLCRgPK1dXVjZ5Q7t+/v3XFVVTAU09R8txz2Kur6dWrl3HD9/H5/l2/3Q5VVcZ/vbxgzhy47z5ow5PVEgBCiC7p9D0QgoKCzNZBXFwcoaGh7ikkMxN+8xvIz8ceGEj2gQMMHz685e6qujqjdRAcDI8/brQKzoIEgBCiy3M4HGRnZ5vdRZs2bWLgwIGN9kBol3X7166FX//aeJdfP/vn8JEjBAYEOLdmUmWlMUbwwANw7bVnfHkJACGEOI3dbm+0B8KuXbsYNWqUGQhjxozB19e3bRdJT4errzYGeP39zU+XV1SQn59PVFQUTo1Q1NZCWRk89RTMnXtGJUgACCFEKyorK9m8eTM2m420tDQOHTpk7oGQkJBw5nsglJVBYqIxy+e0ReA0kJ2dzYD+/Z1vdVRXG91Cn30GAwY4XYYsBSGEEK0ICAhgypQpTJkyBYCSkhJzQHnFihWUlpYSFxdnBsLAgQNbnmH06KNQWAhNjDMoICwsjKLiYucDoFs3KC6Gu++Gf/7zLH7C1kkLQAghmnD06FGzuyg9PR1fX99GM4x6NZyyWVgI555rvPNvZqDXXldH9t69vBEUREZlJZUOB719fLi2Vy/mNzc4rbUxMPzxxzBqlFN1SxeQEEK40Kk9EE6FQWZmJuHh4WbrIGH7dvyffLLJd/8NHcnNJd/bm3Hh4fh5eXGguprFOTksjYggOiCg6W8qKoJFi+CRR5yq1W1dQEqpy4AHgWggQWvd5B1bKTUTWAp4Ay9rrZe05bpCCOFOSimioqKIiopi0aJF1NXVsXv3btLT03nnnXdQ775LlN2Ob20tQUFBBAQE4NVEd1FYaCiVeXn49u1rnLf+3Idra5sPgKAg+O9/nQ6AM/q52tICUEpFAw7gReCOpgJAKeUN7AF+DBwGbMAVWuudLZ1bWgBCiA7B4cBxzjlUAuVVVZRXVFBdXU1AQABBQUEEBQXh7++PwhgM3rdvH2/5+PBJRQXVWjPK35+XBg8msLkBZ62hpAQ2bIDevVstx20tAK31rvoLtnRYArBXa72v/th3gHlAiwEghBAdQl4eXkBQjx4E1a9cWudwUFFeTnl5Obm5udjtdgIDAwkKCqJ79+7cUFvL/aNGsbWyko0VFfi1dA9VCnx9Yd8+pwLgTLhjFtBA4FCD14eByW64rhBCtL/KSmMZhwa8vbwIDg4mODgYgFq73QyEsvJy0BqlFDGBgawpKeH9oiIub+khMa2N67hYqwGglPoM6NfEl+7TWn/oymKUUouBxQCRkZGuPLUQQrQPHx/jBt0CXx8fQkJCCAkJQWMMKp96z18HHK6pafkap1oBLtZqAGitz25Biu8dASIavB5U/7mmrrUMWAbGGEAbryuEEO2vXz9jMTeH4wctgdMV2u1kVFRwfvfu+ANp5eV8UlLCIwMHtnyNurozehjMWe7oArIBI5RSQzFu/JcDV7rhukII0f78/SEyEgoKjNU+W6CA94uKeCQvDwfQ39eX3/XtywX1XUVNqqszgqUdekXaOg10AfAMEA6sVkpt1lr/RCk1AGO652yttV0pdTPwCcY00Fe11jvaXLkQQniKGTNg+fJWAyDMx4dlgwef2bnLymDKlFZbF2ejrbOAPgA+aOLzucDsBq/XAGvaci0hhPBYl19uLNegtct3+EIp+NnPXHvOeq6PFCGE6GpGjoSJE435+q5UVgbh4TBtmmvPW08CQAghXGHJEmMdoNpa15yvrs441xNPNLu+UFtJAAghhCtERcFddxnv2h2Otp3r1CJwV15pLDLXTiQAhBDCVX72M2NDmJISY2ro2XA4jGWgZ8wwdgVrRxIAQgjhKkrBgw/CrbcaLYHS0jP7/vJyIzwuuwxeeKFdHv5qSAJACCFcSSm45RZYsQIGDTJCoKSk+W4hh8PYRezUhvCvv26MJ7TzzR9kRzAhhGgf48cb2zl+9RW8/DJ8+60xmKv199NFlTIGesePh8WLISnJ2E/YTSQAhBCivXh5wQUXGH9qa40VPffvN/b79fWFiAhjCmm3bpaUJwEghBDu4OtrbOvo5NaO7iBjAEII0UV57J7ASqljQM5pn+4NHLegHGd5en0gNbqK1Nh2nl4fdMwaB2utw535Ro8NgKYopTKc3erMCp5eH0iNriI1tp2n1wedv0bpAhJCiC5KAkAIIbqojhYAy6wuoBWeXh9Ija4iNbadp9cHnbzGDjUGIIQQwnU6WgtACCGEi3h0ACileiqlPlVKZdX/N6yZ4x5TSu1QSu1SSv1dKVdvydPm+iKVUv+rr2+nUmqIO+o7kxrrj+2hlDqslHrWXfU5W6NSKkYp9W39/+etSqlFbqhrplLqO6XUXqXUPU18vZtS6t36r6e58//rGdR4e/3fua1KqbVKqTPcj7D9a2xwXIpSSiul3D7rxpkalVIL63+XO5RS//K0GuvvM+uUUpvq/3/Pbuo8jWitPfYP8BhwT/3H9wCPNnHMVOBrjP2GvYFvgR95Sn31X1sP/Lj+4+5AoCf9DhscuxT4F/CsB/5/HgmMqP94AJAHhLZjTd5ANhAF+AFbgNGnHfNr4B/1H18OvOvm35szNc449fcNuNETa6w/Lhj4AtgAxHlajcAIYBMQVv+6jwfWuAy4sf7j0cCB1s7r0S0AYB6wvP7j5cD8Jo7RgD/GL6Ub4AscdUt1TtSnlBoN+GitPwXQWpdprSvcVB849ztEKTUJ6Av8z011NdRqjVrrPVrrrPqPc4ECwKmHXc5SArBXa71Pa10DvFNfZ0MN634fSHJX69PZGrXW6xr8fdsADHJjfU7VWO/PwKNAlTuLq+dMjb8AntNaFwForQs8sEYN9Kj/OATIbe2knh4AfbXWefUf52PcoBrRWn8LrMN4R5gHfKK13uUp9WG8cy1WSq2ob5r9TSnVPvu7Na3VGpVSXsATwB1urKshZ36PJqVUAkbgZ7djTQOBQw1eH67/XJPHaK3tQAnQqx1rOp0zNTZ0A/Cfdq3oh1qtUSkVC0RorVe7s7AGnPk9jgRGKqW+VkptUErNdFt1BmdqfBC4Wil1GFgD/Ka1k1q+GJxS6jOgXxNfuq/hC621Vkr9YMqSUmo4EM3372w+VUpN01p/6Qn1YfyOpwETgYPAu8D1wCuuqM9FNf4aWKO1Ptxeb2BdUOOp8/QH/glcp7Vu4757XYdS6mogDphudS0N1b/5eBLj34Qn88HoBvoRxr3mC6XUOK11saVVNXYF8LrW+gml1BTgn0qpsS39O7E8ALTWFzb3NaXUUaVUf611Xv0//KaaXQuADVrrsvrv+Q8wBXBJALigvsPAZq31vvrvWQmciwsDwAU1TgGmKaV+jTFG4aeUKtNaNztgZ0GNKKV6AKuB+7TWG1xVWzOOABENXg+q/1xTxxxWSvlgNLtPtHNdTV3/lKZqRCl1IUbQTtdaV7uptlNaqzEYGAusr3/z0Q/4SCk1V2ud4SE1gvHvOE1rXQvsV0rtwQgEm3tKdKrGG4CZYPSMKKX8MdYJara7ytO7gD4Crqv/+DrgwyaOOQhMV0r5KKV8Md7huKsLyJn6bECoUupUf3UisNMNtZ3Sao1a66u01pFa6yEY3UBvuPLm74RWa1RK+QEf1Nf2vhtqsgEjlFJD6699eX2dDTWs+1IgVdePwLlJqzUqpSYCLwJzLei3brVGrXWJ1rq31npI/d+/DfW1uuvm32qN9VZivPtHKdUbo0ton4fVeBBIqq8xGmNs9FiLZ3XnSPZZjHz3AtYCWcBnQM/6z8cBLzcYHX8R46a/E3jSk+qrf/1jYCuwDXgd8PO0Ghscfz3unwXkzP/nq4FaYHODPzHtXNdsYA/GWMN99Z97COMGRf0/sPeAvUA6EOXO35uTNX6GMSni1O/sI0+r8bRj1+PmWUBO/h4VRlfVzvp/x5d7YI2jMWZEbqn/f31Ra+eUJ4GFEKKL8vQuICGEEO1EAkAIIbooCQAhhOiiJACEEKKLkgAQQoguSgJACCG6KAkAIYTooiQAhBCii/p/K9d8/GvFkz8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -298,7 +307,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -315,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -330,7 +339,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4FFX28PHvzZ6QnR0CJGFTRBRhQBRQEAZwFBAkndGfIAiMg6gjhEXEDXHYGUdGHRcYlnc0lQTEgAqKDDIuqOi4y76FBGRJSCBbJ+n7/lEBI2ZPJ5VOn8/z5CHdXek6BeFU9bm37lFaa4QQQrgXD6sDEEIIUfck+QshhBuS5C+EEG5Ikr8QQrghSf5CCOGGJPkLIYQbkuQvhBBuSJK/EEK4IUn+QgjhhrysDqAsTZo00ZGRkVaHIYQQLuXLL788o7VuWtF29Tb5R0ZGsnv3bqvDEEIIl6KUOlqZ7ept8hdCWCcvD44dM//08oKICAgOtjoq4UyS/IUQAKSmwhtvwDvvwNGj4O0NSoHWUFAATZvCTTfBPffAVVeZrwnXJclfCDd39iw8+SRs3QoOB/j5QUgIeJSYDqI1ZGdDUhJs2ABXXglLlkDnztbFLWpGZvsI4cY++AAGDoQtWyAoCMLCwN//14kfzKt8X1/z9eBg2LMHbr8dXnzRPDEI1yPJXwg3tWED/OlPUFgIoaG/TfhlUco8Afj7w7JlMHeu+YlBuBZJ/kK4oZ07YdYsCAgwk3h1eHub5aE33oC//9258YnaJ8lfCDdz7hw8/LCZvH18avZeHh7mp4AXX4Rvv3VOfKJuSPIXws0sXAhZWeZVvzN4eZmloEcekfKPK5HkL4QbSU83a/0VzdlPT0/g8OF72LOnD2lpT1X4vsHB5n0Bn37qnDhF7ZPkL4QbWb/evDr39Cx/Oy+vJjRpch8hIcMr/d5aw2uv1TBAUWeckvyVUquUUqeUUt+X8bpSSj2vlDqglPpWKXWdM/YrhKiarVvNMk1FgoMHEhR0M56eIZV+76Ag+OQTKf24Cmdd+a8Ghpbz+jCgY/HXZOAlJ+1XCFFJDgf88IN5E1dtuPhp4siR2nl/4VxOSf5a651AejmbjADWatMuIFQp1dIZ+xZCVE56ujmnvzJX/tWllCR/V1FXNf/WQEqJx8eLnxNC1BG7vfI3ctntdn7++STp6Wex2+2V3ofWkJ9fzQBFnapXa/sopSZjloVo27atxdEI0bB4e1dUj9dkZ2eTnp5Obm4uoaGhBAQEkJl5ioICO97eFd8UoFTN7x0QdaOurvxTgTYlHkcUP/crWutXtNY9tdY9mzatsBeBEKIKGjc26/JFRb9+3uEoIiMjnYMHD3Lq1CmCgoLp0CGaJk3C8PPzJSDAj2PHDlFUVFDhPrSGdu1q6QCEU9XVlX8yMFUpFQ/0BjK11ifqaN9CCMyST5cu8OOPEBgIdns+6ekZZGVlEhDQiJYtWxEQ4A8oTp9+hTNnXrn0swUF73Ho0F107DgTKH0t54ufKqKiav9YRM05Jfkrpd4AbgaaKKWOA08C3gBa638C7wC3AgeAHGC8M/YrhKiaQYMcfPZZPhkZp8nNzSMsLJSoqGi8vb1/tV3TppNp2nTypcdaOzhy5Chnz56lceMmpb73+fPQp0/F9xCI+sEpyV9r/ccKXtfAA87YlxCi6i5cuMCmTZvYvHkLWVmLaNYsmIiICJSqXOVXKQ/atIng8OHD+Pr6ERgYWOp2Eyc6M2pRm+QOXyEasMOHD7No0SKGDx/Od999x8KF05k0qTkQWunEf5GXlzcRERGkpaVht/96Ss/589CqFfTt68TgRa2qV7N9hBA153A4+Oijj4iPj+fAgQOMHj0awzC4OIli7lzYvh1yc6u+nLO/fwDNmjXl+PHjREZG4uHhSVGROYj83HOVn0oqrCfJX4gGIisri+TkZBISEggLC8NmszFo0CB8Lpt7GR4Oy5fD5Mlmfb6qUzNDQ8PIzc0jLS2NVq0iyMpSTJ4M3bs78WBErZPkL4SLO3jwIIZh8P7779OvXz8WLFjAVVddVe7PDBwI8+bB44//0re3Klq0aM7hw8dJSTnPuHHBzJhRgwMQlpDkL4QLKioqYufOnRiGwZEjRxg9ejRJSUk0bty40u9x111mT94ZM8wGLyEh5k1aFdEazp/3IDS0NX5+K7n11k54eNxc7WMR1pDkL4QLyczMZOPGjSQmJtKsWTNiY2MZMGDAb6ZqVtawYdCjB8yZAzt2mJ8CGjUyS0ElTwRam+sCZWebz0dHw7Jlnnh49OWhhx4iMrIt0dHRzjlIUSeUOQuz/unZs6fevXu31WEIUS/s27cPwzDYvn07N910EzabjSuvvNKp+zh8GF5/Hd59F06cMJeDuHgCKCgwG7bceCOMH2/W9y++tnnzZlatWsWaNWsICgpyakyi6pRSX2qte1a4nSR/IeqnwsJCduzYgWEYpKamcuedd3LHHXcQFhZW6/s+f95cnTMvzzwJtG4N5a24smzZMo4ePcpzzz2Hh0z5sZQkfyFcVEZGBm+++SZJSUm0bt0am83GzTffjFdtrsVcQ4WFhUydOpWuXbsydepUq8Nxa5VN/vX3t0kIN/PTTz9hGAYffvghAwcO5LnnnqNTp05Wh1UpXl5eLFy4kLFjx9K5c2cGDx5sdUiiApL8hbBQYWEh27dvJz4+nlOnTjFmzBgeeeQRQkIq3z6xvggNDWXp0qVMmTKFdu3aucyJy11J8hfCAunp6axfv54NGzbQrl077rnnHvr374+ni6+K1qlTJ2bOnElcXBxr164lNDTU6pBEGST5C1GHvv/+ewzD4KOPPmLw4MGsWLGCDh06WB2WU/3+979nz549PProo/zjH/9w+RNaQyUDvkLUMrvdzrZt2zAMg4yMDGJiYhg+fDjBwcFWh1ZrHA4HDz/8MFFRUUybNs3qcNyKDPgKYbHTp09fKu106NCB++67j759+7rFVEgPDw+effZZxo0bR+fOnfnDH/5gdUjiMpL8hXAirTXfffcd8fHx7Nq1iyFDhvDyyy8T5YbtrYKDg1m2bBmTJ08mKiqKLl26WB2SKEGSvxBOYLfb2bp1K4ZhkJ2dTUxMDHPmzCmz6Ym7iI6O5rHHHmPGjBmsW7eO8PBwq0MSxST5C1EDp06dIikpiY0bN3LFFVfw5z//mT59+rhFaaeyBgwYwL59+5g5cyYvvfRStdchEs4lv6FCVJHWmq+++opZs2YRGxtLTk4Or732Gs8//zw33nijJP5STJo0ieDgYJYuXWp1KKKYzPYRopLy8/PZsmULhmGQn5+PzWbjtttuIyAgwOrQXEJ2djbjxo3jrrvuYtSoUVaH02DJbB8hnOTEiRMkJiaSnJxM165deeihh+jVq5dc4VdRo0aNWL58Offddx8dOnSgW7duVofk1iT5C1EKrTVffvkl8fHxfPXVV9x2222sXr2aiIgIq0NzaW3btuWpp55i1qxZrFmzhmbNmlkdktuSso8QJeTm5vLuu+9iGAZaa2w2G8OGDZPSjpP961//YseOHbz66qu/6TEsakaWdBaiClJTU0lMTGTTpk1ce+21xMbG0rNnT1Rl+hqKKtNa8+ijj+Lv788TTzwhf89OJDV/ISqgtebzzz/HMAy+/fZbhg8fzrp162jVqpXVoTV4SimefPJJxo8fT0JCAjabzeqQ3I4kf+F2cnJy2Lx5MwkJCXh5eWGz2fjrX/+Kn5+f1aG5FX9/f5YvX869995Lhw4d6NGjh9UhuRVJ/sJtHDt2jMTERN5++2169uzJnDlz6N69u5QcLNSqVSvmz5/PnDlzWL16NS1btrQ6JLchyV80aA6Hg127dhEfH89PP/3EiBEjeP3112nRooXVoYlivXr1Yty4cUyfPp1Vq1bJJ7A6IgO+okHKzs5m06ZNJCQk4O/vj81mY8iQIfj6+lodmiiF1ponn3ySoqIi5s+fL5/GakBm+wi3dOTIERISEtiyZQu9e/fGZrNxzTXXSDJxAfn5+UycOJHBgwczduxYq8NxWTLbR7gNh8PBxx9/jGEY7Nu3jzvuuIP4+Hi5gcjF+Pr6snTpUsaNG0fHjh3p06eP1SE1aJL8hcs6f/48ycnJJCQkEBISQmxsLMuXL5ebhlxY8+bNWbBgAbNmzWLlypW0adPG6pAaLEn+wuUcOnQIwzB47733uPHGG5k/fz5du3aV0k4D0b17dyZPnsz06dNZvXq13F1dSyT5C5fgcDjYuXMnhmFw6NAhRo8eTWJiIk2aNLE6NFELRo8ezZ49e3jyySdZtGiRLKJXC2TAV9RrWVlZbNy48VKit9ls3HLLLdIQxA3Y7Xbuv/9+brjhBiZOnGh1OC5DBnyFS9u/fz+GYfDBBx/Qr18/Fi1aJD1g3YyPjw+LFy9m7NixdOrUif79+1sdUoMiyV/UG0VFRezYsQPDMEhJSeHOO+9k/fr10vfVjTVp0oTFixfzyCOP8OqrrxIZGWl1SA2GJH9huXPnzvHmm2+SlJREy5YtsdlsDBgwAC8v+fUU0LVrVx588EGmTZvGmjVrCAoKsjqkBsEpoyhKqaFKqb1KqQNKqdmlvH6vUuq0Uurr4i8p4An27NnD008/zR133EFKSgrLly/ntddeY/DgwZL4xa8MHz6c66+/nrlz5+JwOKwOp0Go8YCvUsoT2AcMBo4DXwB/1Fr/WGKbe4GeWuuplX1fGfBtmAoLC9m+fTuGYXDy5EnGjBnDyJEjCQ0NtTo0Uc8VFhYyZcoUrr32WqZMmWJ1OPVWXQ749gIOaK0PFe84HhgB/FjuTwm3kp6ezoYNG1i/fj1t2rTh7rvv5qabbsLT09Pq0ISL8PLyYtGiRYwdO5bOnTtzyy23WB2SS3NG8m8NpJR4fBzoXcp2o5VS/TE/JTyitU65fAOl1GRgMpi9PoXr+/HHH4mPj+e///0vgwYN4vnnn6djx45WhyVcVFhYGEuWLGHq1Km0bdtWfpdqoK4Kq5uAN7TW+UqpPwFrgIGXb6S1fgV4BcyyTx3FJpysoKCAbdu2YRgGZ8+eZcyYMcTFxREcHGx1aKIBuOKKK4iLiyMuLo5169bJ71U1OSP5pwIlF+CIKH7uEq312RIPXwMWO2G/op45c+bMpdJO+/btGT9+PP369ZO7M4XTDR06lL179zJ79mxWrFgh5cNqcMb/yi+AjkqpKKWUDxALJJfcQClVsj3PcOAnJ+xX1ANaa7799lsee+wxxowZw9mzZ3nppZd48cUXuemmmyTxi1ozdepUlFKsWLHC6lBcUo2v/LXWhUqpqcBWwBNYpbX+QSk1D9ittU4GHlJKDQcKgXTg3pruV1jLbrfz/vvvEx8fT1ZWFjabjdmzZ8scbFFnPD09WbBgwaUB4GHDhlkdkkuRtX1ElZw6dYqkpCQ2btxIp06diI2N5YYbbpArfGGZgwcP8qc//YkVK1Zw5ZVXWh2O5WRtH+E0Wmu++eYbDMPgs88+Y+jQobz66qu0a9fO6tCEoH379syZM4cZM2awdu1aWQ6kkiT5izLl5+ezdetW4uPjycvLIyYmhrlz59KoUSOrQxPiVwYOHHhpAPjFF1+UO8QrQco+4jdOnjxJYmIiycnJdOnSBZvNxvXXXy+lHVGvORwOpk+fTsuWLZk5c6bV4VhGyj6iSrTWfPXVVxiGwe7du/nDH/7AypUr5WY74TI8PDx45plnGDduHG+99RYjRoywOqR6TZK/m8vLy+Odd94hISGBoqIiYmJieOqpp6R1nnBJgYGBLF++nIkTJxIdHc3VV19tdUj1liR/N5WWlnaptHPNNdcwbdo0fve730kfXOHy2rVrxxNPPMGsWbNYs2YNTZs2tTqkekmSvxvRWvPFF18QHx/PN998w+23387atWtp3bq11aEJ4VT9+vVj//79zJw5k5dffhkfHx+rQ6p3ZMDXDeTk5Fwq7QDExsYybNgw/P39LY5MiNqjtWbWrFkEBQUxd+5ct/lUW9kBX0n+DVhKSgqJiYls3ryZHj16YLPZ6NGjh9v8JxAiJyeH8ePHc+eddzJmzBirw6kTMtvHTTkcDj777DPi4+P54YcfGDFiBP/+979p2bJlxT8sRAMTEBDAsmXLmDBhAu3bt+e6666zOqR6Q5J/A5Gdnc3mzZsxDAM/Pz9sNhuLFy/G19fX6tCEsFRERATPPPMMjz76KGvWrKFFixZWh1QvSPJ3cceOHcMwDN5991169erF448/zrXXXiulHSFK6N27N/fccw9xcXGsXLlSLoqQ5O+SHA4Hn3zyCYZhsHfvXkaOHEl8fDzNmjWzOjQh6q27776bPXv2MH/+fObNm+f2F0gy4OtCzp8/z6ZNm0hISCAoKAibzcbvf/97mcYmRCXl5eVx3333ceutt3L33XdbHU6tkAHfBuTQoUMkJCSwdetW+vTpw7x587j66qvd/spFiKry8/Nj2bJljBs3jo4dO9KrVy+rQ7KMJP96yuFw8N///hfDMDh48CCjRo0iISFB7lYUooZatGjBggULmD17Nv/617/c9iZHSf71TFZWFm+99RaJiYmEhYVhs9kYNGiQlHaEcKLrrruOiRMnMn36dFatWuWWa1lJzb+eOHDgAIZhsG3bNvr164fNZuOqq66yOiwhGiytNc888wzZ2dksXLiwwZRR5Q5fF1BUVMSHH36IYRgcPXqU0aNHM2rUKBo3bmx1aEK4BbvdzuTJk+nfvz8TJkywOhynkAHfeuzcuXNs3LiRpKQkmjVrRmxsLAMGDMDb29vq0IRwKz4+PixZsoRx48bRqVMn+vbta3VIdca9kr/W8N138N57sGsX7N0LubmgFDRvDt27Q79+MHQoBAc7fff79u0jPj6e//znP9x8880sXbqUK664wun7EUJUXtOmTVm4cCHTp0/ntddec5ve1O5R9tEatm+HxYvh0CEoLARfX/Dzg4utCe12yMszv/fyglGjYPp0qGEJprCwkP/85z8YhkFaWhp33nknd9xxB2FhYTU8KCGEM23cuJF169axZs0aAgMDrQ6n2qTmf1FGBsydC1u2gLc3NGpkXumXp7AQzp+HwEBYtMj8JFBF6enpl0o7rVu3JjY2lptvvhlPT89qHogQorYtWrSIn3/+maVLl7psz2pJ/gBpaRAbC6mpEBLyy1V+ZeXmmp8G/vIXmDq14pMG8OOPP2IYBjt37mTgwIHYbDY6depUzQMQQtSlgoICpkyZQo8ePbj//vutDqdaZMA3I8NM/GlpUN0Si7+/+Wnhb3+DgAC4775SNysoKGD79u0YhsGpU6cYM2YM06ZNIyQkpAYHIISoa97e3ixatIixY8fSqVMnBg4caHVItaZhJn+t4bHHzCv+mtbWvbwgKAgWLoQ+faBLl0svnT17lvXr17NhwwYiIyO555576N+/v5R2hHBh4eHhLFmyhAcffJB27drRvn17q0OqFQ0z+W/fDlu3mqUeZ/D2Nks+Dz0EW7bw/Z49xMfH8/HHHzN48GBeeOGFBvsLIoQ7uvLKK5k2bRrTp09n7dq1BNfC7D+rNbyav9YwZAgcO2YO2DqJw+Eg5+RJXujShY8DAoiJiWH48OEN8pdCCGH629/+xsGDB3n++eddZgDYfQd8v/kG7rzTnKdfzgCt3eFg4cmTfJ6TQ1ZRERHe3kxt1owbLjthFBQWkpGRwbmMDEI8PPC49loab9/uMr8IQojqKyoq4sEHH+SKK67goYcesjqcSqls8m94Gey998ypmhXMzCkCWnh780rbtuzo1Ik/N23K7NRU0ux2NJCTm8vx1FQOHTpEUVER7dq1o3n79jRNScHjwoU6ORQhhLU8PT1ZsGAB27ZtY+vWrVaH41QNr+a/a5d5A1cF/D08mFxieeR+QUG09PZm99mzdM3Lw+FwEBYWRsuWLfEseZXv7Q179oAbrwMuhDsJCQlh2bJl/PnPfyYyMpLOnTtbHZJTNLwr/717zTt3q6CgoIC9J06wPzOTxvn5NGvalPbt29M4PPzXid/cGPbvd2LAQoj6rmPHjsyePZu4uDgyMjKsDscpGl7yz8mp0s1cZ86e5dsffuDp06cZHBBAx0aNyMvP59y5c2RlZXEhO5vc3Fzy7XYKCgtxFBSgpewjhNsZNGgQQ4cOZfbs2RQWFlodTo01vAHfjh3NefmVPAGknzvH7KNHISCA+eHhKK1xFBVR5HCU+meg3c6/WrXiP9HRBAYGEhQURGBg4G++v/zr8tdkBU8hXI/D4eCRRx6hTZs2xMXFWR1Oqdz3Dt9mzSArq1J1f601K3JyyPPzY46XF03Cw/GoaAmHrCxmLlzIn2++mQsXLnDhwgXOnz//m+/T0tLKfO3ChQt4e3uXe/Ko6ETSqFEjmXEkRB3z8PBg/vz5jBs3juTkZIYPH251SNXW8JJ/9+7mDV6VSP4LTp7ksN3OSx07kpGWxsmTJ2nZsiXlpn+l8O7WjfDwcMLDw6sVotaa3NzcSyeCy78uniROnz5d5skjNzcXPz+/ck8YFZ1M/P39G0z3IiHqSlBQEMuWLWPy5MlER0fTtWtXq0OqloaX/Pv2NVfwrMCJggI2nDuHj1IM3b8frTX5+fnMcDiIKauhs91uzvaJiqpRiEopAgICCAgIoFmzZtV6D4fDQXZ2dqknhotfmZmZHD9+vMxPKAUFBeWWpyrzvfQWFu4oKiqKxx9/nJkzZ7Ju3bryu+/l58OFC+b088BAqCf/Z5xS81dKDQX+DngCr2mtF172ui+wFugBnAVsWusj5b1ntWv+mZnmNEx/f3NdniqwFxRw5PBhWkdE0Ki0hs4ZGTBpEsyeXfW46qHCwsJyS1dlfSIp+djDw6NS4xzlfQqRtZCEq3r11Vf59NNP+ec///nLhZDDYU4537ABvvgCUlLg4u+41ubF4/XXmzejdutWqdWCq6LO7vBVSnkC+4DBwHHgC+CPWusfS2wzBeimtb5fKRUL3KG1tpX3vjVa0nn2bEhMrNaibtnZ2aSmphIZFYVPyUHZwkJzJtG2bdC2bfXiamC01tjt9nJPHmWdSC6+lp2dja+vb4VjHeWVtAICAmT8Q1jC4XAwa9YswsLCmPPoo+ZNps88Az//bJ4E/P3NEvTFBO9wmJ8EcnPNE0J0tLm9E+8bqsvk3wd4Sms9pPjxowBa6wUlttlavM2nSikv4CTQVJez8xol/zNnYOBAKCoy//Kr6Gx6OpmZmUS2a/dLUsnIgD/9CWbOrF5MolQXxz8qe/Io7WSSl5dHQEBAtWdfBQUF4evrK+MfolpycnKYctddPJ6XR/sDB8yyjr9/xVf0WpvloKIiuOsumDOnyvcolaYuZ/u0BlJKPD4O9C5rG611oVIqE2gMnHHC/n+rSRNzCeYHHzRr9FUs/4SHh5Ofl0faiRO0bt0alZlpXu0//HCthOvOSo5/NG/evFrvUVRUVO74x/nz50lPT+fYsWNlnliKiooqPHlU9KlEpu+6p4CcHP555gzpX35JTmQkAaWVjEujlDktvagI/t//M1cOWL3a7B1SB+rVgK9SajIwGaBtTUsrt94K+/bBihXmX3AVTgAKaNGyJUePHCErJYWQdu1g3bpKzSASdc/T05Pg4OAarbB6sXxV3ljHiRMnyv2E4uXlVekZV2WdSKR85WJycuCuu/A7eZLgyEiOp6URFRWFd1UuOD09zRL1l1/C5Mmwdm3Vuw5WgzOSfyrQpsTjiOLnStvmeHHZJwRz4PdXtNavAK+AWfapcWQPP2yeRZcs+eUsW8mP9h5FRbQJCuKH8+fJnz2bXhERNQ5H1F8+Pj41nr6bl5dX4VjHmTNnytwmJycHPz+/Gs2+kum7dWzpUjh4EEJDCVSK8PBwjqek0C4ysuJ7hkpSCkJD4dNPzeR/7721FvKlXTqh5u+FOeB7C2aS/wK4S2v9Q4ltHgCuLjHgO0prHVPe+zqtgTvA99+bjVhSUio+CRQUmHU4Dw+YNInvBg5k2qOP8tprr9GuXTvnxCNEKRwOBzk5OVUeNC/5vd1ur/Lsq9Km78oJpBK+/hrGjDGnbxbP5tFAamoqSilatWpV/j1DpbHbzQHhDz6Aal5w1ul6/kqpW4HnMKd6rtJaP6uUmgfs1lonK6X8gHVAdyAdiNVaHyrvPZ2a/MFM6v/5D7zyCvzvf+ZYgN1u1tuUMgdplDKfv/tucwCmONlv3LiRdevWsWbNGgIDndcgRghnKywsJDs7u9qzry4Ur1tVk9lXgYGBeFVxnM0lTZpk5pTQ0F897dCaI0eOEBISQuPwcLKKiph34gS7Llwg1MuLqU2bMrS8LoMZGWa/8DlzqhWW+zZzqYxz58zBlf37ITvbHA9o1szszxsV9cuc3BIWL15MWloay5cvl7qsaNDsdnulZ1yVdTLx8fGp0eyrej999+RJ84bS4OBS6/P2ggKOHDlC61atePbcOTTweMuW7MvL4+GUFP4VGUl0WWOIBQXm1PLdu6s1W1GSv5MVFhYyZcoUrr32WqZMmWJ1OELUW5cvX1LZk0fJ7/Py8vD396/ykiUln/fz86u98tWGDTBrVrl9wrNzcjiYksIkh4PE9u1pW3wT2BNpaTT18uLB8u7uv3AB1qyB3pdPnKyY+y7sVku8vLxYtGgRY8eOpVOnTgwaNMjqkISol5y1fElF5amMjAyOHTtW5kmmsLCQRo0aVXnQvORXmcuXfPWVWTIuR6OAAHJDQij8+WciSpTBOvr68lVOTvl/AQUF8MMP1Ur+lSXJvwrCwsJYunQpDzzwAG3btqVTp05WhyREg+Th4VHj6bsFBQUVlqdOnjxZ7qcST0/PUj9VTEhOpkl2Ng6HA08PDzw8PUv90zsoiMDTp3+5ZwgI9PAg2+EoP3il4Lvvqn3slSHJv4o6d+7MjBkziIuLY+3atYReNtgjhKgfvL29CQsLI6way7wAlxZ7LO2kELplCx5eXhQVL3FSVv+PE4WFZBUWcub0aZo3a4a3tzfZDgeNKhrP8PCA8+erFXdlSfKvhiFDhrBv3z5mz57NP/7xD/eY2SCEm1FK4efnh5+fH02aNPn1i889Z5Zmyrgbt8jh4Ny5c9jPnoWCAlSrVngV3wG+Lz+/7MHei7Su9ZtK6/Fwev32wANGw3bOAAAXoUlEQVQP4OPjw3PPPWd1KEKIuhYdbU4Vv0xefj4nTpzgwP795OXm0j4igqFNm2IUFJDncPBNTg4fnj/PH8qb6gnmbJ+OHWspeJMk/2ry8PDg2Wef5ZNPPiE5OdnqcIQQdalXL/PqHPPGrqzz5zl69CjHjh3Dy8uL6Pbtad26NQH+/jzaogX5DgeD9+1jTmoqj7ZoUfGVv6+vudxzLZJ6RQ1c7OgzadIkoqKiuPrqq60OSQhRF3r2pAjIOHOGjHPn8PLyIjw8nKCgoN8s6xDs6cmyNm1Kf5/SOBzmTKJaTv5y5V9DUVFRPPHEE8yaNYvTp09bHY4Qopbt27ePeYmJfJmRgb5wgYiICKIiIwkJDq7aej5lycoyl6S/fJzByST5O0H//v0ZPXo0M2fOxF5KHVAI4doKCwt5//33mThxIn/5y1+IaNOGK59/nqYhIfg7c2D24hTQSZOc955lkLKPk0yYMIG9e/eycOFCHn/8cVkYS4gGID09nQ0bNrB+/XratGlDbGwsN998sznDz+GA5GTzhi9nTfnOzISRI6FnhTfo1pgs7+BEOTk5TJgwgVGjRhETU+6ipUKIeuzHH38kPj6e//73v9xyyy3ExMSUflNnSgoMG2bW6Bs1qtlOs7LMk8i2beaaQdUkyztYICAggGXLljF+/Hiio6PpWQdnbyGEc9jtdrZt20ZCQgJnz55lzJgxxMXFlX+XcZs2Zvete+4x1+Op7qq/mZnmz77xRo0Sf1XIlX8t+Pzzz5k7dy6rV6+mVatWVocjhCjH6dOnWb9+PRs2bKBDhw7YbDb69etXtVVFv/7arNOnp5uLvVX2ZwsLzTt527aFVavMVYVrSFb1tNjrr7/O5s2bWblyJf7VWJZVCFF7tNZ8++23GIbBp59+ypAhQ4iJiSE6Orr6b3r+PMyfb6746XCYZSBv7982jtLabNiSm2suHz9pktlsykkDx5L8Laa15umnnyY/P5+//vWvMgAsRD1gt9vZsmULhmGQnZ1NTEwMt99+O0FBQc7bydGj8PrrYBhmKcjLy0z4WpvJvqAAGjc2S0UxMWYvESeS5F8P2O12Jk6cyIABAxg/frzV4Qjhtk6ePElSUhJvvfUWV155JTabjT59+tRuwxit4dQp2LvXrOkrBeHhcMUV5p+1RAZ86wEfHx+WLl3KuHHj6NixI3379rU6JCHchtaar776CsMw2L17N7feeisrV66kbdu2dROAUtC8uflVD8mVfx349ttvmT59ujSBF6IO5Obm8u6775KQkEBhYSExMTHcdtttBJSxAmdDI1f+9Ui3bt144IEHmDZtmjSBF6KWpKamkpiYyKZNm7jmmmt45JFH6NWrl4y3lUGSfx0ZOXIke/fuZe7cudIEXggn0Vrz+eefYxgG33zzDcOHD2ft2rW0bt3a6tDqPSn71CFpAi+Ec+Tk5LB582YSEhLw8vLCZrMxbNgw/Pz8rA7NclL2qYekCbwQNXPs2DESEhJ455136NmzJ3PmzKF79+5S2qkGSf51TJrAC1E1DoeDTz/9FMMw+Omnnxg5ciRvvPEGzevpLBpXIcnfAtIEXoiKnT9/nk2bNpGQkEBgYCA2m42lS5fi4+NjdWgNgiR/i0gTeCFKd+jQIQzD4L333qNPnz7MmzePq6++Wko7TiYDvhZyOBz85S9/oW3btsTFxVkdjhCWcTgc7Ny5E8MwOHToEKNGjWLUqFE0bdrU6tBcjgz4uoCLTeDHjRtHcnIyw4cPtzokIepUZmYmb731FomJiTRu3BibzcagQYPw9va2OrQGT5K/xS42gZ88eTLR0dF07drV6pCEqHX79u3DMAy2b99Ov379WLRoEV26dLE6LLciyb8eiIqK4vHHH2fmzJmsWbNGPuqKBqmwsJAdO3ZgGAapqamMHj2a9evXE16Li5yJsknyryf69+/P/v37mTlzJi+//LLMaBANRnp6Ohs3biQpKYlWrVphs9kYMGCATHKwmAz41iNaa2bNmkVgYKA0gRcu78cff8QwDHbu3MnAgQOx2WxyX0sdkPX8XZQ0gReurKCggA8++ADDMDhz5gxjxoxhxIgRhISEWB2a25DZPi5KmsALV3TmzBk2bNjA+vXriY6OZty4cfTv318WMKzHJPnXQ61bt2b+/PnMmTNHmsCLektrzXfffYdhGHzyySf8/ve/56WXXqpZH1xRZ6TsU49JE3hRH9ntdrZu3YphGFy4cKF2+uCKapOyTwPwxz/+kX379jFv3jxpAi8sd+rUKZKSkti4cSOdO3fm/vvv54YbbpDSjouSf7V6TCnFnDlzSE1NZfXq1VaHI9zQxT64s2bNIjY2luzsbF599VVWrFhB3759JfG7sBpd+SulwgEDiASOADFa64xStisCvit+eExrLesYVJI0gRdWyMvLu9QH1263Y7PZePLJJ92mD647qFHNXym1GEjXWi9USs0GwrTWs0rZ7oLWukqNa6Xm/2vSBF7UhbS0NBITE0lOTqZbt27YbDZ69eolV/gupE7m+Sul9gI3a61PKKVaAju01p1L2U6SvxNs3LiRdevWSRN44VRaa7744gvi4+P5+uuvuf3224mJiZE+uC6qrpL/Oa11aPH3Csi4+Piy7QqBr4FCYKHWemNF7y3Jv3SLFi3ixIkT0gRe1FhOTg5vv/02CQkJeHh4XOqDKzPLXJvTkr9SahvQopSXHgPWlEz2SqkMrXVYKe/RWmudqpSKBrYDt2itD5ay3WRgMkDbtm17HD16tKL43Y40gRc1dezYMRITE3n77bfp2bMnNpuN6667TmaTNRBOm+qptS6zy7hS6melVMsSZZ9TZbxHavGfh5RSO4DuwG+Sv9b6FeAVMK/8K4rNHUkTeFEdDoeDXbt2ER8fz08//cSIESN4/fXXadGitOs64Q5qOs8/GRgHLCz+863LN1BKhQE5Wut8pVQT4EZgcQ3369akCbyorAsXLrBp0yYSExPx9/fHZrOxZMkSfH19rQ5NWKymNf/GQALQFjiKOdUzXSnVE7hfaz1RKXUD8DLgwLyv4Dmt9cqK3ltq/hXbunUrL7zwgjSBF79x+PBhEhIS2Lp1K9dffz02m41u3bpJaccNyKqebmLFihX88MMP0gRe4HA4+Oijj4iPj+fAgQOMGjWK0aNHS3MgNyPJ301IE3iRlZV1qQ9uWFjYpT640hDIPcnaPm5CmsC7r/3795OQkMC2bdvo168fCxYs4KqrrrI6LOEiJPk3ANIE3n0UFRVd6oObkpIifXBFtUnybyCkCXzDlpGRwZtvvil9cIXTyG9OAyJN4Buen376CcMw+PDDDxkwYAB/+9vf6Nz5NyuoCFFlMuDbwEgTeNdXUFDA9u3bMQyDU6dOMWbMGEaOHCl9cEWlyICvm1JK8dRTTzFhwgQSExOlCbwLOXv2LOvXr2fDhg1ERkZyzz330L9/fzw9Pa0OTTRAkvwbIGkC7zq01nz//fcYhsHHH3/M4MGDeeGFF2jfvr3VoYkGTpJ/AyVN4Os3u93O+++/j2EYZGZmEhMTw8yZMwkODrY6NOEmJPk3YL169eLee+8lLi5OmsDXEyX74Hbq1IlJkyZx4403yvLcos5J8m/gLjaBf+aZZ3j22WdlANgCWmu+/vprDMPg888/Z+jQobz66qvSkU1YSmb7uAG73c7EiRMZOHAg9957r9XhuI38/Hy2bNmCYRjk5eVhs9m47bbbaNSokdWhiQZMZvuIS0o2ge/QoYM0ga9laWlpJCUlkZycTNeuXXnwwQfp3bu3lHZEvSLJ3000a9aMRYsWSRP4WnKxD65hGPzvf//jtttuY/Xq1URERFgdmhClkrKPm5Em8M6Vk5PDO++8Q0JCAgCxsbHSB1dYSso+olQjR45k7969zJ07V5rA10BKSgqJiYls3ryZHj16MHPmTHr06CED6sJlyP98NzR9+nRycnL45z//aXUoLsXhcPDJJ5/w8MMPM378eLy9vfn3v//NkiVL6NmzpyR+4VLkyt8NSRP4qsnOzmbTpk0kJCTg5+dHbGwsixcvlj64wqVJ8ndT0gS+YkeOHCEhIYEtW7bQu3dvnnjiCa655hq5whcNgiR/N9a5c2dmzJhBXFycNIEvdrEPrmEY7N+/nzvuuIP4+HiaNWtmdWhCOJUkfzc3ZMgQ9u7dy+zZs926CXxWVhbJyckkJCQQGhpKbGys9MEVDZpM9RRu3QT+wIEDJCQk8P7779O3b19sNpu0wRQuTaZ6ikpztybwRUVFfPjhhxiGwdGjRxk9ejRJSUk0btzY6tCEqDOS/AXgHk3gz507x8aNG0lKSqJ58+aX+uB6e3tbHZoQdU6Sv7ikoTaB37NnD4ZhsGPHDgYMGMDSpUu54oorrA5LCEtJ8he/0lCawBcWFl7qg3vy5EnGjBnDm2++KTOahCgmyV/8xoQJE9i7dy8LFy50uSbw6enpl/rgtm3blrvvvpubbrpJ+uAKcRmZ7SNKlZOTw4QJExg1apRLNIG/2Af3o48+YvDgwcTExNChQwerwxKizslsH1EjJZvAt2/fnh49epS5bVERZGWZfwYEmF91wW63s23bNuLj4zl37hwxMTHMmDFD+uAKUQmS/EWZLjaBf/TRR3/TBP7wYUhKgp07Yd8+cDjM54uKoHlz6N4dRo6EAQPA2ZNpTp06xfr163nzzTfp2LEjEydOpG/fvrJCqRBVIGUfUaHXX3+dzZs3s3LlStLS/Hn8cfj8czPh+/qCnx9cLKlrDXY75OaCh4f5KeCRR+Cee8zH1aW15ptvvsEwDD777DOGDh1KTEwMkZGRTjlGIRqKypZ9JPmLCmmteeqpeXz+eTcOHhyJw6EICYHKjAPn50NODlxzDfz979CmTdX2nZ+fz9atW4mPjycvL4+YmBhuv/126YMrRBmk5i+cRmtFVtZcPvroLKGh6TRvXvk7YX19wccHvv0WRoyA+HiozAKiJ06cuNQHt0uXLkydOpXrr79eSjtCOIkkf1Gh+fMhOdmTqKgwjh49TKNGPgQGBlX655WC0FBzUDg2FjZvhhLDB5dorfnyyy8xDIMvv/yS2267jVWrVtGmqh8XhBAVkuQvyvXxx7BmDQQHg6enNxEREaSkHCcy0gcfn6o1MwkOhnPnYMYMWLfulzGA3Nxc3n33XQzDQGuNzWbj6aefJqCupg0J4YYk+Ysy5eaag7U+Pr8M6Pr7B9CsWVNSUlKIiorCw6NqN0+FhMCuXbBxI/TunUpCQgKbN2+me/fuxMXFSTtEIeqIJH9RpnfegYwMM2GXFBoaRl5eHqmpqbRp04bU1CfIyfkchyMXL68mNG48ltDQkaW+p1IahyOXBx88wRVX3M+IEbezbt26X00jFULUPkn+olRaw8svQ1m9XZo3b8GxY0c5ffo0TZqMx9v7cTw8fMjPP8LRo5Px9e2Mv/+Vl7Z3OIrIzMwkPT0dpTzw82vOk09upn9/6YMrhBVqNHVCKTVGKfWDUsqhlCpzapFSaqhSaq9S6oBSanZN9inqxunTcOhQ2XfrKqVo3TqCzMxM8vOb4OFxcQE4hVKKgoLjANjt+Zw8eZIDBw6Qk5NDy5atiI6Owtc3kI8/lsQvhFVqeuX/PTAKeLmsDZRSnsALwGDgOPCFUipZa/1jDfctatGePeZVf3nldy8vLyIi2nDs2FEyM/9OdvYWtM7Hz68z0I1jx46Rl5dHWFgo0dHReHn9cquvnx989lntH4cQonQ1Sv5a65+AigboegEHtNaHireNB0YAkvzrsYMHzRu0AgPL387Pz48WLVpw6lQsUVEzSE/fRUbGp5w5k0Xjxk1p0yYCpX77AdPXFw4cqKXghRAVqos7ZloDKSUeHy9+TtRjOTm/rNdTkeDgEEJCQjh2LAWHoyOBgXZCQ3cTEhJaauIHc5pnfr4TAxZCVEmFV/5KqW1Ai1Jeekxr/ZYzg1FKTQYmA7Rt29aZby2qyMencss3XNS0abPizl+KEyc8sNtTy91e61+mjwoh6l6FyV9rPaiG+0gFSt6iGVH8XGn7egV4Bcy1fWq4X1EDrVubpZmKFBamk5Ozm8DAvijlR3b2LjIzt9K69V/L/Tm73dyHEMIadTHV8wugo1IqCjPpxwJ31cF+RQ1ceWXF25gUGRlJnDjxV8CBt3dLmjefTlBQ/3J/Ki8Pela49JQQorbUKPkrpe4AVgBNgbeVUl9rrYcopVoBr2mtb9VaFyqlpgJbAU9gldb6hxpHLmpVu3bmNM/8/PI/AXh5hdGu3StVfn8PD+jbtwYBCiFqpEYDvlrrN7XWEVprX611c631kOLn07TWt5bY7h2tdSetdXut9bM1DVrUPg8PuPdec+DX2ex284QyeLDz31sIUTmyPq4ok81mzvUvKHDu++bkwNix5lx/IYQ1JPmLMrVoAdOnw4UL5uwcZ7hwAZo0gQcecM77CSGqR5K/KNd998HVV0NmZs3fy243e/z+/e8gjbiEsJYkf1EuT09YtcocAD53rvqfAPLyIDsbFi2C3r2dG6MQouok+YsKhYdDYiL06GGeAOz2yv+s1ubPOBzwj3/AqFG1F6cQovIk+YtKCQ+HN96AefOgsNBM6Dk5ZX8SKCw0ewFkZUGfPvDBBzBsWN3GLIQom6znLyrNwwPuvhtuvx2Sk81y0NGj4O1tngS0NpeEuLh0w6hR5nTRLl2qtlSEEKL2SfIXVRYcDP/3f+bX+fPm8s+nTpmDuY0aQceOEBHxS49eIUT9I8lf1EhQEPzud1ZHIYSoKrk2E0IIN6S0s+7ecTKl1GngqNVxVFMT4IzVQdQhdztekGN2B656vO201k0r2qjeJn9XppTarbV2mzUr3e14QY7ZHTT045WyjxBCuCFJ/kII4YYk+deOqi9w79rc7XhBjtkdNOjjlZq/EEK4IbnyF0IINyTJ3wmUUuFKqfeVUvuL/wwrZ9tgpdRxpdQ/6jJGZ6rM8SqlrlVKfaqU+kEp9a1SymZFrDWllBqqlNqrlDqglJpdyuu+Simj+PXPlFKRdR+l81TieKcppX4s/jf9QCnVzoo4namiYy6x3WillFZKNYgZQJL8nWM28IHWuiPwQfHjsjwD7KyTqGpPZY43Bxirtb4KGAo8p5QKrcMYa0wp5Qm8AAwDugB/VEp1uWyz+4AMrXUH4G/AorqN0nkqebz/A3pqrbsBScDiuo3SuSp5zCilgoCHgc/qNsLaI8nfOUYAa4q/XwOMLG0jpVQPoDnwXh3FVVsqPF6t9T6t9f7i79OAU0CFN57UM72AA1rrQ1prOxCPeewllfy7SAJuUcpll7Gr8Hi11v/RWl/s7LwLiKjjGJ2tMv/GYF60LQLy6jK42iTJ3zmaa61PFH9/EjPB/4pSygNYBsTVZWC1pMLjLUkp1QvwAQ7WdmBO1hpIKfH4ePFzpW6jtS4EMoHGdRKd81XmeEu6D3i3ViOqfRUes1LqOqCN1vrtugystsnCbpWklNoGtCjlpcdKPtBaa6VUaVOopgDvaK2Pu8KFoROO9+L7tATWAeO01g7nRimsopT6P6AncJPVsdSm4ou25cC9FofidJL8K0lrPais15RSPyulWmqtTxQnu1OlbNYH6KeUmgIEAj5KqQta6/LGByzjhONFKRUMvA08prXeVUuh1qZUoE2JxxHFz5W2zXGllBcQApytm/CcrjLHi1JqEOZFwE1a6/w6iq22VHTMQUBXYEfxRVsLIFkpNVxrvbvOoqwFUvZxjmRgXPH344C3Lt9Aa3231rqt1joSs/Sztr4m/kqo8HiVUj7Am5jHmVSHsTnTF0BHpVRU8fHEYh57SSX/Lu4EtmvXvXmmwuNVSnUHXgaGa61LPem7mHKPWWudqbVuorWOLP6/uwvz2F068YMkf2dZCAxWSu0HBhU/RinVUyn1mqWR1Y7KHG8M0B+4Vyn1dfHXtdaEWz3FNfypwFbgJyBBa/2DUmqeUmp48WYrgcZKqQPANMqf6VWvVfJ4l2B+ck0s/je9/GToUip5zA2S3OErhBBuSK78hRDCDUnyF0IINyTJXwgh3JAkfyGEcEOS/IUQwg1J8hdCCDckyV8IIdyQJH8hhHBD/x/PAxUO8owGIwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VNX9x/H3yQJZCEnYtwQIm2ENIQmCIiWxFlC2RMFdW1paq9VqXau1trUWrVqpW8UVq1V/WkQRWqsE3EkmhH0RCCQsSQiQjeyZzPn9ccM1wSwDmcydZL6v5+Exk9zc+02E+5mz3HOU1hohhBDex8fqAoQQQlhDAkAIIbyUBIAQQngpCQAhhPBSEgBCCOGlJACEEMJLSQAIIYSXkgAQQggvJQEghBBeys/qAprTq1cvPWTIEKvLEEKIDmXTpk0ntNa9nTnWYwNgyJAhZGRkWF2GEEJ0KEqpHGeP9dgAcDWtIT8fTp4EhwNCQiAyEnx9ra5MCCGs0akDwG6Hzz+H11+HTZugqsq44StlhADAqFGwaBHMnWuEghBCeAvlqauBxsXF6XPtAtIa/vc/eOABKC42PhcUBP7+jY+rqzNCwW4HPz/4xS/gppugS5c2Fi+EEBZRSm3SWsc5c2ynmwVUVgY33wy//CWUl0NoqPHnzJs/GK2B4GDj6126wN//DpddBgcOuL9uIYRwt04VAKWlRnfOxx8bN/WgIOe/198fwsLg4EFYsAB27Wq/OoUQwhN0mgCoq4PFi2HPHuNG7nMOP5lSRnBUVcHVVxuDxkII0Vl1mgB49VXIzDRu/kq17VwhIUZX0l13GeMJQgjRGXWKADh6FP76V6M/v603/9NCQ+Gbb2DNGtecTwghPE2nCIA33jBm8rQ2e6ew8P84ePA69uyZQm7uQy0eq5QxM+jpp6UVIITonDp8ANTUGAEQHNz6sX5+vejVazGhoXOdOndwsDEjaPv2NhYphBAeyCUBoJR6RSlVoJTa0czXlVLq70qp/UqpbUqpWFdcF4xB39pa5+bud++eSEjID/D1DXXq3EoZg8sbN7axSCGE8ECuagG8Bsxs4euzgBH1f5YAz7vouuzaZXT/tBc/P0hLa7/zCyGEVVwSAFrrz4HCFg6ZB7yuDRuBMKVUf1dce+/e75Z1aA9duxrXEEKIzsZdYwADgcMNXh+p/1wjSqklSqkMpVTG8ePHnTpxRcXZzfyx22spKDhGaWkpxcXF1NbWtHi8UsY4gxBCdDYetRic1no5sByMtYCc+Z7AwLObpePj44PWGj8/P8rLyygoKMDHx4fg4OD6P0H4+n73a9G66WUkhBCio3NXABwFIhq8HlT/uTYbOdL5FoDWdUAdgYFdgQr69++DUj7U1NgpLy+npKSYvLxcunTpQlCQEQh1dYHExcma0UKIzsddAfAhcItS6m1gMlCitc5zxYmjo51/h37ixMucOLEch8NBbW0t3367gV69ltC79xK6dg2gR4+eaK2pqqqkvLyckydPcOpUF/buXcfy5ZUkJCQwduxY/Pw8quEkhBDnxCXLQSul3gJ+APQCjgG/B/wBtNb/UEop4BmMmUIVwI+11i2u9ezsctDV1TBpkrGyp/NdNZoDBw7St29fglt4gEBrKC528OCD2yku3kB6ejqHDx8mJiaGhIQEEhISGD58OD7nsvCQEEK0g7NZDtolb2W11le18nUN3OyKa52pa1e45hp46SUID3f2uxTh4WEUFxe1GAAVFTB0qA/XXz8BpSYAUFJSQkZGBunp6axcuZLS0lLi4+OJj48nISGBgQMHoly1HoUQQrSjTrEhzOHDcPHFEBDgfCvA4ahj3779DBs2rMkuHa2hpASeeALmzWv+PPn5+aSnp2Oz2UhPT6dLly5m6yA+Pp4ePXo4V5AQQrjA2bQAOkUAADz/PDz++NmtBpqbm0vXrl3o2bPX975WXAzx8fDmm84vLa215uDBg2YYbNq0ib59+5phMGnSpBZbHEII0VZeGQB2O1xxhbFuT2iocyFQWVlBbm4uw4YNA777hrIyo2tp7VoY+L2nFZxXV1fH7t27zRbCjh07GDFihNldNG7cOLrI/pNCCBfyygAA4137okWwf7+zLQHNgQMH6NevH0FBxjvzkhKjK+lf/4Jx486t9uZUV1ezdetW0tPTSU9PJzs7m3HjxpldRqNGjZIBZSFEm3htAICxLeQdd8CGDcaNPCCg5eOLigqpqKigb99BnDoFkZHwwgvG8wXt7dSpU2zatMlsIZw8eZK4uDizhRAZGSkDykKIs+LVAQDGAO6aNfC73xndOUoZ+wOfOdbrcEB5eR2HDuUxcGB/fv5zX2691ej+sUJBQYE5wyg9PR2g0YBy7969rSlMCNFheH0AnFZTA6mpsGIFbNliLO3sW/9Qr8NhvB42DAIC3mf27Bp+/vNFLqjcNbTWHD58mLS0NGw2GxkZGfTo0cMMhEmTJhESEmJ1mUIIDyMB0ASHA44cgZMnjY9DQmDIEGMfga1bt/KHP/yBf//73x7b5eJwOPj222/NGUbbtm1jyJAhZiBMmDCBrlY1XYQQHkMC4CxprVm0aBH33HMPkyZNcss126qmpobt27eb4wf79u1jzJgxZiBER0fj6ytrGAnhbSQAzsHbb7/N9u3b+fOf/+y2a7pSeXk5mZmZ5vjBsWPHiI2NNQNh6NChHtu6EUK4jgTAOSgtLWXu3LmsWrWKsLAwt123vRQWFprdRenp6dTU1JiDyQkJCfTr18/qEoUQ7UAC4Bw9+OCDjBo1imuuucat121vWmuOHj1qdhfZbDZCQkLM1kFcXByhoc7tkyyE8GwSAOdoy5Yt/OlPf+K9997r1N0lDoeD/fv3my2EzZs3ExERYbYQJk6cSGBgoNVlCiHOgQTAOdJas3DhQu677z5iY2Pdem0r1dbWsnPnTrOFsGfPHqKjo83uojFjxsgeCEJ0EBIAbfCvf/2L3bt386c//cnt1/YUFRUVbNmyxRw/OHr0KDExMUyePJn4+HiGDRsmS1YI4aEkANqgpKSEefPm8cEHH0i/eL3i4mLzCWWbzUZZWdn39kAQQngGCYA2+t3vfkd0dDRXX321Jdf3dHl5eY1mGAUEBDQaUJY9EISwjgRAG23evJk///nPvPvuu516MNgVTu+BcHrJiszMTPr162cGQmxsLEFBQVaXKYTXkABoI601V1xxBffffz8TJ060pIaOqq6ujl27dpkthJ07dzJixAgzEMaOHSt7IAjRjiQAXOBf//oXe/bs4Y9//KNlNXQGVVVV5h4INpuN7Oxsxo8fbwbCyJEjZUBZCBeSAHCB04PBH374Id27d7esjs6mtLTU3AMhPT2doqIi4uLizECIiIiQbjch2kACwEUeeOABxowZw1VXXWVpHZ1ZQUGB2V1ks9lQSjVasqJXr+/v1yyEaJ4EgItkZmaydOlS3nnnHXlX6gZaa3Jycsww2LRpEz179mw0oCx7IAjRMgkAF9Fak5KSwu9//3smTJhgaS3eyOFwsGfPHmw2G2lpaezYsYOhQ4eaLYSYmBgZUBbiDBIALvTGG2+wb98+/vCHP1hditerqalh27ZtZgth//79jBs3zuwuio6OlgFl4fUkAFyouLiY+fPny2CwByorK2u0B8Lx48eJjY01l6wYMmSIdN0JryMB4GK//e1vmTBhAosWec6eweL7Tp482egJZbvd3mhAuW/fvlaXKES7kwBwsU2bNvHoo4/KYHAHorXmyJEjjWYYhYaGNlqyQlp0ojM6mwCQNX6dEBsbi91uZ/v27YwfP97qcoQTlFJEREQQERFBcnKyuQdCWloaq1at4qGHHiIyMtIMhJiYGAICAqwuWwi3khaAk/75z3+SlZXFQw89ZHUpwgVqa2vZsWOH2UL49ttviY6ONgNh9OjRsgeC6JCkC6gdFBUVsWDBAhkM7qQqKirYvHmz2V109OhRJk6caAbCsGHDpPtPdAjSBdQOwsPDmTp1Kv/9739ZuHCh1eUIFwsKCuKCCy7gggsuAIzAz8jIwGaz8c4771BZWdloyYoBAwZYXLEQbSctgLNgs9l44okneOutt+TdoJfJzc1tNKAcGBhozjCKj48nPDzc6hKFAKQLqN04HA5SUlL44x//yLhx46wuR1hEa01WVpYZBpmZmQwYMID4+HgmT57MxIkTZQ8EYRkJgHb0+uuvk52dzYMPPmh1KcJD2O12cw+EtLQ0du/ezciRI80Wwrhx4/D397e6TOElJADaUWFhISkpKaxevZpu3bpZXY7wQFVVVWzZssVsIeTk5BATE2M+kDZixAhZskK0GwmAdnbfffcxceJEGQwWTiktLSUjI8N8QrmkpIS4uDhzyYpBgwbJmJJwGQmAdpaens6TTz4pg8HinBQUFJhhYLPZ8PX1bbRkRc+ePa0uUXRgbg8ApdRMYBngC7yktV56xtdvBP4KHK3/1DNa65daOqcnB4DD4SA5OZmHH36YsWPHWl2O6MC01mRnZ5szjDZt2kTv3r0b7YEgXY3ibLg1AJRSvsBe4IfAEcAGXKW13tXgmBuBOK31Lc6e15MDAGDFihXk5OTIYLBwqdN7IKSlpWGz2dixYwdRUVFmIIwfP172QBAtcncATAEe0lr/qP71fQBa6780OOZGOlkAFBYWkpyczEcffSTv0ES7qampYevWrWYL4cCBA4wdO9YMhPPOO08GlEUj7g6Ay4GZWuuf1r++Dpjc8GZfHwB/AY5jtBZu11ofbuJcS4AlAJGRkZNycnLaVFt7u+eee4iPj+fyyy+3uhThJU6dOmXugWCz2Thx4gSxsbFmIAwePFjGpbycJwZAT6BMa12tlPo5sEhrndjSeT29BQCQlpbGsmXLePPNN+UfnbDEiRMnGu2B4HA4zMHkhIQE+vTpY3WJws3cvRbQUSCiwetBfDfYC4DW+mSDly8Bj7ngupaLj4+nrKyM3bt3M3r0aKvLEV6oV69ezJo1i1mzZqG15vDhw9hsNr744gv+9re/ERYWZs4wkj0QxJlc0QLww+jWScK48duAq7XWOxsc019rnVf/8QLgHq31+S2dtyO0AABeffVVjh49ygMPPGB1KUI04nA42Lt3r9ldtHXrVgYPHmwuWTFhwoSOsQdCTQ3s3w8HD0J1Nfj5QUQEjBoFsuTG91gxDXQ28BTGNNBXtNZ/Vkr9EcjQWn+olPoLMBewA4XATVrrPS2ds6MEwMmTJ7n88sv56KOPCA4OtrocIZpVW1vL9u3bzSUr9u3bx+jRo80WwpgxY/D19bW6TENdHXz+Obz0EqSlGTd9rcHhAB8fUApqayE6GpYsgUsugY4QZm4gD4K52d13383kyZNJSUmxuhQhnFZRUdFoQDkvL4/Y2FhzDCEqKsqasa2tW+G22+BofU9ySIhx0z+T1lBeboRFSAg8/jgktji06BUkANxs48aN/P3vf5fBYNGhFRYWNlqyoqqqyuwuio+Pp3///u1bgNbw1FPw7LPGDf9sxisqKozuoXnzYOlS8OJnJSQA3MzhcDB//nyWLl0qg8Gi08jNzTXDICMjg6CgoEZ7IISFhbnuYlrD738Pb75pvJs/l+04HQ4oKYELLjC6jrw0BCQALPDKK6+Ql5fH/fffb3UpQricw+EgKyvLnHK6efNmBg4caE43jYmJadseCC+/DI88AqGhTXf3OEtrKC6GK64wWgJeSALAAidOnOCKK65gzZo1shmI6PRO74FwesmK3bt3M2rUKDMQxowZ4/weCFlZMHu2MYjrin0TTrcEVqyACy9s+/k6GAkAi9x1111MmTKF5ORkq0sRwq0qKyvZsmWL2UI4dOgQMTExZiAMHz68+SUrFi2CTZvAlV1K5eXGGMJXX51bd1IHJpvCW2TBggU8//zzEgDC6wQGBjJlyhSmTJkCQElJiTmgvHLlSkpLS4mLizMDYeDAgcaEiX37jJt/aGir1yitq+OPeXlsLCsjzM+PW3r3ZmZz3xccDIWF8NlnkJTkyh+1U5EAcKHzzz+fv/zlL+zevZvo6GiryxHCMqGhoSQlJZFUf/PNz883WwcvvPACXbp0IT4+niv37SPKbsfPidlzS/Pz8VeK/40cyd6qKm47fJiRAQFEde3a9DcoZQwGSwA0SwLAhXx8fJg/fz7vv/++BIAQDfTr1485c+YwZ84ctNYcPHgQm80GL73E4ZMncZSWEhwcTHBwMEFBQfie0V1U6XCQeuoU/xcVRZCPDzFBQUwPCWFNSQm/am69o+BgyMw0nhPwlAfcPIysI+tic+fO5dNPP6WiosLqUoTwSEopoqKiWDR/PiP9/RkyahQD+vfHz9eXwsJC9u3bx8HsbAqOH6e8ogKH1hyqqcEXiGwwtXNE164cqK5u/kKnb/rZ2e3683Rk0gJwsd69exMbG8vHH3/MggULrC5HCM917Bj4+aF8fAgMDCQwMJBegENrKisqKC8vp+DYMaprasjy86NLXR2VVVUE1i/50M3Hh3KHo+Vr+PhAbi4MG9b+P08HJC2AdpCcnMz7779vdRlCeDa73einP4OPUgQHB9OnTx+GDB1KREQEQT4+FFdXc/DgQaqqqgAodzgIbu2ZAa2NNYNEkyQA2sH5559PYWEhe/a0uN6dEN4tMNDonz+DBioqKzl27Bj79+8nLzeXoYGB+AcEUBUWRlFxMQB7q6ubHwA+TSnjOqJJEgDtoOFgsBCiGX37Gv30dXVooLyigvz8fPbt20deXh7Kx4eIQYMYNnw4Q/r14+LQUN6x2ykoKSGzrIzPTp3i0pamj55+9y/dP82SAGgnc+fO5ZNPPpHBYCGaUVtXx4l+/Th+5Ah79+7l2LFj+Pn5MXjwYIZFRdGnd28CAgI43Ul0b79+2IGfVldz7+HD3NevX8stALsdunWD3r3d8eN0SDII3E769OlDTEwMn3zyCfPmzbO6HCE8QnV1Nd988w2pqal8+eWXXF1XxyIfH4YOHUqXVpaB6O7ryxMREZwKD+fE8eMMbe3hsbIyWLiwyXEGYZAAaEfJycm8+OKLEgDCq1VUVPDll1+ybt06Nm7cSHR0NImJifzqV7+it78/TJ58Vjfpbt26kZ+f32hG0PdobZzzhhtc9FN0ThIA7Wjq1Kk88sgj7N27l5EjR1pdjhBuU1paymeffUZqaiqbNm0iJiaGpKQk7rvvvu8vI33NNcbCbeHhTp1bAWFhYRQXFRHY3B4FJSVw/vlw3nlt+0E6OVkMrp0tX76coqIi7rnnHqtLEaJdFRYWsmHDBtatW8eOHTtISEhgxowZTJs2jZCQkOa/saLCWK6hqMjos3dCrd3Ogawsho8Y8b2nhqmuNvr/162DAQPa8BN1TLIaqAcpKCjgyiuvZM2aNQTKdDTRyRw7dozU1FRSU1PZt28fU6dOJSkpialTp57d3/fMTLjqKmPlTie/7/CRI3Tr1o3whi2K2lqj7/9vf4O5c8/yp+kcZDVQD9JwMHiul/6FFJ3L4cOHSU1NZd26dRw5coTp06dz/fXXM3nyZLqc6y5csbHw4ovws5/BqVPGrmCtCA8Lo+D48e8CoLISqqrgoYe89uZ/tiQA3GDBggW8/PLLEgCiQ9Jac+DAAfOd/smTJ5kxYwY333wzkyZNws9V6+1fdBG8+y7ccouxIXy3bi1uEBPcrRt1+flUlpcTWFtrHP/007Ix/FmQLiA3qKurY86cOTz11FMyGCw6BK01e/bsMd/pV1dXk5iYSGJiIhMmTGh+cxdXqKoybuSvvQY1NcZsntO7hSllzPCx26GqipKiIuwOBz1//GO47z7o0aP96uogZAzAAy1fvpzi4mLuvvtuq0sRokkOh4Pt27ezbt061q9fj5+fH4mJiSQlJREdHW1s4OJOFRWwdi3897+wdSucPGks7uZwGF1E48ZxavJkrnnnHd76+GOCg4PdW5+HkgDwQPn5+Vx99dWsXbuWgObmLgvhZnV1dWRmZpKamsr69evNjVxmzJjB8OHD3X/Tb0lFhdEi8PeHoCDz2YG7776bhIQELr/8cosL9AwyCOyB+vXrx/jx4/nkk0+YM2eO1eUIL1ZTU4PNZmPdunV8/vnn9O/fn8TERJYvX05kZKTV5TUvKMj4c4aUlBSWLVtGSkqKZwVWByAB4EbJycm89tprEgDC7aqqqvj6669JTU3lq6++IioqiqSkJH72s5/Rv7mHqTqI+Ph4ysvL2blzJ2PHjrW6nA5FAsCNLrjgApYuXcr+/fsZPny41eWITq68vNxcgiEtLY0xY8aQmJjIr3/9a3r16mV1eS7j4+NDcnIyK1eulAA4SzIG4GYvvPACJSUlMhgs2kVJSYm5BENmZiYTJ04kKSmJiy666PtLMHQihYWFJCcns3r16pafOvYCMgbgwebNm8fVV1/NrbfeKoPBwiVOnjzJ+vXrSU1NZefOnUyePJmZM2fy8MMP083JpRU6uh49enD++efzn//8h4ULF1pdTochAeBm/fr1Y9y4cXz66adcdtllVpcjOqi8vDzzpp+VlcUFF1zA5ZdfzhNPPOG1S44kJyfzxBNPcMUVV8hgsJMkACyQnJzMihUrJADEWTl06JD5NO7Ro0eZPn06N954IwkJCee+BEMnEhcXR01NDdu3b2f8+PFWl9MhSABY4MILL2Tp0qVkZWUxTLarE83QWpOVlWU+jVtcXMyMGTO45ZZbmDRpEr6+vlaX6FF8fHxYsGAB//73vyUAnCQBYAFfX1/mzp3L+++/z5133ml1OcKDaK3ZvXu3+U6/pqaGxMRE7rvvPsaPH9++SzB0AnPmzGHBggWUlpbSvXt3q8vxeBIAFpk3bx7XXnstv/rVr+ja0r6motNzOBxs27bNvOl36dKFxMREHn74YWuWYOjAwsPDmTp1KmvWrOGqq66yuhyPJwFgkQEDBjB27FjWrVvH7NmzrS5HuJndbiczM5N169axYcMGwsPDSUxMZNmyZURFRclNvw1SUlJYunQpV155pfweWyEBYKEFCxbw5ptvSgB4iZqaGtLS0li/fj2fffYZAwcOJCkpiRdffNGzl2DoYGJjY3E4HGzdupWYmBiry/FoEgAWmjZtGo8++igHDhwgKirK6nJEO6isrOSbb75h3bp1fP311wwfPpwZM2awZMkS+vXrZ3V5nZJSynwyWAKgZS4JAKXUTGAZ4Au8pLVeesbXuwKvA5OAk8AirXW2K67dkfn5+ZmDwb/5zW+sLke4SFlZGV988QWpqamkpaUxduxYkpKSuOOOO+jZs6fV5XmFyy67jBdffJGSkhJCQ0OtLsdjtXlKgVLKF3gWmAWMBq5SSo0+47DFQJHWejjwN+DRtl63s5g/fz5r166lurra6lJEGxQXF/Phhx9y2223MXv2bP73v/8xbdo0Vq9ezXPPPUdKSorc/N0oNDSUadOmsWbNGqtL8WiuaAEkAPu11gcAlFJvA/OAXQ2OmQc8VP/xe8AzSimlPXUhIjcaMGAAo0ePlsHgDujEiRPm07i7du1i8uTJzJ49m0ceeUQ2J/EAycnJPPzww1x11VUyGNwMVwTAQOBwg9dHgMnNHaO1tiulSoCewAkXXL/DW7BgAW+99ZYEQAeQm5vL+vXrWbduHQcPHuTCCy9k4cKFTJkyRdZ28jAxMTH4+PiwefNmYmNjrS7HI3nUILBSagmwBPCqWREXXXQRjz76KAcPHmTo0KFWlyPOkJOTY87Rz8vLY/r06SxevJj4+HhZgsGDnR4M/ve//y0B0AxXBMBRIKLB60H1n2vqmCNKKT8gFGMwuBGt9XJgORjLQbugtg6h4WDwHXfcYXU5Xk9rzf79+80lGEpLS5kxYwa33norsbGxsgRDB3LppZfywgsvUFxc3KmXwz5XrggAGzBCKTUU40Z/JXD1Gcd8CNwAfANcDqRK/39j8+fP54YbbuCWW26Rd5UW0Fqza9cuc0N0u91OYmIiDzzwAGPHjpUlGDqo7t27M336dFavXs11111ndTkep80BUN+nfwvwMcY00Fe01juVUn8EMrTWHwIvA/9USu0HCjFCQjQwcOBARo0aRWpqKjNnzrS6HK/gcDjYsmWLOZAbEBBAUlISjzzyCOedd54MHHYSKSkpPPTQQ1x77bXy//QMLhkD0FqvBdae8bkHG3xcBVzhimt1ZsnJybzzzjsSAO3IbrezadMmcwmGnj17kpiYyNNPP83QoUPlBtEJjRs3Dn9/fzIyMoiPj7e6HI/iUYPA3m769Ok8+uijZGdnM2TIEKvL6TRqamrYuHEjqampfP7550RERJCUlMTLL79MRERE6ycQHZpSipSUFFauXCkBcAYJAA/ScDD49ttvt7qcDq2iooKvv/6a1NRUvv76a0aOHEliYiI33XQTffv2tbo84WazZs3iueeeo7CwkB49elhdjseQAPAw8+fP58Ybb+Tmm2+WweCzdOrUKXMJhvT0dMaNG0dSUhJ33nmn/KP3ciEhISQmJrJ69WpuuOEGq8vxGBIAHmbQoEGMHDmS9evX86Mf/cjqcjxeUVERn332GampqWzZsoW4uDgSExN58MEHZUMQ0UhycjL3338/1113nczqqicB4IGSk5N59913JQCaUVBQwIYNG0hNTWX37t1MmTKFyy67jKVLlxIUFGR1ecJDjRkzhqCgIGw2G5Mnn7lYgXeSAPBA06dP57HHHuPQoUNe9UR0S3Jzc82ncbOzs7nwwgu58sormTJliuyoJpzS8MlgCQCDBIAH8vf357LLLuP999/ntttus7ocy2RnZ5tP4xYUFDB9+nR++tOfEh8fj7+/v9XliQ5o1qxZPPvss5w8eVJWZ0UCwGPNnz+fxYsXc9NNN3nNYLDWmn379pnv9E+dOsWMGTO4/fbbmThxoizBINqsW7duJCUl8cEHH/CTn/zE6nIsJwHgoSIjIxk+fDgbNmzgkksusbqcduNwONi1a5f5Tl9rLUswiHaVkpLCvffey4033uj1f78kADzYggULeP/99ztdAJxeguH0ujtBQUEkJiby2GOPMXLkSHkaV7Sr6OhoQkJCSEtLY8qUKVaXYykJAA82Y8YMHn/88U4xGGy327HZbKxfv54NGzbQq1cvkpKSeOaZZ2Q/ZOFWDZ8MlgAQHuuPAFvHAAAccklEQVT0YPCqVau49dZbrS7nrFVXV5OWlsa6dev44osviIyMJDExkVdeeYVBgwZZXZ7wYjNnzuTpp5/m+PHj9O7d2+pyLCMB4OHmz5/PT3/6U37xi190iMHgiooKvvrqK1JTU/nmm28YOXIkSUlJ3HzzzfTp08fq8oQAICgoiB/+8Id8+OGHLF682OpyLCMB4OEiIyMZNnQoW55/noSSEkhPh/37oaoKfH2hf3+IiYGLLoJZsyAkxO01lpaWmksw2Gw2JkyYwIwZM7jrrrtkCQbhsZKTk7nzzjv58Y9/7LWDwcpT92WJi4vTGRkZVpdhLYcDVq2i6MEHqT1yhD49ekBAAHTtCj4+oDXU1kJlJSgFfn5wxRVwxx3QzrsfFRYWmkswbN26lbi4OJKSkpg2bZoswSA6jOuvv56f//znXHDBBVaX4jJKqU1a6zhnjpUWgKfKy4M774SNGwnt0oX9dXWEdevWuBtIKSMMTj8Ja7fDm2/CRx/BE0/AjBkuLamgoMDcEP3bb79l6tSpzJ07l0cffVSWYBAd0ukngztTAJwNCQBPlJUFixZBcTGEheGjFKFhYRQVF9O3pX50Pz8ID4eKCvjZz+CBB+DGG9tUytGjR83pmjk5OUybNo1rrrmG888/X5ZgEB3eJZdcwt///ncKCgq8coxKAsDT5OYaN//S0kbdOGHh4eRkZ9O7d298WpsnHxQE/v7wpz9BcLDRLXQWDh48aD6Ydfz4cX7wgx+wZMkS4uLiZAkG0akEBQVxySWXsGrVKpYsWWJ1OW4nYwCexOGAq66CjAzjnfwZsnNy6NGjB92dHeitqTH+/Oc/MHRos4dprdm7dy/r1q0jNTWViooKZsyYQVJSEjExMV47QCa8w969e/n1r3/N6tWrO8VyIzIG0FH93/8ZN/9mBnDDw8MpKipyPgC6dDG6g26/HVauNAaO6zkcDnbs2GGuu6OUIikpid///veMGTNGbvrCa4wcOZI+ffrw1VdfcdFFF1ldjltJAHiKujpj4DYw0BjcbUJISAj5+fnU1NQ4/0xAaCjs3AkZGdRNmmQuwbBhwwaCg4NJTEzk8ccfZ8SIEbIEg/BaycnJrFy5UgJAWOSLL6CkBFqYQumjFEHdu/O7nBx2KkVpXR2D/P25pU8fpnbr1uT3OIDqykp233wz94SF0adPH5KSknj22WcZ2kK3kBDe5JJLLuGpp54iPz+ffv36WV2O20gAeIrVq41WQCtCwsLoduIE/xgxggFduvBVWRn3Hj3K20OHMqC+VeDQmvKyMkpPnaKsrIwAf3+GHzrEa+++y8AhQ9r5BxGi4wkICGDmzJmsWrWKX/ziF1aX4zbS0espNm0yun9aERYQwHUhIXSvqcFHKaaFhDDA35+dlZWUlJZy5OhR9u7dS2FhIYGBgURFRTF46FC6h4UxsKrKDT+IEB1TSkoKH3zwAXVOvBHrLCQAPIHdDocOffdAVyvCw8IoLiqirq6Og4WF7D91Cp/cXEpKSggODmb48OEMHjyYHuHh+Ps1aOTt29dOP4AQHd+wYcPo378/X3zxhdWluI0EgCeorjYGfp0chA3p3p3Kqiq27tzJA7m5zOrenR+MGkVkRAThYWH4NTWVra7OmBEkhGjW6WWivYUEgCfw9TWeAXCSj1JERkayIjCQLj4+LKqu5vChQxQcP055RQWOpp7tOL1WkBCiWRdffDE7d+4kNzfX6lLcQgLAE3Ttajyxa7c7dbjWmscKC6nq0oV/nHceo0eNMtY015qCY8fYu3cvOYcOceLkSSqrqtBghEzfvu36YwjR0XXt2pVZs2axatUqq0txCwkAT6AUjB1rrOrphL/k53Owpoa/RUTQ1ccHH6UIDg6mT58+DB06lBEjRtAjPBx7bS25ubns/fZbTuTn88HeveTk5OCpT38L4QmSk5P54IMPsDv5hqwjkz4BT3HRRWCztXpYXm0tK4uL6aIUP2owqPvbfv2YFRoKgK+PDyEhIYTUPzFcW1ZGmVJsPnSIF266CYD4+HgSEhKIj4/3ykWwhGhOVFQUERERfP755yQmJlpdTruStYA8RX4+XHih8SCYq5dhKCqC3/4WFi9Ga83hw4dJT08nPT2djIwMevToYYbBpEmTZD1/4fXWrl3L2rVreeaZZ6wu5aydzVpAEgCe5Oc/h3XrXLuZS02NsWnMV19BE7tzORwOvv32W2w2G+np6Wzbto0hQ4aYLYSYmBhZ9ll4nZqaGmbPns2KFSsYOHCg1eWcFQmAjurIEfjhD43ZOq646Wpt7CnwwAPw4x879S01NTXs2LHDbCHs27ePMWPGmC2E0aNHd4oVE4VozZNPPkmXLl245ZZbrC7lrEgAdGRvvw333290BbX1RltcDBMmwLvvnnO3UkVFBZmZmWYg5OfnExsba7YQoqKiZBE50SllZ2ezZMkS1qxZ06H2wZDloDuyRYuMJ3Zfe83Y4P1c5u5rbSwsN2gQvPhim8YUgoKCuPDCC7nwwgsBYy/gjIwM0tPTeeutt6iqqiIhIcFsIfTv3/+cryWEJxkyZAhDhgzhs88+4+KLL7a6nHYhLQBPpDU89RQ8+6zRCnB2/X8w+vvLyoxppa+8Aj17tl+dQG5urtk6sNlsBAcHm2EQHx9PWDtvTi9Ee/r444/54IMPeO6556wuxWnSBdRZZGbCbbcZM4R8fKBbt+aXi6iuNpZ68POD3/wGFi9uexfSWXI4HGRlZZkDyps3b2bgwIFmCyEmJkY2jxcdSk1NDZdeeimvvPIKERERVpfjFAmAzqSmBlJT4R//gO3bjV2+amqMtX2UMl5rbYTDT34CCxeCh8zrt9vt7Nq1y2wh7N69m1GjRpkthLFjx3aovlXhnZYtW4ZSiltvvdXqUpzitgBQSvUA3gGGANnAQq11URPH1QHb618e0lrPbe3cEgBNKCmBPXsgK+u7d/sDBsB55xn9/R6+jWNlZSVbtmwxWwiHDh0iJibGbCEMHz5ctqIUHufQoUMsXryYNWvWOL8Tn4XcGQCPAYVa66VKqXuBcK31PU0cV6a1bnrLqmZIAHR+JSUlbNq0yWwhlJaWEhcXZ7YQBg0aJDOMhEe46aabWLBgAZdcconVpbTKnQHwLfADrXWeUqo/sEFrPaqJ4yQARKuOHTtmDianp6fj5+fXaIZRz3Ye0BaiOZ988gnvvfceL7zwgtWltMqdAVCstQ6r/1gBRadfn3GcHdgC2IGlWutWl9qTAPBuWmuys7PNMNi0aRO9e/c2AyE2NpZuzeyDLISr1dbWcumll/Liiy8yePBgq8tpkUsDQCn1KdDULsn3Aysa3vCVUkVa6/AmzjFQa31UKRUFpAJJWuusJo5bAiwBiIyMnJSTk+PMzyC8QF1dHXv27DFbCNu3b2fYsGFmIIwfP75D9M+Kjuvpp5/Gbrdz++23W11KizyuC+iM73kN+Ehr/V5Lx0kLQLSkpqaGrVu3mi2EAwcOMHbsWDMQzjvvPBlQFi515MgRbrzxRtauXevRbzbcGQB/BU42GATuobW++4xjwoEKrXW1UqoX8A0wT2u9q6VzSwCIs3Hq1ClzyQqbzcaJEyeIjY01xw+GDBkiA8qizW6++WYuu+wyZs2aZXUpzXJnAPQE/g+IBHIwpoEWKqXigF9orX+qlJoKvAA4MDageUpr/XJr55YAEG1x4sQJbDYbNpuNtLQ0HA6HuX5RQkKC7IEgzklqaipvvfUWL774otWlNEseBBOigdN7IJzuLsrIyCA0NNQMg7i4ONkDQTjFbrdz6aWX8vzzzxMVFWV1OU2SABCiBQ6Hg3379pndRVu2bGHw4MGN9kAICAiwukzhoZ577jkqKyv5zW9+Y3UpTZIAEOIs1NbWsn37drOFsHfvXqKjo80WwujRo/E7l1VZRaeUm5vLddddx9q1az1ysyQJACHaoKKigs2bN5sthNzcXCZOnGi2EIYNGyYDyl7u1ltvZebMmcyePdvqUr5HAkAIFyoqKjL3QEhPT6eystJcsiIhIYEBAwZYXaJws/Xr1/PGG2/w8sutzmdxOwkAIdpRbm6u2V1ks9kICAhg8uTJ5h4I4eHfexZSdDJ2u53LLruM5557zuMGgyUAhHATrTVZWVlmGGRmZjJgwACzuyg2Nlb2QOiknn/+ecrKyrjrrrusLqURCQAhLFJXV8fOnTvNFsKuXbsYOXKk+UDauHHjZA+ETiIvL49rrrmGtWvXetSsMQkAITxEVVUVW7duJS0tDZvNRk5ODhMmTDBbCCNHjpQlKzqw2267jYsvvpg5c+ZYXYpJAkAID1VaWkpGRobZQiguLm60B0JERITMMOpAPv/8c1599VVeffVVq0sxSQAI0UEUFBSYy1XYbDZ8fHzMMEhISKBXr15WlyhaUFdXx5w5c1i2bBkjRoywuhxAAkCIDklrTU5OjjmgvGnTJnr27NloD4SQkBCryxRnWL58OUVFRdxzz/c2Q7SEBIAQnYDD4WDPnj1mC2HHjh0MHTrUbCHExMR49LLE3qKgoIArr7ySNWvWEBgYaHU5EgBCdEY1NTVs27bNbCFkZWUxZswYs4UQHR0tA8oWueOOO5g+fTrz5s2zuhQJACG8QVlZGZmZmWYL4fjx4432QBg6dKgMKLvJl19+yfLly3n99detLkUCQAhvdPLkyUZPKNfW1jbaA6Fv375Wl9hpORwO5s6dyxNPPMGoUS1uitjuJACE8HJaa44ePWqGgc1mo3v37mYgxMXFERoaanWZncpLL71EQUEBv/3tby2tQwJACNGIw+Fg//795oJ2W7ZsISIiwmwdxMTEeMQAZkd2/PhxFi5cyJo1ayxd/kMCQAjRotraWnbu3Gm2EPbs2UN0dLTZQhgzZozsgXAO7rzzTqZOnUpycrJlNUgACCHOSkVFBVu2bDFbCEePHiUmJsYcUB4+fLjMMHLC119/zXPPPccbb7xhWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns3TpUkaPHm1JDRIAQgiXysvLM2cYpaenExAQYIZBfHw8PXr0sLpEj/HKK6+Ql5fH/fffb8n1JQCEEO1Ga83BgwfNMMjMzKRfv35mGMTGxhIcHGx1mZY5efIkl19+OR999JElvwcJACGE29TV1bFr1y6zhbBz505GjBhhthDGjRvndUtW3H333UyePJmUlBS3X1sCQAhhmerqarZu3Wq2ELKzsxk/frzZQhg1alSnH1BOS0tj2bJlvPnmm25/GvtsAkDmeQkhXKpr167m8wVg7IGQmZlJeno6v/vd7ygsLCQuLs5sIURGRna6JSvi4+MpLy9n165djBkzxupymiUtACGEWxUUFJgzjNLT0wHMwIiPj6d3794WV+gaK1asICcnhwcffNCt15UuICFEh6C15vDhw+aGOBkZGfTo0cMMg0mTJtG9e3eryzwnhYWFpKSksHr1arp16+a260oACCE6JIfDwbfffmsOKG/bto0hQ4aYLYQJEybQtWtXq8t02r333ktsbCwLFy502zUlAIQQnUJNTQ07duwwWwj79u0z90CIj49n9OjR+Pr6Wl1ms9LT03nyySd56623zHGOU6eguhq6dIGQEHD18IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kAwlom+hmnTlrJr12C2bYPSUvDxAYcDAgNhzBi4+GJIToaePdt+TQkAIYRXKCwsbDSgXF1d3egJ5f79+1tWW0UF/O1v8OyzJVRX2+nZsyeBgeDn9927frsdqqqM//r4wJw5cP/90JYHqyUAhBBe6cw9EIKDg83WQVxcHGFhYW6pIzMTfvUryM+HoCA72dlZDB8+vMXuqro6o3UQEgKPP260Cs6FBIAQwus5HA6ysrLM7qLNmzczcODARnsgtMe6/evWwS9/abzLPz355+jRIwQGBjm1ZlJlpTFG8OCDcP31Z399CQAhhDiD3W5vtAfC7t27GTVqlBkIY8aMwd/fv03XSE+Ha681BngDAr77fEVFOfn5+URFRQGtj1HU1kJZmdGFNHfu2dUgASCEEK2orKxky5Yt2Gw20tLSOHz4sLkHQkJCwlnvgVBWBomJxiyf768Bp8nKyqJ//wFOtzqqq41uoU8/hQEDnP+5ZCkIIYRoRWBgIFOmTGHKlCkAlJSUmAPKK1eupLS0lLi4ODMQBg4c2OIMo0cfhcJCaHqYQREeHk5xcZHTAdC1KxQXwz33wD//eQ4/oBOkBSCEEE04duyY2V2Unp6Ov79/oxlGPRvM2SwshPPPN975NzfOW1dnZ//+LIKDX6eyMgOHoxI/v1707Hk9YWHzm/werY2B4Y8+glGjnKtbuoCEEMKFTu+BcDoMMjMz6d27t9k62LEjgSefDGjm3f93cnOP4uubT+/e4/Dx6UJ1dTY5OUuIiFhGYGB0k99TVASLFsEjjzhXq9u6gJRSVwAPAdFAgta6yTu2UmomsAzwBV7SWi9ty3WFEMKdlFJERUURFRXFokWLqKurY8+ePaSnp/P222/zzjsKuz2K2lp/goODCQwMRKnvjx+EhYWTl1dJ376nB5sVSilqa480GwDBwfDf/zofAGf1c7WlBaCUigYcwAvAnU0FgFLKF9gL/BA4AtiAq7TWu1o6t7QAhBAdgcMB553nACqpqiqnoqKc6upqAgMDCQ4OJjg4mICAAIzZP5oDBw7g5/cmFRUfo3U1AQGjGDz4RXx8mh4b0BpKSmDjRujVq/V63NYC0Frvrr9gS4clAPu11gfqj30bmAe0GABCCNER5OUB+NC9ezDduxvTfxyOOsrLKygvLyc3Nxe73U5QUBDBwcF069aN2trFjBr1AJWV26io2IRSze+YphT4+8OBA84FwNlwxyyggcDhBq+PAJPdcF0hhGh3lZXGMg4N+fj4EhISQkhICAB2e60ZCOXlZWhtvHEOCoqhpGQtRUXv0aPHlc1eQ2vjOq7WagAopT4F+jXxpfu11h+4shil1BJgCUBkZKQrTy2EEO3Cz8+4Qbd8jD+hoaGEhoYCGqPr/XTPSR01NUda/P7TrQBXazUAtNbnuCKF6SgQ0eD1oPrPNXWt5cByMMYA2nhdIYRod/36GYu5ORzfbwmcyW4vpKIig27dLgQCKC9Po6TkYwYObHmEt67u7B4Gc5Y7uoBswAil1FCMG/+VwNVuuK4QQrS7gACIjISCAmN555YpioreIy/vEcCBv39/+vb9DSEhFzX7HXV1RrC0R6dIW6eBLgCeBnoDa5RSW7TWP1JKDcCY7jlba21XSt0CfIwxDfQVrfXONlcuhBAeYsYMWLGi9QDw8wtn8ODlZ3XusjKYMqX11sW5aOssoPeB95v4fC4wu8HrtcDatlxLCCE81ZVXGss1GIO7rj23UvCTn7j2nKe1Q6YIIYR3GTkSJk405uu7UlkZ9O4N06a59rynSQAIIYQLLF1qrANUW+ua89XVGed64onm1xdqKwkAIYRwgagouPtu4127w9G2c51eBO7qq41F5tqLBIAQQrjIT35ibAhTUmJMDT0XDoexDPSMGcauYO1JAkAIIVxEKXjoIbjtNqMlUFp6dt9fXm6ExxVXwPPPt8/DXw1JAAghhAspBbfeCitXwqBBRgiUlDTfLeRwGLuInd4Q/rXXjPGE9r75g+wIJoQQ7WL8eGM7xy+/hJdegm++MQZztf5uuqhSxkDv+PGwZAkkJRn7CbuLBIAQQrQTHx+46CLjT22tsaLnwYPGfr/+/hARYUwh7drVmvokAIQQwg38/Y1tHZ3d2tEdZAxACCG8lMfuCayUOg7knPHpXsAJC8pxlqfXB1Kjq0iNbefp9UHHrHGw1rq3M9/osQHQFKVUhrNbnVnB0+sDqdFVpMa28/T6oPPXKF1AQgjhpSQAhBDCS3W0ADi7hbTdz9PrA6nRVaTGtvP0+qCT19ihxgCEEEK4TkdrAQghhHARjw4ApVQPpdQnSql99f8Nb+a4x5RSO5VSu5VSf1fK1XvytLm+SKXU/+rr26WUGuKO+s6mxvpjuyuljiilnnFXfc7WqJSKUUp9U///eZtSapEb6pqplPpWKbVfKXVvE1/vqpR6p/7rae78/3oWNd5R/3dum1JqnVJqsKfV2OC4FKWUVkq5fdaNMzUqpRbW/y53KqX+5Wk11t9n1iulNtf//57d1Hka0Vp77B/gMeDe+o/vBR5t4pipwFcY+w37At8AP/CU+uq/tgH4Yf3H3YAgT/odNjh2GfAv4BkP/P88EhhR//EAIA8Ia8eafIEsIAroAmwFRp9xzC+Bf9R/fCXwjpt/b87UOOP03zfgJk+ssf64EOBzYCMQ52k1AiOAzUB4/es+HljjcuCm+o9HA9mtndejWwDAPGBF/ccrgPlNHKOBAIxfSlfAHzjmluqcqE8pNRrw01p/AqC1LtNaV7ipPnDud4hSahLQF/ifm+pqqNUatdZ7tdb76j/OBQoApx52OUcJwH6t9QGtdQ3wdn2dDTWs+z0gyV2tT2dr1Fqvb/D3bSMwyI31OVVjvT8BjwJV7iyunjM1/gx4VmtdBKC1LvDAGjXQvf7jUCC3tZN6egD01Vrn1X+cj3GDakRr/Q2wHuMdYR7wsdZ6t6fUh/HOtVgptbK+afZXpVQ7bfDWpFZrVEr5AE8Ad7qxroac+T2alFIJGIGf1Y41DQQON3h9pP5zTR6jtbYDJUDPdqzpTM7U2NBi4D/tWtH3tVqjUioWiNBar3FnYQ0483scCYxUSn2llNqolJrptuoMztT4EHCtUuoIsBb4VWsntXwxOKXUp0C/Jr50f8MXWmutlPrelCWl1HAgmu/e2XyilJqmtf7CE+rD+B1PAyYCh4B3gBuBl11Rn4tq/CWwVmt9pL3ewLqgxtPn6Q/8E7hBa93Gjfe8h1LqWiAOmG51LQ3Vv/l4EuPfhCfzw+gG+gHGveZzpdQ4rXWxpVU1dhXwmtb6CaXUFOCfSqmxLf07sTwAtNYXN/c1pdQxpVR/rXVe/T/8pppdC4CNWuuy+u/5DzAFcEkAuKC+I8AWrfWB+u9ZBZyPCwPABTVOAaYppX6JMUbRRSlVprVudsDOghpRSnUH1gD3a603uqq2ZhwFIhq8HlT/uaaOOaKU8sNodp9s57qauv5pTdWIUupijKCdrrWudlNtp7VWYwgwFthQ/+ajH/ChUmqu1jrDQ2oE499xmta6FjiolNqLEQg295ToVI2LgZlg9IwopQIw1glqtrvK07uAPgRuqP/4BuCDJo45BExXSvkppfwx3uG4qwvImfpsQJhS6nR/dSKwyw21ndZqjVrra7TWkVrrIRjdQK+78ubvhFZrVEp1Ad6vr+09N9RkA0YopYbWX/vK+jobalj35UCqrh+Bc5NWa1RKTQReAOZa0G/dao1a6xKtdS+t9ZD6v38b62t1182/1RrrrcJ4949SqhdGl9ABD6vxEJBUX2M0xtjo8RbP6s6R7HMY+e4JrAP2AZ8CPeo/Hwe81GB0/AWMm/4u4ElPqq/+9Q+BbcB24DWgi6fV2OD4G3H/LCBn/j9fC9QCWxr8iWnnumYDezHGGu6v/9wfMW5Q1P8DexfYD6QDUe78vTlZ46cYkyJO/84+9LQazzh2A26eBeTk71FhdFXtqv93fKUH1jgaY0bk1vr/15e0dk55ElgIIbyUp3cBCSGEaCcSAEII4aUkAIQQwktJAAghhJeSABBCCC8lASCEEF5KAkAIIbyUBIAQQnip/wdIjXz8NwuAWAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -386,16 +395,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -1.4991857466693328\n", - "time: 35.49838590621948\n", - "maxcut objective: -3.999185746669333\n", + "energy: -1.4999670167944144\n", + "time: 26.714055061340332\n", + "maxcut objective: -3.9999670167944146\n", "solution: [1. 0. 1. 0.]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX++PHXhx1kdV9QAbcys0zHstTSdNSm1DS5TH3TNHUas5rcM9vMxt1pcqppc1x+UxxAM7TSMsecFitr2nPfEDQXEGS9wP38/jhoZOxc7uFy38/Hgwdc7uHe90F8n3Pen8/5vJXWGiGEEJ7Fy+oAhBBCuJ4kfyGE8ECS/IUQwgNJ8hdCCA8kyV8IITyQJH8hhPBAkvyFEMIDSfIXQggPJMlfCCE8kI/VAZSnadOmOioqyuowhBDCrXz55ZdntNbNKtuu3ib/qKgodu/ebXUYQgjhVpRSR6uyXb1N/kIIC+Xnw7Fj5mcfH4iMhNBQq6MSTiTJXwhhSk2FN96Ad96Bo0fB1xeUAq2hsBCaNYMbb4S774YrrjCfE25Lkr8Qnu7sWXjiCdi6FRwOCAiAsDDwKjUfRGvIyYGkJNiwAS6/HJYuhS5drItb1IrM9hHCk33wAQwcCFu2QEgIRERAYOCvEz+YZ/n+/ubzoaGwZw/cdhu88IJ5YBBuR5K/EJ5qwwb405+gqAjCw3+b8MujlHkACAyE5cth3jzzikG4FUn+QniinTth9mwICjKTeE34+prloTfegL//3bnxiTonyV8IT3PuHDz0kJm8/fxq91peXuZVwAsvwLffOic+4RKS/IXwNIsWQVaWedbvDD4+Zino4Yel/ONGJPkL4UnS081afyVz9hPS07n78GH67NnDk2lplb9uaKh5X8CnnzopUFHXJPkL4UnWrzfPzr29K9ysqY8P9zZtyvCwsKq/ttbw6qu1DFC4ilOSv1JqlVLqlFLq+3KeV0qp55RSB5RS3yqlrnHG+wohqmnrVrNMU4mBoaHcFBJCWCUHiV8JCYFPPpHSj5tw1pn/amBoBc8PAzqVfEwGXnTS+wohqsrhgB9+MG/iqgsXDhRHjtTN6wunckry11rvBNIr2GQEsFabdgHhSqlWznhvIUQVpaebc/qrcOZfY0pJ8ncTrqr5twFSSj0+XvI9IYSr2O1VvpHLbrdz8uefOZuejt1ur/p7aA0FBTUMULhSvVrbRyk1GbMsRLt27SyORogGxte3wnq8BnJyckhPTycvL4/w8HCCgoI4lZmJvbAQP1/fyt9DqdrfOyBcwlVn/qlA21KPI0u+9yta65e11r201r2aNau0F4EQojqaNDHr8sXFv/p2scNBekYGBw8e5NSpU4SGhBDTsSMRTZviHxBAQFAQh44do/CSnyuT1tC+fR3tgHAmV535JwNTlVLxwLVAptb6hIveWwgBZsmna1f48UcIDqbAbicjPZ3MrCwaBQXRulUrAoOCUMDLp0/z8pkzF3/0vcJC7jx0iFmdOlHuQs4Xriqio+t6T4QTOCX5K6XeAG4CmiqljgNPAL4AWut/Au8AtwAHgFxgvDPeVwhRPY5Bgyj47DNOZ2SQn5dHeEQEMdHR+F5S0pncrBmTS119O7Tm6JEjnD17lqZNmpT94ufPQ58+ld5DIOoHpyR/rfUfK3leA/c7472EENWXnZ3Npk2b2LJ5M4uzsght3pzIyEi8qtiQxUspItu25fDhwwT4+xMcHFz2hhMnOjFqUZfkDl8hGrDDhw+zePFihg8fznfffcf0RYtoMWkS4VDlxH+Br48PkZGRpKWlUXDpDKDz56F1a+jb13nBizpVr2b7CCFqz+Fw8NFHHxEfH8+BAwcYPXo0hmFwcRLFvHmwfTvk5VV7OeegwECaNW/O8ePHiYqKwtvLyxxALi6GZ5+tek8AYTlJ/kI0EFlZWSQnJ5OQkEBERAQ2m41Bgwbhd+nUy8aNYcUKmDzZrM9Xc2pmRHg4+Xl5pKWlEdm6NSory3ytHj2cuDeirknyF8LNHTx4EMMweP/99+nXrx8LFy7kiiuuqPiHBg6E+fPhscd+6dtbDS1atuT44cOcT0khdNw4mDmzFnsgrCDJXwg3VFxczM6dOzEMgyNHjjB69GiSkpJoUt5MnLLceafZk3fmTLPBS1iYeZNWZbTG6/x52oSH81pAAJ1vuYWbpNzjdiT5C+FGMjMz2bhxI4mJiTRv3py4uDgGDBjwm6maVTZsGPTsCXPnwo4d5lVAo0ZmKaj0gUBrc12gnBzz+zExeC9fTl8vLx588EHaRUURExPjlH0UrqHMWZj1T69evfTu3butDkOIemHfvn0YhsH27du58cYbsdlsXH755c59k8OH4fXX4d134cQJczmICweAwkKzYcsNN8D48WZ9v+S5zZs3s2rVKtasWUNISIhzYxLVppT6Umvdq9LtJPkLUT8VFRWxY8cODMMgNTWVO+64g9tvv52IiIi6f/Pz583VOfPzzYNAmzZQwZIry5cv5+jRozz77LN4SQnIUpL8hXBTGRkZvPnmmyQlJdGmTRtsNhs33XQTPnW5FHMtFRUVMXXqVLp168bUqVOtDsejVTX519+/JiE8zE8//YRhGHz44YcMHDiQZ599ls6dO1sdVpX4+PiwaNEixo4dS5cuXRg8eLDVIYlKSPIXwkJFRUVs376d+Ph4Tp06xZgxY3j44YcJq07v3HoiPDycZcuWMWXKFNq3b+82By5PJclfCAukp6ezfv16NmzYQPv27bn77rvp378/3m6+KFrnzp2ZNWsWM2bMYO3atYSHh1sdkiiHJH8hXOj777/HMAw++ugjBg8ezMqVK+nYsaPVYTnV73//e/bs2cMjjzzCP/7xD7c/oDVUMuArRB2z2+1s27YNwzDIyMggNjaW4cOHExoaanVodcbhcPDQQw8RHR3NtGnTrA7Ho8iArxAWO3369MXSTseOHbn33nvp27evR0yF9PLy4plnnmHcuHF06dKFP/zhD1aHJC4hyV8IJ9Ja89133xEfH8+uXbsYMmQIL730EtEe2N0qNDSU5cuXM3nyZKKjo+natavVIYlSJPkL4QR2u52tW7diGAY5OTnExsYyd+7c8pueeIiYmBgeffRRZs6cybp162jcuLHVIYkSkvyFqIVTp06RlJTExo0bueyyy/jzn/9Mnz59PKK0U1UDBgxg3759zJo1ixdffLHm6xAJp5K/UCGqSWvNV199xezZs4mLiyM3N5dXX32V5557jhtuuEESfxkmTZpEaGgoy5YtszoUUUJm+whRRQUFBWzZsgXDMCgoKMBms3HrrbcSFBRkdWhuIScnh3HjxnHnnXcyatQoq8NpsGS2jxBOcuLECRITE0lOTqZbt248+OCD9O7dW87wq6lRo0asWLGCe++9l44dO9K9e3erQ/JokvyFKIPWmi+//JL4+Hi++uorbr31VlavXk1kZKTVobm1du3a8eSTTzJ79mzWrFlD8+bNrQ7JY0nZR4hS8vLyePfddzEMA601NpuNYcOGSWnHyf71r3+xY8cOXnnlld/2GBa1Iks6C1ENqampJCYmsmnTJq6++mri4uLo1asXqiptDUW1aa155JFHCAwM5PHHH5ffsxNJzV+ISmit+fzzzzEMg2+//Zbhw4ezbt06WrdubXVoDZ5SiieeeILx48eTkJCAzWazOiSPI8lfeJzc3Fw2b95MQkICPj4+2Gw2/vrXvxIQEGB1aB4lMDCQFStWcM8999CxY0d69uxpdUgeRZK/8BjHjh0jMTGRt99+m169ejF37lx69OghJQcLtW7dmgULFjB37lxWr15Nq1atrA7JY0jyFw2aw+Fg165dxMfH89NPPzFixAhef/11WrZsaXVookTv3r0ZN24c06dPZ9WqVXIF5iIy4CsapJycHDZt2kRCQgKBgYHYbDaGDBmCv7+/1aGJMmiteeKJJyguLmbBggVyNVYLMttHeKQjR46QkJDAli1buPbaa7HZbFx11VWSTNxAQUEBEydOZPDgwYwdO9bqcNyWzPYRHsPhcPDxxx9jGAb79u3j9ttvJz4+Xm4gcjP+/v4sW7aMcePG0alTJ/r06WN1SA2aJH/hts6fP09ycjIJCQmEhYURFxfHihUr5KYhN9aiRQsWLlzI7Nmzee2112jbtq3VITVYkvyF2zl06BCGYfDee+9xww03sGDBArp16yalnQaiR48eTJ48menTp7N69Wq5u7qOSPIXbsHhcLBz504Mw+DQoUOMHj2axMREmjZtanVoog6MHj2aPXv28MQTT7B48WJZRK8OyICvqNeysrLYuHHjxURvs9m4+eabpSGIB7Db7dx3331cf/31TJw40epw3IYM+Aq3tn//fgzD4IMPPqBfv34sXrxYesB6GD8/P5YsWcLYsWPp3Lkz/fv3tzqkBkWSv6g3iouL2bFjB4ZhkJKSwh133MH69eul76sHa9q0KUuWLOHhhx/mlVdeISoqyuqQGgxJ/sJy586d48033yQpKYlWrVphs9kYMGAAPj7y5ymgW7duPPDAA0ybNo01a9YQEhJidUgNglNGUZRSQ5VSe5VSB5RSc8p4/h6l1Gml1NclH1LAE+zZs4ennnqK22+/nZSUFFasWMGrr77K4MGDJfGLXxk+fDjXXXcd8+bNw+FwWB1Og1DrAV+llDewDxgMHAe+AP6otf6x1Db3AL201lOr+roy4NswFRUVsX37dgzD4OTJk4wZM4aRI0cSHh5udWiinisqKmLKlClcffXVTJkyxepw6i1XDvj2Bg5orQ+VvHE8MAL4scKfEh4lPT2dDRs2sH79etq2bctdd93FjTfeiLe3t9WhCTfh4+PD4sWLGTt2LF26dOHmm2+2OiS35ozk3wZIKfX4OHBtGduNVkr1x7xKeFhrnXLpBkqpycBkMHt9Cvf3448/Eh8fz3//+18GDRrEc889R6dOnawOS7ipiIgIli5dytSpU2nXrp38LdWCqwqrm4A3tNYFSqk/AWuAgZdupLV+GXgZzLKPi2ITTlZYWMi2bdswDIOzZ88yZswYZsyYQWhoqNWhiQbgsssuY8aMGcyYMYN169bJ31UNOSP5pwKlF+CILPneRVrrs6UevgosccL7inrmzJkzF0s7HTp0YPz48fTr10/uzhRON3ToUPbu3cucOXNYuXKllA9rwBn/K78AOimlopVSfkAckFx6A6VU6fY8w4GfnPC+oh7QWvPtt9/y6KOPMmbMGM6ePcuLL77ICy+8wI033iiJX9SZqVOnopRi5cqVVofilmp95q+1LlJKTQW2At7AKq31D0qp+cBurXUy8KBSajhQBKQD99T2fYW17HY777//PvHx8WRlZWGz2ZgzZ47MwRYu4+3tzcKFCy8OAA8bNszqkNyKrO0jquXUqVMkJSWxceNGOnfuTFxcHNdff72c4QvLHDx4kD/96U+sXLmSyy+/3OpwLCdr+win0VrzzTffYBgGn332GUOHDuWVV16hffv2VocmBB06dGDu3LnMnDmTtWvXynIgVSTJX5SroKCArVu3Eh8fT35+PrGxscybN49GjRpZHZoQvzJw4MCLA8AvvPCC3CFeBVL2Eb9x8uRJEhMTSU5OpmvXrthsNq677jop7Yh6zeFwMH36dFq1asWsWbOsDscyUvYR1aK15quvvsIwDHbv3s0f/vAHXnvtNbnZTrgNLy8vnn76acaNG8dbb73FiBEjrA6pXpPk7+Hy8/N55513SEhIoLi4mNjYWJ588klpnSfcUnBwMCtWrGDixInExMRw5ZVXWh1SvSXJ30OlpaVdLO1cddVVTJs2jd/97nfSB1e4vfbt2/P4448ze/Zs1qxZQ7NmzawOqV6S5O9BtNZ88cUXxMfH880333Dbbbexdu1a2rRpY3VoQjhVv3792L9/P7NmzeKll17Cz8/P6pDqHRnw9QC5ubkXSzsAcXFxDBs2jMDAQIsjE6LuaK2ZPXs2ISEhzJs3z2Ouaqs64CvJvwFLSUkhMTGRzZs307NnT2w2Gz179vSY/wRC5ObmMn78eO644w7GjBljdTguIbN9PJTD4eCzzz4jPj6eH374gREjRvDvf/+bVq1aVf7DQjQwQUFBLF++nAkTJtChQweuueYaq0OqNyT5NxA5OTls3rwZwzAICAjAZrOxZMkS/P39rQ5NCEtFRkby9NNP88gjj7BmzRpatmxpdUj1giR/N3fs2DEMw+Ddd9+ld+/ePPbYY1x99dVS2hGilGuvvZa7776bGTNm8Nprr8lJEZL83ZLD4eCTTz7BMAz27t3LyJEjiY+Pp3nz5laHJkS9ddddd7Fnzx4WLFjA/PnzPf4ESQZ83cj58+fZtGkTCQkJhISEYLPZ+P3vfy/T2ISoovz8fO69915uueUW7rrrLqvDqRMy4NuAHDp0iISEBLZu3UqfPn2YP38+V155pcefuQhRXQEBASxfvpxx48bRqVMnevfubXVIlpHkX085HA7++9//YhgGBw8eZNSoUSQkJMjdikLUUsuWLVm4cCFz5szhX//6l8fe5CjJv57JysrirbfeIjExkYiICGw2G4MGDZLSjhBOdM011zBx4kSmT5/OqlWrPHItK6n51xMHDhzAMAy2bdtGv379sNlsXHHFFVaHJUSDpbXm6aefJicnh0WLFjWYMqrc4esGiouL+fDDDzEMg6NHjzJ69GhGjRpFkyZNrA5NCI9gt9uZPHky/fv3Z8KECVaH4xQy4FuPnTt3jo0bN5KUlETz5s2Ji4tjwIAB+Pr6Wh2aEB7Fz8+PpUuXMm7cODp37kzfvn2tDsllPCr5aw3ffQfvvQe7dsHevZCXB0pBixbQowf06wdDh0JoqPPff9++fcTHx/Of//yHm266iWXLlnHZZZc5/42EEFXWrFkzFi1axPTp03n11Vc9pje1R5R9tIbt22HJEjh0CIqKwN8fAgLgQmdCux3y882vfXxg1CiYPh1qW4EpKiriP//5D4ZhkJaWxh133MHtt99ORERE7V5YCOFUGzduZN26daxZs4bg4GCrw6kxqfmXyMiAefNgyxbw9YVGjcwz/YoUFcH58xAcDIsXm1cC1ZWenn6xtNOmTRvi4uK46aab8Pb2rtmOCCHq3OLFi/n5559ZtmyZ2/asluQPpKVBXBykpkJY2C9n+VWVl2deDfzlLzB1auUHDYAff/wRwzDYuXMnAwcOxGaz0blz55rtgBDCpQoLC5kyZQo9e/bkvvvuszqcGvH4Ad+MDDPxp6VBTSssgYHm1cLf/gZBQXDvvWVvV1hYyPbt2zEMg1OnTjFmzBimTZtGWFhYzXdACOFyvr6+LF68mLFjx9K5c2cGDhxodUh1pkEmf63h0UfNM/7altZ9fCAkBBYtgj59oGvXX547e/Ys69evZ8OGDURFRXH33XfTv39/Ke0I4cYaN27M0qVLeeCBB2jfvj0dOnSwOqQ60SCT//btsHWrWepxBl9fs+Tz4IPm2MGePd8THx/Pxx9/zODBg3n++ecb7B+IEJ7o8ssvZ9q0aUyfPp21a9cSWhfT/yzW4Gr+WsOQIXDsmDlg6ywOh4OTJ3Pp2vV5goI+JjY2luHDhzfIPwohhOlvf/sbBw8e5LnnnnObAWCPHfD95hu44w5znn5FA7QOh52TJxeRm/s5xcVZ+PpG0rz5VIKDr//VdkVFhWRkZJCRcQ4vrzCuvtqL7dubuM0fghCi5oqLi3nggQe47LLLePDBB60Op0qqmvwbXAZ77z1zqmblM3OK8fVtSbt2L9O58w6aNfszqalzsNvTAE1eXi6pqcc5dOgQxcXFJbW/FqSkNCM7u8H92oQQZfD29mbhwoVs27aNrVu3Wh2OUzW4mv+uXeYNXJXx8gqkWbPJFx+HhPTD17cVZ8/uJj+/Gw6Hg4iICFq1aoWX1y8DuL6+sGcPePAy4EJ4lLCwMJYvX86f//xnoqKi6NKli9UhOUWDO4Xdu9e8c7c6CgsLOXFiL5mZ+ykoaEKzZs3p0KEDjRs3+VXiN7eF/fudGLAQot7r1KkTc+bMYcaMGWRkZFgdjlM0uOSfm1u9m7nOnj3DDz98y+nTTxEUNJhGjTpRUJDPuXPnyMrKIicnm7y8POz2AoqKCiksdJCdXT/HSYQQdWfQoEEMHTqUOXPmUFRUZHU4tdbgBnw7dTLn5Vf1AHDuXDpHj84hKAgaN16A1oriYgcOR3GZn+32YFq3/hcxMf8hODiYkJAQgoODf/P1pR+XPicreArhfhwOBw8//DBt27ZlxowZVodTJo+9w7d5c8jKqlrdX2tNbu5KAgLy8fGZS+PGTVGq4qNGVhYsWjSLm276M9nZ2WRnZ3P+/PnffJ2Wllbuc9nZ2fj6+lZ48KjsQNKoUSOZcSSEi3l5ebFgwQLGjRtHcnIyw4cPtzqkGmtwyb9HD/MGr6ok/5MnF2K3H6ZTpxdJS8vg5MmTtGrVCih/qpBS0L27L40bN6Zx48Y1ilFrTV5e3sUDwaUfFw4Sp0+fLvfgkZeXR0BAQIUHjMoOJoGBgQ2me5EQrhISEsLy5cuZPHkyMTExdOvWzeqQaqTBJf++fc27cCtTWHiCc+c2oJQf+/cPRWtNQUEBDsdM2rSJLfNn7HZztk90dO1iVEoRFBREUFAQzZs3r9FrOBwOcnJyyjwwXPjIzMzk+PHj5V6hFBYWVlieqsrX0ltYeKLo6Ggee+wxZs2axbp16yrsvldQANnZ5oljcDDUl/8yTqn5K6WGAn8HvIFXtdaLLnneH1gL9ATOAjat9ZGKXrOmNf/MTHMaZmCguS5PdRQW2jl8+AiRkW0ICmr0m+czMmDSJJgzp9ph1UtFRUUVlq7KuyIp/djLy6tK4xwVXYXIWkjCXb3yyit8+umn/POf/7x4IuRwmFPON2yAL76AlBS48CeutXnyeN115s2o3btXbbXg6nDZHb5KKW9gHzAYOA58AfxRa/1jqW2mAN211vcppeKA27XWtopetzZLOs+ZA4mJNVvULScnh9TUVKKjo/D1/eUQXVRkziTatg3atatRWA2O1hq73V7hwaO8A8mF53JycvD39690rKOiklZQUJCMfwhLOBwOZs+eTUREBI88Mpf33oOnn4affzYPAoGBZgn6QoJ3OMwrgbw884AQE2Nu78z7hlyZ/PsAT2qth5Q8fgRAa72w1DZbS7b5VCnlA5wEmukK3rw2yf/MGRg4EIqLzV9+daWnnyUzM5P27aMuJpWMDPjTn2DWrBqFJMpxYfyjqgePsg4m+fn5BAUF1Xj2VUhICP7+/jL+IWokNzeXO++cQn7+Yxw40AE/PzPvVPbnpLVZDiouhjvvhLlzq3+PUllcOdunDZBS6vFx4NryttFaFymlMoEmwBknvP9vNG1qLsH8wANmjb665Z/GjRuTn1/AiRNptGnThsxMRbt28NBDdRGtZys9/tGiRYsavUZxcXGF4x/nz58nPT2dY8eOlXtgKS4urvTgUdlViUzf9Uy5uUGcOfNPvvwynaioXIKCgqr0c0qZ09KLi+H//T9z5YDVq83eIa5QrwZ8lVKTgckA7WpZW7nlFti3D1auNH/B1TsAKFq1asmRI0dJScmiffsw1q2r2gwi4Xre3t6EhobWaoXVC+WrisY6Tpw4UeEVio+PT5VnXJV3IJHylXvJzTXP2k+eDCAqKpS0tONER0fj41P1EwFvb7NE/eWXMHkyrF1b/a6DNeGM5J8KtC31OLLke2Vtc7yk7BOGOfD7K1rrl4GXwSz71Dawhx4yj6JLl/5ylK3qlX1xsRchIW05f/4H5swpIDJSFvNpyPz8/Go9fTc/P7/SsY4zZ86Uu01ubi4BAQG1mn0l03dda9kyOHgQwsNBqWAaN25MSspxoqLaV3rPUGlKma/x6adm8r/nnrqL+eJ7OqHm74M54HszZpL/ArhTa/1DqW3uB64sNeA7Smtd9nzKEs5q4A7w/fdmI5aUlMoPAoWFZh3Oy8uc2TNw4Hc88sg0Xn31Vdq3b++UeIQoi8PhIDc3t9qD5qW/ttvt1Z59Vdb0XTmAVO7rr2HMGHP65i8T1jSpqakopWjdujUV3TNUFrvdHBD+4AOIjKxZXC5dz18pdQvwLOZUz1Va62eUUvOB3VrrZKVUALAO6AGkA3Fa60MVvaYzkz+YSf0//4GXX4b//c8cC7DbzXqbUubcW6XM7991l3kpdyHXb9y4kXXr1rFmzRqCg53YIUYIJysqKiInJ6fGs6+ys7MBajX7Kjg4GJ/qDrS5oUmTzJwSHv7r72vt4MiRI4SFhdG4cROKi7M4cWI+2dm78PEJp1mzqYSFDS33dTMyzH7hc+fWLC6PbeZSFefOmYMr+/dDTo45HtC8udmfNzq69FH8F0uWLCEtLY0VK1ZIXVY0aHa7vcozrso7mPj5+dVq9lV9n7578qR5Q2loaNn1+cJCO0eOHKF16zacO/cMoGnV6jHy8/eRkvIQUVH/wt8/pszXLiw0p5bv3l2z2YqS/J2sqKiIKVOmcPXVVzNlyhSrwxGi3rp0+ZKqHjxKf52fn09gYGC1lywp/f2AgIA6K19t2ACzZ1fcJzw3N4eUlIM4HJPo0CERPz9zEkta2uP4+DSjefMHyv3Z7GxYswauvXTeZBV47MJudcXHx4fFixczduxYOnfuzKBBg6wOSYh6yVnLl1RWnsrIyODYsWPlHmSKiopo1KhRtQfNS3+Ut3zJV1+ZJeOKBAU1Iiwsj59/LsLH55cCvr9/J3Jzv6rwZwsL4Ycfapb8q0qSfzVERESwbNky7r//ftq1a0fnzp2tDkmIBsnLy6vW03cLCwsrLU+dPHmywqsSb2/vMq8qkpMnkJPTFIfDgZeXN97eXmV+Dgnx5fTp4Iv3DIHCyysYhyOnwtiVgu++q/GuV4kk/2rq0qULM2fOZMaMGaxdu5bwS0d7hBD1gq+vLxEREUTUZJ0XuLjYY1kHhS1bwvHx8ULrYux2e7n9P4qKTlBUlMXp02do3rwFvr6+OBw5eHn9du2w0ry84Pz5GoVdZZL8a2DIkCHs27ePOXPm8I9//MMjZjYI4WmUUgQEBBAQEEDTpk1/9dyzz5qlmfLuxnU4ijl37hxnz9opLITWrRW+vmaeKCjYV+5g7wVa1/1eMgw1AAAXnUlEQVRNpfV3OL2eu//++/Hz8+PZZ5+1OhQhhIvFxJhTxS9VUJDPiRMn2L//AHl5+URGdqBZs6EUFho4HPnk5n7D+fMfEhb2hwpfv6jI7EpYlyT515CXlxfPPPMMn3zyCcnJyVaHI4Rwod69zbNzk+b8+SyOHj3KsWPH8PHxoUOHGNq0aUNgYBAtWz6Cw1HAvn2DSU2dS8uWj1R65u/vby73XJekXlELFzr6TJo0iejoaK688kqrQxJCuECvXgDFnDmTwblzGfj4+NC4cWNCQkJ+s6yDt3cobdsur/JrOxzmTKK6Tv5y5l9L0dHRPP7448yePZvTp09bHY4Qoo7t27ePxMT5ZGR8SXa2JjIykqioaEJDw6q1nk95srLMJekvGWZwOkn+TtC/f39Gjx7NrFmzsJdVCBRCuLWioiLef/99Jk6cyF/+8hfato3kuecuJyysGf7+NbgNtxwOh/l50iSnvWS5pOzjJBMmTGDv3r0sWrSIxx57TBbGEqIBSE9PZ8OGDaxfv562bdsSFxfHTTfdhI+PDw4HJCebN3w5a8Z3ZiaMHHmhrFS3ZHkHJ8rNzWXChAmMGjWK2NgKFy0VQtRjP/74I/Hx8fz3v//l5ptvJjY2tsybOlNSYNgws0bfqOKp+5XKyjIPItu2mWsG1ZQs72CBoKAgli9fzvjx44mJiaGXKw7fQginsNvtbNu2jYSEBM6ePcuYMWOYMWNGhXcZt21rdt+6+25zPZ6aLvqbmWn+7Btv1C7xV4ec+deBzz//nHnz5rF69eqSNb2FEPXV6dOnWb9+PRs2bKBjx47YbDb69etXrVVFv/7arNOnp5uLvVX1R4uKzDt527WDVavMVYVrS1b1tNjrr7/O5s2bee211wisybqsQog6o7Xm22+/xTAMPv30U4YMGUJsbCwxMRXPv6/I+fOwYIG54qfDYZaBfH1/2zhKa7NhS16euXz8pElmsyln3dEryd9iWmueeuopCgoK+Otf/yoDwELUA3a7nS1btmAYBjk5OcTGxnLbbbcREhLitPc4ehRefx0MwywF+fiYCV9rM9kXFkKTJmapKDbW7CXiTJL86wG73c7EiRMZMGAA48ePtzocITzWyZMnSUpK4q233uLyyy/HZrPRp0+fOm0YozWcOgV795o1faWgcWO47DLzc12RAd96wM/Pj2XLljFu3Dg6depE3759rQ5JCI+htearr77CMAx2797NLbfcwmuvvUa7du1c8v5KQYsW5kd9JGf+LvDtt98yffp0aQIvhAvk5eXx7rvvkpCQQFFREbGxsdx6660ElbcEZwMjZ/71SPfu3bn//vuZNm2aNIEXoo6kpqaSmJjIpk2buOqqq3j44Yfp3bu3jLeVQ5K/i4wcOZK9e/cyb948aQIvhJNorfn8888xDINvvvmG4cOHs3bt2pKuWaIiUvZxIWkCL4Rz5ObmsnnzZhISEvDx8cFmszFs2DACAgKsDs1yUvaph6QJvBC1c+zYMRISEnjnnXfo1asXc+fOpUePHlLaqQFJ/i4mTeCFqB6Hw8Gnn36KYRj89NNPjBw5kjfeeIMW9XUajZuQ5G8BaQIvROXOnz/Ppk2bSEhIIDg4GJvNxrJly/Dz87M6tAZBkr9FpAm8EGU7dOgQhmHw3nvv0adPH+bPn8+VV14ppR0nkwFfCzkcDv7yl7/Qrl07ZsyYYXU4QljG4XCwc+dODMPg0KFDjBo1ilGjRtGsWTOrQ3M7MuDrBi40gR83bhzJyckMHz7c6pCEcKnMzEzeeustEhMTadKkCTabjUGDBuHr62t1aA2eJH+LXWgCP3nyZGJiYujWrZvVIQlR5/bt24dhGGzfvp1+/fqxePFiunbtanVYHkWSfz0QHR3NY489xqxZs1izZo1c6ooGqaioiB07dmAYBqmpqYwePZr169fTuC5XORPlkuRfT/Tv35/9+/cza9YsXnrpJZnRIBqM9PR0Nm7cSFJSEq1bt8ZmszFgwACZ5GAxGfCtR7TWzJ49m+DgYGkCL9zejz/+iGEY7Ny5k4EDB2Kz2eS+FheQ9fzdlDSBF+6ssLCQDz74AMMwOHPmDGPGjGHEiBGEhYVZHZrHkNk+bkqawAt3dObMGTZs2MD69euJiYlh3Lhx9O/fXxYwrMck+ddDbdq0YcGCBcydO1eawIt6S2vNd999h2EYfPLJJ/z+97/nxRdfrFUfXOE6Uvapx6QJvKiP7HY7W7duxTAMsrOz66QPrqg5Kfs0AH/84x/Zt28f8+fPlybwwnKnTp0iKSmJjRs30qVLF+677z6uv/56Ke24KflXq8eUUsydO5fU1FRWr15tdTjCA13ogzt79mzi4uLIycnhlVdeYeXKlfTt21cSvxur1Zm/UqoxYABRwBEgVmudUcZ2xcB3JQ+Paa1lHYMqkibwwgr5+fkX++Da7XZsNhtPPPGEx/TB9QS1qvkrpZYA6VrrRUqpOUCE1np2Gdtla62r1bhWav6/Jk3ghSukpaWRmJhIcnIy3bt3x2az0bt3bznDdyMumeevlNoL3KS1PqGUagXs0Fp3KWM7Sf5OsHHjRtatWydN4IVTaa354osviI+P5+uvv+a2224jNjZW+uC6KVcl/3Na6/CSrxWQceHxJdsVAV8DRcAirfXGyl5bkn/ZFi9ezIkTJ6QJvKi13Nxc3n77bRISEvDy8rrYB1dmlrk3pyV/pdQ2oGUZTz0KrCmd7JVSGVrriDJeo43WOlUpFQNsB27WWh8sY7vJwGSAdu3a9Tx69Ghl8XscaQIvauvYsWMkJiby9ttv06tXL2w2G9dcc43MJmsgnDbVU2tdbpdxpdTPSqlWpco+p8p5jdSSz4eUUjuAHsBvkr/W+mXgZTDP/CuLzRNJE3hREw6Hg127dhEfH89PP/3EiBEjeP3112nZsqzzOuEJajvPPxkYBywq+fzWpRsopSKAXK11gVKqKXADsKSW7+vRpAm8qKrs7Gw2bdpEYmIigYGB2Gw2li5dir+/v9WhCYvVtubfBEgA2gFHMad6piulegH3aa0nKqWuB14CHJj3FTyrtX6tsteWmn/ltm7dyvPPPy9N4MVvHD58mISEBLZu3cp1112HzWaje/fuUtrxALKqp4dYuXIlP/zwgzSBFzgcDj766CPi4+M5cOAAo0aNYvTo0dIcyMNI8vcQ0gReZGVlXeyDGxERcbEPrjQE8kyyto+HkCbwnmv//v0kJCSwbds2+vXrx8KFC7niiiusDku4CUn+DYA0gfccxcXFF/vgpqSkSB9cUWOS/BsIaQLfsGVkZPDmm29KH1zhNPKX04BIE/iG56effsIwDD788EMGDBjA3/72N7p0+c0KKkJUmwz4NjDSBN79FRYWsn37dgzD4NSpU4wZM4aRI0dKH1xRJTLg66GUUjz55JNMmDCBxMREaQLvRs6ePcv69evZsGEDUVFR3H333fTv3x9vb2+rQxMNkCT/BkiawLsPrTXff/89hmHw8ccfM3jwYJ5//nk6dOhgdWiigZPk30BJE/j6zW638/7772MYBpmZmcTGxjJr1ixCQ0OtDk14CEn+DVjv3r255557mDFjhjSBrydK98Ht3LkzkyZN4oYbbpDluYXLSfJv4C40gX/66ad55plnZADYAlprvv76awzD4PPPP2fo0KG88sor0pFNWEpm+3gAu93OxIkTGThwIPfcc4/V4XiMgoICtmzZgmEY5OfnY7PZuPXWW2nUqJHVoYkGTGb7iItKN4Hv2LGjNIGvY2lpaSQlJZGcnEy3bt144IEHuPbaa6W0I+oVSf4eonnz5ixevFiawNeRC31wDcPgf//7H7feeiurV68mMjLS6tCEKJOUfTyMNIF3rtzcXN555x0SEhIAiIuLkz64wlJS9hFlGjlyJHv37mXevHnSBL4WUlJSSExMZPPmzfTs2ZNZs2bRs2dPGVAXbkP+53ug6dOnk5ubyz//+U+rQ3ErDoeDTz75hIceeojx48fj6+vLv//9b5YuXUqvXr0k8Qu3Imf+HkiawFdPTk4OmzZtIiEhgYCAAOLi4liyZIn0wRVuTZK/h5Im8JU7cuQICQkJbNmyhWuvvZbHH3+cq666Ss7wRYMgyd+DdenShZkzZzJjxgxpAl/iQh9cwzDYv38/t99+O/Hx8TRv3tzq0IRwKkn+Hm7IkCHs3buXOXPmeHQT+KysLJKTk0lISCA8PJy4uDjpgysaNJnqKTy6CfyBAwdISEjg/fffp2/fvthsNmmDKdyaTPUUVeZpTeCLi4v58MMPMQyDo0ePMnr0aJKSkmjSpInVoQnhMpL8BeAZTeDPnTvHxo0bSUpKokWLFhf74Pr6+lodmhAuJ8lfXNRQm8Dv2bMHwzDYsWMHAwYMYNmyZVx22WVWhyWEpST5i19pKE3gi4qKLvbBPXnyJGPGjOHNN9+UGU1ClJDkL35jwoQJ7N27l0WLFrldE/j09PSLfXDbtWvHXXfdxY033ih9cIW4hMz2EWXKzc1lwoQJjBo1yi2awF/og/vRRx8xePBgYmNj6dixo9VhCeFyMttH1ErpJvAdOnSgZ8+e5W9cXAxZWebnoCDzwwXsdjvbtm0jPj6ec+fOERsby8yZM6UPrhBVIMlflOtCE/hHHnnkt03gDx+GpCTYuRP27QOHw/x+cTG0aAE9esDIkTBgADh5Ns2pU6dYv349b775Jp06dWLixIn07dtXVigVohqk7CMq9frrr7N582azCXxaGjz2GHz+uZnw/f0hIAAu1NS1Brsd8vLAy8u8Cnj4Ybj7bvNxDWmt+eabbzAMg88++4yhQ4cSGxtLVFSUc3ZSiAaiqmUfSf6iUlpr5j/5JN0//5yRBw+iHA4IC4OqDAQXFEBuLlx1Ffz979C2bbXeu6CggK1btxIfH09+fj6xsbHcdttt0gdXiHJIzV84jdKaeVlZnP3oI9LDw2nSokXVf9jfH/z84NtvYcQIiI+HKqwgeuLEiYt9cLt27crUqVO57rrrpLQjhJNI8heVW7AA7+RkIqKjOXz0KH6NGhFSnRaQSkF4uDkoHBcHmzdD6fGDElprvvzySwzD4Msvv+TWW29l1apVtK3m1YIQonKS/EXFPv4Y1qyB0FB8vb2JjIzkeEoKflFR+Ff3BrDQUDh3DmbOhHXrLo4B5OXl8e6772IYBlprbDYbTz31FEEumjUkhCeS5C/Kl5dnDtb6+V0c0A0KDKRZ8+akpKQQHR2Nd3XLMGFhsGsXbNxI6rXXkpCQwObNm+nRowczZsyQdohCuIgkf1G+d96BjAwzYZcSER5Ofn4+qamptG3blsdTU/k8N5c8h4OmPj6MbdKEkeUso6CVIs/h4MQDD3DfZZdx24gRrFu37tfTSIUQdU6Svyib1vDSS1BOc5eWLVpw9NgxTp8+zfimTXnM1xc/Ly+OFBQw+ehRuvj7c3lg4MXtix0OMjMzSU9Px0spWgQEsPmJJ/Dv399VeySEKKVWUyeUUmOUUj8opRxKqXKnFimlhiql9iqlDiil5tTmPYWLnD4Nhw6Ve7euUorINm3IzMykaUEBfiXlH1Xy3PHCQgAK7HZOnjzJgQMHyM3NpXWrVkTHxBDs74//xx+7am+EEJeo7Zn/98Ao4KXyNlBKeQPPA4OB48AXSqlkrfWPtXxvUZf27DHP+iuov/v4+NA2MpKjx47x98xMtuTkUKA1XQIC6A4cO3aM/Px8wiMiiImJwbf0VURAAHz2Wd3vhxCiTLVK/lrrn4DKBuh6Awe01odKto0HRgCS/OuzgwfNG7QqmdIZEBBAy5YtiTt1ipnR0exKT+fTjAyyzpyhWZMmRLZti1dZfx/+/nDgQB0FL4SojCvumGkDpJR6fLzke6I+y839Zb2eSoSFhhIWFkbKsWN0cjiwBwezOzyc8LCwshM/mNM8CwqcGLAQojoqPfNXSm0DWpbx1KNa67ecGYxSajIwGaBdu3bOfGlRXX5+VVu+oUTzZs1o1qwZCvA6cYJUu73iH9D6l/WAhBAuV2ny11oPquV7pAKlb9GMLPleWe/1MvAymGv71PJ9RW20aWOWZiqRXlTE7txc+gYHE6AUu3Jy2JqZyV/bVHJxZ7eb7yGEsIQrpnp+AXRSSkVjJv044E4XvK+ojcsvr9JmCkjKyOCvJ07gAFr5+jK9RQv6h4RU/IP5+dCr0rWnhBB1pFbJXyl1O7ASaAa8rZT6Wms9RCnVGnhVa32L1rpIKTUV2Ap4A6u01j/UOnJRt9q3N6d5FhRUeAUQ4ePDy+3bV//1vbygb99aBCiEqI1aDfhqrd/UWkdqrf211i201kNKvp+mtb6l1HbvaK07a607aK2fqW3QwgW8vOCee8yBX2ez280DyuDBzn9tIUSVyPq4onw2mznXv+SGLafJzYWxY825/kIIS0jyF+Vr2RKmT4fsbHN2jjNkZ0PTpnD//c55PSFEjUjyFxW791648krIzKz9a9ntZo/fv/8dpBOXEJaS5C8q5u0Nq1aZA8DnztX8CiA/H3JyYPFiuPZa58YohKg2Sf6ico0bQ2Ii9OxpHgAqu4GrNK3Nn3E44B//gFGj6i5OIUSVSfIXVdO4MbzxBsyfD0VFZkLPzS3/SqCoyOwFkJUFffrABx/AsGGujVkIUS5Zz19UnZcX3HUX3HYbJCeb5aCjR8HX1zwIaG0uCXFh6YZRo8zpol27VmupCCFE3ZPkL6ovNBT+7//Mj/PnzeWfT50yB3MbNYJOnSAy8mKPXiFE/SPJX9ROSAj87ndWRyGEqCY5NRNCCA+ktLNu3nEypdRp4KjVcdRQU+CM1UG4kKftL8g+ewJ33d/2WutmlW1Ub5O/O1NK7dZae8ySlZ62vyD77Aka+v5K2UcIITyQJH8hhPBAkvzrxstWB+Binra/IPvsCRr0/krNXwghPJCc+QshhAeS5O8ESqnGSqn3lVL7Sz5HVLBtqFLquFLqH66M0Zmqsr9KqauVUp8qpX5QSn2rlLJZEWttKaWGKqX2KqUOKKXmlPG8v1LKKHn+M6VUlOujdJ4q7O80pdSPJf+mHyilatDDs36pbJ9LbTdaKaWVUg1iBpAkf+eYA3ygte4EfFDyuDxPAztdElXdqcr+5gJjtdZXAEOBZ5VS4S6MsdaUUt7A88AwoCvwR6VU10s2uxfI0Fp3BP4GLHZtlM5Txf39H9BLa90dSAKWuDZK56riPqOUCgEeAj5zbYR1R5K/c4wA1pR8vQYYWdZGSqmeQAvgPRfFVVcq3V+t9T6t9f6Sr9OAU0ClN57UM72BA1rrQ1prOxCPue+llf5dJAE3K+W2q9hVur9a6/9orS80dt4FRLo4Rmeryr8xmCdti4F8VwZXlyT5O0cLrfWJkq9PYib4X1FKeQHLgRmuDKyOVLq/pSmlegN+wMG6DszJ2gAppR4fL/lemdtorYuATKCJS6Jzvqrsb2n3Au/WaUR1r9J9VkpdA7TVWr/tysDqmizsVkVKqW1AyzKeerT0A621VkqVNYVqCvCO1vq4O5wYOmF/L7xOK2AdME5r7XBulMIqSqn/A3oBN1odS10qOWlbAdxjcShOJ8m/irTWg8p7Tin1s1Kqldb6REmyO1XGZn2AfkqpKUAw4KeUytZaVzQ+YBkn7C9KqVDgbeBRrfWuOgq1LqUCbUs9jiz5XlnbHFdK+QBhwFnXhOd0VdlflFKDME8CbtRaF7gotrpS2T6HAN2AHSUnbS2BZKXUcK31bpdFWQek7OMcycC4kq/HAW9duoHW+i6tdTutdRRm6WdtfU38VVDp/iql/IA3MfczyYWxOdMXQCelVHTJ/sRh7ntppX8XdwDbtfvePFPp/iqlegAvAcO11mUe9N1Mhfustc7UWjfVWkeV/N/dhbnvbp34QZK/sywCBiul9gODSh6jlOqllHrV0sjqRlX2NxboD9yjlPq65ONqa8KtmZIa/lRgK/ATkKC1/kEpNV8pNbxks9eAJkqpA8A0Kp7pVa9VcX+XYl65Jpb8m156MHQrVdznBknu8BVCCA8kZ/5CCOGBJPkLIYQHkuQvhBAeSJK/EEJ4IEn+QgjhgST5CyGEB5LkL4QQHkiSvxBCeKD/D8KpFQ7JzLDOAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXl00WEVBxBxW3cEUETMscoWnUcoPS9pppxpmmpqamdWqapmkaa9qctslWm5rqV2OW6UxTou3CRdyXRFRcAFHZZOdyv78/Dp7AWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNH1eFldgBBCCGtIAAghRBclASCEEF2UBIAQQnRREgBCCNFFSQAIIUQXJQEghBBdlASAEEJ0URIAQgjRRflYXUBzevfurYcMGWJ1GUII0aFs3LjxuNY63JljPTYAhgwZQkZGhtVlCCFEh6KUynH2WI8NAJfTGvLz4cQJcDggOBgiI8Hb2+rKhBDCEp07AOx2+OILeOMN2LgRqqqMG75SRggAjBoFixbB3LlGKAghRBehPHU10Li4OH3WXUBaw//+B/ffD8XFxucCA8HXt/FxdXVGKNjt4OMDv/oV3Hgj+Pm1rXghhLCIUmqj1jrOmWM73yygsjK46Sb49a+hvBxCQow/p9/8wWgNBAUZX/fzg7//HS65BPbtc3/dQgjhZp0rAEpLje6cTz4xbuqBgc5/r68vhIbC/v2wYAHs3Nl+dQohhAfoPAFQVwc33AC7dxs3cq+z+NGUMoKjqgquvNIYNBZCiE6q8wTAa69BZqZx81eqbecKDja6ku680xhPEEKITqhzBMCRI/C3vxn9+W29+Z8SEgLffgurV7vmfEII4WE6RwC8+aYxk6eV2Tv/V1jINfv3M2X3bh7MzW35nEoZM4OeeUZaAUKITqnjB0BNjREAQUGtHtrbx4cbevdmbkiIc+cOCjJmBG3b1sYihRDC87gkAJRSryqlCpRS25v5ulJK/V0ptVcptVUpFeuK6wLGoG9trVNz9xN79OBHwcGEOPv0r1LG4PKGDW0sUgghPI+rWgCvAzNb+PosYET9n8XACy66rjFd02532el+wMcH0tLa7/xCCGERlwSA1voLoLCFQ+YBb2jDBiBUKdXfFddmz57vl3VoD926GdcQQohOxl1jAAOBQw1eH67/XCNKqcVKqQylVMaxY8ecO3NFxRnN/Km12zlaUEBpaSnFxcXU1Na2/A1KGeMMQgjRyXjUYnBa62XAMjDWAnLqmwICzmiWjpeXF1prfHx8KCsvp6CgAC8vL4KCgggKCiIwKAifhmMEWje9jIQQQnRw7gqAI0BEg9eD6j/XdiNHOt0CqNOaOqBbQAAVQJ/+/fFSCntNDeXl5RSXlJCbl4efnx9BgYEEBQURUFeHd5xT6yoJIUSH4q4A+Ai4WSn1DjAZKNFa57nkzNHRTr9Df+X4cZYdP47D4aC2tpb1333H4t69WRwejn+3bvTq2ROtNZVVVZSXl3P8xAn8Tp5k7Z49VC5bRkJCAmPHjsXHx6MaTkIIcVZcshy0Uupt4EdAb+Ao8EfAF0Br/Q+llAKexZgpVAH8VGvd4lrPTi8HXV0NkyYZK3s6GQQa2L9vH3379iWopecHtMZRXMy2Bx5gfXEx6enpHDp0iJiYGBISEkhISGD48OF4nc26Q0II0Q7OZDlol7yV1Vpf0crXNXCTK671A926wVVXwcsvQ1iYU9+igNCwMIqKi1sOgIoKvIYOZcK11zKhvpuppKSEjIwM0tPTWbFiBaWlpcTHxxMfH09CQgIDBw5EuWo5CiGEaEedY0OYQ4fgwgvB39/pVkCdw8HerCyGDRvWdJeO1lBSAk88AfPmNXue/Px80tPTsdlspKen4+fnZ7YO4uPj6dmzp3M/gxBCuMCZtAA6RwAAvPACPP74Ga0Gmpubi1+3bvTu1euHXywuhvh4eOstp5eW1lqzf/9+Mww2btxI3759zTCYNGlSyy0OIYRoo64ZAHY7XHaZsW5PSIhTIVBRWUlubi7Dhg2j0dFlZUbX0po1MPAHjys4ra6ujl27dpkthO3btzNixAizu2jcuHH4yfaTQggX6poBAMa79kWLYO9ep1oCGti3bx/9+vUj6NTuYSUlRlfSv/4F48adXfHNqK6uZsuWLaSnp5Oens6BAwcYN26c2WU0atQoGVAWQrRJ1w0AMLaFvP12WL/euJH7+7d4eGFRERUVFQzq2xdOnoTISHjxReP5gnZ28uRJNm7caLYQTpw4QVxcnNlCiIyMlAFlIcQZ6doBAMYA7urV8Ic/GN05Shn7A58+2OtwUFdeTt7Bg/QfOBDvX/4SbrnF6P6xQEFBgTnDKD09HaDRgHJ4eLgldQkhOg4JgFNqaiA1FZYvh82bjaWdTy3z4HAYr4cN4wN/f2pmz2bRL3/Z9sJdRGvNoUOHSEtLw2azkZGRQc+ePc1AmDRpEsHBwVaXKYTwMBIATXE44PBhOHHC+Dg4GIYMAT8/tmzZwp/+9Cf+/e9/e2yXi8Ph4LvvvjNnGG3dupUhQ4aYgTBhwgS6WdRyEUJ4DgmAM6S1ZtGiRdx9991MmjTJLddsq5qaGrZt22aOH2RlZTFmzBgzEKKjo/F2duMbIUSnIQFwFt555x22bdvGX/7yF7dd05XKy8vJzMw0xw+OHj1KbGysGQhDhw712NaNEMJ1JADOQmlpKXPnzmXlypWEhoa67brtpbCw0OwuSk9Pp6amxhxMTkhIoF+/flaXKIRoBxIAZ+mBBx5g1KhRXHXVVW69bnvTWnPkyBGzu8hmsxEcHGy2DuLi4ggJCbG6TCGEC0gAnKXNmzfz5z//mffff79Td5c4HA727t1rthA2bdpERESE2UKYOHEiAQEBVpcphDgLEgBnSWvNwoULuffee4mNjXXrta1UW1vLjh07zBbC7t27iY6ONruLxowZI3sgCNFBSAC0wb/+9S927drFn//8Z7df21NUVFSwefNmc/zgyJEjxMTEMHnyZOLj4xk2bJgsWSGEh5IAaIOSkhLmzZvHhx9+KP3i9YqLi80nlG02G2VlZT/YA0EI4RkkANroD3/4A9HR0Vx55ZWWXN/T5eXlNZph5O/v32hAWfZAEMI6EgBttGnTJv7yl7/w3nvvderBYFc4tQfCqSUrMjMz6devnxkIsbGxBJ5aaVUI0e4kANpIa81ll13Gfffdx8SJEy2poaOqq6tj586dZgthx44djBgxwgyEsWPHyh4IQrQjCQAX+Ne//sXu3bt56KGHLKuhM6iqqjL3QLDZbBw4cIDx48ebgTBy5EgZUBbChSQAXODUYPBHH31Ejx49LKujsyktLTX3QEhPT6eoqIi4uDgzECIiIqTbTYg2kABwkfvvv58xY8ZwxRVXWFpHZ1ZQUGB2F9lsNpRSjZas6N27t9UlCtGhSAC4SGZmJkuWLOHdd9+Vd6VuoLUmJyfHDIONGzfSq1evRgPKsgeCEC2TAHARrTUpKSn88Y9/ZMKECZbW0hU5HA52796NzWYjLS2N7du3M3ToULOFEBMTIwPKQpxGAsCF3nzzTbKysvjTn/5kdSldXk1NDVu3bjVbCHv37mXcuHFmd1F0dLQMKIsuTwLAhYqLi5k/f74MBnugsrKyRnsgHDt2jNjYWHPJiiFDhkjXnehyJABc7Pe//z0TJkxg0aJFVpciWnDixIlGTyjb7fZGA8p9+/a1ukQh2p0EgItt3LiRRx99VAaDOxCtNYcPH240wygkJKTRkhXSohOd0ZkEgKzx64TY2Fjsdjvbtm1j/PjxVpcjnKCUIiIigoiICJKTk809ENLS0li5ciUPPvggkZGRZiDExMTg7+9vddlCuJW0AJz0z3/+k+zsbB588EGrSxEuUFtby/bt280WwnfffUd0dLQZCKNHj5Y9EESHJF1A7aCoqIgFCxbIYHAnVVFRwaZNm8zuoiNHjjBx4kQzEIYNGybdf6JDkC6gdhAWFsbUqVP573//y8KFC60uR7hYYGAg5513Hueddx5gBH5GRgY2m413332XysrKRktWDBgwwOKKhWg7aQGcAZvNxhNPPMHbb78t7wa7mNzc3EYDygEBAeYMo/j4eMLCwqwuUQhAuoDajcPhICUlhYceeohx48ZZXY6wiNaa7OxsMwwyMzMZMGAA8fHxTJ48mYkTJ8oeCMIyEgDt6I033uDAgQM88MADVpciPITdbjf3QEhLS2PXrl2MHDnSbCGMGzcOX19fq8sUXYQEQDsqLCwkJSWFVatW0b17d6vLER6oqqqKzZs3my2EnJwcYmJizAfSRowYIUtWiHYjAdDO7r33XiZOnCiDwcIppaWlZGRkmE8ol5SUEBcXZy5ZMWjQIBlTEi4jAdDO0tPTefLJJ2UwWJyVgoICMwxsNhve3t6Nlqzo1auX1SWKDsztAaCUmgksBbyBl7XWS077+vXA34Aj9Z96Vmv9ckvn9OQAcDgcJCcn8/DDDzN27FiryxEdmNaaAwcOmDOMNm7cSHh4eKM9EKSrUZwJtwaAUsob2AP8GDgM2IArtNY7GxxzPRCntb7Z2fN6cgAALF++nJycHBkMFi51ag+EtLQ0bDYb27dvJyoqygyE8ePHyx4IokXuDoApwINa65/Uv74XQGv91wbHXE8nC4DCwkKSk5P5+OOP5R2aaDc1NTVs2bLFbCHs27ePsWPHmoFwzjnnyICyaMTdAXApMFNr/fP619cAkxve7OsD4K/AMYzWwm1a60NNnGsxsBggMjJyUk5OTptqa29333038fHxXHrppVaXIrqIkydPmnsg2Gw2jh8/TmxsrBkIgwcPlnGpLs4TA6AXUKa1rlZK/RJYpLVObOm8nt4CAEhLS2Pp0qW89dZb8o9OWOL48eON9kBwOBzmYHJCQgJ9+vSxukThZu5eC+gIENHg9SC+H+wFQGt9osHLl4HHXHBdy8XHx1NWVsauXbsYPXq01eWILqh3797MmjWLWbNmobXm0KFD2Gw2vvzyS5566ilCQ0PNGUayB4I4nStaAD4Y3TpJGDd+G3Cl1npHg2P6a63z6j9eANyttT63pfN2hBYAwGuvvcaRI0e4//77rS5FiEYcDgd79uwxu4u2bNnC4MGDzSUrJkyY0CH2QKipgb17Yf9+qK4GHx+IiIBRo0BW3PghK6aBzgaexpgG+qrW+i9KqYeADK31R0qpvwJzATtQCNyotd7d0jk7SgCcOHGCSy+9lI8//pigoCCryxGiWbW1tWzbts1csiIrK4vRo0ebLYQxY8bg7e1tdZkA1NXBF1/Ayy9DWppx09caHA7w8gKloLYWoqNh8WK46CLoAFnmFvIgmJvdddddTJ48mZSUFKtLEcJpFRUVjQaU8/LyiI2NNccQoqKiLBnb2rIFbr0VjtR3JAcHGzf902kN5eVGWAQHw+OPQ2KLI4tdgwSAm23YsIG///3vMhgsOrTCwsJGS1ZUVVWZ3UXx8fH079+/Xa+vNTz9NDz3nHHDP5PhiooKo3to3jxYsgS68qMSEgBu5nA4mD9/PkuWLJHBYNFp5ObmmmGQkZFBYGBgoz0QQkNDXXYtreGPf4S33jLezZ/NbpwOB5SUwHnnGV1HXTUEJAAs8Oqrr5KXl8d9991ndSlCuJzD4SA7O9uccrpp0yYGDhxoTjeNiYlp0x4Ir7wCjzwCISFNd/c4S2soLobLLjNaAl2RBIAFjh8/zmWXXcbq1atlMxDR6Z3aA+HUkhW7du1i1KhRZiCMGTPG6T0QsrNh9mxjENcV2yacagksXw7nn9/283U0EgAWufPOO5kyZQrJyclWlyKEW1VWVrJ582azhXDw4EFiYmLMQBg+fHizS1YsWgQbN4ILe5QoLzfGEL7++uy6kzoy2RTeIgsWLOCFF16QABBdTkBAAFOmTGHKlCkAlJSUmAPKK1asoLS0lLi4ODMQBg4ciFKKrCzj5h8S0vo16upKyct7iLKyDfj4hBIefjMhITObPDYoCAoL4fPPISnJlT9p5yIB4ELnnnsuf/3rX9m1axfR0dFWlyOEZUJCQkhKSiKp/u6bn59vtg5efPFF/Pz8iI+PJyvrcuz2KIznSVuWn78EpXwZOfJ/VFXt4dChW/H3H0m3blFNHq+UMRgsAdA8CQAX8vLyYv78+XzwwQcSAEI00K9fP+bMmcOcOXPQWrN//35sNhsvvwwnThyitNRBUFAQQUFBBAYG4uXV+IE0h6OSkydTiYr6P7y8AgkMjCE4eDolJavp0+c3TV4zKAgyM43nBDzk+TaPI+vIutjcuXP57LPPqKiosLoUITySUoqoqCjmz1+Er+9IRo0aQv/+A/D29qGwsJCsrCwOHNjPsWMFVFSUo7WDmpqDgDd+fpHmebp1G0F19b5mr3Pqpn/gQPv+PB2ZtABcLDw8nNjYWD755BMWLFhgdTlCeKyjR40BWi8vRUBAAAEBAUBvtHZQUVFJeXk5R48WUFNTjY9PNnV1flRVVeLvHwCAl1d3HI7yFq/h5QW5uTBsmBt+oA5IWgDtIDk5mQ8++MDqMoTwaHa70U9/OqW8CAoKok+fPgwdOoSIiAi8vAKpri5m//79VFVVAeBwlOPl1fL6W1obawaJpkkAtINzzz2XwsJCdu9ucb07Ibq0gACjf/6HNJWVFRw9epS9e/eSm5tHQMBQ/P19CQ2tori4CIDq6j3NDgCfopRxHdE0CYB20HAwWAjRtL59jX56IwQ0FRXl5Ofnk5WVRV5eHl5eikGDIhg+fBj9+g0hJORC7PZ3KSkpoKwsk5MnPyck5OJmz3/q3b90/zRPAqCdzJ07l08//VQGg4VoRl1dLf36Hefw4WPs2bOHo0eP4uPjw+DBg4mKGkZ4eJ/6/QqMfqJ+/e4B7FRX/5xDh+6hX797W2wB2O3QvTuEh7vn5+mIZBC4nfTp04eYmBg+/fRT5s2bZ3U5QniE6upqvv32W1JTU/nqq6+oq7sSL69FDB06FF/flldv8/buQUTEE4SFneTYseOEhAxt8fiyMli4sOlxBmGQAGhHycnJvPTSSxIAokurqKjgq6++Yu3atWzYsIHo6GgSExP5zW9+g69vOJMnn9lNunv37uTn5zeaEXQ6rY1zXnedi36ITkoCoB1NnTqVRx55hD179jBy5EiryxHCbUpLS/n8889JTU1l48aNxMTEkJSUxL333vuDZaSvuspYuC0szNmzK0JDQykqKqZ//6YDoKQEzj0XzjmnbT9HZyeLwbWzZcuWUVRUxN133211KUK0q8LCQtavX8/atWvZvn07CQkJzJgxg2nTphEcHNzs91VUGMs1FBUZffbOsNtryc7ex4gRw3/w1HB1tdH/v3YtDBjQlp+oY5LVQD1IQUEBl19+OatXr65/0EWIzuPo0aOkpqaSmppKVlYWU6dOJSkpialTp57R3/fMTLjiCuPBMGe/7fDhQ3Tv3p3Q0O+bDrW1Rt//U0/B3Lln+tN0DrIaqAdpOBg8t6v+jRSdyqFDh0hNTWXt2rUcPnyY6dOnc+211zJ58mT8znIbrthYeOkl+MUv4ORJY1ew1oSGhnHsWIEZAJWVUFUFDz7YdW/+Z0oCwA0WLFjAK6+8IgEgOiStNfv27TPf6Z84cYIZM2Zw0003MWnSJHxctOD+BRfAe+/BzTcbG8J3797yBjHduweRn19HeXkltbUBdO8OzzwjG8OfCekCcoO6ujrmzJnD008/LYPBokPQWrN7927znX51dTWJiYkkJiYyYcKEZjd3cYWqKuNG/vrrUFNjzOY5tVuYUsYMH7vdOK6oqASHw85Pf9qLe++Fnj3brawOQ8YAPNCyZcsoLi7mrrvusroUIZrkcDjYtm0ba9euZd26dfj4+JCYmEhSUhLR0dEoN0+or6iANWvgv/+FLVvgxAljcTeHw+giGjcOJk8+ybvvXsUnn7xNUFDL6wJ1FRIAHig/P58rr7ySNWvW1D/dKIT16urqyMzMJDU1lXXr1pkbucyYMYPhw4e7/abfkooKo0Xg6wuBgd8/O3DXXXeRkJDApZdeam2BHkIGgT1Qv379GD9+PJ9++ilz5syxuhzRhdXU1GCz2Vi7di1ffPEF/fv3JzExkWXLlhEZGdn6CSwSGGj8OV1KSgpLly4lJSXFowKrI5AAcKPk5GRef/11CQDhdlVVVXzzzTekpqby9ddfExUVRVJSEr/4xS/o37+/1eW1SXx8POXl5ezYsYOxY8daXU6HIgHgRueddx5Llixh7969DB8+3OpyRCdXXl5uLsGQlpbGmDFjSExM5Le//S29e/e2ujyX8fLyIjk5mRUrVkgAnCEZA3CzF198kZKSEhkMFu2ipKTEXIIhMzOTiRMnkpSUxAUXXPCDJRg6k8LCQpKTk1m1alWLTx13BTIG4MHmzZvHlVdeyS233CKDwcIlTpw4wbp160hNTWXHjh1MnjyZmTNn8vDDD9Pd2bUVOriePXty7rnn8p///IeFCxdaXU6HIQHgZv369WPcuHF89tlnXHLJJVaXIzqovLw886afnZ3Neeedx6WXXsoTTzzRZZccSU5O5oknnuCyyy6TwWAnSQBYIDk5meXLl0sAiDNy8OBB82ncI0eOMH36dK6//noSEhLOegmGziQuLo6amhq2bdvG+PHjrS6nQ5AAsMD555/PkiVLyM7OZpjsVyeaobUmOzvbfBq3uLiYGTNmcPPNNzNp0iS8vb1bP0kX4uXlxYIFC/j3v/8tAeAkCQALeHt7M3fuXD744APuuOMOq8sRHkRrza5du8x3+jU1NSQmJnLvvfcyfvz4dl2CoTOYM2cOCxYsoLS0lB49elhdjseTALDIvHnzuPrqq/nNb35Dt27drC5HWMjhcLB161bzpu/n50diYiIPP/ywJUswdGRhYWFMnTqV1atXc8UVV1hdjseTALDIgAEDGDt2LGvXrmX27NlWlyPczG63k5mZydq1a1m/fj1hYWEkJiaydOlSoqKi5KbfBikpKSxZsoTLL79cfo+tkACw0IIFC3jrrbckALqImpoa0tLSWLduHZ9//jkDBw4kKSmJl156yaOXYOhoYmNjcTgcbNmyhZiYGKvL8WgSABaaNm0ajz76KPv27SMqKsrqckQ7qKys5Ntvv2Xt2rV88803DB8+nBkzZrB48WL69etndXmdklLKfDJYAqBlLgkApdRMYCngDbystV5y2te7AW8Ak4ATwCKt9QFXXLsj8/HxMQeDf/e731ldjnCRsrIyvvzyS1JTU0lLS2Ps2LEkJSVx++2306tXL6vL6xIuueQSXnrpJUpKSggJCbG6HI/V5ikFSilv4DlgFjAauEIpNfq0w24AirTWw4GngEfbet3OYv78+axZs4bq6mqrSxFtUFxczEcffcStt97K7Nmz+d///se0adNYtWoVzz//PCkpKXLzd6OQkBCmTZvG6tWrrS7Fo7miBZAA7NVa7wNQSr0DzAN2NjhmHvBg/cfvA88qpZT21IWI3GjAgAGMHj1aBoM7oOPHj5tP4+7cuZPJkycze/ZsHnnkEdmcxAMkJyfz8MMPc8UVV8hgcDNcEQADgUMNXh8GJjd3jNbarpQqAXoBx11w/Q5vwYIFvP322xIAHUBubi7r1q1j7dq17N+/n/PPP5+FCxcyZcoUWdvJw8TExODl5cWmTZuIjY21uhyP5FGDwEqpxcBioEvNirjgggt49NFH2b9/P0OHDrW6HHGanJwcc45+Xl4e06dP54YbbiA+Pl6WYPBgpwaD//3vf0sANMMVAXAEiGjwelD955o65rBSygcIwRgMbkRrvQxYBsZy0C6orUNoOBh8++23W11Ol6e1Zu/eveYSDKWlpcyYMYNbbrmF2NhYWYKhA7n44ot58cUXKS4u7tTLYZ8tVwSADRihlBqKcaO/HLjytGM+Aq4DvgUuBVKl/7+x+fPnc91113HzzTfLu0oLaK3ZuXOnuSG63W4nMTGR+++/n7Fjx8oSDB1Ujx49mD59OqtWreKaa66xuhyP0+YAqO/Tvxn4BGMa6Kta6x1KqYeADK31R8ArwD+VUnuBQoyQEA0MHDiQUaNGkZqaysyZM60up0twOBxs3rzZHMj19/cnKSmJRx55hHPOOUcGDjuJlJQUHnzwQa6++mr5f3oal4wBaK3XAGtO+9wDDT6uAi5zxbU6s+TkZN59910JgHZkt9vZuHGjuQRDr169SExM5JlnnmHo0KFyg+iExo0bh6+vLxkZGcTHx1tdjkfxqEHgrm769Ok8+uijHDhwgCFDhlhdTqdRU1PDhg0bSE1N5YsvviAiIoKkpCReeeUVIiIiWj+B6NCUUqSkpLBixQoJgNNIAHiQhoPBt912m9XldGgVFRV88803pKam8s033zBy5EgSExO58cYb6du3r9XlCTebNWsWzz//PIWFhfTs2dPqcjyGBICHmT9/Ptdffz033XSTDAafoZMnT5pLMKSnpzNu3DiSkpK444475B99FxccHExiYiKrVq3iuuuus7ocjyEB4GEGDRrEyJEjWbduHT/5yU+sLsfjFRUV8fnnn5OamsrmzZuJi4sjMTGRBx54QDYEEY0kJydz3333cc0118isrnoSAB4oOTmZ9957TwKgGQUFBaxfv57U1FR27drFlClTuOSSS1iyZAmBgYFWlyc81JgxYwgMDMRmszF58umLFXRNEgAeaPr06Tz22GMcPHiwSz0R3ZLc3FzzadwDBw5w/vnnc/nllzNlyhTZUU04peGTwRIABgkAD+Tr68sll1zCBx98wK233mp1OZY5cOCA+TRuQUEB06dP5+c//znx8fH4+vpaXZ7ogGbNmsVzzz3HiRMnZHVWJAA81vz587nhhhu48cYbu8xgsNaarKws853+yZMnmTFjBrfddhsTJ06UJRhEm3Xv3p2kpCQ+/PBDfvazn1ldjuUkADxUZGQkw4cPZ/369Vx00UVWl9NuHA4HO3fuNN/pa61lCQbRrlJSUrjnnnu4/vrru/zfLwkAD7ZgwQI++OCDThcAp5ZgOLXuTmBgIImJiTz22GOMHDlSnsYV7So6Oprg4GDS0tKYMmWK1eVYSgLAg82YMYPHH3+8UwwG2+12bDYb69atY/369fTu3ZukpCSeffaO+a8cAAAcf0lEQVRZ2Q9ZuFXDJ4MlAITHOjUYvHLlSm655Raryzlj1dXVpKWlsXbtWr788ksiIyNJTEzk1VdfZdCgQVaXJ7qwmTNn8swzz3Ds2DHCw8OtLscyEgAebv78+fz85z/nV7/6VYcYDK6oqODrr78mNTWVb7/9lpEjR5KUlMRNN91Enz59rC5PCAACAwP58Y9/zEcffcQNN9xgdTmWkQDwcJGRkQwdOowXXthMSUkC6emwdy9UVYG3N/TvDzExcMEFMGsWBAe7v8bS0lJzCQabzcaECROYMWMGd955pyzBIDxWcnIyd9xxBz/96U+77GCw8tR9WeLi4nRGRobVZVjK4YCVK+GBB4o4fLiWnj374O8P3bqBlxdoDbW1UFkJSoGPD1x2Gdx+O7T35keFhYXmEgxbtmwhLi6OpKQkpk2bJkswiA7j2muv5Ze//CXnnXee1aW4jFJqo9Y6zpljpQXgofLy4I47YMMG8PMLoa5uL927hzbqBlLKCINTD8La7fDWW/Dxx/DEEzBjhmtrKigoMDdE/+6775g6dSpz587l0UcflSUYRId06sngzhQAZ0ICwANlZ8OiRVBcbLyTV8qL0NAQiouL6NOn+aWMfXwgLAwqKuAXv4D774frr29bLUeOHDGna+bk5DBt2jSuuuoqzj33XFmCQXR4F110EX//+98pKCjokmNUEgAeJjfXuPmXljbuxgkLC+XAgRzCw8NRquX+ysBA8PWFP/8ZgoKMbqEzsX//fvPBrGPHjvGjH/2IxYsXExcXJ0swiE4lMDCQiy66iJUrV7J48WKry3E7GQPwIA4HXHEFZGQY7+RPl5NzgJ49exIc7Fwfe02N8ec//4GhQ5s/TmvNnj17WLt2LampqVRUVDBjxgySkpKIiYnpsgNkomvYs2cPv/3tb1m1alWnWG5ExgA6qP/7P+Pm39wAblhYGEVFRU4HgJ+f0R10222wYoUxcHyKw+Fg+/bt5ro7SimSkpL44x//yJgxY+SmL7qMkSNH0qdPH77++msuuOACq8txKwkAD1FXZwzcBgQYg7tNCQ4OJj8/n5qaGqefCQgJgR07jGCZNKnOXIJh/fr1BAUFkZiYyOOPP86IESNkCQbRZSUnJ7NixQoJAGGNL7+EkhJoaQalUl706BFITs4fUGoHdXWl+PoOok+fm+nefWoz3+WgsrKam27aRWjo3fTp04ekpCSee+45hrbULyREF3LRRRfx9NNPk5+fT79+/awux20kADzEqlVGK6A1oaHBHD/enREj/oGf3wDKyr7myJF7GDr0Hfz8BgCgtYOysnJOniylrKwMX19/Dh4cznvvvc6QIQPb+ScRouPx9/dn5syZrFy5kl/96ldWl+M20tHrITZuNLp/WuPvH0pw8DXU1PRAKS+Cg6fh6zuAysodlJaWcOTIYfbs2UNhYSEBAQFERUUxdOhgQkN7UFUlN38hmpOSksKHH35InTPvxDoJCQAPYLfDwYPfP9DVmtDQMIqKiqmrq6OwcD8nT+4lN9eLkpISgoKCGD58OIMHDyYsrCc+Pt9P28zKaqcfQIhOYNiwYfTv358vv/zS6lLcRgLAA1RXGwO/zo7B9ugRTFVVJTt2bCE393569JjFqFE/IiIiktDQMLy9f9izV1dnzAgSQjTv1DLRXYUEgAfw9jaeAXCWUl5ERkYSELAcLy8/qqsXcfDgIY4dK6Ciohytf3iyU2sFCSGad+GFF7Jjxw5yc3OtLsUtJAA8QLduxhO7drtzx2utKSx8DD+/Ks455x+MGjWa8PBwtIajRwvYs2cPBw/mcOLEcaqqKgGNtzf0bX4VCSEE0K1bN2bNmsXKlSutLsUtJAA8gFIwdqyxqqcz8vP/Sk3NfiIinsLLqxtKeREUFESfPn0YOnQoI0aMICysJ7W1dnJzc/nuuz3k5x9nz54PycnJwVOf/hbCEyQnJ/Phhx9id/YdWQcmnQIe4oILwGZr/bja2jyKi1eglB9ZWT8xP9+v3+8JCZkFgJeXN8HBwQTXbw5QVlaLUmUcPLiJG298EYD4+HgSEhKIj4/vkotgCdGcqKgoIiIi+OKLL0hMTLS6nHYlawF5iPx8OP9840EwV6/CUFQEv/893HCD0X106NAh0tPTSU9PJyMjg549e5phMGnSJFnPX3R5a9asYc2aNTz77LNWl3LGzmQtIAkAD/LLX8Lata7dzKWmxtg05uuvoanNuRwOB9999x02m4309HS2bt3KkCFDzBZCTEyMLPssupyamhpmz57N8uXLGTiwYz0/IwHQQR0+DD/+sTFbxxX3XK2NPQXuvx9++lPnvqempobt27ebLYSsrCzGjBljthBGjx7dKVZMFKI1Tz75JH5+ftx8881Wl3JGJAA6sHfegfvuM7qC2nqfLS6GCRPgvffOvlupoqKCzMxMMxDy8/OJjY01WwhRUVGyiJzolA4cOMDixYtZvXp1h9oHQ5aD7sAWLTKe2H39dWOD97OZu6+1sbDcoEHw0kttG1MIDAzk/PPP5/zzzweMvYAzMjJIT0/n7bffpqqqioSEBLOF0L9//7O/mBAeZMiQIQwZMoTPP/+cCy+80Opy2oW0ADyQ1vD00/Dcc0YroH4yj1Nqa6GszJhW+uqr0KtX+9UJkJuba7YObDYbQUFBZhjEx8cT2t670wvRjj755BM+/PBDnn/+eatLcZp0AXUSmZlw663GDCEvL+jevfnlIqqrjaUefHzgd78zZvy4u6ve4XCQnZ1tDihv2rSJgQMHmi2EmJgY2TxedCg1NTVcfPHFvPrqq0RERFhdjlMkADqRmhpITYV//AO2bTN2+aqpMdb2Ucp4rbURDj/7GSxcCJ4yrd9ut7Nz506zhbBr1y5GjRplthDGjh3bofpWRde0dOlSlFLccsstVpfiFLcFgFKqJ/AuMAQ4ACzUWhc1cVwdsK3+5UGt9dzWzi0B8EMlJbB7N2Rnf/9uf8AAOOcco7/f03dxrKysZPPmzWYL4eDBg8TExJgthOHDh8tWlMLjHDx4kBtuuIHVq1c7vROfldwZAI8BhVrrJUqpe4AwrfXdTRxXprXufibnlgDo/EpKSti4caPZQigtLSUuLs5sIQwaNEhmGAmPcOONN7JgwQIuuugiq0tplTsD4DvgR1rrPKVUf2C91npUE8dJAIhWHT161BxMTk9Px8fHp9EMo17tPaItRDM+/fRT3n//fV588UWrS2mVOwOgWGsdWv+xAopOvT7tODuwGbADS7TWrS61JwHQtWmtOXDggBkGGzduJDw83AyE2NhYunc/o/cUQpy12tpaLr74Yl566SUGDx5sdTktcmkAKKU+A5raJfk+YHnDG75SqkhrHdbEOQZqrY8opaKAVCBJa53dxHGLgcUAkZGRk3Jycpz5GUQXUFdXx+7du80WwrZt2xg2bJgZCOPHj+8Q/bOi43rmmWew2+3cdtttVpfSIo/rAjrte14HPtZav9/ScdICEC2pqalhy5YtZgth3759jB071gyEc845RwaUhUsdPnyY66+/njVr1nj0mw13BsDfgBMNBoF7aq3vOu2YMKBCa12tlOoNfAvM01rvbOncEgDiTJw8edJcssJms3H8+HFiY2PN8YMhQ4bIgLJos5tuuolLLrmEWbNmWV1Ks9wZAL2A/wMigRyMaaCFSqk44Fda658rpaYCLwIOjA1ontZav9LauSUARFscP34cm82GzWYjLS0Nh8Nhrl+UkJAgeyCIs5Kamsrbb7/NSy+9ZHUpzZIHwYRo4NQeCKe6izIyMggJCTHDIC4uTvZAEE6x2+1cfPHFvPDCC0RFRVldTpMkAIRogcPhICsry+wu2rx5M4MHD260B4K/v7/VZQoP9fzzz1NZWcnvfvc7q0tpkgSAEGegtraWbdu2mS2EPXv2EB0dbbYQRo8ejc/ZLMsqOqXc3FyuueYa1qxZ45GbJUkACNEGFRUVbNq0yWwh5ObmMnHiRLOFMGzYMBlQ7uJuueUWZs6cyezZs60u5QckAIRwoaKiInMPhPT0dCorK80lKxISEhgwYIDVJQo3W7duHW+++SavvNLqfBa3kwAQoh3l5uaa3UU2mw1/f38mT55s7oEQFvaDZyFFJ2O327nkkkt4/vnnPW4wWAJACDfRWpOdnW2GQWZmJgMGDDC7i2JjY2UPhE7qhRdeoKysjDvvvNPqUhqRABDCInV1dezYscNsIezcuZORI0eaD6SNGzdO9kDoJPLy8rjqqqtYs2aNR80akwAQwkNUVVWxZcsW0tLSsNls5OTkMGHCBLOFMHLkSFmyogO79dZbufDCC5kzZ47VpZgkAITwUKWlpWRkZJgthOLi4kZ7IERERMgMow7kiy++4LXXXuO1116zuhSTBIAQHURBQYG5XIXNZsPLy8sMg4SEBHr37m11iaIFdXV1zJkzh6VLlzJixAirywEkAITokLTW5OTkmAPKGzdupFevXo32QAgODra6THGaZcuWUVRUxN13/2AzREtIAAjRCTgcDnbv3m22ELZv387QoUPNFkJMTIxHL0vcVRQUFHD55ZezevVqAgICrC5HAkCIzqimpoatW7eaLYTs7GzGjBljthCio6NlQNkit99+O9OnT2fevHlWlyIBIERXUFZWRmZmptlCOHbsWKM9EIYOHSoDym7y1VdfsWzZMt544w2rS5EAEKIrOnHiRKMnlGtraxvtgdC3b1+rS+y0HA4Hc+fO5YknnmDUqBY3RWx3EgBCdHFaa44cOWKGgc1mo0ePHmYgxMXFERISYnWZncrLL79MQUEBv//97y2tQwJACNGIw+Fg79695oJ2mzdvJiIiwmwdxMTEeMQAZkd27NgxFi5cyOrVqy1d/kMCQAjRotraWnbs2GG2EHbv3k10dLTZQhgzZozsgXAW7rjjDqZOnUpycrJlNUgACCHOSEVFBZs3bzZbCEeOHCEmJsYcUB4+fLjMMHLCN998w/PPP8+bb75pWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns2TJEkaPHm1JDRIAQgiXysvLM2cYpaen4+/vb4ZBfHw8PXv2tLpEj/Hqq6+Sl5fHfffdZ8n1JQCEEO1Ga83+/fvNMMjMzKRfv35mGMTGxhIUFGR1mZY5ceIEl156KR9//LElvwcJACGE29TV1bFz506zhbBjxw5GjBhhthDGjRvX5ZasuOuuu5g8eTIpKSluv7YEgBDCMtXV1WzZssVsIRw4cIDx48ebLYRRo0Z1+gHltLQ0li5dyltvveX2p7HPJABknpcQwqW6detmPl8Axh4ImZmZpKen84c//IHCwkLi4uLMFkJkZGSnW7IiPj6e8vJydu7cyZgxY6wup1nSAhBCuFVBQYE5wyg9PR3ADIz4+HjCw8MtrtA1li9fTk5ODg888IBbrytdQEKIDkFrzaFDh8wNcTIyMujZs6cZBpMmTaJHjx5Wl3lWCgsLSUlJYdWqVXTv3t1t15UAEEJ0SA6Hg++++84cUN66dStDhgwxWwgTJkygW7duVpfptHvuuYfY2FgWLlzotmtKAAghOoWamhq2b99uthCysrLMPRDi4+MZPXo03t7eVpfZrPT0dJ588knefvvt78c5Tp6E6mrw84PgYHDx+IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kBwOBxcNXcuS6ZNY/DOnbB1K5SWgpcXOBwQEABjxsCFF0JyMvTq1eZrSgAIIbqEwsLCRgPK1dXVjZ5Q7t+/v3XFVVTAU09R8txz2Kur6dWrl3HD9/H5/l2/3Q5VVcZ/vbxgzhy47z5ow5PVEgBCiC7p9D0QgoKCzNZBXFwcoaGh7ikkMxN+8xvIz8ceGEj2gQMMHz685e6qujqjdRAcDI8/brQKzoIEgBCiy3M4HGRnZ5vdRZs2bWLgwIGN9kBol3X7166FX//aeJdfP/vn8JEjBAYEOLdmUmWlMUbwwANw7bVnfHkJACGEOI3dbm+0B8KuXbsYNWqUGQhjxozB19e3bRdJT4errzYGeP39zU+XV1SQn59PVFQUTo1Q1NZCWRk89RTMnXtGJUgACCFEKyorK9m8eTM2m420tDQOHTpk7oGQkJBw5nsglJVBYqIxy+e0ReA0kJ2dzYD+/Z1vdVRXG91Cn30GAwY4XYYsBSGEEK0ICAhgypQpTJkyBYCSkhJzQHnFihWUlpYSFxdnBsLAgQNbnmH06KNQWAhNjDMoICwsjKLiYucDoFs3KC6Gu++Gf/7zLH7C1kkLQAghmnD06FGzuyg9PR1fX99GM4x6NZyyWVgI555rvPNvZqDXXldH9t69vBEUREZlJZUOB719fLi2Vy/mNzc4rbUxMPzxxzBqlFN1SxeQEEK40Kk9EE6FQWZmJuHh4WbrIGH7dvyffLLJd/8NHcnNJd/bm3Hh4fh5eXGguprFOTksjYggOiCg6W8qKoJFi+CRR5yq1W1dQEqpy4AHgWggQWvd5B1bKTUTWAp4Ay9rrZe05bpCCOFOSimioqKIiopi0aJF1NXVsXv3btLT03nnnXdQ775LlN2Ob20tQUFBBAQE4NVEd1FYaCiVeXn49u1rnLf+3Idra5sPgKAg+O9/nQ6AM/q52tICUEpFAw7gReCOpgJAKeUN7AF+DBwGbMAVWuudLZ1bWgBCiA7B4cBxzjlUAuVVVZRXVFBdXU1AQABBQUEEBQXh7++PwhgM3rdvH2/5+PBJRQXVWjPK35+XBg8msLkBZ62hpAQ2bIDevVstx20tAK31rvoLtnRYArBXa72v/th3gHlAiwEghBAdQl4eXkBQjx4E1a9cWudwUFFeTnl5Obm5udjtdgIDAwkKCqJ79+7cUFvL/aNGsbWyko0VFfi1dA9VCnx9Yd8+pwLgTLhjFtBA4FCD14eByW64rhBCtL/KSmMZhwa8vbwIDg4mODgYgFq73QyEsvJy0BqlFDGBgawpKeH9oiIub+khMa2N67hYqwGglPoM6NfEl+7TWn/oymKUUouBxQCRkZGuPLUQQrQPHx/jBt0CXx8fQkJCCAkJQWMMKp96z18HHK6pafkap1oBLtZqAGitz25Biu8dASIavB5U/7mmrrUMWAbGGEAbryuEEO2vXz9jMTeH4wctgdMV2u1kVFRwfvfu+ANp5eV8UlLCIwMHtnyNurozehjMWe7oArIBI5RSQzFu/JcDV7rhukII0f78/SEyEgoKjNU+W6CA94uKeCQvDwfQ39eX3/XtywX1XUVNqqszgqUdekXaOg10AfAMEA6sVkpt1lr/RCk1AGO652yttV0pdTPwCcY00Fe11jvaXLkQQniKGTNg+fJWAyDMx4dlgwef2bnLymDKlFZbF2ejrbOAPgA+aOLzucDsBq/XAGvaci0hhPBYl19uLNegtct3+EIp+NnPXHvOeq6PFCGE6GpGjoSJE435+q5UVgbh4TBtmmvPW08CQAghXGHJEmMdoNpa15yvrs441xNPNLu+UFtJAAghhCtERcFddxnv2h2Otp3r1CJwV15pLDLXTiQAhBDCVX72M2NDmJISY2ro2XA4jGWgZ8wwdgVrRxIAQgjhKkrBgw/CrbcaLYHS0jP7/vJyIzwuuwxeeKFdHv5qSAJACCFcSSm45RZYsQIGDTJCoKSk+W4hh8PYRezUhvCvv26MJ7TzzR9kRzAhhGgf48cb2zl+9RW8/DJ8+60xmKv199NFlTIGesePh8WLISnJ2E/YTSQAhBCivXh5wQUXGH9qa40VPffvN/b79fWFiAhjCmm3bpaUJwEghBDu4OtrbOvo5NaO7iBjAEII0UV57J7ASqljQM5pn+4NHLegHGd5en0gNbqK1Nh2nl4fdMwaB2utw535Ro8NgKYopTKc3erMCp5eH0iNriI1tp2n1wedv0bpAhJCiC5KAkAIIbqojhYAy6wuoBWeXh9Ija4iNbadp9cHnbzGDjUGIIQQwnU6WgtACCGEi3h0ACileiqlPlVKZdX/N6yZ4x5TSu1QSu1SSv1dKVdvydPm+iKVUv+rr2+nUmqIO+o7kxrrj+2hlDqslHrWXfU5W6NSKkYp9W39/+etSqlFbqhrplLqO6XUXqXUPU18vZtS6t36r6e58//rGdR4e/3fua1KqbVKqTPcj7D9a2xwXIpSSiul3D7rxpkalVIL63+XO5RS//K0GuvvM+uUUpvq/3/Pbuo8jWitPfYP8BhwT/3H9wCPNnHMVOBrjP2GvYFvgR95Sn31X1sP/Lj+4+5AoCf9DhscuxT4F/CsB/5/HgmMqP94AJAHhLZjTd5ANhAF+AFbgNGnHfNr4B/1H18OvOvm35szNc449fcNuNETa6w/Lhj4AtgAxHlajcAIYBMQVv+6jwfWuAy4sf7j0cCB1s7r0S0AYB6wvP7j5cD8Jo7RgD/GL6Ub4AscdUt1TtSnlBoN+GitPwXQWpdprSvcVB849ztEKTUJ6Av8z011NdRqjVrrPVrrrPqPc4ECwKmHXc5SArBXa71Pa10DvFNfZ0MN634fSHJX69PZGrXW6xr8fdsADHJjfU7VWO/PwKNAlTuLq+dMjb8AntNaFwForQs8sEYN9Kj/OATIbe2knh4AfbXWefUf52PcoBrRWn8LrMN4R5gHfKK13uUp9WG8cy1WSq2ob5r9TSnVPvu7Na3VGpVSXsATwB1urKshZ36PJqVUAkbgZ7djTQOBQw1eH67/XJPHaK3tQAnQqx1rOp0zNTZ0A/Cfdq3oh1qtUSkVC0RorVe7s7AGnPk9jgRGKqW+VkptUErNdFt1BmdqfBC4Wil1GFgD/Ka1k1q+GJxS6jOgXxNfuq/hC621Vkr9YMqSUmo4EM3372w+VUpN01p/6Qn1YfyOpwETgYPAu8D1wCuuqM9FNf4aWKO1Ptxeb2BdUOOp8/QH/glcp7Vu4757XYdS6mogDphudS0N1b/5eBLj34Qn88HoBvoRxr3mC6XUOK11saVVNXYF8LrW+gml1BTgn0qpsS39O7E8ALTWFzb3NaXUUaVUf611Xv0//KaaXQuADVrrsvrv+Q8wBXBJALigvsPAZq31vvrvWQmciwsDwAU1TgGmKaV+jTFG4aeUKtNaNztgZ0GNKKV6AKuB+7TWG1xVWzOOABENXg+q/1xTxxxWSvlgNLtPtHNdTV3/lKZqRCl1IUbQTtdaV7uptlNaqzEYGAusr3/z0Q/4SCk1V2ud4SE1gvHvOE1rXQvsV0rtwQgEm3tKdKrGG4CZYPSMKKX8MdYJara7ytO7gD4Crqv/+DrgwyaOOQhMV0r5KKV8Md7huKsLyJn6bECoUupUf3UisNMNtZ3Sao1a66u01pFa6yEY3UBvuPLm74RWa1RK+QEf1Nf2vhtqsgEjlFJD6699eX2dDTWs+1IgVdePwLlJqzUqpSYCLwJzLei3brVGrXWJ1rq31npI/d+/DfW1uuvm32qN9VZivPtHKdUbo0ton4fVeBBIqq8xGmNs9FiLZ3XnSPZZjHz3AtYCWcBnQM/6z8cBLzcYHX8R46a/E3jSk+qrf/1jYCuwDXgd8PO0Ghscfz3unwXkzP/nq4FaYHODPzHtXNdsYA/GWMN99Z97COMGRf0/sPeAvUA6EOXO35uTNX6GMSni1O/sI0+r8bRj1+PmWUBO/h4VRlfVzvp/x5d7YI2jMWZEbqn/f31Ra+eUJ4GFEKKL8vQuICGEEO1EAkAIIbooCQAhhOiiJACEEKKLkgAQQoguSgJACCG6KAkAIYTooiQAhBCii/p/K9d8/GvFkz8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -413,7 +422,7 @@ "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", @@ -440,7 +449,7 @@ " 'algorithm': algorithm_cfg,\n", " 'optimizer': optimizer_cfg,\n", " 'variational_form': var_form_cfg,\n", - " 'backend': {provider': 'qiskit.Aer', 'name': 'statevector_simulator'}\n", + " 'backend': {provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'}\n", "}\n", "\n", "result = run_algorithm(params, algo_input)\n", @@ -467,15 +476,15 @@ "output_type": "stream", "text": [ "energy: -1.5\n", - "time: 41.23837685585022\n", + "time: 34.49035096168518\n", "maxcut objective: -4.0\n", - "solution: [0 1 0 1]\n", + "solution: [1 0 1 0]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4FFX28PHvzZ6QnR0CJGFTRBRhQBRQEAZwFBAkndGfIAiMg6gjhEXEDXHYGUdGHRcYlnc0lQTEgAqKDDIuqOi4y76FBGRJSCBbJ+n7/lEBI2ZPJ5VOn8/z5CHdXek6BeFU9bm37lFaa4QQQrgXD6sDEEIIUfck+QshhBuS5C+EEG5Ikr8QQrghSf5CCOGGJPkLIYQbkuQvhBBuSJK/EEK4IUn+QgjhhrysDqAsTZo00ZGRkVaHIYQQLuXLL788o7VuWtF29Tb5R0ZGsnv3bqvDEEIIl6KUOlqZ7ept8hdCWCcvD44dM//08oKICAgOtjoq4UyS/IUQAKSmwhtvwDvvwNGj4O0NSoHWUFAATZvCTTfBPffAVVeZrwnXJclfCDd39iw8+SRs3QoOB/j5QUgIeJSYDqI1ZGdDUhJs2ABXXglLlkDnztbFLWpGZvsI4cY++AAGDoQtWyAoCMLCwN//14kfzKt8X1/z9eBg2LMHbr8dXnzRPDEI1yPJXwg3tWED/OlPUFgIoaG/TfhlUco8Afj7w7JlMHeu+YlBuBZJ/kK4oZ07YdYsCAgwk3h1eHub5aE33oC//9258YnaJ8lfCDdz7hw8/LCZvH18avZeHh7mp4AXX4Rvv3VOfKJuSPIXws0sXAhZWeZVvzN4eZmloEcekfKPK5HkL4QbSU83a/0VzdlPT0/g8OF72LOnD2lpT1X4vsHB5n0Bn37qnDhF7ZPkL4QbWb/evDr39Cx/Oy+vJjRpch8hIcMr/d5aw2uv1TBAUWeckvyVUquUUqeUUt+X8bpSSj2vlDqglPpWKXWdM/YrhKiarVvNMk1FgoMHEhR0M56eIZV+76Ag+OQTKf24Cmdd+a8Ghpbz+jCgY/HXZOAlJ+1XCFFJDgf88IN5E1dtuPhp4siR2nl/4VxOSf5a651AejmbjADWatMuIFQp1dIZ+xZCVE56ujmnvzJX/tWllCR/V1FXNf/WQEqJx8eLnxNC1BG7vfI3ctntdn7++STp6Wex2+2V3ofWkJ9fzQBFnapXa/sopSZjloVo27atxdEI0bB4e1dUj9dkZ2eTnp5Obm4uoaGhBAQEkJl5ioICO97eFd8UoFTN7x0QdaOurvxTgTYlHkcUP/crWutXtNY9tdY9mzatsBeBEKIKGjc26/JFRb9+3uEoIiMjnYMHD3Lq1CmCgoLp0CGaJk3C8PPzJSDAj2PHDlFUVFDhPrSGdu1q6QCEU9XVlX8yMFUpFQ/0BjK11ifqaN9CCMyST5cu8OOPEBgIdns+6ekZZGVlEhDQiJYtWxEQ4A8oTp9+hTNnXrn0swUF73Ho0F107DgTKH0t54ufKqKiav9YRM05Jfkrpd4AbgaaKKWOA08C3gBa638C7wC3AgeAHGC8M/YrhKiaQYMcfPZZPhkZp8nNzSMsLJSoqGi8vb1/tV3TppNp2nTypcdaOzhy5Chnz56lceMmpb73+fPQp0/F9xCI+sEpyV9r/ccKXtfAA87YlxCi6i5cuMCmTZvYvHkLWVmLaNYsmIiICJSqXOVXKQ/atIng8OHD+Pr6ERgYWOp2Eyc6M2pRm+QOXyEasMOHD7No0SKGDx/Od999x8KF05k0qTkQWunEf5GXlzcRERGkpaVht/96Ss/589CqFfTt68TgRa2qV7N9hBA153A4+Oijj4iPj+fAgQOMHj0awzC4OIli7lzYvh1yc6u+nLO/fwDNmjXl+PHjREZG4uHhSVGROYj83HOVn0oqrCfJX4gGIisri+TkZBISEggLC8NmszFo0CB8Lpt7GR4Oy5fD5Mlmfb6qUzNDQ8PIzc0jLS2NVq0iyMpSTJ4M3bs78WBErZPkL4SLO3jwIIZh8P7779OvXz8WLFjAVVddVe7PDBwI8+bB44//0re3Klq0aM7hw8dJSTnPuHHBzJhRgwMQlpDkL4QLKioqYufOnRiGwZEjRxg9ejRJSUk0bty40u9x111mT94ZM8wGLyEh5k1aFdEazp/3IDS0NX5+K7n11k54eNxc7WMR1pDkL4QLyczMZOPGjSQmJtKsWTNiY2MZMGDAb6ZqVtawYdCjB8yZAzt2mJ8CGjUyS0ElTwRam+sCZWebz0dHw7Jlnnh49OWhhx4iMrIt0dHRzjlIUSeUOQuz/unZs6fevXu31WEIUS/s27cPwzDYvn07N910EzabjSuvvNKp+zh8GF5/Hd59F06cMJeDuHgCKCgwG7bceCOMH2/W9y++tnnzZlatWsWaNWsICgpyakyi6pRSX2qte1a4nSR/IeqnwsJCduzYgWEYpKamcuedd3LHHXcQFhZW6/s+f95cnTMvzzwJtG4N5a24smzZMo4ePcpzzz2Hh0z5sZQkfyFcVEZGBm+++SZJSUm0bt0am83GzTffjFdtrsVcQ4WFhUydOpWuXbsydepUq8Nxa5VN/vX3t0kIN/PTTz9hGAYffvghAwcO5LnnnqNTp05Wh1UpXl5eLFy4kLFjx9K5c2cGDx5sdUiiApL8hbBQYWEh27dvJz4+nlOnTjFmzBgeeeQRQkIq3z6xvggNDWXp0qVMmTKFdu3aucyJy11J8hfCAunp6axfv54NGzbQrl077rnnHvr374+ni6+K1qlTJ2bOnElcXBxr164lNDTU6pBEGST5C1GHvv/+ewzD4KOPPmLw4MGsWLGCDh06WB2WU/3+979nz549PProo/zjH/9w+RNaQyUDvkLUMrvdzrZt2zAMg4yMDGJiYhg+fDjBwcFWh1ZrHA4HDz/8MFFRUUybNs3qcNyKDPgKYbHTp09fKu106NCB++67j759+7rFVEgPDw+effZZxo0bR+fOnfnDH/5gdUjiMpL8hXAirTXfffcd8fHx7Nq1iyFDhvDyyy8T5YbtrYKDg1m2bBmTJ08mKiqKLl26WB2SKEGSvxBOYLfb2bp1K4ZhkJ2dTUxMDHPmzCmz6Ym7iI6O5rHHHmPGjBmsW7eO8PBwq0MSxST5C1EDp06dIikpiY0bN3LFFVfw5z//mT59+rhFaaeyBgwYwL59+5g5cyYvvfRStdchEs4lv6FCVJHWmq+++opZs2YRGxtLTk4Or732Gs8//zw33nijJP5STJo0ieDgYJYuXWp1KKKYzPYRopLy8/PZsmULhmGQn5+PzWbjtttuIyAgwOrQXEJ2djbjxo3jrrvuYtSoUVaH02DJbB8hnOTEiRMkJiaSnJxM165deeihh+jVq5dc4VdRo0aNWL58Offddx8dOnSgW7duVofk1iT5C1EKrTVffvkl8fHxfPXVV9x2222sXr2aiIgIq0NzaW3btuWpp55i1qxZrFmzhmbNmlkdktuSso8QJeTm5vLuu+9iGAZaa2w2G8OGDZPSjpP961//YseOHbz66qu/6TEsakaWdBaiClJTU0lMTGTTpk1ce+21xMbG0rNnT1Rl+hqKKtNa8+ijj+Lv788TTzwhf89OJDV/ISqgtebzzz/HMAy+/fZbhg8fzrp162jVqpXVoTV4SimefPJJxo8fT0JCAjabzeqQ3I4kf+F2cnJy2Lx5MwkJCXh5eWGz2fjrX/+Kn5+f1aG5FX9/f5YvX869995Lhw4d6NGjh9UhuRVJ/sJtHDt2jMTERN5++2169uzJnDlz6N69u5QcLNSqVSvmz5/PnDlzWL16NS1btrQ6JLchyV80aA6Hg127dhEfH89PP/3EiBEjeP3112nRooXVoYlivXr1Yty4cUyfPp1Vq1bJJ7A6IgO+okHKzs5m06ZNJCQk4O/vj81mY8iQIfj6+lodmiiF1ponn3ySoqIi5s+fL5/GakBm+wi3dOTIERISEtiyZQu9e/fGZrNxzTXXSDJxAfn5+UycOJHBgwczduxYq8NxWTLbR7gNh8PBxx9/jGEY7Nu3jzvuuIP4+Hi5gcjF+Pr6snTpUsaNG0fHjh3p06eP1SE1aJL8hcs6f/48ycnJJCQkEBISQmxsLMuXL5ebhlxY8+bNWbBgAbNmzWLlypW0adPG6pAaLEn+wuUcOnQIwzB47733uPHGG5k/fz5du3aV0k4D0b17dyZPnsz06dNZvXq13F1dSyT5C5fgcDjYuXMnhmFw6NAhRo8eTWJiIk2aNLE6NFELRo8ezZ49e3jyySdZtGiRLKJXC2TAV9RrWVlZbNy48VKit9ls3HLLLdIQxA3Y7Xbuv/9+brjhBiZOnGh1OC5DBnyFS9u/fz+GYfDBBx/Qr18/Fi1aJD1g3YyPjw+LFy9m7NixdOrUif79+1sdUoMiyV/UG0VFRezYsQPDMEhJSeHOO+9k/fr10vfVjTVp0oTFixfzyCOP8OqrrxIZGWl1SA2GJH9huXPnzvHmm2+SlJREy5YtsdlsDBgwAC8v+fUU0LVrVx588EGmTZvGmjVrCAoKsjqkBsEpoyhKqaFKqb1KqQNKqdmlvH6vUuq0Uurr4i8p4An27NnD008/zR133EFKSgrLly/ntddeY/DgwZL4xa8MHz6c66+/nrlz5+JwOKwOp0Go8YCvUsoT2AcMBo4DXwB/1Fr/WGKbe4GeWuuplX1fGfBtmAoLC9m+fTuGYXDy5EnGjBnDyJEjCQ0NtTo0Uc8VFhYyZcoUrr32WqZMmWJ1OPVWXQ749gIOaK0PFe84HhgB/FjuTwm3kp6ezoYNG1i/fj1t2rTh7rvv5qabbsLT09Pq0ISL8PLyYtGiRYwdO5bOnTtzyy23WB2SS3NG8m8NpJR4fBzoXcp2o5VS/TE/JTyitU65fAOl1GRgMpi9PoXr+/HHH4mPj+e///0vgwYN4vnnn6djx45WhyVcVFhYGEuWLGHq1Km0bdtWfpdqoK4Kq5uAN7TW+UqpPwFrgIGXb6S1fgV4BcyyTx3FJpysoKCAbdu2YRgGZ8+eZcyYMcTFxREcHGx1aKIBuOKKK4iLiyMuLo5169bJ71U1OSP5pwIlF+CIKH7uEq312RIPXwMWO2G/op45c+bMpdJO+/btGT9+PP369ZO7M4XTDR06lL179zJ79mxWrFgh5cNqcMb/yi+AjkqpKKWUDxALJJfcQClVsj3PcOAnJ+xX1ANaa7799lsee+wxxowZw9mzZ3nppZd48cUXuemmmyTxi1ozdepUlFKsWLHC6lBcUo2v/LXWhUqpqcBWwBNYpbX+QSk1D9ittU4GHlJKDQcKgXTg3pruV1jLbrfz/vvvEx8fT1ZWFjabjdmzZ8scbFFnPD09WbBgwaUB4GHDhlkdkkuRtX1ElZw6dYqkpCQ2btxIp06diI2N5YYbbpArfGGZgwcP8qc//YkVK1Zw5ZVXWh2O5WRtH+E0Wmu++eYbDMPgs88+Y+jQobz66qu0a9fO6tCEoH379syZM4cZM2awdu1aWQ6kkiT5izLl5+ezdetW4uPjycvLIyYmhrlz59KoUSOrQxPiVwYOHHhpAPjFF1+UO8QrQco+4jdOnjxJYmIiycnJdOnSBZvNxvXXXy+lHVGvORwOpk+fTsuWLZk5c6bV4VhGyj6iSrTWfPXVVxiGwe7du/nDH/7AypUr5WY74TI8PDx45plnGDduHG+99RYjRoywOqR6TZK/m8vLy+Odd94hISGBoqIiYmJieOqpp6R1nnBJgYGBLF++nIkTJxIdHc3VV19tdUj1liR/N5WWlnaptHPNNdcwbdo0fve730kfXOHy2rVrxxNPPMGsWbNYs2YNTZs2tTqkekmSvxvRWvPFF18QHx/PN998w+23387atWtp3bq11aEJ4VT9+vVj//79zJw5k5dffhkfHx+rQ6p3ZMDXDeTk5Fwq7QDExsYybNgw/P39LY5MiNqjtWbWrFkEBQUxd+5ct/lUW9kBX0n+DVhKSgqJiYls3ryZHj16YLPZ6NGjh9v8JxAiJyeH8ePHc+eddzJmzBirw6kTMtvHTTkcDj777DPi4+P54YcfGDFiBP/+979p2bJlxT8sRAMTEBDAsmXLmDBhAu3bt+e6666zOqR6Q5J/A5Gdnc3mzZsxDAM/Pz9sNhuLFy/G19fX6tCEsFRERATPPPMMjz76KGvWrKFFixZWh1QvSPJ3cceOHcMwDN5991169erF448/zrXXXiulHSFK6N27N/fccw9xcXGsXLlSLoqQ5O+SHA4Hn3zyCYZhsHfvXkaOHEl8fDzNmjWzOjQh6q27776bPXv2MH/+fObNm+f2F0gy4OtCzp8/z6ZNm0hISCAoKAibzcbvf/97mcYmRCXl5eVx3333ceutt3L33XdbHU6tkAHfBuTQoUMkJCSwdetW+vTpw7x587j66qvd/spFiKry8/Nj2bJljBs3jo4dO9KrVy+rQ7KMJP96yuFw8N///hfDMDh48CCjRo0iISFB7lYUooZatGjBggULmD17Nv/617/c9iZHSf71TFZWFm+99RaJiYmEhYVhs9kYNGiQlHaEcKLrrruOiRMnMn36dFatWuWWa1lJzb+eOHDgAIZhsG3bNvr164fNZuOqq66yOiwhGiytNc888wzZ2dksXLiwwZRR5Q5fF1BUVMSHH36IYRgcPXqU0aNHM2rUKBo3bmx1aEK4BbvdzuTJk+nfvz8TJkywOhynkAHfeuzcuXNs3LiRpKQkmjVrRmxsLAMGDMDb29vq0IRwKz4+PixZsoRx48bRqVMn+vbta3VIdca9kr/W8N138N57sGsX7N0LubmgFDRvDt27Q79+MHQoBAc7fff79u0jPj6e//znP9x8880sXbqUK664wun7EUJUXtOmTVm4cCHTp0/ntddec5ve1O5R9tEatm+HxYvh0CEoLARfX/Dzg4utCe12yMszv/fyglGjYPp0qGEJprCwkP/85z8YhkFaWhp33nknd9xxB2FhYTU8KCGEM23cuJF169axZs0aAgMDrQ6n2qTmf1FGBsydC1u2gLc3NGpkXumXp7AQzp+HwEBYtMj8JFBF6enpl0o7rVu3JjY2lptvvhlPT89qHogQorYtWrSIn3/+maVLl7psz2pJ/gBpaRAbC6mpEBLyy1V+ZeXmmp8G/vIXmDq14pMG8OOPP2IYBjt37mTgwIHYbDY6depUzQMQQtSlgoICpkyZQo8ePbj//vutDqdaZMA3I8NM/GlpUN0Si7+/+Wnhb3+DgAC4775SNysoKGD79u0YhsGpU6cYM2YM06ZNIyQkpAYHIISoa97e3ixatIixY8fSqVMnBg4caHVItaZhJn+t4bHHzCv+mtbWvbwgKAgWLoQ+faBLl0svnT17lvXr17NhwwYiIyO555576N+/v5R2hHBh4eHhLFmyhAcffJB27drRvn17q0OqFQ0z+W/fDlu3mqUeZ/D2Nks+Dz0EW7bw/Z49xMfH8/HHHzN48GBeeOGFBvsLIoQ7uvLKK5k2bRrTp09n7dq1BNfC7D+rNbyav9YwZAgcO2YO2DqJw+Eg5+RJXujShY8DAoiJiWH48OEN8pdCCGH629/+xsGDB3n++eddZgDYfQd8v/kG7rzTnKdfzgCt3eFg4cmTfJ6TQ1ZRERHe3kxt1owbLjthFBQWkpGRwbmMDEI8PPC49loab9/uMr8IQojqKyoq4sEHH+SKK67goYcesjqcSqls8m94Gey998ypmhXMzCkCWnh780rbtuzo1Ik/N23K7NRU0ux2NJCTm8vx1FQOHTpEUVER7dq1o3n79jRNScHjwoU6ORQhhLU8PT1ZsGAB27ZtY+vWrVaH41QNr+a/a5d5A1cF/D08mFxieeR+QUG09PZm99mzdM3Lw+FwEBYWRsuWLfEseZXv7Q179oAbrwMuhDsJCQlh2bJl/PnPfyYyMpLOnTtbHZJTNLwr/717zTt3q6CgoIC9J06wPzOTxvn5NGvalPbt29M4PPzXid/cGPbvd2LAQoj6rmPHjsyePZu4uDgyMjKsDscpGl7yz8mp0s1cZ86e5dsffuDp06cZHBBAx0aNyMvP59y5c2RlZXEhO5vc3Fzy7XYKCgtxFBSgpewjhNsZNGgQQ4cOZfbs2RQWFlodTo01vAHfjh3NefmVPAGknzvH7KNHISCA+eHhKK1xFBVR5HCU+meg3c6/WrXiP9HRBAYGEhQURGBg4G++v/zr8tdkBU8hXI/D4eCRRx6hTZs2xMXFWR1Oqdz3Dt9mzSArq1J1f601K3JyyPPzY46XF03Cw/GoaAmHrCxmLlzIn2++mQsXLnDhwgXOnz//m+/T0tLKfO3ChQt4e3uXe/Ko6ETSqFEjmXEkRB3z8PBg/vz5jBs3juTkZIYPH251SNXW8JJ/9+7mDV6VSP4LTp7ksN3OSx07kpGWxsmTJ2nZsiXlpn+l8O7WjfDwcMLDw6sVotaa3NzcSyeCy78uniROnz5d5skjNzcXPz+/ck8YFZ1M/P39G0z3IiHqSlBQEMuWLWPy5MlER0fTtWtXq0OqloaX/Pv2NVfwrMCJggI2nDuHj1IM3b8frTX5+fnMcDiIKauhs91uzvaJiqpRiEopAgICCAgIoFmzZtV6D4fDQXZ2dqknhotfmZmZHD9+vMxPKAUFBeWWpyrzvfQWFu4oKiqKxx9/nJkzZ7Ju3bryu+/l58OFC+b088BAqCf/Z5xS81dKDQX+DngCr2mtF172ui+wFugBnAVsWusj5b1ntWv+mZnmNEx/f3NdniqwFxRw5PBhWkdE0Ki0hs4ZGTBpEsyeXfW46qHCwsJyS1dlfSIp+djDw6NS4xzlfQqRtZCEq3r11Vf59NNP+ec///nLhZDDYU4537ABvvgCUlLg4u+41ubF4/XXmzejdutWqdWCq6LO7vBVSnkC+4DBwHHgC+CPWusfS2wzBeimtb5fKRUL3KG1tpX3vjVa0nn2bEhMrNaibtnZ2aSmphIZFYVPyUHZwkJzJtG2bdC2bfXiamC01tjt9nJPHmWdSC6+lp2dja+vb4VjHeWVtAICAmT8Q1jC4XAwa9YswsLCmPPoo+ZNps88Az//bJ4E/P3NEvTFBO9wmJ8EcnPNE0J0tLm9E+8bqsvk3wd4Sms9pPjxowBa6wUlttlavM2nSikv4CTQVJez8xol/zNnYOBAKCoy//Kr6Gx6OpmZmUS2a/dLUsnIgD/9CWbOrF5MolQXxz8qe/Io7WSSl5dHQEBAtWdfBQUF4evrK+MfolpycnKYctddPJ6XR/sDB8yyjr9/xVf0WpvloKIiuOsumDOnyvcolaYuZ/u0BlJKPD4O9C5rG611oVIqE2gMnHHC/n+rSRNzCeYHHzRr9FUs/4SHh5Ofl0faiRO0bt0alZlpXu0//HCthOvOSo5/NG/evFrvUVRUVO74x/nz50lPT+fYsWNlnliKiooqPHlU9KlEpu+6p4CcHP555gzpX35JTmQkAaWVjEujlDktvagI/t//M1cOWL3a7B1SB+rVgK9SajIwGaBtTUsrt94K+/bBihXmX3AVTgAKaNGyJUePHCErJYWQdu1g3bpKzSASdc/T05Pg4OAarbB6sXxV3ljHiRMnyv2E4uXlVekZV2WdSKR85WJycuCuu/A7eZLgyEiOp6URFRWFd1UuOD09zRL1l1/C5Mmwdm3Vuw5WgzOSfyrQpsTjiOLnStvmeHHZJwRz4PdXtNavAK+AWfapcWQPP2yeRZcs+eUsW8mP9h5FRbQJCuKH8+fJnz2bXhERNQ5H1F8+Pj41nr6bl5dX4VjHmTNnytwmJycHPz+/Gs2+kum7dWzpUjh4EEJDCVSK8PBwjqek0C4ysuJ7hkpSCkJD4dNPzeR/7721FvKlXTqh5u+FOeB7C2aS/wK4S2v9Q4ltHgCuLjHgO0prHVPe+zqtgTvA99+bjVhSUio+CRQUmHU4Dw+YNInvBg5k2qOP8tprr9GuXTvnxCNEKRwOBzk5OVUeNC/5vd1ur/Lsq9Km78oJpBK+/hrGjDGnbxbP5tFAamoqSilatWpV/j1DpbHbzQHhDz6Aal5w1ul6/kqpW4HnMKd6rtJaP6uUmgfs1lonK6X8gHVAdyAdiNVaHyrvPZ2a/MFM6v/5D7zyCvzvf+ZYgN1u1tuUMgdplDKfv/tucwCmONlv3LiRdevWsWbNGgIDndcgRghnKywsJDs7u9qzry4Ur1tVk9lXgYGBeFVxnM0lTZpk5pTQ0F897dCaI0eOEBISQuPwcLKKiph34gS7Llwg1MuLqU2bMrS8LoMZGWa/8DlzqhWW+zZzqYxz58zBlf37ITvbHA9o1szszxsV9cuc3BIWL15MWloay5cvl7qsaNDsdnulZ1yVdTLx8fGp0eyrej999+RJ84bS4OBS6/P2ggKOHDlC61atePbcOTTweMuW7MvL4+GUFP4VGUl0WWOIBQXm1PLdu6s1W1GSv5MVFhYyZcoUrr32WqZMmWJ1OELUW5cvX1LZk0fJ7/Py8vD396/ykiUln/fz86u98tWGDTBrVrl9wrNzcjiYksIkh4PE9u1pW3wT2BNpaTT18uLB8u7uv3AB1qyB3pdPnKyY+y7sVku8vLxYtGgRY8eOpVOnTgwaNMjqkISol5y1fElF5amMjAyOHTtW5kmmsLCQRo0aVXnQvORXmcuXfPWVWTIuR6OAAHJDQij8+WciSpTBOvr68lVOTvl/AQUF8MMP1Ur+lSXJvwrCwsJYunQpDzzwAG3btqVTp05WhyREg+Th4VHj6bsFBQUVlqdOnjxZ7qcST0/PUj9VTEhOpkl2Ng6HA08PDzw8PUv90zsoiMDTp3+5ZwgI9PAg2+EoP3il4Lvvqn3slSHJv4o6d+7MjBkziIuLY+3atYReNtgjhKgfvL29CQsLI6way7wAlxZ7LO2kELplCx5eXhQVL3FSVv+PE4WFZBUWcub0aZo3a4a3tzfZDgeNKhrP8PCA8+erFXdlSfKvhiFDhrBv3z5mz57NP/7xD/eY2SCEm1FK4efnh5+fH02aNPn1i889Z5Zmyrgbt8jh4Ny5c9jPnoWCAlSrVngV3wG+Lz+/7MHei7Su9ZtK6/Fwev32wANGw3bOAAAXoUlEQVQP4OPjw3PPPWd1KEKIuhYdbU4Vv0xefj4nTpzgwP795OXm0j4igqFNm2IUFJDncPBNTg4fnj/PH8qb6gnmbJ+OHWspeJMk/2ry8PDg2Wef5ZNPPiE5OdnqcIQQdalXL/PqHPPGrqzz5zl69CjHjh3Dy8uL6Pbtad26NQH+/jzaogX5DgeD9+1jTmoqj7ZoUfGVv6+vudxzLZJ6RQ1c7OgzadIkoqKiuPrqq60OSQhRF3r2pAjIOHOGjHPn8PLyIjw8nKCgoN8s6xDs6cmyNm1Kf5/SOBzmTKJaTv5y5V9DUVFRPPHEE8yaNYvTp09bHY4Qopbt27ePeYmJfJmRgb5wgYiICKIiIwkJDq7aej5lycoyl6S/fJzByST5O0H//v0ZPXo0M2fOxF5KHVAI4doKCwt5//33mThxIn/5y1+IaNOGK59/nqYhIfg7c2D24hTQSZOc955lkLKPk0yYMIG9e/eycOFCHn/8cVkYS4gGID09nQ0bNrB+/XratGlDbGwsN998sznDz+GA5GTzhi9nTfnOzISRI6FnhTfo1pgs7+BEOTk5TJgwgVGjRhETU+6ipUKIeuzHH38kPj6e//73v9xyyy3ExMSUflNnSgoMG2bW6Bs1qtlOs7LMk8i2beaaQdUkyztYICAggGXLljF+/Hiio6PpWQdnbyGEc9jtdrZt20ZCQgJnz55lzJgxxMXFlX+XcZs2Zvete+4x1+Op7qq/mZnmz77xRo0Sf1XIlX8t+Pzzz5k7dy6rV6+mVatWVocjhCjH6dOnWb9+PRs2bKBDhw7YbDb69etXtVVFv/7arNOnp5uLvVX2ZwsLzTt527aFVavMVYVrSFb1tNjrr7/O5s2bWblyJf7VWJZVCFF7tNZ8++23GIbBp59+ypAhQ4iJiSE6Orr6b3r+PMyfb6746XCYZSBv7982jtLabNiSm2suHz9pktlsykkDx5L8Laa15umnnyY/P5+//vWvMgAsRD1gt9vZsmULhmGQnZ1NTEwMt99+O0FBQc7bydGj8PrrYBhmKcjLy0z4WpvJvqAAGjc2S0UxMWYvESeS5F8P2O12Jk6cyIABAxg/frzV4Qjhtk6ePElSUhJvvfUWV155JTabjT59+tRuwxit4dQp2LvXrOkrBeHhcMUV5p+1RAZ86wEfHx+WLl3KuHHj6NixI3379rU6JCHchtaar776CsMw2L17N7feeisrV66kbdu2dROAUtC8uflVD8mVfx349ttvmT59ujSBF6IO5Obm8u6775KQkEBhYSExMTHcdtttBJSxAmdDI1f+9Ui3bt144IEHmDZtmjSBF6KWpKamkpiYyKZNm7jmmmt45JFH6NWrl4y3lUGSfx0ZOXIke/fuZe7cudIEXggn0Vrz+eefYxgG33zzDcOHD2ft2rW0bt3a6tDqPSn71CFpAi+Ec+Tk5LB582YSEhLw8vLCZrMxbNgw/Pz8rA7NclL2qYekCbwQNXPs2DESEhJ455136NmzJ3PmzKF79+5S2qkGSf51TJrAC1E1DoeDTz/9FMMw+Omnnxg5ciRvvPEGzevpLBpXIcnfAtIEXoiKnT9/nk2bNpGQkEBgYCA2m42lS5fi4+NjdWgNgiR/i0gTeCFKd+jQIQzD4L333qNPnz7MmzePq6++Wko7TiYDvhZyOBz85S9/oW3btsTFxVkdjhCWcTgc7Ny5E8MwOHToEKNGjWLUqFE0bdrU6tBcjgz4uoCLTeDHjRtHcnIyw4cPtzokIepUZmYmb731FomJiTRu3BibzcagQYPw9va2OrQGT5K/xS42gZ88eTLR0dF07drV6pCEqHX79u3DMAy2b99Ov379WLRoEV26dLE6LLciyb8eiIqK4vHHH2fmzJmsWbNGPuqKBqmwsJAdO3ZgGAapqamMHj2a9evXE16Li5yJsknyryf69+/P/v37mTlzJi+//LLMaBANRnp6Ohs3biQpKYlWrVphs9kYMGCATHKwmAz41iNaa2bNmkVgYKA0gRcu78cff8QwDHbu3MnAgQOx2WxyX0sdkPX8XZQ0gReurKCggA8++ADDMDhz5gxjxoxhxIgRhISEWB2a25DZPi5KmsALV3TmzBk2bNjA+vXriY6OZty4cfTv318WMKzHJPnXQ61bt2b+/PnMmTNHmsCLektrzXfffYdhGHzyySf8/ve/56WXXqpZH1xRZ6TsU49JE3hRH9ntdrZu3YphGFy4cKF2+uCKapOyTwPwxz/+kX379jFv3jxpAi8sd+rUKZKSkti4cSOdO3fm/vvv54YbbpDSjouSf7V6TCnFnDlzSE1NZfXq1VaHI9zQxT64s2bNIjY2luzsbF599VVWrFhB3759JfG7sBpd+SulwgEDiASOADFa64xStisCvit+eExrLesYVJI0gRdWyMvLu9QH1263Y7PZePLJJ92mD647qFHNXym1GEjXWi9USs0GwrTWs0rZ7oLWukqNa6Xm/2vSBF7UhbS0NBITE0lOTqZbt27YbDZ69eolV/gupE7m+Sul9gI3a61PKKVaAju01p1L2U6SvxNs3LiRdevWSRN44VRaa7744gvi4+P5+uuvuf3224mJiZE+uC6qrpL/Oa11aPH3Csi4+Piy7QqBr4FCYKHWemNF7y3Jv3SLFi3ixIkT0gRe1FhOTg5vv/02CQkJeHh4XOqDKzPLXJvTkr9SahvQopSXHgPWlEz2SqkMrXVYKe/RWmudqpSKBrYDt2itD5ay3WRgMkDbtm17HD16tKL43Y40gRc1dezYMRITE3n77bfp2bMnNpuN6667TmaTNRBOm+qptS6zy7hS6melVMsSZZ9TZbxHavGfh5RSO4DuwG+Sv9b6FeAVMK/8K4rNHUkTeFEdDoeDXbt2ER8fz08//cSIESN4/fXXadGitOs64Q5qOs8/GRgHLCz+863LN1BKhQE5Wut8pVQT4EZgcQ3369akCbyorAsXLrBp0yYSExPx9/fHZrOxZMkSfH19rQ5NWKymNf/GQALQFjiKOdUzXSnVE7hfaz1RKXUD8DLgwLyv4Dmt9cqK3ltq/hXbunUrL7zwgjSBF79x+PBhEhIS2Lp1K9dffz02m41u3bpJaccNyKqebmLFihX88MMP0gRe4HA4+Oijj4iPj+fAgQOMGjWK0aNHS3MgNyPJ301IE3iRlZV1qQ9uWFjYpT640hDIPcnaPm5CmsC7r/3795OQkMC2bdvo168fCxYs4KqrrrI6LOEiJPk3ANIE3n0UFRVd6oObkpIifXBFtUnybyCkCXzDlpGRwZtvvil9cIXTyG9OAyJN4Buen376CcMw+PDDDxkwYAB/+9vf6Nz5NyuoCFFlMuDbwEgTeNdXUFDA9u3bMQyDU6dOMWbMGEaOHCl9cEWlyICvm1JK8dRTTzFhwgQSExOlCbwLOXv2LOvXr2fDhg1ERkZyzz330L9/fzw9Pa0OTTRAkvwbIGkC7zq01nz//fcYhsHHH3/M4MGDeeGFF2jfvr3VoYkGTpJ/AyVN4Os3u93O+++/j2EYZGZmEhMTw8yZMwkODrY6NOEmJPk3YL169eLee+8lLi5OmsDXEyX74Hbq1IlJkyZx4403yvLcos5J8m/gLjaBf+aZZ3j22WdlANgCWmu+/vprDMPg888/Z+jQobz66qvSkU1YSmb7uAG73c7EiRMZOHAg9957r9XhuI38/Hy2bNmCYRjk5eVhs9m47bbbaNSokdWhiQZMZvuIS0o2ge/QoYM0ga9laWlpJCUlkZycTNeuXXnwwQfp3bu3lHZEvSLJ3000a9aMRYsWSRP4WnKxD65hGPzvf//jtttuY/Xq1URERFgdmhClkrKPm5Em8M6Vk5PDO++8Q0JCAgCxsbHSB1dYSso+olQjR45k7969zJ07V5rA10BKSgqJiYls3ryZHj16MHPmTHr06CED6sJlyP98NzR9+nRycnL45z//aXUoLsXhcPDJJ5/w8MMPM378eLy9vfn3v//NkiVL6NmzpyR+4VLkyt8NSRP4qsnOzmbTpk0kJCTg5+dHbGwsixcvlj64wqVJ8ndT0gS+YkeOHCEhIYEtW7bQu3dvnnjiCa655hq5whcNgiR/N9a5c2dmzJhBXFycNIEvdrEPrmEY7N+/nzvuuIP4+HiaNWtmdWhCOJUkfzc3ZMgQ9u7dy+zZs926CXxWVhbJyckkJCQQGhpKbGys9MEVDZpM9RRu3QT+wIEDJCQk8P7779O3b19sNpu0wRQuTaZ6ikpztybwRUVFfPjhhxiGwdGjRxk9ejRJSUk0btzY6tCEqDOS/AXgHk3gz507x8aNG0lKSqJ58+aX+uB6e3tbHZoQdU6Sv7ikoTaB37NnD4ZhsGPHDgYMGMDSpUu54oorrA5LCEtJ8he/0lCawBcWFl7qg3vy5EnGjBnDm2++KTOahCgmyV/8xoQJE9i7dy8LFy50uSbw6enpl/rgtm3blrvvvpubbrpJ+uAKcRmZ7SNKlZOTw4QJExg1apRLNIG/2Af3o48+YvDgwcTExNChQwerwxKizslsH1EjJZvAt2/fnh49epS5bVERZGWZfwYEmF91wW63s23bNuLj4zl37hwxMTHMmDFD+uAKUQmS/EWZLjaBf/TRR3/TBP7wYUhKgp07Yd8+cDjM54uKoHlz6N4dRo6EAQPA2ZNpTp06xfr163nzzTfp2LEjEydOpG/fvrJCqRBVIGUfUaHXX3+dzZs3s3LlStLS/Hn8cfj8czPh+/qCnx9cLKlrDXY75OaCh4f5KeCRR+Cee8zH1aW15ptvvsEwDD777DOGDh1KTEwMkZGRTjlGIRqKypZ9JPmLCmmteeqpeXz+eTcOHhyJw6EICYHKjAPn50NODlxzDfz979CmTdX2nZ+fz9atW4mPjycvL4+YmBhuv/126YMrRBmk5i+cRmtFVtZcPvroLKGh6TRvXvk7YX19wccHvv0WRoyA+HiozAKiJ06cuNQHt0uXLkydOpXrr79eSjtCOIkkf1Gh+fMhOdmTqKgwjh49TKNGPgQGBlX655WC0FBzUDg2FjZvhhLDB5dorfnyyy8xDIMvv/yS2267jVWrVtGmqh8XhBAVkuQvyvXxx7BmDQQHg6enNxEREaSkHCcy0gcfn6o1MwkOhnPnYMYMWLfulzGA3Nxc3n33XQzDQGuNzWbj6aefJqCupg0J4YYk+Ysy5eaag7U+Pr8M6Pr7B9CsWVNSUlKIiorCw6NqN0+FhMCuXbBxI/TunUpCQgKbN2+me/fuxMXFSTtEIeqIJH9RpnfegYwMM2GXFBoaRl5eHqmpqbRp04bU1CfIyfkchyMXL68mNG48ltDQkaW+p1IahyOXBx88wRVX3M+IEbezbt26X00jFULUPkn+olRaw8svQ1m9XZo3b8GxY0c5ffo0TZqMx9v7cTw8fMjPP8LRo5Px9e2Mv/+Vl7Z3OIrIzMwkPT0dpTzw82vOk09upn9/6YMrhBVqNHVCKTVGKfWDUsqhlCpzapFSaqhSaq9S6oBSanZN9inqxunTcOhQ2XfrKqVo3TqCzMxM8vOb4OFxcQE4hVKKgoLjANjt+Zw8eZIDBw6Qk5NDy5atiI6Owtc3kI8/lsQvhFVqeuX/PTAKeLmsDZRSnsALwGDgOPCFUipZa/1jDfctatGePeZVf3nldy8vLyIi2nDs2FEyM/9OdvYWtM7Hz68z0I1jx46Rl5dHWFgo0dHReHn9cquvnx989lntH4cQonQ1Sv5a65+AigboegEHtNaHireNB0YAkvzrsYMHzRu0AgPL387Pz48WLVpw6lQsUVEzSE/fRUbGp5w5k0Xjxk1p0yYCpX77AdPXFw4cqKXghRAVqos7ZloDKSUeHy9+TtRjOTm/rNdTkeDgEEJCQjh2LAWHoyOBgXZCQ3cTEhJaauIHc5pnfr4TAxZCVEmFV/5KqW1Ai1Jeekxr/ZYzg1FKTQYmA7Rt29aZby2qyMencss3XNS0abPizl+KEyc8sNtTy91e61+mjwoh6l6FyV9rPaiG+0gFSt6iGVH8XGn7egV4Bcy1fWq4X1EDrVubpZmKFBamk5Ozm8DAvijlR3b2LjIzt9K69V/L/Tm73dyHEMIadTHV8wugo1IqCjPpxwJ31cF+RQ1ceWXF25gUGRlJnDjxV8CBt3dLmjefTlBQ/3J/Ki8Pela49JQQorbUKPkrpe4AVgBNgbeVUl9rrYcopVoBr2mtb9VaFyqlpgJbAU9gldb6hxpHLmpVu3bmNM/8/PI/AXh5hdGu3StVfn8PD+jbtwYBCiFqpEYDvlrrN7XWEVprX611c631kOLn07TWt5bY7h2tdSetdXut9bM1DVrUPg8PuPdec+DX2ex284QyeLDz31sIUTmyPq4ok81mzvUvKHDu++bkwNix5lx/IYQ1JPmLMrVoAdOnw4UL5uwcZ7hwAZo0gQcecM77CSGqR5K/KNd998HVV0NmZs3fy243e/z+/e8gjbiEsJYkf1EuT09YtcocAD53rvqfAPLyIDsbFi2C3r2dG6MQouok+YsKhYdDYiL06GGeAOz2yv+s1ubPOBzwj3/AqFG1F6cQovIk+YtKCQ+HN96AefOgsNBM6Dk5ZX8SKCw0ewFkZUGfPvDBBzBsWN3GLIQom6znLyrNwwPuvhtuvx2Sk81y0NGj4O1tngS0NpeEuLh0w6hR5nTRLl2qtlSEEKL2SfIXVRYcDP/3f+bX+fPm8s+nTpmDuY0aQceOEBHxS49eIUT9I8lf1EhQEPzud1ZHIYSoKrk2E0IIN6S0s+7ecTKl1GngqNVxVFMT4IzVQdQhdztekGN2B656vO201k0r2qjeJn9XppTarbV2mzUr3e14QY7ZHTT045WyjxBCuCFJ/kII4YYk+deOqi9w79rc7XhBjtkdNOjjlZq/EEK4IbnyF0IINyTJ3wmUUuFKqfeVUvuL/wwrZ9tgpdRxpdQ/6jJGZ6rM8SqlrlVKfaqU+kEp9a1SymZFrDWllBqqlNqrlDqglJpdyuu+Simj+PXPlFKRdR+l81TieKcppX4s/jf9QCnVzoo4namiYy6x3WillFZKNYgZQJL8nWM28IHWuiPwQfHjsjwD7KyTqGpPZY43Bxirtb4KGAo8p5QKrcMYa0wp5Qm8AAwDugB/VEp1uWyz+4AMrXUH4G/AorqN0nkqebz/A3pqrbsBScDiuo3SuSp5zCilgoCHgc/qNsLaI8nfOUYAa4q/XwOMLG0jpVQPoDnwXh3FVVsqPF6t9T6t9f7i79OAU0CFN57UM72AA1rrQ1prOxCPeewllfy7SAJuUcpll7Gr8Hi11v/RWl/s7LwLiKjjGJ2tMv/GYF60LQLy6jK42iTJ3zmaa61PFH9/EjPB/4pSygNYBsTVZWC1pMLjLUkp1QvwAQ7WdmBO1hpIKfH4ePFzpW6jtS4EMoHGdRKd81XmeEu6D3i3ViOqfRUes1LqOqCN1vrtugystsnCbpWklNoGtCjlpcdKPtBaa6VUaVOopgDvaK2Pu8KFoROO9+L7tATWAeO01g7nRimsopT6P6AncJPVsdSm4ou25cC9FofidJL8K0lrPais15RSPyulWmqtTxQnu1OlbNYH6KeUmgIEAj5KqQta6/LGByzjhONFKRUMvA08prXeVUuh1qZUoE2JxxHFz5W2zXGllBcQApytm/CcrjLHi1JqEOZFwE1a6/w6iq22VHTMQUBXYEfxRVsLIFkpNVxrvbvOoqwFUvZxjmRgXPH344C3Lt9Aa3231rqt1joSs/Sztr4m/kqo8HiVUj7Am5jHmVSHsTnTF0BHpVRU8fHEYh57SSX/Lu4EtmvXvXmmwuNVSnUHXgaGa61LPem7mHKPWWudqbVuorWOLP6/uwvz2F068YMkf2dZCAxWSu0HBhU/RinVUyn1mqWR1Y7KHG8M0B+4Vyn1dfHXtdaEWz3FNfypwFbgJyBBa/2DUmqeUmp48WYrgcZKqQPANMqf6VWvVfJ4l2B+ck0s/je9/GToUip5zA2S3OErhBBuSK78hRDCDUnyF0IINyTJXwgh3JAkfyGEcEOS/IUQwg1J8hdCCDckyV8IIdyQJH8hhHBD/x/PAxUO8owGIwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXl00WEVBxBxW3cEUETMscoWnUcoPS9pppxpmmpqamdWqapmkaa9qctslWm5rqV2OW6UxTou3CRdyXRFRcAFHZZOdyv78/Dp7AWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNH1eFldgBBCCGtIAAghRBclASCEEF2UBIAQQnRREgBCCNFFSQAIIUQXJQEghBBdlASAEEJ0URIAQgjRRflYXUBzevfurYcMGWJ1GUII0aFs3LjxuNY63JljPTYAhgwZQkZGhtVlCCFEh6KUynH2WI8NAJfTGvLz4cQJcDggOBgiI8Hb2+rKhBDCEp07AOx2+OILeOMN2LgRqqqMG75SRggAjBoFixbB3LlGKAghRBehPHU10Li4OH3WXUBaw//+B/ffD8XFxucCA8HXt/FxdXVGKNjt4OMDv/oV3Hgj+Pm1rXghhLCIUmqj1jrOmWM73yygsjK46Sb49a+hvBxCQow/p9/8wWgNBAUZX/fzg7//HS65BPbtc3/dQgjhZp0rAEpLje6cTz4xbuqBgc5/r68vhIbC/v2wYAHs3Nl+dQohhAfoPAFQVwc33AC7dxs3cq+z+NGUMoKjqgquvNIYNBZCiE6q8wTAa69BZqZx81eqbecKDja6ku680xhPEEKITqhzBMCRI/C3vxn9+W29+Z8SEgLffgurV7vmfEII4WE6RwC8+aYxk6eV2Tv/V1jINfv3M2X3bh7MzW35nEoZM4OeeUZaAUKITqnjB0BNjREAQUGtHtrbx4cbevdmbkiIc+cOCjJmBG3b1sYihRDC87gkAJRSryqlCpRS25v5ulJK/V0ptVcptVUpFeuK6wLGoG9trVNz9xN79OBHwcGEOPv0r1LG4PKGDW0sUgghPI+rWgCvAzNb+PosYET9n8XACy66rjFd02532el+wMcH0tLa7/xCCGERlwSA1voLoLCFQ+YBb2jDBiBUKdXfFddmz57vl3VoD926GdcQQohOxl1jAAOBQw1eH67/XCNKqcVKqQylVMaxY8ecO3NFxRnN/Km12zlaUEBpaSnFxcXU1Na2/A1KGeMMQgjRyXjUYnBa62XAMjDWAnLqmwICzmiWjpeXF1prfHx8KCsvp6CgAC8vL4KCgggKCiIwKAifhmMEWje9jIQQQnRw7gqAI0BEg9eD6j/XdiNHOt0CqNOaOqBbQAAVQJ/+/fFSCntNDeXl5RSXlJCbl4efnx9BgYEEBQURUFeHd5xT6yoJIUSH4q4A+Ai4WSn1DjAZKNFa57nkzNHRTr9Df+X4cZYdP47D4aC2tpb1333H4t69WRwejn+3bvTq2ROtNZVVVZSXl3P8xAn8Tp5k7Z49VC5bRkJCAmPHjsXHx6MaTkIIcVZcshy0Uupt4EdAb+Ao8EfAF0Br/Q+llAKexZgpVAH8VGvd4lrPTi8HXV0NkyYZK3s6GQQa2L9vH3379iWopecHtMZRXMy2Bx5gfXEx6enpHDp0iJiYGBISEkhISGD48OF4nc26Q0II0Q7OZDlol7yV1Vpf0crXNXCTK671A926wVVXwcsvQ1iYU9+igNCwMIqKi1sOgIoKvIYOZcK11zKhvpuppKSEjIwM0tPTWbFiBaWlpcTHxxMfH09CQgIDBw5EuWo5CiGEaEedY0OYQ4fgwgvB39/pVkCdw8HerCyGDRvWdJeO1lBSAk88AfPmNXue/Px80tPTsdlspKen4+fnZ7YO4uPj6dmzp3M/gxBCuMCZtAA6RwAAvPACPP74Ga0Gmpubi1+3bvTu1euHXywuhvh4eOstp5eW1lqzf/9+Mww2btxI3759zTCYNGlSyy0OIYRoo64ZAHY7XHaZsW5PSIhTIVBRWUlubi7Dhg2j0dFlZUbX0po1MPAHjys4ra6ujl27dpkthO3btzNixAizu2jcuHH4yfaTQggX6poBAMa79kWLYO9ep1oCGti3bx/9+vUj6NTuYSUlRlfSv/4F48adXfHNqK6uZsuWLaSnp5Oens6BAwcYN26c2WU0atQoGVAWQrRJ1w0AMLaFvP12WL/euJH7+7d4eGFRERUVFQzq2xdOnoTISHjxReP5gnZ28uRJNm7caLYQTpw4QVxcnNlCiIyMlAFlIcQZ6doBAMYA7urV8Ic/GN05Shn7A58+2OtwUFdeTt7Bg/QfOBDvX/4SbrnF6P6xQEFBgTnDKD09HaDRgHJ4eLgldQkhOg4JgFNqaiA1FZYvh82bjaWdTy3z4HAYr4cN4wN/f2pmz2bRL3/Z9sJdRGvNoUOHSEtLw2azkZGRQc+ePc1AmDRpEsHBwVaXKYTwMBIATXE44PBhOHHC+Dg4GIYMAT8/tmzZwp/+9Cf+/e9/e2yXi8Ph4LvvvjNnGG3dupUhQ4aYgTBhwgS6WdRyEUJ4DgmAM6S1ZtGiRdx9991MmjTJLddsq5qaGrZt22aOH2RlZTFmzBgzEKKjo/F2duMbIUSnIQFwFt555x22bdvGX/7yF7dd05XKy8vJzMw0xw+OHj1KbGysGQhDhw712NaNEMJ1JADOQmlpKXPnzmXlypWEhoa67brtpbCw0OwuSk9Pp6amxhxMTkhIoF+/flaXKIRoBxIAZ+mBBx5g1KhRXHXVVW69bnvTWnPkyBGzu8hmsxEcHGy2DuLi4ggJCbG6TCGEC0gAnKXNmzfz5z//mffff79Td5c4HA727t1rthA2bdpERESE2UKYOHEiAQEBVpcphDgLEgBnSWvNwoULuffee4mNjXXrta1UW1vLjh07zBbC7t27iY6ONruLxowZI3sgCNFBSAC0wb/+9S927drFn//8Z7df21NUVFSwefNmc/zgyJEjxMTEMHnyZOLj4xk2bJgsWSGEh5IAaIOSkhLmzZvHhx9+KP3i9YqLi80nlG02G2VlZT/YA0EI4RkkANroD3/4A9HR0Vx55ZWWXN/T5eXlNZph5O/v32hAWfZAEMI6EgBttGnTJv7yl7/w3nvvderBYFc4tQfCqSUrMjMz6devnxkIsbGxBJ5aaVUI0e4kANpIa81ll13Gfffdx8SJEy2poaOqq6tj586dZgthx44djBgxwgyEsWPHyh4IQrQjCQAX+Ne//sXu3bt56KGHLKuhM6iqqjL3QLDZbBw4cIDx48ebgTBy5EgZUBbChSQAXODUYPBHH31Ejx49LKujsyktLTX3QEhPT6eoqIi4uDgzECIiIqTbTYg2kABwkfvvv58xY8ZwxRVXWFpHZ1ZQUGB2F9lsNpRSjZas6N27t9UlCtGhSAC4SGZmJkuWLOHdd9+Vd6VuoLUmJyfHDIONGzfSq1evRgPKsgeCEC2TAHARrTUpKSn88Y9/ZMKECZbW0hU5HA52796NzWYjLS2N7du3M3ToULOFEBMTIwPKQpxGAsCF3nzzTbKysvjTn/5kdSldXk1NDVu3bjVbCHv37mXcuHFmd1F0dLQMKIsuTwLAhYqLi5k/f74MBnugsrKyRnsgHDt2jNjYWHPJiiFDhkjXnehyJABc7Pe//z0TJkxg0aJFVpciWnDixIlGTyjb7fZGA8p9+/a1ukQh2p0EgItt3LiRRx99VAaDOxCtNYcPH240wygkJKTRkhXSohOd0ZkEgKzx64TY2Fjsdjvbtm1j/PjxVpcjnKCUIiIigoiICJKTk809ENLS0li5ciUPPvggkZGRZiDExMTg7+9vddlCuJW0AJz0z3/+k+zsbB588EGrSxEuUFtby/bt280WwnfffUd0dLQZCKNHj5Y9EESHJF1A7aCoqIgFCxbIYHAnVVFRwaZNm8zuoiNHjjBx4kQzEIYNGybdf6JDkC6gdhAWFsbUqVP573//y8KFC60uR7hYYGAg5513Hueddx5gBH5GRgY2m413332XysrKRktWDBgwwOKKhWg7aQGcAZvNxhNPPMHbb78t7wa7mNzc3EYDygEBAeYMo/j4eMLCwqwuUQhAuoDajcPhICUlhYceeohx48ZZXY6wiNaa7OxsMwwyMzMZMGAA8fHxTJ48mYkTJ8oeCMIyEgDt6I033uDAgQM88MADVpciPITdbjf3QEhLS2PXrl2MHDnSbCGMGzcOX19fq8sUXYQEQDsqLCwkJSWFVatW0b17d6vLER6oqqqKzZs3my2EnJwcYmJizAfSRowYIUtWiHYjAdDO7r33XiZOnCiDwcIppaWlZGRkmE8ol5SUEBcXZy5ZMWjQIBlTEi4jAdDO0tPTefLJJ2UwWJyVgoICMwxsNhve3t6Nlqzo1auX1SWKDsztAaCUmgksBbyBl7XWS077+vXA34Aj9Z96Vmv9ckvn9OQAcDgcJCcn8/DDDzN27FiryxEdmNaaAwcOmDOMNm7cSHh4eKM9EKSrUZwJtwaAUsob2AP8GDgM2IArtNY7GxxzPRCntb7Z2fN6cgAALF++nJycHBkMFi51ag+EtLQ0bDYb27dvJyoqygyE8ePHyx4IokXuDoApwINa65/Uv74XQGv91wbHXE8nC4DCwkKSk5P5+OOP5R2aaDc1NTVs2bLFbCHs27ePsWPHmoFwzjnnyICyaMTdAXApMFNr/fP619cAkxve7OsD4K/AMYzWwm1a60NNnGsxsBggMjJyUk5OTptqa29333038fHxXHrppVaXIrqIkydPmnsg2Gw2jh8/TmxsrBkIgwcPlnGpLs4TA6AXUKa1rlZK/RJYpLVObOm8nt4CAEhLS2Pp0qW89dZb8o9OWOL48eON9kBwOBzmYHJCQgJ9+vSxukThZu5eC+gIENHg9SC+H+wFQGt9osHLl4HHXHBdy8XHx1NWVsauXbsYPXq01eWILqh3797MmjWLWbNmobXm0KFD2Gw2vvzyS5566ilCQ0PNGUayB4I4nStaAD4Y3TpJGDd+G3Cl1npHg2P6a63z6j9eANyttT63pfN2hBYAwGuvvcaRI0e4//77rS5FiEYcDgd79uwxu4u2bNnC4MGDzSUrJkyY0CH2QKipgb17Yf9+qK4GHx+IiIBRo0BW3PghK6aBzgaexpgG+qrW+i9KqYeADK31R0qpvwJzATtQCNyotd7d0jk7SgCcOHGCSy+9lI8//pigoCCryxGiWbW1tWzbts1csiIrK4vRo0ebLYQxY8bg7e1tdZkA1NXBF1/Ayy9DWppx09caHA7w8gKloLYWoqNh8WK46CLoAFnmFvIgmJvdddddTJ48mZSUFKtLEcJpFRUVjQaU8/LyiI2NNccQoqKiLBnb2rIFbr0VjtR3JAcHGzf902kN5eVGWAQHw+OPQ2KLI4tdgwSAm23YsIG///3vMhgsOrTCwsJGS1ZUVVWZ3UXx8fH079+/Xa+vNTz9NDz3nHHDP5PhiooKo3to3jxYsgS68qMSEgBu5nA4mD9/PkuWLJHBYNFp5ObmmmGQkZFBYGBgoz0QQkNDXXYtreGPf4S33jLezZ/NbpwOB5SUwHnnGV1HXTUEJAAs8Oqrr5KXl8d9991ndSlCuJzD4SA7O9uccrpp0yYGDhxoTjeNiYlp0x4Ir7wCjzwCISFNd/c4S2soLobLLjNaAl2RBIAFjh8/zmWXXcbq1atlMxDR6Z3aA+HUkhW7du1i1KhRZiCMGTPG6T0QsrNh9mxjENcV2yacagksXw7nn9/283U0EgAWufPOO5kyZQrJyclWlyKEW1VWVrJ582azhXDw4EFiYmLMQBg+fHizS1YsWgQbN4ILe5QoLzfGEL7++uy6kzoy2RTeIgsWLOCFF16QABBdTkBAAFOmTGHKlCkAlJSUmAPKK1asoLS0lLi4ODMQBg4ciFKKrCzj5h8S0vo16upKyct7iLKyDfj4hBIefjMhITObPDYoCAoL4fPPISnJlT9p5yIB4ELnnnsuf/3rX9m1axfR0dFWlyOEZUJCQkhKSiKp/u6bn59vtg5efPFF/Pz8iI+PJyvrcuz2KIznSVuWn78EpXwZOfJ/VFXt4dChW/H3H0m3blFNHq+UMRgsAdA8CQAX8vLyYv78+XzwwQcSAEI00K9fP+bMmcOcOXPQWrN//35sNhsvvwwnThyitNRBUFAQQUFBBAYG4uXV+IE0h6OSkydTiYr6P7y8AgkMjCE4eDolJavp0+c3TV4zKAgyM43nBDzk+TaPI+vIutjcuXP57LPPqKiosLoUITySUoqoqCjmz1+Er+9IRo0aQv/+A/D29qGwsJCsrCwOHNjPsWMFVFSUo7WDmpqDgDd+fpHmebp1G0F19b5mr3Pqpn/gQPv+PB2ZtABcLDw8nNjYWD755BMWLFhgdTlCeKyjR40BWi8vRUBAAAEBAUBvtHZQUVFJeXk5R48WUFNTjY9PNnV1flRVVeLvHwCAl1d3HI7yFq/h5QW5uTBsmBt+oA5IWgDtIDk5mQ8++MDqMoTwaHa70U9/OqW8CAoKok+fPgwdOoSIiAi8vAKpri5m//79VFVVAeBwlOPl1fL6W1obawaJpkkAtINzzz2XwsJCdu9ucb07Ibq0gACjf/6HNJWVFRw9epS9e/eSm5tHQMBQ/P19CQ2tori4CIDq6j3NDgCfopRxHdE0CYB20HAwWAjRtL59jX56IwQ0FRXl5Ofnk5WVRV5eHl5eikGDIhg+fBj9+g0hJORC7PZ3KSkpoKwsk5MnPyck5OJmz3/q3b90/zRPAqCdzJ07l08//VQGg4VoRl1dLf36Hefw4WPs2bOHo0eP4uPjw+DBg4mKGkZ4eJ/6/QqMfqJ+/e4B7FRX/5xDh+6hX797W2wB2O3QvTuEh7vn5+mIZBC4nfTp04eYmBg+/fRT5s2bZ3U5QniE6upqvv32W1JTU/nqq6+oq7sSL69FDB06FF/flldv8/buQUTEE4SFneTYseOEhAxt8fiyMli4sOlxBmGQAGhHycnJvPTSSxIAokurqKjgq6++Yu3atWzYsIHo6GgSExP5zW9+g69vOJMnn9lNunv37uTn5zeaEXQ6rY1zXnedi36ITkoCoB1NnTqVRx55hD179jBy5EiryxHCbUpLS/n8889JTU1l48aNxMTEkJSUxL333vuDZaSvuspYuC0szNmzK0JDQykqKqZ//6YDoKQEzj0XzjmnbT9HZyeLwbWzZcuWUVRUxN133211KUK0q8LCQtavX8/atWvZvn07CQkJzJgxg2nTphEcHNzs91VUGMs1FBUZffbOsNtryc7ex4gRw3/w1HB1tdH/v3YtDBjQlp+oY5LVQD1IQUEBl19+OatXr65/0EWIzuPo0aOkpqaSmppKVlYWU6dOJSkpialTp57R3/fMTLjiCuPBMGe/7fDhQ3Tv3p3Q0O+bDrW1Rt//U0/B3Lln+tN0DrIaqAdpOBg8t6v+jRSdyqFDh0hNTWXt2rUcPnyY6dOnc+211zJ58mT8znIbrthYeOkl+MUv4ORJY1ew1oSGhnHsWIEZAJWVUFUFDz7YdW/+Z0oCwA0WLFjAK6+8IgEgOiStNfv27TPf6Z84cYIZM2Zw0003MWnSJHxctOD+BRfAe+/BzTcbG8J3797yBjHduweRn19HeXkltbUBdO8OzzwjG8OfCekCcoO6ujrmzJnD008/LYPBokPQWrN7927znX51dTWJiYkkJiYyYcKEZjd3cYWqKuNG/vrrUFNjzOY5tVuYUsYMH7vdOK6oqASHw85Pf9qLe++Fnj3brawOQ8YAPNCyZcsoLi7mrrvusroUIZrkcDjYtm0ba9euZd26dfj4+JCYmEhSUhLR0dEoN0+or6iANWvgv/+FLVvgxAljcTeHw+giGjcOJk8+ybvvXsUnn7xNUFDL6wJ1FRIAHig/P58rr7ySNWvW1D/dKIT16urqyMzMJDU1lXXr1pkbucyYMYPhw4e7/abfkooKo0Xg6wuBgd8/O3DXXXeRkJDApZdeam2BHkIGgT1Qv379GD9+PJ9++ilz5syxuhzRhdXU1GCz2Vi7di1ffPEF/fv3JzExkWXLlhEZGdn6CSwSGGj8OV1KSgpLly4lJSXFowKrI5AAcKPk5GRef/11CQDhdlVVVXzzzTekpqby9ddfExUVRVJSEr/4xS/o37+/1eW1SXx8POXl5ezYsYOxY8daXU6HIgHgRueddx5Llixh7969DB8+3OpyRCdXXl5uLsGQlpbGmDFjSExM5Le//S29e/e2ujyX8fLyIjk5mRUrVkgAnCEZA3CzF198kZKSEhkMFu2ipKTEXIIhMzOTiRMnkpSUxAUXXPCDJRg6k8LCQpKTk1m1alWLTx13BTIG4MHmzZvHlVdeyS233CKDwcIlTpw4wbp160hNTWXHjh1MnjyZmTNn8vDDD9Pd2bUVOriePXty7rnn8p///IeFCxdaXU6HIQHgZv369WPcuHF89tlnXHLJJVaXIzqovLw886afnZ3Neeedx6WXXsoTTzzRZZccSU5O5oknnuCyyy6TwWAnSQBYIDk5meXLl0sAiDNy8OBB82ncI0eOMH36dK6//noSEhLOegmGziQuLo6amhq2bdvG+PHjrS6nQ5AAsMD555/PkiVLyM7OZpjsVyeaobUmOzvbfBq3uLiYGTNmcPPNNzNp0iS8vb1bP0kX4uXlxYIFC/j3v/8tAeAkCQALeHt7M3fuXD744APuuOMOq8sRHkRrza5du8x3+jU1NSQmJnLvvfcyfvz4dl2CoTOYM2cOCxYsoLS0lB49elhdjseTALDIvHnzuPrqq/nNb35Dt27drC5HWMjhcLB161bzpu/n50diYiIPP/ywJUswdGRhYWFMnTqV1atXc8UVV1hdjseTALDIgAEDGDt2LGvXrmX27NlWlyPczG63k5mZydq1a1m/fj1hYWEkJiaydOlSoqKi5KbfBikpKSxZsoTLL79cfo+tkACw0IIFC3jrrbckALqImpoa0tLSWLduHZ9//jkDBw4kKSmJl156yaOXYOhoYmNjcTgcbNmyhZiYGKvL8WgSABaaNm0ajz76KPv27SMqKsrqckQ7qKys5Ntvv2Xt2rV88803DB8+nBkzZrB48WL69etndXmdklLKfDJYAqBlLgkApdRMYCngDbystV5y2te7AW8Ak4ATwCKt9QFXXLsj8/HxMQeDf/e731ldjnCRsrIyvvzyS1JTU0lLS2Ps2LEkJSVx++2306tXL6vL6xIuueQSXnrpJUpKSggJCbG6HI/V5ikFSilv4DlgFjAauEIpNfq0w24AirTWw4GngEfbet3OYv78+axZs4bq6mqrSxFtUFxczEcffcStt97K7Nmz+d///se0adNYtWoVzz//PCkpKXLzd6OQkBCmTZvG6tWrrS7Fo7miBZAA7NVa7wNQSr0DzAN2NjhmHvBg/cfvA88qpZT21IWI3GjAgAGMHj1aBoM7oOPHj5tP4+7cuZPJkycze/ZsHnnkEdmcxAMkJyfz8MMPc8UVV8hgcDNcEQADgUMNXh8GJjd3jNbarpQqAXoBx11w/Q5vwYIFvP322xIAHUBubi7r1q1j7dq17N+/n/PPP5+FCxcyZcoUWdvJw8TExODl5cWmTZuIjY21uhyP5FGDwEqpxcBioEvNirjgggt49NFH2b9/P0OHDrW6HHGanJwcc45+Xl4e06dP54YbbiA+Pl6WYPBgpwaD//3vf0sANMMVAXAEiGjwelD955o65rBSygcIwRgMbkRrvQxYBsZy0C6orUNoOBh8++23W11Ol6e1Zu/eveYSDKWlpcyYMYNbbrmF2NhYWYKhA7n44ot58cUXKS4u7tTLYZ8tVwSADRihlBqKcaO/HLjytGM+Aq4DvgUuBVKl/7+x+fPnc91113HzzTfLu0oLaK3ZuXOnuSG63W4nMTGR+++/n7Fjx8oSDB1Ujx49mD59OqtWreKaa66xuhyP0+YAqO/Tvxn4BGMa6Kta6x1KqYeADK31R8ArwD+VUnuBQoyQEA0MHDiQUaNGkZqaysyZM60up0twOBxs3rzZHMj19/cnKSmJRx55hHPOOUcGDjuJlJQUHnzwQa6++mr5f3oal4wBaK3XAGtO+9wDDT6uAi5zxbU6s+TkZN59910JgHZkt9vZuHGjuQRDr169SExM5JlnnmHo0KFyg+iExo0bh6+vLxkZGcTHx1tdjkfxqEHgrm769Ok8+uijHDhwgCFDhlhdTqdRU1PDhg0bSE1N5YsvviAiIoKkpCReeeUVIiIiWj+B6NCUUqSkpLBixQoJgNNIAHiQhoPBt912m9XldGgVFRV88803pKam8s033zBy5EgSExO58cYb6du3r9XlCTebNWsWzz//PIWFhfTs2dPqcjyGBICHmT9/Ptdffz033XSTDAafoZMnT5pLMKSnpzNu3DiSkpK444475B99FxccHExiYiKrVq3iuuuus7ocjyEB4GEGDRrEyJEjWbduHT/5yU+sLsfjFRUV8fnnn5OamsrmzZuJi4sjMTGRBx54QDYEEY0kJydz3333cc0118isrnoSAB4oOTmZ9957TwKgGQUFBaxfv57U1FR27drFlClTuOSSS1iyZAmBgYFWlyc81JgxYwgMDMRmszF58umLFXRNEgAeaPr06Tz22GMcPHiwSz0R3ZLc3FzzadwDBw5w/vnnc/nllzNlyhTZUU04peGTwRIABgkAD+Tr68sll1zCBx98wK233mp1OZY5cOCA+TRuQUEB06dP5+c//znx8fH4+vpaXZ7ogGbNmsVzzz3HiRMnZHVWJAA81vz587nhhhu48cYbu8xgsNaarKws853+yZMnmTFjBrfddhsTJ06UJRhEm3Xv3p2kpCQ+/PBDfvazn1ldjuUkADxUZGQkw4cPZ/369Vx00UVWl9NuHA4HO3fuNN/pa61lCQbRrlJSUrjnnnu4/vrru/zfLwkAD7ZgwQI++OCDThcAp5ZgOLXuTmBgIImJiTz22GOMHDlSnsYV7So6Oprg4GDS0tKYMmWK1eVYSgLAg82YMYPHH3+8UwwG2+12bDYb69atY/369fTu3ZukpCSeffaO+a8cAAAcf0lEQVRZ2Q9ZuFXDJ4MlAITHOjUYvHLlSm655Raryzlj1dXVpKWlsXbtWr788ksiIyNJTEzk1VdfZdCgQVaXJ7qwmTNn8swzz3Ds2DHCw8OtLscyEgAebv78+fz85z/nV7/6VYcYDK6oqODrr78mNTWVb7/9lpEjR5KUlMRNN91Enz59rC5PCAACAwP58Y9/zEcffcQNN9xgdTmWkQDwcJGRkQwdOowXXthMSUkC6emwdy9UVYG3N/TvDzExcMEFMGsWBAe7v8bS0lJzCQabzcaECROYMWMGd955pyzBIDxWcnIyd9xxBz/96U+77GCw8tR9WeLi4nRGRobVZVjK4YCVK+GBB4o4fLiWnj374O8P3bqBlxdoDbW1UFkJSoGPD1x2Gdx+O7T35keFhYXmEgxbtmwhLi6OpKQkpk2bJkswiA7j2muv5Ze//CXnnXee1aW4jFJqo9Y6zpljpQXgofLy4I47YMMG8PMLoa5uL927hzbqBlLKCINTD8La7fDWW/Dxx/DEEzBjhmtrKigoMDdE/+6775g6dSpz587l0UcflSUYRId06sngzhQAZ0ICwANlZ8OiRVBcbLyTV8qL0NAQiouL6NOn+aWMfXwgLAwqKuAXv4D774frr29bLUeOHDGna+bk5DBt2jSuuuoqzj33XFmCQXR4F110EX//+98pKCjokmNUEgAeJjfXuPmXljbuxgkLC+XAgRzCw8NRquX+ysBA8PWFP/8ZgoKMbqEzsX//fvPBrGPHjvGjH/2IxYsXExcXJ0swiE4lMDCQiy66iJUrV7J48WKry3E7GQPwIA4HXHEFZGQY7+RPl5NzgJ49exIc7Fwfe02N8ec//4GhQ5s/TmvNnj17WLt2LampqVRUVDBjxgySkpKIiYnpsgNkomvYs2cPv/3tb1m1alWnWG5ExgA6qP/7P+Pm39wAblhYGEVFRU4HgJ+f0R10222wYoUxcHyKw+Fg+/bt5ro7SimSkpL44x//yJgxY+SmL7qMkSNH0qdPH77++msuuOACq8txKwkAD1FXZwzcBgQYg7tNCQ4OJj8/n5qaGqefCQgJgR07jGCZNKnOXIJh/fr1BAUFkZiYyOOPP86IESNkCQbRZSUnJ7NixQoJAGGNL7+EkhJoaQalUl706BFITs4fUGoHdXWl+PoOok+fm+nefWoz3+WgsrKam27aRWjo3fTp04ekpCSee+45hrbULyREF3LRRRfx9NNPk5+fT79+/awux20kADzEqlVGK6A1oaHBHD/enREj/oGf3wDKyr7myJF7GDr0Hfz8BgCgtYOysnJOniylrKwMX19/Dh4cznvvvc6QIQPb+ScRouPx9/dn5syZrFy5kl/96ldWl+M20tHrITZuNLp/WuPvH0pw8DXU1PRAKS+Cg6fh6zuAysodlJaWcOTIYfbs2UNhYSEBAQFERUUxdOhgQkN7UFUlN38hmpOSksKHH35InTPvxDoJCQAPYLfDwYPfP9DVmtDQMIqKiqmrq6OwcD8nT+4lN9eLkpISgoKCGD58OIMHDyYsrCc+Pt9P28zKaqcfQIhOYNiwYfTv358vv/zS6lLcRgLAA1RXGwO/zo7B9ugRTFVVJTt2bCE393569JjFqFE/IiIiktDQMLy9f9izV1dnzAgSQjTv1DLRXYUEgAfw9jaeAXCWUl5ERkYSELAcLy8/qqsXcfDgIY4dK6Ciohytf3iyU2sFCSGad+GFF7Jjxw5yc3OtLsUtJAA8QLduxhO7drtzx2utKSx8DD+/Ks455x+MGjWa8PBwtIajRwvYs2cPBw/mcOLEcaqqKgGNtzf0bX4VCSEE0K1bN2bNmsXKlSutLsUtJAA8gFIwdqyxqqcz8vP/Sk3NfiIinsLLqxtKeREUFESfPn0YOnQoI0aMICysJ7W1dnJzc/nuuz3k5x9nz54PycnJwVOf/hbCEyQnJ/Phhx9id/YdWQcmnQIe4oILwGZr/bja2jyKi1eglB9ZWT8xP9+v3+8JCZkFgJeXN8HBwQTXbw5QVlaLUmUcPLiJG298EYD4+HgSEhKIj4/vkotgCdGcqKgoIiIi+OKLL0hMTLS6nHYlawF5iPx8OP9840EwV6/CUFQEv/893HCD0X106NAh0tPTSU9PJyMjg549e5phMGnSJFnPX3R5a9asYc2aNTz77LNWl3LGzmQtIAkAD/LLX8Lata7dzKWmxtg05uuvoanNuRwOB9999x02m4309HS2bt3KkCFDzBZCTEyMLPssupyamhpmz57N8uXLGTiwYz0/IwHQQR0+DD/+sTFbxxX3XK2NPQXuvx9++lPnvqempobt27ebLYSsrCzGjBljthBGjx7dKVZMFKI1Tz75JH5+ftx8881Wl3JGJAA6sHfegfvuM7qC2nqfLS6GCRPgvffOvlupoqKCzMxMMxDy8/OJjY01WwhRUVGyiJzolA4cOMDixYtZvXp1h9oHQ5aD7sAWLTKe2H39dWOD97OZu6+1sbDcoEHw0kttG1MIDAzk/PPP5/zzzweMvYAzMjJIT0/n7bffpqqqioSEBLOF0L9//7O/mBAeZMiQIQwZMoTPP/+cCy+80Opy2oW0ADyQ1vD00/Dcc0YroH4yj1Nqa6GszJhW+uqr0KtX+9UJkJuba7YObDYbQUFBZhjEx8cT2t670wvRjj755BM+/PBDnn/+eatLcZp0AXUSmZlw663GDCEvL+jevfnlIqqrjaUefHzgd78zZvy4u6ve4XCQnZ1tDihv2rSJgQMHmi2EmJgY2TxedCg1NTVcfPHFvPrqq0RERFhdjlMkADqRmhpITYV//AO2bTN2+aqpMdb2Ucp4rbURDj/7GSxcCJ4yrd9ut7Nz506zhbBr1y5GjRplthDGjh3bofpWRde0dOlSlFLccsstVpfiFLcFgFKqJ/AuMAQ4ACzUWhc1cVwdsK3+5UGt9dzWzi0B8EMlJbB7N2Rnf/9uf8AAOOcco7/f03dxrKysZPPmzWYL4eDBg8TExJgthOHDh8tWlMLjHDx4kBtuuIHVq1c7vROfldwZAI8BhVrrJUqpe4AwrfXdTRxXprXufibnlgDo/EpKSti4caPZQigtLSUuLs5sIQwaNEhmGAmPcOONN7JgwQIuuugiq0tplTsD4DvgR1rrPKVUf2C91npUE8dJAIhWHT161BxMTk9Px8fHp9EMo17tPaItRDM+/fRT3n//fV588UWrS2mVOwOgWGsdWv+xAopOvT7tODuwGbADS7TWrS61JwHQtWmtOXDggBkGGzduJDw83AyE2NhYunc/o/cUQpy12tpaLr74Yl566SUGDx5sdTktcmkAKKU+A5raJfk+YHnDG75SqkhrHdbEOQZqrY8opaKAVCBJa53dxHGLgcUAkZGRk3Jycpz5GUQXUFdXx+7du80WwrZt2xg2bJgZCOPHj+8Q/bOi43rmmWew2+3cdtttVpfSIo/rAjrte14HPtZav9/ScdICEC2pqalhy5YtZgth3759jB071gyEc845RwaUhUsdPnyY66+/njVr1nj0mw13BsDfgBMNBoF7aq3vOu2YMKBCa12tlOoNfAvM01rvbOncEgDiTJw8edJcssJms3H8+HFiY2PN8YMhQ4bIgLJos5tuuolLLrmEWbNmWV1Ks9wZAL2A/wMigRyMaaCFSqk44Fda658rpaYCLwIOjA1ontZav9LauSUARFscP34cm82GzWYjLS0Nh8Nhrl+UkJAgeyCIs5Kamsrbb7/NSy+9ZHUpzZIHwYRo4NQeCKe6izIyMggJCTHDIC4uTvZAEE6x2+1cfPHFvPDCC0RFRVldTpMkAIRogcPhICsry+wu2rx5M4MHD260B4K/v7/VZQoP9fzzz1NZWcnvfvc7q0tpkgSAEGegtraWbdu2mS2EPXv2EB0dbbYQRo8ejc/ZLMsqOqXc3FyuueYa1qxZ45GbJUkACNEGFRUVbNq0yWwh5ObmMnHiRLOFMGzYMBlQ7uJuueUWZs6cyezZs60u5QckAIRwoaKiInMPhPT0dCorK80lKxISEhgwYIDVJQo3W7duHW+++SavvNLqfBa3kwAQoh3l5uaa3UU2mw1/f38mT55s7oEQFvaDZyFFJ2O327nkkkt4/vnnPW4wWAJACDfRWpOdnW2GQWZmJgMGDDC7i2JjY2UPhE7qhRdeoKysjDvvvNPqUhqRABDCInV1dezYscNsIezcuZORI0eaD6SNGzdO9kDoJPLy8rjqqqtYs2aNR80akwAQwkNUVVWxZcsW0tLSsNls5OTkMGHCBLOFMHLkSFmyogO79dZbufDCC5kzZ47VpZgkAITwUKWlpWRkZJgthOLi4kZ7IERERMgMow7kiy++4LXXXuO1116zuhSTBIAQHURBQYG5XIXNZsPLy8sMg4SEBHr37m11iaIFdXV1zJkzh6VLlzJixAirywEkAITokLTW5OTkmAPKGzdupFevXo32QAgODra6THGaZcuWUVRUxN13/2AzREtIAAjRCTgcDnbv3m22ELZv387QoUPNFkJMTIxHL0vcVRQUFHD55ZezevVqAgICrC5HAkCIzqimpoatW7eaLYTs7GzGjBljthCio6NlQNkit99+O9OnT2fevHlWlyIBIERXUFZWRmZmptlCOHbsWKM9EIYOHSoDym7y1VdfsWzZMt544w2rS5EAEKIrOnHiRKMnlGtraxvtgdC3b1+rS+y0HA4Hc+fO5YknnmDUqBY3RWx3EgBCdHFaa44cOWKGgc1mo0ePHmYgxMXFERISYnWZncrLL79MQUEBv//97y2tQwJACNGIw+Fg79695oJ2mzdvJiIiwmwdxMTEeMQAZkd27NgxFi5cyOrVqy1d/kMCQAjRotraWnbs2GG2EHbv3k10dLTZQhgzZozsgXAW7rjjDqZOnUpycrJlNUgACCHOSEVFBZs3bzZbCEeOHCEmJsYcUB4+fLjMMHLCN998w/PPP8+bb75pWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns2TJEkaPHm1JDRIAQgiXysvLM2cYpaen4+/vb4ZBfHw8PXv2tLpEj/Hqq6+Sl5fHfffdZ8n1JQCEEO1Ga83+/fvNMMjMzKRfv35mGMTGxhIUFGR1mZY5ceIEl156KR9//LElvwcJACGE29TV1bFz506zhbBjxw5GjBhhthDGjRvX5ZasuOuuu5g8eTIpKSluv7YEgBDCMtXV1WzZssVsIRw4cIDx48ebLYRRo0Z1+gHltLQ0li5dyltvveX2p7HPJABknpcQwqW6detmPl8Axh4ImZmZpKen84c//IHCwkLi4uLMFkJkZGSnW7IiPj6e8vJydu7cyZgxY6wup1nSAhBCuFVBQYE5wyg9PR3ADIz4+HjCw8MtrtA1li9fTk5ODg888IBbrytdQEKIDkFrzaFDh8wNcTIyMujZs6cZBpMmTaJHjx5Wl3lWCgsLSUlJYdWqVXTv3t1t15UAEEJ0SA6Hg++++84cUN66dStDhgwxWwgTJkygW7duVpfptHvuuYfY2FgWLlzotmtKAAghOoWamhq2b99uthCysrLMPRDi4+MZPXo03t7eVpfZrPT0dJ588knefvvt78c5Tp6E6mrw84PgYHDx+IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kBwOBxcNXcuS6ZNY/DOnbB1K5SWgpcXOBwQEABjxsCFF0JyMvTq1eZrSgAIIbqEwsLCRgPK1dXVjZ5Q7t+/v3XFVVTAU09R8txz2Kur6dWrl3HD9/H5/l2/3Q5VVcZ/vbxgzhy47z5ow5PVEgBCiC7p9D0QgoKCzNZBXFwcoaGh7ikkMxN+8xvIz8ceGEj2gQMMHz685e6qujqjdRAcDI8/brQKzoIEgBCiy3M4HGRnZ5vdRZs2bWLgwIGN9kBol3X7166FX//aeJdfP/vn8JEjBAYEOLdmUmWlMUbwwANw7bVnfHkJACGEOI3dbm+0B8KuXbsYNWqUGQhjxozB19e3bRdJT4errzYGeP39zU+XV1SQn59PVFQUTo1Q1NZCWRk89RTMnXtGJUgACCFEKyorK9m8eTM2m420tDQOHTpk7oGQkJBw5nsglJVBYqIxy+e0ReA0kJ2dzYD+/Z1vdVRXG91Cn30GAwY4XYYsBSGEEK0ICAhgypQpTJkyBYCSkhJzQHnFihWUlpYSFxdnBsLAgQNbnmH06KNQWAhNjDMoICwsjKLiYucDoFs3KC6Gu++Gf/7zLH7C1kkLQAghmnD06FGzuyg9PR1fX99GM4x6NZyyWVgI555rvPNvZqDXXldH9t69vBEUREZlJZUOB719fLi2Vy/mNzc4rbUxMPzxxzBqlFN1SxeQEEK40Kk9EE6FQWZmJuHh4WbrIGH7dvyffLLJd/8NHcnNJd/bm3Hh4fh5eXGguprFOTksjYggOiCg6W8qKoJFi+CRR5yq1W1dQEqpy4AHgWggQWvd5B1bKTUTWAp4Ay9rrZe05bpCCOFOSimioqKIiopi0aJF1NXVsXv3btLT03nnnXdQ775LlN2Ob20tQUFBBAQE4NVEd1FYaCiVeXn49u1rnLf+3Idra5sPgKAg+O9/nQ6AM/q52tICUEpFAw7gReCOpgJAKeUN7AF+DBwGbMAVWuudLZ1bWgBCiA7B4cBxzjlUAuVVVZRXVFBdXU1AQABBQUEEBQXh7++PwhgM3rdvH2/5+PBJRQXVWjPK35+XBg8msLkBZ62hpAQ2bIDevVstx20tAK31rvoLtnRYArBXa72v/th3gHlAiwEghBAdQl4eXkBQjx4E1a9cWudwUFFeTnl5Obm5udjtdgIDAwkKCqJ79+7cUFvL/aNGsbWyko0VFfi1dA9VCnx9Yd8+pwLgTLhjFtBA4FCD14eByW64rhBCtL/KSmMZhwa8vbwIDg4mODgYgFq73QyEsvJy0BqlFDGBgawpKeH9oiIub+khMa2N67hYqwGglPoM6NfEl+7TWn/oymKUUouBxQCRkZGuPLUQQrQPHx/jBt0CXx8fQkJCCAkJQWMMKp96z18HHK6pafkap1oBLtZqAGitz25Biu8dASIavB5U/7mmrrUMWAbGGEAbryuEEO2vXz9jMTeH4wctgdMV2u1kVFRwfvfu+ANp5eV8UlLCIwMHtnyNurozehjMWe7oArIBI5RSQzFu/JcDV7rhukII0f78/SEyEgoKjNU+W6CA94uKeCQvDwfQ39eX3/XtywX1XUVNqqszgqUdekXaOg10AfAMEA6sVkpt1lr/RCk1AGO652yttV0pdTPwCcY00Fe11jvaXLkQQniKGTNg+fJWAyDMx4dlgwef2bnLymDKlFZbF2ejrbOAPgA+aOLzucDsBq/XAGvaci0hhPBYl19uLNegtct3+EIp+NnPXHvOeq6PFCGE6GpGjoSJE435+q5UVgbh4TBtmmvPW08CQAghXGHJEmMdoNpa15yvrs441xNPNLu+UFtJAAghhCtERcFddxnv2h2Otp3r1CJwV15pLDLXTiQAhBDCVX72M2NDmJISY2ro2XA4jGWgZ8wwdgVrRxIAQgjhKkrBgw/CrbcaLYHS0jP7/vJyIzwuuwxeeKFdHv5qSAJACCFcSSm45RZYsQIGDTJCoKSk+W4hh8PYRezUhvCvv26MJ7TzzR9kRzAhhGgf48cb2zl+9RW8/DJ8+60xmKv199NFlTIGesePh8WLISnJ2E/YTSQAhBCivXh5wQUXGH9qa40VPffvN/b79fWFiAhjCmm3bpaUJwEghBDu4OtrbOvo5NaO7iBjAEII0UV57J7ASqljQM5pn+4NHLegHGd5en0gNbqK1Nh2nl4fdMwaB2utw535Ro8NgKYopTKc3erMCp5eH0iNriI1tp2n1wedv0bpAhJCiC5KAkAIIbqojhYAy6wuoBWeXh9Ija4iNbadp9cHnbzGDjUGIIQQwnU6WgtACCGEi3h0ACileiqlPlVKZdX/N6yZ4x5TSu1QSu1SSv1dKVdvydPm+iKVUv+rr2+nUmqIO+o7kxrrj+2hlDqslHrWXfU5W6NSKkYp9W39/+etSqlFbqhrplLqO6XUXqXUPU18vZtS6t36r6e58//rGdR4e/3fua1KqbVKqTPcj7D9a2xwXIpSSiul3D7rxpkalVIL63+XO5RS//K0GuvvM+uUUpvq/3/Pbuo8jWitPfYP8BhwT/3H9wCPNnHMVOBrjP2GvYFvgR95Sn31X1sP/Lj+4+5AoCf9DhscuxT4F/CsB/5/HgmMqP94AJAHhLZjTd5ANhAF+AFbgNGnHfNr4B/1H18OvOvm35szNc449fcNuNETa6w/Lhj4AtgAxHlajcAIYBMQVv+6jwfWuAy4sf7j0cCB1s7r0S0AYB6wvP7j5cD8Jo7RgD/GL6Ub4AscdUt1TtSnlBoN+GitPwXQWpdprSvcVB849ztEKTUJ6Av8z011NdRqjVrrPVrrrPqPc4ECwKmHXc5SArBXa71Pa10DvFNfZ0MN634fSHJX69PZGrXW6xr8fdsADHJjfU7VWO/PwKNAlTuLq+dMjb8AntNaFwForQs8sEYN9Kj/OATIbe2knh4AfbXWefUf52PcoBrRWn8LrMN4R5gHfKK13uUp9WG8cy1WSq2ob5r9TSnVPvu7Na3VGpVSXsATwB1urKshZ36PJqVUAkbgZ7djTQOBQw1eH67/XJPHaK3tQAnQqx1rOp0zNTZ0A/Cfdq3oh1qtUSkVC0RorVe7s7AGnPk9jgRGKqW+VkptUErNdFt1BmdqfBC4Wil1GFgD/Ka1k1q+GJxS6jOgXxNfuq/hC621Vkr9YMqSUmo4EM3372w+VUpN01p/6Qn1YfyOpwETgYPAu8D1wCuuqM9FNf4aWKO1Ptxeb2BdUOOp8/QH/glcp7Vu4757XYdS6mogDphudS0N1b/5eBLj34Qn88HoBvoRxr3mC6XUOK11saVVNXYF8LrW+gml1BTgn0qpsS39O7E8ALTWFzb3NaXUUaVUf611Xv0//KaaXQuADVrrsvrv+Q8wBXBJALigvsPAZq31vvrvWQmciwsDwAU1TgGmKaV+jTFG4aeUKtNaNztgZ0GNKKV6AKuB+7TWG1xVWzOOABENXg+q/1xTxxxWSvlgNLtPtHNdTV3/lKZqRCl1IUbQTtdaV7uptlNaqzEYGAusr3/z0Q/4SCk1V2ud4SE1gvHvOE1rXQvsV0rtwQgEm3tKdKrGG4CZYPSMKKX8MdYJara7ytO7gD4Crqv/+DrgwyaOOQhMV0r5KKV8Md7huKsLyJn6bECoUupUf3UisNMNtZ3Sao1a66u01pFa6yEY3UBvuPLm74RWa1RK+QEf1Nf2vhtqsgEjlFJD6699eX2dDTWs+1IgVdePwLlJqzUqpSYCLwJzLei3brVGrXWJ1rq31npI/d+/DfW1uuvm32qN9VZivPtHKdUbo0ton4fVeBBIqq8xGmNs9FiLZ3XnSPZZjHz3AtYCWcBnQM/6z8cBLzcYHX8R46a/E3jSk+qrf/1jYCuwDXgd8PO0Ghscfz3unwXkzP/nq4FaYHODPzHtXNdsYA/GWMN99Z97COMGRf0/sPeAvUA6EOXO35uTNX6GMSni1O/sI0+r8bRj1+PmWUBO/h4VRlfVzvp/x5d7YI2jMWZEbqn/f31Ra+eUJ4GFEKKL8vQuICGEEO1EAkAIIbooCQAhhOiiJACEEKKLkgAQQoguSgJACCG6KAkAIYTooiQAhBCii/p/K9d8/GvFkz8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -494,14 +503,14 @@ "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", "\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", "\"\"\"declarative approach, update the param from the previous cell.\n", "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", - "params['backend']['provider'] = 'qiskit.Aer'\n", + "params['backend']['provider'] = 'qiskit.BasicAer'\n", "params['backend']['name'] = 'qasm_simulator'\n", "params['backend']['shots'] = 1024\n", "result = run_algorithm(params, algo_input)\n", @@ -563,14 +572,14 @@ "output_type": "stream", "text": [ "distance\n", - " [[ 0. 11. 23.]\n", - " [11. 0. 33.]\n", - " [23. 33. 0.]]\n" + " [[ 0. 54. 74.]\n", + " [54. 0. 34.]\n", + " [74. 34. 0.]]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFfVJREFUeJzt3XmQXeV55/Hv04sWhBZADRIIRkAgNjZGcho54AwhchnwUghSScr2xMGUHWEKJyaOJwZCDaQGHGfKmBlXJRCxBLDxSsB2jOMKZQMeyhimJQQGSWYHIyTUDLQWkFq9PPPHuQIN7u679G119+nvp+pW33vuWZ4+derXb7/nPedEZiJJmvxaxrsASVJzGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkm01TpjRLQCXcDGzPxwRBwJfAs4CFgNfDwzd4+0jvnz5+fixYuH/nL3bnj+edi5E1pailc1mTAwUMy7aBHMnVvrryNJk8bq1atfzsyOavPVHOjAZ4H1wJzK538Ars7Mb0XEtcAngWtGWsHixYvp6ur6zS8eeww+9jGYP78I5Yg6ygJ27Sr+EJx7LlxwQX3LStIEFxHP1TJfTV0uEbEI+BBwfeVzAMuB2yqz3AycVX+ZwLPPFmG+axfMm1d/mAPMmAGzZ8NXvgK33NJQGZI02dXah/4/gb8BBiufDwJ6MrO/8vkF4LC6tz4wAH/5l/Daa0Ugj0ZbG+y/P1x5JTzxxOjWJUmTUNVAj4gPA1syc3UjG4iIlRHRFRFd3d3d//+Xt9wC69Y1r++7vR0GB+HCC4ufkjSF1NJCfy9wZkQ8S3ESdDnwv4B5EbGnD34RsHGohTNzVWZ2ZmZnR8deffp9ffDVr8LMmY11swxnzhx4/HH4xS+at05JmgSqBnpmXpyZizJzMfAR4KeZ+V+Au4E/qsx2DvD9urZ8992wYwdMnz7ibN955RU+/swznLRhA5e/+GL19UYUo19uuKGuciRpshvNOPQvAJ+LiCcp+tTrS9A77yyCt4r5bW18cv58zqynW2bOHLj33mIopCRNEfUMWyQz7wHuqbx/GljW8JbXrClGp1SxfE4xSnLdzp1s6e+vMndFSwu0tsJTT8Hb395wiZI0mYzPlaJ9ffDCC1W7W0YlE558cuzWL0kTzPgEem9v0Ypu5snQt8osLjaSpClifAK9tXXshxVGFGPTJWmKGJ9AnzGjuAior2/sttHSAgsWjN36JWmCGZ9Aj4Djjy8u969iIJPdg4MMUlymuntwkIFqo2Myiz8Wxx3XlHIlaTIYvz6JU0+FBx6oOtsNL7/MqpdffuPzj7ZuZeX8+azsGOHGYzt3FndfnDevCYVK0uQwfoF+1lnw5S8Xfekj3Cp3ZUfHyOE9lL4++NSnRlmgJE0u4/eAi4MPhtNOg61bm7ve3t7ini4rVjR3vZI0wY3vE4suvbQ4Qdrb25z17RmqeNllxdWikjSFjG+gL1gAV1wBr78OtV4FOpzMorX/nvfAH/9xc+qTpElk/J8pevbZxVOGtm1rfBhjJvT0wDHHwDXX1Pb4OkkqmYmRfH/1V3DxxUV3ybZtNd206w29vW+2zL/9bbtaJE1ZEyPQI+DP/xy+9z1YvBi2by9CerirSff0lff0FE89uuIK+PrXDXNJU9rEujb+uOPgxz+G++6D666Dn/+8GLEyMFCEeERx24D+fli4sBiaeNZZzXvikSRNYhMr0KHo/z7llOLV21s8feipp4oWeWsrHHZYcUvcAw8c70olaUKZeIG+t+nTi1sEHH/8eFciSRPexOhDlySNmoEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSVQN9IiYEREPRsTDEfFYRPxdZfpNEfFMRKytvJaMfbmSpOHU8oCLXmB5Zu6IiHbgvoj498p3/zUzbxu78iRJtaoa6JmZwI7Kx/bKK8eyKElS/WrqQ4+I1ohYC2wB7srMBypfXRkRj0TE1RExfcyqlCRVVVOgZ+ZAZi4BFgHLIuKdwMXA24ATgQOBLwy1bESsjIiuiOjq7u5uUtmSpLeqa5RLZvYAdwNnZOamLPQC/wIsG2aZVZnZmZmdHR0do69YkjSkWka5dETEvMr7mcD7gQ0RsbAyLYCzgEfHslBJ0shqGeWyELg5Ilop/gB8JzN/GBE/jYgOIIC1wKfHsE5JUhW1jHJ5BFg6xPTlY1KRJKkhXikqSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUElUDPSJmRMSDEfFwRDwWEX9XmX5kRDwQEU9GxLcjYtrYlytJGk4tLfReYHlmngAsAc6IiN8F/gG4OjN/C3gV+OTYlSlJqqZqoGdhR+Vje+WVwHLgtsr0m4GzxqRCSVJNaupDj4jWiFgLbAHuAp4CejKzvzLLC8BhY1OiJKkWbbXMlJkDwJKImAfcAbyt1g1ExEpgJcARRxzRSI2Tw65dsGYNrFsHa9fC1q3Q1gZHHQVLlsAJJ0CZf39J466mQN8jM3si4m7gJGBeRLRVWumLgI3DLLMKWAXQ2dmZo6x34tm0CW66CW69Ffr6ildrK7RU/vm55x5ob4fBQVi6FD79aVi+HCLGs2pJJVTLKJeOSsuciJgJvB9YD9wN/FFltnOA749VkRPS4CB861tFOF9/fRHgs2fDgQfC3LnF+9mz4aCDYM6cYtrDD8N558Gf/Rls3jzev4GkkqmlD30hcHdEPAL8H+CuzPwh8AXgcxHxJHAQcMPYlTnB9PYWLe2//duiW+WAA2BalVGbEW8G+/33w2mnwerV+6ZeSVNC1S6XzHwEWDrE9KeBZWNR1ITW11eE+c9+BvPm1d91ElEs99pr8Kd/Ct/4RtEVI0mj5JWi9frHf4R7720szPc2axZkwqc+BT09zatP0pRloNdj3Tr4p38quk6acVJz//2LML/sstGvS9KUZ6DX44oripOhbXUNDhrZ3Llw552wfn3z1ilpSjLQa/Xcc/Dgg0XrvIptAwN8/oUX+L0NG/jwk0/y461bh5+5paXoernlliYWK2kqMtBr9YMfFK3zluq77EubN9MewX8ceyxXHHoof795M0/39g6/wOzZcMcd0N8//DySVIWBXqv77y8uEKpi5+AgP92+nfM7OtivpYUl++3H78+ezZ0jtdLb2opW+tNPN7FgSVONgV6rRx+FGTOqzvb87t20AkfsNS79mOnTR26hQxHoGzaMskhJU5mBXotM2LatppOhrw8OMust3TL7t7Tw2uDgyAv29zt8UdKoGOi1ytpuQ7PfEOH92hAhP+T6q4W+JI3AQK9FRHHicmCg6qxHTJvGAEXXyx6P9/Zy1PTpIy/Y1lYMYZSkBhnotXrHO4pb5FYxs6WF5bNnc213NzsHB3n49de5d/t2PlQtrFta4G0135VYkn6DgV6rk06CvVrdI7lowQJ6Bwd5/+OPc8nGjVy8YMHILfSBgaLL5eijm1SspKmoiZc8ltyHPlTcxyWz6mX/c1pbuerww2tf97ZtsGJF9Ts2StIIbKHX6phj4F3vKsK3mTKL7pZPfKK565U05Rjo9bj00iKAazg5WrOtW+HUU+H445u3TklTkoFej6VL4dxzixCucRjjiF5/HfbbD774RR9JJ2nUDPR6ff7zcOKJxUVAown1nTuLi4muvRY6OppXn6Qpy0Cv1/TpcOONsGxZEep9ffUtn1ksNzhYPIv05JPHpk5JU46B3ohZs+BrXyta6zt3wquvVr9TYmbx2LmenmJM+513wimn7Jt6JU0JDltsVFsbnH8+nH46/PM/w/e+V0zfvbtoxe+5z3lfX/GztRUWLy6eR7piRfFZkpooshkn92rU2dmZXV1d+2x7+9TWrfCLX8DDD8NDD8GOHW+G+LJlcMIJcNxxnvyUVLeIWJ2ZndXms4XeLHPnFq31008f70okTVH2oUtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJVA30iDg8Iu6OiHUR8VhEfLYy/fKI2BgRayuvD459uZKk4dRy6X8/8NeZuSYiZgOrI+KuyndXZ+aXx648SVKtqgZ6Zm4CNlXeb4+I9cBhY12YJKk+dfWhR8RiYCnwQGXSZyLikYi4MSIOaHJtkqQ61BzoEbE/8K/AhZm5DbgGOBpYQtGCv2qY5VZGRFdEdHV3dzehZEnSUGoK9IhopwjzWzPzdoDMfCkzBzJzELgOWDbUspm5KjM7M7Ozw2dnStKYqWWUSwA3AOsz8yt7TV+412xnA482vzxJUq1qGeXyXuDjwC8jYm1l2iXARyNiCZDAs8B5Y1KhJKkmtYxyuQ8Y6rlpP2p+OZKkRnmlqCSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkkY6JJUEga6JJWEgS5JJWGgS1JJGOiSVBIGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUklUDfSIODwi7o6IdRHxWER8tjL9wIi4KyKeqPw8YOzLlSQNp5YWej/w15l5HPC7wAURcRxwEfCTzDwG+EnlsyRpnFQN9MzclJlrKu+3A+uBw4AVwM2V2W4GzhqrIiVJ1dXVhx4Ri4GlwAPAIZm5qfLVZuCQplYmSapLzYEeEfsD/wpcmJnb9v4uMxPIYZZbGRFdEdHV3d09qmIlScOrKdAjop0izG/NzNsrk1+KiIWV7xcCW4ZaNjNXZWZnZnZ2dHQ0o2ZJ0hBqGeUSwA3A+sz8yl5f/QA4p/L+HOD7zS9PklSrthrmeS/wceCXEbG2Mu0S4EvAdyLik8BzwJ+MTYmSpFpUDfTMvA+IYb5+X3PLkSQ1yitFJakkDHRJKgkDXZJKwkCXpJIw0CWpJAx0SSoJA12SSsJAl6SSMNAlqSQMdEkqCQNdkkrCQJekkjDQJakkDHRJKgkDXZJKwkCXpJIw0CWpJAx0SSoJA12SSsJAl6SSMNAlqSQMdEkqCQNdkkrCQJekkjDQJakk2sa7AEkqpb4+eOYZ6OmBTJg3D448EqZNG7NNGuiS1CyvvQb/9m/w9a/Dr34Fra0QUXw3OAgDA3DssfCxj8GZZ8KcOU3dfGRmU1c4ks7Ozuzq6tpn25OkfWJgAG66Ca66qmiZt7XBzJnQ8pZe7cFB2LmzmKe9Hf7iL2DlymL+EUTE6szsrFaGfeiSNBovvgh/+IfwxS8WwTx3Lsya9ZthDsW0WbOK7pdp04o/ACtWwPPPN6UUA12SGvXrX8PZZ8Njj70Z0rVqby+W+dWvij8Izzwz6nIMdElqxI4dRV/4K68Uwbynr7weEcWy27bBRz5SnEAdhaqBHhE3RsSWiHh0r2mXR8TGiFhbeX1wVFVI0mRz5ZWwaVPRxTJac+bAyy/D5ZePajW1tNBvAs4YYvrVmbmk8vrRqKqQpMlkzRr47nebO0pl7lz44Q/h5z9veBVVhy1m5s8iYnHDW5Ckslm1qvg51InPit2Dg3xp82YefP11tg0MsKi9nc8cfDAn77//0Au0tBRdMNdeCyef3FBZo+lD/0xEPFLpkjlgFOuRpMljyxb4yU+qts4HgAXt7aw64gjuOfZYzu/o4KKNG3lx9+7hF5o9G+6/HzZubKi0RgP9GuBoYAmwCbhquBkjYmVEdEVEV3d3d4Obk6QJYs2aojU9QuscYGZLCys7Ojh02jRaIvjPs2dzaHs7G3btGn6hPa30Bq/XaSjQM/OlzBzIzEHgOmDZCPOuyszOzOzs6OhoqEhJmjAefhhGamUP45X+fp7fvZujpk8fecb+fnjooYZKayjQI2LhXh/PBh4dbl5JKpUNG+q+H0t/Jpe++CIfnjuXxdUCfdo0WL++odKqnhSNiG8CpwLzI+IF4DLg1IhYAiTwLHBeQ1uXpMlm1666xpwPZvLfXnyRNuBvFiyovkBLS7GNBtQyyuWjQ0y+oaGtSdJkN2NGcU+WGmQm/33TJv5vfz9fPfxw2mr5QzA4WGyjAV4pKkn1eOc7i5tr1eDvN2/mmd27ufrww5le5STqG3p7i200wNvnSlI93vWumvrQN/X1cXtPD9MiOP2JJ96YfsmCBXxgpKtL29th6dKGSjPQJakev/M7xQMrBgaK+50PY2F7O11vf3t96x4cLF4nnthQaXa5SFI9DjwQzjijuKFWs23bBn/wB3DIIQ0tbqBLUr3OO68YjTIw0Lx17lnX+ec3vAoDXZLq9Y53wCc+Adu3N2+d27cXt9B997sbXoWBLkmN+Nznioc+j/Ie5gBs3QqHHQYXXzyq1RjoktSImTPh1lth0SJ49dXiRGm9MotlDz4YvvnN4vF0o2CgS1KjDj4Ybr+9uN1tT099V3j29hbLnHgi3HEHHHroqMuJbOSvSqMbi+gGnmtg0fnAy00upwzcL0NzvwzN/TK0ybBf/lNmVr274T4N9EZFRFdmdo53HRON+2Vo7pehuV+GVqb9YpeLJJWEgS5JJTFZAn3VeBcwQblfhuZ+GZr7ZWil2S+Tog9dklTdZGmhS5KqmJCBHhHPRsQvI2JtRHRVph0YEXdFxBOVnweMd5372jD75fKI2FiZtjYiPjjede5rETEvIm6LiA0RsT4iTprqx8sw+2RKHysR8dt7/e5rI2JbRFxYpmNlQna5RMSzQGdmvrzXtP8BvJKZX4qIi4ADMvML41XjeBhmv1wO7MjML49XXeMtIm4G/ndmXh8R04D9gEuYwsfLMPvkQqb4sbJHRLQCG4H3ABdQkmNlQrbQh7ECuLny/mbgrHGsRRNERMwFTqHyWMTM3J2ZPUzh42WEfaI3vQ94KjOfo0THykQN9AT+IyJWR8TKyrRDMnNT5f1moLEbBk9uQ+0XgM9ExCMRceNk/nexQUcC3cC/RMRDEXF9RMxiah8vw+0TmNrHyt4+Anyz8r40x8pEDfTfy8x3Ax8ALoiIU/b+Mot+oonXVzT2htov1wBHA0uATcBV41jfeGgD3g1ck5lLgdeAi/aeYQoeL8Ptk6l+rABQ6YI6E/juW7+b7MfKhAz0zNxY+bkFuANYBrwUEQsBKj+3jF+F42Oo/ZKZL2XmQGYOAtdR7Kup5AXghcx8oPL5Noowm8rHy5D7xGPlDR8A1mTmS5XPpTlWJlygR8SsiJi95z1wGvAo8APgnMps5wDfH58Kx8dw+2XPgVhxNsW+mjIyczPw64j47cqk9wHrmMLHy3D7ZKofK3v5KG92t0CJjpUJN8olIo6iaH1C8a/jNzLzyog4CPgOcATFHRv/JDNfGacy97kR9svXKP6FTuBZ4Ly9+gOnhIhYAlwPTAOeBs6laKxM5eNlqH3yVTxWZgHPA0dl5tbKtNJky4QLdElSYyZcl4skqTEGuiSVhIEuSSVhoEtSSRjoklQSBroklYSBLkklYaBLUkn8P+uQdiWoAcK2AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGAdJREFUeJzt3X2UVXW9x/H3d54QhmeYAEWExKcWS9FGlpTZDbI0TajVcnlvD2Qot1ZX62Y+V5rVUruZYatli0SjLIW4GeYtlzRitbprUUOaoqAi+AAMzCgMzzDMzPf+8dtjXJiZs8+ZM5w9v/m81jrrnL3P3vt8/YGf8+N39m9vc3dERKTvKyt1ASIiUhwKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIVR/PDRo8e7RMnTjzyDXfYtAm2b4eysvBIq60NzOC442D48KLVKiKSFatWrXrT3WtybXdUA33ixInU19f//5UtLXDFFSHMjz02vzDvcOAA7N0LV18Nn/lMcYoVEckIM3stzXalH3K5/nr4y19gxIjCwhxgwAAYPBhuuw3q6opbn4hIH1HaQK+rg0cfhWHDwrBJT1RWhmC/5hrYtq049YmI9CGlC/T9++Haa0MIF9ozP9zAgbBrF9x+e3GOJyLSh5Qu0J94IoTvoEFdbtLS3s5tmzdz8bp1nPfii/zb+vX87+7d3R936FBYtky9dBHpd0oX6AsWQHl5t5u0AWMrK1kwYQJPnXwyX6ip4YZNm9jc0tL1TuXl0N4Ov/lNcesVEcm4VIFuZl8ys9Vm9ryZfTlZN9LMlpvZy8nziNSfuncvrFkD1dXdbjawrIx5NTUcW1VFmRnvGzKEYysrWbt/f/fHLy+HJ59MXY6ISAxyBrqZTQGuBKYBZwAXm9lk4Aagzt1PAuqS5XRefDH8iJnnD6HbWlt5vaWFdw4Y0P2GxxwDzz4bzm8XEekn0vTQTwNWuvted28F/gh8HJgFLEq2WQTMTv2pb7wRhkXy0OrO1zZv5uJhw5iYK9ArKmDPnvAQEekn0gT6auB9ZjbKzAYBHwGOB8a4e0OyzRZgTGc7m9k8M6s3s/qmpqawsrU1r95zuzvf2LyZCuC6sWNz72AWHgcPpv4MEZG+Lmegu/sa4E7gCeBx4BnC75WHbuNApwnt7gvcvdbda2tqkpmrAwakHm5xd77V0MBbra381/jxVKTZzz38CyBXT15EJCKpfhR194Xu/m53Pw/YDrwEbDWzcQDJc2PqT500KfW557dv2cKGlhbuPv54BqQ9X/3gQRg1qttTIkVEYpPqWi5m9g53bzSzCYTx83OAScAc4I7keVnqT508OYRue3u3wd5w8CC/bm6myowPv/zy2+tvGjuWC4cN6/r4+/fDtGmpyxERiUHai3P9t5mNAg4CX3T3ZjO7A1hiZnOB14BLU39qVRVMnw4rV4Zp/10YV1lJ/WmnpT7s29zhwgvz309EpA9LFeju/r5O1r0FzCz4k6+8Ev7614J379LBg+GUSAW6iPQzpZspeu654RrmO3cW97i7d8Pll2v8XET6ndIFenk5zJ8fxtFbW4tzzF27YPx4uOqq4hxPRKQPKe3lc08/PYTvrl3hzkM9sW9feP7hD8NMURGRfqb0N7i4+mr49KfD0Et3F93qzu7doZf/k5+ELwkRkX6o9IFuBrfcAjffHG4l19ycfhZpa2u4dd2oUfDww3Deeb1bq4hIhpU+0CGE+uc+B7//PZx9duitb98ehlEOv+ZLa2vokTc3h/c/+1lYvhzOPLMkpYuIZMVRvUl0Tu98Jzz0ELzyCvzyl/CnP8GGDWHykVkI94oKmDIFPvpRmD272/PYRUT6k2wFeocTT4Svfz28bmmBxsbQMx84EGpqinfLOhGRiGQz0A9VVRVORRQRkW6pqysiEgkFuohIJBToIiKRUKCLiEQi+z+Kiogcqq0tnM68di1s3hyusFpdHc6OO+00GD261BWWjAJdRPqGTZvCPJWf/SzMKncPpzW7h1OZBwwI4X7KKfD5z8OHPtTvruukQBeRbDt4EO69F370ozAfpboahgzpfFt3WL8errkmzFmZPz/MPu8nNIYuItnV2AizZsE994SJhSNGhLkpXTGDwYPDDPJt2+Cyy+C73z3yEiKRUg9dRLKpsRE+/nHYujUEtFl++w8eHMbbf/xj2LMHbr01/2P0Meqhi0j2tLbCFVfAli2FhXmH8vKw/4MPhutDRU6BLiLZc//98Pzzxbn4Xnl5GHf/1rfgjTd6frwMU6CLSLa8+SbcdVcYMinWEElVVfhx9bbbinO8jEoV6Gb2n2b2vJmtNrOHzOwYM5tkZivNbJ2ZLTazbn6pEBFJaenSMPZdWdntZku2bePTGzYwfe1abt28Ofdxhw2DFSugoaFIhWZPzkA3s+OAq4Fad58ClAOXAXcCd7v7ZGA7MLc3CxWRfsAdHngg1fnjoysqmDt6NJekHZYpKwvHf+SRHhaZXWmHXCqAgWZWAQwCGoAZwNLk/UXA7OKXJyL9SlMTvPVWmCSUw4yhQ/mXIUMYVl6e/vgVFfDnP/egwGzLGejuvgn4HvA6Ich3AKuAZndvTTbbCBzXW0WKSD+xZk0I3d46vXDgQHjuufT3Le5j0gy5jABmAZOAY4Fq4IK0H2Bm88ys3szqm5qaCi5URPqBxsYwft5bKirCOekHD/beZ5RQmiGXDwIb3L3J3Q8CvwbeCwxPhmAAxgObOtvZ3Re4e62719bU1BSlaBGJVFtb78/qNAvnuUcoTaC/DpxjZoPMzICZwAvACuATyTZzgGW9U6KI9BvV1eG88d7S3h4CPcUYfV+UZgx9JeHHz78DzyX7LACuB75iZuuAUcDCXqxTRPqDyZNTj5+3udPS3k470A60tLfTlmts/MABmDixd780SijVtVzc/RbglsNWrwemFb0iEem/Tjwx9KLb2nKG7sI332TBm2++vfy7HTuYN3o087ob2t23D2pri1Vt5ujiXCKSHVVVMHMm/OEPMHx4t5vOq6npPrw7U14OH/1oDwrMNk39F5Fs+dznwrBLsU8t3Lcv3M3oPe8p7nEzRIEuItly9tlw+umwY0fxjukO+/fDV78aZoxGKt7/MhHpm8zg+98P54y3tBTnmM3NMH16uL56xBToIpI9J5wAt99enElAO3eGoZa77tINLkRESuJjH4NvfjOE+p49+e/vDtu3h9vWLV4MY8YUv8aMUaCLSHZ96lPw05+Ga6Nv356ut+4evgCam+H974ff/jace94PKNBFJNvOPRfq6uDyy8OU/R07Qrjv2/fPSwW0tsLu3eFKjTt3wrhx4cbSCxfCO95R6v+Co8b8KF51rLa21uvr64/a54lIZPbuheXLwyVwV60KN6toawvXTz/5ZJg2DT74QTjrrKjGy81slbvnnBGliUUi0ncMGgSzZoWHHEFDLiIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCRyBrqZnWJmzxzy2GlmXzazkWa23MxeTp5HHI2CRUSkczkD3d1fdPep7j4VeDewF3gEuAGoc/eTgLpkWURESiTfIZeZwCvu/howC1iUrF8EzC5mYSIikp98A/0y4KHk9Rh3b0hebwHiv2GfiEiGpQ50M6sCLgF+dfh7Hm571Omtj8xsnpnVm1l9U1NTwYWKiEj38umhXwj83d23JstbzWwcQPLc2NlO7r7A3WvdvbampqZn1YqISJfyCfR/5Z/DLQCPAnOS13OAZcUqSkRE8pcq0M2sGjgf+PUhq+8Azjezl4EPJssiIlIiqW4S7e57gFGHrXuLcNaLiIhkgGaKiohEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhKJVIFuZsPNbKmZrTWzNWY23cxGmtlyM3s5eR7R28WKiEjX0vbQ5wOPu/upwBnAGuAGoM7dTwLqkmURESmRnIFuZsOA84CFAO7e4u7NwCxgUbLZImB2bxUpIiK5pemhTwKagAfM7Gkzu8/MqoEx7t6QbLMFGNNbRYqISG5pAr0COAu4193PBPZw2PCKuzvgne1sZvPMrN7M6puamnpar4iIdCFNoG8ENrr7ymR5KSHgt5rZOIDkubGznd19gbvXunttTU1NMWoWEZFO5Ax0d98CvGFmpySrZgIvAI8Cc5J1c4BlvVKhiIikUpFyu6uAX5hZFbAeuJzwZbDEzOYCrwGX9k6JIiKSRqpAd/dngNpO3ppZ3HJERKRQmikqIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQq0mxkZq8Cu4A2oNXda81sJLAYmAi8Clzq7tt7p0wREcklnx76B9x9qrvXJss3AHXufhJQlyyLiEiJ9GTIZRawKHm9CJjd83JERKRQaQPdgSfMbJWZzUvWjXH3huT1FmBMZzua2Twzqzez+qamph6WKyIiXUk1hg6c6+6bzOwdwHIzW3vom+7uZuad7ejuC4AFALW1tZ1uIyIiPZeqh+7um5LnRuARYBqw1czGASTPjb1VpIiI5JYz0M2s2syGdLwGPgSsBh4F5iSbzQGW9VaRIiKSW5ohlzHAI2bWsf0v3f1xM/sbsMTM5gKvAZf2XpkiIpJLzkB39/XAGZ2sfwuY2RtFiYhI/jRTVEQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIpA50Mys3s6fN7LFkeZKZrTSzdWa22Myqeq9MERHJJZ8e+peANYcs3wnc7e6Tge3A3GIWJiIi+UkV6GY2HrgIuC9ZNmAGsDTZZBEwuzcKFBGRdNL20H8AXAe0J8ujgGZ3b02WNwLHdbajmc0zs3ozq29qaupRsSIi0rWcgW5mFwON7r6qkA9w9wXuXuvutTU1NYUcQkREUqhIsc17gUvM7CPAMcBQYD4w3Mwqkl76eGBT75UpIiK55Oyhu/uN7j7e3ScClwFPuvsngRXAJ5LN5gDLeq1KERHJqSfnoV8PfMXM1hHG1BcWpyQRESlEmiGXt7n7U8BTyev1wLTilyQiIoXQTFERkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUjkDHQzO8bM/mpm/zCz583sm8n6SWa20szWmdliM6vq/XJFRKQraXroB4AZ7n4GMBW4wMzOAe4E7nb3ycB2YG7vlSkiIrnkDHQPdieLlcnDgRnA0mT9ImB2r1QoIiKppBpDN7NyM3sGaASWA68Aze7emmyyETiud0oUEenD3MPjKKhIs5G7twFTzWw48AhwatoPMLN5wDyACRMmFFKjiEjf0dAAjz0Gf/kLPPccbNsWAn3wYDjtNDjnHLjoIjg1dYymZp7nN4eZfQPYB1wPjHX3VjObDtzq7h/ubt/a2lqvr68vuFgRkczasAG+8x146qkQ4OXlcMwxUFkZ3m9rg/37oaUFysrgXe+Cm24KAZ+Dma1y99pc26U5y6Um6ZljZgOB84E1wArgE8lmc4BlOasSEYlNezvcfz9ccAGsWAFDh8KIEeG5qgrMwqOiIvTSR46EYcNg7Vr45Cfh5pth796ilJJmyGUcsMjMyglfAEvc/TEzewF42My+DTwNLCxKRSIifUVbG1x7LSxbBtXVMGRIuv3MQuC3tcFDD8Gzz8KDD4ag74Gcge7uzwJndrJ+PTCtR58uItJXucPXvhbCfNiwMIySr/Ly0Jt/4QX4zGdg8eIwTFMgzRQVESnE8uWwZEnhYd7BDIYPh9Wr4e67e1SSAl1EJF/NzXDddaE33ZMw72AWhmvuvz8MvxRIgS4ikq9f/Qp27YKBA4t3zIqKMIxzzz0FH0KBLiKSj/Z2uO++VGG+s62Nr27cyLlr13LxunU8vmNH9zsMHRpOe2xoKKg0BbqISD7WroXt21P9eHnHli1UmvHEySfz7WOP5fYtW1h/4EDXO3QM3/z5zwWVpkAXEcnHmjWppvLva2/nyV27+EJNDYPKypg6aBDvHzKE/8nVS3eHAidgKtBFRPKxenU4fzyH11taKAcmVP3zyuInDRjQfQ8dQs+/wB9GFegiIvlobk51Zsve9naqD9tucFkZe9rbu9+xrAx27+5+m652LWgvEZH+qirdvXwGdRLeezoJ+SN0XAemAAp0EZF8nHBCONMlhwlVVbQRhl46vHTgAO8cMKD7HQ8ehOOPL6g0BbqISD6mTEnVSx9YVsaMIUP4cVMT+9rb+cfevfxx1y4uynW9lpYWmFbYVVUU6CIi+ZgyJfwomqKXfsPYsRxob+f8l17ipk2buHHs2Nw99MpKePe7Cyot1Q0uREQkMXIkzJgBdXXhGizdGFpezl35DJ/s3x+OmeIa6Z1RD11EJF9XXBGeU/TS87JvH1x5pX4UFRE5as4+Gy68EHbuLN4xd+6ECRPCZXQLpEAXESnEbbeFS+fu2tXzY3VMNpo/H3KNsXdDgS4iUogRI+DnPw9nvPSkp75/fxhq+d734PTTe1SSAl1EpFDvele4ycWIEWEGaT5j6u5hn7Y2+NGP4JJLelyOeYqLzBSLmTUBrx21D4TRwJtH8fMKkfUas14fqMZiyHp90L9rPMHda3JtdFQD/Wgzs3p3ry11Hd3Jeo1Zrw9UYzFkvT5QjWloyEVEJBIKdBGRSMQe6AtKXUAKWa8x6/WBaiyGrNcHqjGnqMfQRUT6k9h76CIi/UYUgW5mx5jZX83sH2b2vJl9M1k/ycxWmtk6M1tsZumuTH90a/ypmW0ws2eSx9RS1ZjUU25mT5vZY8lyZtqwmxqz1oavmtlzSS31ybqRZrbczF5OnkdksMZbzWzTIe34kRLXONzMlprZWjNbY2bTs9SOXdRX0jaMItCBA8AMdz8DmApcYGbnAHcCd7v7ZGA7MDeDNQJc6+5Tk8czpSsRgC8Baw5ZzlIbdji8RshWGwJ8IKml4xS2G4A6dz8JqEuWS+3wGiH8WXe04+9KVlkwH3jc3U8FziD8mWepHTurD0rYhlEEugcdN+GrTB4OzACWJusXAbNLUB7QbY2ZYWbjgYuA+5JlI0NtCEfW2IfMIrQfZKAds87MhgHnAQsB3L3F3ZvJSDt2U19JRRHo8PY/w58BGoHlwCtAs7u3JptsBI4rVX1wZI3uvjJ56ztm9qyZ3W1mhV+Zp+d+AFwHdMxfHkXG2pAja+yQlTaE8EX9hJmtMrN5ybox7t6QvN4CjClNaW/rrEaA/0ja8f4SDwtNApqAB5LhtfvMrJrstGNX9UEJ2zCaQHf3NnefCowHpgGnlrikIxxeo5lNAW4k1Ho2MBK4vhS1mdnFQKO7ryrF56fRTY2ZaMNDnOvuZwEXAl80s/MOfdPDqWWl/tdZZzXeC5xIGBJsAO4qYX0VwFnAve5+JrCHw4ZXStyOXdVX0jaMJtA7JP/sWQFMB4abWcddmcYDm0pW2CEOqfECd29IhmMOAA8QvoxK4b3AJWb2KvAwYahlPtlqwyNqNLMHM9SGALj7puS5EXgkqWermY0DSJ4bS1dh5zW6+9ak09EO/ITStuNGYOMh/4pdSgjQrLRjp/WVug2jCHQzqzGz4cnrgcD5hB8oVgCfSDabAywrTYVd1rj2kL+cRhgPXF2K+tz9Rncf7+4TgcuAJ939k2SoDbuo8VNZacOkhmozG9LxGvhQUs+jhPaD0v9d7LTGjnZMfIwStqO7bwHeMLNTklUzgRfISDt2VV+p2zCWe4qOAxaZWTnhS2qJuz9mZi8AD5vZt4GnSX7AyFiNT5pZDWDAM8DnS1hjZ64nO23YlV9kqA3HAI+E7xYqgF+6++Nm9jdgiZnNJVxx9NIM1vjz5JRPB14F/r10JQJwFeHPtgpYD1xO8v9ORtqxs/ruKWUbaqaoiEgkohhyERERBbqISDQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hE4v8Af02RzlwcOZsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -611,13 +620,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "order = (0, 1, 2) Distance = 67.0\n", - "Best order from brute force = (0, 1, 2) with total distance = 67.0\n" + "order = (0, 1, 2) Distance = 162.0\n", + "Best order from brute force = (0, 1, 2) with total distance = 162.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtclGX+//HXxRkRRQRTE6Ny1a/mpqWuablRaWSuouIMnlrNRP2m5U8rzQPtAqm12q753TxknlLjHik1NVN3UzPrG6tU6jfNs3lc8gAqIiBz/f4YdK1UBhi4h5nP8/HgITPch8/cj/HNxTXXfV1Ka40QQoiqz8fsAoQQQriGBLoQQngICXQhhPAQEuhCCOEhJNCFEMJDSKALIYSHkEAXQggPIYEuhBAeQgJdCCE8hJ+zGyqlfIHtwAmtdVel1N1AGlAb2AEM0FoX3O4YEREROjo6+uY/LCiAH3+EvDzw8XF8lURrKCpybNugAdSs6ezLEUKIKmPHjh1ntNaRJW3ndKADLwJ7gBrFj98A/qq1TlNKzQYGA7Nud4Do6Gi2b9/+6x/83/9B374QEeEIZaVKURZw5YrjF8GgQfD886XbVwgh3JxS6qgz2znV5aKUagA8DcwrfqyAx4D04k0WAXGlLxM4csQR5leuQFhY6cMcICgIQkPhrbdg8eIylSGEEFWds33ofwNeAezFj2sD2Vrrq8WPjwN3lvrsRUXwwguQm+sI5PLw84Pq1eH112H//vIdSwghqqASA10p1RXI0lrvKMsJlFKJSqntSqntP/30089/uHgxfP+96/q+/f3BbodRoxz/CiGEF3Gmhd4B6KaUOoLjQ9DHgBlAmFLqWh98A+DEzXbWWs/VWrfWWreOjLyhT7+wEN5+G4KDy9bNcis1asC+ffC//+u6YwohRBVQYqBrrV/VWjfQWkcDCcBnWut+wCYgvnizPwKrSnXmTZvg0iUIDLztZrZz5xhw+DAP7d3Ln06eLPm4SjlGv7z3XqnKEUKIqq4849DHAqOVUgdw9KmXLkHXrnUEbwki/PwYHBFBt9J0y9SoAVu2OIZCCiGElyjNsEW01puBzcXfHwLalvnMmZmO0SkleKyGY5Tk93l5ZF29WsLWxXx8wNcXDh6E//qvMpcohBBViTl3ihYWwvHjJXa3lIvWcOBAxR1fCCHcTKla6C6Tn+9oRZfiw9DLeXlcLixEA07tpbXjZiMhhPAS5rTQfX1LPaywsLCQS5cucezHHykoLCx5B6UcY9OFEMJLmBPoQUGOm4CcCeZioaGh+Pj64h8QwOHDhzl3/jy3/UjVxwfq1i13qUIIUVWYE+hKQYsWjtv9S1CkNQV2OyhFUHAweYWFRN11Fxdycjh65Aj5+fm/3klrxy+LZs0qoHghhHBP5vVJPPoofP11iZu9d+YMc8+cuf7404sXGe7ry39HR3P+/HmOHD1K7fBwateujbrWJ5+X55h9MSysgooXQgj3Y16gx8XBtGmOvvTbTJWbGBlJ4g13mJ49d47LubkoILxWLapXr87p06e5cPgw9erXJzgoyNE6f+65SngRQgjhPsxb4KJOHejcGXJySrVbrVq1uHLlCnnF3TUB/v5ERUVRu3Ztjv34Iz+dPIndzw+6d6+IqoUQwm2Zu2LRxImOD0hv1g9+Cz5KUTsighsn+lJAzZo1uefuu/HJy+Ot0FAyZQy6EMLLmBvodetCaipcvgzO3gUKhIWFkZ+fz+Ubx5lrjV9uLrW7dKH11KlMmDCBKVOmkJubWwGFCyGE+zF/TdEePRyrDF244PQwRh+liLixla41ZGfDb34Ds2bx6GOPYbPZKCoqwmKx8MUXX1TgCxBCCPegtBMTZLlK69at9U2XoNMa5s2Dv/zF8Tg0tMS7SLXWHDx4kPqRkVTTGtq2hdmzHRNz3SAjI4PXX3+dFi1aMGbMGGrVquWqlyOEEJVCKbVDa926pO3Mb6GDI7yHDIGVKyE6Gi5edHxYequ7SbVGXblCvWrVyD5zBp2SAkuW/CrMAdq2bUtaWhq1a9fGarWyYcMGKvOXmBBCVBb3CPRrmjWDTz91tNbbtXOE+qVLjn+zs3/+ODyc4Ndf55WHH+Zf995726GPwcHB/L//9/946623mDdvHmPGjCErK6sSX5gQQlQ89+hyuZX8fMfqQwcPOm4W8vWFO+90TIkbHg7Ap59+is1m47333vvPjUW3UVhYyIIFC7DZbPz3f/83cXFx+Nzml4EQQpjN2S4X9w50J9jtdhISEhg1ahTt27d3er8DBw6QnJxMcHAwEydOJCoqyqV1CSGEq1StPvRy8PHxITExkdmzZ5eqb7xRo0YsXLiQjh07MnDgQN5//32KiooqsFIhhKhYVT7QAR577DEKCwvZunVrqfbz8fGhX79+LFq0iG3btjFo0CD2799fQVUKIUTF8ohA9/HxYdiwYcyePRt7KedZB2jQoAGzZs2iZ8+eDB8+nNmzZ1Mg65EKIaoYjwh0gI4dO+Lr68vmzZvLtL9Siri4OJYtW8a+ffvo168fO3fudG2RQghRgTwm0JVS5WqlX1OnTh2mT59OYmIiL7/8MtOnTydPlrITQlQBHhPoAO3btyckJIR//OMf5TqOUopOnTphs9nIycnBarWSkZHhoiqFEKJieFSgX2ulz5kzxyUjVmrWrElycjLjxo0jOTmZ5ORkLly44IJKhRDC9Twq0MFxq394eDiffvqpy47Zvn17DMMgMDAQq9XKpk2bXHZsIYRwFY8L9Gut9HfffZerpZiStyQhISGMHTuWyZMnM3PmTMaOHcvZs2dddnwhhCgvjwt0gAcffJB69eqxdu1alx+7VatWpKWlERUVRUJCAmvWrJHJvoQQbsEjAx1g2LBhzJs3j0In51gvjYCAAEaMGMHMmTNZtmwZI0eO5OTJky4/jxBClIbHBvr9999PdHQ0H3/8cYWdo2nTpixevJgHH3yQAQMGYBhGuYZMCiFEeXhsoIOjlf7ee+9V6F2ffn5+DBo0iPfee48NGzbw3HPPcfjw4Qo7nxBC3IpHB3rz5s1p2rQpK1asqPBzRUdH8+677xIbG8tzzz3H/PnzXfqhrBBClMSjAx1g6NChLFiwgCtXrlT4uXx8fLBYLCxZsoRvv/2WZ555hj179lT4eYUQApwIdKVUkFIqQyn1nVLq/5RSfy5+fqFS6rBS6tvir5YVX27pNWnShN/+9rekp6dX2jnr1avHjBkz6N+/Py+++CIzZ84kPz+/0s4vhPBOzrTQ84HHtNb3Ay2BWKVUu+Kfvay1bln89W2FVVlOiYmJLF68mMuXL1faOZVSdOnShbS0NE6ePEmfPn3IzMystPMLIbxPiYGuHS4VP/Qv/qpSA68bNWpE69atsdlslX7u8PBwpkyZwgsvvMCECROYOnUqubm5lV6HEMLzOdWHrpTyVUp9C2QBG7XWXxf/6HWl1E6l1F+VUoEVVqULJCYmsnTpUtPC9NFHH8UwDAoLC7FYLGzbts2UOoQQnqtUa4oqpcKAFcBI4CxwGggA5gIHtdbJN9knEUgEaNiw4YNHjx51Qdllk5SURMOGDXnuuedMqwEgIyOD1NRU7r//fsaMGUNYWJip9Qgh3FuFrCmqtc4GNgGxWutTxd0x+cACoO0t9pmrtW6ttW4dGRlZmtO53JAhQ/jggw9MnzGxbdu2GIZBrVq1sFgsbNiwQaYPEEKUmzOjXCKLW+YopYKBTsBepVS94ucUEAfsrshCXSEqKorf//73LFu2zOxSCA4OZvTo0UyfPp158+YxZswYsrKyzC5LCFGFOdNCrwdsUkrtBP6Fow99DbBUKbUL2AVEAKkVV6brPPfccyxfvpycnByzSwGgRYsWLFmyhKZNm9K3b18++ugjmT5ACFEmpepDL6/WrVvr7du3V9r5bmXy5MmEhoYycuRIs0v5mQMHDpCcnExwcDATJ04kKirK7JKEEG6gQvrQPcXgwYNZsWIF586dM7uUn2nUqBELFy6kY8eODBw4kPfff98lKy8JIbyDVwb6HXfcQWxsLIsWLTK7lF/x8fGhX79+LFq0iG3btjFo0CAOHDhgdllCiCrAKwMdYNCgQaxevZozZ86YXcpNNWjQgFmzZtGzZ0+GDRvG7NmzK3TWSCFE1ee1gR4ZGUnXrl1ZsGCB2aXcklKKuLg4li1bxr59++jfvz+7du0yuywhhJvy2kAHGDhwIOvWrePf//632aXcVp06dZg+fTpDhgzhpZde4q233iIvL8/ssoQQbsarAz08PJwePXowf/58s0spkVKKTp06YbPZyM7Oxmq1kpGRYXZZQgg34tWBDjBgwAA2btxYZdYErVmzJsnJyYwdO5Y///nPJCcnm37nqxDCPXh9oIeFhdG7d2/mzZtndiml0qFDB2w2G4GBgVitVjZt2mR2SUIIk3l9oAP069ePLVu2cOzYMbNLKZWQkBDGjh3L5MmTmTlzJmPHjuXs2bNmlyWEMIkEOlCjRg0SEhJ49913zS6lTFq1asUHH3xAVFQUffr0Yc2aNTLZlxBeSAK9WN++ffnqq684cuSI2aWUSWBgICNGjODtt99m2bJljBw5ssp8LiCEcA0J9GIhISH07duXuXPnml1KuTRt2pTFixfz4IMPMmDAAAzDkMm+hPASEug3sFqtbN++nYMHD5pdSrn4+fkxaNAg3nvvPTZs2MCQIUOq7F8eQgjnSaDfoFq1agwYMIA5c+aYXYpLREdH8+677/Lkk08yePBg5s+fz9WrV80uSwhRQSTQf6F3797s3LmTffv2mV2KS/j4+GCxWFiyZAnffPMNzzzzDHv37jW7LCFEBZBA/4WgoCAGDhzI7NmzzS7FperVq8fbb79Nv379eOGFF5g5cyb5+flmlyWEcCEJ9Jvo2bMne/fu5fvvvze7FJdSSvH000+TlpbGiRMn6NOnD5mZmWaXJYRwEQn0mwgICODZZ5/1uFb6NeHh4UydOpWRI0cyYcIEpk6dSm5urtllCSHKSQL9Frp3787hw4fZuXOn2aVUmJiYGAzDoLCwEIvFwrZt28wuSQhRDhLot+Dv78/gwYM9tpV+TY0aNZg0aRKvvfYab7zxBpMmTSI7O9vssoQQZSCBfhtdu3blxIkTXtHP3LZtWwzDoFatWlitVjZs2CDTBwhRxUig34afnx9Dhgxh9uzZXhFuwcHBjB49mmnTpjFv3jzGjBlDVlaW2WUJIZwkgV6Cp556ijNnzvCvf/3L7FIqTYsWLViyZAlNmzalb9++rFixwit+oQlR1Umgl8DX15ehQ4cya9Ysrwq1gIAAEhMTmT17NitWrGD48OFVbnphIbyNBLoTOnXqRG5uLl999ZXZpVS6Ro0asXDhQh555BEGDhzIkiVLKCoqMrssIcRNSKA7wcfHh6FDh3pNX/ov+fj40K9fPxYtWsQXX3zBoEGDOHDggNllCSF+QQLdSTExMVy9epWtW7eaXYppGjRowKxZs+jRowfDhg1jzpw5FBQUmF2WEKKYBLqTbmyle/P84kopevTowbJly/jhhx/o378/u3btMrssIQQS6KXSsWNHfH19ZUFmoE6dOkyfPp3nnnuOMWPG8NZbb5GXl2d2WUJ4NQn0UlBKXe9q8OZW+jVKKTp37ozNZiM7Oxur1UpGRobZZQnhtSTQS6l9+/aEhISwceNGs0txG2FhYSQnJzN27Fj+/Oc/k5yczIULF8wuSwivU2KgK6WClFIZSqnvlFL/p5T6c/HzdyulvlZKHVBKGUqpgIov13xKKYYPH86cOXNk+N4vdOjQAZvNRmBgIFarVbqmhKhkzrTQ84HHtNb3Ay2BWKVUO+AN4K9a60bAeWBwxZXpXtq0aUPt2rX59NNPzS7F7YSEhDB27Fhef/11Zs6cybhx4zh37pzZZQnhFUoMdO1wqfihf/GXBh4D0oufXwTEVUiFbuhaK33u3LmyRuctPPDAA3zwwQc0aNCAhIQE1q5d65Vj+IWoTE71oSulfJVS3wJZwEbgIJCttb6WZseBOyumRPf0wAMPcOedd7J27VqzS3FbgYGBjBgxgrfffpulS5fywgsvcOrUKbPLEsJj+Tmzkda6CGiplAoDVgBNnT2BUioRSARo2LBhWWp0W8OGDWPChAl06dIF/6IiyMyE77+Hb7+FnBzw84N77oGWLeH++8HDXr+zmjZtyuLFi3n//ffp378/Q4cOJT4+Hh8f+UxeCFdSpf0zWCmVBOQBY4G6WuurSqmHgD9prZ+83b6tW7fW27dvL3Ox7mji4MFY8/JosXMnFBY6vnx94VpYFRSAvz/Y7dCqFQwbBo89BkqZW7hJjhw5QnJyMkopJk2aRHR0tNklCeH2lFI7tNatS9rOmVEukcUtc5RSwUAnYA+wCYgv3uyPwKqyl1sF2e2QlsbETZuovXIldqUgNBTCw6FmTcf3oaFQuzbUqOF47rvvYOhQeOYZOH3a7FdgiujoaObNm8eTTz7J4MGDmT9/vnwOIYSLOPM3bz1gk1JqJ/AvYKPWeg2OFvpopdQBoDbwXsWV6Wby8x0t7QkTCAoJoSg0lOySFllW6j/B/tVX0Lkz7NhROfW6GR8fHywWC0uWLOGbb77hmWeeYe/evWaXJUSVV+oul/LwiC6XwkJITITPP4ewMFCKK1eu8OOxYzRq1AgfZ7tSrv0CWLbM0RXjpbTWfPLJJ/ztb3+jW7duJCYmEhgYaHZZQrgVl3W5iF/4+99hy5brYQ4QFBREteBgzp8/7/xxQkJAa3juOfDiRZmVUjz99NMYhsGJEyfo06cP33zzjdllCVElSaCXxvffwzvvOLpOftESj4iM5OyZMxSVZo6X6tUdYf7aay4utOoJDw9n6tSpjBw5kvHjxzN16lRyS+rGEkL8jAR6aaSmOj4M9fv1aM+gwECqhYSUrpUOjj71tWthzx4XFVm1xcTEYBgGhYWFWCwWtm3bZnZJQlQZEujOOnoUMjIcrfNbiIyM5NzZs5wvLOSl48d5eO9euh44wKc5Obc+ro+Po+tl8eIKKLpqqlGjBpMmTeK1117jjTfeICkpiWwv7pYSwlkS6M76+GNH6/w2N8MEBgQQUr06fz5yBH+l2NC4Man16zPl9GkO5eff+tihobBiBcjwvZ9p27YthmEQFhaG1Wplw4YNMn2AELchge6sr75y3CBUgurh4Wy+dInE8HCq+fjQslo1fh8aytrbtdL9/Byt9EOHXFiwZwgODmb06NFMmzaNefPmMWbMGLKysswuSwi3JIHurN27ISioxM1OA/6+voRcunT9ud8EBt6+hQ6OQJex2LfUokULlixZQpMmTejbty8rVqyQ1roQvyCB7gyt4cKFm34Y+kuX7XZqBgZy/tw5LhcvyVbdx4fckka/XL3q1cMXnREQEHB9XdcVK1YwfPhwjh8/bnZZQrgNCXRnOdkarObjQ57W1L/zTk4cP86Ro0c5k5tLtZImotLa0UcvStSoUSMWLFjAww8/zB//+EeWLFkiSwIKgQS6c67N0+LECkUNAwIoAs4HBNCoUSPCa9Vi14ULhF64wJkzZ249b4mfn2MIo3CKr68v/fv3Z+HChWzdupWBAwdy4MABs8sSwlQS6M5q3hyuXClxs2AfHx4LDWX2Tz9xRWsO+/nxna8vfaOiKCgs5ODBg5w4eZK8Xx7LxweaOj0rsSgWFRXF7Nmz6dGjx/UFvAsKCswuSwhTSKA766GHHFPhOmFc3brk2+102reP8SdO8GrduvxXjRrUr1ePexs1IjAwkOPHj3P4yBFyLlzAfvWqo8vl3nsr+EV4JqUUPXr0YNmyZfzwww/079+f3bt3m12WEJVOJudy1v790KXLTW/7LwsNXLp4kXPnz+N/6RJn2renfloaERER5a/Vi2mt2bhxI9OnT+fJJ59k+PDhBAcHm12WEOUik3O52m9+A7/9rWO0iwsoIDQ0lLuiooisU4eMZs3o3bs3EyZMYOfOnTIkr4yUUnTu3BnDMMjOzsZqtZKRkWF2WUJUCmmhl8Y330Dv3o4PSH19XXPM7GyIiYG5c7l46RKrV6/GMAxq1KiB1Wqlc+fOBAQEuOZcXmjbtm1MnjyZdu3aMWrUKEJDQ80uSYhSkxZ6RWjVCgYNcqwX6opfhJcvQ7VqMHkyKEVoaOj1m2aGDh3K+vXr6dq1K++8847cHVlGHTp0wGazERAQgMViYfPmzWaXJESFkRZ6aeXnO5aQ2779Z3Oil1penmOxjIULoX37W2529OhRDMPg008/pU2bNlitVlq1aoXy0jVJyyMzM5PU1FQaN27MK6+8Qnh4uNklCeEUZ1voEuhlkZvrWJgiI8Mxp7kTc7xcp7Wjhe/vD3PmQMeOTp4ylzVr1mAYBkFBQVgsFmJjYwlyYjoC8R/5+fnMnTuX1atX8+KLL9KlSxf55SjcngR6Rbt6Fd59F/76V8cNR6Ght58aQGtHF0tBAdx3n2O/e+4p9Wntdjtff/01hmGwe/duunXrRnx8PPXr1y/Hi/E+e/fuJTk5mdq1azN+/Hjq1atndklC3JIEemU5dMjR0l650vG4oAACA/8zz3lhoeNfX1+IjnYsLt29u0s+VD1+/Dg2m401a9bQqlUrrFYrbdq0kRank65evcrixYtZunQpQ4cOJT4+Hp+SpmgQwgQS6JUtJwf+93/hu+8co2EuXfpPiLdtC/ffD82auWQM+y9dvnyZdevWYRgGAFarlaeeeopq1aq5/Fye6MiRIyQnJ6OUYtKkSURHR5tdkhA/I4HuhbTWbN++HcMwyMzMpGvXrlgsFho0aGB2aW7PbreTnp7OnDlz6NevH8888wx+TsyuKURlkED3cidPniQ9PZ2PP/6Y++67D6vVyu9+9zvpUijBqVOnmDx5MmfPniUpKYmmMr+OcAMS6AKAK1eusH79egzD4MqVK1itVrp27UpISIjZpbktrTWffPIJM2bMoFu3bgwZMoTAwECzyxJeTAJd/IzWmm+//RbDMMjIyCA2Nhar1cpdd91ldmlu69y5c7zxxhvs37+fSZMm0apVK7NLEl5KAl3cUlZWFunp6axcuZLGjRtjtVrp0KGDdMfcwqZNm3jzzTd59NFHGTFihPx1IyqdBLooUUFBARs3bsQwDHJycrBYLHTr1k3mO7mJCxcuMGPGDL7++mteffVVOnToYHZJwotIoAunaa3ZvXs3hmGwbds2OnXqhNVq5V6Zn/1XMjIySE1NpWXLlowePZqwsDCzSxJeQCbnEk5TStGiRQtSU1NZvnw5ERERPP/88wwbNoxNmzZR5MTSe96ibdu2GIZBWFgYVquVDRs2yFTHwm1IC13cVGFhIZ999hmGYZCVlUXv3r2Ji4ujpqx7et2uXbtISUmhQYMGjBs3jjp16phdkvBQ0uUiXOb777/HMAw+//xzYmJiSEhIoHHjxmaX5RYKCgpYsGABy5cv5/nnnycuLk6mXhAu57JAV0pFAYuBO3CsnDZXaz1DKfUnYAjwU/Gm47XWn9zuWBLoVdu5c+dYuXIl6enp1K9fH6vVSkxMjNxRCezfv5+UlBSqVavGxIkT5e5c4VKuDPR6QD2tdaZSKhTYAcQBFuCS1nqas0VJoHuGq1evsnnzZgzD4MSJE/Tq1YsePXp4/fziRUVFfPDBByxYsIBnn32WPn36yFBQ4RIV1uWilFoF/A/QAQl0r7dv3z4Mw+Czzz7jkUceISEhgWbNmpldlqmOHTtGamoqV65cISkpSUYLiXKrkEBXSkUDnwP3AaOBgcAFYDswRmt9/nb7S6B7rpycHFatWnV9lIzVauXxxx/HvzSLf3gQu93OqlWr+Pvf/47FYmHgwIGyNqwoM5cHulKqOrAFeF1r/ZFS6g7gDI5+9RQc3TLP3mS/RCARoGHDhg8ePXrU+Vchqhy73c7nn3+OYRgcOnSIXr160bNnTyIiIswuzRRZWVlMnTqV48ePk5SUxH333Wd2SaIKcmmgK6X8gTXAeq31Wzf5eTSwRmt923ertNC9y6FDhzAMgw0bNtC+fXusVistWrTwulEgWms2btzItGnTiI2NZfjw4QQHB5tdlqhCXHZjkXL873sP2HNjmBd/WHpND2B3WQoVnuuee+7h1Vdf5eOPP6Z58+YkJSXxzDPPsGbNGgoKCswur9IopejcuTM2m43z589jtVrJyMgwuyzhgZwZ5fIwsBXYBdiLnx4P9AFa4uhyOQIM1Vqfut2xpIXu3ex2O19++SWGYfDDDz8QFxdHfHy8192Q88UXXzBlyhTatWvHqFGjZO4cUSK5sUi4taNHj2Kz2Vi3bh1t2rTBarXSqlUrr+mOyc3NZebMmWzZsoWxY8fy6KOPml2ScGMS6KJKyM3NZe3atRiGQWBgIBaLhdjYWIKCgswurVJkZmaSmppK48aNeeWVV7x+LL+4OQl0UaXY7XYyMjIwDINdu3bRrVs34uPjqV+/vtmlVbj8/Hzmzp3L6tWrefHFF+nSpYvX/KUinCOBLqqs48ePs3z5clavXk2rVq2wWq20adPG40Nuz549pKSkEBERwauvvkq9evVK3kl4BQl0UeXl5eWxbt060tLSALBYLHTp0oVq1aqZXFnFuXr1KosXL2bp0qUMHTqU+Ph4mT5ASKALz6G1Zvv27RiGQWZmJl27dqV3795ERUWZXVqFOXLkCMnJySilSEpKkrVfvZwEuvBIp06dYvny5dfHtlutVtq1a+eRrVi73U56ejpz5syhf//+DBgwQGa29FIS6MKj5efn8+mnn2IYBleuXMFisfCHP/zBIxdwPnXqFJMnT+bs2bO89tprNGnSxOySRCWTQBdeQWvNt99+i2EYZGRkEBsbi8ViITo62uzSXEprzdq1a5kxYwbdu3dnyJAhBAYGml2WqCQS6MLrZGVlkZ6ezsqVK2ncuDFWq5UOHTp4VHfM2bNnefPNN9m/fz+TJk2iVatWZpckKoEEuvBaBQUFbNy4EcMwyMnJwWKx0K1bN4+6xX7Tpk28+eabPProo4wcOdKjR/4IF07OJURVExAQwNNPP82iRYtITU1lz549dOvWjcmTJ3Pw4EGzy3OJmJgYDMMgPz8fi8XCl19+aXZJwg1IC114hbNnz/Lhhx/y0UcfER0djdV253YdAAAUvklEQVRqpWPHjvj6+ppdWrllZGSQmppKy5YtGT16NGFhYWaXJFxMulyEuInCwkI+++wzDMMgKyuL3r17ExcXR82aNc0urVzy8vKYNWsW69ev56WXXuKJJ57w+DtrvYkEuhAl2LNnD4ZhsGXLFmJiYkhISKBx48Zml1Uuu3btIiUlhaioKMaNG0dkZKTZJQkXkEAXwknnz59nxYoVpKenU79+faxWKzExMVX2Jp6CggIWLFjA8uXLGTFiBN27d5fWehUngS5EKRUVFbF582YMw+D48eP06tWLHj16VNkpbffv309KSgrVqlVj4sSJNGjQwOySRBlJoAtRDvv27cNms/HPf/6TRx55hISEBJo1a2Z2WaVWVFTEsmXLWLhwIc8++yx9+vTxqHH53kICXQgXyMnJYdWqVSxfvpyIiAisViuPP/44/v7+ZpdWKseOHSM1NZUrV66QlJTEvffea3ZJohQk0IVwIbvdzueff45hGBw6dIhevXrRs2dPIiIizC7NaXa7nZUrV/LOO+9gsVgYNGhQlfvF5K0k0IWoIIcOHcIwDDZs2ED79u2xWq20aNGiynzwmJWVxZQpUzhx4gRJSUncd999ZpckSiCBLkQFu3jxIqtXr8ZmsxEaGorVaqVz584EBASYXVqJtNZs3LiRadOmERsby/DhwwkODja7LHELEuhCVBK73c6XX36JYRj88MMPxMXFER8fT506dcwurUTZ2dlMnz6dnTt3MnHiRNq0aWN2SeImJNCFMMHRo0ex2WysW7eONm3aYLVaadWqldt3x3zxxRdMmTKFhx56iBdffNGjJjLzBBLoQpjo8uXLrFmzBsMwCAgIwGq1EhsbS1BQkNml3VJubi4zZ87k888/Z+zYsfz+9783uyRRTAJdCDdgt9vJyMjAMAx27dpFt27diI+Pp379+maXdkuZmZmkpqbSpEkTXn755Sp7Y5UnkelzhXADPj4+tGvXjr/+9a8sXLiQoqIiBgwYwJgxY8jIyKAyG1TOeuCBB/jggw+oX78+CQkJfPLJJ25Zp/g1aaELUcny8vJYt24daWlpAFgsFrp06eKWi1Ts2bOHlJQUIiIiGD9+PHXr1jW7JK8kXS5CuDmtNTt27MAwDHbs2EHXrl3p3bs3UVFRZpf2M1evXmXx4sUsXbqUoUOHEh8fL9MHVDIJdCGqkFOnTpGens6qVato3rw5VquVdu3auVVwHj58mJSUFHx8fJg0aRJ33XWX2SV5DQl0Iaqg/Px81q9fT1paGleuXMFisfCHP/yBkJAQs0sDHB/ypqenM2fOHPr378+AAQOq7DTDVYkEuhBVmNaa7777jrS0NDIyMoiNjcVisRAdHW12aQCcPHmSyZMnc+7cOV577TWaNGlidkkezWWBrpSKAhYDdwAamKu1nqGUCgcMIBo4Ali01udvdywJdCFKLysri/T0dFauXEnjxo2xWq106NDB9O4YrTVr165lxowZdO/encTExCox7UFV5MpArwfU01pnKqVCgR1AHDAQOKe1nqqUGgfU0lqPvd2xJNCFKLuCggI2btyIYRjk5ORgsVjo1q2b6Xd1nj17ljfffJP9+/eTlJREy5YtTa3HE1VYl4tSahXwP8Vfj2qtTxWH/mat9W3/7pJAF6L8tNbs3r0bwzDYtm0bnTp1wmq1mj7H+WeffcZf/vIXYmJiGDFihFsOw6yqKuTGIqVUNNAK+Bq4Q2t9qvhHp3F0yQghKphSihYtWpCamkp6ejqRkZE8//zzDBs2jE2bNlFUVGRKXY899hiGYVz/MPfLL780pQ5v5nQLXSlVHdgCvK61/kgpla21Drvh5+e11rVusl8ikAjQsGHDB48ePeqayoUQ1xUWFvLZZ59hGAZZWVn07t2buLg4atasaUo9GRkZpKam0rJlS8aMGWNaHZ7CpV0uSil/YA2wXmv9VvFzPyBdLkK4nT179mAYBlu2bCEmJoaEhAQaN25c6XVcvnyZ2bNns379el566SWeeOIJt5910l258kNRBSzC8QHoqBue/wtw9oYPRcO11q/c7lgS6EJUnvPnz7NixQrS09OpX78+VquVmJiYSh83vnPnTlJTU4mKimLcuHFERkZW6vk9gSsD/WFgK7ALsBc/PR5HP7oNaAgcxTFs8dztjiWBLkTlKyoqYvPmzRiGwfHjx+nVqxc9evSo1FkUCwoKmD9/Punp6YwYMYLu3btLa70U5MYiIcSv7Nu3D5vNxj//+U8eeeQREhISaNasWaWdf//+/aSkpBASEsKECRNo0KBBpZ27KpNAF0Lc0oULF1i5ciXLly+ndu3aWK1WnnjiCfz9/Sv83EVFRSxbtoyFCxfy7LPP0qdPH9NvknJ3EuhCiBLZ7Xa2bt2KYRgcPHiQnj170qtXLyIiIir83MeOHSMlJYX8/HySkpJMH0fvziTQhRClcujQIWw2G+vXr+ehhx4iISGBFi1aVGhft91uZ+XKlbzzzjtYLBYGDRpUKX8lVDUS6EKIMrl48SKrV6/GZrNRvXp1rFYrTz75ZIXO05KVlcWUKVM4ceIEr732Gs2bN6+wc1VFEuhCiHKx2+18+eWXGIbBDz/8QFxcHPHx8dSpU6dCzqe1ZuPGjUybNo2nnnqKYcOGERwcXCHnqmpkTVEhRLn4+Pjw8MMPM3PmTN59911yc3NJSEhg7NixZGZmunydUaUUnTt3xmazce7cORISEvjXv/7l0nN4OmmhCyGcdvnyZdasWYNhGAQEBGC1WomNjSUoKMjl5/riiy+YMmUKDz30EC+++KLps0qaSVroQgiXq1atGhaLhfT0dEaNGsXnn39O165defvttzl58qRLz/Xwww9js9nw8/PDarWyZcsWlx7fE0kLXQhRLidOnMBms7FmzRpatmyJ1WqlTZs2Lh0dk5mZSWpqKk2aNOHll1+u1Ltc3YF8KCqEqFR5eXmsW7eOtLQ0ACwWC126dHHZvOj5+fnMmTOHNWvWMGrUKJ566imvmT5AAl0IYQqtNTt27MAwDHbs2EHXrl3p3bs3UVFRLjn+999/T0pKCpGRkYwfP566deu65LjuTAJdCGG6U6dOkZ6ezqpVq2jevDlWq5V27dqV+1b/q1evsnjxYpYuXcrQoUOJj4/36OkDJNCFEG4jPz+f9evXk5aWdn1Foz/84Q+EhISU67iHDx8mJSUFHx8fJk2axF133eWiit2LBLoQwu1orfnuu+8wDIOvv/6a2NhYLBYL0dHRZT6m3W5n+fLlzJ07lwEDBtC/f/9Kn/O9okmgCyHcWlZWFh9++CErVqygcePGWK1WOnToUOauk5MnTzJ58mTOnz9PUlISTZrcdgG1KkUCXQhRJRQUFPCPf/yDtLQ0cnJyrnfH1KhRo9TH0lqzdu1aZsyYQVxcHEOGDKnQOWgqiwS6EKLK2b17N4Zh8MUXX9CpUyesVmuZptU9e/Ysb775Jvv37ycpKYmWLVtWQLWVRwJdCFFlnT17lo8++ogPP/yQu+66i4SEBDp27Iivr2+pjvPZZ5/xl7/8hZiYGEaMGOGyMfGVTQJdCFHlFRYWsmnTJtLS0sjKyqJ3797ExcVRs2ZNp49x4cIF/va3v5GRkcH48eNp3759BVZcMSTQhRAeZe/evRiGwebNm4mJiSEhIYHGjRs7vf/XX3/N66+/TsuWLRkzZkypfimYTQJdCOGRzp8/f3091Pr162O1WomJiXFqqOLly5eZPXs2GzZs4KWXXuLxxx+vEtMHSKALITxaUVERW7ZsIS0tjePHj9OrVy969Ojh1MRdO3fuJCUlhYYNGzJu3DgiIyMroeKyk0AXQniN/fv3YxgG//znP3nkkUdISEigWbNmt92noKCA+fPn8+GHHzJixAi6devmtq11CXQhhNe5cOECK1euJD09nfDwcKxWK0888cRtF57ev38/KSkphISEMHHiRO68885KrNg5EuhCCK9lt9vZunUrhmFw8OBBevbsSa9evYiIiLjp9kVFRSxbtoyFCxcyePBgEhIS3GqyLwl0IYQADh06hM1mY8OGDbRr146EhARatGhx0+6VY8eOkZKSQn5+PklJSWW6qem6wkI4fBiys0FrCAuDu++GMty5KoEuhBA3uHjxIqtXr8Zms1G9enWsVitPPvnkr6YGsNvtrFy5knfeeQeLxcKgQYNu22XzM7m5sHo1LFkCP/wAvr5w7ReH3Q5FRdC4MfTtC926gZPTG0igCyHETdjtdr766isMw2Dv3r3ExcURHx9PnTp1frZdVlYWU6ZM4eTJkyQlJdG8efNbH7SoCBYuhOnTHS1zPz8IDoZfdtvY7ZCX59jG3x9GjoTERMf2tyGBLoQQJfjxxx+x2Wx88skntGnTBqvVSqtWra53x2it2bhxI9OmTeOpp55i+PDhBAUF/fwgJ0/C8OGwezeEhDjfpVJYCJcuQdOmMGsWNGx4y00l0IUQwkmXL19mzZo12Gw2/P39sVqtxMbGXg/v7Oxspk2bxq5du5g4cSJt2rRx7HjsGMTHw9mzULPmf7pXnKU15OQ4+teXL3f0sd+EBLoQQpSS1pqMjAwMw2Dnzp1069aN+Ph46tevD8DWrVuZMmUK7du358XBgwm1WOD0aUeYl8eFC1CrFqxf7wj3X3A20Escl6OUmq+UylJK7b7huT8ppU4opb4t/upS6hcghBBuRinF7373O9566y0WLVqE3W5nwIABjBkzhoyMDB5++GGWL1+Or68vn3ToQN6hQ+UPc3B8OHrmDPzpT+Wrv6QWulKqI3AJWKy1vq/4uT8Bl7TW00pzMmmhCyGqmry8PNatW4dhGGitsVgsPF2vHiohgRMXLxIYHEzdO+4o/7J3drujpb54MfxiRkhnW+glVqC1/lwpFV3mIoUQogoLDg6mZ8+e9OjRg8zMTAzDIGDJEh4pKODOqChycnI4dOgQd9xxBzVq1uRaL3qB3c7U06fJuHyZC0VFNPD3Z0SdOrSvXv3mJ/LxcfTBz579q0B3VnluhRqhlNpZ3CVTqxzHEUIIt6eU4sEHH+TNl16iS1AQhUFB/Hj0KPn5+dSOiODM2bMcO3aMwsJCAIqAuv7+zG3YkM2NGzM8MpJxJ05wsqDg1icJDYWvvoITJ8pUY1kDfRZwL9ASOAVMv9WGSqlEpdR2pdT2n376qYynE0IIN5GZiZ+/P3Xq1qXRb35DjdBQcnJy0HY72m7n0KFDnDt/niAfHxIjI6kfEICPUjwSGkp9f3/2Xrly62Nfa6WXsWu6TIGutf631rpIa20H3gXa3mbbuVrr1lrr1u4+RaUQQpTou++guJXtoxRhYWHcfffd1K9fH18/P+xac/r0aQ4dOkT+Da3xc1ev8mNBAfcEBt7++FevwjfflKm0MvXiK6Xqaa1PFT/sAey+3fZCCOEx9u791c1DCqhWrRrVqlWj8OpVzp87x09nzrB3715q165NnXr1mHjyJF1r1iS6pEAPCIA9e8pUWomBrpT6AHgUiFBKHQdeAx5VSrUENHAEGFqmswshRFVz5cptbyDy9/OjTp06RERGcv7cOU6dPs3MoiL8gFfq1i35+D4+jnOUgTOjXPrc5On3ynQ2IYSo6oKCHEMMS+CjFOHh4fxPfj7ZhYW8HRWFnzN3ktrtjnOUgftM+CuEEFXBffc55mFxwpTTpzlcUMBfo6IIdHZ+9fx8xznKoJwj4YUQwsv89rdOTcB1qrCQj7KzCVCKJ/fvv/78+Lp1eep2d5f6+0OrVmUqTQJdCCFK48EHHZNqFRU55ju/hXr+/mz/r/8q3bHtdsfXtcm/Skm6XIQQojTCwyE21nGbvqtduAAxMXDHHWXaXQJdCCFKa+hQx2iUoiLXHfPasYYPL/MhJNCFEKK0mjeHgQPh4kXXHfPiRUhIgAceKPMhJNCFEKIsRo92LEiRnV3+Y+XkwJ13wquvluswEuhCCFEWwcGwdCk0aADnzzs+KC0trR371qkDH3zgWMKuHCTQhRCirOrUgY8+ckx3m51dujs88/Md+7RpAytWQPGqSOVRqUvQKaV+Ao6WYdcI4IyLy/EEcl1uTq7Lzcl1ubmqcF3u0lqXOLthpQZ6WSmltjuzWoe3ketyc3Jdbk6uy8150nWRLhchhPAQEuhCCOEhqkqgzzW7ADcl1+Xm5LrcnFyXm/OY61Il+tCFEEKUrKq00IUQQpTALQNdKXVEKbVLKfWtUmp78XPhSqmNSqn9xf/WMrvOynaL6/InpdSJ4ue+VUp1MbvOyqaUClNKpSul9iql9iilHvL298strolXv1eUUk1ueO3fKqUuKKVGedJ7xS27XJRSR4DWWuszNzz3JnBOaz1VKTUOqKW1HmtWjWa4xXX5E3BJaz3NrLrMppRaBGzVWs9TSgUA1YDxePH75RbXZBRe/l65RinlC5wAfgc8j4e8V9yyhX4L3YFFxd8vAuJMrEW4CaVUTaAjxcsiaq0LtNbZePH75TbXRPzH48BBrfVRPOi94q6BroENSqkdSqnE4ufu0FqfKv7+NFC2CYOrtptdF4ARSqmdSqn5VfnPxTK6G/gJWKCU+kYpNU8pFYJ3v19udU3Au98rN0oAPij+3mPeK+4a6A9rrR8AngKeV0p1vPGH2tFP5H59RRXvZtdlFnAv0BI4BUw3sT4z+AEPALO01q2AXGDcjRt44fvlVtfE298rABR3QXUDlv/yZ1X9veKWga61PlH8bxawAmgL/FspVQ+g+N8s8yo0x82ui9b631rrIq21HXgXx7XyJseB41rrr4sfp+MIM29+v9z0msh75bqngEyt9b+LH3vMe8XtAl0pFaKUCr32PdAZ2A18DPyxeLM/AqvMqdAct7ou196IxXrguFZeQ2t9GjimlGpS/NTjwPd48fvlVtfE298rN+jDf7pbwIPeK243ykUpdQ+O1ic4/nRcprV+XSlVG7ABDXHM2GjRWp8zqcxKd5vr8j6OP6E1cAQYekN/oFdQSrUE5gEBwCFgEI7Gije/X252Td5G3ishwI/APVrrnOLnPCZb3C7QhRBClI3bdbkIIYQoGwl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHkICXQghPMT/B9jFcDvYi0EzAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VHW6x/HPM2mQkJAEEkhAOlKFUGTFdVkvdtd+NYUqiFEEUSmKIKwggqiIoAiydBCSrKuid3cti7KuelVQEVFAUJCWkCCd9Mzv/nEmXISUST0zk+f9es0rmcmZmYcDfOeX3/md54gxBqWUUt7PYXcBSimlqocGulJK+QgNdKWU8hEa6Eop5SM00JVSykdooCullI/QQFdKKR+hga6UUj5CA10ppXyEf22+WePGjU2rVq0u/IExcPAgHDsGDod1c1dREYhAs2YQHl5ttSqllKf46quvjhhjosrbrlYDvVWrVmzevPm3D+bnw4gRVpjHxlYszIvl5UF2NowZA0OGVE+xSinlIUTkF3e2s3/K5bHH4NNPISKicmEOEBQEDRrA9OmwYUP11qeUUl7C3kDfsAHefhsaNrSmTaoiIMAK9nHj4OjR6qlPKaW8iH2BnpsLEyZYIVzZkfn56teHU6dg1qzqeT2llPIi9gX6++9b4RscXOom+U4n0w8d4qbdu+m3cycDfv6Zz06fLvt1w8Jg/XodpSul6hz7An3xYvDzK3OTIqBpQACLW7Rg48UXMzIqiokHD3IoP7/0J/n5gdMJb71VvfUqpZSHcyvQReQhEdkmIt+LyMOuxyJF5AMR2eX6GuH2u2Znw/btEBJS5mb1HQ6So6KIDQzEIcIfQkOJDQhgR25u2a/v5wcffuh2OUop5QvKDXQR6QrcC/QBugM3iUg7YCKwwRjTHtjguu+enTutg5gVPBB6tLCQffn5tAkKKnvDevVg61ZrfbtSStUR7ozQOwFfGGOyjTGFwL+BO4BbgZWubVYCt7n9rvv3W9MiFZDvdDL50CFuatiQVuUFur8/nDlj3ZRSqo5w58SibcDTItIIyAFuBDYDTYwx6a5tMoAmJT1ZRJKBZIAWLVpYDxYWVmj07DSGB7dt47TTyX+HhrJv/34CAgIuuPn7+yPWm1q3ggK330MppbxduYFujNkuIrOB94EzwBas45XnbmNEpMSENsYsBhYD9O7d29omKMjt6RZjDE+lp1MUGsoUY/AzhgYNGgBQkJ9Pbk4OBQUFFBQUUOR0EuDvT0BAAGGFhbzx2mtEt2xJTEwMMTExREdHExAQ4Nb7KqWUt3Hr1H9jzFJgKYCIzAQOAIdFJMYYky4iMUCm2+/aurXba89nZWSwJz+fV1q2pL7DwbFjx8jKyqJRZCTR0dHIOR8MTmMoKCigMDubfCDfz49NmzaRkZFBeno6WVlZREREEBMTQ9OmTc8GffGtadOmBJexjFIppTyZW4EuItHGmEwRaYE1f34Z0BoYCjzj+rre7Xdt186aDnE6ywz29IIC3jh+nEARrtu16+zjExo3Ji47m5N79xITE0P9evUAcIgQFBhIUG4uIf36MXLkyN+8XlFREVlZWaSnp5Oenk5GRgY7d+5k48aNZ+8HBQWVGPTF3zds2PA3HyJKKeUp3G3O9TfXHHoBMMoYc1xEngHSROQe4Bcg3u13DQyEvn3hiy+s0/5LERMQwOZOnUr8mWnUiJMnTrB/3z4ahocTFRWFozhojYEbbrjgOX5+fjRt2pSmTZvSo0ePC1/TGI4dO3Z2RJ+ens7BgwfZvHnz2ccKCwvPBnxJo/zGjRvjqK4zX5VSqgLE1OLSvt69e5uz3Rb//W+4917rzM4qKCwsJOPwYXJzc4mNiSE4IMAa/W/eXOZZqJV15syZs2FfPKo/9+uJEyeIiooqcZRffAsMDKz2upRSvktEvjLG9C5vu1ptn/sbV1xh9TA/eLBKoe7v70/zZs04deoUBw4eJMrfn+CxYwmqobnwkJAQ2rVrR7t27Ur8eX5+PocPH/5NyH/99ddnPwCysrIICwsrdUonJiaGkHJOuFJKqZLYF+h+fjBvHtxxh7WM0b9qpYSGhhJcVMSBwkKGf/IJEz77jMsvv7yainVfYGAgF110ERdddFGJP3c6nRw5cuQ3o/zdu3fzySefnL0fEBBQ5oHbiIgIncdXSl3AvimXYvPmwfz51ii9nN4uZcrJsT4Y/vpXvszNZcaMGcTFxTFu3DgaljFP72mMMZw4ceKCKZ1zb3l5eReE/bn3o6Ki8KvKvlRKeRR3p1zsD3RjYNo0WL3a6u1Smfnl06et1/nLX6BfPwBycnJYuHAh7733HuPHj+fqq6/2mVFtdnY2GRkZJYZ9RkYGR48epXHjxqVO6TRt2pSg8s62VUp5DO8JdLDCePlymD3bukaouxe8KCy0WvA2bQovvwwlrFzZunUrTz31FC1btuSxxx4jKqrcy/J5vYKCAjIzM0s8eJuenk5mZiYNGjQodUonJiaG0NBQu/8YSikX7wr0Yj//DJMnWytUnE6rydb5F8AoLLQujlFYaE3RDBpkXaWorL7q+fksW7aMv/3tb4wePZpbbrnFZ0brleF0Ovn1119LndLJyMhARMo8cBsREaHLM5WqJd4Z6MV++gnWroWPP4Y9e6xAF7FC3t8funSBm2+G224rcx37+X788UeeeuopQkNDmTx5Ms2aNavCn8Z3GWM4depUiUFf/AFw5syZs8swSwr96Oho/Kt4oFspZfHuQD9Xfj5kZloj8vr1ISqqSpesKyoq4rXXXmPlypXcc889JCYm6kizEnJzc38zuj9/pP/rr78SGRlZ5lm39Vxn+CqlyuY7gV5D9u3bx4wZMygoKGDKlCm0adPG7pJ8SmFhIZmZmaVO6WRkZBAcHFzqlE7xPH5dnhpTqpgGuhucTidvvvkmCxcuJDExkaFDh2o3xlridDo5duxYqQdu09PTMcaUeeC2UaNG+tuVqhM00Cvg8OHDzJw5k8zMTKZMmULnzp3tLkkBp0+fLnM9/unTp4mOji51Hr9Jkyb6Aa18ggZ6BRljePfdd5k7dy433XQTycnJOsfr4fLy8s62WShppK/tkpWv0ECvpKNHj/L888+zfft2pkyZQs+ePe0uSVVSSe2Szw9+bZesvIEGehV9/PHHPPPMM/zhD39gzJgx2jDLB5XULvn8A7f5+fkXBP35bRZ0Hr+WFRVZy5l37IBDh6zuqiEh0LYtdOoEjRvbXWG100CvBqdOnWL+/Pl89tlnPP7441xxxRV2l6Rq2ZkzZ0oc2Rd/X9wuubQpHW2XXI0OHoR162DVKsjLs84wz8+3vjoc1kmIBQXQoQPcfz9ce611cqIP0ECvRps2bWLGjBl069aNcePGER4ebndJykOU1C753Ju2S64GBQWwcCEsWGCdj1JWzydj4MwZaxQfFWU1/7v00tqttwZooFeznJwcFi1axD//+U/Gjx/PNddco3OrqlwltUs+P/y1XXIZMjPh7rvhxx+hQYOKtdk+fdr6MLjvPhg/vkonJNpNA72GbNu2jenTp9O8eXMmTpxIdHS03SUpL3Zuu+Tzr35VfMvNzb2gzcK5HwDR0dG+2S45M9O6XsLhw1Z77cp8qBUVwYkTMHgwPPlk5V7DA2ig16D8/HxWrFhBWloao0aN4rbbbqu7IyhV4+pku+TCQivMf/gBqjrFWVQEJ0/C9OkwcGD11FfLNNBrwe7du5k+fTrBwcE88cQTNG/e3O6SVB3kk+2SFy+22mmHh1fPqDo/37p98AGUcjUxT6aBXkuKiopYt24dy5cvZ/jw4SQlJekyNuVRSmuXfO73pbVLLv4aGRlZe/+ujxyB3//eWqFSnWf6HjsG/ftbF8LxMtUa6CLyCDACMMB3wDAgBkgBGgFfAYONMfllvY4vBnqx/fv389RTT5GXl8fUqVNp27at3SUp5ZbidsmlTekUt0tu0qRJqQdvq7Vd8qJF8Pzz5U61pB09yjsnTrA7L4/rwsJ4Mja27Nd1Oq2pl//8B2JiqqfWWlJtgS4izYBPgM7GmBwRSQP+AdwIvGGMSRGRRcC3xpiFZb2WLwc6WCOht956i1deeYX4+HiGDRumvUSUT6i1dsnGwGWXWUsPy9n+w5MncYjwv6dPk2dM+YEO1ih93Dh44AE3/+SeoboD/XOgO3ASeAt4CXgNaGqMKRSRvsCTxpjrynotXw/0YpmZmcyaNYtDhw4xdepUunTpYndJStWoamuXnJUFl1/u/mUogVcyM8ksLHQv0E+dgp49rROUvIi7gV7u70jGmIMi8jywD8gB3seaYjlujCl0bXYA0Mv/uERHR/PCCy/w/vvv88gjj3DjjTdy//33a7Mv5bP8/f2JjY0ltpRQPbddcnHo79+/n02bNp0NfqfTyX/5+THy118xubkEBAT85ubv70+VD4/Wrw/ffWf9JuCDK9PKDXQRiQBuBVoDx4G/Ate7+wYikgwkA7Ro0aJyVXohEeG6666jT58+zJkzh8TERJ544gl69y73Q1Ypn+NwOGjUqBGNGjWia9euJW5z+vRpTi1bRtiuXeQGBVFQUEBubi4FBQUU5OdT5HQS4O9/QdAXOZ3uF+Lvb61LLygo/WxTL+bOUYyrgT3GmCwAEXkD+D0QLiL+rlF6c+BgSU82xiwGFoM15VItVXuRiIgIZsyYwccff8zUqVO54oorGDNmDA0aNLC7NKU8SoMGDWgQHQ1BQQRHRFzwc6cxVrifczt9+jRHT57EVGStuoi1zt0HA92ddUj7gMtEJFiss2euAn4APgLudG0zFFhfMyX6hn79+pGWlgZAfHw8H3/8sc0VKeWBQkKglLNeHSIEBQbSICSEiPBwoqOiaNa8OU5jcBYVuff6TqcV6N52opWbyg10Y8wXwOvA11hLFh1YI+7HgLEishtr6eLSGqzTJzRo0IBJkyYxffp0XnjhBSZPnsyxY8fsLkspz9Gundtz20XGUOB0EhAQQF5BAflOJ0XlLcPOy4NWrUr90PB2bp0pYIz5szGmozGmqzFmsDEmzxjzszGmjzGmnTHmLmNMXk0X6yt69+5NSkoK0dHRJCQk8O6771KbJ3gp5bHatrVG0W6MuJceOcLlO3fyt/x83jt9mst37mTpkSNlPyknB3z4OJaeKWqz77//nunTpxMbG8vjjz+uzb6Uuv9++Ne/3O7hkpefz759+2jfrl35G584AcuXg5dd28DdZYt6jrrNunTpwpo1a+jcuTMDBgzgjTfewFmRo/ZK+Zrhw61pFzcHm4GBgRink/yCgrI3zMmxrmZ0+eXVUKRn0kD3AAEBAdx77728+uqrrF+/npEjR7J//367y1LKHpdeCt26WaNpNwgQHBJCdnZ26RsZA7m5Xt8XvTy++yfzQm3btmX58uX88Y9/5O6772b16tUUuXv0XilfIQIvvGCtGc8vsz3UWcHBwWSfOVP6BsePQ9++VkteH6aB7mEcDgcDBgxg5cqVfPbZZwwbNoxdu3bZXZZStatlS5g1y+rpUt5UChASHMyZ0kboJ09aUy1z5vjk2aHn0kD3UM2bN+eVV17hjjvuYOTIkbz66qvkuzlaUcon3H47TJtmhXpZo28gMCgIp9NJwbnhb4zVjCsiAlJToUmTGi7YfhroHkxEuO2221i7di07d+5k0KBBfPfdd3aXpVTtGTQIVqywrid67Fipo3XBGqVnZ2f//4Wijx+HP/4R3nnHWnteB2ige4Ho6GjmzJnDiBEjGD9+PC+88AI5OTl2l6VU7bjiCtiwAYYNs07ZP3HCCvecHGu9utMJhYWEOhw4jxyxplhiYmD+fFi6FOrQUmANdC8hIlx77bWkpqZy/PhxEhIS+PLLL+0uS6naERYGTzwBmzZZF7+4/XYrqHNyrJa4RUU4unblndhYSEmxPgD+9CefnzM/n55Y5KU++eQTZs2aRd++fXnooYc875qQStUyp9PJ1VdfTVpaGo0bN7a7nGqlJxb5uCuuuIK0tDT8/f1JSEjg3//+t90lKWUrh8NBXFwcX3/9td2l2EYD3YuFhIQwceJEZsyYwYsvvsikSZM4evSo3WUpZZtevXrx1Vdf2V2GbTTQfUDPnj1JSUmhadOmJCYm8o9//EObfak6qWfPnjpCV94vKCiIMWPG8OKLL7Jq1SoefvhhDh8+bHdZStWqDh06kJWVVWd/U9VA9zGdO3dm9erVdOvWjYEDB/L6669rsy9VZ9T1eXQNdB8UEBDAPffcw+LFi/n73//Offfdx759++wuS6laUZenXTTQfVibNm1YunQp/fv3Z9iwYaxatUqbfSmfV5cPjGqg+ziHw0FSUhKrV6/m888/Z+jQofz44492l6VUjenYsSPp6ekcP37c7lJqnQZ6HREbG8uCBQuIj49n1KhRLFy4UJt9KZ/k5+dH9+7d+eabb+wupdZpoNchIsItt9zC2rVr+emnnxg4cCBbt261uyylql1dnUfXQK+DoqKieO6557jvvvuYMGECc+bMKftqL0p5mbo6j66BXkeJyNm+FydPniQxMZEvvvjC7rKUqhadOnXiwIEDnDx50u5SalW5gS4iHURkyzm3kyLysIhEisgHIrLL9TWiNgpW1athw4ZMmzaNiRMn8tRTTzF9+vQ6959A+Z6AgAC6du3Kli1b7C6lVpUb6MaYncaYOGNMHNALyAbeBCYCG4wx7YENrvvKS11++eWkpaVRr149EhIS+Oijj+wuSakq6dWrV52bR6/olMtVwE/GmF+AW4GVrsdXArdVZ2Gq9gUHB/Poo48yc+ZMXnrpJSZOnFhnT6FW3q9nz551bh69ooGeCKxzfd/EGJPu+j4D8P0L9tURPXr0YN26dTRv3pzExET+/ve/a7Mv5XW6dOnC3r17OX36tN2l1Bq3A11EAoFbgL+e/zNj/W8v8X+8iCSLyGYR2ZyVlVXpQlXtCgoKYvTo0cybN4/XXnuNMWPGkJ6eXv4TlfIQgYGBdO7cmW+//dbuUmpNRUboNwBfG2OKW/gdFpEYANfXzJKeZIxZbIzpbYzpHRUVVbVqVa3r1KkTq1atokePHgwaNIi0tDRt9qW8Rl1bvliRQE/i/6dbAN4Ghrq+Hwqsr66ilGfx9/dn+PDhLFmyhHfffZfk5GR++eUXu8tSqlx17QQjtwJdREKAa4A3znn4GeAaEdkFXO26r3xY69atWbJkCddccw3Dhw9nxYoVFBYW2l2WUqW65JJL+Omnn+rMiXNuBbox5owxppEx5sQ5j/1qjLnKGNPeGHO1MUaXQ9QBDoeDhIQEVq9ezaZNmxg6dCg7d+60uyylShQUFESHDh3qTIsLPVNUVUpsbCwvv/wyiYmJjB49mldeeUWbfSmPVJemXTTQVaWJCDfffDMpKSns3buXpKSkOrWiQHmHunRgVANdVVmjRo149tlnGTVqFI899hjPPfdcnZmzVJ6vW7du/Pjjj+Tm5tpdSo3TQFfVpn///qSlpXHmzBkSEhL4/PPP7S5JKerXr0/79u3rxDy6BrqqVmFhYTz55JNMmjSJp59+mmnTpmmzL2W7ujKProGuakTfvn1JTU2lfv36xMfH8+GHH9pdkqrDNNCVqqLiZl/PPPMMCxYs4NFHH+XIkSN2l6XqoLi4OLZv3+7zK7E00FWNi4uLY926dbRs2ZKkpCTeeecdbfalalVwcDCtW7dm27ZtdpdSozTQVa0IDAxk1KhRvPzyy6SkpDB69GgOHTpkd1mqDqkLyxc10FWt6tChAytXruTSSy9l8ODBpKamarMvVSvqwjy6Brqqdf7+/tx9990sW7aMDz74gBEjRrBnzx67y1I+Li4uju+//56CggK7S6kxGujKNi1btmTx4sVcf/31jBgxgmXLlmmzL1VjQkNDadGiBT/88IPdpdQYDXRlK4fDQXx8PGvWrOGbb75hyJAh7Nixw+6ylI/y9cvSaaArjxATE8P8+fMZOHAgY8aM4eWXXyYvL8/uspSP8fUDoxroymOICH/6059ISUlh//79JCUlsWXLFrvLUj6kR48efPfddz47taeBrjxOZGQks2fPZvTo0Tz++OM8++yz2uxLVYuwsDCaNWvG9u3b7S6lRmigK4/Vv39/UlNTyc3NJT4+ns8++8zukpQP8OXlixroyqOFhYUxdepUpkyZwjPPPMPUqVM5ceJE+U9UqhS+PI+uga68wu9+9ztSUlIICwsjPj6ef/3rX9o+QFVKjx49+PbbbykqKrK7lGqnga68RnBwMOPHj+e5555j0aJFTJgwQZt9qQqLiIigSZMmPnktXA105XW6devG2rVradu2LUlJSbz99ts6WlcV4qvz6BroyisFBgYycuRIFixYwF//+ldGjRqlzb6U23r16lV3A11EwkXkdRHZISLbRaSviESKyAcissv1NaKmi1XqfBdffDErVqzgsssuY/Dgwaxbt06bfaly9ezZk2+++cbn/q24O0KfB7xrjOkIdAe2AxOBDcaY9sAG132lap2fnx9Dhgxh+fLlfPjhh4wYMYKff/7Z7rKUB2vUqBGRkZHs2rXL7lKqVbmBLiINgX7AUgBjTL4x5jhwK7DStdlK4LaaKlIpd7Ro0YJXX32VG2+8keTkZJYuXeqzZwSqqvPF5YvujNBbA1nAchH5RkSWiEgI0MQYk+7aJgNoUlNFKuUuh8PBnXfeyZo1a/j2228ZPHiwz54VqKrGFw+MuhPo/kBPYKExpgdwhvOmV4y1xKDEZQYikiwim0Vkc1ZWVlXrVcotTZs2Zd68eQwePJiHHnqI+fPna7Mv9Ru+OI/uTqAfAA4YY75w3X8dK+APi0gMgOtrZklPNsYsNsb0Nsb0joqKqo6alXKLiHDjjTeSkpJCeno6SUlJPjciU5UXHR1NaGioTx1vKTfQjTEZwH4R6eB66CrgB+BtYKjrsaHA+hqpUKkqioyMZNasWYwZM4bJkycza9Yszpw5Y3dZygP42rSLu6tcHgReE5GtQBwwE3gGuEZEdgFXu+4r5bGuvPJK0tLSKCwsJD4+nk8//dTukpTNfO3AqNTmGXa9e/c2mzdvrrX3U6o0X375JTNmzKB79+6MGzeO8PBwu0tSNkhPT2fo0KG89957iIjd5ZRKRL4yxvQubzs9U1TVSX369CE1NZWIiAgSEhJ4//33tX1AHRQTE0O9evXYu3ev3aVUCw10VWfVr1+fsWPH8vzzz7NkyRLGjRuHrsSqe3xpHl0DXdV5l1xyCWvWrKFDhw4kJSXx1ltv6Wi9DvGlC0droCuF1ezrvvvuY+HChbzxxhs88MADHDx40O6yVC0oPjDqCx/iGuhKnaN9+/YsX76cyy+/nCFDhrB27VqfOvFEXSg2NhY/Pz/2799vdylVpoGu1Hn8/PwYPHgwK1asYOPGjQwfPtynTj5RvyUiPrN8UQNdqVJcdNFFLFq0iFtuuYXk5GT+8pe/UFBQYHdZqgb4yoFRDXSlyuBwOLjjjjtYu3Yt33//PYMGDeKHH36wuyxVzXxlHl0DXSk3REdHM3fuXIYNG8bDDz/Miy++SG5urt1lqWpy0UUXUVRU5PVXvdJAV8pNIsL1119PamoqmZmZJCYm+sS8q/KdeXQNdKUqKCIigpkzZzJ27FimTJnCzJkzOX36tN1lqSryheuMaqArVUn9+vUjLS0NYwzx8fH85z//sbskVQW+cGBUA12pKmjQoAGTJ09m2rRpPP/880yePJljx47ZXZaqhFatWpGbm0t6enr5G3soDXSlqsGll15KamoqUVFRJCQk8N5773n9iom6RkTo0aOHV4/SNdCVqib16tXj4YcfZu7cuSxbtoyxY8eSmVnihbyUh/L2A6Ma6EpVsy5durBmzRo6derEgAEDeOONN7R9gJfw9nl0DXSlakBAQADJycm8+uqrrF+/npEjR/pErxBf16ZNG06dOuW1v1lpoCtVg9q2bcvy5cvp168fd999N2vWrNHRugdzOBxePY+uga5UDXM4HAwcOJCVK1fyySefcPfdd7N79267y1Kl8Ob16BroStWS5s2bs3DhQm6//Xbuv/9+Xn31VfLz8+0uS53Hmw+MaqArVYtEhNtvv521a9eyc+dOBg0axLZt2+wuS52jXbt2HDt2jF9//dXuUipMA10pG0RHRzNnzhxGjBjB2LFjeeGFF8jJybG7LIU1RRYXF+eV0y5uBbqI7BWR70Rki4hsdj0WKSIfiMgu19eImi1VKd8iIlx77bWkpaVx9OhREhMT2bRpk91lKbx3+WJFRuj/ZYyJM8b0dt2fCGwwxrQHNrjuK6UqKDw8nBkzZjB+/Hj+/Oc/M2PGDE6dOmV3WXWat144uipTLrcCK13frwRuq3o5StVdf/jDH0hLS8PhcJCQkMDHH39sd0l1VocOHTh8+LDX9eVxN9AN8L6IfCUiya7HmhhjirvYZABNSnqiiCSLyGYR2ZyVlVXFcpXybQ0aNGDSpEk89dRTzJ07l0mTJnH06FG7y6pz/Pz86N69O998843dpVSIu4F+hTGmJ3ADMEpE+p37Q2N1ISqxE5ExZrExprcxpndUVFTVqlWqjujVqxfr1q2jadOmJCYm8s9//lObfdUyb1y+6FagG2MOur5mAm8CfYDDIhID4PrqnefKKuWh6tWrx5gxY3jxxRdZuXIljzzyCIcPH7a7rDrDG08wKjfQRSREREKLvweuBbYBbwNDXZsNBdbXVJFK1WWdO3dm9erVdO3alYEDB/K3v/1N2wfUgo4dO3Lw4EFOnjxpdyluc2eE3gT4RES+Bb4E/m6MeRd4BrhGRHYBV7vuK6VqQEBAACNGjGDx4sW888473H///ezbt8/usnyav78/3bp186p59HID3RjzszGmu+vWxRjztOvxX40xVxlj2htjrjbG6JEbpWpYmzZtWLZsGVdeeSXDhg1j1apVFBUV2V2Wz/K25Yt6pqhSXsbhcDBgwABWrVrF559/zt13382PP/5od1k+ydvm0TXQlfJSzZo1Y8GCBdx555088MADLFy4UJt9VbPOnTuzb98+rznRSwNdKS8mItx6662sW7eO3bt3M3DgQLZu3Wp3WT4jICCALl26sGXLFrtLcYsGulI+ICoqiueff57k5GQmTJj26yMdAAARs0lEQVTAnDlztNlXNfGmvi4a6Er5CBHhmmuuIS0tjRMnTpCQkMCXX35pd1lez5tOMPK3uwClVPVq2LAh06dP59NPP2XatGn87ne/45FHHiE0NNTu0rxS165d2bNnD9nZ2QQHB9tdTpl0hK6Uj/r9739PWloaQUFBxMfHs3HjRrtL8kqBgYF06tTJK+bRNdCV8mEhISE89thjPP3008yfP5+JEydqs69K8JblixroStUBPXv2ZN26dTRr1ozExET+8Y9/aLOvCvCWA6Ma6ErVEUFBQTz44IPMmzePNWvW8NBDD5GRkWF3WV7hkksuYdeuXR6/ckgDXak6plOnTqxatYq4uDgGDhxIWlqaNvsqR7169bj44ov57rvv7C6lTBroStVB/v7+DB8+nCVLlvDuu++SnJzML7/8YndZHs0bli9qoCtVh7Vu3ZolS5Zw9dVXM3z4cFasWKHNvkrhDY26NNCVquMcDgeJiYmsXr2aL7/8kqFDh2qzrxJ069aNnTt3kpeXZ3cppdJAV0oBEBsby4IFC4iPj2fUqFG88sor2uzrHMHBwbRt29aj59E10JVSZ4kIt9xyC+vWrWPPnj0MGDBAm32dw9PXo2ugK6Uu0LhxY5599llGjhzJhAkTeO6558jOzra7LNt5+oFRDXSlVIlEhKuuuoq0tDTOnDlDYmIin3/+ud1l2ap79+5s377dY6eiNNCVUmVq2LAhTz75JI8//jhPP/0006ZN86oLJ1enkJAQWrVqxffff293KSXSQFdKuaVv376kpqZSv359EhIS+PDDD+0uyRae3AZAA10p5bbg4GAeffRRZs2axYIFC3j00Uf59ddf7S6rVnnyenQNdKVUhcXFxbFu3TpatmxJYmIi77zzTp1p9tWjRw+2bdtGQUGB3aVcwO1AFxE/EflGRP7Hdb+1iHwhIrtFJFVEAmuuTKWUpwkMDGTUqFG89NJLrFu3jgcffJBDhw7ZXVaNCw0NpXnz5mzfvt3uUi5QkRH6Q8C5f4LZwFxjTDvgGHBPdRamlPIOHTt2ZNWqVfTq1YvBgweTmprq882+PHX5oluBLiLNgT8BS1z3BegPvO7aZCVwW00UqJTyfP7+/gwbNoylS5fy3nvvce+997J37167y6oxnnpg1N0R+ovAo0Dxx24j4LgxptB1/wDQrKQnikiyiGwWkc1ZWVlVKlYp5dlatWrFkiVLuO6667jnnntYtmwZhYWF5T/Ry/Ts2ZOtW7d6XCOzcgNdRG4CMo0xlfr9whiz2BjT2xjTOyoqqjIvoZTyIg6Hg/j4eFavXs3XX3/NkCFD2Llzp91lVauGDRsSExPDjh077C7lN9wZof8euEVE9gIpWFMt84BwEfF3bdMcOFgjFSqlvFJsbCwvvfQSAwYMYPTo0bz88ssee4ZlZXji8sVyA90Y87gxprkxphWQCHxojBkIfATc6dpsKLC+xqpUSnklEeGmm24iJSWFffv2kZiYyJYtW+wuq1p4YqOuqqxDfwwYKyK7sebUl1ZPSUopX9OoUSOeffZZRo8ezcSJE3n22We9vtlXjx492LJli0et6KlQoBtjNhpjbnJ9/7Mxpo8xpp0x5i5jjOd2fVdKeYT+/fuTlpZGbm4uCQkJ/O///q/dJVVaZGQkUVFRHnUxED1TVClVq8LCwpg6dSqTJ09m5syZ/PnPf/baZl+etnxRA10pZYvLLruM1NRUQkNDiY+PZ8OGDV7XPqBXr15s3rzZ7jLO0kBXStkmODiY8ePHM3v2bBYuXMijjz7KkSNH7C7LbT179vSoeXQNdKWU7bp3787atWtp3bo1SUlJvP32214xWm/cuDHh4eHs3r3b7lIADXSllIcIDAzkgQceYMGCBaSmpjJq1CivaPblScsXNdCVUh7l4osvZtWqVfzud79j8ODBpKSkeMyURkk86cCoBrpSyuP4+fkxdOhQli1bxr/+9S9GjBjBnj177C6rRMUjdE+YItJAV0p5rJYtW7J48WJuuOEGRowY4ZHNvqKjowkJCfGIDxwNdKWUR3M4HNx1112sWbOGLVu2MHjwYI+7uISn9EfXQFdKeYWYmBjmzZvH4MGDeeihh3jppZfIy/OME9Q9ZR5dA10p5TVEhBtvvJGUlBQOHTpEUlKSRwRpcedFu+fRNdCVUl4nMjKSWbNmMWbMGCZPnszs2bM5c+aMbfXExsYSGBjIL7/8YlsNoIGulPJiV155JampqeTn55OQkMCnn35qWy2eMO2iga6U8mphYWFMmTKFqVOnMnv2bKZOncrx48drvY7evXvbfmBUA10p5RP69OlDamoq4eHhJCQk8MEHH9TqnHbxCN3OeXQNdKWUz6hfvz5jx47lueeeY/HixYwfP57aujh9s2bNEBEOHDhQK+9XEg10pZTP6datG6+99hrt27cnKSmJ9evX1/jIWURsn0fXQFdK+aTAwEDuv/9+XnnlFV5//XUeeOABDh6s2WvZ233haA10pZRPu/jii1mxYgV9+/ZlyJAhrF27tsaafdndeVEDXSnl8/z8/BgyZAjLly9n48aNDB8+nJ9//rna36dFixbk5+fb1vZXA10pVWe0aNGCRYsWcfPNN5OcnMySJUsoKCiottcXEVtH6eUGuojUE5EvReRbEfleRKa5Hm8tIl+IyG4RSRWRwJovVymlqsbhcPDf//3fvPbaa2zdupXBgwfzww8/VNvr23lg1J0Reh7Q3xjTHYgDrheRy4DZwFxjTDvgGHBPzZWplFLVq0mTJsybN4+hQ4fy8MMPM3/+fHJzc6v8unZeOLrcQDeW0667Aa6bAfoDr7seXwncViMVKqVUDRERbrjhBlJSUsjIyCApKanKq1Rat25NTk4Ohw8frqYq3efWHLqI+InIFiAT+AD4CThujCnuNH8AaFYzJSqlVM2KjIxk5syZPPLII0yZMoWZM2dy+vTp8p9YAhGhR48e///BYIx1qwVuBboxpsgYEwc0B/oAHd19AxFJFpHNIrK5ts7YUkqpyujXrx+pqakYY4iPj+eTTz6p+Iukp3PX8eM0mzwZevWCNm2gdWvo2hXuugvmzIEdO6q/eEAqevaUiEwFcoDHgKbGmEIR6Qs8aYy5rqzn9u7d29g1t6SUUhWxadMmZsyYwSWXXMK4ceOIiIgo+wl79sDTT8PGjeTn55N19CjN2rSBgADr50VFkJsL+fngcEDnzjBpElx2Wbm1iMhXxpje5W3nziqXKBEJd31fH7gG2A58BNzp2mwosL7cqpRSyktceumlpKSk0KhRIxISEnj//fdLbh/gdMKyZXD99fDRRxAWRkB0NKcdDgocDhCxbv7+0KABREZCw4bWKH3gQJg8GbKzq6XmckfoItIN66CnH9YHQJoxZrqItAFSgEjgG2CQMabM60HpCF0p5Y22bdvG9OnTad68ORMnTiQ6Otr6QVERTJgA69dDSAgE/v/q7f0HDhAWFkbDsLDSX7ioCE6cgC5dYM0aK+hLUG0jdGPMVmNMD2NMN2NMV2PMdNfjPxtj+hhj2hlj7iovzJVSylt17dqVNWvW0LFjRwYMGMCbb76JcTrhiSesMG/Y8DdhDhAcHEx2eSNvPz+IiIAffoAhQ6wpmSrQM0WVUsoNgYGBJCcns2jRIt58803m33wzhWvXWmHuuDBK3Qp0sKZjwsNh2zaYO7dKNWqgK6VUBbRr147lc+cy+Lvv2H/kCL8eP05JE9f16tWjsKCAwsLCEn56HhEIDbXm4rdurXRtGuhKKVVBfm+8QWRAAM3atuXUqVPs3buX3LzfzjoLFRilg3XQ1BiYP7/SdWmgK6VURTidsGQJ1K9PYGAgLVu2JDw8nF9++YWsrCyc5yw0KapXj8fS07lixw5u2r2bd0+cKPu1w8Jg40ZIT69UaRroSilVETt2wLFjUK8eYI3EI8LDadOmDbm5uezZs4ecnBwAFmRnYwoLef/ii5kRG8usjAx+zitj/UjxXPx//lOp0jTQlVKqIrZvL/FU/gB/f5pfdBGNGzdm//797M3I4OPsbOIdDgKNIS44mD+GhvL38kbpxkAll3droCulVEVs22atHy+BAA3DwmjTti378vIozMujZVDQ2Xn09kFBZY/QwRr5V/LAqAa6UkpVxPHjJS5TPJe/nx+hUVE0DAoiLy+PPFeIN3A4OFPe5e8cDqhkYzD/Sj1LKaXqqkD3ruUT7HCQJ0LHDh1wiABwxukkpJwPA4yxTjiqBB2hK6VURbRsaa10KUeLwECKgAPnXOLux7w82gQFlf3EggK46KJKlaaBrpRSFdG1q1uj9PoOB/1DQ1mUlUWO08m32dn8+9Qp/lRKv5az8vOhT59KlaaBrpRSFdG1q3VQ1I1R+sSmTclzOrnmxx+ZdPAgjzdtWv4IPSDA6qNeCTqHrpRSFREZCf37w4YNVg+WMoT5+TGnItMnubnWa7rRI70kOkJXSqmKGjHC+urGKL1CcnLg3nv1oKhSStWaSy+FG26Akyer7zVPnoQWLaw2upWkga6UUpUxfbrVOvfUqaq/VvHJRvPmQXlz7GXQQFdKqcqIiIDVq60VL1UZqefmWlMtzz8P3bpVqSQNdKWUqqzOnSEtzQr348crNqdujPWcoiJYsABuuaXK5ZR7TdHqJCJZwC+19obQGDhSi+9XGZ5eo6fXB1pjdfD0+qBu19jSGBNV3ka1Gui1TUQ2u3NhVTt5eo2eXh9ojdXB0+sDrdEdOuWilFI+QgNdKaV8hK8H+mK7C3CDp9fo6fWB1lgdPL0+0BrL5dNz6EopVZf4+ghdKaXqDJ8IdBGpJyJfisi3IvK9iExzPd5aRL4Qkd0ikioi7nWmr90aV4jIHhHZ4rrF2VWjqx4/EflGRP7Hdd9j9mEZNXraPtwrIt+5atnseixSRD4QkV2urxEeWOOTInLwnP14o801hovI6yKyQ0S2i0hfT9qPpdRn6z70iUAH8oD+xpjuQBxwvYhcBswG5hpj2gHHgHs8sEaACcaYONdti30lAvAQsP2c+560D4udXyN41j4E+C9XLcVL2CYCG4wx7YENrvt2O79GsP6ui/fjP2yrzDIPeNcY0xHojvV37kn7saT6wMZ96BOBbizFF+ELcN0M0B943fX4SuA2G8oDyqzRY4hIc+BPwBLXfcGD9iFcWKMXuRVr/4EH7EdPJyINgX7AUgBjTL4x5jgesh/LqM9WPhHocPbX8C1AJvAB8BNw3BhT6NrkANDMrvrgwhqNMV+4fvS0iGwVkbkiUvnOPFX3IvAoUHz+ciM8bB9yYY3FPGUfgvVB/b6IfCUiya7Hmhhj0l3fZwBN7CntrJJqBBjt2o/LbJ4Wag1kActd02tLRCQEz9mPpdUHNu5Dnwl0Y0yRMSYOaA70ATraXNIFzq9RRLoCj2PVeikQCTxmR20ichOQaYz5yo73d0cZNXrEPjzHFcaYnsANwCgR6XfuD421tMzu385KqnEh0BZrSjAdmGNjff5AT2ChMaYHcIbzplds3o+l1WfrPvSZQC/m+rXnI6AvEC4ixVdlag4ctK2wc5xT4/XGmHTXdEwesBzrw8gOvwduEZG9QArWVMs8PGsfXlCjiKzxoH0IgDHmoOtrJvCmq57DIhID4PqaaV+FJddojDnsGnQ4gb9g7348ABw457fY17EC1FP2Y4n12b0PfSLQRSRKRMJd39cHrsE6QPERcKdrs6HAensqLLXGHef84xSs+cBtdtRnjHncGNPcGNMKSAQ+NMYMxIP2YSk1DvKUfeiqIUREQou/B6511fM21v4D+/8tllhj8X50uR0b96MxJgPYLyIdXA9dBfyAh+zH0uqzex/6yjVFY4CVIuKH9SGVZoz5HxH5AUgRkRnAN7gOYHhYjR+KSBQgwBbgfhtrLMljeM4+LM1rHrQPmwBvWp8t+ANrjTHvisgmIE1E7sHqOBrvgTWudi35NMBe4D77SgTgQay/20DgZ2AYrv87HrIfS6pvvp37UM8UVUopH+ETUy5KKaU00JVSymdooCullI/QQFdKKR+hga6UUj5CA10ppXyEBrpSSvkIDXSllPIR/wfKymSwbAg+6QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -696,15 +705,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -600033.5\n", + "energy: -600081.0\n", "feasible: True\n", "solution: [1, 2, 0]\n", - "solution objective: 67.0\n" + "solution objective: 162.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtclGX+//HXxRkRRQRTE6Ny1a/mpqWuablRaWSuouIMnlrNRP2m5U8rzQPtAqm12q753TxknlLjHik1NVN3UzPrG6tU6jfNs3lc8gAqIiBz/f4YdK1UBhi4h5nP8/HgITPch8/cj/HNxTXXfV1Ka40QQoiqz8fsAoQQQriGBLoQQngICXQhhPAQEuhCCOEhJNCFEMJDSKALIYSHkEAXQggPIYEuhBAeQgJdCCE8hJ+zGyqlfIHtwAmtdVel1N1AGlAb2AEM0FoX3O4YEREROjo6+uY/LCiAH3+EvDzw8XF8lURrKCpybNugAdSs6ezLEUKIKmPHjh1ntNaRJW3ndKADLwJ7gBrFj98A/qq1TlNKzQYGA7Nud4Do6Gi2b9/+6x/83/9B374QEeEIZaVKURZw5YrjF8GgQfD886XbVwgh3JxS6qgz2znV5aKUagA8DcwrfqyAx4D04k0WAXGlLxM4csQR5leuQFhY6cMcICgIQkPhrbdg8eIylSGEEFWds33ofwNeAezFj2sD2Vrrq8WPjwN3lvrsRUXwwguQm+sI5PLw84Pq1eH112H//vIdSwghqqASA10p1RXI0lrvKMsJlFKJSqntSqntP/30089/uHgxfP+96/q+/f3BbodRoxz/CiGEF3Gmhd4B6KaUOoLjQ9DHgBlAmFLqWh98A+DEzXbWWs/VWrfWWreOjLyhT7+wEN5+G4KDy9bNcis1asC+ffC//+u6YwohRBVQYqBrrV/VWjfQWkcDCcBnWut+wCYgvnizPwKrSnXmTZvg0iUIDLztZrZz5xhw+DAP7d3Ln06eLPm4SjlGv7z3XqnKEUKIqq4849DHAqOVUgdw9KmXLkHXrnUEbwki/PwYHBFBt9J0y9SoAVu2OIZCCiGElyjNsEW01puBzcXfHwLalvnMmZmO0SkleKyGY5Tk93l5ZF29WsLWxXx8wNcXDh6E//qvMpcohBBViTl3ihYWwvHjJXa3lIvWcOBAxR1fCCHcTKla6C6Tn+9oRZfiw9DLeXlcLixEA07tpbXjZiMhhPAS5rTQfX1LPaywsLCQS5cucezHHykoLCx5B6UcY9OFEMJLmBPoQUGOm4CcCeZioaGh+Pj64h8QwOHDhzl3/jy3/UjVxwfq1i13qUIIUVWYE+hKQYsWjtv9S1CkNQV2OyhFUHAweYWFRN11Fxdycjh65Aj5+fm/3klrxy+LZs0qoHghhHBP5vVJPPoofP11iZu9d+YMc8+cuf7404sXGe7ry39HR3P+/HmOHD1K7fBwateujbrWJ5+X55h9MSysgooXQgj3Y16gx8XBtGmOvvTbTJWbGBlJ4g13mJ49d47LubkoILxWLapXr87p06e5cPgw9erXJzgoyNE6f+65SngRQgjhPsxb4KJOHejcGXJySrVbrVq1uHLlCnnF3TUB/v5ERUVRu3Ztjv34Iz+dPIndzw+6d6+IqoUQwm2Zu2LRxImOD0hv1g9+Cz5KUTsighsn+lJAzZo1uefuu/HJy+Ot0FAyZQy6EMLLmBvodetCaipcvgzO3gUKhIWFkZ+fz+Ubx5lrjV9uLrW7dKH11KlMmDCBKVOmkJubWwGFCyGE+zF/TdEePRyrDF244PQwRh+liLixla41ZGfDb34Ds2bx6GOPYbPZKCoqwmKx8MUXX1TgCxBCCPegtBMTZLlK69at9U2XoNMa5s2Dv/zF8Tg0tMS7SLXWHDx4kPqRkVTTGtq2hdmzHRNz3SAjI4PXX3+dFi1aMGbMGGrVquWqlyOEEJVCKbVDa926pO3Mb6GDI7yHDIGVKyE6Gi5edHxYequ7SbVGXblCvWrVyD5zBp2SAkuW/CrMAdq2bUtaWhq1a9fGarWyYcMGKvOXmBBCVBb3CPRrmjWDTz91tNbbtXOE+qVLjn+zs3/+ODyc4Ndf55WHH+Zf995726GPwcHB/L//9/946623mDdvHmPGjCErK6sSX5gQQlQ89+hyuZX8fMfqQwcPOm4W8vWFO+90TIkbHg7Ap59+is1m47333vvPjUW3UVhYyIIFC7DZbPz3f/83cXFx+Nzml4EQQpjN2S4X9w50J9jtdhISEhg1ahTt27d3er8DBw6QnJxMcHAwEydOJCoqyqV1CSGEq1StPvRy8PHxITExkdmzZ5eqb7xRo0YsXLiQjh07MnDgQN5//32KiooqsFIhhKhYVT7QAR577DEKCwvZunVrqfbz8fGhX79+LFq0iG3btjFo0CD2799fQVUKIUTF8ohA9/HxYdiwYcyePRt7KedZB2jQoAGzZs2iZ8+eDB8+nNmzZ1Mg65EKIaoYjwh0gI4dO+Lr68vmzZvLtL9Siri4OJYtW8a+ffvo168fO3fudG2RQghRgTwm0JVS5WqlX1OnTh2mT59OYmIiL7/8MtOnTydPlrITQlQBHhPoAO3btyckJIR//OMf5TqOUopOnTphs9nIycnBarWSkZHhoiqFEKJieFSgX2ulz5kzxyUjVmrWrElycjLjxo0jOTmZ5ORkLly44IJKhRDC9Twq0MFxq394eDiffvqpy47Zvn17DMMgMDAQq9XKpk2bXHZsIYRwFY8L9Gut9HfffZerpZiStyQhISGMHTuWyZMnM3PmTMaOHcvZs2dddnwhhCgvjwt0gAcffJB69eqxdu1alx+7VatWpKWlERUVRUJCAmvWrJHJvoQQbsEjAx1g2LBhzJs3j0In51gvjYCAAEaMGMHMmTNZtmwZI0eO5OTJky4/jxBClIbHBvr9999PdHQ0H3/8cYWdo2nTpixevJgHH3yQAQMGYBhGuYZMCiFEeXhsoIOjlf7ee+9V6F2ffn5+DBo0iPfee48NGzbw3HPPcfjw4Qo7nxBC3IpHB3rz5s1p2rQpK1asqPBzRUdH8+677xIbG8tzzz3H/PnzXfqhrBBClMSjAx1g6NChLFiwgCtXrlT4uXx8fLBYLCxZsoRvv/2WZ555hj179lT4eYUQApwIdKVUkFIqQyn1nVLq/5RSfy5+fqFS6rBS6tvir5YVX27pNWnShN/+9rekp6dX2jnr1avHjBkz6N+/Py+++CIzZ84kPz+/0s4vhPBOzrTQ84HHtNb3Ay2BWKVUu+Kfvay1bln89W2FVVlOiYmJLF68mMuXL1faOZVSdOnShbS0NE6ePEmfPn3IzMystPMLIbxPiYGuHS4VP/Qv/qpSA68bNWpE69atsdlslX7u8PBwpkyZwgsvvMCECROYOnUqubm5lV6HEMLzOdWHrpTyVUp9C2QBG7XWXxf/6HWl1E6l1F+VUoEVVqULJCYmsnTpUtPC9NFHH8UwDAoLC7FYLGzbts2UOoQQnqtUa4oqpcKAFcBI4CxwGggA5gIHtdbJN9knEUgEaNiw4YNHjx51Qdllk5SURMOGDXnuuedMqwEgIyOD1NRU7r//fsaMGUNYWJip9Qgh3FuFrCmqtc4GNgGxWutTxd0x+cACoO0t9pmrtW6ttW4dGRlZmtO53JAhQ/jggw9MnzGxbdu2GIZBrVq1sFgsbNiwQaYPEEKUmzOjXCKLW+YopYKBTsBepVS94ucUEAfsrshCXSEqKorf//73LFu2zOxSCA4OZvTo0UyfPp158+YxZswYsrKyzC5LCFGFOdNCrwdsUkrtBP6Fow99DbBUKbUL2AVEAKkVV6brPPfccyxfvpycnByzSwGgRYsWLFmyhKZNm9K3b18++ugjmT5ACFEmpepDL6/WrVvr7du3V9r5bmXy5MmEhoYycuRIs0v5mQMHDpCcnExwcDATJ04kKirK7JKEEG6gQvrQPcXgwYNZsWIF586dM7uUn2nUqBELFy6kY8eODBw4kPfff98lKy8JIbyDVwb6HXfcQWxsLIsWLTK7lF/x8fGhX79+LFq0iG3btjFo0CAOHDhgdllCiCrAKwMdYNCgQaxevZozZ86YXcpNNWjQgFmzZtGzZ0+GDRvG7NmzK3TWSCFE1ee1gR4ZGUnXrl1ZsGCB2aXcklKKuLg4li1bxr59++jfvz+7du0yuywhhJvy2kAHGDhwIOvWrePf//632aXcVp06dZg+fTpDhgzhpZde4q233iIvL8/ssoQQbsarAz08PJwePXowf/58s0spkVKKTp06YbPZyM7Oxmq1kpGRYXZZQgg34tWBDjBgwAA2btxYZdYErVmzJsnJyYwdO5Y///nPJCcnm37nqxDCPXh9oIeFhdG7d2/mzZtndiml0qFDB2w2G4GBgVitVjZt2mR2SUIIk3l9oAP069ePLVu2cOzYMbNLKZWQkBDGjh3L5MmTmTlzJmPHjuXs2bNmlyWEMIkEOlCjRg0SEhJ49913zS6lTFq1asUHH3xAVFQUffr0Yc2aNTLZlxBeSAK9WN++ffnqq684cuSI2aWUSWBgICNGjODtt99m2bJljBw5ssp8LiCEcA0J9GIhISH07duXuXPnml1KuTRt2pTFixfz4IMPMmDAAAzDkMm+hPASEug3sFqtbN++nYMHD5pdSrn4+fkxaNAg3nvvPTZs2MCQIUOq7F8eQgjnSaDfoFq1agwYMIA5c+aYXYpLREdH8+677/Lkk08yePBg5s+fz9WrV80uSwhRQSTQf6F3797s3LmTffv2mV2KS/j4+GCxWFiyZAnffPMNzzzzDHv37jW7LCFEBZBA/4WgoCAGDhzI7NmzzS7FperVq8fbb79Nv379eOGFF5g5cyb5+flmlyWEcCEJ9Jvo2bMne/fu5fvvvze7FJdSSvH000+TlpbGiRMn6NOnD5mZmWaXJYRwEQn0mwgICODZZ5/1uFb6NeHh4UydOpWRI0cyYcIEpk6dSm5urtllCSHKSQL9Frp3787hw4fZuXOn2aVUmJiYGAzDoLCwEIvFwrZt28wuSQhRDhLot+Dv78/gwYM9tpV+TY0aNZg0aRKvvfYab7zxBpMmTSI7O9vssoQQZSCBfhtdu3blxIkTXtHP3LZtWwzDoFatWlitVjZs2CDTBwhRxUig34afnx9Dhgxh9uzZXhFuwcHBjB49mmnTpjFv3jzGjBlDVlaW2WUJIZwkgV6Cp556ijNnzvCvf/3L7FIqTYsWLViyZAlNmzalb9++rFixwit+oQlR1Umgl8DX15ehQ4cya9Ysrwq1gIAAEhMTmT17NitWrGD48OFVbnphIbyNBLoTOnXqRG5uLl999ZXZpVS6Ro0asXDhQh555BEGDhzIkiVLKCoqMrssIcRNSKA7wcfHh6FDh3pNX/ov+fj40K9fPxYtWsQXX3zBoEGDOHDggNllCSF+QQLdSTExMVy9epWtW7eaXYppGjRowKxZs+jRowfDhg1jzpw5FBQUmF2WEKKYBLqTbmyle/P84kopevTowbJly/jhhx/o378/u3btMrssIQQS6KXSsWNHfH19ZUFmoE6dOkyfPp3nnnuOMWPG8NZbb5GXl2d2WUJ4NQn0UlBKXe9q8OZW+jVKKTp37ozNZiM7Oxur1UpGRobZZQnhtSTQS6l9+/aEhISwceNGs0txG2FhYSQnJzN27Fj+/Oc/k5yczIULF8wuSwivU2KgK6WClFIZSqnvlFL/p5T6c/HzdyulvlZKHVBKGUqpgIov13xKKYYPH86cOXNk+N4vdOjQAZvNRmBgIFarVbqmhKhkzrTQ84HHtNb3Ay2BWKVUO+AN4K9a60bAeWBwxZXpXtq0aUPt2rX59NNPzS7F7YSEhDB27Fhef/11Zs6cybhx4zh37pzZZQnhFUoMdO1wqfihf/GXBh4D0oufXwTEVUiFbuhaK33u3LmyRuctPPDAA3zwwQc0aNCAhIQE1q5d65Vj+IWoTE71oSulfJVS3wJZwEbgIJCttb6WZseBOyumRPf0wAMPcOedd7J27VqzS3FbgYGBjBgxgrfffpulS5fywgsvcOrUKbPLEsJj+Tmzkda6CGiplAoDVgBNnT2BUioRSARo2LBhWWp0W8OGDWPChAl06dIF/6IiyMyE77+Hb7+FnBzw84N77oGWLeH++8HDXr+zmjZtyuLFi3n//ffp378/Q4cOJT4+Hh8f+UxeCFdSpf0zWCmVBOQBY4G6WuurSqmHgD9prZ+83b6tW7fW27dvL3Ox7mji4MFY8/JosXMnFBY6vnx94VpYFRSAvz/Y7dCqFQwbBo89BkqZW7hJjhw5QnJyMkopJk2aRHR0tNklCeH2lFI7tNatS9rOmVEukcUtc5RSwUAnYA+wCYgv3uyPwKqyl1sF2e2QlsbETZuovXIldqUgNBTCw6FmTcf3oaFQuzbUqOF47rvvYOhQeOYZOH3a7FdgiujoaObNm8eTTz7J4MGDmT9/vnwOIYSLOPM3bz1gk1JqJ/AvYKPWeg2OFvpopdQBoDbwXsWV6Wby8x0t7QkTCAoJoSg0lOySFllW6j/B/tVX0Lkz7NhROfW6GR8fHywWC0uWLOGbb77hmWeeYe/evWaXJUSVV+oul/LwiC6XwkJITITPP4ewMFCKK1eu8OOxYzRq1AgfZ7tSrv0CWLbM0RXjpbTWfPLJJ/ztb3+jW7duJCYmEhgYaHZZQrgVl3W5iF/4+99hy5brYQ4QFBREteBgzp8/7/xxQkJAa3juOfDiRZmVUjz99NMYhsGJEyfo06cP33zzjdllCVElSaCXxvffwzvvOLpOftESj4iM5OyZMxSVZo6X6tUdYf7aay4utOoJDw9n6tSpjBw5kvHjxzN16lRyS+rGEkL8jAR6aaSmOj4M9fv1aM+gwECqhYSUrpUOjj71tWthzx4XFVm1xcTEYBgGhYWFWCwWtm3bZnZJQlQZEujOOnoUMjIcrfNbiIyM5NzZs5wvLOSl48d5eO9euh44wKc5Obc+ro+Po+tl8eIKKLpqqlGjBpMmTeK1117jjTfeICkpiWwv7pYSwlkS6M76+GNH6/w2N8MEBgQQUr06fz5yBH+l2NC4Man16zPl9GkO5eff+tihobBiBcjwvZ9p27YthmEQFhaG1Wplw4YNMn2AELchge6sr75y3CBUgurh4Wy+dInE8HCq+fjQslo1fh8aytrbtdL9/Byt9EOHXFiwZwgODmb06NFMmzaNefPmMWbMGLKysswuSwi3JIHurN27ISioxM1OA/6+voRcunT9ud8EBt6+hQ6OQJex2LfUokULlixZQpMmTejbty8rVqyQ1roQvyCB7gyt4cKFm34Y+kuX7XZqBgZy/tw5LhcvyVbdx4fckka/XL3q1cMXnREQEHB9XdcVK1YwfPhwjh8/bnZZQrgNCXRnOdkarObjQ57W1L/zTk4cP86Ro0c5k5tLtZImotLa0UcvStSoUSMWLFjAww8/zB//+EeWLFkiSwIKgQS6c67N0+LECkUNAwIoAs4HBNCoUSPCa9Vi14ULhF64wJkzZ249b4mfn2MIo3CKr68v/fv3Z+HChWzdupWBAwdy4MABs8sSwlQS6M5q3hyuXClxs2AfHx4LDWX2Tz9xRWsO+/nxna8vfaOiKCgs5ODBg5w4eZK8Xx7LxweaOj0rsSgWFRXF7Nmz6dGjx/UFvAsKCswuSwhTSKA766GHHFPhOmFc3brk2+102reP8SdO8GrduvxXjRrUr1ePexs1IjAwkOPHj3P4yBFyLlzAfvWqo8vl3nsr+EV4JqUUPXr0YNmyZfzwww/079+f3bt3m12WEJVOJudy1v790KXLTW/7LwsNXLp4kXPnz+N/6RJn2renfloaERER5a/Vi2mt2bhxI9OnT+fJJ59k+PDhBAcHm12WEOUik3O52m9+A7/9rWO0iwsoIDQ0lLuiooisU4eMZs3o3bs3EyZMYOfOnTIkr4yUUnTu3BnDMMjOzsZqtZKRkWF2WUJUCmmhl8Y330Dv3o4PSH19XXPM7GyIiYG5c7l46RKrV6/GMAxq1KiB1Wqlc+fOBAQEuOZcXmjbtm1MnjyZdu3aMWrUKEJDQ80uSYhSkxZ6RWjVCgYNcqwX6opfhJcvQ7VqMHkyKEVoaOj1m2aGDh3K+vXr6dq1K++8847cHVlGHTp0wGazERAQgMViYfPmzWaXJESFkRZ6aeXnO5aQ2779Z3Oil1penmOxjIULoX37W2529OhRDMPg008/pU2bNlitVlq1aoXy0jVJyyMzM5PU1FQaN27MK6+8Qnh4uNklCeEUZ1voEuhlkZvrWJgiI8Mxp7kTc7xcp7Wjhe/vD3PmQMeOTp4ylzVr1mAYBkFBQVgsFmJjYwlyYjoC8R/5+fnMnTuX1atX8+KLL9KlSxf55SjcngR6Rbt6Fd59F/76V8cNR6Ght58aQGtHF0tBAdx3n2O/e+4p9Wntdjtff/01hmGwe/duunXrRnx8PPXr1y/Hi/E+e/fuJTk5mdq1azN+/Hjq1atndklC3JIEemU5dMjR0l650vG4oAACA/8zz3lhoeNfX1+IjnYsLt29u0s+VD1+/Dg2m401a9bQqlUrrFYrbdq0kRank65evcrixYtZunQpQ4cOJT4+Hp+SpmgQwgQS6JUtJwf+93/hu+8co2EuXfpPiLdtC/ffD82auWQM+y9dvnyZdevWYRgGAFarlaeeeopq1aq5/Fye6MiRIyQnJ6OUYtKkSURHR5tdkhA/I4HuhbTWbN++HcMwyMzMpGvXrlgsFho0aGB2aW7PbreTnp7OnDlz6NevH8888wx+TsyuKURlkED3cidPniQ9PZ2PP/6Y++67D6vVyu9+9zvpUijBqVOnmDx5MmfPniUpKYmmMr+OcAMS6AKAK1eusH79egzD4MqVK1itVrp27UpISIjZpbktrTWffPIJM2bMoFu3bgwZMoTAwECzyxJeTAJd/IzWmm+//RbDMMjIyCA2Nhar1cpdd91ldmlu69y5c7zxxhvs37+fSZMm0apVK7NLEl5KAl3cUlZWFunp6axcuZLGjRtjtVrp0KGDdMfcwqZNm3jzzTd59NFHGTFihPx1IyqdBLooUUFBARs3bsQwDHJycrBYLHTr1k3mO7mJCxcuMGPGDL7++mteffVVOnToYHZJwotIoAunaa3ZvXs3hmGwbds2OnXqhNVq5V6Zn/1XMjIySE1NpWXLlowePZqwsDCzSxJeQCbnEk5TStGiRQtSU1NZvnw5ERERPP/88wwbNoxNmzZR5MTSe96ibdu2GIZBWFgYVquVDRs2yFTHwm1IC13cVGFhIZ999hmGYZCVlUXv3r2Ji4ujpqx7et2uXbtISUmhQYMGjBs3jjp16phdkvBQ0uUiXOb777/HMAw+//xzYmJiSEhIoHHjxmaX5RYKCgpYsGABy5cv5/nnnycuLk6mXhAu57JAV0pFAYuBO3CsnDZXaz1DKfUnYAjwU/Gm47XWn9zuWBLoVdu5c+dYuXIl6enp1K9fH6vVSkxMjNxRCezfv5+UlBSqVavGxIkT5e5c4VKuDPR6QD2tdaZSKhTYAcQBFuCS1nqas0VJoHuGq1evsnnzZgzD4MSJE/Tq1YsePXp4/fziRUVFfPDBByxYsIBnn32WPn36yFBQ4RIV1uWilFoF/A/QAQl0r7dv3z4Mw+Czzz7jkUceISEhgWbNmpldlqmOHTtGamoqV65cISkpSUYLiXKrkEBXSkUDnwP3AaOBgcAFYDswRmt9/nb7S6B7rpycHFatWnV9lIzVauXxxx/HvzSLf3gQu93OqlWr+Pvf/47FYmHgwIGyNqwoM5cHulKqOrAFeF1r/ZFS6g7gDI5+9RQc3TLP3mS/RCARoGHDhg8ePXrU+Vchqhy73c7nn3+OYRgcOnSIXr160bNnTyIiIswuzRRZWVlMnTqV48ePk5SUxH333Wd2SaIKcmmgK6X8gTXAeq31Wzf5eTSwRmt923ertNC9y6FDhzAMgw0bNtC+fXusVistWrTwulEgWms2btzItGnTiI2NZfjw4QQHB5tdlqhCXHZjkXL873sP2HNjmBd/WHpND2B3WQoVnuuee+7h1Vdf5eOPP6Z58+YkJSXxzDPPsGbNGgoKCswur9IopejcuTM2m43z589jtVrJyMgwuyzhgZwZ5fIwsBXYBdiLnx4P9AFa4uhyOQIM1Vqfut2xpIXu3ex2O19++SWGYfDDDz8QFxdHfHy8192Q88UXXzBlyhTatWvHqFGjZO4cUSK5sUi4taNHj2Kz2Vi3bh1t2rTBarXSqlUrr+mOyc3NZebMmWzZsoWxY8fy6KOPml2ScGMS6KJKyM3NZe3atRiGQWBgIBaLhdjYWIKCgswurVJkZmaSmppK48aNeeWVV7x+LL+4OQl0UaXY7XYyMjIwDINdu3bRrVs34uPjqV+/vtmlVbj8/Hzmzp3L6tWrefHFF+nSpYvX/KUinCOBLqqs48ePs3z5clavXk2rVq2wWq20adPG40Nuz549pKSkEBERwauvvkq9evVK3kl4BQl0UeXl5eWxbt060tLSALBYLHTp0oVq1aqZXFnFuXr1KosXL2bp0qUMHTqU+Ph4mT5ASKALz6G1Zvv27RiGQWZmJl27dqV3795ERUWZXVqFOXLkCMnJySilSEpKkrVfvZwEuvBIp06dYvny5dfHtlutVtq1a+eRrVi73U56ejpz5syhf//+DBgwQGa29FIS6MKj5efn8+mnn2IYBleuXMFisfCHP/zBIxdwPnXqFJMnT+bs2bO89tprNGnSxOySRCWTQBdeQWvNt99+i2EYZGRkEBsbi8ViITo62uzSXEprzdq1a5kxYwbdu3dnyJAhBAYGml2WqCQS6MLrZGVlkZ6ezsqVK2ncuDFWq5UOHTp4VHfM2bNnefPNN9m/fz+TJk2iVatWZpckKoEEuvBaBQUFbNy4EcMwyMnJwWKx0K1bN4+6xX7Tpk28+eabPProo4wcOdKjR/4IF07OJURVExAQwNNPP82iRYtITU1lz549dOvWjcmTJ3Pw4EGzy3OJmJgYDMMgPz8fi8XCl19+aXZJwg1IC114hbNnz/Lhhx/y0UcfER0djdV253YdAAAUvklEQVRqpWPHjvj6+ppdWrllZGSQmppKy5YtGT16NGFhYWaXJFxMulyEuInCwkI+++wzDMMgKyuL3r17ExcXR82aNc0urVzy8vKYNWsW69ev56WXXuKJJ57w+DtrvYkEuhAl2LNnD4ZhsGXLFmJiYkhISKBx48Zml1Uuu3btIiUlhaioKMaNG0dkZKTZJQkXkEAXwknnz59nxYoVpKenU79+faxWKzExMVX2Jp6CggIWLFjA8uXLGTFiBN27d5fWehUngS5EKRUVFbF582YMw+D48eP06tWLHj16VNkpbffv309KSgrVqlVj4sSJNGjQwOySRBlJoAtRDvv27cNms/HPf/6TRx55hISEBJo1a2Z2WaVWVFTEsmXLWLhwIc8++yx9+vTxqHH53kICXQgXyMnJYdWqVSxfvpyIiAisViuPP/44/v7+ZpdWKseOHSM1NZUrV66QlJTEvffea3ZJohQk0IVwIbvdzueff45hGBw6dIhevXrRs2dPIiIizC7NaXa7nZUrV/LOO+9gsVgYNGhQlfvF5K0k0IWoIIcOHcIwDDZs2ED79u2xWq20aNGiynzwmJWVxZQpUzhx4gRJSUncd999ZpckSiCBLkQFu3jxIqtXr8ZmsxEaGorVaqVz584EBASYXVqJtNZs3LiRadOmERsby/DhwwkODja7LHELEuhCVBK73c6XX36JYRj88MMPxMXFER8fT506dcwurUTZ2dlMnz6dnTt3MnHiRNq0aWN2SeImJNCFMMHRo0ex2WysW7eONm3aYLVaadWqldt3x3zxxRdMmTKFhx56iBdffNGjJjLzBBLoQpjo8uXLrFmzBsMwCAgIwGq1EhsbS1BQkNml3VJubi4zZ87k888/Z+zYsfz+9783uyRRTAJdCDdgt9vJyMjAMAx27dpFt27diI+Pp379+maXdkuZmZmkpqbSpEkTXn755Sp7Y5UnkelzhXADPj4+tGvXjr/+9a8sXLiQoqIiBgwYwJgxY8jIyKAyG1TOeuCBB/jggw+oX78+CQkJfPLJJ25Zp/g1aaELUcny8vJYt24daWlpAFgsFrp06eKWi1Ts2bOHlJQUIiIiGD9+PHXr1jW7JK8kXS5CuDmtNTt27MAwDHbs2EHXrl3p3bs3UVFRZpf2M1evXmXx4sUsXbqUoUOHEh8fL9MHVDIJdCGqkFOnTpGens6qVato3rw5VquVdu3auVVwHj58mJSUFHx8fJg0aRJ33XWX2SV5DQl0Iaqg/Px81q9fT1paGleuXMFisfCHP/yBkJAQs0sDHB/ypqenM2fOHPr378+AAQOq7DTDVYkEuhBVmNaa7777jrS0NDIyMoiNjcVisRAdHW12aQCcPHmSyZMnc+7cOV577TWaNGlidkkezWWBrpSKAhYDdwAamKu1nqGUCgcMIBo4Ali01udvdywJdCFKLysri/T0dFauXEnjxo2xWq106NDB9O4YrTVr165lxowZdO/encTExCox7UFV5MpArwfU01pnKqVCgR1AHDAQOKe1nqqUGgfU0lqPvd2xJNCFKLuCggI2btyIYRjk5ORgsVjo1q2b6Xd1nj17ljfffJP9+/eTlJREy5YtTa3HE1VYl4tSahXwP8Vfj2qtTxWH/mat9W3/7pJAF6L8tNbs3r0bwzDYtm0bnTp1wmq1mj7H+WeffcZf/vIXYmJiGDFihFsOw6yqKuTGIqVUNNAK+Bq4Q2t9qvhHp3F0yQghKphSihYtWpCamkp6ejqRkZE8//zzDBs2jE2bNlFUVGRKXY899hiGYVz/MPfLL780pQ5v5nQLXSlVHdgCvK61/kgpla21Drvh5+e11rVusl8ikAjQsGHDB48ePeqayoUQ1xUWFvLZZ59hGAZZWVn07t2buLg4atasaUo9GRkZpKam0rJlS8aMGWNaHZ7CpV0uSil/YA2wXmv9VvFzPyBdLkK4nT179mAYBlu2bCEmJoaEhAQaN25c6XVcvnyZ2bNns379el566SWeeOIJt5910l258kNRBSzC8QHoqBue/wtw9oYPRcO11q/c7lgS6EJUnvPnz7NixQrS09OpX78+VquVmJiYSh83vnPnTlJTU4mKimLcuHFERkZW6vk9gSsD/WFgK7ALsBc/PR5HP7oNaAgcxTFs8dztjiWBLkTlKyoqYvPmzRiGwfHjx+nVqxc9evSo1FkUCwoKmD9/Punp6YwYMYLu3btLa70U5MYiIcSv7Nu3D5vNxj//+U8eeeQREhISaNasWaWdf//+/aSkpBASEsKECRNo0KBBpZ27KpNAF0Lc0oULF1i5ciXLly+ndu3aWK1WnnjiCfz9/Sv83EVFRSxbtoyFCxfy7LPP0qdPH9NvknJ3EuhCiBLZ7Xa2bt2KYRgcPHiQnj170qtXLyIiIir83MeOHSMlJYX8/HySkpJMH0fvziTQhRClcujQIWw2G+vXr+ehhx4iISGBFi1aVGhft91uZ+XKlbzzzjtYLBYGDRpUKX8lVDUS6EKIMrl48SKrV6/GZrNRvXp1rFYrTz75ZIXO05KVlcWUKVM4ceIEr732Gs2bN6+wc1VFEuhCiHKx2+18+eWXGIbBDz/8QFxcHPHx8dSpU6dCzqe1ZuPGjUybNo2nnnqKYcOGERwcXCHnqmpkTVEhRLn4+Pjw8MMPM3PmTN59911yc3NJSEhg7NixZGZmunydUaUUnTt3xmazce7cORISEvjXv/7l0nN4OmmhCyGcdvnyZdasWYNhGAQEBGC1WomNjSUoKMjl5/riiy+YMmUKDz30EC+++KLps0qaSVroQgiXq1atGhaLhfT0dEaNGsXnn39O165defvttzl58qRLz/Xwww9js9nw8/PDarWyZcsWlx7fE0kLXQhRLidOnMBms7FmzRpatmyJ1WqlTZs2Lh0dk5mZSWpqKk2aNOHll1+u1Ltc3YF8KCqEqFR5eXmsW7eOtLQ0ACwWC126dHHZvOj5+fnMmTOHNWvWMGrUKJ566imvmT5AAl0IYQqtNTt27MAwDHbs2EHXrl3p3bs3UVFRLjn+999/T0pKCpGRkYwfP566deu65LjuTAJdCGG6U6dOkZ6ezqpVq2jevDlWq5V27dqV+1b/q1evsnjxYpYuXcrQoUOJj4/36OkDJNCFEG4jPz+f9evXk5aWdn1Foz/84Q+EhISU67iHDx8mJSUFHx8fJk2axF133eWiit2LBLoQwu1orfnuu+8wDIOvv/6a2NhYLBYL0dHRZT6m3W5n+fLlzJ07lwEDBtC/f/9Kn/O9okmgCyHcWlZWFh9++CErVqygcePGWK1WOnToUOauk5MnTzJ58mTOnz9PUlISTZrcdgG1KkUCXQhRJRQUFPCPf/yDtLQ0cnJyrnfH1KhRo9TH0lqzdu1aZsyYQVxcHEOGDKnQOWgqiwS6EKLK2b17N4Zh8MUXX9CpUyesVmuZptU9e/Ysb775Jvv37ycpKYmWLVtWQLWVRwJdCFFlnT17lo8++ogPP/yQu+66i4SEBDp27Iivr2+pjvPZZ5/xl7/8hZiYGEaMGOGyMfGVTQJdCFHlFRYWsmnTJtLS0sjKyqJ3797ExcVRs2ZNp49x4cIF/va3v5GRkcH48eNp3759BVZcMSTQhRAeZe/evRiGwebNm4mJiSEhIYHGjRs7vf/XX3/N66+/TsuWLRkzZkypfimYTQJdCOGRzp8/f3091Pr162O1WomJiXFqqOLly5eZPXs2GzZs4KWXXuLxxx+vEtMHSKALITxaUVERW7ZsIS0tjePHj9OrVy969Ojh1MRdO3fuJCUlhYYNGzJu3DgiIyMroeKyk0AXQniN/fv3YxgG//znP3nkkUdISEigWbNmt92noKCA+fPn8+GHHzJixAi6devmtq11CXQhhNe5cOECK1euJD09nfDwcKxWK0888cRtF57ev38/KSkphISEMHHiRO68885KrNg5EuhCCK9lt9vZunUrhmFw8OBBevbsSa9evYiIiLjp9kVFRSxbtoyFCxcyePBgEhIS3GqyLwl0IYQADh06hM1mY8OGDbRr146EhARatGhx0+6VY8eOkZKSQn5+PklJSWW6qem6wkI4fBiys0FrCAuDu++GMty5KoEuhBA3uHjxIqtXr8Zms1G9enWsVitPPvnkr6YGsNvtrFy5knfeeQeLxcKgQYNu22XzM7m5sHo1LFkCP/wAvr5w7ReH3Q5FRdC4MfTtC926gZPTG0igCyHETdjtdr766isMw2Dv3r3ExcURHx9PnTp1frZdVlYWU6ZM4eTJkyQlJdG8efNbH7SoCBYuhOnTHS1zPz8IDoZfdtvY7ZCX59jG3x9GjoTERMf2tyGBLoQQJfjxxx+x2Wx88skntGnTBqvVSqtWra53x2it2bhxI9OmTeOpp55i+PDhBAUF/fwgJ0/C8OGwezeEhDjfpVJYCJcuQdOmMGsWNGx4y00l0IUQwkmXL19mzZo12Gw2/P39sVqtxMbGXg/v7Oxspk2bxq5du5g4cSJt2rRx7HjsGMTHw9mzULPmf7pXnKU15OQ4+teXL3f0sd+EBLoQQpSS1pqMjAwMw2Dnzp1069aN+Ph46tevD8DWrVuZMmUK7du358XBgwm1WOD0aUeYl8eFC1CrFqxf7wj3X3A20Escl6OUmq+UylJK7b7huT8ppU4opb4t/upS6hcghBBuRinF7373O9566y0WLVqE3W5nwIABjBkzhoyMDB5++GGWL1+Or68vn3ToQN6hQ+UPc3B8OHrmDPzpT+Wrv6QWulKqI3AJWKy1vq/4uT8Bl7TW00pzMmmhCyGqmry8PNatW4dhGGitsVgsPF2vHiohgRMXLxIYHEzdO+4o/7J3drujpb54MfxiRkhnW+glVqC1/lwpFV3mIoUQogoLDg6mZ8+e9OjRg8zMTAzDIGDJEh4pKODOqChycnI4dOgQd9xxBzVq1uRaL3qB3c7U06fJuHyZC0VFNPD3Z0SdOrSvXv3mJ/LxcfTBz579q0B3VnluhRqhlNpZ3CVTqxzHEUIIt6eU4sEHH+TNl16iS1AQhUFB/Hj0KPn5+dSOiODM2bMcO3aMwsJCAIqAuv7+zG3YkM2NGzM8MpJxJ05wsqDg1icJDYWvvoITJ8pUY1kDfRZwL9ASOAVMv9WGSqlEpdR2pdT2n376qYynE0IIN5GZiZ+/P3Xq1qXRb35DjdBQcnJy0HY72m7n0KFDnDt/niAfHxIjI6kfEICPUjwSGkp9f3/2Xrly62Nfa6WXsWu6TIGutf631rpIa20H3gXa3mbbuVrr1lrr1u4+RaUQQpTou++guJXtoxRhYWHcfffd1K9fH18/P+xac/r0aQ4dOkT+Da3xc1ev8mNBAfcEBt7++FevwjfflKm0MvXiK6Xqaa1PFT/sAey+3fZCCOEx9u791c1DCqhWrRrVqlWj8OpVzp87x09nzrB3715q165NnXr1mHjyJF1r1iS6pEAPCIA9e8pUWomBrpT6AHgUiFBKHQdeAx5VSrUENHAEGFqmswshRFVz5cptbyDy9/OjTp06RERGcv7cOU6dPs3MoiL8gFfq1i35+D4+jnOUgTOjXPrc5On3ynQ2IYSo6oKCHEMMS+CjFOHh4fxPfj7ZhYW8HRWFnzN3ktrtjnOUgftM+CuEEFXBffc55mFxwpTTpzlcUMBfo6IIdHZ+9fx8xznKoJwj4YUQwsv89rdOTcB1qrCQj7KzCVCKJ/fvv/78+Lp1eep2d5f6+0OrVmUqTQJdCCFK48EHHZNqFRU55ju/hXr+/mz/r/8q3bHtdsfXtcm/Skm6XIQQojTCwyE21nGbvqtduAAxMXDHHWXaXQJdCCFKa+hQx2iUoiLXHfPasYYPL/MhJNCFEKK0mjeHgQPh4kXXHfPiRUhIgAceKPMhJNCFEKIsRo92LEiRnV3+Y+XkwJ13wquvluswEuhCCFEWwcGwdCk0aADnzzs+KC0trR371qkDH3zgWMKuHCTQhRCirOrUgY8+ckx3m51dujs88/Md+7RpAytWQPGqSOVRqUvQKaV+Ao6WYdcI4IyLy/EEcl1uTq7Lzcl1ubmqcF3u0lqXOLthpQZ6WSmltjuzWoe3ketyc3Jdbk6uy8150nWRLhchhPAQEuhCCOEhqkqgzzW7ADcl1+Xm5LrcnFyXm/OY61Il+tCFEEKUrKq00IUQQpTALQNdKXVEKbVLKfWtUmp78XPhSqmNSqn9xf/WMrvOynaL6/InpdSJ4ue+VUp1MbvOyqaUClNKpSul9iql9iilHvL298strolXv1eUUk1ueO3fKqUuKKVGedJ7xS27XJRSR4DWWuszNzz3JnBOaz1VKTUOqKW1HmtWjWa4xXX5E3BJaz3NrLrMppRaBGzVWs9TSgUA1YDxePH75RbXZBRe/l65RinlC5wAfgc8j4e8V9yyhX4L3YFFxd8vAuJMrEW4CaVUTaAjxcsiaq0LtNbZePH75TbXRPzH48BBrfVRPOi94q6BroENSqkdSqnE4ufu0FqfKv7+NFC2CYOrtptdF4ARSqmdSqn5VfnPxTK6G/gJWKCU+kYpNU8pFYJ3v19udU3Au98rN0oAPij+3mPeK+4a6A9rrR8AngKeV0p1vPGH2tFP5H59RRXvZtdlFnAv0BI4BUw3sT4z+AEPALO01q2AXGDcjRt44fvlVtfE298rABR3QXUDlv/yZ1X9veKWga61PlH8bxawAmgL/FspVQ+g+N8s8yo0x82ui9b631rrIq21HXgXx7XyJseB41rrr4sfp+MIM29+v9z0msh75bqngEyt9b+LH3vMe8XtAl0pFaKUCr32PdAZ2A18DPyxeLM/AqvMqdAct7ou196IxXrguFZeQ2t9GjimlGpS/NTjwPd48fvlVtfE298rN+jDf7pbwIPeK243ykUpdQ+O1ic4/nRcprV+XSlVG7ABDXHM2GjRWp8zqcxKd5vr8j6OP6E1cAQYekN/oFdQSrUE5gEBwCFgEI7Gije/X252Td5G3ishwI/APVrrnOLnPCZb3C7QhRBClI3bdbkIIYQoGwl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHkICXQghPMT/B9jFcDvYi0EzAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VHW6x/HPM2mQkJAEEkhAOlKFUGTFdVkvdtd+NYUqiFEEUSmKIKwggqiIoAiydBCSrKuid3cti7KuelVQEVFAUJCWkCCd9Mzv/nEmXISUST0zk+f9es0rmcmZmYcDfOeX3/md54gxBqWUUt7PYXcBSimlqocGulJK+QgNdKWU8hEa6Eop5SM00JVSykdooCullI/QQFdKKR+hga6UUj5CA10ppXyEf22+WePGjU2rVq0u/IExcPAgHDsGDod1c1dREYhAs2YQHl5ttSqllKf46quvjhhjosrbrlYDvVWrVmzevPm3D+bnw4gRVpjHxlYszIvl5UF2NowZA0OGVE+xSinlIUTkF3e2s3/K5bHH4NNPISKicmEOEBQEDRrA9OmwYUP11qeUUl7C3kDfsAHefhsaNrSmTaoiIMAK9nHj4OjR6qlPKaW8iH2BnpsLEyZYIVzZkfn56teHU6dg1qzqeT2llPIi9gX6++9b4RscXOom+U4n0w8d4qbdu+m3cycDfv6Zz06fLvt1w8Jg/XodpSul6hz7An3xYvDzK3OTIqBpQACLW7Rg48UXMzIqiokHD3IoP7/0J/n5gdMJb71VvfUqpZSHcyvQReQhEdkmIt+LyMOuxyJF5AMR2eX6GuH2u2Znw/btEBJS5mb1HQ6So6KIDQzEIcIfQkOJDQhgR25u2a/v5wcffuh2OUop5QvKDXQR6QrcC/QBugM3iUg7YCKwwRjTHtjguu+enTutg5gVPBB6tLCQffn5tAkKKnvDevVg61ZrfbtSStUR7ozQOwFfGGOyjTGFwL+BO4BbgZWubVYCt7n9rvv3W9MiFZDvdDL50CFuatiQVuUFur8/nDlj3ZRSqo5w58SibcDTItIIyAFuBDYDTYwx6a5tMoAmJT1ZRJKBZIAWLVpYDxYWVmj07DSGB7dt47TTyX+HhrJv/34CAgIuuPn7+yPWm1q3ggK330MppbxduYFujNkuIrOB94EzwBas45XnbmNEpMSENsYsBhYD9O7d29omKMjt6RZjDE+lp1MUGsoUY/AzhgYNGgBQkJ9Pbk4OBQUFFBQUUOR0EuDvT0BAAGGFhbzx2mtEt2xJTEwMMTExREdHExAQ4Nb7KqWUt3Hr1H9jzFJgKYCIzAQOAIdFJMYYky4iMUCm2+/aurXba89nZWSwJz+fV1q2pL7DwbFjx8jKyqJRZCTR0dHIOR8MTmMoKCigMDubfCDfz49NmzaRkZFBeno6WVlZREREEBMTQ9OmTc8GffGtadOmBJexjFIppTyZW4EuItHGmEwRaYE1f34Z0BoYCjzj+rre7Xdt186aDnE6ywz29IIC3jh+nEARrtu16+zjExo3Ji47m5N79xITE0P9evUAcIgQFBhIUG4uIf36MXLkyN+8XlFREVlZWaSnp5Oenk5GRgY7d+5k48aNZ+8HBQWVGPTF3zds2PA3HyJKKeUp3G3O9TfXHHoBMMoYc1xEngHSROQe4Bcg3u13DQyEvn3hiy+s0/5LERMQwOZOnUr8mWnUiJMnTrB/3z4ahocTFRWFozhojYEbbrjgOX5+fjRt2pSmTZvSo0ePC1/TGI4dO3Z2RJ+ens7BgwfZvHnz2ccKCwvPBnxJo/zGjRvjqK4zX5VSqgLE1OLSvt69e5uz3Rb//W+4917rzM4qKCwsJOPwYXJzc4mNiSE4IMAa/W/eXOZZqJV15syZs2FfPKo/9+uJEyeIiooqcZRffAsMDKz2upRSvktEvjLG9C5vu1ptn/sbV1xh9TA/eLBKoe7v70/zZs04deoUBw4eJMrfn+CxYwmqobnwkJAQ2rVrR7t27Ur8eX5+PocPH/5NyH/99ddnPwCysrIICwsrdUonJiaGkHJOuFJKqZLYF+h+fjBvHtxxh7WM0b9qpYSGhhJcVMSBwkKGf/IJEz77jMsvv7yainVfYGAgF110ERdddFGJP3c6nRw5cuQ3o/zdu3fzySefnL0fEBBQ5oHbiIgIncdXSl3AvimXYvPmwfz51ii9nN4uZcrJsT4Y/vpXvszNZcaMGcTFxTFu3DgaljFP72mMMZw4ceKCKZ1zb3l5eReE/bn3o6Ki8KvKvlRKeRR3p1zsD3RjYNo0WL3a6u1Smfnl06et1/nLX6BfPwBycnJYuHAh7733HuPHj+fqq6/2mVFtdnY2GRkZJYZ9RkYGR48epXHjxqVO6TRt2pSg8s62VUp5DO8JdLDCePlymD3bukaouxe8KCy0WvA2bQovvwwlrFzZunUrTz31FC1btuSxxx4jKqrcy/J5vYKCAjIzM0s8eJuenk5mZiYNGjQodUonJiaG0NBQu/8YSikX7wr0Yj//DJMnWytUnE6rydb5F8AoLLQujlFYaE3RDBpkXaWorL7q+fksW7aMv/3tb4wePZpbbrnFZ0brleF0Ovn1119LndLJyMhARMo8cBsREaHLM5WqJd4Z6MV++gnWroWPP4Y9e6xAF7FC3t8funSBm2+G224rcx37+X788UeeeuopQkNDmTx5Ms2aNavCn8Z3GWM4depUiUFf/AFw5syZs8swSwr96Oho/Kt4oFspZfHuQD9Xfj5kZloj8vr1ISqqSpesKyoq4rXXXmPlypXcc889JCYm6kizEnJzc38zuj9/pP/rr78SGRlZ5lm39Vxn+CqlyuY7gV5D9u3bx4wZMygoKGDKlCm0adPG7pJ8SmFhIZmZmaVO6WRkZBAcHFzqlE7xPH5dnhpTqpgGuhucTidvvvkmCxcuJDExkaFDh2o3xlridDo5duxYqQdu09PTMcaUeeC2UaNG+tuVqhM00Cvg8OHDzJw5k8zMTKZMmULnzp3tLkkBp0+fLnM9/unTp4mOji51Hr9Jkyb6Aa18ggZ6BRljePfdd5k7dy433XQTycnJOsfr4fLy8s62WShppK/tkpWv0ECvpKNHj/L888+zfft2pkyZQs+ePe0uSVVSSe2Szw9+bZesvIEGehV9/PHHPPPMM/zhD39gzJgx2jDLB5XULvn8A7f5+fkXBP35bRZ0Hr+WFRVZy5l37IBDh6zuqiEh0LYtdOoEjRvbXWG100CvBqdOnWL+/Pl89tlnPP7441xxxRV2l6Rq2ZkzZ0oc2Rd/X9wuubQpHW2XXI0OHoR162DVKsjLs84wz8+3vjoc1kmIBQXQoQPcfz9ce611cqIP0ECvRps2bWLGjBl069aNcePGER4ebndJykOU1C753Ju2S64GBQWwcCEsWGCdj1JWzydj4MwZaxQfFWU1/7v00tqttwZooFeznJwcFi1axD//+U/Gjx/PNddco3OrqlwltUs+P/y1XXIZMjPh7rvhxx+hQYOKtdk+fdr6MLjvPhg/vkonJNpNA72GbNu2jenTp9O8eXMmTpxIdHS03SUpL3Zuu+Tzr35VfMvNzb2gzcK5HwDR0dG+2S45M9O6XsLhw1Z77cp8qBUVwYkTMHgwPPlk5V7DA2ig16D8/HxWrFhBWloao0aN4rbbbqu7IyhV4+pku+TCQivMf/gBqjrFWVQEJ0/C9OkwcGD11FfLNNBrwe7du5k+fTrBwcE88cQTNG/e3O6SVB3kk+2SFy+22mmHh1fPqDo/37p98AGUcjUxT6aBXkuKiopYt24dy5cvZ/jw4SQlJekyNuVRSmuXfO73pbVLLv4aGRlZe/+ujxyB3//eWqFSnWf6HjsG/ftbF8LxMtUa6CLyCDACMMB3wDAgBkgBGgFfAYONMfllvY4vBnqx/fv389RTT5GXl8fUqVNp27at3SUp5ZbidsmlTekUt0tu0qRJqQdvq7Vd8qJF8Pzz5U61pB09yjsnTrA7L4/rwsJ4Mja27Nd1Oq2pl//8B2JiqqfWWlJtgS4izYBPgM7GmBwRSQP+AdwIvGGMSRGRRcC3xpiFZb2WLwc6WCOht956i1deeYX4+HiGDRumvUSUT6i1dsnGwGWXWUsPy9n+w5MncYjwv6dPk2dM+YEO1ih93Dh44AE3/+SeoboD/XOgO3ASeAt4CXgNaGqMKRSRvsCTxpjrynotXw/0YpmZmcyaNYtDhw4xdepUunTpYndJStWoamuXnJUFl1/u/mUogVcyM8ksLHQv0E+dgp49rROUvIi7gV7u70jGmIMi8jywD8gB3seaYjlujCl0bXYA0Mv/uERHR/PCCy/w/vvv88gjj3DjjTdy//33a7Mv5bP8/f2JjY0ltpRQPbddcnHo79+/n02bNp0NfqfTyX/5+THy118xubkEBAT85ubv70+VD4/Wrw/ffWf9JuCDK9PKDXQRiQBuBVoDx4G/Ate7+wYikgwkA7Ro0aJyVXohEeG6666jT58+zJkzh8TERJ544gl69y73Q1Ypn+NwOGjUqBGNGjWia9euJW5z+vRpTi1bRtiuXeQGBVFQUEBubi4FBQUU5OdT5HQS4O9/QdAXOZ3uF+Lvb61LLygo/WxTL+bOUYyrgT3GmCwAEXkD+D0QLiL+rlF6c+BgSU82xiwGFoM15VItVXuRiIgIZsyYwccff8zUqVO54oorGDNmDA0aNLC7NKU8SoMGDWgQHQ1BQQRHRFzwc6cxVrifczt9+jRHT57EVGStuoi1zt0HA92ddUj7gMtEJFiss2euAn4APgLudG0zFFhfMyX6hn79+pGWlgZAfHw8H3/8sc0VKeWBQkKglLNeHSIEBQbSICSEiPBwoqOiaNa8OU5jcBYVuff6TqcV6N52opWbyg10Y8wXwOvA11hLFh1YI+7HgLEishtr6eLSGqzTJzRo0IBJkyYxffp0XnjhBSZPnsyxY8fsLkspz9Gundtz20XGUOB0EhAQQF5BAflOJ0XlLcPOy4NWrUr90PB2bp0pYIz5szGmozGmqzFmsDEmzxjzszGmjzGmnTHmLmNMXk0X6yt69+5NSkoK0dHRJCQk8O6771KbJ3gp5bHatrVG0W6MuJceOcLlO3fyt/x83jt9mst37mTpkSNlPyknB3z4OJaeKWqz77//nunTpxMbG8vjjz+uzb6Uuv9++Ne/3O7hkpefz759+2jfrl35G584AcuXg5dd28DdZYt6jrrNunTpwpo1a+jcuTMDBgzgjTfewFmRo/ZK+Zrhw61pFzcHm4GBgRink/yCgrI3zMmxrmZ0+eXVUKRn0kD3AAEBAdx77728+uqrrF+/npEjR7J//367y1LKHpdeCt26WaNpNwgQHBJCdnZ26RsZA7m5Xt8XvTy++yfzQm3btmX58uX88Y9/5O6772b16tUUuXv0XilfIQIvvGCtGc8vsz3UWcHBwWSfOVP6BsePQ9++VkteH6aB7mEcDgcDBgxg5cqVfPbZZwwbNoxdu3bZXZZStatlS5g1y+rpUt5UChASHMyZ0kboJ09aUy1z5vjk2aHn0kD3UM2bN+eVV17hjjvuYOTIkbz66qvkuzlaUcon3H47TJtmhXpZo28gMCgIp9NJwbnhb4zVjCsiAlJToUmTGi7YfhroHkxEuO2221i7di07d+5k0KBBfPfdd3aXpVTtGTQIVqywrid67Fipo3XBGqVnZ2f//4Wijx+HP/4R3nnHWnteB2ige4Ho6GjmzJnDiBEjGD9+PC+88AI5OTl2l6VU7bjiCtiwAYYNs07ZP3HCCvecHGu9utMJhYWEOhw4jxyxplhiYmD+fFi6FOrQUmANdC8hIlx77bWkpqZy/PhxEhIS+PLLL+0uS6naERYGTzwBmzZZF7+4/XYrqHNyrJa4RUU4unblndhYSEmxPgD+9CefnzM/n55Y5KU++eQTZs2aRd++fXnooYc875qQStUyp9PJ1VdfTVpaGo0bN7a7nGqlJxb5uCuuuIK0tDT8/f1JSEjg3//+t90lKWUrh8NBXFwcX3/9td2l2EYD3YuFhIQwceJEZsyYwYsvvsikSZM4evSo3WUpZZtevXrx1Vdf2V2GbTTQfUDPnj1JSUmhadOmJCYm8o9//EObfak6qWfPnjpCV94vKCiIMWPG8OKLL7Jq1SoefvhhDh8+bHdZStWqDh06kJWVVWd/U9VA9zGdO3dm9erVdOvWjYEDB/L6669rsy9VZ9T1eXQNdB8UEBDAPffcw+LFi/n73//Offfdx759++wuS6laUZenXTTQfVibNm1YunQp/fv3Z9iwYaxatUqbfSmfV5cPjGqg+ziHw0FSUhKrV6/m888/Z+jQofz44492l6VUjenYsSPp6ekcP37c7lJqnQZ6HREbG8uCBQuIj49n1KhRLFy4UJt9KZ/k5+dH9+7d+eabb+wupdZpoNchIsItt9zC2rVr+emnnxg4cCBbt261uyylql1dnUfXQK+DoqKieO6557jvvvuYMGECc+bMKftqL0p5mbo6j66BXkeJyNm+FydPniQxMZEvvvjC7rKUqhadOnXiwIEDnDx50u5SalW5gS4iHURkyzm3kyLysIhEisgHIrLL9TWiNgpW1athw4ZMmzaNiRMn8tRTTzF9+vQ6959A+Z6AgAC6du3Kli1b7C6lVpUb6MaYncaYOGNMHNALyAbeBCYCG4wx7YENrvvKS11++eWkpaVRr149EhIS+Oijj+wuSakq6dWrV52bR6/olMtVwE/GmF+AW4GVrsdXArdVZ2Gq9gUHB/Poo48yc+ZMXnrpJSZOnFhnT6FW3q9nz551bh69ooGeCKxzfd/EGJPu+j4D8P0L9tURPXr0YN26dTRv3pzExET+/ve/a7Mv5XW6dOnC3r17OX36tN2l1Bq3A11EAoFbgL+e/zNj/W8v8X+8iCSLyGYR2ZyVlVXpQlXtCgoKYvTo0cybN4/XXnuNMWPGkJ6eXv4TlfIQgYGBdO7cmW+//dbuUmpNRUboNwBfG2OKW/gdFpEYANfXzJKeZIxZbIzpbYzpHRUVVbVqVa3r1KkTq1atokePHgwaNIi0tDRt9qW8Rl1bvliRQE/i/6dbAN4Ghrq+Hwqsr66ilGfx9/dn+PDhLFmyhHfffZfk5GR++eUXu8tSqlx17QQjtwJdREKAa4A3znn4GeAaEdkFXO26r3xY69atWbJkCddccw3Dhw9nxYoVFBYW2l2WUqW65JJL+Omnn+rMiXNuBbox5owxppEx5sQ5j/1qjLnKGNPeGHO1MUaXQ9QBDoeDhIQEVq9ezaZNmxg6dCg7d+60uyylShQUFESHDh3qTIsLPVNUVUpsbCwvv/wyiYmJjB49mldeeUWbfSmPVJemXTTQVaWJCDfffDMpKSns3buXpKSkOrWiQHmHunRgVANdVVmjRo149tlnGTVqFI899hjPPfdcnZmzVJ6vW7du/Pjjj+Tm5tpdSo3TQFfVpn///qSlpXHmzBkSEhL4/PPP7S5JKerXr0/79u3rxDy6BrqqVmFhYTz55JNMmjSJp59+mmnTpmmzL2W7ujKProGuakTfvn1JTU2lfv36xMfH8+GHH9pdkqrDNNCVqqLiZl/PPPMMCxYs4NFHH+XIkSN2l6XqoLi4OLZv3+7zK7E00FWNi4uLY926dbRs2ZKkpCTeeecdbfalalVwcDCtW7dm27ZtdpdSozTQVa0IDAxk1KhRvPzyy6SkpDB69GgOHTpkd1mqDqkLyxc10FWt6tChAytXruTSSy9l8ODBpKamarMvVSvqwjy6Brqqdf7+/tx9990sW7aMDz74gBEjRrBnzx67y1I+Li4uju+//56CggK7S6kxGujKNi1btmTx4sVcf/31jBgxgmXLlmmzL1VjQkNDadGiBT/88IPdpdQYDXRlK4fDQXx8PGvWrOGbb75hyJAh7Nixw+6ylI/y9cvSaaArjxATE8P8+fMZOHAgY8aM4eWXXyYvL8/uspSP8fUDoxroymOICH/6059ISUlh//79JCUlsWXLFrvLUj6kR48efPfddz47taeBrjxOZGQks2fPZvTo0Tz++OM8++yz2uxLVYuwsDCaNWvG9u3b7S6lRmigK4/Vv39/UlNTyc3NJT4+ns8++8zukpQP8OXlixroyqOFhYUxdepUpkyZwjPPPMPUqVM5ceJE+U9UqhS+PI+uga68wu9+9ztSUlIICwsjPj6ef/3rX9o+QFVKjx49+PbbbykqKrK7lGqnga68RnBwMOPHj+e5555j0aJFTJgwQZt9qQqLiIigSZMmPnktXA105XW6devG2rVradu2LUlJSbz99ts6WlcV4qvz6BroyisFBgYycuRIFixYwF//+ldGjRqlzb6U23r16lV3A11EwkXkdRHZISLbRaSviESKyAcissv1NaKmi1XqfBdffDErVqzgsssuY/Dgwaxbt06bfaly9ezZk2+++cbn/q24O0KfB7xrjOkIdAe2AxOBDcaY9sAG132lap2fnx9Dhgxh+fLlfPjhh4wYMYKff/7Z7rKUB2vUqBGRkZHs2rXL7lKqVbmBLiINgX7AUgBjTL4x5jhwK7DStdlK4LaaKlIpd7Ro0YJXX32VG2+8keTkZJYuXeqzZwSqqvPF5YvujNBbA1nAchH5RkSWiEgI0MQYk+7aJgNoUlNFKuUuh8PBnXfeyZo1a/j2228ZPHiwz54VqKrGFw+MuhPo/kBPYKExpgdwhvOmV4y1xKDEZQYikiwim0Vkc1ZWVlXrVcotTZs2Zd68eQwePJiHHnqI+fPna7Mv9Ru+OI/uTqAfAA4YY75w3X8dK+APi0gMgOtrZklPNsYsNsb0Nsb0joqKqo6alXKLiHDjjTeSkpJCeno6SUlJPjciU5UXHR1NaGioTx1vKTfQjTEZwH4R6eB66CrgB+BtYKjrsaHA+hqpUKkqioyMZNasWYwZM4bJkycza9Yszpw5Y3dZygP42rSLu6tcHgReE5GtQBwwE3gGuEZEdgFXu+4r5bGuvPJK0tLSKCwsJD4+nk8//dTukpTNfO3AqNTmGXa9e/c2mzdvrrX3U6o0X375JTNmzKB79+6MGzeO8PBwu0tSNkhPT2fo0KG89957iIjd5ZRKRL4yxvQubzs9U1TVSX369CE1NZWIiAgSEhJ4//33tX1AHRQTE0O9evXYu3ev3aVUCw10VWfVr1+fsWPH8vzzz7NkyRLGjRuHrsSqe3xpHl0DXdV5l1xyCWvWrKFDhw4kJSXx1ltv6Wi9DvGlC0droCuF1ezrvvvuY+HChbzxxhs88MADHDx40O6yVC0oPjDqCx/iGuhKnaN9+/YsX76cyy+/nCFDhrB27VqfOvFEXSg2NhY/Pz/2799vdylVpoGu1Hn8/PwYPHgwK1asYOPGjQwfPtynTj5RvyUiPrN8UQNdqVJcdNFFLFq0iFtuuYXk5GT+8pe/UFBQYHdZqgb4yoFRDXSlyuBwOLjjjjtYu3Yt33//PYMGDeKHH36wuyxVzXxlHl0DXSk3REdHM3fuXIYNG8bDDz/Miy++SG5urt1lqWpy0UUXUVRU5PVXvdJAV8pNIsL1119PamoqmZmZJCYm+sS8q/KdeXQNdKUqKCIigpkzZzJ27FimTJnCzJkzOX36tN1lqSryheuMaqArVUn9+vUjLS0NYwzx8fH85z//sbskVQW+cGBUA12pKmjQoAGTJ09m2rRpPP/880yePJljx47ZXZaqhFatWpGbm0t6enr5G3soDXSlqsGll15KamoqUVFRJCQk8N5773n9iom6RkTo0aOHV4/SNdCVqib16tXj4YcfZu7cuSxbtoyxY8eSmVnihbyUh/L2A6Ma6EpVsy5durBmzRo6derEgAEDeOONN7R9gJfw9nl0DXSlakBAQADJycm8+uqrrF+/npEjR/pErxBf16ZNG06dOuW1v1lpoCtVg9q2bcvy5cvp168fd999N2vWrNHRugdzOBxePY+uga5UDXM4HAwcOJCVK1fyySefcPfdd7N79267y1Kl8Ob16BroStWS5s2bs3DhQm6//Xbuv/9+Xn31VfLz8+0uS53Hmw+MaqArVYtEhNtvv521a9eyc+dOBg0axLZt2+wuS52jXbt2HDt2jF9//dXuUipMA10pG0RHRzNnzhxGjBjB2LFjeeGFF8jJybG7LIU1RRYXF+eV0y5uBbqI7BWR70Rki4hsdj0WKSIfiMgu19eImi1VKd8iIlx77bWkpaVx9OhREhMT2bRpk91lKbx3+WJFRuj/ZYyJM8b0dt2fCGwwxrQHNrjuK6UqKDw8nBkzZjB+/Hj+/Oc/M2PGDE6dOmV3WXWat144uipTLrcCK13frwRuq3o5StVdf/jDH0hLS8PhcJCQkMDHH39sd0l1VocOHTh8+LDX9eVxN9AN8L6IfCUiya7HmhhjirvYZABNSnqiiCSLyGYR2ZyVlVXFcpXybQ0aNGDSpEk89dRTzJ07l0mTJnH06FG7y6pz/Pz86N69O998843dpVSIu4F+hTGmJ3ADMEpE+p37Q2N1ISqxE5ExZrExprcxpndUVFTVqlWqjujVqxfr1q2jadOmJCYm8s9//lObfdUyb1y+6FagG2MOur5mAm8CfYDDIhID4PrqnefKKuWh6tWrx5gxY3jxxRdZuXIljzzyCIcPH7a7rDrDG08wKjfQRSREREKLvweuBbYBbwNDXZsNBdbXVJFK1WWdO3dm9erVdO3alYEDB/K3v/1N2wfUgo4dO3Lw4EFOnjxpdyluc2eE3gT4RES+Bb4E/m6MeRd4BrhGRHYBV7vuK6VqQEBAACNGjGDx4sW888473H///ezbt8/usnyav78/3bp186p59HID3RjzszGmu+vWxRjztOvxX40xVxlj2htjrjbG6JEbpWpYmzZtWLZsGVdeeSXDhg1j1apVFBUV2V2Wz/K25Yt6pqhSXsbhcDBgwABWrVrF559/zt13382PP/5od1k+ydvm0TXQlfJSzZo1Y8GCBdx555088MADLFy4UJt9VbPOnTuzb98+rznRSwNdKS8mItx6662sW7eO3bt3M3DgQLZu3Wp3WT4jICCALl26sGXLFrtLcYsGulI+ICoqiueff57k5GQmTJj26yMdAAARs0lEQVTAnDlztNlXNfGmvi4a6Er5CBHhmmuuIS0tjRMnTpCQkMCXX35pd1lez5tOMPK3uwClVPVq2LAh06dP59NPP2XatGn87ne/45FHHiE0NNTu0rxS165d2bNnD9nZ2QQHB9tdTpl0hK6Uj/r9739PWloaQUFBxMfHs3HjRrtL8kqBgYF06tTJK+bRNdCV8mEhISE89thjPP3008yfP5+JEydqs69K8JblixroStUBPXv2ZN26dTRr1ozExET+8Y9/aLOvCvCWA6Ma6ErVEUFBQTz44IPMmzePNWvW8NBDD5GRkWF3WV7hkksuYdeuXR6/ckgDXak6plOnTqxatYq4uDgGDhxIWlqaNvsqR7169bj44ov57rvv7C6lTBroStVB/v7+DB8+nCVLlvDuu++SnJzML7/8YndZHs0bli9qoCtVh7Vu3ZolS5Zw9dVXM3z4cFasWKHNvkrhDY26NNCVquMcDgeJiYmsXr2aL7/8kqFDh2qzrxJ069aNnTt3kpeXZ3cppdJAV0oBEBsby4IFC4iPj2fUqFG88sor2uzrHMHBwbRt29aj59E10JVSZ4kIt9xyC+vWrWPPnj0MGDBAm32dw9PXo2ugK6Uu0LhxY5599llGjhzJhAkTeO6558jOzra7LNt5+oFRDXSlVIlEhKuuuoq0tDTOnDlDYmIin3/+ud1l2ap79+5s377dY6eiNNCVUmVq2LAhTz75JI8//jhPP/0006ZN86oLJ1enkJAQWrVqxffff293KSXSQFdKuaVv376kpqZSv359EhIS+PDDD+0uyRae3AZAA10p5bbg4GAeffRRZs2axYIFC3j00Uf59ddf7S6rVnnyenQNdKVUhcXFxbFu3TpatmxJYmIi77zzTp1p9tWjRw+2bdtGQUGB3aVcwO1AFxE/EflGRP7Hdb+1iHwhIrtFJFVEAmuuTKWUpwkMDGTUqFG89NJLrFu3jgcffJBDhw7ZXVaNCw0NpXnz5mzfvt3uUi5QkRH6Q8C5f4LZwFxjTDvgGHBPdRamlPIOHTt2ZNWqVfTq1YvBgweTmprq882+PHX5oluBLiLNgT8BS1z3BegPvO7aZCVwW00UqJTyfP7+/gwbNoylS5fy3nvvce+997J37167y6oxnnpg1N0R+ovAo0Dxx24j4LgxptB1/wDQrKQnikiyiGwWkc1ZWVlVKlYp5dlatWrFkiVLuO6667jnnntYtmwZhYWF5T/Ry/Ts2ZOtW7d6XCOzcgNdRG4CMo0xlfr9whiz2BjT2xjTOyoqqjIvoZTyIg6Hg/j4eFavXs3XX3/NkCFD2Llzp91lVauGDRsSExPDjh077C7lN9wZof8euEVE9gIpWFMt84BwEfF3bdMcOFgjFSqlvFJsbCwvvfQSAwYMYPTo0bz88ssee4ZlZXji8sVyA90Y87gxprkxphWQCHxojBkIfATc6dpsKLC+xqpUSnklEeGmm24iJSWFffv2kZiYyJYtW+wuq1p4YqOuqqxDfwwYKyK7sebUl1ZPSUopX9OoUSOeffZZRo8ezcSJE3n22We9vtlXjx492LJli0et6KlQoBtjNhpjbnJ9/7Mxpo8xpp0x5i5jjOd2fVdKeYT+/fuTlpZGbm4uCQkJ/O///q/dJVVaZGQkUVFRHnUxED1TVClVq8LCwpg6dSqTJ09m5syZ/PnPf/baZl+etnxRA10pZYvLLruM1NRUQkNDiY+PZ8OGDV7XPqBXr15s3rzZ7jLO0kBXStkmODiY8ePHM3v2bBYuXMijjz7KkSNH7C7LbT179vSoeXQNdKWU7bp3787atWtp3bo1SUlJvP32214xWm/cuDHh4eHs3r3b7lIADXSllIcIDAzkgQceYMGCBaSmpjJq1CivaPblScsXNdCVUh7l4osvZtWqVfzud79j8ODBpKSkeMyURkk86cCoBrpSyuP4+fkxdOhQli1bxr/+9S9GjBjBnj177C6rRMUjdE+YItJAV0p5rJYtW7J48WJuuOEGRowY4ZHNvqKjowkJCfGIDxwNdKWUR3M4HNx1112sWbOGLVu2MHjwYI+7uISn9EfXQFdKeYWYmBjmzZvH4MGDeeihh3jppZfIy/OME9Q9ZR5dA10p5TVEhBtvvJGUlBQOHTpEUlKSRwRpcedFu+fRNdCVUl4nMjKSWbNmMWbMGCZPnszs2bM5c+aMbfXExsYSGBjIL7/8YlsNoIGulPJiV155JampqeTn55OQkMCnn35qWy2eMO2iga6U8mphYWFMmTKFqVOnMnv2bKZOncrx48drvY7evXvbfmBUA10p5RP69OlDamoq4eHhJCQk8MEHH9TqnHbxCN3OeXQNdKWUz6hfvz5jx47lueeeY/HixYwfP57aujh9s2bNEBEOHDhQK+9XEg10pZTP6datG6+99hrt27cnKSmJ9evX1/jIWURsn0fXQFdK+aTAwEDuv/9+XnnlFV5//XUeeOABDh6s2WvZ233haA10pZRPu/jii1mxYgV9+/ZlyJAhrF27tsaafdndeVEDXSnl8/z8/BgyZAjLly9n48aNDB8+nJ9//rna36dFixbk5+fb1vZXA10pVWe0aNGCRYsWcfPNN5OcnMySJUsoKCiottcXEVtH6eUGuojUE5EvReRbEfleRKa5Hm8tIl+IyG4RSRWRwJovVymlqsbhcPDf//3fvPbaa2zdupXBgwfzww8/VNvr23lg1J0Reh7Q3xjTHYgDrheRy4DZwFxjTDvgGHBPzZWplFLVq0mTJsybN4+hQ4fy8MMPM3/+fHJzc6v8unZeOLrcQDeW0667Aa6bAfoDr7seXwncViMVKqVUDRERbrjhBlJSUsjIyCApKanKq1Rat25NTk4Ohw8frqYq3efWHLqI+InIFiAT+AD4CThujCnuNH8AaFYzJSqlVM2KjIxk5syZPPLII0yZMoWZM2dy+vTp8p9YAhGhR48e///BYIx1qwVuBboxpsgYEwc0B/oAHd19AxFJFpHNIrK5ts7YUkqpyujXrx+pqakYY4iPj+eTTz6p+Iukp3PX8eM0mzwZevWCNm2gdWvo2hXuugvmzIEdO6q/eEAqevaUiEwFcoDHgKbGmEIR6Qs8aYy5rqzn9u7d29g1t6SUUhWxadMmZsyYwSWXXMK4ceOIiIgo+wl79sDTT8PGjeTn55N19CjN2rSBgADr50VFkJsL+fngcEDnzjBpElx2Wbm1iMhXxpje5W3nziqXKBEJd31fH7gG2A58BNzp2mwosL7cqpRSyktceumlpKSk0KhRIxISEnj//fdLbh/gdMKyZXD99fDRRxAWRkB0NKcdDgocDhCxbv7+0KABREZCw4bWKH3gQJg8GbKzq6XmckfoItIN66CnH9YHQJoxZrqItAFSgEjgG2CQMabM60HpCF0p5Y22bdvG9OnTad68ORMnTiQ6Otr6QVERTJgA69dDSAgE/v/q7f0HDhAWFkbDsLDSX7ioCE6cgC5dYM0aK+hLUG0jdGPMVmNMD2NMN2NMV2PMdNfjPxtj+hhj2hlj7iovzJVSylt17dqVNWvW0LFjRwYMGMCbb76JcTrhiSesMG/Y8DdhDhAcHEx2eSNvPz+IiIAffoAhQ6wpmSrQM0WVUsoNgYGBJCcns2jRIt58803m33wzhWvXWmHuuDBK3Qp0sKZjwsNh2zaYO7dKNWqgK6VUBbRr147lc+cy+Lvv2H/kCL8eP05JE9f16tWjsKCAwsLCEn56HhEIDbXm4rdurXRtGuhKKVVBfm+8QWRAAM3atuXUqVPs3buX3LzfzjoLFRilg3XQ1BiYP7/SdWmgK6VURTidsGQJ1K9PYGAgLVu2JDw8nF9++YWsrCyc5yw0KapXj8fS07lixw5u2r2bd0+cKPu1w8Jg40ZIT69UaRroSilVETt2wLFjUK8eYI3EI8LDadOmDbm5uezZs4ecnBwAFmRnYwoLef/ii5kRG8usjAx+zitj/UjxXPx//lOp0jTQlVKqIrZvL/FU/gB/f5pfdBGNGzdm//797M3I4OPsbOIdDgKNIS44mD+GhvL38kbpxkAll3droCulVEVs22atHy+BAA3DwmjTti378vIozMujZVDQ2Xn09kFBZY/QwRr5V/LAqAa6UkpVxPHjJS5TPJe/nx+hUVE0DAoiLy+PPFeIN3A4OFPe5e8cDqhkYzD/Sj1LKaXqqkD3ruUT7HCQJ0LHDh1wiABwxukkpJwPA4yxTjiqBB2hK6VURbRsaa10KUeLwECKgAPnXOLux7w82gQFlf3EggK46KJKlaaBrpRSFdG1q1uj9PoOB/1DQ1mUlUWO08m32dn8+9Qp/lRKv5az8vOhT59KlaaBrpRSFdG1q3VQ1I1R+sSmTclzOrnmxx+ZdPAgjzdtWv4IPSDA6qNeCTqHrpRSFREZCf37w4YNVg+WMoT5+TGnItMnubnWa7rRI70kOkJXSqmKGjHC+urGKL1CcnLg3nv1oKhSStWaSy+FG26Akyer7zVPnoQWLaw2upWkga6UUpUxfbrVOvfUqaq/VvHJRvPmQXlz7GXQQFdKqcqIiIDVq60VL1UZqefmWlMtzz8P3bpVqSQNdKWUqqzOnSEtzQr348crNqdujPWcoiJYsABuuaXK5ZR7TdHqJCJZwC+19obQGDhSi+9XGZ5eo6fXB1pjdfD0+qBu19jSGBNV3ka1Gui1TUQ2u3NhVTt5eo2eXh9ojdXB0+sDrdEdOuWilFI+QgNdKaV8hK8H+mK7C3CDp9fo6fWB1lgdPL0+0BrL5dNz6EopVZf4+ghdKaXqDJ8IdBGpJyJfisi3IvK9iExzPd5aRL4Qkd0ikioi7nWmr90aV4jIHhHZ4rrF2VWjqx4/EflGRP7Hdd9j9mEZNXraPtwrIt+5atnseixSRD4QkV2urxEeWOOTInLwnP14o801hovI6yKyQ0S2i0hfT9qPpdRn6z70iUAH8oD+xpjuQBxwvYhcBswG5hpj2gHHgHs8sEaACcaYONdti30lAvAQsP2c+560D4udXyN41j4E+C9XLcVL2CYCG4wx7YENrvt2O79GsP6ui/fjP2yrzDIPeNcY0xHojvV37kn7saT6wMZ96BOBbizFF+ELcN0M0B943fX4SuA2G8oDyqzRY4hIc+BPwBLXfcGD9iFcWKMXuRVr/4EH7EdPJyINgX7AUgBjTL4x5jgesh/LqM9WPhHocPbX8C1AJvAB8BNw3BhT6NrkANDMrvrgwhqNMV+4fvS0iGwVkbkiUvnOPFX3IvAoUHz+ciM8bB9yYY3FPGUfgvVB/b6IfCUiya7Hmhhj0l3fZwBN7CntrJJqBBjt2o/LbJ4Wag1kActd02tLRCQEz9mPpdUHNu5Dnwl0Y0yRMSYOaA70ATraXNIFzq9RRLoCj2PVeikQCTxmR20ichOQaYz5yo73d0cZNXrEPjzHFcaYnsANwCgR6XfuD421tMzu385KqnEh0BZrSjAdmGNjff5AT2ChMaYHcIbzplds3o+l1WfrPvSZQC/m+rXnI6AvEC4ixVdlag4ctK2wc5xT4/XGmHTXdEwesBzrw8gOvwduEZG9QArWVMs8PGsfXlCjiKzxoH0IgDHmoOtrJvCmq57DIhID4PqaaV+FJddojDnsGnQ4gb9g7348ABw457fY17EC1FP2Y4n12b0PfSLQRSRKRMJd39cHrsE6QPERcKdrs6HAensqLLXGHef84xSs+cBtdtRnjHncGNPcGNMKSAQ+NMYMxIP2YSk1DvKUfeiqIUREQou/B6511fM21v4D+/8tllhj8X50uR0b96MxJgPYLyIdXA9dBfyAh+zH0uqzex/6yjVFY4CVIuKH9SGVZoz5HxH5AUgRkRnAN7gOYHhYjR+KSBQgwBbgfhtrLMljeM4+LM1rHrQPmwBvWp8t+ANrjTHvisgmIE1E7sHqOBrvgTWudi35NMBe4D77SgTgQay/20DgZ2AYrv87HrIfS6pvvp37UM8UVUopH+ETUy5KKaU00JVSymdooCullI/QQFdKKR+hga6UUj5CA10ppXyEBrpSSvkIDXSllPIR/wfKymSwbAg+6QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -753,31 +762,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -595242.8232593088\n", - "time: 66.49582099914551\n", - "feasible: True\n", - "solution: [1, 0, 2]\n", - "solution objective: 67.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XtclGX+//HXxRkRRQRTE6Ny1a/mpqWuablRaWSuouIMnlrNRP2m5U8rzQPtAqm12q753TxknlLjHik1NVN3UzPrG6tU6jfNs3lc8gAqIiBz/f4YdK1UBhi4h5nP8/HgITPch8/cj/HNxTXXfV1Ka40QQoiqz8fsAoQQQriGBLoQQngICXQhhPAQEuhCCOEhJNCFEMJDSKALIYSHkEAXQggPIYEuhBAeQgJdCCE8hJ+zGyqlfIHtwAmtdVel1N1AGlAb2AEM0FoX3O4YEREROjo6+uY/LCiAH3+EvDzw8XF8lURrKCpybNugAdSs6ezLEUKIKmPHjh1ntNaRJW3ndKADLwJ7gBrFj98A/qq1TlNKzQYGA7Nud4Do6Gi2b9/+6x/83/9B374QEeEIZaVKURZw5YrjF8GgQfD886XbVwgh3JxS6qgz2znV5aKUagA8DcwrfqyAx4D04k0WAXGlLxM4csQR5leuQFhY6cMcICgIQkPhrbdg8eIylSGEEFWds33ofwNeAezFj2sD2Vrrq8WPjwN3lvrsRUXwwguQm+sI5PLw84Pq1eH112H//vIdSwghqqASA10p1RXI0lrvKMsJlFKJSqntSqntP/30089/uHgxfP+96/q+/f3BbodRoxz/CiGEF3Gmhd4B6KaUOoLjQ9DHgBlAmFLqWh98A+DEzXbWWs/VWrfWWreOjLyhT7+wEN5+G4KDy9bNcis1asC+ffC//+u6YwohRBVQYqBrrV/VWjfQWkcDCcBnWut+wCYgvnizPwKrSnXmTZvg0iUIDLztZrZz5xhw+DAP7d3Ln06eLPm4SjlGv7z3XqnKEUKIqq4849DHAqOVUgdw9KmXLkHXrnUEbwki/PwYHBFBt9J0y9SoAVu2OIZCCiGElyjNsEW01puBzcXfHwLalvnMmZmO0SkleKyGY5Tk93l5ZF29WsLWxXx8wNcXDh6E//qvMpcohBBViTl3ihYWwvHjJXa3lIvWcOBAxR1fCCHcTKla6C6Tn+9oRZfiw9DLeXlcLixEA07tpbXjZiMhhPAS5rTQfX1LPaywsLCQS5cucezHHykoLCx5B6UcY9OFEMJLmBPoQUGOm4CcCeZioaGh+Pj64h8QwOHDhzl3/jy3/UjVxwfq1i13qUIIUVWYE+hKQYsWjtv9S1CkNQV2OyhFUHAweYWFRN11Fxdycjh65Aj5+fm/3klrxy+LZs0qoHghhHBP5vVJPPoofP11iZu9d+YMc8+cuf7404sXGe7ry39HR3P+/HmOHD1K7fBwateujbrWJ5+X55h9MSysgooXQgj3Y16gx8XBtGmOvvTbTJWbGBlJ4g13mJ49d47LubkoILxWLapXr87p06e5cPgw9erXJzgoyNE6f+65SngRQgjhPsxb4KJOHejcGXJySrVbrVq1uHLlCnnF3TUB/v5ERUVRu3Ztjv34Iz+dPIndzw+6d6+IqoUQwm2Zu2LRxImOD0hv1g9+Cz5KUTsighsn+lJAzZo1uefuu/HJy+Ot0FAyZQy6EMLLmBvodetCaipcvgzO3gUKhIWFkZ+fz+Ubx5lrjV9uLrW7dKH11KlMmDCBKVOmkJubWwGFCyGE+zF/TdEePRyrDF244PQwRh+liLixla41ZGfDb34Ds2bx6GOPYbPZKCoqwmKx8MUXX1TgCxBCCPegtBMTZLlK69at9U2XoNMa5s2Dv/zF8Tg0tMS7SLXWHDx4kPqRkVTTGtq2hdmzHRNz3SAjI4PXX3+dFi1aMGbMGGrVquWqlyOEEJVCKbVDa926pO3Mb6GDI7yHDIGVKyE6Gi5edHxYequ7SbVGXblCvWrVyD5zBp2SAkuW/CrMAdq2bUtaWhq1a9fGarWyYcMGKvOXmBBCVBb3CPRrmjWDTz91tNbbtXOE+qVLjn+zs3/+ODyc4Ndf55WHH+Zf995726GPwcHB/L//9/946623mDdvHmPGjCErK6sSX5gQQlQ89+hyuZX8fMfqQwcPOm4W8vWFO+90TIkbHg7Ap59+is1m47333vvPjUW3UVhYyIIFC7DZbPz3f/83cXFx+Nzml4EQQpjN2S4X9w50J9jtdhISEhg1ahTt27d3er8DBw6QnJxMcHAwEydOJCoqyqV1CSGEq1StPvRy8PHxITExkdmzZ5eqb7xRo0YsXLiQjh07MnDgQN5//32KiooqsFIhhKhYVT7QAR577DEKCwvZunVrqfbz8fGhX79+LFq0iG3btjFo0CD2799fQVUKIUTF8ohA9/HxYdiwYcyePRt7KedZB2jQoAGzZs2iZ8+eDB8+nNmzZ1Mg65EKIaoYjwh0gI4dO+Lr68vmzZvLtL9Siri4OJYtW8a+ffvo168fO3fudG2RQghRgTwm0JVS5WqlX1OnTh2mT59OYmIiL7/8MtOnTydPlrITQlQBHhPoAO3btyckJIR//OMf5TqOUopOnTphs9nIycnBarWSkZHhoiqFEKJieFSgX2ulz5kzxyUjVmrWrElycjLjxo0jOTmZ5ORkLly44IJKhRDC9Twq0MFxq394eDiffvqpy47Zvn17DMMgMDAQq9XKpk2bXHZsIYRwFY8L9Gut9HfffZerpZiStyQhISGMHTuWyZMnM3PmTMaOHcvZs2dddnwhhCgvjwt0gAcffJB69eqxdu1alx+7VatWpKWlERUVRUJCAmvWrJHJvoQQbsEjAx1g2LBhzJs3j0In51gvjYCAAEaMGMHMmTNZtmwZI0eO5OTJky4/jxBClIbHBvr9999PdHQ0H3/8cYWdo2nTpixevJgHH3yQAQMGYBhGuYZMCiFEeXhsoIOjlf7ee+9V6F2ffn5+DBo0iPfee48NGzbw3HPPcfjw4Qo7nxBC3IpHB3rz5s1p2rQpK1asqPBzRUdH8+677xIbG8tzzz3H/PnzXfqhrBBClMSjAx1g6NChLFiwgCtXrlT4uXx8fLBYLCxZsoRvv/2WZ555hj179lT4eYUQApwIdKVUkFIqQyn1nVLq/5RSfy5+fqFS6rBS6tvir5YVX27pNWnShN/+9rekp6dX2jnr1avHjBkz6N+/Py+++CIzZ84kPz+/0s4vhPBOzrTQ84HHtNb3Ay2BWKVUu+Kfvay1bln89W2FVVlOiYmJLF68mMuXL1faOZVSdOnShbS0NE6ePEmfPn3IzMystPMLIbxPiYGuHS4VP/Qv/qpSA68bNWpE69atsdlslX7u8PBwpkyZwgsvvMCECROYOnUqubm5lV6HEMLzOdWHrpTyVUp9C2QBG7XWXxf/6HWl1E6l1F+VUoEVVqULJCYmsnTpUtPC9NFHH8UwDAoLC7FYLGzbts2UOoQQnqtUa4oqpcKAFcBI4CxwGggA5gIHtdbJN9knEUgEaNiw4YNHjx51Qdllk5SURMOGDXnuuedMqwEgIyOD1NRU7r//fsaMGUNYWJip9Qgh3FuFrCmqtc4GNgGxWutTxd0x+cACoO0t9pmrtW6ttW4dGRlZmtO53JAhQ/jggw9MnzGxbdu2GIZBrVq1sFgsbNiwQaYPEEKUmzOjXCKLW+YopYKBTsBepVS94ucUEAfsrshCXSEqKorf//73LFu2zOxSCA4OZvTo0UyfPp158+YxZswYsrKyzC5LCFGFOdNCrwdsUkrtBP6Fow99DbBUKbUL2AVEAKkVV6brPPfccyxfvpycnByzSwGgRYsWLFmyhKZNm9K3b18++ugjmT5ACFEmpepDL6/WrVvr7du3V9r5bmXy5MmEhoYycuRIs0v5mQMHDpCcnExwcDATJ04kKirK7JKEEG6gQvrQPcXgwYNZsWIF586dM7uUn2nUqBELFy6kY8eODBw4kPfff98lKy8JIbyDVwb6HXfcQWxsLIsWLTK7lF/x8fGhX79+LFq0iG3btjFo0CAOHDhgdllCiCrAKwMdYNCgQaxevZozZ86YXcpNNWjQgFmzZtGzZ0+GDRvG7NmzK3TWSCFE1ee1gR4ZGUnXrl1ZsGCB2aXcklKKuLg4li1bxr59++jfvz+7du0yuywhhJvy2kAHGDhwIOvWrePf//632aXcVp06dZg+fTpDhgzhpZde4q233iIvL8/ssoQQbsarAz08PJwePXowf/58s0spkVKKTp06YbPZyM7Oxmq1kpGRYXZZQgg34tWBDjBgwAA2btxYZdYErVmzJsnJyYwdO5Y///nPJCcnm37nqxDCPXh9oIeFhdG7d2/mzZtndiml0qFDB2w2G4GBgVitVjZt2mR2SUIIk3l9oAP069ePLVu2cOzYMbNLKZWQkBDGjh3L5MmTmTlzJmPHjuXs2bNmlyWEMIkEOlCjRg0SEhJ49913zS6lTFq1asUHH3xAVFQUffr0Yc2aNTLZlxBeSAK9WN++ffnqq684cuSI2aWUSWBgICNGjODtt99m2bJljBw5ssp8LiCEcA0J9GIhISH07duXuXPnml1KuTRt2pTFixfz4IMPMmDAAAzDkMm+hPASEug3sFqtbN++nYMHD5pdSrn4+fkxaNAg3nvvPTZs2MCQIUOq7F8eQgjnSaDfoFq1agwYMIA5c+aYXYpLREdH8+677/Lkk08yePBg5s+fz9WrV80uSwhRQSTQf6F3797s3LmTffv2mV2KS/j4+GCxWFiyZAnffPMNzzzzDHv37jW7LCFEBZBA/4WgoCAGDhzI7NmzzS7FperVq8fbb79Nv379eOGFF5g5cyb5+flmlyWEcCEJ9Jvo2bMne/fu5fvvvze7FJdSSvH000+TlpbGiRMn6NOnD5mZmWaXJYRwEQn0mwgICODZZ5/1uFb6NeHh4UydOpWRI0cyYcIEpk6dSm5urtllCSHKSQL9Frp3787hw4fZuXOn2aVUmJiYGAzDoLCwEIvFwrZt28wuSQhRDhLot+Dv78/gwYM9tpV+TY0aNZg0aRKvvfYab7zxBpMmTSI7O9vssoQQZSCBfhtdu3blxIkTXtHP3LZtWwzDoFatWlitVjZs2CDTBwhRxUig34afnx9Dhgxh9uzZXhFuwcHBjB49mmnTpjFv3jzGjBlDVlaW2WUJIZwkgV6Cp556ijNnzvCvf/3L7FIqTYsWLViyZAlNmzalb9++rFixwit+oQlR1Umgl8DX15ehQ4cya9Ysrwq1gIAAEhMTmT17NitWrGD48OFVbnphIbyNBLoTOnXqRG5uLl999ZXZpVS6Ro0asXDhQh555BEGDhzIkiVLKCoqMrssIcRNSKA7wcfHh6FDh3pNX/ov+fj40K9fPxYtWsQXX3zBoEGDOHDggNllCSF+QQLdSTExMVy9epWtW7eaXYppGjRowKxZs+jRowfDhg1jzpw5FBQUmF2WEKKYBLqTbmyle/P84kopevTowbJly/jhhx/o378/u3btMrssIQQS6KXSsWNHfH19ZUFmoE6dOkyfPp3nnnuOMWPG8NZbb5GXl2d2WUJ4NQn0UlBKXe9q8OZW+jVKKTp37ozNZiM7Oxur1UpGRobZZQnhtSTQS6l9+/aEhISwceNGs0txG2FhYSQnJzN27Fj+/Oc/k5yczIULF8wuSwivU2KgK6WClFIZSqnvlFL/p5T6c/HzdyulvlZKHVBKGUqpgIov13xKKYYPH86cOXNk+N4vdOjQAZvNRmBgIFarVbqmhKhkzrTQ84HHtNb3Ay2BWKVUO+AN4K9a60bAeWBwxZXpXtq0aUPt2rX59NNPzS7F7YSEhDB27Fhef/11Zs6cybhx4zh37pzZZQnhFUoMdO1wqfihf/GXBh4D0oufXwTEVUiFbuhaK33u3LmyRuctPPDAA3zwwQc0aNCAhIQE1q5d65Vj+IWoTE71oSulfJVS3wJZwEbgIJCttb6WZseBOyumRPf0wAMPcOedd7J27VqzS3FbgYGBjBgxgrfffpulS5fywgsvcOrUKbPLEsJj+Tmzkda6CGiplAoDVgBNnT2BUioRSARo2LBhWWp0W8OGDWPChAl06dIF/6IiyMyE77+Hb7+FnBzw84N77oGWLeH++8HDXr+zmjZtyuLFi3n//ffp378/Q4cOJT4+Hh8f+UxeCFdSpf0zWCmVBOQBY4G6WuurSqmHgD9prZ+83b6tW7fW27dvL3Ox7mji4MFY8/JosXMnFBY6vnx94VpYFRSAvz/Y7dCqFQwbBo89BkqZW7hJjhw5QnJyMkopJk2aRHR0tNklCeH2lFI7tNatS9rOmVEukcUtc5RSwUAnYA+wCYgv3uyPwKqyl1sF2e2QlsbETZuovXIldqUgNBTCw6FmTcf3oaFQuzbUqOF47rvvYOhQeOYZOH3a7FdgiujoaObNm8eTTz7J4MGDmT9/vnwOIYSLOPM3bz1gk1JqJ/AvYKPWeg2OFvpopdQBoDbwXsWV6Wby8x0t7QkTCAoJoSg0lOySFllW6j/B/tVX0Lkz7NhROfW6GR8fHywWC0uWLOGbb77hmWeeYe/evWaXJUSVV+oul/LwiC6XwkJITITPP4ewMFCKK1eu8OOxYzRq1AgfZ7tSrv0CWLbM0RXjpbTWfPLJJ/ztb3+jW7duJCYmEhgYaHZZQrgVl3W5iF/4+99hy5brYQ4QFBREteBgzp8/7/xxQkJAa3juOfDiRZmVUjz99NMYhsGJEyfo06cP33zzjdllCVElSaCXxvffwzvvOLpOftESj4iM5OyZMxSVZo6X6tUdYf7aay4utOoJDw9n6tSpjBw5kvHjxzN16lRyS+rGEkL8jAR6aaSmOj4M9fv1aM+gwECqhYSUrpUOjj71tWthzx4XFVm1xcTEYBgGhYWFWCwWtm3bZnZJQlQZEujOOnoUMjIcrfNbiIyM5NzZs5wvLOSl48d5eO9euh44wKc5Obc+ro+Po+tl8eIKKLpqqlGjBpMmTeK1117jjTfeICkpiWwv7pYSwlkS6M76+GNH6/w2N8MEBgQQUr06fz5yBH+l2NC4Man16zPl9GkO5eff+tihobBiBcjwvZ9p27YthmEQFhaG1Wplw4YNMn2AELchge6sr75y3CBUgurh4Wy+dInE8HCq+fjQslo1fh8aytrbtdL9/Byt9EOHXFiwZwgODmb06NFMmzaNefPmMWbMGLKysswuSwi3JIHurN27ISioxM1OA/6+voRcunT9ud8EBt6+hQ6OQJex2LfUokULlixZQpMmTejbty8rVqyQ1roQvyCB7gyt4cKFm34Y+kuX7XZqBgZy/tw5LhcvyVbdx4fckka/XL3q1cMXnREQEHB9XdcVK1YwfPhwjh8/bnZZQrgNCXRnOdkarObjQ57W1L/zTk4cP86Ro0c5k5tLtZImotLa0UcvStSoUSMWLFjAww8/zB//+EeWLFkiSwIKgQS6c67N0+LECkUNAwIoAs4HBNCoUSPCa9Vi14ULhF64wJkzZ249b4mfn2MIo3CKr68v/fv3Z+HChWzdupWBAwdy4MABs8sSwlQS6M5q3hyuXClxs2AfHx4LDWX2Tz9xRWsO+/nxna8vfaOiKCgs5ODBg5w4eZK8Xx7LxweaOj0rsSgWFRXF7Nmz6dGjx/UFvAsKCswuSwhTSKA766GHHFPhOmFc3brk2+102reP8SdO8GrduvxXjRrUr1ePexs1IjAwkOPHj3P4yBFyLlzAfvWqo8vl3nsr+EV4JqUUPXr0YNmyZfzwww/079+f3bt3m12WEJVOJudy1v790KXLTW/7LwsNXLp4kXPnz+N/6RJn2renfloaERER5a/Vi2mt2bhxI9OnT+fJJ59k+PDhBAcHm12WEOUik3O52m9+A7/9rWO0iwsoIDQ0lLuiooisU4eMZs3o3bs3EyZMYOfOnTIkr4yUUnTu3BnDMMjOzsZqtZKRkWF2WUJUCmmhl8Y330Dv3o4PSH19XXPM7GyIiYG5c7l46RKrV6/GMAxq1KiB1Wqlc+fOBAQEuOZcXmjbtm1MnjyZdu3aMWrUKEJDQ80uSYhSkxZ6RWjVCgYNcqwX6opfhJcvQ7VqMHkyKEVoaOj1m2aGDh3K+vXr6dq1K++8847cHVlGHTp0wGazERAQgMViYfPmzWaXJESFkRZ6aeXnO5aQ2779Z3Oil1penmOxjIULoX37W2529OhRDMPg008/pU2bNlitVlq1aoXy0jVJyyMzM5PU1FQaN27MK6+8Qnh4uNklCeEUZ1voEuhlkZvrWJgiI8Mxp7kTc7xcp7Wjhe/vD3PmQMeOTp4ylzVr1mAYBkFBQVgsFmJjYwlyYjoC8R/5+fnMnTuX1atX8+KLL9KlSxf55SjcngR6Rbt6Fd59F/76V8cNR6Ght58aQGtHF0tBAdx3n2O/e+4p9Wntdjtff/01hmGwe/duunXrRnx8PPXr1y/Hi/E+e/fuJTk5mdq1azN+/Hjq1atndklC3JIEemU5dMjR0l650vG4oAACA/8zz3lhoeNfX1+IjnYsLt29u0s+VD1+/Dg2m401a9bQqlUrrFYrbdq0kRank65evcrixYtZunQpQ4cOJT4+Hp+SpmgQwgQS6JUtJwf+93/hu+8co2EuXfpPiLdtC/ffD82auWQM+y9dvnyZdevWYRgGAFarlaeeeopq1aq5/Fye6MiRIyQnJ6OUYtKkSURHR5tdkhA/I4HuhbTWbN++HcMwyMzMpGvXrlgsFho0aGB2aW7PbreTnp7OnDlz6NevH8888wx+TsyuKURlkED3cidPniQ9PZ2PP/6Y++67D6vVyu9+9zvpUijBqVOnmDx5MmfPniUpKYmmMr+OcAMS6AKAK1eusH79egzD4MqVK1itVrp27UpISIjZpbktrTWffPIJM2bMoFu3bgwZMoTAwECzyxJeTAJd/IzWmm+//RbDMMjIyCA2Nhar1cpdd91ldmlu69y5c7zxxhvs37+fSZMm0apVK7NLEl5KAl3cUlZWFunp6axcuZLGjRtjtVrp0KGDdMfcwqZNm3jzzTd59NFHGTFihPx1IyqdBLooUUFBARs3bsQwDHJycrBYLHTr1k3mO7mJCxcuMGPGDL7++mteffVVOnToYHZJwotIoAunaa3ZvXs3hmGwbds2OnXqhNVq5V6Zn/1XMjIySE1NpWXLlowePZqwsDCzSxJeQCbnEk5TStGiRQtSU1NZvnw5ERERPP/88wwbNoxNmzZR5MTSe96ibdu2GIZBWFgYVquVDRs2yFTHwm1IC13cVGFhIZ999hmGYZCVlUXv3r2Ji4ujpqx7et2uXbtISUmhQYMGjBs3jjp16phdkvBQ0uUiXOb777/HMAw+//xzYmJiSEhIoHHjxmaX5RYKCgpYsGABy5cv5/nnnycuLk6mXhAu57JAV0pFAYuBO3CsnDZXaz1DKfUnYAjwU/Gm47XWn9zuWBLoVdu5c+dYuXIl6enp1K9fH6vVSkxMjNxRCezfv5+UlBSqVavGxIkT5e5c4VKuDPR6QD2tdaZSKhTYAcQBFuCS1nqas0VJoHuGq1evsnnzZgzD4MSJE/Tq1YsePXp4/fziRUVFfPDBByxYsIBnn32WPn36yFBQ4RIV1uWilFoF/A/QAQl0r7dv3z4Mw+Czzz7jkUceISEhgWbNmpldlqmOHTtGamoqV65cISkpSUYLiXKrkEBXSkUDnwP3AaOBgcAFYDswRmt9/nb7S6B7rpycHFatWnV9lIzVauXxxx/HvzSLf3gQu93OqlWr+Pvf/47FYmHgwIGyNqwoM5cHulKqOrAFeF1r/ZFS6g7gDI5+9RQc3TLP3mS/RCARoGHDhg8ePXrU+Vchqhy73c7nn3+OYRgcOnSIXr160bNnTyIiIswuzRRZWVlMnTqV48ePk5SUxH333Wd2SaIKcmmgK6X8gTXAeq31Wzf5eTSwRmt923ertNC9y6FDhzAMgw0bNtC+fXusVistWrTwulEgWms2btzItGnTiI2NZfjw4QQHB5tdlqhCXHZjkXL873sP2HNjmBd/WHpND2B3WQoVnuuee+7h1Vdf5eOPP6Z58+YkJSXxzDPPsGbNGgoKCswur9IopejcuTM2m43z589jtVrJyMgwuyzhgZwZ5fIwsBXYBdiLnx4P9AFa4uhyOQIM1Vqfut2xpIXu3ex2O19++SWGYfDDDz8QFxdHfHy8192Q88UXXzBlyhTatWvHqFGjZO4cUSK5sUi4taNHj2Kz2Vi3bh1t2rTBarXSqlUrr+mOyc3NZebMmWzZsoWxY8fy6KOPml2ScGMS6KJKyM3NZe3atRiGQWBgIBaLhdjYWIKCgswurVJkZmaSmppK48aNeeWVV7x+LL+4OQl0UaXY7XYyMjIwDINdu3bRrVs34uPjqV+/vtmlVbj8/Hzmzp3L6tWrefHFF+nSpYvX/KUinCOBLqqs48ePs3z5clavXk2rVq2wWq20adPG40Nuz549pKSkEBERwauvvkq9evVK3kl4BQl0UeXl5eWxbt060tLSALBYLHTp0oVq1aqZXFnFuXr1KosXL2bp0qUMHTqU+Ph4mT5ASKALz6G1Zvv27RiGQWZmJl27dqV3795ERUWZXVqFOXLkCMnJySilSEpKkrVfvZwEuvBIp06dYvny5dfHtlutVtq1a+eRrVi73U56ejpz5syhf//+DBgwQGa29FIS6MKj5efn8+mnn2IYBleuXMFisfCHP/zBIxdwPnXqFJMnT+bs2bO89tprNGnSxOySRCWTQBdeQWvNt99+i2EYZGRkEBsbi8ViITo62uzSXEprzdq1a5kxYwbdu3dnyJAhBAYGml2WqCQS6MLrZGVlkZ6ezsqVK2ncuDFWq5UOHTp4VHfM2bNnefPNN9m/fz+TJk2iVatWZpckKoEEuvBaBQUFbNy4EcMwyMnJwWKx0K1bN4+6xX7Tpk28+eabPProo4wcOdKjR/4IF07OJURVExAQwNNPP82iRYtITU1lz549dOvWjcmTJ3Pw4EGzy3OJmJgYDMMgPz8fi8XCl19+aXZJwg1IC114hbNnz/Lhhx/y0UcfER0djdV253YdAAAUvklEQVRqpWPHjvj6+ppdWrllZGSQmppKy5YtGT16NGFhYWaXJFxMulyEuInCwkI+++wzDMMgKyuL3r17ExcXR82aNc0urVzy8vKYNWsW69ev56WXXuKJJ57w+DtrvYkEuhAl2LNnD4ZhsGXLFmJiYkhISKBx48Zml1Uuu3btIiUlhaioKMaNG0dkZKTZJQkXkEAXwknnz59nxYoVpKenU79+faxWKzExMVX2Jp6CggIWLFjA8uXLGTFiBN27d5fWehUngS5EKRUVFbF582YMw+D48eP06tWLHj16VNkpbffv309KSgrVqlVj4sSJNGjQwOySRBlJoAtRDvv27cNms/HPf/6TRx55hISEBJo1a2Z2WaVWVFTEsmXLWLhwIc8++yx9+vTxqHH53kICXQgXyMnJYdWqVSxfvpyIiAisViuPP/44/v7+ZpdWKseOHSM1NZUrV66QlJTEvffea3ZJohQk0IVwIbvdzueff45hGBw6dIhevXrRs2dPIiIizC7NaXa7nZUrV/LOO+9gsVgYNGhQlfvF5K0k0IWoIIcOHcIwDDZs2ED79u2xWq20aNGiynzwmJWVxZQpUzhx4gRJSUncd999ZpckSiCBLkQFu3jxIqtXr8ZmsxEaGorVaqVz584EBASYXVqJtNZs3LiRadOmERsby/DhwwkODja7LHELEuhCVBK73c6XX36JYRj88MMPxMXFER8fT506dcwurUTZ2dlMnz6dnTt3MnHiRNq0aWN2SeImJNCFMMHRo0ex2WysW7eONm3aYLVaadWqldt3x3zxxRdMmTKFhx56iBdffNGjJjLzBBLoQpjo8uXLrFmzBsMwCAgIwGq1EhsbS1BQkNml3VJubi4zZ87k888/Z+zYsfz+9783uyRRTAJdCDdgt9vJyMjAMAx27dpFt27diI+Pp379+maXdkuZmZmkpqbSpEkTXn755Sp7Y5UnkelzhXADPj4+tGvXjr/+9a8sXLiQoqIiBgwYwJgxY8jIyKAyG1TOeuCBB/jggw+oX78+CQkJfPLJJ25Zp/g1aaELUcny8vJYt24daWlpAFgsFrp06eKWi1Ts2bOHlJQUIiIiGD9+PHXr1jW7JK8kXS5CuDmtNTt27MAwDHbs2EHXrl3p3bs3UVFRZpf2M1evXmXx4sUsXbqUoUOHEh8fL9MHVDIJdCGqkFOnTpGens6qVato3rw5VquVdu3auVVwHj58mJSUFHx8fJg0aRJ33XWX2SV5DQl0Iaqg/Px81q9fT1paGleuXMFisfCHP/yBkJAQs0sDHB/ypqenM2fOHPr378+AAQOq7DTDVYkEuhBVmNaa7777jrS0NDIyMoiNjcVisRAdHW12aQCcPHmSyZMnc+7cOV577TWaNGlidkkezWWBrpSKAhYDdwAamKu1nqGUCgcMIBo4Ali01udvdywJdCFKLysri/T0dFauXEnjxo2xWq106NDB9O4YrTVr165lxowZdO/encTExCox7UFV5MpArwfU01pnKqVCgR1AHDAQOKe1nqqUGgfU0lqPvd2xJNCFKLuCggI2btyIYRjk5ORgsVjo1q2b6Xd1nj17ljfffJP9+/eTlJREy5YtTa3HE1VYl4tSahXwP8Vfj2qtTxWH/mat9W3/7pJAF6L8tNbs3r0bwzDYtm0bnTp1wmq1mj7H+WeffcZf/vIXYmJiGDFihFsOw6yqKuTGIqVUNNAK+Bq4Q2t9qvhHp3F0yQghKphSihYtWpCamkp6ejqRkZE8//zzDBs2jE2bNlFUVGRKXY899hiGYVz/MPfLL780pQ5v5nQLXSlVHdgCvK61/kgpla21Drvh5+e11rVusl8ikAjQsGHDB48ePeqayoUQ1xUWFvLZZ59hGAZZWVn07t2buLg4atasaUo9GRkZpKam0rJlS8aMGWNaHZ7CpV0uSil/YA2wXmv9VvFzPyBdLkK4nT179mAYBlu2bCEmJoaEhAQaN25c6XVcvnyZ2bNns379el566SWeeOIJt5910l258kNRBSzC8QHoqBue/wtw9oYPRcO11q/c7lgS6EJUnvPnz7NixQrS09OpX78+VquVmJiYSh83vnPnTlJTU4mKimLcuHFERkZW6vk9gSsD/WFgK7ALsBc/PR5HP7oNaAgcxTFs8dztjiWBLkTlKyoqYvPmzRiGwfHjx+nVqxc9evSo1FkUCwoKmD9/Punp6YwYMYLu3btLa70U5MYiIcSv7Nu3D5vNxj//+U8eeeQREhISaNasWaWdf//+/aSkpBASEsKECRNo0KBBpZ27KpNAF0Lc0oULF1i5ciXLly+ndu3aWK1WnnjiCfz9/Sv83EVFRSxbtoyFCxfy7LPP0qdPH9NvknJ3EuhCiBLZ7Xa2bt2KYRgcPHiQnj170qtXLyIiIir83MeOHSMlJYX8/HySkpJMH0fvziTQhRClcujQIWw2G+vXr+ehhx4iISGBFi1aVGhft91uZ+XKlbzzzjtYLBYGDRpUKX8lVDUS6EKIMrl48SKrV6/GZrNRvXp1rFYrTz75ZIXO05KVlcWUKVM4ceIEr732Gs2bN6+wc1VFEuhCiHKx2+18+eWXGIbBDz/8QFxcHPHx8dSpU6dCzqe1ZuPGjUybNo2nnnqKYcOGERwcXCHnqmpkTVEhRLn4+Pjw8MMPM3PmTN59911yc3NJSEhg7NixZGZmunydUaUUnTt3xmazce7cORISEvjXv/7l0nN4OmmhCyGcdvnyZdasWYNhGAQEBGC1WomNjSUoKMjl5/riiy+YMmUKDz30EC+++KLps0qaSVroQgiXq1atGhaLhfT0dEaNGsXnn39O165defvttzl58qRLz/Xwww9js9nw8/PDarWyZcsWlx7fE0kLXQhRLidOnMBms7FmzRpatmyJ1WqlTZs2Lh0dk5mZSWpqKk2aNOHll1+u1Ltc3YF8KCqEqFR5eXmsW7eOtLQ0ACwWC126dHHZvOj5+fnMmTOHNWvWMGrUKJ566imvmT5AAl0IYQqtNTt27MAwDHbs2EHXrl3p3bs3UVFRLjn+999/T0pKCpGRkYwfP566deu65LjuTAJdCGG6U6dOkZ6ezqpVq2jevDlWq5V27dqV+1b/q1evsnjxYpYuXcrQoUOJj4/36OkDJNCFEG4jPz+f9evXk5aWdn1Foz/84Q+EhISU67iHDx8mJSUFHx8fJk2axF133eWiit2LBLoQwu1orfnuu+8wDIOvv/6a2NhYLBYL0dHRZT6m3W5n+fLlzJ07lwEDBtC/f/9Kn/O9okmgCyHcWlZWFh9++CErVqygcePGWK1WOnToUOauk5MnTzJ58mTOnz9PUlISTZrcdgG1KkUCXQhRJRQUFPCPf/yDtLQ0cnJyrnfH1KhRo9TH0lqzdu1aZsyYQVxcHEOGDKnQOWgqiwS6EKLK2b17N4Zh8MUXX9CpUyesVmuZptU9e/Ysb775Jvv37ycpKYmWLVtWQLWVRwJdCFFlnT17lo8++ogPP/yQu+66i4SEBDp27Iivr2+pjvPZZ5/xl7/8hZiYGEaMGOGyMfGVTQJdCFHlFRYWsmnTJtLS0sjKyqJ3797ExcVRs2ZNp49x4cIF/va3v5GRkcH48eNp3759BVZcMSTQhRAeZe/evRiGwebNm4mJiSEhIYHGjRs7vf/XX3/N66+/TsuWLRkzZkypfimYTQJdCOGRzp8/f3091Pr162O1WomJiXFqqOLly5eZPXs2GzZs4KWXXuLxxx+vEtMHSKALITxaUVERW7ZsIS0tjePHj9OrVy969Ojh1MRdO3fuJCUlhYYNGzJu3DgiIyMroeKyk0AXQniN/fv3YxgG//znP3nkkUdISEigWbNmt92noKCA+fPn8+GHHzJixAi6devmtq11CXQhhNe5cOECK1euJD09nfDwcKxWK0888cRtF57ev38/KSkphISEMHHiRO68885KrNg5EuhCCK9lt9vZunUrhmFw8OBBevbsSa9evYiIiLjp9kVFRSxbtoyFCxcyePBgEhIS3GqyLwl0IYQADh06hM1mY8OGDbRr146EhARatGhx0+6VY8eOkZKSQn5+PklJSWW6qem6wkI4fBiys0FrCAuDu++GMty5KoEuhBA3uHjxIqtXr8Zms1G9enWsVitPPvnkr6YGsNvtrFy5knfeeQeLxcKgQYNu22XzM7m5sHo1LFkCP/wAvr5w7ReH3Q5FRdC4MfTtC926gZPTG0igCyHETdjtdr766isMw2Dv3r3ExcURHx9PnTp1frZdVlYWU6ZM4eTJkyQlJdG8efNbH7SoCBYuhOnTHS1zPz8IDoZfdtvY7ZCX59jG3x9GjoTERMf2tyGBLoQQJfjxxx+x2Wx88skntGnTBqvVSqtWra53x2it2bhxI9OmTeOpp55i+PDhBAUF/fwgJ0/C8OGwezeEhDjfpVJYCJcuQdOmMGsWNGx4y00l0IUQwkmXL19mzZo12Gw2/P39sVqtxMbGXg/v7Oxspk2bxq5du5g4cSJt2rRx7HjsGMTHw9mzULPmf7pXnKU15OQ4+teXL3f0sd+EBLoQQpSS1pqMjAwMw2Dnzp1069aN+Ph46tevD8DWrVuZMmUK7du358XBgwm1WOD0aUeYl8eFC1CrFqxf7wj3X3A20Escl6OUmq+UylJK7b7huT8ppU4opb4t/upS6hcghBBuRinF7373O9566y0WLVqE3W5nwIABjBkzhoyMDB5++GGWL1+Or68vn3ToQN6hQ+UPc3B8OHrmDPzpT+Wrv6QWulKqI3AJWKy1vq/4uT8Bl7TW00pzMmmhCyGqmry8PNatW4dhGGitsVgsPF2vHiohgRMXLxIYHEzdO+4o/7J3drujpb54MfxiRkhnW+glVqC1/lwpFV3mIoUQogoLDg6mZ8+e9OjRg8zMTAzDIGDJEh4pKODOqChycnI4dOgQd9xxBzVq1uRaL3qB3c7U06fJuHyZC0VFNPD3Z0SdOrSvXv3mJ/LxcfTBz579q0B3VnluhRqhlNpZ3CVTqxzHEUIIt6eU4sEHH+TNl16iS1AQhUFB/Hj0KPn5+dSOiODM2bMcO3aMwsJCAIqAuv7+zG3YkM2NGzM8MpJxJ05wsqDg1icJDYWvvoITJ8pUY1kDfRZwL9ASOAVMv9WGSqlEpdR2pdT2n376qYynE0IIN5GZiZ+/P3Xq1qXRb35DjdBQcnJy0HY72m7n0KFDnDt/niAfHxIjI6kfEICPUjwSGkp9f3/2Xrly62Nfa6WXsWu6TIGutf631rpIa20H3gXa3mbbuVrr1lrr1u4+RaUQQpTou++guJXtoxRhYWHcfffd1K9fH18/P+xac/r0aQ4dOkT+Da3xc1ev8mNBAfcEBt7++FevwjfflKm0MvXiK6Xqaa1PFT/sAey+3fZCCOEx9u791c1DCqhWrRrVqlWj8OpVzp87x09nzrB3715q165NnXr1mHjyJF1r1iS6pEAPCIA9e8pUWomBrpT6AHgUiFBKHQdeAx5VSrUENHAEGFqmswshRFVz5cptbyDy9/OjTp06RERGcv7cOU6dPs3MoiL8gFfq1i35+D4+jnOUgTOjXPrc5On3ynQ2IYSo6oKCHEMMS+CjFOHh4fxPfj7ZhYW8HRWFnzN3ktrtjnOUgftM+CuEEFXBffc55mFxwpTTpzlcUMBfo6IIdHZ+9fx8xznKoJwj4YUQwsv89rdOTcB1qrCQj7KzCVCKJ/fvv/78+Lp1eep2d5f6+0OrVmUqTQJdCCFK48EHHZNqFRU55ju/hXr+/mz/r/8q3bHtdsfXtcm/Skm6XIQQojTCwyE21nGbvqtduAAxMXDHHWXaXQJdCCFKa+hQx2iUoiLXHfPasYYPL/MhJNCFEKK0mjeHgQPh4kXXHfPiRUhIgAceKPMhJNCFEKIsRo92LEiRnV3+Y+XkwJ13wquvluswEuhCCFEWwcGwdCk0aADnzzs+KC0trR371qkDH3zgWMKuHCTQhRCirOrUgY8+ckx3m51dujs88/Md+7RpAytWQPGqSOVRqUvQKaV+Ao6WYdcI4IyLy/EEcl1uTq7Lzcl1ubmqcF3u0lqXOLthpQZ6WSmltjuzWoe3ketyc3Jdbk6uy8150nWRLhchhPAQEuhCCOEhqkqgzzW7ADcl1+Xm5LrcnFyXm/OY61Il+tCFEEKUrKq00IUQQpTALQNdKXVEKbVLKfWtUmp78XPhSqmNSqn9xf/WMrvOynaL6/InpdSJ4ue+VUp1MbvOyqaUClNKpSul9iql9iilHvL298strolXv1eUUk1ueO3fKqUuKKVGedJ7xS27XJRSR4DWWuszNzz3JnBOaz1VKTUOqKW1HmtWjWa4xXX5E3BJaz3NrLrMppRaBGzVWs9TSgUA1YDxePH75RbXZBRe/l65RinlC5wAfgc8j4e8V9yyhX4L3YFFxd8vAuJMrEW4CaVUTaAjxcsiaq0LtNbZePH75TbXRPzH48BBrfVRPOi94q6BroENSqkdSqnE4ufu0FqfKv7+NFC2CYOrtptdF4ARSqmdSqn5VfnPxTK6G/gJWKCU+kYpNU8pFYJ3v19udU3Au98rN0oAPij+3mPeK+4a6A9rrR8AngKeV0p1vPGH2tFP5H59RRXvZtdlFnAv0BI4BUw3sT4z+AEPALO01q2AXGDcjRt44fvlVtfE298rABR3QXUDlv/yZ1X9veKWga61PlH8bxawAmgL/FspVQ+g+N8s8yo0x82ui9b631rrIq21HXgXx7XyJseB41rrr4sfp+MIM29+v9z0msh75bqngEyt9b+LH3vMe8XtAl0pFaKUCr32PdAZ2A18DPyxeLM/AqvMqdAct7ou196IxXrguFZeQ2t9GjimlGpS/NTjwPd48fvlVtfE298rN+jDf7pbwIPeK243ykUpdQ+O1ic4/nRcprV+XSlVG7ABDXHM2GjRWp8zqcxKd5vr8j6OP6E1cAQYekN/oFdQSrUE5gEBwCFgEI7Gije/X252Td5G3ishwI/APVrrnOLnPCZb3C7QhRBClI3bdbkIIYQoGwl0IYTwEBLoQgjhISTQhRDCQ0igCyGEh5BAF0IIDyGBLoQQHkICXQghPMT/B9jFcDvYi0EzAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "seed = 10598\n", "\n", @@ -785,7 +770,7 @@ "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", @@ -811,7 +796,7 @@ " 'algorithm': algorithm_cfg,\n", " 'optimizer': optimizer_cfg,\n", " 'variational_form': var_form_cfg,\n", - " 'backend': {'provider': 'qiskit.Aer', 'name': 'statevector_simulator'}\n", + " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'}\n", "}\n", "result = run_algorithm(parahms,algo_input)\n", "\"\"\"\n", @@ -840,14 +825,14 @@ "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis', batch_mode=True)\n", "\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", "\"\"\"update params in the previous cell\n", "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", - "params['backend']['provider'] = 'qiskit.Aer'\n", + "params['backend']['provider'] = 'qiskit.BasicAer'\n", "params['backend']['name'] = 'qasm_simulator'\n", "params['backend']['shots'] = 1024\n", "result = run_algorithm(params,algo_input)\n", From 128e8329c59d3c7598deab0eeccfe0da58e4ae64 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Tue, 12 Mar 2019 11:34:49 -0400 Subject: [PATCH 023/116] Fixed grover input file --- community/aqua/optimization/input_files/grover.json | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/community/aqua/optimization/input_files/grover.json b/community/aqua/optimization/input_files/grover.json index d8a3bb5ea..bbf409359 100644 --- a/community/aqua/optimization/input_files/grover.json +++ b/community/aqua/optimization/input_files/grover.json @@ -7,8 +7,8 @@ "name": "qasm_simulator" }, "oracle": { - "dimacs_cnf": "c This is an example DIMACS 3-sat file with 3 satisfying solutions: 1 -2 3 0, -1 -2 -3 0, 1 2 -3 0\np cnf 3 5\n-1 -2 -3 0\n1 -2 3 0\n1 2 -3 0\n1 -2 -3 0\n-1 2 3 0", - "name": "SAT" + "expression": "p cnf 3 5 \n -1 -2 -3 0 \n 1 -2 3 0 \n 1 2 -3 0 \n 1 -2 -3 0 \n -1 2 3 0", + "name": "LogicExpressionOracle" }, "problem": { "name": "search" From 332936fb030457921d88b5e89f7451409be3e03f Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Wed, 13 Mar 2019 16:49:28 +0100 Subject: [PATCH 024/116] Add Aqua tutorial solving linear systems of equation with HHL --- .../general/linear_systems_of_equations.ipynb | 559 ++++++++++++++++++ 1 file changed, 559 insertions(+) create mode 100644 qiskit/aqua/general/linear_systems_of_equations.ipynb diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb new file mode 100644 index 000000000..b9ad0233d --- /dev/null +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -0,0 +1,559 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Solving linear systems of equations with the HHL algorithm*_\n", + "\n", + "***\n", + "### Contributors\n", + "David Bucher[1], Jan Mueggenburg[1], Gawel Kus[1], Isabel Haide[1], Shubha Deutschle[1], Harry Barowski[1], Dominik Steenken[1], and Albert Frisch[1]\n", + "### Affiliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The HHL algorithm (after the author’s surnames Harrow-Hassidim-Lloyd) [1] is a quantum algorithm to solve systems of linear equations $A \\vec{x} = \\vec{b}$. To perform this calculation quantum mechanically, we need in general 4 main steps requiring three qubit registers:\n", + "
    \n", + "
  1. First, we have to express the vector $\\vec{b}$ as a quantum state $|b\\rangle$ on a quantum register.
  2. \n", + "
  3. Now, we have to decompose $\\vec{b}$ into a superposition of eigenvectors of A remembering on the linear combination of the vector $\\vec{b}$. We achieve this using the Quantum Phase Estimation algorithm (Quantum Phase Estimation (QPE)). Since the matrix is hereby diagonalized wherefore $A$ is easily invertible.
  4. \n", + "
  5. The inversion of the eigenvector base of $A$ is achieved by rotating an ancillary qubit by an angle $\\arcsin \\left( \\frac{C}{\\lambda _{\\text{i}}} \\right)$ around the y-axis where $\\lambda_{\\text{i}}$ are the eigenvalues of $A$. Now, we obtain the state $A^{-1}|b\\rangle = |x \\rangle$.
  6. \n", + "
  7. We need to uncompute the register storing the eigenvalues using the inverse QPE. We measure the ancillary qubit whereby the measurement of 1 indicates that the matrix inversion was successful. The inverse QPE leaves the system in a state proportional to the solution vector $|x\\rangle$. In many cases one is not interested in the single vector elements of $|x\\rangle$ but only on certain properties. These are accessible by applying a problem-specific operator $M$ to the state $|x\\rangle$. Another use-case of the HHL algorithm is the implementation in a larger quantum program.
  8. \n", + "
\n", + "Currently only hermitian matrices with a dimension of $2^n$ are supported.\n", + "\n", + "Take into account that in the general case, the entries of $\\vec{x}$ can not be efficiently read out because we would need to know all coefficients describing the quantum state.\n", + "In the following examples, we ignore this constraint and show for our small linear system as a proof of principle that $\\vec{x}$ is calculated correctly.\n", + "\n", + "References:\n", + "- A. W. Harrow, A. Hassidim, and S. Lloyd, Phys. Rev. Lett. 103, 150502 (2009), e-print arXiv 0811.3171\n", + "- S. Barz, I. Kassal, M. Ringbauer, Y. Ole Lipp, B. Dakić, A. Aspuru-Guzik, and P. Walther, Sci Rep. 4: 6115 (2014), e-print arXiv 1302.1210" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import LinearSystemInput\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "params = {\n", + " 'problem': {\n", + " 'name': 'linear_system'\n", + " },\n", + " 'algorithm': {\n", + " 'name': 'HHL'\n", + " },\n", + " 'eigs': {\n", + " 'expansion_mode': 'suzuki',\n", + " 'expansion_order': 2,\n", + " 'name': 'EigsQPE',\n", + " 'num_ancillae': 3,\n", + " 'num_time_slices': 50\n", + " },\n", + " 'reciprocal': {\n", + " 'name': 'Lookup'\n", + " },\n", + " 'backend': {\n", + " 'name': 'statevector_simulator'\n", + " }\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2x2 diagonal matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we show an example for running the HHL algorithm with Qiskit Aqua on a diagonal matrix as input\n", + "$$\n", + "A=\n", + "\\begin{bmatrix}\n", + "1 & 0 \\\\\n", + "0 & 2\n", + "\\end{bmatrix}$$ with the vector $$\\vec{b}= \\left( \\begin{array}{c}1 \\\\ 4 \\end{array} \\right)$$\n", + "The `result` dictionary contains several return values. The HHL solution for $\\vec{x}$ is accessible by the key `'solution_hhl'`. For comparison, also the classical solution of the linear system of equations is calculated using standard linear algebra functions in numpy. The fidelity between the HHL solution and the classical solution is also given in the output. Furthermore, the probability is shown with which HHL was running successfully, i.e. the HHL ancillary qubit has been measured to be $|1\\rangle$." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "matrix = [[1, 0], [0, 2]]\n", + "vector = [1, 4]\n", + "params['input'] = {\n", + " 'name': 'LinearSystemInput',\n", + " 'matrix': matrix,\n", + " 'vector': vector\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hhl solution [1.05859-0.j 1.99245-0.j]\n", + "classical solution [1. 2.]\n", + "fidelity 0.999389\n", + "probability 0.024630\n" + ] + } + ], + "source": [ + "result = run_algorithm(params)\n", + "\n", + "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", + "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", + "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", + "print(\"probability %f\" % result['probability_result'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The probabilty that HHL runs successfully depends on the constant $C$ (see step 3. in the introduction). In the HHL algorithm, $C$ can be given as the parameter `scale` $\\in [0,1]$. In the above example `scale` is not defined in the `params` dictionary and the HHL algorithm initializes it to the smallest possible eigenvalue before execution. Alternatively, we can set `scale` to 0.5 and see how the results are influenced thereby." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hhl solution [0.84664-0.j 2.01762-0.j]\n", + "classical solution [1. 2.]\n", + "fidelity 0.995605\n", + "probability 0.361437\n" + ] + } + ], + "source": [ + "params2 = params\n", + "params2['reciprocal'] = { \n", + " 'scale': 0.5\n", + "}\n", + "\n", + "result = run_algorithm(params2)\n", + "\n", + "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", + "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", + "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", + "print(\"probability %f\" % result['probability_result'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to know how many qubits are required (circuit width) or how large the maximum number of gates applied to a single qubit (circuit depth) is, you can print it out by" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "circuit_depth 12255\n", + "circuit_width 7\n" + ] + } + ], + "source": [ + "print(\"circuit_depth\", result['circuit_depth'])\n", + "print(\"circuit_width\", result['circuit_width'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2x2 non-diagonal matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we show an example for running the HHL algorithm with Qiskit Aqua on a non-diagonal matrix as input\n", + "$$\n", + "A=\n", + "\\begin{bmatrix}\n", + "1 & 3 \\\\\n", + "3 & 2\n", + "\\end{bmatrix}$$ with the vector $$\\vec{b}= \\left( \\begin{array}{c}1 \\\\ 1 \\end{array} \\right)$$\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "matrix = [[1, 3], [3, 2]]\n", + "vector = [1, 1]\n", + "params['input'] = {\n", + " 'name': 'LinearSystemInput',\n", + " 'matrix': matrix,\n", + " 'vector': vector\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hhl solution [0.22147+0.j 0.22034-0.j]\n", + "classical solution [0.14286 0.28571]\n", + "fidelity 0.898454\n", + "probability 0.424639\n" + ] + } + ], + "source": [ + "result = run_algorithm(params)\n", + "\n", + "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", + "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", + "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", + "print(\"probability %f\" % result['probability_result'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compared to the the first example, the circuit depth is increased approximately by a factor 2,5" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "circuit_depth 30253\n", + "circuit_width 7\n" + ] + } + ], + "source": [ + "print(\"circuit_depth\", result['circuit_depth'])\n", + "print(\"circuit_width\", result['circuit_width'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 8x8 non-diagonal matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For simplicity, we show a HHL execution of a linear systom of equations defined by the following 8x8 dimensional matrix\n", + "$$\n", + "A=\n", + "\\begin{bmatrix}\n", + "4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\\\\n", + "0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 \\\\\n", + "0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 \\\\\n", + "0 & 0 & 0 & 5 & 0 & 0 & 0 & 0 \\\\\n", + "0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 \\\\\n", + "0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\\\\n", + "0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\\\\n", + "1 & 0 & 0 & 0 & 0 & 0 & 0 & 5\n", + "\\end{bmatrix}$$ and the vector $$\\vec{b}= \\left( \\begin{array}{c}1 \\\\ 0 \\\\ 0 \\\\ 0 \\\\ 0 \\\\ 0 \\\\ 0 \\\\ 1 \\end{array} \\right)$$" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "matrix = [[4, 0, 0, 0, 0, 0, 0, 1],\n", + " [0, 3, 0, 0, 0, 0, 0, 0],\n", + " [0, 0, 8, 0, 0, 0, 0, 0],\n", + " [0, 0, 0, 5, 0, 0, 0, 0],\n", + " [0, 0, 0, 0, 2, 1, 0, 0],\n", + " [0, 0, 0, 0, 1, 1, 0, 0],\n", + " [0, 0, 0, 0, 0, 0, 1, 0],\n", + " [1, 0, 0, 0, 0, 0, 0, 5]]\n", + "vector = [1, 0, 0, 0, 0, 0, 0, 1]\n", + "params['input'] = {\n", + " 'name': 'LinearSystemInput',\n", + " 'matrix': matrix,\n", + " 'vector': vector\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hhl solution [ 0.18195-0.j 0. -0.j -0. -0.j -0. +0.j 0. +0.j\n", + " 0. +0.j -0. -0.j 0.18041+0.j]\n", + "classical solution [0.21053 0. 0. 0. 0. 0. 0. 0.15789]\n", + "fidelity 0.981173\n", + "probability 0.935566\n" + ] + } + ], + "source": [ + "result = run_algorithm(params)\n", + "\n", + "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", + "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", + "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", + "print(\"probability %f\" % result['probability_result'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Considering the circuit depth, it is increased approximately by a factor 10 compared to the two dimensional matrices. The circuit width is increased by two additional qubits" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "circuit_depth 315268\n", + "circuit_width 9\n" + ] + } + ], + "source": [ + "print(\"circuit_depth\", result['circuit_depth'])\n", + "print(\"circuit_width\", result['circuit_width'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 4x4 randomly-generated matrix" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we show the application of HHL on a randomly-generated 4x4 matrix. We use the function `random_hermitian` to generate a random hermitian matrix and initialize the random seed to achieve reproducibility of the HHL run. Since the matrix can have negative eigenvalues, the `params` dictionary has to be modified by `\"negative_evals\": True` in `\"eigs\"` and `\"reciprocal\"`, respectively. We choose $$\\vec{b}= \\left( \\begin{array}{c}1 \\\\ 2 \\\\ 3 \\\\ 1 \\end{array} \\right)$$" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit import Aer\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua.algorithms.single_sample import HHL\n", + "from qiskit.aqua.utils import random_hermitian" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is needed for this example to define the \"initial_state\", the \"qft\" and the \"iqft\" additionally:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "params3 = params\n", + "params3[\"reciprocal\"] = {\n", + " \"name\": \"Lookup\",\n", + " \"negative_evals\": True\n", + "}\n", + "params3[\"eigs\"] = {\n", + " \"expansion_mode\": \"suzuki\",\n", + " \"expansion_order\": 2,\n", + " \"name\": \"EigsQPE\",\n", + " \"negative_evals\": True,\n", + " \"num_ancillae\": 6,\n", + " \"num_time_slices\": 70\n", + "}\n", + "params3[\"initial_state\"] = {\n", + " \"name\": \"CUSTOM\"\n", + "}\n", + "params3[\"iqft\"] = {\n", + " \"name\": \"STANDARD\"\n", + "}\n", + "params3[\"qft\"] = {\n", + " \"name\": \"STANDARD\"\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we create an instance of the `HHL` class and run the algorithm with an input that is created programatically. To get the same pseudo-random matrix for every run, we set the random seed by using `np.random.seed(1)`." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "random matrix:\n", + "[[ 0.284+0.j -0.257-0.051j -0.124+0.033j 0.038+0.023j]\n", + " [-0.257+0.051j 0.404+0.j 0.067-0.079j 0.054+0.055j]\n", + " [-0.124-0.033j 0.067+0.079j 0.282-0.j 0.043+0.004j]\n", + " [ 0.038-0.023j 0.054-0.055j 0.043-0.004j 0.206+0.j ]]\n", + "HHL results:\n", + "hhl solution [ 79.9768 +4.52073j 60.28272 +3.09211j 37.51853 -9.5858j\n", + " -35.02324+26.46894j]\n", + "classical solution [ 76.1399 +1.92451j 57.30622 +1.20141j 35.96381-10.07775j\n", + " -32.03837+25.90593j]\n", + "fidelity 0.999946\n", + "probability 0.256771\n" + ] + } + ], + "source": [ + "# set the random seed to get the same pseudo-random matrix for every run\n", + "np.random.seed(1)\n", + "matrix = random_hermitian(4)\n", + "vector = [1, 2, 3, 1]\n", + "\n", + "print(\"random matrix:\")\n", + "m = np.array(matrix)\n", + "print(np.round(m, 3))\n", + "\n", + "algo_input = LinearSystemInput(matrix=matrix, vector=vector)\n", + "hhl = HHL.init_params(params3, algo_input)\n", + "backend = Aer.get_backend('statevector_simulator')\n", + "quantum_instance = QuantumInstance(backend=backend)\n", + "result_hhl = hhl.run(quantum_instance)\n", + "\n", + "print(\"HHL results:\")\n", + "print(\"hhl solution \", np.round(result_hhl['solution_hhl'], 5))\n", + "print(\"classical solution \", np.round(result_hhl['solution_classical'], 5))\n", + "print(\"fidelity %f\" % result_hhl['fidelity_hhl_to_classical'])\n", + "print(\"probability %f\" % result_hhl['probability_result'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The circuit depth and width are" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "circuit_depth 973532\n", + "circuit_width 12\n" + ] + } + ], + "source": [ + "print(\"circuit_depth\", result_hhl['circuit_depth'])\n", + "print(\"circuit_width\", result_hhl['circuit_width'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 9204369a5b7a0e49d370d26aa29d4f8d36cd25c7 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Fri, 22 Mar 2019 16:29:50 -0400 Subject: [PATCH 025/116] Fix Hamiltonian run return values --- .../LiH_with_qubit_tapering_and_uccsd.ipynb | 29 +++++++++++++++---- 1 file changed, 23 insertions(+), 6 deletions(-) diff --git a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb index 2e08a8734..d4d685ed4 100644 --- a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb +++ b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb @@ -65,8 +65,7 @@ "source": [ "core = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, \n", " two_qubit_reduction=True, freeze_core=True)\n", - "algo_input = core.run(molecule)\n", - "qubit_op = algo_input.qubit_op\n", + "qubit_op, _ = core.run(molecule)\n", "\n", "print(\"Originally requires {} qubits\".format(qubit_op.num_qubits))\n", "print(qubit_op)" @@ -236,7 +235,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -267,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -276,9 +275,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "=== GROUND STATE ENERGY ===\n", + " \n", + "* Electronic ground state energy (Hartree): -8.874303856889\n", + " - computed part: -1.078084288118\n", + " - frozen energy part: -7.796219568771\n", + " - particle hole part: 0.0\n", + "~ Nuclear repulsion energy (Hartree): 0.992207270475\n", + "> Total ground state energy (Hartree): -7.882096586414\n", + "The parameters for UCCSD are:\n", + "[ 0.03815735 0.00366554 0.03827111 0.00369737 -0.03604811 0.0594364\n", + " -0.02741369 -0.02735108 0.05956488 -0.11497243]\n" + ] + } + ], "source": [ "result = core.process_algorithm_result(algo_result)\n", "for line in result[0]:\n", From 7b082e29b47c8e35c6213a33d2842ff64c53f9fc Mon Sep 17 00:00:00 2001 From: woodsp Date: Sun, 31 Mar 2019 10:58:52 -0400 Subject: [PATCH 026/116] random_distributions was renamed to uncertainty_models --- qiskit/aqua/finance/european_call_option_pricing.ipynb | 8 ++++---- qiskit/aqua/finance/fixed_income_pricing.ipynb | 10 +++++----- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/qiskit/aqua/finance/european_call_option_pricing.ipynb b/qiskit/aqua/finance/european_call_option_pricing.ipynb index 70a5e1485..f14bf4def 100644 --- a/qiskit/aqua/finance/european_call_option_pricing.ipynb +++ b/qiskit/aqua/finance/european_call_option_pricing.ipynb @@ -64,7 +64,7 @@ "from qiskit import BasicAer\n", "from qiskit.aqua.algorithms import AmplitudeEstimation\n", "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue, EuropeanCallDelta\n", - "from qiskit.aqua.components.random_distributions import LogNormalDistribution" + "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution" ] }, { @@ -462,9 +462,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_wor", + "display_name": "Python 3", "language": "python", - "name": "qiskit_wor" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -476,7 +476,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/aqua/finance/fixed_income_pricing.ipynb b/qiskit/aqua/finance/fixed_income_pricing.ipynb index f5db68337..ca6a1a64c 100644 --- a/qiskit/aqua/finance/fixed_income_pricing.ipynb +++ b/qiskit/aqua/finance/fixed_income_pricing.ipynb @@ -52,8 +52,8 @@ "import numpy as np\n", "from qiskit import BasicAer\n", "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.random_distributions import MultivariateNormalDistribution\n", - "from qiskit.aqua.components.uncertainty_problems import FixedIncomeExpectedValue" + "from qiskit.aqua.components.uncertainty_problems import FixedIncomeExpectedValue\n", + "from qiskit.aqua.components.uncertainty_models import MultivariateNormalDistribution" ] }, { @@ -324,9 +324,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_wor", + "display_name": "Python 3", "language": "python", - "name": "qiskit_wor" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -338,7 +338,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.1" } }, "nbformat": 4, From 26cd630d86c506218dad3a08e6b4eb3289741ea5 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Tue, 2 Apr 2019 11:52:15 -0400 Subject: [PATCH 027/116] add arbitrary logic expr and truth table examples --- community/aqua/optimization/grover.ipynb | 135 ++++++++++++++++++++--- 1 file changed, 118 insertions(+), 17 deletions(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index 86dbe67d8..e89608c2b 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -6,11 +6,9 @@ "collapsed": true }, "source": [ - "## _*Using Grover's Search to Find a Solution to a SAT problem*_\n", + "# _*Using Grover's Algorithm to Perform Quantum Search*_\n", "\n", - "This notebook demonstrates how to use the `Qiskit Aqua` library `Grover` search algorithm and process the result.\n", - "\n", - "Further information is available for the algorithms in the github repo qiskit/aqua/readme.md" + "This notebook demonstrates how to use the `Qiskit Aqua` library `Grover` search algorithm and process the result." ] }, { @@ -26,14 +24,16 @@ "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.algorithms import Grover\n", - "from qiskit.aqua.components.oracles import LogicExpressionOracle" + "from qiskit.aqua.components.oracles import LogicExpressionOracle, TruthTableOracle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Suppose we have a [Satisfiability (SAT) problem](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem), for which we would like to use `Grover` search algorithm to find a satisfying solution. SAT problems are usually expressed in [Conjunctive Normal Forms (CNF)](https://en.wikipedia.org/wiki/Conjunctive_normal_form) and written in the [DIMACS-CNF](https://www.satcompetition.org/2009/format-benchmarks2009.html) format. For example:" + "## Use Quantum Search to Find Solutions to SATisfiability Problems\n", + "\n", + "Let's look at an example 3-Satisfiability (3-SAT) problem and walkthrough how we can use Quantum Search to find its satisfying solutions. 3-SAT problems are usually expressed in [Conjunctive Normal Forms (CNF)](https://en.wikipedia.org/wiki/Conjunctive_normal_form) and written in the [DIMACS-CNF](https://www.satcompetition.org/2009/format-benchmarks2009.html) format. For example:" ] }, { @@ -57,11 +57,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The CNF of this SAT instance contains 3 variables and 5 clauses:\n", + "The CNF of this 3-SAT instance contains 3 variables and 5 clauses:\n", "\n", "$(\\neg v_1 \\vee \\neg v_2 \\vee \\neg v_3) \\wedge (v_1 \\vee \\neg v_2 \\vee v_3) \\wedge (v_1 \\vee v_2 \\vee \\neg v_3) \\wedge (v_1 \\vee \\neg v_2 \\vee \\neg v_3) \\wedge (\\neg v_1 \\vee v_2 \\vee v_3)$\n", "\n", - "It can be verified that this SAT problem instance has three satisfying solutions:\n", + "It can be verified that this 3-SAT problem instance has three satisfying solutions:\n", "\n", "$(v_1, v_2, v_3) = (T, F, T)$ or $(F, F, F)$ or $(T, T, F)$\n", "\n", @@ -69,7 +69,6 @@ "\n", "`1 -2 3`, or `-1 -2 -3`, or `1 2 -3`.\n", "\n", - "\n", "With this example problem input, we then create the corresponding `oracle` for our `Grover` search. In particular, we use the `LogicExpressionOracle` component provided by Aqua, which supports parsing DIMACS-CNF format strings and constructing the corresponding oracle circuit." ] }, @@ -114,13 +113,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "[1, 2, -3]\n" + "[1, -2, 3]\n" ] } ], "source": [ "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, circuit_caching=False)\n", "result = grover.run(quantum_instance)\n", "print(result['result'])" ] @@ -129,7 +128,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As seen above, a satisfying solution to the specified SAT problem is obtained. And it is indeed one of the three satisfying solutions.\n", + "As seen above, a satisfying solution to the specified 3-SAT problem is obtained. And it is indeed one of the three satisfying solutions.\n", "\n", "Since we used the `'qasm_simulator'`, the complete measurement result is also returned, as shown in the plot below, where it can be seen that the binary strings `000`, `011`, and `101` (note the bit order in each string), corresponding to the three satisfying solutions all have high probabilities associated with them." ] @@ -141,7 +140,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt8FPW9//HXR24KAhJMaSIGRDQGsBhBRRS8QUVs1arVWq21rbVqtXqox7aeHsFebIvValtvtaVaradqwXv9lWPpMSp4aZKiQERouAhEjIJIEROIn98f30lcYgLZSfaWvJ+Pxz7Ynfnu8JnZzX7mO9/LmLsjIiIiydkt0wGIiIjkIiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCSG7pkOIJMGDhzoRUVFmQ5DRESyyD//+c+33T1/V+W6dAItKipi3rx5mQ5DRESySF5e3qq2lNMlXBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGNKeQM3sUjNbYWYfmFm5mU3YSdljzGy+mb1jZlvN7DUzu6pZma+b2bNmttHM3jWzv5vZ0anfExER6crSmkDN7GzgFuB6oBSYDzxlZkWtvOXfwC+BicAI4EfAdWZ2aUKZY4EHgOOBI4ClwF/N7IBU7IOIiAikvwY6Dbjb3e9y9yp3vxyoAS5pqbC7l7v7n9x9sbuvcPf7gL8CExLKnOvuv3b3SndfGm1rMzAl9bsjEs/TTz/N4YcfzpgxY7j55ps/tv7WW29l3LhxHH300Zx22mm88cYbTetmzJjB+PHjGT9+PHPmzGla7u786Ec/4rDDDuOII47gzjvvTMu+iHRV3dP1H5lZT2AM8PNmq+YC49u4jdKo7IydFOsJ7A5sTD5KkdRraGjg6quvZs6cORQWFnLCCScwZcoUDjrooKYyn/rUp5g3bx69e/dm1qxZTJ8+nVmzZjF37lwWLlxIWVkZdXV1nHLKKUyaNIl+/fpx//33s3btWl588UV22203amtrM7iXIp1f2hIosDfQDVjfbPl6YNLO3mhma4B8QrzXufsdOyn+I8Kl38da2dZFwEUABQUFVFRUAFBYWEjv3r1Zvnw5AP3792fYsGFUVlYC0K1bN0aPHs3SpUvZsmULACUlJWzYsIH168MuDR48mJ49e1JdXQ3AgAEDKCoqYuHChQD06NGDgw8+mKqqKrZu3QrAiBEjqK2tbfqxGzJkCGbGypUrARg4cCAFBQUsWrQIgF69ejFy5EgWL15MXV0dAKNGjaKmpoZ33nkHgKFDh+LurFq1CoD8/Hzy8/NZsmQJAHvssQclJSW8+uqrbNu2DYDRo0ezevVqNm4M5x3Dhg2jvr6eNWvWADBo0CDy8vKoqqoCoE+fPhQXF7Nw4UIaGhoAKC0tpbq6mk2bNgEwfPhw3n//fdatW0fj8e7Xrx9Lly4FoG/fvhxwwAFUVlbi7pgZpaWlLFu2jM2bNwNQXFzMe++9R01NTaf5nJ599lkGDhxIv3792Lx5M0cccQS//e1vueKKK5o+pz59+rBq1SpKSkro378/y5Yto6KigqqqKkpKSnjllVeajvHDDz/MwQcfzK9//Wtuuukm6urqmj6nDRs26HPS35M+pyQ/p7Yyd29z4fYws0JgLXCMu5clLL8WONfdi3fy3v2APYFxwM+AK9z93hbKXQH8EJjk7i/tKqbS0lKfN29e0vsi0h6PPvoof/vb3/jlL38JwAMPPEB5eTkzZ85ssfzVV1/NJz7xCa666irmzZvHzJkzmTNnDlu3bmXSpEl87Wtf47LLLmP//ffn0ksv5cknn2TgwIH89Kc/Zf/990/nrol0Cnl5eeXuPnZX5dLZBvo20AAMarZ8EPDmzt4YtX++6u53ATfRwiVcM7uSUPuc2pbkKZILHnzwQSorK7n88ssBOP7445k8eTJTpkzhwgsv5LDDDqNbt24A1NfX06tXL+bNm8f555/f9B7ZUSran++66y7GjBlDXl5eU41IOr+0JVB3rwfKgcnNVk0m9MZtq92AXokLzGwaoeZ5srs/1544RVKtoKCAtWvXNr1et24dBQUFHyv3f//3f9x4443cf//99Or10Vf+29/+NmVlZTz88MO4O8OHDwfC5bjPfvazAHzmM59h8eLFKd6T3NPY/vzggw+yYMECZs+ezWuvvbZDmcb25+eee45TTjmF6dOnA+zQ/vy///u/3Hrrrbz33nsAHHHEETz88MPsu+++ad8nyZx098K9CbjAzC40sxIzuwUoBO4AMLM/mNkfGgub2eVm9hkzOyB6fA24Crgvocx/Aj8Fvga8bmafjB7907ljIm116KGHUl1dzapVq6ivr2fOnDlMmbJjp/FXXnmFadOmcf/995Ofn9+0vKGhgQ0bNgCwePFiFi9ezHHHHQfA1KlTefbZZwF4/vnnmxKrfKS8vJz99tuPoUOH0rNnT04//XSeeuqpHcpMmDCB3r17AzB27NimNsfXXnuN8ePH0717d/r06cOIESP429/+BoSkW1TU2mg86azS2YkId3/AzAYC3wcKgEWES66roiLNv4HdCG2eQ4HtwL+A7xIl3Mg3gR6EsaCJ7gEu6MDwRTpE9+7dmTlzJmeeeSYNDQ2ce+65lJSUcP3111NaWspJJ53E9OnT2bJlC1/5yleA0FHj/vvvZ9u2bUydOhUInUbuvPNOuncPf8ZXXnklF110Ebfffjt9+vThlltuydg+Zquamhr22WefpteFhYWUl5e3Wv6+++5j0qTQx3HUqFHMnDmTb37zm2zdupXnnnuO4uJWu25IF5DWBArg7rcBt7Wy7thmr28GPt5IsWOZoR0Vm0i6TJ48mcmTd2zNuOaaa5qeP/zwwy2+b/fdd+eFF15ocV3//v154IHm55ESV2P78xNPPAGE9ufKykqmTJnCwIEDd2h/lq5Jc+GKSJeRqvZn6ZqUQNupPT36pk+fzpFHHskRRxzBd7/7XRqHFJ155plMmDCBI488kmnTpjWNCxOR9klV+7N0TUqg7dCeHn0vvvgiL774Is899xzz58+noqKC559/HoBZs2bx7LPPMn/+fN5++20eeeSRtO+bSGeU2P48btw4TjvttKb258bORIntzxMnTuSLX/wiQFP787hx47jyyit3aH++8847GTlyJOvWrWPChAl861vfytg+SvqkvQ20M0ns0Qc09ehLnJJtwoSPbjYzduxYHnzwQQDMjLq6Ourr63F3tm/f3nS2269fPwC2b9/Otm3bMLM07ZFI55eK9udvfOMbfOMb3+i4ICUnqAbaDi316GucIqsliT36Dj/8cI4++mhKSkooKSnh+OOP36FH3xlnnMGBBx7Innvuyamnnpq6nRARkViUQNOk+Ywy1dXVvP766yxatIjFixdTVlbGggULmsrPnj2bqqoq6urqKCsra22zIiKSIUqg7dCeHn1PPPEEY8eOZc8992TPPfdk0qRJvPzyyzu8b/fdd2fq1KkfG+gtIiKZpwTaDu3p0Td48GDmz5/f1M45f/58DjzwQP7973/z5pthauDt27czd+5cDjhA9wYXEck26kTUDu2ZUebUU0/l2Wef5aijjsLMmu4J+dZbb3HuuedSV1fHhx9+yIQJE5reKyIi2SNttzPLRrqdmYiINJeNtzMTERHpNHQJVyRDrr5nQEq3P/PLG1O6fZGuTjVQERGRGJRARUREYlACFRERiUFtoCLS5aSy/Vltz12HaqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMagXbgfQjDIiIl2PaqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDGlPoGZ2qZmtMLMPzKzczCbspOzpZjbXzGrNbLOZvWhmp+yk/Dlm5mb2RGqiFxERCdKaQM3sbOAW4HqgFJgPPGVmRa285RhgHnByVP4vwMMtJV0zGwbcADybgtBFRER2kO4a6DTgbne/y92r3P1yoAa4pKXC7n6Fu//U3V9y9+Xufh1QDpyWWM7MegD/A/wXUJ3aXRAREUljAjWznsAYYG6zVXOB8Ulsqi+wsdmyHwMr3f2e+BGKiIi0Xfc0/l97A92A9c2WrwcmtWUDZvZNYDBwb8KyTwNnAYe0cRsXARcBFBQUUFFRAUBhYSG9e/dm+fLlAPTv359hw4ZRWVkJQLdu3Rg9ejRLly5ly5YtAJSUlLBhwwZgQFv+69jq6+tZtGgRAL169WLkyJEsXryYuro6AEaNGkVNTQ3vvPMOAEOHDsXdWbVqFQD5+fnk5+ezZMkSAPbYYw9KSkp49dVX2bZtGwCjR49m9erVbNwYzk2GDRtGfX09a9asAWDQoEHk5eVRVVUFQJ8+fSguLmbhwoU0NDQAUFpaSnV1NZs2bQJg+PDhvP/++6xbtw4Ix7tfv34sXboUgL59+3LAAQdQWVmJu2NmlJaWsmzZMjZv3gxAcXEx7733HjU1NUD7Pqf168NXb/DgwfTs2ZPq6nCxYsCAARQVFbFw4UIAevTowcEHH0xVVRVbt24FYMSIEdTW1lJbWwvAkCFDMDNWrlwJwMCBAykoKEjqc4ITkvsiJKmiokKfUyufUypVVFTo7ykDf08d+bvXVububS7cHmZWCKwFjnH3soTl1wLnunvxLt5/BiFxnu3uj0fL8oGFwDnu/ky07G5gb3f/zK5iKi0t9Xnz5sXco49cfU9qE+jMLzevcEtnoO9N5qTy2Ou45768vLxydx+7q3LprIG+DTQAg5otHwS8ubM3mtmZwB+A8xuTZ2QkUAD8zcwal+0WvWc7MNLdl7Y/dBERkR2lrQ3U3esJHYAmN1s1mdAbt0Vmdhah5nmBu/+52eqXgYMJl28bH48ReuIeAqzokOBFRESaSWcNFOAm4F4zewl4HrgYKATuADCzPwC4+/nR6y8QkudVQJmZfTLaTr27b3D3LcCixP/AzN4Furv7DstFREQ6UloTqLs/YGYDge8TLr0uAqa6+6qoSPPxoBcTYrw5ejR6Bjg2tdGKiIi0Lt01UNz9NuC2VtYdu7PXbdz+BXHiEhERSYbmwhUREYlBCVRERCSGpBKomZ0VTVzQ+PpaM1tjZn81s9SOThYREckiydZAZzQ+MbNDgWuAXwI9gBs7LiwREZHslmwnoiFA48QEnwMecfeZZjYX+GuHRiYiIpLFkq2BfkCYzB3CRJ5PR883JSwXERHp9JKtgT4L3GhmzwFjgTOj5QcCb3RkYCIiItks2RroZUA9IXFe7O7rouUnoUu4IiLShSRVA3X3NcBnW1h+ZYdFJCIikgOSHgdqZrub2Zlm9h0z2ytatr+Z5XV8eCIiItkpqRqomQ0ndBzaE9gLeAh4F7gken1hRwcoIiKSjZKtgd4MzCXcw3NrwvLHgOM6KigREZFsl2wv3PHAOHdvSLiBNcBqwm3JREREuoQ4c+H2aGFZEWEsqIiISJeQbAKdC0xLeO1m1g+4Dniyw6ISERHJcslewp0G/N3MlgK7Aw8Aw4H1wFkdHJuIiEjWSnYc6DozOwQ4BziUUIP9DfBHd9+60zeLiIh0IsnWQIkS5azoISIi0iXtMoGa2enA4+6+LXreKnef02GRiYiIZLG21ED/DHwSeCt63hoHunVEUCIiItlulwnU3Xdr6bmIiEhXllRCNLOJZvaxpGtm3cxsYseFJSIikt2SrVH+HWhp0vi9onUiIiJdQrIJ1Ahtnc0NBLa0PxwREZHc0KZhLGb2WPTUgfvMrC5hdTdgFDC/g2MTERHJWm0dB/pO9K8BG9nxTiz1wHPAXR0Yl4iISFZrUwJ1968AmNlK4Ofursu1IiLSpSU7ld91qQpEREQkl7RlJqJXgGPcfaOZvUrLnYgAcPdPdWRwIiIi2aotNdDZQGOnoZ3NRCQiItJltGUmoutaei4iItKVaWo+ERGRGNrSBrrTds9EagMVEZGuoq13YxEREZEESbWBioiISKA2UBERkRg0DlRERCQGjQMVERGJQeNARUREYkhqLtxGZrY/UBK9rHL3f3VcSCIiItkvqQRqZgOB3wGnAB9+tNieAL7q7u+0+mYREZFOJNleuL8FhgMTgN2jx0RgP3Q/UBER6UKSvYR7InCCuy9IWPa8mX0DeLrjwhIREcluydZAa4GWbqb9PqDLtyIi0mUkm0B/ANxsZvs0Loie3xitExER6RLiTCa/H7DSzNZGr/cBPgA+QWgjFRER6fQ0mbyIiEgMmkxeREQkBk0mLyIiEkNSCdTMeprZdWb2upl9YGYNiY9UBSkiIpJtkq2B/hD4MqHX7YfAfwK3EoawXNqxoYmIiGSvZBPoWcDF7n4n0AA86u7fAqYDk9uyATO71MxWRDXYcjObsJOyBWZ2v5m9FtVy726lXD8z+6WZrTOzOjNbbmZnJblvIiIibZZsAh0ELIme/xvYK3r+/4BP7+rNZnY2cAtwPVAKzAeeMrOiVt7SC3gb+CnwYivb7AH8L3AAIcEXAxcAK3a5NyIiIjElO5XfaqAw+nc5YWq/cuBIYGsb3j8NuNvdG+fNvdzMpgCXAN9rXtjdVwLfAjCzM1vZ5leAfGCCu9dHy1a2IRYREZHYkq2BPgycED2/BbjOzFYAd7OLSRTMrCcwBpjbbNVcYHyScSQ6DXge+JWZvWlmS8xsRlQzFRERSYmkaqDu/r2E5382szWE5Pe6uz+xi7fvDXQD1jdbvh6YlEwczQwDjgfuB04GhhI6Nu0JXNW8sJldBFwEUFBQQEVFBQCFhYX07t2b5cuXA9C/f3+GDRtGZWUlAN26dWP06NEsXbqULVvCdMAlJSVs2LABGNCO8Hetvr6eRYsWAdCrVy9GjhzJ4sWLqaurA2DUqFHU1NTwzjthOuKhQ4fi7qxatQqA/Px88vPzWbIkXH3fY489KCkp4dVXX2Xbtm0AjB49mtWrV7Nx40YAhg0bRn19PWvWrAFg0KBB5OXlUVVVBUCfPn0oLi5m4cKFNDSEDtilpaVUV1ezadMmAIYPH87777/PunXrgHC8+/Xrx9KlSwHo27cvBxxwAJWVlbg7ZkZpaSnLli1j8+bNABQXF/Pee+9RU1MDtO9zWr8+fPUGDx5Mz549qa6uBmDAgAEUFRWxcOFCAHr06MHBBx9MVVUVW7eGCysjRoygtraW2tpaAIYMGYKZsXLlSgAGDhxIQUFBUp/TR+eiqVFRUaHPqZXPKZUqKir095SBv6eO/N1rK3P3XZfqAGZWCKwFjnH3soTl1wLnunvxLt7/BPC2u1/QbPnrhNuq7efuDdGyi4BfAHv6TnawtLTU582bF3OPPnL1PalNoDO/vDGl25fM0Pcmc1J57HXcc19eXl65u4/dVblk20Axs0OBK4ER0aIq4BfuXrGLt75N6Lk7qNnyQcCbycaRoAbY1pg8E2LqTaj11rZj2yIiIi1KdiKFc4GXgQLgL9FjEPCSmZ23s/dGHXzK+fhwl8mE3rhxPQ8MN7PEfTmQcIu1t9uxXRERkVYlWwP9MfDf7n594kIz+x7wI+C+Xbz/JuBeM3uJkPguJvTqvSPazh8A3P38hG0fEj3tB3wYva5398bhNLcDlwG3mNmvCW2g1wG37ezyrYiISHskm0DzgQdbWP4Q8N+7erO7P2BmA4HvE2qxi4Cp7r4qKtLSeNDKZq8/C6wiJErc/Q0z+zQhOf+TcDl4FiGhi4iIpESyCfTvwLGEMaCJjgWeacsG3P024LZW1h3bwjJrwzZfoH1DYURERJLSlhtqn57w8ingJ2Y2FnghWjYOOB2Y0eHRiYiIZKm4N9RuGkuZ4Fe0UrMUERHpbNpyQ23dM1RERKQZJUcREZEYkk6gZnaymZWZ2dtmVmtmz5jZ1FQEJyIikq2SnUjhQsKE8v8CvgN8l3DbsIfN7KsdH56IiEh2SnYYy3eAae7+64RlvzOzckIyndVhkYmIiGSxZC/hFhFunt3cU8CQ9ocjIiKSG5JNoKv5+Fy2AJ8mzA4kIiLSJSR7CffnhBtXH8pHE8AfBXwJuLwjAxMREclmyd5Q+04zewv4NmH2IQi3DjvL3R/t6OBERESyVZsTqJl1J1yqLXP3h1MXkoiISPZrcxuou28H5gB9UxeOiIhIbki2E9FCYHgqAhEREcklySbQGcCNZnaame1rZnmJjxTEJyIikpWS7YX7ZPTvHMATllv0ultHBCUiIpLtkk2gx6UkChERkRzTpgRqZr2BG4DTgB7A08C33P3tFMYmIiKStdraBnodcAHhEu7/EGYjuj1FMYmIiGS9tl7CPR34mrv/CcDM/gg8b2bd3L0hZdGJiIhkqbbWQPcFnm184e4vAduBwlQEJSIiku3amkC7AfXNlm0n+U5IIiIinUJbE6AB95lZXcKy3YG7zOz9xgXufkpHBiciIpKt2ppA72lh2X0dGYiIiEguaVMCdfevpDoQERGRXJLsVH4iIiKCEqiIiEgsSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhJD2hOomV1qZivM7AMzKzezCbsof0xU7gMzqzazi5ut72ZmP0zY5goz+5GZdU/tnoiISFeW1gRqZmcDtwDXA6XAfOApMytqpfx+wF+icqXAT4BfmdkZCcW+A3wT+BZwEHBF9Pp7KdoNERER0l1Lmwbc7e53Ra8vN7MpwCW0nPAuBta5++XR6yozOwK4CpgdLRsPPO7uj0evV5rZY8ARKdkDERER0lgDNbOewBhgbrNVcwlJsCVHtlD+r8BYM+sRvX4OOM7MDor+nxHA8YSaq4iISEqkswa6N9ANWN9s+XpgUivv+STwdAvlu0fbqwF+BvQFlphZQ7Tux+5+W0sbNLOLgIsACgoKqKioAKCwsJDevXuzfPlyAPr378+wYcOorKwEoFu3bowePZqlS5eyZcsWAEpKStiwYQMwoE0HIK76+noWLVoEQK9evRg5ciSLFy+mrq4OgFGjRlFTU8M777wDwNChQ3F3Vq1aBUB+fj75+fksWbIEgD322IOSkhJeffVVtm3bBsDo0aNZvXo1GzduBGDYsGHU19ezZs0aAAYNGkReXh5VVVUA9OnTh+LiYhYuXEhDQwMApaWlVFdXs2nTJgCGDx/O+++/z7p164BwvPv168fSpUsB6Nu3LwcccACVlZW4O2ZGaWkpy5YtY/PmzQAUFxfz3nvvUVNTA7Tvc1q/Pnz1Bg8eTM+ePamurgZgwIABFBUVsXDhQgB69OjBwQcfTFVVFVu3bgVgxIgR1NbWUltbC8CQIUMwM1auXAnAwIEDKSgoSOpzghOS+yIkqaKiQp9TK59TKlVUVOjvKQN/Tx35u9dW5u5tLtweZlYIrAWOcfeyhOXXAue6e3EL73kduM/df5CwbCLwDFDo7jVm9gXgBuA/gcXAIYR21v9099/tLKbS0lKfN29eu/ft6ntSm0BnfnljSrcvmaHvTeak8tjruOe+vLy8cncfu6ty6ayBvg00AIOaLR8EvNnKe95spfz2aHsQkufP3f1P0etXzWwIoU11pwlUREQkrrS1gbp7PVAOTG62ajKhl21LFrRS/h/uvi163ZuQmBM1oDGuIiKSQunuhXsTcK+ZvQQ8T+hlWwjcAWBmfwBw9/Oj8ncAl5nZzcCdwFHABcA5Cdt8HPiuma0gXMItJfT2/UOqd0ZERLqutCZQd3/AzAYC3wcKgEXAVHdfFRUpalZ+hZlNBX5BGOqyDviWu89OKHY58EPgNuAThI5FdwE/QEREJEXSPltP1Du2xR6y7n5sC8ueAQ7dyfY2A1dGDxERkbRQO6GIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiKSI55++mkOP/xwxowZw8033/yx9XV1dXz1q19lzJgxTJo0idWrVwNQXl7OxIkTmThxIhMmTOCJJ55oes9ll13GgQceyPjx49O2H52FEqiISA5oaGjg6quv5sEHH2TBggXMnj2b1157bYcy9913H3vttRfl5eVccsklzJgxA4CSkhLmzZtHWVkZDz30ENOmTWP79u0AfPGLX+Shhx5K9+50CkqgkrPino3//e9/57jjjuOoo47iuOOOo6ysrOk9c+bM4eijj+bII49s+vERyQbl5eXst99+DB06lJ49e3L66afz1FNP7VDmL3/5C1/4whcAOPXUUykrK8Pd6d27N927dwfC34WZNb1n/PjxDBgwIH070okogUpOas/Z+MCBA7n//vt5/vnnufXWW7nkkksA2LBhA9OnT+eRRx5hwYIFvPXWWzzzzDPp3jWRFtXU1LDPPvs0vS4sLKSmpqbVMt27d6dfv35s2LABgH/84x8ceeSRHH300dx4441NCVXiUwKVnNSes/FPfepTFBQUAOHS1tatW6mrq2PlypXsv//+7L333gAcc8wxPP744+ndsRyRitp/fX09V155JYcddhhHHHEEjz32WNr2pysYO3YsCxYs4Omnn+bmm2/mgw8+SHsMne17o1MQyUktnY2Xl5e3WibxbHzgwIFNZR577DFGjx5Nr17QqSfNAAATkUlEQVS9GDZsGMuWLWP16tUUFhby5JNPsm3btvTsUA5prP3PmTOHwsJCTjjhBKZMmcJBBx3UVCax9j979mxmzJjBrFmzmmr/BQUFLFmyhM9//vMsXrwYgBtvvJH8/HxefvllPvzwQzZu3JipXcxKBQUFrF27tun1unXrmk4Em5fZZ5992L59O++99x55eXk7lCkuLqZPnz5UVVVRWlqaltihc35vVAOVLquqqorrrruOm266CYC99tqLG2+8ka9+9atMnTqVoqIiunXrluEos08qav8Af/zjH7nyyisB2G233XY40RE49NBDqa6uZtWqVdTX1zNnzhymTJmyQ5mTTjqJP/3pTwA8+uijTJgwATNj1apVTZ2G3njjDZYtW0ZRUVFa4++M3xslUMlJyZyNAx87G1+7di3nn38+t912G/vtt1/Te6ZMmcLTTz/N3LlzGT58OPvvv38a9ia3tLctrlFi7X/Tpk0AXH/99Rx77LFccMEFvPXWWynek9zSvXt3Zs6cyZlnnsm4ceM47bTTKCkp4frrr29KROeddx4bNmxgzJgx3H777UyfPh2AF154gQkTJjBx4kS+9KUvccMNNzQlmgsvvJATTzyR5cuXM3LkSO69996UxN8Zvze6hCs5KfFsvKCggDlz5vCb3/xmhzKNZ+OHH374DmfjmzZt4gtf+ALXXnst48aN2+E9tbW15Ofn8+677zJr1ixmzZqVzt3qMhpr/7NnzwbCCc66des4/PDD+fGPf8ytt97Ktddeyx133JHhSLPL5MmTmTx58g7Lrrnmmqbnu+++O3fffffH3nf22Wdz9tlnt7jN3/72tx0aYypl2/dGNVDJSe05G7/rrrtYsWIFN9xwQ9Pg8traWgC+973vMW7cOKZMmcIVV1zB8OHDM7aP2SoVtf+8vDx69+7NZz/7WSBcvlu4cGE6dkfSpDN+b1QDlZwV92z8qquu4qqrrmpxm7l0Np4pqaj9mxknnngizz33HBMnTqSsrIzi4uJ075qkUGf83iiBikhSEmv/DQ0NnHvuuU21/9LSUk466STOO+88Lr74YsaMGcOAAQOaTkwSa/833HADALNnzyY/P58ZM2Zw8cUXc80117D33nvz61//OpO7mbWuvie1kx7M/HJqerF2xu+NuXva/rNsU1pa6vPmzWv3dnL1Cw1hXNY111xDQ0MDX/rSl5p6szWqq6vjkksuYeHChQwYMIBZs2ZRVFTEhg0buOCCC6isrOScc85h5syZAGzevJmTTz656f3r1q3j85//PD/5yU9Stg+5Kpe/N7kulcc+1cdd35vUy8vLK3f3sbsqpxpoF9aecVm9evXimmuuoaqqiqqqqqbyffv23WGQ83HHHdfUPpEKufxDKCK5TZ2IurD2jMvq06cP48aNo1evXq1uf/ny5dTW1nLkkUemdD9ERDJBNdAurKNm82nNnDlz+NznPrfDxNXSOegyosTR2b43qoFKysyZM4czzjgj02GIiKSEEmgX1t5xWTuzaNEiGhoaOOSQQzo2aBGRLKEE2oW1Z27NXZk9ezann356SuIWEckGagPtwtozLgtg9OjRbN68mW3btvHkk08ye/bsph68jzzyCA888ECmdk1EJOWUQLu4uLP5ADudMquysrJD4hMRyVa6hCsiIhKDaqBdXGfrVi4iki6qgYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMaQ9gZrZpWa2wsw+MLNyM5uwi/LHROU+MLNqM7u4vdsUERFpr7QmUDM7G7gFuB4oBeYDT5lZUSvl9wP+EpUrBX4C/MrMzkgok9Q2RUREOkK6a6DTgLvd/S53r3L3y4Ea4JJWyl8MrHP3y6PydwH3AFe1Y5siIiLtlrYEamY9gTHA3Gar5gLjW3nbkS2U/ysw1sx6xNymiIhIu5m7p+c/MisE1gLHuHtZwvJrgXPdvbiF97wO3OfuP0hYNhF4BigELMY2LwIuil4WA0s7YPeStTfwdgb+346g2DMnl+PP5dght+NX7Mkb4u75uyrU5e7G4u6/AX6TyRjM7B/uPjaTMcSl2DMnl+PP5dght+NX7KmTzgT6NtAADGq2fBDwZivvebOV8tuj7VmMbYqIiLRb2tpA3b0eKAcmN1s1mdBztiULWin/D3ffFnObIiIi7ZbuS7g3Afea2UvA84RetoXAHQBm9gcAdz8/Kn8HcJmZ3QzcCRwFXACc09ZtZqmMXkJuJ8WeObkcfy7HDrkdv2JPkbR1Imr6D80uBa4GCoBFwH80dgAys/8DcPdjE8ofA/wCGAmsA37m7ne0dZsiIiKpkPYEKiIi0hloLlwREZEYlEBFRERiUALNADOzTMfQFem4i0hHUgLNAFfDc0Y0Hncl0vQzM/3WZEjisdd3v2OpE1GamFkv4FPA54BNwGJgOfCGu28xM8v2xGpm3Qh56MNMx5IMM9sTmAh8AdgILANeBxa5+7pMxtZWZtYd+DDXjr1kBzPr6+6bMx1HZ6MEmiZm9kvgdMKdYgYAQwnDch4Bbnb36sxFt3NmNsbdy5st60b4Qc/6L5CZ3UNIoMsIx35fQiL9J3CXu8/LYHg7ZWZHu/tzzZblTDI1s32BrwKHAf8izD29GHjF3Tdm64ljYly5dLwTmVkJ4W5VpYST9dXAQqDM3d+IymTl8c8VSqBpYGYjgBeAM4Fyd3/HzPKBrwHfAD4JXEH4Mc+qD8TMDiD86C0h3OXmXnevTFhvhAk5SoF/RrNDZY3o2L9ImJ3qZXdvMLP+wFnAhcBY4AfAj8iyEwIzO4hw3LcATwK/cvfnE9Yb0AM4EXjJ3ddnJNBWRPfznQ3sAbwMjCJMs/kO8Cxwk7v/K3MRti76+yxpdpMKA7oBDdn0PWmJme1PuJfyesIEMwcRfmd6EZLpb929+V2ssoKZDSL8vf7F3TfspFwPd9+Wvsha4O56pPgBXEM462t83b3Z+uuB14DCTMfaQuzXEmpuvyBMj7iWcDJwNbBvVGYf4ENgcKbjbSH+K4HnEl73bLb+YuAN4MBMx9rK96YS+B4h4WwnzPH8c2D/qMwnomO/b6bjbSH+O4DHgU8mLCsCvgOsAmqBUzMdZyux3xod1zej5yOard8t2pfPA90yHW8L8d8eHfu+CcsGEWZyKyOclH0t03G2EvuvomO/AXgImAr0alamiHBf6F6ZiLHxoYb99KgCCsxsOIC7bzez7ma2e7T+LuB9Qg012xQTzmR/Bnyd8KO+CDgPWGBmjxOmWaxy9zUZi7J1C4EhZnYChDmZo2O/R7T+IcKP+TmtbSCD9iHUHu4ETgWOB2YBJwPLzOwV4E+EY/9GxqJs3UjgGXd/M7p/b3d3X+3uP3P3IcDTwMVmtlsWdm45jHACcDtwNLDIzJab2TVmlufhcu6XCTOjNWQy0FYMASrcfbOZdTOzbu6+3t3vdveJhH37upn1znCcLRlL+L35NqHJ5WFghZn9yswOjcp8HbjY3esyFCOgXrjpUkaoPTxhZmeZWS933+7uHwC4+wrCpaGMfhmai9p+ngTedPc33X2xu99DqH1+A/gpsJVwhnhT5iLdqQWE2v19Znaxme0RHfutAO7+DrAnWXa/xKiN+UlgibtviB5lwAzCJdtTCJemjyXUSLPR34Dzog4s26ITxx4JJy+3AgcCh3tUrcgGZjaE0Eb+EvBDwvf7JOCvhCsWb5vZ88B/EGpL2eivwFfM7CB3b/DQdNHTzHpG639HqJEekbkQPy66b/QaYIW7/x6YAowGbgEmAC+b2auEtt2MH3u1gaZJ9MX4BXAw4QvyEjAvev5N4IvAUHffkrEgd6GlNgczOx34M7Cnu7+fmch2LvrB/jGhhr+VcAn6UeDfwFcINYzibI0fwlAEb9aJxcxOBJ4iS4+9mY0hXEZ8E5jh7o81W38QoSNXXjbFb2b9CL3lV7r7MwnL9yDcqGIMcCnhe9O38WQsm0Ttz3OAvYAfuvusZutHARXAXll27PsQrrS85e4vNlvXm9COfhWhQ2bGj70SaBqZ2UDgM4QG8mGEy6MDgGeAO939TxkM72Na+tGOlncn6khhZj8HxnrCDQCySXTpqiEaynI04Sx2HHAoodb/NKHz1lMZDPNjokua1tLxTygzAzjS3U9MW2Bt1Ni7M2q2mEk45o2dh54CRhBOaFa4+1mZi3TnGjsOufv2Zsv/COyTrd97CENXgJ8A5xI6m80lfN9HEf4W/ukf3fkqK7XUS9jM7ib0AZiQmagSYlECTS0zGwwMj15uIfSq3EpIoHsS2j7f9p30NsuUhNiN0Ki/1N3fTFhvhLa5te7+cmaiTE50CSuf8BnsDmzK5lr/zpjZsUCtuy/OdCw7E7X1TyKcOB5OaBvdQGj7v8/dV2UwvDZJ7IFL6FVcBvzE3WdnNLAWRLHuFp047k646jWRULM7FFgB3AfMSfx7zgbRpA/e2iX96CrAo8Dt7v5wWoNrKR4l0NQxs0sIY+BGExJlNeGS7d+BP2dpxw/gY7FvIXR9X0O4/PmIuy/NYHi7FLV1bk14vdM/zGzSPPZcEx3rUwknKnsQxn8+6+6boh90J1x+y6p2Z/hY7L0Jvc6fcfe3Esr0Aia5+5OZiTJ5ieO2zay/u2/KdExxmFkPwhWvBZmOBZRAUya6XLscuJHQky+fcBZ+LOHy1TrgW+6+JNsGM+8i9hJCIv2PKPZu2dYL0cwGEHrfPkk4057feHwTE2k00HyNZ9EMLbuIPXFwfwlQ4+7vZizYFkSXDX8HHEe4arGWcAXjfcLlw/vcfVlUtsUmgkxpIfY1hGT/AaGZ5V53fy1zEe5clFz2A1a11Ds1235nEu0q9qzVfFyLHh02luly4MVW1h1NaAuqBvbOdKydKfaE+OsIHbUaCDWgHxA6CjWW2ZcwxnJYpuPtLLFHsf0X4QTgsOj1QYQhT7cD5YRORfmZjjNG7C8Dj2Vr7FG8VxKuFv0e+Cxh4oRuzcr0I/Qo7pHpeGPGfjLNxnJn8qFhLKlTD/SNerthZr0au5B7mJrtXMKZ7aczF2Krcjl2CHMO/57QYasUeJAwznOJmb1gZhcRfhgP8OybQjGXY4cw7OAej9rE3f01d78PuIww7OMg4N4MxrczO4v924SrL9kaO8DZhBOv4YQpQhcAN5jZ0RZm34LQ23+6Z3oGn49ra+z/7Vk025kSaOr8mXAZ6MpoHFydh0H8uwG4+2rgXWBwJoNsRc7GHrVPLSFM0v+Wu7/i7t8jDM4+MVo3gzCs5WcZC7QFuRw7NPXOXgScYWEqPKJB/Lt5GItYRhhHOdjMRmcy1uZyOXZomnpwG6FH+QTCRAq/I5yIlQHzzOw7hJrei61uKANyOfaMV4E744PQ5mPAaYRZbjYTvhBj+GgKsPOi5UMzHW9niT1hH3oRTR9H6Dm5W7P1x5K9Uw/mbOxRfOMIl51/BgxqYf2+hPG3+2Q61k4WewGhhn9iC+tKCZNWvBN9d7Iq/lyOXZ2IUsjM9iIknPGEgdlHRaveJCSpe919Rmai27lcjT1h/OEwYIsnTLCesO5a4AJ3H5a5SD8ul2OHpg5auxEmp7iecJOB2cADhDuBfIpQqxjh7odlKs6W5HLsjaIhHu7uH0RDWYAd7oP7Y2Cqu5dmKsbW5GrsSqAdzMw+AXyJ0GbyNmG84bvAc4QhID0I1/n/n7u/nqk4W5LLscMO8U8D3iJMn1hDmO92jkf3XSXMo7nO3Z/IWLDN5HLsLYlOwC4gtFsdQrhi8QGhM85PvNksM9kkx2NvsaethVl8KoDfu3vWXf6H3IxdCbSDRbNkjCT0NtwA5BEGMh9I+GH8frb+AeZy7NBq/KWEjitrgBs8e2/hdDc5Gjs0TX+3OfEHMKrV7U6YMGQUoVaddd+fXI4dWo6/hTK7Ezrq/I9nUSecXI4dlEA7VFRD2Ey41FCWsKyIMGnzhYQZiM5y94qMBdqCXI4ddhr/YELb1tcJnRPOybb4czn2RmZ2J6EX5UuEsXzvtVBmgGfhTbRzOXZoc/x7eZaNGYbcjh1QJ6KOfBBqEK8C41pZ3wv4B+EyUMbj7SyxtzH+ntkafy7HHsV3DqGDx7uE8cF3Eib7Hg7sEZXZkzA84eBMx9tZYt9J/J8D9k+Iv3H6u1GZjrezxN74UA20A0UN4U8QpgA7H/iXf/wOGpcTbmR7SAZCbFUuxw65HX8uxw5gZncRJn2YSUg+Xyb8CC4l3Ev2b4QbJ9zi7j1b204m5HLskNvx53LsjTQOtAN5mL/0vwhnTX8AzjezfS3cCaSxMfwYwnizrJLLsUNux5/LsUfjJ1cA77p7tbv/3N0PJtyQ+hnCj+KDhHs3ZtUkBLkcO+R2/LkceyLVQFPAwgw+/0246fEWwqwatYT5ZGuAC9391cxF2Lpcjh1yO/5cjd3C/L2D3P01CzNWbfOEHxYzOxv4H+BQd/9npuJsSS7HDrkdfy7H3kgJNIWioQknEyYl+IBQg3jIs3hC6ka5HDvkdvy5HHujqBerebil1tcJl+F6Zzqutsjl2CG348+12JVA08Sy7M4Tycjl2CG348/l2BuZ2TTCxOA3ZDqWZOVy7JDb8edC7EqgIpJSFm5V1ZCLJwK5HDvkdvy5ELsSqIiISAzqhSsiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDP8ftxy9AiT3qKkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt8VdWZ//HPY7hoEJDQlCZiQITGgEojeKFKsIoVa62OUrXjtZ3WUaut4zjaOh0VW3WqtdXpryqltd7GqVqotajVoShBoV4IRYEY0XARiBSBIsMtJH1+f6yd9BCTkLOTcyPf9+t1Xpyz9zqbZ59zsp+91l5rbXN3REREJDn7ZDoAERGRXKQEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjE0CPTAWTSwIEDvaSkJNNhiIhIFvnzn//8obsX7qlct06gJSUlzJ49O9NhiIhIFikoKFjZkXJqwhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJIewI1syvMbLmZ7TCzBWY2vp2yE8xsnpltMLPtZva2mV3bosw3zGyumW0ys7+a2Ytmdnzq90RERLqztCZQMzsXuAe4DSgH5gHPmVlb9xT7P+C/gApgJPADYIqZXZFQ5gTgceBE4BigBnjezEakYh9EREQAzN3T95+ZvQq86e7fSFi2DPiNu3+3g9uYAex096+0sd6AOuBWd/9pe9sqLy933c5MREQSFRQULHD3sXsql7YaqJn1AsYAL7RY9QLw2Q5uozwqO6edYr2AfYFNMcIUERHpkHTeUPsTQB6wrsXydcDE9t5oZquBQkK8U9z9/naK/4DQ9Pt0G9u6FLgUoKioiKqqKgCKi4vJz8/n3XffBaB///4MGzaMhQsXApCXl8fo0aOpqalh69atAJSVlbFx40bWrQu7NHjwYHr16kVtbS0AAwYMoKSkhEWLFgHQs2dPDj/8cKqrq9m+fTsAI0eOZP369axfvx6AIUOGYGasWLECgIEDB1JUVMTixYsB6N27N6NGjWLJkiXs3LkTgMMOO4y6ujo2bNgAwNChQ3F3Vq4M94QtLCyksLCQpUuXArDffvtRVlbGW2+9xa5duwAYPXo0q1atYtOmcN4xbNgw6uvrWb16NQCDBg2ioKCA6upqAPr06UNpaSmLFi2isbERgPLycmpra9m8eTMAw4cPZ9u2baxdu5amz7tfv37U1NQA0LdvX0aMGMHChQtxd8yM8vJyli1bxpYtWwAoLS3lo48+oq6uTt+Tvid9T/qe0vI9dVTamnDNrBhYA0xw98qE5TcC57t7aTvvPRjYHzgW+CHwbXd/pJVy3wa+D0x099f2FJOacEVEpKWONuGmswb6IdAIDGqxfBDwQXtvdPfl0dO3zGwQcDOwWwI1s6sJyfPUjiRPERGRzkjbNVB3rwcWACe3WHUyoTduR+0D9E5cYGbXEJLnae7+cmfiFBER6Yh01kABfgw8YmavAa8AlwHFwP0AZvYwgLtfFL2+ClhOGJoCYTjLtcC9TRs0s38DbgUuAN4xs09Fq7a7++ZU75CIiHRPaU2g7v64mQ0EvgcUAYuBL7j7yqhIy/GgeYRrnkOBBuA94DtECTfyTaAnYSxoooeAS7owfBERkWZpHQeabdSJSEREWsq6caAiItlg1qxZHH300YwZM4a77777Y+t/9rOfceyxx3L88cdz5pln8v777zevu+mmmxg3bhzHHHMM3/nOd2iqgJx++ukcffTRVFRUUFFR0Tw8Q/ZuSqAi0m00NjZy3XXX8cQTTzB//nymT5/O22+/vVuZI444gtmzZ/Pyyy/zpS99iZtuugmAV199lVdffZWXX36ZefPmUVVVxSuvvNL8vqlTp1JZWUllZSWFhYVp3S/JDCXQTurqs9lt27Zx7rnncswxxzBu3DimTJmSzt0R2astWLCAgw8+mKFDh9KrVy/OOussnnvuud3KjB8/nvz8fADGjh3bPHGBmbFz507q6+vZuXMnDQ0NSpTdnBJoJ6TqbPbKK6/k1VdfZc6cObz66qv87//+b9r3TWRvVFdXx4EHHtj8uri4uHlWntY8+uijTJwYJko7+uijOf744ykrK6OsrIwTTzyR0tK/z/9y5ZVXUlFRwZ133kl37lvSnSiBdkIqzmbz8/MZPz7c4a1Xr14cccQRze8RkfR54oknWLhwIVdddRUAtbW1vPPOOyxevJglS5ZQWVnJ/PnzgdB8+8orr/DMM88wf/58Hn+85aAA2RspgXZCKs9mATZv3szzzz/PhAkTUrMDIt1MUVERa9asaX69du1aioqKPlbupZde4q677uKxxx6jd+8wb8vMmTMZO3Ys+++/P/vvvz8TJ07k9ddfB8LfPoT5aCdPntw8x7bs3ZRA0ySZs1mAhoYGvv71r3PppZcydOjQDEUtsnc58sgjqa2tZeXKldTX1zNjxgwmTZq0W5k333yTa665hscee2y3a5yDBw9m3rx5NDQ0sGvXLubNm8enP/1pGhoamic037VrF88//zxlZWVp3S/JjHTPRLRXSfZsdubMma2ezQLNZ7Pjxo0D4Oqrr+aQQw7h8ssvT8OeiHQPPXr04I477mDy5Mk0NjZy/vnnU1ZWxm233UZ5eTmnnnoqN910E1u3buWrX/0qEBLnY489xhlnnMHcuXM57rjjMDNOOukkJk2axNatW5k8eTK7du2isbGRCRMmcNFFF2V4TyUdNJFCJyZSaGho4KijjuKpp56iqKiIk046iZ///Oe7nX2++eabXHLJJTz55JMccsghzctnzJjBI488wpNPPom78+Uvf5nLLruMSZMmceutt1JTU8ODDz7IPvuokUBEJJ00kUIaJJ7NHnvssZx55pnNZ7NNnYkSz2YrKir4x3/8RwDOOOMMhg4dynHHHcf48eMZNWoUkyZNYs2aNdx1113U1NRwwgknUFFRwcMPP5zJ3RQRkVaoBqqp/EREJIFqoCJZLO4EHHPnzm2eLq6iooKioiKeeeYZAKZNm8aYMWMoKCho7tQiIqmjGqhqoJJmjY2NHHXUUcyYMYPi4mJOOukkpk2bxqGHHtpcZu7cuYwZM4b8/HweeOABXn75ZR544IHdtrNp0ybGjBnD4sWLyc/P58033+SAAw7g9NNPZ/bs2QwcODDduyayV1ANVCRLdWYCjkS/+93vmDhxYnO5I444gpKSlncEFJFUUQIVSbPOTMCR6Le//S1nn312SmIUkT3TOFCRLNY0AcfMmTN3W/7BBx+wdOlSTjzxxAxFJiJKoCJp1pkJOJo89dRTnHbaafTs2TPl8YpI69SEK5JmnZlOrsn06dPVfCuSYUqgImnWmQk4AFatWsXatWs57rjjdtvu1KlTGTVqFGvXrmX8+PF861vfSut+iXQ3GsaiYSwiIpKgo8NYdA1URLqd6x4akLJt33HxppRtW7KLmnBFRERiUAIVERGJQU24XSCVzUGgJiERkWykGqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKBxoCIZovHDIrlNNVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJIa0J1Azu8LMlpvZDjNbYGbj2yl7lpm9YGbrzWyLmb1qZl9qp/xXzMzNbGZqohcREQnSmkDN7FzgHuA2oByYBzxnZiVtvGUCMBs4LSr/LPDb1pKumQ0D7gTmpiB0ERGR3aS7BnoN8KC7T3P3ane/CqgDLm+tsLt/293/091fc/d33X0KsAA4M7GcmfUE/gf4d6A2tbsgIiKSxgRqZr2AMcALLVa9AHw2iU31BTa1WHYrsMLdH4ofoYiISMf1SOP/9QkgD1jXYvk6YGJHNmBm3wQGA48kLPs8cA7wmQ5u41LgUoCioiKqqqoAKC4uJj8/n3fffReA/v37M2zYMBYuXAhAXl4eo0ePpqamhq1btwJQVlbGxo0bgQEd+a9jq6+vZ/HixQD07t2bUaNGsWTJEnbu3AnAYYcdRl1dHRs2bABg6NChuDsrV64EoLCwkMLCQpYuXQrAfvvtR1lZGW+99Ra7du0CYPTo0axatYpNm8K5ybBhw6ivr2f16tUADBo0iIKCAqqrqwHo06cPpaWlLFq0iMbGRgDKy8upra1l8+bNAAwfPpxt27axdu1aIHze/fr1o6amBoC+ffsyYsQIFi5ciLtjZpSXl7Ns2TK2bNkCQGlpKR999BF1dXVA576ndevCT2/w4MH06tWL2trQWDFgwABKSkpYtGgRAD179uTwww+nurqa7du3AzBy5EjWr1/P+vXrARgyZAhmxooVKwAYOHAgRUVFSX1PcFJyP4QkVVVV6Xtq43tKpaqqKv09ZeDvqSuPex1l7t7hwp1hZsXAGmCCu1cmLL8RON/dS/fw/rMJifNcd/99tKwQWAR8xd3nRMseBD7h7l/cU0zl5eU+e/bsmHv0d9c9lNoEesfFLSvcsjfQ7yZzUvnZ63PPfQUFBQvcfeyeyqWzBvoh0AgMarF8EPBBe280s8nAw8BFTckzMgooAv5oZk3L9one0wCMcveazocuIiKyu7RdA3X3ekIHoJNbrDqZ0Bu3VWZ2DqHmeYm7/6bF6teBwwnNt02Ppwk9cT8DLO+S4EVERFpIZw0U4MfAI2b2GvAKcBlQDNwPYGYPA7j7RdHr8wjJ81qg0sw+FW2n3t03uvtWYHHif2BmfwV6uPtuy0VERLpSWhOouz9uZgOB7xGaXhcDX3D3lVGRluNBLyPEeHf0aDIHOCG10YqIiLQt3TVQ3P1e4N421p3Q3usObv+SOHGJiIgkQ3PhioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEkFQCNbNzovtvNr2+0cxWm9nzZpbam+yJiIhkkWRroDc3PTGzI4EbgP8CegJ3dV1YIiIi2S3ZuXCHAE331/wH4Cl3v8PMXgCe79LIREREsliyNdAdQN/o+UnArOj55oTlIiIie71ka6BzgbvM7GVgLDA5Wv5p4P2uDExERCSbJVsDvRKoJyTOy9x9bbT8VNSEKyIi3UhSNVB3Xw2c3sryq7ssIhERkRyQ9DhQM9vXzCab2fVmdkC07BAzK+j68ERERLJTUjVQMxtO6Di0P3AA8CTwV+Dy6PXXuzpAERGRbJRsDfRu4AVgELA9YfnTwOe6KigREZFsl2wv3M8Cx7p7o5klLl8FFHdZVCIiIlkuzly4PVtZVkIYCyoiItItJJtAXwCuSXjtZtYPmAI802VRiYiIZLlkm3CvAV40sxpgX+BxYDiwDjini2MTERHJWsmOA11rZp8BvgIcSajB/hz4b3ff3u6bRURE9iLJ1kCJEuUD0UNERKRb2mMCNbOzgN+7+67oeZvcfUaXRSYiIpLFOlID/Q3wKeAv0fO2OJDXFUGJiIhkuz0mUHffp7XnIiIi3VlSCdHMKszsY0nXzPLMrKLrwhIREcluydYoXwRamzT+gGidiIhIt5BsAjXCtc6WBgJbOx+OiIhIbujQMBYzezp66sCjZrYzYXUecBgwr4tjExERyVodHQe6IfrXgE3sfieWeuBlYFoXxiUiIpLVOpRA3f2rAGa2AviRu6u5VkREurVkp/KbkqpAREREcklHZiJ6E5jg7pvM7C1a70QEgLsf0ZXBiYiIZKuO1ECnA02dhtqbiUhERKTb6MhMRFNaey4iItKdaWo+ERGRGDpyDbTd656JdA1URES6i47ejUVEREQSJHUNVERERAJdAxUREYlB40BFRERi0DhQERGRGDQOVEREJIak5sJtYmaHAGXRy2p3f6/rQhIREcl+SSVQMxsI/BL4EvC3vy+2mcDX3H1Dm28WERHZiyTbC/cXwHBgPLBv9KgADkb3AxURkW4k2SbcU4CT3H1+wrJXzOyfgVldF5aIiEh2S7YGuh5o7Wba2wA134qISLeRbAK9BbjbzA5sWhA9vytaJyIi0i3EmUz+YGCFma2JXh8I7AA+SbhGKiIistdL+2TyZnYF8G9AEbAEuNrd57ZRtohQuz0SGAE84u6XtFKuH/ADYDIwEHgfuMHdn+jK2EVERJqkdTJ5MzsXuAe4Ang5+vc5Mxvp7qtaeUtv4EPgP4FL29hmT+B/gY3AOcBqYDB/nz1JRESky8WaSKETrgEedPemIS9Xmdkk4HLguy0Lu/sK4FsAZja5jW1+FSgExrt7fbRsRRfGLCIi8jFJdSIys15mNsXM3jGzHWbWmPjY03uBMcALLVa9AHw2ubB3cybwCvBTM/vAzJaa2c1RzVRERCQlkq2Bfh84F7gd+AnhWuZQ4DzgP/bw3k8AecC6FsvXAROTjCPRMOBE4DHgtCienwH7A9e2LGxmlxI1BxcVFVFVVQVAcXEx+fn5vPvuuwD079+fYcOGsXDhQgDy8vIYPXo0NTU1bN0aRvKUlZWxceNGYEAnwt+z+vp6Fi9eDEDv3r0ZNWoUS5YsYefO0Ep92GGHUVdXx4YNYSTR0KFDcXdWrlwJQGFhIYWFhSxduhSA/fbbj7KyMt566y127doFwOjRo1m1ahWbNm0CYNiwYdTX17N69WoABg0aREFBAdXV1QD06dOH0tJSFi1aRGNjOHcqLy+ntraWzZs3AzB8+HC2bdvG2rVrgfB59+vXj5qaGgD69u3LiBEjWLhwIe6OmVFeXs6yZcvYsmULAKWlpXz00UfU1dUBnfue1q0LP73BgwfTq1cvamtrARgwYAAlJSUsWrQIgJ49e3L44YdTXV3N9u3bARg5ciTr169n/fr1AAwZMgQzY8WKFQAMHDiQoqKipL4nOCm5H0KSqqqq9D218T2lUlVVlf6eMvD31JXHvY4y9zbvTvbxwmbLgcvd/Q9mtgX4jLu/Z2aXEyZYaKuZFTMrBtYQbo1WmbD8RuB8dy/dw/89E/iwZSciM3uHMCPSwe7eGC27lJDg9/d2drC8vNxnz57d/k53wHUPpTaB3nHxppRuXzJDv5vMSeVnr8899xUUFCxw97F7KpfsONBBwNLo+f8BB0TP/wB8fg/v/RBojLbRcpsfJBlHojrgnabkGakG8gm1XhERkS6XbAJdBRRHz98lTO0HMA7Y3t4bow4+C4CTW6w6GZiXZByJXgGGm1nivnyaMDvSh53YroiISJuSTaC/5e8Xbu4BpkTNug/SsUkUfgxcYmZfN7MyM7uHkJDvBzCzh83s4cQ3mNlnzOwzQD+gIHo9MqHIfUABcI+ZlZrZKcAU4N72mm9FREQ6I6lORO7+3YTnvzGz1YQetO+4+8wOvP/x6JZo3yNMpLAY+IK7r4yKlLTytoUtXp8OrCR0FsLd3zezzxOS858JzcEPECZWEBERSYlOjQN19z8Bf0ryPfcC97ax7oRWllkH4+jMUBgREZGkJNuEi5kdGTW1vhE9HjGzI1MRnIiISLZKdiKF84HXCc2vz0aPQcBrZnZB14cnIiKSnZJtwr0V+A93vy1xoZl9l3DN8dGuCkxERCSbJduEWwi0doeTJwm3MxMREekWkk2gLwIntLL8BGBOZ4MRERHJFR25ofZZCS+fA243s7H8vfftscBZwM1dHp2IiEiWintD7eYJ2RP8lDaGp4iIiOxtOnJD7aSHuoiIiOztlBxFRERiiDORwmlmVmlmH5rZejObY2ZfSEVwIiIi2SrZiRS+TphQ/j3geuA7wHLgt2b2ta4PT0REJDslO5HC9cA17v7/Epb90swWEJLpA10WmYiISBZLtgm3hHDz7JaeA4Z0PhwREZHcEOeG2i1viA3wecItxkRERLqFZJtwfwT8NLr7yrxo2XHAhcBVXRmYiIhINkv2htpTzewvwL8SZh8CqAbOcfffdXVwIiIi2arDCdTMehCaaivd/bepC0lERCT7dfgaqLs3ADOAvqkLR0REJDck24loETA8FYGIiIjkkmQT6M3AXWZ2ppkdZGYFiY8UxCciIpKVku2F+0z07wzAE5Zb9DqvK4ISERHJdskm0M+lJAoREZEc06EEamb5wJ3AmUBPYBbwLXf/MIWxiYiIZK2OXgOdAlxCaML9H8JsRPelKCYREZGs19Em3LOAf3L3XwOY2X8Dr5hZnrs3piw6ERGRLNXRGuhBwNymF+7+GtAAFKciKBERkWzX0QSaB9S3WNZA8p2QRERE9godTYAGPGpmOxOW7QtMM7NtTQvc/UtdGZyIiEi26mgCfaiVZY92ZSAiIiK5pEMJ1N2/mupAREREckmyU/mJiIgISqAiIiKxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjGkPYGa2RVmttzMdpjZAjMbv4fyE6JyO8ys1swua7E+z8y+n7DN5Wb2AzPrkdo9ERGR7iytCdTMzgXuAW4DyoF5wHNmVtJG+YOBZ6Ny5cDtwE/N7OyEYtcD3wS+BRwKfDt6/d0U7YaIiAjprqVdAzzo7tOi11eZ2STgclpPeJcBa939quh1tZkdA1wLTI+WfRb4vbv/Pnq9wsyeBo5JyR6IiIiQxhqomfUCxgAvtFj1AiEJtmZcK+WfB8aaWc/o9cvA58zs0Oj/GQmcSKi5ioiIpEQ6a6CfAPKAdS2WrwMmtvGeTwGzWinfI9peHfBDoC+w1Mwao3W3uvu9rW3QzC4FLgUoKiqiqqoKgOLiYvLz83n33XcB6N+/P8OGDWPhwoUA5OXlMXr0aGpqati6dSsAZWVlbNy4ERjQoQ8grvr6ehYvXgxA7969GTVqFEuWLGHnzp0AHHbYYdTV1bFhwwYAhg4diruzcuVKAAoLCyksLGTp0qUA7LfffpSVlfHWW2+xa9cuAEaPHs2qVavYtGkTAMOGDaO+vp7Vq1cDMGjQIAoKCqiurgagT58+lJaWsmjRIhobGwEoLy+ntraWzZs3AzB8+HC2bdvG2rVrgfB59+vXj5qaGgD69u3LiBEjWLhwIe6OmVFeXs6yZcvYsmULAKWlpXz00UfU1dUBnfue1q0LP73BgwfTq1cvamtrARgwYAAlJSUsWrQIgJ49e3L44YdTXV3N9u3bARg5ciTr169n/fr1AAwZMgQzY8WKFQAMHDiQoqKipL4nOCm5H0KSqqqq9D218T2lUlVVlf6eMvD31JXHvY4yd+9w4c4ws2JgDTDB3SsTlt8InO/upa285x3gUXe/JWFZBTAHKHb3OjM7D7gT+DdgCfAZwnXWf3P3X7YXU3l5uc+ePbvT+3bdQ6lNoHdcvCml25fM0O8mc1L52etzz30FBQUL3H3snsqlswb6IdAIDGqxfBDwQRvv+aCN8g3R9iAkzx+5+6+j12+Z2RDCNdV2E6iIiEhcabsG6u71wALg5BarTib0sm3N/DbKv+Huu6LX+YTEnKgRjXEVEZEUSncv3B8Dj5jZa8ArhF62xcD9AGb2MIC7XxSVvx+40szuBqYCxwGXAF9J2Obvge+Y2XJCE245obfvw6neGRER6b7SmkDd/XEzGwh8DygCFgNfcPeVUZGSFuWXm9kXgJ8QhrqsBb7l7tMTil0FfB+4F/gkoWPRNOAWREREUiTts/VEvWNb7SHr7ie0smwOcGQ729sCXB09RERE0kLXCUVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVEZG0mDVrFkcffTRjxozh7rvv/tj6nTt38rWvfY0xY8YwceJEVq1aBcCCBQuoqKigoqKC8ePHM3PmTACWLVvWvLyiooKSkhLuu+++tO2PEqiIJK2rD4QAo0eP5rjjjqOiooITTzwxbfsi6dHY2Mh1113HE088wfz585k+fTpvv/32bmUeffRRDjjgABYsWMDll1/OzTffDEBZWRmzZ8+msrKSJ598kmuuuYaGhgZGjBhBZWUllZWVvPjii+Tn5/PFL34xbfukBCoiSUnFgbDJ008/TWVlJbNnz07nLkkaLFiwgIMPPpihQ4fSq1cvzjrrLJ577rndyjz77LOcd955AJxxxhlUVlbi7uTn59OjRw8gnJyZ2ce2P2fOHIYOHcpBBx2U+p2JKIF2c11dk9ixYwcTJ05k/PjxjBs3jttvvz2t+yOpl+oDoeyd6urqOPDAA5tfFxcXU1dX12aZHj160K9fPzZu3AjAG2+8wbhx4zj++OO56667mn9HTWbMmMHZZ5+d4r3YnRJoN5aKmkTv3r156qmnmDt3LpWVlfzxj3/k9ddfz8DeSaqk6kBoZpx99tl87nOf48EHH0zPzkjOGDt2LPPnz2fWrFncfffd7Nixo3ldfX09f/jDHzjjjDPSGpMSaDeWipqEmbH//vsDsGvXLhoaGlJWy0jFdbg9bVM6r60D4bPPPstLL73EE088wS9/+UvmzZuX4UilKxUVFbFmzZrm12vXrqWoqKjNMg0NDXz00UcUFBTsVqa0tJQ+ffpQXV3dvGzWrFkcccQRfPKTn0zhHnycEmg3lqqaRGNjIxUVFZSWlnLCCScwduzYLo89FbXnjmxTUncgLC4uBqCwsJDTTjuNBQsWpHI3JM2OPPJIamtrWblyJfX19cyYMYNJkybtVubUU0/l17/+NQC/+93vGD9+PGbGypUrm6+Vv//++yxbtoySkpLm902fPj3tzbegBCqd0FZNIi8vj8rKShYvXkxVVRVLly7t8v87FbXnjmxTUnMg3Lp1K1u2bAFg69atvPjii5SVlaVt7syvAAASrklEQVR3xySlevTowR133MHkyZM59thjOfPMMykrK+O2225r/ju74IIL2LhxI2PGjOG+++7jpptuAuBPf/oT48ePp6KiggsvvJA777yTgQMHAuH38tJLL3H66aenf5/S/j9K1kimJnHggQd2qCZRXl7evLx///4cf/zx/PGPf2TkyJFdGntrteeWNZa2as8DBw7kjTfe4KqrrmL16tXcd9999OjRo0PblN0PhI2NjZx//vnNB8Ly8nJOPfVULrjgAi677DLGjBnDgAED+MUvfgGEA+Hdd99Nz5492WeffZoPhCtWrODCCy8EQo118uTJTJw4MZO7KSlw8sknc/LJJ++27IYbbmh+vu+++7Z6/fvcc8/l3HPPbXWbffr04b333uvSODtKCbQbS6xJFBUVMWPGDH7+85/vVqapJnH00Ud/rCZx4IEH0qNHj91qEh9++CE9e/akf//+bN++nZdeeolvf/vbGdrDtjXVnmtqavjmN7+pg3WSuvpAOHToUObOndvlce5tZs2axQ033EBjYyMXXnghV1999W7rd+7cyeWXX86iRYsYMGAADzzwACUlJbz44ovccsst1NfX06tXL6ZMmUJFRQUAp59+OuvWrWPfffcFQnNoYWFh2vctFymBdmOpqEksWbKEK664gsbGRv72t79x5plncsopp3R57KmoPXdkmyKZ0nSNfsaMGRQXF3PSSScxadIkDj300OYyidf9p0+fzs0338wDDzzAwIEDeeyxxygqKmLp0qV8+ctfZsmSJc3vmzp16m6tR9IxSqDdXFfXJEaNGsWcOXO6PM6WUlF77t+//x63KZIpidfogeZr9IkJ9Nlnn+X6668HwnX/66+/HnfniCOOaC5TVlbG9u3b2blzJ717907rPlz30ICUbv+OizeldPstKYFKTkpF7RlodZvycXvbgTAXdPa6f5Onn36a0aNH75Y8r7zySvLy8jj99NO59tprNcFFBymBSs5KRYeE1rYpsreorq5mypQpTJ8+vXnZ1KlTKS4uZsuWLVx88cU8/vjjzb3XpX1KoN2cahIiuaGz1/3XrFnDRRddxL333svBBx/c/J6m8bd9+/Zl8uTJVFVVKYF2kMaBiojkgM6Mv928eTPnnXceN954I8cee2xz+YaGBjZs2ACEmcOef/55XbZIgmqgktNSWYNW7VmySWeu+0+bNo3ly5dz5513cueddwJhuEp+fj6TJ09m165dNDY2MmHCBC666KJM7mZOUQIVEckRca/7X3vttVx77bWtbvPFF1/s0hi7EzXhioiIxKAEKiIiEoOacEVEcoh6zmcP1UBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkhrQnUDO7wsyWm9kOM1tgZuP3UH5CVG6HmdWa2WWd3aaIiEhnpTWBmtm5wD3AbUA5MA94zsxK2ih/MPBsVK4cuB34qZmdHXebIiIiXSHdNdBrgAfdfZq7V7v7VUAdcHkb5S8D1rr7VVH5acBDwLWd2KaIiEinpS2BmlkvYAzwQotVLwCfbeNt41op/zww1sx6xtymiIhIp5m7p+c/MisG1gAT3L0yYfmNwPnuXtrKe94BHnX3WxKWVQBzgGLAYmzzUuDS6GUpUNMFu5esTwAfZuD/7QqKPXNyOf5cjh1yO37Fnrwh7l64p0I90hFJNnH3nwM/z2QMZvaGu4/NZAxxKfbMyeX4czl2yO34FXvqpDOBfgg0AoNaLB8EfNDGez5oo3xDtD2LsU0REZFOS9s1UHevBxYAJ7dYdTKh52xr5rdR/g133xVzmyIiIp2W7ibcHwOPmNlrwCuEXrbFwP0AZvYwgLtfFJW/H7jSzO4GpgLHAZcAX+noNrNURpuQO0mxZ04ux5/LsUNux6/YUyRtnYia/0OzK4DrgCJgMfAvTR2AzOwlAHc/IaH8BOAnwChgLfBDd7+/o9sUERFJhbQnUBERkb2B5sIVERGJQQlUREQkBiXQDDAzy3QM3ZE+dxHpSkqgGeC68JwRTZ+7Emn6mZmONRmS+Nnrt9+11IkoTcysN3AE8A/AZmAJ8C7wvrtvNTPL9sRqZnmEPPS3TMeSDDPbH6gAzgM2AcuAd4DF7r42k7F1lJn1AP6Wa5+9ZAcz6+vuWzIdx95GCTRNzOy/gLMId4oZAAwlDMt5Crjb3WszF137zGyMuy9osSyPcEDP+h+QmT1ESKDLCJ/9QYRE+mdgmrvPzmB47TKz49395RbLciaZmtlBwNeAo4D3CHNPLwHedPdN2XrimBhXLn3eicysjHC3qnLCyfoqYBFQ6e7vR2Wy8vPPFUqgaWBmI4E/AZOBBe6+wcwKgX8C/hn4FPBtwsE8q74QMxtBOOgtJdzl5hF3X5iw3ggTcpQDf45mh8oa0Wf/KmF2qtfdvdHM+gPnAF8HxgK3AD8gy04IzOxQwue+FXgG+Km7v5Kw3oCewCnAa+6+LiOBtiG6n+90YD/gdeAwwjSbG4C5wI/d/b3MRdi26O+zrMVNKgzIAxqz6XfSGjM7hHAv5XWECWYOJRxnehOS6S/cveVdrLKCmQ0i/L0+6+4b2ynX0913pS+yVri7Hil+ADcQzvqaXvdosf424G2gONOxthL7jYSa208I0yOuIZwMXAccFJU5EPgbMDjT8bYS/9XAywmve7VYfxnwPvDpTMfaxu9mIfBdQsJpIMzx/CPgkKjMJ6PP/qBMx9tK/PcDvwc+lbCsBLgeWAmsB87IdJxtxP6z6HP9IHo+ssX6faJ9+TKQl+l4W4n/vuiz75uwbBBhJrdKwknZP2U6zjZi/2n02W8EngS+APRuUaaEcF/o3pmIsemhC/vpUQ0UmdlwAHdvMLMeZrZvtH4asI1QQ802pYQz2R8C3yAc1BcDFwDzzez3hGkWq919dcaibNsiYIiZnQRhTubos98vWv8k4WD+lbY2kEEHEmoPU4EzgBOBB4DTgGVm9ibwa8Jn/37GomzbKGCOu38Q3b+3h7uvcvcfuvsQYBZwmZntk4WdW44inADcBxwPLDazd83sBjMr8NCcezFhZrTGTAbahiFAlbtvMbM8M8tz93Xu/qC7VxD27Rtmlp/hOFszlnC8+VfCJZffAsvN7KdmdmRU5hvAZe6+M0MxAuqFmy6VhNrDTDM7x8x6u3uDu+8AcPflhKahjP4YWoqu/TwDfODuH7j7End/iFD7/GfgP4HthDPEH2cu0nbNJ9TuHzWzy8xsv+iz3w7g7huA/cmy+yVG15ifAZa6+8boUQncTGiy/RKhafoEQo00G/0RuCDqwLIrOnHsmXDy8jPg08DRHlUrsoGZDSFcI38N+D7h930q8DyhxeJDM3sF+BdCbSkbPQ981cwOdfdGD5cueplZr2j9Lwk10mMyF+LHRfeNXg0sd/dfAZOA0cA9wHjgdTN7i3BtN+Ofva6Bpkn0w/gJcDjhB/IaMDt6/k3gH4Gh7r41Y0HuQWvXHMzsLOA3wP7uvi0zkbUvOmDfSqjhbyc0Qf8O+D/gq4QaRmm2xg9hKIK36MRiZqcAz5Gln72ZjSE0I34A3OzuT7dYfyihI1dBNsVvZv0IveVXuPuchOX7EW5UMQa4gvC76dt0MpZNouvPM4ADgO+7+wMt1h8GVAEHZNln34fQ0vIXd3+1xbp8wnX0awkdMjP+2SuBppGZDQS+SLhAPozQPDoAmANMdfdfZzC8j2ntoB0t70HUkcLMfgSM9YQbAGSTqOmqMRrKcjzhLPZY4EhCrX8WofPWcxkM82OiJk1r7fNPKHMzMM7dT0lbYB3U1LszumxxB+Ezb+o89BwwknBCs9zdz8lcpO1r6jjk7g0tlv83cGC2/u4hDF0BbgfOJ3Q2e4Hwez+M8LfwZ//7na+yUmu9hM3sQUIfgPGZiSohFiXQ1DKzwcDw6OVWQq/K7YQEuj/h2ueH3k5vs0xJiN0IF/Vr3P2DhPVGuDa3xt1fz0yUyYmasAoJ38G+wOZsrvW3x8xOANa7+5JMx9Ke6Fr/RMKJ49GEa6MbCdf+H3X3lRkMr0MSe+ASehVXAre7+/SMBtaKKNZ9ohPHfQmtXhWEmt2RwHLgUWBG4t9zNogmffC2mvSjVoDfAfe5+2/TGlxr8SiBpo6ZXU4YAzeakChrCU22LwK/ydKOH8DHYt9K6Pq+mtD8+ZS712QwvD2KrnVuT3jd7h9mNmkZe66JPuszCCcq+xHGf851983RAd0JzW9Zdd0ZPhZ7PqHX+Rx3/0tCmd7ARHd/JjNRJi9x3LaZ9Xf3zZmOKQ4z60lo8Zqf6VhACTRloubad4G7CD35Cgln4ScQmq/WAt9y96XZNph5D7GXERLpv0Sx52VbL0QzG0DoffsM4Ux7XtPnm5hIo4Hmqz2LZmjZQ+yJg/vLgDp3/2vGgm1F1Gz4S+BzhFaLNYQWjG2E5sNH3X1ZVLbVSwSZ0krsqwnJfgfhMssj7v525iJsX5RcDgZWttY7NduOM4n2FHvWajmuRY8uG8t0FfBqG+uOJ1wLqgU+kelY96bYE+LfSeio1UioAd1C6CjUVOYgwhjLYZmOd2+JPYrt3wknAEdFrw8lDHm6D1hA6FRUmOk4Y8T+OvB0tsYexXs1obXoV8DphIkT8lqU6UfoUdwz0/HGjP00WozlzuRDw1hSpx7oG/V2w8x6N3Uh9zA12/mEM9vPZy7ENuVy7BDmHP4VocNWOfAEYZznUjP7k5ldSjgwjvDsm0Ixl2OHMOzgIY+uibv72+7+KHAlYdjHocAjGYyvPe3F/q+E1pdsjR3gXMKJ13DCFKHzgTvN7HgLs29B6O1/k2d6Bp+P62js/+FZNNuZEmjq/IbQDHR1NA5up4dB/PsAuPsq4K/A4EwG2YacjT26PrWUMEn/X9z9TXf/LmFw9inRupsJw1p+mLFAW5HLsUNz7+zFwNkWpsIjGsS/j4exiJWEcZSDzWx0JmNtKZdjh+apB3cRepSPJ0yk8EvCiVglMNvMrifU9F5tc0MZkMuxZ7wKvDc+CNd8DDiTMMvNFsIPYgx/nwLsgmj50EzHu7fEnrAPvYmmjyP0nNynxfoTyN6pB3M29ii+YwnNzj8EBrWy/iDC+NsDMx3rXhZ7EaGGf0or68oJk1ZsiH47WRV/LseuTkQpZGYHEBLOZwkDs4+LVn1ASFKPuPvNmYmufbkae8L4w2HAVk+YYD1h3Y3AJe4+LHORflwuxw7NHbT2IUxOcRvhJgPTgccJdwI5glCrGOnuR2UqztbkcuxNoiEe7u47oqEswG73wb0V+IK7l2cqxrbkauxKoF3MzD4JXEi4ZvIhYbzhX4GXCUNAehLa+f/g7u9kKs7W5HLssFv81wB/IUyfWEeY73aGR/ddJcyjudbdZ2Ys2BZyOfbWRCdglxCuW32G0GKxg9AZ53ZvMctMNsnx2FvtaWthFp8q4FfunnXN/5CbsSuBdrFoloxRhN6GG4ECwkDmTxMOjN/L1j/AXI4d2oy/nNBxZTVwp2fvLZweJEdjh+bp77YkHgCjWt2+hAlDDiPUqrPu95PLsUPr8bdSZl9CR53/8SzqhJPLsYMSaJeKaghbCE0NlQnLSgiTNn+dMAPROe5elbFAW5HLsUO78Q8mXNv6BqFzwleyLf5cjr2JmU0l9KJ8jTCW76NWygzwLLyJdi7HDh2O/wDPsjHDkNuxA+pE1JUPQg3iLeDYNtb3Bt4gNANlPN69JfYOxt8rW+PP5dij+L5C6ODxV8L44KmEyb6HA/tFZfYnDE84PNPx7i2xtxP/PwCHJMTfNP3dYZmOd2+JvemhGmgXii6EzyRMAXYR8J5//A4aVxFuZPuZDITYplyOHXI7/lyOHcDMphEmfbiDkHwuJhwEawj3kv0j4cYJ97h7r7a2kwm5HDvkdvy5HHsTjQPtQh7mL/13wlnTw8BFZnaQhTuBNF0Mn0AYb5ZVcjl2yO34czn2aPzkcuCv7l7r7j9y98MJN6SeQzgoPkG4d2NWTUKQy7FDbsefy7EnUg00BSzM4PMfhJsebyXMqrGeMJ9sHfB1d38rcxG2LZdjh9yOP1djtzB/7yB3f9vCjFW7POHAYmbnAv8DHOnuf85UnK3J5dght+PP5dibKIGmUDQ04TTCpAQ7CDWIJz2LJ6RuksuxQ27Hn8uxN4l6sZqHW2p9g9AMl5/puDoil2OH3I4/12JXAk0Ty7I7TyQjl2OH3I4/l2NvYmbXECYGvzPTsSQrl2OH3I4/F2JXAhWRlLJwq6rGXDwRyOXYIbfjz4XYlUBFRERiUC9cERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGL4/6Eq2mwcLGS1AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -171,7 +170,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VuWZ//HPZVgECkIwg0FkK5oGUAwwjpZNW2m1drHIz2Vwa8e6tVrHsXS0/hRra6euOA4uhdZ1nKoF9/KTUhyCSrVNkLJECg2LQKRsAmULptfvj/skfQhJyHOSZ4Pv+/V6XnnOOfc5uc55luu5z32f+5i7IyIiIsk5ItMBiIiI5CIlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkhjaZDiCTunfv7r179850GCIikkXef//9Te5ecLByh3UC7d27N3PmzMl0GCIikkXy8/NXN6ecTuGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAicliZPXs2p5xyCsOGDWPy5MkHLH/88ccZMWIEo0eP5uyzz+aDDz6oW/bAAw8wbNgwTjnlFH7729/ut15NTQ1jxozhwgsvTPk+SHZQAhWRw0ZNTQ0TJ07k+eefZ/78+UyfPn2/BAlw3nnn8fbbb1NaWsr111/PrbfeCsAHH3zAjBkzeOedd3jhhRf43ve+R01NTd16jz76KCeccEJa90cySwlURA4bZWVl9OvXj759+9KuXTvGjRvHzJkz9yvTpUuXuue7du3CzACYOXMm48aNo3379vTp04d+/fpRVlYGwLp16/jNb37DJZdckr6dkYxrk+kARETSpaqqimOPPbZuumfPnnVJMNG0adN4+OGHqa6u5uWXX65bd/jw4futW1VVBcAtt9zCpEmT+Otf/5riPZBsohqoiEg9V1xxBeXl5UyaNIn77ruvybJvvPEGBQUFnHzyyWmKTrJF2hOomV1rZivNbI+ZlZnZqCbKjjGzd8xss5ntNrMPzOymemW+ZWbzzGyrmX1sZm+a2cjU74mI5JrCwkLWrVtXN71+/XoKCwsbLT9u3Dhef/31Jtd99913mTlzJkOGDOGKK65g3rx5XHXVVanbCckaaU2gZnYB8CBwF1ACvAPMNLPejazyV+A/gdHAQOBHwB1mdm1CmdOB54DPAf8ELAPeMLPjU7EPIpK7hg4dSmVlJatXr6a6upoZM2Zw1lln7Vfmz3/+c93zWbNm8elPfxqAs846ixkzZrB3715Wr15NZWUlw4YN47bbbmPJkiUsXLiQadOmMWrUKB577LG07pdkRrrbQG8EnnD3qdH0dWZ2FnANcHP9wu5eBiQ2UKw0s3HAKODhqMyExHXM7BrgXOAsYHmr74GI5Kw2bdpw9913M378eGpqapgwYQLFxcXcddddlJSUcPbZZzN16lTmzp1L27Zt6dq1K1OmTAGguLiYc889l9NOO61uO3l5eRneI8kkc/f0/COzdsAu4CJ3fyFh/hRgsLuPacY2SoCZwCR3f7SRMu2BDcB33P2ZprZXUlLic+bMSWIvRETkUJefn1/m7sMPVi6dNdCjgTxCcku0ATizqRXNbC1QQIj3jsaSZ+RHhFO/rzSyrSuBKyG0aZSXlwOhR13Hjh1ZsWIFAEcddRT9+/dnwYIFAOTl5TFkyBCWLVvGzp07gfCLdMuWLWzYEHapV69etGvXjsrKSgC6detG7969WbhwIQBt27blxBNPpKKigt27dwMwcOBANm7cyMaNGwHo06cPZsaqVasA6N69O4WFhSxevBiA9u3bM2jQIJYsWcLevXsBGDx4MFVVVWzevBmAvn374u6sXr0agIKCAgoKCli6dCkAHTp0oLi4mEWLFrFv3z4AhgwZwpo1a9i6dSsA/fv3p7q6mrVr1wLQo0cP8vPzqaioAKBTp04UFRWxcOHCumvhSkpKqKysZNu2bQAMGDCAXbt2sX79emqPd5cuXVi2bBkAnTt35vjjj2fBggW4O2ZGSUkJy5cvZ8eOHQAUFRWxffv2ut6Oep30Oul10uuU6tepudJZA+0JrAPGuHtpwvzbgAnuXtTEuv2ATwGnAj8FvuvuTzdQ7rvAncCZ7v7ewWJSDVREROrLxhroJqAG6FFvfg/go6ZWdPeV0dNFZtYDmATsl0DN7AZC8jy7OclTRESkJdLWC9fdqwkdgsbWWzSW0Bu3uY4A2ifOMLMbCcnzHHd/qyVxioiINEe6e+HeDzxtZu8BbwNXAz2BRwHM7CkAd780mr4OWEm4NAXC5Sw3EfXAjcp8D/gxcDHwJzM7Jlq02923pXqHRETk8JTWBOruz5lZd+BWoBBYDHzJ3VdHRepfD5pHaPPsC3wC/Bn4d6KEG/k20JZwLWiiJ4HLWzF8ERGROmnrRJSN1IlIRETqa24nIo2FKyIiEoMSqIiISAxKoCIiIjEogYqIiMSgG2qLZMDs2bO55ZZbqKmp4ZJLLuGGG27Yb/mUKVN4+umnadOmDUcffTQPPfQQxx13HPPmzeMHP/hBXbnly5czbdo0zjnnHObOncvtt9/O3/72Nzp16sSUKVPo379/unctJ0x8slvKtn33ZVtTtm3JLqqBiqRZTU0NEydO5Pnnn2f+/PlMnz6dDz74YL8yJ510EnPmzOGtt97iq1/9KrfffjsAo0aNorS0lNLSUl5++WU6dOjAGWecAcBNN93EY489RmlpKePHjz/ojaBFpGWUQEXSrKysjH79+tG3b1/atWvHuHHjmDlz5n5lRo0aRceOHQEYPnx43QDiiV5++WXOPPPMunJmVjdo+Pbt2znmmGMOWEdEWo9O4YqkWVVVFccee2zddM+ePSkrK2u0/DPPPMOZZx54w6IXX3yRa6/9+73lH3zwQS644AKOPPJIOnfuzKxZs1o3cBHZj2qgLTR79mxOOeUUhg0bxuTJkw9YPmXKFE499VRGjhzJueeey4cffgjAvHnzGD16dN2jsLCQ119/HYDrrruOUaNGMXLkSC677DL++te/pnWfJHs8//zzLFiwgOuuu26/+R999BFLly7lc5/7XN28Rx55hOeee44lS5bwz//8z9x6663pDlfksKIE2gKpasv68Y9/zLx583jrrbfo1asX06ZNS/u+SeoUFhaybt26uun169dTWFh4QLn//d//5b777uPZZ5+lffv97p/ASy+9xDnnnEPbtm0B2LRpE4sXL2b48DB4yrhx43jvPd2USCSVlEBbIFVtWV26dAHA3dmzZw9mluI9kXQaOnQolZWVrF69murqambMmMFZZ521X5k//vGP3HjjjTz77LMUFBQcsI3p06dz3nnn1U137dqV7du3190Y+c033+SEE05I7Y6IHObUBtoCqWrLAvj2t7/N7NmzKSoq4s4772y9oCXj2rRpw91338348eOpqalhwoQJFBcXc9ddd1FSUsLZZ5/N7bffzs6dO/nGN74BQK9evXj22WcBWLNmDevXr2fEiBH7bXPy5MlcdtllHHHEEXTt2pWHHnooI/sncrhQAk2T2ras1157bb/5DbVlQWg7ramp4fvf/z4vvvgiEyZMSGe4kmJjx45l7Nj9b417yy231D1/8cUXG123d+/eLFmy5ID5X/7yl/nyl7/cekGKSJN0CrcFUtGWlSgvL49x48bx6quvtn7wIiLSIkqgLZCKtix3p7Kysu75zJkzOf7441O7IyIikjSdwm2BVLRluTvXXnstO3bswN0ZPHgw9957b0b2T0REGqcbauuG2iKHHY2FK03RDbVFRERSSAlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRg0kIJIhqTyWkTQ9YgiqaYaqIiISAxKoCIiIjEogYqIiMSgNtBWoLYsEZHDj2qgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhJD2hOomV1rZivNbI+ZlZnZqCbKjjOzWWa20cx2mNm7ZvbVJspfZGZuZq+lJnoREZEgrQnUzC4AHgTuAkqAd4CZZta7kVXGAHOAc6LyvwZebCjpmll/4B5gXgpCFxER2U+6a6A3Ak+4+1R3r3D364Aq4JqGCrv7d939P9z9PXdf4e53AGXAuYnlzKwt8D/AD4DK1O6CiIhIGhOombUDhgGz6i2aBXw2iU11BrbWm/djYJW7Pxk/QhERkeZrk8b/dTSQB2yoN38DcGZzNmBm3wZ6AU8nzPsCcD5wcjO3cSVwJUBhYSHl5eUA9OzZk44dO7JixQoAjjrqKPr378+CBQsAyMvLY8iQISxbtoydO3cCUFxczJYtW4BuzfnXsVVXV7N48WIA2rdvz6BBg1iyZAl79+4FYPDgwVRVVbF582YA+vbti7uzevVqAAoKCigoKGDp0qUAdOjQgeLiYhYtWsS+ffsAGDJkCGvWrGHr1vDbpH///lRXV7N27VoAevToQX5+PhUVFQB06tSJoqIiFi5cSE1NDQAlJSVUVlaybds2AAYMGMCuXbtYv349EI53ly5dWLZsGQCdO3fm+OOPZ8GCBbg7ZkZJSQnLly9nx44dABQVFbF9+3aqqqqAlr1OGzaEt16vXr1o164dlZXhZEW3bt3o3bs3CxcuBKBt27aceOKJVFRUsHv3bgAGDhzIxo0b2bhxIwB9+vTBzFi1ahUA3bt3p7CwMKnXCT6f3BshSeXl5XqdGnmdUqm8vFyfpwx8nlrze6+5zN2bXbglzKwnsA4Y4+6lCfNvAya4e9FB1j+PkDgvcPdXo3kFwELgInefG817Ajja3b98sJhKSkp8zpw5Mffo7yY+mdoEevdl9SvccijQ+yZzUnnsddxzX35+fpm7Dz9YuXTWQDcBNUCPevN7AB81taKZjQeeAi6tTZ6RQUAh8Fszq513RLTOJ8Agd1/W8tBFRET2l7Y2UHevJnQAGltv0VhCb9wGmdn5hJrn5e7+q3qLfw+cSDh9W/t4hdAT92RgZasELyIiUk9SNdAomX3s7rOi6dsI7YlLCAmu6iCbuB942szeA94GrgZ6Ao9G23sKwN0vjaYvJCTPm4BSMzsm2k61u29x953A4noxfgy0cff95ouIiLSmZGugk2qfmNlQ4BbgP4G2wH0HW9ndnwNuAG4F3gdGAl9y99VRkd7Ro9bVhCQ/mXC5S+1jRpJxi4iItKpk20D7ALVtil8HXnL3u81sFvBGczbg7g8DDzey7PSmppu5/cuTXUdERCRZydZA9xCuw4TQB3929HxbwnwREZFDXrI10HnAfWb2FjAcGB/NPwH4sDUDExERyWbJ1kC/A1QTEufV7r4+mn82zTyFKyIicihIqgbq7muBrzQw/4ZWi0hERCQHJH0dqJkdaWbjzez7ZtY1mvdpM8tv/fBERESyU7LXgQ4gdBz6FNAVeAH4mHA3la7AFa0doIiISDZKtgY6mXD3lB7A7oT5rwBntFZQIiIi2S7ZXrifBU5195qEsWcB1hBGFBIRETksxBkLt20D83oTrgUVERE5LCSbQGcBNyZMu5l1Ae4AXm+1qERERLJcsqdwbwTeNLNlwJHAc8AAwk2xz2/l2ERERLJWsteBrjezk4GLgKGEGuzPgP92991NriwiInIISfqG2lGi/EX0EBEROSwdNIGa2TjgVXffFz1vlLvrNmMiInJYaE4N9FfAMcBfoueNcSCvNYISERHJdgdNoO5+REPPRUREDmdJJUQzG21mByRdM8szs9GtF5aIiEh2S7ZG+SbQ0KDxXaNlIiIih4VkE6gR2jrr6w7sbHk4IiIiuaFZl7GY2SvRUweeMbO9CYvzgMHAO60cm4iISNZq7nWgm6O/Bmxl/zuxVANvAVNbMS4REZGs1qwE6u7fADCzVcC97q7TtSIiclhLdii/O1IViIiISC5pzkhEfwTGuPtWM1tEw52IAHD3k1ozOBERkWzVnBrodKC201BTIxGJiIgcNpozEtEdDT0XERE5nGloPhERkRia0wbaZLtnIrWBiojI4aK5d2MRERGRBEm1gYqIiEigNlAREZEYdB2oiIhIDLoOVEREJAZdByoiIhJDUmPh1jKzTwPF0WSFu/+59UISERHJfkklUDPrDvwc+Crwt7/PtteAb7r75kZXFhEROYQk2wt3GjAAGAUcGT1GA/3Q/UBFROQwkuwp3C8Cn3f3+Qnz3jazq4DZrReWiIhIdku2BroRaOhm2rsAnb4VEZHDRrIJ9IfAZDM7tnZG9Py+aJmIiMhhIc5g8v2AVWa2Lpo+FtgD/AOhjVREROSQp8HkRUREYtBg8iIiIjFoMHkREZEYkkqgZtbOzO4wsz+Z2R4zq0l8pCpIERGRbJNsDfRO4DJCr9u/Ad8DphAuYbm2dUMTERHJXskm0POBq939MaAGeNndrwduB8a2dnAiIiLZKtkE2gNYGj3/K9A1ev7/gC+0VlAiIiLZLtkEugboGT1fQRjaD+A0YHdrBSUiIpLtkk2gLwKfj54/CNxhZiuBJ2jmIApmdq2ZrYw6IZWZ2agmyhaa2bNm9kHUUemJRsp1MbP/NLP1ZrbXzFaY2flJ7ZmIiEgSkhpM3t1vTnj+KzNbC3wW+JO7v3aw9c3sAkLivRZ4K/o708wGuvuaBlZpD2wC/gO4spFttgV+A2whtNGuBXoBe5PYNRERkaTEuqF2LXf/HfC7JFa5EXjC3WtvfXadmZ0FXAPcXL+wu68Crgcws/GNbPMbQAEwyt2ro3mrkohJREQkaUkPpGBmQ83sKTP7Q/R42syGNmO9dsAwYFa9RbMItdi4zgXeBh4ys4/MbKmZTYpqpiIiIimRVA3UzCYATwFzgF9Hs08F3jOzy939mSZWPxrIAzbUm78BODOZOOrpD3wOeBY4B+hLuDb1U8BN9Qub2ZVEp4MLCwspLy8HoGfPnnTs2JEVK1YAcNRRR9G/f38WLFgAQF5eHkOGDGHZsmXs3Bnu6FZcXMyWLVuAbi0I/+Cqq6tZvHgxAO3bt2fQoEEsWbKEvXvDWerBgwdTVVXF5s3hjnJ9+/bF3Vm9ejUABQUFFBQUsHRp6EDdoUMHiouLWbRoEfv27QNgyJAhrFmzhq1btwLQv39/qqurWbt2LQA9evQgPz+fiooKADp16kRRURELFy6kpiaMoVFSUkJlZSXbtm0DYMCAAezatYv169cD4Xh36dKFZcuWAdC5c2eOP/54FixYgLtjZpSUlLB8+XJ27NgBQFFREdu3b6eqqgpo2eu0YUN46/Xq1Yt27dpRWVkJQLdu3ejduzcLFy4EoG3btpx44olUVFSwe3foGzdw4EA2btzIxo0bAejTpw9mxqpVqwDo3r07hYWFSb1Of+9OkBrl5eV6nRp5nVKpvLxcn6cMfJ5a83uvuczdD16qtrDZKuBn7n5Xvfk3A1e5e98m1u0JrAPGuHtpwvzbgAnuXnSQ//0asMndL683/0/AkUA/d6+J5l0JPAB8ypvYwZKSEp8zZ05T/7ZZJj6Z2gR692VbU7p9yQy9bzInlcdexz335efnl7n78IOVS/YUbgHwfAPzXyDczqwpmwiDL/SoN78H8FGScSSqInRiShxKsALoSKj1ioiItLpkE+ibwOkNzD8dmNvUilEHnzIOHLFoLPBOknEkehsYYGaJ+3ICsIuQtEVERFpdc26oPS5hcibwEzMbzt97354KjAMmNeP/3Q88bWbvERLf1YSBGR6N/tdTAO5+acL/Pzl62gX4WzRd7e61IyI9AnwHeNDM/ovQBnoH8HBTp29FRERaIu4Ntes64iR4CHi4qQ25+3Nm1h24FSgEFgNfcvfVUZHeDay2oN70V4DVhESJu39oZl8gJOf3CaeDfwH8qKlYREREWqI5N9Ru1XuGuvvDNJJo3f30BuZZM7b5O1p2KYyIiEhSdENtERGRGOIMpHCOmZWa2SYz22hmc83sS6kITkREJFsllUDN7ArCgPJ/Br4P/DuwEnjRzL7Z+uGJiIhkp2THwv0+cKO7/1fCvJ+bWRkhmf6i1SITERHJYsmewu1NuHl2fTOBPi0PR0REJDfEuaF2/YEQAL5AuLRERETksJDsKdx7CXc9GcrfRw8aAVwCXNeagYmIiGSzZG+o/ZiZ/QX4N8LoQxDGnT3f3V9u7eBERESyVbMTqJm1IZyqLXX3F1MXkoiISPZrdhuou38CzAA6py4cERGR3JBsJ6KFwIBUBCIiIpJLkk2gk4D7zOxcMzvOzPITHymIT0REJCsl2wv39ejvDCDxVmEWTee1RlAiIiLZLtkEekZKohAREckxzUqgZtYRuAc4F2gLzAaud/dNKYxNREQkazW3DfQO4HLCKdz/IYxG9EiKYhIREcl6zT2FOw74F3f/JYCZ/TfwtpnluXtNyqITERHJUs2tgR4HzKudcPf3gE+AnqkISkREJNs1N4HmAdX15n1C8p2QREREDgnNTYAGPGNmexPmHQlMNbNdtTPc/autGZyIiEi2am4CfbKBec+0ZiAiIiK5pFkJ1N2/kepAREREckmyQ/mJiIgISqAiIiKxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxpD2Bmtm1ZrbSzPaYWZmZjTpI+TFRuT1mVmlmV9dbnmdmdyZsc6WZ/cjM2qR2T0RE5HCW1gRqZhcADwJ3ASXAO8BMM+vdSPl+wK+jciXAT4CHzOy8hGLfB74NXA98BvhuNH1zinZDRESEdNfSbgSecPep0fR1ZnYWcA0NJ7yrgfXufl00XWFm/wTcBEyP5n0WeNXdX42mV5nZK8A/pWQPRERESGMN1MzaAcOAWfUWzSIkwYac1kD5N4DhZtY2mn4LOMPMPhP9n4HA5wg1VxERkZRIZw30aCAP2FBv/gbgzEbWOQaY3UD5NtH2qoCfAp2BpWZWEy37sbs/3NAGzexK4EqAwsJCysvLAejZsycdO3ZkxYoVABx11FH079+fBQsWAJCXl8eQIUNYtmwZO3fuBKC4uJgtW7YA3Zp1AOKqrq5m8eLFALRv355BgwaxZMkS9u7dC8DgwYOpqqpi8+bNAPTt2xd3Z/Xq1QAUFBRQUFDA0qVLAejQoQPFxcUsWrSIffv2ATBkyBDWrFnD1q1bAejfvz/V1dWsXbsWgB49epCfn09FRQUAnTp1oqioiIULF1JTUwNASUkJlZWVbNu2DYABAwawa9cu1q9fD4Tj3aVLF5YtWwZA586dOf7441mwYAHujplRUlLC8uXL2bFjBwBFRUVs376dqqoqoGWv04YN4a3Xq1cv2rVrR2VlJQDdunWjd+/eLFy4EIC2bdty4oknUlFRwe7duwEYOHAgGzduZOPGjQD06dMHM2PVqlUAdO/encLCwqReJ/h8cm+EJJWXl+t1auR1SqXy8nJ9njLweWrN773mMndvduGWMLOewDpgjLuXJsy/DZjg7kUNrPMn4Bl3/2HCvNHAXKCnu1eZ2YXAPcD3gCXAyYR21u+5+8+biqmkpMTnzJnT4n2b+GRqE+jdl21N6fYlM/S+yZxUHnsd99yXn59f5u7DD1YunTXQTUAN0KPe/B7AR42s81Ej5T+Jtgched7r7r+MpheZWR9Cm2qTCVRERCSutLWBuns1UAaMrbdoLKGXbUPmN1L+D+6+L5ruSEjMiWrQNa4iIpJC6e6Fez/wtJm9B7xN6GXbE3gUwMyeAnD3S6PyjwLfMbPJwGPACOBy4KKEbb4K/LuZrSScwi0h9PZ9KtU7IyIih6+0JlB3f87MugO3AoXAYuBL7r46KtK7XvmVZvYl4AHCpS7rgevdfXpCseuAO4GHgX8gdCyaCvwQERGRFEn7aD1R79gGe8i6++kNzJsLDG1iezuAG6KHiIhIWqidUEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVARkRwxe/ZsTjnlFIYNG8bkyZMPWL53716++c1vMmzYMM4880zWrFkDQFlZGaNHj2b06NGMGjWK1157bb/1ampqGDNmDBdeeGFa9uNQoQQqIpIDampqmDhxIs8//zzz589n+vTpfPDBB/uVeeaZZ+jatStlZWVcc801TJo0CYDi4mLmzJlDaWkpL7zwAjfeeCOffPJJ3XqPPvooJ5xwQjp355CgBCoikgPKysro168fffv2pV27dowbN46ZM2fuV+bXv/51XS3ya1/7GqWlpbg7HTt2pE2bNkCopZpZ3Trr1q3jN7/5DZdcckn6duYQoQQqIpIDqqqqOPbYY+ume/bsSVVVVaNl2rRpQ5cuXdiyZQsAf/jDHzjttNMYOXIk9913X11CveWWW5g0aRJHHKF0kCwdMRGRw8Dw4cOZP38+s2fPZvLkyezZs4c33niDgoICTj755EyHl5OUQA9zcTslvPnmm5xxxhmMGDGCM844g9LS0rp1pk+fzogRIxg5ciTjx49n8+bNiv0Q09rHfseOHXWdXEaPHs2AAQO4+eab07pP2a6wsJB169bVTa9fv57CwsJGy3zyySds376d/Pz8/coUFRXRqVMnKioqePfdd5k5cyZDhgzhiiuuYN68eVx11VUp24dD7TOrBHoYa0mnhO7du/Pss8/y9ttvM2XKFK655hogfGhvvvn3pQfgAAASFklEQVRmXnnlFd566y0GDRrE1KlTFfshJBXHvnPnzpSWltY9jjvuOL7yla+ke9ey2tChQ6msrGT16tVUV1czY8YMzjrrrP3KnH322fzyl78E4OWXX2bUqFGYGatXr67rNPThhx+yfPlyevfuzW233caSJUtYuHAh06ZNY9SoUTz22GMpif9Q/MwqgR7GWtIp4aSTTqr79VtcXMzu3bvZu3cv7o67s2vXLtydHTt2cMwxxyj2Q0gqjn2iFStWsHHjRk477bT07FCOaNOmDXfffTfjx4/n1FNP5dxzz6W4uJi77rqr7vhffPHFbNmyhWHDhvHII49w++23A/C73/2OUaNGMXr0aC655BLuueceunfvntb4D8XPbJu0/SfJOg11SigrK2u0TGKnhMQP3yuvvMKQIUNo3749APfeey8jRoygU6dO9O/fn3vuuUexH0JSdexrzZgxg69//ev79RSVYOzYsYwdO3a/ebfcckvd8yOPPJInnnjigPUuuOACLrjggia3PXLkSEaOHNkqcTbkUPzMqgYqLVJRUcEdd9zB/fffD8C+fft4/PHHmTt3LkuXLmXQoEE88MADGY6yYbkce66rf+wTzZgxg/POOy8DUUm2y7bPrBLoYaylnRLWrVvHpZdeysMPP0y/fv0AWLRoEQD9+vXDzDj33HN57733FPshJBXHvtbixYupqalRr9BD0KH4mdUp3MNYYqeEwsJCZsyYwc9+9rP9ytR2SjjllFP265Swbds2LrzwQm677TZOPfXUuvKFhYUsW7aMTZs2cfTRR/Pmm2+mZISTXI4916Xi2NeaPn0648aNS9eu5KSJT3ZL6fbvvmxrSrZ7KH5mlUAPY4mdEmpqapgwYUJdp4SSkhLOPvtsLr74Yq6++mqGDRtGt27dmDZtGgBTp05l5cqV3HPPPXVtDtOnT6ewsJCJEydyzjnn0LZtW4477jimTJmi2A8hqTj2BQUFALz00ks899xzGds3SZ1D8TNr7p62f5ZtSkpKfM6cOS3eTq7+IpTM0vsmc1J57FN93PW+Sb38/Pwydx9+sHJqAxUREYlBp3APc7n+azaXaxIih5tc/76pTwlURJJ2qH0RisShU7giIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISQ9oTqJlda2YrzWyPmZWZ2aiDlB8TldtjZpVmdnVLtykiItJSaU2gZnYB8CBwF1ACvAPMNLPejZTvB/w6KlcC/AR4yMzOi7tNERGR1pDuGuiNwBPuPtXdK9z9OqAKuKaR8lcD6939uqj8VOBJ4KYWbFNERKTF0pZAzawdMAyYVW/RLOCzjax2WgPl3wCGm1nbmNsUERFpMXP39Pwjs57AOmCMu5cmzL8NmODuRQ2s8yfgGXf/YcK80cBcoCdgMbZ5JXBlNFkELGuF3UvW0cCmDPzf1qDYMyeX48/l2CG341fsyevj7gUHK9QmHZFkE3f/GfCzTMZgZn9w9+GZjCEuxZ45uRx/LscOuR2/Yk+ddCbQTUAN0KPe/B7AR42s81Ej5T+JtmcxtikiItJiaWsDdfdqoAwYW2/RWELP2YbMb6T8H9x9X8xtioiItFi6T+HeDzxtZu8BbxN62fYEHgUws6cA3P3SqPyjwHfMbDLwGDACuBy4qLnbzFIZPYXcQoo9c3I5/lyOHXI7fsWeImnrRFT3D82uBSYChcBi4F9rOwCZ2f8CuPvpCeXHAA8Ag4D1wE/d/dHmblNERCQV0p5ARUREDgUaC1dERCQGJVAREZEYlEAzwMws0zEcjnTcRaQ1KYFmgKvhOSNqj7sSafqZmb5rMiTx2Ou937rUiShNzKw9cBLwdWAbsARYAXzo7jvNzLI9sZpZHiEP/S3TsSTDzD4FjAYuBLYCy4E/AYvdfX0mY2suM2sD/C3Xjr1kBzPr7O47Mh3HoUYJNE3M7D+BcYQ7xXQD+hIuy3kJmOzulZmLrmlmNszdy+rNyyN8oWf9G8jMniQk0OWEY38cIZG+D0x19zkZDK9JZjbS3d+qNy9nkqmZHQd8E/hH4M+EsaeXAH90963Z+sMxMa5cOt6JzKyYcLeqEsKP9TXAQqDU3T+MymTl8c8VSqBpYGYDgd8B44Eyd99sZgXAvwBXAccA3yV8mWfVC2JmxxO+9JYS7nLztLsvSFhuhAE5SoD3o9GhskZ07N8ljE71e3evMbOjgPOBK4DhwA+BH5FlPwjM7DOE474TeB14yN3fTlhuQFvgi8B77r4hI4E2Irqf73SgA/B7YDBhmM3NwDzgfnf/c+YibFz0+Syud5MKA/KAmmx6nzTEzD5NuJfyBsIAM58hfM+0JyTTae5e/y5WWcHMehA+r7929y1NlGvr7vvSF1kD3F2PFD+AWwi/+mqn29RbfhfwAdAz07E2EPtthJrbA4ThEdcRfgxMBI6LyhwL/A3olel4G4j/BuCthOl29ZZfDXwInJDpWBt53ywAbiYknE8IYzzfC3w6KvMP0bE/LtPxNhD/o8CrwDEJ83oD3wdWAxuBr2U6zkZinxId14+i5wPrLT8i2pf/A+RlOt4G4n8kOvadE+b1IIzkVkr4UfYvmY6zkdgfio79FuAF4EtA+3plehPuC90+EzHWPtSwnx4VQKGZDQBw90/MrI2ZHRktnwrsItRQs00R4ZfsT4FvEb7UFwMXA/PN7FXCMIsV7r42Y1E2biHQx8w+D2FM5ujYd4iWv0D4Mr+osQ1k0LGE2sNjwNeAzwG/AM4BlpvZH4FfEo79hxmLsnGDgLnu/lF0/9427r7G3X/q7n2A2cDVZnZEFnZu+UfCD4BHgJHAYjNbYWa3mFm+h9O5lxFGRqvJZKCN6AOUu/sOM8szszx33+DuT7j7aMK+fcvMOmY4zoYMJ3zf/BuhyeVFYKWZPWRmQ6My3wKudve9GYoRUC/cdCkl1B5eM7Pzzay9u3/i7nsA3H0l4dRQRt8M9UVtP68DH7n7R+6+xN2fJNQ+rwL+A9hN+IV4f+YibdJ8Qu3+GTO72sw6RMd+N4C7bwY+RZbdLzFqY34dWOruW6JHKTCJcMr2q4RT06cTaqTZ6LfAxVEHln3RD8e2CT9epgAnAKd4VK3IBmbWh9BG/h5wJ+H9fTbwBuGMxSYzexv4V0JtKRu9AXzDzD7j7jUemi7amVm7aPnPCTXSf8pciAeK7hu9Fljp7o8DZwFDgAeBUcDvzWwRoW0348debaBpEr0xHgBOJLxB3gPmRM+/Dfwz0Nfdd2YsyINoqM3BzMYBvwI+5e67MhNZ06Iv7B8Tavi7CaegXwb+CnyDUMMoytb4IVyK4PU6sZjZF4GZZOmxN7NhhNOIHwGT3P2Vess/Q+jIlZ9N8ZtZF0Jv+VXuPjdhfgfCjSqGAdcS3jeda3+MZZOo/XkG0BW4091/UW/5YKAc6Jplx74T4UzLX9z93XrLOhLa0W8idMjM+LFXAk0jM+sOfJnQQN6fcHq0GzAXeMzdf5nB8A7Q0Jd2NL8NUUcKM7sXGO4JNwDIJtGpq5roUpaRhF+xpwJDCbX+2YTOWzMzGOYBolOa1tDxTygzCTjN3b+YtsCaqbZ3Z9RscTfhmNd2HpoJDCT8oFnp7udnLtKm1XYccvdP6s3/b+DYbH3fQ7h0BfgJMIHQ2WwW4f0+mPBZeN//fuerrNRQL2Eze4LQB2BUZqJKiEUJNLXMrBcwIJrcSehVuZuQQD9FaPvc5E30NsuUhNiN0Ki/zN0/SlhuhLa5de7++8xEmZzoFFYB4TU4EtiWzbX+ppjZ6cBGd1+S6ViaErX1n0n44XgKoW10C6Ht/xl3X53B8JolsQcuoVdxKfATd5+e0cAaEMV6RPTD8UjCWa/RhJrdUGAl8AwwI/HznA2iQR+8sVP60VmAl4FH3P3FtAbXUDxKoKljZtcQroEbQkiUlYRTtm8Cv8rSjh/AAbHvJHR9X0s4/fmSuy/LYHgHFbV17k6YbvKDmU3qx55romP9NcIPlQ6E6z/nufu26AvdCaffsqrdGQ6IvSOh1/lcd/9LQpn2wJnu/npmokxe4nXbZnaUu2/LdExxmFlbwhmv+ZmOBZRAUyY6XbsCuI/Qk6+A8Cv8dMLpq/XA9e6+NNsuZj5I7MWERPqvUex52dYL0cy6EXrfvk74pf1O7fFNTKTRheZrPYtGaDlI7IkX9xcDVe7+ccaCbUB02vDnwBmEsxbrCGcwdhFOHz7j7sujsg02EWRKA7GvJST7PYRmlqfd/YPMRdi0KLn0A1Y31Ds1275nEh0s9qxV/7oWPVrtWqbrgHcbWTaS0BZUCRyd6VgPpdgT4t9L6KhVQ6gB/ZDQUai2zHGEayz7ZzreQyX2KLYfEH4A/GM0/RnCJU+PAGWETkUFmY4zRuy/B17J1tijeG8gnC16HPgKYeCEvHpluhB6FLfNdLwxYz+HetdyZ/Khy1hSpxroHPV2w8za13Yh9zA02wTCL9svZC7ERuVy7BDGHH6c0GGrBHiecJ3nUjP7nZldSfhiPN6zbwjFXI4dwmUHT3rUJu7uH7j7M8B3CJd9fAZ4OoPxNaWp2P+NcPYlW2MHuIDww2sAYYjQ+cA9ZjbSwuhbEHr73+6ZHsHnQM2N/f96Fo12pgSaOr8inAa6IboObq+Hi/iPAHD3NcDHQK9MBtmInI09ap9aShik/y/u/kd3v5lwcfYXo2WTCJe1/DRjgTYgl2OHut7Zi4HzLAyFR3QR/xEerkUsJVxH2cvMhmQy1vpyOXaoG3pwH6FH+SjCQAo/J/wQKwXmmNn3CTW9dxvdUAbkcuwZrwIfig9Cm48B5xJGudlBeEMM4+9DgF0cze+b6XgPldgT9qE90fBxhJ6TR9RbfjrZO/RgzsYexXcq4bTzT4EeDSw/jnD97bGZjvUQi72QUMP/YgPLSgiDVmyO3jtZFX8ux65ORClkZl0JCeezhAuzR0SLPiIkqafdfVJmomtarsaecP1hf2CnJwywnrDsNuByd++fuUgPlMuxQ10HrSMIg1PcRbjJwHTgOcKdQE4i1CoGuvs/ZirOhuRy7LWiSzzc3fdEl7IA+90H98fAl9y9JFMxNiZXY1cCbWVm9g/AJYQ2k02E6w0/Bt4iXALSlnCe//+5+58yFWdDcjl22C/+G4G/EIZPrCKMdzvDo/uuEsbRXO/ur2Us2HpyOfaGRD/ALie0W51MOGOxh9AZ5ydeb5SZbJLjsTfY09bCKD7lwOPunnWn/yE3Y1cCbWXRKBmDCL0NtwD5hAuZTyB8Md6arR/AXI4dGo2/hNBxZS1wj2fvLZyeIEdjh7rh73YkfgFGtbojCQOGDCbUqrPu/ZPLsUPD8TdQ5khCR53/8SzqhJPLsYMSaKuKagg7CKcaShPm9SYM2nwFYQSi8929PGOBNiCXY4cm4+9FaNv6FqFzwkXZFn8ux17LzB4j9KJ8j3At3/YGynTzLLyJdi7HDs2Ov6tn2TXDkNuxA+pE1JoPQg1iEXBqI8vbA38gnAbKeLyHSuzNjL9dtsafy7FH8V1E6ODxMeH64McIg30PADpEZT5FuDzhxEzHe6jE3kT8Xwc+nRB/7fB3gzMd76ESe+1DNdBWFDWEv0YYAuxS4M9+4B00riPcyPbkDITYqFyOHXI7/lyOHcDMphIGfbibkHwuI3wJLiPcS/a3hBsnPOju7RrbTibkcuyQ2/Hncuy1dB1oK/IwfukPCL+angIuNbPjLNwJpLYxfAzherOsksuxQ27Hn8uxR9dPrgQ+dvdKd7/X3U8k3JB6LuFL8XnCvRuzahCCXI4dcjv+XI49kWqgKWBhBJ//S7jp8U7CqBobCePJVgFXuPuizEXYuFyOHXI7/lyN3cL4vT3c/QMLI1bt84QvFjO7APgfYKi7v5+pOBuSy7FDbsefy7HXUgJNoejShHMIgxLsIdQgXvAsHpC6Vi7HDrkdfy7HXivqxWoebqn1LcJpuI6Zjqs5cjl2yO34cy12JdA0sSy780Qycjl2yO34czn2WmZ2I2Fg8HsyHUuycjl2yO34cyF2JVARSSkLt6qqycUfArkcO+R2/LkQuxKoiIhIDOqFKyIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgM/x99kuGEuY/DtQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPw6ggKGBKEzEggjGixggiKJOCt1rb6lV/2modatWKltZynWp7EW1rr1qna+uE9Tpd22rBGarloiCCE2AEiQiGQSBQBESKmJD4/P5YO+khJiHnJGci3/frdV7k7L3O5tknJ+fZa+01mLsjIiIi8WmT7gBERESykRKoiIhIApRARUREEqAEKiIikgAlUBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJQLt0B5BOPXr08Pz8/HSHISIiGeTdd9/9xN1zdlWuVSfQ/Px8ZsyYke4wREQkg3Tv3n1lU8qpCVdERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikgAlUBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikgAlUBERkQSkPIGa2WVmttzMvjCzeWY2vJGyI81sjpltNLPtZvaBmV1Zp8zFZvaamW02s0/N7BUzG5b8MxERkdYspQnUzM4C7gJuAoqBOcA0M8tv4CX/BP4bGAEcAvwauMHMLospMwr4C3A8cDSwBHjJzPon4xxEREQAzN1T95+ZvQm85+4Xx2xbCvzV3X/exGNMASrc/XsN7DegHPiNu9/d2LGKi4t9xowZTY5fRER2f927d5/n7oN2VS5lNVAz6wAMBF6us+tl4JgmHqM4KjuzkWIdgD2AzQmEKSIi0iTtUvh/7Qu0BdbX2b4eGNPYC81sNZBDiPcGd7+vkeK/JjT9PtfAsS4BLgHIzc1l/vz5AOTl5dGpUyeWLVsGwN57703fvn1ZsGABAG3btqWoqIglS5awbds2AAoLC9m0aRPr14dT6tWrFx06dKCsrAyAbt26kZ+fT0lJCQDt27fnsMMOo7S0lO3btwNwyCGHsGHDBjZs2ABA7969MTNWrFgBQI8ePcjNzWXRokUAdOzYkQEDBvD+++9TUVEBwKGHHkp5eTkbN24EoE+fPrg7K1euBCAnJ4ecnBwWL14MwJ577klhYSELFy5kx44dABQVFbFq1So2bw7XHX379qWyspLVq1cD0LNnT7p3705paSkAnTt3pqCggJKSEqqrqwEoLi6mrKyMLVu2ANCvXz8+//xz1q5dS8373bVrV5YsWQJAly5d6N+/PwsWLMDdMTOKi4tZunQpW7duBaCgoIDPPvuM8vJy/Z70e9LvSb+nlPyemiplTbhmlgesAUa6+6yY7ROAc9y9oJHXHgDsBQwBbgZ+6u6P1VPup8CvgDHu/tauYlITroiI1NXUJtxU1kA/AaqBnnW29wTWNfZCd18e/bjQzHoCE4GdEqiZXUFInic1JXmKiIg0R8rugbp7JTAPOKHOrhMIvXGbqg3QMXaDmY0nJM+T3X12c+IUERFpilSPA70duMDMLjKzQjO7C8gD7gMws0fN7NGawmY2zsy+ZWb9o8cPgSuBx2PKXAX8F/BD4EMz+3r02DuVJyYSj+nTpzN48GAGDhzInXfe+ZX9f/jDHxgyZAjDhg3j1FNP5eOPP67dd/311zN06FCOPvporr32Wmpuw0yZMoVhw4YxdOhQJk6cmKpTEWm1UppA3f0vwBXAL4F3gWHAN919ZVQkP3rUaEu45/ku8A5wOXAtcF1MmcuB9oSxoOUxj7uSdiIizVBdXc3VV1/Nk08+ydy5c5k8eTIffPDBTmUOP/xwZsyYwezZs/nOd77D9ddfD8Cbb77Jm2++yezZs5kzZw7z58/n9ddfZ9OmTVx//fU888wzzJ07l3/84x/MnNlYZ3URaa6Uz0Tk7ve4ex937+juA2M7FLn7KHcfFfP8Tncf4O6d3X1vdz8yev2XMWX6uLvV87ggtWcm0jTz5s3jgAMOoE+fPnTo0IHTTjuNadOm7VRm+PDhdOrUCYBBgwbV9rw0MyoqKqisrKSiooKqqipycnJYsWIFBx54IPvuuy8AI0eO5Pnnn0/tiYm0MpoLVyTFysvL2W+//Wqf5+Xl1Q4rqM/jjz/OmDFhpNfgwYMZNmwYhYWFFBYWcvzxx1NQUEDfvn1ZunQpq1atoqqqihdffJE1a9Yk/VxEWrNU9sIVkTg9+eSTLFiwgBdeeAGAsrIyPvzww9rxcaeddhpz585l6NCh3HbbbVx44YW0adOGwYMH146pE5HkUAIVSbHc3Nydaodr164lNzf3K+VeffVVbrvtNl544QU6dgwdz1944QUGDRrEXnvtBcCYMWN4++23GTp0KCeeeCInnngiAA8//DBt27ZNwdmItF5qwhVJsSOPPJKysjJWrlxJZWUlU6ZMqU18Nd577z3Gjx/PE088QU5OTu32Xr16MWfOHKqqqtixYwdz5szhoIMOAqid1eXTTz/loYce4txzz03dSYm0QqqBiqRYu3btuOWWWzjjjDOorq7mnHPOobCwkJtuuoni4mJOOukkrr/+erZt28YPfvADICTOJ554glNOOYXXXnuNY489FjNj9OjRtcn35z//eW3T7lVXXUW/fv3Sdo4irUFKV2PJNJrKT0RE6sq41VhERER2J0qgIiIiCVACFRERSYASqIiISAKUQEVERBKgBCoirUqiK+G89tprjBgxovaRm5vLiy++CMCkSZMYOHAg3bt3Z+PGjSk9H0kfDWPRMBaRVqO6upqjjjqKKVOmkJeXx+jRo5k0aRIHH3xwbZnXXnuNgQMH0qlTJx566CFmz57NQw89tNNxNm/ezMCBA1m0aBGdOnXivffeY5999uHb3/42M2bMoEePHqk+NWlBGsaSIs1Z13H16tWcdtppHH300QwZMoRVq1YBMGvWLEaNGsUxxxzDZZddRlVVVcrOR2R31pyVcGI9++yzjBkzprbc4YcfTn5+/lfKye5NCbQZmrOuI8DYsWMZN24cb775JtOnT2ffffflyy+/5LLLLuPBBx9kzpw59OrViz/96U+pPjWR3VJzVsKJ9fTTT3P66acnJUbJHkqgzdCcq9kPPviAqqoqjjvuOAD22msvOnXqxKZNm+jQoUPtNGzHHXec1nUUSYOalXDGjRu30/Z169axePFijj/++DRFJplCCbQZmnM1+9FHH7H33ntz3nnnMXLkSCZMmEB1dTU9evSgqqqKBQsWAKGpSOs6irSMeFfCeeKJJ2pXwqnxzDPPcPLJJ9O+ffukxyuZTZPJp0jddR2rqqqYO3cuM2fOpFevXlx44YU88cQTnHvuuTz44IP84he/oLKykuOOO07LUu2mrn6kW1KPf8v5m5N6/GwUuxJObm4uU6ZM4YEHHtipTM1KOE899dROK+HUmDx5MhMmTEhVyJLBVANthuZczebl5XHYYYfRp08f2rVrx8knn8x7770HwODBg5k6dSrTp09n6NChHHjggak5IZHdXOxKOEOGDOHUU0+tXQmn5vZL7Eo4I0aM4Oyzz659/apVq1i7di3HHnvsTse9//77GTBgAGvXrmX48OH85Cc/Sel5SXpoGEszhrFUVVVx1FFH8cwzz5Cbm8vo0aN54IEHKCwsrC3z3nvvccEFF/DUU0/tlAirq6sZNWoUTz/9NPvuuy+XX345xcXFXHTRRWzYsIGcnBwqKio466yzGD9+PCNGjGjWuUrmUQ1UJDM1dRiLmnCboTnrOrZt25Ybb7yRU089FXfniCOO4LzzzgPg7rvv5qWXXsLda6+CRUQks6gGqokUJE1UAxXJTJpIQUREJImUQEVERBKgBCoiIpIAJVAREZEEKIGKiIgkQAlUREQkAUqgIiIiCVACFRERSYASqIiISAKUQEVERBKguXBFpNVJ5jSKmkKx9VACbQGa01REpPVRE66IiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSkPIEamaXmdlyM/vCzOaZ2fBGyp5mZi+b2QYz22pmb5rZdxop/z0zczN7ITnRi4iIBClNoGZ2FnAXcBNQDMwBpplZfgMvGQnMAE6Oyk8Fnq4v6ZpZX+BW4LUkhC4iIrKTVNdAxwMPu/skdy9193FAOTC2vsLu/lN3/y93f8vdl7n7DcA84NTYcmbWHvgT8AugLLmnICIiksIEamYdgIHAy3V2vQwcE8ehugCb62z7DbDC3R9JPEIREZGma5fC/2tfoC2wvs729cCYphzAzC4HegGPxWz7N+BM4IgmHuMS4BKA3Nxc5s+fD0BeXh6dOnVi2bJlAOy999707duXBQsWANC2bVuKiopYsmQJ27ZtA6CwsJBNmzYB3ZryXyessrKSRYsWAdCxY0cGDBjA+++/T0VFBQCHHnoo5eXlbNy4EYA+ffrg7qxcuRKAnJwccnJyWLx4MQB77rknhYWFLFy4kB07dgBQVFTEqlWr2Lw5XJv07duXyspKVq9eDUDPnj3p3r07paWlAHTu3JmCggJKSkqorq4GoLi4mLKyMrZs2QJAv379+Pzzz1m7di0Q3u+uXbuyZMkSALp06UL//v1ZsGAB7o6ZUVxczNKlS9m6dSsABQUFfPbZZ5SXlwPN+z2tXx8+er169aJDhw6UlYXGim7dupGfn09JSQkA7du357DDDqO0tJTt27cDcMghh7BhwwY2bNgAQO/evTEzVqxYAUCPHj3Izc2N6/cEo+P7IMRp/vz5+j018HtKpvnz5+vvKQ1/Ty35vddU5u5NLtwcZpYHrAFGuvusmO0TgHPcvWAXrz+dkDjPcvfno205QAnwPXefGW17GNjX3b+1q5iKi4t9xowZCZ7Rv1z9SHIT6C3n161wy+5An5v0SeZ7r/c9+3Xv3n2euw/aVblU1kA/AaqBnnW29wTWNfZCMzsDeBQ4ryZ5RgYAucD/mVnNtjbRa6qAAe6+pPmhi4iI7Cxl90DdvZLQAeiEOrtOIPTGrZeZnUmoeV7g7n+ts/tt4DBC823N4zlCT9wjgOUtEryIiEgdqayBAtwOPGZmbwGvA5cCecB9AGb2KIC7nxc9/y4heV4JzDKzr0fHqXT3Te6+DVgU+x+Y2adAO3ffabuIiEhLSmkCdfe/mFkP4JeEptdFwDfdfWVUpO540EsJMd4ZPWrMBEYlN1oREZGGpboGirvfA9zTwL5RjT1v4vEvSCQuERGReGguXBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIAuJKoGZ2ZjR5e83zCWa22sxeMrPkztAsIiKSQeKtgU6s+cHMjgSuA/4baA/c1nJhiYiIZLZ4J1LoDdRMzv7vwDPufouZvQy81KKRiYiIZLB4a6BfEBa0hrCY4fTo5y0x20VERHZ78dZAXwNuM7PZwCDgjGj7QcDHLRmYiIhIJou3BvpjoJKQOC9197XR9pNQE66IiLQicdVA3X018O16tl/RYhGJiIhkgbjHgZrZHmZ2hpldY2b7RNsONLPuLR+eiIhIZoqrBmpm/Qgdh/YC9gGeAj4FxkbPL2rpAEVERDJRvDXQO4GXgZ7A9pjtzwHHtVRQIiIimS7eXrjHAEPcvdrMYrevAvJaLCoREZEMl8hcuO3r2ZZPGAsqIiLSKsSbQF8Gxsc8dzPrCtwAvNhiUYmIiGS4eJtwxwOvmNkSYA/gL0A/YD1wZgvHJiIikrHiHQe61syOAL4HHEmowT4A/K+7b2/0xSIiIruReGugRInyoeghIiLSKu0ygZrZacDz7r4j+rlB7j6lxSITERHJYE2pgf4V+Drwj+jnhjjQtiWCEhERyXS7TKDu3qa+n0VERFqzuBKimY0ws68kXTNra2YjWi4sERGRzBZvjfIVoL5J4/eJ9omIiLQK8SZQI9zrrKsHsK354YiIiGSHJg1jMbPnoh8deNzMKmJ2twUOBea0cGwiIiIZq6njQDdG/xqwmZ1XYqkEZgOTWjAuERGRjNakBOruPwAwsxXA79xdzbUiItKqxTuV3w3JCkRERCSbNGUmoveAke6+2cwWUn8nIgDc/fCWDE5ERCRTNaUGOhmo6TTU2ExEIiIirUZTZiK6ob6fRUREWjNNzSciIpKAptwDbfS+ZyzdAxURkdaiqauxiIiISIy47oGKiIhIoHugIiIiCdA4UBERkQRoHKiIiEgCNA5UREQkAXHNhVvDzA4ECqOnpe7+UcuFJCIikvniSqBm1gP4I/Ad4Mt/bbYXgAvdfWODLxYREdmNxNsL90GgHzAc2CN6jAAOQOuBiohIKxJvE+43gNHuPjdm2+tm9iNgesuFJSIiktnirYFuAOpbTPtzQM23IiLSasSbQG8E7jSz/Wo2RD/fFu0TERFpFRKZTP4AYIWZrYme7wd8AXyNcI9URERkt6fJ5EVERBKgyeRFREQSkPLJ5M3sMjNbbmZfmNk8MxveSNlcM3vCzD4ws2oze7iBcl3N7L/NbK2ZVZjZMjM7M2knISIirV5cCdTMOpjZDWb2YZQAq2MfTXj9WcBdwE1AMTAHmGZm+Q28pCPwCfBfwJsNHLM98HegP3AmUABcACyP59xERETiEW8N9FfA+YRet18CVwF/IAxhuawJrx8PPOzuk9y91N3HAeXA2PoKu/sKd/+Juz8MbGrgmD8AcoBT3H129JrZ7v52PCcmIiISj3gT6JnApe5+P1ANPOvuPwGuB05o7IVm1gEYCLxcZ9fLwDFxxhHrVOB14G4zW2dmi81sYlQzFRERSYp4ZyLqCSyOfv4nsE/089+Am3fx2n2BtsD6OtvXA2PijCNWX+B44AngZKAPoVa8F3Bl3cJmdglwCUBubi7z588HIC8vj06dOrFs2TIA9t57b/r27cuCBQsAaNu2LUVFRSxZsoRt28JcEoWFhWzatAno1ozwd62yspJFixYB0LFjRwYMGMD7779PRUVYZe7QQw+lvLycjRvDXBZ9+vTB3Vm5ciUAOTk55OTksHhx+NXtueeeFBYWsnDhQnbs2AFAUVERq1atYvPmzQD07duXyspKVq9eDUDPnj3p3r07paWlAHTu3JmCggJKSkqorg6t98XFxZSVlbFlyxYA+vXrx+eff87atWuB8H537dqVJUuWANClSxf69+/PggULcHfMjOLiYpYuXcrWrVsBKCgo4LPPPqO8vBxo3u9p/frw0evVqxcdOnSgrKwMgG7dupGfn09JSQkA7du357DDDqO0tJTt27cDcMghh7BhwwY2bNgAQO/evTEzVqxYAUCPHj3Izc2N6/cEo+P7IMRp/vz5+j018HtKpvnz5+vvKQ1/Ty35vddU5t7g+thfLWz2AXCBu79hZq8B09z9JjM7G7jD3Xs28to8YA1hce5ZMdsnAOe4e8Eu/u8XgE/c/YI62z8kzMl7gLtXR9suAe4A9vJGTrC4uNhnzJjR+Ek3wdWPJDeB3nL+5qQeX9JDn5v0SeZ7r/c9+3Xv3n2euw/aVbl4m3Cf5l+XzXcBN5jZcuBhdj2JwieEZt+6SbYnsC7OOGKVAx/WJM9IKdCJUOsVERFpcXE14br7z2N+/quZrSbcv/zQ3V/YxWsrzWwe4V7pUzG7TgAmxxNHHa8DZ5tZG3evWWLtIML8vJ8047giIiINSmhB7Rru/gbwRhwvuR14zMzeIiS+S4E84D4AM3s0Ou55NS8wsyOiH7sCX0bPK9295l7svcCPgbvM7PeEe6A3APc01nwrIiLSHHEnUDM7ErgCOCTaVEq4/zl/V691979Ei3L/EsgFFgHfdPeVUZH6xoMuqPP828BKQqLE3T82s38jJOd3Cc3BDwG/juO0RERE4hJXAjWzc4BHgRnA1GjzEOAtM7vA3R/f1THc/R7gngb2japnmzXhmG/QvKEwIiIicYm3Bvob4D/d/abYjWb2c0KNb5cJVEREZHcQby/cHODJerY/RVjOTEREpFWIN4G+AoyqZ/soYGZzgxEREckWTVlQ+7SYp9OA35rZIP7V+3YIcBowscWjExERyVCJLqhdOx1ejLtpoHOQiIjI7qYpC2qnfM1QERGRTKfkKCIikoC4E6iZnWxms8zsEzPbYGYzzeybyQhOREQkU8WVQM3sIsKE8h8B1wDXAsuBp83swpYPT0REJDPFO5HCNcB4d/99zLY/RpPEX0uYQk9ERGS3F28Tbj5h8ey6pgG9mx+OiIhIdog3ga4iLD9W178RJngXERFpFeJtwv0dcHe0IsucaNuxwLnAuJYMTEREJJPFu6D2/Wb2D+A/CLMPQVjO7Ex3f7algxMREclUTU6gZtaO0FQ7y92fTl5IIiIima/J90DdvQqYAnRJXjgiIiLZId5ORCVAv2QEIiIikk3iTaATgdvM7FQz29/Musc+khCfiIhIRoq3F+6L0b9TAI/ZbtHzti0RlIiISKaLN4Eel5QoREREskyTEqiZdQJuBU4F2gPTgZ+4+ydJjE1ERCRjNfUe6A3ABYQm3D8RZiO6N0kxiYiIZLymNuGeBvzQ3f8MYGb/C7xuZm3dvTpp0YmIiGSoptZA9wdeq3ni7m8BVUBeMoISERHJdE1NoG2Byjrbqoi/E5KIiMhuoakJ0IDHzawiZtsewCQz+7xmg7t/pyWDExERyVRNTaCP1LPt8ZYMREREJJs0KYG6+w+SHYiIiEg2iXcqPxEREUEJVEREJCFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSgJQnUDO7zMyWm9kXZjbPzIbvovzIqNwXZlZmZpfW2d/WzH4Vc8zlZvZrM2uX3DMREZHWLKUJ1MzOAu4CbgKKgTnANDPLb6D8AcDUqFwx8FvgbjM7PabYNcDlwE+Ag4GfRs9/nqTTEBERIdW1tPHAw+4+KXo+zsxOBMZSf8K7FFjr7uOi56VmdjRwJTA52nYM8Ly7Px89X2FmzwFHJ+UMRERESGEN1Mw6AAOBl+vsepmQBOsztJ7yLwGDzKx99Hw2cJyZHRz9P4cAxxNqriIiIkmRyhrovkBbYH2d7euBMQ285uvA9HrKt4uOVw7cDHQBFptZdbTvN+5+T30HNLNLgEsAcnNzmT9/PgB5eXl06tSJZcuWAbD33nvTt29fFixYAEDbtm0pKipiyZIlbNu2DYDCwkI2bdoEdGvSG5CoyspKFi1aBEDHjh0ZMGAA77//PhUVFQAceuihlJeXs3HjRgD69OmDu7Ny5UoAcnJyyMnJYfHixQDsueeeFBYWsnDhQnbs2AFAUVERq1atYvPmzQD07duXyspKVq9eDUDPnj3p3r07paWlAHTu3JmCggJKSkqorq4GoLi4mLKyMrZs2QJAv379+Pzzz1m7di0Q3u+uXbuyZMkSALp06UL//v1ZsGAB7o6ZUVxczNKlS9m6dSsABQUFfPbZZ5SXlwPN+z2tXx8+er169aJDhw6UlZUB0K1bN/Lz8ykpKQGgffv2HHbYYZSWlrJ9+3YADjnkEDZs2MCGDRsA6N27N2bGihUrAOjRowe5ublx/Z5gdHwfhDjNnz9fv6cGfk/JNH/+fP09peHvqSW/95rK3L3JhZvDzPKANcBId58Vs30CcI67F9Tzmg+Bx939xphtI4CZQJ67l5vZd4FbgauA94EjCPdZr3L3PzYWU3Fxsc+YMaPZ53b1I8lNoLecvzmpx5f00OcmfZL53ut9z37du3ef5+6DdlUulTXQT4BqoGed7T2BdQ28Zl0D5aui40FInr9z9z9HzxeaWW/CPdVGE6iIiEiiUnYP1N0rgXnACXV2nUDoZVufuQ2Uf8fdd0TPOxESc6xqNMZVRESSKNW9cG8HHjOzt4DXCb1s84D7AMzsUQB3Py8qfx/wYzO7E7gfOBa4APhezDGfB641s+WEJtxiQm/fR5N9MiIi0nqlNIG6+1/MrAfwSyAXWAR8091XRkXy65RfbmbfBO4gDHVZC/zE3SfHFBsH/Aq4B/gaoWPRJOBGREREkiTls/VEvWPr7SHr7qPq2TYTOLKR420FrogeIiIiKaH7hCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERFJienTpzN48GAGDhzInXfe+ZX9FRUVXHjhhQwcOJAxY8awatWqnfavXr2a/fffn7vvvrt2249//GMOOuggjjnmmKTHX5cSqIiIJF11dTVXX301Tz75JHPnzmXy5Ml88MEHO5V5/PHH2WeffZg3bx5jx45l4sSJO+3/xS9+wejRo3fadvbZZ/PUU08lO/x6KYGKiEjSzZs3jwMOOIA+ffrQoUMHTjvtNKZNm7ZTmalTp/Ld734XgFNOOYVZs2bh7gC8+OKL9O7dm4MPPnin1xxzzDF069YtNSdRhxKoiMQt0aa4efPmMWLECEaMGMHw4cN54YUXAFi6dGnt9hEjRpCfn8+9996b0nOS5CovL2e//farfZ6Xl0d5eXmDZdq1a0fXrl3ZtGkT//znP7nrrru4+uqrUxrzrrRLdwAikl1qmuKmTJlCXl4eo0eP5sQTT9ypZhDbFDd58mQmTpzIQw89RGFhITNmzKBdu3asW7eOESNGcOKJJ9K/f39mzZpVe/wBAwbwrW99K12nKBnm5ptvZuzYsey1117pDmUnqoFK1mrpWhBAUVERxx57LCNGjOD4449P2blkk+Y0xXXq1Il27cJ1e0VFBWb2lePPnDmTPn36sP/++yf/ZCRlcnNzWbNmTe3ztWvXkpub22CZqqoqPvvsM7p37868efOYOHEiRUVF3Hfffdxxxx1MmjT/5aWiAAAULklEQVQppfHXRwlUslJzOiTU1IJmzZrFU089xfjx46mqqqp93XPPPcesWbOYMWNGKk8pazSnKQ7gnXfeYejQoQwbNozbbrutNqHWmDJlCqeffnqSzyI7JeOiEcLf08iRI2svepLhyCOPpKysjJUrV1JZWcmUKVM48cQTdypz0kkn8ec//xmAZ599luHDh2NmTJ06lZKSEkpKSrj00kv52c9+xsUXX5y0WJtKCVSyUrJrQZI8gwYNYu7cuUyfPp0777yTL774onZfZWUlf/vb3zjllFPSGGFmSuZF43333cdBBx2U1PjbtWvHLbfcwhlnnMGQIUM49dRTKSws5Kabbqr92/3+97/Ppk2bGDhwIPfeey/XX3/9Lo970UUX8Y1vfINly5YxYMAAHnvssaSeRyzdA5WsVF8taN68eQ2Wia0F9ejRg3feeYdx48axevVq7r333tqEamacfvrpmBnnn38+F1xwQcrOKVvE0xS333777dQUF6ugoIDOnTtTWlpKcXExEGpYhx9+OF/72teSfyJZJvaiEai9aIy99zx16lSuueYaIFw0XnPNNbUXjTXqXjSuWbOGv//974wfP5577rknqedwwgkncMIJJ+y07brrrqv9eY899uDhhx9u9BjXXnvtTs8ffPDBFosvXqqBSqvUUC1o6tSpvPrqqzz55JP88Y9/ZM6cOWmONPM0pylu5cqVtTWfjz/+mKVLl5Kfn1/7usmTJ6v5tgHJajq/7rrrmDhxIm3aKB3ES++YZKXmdEiIFVsLgvClBJCTk8PJJ5/8lVqtNK8p7o033mD48OGMGDGCc889l1tvvZUePXoAsG3bNl599VW+/e1vp+3cdmf1XTS+9NJL5OTkcMQRR6Q7vKykJlzJSrG1oNzcXKZMmcIDDzywU5maWtDgwYO/Ugvab7/9aNeu3U61oG3btvHll1/SpUsXtm3bxiuvvMJVV12VpjPMbIk2xZ111lmcddZZ9R6zc+fOfPTRRy0a5+4kGU3nb775JtOmTePvf/87FRUVbN26lR/96Efcf//9STmHqx9J7oQHt5y/OanHr0sJVLJSbC2ourqac845p7YWVFxczEknncT3v/99Lr30UgYOHEi3bt1q75W88cYb3HnnnbRv3542bdrU1oJWrFjBueeeC4Qa6xlnnMGYMWPSeZoitZJx0ThhwgQmTJgAwOzZs/n973+ftOS5O1IClazV0rWgPn368Nprr7V4nCItIRkXjdI8SqCt3PTp07nuuuuorq7m3HPP5Yorrthpf0VFBWPHjqWkpIRu3brx0EMPkZ+fzyuvvMKNN95IZWUlHTp04IYbbmDEiBE7vfbss89mxYoV6oizG9rdmuKyRTKazmsMGzaMYcOGtUicrYU6EbVizRlX1qNHD5544glef/11/vCHPzB27NidXvf888/TuXPnVJ2KiEjKqQbaijVnXNnhhx9eW6awsJDt27dTUVFBx44d+ec//8k999zDHXfcwYUXXpjUc0hmTUi1IMlEqv1nDtVAW7Hmjiur8dxzz1FUVETHjh0BuOmmm7j88st3GrwtIrK7UQKVZiktLeWGG27g9ttvB2DhwoWsWLFCK2mIyG5PCbQVa+5kBGvWrOG8887jnnvu4YADDgDg7bff5t1336WoqIiTTjqJjz76SAPjRWS3pATaijVnSrYtW7bw3e9+lwkTJjBkyJDa8hdeeCGLFy+mpKSEadOmceCBB/L888+n9LxERFJBCbQVa86UbJMmTWL58uXceuuttcskbdiwIZ2nIyKSUuqF28olOq7syiuv5Morr2z02Pn5+RoDKiK7LdVARUREEqAaaCunMWUiIolRDVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikgAlUBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikoCUJ1Azu8zMlpvZF2Y2z8yG76L8yKjcF2ZWZmaXNveYIiIizZXSBGpmZwF3ATcBxcAcYJqZ5TdQ/gBgalSuGPgtcLeZnZ7oMUVERFpCqmug44GH3X2Su5e6+zigHBjbQPlLgbXuPi4qPwl4BLiyGccUERFptpQlUDPrAAwEXq6z62XgmAZeNrSe8i8Bg8ysfYLHFBERaTZz99T8R2Z5wBpgpLvPitk+ATjH3Qvqec2HwOPufmPMthHATCAPsASOeQlwSfS0AFjSAqcXr32BT9Lw/7YExZ4+2Rx/NscO2R2/Yo9fb3fP2VWhdqmIJJO4+wPAA+mMwczecfdB6YwhUYo9fbI5/myOHbI7fsWePKlMoJ8A1UDPOtt7AusaeM26BspXRcezBI4pIiLSbCm7B+rulcA84IQ6u04g9Jytz9wGyr/j7jsSPKaIiEizpboJ93bgMTN7C3id0Ms2D7gPwMweBXD386Ly9wE/NrM7gfuBY4ELgO819ZgZKq1NyM2k2NMnm+PP5tghu+NX7EmSsk5Etf+h2WXA1UAusAj4WU0HIDN7FcDdR8WUHwncAQwA1gI3u/t9TT2miIhIMqQ8gYqIiOwONBeuiIhIApRARUREEqAEmgZmZumOoTXS+y4iLUkJNA1cN57TouZ9VyJNPTPTd02axL73+uy3LHUiShEz6wgcDvw7sAV4H1gGfOzu28zMMj2xmllbQh76Mt2xxMPM9gJGAN8FNgNLgQ+BRe6+Np2xNZWZtQO+zLb3XjKDmXVx963pjmN3owSaImb238BphJViugF9CMNyngHudPey9EXXODMb6O7z6mxrS/hCz/gPkJk9QkigSwnv/f6ERPouMMndZ6QxvEaZ2TB3n11nW9YkUzPbH7gQOAr4iDD39PvAe+6+OVMvHGPjyqb3O5aZFRJWqyomXKyvAkqAWe7+cVQmI9//bKEEmgJmdgjwBnAGMM/dN5pZDvBD4EfA14GfEr7MM+oXYmb9CV96iwmr3Dzm7gti9hthQo5i4N1odqiMEb33bxJmp3rb3avNbG/gTOAiYBBwI/BrMuyCwMwOJrzv24AXgbvd/fWY/Qa0B74BvOXu69MSaAOi9XwnA3sCbwOHEqbZ3Ai8Btzu7h+lL8KGRX+fhXUWqTCgLVCdSZ+T+pjZgYS1lNcTJpg5mPA905GQTB9097qrWGUEM+tJ+Hud6u6bGinX3t13pC6yeri7Hkl+ANcRrvpqnrers/8m4AMgL92x1hP7BELN7Q7C9IhrCBcDVwP7R2X2A74EeqU73nrivwKYHfO8Q539lwIfAwelO9YGPjcLgJ8TEk4VYY7n3wEHRmW+Fr33+6c73nrivw94Hvh6zLZ84BpgJbABOCXdcTYQ+x+i93Vd9PMhdfa3ic7l/wFt0x1vPfHfG733XWK29STM5DaLcFH2w3TH2UDsd0fv/SbgKeCbQMc6ZfIJ60J3TEeMNQ/d2E+NUiDXzPoBuHuVmbUzsz2i/ZOAzwk11ExTQLiSvRm4mPClvgj4PjDXzJ4nTLNY6u6r0xZlw0qA3mY2GsKczNF7v2e0/ynCl/n3GjpAGu1HqD3cD5wCHA88BJwMLDWz94A/E977j9MWZcMGADPdfV20fm87d1/l7je7e29gOnCpmbXJwM4tRxEuAO4FhgGLzGyZmV1nZt09NOeeT5gZrTqdgTagNzDf3beaWVsza+vu6939YXcfQTi3i82sU5rjrM8gwvfNfxBuuTwNLDezu83syKjMxcCl7l6RphgB9cJNlVmE2sMLZnammXV09yp3/wLA3ZcTmobS+mGoK7r38yKwzt3Xufv77v4Iofb5I+C/gO2EK8Tb0xdpo+YSavePm9mlZrZn9N5vB3D3jcBeZNh6idE95heBxe6+KXrMAiYSmmy/Q2iaHkWokWai/wO+H3Vg2RFdOLaPuXj5A3AQMNijakUmMLPehHvkbwG/Iny+TwJeIrRYfGJmrwM/I9SWMtFLwA/M7GB3r/Zw66KDmXWI9v+RUCM9On0hflW0bvRqYLm7/w9wIlAE3AUMB942s4WEe7tpf+91DzRFog/GHcBhhA/IW8CM6OfLgbOBPu6+LW1B7kJ99xzM7DTgr8Be7v55eiJrXPSF/RtCDX87oQn6WeCfwA8INYyCTI0fwlAEr9OJxcy+AUwjQ997MxtIaEZcB0x09+fq7D+Y0JGreybFb2ZdCb3lV7j7zJjtexIWqhgIXEb43HSpuRjLJNH95ynAPsCv3P2hOvsPBeYD+2TYe9+Z0NLyD3d/s86+ToT76FcSOmSm/b1XAk0hM+sBfItwg7wvoXm0GzATuN/d/5zG8L6ivi/taHs7oo4UZvY7YJDHLACQSaKmq+poKMswwlXsEOBIQq1/OqHz1rQ0hvkVUZOm1ff+x5SZCAx192+kLLAmqundGd22uIXwntd0HpoGHEK4oFnu7memL9LG1XQccveqOtv/F9gvUz/3EIauAL8FziF0NnuZ8Hk/lPC38K7/a+WrjFRfL2Eze5jQB2B4eqKKiUUJNLnMrBfQL3q6jdCrcjshge5FuPf5iTfS2yxdYmI3wk39Je6+Lma/Ee7NrXH3t9MTZXyiJqwcwu9gD2BLJtf6G2Nmo4AN7v5+umNpTHSvfwzhwnEw4d7oJsK9/8fdfWUaw2uS2B64hF7Fs4DfuvvktAZWjyjWNtGF4x6EVq8RhJrdkcBy4HFgSuzfcyaIJn3whpr0o1aAZ4F73f3plAZXXzxKoMljZmMJY+CKCImyjNBk+wrw1wzt+AF8JfZthK7vqwnNn8+4+5I0hrdL0b3O7THPG/3DzCR1Y8820Xt9CuFCZU/C+M/X3H1L9IXuhOa3jLrvDF+JvROh1/lMd/9HTJmOwBh3fzE9UcYvdty2me3t7lvSHVMizKw9ocVrbrpjASXQpImaa5cBtxF68uUQrsJHEZqv1gI/cffFmTaYeRexFxIS6c+i2NtmWi9EM+tG6H37IuFKe07N+xubSKOB5qs9g2Zo2UXssYP7C4Fyd/80bcHWI2o2/CNwHKHVYg2hBeNzQvPh4+6+NCpb7y2CdKkn9tWEZP8F4TbLY+7+QfoibFyUXA4AVtbXOzXTvmdi7Sr2jFV3XIseLTaWaRzwZgP7hhHuBZUB+6Y71t0p9pj4KwgdtaoJNaAbCR2FasrsTxhj2Tfd8e4usUex/YJwAXBU9PxgwpCne4F5hE5FOemOM4HY3waey9TYo3ivILQW/Q/wbcLECW3rlOlK6FHcPt3xJhj7ydQZy53Oh4axJE8l0CXq7YaZdazpQu5harZzCFe2/5a+EBuUzbFDmHP4fwgdtoqBJwnjPBeb2Rtmdgnhi7G/Z94UitkcO4RhB494dE/c3T9w98eBHxOGfRwMPJbG+BrTWOz/QWh9ydTYAc4iXHj1I0wROhe41cyGWZh9C0Jv/+s93TP4fFVTY/9Pz6DZzpRAk+evhGagK6JxcBUeBvG3AXD3VcCnQK90BtmArI09uj+1mDBJ/z/c/T13/zlhcPY3on0TCcNabk5boPXI5tihtnf2IuB0C1PhEQ3ib+NhLOIswjjKXmZWlM5Y68rm2KF26sEdhB7lwwkTKfyRcCE2C5hhZtcQanpvNnigNMjm2NNeBd4dH4R7PgacSpjlZivhAzGQf00B9v1oe590x7u7xB5zDh2Jpo8j9JxsU2f/KDJ36sGsjT2Kbwih2flmoGc9+/cnjL/dL92x7max5xJq+N+oZ18xYdKKjdFnJ6Piz+bY1YkoicxsH0LCOYYwMPvYaNc6QpJ6zN0npie6xmVr7DHjD/sC2zxmgvWYfROAC9y9b/oi/apsjh1qO2i1IUxOcRNhkYHJwF8IK4EcTqhVHOLuR6Urzvpkc+w1oiEe7u5fRENZgJ3Wwf0N8E13L05XjA3J1tiVQFuYmX0NOJdwz+QTwnjDT4HZhCEg7Qnt/H9z9w/TFWd9sjl22Cn+8cA/CNMnlhPmu53i0bqrhHk017r7C2kLto5sjr0+0QXYBYT7VkcQWiy+IHTG+a3XmWUmk2R57PX2tLUwi8984H/cPeOa/yE7Y1cCbWHRLBkDCL0NNwHdCQOZDyJ8Mf4yU/8Aszl2aDD+YkLHldXArZ65Szg9TJbGDrXT322N/QKManV7ECYMOZRQq864z082xw71x19PmT0IHXX+5BnUCSebYwcl0BYV1RC2EpoaZsVsyydM2nwRYQaiM919ftoCrUc2xw6Nxt+LcG/rYkLnhO9lWvzZHHsNM7uf0IvyLcJYvs/qKdPNM3AR7WyOHZoc/z6eYWOGIbtjB9SJqCUfhBrEQmBIA/s7Au8QmoHSHu/uEnsT4++QqfFnc+xRfN8jdPD4lDA++H7CZN/9gD2jMnsRhicclu54d5fYG4n/34EDY+Kvmf7u0HTHu7vEXvNQDbQFRTfCXyBMAXYe8JF/dQWNcYSFbI9IQ4gNyubYIbvjz+bYAcxsEmHSh1sIyed8wpfgEsJasv9HWDjhLnfv0NBx0iGbY4fsjj+bY6+hcaAtyMP8pb8gXDU9CpxnZvtbWAmk5mb4SMJ4s4ySzbFDdsefzbFH4yeXA5+6e5m7/87dDyMsSD2T8KX4JGHtxoyahCCbY4fsjj+bY4+lGmgSWJjB5z8Jix5vI8yqsYEwn2w5cJG7L0xfhA3L5tghu+PP1tgtzN/b090/sDBj1Q6P+WIxs7OAPwFHuvu76YqzPtkcO2R3/Nkcew0l0CSKhiacTJiU4AtCDeIpz+AJqWtkc+yQ3fFnc+w1ol6s5mFJrYsJzXCd0h1XU2Rz7JDd8Wdb7EqgKWIZtvJEPLI5dsju+LM59hpmNp4wMfit6Y4lXtkcO2R3/NkQuxKoiCSVhaWqqrPxQiCbY4fsjj8bYlcCFRERSYB64YqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEvD/AZVU9ZsCqD6SAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -183,7 +182,10 @@ ], "source": [ "params = {\n", - " 'problem': {'name': 'search'},\n", + " 'problem': {\n", + " 'name': 'search',\n", + " 'circuit_caching': False\n", + " },\n", " 'algorithm': {\n", " 'name': 'Grover'\n", " },\n", @@ -192,14 +194,113 @@ " 'expression': sat_instance\n", " },\n", " 'backend': {\n", - " 'shots': 1000\n", - " }\n", + " 'shots': 1000,\n", + " },\n", "}\n", "\n", "result_dict = run_algorithm(params, backend=backend)\n", "plot_histogram(result_dict['measurement'])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantum Search with Arbitrary Boolean Logic Expressions\n", + "\n", + "Aqua's `Grover` can also be used to perform Quantum Search on `Oracle` constructed from means in addition to DIMACS. For example, the `LogicExpressionOracle` can actually be configured using arbitrary Boolean logic expressions, as demonstrated below." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFOCAYAAAA2MUwzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8FPX9x/HXF8ItV5BCInIVjREwBtByRqlSUawn1bZe2J9aT1TqD8R6gFrrXTxRqXhhaz2o8hOtiIBBAZWAEYRSNBIEouUSkZvw/f3xncRl2YTd2ZlkQ97Px2Me2Z2d/exnj8xn5jvf+Y6x1iIiIiKJqVPdCYiIiNREKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA9p1Z1AdWrVqpVt3759dachIiIp5NNPP11nrW29v+VqdQFt3749M2bMqO40REQkhaSnpxfHs5yacEVERHxQARUREfFBBVRERMQHFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8UEFVERExAcVUBERER9UQEVERHxQARUREfFBBVRERMQHFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8UEFVERExAcVUBER2a/p06dz7LHH0rNnT8aNG1fhclOmTCE9PZ2FCxcCsHLlSjIzM8nLyyMvL48RI0aUL3vnnXfSrVs3Dj300NDzD0NadScgIiKprbS0lJEjRzJ58mQyMzM54YQTGDx4MEccccRey23evJknn3ySnj177jW/Y8eO5Ofn7xP3pJNO4pJLLuGYY44JNf+waA9UREQqVVBQQKdOnejYsSP169fnrLPO4u23395nubvuuotrr72Whg0bxhX3mGOOoW3btkGnW2VUQEVEpFIlJSUccsgh5fczMzMpKSnZa5nCwkJWr17NL37xi32ev3LlSo477jhOPfVU5s6dG3q+VUVNuCIikpQ9e/Zw880389hjj+3zWJs2bfjss89IT0/n008/5fzzz2fOnDk0a9asGjINlvZARUSkUhkZGaxevbr8/po1a8jIyCi//8MPP7B06VJ++ctfkpOTw/z58znvvPNYuHAhDRo0ID09HYCjjz6aTp068eWXX1b5ewiDCqiIiFSqR48eFBUVUVxczM6dO5k8eTKDBw8uf7xZs2Z88cUXFBYWUlhYSK9evXjxxRfJzc1l3bp1lJaWArBixQqKioro2LFjNb2TYKmAiohIpdLS0rj33nsZOnQovXv35owzziA7O5u77rorZmeiSHPmzKF///7k5eUxbNgwHnjgAVq2bAnAbbfdRteuXdm6dStdu3bl7rvvroq3Exhjra3uHKpNbm6unTFjRnWnISIiKSQ9Pb3AWttrf8tpD1RERMQHFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8aHKC6gx5kpjzFfGmO3GmAJjzIA4n9ffGLPbGLM4av4wY4yNMcV3PR0REREfqrSAGmPOBR4C7gJygTnA28aY9vt5XkvgeeC9ChbZCmRETtba7UHlLSIiEq2q90BHAM9aaydYa5daa68BSoAr9vO8p4HngIouJGettd9ETgHmLCIiso8qux6oMaY+0BO4P+qhaUDfSp53JdAGuBO4pYLFGhljioG6wKfALdbahUknLSIi+zXyuZZxL3vvRRtDzKRqVeUFtQ/GFbhvo+Z/C5wY6wnGmO7AbUBva22pMSbWYsuA3wGFQFPgWuBDY0yOtXZ5jJiXAZeBu8bdggULAHeF9caNG/PFF18A0Lx5czp37szCha4O161bl5ycHJYtW8aWLVsAyM7OZsOGDXz7rXtL7dq1o379+hQVFQHQsmVL2rdvT2FhIQD16tWje/fuLF26lG3btgFw5JFHsnbtWtauXQtAhw4dMMawYsUKAFq1akVGRgaLF7tDvw0aNKBr1658/vnn7NixA4Bu3bpRUlLC+vXrAejYsSPWWoqLiwFo3bo1rVu3ZsmSJQA0atSI7OxsFi1axK5duwDIyclh5cqVbNzoftydO3dm586drFq1CnAXxU1PT2fp0qUANGnShKysLAoLC8svVZSbm0tRURGbNm0CoEuXLmzdupU1a9ZQ9nk3a9aMZcuWAdC0aVMOO+wwFi5ciLUWYwy5ubksX76czZs3A5CVlcX3339PSUmJvid9T/qeUvR7gvgL6IIFC1L+e4pXlV2NxRiTCawGjrPW5kfMvxU4z1qbFbV8A2Ah8Gdr7QvevDHAUGttt0pep2wvdKa1dnhlOelqLCIiyTvQ9kDjvRpLVe6BrgNKcc2xkdoAsY5ZZgDZwDPGmGe8eXUAY4zZDZxirZ0W/SRvT3U+cFhgmYuIiESpsk5E1tqdQAEwKOqhQbjeuNFWA92BoyOmJ4AvvNuxnoNx7bxH4ToniYiIhKIq90ABHgReMMZ8DHwIXA5k4gojxpjnAay1F1prdwHR53z+F9hhrV0cMe82YB6wHGgGDMcV0P317BUREfGtSguotfYfxphWwM24JtrFuKbYYm+RSs8HrUAL4CmgLbAJd9w0z1r7cQApi4iIxFTVe6BYax8HHq/gseP389wxwJioedcD1weTnYiISHw0Fq6IiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4kNCBdQYc44x5hcR9281xqwyxrxjjMkIPj0REZHUlOge6JiyG8aYHsBNwMNAPeCB4NISERFJbWkJLt8BWObdPhN43Vp7rzFmGvBOoJmJiIiksET3QLcDTb3bJwDTvdubIuaLiIgc8BLdA50NPGCM+QDoBQz15h8OfB1kYiIiIqks0T3Qq4GduMJ5ubV2jTf/ZNSEKyIitUhCe6DW2lXAL2PMvy6wjERERGqAhM8DNcY0NMYMNcaMMsa08Ob91BiTHnx6IiIiqSmhPVBjTBdcx6GDgBbAK8B3wBXe/UuCTlBERCQVJboHOg6YBrQBtkXMnwIMDCopERGRVJdoL9y+QG9rbakxJnL+SiAzsKxERERSnJ+xcOvFmNcedy6oiIhIrZBoAZ0GjIi4b40xzYCxwNTAshIREUlxiTbhjgBmGmOWAQ2BfwBdgG+BcwLOTUREJGUleh7oGmPM0cBvgB64PdingBettdsqfbKIiMgBJNE9ULxCOdGbREREaqX9FlBjzFnA/1lrd3m3K2StnRxYZiIiIiksnj3QV4G2wH+92xWxQN0gkhIREUl1+y2g1to6sW6LiIjUZgkVRGNMnjFmn6JrjKlrjMkLLi0REZHUluge5Uwg1qDxLbzH9ssYc6Ux5itjzHZjTIExZkAlyx5njJljjFlvjNlmjPm3MeaGGMudbYxZYozZ4f09M+53JCIi4kOiBdTgjnVGawVs2e+TjTkXeAi4C8gF5gBvG2PaV/CUH4CHgTzgSOBOYKwx5sqImH1w56O+CBzt/X3FGPOzON+TiIhIwuI6jcUYM8W7aYFJxpgdEQ/XBbrhiuH+jACetdZO8O5fY4wZjLuay+joha21BUBBxKyvvJ7AA4DHvXnXATOttX/y7v/JGDPQm/+bOHISERFJWLx7oOu9yQAbI+6vB1YBTwDnVxbAGFMf6IkbDjDSNNwg9ftljMn1ln0/YnafGDHfiTemiIiIH3HtgVprLwYwxqwA7rfW7re5NoaDcXur30bN/xY4sbInGmNWAa1x+Y611j4R8XDbCmK2rSDWZcBlABkZGSxYsACAzMxMGjduzBdffAFA8+bN6dy5MwsXLgSgbt265OTksGzZMrZscW8/OzubDRs28O237uXbtWtH/fr1KSoqAqBly5a0b9+ewsJCAOrVq0f37t1ZunQp27a5gZuOPPJI1q5dy9q1awHo0KEDxhhWrFgBQKtWrcjIyGDx4sUANGjQgK5du/L555+zY4drCOjWrRslJSWsX78egI4dO2Ktpbi4GIDWrVvTunVrlixZAkCjRo3Izs5m0aJF7Nq1C4CcnBxWrlzJxo0bAejcuTM7d+5k1apVALRp04b09HSWLl0KQJMmTcjKyqKwsJDS0lIAcnNzKSoqYtMmd12BLl26sHXrVtasWUPZ592sWTOWLVsGQNOmTTnssMNYuHAh1lqMMeTm5rJ8+XI2b94MQFZWFt9//z0lJSX6nvQ96XtK0e8JWhKvBQsWpPz3FC9jbaxDmsEzxmQCq4HjrLX5EfNvBc6z1mZV8txOuIt49wbuAa611r7gPbYTuMRa+3zE8hcCE6y1DSrLKTc3186YMSOJdyUiIiOfi7+A3nvRxhAzCUZ6enqBtbbX/paLZySiz3BFb6MxZhGxOxEBYK09qpJQ64BS3MW4I7UBvqksB2vtV97NRcaYNsAY4AVv3jd+YoqIiCQjnibc14CyTkOVjURUKWvtTmNMATAIeCXioUHea8SrDhC5ZznXi3FfVMx4OjWJiIj4Es9IRGNj3fbpQeAFY8zHwIfA5UAmrhMSxpjnvde50Lt/DfAVsMx7fh5wAz/2wAV3Wky+MeZG4HXgTGAg0D/JXEVERCqU8NVYkmGt/YcxphVwM5ABLAZOsdYWe4tEnw9aF3fMsyOwG/gSuBGv4Hox5xhjfo07R/R2b5lzrbUfhfhWRESklovnGGilxz0j7ecYaNkyj7P3HmTkY8dH3R8HjIsj5qsk0bwsIiKSqHivxiIiIiIREjoGKiIiIo4uTyYiIuJDVZ4HKiIicsCosvNARUREDiRVfR6oiIjIAcHXeaDGmJ8C2d7dpdbaL4NLSUREJPUlVEC9QRCeBk4D9vw427wJ/M5auz7g/ERERFJSor1w/wp0wV3QuqE35QGdgAmVPE9EROSAkmgT7knACdbauRHzPjTG/B6YHlxaIiIiqS3RPdC1QKyLaW8F1HwrIiK1RqIF9HZgnDHmkLIZ3u0HvMdERERqBT+DyXcCVhhjVnv3DwG2Az/BHSMVERE54GkweRERER80mLyIiIgPGkxeRETEh4QKqDGmvjFmrDHmP8aY7caY0sgprCRFRERSTaJ7oHcAF+F63e4B/hd4DHcKy5XBpiYiIpK6Ei2g5wCXW2ufBEqBN6y1w4HbgEFBJyciIpKqEi2gbYAl3u0fgBbe7X8BvwgqKRERkVSXaAFdCWR6t7/ADe0H0AfYFlRSIiIiqS7RAvpP4ATv9kPAWGPMV8CzaBAFERGpRRIaTN5aOzri9qvGmFVAX+A/1to3g05OREQkVfm6oHYZa+08YF5AuYiIiNQYCQ+kYIzpYYx53hgz35teMMb0CCM5ERGRVJXoQArnAZ8AGcBb3tQG+NgYc37w6YmIiKSmRJtw/wTcYq29K3KmMWY0cCcwKajEREREUlmiTbitgZdjzH8FdzkzERGRWiHRAjoTOD7G/OOB95NNRkREpKaI54LaZ0XcfRv4szGmFz/2vu0NnAWMCTw7ERGRFOX3gtqXeVOkR4DHk85IRESkBojngtq6ZqiIiEgUFUcREREf/AykMMQYk2+MWWeMWWuMed8Yc0oYyYmIiKSqRAdSuAQ3oPyXwCjgRuAr4J/GmN8Fn56IiEhqSnQghVHACGvtoxHznjbGFOCK6cTAMhMREUlhiTbhtsddPDva20CH5NMRERGpGfxcUHtQjPm/AIqTT0dERKRmSLQJ937gEe/qK3O8ef2AC4BrgkxMREQklSV6Qe0njTH/Bf6AG30IYClwjrX2jaCTExERSVVxF1BjTBquqTbfWvvP8FISERFJfXEfA7XW7gYmA03DS0dERKRmSLQTUSHQJYxEREREapJEC+gY4AFjzBnGmEONMemRUwj5iYiIpKREe+FO9f5OBmzEfOPdrxtEUiIiIqku0QI6MJQsREREapi4CqgxpjFwH3AGUA+YDgy31q4LMTcREZGUFe8x0LHAMFwT7t9xoxGNDyknERGRlBdvE+5ZwP9Ya18CMMa8CHxojKlrrS0NLTsREZEUFe8e6KHA7LI71tqPgd1AZhhJiYiIpLp4C2hdYGfUvN0k3glJRETkgBBvATTAJGPMjoh5DYEJxpitZTOstacFmZyIiEiqireAPhdj3qQgExEREalJ4iqg1tqLw05ERESkJkl0KD8RERFBBVRERMQXFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8UEFVERExAcVUBERER+qvIAaY640xnxljNlujCkwxgyoZNkMY8zfjDH/NsaUGmOejbHMMGOMjTE1DPWNiIhIrValBdQYcy7wEHAXkAvMAd42xrSv4CkNgHXA3cBHlYTeCmRETtba7UHlLSIiEq2q90BHAM9aaydYa5daa68BSoArYi1srV1hrR1urX0W2FBJXGut/SZyCj51ERGRH8V7PdCkGWPqAz2B+6Memgb0TTJ8I2NMMVAX+BS4xVq7sII8LgMuA8jIyGDBggUAZGZm0rhxY7744gsAmjdvTufOnVm40IWpW7cuOTk5LFu2jC1btgCQnZ3Nhg0b+PbbbwFo164d9evXp6ioCICWLVvSvn17CgsLAahXrx7du3dn6dKlbNu2DYAjjzyStWvXsnbtWgA6dOiAMYYVK1YA0KpVKzIyMli8eDEADRo0oGvXrnz++efs2OGub96tWzdKSkpYv349AB07dsRaS3FxMQCtW7emdevWLFmyxH1YjRqRnZ3NokWL2LVrFwA5OTmsXLmSjRs3AtC5c2d27tzJqlWrAGjTpg3p6eksXboUgCZNmpCVlUVhYSGlpaUA5ObmUlRUxKZNmwDo0qULW7duZc2aNZR93s2aNWPZsmUANG3alMMOO4yFCxdircUYQ25uLsuXL2fz5s0AZGVl8f3331NSUqLvSd+TvqcU/Z6gJfFasGBByn9P8TLW2rgXToYxJhNYDRxnrc2PmH8rcJ61Nms/z38TWGetHRY1vw9wOFAINAWuBU4Bcqy1yyuLmZuba2fMmOHj3YiISJmRz8VfQO+9aGOImQQjPT29wFrba3/LVdkeaFistXOBuWX3jTFzcHuh1wDDqysvERE5sFXlMdB1QCnQJmp+GyCwY5bW2lJgPnBYUDFFRESiVVkBtdbuBAqAQVEPDcL1xg2EMcYAR+E6J4mIiISiqptwHwReMMZ8DHwIXA5kAk8AGGOeB7DWXlj2BGPM0d7NZsAe7/5Oa+0S7/HbgHnAcm+Z4bgCGrNnr4iISBCqtIBaa/9hjGkF3Iw7X3MxcIq1tthbJNb5oNG9aX8JFAMdvfstgKeAtsAmb/k8a+3HwWYvIiLyoyrvRGStfRx4vILHjo8xz+wn3vXA9YEkJyIiEieNhSsiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMK6AFu+vTpHHvssfTs2ZNx48bt8/iOHTv43e9+R8+ePTnxxBNZuXLlXo+vWrWKQw89lEceeaR83hNPPEHfvn3p06cP48ePD/09BE2fiYgEQQX0AFZaWsrIkSN5+eWXmTt3Lq+99hr//ve/91pm0qRJtGjRgoKCAq644grGjBmz1+N//OMfOeGEE8rvL1myhOeff57p06cze/Zspk2bRlFRUVW8nUDoMxGRoKiAHsAKCgro1KkTHTt2pH79+px11lm8/fbbey3z1ltv8etf/xqA008/nfz8fKy1AEydOpUOHTpwxBFHlC//n//8h549e9K4cWPS0tLo27cvb775ZtW9qSTpM5HqFkYLSE5ODv369SMvL4+f//znob8HcVRAD2AlJSUccsgh5fczMzMpKSmpcJm0tDSaNWvGhg0b+OGHH3jooYcYOXLkXstnZ2czb948NmzYwNatW3n33XdZvXp1+G8mIPpM9hX0Cn3VqlWcdtpp9O7dmz59+vDEE09UyfuoCcJoASkzZcoU8vPzmTFjRphvQSKogEpM99xzD1dccQUHHXTQXvOzsrIYPnw4Z599Nr/61a/o3r07derUjp/RgfiZhLFCT0tL44477mDevHlMmzaNp59+ep+YtVUYLSBSfWrGf3kK8LuVXlBQQF5eHnl5eQwYMGCvpr3HH3+cPn360LdvXy655BK2b98eaM4ZGRl77QmtWbOGjIyMCpfZvXs333//Penp6RQUFDBmzBhycnJ44okn+Mtf/sKECRMAuOCCC5g5cyZTp06lRYsWdOnSJdC8w6TPZG9hrNDbtm1LTk4OAE2bNuXwww/fZy+/tgqjBQTAGMPZZ5/NwIEDefbZZ0N9D/IjFdA4JLOVnp2dzYwZM8jPz+eVV15hxIgR7N69mzVr1vDUU08xY8YM5syZQ2lpKZMnTw407x49elBUVERxcTE7d+5k8uTJDB48eK9lTj75ZF566SUA3njjDQYMGIAxhrfeeovCwkIKCwu5/PLLuf7667n00ksBWLt2LQAvvfQSjz76KI8++mhgGxWbNm3ioosuolu3brRp04auXbsGGvuRRx5h9uzZ9OjRgw8//DDwz2TVqlW8+eabDB06NN6vqVqFtUIvs3LlSj777DN69uwZzhuoRSpqAQG3kTNr1ixefvllnn76aebMmVMNGdY+KqBxSGYrvaxjCbiVvjGm/Dm7d+9m+/bt7N69m23bttG2bdtA805LS+Pee+9l6NCh9O7dmzPOOIPs7Gzuuuuu8vzPP/98NmzYQM+ePRk/fjy33XbbfuNedNFF/OxnP+Paa6/l4Ycf5qOPPgpkowJg9OjRDBw4kPr16/PBBx8wa9asQGMPGjSIF198kTp16nDVVVcF+pn07t2b3/zmN9x77700b958v8+p6SpboQP88MMPnHnmmZSWljJw4MDANoSqosNMGC1OOTk5jBkzhtdff70876BaQDIzMwFo3bo1Q4YMoaCgIPgPRfaRVt0J1ASxttKjf6AVbaW3atWK+fPnc80117Bq1SrGjx9PWloamZmZXH311Rx11FE0bNiQgQMHhrIyGDRoEIMGDdpr3k033VR+u2HDhvtt8rnxxhv3uv/WW2/x8ccfc88993DuuecClG9URDblvfXWW4waNQpwGxWjRo0q36goE7lR8f333zNnzhyGDRtGp06dOOywwwKP/dhjj2GMCeUzqYkSadI+5JBD9lmhT5kyhTFjxrBp0ybq1KlDw4YNufTSS9m1axcXXngh3333He+99x6ZmZmccMIJDB48eK/vMXJD6LXXXmPMmDFMnDixfEMoLS2Nb775hry8PAYPHly+MTplyhQWLlzITTfdRM+ePbngggu47rrr9sp7x44dXHHFFRQWFtKyZUsmTpxI+/btKSgo4PrrrwfAWsuoUaM49dRT2b59e/nf5cuXM2zYMO64445A8/7Xv/7F4MGDeeaZZ8pbhZ566qm98i5rATn22GP3aQEpc/fdd9OkSRMuvfRStmzZwp49e2jatClbtmxh5syZ/O///m8yP4sqN336dG666SZKS0sD/S537NjB7t27Oe200xg9enTgeWsPtAr06tWLuXPnMn36dMaNG8f27dv57rvvePvtt1m4cCFLlixh69atvPzyy9WdatySafoDmD9/Pn369KF///488MADpKWlUVxczMEHH8wdd9zBp59+yvDhw9myZUugsa+++mqOO+648ti1XRjN/NZahg8fTvPmzTn66KMDb7mBcA6rNGjQgNdff50HH3yQfv36UVBQQGFhYaB5h9EqtHbtWk455RQGDBhAnz59+PLLLxk1alRge85XX301hx9+OH379q00D7/C/C5nz55Nfn4+7733Hp988knguWsPNA7JbKVHysrKokmTJixdupTi4mLat2/PwQcfDMCpp57Kxx9/zDnnnBP+G/KMfK5l3Mvee9HGQF+7bKNi2bJlXHXVVZx44ons3r2bwsJCRo8eTadOnWjcuDHjxo1LuENOZbHvvvtuevXqxY033si4ceP44x//uNdzk/1M/G5Jz5w5k9tvv52dO3dSv359xo4dS15eHgCTJ0/mwQcfpLS0lJNOOmmfXrDJiFyhl5aWct5555Wv0HNzczn55JM5//zzufzyy+nZsyctW7bkr3/9a6UxP/roI/7xj3/Qrl07tmzZQl5eHrfccksgLTfgOswMGTKEdevWMWvWLIYNGxZIK4UxhoMOOoiSkhLatm3Lhg0bMMYEmvfZZ5+NMYarrrqKYcOGlcdLpgWkY8eOzJ49m9LSUo455himT58e6B7/b3/7Wy699FKuuOKKSnPyK/IQGQTT4lT2XQLs2rWL3bt377MxEwTtgcYhma304uLi8mNwX3/9NcuXL6d9+/a0a9eO+fPns3XrVqZPn86oUaN44403EtpqnDlzJgMHDqRfv34MHDiQ/Pz88ue89tpr9OvXj/79+zN06FDWr18f6GeSTG/WSJEbFZmZmWRmZtK/f39Wr17N6aefzmeffRZo7F69egGUxw5SMlvSrVq14m9/+xsffvghjz32WPnKasOGDdx2222MGDGC0tJSJk6cyPDhw/d57WR+I2PHjqVDhw68++67/OEPfwDcCv3kk08GflyhFxQUMH369PIVXaQbb7yRa665BoDevXuzYcMG7rjjDoYMGUJ+fv54J1nHAAAcw0lEQVQ+TebxiNVyA25levPNNzN48ODyDjNBtFKA+w5vvfVWXn31VY4//vjy30tQeYfZ0Sesvhp9+/alZcv4NywTFUZrFrjvMi8vj6ysLN/f5f6ogMYhmWaXefPmMWDAAPLy8rjgggu47777aNWqFb169eK0007j+OOP57zzzmPAgAEsWLAgkJXu7t27GT16NFOmTOGDDz6ga9eu5Z0NghLGRkWbNm045JBDaNq0KUVFRbzxxht06dIl0NjLly8H4P333ycrKyvQzySZFdhRRx1VvpGQnZ3Ntm3b2LFjBytWrKBz587ceeedvPzyy/z5z39m6tSpNeI3EsZGFvzYYaZhw4a+O8xUVOTq1q3LhAkT6NOnDwsWLGDJkiWB511ZR5+Rz7WMe4oWViFKdZV9l/n5+SxevLj8uwyaCmicBg0axCeffMKCBQsS2ko/99xzmTt3Lvn5+cyaNYshQ4aUxxw9ejSPPvoo/fv3Z9KkSTRt2jSQla61FmstW7duxVrL5s2bU6qHb0UbFeB6dl511VXs2bOHSZMmMXXq1EBj//73v6d///4sXryYESNGBPqZJLsCKzNlyhRycnJo0KABnTt3ZsmSJWRkZNCuXTveeecdDj744BrxGwljI2vLli1s3ryZjIwMVq5cycyZM8nOzg6syJXlvXLlSrp168Y777wTaN5AeUef7OzspD7foFVUiMIW1oZWmebNm9O/f3/ee++9wHOvGZsYB7Bke/iWiVzpAtx///3069ePJk2a0LlzZ+67777Ac/fbw/fcc88t770brXv37hUORRZm7FSxdOlSxo4dy2uvvQZAixYtOP/885k0aRKnnHIKxx57LF9//XXchTnZ30gix4Rh7+PCyRxfnTdvHuPGjaNevXrUqVOnfENoxYoVXHDBBVhrWb58OZdddhl5eXmMHTs27t6sxcXFHHLIIaSlpe1V5NatW0e9evVo3rw5d9xxB5dddhnNmjXj0ksvDSxvcAVg6NChnHjiiQl9tvsTRl+N3NzcQHOMJXJDKyMjI6GeyfF8l9u2bWPWrFlce+21geeuAnoAiF7p7tq1i2eeeYb333+fjh07MmrUKP7yl79www03VHOmB7ZkV2CrV6/mwgsv5PHHH6dTp07lzzn66KNZv349Dz/8MM8++2x5M3Qiqus3EvRGVlmHGYB3332Xm266ialTpwZSnD///HOuvPJKSktL2bNnD9ddd91eg0QElXdYwihEVSGMDa3o7/KMM87gpJNOCj73wCPWQsn03Axjpbto0SKA8vtnnHFGzM5JEqxkVmCbNm3i17/+Nbfeeiu9e/fe6zmNGjVi9erVfPfdd0ycOJG8vLy99iyhdv5Ggi7OXbt25f333w88z6oSRiECuOSSS/jwww9Zv349Xbt25cYbbyzfmw5KTf0uVUCrWRgr3YyMDJYtW8a6des4+OCDmTlzJocffniVvq8wT5GpztNvKpPMCmzChAl89dVX3HfffeVNqa+99hqtW7fmpZde4oMPPuCEE05g5MiRPProo7XuNwJV+11WJlV/fxDOYZX9nbZUm6mAVrMwVroZGRmMHDmSIUOGUK9ePQ499FAee+yx6nybtYbfFdgNN9xQYfPpxIkTy5sr77nnHv1G4lBTi7PsK5U3WFRAU0AYK92LL76Yiy++ONA8pfroNyLJSuVCVFOpgKY4/egPDGHuEWlvS6R66DxQERERH1RARUREfFABFRER8UEFVERExAcVUBERER9UQEVERHxQARUREfFBBVRERMQHFVAREREfVEBFRER8qPICaoy50hjzlTFmuzGmwBgzYD/LH+ctt90YU2SMuTzZmCIiIsmq0gJqjDkXeAi4C8gF5gBvG2NiXrnVGNMJeMtbLhf4M/CIMeZsvzFFRESCUNV7oCOAZ621E6y1S6211wAlwBUVLH85sMZae423/ATgOSDy8hKJxhQREUlalRVQY0x9oCcwLeqhaUDfCp7WJ8by7wC9jDH1fMYUERFJmrHWVs0LGZMJrAaOs9bmR8y/FTjPWpsV4zn/ASZZa2+PmJcHvA9kAsZHzMuAy7y7WcCyAN5eRQ4G1il26HEVW7EVO/Vi18Scy3Sw1rbe30K17nqg1tqngKeq4rWMMfOttb0UO9y4iq3Yip16sWtizomqygK6DigF2kTNbwN8U8Fzvqlg+d1ePOMjpoiISNKq7BiotXYnUAAMinpoEK7nbCxzK1h+vrV2l8+YIiIiSavqJtwHgReMMR8DH+J62WYCTwAYY54HsNZe6C3/BHC1MWYc8CTQDxgG/CbemNUszKbimhi7Juas2Iqt2KkVN+zYcauyTkTlL2jMlcBIIANYDFxf1gHIGDMLwFp7fMTyxwF/AboCa4B7rLVPxBtTREQkDFVeQEVERA4EGgtXRETEBxVQERERH1RAQ2KMMRG3a8znHJW3qWzZVFKD864xvw0R2Zv+eUNirbXeUINYa/eUzQ9i5R7mStfLu1nZ7SBjG2PqBhkvUg3Oe48xpo33Og2NMTVicJOy33FN2lgRCZo6EYXAGNMWGAr0wA0XOA941Vo7N+DXMbjvcE+sxxItJMaYLrhThAYCHXHn4f4fMNNa+63fuDFepw7svWFRS/M+GrgQOAVoC8wH3gXeAxZaa0uTydsr/HuC3qDwYqcBTay1m0KIXddaWxp0XC92U6AJ8F+gMbA11veZampq3gc6FdAQGGOmAl2ApbhTb/oC3YAvgLuBF/yuIIwxVwGfAx9Za7dFzK+D2/ny/YUaY94HmgIf4EZy+jnQH1iPu2TcA35X6saYPwELgGnW2s0R85NeydfgvAuAzbhi/y0wxJtKgWeBm621W5It/t5vwwRVlIwxg4GLgRygPq7gv4HbYNkSxGt4rxNzg6Vsr9fHd/lbXN49vFlzgbeB6dbaZWWxk9lgCaPw19S8vdgZuP/NbUBd4Btr7faAYqdZa3cHEcs3a62mACfcynst0M673xBojiuiE4AiYITP2P2BPUA+MAkYDuRELdMAuAXISDD2QC/vllHzM4HbcIP2Pw7UTSLvhcBs4H7cBQAil2kEPAy0ryV5H+/l3TDGY/8DFONWkk19/laeAX4f43NJA+ok8fvuj7sAwzTgSu+39hGu6C8GfpVE7O7ed3UikBb1WF28DX6fsfOAFcDzwMnARd7nuwP4GrjKb+wYr1U3mc/4QMjbi3clrlVlO25DcRZuB+IXQANvGd/faVTeCf9/B/Ieq+NFD+QJGAPMqOCxZsAfgR+AHj5i/wU3ROHtwJvAJ8BM3ChNF+KaL3/mrfQPSjD2Dbim5kbe/b3+mYDzgU3Az33kfa+X5+XAo94/0qe4S9ONxu2dH+vlnVDBqMF5X+7FauPdbwDUj3j8ONxe6Zk+8i4r/P8BVgKvAKdHLdMImAgcmWDsV4EJMeYfgRsdZjVwoc//nedweyqfANO9/6UeUcv08X7vCa14gZeBp2LMb+y9znrgFp959/L+H4cC9aIeS0s01wMk7+O938I9QDau+E/wfpOrgT8RtZGUQOx+QCFwSeT/TETedXDjpKcn8x7iyiXM4LVx8lZea4HBFTyehtt6v95H7BeAh73b9YHBwAPADG+l8yaumfhdH7GP9PI+L2q+ibj9BjDWR+yJwNPe7TreP+41uK3qucDH3mu/VYvybofbgxgRNb98T8tbeT7oI/aduCJ/Om4D403cXsx/gMeA3sAx+Cv8M4A7on7PdbzbDXF7vguAn/jIewFwF27PZSJuaM6F3vd3FdAeGA8s8RH7dWB8xP0GRBQN3Ebp50BHH7GfA3Z6n++XwF/Zt6WiL/ASCe4p1eC8/wY8GWN+PdzG43/L/rd85l0KlOAuLPIv4NSoZfp5830V6bhzCTN4bZxwW/bP4wrZjbgLfjeJeLwFsAo4y0fsbsDJMeb/BNeJ5llvpXiKj9h1ccV4PW5P4hSgVcTjbXEr/KE+YrcFjo8xvzmuCfb2APLeUFPy5scCOQrXGjEd+B2QGbFMZy/vhJtEcS0Vz5atPIBOwC9xxSkfV0x3AVN9xB6OO858eAXv6VDvt59QCwtwGO46v7/z7jcFBnif0cu4jZX53ud9uo+8z/N+232jfz/e33TgK6CPj9hzcYcLhgBjca0WXwOf4TZmsnAbLotrUd7P4lo+Gnr3GxJRzHCHKf4NdPUR+31cC1B3L86/cC0X3wNP447NPwJ8lmjshHMJ+wVq4+StRB7Hbdl9hGv+u9n70qcAy5KIXbZSrEPU8SxvJbkpidgNcHss+bg92n96P8gHcXsDCwL6fMo6tUTm/UMS8RoDf8B1IioIIm+imn4iPu/A8vZinIlrFl3Aj02XL+COJ+b7jHkQ0DvG/Ea4PfZL8L/B0hrXU/hLXDNcHhF7scBZwGafeXchqjB789vgmgBfB77z8116n8nfgY24vaOzgRYR3+1v/OSNO2zyJnCFd78hrvCcg+vA9gmuKO0BTksi7+9qSt5evJNwl5w8J2p+2fqrCe7wwnEJxs3E7Sn/3rtfF2iJa1G50ct7h5f3L/38DhOZ1As3RMaYo3DH4PriVr4tcccwH7TWLgrwdQzun+1VoJm19sQk4x0BnAocjcs5A7diH2+t/SrJdKNfqw5uYyPdWntOkrHa44pab9wV69sQQt4Rn3dQeR+Ka3LqimvabYfbqn7BWvvfJNPdp4emMeY04GVrbUOf8brgmlmPwzWhrQK24laKRwBvWmtHJplzWVP27oh5rwNbrLXn+YzZFHc1pyG438Ye3PHxut79l6y1Y3zEbYNrZSqK8XqdcZ/VudbaFj7zboLrhXs6rrVpdyrn7f1/NMC1eFyDazl4DnjFWrveGHMwcBowzlrbzEferYDG1tqvo+aXrWOvAYb7/bwTykUFNBjGmAbAUXhb4LhmkPnW2m+8x7NwTWc7bYIfekTsM3H/OJ/jmsm+tu40hzrWnZCfBjS31q73kX9Z55tdUfNbW2vXJhovRmxrKzhvzXu8qbX2uwRiHoTb+/kNbut8GW7vc761dlcyeUfF3gAsx7UmLLLWliSTd8Rz0wBsVDd8Y0wDa+0OP3nH+boG11zXxlr7+yRjHYnbYDkS15TYCNd8PNNauzXZXCNepw5uxfgxroPSh0nGy8J1RuqE21hpiGslKrDuGsNJibHB8jqww1p7rs94Day1O7zzy/NwG1qH4opUIHlXssHiO28vxqnAb4FcXOvFt7gNgAbAX6219yeTdwWv+TpQaq09O+jY+7yWCmgwjDEP44pnCW5l0hF3rOgN3CXYigOM3QF3funruK24okqevr/YPa21BVHz6uMK3q4KnpZM7EBO7jfGPIdbmSzHfSbtcMdAPgUes9a+H3DsjV7sp6y1M5OI3d9a+0HUvL0+72TPb/OK855KNljq4PY8Nsd6vILnHIo7Tnss7pjb58Aca22h9502stb+4DPfstjH4JqGl3nxP7PWbiwrSMaYgxJ5jchCFmuDpWzD00/OCeTQApgMjLLWfpLA87KBEbjCU4T7zD/ENesnvMFWyes0jf4deL+PZn7yjogR+dln4Day2uM2WhriOokttwGff+pt/D4CPGSt/TTI2DGF3UZcGybcj+N73PlNrbx5rXFt8l/hDnD/Hh9dquOMfRmuSTHRrv2H4ZqxFuOOF+ZGPW5wvX2PJaq7eECx6/mMfSRuL783P3amaA5cyo/nJI7Bx7mDcca+DR/nzOGaN/d48V8C+kU9Xge3Zf5LvNNbEozfP8a86OPkCZ/nh1vpLcANDPKcd3s1rsg9iY8eoPuJvQrXgvM48NPo300CsVuzb6/Sss+47Ficwd85wpHHwis9txbX3JhI7J/iNiLygT/jjunPw5268Rpwot/P24ufjTulZL73O7wXt5d4aNRyjZJ8nVBPIankdRtU2WtVxxs80CbgJiI6fLDvSeB34XqcZaZY7Ftxe1ll55eu9v5RR5b9MwGHeCv9dikU+zrgg4j70eeCXY7rALFPh5Rqjn0T7rSM0biBGXbjWinuLysUuGNce6JXZnHE3l9xLtsYSrg4A0/gRktqGzGvPa6HbDGus0jCPWPjjL02idiPeZ/JN97tI6Mer+u91q9I/DSNWMXZsG9Hs7KNsEQK/3jvM4nsnNUGd/w2H3e8+X98fiaxivNc3IbLy8Avot9TArHbABfg+gVEzi/vNOh95gkXuIpix1iurNdvlRTv0F+gNky4Y5PLgS4R89IivsyyrezhKRb7RVyPu7a44yoX4Xq4fYbbC/g/XE+9z1Ms9kBcETsh6jMpG0yhFa5H7m0pFvsx3DGrdG/Kw20ALcWt6D/DnWfp5zMJszjPBm7wbtdj3424v+NGx9mrd3UKxP4Ytxd7G27vbQ+u78BNZSti3EhKRT6/y8qKcx1+LM4JnYsIvIV33jIxRtnBnbY1jwT3bL3n7q84b8F/cX7E+0w24E5hOYWoYul9JjdEz6/O2MlMVfIiB/rkrVSX4vYEz4n1BXr/wL9Pldi4ovBbYHTU/HRcB4urcVukexL9hwozthenIe5UihLcHuE+TU2445UJD3MWVmxvRXgKcGXU/PreP/6puGa1PcDFPvIOsziP8d5z5Eq3Hj9uVPTHHbvc59SZ6oqN6yfwDq4w1MG1dpzkfU4rvc/kQ2+F7GdQkzCL87VejkdE/U7qe7ePxB2+GegjdpjFeS5ur/ZiXO/3Hbi+Go/gnRcM3AF8kUqxk5mq7IUO9Al3ftI/gCW4kYbuxI2LezhuT2wtEQMqpErsiNeoF2PeWd6KIeF/prBj43p8PuitaJbhjp+dhTtW/HfcXmTKxY54jX2OmXkr+IQ/E8Ivzj29ldUCYpwTiGs+3u5zpRtKbFwnmIuIPXbxT3Ebo7Nwe+oJHesj/OLcCdea8BXewBJRj3fDjSDk5/MOpTh766hXgMu8+2nedzcKt4FUCizC7eFemyqxk52q7IVqw4TbW7wIN9D7HNwIIntwI3z8OpVix1qBe/PLj+Hgmv9mpVJs77llx5UOwg1n+CfcFUE24jpcTSbGiE3VGRt3fKzSDjy4vbF3AvgdBlmcy76vLt57X+OtrB7HHU8dhTt5/WU/n0lYsWN89vs0o+IOM/j5fYdWnCNiNcW1KGzEjVY1GXde5uO41oTnfcYNpTjjzgH+JfCzGI81xnUWfNnPZxJm7GQnncaSJGNMO9wKANwW0BJcz9jOuJXwVmCdtXZDisY2uBXrMuuds+o9bnAnbq+2CXZjDzN2Ba9XH9epYxuuCXaTDeiyWmHGjvFaxwNrrbWfJ/i8Cq8LG7HMGNxwbyclkV9D3JVSBuFWWl1xe1kTgEk2uVO1Qosd8RoGt7deiit2+cCfrbWvJRvT7ns+74vAIdba433Eq2Pd5fca4oary8O1OPXAFb5JwOTI/6kEX6Mprjn0PFxz+TRcs2g3XJP5p9baC/3EjnwfNqq4GGOexR2PH5CqsRPORQXUP2PMFbjz13JwxawI10FmJu4C2l9X8vRUib0Fd+xmFe7Yx+vWu8ZgCsZuZAO+Bmp1xK4Ofoqz9xmcjtuAaIQ7FjnbWrvJW7lb3LHLdT7yqarYjXE9wN+3EaM6eYOTnGitnZpo/ApeM/DiHBG7/NxpY0xz6/Mi5mEW5/39vxhjGuHOiR9vrf1nqsROlgqoT95wUl/gDrqPx/2znoi7jM+RuOao4dbaJbG2mFI0djau2F3vxU7oQrshx26J66wxFa8Zu+x9R/6DeSegr7KJDRJQXbEjTzbPBkpsgifJh1Wcvb2Up3G9kvfgipDBbcxNx+0VLveWTWhAgiqOvQpXjLfjBiF/wVr773jjxYgfSnE2xtTDNa8W2xgjUSX6f57A6wZSnON4nXpAL2vt3JoUe7/CbB8+kCfceIsfVfBYf1z3/CLgYMUOLPYOXO/HUtwey+1AVsQyh+KO73SuJbFb4jqEjMeNpRt5/mHk7Wy8AcgTiP1HXOE/xrt/BG5c5/G4IRP/D2id6PdYzbE/wV3MwW/sprhjbWtxQ9IV4AYj+AB3rPwIP3G92NfhWmyewR3va8u+PWSb4QbV36dT3n5i18N1OIx5ekfkb8VH3pXGTmYKM3ZgOVZ3AjV1wo0stATo5t2PviBye+/x3yp2ILEn4E66/wluXOA/486PLcU1D1+GOwcy4auj1ODYYRbn2URdq9SbX5cfhzn8l8//nZoaO8ziPBd3eGa2911+hesJ3h83vjW406rm+YgdZnGON/YQEh9xLLTYQU1V/oIHyoTrFbsYNzhA5DlskcOmzQFGKnZysXGF+Hrgj1Hzm+OaiCfimrX3ALfUhthenFCKM6639HjcqRitvXl7DV0InOB91zm1Ibb33FCKM645OB9vwxI39vLNuAsY7MHt6Y7CnQv+kI/4YRbnGhk7qKlaXrSmT3jjzgJn4IYb24w77tKTH0cgOd+b31Gxk4vtxW+AN9xb9ErRm3c8PoYFrKmxCb8498bt0d5DjKH/cHu2P+B6mh7wsQm38Gd43+VJMR7LxZ1fWnbaWqJ5h1aca2rsIKdqedEDZQJa4Lb8L8edWP2DN33h/ROPUezkY/NjZ7fO0SvFiMduxd+oLzUytvfcsIpz2cXDL8Ud79uIa1UYhLvo8q9wg0t84iPnGhnbix9m4W9ExDiuZVPE438CFvqIG2ZxrpGxg5zUCzdBxpif4AY1/gNuEO1tuOtRfoBrNquHOwfyX9ba/yh2YLFHAP/FnSxdghuZZLJ110M1uJXmGmvtmwd6bC9+2SW+OuMuMv1tjMduBYZZazsnEjvqdVrgRtz5Le4C65txPVo/wZ2m8VFtiO31vq2DG0ruLlyhfg03QthK3EbjqbgxcY/xmXPMnrbGmMa4kZqesdbe4yNuI1xP8u3ebw68Gd7jfwJOsdbm1pbYQVEBTZB3wm5XXE/BDbhxR7vjeov9F7jZ7z++YscdOxfXgWMVcJ+1dlotix1m4W8GbI5ckXvFoyFu8I5uuIKd8PdZU2PHeK3AinOsvGMs0xA4F/i79Xnh7LCKc02OHYjq2vWtiROuWeUHIC9qXgfc8F3TcE2VPRQ71NiH4prjpuHGqq01sb1Yz+JW1rfiBua/FXdZqqW4gfB/4SeuF/tJ4H9wG0DNKlimZdl7qiWxm0U/B7c32hjXgevnxBhmLsC8EzoFqbK8YyzTEDcsYaI9ZGtk7KCnanvhmjjh9igWUcGVIXDHpObjtkIVO/zY9Wth7DAL/29wx5S+w52v+yRuEP0u/Hh1lIOA14HutSG299xQinMFeZ+JG0+3LO+yUXa6hZS33+JcI2MHPVV7AjVp8n7M7+G6Vx9G7EG7r8GNJanYih1G7DCLc9lpMZ1x11VchBsdaCGuE8vPgSuAnbUodpiFv6rzDqQ419TYYUzV+uI1ccL1xPvUWzkOw235H+Q91hh4FTcUmWIrduCxCak44zrF3ATcHTW/KzAOd9x2He5469O1IbYXJ5QiV1Pzrsmxw5iqPYGaOOE6JPwD19t0Ha6jyERcb7yP8NFMpNiKnUDcsIpzS7zh6HB7stHH/c7F7R0cXRtiE36Rq3F519TYYU3qhZsErzfkENzgAdtxJ1G/YpMYrFqxFTvOmN2AW4DTcMOdzcWd+3girkfuJdbaRUmmXtaT1Vh3BY9LcSetN042bk2J7V0MoI219t/GXdpul41YaRpjzsVdZL2HtfbT2pB3TY0dBhXQgCR61QjFVuyA4oVW+GO81gjcWKT31ebYYRb+qNepMXnX1NjJUgEVOUCEWfi9+PWA0jBeowbHDrPw19S8a2RsP1RARUR8CrPIhakGb7Ck1OetAioiIuJDnepOQEREpCZSARUREfFBBVRERMQHFVAREREfVEBFRER8+H9mlo26PBT+VwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "expression = '(w ^ x) & ~(y ^ z) & (x & y & z)'\n", + "oracle = LogicExpressionOracle(expression)\n", + "grover = Grover(oracle)\n", + "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024, circuit_caching=False))\n", + "plot_histogram(result['measurement'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the example above, the input Boolean logic expression `'(w ^ x) & ~(y ^ z) & (x & y & z)'` should be quite self-explanatory, where `^`, `~`, and `&` represent the Boolean logic XOR, NOT, and AND operators, respectively. It should be quite easy to figure out the satisfying solution by examining its parts: `w ^ x` calls for `w` and `x` taking different values; `~(y ^ z)` requires `y` and `z` be the same; `x & y & z` dictates all three to be `True`. Putting these together, we get the satisfying solution `(w, x, y, z) = (False, True, True, True)`, which our `Grover`'s result agrees with." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantum Search with Oracles from TruthTable\n", + "\n", + "With Aqua, `Oracle`s can also be constructed from truth tables, meaning we can also perform Quantum Search on truth tables. Even though this might seem like a moo point as we would be essentially searching for entries of a truth table with the $1$ value, it'd a good example for demonstrative purpose." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "truthtable = '1000000000000001'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown, the `truthtable` is specified with a bitstring containing values of all entries in the table. It has length $16$, so the corresponding truth table is of $4$ input bits. Since the very first and last values are $1$, the corresponding truth table target entries are `0000` and `1111`.\n", + "\n", + "Next, we can setup the `Oracle` and `Grover` objects to perform Quantum Search as usual." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAFOCAYAAADzQ9aiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt8FNX9//HXIZBAlFswxQQJF9EQLo0heEHl4hdRtLUiUi/FG9Qf9V6LFr9Sv4qt4lcUxbaiFmu9ttpKVFRoEeULVqhiiCmXmIKRUEjEkFBAQELC+f1xJmEZNmR3s5sLvJ+Pxz6yOzvzmZPZ3fnMnDnnjLHWIiIiIge0auoCiIiINDdKjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj6tm7oAsdKlSxeblpbW1MUQEZFm5LPPPttqrU2ub74jNjmmpaXxwQcfNHUxRESkGUlKSioOZT5Vq4qIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqISMwsWrSI0047jezsbGbNmlXnfPPmzSMpKYm8vLzaaY8//jjZ2dmcdtppvP/++7XTt2/fzrXXXsvpp5/O6aefzieffBL1creOekQRERGgurqaKVOmkJOTQ2pqKiNHjmT06NH07dv3oPl27tzJM888Q3Z2du20zz//nJycHJYtW8ZXX33FJZdcwooVK4iLi+Puu+9m5MiRvPDCC1RWVrJnz56ol11njiIiEhO5ubn06tWLnj17Eh8fz9ixY1mwYMEh802fPp2f/vSntG3btnbaggULGDt2LAkJCfTo0YNevXqRm5vLjh07WLZsGVdffTUA8fHxdOzYMeplV3IUEZGYKC0tpVu3brWvU1NTKS0tPWie/Px8Nm/ezHnnnRfSssXFxRx33HHccsstDB8+nNtuu41du3ZFvexKjiIi0iT279/PPffcwwMPPBDyMlVVVeTn5zNhwgSWLFlCYmLiYa9lRkrJUUREYiIlJYXNmzfXvi4pKSElJaX29TfffENBQQEXXXQRmZmZfPrpp4wfP568vLw6l01NTSU1NZXBgwcDcPHFF/PPf/4z6mVXchQRkZgYNGgQRUVFFBcXU1lZSU5ODqNHj659v0OHDqxfv578/Hzy8/MZPHgwr7zyCllZWYwePZqcnBz27t1LcXExRUVFZGdn07VrV7p168a6desAWLJkCenp6VEvu1qriohITLRu3ZoZM2Ywbtw4qqurGT9+PBkZGUyfPp2srCwuuOCCOpfNyMhgzJgxDBkypDZOXFwcAA8//DA/+clPqKyspGfPnvz2t7+NetmNtTbqQZuDrKws+8EHHzR1MUREpBlJSkrKtdYOrm8+VauKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4NPrA48aYm4CfAynAGuB2a+2HISx3NvB/wOfW2gExLaSIiMTclBc6hzzvjGu3xbAkh2rUM0djzOXAE8B0IAtYBiwwxqTVs1xn4EXg/ZgXUkREjnqNXa06GXjeWjvHWltgrb0VKAVurGe53wMvAMtjXUAREZFGS47GmHggG1joe2shcOZhlrsJ6Ao8ELvSiYiIHNCY1xyPA+KALb7pW4Bzgy1gjBkI3AecYa2tNsYcdgXGmEnAJICUlBRWrlwJQGpqKomJiaxfvx6Ajh070rt3b/Ly8gDIzc1lzpw57Nmzh9GjR3PllVeSkZFBRUUFW7Zs4e2332b+/Pm0bt2aVq1aMXnyZE455RTS0tJ44403ePzxx9mzZw/t2rXjySefZP/+/QD069ePK6+8kuLiYp599ll69OiBMYYNGzYA0KVLF1JSUli9ejUACQkJ9O/fnzVr1rB3714ABgwYQGlpKeXl5QD07NkTay3FxcUAJCcnk5yczNq1awFo164dGRkZrFq1in379gGQmZnJxo0b2bbN1dn37t2byspKNm3aBEDXrl1JSkqioKAAgGOOOYb09HTy8/Oprq4GICsri6KiIrZv3w5Anz592L17NyUlJdRs7w4dOlBYWAhA+/btOemkk8jLy8NaizGGrKws1q1bx86dOwFIT09nx44dlJaWhvQ5xcXFkZmZSWFhIbt27QI46HMCOOGEE4iPj6eoqAiAzp07k5aWRn5+PgBt2rRh4MCBFBQUsGfPntrPqaysjLKyMgB9Tvqc9Dk12uc0klCVl5dH5XMKVaPd7NgYkwpsBoZba5cGTL8XGG+tTffNnwDkAQ9Za1/ypk0DxoXSICfUmx1XV1dz6qmnkpOTQ2pqKiNHjmTOnDn07du3dp4dO3bQoUMHABYsWMDvf/97Xn/9daqqqhgxYgRPP/00AwYMoKKigo4dO9berfrtt99m3rx5rFmzhmXLltVbFhGRo0lTNMhpjjc73gpU46pIA3UFvgoyfwqQAfzBGFNljKkC7gX6e6/Pi0ahcnNz6dWrFz179iQ+Pp6xY8eyYMGCg+apSYwAu3fvpuYMdvHixfTv358BA1yuTkpKqk2M33zzDbNnz+aOO+6IRjFFRKQRNVq1qrW20hiTC4wC/hLw1ihgbpBFNgMDfdNu8ua/BNgQjXKVlpbSrVu32tepqank5uYeMt+zzz7L7Nmzqays5K233gJg/fr1GGO49NJLKS8vZ+zYsdx2220ATJ8+nZtvvpnExMRoFFNERBpRY/dzfAx4yRjzCfARcAOQCjwNYIx5EcBae421dh+wOnBhY8zXwF5r7UHTG8P111/P9ddfz+uvv87MmTOZPXs2VVVV/OMf/+D999+nXbt2jBkzhszMTJKSktiwYQPTp09n48aNjV1UERFpoEZNjtba14wxXYB7cNWmq4ELrbXF3iyH7e8YCykpKWzevLn2dUlJCSkpKXXOP3bs2Nqq0tTUVM4880y6dOkCwKhRo8jPz+fYY4/ls88+IzMzk6qqKrZu3cpFF13E22+/Hdt/RkREoqLRh4+z1s621va01iZYa7MDG+dYa0dYa0ccZtlp0R4dZ9CgQRQVFVFcXExlZSU5OTmMHj36oHm++OKL2ucLFy7kxBNPBGDkyJGsXbuW3bt3U1VVxbJly+jbty8TJ05k7dq15Ofns2DBAk488UQlRhGRFqTRh49rblq3bs2MGTMYN24c1dXVjB8/noyMDKZPn05WVhYXXHABc+bMYcmSJbRp04ZOnTrx5JNPAtCpUyduuukmRo4ciTGGUaNGcd55UWknJCIiTajRunI0tlC7coiISNNQVw4REZEWRMlRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETE56gfeLw+4Yz9B9Eb/09ERJqOzhxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8wkqOxpjLjDHnBby+1xizyRjzN2NMSvSLJyIi0vjCPXOcVvPEGDMImAr8GmgDzIxesURERJpO6zDn7wEUes8vAd601s4wxiwE/hbVkomIiDSRcM8cvwXae89HAou859sDpouIiLRo4SbHD4GZxpj/AQYD873pJwP/DiWAMeYmY8yXxphvjTG5xpihh5l3uDFmmTGm3BizxxjzuTHmzjDLLCIiEpZwk+MtQCUwDrjBWlviTb+AEKpVjTGXA08A04EsYBmwwBiTVsci3+CuaQ4D+gEPAPcbY24Ks9wiIiIhC+uao7V2E3BRkOm3hxhiMvC8tXaO9/pWY8xo4Ebg7iBxc4HcgElfGmPGAkOB2eGUXUREJFThNsjBGNMW+D5wIvCMtfY/xpgTgW3W2orDLBcPZAOP+t5aCJwZ4rqzvHmn1fH+JGASQEpKCitXrgQgNTWVxMRE1q9fD0DHjh3p3bs3eXl5AMTFxZGZmUlhYSG7du0CICMjg4qKCqBzKEWrVVBQwJ49ewDo168fZWVllJWVAdCjRw+MMWzYsAGALl26kJKSwurVqwFISEigf//+rFmzhr179wIwYMAASktLKS8vB6Bnz55YaykuLgYgOTmZ5ORk1q5dC0C7du3IyMhg1apV7Nu3D4DMzEw2btzItm3bAOjduzeVlZVs2rQJgK5du5KUlERBQQEAxxxzDOnp6eTn51NdXQ1AVlYWRUVFbN++HYA+ffqwe/duSkpc5UFKSgodOnSgsNC112rfvj0nnXQSeXl5WGsxxpCVlcW6devYuXMnAOnp6ezYsYPS0tIGf05btmwB4IQTTiA+Pp6ioiIAOnfuTFpaGvn5+QC0adOGgQMH6nPS56TPqVl8TiMJVXl5eVQ+p1AZa23oMxvTB9cI51igE3CytbbIGPMo0Mlae/1hlk0FNgPDrbVLA6bfC4y31qYfZtlNQDIumd9vrf1lfWXNysqyH3zwQYj/Wd2mvBBecpxx7bYGr1NE5GgQzv41WvvWpKSkXGvt4PrmC/ea4yzcmV5XYE/A9HnAOWHGCsdQXAOgG4DbjTFXx3BdIiJylAu3WvVM4AxrbbUxJnD6RiC1nmW3AtW4xBqoK/DV4Ra01n7pPV1ljOmKq1Z9KcQyi4iIhCWSsVXbBJmWhuvrWCdrbSWucc0o31ujcK1WQ9UKSAhjfhERkbCEe+a4ENfi9Mfea2uM6QDcD7wbwvKPAS8ZYz4BPsJVk6YCTwMYY14EsNZe472+FfiSA6PyDAPuRC1VRUQkhsJNjpOBxcaYQqAt8BrQB9gCXFbfwtba14wxXYB7gBRgNXChtbbYm8Xf3zEOeBjoCVQBXwD/jZdMRUREYiHcfo4lxphTgCuBQbgqzt8Br1hr9xx24QMxZlPHmZ+1doTv9SxcIyAREZFGE3Y/Ry8JPuc9REREjjj1JkdvRJq3rbX7vOd1stbmRK1kIiIiTSSUM8fXgeOBr73ndbG4a4QiIiItWr3J0VrbKthzERGRI1VYyc4YM8wYc0hCNcbEGWOGRa9YIiIiTSfcM8HFQFKQ6Z2890RERFq8cJOjwV1b9OsC7Gp4cURERJpeSF05jDHzvKcWeNkYszfg7ThgAOENASciItJshdrPsdz7a4BtHHxHjkrg78Ac/0IiIiItUUjJ0Vo7AcAYswF41FqrKlQRETlihTt83P2xKoiIiEhzEcoIOf8EhltrtxljVhG8QQ4A1trvRrNwIiIiTSGUM8e5QE0DnMONkCMiInJECGWEnPuDPRcRETlSaTg4ERERn1CuOR72OmMgXXMUEZEjQah35RARETlqhHXNUURE5Giga44iIiI+6ucoIiLio36OIiIiPurnKCIi4hPW2Ko1jDEnAhneywJr7RfRK5KIiEjTCis5GmO6AL8HfgDsPzDZvANMtNaW17mwiIhICxFua9VngT7AUKCt9xgG9EL3cxQRkSNEuNWq5wMjrbXLA6Z9ZIz5CbAoesUSERFpOuGeOZYBwW50vBtQlaqIiBwRwk2OvwRmGWO61Uzwns/03hMREWnxIhl4vBewwRiz2XvdDfgW+A7umqSIiEiLpoHHRUREfDTwuIiIiI8GHhcREfEJKzkaY+KNMfcbY/5ljPnWGFMd+IhVIUVERBpTuGeOvwKuxbVO3Q/8HHgS143jpugWTUREpGmEmxwvA26w1j4DVANvWWtvA+4DRkW7cCIiIk0h3OTYFVjrPf8G6OQ9/ytwXrQKJSIi0pTCTY4bgVTv+XrccHIAQ4A90SqUiIhIUwo3Ob4BjPSePwHcb4z5EngeDQAgIiJHiLAGHrfW3h3w/HVjzCbgTOBf1tp3ol04ERGRphDRzY5rWGv/AfwjSmURERFpFsIeBMAYM8gY86Ix5lPv8ZIxZlAsCiciItIUwh0EYDywAkgB5nuPrsAnxpirol88ERGRxhduteqDwP9Ya6cHTjTG3A08ALwcrYKJiIg0lXCrVZOBPweZ/hfcLatERERavHCT42JgRJDpI4AloQQwxtxkjPnSG5s11xgz9DDzjjXGLDTGlBljdhpjPjbG/CDMMouIiIQllJsdjw14uQB4yBgzmAOtVM8AxgLTQoh1Oa5/5E3A372/C4wx/ay1G4MsMhz4ALgHqADGA28YY0ZYaz+sb30iIiKRiPRmx5O8R6DfALPriTUZeN5aO8d7fasxZjRwI3C3f2Zr7U99k+43xnwPGAMoOYqISEyEcrPjqNzz0RgTD2QDj/reWogbSCBU7YFt0SiTiIhIMA0aBCBMxwFxwBbf9C3AuaEEMMbcDJwAvFTH+7VntCkpKaxcuRKA1NRUEhMTWb9+PQAdO3akd+/e5OXlARAXF0dmZiaFhYXs2rULgIyMDCoqKoDO4fyPFBQUsGePG2a2X79+lJWVUVZWBkCPHj0wxrBhwwYAunTpQkpKCqtXrwYgISGB/v37s2bNGvbu3QvAgAEDKC0tpby8HICePXtiraW4uBiA5ORkkpOTWbvWjQffrl07MjIyWLVqFfv27QMgMzOTjRs3sm2bO6bo3bs3lZWVbNq0CYCuXbuSlJREQUEBAMcccwzp6enk5+dTXe1u05mVlUVRURHbt28HoE+fPuzevZuSkhJqtneHDh0oLCwEoH379px00knk5eVhrcUYQ1ZWFuvWrWPnzp0ApKens2PHDkpLSxv8OW3Z4r5WJ5xwAvHx8RQVFQHQuXNn0tLSyM/PB6BNmzYMHDhQn5M+J31OzeJzqhmNtH7l5eVR+ZxCZay1Ic8M4FVr3gX0AyzuLh0PW2vn17NcKrAZGG6tXRow/V5gvLU2vZ7lL8UlxcuttW/XV86srCz7wQcf1Ddbvaa8EF5ynHGtTmpFREIRzv41WvvWpKSkXGvt4PrmC3cQgOtxg49/gUuQ/w18iWskM7Gexbfi7gHZ1Te9K/BVPesdh0uM14SSGEVERBoi3GrVu4DJ1trfBkz7vTEmF5con6trQWttpTffKFy/yBqjgLl1LWeMuQx4AbjWWhuscZCIiEhUhdvYJg13Y2O/BUCPEJZ/DLjOGHO9MSbDGPME7v6QTwN4Y7a+WDOzMeYK4BVc4l1qjDneeySFWW4REZGQhXvmuBF3prfeN/08oLi+ha21rxljuuD6LaYAq4ELrbU1y6b5FrnBK+Ms71FjCcEHIxAREWmwcJPjo8BvvLtwLPOmnQVcDdwaSgBr7Wzq6A9prR1xuNciIiKNIdybHT9jjPkauAM3Kg5AAXCZtfataBdORESkKYScHI0xrXHVp0uttW/ErkgiIiJNK+QGOdbaKiAHN0KNiIjIESvc1qr5QJ9YFERERKS5CDc5TgNmGmPGGGO6G2OSAh8xKJ+IiEijC7e16rve3xzc0HE1jPc6LhqFEhERaUrhJsdzYlIKERGRZiSk5GiMSQQewd1HsQ2wCLjNWrs1hmUTERFpEqFec7wfuA5Xrfon3Cg5T8WoTCIiIk0q1GrVscCPrbWvAhhjXgE+MsbEWWurY1Y6ERGRJhDqmWN34MOaF9baT4Aq3KDhIiIiR5RQk2Mc4L+FchXhN+gRERFp9kJNbgZ42RizN2BaW2COMWZ3zQRr7Q+iWTgREZGmEGpyfCHItJejWRAREZHmIqTkaK2dEOuCiIiINBfhDh8nIiJyxFNyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8Wn05GiMuckY86Ux5ltjTK4xZuhh5k0xxvzRGPO5MabaGPN8IxZVRESOUo2aHI0xlwNPANOBLGAZsMAYk1bHIgnAVuB/gY8bpZAiInLUa+wzx8nA89baOdbaAmvtrUApcGOwma21G6y1t1lrnwcqGrGcIiJyFGu05GiMiQeygYW+txYCZzZWOUREROrTuhHXdRwQB2zxTd8CnBuNFRhjJgGTAFJSUli5ciUAqampJCYmsn79egA6duxI7969ycvLAyAuLo7MzEwKCwvZtWsXABkZGVRUVACdwypDQUEBe/bsAaBfv36UlZVRVlYGQI8ePTDGsGHDBgC6dOlCSkoKq1evBiAhIYH+/fuzZs0a9u7dC8CAAQMoLS2lvLwcgJ49e2Ktpbi4GIDk5GSSk5NZu3YtAO3atSMjI4NVq1axb98+ADIzM9m4cSPbtm0DoHfv3lRWVrJp0yYAunbtSlJSEgUFBQAcc8wxpKenk5+fT3V1NQBZWVkUFRWxfft2APr06cPu3bspKSmhZnt36NCBwsJCANq3b89JJ51EXl4e1lqMMWRlZbFu3Tp27twJQHp6Ojt27KC0tLTBn9OWLe5rdcIJJxAfH09RUREAnTt3Ji0tjfz8fADatGnDwIED9Tnpc9Ln1Cw+p5GEqry8PCqfU6iMtTbkmRvCGJMKbAaGW2uXBky/FxhvrU2vZ/l3gK3W2utCWV9WVpb94IMPGlBiZ8oL4SXHGddua/A6RUSOBuHsX6O1b01KSsq11g6ub77GvOa4FagGuvqmdwW+asRyiIiIHFajJUdrbSWQC4zyvTUK12pVRESkWWjMa44AjwEvGWM+AT4CbgBSgacBjDEvAlhrr6lZwBhzive0A7Dfe11prV3bmAUXEZGjR6MmR2vta8aYLsA9QAqwGrjQWlvszRKsv2Oe7/VFQDHQM1blFBGRo1tjnzlirZ0NzK7jvRFBpplYl0lERCSQxlYVERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXKURrdo0SJOO+00srOzmTVr1iHv7927l4kTJ5Kdnc25557Lxo0bAVi8eDHnnHMOZ511Fueccw5Lly4FYPfu3Vx++eWcfvrpDBkyhPvvv1/lliOOvn+NS8kxxqL9hQZ44IEHGDBgAN27d2+0/yNaqqurmTJlCn/+859Zvnw5c+fO5fPPPz9onpdffplOnTqRm5vLjTfeyLRp0wDo0qULf/zjH/noo4948sknufHGG2uXueWWW/j4449ZsmQJH3/8Me+9957KLUcMff8an5JjDMXqC33++eezaNGixvxXoiY3N5devXrRs2dP4uPjGTt2LAsWLDhonvnz53PFFVcAcPHFF7N06VKstXz3u98lJSUFgIyMDPbs2cPevXtJTExk6NChAMTHx/Pd736XkpISlVuOGPr+NT4lxxiKxRca4NRTT+X444+nqqoqorPSiooKfvCDH9C9e3emTJly0DI5OTmcffbZDBkypDZRR1NpaSndunWrfZ2amkppaWmd87Ru3ZoOHTpQUVFx0Dzz5s0jMzOThISEg6Zv376dv/3tbwwfPlzljrFIa0UO9/2bO3cuZ511FmeffTbjxo2jvLy8Uf6X5k7fv8an5BhDsfxCV1dXU1lZGdFZaUJCAlOnTuWXv/zlQfNXVFRw33338eabb7J8+XK+/vprlixZ0uDtEG0FBQXcf//9PPbYYwdNr6qq4vrrr2fSpEn07NmzaQp3GE1R7mgnsJ07dzJs2DCGDh3K+PHjKSsrY+TIkVH5/lVVVXH33Xczb948pk2bxsqVKzn11FOjlngrKyu5/fbbOfXUUzn99NOZN29e+Bu0HrHa3vfeey/vvvsuffr04e67746obC31d9NUlBybubq+0Lm5ubRq1Sqis9JjjjmGM84445Cjxw0bNnDiiSdy3HHHATB8+HDefvvtqP4/KSkpbN68ufZ1SUlJ7RlysHmqqqrYsWMHSUlJAGzevJlrrrmG2bNn06tXr4OWu/322znxxBMPqoJuKeWOj4/nD3/4Q1TPwmqq9VNTU4mPj49KAmvfvj1Lly5l5syZnH322fTs2ZMxY8ZE5ftnrcVay86dO5kyZQojR45k6tSpUSk3wMyZM0lOTmbFihUsX76cs84665B5GqIhl1Hq295z5szhlFNOoXv37lx00UUt5nfTkik5xlAsd6ilpaUYY2pfR3pWGqh3796sW7eOjRs3UlVVxbvvvntQ+aNh0KBBFBUVUVxcTGVlJTk5OYwePfqgeS644AJeffVVAN566y2GDh2KMYbt27dzxRVXcO+993LGGWcctMyDDz7Ijh07mD59elTL2xjl3r59OwUFBVHdqYI7gDr22GNJTk7GGBOVBFajtLSU9u3bU1ZWxpAhQ6Ly/WvTpg2PPvooZ511FiUlJZSUlDBhwoSolfuVV17h9ttvB6BVq1Z06dKlzrJEoiGXUerb3oMGDaKwsJDS0lKys7Oj/rsZOXJk1KvIx40bx9ChQxkyZAiTJ0+muro6jK3Z9JQcYyhWO9RY6dSpEzNnzmTixIlceOGFpKWlERcXF9V1tG7dmhkzZjBu3DjOOOMMxowZQ0ZGBtOnT6/dkVx11VVUVFSQnZ3NU089xX333QfAnDlz+PLLL3nkkUcYNmwYw4YNo6ysjM2bNzNz5kwKCwsZMWIEw4YN48UXX2wx5c7Pz2fr1q1cc801vPrqq1HbqX755Zds2bKFO+64A4jOAVSgDRs2cMkllxx0kNYQ+/bt4w9/+APTpk3jsssuo3///jz++ONRKff27dsBmD59OtnZ2XTv3p1TTjlEb+uPAAAfGElEQVQlKomgpkvEddddx8qVK2u7RERze7du3ZqzzjqLvXv3MmTIkKh+/z7//HOuuuoqWrVqxc033xy1g7PnnnuODz/8kGXLlrF161befPPNev/P5qR1UxfgSBa4Q62urmb8+PG1X+isrCwuuOACrrrqKm644Qays7Pp3Lkzzz77LHDwF/qRRx4BXGOF5ORk7rvvPv74xz9SVVVF//79ufrqq0lISKjzrLRbt26HnJXWZfTo0YwePZpFixZx8803U1lZyaxZs2qPuGvs3buXG2+8kfz8fDp37sxzzz1HWloaAI8//jgvv/wycXFxPPTQQ4wcORKAp59+mhdffBFrLRMnTjyoGmfq1Km1z9u2bcvzzz9/SNnuvPNO7rzzzqDlrtnBLFq0iKlTp/LEE09QUVERcrkrKiq47rrryMvL48orr2TGjBm1y3z22WfcfPPNfPvtt4waNYqHHnqoNiFEo9xvvfUW77//Pr/+9a8BeO2118jNzT1ovrp2qoc7+8nJyaFfv34kJibWOU+kUlJSWL9+fW1yOVytSKjfv1WrVgHwne98B4AxY8Ywa9asqHRZqqqqoqSkhMGDB7NgwQImTZrExo0bmTt3LqNHj6Zv37618wYmgrlz5zJt2jSee+652kRQUFBAQUHBQfFvueUWKioqeO+992LWJSI/P5833niDU045pXZaNL5/n3zyCQ8//DBz584F3IHEggULDtom8+fP56677gLcwdldd9110MFZUVHRIbE7dOgAuG2/b9++qB1ENRadOcbYqFGjWLFiBStXrqw9gp86dSoXXHABcOALnZuby6JFi2oviN95551s2rSJpUuX1j6Sk5MBuP/++ykoKKBHjx7Mnz+fyZMnh3VWejhlZWVUV1dz55130rlzZ+bPnx/WkeTnn39OTk4Oy5Yt4y9/+Qs///nPqa6uZu3atbz44ossWrSIDz/8kIULFwb9QTVELK75gPssZs2axaeffsoXX3zRIrrRrFq1ih07dtCq1YGfeLjV+ocTHx9PZWUlnTt3DrtWpC4pKSkUFhaSmJjI5s2bWbx4MSeffHJUyp2UlERiYiKpqan06tWLCRMmsHr16qicpdd0iUhJSaG0tLS2S0Q0t/fq1auprq4+KDFGS7QaDgZz6aWXcvLJJ3Psscdy8cUXR7fgMaYzxxaqIWelAJmZmezcuZN9+/bx7rvvMnfuXPr27cvdd9/NihUrKC8v54knniAjI6N2BxLKkeSCBQsYO3YsCQkJ9OjRg169epGbm0tJSQnZ2dm1ZzFnnnkm77zzDrfddttB/9eUFzqHvA1mXLvtoNeB13yAsMpd1xHwV199xc6dOzn11FMBuOKKK5g/fz6jRo2KWrnDuTYd6lnYihUr2LBhA1u3bmXUqFFs27aNmTNnHnJGU5PATjvttJAPoMAlu4svvjjq378pU6bwi1/8guLiYqqqqnjmmWf44Q9/yO9+97sGldsYw/nnn8/ixYvp1q0bS5cuJT09ndTU1KicpYO7jLJ+/XoKCwv58Y9/zMSJExtc7hpz585l7Nixdb7fkO9fLM2dO5dvv/2WSZMmsXTpUs4555xGW3dDKTk2oYZ+oUeNGnXITjqUahZwVTTBPPvss7XVfJdeeilAWDuQ0tJSBg8eXDtfzVFoRkYGDz74IBUVFbRt25b33nuPrKys+v/xMAQ7Am7ojq+0tJTU1NRD/p9oCrw2nZKSQk5OToN3qhMnTmTixIm89957/PznP+c///kPP/vZz6KSwADefPNNXnvtNU4++eSD1tvQ79+ECROYMGEC7733HlOnTuXCCy+MWuKdNm0aP/zhD/n666/ZuHEjv/3tb/noo4/q3IaRSEpKYtOmTVx++eVRKzcc2N6xEIuDs0Bt27blwgsvZMGCBUqO0vSa25Fkeno6t912G5deeimJiYkMHDjwoCq/o1msagHAHUDNmzePK6644qBq/RqRJDCAvLy8KPzndYvFgV/37t359a9/fdD1tWgmgttvv53TTz+dxYsXR7XcENvtHYuDs2+++YZvvvmmdrCShQsXMmTIkJj9D7Gg5CiHaMiR5OGWvfrqq7n66qsB+NWvfnXQGVlTl/twMQOH1AoWMxpikQxqpKWlsWzZskOmh3MABeEdRMUydkPEIhHAgS4RNY2qgmluB6w1YnFwlpSUxPjx49m7dy/79+9n6NChTJgwodH+p2hQcpRDNGQHMnr0aCZNmsRNN93EV199RVFREdnZ2YBr7JOcnMymTZt45513WLhwYbMpd12OP/542rdvz4oVKxg8eDCvvvoqkyZNimq5JTwNSbyxSATt27dn5syZnHTSSYwYMQKA66+/nmuuuSYq/29jiMXB2fvvvx+18jUFJUc5REN2IBkZGYwZM4YhQ4bUxqnpK3nttddSUVFBmzZtmDFjBh07dmw25Ya6qycfeeSR2q4c5557Lueee25Uy304zfUMrCWLRSIItW+otBxKjhJUQ3Ygd9xxR+31rUDz58+PahmDicWOLysrK2i1pBx5dDByqOZaHRxrSo5y1Dhaf+QiEj4lRwmbkoyIHOkavS29MeYmY8yXxphvjTG5xpih9cw/3JvvW2NMkTHmhsYqq4iIHJ0aNTkaYy4HngCmA1nAMmCBMSatjvl7AfO9+bKAh4DfGGMubZwSi4jI0aixzxwnA89ba+dYawustbcCpUBdNxK7ASix1t7qzT8HeAEIPoquiIhIFDRacjTGxAPZgL9z20LgzDoWGxJk/r8Bg40xbaJbQhEREcdYaxtnRcakApuB4dbapQHT7wXGW2vTgyzzL+Bla+0vA6YNA5YAqdbaUt/8k4CaHtrpQGHU/5EDjgO2KnajxG6JZVZsxVbs5hW3Rg9rbXJ9Mx1RrVWttb8DflfvjFFgjPnUWju4/jkVu7nGVWzFVuzmFzuWZQ5HY15z3ApUA11907sCX9WxzFd1zF9FbI8sRETkKNZoydFaWwnkAqN8b43CtUYNZnkd839qrd0X3RKKiIg4jd1a9THgOmPM9caYDGPME0Aq8DSAMeZFY8yLAfM/DXQzxszy5r8euA54tJHLHUwsq28Vu3HiKrZiK3bzi90ol8bq02gNcmpXaMxNwBQgBVgN/KymgY4x5v8ArLUjAuYfDjwO9AdKgIettU83aqFFROSo0ujJUUREpLnTrdhFRER8lBxFRER8lBwjYAJuHW+MaTHb0Fduc7h5m5MWXO4W890QkYPpxxsBa631hsPDWru/Zno0dtyx3KF65e5Q8zyasY0xcdGMF6gFl3u/Maart562xpgWMehGzfe4JR2IiESbGuSEyRhzPDAOGIQbou4fwOvW2uVRXo/BfT77g70XbpIwxvQBrgTOAXri+pC+DSy21m6JNG6Q9bSCgw8ajtJynwJcA1wIHA98CrwHvA/kWWurG1JuL6nvj/bBghe7NXCMtXZ7DGLHWWurox3Xi90eOAb4GkgEdgf7PJubllruI52SY5iMMe8CfYACXNeSM4EBwHrgf4GXIv3xG2NuBtYAH1tr9wRMb4U7aYr4wzLGLAHaA3/HjTz0X8DZQDnuNmIzI91hG2MeBFYCC621OwOmN3gH3oLLnQvsxCXyLcD3vEc18Dxwj7V2V0MTu/fdMNFKOMaY0cAEIBOIxyXzt3AHI7uisQ5vPUEPRmrOViP4LH+EK/cgb9JyYAGwyFpbWBO7IQcjsUjqLbXcXuwU3G9zDxAHfGWt/TZKsVtba6uiESti1lo9QnzgdsxlwAne67ZAR1yCnAMUAZMjjH02sB9YCrwM3AZk+uZJAP4HSAkz9jleuTv7pqcC9+EGhJ8NxDWg3HnAh7gBGob75mkH/BpIO0rKPcIrd9sg7/0YKMbtANtH+F35A/CTINulNdCqAd/vs3GD9S8EbvK+ax/jEvpq4IcNiD3Q+6zOBVr73ovDO1CPMPYwYAPwInABcK23ffcC/wZujjR2kHXFNWQbHwnl9uLdhKsN+RZ3EPh/uJOD84AEb56IP1NfucP+fUflf2yKlbbUBzAN+KCO9zoAvwC+AQZFEPtx3DB6vwTeAVYAi4FncNVzPYHTvR36sWHGvhNX/dvOe33QDwW4CtgO/FcE5Z7hlfMG4Lfej+Qz3K3F7sadVZ/mlTusZNCCy32DF6ur9zoBiA94fzjubPKSCMpdk9T/BWwE/gJc7JunHfAc0C/M2K8Dc4JM74sbtWQzcE2Ev50XcGcYK4BF3m9pkG+eId73PaydKvBn4HdBpid66ykH/ifCcg/2fo/jgDa+91qHW9YjpNwjvO/Cw0AGLrHP8b6Tm4EH8R0AhRH7LCAfuD7wNxNQ7laAAZIa8j+EVJZYBj/SHt6OqQwYXcf7rXFH3T+LIPZLwK+95/HAaGAm8IG3Q3kHV3X7XgSx+3nlHu+bbgKevwXcH0Hs54Dfe89beT/KW3FHw8uBT7x1zz+Kyn0C7sh/sm967RmSt2N8LILYD+AS+MW4g4d3cGcf/wKeBM4ATiWypP4B8Cvf97mV97wt7ox1JfCdCMq9EpiOO+N4DvgId9b+FnAzkAY8BayNIPabwFMBrxMISAi4A841QM8IYr8AVHrb9wvgWQ6tYTgTeJUwz3BacLn/CDwTZHob3IHh1zW/rQjLXQ2U4m4w8Vfg+755zvKmR5SAQy5LLIMfaQ/cEfmLuCT137ibNx8T8H4nYBMwNoLYA4ALgkz/Dq5ByvPeDu/CCGLH4RJtOe4M4EKgS8D7x+N25uMiiH08MCLI9I64atFfRqHcFS2l3BxIfnfhahEWARNx9x+tmae3V+6wqylxNQzP1+wYgF7ARbjEsxSXKPcB70YQ+zbcdd2T6/ifunvf/bBqRoCTcPdgnei9bg8M9bbRn3EHIp962/viCMo93vtun+n//nh/k4AvgSERxF6Oq8L/HnA/rrbh38A/cQcq6biDktVHUbmfx9VYtPVetyUgUeEuHXwO9I8g9hJczc1AL85fcTUOO4Df466F/wb4Z7ixwy5LrFdwpD28HcRs3BHZx7gquXu8D3QeUNiA2DU7vFb4rh95O8DtDYidgDvTWIo7E33D+7I9hjuKXxml7VPTQCSw3N80IF4icAeuQU5uNMqNrzomYHtHrdxejEtwVZUrOVCd+BLu+t3SCGMeC5wRZHo73Jn29UR+MJKMa1H7Ba5qbBgBZ5/AWGBnhOXugy/petO74qrl3gT+E8ln6W2TPwHbcGc1lwKdAj7bKyMpN+5SxjvAjd7rtrikchmuMdgKXMLZD/ygAeX+T0sptxfvfNwtAy/zTa/Zfx2Dq/IfHmbcVNwZ7k+813FAZ1xNyH975d7rlfuiSL6H4TzUWjVCxpjv4q55nYnbsXbGXTN8zFq7KorrMbgf0utAB2vtuQ2M1xf4PnAKrswpuJ32U9baLxtYXP+6WuEOJJKstZc1MFYaLmGdgbtTeFdiUO6A7R2tcnfHVQP1x1W3noA7Gn7JWvt1A4t7SEtGY8wPgD9ba9tGGK8PrupzOK5aaxOwG7fD6wu8Y62d0sAy11QvVwVMexPYZa0dH2HM9rg79nwP993Yj7seHee9ftVaOy2CuF1xtUNFQdbXG7etLrfWdoqw3MfgWqtejKslqmrO5fZ+Hwm4mopbcWf8LwB/sdaWG2OOA34AzLLWdoig3F2ARGvtv33Ta/axtwK3Rbq9wyqLkmP9jDEJwHfxjpxxVROfWmu/8t5Px1VnVdowN2hA7EtwP4o1uKqrf1vX1L+VdZ3JWwMdrbXlEZS/piHLPt/0ZGttWbjxgsS2to5+Wd777a21/wkj5rG4s5YrcUfVhbizxk+ttfsaUm5f7ApgHa4WYJW1trQh5Q5YtjWA9TVFN8YkWGv3RlLuENdrcFVoXa21P2lgrH64g5F+uOq9drgq3cXW2t0NLWvAelrhdnqf4Br7fNTAeOm4hj29cAcibXG1O7nW3VO2QYIcjLwJ7LXWXh5hvARr7V6v//Qw3EFUd1wCikq5D3MwEnG5vRjfB34EZOFqHbbgknsC8Ky1Nuq3FvTKXW2tvTTasQ9Zl5Jj/Ywxv8YlxlLcjqIn7trMW7hbaBVHMXYPXP/JN3FHX0WHWby+2NnW2lzftHhcMmvQzaLriB2VjunGmBdwO4p1uG1yAu6aw2fAk9baJVGOvc2L/Ttr7eIGxD7bWvt337SDtndD+295iXf/YQ5GWuHOGHYGe7+OZbrjrouehrvGtQZYZq3N9z7TdtbabyIsb03sU3HVtYVe/H9aa7fVJBtjzLHhrCMwSQU7GKk5qIykzGGUoROQA9xlrV0RxnIZwGRcUinCbfOPcFXtYR+MHWY97f3fA+/70SGScgfECNz2KbgDqDTcAUlbXIOrdTbK/Su9A9vfAE9Yaz+LZuygYl1v29IfuA9+B67/ThdvWjKuDvxL3MXinxBBs+IQY0/CVfOF27z9JFzV0mrc9bks3/sG1yr2NHxNpqMUu02Esfvhzs7P4EDDhI7A/+NAn7tpRNA3LsTY9xFBnzBcleN+L/6rwFm+91vhjqgvwuviEWb8s4NM81+XDrsfG26HthI3qMUL3vPNuAT2DBG0lKwn9iZczcts4ET/9yaM2Mkc2vqyZhvXXPsyRNYHNvDa82H7juKqAMOJfSLuAGEp8BDuGvo/cN0X5gLnRrq9vfgZuG4Vn3rfwxm4s7vuvvnaNXA9Me1GcZj1JjTaupriH2xJD2AqAY0nOLQD83Rcy6zUZhb7XtzZUU3/yc3ej3BKzQ8F6Obt0E9oRrFvB/4e8Nrf1+kGXGOCQxp3NHHsqbiuCXfjBhWowtUuPFqTBHDXlPb7d1QhxK4v8dYc6ISdeIGncaP4HB8wLQ3XkrQY1/Ai7BakIcYua0DsJ71t8pX3vJ/v/ThvXT8k/K4KwRKv4dBGWzUHWOEk9ae8bRLY0Kkr7nrpUtz13R9HuE2CJd7luIOSPwPn+f+nMGJ3Ba7GXYcPnF7bAM/b5mEnr7piB5mvpnVsoyTmmK+gpT9w1wLXAX0CprUO+KBqjo5va2axX8G1TDsedx3jWlxLsH/ijt7fxrVoW9PMYp+DS1AjfdukZiCALriWq/c1s9hP4q4RJXmPYbiDmwLcTvyfuH6EkWyTWCbeD4E7vedtOPQA7U+4UVsOaoXcDGJ/gjv7vA931rUfd61+as1OFjfCT1GEn+XhEm8rDiTesPraAfPx+uUSZPQXXNelfxDmGam3bH2JdxeRJ97feNukAteN40J8idDbJnf6pzdl7IY8GmUlLfnh7TALcGdwlwX7cLwf50+aS2zcDv9HwN2+6Um4xgq34I4k94f7Y4llbC9OW1x3glLcmdwh1T+464NhD60Vq9jeTu5C4Cbf9HjvR/19XFXXfmBCBOWOZeKd5v3PgTvUNhw4YDgbd63wkO4jTRUbd13+b7idfitcLcX53nba6G2Tj7ydbSQDcsQy8f7UK2Nf3/ck3nveD3dJ5ZwIYscy8S7HnY1OwLUS34trG/EbvH6vwK+A9c0pdkMejbailvzA9b95DViLGwHnAdw4qyfjzqDKCBgMoLnEDlhHmyDTxno/+rB/KLGOjWsZ+Zi3EynEXa8ai7s2+yfc2V+zix2wjkOuUXk777C3CbFPvNnejmglQfq84ap0v41whxqT2LgGJdcSfCzcE3EHmv+HO8MO69oasU+8vXC1AF/iDYrge38AbmSbSLZ3TBKvt4/6CzDJe93a++zuwh38VAOrcGemP20usRv6aLQVtfQH7izvWtyg4MtwI1vsx408cUVzih1s5+xNr71mgquS+7/mFNtbtuY6zrG4IfQexN0ZYhuu8VIOQUYSasrYuOtRh20MgzuL+lsUvofRTLw1n1cf738v8XZEs3HXL+/Cdbz+cyTbJFaxg2z7Q6o2cVX/kXy/Y5Z4A2K1x9UEbMONopSD63c4G1cL8GKEcWOSeHF9XC8CTg/yXiKu4d2fI9kmsYzd0Ie6chyGMeYE3I8b3JHLWlwL0t64HexuYKu1tqKZxja4nWah9fpkeu8bXKfjzTbMptyxjF3H+uJxDST24KpFt9so3ToplrGDrGsEUGatXRPmcnXe1zNgnmm4IcbOb0D52uLumDEKt0Pqjzs7mgO8bBvWXSlmsQPWYXBn2dW4RLYUeMhaO7ehMe2h/VVfAbpZa0dEEK+VdbdYa4sbIm0YrqZoEC6pvQzkBP6mwlxHe1wV5XhcFfZCXFXlAFw19mfW2msiiR34f1hf4jDGPI+7/j20ucYOuyxKjsEZY27E9c/KxCWqIlxjk8W4mxv/+zCLN5fYu3DXSjbhrjW8ab17xDXD2O1slO9h2RSxm0IkidfbBhfjDg7a4a79fWit3e7tuC3uWuHWCMrTWLETcS2ll9iA0Ya8gTXOtda+G278OtYZ9cQbELu2b7AxpqON8AbTsUy89f1ejDHtcH2+n7LWvtFcYjeUkmMQ3hBG63EXsJ/C/RDPxd2qpR+uiug2a+3aYEc6zTR2Bi6R/cyLHdZNUGMcuzOu4cO7eFXLNf934I/H6zy9yYbXwb2pYgd2lM4ASm2YHbxjlXi9s4vf41rv7sclGIM7UFuEO5tb580bVmf6Ro69CZdov8UNWP2StfbzUOMFiR+TxGuMaYOr8iy2QUZICvd3HsZ6o5J4Q1hPG2CwtXZ5S4pdr1jW2bbUB278vo/reO9sXBP1IuA4xY5a7L24VoLVuDONXwLpAfN0x11P6X2UxO6Ma1zxFG5s1sD+dYHPM/AGqw4j9i9wSf1U73Vf3DjBT+GG6XsbSA73c2zi2CtwA/9HGrs97tpWGW4YtFxcR/q/465N940krhf7dlxNyx9w19eO59CWpB1wA7Af0sCtnthtcI33gnZxCPyuRFDuw8ZuyCOWsaNWxqYuQHN84Ea8WQsM8F77b1ab5r3/I8WOSuw5uA7j38GNM/sQrv9nNa7KdhKuj1/Yd8lowbFjmXg/xHevSW96HAeG1vtrhL+dlho7lol3Oe6SyYfeZ/klrsX02bjxksF1LfpHBLFjmXhDjf09wh8JK2axo/Vo9BW2hAeu9ehqXMf2wD5agUN1LQOmKHbDYuOS7M+AX/imd8RV2z6Hq2reT5h3RW+psb04MUm8uFbFT+G6IyR70w4aLg8Y6X3WmUdDbG/ZmCReXBXtUryDRtxYvvfgBrvfjztDvQvX1/mJCOLHMvG2yNjRejTJSpvzA28cU2AMboirnbjrHNkcGBnjKm96T8VuWGwvfgLeEGP+HZ43bQQRDEXXUmMT+8R7Bu5M9GGCDDeHOyP9Btci84iPTWyTeor3WZ4f5L0sXP/Jmq5b4ZY7Zom3pcaO5qNJVtoSHkAn3BH7DbhOwd94j/XeD3SaYjc8NgcahfX27/AC3ruXyEYjaZGxvWVjlXhrbuz8/3DX17bhagNG4W6I+0PcwAgrIihzi4ztxY9lUm9HwLigNY+A9x8E8iKIG8vE2yJjR/Oh1qoBjDHfwQ2AewduwOU9uPsJ/h1XldUG18fvr9bafyl21GJPBr7GdfQtxY2YkWPd/SwNbodYYq1950iP7cWvuY1Tb9wNgLcEee9e4Dprbe9wYvvW0wk3EsyPcDe/3olr+bkC11Xh46MhttdKtRVu+LLpuCQ8Fzdy1UbcAeH3cWOsnhphmYO2SDXGJOJGEPqDtfbhCOK2w7W4/tb7zoE3wXv/QeBCa23W0RI7WpQcA3idTfvjWtRV4MaxHIhrVfU1cE+kP2rFDjl2Fq4xxCbgEWvtwqMsdiyTegdgZ+BO2ksMbXEDTwzAJeOwP8+WGjvIuqKWeIOVO8g8bYHLgT/ZCG9qHKvE25JjR0VTnbI2tweuquMbYJhvWg/ckFELcdWHgxQ7prG746rIFuLGPj1qYnuxnsftiO/FDeJ+L+7WQwW4QdPPiySuF/sZ4Me4g5sOdczTueZ/Okpid/AvgzuLTMQ1hvovggxtFsVyh9UN53DlDjJPW9xQeOG2JG2RsaP9aLIVN7cH7kxgFXXcIQB3DehT3NGjYsc+dvxRGDuWSf1K3DWc/+D6oz6DG3C9DwfuknEs8CYw8GiI7S0bk8RbR7kvwY3PWlPumtFfBsSo3JEm3hYZO9qPJi9Ac3l4X9T3cU2MTyL4AM+34sYmVGzFjkXsWCbemq4hvXH3xVuFG7UmD9cg5L+AG4HKoyh2LJN6Y5c7Kom3pcaOxaNJV97cHrgWa595O77rcEfsx3rvJQKv44a/UmzFjnpsYpR4cQ1MpgL/65veH5iFu066FXd98/dHQ2wvTkwSWEstd0uOHYtHkxeguT1wF/dfw7XK3IprdPEcrtXax0RQdaPYih1G3Fgl3s54Q6DhzkD919kuxx3Vn3I0xCb2CazFlbulxo7VQ61V6+C1GvweruP7t7gOwH+xDRjYWLEVO8SYA3B3mv8Bboit5bi+fefiWq5eb61d1cCi17T4NNbdyeH/4TpcJzY0bkuJ7Q0c39Va+7lxty/bZwN2iMaYy3E3wB5krf3saCh3S40dC0qOIQj37gGKrdhRihezpB5kXZNxY1s+cjTHjmVS962nxZS7pcZuKCVHkRYglkndi98GqI7FOlpw7Fgm9ZZa7hYZOxJKjiIiQcQygcVSCz4YaVbbW8lRRETEp1VTF0BERKS5UXIUERHxUXIUERHxUXIUERHxUXIUERHx+f+YinFt05vA/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "oracle = TruthTableOracle(truthtable)\n", + "grover = Grover(oracle)\n", + "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024, circuit_caching=False))\n", + "plot_histogram(result['measurement'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown, the search result coincides with our expectation." + ] + }, { "cell_type": "code", "execution_count": null, From 335f9cb85dce134bd5fa06da30a6a7d30765a094 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Wed, 3 Apr 2019 11:24:59 -0400 Subject: [PATCH 028/116] LogicExpressionOracle -> LogicalExpressionOracle --- community/aqua/optimization/grover.ipynb | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index e89608c2b..484e398c0 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -24,7 +24,7 @@ "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.algorithms import Grover\n", - "from qiskit.aqua.components.oracles import LogicExpressionOracle, TruthTableOracle" + "from qiskit.aqua.components.oracles import LogicalExpressionOracle, TruthTableOracle" ] }, { @@ -69,7 +69,7 @@ "\n", "`1 -2 3`, or `-1 -2 -3`, or `1 2 -3`.\n", "\n", - "With this example problem input, we then create the corresponding `oracle` for our `Grover` search. In particular, we use the `LogicExpressionOracle` component provided by Aqua, which supports parsing DIMACS-CNF format strings and constructing the corresponding oracle circuit." + "With this example problem input, we then create the corresponding `oracle` for our `Grover` search. In particular, we use the `LogicalExpressionOracle` component provided by Aqua, which supports parsing DIMACS-CNF format strings and constructing the corresponding oracle circuit." ] }, { @@ -78,7 +78,7 @@ "metadata": {}, "outputs": [], "source": [ - "oracle = LogicExpressionOracle(sat_instance)" + "oracle = LogicalExpressionOracle(sat_instance)" ] }, { @@ -190,7 +190,7 @@ " 'name': 'Grover'\n", " },\n", " 'oracle': {\n", - " 'name': 'LogicExpressionOracle',\n", + " 'name': 'LogicalExpressionOracle',\n", " 'expression': sat_instance\n", " },\n", " 'backend': {\n", @@ -208,7 +208,7 @@ "source": [ "## Quantum Search with Arbitrary Boolean Logic Expressions\n", "\n", - "Aqua's `Grover` can also be used to perform Quantum Search on `Oracle` constructed from means in addition to DIMACS. For example, the `LogicExpressionOracle` can actually be configured using arbitrary Boolean logic expressions, as demonstrated below." + "Aqua's `Grover` can also be used to perform Quantum Search on `Oracle` constructed from means in addition to DIMACS. For example, the `LogicalExpressionOracle` can actually be configured using arbitrary Boolean logic expressions, as demonstrated below." ] }, { @@ -230,7 +230,7 @@ ], "source": [ "expression = '(w ^ x) & ~(y ^ z) & (x & y & z)'\n", - "oracle = LogicExpressionOracle(expression)\n", + "oracle = LogicalExpressionOracle(expression)\n", "grover = Grover(oracle)\n", "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024, circuit_caching=False))\n", "plot_histogram(result['measurement'])" From abcc683bbb6ddb8e4eb01a4e6be7ef34ba2a40b0 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Wed, 3 Apr 2019 12:08:41 -0400 Subject: [PATCH 029/116] moo -> moot --- community/aqua/optimization/grover.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index 484e398c0..aa26f955a 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -249,7 +249,7 @@ "source": [ "## Quantum Search with Oracles from TruthTable\n", "\n", - "With Aqua, `Oracle`s can also be constructed from truth tables, meaning we can also perform Quantum Search on truth tables. Even though this might seem like a moo point as we would be essentially searching for entries of a truth table with the $1$ value, it'd a good example for demonstrative purpose." + "With Aqua, `Oracle`s can also be constructed from truth tables, meaning we can also perform Quantum Search on truth tables. Even though this might seem like a moot point as we would be essentially searching for entries of a truth table with the $1$ value, it'd a good example for demonstrative purpose." ] }, { From 569ed81340fadcb12eda643b0ae79a50ac374fcb Mon Sep 17 00:00:00 2001 From: woodsp Date: Wed, 3 Apr 2019 14:13:56 -0400 Subject: [PATCH 030/116] Tutorial for variational algo optimization callback --- community/aqua/general/vqe_convergence.ipynb | 247 +++++++++++++++++++ 1 file changed, 247 insertions(+) create mode 100644 community/aqua/general/vqe_convergence.ipynb diff --git a/community/aqua/general/vqe_convergence.ipynb b/community/aqua/general/vqe_convergence.ipynb new file mode 100644 index 000000000..1f720d96a --- /dev/null +++ b/community/aqua/general/vqe_convergence.ipynb @@ -0,0 +1,247 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*VQE; using its callback to monitor optimization progress*_\n", + "\n", + "This notebook demonstrates using Qiskit Aqua's VQE algorithm to plot graphs of the convergence path to ground state energy with different optimizers.\n", + "\n", + "This notebook uses the callback capability of VQE to capture information at each objective functional evaluation where it is computing the energy using the parameterized variational form. While the params themselves are also part of the callback we are only interested in the energy value here to plot the convergence. \n", + "\n", + "Note: other variational algorithms such as QAOA and QSVM have similar callbacks." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pylab\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua import Operator, QuantumInstance, aqua_globals\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.initial_states import Zero\n", + "from qiskit.aqua.components.optimizers import COBYLA, L_BFGS_B, SLSQP\n", + "from qiskit.aqua.components.variational_forms import RY" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we create a qubit operator for VQE. Here we have taken a set of paulis that were originally computed by qiskit-chemistry for an H2 molecule." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "pauli_dict = {\n", + " 'paulis': [{\"coeff\": {\"imag\": 0.0, \"real\": -1.052373245772859}, \"label\": \"II\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": 0.39793742484318045}, \"label\": \"ZI\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": -0.39793742484318045}, \"label\": \"IZ\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": -0.01128010425623538}, \"label\": \"ZZ\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": 0.18093119978423156}, \"label\": \"XX\"}\n", + " ]\n", + "}\n", + "\n", + "qubit_op = Operator.load_from_dict(pauli_dict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we loop over the set of optimizers. The defaults for maxiters/evals for the respective optimizers is more than sufficient to converge the above H2 problem so we do not need to add any logic to set accordingly." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization complete \n" + ] + } + ], + "source": [ + "optimizers = [COBYLA, L_BFGS_B, SLSQP]\n", + "converge_cnts = np.empty([len(optimizers)], dtype=object)\n", + "converge_vals = np.empty([len(optimizers)], dtype=object)\n", + "num_qubits = qubit_op.num_qubits\n", + "\n", + "for i in range(len(optimizers)):\n", + " aqua_globals.random_seed = 250\n", + " optimizer = optimizers[i]()\n", + " print('\\rOptimizer: {} '.format(type(optimizer).__name__), end='')\n", + " init_state = Zero(num_qubits)\n", + " var_form = RY(num_qubits, initial_state=init_state)\n", + "\n", + " counts = []\n", + " values = []\n", + " def store_intermediate_result(eval_count, parameters, mean, std):\n", + " counts.append(eval_count)\n", + " values.append(mean)\n", + " \n", + " algo = VQE(qubit_op, var_form, optimizer, 'matrix', callback=store_intermediate_result)\n", + " backend = BasicAer.get_backend('statevector_simulator')\n", + " quantum_instance = QuantumInstance(backend=backend) \n", + " algo_result = algo.run(quantum_instance)\n", + " converge_cnts[i] = np.asarray(counts)\n", + " converge_vals[i] = np.asarray(values)\n", + "print('\\rOptimization complete ');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now from the callback data we stored we can plot the energy value at each objective function call each optimzer makes. An optimizer using a finite difference method for computing gradient has that characteristic step like plot where for a number of evaluations it is computing the value for close by points to establish a gradient (the close by points having very similiar values whose difference cannot be seen on the scale of the graph here)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAHwCAYAAACVL7i5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYXHWZ9//PXXunlyQkISsQCBC2QIBWH9wIovwQh0FQBtRxxJnRx4VxHFccxkdUGFFmfjwu48ygjBsziOIgisyoGUAEFEwAgQBhR7ISQpJOL7V/nz/Oqerq6qru6u5zTpOu9+u6+rKr6tSpU9XN5afv3N/7a845AQAAAAhHbLovAAAAAJjJCNwAAABAiAjcAAAAQIgI3AAAAECICNwAAABAiAjcAAAAQIgI3ADQ5szzLTPbZWb3TPf11DOzvzWzb073dUyWmb3DzH4xyee+xsw2Bn1NAKJlzOEGIElm9oykhZJKNXd/2zl34fRcEaJiZq+RdK2klc65gem+nn2ZmS2X9LSkpHOuOL1XA+ClIjHdFwDgJeVM59zaMF/AzBLtEkT2ofd6kKRnJhO2w36P+9BnuM/gMwWiR0sJgHGZ2QVmdoeZ/YPfdvC0mb2x5vHZZna1mW01s81mdqmZxWuee6eZXWlmOyVdYmZxM/tHM3vBP9eFZubMLGFm55rZ+rrX/4iZ3djk2vbz2yG2+Nf245rH3mNmT5jZi2b2EzNbUvOYM7P3mdnjZrbbzP7Jb61I+7ePqTl2gZkNmdn+/u0/MrP7/ePuMrNja459xsw+aWYPSBrw39MJZnafme01sx+a2XVmdmnNc8Y738fM7AEz2+M/N1Pz+Fn+c/vM7EkzO328n0nd5/cXkr4p6SQz6zezz7b42X3QzB6X9HiDc/6XmV1Yd9/vzewc//svm9lz/jWv9yvsleMuMbPrzewaM+uTdIF/3zU1x/yxmW3wP6/bzOzIums7tOb2tyuftZnNN7Ob/Oe9aGa/NrOG/z9oZq80s9/5n/nvzOyVNY/dZmZfMLN7/Pdwo5nt5z98u/+/u/3P8yTz//upu8YP+L97e83s82a2wv/Z95nZD8ws5R+7xsw2+d+f55+z8pUzs9v8x9Lm/ff5BzPbbmb/YmYdtefwfy+3SfrWRD4LAAFwzvHFF198SdIzkl7f5LELJBUkvUdSXNL7JW3RcFvaDZL+VVKnpP0l3SPpf9c8tyjpr+T9q1qHpPdJeljSMklzJa2V5PzH05JelHRkzevfJ+ktTa7tZ5Ku88+TlHSyf//rJL0g6QT/nF+VdHvN85ykmyTNkXSgpB2STvcf+zdJl9Uc+0FJ/+1/f7yk5yW9wv8s3uV/dumaz/F+SQf47zUl6VlJf+1f3zmS8pIuncD57pG0RNJ+kh6R9D7/sZdL2iPpDfIKKEslHTHez6TJz/eOmtutfHa/9K+no8H5/kzSnTW3j5K0u+Y9/amkef7P+6OStknK+I9dIu937c3+e+rw77vGf/xwSQP+e05K+oSkJySlaq7t0JrX/nbNZ/0FSf/iPy8p6TXyf4frrn8/SbskvdO/xrf5t+f5j98mabOkY/zP90c117fcv4bEGJ+vk3SjpB5JR0vKSfofSYdImi3vv413+ceukbSpwTX2+L8Llf/OrpT0E//auyX9VNIXas5RlPRF/+fZ0epnwRdffAXzNe0XwBdffL00vuQFu34/GFW+3uM/doGkJ2qOneWHhkXy+r5zqglefkC5tea5f6h7rVtUE/4kvb42pEj6Z/mB1w8ku+SHtbrzLJZUljS3wWNXS/pSze0ueUFuuX/bSXp1zeM/kHRRzfU8WfPYnZL+rObaPl/3Whs1HPSfkfTnNY+91g9nVnPfHRoOga2c709rHvuSpH/xv/9XSVc2eO9j/kwaHH+BRgbCVj67143xu9QtLxQf5N++TNK/jXH8LknH+d9foppwX3NfJdB+WtIPah6L+Z/vmppraxa4Pycv6B7a7Fr8494p6Z66+34j6QL/+9skXV7z2FHy/oiKq/XA/aqa2+slfbLm9j9K+r/+92tUF7j993yTpH/2b5v/ea+oOeYkSU/XnCMv/4+aiXwWfPHFVzBf/PMRgFpvds7Nqfn6Rs1j2yrfOOcG/W+75PX/JiVt9f95ere8ILh/zXOfq3udJXX31T/+HUlvNzOTF35+4JzLNbjeAyS96Jzb1eCxJfIqy5Vr7pe0U14VeNR7kjTovx9JulXSLDN7hXmL4FbLqxhL3vv9aOW9+u/3AP/1Gr2fJZI2O+dck8dbOV+z6zxA0pMN3nsrP5OxtPLZ1f/Mqpxze+X9y8P5/l1vk/Tvlcf9FplH/HaN3fKquvNbOXeDayv7xy9t+oxhV8irhv/CzJ4ys4taeQ3fs2r+/p+V93nPV+u213w/1OB2l5q7TN4fNR/yby+Q90fw+pqf93/791fscM5la263+lkACACLJgFM1XPyqqnzXfOFWPXjkLbKayepOGDEwc791szy8v6Z++3+V7PX3s/M5jjndtc9tkVe8JQkmVmnvDaGzWO8l8rrl8zsB/KC4nZJN/khsvKalznnLhvrFDXfb5W01MysJnTXBuVWztfMc5JWNLl/vJ/JWFr57MYbcXWtpM+Y2e2SMvL+iKlMRPmEpFMlbXDOlc1sl7wqbSvn3iJpVc21mbzPs3Jtg/LCZ8UiSZuk6h8CH5X3B84xkm4xs9855/6nwWscVHffgfJCbMUBdY8V5LXh1P5eB87Mzpf3e/ky51zBv/sFeSH9aOdcs9/vEZ/pBD4LAAGgwg1gSpxzWyX9QtI/mlmPmcX8BWAnj/G0H0j6azNbamZzJH2ywTHflfQ1SQXn3B0NHq+89n9J+rqZzTWzpJm91n/4WknvNrPVZpaW9PeS7nbOPdPiW/sPSedJeof/fcU3JL3Pr36bmXWa2ZvMrLvJeX4jb9TiheYtoDxLXu/1ZM9X62r/PZ7qf+5LzeyISf5Mak31s5Okm+WF1s9Jus6vREteZbYor2c+YWb/R14/cqt+IOlN/ntOyguNOUl3+Y/fL+9fR+LmLSCtvmfzFqce6of0PfJ+LmWNdrOkw83s7f7P7Dx5bSM31Rzzp2Z2lJnN8t/j9c65kv++yvL6sQNlZsfL66d/s3NuR+V+/7P9hqQrbXhh71Iz+//GOFernwWAABC4AdT6ad0UhBvGf4okb5FcSt5ir12SrpfXX93MN+QFwgfkLYi8WV4Iq50B/j15i9KuGfXskd4pr7r4qLzFhx+WJOeNN/y0vAVtW+VVgs9vco5RnHN3y+uLXSIv1FfuXydv8ejX5L3XJ+T16DY7T17eQsm/kNcX/6fygltuMuerO/c9kt4tb8HcHkm/0nBldqI/k9rzTumz88+Rk/Sf8vrha/9g+bm8SvFj8loxshq7haT+vBvlfYZflVfZPVPeOMu8f8hf+/ftlvfH0o9rnn6YvAW6/fL+EPq6c+7WBq+xU9IfyQvzO+VV5P/IOfdCzWHfk9cfvk1eBf9D/nMH5bV83Om3d/yvVt9bC86Stzj4jpr/Riu/m5+U97vzW/Omu6yVtHKMc7X0WQAIBhvfAJh25o0Y/BfnXG0bQ4e8AH2Cc27U6Ll9mZndLe/9fmu6rwUTZ94ovmucc/vs7pcAokWFG0DkzKzDzM7w/7l+qaTPaHhRYsX7Jf1uJoRtMzvZzBb57/ddko7VyH5gAMAMxqJJANPBJH1W3vzsIXkTLf5P9UFvm3mTN4t5Jlgpr/e4U9JTkt7q91kDANoALSUAAABAiGgpAQAAAEJE4AYAAABCNCN7uOfPn++WL18+3ZcBAACAGWz9+vUvOOcWjHfcjAzcy5cv17p166b7MgAAADCDmdmzrRxHSwkAAAAQIgI3AAAAECICNwAAABCiGdnDDQAA0M4KhYI2bdqkbDY73ZcyI2QyGS1btkzJZHJSzydwAwAAzDCbNm1Sd3e3li9fLjOb7svZpznntHPnTm3atEkHH3zwpM5BSwkAAMAMk81mNW/ePMJ2AMxM8+bNm9K/FhC4AQAAZiDCdnCm+lkSuAEAABCKbdu26fzzz9eKFSt04okn6owzztBjjz2mDRs26HWve51Wrlypww47TJ///OflnJMkffvb39aCBQu0evVqHX300XrrW9+qwcFB/fKXv9RJJ51UPa5UKun444/XXXfdpUsuuUT/8A//0PAafvzjH8vM9Oijj0b2vusRuAEAABA455zOPvtsrVmzRk8++aTWr1+vL3zhC9q+fbv++I//WBdddJE2btyo3//+97rrrrv09a9/vfrc8847T/fff782bNigVCql6667Tm94wxt00EEH6eqrr5YkffWrX1Vvb69e+cpXjnkd1157rV796lfr2muvDfX9joXADQAAgMDdeuutSiaTet/73le977jjjtNjjz2mV73qVTrttNMkSbNmzdLXvvY1XX755aPOUSwWNTAwoLlz50qSrrzySn3hC1/Qhg0b9LWvfU1f/OIXx7yG/v5+3XHHHbr66qv1/e9/P8B3NzFMKQEAAJjBPvvTDXp4S1+g5zxqSY8+c+bRYx7z0EMP6cQTTxx1/4YNG0bdv2LFCvX396uvz7vO6667TnfccYe2bt2qww8/XGeeeaYkafHixfrwhz+sk046SV/5yle03377jXkNN954o04//XQdfvjhmjdvntavX9/wmsJGhRsAAAAvKZWWkm3btmnVqlW64oorqo998IMfVKlU0gUXXDDuea699lqdf/75kqTzzz9/2tpKqHADAADMYONVosNy9NFH6/rrrx91/1FHHaXbb799xH1PPfWUurq61NPTM+J+M9OZZ56pr371q7roooskSbFYrKWpIS+++KJuueUWPfjggzIzlUolmZmuuOKKyCe4UOEGAABA4F73utcpl8vpqquuqt73wAMPaOXKlbrjjju0du1aSdLQ0JA+9KEP6ROf+ETD89xxxx1asWLFhF//+uuv1zvf+U49++yzeuaZZ/Tcc8/p4IMP1q9//evJvaEpIHADAAAgcGamG264QWvXrtWKFSt09NFH61Of+pQWLVqkG2+8UZdeeqlWrlypVatW6WUve5kuvPDC6nOvu+46rV69Wscee6zuu+8+ffrTnx739S699FItW7as+nXttdfq7LPPHnHMW97ylmlpK7HKLMOZpLe3161bt266LwMAAGBaPPLIIzryyCOn+zJmlEafqZmtd871jvdcKtwAAABAiAjcEbv/ud067rO/0Av9uem+FAAAAESAwB2xx7fv1Z6hgjbtGpruSwEAAEAECNwRG8yXJEl7s4VpvhIAAABEgcAdsf5c0fvfbHGarwQAAABRIHBHbDDvBe29BG4AAIC2QOCO2EDObynJEbgBAADaAYE7YsMVbnq4AQDAzNXV1dXScZdccomWLl2q1atX64gjjtD73/9+lctlSdIFF1yggw8+WKtXr9bq1av1la98RZLU39+v97///VqxYoVOOOEEnXjiifrGN74hSSqXy/rQhz6kY445prqpztNPP9309ZcvX65Vq1Zp9erVWrVqlW688cYpvvPREoGfEWOqVLjp4QYAAPD8zd/8jT72sY+pXC7rta99rX71q1/plFNOkSRdccUVeutb3zri+L/8y7/UIYccoscff1yxWEw7duzQv/3bv0nydqncsmWLHnjgAcViMW3atEmdnZ1jvv6tt96q+fPna+PGjTrttNN01llnBfr+CNwRG6CHGwAAROm/LpK2PRjsORetkt54ebDnlJTP55XNZjV37tymxzz55JO655579B//8R+KxbxmjQULFuiTn/ykJGnr1q1avHhx9bFly5a1/Pp9fX1jvvZk0VISscFqDzctJQAAAJJ05ZVXavXq1Vq8eLEOP/xwrV69uvrYxz/+8WpLyYMPPqgNGzbouOOOqwbqen/yJ3+in/70p1q9erU++tGP6r777hv39U855RQdc8wxOvnkk3XppZcG9r4qqHBHrDIWkAo3AACIRAiV6KBVWkoKhYLe+ta36vvf/77OP/98SaNbSur7sS+77DL98Ic/1PPPP68tW7Zo2bJl2rhxo2655RbdcsstOvXUU/XDH/5Qp556atPXr7SUPPnkkzr11FO1Zs2alnvQW0GFO2KMBQQAAGgsmUzq9NNP1+233970mKOOOkq///3vqwsrL774Yt1///3q6+urHpNOp/XGN75RV1xxhf72b/9WP/7xj1t6/RUrVmjhwoV6+OGHp/ZG6hC4Izbg7zTZz1hAAACAEZxzuvPOO7VixYqmxxx66KHq7e3V3/3d36lU8nJVNpuVc06SdO+992rLli2SvIklDzzwgA466KCWXv/555/X008/3fLxraKlJGKDOcYCAgCAmW9wcHDEgsWPfOQj+shHPtLw2CuvvFLXXHONCoWCjj32WH3gAx8Y89zf/OY39fGPf1yHHnqo5s2bp46ODn3pS1+S5IXm97znPcrlcpKkl7/85brwwgvHPN8pp5yieDyuQqGgyy+/XAsXLpzIWx2XVf4amEl6e3vdunXrpvsyRimXnQ7525slSZ2puDZ87vRpviIAADATPfLIIzryyCOn+zJmlEafqZmtd871jvdcWkoiNFTw/tmjMxXXQL6kUnnm/bEDAACAkWgpiVBlBvfC2Rk9tWNA/bmiZnckp/mqAAAAwleZJlLr3HPP1cUXXxzJ67/iFa+otplUfO9739OqVatCf20Cd4Qqu0wu7PYC995sgcANAADawsUXXxxZuG7k7rvvnrbXpqUkQgP+gslFszOSmFQCAADQDgjcERr0RwIu7PECN7O4AQAAZj4Cd4SqFe6etCSpn8ANAAAw4xG4I1RdNOlXuPuYxQ0AAGawyy67TEcffbSOPfZYrV69WnfffbfWrFmj+vHNg4ODesc73qFVq1bpmGOO0atf/Wr19/dLkjZt2qSzzjpLhx12mA455BBdeOGF1cWPt912m2bPnq3Vq1fryCOP1Gc/+9nI32MrCNwRGqwsmpxNSwkAAJjZfvOb3+imm27SvffeqwceeEBr167VAQcc0PDYL3/5y1q4cKEefPBBPfTQQ7r66quVTCblnNM555yjN7/5zXr88cf1+OOPa2hoSJ/4xCeqz33Na16j+++/X+vWrdM111yje++9N6q32DICd4QqFe5FPSyaBAAAM9vWrVs1f/58pdNeK+38+fO1ZMmSpscuXbq0envlypVKp9O65ZZblMlk9O53v1uSFI/HdeWVV+q73/1utQJe0dnZqRNPPFFPPPFESO9o8hgLGKFKD/e8rpTiMWN7dwAAELov3vNFPfrio4Ge84j9jtAnX/7JMY857bTT9LnPfU6HH364Xv/61+u8887TySef3PDYP//zP9dpp52m66+/Xqeeeqre9a536bDDDtOGDRt04oknjji2p6dHy5cvHxWsd+7cqd/+9rf69Kc/PbU3FwICd4QG8iUl46Z0Iq7uTIJFkwAAYMbq6urS+vXr9etf/1q33nqrzjvvPF1++eUNj129erWeeuop/eIXv9DatWv1spe9TL/5zW9aep1f//rXOv744xWLxXTRRRfp6KOPDvJtBILAHaHBXFGzUt5H3pVO0MMNAABCN14lOkzxeFxr1qzRmjVrtGrVKn3nO99pemxXV5fOOeccnXPOOYrFYrr55pt13HHH6frrrx9xXF9fn7Zt26aVK1fq7rvv1mte8xrddNNNYb+VKaGHO0L9uZK60l7g7s4ktZcebgAAMENt3LhRjz/+ePX2/fffr4MOOqjhsXfeead27dolScrn83r44Yd10EEH6dRTT9Xg4KC++93vSpJKpZI++tGP6sILL1RHR0f4byIgBO4IDeaLmpWKS5K60wl6uAEAwIzV39+vd73rXTrqqKN07LHH6uGHH9Yll1wiSXrTm96kZcuWadmyZTr33HP15JNP6uSTT9aqVat0/PHHq7e3V295y1tkZrrhhht0/fXX67DDDtO8efMUi8WmdYv4yaClJEID+ZJmVSvcCW3fm53mKwIAAAjHiSeeqLvuumvU/bfddlvD4//sz/6s4f0HHHCAfvKTn0iS7rrrLr3tbW/TvffeqxNOOKHarvJSR+CO0GCuqK60V+HuyiT0xA5aSgAAAFr1yle+Us8+++x0X8aE0VISof6aRZNMKQEAAGgPBO4IDeZL6vR7uLvSSaaUAAAAtAECd4QG88URPdz5Ulm5YmmarwoAAMxEzrnpvoQZY6qfJYE7Qv25Ys1YQO9/qXIDAICgZTIZ7dy5k9AdAOecdu7cqUwmM+lzsGgyIqWyU7ZQHh4LWBO453elp/PSAADADLNs2TJt2rRJO3bsmO5LmREymYyWLVs26ecTuCMymPcq2Z3VnSaTksTCSQAAELhkMqmDDz54ui8DPlpKIjKY93q1O0e1lLD5DQAAwExG4I5Iv7+Ne2dlDrcfvNneHQAAYGYjcEdkMOdVuCtzuHsyXksJiyYBAABmNgJ3RAaqPdwjF03201ICAAAwoxG4IzJQbSnxF00yFhAAAKAtELgjMlBdNOlVuJPxmDLJWLW3GwAAADMTgTsig36wrvRwS95owD4q3AAAADMagTsiA3VjASWpJ5Ogwg0AADDDEbgjMlCtcMer93VlEszhBgAAmOEI3BEZyBeVSsSUjA9/5N2ZBIsmAQAAZjgCd0QGc6XqSMCKrnSCrd0BAABmOAJ3RAZyxRH925LUnUnSUgIAADDDEbgjMpAvqjM1MnB3pRNs7Q4AADDDEbgjMpgvaVZ6ZEtJZUpJueym6aoAAAAQNgJ3RAZyRXXVtZR0ZRJyThoslKbpqgAAABA2AndEBnKlESMBJa+HWxJ93AAAADMYgTsijXq4uzPebSaVAAAAzFwE7og06uGutJiwvTsAAMDMNS2B28zONbMNZlY2s94xjjvdzDaa2RNmdlGU1xi0/iZjASuPAQAAYGaargr3Q5LOkXR7swPMLC7pnyS9UdJRkt5mZkdFc3nBKpTKyhfLTVtK6OEGAACYuRLjHxI859wjkmRmYx32cklPOOee8o/9vqSzJD0c+gUGbDDvTSEZvWiSHm4AAICZ7qXcw71U0nM1tzf59+1zBvNeoB41FjBdqXATuAEAAGaq0CrcZrZW0qIGD13snLsxhNd7r6T3StKBBx4Y9OmnZMDv0Z5VF7g7UwmZ0VICAAAwk4UWuJ1zr5/iKTZLOqDm9jL/vmavd5WkqySpt7f3JbV140DOaynprGspicVMXSm2dwcAAJjJXsotJb+TdJiZHWxmKUnnS/rJNF/TpAz4LSWzUqP/vunOJGgpAQAAmMGmayzg2Wa2SdJJkn5mZj/3719iZjdLknOuKOlCST+X9IikHzjnNkzH9U5VpcJd38Mtedu7s2gSAABg5pquKSU3SLqhwf1bJJ1Rc/tmSTdHeGmhqCyarN/4RvJmce/N0cMNAAAwU72UW0pmjOEe7gYV7vTUK9w33LdJZ3/9Tjn3kmpdBwAAgAjckahUuDsbVrin3sO9YXOf7vvDbhZfAgAAvAQRuCNQ2bq96aLJKQbloYJXQd++Jzul8wAAACB4BO4IDOZLyiRjisdG76zZnUlOeQ53tlCWJG3rI3ADAAC81BC4IzCQKzbs35ak7nRC2UJZhVJ50ufP+hXubS1UuLOFEr3eAAAAESJwR2AgV1Rng5GAkjcWUNKUFk5WAvf2cSrcuwbyOuHzv9SvHtsx6dcCAADAxBC4IzCQL2lWavSCSclrKZGG+7wno9rD3Zcb87inXujXYL6kLbtpPQEAAIgKgTsCg/kxKtz+/X1T6OOutpSMU+GuBO1iefLtKwAAAJgYAncEBnKlpoG7x28pmcpowCF/0eR4LSVbdg9JkgolergBAACiQuCOgLdosnFLSRA93LkWF01WAndxCgs0AQAAMDEE7ggM5ksNZ3BLwz3cU9nevdLD/UJ/bswwvbnaUkKFGwAAICoE7ggM5IsNd5mUhnu4p1LhHiqUlIrHVHbSjv7mCye37qm0lFDhBgAAiAqBOwJjjQXszlQWTU5tLOCB82ZJGntSyXBLCRVuAACAqBC4Q5YvllUouaY93OlETMm4TXosoHNO2UJZy/3A3ayPezBf1K5Br22FlhIAAIDoELhDNpj3gnSzHm4zm9L27rmi1x6yfF6npOaTSmpnb7NoEgAAIDoE7pAN5L0FjV1NWkoqj022h3vIP//iOR1Kxq3pLO5KO4lEhRsAACBKBO6QDfitIrOaLJqUvD7uyc7hzha9wD0rFdf+3Rltb9JSUlkwKbFoEgAAIErNy64IRCVwdzZpKZG8CvfeSfZwVyrcHcm4Fvakm1a4N+/OKmbSfp0pFk0CAABEiAp3yAb9QNxsSokkv4d7khVuf5fJTDKuRbMzY7aULOzJKJ2Iq8DW7gAAAJEhcIesMn1kVpMpJZK3vftkF01WNr3JJGNa2JPR803GAm7ZPaTFszNKxI0KNwAAQIQI3CGrTCkZq8LdlUlMeixgZVv3jmRci3oy6s8VG55r656slszpUCJmKrFoEgAAIDIE7pAN5PyWkjEq3JVFk85NPAgPV7i9lhJp9Cxu55w27x7S0jkdSsZjLJoEAACIEIE7ZC1VuNNJlcqu2o89EZXndPhTSqTRs7h3DuSVL5a9CnfcGAsIAAAQIQJ3yPpzwy0fzVS2d59MH3e1wp1oXuGuzOBePDujRIwKNwAAQJQI3CEbzBU1KxVXLGZNj6kG7kn0cWcrgTsV06IeP3D3NQ7cS/zNcVg0CQAAEB0Cd8gG8qUx20mk2gr3FAJ3Mq6OVFw9mYSeHxW4vdtL53QoEYupyFhAAACAyBC4QzaQK465YFLyerglTWp799qNbyQ1nMW9ZfeQOpJxzZmVVCJuKlDhBgAAiAyBO2SD+aJmjbHLpDS1Hu5ssaR4zJSMez/KhT0Zbaubxb1lz5AWz8nIzJSIGRVuAACACBG4QzaQK6kzPXaFe35XWpL07IuDEz7/UL48YkHmwp6Mttctmty8O6ulczokSYl4jB5uAACACBG4QzaYL47bw72gO60jFnXrVxt3TPj82WJJmeTwj3FRT0Y7+nMjNrfZuntIS2Z7gTvJWEAAAIBIEbhD1p8rqnOclhJJWrNyf/3umRcn3FaSzZcTTV9/AAAgAElEQVSUqa1wz86oVHZ6od9rK8kVS3p+b05LKhXuWExFxgICAABEhsAdssF8SbPGWTQpSaesXKBi2enOJ16Y0PmzxdKIlpLqaEC/rWT7Hi94L57j3c+iSQAAgGgRuEM2kBu/pUSSTjxorrozCd366MTaSobqKtyVwF3ZbXKzP4O70sOdZCwgAABApAjcIXLO+XO4x69wJ+IxvfbwBbp14/NyrvUKdLZQv2jSW4BZCdxb9wxveuO9DhvfAAAARInAHaJcsaxS2Y07FrDilJX76/m9OT28ta/l1xgqlJSuWTQ5ryuteMyqs7hrt3WXpGScrd0BAACiROAO0aC/Kc14G99UnHz4AknSbROYVpItjOzhjsdM+3entc3v3d68O6t5nalq20k8xpQSAACAKBG4QzSQ83aObKWHW/LGAx67bLZuefT5ll8jWxjZwy35s7hrKtyVdhLJbykhcAMAAESGwB2igfzEArfkjQe87w+7tGsg39Lx9T3ckrdwctuIwJ2pPpZkLCAAAECkCNwhGsh5LSWtjAWsOGXlApWddPvjrbWVDBVGbnwjSYtmexVu51zDCnfZSWWq3AAAAJEgcIdo0K9wd02gwn3ssjnarzPVch93tlBSpi7Q79+T1t5sUdv7chrIl6q7TEreoklJKjAaEAAAIBIE7hBVerhbnVIieYsaTz58gX712I4R27M3Ui475YplZRKjW0ok6d4/7JKkkRXumEkSowEBAAAiQuAOUaWlpJU53LXWrFygFwfyemDT7jGPyxa983ekGgfu+6qBe7iHO+FXuAncAAAA0SBwh6jSUjKRCrckvfawBYqZdOs4bSXZgtcWkkmM/DEunF2pcHuBfWmDCjctJQAAANEgcIdowJ/DPZEebkma25nS8QfO1W0bxx4POFQYu8L94OY9SsZN87vS1ccScS9wj9euAgAAgGAQuEM0kCvKTKOmiLTilJUL9MCmPdqxN9f0mKwfuOvncHemE+pOJ5QvlrVodkYxv6oteWMBJbHbJAAAQEQI3CHaNZjX7I6kzGz8g+usWbm/JOlXjzVvKxnKNw7ckjepRNKICSXScIWbHm4AAIBoELhDtG1PrtreMVFHL+lRdyah3z/XfOFkrrJoskHgXuT3cdf2b0s1iybp4QYAAIgEgTtE2/uyWjjJwG1mmjsrpX5/tGAjQ3l/0WSDwF153cVzRr5+srJokgo3AABAJAjcIdrWl510hVvyFlvuzTYP3JUe7oYVbv91lzSrcBO4AQAAIkHgDkmhVNYL/bnqiL7J6Mok1J8rNH18qLpocvSPsdJSMjpwMxYQAAAgSgTukOzYm5NzmlKFu7vFCnejlpKjFvcoFY/p8IXdI+5np0kAAIBoTWxANFq2dU9WkrR4qhXuHZML3L3L99ODnz1N6bpt3xMxFk0CAABEiQp3SLb3eYF7sosmJa+Hu3/MCrcXmus3vqmoD9uSlGQsIAAAQKQI3CHZ5le4F02hwt2dSWrvWFNKKhXuROs/RsYCAgAARIvAHZLtfVmlEjHNnZWc9Dm6M95ukZV52/WGCiUl41YN0a1IMBYQAAAgUgTukGzry2phT3pSu0xWdKW9FvuBXOPAnS2UlGnQNjKWJGMBAQAAIkXgDsm2PVObwS0NB+5mfdzZQkmZJv3bzVS3dqelBAAAIBIE7pBMZZfJiq6MF7j7so1ncWcL5YYzuMdCSwkAAEC0CNwhcM5p657slEYCSt4cbklNt3cfypca7jI5luGdJqlwAwAARIHAHYI9QwXliuXAKtxNW0qKEw/cycrGN2Uq3AAAAFEgcIdgW9/URwJKNT3cY1S401S4AQAAXtII3CGozuCeYoW7O+ONFGw2iztbLE+ipYQKNwAAQJQI3CEIYpdJyZvDLY3RUpIvTXjRZNLf2p1FkwAAANEgcIdg256cpKkH7nQipkTM1J9rMqVkEj3c1Qo3LSUAAACRIHCHYFtfVvM6U0pNYMv1RsxMXZmE9japcA/lS8pMNHBXxgLSUgIAABAJAncItu0ZmnJ1u6IrnRh745sJBm4zUzxmVLgBAAAiQuAOwba+3JRncFd0pRPNF00WyhMO3JJX5S5R4QYAAIgEgTsE2/uyWhhQ4O7ONK5wl8pO+dLEp5RIUjIeY9EkAABARAjcAcsVS3pxID/lkYAV3Zlkwznc2UJJkiY8pUTyFk4Wy7SUAAAARIHAHbDn+7wJJUEF7q50omHgHvIDd0dqMi0lVLgBAACiMi2B28zONbMNZlY2s94mxxxgZrea2cP+sX8d9XVORmWXyaBaSppNKalWuBOTaSlh0SQAAEBUpqvC/ZCkcyTdPsYxRUkfdc4dJel/SfqgmR0VxcVNRVC7TFZ0pxPamx09h7sauCdT4Y4bO00CAABEJDEdL+qce0TyRtSNccxWSVv97/ea2SOSlkp6OIprnKygA3dXOqFcsax8sTxirne24FWoM5OY9e21lFDhBgAAiMI+0cNtZsslHS/p7um9kvFt68uqIxlXT0cwf8t0+du7D9T1cU+th9tUpIcbAAAgEqFVuM1sraRFDR662Dl34wTO0yXpR5I+7JzrG+O490p6ryQdeOCBE7za4Gzry2rR7MyY1fuJ6Ep7P6L+XFFzO1PV+ystJZMZC5iIx2gpAQAAiEhogds59/qpnsPMkvLC9r875/5znNe7StJVktTb2zttaXL7nqwW9qQDO193JilJoxZODuUrYwEnuWiSsYAAAACReMm2lJhXIr5a0iPOuf9/uq+nVdv6soH1b0vexjeSRo0GzBb9Hu5J7jRJSwkAAEA0pmss4NlmtknSSZJ+ZmY/9+9fYmY3+4e9StI7Jb3OzO73v86YjuttlXNOz/flAhsJKNW2lIycVJLNT2XjGxZNAgAARGW6ppTcIOmGBvdvkXSG//0dkoJphI7IiwN55UvlQCvclUWT9S0l2eLke7iTcatOOQEAAEC4XrItJfuirQGPBJS8OdxSsD3ciViMjW8AAAAiQuAO0PaAd5mUhivco3q4C1Pr4WZrdwAAgGgQuANU2dZ9cYCBuyMZVzxm6q+vcBdKSsVjiscm3nWTYEoJAABAZAjcAdq+J6uYSQu6ghsLaGbqSicaVLhLk1owKTGHGwAAIEoE7gBt68tqfldaiXiwH2tXOjF60WShNKl2EklKMhYQAAAgMgTuAG3ry2lRgO0kFd2ZxKixgEOF0qS2dZf8CjeLJgEAACJB4A6Qt8tk8IG7aUtJYpIV7ripQEsJAABAJAjcAQp6l8mKrszolpKhQlmZyVa4GQsIAAAQGQJ3QIbyJe0ZKoTSUtKVToyaUpItlNQxyUWTcXq4AQAAIkPgDkhlJGAYFe7uTEJ7G04pmUpLCRVuAACAKBC4A7KtsstkKIsmk00q3JNfNFmihxsAACASBO6AVHeZDGnR5FChNKLvemiKYwELJSfnCN0AAABhI3AHpNpSElIPtyQN5ErV+7KF8qQDd2VOOFVuAACA8BG4A7JtT1Zd6UQ1HAepK+Odc2/NLO5sfio7TXrbwbPbJAAAQPhsJrYV9Pb2unXr1kX6mh/717dpd3GrDpnfGfi592YL2rR7SAfP71Im4YXsR7f1ab/OtPbvnuA28rG4Ntoh+u1zg3r7yw9UMhGTyXT2YWfriP2OCPzaAQAAZiozW++c6x3vuODLsW3qBT2pxzsG9OjgCyGc3cl1S0/nX5TyXnXadTs9KckGbULnkXMqxrco2RPXL/7wsMykvlyfiuWiPn3Sp0O4dgAAgPZG4A7It//3PXLOyWwiAbg19/1hl87++l361gUv0ylH7K/+XFHHfObnuviMI/We1x7S+on6d0j/cKjuPvJTOu++Vbrl4lO1f3dGb7j+DcqVcoFfNwAAAOjhDlQYYVvyxgJKqs7iHsp7iycn3MOdSEmSks7rBa9sfpOKpZQv54O4VAAAANQhcO8Duv1Fk5VZ3NlCJXBPcEpJ3Ov3TsoL3JUpJal4SoVSoenTAAAAMHkE7n1AZfJJvz+lZPKBe2SFu+DP9U7GklS4AQAAQkLg3gfMSsVlNlzhHvID94R3mozFpFhSiUpLSU2FO18icAMAAISBwL0PMDN1pRPqq7aUeJXpSW18k0hXA3elwk3gBgAACA+Bex/RnU6oP1dX4U5N4scXTynhvHBdu2iyUKaHGwAAIAwE7n1EVyYx9UWTkpRIK15tKfF7uONJKtwAAAAhIXDvI7pqKtxTCtzxlOLlSksJYwEBAADCRuDeR3RnktU53NnJLpqUvAp3ua6lhB5uAACA0BC49xFeS4lXmR7e+GYyFe6awF0eXjTJHG4AAIBwELj3EbWLJrNFLyhPrsKdGlXhTsaSypXZ2h0AACAMBO59RFd6eNFkpcKdTkxmSklasQYVblpKAAAAwkHg3kd0ZRIayJdUKjtliyWlEzHFYjbxEyVS1cBdu2iSlhIAAIBwELj3EcPbuxeVzZcm178tNa1wF11RZVcO5FoBAAAwjMC9j+jO1ATuQnly/duSV+Eu1VW44ylJoq0EAAAgBATufUR3JilJ6s8WNVQoKZOc5I8unpaVRi+alMQsbgAAgBAQuPcRwy0lBT9wT7bCPRy4SzUtJRIVbgAAgDAQuPcRXX5Lyd5sUdmpBO54StZg0aR3m4WTAAAAQSNw7yO6axdNFkpT6OFOy0rezO1ifYWblhIAAIDAEbj3ESMr3GV1pCZf4VZxZIU7Gfd7uGkpAQAACByBex9R7eGe6qLJaoXbVRdNVlpKqHADAAAEj8C9j+hMJWQm7c1NtYc7LUlKWWlUSwk93AAAAMEjcO8jYjFTV8rb3n1KgTvhhetZseKoRZO0lAAAAASvpcBtZv9pZm8yMwL6NOrKJNSfK0xt4xu/wt0RK6lYYtEkAABA2FoN0F+X9HZJj5vZ5Wa2MsRrQhNd6YT6c1Pt4fYr3PGSimUWTQIAAIStpdTmnFvrnHuHpBMkPSNprZndZWbvNrNkmBeIYV2ZhHYNFFQquylXuGfFanq4WTQJAAAQmpbLpGY2T9IFkv5S0n2SviwvgP8ylCvDKF3phHb0ezO0p7LTpCR1xIrDU0pYNAkAABCaRCsHmdkNklZK+p6kM51zW/2HrjOzdWFdHEbqziT0wKYpBu54ZdFkiUWTAAAAEWgpcEv6inPu1kYPOOd6A7wejKErndCeIa8KPdUKdyZWrLaUVHu4aSkBAAAIXKuBe66ZnVN33x5JDzrnng/4mtBEd2a4XX7yPdxeNTtjNWMB41S4AQAAwtJq4P4LSSdJqlS510haL+lgM/ucc+57IVwb6lR2m5Q0pZ0mJanDihosjVw0WSjTww0AABC0VgN3UtKRzrntkmRmCyV9V9IrJN0ur7cbIevODP+4pjqlJB0rVscCUuEGAAAIT6tl0mWVsO17XtIBzrkXJVEWjUhthTs9xZ0mMzWBO2YxJSxB4AYAAAhBqxXu28zsJkk/9G+/xb+vU9LuUK4Mo3QFWOHOqFjdaVLyFk6yaBIAACB4rQbuD0o6R9Kr/dvflfQj55yTdEoYF4bRaivcHampVbjTNXO4Ja+thAo3AABA8MYN3GYWl7TWOXeKpB+Ff0lopraHe9KLJisVbiuqUB6ucKdiKRZNAgAAhGDc1OacK0kqm9nsCK4HYwhkLKA/pSStAhVuAACACLTaUtIv6UEz+6WkgcqdzrkPhXJVaGjkWMCpzeFOqahCbQ93LEngBgAACEGrgfs//S9Mo9pFk+nE1OZwp6xBDzeLJgEAAALXUuB2zn3HzDokHeic2xjyNaGJzpT348okYzKzyZ0klpBkSqmgUrkmcMdSKpTo4QYAAAhaS2VSMztT0v2S/tu/vdrMfhLmhWG0eMzUmYpPvn9bksykRFrpupYSKtwAAADhaLUv4RJJL5c/c9s5d7+kQ0K6JoyhK5OYfP92RTytZN2iyWScHm4AAIAwtBq4C865PXX3lRseiVB1pRNTq3BLUiKllAoq1o0FJHADAAAEr9VFkxvM7O2S4mZ2mKQPSborvMtCM92ZpHLFKf6t41e4C3WLJpnDDQAAELxWK9x/JeloSTlJ10rqk/ThsC4KzS2endH+3empnSSRUtKN3NqdCjcAAEA4Wp1SMijpYv8L0+jyc45V2bnxDxxLPK1kMa9Cua6Hm0WTAAAAgWspcJvZ4ZI+Jml57XOcc68L57LQzOxZyfEPGk8ipUShMLLCzU6TAAAAoWi1h/uHkv5F0jcllcK7HEQinlbSFVR2UrnsFIsZc7gBAABC0mrgLjrn/jnUK0F0Emkl3F5JUrHslIoZc7gBAABC0uqiyZ+a2QfMbLGZ7Vf5CvXKEJ54SgnnVbMrowGTMW8Ot5tqfzgAAABGaLXC/S7/fz9ec58Tm9/smxJpxZ1Xza6MBkzFU3JyKrqikhZAnzgAAAAktT6l5OCwLwQRiqeU8GduVxZOpuIpSVKhVFAyRuAGAAAIypgtJWb2iZrvz6177O8n+6Jmdq6ZbTCzspn1jnNs3MzuM7ObJvt6qFNT4S76owFTMS9wM6kEAAAgWOP1cJ9f8/2n6h47fQqv+5CkcyTd3sKxfy3pkSm8FurFU4r7Fe5CXYWbhZMAAADBGi9wW5PvG91umXPuEefcxvGOM7Nlkt4kbxwhgpJIK+YH66Lfw11pI6HCDQAAEKzxArdr8n2j22H4v5I+Iak83oGYgHha8XJdSwkVbgAAgFCMt2jyODPrk1fN7vC/l387M9YTzWytpEUNHrrYOXfjeBdmZn8k6Xnn3HozW9PC8e+V9F5JOvDAA8c7vL0lUoqVR44FrF00CQAAgOCMGbidc/HJntg59/rJPtf3Kkl/bGZnyAv3PWZ2jXPuT5u83lWSrpKk3t5ehkmPJZFRzBVlKldbStLxtCRaSgAAAILW6sY3kXPOfco5t8w5t1ze4s1bmoVtTJBfzU6pWF00We3hpqUEAAAgUNMSuM3sbDPbJOkkST8zs5/79y8xs5un45raSsKrZqdVGN3DTYUbAAAgUK3uNBko59wNkm5ocP8WSWc0uP82SbeFfmHtokGFuzKHu1CmhxsAACBIL9mWEoTIr3CnVKj2cFPhBgAACAeBux35CyRTVlDJbylJxpnDDQAAEAYCdztKNG8pYdEkAABAsAjc7She01LCokkAAIBQEbjb0RgVbhZNAgAABIvA3Y78CnfaWDQJAAAQNgJ3O6pOKSlWt3Zn0SQAAEA4CNztqDqHu6CCX+FOWEImY9EkAABAwAjc7ai2wu33cJuZUvGUCiV6uAEAAIJE4G5HNRXuypQSyVs4SYUbAAAgWATudlSpcFtxROBOxpP0cAMAAASMwN2Oaudw+y0lkjephMANAAAQLAJ3O0qMXjQp0VICAAAQBgJ3O/Ir3BkbHgsoiUWTAAAAISBwtyN/0WQmVqxufCNJyViSCjcAAEDACNztKBaTYkllrDiypYQebgAAgMARuNtVIt2wpYTADQAAECwCd7uKp5SuGwuYiqVUKNPDDQAAECQCd7uqVLhrxgIyhxsAACB4BO52FU95G98wFhAAACBUBO525Ve4C2UWTQIAAISJwN2u4umGO00yhxsAACBYBO52lUgppZFjAZnDDQAAEDwCd7uqVLgZCwgAABAqAne78ivcpTKLJgEAAMJE4G5XfoW7UNfDXSwXVXblMZ4IAACAiSBwt6tESkkVRo4FjKckic1vAAAAAkTgblfxtJIqjBgLmIwlJYk+bgAAgAARuNtVIq2kGz0WUCJwAwAABInA3a7iDVpKYrSUAAAABI3A3a4SaSVcQYUyFW4AAIAwEbjbVTylhBtZ4U7G6eEGAAAIGoG7XfkV7lJtD7ffUsIsbgAAgOAQuNtVPK2YnMql4X5tWkoAAACCR+BuVwkvXMdqqtksmgQAAAgegbtdxdOSJKsN3FS4AQAAAkfgbleVCndNuGbRJAAAQPAI3O3Kr3DHG7SUsGgSAAAgOATudpXwAnesnJdz3mhAWkoAAACCR+BuV364TqmoUtkP3CyaBAAACByBu135Fe6UCir6gZsebgAAgOARuNtVTYW7ErhpKQEAAAgegbtdVSrcVlDR322SRZMAAADBI3C3q3ilpaSoQmlkhbtQoocbAAAgKATudpWotJQUVCx7Fe6YxZSwBBVuAACAABG425Vf4U6rqKJf4Za8hZP0cAMAAASHwN2uKhVuK6jg93BLXlsJgRsAACA4BO52VdPDXZnDLXkLJ5nDDQAAEBwCd7uqmcNdqGkpocINAAAQLAJ3u4qPXjQpSclYkkWTAAAAASJwt6vE6LGAEhVuAACAoBG421UsIScbsfGN5PVwU+EGAAAIDoG7XZnJxVMjtnaXvAo3G98AAAAEh8DdxsrxlNIaORaQOdwAAADBInC3MRdLexXu0sixgLSUAAAABIfA3ca8lpLCqJYSKtwAAADBIXC3s0RKKSuOGAvIxjcAAADBInC3s3jaq3DXtJTQww0AABAsAnc786eU1C6apKUEAAAgWATudpZIj+7hZtEkAABAoAjc7azSw11X4WYONwAAQHAI3G3M4ml/DndND3csSYUbAAAgQATudpbw53CXR1a4y66sYrk4jRcGAAAwcxC421gs2aCHO56SJBZOAgAABITA3cYsMXosYCrmBW5mcQMAAASDwN3GLJFuuGhSosINAAAQFAJ3G6tUuAvlkYsmJbFwEgAAICAE7nYWTystKtwAAABhInC3s0TKq3CXWDQJAAAQFgJ3O4unlbSSSqXhEYAsmgQAAAjWtARuMzvXzDaYWdnMesc4bo6ZXW9mj5rZI2Z2UpTXOeMlvHCtmmp2Mu71cOdKuem4IgAAgBlnuircD0k6R9Lt4xz3ZUn/7Zw7QtJxkh4J+8LaSjwtSXLF4XBdqXDTUgIAABCMxHS8qHPuEUkys6bHmNlsSa+VdIH/nLwkUmCQEl7gVm3gjtNSAgAAEKSXcg/3wZJ2SPqWmd1nZt80s87pvqgZJT66pYRFkwAAAMEKLXCb2Voze6jB11ktniIh6QRJ/+ycO17SgKSLxni995rZOjNbt2PHjgDeQRvwK9xGSwkAAEBoQmspcc69foqn2CRpk3Pubv/29RojcDvnrpJ0lST19va6Zsehhl/NtgaLJtn4BgAAIBgv2ZYS59w2Sc+Z2Ur/rlMlPTyNlzTzVHq4a8I1FW4AAIBgTddYwLPNbJOkkyT9zMx+7t+/xMxurjn0ryT9u5k9IGm1pL+P/mpnsHiDlhIWTQIAAARquqaU3CDphgb3b5F0Rs3t+yU1ndONKfLncMdqwjWLJgEAAIL1km0pQQT8CnesNHrR5O+efV7/+qsnp+WyAAAAZhICdzurVriHq9mJmPePHg9u3qkf3btpWi4LAABgJpmWlhK8RFR6uGtaSsxMqVhKe3NZFYaK03VlAAAAMwaBu535U0ridf3ayXhK/cWc8lkWTgIAAEwVLSXtzF8gGXMjA3fckpKVNJgvqVAqT8eVAQAAzBgE7nZWqXDXbXITU0JmXjtJ3xBVbgAAgKkgcLczv8Idr5+57RJSJXBn6eMGAACYCgJ3O6tUuN3IwO3K8Wrg3jNOhXvXQF6fufEhZQulcK4RAABgH0fgbmf+lJJEXUtJqRyXmRegx2spueOJF/Sd3zyrBzfvCecaAQAA9nEE7nYWi6mkuBJ1Fe5iMaZk0lss2TfOpJLdfiB/YW9uzOMAAADaFYG7zZViKcXrppTkizHNSjtJ47eU7Bn0nvvCAFvBAwAANELgbnOlWHJEhTtXLClfiCmT9AJ33zib3+wepMINAAAwFgJ3mytZSklXkHNewN66Oyu5hBKJshIxa7mlZOcAgRsAAKARAnebK8VSSllRhZIXuDfvHpJz3hzu2R3JcRdNDle4aSkBAABohMDd5sqxlFIqqFj2Fklu3jUkOW8sYE9Hcvwe7iEvaFPhBgAAaIzA3ebK8aTSKqpY9ircm3YNSi6hkiuoJ5MYd+ObaoW7nwo3AABAIwTuNletcPstJZt2D2lWMq1CuaCeFlpKKhXwF/qpcAMAADRC4G5zLp5SSkUVS15LyaZdQ+pOZ5Qv5ccN3M457R4qKGbS3myR3SYBAAAaIHC3uXIspZQVVPBbSjbvGlJPukP5cl49meSYU0qyhbLyxbIO2G+WJOlFZnEDAACMQuBucy6e9ltKyiqWytrWl9Xsjg4Vy0V1Z2LqGypWRwbW2+0vmFyxoEsSbSUAAACNELjbXKWlpFBy2taXVansNLejQ5LU1WHKl8rKFsoNn1tZMLliQackaScLJwEAAEYhcLc5L3B7YwE37RqSJM2b5QXozpR3TLO2kkrgPnR/r8K9gwo3AADAKATudhdPK2VFFUvOm8EtaV6X15PdkfYOabZwck9dSwkVbgAAgNEI3O0uUalwu2qFe4EfuGelvd7tZpvfVO5fPKdDs1JxergBAAAaSEz3BWCaxdPexjelsjbvHtT+3WnNSnrj/TJJr3d7vJaSOR1JzetKaSeBGwAAYBQCd7vze7gLJa/CvWxuh1Ixb3fJdMqrcPcNNd5tcvdQQcm4aVYqrvldae1kLCAAAMAotJS0u0Ta3/impM27h7R07iwl40lJUjrpB+4xKtyzO5IyM83rTGvHXircAAAA9Qjcbc6SacXMqVDIa8vuSoXbG0+STHitJXsGmy+anN3hhfMF3Skq3AAAAA0QuNucxb1RJNt37VWh5LR0TodScX8eoJWUScbGrHDPmeUdO68zrRcH8iqXG2+SAwAA0K4I3G3Okl7g3vzCbknS0rnDgTtf8irYTXu4Bwua41e453elVCo77W4y0QQAAKBdEbjbXCzhBe6tO73AfUBNS0m+lFdPJjnmWMDZs7zAPa/LOw+jAQEAAEYicLe5SuDevqtPkrRkTkd10WS+nFdPR7JpS8meoYLmdHjhfD6BGwAAoCECd5urtJS8sGuv5nWmNCuVGFHhnt0kcBdKZfXnipoza7ilRJJeYKGqbMkAAB7qSURBVLdJAACAEQjcbS6WzEiSrJzX0rkdklTt4S6UC+rJJBq2lFTum13t4faCO5vfAAAAjMTGN20u5le4UyqMCtz5kt9S0mDRZHWXSb/CPbsjqXjMaCkBAACoQ4W7zSX8CndKRS2d4wXuZMzv4fYXTe7NFkaN+9sz5LWOVCrcsZhpv86UdtJSAgAAMAKBu81VK9xWqAbuaoW77PVwl53Unx9Z5R6ucKeq983vSlPhBgAAqEPgbnPx1HCFe9ncWd73/qLJQqmgng6v66ivro+70sNdmcMteQsnWTQJAAAwEoG7zQ23lAz3cMdjcSUs4Y0FzHiBur6Pu76HW6LCDQAA0AiBu81VppSkVawGbklKxpPVsYCSRo0G3D1UkJnUnRkO3PPo4QYAABiFwN3uEl77SE+qXK1mS14fd2VKiaRRowH3DHrV73jMqvfN705rqFDSQK7xVvAAAADtiMDd7uLeosmFs2zE3alYyp/DXWkpGV3hnl3Tvy15FW5JVLkBAABqELjbnb+1+/yOkXdXKtzDLSWje7hr+7clr8ItSTvo4wYAAKgicLc7fwTgirkjw3MyllS+nFdXxptSUt9S0qjCPb+T3SYBAADqEbjbnV/hfvkBXSPurlS44zFTdzoxqqWkb6gwYga3JM3v9m5PZDTg937zjP7p1icmceEAAAD7BgJ3u4slJJlUGlmVTsVSype94NzTkRw9pWQwP2IGtyTtV+3hbq3CXSiVdeXax/WtO5+Z3LW39BoF/eixH+n0H52uD6z9QGivAwAA0Exiui8A08zMq3IX6wJ3PKVCyQvZPR3JERXuctlpz9DoHu50Iq6eTKLlWdx3PvGCXhzwQv2LA/lqYA9CoVTQj5/8sb75wDe1ZWCL0vG0+gv9gZ0fAACgVeacm+5rCFxvb69bt27ddF/GvuMLB0rzD5MOe0P1rr/c/j96ttCnc7pWaMOWPjlJxyzpkSQVy06/e/pFHTS/U0tmZ0ac6r7ndqszldDhC0e2qDTyxPP92rHXC+dHLe3R7Exy7CfEk9Ki46Rkx5iH5ct5/eypn2nrwFatmr9K7zvufXps12P68r1f1m/f/lt1JjvHvTYAAIDxmNl651zveMdR4Ya08GjpD3dJm4f/SDl8vzm6e3aPvr7nQcnPp7fvqXnOfOk+Saq9T5K8TK619fc3kva/JN2X2yK1Uhh/8d4WDpKOW3CcPnPSZ/TKJa+UmWmwMChJ/6+9O4+Oq7zTPP791aa9ZEuWZJUsZIMtwDbGAbOnScDsHZaeSQI5JBOSSfqEQ5qESeiGpE9neqb7pDPhdDqdDplhSEI4JJAESFjCHkJgQrAxu4yxDbbBlmVbXiRZey3v/HFvWbJUWiyrVGXX8zlHlurWXd6r62s/evW778v27u0smr1oUvsQERERmQ4K3AKfe2zUor8FbvZ/+/H1X7/Bn97bzZ9vWQnAm9s6uPL2P3HHp1dw4eK6g7a7/p5X2NjezTM3fWTcQz7RsoPrf/EKP7vudL5836tcsSzGP1110vjt3PU2PH4zvP8iNJwCl97mfc7A7OBxxevL6wEFbhEREZl5Ctzi1XFnXOwtrywtYn9/Egt4z9h29ieBALPLiw4sS6uJlrBqy75Ry0d6tGUH1WXFnLOohua6Sjbu6p1wG+Yuheseg7d+DU/9Pdy5Ek79LDSeOeEpNvj129vXPwx7tk+4/rSrnAcL/mLmjysiIiI5p8AtE4qWhOgZTJJIpggFAwfG5B45SglAdXmEfb1x4skU4WDmAN0zkOD363byiVMbCQUDNNdV8HhLG865UT3To5jBsk9C88Xw3L/Aqv8Dr9w14TlUAZGmRravvR/23Tnh+tPOAnDLB1BUMfPHFhERkZxS4JYJDZ9tsqosQocfuCtLMwVuryh7X88gtdHiUe8DPLNuJ/3xFJefHAOgua6ce1fHae8eoLYi8zajFFfCJd+Gv/g6DHRNuHoAiD17Pdsb5sOKv5vcMabLxqe9UpjObVB74sweW0RERHJOgVsmFPVHD+nqi1NVFqGz1xvKb+RMkwA15d7Qfu3dA2MG7kfe2E59ZTErmmYDcHyd1+u7YUf3mIG7sy/OnS9s4obzFlIcDg69UVbtfUxCrLKJ7QOdULVgUutPm9hy73PHVgVuERGRAqSJb2RC0QM93F7PdkdvnNJIkKJQcNS66R7uPWPMNtnZG+ePG9r52LJ6AgGvfGRROnDv3D9mGx59czs/ePZdHm9pm/J51JfVs70nR/XbAJ1bZ/7YIiIiknMK3DKhAyUlfQkAOvriGeu3Aeb4gXusyW+eWNtGPOkOlJN420SYXRoeN3Cv3rzX275lx6GfgK+hvIG9/XvpS/RNeR9TUj4XAmEFbhERkQKlwC0TipZ4lUfphyU7euMHer1Hqi5PT++euYf7kTfaaKou5aSGygPLzIzmuooxA7dzjlWbvMD9xw3t9A0mp3QesXIv5Ld1T72XfEoCAYjGvBpuERERKTgK3DKhAzXcfklJZ9/gqGnd0yqKQkRCgYw93O37B3jxvd1ccXJs1GgkzXUVbNzZTaaZT7ft62NHVz+XLp1LfzzF8xvbp3Qe6cDd2t06pe0Py6xjvBpuERERKTgK3DKhoZKSdOCOM6skknFdM2NOWYTdGXq4H29pI+U4qJwkrXluBfsHErR19o96b5VfTvLl8xdSWRLmySmWlcTK/B7unhnu4Qavjls93CIiIgVJgVsmVBoJEgzYQSUlY/VwA8ypKBrVw+2c48FXWzm+roLmutFjUTfXlgOZH5xcvXkPs0vDnDg3ysoTa3lm3U7iydQhn0dNaQ2hQCg3PdyVjbB/OyTjM39sERERySkFbpmQmREtDtHVH8c5R0dfPOMY3GnVZRH29BwcuO9Z9QGvb+3gM2c1ZdymeZyRSlZv3stp86sIBIxLlsylqz9xoKb7UAQs4I1U0p2jkUpcCvbnoHddREREckqBWyalsiRMV1+C/niKwURqzJIS8EYq2b1/qKTk3V37+adH3+YjzTVce8YxGbeZXRahpqKIDTu7D1q+s6ufLXt6OX1BFQDnNtdQEg7yxNqxg+sTLW2sa8s8GU6sPJaboQFnNXqfVcctIiJScBS4ZVKiJWE6++J09HlBerySkuryIvb0DOCcYyCR5G/ufZ2yohDf/cSycadub64rH9XDnR4O8IwF3uQ2xeEgH2mu4am1O0mlRj9g+frWDq7/+at87+kNGY/RUN6Qox5uP3CrjltERKTgKHDLpESLw3T1x+no9ad1H2NYQPDG1Y4nHV19CW57cj3r2rr47seXTThte3qkkuFBevXmvZRFgpxYP1T3ffHSOnbtH+D1bR0HbZ9Iprj1wbdwDtZuz9zDXV9Wz+6+3QwkM48TnjXRBu+zxuIWEREpOArcMileSclQ4B5r4hsYmvzmoTda+b8vbOYzZzax8sS6CY/RXFdBXzzJtn1DE9Os3ryXU+dXEQoO/VU9/4Q6QgEbNVrJT/60mXVtXZw+v4rWjj729YweKaWh3Au+Mz4Wd6QUSucocIuIiBQgBW6ZlGhJiM6+xIGRSsZ7aDIduP/HI2+zsLacb1x24qSO0Vx38Egl+3oGWb9zP2f49dtplSVhzjqumifX7jgwbvfWvb187+mNXHBiHX+zciEAb2eo464vqwfI3YOTKikREREpOArcMinpkpLOAzXcYz80mZ5tMmDG969ZTkkkOKljLEqPVLLLC9wvb/Hqt08fEbgBLl4yly17etngT5bzDw+1YAb/eOUSlsS8WSzXbu8ctV26hztnD07qoUkREZGCo8AtkxItCTOYSLGzy6t9Hq+kZN7sEiqKQnzjshMOhN9JHaM4TH1lMRt2eIF79ea9REIBls0bvY+LFtdhBk+07OB3b7Xxh/XtfO2i42mYVUJVWYRYZTEtraN7uGtKawhZKHcPTnZugwyzaYqIiMjRK5TrBsiRIeoH7A/29hIOGqXj9FpXFId57R8uPKjuerKa6yoODA24estePtQ4i6LQ6GPVRos55ZjZPPxGK139CZY2RPnssDG+F8cqM/ZwhwIh6srqcjf5TbwH+vZB6eheexERETk6qYdbJiVa7P1s9sGeXipLIuMO7wdMKWyDV8f9bns3nX1xWlo7R9VvD3fxkjrea+9hT/cA3/6rZQcdc2lDlE27e+gZSIzaLlYey9307qAHJ0VERApMTgK3mX3CzNaaWcrMVoyz3k3+ei1mdq+ZjT+unGTN8B7u8cbgPlyL6ioYTKT4zavbSDk43R9/O5NLltQTMLju7AWcNKLsZEmsEufgnR2jy0piZbHc9HBr8hsREZGClKse7hbgPwHPj7WCmTUANwIrnHNLgSBwzcw0T0ZKj7u9o6t/3DG4D9fx/oOT96z6gFDAOKVp1pjrHlNdylM3ncs3Ljth1HtLYlEg83jcsfIY7b3txJPxaWr1JGnyGxERkYKUk8DtnFvnnFs/iVVDQImZhYBSIAdPugl4DzSmjffA5OFaWOsNDfjurm6WNlRSGhn/MYOFtRUZy1fqK4upKovQ0jq6jjtWHsPh2NGzY9R7WVVaDaESlZSIiIgUmLyt4XbOtQK3AR8AbUCnc+6p3LaqcEVLhoLveGNwH66yohCNVSUA49ZvT8TMWBKLZuzhTg8N2Nozw2UlZv5Y3ArcIiIihSRrgdvMnvFrr0d+XDnJ7WcDVwILgBhQZmafHmf9vzazNWa2pr29fXpOQg44uId77DG4p0NzrVdWkmn87UOxJFbJhp37GUykDlqenvxmxmebBE1+IyIiUoCyFridcxc455Zm+Hhokru4ANjsnGt3zsWBB4GzxzneHc65Fc65FTU1NdNxCjJMcThIUcj765LNhyYBFseihALGiqbDDdxR4kl3YObKtLqyOgIWyN2Dk3poUkREpKDkbUkJXinJmWZWat4YdCuBdTluU0FLj1SS7cD9xXOP5YHrzz7s0pWlDd7IJW+PKCsJB8LUltbmbvKbnl0Q75/5Y4uIiEhO5GpYwL8ys23AWcDvzOxJf3nMzB4DcM6tAu4HXgXe8tt6Ry7aK5706CTZHKUEvPKVkxvHHp1kspqqSikvCtGSYQKcWFksN9O7p0cq6cpB77qIiIjkRE5mmnTO/Qb4TYbl24HLhr3+FvCtGWyajCM9+U22A/d0CQSME+srxnxwcs3ONTPfqOGT31QfN/PHFxERkRmXzyUlkmeGSkqy+9DkdFoSq2RdWxfJlDtoeX15Pbt6d5FIjZ6JcqREMsWP/99mtnf0HX6DNPmNiIhIwVHglklLj1SSzXG4p9uSWJTewSSbd/cctLyhvIGkS7Kzd+eE+7j9uff4n4++zd//tuXwG1QRA0wjlYiIiBQQBW6ZtMoZemhyOqUfnFw7oo47Vh4DmPDByVc/2Mf3f7+RumgRz76zi5e37D28BoUiUFGvsbhFREQKiAK3TFpdtIiScJCK4iMncC+sLScSCoyq446VTRy4uwcSfPW+15kbLeaRL3+Y2ooivvP4OzjnxtxmUjT5jYiISEFR4JZJu+6cBfz2hnMIBizXTZm0cDDACXMrRvVwzy2bi2HjBu7//vBatu3r5XtXL6c2WsyNKxex5v19/GH9rsNrlMbiFhERKSgK3DJp5UUhjp9bketmHLL0FO/De6YjwQg1pTVjTn7zuzfbuP+Vbdxw3sIDM15efVojTdWl/K8n1pNKHUYvd+U8b1jAVGridUVEROSIp8AtR73FsUo6euO0jhhlJFYWo61n9PTu2zv6uPXBNzm5cRY3rlx0YHk4GOC/XdjMOzv288ibhzGGd2UjJAehp33q+xAREZEjhgK3HPWWxqIAo+u4y2Ojerj3dA/wtV+9QSLl+LerlxMOHnyLXL4sxon1Uf716Q3Ek1PsoU5PfqM6bhERkYKQk4lvRGbSCXOjBAzWtnZy8ZK5ADjnqCqaS2v3Yyy/+xRSzlvmHBCGyELj449nrlVPzXbEk47Tfm4EbSr17A6aGuHZL4JN/Wfe0+tP5wfn/4BQQLexiIhIPtP/1HLUK4kEWVhbzgOvtvLyln20dfbR1tnPIDWEZ58HpKgoClEbLaK2opj6WcXURYvH3qGD377eSld3nGvOaCIUPMTQnRiAl26H+efCvFOndE6dA508sPEB7lp7F1846QtT2oeIiIjMDAVuKQiXL4tx38tbGUymWNJQyYWL66ivPIHGqgs5eV4lteMF7Aw+PGcvn/jff2bjO3V85qwmzjy2elT5ybie/SGEY3DqTYd4JkO6Bru4/fXbOa/xPI6bpWniRURE8pUd9pjCeWjFihVuzZo1uW6GHOW+88Q73P3iFnoGk8wuDXPR4rlcetJczj5uDpHQBOH79rNhdhN86t4pH39P3x6ueugqGisaufvSu1VaIiIiMsPM7BXn3IqJ1tP/0CJT9HeXnMBXVi7i+Q3tPN6yg8feauOXa7ZSGglyatNszlhQxRnHVrNsXiVFoeDBG48x+U08mZp0T3l1STXfPOOb3Pz8zdz99t18funnp+O0REREZJopcIschuJwkIuWzOWiJXMZSCR5YcNuXtjYzqrNe7ntqQ0AFIUCLJtXyYI5ZTRVl9FUXcpZ4Tpm71vFn9/dTUtrJy3bu1jb2smm3T0sm1fJp89o4vKTY5REguMe/+L5F/Pklif54Ws/5JzYucwKzaOmvIjAETQ5kYiIyNFOJSUiWbKvZ5DVW/ayatNe3tzWwZY9vezuHgDgS8GHuSV8H0v6f0wPJTTMKmFpQ5QFc8p59p2dbNjZTbQ4xMdPbeTaM4/huJryUfvvGUjw+tYO/vjuJn6140YSA9V0b/4SRaEQC+aUMb+6jAU1ZTRVlVJWFKI4HKQ4HKAoFKQkHKQ2WjTpcD6YSPFWayerNu9h9ea9bGrvoaI4xOzSCLNKw8wqDTOnvIgVTVWsmD+b4vD4PyiIiIgcDSZbUqLALTKDegYSfLC3l4HXf8XyVV9jd+PFVERnHVRy4nDs7h5kU3s3rR19pBxE0iOhmJGOx4OJFOm7972qfu6p2sGnEnM5rS9K72CCnoEkffEE402KGTAoCYcoCQcoKQoStADOeW1weEMldsRDtPRUsjk5h22uhsjsRubXzaJvMEFnX5z9fXE6++N09SdwDiLBACc3VnLafC98l0ZC9Awk6B1MHmiXwxEKBAgFjFDQCAUCFIXCRCPllEfKKAqFiISMYCBA0IxAAIIBI2Dex/DRGA1w/ve2sy9OR2+cjr44nb2DJFKOcDBA2D9GOBSgOBQgWhImWhwmWhIiWhKmPBLSbwVEROSQKXArcEs+2/c+/OKTMNg77mpJ5+gdTJBIORhxqwYCRlEoQCQYwMz4ajk8G8lim2eIOUeJg7KUozgFhxODHeCwoQ9nI7+Nww6cPtbQn0PrumF/Ztw0o5Azgg6CzggCQTf2umZDx800vPuoY6cX2PjfIxv2rhuxl2G7mFCxM766b9bkNzhcLv1pqM020clOg59W3cSeUG12DyIi0+4/n9LAlcsbZvy4emhSJJ/NboIbVk24WhComOQuvx3v5bmtzxFPxQ+raaM5GOiG7l3Qswu626G/Ayb4YX0wmWJ/fwLnnNdTPayX2sxwzpHC+0Ei5SDuUnSTpIckPZakO5CgL5BKt4BhCWx4yw7wer8Z6gUPeOEdl8K5JKRS4JLgnDfJEd4ppL/GpU9p6HU63Hmh1Q/E/rKJ+iockDBHwiAZcMT915nyohvjnA7V0H7G24tlDPQTbR/AKE7tH/P7fyhGHj7TfmycFbPZTdTTP0BXcLrvIRHJtoH4FGd/niEK3CJHidJwKZcde1mumyFyRLsj1w0QkaPS1OeVFhERERGRCSlwi4iIiIhkkQK3iIiIiEgWKXCLiIiIiGSRAreIiIiISBYpcIuIiIiIZJECt4iIiIhIFilwi4iIiIhkkQK3iIiIiEgWKXCLiIiIiGSRAreIiIiISBYpcIuIiIiIZJECt4iIiIhIFilwi4iIiIhkkQK3iIiIiEgWKXCLiIiIiGSRAreIiIiISBYpcIuIiIiIZJE553LdhmlnZu3A+1k+zBxgd5aPIVOn65PfdH3ym65PftP1yW+6Pvltuq9Pk3OuZqKVjsrAPRPMbI1zbkWu2yGZ6frkN12f/Kbrk990ffKbrk9+y9X1UUmJiIiIiEgWKXCLiIiIiGSRAvfU3ZHrBsi4dH3ym65PftP1yW+6PvlN1ye/5eT6qIZbRERERCSL1MMtIiIiIpJFCtyHyMwuMbP1Zvaumd2S6/YUOjNrNLM/mNnbZrbWzL7iL68ys6fNbKP/eXau21rIzCxoZq+Z2aP+6wVmtsq/j35pZpFct7FQmdksM7vfzN4xs3Vmdpbun/xhZjf5/7a1mNm9Zlas+ye3zOwnZrbLzFqGLct4z5jn3/1r9aaZnZK7lheGMa7Pd/1/4940s9+Y2axh793qX5/1ZnZxttqlwH0IzCwI/BC4FFgMfMrMFue2VQUvAXzNObcYOBO4wb8mtwC/d84tAn7vv5bc+Qqwbtjr7wDfc84tBPYB/zUnrRKA7wNPOOdOAE7Gu066f/KAmTUANwIrnHNLgSBwDbp/cu0u4JIRy8a6Zy4FFvkffw38aIbaWMjuYvT1eRpY6pxbBmwAbgXw88I1wBJ/m9v9rDftFLgPzenAu865Tc65QeA+4Moct6mgOefanHOv+l/vxwsLDXjX5Wf+aj8DrspNC8XM5gF/CdzpvzbgfOB+fxVdnxwxs0rgXODHAM65QedcB7p/8kkIKDGzEFAKtKH7J6ecc88De0csHuueuRK423leAmaZWf3MtLQwZbo+zrmnnHMJ/+VLwDz/6yuB+5xzA865zcC7eFlv2ilwH5oGYOuw19v8ZZIHzGw+8CFgFVDnnGvz39oB1OWoWQL/BvwtkPJfVwMdw/7x032UOwuAduCnfsnPnWZWhu6fvOCcawVuAz7AC9qdwCvo/slHY90zyg355/PA4/7XM3Z9FLjlqGBm5cADwFedc13D33PeUDwajicHzOxjwC7n3Cu5botkFAJOAX7knPsQ0MOI8hHdP7nj1wFfifeDUQwoY/SvyiXP6J7JX2b2TbxS1J/P9LEVuA9NK9A47PU8f5nkkJmF8cL2z51zD/qLd6Z/bed/3pWr9hW4c4ArzGwLXgnW+Xg1w7P8X5GD7qNc2gZsc86t8l/fjxfAdf/khwuAzc65dudcHHgQ757S/ZN/xrpnlBvyhJldB3wMuNYNjYk9Y9dHgfvQvAws8p8Qj+AV2j+c4zYVNL8e+MfAOufcvw5762Hgs/7XnwUemum2CTjnbnXOzXPOzce7X551zl0L/AH4uL+ark+OOOd2AFvN7Hh/0UrgbXT/5IsPgDPNrNT/ty59fXT/5J+x7pmHgf/ij1ZyJtA5rPREZoiZXYJX2niFc6532FsPA9eYWZGZLcB7uHV1VtqgiW8OjZldhleTGgR+4pz75xw3qaCZ2YeBF4C3GKoR/gZeHfevgGOA94FPOudGPuQiM8jMPgp83Tn3MTM7Fq/Huwp4Dfi0c24gl+0rVGa2HO+B1giwCfgcXmeM7p88YGb/CFyN92vw14Av4NWY6v7JETO7F/goMAfYCXwL+C0Z7hn/B6X/wCsF6gU+55xbk4t2F4oxrs+tQBGwx1/tJefcl/z1v4lX153AK0t9fOQ+p6VdCtwiIiIiItmjkhIRERERkSxS4BYRERERySIFbhERERGRLFLgFhERERHJIgVuEREREZEsUuAWEclzZpY0s9eHfdwy8VYZ9/Ocma2Y7vZN4rhXmdnimT6uiEi+CE28ioiI5Fifc255rhtxGK4CHsWbtEVEpOCoh1tE5AhkZpeY2a+Hvf6omT3qf/0jM1tjZmv9iVMm2tdpZvaimb1hZqvNrMLMis3sp2b2lpm9Zmbn+eteZ2b/MWzbR/1JjTCzbjP7Z38/L5lZnZmdDVwBfNfvnT9umr8VIiJ5T4FbRCT/lYwoKbkaeAY4w8zK/HWuxpt9EOCbzrkVwDLgI2a2bKwdm1kE+CXwFefcycAFQB9wA+CccycBnwJ+ZmbFE7SzDG8Gt5OB54EvOudexJs++Wbn3HLn3HtTOH8RkSOaAreISP7r88Nq+uOXzrkE8ARwuZmFgL8EHvLX/6SZvYo37fcSYLz66eOBNufcywDOuS5/3x8G7vGXvYM3XXXzBO0cxCsdAXgFmH+I5ykiclRSDbeIyJHrPuDLwF5gjXNuv5ktAL4OnOac22dmdwET9UwfigQHd9YM33fcOef8r5Po/xgREUA93CIiR7I/AqcAX2SonCQK9ACdZlYHXDrBPtYD9WZ2GoBfvx0CXgCu9Zc1A8f4624BlptZwMwagdMn0c79QMUhnJeIyFFFgVtEJP+NrOH+FwDnXBKvhONS/zPOuTfwSkneAX4B/Gm8HTvnBvHqv39gZm8AT+P1Wt8OBMzsLbwa7+uccwP+/jbjjTjy78Crk2j/fcDN/sOXemhSRAqODf32T0REREREppt6uEVEREREskiBW0REREQkixS4RURERESySIFbRERERCSLFLhFRERERLJIgVtEREREJIsUuEVEREREskiBW0REREQki/4/7zJ1INev+dQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pylab.rcParams['figure.figsize'] = (12, 8)\n", + "for i in range(len(optimizers)):\n", + " pylab.plot(converge_cnts[i], converge_vals[i], label=optimizers[i].__name__)\n", + "pylab.xlabel('Eval count')\n", + "pylab.ylabel('Energy')\n", + "pylab.title('Energy convergence for various optimizers')\n", + "pylab.legend(loc='upper right')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally since the above problem is still easily tractable classically we can use ExactEigensolver to compute a reference value for the solution. We can now plot the difference from the resultant exact solution as the energy converges with VQE towards the minimum value which should be that exact classical solution." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reference value: -1.85727503020238\n" + ] + } + ], + "source": [ + "ee = ExactEigensolver(qubit_op)\n", + "result = ee.run()\n", + "ref = result['energy']\n", + "print('Reference value: {}'.format(ref))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHwCAYAAAB67dOHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VfX9+PHXO3snJLkJGawMAgmBMBUFQRCKA/fA1q3tV1trba2jP2urrX6xar+2dbR1DxQHbtwIiIAyZYWZMENCFmTv3M/vj3sTbvbNuASS9/PxuA9yz/mcz/mcc2P7vp+8z/sjxhiUUkoppZRSruPW2wNQSimllFKqr9OgWymllFJKKRfToFsppZRSSikX06BbKaWUUkopF9OgWymllFJKKRfToFsppZRSSikX06BbKaX6ObF5WUSOicja3h5PcyLy/0Tkhd4eR1eJyM9E5KsuHjtVRHb19JiUUieeaJ1upRSAiOwHIoF6h82vGGNu750RqRNFRKYCC4EkY0x5b4/nVCYiQ4F9gKcxpq53R6OUOpl49PYAlFInlbnGmCWuPIGIePSXYOQUutYhwP6uBNyuvsZT6B6eMvSeKtU7NL1EKdUhEblBRFaKyBP2FIR9InKuw/5gEXlRRHJE5LCIPCwi7g7HrhKRJ0WkEHhQRNxF5O8iUmDv63YRMSLiISJXiMiGZuf/nYh81MbYQu2pEdn2sX3osO/nIpIhIkdF5GMRiXbYZ0TkVhHZIyJFIvKMPc3C2/5+lENbi4hUikiE/f0FIrLJ3m61iIx2aLtfRO4VkS1Auf2axonIjyJSKiLvisjbIvKwwzEd9fd7EdkiIsX2Y30c9l9kP7ZERDJFZE5Hn0mz+3cz8AIwWUTKROQhJ+/dr0RkD7CnlT4/F5Hbm23bLCKX2n/+p4gcso95g32mvaHdgyKySEQWiEgJcIN92wKHNheKSLr9fi0XkZHNxpbg8P6VhnstIuEisth+3FER+U5EWv3/QRE5Q0TW2e/5OhE5w2HfchGZLyJr7dfwkYiE2nevsP9bZL+fk8X+30+zMf7S/rtXKiJ/FZF4+2dfIiLviIiXve10Ecmy/3yVvc+GV7WILLfv8xbbf58HRSRXRP4jIr6Ofdh/L48AL3fmXiileogxRl/60pe+APYD57Sx7wagFvg54A7cBmRzPEXtA+C/gD8QAawF/sfh2Drg19j+uuYL3ApsB2KBAcASwNj3ewNHgZEO5/8RuKyNsX0KvG3vxxOYZt8+AygAxtn7fApY4XCcARYDIcBgIB+YY9/3EvCIQ9tfAV/Yfx4L5AGn2e/F9fZ75+1wHzcBg+zX6gUcAH5jH9+lQA3wcCf6WwtEA6HADuBW+75JQDEwC9skSgwwoqPPpI3Pd6XDe2fu3df28fi20t91wCqH98lAkcM1XQOE2T/vu4AjgI9934PYftcutl+Tr33bAvv+4UC5/Zo9gXuADMDLYWwJDud+xeFezwf+Yz/OE5iK/Xe42fhDgWPAtfYxXm1/H2bfvxw4DIyy39/3HMY31D4Gj3burwE+AoKAFKAa+AaIA4Kx/bdxvb3tdCCrlTEG2X8XGv47exL42D72QOATYL5DH3XA3+yfp6+z90Jf+tJXz716fQD60pe+To4XtuCuzB4cNbx+bt93A5Dh0NbPHjgMxJYHXo1D8GUPUpY5HHuw2bmW4hAAAuc4BirAv7EHvfag5Bj2gK1ZP1GAFRjQyr4Xgccc3gdgC+aG2t8bYIrD/neA+xzGk+mwbxVwncPY/trsXLs4HuzvB25y2HeWPUATh20rOR4IOtPfNQ77HgP+Y//5v8CTrVx7u59JK+1voGlQ6My9m9HO71IgtsB4iP39I8BL7bQ/Boyx//wgDgG+w7aGoPYB4B2HfW72+zvdYWxtBd1/wRbsJrQ1Fnu7a4G1zbZ9D9xg/3k58KjDvmRsX6TccT7oPtPh/QbgXof3fwf+Yf95Os2Cbvs1Lwb+bX8v9vsd79BmMrDPoY8a7F9sOnMv9KUvffXcS/+UpJRydLExJsTh9bzDviMNPxhjKuw/BmDLB/YEcux/qi7CFgxGOBx7qNl5optta77/VeCnIiLYAqB3jDHVrYx3EHDUGHOslX3R2GaYG8ZcBhRimw1ucU1Ahf16AJYBfiJymtgejEvDNnMMtuu9q+Fa7dc7yH6+1q4nGjhsjDFt7Hemv7bGOQjIbOXanflM2uPMvWv+mTUyxpRi+wvEPPumq4E3Gvbb02V22FM3irDN7oY703crY7Pa28e0ecRxj2ObFf9KRPaKyH3OnMPuAG1f/wFs9zsc5+U6/FzZyvsA2vYIti82d9jfW7B9Ed7g8Hl/Yd/eIN8YU+Xw3tl7oZTqIfogpVKquw5hm1UNN20/nNW8TFIOttSSBoOaNDbmBxGpwfYn75/aX22dO1REQowxRc32ZWMLPgEQEX9sKQ2H27mWhvPXi8g72ILFXGCxPZBsOOcjxphH2uvC4eccIEZExCHwdgyWnemvLYeA+Da2d/SZtMeZe9dR6auFwJ9FZAXgg+2LTEOllHuAmUC6McYqIsewzdY603c2kOowNsF2PxvGVoEtAG0wEMiCxi8Dd2H7kjMKWCoi64wx37RyjiHNtg3GFsg2GNRsXy22lBzH3+seJyLzsP1eTjTG1No3F2AL1FOMMW39fje5p524F0qpHqIz3UqpbjHG5ABfAX8XkSARcbM/FDatncPeAX4jIjEiEgLc20qb14CngVpjzMpW9jec+3PgWREZICKeInKWffdC4EYRSRMRb+B/gTXGmP1OXtqbwFXAz+w/N3geuNU+Cy4i4i8i54tIYBv9fI+tDOPtYnuo8iJsudhd7c/Ri/ZrnGm/7zEiMqKLn4mj7t47gM+wBa5/Ad62z0iDbYa2DlsOvYeI/AlbfrKz3gHOt1+zJ7bAsRpYbd+/CdtfSdzF9lBp4zWL7YHVBHugXoztc7HS0mfAcBH5qf0zuwpbCslihzbXiEiyiPjZr3GRMabefl1WbPnZPUpExmLLr7/YGJPfsN1+b58HnpTjD/vGiMhP2unL2XuhlOohGnQrpRx90qw6wgcdHwLYHpzzwvYA2DFgEbZ867Y8jy0o3ILtIcnPsAVijjXCX8f2oNqCFkc3dS22Wcad2B5IvBPA2EofPoDtIbccbDPC89roowVjzBpsebLR2AL7hu3rsT1Q+jS2a83AlrPbVj812B6evBlbnvw12IK36q7016zvtcCN2B6iKwa+5fgMbWc/E8d+u3Xv7H1UA+9jy493/NLyJbYZ493Y0jKqaD+dpHm/u7Ddw6ewzfDOxVbqssbe5Df2bUXYvjB96HB4IraHdsuwfRl61hizrJVzFAIXYAvoC7HNzF9gjClwaPY6tnzxI9hm8u+wH1uBLf1jlT3V43Rnr80JF2F7YHilw3+jDb+b92L73flBbFVflgBJ7fTl1L1QSvUcXRxHKdXrxFZ+8D/GGMeUBl9sQfQ4Y0yLsnSnMhFZg+16X+7tsajOE1uZvgXGmFN2lUyl1ImnM91KqRNORHxF5Dz7n+5jgD9z/EHFBrcB6/pCwC0i00RkoP16rwdG0zQ/WCmlVB+nD1IqpXqDAA9hq69dia3SxZ8ad9qWpBdstZr7giRsucj+wF7gcnvetVJKqX5C00uUUkoppZRyMU0vUUoppZRSysU06FZKKaWUUsrF+mROd3h4uBk6dGhvD0MppZRSSvVhGzZsKDDGWDpu2UeD7qFDh7J+/freHoZSSimllOrDROSAs201vUQppZRSSikX06BbKaWUUkopF9OgWymllFJKKRfrkzndSimllFL9WW1tLVlZWVRVVfX2UPoEHx8fYmNj8fT07HIfGnQrpZRSSvUxWVlZBAYGMnToUESkt4dzSjPGUFhYSFZWFsOGDetyP5peopRSSinVx1RVVREWFqYBdw8QEcLCwrr9VwMNupVSSiml+iANuHtOT9xLDbqVUkoppZRLHDlyhHnz5hEfH8/48eM577zz2L17N+np6cyYMYOkpCQSExP561//ijEGgFdeeQWLxUJaWhopKSlcfvnlVFRU8PXXXzN58uTGdvX19YwdO5bVq1fz4IMP8sQTT7Q6hg8//BARYefOnSfsulujQbdSSimllOpxxhguueQSpk+fTmZmJhs2bGD+/Pnk5uZy4YUXct9997Fr1y42b97M6tWrefbZZxuPveqqq9i0aRPp6el4eXnx9ttvM2vWLIYMGcKLL74IwFNPPcWECRM444wz2h3HwoULmTJlCgsXLnTp9XZEg26llFJKKdXjli1bhqenJ7feemvjtjFjxrB7927OPPNMZs+eDYCfnx9PP/00jz76aIs+6urqKC8vZ8CAAQA8+eSTzJ8/n/T0dJ5++mn+9re/tTuGsrIyVq5cyYsvvshbb73Vg1fXeVq9RCmllFKqD3vok3S2Z5f0aJ/J0UH8eW5Ku222bdvG+PHjW2xPT09vsT0+Pp6ysjJKSmzjfPvtt1m5ciU5OTkMHz6cuXPnAhAVFcWdd97J5MmT+de//kVoaGi7Y/joo4+YM2cOw4cPJywsjA0bNrQ6phNBZ7qVUkoppdRJpSG95MiRI6SmpvL444837vvVr35FfX09N9xwQ4f9LFy4kHnz5gEwb968Xk0x0ZlupZRSSqk+rKMZaVdJSUlh0aJFLbYnJyezYsWKJtv27t1LQEAAQUFBTbaLCHPnzuWpp57ivvvuA8DNzc2paiJHjx5l6dKlbN26FRGhvr4eEeHxxx/vlcouOtOtlFJKKaV63IwZM6iurua5555r3LZlyxaSkpJYuXIlS5YsAaCyspI77riDe+65p9V+Vq5cSXx8fKfPv2jRIq699loOHDjA/v37OXToEMOGDeO7777r2gV1kwbdSimllFKqx4kIH3zwAUuWLCE+Pp6UlBT+8Ic/MHDgQD766CMefvhhkpKSSE1NZeLEidx+++2Nx7799tukpaUxevRofvzxRx544IEOz/fwww8TGxvb+Fq4cCGXXHJJkzaXXXZZr6WYSEOtw75kwoQJZv369b09DKWUUkqpXrFjxw5GjhzZ28PoU1q7pyKywRgzwZnjdaa7F9Rb+94XHaWUUkop1TYNuk+w9OxiJj2yhN+9s4maOmtvD0cppZRSSp0AGnSfQHvzy7juxbXUWQ3vbzzM9S+tpbiytreHpZRSSimlXEyD7hPkcFEl17ywBoD3f3kG/7gqjfUHjnL5v1dzuKiyl0enlFJKKaVcSYPuEyC/tJprXlhDaXUdr908iXhLABePjeHVmyZxpKSKS55ZxbbDxV3uf0dOCRMe/po/vL+V3JKqNtvtLyjngQ+38f7GrC6fSymllFJKdZ4G3S5WXFHLdS+t5UhxFa/cOJGU6ODGfWfEh/PebWfg4SZc+d/veXHlPjYfKqK6rt7p/o0xPPLpDipq6lm04RDTHl/G41/upKTqeNpKRl4pd771IzP+vpzXfzjAy6v29+QlKqWUUkqpDuiKlC5UUFbNL15bT2ZeGS/eMIHxQ0JbtBkeGcgHvzqTX7y2nr8u3g6Ap7swPDKQ0bHB/CRlINOTIto8x4o9BazMKOCBC5KZNTKSv3+9i2eWZfLGmoP8fGoc27NL+GxbDj4e7twyNY780mq+2HYEq9Xg5nbiV2NSSimllOqPdKbbBaxWw5trDjLjieVsPVzMv65OY2qipc32kUE+fPirM1l579n855px/HxqHKH+Xny29Qg3vbKO7zMLWz2u3mqY/9kOBof6ce3pQxgc5sc/541l8a+nMDo2hMe/3MW3u/O5bVo8K+89m/933kgmDQulsrZe88iVUkop5VIBAQFOtXvwwQeJiYkhLS2NESNGcNttt2G12iq83XDDDQwbNoy0tDTS0tL417/+BUBZWRm33XYb8fHxjBs3jvHjx/P8888DYLVaueOOOxg1alTjwjv79u1r8/xDhw4lNTWVtLQ0UlNT+eijj7p55a3Tme4etutIKf/vg61sOHCM04aF8sglqSREdPxLJyLEDvAjdoAfc0ZFAVBeXcfcp1dyx1s/8tkdU7EEejc55r2NWew8UsrTPx2Ll8fx70+jYoJ57aZJ7M4tJSLQmxA/r8Z9ifax7MkrZVCoX09cslJKKaVUt/z2t7/l97//PVarlbPOOotvv/2Ws88+G4DHH3+cyy+/vEn7W265hbi4OPbs2YObmxv5+fm89NJLgG01y+zsbLZs2YKbmxtZWVn4+/u3e/5ly5YRHh7Orl27mD17NhdddFGPX6MG3T1k38G1LPzuE9bvP4a3pxv3nWYhOTqInP3ryNnf9X5vT6vmzbUHeHjBl1w6NrYxJaS23srHq/YxJ8aDoMoMvlvbeqpIbrP3VbX1DPAvY8m+cjwDohq3Dw4azJCgIV0fqFJKKaVOTp/fB0e29myfA1Ph3Ed7tk+gpqaGqqoqBgwY0GabzMxM1q5dy5tvvombm23S0WKxcO+99wKQk5NDVFRU477Y2Finz19SUtLuubtDg+4e8vryZ3nXbAD757qtBCjpoc6jYRewdFez7faMlVU7O9nfYPgkDz755vimMJ8wll25DBHN81ZKKaXUifXkk0+yYMECDhw4wLnnnktaWlrjvrvvvpuHH34YgNdff519+/YxZsyYxqC6uSuvvJIpU6bw3XffMXPmTK655hrGjh3b7vnPPvtsjDHs3buXd955p+cuzIEG3T3kxll3M3r3D8SFO5e/1BnGGN5ef4gfDxbx86lxRAb78NgXO4m3BHDDGUM719nmtyg7uImHgh7i8Stsv9DLDi3jha0vkFuRy0D/gT0+fqWUUkr1IhfMSPe0hvSS2tpaLr/8ct566y3mzZsHtEwvaZ6f/cgjj/Duu++Sl5dHdnY2sbGx7Nq1i6VLl7J06VJmzpzJu+++y8yZM9s8f0N6SWZmJjNnzmT69OlO56Q7S4PuHjIoKoVBUSku6z9xeB0XPr2K/11Vy+T4MLaVDeDvt5zlVL54E6XHYPdSKis8SQ1PRUSwGisvbH2BnUd3atCtlFJKqV7j6enJnDlzWLFiRWPQ3VxycjKbN2/GarXi5ubG/fffz/33398kSPb29ubcc8/l3HPPJTIykg8//LDdoLtBfHw8kZGRbN++nUmTJvXYdYFWLzll+Hl58MxPx1FWXcsnm7OZN3FQ5wNusOVgAXF1e8kuti2kkzggEUHYebSzeSpKKaWUUj3HGMOqVauIj49vs01CQgITJkzgj3/8I/X1trVNqqqqMMYAsHHjRrKzswFbJZMtW7YwZIhzz63l5eWxb98+p9t3hgbdp5CkgYH87bLRjIoJ4s5zhnetk4GjAEiWA+zOLQXA39OfwUGD2XW0edK4UkoppVTXVFRUEBsb2/j6v//7vzbbPvnkk6SlpTFq1Cjq6+v55S9/2W7fL7zwAoWFhY0B+KxZs3jssccAW+A8d+5cRo0axejRo/Hw8OD2229vt7+zzz6btLQ0zj77bB599FEiIyM7f8EdkIZvBX3JhAkTzPr163t7GCet+idH8/nRKHJm/ZufnxUHwF3L72J74XY+v+zzXh6dUkoppbprx44djBw5sreH0ae0dk9FZIMxZoIzx+tMdz/kHpVKqvtB9uSVNm4bETqCrLIsSmtK2zlSKaWUUkp1hT5I2R8NHM2gnZ9y6Eh+46ak0CQAdh/bzfjI8b01MqWUUkr1UQ1VRhxdccUV3H///Sfk/KeddhrV1dVNtr3++uukpqaekPNr0N0fDUzFDYN7/g6MmYmIMCJ0BAA7j+7UoFsppZRSPa6hykhvWbNmTa+dGzS9pH+yVzAZWpfJkRJbBROLr4VQn1B9mFIppZRSygU06O6PgmOp8womWQ6wJ7cMABEhaUCSlg1USimllHIBDbr7IxFMZCrJbsfLBoLtYcqMogxqrbW9ODillFJKqb5Hg+5+yjNmDCPcDrE3t6hxW1JoErXWWvYV72vnSKWUUkop5zzyyCOkpKQwevRo0tLSWLNmDdOnT6d5aeeKigp+9rOfkZqayqhRo5gyZQplZba/xmdlZXHRRReRmJhIXFwct99+e+MDkcuXLyc4OJi0tDRGjhzJQw89dMKv0VkadPdXA1PxoYaynN2NmxoeptS8bqWUUkp11/fff8/ixYvZuHEjW7ZsYcmSJQwaNKjVtv/85z+JjIxk69atbNu2jRdffBFPT0+MMVx66aVcfPHF7Nmzhz179lBZWck999zTeOzUqVPZtGkT69evZ8GCBWzcuPFEXWKnaNDdX9kfpvQtTG9cNnVI0BC83b01r1sppZRS3ZaTk0N4eDje3t4AhIeHEx0d3WbbmJiYxvdJSUl4e3uzdOlSfHx8uPHGGwFwd3fnySef5LXXXmucCW/g7+/P+PHjycjIcNEVdY+WDOyvwodTL54Mq91HXmk1kUE+eLh5kBiSyK6juyitqmXlngLOTY3q7ZEqpZRSqhv+tvZvPT6hNiJ0BPdOurfdNrNnz+Yvf/kLw4cP55xzzuGqq65i2rRprba96aabmD17NosWLWLmzJlcf/31JCYmkp6ezvjxTUsZBwUFMXTo0BbBdWFhIT/88AMPPPBA9y7ORXSmu7/y8KJywHCSZX9jBROw5XXvPLaT+Z/t4LY3NrKvoLzDrmrrrY2z5UoppZRSAAEBAWzYsIHnnnsOi8XCVVddxSuvvNJq27S0NPbu3cvdd9/N0aNHmThxIjt27HDqPN999x1jx45l9uzZ3HfffaSkpPTgVfQcnenux9yjx5BcuJhPckuYkhgOwMjQkby35z3e3bENCCYjr4xh4f5t9lFvNUz92zJumTqMW6bGnaCRK6WUUspZHc1Iu5K7uzvTp09n+vTppKam8uqrr7bZNiAggEsvvZRLL70UNzc3PvvsM8aMGcOiRYuatCspKeHIkSMkJSWxZs0apk6dyuLFi119Kd2mM939mE/sGMKlhCPZBxq3NSwH7+6dA8De/LJWj22QdayCIyVVfL7tiOsGqpRSSqlTzq5du9izZ0/j+02bNjFkyJBW265atYpjx44BUFNTw/bt2xkyZAgzZ86koqKC1157DYD6+nruuusubr/9dnx9fV1/ET1Ig+5+TKJGA2DN2dK4zdsagzHCmPhywgO82JvffnpJRp4tKN90qIiSKq3vrZRSSimbsrIyrr/+epKTkxk9ejTbt2/nwQcfBOD8888nNjaW2NhYrrjiCjIzM5k2bRqpqamMHTuWCRMmcNlllyEifPDBByxatIjExETCwsJwc3Pr1eXku0rTS/qzSFvOU8CxnRhjEBGe+/Yw1IYRFlOAsQSQ2cFMd0PQXW81/JBZyOyUgS4ftlJKKaVOfuPHj2f16tUtti9fvrzV9tddd12r2wcNGsTHH38MwOrVq7n66qvZuHEj48aNa0xdORXoTHd/5hNMiW8s8fV7KSirISOvlI82HWZIYCL7SvYQb/FnbwcPUmbklRHq74WvpzsrMwpO0MCVUkop1R+dccYZHDhwgHHjxvX2UDpNg+5+riY8hZFygD25pfxjyR58PN35ScI4ssqyiA0TjpbXcKy8ps3jM/LLGB4ZwGlxoazco0G3UkoppVRrNOju53wGpTFMjvDlj5ks3pLDDWcMZexAW9qJl28uAHsLWk8xMcaQkVdGQkQAUxLC2VtQzuGiyhM2dqWUUkqpU4UG3f2c/+A03MSwdeNqAr09+MVZcY3LwVfJIQAy81pPMckvraa0qo7EiECmJloAWKWz3UoppdRJQdfQ6Dk9cS816O7nGiqYJLsd4KYpwwjx8yLcN5xQn1Byq/fi5e5GZhsz3Q0PUSZEBDA8MgBLoDffaV63Ukop1et8fHwoLCzUwLsHGGMoLCzEx8enW/1o9ZL+LiiGCvcgxkoWs6YOA0BEGBE6gt3HdjEk7Jw2ywZm5B8PukWEKQnhfLs7H6vV4OYmTp0+PbuY9zYc5p45Sfh4uvfMNTmos9ZxqPQQe47tobKukgvjL0TEubEppZRSp6rY2FiysrLIz8/v7aH0CT4+PsTGxnarD+mL34AmTJhg1q9f39vDOGXUvzwXCjNwT7mocdv/le1gQcV+JleFU11rJTEioMVxOcVVFFXWMmJgIAIcq6wl+1glcRZ/fJ0IoGvqrewrKKeu3jAo1JcgH8+OB+sTDIEDwS8MpO0/1BRXF5NRlEFmUSY11uMPgi6au6hxASCllFJKqe4QkQ3GmAlOtT3Zg24RiQPuB4KNMZc7c4wG3Z209nlY+ldw+FVY5+XOXQP8qBXA0OrssLEfIBzfZ4wBabqtLU1+95w6xhwfowDiDm4erQbfvm6eJPiEk+gdTqJPON5uHtx9aDGPxp7P+SEjOxxbj/PwhuSLwPPUWj1LKaWUUm3rTNDt0vQSEXkJuADIM8aMctg+B/gn4A68YIx5tK0+jDF7gZtFZJErx9qvTfq57eVgIrACWLQhi9+/u5lv7ppGvKXpbPekR5Zw1nALT1wxpnHb7Ce/JTLIh9dvPq3N09XWW7nplXV8n1nIazdN4qNN2Xy6NYf1fzyn3RSTjNxSoqUQv9z1kLUODq2BnC1g6ju8xBrAfeggMre9CceKO2zvEm4ekOrU90allFJK9TGuzul+BXgaeK1hg4i4A88As4AsYJ2IfIwtAJ/f7PibjDF5Lh6jake8xR+AvfnlTYLukqpa8kqrSWiWdjIlwcIbaw5QVVvfagBtjOGBD7fx3Z4CHrt8NGckhFNTb+Xt9YdYuaeAc5IjWx1HQVk15z+1kulJFv577eXHg9eaCqg81uF1eAGDltxCZvRgOO1PTl59D6kpg2cmQVnuiT2vUkoppU4aLg26jTErRGRos82TgAz7DDYi8hZwkTFmPrZZcXUSibMH2nvzy4DjAXFj5ZJms99TE8N5adU+1u8/xpTE8Bb9/XfFXt5ad4jbz07gygmDADgjPpwgHw8+25bTZtD99rpDVNdZ+TI9l2U78zh7RIRth5ef7eWEhNAR7CnaA8ExTrXvMcbYUmEqCk/seZVSSil10uiNkoExwCGH91n2ba0SkTAR+Q8wVkT+0E67X4jIehFZr0/q9pxgX0/CA7zJzG9aNtCxXKCjScNC8XQXvsto+Rm8s+4Qj36+k7ljovndrOGN27083JiVPJCoBCOpAAAgAElEQVSvt+dSU2dtcVxdvZU3fjjApGGhxFv8+fPH6VTVdpxS0lx8SDyHSg9RXV/d6WO7RcT24KcG3UoppVS/ddLX6TbGFBpjbjXGxNtnw9tq95wxZoIxZoLFYjmRQ+zz4iz+LcoGZuaV4eXhxqDQprPM/t4ejB08oMmS8FW19dz33hbueW8LZyaE8fjlo1uUFDwvdSClVXWsymxZ5/ubnXlkF1dx05nD+OtFozh4tIJnl2e2Od4NB47x8ebsFtvjQ+KxGiv7i/c7c9k9yy9Ug26llFKqH+uNoPswMMjhfax9mzpJxVv8W53pjgv3x72VetxTE8JJzy7haHkNmfllXPzMqsaUkldvnNRqrveUxHACvD34fGtOi32vf3+A6GAfzhkZwRkJ4Vw4Jpr/fJvJvoKW9cO/TD/C1c/9wG/f3tRiNjw+JN429qKMTl1/j/ALg4qOc8+VUkop1Tf1RtC9DkgUkWEi4gXMAz7uhXEoJ8VbAjhWUcux8uP1rjPyy4hvpXY30JjL/fCn25n71ErySqt59aZJ/P4nSXi4t/4r5+3hzjkjI/hqey619cdTTDLyyliZUcBPTxvceOwfzx+Jl7sbf/44vUnZwfc2ZPHLNzbi7+1OvdWwJ7fpF4WhQUNxF3cyi9qeJXcZnelWSiml+jWXBt0ishD4HkgSkSwRudkYUwfcDnwJ7ADeMcaku3IcqnviGiqY2JeDr6qt59DRihYPUTYYHRtCkI8H7288TEp0EJ/eMYVpwztO+Tk3NYqiilp+2Hs8OF3wwwE83YWrJg5u3BYR5MPvZg1nxe58vth2BIBXVu3jrnc3c3pcKAtusZUr3J7TtDSgl7sXgwIH9VLQrTndSimlVH/m6uolV7ex/TPgM1eeW/WcuHBbcJ2ZV874IaHsKyjHalo+RNnA3U24e84IiitquHVafJuz281NG27Bz8udz7YeYWqihfLqOt7bkMV5qVFYAr2btL1u8hDe3ZDFQ59sJz27hKeXZTA7OZJ/XT0WL3c3/L3cSc8uaXGOhJAEWwWTE60h6DbG9mClUkoppfqVk/5BStX7Ygf44uXuRqZ9prutyiWOrj19CLfPSHQ64Abw8XRnxogIvko/Qr3V8MGPhymtruO6yUNatPVwd+Phi1M4UlLF08syuHRcDM/+bBw+nu64uQkjo4LY3krQ3WsVTHxDbYv4VPXSwjxKKaWU6lUadKsOebi7MSTMj8w824OLGXlluAkMC/fv8XOdnxpFYXkNa/YV8vr3B0iJDmLc4AGtth0/JJR754zgt+cM54nLxzQJ8FOig9iRU4LVapoc02sVTPzCbP9WHj2x51VKKaXUSUGDbuWUeEtAY053Rl4Zg0L92l2yvaumJ0Xg6+nO/M92siu3lOsmD0HaSce4bXo8vzknsUUJwuToIMpr6jlwtKLpddgrmJzwvO6GoLtCg26llFKqP9KgWzklzuLPwcIKauutZOSVtfkQZXf5erlz9ggLWw8XE+zryYVjurZ6ZHJUMECLFJOGCiYnvGxgY9CtD1MqpZRS/ZEG3copcZYA6qyG/QXl7Csobzefu7vOHRUFwBXjY/H16tpsemJkAB5ucvJUMPELtf2rQbdSSinVL7m0eonqO+LtZQOX78qnpt7aZo3unjArOZJfTo/nxjOHdbkPH093EiICWn2YMiEkoRdmujXoVkoppfoznelWTomzp5N8td1WF9uVM90+nu7cM2dEizKBnZUcFdRq2cD4kHgOlh48sRVMvIPAzUNzupVSSql+SoNu5ZRgX0/CA7xZf8C2lLkrg+6ekhwdRF5pNfmlTYPrXqlgIqIL5CillFL9mAbdymlxFn+Mgcggb4J8PHt7OB1Kjg4CYEdO09nurlQw+T6zkLX7ujlLrUG3Ukop1W9p0K2c1pDXfSrMcoMtvQRokWLS2QomZdV13PbGBu56dxPGmI4PaItfmKaXKKWUUv2UBt3KafH2vG5XlQvsaSF+XsSE+LK92Ux3QwWTvcV7nepnwQ8HKKqo5dDRSnbllnZ9QL4DdKZbKaWU6qc06FZOizvFZrrBlmKyPbvl0usJIQlOpZdU1tTzwnd7GRMbjAh8lZ7b9cH4hemKlEoppVQ/pUG3ctr4waFMTQxn2vCI3h6K05KjgthbUE5FTV2T7XEhcU5VMFm49iAFZTXcf34y4wYPaKze0iUN6SVWa9f7UEoppdQpSYNu5bRgP09ev/k0Bof59fZQnJYSHYQxsPNI07SQhJCEDiuYVNXW898VmZw2LJRJw0KZnRzJtsMlHC6q7Npg/MLA1EN1y5l3pZRSSvVtGnSrPq2hgknzRXKcqWCyaEMWuSXV/HpGImBbtAdgyfYuppg0LpCjKSZKKaVUf6NBt+rTYkJ8CfLxaLOCSWZx60F3bb2Vfy/PZOzgEM5MCANsCwQlRAR0PcXEz9aPBt1KKaVU/6NBt+rTRMT2MGUbFUzamun+YONhDhdV8usZCYhI4/bZyZH8sPcoxRW1nR+MLgWvlFJK9VsadKs+LyU6mJ05JdTVN32Asa0KJnX1Vp5dnkFKdBBnJzV9aHR2ykDqrYalu7qQYtI4061Bt1JKKdXfaNCt+rzkqCCq66zsLyxvsr2hgklNfU2T7Yu35LC/sKLFLDfA6JhgIoO8u1Y6UINupZRSqt/y6O0BKOVqDQ9TpmeXkBAR2Li9oYLJkgNLiAmMwVgNa/cf5cWV+xka7cZASy6b8/Na9DcusYRvd2eyLscNL49OfG81Bnz8oGgP5G/u9nUFegUSFxzX7X6UUkop5XoadKs+LyEiAC93N7Znl3BRWkzj9hGhIwC497t7mx4QDhXAtV+03ad7LNz0VRcGExUOBcvhs+VdOLilzy/9nNjA2B7pSymllFKuo0G36vM83d0YPjCgycOUxhhqq8K5OOJRPk3fS3FlLUPD/DgvNYoJQ0Nxd5M2+6urN/z6zY1MHBbKTVOGdW4wi38HgQNh2j1dvRzAVurwifVPkFWWpUG3UkopdQrQoFv1C8lRQXy9PZcPfzzMij35rMooILfEthrl1MRJ3HpxPGfEh7XI4W7L9CEBfL+ngMlXnNlugN6CdwRU1UDMlK5cRqPBgYN5Yv0T5Ffkd6sfpZRSSp0YGnSrfmFUTDDvrM/izrc3McDPkzMSwpmaEM6UxHBiB3R+hc3ZyZF8sjmbHw8eY8LQUOcP9AuDvO2dPl9z4b7hAORVtMw5V0oppdTJR4Nu1S9cOi4WdzdhdEwIKdFBuHVmdroV05MseLoLX23P7WTQHdoj1Uv8PP0I8Awgv1JnupVSSqlTgZYMVP1CgLcHPzttCKmxwd0OuAECfTyZHB/Op1tyKKuuc/5AvzCoPAZWa8dtO2Dxs2h6iVJKKXWK0KBbqS76xdQ4jpRUcduCDdTUORlE+4WBsUJVUbfPb/G16Ey3UkopdYrQoFupLpqSGM78S1P5bk8Bdy/ajNVqOj6ocYGco90+v8XPojndSiml1ClCc7qV6oYrJwyioKyax77YRXiAN388f2T7FVB87fnfFYVAQrfOHeEbQUFlAcYYp6uuKKWUUqp3aNCtVDfdNi2evJJqXly5j4hAb/5nWnzbjf3sQXdlz8x0V9dXU1JTQrB3cLf7U0oppZTraNCtVDeJCH+6IJmCsmrmf76TsABvLh/fxoI1jekl3a9gYvG1AJBfka9Bt1JKKXWS05xupXqAm5vw9yvHcGZCGPe+t4UVu9t4wLEng24/W9CdV6l53UoppdTJToNupXqIt4c7/7lmPIkRAfzyjY3sOlLaspGXP7h790jQHeEbAUBBZUG3+1JKKaWUa3UYdIuIn4g8ICLP298nisgFrh+aUqeeQB9PXr5xIv7e7tz48lrySqqaNhDpsQVywv10VUqllFLqVOHMTPfLQDUw2f7+MPCwy0ak1CkuKtiXF6+fSFFlLTe/up6KmmaL5/iFQcWxbp/H18OXQM9AXSBHKaWUOgU4E3THG2MeA2oBjDEVgNYnU6odo2KCeerqsaRnF3PHwk3UO9bwbmem+4ttOSzZnuv0eSx+ukCOUkopdSpwJuiuERFfwACISDy2mW+lVDtmjozkz3NTWLIjl4c/3X58h19Yq0H3ku253PbGRv7wwVbnFtrBviqlznQrpZRSJz1ngu4/A18Ag0TkDeAb4B6XjkqpPuL6M4Zy05nDeHnVfv7+1S6MMa0G3TuPlPCbt34kwMuD/NJq0rNLnOpfZ7qVUkqpU0OHdbqNMV+LyEbgdGxpJb8xxmi5BKWcdP/5IymvruOppRnklVQzf8AA3CqPgbUe3NwpKKvm5lfWE+Djwcs3TOL8p77jm525pMZ2XHu7YSl4XZVSKaWUOrk5U73kLCAFKAVKgGT7NqWUE9zdhEcvS+WOGQm8vf4Qb6VXAAaqiqmuq+d/Xt9AYXk1z183geToINIGhbBsp3MVSSy+FmqttZTUODczrpRSSqne4cyKlHc7/OwDTAI2ADNcMiKl+iAR4Xezk4gM9mHtx6v4qScUFR7hL98fZMOBYzzz03GMjg0BYOaICJ74ajd5pVVEBPq022/jAjkVeQR7B+uMt1JKKXWS6nCm2xgz1+E1CxgFdL/emVL90M9OG8K1M8YBcOdLS3h/42F+e85wzh8d1dhmxohIAJbv7DhXu2GBnPyKfLKOVTB5/lIWrj3ogpErpZRSqju6siJlFjCypweiVH8xfmQ8AAOklIvTorljZkKT/SOjAokK9mGpEykmFl/bTHd+ZT6v/3CAIyVV/OmjbWw4cLTnB+6gqrbe9lCoUkoppZzSYXqJiDyFvVwgtiA9DdjoykEp1af5hQHw2HmxeIxPa5EOIiKcPSKCj348THVdPd4e7m121bAqZXZZLm+v82VqYjgHj1Zw24KNLP71FCKC2k9P6YrDRZWc8/dvOT0ulIcvSSUmxLfHz6GUUkr1Nc7MdK/HlsO9AfgeuNcYc41LR6VUX2YPuj2rjrWZfz0jKYLymnrW7Ws/k8vXw5dAr0DWHdxPUUUtv5yewH+uGU9pVR2/fGMjNXXWHh/+J5uzqayt54e9R5n1f9/y8qp9TRf/UUoppVQLzuR0v+rwesMYs+pEDEypPsvTDzx82lyVEuDMhHC8Pdz4ZmfHq1NG+EawLfcQSZGBnB4XysioIB69LJX1B47xv5/t6MmRA7agO21QCF//7iwmDQvloU+2c9m/V7PziFZQUUoppdrSZtAtIltFZEsrr60isuVEDlKpPkXEvkBO23nXvl7unBEfxtKdeR3mTntLCGV1R7nujCGNM+cXpcVw85RhvLJ6P+9vzOqxoe/NLyM9u4QLRkcRO8CPl2+YyD/npXHwaAUX/Gsln23N6bFzKaWUUn1JezndF5ywUSjV3/iGtjvTDTBjRATLPkpnb0E58ZaANtsVlvjg7lnKxWkxTbbfd+4Ith0u5g/vb2WAnxfThltwc+teOcHFW2xBdUO1FRHhorQYzkq0cOEzK1m0IYvzUqPa60IppZTql9qc6TbGHGjvdSIHqVSf4xcKle1XGDl7hK0c4NIdbVcxySupIivfEzfPUvy8mj5w6enuxtM/HYcl0JsbX1nHWY8v48mvd3PoaEWXh714SzaThoYSFdz04ckB/l5MHBJKenZxl/tWSiml+jJnVqQ8XUTWiUiZiNSISL2IaPKmUt3hF9bhTHfsAD+SIgPbLR345tqD1NcGYKWO4uqWAa8l0JuvfzuNf85LY2iYP/9auoepjy3j6ud+YHVmQaeGvOtIKbtzy7hgTOsz2SkxweSWVJNXWtWpfpVSSqn+wJnqJU8DVwN7AF/gFuAZVw5KqT7PiaAbYMbICNbtP0pJVW2LfTV1Vt5Yc5DkiFgA8ipbD859vdy5KC2GBbecxsp7Z3DXrOEcKCzn1tc3UFzZst+2LN6SjZvAuaPaCLqjgwBIz9bv5EoppVRzTi2OY4zJANyNMfXGmJeBOa4dllJ9nF8YVBZBfV27zWaMiKDOavhud8tZ6S/Sj5BfWs2Fo2xrVeVXdLyCZUyIL7+emcjz10+gpKqOF77b69RwjTEs3pLD5PgwLIHerbZJtgfd2zXoVkoppVpwJuiuEBEvYJOIPCYiv3XyOKVUW/xCAQNVRe02GzsohBA/z1ZLB762ej9DwvyYNTwRgLyKjlewbJASHcz5o6N4aeU+CsuqO2yfnl3CvoJyLhgd3WabIB9PhoT5se2w5nUrpZRSzXW4IiVwLbYg+3bgt8Ag4DJXDkqpPs++QA4VR8E/vM1mHu5uTB9u4f2Nh/li2xH8vT0I8PbAz8ud9OwS/nj+SCL8bUvBF1R2Lkf7t+cM5/OtOfx7eSZ/vCC53bafbMnGw02YkzKw3XajooPZqkG3Ukop1YIzQfd44FNjTAnwkIvHo1T/4Bdq+9eJvO67ZicxLDyAsupayqrrKKuup7y6jpgQX66cOAgfD0+CvII6NdMNkBARwKXjYnnthwPcMjWOgcGtLxlvjGHx5hymJIYzwN+r3T6To4P4dGsOxZW1BPt6dmo8SimlVF/mTNA9F3hSRFYAbwNfGGPaT0RVSrWvcaa746B7UKgfvzknsd02Fl8L+ZUd53Q395uZiXy06TBPLd3DI5ekttrmx0NFHC6q5LezhnfY36iYYMCW1z05PqzT41FKKaX6KmeWgb8RSADexVbFJFNEXnD1wJTq03ydn+l2hsWva0H3oFA/5k0czNvrDnGwsPX63Ys35+Dl7sbslMgO+ztewURTTJRSSilHzsx0Y4ypFZHPAYOtbODF2EoHKqW6omGmu/gQlHUuLaQ1EZ6BrCve26W+7jgtiG/WF/PClz/wlwtHNdlntRqWbclkWlIUQT4dp4uEB3gzMMhHywYqpZRSzXQYdIvIucBVwHRgOfACcKVLR6VUX+flB16BsOJx26ubLAOCyQ8OwjyRSGcXercAqz2A3cATTfe5AV8ad75N+NLp/lKig7SCiVJKKdWMMzPd12HL5f4fY0zHtcWUUs65eiEU7OqRriyFm6jL/ZainzzMAA/fjg9opry6nv/7ejdBvh5YDY1lBIf5lHNz/TtMDzgITHSqr5SYYJbtyqOyph7fZkvTK6WUUv1Vh0G3MebqEzEQpfqdYVNtrx5g2f8V5H5LXtJsBoQmdfp4f8BSn8nTSzOYNCyUqYnhTE20EB/iBvMX4Vno/JeDlOggrAZ2HClh3OABnR6LUkop1Rc5ldOtlDq5RfhFAJBfmU8SnQ+6AW6dFs+t0+Jb7giNg7ztTvfjuBx8bwbdxhiq66z4eOpsu1JKqd6nK0sq1QeE+9oW2HFmKfhOixgJeTudbh4T4kuInyfpvZzX/ezyTEY/9BXzP99BSVVtr45FKaWUciroFhFfEena9JlSyuUsfrZVKbtSNrBDEclwNBNqq5xqLiKkRAe1WcGkqraeXUdKe3KErZ7jpZX7CPb15L/f7mX648t5dfV+auutLj2vUkop1ZYOg24RmQtsAr6wv08TkY9dPTCllPO83b0J9g7u9KqUTokYCcYKBbudPmRUdDC7jpS2GuT+4f2t/OQfK7hj4Y/klToXyHfWx5uzKSyv4R9XpbH411MYHhnAnz9O5ydPrmDJ9lyXnFMppZRqjzMz3Q8Ck4AiAGPMJmCYC8eklOoCi6/FReklybZ/83Y4fUhydBA19Vb25JY12b41q5gPfjzM+CED+GLbEWb+/Vte+34/9VbTY8M1xvDyqv0kRQZyRnwYo2KCWfjz03nhugkgcMtr61mzt2cWJVJKKaWc5UzQXWuMaZ6c2XP/D6mU6hEWXwsFlQU933FoHLh5duphyobl4Lc5rExpjOGRz7YT5u/FKzdO5Is7pzI6Npg/fZTOJc+uYmtWz+SAr9l3lB05Jdx45lBEbFXLRYRzkiP59NdTCfLx4I01B3vkXEoppZSznAm600Xkp4C7iCSKyFPAahePSynVSRY/C3mVLkgvcfeE8OGdmukeFuaPn5c72x3yur/ZkccPe49y5zmJBPp4EmcJYMHNp/HPeWlkF1Vx0TMreW5FJsZ07zv9Syv3McDPk4vHxrTY5+vlziVjY/hi2xGOldd06zxKKaVUZzgTdP8aSAGqgTeBYuBOVw5KKdV5Fl8LBRUFWI0LHhaMGNmpoNvNTUiOOr4yZV29lfmf7yDO4s+8SYMb24kIF6XF8M1d0/hJykD+97Od3Pn2Jipr6rs0zENHK/h6Ry5XTxrcZqnAeZMGU1Nv5f0fD3fpHEoppVRXdBh0G2MqjDH3G2Mm2l9/NMa45umnVojISBH5j4gsEpHbTtR5lTrVWPws1Jk6jlUd6/nOI0ZC8UGodr7qSEp0ENtzSrBaDW+tO0Rmfjn3zRmBp3vL/9kJ9vXk2Z+N4+6fJPHx5mwu/89qso5VdHqYr67ej7sI104e0mabkVFBjBkUwltrD3Z7Vl0ppZRyljPVS74WkRCH9wNE5EtnOheRl0QkT0S2Nds+R0R2iUiGiNzXXh/GmB3GmFuBK4EznTmvUv1RwwI5LsnrbniYMr8TK1PGBFNRU8+27GL+sWQ3k4aFMis5ss32IsKvzk7gxesncLCwggufXsX3mc4/8FheXcfb6w9xbmoUUcG+7ba9euIg9uSVsfGgC76gKKWUUq1wZkXKcGNMUcMbY8wxEYlwsv9XgKeB1xo2iIg78AwwC8gC1tlLELoD85sdf5MxJk9ELgRuA1538rxK9TsWX1ut7g8zPiQuJK5nO68sgEB/2LkQKvY5dUiOtRLPkAx++fFmij2qmDwmgUV7stpsH+AZwJyhc5gxIpIPbz+TX7y2nmteXMO8iYO4ecow4iwB7Z7vvY1ZlFbVceOZQzsc29wx0fx18XYWrj3E+CGhTl2PUkop1R3OBN1WERlsjDkIICJDcLJ6iTFmhYgMbbZ5EpBhjNlr7+8t4CJjzHzggjb6+Rj4WEQ+xZZXrpRqZnDQYLzcvFiwY4FrThAeBoe/sr2c5BNlewjExx9ecmKS3OJrYcLACcRbAvjwV2fyv5/t5N31Wby59iDnjIzkF2fFMWHIgMaqJA2sVluZwDGDQpxaet7f24ML06L54MfD/GluMkE+nk5fk1JKKdUVzgTd9wMrReRbQICpwC+6cc4Y4JDD+yzgtLYai8h04FLAG/isnXa/aBjX4MGD22qmVJ8V6hPKt1d9S0Vd53OhnbLgcvAOhCtedvqQ615aw968ct65dTLRIW2nfJTXlnPhhxeyMW8jEwZOACDQx5P5l6by21mJvP79AV7/4QBfb89lzKAQpg23EOrnyQB/L0L9vTh0tJJ9BeX8c16a02ObN3EwC9ce4qNN2Vx7ets54EoppVRP6DDoNsZ8ISLjgNPtm+40xrggabTN8y8HljvR7jngOYAJEybo01GqXwrwCiDAq/00jC6LGAUZS8DP2ewy+H+zT6e0qo606KgO2yaEJLAxb2PL0wb6cNfsJG6bHs97G7J4efV+/vXNnhbtIoO8OS+14/M0GB0bzMioIN5ae1CDbqWUUi7nzEw32GaZj9rbJ4sIxpgVXTznYWCQw/tY+zal1MksYiRsegPKC8E/zKlDzhpucbr7sRFj+WLfF9Rb63F3a1nuz8/Lg2snD+XayUOpq7dSXFnLsYoajpbXcrS8moSIgFYro7RFRLh60iD+9FE6W7OKSY0NdvpYpZRSqrOcqV7yN2AVtjSTu+2v33fjnOuARBEZJiJewDzg4270p5Q6ESJG2v7Nd75ed2eMjRhLaW0pGUUZHbb1cHcjLMCbhIhAJg0LZc6oKBIiAjt9zovSYvDxdGPhOl2hUimllGs5My10MZBkjDnfGDPX/rrQmc5FZCHwPZAkIlkicrMxpg64HfgS2AG8Y4xJ7+oFKKVOkIaygZ1YJKczxkWOA+DHvB9d0n9rgn09OS81io83ZVNeXXfCzquUUqr/cSbo3gt06dF+Y8zVxpgoY4ynMSbWGPOifftnxpjhxph4Y8wjXelbKXWCBUaBT7DLgu5o/2gi/CJazet2pasnDaasuo5PNmef0PMqpZTqX5zJ6a4ANonIN9iWggfAGHOHy0allDr5iNhmu10UdIsIYyPGntCZboAJQwaQFBnIq98f4KqJg1qUI3RUXFnLoaMVhAd4Exbg1akccqWUUv2bM0H3x2jOtVIKbHnd294HY2xBeA8bGzGWL/d/SU5ZDlEBzlci6Q4R4YYzh/KH97eydt9RTotr/SFRYwy3vLqOdfuPr2IZ4udJeIA3A4N8iLf4Ex8RQIIlgISIACyB3u0G8A19llXXEeDt0WFbpZRSpzZnSga+KiK+wGBjjPNrQCul+h7LSKgqgtIjENTzQfG4CFte98a8jZwfcH6P99+Wi9NiePTznbz6/f42g+6VGQWs23/MvjqmPwWlNRSUVVNQVk12USXvbTxMmUNeeIC3BwP8PQnx9SLY15NgX08CfTwoqaolr6Sa3NIq8kqqqa6zcvOUYTxwQfIJulqllFK9ocOgW0TmAk8AXsAwEUkD/uLsw5RKqT6koYJJ3naXBN2JAxLx9/Tnx7wfOT/uxAXdvl7uzJs4iBdW7uNwUSUxzRbyMcbw5Ne7iQ724Z45SXh7tCxpaIwht6SajLwyMvJK2V9YQVFFDcWVtRRV1pJdXElpVR2BPh5EBvowfvAAIoJ8WLE7n+W78jToVkqpPs6Z9JIHsS3dvhzAGLNJROJcOCal1MmqMejeAQkze7x7DzcPxljGnPCHKQGuOX0Iz3+3lwU/HODeOSOa7Fuxp4CNB4t4+OJRrQbcYEtTGRjsw8BgH6Ykhjt93hA/Tx77YhdHy2sI9ffq1jUopZQ6eTnzFFCtMaa42TarKwajlDrJ+YeDf4TLHqYEW153xrEMSmpKXHaO1gwK9WNWciRvrT1IVW194/aGWe6YEF+unDConR66ZsKQUAA2HDjWQUullFKnMmeC7nQR+SngLiKJIvIUsNrF41JKnawiRrpsgRywBd0Gw+a8zSLOjxEAACAASURBVC47R1uuP2Moxypq+XjT8fKBy3fns+lQEb86OwEvj56vVjI6NhhPd2H9gaM93rdSSqmThzP/D/JrIAVbucA3gWLgTlcOSil1EotIhrydYHXNH7xSw1NxF/cTXjoQYHJcGEmRgby8ej/GGIwx/GPJHmJCfLl8fKxLzunj6U5qTDDr9+tMt1JK9WXtBt0i4o7tocn7jTET7a8/GmOqTtD4lFInm4iRUFsOxa5ZOt3P04+RoSN7Ja+7oXzgjpwS1u0/xvJd+Ww+VMT/Z+/O4+Ouq/2Pvz6zZbLvW9t0S5e00FJKWyhrW0BZlQsqCirifkVEvXq9Xq/LXbzqvf7UqwJXENR7ZVEErmwiS1u2AqUblLZJ23RP0yZpmn2f+fz+mJk0bZPJJJmZLPN+Ph7fx3S+8535nmhJT07O53xuXxWbKnfIkuk5bD3UeFJbi4iITCxhF1Jaa33GmAvjFYyIjAOhxZR/+iQkZ8fkFmf7a/ijbaTrf/8GjxlBsps7G674wZBmiofGB/7mtcAkk5KcZG6IUZU7ZMm0bO55eQ/vVjWyZHpOTO8lIiKjI5LpJZuNMU8AjwCtoZPW2sdiFpWIjF1FC2HOFdBaC+2xaYlYbPz8r9uyvbOORdY9vA9pPgq7X4DLvgvu5MGvDwqND/zVy3sA+I8bFsZ858lzpgV+eHlr33El3SIiE1QkSbcXOAas6nPOAkq6RRKR2ws3/SGmt1jUXgd/XMnm8z7JojNvHd6HrL8XnvkadDQNKemGE+MDp2Sn8DeLJw/v/kOQm5bEzLxUNu6vB0pjfj8REYm/SHakHOa/eCIiw5OXnMe0jGlsqtnErQzzW5A3K/DY0QjphUN6a0lOCj+4fgEz89NiXuUOWTI9m+e3H8Xvtzgc2hJeRGSiGfRfE2PMHGPMi8aYd4PPFxpj/in2oYlIIluUv4gtNVuw1g7vA7yZgcfO4c37vnHpVJbGsdVjybQcjrd1s6euJW73FBGR+ImkveRe4OvArwCste8YYx4E/i2WgYlIYltcuJg/V/6Z16tfZ1LqpKF/gL8NXC44vhPSI98hMlpS3ankp+RHfP050wN93Rv2HWdWQXqswhIRkVESSdKdYq1db05e/d8To3hERAA4p/AcAD73/OeG/yElk2DTDyD+0wcBeOK6J5iROSOia2fmpZKT6uGtfcf58LKpMY5MRETiLZKku84YU0pg8STGmA8A1TGNSkQS3rSMadxz+T3Udwxzp8a24/CXr8PZH4OZl0Q3uEFUNlRy79Z7qWuvizjpNsZwzrTs4GJKERGZaCJJum8D7gHKjDFVwF7g5phGJSICLJ+0fPhv7myBP90G3kkw8+roBRWBTUc3ce/We+n2dw/pfUuDiylrmzvJT0+KUXQiIjIaBlxIaYy5I/jHYmvtZUA+UGatvdBauz8u0YmIDJcnFYxz2AspR8LtCMwW7/EPrRPvnGmBhZuRVrs7un1sOjD8WentXT4a24f2g4GIiAxPuOkloTldvwCw1rZaa5tjH5KISBQYA96MwMjAOHM7A0l3l69rSO87c3IGHpeDDfvCJ9I9Pj9/eOsAq368luvvWsdb+4bXkvLPT27jpnvfGNZ7RURkaMK1l+wwxuwCJhlj3ulz3gDWWrswtqGJiIyQNzOwOU6ceRwegCG3lyS5nCyaksWG/f0n3X6/5emt1fz0+Z3sqWvljEkZHG7s4J1DjcMab1hxtJlth5to7ugm3TvMnT9FRCQiAybd1tqPGGOKgL8C74tfSCIiUZI0SpXuYHvJUJNuCIwOvPflPbR3+Uj2OHvPv7yzlh/+pZzt1U3MLUznno+dw+XzC1n6/ReoODK8HyyqGzoA2FHdzLIZ2n5eRCSWwi6ktNYeAc4yxiQDU621FfEJS0QkCryZ46q9BGDJtGzu9lvePtTAeTNz2V3TzL89vYO1FbWU5CTzsxsXce1Zk3AGd62cW5ROxZGhd/51+/wcbQ4k3VurGpV0i4jE2KDTS4wx1wI/BjzADGPMIuBfrLWqfovI2ObNhPo9cb/tiCrd0wKb5Dy//SjPbK3mgTcPkOJ28o9XlXHL+dNJcjlPun5uYQYPrt+Pz297E/FIHGnsILTZ57aq+P9gIiKSaCIZGfg9YBmwFsBau8UYE9ngWRGR0TQOK91ZKR5mF6Rx36t7cToMNy2bypcvm01uWv8jBMuK0+no9nOgvo0ZeakR36e6MVDlTvU4efewkm4RkViLJOnuttY2nrIjpY1RPCIi0ZOUMa4WUoZ84oLprNt9jC9fNpvZheG3hC8rCrxeXt00pKT7cEM7ACvKCvjL1urTeshFRCS6wo0MDNlmjLkJcBpjZhtjfgGsi3FcIiIj582Ermbw++J625G0lwDcfO407rx58aAJN8DsgnQcBsqH2NddFUy63zO/EL+F7dXx/+FERCSRRJJ03w6cAXQCDwKNwJdjGZSISFR4MwOPcd4gx+lw4jAOun2x33gm2eNkem7qkBdTHm5oJyvF3buAcptaTEREYipse4kxxklg0eTXgG/FJyQRkSjxZgQeOxohOTuut/Y4PMOudA/V3KJ0dgyxUl3d2MGkzGSKMrzkpnp4V4spRURiKmyl21rrAy6MUywiItEVqnSP0qzueCXdZUUZ7K9vo60r8m3nDze0MykrGWMMZ0zO5N0qtZeIiMRSJO0lm40xTxhjPmaMuT50xDwyEZGRSgpVuuOfULqd7mFNLxmOuUXpWAs7j7ZE/J6qhnYmZXkBWDA5g51Hm+nojm/vu4hIIokk6fYCx4BVwLXB45pYBiUiEhUJUumeVxxYcBnpzpTNHd00d/QwKSsZgDMnZdLjt+w8OvRNdkREJDKDjgy01t4aj0BERKIu1NMd54WUEEi641XpLslOIcXjjHiCSWhGd2/SPTnww8m7VU0snJIVmyBFRBJcJJVuEZHxyRtMIEeh0u1xxm8hpcNhmF2YTnl1ZEl3aFzg5GB7yZTsZDK8LrZqMaWISMwo6RaRiWs0e7rj2F4CMK8onfIjTVg7+N5loY1xijMDlW5jDGdOztTYQBGRGFLSLSITl9MF7tTRq3THYU53yNyidI63dVPb3DnotdUNHTgdhoL0E1vLL5icSXl1M90+fyzDFBFJWIP2dBtjkoAbgOl9r7fW/kvswhIRiRJv5oRfSAmBpBsCO1MWZHjDXnu4oZ2iDC8u54m6yxmTM+ny+dl1tIX5kzJiGquISCKKpNL9Z+D9QA/Q2ucQERn7vBnQOfGT7rKiQKIcyc6UVQ3tFGeenJifGUy0tUmOiEhsDFrpBqZYa6+IeSQiIrEwWpVup5uW7sjnZo9UTqqHgvQkdkQwNrC6sYNFJSdPKZmem0pakot3DzfyIUpiFaaISMKKpNK9zhizIOaRiIjEQlJGQiykBCgrzhi00u33W6ob23vHBYY4HIb5kzJU6RYRiZFIku4LgY3GmApjzDvGmK3GmHdiHZiISFSMYk93vOZ0h5QVpbOrpoWeMIsh61o66fbZ3nGBfZ05KZPt1U1h3y8iIsMTSXvJlTGPQkQkVryZo7I5TjzndIfMLUynq8fPvmOtzCpI7/eaw8GNcULjAvs6c3IGHd1+9tS1Mqew//eLiMjwDFrpttbuB7I4sQV8VvCciMjY580IVLojmF8dTaPTXnJigslAQjO6T20vgb47U6rFREQk2gZNuo0xdwAPAAXB4/fGmNtjHZiISFR4M8HfA91tcb1tvOd0A8wqSMPpMGF3pjzcuxvl6Ul3aX4aXreDd6vi/5sBEZGJLpL2kk8B51prWwGMMT8CXgd+EcvARESiou+ulJ7UuN12NCrdSS4nM/JSw1a6qxraSfE4yUg+/du/02GYX6zFlCIisRDJQkoD+Po89wXPiYiMfd5Ay0S8F1OORtINgcWU5WHGBlY3dDApKxlj+v82HtoOXjtTiohEVyRJ92+AN40x3zPGfA94A7gvplGJiERLKOmO82JKtzMwvcTGuZe8rCidQ8fbaens6ff1w/2MC+xrZVkBrV0+HnhjbCzd8fkttz2wiTf3HBvtUERERiSShZQ/AW4F6oPHrdban8U6MBGRqBjFSrfF4rO+wS+OosF2pjzc0N7vuMCQFXPyuWh2Hj95fif1rfEdedifQ8fbeHprNc9srR7tUERERmTApNsYkxF8zAH2Ab8PHvuD50RExr5RTLqBuM/qnlsUmGCy7fDpX29Ht4+6lq5+xwWGGGP49jXzae3y8dPnd8Yszkjtrgns6llxdPDt7UVExrJwle4Hg48bgQ19jtBzEZGxr3chZXyTbo/TAxD3vu4p2clMzUnh+e1HT3vtSHBGd7j2EoA5hel87LxpPPDm/rD94fFQWRtMuo80x71VR0QkmgZMuq211wQfZ1hrZ/Y5ZlhrZ8YvRBGRERjlSne8k25jDFcvLGZd5TGOn9IecmJG98DtJSFfvmw2Gclu/uXJ7aOa7IYq3cfbuqlrGf12FxGR4YpkTveLkZwTERmT3MngcMV9IWVvpTvOs7oBrl5QjM9v+eu2Iyedrwol3WHaS0KyUjx89fI5rKs8xnP9VM3jpbK2lSRX4J+qnWoxEZFxLFxPtzfYu51njMk2xuQEj+nA5HgFKCIyIsYEqt0JUukGOGNSBtNyU3j6lMWH1cH2kqLMwSvdADctm8qcwjS+//QOOrrjuyAUwFrL7poWVs4tAAZeHCoiMh6Eq3R/jkD/dhmwKfjnjcCfgV/GPjQRkSjxZgY2x4mj0Uy6jTFcteD0FpPDDe3kpSXhdTsj+hyX08F3rz2DA/Vt3P/a3liFO6BjrV00tnezbEYOuakeVbpFZFwL19P9X9baGcDXgn3coeMsa62SbhEZP5Iy4l/pdo7O9JKQ/lpMqgYZF9ifC2bl8Z75hfxy9W5qmzujHWZYoX7uWQVpzClM1wQTERnXItkcp9EY8/FTj5hHJiISLd7M+G+OM4qVbui/xaS6sSPsuMCBfPU9c2jr8vHijvj2docml5QWpDG3KJ2dmmAiIuNYJEn30j7HRcD3gPfFMCYRkejyxr/SHVpIOVqV7r4tJvWtgZ0xDzeE341yIHML0ynMSOLV3XUxiHRgu2taSPE4Kc7wMqcwndYuX+9iUBGR8SaSHSlv73N8BlgMpMU+NBGRKEmwhZQhoRaT57YdobG9m7YuX0TjAk9ljOGCWXmsqzyG3x+/SnNlbSsz81NxOAxziwL/7KivW0TGq0gq3adqBWZEOxARkZhJSqyFlCF9W0wON0S2Mc5ALpyVR31rFzviuFlOZU0Ls/IDyfbswsBOmxVHWuJ2fxGRaIpkTveTxpgngsdTQAXweOxDExGJEm8mdLdCHGdmj+ac7pC+LSbvBreFH27SfcGsPABei1OLSVtXD1UN7ZQGk+4Mr5tJmV5VukVk3HJFcM2P+/y5B9hvrT0Uo3hERKIvtCtlZzOk5MTllmOh0g2BFpO711by29f2AZHtRtmfwgwvswvSeHX3MT57cWkUI+zfntpWILCIMmROUbpmdYvIuBVJT/dLfY7XlHCLyLjjzQg8djTE7ZahpLvLP7pbl4daTLZXN+FxOshLTRr2Z10wK4+39tbT2TPyjXJ2Hm3m+09vxzdAj3hocsmsPkn33MJ0dte20OPzj/j+IiLxFm5HymZjTFM/R7MxJr7NkSIiIxGqdMexr3sstJdAoMXk6gXFQGAnSofDDPuzLpiVR3u3j80HRv7Dy/2v7uXeV/ay5WD/n1VZ04LDwLTclN5zcwrT6erxs7++bcT3FxGJt3Cb46RbazP6OdKttRnxDFJEZESSQpXu+E0wcTkC3Xuj3V4CcFUw6R5ua0nIuTNzcDrMiPu6rbWsqagBYE15Tb/X7K5tYVpuKkmuE7tnzi0KLaZUi4mIjD8RTS8xxpxljPli8FgY66BERKKqt9Idv6R7tOd093XGpIzgkTmiz8nwujlrSuaI53Vvr27iaFMnLodh9QBJd2VNK6X5qSedm1WQhjFKukVkfIpkeskdwANAQfB4wBhze6wDExGJmlBPdxx3pRwrCykh0GLy+Bcu4FtXzRvxZ104K4+3DzbQ1DH8rytU3b7l/Olsr27iSGPHSa/3+PzsrWs9aRElgNftZHpuqiaYiMi4FEml+1PAudba71hrvwOcB3wmtmGJiETRKFS6x1LSDeBxOUbUzx1ywaw8/BbeqDw27M9YXV7DwimZfGhJCQBrK06udh863k6Xz987LrCvOYVpVCjpFpFxKJKk2wB9l6r7gudERMaH3p7u+FW6XQ4XDuMYE+0l0XT21GyS3U7WDTPprm/tYvPBBlbMLWBOYRqTs5JPazHZXROYXNJf0j23MJ19da10dI98goqISDxFMqf7N8CbxpjHCSTb7wfui2lUIiLR5HCCJ31UtoLv8ffE9Z6x5nE5WDYjZ9h93S/vrMVaWFVWgDGGFXPzeXxzFZ09vt5Fk73jAvurdBel47eBa0baoy4iEk+RzOn+CXArUA8cA2611v4s1oGJiESVNzOuPd0AHodn1Od0x8KFs/LYXdNyWi92JFaX15CX5mHh5EDCvKqsgLYuH+v31vdes7umhby0JDJT3Ke9f25wO3j1dYvIeBPJQspSYJu19ufAVuAiY0xWzCM7cf8VxphXjDH/bYxZEa/7isgE482If6Xb6R71Od2xMNwt4X1+y0s7a7lkTkFvf/n5pXkkuRwntZhU1rYwqyC138+YnpeK22moONIyzOhFREZHJD3djwI+Y8ws4L+BEuDBSD7cGHO/MabGGPPuKeevMMZUGGN2G2P+YZCPsUAL4AW0G6aIDI83M+5Jt8vhGjMLKaOprCid3FTPkJPuzQeO09jezcqy/N5zyR4ny0tzeyeaWGvZXdPSbz83gNvpoDQ/TZVuERl3Ikm6/dbaHuB64JfW2q8DxRF+/m+BK/qeMMY4gTuBK4H5wEeMMfONMQuMMU+dchQAr1hrrwS+AfxzhPcVETlZUvwr3RO1vcThMJw/K49Xd9dhbf/buPdndXkNTofhotn5J51fVVbAvmNt7K1rpa6li6aOnpO2fz/VnMJ0zeoWkXEnkqS72xjzEeDjwFPBc6c32vXDWvsygV7wvpYBu621e6y1XcDDwPuttVuttdecctRYa/3B9x0HkiK5r4jIaUah0j1R20sALijNpaa5s3fSSCRWl9ewZFo2mckn/xOycm5B7+uhRZQDVbohsDNlVUM7zSOYFS4iEm+RJN23AsuB71tr9xpjZgD/O4J7TgYO9nl+KHiuX8aY640xvwre85dhrvusMWaDMWZDbW3tCMITkQlpFBZSuh3uCdleAif6up/fcTSi66sb2yk/0szKsoLTXivJSWFWQRprymtOjAscpNINsGsICb+IyGiLZHrJdmvtl6y1DwWf77XW/ij2ofXe/zFr7eestTdaa9eGue4ea+0Sa+2S/Pz8gS4TkUTlzQjM6R5CO8RITdT2EggkyhfOyuP+V/fR3jX4zOw15YFiyKp+ku7Q+Tf3HuOdQw2keJwUZ3gH/KzeCSZqMRGRcSSSSne0VRFYjBkyJXhORCR2vJlgfdDVGrdbup1uenwTa053X1+6dDZ1LZ08uP7AoNeuLq9hclYysweoYK+cW0C3z/LE24eZmZ8advfMKdnJJLudbDsc399ciIiMxGgk3W8Bs40xM4wxHuDDwBOjEIeIJJLeXSnj19c9kSvdAMtm5LB8Zi7//VJl2B0iO3t8vLa7rndDnP4smZ5NutdFR7e/301x+nI4DBfNzuOBN/fz6EYNtRKR8SGmSbcx5iHgdWCuMeaQMeZTwUkoXwT+CuwA/mit3RbLOERE8AZ3L4xj0u1yuibsQsqQL106m9rmTh4OU+1+c0897d2+k0YFnsrtdHBxcKpJuEWUIT+9cRHLS3P5u0fe5n9e3zfUsEVE4i6SzXGWGGMeN8ZsMsa8Y4zZaox5J5IPt9Z+xFpbbK11W2unWGvvC55/xlo7x1pbaq39/ki/CBGRQXmDle44LqacyAspQ5aX5rJsRg53D1DtttbyyMZDJLkcLJ+ZF/azQosswy2iDElNcnHfLUu5bF4h3/nzNu5cs3tI4wtFROLNFcE1DwBfJ7AbpX+Qa0VExiZvcCNdtZdE3R2XzubmX7/JIxsO8rHl03vPW2v5/tM7ePLtw9y2spRkjzPs51y9oJgjje29IwQH43U7ufuji/naI2/zn3+toKmjm3+4ooxun2V7dROb9h9n88EGWjt7uPOmxYPe/2B9G4UZXjyu0ei8FJGJLpKku9Zaq55rERnfettL4ljpnsBzuvs6vzSXJdOyuWttJR9aWkKSy4m1lh89W8GvX93LJ86fztfeM3fQz0n2OPniqtlDurfb6eCnH1pEWpKLX720hxe2H+Xg8Xa6egI1ooL0JGqaO/njhoPccv70AT/nwLE2LvvJS3x8+TT+6Zr5Q4pBRCQSkfw4/11jzK+NMR8Jzsy+3hhzfcwjExGJpt6FlA1xu2UitJcAGGP40qWzqW7s4JENgYWNP31hF//9UiU3nzuV7147f8AFlNHgcBj+7boz+bvL55CXlsQty6dx982LeeObl/LmP17KOdOyueflPXT7Bv5l7Z1rdtPl8/PAmweob534v50QkfiLpNJ9K1BGYBfK0HcsCzwWq6BERKIuVOmOY0+3x+FJiKQb4KLZeSwqyeLutZXUNnfy8xd38aElU/jX958Z04Q7xBjD7ZfO5vZLT6+Uf2FFKZ/63QaefPsw1y+ectrrB+vbeHTTIS6Zk89LO2v57Wt7+WoElfnh+vOWKpZMz2FyVnLM7iEiY08kle6lwU1nbrHW3ho8PhnzyEREosntBacnrj3didJeAoGk947LZlPV0M5/vbiL68+ezA+uXxh23na8rCoroKwonbvXVuL3n77Y8s41u3EYw49uWMh7zyjkt+v2xWyL+Z1Hm7nj4S38cvWumHy+iIxdkSTd64wxanATkfHPm6mFlDG0Yk4+7z2jkA8vLeE/PrAQ5xhIuCHwA8HfrihlV00LL5yybf3B+jb+tPEQH15WQlGmly+smEVTRw8Pvjn4hj8hNc0dfPWPW7j4P9ZwrKUz7LUPrz8IwNqKWk1bEUkwkSTd5wFbjDEVQx0ZKCIypiRlxHUhpcvhSpj2Eggkt7/62BJ+eMNCXM6xNQHk6gXFlOQkc9faypOS3bvWBqrcf7uiFICzSrK4cFYe976yN+yGPwBdPX7uebmSVT9+iSffPsyB+jYeCJOsd/b4eGzzIdKTXFQ3drDzaEt0vjgRGRci+a54BTAbeA9wLXBN8FFEZHyJc6Xb7XTjt358/vDJm8Sey+ngsxeXsuVgA6/vOQbAoeNtPLLhEDcuLaE480R/9RdWllLX0skjYXa7fHlnLVf818v8+zPlLJ2ezXNfuYRL5uTzP6/vp7On//+/n9t2lIa2br59beCXx2sqaqL4FYrIWDdo0m2t3Q9kEUi0rwWygudERMYXb2bcF1ICCdViMpZ98Jwp5KUlcffaSgDuXFN5UpU7ZPnMXBaVZPGrlyrpOWXiSUNbF198cBMfv389fr/l/k8s4Te3LmNGXiqfunAGdS2dPPl2db/3/8NbB5mclcwHFk+hrCidtUq6RRJKJDtS3kFgg5yC4PF7Y8ztsQ5MRCTqvBnxrXQ73AAJ1WIylnndTj514Qxe2VXHs+8e4U8bD/KhpVOYdMoUEWMMt62cxaHj7Tz5zuHe86/uquOKn73Cs+8e4auXz+GvX7mYVWWFva9fNDuPOYVp3Pfq3tP6tQ/Wt/Hq7jpuXFqCw2FYMbeADfuOx2zBpoiMPZG0l3wKONda+x1r7XcI9Hh/JrZhiYjEgDczrj3dHmeg0p0oE0zGg4+eN5V0r4vbH9oEwBdWzOr3ukvLCphTmMbdaytp7/Lxz09u46P3vUlqkpPHv3ABX7p0Nkmuk3e4NMbwyQtmsKO6qbeFJeQPbx3EYeCDSwIjC1fOzafHb3ltd10MvkoRGYsiSboN0LdBzRc8JyIyviSp0p3o0r1uPr58Gt0+y4eWlJxW5Q5xOAxfWDGLnUdbuOQ/1/Cb1/Zxy/JpPHX7RSyYkjng51939mRyUj3c/+re3nM9Pj+PbDzIirkFvb3ji6dlk57kYm1FbXS/QBEZsyLZHOc3wJvGmMeDz68D7otdSCIiMeLNgp526OkClyfmt3M7g0m3Kt1jyqcvnMmxli7u6Gcjnb6uWVjMz1/cRUtnD7/75DIumZM/6Gd73U4+et40frF6F3vrWpmRl8pLO2s52tTJv7y/pPc6t9PBRXPyekcHxmMDIREZXZEspPwJgV0p64PHrdban8U6MBGRqPMGt4KP02JKLaQcm7JTPfzwhoUUZHjDXudyOnj8tgtY+/UVESXcIR87bxpuh4PfvBaodj/81kHy0pJYVVZw0nUr5hRwpKmD8iPNQ/8iRGTcCVvpNsY4gW3W2jJgU3xCEhGJkdBW8Ic2QObkmN/O3RRYhNddsx062ob25qypJ+KVUZOZ7B7ye/LTk3jfokk8suEQHztvGqvLa/jMRTNxnzK7/JK5gUR+bUUt84ozIvrsv2yt5qcv7OTXH1/K1NyUIcc2Egfr2/ibu9Zx78fP4eyp2XG9t8hEEDbpttb6gpviTLXWRr49l4jIWJQarFY+dGNcbudO9kJRAd1/+iR0DbHaPWUpfPqF2AQmMffJC2bwp42H+PT/bMDnt9y4tOS0awozvMwvzmBNRc1pYwv7U9fSyTcf30pDWzdffGgTf/r8+XhcA//C2ue3Ud0V9Jmt1dS1dPLsu0eUdIsMQyQ93dnANmPMeqA1dNJa+76YRSUiEgszV8BHH4Xu9rjczt24Gyrup+uyb0P6jMjfuPG3cHhLzOKS2Js/KYPzS3NZV3mMc2fkMCMvtd/rVszN51cv76Gpo5sMb/iq+vee2EZbp49vXFHGj54t50fPlvPta+b3e+2Wgw186rdvcdvKWXzyhrWo6wAAIABJREFUwiH83Qvj+e1HAU6bzCIikRkw6TbGJFlrO4FvxzEeEZHYcThh1mVxu537yAaouJ/ukmVQfF7kb6x+B3a/CH5fIGYZlz5z0UzWVR7jpnOnDnjNyrIC7lpbyau76rhqQfGA1z2//ShPvVPN310+h79dUcrRpg7ue3Uvy2fmctn8wpOu3XTgOLfct57mzh5+u24ft14wfcQLNetaOtl44DiZyW7erWqksb17WK03Ioks3ELK14OPn7bWvnTqEY/gRETGs2HP6U7NByy01Uc/KImblWUFPPOli3jfWZMGvObskiwyvK6wu1M2dXTzT/+3lbKidD53SaAN5ZtXlXHm5Ay+9qe3Odxw4jc3G/fX8/H71pOT5uHr753Lgfo23tp3fMRfy+odNVgLd1w6G7+F9Xv1d1NkqMIl3R5jzE3A+caY60894hWgiMh4FZrTPeTpJal5gcdWbRM+3s2flBG2yuxyOrhoTn7v6MD+/OCZcmqbO/nRDQt7e7iTXE5+8ZHFdPf4+dJDm+nx+XlrXyDhzk9P4g+fXc4nzp9OisfJY5sOjfjreG77ESZnJXPTuVNJcjlYV6lNfUSGKlzS/XngIiALuPaU45rYhyYiMr4Ne3Oc0ILPVm2ckghWzMmnprmT7dWnj7J8vfIYD60/wKcvmslZJVknvTYjL5V/v34BG/Yf544/bOGW+9dTmOnl4c+eR1Gml9QkF1eeWczT71TT0e077bMj1dbVwyu76rh8fiFet5NzpmXzeqX6ukWGasCebmvtq8CrxpgN1lpthiMiMkTDbi9JC85zblU1MRGERgf+7+v7ue7syeSlechNTSLJ7eCbj73DtNwUvnLZnH7f+/5Fk1m3+xh/2HCQ0vxUHvrMeSfNH7/hnMk8uukQf912hPcvGt6YzFd21dHZ4+fyYO/4+aW5/Pi5ndS3dpGTGvtNpkQmikGnlyjhFhEZHlW6JRIF6V6WTMvm4bcO8vBbB097/cHPnEuyZ+AFtd973xnMLkzj/Ysmk5+edNJr583IZXJWMo9uqhp20v389qNkeF0sm5EDwPLSXADe2HMs7OJPETlZJCMDRURkGIa9Dbw3C4xTSXcC+f2nz2XfsVaOtXRR19LJsZYujrV2Mrcog/NL88K+N9nj5NMXzez3NYfDcP3iydy5ZjdHmzoo7GcXzl+/sof1e+v55U2LT5v77fNbVpfXsLKsoHdzn4VTskjxOHm9Ukm3yFAo6RYRiZFhL6R0OAKLKVu0kDJReN1Oyooi25VyqK5fPIVfrN7N45ur+PwlJ2/Cs7aihn97egcAv1yzm69efnIby8b9x6lv7eI984t6z7mdDpZOz9G8bpEhCreQEgAT8FFjzHeCz6caY5bFPjQRkfFt2O0lAKkF6umWqJiRl8o507J5dOOhkyakHG5o5yt/2EJZUTrXLCzmzjW72Xqo8aT3Pr/9CB6no7fvPGR5aS67a1qoaeqIy9cgMhEMmnQDdwHLgY8EnzcDd8YsIhGRCWLYCykhUOlWe4lEyQ2Lp7CrpoWtVYGkutvn54sPbqKrx8+dNy/m+9ctIC/Nw989soXOnsCkE2stz20/yvLSXNKSTv7F+PKZgb5uVbtFIhdJ0n2utfY2oAPAWnsc0HJlEZFBOI0Tgxl6ewkEFlMq6ZYouXphMR6Xg8c2VQHww7+Us+lAAz+8YSGl+Wlkprj54Q0L2Xm0hZ8+vwuAXTUt7D/W1ju1pK8zJmWQ7nXxhpJukYhF0tPdbYxxAhbAGJMP+GMalYjIBGCMwe1wD7O9REm3RE9mspvL5xfy5y1VnDMtm/te3cvHl0/j2j67Za6cW8CNS0q45+VK3nNGYe8s7v6SbpfTwbkzclined0iEYuk0v1z4HGgwBjzfeBV4N9jGpWIyAThcXqG116Slg/dbdDVGv2gJCF9YPEUjrd1c8fDm1k4JZNvXT3vtGv+6Zp5FGcm87U/vs3T71Rz1pTMfieeAJw3M5f9x9pO2oZeRAY2aNJtrX0A+HvgB0A1cJ219pFYByYiMhGMqNINqnZL1Fw0O4/89CTSklzcedNiklynz/5O97r5jw8sZE9dK9urm3jPGUX9fFJAaJShdqcUiUwk00vOA6qstXdaa38JVBljzo19aCIi45/bOdKkWxNMJDpcTge/u3UZj33hfEpyUga87oJZeXzsvGkAvKef1pKQsqJ0slPcajERiVAkPd13A4v7PG/p55yIiPTD7XDT5RvOQsrghiia1S1RNH9SZLPAv3PtfD60pITZhekDXuNwGM6dkcsbe45hrcUYE60wRSakSHq6je0z2NNa60eb6oiIRGT47SUFgUe1l8gocDsdLJiSOeh158/KpaqhnYP16usWGUwkSfceY8yXjDHu4HEHsCfWgYmITAQep2dklW4l3TKGheZ1r6scvA3q3apG/vjWwViHJDJmRZJ0fx44H6gCDgHnAp+NZVAiIhPFsCvd7mTwpKunW8a0WQVpFGYk8fKuwX84/M+/VvDNx7fS3uWLQ2QiY8+gbSLW2hrgw3GIRURkwhl20g3alVLGPGMMq8oKePLtarp6/Hhc/dfy2rp6eH3PMXx+y7uHG1k6PScq9w/tntnfJBaRsSaS6SX5xph/NMbcY4y5P3TEIzgRkfFu2HO6AdIKoFULKWVsWzm3gJbOHt7aVz/gNa/tPkZXT2BfvS0HGqJ270/+9i3+9vebovZ5IrEUyYLIPwOvAC8A+p2QiMgQuB1u2nuGucgsNR/qtYRGxrYLZuXhcTl4cUcNF8zK6/ea1eVHSU9ykeZ1seVgdJLuPbUtvLb7GA4DdS2d5KUlReVzRWIlkp7uFGvtN6y1f7TWPho6Yh6ZiMgEMOw53aD2EhkXUpNcLJ+Zy+ryo/2+bq3lxR01XDwnn8XTsqOWdD+2qQoAv4XntvV/b5GxJJKk+yljzFUxj0REZAIa9pxuCFS6246BX79klLHt0nkF7DvWxp7altNe23a4iZrmTlaVFXB2SRZVDe3UNneO6H5+v+XxzVVcPCef6bkp/OXd6hF9nkg8RJJ030Eg8e4wxjQZY5qNMU2xDkxEZCIY2ULKArB+aBu4V1ZkLFg5NzBXfnX56WsQXtxRgzGwYm4+i0qyAEZc7X5j7zGqGtq5YfFkrlxQzLrKYxxvHeYPtyJxMmjSba1Nt9Y6rLVea21G8HlkW1qJiCS4Yc/pBs3qlnGjJCeFuYXpvLjj9KR7dflRzi7JIjctiTMnZ+J0GLYcPD6i+z26sYr0JBfvPaOIq84sxue3PL9DLSYytkUyvcQYYz5qjPl28HmJMWZZ7EMTERn/Rlbpzg88KumWcWDVvALe2ldPY/uJv+81zR28faiRS+cVAuB1OykrSh9Rpbu1s4e/vFvN1QuL8bqdnDk5gynZyfxlq1pMZGyLpL3kLmA5cFPweQtwZ8wiEhGZQDxOj5JuSQirygro8Vte6bNRztry2t7XQhaVZPHOwUb8fjus+zz77hHaunzccM4UIDAr/KoFxby6u+6khF9krIkk6T7XWnsb0AFgrT0OeGIalYjIBOF2uEc2pxuUdMu4cHZJFlkpblb3aTF5sfwokzK9lBWl955bVJJFc2cPlf0suozEo5sOMTUnhSXTsnvPXXlmEd0+y4tqMZExLJKku9sY4wQsBDbLAfwxjUpEZIIYUXuJNwuMU0m3jAsup4MVc/JZU1GDz2/p7PHxyq46Vs0rwBjTe93ZUwOLKTcPo8WkqqGd1/cc4/rFk0/6zEUlWUzK9PLM1iMj/0JEYiSSpPvnwONAgTHm+8CrwL/HNCoRkQnC7XTjsz58wxn753BoVreMK6vmFXK8rZstB4/z5p562rp8XFpWeNI1M/PSSB/mJjn/t7kKa+GGxVNOOm+M4Yozi3l5Vy3NHWoxkbEpkuklDwB/D/wAqAaus9Y+EuvAREQmArfDDTCyvu7WuihGJBI7l8zOx+kwrC6vYXV5DV63g+WluSdd43AYzpqSNeTt4K21PLrxEMtm5FCSk3La61ctKKKrx9/v2EKRsSBs0m2McRpjyq215dbaO621v7TW7ohXcCIi4110km5VumV8yExxs2RaNi/uqOHF8qNcOCsPr9t52nWLSrKoONpMe1fkvwHafLCBPXWtfOCUKnfI4qnZFKQn8Re1mMgYFTbpttb6gApjzNQ4xSMiMqF4nIF15yPalbJFlTsZPy6dV0D5kWYO1rez6pTWkpBFJVn4/JZ3DzdG/LmPbjyE1+3gygVF/b7ucBiuPLOINRU1tHb2DCt2kViKpKc7G9hmjHnRGPNE6Ih1YCIiE4HaSyTR9E20V5bl93vNouBiykhaTEJtJY9tquK9ZxSR7nUPeO2VC4rp7PGztkK/HZKxxxXBNd+OeRQiIhNUqNI9/KQ7D7pboasVPKlRjEwkNkrzU5mem0JqkovizOR+r8lLS2JKdvKgiynrW7v4x8e28uy2Iyydns03r5wX9vql03PIS/Pw6KZDLJySSXGmF5czkvqiSOwNmnRba18yxkwDZltrXzDGpACnN2iJiMhpeivdI57VXaekW8YFYwz//bFzcDnCJ7uLSrLYHKbSvaa8hq//6R0a27v4hyvL+MxFM3E6zIDXAzgdhqsXFPO71/ezurwGh4HizGQmZyUztyidb18zH49LSbiMjkGTbmPMZ4DPAjlAKTAZ+G/g0tiGJiIy/kWlvQQCiymzp0UpKpHYKivKGPSaRSVZPPVONTXNHRSke3vPd3T7+NentvPAmwcoK0rnfz65jPmTBv+8kG9eNY/L5xdx6HgbVQ3tVB1vZ3dtC//7xn7ee0YRF87OG9bXJDJSkbSX3AYsA94EsNbuMsYUhH+LiIhAlNpLQBNMZMI5u09f93vOCCyOPHS8jc//fiPvVjXx2Ytn8nfvmUOSa2i/XPe6nacl1i2dPZz1z8/xxp5jSrpl1ESSdHdaa7tCOz8ZY1wEd6cUEZHwXI7At9kRTS8BJd0y4ZwxKROXw7DlYCDpXldZxxcf3Ex3j5/7blnCpfP6n3wyHGlJLhZMzuSNPcei9pkiQxVJY9NLxph/BJKNMZcDjwBPxjYsEZGJweMYaaVbSbdMTF63k3nFGWw52MCvX9nDx+5bT26qhz9/8YKoJtwh583M5e1DDbR1aZygjI5Iku5/AGqBrcDngGeAf4plUCIiE4XbGejpHnal250MnnRoUdItE89ZJZmsqzzGvz29g8vnFfL4bRcwMz8tJvdaXppLt8+yaf/Qt58XiYYBk25jzIvBP/7AWnuvtfaD1toPBP+s9hIRkQiMeCElBPq6VemWCeji2fkYA19/71zu/uhi0pIi6XodniXTsnE6DK/v0dx7GR3h/nYXG2POB95njHkYOGlOj7V2U0wjExGZAEbcXgLaCl4mrPecUcTW7703psl2SGqSi4VTMnljT33M7yXSn3B/y79DYGOcKcBPTnnNAqtiFZSIyEQx4vYSCMzqrt8bpYhExpZ4JNwhy2fmcs/Le2jr6iHFE7/7ikD4nu5qa+2VwH9aa1eecijhFhGJQKi9pMc/gsVbai8RiYrzZubS47ds3H98SO/z+S1+vzprZWTCJd0/Dz5eF49AREQmohHP6YZAe0lbHfh9UYpKJDGdMy0bl8PweuXQRgd+7n838vnfb4xRVJIowv1updsYcw8w2Rjz81NftNZ+KXZhiYhMDKFK94jaS1Lzwfqh/fiJzXJEZMhO9HVHnnRXNbTzYvlRnMbQ1NFNhtcdwwhlIgtX6b4GWA10ABv7OUREZBDRmV6iWd0i0bK8NJd3DjXS2hlZy9f/ba7CWujxW17eqf8GZfgGTLqttXXW2oeB91lrf3fqEccYRUTGragspFTSLRI1Q+nrttby2KZDLJ6aRVaKm9U7auIQoUxUA7aXGGP+3lr7H8CnjTGnrR5Qe4mIyOBcJvBtNiqV7hb9gy8yUudMy8btNLy+5xgXz8kPe+3WqkYqa1v5wfULWL+3njUVNfj8FqfDhH2fSH/C9XTvCD5uiEcgIiITkTEGj8MTpfYSbeohMlIpHhdnTcmKqK/7sU1VeFwOrlpQTLrXxeObq9h84DhLpufEIVKZaAZMuq21TwYfR7WVxBhzEXAzgVjnW2vPH814RESGyu10j6y9JDkbjFPtJSJRct7MXO5+qZLWzh5SB5gT3u3z88Tbh7l8XiGZyW4unpOPy2F4YUeNkm4ZlnDbwD9pjHlioCOSDzfG3G+MqTHGvHvK+SuMMRXGmN3GmH8I9xnW2lestZ8HngLUSy4i447b4R5Zpdvh0KxukSg6b2YuPr9lQ5i+7pcqaqlv7eL6xZMByPC6WTYjh9XlR+MVpkww4aaX/Bj4f8BeoB24N3i0AJURfv5vgSv6njDGOIE7gSuB+cBHjDHzjTELjDFPnXIU9HnrTcCDEd5XRGTM8Dg8I9scB4Jbwau9RCQaevu6w8zrfmzzIXJTPSf1fa8qK2Dn0RYO1rfFI0yZYMJNL3nJWvsScIG19kZr7ZPB4ybgokg+3Fr7MlB/yullwG5r7R5rbRfwMPB+a+1Wa+01pxw1AMaYqUCjtbZ5OF+kiMhoGnF7CQQr3VpIKRINyR4ni0oG7utubOvmhe01XHvWJNzOE6nSZfMKAXhxh6rdMnThKt0hqcaYmaEnxpgZQOoI7jkZONjn+aHguXA+Bfwm3AXGmM8aYzYYYzbU1upXsCIydoy4vQQgtUDtJSJRdN7MXLZWNdLSz7zup7dW0+Xzc8PiKSedn56Xysz8VF4s1w/AMnThppeEfAVYa4zZAxhgGvDZmEZ1CmvtdyO45h7gHoAlS5acNuJQRGS0RKfSnR8YGVjxl+gEFUtTlkFq7mhHIRLWeTNz+cXq3fzkuZ18/b1zSfY4e197bNMhZhekcebkjNPed9m8Qn7z2l5aOntIG2ARpkh/Bv3bYq191hgzGygLniq31naO4J5VQEmf51OC50REJqSoVLqzp0N3Gzz04ajEFFOLbobr7hrtKETCOndGDtcvnsz9r+3l2Xer+dbV87lqQREH6tvYsP84f3/FXIw5fR73qrIC7nl5D6/srOXKBcWjELmMVxH9iBZMst+O0j3fAmYH21SqgA8TWCQpIjIhjXhON8DST8HU88D6ohNUrDz2OWgbfP6xyGhzOR385EOL+MiyqXz3z9u47cFNnDsjhynZKRgD1y3qv/N1ybRsMrwuXiyvUdItQxLT34sYYx4CVgB5xphDwHettfcZY74I/BVwAvdba7fFMg4RkdEUlfYShxOKF0YnoFhKyYWu1tGOQiRiS6fn8OTtF/LwWwf48V8reHNvPRfMymVSVnK/17ucDlbMLWBNuXanlKGJadJtrf3IAOefAZ6J5b1FRMYKj8NDc0+CDF/ypEKbRhvK+OJ0GG4+dxpXLyjmd+v2s6qsIOz1l84r4Im3D/P2oQYWT82OU5Qy3g06vcQY85gx5mpjTCSTTkRE5BRuh5su/wgr3eOFJxW6NMNYxqesFA93XDabBVMyw163Yk4BTofR6EAZkkgS6bsI9FzvMsb80BgzN8YxiYhMKG6nm27fCHu6xwtPqtpLZMLLTHGzZFo2L2yvwVoNTJPIDJp0W2tfsNbeDCwG9gEvGGPWGWNuNca4Yx2giMh4F5XpJeOFJxW6lXTLxHfNWZOoONocdlfLiaipo5vz/v1F1lWqjWyoImoZMcbkAp8APg1sBv6LQBL+fMwiExGZIBKvvURJt0x8HzxnCoUZSfzshV0JVe3eV9fKkaYOth9uGu1Qxp1IerofB14BUoBrrbXvs9b+wVp7O5AW6wBFRMa7hGovcaeCrwsS5euVhOV1O/nCilms31efUNXuI40dABxvS5BCQhRFUun+ubV2vrX2B9ba6r4vWGuXxCguEZEJIypzuscLT2rgUdVuSQA3Li1JuGr3kaZQ0p0g39OiKJKkO9sYc/0px6XGmPDzdEREBEi0nu6UwKOSbkkAiVjtDlW6G5V0D1kkSfengF8DNwePe4FvAK8ZYz4Ww9hERCYEj9OTOO0lnmDXoZJuSRCJVu1We8nwRZJ0u4F51tobrLU3APMBC5xLIPkWEZEw3A43PbYHv/WPdiixF2ov0QQTSRCDVbuttZQfaaLbNzH++w+1lzSo0j1kkSTdU6y1fae/1wAl1tp6QP+Li4gMwu0MTFdNiBYTt9pLJPEMVO0uP9LER+97kyt+9grX3fnahJj4cSLpVqV7qCJJutcaY54yxtxijLkF+HPwXCrQENvwRETGP7cjmHQnQotJb3uJdqWUxHFqtftYSyffenwrV/3XK2w73MTnLynlaFMH7/vlq/zk+Z109YzPqre1tre9pKE9Ab6fRZkrgmtuA64HLgw+/x/gURv4UW5lrAITEZkoQkl3Qszq7p1e0jK6cYjE2Y1LS7hr7W6++fhW6lu7aOvy8fHl0/nyZbPJSvHwuYtn8i9PbefnL+7iuW1H+M8PnDXodvNjTXNnD21dPjKT3TS2d9PZ4yPJ5RztsMaNsJVuY4wTWG2tfdRa+5Xg8SebCCsFRESixOP0AIlS6VZ7iSQmr9vJF1fNZv+xNhZPzeavX76I773vDLJSAv/9Z6d6+OmNi7jvliUcb+viurte4/89VzGuer1DVe6yonRAE0yGKmyl21rrM8b4jTGZ1trGeAUlIjKR9LaXJEJPd6i9pFvtJZJ4PnruVC6Znc/U3JQBr7l0XiHPTc/hX5/azi9W7+alnbX87MZFzMwf+/sNhpLuecUZvLm3nuNt3RRkeEc5qvEjkp7uFmCrMeY+Y8zPQ0esAxMRmSjUXiKSGIwxYRPukMxkNz/+4FncffNiDtS3cfXPX+XBNw+M+ZGDp1a6NTZwaCLp6X4seIiIyDAkVHuJ0wPGqfYSkQhcuaCYs6dm87VH3uYfH9/K6vKj/PCGheSlJY12aP0KTS6ZG0y6NTZwaAZNuq21vzPGJANTrbUVcYhJRGRCSaj2EmMCLSaaXiISkaJML//zyWX8dt0+fvhsOV9+eAu///S5ox1Wv6obO8hN9VAYbCnR2MChGbS9xBhzLbAFeDb4fJEx5olYByYiMlEkVNINgcWUai8RiZjDYfjkhTP4xPnTWb+3no5uX9xjePbdam79zfqwLS5HmzoozPCSlRL4nqaxgUMTSU/394BlBGdyW2u3ADNjGJOIyITSuzlOIrSXQKCvW+0lIkO2dHoOXT4/bx+M/zYoz2w9wpqKWmpbOge8prqxg+JML8luJx6XQz3dQxRJ0t3dz+SS8TPfRkRklCXUQkoIJN2aXiIyZEumZQOwYf/xuN+74kgzAHtqB/6B+WhTB4WZXowxZCW7NTJwiCJJurcZY24CnMaY2caYXwDrYhyXiMiEkVALKQHcqnSLDEd2qoc5hWms31sf1/t29fiprA20hIUeT9XR7aO+tYviYD93dopHle4hiiTpvh04A+gEHgKagC/HMigRkYkk8Xq6lXSLDNeS6Tls2n8cnz9+4wP31LXQE7xfZU3//+3WNAXaTgozA0l3Zoqb46p0D8mgSbe1ts1a+y1r7VJr7ZLgnzviEZyIyESQkO0lSrpFhmXZ9ByaO3vYUd00pPdZa3ni7cO0dPYM+Z6h1pK0JNeAle7qxnYAinor3WovGapIppfMMcbcY4x5zhizOnTEIzgRkYkg4dpLlHSLDNvSGTkAbNg3tBaTTQca+NJDm/nVS5VDvmf5kWbcTsMlc/IHTLpDM7qLg5XurGS1lwxVJO0ljwCbgX8Cvt7nEBGRCCRke0m3km6R4ZiclczkrGTe2je0xZRrymsAeHTjoSG3ppRXN1Gan8bconSqGtpp7zp9ZGFoN8pQe0lWqpuG9u4xv4vmWBJJ0t1jrb3bWrveWrsxdMQ8MhGRCSLhkm53iirdIiOwZHo26/fVDymhXV1eg9ft4HBjB69XHhvS/SqONDO3KJ2Z+alYC3vrTv/v90hTB6keJ+lJgX0Vs1M8dPX4aR+FmeLjVSRJ95PGmC8YY4qNMTmhI+aRiYhMEInXXpIGvi5IlK9XJMqWTs+htrmT/cciG715pLGD7dVNfP6SUjK8Lh7ZeDDiezW2d3O4sYO5RemU5qcB/U8wOdJ4YlwgQFZycIMc9XVHbNBt4IFbgo99W0os2iBHRCQiCbmQEgLV7uSs0Y1FZBxaFuzrXr+vnul5qYNev6Yi0Fpy5ZnF1LV08siGQzS2d5MZTIzD2Xk0sIiyrCidGXmpGDNA0t3U0dvPDZCVEigmHG/rYlJW8uBflEQ0vWRGP4cSbhGRCLkcgfpGwrSXeFICj2oxERmWWflpZKW4I15Mubq8hslZycwpTOOD55TQ2ePnqXcOR/Te8uDkkrlFGXjdTqZkJ1PZzwY5RxoDW8CHhLaC1wSTyA2YdBtj/r7Pnz94ymv/HsugREQmEmMMboc7sdpLQLtSigyTw2FYMi07osWUnT0+Xttdx8qyfIwxLJySyZzCNB7ZcCiie1UcaSLd62JSsIpdmp9GZc3JlW6f31LT3HlSpTu7t9KdIN/XoiBcpfvDff78zVNeuyIGsYiITFhuhzsB20v6Hz0mIoNbOj2HvXWt1DSH3xrlzT31tHX5WFVWAAR+yP/gOSVsOdjA7prmQe9TcaSZsqL03l7t0vw09ta14u8zAaWupROf3/bO6IYTlW6NDYxcuKTbDPDn/p6LiEgYHqcncSrdbrWXiIzUiXnd4avdq8trSHI5WD4zr/fcdWdPxukwPLIxfLXbWkt5cHJJSGl+Gu3dPqqbTiT7oXGBRZknerdD/eKN7QnyfS0KwiXddoA/9/dcRETCcDvcCdTTHWwv6VJ7ichwnTkpE6/bwVth+rqttaypqOH80lySPc7e8/npSaycm89jm6ro8fkHfP/hxg6aO3qYW5TRe640P/Cbqr4tJqGNcfpWur1uJ8luJ8dbVemOVLik+yxjTJMxphlYGPxz6PmCOMUnIjIheJyeBEq6Q5VutZdGYah2AAAWnUlEQVSIDJfH5WBRSVbYpHtPXSv7j7X1tpb09YFzSqht7uTlXbUDvr/iSGCr+bK+le6C08cGnqh0e+krOyWwQY5EZsCk21rrtNZmWGvTrbWu4J9DzwefQSMiIr0SayFln5GBIjJsy6bnsP1wE80d/X/vCO1CubKfpHtVWQE5qZ6wCypDk0vmFJ5IunNTPWQmu09Oups6cDsNuamek96fleKhQT3dEYtkcxwRERkhl8OVQAspNb1EJBqWzsjBb2HTgYZ+X19dXsOcwjSmZKec9prH5eC6RZN5YcdR6gdoAak40sykTO9J87yNMZTmp1JZc+KH5iONHRSke3E4Tl7Sl5Xi1uY4Q6CkW0QkDhKqvcSt9hKRaDh7ajZOh+l3XndzRzfr99b3W+UO+eCSKXT7LP+3uarf1ytOWUQZUpqfdlp7yamtJRAYG6jpJZFT0i0iEgcJ1V7iSgLj1EJKkRFKS3IxvziD9XtPT7pf3VVHj9+yau7ASfe84gwWT83ivlf30tVz8oLKbp+fytqWkxZRhszMT6OmuZOmYFvLkaaOkxZRhmSq0j0kSrpFROIgoeZ0GxNoMVFPt8iIXTg7jzf31nPrb9az6cCJ8YGry2vI8Lo4Z1p22Pffcdkcqhra+eOGgyed31PbSrfPMq+4v0p3au811towle7AQkprNdQuEkq6RUTiIKHaSyAwwUTtJSIj9qVVs/n6e+ey5WAD19+1jpt//QavVx5jTUUtF8/Jx+UMn8pdPDuPxVOzuHPNbjp7fL3ny4OTS/ptLwlNMKlpoam9h/ZuX7+V7qxkDz6/pbmzZyRfYsJQ0i0iEgcJ1V4CgQkmWkgpMmLJHie3rZzFq99YxbeumkfFkRY+cu8b1LV09jsq8FTGGL5y+RyqGzv441snqt3lR5pxOQwz89JOe8/UnBRcDsOeupYTM7r7qXSHdqVsVItJRJR0i4jEQcJVut0pai8RiaLUJBefuXgmr35jJd+7dj7vPaOQy+YXRvTeC2flsWRaNneuqaSjO1DtrjjSTGl+Gh7X6amg2+lgWm4KlTWtVDe2AwMl3YERglpMGRkl3SIiceByuBIr6VZPt0hMeN1OPnHBDH71sSVkeCPbNiVU7T7S1MEfgtXugSaXhIQmmBztZzfKkOxgpVuLKSOjpFtEJA7cDjddvgSqBnlSlXSLjCHnl+aybHoOd63dTW1zJ1UN7eGT7oI09h1r5dDxQKW7sL+e7jFS6d56qJFthxtHNYZIKOkWEYmDhGsv8ai9RGQsMcbw5ctnc7Spk39+chtw8vbvpyrNT6PbZ3lrXz15aZ5+21CyxkClu7Wzh9sf2sQXH9yMzz+2p6go6RYRiQO3w51gSXeaFlKKjDHnl+Zx7owcnnqnGuh/cklIaGzgpv0N/Va5AbKSRz/p/rend7C/vo0fXr8A5yk7Zo41SrpFROIgMdtLNDJQZKz5yuVzAEhPcjE5K3nA62bmB6aadPn8FPeziBLA5XSQnuQatfaSF3cc5aH1B/jsxTM5d2buqMQwFK7RDkBEJBEkXHuJppeIjEnnzcxl5dx8jDEYM3BlODPZTX56ErXNnQNWugGyUt00tsf/e1tdSyffePQd5hVn8NXgDxJjnZJuEZE4cDvc9Ph78Fs/DpMAv2T0pIGvC3zd4IxswoKIxMe9H18SNuEOKc1Ppba5c8BKN/+/vTsPsqss8zj+fdLdN0l3IB1DhMgieyIiIAMILgioIygDOiCCTAEqKpSWzIxLwTgW5R/MjIXO4sYMKoIru8IwKoNOFBWChD0sAQRCgmACZkECWTrP/HFOk07oTrpjzr23+3w/VV33nnPPPfdt3jqXX95+zvtSLJDT7JHuzOScq+9h+fNr+N7p+zG+s6Opn7+5avDNL0mt1+go7vJfs7YmK7c1inpQR7ul9tPZMW5Y9c/9JSYbHenu7mp6TfflcxZww31/4NNHzthoXXq7MXRLUhN0jStGe2tTYtLoLh4N3dKotVsZugdbGKdfb3eDpU0c6Z7/zHN87r/v45Bdp/KBN+zStM/dEgzdktQEneOKar7a3EzZKJeWdgYTadR6w+5T2W1aD6+avvWQx0zp7mJpk2q6+9Ymn7j8LjrGBV88YV/GtflsJRuypluSmqC/vKQ2I91d/SPdzmAijVYzt9uan3/isI0e09vdYNnzq+lbm5VP2XfJTY8xZ/4SvviefXnFRmZeaVeOdEtSE/SXl9RnpNuabqkOeid2kQnLKx7tfvyZFZx//TwOnzGNv95/+0o/qyqGbklqgsa4mo1095eXrLK8RBrLpvSUC+T8GaF74ZIVnHvNXJ5a9sKgr2cm5/zwbjrGBee9+zXDmnmlHRm6JakJujrqeiOl5SXSWNY7sRhQ2NxpA19Y3cdHvnMbl9w8n+MuuIlHFr/0O+OyWxfwm4ef4Zx3zByVZSX9DN2S1AQvzl7SV5fQXZaXeCOlNKb1dhffbcs2Y9rAzOSzP5rLvb9fztlHzeT51X285z9vZu4Ty1485qllL3De/9zPwbu+jJMO3GmLtbsVDN2S1AT1LS+xplsay3q7N3+k+9JbF3DFbQv5+BG7c8abd+OKMw5hQlcHJ144m5t/9wyZyT/+6B5Wr13L54/bZ9TNVrIhQ7ckNUHtykucvUSqhSnlSPdIF8i5e+FSzr3mXt60xzac9dZiGffdpk3iyjMPYbvJEzj1W7/ls9fM5Wf3L+KTfzmDV07t2eJtbzZDtyQ1Qe1mL+kcD9HhjZTSGLfVhC4iGNECOUueW8WZ372daVuN50snvna9qQanT57IFR85hFdN35rvzn6c/Xbs5f2jbBGcoThPtyQ1Qe1GuiOKum7LS6QxrWNcMHliF0uGOdLdtzY567I7WfzsSq444xCm9DRecsyUngbfP/11/NeNj3D8/jtUPv93sxi6JakJajfSDWXotrxEGuumdDeGPWXg92+Zz40PLuaf3v0a9t2xd8jjesZ38vdv23NLNbEtWF4iSU1QuxspoQjdzl4ijXmTJ3YNu7zkurufZOZ2W3HSQTtW3Kr2Y+iWpCaoXXkJFDdTWl4ijXlTuruGdSPl8hdWM2f+Et7yqpeP2gVu/hyWl0hSE/SXl9y56E4mdEwY9vuS3KzPCzb/f2hDfeZB2x3E1IlTh3+ixiRDt1QDvd0NHlq06VKyXz/0NH1rk8NnvLwJrWo/hm5JaoJJXZMY3zGeqx66iqseuqrVzdksF739ohGG7h5Y8Ux1DZLUFnq7u4a1OM6sBxYxeWIX+22klnssM3RLUhN0d3Vz/XHXs2zlsk0fTDHa/OJo9UgHrQcZqF7vfMMxyKHTe6aPrB2Nblj6+MjeI2nU6Z3Y4NmVa1jdt5aujsErl9euTX7x4GIO3XManUMcM9YZuiWpSaZOnDqykeLRrjHJGymlGpjSs26BnGlbjR/0mHt/v5zFz67k8BnTmtm0tlLPf2pIkqrX1e2UgVINTJ5YhO5lzw89g8mseYuIgEP3NHRLkrRluTiOVAtTuospUTe2QM6seYvYZ4detpk0+Eh4HbR96I6IvSLi8oi4ICKOb3V7JEnD1JgEfaugr0bTJEo11Nu9rrxkMH98bhV3Llha69ISqDh0R8RFEbEoIuZusP/IiJgXEQ9HxNmbOM1RwJcz80zglMoaK0nashrdxaOj3dKYtm6ke/DykhsfXEwmHDGznlMF9qv6RsqLga8A3+7fEREdwFeBtwELgVsj4lqgA/jnDd7/AeA7wLkRcQxQozuQJGmUa/QUj6tXwMR6ThEm1UH/SPdQ0wbOmreIbSY12PsVk5vZrLZTaejOzBsjYucNdh8EPJyZjwBExKXAsZn5z8DRQ5zqo2VYv7qqtkqStrDGpOLRkW5pTJs0vpPOcTHoSHff2uSXDy7mLTO3Zdy4+q1COVArarq3BxYM2F5Y7htUROwcERdSjJafv5HjPhwRcyJizuLFi7dYYyVJm6mrv7zEGUyksSwimN47gZ/OfYrFz65c77U7Fyxl6YrVHD6z3vXcMApupMzMxzLzw5l5cmb+eiPHXZiZB2TmAdOm2bGS1HL95SWrnKtbGuu+cPy+PLnsBd739dk8/ad1wXvWA4voGBe8aXezWStC9xPAjgO2dyj3SZLGkhdDt+Ul0lj3ul2nctFpB7JgyQre9/XZPFMG71nzFvEXO01hcln3XWetCN23AntExC4R0QBOBK5tQTskSVV6MXRbXiLVwSG7TeWiUw9k/jMrOPkbt/DAU8u59/fLOczSEqD6KQN/ANwMzIiIhRHxwcxcA3wMuB64H7g8M++tsh2SpBYYOHuJpFp4/e7b8M1TD+TRp5/j+AtuBuDwGfWeKrBf1bOXnDTE/h8DP67ysyVJLdZleYlUR2/cYxu+fsoBnP7tOWy39QRmbrdVq5vUFqqep1uSVFeWl0i1deie07j6zNezNpOIek8V2M/QLUmqRud4iA5nL5Fqau/t670YzobafspASdIoFVGMdlteIkmGbklShRo9sNrQLUmGbklSdRzpliTA0C1JqlJXt6FbkjB0S5Kq1Jhk6JYkDN2SpCo1HOmWJDB0S5KqZE23JAGGbklSlRqTXAZekjB0S5Kq1NXtipSShKFbklSlRo8rUkoShm5JUpUak6BvJfStbnVLJKmlDN2SpOo0uotHb6aUVHOGbklSdRo9xaM3U0qqOUO3JKk6XWXodqRbUs0ZuiVJ1ekf6XYGE0k1Z+iWJFXnxdBteYmkejN0S5Kq07C8RJLA0C1JqtKLN1IauiXVm6FbklQdR7olCTB0S5Kq5OwlkgQYuiVJVXKkW5IAQ7ckqUqd4yHGGbol1Z6hW5JUnQhoTDJ0S6o9Q7ckqVqNHmcvkVR7hm5JUrW6uh3pllR7hm5JUrUaPa5IKan2DN2SpGo1JsGqP7W6FZLUUoZuSVK1GpaXSFJnqxsgSRrjGj0w/2a45JhyRw7jTVE+RPE8Yv2Xs/8cuYntgacct/75MovjBz7ufwrsc8Lwfi9JGgFDtySpWnsdC88+BWteYP0wPYSBAbo/EA9qw3MNsT3wXLl23fP1An35uLZvJL+ZJA2boVuSVK29jyt+JKnGrOmWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqFpnZ6jZscRGxGJhf8cdsAzxd8Wdo89k/7c3+aW/2T3uzf9qb/dPetnT/vDIzpw3nwDEZupshIuZk5gGtbocGZ/+0N/unvdk/7c3+aW/2T3trZf9YXiJJkiRVzNAtSZIkVczQvfkubHUDtFH2T3uzf9qb/dPe7J/2Zv+0t5b1jzXdkiRJUsUc6ZYkSZIqZujeDBFxZETMi4iHI+LsVren7iJix4iYFRH3RcS9EXFWuf9lEXFDRDxUPk5pdVvrKiI6IuKOiLiu3N4lIm4pr6HLIqLR6jbWWUT0RsSVEfFARNwfEYd4/bSPiPi78rttbkT8ICImeA21TkRcFBGLImLugH2DXi9R+FLZT3dHxP6ta3k9DNE/55ffb3dHxA8jonfAa+eU/TMvIt5eZdsM3SMUER3AV4GjgL2AkyJir9a2qvbWAJ/IzL2Ag4GPln1yNvDzzNwD+Hm5rdY4C7h/wPbngX/LzN2BJcAHW9Iq9fsP4KeZORPYl6KvvH7aQERsD3wcOCAz9wY6gBPxGmqli4EjN9g31PVyFLBH+fNh4IImtbHOLual/XMDsHdm7gM8CJwDUGaFE4FXl+/5WpnzKmHoHrmDgIcz85HMXAVcChzb4jbVWmY+mZm3l8+fpQgM21P0yyXlYZcA72pNC+stInYA3gl8o9wO4AjgyvIQ+6aFImIycCjwTYDMXJWZS/H6aSedwMSI6AS6gSfxGmqZzLwR+OMGu4e6Xo4Fvp2F2UBvRExvTkvrabD+ycz/zcw15eZsYIfy+bHApZm5MjMfBR6myHmVMHSP3PbAggHbC8t9agMRsTPwWuAWYNvMfLJ86Slg2xY1q+7+Hfg0sLbcngosHfAF6DXUWrsAi4FvlSVA34iIHrx+2kJmPgF8AXicImwvA27Da6jdDHW9mBnazweAn5TPm9o/hm6NGRExCbgK+NvMXD7wtSym6XGqniaLiKOBRZl5W6vboiF1AvsDF2Tma4Hn2KCUxOundcra4GMp/nH0CqCHl/7pXG3E66V9RcRnKEpSv9eKzzd0j9wTwI4Dtnco96mFIqKLInB/LzOvLnf/of/PeOXjola1r8beABwTEY9RlGIdQVE/3Fv+qRy8hlptIbAwM28pt6+kCOFeP+3hrcCjmbk4M1cDV1NcV15D7WWo68XM0CYi4jTgaODkXDdfdlP7x9A9crcCe5R3jjcoCvCvbXGbaq2sEf4mcH9m/uuAl64FTi2fnwpc0+y21V1mnpOZO2TmzhTXyv9l5snALOD48jD7poUy8ylgQUTMKHe9BbgPr5928ThwcER0l991/f3jNdRehrpergVOKWcxORhYNqAMRU0SEUdSlDkek5krBrx0LXBiRIyPiF0obnj9bWXtcHGckYuId1DUqXYAF2XmeS1uUq1FxBuBXwH3sK5u+B8o6rovB3YC5gMnZOaGN7+oSSLiMOCTmXl0ROxKMfL9MuAO4G8yc2Ur21dnEbEfxY2uDeAR4P0UgzJeP20gIj4HvJfiz+J3AKdT1J16DbVARPwAOAzYBvgDcC7wIwa5Xsp/KH2FoiRoBfD+zJzTinbXxRD9cw4wHnimPGx2Zp5RHv8ZijrvNRTlqT/Z8JxbrG2GbkmSJKlalpdIkiRJFTN0S5IkSRUzdEuSJEkVM3RLkiRJFTN0S5IkSRUzdEvSKBARfRFx54Cfszf9rkHP84uIOGBLt28Yn/uuiNir2Z8rSe2ic9OHSJLawPOZuV+rG/FneBdwHcXCLpJUO450S9IoFRFHRsQVA7YPi4jryucXRMSciLi3XFxlU+c6MCJuioi7IuK3EbFVREyIiG9FxD0RcUdEHF4ee1pEfGXAe68rFz8iIv4UEeeV55kdEdtGxOuBY4Dzy1H63bbwfwpJanuGbkkaHSZuUF7yXuBnwOsioqc85r0UqxQCfCYzDwD2Ad4cEfsMdeKIaACXAWdl5r7AW4HngY8CmZmvAU4CLomICZtoZw/Fam/7AjcCH8rMmyiWW/5UZu6Xmb/bjN9fkkY1Q7ckjQ7Pl4G1/+eyzFwD/BT4q4joBN4JXFMef0JE3E6xRPirgY3VU88AnszMWwEyc3l57jcC3y33PUCxvPWem2jnKooyEoDbgJ1H+HtK0phkTbckjW6XAh8D/gjMycxnI2IX4JPAgZm5JCIuBjY1Qj0Sa1h/0GbguVdnZpbP+/D/M5IEONItSaPdL4H9gQ+xrrRka+A5YFlEbAsctYlzzAOmR8SBAGU9dyfwK+Dkct+ewE7lsY8B+0XEuIjYEThoGO18FthqBL+XJI0phm5JGh02rOn+F4DM7KMo5ziqfCQz76IoK3kA+D7wm42dODNXUdSDfzki7gJuoBi9/howLiLuoaj5Pi0zV5bne5RiJpIvAbcPo/2XAp8qb8j0RkpJtRPr/gooSZIkqQqOdEuSJEkVM3RLkiRJFTN0S5IkSRUzdEuSJEkVM3RLkiRJFTN0S5IkSRUzdEuSJEkVM3RLkiRJFft/Z+59IAfGzjYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pylab.rcParams['figure.figsize'] = (12, 8)\n", + "for i in range(len(optimizers)):\n", + " pylab.plot(converge_cnts[i], abs(ref - converge_vals[i]), label=optimizers[i].__name__)\n", + "pylab.xlabel('Eval count')\n", + "pylab.ylabel('Energy difference from solution reference value')\n", + "pylab.title('Energy convergence for various optimizers')\n", + "pylab.yscale('log')\n", + "pylab.legend(loc='upper right')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From f24934938451ab3d3eea5bbdc00ea191781f9b5e Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Wed, 3 Apr 2019 18:07:50 -0400 Subject: [PATCH 031/116] remove circuit_caching=False flags --- community/aqua/optimization/grover.ipynb | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index aa26f955a..30d78fd57 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -119,7 +119,7 @@ ], "source": [ "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, circuit_caching=False)\n", + "quantum_instance = QuantumInstance(backend, shots=1024)\n", "result = grover.run(quantum_instance)\n", "print(result['result'])" ] @@ -184,7 +184,6 @@ "params = {\n", " 'problem': {\n", " 'name': 'search',\n", - " 'circuit_caching': False\n", " },\n", " 'algorithm': {\n", " 'name': 'Grover'\n", @@ -232,7 +231,7 @@ "expression = '(w ^ x) & ~(y ^ z) & (x & y & z)'\n", "oracle = LogicalExpressionOracle(expression)\n", "grover = Grover(oracle)\n", - "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024, circuit_caching=False))\n", + "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024))\n", "plot_histogram(result['measurement'])" ] }, @@ -290,7 +289,7 @@ "source": [ "oracle = TruthTableOracle(truthtable)\n", "grover = Grover(oracle)\n", - "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024, circuit_caching=False))\n", + "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024))\n", "plot_histogram(result['measurement'])" ] }, From 1ce67939022176c3980ceea3ffa950344be0fff2 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Thu, 4 Apr 2019 09:28:00 -0400 Subject: [PATCH 032/116] minor edits --- community/aqua/optimization/grover.ipynb | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index 30d78fd57..b7f0accf2 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -31,7 +31,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Use Quantum Search to Find Solutions to SATisfiability Problems\n", + "## Use Quantum Search to Find Solutions to 3-SAT Problems\n", "\n", "Let's look at an example 3-Satisfiability (3-SAT) problem and walkthrough how we can use Quantum Search to find its satisfying solutions. 3-SAT problems are usually expressed in [Conjunctive Normal Forms (CNF)](https://en.wikipedia.org/wiki/Conjunctive_normal_form) and written in the [DIMACS-CNF](https://www.satcompetition.org/2009/format-benchmarks2009.html) format. For example:" ] @@ -42,7 +42,7 @@ "metadata": {}, "outputs": [], "source": [ - "sat_instance = '''\n", + "input_3sat_instance = '''\n", "c example DIMACS-CNF SAT\n", "p cnf 3 5\n", "-1 -2 -3 0\n", @@ -78,7 +78,7 @@ "metadata": {}, "outputs": [], "source": [ - "oracle = LogicalExpressionOracle(sat_instance)" + "oracle = LogicalExpressionOracle(input_3sat_instance)" ] }, { @@ -190,7 +190,7 @@ " },\n", " 'oracle': {\n", " 'name': 'LogicalExpressionOracle',\n", - " 'expression': sat_instance\n", + " 'expression': input_3sat_instance\n", " },\n", " 'backend': {\n", " 'shots': 1000,\n", @@ -205,9 +205,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Quantum Search with Arbitrary Boolean Logic Expressions\n", + "## Quantum Search with Arbitrary Boolean Logical Expressions\n", "\n", - "Aqua's `Grover` can also be used to perform Quantum Search on `Oracle` constructed from means in addition to DIMACS. For example, the `LogicalExpressionOracle` can actually be configured using arbitrary Boolean logic expressions, as demonstrated below." + "Aqua's `Grover` can also be used to perform Quantum Search on `Oracle` constructed from means in addition to DIMACS. For example, the `LogicalExpressionOracle` can actually be configured using arbitrary Boolean logical expressions, as demonstrated below." ] }, { @@ -239,7 +239,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the example above, the input Boolean logic expression `'(w ^ x) & ~(y ^ z) & (x & y & z)'` should be quite self-explanatory, where `^`, `~`, and `&` represent the Boolean logic XOR, NOT, and AND operators, respectively. It should be quite easy to figure out the satisfying solution by examining its parts: `w ^ x` calls for `w` and `x` taking different values; `~(y ^ z)` requires `y` and `z` be the same; `x & y & z` dictates all three to be `True`. Putting these together, we get the satisfying solution `(w, x, y, z) = (False, True, True, True)`, which our `Grover`'s result agrees with." + "In the example above, the input Boolean logical expression `'(w ^ x) & ~(y ^ z) & (x & y & z)'` should be quite self-explanatory, where `^`, `~`, and `&` represent the Boolean logical XOR, NOT, and AND operators, respectively. It should be quite easy to figure out the satisfying solution by examining its parts: `w ^ x` calls for `w` and `x` taking different values; `~(y ^ z)` requires `y` and `z` be the same; `x & y & z` dictates all three to be `True`. Putting these together, we get the satisfying solution `(w, x, y, z) = (False, True, True, True)`, which our `Grover`'s result agrees with." ] }, { From 0cfa662c8ec40d721c976bb0daad5f289ab35c2e Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Thu, 4 Apr 2019 09:28:47 -0400 Subject: [PATCH 033/116] minor edit --- community/aqua/optimization/grover.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/community/aqua/optimization/grover.ipynb b/community/aqua/optimization/grover.ipynb index b7f0accf2..0dba7d671 100644 --- a/community/aqua/optimization/grover.ipynb +++ b/community/aqua/optimization/grover.ipynb @@ -43,7 +43,7 @@ "outputs": [], "source": [ "input_3sat_instance = '''\n", - "c example DIMACS-CNF SAT\n", + "c example DIMACS-CNF 3-SAT\n", "p cnf 3 5\n", "-1 -2 -3 0\n", "1 -2 3 0\n", From 6ee210414d91111cdb7fe2ab0c28b968b7141113 Mon Sep 17 00:00:00 2001 From: woodsp Date: Thu, 4 Apr 2019 16:19:47 -0400 Subject: [PATCH 034/116] Update for latest hhl & ExactLPsolver --- .../general/linear_systems_of_equations.ipynb | 150 +++++++----------- 1 file changed, 55 insertions(+), 95 deletions(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index b9ad0233d..d99261ada 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -42,6 +42,7 @@ "source": [ "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import LinearSystemInput\n", + "from qiskit.aqua.algorithms.classical import ExactLPsolver\n", "import numpy as np" ] }, @@ -69,6 +70,7 @@ " 'name': 'Lookup'\n", " },\n", " 'backend': {\n", + " 'provider': 'qiskit.BasicAer',\n", " 'name': 'statevector_simulator'\n", " }\n", "}" @@ -112,27 +114,24 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "hhl solution [1.05859-0.j 1.99245-0.j]\n", - "classical solution [1. 2.]\n", - "fidelity 0.999389\n", - "probability 0.024630\n" + "solution [1.05859+0.j 1.99245+0.j]\n", + "classical solution [1. 2.]\n" ] } ], "source": [ "result = run_algorithm(params)\n", + "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", - "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", - "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", - "print(\"probability %f\" % result['probability_result'])" + "classical_result = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(classical_result['solution'], 5))" ] }, { @@ -144,17 +143,15 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "hhl solution [0.84664-0.j 2.01762-0.j]\n", - "classical solution [1. 2.]\n", - "fidelity 0.995605\n", - "probability 0.361437\n" + "solution [0.84664+0.j 2.01762+0.j]\n", + "classical solution [1. 2.]\n" ] } ], @@ -165,11 +162,10 @@ "}\n", "\n", "result = run_algorithm(params2)\n", + "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", - "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", - "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", - "print(\"probability %f\" % result['probability_result'])" + "classical_result = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(classical_result['solution'], 5))" ] }, { @@ -181,21 +177,21 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "circuit_depth 12255\n", + "circuit_depth 12256\n", "circuit_width 7\n" ] } ], "source": [ - "print(\"circuit_depth\", result['circuit_depth'])\n", - "print(\"circuit_width\", result['circuit_width'])" + "print(\"circuit_depth\", result['circuit_info']['depth'])\n", + "print(\"circuit_width\", result['circuit_info']['width'])" ] }, { @@ -220,7 +216,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -235,27 +231,24 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "hhl solution [0.22147+0.j 0.22034-0.j]\n", - "classical solution [0.14286 0.28571]\n", - "fidelity 0.898454\n", - "probability 0.424639\n" + "solution [0.22147+0.j 0.22034-0.j]\n", + "classical solution [0.14286 0.28571]\n" ] } ], "source": [ "result = run_algorithm(params)\n", + "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", - "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", - "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", - "print(\"probability %f\" % result['probability_result'])" + "classical_result = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(classical_result['solution'], 5))" ] }, { @@ -267,21 +260,21 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "circuit_depth 30253\n", + "circuit_depth 30254\n", "circuit_width 7\n" ] } ], "source": [ - "print(\"circuit_depth\", result['circuit_depth'])\n", - "print(\"circuit_width\", result['circuit_width'])" + "print(\"circuit_depth\", result['circuit_info']['depth'])\n", + "print(\"circuit_width\", result['circuit_info']['width'])" ] }, { @@ -312,7 +305,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -334,28 +327,25 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "hhl solution [ 0.18195-0.j 0. -0.j -0. -0.j -0. +0.j 0. +0.j\n", - " 0. +0.j -0. -0.j 0.18041+0.j]\n", - "classical solution [0.21053 0. 0. 0. 0. 0. 0. 0.15789]\n", - "fidelity 0.981173\n", - "probability 0.935566\n" + "solution [ 0.18195-0.j 0. -0.j 0. -0.j -0. +0.j 0. +0.j\n", + " -0. +0.j -0. -0.j 0.18041+0.j]\n", + "classical solution [0.21053 0. 0. 0. 0. 0. 0. 0.15789]\n" ] } ], "source": [ "result = run_algorithm(params)\n", + "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "print(\"hhl solution \", np.round(result['solution_hhl'], 5))\n", - "print(\"classical solution \", np.round(result['solution_classical'], 5))\n", - "print(\"fidelity %f\" % result['fidelity_hhl_to_classical'])\n", - "print(\"probability %f\" % result['probability_result'])" + "classical_result = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(classical_result['solution'], 5))" ] }, { @@ -367,21 +357,21 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "circuit_depth 315268\n", + "circuit_depth 315281\n", "circuit_width 9\n" ] } ], "source": [ - "print(\"circuit_depth\", result['circuit_depth'])\n", - "print(\"circuit_width\", result['circuit_width'])" + "print(\"circuit_depth\", result['circuit_info']['depth'])\n", + "print(\"circuit_width\", result['circuit_info']['width'])" ] }, { @@ -400,11 +390,11 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua.algorithms.single_sample import HHL\n", "from qiskit.aqua.utils import random_hermitian" @@ -419,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -456,28 +446,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "random matrix:\n", - "[[ 0.284+0.j -0.257-0.051j -0.124+0.033j 0.038+0.023j]\n", - " [-0.257+0.051j 0.404+0.j 0.067-0.079j 0.054+0.055j]\n", - " [-0.124-0.033j 0.067+0.079j 0.282-0.j 0.043+0.004j]\n", - " [ 0.038-0.023j 0.054-0.055j 0.043-0.004j 0.206+0.j ]]\n", - "HHL results:\n", - "hhl solution [ 79.9768 +4.52073j 60.28272 +3.09211j 37.51853 -9.5858j\n", - " -35.02324+26.46894j]\n", - "classical solution [ 76.1399 +1.92451j 57.30622 +1.20141j 35.96381-10.07775j\n", - " -32.03837+25.90593j]\n", - "fidelity 0.999946\n", - "probability 0.256771\n" - ] - } - ], + "outputs": [], "source": [ "# set the random seed to get the same pseudo-random matrix for every run\n", "np.random.seed(1)\n", @@ -490,15 +461,13 @@ "\n", "algo_input = LinearSystemInput(matrix=matrix, vector=vector)\n", "hhl = HHL.init_params(params3, algo_input)\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend=backend)\n", "result_hhl = hhl.run(quantum_instance)\n", + "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "print(\"HHL results:\")\n", - "print(\"hhl solution \", np.round(result_hhl['solution_hhl'], 5))\n", - "print(\"classical solution \", np.round(result_hhl['solution_classical'], 5))\n", - "print(\"fidelity %f\" % result_hhl['fidelity_hhl_to_classical'])\n", - "print(\"probability %f\" % result_hhl['probability_result'])" + "classical_result = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(classical_result['solution'], 5))" ] }, { @@ -510,21 +479,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "circuit_depth 973532\n", - "circuit_width 12\n" - ] - } - ], + "outputs": [], "source": [ - "print(\"circuit_depth\", result_hhl['circuit_depth'])\n", - "print(\"circuit_width\", result_hhl['circuit_width'])" + "print(\"circuit_depth\", result_hhl['circuit_info']['depth'])\n", + "print(\"circuit_width\", result_hhl['circuit_info']['width']" ] }, { @@ -551,7 +511,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, From d467b4f26838810645b343f48e03b6ab5eb3cb3a Mon Sep 17 00:00:00 2001 From: woodsp Date: Fri, 5 Apr 2019 16:55:22 -0400 Subject: [PATCH 035/116] Update Aqua general tutorials --- .../algorithm_introduction_with_vqe.ipynb | 298 ++++++++++++++++++ community/aqua/general/eoh.ipynb | 27 +- community/aqua/general/evolution.ipynb | 79 +++-- 3 files changed, 373 insertions(+), 31 deletions(-) create mode 100644 community/aqua/general/algorithm_introduction_with_vqe.ipynb diff --git a/community/aqua/general/algorithm_introduction_with_vqe.ipynb b/community/aqua/general/algorithm_introduction_with_vqe.ipynb new file mode 100644 index 000000000..e74cbabe9 --- /dev/null +++ b/community/aqua/general/algorithm_introduction_with_vqe.ipynb @@ -0,0 +1,298 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## _*Using Qiskit Aqua algorithms, a how to guide*_\n", + "\n", + "This notebook demonstrates how to use the `Qiskit Aqua` library to invoke an algorithm and process the result.\n", + "\n", + "Further information may be found for the algorithms in the online [Aqua documentation](https://qiskit.org/documentation/aqua/algorithms.html).\n", + "\n", + "Algorithms in Aqua can be created and run as usual in Python by constructing instances and calling methods. There is also a high level `run_algorithm` method that takes a configuration dictionary with data describing which algorithm to use, which components etc along with an InputInstance type to supply data to the algorithm. This latter approach is what we call `declarative` with the former, the regular Python way, `programmatic`. This tutorial will show both approaches.\n", + "\n", + "Aqua has many `algorithms` for solving different problems. For some we also have classical algorithms, that take the exact same input data, to solve the problem. This can be useful in the near term as Quantum algorithms are developed since we are still at a stage where we can do classical comparison of the result.\n", + "\n", + "Aqua also has various `components` which are dependent objects used by algorithms, such as variational forms, qfts, initial states etc. We will see more on this below.\n", + "\n", + "Lastly for developers we also have a collections of `circuits` and gates which can be used to help build out new components and algorithms.\n", + "\n", + "Here we will choose to show some of the main aspects of Aqua by solving a ground state energy problem." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit.aqua import Operator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As input, for an energy problem, we need a Hamiltonian and so we first create a suitable `Operator ` instance. In this case we have a paulis list, as below, from a previously computed Hamiltonian, that we saved, so as to focus this notebook on using the algorithms. We simply load these paulis to create the original Operator.\n", + "\n", + "This Hamiltonian was created originally using Qiskit Chemistry for an H2 molecule at 0.735A interatomic distance. Please refer to the chemistry tutorials here if you are interested in understanding more. Suffice to say at this level Aqua does not really care about the source of the Operator." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "pauli_dict = {\n", + " 'paulis': [{\"coeff\": {\"imag\": 0.0, \"real\": -1.052373245772859}, \"label\": \"II\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": 0.39793742484318045}, \"label\": \"ZI\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": -0.39793742484318045}, \"label\": \"IZ\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": -0.01128010425623538}, \"label\": \"ZZ\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": 0.18093119978423156}, \"label\": \"XX\"}\n", + " ]\n", + "}\n", + "\n", + "qubit_op = Operator.load_from_dict(pauli_dict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's start with a classical algorithm\n", + "\n", + "We can now use the Operator without regard to how it was created. We chose to start this tutorial with a classical algorithm as it involves a little less setting up than the `VQE` quantum algorithm we will use later. Here we will use `ExactEigensolver` to compute the minimum eigenvalue of the Operator (Hamiltonian).\n", + "\n", + "#### First let's show the `programmatic` approach.\n", + "\n", + "We construct an `ExactEigensolver` instance, passing in the Operator, and then call `run()` on in order to compute the result. All Aqua algorithms have the run method (it is defined by a base class which all algorithms extend) and while no parameters are need for classical algorithms a quantum algorithm will require a backend (quantum simulator or real device) on which it will be run. The `result` object returned is a dictionary. While the results fields can be different for algorithms solving different problems, and even within a given problem type there may be algorithm specific data returned, for a given problem the fields core to that problem are common across algorithms in order that different algorithms can be chosen to solve the same problem in a consistent fashion." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-1.857275030202378\n" + ] + } + ], + "source": [ + "from qiskit.aqua.algorithms import ExactEigensolver\n", + "\n", + "ee = ExactEigensolver(qubit_op)\n", + "result = ee.run()\n", + "print(result['energy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Now let's show the `declarative` approach. \n", + "\n", + "Here we need to prepare a configuration dictionary of parameters to define the algorithm. Again we we will use the ExactEigensolver and need to create an `algorithm` where it is named by `name`. The name comes from a `CONFIGURATION` dictionary in the algorithm and this name is registered to the Aqua discovery framework so we can load the corresponding class and run it during the exceution of `run_algorithm`. `run_algorithm` requires the configuration dictionary and input data passed via an InputInstance class. For an energy problem the data is supplied via an EnergyInput (extends InputInstance), other problem types have their own specific InputInstance. `run_algorithm` returns the same dictionary as above (internally it calls the run() method of the algorithm and passes back the result)\n", + "\n", + "Note: there are other fields such `problem` that could have been added below. This field defaults to `energy`, which is what we want so it has been omitted. Defaults are convenient in the declarative form too as algorithms can define for both their properties as well as defaults for dependent components." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-1.8572750302023808\n" + ] + } + ], + "source": [ + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "\n", + "aqua_cfg_dict = {\n", + " 'algorithm': {\n", + " 'name': 'ExactEigensolver'\n", + " }\n", + "}\n", + "\n", + "algo_input = EnergyInput(qubit_op)\n", + "result = run_algorithm(aqua_cfg_dict, algo_input)\n", + "print(result['energy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lets switch now to using a Quantum algorithm.\n", + "\n", + "We will use the Variational Quantum Eigensolver (VQE) to solve the same problem as above. As its name implies its uses a variational approach. An ansatz (a variational form) is supplied and using a quantum/classical hybrid technique the energy resulting from evaluating the Operator with the variational form on a quantum backend is taken down to a minimum using a classical optimizer that varies the parameters of the variational form.\n", + "\n", + "#### Lets do the `declarative` approach first this time\n", + "\n", + "In the description above we talked about `VQE` a `variational form` and an `optimizer`. We can now set this up as a dictionary. While we can omit them from the dictionary, such that defaults are used, here we specify them explicitly so we can set their parameters as we desire.\n", + "\n", + "As this is a quantum algorithm we need to specify a backend. Here we use the `statevector_simpulator` from the `qiskit.BasicAer` provider from `Qiskit Terra`. As this is a variational algorithm going from quantum to classical and looping until it finds a minimum it takes a few seconds. The result here is very close to our classical result above." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-1.8572750302012253\n" + ] + } + ], + "source": [ + "aqua_cfg_dict = {\n", + " 'algorithm': {\n", + " 'name': 'VQE',\n", + " 'operator_mode': 'matrix'\n", + " },\n", + " 'variational_form': {\n", + " 'name': 'RYRZ',\n", + " 'depth': 3,\n", + " 'entanglement': 'linear'\n", + " },\n", + " 'optimizer': {\n", + " 'name': 'L_BFGS_B',\n", + " 'maxfun': 1000\n", + " },\n", + " 'backend': {\n", + " 'name': 'statevector_simulator',\n", + " 'provider': 'qiskit.BasicAer'\n", + " }\n", + "}\n", + "\n", + "algo_input = EnergyInput(qubit_op)\n", + "result = run_algorithm(aqua_cfg_dict, algo_input)\n", + "print(result['energy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### And now `programmatic`\n", + " \n", + "Here we create the variational form and optimizer and then pass them to VQE along with the Operator. The backend is created and passed to the algorithm so it can be run there." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-1.8572750301886618\n" + ] + } + ], + "source": [ + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.components.variational_forms import RYRZ\n", + "from qiskit.aqua.components.optimizers import L_BFGS_B\n", + "\n", + "var_form = RYRZ(qubit_op.num_qubits, depth=3, entanglement='linear')\n", + "optimizer = L_BFGS_B(maxfun=1000)\n", + "vqe = VQE(qubit_op, var_form, optimizer)\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "result = vqe.run(backend)\n", + "print(result['energy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While a backend can be passed directly to the quantum algorithm run(), internally it will be detected as such and wrapped as a QuantumInstance. However by doing this explicitly yourself, as below, various parameters governing the execution can be set, including in more advanced cases ability to set noise models, coupling maps etc. The following shows the above but using a QuantumInstance and setting up a default transpiler PassManager for circuit processing." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-1.8572750302012366\n" + ] + } + ], + "source": [ + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.transpiler import PassManager\n", + "\n", + "var_form = RYRZ(qubit_op.num_qubits, depth=3, entanglement='linear')\n", + "optimizer = L_BFGS_B(maxfun=1000)\n", + "vqe = VQE(qubit_op, var_form, optimizer)\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "qi = QuantumInstance(backend=backend, pass_manager=PassManager())\n", + "result = vqe.run(qi)\n", + "print(result['energy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Concluding\n", + "\n", + "This completes an introduction to programming and using Aqua algorithms. There are plenty of other tutorials showing Aqua being used to solve other problems, including AI, Finance, Optimization and Chemistry. We encourage you to explore these further and see that various capabilities and techniques employed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/community/aqua/general/eoh.ipynb b/community/aqua/general/eoh.ipynb index 54dace550..bf8a6d61c 100644 --- a/community/aqua/general/eoh.ipynb +++ b/community/aqua/general/eoh.ipynb @@ -71,7 +71,7 @@ "output_type": "stream", "text": [ "The result is\n", - "{'avg': (0.36883301800844187+2.342013271062652e-17j), 'std_dev': 0.0}\n" + "{'avg': (3.469125838650009-1.002992831056778e-16j), 'std_dev': 0.0}\n" ] } ], @@ -87,12 +87,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The above programmatic approach can also be achieved via a declarative manner using json dictionary configuration:" + "The above programmatic approach can also be achieved via a declarative manner using a configuration configuration to specify the algorithm, components, backend etc. The operators, the main data for the algorithm, are supplied to it via an EnergyInput (an InputInstance type)." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -107,6 +107,10 @@ " 'initial_state': {\n", " 'name': 'CUSTOM',\n", " 'state': 'uniform'\n", + " },\n", + " 'backend': {\n", + " 'name': 'statevector_simulator',\n", + " 'provider': 'qiskit.BasicAer'\n", " }\n", "}\n", "algo_input = EnergyInput(qubit_op)\n", @@ -117,12 +121,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "With all the necessary pieces prepared, we can then proceed to run the algorithm and examine the result." + "With all the necessary pieces prepared, we can then proceed to run the algorithm and examine the result. The run_algorithm takes the configuration dictionary and the input data." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -130,14 +134,21 @@ "output_type": "stream", "text": [ "The result is\n", - "{'avg': (0.36883301800844187+2.342013271062652e-17j), 'std_dev': 0.0}\n" + "{'avg': (3.469125838650008-3.2364937588818136e-16j), 'std_dev': 0.0}\n" ] } ], "source": [ - "ret = run_algorithm(params, algo_input, backend=backend)\n", + "ret = run_algorithm(params, algo_input)\n", "print('The result is\\n{}'.format(ret))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -156,7 +167,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/general/evolution.ipynb b/community/aqua/general/evolution.ipynb index 07fea27c9..ba41def4a 100644 --- a/community/aqua/general/evolution.ipynb +++ b/community/aqua/general/evolution.ipynb @@ -17,19 +17,7 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "ename": "ImportError", - "evalue": "cannot import name 'LegacySimulators'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mscipy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlinalg\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mexpm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mLegacySimulators\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mexecute\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mq_execute\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mQuantumRegister\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mImportError\u001b[0m: cannot import name 'LegacySimulators'" - ] - } - ], + "outputs": [], "source": [ "import numpy as np\n", "from scipy.linalg import expm\n", @@ -57,9 +45,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The directly computed groundtruth evolution result state is\n", + "[ 0.00056445+0.29350579j 0.18403341+0.58990254j -0.25317957+0.57786906j\n", + " 0.11563928+0.34726897j].\n" + ] + } + ], "source": [ "state_in_vec = state_in.construct_circuit('vector')\n", "groundtruth = expm(-1.j * h1 * evo_time) @ state_in_vec\n", @@ -75,9 +73,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The groundtruth evolution result as computed by the Dynamics algorithm is\n", + "[ 0.00056445+0.29350579j 0.18403341+0.58990254j -0.25317957+0.57786906j\n", + " 0.11563928+0.34726897j].\n" + ] + } + ], "source": [ "groundtruth_evolution = qubitOp.evolve(state_in_vec, evo_time, 'matrix', 0)\n", "print('The groundtruth evolution result as computed by the Dynamics algorithm is\\n{}.'.format(groundtruth_evolution))\n", @@ -93,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -116,9 +124,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The evolution result state from executing the Dynamics circuit is\n", + "[0.15938927-0.24595785j 0.16958867-0.5942064j 0.52996414-0.3428456j\n", + " 0.09599811-0.35304037j].\n" + ] + } + ], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", "job = q_execute(circuit, backend)\n", @@ -135,9 +153,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Fidelity between the groundtruth and the circuit result states is 0.9999922464923452.\n" + ] + } + ], "source": [ "print('Fidelity between the groundtruth and the circuit result states is {}.'.format(\n", " state_fidelity(groundtruth, circuit_execution_result)\n", @@ -150,6 +176,13 @@ "source": [ "As seen, the fidelity is very close to `1`, indicating that the quantum circuit produced is a good approximation of the intended evolution." ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -168,7 +201,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, From d43ed8bf8893f98e006c43abcc6f106d0725cdc1 Mon Sep 17 00:00:00 2001 From: Steve Wood <40241007+woodsp-ibm@users.noreply.github.com> Date: Fri, 5 Apr 2019 17:17:39 -0400 Subject: [PATCH 036/116] Notebook was refactored/renamed --- community/aqua/general/vqe.ipynb | 161 ------------------------------- 1 file changed, 161 deletions(-) delete mode 100644 community/aqua/general/vqe.ipynb diff --git a/community/aqua/general/vqe.ipynb b/community/aqua/general/vqe.ipynb deleted file mode 100644 index ba86e3fc8..000000000 --- a/community/aqua/general/vqe.ipynb +++ /dev/null @@ -1,161 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*Using Qiskit Aqua algorithms, a how to guide*_\n", - "\n", - "This notebook demonstrates how to use the `Qiskit Aqua` library to invoke a specific algorithm and process the result.\n", - "\n", - "Further information is available for the algorithms in the github repo aqua/readme.md" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", - " 'functionality and more.', DeprecationWarning)\n" - ] - } - ], - "source": [ - "from qiskit.aqua import Operator, run_algorithm, PluggableType, get_pluggable_class" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here an Operator instance is created for our Hamiltonian. In this case the paulis are from a previously computed Hamiltonian for simplicity" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "pauli_dict = {\n", - " 'paulis': [{\"coeff\": {\"imag\": 0.0, \"real\": -1.052373245772859}, \"label\": \"II\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.39793742484318045}, \"label\": \"ZI\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.39793742484318045}, \"label\": \"IZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.01128010425623538}, \"label\": \"ZZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.18093119978423156}, \"label\": \"XX\"}\n", - " ]\n", - "}\n", - "\n", - "qubitOp = Operator.load_from_dict(pauli_dict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now use the Operator without regard to how it was created. First we need to prepare the configuration params to invoke the algorithm. Here we will use the ExactEigensolver first to return the smallest eigenvalue. Backend is not required since this is computed classically not using quantum computation. We then add in the qubitOp Operator in dictionary format. Now the complete params can be passed to the algorithm and run. The result is a dictionary." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "ename": "AquaError", - "evalue": "'PluggableType.INITIAL_STATE EnergyInput not registered'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAquaError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m'algorithm'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0malgorithm_cfg\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m }\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0malgo_input\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_pluggable_class\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mPluggableType\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mINITIAL_STATE\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'EnergyInput'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqubitOp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrun_algorithm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparams\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0malgo_input\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/_discover.py\u001b[0m in \u001b[0;36mget_pluggable_class\u001b[0;34m(pluggable_type, pluggable_name)\u001b[0m\n\u001b[1;32m 356\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpluggable_name\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0m_REGISTERED_PLUGGABLES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpluggable_type\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 357\u001b[0m raise AquaError('{} {} not registered'.format(\n\u001b[0;32m--> 358\u001b[0;31m pluggable_type, pluggable_name))\n\u001b[0m\u001b[1;32m 359\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 360\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0m_REGISTERED_PLUGGABLES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpluggable_type\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpluggable_name\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcls\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAquaError\u001b[0m: 'PluggableType.INITIAL_STATE EnergyInput not registered'" - ] - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "algo_input = get_pluggable_class(PluggableType.INPUT, 'EnergyInput')(qubitOp)\n", - "result = run_algorithm(params,algo_input)\n", - "print(result)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we want VQE and so change it and add its other configuration parameters. VQE also needs and optimizer and variational form. While we can omit them from the dictionary, such that defaults are used, here we specify them explicitly so we can set their parameters as we desire." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'L_BFGS_B',\n", - " 'maxfun': 1000\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RYRZ',\n", - " 'depth': 3,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg,\n", - " 'backend': {'name': 'statevector_simulator'}\n", - "}\n", - "\n", - "result = run_algorithm(params,algo_input)\n", - "print(result)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} From 3dc1dd384ac20b61cacd8bd21fa3af5390487cee Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 9 Apr 2019 14:35:21 +0200 Subject: [PATCH 037/116] initial commit for new qiskit finance folder structure --- qiskit/finance/data_providers/readme.txt | 0 qiskit/finance/machine_learning/readme.txt | 0 qiskit/finance/optimization/readme.txt | 0 qiskit/finance/simulation/readme.txt | 0 4 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 qiskit/finance/data_providers/readme.txt create mode 100644 qiskit/finance/machine_learning/readme.txt create mode 100644 qiskit/finance/optimization/readme.txt create mode 100644 qiskit/finance/simulation/readme.txt diff --git a/qiskit/finance/data_providers/readme.txt b/qiskit/finance/data_providers/readme.txt new file mode 100644 index 000000000..e69de29bb diff --git a/qiskit/finance/machine_learning/readme.txt b/qiskit/finance/machine_learning/readme.txt new file mode 100644 index 000000000..e69de29bb diff --git a/qiskit/finance/optimization/readme.txt b/qiskit/finance/optimization/readme.txt new file mode 100644 index 000000000..e69de29bb diff --git a/qiskit/finance/simulation/readme.txt b/qiskit/finance/simulation/readme.txt new file mode 100644 index 000000000..e69de29bb From 1f46e5c268487c2299f190144b5625bf87d086e2 Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Wed, 10 Apr 2019 16:57:39 +0200 Subject: [PATCH 038/116] reintroduce fidelity and probability output --- .../general/linear_systems_of_equations.ipynb | 187 ++++++++++++------ 1 file changed, 127 insertions(+), 60 deletions(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index d99261ada..58e2a5e06 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -38,10 +38,19 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "qiskit.providers.ibmq.ibmqprovider\n" + ] + } + ], "source": [ "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import LinearSystemInput\n", + "from qiskit.quantum_info import state_fidelity\n", "from qiskit.aqua.algorithms.classical import ExactLPsolver\n", "import numpy as np" ] @@ -73,7 +82,13 @@ " 'provider': 'qiskit.BasicAer',\n", " 'name': 'statevector_simulator'\n", " }\n", - "}" + "}\n", + "\n", + "def fidelity(hhl, ref):\n", + " solution_hhl_normed = hhl / np.linalg.norm(hhl)\n", + " solution_ref_normed = ref / np.linalg.norm(ref)\n", + " fidelity = state_fidelity(solution_hhl_normed, solution_ref_normed)\n", + " print(\"fidelity %f\" % fidelity)" ] }, { @@ -94,7 +109,7 @@ "1 & 0 \\\\\n", "0 & 2\n", "\\end{bmatrix}$$ with the vector $$\\vec{b}= \\left( \\begin{array}{c}1 \\\\ 4 \\end{array} \\right)$$\n", - "The `result` dictionary contains several return values. The HHL solution for $\\vec{x}$ is accessible by the key `'solution_hhl'`. For comparison, also the classical solution of the linear system of equations is calculated using standard linear algebra functions in numpy. The fidelity between the HHL solution and the classical solution is also given in the output. Furthermore, the probability is shown with which HHL was running successfully, i.e. the HHL ancillary qubit has been measured to be $|1\\rangle$." + "The `result` dictionary contains several return values. The HHL solution for $\\vec{x}$ is accessible by the key `'solution'`. For comparison, also the classical solution of the linear system of equations is calculated using standard linear algebra functions in numpy. The fidelity between the HHL solution and the classical solution is also given in the output. Furthermore, the probability is shown with which HHL was running successfully, i.e. the HHL ancillary qubit has been measured to be $|1\\rangle$." ] }, { @@ -114,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -122,7 +137,9 @@ "output_type": "stream", "text": [ "solution [1.05859+0.j 1.99245+0.j]\n", - "classical solution [1. 2.]\n" + "classical solution [1. 2.]\n", + "probability 0.024630\n", + "fidelity 0.999389\n" ] } ], @@ -130,8 +147,11 @@ "result = run_algorithm(params)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "classical_result = ExactLPsolver(matrix, vector).run()\n", - "print(\"classical solution \", np.round(classical_result['solution'], 5))" + "result_ref = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", + "\n", + "print(\"probability %f\" % result['probability_result'])\n", + "fidelity(result['solution'], result_ref['solution'])" ] }, { @@ -143,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -151,7 +171,9 @@ "output_type": "stream", "text": [ "solution [0.84664+0.j 2.01762+0.j]\n", - "classical solution [1. 2.]\n" + "classical solution [1. 2.]\n", + "probability 0.361437\n", + "fidelity 0.995605\n" ] } ], @@ -164,8 +186,11 @@ "result = run_algorithm(params2)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "classical_result = ExactLPsolver(matrix, vector).run()\n", - "print(\"classical solution \", np.round(classical_result['solution'], 5))" + "result_ref = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", + "\n", + "print(\"probability %f\" % result['probability_result'])\n", + "fidelity(result['solution'], result_ref['solution'])" ] }, { @@ -177,21 +202,21 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "circuit_depth 12256\n", - "circuit_width 7\n" + "circuit_width 7\n", + "circuit_depth 12256\n" ] } ], "source": [ - "print(\"circuit_depth\", result['circuit_info']['depth'])\n", - "print(\"circuit_width\", result['circuit_info']['width'])" + "print(\"circuit_width\", result['circuit_info']['width'])\n", + "print(\"circuit_depth\", result['circuit_info']['depth'])" ] }, { @@ -216,13 +241,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "matrix = [[1, 3], [3, 2]]\n", "vector = [1, 1]\n", - "params['input'] = {\n", + "params3 = params\n", + "params3['input'] = {\n", " 'name': 'LinearSystemInput',\n", " 'matrix': matrix,\n", " 'vector': vector\n", @@ -231,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -239,16 +265,21 @@ "output_type": "stream", "text": [ "solution [0.22147+0.j 0.22034-0.j]\n", - "classical solution [0.14286 0.28571]\n" + "classical solution [0.14286 0.28571]\n", + "probability 0.424639\n", + "fidelity 0.898454\n" ] } ], "source": [ - "result = run_algorithm(params)\n", + "result = run_algorithm(params3)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "classical_result = ExactLPsolver(matrix, vector).run()\n", - "print(\"classical solution \", np.round(classical_result['solution'], 5))" + "result_ref = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", + "\n", + "print(\"probability %f\" % result['probability_result'])\n", + "fidelity(result['solution'], result_ref['solution'])" ] }, { @@ -260,21 +291,21 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "circuit_depth 30254\n", - "circuit_width 7\n" + "circuit_width 7\n", + "circuit_depth 30254\n" ] } ], "source": [ - "print(\"circuit_depth\", result['circuit_info']['depth'])\n", - "print(\"circuit_width\", result['circuit_info']['width'])" + "print(\"circuit_width\", result['circuit_info']['width'])\n", + "print(\"circuit_depth\", result['circuit_info']['depth'])" ] }, { @@ -305,7 +336,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -318,7 +349,8 @@ " [0, 0, 0, 0, 0, 0, 1, 0],\n", " [1, 0, 0, 0, 0, 0, 0, 5]]\n", "vector = [1, 0, 0, 0, 0, 0, 0, 1]\n", - "params['input'] = {\n", + "params4 = params\n", + "params4['input'] = {\n", " 'name': 'LinearSystemInput',\n", " 'matrix': matrix,\n", " 'vector': vector\n", @@ -327,7 +359,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -336,16 +368,21 @@ "text": [ "solution [ 0.18195-0.j 0. -0.j 0. -0.j -0. +0.j 0. +0.j\n", " -0. +0.j -0. -0.j 0.18041+0.j]\n", - "classical solution [0.21053 0. 0. 0. 0. 0. 0. 0.15789]\n" + "classical solution [0.21053 0. 0. 0. 0. 0. 0. 0.15789]\n", + "probability 0.935566\n", + "fidelity 0.981173\n" ] } ], "source": [ - "result = run_algorithm(params)\n", + "result = run_algorithm(params4)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "classical_result = ExactLPsolver(matrix, vector).run()\n", - "print(\"classical solution \", np.round(classical_result['solution'], 5))" + "result_ref = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", + "\n", + "print(\"probability %f\" % result['probability_result'])\n", + "fidelity(result['solution'], result_ref['solution'])" ] }, { @@ -357,21 +394,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "circuit_depth 315281\n", - "circuit_width 9\n" + "circuit_width 9\n", + "circuit_depth 315281\n" ] } ], "source": [ - "print(\"circuit_depth\", result['circuit_info']['depth'])\n", - "print(\"circuit_width\", result['circuit_info']['width'])" + "print(\"circuit_width\", result['circuit_info']['width'])\n", + "print(\"circuit_depth\", result['circuit_info']['depth'])" ] }, { @@ -390,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -409,16 +446,16 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "params3 = params\n", - "params3[\"reciprocal\"] = {\n", + "params5 = params\n", + "params5[\"reciprocal\"] = {\n", " \"name\": \"Lookup\",\n", " \"negative_evals\": True\n", "}\n", - "params3[\"eigs\"] = {\n", + "params5[\"eigs\"] = {\n", " \"expansion_mode\": \"suzuki\",\n", " \"expansion_order\": 2,\n", " \"name\": \"EigsQPE\",\n", @@ -426,13 +463,13 @@ " \"num_ancillae\": 6,\n", " \"num_time_slices\": 70\n", "}\n", - "params3[\"initial_state\"] = {\n", + "params5[\"initial_state\"] = {\n", " \"name\": \"CUSTOM\"\n", "}\n", - "params3[\"iqft\"] = {\n", + "params5[\"iqft\"] = {\n", " \"name\": \"STANDARD\"\n", "}\n", - "params3[\"qft\"] = {\n", + "params5[\"qft\"] = {\n", " \"name\": \"STANDARD\"\n", "}" ] @@ -446,9 +483,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "random matrix:\n", + "[[ 0.284-0.j -0.257-0.051j -0.124+0.033j 0.038+0.023j]\n", + " [-0.257+0.051j 0.404+0.j 0.067-0.079j 0.054+0.055j]\n", + " [-0.124-0.033j 0.067+0.079j 0.282-0.j 0.043+0.004j]\n", + " [ 0.038-0.023j 0.054-0.055j 0.043-0.004j 0.206-0.j ]]\n", + "solution [ 79.9768 +4.52073j 60.28272 +3.09211j 37.51853 -9.5858j\n", + " -35.02324+26.46894j]\n", + "classical solution [ 76.1399 +1.92451j 57.30622 +1.20141j 35.96381-10.07775j\n", + " -32.03837+25.90593j]\n", + "probability 0.256771\n", + "fidelity 0.999946\n" + ] + } + ], "source": [ "# set the random seed to get the same pseudo-random matrix for every run\n", "np.random.seed(1)\n", @@ -460,31 +515,43 @@ "print(np.round(m, 3))\n", "\n", "algo_input = LinearSystemInput(matrix=matrix, vector=vector)\n", - "hhl = HHL.init_params(params3, algo_input)\n", + "hhl = HHL.init_params(params5, algo_input)\n", "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend=backend)\n", - "result_hhl = hhl.run(quantum_instance)\n", + "result = hhl.run(quantum_instance)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "classical_result = ExactLPsolver(matrix, vector).run()\n", - "print(\"classical solution \", np.round(classical_result['solution'], 5))" + "result_ref = ExactLPsolver(matrix, vector).run()\n", + "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", + "\n", + "print(\"probability %f\" % result['probability_result'])\n", + "fidelity(result['solution'], result_ref['solution'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The circuit depth and width are" + "The circuit width and depth are" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "circuit_width 12\n", + "circuit_depth 973537\n" + ] + } + ], "source": [ - "print(\"circuit_depth\", result_hhl['circuit_info']['depth'])\n", - "print(\"circuit_width\", result_hhl['circuit_info']['width']" + "print(\"circuit_width\", result['circuit_info']['width'])\n", + "print(\"circuit_depth\", result['circuit_info']['depth'])" ] }, { @@ -511,7 +578,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, From dd970a72e8b5c851e2b90287dff6e80c36d1b1f8 Mon Sep 17 00:00:00 2001 From: Atsushi Matsuo Date: Thu, 11 Apr 2019 15:18:26 +0900 Subject: [PATCH 039/116] added docplex.ipynb and added docplex parts into an exisitng maxcut_and_tsp.ipynb --- qiskit/aqua/optimization/docplex.ipynb | 361 ++++++++++++++++++ qiskit/aqua/optimization/maxcut_and_tsp.ipynb | 276 ++++++++++--- 2 files changed, 585 insertions(+), 52 deletions(-) create mode 100644 qiskit/aqua/optimization/docplex.ipynb diff --git a/qiskit/aqua/optimization/docplex.ipynb b/qiskit/aqua/optimization/docplex.ipynb new file mode 100644 index 000000000..9f079ef0f --- /dev/null +++ b/qiskit/aqua/optimization/docplex.ipynb @@ -0,0 +1,361 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "There has been a growing interest in using quantum computers to find solutions of combinatorial problems. One of heuristic approach for finding solutions of combinatorial problems on quantum computers is a quantum variational approach, such as the Variational Quantum \n", + "Eigensolver (VQE) algorithm (see https://arxiv.org/abs/1802.00171 and the Quantum Approximate Optimization Algorithm (QAOA) (see https://arxiv.org/abs/1411.4028). In order to use a quantum variational approach on quantum computers, first, we need to map a combinatorial problem to an Ising Hamiltonians. However Ising Hamiltonians are complicated and unintuitive. Mapping a combinatorial problem to Ising Hamiltonians is difficult and time-consuming task, which requires specialized knowledge.\n", + "\n", + "In this tutorial, we introduce a translator to automatically generate Ising Hamiltonians from classical optimization models. We will explain about classical optimization models later. The translator dramatically simplifies the task of designing and implementing quantum-computing-based solutions for optimization problems by automatically generating Ising Hamiltoniansfor different optimization problems. With the translator, All a user has to do is to write optimization models using DOcplex (see https://cdn.rawgit.com/IBMDecisionOptimization/docplex-doc/master/docs/index.html). DOcplex is a python library for optimization problems.\n", + "Then the translator will automatically generate Ising Hamiltonians from the models. Optimization models are short and intuitive. It is easier to write optimization models compared to writing Ising Hamiltonians manually. \n", + "\n", + "The quantum variational approach works with the translator in Qiskit Aqua as follows:\n", + "1. Write an optimization model of the formulation with DOcplex.\n", + "2. Call the translator to transform the model into an Ising Hamiltonian.\n", + "3. Solve the problem with variational algorithms such as VQE and QAOA.\n", + "\n", + "\n", + "### Details of Optimization Models\n", + "For simplicity, we can generate Ising Hamiltonian from the following optimization models now.\n", + "- Binary decision variables. \n", + "- Linear and quadratic terms in objective functions.\n", + "- Only equality constraints.\n", + "\n", + "Even though there are restrictions, this type of optimization model can handle the following optimization problems, maxcut, tsp and etc.\n", + "They are typical optimization problems. The usage examples of the translator for Maxcut and TSP are written in the following link.\n", + "- [Qiskit Aqua: Experimenting with MaxCut problem and Traveling Salesman problem with variational quantum eigensolve](maxcut_and_tsp.ipynb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A Usage Example: Maximize the number of variables which takes the value 1\n", + "The following is a toy example of a maximization problem with constrains.\n", + "\\begin{aligned}\n", + " & \\text{maximize}\n", + " & \\sum_{i} x_{i}\\\\\n", + " & \\text{subject to}\n", + " & \\sum_{i} i * x_{i}=3\\\\\n", + " & & i \\in \\{1,2,3,4\\} \\\\\n", + " & & x_i \\in \\{0,1\\}\\\\\n", + "\\end{aligned}" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from docplex.mp.model import Model\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.algorithms import VQE, ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import SPSA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua.translators.ising import docplex\n", + "\n", + "# setup aqua logging\n", + "import logging\n", + "from qiskit.aqua import set_qiskit_aqua_logging\n", + "# set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create an optimization model of the above problem using DOcplex\n", + "An optimization model of the problem with DOcplex is written as follows. \n", + "An instance of `Model` is created and variables for the model are created in the first paragraph. Then object function is written in the second paragraph. The objective function is a function that we would like to minimize (or maximize). Finally constrains are written in the third paragraph. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\\ This file has been generated by DOcplex\n", + "\\ ENCODING=ISO-8859-1\n", + "\\Problem name: max_vars\n", + "\n", + "Maximize\n", + " obj: x_1 + x_2 + x_3 + x_4\n", + "Subject To\n", + " c1: x_1 + 2 x_2 + 3 x_3 + 4 x_4 = 3\n", + "\n", + "Bounds\n", + "0 <= x_1 <= 1\n", + "0 <= x_2 <= 1\n", + "0 <= x_3 <= 1\n", + "0 <= x_4 <= 1\n", + "\n", + "Binaries\n", + " x_1 x_2 x_3 x_4\n", + "End\n", + "\n" + ] + } + ], + "source": [ + "# Create an instance of a model and variables\n", + "mdl = Model(name='max_vars')\n", + "x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(1,5)}\n", + "\n", + "# Object function\n", + "max_vars_func = mdl.sum(x[i] for i in range(1,5))\n", + "mdl.maximize(max_vars_func)\n", + "\n", + "# Constrains\n", + "mdl.add_constraint(mdl.sum(i*x[i] for i in range(1,5)) == 3)\n", + "\n", + "print(mdl.export_to_string())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generate an Ising Hamiltonian from the model using ```docplex.get_qubitops(mdl)```\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp, offset = docplex.get_qubitops(mdl)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking that the full Hamiltonian gives the right cost" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -57.5\n", + "objective: -2.0\n", + "solution: [1. 1. 0. 0.]\n" + ] + } + ], + "source": [ + "ee = ExactEigensolver(qubitOp, k=1)\n", + "result = ee.run()\n", + "\n", + "print('energy:', result['energy'])\n", + "print('objective:', result['energy'] + offset)\n", + "\n", + "x = docplex.sample_most_likely(result['eigvecs'][0])\n", + "print('solution:', x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running it on quantum computer\n", + "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -56.20499759137974\n", + "time: 9.663682699203491\n", + "solution objective: -0.7049975913797368\n", + "solution: [0. 0. 1. 0.]\n" + ] + } + ], + "source": [ + "seed = 10598\n", + "\n", + "spsa = SPSA(max_trials=300)\n", + "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", + "\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "\n", + "result = vqe.run(quantum_instance)\n", + "\n", + "\"\"\"declarative approach\n", + "algorithm_cfg = {\n", + " 'name': 'VQE',\n", + " 'operator_mode': 'matrix'\n", + "}\n", + "\n", + "optimizer_cfg = {\n", + " 'name': 'SPSA',\n", + " 'max_trials': 300\n", + "}\n", + "\n", + "var_form_cfg = {\n", + " 'name': 'RY',\n", + " 'depth': 5,\n", + " 'entanglement': 'linear'\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising', 'random_seed': seed},\n", + " 'algorithm': algorithm_cfg,\n", + " 'optimizer': optimizer_cfg,\n", + " 'variational_form': var_form_cfg,\n", + " 'backend': {provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'}\n", + "}\n", + "\n", + "result = run_algorithm(params, algo_input)\n", + "\"\"\"\n", + "\n", + "x = docplex.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "print('solution objective:', result['energy'] + offset)\n", + "print('solution:', x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] A Case when the validation of the input model fails.\n", + "If the following unsupported elemts exist in the input model, the error will be raised.\n", + "- Variables which are not binary decision variables \n", + "- Inequality constraints. \n", + "Note: Cubic or higher order terms can not be input of DOcplex." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\\ This file has been generated by DOcplex\n", + "\\ ENCODING=ISO-8859-1\n", + "\\Problem name: max_vars\n", + "\n", + "Maximize\n", + " obj: x_1 + x_2 + x_3 + x_4\n", + "Subject To\n", + " c1: x_1 + 2 x_2 + 3 x_3 + 4 x_4 <= 3\n", + "\n", + "Bounds\n", + "End\n", + "\n" + ] + } + ], + "source": [ + "# Create an instance of a model and variables\n", + "# Continuous variables are used\n", + "mdl = Model(name='max_vars')\n", + "x = {i: mdl.continuous_var(name='x_{0}'.format(i)) for i in range(1,5)}\n", + "\n", + "# Object function\n", + "max_vars_func = mdl.sum(x[i] for i in range(1,5))\n", + "mdl.maximize(max_vars_func)\n", + "\n", + "# Constrains\n", + "# Inequality constraint is used\n", + "mdl.add_constraint(mdl.sum(i*x[i] for i in range(1,5)) <= 3)\n", + "\n", + "print(mdl.export_to_string())" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The type of Variable x_1 is continuous. It must be a binary variable. \n", + "The type of Variable x_2 is continuous. It must be a binary variable. \n", + "The type of Variable x_3 is continuous. It must be a binary variable. \n", + "The type of Variable x_4 is continuous. It must be a binary variable. \n", + "Constraint x_1+2x_2+3x_3+4x_4 <= 3 is not an equality constraint.\n" + ] + }, + { + "ename": "AquaError", + "evalue": "'The input model has unsupported elements.'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAquaError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mqubitOp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdocplex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_qubitops\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmdl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/github/qiskit-aqua-docplex/qiskit/aqua/translators/ising/docplex.py\u001b[0m in \u001b[0;36mget_qubitops\u001b[0;34m(mdl, auto_penalty, default_penalty)\u001b[0m\n\u001b[1;32m 83\u001b[0m \"\"\"\n\u001b[1;32m 84\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 85\u001b[0;31m \u001b[0m_validate_input_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmdl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 86\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0;31m# set the penalty coefficient by _auto_define_penalty() or manually.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/github/qiskit-aqua-docplex/qiskit/aqua/translators/ising/docplex.py\u001b[0m in \u001b[0;36m_validate_input_model\u001b[0;34m(mdl)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mvalid\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 224\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mAquaError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'The input model has unsupported elements.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 225\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAquaError\u001b[0m: 'The input model has unsupported elements.'" + ] + } + ], + "source": [ + "qubitOp, offset = docplex.get_qubitops(mdl)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb index dbd9f213f..91296bd69 100644 --- a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb +++ b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb @@ -97,18 +97,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", - " 'functionality and more.', DeprecationWarning)\n" - ] - } - ], + "outputs": [], "source": [ "# useful additional packages \n", "import matplotlib.pyplot as plt\n", @@ -145,9 +136,21 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ImportError", + "evalue": "cannot import name 'IBMQ'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mIBMQ\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m# IBMQ.load_accounts()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mImportError\u001b[0m: cannot import name 'IBMQ'" + ] + } + ], "source": [ "from qiskit import IBMQ\n", "# IBMQ.load_accounts()" @@ -162,20 +165,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 58, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/manoel/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/networkx/drawing/nx_pylab.py:611: MatplotlibDeprecationWarning: isinstance(..., numbers.Number)\n", - " if cb.is_numlike(alpha):\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXFwFZRMB9AxW3cEUETMscoWnUcoNS25txxpmmpqamdWyaZqZprMnKaZtstampfjVmmc40JdouXMR9FwUXQFQ22bnc7++Pg2fAWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNHxeFldgBBCCGtIAAghRAclASCEEB2UBIAQQnRQEgBCCNFBSQAIIUQHJQEghBAdlASAEEJ0UBIAQgjRQXlbXUBjevTooQcNGmR1GUII0aZs3rz5lNa6pzPHemwADBo0iLS0NKvLEEKINkUpleXssR4bAC6nNeTmwunT4HBAUBCEh0OnTlZXJoQQlmjfAWC3w5dfwptvwubNUFFh3PCVMkIAYMQIWLAAZs82QkEIIToI5amrgcbExOgL7gLSGv77X3joISgsND4XEAA+PvWPq6kxQsFuB29v+MUv4NZbwde3ZcULIYRFlFKbtdYxzhzb/mYBlZTAbbfBL38JpaUQHGz8OffmD0ZrIDDQ+LqvL/ztb3DVVXDokPvrFkIIN2tfAVBcbHTnfPqpcVMPCHD+e318ICQEDh+GefNg9+7Wq1MIITxA+wmAmhpYtAj27jVu5F4X8KMpZQRHRQVcd50xaCyEEO1U+wmA11+H9HTj5q9Uy84VFGR0Jd17rzGeIIQQ7VD7CIDjx+GvfzX681t68z8rOBi++w7WrnXN+YQQwsO0jwB46y1jJk8zs3f+Lz+fGw8fZtLevTySnd30OZUyZgY9+6y0AoQQ7VLbD4CqKiMAAgObPbSHtzeLevRgdnCwc+cODDRmBO3Y0cIihRDC87gkAJRSryml8pRSOxv5ulJK/U0pdVAptV0pFe2K6wLGoG91tVNz9+O7duUHQUEEO/v0r1LG4PKmTS0sUgghPI+rWgBvANOb+PoMYFjtn8XAiy66rjFd02532em+x9sbUlJa7/xCCGERlwSA1vpLIL+JQ+YAb2rDJiBEKdXXFddm//7/LevQGjp3Nq4hhBDtjLvGAPoDR+u8Plb7uXqUUouVUmlKqbSTJ086d+aysvOa+VNtt3MiL4/i4mIKCwupqq5u+huUMsYZhBCinfGoxeC01iuAFWCsBeTUN/n7n9csHS8vL7TWeHt7U1JaSl5eHl5eXgQGBhIYGEhAYCDedccItG54GQkhhGjj3BUAx4GwOq8H1H6u5YYPd7oFUKM1NUBnf3/KgF59++KlFPaqKkpLSyksKiI7JwdfX18CAwIIDAzEv6aGTjFOraskhBBtirsC4GPgdqXUu8BEoEhrneOSM0dGOv0O/dVTp1hx6hQOh4Pq6mo27tvH4h49WNyzJ36dO9O9Wze01pRXVFBaWsqp06fxPXOG9fv3U75iBXFxcYwePRpvb49qOAkhxAVxyXLQSql3gB8APYATwO8BHwCt9d+VUgp4DmOmUBnwY611k2s9O70cdGUlTJhgrOzpZBBo4PChQ/Tu3ZvApp4f0BpHYSE7Hn6YjYWFpKamcvToUaKiooiLiyMuLo6hQ4fidSHrDgkhRCs4n+WgXfJWVmt9bTNf18BtrrjW93TuDNdfD6+8AqGhTn2LAkJCQykoLGw6AMrK8Bo8mHE33cS42m6moqIi0tLSSE1NZdWqVRQXFxMbG0tsbCxxcXH0798f5arlKIQQohW1jw1hjh6Fyy8HPz+nWwE1DgcHDxxgyJAhDXfpaA1FRbBsGcyZ0+h5cnNzSU1NxWazkZqaiq+vr9k6iI2NpVu3bs79DEII4QLn0wJoHwEA8OKL8OST57UaaHZ2Nr6dO9Oje/fvf7GwEGJj4e23nV5aWmvN4cOHzTDYvHkzvXv3NsNgwoQJTbc4hBCihTpmANjtcM01xro9wcFOhUBZeTnZ2dkMGTKEekeXlBhdS+vWQf/vPa7gtJqaGvbs2WO2EHbu3MmwYcPM7qIxY8bgK9tPCiFcqGMGABjv2hcsgIMHnWoJaODQoUP06dOHwLO7hxUVGV1J//wnjBlzYcU3orKykm3btpGamkpqaiqZmZmMGTPG7DIaMWKEDCgLIVqk4wYAGNtC3n03bNxo3Mj9/Jo8PL+ggLKyMgb07g1nzkB4OLz0kvF8QSs7c+YMmzdvNlsIp0+fJiYmxmwhhIeHy4CyEOK8dOwAAGMAd+1a+N3vjO4cpYz9gc8d7HU4qCktJefIEfr270+nn/8c7rjD6P6xQF5enjnDKDU1FaDegHLPnj0tqUsI0XZIAJxVVQXJybByJWzdaiztfHaZB4fDeD1kCB/6+VE1cyYLfv7zlhfuIlprjh49SkpKCjabjbS0NLp162YGwoQJEwgKCrK6TCGEh5EAaIjDAceOwenTxsdBQTBoEPj6sm3bNv7whz/wr3/9y2O7XBwOB/v27TNnGG3fvp1BgwaZgTBu3Dg6W9RyEUJ4DgmA86S1ZsGCBdx///1MmDDBLddsqaqqKnbs2GGOHxw4cIBRo0aZgRAZGUknZze+EUK0GxIAF+Ddd99lx44d/PnPf3bbNV2ptLSU9PR0c/zgxIkTREdHm4EwePBgj23dCCFcRwLgAhQXFzN79mxWr15NSEiI267bWvLz883uotTUVKqqqszB5Li4OPr06WN1iUKIViABcIEefvhhRowYwfXXX+/W67Y2rTXHjx83u4tsNhtBQUFm6yAmJobg4GCryxRCuIAEwAXaunUrf/rTn/jggw/adXeJw+Hg4MGDZgthy5YthIWFmS2E8ePH4+/vb3WZQogLIAFwgbTWzJ8/nwcffJDo6Gi3XttK1dXV7Nq1y2wh7N27l8jISLO7aNSoUbIHghBthARAC/zzn/9kz549/OlPf3L7tT1FWVkZW7duNccPjh8/TlRUFBMnTiQ2NpYhQ4bIkhVCeCgJgBYoKipizpw5fPTRR9IvXquwsNB8Qtlms1FSUvK9PRCEEJ5BAqCFfve73xEZGcl1111nyfU9XU5OTr0ZRn5+fvUGlGUPBCGsIwHQQlu2bOHPf/4z77//frseDHaFs3sgnF2yIj09nT59+piBEB0dTcDZlVaFEK1OAqCFtNZcc801LFmyhPHjx1tSQ1tVU1PD7t27zRbCrl27GDZsmBkIo0ePlj0QhGhFEgAu8M9//pO9e/fyxz/+0bIa2oOKigpzDwSbzUZmZiZjx441A2H48OEyoCyEC0kAuMDZweCPP/6Yrl27WlZHe1NcXGzugZCamkpBQQExMTFmIISFhUm3mxAtIAHgIg899BCjRo3i2muvtbSO9iwvL8/sLrLZbCil6i1Z0aNHD6tLFKJNkQBwkfT0dJYuXcp7770n70rdQGtNVlaWGQabN2+me/fu9QaUZQ8EIZomAeAiWmuSkpL4/e9/z7hx4yytpSNyOBzs3bsXm81GSkoKO3fuZPDgwWYLISoqSgaUhTiHBIALvfXWWxw4cIA//OEPVpfS4VVVVbF9+3azhXDw4EHGjBljdhdFRkbKgLLo8CQAXKiwsJC5c+fKYLAHKikpqbcHwsmTJ4mOjjaXrBg0aJB03YkORwLAxX77298ybtw4FixYYHUpogmnT5+u94Sy3W6vN6Dcu3dvq0sUotVJALjY5s2befzxx2UwuA3RWnPs2LF6M4yCg4PrLVkhLTrRHp1PAMgav06Ijo7GbrezY8cOxo4da3U5wglKKcLCwggLCyMxMdHcAyElJYXVq1fzyCOPEB4ebgZCVFQUfn5+VpcthFtJC8BJ//jHP8jIyOCRRx6xuhThAtXV1ezcudNsIezbt4/IyEgzEEaOHCl7IIg2SbqAWkFBQQHz5s2TweB2qqysjC1btpjdRcePH2f8+PFmIAwZMkS6/0SbIF1ArSA0NJTJkyfzn//8h/nz51tdjnCxgIAALrnkEi655BLACPy0tDRsNhvvvfce5eXl9Zas6Nevn8UVC9Fy0gI4DzabjWXLlvHOO+/Iu8EOJjs7u96Asr+/vznDKDY2ltDQUKtLFAKQLqBW43A4SEpK4o9//CNjxoyxuhxhEa01GRkZZhikp6fTr18/YmNjmThxIuPHj5c9EIRlJABa0ZtvvklmZiYPP/yw1aUID2G32809EFJSUtizZw/Dhw83WwhjxozBx8fH6jJFByEB0Iry8/NJSkpizZo1dOnSxepyhAeqqKhg69atZgshKyuLqKgo84G0YcOGyZIVotVIALSyBx98kPHjx8tgsHBKcXExaWlp5hPKRUVFxMTEmEtWDBgwQMaUhMtIALSy1NRUnnrqKRkMFhckLy/PDAObzUanTp3qLVnRvXt3q0sUbZjbA0ApNR1YDnQCXtFaLz3n67cAfwWO137qOa31K02d05MDwOFwkJiYyKOPPsro0aOtLke0YVprMjMzzRlGmzdvpmfPnvX2QJCuRnE+3BoASqlOwH7gh8AxwAZcq7XeXeeYW4AYrfXtzp7XkwMAYOXKlWRlZclgsHCps3sgpKSkYLPZ2LlzJxEREWYgjB07VvZAEE1ydwBMAh7RWv+o9vWDAFrrv9Q55hbaWQDk5+eTmJjIJ598Iu/QRKupqqpi27ZtZgvh0KFDjB492gyEiy66SAaURT3uDoCrgela65/Wvr4RmFj3Zl8bAH8BTmK0Fu7SWh9t4FyLgcUA4eHhE7KyslpUW2u7//77iY2N5eqrr7a6FNFBnDlzxtwDwWazcerUKaKjo81AGDhwoIxLdXCeGADdgRKtdaVS6ufAAq11fFPn9fQWAEBKSgrLly/n7bffln90whKnTp2qtweCw+EwB5Pj4uLo1auX1SUKN3P3WkDHgbA6rwfwv8FeALTWp+u8fAV4wgXXtVxsbCwlJSXs2bOHkSNHWl2O6IB69OjBjBkzmDFjBlprjh49is1m46uvvuLpp58mJCTEnGEkeyCIc7miBeCN0a2TgHHjtwHXaa131Tmmr9Y6p/bjecD9WuuLmzpvW2gBALz++uscP36chx56yOpShKjH4XCwf/9+s7to27ZtDBw40FyyYty4cW1jD4SqKjh4EA4fhspK8PaGsDAYMQJkyY3vsWIa6EzgGYxpoK9prf+slPojkKa1/lgp9RdgNmAH8oFbtdZ7mzpnWwmA06dPc/XVV/PJJ58QGBhodTlCNKq6upodO3aYS1YcOHCAkSNHmi2EUaNG0alTJ6vLNNTUwJdfwiuvQEqKcdPXGhwO8PICpaC6GiIjYfFiuOIKaAth5gbyIJib3XfffUycOJGkpCSrSxHCaWVlZfUGlHNycoiOjjbHECIiIqwZ29q2De68E47X9iQHBRk3/XNpDaWlRlgEBcGTT0J8k0OLHYIEgJtt2rSJv/3tbzIYLNq0/Pz8ektWVFRUmN1FsbGx9O3bt3UL0BqeeQaef9644Z/PeEVZmdE9NGcOLF0KHfhZCQkAN3M4HMydO5elS5fKYLBoN7Kzs80wSEtLIyAgoN4eCCEhIa67mNbw+9/D228b7+YvZDtOhwOKiuCSS4yuow4aAhIAFnjttdfIyclhyZIlVpcihMs5HA4yMjLMKadbtmyhf//+5nTTqKiolu2B8Oqr8NhjEBzccHePs7SGwkK45hqjJdABSQBY4NSpU1xzzTWsXbtWNgMR7d7ZPRDOLlmxZ88eRowYYQbCqFGjnN8DISMDZs40BnFdsW/C2ZbAypVw6aUtP18bIwFgkXvvvZdJkyaRmJhodSlCuFV5eTlbt241WwhHjhwhKirKDIShQ4c2vmTFggWweTO4skuptNQYQ/jmmwvrTmrDZFN4i8ybN48XX3xRAkB0OP7+/kyaNIlJkyYBUFRUZA4or1q1iuLiYmJiYsxA6N+/vzFh4sAB4+YfHNzsNYpravhjTg6bSkoI8fbm9p49md7Y9wUGQn4+fPEFJCS48kdtVyQAXOjiiy/mL3/5C3v27CEyMtLqcoSwTHBwMAkJCSTU3nxzc3PN1sFLL72Er68vsbGxLDxwgAi7HW8nZs8tzc3FRyn+O3w4+ysquPPoUYb7+RHRuXPD36CUMRgsAdAoCQAX8vLyYu7cuXz44YcSAELU0adPH2bNmsWsWbPQWnP48GFsNhu88gpHT5/GUVxMYGAggYGBBAQE0Omc7qJyh4PkM2f4v4gIAry8iAoIYGpQEGuLivhVY+sdBQZCerrxnICnPODmYWQdWRebPXs2n3/+OWVlZVaXIoRHUkoRERHBgrlzGe7jw6ARI+jXty/enTqRn5/PgQMHOJyZSd7Jk5SWleHQmiNVVXQCwutM7RzWuTOHKisbv9DZm35mZqv+PG2ZtABcrGfPnkRHR/Ppp58yb948q8sRwnOdOAHe3igvL/z9/fH396cH4NCa8rIySktLyTtxgsqqKjK8vfGtqaG8ogL/2iUfunh5UepwNH0NLy/IzoYhQ1r/52mDpAXQChITE/nwww+tLkMIz2a3G/305/BSisDAQHr16sWgwYMJCwsjwMuLwspKDh8+TEVFBQClDgeBzT0zoLWxZpBokARAK7j44ovJz89n794m17sTomPz9zf658+hgbLyck6cOMHBgwfJyc5msL8/Pn5+VISEUFBYCMD+ysrGB4DPUsq4jmiQBEArqDsYLIRoRO/eRj99TQ0aKC0rIzc3lwMHDpCTk4Py8iJswACGDB3KoD59uDw4mPfsdvKKikgvKeGLM2e4sqnpo2ff/Uv3T6MkAFrJ7Nmz+eyzz2QwWIhGVNfUcKpPH04eO8b+/fs5ceIE3t7eDBw4kCEREfTq2RM/Pz/OdhI90KcPduCnlZU8cPQoD/bp03QLwG6HLl2gZ093/DhtkgwCt5JevXoRFRXFZ599xpw5c6wuRwiPUFlZyXfffUdycjJff/0119XUsMDLi8GDB+PbzDIQXTt1YllYGGdCQzl18iSDm3t4rKQE5s9vcJxBGCQAWlFiYiIvv/yyBIDo0MrKyvj6669Zv349mzZtIjIykvj4eH71q1/R08cHJk48r5t0ly5dyM3NrTcj6Hu0Ns55880u+inaJwmAVjR58mQee+wx9u/fz/Dhw60uRwi3KS4u5osvviA5OZnNmzcTFRVFQkICDz744PeXkb7+emPhttBQp86tgJCQEAoLCvBvbI+CoiK4+GK46KKW/SDtnCwG18pWrFhBQUEB999/v9WlCNGq8vPz2bhxI+vXr2fnzp3ExcUxbdo0pkyZQlBQUOPfWFZmLNdQUGD02Tuh2m7nUEYGQ4cN+95Tw1RWGv3/69dDv34t+InaJlkN1IPk5eWxcOFC1q5di79MRxPtzIkTJ0hOTiY5OZkDBw4wefJkEhISmDx58vn9fU9Ph2uvNVbudPL7jh47RpcuXQit26Korjb6/p9+GmbPPs+fpn2Q1UA9SN3B4Nkd9C+kaF+OHj1KcnIy69ev59ixY0ydOpWbbrqJiRMn4nuhu3BFR8PLL8PPfgZnzhi7gjUjNCSEvJMn/xcA5eVQUQGPPNJhb/7nSwLADebNm8err74qASDaJK01hw4dMt/pnz59mmnTpnHbbbcxYcIEvF213v5ll8H778Pttxsbwnfp0uQGMYFdulCTm0t5aSn+1dXG8c8+KxvDnwfpAnKDmpoaZs2axTPPPCODwaJN0Fqzd+9e851+ZWUl8fHxxMfHM27cuMY3d3GFigrjRv7GG1BVZczmObtbmFLGDB+7HSoqKCoowO5w0P3HP4YHH4Ru3VqvrjZCxgA80IoVKygsLOS+++6zuhQhGuRwONixYwfr169nw4YNeHt7Ex8fT0JCApGRkcYGLu5UVgbr1sF//gPbtsHp08bibg6H0UU0ZgxnJk7k+vfe451PPyUwMNC99XkoCQAPlJuby3XXXce6devwa2zushBuVlNTQ3p6OsnJyWzYsMHcyGXatGkMHTrU/Tf9ppSVGS0CHx8ICDCfHbjvvvuIi4vj6quvtrhAzyCDwB6oT58+jB07ls8++4xZs2ZZXY7owKqqqrDZbKxfv54vv/ySvn37Eh8fz4oVKwgPD7e6vMYFBBh/zpGUlMTy5ctJSkryrMBqAyQA3CgxMZE33nhDAkC4XUVFBd9++y3Jycl88803REREkJCQwM9+9jP6NvYwVRsRGxtLaWkpu3btYvTo0VaX06ZIALjRJZdcwtKlSzl48CBDhw61uhzRzpWWlppLMKSkpDBq1Cji4+P59a9/TY8ePawuz2W8vLxITExk1apVEgDnScYA3Oyll16iqKhIBoNFqygqKjKXYEhPT2f8+PEkJCRw2WWXfX8JhnYkPz+fxMRE1qxZ0/RTxx2AjAF4sDlz5nDddddxxx13yGCwcInTp0+zYcMGkpOT2bVrFxMnTmT69Ok8+uijdHFyaYW2rlu3blx88cX8+9//Zv78+VaX02ZIALhZnz59GDNmDJ9//jlXXXWV1eWINionJ8e86WdkZHDJJZdw9dVXs2zZsg675EhiYiLLli3jmmuukcFgJ0kAWCAxMZGVK1dKAIjzcuTIEfNp3OPHjzN16lRuueUW4uLiLnwJhnYkJiaGqqoqduzYwdixY60up02QALDApZdeytKlS8nIyGCIbFcnGqG1JiMjw3wat7CwkGnTpnH77bczYcIEOnXqZHWJHsXLy4t58+bxr3/9SwLASRIAFujUqROzZ8/mww8/5J577rG6HOFBtNbs2bPHfKdfVVVFfHw8Dz74IGPHjm3dJRjagVmzZjFv3jyKi4vp2rWr1eV4PAkAi8yZM4cbbriBX/3qV3Rual9T0e45HA62b99u3vR9fX2Jj4/n0UcftWYJhjYsNDSUyZMns3btWq699lqry/F4EgAW6devH6NHj2b9+vXMnDnT6nKEm9ntdtLT01m/fj0bN24kNDSU+Ph4li9fTkREhNz0WyApKYmlS5eycOFC+T02QwLAQvPmzePtt9+WAOggqqqqSElJYcOGDXzxxRf079+fhIQEXn75Zc9egqGNiY6OxuFwsG3bNqKioqwux6NJAFhoypQpPP744xw6dIiIiAiryxGtoLy8nO+++47169fz7bffMnToUKZNm8bixYvp06eP1eW1S0op88lgCYCmuSQAlFLTgeVAJ+AVrfXSc77eGXgTmACcBhZorTNdce22zNvb2xwM/s1vfmN1OcJFSkpK+Oqrr0hOTiYlJYXRo0eTkJDA3XffTffu3a0ur0O46qqrePnllykqKiI4ONjqcjxWi6cUKKU6Ac8DM4CRwLVKqZHnHLYIKNBaDwWeBh5v6XXbi7lz57Ju3ToqKyutLkW0QGFhIR9//DF33nknM2fO5L///S9TpkxhzZo1vPDCCyQlJcnN342Cg4OZMmUKa9eutboUj+aKFkAccFBrfQhAKfUuMAfYXeeYOcAjtR9/ADynlFLaUxcicqN+/foxcuRIGQxug06dOmU+jbt7924mTpzIzJkzeeyxx2RzEg+QmJjIo48+yrXXXiuDwY1wRQD0B47WeX0MmNjYMVpru1KqCOgOnHLB9du8efPm8c4770gAtAHZ2dls2LCB9evXc/jwYS699FLmz5/PpEmTZG0nDxMVFYWXlxdbtmwhOjra6nI8kkcNAiulFgOLgQ41K+Kyyy7j8ccf5/DhwwwePNjqcsQ5srKyzDn6OTk5TJ06lUWLFhEbGytLMHiws4PB//rXvyQAGuGKADgOhNV5PaD2cw0dc0wp5Q0EYwwG16O1XgGsAGM5aBfU1ibUHQy+++67rS6nw9Nac/DgQXMJhuLiYqZNm8Ydd9xBdHS0LMHQhlx55ZW89NJLFBYWtuvlsC+UKwLABgxTSg3GuNEvBK4755iPgZuB74CrgWTp/69v7ty53Hzzzdx+++3yrtICWmt2795tbohut9uJj4/noYceYvTo0bIEQxvVtWtXpk6dypo1a7jxxhutLsfjtDgAavv0bwc+xZgG+prWepdS6o9Amtb6Y+BV4B9KqYNAPkZIiDr69+/PiBEjSE5OZvr06VaX0yE4HA62bt1qDuT6+fmRkJDAY489xkUXXSQDh+1EUlISjzzyCDfccIP8Pz2HS8YAtNbrgHXnfO7hOh9XANe44lrtWWJiIu+9954EQCuy2+1s3rzZXIKhe/fuxMfH8+yzzzJ48GC5QbRDY8aMwcfHh7S0NGJjY60ux6N41CBwRzd16lQef/xxMjMzGTRokNXltBtVVVVs2rSJ5ORkvvzyS8LCwkhISODVV18lLCys+ROINk0pRVJSEqtWrZIAOIcEgAepOxh81113WV1Om1ZWVsa3335LcnIy3377LcOHDyc+Pp5bb72V3r17W12ecLMZM2bwwgsvkJ+fT7du3awux2NIAHiYuXPncsstt3DbbbfJYPB5OnPmjLkEQ2pqKmPGjCEhIYF77rlH/tF3cEFBQcTHx7NmzRpuvvlmq8vxGBIAHmbAgAEMHz6cDRs28KMf/cjqcjxeQUEBX3zxBcnJyWzdupWYmBji4+N5+OGHZUMQUU9iYiJLlizhxhtvlFldtSQAPFBiYiLvv/++BEAj8vLy2LhxI8nJyezZs4dJkyZx1VVXsXTpUgICAqwuT3ioUaNGERAQgM1mY+LEcxcr6JgkADzQ1KlTeeKJJzhy5EiHeiK6KdnZ2ebTuJmZmVx66aUsXLiQSZMmyY5qwil1nwyWADBIAHggHx8frrrqKj788EPuvPNOq8uxTGZmpvk0bl5eHlOnTuWnP/0psbGx+Pj4WF2eaINmzJjB888/z+nTp2V1ViQAPNbcuXNZtGgRt956a4cZDNZac+DAAfOd/pkzZ5g2bRp33XUX48ePlyUYRIt16dKFhIQEPvroI37yk59YXY7lJAA8VHh4OEOHDmXjxo1cccUVVpfTahwOB7t37zbf6WutZQkG0aqSkpJ44IEHuOWWWzr83y8JAA82b948Pvzww3YXAGeXYDi77k5AQADx8fE88cQTDB8+XJ7GFa0qMjKSoKAgUlJSmDRpktXlWEoCwINNmzaNJ598sl0MBtvtdmw2Gxs2bGDjxo306NGDhIQEnnvuOdkPWbhV3Seb3LjiAAAcdUlEQVSDJQCExzo7GLx69WruuOMOq8s5b5WVlaSkpLB+/Xq++uorwsPDiY+P57XXXmPAgAFWlyc6sOnTp/Pss89y8uRJevbsaXU5lpEA8HBz587lpz/9Kb/4xS/axGBwWVkZ33zzDcnJyXz33XcMHz6chIQEbrvtNnr16mV1eUIAEBAQwA9/+EM+/vhjFi1aZHU5lpEA8HDh4eEMGTyYrS++SFxREaSmwsGDUFEBnTpB374QFQWXXQYzZkBQkNtrLC4uNpdgsNlsjBs3jmnTpnHvvffKEgzCYyUmJnLPPffw4x//uMMOBitP3ZclJiZGp6WlWV2GtRwOWL2agocfpvrYMXp16wZ+ftC5M3h5gdZQXQ3l5aAUeHvDNdfA3XdDK+9+lJ+fby7BsG3bNmJiYkhISGDKlCmyBINoM2666SZ+/vOfc8kll1hdissopTZrrWOcOVZaAJ4qJwfuuQc2bSLY15eDNTWEdOlSvxtIKSMMzj4Ja7fD22/DJ5/AsmUwbZpLS8rLyzM3RN+3bx+TJ09m9uzZPP7447IEg2iTzj4Z3J4C4HxIAHiijAxYsAAKCyEkBC+lCA4JoaCwkN5N9aN7e0NoKJSVwc9+Bg89BLfc0qJSjh8/bk7XzMrKYsqUKVx//fVcfPHFsgSDaPOuuOIK/va3v5GXl9chx6gkADxNdrZx8y8urteNExIaSlZmJj179sSruXnyAQHg4wN/+hMEBhrdQufh8OHD5oNZJ0+e5Ac/+AGLFy8mJiZGlmAQ7UpAQABXXHEFq1evZvHixVaX43YyBuBJHA649lpISzPeyZ8jMyuLbt260dXZgd6qKuPPv/8Ngwc3epjWmv3797N+/XqSk5MpKytj2rRpJCQkEBUV1WEHyETHsH//fn7961+zZs2adrHciIwBtFX/93/Gzb+RAdzQ0FAKCgqcDwBfX6M76K67YNUqY+C4lsPhYOfOnea6O0opEhIS+P3vf8+oUaPkpi86jOHDh9OrVy+++eYbLrvsMqvLcSsJAE9RU2MM3Pr7G4O7DQgKCiI3N5eqqirnnwkIDoZduyAtjZoJE8wlGDZu3EhgYCDx8fE8+eSTDBs2TJZgEB1WYmIiq1atkgAQFvnqKygqgiamUHopRUDXrvwuK4tdSlFcU8MAHx9u79WLyV26NPg9DqCyvJw9t93G/SEh9OrVi4SEBJ5//nkGN9EtJERHcsUVV/DMM8+Qm5tLnz59rC7HbSQAPMWaNUYroBlBISF0OXWKvw8bRj9fX74pKeGB48d5d/Bg+tW2ChxaU1pSQvGZM5SUlODn48PQI0d44/336T9oUCv/IEK0PX5+fkyfPp3Vq1fzi1/8wupy3EY6ej3F5s1G908zQvz8uDEoiK5VVXgpxZSgIPr5+LCrvJyi4mKOHT/O/v37yc/Px9/fn4iICAYOHkzXkBD6V1S44QcRom1KSkrio48+osaJN2LthQSAJ7Db4ciR/z3Q1YzQkBAKCwqoqanhcH4+B8+cwSs7m6KiIgIDAxk6dCgDBw6kW2goPt51GnkHDrTSDyBE2zdkyBD69u3LV199ZXUpbiMB4AkqK42BXycHYYO6dqW8ooJtu3bxUHY2M7p25QcjRhAeFkZoSAjeDU1lq6kxZgQJIRp1dpnojkICwBN06mQ8A+AkL6UIDw9npb8/vl5eLKis5OiRI+SdPElpWRmOhp7tOLtWkBCiUZdffjm7du0iOzvb6lLcQgLAE3TubDyxa7c7dbjWmify86nw9eXvF13EyBEjjDXNtSbvxAn2799P1pEjnDp9mvKKCjQYIdO7d6v+GEK0dZ07d2bGjBmsXr3a6lLcQgLAEygFo0cbq3o64S+5uRyuquLpsDA6e3nhpRSBgYH06tWLwYMHM2zYMLqFhmKvriY7O5v9+/ZxKjeXj/bvJysrC099+lsIT5CYmMhHH32E3ck3ZG2Z9Al4issuA5ut2cNyqqtZVViIr1L8qM6g7m/79GFGcDAAnby8CAoKIqj2ieHqkhJKlGLLkSO8dOutAMTGxhIXF0dsbGyHXARLiMZEREQQFhbGl19+SXx8vNXltCpZC8hT5ObCpZcaD4K5ehmGggL47W9h0SK01hw9epTU1FRSU1NJS0ujW7duZhhMmDBB1vMXHd66detYt24dzz33nNWlnLfzWQtIAsCT/PznsH69azdzqaoyNo355htoYHcuh8PBvn37sNlspKamsn37dgYNGmS2EKKiomTZZ9HhVFVVMXPmTFauXEn//v2tLue8SAC0VceOwQ9/aMzWccVNV2tjT4GHHoIf/9ipb6mqqmLnzp1mC+HAgQOMGjXKbCGMHDmyXayYKERznnrqKXx9fbn99tutLuW8SAC0Ze++C0uWGF1BLb3RFhbCuHHw/vsX3K1UVlZGenq6GQi5ublER0ebLYSIiAhZRE60S5mZmSxevJi1a9e2qX0wZDnotmzBAuOJ3TfeMDZ4v5C5+1obC8sNGAAvv9yiMYWAgAAuvfRSLr30UsDYCzgtLY3U1FTeeecdKioqiIuLM1sIffv2veBrCeFJBg0axKBBg/jiiy+4/PLLrS6nVUgLwBNpDc88A88/b7QCnF3/H4z+/pISY1rpa69B9+6tVyeQnZ1ttg5sNhuBgYFmGMTGxhLSypvTC9GaPv30Uz766CNeeOEFq0txmnQBtRfp6XDnncYMIS8v6NKl8eUiKiuNpR68veE3v4FFi1rehXSeHA4HGRkZ5oDyli1b6N+/v9lCiIqKks3jRZtSVVXFlVdeyWuvvUZYWJjV5ThFAqA9qaqC5GT4+99hxw5jl6+qKmNtH6WM11ob4fCTn8D8+eAh8/rtdju7d+82Wwh79uxhxIgRZgth9OjRbapvVXRMy5cvRynFHXfcYXUpTnFbACilugHvAYOATGC+1rqggeNqgB21L49orWc3d24JgAYUFcHevZCR8b93+/36wUUXGf39Hr6NY3l5OVu3bjVbCEeOHCEqKspsIQwdOlS2ohQe58iRIyxatIi1a9c6vxOfhdwZAE8A+VrrpUqpB4BQrfX9DRxXorVueMuqRkgAtH9FRUVs3rzZbCEUFxcTExNjthAGDBggM4yER7j11luZN28eV1xxhdWlNMudAbAP+IHWOkcp1RfYqLUe0cBxEgCiWSdOnDAHk1NTU/H29q43w6h7Kw9oC9GYzz77jA8++ICXXnrJ6lKa5c4AKNRah9R+rICCs6/POc4ObAXswFKtdbNL7UkAdGxaazIzM80w2Lx5Mz179jQDITo6mi6N7IMshKtVV1dz5ZVX8vLLLzNw4ECry2mSSwNAKfU50NAuyUuAlXVv+EqpAq11aAPn6K+1Pq6UigCSgQStdUYDxy0GFgOEh4dPyMrKcuZnEB1ATU0Ne/fuNVsIO3bsYMiQIWYgjB07tk30z4q269lnn8Vut3PXXXdZXUqTPK4L6JzveQP4RGv9QVPHSQtANKWqqopt27aZLYRDhw4xevRoMxAuuugiGVAWLnXs2DFuueUW1q1b59FvNtwZAH8FTtcZBO6mtb7vnGNCgTKtdaVSqgfwHTBHa727qXNLAIjzcebMGXPJCpvNxqlTp4iOjjbHDwYNGiQDyqLFbrvtNq666ipmzJhhdSmNcmcAdAf+DwgHsjCmgeYrpWKAX2itf6qUmgy8BDgwNqB5Rmv9anPnlgAQLXHq1ClsNhs2m42UlBQcDoe5flFcXJzsgSAuSHJyMu+88w4vv/yy1aU0Sh4EE6KOs3sgnO0uSktLIzg42AyDmJgY2QNBOMVut3PllVfy4osvEhERYXU5DZIAEKIJDoeDAwcOmN1FW7duZeDAgfX2QPDz87O6TOGhXnjhBcrLy/nNb35jdSkNkgAQ4jxUV1ezY8cOs4Wwf/9+IiMjzRbCyJEj8b6QVVlFu5Sdnc2NN97IunXrPHKzJAkAIVqgrKyMLVu2mC2E7Oxsxo8fb7YQhgwZIgPKHdwdd9zB9OnTmTlzptWlfI8EgBAuVFBQYO6BkJqaSnl5ublkRVxcHP369bO6ROFmGzZs4K233uLVV5udz+J2EgBCtKLs7Gyzu8hms+Hn58fEiRPNPRBCQ7/3LKRoZ+x2O1dddRUvvPCCxw0GSwAI4SZaazIyMswwSE9Pp1+/fmZ3UXR0tOyB0E69+OKLlJSUcO+991pdSj0SAEJYpKamhl27dpkthN27dzN8+HDzgbQxY8bIHgjtRE5ODtdffz3r1q3zqFljEgBCeIiKigq2bdtGSkoKNpuNrKwsxo0bZ7YQhg8fLktWtGF33nknl19+ObNmzbK6FJMEgBAeqri4mLS0NLOFUFhYWG8PhLCwMJlh1IZ8+eWXvP7667z++utWl2KSABCijcjLyzOXq7DZbHh5eZlhEBcXR48ePawuUTShpqaGWbNmsXz5coYNG2Z1OYAEgBBtktaarKwsc0B58+bNdO/evd4eCEFBQVaXKc6xYsUKCgoKuP/+722GaAkJACHaAYfDwd69e80Wws6dOxk8eLDZQoiKivLoZYk7iry8PBYuXMjatWvx9/e3uhwJACHao6qqKrZv3262EDIyMhg1apTZQoiMjJQBZYvcfffdTJ06lTlz5lhdigSAEB1BSUkJ6enpZgvh5MmT9fZAGDx4sAwou8nXX3/NihUrePPNN60uRQJAiI7o9OnT9Z5Qrq6urrcHQu/eva0usd1yOBzMnj2bZcuWMWJEk5sitjoJACE6OK01x48fN8PAZrPRtWtXMxBiYmIIDg62usx25ZVXXiEvL4/f/va3ltYhASCEqMfhcHDw4EFzQbutW7cSFhZmtg6ioqI8YgCzLTt58iTz589n7dq1li7/IQEghGhSdXU1u3btMlsIe/fuJTIy0mwhjBo1SvZAuAD33HMPkydPJjEx0bIaJACEEOelrKyMrVu3mi2E48ePExUVZQ4oDx06VGYYOeHbb7/lhRde4K233rKsBgkAIUSLFBYWmnsg2Gw2SkpKzOWu4+Li6N+/v9UleiSHw8HcuXNZunQpI0eOtKQGCQAhhEvl5OSYM4xSU1Px8/MzwyA2NpZu3bpZXaLHeO2118jJyWHJkiWWXF8CQAjRarTWHD582AyD9PR0+vTpY4ZBdHQ0gYGBVpdpmdOnT3P11VfzySefWPJ7kAAQQrhNTU0Nu3fvNlsIu3btYtiwYWYLYcyYMR1uyYr77ruPiRMnkpSU5PZrSwAIISxTWVnJtm3bzBZCZmYmY8eONVsII0aMaPcDyikpKSxfvpy3337b7U9jn08AyDwvIYRLde7c2Xy+AIw9ENLT00lNTeV3v/sd+fn5xMTEmC2E8PDwdrdkRWxsLKWlpezevZtRo0ZZXU6jpAUghHCrvLw8c4ZRamoqgBkYsbGx9OzZ0+IKXWPlypVkZWXx8MMPu/W60gUkhGgTtNYcPXrU3BAnLS2Nbt26mWEwYcIEunbtanWZFyQ/P5+kpCTWrFlDly5d3HZdCQAhRJvkcDjYt2+fOaC8fft2Bg0aZLYQxo0bR+fOna0u02kPPPAA0dHRzJ8/323XlAAQQrQLVVVV7Ny502whHDhwwNwDITY2lpEjR9KpUyery2xUamoqTz31FO+8887/xjnOnIHKSvD1haAgcPH4hwSAEKJdKi0tNfdASE1NJTc319wDIS4uzuP2QHA4HFw/ezZLp0xh4O7dsH07FBeDlxc4HODvD6NGweWXQ2IidO/e4mtKAAghOoT8/Px6A8qVlZX1nlDu27evdcWVlcHTT1P0/PPYKyvp3r27ccP39v7fu367HSoqjP96ecGsWbBkCbTgyWoJACFEh3TuHgiBgYFm6yAmJoaQkBD3FJKeDr/6FeTmYg8IICMzk6FDhzbdXVVTY7QOgoLgySeNVsEFkAAQQnR4DoeDjIwMs7toy5Yt9O/fv94eCK2ybv/69fDLXxrv8mtn/xw7fpwAf3/n1kwqLzfGCB5+GG666bwvLwEghBDnsNvt9fZA2LNnDyNGjDADYdSoUfj4+LTsIqmpcMMNxgCvn5/56dKyMnJzc4mIiMCpEYrqaigpgaefhtmzz6sECQAhhGhGeXk5W7duxWazkZKSwtGjR809EOLi4s5/D4SSEoiPN2b5nLMInAYyMjLo17ev862OykqjW+jzz6FfP6fLkKUghBCiGf7+/kyaNIlJkyYBUFRUZA4or1q1iuLiYmJiYsxA6N+/f9MzjB5/HPLzoYFxBgWEhoZSUFjofAB07gyFhXD//fCPf1zAT9g8aQEIIUQDTpw4YXYXpaam4uPjU2+GUfe6Uzbz8+Hii413/o0M9Nprasg4eJA3AwNJKy+n3OGgh7c3N3XvztzGBqe1NgaGP/kERoxwqm7pAhJCCBc6uwfC2TBIT0+nZ8+eZusgbudO/J56qsF3/3Udz84mt1MnxvTsia+XF5mVlSzOymJ5WBiR/v4Nf1NBASxYAI895lStbusCUkpdAzwCRAJxWusG79hKqenAcqAT8IrWemlLriuEEO6klCIiIoKIiAgWLFhATU0Ne/fuJTU1lXfffRf13ntE2O34VFcTGBiIv78/Xg10F4WGhFCek4NP797GeWvPfay6uvEACAyE//zH6QA4r5+rJS0ApVQk4ABeAu5pKACUUp2A/cAPgWOADbhWa727qXNLC0AI0SY4HDguuohyoLSigtKyMiorK/H39ycwMJDAwED8/PxQGIPBhw4d4m1vbz4tK6NSa0b4+fHywIEENDbgrDUUFcGmTdCjR7PluK0FoLXeU3vBpg6LAw5qrQ/VHvsuMAdoMgCEEKJNyMnBCwjs2pXA2pVLaxwOykpLKS0tJTs7G7vdTkBAAIGBgXTp0oVF1dU8NGIE28vL2VxWhm9T91ClwMcHDh1yKgDOhztmAfUHjtZ5fQyY6IbrCiFE6ysvN5ZxqKOTlxdBQUEEBQUBUG23m4FQUloKWqOUIioggHVFRXxQUMDCph4S09q4jos1GwBKqc+BPg18aYnW+iNXFqOUWgwsBggPD3flqYUQonV4exs36Cb4eHsTHBxMcHAwGmNQ+ex7/hrgWFVV09c42wpwsWYDQGt9YQtS/M9xIKzO6wG1n2voWiuAFWCMAbTwukII0fr69DEWc3M4vtcSOFe+3U5aWRmXdumCH5BSWsqnRUU81r9/09eoqTmvh8Gc5Y4uIBswTCk1GOPGvxC4zg3XFUKI1ufnB+HhkJdnrPbZBAV8UFDAYzk5OIC+Pj78pndvLqvtKmpQTY0RLK3QK9LSaaDzgGeBnsBapdRWrfWPlFL9MKZ7ztRa25VStwOfYkwDfU1rvavFlQshhKeYNg1Wrmw2AEK9vVkxcOD5nbukBCZNarZ1cSFaOgvoQ+DDBj6fDcys83odsK4l1xJCCI+1cKGxXIPWLt/hC6XgJz9x7TlruT5ShBCioxk+HMaPN+bru1JJCfTsCVOmuPa8tSQAhBDCFZYuNdYBqq52zflqaoxzLVvW6PpCLSUBIIQQrhARAffdZ7xrdzhadq6zi8Bdd52xyFwrkQAQQghX+clPjA1hioqMqaEXwuEwloGeNs3YFawVSQAIIYSrKAWPPAJ33mm0BIqLz+/7S0uN8LjmGnjxxVZ5+KsuCQAhhHAlpeCOO2DVKhgwwAiBoqLGu4UcDmMXsbMbwr/xhjGe0Mo3f5AdwYQQonWMHWts5/j11/DKK/Ddd8Zgrtb/my6qlDHQO3YsLF4MCQnGfsJuIgEghBCtxcsLLrvM+FNdbazoefiwsd+vjw+EhRlTSDt3tqQ8CQAhhHAHHx9jW0cnt3Z0BxkDEEKIDspj9wRWSp0Ess75dA/glAXlOMvT6wOp0VWkxpbz9PqgbdY4UGvd05lv9NgAaIhSKs3Zrc6s4On1gdToKlJjy3l6fdD+a5QuICGE6KAkAIQQooNqawGwwuoCmuHp9YHU6CpSY8t5en3QzmtsU2MAQgghXKettQCEEEK4iEcHgFKqm1LqM6XUgdr/hjZy3BNKqV1KqT1Kqb8p5eoteVpcX7hS6r+19e1WSg1yR33nU2PtsV2VUseUUs+5qz5na1RKRSmlvqv9/7xdKbXADXVNV0rtU0odVEo90MDXOyul3qv9eoo7/7+eR4131/6d266UWq+UOs/9CFu/xjrHJSmltFLK7bNunKlRKTW/9ne5Syn1T0+rsfY+s0EptaX2//fMhs5Tj9baY/8ATwAP1H78APB4A8dMBr7B2G+4E/Ad8ANPqa/2axuBH9Z+3AUI8KTfYZ1jlwP/BJ7zwP/Pw4FhtR/3A3KAkFasqROQAUQAvsA2YOQ5x/wS+HvtxwuB99z8e3Omxmln/74Bt3pijbXHBQFfApuAGE+rERgGbAFCa1/38sAaVwC31n48Eshs7rwe3QIA5gAraz9eCcxt4BgN+GH8UjoDPsAJt1TnRH1KqZGAt9b6MwCtdYnWusxN9YFzv0OUUhOA3sB/3VRXXc3WqLXer7U+UPtxNpAHOPWwywWKAw5qrQ9prauAd2vrrKtu3R8ACe5qfTpbo9Z6Q52/b5uAAW6sz6kaa/0JeByocGdxtZyp8WfA81rrAgCtdZ4H1qiBrrUfBwPZzZ3U0wOgt9Y6p/bjXIwbVD1a6++ADRjvCHOAT7XWezylPox3roVKqVW1TbO/KqVaZ3+3hjVbo1LKC1gG3OPGuupy5vdoUkrFYQR+RivW1B84Wuf1sdrPNXiM1toOFAHdW7GmczlTY12LgH+3akXf12yNSqloIExrvdadhdXhzO9xODBcKfWNUmqTUmq626ozOFPjI8ANSqljwDrgV82d1PLF4JRSnwN9GvjSkrovtNZaKfW9KUtKqaFAJP97Z/OZUmqK1vorT6gP43c8BRgPHAHeA24BXnVFfS6q8ZfAOq31sdZ6A+uCGs+epy/wD+BmrXUL993rOJRSNwAxwFSra6mr9s3HUxj/JjyZN0Y30A8w7jVfKqXGaK0LLa2qvmuBN7TWy5RSk4B/KKVGN/XvxPIA0Fpf3tjXlFInlFJ9tdY5tf/wG2p2zQM2aa1Lar/n38AkwCUB4IL6jgFbtdaHar9nNXAxLgwAF9Q4CZiilPolxhiFr1KqRGvd6ICdBTWilOoKrAWWaK03uaq2RhwHwuq8HlD7uYaOOaaU8sZodp9u5boauv5ZDdWIUupyjKCdqrWudFNtZzVXYxAwGthY++ajD/CxUmq21jrNQ2oE499xita6GjislNqPEQg295ToVI2LgOlg9Iwopfww1glqtLvK07uAPgZurv34ZuCjBo45AkxVSnkrpXww3uG4qwvImfpsQIhS6mx/dTyw2w21ndVsjVrr67XW4VrrQRjdQG+68ubvhGZrVEr5Ah/W1vaBG2qyAcOUUoNrr72wts666tZ9NZCsa0fg3KTZGpVS44GXgNkW9Fs3W6PWukhr3UNrPaj279+m2lrddfNvtsZaqzHe/aOU6oHRJXTIw2o8AiTU1hiJMTZ6ssmzunMk+wJGvrsD64EDwOdAt9rPxwCv1Bkdfwnjpr8beMqT6qt9/UNgO7ADeAPw9bQa6xx/C+6fBeTM/+cbgGpga50/Ua1c10xgP8ZYw5Laz/0R4wZF7T+w94GDQCoQ4c7fm5M1fo4xKeLs7+xjT6vxnGM34uZZQE7+HhVGV9Xu2n/HCz2wxpEYMyK31f6/vqK5c8qTwEII0UF5eheQEEKIViIBIIQQHZQEgBBCdFASAEII0UFJAAghRAclASCEEB2UBIAQQnRQEgBCCNFB/T/OM3z8xUcOuQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlclWX+//HXxS4CouK+IS6VlfktdcyWqalmGpuvWllZ+XXBfqFOU2plpZOVppK5oIICCpplY2ZumZNWVlbaoqSWa64IaoosooII5/r9cYMhshzgnHOf5fN8PHh4lpv7/lxp73Ode/ncSmuNEEIIz+JldgFCCCEcT8JfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHsjH7AIqEhYWpsPDw80uQwghXMq2bdsytNaNqlrOacM/PDycrVu3ml2GEEK4FKXUUWuWc9rwFx6msBBSU+HcOfDygkaNoHFjUMrsyoRwSxL+wjw5ObB6NSxbBvv3G0Hv5QVaGx8GdetC164wcCDcfjt4e5tdsRBuQ8JfON7FizB7NixYAEVF4OsLQUFG8Jco+QDYtAm++QYaNIDoaLjrLtPKFsKdyNk+wrH27YP774f4eKhTB0JDjRm+V5l/ikoZHwr16kFICJw9C0OHwsiRcOGCObUL4UYk/IXj7NwJDz8MaWlQvz74VOOLZ2Cg8UHw8ccwYACcP2+/OoXwABL+wjGOHTNCu7DQCPGa8PIyvins2AHDhoHFYtsahfAgEv7C/iwWGD3a2F0TFFS7dSllfABs3gxLl9qmPiE8kIS/sL+PPoKUlJrP+MtSyjhOMHEinDplm3UK4WEk/IV9WSwwZw74+1d6zv6yzEz+7/Bhbt27l9ePH696vX5+UFBgnCYqhKg2CX9hX1u3wsmTxpk9lQjz8WFoWBi9q/PtIDAQkpKM4whCiGqxSfgrpZKVUqeUUr9W8L5SSs1WSh1QSu1USt1si+0KF7B5M1y6VOWVun8JCeGu4GDqVedCLn9/4zjCoUO1LFIIz2Ormf8i4P5K3v870KH452lgno22K5zd998bIW0vWsOePfZbvxBuyibhr7XeBGRWskgfYLE2fA+EKqWa2WLbwskdPGjsn7eXggJjG0KIanHUPv8WwLFSz9OKXxPurqDg6qt3K1BUVERWdjbZOTmct/YqXi8vueBLiBpwqgO+SqmnlVJblVJbT58+bXY5whb8/Ky6GKuoqIijqal4e3vj7+/PiePHOXL0KOfOn0dX9osWS5UHk4UQV3NU+KcDrUo9b1n82hW01ola665a666NGlV5LwLhCiIijNl/JQqLijh09Ci+gYHUDQ7GPyCAVhERhNSrx++//87hw4fJzc0t/0PAzw/atbNL6UK4M0eF/xpgYPFZPz2AHK31CQdtW5ipe3eji2cFCouKSE1NZTXwYGYm75w5w7qcHG7bt4/lly4RERFBWFgYpzMyOHToEDlnz175IaAUXHedvUchhNuxSUtnpdR/gLuAMKVUGvAa4AugtY4H1gG9gAPABWCILbYrXMDttxsdPLW+6nTPwqIiUo8eJSgoiOcbN+aFClYREhxMcHAw58+dI+PMGU6fOkXDsDDqBQTgVacOtG9v/3EI4WZsEv5a68ereF8D/7TFtoSL6dYNmjSBzEzjoqxihUVFHD16lODgYBo1akRV9+tSQFBQEEFBQZy/cIGMjAzyjh/n5COPcH1REf7V6RAqhHCuA77CDXl5wTPPGLt+tLHDprrBX1bdwEDaNG1Kw6ZNWVOnDr1792bx4sVckD7/QlhNwl/Y36OPQufOkJNDYWFhrYIfMD5Ezp/H/7XXeD0+nri4OPbu3Uvv3r1JTEzk7Nmzth6BEG5Hwl/Yn5cXzJxJoa8vJw8dIiQ4mMa1Cf7sbGN30v/9HwDt27dn8uTJJCcnc/LkSfr27cvs2bPJzKzsukMhPJuEv3CIzJAQxrVsSd26dWlU03YPFgtkZUGnTjB//lUXj7Vu3Zrx48ezZMkS8vPz6devH1OnTuXkyZM2GIEQ7kXCX9jdmTNniIqKov2jj1L/88+hcWNj9l5UZP1K8vIgJ8e4/+/SpRAcXOGizZo1Y8yYMXz44YcEBATwxBNPMHHiRI4dO1bh7wjhaZTWlV4/aZquXbvqrVu3ml2GqKWMjAyGDRvG/fffz1NPPWW8mJcH06fD4sXGbN7PDwICrm4DUVhodO3U2rgRzOTJcN99VXYILSsnJ4elS5eybNkyevToQWRkJO3kwjDhppRS27TWXatcTsJf2EtGRgZRUVE88MADREZGXr1AZiasWGHckOXQIfD2/uMDoLAQfH3hlltg0CC4667q3fC9HOfPn2f58uUsWbKEzp07ExkZSadOnWq1TiGcjYS/MNXp06eJioriH//4R/nBX1ZBARw+DOfOGR8AYWHQsmW1Z/nWyM/PZ9WqVSxevJiIiAgiIyO5+Wa5xYRwDxL+wjSnTp1i2LBh9O7dm8GDB5tdToUKCgpYt24dCxcupHHjxkRGRtKjRw+UHT5whHAUCX9hilOnThEVFcWDDz7IwIEDzS7HKkVFRWzYsIGFCxfi7+/P0KFDufPOO/GyshW1EM5Ewl84nCsGf2kWi4WvvvqK5ORkCgoKiIyM5L777sO7OreWFMJkEv7CoX7//XeioqLo168fAwYMMLucWtFas2XLFpKTk8nIyGDw4ME88MAD+Pr6ml2aEFWS8BcOc/LkSaKionj00Ud58sknzS7HplJSUkhKSuLIkSMMHDiQvn374m/PexILUUvWhr/s1BS1cuLECaKionjsscfcLvgBbr75ZuLi4nj77bf58ccfpYmccBsS/qLGSoK/f//+PPHEE2aXY1edOnVi+vTp0kROuA0Jf1Ejx48fJyoqiieeeILHH6/0dg5uRZrICXch4S+q7fjx4wwbNowBAwbQv39/s8sxhTSRE65Owl9US3p6OlFRUQwYMIBHH33U7HJMJ03khKuS8BdWKwn+QYMGSfCX0bBhQ5599llWrlxJ48aNGTx4MOPGjePgwYNmlyZEuST8hVXS0tKIiopiyJAh9OvXz+xynFa9evWIiopizZo1dOzYkeHDh/PCCy+we/dus0sT4gpynr+o0rFjxxg2bBhDhw7loYceMrsclyJN5ISjyUVewiZSU1MZPnw4Tz31FA8++KDZ5bgsaSInHEXCX9Raamoqw4YN4+mnn6Zv375ml+MWSjeRCwgIIDIyUprICZuS8Be1cvToUYYPH365NbOwLWkiJ+xFwl/UmAS/45RtIjdkyBB69eolTeREjUn4ixo5cuQII0aMYPjw4fzv//6v2eV4FGkiJ2xBwl9U2+HDhxkxYgTPPPMMDzzwgNnleKxdu3aRlJTErl27ePLJJ+nXrx+BgYFmlyVchHT1FNVy6NAhRowYwb/+9S8JfpNdf/31zJgxQ5rICbuS8BdXBH+vXr3MLkcUkyZywp4k/D3cwYMHGTFiBCNHjpTgd1LSRE7Yg4S/Bztw4AAjRoxg1KhR3H///WaXI6ogTeSELUn4e6jffvuNf/7znzz//PP87W9/M7scUQ3SRE7YgoS/B9q/fz/PPPMMzz//PH/961/NLkfUkDSRE7Uhp3p6mJLgHzNmDPfee6/Z5QgbkiZyAuQ8f1GOkuB/6aWXuOeee8wuR9iJNJHzbBL+4gp79+7l2Wef5eWXX+Yvf/mL2eUIB5Amcp5Jwl9cVhL8r7zyCnfffbfZ5QgHkyZynkXCXwCwZ88ennvuOcaOHctdd91ldjnCRNJEzjM4tL2DUup+pdQ+pdQBpdTL5bw/WCl1Wim1vfjnKVtsV1Ru9+7dPPfcc4wbN06CX6CUomfPnixYsIDx48ezYcMG+vbtywcffMDFixfNLk84WK1n/kopb2A/cB+QBvwEPK613l1qmcFAV631M9auV2b+tbN7925GjhzJv//9b+68806zyxFOSprIuR9Hzvy7Awe01oe01gXAUqCPDdYramjXrl0899xzEvyiStJEznPZIvxbAKWvL08rfq2sh5VSO5VSy5VSrcpbkVLqaaXUVqXU1tOnT9ugNM/z66+/MnLkSMaPHy/BL6wmTeQ8j6PO+foYCNdadwY+A94pbyGtdaLWuqvWumujRo0cVJr72LlzJ6NGjeL111/njjvuMLsc4YKkiZznsEX4pwOlZ/Iti1+7TGt9RmtdckRpAXCLDbYrStm5cyfPP/88b7zxBrfddpvZ5QgXJ03k3J8twv8noINSqq1Syg/oD6wpvYBSqlmpp72BPTbYrii2Y8eOy8Hfs2dPs8sRbqS8JnL//ve/pYmcG6h1+GutC4FngPUYob5Ma71LKTVBKVVy9+9nlVK7lFI7gGeBwbXdrjBs376dF154gQkTJkjwC7sp3USuffv20kTODchFXi7s559/ZsyYMUycOJEePXqYXY7wINJEznnJFb5uLiUlhTFjxjB58mS6d+9udjnCQxUUFPDJJ5+waNEiaSLnJCT83VhKSgovvfQSkyZNkuAXTkGayDkPCX83tW3bNl566SWmTJlCt27dzC5HiCtIEznzSfi7oa1bt/Lyyy8THR1N165V/t0KYRppImceCX8389NPPzF27Fiio6O55Ra5TEK4jpSUFJKSkjhy5AgDBw6kb9+++Pv7m12W25LwdyM//vgjY8eOZerUqXJGhXBZ0kTOMRza0lnYz48//si4ceMk+IXLkyZyzkXC34l9//33MuMXbkeayDkHCX8ntWXLFl599VWmTZvG//zP/5hdjhA2J03kzCXh74Q2b97M+PHjmTZtGl26dDG7HCHsSprImUPC38ls3ryZ1157jenTp3PTTTeZXY4QDiNN5BxLwt+JfPfdd5eDv3PnzmaXI4QppImcY8ipnk7im2++YcKECcyYMYMbb7zR7HKEcBqlm8i1a9eOyMhIOQ5WCTnP34Vs2rSJN998k5kzZ3L99debXY4QTkmayFlHwt9FbNq0iYkTJzJr1iw6depkdjlCOD1pIlc5CX8X8PXXXzNp0iRiYmIk+IWoprJN5IYOHcp9993n8R8CEv5O7ssvv2TKlCnMmjWL6667zuxyhHBZJU3kkpKSyMzMZPDgwR7dRE7C34lt3LiR6OhoZs+ezbXXXmt2OUK4Ba01P//8s8c3kZPwd1IS/ELYnyc3kZPGbk7oiy++IDo6mjlz5kjwC2FH0kSuahL+DvL555/z1ltvERsbyzXXXGN2OUJ4BGkiVzEJfwfYsGEDU6dOJTY2lo4dO5pdjhAeR5rIXU32+dvZhg0bmD59OrGxsXTo0MHscoQQwJkzZ1iyZAmrVq3i7rvvZvDgwbRq1cq2G8nOhj17YO9eyMoyXmvcGK691vgJCrLt9orJAV8n8OmnnzJz5kzi4uJo37692eUIIcrIyclh6dKlLFu2jFtvvZUhQ4bQrl27mq/QYoFvv4X582HLFvDxgYIC0Nr48fYGX18oKoJ774XISOjaFWx4lbKEv8n++9//MmvWLOLi4mr3j0kIYXfnz5/nww8/5P3336dz585ERkZW/8LLo0dh1Cj45RfjeXAwVHTBmcUCOTlG6P/5zxAdDY0a1W4QxST8TbRu3Tpmz57N3LlziYiIMLscIYSVatxEbu1aeOEFKCyEevWsn8lrbXwIBAYa3xb+9KfaDQAJf9N88sknzJkzR4JfCBdWrSZyq1YZwV+nDtT0grILF4xdQYsWwa231qp2CX8TrF27lri4OObOnUvbtm3NLkcIUUtVNpH79Vd46CEj9Gt7JfGFC8Y3hg0boEWLGq9Gwt/BPv74Y+bOncu8efMIDw83uxwhhA2V20Tuz3/Gq1cvSEuDkBDbbCg7G7p1gyVLKj5eUAUJfwdas2YN8fHxzJ07V4JfCDdWuoncTdu3E5meTmCLFnjZ6mydkmMA8fHG2UA1IO0dHGT16tXEx8fLjF8ID6CUomfPnixITCTy0iXOFhRw8MABMrOysFQwkT5bVMQLaWncvncv/zhwgE9zcirbgDHjT0y00wj+4GP3LbixVatWkZiYSHx8PK1btza7HCGEg6iUFILy8wlq25a8/HwyMjLIyMigQYMG1K9fH+9Su2yiT57EVyk2dOzI/vx8njt2jI4BAURUdIwgOBhSUozdSS1b2m0MMvOvoRUrVkjwC+Gptm83TutUijp16tCqVStat25Nfn4+Bw4c4PTp0xQVFZFnsbAxN5fhjRoR6OVFl8BA/hwczCfWzP537rTrECT8a2DFihUkJSWRkJAgwS+EJ/rhB+Pq3VIC/P1p2aIF4eHhXCos5MDBg6ScOIGX1rT287u8XAd/fw5dvFj5+i9dsnv4e95un9xc4y9u507jq1VurnHJdZs2xlH2Ll3guusqvEhj+fLlLFy4kISEBFra8SuZEMKJpacbbRpK0RgHhL29vQkLCyMkJIRDp06h8vM5mppKq1at8FKKIC8vzlssla/f1xeOHLFb+eBJ4Z+aahxE+egj49LqggLw8zOCX2vjw2DNGuPrVtu2MGwY9OljvF/sww8/5J133pHgF8IFaa0pKCggLy+P/Px88vLyLj8ueV729bLvlzz/544d1Dt/notKoS0WLFpjsVhQSuHl5YWXUigvL3y1Jl8psrKyaNG8OV4+Ppy3WKhrzWmcVX1A1JL7h7/FYlw199Zbxj664OCrvq5dQWs4dgxefNH4vZgYiIhg2bJlLF68mISEBFrU4gIMIUT5tNZcunTpqvCtKICrG975+fn4+PgQEBBAQEAAderUufxnyU/Z90JCQmjSpMkVrwUEBND60CECDh5E1a2Ll5cXysvL+LPMmBrm5VG0bx8+LVviU5w7+y9erPhgb4miIqNNhB3ZJPyVUvcDswBvYIHWOrrM+/7AYuAW4AzwmNb6iC22Xam8PBg+HL75BurWNYK/KkoZywYGwu7d8MADbHzkEd79+WcSExNp3ry53csWwhmVDmdrZshVzZ7Lhnd+fj7e3t5XhXDZkC79XkhICI0bN64wvMu+7l3qm3yt3H03/PabsfegAvkXL3I6LY17QkJ4Pz+fVy0W9ufn83VuLgutOS3cmp5CtVDr8FdKeQNxwH1AGvCTUmqN1np3qcWGAlla6/ZKqf7AW8Bjtd12pQoK4Omn4bvvoH796rdMVQpCQ8k+eZJrZsxg4bvvEibBL5xYSTjXZoZcVbCXF87lhXTJ+0FBQTRq1KjC8C77OzYLZ3u76aar9vmXln/xIqmpqTRp0oTX6tbljePHuW//fup5e/NK06ZVz/x9fIye/3Zki5l/d+CA1voQgFJqKdAHKB3+fYDXix8vB2KVUkrb8/LiOXNqHvzFzmRmknnuHOHNm+P76qvQsyc0aWLjQoWnKBvO1u5friq8S7/n5eVVZciWDeewsLAKw7vs6y4TzvZ2221GrhQWXrUbOT8/n9Rjx2japAkhxW0fplfnRjH5+caNXjp3tmXFV7FF+LcAjpV6ngaU7Ut6eRmtdaFSKgdoCGTYYPtX27XLuDw6JKR2wZ+ZSZs2bfD19TV6brz8MiQn2/TGC8J5lA7n2s6QKwrvknCuKmRLHgcGBtKwYcNKd32U/tOnsuNZwnbq1YO+fWH5cmOCWSw/P5/U1FSaNm16OfirLS8PRoyo/NikDTjVvxSl1NPA00Dtzp+fPNk4cFvD/3hnMjPJyswkvCT4wfjL/vZb+PlnuPnmmtcmakxrTWFhoU1myBWFt5eXV5UhW/pxYGAgDRo0uOqgYUXBLuHsRoYPN9o5F585eDn4mzUjxJrji+XJyzNm/f3727bWctjiX2I6UPo7Tcvi18pbJk0p5QPUwzjwewWtdSKQCEZjtxpVk5pqnMdfxadugcVC9MmT/HjhAmeLimjp68szjRtzzcWLZGVl/THjL6GU8YGycKGEfyVKHxC0xe6Nsu+p4isqrdmHXPJTv379KvdNl7wu4SysFh5unBU4ZQp5RUUcO3asdsFvscDFizBjBjRoYNNSy2OLf+k/AR2UUm0xQr4/8ESZZdYAg4AtQD9go93293/yifEfsYrzaIuApr6+JLZuTVNfX747d47njxxhmp8f3SMi8C0vBIKD4dNPjU/nOnXsUr69lcycbXX6XNnXtdZWzYJLv1e/fn2rzuwICAi48gNZCLMNGUL22rVcWL+epq1a1S74s7ONGf9f/2rbGitQ6/Av3of/DLAe41TPZK31LqXUBGCr1noNkAS8q5Q6AGRifEDYx5YtlR6FL1HHy4unS90z87qCAhpaLJxv1Kj84Afjgi9vb+MULzsdjCm9W6M2M+SKwrt0OFu7e6N0OFc1e5ZwFp5k9759jMnNZcGddxLy22/lHgCuUkEBnD9v3BRm4kSHHVO0yXdcrfU6YF2Z18aXepwPPGKLbVXp118hIKBav5KRkcGRrCzO+PrSMTCw0mUthYUUbN9ObrNmdtm9YbFYrN5FUfI4NDTU6gtXfHx8yr8VnRCiWnbv3s3IkSP592uv0fTWW2HuXIiNNXYPh4RUfTOWoiI4e9a4VmDCBHj88RrfwKUm3O9mLu3aGQdnrfyPeDojg7QTJ5jp7U1zHx/+GRiIxWK54pJtbbFgKX5e79IllrRuzecRERUGdHXDu/R7vr6+Es5COLldu3YxcuRIXn31Ve68884/3tizB6ZNg02b/tj9HBBgfBvQ2vhmkJ9vLOvlBX//u3H/3+qcCloFa2/m4n5Ht6oZnL5+fswt7qHxrwYNCC6+XLukN0fJ45JLuNWZM7z40ku8+NRT9qheCOHkfv31V0aNGsX48eO54447rnzzuusgKQmOH4f16/9oIpmTY2RT/frGCSM9esDf/uaQA7sVcb/wDw39o2lbFbTWzDp3DhUaytv16pF75gwF+fnGRS91617VpwMwPsFDQ21ethDC+f3yyy+MHj2a119/ndtuu63iBZs3hyFDjB8n5X79/G+44Y+vVVWYcvIkhwsKiGnViiahobRr146GDRpw+tQpDh8+zNmzZ7lqp5i3t90vuxZCOJ+dO3cyevRo3njjjcqD30W438y/Z09jf1sVTly6xIrsbPyU4m+//Xb59bFNm3J/RATnzp0jIyODU6dPExYWRr2QEJTFYuy369DBniMQQjiZHTt28MILL/DGG2/Qs2dPs8uxCfcL/1694O23qzzXv5mvL1uvu67C94ODgggKCuLC+fNkZGRw+vRpmvn7U6d/f7yrasokhHAb27dv58UXX2TChAnceuutZpdjM+6326dlS2P2f/ZsrVelgLp169KmTRtaNG9O3sWL/GvrVpYsWUJeXl7taxVCOLWff/6ZF198kYkTJ7pV8IM7hj/AuHHGrP/SJZutMrCggEaPPcZzSUns3LmT3r17k5SURG5urs22IYRwHikpKbz44otMmjSJHj16mF2Ozbln+HfsCM89Z9yf1xbXMVy4YNzgZfJkrrn2Wt566y0SExM5evQoffv2Ze7cuWRlZdV+O0IIp5CSksKYMWOYPHky3bt3N7scu3DP8AeIioJ77oGsrNp9AFy4YFyJN38+NGx4+eW2bdsyYcIEFi9eTHZ2Ng8//DAzZszg1KlTNiheCGGWbdu28dJLLzFlyhS3DX5w5/D38YG4OONCiuxso1tedWht/J5S8M47UME/ghYtWjB27FiWLl0KQP/+/Zk8eTLHjx+v7QiEEA62devWy8HfrVs3s8uxK/cNfzAu9IqLgylTjMuqs7KMC8Aqo7WxuygnB7p2Na7Ss2J/X+PGjRk9ejQfffQRoaGhDBgwgPHjx3P48GEbDUYIYU8//fQTr7zyCm+99RZdu1bZHcHluV9vn4qcOGHM4N97zzgQfOnSH106tTael/TfuOEGGDYM7ruvxo2WcnNzWbZsGUuXLuXmm28mMjKSa665xnbjEULYzI8//sjYsWOZOnUqN7v4/Tqs7e3jOeFfIj8fUlKMWz2mpBinhPr4QJs2cMstRqvmtm1ttrkLFy6wcuVK3nvvPTp27MjQoUPpbOd7cwohrPfDDz8wbtw4twh+kPB3OgUFBXz88ccsWrSIFi1aEBkZSbdu3aSDpxAm+v7773n11Vd5++236dKli9nl2ISEv5MqLCzk008/ZeHChQQHBzN06FBuv/12+RAQwsG2bNnC+PHjmTZtGjfddJPZ5diMhL+Ts1gsfPHFFyxcuBCAIUOGcM899+DlwJs5COGpNm/ezGuvvcb06dPdbjeshL+L0Frz7bffkpyczNmzZxk8eDB///vf5UbiQtjJd999x+uvv+6WwQ8S/i5Ha83WrVtJSkoiPT2dQYMG0bt3b/ysuC+BEMI63377LW+88QYzZszgxhtvNLscu5Dwd2E7d+4kOTmZffv2MWDAAB566CHq1KljdllCuLRvvvmGCRMmMHPmTG644Qazy7Eba8NfdjA7oc6dOxMTE0NMTIw0kRPCBjZt2sSECROIiYlx6+CvDgl/J3bNNddcbiKXmppKnz59iIuLkyZyQlTD119/zZtvvsmsWbO4/vrrzS7HaUj4u4C2bdvyxhtv8N5773H27FlpIieElb766ismTZpETEwMnTp1MrscpyLh70KaN2/OK6+8Ik3khLDCl19+yeTJk5k1a5YEfzkk/F2QNJETonIbN25kypQpzJ49m+squV2rJ5Pwd2H169dnxIgRrF69mvDwcKKiohgzZgz79u0zuzQhTPPFF18QHR3NnDlzuPbaa80ux2nJqZ5uJC8vj5UrV/Luu+9KEznhkT7//HOmTp1KbGwsHTt2NLscU8h5/h6spIncO++8Q7NmzRg6dKg0kRNu77PPPmPatGnMmTPHY4MfJPwFVzeRi4yM5I477pAPAeF2NmzYwPTp04mNjaVDhw5ml2MqCX9xmcViYePGjSQnJ6O1ZsiQIdx7773SRE64hfXr1zNjxgzi4uJo37692eWYTsJfXEVrzXfffUdSUhI5OTkMGTJEmsgJl/bpp58SExNDXFwc7dq1M7scpyDhLypU0kQuOTmZtLQ0aSInXNK6deuYPXs2c+fOJSIiwuxynIaEv7BKSRO5vXv3Xm4iFxgYaHZZQlRq3bp1zJkzh7i4OAn+MqSxm7BKSRO52bNn8+uvv9KnTx8WLFggTeSE01q7di0I+BczAAARHElEQVRz5syRGX8tSfgLADp27Eh0dDTz58/n2LFj0kROOKWPP/6YuLg45s2bR9u2bc0ux6VJ+IsrhIeHSxM54ZTWrFnDvHnziI+PJzw83OxyXJ6EvyhXRU3k0tPTTa5MeKI1a9YQHx/PvHnzaNOmjdnluAUJf1Gpsk3kBg4cyPjx4zl06JDZpQkPsWrVKuLj44mPj5fgt6Fahb9SqoFS6jOl1G/Ff9avYLkipdT24p81tdmmMEdJE7lVq1YRHh7OsGHDpImcsLsVK1Ywf/584uPjad26tdnluJVaneqplJoKZGqto5VSLwP1tdYvlbPcOa11UHXWLad6OrfSTeQ6dOjAU089JU3khE2tWLGCpKQk4uPjadWqldnluAyHnOevlNoH3KW1PqGUagZ8pbW+ppzlJPzdVEFBAWvXrmXRokXSRE7YzEcffcTChQuJj4+nZcuWZpfjUhwV/tla69DixwrIKnleZrlCYDtQCERrrVdVtW4Jf9dSWFjI+vXrWbhwIXXr1mXo0KHSRE7UyIcffsg777xDQkICLVq0MLscl2Oz8FdKfQ40LeetccA7pcNeKZWltb5qv79SqoXWOl0pFQFsBO7RWh8sZ7mngacBWrdufcvRo0erql84GWkiJ2pj2bJlvPvuu8THx0vw15BT7fYp8zuLgLVa6+WVLSczf9dW0kQuOTmZ7OxsaSInqvTBBx+wZMkS4uPjad68udnluCxHtXdYAwwqfjwIWF1OIfWVUv7Fj8OA24DdtdyucHJKKW6//XaSkpIYO3Ys69at48EHH+TDDz+koKDA7PKEk1m6dKkEv4PVdubfEFgGtAaOAo9qrTOVUl2BYVrrp5RSPYEEwILxYROjtU6qat0y83c/v/zyC8nJyezZs0eayInL3n//fZYuXUpCQgLNmjUzuxyXJ109hdPav38/ycnJbNu2jccee4zHHnuM4OBgs8sSJnj//ff54IMPSEhIoGnT8g4tiuqSrp7CaZVuIpeWliZN5DzUe++9x7Jly0hMTJTgN4GEvzBNeHg4r7/++hVN5KZPny5N5DzAu+++y/Lly0lISKBJkyZml+ORJPyF6UqayH3wwQd4eXlJEzk3t3jxYlasWEFiYqIEv4kk/IXTaNSoEaNGjWLFihXSRM5NLVq0iFWrVpGQkEDjxo3NLsejSfgLpxMaGsqIESNYvXq1NJFzIwsXLrzcmlmC33wS/sJpBQUFERkZyerVq+nSpQsjR47k2WefZceOHWaXJqopOTmZtWvXyozficipnsJlSBM515SUlMS6detISEggLCzM7HLcnpznL9yWNJFzHfPnz2f9+vUkJCTQsGFDs8vxCBL+wu1ZLBa+/PJLkpKSsFgsREZGShM5J5KYmMhnn31GfHy8BL8DSfgLj1G2idzgwYPp1auXNJEzidaaxMREvvjiC+Lj42nQoIHZJXkUCX/hcbTWbNu2jaSkJNLS0hg4cCB9+vTBz8/P7NI8htaahIQENm7cKMFvEgl/4dFKN5F78sknefjhh6WJnJ1prYmPj+err75i3rx5Evwmkd4+wqPdeOONzJw5k9mzZ7N792769OnDggULyM3NNbs0t6S1Zt68eXz99dcy43cREv7CrXXs2JEpU6Zc0UQuNjaWzMxMs0tzG1pr4uLi+Oabb4iPj6d+/atu5ieckIS/8Ailm8jl5ubSr18/aSJnA1prYmNj2bx5M/PmzSM09KpbeAsnJeEvPEp5TeQmTZpEWlqa2aW5HK01c+bMYcuWLRL8LkjCX3ik0k3kGjRowKBBg6SJXDVorZk1axY//PAD8+bNo169emaXJKpJwl94tNDQUIYPH35VE7m9e/eaXZrT0loTExPD1q1bJfhdmIS/EFzdRG7UqFHSRK4cWmtmzpxJSkoKc+fOJSQkxOySRA3Jef5ClKN0E7mmTZsydOhQunfv7tH9g7TWzJgxgx07dhAbGyvB76TkIi8hbKCoqIj169eTnJx8uYnc7bff7nH9g7TWTJs2jV9++YW4uDiCg4PNLklUQMJfCBvy5CZyWmvefvttdu3aRVxcHEFBQWaXJCoh4S+EHWit2bx5M0lJSR7RRE5rzdSpU9mzZw+xsbES/C5Awl8IOyppIpecnExqaurlJnL+/v5ml2YzFouFqVOnsm/fPmJjY6lbt67ZJQkrSPgL4SC//PILCxcuZPfu3W7TRM5isRAdHc2BAweYM2eOBL8LkcZuQjjIjTfeyIwZM65oIjd//nzOnj1rdmk1UhL8Bw8elBm/G5PwF8JGSjeRS09Pp2/fvi7XRM5isTB58mQOHTrEnDlzXP4bjKiYhL8QNla6idy5c+fo168f06ZNc/omchaLhUmTJnH06FFmz54twe/mJPyFsJPmzZvz8ssvs2zZMnx8fBzXRC4/HzIzISsLCgut+hWLxcKbb77JsWPHmDVrlgS/B5ADvkI4SHZ2Nv/5z39Yvnw5PXv2ZMiQIURERNR+xRYLfPstrFgBW7fC8ePg7f3H++3bQ8+e8Nhj0LFjOb9uYeLEiaSnpxMTEyPB7+LkbB8hnNS5c+dYtmwZS5cupUuXLkRGRnLttddWf0Vaw6pVEB1tzPKLiqBOHfD3h5I2FBaL8U3g4kXjtRtvhAkTjD8xgn/ChAmcOHGCmJgY6tSpY8ORCjNI+Avh5PLy8li5ciXvvfce7du3JzIyki5dulj3y6dPwwsvGDP+gAAj9KuiNZScgRQVheXZZ3n9zTc5deoUMTExBAQE1HwwwmlI+AvhIqrdRC49HR59FE6ehNDQP2b51iosRJ89y7Z69VjUrRvTZs+W4Hcjcp6/EC7Cz8+Phx56iJUrV9K3b1+mTZvGoEGD2LRpExaL5cqFc3KMffenTkH9+tUPfkD7+HD8wgXaHDxIjLc3AW50VbKwnoS/EE7C29ubXr168cEHHzB48GDi4+N54okn2LBhwx8fAq+9BidOQA1voKKB4+npFFosNGzXDp/PPoO1a203COEyZLePEE6qbBO50d26cduCBah69aAG3UQ1kJ6ejqWoiJatWuGllHEwWCn4+mto0MD2gxAOZ+1uH/dsRSiEG1BKcdttt9GzZ09SUlLwfuQR0k+dIhDj9pNeFezyeTU9nR8vXCDPYiHMx4eBDRvSJzT06uAH42BxdjZ89BH8v//nuMEJ00n4C+HklFLcEhIC3t7ktW5NxpkzZGRk0LBBA0Lr18e7zLeAIWFhvOrri5+XF0cuXuTpo0epl5NDOy+vK4O/REAAzJ8PkZFXXh8g3Fqt9vkrpR5RSu1SSlmUUhV+zVBK3a+U2qeUOqCUerk22xTCI23aBEVF1AkMpFWrVrRu1Yq8/HwOHjjA6YwMioqKLi8a4e+PX8kHgtZcvHiR44WFtGzZsvxvCwEBxoHkAwccNBjhDGp7wPdX4CFgU0ULKKW8gTjg70An4HGlVKdablcIz/Ljj1fMygMCAmjZogVtwsO5VFDAgYMH+f3UKQqL2zlEnzzJbXv30nvfPuorRZ/w8Ap3EwHGNQB79th7FMKJ1Gq3j9Z6D1DVTa27Awe01oeKl10K9AF212bbQniUPXuMGXoZ/n5+NG/enIJLlzhz5gwHDx2iXr16jG7YkMcvXWKPnx/HgoMJqOoA8aVLxjb69rXTAISzccSpni2AY6WepxW/JoSwVl5epef0+/n60qxpUyIiIlDAkSNH8FKKv7Zty+nCQpZnZVW+fi8vyM21bc3CqVU581dKfQ40LeetcVrr1bYsRin1NPA0QOvWrW25aiFcm6+v0Z+nqsV8fGjSpAmNmzSh5KOiCEgrKKj8F7UGP79alylcR5Uzf631vVrrG8r5sTb404FWpZ63LH6tvG0laq27aq27NmrUyMrVC+EBWreGqgIcyCwsZMPZs+RZLFi0Zsu5c6zPyaF7VXfjUsro/ik8hiNO9fwJ6KCUaosR+v2BJxywXSHcx5/+BD/8AEFBlS6mgOVZWUw+cQIL0MzXl+ebNOHO4ODK1+/rC9ddZ7NyhfOrVfgrpR4E5gCNgE+UUtu11n9TSjUHFmite2mtC5VSzwDrAW8gWWu9q9aVC+FJ/vQn8Kn6f9f6Pj4ktmlTvXUXFhozfwl/j1Lbs31WAivLef040KvU83XAutpsSwiP1qOH0X7h3Dnr2jdXR26u0SxObuLiUaSxmxCuwMsLhg0zevHYsh9XUZGx7sGDbbdO4RIk/IVwFQMGGAdlS27IYgu5uUbwl3N7R+HeJPyFcBW+vjBrlnGlb35+7deXkwMtW8Lo0bVfl3A5Ev5CuJJrr4V584zTPi9cqNk6tDY6eTZoAO+/b/tjCMIlSPgL4WruvhsWLTK+CWRnGzdpt9alS8aMv0MH4+bvzZvbrUzh3CT8hXBFPXvCl1/CX/9q7LfPyjKCvTxaG+0hsrON3UWjR8PHH0OzZo6tWTgV6ecvhKtq0ADmzoX9++Hdd2HlSmNXkLe38W1AKePn0iVo2tQ4sPvww3LHLgHIbRyFcB9aw/HjsG+fcT2Alxc0bGhcvBUaanZ1wkHkNo5CeBqloEUL40eIKsg+fyGE8EBOu9tHKXUaOGp2HTUUBmSYXYQDedp4wfPG7GnjBdcdcxutdZVtkZ02/F2ZUmqrNfvc3IWnjRc8b8yeNl5w/zHLbh8hhPBAEv5CCOGBJPztI9HsAhzM08YLnjdmTxsvuPmYZZ+/EEJ4IJn5CyGEB5LwtwGlVAOl1GdKqd+K/6xfybIhSqk0pVSsI2u0JWvGq5TqopTaopTapZTaqZR6zIxaa0spdb9Sap9S6oBS6uVy3vdXSn1Q/P4PSqlwx1dpO1aMd7RSanfx3+kXSqlq3jPS+VQ15lLLPayU0koptzgDSMLfNl4GvtBadwC+KH5ekYnAJodUZT/WjPcCMFBrfT1wPxCjlHKpHgNKKW8gDvg70Al4XCnVqcxiQ4EsrXV7YCbwlmOrtB0rx/sz0FVr3RlYDkx1bJW2ZeWYUUoFA88BPzi2QvuR8LeNPsA7xY/fAfqWt5BS6hagCbDBQXXZS5Xj1Vrv11r/Vvz4OHAKqPLCEyfTHTigtT6ktS4AlmKMvbTS/y2WA/copZQDa7SlKsertf5Sa11yI4HvgZYOrtHWrPk7BmPS9hZgg7voOAcJf9toorU+Ufz4JEbAX0Ep5QVMB15wZGF2UuV4S1NKdQf8gIP2LszGWgDHSj1PK36t3GW01oVADtDQIdXZnjXjLW0o8F+7VmR/VY5ZKXUz0Epr/YkjC7M3aexmJaXU50DTct4aV/qJ1lorpco7hWoEsE5rneYKE0MbjLdkPc2Ad4FBWutq3HVEODOl1ACgK/Bns2uxp+JJ2wxgsMml2JyEv5W01vdW9J5S6nelVDOt9YnisDtVzmK3AncopUYAQYCfUuqc1rqy4wOmscF4UUqFAJ8A47TW39upVHtKB1qVet6y+LXylklTSvkA9YAzjinP5qwZL0qpezEmAX/WWl90UG32UtWYg4EbgK+KJ21NgTVKqd5aa5fuOS+7fWxjDTCo+PEgYHXZBbTWT2qtW2utwzF2/Sx21uC3QpXjVUr5ASsxxrncgbXZ0k9AB6VU2+Lx9McYe2ml/1v0AzZq1714psrxKqX+B0gAemuty/3QdzGVjllrnaO1DtNahxf/v/s9xthdOvhBwt9WooH7lFK/AfcWP0cp1VUptcDUyuzDmvE+CtwJDFZKbS/+6WJOuTVTvA//GWA9sAdYprXepZSaoJTqXbxYEtBQKXUAGE3lZ3o5NSvH+zbGN9cPi/9Oy34YuhQrx+yW5ApfIYTwQDLzF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAf6/8VVmMmjvlP6AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -204,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 59, "metadata": {}, "outputs": [ { @@ -240,7 +235,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -269,7 +264,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXl00WEVBxBxW3cEUETMscoWnUcoPS9pppxpmmpqamdWqapmkaa9qctslWm5rqV2OW6UxTou3CRdyXRFRcAFHZZOdyv78/Dp7AWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNH1eFldgBBCCGtIAAghRBclASCEEF2UBIAQQnRREgBCCNFFSQAIIUQXJQEghBBdlASAEEJ0URIAQgjRRflYXUBzevfurYcMGWJ1GUII0aFs3LjxuNY63JljPTYAhgwZQkZGhtVlCCFEh6KUynH2WI8NAJfTGvLz4cQJcDggOBgiI8Hb2+rKhBDCEp07AOx2+OILeOMN2LgRqqqMG75SRggAjBoFixbB3LlGKAghRBehPHU10Li4OH3WXUBaw//+B/ffD8XFxucCA8HXt/FxdXVGKNjt4OMDv/oV3Hgj+Pm1rXghhLCIUmqj1jrOmWM73yygsjK46Sb49a+hvBxCQow/p9/8wWgNBAUZX/fzg7//HS65BPbtc3/dQgjhZp0rAEpLje6cTz4xbuqBgc5/r68vhIbC/v2wYAHs3Nl+dQohhAfoPAFQVwc33AC7dxs3cq+z+NGUMoKjqgquvNIYNBZCiE6q8wTAa69BZqZx81eqbecKDja6ku680xhPEEKITqhzBMCRI/C3vxn9+W29+Z8SEgLffgurV7vmfEII4WE6RwC8+aYxk6eV2Tv/V1jINfv3M2X3bh7MzW35nEoZM4OeeUZaAUKITqnjB0BNjREAQUGtHtrbx4cbevdmbkiIc+cOCjJmBG3b1sYihRDC87gkAJRSryqlCpRS25v5ulJK/V0ptVcptVUpFeuK6wLGoG9trVNz9xN79OBHwcGEOPv0r1LG4PKGDW0sUgghPI+rWgCvAzNb+PosYET9n8XACy66rjFd02532el+wMcH0tLa7/xCCGERlwSA1voLoLCFQ+YBb2jDBiBUKdXfFddmz57vl3VoD926GdcQQohOxl1jAAOBQw1eH67/XCNKqcVKqQylVMaxY8ecO3NFxRnN/Km12zlaUEBpaSnFxcXU1Na2/A1KGeMMQgjRyXjUYnBa62XAMjDWAnLqmwICzmiWjpeXF1prfHx8KCsvp6CgAC8vL4KCgggKCiIwKAifhmMEWje9jIQQQnRw7gqAI0BEg9eD6j/XdiNHOt0CqNOaOqBbQAAVQJ/+/fFSCntNDeXl5RSXlJCbl4efnx9BgYEEBQURUFeHd5xT6yoJIUSH4q4A+Ai4WSn1DjAZKNFa57nkzNHRTr9Df+X4cZYdP47D4aC2tpb1333H4t69WRwejn+3bvTq2ROtNZVVVZSXl3P8xAn8Tp5k7Z49VC5bRkJCAmPHjsXHx6MaTkIIcVZcshy0Uupt4EdAb+Ao8EfAF0Br/Q+llAKexZgpVAH8VGvd4lrPTi8HXV0NkyYZK3s6GQQa2L9vH3379iWopecHtMZRXMy2Bx5gfXEx6enpHDp0iJiYGBISEkhISGD48OF4nc26Q0II0Q7OZDlol7yV1Vpf0crXNXCTK671A926wVVXwcsvQ1iYU9+igNCwMIqKi1sOgIoKvIYOZcK11zKhvpuppKSEjIwM0tPTWbFiBaWlpcTHxxMfH09CQgIDBw5EuWo5CiGEaEedY0OYQ4fgwgvB39/pVkCdw8HerCyGDRvWdJeO1lBSAk88AfPmNXue/Px80tPTsdlspKen4+fnZ7YO4uPj6dmzp3M/gxBCuMCZtAA6RwAAvPACPP74Ga0Gmpubi1+3bvTu1euHXywuhvh4eOstp5eW1lqzf/9+Mww2btxI3759zTCYNGlSyy0OIYRoo64ZAHY7XHaZsW5PSIhTIVBRWUlubi7Dhg2j0dFlZUbX0po1MPAHjys4ra6ujl27dpkthO3btzNixAizu2jcuHH4yfaTQggX6poBAMa79kWLYO9ep1oCGti3bx/9+vUj6NTuYSUlRlfSv/4F48adXfHNqK6uZsuWLaSnp5Oens6BAwcYN26c2WU0atQoGVAWQrRJ1w0AMLaFvP12WL/euJH7+7d4eGFRERUVFQzq2xdOnoTISHjxReP5gnZ28uRJNm7caLYQTpw4QVxcnNlCiIyMlAFlIcQZ6doBAMYA7urV8Ic/GN05Shn7A58+2OtwUFdeTt7Bg/QfOBDvX/4SbrnF6P6xQEFBgTnDKD09HaDRgHJ4eLgldQkhOg4JgFNqaiA1FZYvh82bjaWdTy3z4HAYr4cN4wN/f2pmz2bRL3/Z9sJdRGvNoUOHSEtLw2azkZGRQc+ePc1AmDRpEsHBwVaXKYTwMBIATXE44PBhOHHC+Dg4GIYMAT8/tmzZwp/+9Cf+/e9/e2yXi8Ph4LvvvjNnGG3dupUhQ4aYgTBhwgS6WdRyEUJ4DgmAM6S1ZtGiRdx9991MmjTJLddsq5qaGrZt22aOH2RlZTFmzBgzEKKjo/F2duMbIUSnIQFwFt555x22bdvGX/7yF7dd05XKy8vJzMw0xw+OHj1KbGysGQhDhw712NaNEMJ1JADOQmlpKXPnzmXlypWEhoa67brtpbCw0OwuSk9Pp6amxhxMTkhIoF+/flaXKIRoBxIAZ+mBBx5g1KhRXHXVVW69bnvTWnPkyBGzu8hmsxEcHGy2DuLi4ggJCbG6TCGEC0gAnKXNmzfz5z//mffff79Td5c4HA727t1rthA2bdpERESE2UKYOHEiAQEBVpcphDgLEgBnSWvNwoULuffee4mNjXXrta1UW1vLjh07zBbC7t27iY6ONruLxowZI3sgCNFBSAC0wb/+9S927drFn//8Z7df21NUVFSwefNmc/zgyJEjxMTEMHnyZOLj4xk2bJgsWSGEh5IAaIOSkhLmzZvHhx9+KP3i9YqLi80nlG02G2VlZT/YA0EI4RkkANroD3/4A9HR0Vx55ZWWXN/T5eXlNZph5O/v32hAWfZAEMI6EgBttGnTJv7yl7/w3nvvderBYFc4tQfCqSUrMjMz6devnxkIsbGxBJ5aaVUI0e4kANpIa81ll13Gfffdx8SJEy2poaOqq6tj586dZgthx44djBgxwgyEsWPHyh4IQrQjCQAX+Ne//sXu3bt56KGHLKuhM6iqqjL3QLDZbBw4cIDx48ebgTBy5EgZUBbChSQAXODUYPBHH31Ejx49LKujsyktLTX3QEhPT6eoqIi4uDgzECIiIqTbTYg2kABwkfvvv58xY8ZwxRVXWFpHZ1ZQUGB2F9lsNpRSjZas6N27t9UlCtGhSAC4SGZmJkuWLOHdd9+Vd6VuoLUmJyfHDIONGzfSq1evRgPKsgeCEC2TAHARrTUpKSn88Y9/ZMKECZbW0hU5HA52796NzWYjLS2N7du3M3ToULOFEBMTIwPKQpxGAsCF3nzzTbKysvjTn/5kdSldXk1NDVu3bjVbCHv37mXcuHFmd1F0dLQMKIsuTwLAhYqLi5k/f74MBnugsrKyRnsgHDt2jNjYWHPJiiFDhkjXnehyJABc7Pe//z0TJkxg0aJFVpciWnDixIlGTyjb7fZGA8p9+/a1ukQh2p0EgItt3LiRRx99VAaDOxCtNYcPH240wygkJKTRkhXSohOd0ZkEgKzx64TY2Fjsdjvbtm1j/PjxVpcjnKCUIiIigoiICJKTk809ENLS0li5ciUPPvggkZGRZiDExMTg7+9vddlCuJW0AJz0z3/+k+zsbB588EGrSxEuUFtby/bt280WwnfffUd0dLQZCKNHj5Y9EESHJF1A7aCoqIgFCxbIYHAnVVFRwaZNm8zuoiNHjjBx4kQzEIYNGybdf6JDkC6gdhAWFsbUqVP573//y8KFC60uR7hYYGAg5513Hueddx5gBH5GRgY2m413332XysrKRktWDBgwwOKKhWg7aQGcAZvNxhNPPMHbb78t7wa7mNzc3EYDygEBAeYMo/j4eMLCwqwuUQhAuoDajcPhICUlhYceeohx48ZZXY6wiNaa7OxsMwwyMzMZMGAA8fHxTJ48mYkTJ8oeCMIyEgDt6I033uDAgQM88MADVpciPITdbjf3QEhLS2PXrl2MHDnSbCGMGzcOX19fq8sUXYQEQDsqLCwkJSWFVatW0b17d6vLER6oqqqKzZs3my2EnJwcYmJizAfSRowYIUtWiHYjAdDO7r33XiZOnCiDwcIppaWlZGRkmE8ol5SUEBcXZy5ZMWjQIBlTEi4jAdDO0tPTefLJJ2UwWJyVgoICMwxsNhve3t6Nlqzo1auX1SWKDsztAaCUmgksBbyBl7XWS077+vXA34Aj9Z96Vmv9ckvn9OQAcDgcJCcn8/DDDzN27FiryxEdmNaaAwcOmDOMNm7cSHh4eKM9EKSrUZwJtwaAUsob2AP8GDgM2IArtNY7GxxzPRCntb7Z2fN6cgAALF++nJycHBkMFi51ag+EtLQ0bDYb27dvJyoqygyE8ePHyx4IokXuDoApwINa65/Uv74XQGv91wbHXE8nC4DCwkKSk5P5+OOP5R2aaDc1NTVs2bLFbCHs27ePsWPHmoFwzjnnyICyaMTdAXApMFNr/fP619cAkxve7OsD4K/AMYzWwm1a60NNnGsxsBggMjJyUk5OTptqa29333038fHxXHrppVaXIrqIkydPmnsg2Gw2jh8/TmxsrBkIgwcPlnGpLs4TA6AXUKa1rlZK/RJYpLVObOm8nt4CAEhLS2Pp0qW89dZb8o9OWOL48eON9kBwOBzmYHJCQgJ9+vSxukThZu5eC+gIENHg9SC+H+wFQGt9osHLl4HHXHBdy8XHx1NWVsauXbsYPXq01eWILqh3797MmjWLWbNmobXm0KFD2Gw2vvzyS5566ilCQ0PNGUayB4I4nStaAD4Y3TpJGDd+G3Cl1npHg2P6a63z6j9eANyttT63pfN2hBYAwGuvvcaRI0e4//77rS5FiEYcDgd79uwxu4u2bNnC4MGDzSUrJkyY0CH2QKipgb17Yf9+qK4GHx+IiIBRo0BW3PghK6aBzgaexpgG+qrW+i9KqYeADK31R0qpvwJzATtQCNyotd7d0jk7SgCcOHGCSy+9lI8//pigoCCryxGiWbW1tWzbts1csiIrK4vRo0ebLYQxY8bg7e1tdZkA1NXBF1/Ayy9DWppx09caHA7w8gKloLYWoqNh8WK46CLoAFnmFvIgmJvdddddTJ48mZSUFKtLEcJpFRUVjQaU8/LyiI2NNccQoqKiLBnb2rIFbr0VjtR3JAcHGzf902kN5eVGWAQHw+OPQ2KLI4tdgwSAm23YsIG///3vMhgsOrTCwsJGS1ZUVVWZ3UXx8fH079+/Xa+vNTz9NDz3nHHDP5PhiooKo3to3jxYsgS68qMSEgBu5nA4mD9/PkuWLJHBYNFp5ObmmmGQkZFBYGBgoz0QQkNDXXYtreGPf4S33jLezZ/NbpwOB5SUwHnnGV1HXTUEJAAs8Oqrr5KXl8d9991ndSlCuJzD4SA7O9uccrpp0yYGDhxoTjeNiYlp0x4Ir7wCjzwCISFNd/c4S2soLobLLjNaAl2RBIAFjh8/zmWXXcbq1atlMxDR6Z3aA+HUkhW7du1i1KhRZiCMGTPG6T0QsrNh9mxjENcV2yacagksXw7nn9/283U0EgAWufPOO5kyZQrJyclWlyKEW1VWVrJ582azhXDw4EFiYmLMQBg+fHizS1YsWgQbN4ILe5QoLzfGEL7++uy6kzoy2RTeIgsWLOCFF16QABBdTkBAAFOmTGHKlCkAlJSUmAPKK1asoLS0lLi4ODMQBg4ciFKKrCzj5h8S0vo16upKyct7iLKyDfj4hBIefjMhITObPDYoCAoL4fPPISnJlT9p5yIB4ELnnnsuf/3rX9m1axfR0dFWlyOEZUJCQkhKSiKp/u6bn59vtg5efPFF/Pz8iI+PJyvrcuz2KIznSVuWn78EpXwZOfJ/VFXt4dChW/H3H0m3blFNHq+UMRgsAdA8CQAX8vLyYv78+XzwwQcSAEI00K9fP+bMmcOcOXPQWrN//35sNhsvvwwnThyitNRBUFAQQUFBBAYG4uXV+IE0h6OSkydTiYr6P7y8AgkMjCE4eDolJavp0+c3TV4zKAgyM43nBDzk+TaPI+vIutjcuXP57LPPqKiosLoUITySUoqoqCjmz1+Er+9IRo0aQv/+A/D29qGwsJCsrCwOHNjPsWMFVFSUo7WDmpqDgDd+fpHmebp1G0F19b5mr3Pqpn/gQPv+PB2ZtABcLDw8nNjYWD755BMWLFhgdTlCeKyjR40BWi8vRUBAAAEBAUBvtHZQUVFJeXk5R48WUFNTjY9PNnV1flRVVeLvHwCAl1d3HI7yFq/h5QW5uTBsmBt+oA5IWgDtIDk5mQ8++MDqMoTwaHa70U9/OqW8CAoKok+fPgwdOoSIiAi8vAKpri5m//79VFVVAeBwlOPl1fL6W1obawaJpkkAtINzzz2XwsJCdu9ucb07Ibq0gACjf/6HNJWVFRw9epS9e/eSm5tHQMBQ/P19CQ2tori4CIDq6j3NDgCfopRxHdE0CYB20HAwWAjRtL59jX56IwQ0FRXl5Ofnk5WVRV5eHl5eikGDIhg+fBj9+g0hJORC7PZ3KSkpoKwsk5MnPyck5OJmz3/q3b90/zRPAqCdzJ07l08//VQGg4VoRl1dLf36Hefw4WPs2bOHo0eP4uPjw+DBg4mKGkZ4eJ/6/QqMfqJ+/e4B7FRX/5xDh+6hX797W2wB2O3QvTuEh7vn5+mIZBC4nfTp04eYmBg+/fRT5s2bZ3U5QniE6upqvv32W1JTU/nqq6+oq7sSL69FDB06FF/flldv8/buQUTEE4SFneTYseOEhAxt8fiyMli4sOlxBmGQAGhHycnJvPTSSxIAokurqKjgq6++Yu3atWzYsIHo6GgSExP5zW9+g69vOJMnn9lNunv37uTn5zeaEXQ6rY1zXnedi36ITkoCoB1NnTqVRx55hD179jBy5EiryxHCbUpLS/n8889JTU1l48aNxMTEkJSUxL333vuDZaSvuspYuC0szNmzK0JDQykqKqZ//6YDoKQEzj0XzjmnbT9HZyeLwbWzZcuWUVRUxN133211KUK0q8LCQtavX8/atWvZvn07CQkJzJgxg2nTphEcHNzs91VUGMs1FBUZffbOsNtryc7ex4gRw3/w1HB1tdH/v3YtDBjQlp+oY5LVQD1IQUEBl19+OatXr65/0EWIzuPo0aOkpqaSmppKVlYWU6dOJSkpialTp57R3/fMTLjiCuPBMGe/7fDhQ3Tv3p3Q0O+bDrW1Rt//U0/B3Lln+tN0DrIaqAdpOBg8t6v+jRSdyqFDh0hNTWXt2rUcPnyY6dOnc+211zJ58mT8znIbrthYeOkl+MUv4ORJY1ew1oSGhnHsWIEZAJWVUFUFDz7YdW/+Z0oCwA0WLFjAK6+8IgEgOiStNfv27TPf6Z84cYIZM2Zw0003MWnSJHxctOD+BRfAe+/BzTcbG8J3797yBjHduweRn19HeXkltbUBdO8OzzwjG8OfCekCcoO6ujrmzJnD008/LYPBokPQWrN7927znX51dTWJiYkkJiYyYcKEZjd3cYWqKuNG/vrrUFNjzOY5tVuYUsYMH7vdOK6oqASHw85Pf9qLe++Fnj3brawOQ8YAPNCyZcsoLi7mrrvusroUIZrkcDjYtm0ba9euZd26dfj4+JCYmEhSUhLR0dEoN0+or6iANWvgv/+FLVvgxAljcTeHw+giGjcOJk8+ybvvXsUnn7xNUFDL6wJ1FRIAHig/P58rr7ySNWvW1D/dKIT16urqyMzMJDU1lXXr1pkbucyYMYPhw4e7/abfkooKo0Xg6wuBgd8/O3DXXXeRkJDApZdeam2BHkIGgT1Qv379GD9+PJ9++ilz5syxuhzRhdXU1GCz2Vi7di1ffPEF/fv3JzExkWXLlhEZGdn6CSwSGGj8OV1KSgpLly4lJSXFowKrI5AAcKPk5GRef/11CQDhdlVVVXzzzTekpqby9ddfExUVRVJSEr/4xS/o37+/1eW1SXx8POXl5ezYsYOxY8daXU6HIgHgRueddx5Llixh7969DB8+3OpyRCdXXl5uLsGQlpbGmDFjSExM5Le//S29e/e2ujyX8fLyIjk5mRUrVkgAnCEZA3CzF198kZKSEhkMFu2ipKTEXIIhMzOTiRMnkpSUxAUXXPCDJRg6k8LCQpKTk1m1alWLTx13BTIG4MHmzZvHlVdeyS233CKDwcIlTpw4wbp160hNTWXHjh1MnjyZmTNn8vDDD9Pd2bUVOriePXty7rnn8p///IeFCxdaXU6HIQHgZv369WPcuHF89tlnXHLJJVaXIzqovLw886afnZ3Neeedx6WXXsoTTzzRZZccSU5O5oknnuCyyy6TwWAnSQBYIDk5meXLl0sAiDNy8OBB82ncI0eOMH36dK6//noSEhLOegmGziQuLo6amhq2bdvG+PHjrS6nQ5AAsMD555/PkiVLyM7OZpjsVyeaobUmOzvbfBq3uLiYGTNmcPPNNzNp0iS8vb1bP0kX4uXlxYIFC/j3v/8tAeAkCQALeHt7M3fuXD744APuuOMOq8sRHkRrza5du8x3+jU1NSQmJnLvvfcyfvz4dl2CoTOYM2cOCxYsoLS0lB49elhdjseTALDIvHnzuPrqq/nNb35Dt27drC5HWMjhcLB161bzpu/n50diYiIPP/ywJUswdGRhYWFMnTqV1atXc8UVV1hdjseTALDIgAEDGDt2LGvXrmX27NlWlyPczG63k5mZydq1a1m/fj1hYWEkJiaydOlSoqKi5KbfBikpKSxZsoTLL79cfo+tkACw0IIFC3jrrbckALqImpoa0tLSWLduHZ9//jkDBw4kKSmJl156yaOXYOhoYmNjcTgcbNmyhZiYGKvL8WgSABaaNm0ajz76KPv27SMqKsrqckQ7qKys5Ntvv2Xt2rV88803DB8+nBkzZrB48WL69etndXmdklLKfDJYAqBlLgkApdRMYCngDbystV5y2te7AW8Ak4ATwCKt9QFXXLsj8/HxMQeDf/e731ldjnCRsrIyvvzyS1JTU0lLS2Ps2LEkJSVx++2306tXL6vL6xIuueQSXnrpJUpKSggJCbG6HI/V5ikFSilv4DlgFjAauEIpNfq0w24AirTWw4GngEfbet3OYv78+axZs4bq6mqrSxFtUFxczEcffcStt97K7Nmz+d///se0adNYtWoVzz//PCkpKXLzd6OQkBCmTZvG6tWrrS7Fo7miBZAA7NVa7wNQSr0DzAN2NjhmHvBg/cfvA88qpZT21IWI3GjAgAGMHj1aBoM7oOPHj5tP4+7cuZPJkycze/ZsHnnkEdmcxAMkJyfz8MMPc8UVV8hgcDNcEQADgUMNXh8GJjd3jNbarpQqAXoBx11w/Q5vwYIFvP322xIAHUBubi7r1q1j7dq17N+/n/PPP5+FCxcyZcoUWdvJw8TExODl5cWmTZuIjY21uhyP5FGDwEqpxcBioEvNirjgggt49NFH2b9/P0OHDrW6HHGanJwcc45+Xl4e06dP54YbbiA+Pl6WYPBgpwaD//3vf0sANMMVAXAEiGjwelD955o65rBSygcIwRgMbkRrvQxYBsZy0C6orUNoOBh8++23W11Ol6e1Zu/eveYSDKWlpcyYMYNbbrmF2NhYWYKhA7n44ot58cUXKS4u7tTLYZ8tVwSADRihlBqKcaO/HLjytGM+Aq4DvgUuBVKl/7+x+fPnc91113HzzTfLu0oLaK3ZuXOnuSG63W4nMTGR+++/n7Fjx8oSDB1Ujx49mD59OqtWreKaa66xuhyP0+YAqO/Tvxn4BGMa6Kta6x1KqYeADK31R8ArwD+VUnuBQoyQEA0MHDiQUaNGkZqaysyZM60up0twOBxs3rzZHMj19/cnKSmJRx55hHPOOUcGDjuJlJQUHnzwQa6++mr5f3oal4wBaK3XAGtO+9wDDT6uAi5zxbU6s+TkZN59910JgHZkt9vZuHGjuQRDr169SExM5JlnnmHo0KFyg+iExo0bh6+vLxkZGcTHx1tdjkfxqEHgrm769Ok8+uijHDhwgCFDhlhdTqdRU1PDhg0bSE1N5YsvviAiIoKkpCReeeUVIiIiWj+B6NCUUqSkpLBixQoJgNNIAHiQhoPBt912m9XldGgVFRV88803pKam8s033zBy5EgSExO58cYb6du3r9XlCTebNWsWzz//PIWFhfTs2dPqcjyGBICHmT9/Ptdffz033XSTDAafoZMnT5pLMKSnpzNu3DiSkpK444475B99FxccHExiYiKrVq3iuuuus7ocjyEB4GEGDRrEyJEjWbduHT/5yU+sLsfjFRUV8fnnn5OamsrmzZuJi4sjMTGRBx54QDYEEY0kJydz3333cc0118isrnoSAB4oOTmZ9957TwKgGQUFBaxfv57U1FR27drFlClTuOSSS1iyZAmBgYFWlyc81JgxYwgMDMRmszF58umLFXRNEgAeaPr06Tz22GMcPHiwSz0R3ZLc3FzzadwDBw5w/vnnc/nllzNlyhTZUU04peGTwRIABgkAD+Tr68sll1zCBx98wK233mp1OZY5cOCA+TRuQUEB06dP5+c//znx8fH4+vpaXZ7ogGbNmsVzzz3HiRMnZHVWJAA81vz587nhhhu48cYbu8xgsNaarKws853+yZMnmTFjBrfddhsTJ06UJRhEm3Xv3p2kpCQ+/PBDfvazn1ldjuUkADxUZGQkw4cPZ/369Vx00UVWl9NuHA4HO3fuNN/pa61lCQbRrlJSUrjnnnu4/vrru/zfLwkAD7ZgwQI++OCDThcAp5ZgOLXuTmBgIImJiTz22GOMHDlSnsYV7So6Oprg4GDS0tKYMmWK1eVYSgLAg82YMYPHH3+8UwwG2+12bDYb69atY/369fTu3ZukpCSeffaO+a8cAAAcf0lEQVRZ2Q9ZuFXDJ4MlAITHOjUYvHLlSm655Raryzlj1dXVpKWlsXbtWr788ksiIyNJTEzk1VdfZdCgQVaXJ7qwmTNn8swzz3Ds2DHCw8OtLscyEgAebv78+fz85z/nV7/6VYcYDK6oqODrr78mNTWVb7/9lpEjR5KUlMRNN91Enz59rC5PCAACAwP58Y9/zEcffcQNN9xgdTmWkQDwcJGRkQwdOowXXthMSUkC6emwdy9UVYG3N/TvDzExcMEFMGsWBAe7v8bS0lJzCQabzcaECROYMWMGd955pyzBIDxWcnIyd9xxBz/96U+77GCw8tR9WeLi4nRGRobVZVjK4YCVK+GBB4o4fLiWnj374O8P3bqBlxdoDbW1UFkJSoGPD1x2Gdx+O7T35keFhYXmEgxbtmwhLi6OpKQkpk2bJkswiA7j2muv5Ze//CXnnXee1aW4jFJqo9Y6zpljpQXgofLy4I47YMMG8PMLoa5uL927hzbqBlLKCINTD8La7fDWW/Dxx/DEEzBjhmtrKigoMDdE/+6775g6dSpz587l0UcflSUYRId06sngzhQAZ0ICwANlZ8OiRVBcbLyTV8qL0NAQiouL6NOn+aWMfXwgLAwqKuAXv4D774frr29bLUeOHDGna+bk5DBt2jSuuuoqzj33XFmCQXR4F110EX//+98pKCjokmNUEgAeJjfXuPmXljbuxgkLC+XAgRzCw8NRquX+ysBA8PWFP/8ZgoKMbqEzsX//fvPBrGPHjvGjH/2IxYsXExcXJ0swiE4lMDCQiy66iJUrV7J48WKry3E7GQPwIA4HXHEFZGQY7+RPl5NzgJ49exIc7Fwfe02N8ec//4GhQ5s/TmvNnj17WLt2LampqVRUVDBjxgySkpKIiYnpsgNkomvYs2cPv/3tb1m1alWnWG5ExgA6qP/7P+Pm39wAblhYGEVFRU4HgJ+f0R10222wYoUxcHyKw+Fg+/bt5ro7SimSkpL44x//yJgxY+SmL7qMkSNH0qdPH77++msuuOACq8txKwkAD1FXZwzcBgQYg7tNCQ4OJj8/n5qaGqefCQgJgR07jGCZNKnOXIJh/fr1BAUFkZiYyOOPP86IESNkCQbRZSUnJ7NixQoJAGGNL7+EkhJoaQalUl706BFITs4fUGoHdXWl+PoOok+fm+nefWoz3+WgsrKam27aRWjo3fTp04ekpCSee+45hrbULyREF3LRRRfx9NNPk5+fT79+/awux20kADzEqlVGK6A1oaHBHD/enREj/oGf3wDKyr7myJF7GDr0Hfz8BgCgtYOysnJOniylrKwMX19/Dh4cznvvvc6QIQPb+ScRouPx9/dn5syZrFy5kl/96ldWl+M20tHrITZuNLp/WuPvH0pw8DXU1PRAKS+Cg6fh6zuAysodlJaWcOTIYfbs2UNhYSEBAQFERUUxdOhgQkN7UFUlN38hmpOSksKHH35InTPvxDoJCQAPYLfDwYPfP9DVmtDQMIqKiqmrq6OwcD8nT+4lN9eLkpISgoKCGD58OIMHDyYsrCc+Pt9P28zKaqcfQIhOYNiwYfTv358vv/zS6lLcRgLAA1RXGwO/zo7B9ugRTFVVJTt2bCE393569JjFqFE/IiIiktDQMLy9f9izV1dnzAgSQjTv1DLRXYUEgAfw9jaeAXCWUl5ERkYSELAcLy8/qqsXcfDgIY4dK6Ciohytf3iyU2sFCSGad+GFF7Jjxw5yc3OtLsUtJAA8QLduxhO7drtzx2utKSx8DD+/Ks455x+MGjWa8PBwtIajRwvYs2cPBw/mcOLEcaqqKgGNtzf0bX4VCSEE0K1bN2bNmsXKlSutLsUtJAA8gFIwdqyxqqcz8vP/Sk3NfiIinsLLqxtKeREUFESfPn0YOnQoI0aMICysJ7W1dnJzc/nuuz3k5x9nz54PycnJwVOf/hbCEyQnJ/Phhx9id/YdWQcmnQIe4oILwGZr/bja2jyKi1eglB9ZWT8xP9+v3+8JCZkFgJeXN8HBwQTXbw5QVlaLUmUcPLiJG298EYD4+HgSEhKIj4/vkotgCdGcqKgoIiIi+OKLL0hMTLS6nHYlawF5iPx8OP9840EwV6/CUFQEv/893HCD0X106NAh0tPTSU9PJyMjg549e5phMGnSJFnPX3R5a9asYc2aNTz77LNWl3LGzmQtIAkAD/LLX8Lata7dzKWmxtg05uuvoanNuRwOB9999x02m4309HS2bt3KkCFDzBZCTEyMLPssupyamhpmz57N8uXLGTiwYz0/IwHQQR0+DD/+sTFbxxX3XK2NPQXuvx9++lPnvqempobt27ebLYSsrCzGjBljthBGjx7dKVZMFKI1Tz75JH5+ftx8881Wl3JGJAA6sHfegfvuM7qC2nqfLS6GCRPgvffOvlupoqKCzMxMMxDy8/OJjY01WwhRUVGyiJzolA4cOMDixYtZvXp1h9oHQ5aD7sAWLTKe2H39dWOD97OZu6+1sbDcoEHw0kttG1MIDAzk/PPP5/zzzweMvYAzMjJIT0/n7bffpqqqioSEBLOF0L9//7O/mBAeZMiQIQwZMoTPP/+cCy+80Opy2oW0ADyQ1vD00/Dcc0YroH4yj1Nqa6GszJhW+uqr0KtX+9UJkJuba7YObDYbQUFBZhjEx8cT2t670wvRjj755BM+/PBDnn/+eatLcZp0AXUSmZlw663GDCEvL+jevfnlIqqrjaUefHzgd78zZvy4u6ve4XCQnZ1tDihv2rSJgQMHmi2EmJgY2TxedCg1NTVcfPHFvPrqq0RERFhdjlMkADqRmhpITYV//AO2bTN2+aqpMdb2Ucp4rbURDj/7GSxcCJ4yrd9ut7Nz506zhbBr1y5GjRplthDGjh3bofpWRde0dOlSlFLccsstVpfiFLcFgFKqJ/AuMAQ4ACzUWhc1cVwdsK3+5UGt9dzWzi0B8EMlJbB7N2Rnf/9uf8AAOOcco7/f03dxrKysZPPmzWYL4eDBg8TExJgthOHDh8tWlMLjHDx4kBtuuIHVq1c7vROfldwZAI8BhVrrJUqpe4AwrfXdTRxXprXufibnlgDo/EpKSti4caPZQigtLSUuLs5sIQwaNEhmGAmPcOONN7JgwQIuuugiq0tplTsD4DvgR1rrPKVUf2C91npUE8dJAIhWHT161BxMTk9Px8fHp9EMo17tPaItRDM+/fRT3n//fV588UWrS2mVOwOgWGsdWv+xAopOvT7tODuwGbADS7TWrS61JwHQtWmtOXDggBkGGzduJDw83AyE2NhYunc/o/cUQpy12tpaLr74Yl566SUGDx5sdTktcmkAKKU+A5raJfk+YHnDG75SqkhrHdbEOQZqrY8opaKAVCBJa53dxHGLgcUAkZGRk3Jycpz5GUQXUFdXx+7du80WwrZt2xg2bJgZCOPHj+8Q/bOi43rmmWew2+3cdtttVpfSIo/rAjrte14HPtZav9/ScdICEC2pqalhy5YtZgth3759jB071gyEc845RwaUhUsdPnyY66+/njVr1nj0mw13BsDfgBMNBoF7aq3vOu2YMKBCa12tlOoNfAvM01rvbOncEgDiTJw8edJcssJms3H8+HFiY2PN8YMhQ4bIgLJos5tuuolLLrmEWbNmWV1Ks9wZAL2A/wMigRyMaaCFSqk44Fda658rpaYCLwIOjA1ontZav9LauSUARFscP34cm82GzWYjLS0Nh8Nhrl+UkJAgeyCIs5Kamsrbb7/NSy+9ZHUpzZIHwYRo4NQeCKe6izIyMggJCTHDIC4uTvZAEE6x2+1cfPHFvPDCC0RFRVldTpMkAIRogcPhICsry+wu2rx5M4MHD260B4K/v7/VZQoP9fzzz1NZWcnvfvc7q0tpkgSAEGegtraWbdu2mS2EPXv2EB0dbbYQRo8ejc/ZLMsqOqXc3FyuueYa1qxZ45GbJUkACNEGFRUVbNq0yWwh5ObmMnHiRLOFMGzYMBlQ7uJuueUWZs6cyezZs60u5QckAIRwoaKiInMPhPT0dCorK80lKxISEhgwYIDVJQo3W7duHW+++SavvNLqfBa3kwAQoh3l5uaa3UU2mw1/f38mT55s7oEQFvaDZyFFJ2O327nkkkt4/vnnPW4wWAJACDfRWpOdnW2GQWZmJgMGDDC7i2JjY2UPhE7qhRdeoKysjDvvvNPqUhqRABDCInV1dezYscNsIezcuZORI0eaD6SNGzdO9kDoJPLy8rjqqqtYs2aNR80akwAQwkNUVVWxZcsW0tLSsNls5OTkMGHCBLOFMHLkSFmyogO79dZbufDCC5kzZ47VpZgkAITwUKWlpWRkZJgthOLi4kZ7IERERMgMow7kiy++4LXXXuO1116zuhSTBIAQHURBQYG5XIXNZsPLy8sMg4SEBHr37m11iaIFdXV1zJkzh6VLlzJixAirywEkAITokLTW5OTkmAPKGzdupFevXo32QAgODra6THGaZcuWUVRUxN13/2AzREtIAAjRCTgcDnbv3m22ELZv387QoUPNFkJMTIxHL0vcVRQUFHD55ZezevVqAgICrC5HAkCIzqimpoatW7eaLYTs7GzGjBljthCio6NlQNkit99+O9OnT2fevHlWlyIBIERXUFZWRmZmptlCOHbsWKM9EIYOHSoDym7y1VdfsWzZMt544w2rS5EAEKIrOnHiRKMnlGtraxvtgdC3b1+rS+y0HA4Hc+fO5YknnmDUqBY3RWx3EgBCdHFaa44cOWKGgc1mo0ePHmYgxMXFERISYnWZncrLL79MQUEBv//97y2tQwJACNGIw+Fg79695oJ2mzdvJiIiwmwdxMTEeMQAZkd27NgxFi5cyOrVqy1d/kMCQAjRotraWnbs2GG2EHbv3k10dLTZQhgzZozsgXAW7rjjDqZOnUpycrJlNUgACCHOSEVFBZs3bzZbCEeOHCEmJsYcUB4+fLjMMHLCN998w/PPP8+bb75pWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns2TJEkaPHm1JDRIAQgiXysvLM2cYpaen4+/vb4ZBfHw8PXv2tLpEj/Hqq6+Sl5fHfffdZ8n1JQCEEO1Ga83+/fvNMMjMzKRfv35mGMTGxhIUFGR1mZY5ceIEl156KR9//LElvwcJACGE29TV1bFz506zhbBjxw5GjBhhthDGjRvX5ZasuOuuu5g8eTIpKSluv7YEgBDCMtXV1WzZssVsIRw4cIDx48ebLYRRo0Z1+gHltLQ0li5dyltvveX2p7HPJABknpcQwqW6detmPl8Axh4ImZmZpKen84c//IHCwkLi4uLMFkJkZGSnW7IiPj6e8vJydu7cyZgxY6wup1nSAhBCuFVBQYE5wyg9PR3ADIz4+HjCw8MtrtA1li9fTk5ODg888IBbrytdQEKIDkFrzaFDh8wNcTIyMujZs6cZBpMmTaJHjx5Wl3lWCgsLSUlJYdWqVXTv3t1t15UAEEJ0SA6Hg++++84cUN66dStDhgwxWwgTJkygW7duVpfptHvuuYfY2FgWLlzotmtKAAghOoWamhq2b99uthCysrLMPRDi4+MZPXo03t7eVpfZrPT0dJ588knefvvt78c5Tp6E6mrw84PgYHDx+IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kBwOBxcNXcuS6ZNY/DOnbB1K5SWgpcXOBwQEABjxsCFF0JyMvTq1eZrSgAIIbqEwsLCRgPK1dXVjZ5Q7t+/v3XFVVTAU09R8txz2Kur6dWrl3HD9/H5/l2/3Q5VVcZ/vbxgzhy47z5ow5PVEgBCiC7p9D0QgoKCzNZBXFwcoaGh7ikkMxN+8xvIz8ceGEj2gQMMHz685e6qujqjdRAcDI8/brQKzoIEgBCiy3M4HGRnZ5vdRZs2bWLgwIGN9kBol3X7166FX//aeJdfP/vn8JEjBAYEOLdmUmWlMUbwwANw7bVnfHkJACGEOI3dbm+0B8KuXbsYNWqUGQhjxozB19e3bRdJT4errzYGeP39zU+XV1SQn59PVFQUTo1Q1NZCWRk89RTMnXtGJUgACCFEKyorK9m8eTM2m420tDQOHTpk7oGQkJBw5nsglJVBYqIxy+e0ReA0kJ2dzYD+/Z1vdVRXG91Cn30GAwY4XYYsBSGEEK0ICAhgypQpTJkyBYCSkhJzQHnFihWUlpYSFxdnBsLAgQNbnmH06KNQWAhNjDMoICwsjKLiYucDoFs3KC6Gu++Gf/7zLH7C1kkLQAghmnD06FGzuyg9PR1fX99GM4x6NZyyWVgI555rvPNvZqDXXldH9t69vBEUREZlJZUOB719fLi2Vy/mNzc4rbUxMPzxxzBqlFN1SxeQEEK40Kk9EE6FQWZmJuHh4WbrIGH7dvyffLLJd/8NHcnNJd/bm3Hh4fh5eXGguprFOTksjYggOiCg6W8qKoJFi+CRR5yq1W1dQEqpy4AHgWggQWvd5B1bKTUTWAp4Ay9rrZe05bpCCOFOSimioqKIiopi0aJF1NXVsXv3btLT03nnnXdQ775LlN2Ob20tQUFBBAQE4NVEd1FYaCiVeXn49u1rnLf+3Idra5sPgKAg+O9/nQ6AM/q52tICUEpFAw7gReCOpgJAKeUN7AF+DBwGbMAVWuudLZ1bWgBCiA7B4cBxzjlUAuVVVZRXVFBdXU1AQABBQUEEBQXh7++PwhgM3rdvH2/5+PBJRQXVWjPK35+XBg8msLkBZ62hpAQ2bIDevVstx20tAK31rvoLtnRYArBXa72v/th3gHlAiwEghBAdQl4eXkBQjx4E1a9cWudwUFFeTnl5Obm5udjtdgIDAwkKCqJ79+7cUFvL/aNGsbWyko0VFfi1dA9VCnx9Yd8+pwLgTLhjFtBA4FCD14eByW64rhBCtL/KSmMZhwa8vbwIDg4mODgYgFq73QyEsvJy0BqlFDGBgawpKeH9oiIub+khMa2N67hYqwGglPoM6NfEl+7TWn/oymKUUouBxQCRkZGuPLUQQrQPHx/jBt0CXx8fQkJCCAkJQWMMKp96z18HHK6pafkap1oBLtZqAGitz25Biu8dASIavB5U/7mmrrUMWAbGGEAbryuEEO2vXz9jMTeH4wctgdMV2u1kVFRwfvfu+ANp5eV8UlLCIwMHtnyNurozehjMWe7oArIBI5RSQzFu/JcDV7rhukII0f78/SEyEgoKjNU+W6CA94uKeCQvDwfQ39eX3/XtywX1XUVNqqszgqUdekXaOg10AfAMEA6sVkpt1lr/RCk1AGO652yttV0pdTPwCcY00Fe11jvaXLkQQniKGTNg+fJWAyDMx4dlgwef2bnLymDKlFZbF2ejrbOAPgA+aOLzucDsBq/XAGvaci0hhPBYl19uLNegtct3+EIp+NnPXHvOeq6PFCGE6GpGjoSJE435+q5UVgbh4TBtmmvPW08CQAghXGHJEmMdoNpa15yvrs441xNPNLu+UFtJAAghhCtERcFddxnv2h2Otp3r1CJwV15pLDLXTiQAhBDCVX72M2NDmJISY2ro2XA4jGWgZ8wwdgVrRxIAQgjhKkrBgw/CrbcaLYHS0jP7/vJyIzwuuwxeeKFdHv5qSAJACCFcSSm45RZYsQIGDTJCoKSk+W4hh8PYRezUhvCvv26MJ7TzzR9kRzAhhGgf48cb2zl+9RW8/DJ8+60xmKv199NFlTIGesePh8WLISnJ2E/YTSQAhBCivXh5wQUXGH9qa40VPffvN/b79fWFiAhjCmm3bpaUJwEghBDu4OtrbOvo5NaO7iBjAEII0UV57J7ASqljQM5pn+4NHLegHGd5en0gNbqK1Nh2nl4fdMwaB2utw535Ro8NgKYopTKc3erMCp5eH0iNriI1tp2n1wedv0bpAhJCiC5KAkAIIbqojhYAy6wuoBWeXh9Ija4iNbadp9cHnbzGDjUGIIQQwnU6WgtACCGEi3h0ACileiqlPlVKZdX/N6yZ4x5TSu1QSu1SSv1dKVdvydPm+iKVUv+rr2+nUmqIO+o7kxrrj+2hlDqslHrWXfU5W6NSKkYp9W39/+etSqlFbqhrplLqO6XUXqXUPU18vZtS6t36r6e58//rGdR4e/3fua1KqbVKqTPcj7D9a2xwXIpSSiul3D7rxpkalVIL63+XO5RS//K0GuvvM+uUUpvq/3/Pbuo8jWitPfYP8BhwT/3H9wCPNnHMVOBrjP2GvYFvgR95Sn31X1sP/Lj+4+5AoCf9DhscuxT4F/CsB/5/HgmMqP94AJAHhLZjTd5ANhAF+AFbgNGnHfNr4B/1H18OvOvm35szNc449fcNuNETa6w/Lhj4AtgAxHlajcAIYBMQVv+6jwfWuAy4sf7j0cCB1s7r0S0AYB6wvP7j5cD8Jo7RgD/GL6Ub4AscdUt1TtSnlBoN+GitPwXQWpdprSvcVB849ztEKTUJ6Av8z011NdRqjVrrPVrrrPqPc4ECwKmHXc5SArBXa71Pa10DvFNfZ0MN634fSHJX69PZGrXW6xr8fdsADHJjfU7VWO/PwKNAlTuLq+dMjb8AntNaFwForQs8sEYN9Kj/OATIbe2knh4AfbXWefUf52PcoBrRWn8LrMN4R5gHfKK13uUp9WG8cy1WSq2ob5r9TSnVPvu7Na3VGpVSXsATwB1urKshZ36PJqVUAkbgZ7djTQOBQw1eH67/XJPHaK3tQAnQqx1rOp0zNTZ0A/Cfdq3oh1qtUSkVC0RorVe7s7AGnPk9jgRGKqW+VkptUErNdFt1BmdqfBC4Wil1GFgD/Ka1k1q+GJxS6jOgXxNfuq/hC621Vkr9YMqSUmo4EM3372w+VUpN01p/6Qn1YfyOpwETgYPAu8D1wCuuqM9FNf4aWKO1Ptxeb2BdUOOp8/QH/glcp7Vu4757XYdS6mogDphudS0N1b/5eBLj34Qn88HoBvoRxr3mC6XUOK11saVVNXYF8LrW+gml1BTgn0qpsS39O7E8ALTWFzb3NaXUUaVUf611Xv0//KaaXQuADVrrsvrv+Q8wBXBJALigvsPAZq31vvrvWQmciwsDwAU1TgGmKaV+jTFG4aeUKtNaNztgZ0GNKKV6AKuB+7TWG1xVWzOOABENXg+q/1xTxxxWSvlgNLtPtHNdTV3/lKZqRCl1IUbQTtdaV7uptlNaqzEYGAusr3/z0Q/4SCk1V2ud4SE1gvHvOE1rXQvsV0rtwQgEm3tKdKrGG4CZYPSMKKX8MdYJara7ytO7gD4Crqv/+DrgwyaOOQhMV0r5KKV8Md7huKsLyJn6bECoUupUf3UisNMNtZ3Sao1a66u01pFa6yEY3UBvuPLm74RWa1RK+QEf1Nf2vhtqsgEjlFJD6699eX2dDTWs+1IgVdePwLlJqzUqpSYCLwJzLei3brVGrXWJ1rq31npI/d+/DfW1uuvm32qN9VZivPtHKdUbo0ton4fVeBBIqq8xGmNs9FiLZ3XnSPZZjHz3AtYCWcBnQM/6z8cBLzcYHX8R46a/E3jSk+qrf/1jYCuwDXgd8PO0Ghscfz3unwXkzP/nq4FaYHODPzHtXNdsYA/GWMN99Z97COMGRf0/sPeAvUA6EOXO35uTNX6GMSni1O/sI0+r8bRj1+PmWUBO/h4VRlfVzvp/x5d7YI2jMWZEbqn/f31Ra+eUJ4GFEKKL8vQuICGEEO1EAkAIIbooCQAhhOiiJACEEKKLkgAQQoguSgJACCG6KAkAIYTooiQAhBCii/p/K9d8/GvFkz8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlcVeXa//HPzSwyqTiL4lhamU+px2w4dRpO2XnUytLKxwH7hXo6pVZWerLSVDIHVFBAwSk7ZuaUedLKykrLlNRyzFlQUxQQFUTY9++PBYbIzN577eF6v1682sNiretW++57r+FaSmuNEEII9+JhdgFCCCHsT8JfCCHckIS/EEK4IQl/IYRwQxL+QgjhhiT8hRDCDUn4CyGEG5LwF0IINyThL4QQbsjL7AJKExoaqsPDw80uQwghnMq2bdvStNZ1y1vOYcM/PDycrVu3ml2GEEI4FaXU0Yos57DhL9xMXh4cOwYXLoCHB9StC/XqgVJmVyaES5LwF+bJzIRVq2DpUti/3wh6Dw/Q2vgwqFkTOnaEfv3grrvA09PsioVwGRL+wv4uX4YZM2DuXMjPB29vCAgwgr9Q4QfAxo3w3XdQuzZERcG995pWthCuRM72Efa1bx88/DDExUGNGhASYszwPYr9U1TK+FAIDoagIDh/HgYNgmHD4NIlc2oXwoVI+Av72bkTnngCUlKgVi3wqsQXT39/44Pg00+hb1+4eNF2dQrhBiT8hX0cP26Edl6eEeJV4eFhfFPYsQMGDwaLxbo1CuFGJPyF7VksMGKEsbsmIKB661LK+ADYtAmWLLFOfUK4IQl/YXuffALJyVWf8RenlHGcYNw4OH3aOusUws1I+Avbslhg5kzw9S3znP2l587xf4cPc8fevbx94kT56/Xxgdxc4zRRIUSlSfgL29q6FU6dMs7sKUOolxeDQkPpXplvB/7+kJhoHEcQQlSKVcJfKZWklDqtlPqtlPeVUmqGUuqAUmqnUuo2a2xXOIFNm+DKlXKv1P1bUBD3BgYSXJkLuXx9jeMIhw5Vs0gh3I+1Zv7zgYfLeP8RoHXBz/PAbCttVzi6H380QtpWtIY9e2y3fiFclFXCX2u9EThXxiI9gIXa8CMQopRqaI1tCwd38KCxf95WcnONbQghKsVe+/wbA8eLPE8peE24utzc66/eLUV+fj7pGRlkZGZysaJX8Xp4yAVfQlSBQx3wVUo9r5TaqpTaeubMGbPLEdbg41Ohi7Hy8/M5euwYnp6e+Pr6cvLECY4cPcqFixfRZf2ixVLuwWQhxPXsFf6pQFiR500KXruG1jpBa91Ra92xbt1y70UgnEGLFsbsvwx5+fkcOnoUb39/agYG4uvnR1iLFgQFB/PHH39w+PBhsrKySv4Q8PGBli1tUroQrsxe4b8a6Fdw1k8XIFNrfdJO2xZm6tzZ6OJZirz8fI4dO8Yq4LFz51hw9ixrMzO5c98+ll25QosWLQgNDeVMWhqHDh0i8/z5az8ElIK2bW09CiFcjlVaOiul/gPcC4QqpVKAtwBvAK11HLAW6AYcAC4BA62xXeEE7rrL6OCp9XWne+bl53Ps6FECAgJ4uV49XillFUGBgQQGBnLxwgXSzp7lzOnT1AkNJdjPD48aNaBVK9uPQwgXY5Xw11o/Xc77GvinNbYlnEynTlC/Ppw7Z1yUVSAvP5+jR48SGBhI3bp1Ke9+XQoICAggICCAi5cukZaWRvaJE5x68kluys/HtzIdQoUQjnXAV7ggDw944QVj1482dthUNviLq+nvT7MGDajToAGra9Sge/fuLFy4kEvS51+ICpPwF7b31FPQvj1kZpKXl1et4AeMD5GLF/F96y3ejosjNjaWvXv30r17dxISEjh//ry1RyCEy5HwF7bn4QHTppHn7c2pQ4cICgykXnWCPyPD2J30f/8HQKtWrZgwYQJJSUmcOnWKnj17MmPGDM6dK+u6QyHcm4S/sItzQUGMbtKEmjVrUreq7R4sFkhPh3btYM6c6y4ea9q0KWPGjGHx4sXk5OTQq1cvJk2axKlTp6wwAiFci4S/sLmzZ88SGRlJq6eeotaXX0K9esbsPT+/4ivJzobMTOP+v0uWQGBgqYs2bNiQkSNH8vHHH+Pn58czzzzDuHHjOH78eKm/I4S7UVqXef2kaTp27Ki3bt1qdhmimtLS0hg8eDAPP/wwzz33nPFidjZMmQILFxqzeR8f8PO7vg1EXp7RtVNr40YwEybAgw+W2yG0uMzMTJYsWcLSpUvp0qULERERtJQLw4SLUkpt01p3LHc5CX9hK2lpaURGRvLoo48SERFx/QLnzsHy5cYNWQ4dAk/PPz8A8vLA2xtuvx3694d7763cDd9LcPHiRZYtW8bixYtp3749ERERtGvXrlrrFMLRSPgLU505c4bIyEj+8Y9/lBz8xeXmwuHDcOGC8QEQGgpNmlR6ll8ROTk5rFy5koULF9KiRQsiIiK47Ta5xYRwDRL+wjSnT59m8ODBdO/enQEDBphdTqlyc3NZu3Yt8+bNo169ekRERNClSxeUDT5whLAXCX9hitOnTxMZGcljjz1Gv379zC6nQvLz81m/fj3z5s3D19eXQYMGcc899+BRwVbUQjgSCX9hd84Y/EVZLBa++eYbkpKSyM3NJSIiggcffBDPytxaUgiTSfgLu/rjjz+IjIykV69e9O3b1+xyqkVrzebNm0lKSiItLY0BAwbw6KOP4u3tbXZpQpRLwl/YzalTp4iMjOSpp57i2WefNbscq0pOTiYxMZEjR47Qr18/evbsia8t70ksRDVVNPxlp6aolpMnTxIZGUnv3r1dLvgBbrvtNmJjY3n//ffZsmWLNJETLkPCX1RZYfD36dOHZ555xuxybKpdu3ZMmTJFmsgJlyHhL6rkxIkTREZG8swzz/D002XezsGlSBM54Sok/EWlnThxgsGDB9O3b1/69OljdjmmkCZywtlJ+ItKSU1NJTIykr59+/LUU0+ZXY7ppImccFYS/qLCCoO/f//+EvzF1KlThxdffJEVK1ZQr149BgwYwOjRozl48KDZpQlRIgl/USEpKSlERkYycOBAevXqZXY5Dis4OJjIyEhWr15NmzZtGDJkCK+88gq7d+82uzQhriHn+YtyHT9+nMGDBzNo0CAef/xxs8txKtJETtibXOQlrOLYsWMMGTKE5557jscee8zscpyWNJET9iLhL6rt2LFjDB48mOeff56ePXuaXY5LKNpEzs/Pj4iICGkiJ6xKwl9Uy9GjRxkyZMjV1szCuqSJnLAVCX9RZRL89lO8idzAgQPp1q2bNJETVSbhL6rkyJEjDB06lCFDhvC///u/ZpfjVqSJnLAGCX9RaYcPH2bo0KG88MILPProo2aX47Z27dpFYmIiu3bt4tlnn6VXr174+/ubXZZwEtLVU1TKoUOHGDp0KP/6178k+E120003MXXqVGkiJ2xKwl9cE/zdunUzuxxRQJrICVuS8HdzBw8eZOjQoQwbNkyC30FJEzlhCxL+buzAgQMMHTqU4cOH8/DDD5tdjiiHNJET1iTh76Z+//13/vnPf/Lyyy/z97//3exyRCVIEzlhDRL+bmj//v288MILvPzyyzz00ENmlyOqSJrIieqQUz3dTGHwjxw5kgceeMDscoQVSRM5AXKevyhBYfC/9tpr3H///WaXI2xEmsi5Nwl/cY29e/fy4osv8vrrr/O3v/3N7HKEHUgTOfck4S+uKgz+N954g/vuu8/scoSdSRM59yLhLwDYs2cPL730EqNGjeLee+81uxxhImki5x7s2t5BKfWwUmqfUuqAUur1Et4foJQ6o5TaXvDznDW2K8q2e/duXnrpJUaPHi3BL1BK0bVrV+bOncuYMWNYv349PXv25KOPPuLy5ctmlyfsrNozf6WUJ7AfeBBIAX4GntZa7y6yzACgo9b6hYquV2b+1bN7926GDRvGv//9b+655x6zyxEOSprIuR57zvw7Awe01oe01rnAEqCHFdYrqmjXrl289NJLEvyiXNJEzn1ZI/wbA0WvL08peK24J5RSO5VSy5RSYSWtSCn1vFJqq1Jq65kzZ6xQmvv57bffGDZsGGPGjJHgFxUmTeTcj73O+foUCNdatwe+ABaUtJDWOkFr3VFr3bFu3bp2Ks117Ny5k+HDh/P2229z9913m12OcELSRM59WCP8U4GiM/kmBa9dpbU+q7UuPKI0F7jdCtsVRezcuZOXX36Zd955hzvvvNPscoSTkyZyrs8a4f8z0Fop1Vwp5QP0AVYXXUAp1bDI0+7AHitsVxTYsWPH1eDv2rWr2eUIF1JSE7l///vf0kTOBVQ7/LXWecALwDqMUF+qtd6llBqrlCq8+/eLSqldSqkdwIvAgOpuVxi2b9/OK6+8wtixYyX4hc0UbSLXqlUraSLnAuQiLyf2yy+/MHLkSMaNG0eXLl3MLke4EWki57jkCl8Xl5yczMiRI5kwYQKdO3c2uxzhpnJzc/nss8+YP3++NJFzEBL+Liw5OZnXXnuN8ePHS/ALhyBN5ByHhL+L2rZtG6+99hoTJ06kU6dOZpcjxDWkiZz5JPxd0NatW3n99deJioqiY8dy/26FMI00kTOPhL+L+fnnnxk1ahRRUVHcfrtcJiGcR3JyMomJiRw5coR+/frRs2dPfH19zS7LZUn4u5AtW7YwatQoJk2aJGdUCKclTeTsw64tnYXtbNmyhdGjR0vwC6cnTeQci4S/A/vxxx9lxi9cjjSRcwwS/g5q8+bNvPnmm0yePJn/+Z//MbscIaxOmsiZS8LfAW3atIkxY8YwefJkOnToYHY5QtiUNJEzh4S/g9m0aRNvvfUWU6ZM4dZbbzW7HCHsRprI2ZeEvwP54YcfrgZ/+/btzS5HCFNIEzn7kFM9HcR3333H2LFjmTp1KrfccovZ5QjhMIo2kWvZsiURERFyHKwMcp6/E9m4cSPvvvsu06ZN46abbjK7HCEckjSRqxgJfyexceNGxo0bx/Tp02nXrp3Z5Qjh8KSJXNkk/J3At99+y/jx44mOjpbgF6KSijeRGzRoEA8++KDbfwhI+Du4r7/+mokTJzJ9+nTatm1rdjlCOK3CJnKJiYmcO3eOAQMGuHUTOQl/B7ZhwwaioqKYMWMGN954o9nlCOEStNb88ssvbt9ETsLfQUnwC2F77txEThq7OaCvvvqKqKgoZs6cKcEvhA1JE7nySfjbyZdffsl7771HTEwMN9xwg9nlCOEWpIlc6ST87WD9+vVMmjSJmJgY2rRpY3Y5QrgdaSJ3Pdnnb2Pr169nypQpxMTE0Lp1a7PLEUIAZ8+eZfHixaxcuZL77ruPAQMGEBYWZtVtZGTAnj2wdy+kpxuv1asHN95o/AQEWHVzV8kBXwfw+eefM23aNGJjY2nVqpXZ5QghisnMzGTJkiUsXbqUO+64g4EDB9KyZcsqr89ige+/hzlzYPNm8PKC3FzQ2vjx9ARvb8jPhwcegIgI6NgRrHmRsoS/yf773/8yffp0YmNjq/WPSQhhexcvXuTjjz/mww8/pH379kRERFT6wsujR2H4cPj1V+N5YCCUdr2ZxQKZmUbo//WvEBUFdetWcxAFJPxNtHbtWmbMmMGsWbNo0aKF2eUIISqoqk3k1qyBV16BvDwIDq74TF5r40PA39/4tvCXv1RzAEj4m+azzz5j5syZEvxCOLHKNJFbudII/ho1oKrXk126ZOwKmj8f7rijerVL+JtgzZo1xMbGMmvWLJo3b252OUKIaiqvidxvv8HjjxuhX90LiS9dMr4xrF8PjRtXfT0S/nb26aefMmvWLGbPnk14eLjZ5QghrKikJnJ//euDdOvmQUoKBAVZZzsZGdCpEyxeXPrxgvJI+NvR6tWriYuLY9asWRL8Qriwok3ktm+/ldTUCBo39kcp61wyVXgMIC7OOBuoKqS9g52sWrWKuLg4mfEL4QaUUnTt2pWEhLlcuRJBbu55Dhw4SHr6ObS2lPg7+fnnSUl5hb177+LAgX+Qmfl5Ges3ZvwJCbYawZ+8bL8J17Vy5UoSEhKIi4ujadOmZpcjhLCT5GRFTk4AzZsHkJOTTVpaGmlpadSuXZtatWrh4eF5ddlTp6JQyps2bdaTk7Of48dfws+vDb6+JZ8QEhgIycmQkgJNmthuDDLzr6Lly5dL8AvhprZvN07rVApq1KhBWFgYTZs2JScnhwMHDnDmzBny8/OxWLLJytpA3bpD8PDwx9+/A4GBfyUz87NS1104+9+507ZjkPCvguXLl5OYmEh8fLwEvxBu6KefjKt3i/L19aNx4yaEh4eTl3eFgwcPcPJkMlp74OPTtMhyrbl8+VCZ679yxfbh73a7fbKyjL+4nTuNr1ZZWcYl182aGUfZO3SAtm1Lv0hj2bJlzJs3j/j4eJrY8juZEMJhpaYabRqupdFa4+npSWhoKEFBQZw+fYicHMWxY0cJCwtDKQ88PAKwWC6WuX5vbzhyxFbVG9wm/I8dMw6ifPKJcWl1bi74+BjBr7XxYbB6tfF1q3lzGDwYevQw3i/08ccfs2DBAgl+IZyQ1prc3Fyys7PJyckhOzv76uPC58VfL/5+4fMdO/7JxYvBKHUZi0WjtQWLxYJSCg8Pj4KQV2jtjVI5pKen06hRY7y8PLBYLuLhUbPcei0lHz+2GpcPf4vFuGruvfeMfXSBgdd/XStKazh+HF591fi96Gho0QKWLl3KwoULiY+Pp3F1rsAQQpRIa82VK1euC9/SAriy4Z2Tk4OXlxd+fn74+flRo0aNq/8t/Cn+XlBQEPXr17/mNT8/Pw4dasrBg37UrGmEvYeHKrjw69pdBtnZddi3L58mTbzwKgiey5f3l3qwt1B+vtEmwpasEv5KqYeB6YAnMFdrHVXsfV9gIXA7cBborbU+Yo1tlyU7G4YMge++g5o1jeAvj1LGsv7+sHs3PPooPPnkBn75ZREJCQk0atTI1mUL4ZCKhnNFZsjlzZ6Lh3dOTg6enp7XhXDxkC76XlBQEPXq1Ss1vIu/7ln0q3w13Hcf/P67sfegNJcv55CScoagoPvJyfkQi+VNcnL2k5X1LeHh88rdRgVaClVLtcNfKeUJxAIPAinAz0qp1Vrr3UUWGwSka61bKaX6AO8Bvau77bLk5sLzz8MPP0CtWpVvmaoUhITAqVMZTJ16A4sWzaNRo1DbFCuEFRSGc3VmyOUFe0nhXFJIF74fEBBA3bp1Sw3v4r9jrXC2tVtvLWmf/58uX87h2LFj1K9fn5o13+LEiXfYv/9BPD2DadDgjXJn/l5eRs9/W7LGzL8zcEBrfQhAKbUE6AEUDf8ewNsFj5cBMUoppW14efHMmVUP/kLnzp3lwoVzNGoUzptvetO1K9Svb906hfsoHs4V3b9cXngXfc/Dw6PckC0ezqGhoaWGd/HXnSWcbe3OO41cycu7fjdyTk4Ox48fo379BgQV9H0IC5tS4XXn5Bg3emnf3poVX88a4d8YOF7keQpQvDHp1WW01nlKqUygDpBmhe1fZ9cu4/LooKDqBf+5c+do1qwZ3t7eZGTA669DUpJ1b7wgHEfRcK7uDLm08C4M5/JCtvCxv78/derUKXPXR9H/epV1QEtYTXAw9OwJy5YZE8xCOTnGjL9Bgz+Dv7Kys2Ho0LKPTVqDQ/1LUUo9DzwPVOv8+QkTjAO3Vf3DM4I/nWbNwvEu+G4XHGzcoeeXX+C226pcmqgGrTV5eXlWmSGXFt4eHh7lhmzRx/7+/tSuXfu6g4alBbuEs+sYMsRo51x45mBh8Dds2IDAwKoHf0AA9Olj5WJLYI1/ialA0ZtfNil4raRlUpRSXkAwxoHfa2itE4AEMBq7VaWYY8eM8/jL+9C1WHI5dSqKS5e2kJ9/Hm/vJtSr9wKXL99Aenr61Rl/IaWMD5R58yT8y1L0gKA1dm8Uf08pVeYsuKQzOGrVqlXuvunC1yWcRUWFhxtnBU6cCPn52Rw/frxawW+xwOXLMHUq1K5t3VpLYo1/6T8DrZVSzTFCvg/wTLFlVgP9gc1AL2CDrfb3f/aZ8YdYfjvUfLy9G9C0aQLe3g24cOEHjhx5GR+fybRo0Rkvr+uP5gQGwuefG5/ONWrYonrbK5w5W+v0ueKva60rNAsu+l6tWrUqdGaHn5/fNR/IQpht4EBYsyaDdesuERZWveDPyDBm/A89ZOUiS1Ht8C/Yh/8CsA7jVM8krfUupdRYYKvWejWQCCxSSh0AzmF8QNjE5s1lH4Uv5OFRg7p1n7/6PDe3LRZLHerWvVhi8INxwZenp3GKl60OxhTdrVGdGXJp4V00nCu6e6NoOJc3e5ZwFu5k377dZGWN5J575vL770ElHgAuT24uXLxo3BRm3Dj7HVO0yndcrfVaYG2x18YUeZwDPGmNbZXnt9/Az69yv5OWlkZ6+hG8vc/i79+mzGXz8ixs355Lw4ZZNtm9YbFYKryLovBxSEhIhS9c8fLyKvFWdEKIytm9ezfDhg3jrbf+zR13NGDWLIiJMXYPBwWVv/chPx/OnzeOF4wdC08/XfUbuFSFy93MpWVL4+BsRf8Q09LOcPJkCp6e0/DyaoS//z+xWCzXXLJtsWgsFgtaW7hyJZimTRfTosWXpQZ0ZcO76Hve3t4SzkI4uF27djFs2DDefPNN7rnnnquv79kDkyfDxo1/7n728zO+DWhtnBqak2Ms6+EBjzxi3P83LKyUDVVBRW/m4nJHtyqbmz4+3lgsswCoXftf1KwZeE1vjj8fG8/PnlW89tqrPPfcqzaoXgjh6H777TeGDx/OmDFjuPvuu695r21bSEyEEydg3bo/m0hmZhrZVKuWccJIly7w97/b58BuaVwu/ENC/jz1qjxaay5cmE5IiCI4+H3Ons0iJyeX0NBQatasQfE+HWB8goeEWL9uIYTj+/XXXxkxYgRvv/02d955Z6nLNWpkHAweONCOxVWSy/Xzv/nmP79WlefUqYnk5h4mLCyakJD6tGzZktq163D69BkOHz7M+fPngWt3i3l62v6yayGE49m5cycjRozgnXfeKTP4nYXLzfy7djX2t5XnypWTZGQsRykffv/971dfb9BgFC1aPMyFCxdIS0vjzJnTBb25g7FYFFpD69Y2HIAQwuHs2LGDV155hXfeeYeuXbuaXY5VuFz4d+sG779f/rn+3t4Nadu29APKAQGBBAQEcPHipYIPgTP4+jakT58a+PpKfxMh3MX27dt59dVXGTt2LHfccYfZ5ViNy+32adLEmP2fP2+NtSlq1qxJs2bNaNSoMZcvZ7N1679YvHgx2dnZ1tiAEMKB/fLLL7z66quMGzfOpYIfXDD8AUaPNmb9V65Yb525uf707l2XxMSX2LlzJ927dycxMZGsrCzrbUQI4TCSk5N59dVXGT9+PF26dDG7HKtzyfBv0wZeesm4P681LmO4dMm4wcuECXDjjTfw3nvvkZCQwNGjR+nZsyezZs0iPT29+hsSQjiE5ORkRo4cyYQJE+jcubPZ5diES4Y/QGQk3H8/pKdX7wPg0iXjSrw5c6BOnT9fb968OWPHjmXhwoVkZGTwxBNPMHXqVE6fPl394oUQptm2bRuvvfYaEydOdNngBxcOfy8viI01LqTIyDC65VWG1sbvKQULFkBp/wYaN27MqFGjWLJkCQB9+vRhwoQJnDhxopojEELY29atW68Gf6dOncwux6ZcNvzBuNArNtZouZqXZ3wLyM0t+3e0NnYXZWZCx47GVXoV2d1Xr149RowYwSeffEJISAh9+/ZlzJgxHD582DqDEULY1M8//8wbb7zBe++9R8eO5XZHcHou19unNCdPGjP4Dz4wDgRfufJnl06tjeeF/TduvhkGD4YHH6x6o6WsrCyWLl3KkiVLuO2224iIiOCGG26w2niEENazZcsWRo0axaRJk7jNyW/YUdHePm4T/oVyciA52bjVY3KycUqolxc0awa33260am7e3Hrbu3TpEitWrOCDDz6gTZs2DBo0iPa2vjmnEKLCfvrpJ0aPHu0SwQ8S/g4nNzeXTz/9lPnz59O4cWMiIiLo1KmTdPAUwkQ//vgjb775Ju+//z4dOnQwuxyrkPB3UHl5eXz++efMmzePwMBABg0axF133SUfAkLY2ebNmxkzZgyTJ0/m1ltvNbscq5Hwd3AWi4WvvvqKefPmATBw4EDuv/9+POx5Nwch3NSmTZt46623mDJlisvthpXwdxJaa77//nuSkpI4f/48AwYM4JFHHpEbiQthIz/88ANvv/22SwY/SPg7Ha01W7duJTExkdTUVPr370/37t3xqciNCYQQFfL999/zzjvvMHXqVG655Razy7EJCX8ntnPnTpKSkti3bx99+/bl8ccfp0aNGmaXJYRT++677xg7dizTpk3j5ptvNrscm6lo+MsOZgfUvn17oqOjiY6OliZyQljBxo0bGTt2LNHR0S4d/JUh4e/AbrjhzyZyx44do0ePHsTGxkoTOSEq4dtvv+Xdd99l+vTp3HTTTWaX4zAk/J1A8+bNeeedd/jggw84f/68NJETooK++eYbxo8fT3R0NO3atTO7HIci4e9EGjVqxBtvvCFN5ISogK+//poJEyYwffp0Cf4SSPg7IWkiJ0TZNmzYwMSJE5kxYwZt27Y1uxyHJOHvxGrVqsXQoUNZtWoV4eHhREZGMnLkSPbt22d2aUKY5quvviIqKoqZM2dy4403ml2Ow5JTPV1IdnY2K1asYNGiRdJETrilL7/8kkmTJhETE0ObNm3MLscUcp6/GytsIrdgwQIaNmzIoEGDpImccHlffPEFkydPZubMmW4b/CDhL7i+iVxERAR33323fAgIl7N+/XqmTJlCTEwMrVu3NrscU0n4i6ssFgsbNmwgKSkJrTUDBw7kgQcekCZywiWsW7eOqVOnEhsbS6tWrcwux3QS/uI6Wmt++OEHEhMTyczMZODAgdJETji1zz//nOjoaGJjY2nZsqXZ5TgECX9RqsImcklJSaSkpEgTOeGU1q5dy4wZM5g1axYtWrQwuxyHIeEvKqSwidzevXuvNpHz9/c3uywhyrR27VpmzpxJbGysBH8x0thNVEhhE7kZM2bw22+/0aNHD+bOnSsBoRciAAARI0lEQVRN5ITDWrNmDTNnzpQZfzVJ+AsA2rRpQ1RUFHPmzOH48ePSRE44pE8//ZTY2Fhmz55N8+bNzS7HqUn4i2uEh4dLEznhkFavXs3s2bOJi4sjPDzc7HKcnoS/KFFpTeRSU1NNrky4o9WrVxMXF8fs2bNp1qyZ2eW4BAl/UabiTeT69evHmDFjOHTokNmlCTexcuVK4uLiiIuLk+C3omqFv1KqtlLqC6XU7wX/rVXKcvlKqe0FP6urs01hjsImcitXriQ8PJzBgwdLEzlhc8uXL2fOnDnExcXRtGlTs8txKdU61VMpNQk4p7WOUkq9DtTSWr9WwnIXtNYBlVm3nOrp2Io2kWvdujXPPfecNJETVrV8+XISExOJi4sjLCzM7HKchl3O81dK7QPu1VqfVEo1BL7RWt9QwnIS/i4qNzeXNWvWMH/+fGkiJ6zmk08+Yd68ecTFxdGkSROzy3Eq9gr/DK11SMFjBaQXPi+2XB6wHcgDorTWK8tbt4S/c8nLy2PdunXMmzePmjVrMmjQIGkiJ6rk448/ZsGCBcTHx9O4cWOzy3E6Vgt/pdSXQIMS3hoNLCga9kqpdK31dfv9lVKNtdapSqkWwAbgfq31wRKWex54HqBp06a3Hz16tLz6hYORJnKiOpYuXcqiRYuIi4uT4K8ih9rtU+x35gNrtNbLylpOZv7OrbCJXFJSEhkZGdJETpTro48+YvHixcTFxdGoUSOzy3Fa9mrvsBroX/C4P7CqhEJqKaV8Cx6HAncCu6u5XeHglFLcddddJCYmMmrUKNauXctjjz3Gxx9/TG5urtnlCQezZMkSCX47q+7Mvw6wFGgKHAWe0lqfU0p1BAZrrZ9TSnUF4gELxodNtNY6sbx1y8zf9fz6668kJSWxZ88eaSInrvrwww9ZsmQJ8fHxNGzY0OxynJ509RQOa//+/SQlJbFt2zZ69+5N7969CQwMNLssYYIPP/yQjz76iPj4eBo0KOnQoqgs6eopHFbRJnIpKSnSRM5NffDBByxdupSEhAQJfhNI+AvThIeH8/bbb1/TRG7KlCnSRM4NLFq0iGXLlhEfH0/9+vXNLsctSfgL0xU2kfvoo4/w8PCQJnIubuHChSxfvpyEhAQJfhNJ+AuHUbduXYYPH87y5culiZyLmj9/PitXriQ+Pp569eqZXY5bk/AXDickJIShQ4eyatUqaSLnQubNm3e1NbMEv/kk/IXDCggIICIiglWrVtGhQweGDRvGiy++yI4dO8wuTVRSUlISa9askRm/A5FTPYXTkCZyzikxMZG1a9cSHx9PaGio2eW4PDnPX7gsaSLnPObMmcO6deuIj4+nTp06ZpfjFiT8hcuzWCx8/fXXJCYmYrFYiIiIkCZyDiQhIYEvvviCuLg4CX47kvAXbqN4E7kBAwbQrVs3aSJnEq01CQkJfPXVV8TFxVG7dm2zS3IrEv7C7Wit2bZtG4mJiaSkpNCvXz969OiBj4+P2aW5Da018fHxbNiwQYLfJBL+wq0VbSL37LPP8sQTT0gTORvTWhMXF8c333zD7NmzJfhNIr19hFu75ZZbmDZtGjNmzGD37t306NGDuXPnkpWVZXZpLklrzezZs/n2229lxu8kJPyFS2vTpg0TJ068polcTEwM586dM7s0l6G1JjY2lu+++464uDhq1bruZn7CAUn4C7dQtIlcVlYWvXr1kiZyVqC1JiYmhk2bNjF79mxCQq67hbdwUBL+wq2U1ERu/PjxpKSkmF2a09FaM3PmTDZv3izB74Qk/IVbKtpErnbt2vTv31+ayFWC1prp06fz008/MXv2bIKDg80uSVSShL9wayEhIQwZMuS6JnJ79+41uzSHpbUmOjqarVu3SvA7MQl/Ibi+idzw4cOliVwJtNZMmzaN5ORkZs2aRVBQkNkliSqS8/yFKEHRJnINGjRg0KBBdO7c2a37B2mtmTp1Kjt27CAmJkaC30HJRV5CWEF+fj7r1q0jKSnpahO5u+66y+36B2mtmTx5Mr/++iuxsbEEBgaaXZIohYS/EFbkzk3ktNa8//777Nq1i9jYWAICAswuSZRBwl8IG9Bas2nTJhITE92iiZzWmkmTJrFnzx5iYmIk+J2AhL8QNlTYRC4pKYljx45dbSLn6+trdmlWY7FYmDRpEvv27SMmJoaaNWuaXZKoAAl/Iezk119/Zd68eezevdtlmshZLBaioqI4cOAAM2fOlOB3ItLYTQg7ueWWW5g6deo1TeTmzJnD+fPnzS6tSgqD/+DBgzLjd2ES/kJYSdEmcqmpqfTs2dPpmshZLBYmTJjAoUOHmDlzptN/gxGlk/AXwsqKNpG7cOECvXr1YvLkyQ7fRM5isTB+/HiOHj3KjBkzJPhdnIS/EDbSqFEjXn/9dZYuXYqXl5f9msjl5MC5c5CeDnl5FfoVi8XCu+++y/Hjx5k+fboEvxuQA75C2ElGRgb/+c9/WLZsGV27dmXgwIG0aNGi+iu2WOD772H5cti6FU6cAE/PP99v1Qq6doXevaFNmxJ+3cK4ceNITU0lOjpagt/Jydk+QjioCxcusHTpUpYsWUKHDh2IiIjgxhtvrPyKtIaVKyEqypjl5+dDjRrg6wuFbSgsFuObwOXLxmu33AJjxxr/xQj+sWPHcvLkSaKjo6lRo4YVRyrMIOEvhIPLzs5mxYoVfPDBB7Rq1YqIiAg6dOhQsV8+cwZeecWY8fv5GaFfHq2h8AykyEgsL77I2+++y+nTp4mOjsbPz6/qgxEOQ8JfCCdR6SZyqanw1FNw6hSEhPw5y6+ovDz0+fNsCw5mfqdOTJ4xQ4Lfhch5/kI4CR8fHx5//HFWrFhBz549mTx5Mv3792fjxo1YLJZrF87MNPbdnz4NtWpVPvgB7eXFiUuXaHbwINGenvi50FXJouIk/IVwEJ6ennTr1o2PPvqIAQMGEBcXxzPPPMP69ev//BB46y04eRKqeAMVDZxITSXPYqFOy5Z4ffEFrFljvUEIpyG7fYRwUMWbyI3o1Ik7585FBQdDFbqJaiA1NRVLfj5NwsLwUMo4GKwUfPst1K5t/UEIu6vobh/XbEUohAtQSnHnnXfStWtXkpOT8XzySVJPn8Yf4/aTHqXs8nkzNZUtly6RbbEQ6uVFvzp16BEScn3wg3GwOCMDPvkE/t//s9/ghOkk/IVwcEopbg8KAk9Psps2Je3sWdLS0qhTuzYhtWrhWexbwMDQUN709sbHw4Mjly/z/NGjBGdm0tLD49rgL+TnB3PmQETEtdcHCJdWrX3+SqknlVK7lFIWpVSpXzOUUg8rpfYppQ4opV6vzjaFcEsbN0J+PjX8/QkLC6NpWBjZOTkcPHCAM2lp5OfnX120ha8vPoUfCFpz+fJlTuTl0aRJk5K/Lfj5GQeSDxyw02CEI6juAd/fgMeBjaUtoJTyBGKBR4B2wNNKqXbV3K4Q7mXLlmtm5X5+fjRp3Jhm4eFcyc3lwMGD/HH6NHkF7RyiTp3izr176b5vH7WUokd4eKm7iQDjGoA9e2w9CuFAqrXbR2u9ByjvptadgQNa60MFyy4BegC7q7NtIdzKnj3GDL0YXx8fGjVqRO6VK5w9e5aDhw4RHBzMiDp1ePrKFfb4+HA8MBC/8g4QX7libKNnTxsNQDgae5zq2Rg4XuR5SsFrQoiKys4u85x+H29vGjZoQIsWLVDAkSNH8FCKh5o350xeHsvS08tev4cHZGVZt2bh0Mqd+SulvgQalPDWaK31KmsWo5R6HngeoGnTptZctRDOzdvb6M9T3mJeXtSvX5969etT+FGRD6Tk5pb9i1qDj0+1yxTOo9yZv9b6Aa31zSX8VDT4U4GwIs+bFLxW0rYStNYdtdYd69atW8HVC+EGmjaF8gIcOJeXx/rz58m2WLBozeYLF1iXmUnn8u7GpZTR/VO4DXuc6vkz0Fop1Rwj9PsAz9hhu0K4jr/8BX76CQICylxMAcvS05lw8iQWoKG3Ny/Xr889gYFlr9/bG9q2tVq5wvFVK/yVUo8BM4G6wGdKqe1a678rpRoBc7XW3bTWeUqpF4B1gCeQpLXeVe3KhXAnf/kLeJX/v2stLy8SmjWr3Lrz8oyZv4S/W6nu2T4rgBUlvH4C6Fbk+VpgbXW2JYRb69LFaL9w4ULF2jdXRlaW0SxObuLiVqSxmxDOwMMDBg82evFYsx9Xfr6x7gEDrLdO4RQk/IVwFn37GgdlC2/IYg1ZWUbwl3B7R+HaJPyFcBbe3jB9unGlb05O9deXmQlNmsCIEdVfl3A6Ev5COJMbb4TZs43TPi9dqto6tDY6edauDR9+aP1jCMIpSPgL4Wzuuw/mzze+CWRkGDdpr6grV4wZf+vWxs3fGzWyWZnCsUn4C+GMunaFr7+Ghx4y9tunpxvBXhKtjfYQGRnG7qIRI+DTT6FhQ/vWLByK9PMXwlnVrg2zZsH+/bBoEaxYYewK8vQ0vg0oZfxcuQINGhgHdp94Qu7YJQC5jaMQrkNrOHEC9u0zrgfw8IA6dYyLt0JCzK5O2IncxlEId6MUNG5s/AhRDtnnL4QQbshhd/sopc4AR82uo4pCgTSzi7AjdxsvuN+Y3W284Lxjbqa1LrctssOGvzNTSm2tyD43V+Fu4wX3G7O7jRdcf8yy20cIIdyQhL8QQrghCX/bSDC7ADtzt/GC+43Z3cYLLj5m2ecvhBBuSGb+QgjhhiT8rUApVVsp9YVS6veC/9YqY9kgpVSKUirGnjVaU0XGq5TqoJTarJTapZTaqZTqbUat1aWUelgptU8pdUAp9XoJ7/sqpT4qeP8npVS4/au0ngqMd4RSanfB3+lXSqlK3jPS8ZQ35iLLPaGU0koplzgDSMLfOl4HvtJatwa+KnhemnHARrtUZTsVGe8loJ/W+ibgYSBaKeVUPQaUUp5ALPAI0A54WinVrthig4B0rXUrYBrwnn2rtJ4KjvcXoKPWuj2wDJhk3yqtq4JjRikVCLwE/GTfCm1Hwt86egALCh4vAHqWtJBS6nagPrDeTnXZSrnj1Vrv11r/XvD4BHAaKPfCEwfTGTigtT6ktc4FlmCMvaiifxbLgPuVUsqONVpTuePVWn+ttS68kcCPQBM712htFfk7BmPS9h5ghbvoOAYJf+uor7U+WfD4FEbAX0Mp5QFMAV6xZ2E2Uu54i1JKdQZ8gIO2LszKGgPHizxPKXitxGW01nlAJlDHLtVZX0XGW9Qg4L82rcj2yh2zUuo2IExr/Zk9C7M1aexWQUqpL4EGJbw1uugTrbVWSpV0CtVQYK3WOsUZJoZWGG/hehoCi4D+WutK3HVEODKlVF+gI/BXs2uxpYJJ21RggMmlWJ2EfwVprR8o7T2l1B9KqYZa65MFYXe6hMXuAO5WSg0FAgAfpdQFrXVZxwdMY4XxopQKAj4DRmutf7RRqbaUCoQVed6k4LWSlklRSnkBwcBZ+5RndRUZL0qpBzAmAX/VWl+2U222Ut6YA4GbgW8KJm0NgNVKqe5aa6fuOS+7faxjNdC/4HF/YFXxBbTWz2qtm2qtwzF2/Sx01OCvgHLHq5TyAVZgjHOZHWuzpp+B1kqp5gXj6YMx9qKK/ln0AjZo5714ptzxKqX+B4gHumutS/zQdzJljllrnam1DtVahxf8v/sjxtidOvhBwt9aooAHlVK/Aw8UPEcp1VEpNdfUymyjIuN9CrgHGKCU2l7w08GccqumYB/+C8A6YA+wVGu9Syk1VinVvWCxRKCOUuoAMIKyz/RyaBUc7/sY31w/Lvg7Lf5h6FQqOGaXJFf4CiGEG5KZvxBCuCEJfyGEcEMS/kII4YYk/IUQwg1J+AshhBuS8BdCCDck4S+EEG5Iwl8IIdzQ/wc1PZjJsDIxAQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -307,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 61, "metadata": {}, "outputs": [], "source": [ @@ -315,6 +310,43 @@ "algo_input = EnergyInput(qubitOp)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Using DOcplex for mapping to the Ising problem\n", + "Using ```docplex.get_qubitops``` is a different way to create an Ising Hamiltonian of Maxcut. ```docplex.get_qubitops``` can create a corresponding Ising Hamiltonian from an optimization model of Maxcut. An example of using ```docplex.get_qubitops``` is as below. " + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "from docplex.mp.model import Model\n", + "from qiskit.aqua.translators.ising import docplex\n", + "\n", + "# Create an instance of a model and variables.\n", + "mdl = Model(name='max_cut')\n", + "x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)}\n", + "\n", + "# Object function\n", + "maxcut_func = mdl.sum(w[i,j]* x[i] * ( 1 - x[j] ) for i in range(n) for j in range(n))\n", + "mdl.maximize(maxcut_func)\n", + "\n", + "# No constraints for MaxCut problems." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -324,7 +356,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -339,7 +371,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl4VNX9x/H3yQJZCEnYtwQIm2ENIQmCIiWxFlC2RMFdW1paq9VqXau1trUWrVqpW8UVq1V/WkQRWqsE3EkmhH0RCCQsSQiQjeyZzPn9ccM1wSwDmcydZL6v5+Exk9zc+02E+5mz3HOU1hohhBDex8fqAoQQQlhDAkAIIbyUBIAQQngpCQAhhPBSEgBCCOGlJACEEMJLSQAIIYSXkgAQQggvJQEghBBeys/qAprTq1cvPWTIEKvLEEKIDmXTpk0ntNa9nTnWYwNgyJAhZGRkWF2GEEJ0KEqpHGeP9dgAcDWtIT8fTp4EhwNCQiAyEnx9ra5MCCGs0akDwG6Hzz+H11+HTZugqsq44StlhADAqFGwaBHMnWuEghBCeAvlqauBxsXF6XPtAtIa/vc/eOABKC42PhcUBP7+jY+rqzNCwW4HPz/4xS/gppugS5c2Fi+EEBZRSm3SWsc5c2ynmwVUVgY33wy//CWUl0NoqPHnzJs/GK2B4GDj6126wN//DpddBgcOuL9uIYRwt04VAKWlRnfOxx8bN/WgIOe/198fwsLg4EFYsAB27Wq/OoUQwhN0mgCoq4PFi2HPHuNG7nMOP5lSRnBUVcHVVxuDxkII0Vl1mgB49VXIzDRu/kq17VwhIUZX0l13GeMJQgjRGXWKADh6FP76V6M/v603/9NCQ+Gbb2DNGtecTwghPE2nCIA33jBm8rQ2e6ew8P84ePA69uyZQm7uQy0eq5QxM+jpp6UVIITonDp8ANTUGAEQHNz6sX5+vejVazGhoXOdOndwsDEjaPv2NhYphBAeyCUBoJR6RSlVoJTa0czXlVLq70qp/UqpbUqpWFdcF4xB39pa5+bud++eSEjID/D1DXXq3EoZg8sbN7axSCGE8ECuagG8Bsxs4euzgBH1f5YAz7vouuzaZXT/tBc/P0hLa7/zCyGEVVwSAFrrz4HCFg6ZB7yuDRuBMKVUf1dce+/e75Z1aA9duxrXEEKIzsZdYwADgcMNXh+p/1wjSqklSqkMpVTG8ePHnTpxRcXZzfyx22spKDhGaWkpxcXF1NbWtHi8UsY4gxBCdDYetRic1no5sByMtYCc+Z7AwLObpePj44PWGj8/P8rLyygoKMDHx4fg4OD6P0H4+n73a9G66WUkhBCio3NXABwFIhq8HlT/uTYbOdL5FoDWdUAdgYFdgQr69++DUj7U1NgpLy+npKSYvLxcunTpQlCQEQh1dYHExcma0UKIzsddAfAhcItS6m1gMlCitc5zxYmjo51/h37ixMucOLEch8NBbW0t3367gV69ltC79xK6dg2gR4+eaK2pqqqkvLyckydPcOpUF/buXcfy5ZUkJCQwduxY/Pw8quEkhBDnxCXLQSul3gJ+APQCjgG/B/wBtNb/UEop4BmMmUIVwI+11i2u9ezsctDV1TBpkrGyp/NdNZoDBw7St29fglt4gEBrKC528OCD2yku3kB6ejqHDx8mJiaGhIQEEhISGD58OD7nsvCQEEK0g7NZDtolb2W11le18nUN3OyKa52pa1e45hp46SUID3f2uxTh4WEUFxe1GAAVFTB0qA/XXz8BpSYAUFJSQkZGBunp6axcuZLS0lLi4+OJj48nISGBgQMHoly1HoUQQrSjTrEhzOHDcPHFEBDgfCvA4ahj3779DBs2rMkuHa2hpASeeALmzWv+PPn5+aSnp2Oz2UhPT6dLly5m6yA+Pp4ePXo4V5AQQrjA2bQAOkUAADz/PDz++NmtBpqbm0vXrl3o2bPX975WXAzx8fDmm84vLa215uDBg2YYbNq0ib59+5phMGnSpBZbHEII0VZeGQB2O1xxhbFuT2iocyFQWVlBbm4uw4YNA777hrIyo2tp7VoY+L2nFZxXV1fH7t27zRbCjh07GDFihNldNG7cOLrI/pNCCBfyygAA4137okWwf7+zLQHNgQMH6NevH0FBxjvzkhKjK+lf/4Jx486t9uZUV1ezdetW0tPTSU9PJzs7m3HjxpldRqNGjZIBZSFEm3htAICxLeQdd8CGDcaNPCCg5eOLigqpqKigb99BnDoFkZHwwgvG8wXt7dSpU2zatMlsIZw8eZK4uDizhRAZGSkDykKIs+LVAQDGAO6aNfC73xndOUoZ+wOfOdbrcEB5eR2HDuUxcGB/fv5zX2691ej+sUJBQYE5wyg9PR2g0YBy7969rSlMCNFheH0AnFZTA6mpsGIFbNliLO3sW/9Qr8NhvB42DAIC3mf27Bp+/vNFLqjcNbTWHD58mLS0NGw2GxkZGfTo0cMMhEmTJhESEmJ1mUIIDyMB0ASHA44cgZMnjY9DQmDIEGMfga1bt/KHP/yBf//73x7b5eJwOPj222/NGUbbtm1jyJAhZiBMmDCBrlY1XYQQHkMC4CxprVm0aBH33HMPkyZNcss126qmpobt27eb4wf79u1jzJgxZiBER0fj6ytrGAnhbSQAzsHbb7/N9u3b+fOf/+y2a7pSeXk5mZmZ5vjBsWPHiI2NNQNh6NChHtu6EUK4jgTAOSgtLWXu3LmsWrWKsLAwt123vRQWFprdRenp6dTU1JiDyQkJCfTr18/qEoUQ7UAC4Bw9+OCDjBo1imuuucat121vWmuOHj1qdhfZbDZCQkLM1kFcXByhoc7tkyyE8GwSAOdoy5Yt/OlPf+K9997r1N0lDoeD/fv3my2EzZs3ExERYbYQJk6cSGBgoNVlCiHOgQTAOdJas3DhQu677z5iY2Pdem0r1dbWsnPnTrOFsGfPHqKjo83uojFjxsgeCEJ0EBIAbfCvf/2L3bt386c//cnt1/YUFRUVbNmyxRw/OHr0KDExMUyePJn4+HiGDRsmS1YI4aEkANqgpKSEefPm8cEHH0i/eL3i4mLzCWWbzUZZWdn39kAQQngGCYA2+t3vfkd0dDRXX321Jdf3dHl5eY1mGAUEBDQaUJY9EISwjgRAG23evJk///nPvPvuu516MNgVTu+BcHrJiszMTPr162cGQmxsLEFBQVaXKYTXkABoI601V1xxBffffz8TJ060pIaOqq6ujl27dpkthJ07dzJixAgzEMaOHSt7IAjRjiQAXOBf//oXe/bs4Y9//KNlNXQGVVVV5h4INpuN7Oxsxo8fbwbCyJEjZUBZCBeSAHCB04PBH374Id27d7esjs6mtLTU3AMhPT2doqIi4uLizECIiIiQbjch2kACwEUeeOABxowZw1VXXWVpHZ1ZQUGB2V1ks9lQSjVasqJXr+/v1yyEaJ4EgItkZmaydOlS3nnnHXlX6gZaa3Jycsww2LRpEz179mw0oCx7IAjRMgkAF9Fak5KSwu9//3smTJhgaS3eyOFwsGfPHmw2G2lpaezYsYOhQ4eaLYSYmBgZUBbiDBIALvTGG2+wb98+/vCHP1hditerqalh27ZtZgth//79jBs3zuwuio6OlgFl4fUkAFyouLiY+fPny2CwByorK2u0B8Lx48eJjY01l6wYMmSIdN0JryMB4GK//e1vmTBhAosWec6eweL7Tp482egJZbvd3mhAuW/fvlaXKES7kwBwsU2bNvHoo4/KYHAHorXmyJEjjWYYhYaGNlqyQlp0ojM6mwCQNX6dEBsbi91uZ/v27YwfP97qcoQTlFJEREQQERFBcnKyuQdCWloaq1at4qGHHiIyMtIMhJiYGAICAqwuWwi3khaAk/75z3+SlZXFQw89ZHUpwgVqa2vZsWOH2UL49ttviY6ONgNh9OjRsgeC6JCkC6gdFBUVsWDBAhkM7qQqKirYvHmz2V109OhRJk6caAbCsGHDpPtPdAjSBdQOwsPDmTp1Kv/9739ZuHCh1eUIFwsKCuKCCy7gggsuAIzAz8jIwGaz8c4771BZWdloyYoBAwZYXLEQbSctgLNgs9l44okneOutt+TdoJfJzc1tNKAcGBhozjCKj48nPDzc6hKFAKQLqN04HA5SUlL44x//yLhx46wuR1hEa01WVpYZBpmZmQwYMID4+HgmT57MxIkTZQ8EYRkJgHb0+uuvk52dzYMPPmh1KcJD2O12cw+EtLQ0du/ezciRI80Wwrhx4/D397e6TOElJADaUWFhISkpKaxevZpu3bpZXY7wQFVVVWzZssVsIeTk5BATE2M+kDZixAhZskK0GwmAdnbfffcxceJEGQwWTiktLSUjI8N8QrmkpIS4uDhzyYpBgwbJmJJwGQmAdpaens6TTz4pg8HinBQUFJhhYLPZ8PX1bbRkRc+ePa0uUXRgbg8ApdRMYBngC7yktV56xtdvBP4KHK3/1DNa65daOqcnB4DD4SA5OZmHH36YsWPHWl2O6MC01mRnZ5szjDZt2kTv3r0b7YEgXY3ibLg1AJRSvsBe4IfAEcAGXKW13tXgmBuBOK31Lc6e15MDAGDFihXk5OTIYLBwqdN7IKSlpWGz2dixYwdRUVFmIIwfP172QBAtcncATAEe0lr/qP71fQBa6780OOZGOlkAFBYWkpyczEcffSTv0ES7qampYevWrWYL4cCBA4wdO9YMhPPOO08GlEUj7g6Ay4GZWuuf1r++Dpjc8GZfHwB/AY5jtBZu11ofbuJcS4AlAJGRkZNycnLaVFt7u+eee4iPj+fyyy+3uhThJU6dOmXugWCz2Thx4gSxsbFmIAwePFjGpbycJwZAT6BMa12tlPo5sEhrndjSeT29BQCQlpbGsmXLePPNN+UfnbDEiRMnGu2B4HA4zMHkhIQE+vTpY3WJws3cvRbQUSCiwetBfDfYC4DW+mSDly8Bj7ngupaLj4+nrKyM3bt3M3r0aKvLEV6oV69ezJo1i1mzZqG15vDhw9hsNr744gv+9re/ERYWZs4wkj0QxJlc0QLww+jWScK48duAq7XWOxsc019rnVf/8QLgHq31+S2dtyO0AABeffVVjh49ygMPPGB1KUI04nA42Lt3r9ldtHXrVgYPHmwuWTFhwoSOsQdCTQ3s3w8HD0J1Nfj5QUQEjBoFsuTG91gxDXQ28BTGNNBXtNZ/Vkr9EcjQWn+olPoLMBewA4XATVrrPS2ds6MEwMmTJ7n88sv56KOPCA4OtrocIZpVW1vL9u3bzSUr9u3bx+jRo80WwpgxY/D19bW6TENdHXz+Obz0EqSlGTd9rcHhAB8fUApqayE6GpYsgUsugY4QZm4gD4K52d13383kyZNJSUmxuhQhnFZRUdFoQDkvL4/Y2FhzDCEqKsqasa2tW+G22+BofU9ySIhx0z+T1lBeboRFSAg8/jgktji06BUkANxs48aN/P3vf5fBYNGhFRYWNlqyoqqqyuwuio+Pp3///u1bgNbw1FPw7LPGDf9sxisqKozuoXnzYOlS8OJnJSQA3MzhcDB//nyWLl0qg8Gi08jNzTXDICMjg6CgoEZ7IISFhbnuYlrD738Pb75pvJs/l+04HQ4oKYELLjC6jrw0BCQALPDKK6+Ql5fH/fffb3UpQricw+EgKyvLnHK6efNmBg4caE43jYmJadseCC+/DI88AqGhTXf3OEtrKC6GK64wWgJeSALAAidOnOCKK65gzZo1shmI6PRO74FwesmK3bt3M2rUKDMQxowZ4/weCFlZMHu2MYjrin0TTrcEVqyACy9s+/k6GAkAi9x1111MmTKF5ORkq0sRwq0qKyvZsmWL2UI4dOgQMTExZiAMHz68+SUrFi2CTZvAlV1K5eXGGMJXX51bd1IHJpvCW2TBggU8//zzEgDC6wQGBjJlyhSmTJkCQElJiTmgvHLlSkpLS4mLizMDYeDAgcaEiX37jJt/aGir1yitq+OPeXlsLCsjzM+PW3r3ZmZz3xccDIWF8NlnkJTkyh+1U5EAcKHzzz+fv/zlL+zevZvo6GiryxHCMqGhoSQlJZFUf/PNz883WwcvvPACXbp0IT4+niv37SPKbsfPidlzS/Pz8VeK/40cyd6qKm47fJiRAQFEde3a9DcoZQwGSwA0SwLAhXx8fJg/fz7vv/++BIAQDfTr1485c+YwZ84ctNYcPHgQm80GL73E4ZMncZSWEhwcTHBwMEFBQfie0V1U6XCQeuoU/xcVRZCPDzFBQUwPCWFNSQm/am69o+BgyMw0nhPwlAfcPIysI+tic+fO5dNPP6WiosLqUoTwSEopoqKiWDR/PiP9/RkyahQD+vfHz9eXwsJC9u3bx8HsbAqOH6e8ogKH1hyqqcEXiGwwtXNE164cqK5u/kKnb/rZ2e3683Rk0gJwsd69exMbG8vHH3/MggULrC5HCM917Bj4+aF8fAgMDCQwMJBegENrKisqKC8vp+DYMaprasjy86NLXR2VVVUE1i/50M3Hh3KHo+Vr+PhAbi4MG9b+P08HJC2AdpCcnMz7779vdRlCeDa73einP4OPUgQHB9OnTx+GDB1KREQEQT4+FFdXc/DgQaqqqgAodzgIbu2ZAa2NNYNEkyQA2sH5559PYWEhe/a0uN6dEN4tMNDonz+DBioqKzl27Bj79+8nLzeXoYGB+AcEUBUWRlFxMQB7q6ubHwA+TSnjOqJJEgDtoOFgsBCiGX37Gv30dXVooLyigvz8fPbt20deXh7Kx4eIQYMYNnw4Q/r14+LQUN6x2ykoKSGzrIzPTp3i0pamj55+9y/dP82SAGgnc+fO5ZNPPpHBYCGaUVtXx4l+/Th+5Ah79+7l2LFj+Pn5MXjwYIZFRdGnd28CAgI43Ul0b79+2IGfVldz7+HD3NevX8stALsdunWD3r3d8eN0SDII3E769OlDTEwMn3zyCfPmzbO6HCE8QnV1Nd988w2pqal8+eWXXF1XxyIfH4YOHUqXVpaB6O7ryxMREZwKD+fE8eMMbe3hsbIyWLiwyXEGYZAAaEfJycm8+OKLEgDCq1VUVPDll1+ybt06Nm7cSHR0NImJifzqV7+it78/TJ58Vjfpbt26kZ+f32hG0PdobZzzhhtc9FN0ThIA7Wjq1Kk88sgj7N27l5EjR1pdjhBuU1paymeffUZqaiqbNm0iJiaGpKQk7rvvvu8vI33NNcbCbeHhTp1bAWFhYRQXFRHY3B4FJSVw/vlw3nlt+0E6OVkMrp0tX76coqIi7rnnHqtLEaJdFRYWsmHDBtatW8eOHTtISEhgxowZTJs2jZCQkOa/saLCWK6hqMjos3dCrd3Ogawsho8Y8b2nhqmuNvr/162DAQPa8BN1TLIaqAcpKCjgyiuvZM2aNQTKdDTRyRw7dozU1FRSU1PZt28fU6dOJSkpialTp57d3/fMTLjqKmPlTie/7/CRI3Tr1o3whi2K2lqj7/9vf4O5c8/yp+kcZDVQD9JwMHiul/6FFJ3L4cOHSU1NZd26dRw5coTp06dz/fXXM3nyZLqc6y5csbHw4ovws5/BqVPGrmCtCA8Lo+D48e8CoLISqqrgoYe89uZ/tiQA3GDBggW8/PLLEgCiQ9Jac+DAAfOd/smTJ5kxYwY333wzkyZNws9V6+1fdBG8+y7ccouxIXy3bi1uEBPcrRt1+flUlpcTWFtrHP/007Ix/FmQLiA3qKurY86cOTz11FMyGCw6BK01e/bsMd/pV1dXk5iYSGJiIhMmTGh+cxdXqKoybuSvvQY1NcZsntO7hSllzPCx26GqipKiIuwOBz1//GO47z7o0aP96uogZAzAAy1fvpzi4mLuvvtuq0sRokkOh4Pt27ezbt061q9fj5+fH4mJiSQlJREdHW1s4OJOFRWwdi3897+wdSucPGks7uZwGF1E48ZxavJkrnnnHd76+GOCg4PdW5+HkgDwQPn5+Vx99dWsXbuWgObmLgvhZnV1dWRmZpKamsr69evNjVxmzJjB8OHD3X/Tb0lFhdEi8PeHoCDz2YG7776bhIQELr/8cosL9AwyCOyB+vXrx/jx4/nkk0+YM2eO1eUIL1ZTU4PNZmPdunV8/vnn9O/fn8TERJYvX05kZKTV5TUvKMj4c4aUlBSWLVtGSkqKZwVWByAB4EbJycm89tprEgDC7aqqqvj6669JTU3lq6++IioqiqSkJH72s5/Rv7mHqTqI+Ph4ysvL2blzJ2PHjrW6nA5FAsCNLrjgApYuXcr+/fsZPny41eWITq68vNxcgiEtLY0xY8aQmJjIr3/9a3r16mV1eS7j4+NDcnIyK1eulAA4SzIG4GYvvPACJSUlMhgs2kVJSYm5BENmZiYTJ04kKSmJiy666PtLMHQihYWFJCcns3r16pafOvYCMgbgwebNm8fVV1/NrbfeKoPBwiVOnjzJ+vXrSU1NZefOnUyePJmZM2fy8MMP083JpRU6uh49enD++efzn//8h4ULF1pdTochAeBm/fr1Y9y4cXz66adcdtllVpcjOqi8vDzzpp+VlcUFF1zA5ZdfzhNPPOG1S44kJyfzxBNPcMUVV8hgsJMkACyQnJzMihUrJADEWTl06JD5NO7Ro0eZPn06N954IwkJCee+BEMnEhcXR01NDdu3b2f8+PFWl9MhSABY4MILL2Tp0qVkZWUxTLarE83QWpOVlWU+jVtcXMyMGTO45ZZbmDRpEr6+vlaX6FF8fHxYsGAB//73vyUAnCQBYAFfX1/mzp3L+++/z5133ml1OcKDaK3ZvXu3+U6/pqaGxMRE7rvvPsaPH9++SzB0AnPmzGHBggWUlpbSvXt3q8vxeBIAFpk3bx7XXnstv/rVr+ja0r6motNzOBxs27bNvOl36dKFxMREHn74YWuWYOjAwsPDmTp1KmvWrOGqq66yuhyPJwFgkQEDBjB27FjWrVvH7NmzrS5HuJndbiczM5N169axYcMGwsPDSUxMZNmyZURFRclNvw1SUlJYunQpV155pfweWyEBYKEFCxbw5ptvSgB4iZqaGtLS0li/fj2fffYZAwcOJCkpiRdffNGzl2DoYGJjY3E4HGzdupWYmBiry/FoEgAWmjZtGo8++igHDhwgKirK6nJEO6isrOSbb75h3bp1fP311wwfPpwZM2awZMkS+vXrZ3V5nZJSynwyWAKgZS4JAKXUTGAZ4Au8pLVeesbXuwKvA5OAk8AirXW2K67dkfn5+ZmDwb/5zW+sLke4SFlZGV988QWpqamkpaUxduxYkpKSuOOOO+jZs6fV5XmFyy67jBdffJGSkhJCQ0OtLsdjtXlKgVLKF3gWmAWMBq5SSo0+47DFQJHWejjwN+DRtl63s5g/fz5r166lurra6lJEGxQXF/Phhx9y2223MXv2bP73v/8xbdo0Vq9ezXPPPUdKSorc/N0oNDSUadOmsWbNGqtL8WiuaAEkAPu11gcAlFJvA/OAXQ2OmQc8VP/xe8AzSimlPXUhIjcaMGAAo0ePlsHgDujEiRPm07i7du1i8uTJzJ49m0ceeUQ2J/EAycnJPPzww1x11VUyGNwMVwTAQOBwg9dHgMnNHaO1tiulSoCewAkXXL/DW7BgAW+99ZYEQAeQm5vL+vXrWbduHQcPHuTCCy9k4cKFTJkyRdZ28jAxMTH4+PiwefNmYmNjrS7HI3nUILBSagmwBPCqWREXXXQRjz76KAcPHmTo0KFWlyPOkJOTY87Rz8vLY/r06SxevJj4+HhZgsGDnR4M/ve//y0B0AxXBMBRIKLB60H1n2vqmCNKKT8gFGMwuBGt9XJgORjLQbugtg6h4WDwHXfcYXU5Xk9rzf79+80lGEpLS5kxYwa33norsbGxsgRDB3LppZfywgsvUFxc3KmXwz5XrggAGzBCKTUU40Z/JXD1Gcd8CNwAfANcDqRK/39j8+fP54YbbuCWW26Rd5UW0Fqza9cuc0N0u91OYmIiDzzwAGPHjpUlGDqo7t27M336dFavXs11111ndTkep80BUN+nfwvwMcY00Fe01juVUn8EMrTWHwIvA/9USu0HCjFCQjQwcOBARo0aRWpqKjNnzrS6HK/gcDjYsmWLOZAbEBBAUlISjzzyCOedd54MHHYSKSkpPPTQQ1x77bXy//QMLhkD0FqvBdae8bkHG3xcBVzhimt1ZsnJybzzzjsSAO3IbrezadMmcwmGnj17kpiYyNNPP83QoUPlBtEJjRs3Dn9/fzIyMoiPj7e6HI/iUYPA3m769Ok8+uijZGdnM2TIEKvL6TRqamrYuHEjqampfP7550RERJCUlMTLL79MRERE6ycQHZpSipSUFFauXCkBcAYJAA/ScDD49ttvt7qcDq2iooKvv/6a1NRUvv76a0aOHEliYiI33XQTffv2tbo84WazZs3iueeeo7CwkB49elhdjseQAPAw8+fP58Ybb+Tmm2+WweCzdOrUKXMJhvT0dMaNG0dSUhJ33nmn/KP3ciEhISQmJrJ69WpuuOEGq8vxGBIAHmbQoEGMHDmS9evX86Mf/cjqcjxeUVERn332GampqWzZsoW4uDgSExN58MEHZUMQ0UhycjL3338/1113nczqqicB4IGSk5N59913JQCaUVBQwIYNG0hNTWX37t1MmTKFyy67jKVLlxIUFGR1ecJDjRkzhqCgIGw2G5Mnn7lYgXeSAPBA06dP57HHHuPQoUNe9UR0S3Jzc82ncbOzs7nwwgu58sormTJliuyoJpzS8MlgCQCDBIAH8vf357LLLuP999/ntttus7ocy2RnZ5tP4xYUFDB9+nR++tOfEh8fj7+/v9XliQ5o1qxZPPvss5w8eVJWZ0UCwGPNnz+fxYsXc9NNN3nNYLDWmn379pnv9E+dOsWMGTO4/fbbmThxoizBINqsW7duJCUl8cEHH/CTn/zE6nIsJwHgoSIjIxk+fDgbNmzgkksusbqcduNwONi1a5f5Tl9rLUswiHaVkpLCvffey4033uj1f78kADzYggULeP/99ztdAJxeguH0ujtBQUEkJiby2GOPMXLkSHkaV7Sr6OhoQkJCSEtLY8qUKVaXYykJAA82Y8YMHn/88U4xGGy327HZbKxfv54NGzbQq1cvkpKSeOaZZ2Q/ZOFWDZ8MlgAQHuuPAFvHAAAccklEQVT0YPCqVau49dZbrS7nrFVXV5OWlsa6dev44osviIyMJDExkVdeeYVBgwZZXZ7wYjNnzuTpp5/m+PHj9O7d2+pyLCMB4OHmz5/PT3/6U37xi190iMHgiooKvvrqK1JTU/nmm28YOXIkSUlJ3HzzzfTp08fq8oQAICgoiB/+8Id8+OGHLF682OpyLCMB4OEiIyMZNnQoW55/noSSEkhPh/37oaoKfH2hf3+IiYGLLoJZsyAkxO01lpaWmksw2Gw2JkyYwIwZM7jrrrtkCQbhsZKTk7nzzjv58Y9/7LWDwcpT92WJi4vTGRkZVpdhLYcDVq2i6MEHqT1yhD49ekBAAHTtCj4+oDXU1kJlJSgFfn5wxRVwxx3QzrsfFRYWmkswbN26lbi4OJKSkpg2bZoswSA6jOuvv56f//znXHDBBVaX4jJKqU1a6zhnjpUWgKfKy4M774SNGwnt0oX9dXWEdevWuBtIKSMMTj8Ja7fDm2/CRx/BE0/AjBkuLamgoMDcEP3bb79l6tSpzJ07l0cffVSWYBAd0ukngztTAJwNCQBPlJUFixZBcTGEheGjFKFhYRQVF9O3pX50Pz8ID4eKCvjZz+CBB+DGG9tUytGjR83pmjk5OUybNo1rrrmG888/X5ZgEB3eJZdcwt///ncKCgq8coxKAsDT5OYaN//S0kbdOGHh4eRkZ9O7d298WpsnHxQE/v7wpz9BcLDRLXQWDh48aD6Ydfz4cX7wgx+wZMkS4uLiZAkG0akEBQVxySWXsGrVKpYsWWJ1OW4nYwCexOGAq66CjAzjnfwZsnNy6NGjB92dHeitqTH+/Oc/MHRos4dprdm7dy/r1q0jNTWViooKZsyYQVJSEjExMV47QCa8w969e/n1r3/N6tWrO8VyIzIG0FH93/8ZN/9mBnDDw8MpKipyPgC6dDG6g26/HVauNAaO6zkcDnbs2GGuu6OUIikpid///veMGTNGbvrCa4wcOZI+ffrw1VdfcdFFF1ldjltJAHiKujpj4DYw0BjcbUJISAj5+fnU1NQ4/0xAaCjs3AkZGdRNmmQuwbBhwwaCg4NJTEzk8ccfZ8SIEbIEg/BaycnJrFy5UgJAWOSLL6CkBFqYQumjFEHdu/O7nBx2KkVpXR2D/P25pU8fpnbr1uT3OIDqykp233wz94SF0adPH5KSknj22WcZ2kK3kBDe5JJLLuGpp54iPz+ffv36WV2O20gAeIrVq41WQCtCwsLoduIE/xgxggFduvBVWRn3Hj3K20OHMqC+VeDQmvKyMkpPnaKsrIwAf3+GHzrEa+++y8AhQ9r5BxGi4wkICGDmzJmsWrWKX/ziF1aX4zbS0espNm0yun9aERYQwHUhIXSvqcFHKaaFhDDA35+dlZWUlJZy5OhR9u7dS2FhIYGBgURFRTF46FC6h4UxsKrKDT+IEB1TSkoKH3zwAXVOvBHrLCQAPIHdDocOffdAVyvCw8IoLiqirq6Og4WF7D91Cp/cXEpKSggODmb48OEMHjyYHuHh+Ps1aOTt29dOP4AQHd+wYcPo378/X3zxhdWluI0EgCeorjYGfp0chA3p3p3Kqiq27tzJA7m5zOrenR+MGkVkRAThYWH4NTWVra7OmBEkhGjW6WWivYUEgCfw9TWeAXCSj1JERkayIjCQLj4+LKqu5vChQxQcP055RQWOpp7tOL1WkBCiWRdffDE7d+4kNzfX6lLcQgLAE3Ttajyxa7c7dbjWmscKC6nq0oV/nHceo0eNMtY015qCY8fYu3cvOYcOceLkSSqrqtBghEzfvu36YwjR0XXt2pVZs2axatUqq0txCwkAT6AUjB1rrOrphL/k53Owpoa/RUTQ1ccHH6UIDg6mT58+DB06lBEjRtAjPBx7bS25ubns/fZbTuTn88HeveTk5OCpT38L4QmSk5P54IMPsDv5hqwjkz4BT3HRRWCztXpYXm0tK4uL6aIUP2owqPvbfv2YFRoKgK+PDyEhIYTUPzFcW1ZGmVJsPnSIF266CYD4+HgSEhKIj4/3ykWwhGhOVFQUERERfP755yQmJlpdTruStYA8RX4+XHih8SCYq5dhKCqC3/4WFi9Ga83hw4dJT08nPT2djIwMevToYYbBpEmTZD1/4fXWrl3L2rVreeaZZ6wu5aydzVpAEgCe5Oc/h3XrXLuZS02NsWnMV19BE7tzORwOvv32W2w2G+np6Wzbto0hQ4aYLYSYmBhZ9ll4nZqaGmbPns2KFSsYOHCg1eWcFQmAjurIEfjhD43ZOq646Wpt7CnwwAPw4x879S01NTXs2LHDbCHs27ePMWPGmC2E0aNHd4oVE4VozZNPPkmXLl245ZZbrC7lrEgAdGRvvw333290BbX1RltcDBMmwLvvnnO3UkVFBZmZmWYg5OfnExsba7YQoqKiZBE50SllZ2ezZMkS1qxZ06H2wZDloDuyRYuMJ3Zfe83Y4P1c5u5rbSwsN2gQvPhim8YUgoKCuPDCC7nwwgsBYy/gjIwM0tPTeeutt6iqqiIhIcFsIfTv3/+cryWEJxkyZAhDhgzhs88+4+KLL7a6nHYhLQBPpDU89RQ8+6zRCnB2/X8w+vvLyoxppa+8Aj17tl+dQG5urtk6sNlsBAcHm2EQHx9PWDtvTi9Ee/r444/54IMPeO6556wuxWnSBdRZZGbCbbcZM4R8fKBbt+aXi6iuNpZ68POD3/wGFi9uexfSWXI4HGRlZZkDyps3b2bgwIFmCyEmJkY2jxcdSk1NDZdeeimvvPIKERERVpfjFAmAzqSmBlJT4R//gO3bjV2+amqMtX2UMl5rbYTDT34CCxeCh8zrt9vt7Nq1y2wh7N69m1GjRpkthLFjx3aovlXhnZYtW4ZSiltvvdXqUpzitgBQSvUA3gGGANnAQq11URPH1QHb618e0lrPbe3cEgBNKCmBPXsgK+u7d/sDBsB55xn9/R6+jWNlZSVbtmwxWwiHDh0iJibGbCEMHz5ctqIUHufQoUMsXryYNWvWOL8Tn4XcGQCPAYVa66VKqXuBcK31PU0cV6a1bnrLqmZIAHR+JSUlbNq0yWwhlJaWEhcXZ7YQBg0aJDOMhEe46aabWLBgAZdcconVpbTKnQHwLfADrXWeUqo/sEFrPaqJ4yQARKuOHTtmDianp6fj5+fXaIZRz3Ye0BaiOZ988gnvvfceL7zwgtWltMqdAVCstQ6r/1gBRadfn3GcHdgC2IGlWutWl9qTAPBuWmuys7PNMNi0aRO9e/c2AyE2NpZuzeyDLISr1dbWcumll/Liiy8yePBgq8tpkUsDQCn1KdDULsn3Aysa3vCVUkVa6/AmzjFQa31UKRUFpAJJWuusJo5bAiwBiIyMnJSTk+PMzyC8QF1dHXv27DFbCNu3b2fYsGFmIIwfP75D9M+Kjuvpp5/Gbrdz++23W11KizyuC+iM73kN+Ehr/V5Lx0kLQLSkpqaGrVu3mi2EAwcOMHbsWDMQzjvvPBlQFi515MgRbrzxRtauXevRbzbcGQB/BU42GATuobW++4xjwoEKrXW1UqoX8A0wT2u9q6VzSwCIs3Hq1ClzyQqbzcaJEyeIjY01xw+GDBkiA8qizW6++WYuu+wyZs2aZXUpzXJnAPQE/g+IBHIwpoEWKqXigF9orX+qlJoKvAA4MDageUpr/XJr55YAEG1x4sQJbDYbNpuNtLQ0HA6HuX5RQkKC7IEgzklqaipvvfUWL774otWlNEseBBOigdN7IJzuLsrIyCA0NNQMg7i4ONkDQTjFbrdz6aWX8vzzzxMVFWV1OU2SABCiBQ6Hg3379pndRVu2bGHw4MGN9kAICAiwukzhoZ577jkqKyv5zW9+Y3UpTZIAEOIs1NbWsn37drOFsHfvXqKjo80WwujRo/E7l1VZRaeUm5vLddddx9q1az1ysyQJACHaoKKigs2bN5sthNzcXCZOnGi2EIYNGyYDyl7u1ltvZebMmcyePdvqUr5HAkAIFyoqKjL3QEhPT6eystJcsiIhIYEBAwZYXaJws/Xr1/PGG2/w8sutzmdxOwkAIdpRbm6u2V1ks9kICAhg8uTJ5h4I4eHfexZSdDJ2u53LLruM5557zuMGgyUAhHATrTVZWVlmGGRmZjJgwACzuyg2Nlb2QOiknn/+ecrKyrjrrrusLqURCQAhLFJXV8fOnTvNFsKuXbsYOXKk+UDauHHjZA+ETiIvL49rrrmGtWvXetSsMQkAITxEVVUVW7duJS0tDZvNRk5ODhMmTDBbCCNHjpQlKzqw2267jYsvvpg5c+ZYXYpJAkAID1VaWkpGRobZQiguLm60B0JERITMMOpAPv/8c1599VVeffVVq0sxSQAI0UEUFBSYy1XYbDZ8fHzMMEhISKBXr15WlyhaUFdXx5w5c1i2bBkjRoywuhxAAkCIDklrTU5OjjmgvGnTJnr27NloD4SQkBCryxRnWL58OUVFRdxzz/c2Q7SEBIAQnYDD4WDPnj1mC2HHjh0MHTrUbCHExMR49LLE3qKgoIArr7ySNWvWEBgYaHU5EgBCdEY1NTVs27bNbCFkZWUxZswYs4UQHR0tA8oWueOOO5g+fTrz5s2zuhQJACG8QVlZGZmZmWYL4fjx4432QBg6dKgMKLvJl19+yfLly3n99detLkUCQAhvdPLkyUZPKNfW1jbaA6Fv375Wl9hpORwO5s6dyxNPPMGoUS1uitjuJACE8HJaa44ePWqGgc1mo3v37mYgxMXFERoaanWZncpLL71EQUEBv/3tby2tQwJACNGIw+Fg//795oJ2W7ZsISIiwmwdxMTEeMQAZkd2/PhxFi5cyJo1ayxd/kMCQAjRotraWnbu3Gm2EPbs2UN0dLTZQhgzZozsgXAO7rzzTqZOnUpycrJlNUgACCHOSkVFBVu2bDFbCEePHiUmJsYcUB4+fLjMMHLC119/zXPPPccbb7xhWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns3TpUkaPHm1JDRIAQgiXysvLM2cYpaenExAQYIZBfHw8PXr0sLpEj/HKK6+Ql5fH/fffb8n1JQCEEO1Ga83BgwfNMMjMzKRfv35mGMTGxhIcHGx1mZY5efIkl19+OR999JElvwcJACGE29TV1bFr1y6zhbBz505GjBhhthDGjRvndUtW3H333UyePJmUlBS3X1sCQAhhmerqarZu3Wq2ELKzsxk/frzZQhg1alSnH1BOS0tj2bJlvPnmm25/GvtsAkDmeQkhXKpr167m8wVg7IGQmZlJeno6v/vd7ygsLCQuLs5sIURGRna6JSvi4+MpLy9n165djBkzxupymiUtACGEWxUUFJgzjNLT0wHMwIiPj6d3794WV+gaK1asICcnhwcffNCt15UuICFEh6C15vDhw+aGOBkZGfTo0cMMg0mTJtG9e3eryzwnhYWFpKSksHr1arp16+a260oACCE6JIfDwbfffmsOKG/bto0hQ4aYLYQJEybQtWtXq8t02r333ktsbCwLFy502zUlAIQQnUJNTQ07duwwWwj79u0z90CIj49n9OjR+Pr6Wl1ms9LT03nyySd56623zHGOU6eguhq6dIGQEHD18IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kAwlom+hmnTlrJr12C2bYPSUvDxAYcDAgNhzBi4+GJIToaePdt+TQkAIYRXKCwsbDSgXF1d3egJ5f79+1tWW0UF/O1v8OyzJVRX2+nZsyeBgeDn9927frsdqqqM//r4wJw5cP/90JYHqyUAhBBe6cw9EIKDg83WQVxcHGFhYW6pIzMTfvUryM+HoCA72dlZDB8+vMXuqro6o3UQEgKPP260Cs6FBIAQwus5HA6ysrLM7qLNmzczcODARnsgtMe6/evWwS9/abzLPz355+jRIwQGBjm1ZlJlpTFG8OCDcP31Z399CQAhhDiD3W5vtAfC7t27GTVqlBkIY8aMwd/fv03XSE+Ha681BngDAr77fEVFOfn5+URFRQGtj1HU1kJZmdGFNHfu2dUgASCEEK2orKxky5Yt2Gw20tLSOHz4sLkHQkJCwlnvgVBWBomJxiyf768Bp8nKyqJ//wFOtzqqq41uoU8/hQEDnP+5ZCkIIYRoRWBgIFOmTGHKlCkAlJSUmAPKK1eupLS0lLi4ODMQBg4c2OIMo0cfhcJCaHqYQREeHk5xcZHTAdC1KxQXwz33wD//eQ4/oBOkBSCEEE04duyY2V2Unp6Ov79/oxlGPRvM2SwshPPPN975NzfOW1dnZ//+LIKDX6eyMgOHoxI/v1707Hk9YWHzm/werY2B4Y8+glGjnKtbuoCEEMKFTu+BcDoMMjMz6d27t9k62LEjgSefDGjm3f93cnOP4uubT+/e4/Dx6UJ1dTY5OUuIiFhGYGB0k99TVASLFsEjjzhXq9u6gJRSVwAPAdFAgta6yTu2UmomsAzwBV7SWi9ty3WFEMKdlFJERUURFRXFokWLqKurY8+ePaSnp/P222/zzjsKuz2K2lp/goODCQwMRKnvjx+EhYWTl1dJ376nB5sVSilqa480GwDBwfDf/zofAGf1c7WlBaCUigYcwAvAnU0FgFLKF9gL/BA4AtiAq7TWu1o6t7QAhBAdgcMB553nACqpqiqnoqKc6upqAgMDCQ4OJjg4mICAAIzZP5oDBw7g5/cmFRUfo3U1AQGjGDz4RXx8mh4b0BpKSmDjRujVq/V63NYC0Frvrr9gS4clAPu11gfqj30bmAe0GABCCNER5OUB+NC9ezDduxvTfxyOOsrLKygvLyc3Nxe73U5QUBDBwcF069aN2trFjBr1AJWV26io2IRSze+YphT4+8OBA84FwNlwxyyggcDhBq+PAJPdcF0hhGh3lZXGMg4N+fj4EhISQkhICAB2e60ZCOXlZWhtvHEOCoqhpGQtRUXv0aPHlc1eQ2vjOq7WagAopT4F+jXxpfu11h+4shil1BJgCUBkZKQrTy2EEO3Cz8+4Qbd8jD+hoaGEhoYCGqPr/XTPSR01NUda/P7TrQBXazUAtNbnuCKF6SgQ0eD1oPrPNXWt5cByMMYA2nhdIYRod/36GYu5ORzfbwmcyW4vpKIig27dLgQCKC9Po6TkYwYObHmEt67u7B4Gc5Y7uoBswAil1FCMG/+VwNVuuK4QQrS7gACIjISCAmN555YpioreIy/vEcCBv39/+vb9DSEhFzX7HXV1RrC0R6dIW6eBLgCeBnoDa5RSW7TWP1JKDcCY7jlba21XSt0CfIwxDfQVrfXONlcuhBAeYsYMWLGi9QDw8wtn8ODlZ3XusjKYMqX11sW5aOssoPeB95v4fC4wu8HrtcDatlxLCCE81ZVXGss1GIO7rj23UvCTn7j2nKe1Q6YIIYR3GTkSJk405uu7UlkZ9O4N06a59rynSQAIIYQLLF1qrANUW+ua89XVGed64onm1xdqKwkAIYRwgagouPtu4127w9G2c51eBO7qq41F5tqLBIAQQrjIT35ibAhTUmJMDT0XDoexDPSMGcauYO1JAkAIIVxEKXjoIbjtNqMlUFp6dt9fXm6ExxVXwPPPt8/DXw1JAAghhAspBbfeCitXwqBBRgiUlDTfLeRwGLuInd4Q/rXXjPGE9r75g+wIJoQQ7WL8eGM7xy+/hJdegm++MQZztf5uuqhSxkDv+PGwZAkkJRn7CbuLBIAQQrQTHx+46CLjT22tsaLnwYPGfr/+/hARYUwh7drVmvokAIQQwg38/Y1tHZ3d2tEdZAxACCG8lMfuCayUOg7knPHpXsAJC8pxlqfXB1Kjq0iNbefp9UHHrHGw1rq3M9/osQHQFKVUhrNbnVnB0+sDqdFVpMa28/T6oPPXKF1AQgjhpSQAhBDCS3W0ADi7hbTdz9PrA6nRVaTGtvP0+qCT19ihxgCEEEK4TkdrAQghhHARjw4ApVQPpdQnSql99f8Nb+a4x5RSO5VSu5VSf1fK1XvytLm+SKXU/+rr26WUGuKO+s6mxvpjuyuljiilnnFXfc7WqJSKUUp9U///eZtSapEb6pqplPpWKbVfKXVvE1/vqpR6p/7rae78/3oWNd5R/3dum1JqnVJqsKfV2OC4FKWUVkq5fdaNMzUqpRbW/y53KqX+5Wk11t9n1iulNtf//57d1Hka0Vp77B/gMeDe+o/vBR5t4pipwFcY+w37At8AP/CU+uq/tgH4Yf3H3YAgT/odNjh2GfAv4BkP/P88EhhR//EAIA8Ia8eafIEsIAroAmwFRp9xzC+Bf9R/fCXwjpt/b87UOOP03zfgJk+ssf64EOBzYCMQ52k1AiOAzUB4/es+HljjcuCm+o9HA9mtndejWwDAPGBF/ccrgPlNHKOBAIxfSlfAHzjmluqcqE8pNRrw01p/AqC1LtNaV7ipPnDud4hSahLQF/ifm+pqqNUatdZ7tdb76j/OBQoApx52OUcJwH6t9QGtdQ3wdn2dDTWs+z0gyV2tT2dr1Fqvb/D3bSMwyI31OVVjvT8BjwJV7iyunjM1/gx4VmtdBKC1LvDAGjXQvf7jUCC3tZN6egD01Vrn1X+cj3GDakRr/Q2wHuMdYR7wsdZ6t6fUh/HOtVgptbK+afZXpVQ7bfDWpFZrVEr5AE8Ad7qxroac+T2alFIJGIGf1Y41DQQON3h9pP5zTR6jtbYDJUDPdqzpTM7U2NBi4D/tWtH3tVqjUioWiNBar3FnYQ0483scCYxUSn2llNqolJrptuoMztT4EHCtUuoIsBb4VWsntXwxOKXUp0C/Jr50f8MXWmutlPrelCWl1HAgmu/e2XyilJqmtf7CE+rD+B1PAyYCh4B3gBuBl11Rn4tq/CWwVmt9pL3ewLqgxtPn6Q/8E7hBa93Gjfe8h1LqWiAOmG51LQ3Vv/l4EuPfhCfzw+gG+gHGveZzpdQ4rXWxpVU1dhXwmtb6CaXUFOCfSqmxLf07sTwAtNYXN/c1pdQxpVR/rXVe/T/8pppdC4CNWuuy+u/5DzAFcEkAuKC+I8AWrfWB+u9ZBZyPCwPABTVOAaYppX6JMUbRRSlVprVudsDOghpRSnUH1gD3a603uqq2ZhwFIhq8HlT/uaaOOaKU8sNodp9s57qauv5pTdWIUupijKCdrrWudlNtp7VWYwgwFthQ/+ajH/ChUmqu1jrDQ2oE499xmta6FjiolNqLEQg295ToVI2LgZlg9IwopQIw1glqtrvK07uAPgRuqP/4BuCDJo45BExXSvkppfwx3uG4qwvImfpsQJhS6nR/dSKwyw21ndZqjVrra7TWkVrrIRjdQK+78ubvhFZrVEp1Ad6vr+09N9RkA0YopYbWX/vK+jobalj35UCqrh+Bc5NWa1RKTQReAOZa0G/dao1a6xKtdS+t9ZD6v38b62t1182/1RrrrcJ4949SqhdGl9ABD6vxEJBUX2M0xtjo8RbP6s6R7HMY+e4JrAP2AZ8CPeo/Hwe81GB0/AWMm/4u4ElPqq/+9Q+BbcB24DWgi6fV2OD4G3H/LCBn/j9fC9QCWxr8iWnnumYDezHGGu6v/9wfMW5Q1P8DexfYD6QDUe78vTlZ46cYkyJO/84+9LQazzh2A26eBeTk71FhdFXtqv93fKUH1jgaY0bk1vr/15e0dk55ElgIIbyUp3cBCSGEaCcSAEII4aUkAIQQwktJAAghhJeSABBCCC8lASCEEF5KAkAIIbyUBIAQQnip/wdIjXz8NwuAWAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlclWX+//HXdVhFQFTcN1wrK/Nb6pgtU1PNODZftXLKyq8L9gt1mlIrK52sNJXMBRUUUNAsGzNzy5y0srLSFiW1XHNFUEcRRFQQ4Vy/P24wRJYDnHPus3yejwcPz3Jz358r7X2ucy+fW2mtEUII4V0sZhcghBDC+ST8hRDCC0n4CyGEF5LwF0IILyThL4QQXkjCXwghvJCEvxBCeCEJfyGE8EIS/kII4YV8zS6gPOHh4ToiIsLsMoQQwq1s27YtQ2vdoLLlXDb8IyIi2Lp1q9llCCGEW1FKHbVlOZcNf+FdCgogNRXOnweLBRo0gIYNQSmzKxPCM0n4C9NkZ8Pq1bBsGezfbwS9xQJaGx8GtWtDly4wcCDceSf4+JhdsRCeQ8JfON2lSzB7NixYAIWF4OcHwcFG8Bcr/gDYtAm++Qbq1YPoaLjnHtPKFsKjyNk+wqn27YOePSE+HmrVgrAwY4ZvKfUvUSnjQ6FOHQgNhXPnYOhQGDkSLl40p3YhPImEv3CanTvhkUcgLQ3q1gXfKnzvDAoyPgg+/hgGDIALFxxXpxDeQMJfOMWxY0ZoFxQYIV4dFovxTWHHDhg2DKxW+9YohDeR8BcOZ7XC6NHG7prg4JqtSynjA2DzZli61D71CeGNJPyFw330EaSkVH/GX5pSxnGCiRPh1Cn7rFMIbyPhLxzKaoU5cyAgoOJz9jMzl3H48P+xd+/tHD/+eqXr9feH/HzjNFEhRNVJ+AuH2roVTp40zuypiK9vOOHhQ6lTp7fN6w4KgqQk4ziCEKJq7BL+SqlkpdQppdSv5byvlFKzlVIHlFI7lVK32mO7wvVt3gyXL1d+pW5o6J8ICbkHHx/b9w0FBBjHEQ4dqmGRQnghe838FwE9K3j/r0D7op+ngXl22q5wcd9/b4S0o2gNe/Y4bv1CeCq7hL/WehOQWcEifYDF2vA9EKaUamKPbQvXdvCgsX/eUfLzjW0IIarGWfv8mwHHSjxPK3pNeLj8/Guv3i1PYWEhZ89mkZ19losXbbuKy2KRC76EqA6XOuCrlHpaKbVVKbX19OnTZpcj7MDf37aLsQoLC0lNPYqPjw8BAQEcP36Co0ePcOHCeUCX+3tWa+UHk4UQ13JW+KcDLUo8b1702lW01ola6y5a6y4NGlR6LwLhBtq0MWb/FSksLODo0UMEBfkRElKbwMAA2rRpQZ06ofz3v//l8OHD5OTkUNaHgL8/tG3rmNqF8GTOCv81wMCis366A9la6xNO2rYwUbduRhfP8hQWFpCamgqsJjPzIc6ceYfs7HXs23cHly8vp02bNoSHh5ORcZpDhw5x7lw2JT8ElIIbbnD4MITwOHZp6ayU+jdwDxCulEoDXgP8ALTW8cA6oBdwALgIDLHHdoXru/NOo4On1tee7mnM+FMJDg6mYcPngRfKXEdISCghISGcP3+BM2cyOHXqNOHh9QkMrEOtWhbatXP8OITwNHYJf63145W8r4F/2GNbwr107QqNGkFmpnFRVjEj+I8SEhKCsYuvslt2KYKDgwkODubixQtkZGRw/Hguf//7SQoLb8TX14HnkwrhgVzqgK/wPBYLPPOMsetHF+2tqXrwXy0oqDaNG7eiceP61Kq1ht69e7N48WIuSqN/IWwm4S8c7tFHoVMn47aNBQU1C34wPkQuXIDXXgsgPv514uLi2Lt3L7179yYxMZFz587ZfxBCeBgJf+FwFgvMnAl+fgUcOnSSkJBQGjRoSHWD/+xZY3fS//2f8Vq7du2YPHkyycnJnDx5kr59+zJ79mwyMyu67lAI7ybhL5wiNDST5s3HUbt2bQICqncar9UKWVnQsSPMn3/txWMtW7Zk/PjxLFmyhLy8PPr168fUqVM5efKkHUYghGeR8BcOd+bMGaKionj00XZ8/nldGjY0Zu+FhbavIzfX2G3Us6dxE5eQkPKXbdKkCWPGjOHDDz8kMDCQJ554gokTJ3Ls2LHyf0kIL6O0Lv/qSTN16dJFb9261ewyRA1lZGQwbNgwevbsyVNPPQUYQT59OixebMzm/f0hMPDamXxBgdG1U2vjRjCTJ8MDD1TeIbS07Oxsli5dyrJly+jevTuRkZG0lSvDhIdSSm3TWnepdDkJf+EoGRkZREVF8eCDDxIZGXnN+5mZsGKFcUOWQ4fAx+f3D4CCAvDzg9tug0GD4J57qnbD97JcuHCB5cuXs2TJEjp16kRkZCQdO3as2UqFcDES/sJUp0+fJioqir/97W9lBn9p+flw+DCcP298AISHQ/PmVZ/l2yIvL49Vq1axePFi2rRpQ2RkJLfeKreYEJ5Bwl+Y5tSpUwwbNozevXszePBgs8spV35+PuvWrWPhwoU0bNiQyMhIunfvjnLEJ44QTiLhL0xx6tQpoqKieOihhxg4cKDZ5diksLCQDRs2sHDhQgICAhg6dCh33303Flt7UQvhQiT8hdO5Y/CXZLVa+eqrr0hOTiY/P5/IyEgeeOABfHx8zC5NCJtJ+Aun+u9//0tUVBT9+vVjwIABZpdTI1prtmzZQnJyMhkZGQwePJgHH3wQPz8/s0sTolIS/sJpTp48WXQe/6M8+eSTZpdjVykpKSQlJXHkyBEGDhxI3759CXDkTYmFqCFbw192aooaOXHiBFFRUTz22GMeF/wAt956K3Fxcbz99tv8+OOP0kROeAwJf1FtxcHfv39/nnjiCbPLcaiOHTsyffp0aSInPIaEv6iW48ePExUVxRNPPMHjj1d4OwePIk3khKeQ8BdVdvz4cYYNG8aAAQPo37+/2eWYQprICXcn4S+qJD09naioKAYMGMCjjz5qdjmmkyZywl1J+AubFQf/oEGDJPhLqV+/Ps8++ywrV66kYcOGDB48mHHjxnHw4EGzSxOiTBL+wiZpaWlERUUxZMgQ+vXrZ3Y5LqtOnTpERUWxZs0aOnTowPDhw3nhhRfYvXu32aUJcRU5z19U6tixYwwbNoyhQ4fy8MMPm12OW5EmcsLZ5CIvYRepqakMHz6cp556ioceesjsctyWNJETziLhL2osNTWVYcOG8fTTT9O3b1+zy/EIJZvIBQYGEhkZKU3khF1J+IsaOXr0KMOHD7/SmlnYlzSRE44i4S+qTYLfeUo3kRsyZAi9evWSJnKi2iT8RbUcOXKEESNGMHz4cP73f//X7HK8ijSRE/Yg4S+q7PDhw4wYMYJnnnmGBx980OxyvNauXbtISkpi165dPPnkk/Tr14+goCCzyxJuQrp6iio5dOgQI0aM4J///KcEv8luvPFGZsyYIU3khENJ+Iurgr9Xr15mlyOKSBM54UgS/l7u4MGDjBgxgpEjR0rwuyhpIiccQcLfix04cIARI0YwatQoevbsaXY5ohLSRE7Yk4S/l/rtt9/4xz/+wfPPP89f/vIXs8sRVSBN5IQ9SPh7of379/PMM8/w/PPP8+c//9nsckQ1SRM5URNyqqeXKQ7+MWPGcP/995tdjrAjaSInQM7zF2UoDv6XXnqJ++67z+xyhINIEznvJuEvrrJ3716effZZXn75Zf70pz+ZXY5wAmki550k/MUVxcH/yiuvcO+995pdjnAyaSLnXST8BQB79uzhueeeY+zYsdxzzz1mlyNMJE3kvINT2zsopXoqpfYppQ4opV4u4/3BSqnTSqntRT9P2WO7omK7d+/mueeeY9y4cRL8AqUUPXr0YMGCBYwfP54NGzbQt29fPvjgAy5dumR2ecLJajzzV0r5APuBB4A04Cfgca317hLLDAa6aK2fsXW9MvOvmd27dzNy5Ej+9a9/cffdd5tdjnBR0kTO8zhz5t8NOKC1PqS1zgeWAn3ssF5RTbt27eK5556T4BeVkiZy3sse4d8MKHl9eVrRa6U9opTaqZRarpRqUdaKlFJPK6W2KqW2nj592g6leZ9ff/2VkSNHMn78eAl+YTNpIud9nHXO18dAhNa6E/AZ8E5ZC2mtE7XWXbTWXRo0aOCk0jzHzp07GTVqFK+//jp33XWX2eUINyRN5LyHPcI/HSg5k29e9NoVWuszWuviI0oLgNvssF1Rws6dO3n++ed54403uOOOO8wuR7g5aSLn+ewR/j8B7ZVSrZVS/kB/YE3JBZRSTUo87Q3sscN2RZEdO3ZcCf4ePXqYXY7wIGU1kfvXv/4lTeQ8QI3DX2tdADwDrMcI9WVa611KqQlKqeK7fz+rlNqllNoBPAsMrul2hWH79u288MILTJgwQYJfOEzJJnLt2rWTJnIeQC7ycmM///wzY8aMYeLEiXTv3t3scoQXkSZyrkuu8PVwKSkpjBkzhsmTJ9OtWzezyxFeKj8/n08++YRFixZJEzkXIeHvwVJSUnjppZeYNGmSBL9wCdJEznVI+Huobdu28dJLLzFlyhS6du1qdjlCXEWayJlPwt8Dbd26lZdffpno6Gi6dKn071YI00gTOfNI+HuYn376ibFjxxIdHc1tt8llEsJ9pKSkkJSUxJEjRxg4cCB9+/YlICDA7LI8loS/B/nxxx8ZO3YsU6dOlTMqhNuSJnLO4dSWzsJxfvzxR8aNGyfBL9yeNJFzLRL+Luz777+XGb/wONJEzjVI+LuoLVu28OqrrzJt2jT+53/+x+xyhLA7aSJnLgl/F7R582bGjx/PtGnT6Ny5s9nlCOFQ0kTOHBL+Lmbz5s289tprTJ8+nVtuucXscoRwGmki51wS/i7ku+++uxL8nTp1MrscIUwhTeScQ071dBHffPMNEyZMYMaMGdx8881mlyOEyyjZRK5t27ZERkbKcbAKyHn+bmTTpk28+eabzJw5kxtvvNHscoRwSdJEzjYS/m5i06ZNTJw4kVmzZtGxY0ezyxHC5UkTuYpJ+LuBr7/+mkmTJhETEyPBL0QVlW4iN3ToUB544AGv/xCQ8HdxX375JVOmTGHWrFnccMMNZpcjhNsqbiKXlJREZmYmgwcP9uomchL+Lmzjxo1ER0cze/Zsrr/+erPLEcIjaK35+eefvb6JnIS/i5LgF8LxvLmJnDR2c0FffPEF0dHRzJkzR4JfCAeSJnKVk/B3ks8//5y33nqL2NhYrrvuOrPLEcIrSBO58kn4O8GGDRuYOnUqsbGxdOjQwexyhPA60kTuWrLP38E2bNjA9OnTiY2NpX379maXI4QAzpw5w5IlS1i1ahX33nsvgwcPpkWLFvbdyNmzsGcP7N0LWVnGaw0bwvXXGz/BwfbdXhE54OsCPv30U2bOnElcXBzt2rUzuxwhRCnZ2dksXbqUZcuWcfvttzNkyBDatm1b/RVarfDttzB/PmzZAr6+kJ8PWhs/Pj7g5weFhXD//RAZCV26gB2vUpbwN9l//vMfZs2aRVxcXM3+MQkhHO7ChQt8+OGHvP/++3Tq1InIyMiqX3h59CiMGgW//GI8DwmB8i44s1ohO9sI/T/+EaKjoUGDmg2iiIS/idatW8fs2bOZO3cubdq0MbscIYSNqt1Ebu1aeOEFKCiAOnVsn8lrbXwIBAUZ3xb+8IeaDQAJf9N88sknzJkzR4JfCDdWpSZyq1YZwV+rFlT3grKLF41dQYsWwe2316h2CX8TrF27lri4OObOnUvr1q3NLkcIUUOVNpH79Vd4+GEj9Gt6JfHFi8Y3hg0boFmzaq9Gwt/JPv74Y+bOncu8efOIiIgwuxwhhB2V2UTuj3/E0qsXpKVBaKh9NnT2LHTtCkuWlH+8oBIS/k60Zs0a4uPjmTt3rgS/EB6sZBO5W7ZvJzI9naBmzbDY62yd4mMA8fHG2UDVIO0dnGT16tXEx8fLjF8IL6CUokePHixITCTy8mXO5edz8MABMrOysJYzkT5XWMgLaWncuXcvfztwgE+zsyvagDHjT0x00Ah+5+vwLXiwVatWkZiYSHx8PC1btjS7HCGEk6iUFILz8ghu3ZrcvDwyMjLIyMigXr161K1bF58Su2yiT57ETyk2dOjA/rw8njt2jA6BgbQp7xhBSAikpBi7k5o3d9gYZOZfTStWrJDgF8Jbbd9unNapFLVq1aJFixa0bNmSvLw8Dhw4wOnTpyksLCTXamVjTg7DGzQgyGKhc1AQfwwJ4RNbZv87dzp0CBL+1bBixQqSkpJISEiQ4BfCG/3wg3H1bgmBAQE0b9aMiIgILhcUcODgQVJOnMCiNS39/a8s1z4ggEOXLlW8/suXHR7+3rfbJyfH+IvbudP4apWTY1xy3aqVcZS9c2e44YZyL9JYvnw5CxcuJCEhgeYO/EomhHBh6elGm4YSNMYBYR8fH8LDwwkNDeXQqVOovDyOpqbSokULLEoRbLFwwWqteP1+fnDkiMPKB28K/9RU4yDKRx8Zl1bn54O/vxH8WhsfBmvWGF+3WreGYcOgTx/j/SIffvgh77zzjgS/EG5Ia01+fj65ubnk5eWRm5t75XHx89Kvl36/+Pk/duygzoULXFIKbbVi1Rqr1YpSCovFgkUplMWCn9bkKUVWVhbNmjbF4uvLBauV2racxlnZB0QNeX74W63GVXNvvWXsowsJuebr2lW0hmPH4MUXjd+LiYE2bVi2bBmLFy8mISGBZjW4AEMIUTatNZcvX74mfMsL4KqGd15eHr6+vgQGBhIYGEitWrWu/Fn8U/q90NBQGjVqdNVrgYGBtDx0iMCDB1G1a2OxWFAWi/FnqTHVz82lcN8+fJs3x7cod/ZfulT+wd5ihYVGmwgHskv4K6V6ArMAH2CB1jq61PsBwGLgNuAM8JjW+og9tl2h3FwYPhy++QZq1zaCvzJKGcsGBcHu3fDgg2z8+9959+efSUxMpGnTpg4vWwhXVDKcbZkhVzZ7Lh3eeXl5+Pj4XBPCpUO65HuhoaE0bNiw3PAu/bpPiW/yNXLvvfDbb8beg3LkXbrE6bQ07gsN5f28PF61Wtmfl8fXOTkstOW0cFt6CtVAjcNfKeUDxAEPAGnAT0qpNVrr3SUWGwpkaa3bKaX6A28Bj9V02xXKz4enn4bvvoO6daveMlUpCAvj7MmTXDdjBgvffZdwCX7hworDuSYz5MqCvaxwLiuki98PDg6mQYMG5YZ36d+xWzg72i23XLPPv6S8S5dITU2lUaNGvFa7Nm8cP84D+/dTx8eHVxo3rnzm7+tr9Px3IHvM/LsBB7TWhwCUUkuBPkDJ8O8DvF70eDkQq5RS2pGXF8+ZU/3gL3ImM5PM8+eJaNoUv1dfhR49oFEjOxcqvEXpcLZ1/3Jl4V3yPYvFUmnIlg7n8PDwcsO79OtuE86OdscdRq4UFFyzGzkvL4/UY8do3KgRoUVtH6ZX5UYxeXnGjV46dbJnxdewR/g3A46VeJ4GlO5LemUZrXWBUiobqA9k2GH719q1y7g8OjS0ZsGfmUmrVq3w8/Mzem68/DIkJ9v1xgvCdZQM55rOkMsL7+Jwrixkix8HBQVRv379Cnd9lPzTt6LjWcJ+6tSBvn1h+XJjglkkLy+P1NRUGjdufCX4qyw3F0aMqPjYpB241L8UpdTTwNNAzc6fnzzZOHBbzf94ZzIzycrMJKI4+MH4y/72W/j5Z7j11urXJqpNa01BQYFdZsjlhbfFYqk0ZEs+DgoKol69etccNCwv2CWcPcjw4UY756IzB68Ef5MmhNpyfLEsubnGrL9/f/vWWgZ7/EtMB0p+p2le9FpZy6QppXyBOhgHfq+itU4EEsFo7FatalJTjfP4K/nUzbdaiT55kh8vXuRcYSHN/fx4pmFDrrt0iaysrN9n/MWUMj5QFi6U8K9AyQOC9ti9Ufo9VXRFpS37kIt/6tatW+m+6eLXJZyFzSIijLMCp0wht7CQY8eO1Sz4rVa4dAlmzIB69exaalns8S/9J6C9Uqo1Rsj3B54otcwaYBCwBegHbHTY/v5PPjH+I1ZyHm0h0NjPj8SWLWns58d358/z/JEjTPP3p1ubNviVFQIhIfDpp8anc61aDinf0YpnzvY6fa7061prm2bBJd+rW7euTWd2BAYGXv2BLITZhgzh7Nq1XFy/nsYtWtQs+M+eNWb8f/6zfWssR43Dv2gf/jPAeoxTPZO11ruUUhOArVrrNUAS8K5S6gCQifEB4RhbtlR4FL5YLYuFp0vcM/OG/HzqW61caNCg7OAH44IvHx/jFC8HHYwpuVujJjPk8sK7ZDjbunujZDhXNnuWcBbeZPe+fYzJyWHB3XcT+ttvZR4ArlR+Ply4YNwUZuJEpx1TtMt3XK31OmBdqdfGl3icB/zdHtuq1K+/QmBglX4lIyODI1lZnPHzo0NQUIXLWgsKyN++nZwmTRyye8Nqtdq8i6L4cVhYmM0Xrvj6+pZ9KzohRJXs3r2bkSNH8q/XXqPx7bfD3LkQG2vsHg4NrfxmLIWFcO6cca3AhAnw+OPVvoFLdXjezVzatjUOztr4H/F0RgZpJ04w08eHpr6+/CMoCKvVetUl29pqxVr0vM7lyyxp2ZLP27QpN6CrGt4l3/Pz85NwFsLF7dq1i5EjR/Lqq69y9913//7Gnj0wbRps2vT77ufAQOPbgNbGN4O8PGNZiwX++lfj/r9VORW0ErbezMXzjm5VMTj9/P2ZW9RD45/16hFSdLl2cW+O4sfFl3CrM2d48aWXePGppxxRvRDCxf3666+MGjWK8ePHc9ddd1395g03QFISHD8O69f/3kQyO9vIprp1jRNGuneHv/zFKQd2y+N54R8W9nvTtkporZl1/jwqLIy369Qh58wZ8vPyjIteate+pk8HYHyCh4XZvWwhhOv75ZdfGD16NK+//jp33HFH+Qs2bQpDhhg/Lsrz+vnfdNPvX6sqMeXkSQ7n5xPTogWNwsJo27Yt9evV4/SpUxw+fJhz585xzU4xHx+HX3YthHA9O3fuZPTo0bzxxhsVB7+b8LyZf48exv62Spy4fJkVZ8/irxR/+e23K6+PbdyYnm3acP78eTIyMjh1+jTh4eHUCQ1FWa3Gfrv27R05AiGEi9mxYwcvvPACb7zxBj169DC7HLvwvPDv1QvefrvSc/2b+Pmx9YYbyn0/JDiY4OBgLl64QEZGBqdPn6ZJQAC1+vfHp7KmTEIIj7F9+3ZefPFFJkyYwO233252OXbjebt9mjc3Zv/nztV4VQqoXbs2rVq1olnTpuReusQ/t25lyZIl5Obm1rxWIYRL+/nnn3nxxReZOHGiRwU/eGL4A4wbZ8z6L1+22yqD8vNp8NhjPJeUxM6dO+nduzdJSUnk5OTYbRtCCNeRkpLCiy++yKRJk+jevbvZ5didZ4Z/hw7w3HPG/XntcR3DxYvGDV4mT+a666/nrbfeIjExkaNHj9K3b1/mzp1LVlZWzbcjhHAJKSkpjBkzhsmTJ9OtWzezy3EIzwx/gKgouO8+yMqq2QfAxYvGlXjz50P9+ldebt26NRMmTGDx4sWcPXuWRx55hBkzZnDq1Ck7FC+EMMu2bdt46aWXmDJliscGP3hy+Pv6QlyccSHF2bNGt7yq0Nr4PaXgnXegnH8EzZo1Y+zYsSxduhSA/v37M3nyZI4fP17TEQghnGzr1q1Xgr9r165ml+NQnhv+YFzoFRcHU6YYl1VnZRkXgFVEa2N3UXY2dOliXKVnw/6+hg0bMnr0aD766CPCwsIYMGAA48eP5/Dhw3YajBDCkX766SdeeeUV3nrrLbp0qbQ7gtvzvN4+5TlxwpjBv/eecSD48uXfu3RqbTwv7r9x000wbBg88EC1Gy3l5OSwbNkyli5dyq233kpkZCTXXXed/cYjhLCbH3/8kbFjxzJ16lRudfP7ddja28d7wr9YXh6kpBi3ekxJMU4J9fWFVq3gttuMVs2tW9ttcxcvXmTlypW89957dOjQgaFDh9LJwffmFELY7ocffmDcuHEeEfwg4e9y8vPz+fjjj1m0aBHNmjUjMjKSrl27SgdPIUz0/fff8+qrr/L222/TuXNns8uxCwl/F1VQUMCnn37KwoULCQkJYejQodx5553yISCEk23ZsoXx48czbdo0brnlFrPLsRsJfxdntVr54osvWLhwIQBDhgzhvvvuw+LEmzkI4a02b97Ma6+9xvTp0z1uN6yEv5vQWvPtt9+SnJzMuXPnGDx4MH/961/lRuJCOMh3333H66+/7pHBDxL+bkdrzdatW0lKSiI9PZ1BgwbRu3dv/G24L4EQwjbffvstb7zxBjNmzODmm282uxyHkPB3Yzt37iQ5OZl9+/YxYMAAHn74YWrVqmV2WUK4tW+++YYJEyYwc+ZMbrrpJrPLcRhbw192MLugTp06ERMTQ0xMjDSRE8IONm3axIQJE4iJifHo4K8KCX8Xdt11111pIpeamkqfPn2Ii4uTJnJCVMHXX3/Nm2++yaxZs7jxxhvNLsdlSPi7gdatW/PGG2/w3nvvce7cOWkiJ4SNvvrqKyZNmkRMTAwdO3Y0uxyXIuHvRpo2bcorr7wiTeSEsMGXX37J5MmTmTVrlgR/GST83ZA0kROiYhs3bmTKlCnMnj2bGyq4Xas3k/B3Y3Xr1mXEiBGsXr2aiIgIoqKiGDNmDPv27TO7NCFM88UXXxAdHc2cOXO4/vrrzS7HZcmpnh4kNzeXlStX8u6770oTOeGVPv/8c6ZOnUpsbCwdOnQwuxxTyHn+Xqy4idw777xDkyZNGDp0qDSREx7vs88+Y9q0acyZM8drgx8k/AXXNpGLjIzkrrvukg8B4XE2bNjA9OnTiY2NpX379maXYyoJf3GF1Wpl48aNJCcno7VmyJAh3H///dJETniE9evXM2PGDOLi4mjXrp3Z5ZhOwl9cQ2vNd999R1JSEtnZ2QwZMkSayAm39umnnxITE0NcXBxt27Y1uxyXIOEvylXcRC45OZm0tDRpIifc0rp165g9ezZz586lTZs2ZpfjMiT8hU2Km8jt3bv3ShO5oKAgs8sSokLr1q1jzpw5xMXFSfCXIo3dhE2Km8jNnj2bX3/9lT59+rBgwQJpIidc1tq1a5n6+sCLAAARHklEQVQzZ47M+GtIwl8A0KFDB6Kjo5k/fz7Hjh2TJnLCJX388cfExcUxb948WrdubXY5bk3CX1wlIiJCmsgJl7RmzRrmzZtHfHw8ERERZpfj9iT8RZnKayKXnp5ucmXCG61Zs4b4+HjmzZtHq1atzC7HI0j4iwqVbiI3cOBAxo8fz6FDh8wuTXiJVatWER8fT3x8vAS/HdUo/JVS9ZRSnymlfiv6s245yxUqpbYX/aypyTaFOYqbyK1atYqIiAiGDRsmTeSEw61YsYL58+cTHx9Py5YtzS7Ho9ToVE+l1FQgU2sdrZR6GairtX6pjOXOa62Dq7JuOdXTtZVsIte+fXueeuopaSIn7GrFihUkJSURHx9PixYtzC7HbTjlPH+l1D7gHq31CaVUE+ArrfV1ZSwn4e+h8vPzWbt2LYsWLZImcsJuPvroIxYuXEh8fDzNmzc3uxy34qzwP6u1Dit6rICs4uellisAtgMFQLTWelVl65bwdy8FBQWsX7+ehQsXUrt2bYYOHSpN5ES1fPjhh7zzzjskJCTQrFkzs8txO3YLf6XU50DjMt4aB7xTMuyVUlla62v2+yulmmmt05VSbYCNwH1a64NlLPc08DRAy5Ytbzt69Ghl9QsXI03kRE0sW7aMd999l/j4eAn+anKp3T6lfmcRsFZrvbyi5WTm796Km8glJydz9uxZaSInKvXBBx+wZMkS4uPjadq0qdnluC1ntXdYAwwqejwIWF1GIXWVUgFFj8OBO4DdNdyucHFKKe68806SkpIYO3Ys69at46GHHuLDDz8kPz/f7PKEi1m6dKkEv5PVdOZfH1gGtASOAo9qrTOVUl2AYVrrp5RSPYAEwIrxYROjtU6qbN0y8/c8v/zyC8nJyezZs0eayIkr3n//fZYuXUpCQgJNmjQxuxy3J109hcvav38/ycnJbNu2jccee4zHHnuMkJAQs8sSJnj//ff54IMPSEhIoHHjsg4tiqqSrp7CZZVsIpeWliZN5LzUe++9x7Jly0hMTJTgN4GEvzBNREQEr7/++lVN5KZPny5N5LzAu+++y/Lly0lISKBRo0Zml+OVJPyF6YqbyH3wwQdYLBZpIufhFi9ezIoVK0hMTJTgN5GEv3AZDRo0YNSoUaxYsUKayHmoRYsWsWrVKhISEmjYsKHZ5Xg1CX/hcsLCwhgxYgSrV6+WJnIeZOHChVdaM0vwm0/CX7is4OBgIiMjWb16NZ07d2bkyJE8++yz7Nixw+zSRBUlJyezdu1amfG7EDnVU7gNaSLnnpKSkli3bh0JCQmEh4ebXY7Hk/P8hceSJnLuY/78+axfv56EhATq169vdjleQcJfeDyr1cqXX35JUlISVquVyMhIaSLnQhITE/nss8+Ij4+X4HciCX/hNUo3kRs8eDC9evWSJnIm0VqTmJjIF198QXx8PPXq1TO7JK8i4S+8jtaabdu2kZSURFpaGgMHDqRPnz74+/ubXZrX0FqTkJDAxo0bJfhNIuEvvFrJJnJPPvkkjzzyiDSRczCtNfHx8Xz11VfMmzdPgt8k0ttHeLWbb76ZmTNnMnv2bHbv3k2fPn1YsGABOTk5ZpfmkbTWzJs3j6+//lpm/G5Cwl94tA4dOjBlypSrmsjFxsaSmZlpdmkeQ2tNXFwc33zzDfHx8dSte83N/IQLkvAXXqFkE7mcnBz69esnTeTsQGtNbGwsmzdvZt68eYSFXXMLb+GiJPyFVymridykSZNIS0szuzS3o7Vmzpw5bNmyRYLfDUn4C69UsolcvXr1GDRokDSRqwKtNbNmzeKHH35g3rx51KlTx+ySRBVJ+AuvFhYWxvDhw69pIrd3716zS3NZWmtiYmLYunWrBL8bk/AXgmubyI0aNUqayJVBa83MmTNJSUlh7ty5hIaGml2SqCY5z1+IMpRsIte4cWOGDh1Kt27dvLp/kNaaGTNmsGPHDmJjYyX4XZRc5CWEHRQWFrJ+/XqSk5OvNJG78847va5/kNaaadOm8csvvxAXF0dISIjZJYlySPgLYUfe3EROa83bb7/Nrl27iIuLIzg42OySRAUk/IVwAK01mzdvJikpySuayGmtmTp1Knv27CE2NlaC3w1I+AvhQMVN5JKTk0lNTb3SRC4gIMDs0uzGarUydepU9u3bR2xsLLVr1za7JGEDCX8hnOSXX35h4cKF7N6922OayFmtVqKjozlw4ABz5syR4Hcj0thNCCe5+eabmTFjxlVN5ObPn8+5c+fMLq1aioP/4MGDMuP3YBL+QthJySZy6enp9O3b1+2ayFmtViZPnsyhQ4eYM2eO23+DEeWT8BfCzko2kTt//jz9+vVj2rRpLt9Ezmq1MmnSJI4ePcrs2bMl+D2chL8QDtK0aVNefvllli1bhq+vr9OayOXlQWYmZGVBQYFtv2O1WnnzzTc5duwYs2bNkuD3AnLAVwgnOXv2LP/+979Zvnw5PXr0YMiQIbRp06bG67Va4dtvYcUK2LoVjh8HH5/f32/XDnr0gMcegw4dyvp9KxMnTiQ9PZ2YmBgJfjcnZ/sI4aLOnz/PsmXLWLp0KZ07dyYyMpLrr7++yuvRGlatguhoY5ZfWAi1akFAABR3obBajW8Cly4Zr918M0yYYPxpvG9lwoQJnDhxgpiYGGrVqmXHkQozSPgL4eJyc3NZuXIl7733Hu3atSMyMpLOnTvb9LunT8MLLxgz/sBAI/QrozUUn4AUFQXPPmvlzTdf59SpU8TExBAYGFjtsQjXIeEvhJuoahO59HR49FE4eRLCwn6f5duqoADOndPUqbONrl0XMXv2NAl+DyLn+QvhJvz9/Xn44YdZuXIlffv2Zdq0aQwaNIhNmzZhtVqvWjY729h3f+oU1K1b9eAH8PXVXLx4nIMHW+HjE0NAgAS/N5LwF8JF+Pj40KtXLz744AMGDx5MfHw8TzzxBBs2bLjyIfDaa3DiBFT//ima9PTjWK0FtG1bn88+82XtWrsNQbgR2e0jhIsq3USua9fRLFhwB3XqKKrXTFSTnp5OYaGVFi2ao5SFvDzj28PXX0O9evYegTCDrbt9PLMVoRAeQCnFHXfcQY8ePUhJSeHvf/fh1Kl0IIiwsDCUKvsTID39VS5e/BGrNRdf33Dq1x9IWFifa4IfjIPFZ8/CRx/B//t/ThycMJ2EvxAuTilFaOht+PhAy5a5nDmTQUZGBvXq1adu3TAsFp+rlg8PH4Kf36tYLP5cunSEo0efJju7DhZL26uCv1hgIMyfD5GRV18fIDxbjfb5K6X+rpTapZSyKqXK/ZqhlOqplNqnlDqglHq5JtsUwhtt2mScxx8UVIsWLVrQokVL8vJyOXDgIBkZpyksLLyybEBAGywWf8A4vfPSpUsUFBynefNrgx+M8M/OhgMHnDYc4QJqesD3V+BhYFN5CyilfIA44K9AR+BxpVTHGm5XCK/y449Xz8oDAwNp1qw5ERGtyM+/zMGDBzh16r8UFPVzOHkymr1772Dfvt4oVZeIiD7l7iYC40Nizx5Hj0K4khrt9tFa7wEqu6l1N+CA1vpQ0bJLgT7A7ppsWwhvsmePMUMvzd8/gKZNm3L5cj5nzpzh0KGD1KlTh/r1R3P58uP4++8hJOQYFkvFp3Nevmxso29fBw1AuBxnnOrZDDhW4nla0WtCCBvl5lZ8Tr+fnz+NGzcp6hWkOHLkCEpZaN36zxQUnCYra3mF67dYICfHvjUL11bpzF8p9TnQuIy3xmmtV9uzGKXU08DTAC1btrTnqoVwa35+Rn+eyvj6+tGoUSMaNWoIFH9aFJKfX3EnUa3B37/GZQo3UunMX2t9v9b6pjJ+bA3+dKBFiefNi14ra1uJWusuWusuDRo0sHH1Qni+li0hP7/y5QoKMjl3bgNWay5aWzl/fgvZ2eupXbtbhb+nlNH9U3gPZ5zq+RPQXinVGiP0+wNPOGG7QniMP/wBfvgBgoMrW1KRlbWcEycmA1b8/JrQqNHzhITcXeFv+fnBDTfYq1rhDmoU/kqph4A5QAPgE6XUdq31X5RSTYEFWuteWusCpdQzwHrAB0jWWu+qceVCeJE//AF8bfi/1de3Lq1aJVZp3QUFxsxfwt+71PRsn5XAyjJePw70KvF8HbCuJtsSwpt17260Xzh/3rb2zVWRk2M0i5N7uHgXaewmhBuwWGDYMOPGLPZsx1VYaKx78GD7rVO4Bwl/IdzEgAHGQdniG7LYQ06OEfxl3d5ReDYJfyHchJ8fzJplXOmbl1fz9WVnQ/PmMHp0zdcl3I+EvxBu5PrrYd4847TPixertw6tjU6e9erB++/b/xiCcA8S/kK4mXvvhUWLjG8CZ88aN2m31eXLxoy/fXvj5u9NmzqsTOHiJPyFcEM9esCXX8Kf/2zst8/KMoK9LFob7SHOnjV2F40eDR9/DE2aOLdm4Vqkn78QbqpePZg7F/bvh3ffhZUrjV1BPj7GtwGljJ/Ll6FxY+PA7iOPyB27hEFu4yiEh9Aajh+HffuM6wEsFqhf37h4KyzM7OqEs8htHIXwMkpBs2bGjxCVkX3+QgjhhVx2t49S6jRw1Ow6qikcyDC7CCfytvGC943Z28YL7jvmVlrrStsiu2z4uzOl1FZb9rl5Cm8bL3jfmL1tvOD5Y5bdPkII4YUk/IUQwgtJ+DtG1Rqquz9vGy9435i9bbzg4WOWff5CCOGFZOYvhBBeSMLfDpRS9ZRSnymlfiv6s24Fy4YqpdKUUrHOrNGebBmvUqqzUmqLUmqXUmqnUuoxM2qtKaVUT6XUPqXUAaXUy2W8H6CU+qDo/R+UUhHOr9J+bBjvaKXU7qK/0y+UUq3MqNOeKhtzieUeUUpppZRHnAEk4W8fLwNfaK3bA18UPS/PRGCTU6pyHFvGexEYqLW+EegJxCil3KrJgFLKB4gD/gp0BB5XSnUstdhQIEtr3Q6YCbzl3Crtx8bx/gx00Vp3ApYDU51bpX3ZOGaUUiHAc8APzq3QcST87aMP8E7R43eAvmUtpJS6DWgEbHBSXY5S6Xi11vu11r8VPT4OnAIqvfDExXQDDmitD2mt84GlGGMvqeR/i+XAfUop5cQa7anS8Wqtv9RaF99J4HuguZNrtDdb/o7BmLS9BdjhNjquQcLfPhpprU8UPT6JEfBXUUpZgOnAC84szEEqHW9JSqlugD9w0NGF2Vkz4FiJ52lFr5W5jNa6AMgG6julOvuzZbwlDQX+49CKHK/SMSulbgVaaK0/cWZhjiaN3WyklPocaFzGW+NKPtFaa6VUWadQjQDWaa3T3GFiaIfxFq+nCfAuMEhrXYXbjghXppQaAHQB/mh2LY5UNGmbAQw2uRS7k/C3kdb6/vLeU0r9VynVRGt9oijsTpWx2O3AXUqpEUAw4K+UOq+1ruj4gGnsMF6UUqHAJ8A4rfX3DirVkdKBFiWeNy96raxl0pRSvkAd4IxzyrM7W8aLUup+jEnAH7XWl5xUm6NUNuYQ4Cbgq6JJW2NgjVKqt9barXvOy24f+1gDDCp6PAhYXXoBrfWTWuuWWusIjF0/i101+G1Q6XiVUv7ASoxxLndibfb0E9BeKdW6aDz9McZeUsn/Fv2Ajdp9L56pdLxKqf8BEoDeWusyP/TdTIVj1lpna63DtdYRRf/vfo8xdrcOfpDwt5do4AGl1G/A/UXPUUp1UUotMLUyx7BlvI8CdwODlVLbi346m1Nu9RTtw38GWA/sAZZprXcppSYopXoXLZYE1FdKHQBGU/GZXi7NxvG+jfHN9cOiv9PSH4ZuxcYxeyS5wlcIIbyQzPyFEMILSfgLIYQXkvAXQggvJOEvhBBeSMJfCCG8kIS/EEJ4IQl/IYTwQhL+Qgjhhf4/LxmYyYQFGIsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -386,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { "scrolled": true }, @@ -395,16 +427,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -1.4999670167944144\n", - "time: 26.714055061340332\n", - "maxcut objective: -3.9999670167944146\n", - "solution: [1. 0. 1. 0.]\n", + "energy: -1.4919238629420386\n", + "time: 11.324347019195557\n", + "maxcut objective: -3.9919238629420386\n", + "solution: [0. 1. 0. 1.]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXl00WEVBxBxW3cEUETMscoWnUcoPS9pppxpmmpqamdWqapmkaa9qctslWm5rqV2OW6UxTou3CRdyXRFRcAFHZZOdyv78/Dp7AWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNH1eFldgBBCCGtIAAghRBclASCEEF2UBIAQQnRREgBCCNFFSQAIIUQXJQEghBBdlASAEEJ0URIAQgjRRflYXUBzevfurYcMGWJ1GUII0aFs3LjxuNY63JljPTYAhgwZQkZGhtVlCCFEh6KUynH2WI8NAJfTGvLz4cQJcDggOBgiI8Hb2+rKhBDCEp07AOx2+OILeOMN2LgRqqqMG75SRggAjBoFixbB3LlGKAghRBehPHU10Li4OH3WXUBaw//+B/ffD8XFxucCA8HXt/FxdXVGKNjt4OMDv/oV3Hgj+Pm1rXghhLCIUmqj1jrOmWM73yygsjK46Sb49a+hvBxCQow/p9/8wWgNBAUZX/fzg7//HS65BPbtc3/dQgjhZp0rAEpLje6cTz4xbuqBgc5/r68vhIbC/v2wYAHs3Nl+dQohhAfoPAFQVwc33AC7dxs3cq+z+NGUMoKjqgquvNIYNBZCiE6q8wTAa69BZqZx81eqbecKDja6ku680xhPEEKITqhzBMCRI/C3vxn9+W29+Z8SEgLffgurV7vmfEII4WE6RwC8+aYxk6eV2Tv/V1jINfv3M2X3bh7MzW35nEoZM4OeeUZaAUKITqnjB0BNjREAQUGtHtrbx4cbevdmbkiIc+cOCjJmBG3b1sYihRDC87gkAJRSryqlCpRS25v5ulJK/V0ptVcptVUpFeuK6wLGoG9trVNz9xN79OBHwcGEOPv0r1LG4PKGDW0sUgghPI+rWgCvAzNb+PosYET9n8XACy66rjFd02532el+wMcH0tLa7/xCCGERlwSA1voLoLCFQ+YBb2jDBiBUKdXfFddmz57vl3VoD926GdcQQohOxl1jAAOBQw1eH67/XCNKqcVKqQylVMaxY8ecO3NFxRnN/Km12zlaUEBpaSnFxcXU1Na2/A1KGeMMQgjRyXjUYnBa62XAMjDWAnLqmwICzmiWjpeXF1prfHx8KCsvp6CgAC8vL4KCgggKCiIwKAifhmMEWje9jIQQQnRw7gqAI0BEg9eD6j/XdiNHOt0CqNOaOqBbQAAVQJ/+/fFSCntNDeXl5RSXlJCbl4efnx9BgYEEBQURUFeHd5xT6yoJIUSH4q4A+Ai4WSn1DjAZKNFa57nkzNHRTr9Df+X4cZYdP47D4aC2tpb1333H4t69WRwejn+3bvTq2ROtNZVVVZSXl3P8xAn8Tp5k7Z49VC5bRkJCAmPHjsXHx6MaTkIIcVZcshy0Uupt4EdAb+Ao8EfAF0Br/Q+llAKexZgpVAH8VGvd4lrPTi8HXV0NkyYZK3s6GQQa2L9vH3379iWopecHtMZRXMy2Bx5gfXEx6enpHDp0iJiYGBISEkhISGD48OF4nc26Q0II0Q7OZDlol7yV1Vpf0crXNXCTK671A926wVVXwcsvQ1iYU9+igNCwMIqKi1sOgIoKvIYOZcK11zKhvpuppKSEjIwM0tPTWbFiBaWlpcTHxxMfH09CQgIDBw5EuWo5CiGEaEedY0OYQ4fgwgvB39/pVkCdw8HerCyGDRvWdJeO1lBSAk88AfPmNXue/Px80tPTsdlspKen4+fnZ7YO4uPj6dmzp3M/gxBCuMCZtAA6RwAAvPACPP74Ga0Gmpubi1+3bvTu1euHXywuhvh4eOstp5eW1lqzf/9+Mww2btxI3759zTCYNGlSyy0OIYRoo64ZAHY7XHaZsW5PSIhTIVBRWUlubi7Dhg2j0dFlZUbX0po1MPAHjys4ra6ujl27dpkthO3btzNixAizu2jcuHH4yfaTQggX6poBAMa79kWLYO9ep1oCGti3bx/9+vUj6NTuYSUlRlfSv/4F48adXfHNqK6uZsuWLaSnp5Oens6BAwcYN26c2WU0atQoGVAWQrRJ1w0AMLaFvP12WL/euJH7+7d4eGFRERUVFQzq2xdOnoTISHjxReP5gnZ28uRJNm7caLYQTpw4QVxcnNlCiIyMlAFlIcQZ6doBAMYA7urV8Ic/GN05Shn7A58+2OtwUFdeTt7Bg/QfOBDvX/4SbrnF6P6xQEFBgTnDKD09HaDRgHJ4eLgldQkhOg4JgFNqaiA1FZYvh82bjaWdTy3z4HAYr4cN4wN/f2pmz2bRL3/Z9sJdRGvNoUOHSEtLw2azkZGRQc+ePc1AmDRpEsHBwVaXKYTwMBIATXE44PBhOHHC+Dg4GIYMAT8/tmzZwp/+9Cf+/e9/e2yXi8Ph4LvvvjNnGG3dupUhQ4aYgTBhwgS6WdRyEUJ4DgmAM6S1ZtGiRdx9991MmjTJLddsq5qaGrZt22aOH2RlZTFmzBgzEKKjo/F2duMbIUSnIQFwFt555x22bdvGX/7yF7dd05XKy8vJzMw0xw+OHj1KbGysGQhDhw712NaNEMJ1JADOQmlpKXPnzmXlypWEhoa67brtpbCw0OwuSk9Pp6amxhxMTkhIoF+/flaXKIRoBxIAZ+mBBx5g1KhRXHXVVW69bnvTWnPkyBGzu8hmsxEcHGy2DuLi4ggJCbG6TCGEC0gAnKXNmzfz5z//mffff79Td5c4HA727t1rthA2bdpERESE2UKYOHEiAQEBVpcphDgLEgBnSWvNwoULuffee4mNjXXrta1UW1vLjh07zBbC7t27iY6ONruLxowZI3sgCNFBSAC0wb/+9S927drFn//8Z7df21NUVFSwefNmc/zgyJEjxMTEMHnyZOLj4xk2bJgsWSGEh5IAaIOSkhLmzZvHhx9+KP3i9YqLi80nlG02G2VlZT/YA0EI4RkkANroD3/4A9HR0Vx55ZWWXN/T5eXlNZph5O/v32hAWfZAEMI6EgBttGnTJv7yl7/w3nvvderBYFc4tQfCqSUrMjMz6devnxkIsbGxBJ5aaVUI0e4kANpIa81ll13Gfffdx8SJEy2poaOqq6tj586dZgthx44djBgxwgyEsWPHyh4IQrQjCQAX+Ne//sXu3bt56KGHLKuhM6iqqjL3QLDZbBw4cIDx48ebgTBy5EgZUBbChSQAXODUYPBHH31Ejx49LKujsyktLTX3QEhPT6eoqIi4uDgzECIiIqTbTYg2kABwkfvvv58xY8ZwxRVXWFpHZ1ZQUGB2F9lsNpRSjZas6N27t9UlCtGhSAC4SGZmJkuWLOHdd9+Vd6VuoLUmJyfHDIONGzfSq1evRgPKsgeCEC2TAHARrTUpKSn88Y9/ZMKECZbW0hU5HA52796NzWYjLS2N7du3M3ToULOFEBMTIwPKQpxGAsCF3nzzTbKysvjTn/5kdSldXk1NDVu3bjVbCHv37mXcuHFmd1F0dLQMKIsuTwLAhYqLi5k/f74MBnugsrKyRnsgHDt2jNjYWHPJiiFDhkjXnehyJABc7Pe//z0TJkxg0aJFVpciWnDixIlGTyjb7fZGA8p9+/a1ukQh2p0EgItt3LiRRx99VAaDOxCtNYcPH240wygkJKTRkhXSohOd0ZkEgKzx64TY2Fjsdjvbtm1j/PjxVpcjnKCUIiIigoiICJKTk809ENLS0li5ciUPPvggkZGRZiDExMTg7+9vddlCuJW0AJz0z3/+k+zsbB588EGrSxEuUFtby/bt280WwnfffUd0dLQZCKNHj5Y9EESHJF1A7aCoqIgFCxbIYHAnVVFRwaZNm8zuoiNHjjBx4kQzEIYNGybdf6JDkC6gdhAWFsbUqVP573//y8KFC60uR7hYYGAg5513Hueddx5gBH5GRgY2m413332XysrKRktWDBgwwOKKhWg7aQGcAZvNxhNPPMHbb78t7wa7mNzc3EYDygEBAeYMo/j4eMLCwqwuUQhAuoDajcPhICUlhYceeohx48ZZXY6wiNaa7OxsMwwyMzMZMGAA8fHxTJ48mYkTJ8oeCMIyEgDt6I033uDAgQM88MADVpciPITdbjf3QEhLS2PXrl2MHDnSbCGMGzcOX19fq8sUXYQEQDsqLCwkJSWFVatW0b17d6vLER6oqqqKzZs3my2EnJwcYmJizAfSRowYIUtWiHYjAdDO7r33XiZOnCiDwcIppaWlZGRkmE8ol5SUEBcXZy5ZMWjQIBlTEi4jAdDO0tPTefLJJ2UwWJyVgoICMwxsNhve3t6Nlqzo1auX1SWKDsztAaCUmgksBbyBl7XWS077+vXA34Aj9Z96Vmv9ckvn9OQAcDgcJCcn8/DDDzN27FiryxEdmNaaAwcOmDOMNm7cSHh4eKM9EKSrUZwJtwaAUsob2AP8GDgM2IArtNY7GxxzPRCntb7Z2fN6cgAALF++nJycHBkMFi51ag+EtLQ0bDYb27dvJyoqygyE8ePHyx4IokXuDoApwINa65/Uv74XQGv91wbHXE8nC4DCwkKSk5P5+OOP5R2aaDc1NTVs2bLFbCHs27ePsWPHmoFwzjnnyICyaMTdAXApMFNr/fP619cAkxve7OsD4K/AMYzWwm1a60NNnGsxsBggMjJyUk5OTptqa29333038fHxXHrppVaXIrqIkydPmnsg2Gw2jh8/TmxsrBkIgwcPlnGpLs4TA6AXUKa1rlZK/RJYpLVObOm8nt4CAEhLS2Pp0qW89dZb8o9OWOL48eON9kBwOBzmYHJCQgJ9+vSxukThZu5eC+gIENHg9SC+H+wFQGt9osHLl4HHXHBdy8XHx1NWVsauXbsYPXq01eWILqh3797MmjWLWbNmobXm0KFD2Gw2vvzyS5566ilCQ0PNGUayB4I4nStaAD4Y3TpJGDd+G3Cl1npHg2P6a63z6j9eANyttT63pfN2hBYAwGuvvcaRI0e4//77rS5FiEYcDgd79uwxu4u2bNnC4MGDzSUrJkyY0CH2QKipgb17Yf9+qK4GHx+IiIBRo0BW3PghK6aBzgaexpgG+qrW+i9KqYeADK31R0qpvwJzATtQCNyotd7d0jk7SgCcOHGCSy+9lI8//pigoCCryxGiWbW1tWzbts1csiIrK4vRo0ebLYQxY8bg7e1tdZkA1NXBF1/Ayy9DWppx09caHA7w8gKloLYWoqNh8WK46CLoAFnmFvIgmJvdddddTJ48mZSUFKtLEcJpFRUVjQaU8/LyiI2NNccQoqKiLBnb2rIFbr0VjtR3JAcHGzf902kN5eVGWAQHw+OPQ2KLI4tdgwSAm23YsIG///3vMhgsOrTCwsJGS1ZUVVWZ3UXx8fH079+/Xa+vNTz9NDz3nHHDP5PhiooKo3to3jxYsgS68qMSEgBu5nA4mD9/PkuWLJHBYNFp5ObmmmGQkZFBYGBgoz0QQkNDXXYtreGPf4S33jLezZ/NbpwOB5SUwHnnGV1HXTUEJAAs8Oqrr5KXl8d9991ndSlCuJzD4SA7O9uccrpp0yYGDhxoTjeNiYlp0x4Ir7wCjzwCISFNd/c4S2soLobLLjNaAl2RBIAFjh8/zmWXXcbq1atlMxDR6Z3aA+HUkhW7du1i1KhRZiCMGTPG6T0QsrNh9mxjENcV2yacagksXw7nn9/283U0EgAWufPOO5kyZQrJyclWlyKEW1VWVrJ582azhXDw4EFiYmLMQBg+fHizS1YsWgQbN4ILe5QoLzfGEL7++uy6kzoy2RTeIgsWLOCFF16QABBdTkBAAFOmTGHKlCkAlJSUmAPKK1asoLS0lLi4ODMQBg4ciFKKrCzj5h8S0vo16upKyct7iLKyDfj4hBIefjMhITObPDYoCAoL4fPPISnJlT9p5yIB4ELnnnsuf/3rX9m1axfR0dFWlyOEZUJCQkhKSiKp/u6bn59vtg5efPFF/Pz8iI+PJyvrcuz2KIznSVuWn78EpXwZOfJ/VFXt4dChW/H3H0m3blFNHq+UMRgsAdA8CQAX8vLyYv78+XzwwQcSAEI00K9fP+bMmcOcOXPQWrN//35sNhsvvwwnThyitNRBUFAQQUFBBAYG4uXV+IE0h6OSkydTiYr6P7y8AgkMjCE4eDolJavp0+c3TV4zKAgyM43nBDzk+TaPI+vIutjcuXP57LPPqKiosLoUITySUoqoqCjmz1+Er+9IRo0aQv/+A/D29qGwsJCsrCwOHNjPsWMFVFSUo7WDmpqDgDd+fpHmebp1G0F19b5mr3Pqpn/gQPv+PB2ZtABcLDw8nNjYWD755BMWLFhgdTlCeKyjR40BWi8vRUBAAAEBAUBvtHZQUVFJeXk5R48WUFNTjY9PNnV1flRVVeLvHwCAl1d3HI7yFq/h5QW5uTBsmBt+oA5IWgDtIDk5mQ8++MDqMoTwaHa70U9/OqW8CAoKok+fPgwdOoSIiAi8vAKpri5m//79VFVVAeBwlOPl1fL6W1obawaJpkkAtINzzz2XwsJCdu9ucb07Ibq0gACjf/6HNJWVFRw9epS9e/eSm5tHQMBQ/P19CQ2tori4CIDq6j3NDgCfopRxHdE0CYB20HAwWAjRtL59jX56IwQ0FRXl5Ofnk5WVRV5eHl5eikGDIhg+fBj9+g0hJORC7PZ3KSkpoKwsk5MnPyck5OJmz3/q3b90/zRPAqCdzJ07l08//VQGg4VoRl1dLf36Hefw4WPs2bOHo0eP4uPjw+DBg4mKGkZ4eJ/6/QqMfqJ+/e4B7FRX/5xDh+6hX797W2wB2O3QvTuEh7vn5+mIZBC4nfTp04eYmBg+/fRT5s2bZ3U5QniE6upqvv32W1JTU/nqq6+oq7sSL69FDB06FF/flldv8/buQUTEE4SFneTYseOEhAxt8fiyMli4sOlxBmGQAGhHycnJvPTSSxIAokurqKjgq6++Yu3atWzYsIHo6GgSExP5zW9+g69vOJMnn9lNunv37uTn5zeaEXQ6rY1zXnedi36ITkoCoB1NnTqVRx55hD179jBy5EiryxHCbUpLS/n8889JTU1l48aNxMTEkJSUxL333vuDZaSvuspYuC0szNmzK0JDQykqKqZ//6YDoKQEzj0XzjmnbT9HZyeLwbWzZcuWUVRUxN133211KUK0q8LCQtavX8/atWvZvn07CQkJzJgxg2nTphEcHNzs91VUGMs1FBUZffbOsNtryc7ex4gRw3/w1HB1tdH/v3YtDBjQlp+oY5LVQD1IQUEBl19+OatXr65/0EWIzuPo0aOkpqaSmppKVlYWU6dOJSkpialTp57R3/fMTLjiCuPBMGe/7fDhQ3Tv3p3Q0O+bDrW1Rt//U0/B3Lln+tN0DrIaqAdpOBg8t6v+jRSdyqFDh0hNTWXt2rUcPnyY6dOnc+211zJ58mT8znIbrthYeOkl+MUv4ORJY1ew1oSGhnHsWIEZAJWVUFUFDz7YdW/+Z0oCwA0WLFjAK6+8IgEgOiStNfv27TPf6Z84cYIZM2Zw0003MWnSJHxctOD+BRfAe+/BzTcbG8J3797yBjHduweRn19HeXkltbUBdO8OzzwjG8OfCekCcoO6ujrmzJnD008/LYPBokPQWrN7927znX51dTWJiYkkJiYyYcKEZjd3cYWqKuNG/vrrUFNjzOY5tVuYUsYMH7vdOK6oqASHw85Pf9qLe++Fnj3brawOQ8YAPNCyZcsoLi7mrrvusroUIZrkcDjYtm0ba9euZd26dfj4+JCYmEhSUhLR0dEoN0+or6iANWvgv/+FLVvgxAljcTeHw+giGjcOJk8+ybvvXsUnn7xNUFDL6wJ1FRIAHig/P58rr7ySNWvW1D/dKIT16urqyMzMJDU1lXXr1pkbucyYMYPhw4e7/abfkooKo0Xg6wuBgd8/O3DXXXeRkJDApZdeam2BHkIGgT1Qv379GD9+PJ9++ilz5syxuhzRhdXU1GCz2Vi7di1ffPEF/fv3JzExkWXLlhEZGdn6CSwSGGj8OV1KSgpLly4lJSXFowKrI5AAcKPk5GRef/11CQDhdlVVVXzzzTekpqby9ddfExUVRVJSEr/4xS/o37+/1eW1SXx8POXl5ezYsYOxY8daXU6HIgHgRueddx5Llixh7969DB8+3OpyRCdXXl5uLsGQlpbGmDFjSExM5Le//S29e/e2ujyX8fLyIjk5mRUrVkgAnCEZA3CzF198kZKSEhkMFu2ipKTEXIIhMzOTiRMnkpSUxAUXXPCDJRg6k8LCQpKTk1m1alWLTx13BTIG4MHmzZvHlVdeyS233CKDwcIlTpw4wbp160hNTWXHjh1MnjyZmTNn8vDDD9Pd2bUVOriePXty7rnn8p///IeFCxdaXU6HIQHgZv369WPcuHF89tlnXHLJJVaXIzqovLw886afnZ3Neeedx6WXXsoTTzzRZZccSU5O5oknnuCyyy6TwWAnSQBYIDk5meXLl0sAiDNy8OBB82ncI0eOMH36dK6//noSEhLOegmGziQuLo6amhq2bdvG+PHjrS6nQ5AAsMD555/PkiVLyM7OZpjsVyeaobUmOzvbfBq3uLiYGTNmcPPNNzNp0iS8vb1bP0kX4uXlxYIFC/j3v/8tAeAkCQALeHt7M3fuXD744APuuOMOq8sRHkRrza5du8x3+jU1NSQmJnLvvfcyfvz4dl2CoTOYM2cOCxYsoLS0lB49elhdjseTALDIvHnzuPrqq/nNb35Dt27drC5HWMjhcLB161bzpu/n50diYiIPP/ywJUswdGRhYWFMnTqV1atXc8UVV1hdjseTALDIgAEDGDt2LGvXrmX27NlWlyPczG63k5mZydq1a1m/fj1hYWEkJiaydOlSoqKi5KbfBikpKSxZsoTLL79cfo+tkACw0IIFC3jrrbckALqImpoa0tLSWLduHZ9//jkDBw4kKSmJl156yaOXYOhoYmNjcTgcbNmyhZiYGKvL8WgSABaaNm0ajz76KPv27SMqKsrqckQ7qKys5Ntvv2Xt2rV88803DB8+nBkzZrB48WL69etndXmdklLKfDJYAqBlLgkApdRMYCngDbystV5y2te7AW8Ak4ATwCKt9QFXXLsj8/HxMQeDf/e731ldjnCRsrIyvvzyS1JTU0lLS2Ps2LEkJSVx++2306tXL6vL6xIuueQSXnrpJUpKSggJCbG6HI/V5ikFSilv4DlgFjAauEIpNfq0w24AirTWw4GngEfbet3OYv78+axZs4bq6mqrSxFtUFxczEcffcStt97K7Nmz+d///se0adNYtWoVzz//PCkpKXLzd6OQkBCmTZvG6tWrrS7Fo7miBZAA7NVa7wNQSr0DzAN2NjhmHvBg/cfvA88qpZT21IWI3GjAgAGMHj1aBoM7oOPHj5tP4+7cuZPJkycze/ZsHnnkEdmcxAMkJyfz8MMPc8UVV8hgcDNcEQADgUMNXh8GJjd3jNbarpQqAXoBx11w/Q5vwYIFvP322xIAHUBubi7r1q1j7dq17N+/n/PPP5+FCxcyZcoUWdvJw8TExODl5cWmTZuIjY21uhyP5FGDwEqpxcBioEvNirjgggt49NFH2b9/P0OHDrW6HHGanJwcc45+Xl4e06dP54YbbiA+Pl6WYPBgpwaD//3vf0sANMMVAXAEiGjwelD955o65rBSygcIwRgMbkRrvQxYBsZy0C6orUNoOBh8++23W11Ol6e1Zu/eveYSDKWlpcyYMYNbbrmF2NhYWYKhA7n44ot58cUXKS4u7tTLYZ8tVwSADRihlBqKcaO/HLjytGM+Aq4DvgUuBVKl/7+x+fPnc91113HzzTfLu0oLaK3ZuXOnuSG63W4nMTGR+++/n7Fjx8oSDB1Ujx49mD59OqtWreKaa66xuhyP0+YAqO/Tvxn4BGMa6Kta6x1KqYeADK31R8ArwD+VUnuBQoyQEA0MHDiQUaNGkZqaysyZM60up0twOBxs3rzZHMj19/cnKSmJRx55hHPOOUcGDjuJlJQUHnzwQa6++mr5f3oal4wBaK3XAGtO+9wDDT6uAi5zxbU6s+TkZN59910JgHZkt9vZuHGjuQRDr169SExM5JlnnmHo0KFyg+iExo0bh6+vLxkZGcTHx1tdjkfxqEHgrm769Ok8+uijHDhwgCFDhlhdTqdRU1PDhg0bSE1N5YsvviAiIoKkpCReeeUVIiIiWj+B6NCUUqSkpLBixQoJgNNIAHiQhoPBt912m9XldGgVFRV88803pKam8s033zBy5EgSExO58cYb6du3r9XlCTebNWsWzz//PIWFhfTs2dPqcjyGBICHmT9/Ptdffz033XSTDAafoZMnT5pLMKSnpzNu3DiSkpK444475B99FxccHExiYiKrVq3iuuuus7ocjyEB4GEGDRrEyJEjWbduHT/5yU+sLsfjFRUV8fnnn5OamsrmzZuJi4sjMTGRBx54QDYEEY0kJydz3333cc0118isrnoSAB4oOTmZ9957TwKgGQUFBaxfv57U1FR27drFlClTuOSSS1iyZAmBgYFWlyc81JgxYwgMDMRmszF58umLFXRNEgAeaPr06Tz22GMcPHiwSz0R3ZLc3FzzadwDBw5w/vnnc/nllzNlyhTZUU04peGTwRIABgkAD+Tr68sll1zCBx98wK233mp1OZY5cOCA+TRuQUEB06dP5+c//znx8fH4+vpaXZ7ogGbNmsVzzz3HiRMnZHVWJAA81vz587nhhhu48cYbu8xgsNaarKws853+yZMnmTFjBrfddhsTJ06UJRhEm3Xv3p2kpCQ+/PBDfvazn1ldjuUkADxUZGQkw4cPZ/369Vx00UVWl9NuHA4HO3fuNN/pa61lCQbRrlJSUrjnnnu4/vrru/zfLwkAD7ZgwQI++OCDThcAp5ZgOLXuTmBgIImJiTz22GOMHDlSnsYV7So6Oprg4GDS0tKYMmWK1eVYSgLAg82YMYPHH3+8UwwG2+12bDYb69atY/369fTu3ZukpCSeffaO+a8cAAAcf0lEQVRZ2Q9ZuFXDJ4MlAITHOjUYvHLlSm655Raryzlj1dXVpKWlsXbtWr788ksiIyNJTEzk1VdfZdCgQVaXJ7qwmTNn8swzz3Ds2DHCw8OtLscyEgAebv78+fz85z/nV7/6VYcYDK6oqODrr78mNTWVb7/9lpEjR5KUlMRNN91Enz59rC5PCAACAwP58Y9/zEcffcQNN9xgdTmWkQDwcJGRkQwdOowXXthMSUkC6emwdy9UVYG3N/TvDzExcMEFMGsWBAe7v8bS0lJzCQabzcaECROYMWMGd955pyzBIDxWcnIyd9xxBz/96U+77GCw8tR9WeLi4nRGRobVZVjK4YCVK+GBB4o4fLiWnj374O8P3bqBlxdoDbW1UFkJSoGPD1x2Gdx+O7T35keFhYXmEgxbtmwhLi6OpKQkpk2bJkswiA7j2muv5Ze//CXnnXee1aW4jFJqo9Y6zpljpQXgofLy4I47YMMG8PMLoa5uL927hzbqBlLKCINTD8La7fDWW/Dxx/DEEzBjhmtrKigoMDdE/+6775g6dSpz587l0UcflSUYRId06sngzhQAZ0ICwANlZ8OiRVBcbLyTV8qL0NAQiouL6NOn+aWMfXwgLAwqKuAXv4D774frr29bLUeOHDGna+bk5DBt2jSuuuoqzj33XFmCQXR4F110EX//+98pKCjokmNUEgAeJjfXuPmXljbuxgkLC+XAgRzCw8NRquX+ysBA8PWFP/8ZgoKMbqEzsX//fvPBrGPHjvGjH/2IxYsXExcXJ0swiE4lMDCQiy66iJUrV7J48WKry3E7GQPwIA4HXHEFZGQY7+RPl5NzgJ49exIc7Fwfe02N8ec//4GhQ5s/TmvNnj17WLt2LampqVRUVDBjxgySkpKIiYnpsgNkomvYs2cPv/3tb1m1alWnWG5ExgA6qP/7P+Pm39wAblhYGEVFRU4HgJ+f0R10222wYoUxcHyKw+Fg+/bt5ro7SimSkpL44x//yJgxY+SmL7qMkSNH0qdPH77++msuuOACq8txKwkAD1FXZwzcBgQYg7tNCQ4OJj8/n5qaGqefCQgJgR07jGCZNKnOXIJh/fr1BAUFkZiYyOOPP86IESNkCQbRZSUnJ7NixQoJAGGNL7+EkhJoaQalUl706BFITs4fUGoHdXWl+PoOok+fm+nefWoz3+WgsrKam27aRWjo3fTp04ekpCSee+45hrbULyREF3LRRRfx9NNPk5+fT79+/awux20kADzEqlVGK6A1oaHBHD/enREj/oGf3wDKyr7myJF7GDr0Hfz8BgCgtYOysnJOniylrKwMX19/Dh4cznvvvc6QIQPb+ScRouPx9/dn5syZrFy5kl/96ldWl+M20tHrITZuNLp/WuPvH0pw8DXU1PRAKS+Cg6fh6zuAysodlJaWcOTIYfbs2UNhYSEBAQFERUUxdOhgQkN7UFUlN38hmpOSksKHH35InTPvxDoJCQAPYLfDwYPfP9DVmtDQMIqKiqmrq6OwcD8nT+4lN9eLkpISgoKCGD58OIMHDyYsrCc+Pt9P28zKaqcfQIhOYNiwYfTv358vv/zS6lLcRgLAA1RXGwO/zo7B9ugRTFVVJTt2bCE393569JjFqFE/IiIiktDQMLy9f9izV1dnzAgSQjTv1DLRXYUEgAfw9jaeAXCWUl5ERkYSELAcLy8/qqsXcfDgIY4dK6Ciohytf3iyU2sFCSGad+GFF7Jjxw5yc3OtLsUtJAA8QLduxhO7drtzx2utKSx8DD+/Ks455x+MGjWa8PBwtIajRwvYs2cPBw/mcOLEcaqqKgGNtzf0bX4VCSEE0K1bN2bNmsXKlSutLsUtJAA8gFIwdqyxqqcz8vP/Sk3NfiIinsLLqxtKeREUFESfPn0YOnQoI0aMICysJ7W1dnJzc/nuuz3k5x9nz54PycnJwVOf/hbCEyQnJ/Phhx9id/YdWQcmnQIe4oILwGZr/bja2jyKi1eglB9ZWT8xP9+v3+8JCZkFgJeXN8HBwQTXbw5QVlaLUmUcPLiJG298EYD4+HgSEhKIj4/vkotgCdGcqKgoIiIi+OKLL0hMTLS6nHYlawF5iPx8OP9840EwV6/CUFQEv/893HCD0X106NAh0tPTSU9PJyMjg549e5phMGnSJFnPX3R5a9asYc2aNTz77LNWl3LGzmQtIAkAD/LLX8Lata7dzKWmxtg05uuvoanNuRwOB9999x02m4309HS2bt3KkCFDzBZCTEyMLPssupyamhpmz57N8uXLGTiwYz0/IwHQQR0+DD/+sTFbxxX3XK2NPQXuvx9++lPnvqempobt27ebLYSsrCzGjBljthBGjx7dKVZMFKI1Tz75JH5+ftx8881Wl3JGJAA6sHfegfvuM7qC2nqfLS6GCRPgvffOvlupoqKCzMxMMxDy8/OJjY01WwhRUVGyiJzolA4cOMDixYtZvXp1h9oHQ5aD7sAWLTKe2H39dWOD97OZu6+1sbDcoEHw0kttG1MIDAzk/PPP5/zzzweMvYAzMjJIT0/n7bffpqqqioSEBLOF0L9//7O/mBAeZMiQIQwZMoTPP/+cCy+80Opy2oW0ADyQ1vD00/Dcc0YroH4yj1Nqa6GszJhW+uqr0KtX+9UJkJuba7YObDYbQUFBZhjEx8cT2t670wvRjj755BM+/PBDnn/+eatLcZp0AXUSmZlw663GDCEvL+jevfnlIqqrjaUefHzgd78zZvy4u6ve4XCQnZ1tDihv2rSJgQMHmi2EmJgY2TxedCg1NTVcfPHFvPrqq0RERFhdjlMkADqRmhpITYV//AO2bTN2+aqpMdb2Ucp4rbURDj/7GSxcCJ4yrd9ut7Nz506zhbBr1y5GjRplthDGjh3bofpWRde0dOlSlFLccsstVpfiFLcFgFKqJ/AuMAQ4ACzUWhc1cVwdsK3+5UGt9dzWzi0B8EMlJbB7N2Rnf/9uf8AAOOcco7/f03dxrKysZPPmzWYL4eDBg8TExJgthOHDh8tWlMLjHDx4kBtuuIHVq1c7vROfldwZAI8BhVrrJUqpe4AwrfXdTRxXprXufibnlgDo/EpKSti4caPZQigtLSUuLs5sIQwaNEhmGAmPcOONN7JgwQIuuugiq0tplTsD4DvgR1rrPKVUf2C91npUE8dJAIhWHT161BxMTk9Px8fHp9EMo17tPaItRDM+/fRT3n//fV588UWrS2mVOwOgWGsdWv+xAopOvT7tODuwGbADS7TWrS61JwHQtWmtOXDggBkGGzduJDw83AyE2NhYunc/o/cUQpy12tpaLr74Yl566SUGDx5sdTktcmkAKKU+A5raJfk+YHnDG75SqkhrHdbEOQZqrY8opaKAVCBJa53dxHGLgcUAkZGRk3Jycpz5GUQXUFdXx+7du80WwrZt2xg2bJgZCOPHj+8Q/bOi43rmmWew2+3cdtttVpfSIo/rAjrte14HPtZav9/ScdICEC2pqalhy5YtZgth3759jB071gyEc845RwaUhUsdPnyY66+/njVr1nj0mw13BsDfgBMNBoF7aq3vOu2YMKBCa12tlOoNfAvM01rvbOncEgDiTJw8edJcssJms3H8+HFiY2PN8YMhQ4bIgLJos5tuuolLLrmEWbNmWV1Ks9wZAL2A/wMigRyMaaCFSqk44Fda658rpaYCLwIOjA1ontZav9LauSUARFscP34cm82GzWYjLS0Nh8Nhrl+UkJAgeyCIs5Kamsrbb7/NSy+9ZHUpzZIHwYRo4NQeCKe6izIyMggJCTHDIC4uTvZAEE6x2+1cfPHFvPDCC0RFRVldTpMkAIRogcPhICsry+wu2rx5M4MHD260B4K/v7/VZQoP9fzzz1NZWcnvfvc7q0tpkgSAEGegtraWbdu2mS2EPXv2EB0dbbYQRo8ejc/ZLMsqOqXc3FyuueYa1qxZ45GbJUkACNEGFRUVbNq0yWwh5ObmMnHiRLOFMGzYMBlQ7uJuueUWZs6cyezZs60u5QckAIRwoaKiInMPhPT0dCorK80lKxISEhgwYIDVJQo3W7duHW+++SavvNLqfBa3kwAQoh3l5uaa3UU2mw1/f38mT55s7oEQFvaDZyFFJ2O327nkkkt4/vnnPW4wWAJACDfRWpOdnW2GQWZmJgMGDDC7i2JjY2UPhE7qhRdeoKysjDvvvNPqUhqRABDCInV1dezYscNsIezcuZORI0eaD6SNGzdO9kDoJPLy8rjqqqtYs2aNR80akwAQwkNUVVWxZcsW0tLSsNls5OTkMGHCBLOFMHLkSFmyogO79dZbufDCC5kzZ47VpZgkAITwUKWlpWRkZJgthOLi4kZ7IERERMgMow7kiy++4LXXXuO1116zuhSTBIAQHURBQYG5XIXNZsPLy8sMg4SEBHr37m11iaIFdXV1zJkzh6VLlzJixAirywEkAITokLTW5OTkmAPKGzdupFevXo32QAgODra6THGaZcuWUVRUxN13/2AzREtIAAjRCTgcDnbv3m22ELZv387QoUPNFkJMTIxHL0vcVRQUFHD55ZezevVqAgICrC5HAkCIzqimpoatW7eaLYTs7GzGjBljthCio6NlQNkit99+O9OnT2fevHlWlyIBIERXUFZWRmZmptlCOHbsWKM9EIYOHSoDym7y1VdfsWzZMt544w2rS5EAEKIrOnHiRKMnlGtraxvtgdC3b1+rS+y0HA4Hc+fO5YknnmDUqBY3RWx3EgBCdHFaa44cOWKGgc1mo0ePHmYgxMXFERISYnWZncrLL79MQUEBv//97y2tQwJACNGIw+Fg79695oJ2mzdvJiIiwmwdxMTEeMQAZkd27NgxFi5cyOrVqy1d/kMCQAjRotraWnbs2GG2EHbv3k10dLTZQhgzZozsgXAW7rjjDqZOnUpycrJlNUgACCHOSEVFBZs3bzZbCEeOHCEmJsYcUB4+fLjMMHLCN998w/PPP8+bb75pWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns2TJEkaPHm1JDRIAQgiXysvLM2cYpaen4+/vb4ZBfHw8PXv2tLpEj/Hqq6+Sl5fHfffdZ8n1JQCEEO1Ga83+/fvNMMjMzKRfv35mGMTGxhIUFGR1mZY5ceIEl156KR9//LElvwcJACGE29TV1bFz506zhbBjxw5GjBhhthDGjRvX5ZasuOuuu5g8eTIpKSluv7YEgBDCMtXV1WzZssVsIRw4cIDx48ebLYRRo0Z1+gHltLQ0li5dyltvveX2p7HPJABknpcQwqW6detmPl8Axh4ImZmZpKen84c//IHCwkLi4uLMFkJkZGSnW7IiPj6e8vJydu7cyZgxY6wup1nSAhBCuFVBQYE5wyg9PR3ADIz4+HjCw8MtrtA1li9fTk5ODg888IBbrytdQEKIDkFrzaFDh8wNcTIyMujZs6cZBpMmTaJHjx5Wl3lWCgsLSUlJYdWqVXTv3t1t15UAEEJ0SA6Hg++++84cUN66dStDhgwxWwgTJkygW7duVpfptHvuuYfY2FgWLlzotmtKAAghOoWamhq2b99uthCysrLMPRDi4+MZPXo03t7eVpfZrPT0dJ588knefvvt78c5Tp6E6mrw84PgYHDx+IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kBwOBxcNXcuS6ZNY/DOnbB1K5SWgpcXOBwQEABjxsCFF0JyMvTq1eZrSgAIIbqEwsLCRgPK1dXVjZ5Q7t+/v3XFVVTAU09R8txz2Kur6dWrl3HD9/H5/l2/3Q5VVcZ/vbxgzhy47z5ow5PVEgBCiC7p9D0QgoKCzNZBXFwcoaGh7ikkMxN+8xvIz8ceGEj2gQMMHz685e6qujqjdRAcDI8/brQKzoIEgBCiy3M4HGRnZ5vdRZs2bWLgwIGN9kBol3X7166FX//aeJdfP/vn8JEjBAYEOLdmUmWlMUbwwANw7bVnfHkJACGEOI3dbm+0B8KuXbsYNWqUGQhjxozB19e3bRdJT4errzYGeP39zU+XV1SQn59PVFQUTo1Q1NZCWRk89RTMnXtGJUgACCFEKyorK9m8eTM2m420tDQOHTpk7oGQkJBw5nsglJVBYqIxy+e0ReA0kJ2dzYD+/Z1vdVRXG91Cn30GAwY4XYYsBSGEEK0ICAhgypQpTJkyBYCSkhJzQHnFihWUlpYSFxdnBsLAgQNbnmH06KNQWAhNjDMoICwsjKLiYucDoFs3KC6Gu++Gf/7zLH7C1kkLQAghmnD06FGzuyg9PR1fX99GM4x6NZyyWVgI555rvPNvZqDXXldH9t69vBEUREZlJZUOB719fLi2Vy/mNzc4rbUxMPzxxzBqlFN1SxeQEEK40Kk9EE6FQWZmJuHh4WbrIGH7dvyffLLJd/8NHcnNJd/bm3Hh4fh5eXGguprFOTksjYggOiCg6W8qKoJFi+CRR5yq1W1dQEqpy4AHgWggQWvd5B1bKTUTWAp4Ay9rrZe05bpCCOFOSimioqKIiopi0aJF1NXVsXv3btLT03nnnXdQ775LlN2Ob20tQUFBBAQE4NVEd1FYaCiVeXn49u1rnLf+3Idra5sPgKAg+O9/nQ6AM/q52tICUEpFAw7gReCOpgJAKeUN7AF+DBwGbMAVWuudLZ1bWgBCiA7B4cBxzjlUAuVVVZRXVFBdXU1AQABBQUEEBQXh7++PwhgM3rdvH2/5+PBJRQXVWjPK35+XBg8msLkBZ62hpAQ2bIDevVstx20tAK31rvoLtnRYArBXa72v/th3gHlAiwEghBAdQl4eXkBQjx4E1a9cWudwUFFeTnl5Obm5udjtdgIDAwkKCqJ79+7cUFvL/aNGsbWyko0VFfi1dA9VCnx9Yd8+pwLgTLhjFtBA4FCD14eByW64rhBCtL/KSmMZhwa8vbwIDg4mODgYgFq73QyEsvJy0BqlFDGBgawpKeH9oiIub+khMa2N67hYqwGglPoM6NfEl+7TWn/oymKUUouBxQCRkZGuPLUQQrQPHx/jBt0CXx8fQkJCCAkJQWMMKp96z18HHK6pafkap1oBLtZqAGitz25Biu8dASIavB5U/7mmrrUMWAbGGEAbryuEEO2vXz9jMTeH4wctgdMV2u1kVFRwfvfu+ANp5eV8UlLCIwMHtnyNurozehjMWe7oArIBI5RSQzFu/JcDV7rhukII0f78/SEyEgoKjNU+W6CA94uKeCQvDwfQ39eX3/XtywX1XUVNqqszgqUdekXaOg10AfAMEA6sVkpt1lr/RCk1AGO652yttV0pdTPwCcY00Fe11jvaXLkQQniKGTNg+fJWAyDMx4dlgwef2bnLymDKlFZbF2ejrbOAPgA+aOLzucDsBq/XAGvaci0hhPBYl19uLNegtct3+EIp+NnPXHvOeq6PFCGE6GpGjoSJE435+q5UVgbh4TBtmmvPW08CQAghXGHJEmMdoNpa15yvrs441xNPNLu+UFtJAAghhCtERcFddxnv2h2Otp3r1CJwV15pLDLXTiQAhBDCVX72M2NDmJISY2ro2XA4jGWgZ8wwdgVrRxIAQgjhKkrBgw/CrbcaLYHS0jP7/vJyIzwuuwxeeKFdHv5qSAJACCFcSSm45RZYsQIGDTJCoKSk+W4hh8PYRezUhvCvv26MJ7TzzR9kRzAhhGgf48cb2zl+9RW8/DJ8+60xmKv199NFlTIGesePh8WLISnJ2E/YTSQAhBCivXh5wQUXGH9qa40VPffvN/b79fWFiAhjCmm3bpaUJwEghBDu4OtrbOvo5NaO7iBjAEII0UV57J7ASqljQM5pn+4NHLegHGd5en0gNbqK1Nh2nl4fdMwaB2utw535Ro8NgKYopTKc3erMCp5eH0iNriI1tp2n1wedv0bpAhJCiC5KAkAIIbqojhYAy6wuoBWeXh9Ija4iNbadp9cHnbzGDjUGIIQQwnU6WgtACCGEi3h0ACileiqlPlVKZdX/N6yZ4x5TSu1QSu1SSv1dKVdvydPm+iKVUv+rr2+nUmqIO+o7kxrrj+2hlDqslHrWXfU5W6NSKkYp9W39/+etSqlFbqhrplLqO6XUXqXUPU18vZtS6t36r6e58//rGdR4e/3fua1KqbVKqTPcj7D9a2xwXIpSSiul3D7rxpkalVIL63+XO5RS//K0GuvvM+uUUpvq/3/Pbuo8jWitPfYP8BhwT/3H9wCPNnHMVOBrjP2GvYFvgR95Sn31X1sP/Lj+4+5AoCf9DhscuxT4F/CsB/5/HgmMqP94AJAHhLZjTd5ANhAF+AFbgNGnHfNr4B/1H18OvOvm35szNc449fcNuNETa6w/Lhj4AtgAxHlajcAIYBMQVv+6jwfWuAy4sf7j0cCB1s7r0S0AYB6wvP7j5cD8Jo7RgD/GL6Ub4AscdUt1TtSnlBoN+GitPwXQWpdprSvcVB849ztEKTUJ6Av8z011NdRqjVrrPVrrrPqPc4ECwKmHXc5SArBXa71Pa10DvFNfZ0MN634fSHJX69PZGrXW6xr8fdsADHJjfU7VWO/PwKNAlTuLq+dMjb8AntNaFwForQs8sEYN9Kj/OATIbe2knh4AfbXWefUf52PcoBrRWn8LrMN4R5gHfKK13uUp9WG8cy1WSq2ob5r9TSnVPvu7Na3VGpVSXsATwB1urKshZ36PJqVUAkbgZ7djTQOBQw1eH67/XJPHaK3tQAnQqx1rOp0zNTZ0A/Cfdq3oh1qtUSkVC0RorVe7s7AGnPk9jgRGKqW+VkptUErNdFt1BmdqfBC4Wil1GFgD/Ka1k1q+GJxS6jOgXxNfuq/hC621Vkr9YMqSUmo4EM3372w+VUpN01p/6Qn1YfyOpwETgYPAu8D1wCuuqM9FNf4aWKO1Ptxeb2BdUOOp8/QH/glcp7Vu4757XYdS6mogDphudS0N1b/5eBLj34Qn88HoBvoRxr3mC6XUOK11saVVNXYF8LrW+gml1BTgn0qpsS39O7E8ALTWFzb3NaXUUaVUf611Xv0//KaaXQuADVrrsvrv+Q8wBXBJALigvsPAZq31vvrvWQmciwsDwAU1TgGmKaV+jTFG4aeUKtNaNztgZ0GNKKV6AKuB+7TWG1xVWzOOABENXg+q/1xTxxxWSvlgNLtPtHNdTV3/lKZqRCl1IUbQTtdaV7uptlNaqzEYGAusr3/z0Q/4SCk1V2ud4SE1gvHvOE1rXQvsV0rtwQgEm3tKdKrGG4CZYPSMKKX8MdYJara7ytO7gD4Crqv/+DrgwyaOOQhMV0r5KKV8Md7huKsLyJn6bECoUupUf3UisNMNtZ3Sao1a66u01pFa6yEY3UBvuPLm74RWa1RK+QEf1Nf2vhtqsgEjlFJD6699eX2dDTWs+1IgVdePwLlJqzUqpSYCLwJzLei3brVGrXWJ1rq31npI/d+/DfW1uuvm32qN9VZivPtHKdUbo0ton4fVeBBIqq8xGmNs9FiLZ3XnSPZZjHz3AtYCWcBnQM/6z8cBLzcYHX8R46a/E3jSk+qrf/1jYCuwDXgd8PO0Ghscfz3unwXkzP/nq4FaYHODPzHtXNdsYA/GWMN99Z97COMGRf0/sPeAvUA6EOXO35uTNX6GMSni1O/sI0+r8bRj1+PmWUBO/h4VRlfVzvp/x5d7YI2jMWZEbqn/f31Ra+eUJ4GFEKKL8vQuICGEEO1EAkAIIbooCQAhhOiiJACEEKKLkgAQQoguSgJACCG6KAkAIYTooiQAhBCii/p/K9d8/GvFkz8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VGXa+PHvkx4gBQidQEIoioKvgkgRUHAVEUESFGV5U+giNaEj1QKoqIgg0oPrvuoyg4Liuoj4c11lFVZ0pSb0ngpJCKTN8/tjEoyYBpnkTLk/15WLycyZc+4ZJvc85yn3UVprhBBCuBY3owMQQghR/ST5CyGEC5LkL4QQLkiSvxBCuCBJ/kII4YIk+QshhAuS5C+EEC5Ikr8QQrggSf5CCOGCPIwOoDRBQUE6JCTE6DCEEMKh7N27N0VrXa+87ew2+YeEhLBnzx6jwxBCCIeilDpZke2k20cIIVyQJH8hhHBBkvyFEMIFSfIXQggXJMlfCCFckCR/IYRwQXY71VMIh5KWBv/6F/z0E+zbB1lZ4OEBzZpBp05wzz1w112glNGRCgFI8heico4cgbffhr//3fp7Xh74+ICbG2gNCQmwYwe4u0PjxjBmDAwaZP1iEMJA8gkU4lbk5sI771gTv8UC/v7WBF8arSEpCWbPhk2bYNkyaNWq+uIV4gbS5y/EzcrMhCFD4K23oGZNqF277MQP1u6eGjUgMNB6NvD447BzZ/XEK0QJJPkLcTOuXoWoKGvffmDgzXffKAUBAdbnjRkD33xTNXEKUQ5J/kLcjFdesQ7oBgZWbvDWxwe8vGDsWGt3kBDVTJK/EBW1Zw+895615W6LWTu+vnDtGkyfbh0TEKIaSfIXoqJefNE6i6e8/v2bERAA334LP/9su30KUQGS/IWoiCNH4Ndfwc+vzM1yLRYWnjtHv8REehw+zJBjx/guK6v0JyhlnS20YYONAxaibJL8haiIbdugoKDc7p4CoKGnJ6ubNePr1q15tl49Zpw9y7nc3NKf5O8P27dbp48KUU0k+QtREbt3g7d3uZv5urkxql49Gnt54aYU3f38aOzpyaFr10p/kru7tTspMdGGAQtRNkn+QlTEgQPWGTo3KS0/n1O5ubQo74vDYoHDh28xOCFuniR/IcpjscCVKxUe6M3Ly+PSpUtcycnh+XPn6BcQQEh5yT8/Hy5ftkGwQlSMlHcQojwVmNapgaysLC6lp5N99So5OTms0Bq3WrWYFhxcseO4SVtMVB/5tAlRnqJVufn5f3goLz+flJQUEhMTSUlOxs/Pj5ZhYawB8mrU4Ln8fC6np1PuLH5PT+vCMSGqibT8haiIO++0LvLy9EQD2VeukJ6ezpUrV/D396dp06b4Fo4JvHT+PGcsFv7SogWeBQWcOX2anJwcGjZsiFtpZxFKwe23V9/rES5Pkr8QFdG1KwXffcel1FTSL13CTSkCa9emUePGuBfrrjmfl4c5PR2tNX0SEgDQWjNaa7qfPEnTpk3xuLEeUH6+NfmHhlbnKxIuTpK/EGXQWrNv3z6+PHSIIRcuoAIDady4Mb6+vpTUhm/k6ck/Q0JISkoiJCTkt/0AKcnJHD9x4ndnCcBvVUKlxr+oRvJpE6IEmZmZbN++HZPJhMViITw8nHpJSXjt3WutyVOGvPz8P7TuFVCvXj28fXw4deoUjRo2xN/f3zqTyM0N/vd/q/DVCPFHkvyFKKS15sCBA5hMJnbt2kWXLl2YMWMGd999N0op6NDBWoc/L886QFuK/Px8PEp53N/PDy9PT06fOcO1nBzqeXqinngCWreuqpclRIkk+QuXl52dzd///ndMJhNZWVlERERgMpmoU6fO7zds0wYmTIDXX7dewKWUwdv8Elr+xfn4+BAaEkLyiROc8fGh7pQp1LDlCxKiAmwy1VMp1UcpdVgplaiUmlHGdhFKKa2U6miL4wpRGUeOHGHRokX069eP77//nvHjx7NlyxYiIyP/mPiLjBkDDz0Ely5Zu2xKkJ+Xh2c5/fce167RoHFjtg8aRMzEiZw7d66yL0eIm1Lplr9Syh1YAfwJOAP8qJTaqrU+cMN2fsBE4N+VPaYQtyonJ4cdO3ZgMpm4ePEi4eHhfPjhh9SrV69iO/DwsF63NzYWPv/cemnGG1bvltny19q6krdWLdzi4xnVvj2BH31EdHQ0ixYtokOHDpV8hUJUjC26fToBiVrrYwBKqQ+AAcCBG7Z7AVgCTLXBMYW4KcePH8dsNrN9+3buvPNOYmJi6NatG+63UpvfywuWLwezGebOhfR067V8vbyAwgHfG/v8LRbrrB6t4YEH4OWXoX59FDB48GBCQ0OZOXMmo0aNYtCgQZV+vUKUxxbJvwlwutjvZ4D7im+glLoHCNZaf6aUkuQvqkVubi67du3CZDJx8uRJBgwYwHvvvUfjxo0rv3OlICICuneHv/wF4uMhMxOdn4/PtWt4XL1qvUpXXp71zKCgALp0gREjrM+5YbygU6dOrFu3jtjYWBISEpg6dWqZ4wZCVJbSlbx8nFJqENBHaz2i8Pf/Be7TWo8r/N0N+AqI1lqfUEp9DUzRWu8pYV+jgFEAzZo163Dy5MlKxSZc05kzZzCbzXz66ae0bNmSiIgIevbsWbXJNDcXfvmFnJ9+Ysv8+Qx+9FGUhweEhUH79tafRo3K3c2VK1eYPXs2V69eZcmSJQRKyQdxk5RSe7XW5Y6r2iL5dwHma60fKfx9JoDWelHh7wHAUaDockYNgTSgf0lfAEU6duyo9+wp9WEhfic/P59vvvkGs9nMoUOHePzxxxk4cCDNmjWr1jhOnDhBbGwsZrP5lvdhsVhYuXIl//jHP3j99ddp2bKlDSMUzq6iyd8WTaEfgVZKqVDgLPA0MKToQa31ZSCoWGBfU0rLX4ibdeHCBT7++GM++eQTmjZtSnh4OK+//jpehf3v1S05OZmgoKDyNyyDm5sb48aNo2XLlowZM4bnn3+eBx54wDYBClGo0slfa52vlBoHfAG4A+u11vuVUguBPVrrrZU9hhDFWSwWvvvuO8xmM/v27ePRRx9lxYoVtGjRwujQSE5OrvjMoXL06dOHZs2aMWXKFI4ePcqwYcOsi82EsAGbdIJqrbcD22+4b24p2z5gi2MK15OSksLWrVsxm83UrVuXiIgIXnrpJXzLKbdQnVJSUqhfv77N9te2bVs2bdrElClTSExMZN68efjcwhXFhLiR1PMXds1isfDDDz8wbdo0nnzySS5cuMBrr71GfHw8/fv3t6vED7Zt+RcJCgpi9erVeHp6Mnz4cC5evGjT/QvXJHPJhF26dOkS27Ztw2w24+PjQ0REBPPmzaNmzZpGh1am5ORk2rVrZ/P9enl5sWDBAt5//32ioqJ45ZVXaN++vc2PI1yHJH9hN4rKJ5tMJv71r3/Rs2dPFi5cyJ133ukwfd1V0fIvopRi6NChtGjRgri4OMaPH0///v2r5FjC+UnyF4a7sXxyREQE06ZNs5Y8djBVmfyLdO3alTVr1hAbG0tiYiITJ068tZXKwqVVep5/VZF5/s6tePnkr776iq5duzJo0KDfyic7IK01Xbt2ZdeuXdUyKJuRkcGsWbPQWrNo0SKH/LIUtled8/yFqLCSyiebzebSq2g6kIyMDHx8fKptNo6/vz/Lli3jrbfeIjo6mqVLlxIql4IUFSTJX1SLI0eOYDKZ2LFjBx06dGD8+PF06tQJNzfnmXBWHV0+N3J3d2fy5MmEhYUxatQo5s+fT7du3ao1BuGYJPmLKnPt2jV27NiB2WwmKSmJgQMH3lz5ZAdji9W9t6p///6EhIQwffp0hgwZwtChQx22+0xUD0n+wuZsWj7ZgSQnJ9t0gdfNat++PRs3biQuLo6EhASef/55w8pcCPvnPOfcwlC5ubl88cUXjBo1ijFjxuDr68t7773HsmXL6NGjh9MnfrCu7jX6rKZBgwasXbuWvLw8Ro4cSXJysqHxCPslLX9RKTeWTx48eHDVl0+2U8nJyXYx4Orj48PLL7/Mhg0biIqK4rXXXqNt27ZGhyXsjOv9hYpKKyqfbDKZOHLkCP369WPt2rXVXj7Z3iQnJ3PvvfcaHQZgXRA2bNgwwsLCmDBhAnFxcTz66KNGhyXsiCR/UWE3lk+OiIigV69e0q9cKCkpyfBunxv17NmTJk2aXF8Q9txzzznVDCtx6+RTIMpksVj49ttvmTx5MkOGDCEzM5MVK1awZs0a+vTpI4m/GHvo8y9Jy5Yt2bRpE7/++iuxsbFcuXLF6JCEHZDkL0qUkpLC+vXr6d+/P2vWrOHBBx9k+/btTJ061S7q5tsbi8VCamoqdevWNTqUEgUGBrJixQoaNWpEdHQ0p0+fLv9JwqlJt4+4zmKxsGfPHjZv3syPP/7In/70J1577TVuu+02o0Oze+np6fj7++Pp6Wl0KKXy8PBg+vTpmEwmhg8fzosvvkinTp2MDksYRJK/+EP55EGDBjlE+WR7YsTq3lsVERFBaGgoM2fOJCYmhsGDB8uCMBckyd9FOUP5ZHviSMkf4J577mHDhg3ExsaSkJDA9OnTZfzGxUifv4vJzMzkgw8+YPDgwbz00kvccccdfPLJJ8yfP5927dpJ4r9Fjpb8ARo3bsz69evJyMjg2WefJS0tzeiQRDWSlr8LKF4+edeuXXTp0oUZM2Y4dPlke2OvM33KU6NGDZYsWcKaNWuIiopi6dKltG7d2uiwRDWQ5O/ESiqfbDKZnKJ8sr1JTk7m9ttvNzqMW+Lm5sbo0aMJCwtj7NixzJw5k969exsdlqhikvydUPHyyR07dnTK8sn2Jikpie7duxsdRqU89NBDBAcHExcXR2JiIiNHjpTPjBOT5O8kisonm0wmkpOTnb58sr1xxD7/krRp04ZNmzYxZcoUjh49yvz586lRo4bRYYkqIF/rDu748eMsXbqUxx57jJ07dzJs2DC2bt3KiBEjnCIZOQpH7fMvSZ06dVi1ahW1atVi+PDhnDt3zuiQRBWQlr8Dys3NZdeuXZhMJk6ePMmAAQP4y1/+QqNGjYwOzSXl5+dz+fJlpxpL8fLyYs6cOXz44YfExMSwaNEi7rnnHqPDEjYkyd+BSPlk+5SamkqdOnWcrn9cKcXTTz9NaGgoM2bMYMyYMYSHhxsdlrARyRp2Tson2z9n6e8vzX333cfatWuvVwaNjY2VBocTkP9BO1VUPvnjjz8mODhYyifbMWdP/gDNmjVj48aNzJ49m3HjxrFkyRICAgKMDktUgnOdpzq4ksonr1y5Uson2zlXSP4AtWrV4o033qBt27ZERkZy9OhRo0MSlWCTlr9Sqg+wDHAH1mqtF9/weCwwAsgHkoFhWuuTtji2M0hJSWHr1q2YzWbq1q1LREQEixYtwsfHx+jQRAU400yf8ri5uTFhwgRatmzJmDFjmDNnDj169DA6LHELKp38lVLuwArgT8AZ4Eel1Fat9YFim/0EdNRaZyulngVeAQZX9tiOTMonO4/k5GTuvvtuo8OoVn379qV58+ZMnTqVxMREYmJipFSIg7FFy78TkKi1PgaglPoAGABcT/5a613Ftt8NDLXBcR1Seno627ZtY8uWLfj6+hIRESHlkx1cUlISQUFBRodR7e644w7i4+OvrwieO3eunK06EFv0+TcBil8W6EzhfaUZDnxug+M6DK01P/30E88//zzh4eEcP36chQsX8v777xMRESGJ38G5Sp9/SerVq8eaNWvw8PBg5MiRJCUlGR2SqKBqne2jlBoKdAR6lvL4KGAUUOmpjFpDQgL8+iv89BNcvAgWC9SvD3ffDXfcAbfdBlU5NTszM5PPPvsMk8mE1pqIiAimTZuGv79/1R1UVDtX6vMvibe3NwsWLOC9994jKiqKJUuW0L59e6PDEuWwRfI/CwQX+71p4X2/o5R6CJgN9NRa55S0I631amA1QMeOHfWtBJObC1u3wqpVcLJwSLmgAIqmJRcUwN/+BkpBw4YwahSEh4Otypdordm/fz9ms5ldu3bRtWtXZs6cKeWTnVROTg5Xr151+WmPSikiIyMJCwsjLi6OiRMn0q9fP6PDEmWwRfL/EWillArFmvSfBoYU30ApdTfwLtBHa11l54UHDsCECXD8OHh5gb+/NcmXRGtISYF586xfFMuWQYcOt37sovLJmzdv5sqVK1I+2UUUtfrli92qW7durF69+voVwiZMmIC7u7vRYYkSVLrTQ2udD4wDvgAOAh9prfcrpRYqpfoXbvYqUAv4m1Jqn1Jqa2WPe6PNm+GJJ+DUKQgMhJo1S0/8YH2sRg2oXRuSk+Hpp+Hdd61fCjfjyJEjLFq0iH79+rF7924mTJjAli1biIyMlMTvApKTk11ysLcsoaGhxMfHk5CQwKRJk8jMzDQ6JFECm/T5a623A9tvuG9usdsP2eI4pfnb32DGDGvCv5V1UH5+kJ8Pr7xiTf5jxpS9vZRPFkVcebC3LP7+/ixfvpw333yTqKgo3njjDZo3b250WKIYhy/v8OuvMHv2rSf+Ih4e1i+B116Du+6CLl3+uM3x48cxm81s376ddu3aMWzYMLp16yantS5Mkn/p3N3diYuLo2XLlowYMYIFCxbQtWtXo8MShRw6+efmWvv4oXKJv4iHB3h6wqRJsHMn1Kol5ZNF2Vx9pk9FDBgwgJCQEKZPn87QoUP585//LGMkdsChk/+WLdY+fltOtKhZ0zoQvGxZGn5+f5HyyaJMSUlJtGzZ0ugw7N5dd93Fxo0br1cGnTVrltSqMpjDFnbT2jpA6+lZ9sAuwNmzc0hIeITDh3tw9Gg4ly59XMo+NZmZGaSnn2XJkmTy82Ht2rWsXLmS3r17S+IXfyADvhXXsGFD1q1bx7Vr1xg9ejQpKSlGh+TSHDb5HzoEp09XbH5+UFAMYWHbaNPmG5o2fZ2kpJVcvXrw+uN5eXkkJyeRmJhAWloaQUG1aNiwFV26TJC6+aJM0ud/c3x9fVm0aBH3338/UVFRHDhwoPwniSrhsMl//35r678iXYfe3i1wcys6xVQopcjLO01WVianT5/m+PFjFBRYaNasOc2bh+DvH0B+vhv//W+VvgThBKTP/+YppRg+fDhTpkxh4sSJfPHFF0aH5JIcth9j796bm5N/4cJiLl3ahsVyDaVCuHixIZ6eKQQG1qZp0yYo9fvvQQ8P+OEH6wpgIUqSnZ2N1lpqM92iBx98kODgYGJjYzl69Chjxoxxukth2jOHfafPn/+tZENFNGgwDV/fvwBz8PTsStOmoYSEhBIYGPiHxA/WfV+8aLt4hfMp6vKRmSu3rmXLlmzatIl9+/YxZcoUrly5YnRILsNhk//NslgsZGdfpWHDHtSsmcPVq58ZHZJwcDLYaxuBgYGsXLmSevXqERMTw5kzZ4wOySU4bPIPCrKuyq0od3cPwsLCSE9PIzPzErm5p8vcvqAApDqDKIsM9tqOh4cHM2fO5KmnnmLYsGH8+OOPRofk9Bw2+Ve0CFt+fhoZGf/AYsnG09OT+vUvcPXqLrKymlNQUFDq83Jz4d57bRSscEqS/G1v0KBBvPzyy8yePZuPPvoIfbPFtkSFOWzyv+MOqFhVBUV6+mYSEvpy5MgDJCcvp1mzmfj59eTEiePk5JRYXRovL5CS5KIsMtOnanTs2JENGzZgMplYtGgReXl5RofklBw2+d95J9StC1evlr2dh0dtmjdfTZs2X9OmzTe0aPEhtWuH06BBA4KCgjh58iRZWb+vOpibC97e0LlzFb4A4fCSkpIk+VeRJk2asGHDBlJSUhg7dizp6elGh+R0HDb5u7lZp2GW0nCvkICAQIKDm3L+/HlSU1MA6ylmVhZERtqmXpBwXjLgW7Vq1KjBa6+9xt13301UVBRHjhwxOiSn4rDJH+DJJ62t/8rMDvP1rUFISCgZGRmcO3eO7GwLfn4QE2O7OIVzkj7/qufm5sbYsWMZN24cY8eO5auvvjI6JKfh0Mm/Vi14803Iy7u5mT838vT0JCQkhIICOH06mZkzL1G3ru3iFM5Hay19/tXo4YcfZvny5SxdupTVq1djsViMDsnhOXTyB2vd/QkTIDOzcl8AFosbtWo1plevs8THD2H//v22C1I4nczMTLy9vfHx8TE6FJdx++23s2nTJnbv3s2MGTO4Wt6AnyiTwyd/gPHjrT+ZmZCdffPPv3oVMjJg6FDFli33MGPGdCZOnMjnn39u+2CFU5AuH2PUrVuXVatWUbNmTYYPH8758+eNDslhOUXyV8p6AZb168HXF9LSKjYQnJtr3dbDA5Yvh/nzrQPJPXv2ZNWqVbzzzjssX75cTjHFH8hgr3G8vLyYO3cu/fr1IyYmhn379hkdkkNyiuRfpGdP2LULJk60rgHIzITUVOu/V69af4rfpzWMHm29alffvr+vEFpUc+S///0vsbGxUnNE/I60/I2llGLIkCHMnz+fadOm8fHHJV+jQ5RO2esKuo4dO+o9e/bc8vNzc2H3bvjvf+Hf/4bkZGuyr1sXOnWCdu2ga1cor8s2Pz+fV199lf/85z+8/vrrBAcH33JMwnmsX7+e7Oxsxo0bZ3QoLu/UqVNMnjyZzp07Exsb6/LX1FZK7dVadyx3O2dN/ra2efNmVq9ezYsvvkinTp2MDkcYbMmSJYSEhDB48GCjQxFAVlYWs2bNIj8/n8WLF+Pv7290SIapaPJ3qm6fqlRUc+T555+XmiNCun3sTK1atXjzzTe57bbbiIyM5NixY0aHZPck+d+E4jVHXn75Zak54sJkwNf+uLm5MWHCBEaNGsXo0aP55z//aXRIdk2S/00qqjmSmpoqNUdcWHJyMvXr1zc6DFGCvn378sYbb7Bo0SLi4+PlLL0UkvxvQfGaI5GRkVJzxMVYLBbS0tKoK8vA7dadd97Jxo0b2blzJ3PmzCm1eq8rk+R/i4pqjowfP15qjriYS5cu4efnh6enp9GhiDLUr1+fNWvWADBy5EiSkpIMjsi+SPKvpIcffpi33nqLpUuXsmbNGlkQ5gJksNdxeHt788ILL9C7d2+io6P59ddfjQ7Jbkjyt4G2bdsSHx/Pv/71L2bOnCk1R5ycDPY6FqUUUVFRzJw5k8mTJ/PZZ3L9brBR8ldK9VFKHVZKJSqlZpTwuLdS6sPCx/+tlAqxxXHtSVBQEKtXr8bHx4fhw4dz4cIFo0MSVURa/o6pe/fuvPvuu6xZs4Zly5a5/Fl6pZO/UsodWAE8CrQFnlFKtb1hs+FAuta6JfAGsKSyx7VHXl5ezJ8/n759+xIVFcXPP/9sdEiiCkjyd1wtWrRg06ZNHD58mEmTJpGVlWV0SIaxRcu/E5CotT6mtc4FPgAG3LDNACC+8PZmoLdSxSvpOA+lFEOHDmXevHlMmTKFrVu3Gh2SsDFJ/o7N39+ft956i+DgYKKiojh16pTRIRnCFsm/CXC62O9nCu8rcRutdT5wGXDqeXJdu3ZlzZo1bNy4kaVLl1JQUGB0SMJGJPk7Pg8PD6ZOncrQoUMZMWIEu3fvNjqkamdXA75KqVFKqT1KqT3JyclGh1NpISEhbNy4kWPHjjFhwgQyMjKMDknYgCR/5zFw4ECWLFnC/Pnz+etf/+pSC8JskfzPAsVLXTYtvK/EbZRSHkAAkHrjjrTWq7XWHbXWHZ3lj6voFDMsLIzo6GhOnDhhdEiikiT5O5e7776bDRs28Omnn/LCCy+Qm5trdEjVwhbJ/0eglVIqVCnlBTwN3NjRvRWIKrw9CPhKu9BXrLu7O7GxsURHRzNy5Ei+++47o0MStyg/P5+MjAzq1KljdCjChho1asS6devIyspizJgxpKb+oW3qdCqd/Av78McBXwAHgY+01vuVUguVUv0LN1sH1FVKJQKxwB+mg7qC/v3789prr7Fw4ULee+89lzrFdBZpaWnUrl0bNze76jEVNuDr68vixYvp0qULkZGRHDp0yOiQqpSHLXaitd4ObL/hvrnFbl8DnrTFsRzdXXfdxcaNG4mNjSUxMZHZs2fj5eVldFiigqTLx7m5ubkxcuRIwsLCGD9+PFOnTuXhhx82OqwqIc0XAzRs2JB169aRk5PDqFGjSElJMTokUUGyutc19OrVixUrVvD222+zcuVKp1wQJsnfIL6+vixatIj777+fyMhIDhw4YHRIogKk5e86WrduTXx8PD/99BNTp04lOzvb6JBsSpK/gZRSjBgxgqlTpzJhwgS++OILo0MS5ZDk71pq167NypUrqVOnDtHR0Zw9e+NERsclyd8OPPjgg7zzzjusWLGCFStWOOUpprOQ5O96PD09mTVrFoMGDSImJgZ7urZ4ZUjytxOtWrUiPj6en3/+mSlTpnDlyhWjQxIlkOTvmpRSPPXUU7z00kvMmjWLzZs3Gx1SpUnytyO1a9dmxYoVBAUFERMT41SnmM5Ckr9ru/fee1m/fj0fffQRixYtIj8/3+iQbpkkfzvj6enJzJkzne4U01lI8hdNmzZlw4YNJCcnM3bsWC5dumR0SLfEJvP8hW0VnWKGhoYya9YsRo4cyZNPyjIJo+Xm5nL16lUCAgKMDkUYrGbNmrz22musWrWKyMhIli5dSqtWrcp9XkEBJCTAwYNw+DBkZICXF4SGQtu21p+aNavhBSDJ364VnWIWLQibMmWKXDfWQCkpKQQFBeGk1cjFTSq6jndYWBhjx45l9uzZPPDAAyVum5YGJhOsWQOXL4PFAvn54OYGWoNSUPSnPXAgREdDmzZVHH/V7l5UVtEpZlJSEs8995zDnmI6A+nyESV55JFHWLZsGa+++irr1q37XdkWreGzz+CBB2DxYsjOBj8/CAiAunWhdm2oU8f6b61a4OMDH30E/frBwoVQlVeEleTvAGrWrMnSpUtp3749kZGRJCQkGB2SS5LVvaI0Rdfx/vbbb69fxzs3FyZNggkTrC392rWtyb0sHh6/fRHEx0OfPnDmTNXELMnfQbi5uTFu3DjGjh3Ls88+y9dff210SC4nKSlJWv6iVEFBQbz77rv4+PgwbNgohg3LZts2ayu/vKR/I3d365fAuXMQHg5VMfFPkr+D6dOnD2+99RavvPLKH04xRdVKSUmR5C/K5OXlxbx583B3n4i7E/XtAAAa9klEQVTZfBkfn2wqUwA2IADS02HYMMjLs12cIMnfIRWdYn7zzTfMmjWLa9euGR2SS0hOTqZ+/fpGhyHs3MGDin//uyNNmvhx5syZSo/T+fvD0aOwapWNAiwkyd9B1atXjzVr1uDp6cnw4cO5ePGi0SE5PenzFxUxt7CYfUBALUJCmpOamsLFixeAWztLV8o6BvD222DLq9tK8ndgXl5eLFiwgEceeYSoqCh++eUXo0NyajLbR5QnIQF+/tnaWgfw8vImNDSUnJxcTp06RUFBAQBpaR9x/Pj/cuhQF86dm1/ufj08rGsEbFlVQpK/g1NKERkZyZw5c4iLi2Pbtm1Gh+S0JPmL8mzebJ3ZU3wpiJubO82aBePt7cOJE8fJycnBwyOIoKDhBAT0L31nN/Dxsc4AshVJ/k6iW7durF69mvXr1/P6669fb2EI28jOzsZisVCzupZfCof0r3+Bt3dJjygaNGhAUFAQJ0+exM2tE35+D+DuXvHV4t7ekJJiXTBmC5L8nUhoaCjx8fEkJiYyadIkMjMzjQ7JaRTN9JHVvaI0BQVw5Ehpyd8qICCQ4OCmnD9/jtTUFG5mHEApa/fPwYOVjxUk+Tsdf39/li9fTvPmzYmKiuLkyZNGh+QUpMtHlOfKFWuXj7t72dv5+tYgNDSUjIyMm54JZLFAamolgixGkr8Tcnd3Z8qUKURGRjJixAi+//57o0NyeElJSTLTR5SpotdgysvLJS0tjby8vFtap2OrHl0p7ObEnnjiCUJCQpg+fTqRkZEMGTJEui1ukczxF+WpUcNay6eoUNvvaTIzM0lPv8S1a1cJCAgkJCSES5fqkJ+fVOFjKGWtDWQL0vJ3cv/zP//Dxo0b+eyzz1i4cCG5ublGh+SQZHWvKI+XFwQHQ07Ob/fl5eWRnJxEQkICaWlpBAQE0KpVK+rXD8LDQwEWwILFkovW5TfptYbWrW0TryR/F9CoUSPWrVvHlStXGDNmDKm26jR0IdLnLyqiQwe4elWTlZXJ6dOnOX78GAUFFpo1a0bz5iEEBASglBspKes4fLgrqakbuXx5O4cPdyUlZV2Z+87Ptw74Nm1qm1il28dF+Pr6snjxYtauXXv94hO33Xab0WE5DFndK8qTkpKCp+duLly4G1/fXAIDa9OkSRPcSijuU6/eKOrVG3VT+8/MhMGDqVStoOIk+bsQNzc3Ro0aRcuWLRk3bhzTpk3j4YcfNjoshyAtf1ESi8XCjz/+iMlk4scff6R37z/RqlUv8vJq4Otru+NobU36kZG226ckfxfUq1cvmjZtSlxcHImJiYwZM6bE1omw0lpLy1/8Tnp6Otu2bcNsNlOjRg0iIiKYN28eNWvWpF07iI21rsi11fyKy5ehVy+w5cm6/MW7qNatWxMfH89//vMfpk6dSnZ2ttEh2a3MzEy8vLzwtWVTTjgcrTX/+c9/mDVrFuHh4Zw4cYIXX3yR999/n4iIiOurv/v3h549wVYX3bt61Xpd35dfts3+ikjyd2F16tThnXfeoXbt2sTExHDu3DmjQ7JLMtPHtWVkZPDXv/6VJ598ksWLF9O+fXs++eQT5s6dy5133vmH6dNKwauvQqNG1hZ7ZVy7Brm51oqetj7xrFTyV0rVUUrtUEolFP5bu4Rt/kcp9b1Sar9S6hel1ODKHFPYlqenJ7NnzyY8PJzo6Gj27t1rdEh2R/r7XY/Wml9++YV58+YxYMAADh48yOzZs/nwww95+umn8S8q21mKunWt1+Jt1Mh6MZaKLgD77fiQkWG9gMuqVdC9eyVeTCkq2+c/A9iptV6slJpR+Pv0G7bJBiK11glKqcbAXqXUF1pruRK5nVBKMXjwYEJDQ5k5cyajR48mIiLC6LDshly+0XVkZWXx+eefYzKZyM3NJTw8nMmTJxMYGHjT+2rcGD79FBYsgI8/tpZ98PMrfxzg2jVrV0+LFrBsGbRte4svphyVTf4DgAcKb8cDX3ND8tdaHyl2+5xSKgmoB0jytzOdOnVi7dq1xMXFkZCQwJQpU/DwkDkB0vJ3fgcOHMBsNrNz507uu+8+4uLi6NChQ6UnQvj7w9KlMHAgvPkm7Nv3W/0fb+/fpm3m5loXh3l6Wq/dGxcHf/6zdeFYVansX3YDrfX5wtsXgAZlbayU6gR4AUcreVxRRZo1a8aGDRuYPXs2zz33HEuWLLmlVo8zSUlJoXnz5kaHIWwsOzubf/zjH5hMJi5fvszAgQPZvHkzdevWtfmx7r/f+pOYCN98Az/8YK3OmZ1tTfjBwdC5M3TqBF262G4uf1nKTf5KqS+BhiU8NLv4L1prrZQqtUqRUqoR8B4QpbUusQdMKTUKGAXWJCSMUatWLd544w3efvttoqKieP311wkLCzM6LMMkJyfTsWNHo8MQNpKQkIDZbOaLL77g7rvv5tlnn6Vz587VMt25ZUvrz7BhVX6ocpWb/LXWD5X2mFLqolKqkdb6fGFyL7FCkVLKH/gMmK213l3GsVYDqwE6dux4axe8FDbh5ubGhAkTaNmyJaNHj2bu3Ln06NHD6LAMIXP8HV9OTg47duzAbDZz4cIFnnjiCT744AOXLtZX2W6frUAUsLjw309u3EAp5QVsATZprW14BUpRHfr27Uvz5s2ZOnUqiYmJxMTEuFxlUOnzd1wnTpzAbDbz2WefcccddxAVFcX999+Pe3lF911AZZP/YuAjpdRw4CTwFIBSqiMwRms9ovC+HkBdpVR04fOitdb7KnlsUU3uuOMONm7cyJQpU0hMTGTu3Ln4+PgYHVa1sFgspKamVkk/sKgaubm5fP3112zevJmTJ08yYMAA3nvvPRo3bmx0aHZF3crFBKpDx44d9Z49e4wOQxSTk5PDCy+8wMmTJ1m6dKlLnDKnpaXx1FNP8eWXXxodiijHmTNnMJvNfPrpp7Rs2ZKIiAh69OiBp6en0aFVK6XUXq11uYNUMo9PVJi3tzcvvPACmzZtIioqildeeYV27doZHVaVktW99i0/P59vvvkGk8nE4cOHefzxx1m7dq1MGKkASf7ipiiliIqKokWLFsTGxjJx4kT69etndFhVRhZ42afz58/z8ccf88knnxAcHExERARvvPEGXlU5Md7JSPIXt6R79+68++67xMbGkpiYyIQJE5yyMqgM9toPi8XCt99+i9ls5pdffqFv376sXLmSFi1aGB2aQ3K+v1ZRbVq0aEF8fDyHDx9m0qRJZGZmGh2SzUnyN15SUhJr1qzh8ccfZ/369fTu3Zvt27czZcoUSfyVIMlfVEpAQADLly8nODiY6OhoTp06ZXRINiV9/sawWCx8//33TJkyhcGDB5OSksIbb7zBxo0befzxx11mtllVkm4fUWkeHh5MnTqVLVu2MGLECBYuXEjnzp2NDssmkpOTuf/++40Ow2WkpaWxdetWzGYzfn5+REREsHDhQmrUqGF0aE5Hkr+wmYEDB9K8eXNmzpxJVFQUzzzzjMMvCJPVvVVPa83evXsxmUx8//339OrVi8WLF3P77bc7/OfHnknyFzZ1zz33sGHDhuuXiJwxY4ZDz8CQPv+qc/nyZT799FNMJhMeHh4MGjSIWbNm4efnZ3RoLkH6/IXNNW7cmHXr1pGZmcmYMWNIS0szOqRbUlBQwOXLl6lTp47RoTgNrTU///wzc+fOZcCAARw+fJh58+bx4Ycf8tRTT0nir0bS8hdVokaNGixZsoS1a9cSGRnJ0qVLadOmjdFh3ZTU1FQCAwOlDowNZGVlsX37djZv3kx+fj4RERHExcUREBBgdGguS5K/qDJubm6MGjWKFi1a8NxzzzFjxgweeqjUIrF2JyUlxSVKWFQVrTUHDx5k8+bN7Nq1i86dOzNt2jQ6dOggffl2QJK/qHIPPfQQwcHBxMXFcfToUUaOHOkQC8KSkpJksPcWZGdn8/e//x2TyURmZibh4eGYTCbpPrMzkvxFtWjTpg2bNm26Xhl0wYIFdj99TwZ7b86RI0cwmUzs2LGDDh06MG7cOO677z6H+KJ3RfK/IqpNnTp1WLVqFX5+fgwbNoxz584ZHVKZJPmX79q1a2zbto3o6GgmTZpEUFAQH3zwAa+++ipdunSRxG/HpOUvqpWXlxdz5szhgw8+ICYmhkWLFnHPPfcYHVaJUlJSuOuuu4wOwy4dO3YMs9nM9u3badeuHcOGDaNbt24yOO5AJPmLaqeU4plnniE0NJQZM2YwZswYwsPDjQ7rD6Tl/3u5ubns3LkTs9nM6dOn6d+/P++//z6NGjUyOjRxCyT5C8N07tyZtWvXMnnyZBITE4mNjcXDw34+krK61+rUqVNs2bKFTz/9lNatW/PMM8/Qo0cPu/q/EjdPOuSEoZo1a0Z8fDxnzpxh/PjxXL582eiQrnPlln9+fj47d+5k7NixDB8+HKUU69evZ8WKFfTq1UsSvxOQ/0FhuFq1avHmm2/y9ttvExUVxeuvv254qd7c3Fyys7NdbhHSuXPnrl8kpXnz5kRERPDggw86dIkOUTJJ/sIuuLm5MWHCBMLCwhg9ejRz586le/fuhsWTkpJCUFCQS8xWKSgo4Ntvv8VkMrF//34ee+wxVq1aRWhoqNGhiSokyV/Ylccee4xmzZoxffp0jh07RmRkpCGrQV2hyycpKYmPP/6Yjz/+mIYNGxIeHs6rr76Kt7e30aGJaiDJX9iddu3asXHjRuLi4khISGDOnDnVnpCcdbDXYrGwe/duTCYTP/30E4888gjLli2jVatWRocmqpnzn9MKh1S/fn3Wrl2L1pqRI0eSlJRUrcd3tpZ/amoq69ev54knnuCdd96he/fufPrpp0yfPl0Sv4uSlr+wW97e3rz44ots3LiR6OhoXn31Ve64445qObYzJH+LxcKePXswmUz88MMP9O7dm8WLF9O2bVujQxN2QJK/sGtKKWJiYggLC2PSpElMnjyZvn37VvlxU1JSCAsLq/LjVIVLly6xbds2tmzZgpeXF+Hh4cyZM4datWoZHZqwI5L8hUPo0aMH77777vUFYePGjavSmTiO1vLXWrNv3z5MJhPffvstPXv2ZP78+bRr107KJ4sSSfIXDqNFixZs2rSJ6dOnM3nyZF566aUqa806yoBvRkYG27dvx2w2U1BQQEREBNOmTcPf39/o0ISdkwFf4VACAgJ4++23adKkCdHR0Zw6dapKjmPPLX+tNb/++isLFiygf//+/PLLL0yfPp3NmzczZMgQSfyiQqTlLxyOh4cH06ZNw2w2M2LECF588UU6depks/1nZ2dTUFBgd33k2dnZfP7555hMJq5cuUJERATjx4+Xi6SIW1Kp5K+UqgN8CIQAJ4CntNbppWzrDxwAPtZaj6vMcYUACA8PJyQkhJkzZxITE8PgwYNt0r+dkpJCvXr17Kav/PDhw9cvknLvvfcyceJE7r33XpdYfSyqTmVb/jOAnVrrxUqpGYW/Ty9l2xeAbyp5PCF+55577mHDhg3ExsaSkJDAjBkz8PT0rNQ+7aHL5+rVq+zYsYPNmzeTmppKeHg4H330keFxCedR2abDACC+8HY88ERJGymlOgANgH9U8nhC/EHjxo1Zv349ly9f5tlnnyUtLa1S+zNysPfo0aO88sorPPbYY+zatYtRo0axbds2hg8fLolf2FRlW/4NtNbnC29fwJrgf0cp5QYsBYYCD1XyeEKUqEaNGrzyyiu8++67REVFsXTpUlq3bl2xJ6emwsGDkJgIWVkE7t1LZ4BDhyAsDCp5JlGe3NxcvvzyS0wmE+fOnWPAgAH89a9/pWHDhlV6XOHayk3+SqkvgZI+hbOL/6K11kopXcJ2Y4HtWusz5fWhKqVGAaPAWuddiJvh5ubGs88+S1hYGGPHjmXWrFn06tWr5I1zc+HLL+Hdd2H/fvDwgJwc0JrbL1+mrbc3fPed9f6nn4Y//xlsXGb65MmTmM1mPvvsM2677TaGDh1K9+7dpVa+qBZK65LydQWfrNRh4AGt9XmlVCPga611mxu2eR/oDliAWoAXsFJrPaOsfXfs2FHv2bPnlmMTru3QoUPExcUxYMAARowY8fvB0X37YOJEOHcO3NygVi0o1jA5c/Ysfn5+BPj7Q14eZGVZtxs2DCZPBh+fW44rLy+Pr7/+GpPJxLFjx3j88ccZOHAgTZs2rczLFeI6pdRerXXHcrerZPJ/FUgtNuBbR2s9rYzto4GOFZntI8lfVFZqaipTp04lKCiIBQsW4OvjAytWwLJl1mTu51fi806cPEm9evWoWaPGb3cWFEBmJjRtCu+9B8HBNxXL2bNn2bJlC1u3biU0NJSIiAgeeOABuUiKsLnqSv51gY+AZsBJrFM905RSHYExWusRN2wfjSR/UY1yc3NZtGgRhw8dYlWrVvi//7416ZfRtZKYmEhws2Z4l5SYL1+GwEAwm8v9AigoKOCf//wnJpOJAwcO8Nhjj12fnipEVamW5F+VJPkLW9Fa801cHK1WrSIwOJgapbT4ATRw+NAhWrduXfo8+suXrWcAf/87lHCdgYsXL16/SEqjRo0YNGgQvXv3loukiGpR0eQvI0vC6ankZHr+4x9cadSIM+fPU6+ggNqBgSVua7FYUEqVvYAqIABOn7Z2H02bdv153333HWazmX379tGnTx+WL19Oy5Ytq+IlCVFpkvyF81uyBK5epWbt2jSvWZPTp0+Tc+0aDRo25Mb5Z/l5eXhUZGpnrVqwdi1pDz/Mlr172bJlC3Xq1CEiIoKXXnoJX1/fKnkpQtiKdPsI55aeDp07Q40a4O4OQIHFwtkzZ9BA0yZNcC+8P6OggOdPneL7jAwa1KzJuHr16BMQ8IddauDKlSvknD+PqU4dkocPJzw8nNtvv70aX5gQJZNuHyEAtm+3ztQpTPAA7m5uBDdrRtLFixw/cYLgpk3x9vZm8YULuFss/F9QEFm1azPx9Gla+/jQorCvPr+ggEuXLnEpPR03NzdqBwQw3McH95kzrbOHhHAgkvyFc/v229/N4S+igAYNGuDt48PJkycJbNiQrzIzWRUYiJ+bGy1r1KCnnx+fXr7M8Fq1SE9P50pWFn5+fjRu0gRfX19rl1FmJpw4YfMFYEJUNUn+wrn99FOZi7ICAwLw8vLim5MnseTn0wDw9PCgoKCARnl5/JCWxoWsLAIDA2nUsOH1LqLfOXhQkr9wOJL8hXNLTrbOzilDDV9f6jRujPfx46Snp+Pj40NycjKeHh7g60uLFi3+MDB8XW4uXLxo87CFqGqS/IVz07rEbp8bBXh5YfH2pm6dOrgpRe06dfjx0iUCs7NLT/xF+y8osFm4QlQXSf7Cufn6WpNzOcXSmnl5UQDkBAbSrHBl75GcnOuDvaVyd4eaNW0UrBDVR6YoCOfWpo21Wmc5fN3c6OXnx6rkZK5aLPycnc3/y8zksXK6jPD0hFatbBSsENVHkr9wbvfdB9euVWjTGQ0bkmOx8KcjR5h19iwzGzYsu+VvsVirft52m42CFaL6SLePcG59+sDatRXq+/d3d2fpzVTrzMy0frmUUStICHslLX/h3Nq3h9BQuHLFtvstWhk/YkTZ2wlhpyT5C+emFEyfbu2esVhst9+MDOvc/h49bLdPIaqRJH/h/Hr3hkcftZZitoW8POuXyltvlTuLSAh7JclfuIYXXrDW4K/sF0B+vvWyjs8/b51JJISDkuQvXEPt2vDBB9C4sbXS5610AWVnWwd5p02DyEjbxyhENZLkL1xHo0bwySfQr5/1DCAr67eB27Lk51u/MLy9YfVqGD266mMVoopJ8heuJTDQegWutWuts4AyMiA11fpFUDQoXFBgXRtw6ZL1SyInB/78Z/jqK+v4gRBOQEarhGt68EF44AHYvx++/BJ274ZDh6xTQt3coEED6NABunWDhx+2XrlLCCciyV+4LqXgzjutP0K4GOn2EUIIFyTJXwghXJAkfyGEcEGS/IUQwgVJ8hdCCBckyV8IIVyQJH8hhHBBSldkebsBlFLJwEkb7zYISLHxPp2NvEcVI+9T+eQ9qhhbv0/Ntdb1ytvIbpN/VVBK7dFadzQ6Dnsm71HFyPtUPnmPKsao90m6fYQQwgVJ8hdCCBfkasl/tdEBOAB5jypG3qfyyXtUMYa8Ty7V5y+EEMLK1Vr+QgghcPLkr5R6Uim1XyllUUqVOpqulOqjlDqslEpUSs2ozhiNppSqo5TaoZRKKPy3dinbFSil9hX+bK3uOI1S3mdDKeWtlPqw8PF/K6VCqj9KY1XgPYpWSiUX+/yMMCJOIyml1iulkpRSv5byuFJKvVX4Hv6ilLqnqmNy6uQP/AqEA9+UtoFSyh1YATwKtAWeUUq1rZ7w7MIMYKfWuhWws/D3klzVWv9P4U//6gvPOBX8bAwH0rXWLYE3gCXVG6WxbuLv58Nin5+11RqkfdgI9Cnj8UeBVoU/o4B3qjogp07+WuuDWuvD5WzWCUjUWh/TWucCHwADqj46uzEAiC+8HQ88YWAs9qYin43i799moLdSSlVjjEZz9b+fCtFafwOklbHJAGCTttoNBCqlGlVlTE6d/CuoCXC62O9nCu9zFQ201ucLb18AGpSynY9Sao9SardSylW+ICry2bi+jdY6H7gM1K2W6OxDRf9+Igq7MzYrpYKrJzSHUu15yOEv46iU+hJoWMJDs7XWn1R3PPaorPeo+C9aa62UKm36V3Ot9VmlVAvgK6XUf7XWR20dq3BK24D/01rnKKVGYz1T6mVwTC7P4ZO/1vqhSu7iLFC8JdK08D6nUdZ7pJS6qJRqpLU+X3iamVTKPs4W/ntMKfU1cDfg7Mm/Ip+Nom3OKKU8gAAgtXrCswvlvkda6+Lvx1rglWqIy9FUex6Sbh/4EWillApVSnkBTwMuM5sF62uNKrwdBfzhbEkpVVsp5V14OwjoBhyotgiNU5HPRvH3bxDwlXatxTPlvkc39F33Bw5WY3yOYisQWTjrpzNwuVh3bNXQWjvtDzAQa99ZDnAR+KLw/sbA9mLb9QWOYG3JzjY67mp+j+pineWTAHwJ1Cm8vyOwtvB2V+C/wM+F/w43Ou5qfH/+8NkAFgL9C2/7AH8DEoEfgBZGx2yH79EiYH/h52cXcJvRMRvwHv0fcB7IK8xJw4ExwJjCxxXWWVNHC//GOlZ1TLLCVwghXJB0+wghhAuS5C+EEC5Ikr8QQrggSf5CCOGCJPkLIYQLkuQvhBAuSJK/EEK4IEn+Qgjhgv4/Mo3tKUZbboYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -528,6 +560,56 @@ "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Checking that the full Hamiltonian made by ```docplex.get_qubitops``` gives the right cost" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.5\n", + "maxcut objective: -4.0\n", + "solution: [0. 1. 0. 1.]\n", + "solution objective: 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlclWX+//HXdVhFQFTcN1wrK/Nb6pgtU1PNODZftXLKyq8L9gt1mlIrK52sNJXMBRUUUNAsGzNzy5y0srLSFiW1XHNFUEcRRFQQ4Vy/P24wRJYDnHPus3yejwcPz3Jz358r7X2ucy+fW2mtEUII4V0sZhcghBDC+ST8hRDCC0n4CyGEF5LwF0IILyThL4QQXkjCXwghvJCEvxBCeCEJfyGE8EIS/kII4YV8zS6gPOHh4ToiIsLsMoQQwq1s27YtQ2vdoLLlXDb8IyIi2Lp1q9llCCGEW1FKHbVlOZcNf+FdCgogNRXOnweLBRo0gIYNQSmzKxPCM0n4C9NkZ8Pq1bBsGezfbwS9xQJaGx8GtWtDly4wcCDceSf4+JhdsRCeQ8JfON2lSzB7NixYAIWF4OcHwcFG8Bcr/gDYtAm++Qbq1YPoaLjnHtPKFsKjyNk+wqn27YOePSE+HmrVgrAwY4ZvKfUvUSnjQ6FOHQgNhXPnYOhQGDkSLl40p3YhPImEv3CanTvhkUcgLQ3q1gXfKnzvDAoyPgg+/hgGDIALFxxXpxDeQMJfOMWxY0ZoFxQYIV4dFovxTWHHDhg2DKxW+9YohDeR8BcOZ7XC6NHG7prg4JqtSynjA2DzZli61D71CeGNJPyFw330EaSkVH/GX5pSxnGCiRPh1Cn7rFMIbyPhLxzKaoU5cyAgoOJz9jMzl3H48P+xd+/tHD/+eqXr9feH/HzjNFEhRNVJ+AuH2roVTp40zuypiK9vOOHhQ6lTp7fN6w4KgqQk4ziCEKJq7BL+SqlkpdQppdSv5byvlFKzlVIHlFI7lVK32mO7wvVt3gyXL1d+pW5o6J8ICbkHHx/b9w0FBBjHEQ4dqmGRQnghe838FwE9K3j/r0D7op+ngXl22q5wcd9/b4S0o2gNe/Y4bv1CeCq7hL/WehOQWcEifYDF2vA9EKaUamKPbQvXdvCgsX/eUfLzjW0IIarGWfv8mwHHSjxPK3pNeLj8/Guv3i1PYWEhZ89mkZ19losXbbuKy2KRC76EqA6XOuCrlHpaKbVVKbX19OnTZpcj7MDf37aLsQoLC0lNPYqPjw8BAQEcP36Co0ePcOHCeUCX+3tWa+UHk4UQ13JW+KcDLUo8b1702lW01ola6y5a6y4NGlR6LwLhBtq0MWb/FSksLODo0UMEBfkRElKbwMAA2rRpQZ06ofz3v//l8OHD5OTkUNaHgL8/tG3rmNqF8GTOCv81wMCis366A9la6xNO2rYwUbduRhfP8hQWFpCamgqsJjPzIc6ceYfs7HXs23cHly8vp02bNoSHh5ORcZpDhw5x7lw2JT8ElIIbbnD4MITwOHZp6ayU+jdwDxCulEoDXgP8ALTW8cA6oBdwALgIDLHHdoXru/NOo4On1tee7mnM+FMJDg6mYcPngRfKXEdISCghISGcP3+BM2cyOHXqNOHh9QkMrEOtWhbatXP8OITwNHYJf63145W8r4F/2GNbwr107QqNGkFmpnFRVjEj+I8SEhKCsYuvslt2KYKDgwkODubixQtkZGRw/Hguf//7SQoLb8TX14HnkwrhgVzqgK/wPBYLPPOMsetHF+2tqXrwXy0oqDaNG7eiceP61Kq1ht69e7N48WIuSqN/IWwm4S8c7tFHoVMn47aNBQU1C34wPkQuXIDXXgsgPv514uLi2Lt3L7179yYxMZFz587ZfxBCeBgJf+FwFgvMnAl+fgUcOnSSkJBQGjRoSHWD/+xZY3fS//2f8Vq7du2YPHkyycnJnDx5kr59+zJ79mwyMyu67lAI7ybhL5wiNDST5s3HUbt2bQICqncar9UKWVnQsSPMn3/txWMtW7Zk/PjxLFmyhLy8PPr168fUqVM5efKkHUYghGeR8BcOd+bMGaKionj00XZ8/nldGjY0Zu+FhbavIzfX2G3Us6dxE5eQkPKXbdKkCWPGjOHDDz8kMDCQJ554gokTJ3Ls2LHyf0kIL6O0Lv/qSTN16dJFb9261ewyRA1lZGQwbNgwevbsyVNPPQUYQT59OixebMzm/f0hMPDamXxBgdG1U2vjRjCTJ8MDD1TeIbS07Oxsli5dyrJly+jevTuRkZG0lSvDhIdSSm3TWnepdDkJf+EoGRkZREVF8eCDDxIZGXnN+5mZsGKFcUOWQ4fAx+f3D4CCAvDzg9tug0GD4J57qnbD97JcuHCB5cuXs2TJEjp16kRkZCQdO3as2UqFcDES/sJUp0+fJioqir/97W9lBn9p+flw+DCcP298AISHQ/PmVZ/l2yIvL49Vq1axePFi2rRpQ2RkJLfeKreYEJ5Bwl+Y5tSpUwwbNozevXszePBgs8spV35+PuvWrWPhwoU0bNiQyMhIunfvjnLEJ44QTiLhL0xx6tQpoqKieOihhxg4cKDZ5diksLCQDRs2sHDhQgICAhg6dCh33303Flt7UQvhQiT8hdO5Y/CXZLVa+eqrr0hOTiY/P5/IyEgeeOABfHx8zC5NCJtJ+Aun+u9//0tUVBT9+vVjwIABZpdTI1prtmzZQnJyMhkZGQwePJgHH3wQPz8/s0sTolIS/sJpTp48WXQe/6M8+eSTZpdjVykpKSQlJXHkyBEGDhxI3759CXDkTYmFqCFbw192aooaOXHiBFFRUTz22GMeF/wAt956K3Fxcbz99tv8+OOP0kROeAwJf1FtxcHfv39/nnjiCbPLcaiOHTsyffp0aSInPIaEv6iW48ePExUVxRNPPMHjj1d4OwePIk3khKeQ8BdVdvz4cYYNG8aAAQPo37+/2eWYQprICXcn4S+qJD09naioKAYMGMCjjz5qdjmmkyZywl1J+AubFQf/oEGDJPhLqV+/Ps8++ywrV66kYcOGDB48mHHjxnHw4EGzSxOiTBL+wiZpaWlERUUxZMgQ+vXrZ3Y5LqtOnTpERUWxZs0aOnTowPDhw3nhhRfYvXu32aUJcRU5z19U6tixYwwbNoyhQ4fy8MMPm12OW5EmcsLZ5CIvYRepqakMHz6cp556ioceesjsctyWNJETziLhL2osNTWVYcOG8fTTT9O3b1+zy/EIJZvIBQYGEhkZKU3khF1J+IsaOXr0KMOHD7/SmlnYlzSRE44i4S+qTYLfeUo3kRsyZAi9evWSJnKi2iT8RbUcOXKEESNGMHz4cP73f//X7HK8ijSRE/Yg4S+q7PDhw4wYMYJnnnmGBx980OxyvNauXbtISkpi165dPPnkk/Tr14+goCCzyxJuQrp6iio5dOgQI0aM4J///KcEv8luvPFGZsyYIU3khENJ+Iurgr9Xr15mlyOKSBM54UgS/l7u4MGDjBgxgpEjR0rwuyhpIiccQcLfix04cIARI0YwatQoevbsaXY5ohLSRE7Yk4S/l/rtt9/4xz/+wfPPP89f/vIXs8sRVSBN5IQ9SPh7of379/PMM8/w/PPP8+c//9nsckQ1SRM5URNyqqeXKQ7+MWPGcP/995tdjrAjaSInQM7zF2UoDv6XXnqJ++67z+xyhINIEznvJuEvrrJ3716effZZXn75Zf70pz+ZXY5wAmki550k/MUVxcH/yiuvcO+995pdjnAyaSLnXST8BQB79uzhueeeY+zYsdxzzz1mlyNMJE3kvINT2zsopXoqpfYppQ4opV4u4/3BSqnTSqntRT9P2WO7omK7d+/mueeeY9y4cRL8AqUUPXr0YMGCBYwfP54NGzbQt29fPvjgAy5dumR2ecLJajzzV0r5APuBB4A04Cfgca317hLLDAa6aK2fsXW9MvOvmd27dzNy5Ej+9a9/cffdd5tdjnBR0kTO8zhz5t8NOKC1PqS1zgeWAn3ssF5RTbt27eK5556T4BeVkiZy3sse4d8MKHl9eVrRa6U9opTaqZRarpRqUdaKlFJPK6W2KqW2nj592g6leZ9ff/2VkSNHMn78eAl+YTNpIud9nHXO18dAhNa6E/AZ8E5ZC2mtE7XWXbTWXRo0aOCk0jzHzp07GTVqFK+//jp33XWX2eUINyRN5LyHPcI/HSg5k29e9NoVWuszWuviI0oLgNvssF1Rws6dO3n++ed54403uOOOO8wuR7g5aSLn+ewR/j8B7ZVSrZVS/kB/YE3JBZRSTUo87Q3sscN2RZEdO3ZcCf4ePXqYXY7wIGU1kfvXv/4lTeQ8QI3DX2tdADwDrMcI9WVa611KqQlKqeK7fz+rlNqllNoBPAsMrul2hWH79u288MILTJgwQYJfOEzJJnLt2rWTJnIeQC7ycmM///wzY8aMYeLEiXTv3t3scoQXkSZyrkuu8PVwKSkpjBkzhsmTJ9OtWzezyxFeKj8/n08++YRFixZJEzkXIeHvwVJSUnjppZeYNGmSBL9wCdJEznVI+Huobdu28dJLLzFlyhS6du1qdjlCXEWayJlPwt8Dbd26lZdffpno6Gi6dKn071YI00gTOfNI+HuYn376ibFjxxIdHc1tt8llEsJ9pKSkkJSUxJEjRxg4cCB9+/YlICDA7LI8loS/B/nxxx8ZO3YsU6dOlTMqhNuSJnLO4dSWzsJxfvzxR8aNGyfBL9yeNJFzLRL+Luz777+XGb/wONJEzjVI+LuoLVu28OqrrzJt2jT+53/+x+xyhLA7aSJnLgl/F7R582bGjx/PtGnT6Ny5s9nlCOFQ0kTOHBL+Lmbz5s289tprTJ8+nVtuucXscoRwGmki51wS/i7ku+++uxL8nTp1MrscIUwhTeScQ071dBHffPMNEyZMYMaMGdx8881mlyOEyyjZRK5t27ZERkbKcbAKyHn+bmTTpk28+eabzJw5kxtvvNHscoRwSdJEzjYS/m5i06ZNTJw4kVmzZtGxY0ezyxHC5UkTuYpJ+LuBr7/+mkmTJhETEyPBL0QVlW4iN3ToUB544AGv/xCQ8HdxX375JVOmTGHWrFnccMMNZpcjhNsqbiKXlJREZmYmgwcP9uomchL+Lmzjxo1ER0cze/Zsrr/+erPLEcIjaK35+eefvb6JnIS/i5LgF8LxvLmJnDR2c0FffPEF0dHRzJkzR4JfCAeSJnKVk/B3ks8//5y33nqL2NhYrrvuOrPLEcIrSBO58kn4O8GGDRuYOnUqsbGxdOjQwexyhPA60kTuWrLP38E2bNjA9OnTiY2NpX379maXI4QAzpw5w5IlS1i1ahX33nsvgwcPpkWLFvbdyNmzsGcP7N0LWVnGaw0bwvXXGz/BwfbdXhE54OsCPv30U2bOnElcXBzt2rUzuxwhRCnZ2dksXbqUZcuWcfvttzNkyBDatm1b/RVarfDttzB/PmzZAr6+kJ8PWhs/Pj7g5weFhXD//RAZCV26gB2vUpbwN9l//vMfZs2aRVxcXM3+MQkhHO7ChQt8+OGHvP/++3Tq1InIyMiqX3h59CiMGgW//GI8DwmB8i44s1ohO9sI/T/+EaKjoUGDmg2iiIS/idatW8fs2bOZO3cubdq0MbscIYSNqt1Ebu1aeOEFKCiAOnVsn8lrbXwIBAUZ3xb+8IeaDQAJf9N88sknzJkzR4JfCDdWpSZyq1YZwV+rFlT3grKLF41dQYsWwe2316h2CX8TrF27lri4OObOnUvr1q3NLkcIUUOVNpH79Vd4+GEj9Gt6JfHFi8Y3hg0boFmzaq9Gwt/JPv74Y+bOncu8efOIiIgwuxwhhB2V2UTuj3/E0qsXpKVBaKh9NnT2LHTtCkuWlH+8oBIS/k60Zs0a4uPjmTt3rgS/EB6sZBO5W7ZvJzI9naBmzbDY62yd4mMA8fHG2UDVIO0dnGT16tXEx8fLjF8IL6CUokePHixITCTy8mXO5edz8MABMrOysJYzkT5XWMgLaWncuXcvfztwgE+zsyvagDHjT0x00Ah+5+vwLXiwVatWkZiYSHx8PC1btjS7HCGEk6iUFILz8ghu3ZrcvDwyMjLIyMigXr161K1bF58Su2yiT57ETyk2dOjA/rw8njt2jA6BgbQp7xhBSAikpBi7k5o3d9gYZOZfTStWrJDgF8Jbbd9unNapFLVq1aJFixa0bNmSvLw8Dhw4wOnTpyksLCTXamVjTg7DGzQgyGKhc1AQfwwJ4RNbZv87dzp0CBL+1bBixQqSkpJISEiQ4BfCG/3wg3H1bgmBAQE0b9aMiIgILhcUcODgQVJOnMCiNS39/a8s1z4ggEOXLlW8/suXHR7+3rfbJyfH+IvbudP4apWTY1xy3aqVcZS9c2e44YZyL9JYvnw5CxcuJCEhgeYO/EomhHBh6elGm4YSNMYBYR8fH8LDwwkNDeXQqVOovDyOpqbSokULLEoRbLFwwWqteP1+fnDkiMPKB28K/9RU4yDKRx8Zl1bn54O/vxH8WhsfBmvWGF+3WreGYcOgTx/j/SIffvgh77zzjgS/EG5Ia01+fj65ubnk5eWRm5t75XHx89Kvl36/+Pk/duygzoULXFIKbbVi1Rqr1YpSCovFgkUplMWCn9bkKUVWVhbNmjbF4uvLBauV2racxlnZB0QNeX74W63GVXNvvWXsowsJuebr2lW0hmPH4MUXjd+LiYE2bVi2bBmLFy8mISGBZjW4AEMIUTatNZcvX74mfMsL4KqGd15eHr6+vgQGBhIYGEitWrWu/Fn8U/q90NBQGjVqdNVrgYGBtDx0iMCDB1G1a2OxWFAWi/FnqTHVz82lcN8+fJs3x7cod/ZfulT+wd5ihYVGmwgHskv4K6V6ArMAH2CB1jq61PsBwGLgNuAM8JjW+og9tl2h3FwYPhy++QZq1zaCvzJKGcsGBcHu3fDgg2z8+9959+efSUxMpGnTpg4vWwhXVDKcbZkhVzZ7Lh3eeXl5+Pj4XBPCpUO65HuhoaE0bNiw3PAu/bpPiW/yNXLvvfDbb8beg3LkXbrE6bQ07gsN5f28PF61Wtmfl8fXOTkstOW0cFt6CtVAjcNfKeUDxAEPAGnAT0qpNVrr3SUWGwpkaa3bKaX6A28Bj9V02xXKz4enn4bvvoO6daveMlUpCAvj7MmTXDdjBgvffZdwCX7hworDuSYz5MqCvaxwLiuki98PDg6mQYMG5YZ36d+xWzg72i23XLPPv6S8S5dITU2lUaNGvFa7Nm8cP84D+/dTx8eHVxo3rnzm7+tr9Px3IHvM/LsBB7TWhwCUUkuBPkDJ8O8DvF70eDkQq5RS2pGXF8+ZU/3gL3ImM5PM8+eJaNoUv1dfhR49oFEjOxcqvEXpcLZ1/3Jl4V3yPYvFUmnIlg7n8PDwcsO79OtuE86OdscdRq4UFFyzGzkvL4/UY8do3KgRoUVtH6ZX5UYxeXnGjV46dbJnxdewR/g3A46VeJ4GlO5LemUZrXWBUiobqA9k2GH719q1y7g8OjS0ZsGfmUmrVq3w8/Mzem68/DIkJ9v1xgvCdZQM55rOkMsL7+Jwrixkix8HBQVRv379Cnd9lPzTt6LjWcJ+6tSBvn1h+XJjglkkLy+P1NRUGjdufCX4qyw3F0aMqPjYpB241L8UpdTTwNNAzc6fnzzZOHBbzf94ZzIzycrMJKI4+MH4y/72W/j5Z7j11urXJqpNa01BQYFdZsjlhbfFYqk0ZEs+DgoKol69etccNCwv2CWcPcjw4UY756IzB68Ef5MmhNpyfLEsubnGrL9/f/vWWgZ7/EtMB0p+p2le9FpZy6QppXyBOhgHfq+itU4EEsFo7FatalJTjfP4K/nUzbdaiT55kh8vXuRcYSHN/fx4pmFDrrt0iaysrN9n/MWUMj5QFi6U8K9AyQOC9ti9Ufo9VXRFpS37kIt/6tatW+m+6eLXJZyFzSIijLMCp0wht7CQY8eO1Sz4rVa4dAlmzIB69exaalns8S/9J6C9Uqo1Rsj3B54otcwaYBCwBegHbHTY/v5PPjH+I1ZyHm0h0NjPj8SWLWns58d358/z/JEjTPP3p1ubNviVFQIhIfDpp8anc61aDinf0YpnzvY6fa7061prm2bBJd+rW7euTWd2BAYGXv2BLITZhgzh7Nq1XFy/nsYtWtQs+M+eNWb8f/6zfWssR43Dv2gf/jPAeoxTPZO11ruUUhOArVrrNUAS8K5S6gCQifEB4RhbtlR4FL5YLYuFp0vcM/OG/HzqW61caNCg7OAH44IvHx/jFC8HHYwpuVujJjPk8sK7ZDjbunujZDhXNnuWcBbeZPe+fYzJyWHB3XcT+ttvZR4ArlR+Ply4YNwUZuJEpx1TtMt3XK31OmBdqdfGl3icB/zdHtuq1K+/QmBglX4lIyODI1lZnPHzo0NQUIXLWgsKyN++nZwmTRyye8Nqtdq8i6L4cVhYmM0Xrvj6+pZ9KzohRJXs3r2bkSNH8q/XXqPx7bfD3LkQG2vsHg4NrfxmLIWFcO6cca3AhAnw+OPVvoFLdXjezVzatjUOztr4H/F0RgZpJ04w08eHpr6+/CMoCKvVetUl29pqxVr0vM7lyyxp2ZLP27QpN6CrGt4l3/Pz85NwFsLF7dq1i5EjR/Lqq69y9913//7Gnj0wbRps2vT77ufAQOPbgNbGN4O8PGNZiwX++lfj/r9VORW0ErbezMXzjm5VMTj9/P2ZW9RD45/16hFSdLl2cW+O4sfFl3CrM2d48aWXePGppxxRvRDCxf3666+MGjWK8ePHc9ddd1395g03QFISHD8O69f/3kQyO9vIprp1jRNGuneHv/zFKQd2y+N54R8W9nvTtkporZl1/jwqLIy369Qh58wZ8vPyjIteate+pk8HYHyCh4XZvWwhhOv75ZdfGD16NK+//jp33HFH+Qs2bQpDhhg/Lsrz+vnfdNPvX6sqMeXkSQ7n5xPTogWNwsJo27Yt9evV4/SpUxw+fJhz585xzU4xHx+HX3YthHA9O3fuZPTo0bzxxhsVB7+b8LyZf48exv62Spy4fJkVZ8/irxR/+e23K6+PbdyYnm3acP78eTIyMjh1+jTh4eHUCQ1FWa3Gfrv27R05AiGEi9mxYwcvvPACb7zxBj169DC7HLvwvPDv1QvefrvSc/2b+Pmx9YYbyn0/JDiY4OBgLl64QEZGBqdPn6ZJQAC1+vfHp7KmTEIIj7F9+3ZefPFFJkyYwO233252OXbjebt9mjc3Zv/nztV4VQqoXbs2rVq1olnTpuReusQ/t25lyZIl5Obm1rxWIYRL+/nnn3nxxReZOHGiRwU/eGL4A4wbZ8z6L1+22yqD8vNp8NhjPJeUxM6dO+nduzdJSUnk5OTYbRtCCNeRkpLCiy++yKRJk+jevbvZ5didZ4Z/hw7w3HPG/XntcR3DxYvGDV4mT+a666/nrbfeIjExkaNHj9K3b1/mzp1LVlZWzbcjhHAJKSkpjBkzhsmTJ9OtWzezy3EIzwx/gKgouO8+yMqq2QfAxYvGlXjz50P9+ldebt26NRMmTGDx4sWcPXuWRx55hBkzZnDq1Ck7FC+EMMu2bdt46aWXmDJliscGP3hy+Pv6QlyccSHF2bNGt7yq0Nr4PaXgnXegnH8EzZo1Y+zYsSxduhSA/v37M3nyZI4fP17TEQghnGzr1q1Xgr9r165ml+NQnhv+YFzoFRcHU6YYl1VnZRkXgFVEa2N3UXY2dOliXKVnw/6+hg0bMnr0aD766CPCwsIYMGAA48eP5/Dhw3YajBDCkX766SdeeeUV3nrrLbp0qbQ7gtvzvN4+5TlxwpjBv/eecSD48uXfu3RqbTwv7r9x000wbBg88EC1Gy3l5OSwbNkyli5dyq233kpkZCTXXXed/cYjhLCbH3/8kbFjxzJ16lRudfP7ddja28d7wr9YXh6kpBi3ekxJMU4J9fWFVq3gttuMVs2tW9ttcxcvXmTlypW89957dOjQgaFDh9LJwffmFELY7ocffmDcuHEeEfwg4e9y8vPz+fjjj1m0aBHNmjUjMjKSrl27SgdPIUz0/fff8+qrr/L222/TuXNns8uxCwl/F1VQUMCnn37KwoULCQkJYejQodx5553yISCEk23ZsoXx48czbdo0brnlFrPLsRsJfxdntVr54osvWLhwIQBDhgzhvvvuw+LEmzkI4a02b97Ma6+9xvTp0z1uN6yEv5vQWvPtt9+SnJzMuXPnGDx4MH/961/lRuJCOMh3333H66+/7pHBDxL+bkdrzdatW0lKSiI9PZ1BgwbRu3dv/G24L4EQwjbffvstb7zxBjNmzODmm282uxyHkPB3Yzt37iQ5OZl9+/YxYMAAHn74YWrVqmV2WUK4tW+++YYJEyYwc+ZMbrrpJrPLcRhbw192MLugTp06ERMTQ0xMjDSRE8IONm3axIQJE4iJifHo4K8KCX8Xdt11111pIpeamkqfPn2Ii4uTJnJCVMHXX3/Nm2++yaxZs7jxxhvNLsdlSPi7gdatW/PGG2/w3nvvce7cOWkiJ4SNvvrqKyZNmkRMTAwdO3Y0uxyXIuHvRpo2bcorr7wiTeSEsMGXX37J5MmTmTVrlgR/GST83ZA0kROiYhs3bmTKlCnMnj2bGyq4Xas3k/B3Y3Xr1mXEiBGsXr2aiIgIoqKiGDNmDPv27TO7NCFM88UXXxAdHc2cOXO4/vrrzS7HZcmpnh4kNzeXlStX8u6770oTOeGVPv/8c6ZOnUpsbCwdOnQwuxxTyHn+Xqy4idw777xDkyZNGDp0qDSREx7vs88+Y9q0acyZM8drgx8k/AXXNpGLjIzkrrvukg8B4XE2bNjA9OnTiY2NpX379maXYyoJf3GF1Wpl48aNJCcno7VmyJAh3H///dJETniE9evXM2PGDOLi4mjXrp3Z5ZhOwl9cQ2vNd999R1JSEtnZ2QwZMkSayAm39umnnxITE0NcXBxt27Y1uxyXIOEvylXcRC45OZm0tDRpIifc0rp165g9ezZz586lTZs2ZpfjMiT8hU2Km8jt3bv3ShO5oKAgs8sSokLr1q1jzpw5xMXFSfCXIo3dhE2Km8jNnj2bX3/9lT59+rBgwQJpIidc1tq1a5n6+sCLAAARHklEQVQzZ47M+GtIwl8A0KFDB6Kjo5k/fz7Hjh2TJnLCJX388cfExcUxb948WrdubXY5bk3CX1wlIiJCmsgJl7RmzRrmzZtHfHw8ERERZpfj9iT8RZnKayKXnp5ucmXCG61Zs4b4+HjmzZtHq1atzC7HI0j4iwqVbiI3cOBAxo8fz6FDh8wuTXiJVatWER8fT3x8vAS/HdUo/JVS9ZRSnymlfiv6s245yxUqpbYX/aypyTaFOYqbyK1atYqIiAiGDRsmTeSEw61YsYL58+cTHx9Py5YtzS7Ho9ToVE+l1FQgU2sdrZR6GairtX6pjOXOa62Dq7JuOdXTtZVsIte+fXueeuopaSIn7GrFihUkJSURHx9PixYtzC7HbTjlPH+l1D7gHq31CaVUE+ArrfV1ZSwn4e+h8vPzWbt2LYsWLZImcsJuPvroIxYuXEh8fDzNmzc3uxy34qzwP6u1Dit6rICs4uellisAtgMFQLTWelVl65bwdy8FBQWsX7+ehQsXUrt2bYYOHSpN5ES1fPjhh7zzzjskJCTQrFkzs8txO3YLf6XU50DjMt4aB7xTMuyVUlla62v2+yulmmmt05VSbYCNwH1a64NlLPc08DRAy5Ytbzt69Ghl9QsXI03kRE0sW7aMd999l/j4eAn+anKp3T6lfmcRsFZrvbyi5WTm796Km8glJydz9uxZaSInKvXBBx+wZMkS4uPjadq0qdnluC1ntXdYAwwqejwIWF1GIXWVUgFFj8OBO4DdNdyucHFKKe68806SkpIYO3Ys69at46GHHuLDDz8kPz/f7PKEi1m6dKkEv5PVdOZfH1gGtASOAo9qrTOVUl2AYVrrp5RSPYAEwIrxYROjtU6qbN0y8/c8v/zyC8nJyezZs0eayIkr3n//fZYuXUpCQgJNmjQxuxy3J109hcvav38/ycnJbNu2jccee4zHHnuMkJAQs8sSJnj//ff54IMPSEhIoHHjsg4tiqqSrp7CZZVsIpeWliZN5LzUe++9x7Jly0hMTJTgN4GEvzBNREQEr7/++lVN5KZPny5N5LzAu+++y/Lly0lISKBRo0Zml+OVJPyF6YqbyH3wwQdYLBZpIufhFi9ezIoVK0hMTJTgN5GEv3AZDRo0YNSoUaxYsUKayHmoRYsWsWrVKhISEmjYsKHZ5Xg1CX/hcsLCwhgxYgSrV6+WJnIeZOHChVdaM0vwm0/CX7is4OBgIiMjWb16NZ07d2bkyJE8++yz7Nixw+zSRBUlJyezdu1amfG7EDnVU7gNaSLnnpKSkli3bh0JCQmEh4ebXY7Hk/P8hceSJnLuY/78+axfv56EhATq169vdjleQcJfeDyr1cqXX35JUlISVquVyMhIaSLnQhITE/nss8+Ij4+X4HciCX/hNUo3kRs8eDC9evWSJnIm0VqTmJjIF198QXx8PPXq1TO7JK8i4S+8jtaabdu2kZSURFpaGgMHDqRPnz74+/ubXZrX0FqTkJDAxo0bJfhNIuEvvFrJJnJPPvkkjzzyiDSRczCtNfHx8Xz11VfMmzdPgt8k0ttHeLWbb76ZmTNnMnv2bHbv3k2fPn1YsGABOTk5ZpfmkbTWzJs3j6+//lpm/G5Cwl94tA4dOjBlypSrmsjFxsaSmZlpdmkeQ2tNXFwc33zzDfHx8dSte83N/IQLkvAXXqFkE7mcnBz69esnTeTsQGtNbGwsmzdvZt68eYSFXXMLb+GiJPyFVymridykSZNIS0szuzS3o7Vmzpw5bNmyRYLfDUn4C69UsolcvXr1GDRokDSRqwKtNbNmzeKHH35g3rx51KlTx+ySRBVJ+AuvFhYWxvDhw69pIrd3716zS3NZWmtiYmLYunWrBL8bk/AXgmubyI0aNUqayJVBa83MmTNJSUlh7ty5hIaGml2SqCY5z1+IMpRsIte4cWOGDh1Kt27dvLp/kNaaGTNmsGPHDmJjYyX4XZRc5CWEHRQWFrJ+/XqSk5OvNJG78847va5/kNaaadOm8csvvxAXF0dISIjZJYlySPgLYUfe3EROa83bb7/Nrl27iIuLIzg42OySRAUk/IVwAK01mzdvJikpySuayGmtmTp1Knv27CE2NlaC3w1I+AvhQMVN5JKTk0lNTb3SRC4gIMDs0uzGarUydepU9u3bR2xsLLVr1za7JGEDCX8hnOSXX35h4cKF7N6922OayFmtVqKjozlw4ABz5syR4Hcj0thNCCe5+eabmTFjxlVN5ObPn8+5c+fMLq1aioP/4MGDMuP3YBL+QthJySZy6enp9O3b1+2ayFmtViZPnsyhQ4eYM2eO23+DEeWT8BfCzko2kTt//jz9+vVj2rRpLt9Ezmq1MmnSJI4ePcrs2bMl+D2chL8QDtK0aVNefvllli1bhq+vr9OayOXlQWYmZGVBQYFtv2O1WnnzzTc5duwYs2bNkuD3AnLAVwgnOXv2LP/+979Zvnw5PXr0YMiQIbRp06bG67Va4dtvYcUK2LoVjh8HH5/f32/XDnr0gMcegw4dyvp9KxMnTiQ9PZ2YmBgJfjcnZ/sI4aLOnz/PsmXLWLp0KZ07dyYyMpLrr7++yuvRGlatguhoY5ZfWAi1akFAABR3obBajW8Cly4Zr918M0yYYPxpvG9lwoQJnDhxgpiYGGrVqmXHkQozSPgL4eJyc3NZuXIl7733Hu3atSMyMpLOnTvb9LunT8MLLxgz/sBAI/QrozUUn4AUFQXPPmvlzTdf59SpU8TExBAYGFjtsQjXIeEvhJuoahO59HR49FE4eRLCwn6f5duqoADOndPUqbONrl0XMXv2NAl+DyLn+QvhJvz9/Xn44YdZuXIlffv2Zdq0aQwaNIhNmzZhtVqvWjY729h3f+oU1K1b9eAH8PXVXLx4nIMHW+HjE0NAgAS/N5LwF8JF+Pj40KtXLz744AMGDx5MfHw8TzzxBBs2bLjyIfDaa3DiBFT//ima9PTjWK0FtG1bn88+82XtWrsNQbgR2e0jhIsq3USua9fRLFhwB3XqKKrXTFSTnp5OYaGVFi2ao5SFvDzj28PXX0O9evYegTCDrbt9PLMVoRAeQCnFHXfcQY8ePUhJSeHvf/fh1Kl0IIiwsDCUKvsTID39VS5e/BGrNRdf33Dq1x9IWFifa4IfjIPFZ8/CRx/B//t/ThycMJ2EvxAuTilFaOht+PhAy5a5nDmTQUZGBvXq1adu3TAsFp+rlg8PH4Kf36tYLP5cunSEo0efJju7DhZL26uCv1hgIMyfD5GRV18fIDxbjfb5K6X+rpTapZSyKqXK/ZqhlOqplNqnlDqglHq5JtsUwhtt2mScxx8UVIsWLVrQokVL8vJyOXDgIBkZpyksLLyybEBAGywWf8A4vfPSpUsUFBynefNrgx+M8M/OhgMHnDYc4QJqesD3V+BhYFN5CyilfIA44K9AR+BxpVTHGm5XCK/y449Xz8oDAwNp1qw5ERGtyM+/zMGDBzh16r8UFPVzOHkymr1772Dfvt4oVZeIiD7l7iYC40Nizx5Hj0K4khrt9tFa7wEqu6l1N+CA1vpQ0bJLgT7A7ppsWwhvsmePMUMvzd8/gKZNm3L5cj5nzpzh0KGD1KlTh/r1R3P58uP4++8hJOQYFkvFp3Nevmxso29fBw1AuBxnnOrZDDhW4nla0WtCCBvl5lZ8Tr+fnz+NGzcp6hWkOHLkCEpZaN36zxQUnCYra3mF67dYICfHvjUL11bpzF8p9TnQuIy3xmmtV9uzGKXU08DTAC1btrTnqoVwa35+Rn+eyvj6+tGoUSMaNWoIFH9aFJKfX3EnUa3B37/GZQo3UunMX2t9v9b6pjJ+bA3+dKBFiefNi14ra1uJWusuWusuDRo0sHH1Qni+li0hP7/y5QoKMjl3bgNWay5aWzl/fgvZ2eupXbtbhb+nlNH9U3gPZ5zq+RPQXinVGiP0+wNPOGG7QniMP/wBfvgBgoMrW1KRlbWcEycmA1b8/JrQqNHzhITcXeFv+fnBDTfYq1rhDmoU/kqph4A5QAPgE6XUdq31X5RSTYEFWuteWusCpdQzwHrAB0jWWu+qceVCeJE//AF8bfi/1de3Lq1aJVZp3QUFxsxfwt+71PRsn5XAyjJePw70KvF8HbCuJtsSwpt17260Xzh/3rb2zVWRk2M0i5N7uHgXaewmhBuwWGDYMOPGLPZsx1VYaKx78GD7rVO4Bwl/IdzEgAHGQdniG7LYQ06OEfxl3d5ReDYJfyHchJ8fzJplXOmbl1fz9WVnQ/PmMHp0zdcl3I+EvxBu5PrrYd4847TPixertw6tjU6e9erB++/b/xiCcA8S/kK4mXvvhUWLjG8CZ88aN2m31eXLxoy/fXvj5u9NmzqsTOHiJPyFcEM9esCXX8Kf/2zst8/KMoK9LFob7SHOnjV2F40eDR9/DE2aOLdm4Vqkn78QbqpePZg7F/bvh3ffhZUrjV1BPj7GtwGljJ/Ll6FxY+PA7iOPyB27hEFu4yiEh9Aajh+HffuM6wEsFqhf37h4KyzM7OqEs8htHIXwMkpBs2bGjxCVkX3+QgjhhVx2t49S6jRw1Ow6qikcyDC7CCfytvGC943Z28YL7jvmVlrrStsiu2z4uzOl1FZb9rl5Cm8bL3jfmL1tvOD5Y5bdPkII4YUk/IUQwgtJ+DtG1Rqquz9vGy9435i9bbzg4WOWff5CCOGFZOYvhBBeSMLfDpRS9ZRSnymlfiv6s24Fy4YqpdKUUrHOrNGebBmvUqqzUmqLUmqXUmqnUuoxM2qtKaVUT6XUPqXUAaXUy2W8H6CU+qDo/R+UUhHOr9J+bBjvaKXU7qK/0y+UUq3MqNOeKhtzieUeUUpppZRHnAEk4W8fLwNfaK3bA18UPS/PRGCTU6pyHFvGexEYqLW+EegJxCil3KrJgFLKB4gD/gp0BB5XSnUstdhQIEtr3Q6YCbzl3Crtx8bx/gx00Vp3ApYDU51bpX3ZOGaUUiHAc8APzq3QcST87aMP8E7R43eAvmUtpJS6DWgEbHBSXY5S6Xi11vu11r8VPT4OnAIqvfDExXQDDmitD2mt84GlGGMvqeR/i+XAfUop5cQa7anS8Wqtv9RaF99J4HuguZNrtDdb/o7BmLS9BdjhNjquQcLfPhpprU8UPT6JEfBXUUpZgOnAC84szEEqHW9JSqlugD9w0NGF2Vkz4FiJ52lFr5W5jNa6AMgG6julOvuzZbwlDQX+49CKHK/SMSulbgVaaK0/cWZhjiaN3WyklPocaFzGW+NKPtFaa6VUWadQjQDWaa3T3GFiaIfxFq+nCfAuMEhrXYXbjghXppQaAHQB/mh2LY5UNGmbAQw2uRS7k/C3kdb6/vLeU0r9VynVRGt9oijsTpWx2O3AXUqpEUAw4K+UOq+1ruj4gGnsMF6UUqHAJ8A4rfX3DirVkdKBFiWeNy96raxl0pRSvkAd4IxzyrM7W8aLUup+jEnAH7XWl5xUm6NUNuYQ4Cbgq6JJW2NgjVKqt9barXvOy24f+1gDDCp6PAhYXXoBrfWTWuuWWusIjF0/i101+G1Q6XiVUv7ASoxxLndibfb0E9BeKdW6aDz9McZeUsn/Fv2Ajdp9L56pdLxKqf8BEoDeWusyP/TdTIVj1lpna63DtdYRRf/vfo8xdrcOfpDwt5do4AGl1G/A/UXPUUp1UUotMLUyx7BlvI8CdwODlVLbi346m1Nu9RTtw38GWA/sAZZprXcppSYopXoXLZYE1FdKHQBGU/GZXi7NxvG+jfHN9cOiv9PSH4ZuxcYxeyS5wlcIIbyQzPyFEMILSfgLIYQXkvAXQggvJOEvhBBeSMJfCCG8kIS/EEJ4IQl/IYTwQhL+Qgjhhf4/LxmYyYQFGIsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "ee = ExactEigensolver(qubitOp_docplex, k=1)\n", + "result = ee.run()\n", + "\n", + "x = docplex.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('maxcut objective:', result['energy'] + offset_docplex)\n", + "print('solution:', maxcut.get_graph_solution(x))\n", + "print('solution objective:', maxcut.maxcut_value(x, w))\n", + "\n", + "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -564,7 +646,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -572,14 +654,14 @@ "output_type": "stream", "text": [ "distance\n", - " [[ 0. 54. 74.]\n", - " [54. 0. 34.]\n", - " [74. 34. 0.]]\n" + " [[ 0. 61. 6.]\n", + " [61. 0. 57.]\n", + " [ 6. 57. 0.]]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGAdJREFUeJzt3X2UVXW9x/H3d54QhmeYAEWExKcWS9FGlpTZDbI0TajVcnlvD2Qot1ZX62Y+V5rVUruZYatli0SjLIW4GeYtlzRitbprUUOaoqAi+AAMzCgMzzDMzPf+8dtjXJiZs8+ZM5w9v/m81jrrnL3P3vt8/YGf8+N39m9vc3dERKTvKyt1ASIiUhwKdBGRSCjQRUQioUAXEYmEAl1EJBIKdBGRSCjQRUQioUAXEYmEAl1EJBIVR/PDRo8e7RMnTjzyDXfYtAm2b4eysvBIq60NzOC442D48KLVKiKSFatWrXrT3WtybXdUA33ixInU19f//5UtLXDFFSHMjz02vzDvcOAA7N0LV18Nn/lMcYoVEckIM3stzXalH3K5/nr4y19gxIjCwhxgwAAYPBhuuw3q6opbn4hIH1HaQK+rg0cfhWHDwrBJT1RWhmC/5hrYtq049YmI9CGlC/T9++Haa0MIF9ozP9zAgbBrF9x+e3GOJyLSh5Qu0J94IoTvoEFdbtLS3s5tmzdz8bp1nPfii/zb+vX87+7d3R936FBYtky9dBHpd0oX6AsWQHl5t5u0AWMrK1kwYQJPnXwyX6ip4YZNm9jc0tL1TuXl0N4Ov/lNcesVEcm4VIFuZl8ys9Vm9ryZfTlZN9LMlpvZy8nziNSfuncvrFkD1dXdbjawrIx5NTUcW1VFmRnvGzKEYysrWbt/f/fHLy+HJ59MXY6ISAxyBrqZTQGuBKYBZwAXm9lk4Aagzt1PAuqS5XRefDH8iJnnD6HbWlt5vaWFdw4Y0P2GxxwDzz4bzm8XEekn0vTQTwNWuvted28F/gh8HJgFLEq2WQTMTv2pb7wRhkXy0OrO1zZv5uJhw5iYK9ArKmDPnvAQEekn0gT6auB9ZjbKzAYBHwGOB8a4e0OyzRZgTGc7m9k8M6s3s/qmpqawsrU1r95zuzvf2LyZCuC6sWNz72AWHgcPpv4MEZG+Lmegu/sa4E7gCeBx4BnC75WHbuNApwnt7gvcvdbda2tqkpmrAwakHm5xd77V0MBbra381/jxVKTZzz38CyBXT15EJCKpfhR194Xu/m53Pw/YDrwEbDWzcQDJc2PqT500KfW557dv2cKGlhbuPv54BqQ9X/3gQRg1qttTIkVEYpPqWi5m9g53bzSzCYTx83OAScAc4I7keVnqT508OYRue3u3wd5w8CC/bm6myowPv/zy2+tvGjuWC4cN6/r4+/fDtGmpyxERiUHai3P9t5mNAg4CX3T3ZjO7A1hiZnOB14BLU39qVRVMnw4rV4Zp/10YV1lJ/WmnpT7s29zhwgvz309EpA9LFeju/r5O1r0FzCz4k6+8Ev7614J379LBg+GUSAW6iPQzpZspeu654RrmO3cW97i7d8Pll2v8XET6ndIFenk5zJ8fxtFbW4tzzF27YPx4uOqq4hxPRKQPKe3lc08/PYTvrl3hzkM9sW9feP7hD8NMURGRfqb0N7i4+mr49KfD0Et3F93qzu7doZf/k5+ELwkRkX6o9IFuBrfcAjffHG4l19ycfhZpa2u4dd2oUfDww3Deeb1bq4hIhpU+0CGE+uc+B7//PZx9duitb98ehlEOv+ZLa2vokTc3h/c/+1lYvhzOPLMkpYuIZMVRvUl0Tu98Jzz0ELzyCvzyl/CnP8GGDWHykVkI94oKmDIFPvpRmD272/PYRUT6k2wFeocTT4Svfz28bmmBxsbQMx84EGpqinfLOhGRiGQz0A9VVRVORRQRkW6pqysiEgkFuohIJBToIiKRUKCLiEQi+z+Kiogcqq0tnM68di1s3hyusFpdHc6OO+00GD261BWWjAJdRPqGTZvCPJWf/SzMKncPpzW7h1OZBwwI4X7KKfD5z8OHPtTvruukQBeRbDt4EO69F370ozAfpboahgzpfFt3WL8errkmzFmZPz/MPu8nNIYuItnV2AizZsE994SJhSNGhLkpXTGDwYPDDPJt2+Cyy+C73z3yEiKRUg9dRLKpsRE+/nHYujUEtFl++w8eHMbbf/xj2LMHbr01/2P0Meqhi0j2tLbCFVfAli2FhXmH8vKw/4MPhutDRU6BLiLZc//98Pzzxbn4Xnl5GHf/1rfgjTd6frwMU6CLSLa8+SbcdVcYMinWEElVVfhx9bbbinO8jEoV6Gb2n2b2vJmtNrOHzOwYM5tkZivNbJ2ZLTazbn6pEBFJaenSMPZdWdntZku2bePTGzYwfe1abt28Ofdxhw2DFSugoaFIhWZPzkA3s+OAq4Fad58ClAOXAXcCd7v7ZGA7MLc3CxWRfsAdHngg1fnjoysqmDt6NJekHZYpKwvHf+SRHhaZXWmHXCqAgWZWAQwCGoAZwNLk/UXA7OKXJyL9SlMTvPVWmCSUw4yhQ/mXIUMYVl6e/vgVFfDnP/egwGzLGejuvgn4HvA6Ich3AKuAZndvTTbbCBzXW0WKSD+xZk0I3d46vXDgQHjuufT3Le5j0gy5jABmAZOAY4Fq4IK0H2Bm88ys3szqm5qaCi5URPqBxsYwft5bKirCOekHD/beZ5RQmiGXDwIb3L3J3Q8CvwbeCwxPhmAAxgObOtvZ3Re4e62719bU1BSlaBGJVFtb78/qNAvnuUcoTaC/DpxjZoPMzICZwAvACuATyTZzgGW9U6KI9BvV1eG88d7S3h4CPcUYfV+UZgx9JeHHz78DzyX7LACuB75iZuuAUcDCXqxTRPqDyZNTj5+3udPS3k470A60tLfTlmts/MABmDixd780SijVtVzc/RbglsNWrwemFb0iEem/Tjwx9KLb2nKG7sI332TBm2++vfy7HTuYN3o087ob2t23D2pri1Vt5ujiXCKSHVVVMHMm/OEPMHx4t5vOq6npPrw7U14OH/1oDwrMNk39F5Fs+dznwrBLsU8t3Lcv3M3oPe8p7nEzRIEuItly9tlw+umwY0fxjukO+/fDV78aZoxGKt7/MhHpm8zg+98P54y3tBTnmM3NMH16uL56xBToIpI9J5wAt99enElAO3eGoZa77tINLkRESuJjH4NvfjOE+p49+e/vDtu3h9vWLV4MY8YUv8aMUaCLSHZ96lPw05+Ga6Nv356ut+4evgCam+H974ff/jace94PKNBFJNvOPRfq6uDyy8OU/R07Qrjv2/fPSwW0tsLu3eFKjTt3wrhx4cbSCxfCO95R6v+Co8b8KF51rLa21uvr64/a54lIZPbuheXLwyVwV60KN6toawvXTz/5ZJg2DT74QTjrrKjGy81slbvnnBGliUUi0ncMGgSzZoWHHEFDLiIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCRyBrqZnWJmzxzy2GlmXzazkWa23MxeTp5HHI2CRUSkczkD3d1fdPep7j4VeDewF3gEuAGoc/eTgLpkWURESiTfIZeZwCvu/howC1iUrF8EzC5mYSIikp98A/0y4KHk9Rh3b0hebwHiv2GfiEiGpQ50M6sCLgF+dfh7Hm571Omtj8xsnpnVm1l9U1NTwYWKiEj38umhXwj83d23JstbzWwcQPLc2NlO7r7A3WvdvbampqZn1YqISJfyCfR/5Z/DLQCPAnOS13OAZcUqSkRE8pcq0M2sGjgf+PUhq+8Azjezl4EPJssiIlIiqW4S7e57gFGHrXuLcNaLiIhkgGaKiohEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhKJVIFuZsPNbKmZrTWzNWY23cxGmtlyM3s5eR7R28WKiEjX0vbQ5wOPu/upwBnAGuAGoM7dTwLqkmURESmRnIFuZsOA84CFAO7e4u7NwCxgUbLZImB2bxUpIiK5pemhTwKagAfM7Gkzu8/MqoEx7t6QbLMFGNNbRYqISG5pAr0COAu4193PBPZw2PCKuzvgne1sZvPMrN7M6puamnpar4iIdCFNoG8ENrr7ymR5KSHgt5rZOIDkubGznd19gbvXunttTU1NMWoWEZFO5Ax0d98CvGFmpySrZgIvAI8Cc5J1c4BlvVKhiIikUpFyu6uAX5hZFbAeuJzwZbDEzOYCrwGX9k6JIiKSRqpAd/dngNpO3ppZ3HJERKRQmikqIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hEQoEuIhIJBbqISCQq0mxkZq8Cu4A2oNXda81sJLAYmAi8Clzq7tt7p0wREcklnx76B9x9qrvXJss3AHXufhJQlyyLiEiJ9GTIZRawKHm9CJjd83JERKRQaQPdgSfMbJWZzUvWjXH3huT1FmBMZzua2Twzqzez+qamph6WKyIiXUk1hg6c6+6bzOwdwHIzW3vom+7uZuad7ejuC4AFALW1tZ1uIyIiPZeqh+7um5LnRuARYBqw1czGASTPjb1VpIiI5JYz0M2s2syGdLwGPgSsBh4F5iSbzQGW9VaRIiKSW5ohlzHAI2bWsf0v3f1xM/sbsMTM5gKvAZf2XpkiIpJLzkB39/XAGZ2sfwuY2RtFiYhI/jRTVEQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIKNBFRCKhQBcRiYQCXUQkEgp0EZFIpA50Mys3s6fN7LFkeZKZrTSzdWa22Myqeq9MERHJJZ8e+peANYcs3wnc7e6Tge3A3GIWJiIi+UkV6GY2HrgIuC9ZNmAGsDTZZBEwuzcKFBGRdNL20H8AXAe0J8ujgGZ3b02WNwLHdbajmc0zs3ozq29qaupRsSIi0rWcgW5mFwON7r6qkA9w9wXuXuvutTU1NYUcQkREUqhIsc17gUvM7CPAMcBQYD4w3Mwqkl76eGBT75UpIiK55Oyhu/uN7j7e3ScClwFPuvsngRXAJ5LN5gDLeq1KERHJqSfnoV8PfMXM1hHG1BcWpyQRESlEmiGXt7n7U8BTyev1wLTilyQiIoXQTFERkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUgo0EVEIqFAFxGJhAJdRCQSCnQRkUjkDHQzO8bM/mpm/zCz583sm8n6SWa20szWmdliM6vq/XJFRKQraXroB4AZ7n4GMBW4wMzOAe4E7nb3ycB2YG7vlSkiIrnkDHQPdieLlcnDgRnA0mT9ImB2r1QoIiKppBpDN7NyM3sGaASWA68Aze7emmyyETiud0oUEenD3MPjKKhIs5G7twFTzWw48AhwatoPMLN5wDyACRMmFFKjiEjf0dAAjz0Gf/kLPPccbNsWAn3wYDjtNDjnHLjoIjg1dYymZp7nN4eZfQPYB1wPjHX3VjObDtzq7h/ubt/a2lqvr68vuFgRkczasAG+8x146qkQ4OXlcMwxUFkZ3m9rg/37oaUFysrgXe+Cm24KAZ+Dma1y99pc26U5y6Um6ZljZgOB84E1wArgE8lmc4BlOasSEYlNezvcfz9ccAGsWAFDh8KIEeG5qgrMwqOiIvTSR46EYcNg7Vr45Cfh5pth796ilJJmyGUcsMjMyglfAEvc/TEzewF42My+DTwNLCxKRSIifUVbG1x7LSxbBtXVMGRIuv3MQuC3tcFDD8Gzz8KDD4ag74Gcge7uzwJndrJ+PTCtR58uItJXucPXvhbCfNiwMIySr/Ly0Jt/4QX4zGdg8eIwTFMgzRQVESnE8uWwZEnhYd7BDIYPh9Wr4e67e1SSAl1EJF/NzXDddaE33ZMw72AWhmvuvz8MvxRIgS4ikq9f/Qp27YKBA4t3zIqKMIxzzz0FH0KBLiKSj/Z2uO++VGG+s62Nr27cyLlr13LxunU8vmNH9zsMHRpOe2xoKKg0BbqISD7WroXt21P9eHnHli1UmvHEySfz7WOP5fYtW1h/4EDXO3QM3/z5zwWVpkAXEcnHmjWppvLva2/nyV27+EJNDYPKypg6aBDvHzKE/8nVS3eHAidgKtBFRPKxenU4fzyH11taKAcmVP3zyuInDRjQfQ8dQs+/wB9GFegiIvlobk51Zsve9naqD9tucFkZe9rbu9+xrAx27+5+m652LWgvEZH+qirdvXwGdRLeezoJ+SN0XAemAAp0EZF8nHBCONMlhwlVVbQRhl46vHTgAO8cMKD7HQ8ehOOPL6g0BbqISD6mTEnVSx9YVsaMIUP4cVMT+9rb+cfevfxx1y4uynW9lpYWmFbYVVUU6CIi+ZgyJfwomqKXfsPYsRxob+f8l17ipk2buHHs2Nw99MpKePe7Cyot1Q0uREQkMXIkzJgBdXXhGizdGFpezl35DJ/s3x+OmeIa6Z1RD11EJF9XXBGeU/TS87JvH1x5pX4UFRE5as4+Gy68EHbuLN4xd+6ECRPCZXQLpEAXESnEbbeFS+fu2tXzY3VMNpo/H3KNsXdDgS4iUogRI+DnPw9nvPSkp75/fxhq+d734PTTe1SSAl1EpFDvele4ycWIEWEGaT5j6u5hn7Y2+NGP4JJLelyOeYqLzBSLmTUBrx21D4TRwJtH8fMKkfUas14fqMZiyHp90L9rPMHda3JtdFQD/Wgzs3p3ry11Hd3Jeo1Zrw9UYzFkvT5QjWloyEVEJBIKdBGRSMQe6AtKXUAKWa8x6/WBaiyGrNcHqjGnqMfQRUT6k9h76CIi/UYUgW5mx5jZX83sH2b2vJl9M1k/ycxWmtk6M1tsZumuTH90a/ypmW0ws2eSx9RS1ZjUU25mT5vZY8lyZtqwmxqz1oavmtlzSS31ybqRZrbczF5OnkdksMZbzWzTIe34kRLXONzMlprZWjNbY2bTs9SOXdRX0jaMItCBA8AMdz8DmApcYGbnAHcCd7v7ZGA7MDeDNQJc6+5Tk8czpSsRgC8Baw5ZzlIbdji8RshWGwJ8IKml4xS2G4A6dz8JqEuWS+3wGiH8WXe04+9KVlkwH3jc3U8FziD8mWepHTurD0rYhlEEugcdN+GrTB4OzACWJusXAbNLUB7QbY2ZYWbjgYuA+5JlI0NtCEfW2IfMIrQfZKAds87MhgHnAQsB3L3F3ZvJSDt2U19JRRHo8PY/w58BGoHlwCtAs7u3JptsBI4rVX1wZI3uvjJ56ztm9qyZ3W1mhV+Zp+d+AFwHdMxfHkXG2pAja+yQlTaE8EX9hJmtMrN5ybox7t6QvN4CjClNaW/rrEaA/0ja8f4SDwtNApqAB5LhtfvMrJrstGNX9UEJ2zCaQHf3NnefCowHpgGnlrikIxxeo5lNAW4k1Ho2MBK4vhS1mdnFQKO7ryrF56fRTY2ZaMNDnOvuZwEXAl80s/MOfdPDqWWl/tdZZzXeC5xIGBJsAO4qYX0VwFnAve5+JrCHw4ZXStyOXdVX0jaMJtA7JP/sWQFMB4abWcddmcYDm0pW2CEOqfECd29IhmMOAA8QvoxK4b3AJWb2KvAwYahlPtlqwyNqNLMHM9SGALj7puS5EXgkqWermY0DSJ4bS1dh5zW6+9ak09EO/ITStuNGYOMh/4pdSgjQrLRjp/WVug2jCHQzqzGz4cnrgcD5hB8oVgCfSDabAywrTYVd1rj2kL+cRhgPXF2K+tz9Rncf7+4TgcuAJ939k2SoDbuo8VNZacOkhmozG9LxGvhQUs+jhPaD0v9d7LTGjnZMfIwStqO7bwHeMLNTklUzgRfISDt2VV+p2zCWe4qOAxaZWTnhS2qJuz9mZi8AD5vZt4GnSX7AyFiNT5pZDWDAM8DnS1hjZ64nO23YlV9kqA3HAI+E7xYqgF+6++Nm9jdgiZnNJVxx9NIM1vjz5JRPB14F/r10JQJwFeHPtgpYD1xO8v9ORtqxs/ruKWUbaqaoiEgkohhyERERBbqISDQU6CIikVCgi4hEQoEuIhIJBbqISCQU6CIikVCgi4hE4v8Af02RzlwcOZsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFu9JREFUeJzt3X2QXXWd5/H3N+k8EfJASBsSEiZxBIWyBtQGQQenIKAojOBoUbiOFYWaIOPOKCoCujXlY42gLsrWlE6WuJuxHEdBWBjdocgE0LF2DHYUZngKyfA0eW4ISYc8dbr7u3+cmyKG7tzT6XtzO6ffr6pb995zz8P3pDuf++vf+Z1zIjORJB39xrS6AElSYxjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFtB3Jjc2cOTPnz58/9AW3boUNG4rXY8eWX66vr3g+/niYPXvo25WkEWDVqlUvZGZ7vfmOaKDPnz+fzs7OoS303e/CzTfDKafA+PFD32hfH3R3w1vfCrfeOrQvBEkaASLiuTLzjewul7vvhq9/HaZOPbwwhyLAp0+He++Fr361sfVJ0ggycgN90yb43Odg0iRoG+YfEhHFl8Lf/R089FBj6pOkEWbkBvoXvwh79sDEiY1Z39ixxRfDtde+0rcuSRUyMgN9wwb453+GadMOOduPt27lw888wzlPPskX9h80PZRjj4WuLvjFLxpUqCSNHCMz0G+/Hfr7Ycyhy5vZ1sZVM2fy3jrB/zsyYenSYRYoSSPPER3lUtry5aUOgp4/dSoAj+/ezZbe3nLrnjIFfv3rotvFES+SKmTktdD7+uCppxrXd36w/a3+Z55pzvolqUVKBXpEXBsRj0XEoxHxw4iYGBELImJlRKyNiB9FxGGOKzxIV1fRLdLM1nMEPP9889YvSS1QN9Aj4kTgL4GOzHwjMBa4ArgJuCUzXwe8BFzVkIr27avbd94QZbtoJOkoUTY524BJEdEGHANsBM4H7qh9vgy4rCEVTZhQHBBttgkTmr8NSTqC6gZ6Zq4HvgE8TxHk24FVwLbM3N/MXQec2JCKZs6EceNKtaD7Munp76cf6Ad6+vvpy6y/jf5+WLBg2KVK0khSpsvlOOBSYAEwB5gMXFR2AxGxOCI6I6Kzq6urREVj4LTTipOK6lj6wgu8bfVq/veLL/J/t2/nbatXs/SFFw69UG9v0T8/d27JPZCko0OZYYsXAM9kZhdARNwJvB2YHhFttVb6XGD9QAtn5hJgCUBHR0eJ5jPwnvfAww/XnW1xezuL2+tegOx37dgB73rXkemnl6QjqEyqPQ+cHRHHREQAC4HHgQeAD9TmWQTc3bCq3ve+InAbfYp+ZrHeK69s7HolaQQo04e+kuLg52+Af68tswS4HvhURKwFjgcad/rlccfB5ZcXl71tpO7u4jK8b3lLY9crSSNAZJmDiA3S0dGRpa+H3t0NCxfCyy/D5MnD3/i+fbB7N/z0p0WoS9JRIiJWZWZHvflGbkfy1KnFDSl6e2Hv3uGtq6+v+GK4/nrDXFJljdxABzjnHPjWt4oRLzt3Ht46enqK1v7VV9t3LqnSRnagA1x8MSxbVnS7vPRS+QOlmbBtWxHoX/kKXHddccq/JFXUyA90gLe9De6/vzhQunNnEdQ7d7463Pv7i37yrVth+/ZiueXL4YMfNMwlVd7IPSg6mBdfhDvvLA5url79ynXTM4uAf+1r4bzz4IorPBtUUiWUPSh69AX6gfr7i3uP7tlT3F7uhBMO/2bSkjRClQ30kXmDi7LGjIE5c1pdhSSNCEdHH7okqS4DXZIqwkCXpIow0CWpIgx0SaoIA12SKsJAl6SKMNAlqSIMdEmqCANdkirCQJekijDQJakiDHRJqggDXZIqwkCXpIow0CWpIgx0SaqIuoEeEa+PiIcPeHRHxCcjYkZELI+INbXn445EwZKkgdUN9MxcnZlnZOYZwFuAXcBdwA3Aisw8GVhRey9JapGhdrksBP4jM58DLgWW1aYvAy5rZGGSpKEZaqBfAfyw9npWZm6svd4EzBpogYhYHBGdEdHZ1dV1mGVKkuopHegRMR54L3D7wZ9lZgI50HKZuSQzOzKzo729/bALlSQd2lBa6O8GfpOZm2vvN0fEbIDa85ZGFydJKm8ogf5BXuluAbgHWFR7vQi4u1FFSZKGrlSgR8Rk4ELgzgMmfw24MCLWABfU3kuSWqStzEyZuRM4/qBpL1KMepEkjQCeKSpJFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEaUCPSKmR8QdEfFkRDwREedExIyIWB4Ra2rPxzW7WEnS4Mq20L8N3JuZbwBOB54AbgBWZObJwIrae0lSi9QN9IiYBrwDWAqQmT2ZuQ24FFhWm20ZcFmzipQk1Vemhb4A6AL+V0T8NiJui4jJwKzM3FibZxMwq1lFSpLqKxPobcCbge9k5puAnRzUvZKZCeRAC0fE4ojojIjOrq6u4dYrSRpEmUBfB6zLzJW193dQBPzmiJgNUHveMtDCmbkkMzsys6O9vb0RNUuSBlA30DNzE/CfEfH62qSFwOPAPcCi2rRFwN1NqVCSVEpbyfn+AvhBRIwHngY+SvFl8OOIuAp4Dri8OSVKksooFeiZ+TDQMcBHCxtbjiTpcHmmqCRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBFtZWaKiGeBHUAf0JuZHRExA/gRMB94Frg8M19qTpmSpHqG0kI/LzPPyMyO2vsbgBWZeTKwovZektQiw+lyuRRYVnu9DLhs+OVIkg5X2UBP4L6IWBURi2vTZmXmxtrrTcCsgRaMiMUR0RkRnV1dXcMsV5I0mFJ96MAfZub6iHgNsDwinjzww8zMiMiBFszMJcASgI6OjgHnkSQNX6kWemaurz1vAe4CzgI2R8RsgNrzlmYVKUmqr26gR8TkiJiy/zXwTuBR4B5gUW22RcDdzSpSklRfmS6XWcBdEbF//r/PzHsj4tfAjyPiKuA54PLmlSlJqqduoGfm08DpA0x/EVjYjKIkSUPnmaKSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFVE60CNibET8NiJ+Wnu/ICJWRsTaiPhRRIxvXpmSpHqG0kL/BPDEAe9vAm7JzNcBLwFXNbIwSdLQlAr0iJgLXAzcVnsfwPnAHbVZlgGXNaNASVI5ZVvo3wI+C/TX3h8PbMvM3tr7dcCJDa5NkjQEdQM9Ii4BtmTmqsPZQEQsjojOiOjs6uo6nFVIkkoo00J/O/DeiHgW+AeKrpZvA9Mjoq02z1xg/UALZ+aSzOzIzI729vYGlCxJGkjdQM/MGzNzbmbOB64A7s/MDwEPAB+ozbYIuLtpVUqS6hrOOPTrgU9FxFqKPvWljSlJknQ42urP8orMfBB4sPb6aeCsxpckSTocnikqSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVRN1Aj4iJEfFQRDwSEY9FxBdr0xdExMqIWBsRP4qI8c0vV5I0mDIt9L3A+Zl5OnAGcFFEnA3cBNySma8DXgKual6ZkqR66gZ6Fl6uvR1XeyRwPnBHbfoy4LKmVChJKqVUH3pEjI2Ih4EtwHLgP4Btmdlbm2UdcGJzSpQklVEq0DOzLzPPAOYCZwFvKLuBiFgcEZ0R0dnV1XWYZUqS6hnSKJfM3AY8AJwDTI+IttpHc4H1gyyzJDM7MrOjvb19WMVKkgZXZpRLe0RMr72eBFwIPEER7B+ozbYIuLtZRUqS6murPwuzgWURMZbiC+DHmfnTiHgc+IeI+ArwW2BpE+uUJNVRN9Az89+ANw0w/WmK/nRJ0gjgmaKSVBFlulwkSWVs3QqPP1481q2D/n6YMQNOO614zJsHEU3bvIEuScORCb/6FSxdCj//OYwdCz09rwR3fz+MH188L1gAV18NF18MEyc2vJTIzIavdDAdHR3Z2dl5xLYnSU3V1QU33lgEeSZMnQpjBunJzoRdu2DfPpg9G779bXjzm0ttJiJWZWZHvfnsQ5ekw7FqFSxcCA8+WAT59OmDhzkULfbJk4v5tmyByy+H73ynCPoGsctFkoZq1Sr40z8tXk+fPvTlp0yB3l74xjeK7plPfKIhZdlCl6Sh6OqCj360eD158uGvp62tCPZbb4UVKxpSmoEuSWVlFn3mu3YNL8z3a2uDCRPgM5+Bl14a9uoMdEkq66GHigOg06Y1bp3HHAPd3fA3fzPsVRnoklTWbbcVrfRDjCXv6e/nSxs2cMnatbxj9Wr+y9NP8/9efnnQ+QE49lj44Q9h9+5hlWegS1IZ27a9MqLlEPqAE8aNY8lJJ/HgKadwTXs7N6xfz4aensEXGjeuGM74wAPDKtFAl6QyHn+8OGnoUEMTgUljxrC4vZ0548czJoJzp0xhzrhxPLlnz6HX39sLwzxPx0CXpDIee6wYYjhEW3t7eb6nh9dOmHDoGSdOLProh+HoCvTM4vRZSTrSNmwY8iK9mfy3DRu4ZNo05tcL9La24oSjYRjZJxZt3w4/+xn84hfw8MOweXMR6uPHw+//Ppx5Jlx0EZx9dt0/gyRpWPr6hjR7fyZ/tWEDbcBnTzih/gIRw26wjsxA37oVbr4Z7rqr+EeMKP4cmTGj+DwTnnsOVq8ujgy3t8OnPgV/8icGu6TmmDGj9Gn6mcmXN27kxd5ebp03j7YyV1js63sl4w7TyEu/++6D886D22+HSZOK02qnTSsG30cUjzFjirGbM2YUR5y3b4frr4cPfxg2bmz1HkiqotNOK3oHSvjrTZt4pqeHW+bNY0LZRuaePXDGGcMocKQF+t/+LVxzTXG097jjij6leiJeCf6VK+GP/xjWrm1+rZJGl1NPLbpE6rTSN+7bx53btvHUnj28a80azl29mnNXr+aftm8/9Pozi27kYRg5XS7f/z7cdFPR4i4T5AeLKEK9uxuuuALuuQfmzGl8nZJGp7lzi2N3zz5bnAg0iNnjxtF56qlDW3d/f9HzsHDhsEocGS30NWvgy18uLlRzOGF+oKlTixMAPv1pR8RIapwI+NjHih6ERtu+vehqnjVrWKtpfaD398MnP1n8uTFuXGPWOW1aMZ7zjjsasz5JAnj3u+HEE2HHjsats7e3OGHp2muHvarWB/q//is89VTd02mHZP+omG9+01a6pMaZMKG43G1/f2Na6plFN/Gf/3nRRz9MrQ/0Ehe7Aeju6+Mz69bxh08+ySVr13JvvQMMkyYVwx9/+csGFitp1Dv99OJytzt2DC/UM4vu4be+tQj0Bqgb6BExLyIeiIjHI+KxiPhEbfqMiFgeEWtqz8cNeet798K//Eup1vnXNm1iXAT3nXIKX5kzh7/etImn9+499EJ9fcWJSZLUSIsXF+e+7NhRXBt9qHp7i+ufn3VWcXPpksMh6ynTQu8FPp2ZpwFnAx+PiNOAG4AVmXkysKL2fmjWrCl1sZvd/f3cv2MH17S3c8yYMZxxzDH80ZQp/KxMK33VqiGXJUmHFAEf/3jRwzBxYtEbUOY6L/39RZDv3Fncdm7ZsuKcmgapG+iZuTEzf1N7vQN4AjgRuBRYVpttGXDZkLe+dm2pPu7ne3oYC5x0wLfYyRMm1G+hT5gAzzxjP7qk5jjvvOKSt3/2Z0XOdHfDiy8Wgd3TUzx27y66VrZtK1r0F1wA//iPRaA3qGW+35DGCEbEfOBNwEpgVmbuPy1zEzD08Ta7dpUK2139/Uw+qBV/7Jgx7Ky37Jgxxfp7eopvUUlqtGnTitvSXXttcb30zs5ilN3mzUX+TJ1anAF65pkNGZp4KKUDPSKOBX4CfDIzu+OAg5iZmREx4OlTEbEYWAxw0kknHbT1troHQwGOGSC8dw4Q8q+SWTzGjq27DUkalokTi4sFXnRRy0ooNcolIsZRhPkPMvPO2uTNETG79vlsYMDrPmbmkszsyMyO9vb23/1w1qxSJxKdNH48fRRdL/s9tXdv/esL9/YWZ482any7JI1gZUa5BLAUeCIz//sBH90DLKq9XgTcPeStn3pqEbp1ro0wacwYzp8yhe92dbG7v59Hdu3i5zt2cHG9G7Xu2QN/8AdDLkuSjkZlWuhvBz4MnB8RD9ce7wG+BlwYEWuAC2rvh6a9HWbOLIYv1nHDCSewt7+fC596is+tX8+NJ5xQroV+7rlDLkuSjkZ1+zsy85fAYB3dw7uSTARceWVx7fM6By2njh3LN+fNK7/uvr7ioOhlQx98I0lHo9afKfr+9xf96Idxr75D6u4uDk4c3G8vSRXV+kA//ni47rpi3GbJu4HUtXdv0eL//Ocbsz5JOgq0PtABPvKR4uBlvTM/y+jrK8a3f+lLUOY+fpJUESMj0MeOLU6hnTu3OC32cFvqvb3Fl8LVVxf3F5WkUWRkBDoUXS8/+Qm88Y3FKbL79g1t+e5uePnl4sYW111X6oQlSaqSyEb1W5fZWEQX8NwR22A5M4EXWl1EC7jfo8to3O8q7fPvZWbdER5HNNBHoojozMyOVtdxpLnfo8to3O/RuM8jp8tFkjQsBrokVYSBDktaXUCLuN+jy2jc71G3z6O+D12SqsIWuiRVxKgL9Ih4NiL+vXbVyM7atK9HxJMR8W8RcVdETG91nY02yH5/ubbPD0fEfRExp9V1NtJA+3zAZ5+OiIyIma2qr1kG+Vl/ISLWH3TF1EoZ7OcdEX9R+//9WETc3Moam23UdblExLNAR2a+cMC0dwL3Z2ZvRNwEkJnXt6jEphhkv6dmZnft9V8Cp2Xmx1pUYsMNtM+16fOA24A3AG85+POj3SA/6y8AL2fmN1pVV7MNst/nAZ8HLs7MvRHxmswc8GY8VTDqWugDycz7MrO39vZXwNxW1nOk7A/zmsnAaPl2vwX4LKNnf0eza4CvZeZegCqHOYzOQE/gvohYVbvf6cGuBP7pCNd0JAy43xHx1Yj4T+BDwF+1rLrmeNU+R8SlwPrMfKS1pTXVYL/j/7XWxfa9iDiuVcU10UD7fQpwbkSsjIifR8SZLayv+TJzVD2AE2vPrwEeAd5xwGefB+6i1hVVpceh9rs2/Ubgi62us9n7DKwEptWmPwvMbHWdR2i/ZwFjKRpxXwW+1+o6j9B+Pwr8D4qb9JwFPFPF/9/7H6OuhZ6Z62vPWyjC+yyAiPgIcAnwoaz9VlTJYPt9gB8A7z/SdTXTAPv8R8AC4JFaf+tc4DcRUanrLA/0s87MzZnZl5n9wP/k1T//o94gv+PrgDuz8BDQT3GNl0oaVYEeEZMjYsr+18A7gUcj4iKKPtX3ZuauVtbYDIfY75MPmO1S4MlW1NcMg+zzrzPzNZk5PzPnU/xnf3NmbmphqQ11iJ/17ANmex9Fy7UyBttv4P8A59WmnwKMpzoX7HqVuvcUrZhZwF1RXFq3Dfj7zLw3ItYCE4Dltc9+lRUa7cHg+/2TiHg9RavlOaDy+9zako6IwX7W34+IMyj6mZ8Frm5diU0x2H6PB74XEY8CPcCiKv4Fvt+oG7YoSVU1qrpcJKnKDHRJqggDXZIqwkCXpIow0CWpIgx0SaoIA12SKsJAl6SK+P+OdbQVLfAAQAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -613,20 +695,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "order = (0, 1, 2) Distance = 162.0\n", - "Best order from brute force = (0, 1, 2) with total distance = 162.0\n" + "order = (0, 1, 2) Distance = 124.0\n", + "Best order from brute force = (0, 1, 2) with total distance = 124.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VHW6x/HPM2mQkJAEEkhAOlKFUGTFdVkvdtd+NYUqiFEEUSmKIKwggqiIoAiydBCSrKuid3cti7KuelVQEVFAUJCWkCCd9Mzv/nEmXISUST0zk+f9es0rmcmZmYcDfOeX3/md54gxBqWUUt7PYXcBSimlqocGulJK+QgNdKWU8hEa6Eop5SM00JVSykdooCullI/QQFdKKR+hga6UUj5CA10ppXyEf22+WePGjU2rVq0u/IExcPAgHDsGDod1c1dREYhAs2YQHl5ttSqllKf46quvjhhjosrbrlYDvVWrVmzevPm3D+bnw4gRVpjHxlYszIvl5UF2NowZA0OGVE+xSinlIUTkF3e2s3/K5bHH4NNPISKicmEOEBQEDRrA9OmwYUP11qeUUl7C3kDfsAHefhsaNrSmTaoiIMAK9nHj4OjR6qlPKaW8iH2BnpsLEyZYIVzZkfn56teHU6dg1qzqeT2llPIi9gX6++9b4RscXOom+U4n0w8d4qbdu+m3cycDfv6Zz06fLvt1w8Jg/XodpSul6hz7An3xYvDzK3OTIqBpQACLW7Rg48UXMzIqiokHD3IoP7/0J/n5gdMJb71VvfUqpZSHcyvQReQhEdkmIt+LyMOuxyJF5AMR2eX6GuH2u2Znw/btEBJS5mb1HQ6So6KIDQzEIcIfQkOJDQhgR25u2a/v5wcffuh2OUop5QvKDXQR6QrcC/QBugM3iUg7YCKwwRjTHtjguu+enTutg5gVPBB6tLCQffn5tAkKKnvDevVg61ZrfbtSStUR7ozQOwFfGGOyjTGFwL+BO4BbgZWubVYCt7n9rvv3W9MiFZDvdDL50CFuatiQVuUFur8/nDlj3ZRSqo5w58SibcDTItIIyAFuBDYDTYwx6a5tMoAmJT1ZRJKBZIAWLVpYDxYWVmj07DSGB7dt47TTyX+HhrJv/34CAgIuuPn7+yPWm1q3ggK330MppbxduYFujNkuIrOB94EzwBas45XnbmNEpMSENsYsBhYD9O7d29omKMjt6RZjDE+lp1MUGsoUY/AzhgYNGgBQkJ9Pbk4OBQUFFBQUUOR0EuDvT0BAAGGFhbzx2mtEt2xJTEwMMTExREdHExAQ4Nb7KqWUt3Hr1H9jzFJgKYCIzAQOAIdFJMYYky4iMUCm2+/aurXba89nZWSwJz+fV1q2pL7DwbFjx8jKyqJRZCTR0dHIOR8MTmMoKCigMDubfCDfz49NmzaRkZFBeno6WVlZREREEBMTQ9OmTc8GffGtadOmBJexjFIppTyZW4EuItHGmEwRaYE1f34Z0BoYCjzj+rre7Xdt186aDnE6ywz29IIC3jh+nEARrtu16+zjExo3Ji47m5N79xITE0P9evUAcIgQFBhIUG4uIf36MXLkyN+8XlFREVlZWaSnp5Oenk5GRgY7d+5k48aNZ+8HBQWVGPTF3zds2PA3HyJKKeUp3G3O9TfXHHoBMMoYc1xEngHSROQe4Bcg3u13DQyEvn3hiy+s0/5LERMQwOZOnUr8mWnUiJMnTrB/3z4ahocTFRWFozhojYEbbrjgOX5+fjRt2pSmTZvSo0ePC1/TGI4dO3Z2RJ+ens7BgwfZvHnz2ccKCwvPBnxJo/zGjRvjqK4zX5VSqgLE1OLSvt69e5uz3Rb//W+4917rzM4qKCwsJOPwYXJzc4mNiSE4IMAa/W/eXOZZqJV15syZs2FfPKo/9+uJEyeIiooqcZRffAsMDKz2upRSvktEvjLG9C5vu1ptn/sbV1xh9TA/eLBKoe7v70/zZs04deoUBw4eJMrfn+CxYwmqobnwkJAQ2rVrR7t27Ur8eX5+PocPH/5NyH/99ddnPwCysrIICwsrdUonJiaGkHJOuFJKqZLYF+h+fjBvHtxxh7WM0b9qpYSGhhJcVMSBwkKGf/IJEz77jMsvv7yainVfYGAgF110ERdddFGJP3c6nRw5cuQ3o/zdu3fzySefnL0fEBBQ5oHbiIgIncdXSl3AvimXYvPmwfz51ii9nN4uZcrJsT4Y/vpXvszNZcaMGcTFxTFu3DgaljFP72mMMZw4ceKCKZ1zb3l5eReE/bn3o6Ki8KvKvlRKeRR3p1zsD3RjYNo0WL3a6u1Smfnl06et1/nLX6BfPwBycnJYuHAh7733HuPHj+fqq6/2mVFtdnY2GRkZJYZ9RkYGR48epXHjxqVO6TRt2pSg8s62VUp5DO8JdLDCePlymD3bukaouxe8KCy0WvA2bQovvwwlrFzZunUrTz31FC1btuSxxx4jKqrcy/J5vYKCAjIzM0s8eJuenk5mZiYNGjQodUonJiaG0NBQu/8YSikX7wr0Yj//DJMnWytUnE6rydb5F8AoLLQujlFYaE3RDBpkXaWorL7q+fksW7aMv/3tb4wePZpbbrnFZ0brleF0Ovn1119LndLJyMhARMo8cBsREaHLM5WqJd4Z6MV++gnWroWPP4Y9e6xAF7FC3t8funSBm2+G224rcx37+X788UeeeuopQkNDmTx5Ms2aNavCn8Z3GWM4depUiUFf/AFw5syZs8swSwr96Oho/Kt4oFspZfHuQD9Xfj5kZloj8vr1ISqqSpesKyoq4rXXXmPlypXcc889JCYm6kizEnJzc38zuj9/pP/rr78SGRlZ5lm39Vxn+CqlyuY7gV5D9u3bx4wZMygoKGDKlCm0adPG7pJ8SmFhIZmZmaVO6WRkZBAcHFzqlE7xPH5dnhpTqpgGuhucTidvvvkmCxcuJDExkaFDh2o3xlridDo5duxYqQdu09PTMcaUeeC2UaNG+tuVqhM00Cvg8OHDzJw5k8zMTKZMmULnzp3tLkkBp0+fLnM9/unTp4mOji51Hr9Jkyb6Aa18ggZ6BRljePfdd5k7dy433XQTycnJOsfr4fLy8s62WShppK/tkpWv0ECvpKNHj/L888+zfft2pkyZQs+ePe0uSVVSSe2Szw9+bZesvIEGehV9/PHHPPPMM/zhD39gzJgx2jDLB5XULvn8A7f5+fkXBP35bRZ0Hr+WFRVZy5l37IBDh6zuqiEh0LYtdOoEjRvbXWG100CvBqdOnWL+/Pl89tlnPP7441xxxRV2l6Rq2ZkzZ0oc2Rd/X9wuubQpHW2XXI0OHoR162DVKsjLs84wz8+3vjoc1kmIBQXQoQPcfz9ce611cqIP0ECvRps2bWLGjBl069aNcePGER4ebndJykOU1C753Ju2S64GBQWwcCEsWGCdj1JWzydj4MwZaxQfFWU1/7v00tqttwZooFeznJwcFi1axD//+U/Gjx/PNddco3OrqlwltUs+P/y1XXIZMjPh7rvhxx+hQYOKtdk+fdr6MLjvPhg/vkonJNpNA72GbNu2jenTp9O8eXMmTpxIdHS03SUpL3Zuu+Tzr35VfMvNzb2gzcK5HwDR0dG+2S45M9O6XsLhw1Z77cp8qBUVwYkTMHgwPPlk5V7DA2ig16D8/HxWrFhBWloao0aN4rbbbqu7IyhV4+pku+TCQivMf/gBqjrFWVQEJ0/C9OkwcGD11FfLNNBrwe7du5k+fTrBwcE88cQTNG/e3O6SVB3kk+2SFy+22mmHh1fPqDo/37p98AGUcjUxT6aBXkuKiopYt24dy5cvZ/jw4SQlJekyNuVRSmuXfO73pbVLLv4aGRlZe/+ujxyB3//eWqFSnWf6HjsG/ftbF8LxMtUa6CLyCDACMMB3wDAgBkgBGgFfAYONMfllvY4vBnqx/fv389RTT5GXl8fUqVNp27at3SUp5ZbidsmlTekUt0tu0qRJqQdvq7Vd8qJF8Pzz5U61pB09yjsnTrA7L4/rwsJ4Mja27Nd1Oq2pl//8B2JiqqfWWlJtgS4izYBPgM7GmBwRSQP+AdwIvGGMSRGRRcC3xpiFZb2WLwc6WCOht956i1deeYX4+HiGDRumvUSUT6i1dsnGwGWXWUsPy9n+w5MncYjwv6dPk2dM+YEO1ih93Dh44AE3/+SeoboD/XOgO3ASeAt4CXgNaGqMKRSRvsCTxpjrynotXw/0YpmZmcyaNYtDhw4xdepUunTpYndJStWoamuXnJUFl1/u/mUogVcyM8ksLHQv0E+dgp49rROUvIi7gV7u70jGmIMi8jywD8gB3seaYjlujCl0bXYA0Mv/uERHR/PCCy/w/vvv88gjj3DjjTdy//33a7Mv5bP8/f2JjY0ltpRQPbddcnHo79+/n02bNp0NfqfTyX/5+THy118xubkEBAT85ubv70+VD4/Wrw/ffWf9JuCDK9PKDXQRiQBuBVoDx4G/Ate7+wYikgwkA7Ro0aJyVXohEeG6666jT58+zJkzh8TERJ544gl69y73Q1Ypn+NwOGjUqBGNGjWia9euJW5z+vRpTi1bRtiuXeQGBVFQUEBubi4FBQUU5OdT5HQS4O9/QdAXOZ3uF+Lvb61LLygo/WxTL+bOUYyrgT3GmCwAEXkD+D0QLiL+rlF6c+BgSU82xiwGFoM15VItVXuRiIgIZsyYwccff8zUqVO54oorGDNmDA0aNLC7NKU8SoMGDWgQHQ1BQQRHRFzwc6cxVrifczt9+jRHT57EVGStuoi1zt0HA92ddUj7gMtEJFiss2euAn4APgLudG0zFFhfMyX6hn79+pGWlgZAfHw8H3/8sc0VKeWBQkKglLNeHSIEBQbSICSEiPBwoqOiaNa8OU5jcBYVuff6TqcV6N52opWbyg10Y8wXwOvA11hLFh1YI+7HgLEishtr6eLSGqzTJzRo0IBJkyYxffp0XnjhBSZPnsyxY8fsLkspz9Gundtz20XGUOB0EhAQQF5BAflOJ0XlLcPOy4NWrUr90PB2bp0pYIz5szGmozGmqzFmsDEmzxjzszGmjzGmnTHmLmNMXk0X6yt69+5NSkoK0dHRJCQk8O6771KbJ3gp5bHatrVG0W6MuJceOcLlO3fyt/x83jt9mst37mTpkSNlPyknB3z4OJaeKWqz77//nunTpxMbG8vjjz+uzb6Uuv9++Ne/3O7hkpefz759+2jfrl35G584AcuXg5dd28DdZYt6jrrNunTpwpo1a+jcuTMDBgzgjTfewFmRo/ZK+Zrhw61pFzcHm4GBgRink/yCgrI3zMmxrmZ0+eXVUKRn0kD3AAEBAdx77728+uqrrF+/npEjR7J//367y1LKHpdeCt26WaNpNwgQHBJCdnZ26RsZA7m5Xt8XvTy++yfzQm3btmX58uX88Y9/5O6772b16tUUuXv0XilfIQIvvGCtGc8vsz3UWcHBwWSfOVP6BsePQ9++VkteH6aB7mEcDgcDBgxg5cqVfPbZZwwbNoxdu3bZXZZStatlS5g1y+rpUt5UChASHMyZ0kboJ09aUy1z5vjk2aHn0kD3UM2bN+eVV17hjjvuYOTIkbz66qvkuzlaUcon3H47TJtmhXpZo28gMCgIp9NJwbnhb4zVjCsiAlJToUmTGi7YfhroHkxEuO2221i7di07d+5k0KBBfPfdd3aXpVTtGTQIVqywrid67Fipo3XBGqVnZ2f//4Wijx+HP/4R3nnHWnteB2ige4Ho6GjmzJnDiBEjGD9+PC+88AI5OTl2l6VU7bjiCtiwAYYNs07ZP3HCCvecHGu9utMJhYWEOhw4jxyxplhiYmD+fFi6FOrQUmANdC8hIlx77bWkpqZy/PhxEhIS+PLLL+0uS6naERYGTzwBmzZZF7+4/XYrqHNyrJa4RUU4unblndhYSEmxPgD+9CefnzM/n55Y5KU++eQTZs2aRd++fXnooYc875qQStUyp9PJ1VdfTVpaGo0bN7a7nGqlJxb5uCuuuIK0tDT8/f1JSEjg3//+t90lKWUrh8NBXFwcX3/9td2l2EYD3YuFhIQwceJEZsyYwYsvvsikSZM4evSo3WUpZZtevXrx1Vdf2V2GbTTQfUDPnj1JSUmhadOmJCYm8o9//EObfak6qWfPnjpCV94vKCiIMWPG8OKLL7Jq1SoefvhhDh8+bHdZStWqDh06kJWVVWd/U9VA9zGdO3dm9erVdOvWjYEDB/L6669rsy9VZ9T1eXQNdB8UEBDAPffcw+LFi/n73//Offfdx759++wuS6laUZenXTTQfVibNm1YunQp/fv3Z9iwYaxatUqbfSmfV5cPjGqg+ziHw0FSUhKrV6/m888/Z+jQofz44492l6VUjenYsSPp6ekcP37c7lJqnQZ6HREbG8uCBQuIj49n1KhRLFy4UJt9KZ/k5+dH9+7d+eabb+wupdZpoNchIsItt9zC2rVr+emnnxg4cCBbt261uyylql1dnUfXQK+DoqKieO6557jvvvuYMGECc+bMKftqL0p5mbo6j66BXkeJyNm+FydPniQxMZEvvvjC7rKUqhadOnXiwIEDnDx50u5SalW5gS4iHURkyzm3kyLysIhEisgHIrLL9TWiNgpW1athw4ZMmzaNiRMn8tRTTzF9+vQ6959A+Z6AgAC6du3Kli1b7C6lVpUb6MaYncaYOGNMHNALyAbeBCYCG4wx7YENrvvKS11++eWkpaVRr149EhIS+Oijj+wuSakq6dWrV52bR6/olMtVwE/GmF+AW4GVrsdXArdVZ2Gq9gUHB/Poo48yc+ZMXnrpJSZOnFhnT6FW3q9nz551bh69ooGeCKxzfd/EGJPu+j4D8P0L9tURPXr0YN26dTRv3pzExET+/ve/a7Mv5XW6dOnC3r17OX36tN2l1Bq3A11EAoFbgL+e/zNj/W8v8X+8iCSLyGYR2ZyVlVXpQlXtCgoKYvTo0cybN4/XXnuNMWPGkJ6eXv4TlfIQgYGBdO7cmW+//dbuUmpNRUboNwBfG2OKW/gdFpEYANfXzJKeZIxZbIzpbYzpHRUVVbVqVa3r1KkTq1atokePHgwaNIi0tDRt9qW8Rl1bvliRQE/i/6dbAN4Ghrq+Hwqsr66ilGfx9/dn+PDhLFmyhHfffZfk5GR++eUXu8tSqlx17QQjtwJdREKAa4A3znn4GeAaEdkFXO26r3xY69atWbJkCddccw3Dhw9nxYoVFBYW2l2WUqW65JJL+Omnn+rMiXNuBbox5owxppEx5sQ5j/1qjLnKGNPeGHO1MUaXQ9QBDoeDhIQEVq9ezaZNmxg6dCg7d+60uyylShQUFESHDh3qTIsLPVNUVUpsbCwvv/wyiYmJjB49mldeeUWbfSmPVJemXTTQVaWJCDfffDMpKSns3buXpKSkOrWiQHmHunRgVANdVVmjRo149tlnGTVqFI899hjPPfdcnZmzVJ6vW7du/Pjjj+Tm5tpdSo3TQFfVpn///qSlpXHmzBkSEhL4/PPP7S5JKerXr0/79u3rxDy6BrqqVmFhYTz55JNMmjSJp59+mmnTpmmzL2W7ujKProGuakTfvn1JTU2lfv36xMfH8+GHH9pdkqrDNNCVqqLiZl/PPPMMCxYs4NFHH+XIkSN2l6XqoLi4OLZv3+7zK7E00FWNi4uLY926dbRs2ZKkpCTeeecdbfalalVwcDCtW7dm27ZtdpdSozTQVa0IDAxk1KhRvPzyy6SkpDB69GgOHTpkd1mqDqkLyxc10FWt6tChAytXruTSSy9l8ODBpKamarMvVSvqwjy6Brqqdf7+/tx9990sW7aMDz74gBEjRrBnzx67y1I+Li4uju+//56CggK7S6kxGujKNi1btmTx4sVcf/31jBgxgmXLlmmzL1VjQkNDadGiBT/88IPdpdQYDXRlK4fDQXx8PGvWrOGbb75hyJAh7Nixw+6ylI/y9cvSaaArjxATE8P8+fMZOHAgY8aM4eWXXyYvL8/uspSP8fUDoxroymOICH/6059ISUlh//79JCUlsWXLFrvLUj6kR48efPfddz47taeBrjxOZGQks2fPZvTo0Tz++OM8++yz2uxLVYuwsDCaNWvG9u3b7S6lRmigK4/Vv39/UlNTyc3NJT4+ns8++8zukpQP8OXlixroyqOFhYUxdepUpkyZwjPPPMPUqVM5ceJE+U9UqhS+PI+uga68wu9+9ztSUlIICwsjPj6ef/3rX9o+QFVKjx49+PbbbykqKrK7lGqnga68RnBwMOPHj+e5555j0aJFTJgwQZt9qQqLiIigSZMmPnktXA105XW6devG2rVradu2LUlJSbz99ts6WlcV4qvz6BroyisFBgYycuRIFixYwF//+ldGjRqlzb6U23r16lV3A11EwkXkdRHZISLbRaSviESKyAcissv1NaKmi1XqfBdffDErVqzgsssuY/Dgwaxbt06bfaly9ezZk2+++cbn/q24O0KfB7xrjOkIdAe2AxOBDcaY9sAG132lap2fnx9Dhgxh+fLlfPjhh4wYMYKff/7Z7rKUB2vUqBGRkZHs2rXL7lKqVbmBLiINgX7AUgBjTL4x5jhwK7DStdlK4LaaKlIpd7Ro0YJXX32VG2+8keTkZJYuXeqzZwSqqvPF5YvujNBbA1nAchH5RkSWiEgI0MQYk+7aJgNoUlNFKuUuh8PBnXfeyZo1a/j2228ZPHiwz54VqKrGFw+MuhPo/kBPYKExpgdwhvOmV4y1xKDEZQYikiwim0Vkc1ZWVlXrVcotTZs2Zd68eQwePJiHHnqI+fPna7Mv9Ru+OI/uTqAfAA4YY75w3X8dK+APi0gMgOtrZklPNsYsNsb0Nsb0joqKqo6alXKLiHDjjTeSkpJCeno6SUlJPjciU5UXHR1NaGioTx1vKTfQjTEZwH4R6eB66CrgB+BtYKjrsaHA+hqpUKkqioyMZNasWYwZM4bJkycza9Yszpw5Y3dZygP42rSLu6tcHgReE5GtQBwwE3gGuEZEdgFXu+4r5bGuvPJK0tLSKCwsJD4+nk8//dTukpTNfO3AqNTmGXa9e/c2mzdvrrX3U6o0X375JTNmzKB79+6MGzeO8PBwu0tSNkhPT2fo0KG89957iIjd5ZRKRL4yxvQubzs9U1TVSX369CE1NZWIiAgSEhJ4//33tX1AHRQTE0O9evXYu3ev3aVUCw10VWfVr1+fsWPH8vzzz7NkyRLGjRuHrsSqe3xpHl0DXdV5l1xyCWvWrKFDhw4kJSXx1ltv6Wi9DvGlC0droCuF1ezrvvvuY+HChbzxxhs88MADHDx40O6yVC0oPjDqCx/iGuhKnaN9+/YsX76cyy+/nCFDhrB27VqfOvFEXSg2NhY/Pz/2799vdylVpoGu1Hn8/PwYPHgwK1asYOPGjQwfPtynTj5RvyUiPrN8UQNdqVJcdNFFLFq0iFtuuYXk5GT+8pe/UFBQYHdZqgb4yoFRDXSlyuBwOLjjjjtYu3Yt33//PYMGDeKHH36wuyxVzXxlHl0DXSk3REdHM3fuXIYNG8bDDz/Miy++SG5urt1lqWpy0UUXUVRU5PVXvdJAV8pNIsL1119PamoqmZmZJCYm+sS8q/KdeXQNdKUqKCIigpkzZzJ27FimTJnCzJkzOX36tN1lqSryheuMaqArVUn9+vUjLS0NYwzx8fH85z//sbskVQW+cGBUA12pKmjQoAGTJ09m2rRpPP/880yePJljx47ZXZaqhFatWpGbm0t6enr5G3soDXSlqsGll15KamoqUVFRJCQk8N5773n9iom6RkTo0aOHV4/SNdCVqib16tXj4YcfZu7cuSxbtoyxY8eSmVnihbyUh/L2A6Ma6EpVsy5durBmzRo6derEgAEDeOONN7R9gJfw9nl0DXSlakBAQADJycm8+uqrrF+/npEjR/pErxBf16ZNG06dOuW1v1lpoCtVg9q2bcvy5cvp168fd999N2vWrNHRugdzOBxePY+uga5UDXM4HAwcOJCVK1fyySefcPfdd7N79267y1Kl8Ob16BroStWS5s2bs3DhQm6//Xbuv/9+Xn31VfLz8+0uS53Hmw+MaqArVYtEhNtvv521a9eyc+dOBg0axLZt2+wuS52jXbt2HDt2jF9//dXuUipMA10pG0RHRzNnzhxGjBjB2LFjeeGFF8jJybG7LIU1RRYXF+eV0y5uBbqI7BWR70Rki4hsdj0WKSIfiMgu19eImi1VKd8iIlx77bWkpaVx9OhREhMT2bRpk91lKbx3+WJFRuj/ZYyJM8b0dt2fCGwwxrQHNrjuK6UqKDw8nBkzZjB+/Hj+/Oc/M2PGDE6dOmV3WXWat144uipTLrcCK13frwRuq3o5StVdf/jDH0hLS8PhcJCQkMDHH39sd0l1VocOHTh8+LDX9eVxN9AN8L6IfCUiya7HmhhjirvYZABNSnqiiCSLyGYR2ZyVlVXFcpXybQ0aNGDSpEk89dRTzJ07l0mTJnH06FG7y6pz/Pz86N69O998843dpVSIu4F+hTGmJ3ADMEpE+p37Q2N1ISqxE5ExZrExprcxpndUVFTVqlWqjujVqxfr1q2jadOmJCYm8s9//lObfdUyb1y+6FagG2MOur5mAm8CfYDDIhID4PrqnefKKuWh6tWrx5gxY3jxxRdZuXIljzzyCIcPH7a7rDrDG08wKjfQRSREREKLvweuBbYBbwNDXZsNBdbXVJFK1WWdO3dm9erVdO3alYEDB/K3v/1N2wfUgo4dO3Lw4EFOnjxpdyluc2eE3gT4RES+Bb4E/m6MeRd4BrhGRHYBV7vuK6VqQEBAACNGjGDx4sW888473H///ezbt8/usnyav78/3bp186p59HID3RjzszGmu+vWxRjztOvxX40xVxlj2htjrjbG6JEbpWpYmzZtWLZsGVdeeSXDhg1j1apVFBUV2V2Wz/K25Yt6pqhSXsbhcDBgwABWrVrF559/zt13382PP/5od1k+ydvm0TXQlfJSzZo1Y8GCBdx555088MADLFy4UJt9VbPOnTuzb98+rznRSwNdKS8mItx6662sW7eO3bt3M3DgQLZu3Wp3WT4jICCALl26sGXLFrtLcYsGulI+ICoqiueff57k5GQmTJj26yMdAAARs0lEQVTAnDlztNlXNfGmvi4a6Er5CBHhmmuuIS0tjRMnTpCQkMCXX35pd1lez5tOMPK3uwClVPVq2LAh06dP59NPP2XatGn87ne/45FHHiE0NNTu0rxS165d2bNnD9nZ2QQHB9tdTpl0hK6Uj/r9739PWloaQUFBxMfHs3HjRrtL8kqBgYF06tTJK+bRNdCV8mEhISE89thjPP3008yfP5+JEydqs69K8JblixroStUBPXv2ZN26dTRr1ozExET+8Y9/aLOvCvCWA6Ma6ErVEUFBQTz44IPMmzePNWvW8NBDD5GRkWF3WV7hkksuYdeuXR6/ckgDXak6plOnTqxatYq4uDgGDhxIWlqaNvsqR7169bj44ov57rvv7C6lTBroStVB/v7+DB8+nCVLlvDuu++SnJzML7/8YndZHs0bli9qoCtVh7Vu3ZolS5Zw9dVXM3z4cFasWKHNvkrhDY26NNCVquMcDgeJiYmsXr2aL7/8kqFDh2qzrxJ069aNnTt3kpeXZ3cppdJAV0oBEBsby4IFC4iPj2fUqFG88sor2uzrHMHBwbRt29aj59E10JVSZ4kIt9xyC+vWrWPPnj0MGDBAm32dw9PXo2ugK6Uu0LhxY5599llGjhzJhAkTeO6558jOzra7LNt5+oFRDXSlVIlEhKuuuoq0tDTOnDlDYmIin3/+ud1l2ap79+5s377dY6eiNNCVUmVq2LAhTz75JI8//jhPP/0006ZN86oLJ1enkJAQWrVqxffff293KSXSQFdKuaVv376kpqZSv359EhIS+PDDD+0uyRae3AZAA10p5bbg4GAeffRRZs2axYIFC3j00Uf59ddf7S6rVnnyenQNdKVUhcXFxbFu3TpatmxJYmIi77zzTp1p9tWjRw+2bdtGQUGB3aVcwO1AFxE/EflGRP7Hdb+1iHwhIrtFJFVEAmuuTKWUpwkMDGTUqFG89NJLrFu3jgcffJBDhw7ZXVaNCw0NpXnz5mzfvt3uUi5QkRH6Q8C5f4LZwFxjTDvgGHBPdRamlPIOHTt2ZNWqVfTq1YvBgweTmprq882+PHX5oluBLiLNgT8BS1z3BegPvO7aZCVwW00UqJTyfP7+/gwbNoylS5fy3nvvce+997J37167y6oxnnpg1N0R+ovAo0Dxx24j4LgxptB1/wDQrKQnikiyiGwWkc1ZWVlVKlYp5dlatWrFkiVLuO6667jnnntYtmwZhYWF5T/Ry/Ts2ZOtW7d6XCOzcgNdRG4CMo0xlfr9whiz2BjT2xjTOyoqqjIvoZTyIg6Hg/j4eFavXs3XX3/NkCFD2Llzp91lVauGDRsSExPDjh077C7lN9wZof8euEVE9gIpWFMt84BwEfF3bdMcOFgjFSqlvFJsbCwvvfQSAwYMYPTo0bz88ssee4ZlZXji8sVyA90Y87gxprkxphWQCHxojBkIfATc6dpsKLC+xqpUSnklEeGmm24iJSWFffv2kZiYyJYtW+wuq1p4YqOuqqxDfwwYKyK7sebUl1ZPSUopX9OoUSOeffZZRo8ezcSJE3n22We9vtlXjx492LJli0et6KlQoBtjNhpjbnJ9/7Mxpo8xpp0x5i5jjOd2fVdKeYT+/fuTlpZGbm4uCQkJ/O///q/dJVVaZGQkUVFRHnUxED1TVClVq8LCwpg6dSqTJ09m5syZ/PnPf/baZl+etnxRA10pZYvLLruM1NRUQkNDiY+PZ8OGDV7XPqBXr15s3rzZ7jLO0kBXStkmODiY8ePHM3v2bBYuXMijjz7KkSNH7C7LbT179vSoeXQNdKWU7bp3787atWtp3bo1SUlJvP32214xWm/cuDHh4eHs3r3b7lIADXSllIcIDAzkgQceYMGCBaSmpjJq1CivaPblScsXNdCVUh7l4osvZtWqVfzud79j8ODBpKSkeMyURkk86cCoBrpSyuP4+fkxdOhQli1bxr/+9S9GjBjBnj177C6rRMUjdE+YItJAV0p5rJYtW7J48WJuuOEGRowY4ZHNvqKjowkJCfGIDxwNdKWUR3M4HNx1112sWbOGLVu2MHjwYI+7uISn9EfXQFdKeYWYmBjmzZvH4MGDeeihh3jppZfIy/OME9Q9ZR5dA10p5TVEhBtvvJGUlBQOHTpEUlKSRwRpcedFu+fRNdCVUl4nMjKSWbNmMWbMGCZPnszs2bM5c+aMbfXExsYSGBjIL7/8YlsNoIGulPJiV155JampqeTn55OQkMCnn35qWy2eMO2iga6U8mphYWFMmTKFqVOnMnv2bKZOncrx48drvY7evXvbfmBUA10p5RP69OlDamoq4eHhJCQk8MEHH9TqnHbxCN3OeXQNdKWUz6hfvz5jx47lueeeY/HixYwfP57aujh9s2bNEBEOHDhQK+9XEg10pZTP6datG6+99hrt27cnKSmJ9evX1/jIWURsn0fXQFdK+aTAwEDuv/9+XnnlFV5//XUeeOABDh6s2WvZ233haA10pZRPu/jii1mxYgV9+/ZlyJAhrF27tsaafdndeVEDXSnl8/z8/BgyZAjLly9n48aNDB8+nJ9//rna36dFixbk5+fb1vZXA10pVWe0aNGCRYsWcfPNN5OcnMySJUsoKCiottcXEVtH6eUGuojUE5EvReRbEfleRKa5Hm8tIl+IyG4RSRWRwJovVymlqsbhcPDf//3fvPbaa2zdupXBgwfzww8/VNvr23lg1J0Reh7Q3xjTHYgDrheRy4DZwFxjTDvgGHBPzZWplFLVq0mTJsybN4+hQ4fy8MMPM3/+fHJzc6v8unZeOLrcQDeW0667Aa6bAfoDr7seXwncViMVKqVUDRERbrjhBlJSUsjIyCApKanKq1Rat25NTk4Ohw8frqYq3efWHLqI+InIFiAT+AD4CThujCnuNH8AaFYzJSqlVM2KjIxk5syZPPLII0yZMoWZM2dy+vTp8p9YAhGhR48e///BYIx1qwVuBboxpsgYEwc0B/oAHd19AxFJFpHNIrK5ts7YUkqpyujXrx+pqakYY4iPj+eTTz6p+Iukp3PX8eM0mzwZevWCNm2gdWvo2hXuugvmzIEdO6q/eEAqevaUiEwFcoDHgKbGmEIR6Qs8aYy5rqzn9u7d29g1t6SUUhWxadMmZsyYwSWXXMK4ceOIiIgo+wl79sDTT8PGjeTn55N19CjN2rSBgADr50VFkJsL+fngcEDnzjBpElx2Wbm1iMhXxpje5W3nziqXKBEJd31fH7gG2A58BNzp2mwosL7cqpRSyktceumlpKSk0KhRIxISEnj//fdLbh/gdMKyZXD99fDRRxAWRkB0NKcdDgocDhCxbv7+0KABREZCw4bWKH3gQJg8GbKzq6XmckfoItIN66CnH9YHQJoxZrqItAFSgEjgG2CQMabM60HpCF0p5Y22bdvG9OnTad68ORMnTiQ6Otr6QVERTJgA69dDSAgE/v/q7f0HDhAWFkbDsLDSX7ioCE6cgC5dYM0aK+hLUG0jdGPMVmNMD2NMN2NMV2PMdNfjPxtj+hhj2hlj7iovzJVSylt17dqVNWvW0LFjRwYMGMCbb76JcTrhiSesMG/Y8DdhDhAcHEx2eSNvPz+IiIAffoAhQ6wpmSrQM0WVUsoNgYGBJCcns2jRIt58803m33wzhWvXWmHuuDBK3Qp0sKZjwsNh2zaYO7dKNWqgK6VUBbRr147lc+cy+Lvv2H/kCL8eP05JE9f16tWjsKCAwsLCEn56HhEIDbXm4rdurXRtGuhKKVVBfm+8QWRAAM3atuXUqVPs3buX3LzfzjoLFRilg3XQ1BiYP7/SdWmgK6VURTidsGQJ1K9PYGAgLVu2JDw8nF9++YWsrCyc5yw0KapXj8fS07lixw5u2r2bd0+cKPu1w8Jg40ZIT69UaRroSilVETt2wLFjUK8eYI3EI8LDadOmDbm5uezZs4ecnBwAFmRnYwoLef/ii5kRG8usjAx+zitj/UjxXPx//lOp0jTQlVKqIrZvL/FU/gB/f5pfdBGNGzdm//797M3I4OPsbOIdDgKNIS44mD+GhvL38kbpxkAll3droCulVEVs22atHy+BAA3DwmjTti378vIozMujZVDQ2Xn09kFBZY/QwRr5V/LAqAa6UkpVxPHjJS5TPJe/nx+hUVE0DAoiLy+PPFeIN3A4OFPe5e8cDqhkYzD/Sj1LKaXqqkD3ruUT7HCQJ0LHDh1wiABwxukkpJwPA4yxTjiqBB2hK6VURbRsaa10KUeLwECKgAPnXOLux7w82gQFlf3EggK46KJKlaaBrpRSFdG1q1uj9PoOB/1DQ1mUlUWO08m32dn8+9Qp/lRKv5az8vOhT59KlaaBrpRSFdG1q3VQ1I1R+sSmTclzOrnmxx+ZdPAgjzdtWv4IPSDA6qNeCTqHrpRSFREZCf37w4YNVg+WMoT5+TGnItMnubnWa7rRI70kOkJXSqmKGjHC+urGKL1CcnLg3nv1oKhSStWaSy+FG26Akyer7zVPnoQWLaw2upWkga6UUpUxfbrVOvfUqaq/VvHJRvPmQXlz7GXQQFdKqcqIiIDVq60VL1UZqefmWlMtzz8P3bpVqSQNdKWUqqzOnSEtzQr348crNqdujPWcoiJYsABuuaXK5ZR7TdHqJCJZwC+19obQGDhSi+9XGZ5eo6fXB1pjdfD0+qBu19jSGBNV3ka1Gui1TUQ2u3NhVTt5eo2eXh9ojdXB0+sDrdEdOuWilFI+QgNdKaV8hK8H+mK7C3CDp9fo6fWB1lgdPL0+0BrL5dNz6EopVZf4+ghdKaXqDJ8IdBGpJyJfisi3IvK9iExzPd5aRL4Qkd0ikioi7nWmr90aV4jIHhHZ4rrF2VWjqx4/EflGRP7Hdd9j9mEZNXraPtwrIt+5atnseixSRD4QkV2urxEeWOOTInLwnP14o801hovI6yKyQ0S2i0hfT9qPpdRn6z70iUAH8oD+xpjuQBxwvYhcBswG5hpj2gHHgHs8sEaACcaYONdti30lAvAQsP2c+560D4udXyN41j4E+C9XLcVL2CYCG4wx7YENrvt2O79GsP6ui/fjP2yrzDIPeNcY0xHojvV37kn7saT6wMZ96BOBbizFF+ELcN0M0B943fX4SuA2G8oDyqzRY4hIc+BPwBLXfcGD9iFcWKMXuRVr/4EH7EdPJyINgX7AUgBjTL4x5jgesh/LqM9WPhHocPbX8C1AJvAB8BNw3BhT6NrkANDMrvrgwhqNMV+4fvS0iGwVkbkiUvnOPFX3IvAoUHz+ciM8bB9yYY3FPGUfgvVB/b6IfCUiya7Hmhhj0l3fZwBN7CntrJJqBBjt2o/LbJ4Wag1kActd02tLRCQEz9mPpdUHNu5Dnwl0Y0yRMSYOaA70ATraXNIFzq9RRLoCj2PVeikQCTxmR20ichOQaYz5yo73d0cZNXrEPjzHFcaYnsANwCgR6XfuD421tMzu385KqnEh0BZrSjAdmGNjff5AT2ChMaYHcIbzplds3o+l1WfrPvSZQC/m+rXnI6AvEC4ixVdlag4ctK2wc5xT4/XGmHTXdEwesBzrw8gOvwduEZG9QArWVMs8PGsfXlCjiKzxoH0IgDHmoOtrJvCmq57DIhID4PqaaV+FJddojDnsGnQ4gb9g7348ABw457fY17EC1FP2Y4n12b0PfSLQRSRKRMJd39cHrsE6QPERcKdrs6HAensqLLXGHef84xSs+cBtdtRnjHncGNPcGNMKSAQ+NMYMxIP2YSk1DvKUfeiqIUREQou/B6511fM21v4D+/8tllhj8X50uR0b96MxJgPYLyIdXA9dBfyAh+zH0uqzex/6yjVFY4CVIuKH9SGVZoz5HxH5AUgRkRnAN7gOYHhYjR+KSBQgwBbgfhtrLMljeM4+LM1rHrQPmwBvWp8t+ANrjTHvisgmIE1E7sHqOBrvgTWudi35NMBe4D77SgTgQay/20DgZ2AYrv87HrIfS6pvvp37UM8UVUopH+ETUy5KKaU00JVSymdooCullI/QQFdKKR+hga6UUj5CA10ppXyEBrpSSvkIDXSllPIR/wfKymSwbAg+6QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt41fWV7/H32rkHSEwgQOQqlVI5SJEBauHQUVBGaAvSCSFgQAxjcOKAwYgRPXBaEE2VIQ55YIbQaKDhhJAUj0z1YC2Flj6ZSkOHlhYFLGIqAiIgEQLksr/nj9+OxpjLDtk7v/3bWa/nyZPsa9aPwCeL9f1dxBiDUkop53PZXYBSSinf0EBXSqkgoYGulFJBQgNdKaWChAa6UkoFCQ10pZQKEhroSikVJDTQlVIqSGigK6VUkAjtzG/Wq1cvM3jw4Pa/8MIF+Ogj6+uQEO9fV19vfe7ZExIT2/99lVIqABw8ePATY0xCW8/r1EAfPHgwFRUV7XvRf/wHvPACfP3rEB7e/m9aXw9VVfCtb8H69e37haCUUgFARD7w5nmBPXJ57TV48UWIibmxMAcrwG+6CXbvhjVrfFufUkoFkMAN9DNn4OmnISoKQjv4HwkR65fC1q1w4IBv6lNKqQATuIH+ox/BtWsQGemb9wsJsX4xLF36xWxdKaWCSGAG+kcfwS9/CbGxrT5tx4ULzHv/fb797rv8sGHRtDXdu8O5c/Cb3/ioUKWUChyBGeilpeB2g6v18nqFhrKwVy+mtxH8X2IMFBR0sECllAo8nbqXi9feesurRdBJMTEAHLl6lY/r6rx77x494Pe/t8YuuseLUiqIBF6HXl8Px475bnbeVEPX//77/nl/pZSyiVeBLiJLReQvIvJnESkWkUgRuUVE3haR90SkRERucL/CJs6ds8Yi/uyeRaCy0n/vr5RSNmgz0EWkH7AEGGOMGQGEACnAj4FcY8ytwEVgoU8qqq1tc3be1PkLF6j67DPq27P3ircjGqWUcghvkzMUiBKRUCAaOA1MAso8j28B7vdJRRER1oJoO9TW1SHAX0+c4FJVFV5d9joi4kaqU0qpgNVmoBtjTgFrgUqsIL8EHAQ+NcY0tLkfAv18UlGvXhAW5lUHXW8MNW43xhiiunend79+nD13jr9VVlJTW9vyC91uuOUWn5SrlFKBwpuRSxwwA7gFuBnoBtzn7TcQkXQRqRCRinPnznlRkQuGD7cOKmpDwSefMP7oUV6tq2N3VRX3fPABe2NiiO7Wjffff59Pzp/HmCb9el2dNZ/v39/bTVBKKUfwZrfFe4D3jTHnAERkJzABuElEQj1den/gVHMvNsbkA/kAY8aM8WoawrRpcOhQm09LT0jg4YQE3nnnHW677Tak0WMxMTGcOX2aS5cukZiYSHRUlPXAZ5/BP/xDu+f0SikV6LxJtUrgThGJFhEBJgNHgL1Akuc5DwKv+ayqmTOtwPVikdMYg4h8KcwBwsPCGDBwIL169eLDDz/k9Jkz1qKpywVpaT4rVSmlAoU3M/S3sRY//wAc9rwmH8gGHheR94CegO8Ov4yLg+Rk67S3bdXnduOSpnFuESA2JoavDRkCxnD62DE+6dkTM3q0z0pVSqlA4dXcwRjzv40x3zDGjDDGzDPGXDfGnDDGjDPG3GqMmWWMue7Typ58EuLj4cqVtmpDWgj0BiEhIST26kWvXr1YHRfH0scf5/Tp076sVimlbBe4g+SYGOuCFHV1cL3l3xVuLwKd+nq4fJnIlStZu2sXI0eOJDU1laKiovbtu66UUgEscAMd4NvfhpdesvZ4aaFTb7NDr6mxRjeLFkFaGmFhYaSlpVFYWEh5eTnz5s3jyJEjftoApZTqPIEd6ADf/S5s2QLdusHFi19ZKDXGIM3tsWIMfPqpFejPPgvLllmH/HsMGDCADRs2kJqaSmZmJmvXrqW6utrfW6OUUn4T+IEOMH48/OpX1kLplStWUF+5AvX1X+7Q3W64etW6qPSlS9br3noL5sz5Upg3EBGmTZtGaWkp1dXVJCUlsW/fvs7dNqWU8hH5yoE3fjRmzBjT7otEN3X+POzcCT//ORw9yrWrV7n46ack9u1rde9DhsDdd0NKSruPBj148CDPPfccgwcP5sknn6RPnz4dq1UppXxARA4aY8a0+TzHBXpjbjd/fPNNSrZs4bkXXoC+fW/8YtIeNTU1FBYWUlJSwj/90z8xe/ZsXHoQklLKRt4GurOTyuXiSmwsVb16wcCBHQ5zgPDwcNLT0ykoKGDv3r0sWLCAo0eP+qBYpZTyL2cHOlBbW0u4D4K8qcGDB7Np0yaSkpJYvHgxubm5umiqlApojg/0mpoawsLC/PLeIsL06dMpKSnh4sWLzJ49m/379/vleymlVEc5PtBra2v9FugN4uLiWLVqFStWrGDdunVkZ2fj1ZkjlVKqEwVFoPtj5NKccePGsX37dgYNGsScOXMoLS3F3c6LcSillL84PtD9OXJpTkREBBkZGeTn57N7927S0tI4fvx4p31/pZRqieMDvTM79MaGDBnC5s2bmTFjBhkZGeTl5XHNi4tyKKWUvzg+0Du7Q2/M5XIxc+ZMtm/fzpkzZ0hOTqa8vNyWWpRSypsrFgW0mpoaWzr0xnr27MmaNWsoLy8nJyeHESNGkJWVRc+ePW2tSynVtTi+Q7dr5NKc8ePHs2PHDhITE0lJSWHnzp26aKqU6jSOD3Q7Ry7NiYyMZPHixWzcuJFdu3bx8MMPc+LECbvLUkp1AY4P9M7YD/1GDB06lJdffpmpU6eSnp7Oxo0bud7KhTqUUqqjgiLQA2Xk0pTL5SIpKYni4mIqKytJSUnhwIEDdpellApSQbEoGogdemMJCQnk5OSwf/9+Vq9ezR133MHSpUuJi4uzuzSlVBDRDr0TTZw4kZKSEuLj45k9eza7du2iM09frJQKbo4PdCd06I1FR0eTmZlJXl4eZWVlLFq0iA8++MDuspRSQSAoAt0pHXpjw4YNo7CwkEmTJpGWlkZ+fj41NTV2l6WUcjDHB7qTRi5NuVwuUlJSKC4u5tixY6SkpHDw4EG7y1JKOVSbgS4iw0TkUKOPKhHJFJF4EXlLRI57Ptuywue0kUtzevfuzdq1a1myZAkrVqxg1apVXLp0ye6ylFIO02agG2OOGmNGGWNGAX8HVAOvAk8Be4wxQ4E9ntudLlD3Q78Rd911F2VlZURHRzNr1izeeOMNXTRVSnmtvSOXycBfjTEfADOALZ77twD3+7Iwbzl55NKc6OhonnjiCV566SW2bdvGo48+SmVlpd1lKaUcoL2BngIUe77uY4w57fn6DNCnuReISLqIVIhIhT+u8hMMI5fmDB8+nK1btzJhwgQeeughCgoKqK2ttbsspVQA8zrQRSQcmA6UNn3MWHOBZmcDxph8Y8wYY8yYhISEGy60JcHWoTcWEhLCAw88QFFREYcPH2bu3LkcOnTI7rKUUgGqPR36VOAPxpiznttnRSQRwPP5Y18X541g7dAbS0xMJDc3l0ceeYTly5ezZs0aqqqq7C5LKRVg2hPoc/hi3AKwC3jQ8/WDwGu+Kqo9nLofenuJCJMnT6a0tJTQ0FCSk5N58803ddFUKfU5rwJdRLoB9wI7G92dA9wrIseBezy3O10wj1ya0717d7Kzs3nxxRd55ZVXWLJkCadOnbK7LKVUAPAq0I0xV4wxPY0xlxrdd94YM9kYM9QYc48x5oL/ymxZVxi5NOf222+nqKiIsWPHMn/+fLZs2UJdXZ3dZSmlbOToI0Xdbjf19fWEhjr+pJE3JDQ0lPnz57N161YqKipITU3l8OHDdpellLKJowO9rq6OsLAwRMTuUmzVr18/1q9fT1paGsuWLSMnJ4fLly/bXZZSqpM5OtC76rilOSLClClT2LFjB/X19cyaNYs9e/booqlSXYjjA70rLYh6IyYmhmeeeYbnn3+eTZs2sXTpUk6fPt32C5VSjufoQO9qe7i0x6hRo9i2bRsjR44kNTWVoqIi6uvr7S5LKeVHjg50Hbm0LiwsjLS0NAoLCykvL2fevHkcOXLE7rKUUn7i6EDXDt07AwYMYMOGDaSmppKZmcnatWuprq62uyyllI85OtC1Q/eeiDBt2jRKS0uprq4mKSmJffv22V2WUsqHNNC7mNjYWFauXMmzzz5LXl4eWVlZnD17tu0XKqUCnqMDva6uTkcuN2j06NEUFxczbNgw5s6dS3FxMW632+6ylFId4OhA1w69Y8LDw0lPT6egoIC9e/eyYMECjh49andZSqkb5PhA1w694wYPHsymTZtISkpi8eLF5Obm6qKpUg7k6EDXvVx8R0SYPn06JSUlXLx4kdmzZ7N//367y1JKtYOjA11HLr4XFxfHqlWrWLFiBevWrSM7Oxt/XDpQKeV7jg507dD9Z9y4cWzfvp1BgwYxZ84cSktLddFUqQDn6EDXDt2/IiIiyMjIID8/n927d5OWlsbx48ftLksp1QINdNWmIUOGsHnzZmbMmEFGRgZ5eXlcu3bN7rKUUk04OtB1P/TO43K5mDlzJiUlJZw5c4bk5GTKy8vtLksp1YijL/WjHXrni4+PZ82aNZSXl5OTk8OIESPIysqiZ8+edpemVJfn6A5d90O3z/jx49mxYweJiYmkpKSwc+dOXTRVymaODnTdy8VekZGRLF68mI0bN7Jr1y4efvhhTpw4YXdZSnVZjg50HbkEhqFDh/Lyyy8zdepU0tPT2bhxI9evX7e7LKW6HEcHunbogcPlcpGUlERxcTGVlZWkpKRw4MABu8tSqkvxKtBF5CYRKRORd0XkHRH5tojEi8hbInLc8znO38U2pR164ElISCAnJ4fHH3+c1atXs3LlSi5evGh3WUp1Cd526P8G7DbGfAP4JvAO8BSwxxgzFNjjud2pdFE0cE2cOJGSkhLi4+OZPXs2u3btwhhjd1lKBbU2A11EYoHvAAUAxpgaY8ynwAxgi+dpW4D7/VVkS+rq6rRDD2DR0dFkZmaSl5dHWVkZixYt4uTJk3aXpVTQ8qZDvwU4B7wiIv8tIj8RkW5AH2PMac9zzgB9/FVkS3Tk4gzDhg2jsLCQSZMmsXDhQvLz86mpqbG7LKWCjjeBHgqMBv7dGHMHcIUm4xVj/V+62f9Pi0i6iFSISIWvz9qnIxfncLlcpKSkUFxczLFjx0hJSeHgwYN2l6VUUPEm0D8EPjTGvO25XYYV8GdFJBHA8/nj5l5sjMk3xowxxoxJSEjwRc2f071cnKd3796sXbuWJUuWsGLFClatWsWlS5fsLkupoNBmoBtjzgB/E5FhnrsmA0eAXcCDnvseBF7zS4Wt0JGLc911112UlZURHR3NrFmzeOONN3TRVKkO8nYvl8XANhH5EzAKeA7IAe4VkePAPZ7bnUo7dGeLjo7miSee4KWXXmLbtm08+uijVFZW2l2WUo7lVaAbYw55xiYjjTH3G2MuGmPOG2MmG2OGGmPuMcZc8HexTWmHHhyGDx/O1q1bmTBhAg899BAFBQXU1tbaXZZSjuPoI0V1UTR4hISE8MADD1BUVMThw4eZO3cuhw4dsrsspRzF0YGu+6EHn8TERHJzc3nkkUdYvnw5a9asoaqqyu6ylHIERwe6jlyCk4gwefJkSktLCQ0NJTk5mTfffFMXTZVqg+MDXUcuwat79+5kZ2fz4osv8sorr7BkyRJOnTpld1lKBSxHB7ru5dI13H777RQVFTF27Fjmz5/Pli1bqKurs7sspQKOYwPdGENtbS2hoY6+ip7yUmhoKPPnz2fr1q1UVFSQmprK4cOH7S5LqYDi2EBvCHOXy7GboG5Av379WL9+PWlpaSxbtoycnBwuX75sd1lKBQTHpqGOW7ouEWHKlCns2LEDt9tNcnIye/bs0UVT1eU5NtB1DxcVExPD008/zXPPPcemTZtYunQpp0+fbvuFSgUpxwZ6bW2tBroCYNSoUWzbto2RI0eSmppKUVER9fX1dpelVKdzdKDryEU1CAsLIy0tjcLCQsrLy5k3bx5HjhyxuyylOpVjA11HLqo5AwYMYMOGDaSmppKZmcnatWuprq62uyylOoVjA107dNUSEWHatGmUlpZSXV1NUlIS+/bts7sspfzOsYGuHbpqS2xsLCtXruTZZ58lLy+PrKwszp49a3dZSvmNowNdO3TljdGjR1NcXMywYcOYO3cuxcXFuN1uu8tSyuccG+g6clHtER4eTnp6OgUFBezdu5cFCxZw9OhRu8tSyqccG+g6clE3YvDgwWzatImkpCQWL15Mbm6uLpqqoOHYQNf90NWNEhGmT59OSUkJFy9eJDk5mf3799tdllId5uhA15GL6oi4uDhWrVrFypUrWbduHdnZ2Zw7d87uspS6YY4NdB25KF8ZN24c27dvZ9CgQcyZM4fS0lJdNFWO5NhA1w5d+VJERAQZGRnk5+eze/du0tLSOH78uN1lKdUujg107dCVPwwZMoTNmzczY8YMMjIyyMvL49q1a3aXpZRXHB3o2qErf3C5XMycOZOSkhLOnDlDcnIy5eXldpelVJsce7kfHbkof4uPj2fNmjWUl5eTk5PDiBEjyMrKomfPnnaXplSzvOrQReSkiBwWkUMiUuG5L15E3hKR457Pcf4t9ct05KI6y/jx49mxYweJiYmkpKSwc+dOXTRVAak9I5e7jTGjjDFjPLefAvYYY4YCezy3O43uh646U2RkJIsXL2bjxo3s2rWLhx9+mBMnTthdllJf0pEZ+gxgi+frLcD9HS/HezpyUXYYOnQoL7/8MlOnTiU9PZ2NGzdy/fp1u8tSCvA+0A3wCxE5KCLpnvv6GGMarvd1BujT3AtFJF1EKkSkwpcHbejIRdnF5XKRlJREcXExlZWVpKSkcODAAbvLUsrrRdH/aYw5JSK9gbdE5N3GDxpjjIg0e4VeY0w+kA8wZswYn13FVzt0ZbeEhARycnLYv38/q1ev5o477mDp0qXExXXqcpJSn/OqQzfGnPJ8/hh4FRgHnBWRRADP54/9VWRztENXgWLixImUlJQQHx/P7Nmz2bVrF8b4rHdRymttBrqIdBORHg1fA1OAPwO7gAc9T3sQeM1fRTZH90NXgSQ6OprMzEzy8vIoKytj0aJFnDx50u6yVBfjTYfeB/itiPwROAC8bozZDeQA94rIceAez+1OoyMXFYiGDRtGYWEhkyZNYuHCheTn51NTU2N3WaqLaDPQjTEnjDHf9Hz8D2PMGs/9540xk40xQ40x9xhjLvi/3C/oyEUFKpfLRUpKCsXFxRw7doyUlBQOHjxod1mqC3D0kaIa6CqQ9e7dm7Vr17Jv3z5WrFjBnXfeyWOPPUZsbKzdpakg5dhzuejIRTnFXXfdRVlZGdHR0cyaNYs33nhDF02VXzg20HXkopwkOjqaJ554gpdeeolt27bx6KOPUllZaXdZKsg4NtC1Q1dONHz4cLZu3cqECRN46KGHKCgooLa21u6yVJBwbKBrh66cKiQkhAceeICioiIOHz7M3LlzOXTokN1lqSDg6EDXDl05WWJiIrm5uTzyyCMsX76cNWvWUFVVZXdZysEcG+g6clHBQESYPHkypaWlhIaGkpyczJtvvqmLpuqGODbQdeSigkn37t3Jzs7mxRdf5JVXXmHJkiWcOnXK7rKUwzg20LVDV8Ho9ttvp6ioiLFjxzJ//ny2bNlCXV2d3WUph3BkoBtj9MAiFbRCQ0OZP38+W7dupaKigtTUVA4fPmx3WcoBHBno9fX1iAgulyPLV8or/fr1Y/369aSlpbFs2TJycnK4fPmy3WWpAObIRNQ9XFRXISJMmTKFHTt24Ha7SU5OZs+ePbpoqprlyEDX+bnqamJiYnj66ad57rnn2LRpE0uXLuX06dNtv1B1KY4MdN3DRXVVo0aNYtu2bYwcOZLU1FSKioqor6+3uywVIBwZ6Nqhq64sLCyMtLQ0CgsLKS8vZ968eRw5csTuslQAcGSga4euFAwYMIANGzaQmppKZmYma9eu5cqVK3aXpWzk2EDXDl0pa9F02rRplJaWUl1dzaxZs9i3b5/dZSmbODLQ6+rqtENXqpHY2FhWrlzJs88+S15eHllZWZw9e9buslQnc2Sg68hFqeaNHj2a4uJihg0bxty5cykuLsbtdttdluokjg10Hbko1bzw8HDS09MpKChg7969LFiwgKNHj9pdluoEjgx03ctFqbYNHjyYTZs2kZSUxOLFi8nNzaW6utruspQfOTLQdeSilHdEhOnTp1NSUsLFixdJTk5m//79dpel/MSRga4dulLtExcXx6pVq1i5ciXr1q0jOzubc+fO2V2W8jGvA11EQkTkv0Xk557bt4jI2yLynoiUiEinJax26ErdmHHjxrF9+3YGDRrEnDlzKC0t1UXTINKeDv0x4J1Gt38M5BpjbgUuAgt9WVhrdFFUqRsXERFBRkYG+fn57N69m7S0NI4fP253WcoHvAp0EekPfBf4iee2AJOAMs9TtgD3+6PA5ui50JXquCFDhrB582ZmzJhBRkYG69ev59q1a3aXpTrA2w79JeBJoOH/Zj2BT40xDZdS+RDo5+PaWqSBrpRvuFwuZs6cSUlJCWfPniU5OZny8nK7y1I3qM1AF5HvAR8bYw7eyDcQkXQRqRCRCl8twujIRSnfio+PZ82aNTz11FPk5OTw9NNPc/78ebvLUu3kTYc+AZguIieB7Vijln8DbhKRUM9z+gPNXtHWGJNvjBljjBmTkJDgg5J1Lxel/GX8+PHs2LGDxMREUlJS2Llzpy6aOkibgW6MWW6M6W+MGQykAL8yxjwA7AWSPE97EHjNb1U2oXu5KOU/kZGRLF68mI0bN/Kf//mfPPzww5w4ccLuspQXOrIfejbwuIi8hzVTL/BNSW3TDl0p/xs6dCgFBQVMnTqV9PR0Nm7cyPXr1+0uS7WiXYFujNlnjPme5+sTxphxxphbjTGzjDGd9pPWDl2pzuFyuUhKSqK4uJjKykpSUlI4cOCA3WWpFoS2/ZTAo4uiSnWuhIQEcnJy2L9/P6tXr+aOO+5g6dKlxMXF2V2aasSxh/5rh65U55s4cSIlJSXEx8cze/Zsdu3ahTHG7rKUhwa6UqpdoqOjyczMJC8vj7KyMhYtWsTJkyftLkvh0EDXkYtS9hs2bBiFhYVMmjSJhQsXkp+fT01Njd1ldWmODHTdy0WpwOByuUhJSaG4uJhjx46RkpLCwYM3dAyi8gHHLorqyEWpwNG7d2/Wrl3Lvn37WLFiBXfeeSePPfYYsbGxdpfWpWiHrpTymbvuuouysjK6devGrFmzeOONN3TRtBM5MtC1Q1cqcEVHR5OVlcVLL73Etm3bePTRR6msrLS7rC7BsYGuHbpSgW348OFs3bqVCRMm8NBDD1FQUEBtba3dZQU1Rwa67raolDOEhITwwAMPUFRUxOHDh5k7dy6HDh2yu6ygpYGulPK7xMREcnNzeeSRR1i+fDlr1qyhqqrK7rKCjiMDXUcuSjmPiDB58mRKS0sJDQ0lOTmZN998UxdNfciRga57uSjlXN27dyc7O5sXX3yRV155hSVLlnDqVLOXU1Dt5MhA171clHK+22+/naKiIsaOHcv8+fPZsmULdXV1bb9QtciRga4dulLBITQ0lPnz57N161YqKipITU3l8OHDdpflWI4L9Pr6esBaPVdKBYd+/fqxfv160tLSWLZsGTk5OVy+fNnushzHcYGu4xalgpOIMGXKFHbs2IHb7WbWrFn88pe/1EXTdnBcoOu4RangFhMTw9NPP83zzz9Pfn4+S5cu5fTp03aX5QiODHTt0JUKfqNGjWLbtm2MHDmS1NRUioqKPh+5quY5LtB15KJU1xEWFkZaWhqFhYWUl5czb948jhw5YndZActxga4jF6W6ngEDBrBhwwZSU1PJzMxk7dq1XLlyxe6yAo7jAl07dKW6JhFh2rRplJaWUl1dzaxZs9i3b5/dZQUURwa6duhKdV2xsbGsXLmSZ599lry8PLKysjh79qzdZQUExwW6jlyUUgCjR4+muLiYYcOGMXfuXIqLi3G73XaXZas2A11EIkXkgIj8UUT+IiI/8tx/i4i8LSLviUiJiHRKyurIRSnVIDw8nPT0dAoKCti7dy8LFizg3Xfftbss23jToV8HJhljvgmMAu4TkTuBHwO5xphbgYvAQv+V+QXt0JVSTQ0ePJhNmzaRlJTEkiVLyM3Npbq62u6yOl2bgW4sDcfghnk+DDAJKPPcvwW43y8VNqH7oSulmiMiTJ8+nZKSEi5evEhycjL79++3u6xO5dUMXURCROQQ8DHwFvBX4FNjTMOp0T4E+vmnxC/TkYtSqjVxcXGsWrWKlStXsm7dOrKzszl37pzdZXUKrwLdGFNvjBkF9AfGAd/w9huISLqIVIhIhS/+UHXkopTyxrhx49i+fTuDBg1izpw5lJaWBv2iabv2cjHGfArsBb4N3CQioZ6H+gPNnqHeGJNvjBljjBmTkJDQoWJBO3SllPciIiLIyMggPz+f3bt3k5aWxvHjx+0uy2+82cslQURu8nwdBdwLvIMV7Emepz0IvOavIhvT/dCVUu01ZMgQNm/ezIwZM8jIyGD9+vVcu3bN7rJ8zpsOPRHYKyJ/An4PvGWM+TmQDTwuIu8BPYEC/5X5BR25KKVuhMvlYubMmZSUlHD27FmSk5MpLy+3uyyfCm3rCcaYPwF3NHP/Cax5eqfSkYtSqiPi4+NZs2YN5eXl5OTkMGLECLKysujZs6fdpXWYHimqlOqSxo8fz44dO0hMTCQlJYWdO3c6ftG0zQ490NTW1hIVFWV3GUqpIBAZGcnixYu57777eO6553j99dd55plnGDJkyI294YULcOSI9fHhh+B2Q3w8DB9ufQwYACK+3YhGHBfoNTU1xMTE2F2GUiqIDB06lIKCAnbu3El6ejo/+MEPWLhwIREREW2/2Bj43e+goAB+/WsICYGami+C2+2G8HDr8y23wKJF8N3vQmSkz7dDRy5KKYW1aJqUlERxcTGVlZWkpKRw4MCB1l907hw8/DDMnw/79kGPHtC9u9WVx8VZHz17WvfHxMDf/gbZ2XDvvfCHP/h+G3z+jn4rQpqwAAANdklEQVSmi6JKKX9KSEggJyeHxx9/nNWrV7Ny5UouXrz41ScePAiTJ1tBHhMDN90ErlYiVQS6dbOe9/HHkJwM//7vVofvI44MdO3QlVL+NnHiREpKSoiPj2f27Nns2rUL0xC+Bw9CairU1loB3d65eEMnv3YtrF/vs5odF+g6clFKdZbo6GgyMzPJy8ujrKyMRYsWUXnwIDz0kPWEbt1u/M1DQ61gX78e9uzxSb2OC3QduSilOtuwYcMoLCxk0t138+fvf59Lp0/jjo7u+BuHhkJEBDzxBDQ31mknxwW6duhKKTu4XC5ShgxhSkQEVS4XJ06c4IovzrkeHQ1VVbBhQ8dr7Hg1nUs7dKWUbX7yE0JDQhgwYAB9evfmo1On+Oj0aerq6z9/So3bzaqPPuJ7773Hd44eZe6JE5RfvtzKm2LN04uL4erVDpXnuEDXC1wopWzx6adf7NEC9OjRgyFf+xoul4sTf/0rly5dwgD1QN+wMPIHDmTf17/OPyck8NSpU3xUU9Pye4eFWQuse/d2qERHBrqOXJRSne7IEeugoUa7Joa4XPTt04cBAwdy/sIFKisrcdXVkZ6QwM3h4bhEmNijBzeHhfFuW2d3rKuDiooOlei4QNeRi1LKFn/5i3UEaDOiIiO55ZZb6N69OydPnuTcJ5/g9uzieKGujsqaGoa0ddRpZCS0dSBTG5x16L8x1F6/rh26UqrzffTRl24awLjduN1u3MZg3G6io6Lo27cvn3zyCefPn6f/wIH8r3Pn+F5sLIPbCvTQUOuAow4I7EC/dAlefx1+8xs4dAjOnmXj2bP0nDQJhg2DsWPhvvvgzjtbP0JLKdXlGGOoqanh6tWrXLt2jatXr37+dePbjR9v+rnx49MrKphw5gxVn3xiBbkxuEQQlwtXw4fndlhoKMYYVp07RyjwZN++bRcsYp3vpQMCM9AvXIAXXoBXX4X6emtDIyMhPp5L588T3707fPABHD1qrQwnJMDjj8MPfqDBrpRDGGOora294YBtGtJNH7t27RqhoaFERkYSGRlJVFQUUVFRX/m68e3Y2Fj69Onzpec1fO6zfTtxW7eSEB//eYi3dHyoMYZVp09zqbaW9QMGEOrNkaT19dY5YDog8AL9F7+AZcvg8mXrKKrQL5doAAkJsc5eFh1tnQfh0iXrhDevvmodSpuYaE/tSgWZuro6n3S3LYWvy+VqNWCbBmv37t3p1avXVx5vLrAjIyMJCQnx3R/Gd74DpaVfyaTmPH/mDO/X1LBx4EAivG0yr12DUaM6VGJgBfqmTVZnHhlpnaWsGcbtRhr/thOBqCjrNW+/Dd//PmzfDrfe2klFK2Uft9vtl+624bbb7W41YJt2vFFRUcTFxXndEYd6EY4B47bbrJGIMa2eu+V0bS07P/2UcBH+odEFqZ/u25epsbEtv78x1hi5AwLnT/OnP4Uf/9jax7OVH7Ix5suB3kDEOklOVRWkpMCuXXDzzX4sWKm2ud1url+/7rOAbfo+tbW1XwpWb8I3JibG6444LCys+X9vXVH//vC1r8HJk9aBQC1IDAuj4rbb2vfebrc1Lp48uUMlBkagHz8Oq1c3O2JpzHg+Wv0LFhNjHQCQlQXbtulMXbWq8cKZLwK26fMbzg7qbXcbGRlJfHy8V91tVFQU4eHhGridRQQeecQ674qvXbpkhXmfPh16G/sD3e2GzEzrvxtt7F/e0J23+dc3Ntban7OszDrnsHKsxgtnvgjYpq+5du0aYWFhrQZs01CNjY2lb9++XnXEERERuLSpCB5Tp0JuLpw5YzWgvlBXZx2wtHRph9/K/kD/r/+CY8c+P5y2NS2OW5pq2CvmX/8VkpK0S/ezuro6v3S3DbddLlebC2CNH+vevTsJCQledcQRERG+XThTwS0iwjrdbVKSFcQdXQMwxhoTL1lizeg7yP5A/8lP2lxkAKiqr+eHp07x66tXSXzvPf4lIYH7WltgiIqydn/87W+t1ekuzO12+6W7bbjtdru9HhE03I6Li/O6I3bUwpkKft/8pjV2eeGFNsfErTLGGg9/61uQkeGT0tqsREQGAFuBPlgj7HxjzL+JSDxQAgwGTgLJxpj2ndD3+nXYv9+r7jznzBlCgVeio3HffDOP/e1vfD0ysvXDaevrrQOTAjzQG/ZU8Nf+uHV1dZ8HZXv2x/W2I9aFM9XlpKdbHfq6dVbX3t5zo9fVWZ35t75lXVzaR0e/e/OrpQ7IMsb8QUR6AAdF5C1gAbDHGJMjIk8BTwHZ7frux49/5WQ3zbnqdvOrzz7jp/37I2fOcGt0NH/fowevX7rE4t69W35hVJR1qagOMsa0uKeCL/ZYqKmpISIiol374/bq1cur7lYXzpTyAxF49FEYPtzaAePCBWvPl7aC2e22FkBdLnjsMfjnf/ZZmIMXgW6MOQ2c9nz9mYi8A/QDZgB3eZ62BdhHewP9vfe8OtS1sqaGEGBAWBinPOE/NCKCP3hOLm+s2nC73Z8fkuv2nGMh5J13KP/lL7naJJDbM3JounDmzR4LcXFxJCYmetUR68KZUg51993WKW83brT2qquqsk6DGxn5xU4e9fXWNAKsXwT33GMtgH7jGz4vp13DHxEZDNwBvA308YQ9wBmskUz7VFd7FejVbjfdPOdJcNfX89cTJ/js+nU+qq3l3epqjNsNIrhErMNxG51XoXtNDW+9/jphPXp8KURjYmLo3bu31x2xBq5SqlmxsbB8uRXS+/ZZp8A9cADOnrXyLSbGOgJ07FjrF0AHd01sjdeBLiLdgZ8BmcaYqsb/hTfGGBExLbwuHUgHGDhwYJPvHurV1bKjXS6uuN2Eh4czcNAg66xmly7R99o1hg4YYJ0Qp7n3MQbOn+f5F15oc5dIpZTqkMhI62SB991nWwletZ0iEoYV5tuMMTs9d58VkUTP44lAs+d9NMbkG2PGGGPGJCQkfPnBPn28WiEeGB5OPdboJSI8nMjISE7U13NrVBQhLlfL8+G6OuvoUQ1zpVQX0Gagi5WWBcA7xph1jR7aBTzo+fpB4LV2f/fbbrNC1zTb3H8uyuViUo8e/Me5c1x1u/ljdTW//uwzvtvabotgnexm5Mh2l6WUUk7kTYc+AZgHTBKRQ56PaUAOcK+IHAfu8dxun4QE6NXriwWDVjzVty/X3W7uPXaMp0+dYnnfvm1fAaSuDiZObHdZSinlRN7s5fJbaPFo+46dSUYE0tK+OMNiK2JCQvjXAQO8f+/6emvXoPvv71CJSinlFPbvuvGP/2jN0Vu7IvaNqKqyFieazu2VUipI2R/oPXtaF7S4cqXNWbrXrl+3Ov5nnvHN+ymllAPYH+gACxZYi5eXLnX8verrrf3bV60Cb67jp5RSQSIwAj0kxDpJV//+cPHijXfqdXXWL4VFi6zriyqlVBcSGIEO1ujlZz+DESOsM5DV1rbv9VVV1nVIs7KsEY6eu0Qp1cWI8dXc2ptvJnIO+KDTvqF3egGf2F2EDXS7u5auuN3BtM2DjDFt7uHRqYEeiESkwhgzxu46Optud9fSFbe7K25z4IxclFJKdYgGulJKBQkNdMi3uwCb6HZ3LV1xu7vcNnf5GbpSSgUL7dCVUipIdLlAF5GTInLYc9bICs99L4rIuyLyJxF5VURusrtOX2thu1d7tvmQiPxCRG62u05fam6bGz2WJSJGRHrZVZ+/tPCz/qGInGpyxtSg0tLPW0QWe/59/0VEXrCzRn/rciMXETkJjDHGfNLovinAr4wxdSLyYwBjTPuujxrgWtjuGGNMlefrJcBwY8wjNpXoc81ts+f+AcBPgG8Af9f0cadr4Wf9Q+CyMWatXXX5WwvbfTfwDPBdY8x1EeltjGn2YjzBoMt16M0xxvzCGFPnufk7oL+d9XSWhjD36IZ1ve2uIBd4kq6zvV3ZPwM5xpjrAMEc5tA1A90AvxCRg57rnTaVBvy/Tq6pMzS73SKyRkT+BjwArLStOv/4yjaLyAzglDHmj/aW5lct/R3/F8+I7WURibOrOD9qbru/DkwUkbdF5NciMtbG+vzPGNOlPoB+ns+9gT8C32n02DPAq3hGUcH00dp2e+5fDvzI7jr9vc3A20Cs5/6TQC+76+yk7e4DhGA1cWuAl+2us5O2+89AHtZFesYB7wfjv++Gjy7XoRtjTnk+f4wV3uMARGQB8D3gAeP5WxFMWtruRrYB/9jZdflTM9v898AtwB8989b+wB9EJKjOs9zcz9oYc9YYU2+McQOb+erP3/Fa+Dv+IbDTWA4AbqxzvASlLhXoItJNRHo0fA1MAf4sIvdhzVSnG2Oq7azRH1rZ7qGNnjYDeNeO+vyhhW3+vTGmtzFmsDFmMNY/9tHGmDM2lupTrfysExs9bSZW5xo0Wtpu4P8Cd3vu/zoQTvCcsOsr2rymaJDpA7wq1ql1Q4H/Y4zZLSLvARHAW57HfmeCaG8PWt7un4nIMKyu5QMg6LfZ3pI6RUs/65+KyCisOfNJYJF9JfpFS9sdDrwsIn8GaoAHg/F/4A263G6LSikVrLrUyEUppYKZBrpSSgUJDXSllAoSGuhKKRUkNNCVUipIaKArpVSQ0EBXSqkgoYGulFJB4v8DY08U8NkL5UYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -681,7 +763,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ @@ -689,6 +771,44 @@ "algo_input = EnergyInput(qubitOp)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Using DOcplex for mapping to the Ising problem\n", + "Using ```docplex.get_qubitops``` is a different way to create an Ising Hamiltonian of TSP. ```docplex.get_qubitops``` can create a corresponding Ising Hamiltonian from an optimization model of TSP. An example of using ```docplex.get_qubitops``` is as below. " + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of a model and variables\n", + "mdl = Model(name='tsp')\n", + "x = {(i,p): mdl.binary_var(name='x_{0}_{1}'.format(i,p)) for i in range(n) for p in range(n)}\n", + "\n", + "# Object function\n", + "tsp_func = mdl.sum(ins.w[i,j] * x[(i,p)] * x[(j,(p+1)%n)] for i in range(n) for j in range(n) for p in range(n))\n", + "mdl.minimize(tsp_func)\n", + "\n", + "# Constrains\n", + "for i in range(n):\n", + " mdl.add_constraint(mdl.sum(x[(i,p)] for p in range(n)) == 1)\n", + "for p in range(n):\n", + " mdl.add_constraint(mdl.sum(x[(i,p)] for i in range(n)) == 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -698,22 +818,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "energy: -600081.0\n", + "energy: -600062.0\n", + "tsp objective: 124.0\n", "feasible: True\n", - "solution: [1, 2, 0]\n", - "solution objective: 162.0\n" + "solution: [0, 1, 2]\n", + "solution objective: 124.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VHW6x/HPM2mQkJAEEkhAOlKFUGTFdVkvdtd+NYUqiFEEUSmKIKwggqiIoAiydBCSrKuid3cti7KuelVQEVFAUJCWkCCd9Mzv/nEmXISUST0zk+f9es0rmcmZmYcDfOeX3/md54gxBqWUUt7PYXcBSimlqocGulJK+QgNdKWU8hEa6Eop5SM00JVSykdooCullI/QQFdKKR+hga6UUj5CA10ppXyEf22+WePGjU2rVq0u/IExcPAgHDsGDod1c1dREYhAs2YQHl5ttSqllKf46quvjhhjosrbrlYDvVWrVmzevPm3D+bnw4gRVpjHxlYszIvl5UF2NowZA0OGVE+xSinlIUTkF3e2s3/K5bHH4NNPISKicmEOEBQEDRrA9OmwYUP11qeUUl7C3kDfsAHefhsaNrSmTaoiIMAK9nHj4OjR6qlPKaW8iH2BnpsLEyZYIVzZkfn56teHU6dg1qzqeT2llPIi9gX6++9b4RscXOom+U4n0w8d4qbdu+m3cycDfv6Zz06fLvt1w8Jg/XodpSul6hz7An3xYvDzK3OTIqBpQACLW7Rg48UXMzIqiokHD3IoP7/0J/n5gdMJb71VvfUqpZSHcyvQReQhEdkmIt+LyMOuxyJF5AMR2eX6GuH2u2Znw/btEBJS5mb1HQ6So6KIDQzEIcIfQkOJDQhgR25u2a/v5wcffuh2OUop5QvKDXQR6QrcC/QBugM3iUg7YCKwwRjTHtjguu+enTutg5gVPBB6tLCQffn5tAkKKnvDevVg61ZrfbtSStUR7ozQOwFfGGOyjTGFwL+BO4BbgZWubVYCt7n9rvv3W9MiFZDvdDL50CFuatiQVuUFur8/nDlj3ZRSqo5w58SibcDTItIIyAFuBDYDTYwx6a5tMoAmJT1ZRJKBZIAWLVpYDxYWVmj07DSGB7dt47TTyX+HhrJv/34CAgIuuPn7+yPWm1q3ggK330MppbxduYFujNkuIrOB94EzwBas45XnbmNEpMSENsYsBhYD9O7d29omKMjt6RZjDE+lp1MUGsoUY/AzhgYNGgBQkJ9Pbk4OBQUFFBQUUOR0EuDvT0BAAGGFhbzx2mtEt2xJTEwMMTExREdHExAQ4Nb7KqWUt3Hr1H9jzFJgKYCIzAQOAIdFJMYYky4iMUCm2+/aurXba89nZWSwJz+fV1q2pL7DwbFjx8jKyqJRZCTR0dHIOR8MTmMoKCigMDubfCDfz49NmzaRkZFBeno6WVlZREREEBMTQ9OmTc8GffGtadOmBJexjFIppTyZW4EuItHGmEwRaYE1f34Z0BoYCjzj+rre7Xdt186aDnE6ywz29IIC3jh+nEARrtu16+zjExo3Ji47m5N79xITE0P9evUAcIgQFBhIUG4uIf36MXLkyN+8XlFREVlZWaSnp5Oenk5GRgY7d+5k48aNZ+8HBQWVGPTF3zds2PA3HyJKKeUp3G3O9TfXHHoBMMoYc1xEngHSROQe4Bcg3u13DQyEvn3hiy+s0/5LERMQwOZOnUr8mWnUiJMnTrB/3z4ahocTFRWFozhojYEbbrjgOX5+fjRt2pSmTZvSo0ePC1/TGI4dO3Z2RJ+ens7BgwfZvHnz2ccKCwvPBnxJo/zGjRvjqK4zX5VSqgLE1OLSvt69e5uz3Rb//W+4917rzM4qKCwsJOPwYXJzc4mNiSE4IMAa/W/eXOZZqJV15syZs2FfPKo/9+uJEyeIiooqcZRffAsMDKz2upRSvktEvjLG9C5vu1ptn/sbV1xh9TA/eLBKoe7v70/zZs04deoUBw4eJMrfn+CxYwmqobnwkJAQ2rVrR7t27Ur8eX5+PocPH/5NyH/99ddnPwCysrIICwsrdUonJiaGkHJOuFJKqZLYF+h+fjBvHtxxh7WM0b9qpYSGhhJcVMSBwkKGf/IJEz77jMsvv7yainVfYGAgF110ERdddFGJP3c6nRw5cuQ3o/zdu3fzySefnL0fEBBQ5oHbiIgIncdXSl3AvimXYvPmwfz51ii9nN4uZcrJsT4Y/vpXvszNZcaMGcTFxTFu3DgaljFP72mMMZw4ceKCKZ1zb3l5eReE/bn3o6Ki8KvKvlRKeRR3p1zsD3RjYNo0WL3a6u1Smfnl06et1/nLX6BfPwBycnJYuHAh7733HuPHj+fqq6/2mVFtdnY2GRkZJYZ9RkYGR48epXHjxqVO6TRt2pSg8s62VUp5DO8JdLDCePlymD3bukaouxe8KCy0WvA2bQovvwwlrFzZunUrTz31FC1btuSxxx4jKqrcy/J5vYKCAjIzM0s8eJuenk5mZiYNGjQodUonJiaG0NBQu/8YSikX7wr0Yj//DJMnWytUnE6rydb5F8AoLLQujlFYaE3RDBpkXaWorL7q+fksW7aMv/3tb4wePZpbbrnFZ0brleF0Ovn1119LndLJyMhARMo8cBsREaHLM5WqJd4Z6MV++gnWroWPP4Y9e6xAF7FC3t8funSBm2+G224rcx37+X788UeeeuopQkNDmTx5Ms2aNavCn8Z3GWM4depUiUFf/AFw5syZs8swSwr96Oho/Kt4oFspZfHuQD9Xfj5kZloj8vr1ISqqSpesKyoq4rXXXmPlypXcc889JCYm6kizEnJzc38zuj9/pP/rr78SGRlZ5lm39Vxn+CqlyuY7gV5D9u3bx4wZMygoKGDKlCm0adPG7pJ8SmFhIZmZmaVO6WRkZBAcHFzqlE7xPH5dnhpTqpgGuhucTidvvvkmCxcuJDExkaFDh2o3xlridDo5duxYqQdu09PTMcaUeeC2UaNG+tuVqhM00Cvg8OHDzJw5k8zMTKZMmULnzp3tLkkBp0+fLnM9/unTp4mOji51Hr9Jkyb6Aa18ggZ6BRljePfdd5k7dy433XQTycnJOsfr4fLy8s62WShppK/tkpWv0ECvpKNHj/L888+zfft2pkyZQs+ePe0uSVVSSe2Szw9+bZesvIEGehV9/PHHPPPMM/zhD39gzJgx2jDLB5XULvn8A7f5+fkXBP35bRZ0Hr+WFRVZy5l37IBDh6zuqiEh0LYtdOoEjRvbXWG100CvBqdOnWL+/Pl89tlnPP7441xxxRV2l6Rq2ZkzZ0oc2Rd/X9wuubQpHW2XXI0OHoR162DVKsjLs84wz8+3vjoc1kmIBQXQoQPcfz9ce611cqIP0ECvRps2bWLGjBl069aNcePGER4ebndJykOU1C753Ju2S64GBQWwcCEsWGCdj1JWzydj4MwZaxQfFWU1/7v00tqttwZooFeznJwcFi1axD//+U/Gjx/PNddco3OrqlwltUs+P/y1XXIZMjPh7rvhxx+hQYOKtdk+fdr6MLjvPhg/vkonJNpNA72GbNu2jenTp9O8eXMmTpxIdHS03SUpL3Zuu+Tzr35VfMvNzb2gzcK5HwDR0dG+2S45M9O6XsLhw1Z77cp8qBUVwYkTMHgwPPlk5V7DA2ig16D8/HxWrFhBWloao0aN4rbbbqu7IyhV4+pku+TCQivMf/gBqjrFWVQEJ0/C9OkwcGD11FfLNNBrwe7du5k+fTrBwcE88cQTNG/e3O6SVB3kk+2SFy+22mmHh1fPqDo/37p98AGUcjUxT6aBXkuKiopYt24dy5cvZ/jw4SQlJekyNuVRSmuXfO73pbVLLv4aGRlZe/+ujxyB3//eWqFSnWf6HjsG/ftbF8LxMtUa6CLyCDACMMB3wDAgBkgBGgFfAYONMfllvY4vBnqx/fv389RTT5GXl8fUqVNp27at3SUp5ZbidsmlTekUt0tu0qRJqQdvq7Vd8qJF8Pzz5U61pB09yjsnTrA7L4/rwsJ4Mja27Nd1Oq2pl//8B2JiqqfWWlJtgS4izYBPgM7GmBwRSQP+AdwIvGGMSRGRRcC3xpiFZb2WLwc6WCOht956i1deeYX4+HiGDRumvUSUT6i1dsnGwGWXWUsPy9n+w5MncYjwv6dPk2dM+YEO1ih93Dh44AE3/+SeoboD/XOgO3ASeAt4CXgNaGqMKRSRvsCTxpjrynotXw/0YpmZmcyaNYtDhw4xdepUunTpYndJStWoamuXnJUFl1/u/mUogVcyM8ksLHQv0E+dgp49rROUvIi7gV7u70jGmIMi8jywD8gB3seaYjlujCl0bXYA0Mv/uERHR/PCCy/w/vvv88gjj3DjjTdy//33a7Mv5bP8/f2JjY0ltpRQPbddcnHo79+/n02bNp0NfqfTyX/5+THy118xubkEBAT85ubv70+VD4/Wrw/ffWf9JuCDK9PKDXQRiQBuBVoDx4G/Ate7+wYikgwkA7Ro0aJyVXohEeG6666jT58+zJkzh8TERJ544gl69y73Q1Ypn+NwOGjUqBGNGjWia9euJW5z+vRpTi1bRtiuXeQGBVFQUEBubi4FBQUU5OdT5HQS4O9/QdAXOZ3uF+Lvb61LLygo/WxTL+bOUYyrgT3GmCwAEXkD+D0QLiL+rlF6c+BgSU82xiwGFoM15VItVXuRiIgIZsyYwccff8zUqVO54oorGDNmDA0aNLC7NKU8SoMGDWgQHQ1BQQRHRFzwc6cxVrifczt9+jRHT57EVGStuoi1zt0HA92ddUj7gMtEJFiss2euAn4APgLudG0zFFhfMyX6hn79+pGWlgZAfHw8H3/8sc0VKeWBQkKglLNeHSIEBQbSICSEiPBwoqOiaNa8OU5jcBYVuff6TqcV6N52opWbyg10Y8wXwOvA11hLFh1YI+7HgLEishtr6eLSGqzTJzRo0IBJkyYxffp0XnjhBSZPnsyxY8fsLkspz9Gundtz20XGUOB0EhAQQF5BAflOJ0XlLcPOy4NWrUr90PB2bp0pYIz5szGmozGmqzFmsDEmzxjzszGmjzGmnTHmLmNMXk0X6yt69+5NSkoK0dHRJCQk8O6771KbJ3gp5bHatrVG0W6MuJceOcLlO3fyt/x83jt9mst37mTpkSNlPyknB3z4OJaeKWqz77//nunTpxMbG8vjjz+uzb6Uuv9++Ne/3O7hkpefz759+2jfrl35G584AcuXg5dd28DdZYt6jrrNunTpwpo1a+jcuTMDBgzgjTfewFmRo/ZK+Zrhw61pFzcHm4GBgRink/yCgrI3zMmxrmZ0+eXVUKRn0kD3AAEBAdx77728+uqrrF+/npEjR7J//367y1LKHpdeCt26WaNpNwgQHBJCdnZ26RsZA7m5Xt8XvTy++yfzQm3btmX58uX88Y9/5O6772b16tUUuXv0XilfIQIvvGCtGc8vsz3UWcHBwWSfOVP6BsePQ9++VkteH6aB7mEcDgcDBgxg5cqVfPbZZwwbNoxdu3bZXZZStatlS5g1y+rpUt5UChASHMyZ0kboJ09aUy1z5vjk2aHn0kD3UM2bN+eVV17hjjvuYOTIkbz66qvkuzlaUcon3H47TJtmhXpZo28gMCgIp9NJwbnhb4zVjCsiAlJToUmTGi7YfhroHkxEuO2221i7di07d+5k0KBBfPfdd3aXpVTtGTQIVqywrid67Fipo3XBGqVnZ2f//4Wijx+HP/4R3nnHWnteB2ige4Ho6GjmzJnDiBEjGD9+PC+88AI5OTl2l6VU7bjiCtiwAYYNs07ZP3HCCvecHGu9utMJhYWEOhw4jxyxplhiYmD+fFi6FOrQUmANdC8hIlx77bWkpqZy/PhxEhIS+PLLL+0uS6naERYGTzwBmzZZF7+4/XYrqHNyrJa4RUU4unblndhYSEmxPgD+9CefnzM/n55Y5KU++eQTZs2aRd++fXnooYc875qQStUyp9PJ1VdfTVpaGo0bN7a7nGqlJxb5uCuuuIK0tDT8/f1JSEjg3//+t90lKWUrh8NBXFwcX3/9td2l2EYD3YuFhIQwceJEZsyYwYsvvsikSZM4evSo3WUpZZtevXrx1Vdf2V2GbTTQfUDPnj1JSUmhadOmJCYm8o9//EObfak6qWfPnjpCV94vKCiIMWPG8OKLL7Jq1SoefvhhDh8+bHdZStWqDh06kJWVVWd/U9VA9zGdO3dm9erVdOvWjYEDB/L6669rsy9VZ9T1eXQNdB8UEBDAPffcw+LFi/n73//Offfdx759++wuS6laUZenXTTQfVibNm1YunQp/fv3Z9iwYaxatUqbfSmfV5cPjGqg+ziHw0FSUhKrV6/m888/Z+jQofz44492l6VUjenYsSPp6ekcP37c7lJqnQZ6HREbG8uCBQuIj49n1KhRLFy4UJt9KZ/k5+dH9+7d+eabb+wupdZpoNchIsItt9zC2rVr+emnnxg4cCBbt261uyylql1dnUfXQK+DoqKieO6557jvvvuYMGECc+bMKftqL0p5mbo6j66BXkeJyNm+FydPniQxMZEvvvjC7rKUqhadOnXiwIEDnDx50u5SalW5gS4iHURkyzm3kyLysIhEisgHIrLL9TWiNgpW1athw4ZMmzaNiRMn8tRTTzF9+vQ6959A+Z6AgAC6du3Kli1b7C6lVpUb6MaYncaYOGNMHNALyAbeBCYCG4wx7YENrvvKS11++eWkpaVRr149EhIS+Oijj+wuSakq6dWrV52bR6/olMtVwE/GmF+AW4GVrsdXArdVZ2Gq9gUHB/Poo48yc+ZMXnrpJSZOnFhnT6FW3q9nz551bh69ooGeCKxzfd/EGJPu+j4D8P0L9tURPXr0YN26dTRv3pzExET+/ve/a7Mv5XW6dOnC3r17OX36tN2l1Bq3A11EAoFbgL+e/zNj/W8v8X+8iCSLyGYR2ZyVlVXpQlXtCgoKYvTo0cybN4/XXnuNMWPGkJ6eXv4TlfIQgYGBdO7cmW+//dbuUmpNRUboNwBfG2OKW/gdFpEYANfXzJKeZIxZbIzpbYzpHRUVVbVqVa3r1KkTq1atokePHgwaNIi0tDRt9qW8Rl1bvliRQE/i/6dbAN4Ghrq+Hwqsr66ilGfx9/dn+PDhLFmyhHfffZfk5GR++eUXu8tSqlx17QQjtwJdREKAa4A3znn4GeAaEdkFXO26r3xY69atWbJkCddccw3Dhw9nxYoVFBYW2l2WUqW65JJL+Omnn+rMiXNuBbox5owxppEx5sQ5j/1qjLnKGNPeGHO1MUaXQ9QBDoeDhIQEVq9ezaZNmxg6dCg7d+60uyylShQUFESHDh3qTIsLPVNUVUpsbCwvv/wyiYmJjB49mldeeUWbfSmPVJemXTTQVaWJCDfffDMpKSns3buXpKSkOrWiQHmHunRgVANdVVmjRo149tlnGTVqFI899hjPPfdcnZmzVJ6vW7du/Pjjj+Tm5tpdSo3TQFfVpn///qSlpXHmzBkSEhL4/PPP7S5JKerXr0/79u3rxDy6BrqqVmFhYTz55JNMmjSJp59+mmnTpmmzL2W7ujKProGuakTfvn1JTU2lfv36xMfH8+GHH9pdkqrDNNCVqqLiZl/PPPMMCxYs4NFHH+XIkSN2l6XqoLi4OLZv3+7zK7E00FWNi4uLY926dbRs2ZKkpCTeeecdbfalalVwcDCtW7dm27ZtdpdSozTQVa0IDAxk1KhRvPzyy6SkpDB69GgOHTpkd1mqDqkLyxc10FWt6tChAytXruTSSy9l8ODBpKamarMvVSvqwjy6Brqqdf7+/tx9990sW7aMDz74gBEjRrBnzx67y1I+Li4uju+//56CggK7S6kxGujKNi1btmTx4sVcf/31jBgxgmXLlmmzL1VjQkNDadGiBT/88IPdpdQYDXRlK4fDQXx8PGvWrOGbb75hyJAh7Nixw+6ylI/y9cvSaaArjxATE8P8+fMZOHAgY8aM4eWXXyYvL8/uspSP8fUDoxroymOICH/6059ISUlh//79JCUlsWXLFrvLUj6kR48efPfddz47taeBrjxOZGQks2fPZvTo0Tz++OM8++yz2uxLVYuwsDCaNWvG9u3b7S6lRmigK4/Vv39/UlNTyc3NJT4+ns8++8zukpQP8OXlixroyqOFhYUxdepUpkyZwjPPPMPUqVM5ceJE+U9UqhS+PI+uga68wu9+9ztSUlIICwsjPj6ef/3rX9o+QFVKjx49+PbbbykqKrK7lGqnga68RnBwMOPHj+e5555j0aJFTJgwQZt9qQqLiIigSZMmPnktXA105XW6devG2rVradu2LUlJSbz99ts6WlcV4qvz6BroyisFBgYycuRIFixYwF//+ldGjRqlzb6U23r16lV3A11EwkXkdRHZISLbRaSviESKyAcissv1NaKmi1XqfBdffDErVqzgsssuY/Dgwaxbt06bfaly9ezZk2+++cbn/q24O0KfB7xrjOkIdAe2AxOBDcaY9sAG132lap2fnx9Dhgxh+fLlfPjhh4wYMYKff/7Z7rKUB2vUqBGRkZHs2rXL7lKqVbmBLiINgX7AUgBjTL4x5jhwK7DStdlK4LaaKlIpd7Ro0YJXX32VG2+8keTkZJYuXeqzZwSqqvPF5YvujNBbA1nAchH5RkSWiEgI0MQYk+7aJgNoUlNFKuUuh8PBnXfeyZo1a/j2228ZPHiwz54VqKrGFw+MuhPo/kBPYKExpgdwhvOmV4y1xKDEZQYikiwim0Vkc1ZWVlXrVcotTZs2Zd68eQwePJiHHnqI+fPna7Mv9Ru+OI/uTqAfAA4YY75w3X8dK+APi0gMgOtrZklPNsYsNsb0Nsb0joqKqo6alXKLiHDjjTeSkpJCeno6SUlJPjciU5UXHR1NaGioTx1vKTfQjTEZwH4R6eB66CrgB+BtYKjrsaHA+hqpUKkqioyMZNasWYwZM4bJkycza9Yszpw5Y3dZygP42rSLu6tcHgReE5GtQBwwE3gGuEZEdgFXu+4r5bGuvPJK0tLSKCwsJD4+nk8//dTukpTNfO3AqNTmGXa9e/c2mzdvrrX3U6o0X375JTNmzKB79+6MGzeO8PBwu0tSNkhPT2fo0KG89957iIjd5ZRKRL4yxvQubzs9U1TVSX369CE1NZWIiAgSEhJ4//33tX1AHRQTE0O9evXYu3ev3aVUCw10VWfVr1+fsWPH8vzzz7NkyRLGjRuHrsSqe3xpHl0DXdV5l1xyCWvWrKFDhw4kJSXx1ltv6Wi9DvGlC0droCuF1ezrvvvuY+HChbzxxhs88MADHDx40O6yVC0oPjDqCx/iGuhKnaN9+/YsX76cyy+/nCFDhrB27VqfOvFEXSg2NhY/Pz/2799vdylVpoGu1Hn8/PwYPHgwK1asYOPGjQwfPtynTj5RvyUiPrN8UQNdqVJcdNFFLFq0iFtuuYXk5GT+8pe/UFBQYHdZqgb4yoFRDXSlyuBwOLjjjjtYu3Yt33//PYMGDeKHH36wuyxVzXxlHl0DXSk3REdHM3fuXIYNG8bDDz/Miy++SG5urt1lqWpy0UUXUVRU5PVXvdJAV8pNIsL1119PamoqmZmZJCYm+sS8q/KdeXQNdKUqKCIigpkzZzJ27FimTJnCzJkzOX36tN1lqSryheuMaqArVUn9+vUjLS0NYwzx8fH85z//sbskVQW+cGBUA12pKmjQoAGTJ09m2rRpPP/880yePJljx47ZXZaqhFatWpGbm0t6enr5G3soDXSlqsGll15KamoqUVFRJCQk8N5773n9iom6RkTo0aOHV4/SNdCVqib16tXj4YcfZu7cuSxbtoyxY8eSmVnihbyUh/L2A6Ma6EpVsy5durBmzRo6derEgAEDeOONN7R9gJfw9nl0DXSlakBAQADJycm8+uqrrF+/npEjR/pErxBf16ZNG06dOuW1v1lpoCtVg9q2bcvy5cvp168fd999N2vWrNHRugdzOBxePY+uga5UDXM4HAwcOJCVK1fyySefcPfdd7N79267y1Kl8Ob16BroStWS5s2bs3DhQm6//Xbuv/9+Xn31VfLz8+0uS53Hmw+MaqArVYtEhNtvv521a9eyc+dOBg0axLZt2+wuS52jXbt2HDt2jF9//dXuUipMA10pG0RHRzNnzhxGjBjB2LFjeeGFF8jJybG7LIU1RRYXF+eV0y5uBbqI7BWR70Rki4hsdj0WKSIfiMgu19eImi1VKd8iIlx77bWkpaVx9OhREhMT2bRpk91lKbx3+WJFRuj/ZYyJM8b0dt2fCGwwxrQHNrjuK6UqKDw8nBkzZjB+/Hj+/Oc/M2PGDE6dOmV3WXWat144uipTLrcCK13frwRuq3o5StVdf/jDH0hLS8PhcJCQkMDHH39sd0l1VocOHTh8+LDX9eVxN9AN8L6IfCUiya7HmhhjirvYZABNSnqiiCSLyGYR2ZyVlVXFcpXybQ0aNGDSpEk89dRTzJ07l0mTJnH06FG7y6pz/Pz86N69O998843dpVSIu4F+hTGmJ3ADMEpE+p37Q2N1ISqxE5ExZrExprcxpndUVFTVqlWqjujVqxfr1q2jadOmJCYm8s9//lObfdUyb1y+6FagG2MOur5mAm8CfYDDIhID4PrqnefKKuWh6tWrx5gxY3jxxRdZuXIljzzyCIcPH7a7rDrDG08wKjfQRSREREKLvweuBbYBbwNDXZsNBdbXVJFK1WWdO3dm9erVdO3alYEDB/K3v/1N2wfUgo4dO3Lw4EFOnjxpdyluc2eE3gT4RES+Bb4E/m6MeRd4BrhGRHYBV7vuK6VqQEBAACNGjGDx4sW888473H///ezbt8/usnyav78/3bp186p59HID3RjzszGmu+vWxRjztOvxX40xVxlj2htjrjbG6JEbpWpYmzZtWLZsGVdeeSXDhg1j1apVFBUV2V2Wz/K25Yt6pqhSXsbhcDBgwABWrVrF559/zt13382PP/5od1k+ydvm0TXQlfJSzZo1Y8GCBdx555088MADLFy4UJt9VbPOnTuzb98+rznRSwNdKS8mItx6662sW7eO3bt3M3DgQLZu3Wp3WT4jICCALl26sGXLFrtLcYsGulI+ICoqiueff57k5GQmTJj26yMdAAARs0lEQVTAnDlztNlXNfGmvi4a6Er5CBHhmmuuIS0tjRMnTpCQkMCXX35pd1lez5tOMPK3uwClVPVq2LAh06dP59NPP2XatGn87ne/45FHHiE0NNTu0rxS165d2bNnD9nZ2QQHB9tdTpl0hK6Uj/r9739PWloaQUFBxMfHs3HjRrtL8kqBgYF06tTJK+bRNdCV8mEhISE89thjPP3008yfP5+JEydqs69K8JblixroStUBPXv2ZN26dTRr1ozExET+8Y9/aLOvCvCWA6Ma6ErVEUFBQTz44IPMmzePNWvW8NBDD5GRkWF3WV7hkksuYdeuXR6/ckgDXak6plOnTqxatYq4uDgGDhxIWlqaNvsqR7169bj44ov57rvv7C6lTBroStVB/v7+DB8+nCVLlvDuu++SnJzML7/8YndZHs0bli9qoCtVh7Vu3ZolS5Zw9dVXM3z4cFasWKHNvkrhDY26NNCVquMcDgeJiYmsXr2aL7/8kqFDh2qzrxJ069aNnTt3kpeXZ3cppdJAV0oBEBsby4IFC4iPj2fUqFG88sor2uzrHMHBwbRt29aj59E10JVSZ4kIt9xyC+vWrWPPnj0MGDBAm32dw9PXo2ugK6Uu0LhxY5599llGjhzJhAkTeO6558jOzra7LNt5+oFRDXSlVIlEhKuuuoq0tDTOnDlDYmIin3/+ud1l2ap79+5s377dY6eiNNCVUmVq2LAhTz75JI8//jhPP/0006ZN86oLJ1enkJAQWrVqxffff293KSXSQFdKuaVv376kpqZSv359EhIS+PDDD+0uyRae3AZAA10p5bbg4GAeffRRZs2axYIFC3j00Uf59ddf7S6rVnnyenQNdKVUhcXFxbFu3TpatmxJYmIi77zzTp1p9tWjRw+2bdtGQUGB3aVcwO1AFxE/EflGRP7Hdb+1iHwhIrtFJFVEAmuuTKWUpwkMDGTUqFG89NJLrFu3jgcffJBDhw7ZXVaNCw0NpXnz5mzfvt3uUi5QkRH6Q8C5f4LZwFxjTDvgGHBPdRamlPIOHTt2ZNWqVfTq1YvBgweTmprq882+PHX5oluBLiLNgT8BS1z3BegPvO7aZCVwW00UqJTyfP7+/gwbNoylS5fy3nvvce+997J37167y6oxnnpg1N0R+ovAo0Dxx24j4LgxptB1/wDQrKQnikiyiGwWkc1ZWVlVKlYp5dlatWrFkiVLuO6667jnnntYtmwZhYWF5T/Ry/Ts2ZOtW7d6XCOzcgNdRG4CMo0xlfr9whiz2BjT2xjTOyoqqjIvoZTyIg6Hg/j4eFavXs3XX3/NkCFD2Llzp91lVauGDRsSExPDjh077C7lN9wZof8euEVE9gIpWFMt84BwEfF3bdMcOFgjFSqlvFJsbCwvvfQSAwYMYPTo0bz88ssee4ZlZXji8sVyA90Y87gxprkxphWQCHxojBkIfATc6dpsKLC+xqpUSnklEeGmm24iJSWFffv2kZiYyJYtW+wuq1p4YqOuqqxDfwwYKyK7sebUl1ZPSUopX9OoUSOeffZZRo8ezcSJE3n22We9vtlXjx492LJli0et6KlQoBtjNhpjbnJ9/7Mxpo8xpp0x5i5jjOd2fVdKeYT+/fuTlpZGbm4uCQkJ/O///q/dJVVaZGQkUVFRHnUxED1TVClVq8LCwpg6dSqTJ09m5syZ/PnPf/baZl+etnxRA10pZYvLLruM1NRUQkNDiY+PZ8OGDV7XPqBXr15s3rzZ7jLO0kBXStkmODiY8ePHM3v2bBYuXMijjz7KkSNH7C7LbT179vSoeXQNdKWU7bp3787atWtp3bo1SUlJvP32214xWm/cuDHh4eHs3r3b7lIADXSllIcIDAzkgQceYMGCBaSmpjJq1CivaPblScsXNdCVUh7l4osvZtWqVfzud79j8ODBpKSkeMyURkk86cCoBrpSyuP4+fkxdOhQli1bxr/+9S9GjBjBnj177C6rRMUjdE+YItJAV0p5rJYtW7J48WJuuOEGRowY4ZHNvqKjowkJCfGIDxwNdKWUR3M4HNx1112sWbOGLVu2MHjwYI+7uISn9EfXQFdKeYWYmBjmzZvH4MGDeeihh3jppZfIy/OME9Q9ZR5dA10p5TVEhBtvvJGUlBQOHTpEUlKSRwRpcedFu+fRNdCVUl4nMjKSWbNmMWbMGCZPnszs2bM5c+aMbfXExsYSGBjIL7/8YlsNoIGulPJiV155JampqeTn55OQkMCnn35qWy2eMO2iga6U8mphYWFMmTKFqVOnMnv2bKZOncrx48drvY7evXvbfmBUA10p5RP69OlDamoq4eHhJCQk8MEHH9TqnHbxCN3OeXQNdKWUz6hfvz5jx47lueeeY/HixYwfP57aujh9s2bNEBEOHDhQK+9XEg10pZTP6datG6+99hrt27cnKSmJ9evX1/jIWURsn0fXQFdK+aTAwEDuv/9+XnnlFV5//XUeeOABDh6s2WvZ233haA10pZRPu/jii1mxYgV9+/ZlyJAhrF27tsaafdndeVEDXSnl8/z8/BgyZAjLly9n48aNDB8+nJ9//rna36dFixbk5+fb1vZXA10pVWe0aNGCRYsWcfPNN5OcnMySJUsoKCiottcXEVtH6eUGuojUE5EvReRbEfleRKa5Hm8tIl+IyG4RSRWRwJovVymlqsbhcPDf//3fvPbaa2zdupXBgwfzww8/VNvr23lg1J0Reh7Q3xjTHYgDrheRy4DZwFxjTDvgGHBPzZWplFLVq0mTJsybN4+hQ4fy8MMPM3/+fHJzc6v8unZeOLrcQDeW0667Aa6bAfoDr7seXwncViMVKqVUDRERbrjhBlJSUsjIyCApKanKq1Rat25NTk4Ohw8frqYq3efWHLqI+InIFiAT+AD4CThujCnuNH8AaFYzJSqlVM2KjIxk5syZPPLII0yZMoWZM2dy+vTp8p9YAhGhR48e///BYIx1qwVuBboxpsgYEwc0B/oAHd19AxFJFpHNIrK5ts7YUkqpyujXrx+pqakYY4iPj+eTTz6p+Iukp3PX8eM0mzwZevWCNm2gdWvo2hXuugvmzIEdO6q/eEAqevaUiEwFcoDHgKbGmEIR6Qs8aYy5rqzn9u7d29g1t6SUUhWxadMmZsyYwSWXXMK4ceOIiIgo+wl79sDTT8PGjeTn55N19CjN2rSBgADr50VFkJsL+fngcEDnzjBpElx2Wbm1iMhXxpje5W3nziqXKBEJd31fH7gG2A58BNzp2mwosL7cqpRSyktceumlpKSk0KhRIxISEnj//fdLbh/gdMKyZXD99fDRRxAWRkB0NKcdDgocDhCxbv7+0KABREZCw4bWKH3gQJg8GbKzq6XmckfoItIN66CnH9YHQJoxZrqItAFSgEjgG2CQMabM60HpCF0p5Y22bdvG9OnTad68ORMnTiQ6Otr6QVERTJgA69dDSAgE/v/q7f0HDhAWFkbDsLDSX7ioCE6cgC5dYM0aK+hLUG0jdGPMVmNMD2NMN2NMV2PMdNfjPxtj+hhj2hlj7iovzJVSylt17dqVNWvW0LFjRwYMGMCbb76JcTrhiSesMG/Y8DdhDhAcHEx2eSNvPz+IiIAffoAhQ6wpmSrQM0WVUsoNgYGBJCcns2jRIt58803m33wzhWvXWmHuuDBK3Qp0sKZjwsNh2zaYO7dKNWqgK6VUBbRr147lc+cy+Lvv2H/kCL8eP05JE9f16tWjsKCAwsLCEn56HhEIDbXm4rdurXRtGuhKKVVBfm+8QWRAAM3atuXUqVPs3buX3LzfzjoLFRilg3XQ1BiYP7/SdWmgK6VURTidsGQJ1K9PYGAgLVu2JDw8nF9++YWsrCyc5yw0KapXj8fS07lixw5u2r2bd0+cKPu1w8Jg40ZIT69UaRroSilVETt2wLFjUK8eYI3EI8LDadOmDbm5uezZs4ecnBwAFmRnYwoLef/ii5kRG8usjAx+zitj/UjxXPx//lOp0jTQlVKqIrZvL/FU/gB/f5pfdBGNGzdm//797M3I4OPsbOIdDgKNIS44mD+GhvL38kbpxkAll3droCulVEVs22atHy+BAA3DwmjTti378vIozMujZVDQ2Xn09kFBZY/QwRr5V/LAqAa6UkpVxPHjJS5TPJe/nx+hUVE0DAoiLy+PPFeIN3A4OFPe5e8cDqhkYzD/Sj1LKaXqqkD3ruUT7HCQJ0LHDh1wiABwxukkpJwPA4yxTjiqBB2hK6VURbRsaa10KUeLwECKgAPnXOLux7w82gQFlf3EggK46KJKlaaBrpRSFdG1q1uj9PoOB/1DQ1mUlUWO08m32dn8+9Qp/lRKv5az8vOhT59KlaaBrpRSFdG1q3VQ1I1R+sSmTclzOrnmxx+ZdPAgjzdtWv4IPSDA6qNeCTqHrpRSFREZCf37w4YNVg+WMoT5+TGnItMnubnWa7rRI70kOkJXSqmKGjHC+urGKL1CcnLg3nv1oKhSStWaSy+FG26Akyer7zVPnoQWLaw2upWkga6UUpUxfbrVOvfUqaq/VvHJRvPmQXlz7GXQQFdKqcqIiIDVq60VL1UZqefmWlMtzz8P3bpVqSQNdKWUqqzOnSEtzQr348crNqdujPWcoiJYsABuuaXK5ZR7TdHqJCJZwC+19obQGDhSi+9XGZ5eo6fXB1pjdfD0+qBu19jSGBNV3ka1Gui1TUQ2u3NhVTt5eo2eXh9ojdXB0+sDrdEdOuWilFI+QgNdKaV8hK8H+mK7C3CDp9fo6fWB1lgdPL0+0BrL5dNz6EopVZf4+ghdKaXqDJ8IdBGpJyJfisi3IvK9iExzPd5aRL4Qkd0ikioi7nWmr90aV4jIHhHZ4rrF2VWjqx4/EflGRP7Hdd9j9mEZNXraPtwrIt+5atnseixSRD4QkV2urxEeWOOTInLwnP14o801hovI6yKyQ0S2i0hfT9qPpdRn6z70iUAH8oD+xpjuQBxwvYhcBswG5hpj2gHHgHs8sEaACcaYONdti30lAvAQsP2c+560D4udXyN41j4E+C9XLcVL2CYCG4wx7YENrvt2O79GsP6ui/fjP2yrzDIPeNcY0xHojvV37kn7saT6wMZ96BOBbizFF+ELcN0M0B943fX4SuA2G8oDyqzRY4hIc+BPwBLXfcGD9iFcWKMXuRVr/4EH7EdPJyINgX7AUgBjTL4x5jgesh/LqM9WPhHocPbX8C1AJvAB8BNw3BhT6NrkANDMrvrgwhqNMV+4fvS0iGwVkbkiUvnOPFX3IvAoUHz+ciM8bB9yYY3FPGUfgvVB/b6IfCUiya7Hmhhj0l3fZwBN7CntrJJqBBjt2o/LbJ4Wag1kActd02tLRCQEz9mPpdUHNu5Dnwl0Y0yRMSYOaA70ATraXNIFzq9RRLoCj2PVeikQCTxmR20ichOQaYz5yo73d0cZNXrEPjzHFcaYnsANwCgR6XfuD421tMzu385KqnEh0BZrSjAdmGNjff5AT2ChMaYHcIbzplds3o+l1WfrPvSZQC/m+rXnI6AvEC4ixVdlag4ctK2wc5xT4/XGmHTXdEwesBzrw8gOvwduEZG9QArWVMs8PGsfXlCjiKzxoH0IgDHmoOtrJvCmq57DIhID4PqaaV+FJddojDnsGnQ4gb9g7348ABw457fY17EC1FP2Y4n12b0PfSLQRSRKRMJd39cHrsE6QPERcKdrs6HAensqLLXGHef84xSs+cBtdtRnjHncGNPcGNMKSAQ+NMYMxIP2YSk1DvKUfeiqIUREQou/B6511fM21v4D+/8tllhj8X50uR0b96MxJgPYLyIdXA9dBfyAh+zH0uqzex/6yjVFY4CVIuKH9SGVZoz5HxH5AUgRkRnAN7gOYHhYjR+KSBQgwBbgfhtrLMljeM4+LM1rHrQPmwBvWp8t+ANrjTHvisgmIE1E7sHqOBrvgTWudi35NMBe4D77SgTgQay/20DgZ2AYrv87HrIfS6pvvp37UM8UVUopH+ETUy5KKaU00JVSymdooCullI/QQFdKKR+hga6UUj5CA10ppXyEBrpSSvkIDXSllPIR/wfKymSwbAg+6QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt41fWV7/H32rkHSEwgQOQqlVI5SJEBauHQUVBGaAvSCSFgQAxjcOKAwYgRPXBaEE2VIQ55YIbQaKDhhJAUj0z1YC2Flj6ZSkOHlhYFLGIqAiIgEQLksr/nj9+OxpjLDtk7v/3bWa/nyZPsa9aPwCeL9f1dxBiDUkop53PZXYBSSinf0EBXSqkgoYGulFJBQgNdKaWChAa6UkoFCQ10pZQKEhroSikVJDTQlVIqSGigK6VUkAjtzG/Wq1cvM3jw4Pa/8MIF+Ogj6+uQEO9fV19vfe7ZExIT2/99lVIqABw8ePATY0xCW8/r1EAfPHgwFRUV7XvRf/wHvPACfP3rEB7e/m9aXw9VVfCtb8H69e37haCUUgFARD7w5nmBPXJ57TV48UWIibmxMAcrwG+6CXbvhjVrfFufUkoFkMAN9DNn4OmnISoKQjv4HwkR65fC1q1w4IBv6lNKqQATuIH+ox/BtWsQGemb9wsJsX4xLF36xWxdKaWCSGAG+kcfwS9/CbGxrT5tx4ULzHv/fb797rv8sGHRtDXdu8O5c/Cb3/ioUKWUChyBGeilpeB2g6v18nqFhrKwVy+mtxH8X2IMFBR0sECllAo8nbqXi9feesurRdBJMTEAHLl6lY/r6rx77x494Pe/t8YuuseLUiqIBF6HXl8Px475bnbeVEPX//77/nl/pZSyiVeBLiJLReQvIvJnESkWkUgRuUVE3haR90SkRERucL/CJs6ds8Yi/uyeRaCy0n/vr5RSNmgz0EWkH7AEGGOMGQGEACnAj4FcY8ytwEVgoU8qqq1tc3be1PkLF6j67DPq27P3ircjGqWUcghvkzMUiBKRUCAaOA1MAso8j28B7vdJRRER1oJoO9TW1SHAX0+c4FJVFV5d9joi4kaqU0qpgNVmoBtjTgFrgUqsIL8EHAQ+NcY0tLkfAv18UlGvXhAW5lUHXW8MNW43xhiiunend79+nD13jr9VVlJTW9vyC91uuOUWn5SrlFKBwpuRSxwwA7gFuBnoBtzn7TcQkXQRqRCRinPnznlRkQuGD7cOKmpDwSefMP7oUV6tq2N3VRX3fPABe2NiiO7Wjffff59Pzp/HmCb9el2dNZ/v39/bTVBKKUfwZrfFe4D3jTHnAERkJzABuElEQj1den/gVHMvNsbkA/kAY8aM8WoawrRpcOhQm09LT0jg4YQE3nnnHW677Tak0WMxMTGcOX2aS5cukZiYSHRUlPXAZ5/BP/xDu+f0SikV6LxJtUrgThGJFhEBJgNHgL1Akuc5DwKv+ayqmTOtwPVikdMYg4h8KcwBwsPCGDBwIL169eLDDz/k9Jkz1qKpywVpaT4rVSmlAoU3M/S3sRY//wAc9rwmH8gGHheR94CegO8Ov4yLg+Rk67S3bdXnduOSpnFuESA2JoavDRkCxnD62DE+6dkTM3q0z0pVSqlA4dXcwRjzv40x3zDGjDDGzDPGXDfGnDDGjDPG3GqMmWWMue7Typ58EuLj4cqVtmpDWgj0BiEhIST26kWvXr1YHRfH0scf5/Tp076sVimlbBe4g+SYGOuCFHV1cL3l3xVuLwKd+nq4fJnIlStZu2sXI0eOJDU1laKiovbtu66UUgEscAMd4NvfhpdesvZ4aaFTb7NDr6mxRjeLFkFaGmFhYaSlpVFYWEh5eTnz5s3jyJEjftoApZTqPIEd6ADf/S5s2QLdusHFi19ZKDXGIM3tsWIMfPqpFejPPgvLllmH/HsMGDCADRs2kJqaSmZmJmvXrqW6utrfW6OUUn4T+IEOMH48/OpX1kLplStWUF+5AvX1X+7Q3W64etW6qPSlS9br3noL5sz5Upg3EBGmTZtGaWkp1dXVJCUlsW/fvs7dNqWU8hH5yoE3fjRmzBjT7otEN3X+POzcCT//ORw9yrWrV7n46ack9u1rde9DhsDdd0NKSruPBj148CDPPfccgwcP5sknn6RPnz4dq1UppXxARA4aY8a0+TzHBXpjbjd/fPNNSrZs4bkXXoC+fW/8YtIeNTU1FBYWUlJSwj/90z8xe/ZsXHoQklLKRt4GurOTyuXiSmwsVb16wcCBHQ5zgPDwcNLT0ykoKGDv3r0sWLCAo0eP+qBYpZTyL2cHOlBbW0u4D4K8qcGDB7Np0yaSkpJYvHgxubm5umiqlApojg/0mpoawsLC/PLeIsL06dMpKSnh4sWLzJ49m/379/vleymlVEc5PtBra2v9FugN4uLiWLVqFStWrGDdunVkZ2fj1ZkjlVKqEwVFoPtj5NKccePGsX37dgYNGsScOXMoLS3F3c6LcSillL84PtD9OXJpTkREBBkZGeTn57N7927S0tI4fvx4p31/pZRqieMDvTM79MaGDBnC5s2bmTFjBhkZGeTl5XHNi4tyKKWUvzg+0Du7Q2/M5XIxc+ZMtm/fzpkzZ0hOTqa8vNyWWpRSypsrFgW0mpoaWzr0xnr27MmaNWsoLy8nJyeHESNGkJWVRc+ePW2tSynVtTi+Q7dr5NKc8ePHs2PHDhITE0lJSWHnzp26aKqU6jSOD3Q7Ry7NiYyMZPHixWzcuJFdu3bx8MMPc+LECbvLUkp1AY4P9M7YD/1GDB06lJdffpmpU6eSnp7Oxo0bud7KhTqUUqqjgiLQA2Xk0pTL5SIpKYni4mIqKytJSUnhwIEDdpellApSQbEoGogdemMJCQnk5OSwf/9+Vq9ezR133MHSpUuJi4uzuzSlVBDRDr0TTZw4kZKSEuLj45k9eza7du2iM09frJQKbo4PdCd06I1FR0eTmZlJXl4eZWVlLFq0iA8++MDuspRSQSAoAt0pHXpjw4YNo7CwkEmTJpGWlkZ+fj41NTV2l6WUcjDHB7qTRi5NuVwuUlJSKC4u5tixY6SkpHDw4EG7y1JKOVSbgS4iw0TkUKOPKhHJFJF4EXlLRI57Ptuywue0kUtzevfuzdq1a1myZAkrVqxg1apVXLp0ye6ylFIO02agG2OOGmNGGWNGAX8HVAOvAk8Be4wxQ4E9ntudLlD3Q78Rd911F2VlZURHRzNr1izeeOMNXTRVSnmtvSOXycBfjTEfADOALZ77twD3+7Iwbzl55NKc6OhonnjiCV566SW2bdvGo48+SmVlpd1lKaUcoL2BngIUe77uY4w57fn6DNCnuReISLqIVIhIhT+u8hMMI5fmDB8+nK1btzJhwgQeeughCgoKqK2ttbsspVQA8zrQRSQcmA6UNn3MWHOBZmcDxph8Y8wYY8yYhISEGy60JcHWoTcWEhLCAw88QFFREYcPH2bu3LkcOnTI7rKUUgGqPR36VOAPxpiznttnRSQRwPP5Y18X541g7dAbS0xMJDc3l0ceeYTly5ezZs0aqqqq7C5LKRVg2hPoc/hi3AKwC3jQ8/WDwGu+Kqo9nLofenuJCJMnT6a0tJTQ0FCSk5N58803ddFUKfU5rwJdRLoB9wI7G92dA9wrIseBezy3O10wj1ya0717d7Kzs3nxxRd55ZVXWLJkCadOnbK7LKVUAPAq0I0xV4wxPY0xlxrdd94YM9kYM9QYc48x5oL/ymxZVxi5NOf222+nqKiIsWPHMn/+fLZs2UJdXZ3dZSmlbOToI0Xdbjf19fWEhjr+pJE3JDQ0lPnz57N161YqKipITU3l8OHDdpellLKJowO9rq6OsLAwRMTuUmzVr18/1q9fT1paGsuWLSMnJ4fLly/bXZZSqpM5OtC76rilOSLClClT2LFjB/X19cyaNYs9e/booqlSXYjjA70rLYh6IyYmhmeeeYbnn3+eTZs2sXTpUk6fPt32C5VSjufoQO9qe7i0x6hRo9i2bRsjR44kNTWVoqIi6uvr7S5LKeVHjg50Hbm0LiwsjLS0NAoLCykvL2fevHkcOXLE7rKUUn7i6EDXDt07AwYMYMOGDaSmppKZmcnatWuprq62uyyllI85OtC1Q/eeiDBt2jRKS0uprq4mKSmJffv22V2WUsqHNNC7mNjYWFauXMmzzz5LXl4eWVlZnD17tu0XKqUCnqMDva6uTkcuN2j06NEUFxczbNgw5s6dS3FxMW632+6ylFId4OhA1w69Y8LDw0lPT6egoIC9e/eyYMECjh49andZSqkb5PhA1w694wYPHsymTZtISkpi8eLF5Obm6qKpUg7k6EDXvVx8R0SYPn06JSUlXLx4kdmzZ7N//367y1JKtYOjA11HLr4XFxfHqlWrWLFiBevWrSM7Oxt/XDpQKeV7jg507dD9Z9y4cWzfvp1BgwYxZ84cSktLddFUqQDn6EDXDt2/IiIiyMjIID8/n927d5OWlsbx48ftLksp1QINdNWmIUOGsHnzZmbMmEFGRgZ5eXlcu3bN7rKUUk04OtB1P/TO43K5mDlzJiUlJZw5c4bk5GTKy8vtLksp1YijL/WjHXrni4+PZ82aNZSXl5OTk8OIESPIysqiZ8+edpemVJfn6A5d90O3z/jx49mxYweJiYmkpKSwc+dOXTRVymaODnTdy8VekZGRLF68mI0bN7Jr1y4efvhhTpw4YXdZSnVZjg50HbkEhqFDh/Lyyy8zdepU0tPT2bhxI9evX7e7LKW6HEcHunbogcPlcpGUlERxcTGVlZWkpKRw4MABu8tSqkvxKtBF5CYRKRORd0XkHRH5tojEi8hbInLc8znO38U2pR164ElISCAnJ4fHH3+c1atXs3LlSi5evGh3WUp1Cd526P8G7DbGfAP4JvAO8BSwxxgzFNjjud2pdFE0cE2cOJGSkhLi4+OZPXs2u3btwhhjd1lKBbU2A11EYoHvAAUAxpgaY8ynwAxgi+dpW4D7/VVkS+rq6rRDD2DR0dFkZmaSl5dHWVkZixYt4uTJk3aXpVTQ8qZDvwU4B7wiIv8tIj8RkW5AH2PMac9zzgB9/FVkS3Tk4gzDhg2jsLCQSZMmsXDhQvLz86mpqbG7LKWCjjeBHgqMBv7dGHMHcIUm4xVj/V+62f9Pi0i6iFSISIWvz9qnIxfncLlcpKSkUFxczLFjx0hJSeHgwYN2l6VUUPEm0D8EPjTGvO25XYYV8GdFJBHA8/nj5l5sjMk3xowxxoxJSEjwRc2f071cnKd3796sXbuWJUuWsGLFClatWsWlS5fsLkupoNBmoBtjzgB/E5FhnrsmA0eAXcCDnvseBF7zS4Wt0JGLc911112UlZURHR3NrFmzeOONN3TRVKkO8nYvl8XANhH5EzAKeA7IAe4VkePAPZ7bnUo7dGeLjo7miSee4KWXXmLbtm08+uijVFZW2l2WUo7lVaAbYw55xiYjjTH3G2MuGmPOG2MmG2OGGmPuMcZc8HexTWmHHhyGDx/O1q1bmTBhAg899BAFBQXU1tbaXZZSjuPoI0V1UTR4hISE8MADD1BUVMThw4eZO3cuhw4dsrsspRzF0YGu+6EHn8TERHJzc3nkkUdYvnw5a9asoaqqyu6ylHIERwe6jlyCk4gwefJkSktLCQ0NJTk5mTfffFMXTZVqg+MDXUcuwat79+5kZ2fz4osv8sorr7BkyRJOnTpld1lKBSxHB7ru5dI13H777RQVFTF27Fjmz5/Pli1bqKurs7sspQKOYwPdGENtbS2hoY6+ip7yUmhoKPPnz2fr1q1UVFSQmprK4cOH7S5LqYDi2EBvCHOXy7GboG5Av379WL9+PWlpaSxbtoycnBwuX75sd1lKBQTHpqGOW7ouEWHKlCns2LEDt9tNcnIye/bs0UVT1eU5NtB1DxcVExPD008/zXPPPcemTZtYunQpp0+fbvuFSgUpxwZ6bW2tBroCYNSoUWzbto2RI0eSmppKUVER9fX1dpelVKdzdKDryEU1CAsLIy0tjcLCQsrLy5k3bx5HjhyxuyylOpVjA11HLqo5AwYMYMOGDaSmppKZmcnatWuprq62uyylOoVjA107dNUSEWHatGmUlpZSXV1NUlIS+/bts7sspfzOsYGuHbpqS2xsLCtXruTZZ58lLy+PrKwszp49a3dZSvmNowNdO3TljdGjR1NcXMywYcOYO3cuxcXFuN1uu8tSyuccG+g6clHtER4eTnp6OgUFBezdu5cFCxZw9OhRu8tSyqccG+g6clE3YvDgwWzatImkpCQWL15Mbm6uLpqqoOHYQNf90NWNEhGmT59OSUkJFy9eJDk5mf3799tdllId5uhA15GL6oi4uDhWrVrFypUrWbduHdnZ2Zw7d87uspS6YY4NdB25KF8ZN24c27dvZ9CgQcyZM4fS0lJdNFWO5NhA1w5d+VJERAQZGRnk5+eze/du0tLSOH78uN1lKdUujg107dCVPwwZMoTNmzczY8YMMjIyyMvL49q1a3aXpZRXHB3o2qErf3C5XMycOZOSkhLOnDlDcnIy5eXldpelVJsce7kfHbkof4uPj2fNmjWUl5eTk5PDiBEjyMrKomfPnnaXplSzvOrQReSkiBwWkUMiUuG5L15E3hKR457Pcf4t9ct05KI6y/jx49mxYweJiYmkpKSwc+dOXTRVAak9I5e7jTGjjDFjPLefAvYYY4YCezy3O43uh646U2RkJIsXL2bjxo3s2rWLhx9+mBMnTthdllJf0pEZ+gxgi+frLcD9HS/HezpyUXYYOnQoL7/8MlOnTiU9PZ2NGzdy/fp1u8tSCvA+0A3wCxE5KCLpnvv6GGMarvd1BujT3AtFJF1EKkSkwpcHbejIRdnF5XKRlJREcXExlZWVpKSkcODAAbvLUsrrRdH/aYw5JSK9gbdE5N3GDxpjjIg0e4VeY0w+kA8wZswYn13FVzt0ZbeEhARycnLYv38/q1ev5o477mDp0qXExXXqcpJSn/OqQzfGnPJ8/hh4FRgHnBWRRADP54/9VWRztENXgWLixImUlJQQHx/P7Nmz2bVrF8b4rHdRymttBrqIdBORHg1fA1OAPwO7gAc9T3sQeM1fRTZH90NXgSQ6OprMzEzy8vIoKytj0aJFnDx50u6yVBfjTYfeB/itiPwROAC8bozZDeQA94rIceAez+1OoyMXFYiGDRtGYWEhkyZNYuHCheTn51NTU2N3WaqLaDPQjTEnjDHf9Hz8D2PMGs/9540xk40xQ40x9xhjLvi/3C/oyEUFKpfLRUpKCsXFxRw7doyUlBQOHjxod1mqC3D0kaIa6CqQ9e7dm7Vr17Jv3z5WrFjBnXfeyWOPPUZsbKzdpakg5dhzuejIRTnFXXfdRVlZGdHR0cyaNYs33nhDF02VXzg20HXkopwkOjqaJ554gpdeeolt27bx6KOPUllZaXdZKsg4NtC1Q1dONHz4cLZu3cqECRN46KGHKCgooLa21u6yVJBwbKBrh66cKiQkhAceeICioiIOHz7M3LlzOXTokN1lqSDg6EDXDl05WWJiIrm5uTzyyCMsX76cNWvWUFVVZXdZysEcG+g6clHBQESYPHkypaWlhIaGkpyczJtvvqmLpuqGODbQdeSigkn37t3Jzs7mxRdf5JVXXmHJkiWcOnXK7rKUwzg20LVDV8Ho9ttvp6ioiLFjxzJ//ny2bNlCXV2d3WUph3BkoBtj9MAiFbRCQ0OZP38+W7dupaKigtTUVA4fPmx3WcoBHBno9fX1iAgulyPLV8or/fr1Y/369aSlpbFs2TJycnK4fPmy3WWpAObIRNQ9XFRXISJMmTKFHTt24Ha7SU5OZs+ePbpoqprlyEDX+bnqamJiYnj66ad57rnn2LRpE0uXLuX06dNtv1B1KY4MdN3DRXVVo0aNYtu2bYwcOZLU1FSKioqor6+3uywVIBwZ6Nqhq64sLCyMtLQ0CgsLKS8vZ968eRw5csTuslQAcGSga4euFAwYMIANGzaQmppKZmYma9eu5cqVK3aXpWzk2EDXDl0pa9F02rRplJaWUl1dzaxZs9i3b5/dZSmbODLQ6+rqtENXqpHY2FhWrlzJs88+S15eHllZWZw9e9buslQnc2Sg68hFqeaNHj2a4uJihg0bxty5cykuLsbtdttdluokjg10Hbko1bzw8HDS09MpKChg7969LFiwgKNHj9pdluoEjgx03ctFqbYNHjyYTZs2kZSUxOLFi8nNzaW6utruspQfOTLQdeSilHdEhOnTp1NSUsLFixdJTk5m//79dpel/MSRga4dulLtExcXx6pVq1i5ciXr1q0jOzubc+fO2V2W8jGvA11EQkTkv0Xk557bt4jI2yLynoiUiEinJax26ErdmHHjxrF9+3YGDRrEnDlzKC0t1UXTINKeDv0x4J1Gt38M5BpjbgUuAgt9WVhrdFFUqRsXERFBRkYG+fn57N69m7S0NI4fP253WcoHvAp0EekPfBf4iee2AJOAMs9TtgD3+6PA5ui50JXquCFDhrB582ZmzJhBRkYG69ev59q1a3aXpTrA2w79JeBJoOH/Zj2BT40xDZdS+RDo5+PaWqSBrpRvuFwuZs6cSUlJCWfPniU5OZny8nK7y1I3qM1AF5HvAR8bYw7eyDcQkXQRqRCRCl8twujIRSnfio+PZ82aNTz11FPk5OTw9NNPc/78ebvLUu3kTYc+AZguIieB7Vijln8DbhKRUM9z+gPNXtHWGJNvjBljjBmTkJDgg5J1Lxel/GX8+PHs2LGDxMREUlJS2Llzpy6aOkibgW6MWW6M6W+MGQykAL8yxjwA7AWSPE97EHjNb1U2oXu5KOU/kZGRLF68mI0bN/Kf//mfPPzww5w4ccLuspQXOrIfejbwuIi8hzVTL/BNSW3TDl0p/xs6dCgFBQVMnTqV9PR0Nm7cyPXr1+0uS7WiXYFujNlnjPme5+sTxphxxphbjTGzjDGd9pPWDl2pzuFyuUhKSqK4uJjKykpSUlI4cOCA3WWpFoS2/ZTAo4uiSnWuhIQEcnJy2L9/P6tXr+aOO+5g6dKlxMXF2V2aasSxh/5rh65U55s4cSIlJSXEx8cze/Zsdu3ahTHG7rKUhwa6UqpdoqOjyczMJC8vj7KyMhYtWsTJkyftLkvh0EDXkYtS9hs2bBiFhYVMmjSJhQsXkp+fT01Njd1ldWmODHTdy0WpwOByuUhJSaG4uJhjx46RkpLCwYM3dAyi8gHHLorqyEWpwNG7d2/Wrl3Lvn37WLFiBXfeeSePPfYYsbGxdpfWpWiHrpTymbvuuouysjK6devGrFmzeOONN3TRtBM5MtC1Q1cqcEVHR5OVlcVLL73Etm3bePTRR6msrLS7rC7BsYGuHbpSgW348OFs3bqVCRMm8NBDD1FQUEBtba3dZQU1Rwa67raolDOEhITwwAMPUFRUxOHDh5k7dy6HDh2yu6ygpYGulPK7xMREcnNzeeSRR1i+fDlr1qyhqqrK7rKCjiMDXUcuSjmPiDB58mRKS0sJDQ0lOTmZN998UxdNfciRga57uSjlXN27dyc7O5sXX3yRV155hSVLlnDqVLOXU1Dt5MhA171clHK+22+/naKiIsaOHcv8+fPZsmULdXV1bb9QtciRga4dulLBITQ0lPnz57N161YqKipITU3l8OHDdpflWI4L9Pr6esBaPVdKBYd+/fqxfv160tLSWLZsGTk5OVy+fNnushzHcYGu4xalgpOIMGXKFHbs2IHb7WbWrFn88pe/1EXTdnBcoOu4RangFhMTw9NPP83zzz9Pfn4+S5cu5fTp03aX5QiODHTt0JUKfqNGjWLbtm2MHDmS1NRUioqKPh+5quY5LtB15KJU1xEWFkZaWhqFhYWUl5czb948jhw5YndZActxga4jF6W6ngEDBrBhwwZSU1PJzMxk7dq1XLlyxe6yAo7jAl07dKW6JhFh2rRplJaWUl1dzaxZs9i3b5/dZQUURwa6duhKdV2xsbGsXLmSZ599lry8PLKysjh79qzdZQUExwW6jlyUUgCjR4+muLiYYcOGMXfuXIqLi3G73XaXZas2A11EIkXkgIj8UUT+IiI/8tx/i4i8LSLviUiJiHRKyurIRSnVIDw8nPT0dAoKCti7dy8LFizg3Xfftbss23jToV8HJhljvgmMAu4TkTuBHwO5xphbgYvAQv+V+QXt0JVSTQ0ePJhNmzaRlJTEkiVLyM3Npbq62u6yOl2bgW4sDcfghnk+DDAJKPPcvwW43y8VNqH7oSulmiMiTJ8+nZKSEi5evEhycjL79++3u6xO5dUMXURCROQQ8DHwFvBX4FNjTMOp0T4E+vmnxC/TkYtSqjVxcXGsWrWKlStXsm7dOrKzszl37pzdZXUKrwLdGFNvjBkF9AfGAd/w9huISLqIVIhIhS/+UHXkopTyxrhx49i+fTuDBg1izpw5lJaWBv2iabv2cjHGfArsBb4N3CQioZ6H+gPNnqHeGJNvjBljjBmTkJDQoWJBO3SllPciIiLIyMggPz+f3bt3k5aWxvHjx+0uy2+82cslQURu8nwdBdwLvIMV7Emepz0IvOavIhvT/dCVUu01ZMgQNm/ezIwZM8jIyGD9+vVcu3bN7rJ8zpsOPRHYKyJ/An4PvGWM+TmQDTwuIu8BPYEC/5X5BR25KKVuhMvlYubMmZSUlHD27FmSk5MpLy+3uyyfCm3rCcaYPwF3NHP/Cax5eqfSkYtSqiPi4+NZs2YN5eXl5OTkMGLECLKysujZs6fdpXWYHimqlOqSxo8fz44dO0hMTCQlJYWdO3c6ftG0zQ490NTW1hIVFWV3GUqpIBAZGcnixYu57777eO6553j99dd55plnGDJkyI294YULcOSI9fHhh+B2Q3w8DB9ufQwYACK+3YhGHBfoNTU1xMTE2F2GUiqIDB06lIKCAnbu3El6ejo/+MEPWLhwIREREW2/2Bj43e+goAB+/WsICYGami+C2+2G8HDr8y23wKJF8N3vQmSkz7dDRy5KKYW1aJqUlERxcTGVlZWkpKRw4MCB1l907hw8/DDMnw/79kGPHtC9u9WVx8VZHz17WvfHxMDf/gbZ2XDvvfCHP/h+G3z+jn4rQpqwAAANdklEQVSmi6JKKX9KSEggJyeHxx9/nNWrV7Ny5UouXrz41ScePAiTJ1tBHhMDN90ErlYiVQS6dbOe9/HHkJwM//7vVofvI44MdO3QlVL+NnHiREpKSoiPj2f27Nns2rUL0xC+Bw9CairU1loB3d65eEMnv3YtrF/vs5odF+g6clFKdZbo6GgyMzPJy8ujrKyMRYsWUXnwIDz0kPWEbt1u/M1DQ61gX78e9uzxSb2OC3QduSilOtuwYcMoLCxk0t138+fvf59Lp0/jjo7u+BuHhkJEBDzxBDQ31mknxwW6duhKKTu4XC5ShgxhSkQEVS4XJ06c4IovzrkeHQ1VVbBhQ8dr7Hg1nUs7dKWUbX7yE0JDQhgwYAB9evfmo1On+Oj0aerq6z9/So3bzaqPPuJ7773Hd44eZe6JE5RfvtzKm2LN04uL4erVDpXnuEDXC1wopWzx6adf7NEC9OjRgyFf+xoul4sTf/0rly5dwgD1QN+wMPIHDmTf17/OPyck8NSpU3xUU9Pye4eFWQuse/d2qERHBrqOXJRSne7IEeugoUa7Joa4XPTt04cBAwdy/sIFKisrcdXVkZ6QwM3h4bhEmNijBzeHhfFuW2d3rKuDiooOlei4QNeRi1LKFn/5i3UEaDOiIiO55ZZb6N69OydPnuTcJ5/g9uzieKGujsqaGoa0ddRpZCS0dSBTG5x16L8x1F6/rh26UqrzffTRl24awLjduN1u3MZg3G6io6Lo27cvn3zyCefPn6f/wIH8r3Pn+F5sLIPbCvTQUOuAow4I7EC/dAlefx1+8xs4dAjOnmXj2bP0nDQJhg2DsWPhvvvgzjtbP0JLKdXlGGOoqanh6tWrXLt2jatXr37+dePbjR9v+rnx49MrKphw5gxVn3xiBbkxuEQQlwtXw4fndlhoKMYYVp07RyjwZN++bRcsYp3vpQMCM9AvXIAXXoBXX4X6emtDIyMhPp5L588T3707fPABHD1qrQwnJMDjj8MPfqDBrpRDGGOora294YBtGtJNH7t27RqhoaFERkYSGRlJVFQUUVFRX/m68e3Y2Fj69Onzpec1fO6zfTtxW7eSEB//eYi3dHyoMYZVp09zqbaW9QMGEOrNkaT19dY5YDog8AL9F7+AZcvg8mXrKKrQL5doAAkJsc5eFh1tnQfh0iXrhDevvmodSpuYaE/tSgWZuro6n3S3LYWvy+VqNWCbBmv37t3p1avXVx5vLrAjIyMJCQnx3R/Gd74DpaVfyaTmPH/mDO/X1LBx4EAivG0yr12DUaM6VGJgBfqmTVZnHhlpnaWsGcbtRhr/thOBqCjrNW+/Dd//PmzfDrfe2klFK2Uft9vtl+624bbb7W41YJt2vFFRUcTFxXndEYd6EY4B47bbrJGIMa2eu+V0bS07P/2UcBH+odEFqZ/u25epsbEtv78x1hi5AwLnT/OnP4Uf/9jax7OVH7Ix5suB3kDEOklOVRWkpMCuXXDzzX4sWKm2ud1url+/7rOAbfo+tbW1XwpWb8I3JibG6444LCys+X9vXVH//vC1r8HJk9aBQC1IDAuj4rbb2vfebrc1Lp48uUMlBkagHz8Oq1c3O2JpzHg+Wv0LFhNjHQCQlQXbtulMXbWq8cKZLwK26fMbzg7qbXcbGRlJfHy8V91tVFQU4eHhGridRQQeecQ674qvXbpkhXmfPh16G/sD3e2GzEzrvxtt7F/e0J23+dc3Ntban7OszDrnsHKsxgtnvgjYpq+5du0aYWFhrQZs01CNjY2lb9++XnXEERERuLSpCB5Tp0JuLpw5YzWgvlBXZx2wtHRph9/K/kD/r/+CY8c+P5y2NS2OW5pq2CvmX/8VkpK0S/ezuro6v3S3DbddLlebC2CNH+vevTsJCQledcQRERG+XThTwS0iwjrdbVKSFcQdXQMwxhoTL1lizeg7yP5A/8lP2lxkAKiqr+eHp07x66tXSXzvPf4lIYH7WltgiIqydn/87W+t1ekuzO12+6W7bbjtdru9HhE03I6Li/O6I3bUwpkKft/8pjV2eeGFNsfErTLGGg9/61uQkeGT0tqsREQGAFuBPlgj7HxjzL+JSDxQAgwGTgLJxpj2ndD3+nXYv9+r7jznzBlCgVeio3HffDOP/e1vfD0ysvXDaevrrQOTAjzQG/ZU8Nf+uHV1dZ8HZXv2x/W2I9aFM9XlpKdbHfq6dVbX3t5zo9fVWZ35t75lXVzaR0e/e/OrpQ7IMsb8QUR6AAdF5C1gAbDHGJMjIk8BTwHZ7frux49/5WQ3zbnqdvOrzz7jp/37I2fOcGt0NH/fowevX7rE4t69W35hVJR1qagOMsa0uKeCL/ZYqKmpISIiol374/bq1cur7lYXzpTyAxF49FEYPtzaAePCBWvPl7aC2e22FkBdLnjsMfjnf/ZZmIMXgW6MOQ2c9nz9mYi8A/QDZgB3eZ62BdhHewP9vfe8OtS1sqaGEGBAWBinPOE/NCKCP3hOLm+s2nC73Z8fkuv2nGMh5J13KP/lL7naJJDbM3JounDmzR4LcXFxJCYmetUR68KZUg51993WKW83brT2qquqsk6DGxn5xU4e9fXWNAKsXwT33GMtgH7jGz4vp13DHxEZDNwBvA308YQ9wBmskUz7VFd7FejVbjfdPOdJcNfX89cTJ/js+nU+qq3l3epqjNsNIrhErMNxG51XoXtNDW+9/jphPXp8KURjYmLo3bu31x2xBq5SqlmxsbB8uRXS+/ZZp8A9cADOnrXyLSbGOgJ07FjrF0AHd01sjdeBLiLdgZ8BmcaYqsb/hTfGGBExLbwuHUgHGDhwYJPvHurV1bKjXS6uuN2Eh4czcNAg66xmly7R99o1hg4YYJ0Qp7n3MQbOn+f5F15oc5dIpZTqkMhI62SB991nWwletZ0iEoYV5tuMMTs9d58VkUTP44lAs+d9NMbkG2PGGGPGJCQkfPnBPn28WiEeGB5OPdboJSI8nMjISE7U13NrVBQhLlfL8+G6OuvoUQ1zpVQX0Gagi5WWBcA7xph1jR7aBTzo+fpB4LV2f/fbbrNC1zTb3H8uyuViUo8e/Me5c1x1u/ljdTW//uwzvtvabotgnexm5Mh2l6WUUk7kTYc+AZgHTBKRQ56PaUAOcK+IHAfu8dxun4QE6NXriwWDVjzVty/X3W7uPXaMp0+dYnnfvm1fAaSuDiZObHdZSinlRN7s5fJbaPFo+46dSUYE0tK+OMNiK2JCQvjXAQO8f+/6emvXoPvv71CJSinlFPbvuvGP/2jN0Vu7IvaNqKqyFieazu2VUipI2R/oPXtaF7S4cqXNWbrXrl+3Ov5nnvHN+ymllAPYH+gACxZYi5eXLnX8verrrf3bV60Cb67jp5RSQSIwAj0kxDpJV//+cPHijXfqdXXWL4VFi6zriyqlVBcSGIEO1ujlZz+DESOsM5DV1rbv9VVV1nVIs7KsEY6eu0Qp1cWI8dXc2ptvJnIO+KDTvqF3egGf2F2EDXS7u5auuN3BtM2DjDFt7uHRqYEeiESkwhgzxu46Optud9fSFbe7K25z4IxclFJKdYgGulJKBQkNdMi3uwCb6HZ3LV1xu7vcNnf5GbpSSgUL7dCVUipIdLlAF5GTInLYc9bICs99L4rIuyLyJxF5VURusrtOX2thu1d7tvmQiPxCRG62u05fam6bGz2WJSJGRHrZVZ+/tPCz/qGInGpyxtSg0tLPW0QWe/59/0VEXrCzRn/rciMXETkJjDHGfNLovinAr4wxdSLyYwBjTPuujxrgWtjuGGNMlefrJcBwY8wjNpXoc81ts+f+AcBPgG8Af9f0cadr4Wf9Q+CyMWatXXX5WwvbfTfwDPBdY8x1EeltjGn2YjzBoMt16M0xxvzCGFPnufk7oL+d9XSWhjD36IZ1ve2uIBd4kq6zvV3ZPwM5xpjrAMEc5tA1A90AvxCRg57rnTaVBvy/Tq6pMzS73SKyRkT+BjwArLStOv/4yjaLyAzglDHmj/aW5lct/R3/F8+I7WURibOrOD9qbru/DkwUkbdF5NciMtbG+vzPGNOlPoB+ns+9gT8C32n02DPAq3hGUcH00dp2e+5fDvzI7jr9vc3A20Cs5/6TQC+76+yk7e4DhGA1cWuAl+2us5O2+89AHtZFesYB7wfjv++Gjy7XoRtjTnk+f4wV3uMARGQB8D3gAeP5WxFMWtruRrYB/9jZdflTM9v898AtwB8989b+wB9EJKjOs9zcz9oYc9YYU2+McQOb+erP3/Fa+Dv+IbDTWA4AbqxzvASlLhXoItJNRHo0fA1MAf4sIvdhzVSnG2Oq7azRH1rZ7qGNnjYDeNeO+vyhhW3+vTGmtzFmsDFmMNY/9tHGmDM2lupTrfysExs9bSZW5xo0Wtpu4P8Cd3vu/zoQTvCcsOsr2rymaJDpA7wq1ql1Q4H/Y4zZLSLvARHAW57HfmeCaG8PWt7un4nIMKyu5QMg6LfZ3pI6RUs/65+KyCisOfNJYJF9JfpFS9sdDrwsIn8GaoAHg/F/4A263G6LSikVrLrUyEUppYKZBrpSSgUJDXSllAoSGuhKKRUkNNCVUipIaKArpVSQ0EBXSqkgoYGulFJB4v8DY08U8NkL5UYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -741,7 +862,7 @@ "result = run_algorithm(params,algo_input)\n", "\"\"\"\n", "print('energy:', result['energy'])\n", - "#print('tsp objective:', result['energy'] + offset)\n", + "print('tsp objective:', result['energy'] + offset)\n", "x = tsp.sample_most_likely(result['eigvecs'][0])\n", "print('feasible:', tsp.tsp_feasible(x))\n", "z = tsp.get_tsp_solution(x)\n", @@ -849,6 +970,57 @@ "draw_tsp_solution(G, z, colors, pos)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Checking that the full Hamiltonian made by ```docplex.get_qubitops``` gives the right cost" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -4532.0\n", + "tsp objective: 124.0\n", + "feasible: True\n", + "solution: [0, 1, 2]\n", + "solution objective: 124.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt41fWV7/H32rkHSEwgQOQqlVI5SJEBauHQUVBGaAvSCSFgQAxjcOKAwYgRPXBaEE2VIQ55YIbQaKDhhJAUj0z1YC2Flj6ZSkOHlhYFLGIqAiIgEQLksr/nj9+OxpjLDtk7v/3bWa/nyZPsa9aPwCeL9f1dxBiDUkop53PZXYBSSinf0EBXSqkgoYGulFJBQgNdKaWChAa6UkoFCQ10pZQKEhroSikVJDTQlVIqSGigK6VUkAjtzG/Wq1cvM3jw4Pa/8MIF+Ogj6+uQEO9fV19vfe7ZExIT2/99lVIqABw8ePATY0xCW8/r1EAfPHgwFRUV7XvRf/wHvPACfP3rEB7e/m9aXw9VVfCtb8H69e37haCUUgFARD7w5nmBPXJ57TV48UWIibmxMAcrwG+6CXbvhjVrfFufUkoFkMAN9DNn4OmnISoKQjv4HwkR65fC1q1w4IBv6lNKqQATuIH+ox/BtWsQGemb9wsJsX4xLF36xWxdKaWCSGAG+kcfwS9/CbGxrT5tx4ULzHv/fb797rv8sGHRtDXdu8O5c/Cb3/ioUKWUChyBGeilpeB2g6v18nqFhrKwVy+mtxH8X2IMFBR0sECllAo8nbqXi9feesurRdBJMTEAHLl6lY/r6rx77x494Pe/t8YuuseLUiqIBF6HXl8Px475bnbeVEPX//77/nl/pZSyiVeBLiJLReQvIvJnESkWkUgRuUVE3haR90SkRERucL/CJs6ds8Yi/uyeRaCy0n/vr5RSNmgz0EWkH7AEGGOMGQGEACnAj4FcY8ytwEVgoU8qqq1tc3be1PkLF6j67DPq27P3ircjGqWUcghvkzMUiBKRUCAaOA1MAso8j28B7vdJRRER1oJoO9TW1SHAX0+c4FJVFV5d9joi4kaqU0qpgNVmoBtjTgFrgUqsIL8EHAQ+NcY0tLkfAv18UlGvXhAW5lUHXW8MNW43xhiiunend79+nD13jr9VVlJTW9vyC91uuOUWn5SrlFKBwpuRSxwwA7gFuBnoBtzn7TcQkXQRqRCRinPnznlRkQuGD7cOKmpDwSefMP7oUV6tq2N3VRX3fPABe2NiiO7Wjffff59Pzp/HmCb9el2dNZ/v39/bTVBKKUfwZrfFe4D3jTHnAERkJzABuElEQj1den/gVHMvNsbkA/kAY8aM8WoawrRpcOhQm09LT0jg4YQE3nnnHW677Tak0WMxMTGcOX2aS5cukZiYSHRUlPXAZ5/BP/xDu+f0SikV6LxJtUrgThGJFhEBJgNHgL1Akuc5DwKv+ayqmTOtwPVikdMYg4h8KcwBwsPCGDBwIL169eLDDz/k9Jkz1qKpywVpaT4rVSmlAoU3M/S3sRY//wAc9rwmH8gGHheR94CegO8Ov4yLg+Rk67S3bdXnduOSpnFuESA2JoavDRkCxnD62DE+6dkTM3q0z0pVSqlA4dXcwRjzv40x3zDGjDDGzDPGXDfGnDDGjDPG3GqMmWWMue7Typ58EuLj4cqVtmpDWgj0BiEhIST26kWvXr1YHRfH0scf5/Tp076sVimlbBe4g+SYGOuCFHV1cL3l3xVuLwKd+nq4fJnIlStZu2sXI0eOJDU1laKiovbtu66UUgEscAMd4NvfhpdesvZ4aaFTb7NDr6mxRjeLFkFaGmFhYaSlpVFYWEh5eTnz5s3jyJEjftoApZTqPIEd6ADf/S5s2QLdusHFi19ZKDXGIM3tsWIMfPqpFejPPgvLllmH/HsMGDCADRs2kJqaSmZmJmvXrqW6utrfW6OUUn4T+IEOMH48/OpX1kLplStWUF+5AvX1X+7Q3W64etW6qPSlS9br3noL5sz5Upg3EBGmTZtGaWkp1dXVJCUlsW/fvs7dNqWU8hH5yoE3fjRmzBjT7otEN3X+POzcCT//ORw9yrWrV7n46ack9u1rde9DhsDdd0NKSruPBj148CDPPfccgwcP5sknn6RPnz4dq1UppXxARA4aY8a0+TzHBXpjbjd/fPNNSrZs4bkXXoC+fW/8YtIeNTU1FBYWUlJSwj/90z8xe/ZsXHoQklLKRt4GurOTyuXiSmwsVb16wcCBHQ5zgPDwcNLT0ykoKGDv3r0sWLCAo0eP+qBYpZTyL2cHOlBbW0u4D4K8qcGDB7Np0yaSkpJYvHgxubm5umiqlApojg/0mpoawsLC/PLeIsL06dMpKSnh4sWLzJ49m/379/vleymlVEc5PtBra2v9FugN4uLiWLVqFStWrGDdunVkZ2fj1ZkjlVKqEwVFoPtj5NKccePGsX37dgYNGsScOXMoLS3F3c6LcSillL84PtD9OXJpTkREBBkZGeTn57N7927S0tI4fvx4p31/pZRqieMDvTM79MaGDBnC5s2bmTFjBhkZGeTl5XHNi4tyKKWUvzg+0Du7Q2/M5XIxc+ZMtm/fzpkzZ0hOTqa8vNyWWpRSypsrFgW0mpoaWzr0xnr27MmaNWsoLy8nJyeHESNGkJWVRc+ePW2tSynVtTi+Q7dr5NKc8ePHs2PHDhITE0lJSWHnzp26aKqU6jSOD3Q7Ry7NiYyMZPHixWzcuJFdu3bx8MMPc+LECbvLUkp1AY4P9M7YD/1GDB06lJdffpmpU6eSnp7Oxo0bud7KhTqUUqqjgiLQA2Xk0pTL5SIpKYni4mIqKytJSUnhwIEDdpellApSQbEoGogdemMJCQnk5OSwf/9+Vq9ezR133MHSpUuJi4uzuzSlVBDRDr0TTZw4kZKSEuLj45k9eza7du2iM09frJQKbo4PdCd06I1FR0eTmZlJXl4eZWVlLFq0iA8++MDuspRSQSAoAt0pHXpjw4YNo7CwkEmTJpGWlkZ+fj41NTV2l6WUcjDHB7qTRi5NuVwuUlJSKC4u5tixY6SkpHDw4EG7y1JKOVSbgS4iw0TkUKOPKhHJFJF4EXlLRI57Ptuywue0kUtzevfuzdq1a1myZAkrVqxg1apVXLp0ye6ylFIO02agG2OOGmNGGWNGAX8HVAOvAk8Be4wxQ4E9ntudLlD3Q78Rd911F2VlZURHRzNr1izeeOMNXTRVSnmtvSOXycBfjTEfADOALZ77twD3+7Iwbzl55NKc6OhonnjiCV566SW2bdvGo48+SmVlpd1lKaUcoL2BngIUe77uY4w57fn6DNCnuReISLqIVIhIhT+u8hMMI5fmDB8+nK1btzJhwgQeeughCgoKqK2ttbsspVQA8zrQRSQcmA6UNn3MWHOBZmcDxph8Y8wYY8yYhISEGy60JcHWoTcWEhLCAw88QFFREYcPH2bu3LkcOnTI7rKUUgGqPR36VOAPxpiznttnRSQRwPP5Y18X541g7dAbS0xMJDc3l0ceeYTly5ezZs0aqqqq7C5LKRVg2hPoc/hi3AKwC3jQ8/WDwGu+Kqo9nLofenuJCJMnT6a0tJTQ0FCSk5N58803ddFUKfU5rwJdRLoB9wI7G92dA9wrIseBezy3O10wj1ya0717d7Kzs3nxxRd55ZVXWLJkCadOnbK7LKVUAPAq0I0xV4wxPY0xlxrdd94YM9kYM9QYc48x5oL/ymxZVxi5NOf222+nqKiIsWPHMn/+fLZs2UJdXZ3dZSmlbOToI0Xdbjf19fWEhjr+pJE3JDQ0lPnz57N161YqKipITU3l8OHDdpellLKJowO9rq6OsLAwRMTuUmzVr18/1q9fT1paGsuWLSMnJ4fLly/bXZZSqpM5OtC76rilOSLClClT2LFjB/X19cyaNYs9e/booqlSXYjjA70rLYh6IyYmhmeeeYbnn3+eTZs2sXTpUk6fPt32C5VSjufoQO9qe7i0x6hRo9i2bRsjR44kNTWVoqIi6uvr7S5LKeVHjg50Hbm0LiwsjLS0NAoLCykvL2fevHkcOXLE7rKUUn7i6EDXDt07AwYMYMOGDaSmppKZmcnatWuprq62uyyllI85OtC1Q/eeiDBt2jRKS0uprq4mKSmJffv22V2WUsqHNNC7mNjYWFauXMmzzz5LXl4eWVlZnD17tu0XKqUCnqMDva6uTkcuN2j06NEUFxczbNgw5s6dS3FxMW632+6ylFId4OhA1w69Y8LDw0lPT6egoIC9e/eyYMECjh49andZSqkb5PhA1w694wYPHsymTZtISkpi8eLF5Obm6qKpUg7k6EDXvVx8R0SYPn06JSUlXLx4kdmzZ7N//367y1JKtYOjA11HLr4XFxfHqlWrWLFiBevWrSM7Oxt/XDpQKeV7jg507dD9Z9y4cWzfvp1BgwYxZ84cSktLddFUqQDn6EDXDt2/IiIiyMjIID8/n927d5OWlsbx48ftLksp1QINdNWmIUOGsHnzZmbMmEFGRgZ5eXlcu3bN7rKUUk04OtB1P/TO43K5mDlzJiUlJZw5c4bk5GTKy8vtLksp1YijL/WjHXrni4+PZ82aNZSXl5OTk8OIESPIysqiZ8+edpemVJfn6A5d90O3z/jx49mxYweJiYmkpKSwc+dOXTRVymaODnTdy8VekZGRLF68mI0bN7Jr1y4efvhhTpw4YXdZSnVZjg50HbkEhqFDh/Lyyy8zdepU0tPT2bhxI9evX7e7LKW6HEcHunbogcPlcpGUlERxcTGVlZWkpKRw4MABu8tSqkvxKtBF5CYRKRORd0XkHRH5tojEi8hbInLc8znO38U2pR164ElISCAnJ4fHH3+c1atXs3LlSi5evGh3WUp1Cd526P8G7DbGfAP4JvAO8BSwxxgzFNjjud2pdFE0cE2cOJGSkhLi4+OZPXs2u3btwhhjd1lKBbU2A11EYoHvAAUAxpgaY8ynwAxgi+dpW4D7/VVkS+rq6rRDD2DR0dFkZmaSl5dHWVkZixYt4uTJk3aXpVTQ8qZDvwU4B7wiIv8tIj8RkW5AH2PMac9zzgB9/FVkS3Tk4gzDhg2jsLCQSZMmsXDhQvLz86mpqbG7LKWCjjeBHgqMBv7dGHMHcIUm4xVj/V+62f9Pi0i6iFSISIWvz9qnIxfncLlcpKSkUFxczLFjx0hJSeHgwYN2l6VUUPEm0D8EPjTGvO25XYYV8GdFJBHA8/nj5l5sjMk3xowxxoxJSEjwRc2f071cnKd3796sXbuWJUuWsGLFClatWsWlS5fsLkupoNBmoBtjzgB/E5FhnrsmA0eAXcCDnvseBF7zS4Wt0JGLc911112UlZURHR3NrFmzeOONN3TRVKkO8nYvl8XANhH5EzAKeA7IAe4VkePAPZ7bnUo7dGeLjo7miSee4KWXXmLbtm08+uijVFZW2l2WUo7lVaAbYw55xiYjjTH3G2MuGmPOG2MmG2OGGmPuMcZc8HexTWmHHhyGDx/O1q1bmTBhAg899BAFBQXU1tbaXZZSjuPoI0V1UTR4hISE8MADD1BUVMThw4eZO3cuhw4dsrsspRzF0YGu+6EHn8TERHJzc3nkkUdYvnw5a9asoaqqyu6ylHIERwe6jlyCk4gwefJkSktLCQ0NJTk5mTfffFMXTZVqg+MDXUcuwat79+5kZ2fz4osv8sorr7BkyRJOnTpld1lKBSxHB7ru5dI13H777RQVFTF27Fjmz5/Pli1bqKurs7sspQKOYwPdGENtbS2hoY6+ip7yUmhoKPPnz2fr1q1UVFSQmprK4cOH7S5LqYDi2EBvCHOXy7GboG5Av379WL9+PWlpaSxbtoycnBwuX75sd1lKBQTHpqGOW7ouEWHKlCns2LEDt9tNcnIye/bs0UVT1eU5NtB1DxcVExPD008/zXPPPcemTZtYunQpp0+fbvuFSgUpxwZ6bW2tBroCYNSoUWzbto2RI0eSmppKUVER9fX1dpelVKdzdKDryEU1CAsLIy0tjcLCQsrLy5k3bx5HjhyxuyylOpVjA11HLqo5AwYMYMOGDaSmppKZmcnatWuprq62uyylOoVjA107dNUSEWHatGmUlpZSXV1NUlIS+/bts7sspfzOsYGuHbpqS2xsLCtXruTZZ58lLy+PrKwszp49a3dZSvmNowNdO3TljdGjR1NcXMywYcOYO3cuxcXFuN1uu8tSyuccG+g6clHtER4eTnp6OgUFBezdu5cFCxZw9OhRu8tSyqccG+g6clE3YvDgwWzatImkpCQWL15Mbm6uLpqqoOHYQNf90NWNEhGmT59OSUkJFy9eJDk5mf3799tdllId5uhA15GL6oi4uDhWrVrFypUrWbduHdnZ2Zw7d87uspS6YY4NdB25KF8ZN24c27dvZ9CgQcyZM4fS0lJdNFWO5NhA1w5d+VJERAQZGRnk5+eze/du0tLSOH78uN1lKdUujg107dCVPwwZMoTNmzczY8YMMjIyyMvL49q1a3aXpZRXHB3o2qErf3C5XMycOZOSkhLOnDlDcnIy5eXldpelVJsce7kfHbkof4uPj2fNmjWUl5eTk5PDiBEjyMrKomfPnnaXplSzvOrQReSkiBwWkUMiUuG5L15E3hKR457Pcf4t9ct05KI6y/jx49mxYweJiYmkpKSwc+dOXTRVAak9I5e7jTGjjDFjPLefAvYYY4YCezy3O43uh646U2RkJIsXL2bjxo3s2rWLhx9+mBMnTthdllJf0pEZ+gxgi+frLcD9HS/HezpyUXYYOnQoL7/8MlOnTiU9PZ2NGzdy/fp1u8tSCvA+0A3wCxE5KCLpnvv6GGMarvd1BujT3AtFJF1EKkSkwpcHbejIRdnF5XKRlJREcXExlZWVpKSkcODAAbvLUsrrRdH/aYw5JSK9gbdE5N3GDxpjjIg0e4VeY0w+kA8wZswYn13FVzt0ZbeEhARycnLYv38/q1ev5o477mDp0qXExXXqcpJSn/OqQzfGnPJ8/hh4FRgHnBWRRADP54/9VWRztENXgWLixImUlJQQHx/P7Nmz2bVrF8b4rHdRymttBrqIdBORHg1fA1OAPwO7gAc9T3sQeM1fRTZH90NXgSQ6OprMzEzy8vIoKytj0aJFnDx50u6yVBfjTYfeB/itiPwROAC8bozZDeQA94rIceAez+1OoyMXFYiGDRtGYWEhkyZNYuHCheTn51NTU2N3WaqLaDPQjTEnjDHf9Hz8D2PMGs/9540xk40xQ40x9xhjLvi/3C/oyEUFKpfLRUpKCsXFxRw7doyUlBQOHjxod1mqC3D0kaIa6CqQ9e7dm7Vr17Jv3z5WrFjBnXfeyWOPPUZsbKzdpakg5dhzuejIRTnFXXfdRVlZGdHR0cyaNYs33nhDF02VXzg20HXkopwkOjqaJ554gpdeeolt27bx6KOPUllZaXdZKsg4NtC1Q1dONHz4cLZu3cqECRN46KGHKCgooLa21u6yVJBwbKBrh66cKiQkhAceeICioiIOHz7M3LlzOXTokN1lqSDg6EDXDl05WWJiIrm5uTzyyCMsX76cNWvWUFVVZXdZysEcG+g6clHBQESYPHkypaWlhIaGkpyczJtvvqmLpuqGODbQdeSigkn37t3Jzs7mxRdf5JVXXmHJkiWcOnXK7rKUwzg20LVDV8Ho9ttvp6ioiLFjxzJ//ny2bNlCXV2d3WUph3BkoBtj9MAiFbRCQ0OZP38+W7dupaKigtTUVA4fPmx3WcoBHBno9fX1iAgulyPLV8or/fr1Y/369aSlpbFs2TJycnK4fPmy3WWpAObIRNQ9XFRXISJMmTKFHTt24Ha7SU5OZs+ePbpoqprlyEDX+bnqamJiYnj66ad57rnn2LRpE0uXLuX06dNtv1B1KY4MdN3DRXVVo0aNYtu2bYwcOZLU1FSKioqor6+3uywVIBwZ6Nqhq64sLCyMtLQ0CgsLKS8vZ968eRw5csTuslQAcGSga4euFAwYMIANGzaQmppKZmYma9eu5cqVK3aXpWzk2EDXDl0pa9F02rRplJaWUl1dzaxZs9i3b5/dZSmbODLQ6+rqtENXqpHY2FhWrlzJs88+S15eHllZWZw9e9buslQnc2Sg68hFqeaNHj2a4uJihg0bxty5cykuLsbtdttdluokjg10Hbko1bzw8HDS09MpKChg7969LFiwgKNHj9pdluoEjgx03ctFqbYNHjyYTZs2kZSUxOLFi8nNzaW6utruspQfOTLQdeSilHdEhOnTp1NSUsLFixdJTk5m//79dpel/MSRga4dulLtExcXx6pVq1i5ciXr1q0jOzubc+fO2V2W8jGvA11EQkTkv0Xk557bt4jI2yLynoiUiEinJax26ErdmHHjxrF9+3YGDRrEnDlzKC0t1UXTINKeDv0x4J1Gt38M5BpjbgUuAgt9WVhrdFFUqRsXERFBRkYG+fn57N69m7S0NI4fP253WcoHvAp0EekPfBf4iee2AJOAMs9TtgD3+6PA5ui50JXquCFDhrB582ZmzJhBRkYG69ev59q1a3aXpTrA2w79JeBJoOH/Zj2BT40xDZdS+RDo5+PaWqSBrpRvuFwuZs6cSUlJCWfPniU5OZny8nK7y1I3qM1AF5HvAR8bYw7eyDcQkXQRqRCRCl8twujIRSnfio+PZ82aNTz11FPk5OTw9NNPc/78ebvLUu3kTYc+AZguIieB7Vijln8DbhKRUM9z+gPNXtHWGJNvjBljjBmTkJDgg5J1Lxel/GX8+PHs2LGDxMREUlJS2Llzpy6aOkibgW6MWW6M6W+MGQykAL8yxjwA7AWSPE97EHjNb1U2oXu5KOU/kZGRLF68mI0bN/Kf//mfPPzww5w4ccLuspQXOrIfejbwuIi8hzVTL/BNSW3TDl0p/xs6dCgFBQVMnTqV9PR0Nm7cyPXr1+0uS7WiXYFujNlnjPme5+sTxphxxphbjTGzjDGd9pPWDl2pzuFyuUhKSqK4uJjKykpSUlI4cOCA3WWpFoS2/ZTAo4uiSnWuhIQEcnJy2L9/P6tXr+aOO+5g6dKlxMXF2V2aasSxh/5rh65U55s4cSIlJSXEx8cze/Zsdu3ahTHG7rKUhwa6UqpdoqOjyczMJC8vj7KyMhYtWsTJkyftLkvh0EDXkYtS9hs2bBiFhYVMmjSJhQsXkp+fT01Njd1ldWmODHTdy0WpwOByuUhJSaG4uJhjx46RkpLCwYM3dAyi8gHHLorqyEWpwNG7d2/Wrl3Lvn37WLFiBXfeeSePPfYYsbGxdpfWpWiHrpTymbvuuouysjK6devGrFmzeOONN3TRtBM5MtC1Q1cqcEVHR5OVlcVLL73Etm3bePTRR6msrLS7rC7BsYGuHbpSgW348OFs3bqVCRMm8NBDD1FQUEBtba3dZQU1Rwa67raolDOEhITwwAMPUFRUxOHDh5k7dy6HDh2yu6ygpYGulPK7xMREcnNzeeSRR1i+fDlr1qyhqqrK7rKCjiMDXUcuSjmPiDB58mRKS0sJDQ0lOTmZN998UxdNfciRga57uSjlXN27dyc7O5sXX3yRV155hSVLlnDqVLOXU1Dt5MhA171clHK+22+/naKiIsaOHcv8+fPZsmULdXV1bb9QtciRga4dulLBITQ0lPnz57N161YqKipITU3l8OHDdpflWI4L9Pr6esBaPVdKBYd+/fqxfv160tLSWLZsGTk5OVy+fNnushzHcYGu4xalgpOIMGXKFHbs2IHb7WbWrFn88pe/1EXTdnBcoOu4RangFhMTw9NPP83zzz9Pfn4+S5cu5fTp03aX5QiODHTt0JUKfqNGjWLbtm2MHDmS1NRUioqKPh+5quY5LtB15KJU1xEWFkZaWhqFhYWUl5czb948jhw5YndZActxga4jF6W6ngEDBrBhwwZSU1PJzMxk7dq1XLlyxe6yAo7jAl07dKW6JhFh2rRplJaWUl1dzaxZs9i3b5/dZQUURwa6duhKdV2xsbGsXLmSZ599lry8PLKysjh79qzdZQUExwW6jlyUUgCjR4+muLiYYcOGMXfuXIqLi3G73XaXZas2A11EIkXkgIj8UUT+IiI/8tx/i4i8LSLviUiJiHRKyurIRSnVIDw8nPT0dAoKCti7dy8LFizg3Xfftbss23jToV8HJhljvgmMAu4TkTuBHwO5xphbgYvAQv+V+QXt0JVSTQ0ePJhNmzaRlJTEkiVLyM3Npbq62u6yOl2bgW4sDcfghnk+DDAJKPPcvwW43y8VNqH7oSulmiMiTJ8+nZKSEi5evEhycjL79++3u6xO5dUMXURCROQQ8DHwFvBX4FNjTMOp0T4E+vmnxC/TkYtSqjVxcXGsWrWKlStXsm7dOrKzszl37pzdZXUKrwLdGFNvjBkF9AfGAd/w9huISLqIVIhIhS/+UHXkopTyxrhx49i+fTuDBg1izpw5lJaWBv2iabv2cjHGfArsBb4N3CQioZ6H+gPNnqHeGJNvjBljjBmTkJDQoWJBO3SllPciIiLIyMggPz+f3bt3k5aWxvHjx+0uy2+82cslQURu8nwdBdwLvIMV7Emepz0IvOavIhvT/dCVUu01ZMgQNm/ezIwZM8jIyGD9+vVcu3bN7rJ8zpsOPRHYKyJ/An4PvGWM+TmQDTwuIu8BPYEC/5X5BR25KKVuhMvlYubMmZSUlHD27FmSk5MpLy+3uyyfCm3rCcaYPwF3NHP/Cax5eqfSkYtSqiPi4+NZs2YN5eXl5OTkMGLECLKysujZs6fdpXWYHimqlOqSxo8fz44dO0hMTCQlJYWdO3c6ftG0zQ490NTW1hIVFWV3GUqpIBAZGcnixYu57777eO6553j99dd55plnGDJkyI294YULcOSI9fHhh+B2Q3w8DB9ufQwYACK+3YhGHBfoNTU1xMTE2F2GUiqIDB06lIKCAnbu3El6ejo/+MEPWLhwIREREW2/2Bj43e+goAB+/WsICYGami+C2+2G8HDr8y23wKJF8N3vQmSkz7dDRy5KKYW1aJqUlERxcTGVlZWkpKRw4MCB1l907hw8/DDMnw/79kGPHtC9u9WVx8VZHz17WvfHxMDf/gbZ2XDvvfCHP/h+G3z+jn4rQpqwAAANdklEQVSmi6JKKX9KSEggJyeHxx9/nNWrV7Ny5UouXrz41ScePAiTJ1tBHhMDN90ErlYiVQS6dbOe9/HHkJwM//7vVofvI44MdO3QlVL+NnHiREpKSoiPj2f27Nns2rUL0xC+Bw9CairU1loB3d65eEMnv3YtrF/vs5odF+g6clFKdZbo6GgyMzPJy8ujrKyMRYsWUXnwIDz0kPWEbt1u/M1DQ61gX78e9uzxSb2OC3QduSilOtuwYcMoLCxk0t138+fvf59Lp0/jjo7u+BuHhkJEBDzxBDQ31mknxwW6duhKKTu4XC5ShgxhSkQEVS4XJ06c4IovzrkeHQ1VVbBhQ8dr7Hg1nUs7dKWUbX7yE0JDQhgwYAB9evfmo1On+Oj0aerq6z9/So3bzaqPPuJ7773Hd44eZe6JE5RfvtzKm2LN04uL4erVDpXnuEDXC1wopWzx6adf7NEC9OjRgyFf+xoul4sTf/0rly5dwgD1QN+wMPIHDmTf17/OPyck8NSpU3xUU9Pye4eFWQuse/d2qERHBrqOXJRSne7IEeugoUa7Joa4XPTt04cBAwdy/sIFKisrcdXVkZ6QwM3h4bhEmNijBzeHhfFuW2d3rKuDiooOlei4QNeRi1LKFn/5i3UEaDOiIiO55ZZb6N69OydPnuTcJ5/g9uzieKGujsqaGoa0ddRpZCS0dSBTG5x16L8x1F6/rh26UqrzffTRl24awLjduN1u3MZg3G6io6Lo27cvn3zyCefPn6f/wIH8r3Pn+F5sLIPbCvTQUOuAow4I7EC/dAlefx1+8xs4dAjOnmXj2bP0nDQJhg2DsWPhvvvgzjtbP0JLKdXlGGOoqanh6tWrXLt2jatXr37+dePbjR9v+rnx49MrKphw5gxVn3xiBbkxuEQQlwtXw4fndlhoKMYYVp07RyjwZN++bRcsYp3vpQMCM9AvXIAXXoBXX4X6emtDIyMhPp5L588T3707fPABHD1qrQwnJMDjj8MPfqDBrpRDGGOora294YBtGtJNH7t27RqhoaFERkYSGRlJVFQUUVFRX/m68e3Y2Fj69Onzpec1fO6zfTtxW7eSEB//eYi3dHyoMYZVp09zqbaW9QMGEOrNkaT19dY5YDog8AL9F7+AZcvg8mXrKKrQL5doAAkJsc5eFh1tnQfh0iXrhDevvmodSpuYaE/tSgWZuro6n3S3LYWvy+VqNWCbBmv37t3p1avXVx5vLrAjIyMJCQnx3R/Gd74DpaVfyaTmPH/mDO/X1LBx4EAivG0yr12DUaM6VGJgBfqmTVZnHhlpnaWsGcbtRhr/thOBqCjrNW+/Dd//PmzfDrfe2klFK2Uft9vtl+624bbb7W41YJt2vFFRUcTFxXndEYd6EY4B47bbrJGIMa2eu+V0bS07P/2UcBH+odEFqZ/u25epsbEtv78x1hi5AwLnT/OnP4Uf/9jax7OVH7Ix5suB3kDEOklOVRWkpMCuXXDzzX4sWKm2ud1url+/7rOAbfo+tbW1XwpWb8I3JibG6444LCys+X9vXVH//vC1r8HJk9aBQC1IDAuj4rbb2vfebrc1Lp48uUMlBkagHz8Oq1c3O2JpzHg+Wv0LFhNjHQCQlQXbtulMXbWq8cKZLwK26fMbzg7qbXcbGRlJfHy8V91tVFQU4eHhGridRQQeecQ674qvXbpkhXmfPh16G/sD3e2GzEzrvxtt7F/e0J23+dc3Ntban7OszDrnsHKsxgtnvgjYpq+5du0aYWFhrQZs01CNjY2lb9++XnXEERERuLSpCB5Tp0JuLpw5YzWgvlBXZx2wtHRph9/K/kD/r/+CY8c+P5y2NS2OW5pq2CvmX/8VkpK0S/ezuro6v3S3DbddLlebC2CNH+vevTsJCQledcQRERG+XThTwS0iwjrdbVKSFcQdXQMwxhoTL1lizeg7yP5A/8lP2lxkAKiqr+eHp07x66tXSXzvPf4lIYH7WltgiIqydn/87W+t1ekuzO12+6W7bbjtdru9HhE03I6Li/O6I3bUwpkKft/8pjV2eeGFNsfErTLGGg9/61uQkeGT0tqsREQGAFuBPlgj7HxjzL+JSDxQAgwGTgLJxpj2ndD3+nXYv9+r7jznzBlCgVeio3HffDOP/e1vfD0ysvXDaevrrQOTAjzQG/ZU8Nf+uHV1dZ8HZXv2x/W2I9aFM9XlpKdbHfq6dVbX3t5zo9fVWZ35t75lXVzaR0e/e/OrpQ7IMsb8QUR6AAdF5C1gAbDHGJMjIk8BTwHZ7frux49/5WQ3zbnqdvOrzz7jp/37I2fOcGt0NH/fowevX7rE4t69W35hVJR1qagOMsa0uKeCL/ZYqKmpISIiol374/bq1cur7lYXzpTyAxF49FEYPtzaAePCBWvPl7aC2e22FkBdLnjsMfjnf/ZZmIMXgW6MOQ2c9nz9mYi8A/QDZgB3eZ62BdhHewP9vfe8OtS1sqaGEGBAWBinPOE/NCKCP3hOLm+s2nC73Z8fkuv2nGMh5J13KP/lL7naJJDbM3JounDmzR4LcXFxJCYmetUR68KZUg51993WKW83brT2qquqsk6DGxn5xU4e9fXWNAKsXwT33GMtgH7jGz4vp13DHxEZDNwBvA308YQ9wBmskUz7VFd7FejVbjfdPOdJcNfX89cTJ/js+nU+qq3l3epqjNsNIrhErMNxG51XoXtNDW+9/jphPXp8KURjYmLo3bu31x2xBq5SqlmxsbB8uRXS+/ZZp8A9cADOnrXyLSbGOgJ07FjrF0AHd01sjdeBLiLdgZ8BmcaYqsb/hTfGGBExLbwuHUgHGDhwYJPvHurV1bKjXS6uuN2Eh4czcNAg66xmly7R99o1hg4YYJ0Qp7n3MQbOn+f5F15oc5dIpZTqkMhI62SB991nWwletZ0iEoYV5tuMMTs9d58VkUTP44lAs+d9NMbkG2PGGGPGJCQkfPnBPn28WiEeGB5OPdboJSI8nMjISE7U13NrVBQhLlfL8+G6OuvoUQ1zpVQX0Gagi5WWBcA7xph1jR7aBTzo+fpB4LV2f/fbbrNC1zTb3H8uyuViUo8e/Me5c1x1u/ljdTW//uwzvtvabotgnexm5Mh2l6WUUk7kTYc+AZgHTBKRQ56PaUAOcK+IHAfu8dxun4QE6NXriwWDVjzVty/X3W7uPXaMp0+dYnnfvm1fAaSuDiZObHdZSinlRN7s5fJbaPFo+46dSUYE0tK+OMNiK2JCQvjXAQO8f+/6emvXoPvv71CJSinlFPbvuvGP/2jN0Vu7IvaNqKqyFieazu2VUipI2R/oPXtaF7S4cqXNWbrXrl+3Ov5nnvHN+ymllAPYH+gACxZYi5eXLnX8verrrf3bV60Cb67jp5RSQSIwAj0kxDpJV//+cPHijXfqdXXWL4VFi6zriyqlVBcSGIEO1ujlZz+DESOsM5DV1rbv9VVV1nVIs7KsEY6eu0Qp1cWI8dXc2ptvJnIO+KDTvqF3egGf2F2EDXS7u5auuN3BtM2DjDFt7uHRqYEeiESkwhgzxu46Optud9fSFbe7K25z4IxclFJKdYgGulJKBQkNdMi3uwCb6HZ3LV1xu7vcNnf5GbpSSgUL7dCVUipIdLlAF5GTInLYc9bICs99L4rIuyLyJxF5VURusrtOX2thu1d7tvmQiPxCRG62u05fam6bGz2WJSJGRHrZVZ+/tPCz/qGInGpyxtSg0tLPW0QWe/59/0VEXrCzRn/rciMXETkJjDHGfNLovinAr4wxdSLyYwBjTPuujxrgWtjuGGNMlefrJcBwY8wjNpXoc81ts+f+AcBPgG8Af9f0cadr4Wf9Q+CyMWatXXX5WwvbfTfwDPBdY8x1EeltjGn2YjzBoMt16M0xxvzCGFPnufk7oL+d9XSWhjD36IZ1ve2uIBd4kq6zvV3ZPwM5xpjrAMEc5tA1A90AvxCRg57rnTaVBvy/Tq6pMzS73SKyRkT+BjwArLStOv/4yjaLyAzglDHmj/aW5lct/R3/F8+I7WURibOrOD9qbru/DkwUkbdF5NciMtbG+vzPGNOlPoB+ns+9gT8C32n02DPAq3hGUcH00dp2e+5fDvzI7jr9vc3A20Cs5/6TQC+76+yk7e4DhGA1cWuAl+2us5O2+89AHtZFesYB7wfjv++Gjy7XoRtjTnk+f4wV3uMARGQB8D3gAeP5WxFMWtruRrYB/9jZdflTM9v898AtwB8989b+wB9EJKjOs9zcz9oYc9YYU2+McQOb+erP3/Fa+Dv+IbDTWA4AbqxzvASlLhXoItJNRHo0fA1MAf4sIvdhzVSnG2Oq7azRH1rZ7qGNnjYDeNeO+vyhhW3+vTGmtzFmsDFmMNY/9tHGmDM2lupTrfysExs9bSZW5xo0Wtpu4P8Cd3vu/zoQTvCcsOsr2rymaJDpA7wq1ql1Q4H/Y4zZLSLvARHAW57HfmeCaG8PWt7un4nIMKyu5QMg6LfZ3pI6RUs/65+KyCisOfNJYJF9JfpFS9sdDrwsIn8GaoAHg/F/4A263G6LSikVrLrUyEUppYKZBrpSSgUJDXSllAoSGuhKKRUkNNCVUipIaKArpVSQ0EBXSqkgoYGulFJB4v8DY08U8NkL5UYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ee = ExactEigensolver(qubitOp_docplex, k=1)\n", + "result = ee.run()\n", + "\n", + "print('energy:', result['energy'])\n", + "print('tsp objective:', result['energy'] + offset_docplex)\n", + "\n", + "x = docplex.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + }, { "cell_type": "code", "execution_count": null, @@ -874,7 +1046,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.5" } }, "nbformat": 4, From dd46ec62c3cf05ca9cbd6c9cce3ac43bfad5db0d Mon Sep 17 00:00:00 2001 From: Atsushi Matsuo Date: Fri, 12 Apr 2019 17:43:37 +0900 Subject: [PATCH 040/116] Added header and removed error examples. Fixed the problem name --- qiskit/aqua/optimization/docplex.ipynb | 131 ++++++------------------- 1 file changed, 31 insertions(+), 100 deletions(-) diff --git a/qiskit/aqua/optimization/docplex.ipynb b/qiskit/aqua/optimization/docplex.ipynb index 9f079ef0f..77eeb9fb2 100644 --- a/qiskit/aqua/optimization/docplex.ipynb +++ b/qiskit/aqua/optimization/docplex.ipynb @@ -1,5 +1,27 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Generatin Ising Hamiltonians from optimization models with DOcplex*_\n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorial.\n", + "\n", + "***\n", + "### Contributors\n", + "Atsushi Matsuo[1], Takashi Imamichi[1], Marco Pistoia[1], Stephen Wood[1]\n", + "### Affiliation\n", + "- [1]IBMQ" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -21,7 +43,9 @@ "For simplicity, we can generate Ising Hamiltonian from the following optimization models now.\n", "- Binary decision variables. \n", "- Linear and quadratic terms in objective functions.\n", - "- Only equality constraints.\n", + "- Only equality constraints. \n", + "\n", + "Input models are validated before transormation. If the model containts elements that are not from the supported set, an error will be raised.\n", "\n", "Even though there are restrictions, this type of optimization model can handle the following optimization problems, maxcut, tsp and etc.\n", "They are typical optimization problems. The usage examples of the translator for Maxcut and TSP are written in the following link.\n", @@ -32,7 +56,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### A Usage Example: Maximize the number of variables which takes the value 1\n", + "### A Usage Example: Maximize the number of variables by taking into account constraints\n", "The following is a toy example of a maximization problem with constrains.\n", "\\begin{aligned}\n", " & \\text{maximize}\n", @@ -182,17 +206,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "energy: -56.20499759137974\n", - "time: 9.663682699203491\n", - "solution objective: -0.7049975913797368\n", - "solution: [0. 0. 1. 0.]\n" + "energy: -57.16261789728296\n", + "time: 10.59960389137268\n", + "solution objective: -1.6626178972829635\n", + "solution: [1. 1. 0. 0.]\n" ] } ], @@ -242,99 +266,6 @@ "print('solution objective:', result['energy'] + offset)\n", "print('solution:', x)" ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Optional] A Case when the validation of the input model fails.\n", - "If the following unsupported elemts exist in the input model, the error will be raised.\n", - "- Variables which are not binary decision variables \n", - "- Inequality constraints. \n", - "Note: Cubic or higher order terms can not be input of DOcplex." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\\ This file has been generated by DOcplex\n", - "\\ ENCODING=ISO-8859-1\n", - "\\Problem name: max_vars\n", - "\n", - "Maximize\n", - " obj: x_1 + x_2 + x_3 + x_4\n", - "Subject To\n", - " c1: x_1 + 2 x_2 + 3 x_3 + 4 x_4 <= 3\n", - "\n", - "Bounds\n", - "End\n", - "\n" - ] - } - ], - "source": [ - "# Create an instance of a model and variables\n", - "# Continuous variables are used\n", - "mdl = Model(name='max_vars')\n", - "x = {i: mdl.continuous_var(name='x_{0}'.format(i)) for i in range(1,5)}\n", - "\n", - "# Object function\n", - "max_vars_func = mdl.sum(x[i] for i in range(1,5))\n", - "mdl.maximize(max_vars_func)\n", - "\n", - "# Constrains\n", - "# Inequality constraint is used\n", - "mdl.add_constraint(mdl.sum(i*x[i] for i in range(1,5)) <= 3)\n", - "\n", - "print(mdl.export_to_string())" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "The type of Variable x_1 is continuous. It must be a binary variable. \n", - "The type of Variable x_2 is continuous. It must be a binary variable. \n", - "The type of Variable x_3 is continuous. It must be a binary variable. \n", - "The type of Variable x_4 is continuous. It must be a binary variable. \n", - "Constraint x_1+2x_2+3x_3+4x_4 <= 3 is not an equality constraint.\n" - ] - }, - { - "ename": "AquaError", - "evalue": "'The input model has unsupported elements.'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAquaError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mqubitOp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moffset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdocplex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_qubitops\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmdl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/github/qiskit-aqua-docplex/qiskit/aqua/translators/ising/docplex.py\u001b[0m in \u001b[0;36mget_qubitops\u001b[0;34m(mdl, auto_penalty, default_penalty)\u001b[0m\n\u001b[1;32m 83\u001b[0m \"\"\"\n\u001b[1;32m 84\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 85\u001b[0;31m \u001b[0m_validate_input_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmdl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 86\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0;31m# set the penalty coefficient by _auto_define_penalty() or manually.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/github/qiskit-aqua-docplex/qiskit/aqua/translators/ising/docplex.py\u001b[0m in \u001b[0;36m_validate_input_model\u001b[0;34m(mdl)\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mvalid\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 224\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mAquaError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'The input model has unsupported elements.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 225\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAquaError\u001b[0m: 'The input model has unsupported elements.'" - ] - } - ], - "source": [ - "qubitOp, offset = docplex.get_qubitops(mdl)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From ba26c4e6cb1581286e05598dd46c96b2c505ab54 Mon Sep 17 00:00:00 2001 From: Albert Akhriev Date: Fri, 12 Apr 2019 13:26:06 +0100 Subject: [PATCH 041/116] random number generator notebook --- .../finance/generating_random_variates.ipynb | 285 ++++++++++++++++++ 1 file changed, 285 insertions(+) create mode 100644 qiskit/aqua/finance/generating_random_variates.ipynb diff --git a/qiskit/aqua/finance/generating_random_variates.ipynb b/qiskit/aqua/finance/generating_random_variates.ipynb new file mode 100644 index 000000000..d4e5236f3 --- /dev/null +++ b/qiskit/aqua/finance/generating_random_variates.ipynb @@ -0,0 +1,285 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Generating Random Variates*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Albert Akhriev[1], Jakub Marecek[1], Stephen Wood[1], Marco Pistoia[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uniformly-distributed scalars and vectors\n", + "\n", + "Functions in the base class \\textbf{UnivariateDistribution}\n", + "\n", + "```python\n", + "def uniform_rand_float64(self, size: int, vmin: float, vmax: float) -> np.ndarray:\n", + " \"\"\"\n", + " Generates a vector of random float64 values in the range [vmin, vmax].\n", + " :param size: length of the vector.\n", + " :param vmin: lower bound.\n", + " :param vmax: upper bound.\n", + " :return: vector of random values.\n", + " \"\"\"\n", + " assert sys.maxsize == np.iinfo(np.int64).max # sizeof(int) == 64 bits\n", + " assert isinstance(size, int) and size > 0\n", + " assert isinstance(vmin, float) and isinstance(vmax, float) and vmin <= vmax\n", + " nbits = 7 * 8 # nbits > mantissa of float64\n", + " bit_str_len = (nbits * size + self.num_target_qubits - 1) // self.num_target_qubits\n", + " job = execute(self.circuit, self.backend, shots=bit_str_len, memory=True)\n", + " bit_str = ''.join(job.result().get_memory())\n", + " scale = float(vmax - vmin) / float(2**nbits - 1)\n", + " return np.array([vmin + scale * float(int(bit_str[i:i+nbits], 2))\n", + " for i in range(0, nbits * size, nbits)], dtype=np.float64)\n", + "```\n", + "\n", + "```python\n", + "def uniform_rand_int64(self, size: int, vmin: int, vmax: int) -> np.ndarray:\n", + " \"\"\"\n", + " Generates a vector of random int64 values in the range [vmin, vmax].\n", + " :param size: length of the vector.\n", + " :param vmin: lower bound.\n", + " :param vmax: upper bound.\n", + " :return: vector of random values.\n", + " \"\"\"\n", + " assert sys.maxsize == np.iinfo(np.int64).max # sizeof(int) == 64 bits\n", + " assert isinstance(size, int) and size > 0\n", + " assert isinstance(vmin, int) and isinstance(vmax, int) and vmin <= vmax\n", + " assert abs(vmin) <= 2**52 and abs(vmax) <= 2**52 # 52 == mantissa of float64\n", + " return np.rint(self.uniform_rand_float64(size, float(vmin), float(vmax))).astype(np.int64)\n", + "```\n", + "\n", + "Function in the base class \\textbf{NormalDistribution}\n", + "\n", + "```python\n", + "def normal_rand_float64(self, size: int) -> np.ndarray:\n", + " \"\"\"\n", + " Draws a sample vector from standard normal distribution (mu=0, std=1)\n", + " using Box-Muller method.\n", + " \"\"\"\n", + " EPS = np.sqrt(np.finfo(np.float64).tiny)\n", + " assert isinstance(size, int) and size > 0\n", + " rand_vec = np.zeros((size,), dtype=np.float64)\n", + "\n", + " # Generate array of uniformly distributed samples.\n", + " n = 2 * size\n", + " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", + "\n", + " x1 = 0.0 # first sample in a pair\n", + " c = 0 # counter\n", + " for d in range(size):\n", + " r2 = 2.0\n", + " while r2 >= 1.0 or r2 < EPS:\n", + " # Regenerate array of uniformly distributed samples upon shortage.\n", + " if c > n:\n", + " c = 0\n", + " n = max(((size // 10) // 2) * 2, 2)\n", + " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", + "\n", + " x1 = 2.0 * x[c, 0] - 1.0 # first sample in a pair\n", + " x2 = 2.0 * x[c, 1] - 1.0 # second sample in a pair\n", + " r2 = x1 * x1 + x2 * x2\n", + " c += 1\n", + "\n", + " f = np.sqrt(np.abs(-2.0 * np.log(r2) / r2))\n", + " rand_vec[d] = f * x1\n", + " return rand_vec\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "import time\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.random_distributions import MultivariateNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import FixedIncomeExpectedValue\n", + "from qiskit.aqua.components.random_distributions import *\n", + "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute\n", + "from qiskit.tools.visualization import plot_histogram, circuit_drawer\n", + "import scipy.stats as stats\n", + "\n", + "# In this example we use 'qasm_simulator' backend.\n", + "glo_backend = BasicAer.get_backend(\"qasm_simulator\")\n", + "\n", + "# Parameters.\n", + "glo_num_qubits = 5" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Uniform distribution of floating point numbers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# Create uniform distribution sampler.\n", + "start_time = time.time()\n", + "uniform = UniformDistribution(glo_num_qubits, backend=glo_backend)\n", + "creation_time = time.time() - start_time\n", + "\n", + "# Draw a sample.\n", + "start_time = time.time()\n", + "sample = uniform.uniform_rand_float64(size=54321, vmin=-7.67, vmax=19.52)\n", + "sampling_time = time.time() - start_time\n", + "\n", + "# Print out some details.\n", + "print(\"Uniform distribution of floating point numbers:\")\n", + "print(\"sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", + "print(\"sample min: {:.4f}, max: {:.4f}\".format(np.amin(sample), np.amax(sample)))\n", + "print(\"time: creation: {:.5f}, sampling: {:.2f}\".format(creation_time, sampling_time))\n", + "\n", + "# Plotting the distribution.\n", + "plt.hist(sample.ravel(),\n", + " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", + " density=True, facecolor='b', alpha=0.75)\n", + "plt.xlabel(\"random variable\", size=12)\n", + "plt.ylabel(\"probability\", size=12)\n", + "plt.title(\"Uniform distribution of float64 numbers [{:.2f} ... {:.2f}]\".format(\n", + " np.amin(sample), np.amax(sample)), size=12)\n", + "plt.grid(True)\n", + "# plt.savefig(\"uniform_distrib_float.png\", bbox_inches=\"tight\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Uniform distribution of integer numbers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Draw a sample, reuse the previous instance of the sampler.\n", + "start_time = time.time()\n", + "sample = uniform.uniform_rand_int64(size=54321, vmin=37, vmax=841)\n", + "sampling_time = time.time() - start_time\n", + "\n", + "# Print out some details.\n", + "print(\"Uniform distribution of integer numbers:\")\n", + "print(\"sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", + "print(\"sample min: {:d}, max: {:d}\".format(np.amin(sample), np.amax(sample)))\n", + "print(\"time: sampling: {:.2f}\".format(sampling_time))\n", + "\n", + "# Plotting the distribution.\n", + "plt.hist(sample.ravel(),\n", + " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", + " density=True, facecolor='g', alpha=0.75)\n", + "plt.xlabel(\"random variable\", size=12)\n", + "plt.ylabel(\"probability\", size=12)\n", + "plt.title(\"Uniform distribution of int64 numbers [{:d} ... {:d}]\".format(\n", + " np.amin(sample), np.amax(sample)), size=12)\n", + "plt.grid(True)\n", + "# plt.savefig(\"uniform_distrib_int.png\", bbox_inches=\"tight\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Standard normal distribution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create uniform distribution sampler.\n", + "start_time = time.time()\n", + "normal = NormalDistribution(glo_num_qubits, backend=glo_backend)\n", + "creation_time = time.time() - start_time\n", + "\n", + "# Draw a sample from the standard normal distribution.\n", + "start_time = time.time()\n", + "sample = normal.normal_rand_float64(size=4321)\n", + "sampling_time = time.time() - start_time\n", + "\n", + "# Print out some details.\n", + "print(\"Standard normal distribution:\")\n", + "print(\"sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", + "print(\"sample min: {:.4f}, max: {:.4f}\".format(np.amin(sample), np.amax(sample)))\n", + "print(\"time: creation: {:.5f}, sampling: {:.2f}\".format(creation_time, sampling_time))\n", + "\n", + "# Plotting the distribution.\n", + "plt.hist(sample.ravel(),\n", + " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", + " density=True, facecolor='r', alpha=0.75)\n", + "plt.xlabel(\"random variable\", size=12)\n", + "plt.ylabel(\"probability\", size=12)\n", + "plt.title(\"Standard normal distribution\", size=12)\n", + "plt.grid(True)\n", + "# plt.savefig(\"std_normal_distrib.png\", bbox_inches=\"tight\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 0f83aa0fdf764c25d173746a553d26bc7c436ef5 Mon Sep 17 00:00:00 2001 From: Albert Akhriev Date: Fri, 12 Apr 2019 16:11:41 +0100 Subject: [PATCH 042/116] new random generator --- qiskit/aqua/finance/generating_random_variates.ipynb | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/qiskit/aqua/finance/generating_random_variates.ipynb b/qiskit/aqua/finance/generating_random_variates.ipynb index d4e5236f3..cb7123ecd 100644 --- a/qiskit/aqua/finance/generating_random_variates.ipynb +++ b/qiskit/aqua/finance/generating_random_variates.ipynb @@ -114,7 +114,7 @@ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import numpy as np\n", - "import time\n", + "import sys, math, time\n", "from qiskit import BasicAer\n", "from qiskit.aqua.algorithms import AmplitudeEstimation\n", "from qiskit.aqua.components.random_distributions import MultivariateNormalDistribution\n", @@ -122,7 +122,6 @@ "from qiskit.aqua.components.random_distributions import *\n", "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute\n", "from qiskit.tools.visualization import plot_histogram, circuit_drawer\n", - "import scipy.stats as stats\n", "\n", "# In this example we use 'qasm_simulator' backend.\n", "glo_backend = BasicAer.get_backend(\"qasm_simulator\")\n", @@ -242,9 +241,12 @@ "print(\"time: creation: {:.5f}, sampling: {:.2f}\".format(creation_time, sampling_time))\n", "\n", "# Plotting the distribution.\n", + "x = np.linspace(-4.0, 4.0, 1000)\n", + "analyt = np.exp(-0.5 * x**2) / math.sqrt(2.0 * math.pi)\n", "plt.hist(sample.ravel(),\n", " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", " density=True, facecolor='r', alpha=0.75)\n", + "plt.plot(x, analyt, '-b', lw=2)\n", "plt.xlabel(\"random variable\", size=12)\n", "plt.ylabel(\"probability\", size=12)\n", "plt.title(\"Standard normal distribution\", size=12)\n", From 4f97244846702db7c1202b3a69cee13211f5b1d8 Mon Sep 17 00:00:00 2001 From: Albert Akhriev Date: Fri, 12 Apr 2019 16:38:43 +0100 Subject: [PATCH 043/116] minor improvements --- .../finance/generating_random_variates.ipynb | 22 ++++++++++--------- 1 file changed, 12 insertions(+), 10 deletions(-) diff --git a/qiskit/aqua/finance/generating_random_variates.ipynb b/qiskit/aqua/finance/generating_random_variates.ipynb index cb7123ecd..f6ba44fbf 100644 --- a/qiskit/aqua/finance/generating_random_variates.ipynb +++ b/qiskit/aqua/finance/generating_random_variates.ipynb @@ -215,7 +215,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Standard normal distribution" + "#### Normal distribution" ] }, { @@ -224,34 +224,36 @@ "metadata": {}, "outputs": [], "source": [ - "# Create uniform distribution sampler.\n", + "# Create normal distribution sampler.\n", + "mu = 2.4\n", + "sigma = 5.1\n", "start_time = time.time()\n", - "normal = NormalDistribution(glo_num_qubits, backend=glo_backend)\n", + "normal = NormalDistribution(glo_num_qubits, mu=mu, sigma=sigma, backend=glo_backend)\n", "creation_time = time.time() - start_time\n", "\n", - "# Draw a sample from the standard normal distribution.\n", + "# Draw a sample from the normal distribution.\n", "start_time = time.time()\n", "sample = normal.normal_rand_float64(size=4321)\n", "sampling_time = time.time() - start_time\n", "\n", "# Print out some details.\n", - "print(\"Standard normal distribution:\")\n", + "print(\"Normal distribution (mu={:.3f}, sigma={:.3f}):\".format(mu, sigma))\n", "print(\"sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", "print(\"sample min: {:.4f}, max: {:.4f}\".format(np.amin(sample), np.amax(sample)))\n", "print(\"time: creation: {:.5f}, sampling: {:.2f}\".format(creation_time, sampling_time))\n", "\n", "# Plotting the distribution.\n", - "x = np.linspace(-4.0, 4.0, 1000)\n", - "analyt = np.exp(-0.5 * x**2) / math.sqrt(2.0 * math.pi)\n", + "x = np.linspace(mu - 4.0 * sigma, mu + 4.0 * sigma, 1000)\n", + "analyt = np.exp(-0.5 * ((x - mu) / sigma)**2) / (sigma * math.sqrt(2.0 * math.pi))\n", "plt.hist(sample.ravel(),\n", " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", " density=True, facecolor='r', alpha=0.75)\n", - "plt.plot(x, analyt, '-b', lw=2)\n", + "plt.plot(x, analyt, '-b', lw=1)\n", "plt.xlabel(\"random variable\", size=12)\n", "plt.ylabel(\"probability\", size=12)\n", - "plt.title(\"Standard normal distribution\", size=12)\n", + "plt.title(\"Normal distribution: empirical vs analytic\", size=12)\n", "plt.grid(True)\n", - "# plt.savefig(\"std_normal_distrib.png\", bbox_inches=\"tight\")\n", + "# plt.savefig(\"normal_distrib.png\", bbox_inches=\"tight\")\n", "plt.show()" ] }, From 9907068ae81723dbe349524772be6ad7b09d7396 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Fri, 12 Apr 2019 16:43:50 +0100 Subject: [PATCH 044/116] Moving the drivers to tutorials --- qiskit/finance/data_providers/__init__.py | 20 + .../data_providers/drivers/__init__.py | 26 + .../data_providers/drivers/_basedriver.py | 154 ++++ .../data_providers/drivers/algorithminput.py | 67 ++ .../drivers/dataondemand/README.md | 14 + .../drivers/dataondemand/__init__.py | 21 + .../dataondemand/dataondemanddriver.py | 156 ++++ .../drivers/exchangedata/README.md | 22 + .../drivers/exchangedata/__init__.py | 21 + .../exchangedata/exchangedatadriver.py | 138 ++++ .../drivers/wikipedia/README.md | 11 + .../drivers/wikipedia/__init__.py | 21 + .../drivers/wikipedia/wikipediadriver.py | 136 ++++ .../finance/data_providers/time_series.ipynb | 112 +++ .../portfolio_diversification.ipynb | 731 ++++++++++++++++++ 15 files changed, 1650 insertions(+) create mode 100644 qiskit/finance/data_providers/__init__.py create mode 100644 qiskit/finance/data_providers/drivers/__init__.py create mode 100644 qiskit/finance/data_providers/drivers/_basedriver.py create mode 100644 qiskit/finance/data_providers/drivers/algorithminput.py create mode 100644 qiskit/finance/data_providers/drivers/dataondemand/README.md create mode 100644 qiskit/finance/data_providers/drivers/dataondemand/__init__.py create mode 100644 qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py create mode 100644 qiskit/finance/data_providers/drivers/exchangedata/README.md create mode 100644 qiskit/finance/data_providers/drivers/exchangedata/__init__.py create mode 100644 qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py create mode 100644 qiskit/finance/data_providers/drivers/wikipedia/README.md create mode 100644 qiskit/finance/data_providers/drivers/wikipedia/__init__.py create mode 100644 qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py create mode 100644 qiskit/finance/data_providers/time_series.ipynb create mode 100644 qiskit/finance/optimization/portfolio_diversification.ipynb diff --git a/qiskit/finance/data_providers/__init__.py b/qiskit/finance/data_providers/__init__.py new file mode 100644 index 000000000..300002f49 --- /dev/null +++ b/qiskit/finance/data_providers/__init__.py @@ -0,0 +1,20 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from .drivers import * + +__all__ = ['drivers'] diff --git a/qiskit/finance/data_providers/drivers/__init__.py b/qiskit/finance/data_providers/drivers/__init__.py new file mode 100644 index 000000000..3c737a444 --- /dev/null +++ b/qiskit/finance/data_providers/drivers/__init__.py @@ -0,0 +1,26 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from ._basedriver import BaseDriver, UnitsType +from .dataondemand import DataOnDemandDriver +from .exhangedata import ExchangeDataDriver +from .wikipedia import WikipediaDriver + +__all__ = ['BaseDriver', + 'DataOnDemandDriver', + 'ExchangeDataDriver', + 'WikipediaDriver'] diff --git a/qiskit/finance/data_providers/drivers/_basedriver.py b/qiskit/finance/data_providers/drivers/_basedriver.py new file mode 100644 index 000000000..1993d517a --- /dev/null +++ b/qiskit/finance/data_providers/drivers/_basedriver.py @@ -0,0 +1,154 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +""" +This module implements the abstract base class for driver modules +within Qiskit Finance. + +To create add-on driver modules subclass the BaseDriver class in this module. +Doing so requires that the required driver interface is implemented. +""" + +from abc import ABC, abstractmethod +import copy +from qiskit.aqua.parser import JSONSchema +from enum import Enum +import logging + +logger = logging.getLogger(__name__) + + +class DataType(Enum): + DAILYADJUSTED = 'Daily (adj)' + DAILY = 'Daily' + + +class BaseDriver(ABC): + """ + Base class for Drivers. + + This method should initialize the module and its configuration, and + use an exception if a component of the module is available. + + """ + @abstractmethod + def __init__(self): + self.check_driver_valid() + self._configuration = copy.deepcopy(self.CONFIGURATION) + self._work_path = None + + @property + def configuration(self): + """Return driver configuration.""" + return self._configuration + + @classmethod + def init_from_input(cls, section): + """ + Initialize via section dictionary. + + Args: + params (dict): section dictionary + + Returns: + Driver: Driver object + """ + pass + + @staticmethod + def check_driver_valid(): + """Checks if driver is ready for use. Throws an exception if not""" + pass + + def validate(self, args_dict): + schema_dict = self.CONFIGURATION.get('input_schema', None) + if schema_dict is None: + return + + jsonSchema = JSONSchema(schema_dict) + schema_property_names = jsonSchema.get_default_section_names() + json_dict = {} + for property_name in schema_property_names: + if property_name in args_dict: + json_dict[property_name] = args_dict[property_name] + + jsonSchema.validate(json_dict) + + @property + def work_path(self): + return self._work_path + + @work_path.setter + def work_path(self, new_work_path): + self._work_path = new_work_path + + @abstractmethod + def run(self): + pass + + # gets coordinates suitable for plotting + # it does not have to be overridden in non-abstract derived classes. + def get_coordinates(self): + # Coordinates for visualisation purposes + xc = np.zeros([self.n, 1]) + yc = np.zeros([self.n, 1]) + xc = (np.random.rand(self.n) - 0.5) * 1 + yc = (np.random.rand(self.n) - 0.5) * 1 + #for (cnt, s) in enumerate(self.tickers): + #xc[cnt, 1] = self.data[cnt][0] + # yc[cnt, 0] = self.data[cnt][-1] + return xc, yc + + # it does not have to be overridden in non-abstract derived classes. + def get_covariance(self): + if not self._data: return None + self.cov = np.cov(self._data, rowvar = True) + return self.cov + + # it does not have to be overridden in non-abstract derived classes. + def get_similarity_matrix(self): + if not self.data: return None + try: + import fastdtw + for ii in range(0, self._n): + self.rho[ii,ii] = 1. + for jj in range(ii + 1, self.n): + thisRho, path = fastdtw.fastdtw(self._data[ii], self._data[jj]) + self.rho[ii, jj] = thisRho + self.rho[jj, ii] = self.rho[ii, jj] + self.rho = self.rho / np.nanmax(self.rho) + for ii in range(0, self.n): + self.rho[ii,ii] = 1. + except ImportError: + print("This requires fastdtw package.") + return self.rho + + # it does not have to be overridden in non-abstract derived classes. + def plot(self): + #for (cnt, s) in enumerate(self.tickers): + # plot(self.data[cnt], grid = True, label=s) + #plt.legend() + #plt.title("Evolution of the adjusted closing price") + #plt.show() + self.get_covariance() + self.get_similarity_matrix() + print("Top: a similarity measure. Bottom: covariance matrix.") + plt.subplot(211) + plt.imshow(self.rho) + plt.subplot(212) + plt.imshow(self.cov) + plt.show() \ No newline at end of file diff --git a/qiskit/finance/data_providers/drivers/algorithminput.py b/qiskit/finance/data_providers/drivers/algorithminput.py new file mode 100644 index 000000000..b68d5e96b --- /dev/null +++ b/qiskit/finance/data_providers/drivers/algorithminput.py @@ -0,0 +1,67 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from qiskit.aqua import Pluggable +from abc import abstractmethod +import copy +from qiskit.aqua import AquaError + + +class AlgorithmInput(Pluggable): + + _PROBLEM_SET = ['portfoliodiversification', 'portfoliooptimisation'] + + @abstractmethod + def __init__(self): + super().__init__() + if 'problems' not in self.configuration or len(self.configuration['problems']) <= 0: + raise AquaError('Algorithm Input missing or empty configuration problems') + + for problem in self.configuration['problems']: + if problem not in AlgorithmInput._PROBLEM_SET: + raise AquaError('Problem {} not in known problem set {}'.format(problem, AlgorithmInput._PROBLEM_SET)) + + @property + def all_problems(self): + return copy.deepcopy(self._PROBLEM_SET) + + @property + def problems(self): + """ + Gets the set of problems that this input form supports + """ + return self.configuration.problems + + @abstractmethod + def to_params(self): + """ + Convert the derived algorithminput class fields to a dictionary where the values are in a + form that can be saved to json + Returns: + Dictionary of input fields + """ + raise NotImplementedError() + + @abstractmethod + def from_params(self, params): + """ + Load the dictionary into the algorithminput class fields. This dictionary being that as + created by to_params() + Args: + params: A dictionary as originally created by to_params() + """ + raise NotImplementedError() diff --git a/qiskit/finance/data_providers/drivers/dataondemand/README.md b/qiskit/finance/data_providers/drivers/dataondemand/README.md new file mode 100644 index 000000000..836eb7f04 --- /dev/null +++ b/qiskit/finance/data_providers/drivers/dataondemand/README.md @@ -0,0 +1,14 @@ +# Qiskit Finance + +## Stock market data driver for NASDAQ Data on Demand + +NASDAQ is a major vendor of stock market data. It provides data not only for NASDAQ +issues, but also for NYSE etc. + +This driver requires Data on Demand API Token. + +## Example query + +The data are obtained by running a query through the REST API. +``` +``` diff --git a/qiskit/finance/data_providers/drivers/dataondemand/__init__.py b/qiskit/finance/data_providers/drivers/dataondemand/__init__.py new file mode 100644 index 000000000..682ce312d --- /dev/null +++ b/qiskit/finance/data_providers/drivers/dataondemand/__init__.py @@ -0,0 +1,21 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from .dataondemanddriver import DataOnDemandDriver + +__all__ = ['DataOnDemandDriver', + 'StockMarket'] diff --git a/qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py b/qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py new file mode 100644 index 000000000..6ef8e50d0 --- /dev/null +++ b/qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py @@ -0,0 +1,156 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from qiskit.aqua.drivers import BaseDriver, UnitsType +import importlib +from enum import Enum +import logging + +logger = logging.getLogger(__name__) + + +class StockMarket(Enum): + NASDAQ = 'NASDAQ' + NYSE = 'NYSE' + +class DataOnDemandDriver(BaseDriver): + """Python implementation of an NASDAQ Data on Demand driver.""" + + CONFIGURATION = { + "name": "DOD", + "description": "NASDAQ Data on Demand Driver", + "input_schema": { + "$schema": "http://json-schema.org/schema#", + "id": "dod_schema", + "type": "object", + "properties": { + STOCKMARKET: { + "type": "string", + "default": StockMarket.NASDAQ.value, + "oneOf": [ + {"enum": [ + StockMarket.NASDAQ.value, + StockMarket.NYSE.value, + ]} + ] + }, + DATATYPE: { + "type": "string", + "default": DataType.DAILYADJUSTED.value, + "oneOf": [ + {"enum": [ + DataType.DAILYADJUSTED.value, + DataType.DAILY.value, + DataType.BID.value, + DataType.ASK.value, + ]} + ] + }, + }, + } + } + + def __init__(self, + token, + tickers, + stockmarket = StockMarket.NASDAQ, + start = datetime.datetime(2016,1,1), + end = datetime.datetime(2016,1,30)): + """ + Initializer + Args: + token (str): quandl access token + tickers (str or list): tickers + stockmarket (StockMarket): LONDON, EURONEXT, or SINGAPORE + """ + if not isinstance(atoms, list) and not isinstance(atoms, str): + raise QiskitFinanceError("Invalid atom input for DOD Driver '{}'".format(atoms)) + + if isinstance(tickers, list): + self._tickers = ';'.join(tickers) + else: + self._tickers = tickers.replace('\n', ';') + self._n = len(self._tickers.split(";")) + + self.validate(locals()) + super().__init__() + self._stockmarket = stockmarket # .value? + self._token = token + self._start = start + self._end = end + + @staticmethod + def check_driver_valid(): + err_msg = 'quandl is not installed.' + try: + spec = importlib.util.find_spec('quandl') + if spec is not None: + return + except Exception as e: + logger.debug('quandl check error {}'.format(str(e))) + raise QiskitFinanceError(err_msg) from e + + raise QiskitFinanceError(err_msg) + + @classmethod + def init_from_input(cls, section): + """ + Initialize via section dictionary. + + Args: + params (dict): section dictionary + + Returns: + Driver: Driver object + """ + if section is None or not isinstance(section, dict): + raise QiskitFinanceError('Invalid or missing section {}'.format(section)) + + params = section + kwargs = {} + #for k, v in params.items(): + # if k == ExchangeDataDriver. ...: v = UnitsType(v) + # kwargs[k] = v + logger.debug('init_from_input: {}'.format(kwargs)) + return cls(**kwargs) + + def run(self): + import re + import urllib + import urllib2 + import json + url = 'https://dataondemand.nasdaq.com/api/v1/quotes' + self._data = [] + for ticker in self._tickers: + values = {'_Token' : self._token, + 'symbols' : [ticker] + 'start' : start.strftime("%Y-%m-%d'T'%H:%M:%S.%f'Z'") , + 'end' : end.strftime("%Y-%m-%d'T'%H:%M:%S.%f'Z'") , + 'next_cursor': 0 + #'start' : start.strftime("%m/%d/%Y %H:%M:%S.%f") , + #'end' : end.strftime("%m/%d/%Y %H:%M:%S.%f") , + } + request_parameters = urllib.urlencode(values) + req = urllib2.Request(url, request_parameters) + try: + response = urllib2.urlopen(req) + quotes = json.loads(response)["quotes"] + priceEvolution = [] + for q in quotes: priceEvolution.append(q["ask_price"]) + self._data.append(priceEvolution) + except: + raise QiskitFinanceError('Accessing Qiskit failed') diff --git a/qiskit/finance/data_providers/drivers/exchangedata/README.md b/qiskit/finance/data_providers/drivers/exchangedata/README.md new file mode 100644 index 000000000..31ec5e883 --- /dev/null +++ b/qiskit/finance/data_providers/drivers/exchangedata/README.md @@ -0,0 +1,22 @@ +# Qiskit Finance + +## Stock market data driver for Exchange Data International + +Exchange Data International is a major vendor of stock-market data. See +https://www.exchange-data.com/about_us.php#edi + +For samples of the data, please see: +https://www.quandl.com/data/XSES-Singapore-Exchange-Prices +https://www.quandl.com/data/XBER-Berlin-Stock-Exchange-Prices +https://www.quandl.com/data/XPAR-Euronext-Paris-Stock-Prices/documentation + +This driver requires Quandl API Token. + +## Example query + +The data are obtained by running a query through quandl. See: +https://docs.quandl.com/docs/parameters-2#section-times-series-parameters +for details. + +``` +``` diff --git a/qiskit/finance/data_providers/drivers/exchangedata/__init__.py b/qiskit/finance/data_providers/drivers/exchangedata/__init__.py new file mode 100644 index 000000000..26e0bf76f --- /dev/null +++ b/qiskit/finance/data_providers/drivers/exchangedata/__init__.py @@ -0,0 +1,21 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from .exchangedatadriver import ExchangeDataDriver, StockMarket + +__all__ = ['ExchangeDataDriver', + 'StockMarket'] diff --git a/qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py b/qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py new file mode 100644 index 000000000..b2458b165 --- /dev/null +++ b/qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py @@ -0,0 +1,138 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from qiskit.aqua.drivers import BaseDriver, UnitsType +import importlib +from enum import Enum +import logging + +logger = logging.getLogger(__name__) + + +class StockMarket(Enum): + LONDON = 'XLON' + EURONEXT = 'XPAR' + SINGAPORE = 'XSES' + +class ExchangeDataDriver(BaseDriver): + """Python implementation of an Exchange Data driver.""" + + CONFIGURATION = { + "name": "EDI", + "description": "Exchange Data International Driver", + "input_schema": { + "$schema": "http://json-schema.org/schema#", + "id": "edi_schema", + "type": "object", + "properties": { + STOCKMARKET: { + "type": "string", + "default": StockMarket.LONDON.value, + "oneOf": [ + {"enum": [ + StockMarket.LONDON.value, + StockMarket.EURONEXT.value, + StockMarket.SINGAPORE.value, + ]} + ] + }, + DATATYPE: { + "type": "string", + "default": DataType.LONDON.value, + "oneOf": [ + {"enum": [ + DataType.DAILYADJUSTED.value, + DataType.DAILY.value, + ]} + ] + }, + }, + } + } + + def __init__(self, + token, + tickers, + stockmarket = StockMarket.LONDON, + start = datetime.datetime(2016,1,1), + end = datetime.datetime(2016,1,30)): + """ + Initializer + Args: + token (str): quandl access token + tickers (str or list): tickers + stockmarket (StockMarket): LONDON, EURONEXT, or SINGAPORE + """ + if not isinstance(atoms, list) and not isinstance(atoms, str): + raise QiskitFinanceError("Invalid atom input for PYQUANTE Driver '{}'".format(atoms)) + + if isinstance(tickers, list): + tickers = ';'.join(tickers) + else: + tickers = tickers.replace('\n', ';') + self._n = len(self._tickers.split(";")) + + self.validate(locals()) + super().__init__() + self._stockmarket = stockmarket # .value? + self._token = token + self._tickers = tickers + self._start = start + self._end = end + + @staticmethod + def check_driver_valid(): + err_msg = 'quandl is not installed.' + try: + spec = importlib.util.find_spec('quandl') + if spec is not None: + return + except Exception as e: + logger.debug('quandl check error {}'.format(str(e))) + raise QiskitFinanceError(err_msg) from e + + raise QiskitFinanceError(err_msg) + + @classmethod + def init_from_input(cls, section): + """ + Initialize via section dictionary. + + Args: + params (dict): section dictionary + + Returns: + Driver: Driver object + """ + if section is None or not isinstance(section, dict): + raise QiskitFinanceError('Invalid or missing section {}'.format(section)) + + params = section + kwargs = {} + #for k, v in params.items(): + # if k == ExchangeDataDriver. ...: v = UnitsType(v) + # kwargs[k] = v + logger.debug('init_from_input: {}'.format(kwargs)) + return cls(**kwargs) + + def run(self): + import quandl + quandl.ApiConfig.api_key = self._token + quandl.ApiConfig.api_version = '2015-04-09' + for (cnt, s) in enumerate(self._tickers): + d = quandl.get(self._stockmarket + "/" + s, start_date=self._start, end_date=self._end) + self._data.append(d["close"]) diff --git a/qiskit/finance/data_providers/drivers/wikipedia/README.md b/qiskit/finance/data_providers/drivers/wikipedia/README.md new file mode 100644 index 000000000..f5dc77c2f --- /dev/null +++ b/qiskit/finance/data_providers/drivers/wikipedia/README.md @@ -0,0 +1,11 @@ +# Qiskit Finance + +## Stock market data driver for Wikipedia + +Wikipedia contains stockmarket data, that are rather reliable up until 2018. + +## Example query + +The data are obtained by running a query through quandl. +``` +``` diff --git a/qiskit/finance/data_providers/drivers/wikipedia/__init__.py b/qiskit/finance/data_providers/drivers/wikipedia/__init__.py new file mode 100644 index 000000000..7324d1dd5 --- /dev/null +++ b/qiskit/finance/data_providers/drivers/wikipedia/__init__.py @@ -0,0 +1,21 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from .wikipediadriver import WikipediaDriver, StockMarket + +__all__ = ['WikipediaDriver', + 'StockMarket'] diff --git a/qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py b/qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py new file mode 100644 index 000000000..e3900cd20 --- /dev/null +++ b/qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py @@ -0,0 +1,136 @@ +# -*- coding: utf-8 -*- + +# Copyright 2018 IBM. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +from qiskit.aqua.drivers import BaseDriver, UnitsType +import importlib +from enum import Enum +import logging + +logger = logging.getLogger(__name__) + + +class StockMarket(Enum): + NASDAQ = 'NASDAQ' + NYSE = 'NYSE' + +class WikipediaDriver(BaseDriver): + """Python implementation of a Wikipedia driver.""" + + CONFIGURATION = { + "name": "WIKI", + "description": "Wikipedia Driver", + "input_schema": { + "$schema": "http://json-schema.org/schema#", + "id": "edi_schema", + "type": "object", + "properties": { + STOCKMARKET: { + "type": "string", + "default": StockMarket.NASDAQ.value, + "oneOf": [ + {"enum": [ + StockMarket.NASDAQ.value, + StockMarket.NYSE.value, + ]} + ] + }, + DATATYPE: { + "type": "string", + "default": DataType.DAILYADJUSTED.value, + "oneOf": [ + {"enum": [ + DataType.DAILYADJUSTED.value, + DataType.DAILY.value, + ]} + ] + }, + }, + } + } + + def __init__(self, + token = "", + tickers, + stockmarket = StockMarket.LONDON, + start = datetime.datetime(2016,1,1), + end = datetime.datetime(2016,1,30)): + """ + Initializer + Args: + token (str): quandl access token, which is not needed, strictly speaking + tickers (str or list): tickers + stockmarket (StockMarket): NASDAQ, NYSE + """ + if not isinstance(atoms, list) and not isinstance(atoms, str): + raise QiskitFinanceError("Invalid atom input for Wikipedia Driver '{}'".format(atoms)) + + if isinstance(tickers, list): + tickers = ';'.join(tickers) + else: + tickers = tickers.replace('\n', ';') + self._n = len(self._tickers.split(";")) + + self.validate(locals()) + super().__init__() + self._stockmarket = stockmarket # .value? + self._token = token + self._tickers = tickers + self._start = start + self._end = end + + @staticmethod + def check_driver_valid(): + err_msg = 'quandl is not installed.' + try: + spec = importlib.util.find_spec('quandl') + if spec is not None: + return + except Exception as e: + logger.debug('quandl check error {}'.format(str(e))) + raise QiskitFinanceError(err_msg) from e + + raise QiskitFinanceError(err_msg) + + @classmethod + def init_from_input(cls, section): + """ + Initialize via section dictionary. + + Args: + params (dict): section dictionary + + Returns: + Driver: Driver object + """ + if section is None or not isinstance(section, dict): + raise QiskitFinanceError('Invalid or missing section {}'.format(section)) + + params = section + kwargs = {} + #for k, v in params.items(): + # if k == ExchangeDataDriver. ...: v = UnitsType(v) + # kwargs[k] = v + logger.debug('init_from_input: {}'.format(kwargs)) + return cls(**kwargs) + + def run(self): + import quandl + quandl.ApiConfig.api_key = self._token + quandl.ApiConfig.api_version = '2015-04-09' + for (cnt, s) in enumerate(self._tickers): + d = quandl.get("WIKI/" + s, start_date=self._start, end_date=self._end) + self._data.append(d["close"]) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb new file mode 100644 index 000000000..5938dcdb5 --- /dev/null +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -0,0 +1,112 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Loading Time Series Data*_\n", + "\n", + "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", + "\n", + "***\n", + "### Contributors\n", + "Jakub Marecek[1]\n", + "\n", + "### Affiliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "Across many problems in finance, one starts with time series. Here, we showcase how to download the time series from a number of common providers." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python37.zip', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/lib-dynload', '', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/sympy-1.3-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/scipy-1.2.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/psutil-5.6.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/ply-3.11-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/Pillow-5.4.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/numpy-1.16.2-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/networkx-2.2-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/marshmallow_polyfield-3.2-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/marshmallow-2.19.1-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/jsonschema-2.6.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/mpmath-1.1.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/decorator-4.4.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pyeda-0.28.0-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/dlx-1.0.4-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/cvxopt-1.2.3-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/scikit_learn-0.20.3-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/git/qiskit-aer', '/Users/jmarecek/git/qiskit-ignis', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/requests-2.21.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/requests_ntlm-1.1.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/urllib3-1.24.1-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/idna-2.8-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/chardet-3.0.4-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/ntlm_auth-1.2.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/cryptography-2.6.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/six-1.12.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/cffi-1.12.2-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/asn1crypto-0.24.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pycparser-2.19-py3.7.egg', '/Users/jmarecek/git/qiskit-aqua', '/Users/jmarecek/git/qiskit', '/Users/jmarecek/git/qiskit-terra', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/IPython/extensions', '/Users/jmarecek/.ipython', '/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence', '/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence', '/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence']\n" + ] + }, + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'drivers'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetcwd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdrivers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'drivers'" + ] + } + ], + "source": [ + "import os, sys\n", + "sys.path.append(os.getcwd())\n", + "print(sys.path)\n", + "from drivers import *\n", + "\n", + "from qiskit import Aer\n", + "from qiskit_aqua import run_algorithm, QuantumInstance\n", + "\n", + "# setup aqua logging\n", + "import logging\n", + "from qiskit_aqua import set_aqua_logging" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Setup token to access recent, fine-grained time-series\n", + "\n", + "If you would like to download professional data, you will have to set-up a token with one of the major providers.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:localqiskit]", + "language": "python", + "name": "conda-env-localqiskit-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb new file mode 100644 index 000000000..bcdcdca32 --- /dev/null +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -0,0 +1,731 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Portfolio diversification: classical and quantum solutions\n", + "\n", + "## Contributors\n", + "Andrea Simonetto, Jakub Marecek, Martin Mevissen; IBM Research -- Ireland\n", + "\n", + "## Introduction \n", + "\n", + "In asset management, there are broadly two approaches: active and passive investment management. Within passive investment management, there are index-tracking funds and there are approaches based on portfolio diversification, which aim at representing a portfolio with large number of assets by a smaller number of representative stocks.\n", + "This notebook illustrates a portfolio diversification problem, which has recently become popular for two reasons:\n", + "1. it makes it possible to mimick the performance of an index (or a similarly large set of assets) with a limited budget, at limited transaction costs. That is: traditional index-tracking may purchase all assets in the index, ideally with the same weights as in the index. This may be impractical for a number of reasons: the total of even a single round lot per asset may amount to more than the assets under management, the large scale of the index-tracking problem with integrality constraints may render the optimisation problem difficult, and the transaction costs of the frequent rebalancing to adjust the positions to the weights in the index may render the approach expensive. Thus, a popular approach is to select a portfolio of $q$ assets that represent the market with $n$ assets, where $q$ is significantly smaller than $n$, but where the portfolio replicates the behaviour of the underlying market. To determine how to group assets into $q$ clusters and how to determine which $q$ assets should represent the $q$ clusters amounts to solving a large-scale optimization problem. In the following we describe the mathematical model for the portfolio diversification problem as introduced in [Cornuejols & Tutuncu, 2006] \n", + "2. it allows for similarity measures between time-series beyond the covariance matrix. Notice that traditionally, modern portfolio theory considers the covariance matrix as measure of similarity between the assets. As such, however, covariance matrix is imperfect. Consider, for instance, a company listed both in London and New York. Although both listings should be very similar, only parts of the time series of the prices of the two listings will overlap, because of the partial overlap of the times the markets open. Instead of covariance, one ca consider, for example, dynamic time warping of [Berndt and Clifford, 1994] as a measure of similarity between two time series, which allows for the fact that for some time periods, the data are captured by only one of the time series, while for others, both time series exhibit the similarity due to the parallel evolution of the stock price.\n", + "\n", + "The overall workflow we demonstrate comprises:\n", + "\n", + "1. pick the ground set of assets. In our case, this is a small number of US stocks.\n", + "\n", + "2. load the time series capturing the evolution of the prices of assets. In our case, this is an simplistic load of daily stock-price data from Wikipedia, whereas in a real asset management, this may come from a Reuters, Bloomberg, or similar at a much higher frequency.\n", + "\n", + "3. compute the pair-wise similarity among the time series. In our case, we run a linear-time approximation of the dynamic time warping, still on the classical computer.\n", + "\n", + "4. compute the actual portfolio of $q$ representative assets, based on the similarity measure. This step is run twice, actually. First, we obtain a reference value by a run of an IBM solver (CPLEX) on the classical computer. Second, we run an alternative, hybrid algorithm partly on the quantum computer.\n", + "\n", + "5. visualisation of the results. In our case, this is again a simplistic plot.\n", + "\n", + "In the following, we first explain the model used in (4) above, before we proceed with the installation of the pre-requisites and the data loading.\n", + "\n", + "\n", + "## The Model\n", + "\n", + "As discussed in [Cornuejols & Tutuncu, 2006], we describe a mathematical model that clusters assets into groups of similar ones and selects one representative asset from each group to be included in the index fund portfolio. The model is based on the following data, which we will discuss in more detail later:\n", + "\n", + "$$\n", + "\\rho_{ij} = \\textrm{similarity}\\, \\textrm{between}\\, \\textrm{stock}\\, i \\, \\textrm{and}\\, \\textrm{stock}\\, j.\n", + "$$\n", + "\n", + "For example, $\\rho_{ii} = 1$, $\\rho_{ij} \\leq 1$ for $i \\neq j$ and $\\rho_{ij}$ is larger for more similar stocks. An example of this is the correlation between the returns of stocks $i$ and $j$. But one could choose other similarity indices $\\rho_{ij}$.\n", + "\n", + "The problem that we are interested in solving is:\n", + "\n", + "$$\n", + "(M) \\quad f = \\max_{x_{ij}, y_{j}} \\,\\, \\sum_{i=1}^n \\sum_{j=1}^n \\rho_{ij} x_{ij}\n", + "$$\n", + "\n", + "subject to the clustering constraint:\n", + "\n", + "$$\n", + "\\sum_{j=1}^n y_j = q,\n", + "$$\n", + "\n", + "to consistency constraints:\n", + "\n", + "$$\n", + "\\sum_{j=1}^n x_{ij} = 1, \\,\\textrm{ for }\\, i = 1,\\ldots, n,\n", + "\\quad x_{ij} \\leq y_j,\\,\\textrm{ for }\\, i = 1,\\ldots, n; \\, j = 1,\\ldots, n,\n", + "\\quad x_{jj} = y_j,\\,\\textrm{ for }\\, j = 1,\\ldots, n,\n", + "$$\n", + "\n", + "and integral constraints:\n", + "\n", + "$$\n", + "\\quad x_{ij}, y_j \\in\\{0,1\\}, \\,\\textrm{ for }\\, i = 1,\\ldots, n; \\, j = 1,\\ldots, n.\n", + "$$\n", + "\n", + "The variables $y_j$ describe which stocks $j$ are in the index fund ($y_j = 1$ if $j$ is selected in the fund, $0$ otherwise). For each stock $i = 1,\\dots,n$, the variable $x_{ij}$ indicates which stock $j$ in the index fund is most similar to $i$ ($x_{ij} = 1$ if $j$ is the most similar stock in the index fund, $0$ otherwise).\n", + "\n", + "The first constraint selects $q$ stocks in the fund. The second constraint imposes that each stock $i$ has exactly one representative stock $j$ in the fund. The third and fourth constraints guarantee that stock $i$ can be represented by stock $j$ only if $j$ is in the fund. The objective of the model maximizes the similarity between the $n$ stocks and their representatives in the fund. Different cost functions can also be considered. \n", + "\n", + "Let us concatenate the decision variables in one vector \n", + "\n", + "$$\n", + "{\\bf z} = [x_{11},x_{12},\\ldots,x_{11}, x_{22},\\ldots,x_{nn}, y_{1},\\ldots,y_{n}],\n", + "$$\n", + "\n", + "whose dimension is ${\\bf z} \\in \\{0,1\\}^N$, with $N = n (n+1)$ and denote the optimal solution with ${\\bf z}^*$, and the optimal cost $f^*$. \n", + "\n", + "\n", + "## A Hybrid Approach\n", + "\n", + "Here, we demonstrate an approach that combines classical and quantum computing steps, following the quantum approximate optimization approach of Farhi, Goldstone, and Gutman (2014). \n", + "\n", + "### Construct a binary polynomial optimization\n", + "\n", + "From $(M)$ one can construct a binary polynomial optimization with equality constraints only, by substituting the $x_{ij} \\leq y_j$ inequality constraints with the equivalent equality constraints $x_{ij} (1- y_j) = 0$. Then the problem becomes:\n", + "\n", + "$$\n", + "(BPO) \\quad f = \\max_{x_{ij}, y_{j}} \\,\\, \\sum_{i=1}^n \\sum_{j=1}^n \\rho_{ij} x_{ij}\n", + "$$\n", + "\n", + "subject to the clustering constrain, the integral constraints, and the following modified consistency constraints:\n", + "\n", + "$$\\sum_{j=1}^n x_{ij} = 1, \\,\\textrm{ for }\\, i = 1,\\ldots, n,$$\n", + "$$\\quad x_{ij} (1- y_j) = 0,\\,\\textrm{ for }\\, i = 1,\\ldots, n; \\, j = 1,\\ldots, n,$$\n", + "$$\\quad x_{jj} = y_j,\\,\\textrm{ for }\\, j = 1,\\ldots, n.$$\n", + "\n", + "### Construct the Ising Hamiltonian\n", + "\n", + "We can now construct the Ising Hamiltonian by penalty methods (introducting a penalty coefficient $A$ for each equality constraint) as\n", + "\n", + "$$\n", + "(IH) \\quad H = \\sum_{i=1}^n \\sum_{j=1}^n \\rho_{ij} x_{ij} + A\\Big( \\sum_{j=1}^n y_j - q\\Big)^2 + \\sum_{i=1}^n A\\Big( \\sum_{j=1}^n x_{ij} - 1\\Big)^2 + \\sum_{j=1}^n A (x_{jj}-y_j)^2 +\\sum_{i=1}^n \\sum_{j=1}^n A \\left(x_{ij} (1- y_j)\\right).\n", + "$$\n", + "\n", + "### From Hamiltonian to QP formulation \n", + "\n", + "In the vector ${\\bf z}$, the Ising Hamiltonian elements can be rewritten as follows,\n", + "\n", + "First term:\n", + "\n", + "$$\n", + "\\sum_{i=1}^n \\sum_{j=1}^n \\rho_{ij} x_{ij} = [\\rho_{11},\\rho_{12},\\ldots,\\rho_{11}, \\rho_{22},\\ldots,\\rho_{nn}|{\\bf 0}_n ]{\\bf z} =: {\\bf c}_0^T {\\bf z}\n", + "$$\n", + "\n", + "Second term:\n", + "\n", + "$$\n", + "A\\Big( \\sum_{j=1}^n y_j - q\\Big)^2 = A \\Big(\\sum_{j=1}^n y_j\\Big)^2 - 2 A \\sum_{j=1}^n y_j + A q^2 = A {\\bf z}^T \\left[\\begin{array}{c}{\\bf 0}_{n^2} \\\\ \\hline {\\bf 1}_n \\end{array}\\right]\\left[\\begin{array}{cc}{\\bf 0}_{n^2} | {\\bf 1}_n \\end{array}\\right]{\\bf z} - 2 A q [{\\bf 0}_{n^2}|{\\bf 1}_n]{\\bf z} + A q^2 =: {\\bf z}^T {\\bf Q}_0 {\\bf z} + {\\bf c}_1^T {\\bf z} + r_0\n", + "$$\n", + "\n", + "Third term:\n", + "\n", + "$$\n", + "\\sum_{i=1}^n A\\Big( \\sum_{j=1}^n x_{ij} - 1\\Big)^2 = A\\sum_{i=1}^n \\Big(\\sum_{j=1}^n x_{ij}\\Big)^2 - 2 A \\sum_{i=1}^n\\sum_{j=1}^n x_{ij} + n A = \\qquad\\qquad\\qquad\\qquad\\qquad\\qquad\\qquad $$\n", + "\n", + "which is equivalent to: \n", + "\n", + "$$\n", + "\\qquad\\qquad\\qquad\\qquad\\qquad\\qquad\\qquad = A {\\bf z}^T \\left(\\sum_{i=1}^n \\left[\\begin{array}{c}{\\bf 0}_{n(i-1)} \\\\ {\\bf 1}_n \\\\ {\\bf 0}_{n(n-i)} \\\\ \\hline {\\bf 0}_{n} \\end{array}\\right]\\left[\\begin{array}{cccc}{\\bf 0}_{n(i-1)} & {\\bf 1}_n & {\\bf 0}_{n(n-i)} & | {\\bf 0}_{n} \\end{array}\\right]\\right){\\bf z} - 2 A [{\\bf 1}_{n^2}|{\\bf 0}_n]{\\bf z} + n A =: {\\bf z}^T {\\bf Q}_1 {\\bf z} + {\\bf c}_2^T {\\bf z} + r_1\n", + "$$\n", + "\n", + "Fourth term:\n", + "\n", + "$$\n", + "A \\sum_{j=1}^n (x_{jj}-y_j)^2 = A {\\bf z}^T \\left(\\sum_{j=0}^{n-1} \\left[\\begin{array}{c}{\\bf 0}_{nj + j} \\\\ 1 \\\\ {\\bf 0}_{n^2-(nj+j+1)} \\\\ \\hline {\\bf 0}_{j} \\\\ -1 \\\\ {\\bf 0}_{n-j-1} \\end{array}\\right]\\left[\\begin{array}{cccccc}{\\bf 0}_{nj + j} & 1 & {\\bf 0}_{n^2-(nj+j+1)} & | {\\bf 0}_{j} & -1 & {\\bf 0}_{n-j-1} \\end{array}\\right]\\right){\\bf z} = A {\\bf z}^T {\\bf Q}_2 {\\bf z}\n", + "$$\n", + "\n", + "Fifth term:\n", + "\n", + "$$\n", + "\\sum_{i=1}^n \\sum_{j=1}^n A \\left(x_{ij} (1- y_j)\\right) = A [{\\bf 1}_{n^2}|{\\bf 0}_n]{\\bf z} + A {\\bf z}^T \\left( \\sum_{i=1}^n \\sum_{j=1}^n \\left[\\begin{array}{ccc|c} & & & \\\\ & {\\bf 0}_{n^2\\times n^2} & & -1/2_{(ij,j)} \\\\ & & & \\\\ \\hline & -1/2_{(j, ij)} & & {\\bf 0}_{n} \\end{array}\\right] \\right) {\\bf z} =: {\\bf z}^T {\\bf Q}_3 {\\bf z} + {\\bf c}_3^T {\\bf z}\n", + "$$\n", + "\n", + "Therefore, the formulation becomes,\n", + "\n", + "$$\n", + "(IH-QP)\\quad \\max_{{\\bf z}\\in\\{0,1\\}^{n(n+1)}} \\, {\\bf z}^T ({\\bf Q}_0+{\\bf Q}_1+ {\\bf Q}_2 + {\\bf Q}_3 ){\\bf z} + ({\\bf c}_0+{\\bf c}_1+{\\bf c}_2+{\\bf c}_3)^T {\\bf z} +r_0+r_1+r_2$$\n", + "\n", + "which can be passed to variational quantum eigensolver. \n", + "\n", + "\n", + "\n", + "## References\n", + "\n", + "[1] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser, *Location of bank accounts to optimize float: an analytical study of exact and approximate algorithms*, Management Science, vol. 23(8), 1997\n", + "\n", + "[2] E. Farhi, J. Goldstone, S. Gutmann e-print arXiv 1411.4028, 2014\n", + "\n", + "[3] G. Cornuejols and R. Tutuncu, *Optimization methods in finance*, 2006\n", + "\n", + "[4] DJ. Berndt and J. Clifford, *Using dynamic time warping to find patterns in time series*. In KDD workshop 1994 (Vol. 10, No. 16, pp. 359-370).\n", + "\n", + "[5] https://github.com/Qiskit/qiskit-tutorial/blob/master/qiskit/aqua/optimization/maxcut_and_tsp.ipynb" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The Implementation\n", + "\n", + "If everything has been installed, the following should run without any errors. \n", + "If there are errors, please refer to Installation.ipynb for details." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "localqiskit\n", + "/Users/jmarecek/anaconda3/envs/localqiskit/bin/python\n" + ] + } + ], + "source": [ + "import os\n", + "print(os.environ['CONDA_DEFAULT_ENV'])\n", + "#!source activate localqiskit\n", + "#!conda list\n", + "#help(\"modules\")\n", + "# If you get errors, you can install from here using:\n", + "#!conda install -y --name localqiskit quandl\n", + "#!conda install -y -c bioconda --name localqiskit fastdtw\n", + "print(sys.executable)\n", + "\n", + "# Import requisite modules\n", + "import math\n", + "import operator\n", + "import logging\n", + "import datetime\n", + "import sys\n", + "import warnings\n", + "warnings.filterwarnings(\"error\") \n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Import Qiskit packages\n", + "warnings.filterwarnings('ignore')\n", + "import qiskit \n", + "from qiskit import BasicAer\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import portfolio\n", + "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "# setup aqua logging\n", + "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", + "# set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log\n", + "\n", + "from qiskit.aqua.translators.ising import portfoliodiv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We then initialize the variables" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the problem by defining the parameters\n", + "\n", + "n = 2 # Number of inner variables\n", + "q = 1 # Number of clusters, q less or equal than n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define get data either by randomly placing the assets in a 2-D plane and computing the distance between them (the closer they are in this plane, the more similar they are), or by actually downloading stock-market price data and computing the dynamic time warping distance and normalising it to (0,1]. Either way, we obtain the `rho` matrix. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# The code for generating a random rho or obtain stock-market data\n", + "\n", + "from qiskit.aqua.input.portfoliodata import *" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-1. -0.83591861]\n", + " [-0.83591861 -1. ]]\n" + ] + } + ], + "source": [ + "# Initialize the problem by randomly generating the similarity matrix rho\n", + "\n", + "data = RandomData(n)\n", + "xc,yc,rho = data.generate_instance()\n", + "try:\n", + " data = RealData(n, plots=True)\n", + " #data = RealData(n, plots=False)\n", + "except:\n", + " print(\"Cannot load real data, possibly due to issues with pandas.\")\n", + "print(rho)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Classical solution using IBM CPLEX\n", + "\n", + "For a classical solution, we use IBM CPLEX. CPLEX is able to find the exact solution of this problem. We first define a ClassicalOptimizer class that encodes the problem in a way that CPLEX can solve, and then instantiate the class and solve it. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "class ClassicalOptimizer:\n", + " def __init__(self, rho, n, q):\n", + "\n", + " self.rho = rho\n", + " self.n = n # number of inner variables\n", + " self.q = q # number of required selection\n", + "\n", + " def compute_allowed_combinations(self):\n", + " f = math.factorial\n", + " return int(f(self.n) / f(self.q) / f(self.n - self.q))\n", + "\n", + " def cplex_solution(self):\n", + "\n", + " # refactoring\n", + " rho = self.rho\n", + " n = self.n\n", + " q = self.q\n", + "\n", + " my_obj = list(rho.reshape(1, n ** 2)[0]) + [0. for x in range(0, n)]\n", + " my_ub = [1 for x in range(0, n ** 2 + n)]\n", + " my_lb = [0 for x in range(0, n ** 2 + n)]\n", + " my_ctype = \"\".join(['I' for x in range(0, n ** 2 + n)])\n", + "\n", + " my_rhs = [q] + [1 for x in range (0, n)] +[0 for x in range (0, n)] + [0.1 for x in range(0, n ** 2)]\n", + " my_sense = \"\".join(['E' for x in range(0, 1+n)]) + \"\".join(['E' for x in range(0, n)]) + \"\".join(\n", + " ['L' for x in range(0, n ** 2)])\n", + "\n", + " try:\n", + " my_prob = cplex.Cplex()\n", + " self.populatebyrow(my_prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs)\n", + "\n", + " my_prob.solve()\n", + "\n", + " except CplexError as exc:\n", + " print(exc)\n", + " return\n", + "\n", + " x = my_prob.solution.get_values()\n", + " x = np.array(x)\n", + " cost = my_prob.solution.get_objective_value()\n", + "\n", + " return x, cost\n", + "\n", + " def populatebyrow(self, prob, my_obj, my_ub, my_lb, my_ctype, my_sense, my_rhs):\n", + "\n", + " n = self.n\n", + "\n", + " prob.objective.set_sense(prob.objective.sense.minimize)\n", + " prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype)\n", + "\n", + " prob.set_log_stream(None)\n", + " prob.set_error_stream(None)\n", + " prob.set_warning_stream(None)\n", + " prob.set_results_stream(None)\n", + "\n", + " rows = []\n", + " col = [x for x in range(n**2, n**2+n)]\n", + " coef = [1 for x in range(0, n)]\n", + " rows.append([col, coef])\n", + "\n", + " for ii in range(0, n):\n", + " col = [x for x in range(0+n*ii, n+n*ii)]\n", + " coef = [1 for x in range(0, n)]\n", + "\n", + " rows.append([col, coef])\n", + "\n", + " for ii in range(0, n):\n", + " col = [ii * n + ii, n ** 2 + ii]\n", + " coef = [1, -1]\n", + " rows.append([col, coef])\n", + "\n", + " for ii in range(0, n):\n", + " for jj in range(0, n):\n", + " col = [ii*n + jj, n ** 2 + jj]\n", + " coef = [1, -1]\n", + "\n", + " rows.append([col, coef])\n", + " \n", + " prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of feasible combinations= 2\n", + "Total number of combinations= 64\n" + ] + } + ], + "source": [ + "# Instantiate the classical optimizer class\n", + "classical_optimizer = ClassicalOptimizer(rho,n,q)\n", + "\n", + "# Compute the number of feasible solutions:\n", + "print('Number of feasible combinations= ' + str(classical_optimizer.compute_allowed_combinations()))\n", + "\n", + "# Compute the total number of possible combinations (feasible + unfeasible)\n", + "print('Total number of combinations= ' + str(2 ** (n*(n+1))))" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "# Visualize the solution\n", + "\n", + "def visualize_solution(xc, yc, x, C, n, K, title_str):\n", + " plt.figure()\n", + " plt.scatter(xc, yc, s=200)\n", + " for i in range(len(xc)):\n", + " plt.annotate(i, (xc[i] + 0.015, yc[i]), size=16, color='r')\n", + " \n", + " plt.grid()\n", + "\n", + " for ii in range(n ** 2, n **2 + n):\n", + "\n", + " if x[ii] > 0:\n", + " plt.plot(xc[ii-n**2], yc[ii-n**2], 'r*', ms=20)\n", + "\n", + " for ii in range(0, n ** 2):\n", + "\n", + " if x[ii] > 0:\n", + " iy = ii // n\n", + " ix = ii % n\n", + " plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], 'C2')\n", + "\n", + " plt.title(title_str+' cost = ' + str(int(C * 100) / 100.))\n", + " plt.show()\n", + " \n", + "\n", + "# Eventually, you can runvisualize_solution(xc, yc, x, classical_cost, n, q, 'Classical')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solution shows the selected stocks via the stars and in green the links (via similarities) with other stocks that are represented in the fund by the linked stock. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantum solution using IBM-Q simulator\n", + "\n", + "For the quantum solution, we use Qskit. We first define a class QuantumOptimizer that encodes the quantum approach to solve the problem and then we instantiate it and solve it. We define the following methods inside the class:\n", + "- `binary_representation` : encodes the problem $(M)$ into a the Ising Hamiltonian QP (that's basically linear algebra);\n", + "- `construct_hamiltonian` : constructs the Ising Hamiltonian in terms of the $Z$ basis;\n", + "- `check_hamiltonian` : makes sure that the Ising Hamiltonian is correctly encoded in the $Z$ basis: to do this, it solves a eigenvalue-eigenvector problem for a symmetric matrix of dimension $2^N \\times 2^N$. For the problem at hand $n=3$, that is $N = 12$ seems the limit; \n", + "- `vqe_solution` : solves the problem $(M)$ via VQE by using the SPSA solver (with default parameters);\n", + "- `_q_solution` : internal routine to represent the solution in a usable format.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "class QuantumOptimizer:\n", + "\n", + " def __init__(self, rho,n,q,max_trials=1000):\n", + "\n", + " self.rho = rho\n", + " self.n = n\n", + " self.q = q\n", + " self.max_trials = max_trials\n", + "\n", + " def construct_hamiltonian(self):\n", + "\n", + " return portfoliodiv.get_portfoliodiversification_qubitops(self.rho, self.n, self.q, self.max_trials)\n", + "\n", + " def check_hamiltonian(self):\n", + "\n", + " Op = self.construct_hamiltonian()\n", + " qubitOp, offset = Op, 0\n", + " algo_input = EnergyInput(qubitOp)\n", + "\n", + " # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "\n", + " algorithm_cfg = {\n", + " 'name': 'ExactEigensolver',\n", + " }\n", + "\n", + " params = {\n", + " 'problem': {'name': 'ising'},\n", + " 'algorithm': algorithm_cfg\n", + " }\n", + " result = run_algorithm(params, algo_input)\n", + "\n", + " quantum_solution = self._q_solution(result['eigvecs'][0],self.n*(self.n+1))\n", + " ground_level = result['energy'] + offset\n", + "\n", + " return quantum_solution, ground_level\n", + "\n", + " def vqe_solution(self):\n", + "\n", + " qubitOp = self.construct_hamiltonian()\n", + " algo_input = EnergyInput(qubitOp)\n", + "\n", + " backend = BasicAer.get_backend('statevector_simulator')\n", + " seed = 50\n", + " cobyla = COBYLA()\n", + " cobyla.set_options(maxiter=250)\n", + " ry = RY(qubitOp.num_qubits, depth=3, entanglement='full')\n", + " vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", + " vqe.random_seed = seed\n", + " quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + " result = vqe.run(algo_input)\n", + "\n", + " #quantum_solution = self._q_solution(result['eigvecs'][0], self.n * (self.n + 1))\n", + " quantum_solution_dict = result['eigvecs'][0]\n", + "\n", + " q_s = max(quantum_solution_dict.items(), key=operator.itemgetter(1))[0]\n", + " quantum_solution= [int(chars) for chars in q_s]\n", + " quantum_solution = np.flip(quantum_solution, axis=0)\n", + "\n", + " #_,_,_,level = self.binary_representation(x_sol=quantum_solution)\n", + " return quantum_solution_dict, quantum_solution\n", + "\n", + " def _q_solution(self, v, N):\n", + "\n", + " index_value = [x for x in range(len(v)) if v[x] == max(v)][0]\n", + " string_value = \"{0:b}\".format(index_value)\n", + "\n", + " while len(string_value)\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Check if the binary representation is correct\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mQ\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mquantum_cost\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_optimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvqe_solution\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclassical_cost\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mClassicalOptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcplex_solution\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36mvqe_solution\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0mvqe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom_seed\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mseed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0mquantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseed_mapper\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 50\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvqe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0malgo_input\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 51\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0;31m#quantum_solution = self._q_solution(result['eigvecs'][0], self.n * (self.n + 1))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/qiskit_aqua/algorithms/quantum_algorithm.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, quantum_instance, **kwargs)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/qiskit_aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 266\u001b[0m \u001b[0mDictionary\u001b[0m \u001b[0mof\u001b[0m \u001b[0mresults\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 267\u001b[0m \"\"\"\n\u001b[0;32m--> 268\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_statevector\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_operator_mode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'matrix'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 269\u001b[0m logger.warning('Qasm simulation does not work on {} mode, changing '\n\u001b[1;32m 270\u001b[0m 'the operator_mode to \"paulis\"'.format(self._operator_mode))\n", + "\u001b[0;31mAttributeError\u001b[0m: 'EnergyInput' object has no attribute 'is_statevector'" + ] + } + ], + "source": [ + "# Check if the binary representation is correct\n", + "Q,g,c,quantum_cost = quantum_optimizer.vqe_solution()\n", + "\n", + "sol, classical_cost = ClassicalOptimizer.cplex_solution()\n", + "\n", + "print(quantum_cost, classical_cost)\n", + "if np.abs(quantum_cost - classical_cost)<0.01:\n", + " print('Binary formulation is correct')\n", + "else: print('Error in the binary formulation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 3\n", + "\n", + "Encode the problem as an Ising Hamiltonian in the Z basis. \n", + "\n", + "Sanity check: make sure that the formulation is correct (i.e., yields the same cost given the same solution)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ground_state, ground_level = quantum_optimizer.check_hamiltonian()\n", + "\n", + "print(ground_level,classical_cost)\n", + "print(ground_state)\n", + "if np.abs(ground_level - classical_cost)<0.01:\n", + " print('Ising Hamiltonian in Z basis is correct')\n", + "else: print('Error in the Ising Hamiltonian formulation')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 4\n", + "\n", + "Solve the problem via VQE. Notice that depending on the number of qubits, this can take a while: for 6 qubits it takes 15 minutes on a 2015 Macbook Pro, for 12 qubits it takes more than 12 hours. For longer runs, logging may be useful to observe the workings; otherwise, you just have to wait until the solution is printed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "quantum_dictionary, quantum_solution, quantum_cost = quantum_optimizer.vqe_solution()\n", + "\n", + "print(quantum_solution,quantum_cost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Step 5\n", + "Visualize the solution" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "visualize_solution(xc, yc, quantum_solution, quantum_cost, n, q, 'Quantum')\n", + "visualize_solution(xc, yc, x, classical_cost, n, q, 'Classical')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Solution shows the selected stocks via the stars and in green the links (via similarities) with other stocks that are represented in the fund by the linked stock. Note that in this particular case, we can find the optimal solution of the QP formulation, which happens to coincide with the optimal solution of the ILP.\n", + "\n", + "Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian, though. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the ILP. While for some small instances, as above, we can find optimal solutions of the QP formulation which coincide with optima of the ILP, finding optimal solutions of the ILP is harder than finding local optima of the QP formulation, in general. Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From dd41459b49b42cb79ddc3951f6b501f85f3cc52f Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Fri, 12 Apr 2019 17:55:54 +0200 Subject: [PATCH 045/116] update ExactLSsolver naming --- .../aqua/general/linear_systems_of_equations.ipynb | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index 58e2a5e06..92383b7d1 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -51,7 +51,7 @@ "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import LinearSystemInput\n", "from qiskit.quantum_info import state_fidelity\n", - "from qiskit.aqua.algorithms.classical import ExactLPsolver\n", + "from qiskit.aqua.algorithms.classical import ExactLSsolver\n", "import numpy as np" ] }, @@ -147,7 +147,7 @@ "result = run_algorithm(params)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "result_ref = ExactLPsolver(matrix, vector).run()\n", + "result_ref = ExactLSsolver(matrix, vector).run()\n", "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", "\n", "print(\"probability %f\" % result['probability_result'])\n", @@ -186,7 +186,7 @@ "result = run_algorithm(params2)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "result_ref = ExactLPsolver(matrix, vector).run()\n", + "result_ref = ExactLSsolver(matrix, vector).run()\n", "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", "\n", "print(\"probability %f\" % result['probability_result'])\n", @@ -275,7 +275,7 @@ "result = run_algorithm(params3)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "result_ref = ExactLPsolver(matrix, vector).run()\n", + "result_ref = ExactLSsolver(matrix, vector).run()\n", "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", "\n", "print(\"probability %f\" % result['probability_result'])\n", @@ -378,7 +378,7 @@ "result = run_algorithm(params4)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "result_ref = ExactLPsolver(matrix, vector).run()\n", + "result_ref = ExactLSsolver(matrix, vector).run()\n", "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", "\n", "print(\"probability %f\" % result['probability_result'])\n", @@ -521,7 +521,7 @@ "result = hhl.run(quantum_instance)\n", "print(\"solution \", np.round(result['solution'], 5))\n", "\n", - "result_ref = ExactLPsolver(matrix, vector).run()\n", + "result_ref = ExactLSsolver(matrix, vector).run()\n", "print(\"classical solution \", np.round(result_ref['solution'], 5))\n", "\n", "print(\"probability %f\" % result['probability_result'])\n", From 1b69ff74ed670f74ebaa2d7f746a73fb7d38beb2 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Fri, 12 Apr 2019 16:59:44 +0100 Subject: [PATCH 046/116] Deprecation of warnings, addition of outputs --- .../finance/generating_random_variates.ipynb | 88 +++++++++++++++++-- 1 file changed, 80 insertions(+), 8 deletions(-) diff --git a/qiskit/aqua/finance/generating_random_variates.ipynb b/qiskit/aqua/finance/generating_random_variates.ipynb index f6ba44fbf..986d9edbb 100644 --- a/qiskit/aqua/finance/generating_random_variates.ipynb +++ b/qiskit/aqua/finance/generating_random_variates.ipynb @@ -107,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -115,6 +115,9 @@ "%matplotlib inline\n", "import numpy as np\n", "import sys, math, time\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\",category=DeprecationWarning)\n", + "\n", "from qiskit import BasicAer\n", "from qiskit.aqua.algorithms import AmplitudeEstimation\n", "from qiskit.aqua.components.random_distributions import MultivariateNormalDistribution\n", @@ -139,11 +142,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Uniform distribution of floating point numbers:\n", + "sample type: , element type: float64 , shape: (54321,)\n", + "sample min: -7.6697, max: 19.5199\n", + "time: creation: 0.00043, sampling: 6.49\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucHFWd9/HPl4R7uAU0AgESSfAx4MpKJK7XCREMCht8DA8ZEFDBqGt0L95AFyQRV2EvsCqiQVgwSoKLskYMIkpGxEVMUFYILDjczIVbSLhMBCHwe/44Z0jR6Z7pnqnpSc98369Xv6a66pxT51R196/OqZoqRQRmZmZl2GqwK2BmZkOHg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKg2S9A1JZxTef0TSw5K6JO0+mHXL9blf0tvz9GclfavEsrskvTJPXyrp7BLLfsl2bZbe9p+kd0tamZf/ZXH7WiIpJE0YhPXeL+lpSQuave7hQtL1kp6RdGPdmSJiWL2AACZUzDsL+E4fytoaeBp47WC3q1Cn+4G3N5inAzi1wTyXAmf3sY7vA27cArZVr/sPuAeY0Z/t28g2B/4WuA/YANwJHFAlzX9U+xwP4nYclLrUsy+Aa4CuwutZ4LYe0u8AfB1YCzwB3NDXsvrZti8AtwEbgbMqlgn4HPBH4ElgEbBzL9vp6UK9f1pYdjJwSy5nFXAuMLIif0PfV/dU+mcMsB2wotGMSlpi+0saOdh1GCD17L/9elleGkmnAqcA7wJGAUeRftyKad4M7N+M+jTbQHzOIuLIiBjV/QL+G/jPHrLMB0YDr85//74fZfVHJ/Bp4MdVlp0EnAi8CdgL2B74ai/lHV2o+xGF+TsAfwfsAUwBpgGf7FfNB+PIZjBf9NJTAdpIEfsTwCPAg8D7C2kvBc4GDiAdTQYp+l+fl78RWEY6ylkGvLGQtwP4IvAr0pHDhDzvbNIHtAv4EbA78F3S0cMyYFwP7TkReAB4jHT0cj/56K2iXdsB38npHs/ljsn1eR54Jq//a4Xt9FHgD8B9ldsub4dvANcBTwG/APbLy8bltCMr2n4q6cv6TF5nF/B4cbsW0n+Q9MVaBywG9qrYhx/OdVsPXACoxvbZFjgfWJNf5+d5VfdfRb6uvHwDcE/hqO/tPZWdl+0GXA08mut4NTA2L9tsm5OGolcC03rY1yOB3wF/QS+9g562ERU988r9RYOfyZz348C9pCD4z8BWheUfIPW61gPXdn9Oqn3OSEfh55G+e08AvwcOqtHGF/dFnd/9cXm7j6+x/FW5fTWP+ustq8Tfq++weU/lSuBThfdvzJ+lHfq7nYB/AH5UMe99uKfSb68AdgH2Jh05XiBpt2KCiLgbODC/3TUiDpM0mnRk8RXSl/DfgB9XjNWfCMwGdiIFA4BZef7epKPQm0hDHKNJX8bPV6ukpEnAhTnvXnmdY2u06eTcpn1yug8DT0fE54BfAnMiHcXMKeQ5hnT0MqlGmSeQuul7ALeSfnR6FBF35nXflNe3a5V2HQZ8Cfh/wJ6k7bSoItlRwOuB1+Z076ixys8BbwAOzmkPBf6x2v6rqOefIx2NQhoeq9Y7qFp2XrYVaR/uB+xLOoj4Wi672jYfm18H5XM490maW9Gb/XvScMzva7S1Ur3bqJpGP5PvBiYDrwNmkAIJko4BPgv8X+Blud0LK/IWP2dHAG8lBf1dgeNIB0JlOAn4ZUTcV2P5FNJnba6ktZJuk/SePpY1kJRfxffbAhN7yPNdSY9K+qmk1/aQ7q30s2fuoFLdc8C8iHguIpaQjtZeVUe+dwF/iIgFEbExIhYC/wscXUhzaUSsyMufy/P+IyLuiYgnSOO290TEzyJiI6l7/Zc11jcTuDoiboiIPwNnAC/00KbdSUe3z0fELRHxZC/t+VJErIuIp2ss/3Fh3Z8D/krSPr2UWY8TgEsi4re57NNz2eMKab4cEY9HxB+BpaQf9lplzYuIRyLiUWAu6ceyDDXLjojHIuL7EfGniHiK1Dt5Ww9ldR8MHAG8BpgKtJMOasjb9UPAmQ3Ur95tVE2jn8lz8mflj6QeW3ue/yHS5+jOnPefgIMl7VfIW/ycPUc64Po/pJ7VnRHxYAP17slJpB5xLWOBg0g9pL2AOcBlkl7dh7IG0jXAqZLGSdoF+Eyev0ON9CeQelb7kT4H10qqdjD3ftKBwb/0p3LDMag8TzpBW7Q16cPc7bH8Bej2J9IYd2/2YlPvo9sDpKO9biur5Hu4MP10lfe11r1XsbyI2EDto7oFpKGHRZLWSDpXUuV2qFStrlWXR0QXaahqr17y1OMl2zGX/Rgv3Y4PFaZ72j+V++SBkurYY9mSdpD0TUkPSHoSuAHYVdKIGmV1B+5zcyC4H/gm8M48/3xSAHuigfrVu42qafQzWfysFLfxfsC/S3pc0uOkz4io8Z2IiOtJPboLgIclzZe0cz0Vzlc7duXXNyqWvZk0AnFlD0V0B7WzI+LZiPgF6Ue4eA6i3rIG0iWk3l4HqVexNM9fVS1xRPwqIp7OBzhfIg1/v6WYJvcovwwcGRFrq5VTr+EYVP5IitpF49k8GPTFGtKXqGhfYHXhfZnPGniQNJwFpB8yUm9kM7nXNTciJpHGYI8iHW31VKfe6lpc9yjS0Mga0jkIeOmR0ysaKPcl21HSjqR2ra6Zo86ySPtjTR/KabTsT5B6t1MiYmfSsAJsGrao3AZ3ka4mqrVtpgH/LOkhSd3B4iZJx/eh3huovW/6qthDLW6HlcCHImLXwmv7iPjvQvqXtDkivhIRh5CGJw8APlVPBSLin2LTyegPVyw+GfhBPkCppd5hxXrKGjAR8UJEfD4ixkXEWFJgWU3934+gMHwmaTpwEelk/m39rd9wDCpXAP8oaaykrfL/HBxNOUcdS4ADJB0vaaSk40jjxFeXUHY1VwJHSXqzpG2AedTYp5KmSnpNPlJ+knRE9nxe/DDwyj6s/52FdX8BuDkiVuahoNXAeyWNkPQBXnrF0sPA2JyvmsuB90s6WNK2pCGTm/PRe6MWkvb3yyTtQRo++k4fymm07J1IR76P53NtlecgXrLNI+JPpM/mpyXtJGks6WKF7s/OAaRzIwezaRjraOCqPtT7VuCtkvbNwyen96GMSp+StFsepvtbUlsgXcxxuqQDASTtIunYWoVIer2kKbkXvYFNF3X0maTtgWPpfbjqBtJB5+n5+/sm0oU71/ahrH6RtLWk7Ujf55GStuvu5UoaLWn/fAXpJNK523kRsdnQd97Hb5K0TS7jU6RzoL/Kyw8jnQt9T0T8poy6D8egMo90VcuNpKtRzgVOiIjb+1twRDxG6gF8gjRc82ngqP52J3tY3wrSlTOXk3ot66nRBWZTd/1J0onWX7DpB/DfgZmS1kv6SgNVuJz0Y7kOOIQ0dtvtg6QjzMdIR5zFI9PrSUdXD0nabNtExM9J54e+n9u1P+nEcV+cDSwnHYXeBvw2zytDT2WfT7rUcy3wa+AnFXmrbfM5pPN3a0gnxi8nDXWQz9s81P3K6df2cL6rpoi4jvSj/3vS/yiUcdDzw1zWraSLVS7O67oKOIc07PokcDtwZA/l7Ew6al7Ppqsa+zXGT7oQ4Ak2DRO9SNIKSSfkuj5HusjgnTn9RcBJEfG/9ZRVpewuSW/J02+R1FVY9llJ1/SQ/SLSQUk76Xzl02w6F7gH6QB2A+n8yiURMb9Q9jcKw387kS7mWU860JtOGuLqHiY/g3QBz5LC0GFP9epV9yWGZmYtRdJdpKsDr4qIkwe7PkORpOtIVzj+JiKm1ZXHQcXMzMoyHIe/zMxsgDiomJlZaYbqPZ1q2mOPPWLcuHGDXY2GbNiwgR133HGwqzFg3L7W5va1tnrbd8stt6yNiJf1lm7YBZVx48axfPnywa5GQzo6OmhraxvsagwYt6+1uX2trd72Sarrf/k8/GVmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVhoHFTMzK42DipmZlcZBxczMStO0oCJpuqS7JHVKOq3K8m0lXZGX31zx6Nju5wJ0SfpkvWWamVlzNeU/6vPDZS4ADic972OZpMURcUch2SnA+oiYIGkW6RkMxxWWn0d6dkAjZdowNHXqpumlvT71wszK1KyeyqFAZ0TcGxHPAotID8MpmgFclqevBKZJErz4/OR7SQ92aqRMMzNrombd+2tv0rOqu60CptRKExEbJT0B7C7paeAzpB7JJ6ul76FMG2K29F7Ill4/s4HWrKCiKvMqnw5WK81c4LyI6Modl0bKTAml2cBsgDFjxtDR0dFbfbcoXV1dLVfnRjTSvvb2TdO1stSTZqBUW7f3X2tz+xrTrKCyCtin8H4s6Tnc1dKskjSS9NzkdaTex0xJ5wK7Ai9Ieob0POzeygQgP795PsDkyZOj1e446rukbjJ37qbpWj2BetIMlGrr9v5rbW5fY5oVVJYBEyWNB1YDs4DjK9IsBk4GbgJmAtdHetbxW7oTSDoL6IqIr+XA01uZZgPCw1xm1TUlqORzJHOAa4ERwCURsULSPGB5RCwGLgYWSOok9VBm9aXMAW2Ivcg/qtYIf16Gj6Y9pCsilgBLKuadWZh+Bji2lzLO6q3MweYvj5kNZ8PuyY9mWyofkNhQ4KBiNoiKgcSsEVvqQYiDSh9tqTvUms+BobUN5e/yYLTNQWUQNHtH11rfUP4ymZVh6tT0v0fFS8XB35eeOKgMsv78sDso2JbMPbjhyUHFrE7+kRwcA3Hw5H05cBxUzMyyVg02W9KohYPKFqSeD0arfuj7o9lt3pK+oMNVWft8KOzLVmuDg4oNK632Be2vei7SqFxmjdnSzosO9oGng8oWqvjBqHb1yUCub6CvEBsuP+zd7Wxvh4G+H+Fw26YwtNvZyhxUGtDoEcBgHzGY98GWyAcqQ5uDyhCxJQ5n+ItuNvw063HCZmY2DLinYpvZEoaMtoQ6WOO83zYZiifh6+GgYi2rv19aD8/ZlmSofB4dVMxaVK2j1jKPZmuVtSX/6DVjuzRqqASMejioDFGD9QVqhe55Nc2sd6tuo4HgbTH0NC2oSJoO/Dvp0b/fiogvVyzfFvg2cAjwGHBcRNwv6VBgfncy4KyIuCrnuR94Cnge2BgRk5vRFhs+hsuP3nBppw28pgQVSSOAC4DDgVXAMkmLI+KOQrJTgPURMUHSLOAc4DjgdmByfib9nsD/SPpRRGzM+aZGxNpmtMOq688PUvHW4kN5WMA/2uXzNt0yNeuS4kOBzoi4NyKeBRYBMyrSzAAuy9NXAtMkKSL+VAgg2wHRlBqbWU1Tp256mRUpYuB/oyXNBKZHxKn5/YnAlIiYU0hze06zKr+/J6dZK2kKcAmwH3BiYfjrPmA9KdB8MyLmU4Wk2cBsgDFjxhyyaNGiPrXj7rurzz/ggN7T9Mfo0V2sWzeqlLL6U9eBamd3+wZ6Ow6Wvuy/4raoZUvZf3vt1cWoUaNKL3dLUW3/DfT3aCD2Va3PVFfXpv3Xk6lTp95SzymGZgWVY4F3VASVQyPiY4U0K3KaYlA5NCIeK6R5Nak389aIeEbSXhGxRtLLgeuAj0XEDT3VZfLkybF8+fI+taOeK2EG4sitvb2DhQvbSimrP3UdqHZ2t2+gt+NgGer77/Of76At39xsKO23btX230Dvh4HYV7WGlzs6Nu2/nkiqK6g060T9KmCfwvuxwJoaaVZJGgnsAqwrJoiIOyVtAA4ClkfEmjz/EUlXkYbZegwqA2EofpHMzPqiWUFlGTBR0nhgNTALOL4izWLgZOAmYCZwfUREzrMyn6jfD3gVcL+kHYGtIuKpPH0EMK9J7TFrOT74KY+3ZW1NCSo5IMwBriVdUnxJRKyQNI/U41gMXAwskNRJ6qHMytnfDJwm6TngBeBv8nmWVwJXSepux+UR8ZNmtKeV+ctgZgOpaf+nEhFLgCUV884sTD8DHFsl3wJgQZX59wKvLb+mVosDkpn1xv9Rb2bWREP94My3vjczs9K4p2Jm/XL33QP/uGtrHQ4qtsUY6sMCZfA2si2dg4qZ2RamlQ8efE7FzMxK46BiZmalcVAxM7PSOKiYmVlpHFTMzKw0DipmZlYaBxUzMyuNg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I0LahImi7pLkmdkk6rsnxbSVfk5TdLGpfnHyrp1vz6H0nvrrdMMzNrrqYEFUkjgAuAI4FJQLukSRXJTgHWR8QE4DzgnDz/dmByRBwMTAe+KWlknWWamVkTNauncijQGRH3RsSzwCJgRkWaGcBlefpKYJokRcSfImJjnr8dEA2UaWZmTdSsoLI3sLLwflWeVzVNDiJPALsDSJoiaQVwG/DhvLyeMs3MrIma9TwVVZkX9aaJiJuBAyW9GrhM0jV1lpkKlmYDswHGjBlDR0dHndV+qfb2PmXrt9Gju2hv7xiclTeB29fa3L7WUOtnr6urq8+/idU0K6isAvYpvB8LrKmRZpWkkcAuwLpigoi4U9IG4KA6y+zONx+YDzB58uRoa2vrUyMG65Gp7e0dLFzYNjgrbwK3r7W5fa1h6dLq8zs6Oujrb2I1zRr+WgZMlDRe0jbALGBxRZrFwMl5eiZwfUREzjMSQNJ+wKuA++ss08zMmqgpPZWI2ChpDnAtMAK4JCJWSJoHLI+IxcDFwAJJnaQeyqyc/c3AaZKeA14A/iYi1gJUK7MZ7TEzs+qa9oz6iFgCLKmYd2Zh+hng2Cr5FgAL6i3TzMwGj/+j3szMSuOgYmZmpXFQMTOz0jiomJlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFzMxK46BiZmalqTuoSNp9ICtiZmatr5GeykpJP5Q0M98V2MzM7CUaCSr7AT8HPgM8JGm+pDcPTLXMzKwV1R1UIuLRiPhKRLwe+CvgEdKt6u+VNC8/68TMzIaxvp6of0V+7QzcQ3o2/O8knVZWxczMrPXU/TwVSQcC7wVOALqAy4C/iIjVefkXgN8DXx6AepqZWQto5CFdNwALgZkR8ZvKhRFxv6TzS6uZmZm1nEaGv94dEXMqA4qkQ7uni09yrCRpuqS7JHVWGyaTtK2kK/LymyWNy/MPl3SLpNvy38MKeTpymbfm18sbaI+ZmZWskZ7K1aRzKJV+AozuKaOkEcAFwOHAKmCZpMURcUch2SnA+oiYIGkWcA5wHLAWODoi1kg6iPRM+r0L+U6IiOUNtMPMzAZIrz0VSVvloKBsq8JrIrCxjvUcCnRGxL0R8SywCJhRkWYG6TwNwJXANEmKiN9FxJo8fwWwnaRt62mcmZk1lyKi5wTSC0CtRC8AX4yIs3opYyYwPSJOze9PBKZExJxCmttzmlX5/T05zdqKcj4cEW/P7zuA3YHnge8DZ0eVBkmaDcwGGDNmzCGLFi3qsc213H13n7L12+jRXaxbN2pwVt4Ebl9rc/tawwEHVJ/f1dXFqFG9t2/q1Km3RMTk3tLVM/w1HhDwC+CthfkBPBoRT9dRhqrMq/zx7zFNvvrsHOCIwvITImK1pJ1IQeVE4NubFRIxH5gPMHny5Ghra6ujypubO7dP2fqtvb2DhQvbBmflTeD2tTa3rzUsXVp9fkdHB339Taym16ASEQ/kyf78c+MqYJ/C+7HAmhppVkkaCewCrAOQNBa4CjgpIu4p1G11/vuUpMtJw2ybBRUzM2uOHoOKpPkRMTtP1/yxjoiTelnPMmCipPHAamAWcHxFmsXAycBNwEzg+ogISbsCPwZOj4hfFeo2Etg1ItZK2ho4CvhZL/UwM7MB1FtP5b7C9D01U/UiIjZKmkO6cmsEcElErJA0D1geEYuBi0m3fekk9VBm5exzgAnAGZLOyPOOADYA1+aAMoIUUC7qax3NzKz/egwqEfGlwnS/zihExBJgScW8MwvTzwDHVsl3NnB2jWIP6U+dzMysXL0Nfx3W0/JuEXF9OdUxM7NW1tvw18V1lBHAK0uoi5mZtbjehr/GN6siZmbW+vyMejMzK01v51TujIhX5+mV1PjP+ojYdwDqZmZmLaa3cyofLEy/dyArYmZmra+3cyo3FqZ/MfDVMTOzVlb3ORVJ2+Rn0f9B0ob89wuSthvICpqZWeto5HkqFwKvAj4OPEC6F9jppGebfKD8qpmZWatpJKgcA+wfEY/n93dIuhnoxEHFzMxo7JLih4AdKuZtDzxYXnXMzKyVNXKblgXATyR9lU23qf8ovtW8mZllfblNy2cr3n+I9PAsMzMb5nybFjMzK41v02JmZqWp++ovSTsDZwFvA/ag8Ex536bFzMygsZ7K14HXAfOA0cDHgD8C5w1AvczMrAU1ElSOAN4TET8Ens9/jwNOrCezpOmS7pLUKem0Ksu3lXRFXn6zpHF5/uGSbpF0W/57WCHPIXl+p6SvSFJluWZm1jyNBJWtgCfydJekXUn/ozKht4ySRgAXAEcCk4B2SZMqkp0CrI+ICaTeT/cVZWuBoyPiNcDJpEubu10IzAYm5tf0BtpjZmYlaySo/A/pfArAL0lB4kLg7jryHgp0RsS9EfEssAiYUZFmBnBZnr4SmCZJEfG7iFiT568Atsu9mj2BnSPipogI0v/LHNNAe8zMrGSN3Kblg2w6Of9x4MvArsBJdeTdG1hZeL8KmFIrTURslPQEsDupp9LtPcDvIuLPkvbO5RTL3LvayiXNJvVoGDNmDB0dHXVUeXPt7X3K1m+jR3fR3t4xOCtvArevtbl9raHWz15XV1effxOrqTuoRMS9helHScNV9ap2rqPygV89ppF0IGlI7IgGykwzI+YD8wEmT54cbW1tvVS3urlz+5St39rbO1i4sG1wVt4Ebl9rc/taw9Kl1ed3dHTQ19/Eahr6PxVJH5B0naQV+e8pdZ4c776tS7exwJpaaSSNBHYB1uX3Y4GrgJMi4p5C+rG9lGlmZk3UyPNUzgU+A/wA+FT++0nqu0XLMmCipPGStgFmAYsr0iwmnYgHmAlcHxGRLwj4MXB6RPyqO3FEPAg8JekNObCdBPyw3vaYmVn5Gjmn8j7gdRHx4nkMSVcDvwU+3VPGfI5kDnAtMAK4JCJWSJoHLI+IxaT7jC2Q1EnqoczK2eeQrjA7Q9IZed4REfEI8BHgUtLdkq/JLzMzGySNBJWn8qty3pP1ZI6IJcCSinlnFqafAY6tku9s4OwaZS4HDqpn/WZmNvB6u/X9Kwtvzwd+IOnLbDr/8Sn8H/VmZpb11lPpJF1RVTwZP7UizWHA18qslJmZtabebn3vuxibmVndGjmnAoCkfUn/ZLgqIlb2lt7MzIaPRi4p3lPSL0hDYj8A7pF0g6S9Bqx2ZmbWUhoZ3rqQdP+v3SJiT2A34HfANwaiYmZm1noaGf56M7BnRDwHEBEbJH0aWD0gNTMzs5bTSE9lPem29UWvAh4vrzpmZtbKGumpnAv8TNLFwAPAfsD7gTN6zGVmZsNGI3cpvkjSPcDxwF+Qbt7YHhHXD1TlzMystdQVVPKTGy8BZjuImJlZLXWdU4mI50nPMXlhYKtjZmatrJET9ecBcyVtPVCVMTOz1tbIifqPAa8A/kHSo2y6J1hExL4DUTkzM2stjQSV9w5YLczMbEhoZPjrJmAa8C3Sc1G+BbwduHkA6mVmZi2o0du0HAZ8HHh9/vs24Ov1ZJY0XdJdkjolnVZl+baSrsjLb5Y0Ls/fXdJSSV2SvlaRpyOXeWt+vbyB9piZWckaGf46Btg/Irr/g/4OSTeTbjD5gZ4y5kuSLwAOJz3ga5mkxRFxRyHZKcD6iJggaRZwDnAc8AzpHywPovpTHk/IT4A0M7NB1khP5SFgh4p52wMP1pH3UKAzIu6NiGeBRcCMijQzgMvy9JXANEmKiA0RcSMpuJiZ2RZMEVFfwjRkdTzwVTY9TvijwOXAsu501f45UtJMYHpEnJrfnwhMiYg5hTS35zSr8vt7cpq1+f37gMkVeTqA3YHnge8DZ0eVBkmaDcwGGDNmzCGLFi2qq82V7r67T9n6bfToLtatGzU4K28Ct6+1uX2t4YADqs/v6upi1Kje2zd16tRbImJyb+kaGf76UP772Yr5H84vSJcZv5LNqcq8yh//etJUOiEiVkvaiRRUTgS+vVkhEfOB+QCTJ0+Otra2Xoqtbu7cPmXrt/b2DhYubBuclTeB29fa3L7WsHRp9fkdHR309Texmkbu/TW+H+vp7tl0G0u6d1i1NKskjQR2Adb1UqfV+e9Tki4nDbNtFlTMzKw5mvUM+mXAREnjJW0DzAIWV6RZDJycp2cC11cbyuomaaSkPfL01sBRwO2l19zMzOrW8DPq+yIiNkqaA1wLjAAuiYgVkuYByyNiMXAxsEBSJ6mHMqs7v6T7gZ2BbSQdQ7oP2QPAtTmgjAB+BlzUjPaYmVl1TQkqABGxhPRPk8V5ZxamnwGOrZF3XI1iDymrfmZm1n/NGv4yM7NhwEHFzMxK46BiZmalcVAxM7PSOKiYmVlpHFTMzKw0DipmZlYaBxUzMyuNg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVhoHFTMzK42DipmZlaZpQUXSdEl3SeqUdFqV5dtKuiIvv1nSuDx/d0lLJXVJ+lpFnkMk3ZbzfEWSmtMaMzOrpilBRdII4ALgSGAS0C5pUkWyU4D1ETEBOA84J89/BjgD+GSVoi8EZgMT82t6+bU3M7N6NauncijQGRH3RsSzwCJgRkWaGcBlefpKYJokRcSGiLiRFFxeJGlPYOeIuCkiAvg2cMyAtsLMzHo0sknr2RtYWXi/CphSK01EbJT0BLA7sLaHMldVlLl3tYSSZpN6NIwZM4aOjo4Gq5+0t/cpW7+NHt1Fe3vH4Ky8Cdy+1ub2tYZaP3tdXV19/k2spllBpdq5juhDmj6lj4j5wHyAyZMnR1tbWw/F1jZ3bp+y9Vt7ewcLF7YNzsqbwO1rbW5fa1i6tPr8jo4O+vqbWE2zhr9WAfsU3o8F1tRKI2kksAuwrpcyx/ZSppmZNVGzgsoyYKKk8ZK2AWYBiyvSLAZOztMzgevzuZKqIuJB4ClJb8hXfZ0E/LD8qpuZWb2aMvyVz5HMAa6fH7nnAAALKklEQVQFRgCXRMQKSfOA5RGxGLgYWCCpk9RDmdWdX9L9wM7ANpKOAY6IiDuAjwCXAtsD1+SXmZkNkmadUyEilgBLKuadWZh+Bji2Rt5xNeYvBw4qr5ZmZtYf/o96MzMrjYOKmZmVxkHFzMxK46BiZmalcVAxM7PSOKiYmVlpHFTMzKw0DipmZlYaBxUzMyuNg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVpqmBRVJ0yXdJalT0mlVlm8r6Yq8/GZJ4wrLTs/z75L0jsL8+yXdJulWScub0xIzM6ulKU9+lDQCuAA4HFgFLJO0OD8SuNspwPqImCBpFnAOcJykSaRHCx8I7AX8TNIBEfF8zjc1ItY2ox1mZtazZvVUDgU6I+LeiHgWWATMqEgzA7gsT18JTJOkPH9RRPw5Iu4DOnN5Zma2hWnWM+r3BlYW3q8CptRKExEbJT0B7J7n/7oi7955OoCfSgrgmxExv9rKJc0GZgOMGTOGjo6OPjWivb1P2fpt9Ogu2ts7BmflTeD2tTa3rzXU+tnr6urq829iNc0KKqoyL+pM01PeN0XEGkkvB66T9L8RccNmiVOwmQ8wefLkaGtrq7viRXPn9ilbv7W3d7BwYdvgrLwJ3L7W5va1hqVLq8/v6Oigr7+J1TRr+GsVsE/h/VhgTa00kkYCuwDresobEd1/HwGuwsNiZmaDqllBZRkwUdJ4SduQTrwvrkizGDg5T88Ero+IyPNn5avDxgMTgd9I2lHSTgCSdgSOAG5vQlvMzKyGpgx/5XMkc4BrgRHAJRGxQtI8YHlELAYuBhZI6iT1UGblvCskfQ+4A9gIfDQinpc0BrgqnctnJHB5RPykGe0xM7PqmnVOhYhYAiypmHdmYfoZ4Ngaeb8IfLFi3r3Aa8uvqZmZ9ZX/o97MzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVhoHFTMzK42DipmZlcZBxczMSuOgYmZmpXFQMTOz0jiomJlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFzMxK07SgImm6pLskdUo6rcrybSVdkZffLGlcYdnpef5dkt5Rb5lmZtZcTQkqkkYAFwBHApOAdkmTKpKdAqyPiAnAecA5Oe8k0vPqDwSmA1+XNKLOMs3MrIma1VM5FOiMiHsj4llgETCjIs0M4LI8fSUwTZLy/EUR8eeIuA/ozOXVU6aZmTXRyCatZ29gZeH9KmBKrTQRsVHSE8Duef6vK/Lunad7KxMASbOB2fltl6S7+tCGQdPRwR7A2sGux0Bx+1qb29capJqL6m3ffvWsp1lBpVpzos40teZX62VVlplmRswH5vdUwS2ZpOURMXmw6zFQ3L7W5va1trLb16zhr1XAPoX3Y4E1tdJIGgnsAqzrIW89ZZqZWRM1K6gsAyZKGi9pG9KJ98UVaRYDJ+fpmcD1ERF5/qx8ddh4YCLwmzrLNDOzJmrK8Fc+RzIHuBYYAVwSESskzQOWR8Ri4GJggaROUg9lVs67QtL3gDuAjcBHI+J5gGplNqM9g6Blh+7q5Pa1NrevtZXaPqXOgJmZWf/5P+rNzKw0DipmZlYaB5UWIeksSasl3Zpf7xzsOvXXUL/NjqT7Jd2W99fywa5PGSRdIukRSbcX5o2WdJ2kP+S/uw1mHfuqRtuGzPdO0j6Slkq6U9IKSX+b55e6/xxUWst5EXFwfi0Z7Mr0xzC6zc7UvL+Gyv85XEq6XVLRacDPI2Ii8PP8vhVdyuZtg6HzvdsIfCIiXg28Afho/s6Vuv8cVGyw+DY7LSgibiBdnVlUvMXSZcAxTa1USWq0bciIiAcj4rd5+ingTtLdSUrdfw4qrWWOpN/nbnpLDjEUVLt1z9410raqAH4q6ZZ8q6ChakxEPAjphwt4+SDXp2xD6XsHQL4L/F8CN1Py/nNQ2YJI+pmk26u8ZgAXAvsDBwMPAv86qJXtv3pu3dPq3hQRryMN8X1U0lsHu0LWsKH2vUPSKOD7wN9FxJNll9+se39ZHSLi7fWkk3QRcPUAV2egDfnb7ETEmvz3EUlXkYb8bhjcWg2IhyXtGREPStoTeGSwK1SWiHi4e3oofO8kbU0KKN+NiB/k2aXuP/dUWkTe2d3eDdxeK22LGNK32ZG0o6SduqeBI2j9fVZL8RZLJwM/HMS6lGoofe/yo0QuBu6MiH8rLCp1//k/6luEpAWkLngA9wMf6h4HbVX58szz2XSbnS8OcpVKI+mVwFX57Ujg8qHQPkkLgTbS7dIfBj4P/BfwPWBf4I/AsRHRcie8a7StjSHyvZP0ZuCXwG3AC3n2Z0nnVUrbfw4qZmZWGg9/mZlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFrA75brXfGex6NErSNySdUWfaDkmn1lg2TlJI8j9MW4/8ATEbwiLiw4NdBxte3FOxIcdH00l+vIBZUzmo2JCQH4j1GUm/BzZIGinpNEn3SHpK0h2S3l1I/z5JN0r6F0nrJd0n6cjC8vGSfpHzXkf6L+vi+v46P+jo8Txs9OqKunwq39l2g6SLJY2RdE0u72e17nabH6B0VOH9SElrJb0uv/9PSQ9JekLSDZIOLKS9VNKFkpZI2gBMzfPOzst3k3S1pEdzm6+WNLaiCvtL+k0u/4eSRteo5y65XQ8qPcTqbAcxAwcVG1ragXcBu0bERuAe4C3ALsBc4DsV93KaAtxFChjnAhfn+yMBXA7ckpd9gU33RkLSAcBC4O+AlwFLgB/le5h1ew9wOHAAcDRwDemWGHuQvncfr9GGhbkd3d4BrO1+DkYuZyLp9uS/Bb5bkf944IvATsCNFcu2Av4D2I90S46nga9VpDkJ+ACwF+mhTl+pUc/L8vIJpFuoHwFUPR9jw0xE+OVXy79I92X6QC9pbgVm5On3kR4S1r1sB9L9nV5B+sHdCOxYWH458J08fQbwvcKyrYDVQFuhLicUln8fuLDw/mPAf9Wo4wTgKWCH/P67wJk10u6a67xLfn8p8O2KNJcCZ9fIfzCwvvC+A/hy4f0k4FnSvdnG5XWNBMYAfwa2L6RtB5YO9ufAr8F/eezZhpLiQ7+QdBLwD6QfRIBRvHQY66HuiYj4U+6kdKdZHxEbCmkfYNOt+vfK77vzviBpJS99yNjDhemnq7wfVa0BEdEp6U7gaEk/Av6a1BPoPkfyReBYUg+p+6aAewBPVNsGRZJ2AM4jPTK3e/htJ0kjIuL5KvkfALamYuiP1NPZGnhwU8eOrXpatw0fDio2lLx4d1RJ+wEXAdOAmyLieUm3Uv3hYJUeBHaTtGMhsOxbKH8N8JrCukQKOKv73wRg0xDYVsAdEdGZ5x9PevTr20m9oV2A9by0TT3dIfYTwKuAKRHxkKSDgd9V5C8+42Zf4DlgbcX8laSeyh6RhhnNXuRzKjZU7Uj6gX0UQNL7gYPqyRgRDwDLgbmStsm3DD+6kOR7wLskTcsPPfoE6Uf2v0uq+yLSOYqPkIbduu2U1/MYabjunxosdydSL+nxfAL+81XSvFfSpNyrmQdcWejFAC8+cvanwL9K2lnSVpL2l/S2ButjQ5CDig1JEXEH6dGvN5GGnl4D/KqBIo4nnchfR/rx/Xah7LuA9wJfJR3FHw0cHRHPllT3B3O93whcUVj0bdKQ1GrgDuDXDRZ9PrA9qc6/Bn5SJc0C0nmYh4DtqH1BwUnANrke64ErgT1rpLVhxM9TMTOz0rinYmZmpXFQMTOz0jiomJlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFzMxK8/8BfpH/NuaphVgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Create uniform distribution sampler.\n", "start_time = time.time()\n", @@ -183,9 +209,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Uniform distribution of integer numbers:\n", + "sample type: , element type: int64 , shape: (54321,)\n", + "sample min: 37, max: 841\n", + "time: sampling: 6.36\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucHXV9//HXm0RQWAUSMEK4JJBADb2gRlBrNYhyqZfYCjXrDRVMbaH8elOhKphIWrGtUAWkqUEiYgLFW8QIomSlWgg3rwkNLDcJIdwSgotcTPj8/vh+l0xOztk9s7tzzsnm/Xw89rFzvvOd73xmzpz5nLmc7ygiMDMzq9IO7Q7AzMxGPycbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGw6kKQLJX2y8PqvJD0oqU/S+HbGluO5R9Ib8/A/SfrSCLbdJ+mAPHyxpLNGsO0t1murDPT+Sdovl49pdVztJOn9kn7chvnOkPRsXufHtHr+7SLpoLzMmySd1I4YnGwqICkkTakp+5SkrzYzfUR8OCI+nad7HvA54KiI6IqIR0c+4qGLiH+OiEE3Xkk9zWzkeRnvGm5c9XZmxfXaKoO9fxHx61y+qYm2JuVta2xN+Z6SvibpMUnrJV1aZ9pxkh5uxw6+A63J6/wqAElHSPplXn+PSvqmpIn9lSWtyDvq/r+Nkr5TRWCS3iDpVkmPS7pL0uwG9b5cu5+RdIqkmyU9LeniYv2IuD0iuoD/qSLuZjjZdL4JwPOBFWUnVLJNvMe1O9BRZMjvXwnfANYC+wMvBv6tTp2zgdsqjKFtRmDbWQkcHRG7AXsDdwBf7B8ZEYfk5NQFvBD4NfDfw5znVvIXk28C/wnsCrwT+JykP6qp91rgwDpNrAHOAi4a6dhGwjaxIxpt8qH8akn/IOkhSQ9I+kBh/MWSzpJ0ELAqFz8m6do8/jWSbpK0If9/TWHaHknzJP0E+C1wQC47S9L/5m9m35E0XtKl+RvUTZImDRDveyXdm7/1fbxm3HNHbJKeL+mrud5jud0JkuYBfwKcl+d/Xq4fkk6WdAfpA17vqHAPSddI+o2kH0naP9fb6lt+/9GTpJcCFwKvzvN7rLheC/U/JKlX0jpJSyTtXRgXkj4s6Y58tHC+JDVYPztJOlfSmvx3bi6r+/7VTLvFcuRl+LSkn+Rl/r6kPXL16wpt9Ul6taSjgH2Bj0TEhoj4XUT8tGYerwZ+H/hyvfgL9d4v6ceS/i0v892Sji2Mf+70aX5dfO/7l+MDku7L039Y0isl/SJvD+dtPUt9IW/H/yfpyMKIXSUtyJ+N+/P2O6YQ508knSNpHfApSVPy9rFB0iOSLhtoWYsi4sGIWFMo2gRMaVD9daSE/vVm2y9hHPAi4JJIbiJ9QZjWXyFvJ18ATqmdOCK+ERHfAjrq7Ec/J5v2eQnp28tE4ETgfEm7FytExO3AIfnlbhHxBknjgO8CnwfGk07RfFdbXgt4LzCb9C3s3lw2K5dPJH0rup608xlH2qDPrBekpGmkb3nvJX3rGw/s02CZTsjLtG+u92HgyYj4OOnw/ZT8DbH4QXk7cDiFD1SNdwOfBvYAfgZsdYqoVkTclud9fZ7fbnWW6w3AvwB/AexFWk+La6q9BXgl8Ee53tENZvlx4FXAobnuYcAn6r1/g8WevQv4AGmntiPwj7n8dYW2uiLi+jzfVcDCnORvkvT6wnKOAc4n7Zya6Qjx8NzeHsBngQWNkuwA008lfSs/l7Ru3khaD39RjC3XvSvP60zgG3n7BlgIbCTt9F8GHAWcVGfaFwPzSNvI94HdSdvnF0rE3H/t7DHgSdL6/myDqicAV0TEE2Xab0ZEPAgsAj4gaUz+krA/UDz1+XfAdRHxi5Gef9WcbNrnd8Dc/E10KdAHHNzEdG8G7oiISyJiY0QsAv4PeGuhzsURsSKP/10u+3JE3BkRG4DvAXdGxA8iYiPplMDLGszvOODKiLguIp4GPgk8O8AyjQemRMSmiLglIh4fZHn+JSLWRcSTDcZ/tzDvj5OOVvYdpM1mvBu4KCJuzW2fntueVKjzmYh4LCJ+DSwjJZNGbc2NiIci4mFgDik5D9WX8zn2J4HLB5gvpB3rUTm+lwD/Dny7cDR0KrA8Im5pct73RsR/5WtIC0mJeEKJ2D8dEU9FxPeBJ4BFeb3cT/rCUdzOHgLOzZ+By0hJ7s2SJgDHAn8bEU9ExEPAOaQvTP3WRMQX8jb+JGnb2x/YO8+/1LWpfO1sN1Li+wTpM7UFSTuTPg8Xl2m7pEXAGcDTpPX18Yi4L89/X+Av8/htjpNNNTYBz6spex7pA9Hv0byj7/dboKuJtvdm89FKv3tJRyz97qsz3YOF4SfrvG40772L7eVvdI0O0y8BrgYW59NJn1U6Dz2QerHWHR8RfcC6HNNwbbEec9uPsuV6XFsYHuj9qX1P7h1mjM3OF9J7d09ELMg77cWkdfbH+bTgqaQkXXreEfHbPNjMdtmvzHZ2f2zZ7Xz/etuf9Hl5IJ9+e4x0HePFhbq1281HAQE3Kl3Q/2CJmJ8TEetISfbb2vpa0J+Ttr8fDaXtwUj6PeAy4H2kI9pDgI9KenOuci7pS82GKuZfNSebavwamFRTNpmtk8RQrCF9GIv2A+4vvB7J50Y8QDotBjz37a7u7dd5ZzcnIqYBryGdhnrfIDENFmtx3l2k035rSN+aAXYu1H1JiXa3WI+SdiEt1/0Np2iyLdL7saZB3eGot0y/aFAO6XTeXsBKSWuB/wAOk7RWQ7vV+gkar++hmFhziq5/vd1H+ma/R0Tslv9eFBGHFOpuscwRsTYiPhQRe5O+/V+gmjtCSxhLSmwvqik/AfhKTYIcSb8PrIqIqyPi2YhYRTpl3n/d7EjgX/P71/+l4HpJ76oonhHlZFONy4BPSNpH0g75oupbgStGoO2lwEGS3iVprKR3kq53XDkCbddzBfAWSa+VtCMwlwbbjdItpH+Qd2SPk47k+m/pfRA4YAjz/9PCvD9NOiV0Xz5ddT/wnnx++4NseYfOg8A+ebp6vkY6N36opJ2Af85t3zOEGBeR3u898+mrM4CmbnMv6WHSKczievwmsLukE/J6OI50dPYT0unSSaTTcIfmuH4KHNrMrdZ1/AyYJel5kqaTTikNx4uBU3N7xwMvBZZGxAOk6y//LulF+TN0YM31ni1IOl5S/7XE9aRk1NQySvpzSQfn+exJug7603yU019nH+AI0lFPVX4KTFW6/VmSDiR9Yft5Hn8Q6Zpg//sJab/yzRzjWEnPB8YAY5Ru2OmYuzydbKoxF/hf0oW99aSLje+OiF8Nt+H8O423AP9AOu3zUeAtEfHIcNtuML8VwMmknfMDpOVZ3aD6S0jJ6XHSTQc/YvNO9z+A4/JdSp8vEcLXSBeP1wGvIF0f6fch4COk9XAIaZ33u5Z0u/FaSVutm4j4Ien609fzch3IltcEyjgLuJl0lPFL4NZcNqLyaa15wE/y6aVX5R3i20gXtTcApwEzI+KRiHg6f+NfGxFr8/jf5eGh+CRpPa0nXZf62jAXaTnpZoJHSMt1XGz+HVL/qaSVeX5XkI7SGnklsFxSH7AE+H8RcXeTcUwErgJ+Q3r/ngX+rKbOe0k3nNw5UEPa/CPd/fLrd0taURh/oaQL602b2/4g6eafx0mfn68DC/L4h2reT4BHCtc7P0E6VXka8J48/IlmVkArqLojQjOzziLpdaTrik8D74yIq9scUktImgrcRErgfx0RF7c8BicbMzOrmk+jmZlZ5ZxszMysch1zp0K77bHHHrHnnnuyyy67tDuUrTzxxBOOqwTH1bxOjAkcV1ntjOuWW255JCL2HLRiRPgvgle84hWxbNmy6ESOqxzH1bxOjCnCcZXVzriAm6OJfaxPo5mZWeWcbMzMrHJONmZmVjknGzMzq5yTjZmZVc7JxszMKudkY2ZmlXOyMTOzyrUs2Ug6RtIqSb2STqszfidJl+Xxy4uP55V0ei5fJenoQvlFkh6SVLfrfkn/KCkKj8g1M7M2aEl3NflhWucDbyI9C+UmSUsiYmWh2onA+oiYImkWcDbwTknTSM8ZOYT0yNgfSDoo0sOfLgbOA75SZ5775vn9urols6E4YuERzw0vO2FZGyOx0cjbV2dq1ZHNYUBvRNwVEc8Ai4GZNXVmsvkpeFcAR+ZHxs4EFkd6ENTdQG9uj4i4jvRQrXrOIT1YzM9QMDNrs1Z1xDmR9FzxfquBwxvViYiNkjaQngk/EbihZtqJA81M0tuA+yPi51s+4nyrerOB2QATJkygr6+Pnp6eZpanpUZbXN1d3c8NV7Fco219VakTY4LhxVXl9jUa11ertCrZ1Nvj1x5xNKrTzLSbG5F2Bj4OHDVYUBExH5gPMH369Ojq6mLGjBmDTdZyPT09oyquOQvnPDe87B0jf5pjtK2vKnViTDC8uKrcvkbj+mqVViWb1cC+hdf7AGsa1FktaSywK+kUWTPTFh0ITAb6j2r2AW6VdFgM/dnrZm2zLV2D2JZitdZq1TWbm4CpkiZL2pF0wX9JTZ0lwAl5+Djg2tx99RJgVr5bbTIwFbix0Ywi4pcR8eKImBQRk0jJ6uVONGZm7dOSZBMRG4FTgKuB24DLI2KFpLn5+grAAmC8pF7g74HT8rQrgMuBlcBVwMn5TjQkLQKuBw6WtFrSia1YHjMzK6dlT+qMiKXA0pqyMwrDTwHHN5h2HjCvTnl3neq1dSaVjdXMzEaWHwvdBj6vbZ3M2+e2rVPfP3dXY2ZmlfORjdkoUPw2C531jdYMnGxGrU49lDaz7ZOTjZlZgb+oVcPJxtrKH2yz7YOTTYvUnlM3M2uXdlzj891oZmZWOR/ZjACfCjJrDX/Wtl1ONrZd8c6qs1T9foy2W8Ibra/bH719i96uO5GTjW3FO2QzG2lONtsZJ5Kh87obGdv7zTLb63bkZDOKbO8f4pGyrewMhvJ+byvLZqOPk812zDue1jli4RF0d3UzZ+Ecr+tRbDifqbLTFusXH4XdqZxszMyGwWcUmuNkYx1jKN8KW303kyXb6lFxK+PeVtdRVZxs2qwTd7DNxuDTQmbV6ITP+EhzsqmQvxVvf5p5z0fjjmQw/iyYk812oBM+6J0Qg1VjpN7bYjtn7n/miLTZKbz9O9lYh+r0b/9VxDeSbXb6+rPtT8uSjaRjgP8AxgBfiojP1IzfCfgK8ArgUeCdEXFPHnc6cCKwCTg1Iq7O5RcBbwEeiojfL7T1r8BbgWeAO4EPRMRjlS7gCBhoB+FvRmYja3tIyJ20jC1JNpLGAOcDbwJWAzdJWhIRKwvVTgTWR8QUSbOAs4F3SpoGzAIOAfYGfiDpoIjYBFwMnEdKUkXXAKdHxEZJZwOnAx+rbgk3a3VS6LQk1Ekbt7VXp22bA9mWYh2qdi9jq45sDgN6I+IuAEmLgZlAMdnMBD6Vh68AzpOkXL44Ip4G7pbUm9u7PiKukzSpdmYR8f3CyxuA40Z0acyso2zvX/K2BYqI6mciHQccExEn5dfvBQ6PiFMKdX6V66zOr+8EDicloBsi4qu5fAHwvYi4Ir+eBFxZPI1WM+/vAJf1T18zbjYwG2DChAmv+NKXvkRXV1fp5bv90dtLTzOYg8Yf9NxwX18fa55eM+LzaDS/4vIUy4tuf/R2xo0Zx7pN60q3ORy18dSLta+vr+H72OyyVaHe+iq7joayTgeapj+mobz/Vdp7p73rvodVz7dW7XoZbJsfbvtDrTPcuBq9z8044ogjbomI6YPVa9WRjeqU1Wa5RnWambb+TKWPAxuBS+uNj4j5wHyA6dOnR1dXFzNmzGim6S1U0bX3sndsPgXV09PDokcXjfg8ttA3eHnxtNichXPo7upmUV/juIrLMFLrqNhmbbv943p6ehq+j1vEMcCyVaHu+mq03hsYyjodaJr+mBrVqV3fZec9VGeOP/O597CdRxG162WwbX647Q+1znDjavQ+j6RWJZvVwL6F1/sAtV/V++usljQW2BVY1+S0W5F0AunmgSOjFYdvI2xb6/fItm0+LWRVa1WyuQmYKmkycD/pgv+7auosAU4AriddY7k2IkLSEuBrkj5HukFgKnDjQDPLd759DHh9RPx2RJfEbDviGz6qVfZHwNuyliSbfFfYKcDVpFufL4qIFZLmAjdHxBJgAXBJvgFgHSkhketdTrqZYCNwcr4TDUmLgBnAHpJWA2dGxALSHWo7Adekewy4ISI+3Ipltc4zWj6sQ7W9L791hpb9ziYilgJLa8rOKAw/BRzfYNp5wLw65XXPL0XElGEFa9ahnDhsW+UeBKxp3tGZ2VA52ZhZx7n90dsrv+OtGf6CNXKcbMzwTsWsak42Nmr0J4zurm5mMKO9wZjZFpxszKwpPvqz4XCysVHJO0azzrJDuwMwM7PRz0c2Vpkqji58xGK2bfKRjZmZVc7JxszMKudkY2ZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKtSzZSDpG0ipJvZJOqzN+J0mX5fHLJU0qjDs9l6+SdHSh/CJJD0n6VU1b4yRdI+mO/H/3KpfNzMwG1pJkI2kMcD5wLDAN6JY0rabaicD6iJgCnAOcnaedBswCDgGOAS7I7QFcnMtqnQb8MCKmAj/Mr83MrE1adWRzGNAbEXdFxDPAYmBmTZ2ZwMI8fAVwpCTl8sUR8XRE3A305vaIiOuAdXXmV2xrIfD2kVwYMzMrp1XPs5kI3Fd4vRo4vFGdiNgoaQMwPpffUDPtxEHmNyEiHshtPSDpxfUqSZoNzAaYMGECfX199PT0NLVARd1d3aWnKWPcmHGVz2MoHFc5nRhXJ8YEjqus4cY1lP1eWa1KNqpTFk3WaWbaIYmI+cB8gOnTp0dXVxczZswo3c6chXNGIpyGuru6WdS3qNJ5DIXjKqcT4+rEmMBxlTXcuJa9Y9kIRlNfq06jrQb2LbzeB1jTqI6kscCupFNkzUxb60FJe+W29gIeGnLkZmY2bK1KNjcBUyVNlrQj6YL/kpo6S4AT8vBxwLUREbl8Vr5bbTIwFbhxkPkV2zoB+PYILIOZmQ1RS5JNRGwETgGuBm4DLo+IFZLmSnpbrrYAGC+pF/h78h1kEbECuBxYCVwFnBwRmwAkLQKuBw6WtFrSibmtzwBvknQH8Kb82szM2qRV12yIiKXA0pqyMwrDTwHHN5h2HjCvTnndK2IR8Shw5HDiNTOzkeMeBMzMrHJONmZmVjknGzMzq1zTyUbS+CoDMTOz0avMkc19kr4t6bh8+7KZmVlTyiSb/UmdWn4MWCtpvqTXVhOWmZmNJk0nm4h4OCI+HxGvBF5N+lX+JZLuyr+X2b+yKM3MbJs21BsEXpL/XgTcSeoY86f1nlNjZmbW9I86JR0CvAd4N9BH6rr/DyPi/jz+08Av8K/1zcysRpkeBK4DFgHHRcRWfZNFxD2Szh2xyMzMbNQok2z+LD+sbAuSDutPPsXuZ8zMzPqVuWZzZYPyq0YiEDMzG70GPbKRtAPpAWbKj2kuPszsQGBjRbGZmdko0cxptI1sfjJmbWJ5ljq9MZuZmRU1k2wmk45mfgS8rlAewMMR8WQVgZmZ2egxaLKJiHvzoH+0aWZmQzJgspE0PyJm5+GvNKoXEe8b6cDMzGz0GOzI5u7C8J1VBmJmZqPXgMkmIv6lMDyn+nDMzGw0Guw02huaaSQirh2ZcMzMbDQa7DTagibaCOCAEYjFzMxGqQF7EIiIyU38NZVoJB0jaZWk3nq9Q0vaSdJlefxySZMK407P5askHT1Ym5KOlHSrpJ9J+rGkKc3EaGZm1RjqIwZKkTQGOB84FpgGdEuaVlPtRGB9REwBzgHOztNOA2YBhwDHABdIGjNIm18E3h0RhwJfAz5R5fKZmdnABrtmc1tEvDQP38fmngS2EBH7DTKfw4DeiLgrt7UYmAmsLNSZCXwqD18BnJe7x5kJLI6Ip4G7JfXm9higzSA9awdgV2DNIPGZmVmFBrtm86HC8HuGMZ+JwH2F16uBwxvViYiNkjYA43P5DTXTTszDjdo8CVgq6UngceBV9YKSNBuYDTBhwgT6+vro6ekptWAA3V3dpacpY9yYcZXPYygcVzmdGFcnxgSOq6zhxjWU/V5Zg936/OPC8I+GMR/VKas9SmpUp1F5vVOA/W3+HfCnEbFc0keAz5ES0JaVI+YD8wGmT58eXV1dzJgxo+4CDGTOwmrvCu/u6mZR36JK5zEUjqucToyrE2MCx1XWcONa9o5lIxhNfU1fs5G0o6S5ku6Q9ET+/2lJz29i8tXAvoXX+7D1qa3n6kgaSzr9tW6AaeuWS9oT+KOIWJ7LLwNe09RCmplZJcrcIPBF4A3AqcAr8//XAxc0Me1NwFRJkyXtSLrgv6SmzhLghDx8HHBtREQun5XvVpsMTAVuHKDN9cCukg7Kbb0JuK3EcpqZ2Qgr86TOtwMHRsRj+fVKScuBXuCDA02Yr8GcAlwNjAEuiogVkuYCN0fEEtJvei7JNwCsIyUPcr3LSRf+NwInR8QmgHpt5vIPAV+X9Cwp+QwYn5mZVatMslkL7Aw8Vih7AfBAMxNHxFJgaU3ZGYXhp4DjG0w7jzrPzanXZi7/JvDNZuIyM7Pqlemu5hLgKklfYPP1kpOBhr1Bm5mZwdC6q/mnmtd/Sf4BppmZWT2D3fo8uVWBmJnZ6NWS7mrMzGz71vQNApJeROpO5vXAHhR+bNlEdzVmZrYdK3NkcwHwcmAuMA74G+DXpE4zzczMGipz6/NRwEsj4lFJmyLi25JuBr6DE46ZmQ2gzJHNDsCGPNwnaTfSb2z8rBgzMxtQmSObn5Ou1/wQ+B/Ss2T6gNsriMvMzEaRMkc2HwLuycOnAk8BuwHvG+GYzMxslGn6yKb/IWV5+GHSkzXNzMwGVep3NpI+KOkaSSvy/xPz0zTNzMwaKvM7m8+SHrt8LnAvsD/wj8DBwEcric7MzEaFMjcIvB94eUSs7i+QdCVwK042ZmY2gDKn0X6T/2rLHh+5cMzMbDQa7BEDBxRengt8Q9Jn2PyIgY/gH3SamdkgBjuN1gsEhX7QgCNq6rwBOG8kgzIzs9FlsEcMuFdoMzMbtjI3CAAgaT9gIrA6Iu4b+ZDMzGy0afrIRdJekn5EOrX2DeBOSddJ2ruy6MzMbFQoc5rsi6T+0XaPiL2A3YGfAhc2M7GkYyStktQr6bQ643eSdFkev1zSpMK403P5KklHD9amknmSbpd0m6RTSyynmZmNsDKn0V4L7BURvwOIiCckfRS4f7AJJY0hddz5JtKdbDdJWhIRKwvVTgTWR8QUSbOAs4F3SpoGzAIOAfYGfiDpoDxNozbfT7pb7vci4llJLy6xnGZmNsLKHNmsB6bVlB0MPNbEtIcBvRFxV0Q8Aywm9UZQNBNYmIevAI7MXeHMBBZHxNMRcTfpNN5hg7T5V8DciHgWICIeKrGcZmY2wsoc2XyWdFSxgM3d1XwA+GQT004EijcTrAYOb1QnIjZK2gCMz+U31Ew7MQ83avNA0lHRnwEPA6dGxB21QUmaDcwGmDBhAn19ffT09DSxOFvq7uouPU0Z48aMq3weQ+G4yunEuDoxJnBcZQ03rqHs98oq0+vzf0m6E3gX8IfAGqA7Iq5tYvJ6nXVGk3Ualdc7KutvcyfgqYiYLunPgYuAP9mqcsR8YD7A9OnTo6urixkzZtRdgIHMWTin9DRldHd1s6hvUaXzGArHVU4nxtWJMYHjKmu4cS17x7IRjKa+ppJNvuZyETC7yeRSq7/HgX77kJJVvTqrJY0FdgXWDTJto/LVwNfz8DeBLw8hZjMzGyFNXbOJiE3AUcCzQ5zPTcBUSZMl7Ui64L+kps4S4IQ8fBxwbURELp+V71abDEwFbhykzW+RejaA9HRRP03UzKyNylyzOQeYI+nM/jvSmpWvwZwCXA2MAS6KiBWS5gI3R8QSYAFwiaRe0hHNrDztCkmXAyuBjcDJOflRr808y88Al0r6O9Kjq08qE6+ZmY2sMsnmb4CXAH8v6WE2X0+JiNhvsIkjYimwtKbsjMLwU8DxDaadB8xrps1c/hjw5sFiMjOz1iiTbN5TWRRmZjaqlfmdzfXAkcCXSEcTXwLeCCyvIC4zMxtFyhzZfJH0I85T2fw7m9NJv3n54MiHZmZmo0WZZPN24MB8PQRgpaTlpF/0O9mYmVlDZU6jrQV2ril7AfDAyIVjZmajUZkjm0uAqyR9gc0/tDwZ+Iqk/t+0MMQffZqZ2ShWJtn8Zf7/TzXlH85/kG6HPmC4QZmZ2ehSpm+0yVUGYmZmo1eZazZmZmZD4mRjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeValmwkHSNplaReSafVGb+TpMvy+OWSJhXGnZ7LV0k6ukSbX5DUV9UymZlZc1qSbCSNAc4HjgWmAd2SptVUOxFYHxFTgHOAs/O004BZwCHAMcAFksYM1qak6cBulS6YmZk1pVVHNocBvRFxV0Q8AywGZtbUmQkszMNXAEdKUi5fHBFPR8TdpMdQHzZQmzkR/Svw0YqXy8zMmlDm4WnDMRG4r/B6NXB4ozoRsVHSBmB8Lr+hZtqJebhRm6cASyLigZSv6pM0G5gNMGHCBPr6+ujp6Wl+qbLuru7S05Qxbsy4yucxFI6rnE6MqxNjAsdV1nDjGsp+r6xWJZt6e/xosk6j8npHZSFpb+B4YMZgQUXEfGA+wPTp06Orq4sZMwadbCtzFs4pPU0Z3V3dLOpbVOk8hsJxldOJcXViTOC4yhpuXMvesWwEo6mvVafRVgP7Fl7vA6xpVEfSWGBXYN0A0zYqfxkwBeiVdA+ws6TekVoQMzMrr1XJ5iZgqqTJknYkXfBfUlNnCXBCHj4OuDYiIpfPynerTQamAjc2ajMivhsRL4mISRExCfhtvunAzMzapCWn0fI1mFOAq4ExwEURsULSXODmiFgCLAAuyUch60jJg1zvcmAlsBE4OSI2AdRrsxXLY2Zm5bTqmg0RsRRYWlNhw/IPAAANpElEQVR2RmH4KdK1lnrTzgPmNdNmnTpdQ4nXzMxGjnsQMDOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeWcbMzMrHJONmZmVrmWJRtJx0haJalX0ml1xu8k6bI8frmkSYVxp+fyVZKOHqxNSZfm8l9JukjS86pePjMza6wlyUbSGOB84FhgGtAtaVpNtROB9RExBTgHODtPOw2YBRwCHANcIGnMIG1eCvwe8AfAC4CTKlw8MzMbRKuObA4DeiPiroh4BlgMzKypMxNYmIevAI6UpFy+OCKejoi7gd7cXsM2I2JpZMCNwD4VL5+ZmQ2gVclmInBf4fXqXFa3TkRsBDYA4weYdtA28+mz9wJXDXsJzMxsyMa2aD6qUxZN1mlUXi9R1rZ5AXBdRPxP3aCk2cBsgAkTJtDX10dPT0+9qgPq7uouPU0Z48aMq3weQ+G4yunEuDoxJnBcZQ03rqHs98pqVbJZDexbeL0PsKZBndWSxgK7AusGmbZhm5LOBPYE/rJRUBExH5gPMH369Ojq6mLGjBlNL1S/OQvnlJ6mjO6ubhb1Lap0HkPhuMrpxLg6MSZwXGUNN65l71g2gtHU16rTaDcBUyVNlrQj6YL/kpo6S4AT8vBxwLX5mssSYFa+W20yMJV0HaZhm5JOAo4GuiPi2YqXzczMBtGSI5uI2CjpFOBqYAxwUUSskDQXuDkilgALgEsk9ZKOaGblaVdIuhxYCWwETo6ITQD12syzvBC4F7g+3WPANyJibiuW1czMttaq02hExFJgaU3ZGYXhp4DjG0w7D5jXTJu5vGXLZWZmg3MPAmZmVjknGzMzq5yTjZmZVc7JxszMKudkY2ZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpVrWbKRdIykVZJ6JZ1WZ/xOki7L45dLmlQYd3ouXyXp6MHalDQ5t3FHbnPHqpfPzMwaa0mykTQGOB84FpgGdEuaVlPtRGB9REwBzgHOztNOA2YBhwDHABdIGjNIm2cD50TEVGB9btvMzNqkVUc2hwG9EXFXRDwDLAZm1tSZCSzMw1cAR0pSLl8cEU9HxN1Ab26vbpt5mjfkNshtvr3CZTMzs0GMbdF8JgL3FV6vBg5vVCciNkraAIzP5TfUTDsxD9drczzwWERsrFN/C5JmA7Pzy74jjjjiUeCR5herNXro2QPH1TTH1bxOjAkcV1nDjUvv13Bmv38zlVqVbOotSTRZp1F5vaOygepvXRgxH5j/XADSzRExvV7ddnJc5Tiu5nViTOC4yurUuIpadRptNbBv4fU+wJpGdSSNBXYF1g0wbaPyR4DdchuN5mVmZi3UqmRzEzA13yW2I+mC/5KaOkuAE/LwccC1ERG5fFa+W20yMBW4sVGbeZpluQ1ym9+ucNnMzGwQLTmNlq/BnAJcDYwBLoqIFZLmAjdHxBJgAXCJpF7SEc2sPO0KSZcDK4GNwMkRsQmgXpt5lh8DFks6C/hpbrsZ8wev0haOqxzH1bxOjAkcV1mdGtdzlA4EzMzMquMeBMzMrHJONmZmVjknm2yw7nQqnvdFkh6S9KtC2ThJ1+Qud66RtHsul6TP5zh/IenlFcW0r6Rlkm6TtELS/+uQuJ4v6UZJP89xzcnldbsoGqgbpIriGyPpp5Ku7JS4JN0j6ZeSfibp5lzW1vcxz2s3SVdI+r+8nb263XFJOjivp/6/xyX9bQfE9Xd5e/+VpEX5c9D2bauUiNju/0g3GNwJHADsCPwcmNbC+b8OeDnwq0LZZ4HT8vBpwNl5+E+B75F+T/QqYHlFMe0FvDwPvxC4ndQtULvjEtCVh58HLM/zuxyYlcsvBP4qD/81cGEengVcVvF7+ffA14Ar8+u2xwXcA+xRU9bW9zHPayFwUh7eEditE+IqxDcGWEv60WLb4iL9KP1u4AWFber9nbBtlVqOdgfQCX/Aq4GrC69PB05vcQyT2DLZrAL2ysN7Aavy8H8C3fXqVRzft4E3dVJcwM7AraSeIx4Bxta+n6S7FV+dh8fmeqoonn2AH5K6S7oy74A6Ia572DrZtPV9BF6Ud6DqpLhqYjkK+Em742Jz7yrj8rZyJXB0J2xbZf58Gi2p151O3S5uWmhCRDwAkP+/OJe3PNZ8GP4y0lFE2+PKp6p+BjwEXEM6Km3URdEW3SAB/d0gVeFc4KPAs/n1QF0ntTKuAL4v6RalLpqg/e/jAcDDwJfzaccvSdqlA+IqmgUsysNtiysi7gf+Dfg18ABpW7mFzti2muZkkzTdxU0HaGmskrqArwN/GxGPD1S1TlklcUXEpog4lHQkcRjw0gHm3ZK4JL0FeCgibikWtzuu7I8j4uWkHtJPlvS6Aeq2Kq6xpFPHX4yIlwFPkE5PtTuuNLN0/eNtwH8PVrVO2YjGla8PzQQmA3sDu5Dey0bz7cj9mZNN0kx3Oq32oKS9APL/h3J5y2KV9DxSork0Ir7RKXH1i4jHgB7SufJGXRQ16gZppP0x8DZJ95B6IH8D6Uin3XEREWvy/4eAb5ISdLvfx9XA6ohYnl9fQUo+7Y6r37HArRHxYH7dzrjeCNwdEQ9HxO+AbwCvoQO2rTKcbJJmutNptWL3PcUud5YA78t3wbwK2NB/eD+SJInU88JtEfG5DoprT0m75eEXkD6It9G4i6JG3SCNqIg4PSL2iYhJpO3n2oh4d7vjkrSLpBf2D5OuQ/yKNr+PEbEWuE/SwbnoSFIvIW2Nq6CbzafQ+uffrrh+DbxK0s75c9m/rtq6bZXW7otGnfJHuqvkdtL5/4+3eN6LSOdif0f6VnIi6RzrD4E78v9xua5ID427E/glML2imF5LOvT+BfCz/PenHRDXH5K6IPoFaad5Ri4/gNRnXi/p1MdOufz5+XVvHn9AC97PGWy+G62tceX5/zz/rejfttv9PuZ5HQrcnN/LbwG7d0hcOwOPArsWytq93c8B/i9v85cAO7V72yr75+5qzMyscj6NZmZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbs2GS9ClJX213HGVJulDSJ5us2yPppAbjJkmKwg8MzbbijcNsOxURH253DLb98JGNbVf87TuRNKbdMdj2xcnGRj2lh4d9TNIvgCckjZV0mqQ7Jf1G0kpJf1ao/35JP5b0b5LWS7pb0rGF8ZMl/ShPew2wR8383pYfdPVYPv300ppYPpIftPWEpAWSJkj6Xm7vB7njxXrLcVvu8LP/9VhJjyg/sEvSf0taK2mDpOskHVKoe7GkL0paKukJ4IhcdlYev7ukKyU9nJf5Skn71IRwoNKD6zZI+rakcQ3i3DUv1wOS7pd0lpObOdnY9qIbeDOwW6Ru1+8E/oTUSeEc4Kv9HS1mh5OeTbIH6cFZC3K/VJAejnZLHvdpNvdDhaSDSN0P/S2wJ7AU+E7uc6/fO0jPBjoIeCvp4Vv/lNvbATi1wTIsysvR72jgkYi4Nb/+HjCV1P39rcClNdO/C5hHehjej2vG7QB8mfSgsP2AJ4Hzauq8D/ggqefhjcDnG8S5MI+fQno0xVFA3es9th1pd385/vNf1X+kh4d9cJA6PwNm5uH3A72FcTuT+ol7CWlHvBHYpTD+a8BX8/AngcsL43YA7gdmFGJ5d2H810nd7Pe//hvgWw1inAL8Btg5v76U3Ddcnbq75Zh3za8vBr5SU+di4KwG0x8KrC+87gE+U3g9DXiG9DTLSXleY4EJwNPkp0rmut3AsnZvB/5r75/PX9v2oviAKyS9j/QI50m5qIstT4et7R+IiN/mg5r+Ousj4olC3XvZ3M383vl1/7TPSrqPLR+o9WBh+Mk6r7vqLUBE9Eq6DXirpO+Qnrfysrw8Y0hHLceTjqj6H+C2B+nhWVutgyJJOwPnAMeQOsQEeKGkMRGxqc7095Iey73FKUTSkdHzgAc2Hwiyw0Dztu2Dk41tL57rcVbS/sB/kbpqvz4iNik9+bPeQ6dqPQDsLmmXQsLZr9D+GuAPCvMSKRHdP/xFADafStsBWBkRvbn8XaQHbL2RdPS0K7CeLZdpoF53/wE4GDg8ItZKOpTUu3Zx+uJzW/Yj9VL+SE35faQjmz1i81MkzXzNxrZLu5B2vA8DSPoA8PvNTBgR95K6xZ8jaUdJryVdd+l3OfBmSUcqPXzuH0g73/8dodgXk66B/BXp9F2/F+b5PEo67ffPJdt9Iemo6rF84f/MOnXeI2laPgqaC1xROOoBnntk8veBf5f0Ikk7SDpQ0utLxmOjjJONbXciYiXw78D1pFNYfwD8pEQT7yLdQLCOtFP+SqHtVcB7gC+QvvW/FXhrRDwzQrE/kON+DXBZYdRXSKe27ic9WOuGkk2fC7yAFPMNwFV16lxCus6zlvTMlEY3MrwP2DHHsZ70FM69GtS17YSfZ2NmZpXzkY2ZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeWcbMzMrHJONmZmVjknGzMzq9z/BzYjAmBB1wbiAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Draw a sample, reuse the previous instance of the sampler.\n", "start_time = time.time()\n", @@ -220,9 +269,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normal distribution (mu=2.400, sigma=5.100):\n", + "sample type: , element type: float64 , shape: (4321,)\n", + "sample min: -14.4205, max: 20.7960\n", + "time: creation: 0.01026, sampling: 1.60\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4FOXax/HvnYTQQgslNJGugh3sjaA0RbGAEKSoIKKix67gexQ89nLEig2VIiBwLCCgoBQbKEVRAUV6B+kQapL7/WMmsiwpu8nuzmZzf65rr+zOzO78drLZO/M8M8+IqmKMMcYEKs7rAMYYY4oWKxzGGGOCYoXDGGNMUKxwGGOMCYoVDmOMMUGxwmGMMSYoVjhMvkRkoIiMDGJ5FZGG7v03ReTfIcpRR0T2iki8+3imiPQOxWu7rzdFRHqG6vWigYgsEpEWecwfICLvFnIddd3feUJhXscrIrJKRC4r4HND9vkuSorkLzrWiMgqoDRQX1XT3Wm9gW6q2sLDaIWmqn0DWc7dBr1V9as8XmsNkBSKXCIyEGioqt18Xr9dKF47mqhq03zmPxWpLEWdiNyI8xm9MHtaoJ/vWGN7HNEjAfhXYV9EHDH3ey2q/81GM9umpqBi7gumCHseuF9EKuY0U0TOF5G5IrLL/Xm+z7yZIvKkiHwP7APqu9OeEJEf3OadiSJSWUQ+FJHd7mvU9XmNl0VkrTtvvohcFGhwEXlARDaKyAYRudlv3gci8oR7v4qIfC4iO0Vku4h8KyJxIjICqANMdLM+6NP80UtE1gDTc2kSaSAiP7nb5TMRSXbX1UJE1vllWSUil4lIW2AA0Nld30Kf7djbvR8nIv8nIqtFZIuIDBeRCu687Bw9RWSNiGwVkUeC2F4lReQF97mb3eaO0r653W2wxd2uV4vI5SKy1N1uA3xea6CIjBeRj0Rkj4gsEJHT/N+z37IjRWQ3cKP4NUOKyIXuZ2an+3m40Z1+hYj87H4+1rp7bIG814dFZLzftJdF5BX3/o0issLNvlJEbsjldc4Wkdluro0i8pqIJPrMVxHpKyJ/icgOEXldRMSd10BEpovINvd39aHk8HcmItVFZJ+IVPaZ1kxE/haRU4A3gfPcz8xOd/4/n2/3cQcR+cXdTsvdz1rMscIRPeYBM4H7/We4X4aTgFeAysB/gUm+H3CgO9AHKAesdqd1cafXAhoAs4H3gWRgCfCYz/PnAqe780YB40SkVH6h3T+M+4FWQCMgr7bi+4B1QFUgBefLW1W1O7AGuFJVk1T1OZ/nXAKcBLTJ5TV7ADcDNYEMnG2UJ1X9AngK+Mhd32k5LHaje0sF6uM0kb3mt8yFwAnApcCjInIS/PPluzOPCM8CjXG2d0Oc38+jPvOrA6V8pr8DdAOaARe566rvs3wHYBxHfnefikiJXNbdARgPVAQ+9J0hInWAKcCrOL+j04Ff3NnpONu6InAFcJuIXJ3He8w2GrhcRMq764gHrgdGiUhZnN9XO1UtB5zvsz5/mcA9QBXgPJxtfrvfMu2Bs4DT3HVkf2YEeBrnM3IScBww0H8FqroJ52/wep/J3YAxqvob0BeY7X5mcio8ZwPDgQdwttPFwKpc3k+RZoUjujwK3CkiVf2mXwH8paojVDVDVUcDfwBX+izzgaoucucfdqe9r6rLVXUXzhfCclX9SlUzcL5ozsh+sqqOVNVt7vNfBErifCnm53p3Pb+7/TMD81j2MFADOF5VD6vqt5r/YGkDVTVdVffnMn+Ez7r/DVzvfjkV1g3Af1V1haruBfoDXfz2dgap6n5VXQgsxPnCQlW/y+mLBZymROAW4B5V3a6qe3CKWBefxQ4DT7q/xzE4X5Yvq+oeVV0ELAJO9Vl+vqqOd5f/L07ROTeX9zVbVT9V1awctukNwFeqOtr9/WxT1V/c9zRTVX9zn/crTkG4JPfN51DV1cACILvItAT2qeoc93EWcLKIlFbVje77y+l15qvqHPfzuQp4K4f1P6OqO92+sBk4hQ9VXaaq01T1oKr+7W6j3LIPwykW2UUuDRiR3/t09QLec9eVparrVfWPAJ9bpFjhiCKq+jvwOfCw36yaHNmLyLYa5z/SbGtzeMnNPvf35/D4n45mEblPRJaI0+SzE6iA84WVn5p+6/bP6et5YBkw1W2e8H+fOcnpfeU2fzVQgsBy58d/m6/G6YdK8Zm2yef+PgLruK8KlAHmu80uO4Ev3OnZtqlqpns/+8s9198dPttAVbNw9upq5rL+vLbnccDynGaIyDkiMsNtttmF8993oNt5FM4XMEBX9zFuse/svtZGEZkkIifmsv7G4jRzbnKb2Z7KYf05/j5EpJqIjBGR9e5zR+aR/TOgibtH1wrYpao/Bfg+c91+scYKR/R5DOc/Ut+isAE43m+5OsB6n8cFHuZYnP6Mh3D2Hiq5/y3vwtnFz89GnD8Y31w5cv9jvk9V6+PsLd0rIpdmz87tafms33/dh4GtOE0rZbJnuP89+n455/e6/tu8Dk5T2OacFw/YVpwv/qaqWtG9VVDVwhwt9s82EOfAiNo4+XOS1/tei9OkmZNRwATgOFWtgNPeH8jnA5y92xYiUhu4xn0tJ4zql6raCmdP9A+cZrmcDHHnN1LV8jjNnIGu/2mc932q+9xuuT1XVQ8AY3H2vrpz9N5Gfp+ZvLZfTLHCEWVUdRnwEXCXz+TJQGMR6SoiCSLSGWiCs3cSCuVwvhT/BhJE5FGgfIDPHYvTydpERMpwdL/JUUSkvYg0dJtrduO0W2f/Z70Zpy8hWN181v04MN79b30pUMrt1C0B/B9O81u2zUBdyf0ItNHAPSJST0SSONInklGAjP9w9wjeAV4SkWoAIlJLRHLrwwlEMxG51m1Guxs4CMzJ5zk5+RC4TESudz9nlUXkdHdeOWC7qh5w2/K7BvqibvPQTJz+tZWqugRARFJE5Cq3r+MgsJcjnwd/5XA+M3vdvZLbgnhf5dzX3ikitXD6IPIyHKd/6yqcvZNsm4Havp3yfoYCN4nIpeIcXFErtz2oos4KR3R6HCib/UBVt+F0/N0HbAMeBNqr6tYQre9LnD6QpThNMgfIv4koO9sUYDAwHacZanoeizcCvsL5I54NvKGqM915TwP/5zbfHHOAQB5GAB/gNFOUwi24br/O7cC7OHtm6ThNONnGuT+3iciCHF73Pfe1vwFW4myTOwMJJCIXicjePBZ5CGdbzXGbTr4isP6k3HyG0+SzA+e/5Gt9+rkC5vYNXI7zOduO01GdfeDA7cDjIrIHpy9ubJAvPwrnwIlRPtPi3HVtcNd3Ccd2eGe7H6dY7cEpvB8Fse5BwJk4e9GTgI/zWlhVv8fpe1ng9qdkm47Tv7RJRI7523ObtG4CXnLXNYtjWwpiguTfN2mMiVaSw4mMpvBEZDowSlULdVZ9rLITgIwxxoeInIWzh9LB6yzRypqqjDHGJSLDcJoO73YPlTY5sKYqY4wxQbE9DmOMMUGJyT6OKlWqaNWqVSlbtmz+C0dQenq6ZQpQNOayTIGJxkwQnbmiLdP8+fO3qqr/yBXHUtWYuzVr1kxnzJih0cYyBS4ac1mmwERjJtXozBVtmYB5GsB3rDVVGWOMCYoVDmOMMUGxwmGMMSYoVjiMMcYExQqHMcaYoFjhMMYYExQrHMYYY4JihcMYY0xQrHAYY4wJSkwOOWJMVEpNPfrxjBne5DCmkGyPwxhjTFCscBhjjAmKFQ5jjDFBscJhjDEmKFY4jDHGBMUKhzHGmKBY4TDGGBMUKxzGGGOCYoXDGGNMUKxwGGOMCYoVDmOMMUGxwmGMMSYoVjiMMcYExQqHMcaYoESscIhIWxH5U0SWicjDOcwvKSIfufN/FJG67vQSIjJMRH4TkSUi0j9SmY0xxhwrIoVDROKB14F2QBMgTUSa+C3WC9ihqg2Bl4Bn3emdgJKqegrQDLg1u6gYY4yJvEjtcZwNLFPVFap6CBgDdPBbpgMwzL0/HrhURARQoKyIJAClgUPA7sjENsYY4y9ShaMWsNbn8Tp3Wo7LqGoGsAuojFNE0oGNwBrgBVXdHu7AxhhjciaqGv6ViHQC2qhqb/dxd+BsVb3TZ5lF7jLr3MfLcfZUTgRuB24EKgHfAu1UdYXfOvoAfQBSUlKavfvuuyQlJYX7rQVl7969lilA0Zir0JmWLj36cePGhQtEjG6nMInGXNGWKTU1db6qNs9vuUhdc3wdcJzP49rAhlyWWec2S1UAtgNdgS9U9TCwRUS+B5oDRxUOVX0beBugefPmmpSURIsWLcLwVgpu5syZlilA0Zir0JkGDTr6cX7XHA/gGuUxuZ3CJBpzRWOmQESqqWou0EhE6olIItAFmOC3zASgp3u/IzBdnd2hNUBLcZQFzgX+iFBuY4wxfiKyx6GqGSLSD/gSiAfeU9VFIvI4ME9VJwBDgREisgxnT6OL+/TXgfeB3wEB3lfVXyOR25hQ2L4dJk2Cn/66k82HkikVd4gTyqyhzTxo1gxEvE5oTHAi1VSFqk4GJvtNe9Tn/gGcQ2/9n7c3p+nGRLsNG+DJJ2HUKLjkErik1EYurPA7+zJL8nt6PdLSoFw5ePxxaN/e67TGBC5ihcOY4mTMGLjrLujRw+kTr1oVSB1/1DLPf309EybA/ffDyJHwxhuQnOxNXmOCYYXDmBDKyoL+/eGTT2DyZGiex/EpcXFw9dXQpg089BCcey5MmQINGuTyhAA6y42JBBurypgQycqC3r3hu+9g9uy8i4av0qXhlVfg3nvhootgyZLw5jSmsGyPw5gQUIX77oM//oBp06Bs2eBfo29f53mtW8M330C90Mc0JiSscBgTAoMHw9dfw6xZPkXDv2kpAN27w86dTmf5nOTSlEvYH9qgxoSAFQ5jCsotDN/sPJVnFz3Gj81up9K1mwv9sv36wa+/wo2fPsz4po/Z4bom6lgfhzGFsPlQJdIW/x/DT3qa40sVvmiAc17Ha6/B+oNVGLyuY0he05hQsj0OYwpIFfouvYee1afSOnle4V/Qp2mrJDCqSQ3OWfAGbZLn0qTs6sK/vjEhYnscxhTQmC0t+WtfbR6rOyz/hQugfumNPFXvXbovGcDhrPiwrMOYgrDCYUwBbN4Mdy+7gw9OfIaScYfDtp7eNSZRtcROXl53XdjWYUywrHAYUwAPPQQ9qk+lefml+S9cCCLwWqOXeWZNV9YdqBLWdRkTKCscxgTpxx9h6lR49PjhEVlfwzIbuK3WZ9y//LaIrM+Y/FjhMCYIWVnwr3/BU08R0XMs+tcZxY97TmLGjtMjtk5jcmNHVRkThFGjnOLRowdQ2D7xIE4QLBN/kKfqvctDK/rw45m327kdxlO2x2FMgDIyhEcfheefdwYojLTO1WZwWBP4eOvFkV+5MT6scBgToClTqtOggXNtDS/EifJ0vXd4ZEUvMrLsT9d4xz59xgTgwAEYOfJ4/vMfb3O0SZ5LjZLbGLa5rbdBTLFmhcOYALzzDtSvn86553qbQwQG1f2Ap1d3JSPD2yym+LLCYUw+Dh6EZ56Bm25a6XUUAC6u+Cs1Sm5j7Fivk5jiygqHMfkYORJOOw0aN97rdZR/PFJnJE895RzhZUykWeEwJg9ZWc5RVA8+iHPx8NTUIzcPtUmeS6lS8MMPdja5iTwrHMbkYeJEKFfOuyOpciMCAwbAhx/WQdXrNKa4scJhTB6ee87Z24jGE+6uvhr27Enghx+8TmKKGztz3BRf/s1NM2Yc9fD7M+9k05KHufb1HvBGFqSlRTBc/uLi4Npr1zN4cCMuuIB8348xoWJ7HMbk4sW1nbjvuHHES/T2QLdtu4np02G1XefJRJAVDmNysGYNzNp5Gj1SvvQ6Sp7KlMmkZ094/XWvk5jixAqHMTl46y3olvIVSQkHvI6SrzvvhPfeg/TMUl5HMcWEFQ5j/Bw8CEOHwu21PvM6SkDq1YOLLoJhm9p4HcUUE1Y4jPEzfjyccgqcUGat11ECdtddMGTDVXZorokIKxzG+Hn9dbjjDq9TBKdFCziYVYLZu5t6HcUUA1Y4jPHx88+wbh20b+91kuCIQJ8an/PWhiu9jmKKASscxvh44w3o2xcSisIZTqmpRw2DcmP1L/hs6wXsOJzkdTIT46xwGOPas8fp37j5Zq+TFEyVxN1cXvlHRmxu7XUUE+OscBjjGjsWLr4Yqlf3OknB9akxkbc2XGmd5CasrHAY4xo6FHr18jpF4VxScSGZGsf3u072OoqJYVY4jAGWpNdh5Uq4/HKvkxSOCPSp+Tlvb7ROchM+VjiMAd7b1I6ePYtIp3g+uqVMY8LW89mzx+skJlZZ4TDF3uGseEZsal1kO8X9VUvcySUVFzJ+vNdJTKyywmGKvc+3nUfjMmtp3NjrJKFzY/Uv+OADr1OYWBWxwiEibUXkTxFZJiIP5zC/pIh85M7/UUTq+sw7VURmi8giEflNRGw0NxMy721qx83Vp3gdI6SuqDyHxYthxQqvk5hYFJHCISLxwOtAO6AJkCYiTfwW6wXsUNWGwEvAs+5zE4CRQF9VbQq0AA5HIreJfZsPVeK7XafQqdosr6OEVGJcBmlpMHy410lMLIrUHsfZwDJVXaGqh4AxQAe/ZToAw9z744FLRUSA1sCvqroQQFW3qWpmhHKbGDd2SwuurDybsvHRP3x6sG680SkcWdF7HSpTRIlG4EwhEekItFXV3u7j7sA5qtrPZ5nf3WXWuY+XA+cA3YBmQDWgKjBGVZ/LYR19gD4AKSkpzd59912SkqJr6IW9e/dapgBFJNfSpdzxTAd6tF/AOSev5ZhOjqVLj86UnEzS9u3hzRSkvDJpo8b06tWcu+76i9NP3xW5TMX5MxWkaMuUmpo6X1Wb57dcpA4+lBym+Ves3JZJAC4EzgL2AV+LyHxV/fqoBVXfBt4GaN68uSYlJdGiRYvC5g6pmTNnWqYARSLXyoffYsu667l34YuU+C3z2Gt0Dxp0dKa0NFqMHh3WTMHKM9OMGdxxB/z66xncfXcEMxXjz1SwojFTICLVVLUOOM7ncW1gQ27LuP0aFYDt7vRZqrpVVfcBk4Ezw57YxLwxW1rSseosSsTFbsvnDTfAJ59AerrXSUwsCbhwiEjlQqxnLtBIROqJSCLQBZjgt8wEoKd7vyMwXZ12tC+BU0WkjFtQLgEWFyKLMQCM3tKSrtW+zn/BIqx6dbjgAqd4GBMqwexxrBWRz0Sko/vlHzBVzQD64RSBJcBYVV0kIo+LyFXuYkOByiKyDLgXeNh97g7gvzjF5xdggapOCmb9xvhbtAh2ZJTjggq/ex0l7G64AUaN8jqFiSXB9HEcD6QBDwFvi8h4YLiqfhfIk1V1Mk4zk++0R33uHwA65fLckTiH5BoTEqNHQ5dq04mT2B9G9qqr4LbbYMsWqFbN6zQmFgS8x6Gqf6vqK6p6FnAesAUYISIr3D2H48OW0pgQUnUKR1q16V5HiYiyZZ0rGo4b53USEysK2jle3b2VB5YDtYCfczoj3Jho89NPzmCGZyT95XWUiOnaFT780OsUJlYE0zneVESeFpE1wBDgL+BUVW2lqr1wjnQaEKacxoTM6NGQluYMQR7T3EvKkppKq1awbJkNQWJCI5g9jm+AckBHVW2iqs+q6vrsmaq6Chgc4nzGhFRmpnOlv7Q0r5NEVokS0KkTjBnjdRITC4IpHNeoaj9V/cl3ooicnX3ft7PbmGg0axbUqAEnnOB1ksjLbq6yy8qawgqmcHyey/QvQhHEmEjIbqYqjs47zzkR8NdfvU5iirp8D8cVkTic4UDEHXTQt2W4AZARpmzGhNTBg/Dxx/DLL14n8UZcnLPXMWoUnHaa12lMURbIeRwZHBlXyr9IZAFPhjSRMWHy5ZfQtCkcd1wuC6SmRjSPF7p2da6r/vTTTiExpiACKRz1cPYyZgEX+0xX4G9V3R+OYMaEWnFupsp28slQsSJ89x1cfHH+yxuTk3wLh6qudu/aCX6myEpPhylT4NVXvU7ivexOciscpqDyLBwi8raq9nHv53otMVXtEepgxoTShAlw/vlQpYrXSbyXlgbNmjlFNDGoUeeMceS3x7HS5/7ycAYxJpyKfTOVT//N8cAJJ8xg6lRnKBJjgpVn4VDVp33uD8prWWOi1fbtzvkbNuTGEV27OsXUCocpiPyaqloG8iKqWjxGizNF0v/+B61bQ7lyXieJHp06wSOPwL59UKaM12lMUZNfU9XQAF5DgfohyGJMWIweDf365b9ccVKtGpxzDkycCJ07e53GFDX5NVXVi1QQY8Jhwwb4+Wfn3AXjIzWVtI1tGH3HhXR+89/HXm/dmDzYKUAmpo0dC1dfDaVKeZ0k+lxT9Ttm7DydnYfLeh3FFDF5Fg4RWeJzf62IrMnpFv6YxhRMsT+aKg8VEtK5tNICPt5qJ3SY4OTXx3GLz/1u4QxiTKgtXw6rVkHLgA7xKJ7Sqk3n7Y3tudnrIKZIya+P4zuf+7PCH8eY0Bk92jl6KCH7U14MxqIKVvvKs7nlz/vZtAmqV/c6jSkqgrkCYKJ7bfG/RCTd/fkfEbHWYxN1/rmuuDVT5al0/CGurPIDY8d6ncQUJcF0jg8BWgJ3AWe5Py8B3ghDLmMK5bffYO9e5xoUJm9p1aYzerTXKUxREsjouNmuBhqo6k738WIR+RFYBtZEaqJL9t6GDR2ev1aV5tFzMaxcCfXsAHwTgGAKxyagDLDTZ1ppYGNIExlTSKrOtbU/rdIbUm2ItfyUiMukY0dnm/Xv73UaUxTkdzhuy+wbMAL4QkRuEZF2ItIHmAzkOmquMV6YMwdKl4ZTy1rRCFRaGtZcZQJWkCFHBvg9vhV4NjRxjCm8UaOcL0KxEdQCduGFsGMHLFrkXCXRmLzYkCMmpmRkwLhxzhXusMIRsLg4Z8yq0aPhiSe8TmOinXUdmpgyY4ZzTfGGDb1OUvRkN1epep3ERLtgzuMoLyL/FZH5IrLahhwx0Wj0aOdaEyZ4Z54J8fEwd67XSUy0C2aP4w3gTOBxIBm4E1gDvBSGXMYE7eBB+PRTGya8oESsk9wEJpjC0Rq4TlU/AzLdn52B7mFJZkyQpkyB006DmjW9TlJ0paXBRx9BZqbXSUw0C6ZwxAG73Pt7RaQizjkc1ppsooINMVJ4J54IKSnwzTdeJzHRLJgTABfiDDHyNfAt8DqwF1gahlzGBGXPHvjiC3jDBsApGJ8BINN2d2H06FttTEiTq2D2OG4BVrn37wIOABWBHiHOZEzQPvsMLroIKlf2OknR16XadD7+GA4d8jqJiVYB73Go6gqf+38DvcKSyJgCsKOpQqdOqS2ceCJMnQrt23udxkSjoM7jEJGbRWSaiCxyf/YSEQlXOGMCsW0bfP89dOjgdZLY0XXLYEb1+tppwrI2K+MnmPM4ngMeAj4GHnB/3o8NN2I8Nn48tG0LSUleJ4kdnarOZPK2c0jPtMvtmGMFs8dxI3Cpqg5R1cmqOgTnEN2bwpLMmABlj01lQqdq4i7OLb+YiVvtgibmWMEUjj3uzX/a7kCeLCJtReRPEVkmIg/nML+kiHzkzv9RROr6za8jIntF5P4gMpsYt3Yt/P47tGvndZLYk5YyndFbLvU6holC+Q2rXj/7BgwGPhaRViJykoi0BsYRwJnjIhKPc/huO6AJkCYiTfwW6wXsUNWG7mv6N4G9BEwJ5E2Z4mP0aLjuOkhM9DpJ7LmmyrfM3HkaOw5bG6A5Wn5HVS0DFPDtAPfvKWsJvJbP65wNLMs+MktExgAdgMU+y3QABrr3xwOviYioqorI1cAKID2f9ZhiZtQoePllr1PEpvIJ+7is0gI+3nqxHUJpjiIagaEwRaQj0FZVe7uPuwPnqGo/n2V+d5dZ5z5eDpwD7Ae+AlrhdMbvVdUXclhHH6APQEpKSrN3332XpCjrLd27d69lClAguVauLMODD57GRx/NzvkSsUtDe27q3uRkkrZvD+lrFla4M82aX48J35zEi0OWBZ6pCH+mIi3aMqWmps5X1eb5LRfMmeOA09cA1ALWqeraQJ+WwzT/ipXbMoOAl1R1b15H/qrq28DbAM2bN9ekpCRatGgRYLzImDlzpmUKUCC5pk2DG2+Eli1zWW7QoNBmSkujRZSNABjuTOdkJjJ42XhOPLEF1asHmKkIf6YiLRozBSKYw3FriMgsnOarj4HlIvKNiAQypNw64Difx7WBDbktIyIJQAVgO85ex3Misgq4GxggIv0wxZqq00x1ww1eJ4ltpeMPcWXl2Ywd63USE02COapqCM54VZVUtQZQCfgZeDOA584FGolIPRFJBLoAE/yWmQD0dO93BKar4yJVrauqdXE66J9S1fz6VEyMmz3bua74aad5nST2pVX72oZaN0cJpqnqQqCGqh4GUNV0EXkQWJ/fE1U1w91L+BKIB95T1UUi8jgwT1Un4FzffISILMPZ0+gS5HsxxcioUc4QIzZuQfhdVmk+PRbDypVQzy4mbQiucOzAOZR2oc+0E4CdgTxZVScDk/2mPepz/wDQKZ/XGBhgVhPDDh+GsWNhzhyvkxQPJeIy6dQJxoyB/v29TmOiQTCF4zngKxEZCqwGjsc5a/zf4QhmTG6++goaNID6vfyODJ8xw5tAxUBaGtxxhxUO4whmdNx33ENkuwKn4nRup6nq9HCFM+Yo7mB7o5b0p2u5P5xDLExEXHAB7NgBixZB06ZepzFeC6hzXETiRWQY8L2q9lbVy92fVjRMRKVnlmLi1vO5vtpMr6MUK3Fx0KWLXY/cOAIqHKqaiTOgYVZ44xiTt4lbz+Pc8otJSdzhdZTiJTWVtBl9GP3ierSFDbNe3AVzOO5LwCARKRGuMMbkZ/jm1nRLmeZ1jGLpjKS/SJBMftpzktdRjMeCKRx34lyHY4+IrBWRNdk/w5TNmKNsOFiZ2bubck3V77yOUiyJQFq16Yze3NLrKMZjwRxV1S1sKYwJwIebL+PaKt9SNv6A11GKrbSU6aT+8l9ezIT4eK/TGK8EUzhmA/8HpAE1cY6qGgM8GYZcxhxFFYZtasMbjQfnvpBd4jTsTiizluqJ25k1qwotbcej2Ap2yJGWwF3AWe7PS4A3wpDLmKMsWAD7skpyYYV3V2ovAAAY2UlEQVTfvI5S7HVL+Yrhw71OYbwUzB7H1UADVc0+U3yxiPyIM+jhzSFPZoyPYcOgR8pU4iT8lwEwebsh5Sv+82F39izvTLmE/c5EO/myWAlmj2MTUMZvWmlgY+jiGHOsQ4ec8wd6VJ/qdRQDpCTu4JIKCxn3dwuvoxiPBFM4RgBfiMgtItLOvXDSZGC4iLTMvoUnpinOJk+Gk06C+qXtf5RocVONL3hvo13ovbgKpqnqVvfnAL/pfd0bOBdeql/YUMYA/3R2D/v9cXpWngM1PM5j/nF58hxu/fNelu6rTeMy67yOYyIs4D0OVa0XwM2Khgmpvw9VYMaOM+hUdabXUYyPEnGZdEuZxgeb2nodxXggmKYqYyJu1JbLaF95NuUT9nkdxfi5qcYXDNvUmky1r5Hixn7jJmqpwjsbrqBXjcn5L2wirmnZVdQuuZWp25t7HcVEmBUOE7Xm7G7CQS1Bi4q/eB3F5OKm6lN4f5N1khc3wXSOGxNevmd+p6Xxzsb23FJjkl0eNop1qTadh1f0Yds2qFzZ6zQmUmyPw0Sl9P0l+GTrhfSs/qXXUUweKpZI54rKcxg50uskJpKscJio9PVPDbm04gK77kYRcGvNibz1ltMnZYoHKxwmKn3+3YncUnOS1zFMAC6q8CsA337rcRATMdbHYaLO/D2N2Z1eilb15nkdxQRABPr2hSFD4OKL3Yn+IxXbWFYxxfY4TNR5Z8MVXHHBHzagYRHSvTtMmQJbtnidxESCFQ4TVfZmlGLs3y1oe/6fXkcxQahUCa69Ft5/3+skJhKscJioMnJzKy6puJCqlexM8aKmb1946y3IyvI6iQk3KxwmaqjCa+uv4c5an3gdxRTAWWc5ex7z5lXyOooJMyscJmrM3Hk6ipBa8Wevo5gCyO4knzixptdRTJjZUVXGO35H3ry6fhD9an1iZ4oXRe7vMi2jFPct+IQ1p1ajTinrKY9VtsdhosLqAynM2nka3VPsKn9FWVLCAdqc9xevr7/a6ygmjKxwmKjw5oYr6Z4yjaSEA15HMYV0bcvfGbrxcvZmlPI6igkTKxzGc/szExm68XLuqPWp11FMCNSosoeLKy5k+OY2XkcxYWKFw3huzJaWNCu3lEZl1nsdxYTI3bX/x8vrriVLrcMqFlnhMJ5ShRfXXs89tcd7HcWE0EUVfqVs/AG+2H6211FMGFjhMJ6asv0cEiSTVpVsXKpYIgL31B7P4HXXeR3FhIEVDuOp59d25v7jPrJDcGPQ9dVm8nt6PX7fW9frKCbErHAYz8zb3Zjl+2vSuZqNnBqLSsYd5o5an/LC2s5eRzEhZoXDeOb5tV24u/b/KBGX6XUUEyZ31PyUidvOY9Uqr5OYULLCYTyxciV8veNMbqnxuddRTBhVLJHOLTUm8cILXicxoRSxwiEibUXkTxFZJiIP5zC/pIh85M7/UUTqutNbich8EfnN/dkyUplN+LzwAtxS83PKJez3OooJs3uOG8+oUbB5s9dJTKhEpHCISDzwOtAOaAKkiUgTv8V6ATtUtSHwEvCsO30rcKWqngL0BEZEIrMJn3XrYMwYuLf2OK+jmAhISdxBWhoMHux1EhMqkdrjOBtYpqorVPUQMAbo4LdMB2CYe388cKmIiKr+rKob3OmLgFIiUjIiqU1YPPss3HwzVE3c5XUUEyEPPADvvAM7d3qdxISCqIb/8pwi0hFoq6q93cfdgXNUtZ/PMr+7y6xzHy93l9nq9zp9VfWyHNbRB+gDkJKS0uzdd98lKSkpnG8raHv37i3emZYuZevOMtw8qCMfDBpHcvncm6n2JieTtH17ZHIFyDIFJsdMjRvz9NMnUqvWfnr0WO1NruL+9xeA1NTU+araPL/lIjWsek5H6ftXrDyXEZGmOM1XrXNagaq+DbwN0Lx5c01KSqJFixYFChsuM2fOLN6ZBg3i7r/uoHfyRK6d9F7eudLSaDF6dGRyBcgyBSbHTDNmUKsWnHcevPhiPSp5cK2nYv/3F0KRaqpaBxzn87g2sCG3ZUQkAagAbHcf1wY+AXqo6vKwpzVhsfFgMsM3t+bB46Lri85ERqNGcPXV2BFWMSBShWMu0EhE6olIItAFmOC3zASczm+AjsB0VVURqQhMAvqr6vcRymvC4Nk1afRImUr1kju8jmIiLTUVUlN5dFFn3nxuF1vsGk9FWkQKh6pmAP2AL4ElwFhVXSQij4vIVe5iQ4HKIrIMuBfIPmS3H9AQ+LeI/OLeqkUitwmdlSth5OZWDDj+Q6+jGA/VKbWFrilf8+yz+S9rolfELh2rqpOByX7THvW5fwDolMPzngCeCHtAE1aPPgr9an1CtUQ7rKa4G1DnQ07+4FruvRdq1fI6jSkIO3PchN0vv8C0aXDfcWO9jmKiQI2S2+nVCwYO9DqJKaiI7XGY4qt/f/i//4Ny/7OzxI1jwAA44QS480449VScPhBfM2zgy2hmexwmrL7+GpYuhT59vE5ioknFivDvf8O99zoX8zJFixUOEzaHD8O//gUvvgiJiV6nMdHm1lth/XqYNMnrJCZYVjhM2LzR5DVqbphLh8GpxzZFmGKvRAnnn4r774fDWfFexzFBsMJhwmLLFnhidTdebviaXd3PHMs9r6Pdc6nU3fITg9d19DqRCYIVDhMWjzwC3VOmcVLZNV5HMVFMBF5t9ArPrEljzQE7PauosMJhQsf9L/L7M+9k0vCtPFZ3WP7PMcVeozLr+Vftj7nrrzu9jmICZIXDhNSBzBL0/vN+Xm30KhUS0r2OY4qIh+qMZsm+Ony29QKvo5gAWOEwIfXkmm6cVGY111X9xusopggpGXeYNxu/xF1/9WN3Rhmv45h8WOEwIfPr3vq8teFKXmv0itdRTBGUWukX2iTP495lt3sdxeTDCocJiUOH4KY/HuKpeu9Ss+Q2r+OYIurFBm/w9c4z7dyOKGeFw4TEo49CrZJ/06vG5PwXNiYX5RL288GJz9KnD2yz/z+ilo1VZQrOPalvxo7TGbFkAL80f97O2TCFdknFhXROhb59YexY7DMVhWyPwxTKtsPl6fFHf94/8TmqJu7yOo6JEU/Na82yL/5iyAmDbdSBKGSFwxRYlgo3/vEQnarOonXyPK/jmBhSKv4w45oMZOCqnszb3djrOMaPFQ5TYI+v6sGujLI8W/8tr6OYGNSwzAbeaDSY6xc/xg672nBUscJhCmTCBBi66XLGNhlEibhMr+OYGNWx2jdcVfkH0tIgI8PrNCabFQ4TtCVLoHdvGNdkINVL2r+CJrxeaDAEVbjnHq+TmGxWOExQNmyAdu3ghRfg3ApLvI5jioGEuCzGjoXp0+G113JZyB0n7Z+bCSsrHCZgu3Y5RePWW6FHD6/TmOKkQgWYOBGefBI+/dTrNMbO4zABOXAArr0WLrwQHn7Y6zSmOKpfHz7/3PnnpWxZaNXK60TFl+1xmHzt3w8dOkC1avDKK3ZClvFOs2bw8cfQtSt8953XaYov2+MwecouGlWqwPDhEG9X+DRe8Om3uBAYNWoG114L48bBJZd4F6u4sj0Ok6tdu6B9e6ha1SkaCfZvhokSrZ5KZUzNe+nUagcTTxngdZxix74KTI7WrYPLL4eLL4aXX3b3NOxoFRNFWlb6mc9PGcBVvz3Jcxlv0aP6VK8jFRu2x2GOsXAhnH8+dO8Or75qzVMmep1d/g+mn34vA1f15KHlfchU+0qLBNvK5igffACXXeacp/HAA9YRbqJfk7Kr+enM25i75wSu/O1Jdh4u63WkmGdNVQaAffvgXw0/59udpzLz5MdoOmQVDPE6lTGBqZK4my9PfZD7lt/OGfPfYeT3cIFdvjxsbI/D8P33cPrpsC+zFHOb9aVp2VVeRzImaCXiMnml0asMbvg6110Hjz0Ghw97nSo2WeEoxvZcdDmvP5FMx5bbeCbxUT5s8iTlEvZ7HcuYQulQ5Xt+/hnmzoUzz3T+MTKhZYWjGMrKgmHD4MSfhrE7vRS/Nu/FtVW/9TqWMSFTowZMmuRc0rhzZ+jVC7ZuTfQ6VsywPo5iRNUZ72fQIOecjP81fYwDN51O1dF25T4TY1JTEaAT0KZeGZ6oPImbbz6LuXPhoYcgOdnrgEWb7XHEMnek0IxLLmV808c480znP7BHHoHZs210W1M8lE/Yx3NzUxn6yEfsHDGRxim7eOABWLPG62RFlxWOGLbxYDL/WdWdunPGMHhdRwYOhJ9/dgYrjLPfvClmqlbax1sn/Jd5zW4lKwvOOAO6dIFp0yDTrkUWFGuqKsr8z+SeMYNt25xB4MaMgQVzP6Bz1RlMOrU/pyUthw4zvMlpTBSpW3ozL77oHHU1bBj07w8bN0K3btCpk9OhHnfpsX9b5ggrHEVcpsaxYE8jvtx+FlMvds76btMG7rgD2h3uSOn4Q0cWtiFDjHGkplIeuBO4sxwsiqvLiNGtuOHVC9mbWZr2le+lXfKPXFTxNyqX2O112qhjhaMIUYXNm2HePPjxR/hp4XP8tOdEaiZuo3XyXAYMcMaWKlPGfcKrh/J8PWOMo2nZVTzT4B2eafAOS/fVZuK28xiyoQM9/uhPnZJbuOg2OOss53ynJk2gVCmvE3srYoVDRNoCLwPxwLuq+ozf/JLAcKAZsA3orKqr3Hn9gV5AJnCXqn4ZqdyRlpUFW7bA2rXOQIMrVjjX+F6yBJb85Pzn06zcUs4pt4Q7av3B8PJLSEl0r/vdtpOHyY2JDY3LrOO+MuO477hxZGTF8cvehnzb+C2mT4eXXoJly6BB3Eqall1Fg9IbqF9qA/WHPED9+lC7di6jSOfQrFyURaRwiEg88DrQClgHzBWRCaq62GexXsAOVW0oIl2AZ4HOItIE6AI0BWoCX4lIY1WNyu6sw4ed4Tv273d++t7/8cdkNm+G7duPvm3b5tw2LNjIhoOVqZCQznEl/6Z2y8bUrQvNmzsDDp40oCdVS+y08aOMiZCEuCyal19K8wnuF38VOJhcgsXpx7N4X11W7q/OD7tPZuTjsHw5bNoEFStCyr6VpCTucG/bqRDfkwoJ6VRISKd8fDoVpjmXw121qgwrVjh7MCVLHvkZ7ZcwiFS8s4FlqroCQETGAB0A38LRARjo3h8PvCYi4k4fo6oHgZUissx9vdnhCHrZZZCeDhkZzpEWOf3Mbd6hQ05zUpkyR26lSx+5v39/bY4/HipXdo4jr/HpEE4usZvkEntITthNzdO2USvxb0rFu+Mk7AZ+dW8A+Z2/ZH0YxoRdybjDnFFuGWeUW3Zk4ox2gPM9sG0bbLriCTYfqsSmQ8lsOVyRXRlJrD6Qwq7MsuzOKMuuZ2H3bti8uSnx8XBg/VYOZpXgQFYi+7NKEhcf908RSUx0RqjO6ZaQcOy0Bx6Aq68O7zYQVQ3vGgAR6Qi0VdXe7uPuwDmq2s9nmd/dZda5j5cD5+AUkzmqOtKdPhSYoqrj/dbRB+jjPjwBp7lrazjfVwFUwTIFKhpzWabARGMmiM5c0ZbpeFWtmt9CkdrjyKlxxb9i5bZMIM9FVd8G3v7nxUTmqWrzYEKGm2UKXDTmskyBicZMEJ25ojFTICJ1Gtg64Difx7WBDbktIyIJQAVge4DPNcYYEyGRKhxzgUYiUk9EEnE6uyf4LTMB6One7whMV6cdbQLQRURKikg9oBHwU4RyG2OM8RORpipVzRCRfsCXOIfjvqeqi0TkcWCeqk4AhgIj3M7v7TjFBXe5sTgd6RnAHQEeUfV2/otEnGUKXDTmskyBicZMEJ25ojFTviLSOW6MMSZ22FB3xhhjgmKFwxhjTFBiqnCIyPMi8oeI/Coin4hIRZ95/UVkmYj8KSJtIpipk4gsEpEsEWnuM72uiOwXkV/c25uRypRXLneeJ9vKL8NAEVnvs30u9yKHm6Wtuy2WicjDXuXwJyKrROQ3d/vM8yjDeyKyxT0PK3tasohME5G/3J+VoiCTp58nETlORGaIyBL37+5f7nRPt1WBqWrM3IDWQIJ7/1ngWfd+E2AhUBKoBywH4iOU6SScExJnAs19ptcFfvdwW+WWy7Nt5ZdvIHB/FHym4t1tUB/n3P2FQBOvc7nZVgFVPM5wMXCm72cZeA542L3/cPbfoceZPP08ATWAM9375YCl7t+ap9uqoLeY2uNQ1amqmuE+nINzzgf4DFuiqiuB7GFLIpFpiar+GYl1BSOPXJ5tqyj1z3A5qnoIyB4uxwCq+g3OUZC+OgDD3PvDgDAPgBFQJk+p6kZVXeDe3wMsAWrh8bYqqJgqHH5uBqa492sBa33mrXOnea2eiPwsIrNE5CKvw7iiaVv1c5sd3/NwFz6atoc/BaaKyHx3yJ1okaKqG8H5wgSqeZwnWzR8nhCRusAZwI9E77bKU5SPwXgsEfkKqJ7DrEdU9TN3mUdwzvn4MPtpOSwfsuOQA8mUg41AHVXdJiLNgE9FpKmqhuyqMQXMFdZtddSK8sgHDAH+4677P8CLOP8MRFrEtkcBXKCqG0SkGjBNRP5w/9s2x4qKz5OIJAH/A+5W1d1SRIe6LnKFQ1Uvy2u+iPQE2gOXqttwSJiHLckvUy7POQgcdO/Pdwd1bAyErJOzILmI4BAvgeYTkXeAz8ORIQBRO+SNqm5wf24RkU9wmtWioXBsFpEaqrpRRGoAW7wOpKqbs+979XkSkRI4ReNDVf3YnRx12yoQMdVUJc7Foh4CrlLVfT6zom7YEhGpKs51ShCR+m6mFV5mckXFtnL/iLJdA/ye27JhFshwOREnImVFpFz2fZwDQ7zaRv58hw/qCeS2dxsxXn+exNm1GAosUdX/+syKum0VEK9750N5w+nIXQv84t7e9Jn3CM7RMX8C7SKY6Rqc/1oPApuBL93p1wGLcI7SWQBcGeFtlWMuL7eVX74RwG84VyOZANTw8HN1Oc5RMMtxmvk8yeGXqb772Vnofo48yQWMxml2Pex+nnoBlYGvgb/cn8lRkMnTzxNwIU4z2a8+30+Xe72tCnqzIUeMMcYEJaaaqowxxoSfFQ5jjDFBscJhjDEmKFY4jDHGBMUKhzHGmKBY4TDGhzuK6kivcwRLRN4UkX8HuOxMEemdy7y6IqIiUuRODjaRYx8OY2KAqvb1OoMpPmyPwxRZ9l+xI3sEAmMixQqHKVLcixc9JCK/AukikiAiD4vIchHZIyKLReQan+VvFJHvROQFEdkhIitFpJ3P/Hru6MR7RGQaUMVvfVe5F97Z6TbxnOSX5QF3xNV0ERkqIikiMsV9va9yG4XVvaBPe5/HCSKyVUTOdB+PE5FNIrJLRL4RkaY+y34gIkNEZLKIpAOp7rQn3PmVRORzEfnbfc+fi0htvwgNROQn9/U/E5HkXHJWcN/XRnEuhPSEFSpjhcMURWnAFUBFda6/shy4CKgADAJG+o1NdA7O8ClVcC6cM1SODEs6CpjvzvsPR8YNQkQa4wxfcTdQFZgMTHTHrMp2HdAKZ4DKK3GG8h/gvl4ccFcu72G0+z6ytQG2qnvNBvd1GuEMs72AIyM9Z+sKPIlzUaDv/ObFAe8DxwN1gP3Aa37L9MAZHbYmzkjSr+SSc5g7vyHOUOCtgRz7R0wx4vWYJ3azWzA3nKve3ZzPMr8AHdz7N+JciCl7XhmcMYOq43ypZgBlfeaPAka69/8NjPWZFwesB1r4ZLnBZ/7/gCE+j+8EPs0lY0NgD1DGffwh8Gguy1Z0M1dwH38ADPdb5gPgiVyefzqww+fxTOAZn8dNgEM4Vzus664rAUjBGcustM+yacAMrz8HdvP2Zm3EpijyvbASItIDuBfnSw8giaObnDZl31HVfe7ORvYyO1Q13WfZ1RwZRr2m+zj7uVkispajL+S02ef+/hweJ+X0BlR1mYgsAa4UkYnAVTj/0Wf3WTwJdMLZ08lyn1YF2JXTNvAlImWAl4C2QHZTWTkRiVfVzByevxoogV8zHc4eSwlgo891I+LyWrcpHqxwmKLon5E5ReR44B3gUmC2qmaKyC/kfAEmfxuBSiJS1qd41PF5/Q3AKT7rEpyisr7wbwE40lwVByxW1WXu9K44lxS9DGevpgKwg6PfU16jk96Hcz35c1R1k4icDvzs93zfa4zUwRlJdqvf9LU4exxV9MglmY2xPg5T5JXF+RL9G0BEbgJODuSJqroa58JZg0QkUUQuxOmnyDYWuEJELnUvwnMfzhfpDyHKPganz+A2nCaybOXc9WzDaVp7KsjXLYezt7PT7fR+LIdluolIE3fv5HFgvM/eCPDPpUynAi+KSHkRiRORBiJySZB5TIyxwmGKNFVdjHMZ0Nk4zUSnAN8H8RJdcTrPt+N8wQ73ee0/gW7Aqzj/jV+Jc92UQyHKvtHNfT7wkc+s4TjNR+uBxcCcIF96MFAaJ/Mc4IsclhmB0y+yCShF7p34PYBEN8cOYDxQI5dlTTFh1+MwxhgTFNvjMMYYExQrHMYYY4JihcMYY0xQrHAYY4wJihUOY4wxQbHCYYwxJihWOIwxxgTFCocxxpig/D+FYfv0wtPuogAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# Create normal distribution sampler.\n", "mu = 2.4\n", @@ -281,7 +353,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.7.2" } }, "nbformat": 4, From d635094f4c1fe5c311bb1b994e627d5c331a9690 Mon Sep 17 00:00:00 2001 From: woodsp Date: Fri, 12 Apr 2019 14:47:13 -0400 Subject: [PATCH 047/116] Minor spelling and text fixups --- qiskit/aqua/optimization/docplex.ipynb | 39 ++++++++++++++------------ 1 file changed, 21 insertions(+), 18 deletions(-) diff --git a/qiskit/aqua/optimization/docplex.ipynb b/qiskit/aqua/optimization/docplex.ipynb index 77eeb9fb2..e2570c306 100644 --- a/qiskit/aqua/optimization/docplex.ipynb +++ b/qiskit/aqua/optimization/docplex.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# _*Qiskit Aqua: Generatin Ising Hamiltonians from optimization models with DOcplex*_\n", + "# _*Qiskit Aqua: Generating Ising Hamiltonians from optimization models with DOcplex*_\n", "\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorial.\n", "\n", @@ -27,11 +27,11 @@ "metadata": {}, "source": [ "## Introduction\n", - "There has been a growing interest in using quantum computers to find solutions of combinatorial problems. One of heuristic approach for finding solutions of combinatorial problems on quantum computers is a quantum variational approach, such as the Variational Quantum \n", - "Eigensolver (VQE) algorithm (see https://arxiv.org/abs/1802.00171 and the Quantum Approximate Optimization Algorithm (QAOA) (see https://arxiv.org/abs/1411.4028). In order to use a quantum variational approach on quantum computers, first, we need to map a combinatorial problem to an Ising Hamiltonians. However Ising Hamiltonians are complicated and unintuitive. Mapping a combinatorial problem to Ising Hamiltonians is difficult and time-consuming task, which requires specialized knowledge.\n", + "There has been a growing interest in using quantum computers to find solutions of combinatorial problems. A heuristic approach for finding solutions of combinatorial problems on quantum computers is the quantum variational approach, such as the Variational Quantum \n", + "Eigensolver (VQE) algorithm (see https://arxiv.org/abs/1802.00171 and the Quantum Approximate Optimization Algorithm (QAOA) (see https://arxiv.org/abs/1411.4028). In order to use a quantum variational approach on quantum computers, first, we need to map a combinatorial problem to an Ising Hamiltonian. However Ising Hamiltonians are complicated and unintuitive. Mapping a combinatorial problem to Ising Hamiltonians can be a difficult and time-consuming task, requiring specialized knowledge.\n", "\n", - "In this tutorial, we introduce a translator to automatically generate Ising Hamiltonians from classical optimization models. We will explain about classical optimization models later. The translator dramatically simplifies the task of designing and implementing quantum-computing-based solutions for optimization problems by automatically generating Ising Hamiltoniansfor different optimization problems. With the translator, All a user has to do is to write optimization models using DOcplex (see https://cdn.rawgit.com/IBMDecisionOptimization/docplex-doc/master/docs/index.html). DOcplex is a python library for optimization problems.\n", - "Then the translator will automatically generate Ising Hamiltonians from the models. Optimization models are short and intuitive. It is easier to write optimization models compared to writing Ising Hamiltonians manually. \n", + "In this tutorial, we introduce a translator to automatically generate Ising Hamiltonians from classical optimization models. We will explain about classical optimization models later. The translator dramatically simplifies the task of designing and implementing quantum-computing-based solutions, for optimization problems, by automatically generating Ising Hamiltonians for different optimization problems. With the translator, all a user has to do is to write optimization models using DOcplex (see https://cdn.rawgit.com/IBMDecisionOptimization/docplex-doc/master/docs/index.html). DOcplex is a python library for optimization problems.\n", + "Then the translator will automatically generate Ising Hamiltonians from the models. Optimization models are short and intuitive. It is much easier to write optimization models compared to writing Ising Hamiltonians manually. \n", "\n", "The quantum variational approach works with the translator in Qiskit Aqua as follows:\n", "1. Write an optimization model of the formulation with DOcplex.\n", @@ -40,16 +40,16 @@ "\n", "\n", "### Details of Optimization Models\n", - "For simplicity, we can generate Ising Hamiltonian from the following optimization models now.\n", + "The translator supports the generation of an Ising Hamiltonian from the following optimization model elements:\n", "- Binary decision variables. \n", "- Linear and quadratic terms in objective functions.\n", "- Only equality constraints. \n", "\n", - "Input models are validated before transormation. If the model containts elements that are not from the supported set, an error will be raised.\n", + "Input models are validated before transformation. If the model contains elements that are not from the supported set, an error will be raised.\n", "\n", - "Even though there are restrictions, this type of optimization model can handle the following optimization problems, maxcut, tsp and etc.\n", - "They are typical optimization problems. The usage examples of the translator for Maxcut and TSP are written in the following link.\n", - "- [Qiskit Aqua: Experimenting with MaxCut problem and Traveling Salesman problem with variational quantum eigensolve](maxcut_and_tsp.ipynb)" + "Even though there are restrictions, this type of optimization model can handle optimization problems such as maxcut, traveling salesman etc.\n", + "These are typical optimization problems. Examples of the translator being used for Maxcut and TSP problems can be found in the following tutorial:\n", + "- [Qiskit Aqua: Experimenting with MaxCut problem and Traveling Salesman problem with variational quantum eigensolver](maxcut_and_tsp.ipynb)" ] }, { @@ -57,7 +57,8 @@ "metadata": {}, "source": [ "### A Usage Example: Maximize the number of variables by taking into account constraints\n", - "The following is a toy example of a maximization problem with constrains.\n", + "The following is a toy example of a maximization problem with constraints.\n", + "\n", "\\begin{aligned}\n", " & \\text{maximize}\n", " & \\sum_{i} x_{i}\\\\\n", @@ -70,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -94,14 +95,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Create an optimization model of the above problem using DOcplex\n", + "### Creating an optimization model of the above problem using DOcplex\n", "An optimization model of the problem with DOcplex is written as follows. \n", - "An instance of `Model` is created and variables for the model are created in the first paragraph. Then object function is written in the second paragraph. The objective function is a function that we would like to minimize (or maximize). Finally constrains are written in the third paragraph. " + "* First an instance of `Model` is created and variables for the model are defined. \n", + "* Next an objective function is written and passed to the model. The objective function is a function that we would like to minimize (or maximize).\n", + "* Finally constraints are added. " ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": { "scrolled": true }, @@ -137,11 +140,11 @@ "mdl = Model(name='max_vars')\n", "x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(1,5)}\n", "\n", - "# Object function\n", + "# Objective function\n", "max_vars_func = mdl.sum(x[i] for i in range(1,5))\n", "mdl.maximize(max_vars_func)\n", "\n", - "# Constrains\n", + "# Constraints\n", "mdl.add_constraint(mdl.sum(i*x[i] for i in range(1,5)) == 3)\n", "\n", "print(mdl.export_to_string())" @@ -284,7 +287,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.1" } }, "nbformat": 4, From ab744319f5094868444e190c1fe5a41200d4b497 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Fri, 12 Apr 2019 19:58:22 +0100 Subject: [PATCH 048/116] A simple tutorial for the Qiskit Finance data loading --- .../finance/generating_random_variates.ipynb | 159 +++++++++--------- .../finance/data_providers/time_series.ipynb | 54 ++---- 2 files changed, 99 insertions(+), 114 deletions(-) diff --git a/qiskit/aqua/finance/generating_random_variates.ipynb b/qiskit/aqua/finance/generating_random_variates.ipynb index 986d9edbb..71f0f2faa 100644 --- a/qiskit/aqua/finance/generating_random_variates.ipynb +++ b/qiskit/aqua/finance/generating_random_variates.ipynb @@ -17,7 +17,8 @@ "\n", "***\n", "### Contributors\n", - "Albert Akhriev[1], Jakub Marecek[1], Stephen Wood[1], Marco Pistoia[1]\n", + "Albert Akhriev[1], Jakub Marecek[1], Marco Pistoia[1]\n", + "\n", "### Affliation\n", "- [1]IBMQ" ] @@ -26,83 +27,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Uniformly-distributed scalars and vectors\n", - "\n", - "Functions in the base class \\textbf{UnivariateDistribution}\n", - "\n", - "```python\n", - "def uniform_rand_float64(self, size: int, vmin: float, vmax: float) -> np.ndarray:\n", - " \"\"\"\n", - " Generates a vector of random float64 values in the range [vmin, vmax].\n", - " :param size: length of the vector.\n", - " :param vmin: lower bound.\n", - " :param vmax: upper bound.\n", - " :return: vector of random values.\n", - " \"\"\"\n", - " assert sys.maxsize == np.iinfo(np.int64).max # sizeof(int) == 64 bits\n", - " assert isinstance(size, int) and size > 0\n", - " assert isinstance(vmin, float) and isinstance(vmax, float) and vmin <= vmax\n", - " nbits = 7 * 8 # nbits > mantissa of float64\n", - " bit_str_len = (nbits * size + self.num_target_qubits - 1) // self.num_target_qubits\n", - " job = execute(self.circuit, self.backend, shots=bit_str_len, memory=True)\n", - " bit_str = ''.join(job.result().get_memory())\n", - " scale = float(vmax - vmin) / float(2**nbits - 1)\n", - " return np.array([vmin + scale * float(int(bit_str[i:i+nbits], 2))\n", - " for i in range(0, nbits * size, nbits)], dtype=np.float64)\n", - "```\n", - "\n", - "```python\n", - "def uniform_rand_int64(self, size: int, vmin: int, vmax: int) -> np.ndarray:\n", - " \"\"\"\n", - " Generates a vector of random int64 values in the range [vmin, vmax].\n", - " :param size: length of the vector.\n", - " :param vmin: lower bound.\n", - " :param vmax: upper bound.\n", - " :return: vector of random values.\n", - " \"\"\"\n", - " assert sys.maxsize == np.iinfo(np.int64).max # sizeof(int) == 64 bits\n", - " assert isinstance(size, int) and size > 0\n", - " assert isinstance(vmin, int) and isinstance(vmax, int) and vmin <= vmax\n", - " assert abs(vmin) <= 2**52 and abs(vmax) <= 2**52 # 52 == mantissa of float64\n", - " return np.rint(self.uniform_rand_float64(size, float(vmin), float(vmax))).astype(np.int64)\n", - "```\n", - "\n", - "Function in the base class \\textbf{NormalDistribution}\n", - "\n", - "```python\n", - "def normal_rand_float64(self, size: int) -> np.ndarray:\n", - " \"\"\"\n", - " Draws a sample vector from standard normal distribution (mu=0, std=1)\n", - " using Box-Muller method.\n", - " \"\"\"\n", - " EPS = np.sqrt(np.finfo(np.float64).tiny)\n", - " assert isinstance(size, int) and size > 0\n", - " rand_vec = np.zeros((size,), dtype=np.float64)\n", - "\n", - " # Generate array of uniformly distributed samples.\n", - " n = 2 * size\n", - " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", - "\n", - " x1 = 0.0 # first sample in a pair\n", - " c = 0 # counter\n", - " for d in range(size):\n", - " r2 = 2.0\n", - " while r2 >= 1.0 or r2 < EPS:\n", - " # Regenerate array of uniformly distributed samples upon shortage.\n", - " if c > n:\n", - " c = 0\n", - " n = max(((size // 10) // 2) * 2, 2)\n", - " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", - "\n", - " x1 = 2.0 * x[c, 0] - 1.0 # first sample in a pair\n", - " x2 = 2.0 * x[c, 1] - 1.0 # second sample in a pair\n", - " r2 = x1 * x1 + x2 * x2\n", - " c += 1\n", - "\n", - " f = np.sqrt(np.abs(-2.0 * np.log(r2) / r2))\n", - " rand_vec[d] = f * x1\n", - " return rand_vec\n", - "```" + "### Uniformly-distributed scalars and vectors\n" ] }, { @@ -329,6 +254,84 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Background\n", + "\n", + "In order to understand the implementation, it may be useful to see:\n", + "\n", + "Functions in the base class *UnivariateDistribution*\n", + "\n", + "```python\n", + "def uniform_rand_float64(self, size: int, vmin: float, vmax: float) -> np.ndarray:\n", + " \"\"\"\n", + " Generates a vector of random float64 values in the range [vmin, vmax].\n", + " :param size: length of the vector.\n", + " :param vmin: lower bound.\n", + " :param vmax: upper bound.\n", + " :return: vector of random values.\n", + " \"\"\"\n", + " nbits = 7 * 8 # nbits > mantissa of float64\n", + " bit_str_len = (nbits * size + self.num_target_qubits - 1) // self.num_target_qubits\n", + " job = execute(self.circuit, self.backend, shots=bit_str_len, memory=True)\n", + " bit_str = ''.join(job.result().get_memory())\n", + " scale = float(vmax - vmin) / float(2**nbits - 1)\n", + " return np.array([vmin + scale * float(int(bit_str[i:i+nbits], 2))\n", + " for i in range(0, nbits * size, nbits)], dtype=np.float64)\n", + "```\n", + "\n", + "```python\n", + "def uniform_rand_int64(self, size: int, vmin: int, vmax: int) -> np.ndarray:\n", + " \"\"\"\n", + " Generates a vector of random int64 values in the range [vmin, vmax].\n", + " :param size: length of the vector.\n", + " :param vmin: lower bound.\n", + " :param vmax: upper bound.\n", + " :return: vector of random values.\n", + " \"\"\"\n", + " return np.rint(self.uniform_rand_float64(size, float(vmin), float(vmax))).astype(np.int64)\n", + "```\n", + "\n", + "Function in the base class *NormalDistribution*:\n", + "\n", + "```python\n", + "def normal_rand_float64(self, size: int) -> np.ndarray:\n", + " \"\"\"\n", + " Draws a sample vector from standard normal distribution (mu=0, std=1)\n", + " using Box-Muller method.\n", + " \"\"\"\n", + " EPS = np.sqrt(np.finfo(np.float64).tiny)\n", + " assert isinstance(size, int) and size > 0\n", + " rand_vec = np.zeros((size,), dtype=np.float64)\n", + "\n", + " # Generate array of uniformly distributed samples.\n", + " n = 2 * size\n", + " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", + "\n", + " x1 = 0.0 # first sample in a pair\n", + " c = 0 # counter\n", + " for d in range(size):\n", + " r2 = 2.0\n", + " while r2 >= 1.0 or r2 < EPS:\n", + " # Regenerate array of uniformly distributed samples upon shortage.\n", + " if c > n:\n", + " c = 0\n", + " n = max(((size // 10) // 2) * 2, 2)\n", + " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", + "\n", + " x1 = 2.0 * x[c, 0] - 1.0 # first sample in a pair\n", + " x2 = 2.0 * x[c, 1] - 1.0 # second sample in a pair\n", + " r2 = x1 * x1 + x2 * x2\n", + " c += 1\n", + "\n", + " f = np.sqrt(np.abs(-2.0 * np.log(r2) / r2))\n", + " rand_vec[d] = f * x1\n", + " return rand_vec\n", + "```" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index 5938dcdb5..aed94d68d 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -33,42 +33,17 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": { - "scrolled": false + "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python37.zip', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/lib-dynload', '', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/sympy-1.3-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/scipy-1.2.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/psutil-5.6.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/ply-3.11-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/Pillow-5.4.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/numpy-1.16.2-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/networkx-2.2-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/marshmallow_polyfield-3.2-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/marshmallow-2.19.1-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/jsonschema-2.6.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/mpmath-1.1.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/decorator-4.4.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pyeda-0.28.0-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/dlx-1.0.4-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/cvxopt-1.2.3-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/scikit_learn-0.20.3-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/git/qiskit-aer', '/Users/jmarecek/git/qiskit-ignis', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/requests-2.21.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/requests_ntlm-1.1.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/urllib3-1.24.1-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/idna-2.8-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/chardet-3.0.4-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/ntlm_auth-1.2.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/cryptography-2.6.1-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/six-1.12.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/cffi-1.12.2-py3.7-macosx-10.7-x86_64.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/asn1crypto-0.24.0-py3.7.egg', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pycparser-2.19-py3.7.egg', '/Users/jmarecek/git/qiskit-aqua', '/Users/jmarecek/git/qiskit', '/Users/jmarecek/git/qiskit-terra', '/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/IPython/extensions', '/Users/jmarecek/.ipython', '/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence', '/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence', '/Users/jmarecek/git/qiskit-tutorials/qiskit/aqua/artificial_intelligence']\n" - ] - }, - { - "ename": "ModuleNotFoundError", - "evalue": "No module named 'drivers'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetcwd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mdrivers\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAer\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'drivers'" - ] - } - ], + "outputs": [], "source": [ - "import os, sys\n", - "sys.path.append(os.getcwd())\n", - "print(sys.path)\n", - "from drivers import *\n", - "\n", - "from qiskit import Aer\n", - "from qiskit_aqua import run_algorithm, QuantumInstance\n", - "\n", - "# setup aqua logging\n", - "import logging\n", - "from qiskit_aqua import set_aqua_logging" + "from qiskit.aqua.input.finance import *\n", + "from qiskit.aqua.input.finance.wikipedia import StockMarket\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\",category=DeprecationWarning)\n", + "import datetime" ] }, { @@ -76,7 +51,14 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "wiki = WikipediaDriver(token = \"\",\n", + " tickers = [\"GOOG\"],\n", + " stockmarket = StockMarket.NASDAQ.value,\n", + " start = datetime.datetime(2016,1,1),\n", + " end = datetime.datetime(2016,1,30))\n", + "wiki.run()" + ] }, { "cell_type": "markdown", @@ -90,9 +72,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:localqiskit]", + "display_name": "Python 3", "language": "python", - "name": "conda-env-localqiskit-py" + "name": "python3" }, "language_info": { "codemirror_mode": { From 6bb134068f4fe1a1c756373deb613df5ffe1fdbf Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Fri, 12 Apr 2019 20:29:33 +0100 Subject: [PATCH 049/116] Updates to the random variates notebook --- .../finance/generating_random_variates.ipynb | 66 +++++++++++++++++-- .../finance/data_providers/time_series.ipynb | 44 +++++++++++-- 2 files changed, 101 insertions(+), 9 deletions(-) diff --git a/qiskit/aqua/finance/generating_random_variates.ipynb b/qiskit/aqua/finance/generating_random_variates.ipynb index 71f0f2faa..f14f562b4 100644 --- a/qiskit/aqua/finance/generating_random_variates.ipynb +++ b/qiskit/aqua/finance/generating_random_variates.ipynb @@ -27,12 +27,46 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Uniformly-distributed scalars and vectors\n" + "## Introduction\n", + "\n", + "While classical computers use only pseudo-random routines, quantum computers\n", + "can generate true random variates.\n", + "For example, the measurement of a quantum superposition is intrinsically random,\n", + "as suggested by Born's rule.\n", + "Consequently, some of the\n", + "best random-number generators are based on such quantum-mechanical effects.\n", + "Further, with a logarithmic amount of random bits, quantum computers can produce\n", + "linearly many more bits, which is known as \n", + "randomness expansion protocols. \n", + "\n", + "In practical applications, one wishes to use random variates of well-known\n", + "distributions, rather than random bits.\n", + "In this notebook, we illustrate ways of generating random variates of several popular\n", + "distributions on IBM Q.\n", + "\n", + "## Random Bits and the Bernoulli distribution\n", + "\n", + "It is clear that there are many options for generating Bernoulli-distributed scalars (i.e. either 0 or 1). Starting from a simple circuit such as a Hadamard gate followed by measurement, one can progress to\n", + "Bernoulli-distributed vectors.\n", + "\n", + "By addition of such random variates, we could get binomial distributions. \n", + "By multiplication we could get geometric distributions.\n", + "Both may lead to unacceptable circuit depth, though.\n", + "\n", + "\n", + "## Uniformly-distributed scalars and vectors\n", + "\n", + "It is clear that there are many options for approximating uniformly-distributed scalars\n", + "by the choice of an integer from a finite range uniformly at random,\n", + "e.g., by a binary-code construction from the Bernoulli-distributed vectors.\n", + "In the following snippet, we generate random bits,\n", + "which we then convert using the binary-code construction, up to the \n", + "machine precision of a classical computer." ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -62,7 +96,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Uniform distribution of floating point numbers." + "### Uniform distribution over floating point numbers." ] }, { @@ -129,7 +163,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Uniform distribution of integer numbers." + "### Uniform distribution over integers." ] }, { @@ -189,7 +223,23 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "#### Normal distribution" + "## Normal distribution\n", + "\n", + "To generate random variates with a standard normal distribution using two independent \n", + "samples $u_1, u_2$ of the uniform distribution on the unit interval [0, 1], one can\n", + "consider the Box-Muller transform to obtain a 2-vector:\n", + "\n", + "\\begin{align}\n", + "\\begin{bmatrix}\n", + "%R\\cos(\\Theta )=\n", + "{\\sqrt {-2\\ln u_{1}}}\\cos(2\\pi u_{2}) \\\\\n", + "% R\\sin(\\Theta )=\n", + "{\\sqrt {-2\\ln u_{1}}}\\sin(2\\pi u_{2})\n", + "\\end{bmatrix},\n", + "\\end{align}\n", + "\n", + "wherein we have two independent samples of the standard normal distribution.\n", + "In IBM Q, this is implemented as follows: " ] }, { @@ -258,6 +308,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "Using basic linear algebra, we can correlate multivariate variables. Indeed, when $L$ is \n", + "the left Cholesky factor of the $n \\times n$ covariance matrix $\\Sigma= L L^T$,\n", + "and $\\mu$ is an $n$-vector,\n", + "and $x$ is an $n$-vector distributed according to the standard normal distribution,\n", + "then $\\mu + Lx$ is a random sample from $N(\\mu, \\Sigma)$.\n", + "\n", "## Background\n", "\n", "In order to understand the implementation, it may be useful to see:\n", diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index aed94d68d..95b7ea478 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -33,11 +33,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jmarecek/git/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", + " 'functionality and more.', DeprecationWarning)\n" + ] + } + ], "source": [ "from qiskit.aqua.input.finance import *\n", "from qiskit.aqua.input.finance.wikipedia import StockMarket\n", @@ -48,9 +57,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "KeyError", + "evalue": "'close'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2656\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2657\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2658\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'close'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2016\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m end = datetime.datetime(2016,1,30))\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mwiki\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/git/qiskit-aqua/qiskit/aqua/input/finance/wikipedia/wikipediadriver.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mcnt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tickers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquandl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"WIKI/\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart_date\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend_date\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_end\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"close\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2925\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2926\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2927\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2928\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2929\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2657\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2658\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2659\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2660\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2661\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: 'close'" + ] + } + ], "source": [ "wiki = WikipediaDriver(token = \"\",\n", " tickers = [\"GOOG\"],\n", From a8c8fef4777f4b8c0eb9d0f1aa23ac273cd0708e Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Fri, 12 Apr 2019 20:35:15 +0100 Subject: [PATCH 050/116] A bugfix --- .../finance/data_providers/time_series.ipynb | 44 ++----------------- 1 file changed, 4 insertions(+), 40 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index 95b7ea478..aed94d68d 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -33,20 +33,11 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jmarecek/git/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", - " 'functionality and more.', DeprecationWarning)\n" - ] - } - ], + "outputs": [], "source": [ "from qiskit.aqua.input.finance import *\n", "from qiskit.aqua.input.finance.wikipedia import StockMarket\n", @@ -57,36 +48,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "KeyError", - "evalue": "'close'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2656\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2657\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2658\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mKeyError\u001b[0m: 'close'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdatetime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2016\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m end = datetime.datetime(2016,1,30))\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mwiki\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/git/qiskit-aqua/qiskit/aqua/input/finance/wikipedia/wikipediadriver.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mcnt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tickers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0md\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquandl\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"WIKI/\"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart_date\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend_date\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_end\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 139\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"close\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 2925\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2926\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2927\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2928\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2929\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/localqiskit/lib/python3.7/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 2657\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2658\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2659\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2660\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2661\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mindexer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mKeyError\u001b[0m: 'close'" - ] - } - ], + "outputs": [], "source": [ "wiki = WikipediaDriver(token = \"\",\n", " tickers = [\"GOOG\"],\n", From 401e3dbcda972de955b785049c41c0aeb7aeb626 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 16 Apr 2019 00:17:17 +0200 Subject: [PATCH 051/116] move finance tutorials to qiskit / finance and add new tutorials as well --- .../european_call_option_pricing.ipynb | 490 ------ .../aqua/finance/fixed_income_pricing.ipynb | 346 ---- qiskit/aqua/finance/index.ipynb | 50 - .../portfolio_optimization.ipynb | 85 +- qiskit/finance/qiskit_finance.ipynb | 78 + .../asian_barrier_spread_pricing.ipynb | 631 ++++++++ .../simulation/basket_option_pricing.ipynb | 480 ++++++ .../simulation/bull_spread_pricing.ipynb | 516 ++++++ .../simulation/credit_risk_analysis.ipynb | 1386 +++++++++++++++++ .../european_call_option_pricing.ipynb | 515 ++++++ .../european_put_option_pricing.ipynb | 515 ++++++ .../simulation/fixed_income_pricing.ipynb | 351 +++++ .../simulation/iron_condor_pricing.ipynb | 408 +++++ .../finance/simulation/option_pricing.ipynb | 90 ++ 14 files changed, 5026 insertions(+), 915 deletions(-) delete mode 100644 qiskit/aqua/finance/european_call_option_pricing.ipynb delete mode 100644 qiskit/aqua/finance/fixed_income_pricing.ipynb delete mode 100644 qiskit/aqua/finance/index.ipynb rename qiskit/{aqua/finance => finance/optimization}/portfolio_optimization.ipynb (84%) create mode 100644 qiskit/finance/qiskit_finance.ipynb create mode 100644 qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb create mode 100644 qiskit/finance/simulation/basket_option_pricing.ipynb create mode 100644 qiskit/finance/simulation/bull_spread_pricing.ipynb create mode 100644 qiskit/finance/simulation/credit_risk_analysis.ipynb create mode 100644 qiskit/finance/simulation/european_call_option_pricing.ipynb create mode 100644 qiskit/finance/simulation/european_put_option_pricing.ipynb create mode 100644 qiskit/finance/simulation/fixed_income_pricing.ipynb create mode 100644 qiskit/finance/simulation/iron_condor_pricing.ipynb create mode 100644 qiskit/finance/simulation/option_pricing.ipynb diff --git a/qiskit/aqua/finance/european_call_option_pricing.ipynb b/qiskit/aqua/finance/european_call_option_pricing.ipynb deleted file mode 100644 index 8b909fa9c..000000000 --- a/qiskit/aqua/finance/european_call_option_pricing.ipynb +++ /dev/null @@ -1,490 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Pricing European Call Options*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Stefan Woerner[1], Daniel Egger[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", - "### Affliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "
\n", - "Suppose a European call option with strike price $K$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", - "The corresponding payoff function is defined as:\n", - "
\n", - "
\n", - "$$\\max\\{S - K, 0\\}$$\n", - "
\n", - "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", - "
\n", - "
\n", - "$$\\mathbb{E}\\left[ \\max\\{S - K, 0\\} \\right]$$\n", - "
\n", - "as well as the corresponding $\\Delta$, i.e., the derivative of the option price with respect to the spot price, defined as:\n", - "
\n", - "
\n", - "$$\n", - "\\Delta = \\mathbb{P}\\left[S \\geq K\\right]\n", - "$$\n", - "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue, EuropeanCallDelta\n", - "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncertainty Model\n", - "\n", - "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", - "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", - "The unitary operator corresponding to the circuit factory implements the following: \n", - "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", - "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", - "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# number of qubits to represent the uncertainty\n", - "num_uncertainty_qubits = 3\n", - "\n", - "# parameters for considered random distribution\n", - "S = 2.0 # initial spot price\n", - "vol = 0.4 # volatility of 40%\n", - "r = 0.05 # annual interest rate of 4%\n", - "T = 40 / 365 # 40 days to maturity\n", - "\n", - "# resulting parameters for log-normal distribution\n", - "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", - "sigma = vol * np.sqrt(T)\n", - "mean = np.exp(mu + sigma**2/2)\n", - "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", - "stddev = np.sqrt(variance)\n", - "\n", - "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", - "low = np.maximum(0, mean - 3*stddev)\n", - "high = mean + 3*stddev\n", - "\n", - "# construct circuit factory for uncertainty model\n", - "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot probability distribution\n", - "x = uncertainty_model.values\n", - "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", - "plt.ylabel('Probability ($\\%$)', size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Payoff Function\n", - "\n", - "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K$ and then increases linearly.\n", - "The implementation uses a comparator, that flips an ancilla qubit from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K$, and this ancilla is used to control the linear part of the payoff function.\n", - "\n", - "The linear part itself is then approximated as follows.\n", - "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", - "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", - "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", - "\n", - "We can easily construct an operator that acts as \n", - "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", - "using controlled Y-rotations.\n", - "\n", - "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", - "$\\sin^2(a*x+b)$.\n", - "Together with the approximation above, this allows to approximate the values of interest.\n", - "The smaller we choose $c_{approx}$, the better the approximation.\n", - "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", - "\n", - "For more details on the approximation, we refer to:\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price = 2\n", - "\n", - "# set the approximation scaling for the payoff function\n", - "c_approx = 0.25\n", - "\n", - "# construct circuit factory for payoff function\n", - "european_call = EuropeanCallExpectedValue(\n", - " uncertainty_model,\n", - " strike_price=strike_price,\n", - " c_approx=c_approx\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYVOX5xvHvLRY6IgghESGaX2I0GuOaWGKioBGNJioi2BuKGDVqIiaKEUQxir0hFgJi0LWAhQQLPZZYwBiNiIFIEVARXMuySH1+f7xnZRhmd2bLzJmz+3yua67dc+ac2XuGYd45b5WZ4ZxzztXWFnEHcM45l2xekDjnnKsTL0icc87ViRckzjnn6sQLEuecc3XiBYlzzrk68YLEFS1JgyVZym2ppHGSdo4x008lvSHpK0kW7WshqVTSiijn6VWcOzrt+VTe7i/ok9iYp5+kozPsXyDpxjgyuWTaMu4AzmXxOXBY9PtOwNXAFEm7mdnKGPLcAywDegCro33nAr8CTgWWAP+r5vw5wBlp+5bVc8Zc9QP+AzyZtv8YYEXh47ik8oLEFbt1ZvZK9PsrkhYBLwC/BB6LIc8uwL1mNiNt33tmNi6H81emPJ+iZGb/ijuDSxav2nJJMyv62RVA0n6Sno6qvVZKelPSSZUHS9ouqoY6LfVBFMyXdHPKvu6SXo2O/1jScEkto/sOiqqymgC3RVVSoyUtAPoCP6qsqqrtE6v8G5J+kLZ/uqTHU7ZHS5op6ReS3oqe94uSdks7r4mkyyT9V9JqSYslja58TKAEOC2liu306L7NqrYk9Zb0dvQ4H0gaKmnLlPtPjx5jd0mTokxzJPWs7evhksMLEpc0XaOfH0U/uwAvAWcRqpfGAaMknQBgZp8CT7B5ddJB0WONApC0K/AssBw4FhgEnAhUfoC/AewX/X5T9PvVhGqgiYQqq/1SjqmSpC1Tbzk9683tCNwADAVOADoAj0pSyjH3AFcBjwJHAr8HWkT3/SbKPDEl99+ryHso8AjhNTgKuAO4BLgzw+EPAU8TXpe5QKmkHWr5HF1CeNWWK3opH7Y7AcOBL4HJAGZWmnKcgH8AOwBnAw9Hd40Enpe0k5m9H+07A5hlZm9H21cCC4Ffm9n66PE+BR6RtJ+Z/ZNQtQawILV6StInQMccq6xKgLVpz+//zGxeDuem2g74qZnNjR5jC0KB+T1gjqRdCFdKF5rZ7SnnPQJgZrMlrQQ+ySH3EGC6mVVe1T0bvQ5/lnSNmS1OOfYWM/tLlGkW8DGhEBtRw+fnEsSvSFyxa0f44F0LvEcoTPqY2YcAktpKul3SwpTj+gHfTXmMKYRC4rTonFZAT6KrkchPgCcqC5HIOGAdcEA9Pp93gR+n3T6oxeMsqCxEIrOjn5Xf/rtFP0fX4rG/JqkJsBebt0c9Qvj8SL8Ce77yFzNbQehI4FckDZxfkbhi9zlwCGCE6qyltumU1aOBfQnVTLOBLwi9qI6qPMDMTNIo4ExJg4HehPf+QymP04nw7ZmU89ZLWkH49l9fKsxsZj08zmdp22uin02jn+0IDftf1PHvtAe2Iu21SdlOf20y5WqKa9C8IHHFbl1VH7ySmgJHAOeb2YiU/ZmutEcR2j26AacDT5pZWcr9HxLaGVIfvwnhA/nTujyBGvgq+rl12v7tCG03NbECaCGpdR0Lk+WEq7wOafs7Rj8L9dq4IuZVWy7JtiH0oqocz1FZbfXr9APN7ANCtctVhKqqUWmHvAocExUelXoSvmy9WL+xq1TZ1vD9yh2SOhPaPWpqavTz1GqOyXq1EFX1zQKOS7urN7AB+GctsrkGxq9IXGKZ2eeSXgeulPQF4YPtj4TqsNYZThlJqOtfDExKu+8a4F/Ak5LuJtTrXw88FzW0552ZLY6ez9WSKghf9C6nFt/6zew9SfcCN0nqQOiEsC3Qy8yOjw6bA/SQ1INwBTM/atdINwh4LqoeLAV2J1Ql3pfW0O4aKb8icUl3IjAfGAPcRmggH1PFsX8jNJ4/YGYbUu8ws3eAwwlVOOMJBcvDQK/8xK7SicAi4K/AtYQeU+/V8rF+Q7gCO5nQzfdWYFXK/dcQGv8fBV4ndJ/ejJk9DxwP7A1MAC4idIE+v5a5XAMjX2rXNRaSfkkoTL5bi+62zrkqeEHiGjxJ3wT+jzCQbpGZHRlzJOcaFK/aco1BP8JYkq+AC2LO4lyD41ckzjnn6sSvSJxzztVJo+j+2759e+vatWutzl25ciUtWrTIfmCRSFLeJGWFZOVNUlZIVt4kZYW65Z01a9ZyM9s+64Fm1uBvJSUlVlvTpk2r9blxSFLeJGU1S1beJGU1S1beJGU1q1teYKbl8BnrVVvOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTrwgcc65hmjsWOjalQO7d4euXcN2nhS8IJG0q6QpkiokLZU0JG0NiKrO21vS85JWSPpU0mRJ+xQis3POJcrYsdCvHyxciMxg4cKwnafCpKAFiaS2wGTCsqlHEabI/j1hquvqzuscnbclYaGeU6Lfn5fUJZ+ZnXMucQYOhIqKTfdVVIT9eVDoke39gWZATwvLf06S1BoYLGmYVb0k6BFAq+i8zwAkvUxYBvSXwN35j+6ccwmxaFHN9tdRoau2DiesOJdaYJQSCpcDqzlvK8KCROUp+8qjfarvkM45l2jt22fev+OOeflzhS5IdiEs7/k1M1sEVET3VWVcdMxNkjpES4feApQRlk51zjkHMH8+rFwJSvuO3bw5DB2alz9Z0GnkJa0FBpjZrWn7FwNjzOzyas7dk7C63beiXR8Ch5vZv6s4vh9hHQo6duxYUlpaWqvM5eXltGzZslbnxiFJeZOUFZKVN0lZIVl5iznrFqtX86MLLqDphx+y4JRT6Dx+PNssW8bqDh14/6yzWHbIITV6vG7dus0ys72zHpjLhFz1dQPWAhdm2L8EGFrNeZ2AecBTwGHRbQKwGNgx29/1SRuLU5KymiUrb5KymiUrb9Fm3bDB7PTTzcDsb3/7enchJm0sdGN7GbBthv1tgM+qOW8AoWNALzNbCyBpKjAXuAT4bT3ndM65ZLnvPhg9Gq68Eo44oqB/utBtJHNIawuJuva2IK3tJM0uwDuVhQiAma0B3gF2zkNO55xLjtdegwsugB49QkFSYIUuSJ4BekhqlbKvD7AKmFHNeQuBH0jaunKHpG2AHwAL8pDTOeeSYfly6NULOnUKAw6bZB3fXe8KXZCMAFYD4yUdEjWIDwZutpQuwZLmSRqZct79wDeBJyQdIelI4ElC28m9BUvvnHPFZP16OOEEWLYMxo2Ddu1iiVHQgsTMyoCDgSaExvKrCN14B6UdumV0TOV5swgN7K2AB4ExQHPgF1ZFry3nnGvwrrwSJk+G4cOhpCS2GAVfs93MZgPdsxzTNcO+KcCUPMVyzrlkeeopuPZaOPtsOPPMWKP47L/OOZc0c+fCqaeGq5Dbb487jRckzjmXKCtXQs+esOWWoV2kadO4ExW+ass551wtmYXp4N95B559FroUx+TnXpA451xS3HUXPPQQXHMNHHpo3Gm+5lVbzjmXBC+/DBdfDL/6FVx2WdxpNuEFiXPOFbuPP4bjjgtVWWPGwBbF9dHtVVvOOVfM1q2DPn2grAwmToRtM01XGC8vSJxzrphddhnMmAEPPgg//GHcaTIqrusj55xzGz3+ONx4I5x3Hpx8ctxpquQFiXPOFaN334UzzoB994Wbb447TbW8IHHOuWLz5Zdh0GGzZvDYY7D11tnPiZG3kTjnXDExg7594b//DRMy7rBD3ImyKvgViaRdJU2RVCFpqaQhkqqdQF/SYElWxa24OlQ751xd3HJLuAq57jro1i3uNDkp6BWJpLbAZGA2cBRhdcObCAXaFdWcej/wbNq+o4E/EBbLcs655JsxAy69NFRrXXJJ3GlyVuiqrf5AM6BntJDVJEmtgcGShqUubpXKzBYDi1P3SfoTMMfM3sx3aOecy7slS6B3b/jOd2DUKJDiTpSzQldtHQ48l1ZglBIKlwNzfRBJ2wG/AB6u33jOOReDNWtCIbJyZZjRt3XruBPVSKELkl2AOak7zGwRUBHdl6tewFaEQsg555JtwIAwl9bIkbDbbnGnqTGZWeH+mLQWGGBmt6btXwyMMbPLc3ycqUAbM6tybcloPfh+AB07diwpLa1dmVNeXk7Lli1rdW4ckpQ3SVkhWXmTlBWSlbe+s3aYPJldhw7lg169+N9559Xb41aqS95u3brNMrO9sx5oZgW7AWuBCzPsXwIMzfExOgHrgUty/bslJSVWW9OmTav1uXFIUt4kZTVLVt4kZTVLVt56zfrWW2bNm5v97Gdma9bU3+OmqEteYKbl8Blb6KqtMiDTjGNtgM9yfIzegIBH6iuUc84V3Oefh95ZrVvDI4/AVlvFnajWCt1raw5pbSGSOgMtSGs7qcbxwItm9kE9Z3POucLYsAFOOw0WLIBp06BTp7gT1Umhr0ieAXpIapWyrw+wCpiR7WRJXYF98d5azrkkGzYMnnoqTMh4wAFxp6mzQhckI4DVwHhJh0QN4oOBmy2lS7CkeZJGZjj/eGAd8HghwjrnXL2bPBkGDoTjj4ff/jbuNPWioFVbZlYm6WDgTmACoV3kFkJhkp4r07QpxwNTzOyTfOZ0zrm8WLQITjgBvv99uO++RA06rE7BJ200s9lA9yzHdK1i/575yOScc3m3ejX06hV+jh8PCenunAuf/dc55wrhoovg9ddDIfLd78adpl75eiTOOZdvo0fDiBHwhz/AMcfEnabeeUHinHP59K9/wbnnQvfucM01cafJCy9InHMuXz79FI49Ftq3h4cfhi0bZmtCw3xWzjkXtw0b4JRTYPFieOEF6NAh7kR54wWJc87lwzXXwMSJMHw47LNP3Gnyyqu2nHOuvj3zDAweDKeeCv37x50m77wgcc65+jR/Ppx0EuyxB9x9d4MZdFgdL0icc66+rFoVGtfNwkqHzZvHnaggvI3EOefqgxmcd17o7jthAuy8c9yJCsavSJxzrj7cfz+MGgV/+hMceWTcaQqq4AWJpF0lTZFUIWmppCGSMk3QmOncnpJel7RK0gpJz0pqke/MzjlXrddfh/PPhx49YNCguNMUXEELEkltgcmAAUcBQ4DfA1flcO5ZwEOENU0OB84C5uLVc865OC1fHtpFOnWCsWOhSU7fixuUQn8I9weaAT2j9UcmSWoNDJY0LHVNklSS2hOmm7/AzO5LueuJvCd2zrmqrF8fpoVftgxeegnatYs7USwKXbV1OPBcWoFRSihcDqzmvN7RzwfyFcw552ps0KCwUNVdd0FJSdxpYlPogmQX0tZmN7NFQAVpa7mn2Qd4D+grabGktZJelbR//qI651w1nn4ahg6Fs86Cvn3jThMrmVnh/pi0FhhgZrem7V8MjDGzy6s47zlgf+AL4FJgRfRzb+D/zOzjDOf0A/oBdOzYsaS0tLRWmcvLy2mZoAVokpQ3SVkhWXmTlBWSlbe8vJztP/uMkv79WfWtb/GvO+5gw9Zbxx2rSnV5bbt16zbLzPbOeqCZFewGrAUuzLB/CTC0mvMmERroD0vZ1xooA67O9ndLSkqstqZNm1brc+OQpLxJymqWrLxJymqWkLx//atZly62QTLbaiuzFi3MFiyIO1VWdXltgZmWw2d7oau2yoBtM+xvQ1i/vSqfRj+nV+6w0M4yC9i1vsI551xGY8dCv36wcCEyg7VrYd06ePHFuJMVhUIXJHNIawuR1BloQVrbSZp3CVck6ZPWCNhQnwGdc24zAwdCRcWm+1avDvtdwQuSZ4Aeklql7OsDrAJmVHPe3wiFRrfKHZLaACXAv/OQ0znnNlq0qGb7G5lCFyQjgNXAeEmHRA3ig4GbLaVLsKR5kkZWbpvZTOApYKSk0yQdATxNaHO5q5BPwDnXCH3rW5n377hjYXMUqYIWJGZWBhwMNAEmEEa03wKkzymwZXRMqpOBJ4GbgccJhUj36DGdcy4/1q2DTL2emjcP3X9d4acXMbPZQPcsx3TNsK8cODe6OedcYVx2GcyZExaoeuYZbNEitOOOoRA56aS40xUFn6fKOeeqMm4c3Hgj/OY3YfQ6MGP6dA466KB4cxUZn0beOecymTMHTj8d9t0Xbrkl7jRFzQsS55xL9+WX0LMnNGsGjz0GRTxyvRh41ZZzzqUyC3NnvfceTJoEO+wQd6Ki5wWJc86luvXWcBVy/fXQvdp+QS7iVVvOOVfpH/+AAQPgmGPCT5cTL0iccw5g6VLo3Rt23hlGjwalz8jkquJVW845t2YNHHcclJfDlCnQunXciRLFCxLnnBswAF5+GUpLYbfd4k6TOF615Zxr3B5+GG6/HS66CPr0iTtNInlB4pxrvP7zn7BU7gEHwLBhcadJrIIXJJJ2lTRFUoWkpZKGSEqfoDH9nK6SLMOtduvnOufc55+HQYetW8Ojj8JWW8WdKLEK2kYiqS0wGZgNHAXsDNxEKNCuyOEhLgFeStleXt8ZnXONwIYNcNppMH8+TJsGnTrFnSjRCt3Y3h9oBvSM1h+ZJKk1MFjSsNQ1Sarwnpm9kveUzrmGbdgweOqpMIfWAQfEnSbxCl21dTjwXFqBUUooXA4scBbnXGM0ZUpYIrdPH7jwwrjTNAiFLkh2IW1tdjNbBFSQtpZ7FUZJWi/pQ0k3S2qWj5DOuQbqgw/g+ONhl13g/vt90GE9kZkV7o9Ja4EBZnZr2v7FwBgzu7yK8zoBA4HngS+Ag4A/AM+b2VFVnNMP6AfQsWPHktLS2rXLl5eX0zLT6mhFKkl5k5QVkpU3SVmhMHm1Zg0/uvBCmi9axKy772ZVLZfJbUyvbbdu3WaZ2d5ZDzSzgt0Iy+NemGH/EmBoDR/rXMCAPbMdW1JSYrU1bdq0Wp8bhyTlTVJWs2TlTVJWswLl7d/fDMzGjavTwzSm1xaYaTl8Hmet2pJ0qqR2tSrONlcGbJthfxvgsxo+1uPRz73qlMg51/A98ACMGAGXXhq6/Lp6lUsbyShCN12i9omf1OHvzSGtLURSZ6AFaW0nObC0n845t7k33wzrrXfrFtZZd/Uul4KkDPhm9Luo2wf3M0APSa1S9vUBVgEzavhYvaKfs+qQxznXkJWVhSuQdu3CPFpb+vSC+ZDLqzoZeFDSe4RCZLSklVUdbGbVXbGMAH4LjJd0PbATMBi42VK6BEuaB8wws77R9mCgFWEw4hfAz4EBwHgzeyuH5+Cca2w2bICTT4bFi8M6Ix06xJ2owcqlIDkT+A3wPUJ7xHzgk9r8MTMrk3QwcCcwgdAucguhMEnPlTptyhzCqPazCGNOFgE3AH6d6pzL7JprYOJEuOsu2HffuNM0aFkLEjOrAG4EkHQIMNDM/l3bP2hms4Fq1680s65p26WEgYvOOZfds8/C4MFwyilw7rlxp2nwcum1tV7Sj6PN6YSqJeecK07z58OJJ8Luu4eeWj7oMO9yaWxfA2wT/X4qsH3+4jjnXB2sWgW9eoX2kfHjoXnzuBM1Crm0kcwmTKr4JKHXVi9JVY10NDO7u97SOedcrszgvPPgjTdgwoSw9roriFwKkguAewiN4kZo9K6KAV6QOOcK7/77YdQouOIKOPLIuNM0KlmrtszsZTPb3cy2IlyR7GtmW1Rxq3aBKuecy4vXX4fzz4dDDw2N7K6gajr7bzdCVZdzzhWH5ctDu0inTvDQQ9DEv88WWo2GeZrZDABJ+wAHANsBnwIvmtmr9R/POeeqsX596KH18cfw4othBLsruBoVJJJaAI8BPYD1wAqgHdBE0rPAcdG4E+ecy79Bg2DSJLjvPtg7+2znLj9qWrU1DNgPOB5oamadgKbR9n7A9fUbzznnqjBhQpiEsW9fOOusuNM0ajUtSI4F/mBmj5nZBgAz22BmjwF/BI6r74DOObeZefPCqPWSErjzzrjTNHo1LUjaAB9Ucd8HQOu6xXHOuSwqKsKMvk2awOOPQ9OmcSdq9GpakPwbOFfadM6BaPvc6H7nnMsPMzjnHPjPf0IPra5d407kqHlBcjmhoX2OpOskXSzpz8C7wKHR/dWStKukKZIqJC2VNERSzv31JG0haZYkk+SjjpxrTIYPh7/+Fa66Cnr0iDuNi9S0++9UST8CriS0h3QCPgReBXpGM/tWSVJbwvoms4GjCCsv3kQo0K7IMcZZwLdqkts51wD8859w8cVwxBEwcGDcaVyKGi8XFhUWx9fy7/UnrCfSM1rIapKk1oS5vIalLm6VSVQQDSU07N9fywzOuaT5+OMw6LBzZ3jwQdiippUpLp9q9K8h6UZJu9bh7x0OPJdWYJQSCpcDczj/asIqiVPqkME5lyTr1sHxx8Onn4YZfdu2jTuRS1Ob7r9vS3pNUn9JbWp4/i6E1Q6/ZmaLgIrovipJ2gM4g+onjXTONTSXXw7Tp8M998APfxh3GpeBzKxmJ0jdCB/oxxCWw30S+IuZTc7h3LXAADO7NW3/YmCMmVXZWC9pBvCqmV0qqSthyd9fmdnfqji+H9APoGPHjiWlpbVbYLG8vJyWLVvW6tw4JClvkrJCsvImKStUnbf9jBn8YPBglvz618y9+OIYkm2uoby2uejWrdssM8s+ZYCZ1eoGtAT6Av8gTJeyELgK2Kmac9YCF2bYvwQYWs15xwMfAa2j7a6EKeuPzCVrSUmJ1da0adNqfW4ckpQ3SVnNkpU3SVnNqsj77rtmrVqZ7bOP2VdfFTxTVRrEa5sjYKbl8Blb6xYrMys3s5HAIEK7RWfgMuC/kp6S1CXDaWXAthn2twE+y/R3JG0F3ECYfmULSduyceBjC0mtavscnHNFqrw8DDps2jQMOtxmm+znuNjUqiCR1FXSIEnvA88D5YTuwK2AXxOuGDLVJc0hrS1EUmegBWltJylaADsANxMKojI2DnwsBf5Vm+fgnCtSZmH+rPfeg9JS2GGHuBO5LGo6++8phPaRnwOLgFHAKDNbnHLYREkrCeNF0j0DDJDUysy+jPb1AVYBM6r4s+WEdVBSfQN4mDAAcmpNnoNzrsjdeis8+ihcdx107x53GpeDmo4juRd4AuhhZtV1wf0vcE2G/SOA3wLjJV0P7AQMBm62lC7BkuYBM8ysr5mtA6anPkjU2A7wtvk6KM41HC+8AAMGwDHHwKWXxp3G5aimBck3zaws20Fm9iGh4T19f5mkg4E7gQmEdpFbCIVJei5f5sy5xuTDD6F3b9h557D2+qZT+rkiVtMpUrIWIjk8xmyg2utVM+ua5f4FhPXjnXMNgNatg+OOgy++gMmToU1Nh6i5ONV4ihRJfYCzge8SFrXahJl1qIdczrnGYOxYGDiQny9cGLbPOw922y3eTK7GajpFyonAA8A8Qk+qp4G/RY/zBaHKyjnnshs7Fvr1g4ULN1YvjBoV9rtEqWn33wGE+a7Oi7aHm9mZwLeB5YSpTpxzLruBA8MiVakqKnxm3wSqaUHyf8BLZraeMJq9NUDUlfd64Pz6jeeca7AWLarZfle0alqQfA5UDjFdAnw/5T4B7eojlHOugTOreoncHXcsbBZXZzVtbJ8J7AE8R2gfuVLSOmANYbErH9PhnMtu2DBYtQq22grWrt24v3lzGDo0vlyuVmp6RfJnwoh2CAXHa8Bwwgj35USz7TrnXJWmTAlTw/fpExrXu3TBJOjSBe69F046Ke6EroZyuiKR1Az4JWEOrY8kdTSzj4GjJG0DbGNZVjd0zjk++ABOOAG+9z24/35o2RJOOokZ06dz0EEHxZ3O1VLWgkTSToR5s7qm7P5CUm8ze97MVgOr85TPOddQrF4dBh1+9VVY6TBBa3q46uVStTUM2AD8DGgO7EaYcfeePOZyzjU0F18Mr74Ko0fDLtUuiOoSJpeCZD/gCjN7ycy+MrN3gXOAHSV1ym8851yDMGYM3H13mJCxZ8+407h6lktB0gl4P23f/wjdfb9R0z8oaVdJUyRVSFoqaYikaidolLSbpGej41dLWiTpfi/InEuAN9+Ec86Bgw6Ca6+NO43Lg1y7/9ZsYfcqSGpLaG+ZDRwF7AzcRCjQrqjm1DaENdrHAEsJI+kHASWSfhxNNe+cKzZlZXDssdCuXVikassaT+/nEiDXf9XnovEi6aak788yaWN/oBnQM+rlNUlSa2CwpGFV9fwys5eBl1N2TZe0mLA64x7AGzk+D+dcoWzYAKecEnpqzZgBHTvGncjlSS4FyWbritTB4cBzaQVGKWF6lQMJa5TkakX0c+t6yuacq09Dh8Lf/w533QX77Rd3GpdHWQsSM6vPgmQX0pbGNbNFkiqi+6otSCRtQcj8beA64HXCoEjnXDF59lkYNAhOPhnOPTfuNC7PZFYvzR+5/TFpLTDAzG5N278YGGNml2c5/1mgR7Q5C/ilmS2r4th+RCPtO3bsWFJaWlqrzOXl5bRMUH/3JOVNUlZIVt44szb96CNKzjmH1e3b88Zdd7Ghqjm1Uvhrmz91ydutW7dZZrZ31gPNrGA3YC1wYYb9S4ChOZz/f8A+wMnAHEJh0jTbeSUlJVZb06ZNq/W5cUhS3iRlNUtW3tiyrlplttdeZm3amM2dm/Np/trmT13yAjMth8/2QnehKAO2zbC/DWH99mqZ2dzo11clvUDoyXUi8Jd6S+icq73zz4c33oCnn4bvfCfuNK5AajppY13NIbSFfE1SZ6BFdF/OzGwh8CmwU72lc87V3v33w8iRcMUV8KtfxZ3GFVChC5JngB6SWqXs6wOsAmbU5IEkfY+w/sn8+ovnnKuVmTPDeuuHHgqDB8edxhVYoau2RgC/BcZLup5wNTEYuNlSugRLmgfMMLO+0faNwDrCeiefERbUupQwwr52rejOufqxfHkYdPiNb4T11ptUO1GFa4AKWpCYWZmkg4E7CV19PwNuIRQm6blS340zgQsIvbCaEtZEGQf82cxW5jm2c64q69eH9UM++gheegnat487kYtBwecrMLPZQPcsx3RN2y7FrzycKz6DB8Pzz8N998He2XuJuoap0G0kzrmGYsIEuOYaOPNMOOusuNO4GHlB4pyruXnzwjxae+0Fd94ZdxoXMy9InHM1U1FmcUuSAAAgAElEQVQRGtebNIFx46BZs7gTuZj5nM7OudyZhbVF3n4bJk6Erl3jTuSKgBckzrnc3X03/PWvMGQIHHZY3GlckfCqLedcbl55BS66CI44AgYOjDuNKyJekDjnslu2DHr1gs6d4cEHYQv/6HAbedWWc65669bB8cfDihXwz39C27ZxJ3JFxgsS51z1Bg6EadPggQdgzz3jTuOKkF+fOueqNm4cDBsWVjk89dS407gi5QWJcy6z996DM86An/wEbrkl7jSuiBW8IJG0q6QpkiokLZU0RFK104VK+rGkUZLmRee9J2mQpOxreDrnaq68HHr2hG22gccfDz+dq0JB20gktQUmA7OBo4CdgZsIBdoV1ZzaJzr2emAusAdwdfTz2DxGdq7xMQtzZ82ZEyZk7Nw57kSuyBW6sb0/0AzoGa0/MklSa2CwpGGpa5Kkud7MPknZni7pK+AeSV2i1RKdc/XhttvgkUfguuvg4IPjTuMSoNBVW4cDz6UVGKWEwuXAqk5KK0Qq/Sv62aH+4jnXyL3wAlxyCRx9NFx6adxpXEIUuiDZhbS12c1sEVBB2lruOdgf2AC8Vz/RnGvkPvwQeveGnXaC0aNBijuRSwiZWeH+mLQWGGBmt6btXwyMMbPLc3ycbwBvARPN7PQqjulHWFGRjh07lpSW1m5drPLyclq2bFmrc+OQpLxJygrJylvTrFq3jh/+7ne0mjuXN4YPZ+W3v53HdJtryK9t3OqSt1u3brPMLPuKZWZWsBuwFrgww/4lwNAcH2Nr4B/A+0DbXM4pKSmx2po2bVqtz41DkvImKatZsvLWOOtFF5mB2UMP5SVPNg36tY1ZXfICMy2Hz9hCN7aXAdtm2N+GsH57tSQJGAPsBvzUzMrqN55zjVBpKdx6K1x4IZxwQtxpXAIVuiCZQ1pbiKTOQAvS2k6qcAuh2/AvzCyX451z1XnnHejbF376U7jhhrjTuIQqdGP7M0APSa1S9vUBVgEzqjtR0mXABcDJZvZi/iI610h88UUYdNiqFTz6KGy1VdyJXEIVuiAZAawGxks6JGoQHwzcbCldgqMR7CNTtk8EriVUay2RtG/KbfvCPgXnGgAzOP10+N//QiHyzW/GncglWEGrtsysTNLBwJ3ABEK7yC2EwiQ9V+q0KYdGP0+PbqnOAEbXb1LnGrgbboAnnoCbb4af/zzuNC7hCj6NvJnNBrpnOaZr2vbpbF6AOOdqY+pUuOyyMGbkooviTuMaAJ/917nGZPHisEjV974HI0f6oENXL7wgca6xWL06LJe7ahWMHw8JGlTnipuvkOhcY/G738Grr4Zp4Xep6YxEzlXNr0icawzGjIHhw2HAADjWV15w9csLEucaujffhHPOgYMOgmuvjTuNa4C8IHGuISsrC1cg220XpkLZ0muzXf3zd5VzDdWGDXDqqfDBBzBjBnTsGHci10B5QeJcQzJ2LAwcyIGLFkHr1vD553DnnbDffnEncw2YFyTONRRjx0K/flBRgSAUIk2awLaZJtx2rv54G4lzDcXAgVBRsem+9evDfufyyAsS5xqKRYtqtt+5elLwgkTSrpKmSKqQtFTSEElNspyztaQbJL0gaZWkwq0P7FwSfPEFNG+e+b4ddyxsFtfoFLQgkdQWmAwYYYGqIcDvgauynNocOAuoAF7OZ0bnEufFF+GHP4SVKzdfU6R5cxg6NJ5crtEo9BVJf6AZ0NPMJpnZCEIh8jtJras6ycw+A7Yzsx7AE4WJ6lyRW7MmtH8ceCBssQW89BKMGgVdumASdOkC994LJ50Ud1LXwBW6IDkceC51ESuglFC4HFjdidFC9M45gDlzYP/9w0j1008Po9f33z8UGgsWMGPqVFiwwAsRVxCFLkh2IW1tdjNbRKiy8lnknMvGLMyZtddeoaAYPz5MB9+qVdZTncuXQo8jaUtYFTFdWXSfc64qH30EZ54JzzwDPXqEaqxOneJO5RwqZI2RpLXAJWZ2W9r+JcBoM8va4V3S+cAdZlbtijzRevD9ADp27FhSWlpaq8zl5eW0TNC6DUnKm6SsEG/edi++yPduvJEmq1bxfv/+LDn66GoXpfLXNn+SlBXqlrdbt26zzGzvrAeaWcFuwDJgUIb95cCAHB/jfKImk1xvJSUlVlvTpk2r9blxSFLeJGU1iynvl1+anXWWGZjtuafZO+/kdJq/tvmTpKxmdcsLzLQcPmML3UYyh7S2EEmdgRaktZ041+i98gr86EehDeSPfwyLUu26a9ypnNtMoQuSZ4AeklJbBvsAq4AZBc7iXHFatw4GD4YDDghdfKdPhz//GbbeOu5kzmVU6Mb2EcBvgfGSrgd2AgYDN1tKl2BJ84AZZtY3Zd/hhCuXPaPtXtFdr5vZwsLEdy7P5s2Dk08OVx+nnAJ33AFt2sSdyrlqFbQgMbMySQcDdwITCD24biEUJum50qdNuRvokrL9WPTzDGB0fWd1rqDMQhXWRReF0emlpdCnT9ypnMtJwaeRN7PZQPcsx3TNZZ9zDcInn8DZZ8NTT8HBB8Po0bDDDnGnci5nPvuvc3GaOBF23z2MDbn5Znj+eS9EXOJ4QeJcHCoq4Lzz4IgjoEMHmDkTLr44zJnlXML4u9a5Qps1K0xxMnw4/O538Npr4arEuYTygsS5Qlm/PkyyuO++UF4OkyfDTTdB06ZxJ3OuTnzNducKYf780J33pZegd28YMQLa+vRyrmHwKxLn8skMHnggLDz19tvw4IOha68XIq4B8YLEuXxZsSJcfZx+epjq5K23wmDDaiZbdC6JvCBxLh8mTYI99ghjQ66/HqZODSsWOtcAeUHiXH1atSqMTj/00DC1yauvwqWXQpP0iRqcazi8sd25+vLvf4elbd95By64IFyJNGsWdyrn8s6vSJyrqw0b4IYb4Mc/Du0izz4Lt9/uhYhrNPyKxLm6WLQITjstTPXesyfccw+0bx93KucKquBXJJJ2lTRFUoWkpZKGSMpagSypjaRRksokfS5prKR2hcjsXEYPPxwa1GfOhL/8BR5/3AsR1ygV9IpEUltgMjAbOArYGbiJUKBdkeX0R4DvAWcBG4DrgSeBn+Urr3MZffYZ/OY3oSDZf/8wNmSnneJO5VxsCn1F0h9oBvQ0s0lmNgK4CvidpNZVnSRpP6AHcJqZjTOzJ4CTgQMkHZKXpGPHQteuHNi9O3TtGraLWZLyJikrbJq3Y0fYeWd47DG4+mqYMcMLEdfoFbogORx4LnU1RKCUULgcmOW8j83sH5U7zOw1YH50X/0aOxb69YOFC5EZLFwYtov1Ay9JeZOUFTbPu2wZlJXBlVfCFVfAlt7M6Fyh/xfsAkxN3WFmiyRVRPdNqOa8ORn2vxvdV78GDgzTfKeqqAgjlK+9tt7/XJ39979hne9UxZo3SVkhc97K1Qz/9Kd4MjlXZApdkLQlLK+briy6rzbnZaxXkNQP6AfQsWNHpk+fnnPIAxctItMkFrZuHZ9sv33Oj1Mo28+enZi8ScoK1eRdtIgZNXhPFVp5eXmN3vNxS1LeJGWFAuU1s4LdgLXAhRn2LwGGVnPeJOCJDPvHAi9l+7slJSVWI126mIXvnZveunSp2eMUSpLyJimrWfLyRqZNmxZ3hBpJUt4kZTWrW15gpuXw2V7oNpIyYNsM+9uQ+Yoj23nbZjmvdoYOhebNN93XvHnYX4ySlDdJWSF5eZ2LQaELkjmktWlI6gy0IHMbSJXnRapqO6mbk06Ce++FLl0wKUy2d++9YX8xSlLeJGWF5OV1LgaFLkieAXpIapWyrw+wCpiR5bxvSDqgcoekvQntI8/kIygnnQQLFjBj6lRYsKD4PziSlDdJWSF5eZ0rsEIXJCOA1cB4SYdEDeKDgZstpUuwpHmSRlZum9k/geeAMZJ6Sjqa0D7yoplNLugzcM45t4mCFiRmVgYcDDQhdPW9CrgFGJR26JbRMamOJ1y1/AUYA8wCjslnXuecc9kVfDSVmc0Gumc5pmuGfZ8BZ0Q355xzRcKnkXfOOVcnXpA455yrE4UxJw2bpE+AhbU8vT2wvB7j5FuS8iYpKyQrb5KyQrLyJikr1C1vFzPLOuVEoyhI6kLSTDPbO+4cuUpS3iRlhWTlTVJWSFbeJGWFwuT1qi3nnHN14gWJc865OvGCJLt74w5QQ0nKm6SskKy8ScoKycqbpKxQgLzeRuKcc65O/IrEOedcnXhB4pxzrk68IHHOOVcnXpA455yrEy9InHPO1UnBZ/919SNaWfKXgIDHzGyFpB2AS4CdgQXAvWb2dnwpQdIfgIlx58iVpGbAlmb2Zcq+7YHzgV2BDcCbwHAz+zyelM4VF+/+G5EkwvomRwDfB7YD1gMfA68Ao83sv/El3EjST4DngZbAOuBToAcwkZD5HeAHwDeAQ8zshZiiImkDYIQlkR8CHjGzeXHlyUbSRGCumV0Ybe9HWIVzA2ENHAElwBqgu5m9E2PWHwHNzOzllH2HAZexsdD7NzA49ZhiEf2f+xWwF+E9MpPwpaOoP5QktSbMXdXdzF6MOw98nak7sDXwdzNbGX0BOo+wkuz7hC+WS/Py94v836wgohd8IuED4mPCKo7fIry5nyH8Q3wPuNrMro4rZyVJkwhXk8cAKwmLgx1N+KDrZWZrJW0DPAk0NbNuMWbdAFwP7A78gpD7DUKh8qiZLYkrWyaSlgN9zeypaPsVwmt8dOVViqQ2wNPAV2bWI8asrwATzGxotH0mcD8wDZhKKPQOBn4GHFv5nGLK+jLhdX032m5L+DJUApRHh7UkfGnrkXpFGAdJv6nm7mbADcBtwFwAMxteiFyZSPoOMAXoHO2aDxwKTAK2Bf5H+PxaBZSY2eJ6D2Fmjf4GPEx4Q+yesu+bwLPAuGj7QMIb/swiyLsCODxluwPh2+ehaccdASyPOesG4CfR722BftGbfl10mx7taxf36xplrAB+nrK9Jv11TXltV8ac9YvUbMA84I4Mx40A/l0s74NoeyThSvqwlH2HAWXALUXwPthAuLrfUMUt9b71MWd9lHDl+R1CTcqD0efZy0Cr6Jj20TH35CODN7YHhwN/tJR6fAuXgP2BoyV1MrMZwLXAhTFlTGXRLXWbtH2ZtmNlZmVmdq+ZHQzsAPyecCk+Algq6e+xBgz+A6RewX1M+M+Zrh2h0InThrTtLsDjGY57nPCNtJj8GhhiZs9W7oh+Hwr0jC3VRk8Dy4C+QBMz26LyRng/CDgo2pe+LHihHQAMNbN5ZvYpcAWhnfRGi67szGw5cCubvrfrjRckgQjfMNKtj+5rE22/Cny3UKGqMQu4RFIrSVsAlwNLgHMlNQGQtCXwG8IHY9Exs4/M7DYz2x/4NjCIcBUYt+uAP0o6M3oNhwI3SPqFpK0lbRO1Q/yZ8E0wTi8AJ6VsvwNkmi78x4T3RzHZltAmkm4WoW0vVmZ2NHAaMAB4XdJPU++OJ1WV2gIfpWxX/lunr8H0PuELXL3zXlvBZOAaSW+Z2fvwdR3u7YR/oMpG9pZAMfTUGUio//yUUD1UQWhoexyYK6mysf2bhOqComZmCwkf4NcVQZbxki4gfHu7BXiP8EWi8puzEb5cPE34kInT5cBL0ZeJOwiN7A9I2o5QZQihjeQi4I+xJNzUsZIqC7oyINOCSe0JVXaxM7PnJe1BeP3+LulZQq/IWNtvMlhGuBqttB64h3A1naoDecruje1A1G32WcLl/0JCvfi3CY3uJ5jZM9FxwwgrhvWJK2ulKPORhC8D48zsQ0nfAC5l4/O438zeiDEmkgYB91meeovki6R2QB/gJ4RvyFsQCu53gb+Z2awY431N0p7A3cA+bCzkSPm9jFCFdFs8CYOo00W60WZ2Ztpx9wC7mtnPCpMsN9H/rWGEard7CIVLNzP7R6zBAElPAp+mv5YZjrsD+L6ZHVLvGbwgCaIqod7AD4GmhIbLh6I6R+eKmqTvEwqT9ELvZTNbG2e2mpB0NvA/M5sad5ZMou7gtxC+rB1hRdCtWlJHoLmZzc9y3O8InS6m1HsGL0gaHklNzCxTm0/RkNSU0CC4AZhXjB92URvJTqSMKTKzRfGmcq74eGN7Gkm7STpW0lmS+ka/7xZ3rnSSekp6UtJESb+K9vWRtABYI2lh9O0uVpJOjsY3VG5vKek6wjfmtwidAT6VVAx1+ABIKpH0NKE++V3gJcL4hvmSlkgaIql5rCEbEEXizpGJpGbp/9aS9ow+F0riylV04uz/XEw34ExCu0KmvuPrCVOOnBF3zihr7yjXi8BThMb2swltOyMJo1kfjnL3iDnrbODclO2borx/An5K6Lo4mDBY6vIieG0PJbSNzST0zBpMGJS6Jsr8e0LvqDeBtkWQ90jCuJy3gUdIGQOTcsw+xD/W4VCiMQ0p+44mDE5dB6yNXvMj4n5No2xtgCeiXOuA+4AmwANpnwsvAe3jzpvjczo2X++D2J9cMdyAC6I3zF2EUcDtozdNk+j3A4A7ow+Y84og7+vAiJTtk6JsN6UdNwqYHHPWCuDAlO1lwIUZjrsEWFgEr+0s4IEq3iMLCFfxTaMPwOExZ/1FyofZnVH29VFhrZTjiqEgWc+mAxKPiT6MX47+7S+Jfl9HhgGgMeS9nTANygXAqdGXh3HAB1GhuD1h/NkS4O648+b4nPJWkHgbCSDpfcIH87Asx10K9DeznQqTrMocXwA9zWxytN2G0DvnEEtppIyqvO4xs9jGZ0j6EDjfzMZF26sJV0nT0477BfC0mTUrfMpNcqwCfm1mk9L2tyXMKLCbmb0r6VTgejPrFEfOKNOLhHnBzkjZdybhQ3ASocfhV5L2ITS6xzZwLuq1ta+ZvRZtvwEsMbNfpR03EWhhZgfGEDM1x3zgWjO7L9r+EaGgPsPMHkg57mzClfS340kKkv6S46FdCIMo6/194G0kwTeA13I47jWKYLAUoWtn6puhcq6iz9KOKycM/IrT04TBk1tH25OBEzIcdwLhW1/clhF67qX7IeF1rxxHtJCNA1Xj8gPgr6k7zOwvhOl89gWmRmNKitEPCN1o091LmMQxbh3YOH4Mojm1CPNWpZpH5vEwhXQa4Spp9yy3LlU9QF35gMTgLeBsSf8ws0z93StnKj07OjZuCwmzuz4HYGbro26J76YdtxObjniNw2WEEdj/kXQ/MAG4XtIP2DhorjvwI8JMsHG7F7haUgtC28MawsjwgcA02zgeZicg7h5cXwEt0nea2axoJPZzhOqiwQXOVZXU6o/P2fgFKNVKiuML7nxCgTwj2v4ZoSpuf0LbZKWfEv/7YC7wmpmdWt1BknoR2tHqnRckwe8JAxJnSxpPmPL8M8Ibf1tgF0Kd7g4Ux0jx8aRNdWBmr2Y47kQ2fdMXnJl9Kmlfwgfx7wjf9AD2i25rCNUwPzOz1+NJuZGZDY2qYf5ImLYFwvvgYcIgtEprCXOvxektQj390+l3mNn7UWEyERhd4FxVeU7Suuj3NsCebPwyUWkX4MNChqrCCOA2SbsTCr3ehC9FV0pqSZgAcS/gYiDuGcFfIRRw2aQOWK1X3kYSkbQzYVT4YWycjrnSB4SeOzeYWfqlbdGStCPwmZkVxZQTAJK6sumguf9ZcY4h2YowzqUp8H4xvYaVJJ1DmCblR1bFwNnoyuoJQvtZbN/0oxkO0s01s4fSjpse7S+Gruu/JVS5bkWYJWKEpBMIbVCVk3beC/whzvdw1A35p2Z2e5bj2hPa+GZUd1ytMnhBsrmo33hl28JnZhb3LK/OuSIRVXO3N7NP4s5SLLwgaWCiy+43gJOKoapICVy6VglZxti5YuEFSYroA6QD8J6ZbdYQGF0a/tLMxhQ83KY5flnN3S0IDWp/JJpC3swmFiJXJkrQ0rWQrGWMcxXNw3WcmQ2JOUesy8HWVXQlkro08CzC84j9Q1RhVuVjCf+fRpvZHEk/BK5i45efuyxl/Zd6FfcgmWK4AdsAjxE+KNYTGlJHAm3Sjot9YFeUI0mrty0HjkrZfoXQG6pVyr42hN4xzxXBazuJsFTttoS68TuBxYQZBLZKeb88Q+jFFfv7N4fnlLeBaDXI8B1Cb8PK9+X/CB9w7xMK69cJ08d/DOxQBK/Zy4SZciu320YZN0Q5v2DjgMpWceWMsvUgfBH7KHpdvyAsYFVGGKx6V/T/bj1hyej6zxD3P1gx3IArCb20ziYsDHRh9IaeC/xfynHFUpDMIvRsOYPQNzz1tkf0Bu9duS/mrIlZujbKkaRljHfM8dY/7vctRbAcbA3zJmZp4KiweIywkiOEDhhlwMi04x4EXslLhrj/wYrhRujue37avm8A/wA+AfaL9hVLQSLCOufLCNM2fDvlvjbRf4LN5lyKKetrwKCU7Q+A4zMcdyrwSRHkXZ72YbF99Hr+Iu24XxZBQVJ59ZntVgxXpkuB3inbXaJcPdOOOwP4bxG8D9ILkk+AizIcF/vUPoTuyYekbLeN8ndPO+5QQuehes/g40iCzqQNNDSzjyQdTCjFJ0s6ieLo346Fd8W9kh4FrgHeknRn9HuxuQ4YK+kDYAwbl65dQajOEuEyvBiWroWNyxi/RBgcl7qM8VQLgz+LZRnjL4GpwP1ZjjuA0LU9TrEvB1tHxbw08Co2HZha+Xv6dEPNCYNY650XJMFS4P8IVyBfs9A3/HhJtxIuHWNtZE9nZp8B50u6l9C3fS5wPUW0prQla+laSNYyxq8R2vH+Xt1B0dovcYt9OdhaSMrSwC8RBkrOjbLcSJh1+w/RbB1fRvPxXUoo+Oqd99ri60nPdjKzg6o55jLCt2mzGCe/q46k4wnLge5AmJwt9mVAKykhS9dCopYx/hPQz8zSB9CmH/dz4Coz61aYZBkzxL4cbE0oQUsDS/oOYQ67yvfBAsJV/uOEmQIWAl0JX4y6mdmb9Z7BC5Kvu871Aa4zsxXVHHcioa78jKqOiVtU7dICKLciXyXRNR4qguVg80FFsjRwNH7sp4SehlPMbFU0sPosNn75ecjMFufl73tB4pxzri6KYZZNlyeS7pM0Mu4cuUhSVkheXufyyRvba0DSfcAWZtY37iw56kZyviwkKSskKK+kyYTah4PjzpJNkrJCsvLmM6sXJDWTmA8PADP7TtwZcpWkrJC4vCI579skZYVk5c1bVm8jacCibp8dzCzuhXeySlJWSF5e5/IpKSVpUZDUNFrjIymOIKz0lgRJygoJyitpq6S8b5OUFZKVN59ZvSCpmcR8eLjGQdJ5kv4n6UtJr0o6JcNhe1EE79skZYVk5Y07q7eRJJCkXPusZxqJW1BJygrJyhsNQL2DsAzwvwjjCEZLOgo4xcxWxZkvVZKyQrLyFkNWbyOhxh8eu8Y9sl1h3ev3CNMgVOdbwD5x5k1SVkhWXkkzgalmdmnKvoOBsYTRzUdYWJRrH+Blz5q7JOUthqxekJCsDw8ASW8SFt/qk+W4XsAjMb/JE5M1ypGYvJK+BH5lZtPT9nclrJfSBDicMB9U3B92ickKycpbDFm9jST4D/AfMzuuuhtwc9xBI68C++ZwXOWEiHFKUlZIVt7PCR8OmzCzBcD+hCnxXwZ+XNhYGSUpKyQrb+xZ/YqErydeO8zMumQ57ljCGt6xFsCSdgZ2M7OnsxzXjNBFNX2q7oJJUtYoR2LySnoK+NLMTq7i/maEifsOJ+bJRpOUNcqTmLzFkNULEpL14eFcJUnHARcDR5rZp1Uc0wS4mzDZ6LcLmS8tR2KyRlkSk7cYsnpB4pxzrk68jcQ551ydeEHinHOuTrwgcY2KpNMlzYpGAJdJ+pekvPTGk/RdSYMlbZvDsYMlWcptqaRxUftdtnNPj85pWT/JnasZL0hco6GwXPL9wHNAT+BU4Cng13n6k98FBgFZC5LI58B+0e0SYE9giqQWWc77e3RORS1zOlcnPkWKa0zOB+4xs8tT9k2QdFVcgdKsM7NXot9fkbQIeAH4JfBY+sFRT5wmZvYJ8EnhYjq3Kb8icY3JtsBH6TstpeuipK5RNdGJkh6MqsCWSRqUfp6k7tEEeV9J+ljS8MrqJUkHAROiQ+dHj7mghnlnRT+7Ro85WtJMSUdLegf4CtgnU9WWpGaShklaKGm1pPmS/pyW/yxJ70T3L5R0Kc7Vgl+RuMbkDeCC6Jv+38xsRTXH3gD8DegF/BwYJGm5md0FIGlX4FlgEnAs0Bm4DtgJOCz6W5cANxKq0T4EVtcwb9fo50dp+4YBQ4CPCbO5btKOIkmEKrv9gKsJBdK3gJ+lHDMAuDZ6rOlACXC1pAozu7OGOV1jZ2Z+81ujuAF7AO8TpjfZALxD+EBunXJM1+j+59POvQ9YQlhqGaAUmEuoWqo8pnd07n7R9pHRdtccsg0mTGWxZXT7LjAN+ALoFB0zOnq8PdPOPT3a3zLa7hFt/7qKv9UaKAcGpe0fQii0mmTL6ze/pd68ass1Gmb2FvB9QuP6cMJcWX8CZmbo8fRE2vZ44JvADtH2T4AnzGx9yjHjgHXAAbWM2A5YG93eI1zd9DGzD1OOWWJmb2Z5nO7Ap1b1TA37AS2AxyRtWXkDpgId2fgcncuJV225RsXMVhPaLiYASOpL6MnVF7gt5dBlaadWbncCFkU/P0577PWSVgDb1TLe58AhhKuJj4ClZpY+9cTHm521uXaEqrSqVE7w904V93cGfBoglzMvSFyjZmYjJQ0Ddkm7q0MV2x+m/NzkmKgXVTsg43xHOVhnZjOzHJPLnEYrCAVdVSrzHUnmgum9HP6Gc1/zqi3XaEhKLxyQtD3Qhs0/UI9J265sMF8cbb8KHBMVHqnHbAm8GG2viX42rUPs2pgCbCfpyCru/yewCvimmc3McPuycFFdQ+BXJK4xeTuacvt5QlVVF0LPqgrggbRjd4uWFxhH6LXVF7jQzDZE919DWNb0SUl3E9oVrgeeM7N/RsdUfrM/R1IpUGFmb+fnqW1iEmHQ5UOShhB6kHUCfrWMHXsAAADVSURBVG5m55jZZ5IGA7dJ6gL8g/Cl8rtANzNLL0Sdq5YXJK4xGQIcBdxOaMf4iLDgTx8zm5927KWEqp9xhPEaVwNfd4s1s3ckHU7oQjue0Lvq4ei8ymMWSroE+C1wAeFqpms+nlgqMzNJx0SZLyIsEb0UeCjlmGGSlhKmH/894Tn+F3gk3/lcw+PTyDuXIlqedD5h6dK/xZvGuWTwNhLnnHN14gWJc865OvGqLeecc3XiVyTOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTv4faiZuMWvWF98AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", - "x = uncertainty_model.values\n", - "y = np.maximum(0, x - strike_price)\n", - "plt.plot(x, y, 'ro-')\n", - "plt.grid()\n", - "plt.title('Payoff Function', size=15)\n", - "plt.xlabel('Spot Price', size=15)\n", - "plt.ylabel('Payoff', size=15)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "exact (normalized) expected value:\t0.1133\n", - "exact (normalized) delta value: \t0.4700\n" - ] - } - ], - "source": [ - "# evaluate exact expected value (normalized to the [0, 1] interval)\n", - "exact_value = np.dot(uncertainty_model.probabilities, y)\n", - "exact_delta = sum(uncertainty_model.probabilities[x >= strike_price])\n", - "print('exact (normalized) expected value:\\t%.4f' % exact_value)\n", - "print('exact (normalized) delta value: \\t%.4f' % exact_delta)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate Expected Payoff" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# set number of evaluation qubits (samples)\n", - "m = 5\n", - "\n", - "# construct amplitude estimation \n", - "ae = AmplitudeEstimation(m, european_call)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# result = ae.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=LegacySimulators.get_backend('statevector_simulator'))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exact value: \t0.1133\n", - "Estimated value:\t0.2307\n", - "Probability: \t0.7701\n" - ] - } - ], - "source": [ - "print('Exact value: \\t%.4f' % exact_value)\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHq5JREFUeJzt3Xv4XFV97/H3h4sQbgEEAkVKBNEIhcdKRGKp/CL3cGoA0eRBT08sGvWo0D5IQUQIaKngEdBSH+DBhnLUhBYop1xCCJdfIFzUIEFsEjBoQC6i2B+JMRAh+Z4/1g5O9m9+M3tuezKTz+t55pmZtddes/bKZL6/tfdaaysiMDMz67TNul0BMzPbNDjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHrAZJMyQNZq8HJc1ocP8BSZEva4S8t0p6vMb2KyQNSdqq4Ge/TVJIOraROpt1igOO2cZjFvBnkg7Ib5C0OXAycFNErCm9ZmZt4IBjtvH4f8BqYGqVbROBMaSgZNaTHHDMmiRpgqT/lPS8pN9LWiTpo82WFxGrgFuBKVU2TwVeBO7NPntPSTMl/ULSK5KelHSBpC1r1HeL7BTbp3PpX5X0q1za3pKuz07hrZY0R9J+zR6bGcAW3a6A2cYsImZUvB7Ibd4beAC4EngV+AtgpqR1ETEr22cQUL6sGmYBH5F0cEQ8ApAFkROB70XE2izfrsBLwN8CLwPjgPOBXYDPNniYG5C0S3ZcLwLTs2M7B5gn6R0+pWfNcsAxa1JEzF7/WpKA+4C3AJ+k+VNfc0gBZCrwSJZ2DLBzZZkRsQhYVPH5DwCvAFdKOj0iXm/y8wHOALYCjoiIl7PyHwSWA9OAq1oo2zZhPqVm1iRJO0n6lqSngdeyx3Tg7c2WmfUe/oPUy1GWPAV4Gni44rM3k3SGpCWSXsk++1+BUaSg14ojgbnAquw03BbACuDHwPgWy7ZNmAOOWfOuJQWDrwNHA+8B/gXYusVyZwF/CkyQtDUwGZgVGy7tfgZwMfDvwAeBQ4DTsm2tfv4uwEf5YxBd/3g/sFeLZdsmzKfUzJqQBYLjgc9FxJUV6e34I+4e0vWTqcAewPYMP0X3YWB2RJxX8dkH1Sl3LfA68KZc+s659/8NPApcVKWMlXU+w2xEDjhmzdkK2Bx44wK6pO1JvY2WbjIVEWsl/TspqOwJLImIn+Syjar87EzNEXIREZKeA95ZUefNgQ/kst5N6lU97gEC1k4OOGZNiIgVkn4EnCdpJbAOOJt0rWOHNnzELOBzpNFp51XZPg/4jKSFwM+BvwbGFij3P4Dpkh4jXRf6JLBNLs//AU4B7pF0BfA8sDtwODAYEf/W8NGY4YBj1opTgKuB64DfAleQfrw/14ayHyKNChsLzK6y/XzgzaTTXgHcAPwdcHOdcs8jXaO5CPgD8C1gMfCJ9Rki4teSDgX+Abgc2BF4AbgfGHHpHbN6VPYtpiW9DTgTOBT4M+D+KvMbqu03mvTlP4E02OFW4LSI+G0u32Tgq8B+pL/8LoiI69t5DGZm1rhujFI7AJgEPJk9iroeGCD9JTaNNCJog7/mJB0G3EiajX0ccBswS9LRrVbazMxa040ezmYRsS57fQOwS70ejqQJwIPA4RFxX5Z2CPAD4KiIuCtLmwtsGREfqNj3dmCHiDisE8djZmbFlN7DWR9sGnQc8OL6YJOV80PgF9k2siXbJwL5C5qzSfMZRjdXYzMza4demfg5DlhaJX1Jtg1gX2DLKvmWkI6z6dnfZmbWul4ZpbYTaX2pvCFgn4o8VMk3lNu+AUnTScuRMGrUqIP32qs9E6nXrVvHZpv1SjzvHrdTMW6nYtxOxbSznZ588smXImLXInl7JeBA9cl0qpKef68R0lNixNWkoa2MHz8+Fi5c2Eod3zA4OMjAwEBbyupnbqdi3E7FuJ2KaWc7ZWsJFtIrfwoMkeYC5O3IH3s0QxVp+TxQvYdkZmYl6ZWAs5Q/XqupVHlt5ynSAoP5fONIs8AbGYJtZmZt1isBZw6wezbPBgBJ40nXb+bAG8u630taf6rSFOChiFhRUl3NzKyK0q/hSNqGNPET0sKEO0g6OXt/e0SslrQMmB8RpwJExEPZHJvrJH2B1GO5GFiwfg5O5ivAoKTLSZNCJ2WPYzt+YGZmVlM3Bg3sRrqHR6X1799KWj9qC9JKvJWmApeR7jfyxtI2lRkiYkEWvL4KfIY0T+eUiLizjfU3M7MmlB5wImI5fxw5NlKesVXSXgY+nj1q7Xsz9RcwNDOzkvXKNRwzM+txDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWii3K/kBJ+wP/BEwAXgauAS6IiLU19pkBnD/C5nMi4h+zfNcC/6tKnndGxNIWqm2bsLFn31Zz+/KvHV9STcx6W6kBR9JOwF3AYmAysC/wDVJP69wau14D3JFLOwE4C5iTS18KfDyXtry5GpuZWbuU3cP5NDAKOCkiVgLzJO0AzJB0SZY2TEQ8CzxbmSbpy8DSiFiUy/77iHi4A3U3M7MWlH0N5zhgbi6wzCYFocOLFiJpZ+AoYFZ7q2dmZp1SdsAZRzrl9YaIeAZYnW0r6mRgS1Kwyttf0kpJayQtkFQ4kJmZWecoIsr7MOk14MyIuDyX/ixwXUScU7Cce4DREXFwLv104A+ka0S7AmcABwOHRcQPRyhrOjAdYMyYMQfPnl0thjVu1apVbLfddm0pq5/1Qjs9/tyKmtsP3HN0x+vQC+20MXA7FdPOdpo4ceIjETG+SN7SR6kB1SKcRkgfnlHag3T67axhBUd8M5f3NlLwOYc0yGB4ZSKuBq4GGD9+fAwMDBSpRl2Dg4O0q6x+1gvtNK3eKLWPDnS8Dr3QThsDt1Mx3Wqnsk+pDQE7VkkfTRoiXcRHSAHq+noZI+IV4Hbg3UUraGZmnVF2wFlK7lqNpL2Abcld26lhKrAgIn7ZwOeWd97QzMyqKjvgzAGOkbR9RdoU4BVgfr2dJY0FDqXg6DRJo0gj4x5ptKJmZtZeZQecK4E1wE2Sjswu2M8ALq0cKi1pmaTvVNl/KvA6cEN+g6TRku6X9ClJR0iaAtwL7Alc1IFjMTOzBpQ6aCAihiQdAVwB3EK6bnMZKejk67V5lSKmAndHxG+qbFsD/Ia0YsFuwKvAQ8DhEbGwLQdgZmZNK32UWkQsBj5QJ8/YEdLfVWOfV4GTWqqcmZl1jFeLNjOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAxM7NSNBRwJFVbbsbMzKyuRns4z0m6RNI7O1IbMzPrW40GnKuAk4GfSvqBpOmSduhAvczMrM80FHAi4vyI2Ac4CngCuBR4QdL3JB3ZiQqamVl/aGrQQETcExF/DewOfB54BzBX0nJJMyT9STsraWZmva/VUWrjgfeTbhs9BNwPfAJYJuljLZZtZmZ9pOGAI2lvSedLegq4G9gD+BvgTyLifwJ7k671fL2tNTUzs57W0A3YJN1D6tE8C1wLzIyIpyvzRMRaSd8HTm9XJc3MrPc1esfPl4BJwLyIiBr5FgFvbbpWZmbWdxo9pXYF8GC1YCNpO0nvB4iI1/I9HzMz27Q1GnDuBfYfYds7su1mZmbDNBpwVGPbdsDqFupiZmZ9rO41nOw02UBF0ickHZvLtjVwPPB4+6pmZmb9pMiggfeSJncCBPBh4PVcnj8AS4Ez21c1MzPrJ3UDTkR8nWxOjaRfACdGxKJOV8zMzPpLQ8OiI8JDnc3MrClFruFMAhZExMrsdU0RcXtbamZmZn2lSA/nVuBQ4IfZ62Dk0WoB+CZtZmY2TJGA81bghYrXZmZmDSsyaODpaq/NzMwaUeQazjaNFBgRnvxpZmbDFDmltop0baYoX8MxM7NhigScv6GxgGNmZjZMkWs415ZQDzMz63Ot3mLazMyskCKDBn4ITIuIxZJ+RJ3TaxFxSLsqZ2Zm/aPINZz/Al6peO3rOWZm1rAi13A+XvF6WkdrY2ZmfavpazhKdpVU66ZsZmZmQBMBR9IkSQ8CrwK/Al6V9KCk49teOzMz6xsNBRxJnwJuIU0GPZ10M7bTs/f/mW03MzMbpqH74QDnAFdHxGdy6VdKuhL4EnBVW2pmZmZ9pdFTam8Gbhph243AzvUKkLS/pLslrZb0vKQLJdVcDkfSWElR5TG7St7Jkh6X9KqkxZKmFDoyMzPrqEZ7OPcChwPzqmw7HLiv1s6SdgLuAhYDk4F9gW+QAt+5BT7/C8ADFe9fypV/GCnwfRs4DZgEzJI0FBF3FijfzMw6pMjEz/0r3n4LuEbSm4GbgV8DuwEnAscBn6hT3KeBUcBJEbESmCdpB2CGpEuytFqeiIiHa2z/MnBfRJyWvb9X0gHAeYADjplZFxXp4fyUDSd7CvhU9sjf/fMOaq8WfRwwNxdYZgMXk3pItxSoT1WStgImkno2lWYDMyWNjogVzZZvZmatKRJwJrbx88YB91QmRMQzklZn2+oFnJmSdib1rGYBX4qI9asg7AtsCSzN7bOEdMru7cCPWqu+mZk1q8hKA/Pb+Hk7AS9XSR/Kto1kDfDPpNNiK4EB4CxSkJlcUTZVyh/Kbd+ApOnAdIAxY8YwODhYq/6FrVq1qm1l9bNeaKczDny95vYy6t8L7bQxcDsV0612anTQwBskbQZsnU8vcMfPamuxaYT09WW+AHyuImlQ0ovAtyW9KyIW1ShfI6SvL/tq4GqA8ePHx8DAQO3aFzQ4OEi7yupnvdBO086+reb25R8d6HgdeqGdNgZup2K61U6NTvyUpLMkLQNeA35X5VHLELBjlfTRVO/51HJD9vzuirKpUv76942Wb2ZmbdToPJzTgLOB75B6Dv8AXAg8CSwnOzVVw1LStZo3SNoL2Jbh117qidzzU6QgOC6XbxywLqujmZl1SaMB55PA+cAl2fubI+IC4ABSwNivzv5zgGMkbV+RNoV0+4NGrxWdnD0/AhARa0jzhD6cyzcFeMgj1MzMuqvRazhvBRZFxFpJr5GdroqIdZK+DVxD6gGN5EpSL+kmSRcD+wAzgEsrh0pnp+zmR8Sp2fsZwPakSZ8rgfcDZwI3RcRPKsr/Cun6zuWkeUKTssexDR6nmZm1WaM9nN8C22WvnwH+vGLbTqRJnSOKiCHgCNJcnVuAC4DLSL2mSluw4XyepaR5OjOB24FTgK9nz5XlLyD1fI4E5gIfBE7xKgNmZt3XaA/nAeA9pB/975NWCNgZ+APwWeDuegVExGLgA3XyjM29n02awFlXRNxM6t2YmdlGpNGAMwPYM3t9EemU2jRSz2Ye8Pl2VczMzPpLQwEnIp4AnsheryHdC+f0DtTLzMz6TCsTP98C7AE8HxHPta9KZmbWj5q5xfRnJP0SeBr4AfCMpGcl/e+2187MzPpGoysNnAdcQZpPczwwPnueA3wr225mZjZMo6fUPgtcFBFfzqXfka1t9lnSygNmZmYbaPSU2ihGvqvnfKos5mlmZgaNB5ybgZNG2PYh4NbWqmNmZv2qyC2mJ1W8nQNcImksw28xfQDw9+2vopmZ9YMi13BuZfitpPcEjqmS97ukO3GamZltoEjAeWvHa2FmZn2vyC2mny6jImZm1t8aXmlA0hakAQKHATsD/w3cT7pVQO2bv5uZ2SaroYAjaTfgTuAg0h0+XwQmkObfPCbp6Ij4TbsraWZmva/RYdGXAm8G3hsR+0TEhIjYB3hvln5puytoZmb9odGAMwk4KyJ+VJmYvf8iaZkbMzOzYRoNOFsBvxth2++AN7VWHTMz61eNBpyHgbMkbVuZmL0/K9tuZmY2TKOj1M4A7gV+KelO0qCB3UiTQAUMtLV2ZmbWNxrq4UTEImA/4GpgV+AoUsC5EtgvIh5rew3NzKwvFO7hSNoSOAT4RUSc3bkqmZlZP2qkh7MWuAd4Z4fqYmZmfaxwwImIdcDPgDGdq46ZmfWrRkepfQk4T9KBnaiMmZn1r0ZHqZ1LWlFgkaTnSKPUojJDRBzSprqZmVkfaTTg/DR7mJmZNaRQwJE0irSszU+BXwF3RcSLnayYmZn1lyK3mN4HuAsYW5G8UtJHIuLOTlXMzMz6S5FBA5cA64C/BLYBDgAeBa7qYL3MzKzPFAk4E4BzI+KBiHg1IpYAnwL+VNIena2emZn1iyIBZw/g57m0p0hrp+3e9hqZmVlfKjoPJ+pnMTMzG1nRYdFzJb1eJf3ufHpE7NZ6tczMrN8UCTgXdLwWZmbW9+oGnIhwwDEzs5Y1upaamZlZUxxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxKUXrAkbS/pLslrZb0vKQLJW1eZ5/3SJopaVm23xOSzpe0dS7fDElR5XFsZ4/KzMzqafQGbC2RtBPpVgeLgcnAvsA3SIHv3Bq7TsnyXgz8DDgI+Er2/KFc3hVAPsAsabXuZmbWmlIDDvBpYBRwUkSsBOZJ2gGYIemSLK2aiyPiNxXvByW9Clwlae+IeLpi2+sR8XBnqm9mZs0q+5TaccDcXGCZTQpCh4+0Uy7YrPdo9uy128zMekDZAWccsLQyISKeAVZn2xrxPtKN4Z7Ipe8o6SVJr0l6VNJJTdfWzMzaRhHl3XlA0mvAmRFxeS79WeC6iDinYDm7Az8Bbo+IaRXpHyP1eBYB25FuFDcJ+FBE3DRCWdOB6QBjxow5ePbs2Y0eVlWrVq1iu+22a0tZ/awX2unx51bU3H7gnqM7XodeaKeNgdupmHa208SJEx+JiPFF8nYj4HwhIr6ZS38OuDYivlSgjDeRBh68BTg4IoZq5BXwIDAqIt5Vr+zx48fHwoUL62UrZHBwkIGBgbaU1c96oZ3Gnn1bze3Lv3Z8x+vQC+20MXA7FdPOdpJUOOCUfUptCNixSvpo4OV6O2cB5DrgAGBSrWADECma3gQcVG/otZmZdVbZo9SWkrtWI2kvYFty13ZGcBlpOPVREVEk/3q+Y6mZWZeV3cOZAxwjafuKtCnAK8D8WjtK+iLweeBjEbGgyIdlPaITgcciYm1zVTYzs3You4dzJXAacJOki4F9gBnApZVDpSUtA+ZHxKnZ+1OAi4BrgeckHVpR5lPrh01Lmg/cSOotbQt8EjgUOKGzh2VmZvWUGnAiYkjSEcAVwC2k6zaXkYJOvl6V11yOzp6nZY9KHycFIoBlwN8Ce5CGTP8YOD4i5rSj/mZm1ryyezhExGLgA3XyjM29n8bwQFNtv1NbqJqZmXWQV4s2M7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1I44JiZWSkccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpXDAMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVYotuV8CsUWPPvq1unuVfO76EmphZI9zDMTOzUjjgmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqXwDdjMNkL5m8ydceDrTKtI8w3mrBe5h2NmZqVwwDEzs1KUfkpN0v7APwETgJeBa4ALImJtnf1GA5cDJ5AC5a3AaRHx21y+ycBXgf2An2dlX9/u47Dh8qeBqvGpILNNV6k9HEk7AXcBAUwGLgTOAC4osPv1wADwCWAa8B7g5lz5hwE3AvcCxwG3AbMkHd2WAzAzs6aV3cP5NDAKOCkiVgLzJO0AzJB0SZY2jKQJwDHA4RFxX5b2HPADSUdGxF1Z1i8D90XEadn7eyUdAJwH3Nm5wzLrbe6dWhnKDjjHAXNzgWU2cDFwOHBLjf1eXB9sACLih5J+kW27S9JWwETgtNy+s4GZkkZHxIo2HUdP84+LdZu/g5umsgPOOOCeyoSIeEbS6mzbSAFnHLC0SvqSbBvAvsCWVfItIZ06fDvwo+aqXV+9YayNqvafrd5/Uv8HNdtQp/7PtDNgNlPHIp9fyxkHvs5ASyU0RxFR3odJrwFnRsTlufRngesi4pwR9psH/D4iTsilfxfYJyLeJ+kvgAXAn0fEooo8bwN+BhwTEcNOq0maDkzP3r4DeKLpA9zQLsBLbSqrn7mdinE7FeN2Kqad7bR3ROxaJGM3Jn5Wi3AaIb2Z/fLvVWN/IuJq4Oo6n90wSQsjYny7y+03bqdi3E7FuJ2K6VY7lT0PZwjYsUr6aNIQ6Ub327Fiv6GKtHwe6pRvZmYdVnbAWcofr7kAIGkvYFuqX6MZcb9M5bWdp4DXquQbB6wDnmyivmZm1iZlB5w5wDGStq9ImwK8Asyvs9/u2TwbACSNB/bJthERa0jzbz6c23cK8FAXRqi1/TRdn3I7FeN2KsbtVExX2qnsQQM7AYuBn5KGQu8DXApcHhHnVuRbBsyPiFMr0u4gjTT7AqnHcjHw64j4y4o8hwGDwBWkSaGTsvzHVhswYGZm5Sm1hxMRQ8ARwOakIdAXAJcB5+eybpHlqTSV1Av6F+A64BHgxFz5C4CTgSOBucAHgVMcbMzMuq/UHo6ZmW26vFp0HZL2l3S3pNWSnpd0oaR876vafqMlzZQ0JGmFpO9JenOVfJMlPS7pVUmLJU3pzJF0TjNtJOk9Wfssy/Z7QtL5krbO5ZshKao8ju3sUbVfk+00doTjn10lb89/l6DpdhrpexKSvliR79oR8lQblLRRk/Q2SVdJekzSWkmDBffr2m+Tb8BWQ8Vio4tJi43uC3yDFKjPrbErpMVG30FabHT9Naebgfw1pxuBb5OW5JlEWmx0qFdOA7bQRlOyvBeTJuYeBHwle/5QLu8KIB9glrRa9zK1+F2CdC3ygYr3G0za64fvErTUTtcAd+TSTgDOIhtYVGEp8PFc2vLmatxVB5D+nR8G3tTAft37bYoIP0Z4AF8kze/ZoSLt74HVlWlV9ptAmmj6/oq0Q7K0IyvS5gL35Pa9HVjQ7WMvoY12rZI2PWujvSvSZgAvdfs4u9hOY7M2+R91yu/571Ir7TRCWbcBS3Jp1wILu32cbWqrzSpe3wAMFtinq79NPqVW20iLjY4iLTZaa79hi40C6xcbpWKx0X/L7TsbmKB0/59e0FQbRcRvqiQ/mj3v1r7qbTSa/S7V1UffJWhTO0naGTgKmNXe6m08ImJdE7t19bfJAae2YYuGRsQzpL+2ap3zbddio72g2Taq5n2kLn5+PbsdJb0k6TVJj0o6qenadk+r7TQzO0//gqRLJY2q2NYv3yVo3/fpZFKbDLvWBewvaaWkNZIWSGop4PeYrv42OeDUthPVl8QZyra1st/653y+odz2jV2zbbQBSbsDXwL+b+6v22WkUyofIV3beR64sQeDTrPttAb4Z+BU0pSCq4DPsOEPab98l6BN3yfSNIofR0R+hZFHSTd9/Cvgo6TpF/MkHdJEXXtRV3+bPGigvo1qsdGNVLNtlDJKbyJ131cBf7dBwRHfzeW9BXiQdFO9m5qpbBc13E4R8QLwuYqkQUkvAt+W9K6oWBm9Sjm9+F2C1r9Pe5BOv501rOCIb+by3kYaoHAOaZDBpqBrv03u4dTmxUbra7aNAJAk0kTeA4BJkSYHjyjS1cubgIOKDE/fiLTUTjk3ZM/vriibKuX32ncJ2tNOHyH9OF5fL2NEvEK6GP7uenn7RFd/mxxwavNio/U120brXUYa/jo5IorkX6/X/mpvtZ0qRe65X75L0J52mkoaTfXLBj63175Pzerqb5MDTm2b0mKjzWq2jcgm5H0e+FikZYnqynpEJwKPRcTa5qrcFU23UxUnZ8+PQF99l6DFdpI0FjiUgqPTssEXx5G15Sagu79N3R5LvjE/SBfHXgDmkdZnm066zvDVXL5lwHdyaXcAPwdOIp0bfgK4P5fnMOB14HJgALiE9BfE0d0+9k63EXAK6a/KmaQfiMrHrhX55pMmnh1NCjS3Z230wW4fe0ntNIM08fGkbL8LST++N/bbd6mVdqpIP5v013m1eV6jgfuBT5EGYEwhTZpcA4zv9rE30VbbkP74OBl4CPivivfbjNRO3fxt6nqjbewPYH/gnuw/+Quk2fCb5/IsB67Npe2Y/Zi+DKwEvg/sUqX8E0irZ68hdWmndvuYy2gj0gS8GOExrSLfd7L/HK8Av89+MI7r9jGX2E5TgYWk1Rb+kP2AXAhs1Y/fpWbbqSJ9EXDHCOVuTbr+98usjVZkP76HdvuYm2ynsTX+D40dqZ26+dvkxTvNzKwUvoZjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCAcfMzErx/wEcoM5WrinEjAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYHFWd//H3h4sQCYR7QERiUERQHyUDwv5YmQgKBB+DCMKq6y8KSbysuPuAgogS8LKCcvGyLgkoyE8lKCC73OWSCaCiJBFEIcGg4S4CBkJICAS+vz9ODRY1PT3dM93V092f1/PU01Onzqk+p6tnvlOnTp1SRGBmZtZs67S6AmZm1h0ccMzMrBQOOGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAYw0laZakGGT5cI372Cnbz6aF9GnZfsY2p/a11WOE+7xYUl8N+daT9O+S7pC0WtJySVdJ2nuY7ztaPtNphe/E3yRdK2m3Gsr2ZmXeVEZdrfEccKwZngL2qrBcU2P5nYCTgOIf+iuz/axqTDWHXY+mkrQucBnwNeB/gSnANOAFoE/SB4ex29HymfZ7Z/a+M4GtgHmSXjVEmUVZmXubXDdrkvVaXQHrSGsj4tZG7zQiHgMea/R+R6FPAwcBB0ZEPkj/j6S5wBxJ8yPioZG+UQs/09siYiWApAXAfcCHgG8UM0oSsEFErAAa/r2y8vgMx1pC0uclLZX0rKRHJV0jaRtJvcDlWba/ZF0oy7IyL+v+kTQhWz9C0nmSVkh6sL/rTtLnJD0s6TFJp0paJ/f+O0uaK+kBSask/THrwlon2z5oPbLtr8nK/z0rf62kNxTauH3WDbZa0jJJR9X48XwGmFcINv2+AGwIHJl7n2WSvinpi5L+KmmlpB9LGjdUWyp1qUnaUtIPJT2Rta1PUk+hbf3v+R/ZZ748+zzqPhuMiAdIQW9Ctu9Zkh6XtLek24BngcMqdalJWjf7Lt0jaU1Wl/MLdZ0qaUH2XfurpNMkrV9vPW3kfIZjTSFpwHcrItZm2z4CnAAcB/wR2ILUxbIRqdvkWOCbwCHAI8CaId7uVODHwPuBjwE/lPQ2YIdsfRLwFeB3wNyszHbAkqzc08BbgZOBMcB/VquHpM2BW4AngI+TuqOOB66XtFNErM7+K/8fYEtScHg22//mwJ+qfG7bk/7wnllpe0TcK+lO4B2FTf8CLAWmA9sCpwHnAodVa8sgLgNel5V5HPgsqcvrbRGxNJfvA8DvgRnAq4EzSN2An6yy7wEkbUz6XP6aS34l8MOsHfcAD2ftKpoNfCTLNz/bz6G5fX8AuDDLdwKwI+n4rpO1z8oUEV68NGwBZgExyDIhy/Nd4JIq+3hPPn8ufVqWPjZbn5Ctn5fLswnwPOmP+rq59N8CFw3yfiL983UC8Oca6vFlUrDZPJe2Gena1aey9SlZ2bfn8uwArAX6qrR9z6zc1Cp5LgPuzq0vA/7e/7lkaR8CXgTeWOdnekC2vk8uz0akM5DZhfe8F1gvl3YW8Nchvh/97zcu+8y3By7KPpe3Fr5DUwtle7P0N2XrO2frR1c5rvflvx9Z+seA1cAWrf596bbFZzjWDE8B+1VIfzh7vR04UtLJpIvWCyPihRG83w39P0TECkmPAfML+1wKvKZ/RdKGwOdJf5hfA6yf27ZeZGdjg9gPuA5YkTuTexpYCPR3Pe0BPBoRv8nV7T5JC4fRvlpcF9k1kcylwI+A3YG769jPHsBjETG/PyEinpF0BVAcITev8DndBWwt6RUR8dwQ7/Nk7ufHgY9FxO25tACuHmIfk7PX8wfZvhPp2P60cMZ9I6lb8k2ksyIriQOONcPaiFhQZfsPgI1JXTFfAp6Q9N/ArGEGnicL688NkrZhbv1U4ChSN9eiLP9U4MQs30oGtyXpTOTwCtv6g982wN8qbP8bqe2D6R8IsEOVPDvk8uX3+5JI3XorqdwNVc22wKMV0h8ldVflVfqMBbwi+7mad5C6Ih8HHoiIFwvbl9cQtLYAnok0mKCSLbPXqwbZvv0Q+7cGc8Cx0mV/XM4EzsyuWXwI+Crpj+jZJVXjMOA7EXFaf4Kkg2os+3fScOUvV9j2dPb6V2DrCtu3JnXnVBQRD2QX9N8LfLu4XdJrSf+ZF99760K+McBY0vWaejxS3FdmPKndjfK7whlZUS3PTXkC2EjSJoMEnf76ziBdvyv6Sw3vYQ3kUWrWUhHxQER8ndTltUuW3P+f7YaVSzXEGHIXzpXufTmikGewetwA7Ar8MSIWFJYlWZ7bgPGS3p57j9cAQ97gCHwL2FfSuyts+0pW7+8X0t+ll9+8eQjpj3b/mWatn+lvSN1iLw1KkPRK0jDtW2qoe5luzF4/Msj2JaR/YiZUOE4LIuKJcqpp/XyGY82wnqQ9K6Q/EBEPSZpN+u/zVtL1nsnA60mj1iD9oQCYqXTfyaqIuLPBdbwO+JSkpVldPgVsUMgzWD3OAD4M3CjpO6Q/auOBfYBbIuJCUjfOHcDPJB1HGqV2CpW72Yq+Q7pO9HNJ3wT6SN1wR5Iu/v9rDLwHZzVwpaRvkLrFvgH8PCLuGqItLxMR10r6JXCRpONJZxHHkgL0gHtkWikilkiaA5wuaWvgJtKNrYdGxBER8aKkY4D/J2kT0jWh54CJwMFZvrJveO1urR614KWzFqqPUjsxyzMN+CXpD/0q0tDaIwv7OYY0wmgtsCxXrtIotfcUyi4DvllIOx9YkFsfD/wcWEG6PnEaaUjxS/sfrB5Z+quA87Kya7L3/BGway7Pa0izK6zO9jETuJgqo9RyZdcD/iP7bFYDy0l/MPeukHcZcHr22T8KPEMaCrxpvZ9plrYVcEH2nqtJF9Z3r+EzHrCvCnWtJc8s4PEK6b3kRqllaeuSjS4kBZMHGTgq7UDg5uxzWUEatPIVciPsvJSzKDsgpZH0OtK4/j1JfdE3R0RvDeXGkYZdHkzqCryCNBzyiUK+qaQv0+tJX8KTI+KiRrbBbDTJrvlcHBG+r8RGtVZcw9mVdI/CPdlSq4tI/+EcRfovaXfS/QgvUZrY8BJgHum/miuBCwfpCzczsxK14gxnnciGQEq6GNhyqDMcSXsBvyLdjHZTlrYH6QLnuyLi+iztWmD9iHhnruxVwCYRMaxZds1GO5/hWLso/QwnBo63r8WBpJvobsrt57ekYY0HAkjagHTx+aeFsnOBvfrnlTLrNBExwcHG2kG7DIveGVhcIf3ubBukOZLWr5DvblI7d2pa7czMbEjtMix6Mwbe1QxpFM3EXB4q5Fte2P4ykmaQbgxjzJgxk7bfvr1uPn7xxRdZZ512+b+h8YbT/o3vSZcOn96pvf8H8bHv3vaPprbfc889j0fEVrXkbZeAA5XvPFaF9OK6qpQnIuYAcwB6enpiwYJqM7KMPn19ffT29ra6Gi0zrPYr+0osWVI93yjnY9+97R9NbZd0X615R0eIHNpyKj91cVP+cUazPJdWzAOVz5DMzKwk7RJwFvOPazV5+Ws795KmpS/m25k0TXs9Q7DNzKzB2iXgXA1sk91nA0D2BMKJ2TYiYg3p/pvDCmUPB34dEU+VVFczM6ug9Gs42USAU7LV7YBNJPU/oe+qiFiVzW81PyKOBIiIX2f32Fwg6VjSGcuppHmrrs/t/stAn6SzSDeFTsmWA5reMDMzq6oVgwa2Bn5WSOtffy1pjqb1SHMk5R1BmtL+B+SmtslniIhbsuD1FeATpPt0PhgRv2hg/a3dlXyzs5klpQeciFjGP0aODZZnQoW0J4GPZku1spdRmPLGzMxar12u4ZiZWZtzwLHuM2lSWsysVO1046dZYyxa1OoamHUln+GYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXCo9Ss+0yf3uoamHUlBxzrPnPmtLoGZl3JXWpmZlYKBxzrPgsXpsXMSuUuNes+PT3p1bNGm5XKZzhmZlYKBxwzMyuFA46ZmZXCAcfMzErhgGNmZqVwwDEzs1J4WLR1nwULWl0Ds67kgGPdx4+XNmsJd6mZmVkpHHCs+8yYkRYzK5UDjnWfc85Ji5mVygHHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUvvHTus9uu7W6BmZdyQHHuo8fL23WEu5SMzOzUjjgmJlZKRxwrPtIaTGzUjngmJlZKRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4ZkGrPvMnt3qGph1JQcc6z5+vLRZS5QecCTtAnwH2At4EjgXODkiXqhSZhZw0iCbT4iI/8zynQ/83wp53hgRi0dQbetiE46/sur2ZV8/qKSamLW3UgOOpM2A64G7gKnAjsDppGtJJ1Ypei5wTSHtYOA44OpC+mLgo4W0ZcOrsXWkOXPSq890zEpV9hnOx4ExwCERsQK4TtImwCxJp2VpA0TEg8CD+TRJXwQWR8TthezPRMStTai7dYqZM9OrA45ZqcoepXYgcG0hsMwlBaF9at2JpM2BdwEXNrZ6ZmbWLGUHnJ1JXV4viYj7gVXZtlodCqxPClZFu0haIWmNpFsk1RzIzMyseRQR5b2Z9Dzw2Yg4q5D+IHBBRJxQ435uBMZFxKRC+meA50jXiLYCjgEmAXtHxG8H2dcMYAbA+PHjJ82dWymGjV4rV65k7Nixra5Gywyn/b2TJwPQN29eTfnvfOipqtvfvN24ut6/UXzsu7f9o6ntkydPXhgRPbXkbUXAOTYivlVIfwg4PyK+UMM+tiVdzzkuIr45RN4xpOBzR0QcPNS+e3p6YsGCBUNlG1X6+vro7e1tdTVaZljt7380QY3f/dE6Ss3HvnvbP5raLqnmgFN2l9pyYNMK6eNIQ6Rr8QFAwEVDZYyI1cBVgB9ib2bWYmUHnMUUrtVI2h7YiMK1nSqOAG6JiAfqeN/yTuPMzKyisgPO1cD+kjbOpR0OrAbmD1VY0gRgT2ocnZZ1qR0ILKy3otbBImruTjOzxik74JwNrAEulbRfdsF+FnBGfqi0pKWSvl+h/BHAWuDi4gZJ4yTdLGmmpH0lHQ7MA7YDvtaEtpiZWR1KvfEzIpZL2hf4LnA56brNmaSgU6zXuhV2cQRwQ0Q8VmHbGuAx0owFWwPPAr8G9omI9hoJYGbWgUqfSy0i7gLeOUSeCYOkv7VKmWeBQ0ZUOesOk7LR9Avd02pWJs8Wbd1n0aJW18CsK/kBbGZmVgoHHDMzK4UDjpmZlcIBx8zMSuGAY2ZmpfAoNes+06e3ugZmXckBx7pP/yOmzaxU7lIzM7NS1BVwJFWabsasvSxc6FkGzFqg3i61hyRdAJwXEXc3o0JmTdeTPSvKM0ablareLrXZwKHAHyT9RtIMSZs0oV5mZtZh6go4EXFSREwE3gUsAc4AHpH0Y0n7NaOCZmbWGYY1aCAiboyIjwDbAJ8G3gBcK2mZpFmSXtXISpqZWfsb6Si1HuAdpMdGLwduBo4Clkr68Aj3bWZmHaTugCNpB0knSboXuAHYFvgY8KqI+FdgB9K1nm80tKZmZtbW6hqlJulG0hnNg8D5pNFq9+XzRMQLkn4CfKZRlTQzs/ZX77Dox4EpwHURVceU3g68dti1MmumBX7iuFkr1BtwvgssqhRsJI0FdouImyLieeC+AaXNRoP+R0ybWanqvYYzD9hlkG1vyLabmZkNUG/AUZVtY4FVI6iLWTlmzEiLmZVqyC41Se8AenNJR0k6oJBtQ+Ag4M7GVc2sSc45J7161mizUtVyDeftpJs7AQI4DFhbyPMcsBj4bOOqZmZmnWTIgBMR3yC7p0bSX4D3RcTtza6YmZl1lrpGqUWEhzqbmdmw1HINZwpwS0SsyH6uKiKuakjNzMyso9RyhnMFsCfw2+znYPDRagH4IW1mZjZALQHntcAjuZ/N2ttuu7W6BmZdqZZBA/dV+tmsbfnx0mYtUcs1nFfWs8OI8M2fZmY2QC1daitJ12Zq5Ws4ZmY2QC0B52PUF3DMRjdlY16qTnhuZo1WyzWc80uoh5mZdbiRPmLazMysJrUMGvgtMC0i7pJ0G0N0r0XEHo2qnJmZdY5aruH8EVid+9kd32ZmVrdaruF8NPfztKbWxszMOtawr+Eo2UpStYeymZmZAXXOFg0vTeZ5IjApK79W0kLgqxFxZYPrZ9Z4s2e3ugZmXamugCNpJvA94AbgM8DfgK2BQ4D/lfTJiPBvs41ufry0WUvUe4ZzAjAnIj5RSD9b0tnAFwAHHDMzG6DeazhbAJcOsu0SYPOhdiBpF0k3SFol6WFJp0iqOh2OpAmSosIyt0LeqZLulPSspLskHV5Ty6x7zJmTFjMrVb1nOPOAfYDrKmzbB7ipWmFJmwHXA3cBU4EdgdNJge/EGt7/WOCXufXHC/vfmxT4vgccDUwBLpS0PCJ+UcP+rRvMnJle3bVmVqpabvzcJbf6beBcSVsAl/GPazjvAw4Ejhpidx8HxgCHRMQK4DpJmwCzJJ2WpVWzJCJurbL9i8BNEXF0tj5P0q7AlwAHHDOzFqrlDOcPvPxmTwEzs6X49M9rqD5b9IHAtYXAMhc4lXSGdHkN9alI0gbAZNKZTd5c4DxJ4yLiqeHu38zMRqaWgDO5ge+3M3BjPiEi7pe0Kts2VMA5T9LmpDOrC4EvRET/LAg7AusDiwtl7iZ12e0E3Day6puZ2XDVMtPA/Aa+32bAkxXSl2fbBrMG+C9St9gKoBc4jhRkpub2TYX9Ly9sfxlJM4AZAOPHj6evr69a/UedlStXtl2dG2k47e/NXmstd8yb11bd3qrP38e+e9vfrm2v+8bPfpLWATYsptfwxM9Kc7FpkPT+fT4C/FsuqU/So8D3JL01Im6vsn8Nkt6/7znAHICenp7o7e2tXvtRpq+vj3arcyONpP21lpt2fPX7mZd9aHjvP1I+9t3b/nZte13DorPpbI6TtBR4Hni6wlLNcmDTCunjqHzmU83F2etuuX1TYf/96/Xu38zMGqje+3COBo4Hvk86c/gqcApwD7CMrGuqisWkazUvkbQ9sBEDr70MJQqv95KC4M6FfDsDL2Z1NEtP+vTTPs1KV2/AmQ6cBJyWrV8WEScDu5ICxuuHKH81sL+kjXNph5Mef1DvtaJDs9eFABGxhnSf0GGFfIcDv/YINTOz1qr3Gs5rgdsj4gVJz5N1V0XEi5K+B5xLOgMazNmks6RLJZ0KTARmAWfkh0pnXXbzI+LIbH0WsDHpps8VwDuAzwKXRsTvc/v/Mun6zlmk+4SmZMsBdbbTzMwarN4znCeAsdnP9wNvy23bjHRT56AiYjmwL+lencuBk4EzSWdNeevx8vt5FpPu0zkPuAr4IPCN7DW//1tIZz77AdcC7wU+6FkG7GUmTUqLmZWq3jOcXwK7k/7o/4Q0Q8DmwHPAp0izSFcVEXcB7xwiz4TC+lzSDZxDiojLSGc3ZpUtWtTqGph1pXoDzixgu+znr5G61KaRzmyuAz7dqIqZmVlnqSvgRMQSYEn28xrSM3E+04R6mZlZhxnJjZ+vBrYFHo6IhxpXJTMz60T1DhpA0ickPQDcB/wGuF/Sg5I+2fDamZlZx6h3poEvAd8l3U9zENCTvV4NfDvbbmZmNkC9XWqfAr4WEV8spF+TzW32KdLMA2aj1/Tpra6BWVeqN+CMYfCnes7Ho9SsHfjx0mYtUe81nMuAQwbZ9n7gipFVx8zMOlUtj5ieklu9GjhN0gQGPmJ6V+Bzja+iWYMtXJhePduAWalq6VK7goGPkt4O2L9C3h+RnsRpNnr19KRXzxhtVqpaAs5rm14LMzPreLU8Yvq+MipiZmadre6ZBiStRxogsDewOfB34GbSowKqP/zdzMy6Vl0BR9LWwC+At5Ce8PkosBfp/ps7JL07Ih5rdCXNzKz91Tss+gxgC+DtETExIvaKiInA27P0MxpdQTMz6wz1BpwpwHERcVs+MVv/PGmaGzMzswHqvYazAfD0INueBl4xsuqYlWDBglbXwKwr1RtwbgWOk3RjRDzTnyhpI+C4bLvZ6OYbPs1aot6AcwwwD3hA0i9Igwa2Jt0EKqC3obUzM7OOUdc1nIi4HXg9MAfYCngXKeCcDbw+Iu5oeA3NGm3GjLSYWalqPsORtD6wB/CXiDi+eVUya7JzzkmvnjXarFT1nOG8ANwIvLFJdTEzsw5Wc8CJiBeBPwHjm1cdMzPrVPXeh/MF4EuS3tyMypiZWeeqd5TaiaQZBW6X9BBplNrL5niPiD0aVDczM+sg9QacP2SLmZlZXWoKOJLGkKa1+QPwV+D6iHi0mRUza5rddmt1Dcy6Ui2PmJ4IXA9MyCWvkPSBiPhFsypm1jT9j5g2s1LVMmjgNOBF4J+BVwK7Ar8DZjexXmZm1mFqCTh7ASdGxC8j4tmIuBuYCbxG0rbNrZ6ZmXWKWgLOtsCfC2n3kuZO26bhNTJrNiktZlaqWu/DiaGzmJmZDa7WYdHXSlpbIf2GYnpEbD3yapmZWaepJeCc3PRamJlZxxsy4ESEA46ZmY1YvXOpmZmZDYsDjpmZlaLeudTM2t9s37Ns1goOONZ9/Hhps5Zwl5qZmZXCAce6z5w5aTGzUpUecCTtIukGSaskPSzpFEnrDlFmd0nnSVqalVsi6SRJGxbyzZIUFZYDmtsqayszZ6bFzEpV6jUcSZuRHnVwFzAV2BE4nRT4TqxS9PAs76nAn4C3AF/OXt9fyPsUUAwwd4+07mZmNjJlDxr4ODAGOCQiVgDXSdoEmCXptCytklMj4rHcep+kZ4HZknaIiPty29ZGxK3Nqb6ZmQ1X2V1qBwLXFgLLXFIQ2mewQoVg0+932avnbjMzawNlB5ydgcX5hIi4H1iVbavHP5EeDLekkL6ppMclPS/pd5IOGXZtzcysYRRR3pMHJD0PfDYiziqkPwhcEBEn1LifbYDfA1dFxLRc+odJZzy3A2NJD4qbArw/Ii4dZF8zgBkA48ePnzR37tx6m9VSK1euZOzYsa2uRssMp/29kycD0DdvXk3573zoqarb37zduLrev1F87Lu3/aOp7ZMnT14YET215G1FwDk2Ir5VSH8IOD8ivlDDPl5BGnjwamBSRCyvklfAr4AxEfHWofbd09MTCxYsGCrbqNLX10dvb2+rq9Eyw2p//8PXavzuTzj+yqrbl339oPrev0F87Lu3/aOp7ZJqDjhld6ktBzatkD4OeHKowlkAuQDYFZhSLdgARIqmlwJvGWrotXWRiJqDjZk1Ttmj1BZTuFYjaXtgIwrXdgZxJmk49bsiopb8/fzXxcysxco+w7ka2F/Sxrm0w4HVwPxqBSV9Hvg08OGIuKWWN8vOiN4H3BERLwyvymZm1ghln+GcDRwNXCrpVGAiMAs4Iz9UWtJSYH5EHJmtfxD4GnA+8JCkPXP7vLd/2LSk+cAlpLOljYDpwJ7Awc1tlrWVSZPS68KFra2HWZcpNeBExHJJ+wLfBS4nXbc5kxR0ivXKX3N5d/Y6LVvyPkoKRABLgX8HtiUNmV4EHBQRVzei/tYhFi1qdQ3MulLpjyeIiLuAdw6RZ0JhfRoDA02lckeOoGpmZtZEni3azMxK4YBjZmalcMAxM7NSOOCYmVkpSh80YNZy06e3ugZmXckBx7qPHy9t1hLuUjMzs1I44Fj3WbjQswyYtYC71Kz79GQzqXvGaLNS+QzHzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKD4u27rNgQatrYNaVHHCs+/Q/YtrMSuUuNTMzK4UDjnWfGTPSYmalcsCx7nPOOWkxs1I54JiZWSkccMzMrBQepWZtZ8LxV7708zFvXsu03DrAsq8fVHaVzKwGPsMxM7NSOOCYmVkp3KVm3We33VpdA7Ou5IBj3cePlzZrCXepmZlZKRxwzMysFA441n2ktJhZqRxwzMysFA44ZmZWCgccMzMrhQOOmZmVwgHHzMxK4YBjZmal8EwD1n1mz251Dcy6kgOOdR8/XtqsJdylZmZmpfAZjnWfOXPS6yg+05lQeKhckR8yZ+3IAce6z8yZ6XUUBxyzTuQuNTMzK0XpZziSdgG+A+wFPAmcC5wcES8MUW4ccBZwMClQXgEcHRFPFPJNBb4CvB74c7bvixrdDqusWleQu4HMulupZziSNgOuBwKYCpwCHAOcXEPxi4Be4ChgGrA7cFlh/3sDlwDzgAOBK4ELJb27IQ0wM7NhK/sM5+PAGOCQiFgBXCdpE2CWpNOytAEk7QXsD+wTETdlaQ8Bv5G0X0Rcn2X9InBTRBydrc+TtCvwJeAXzWuWWfvzQAVrtrIDzoHAtYXAMhc4FdgHuLxKuUf7gw1ARPxW0l+ybddL2gCYDBxdKDsXOE/SuIh4qkHtaGv+w2Kjgb+H3afsgLMzcGM+ISLul7Qq2zZYwNkZWFwh/e5sG8COwPoV8t1N6jrcCbhteNUe2lC/PP2Wff2gYf+iVSp3zJvXMu34K/3LaTaIZl1XbGTAHE4da3n/0XZNVRFR3ptJzwOfjYizCukPAhdExAmDlLsOeCYiDi6k/wiYGBH/JOn/ALcAb4uI23N5Xgf8Cdg/IgZ0q0maAfSPj30DsGTYDWyNLYHHW12JFurm9ndz26G72z+a2r5DRGxVS8ZW3IdTKcJpkPThlCuua5D0lBgxB5gzxHuPWpIWRERPq+vRKt3c/m5uO3R3+9u17WXfh7Mc2LRC+jjSEOl6y22aK7c8l1bMwxD7NzOzJis74CzmH9dcAJC0PbARla/RDFouk7+2cy/wfIV8OwMvAvcMo75mZtYgZQecq4H9JW2cSzscWA3MH6LcNtl9NgBI6gEmZtuIiDWk+28OK5Q9HPh1B49Qa9vuwAbp5vZ3c9uhu9vflm0ve9DAZsBdwB9IQ6EnAmcAZ0XEibl8S4H5EXFkLu0a0kizY0lnLKcCf4uIf87l2RvoA75Luil0Spb/gEoDBszMrDylnuFExHJgX2Bd0hDok4EzgZMKWdfL8uQdQToL+gFwAbAQeF9h/7cAhwL7AdcC7wU+6GBjZtZ6pZ7hmJlZ9/Js0W1I0nRJf5L0rKSFkvatocwsSVFhOaCMOtdL0i6SbpC0StLDkk6RVDzrrVRunKTzJC2X9JSkH0vaoow6N8pw2i5pwiDHd26jL3rKAAAD0ElEQVRZ9W4USa+TNFvSHZJekNRXY7lOOPZ1t72djr2fh9NmJB0BnA3MIt3o+lHgCkm7R8Qfhij+FFAMMHc3vJIjlJvk9S7SJK87AqeT/kE6sUpRSJO8voE0yWv/tb7LgH+uVmi0GGHbIV2z/GVufbTcHFiPXUnXX28FXlFHubY+9pnhth3a4dhHhJc2WkgzIfwgt74OcCfwoyHKzQIeb3X9a2zj50n3VW2SS/scsCqfVqHcXqQbfN+RS9sjS9uv1e1qctsnZO18T6vb0IDPYJ3czxcDfTWUaftjP4K2t82xd5daG5E0kTRS76f9aRHxIvAz0iSmnWKwSV7HkCZ5rVZuwCSvQP8kr+1guG3vGNl3ul6dcOyH2/a24YDTXvpvaq00Qenmkoaaz2hTSY9Lel7S7yQd0vgqNsSAyVoj4n7Sf/mVbgAetFwmP8nraDfctvc7L+v7f0TSGZLGNKOSo1AnHPuRGvXH3tdw2stm2Wtxmp7lue2PDVJ2Kalr5nZgLDATuETS+yPi0kZXdIQ2o/JURMv5x2dQb7mJDahXGYbb9jXAf5Ge+7SC9LDC40jXgKY2toqjUicc++Fqm2PvgNNi2aOztx0qX0Tk/3ura4LSrPyPCu97OfAr0sPpRlvAgeZP8jqa1d2GiHgE+LdcUp+kR4HvSXpr5GZQ72CdcOzr1k7H3l1qrXcY6bR/qAUaOEFppKuNlwJvqWW4ccmaOcnraDfctldycfa624hq1B464dg30qg89g44LRYR50aEhlqy7P1nOZUmKP17RAzWnVa1CsOufPM0c5LX0W64ba8kCq+drBOOfSONymPvgNNGIuLPpFmvX5qgVNI62frV9exLkkhTA90RES80sp4N0LRJXtvAcNteyaHZ68JGVGyU64Rj30ij89i3ely2l/oW4F+AF0g3AU4Gzif9MXpTLs8+wFpgn1zafOBo4N2kQHMV6ea497a6TRXauBnwCHAdaV68GcBK4CuFfEuB7xfSrgH+DBwCHEy6b+nmVrep2W0n3Wd1etbu/YBTsu/FJa1u0zA+g1eS/mAeCvwa+GNu/ZWdeuyH2/Z2OvYtr4CXYRw0mJ596dYAi4B9C9t7SafSvbm072e/jKuBZ4CbgQNb3ZYqbdwFuDGr7yPAl4F1C3mWAecX0jYFziP1268AfgJs2er2NLvtpMltF5Bmk3gu+36cAmzQ6vYMo/0Tsu9vpWVChx/7utveTsfek3eamVkpfA3HzMxK4YBjZmalcMAxM7NSOOCYmVkpHHDMzKwUDjhmZlYKBxwzMyuFA46ZmZXi/wN8Qq+e1/nqnwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot estimated values for \"a\"\n", - "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", - "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('\"a\" Value', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()\n", - "\n", - "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", - "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", - "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", - "plt.xticks(size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('Estimated Option Price', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate Delta\n", - "\n", - "The Delta is a bit simplier to evaluate than the expected payoff.\n", - "Similarly to the expected payoff, we use a comparator circuit and an ancilla qubit to identify the cases where $S_T \\geq K$.\n", - "However, since we are only interested in the probability of this condition being true, we can directly use this ancilla qubit as the objective qubit in amplitude estimation without any futher approximation." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "european_call_delta = EuropeanCallDelta(\n", - " uncertainty_model,\n", - " strike_price\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# set number of evaluation qubits (=log(samples)\n", - "m = 5\n", - "\n", - "# construct amplitude estimation \n", - "ae_delta = AmplitudeEstimation(m, european_call_delta)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# result_delta = ae_delta.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100)\n", - "result_delta = ae_delta.run(quantum_instance=LegacySimulators.get_backend('statevector_simulator'))" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exact delta: \t0.4700\n", - "Esimated value:\t0.5000\n", - "Probability: \t0.7291\n" - ] - } - ], - "source": [ - "print('Exact delta: \\t%.4f' % exact_delta)\n", - "print('Esimated value:\\t%.4f' % result_delta['estimation'])\n", - "print('Probability: \\t%.4f' % result_delta['max_probability'])" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8XFV99/HPl4sSCSRBSKAIRFBMofgoCTdLJZGLEnyKAhpEq7GQxEvF9gXIRZQA6iOgQKu1JKhQHpXYIqaVO4GcIBaUJIIIJBgk3MUAgRASMCG//rH2yM5kzpyZOTN7n5z5vl+v/Zoza6+9Zq2Zc+Z31tprr62IwMzMrNM2KbsCZmbWHRxwzMysEA44ZmZWCAccMzMrhAOOmZkVwgHHzMwK4YBjbSNpuqToZftYg2XsnpUzvCp9clbO0M7UvrF69LPMqyT1NJBvM0n/KOkeSaslLZd0naQDW3zdgfKeTs79PqyT9IKk30i6WNJuLZbZI+mq3PPDJP1j+2pt7eSAY+32AnBAje2GBo/fHTgLqP6ivzYrZ1V7qtlyPTpK0qbAbOBrwH8DE4HJwKtAj6TjWih2oLynFe8B3gUcDXwPOAz4jaTD21D2YYADzgC1WdkVsEFnbUTc2e5CI2IZsKzd5Q5AnwOOAA6PiHyQ/i9Js4CZkuZFxBP9faES39O7ImJl9vMcSZcA1wA/kjQ6Il4ooU5WAPdwrHCSTpe0RNLLkp6WdIOk7SWNB36WZXs4G3pZmh2z3vCPpNHZ82MlXSZphaTHK0N3kr4g6UlJyySdJ2mT3OuPkTRL0mOSVkm6LxvC2iTb32s9sv07Z8c/lx1/o6S3VbVxp2wYbLWkpZJOaPDt+TwwtyrYVHwR2AI4Pvc6SyV9Q9KXJP1B0kpJP5Q0rK+21BpSk7StpH+X9GzWth5J46raVnnNf8re8+XZ+9FSbzAiXiEF2uHAR3Kvs4mk07LflVckPSjpE72VI2k6cBKwS27o7vJs3wGS/jv7nXhJ0t2SPtpKfa117uFY20na4PcqItZm+z4OnAGcCtwHvJE0xLIlsBA4GfgGcBTwFPBKHy93HvBD0vDM3wP/LumdwC7Z87HAV4BfA7OyY3YEFmfHvQi8AzgbGAL8v3r1kLQNcDvwLPAp0nDUaaT/1HePiNWSBPwXsC0pOLyclb8N8Ls679tOwGjgolr7I+IhSfcC767a9RFgCTAF2AE4H/gu8KF6benFbOAt2THPAKcAcyW9MyKW5PJ9GPgNMBV4E3AhaRjwM3XK7lVELJL0OLA/cEmW/C3gE8A5WTsOBb4v6dmIuKZGMd8F3kr6ffpgllbpwe0C/CIr+2Xgr4HLJK2LiCtbqbO1ICK8eWvLBkwHopdtdJbn28BP6pTx/nz+XPrkLH1o9nx09vyyXJ6tgTWkL/VNc+m/An7cy+uJ9I/XGcDvG6jHuaRgs00ubQTp3NVns+cTs2P3y+XZBVgL9NRp+/7ZcUfWyTMbeCD3fCnwXOV9ydI+CqwD/rLJ9/R92fODcnm2JH1pz6h6zYeAzXJpFwN/6OP3Y73Xq7H/DuD67Oe3ZG34RFWeK0hDcpXnPcBVueffAJb2UY/KZz4DuLXsv5tu2tzDsXZ7ATikRvqT2ePdwPGSziadtF4QEa/24/VuqfwQESskLQPmVZW5BNi58kTSFsDppC/mnYHNc/s2i6w31otDgJuBFbme3IvAAqAy9LQv8HRE/DJXt0ckLWihfY24OV47JwJwNfADYB/ggSbK2RdYFhHzKgkR8ZKka4DqGXJzq96n+4GRkl4XEX9qrvp/ptzPB5MCzk+resy3AB+RtGkzvzeSRpB6mUeSeribZrv6fS7MGueAY+22NiLm19n/fWAr0lDMl4FnJf0bML3FwPN81fM/9ZK2Re75ecAJpC+ghVn+I4Ezs3wr6d22pJ7IpBr7KsFve+CPNfb/kdT23lS+/Hapk2cXNvySXO+1Ig3rrSQNrzVjB+DpGulPk4YD82q9xwJel/3cih2BRdnP25KCQm8TCHYAHm+i7MtJn9u5pOC4Avg06XO3gjjgWKEiYh3pHMVF2TmLjwJfJX2JXlLv2Db6EPCtiDi/kiDpiAaPfY40XfncGvtezB7/AIyssX8ksLq3giPiseyE/t8C/1K9X9Kbgb+q8dojq/INAYaSztc046nqsjKjSO3uGEl/SToXdEeW9BxpCPKvST2darUCem9lb0Ga+fcPEXFJLt2TpgrmN9xKExGPRcTXSUNee2TJlf+Ot6h9VFsMIXfiXOnal2Or8vRWj1uAPYH7ImJ+1bY4y3MXMErSfrnX2BnYu4G6/TNwsKTDauz7Slbv71WlH6r1L948inSupNLTbPQ9/SVpWOzPkxIkvYH0ZX17A3VviaTXkwLs87w2seNWUg9nWI33eX6dYbvq3izA67Oy8p/5VqTAbgVyD8fabTNJ+9dIfywinpA0g/Tf652k4ZIJpJlFp2b5Kl/a05SuO1kVEfe2uY43A5+VtCSry2dJX0p5vdXjQuBjwK2SvkXqmY0CDgJujzTj6TrgHuA/JZ1KmhV1Do39V/4t0nmin0r6Bumk+Fak2W7vB/4uNrwGZzVwraQLSENNFwA/jYj7+2jLeiLiRkm/AH4s6TTS5IiTSQH6ggbq3qh9JK0G3kDqsU0jTQI5JrJrcCJisdL1ObMknU8KnluQgv3uEdHbNPNFpGA/Gfgt8ExELJV0F/BlSStIPabTSL9/W7exXdaXsmcteBs8G/VnqZ2Z5ZlMmp76HGlK8W+A46vKOQl4hDSksjR3XK1Zau+vOnYp8I2qtMuB+bnno4CfksbxnyZNI55C1QyqWvXI0v8CuCw79pXsNX8A7JnLszNpdYXVWRnTgKuoM0std+xmwD9l781qYDlwPXBgjbxLgW9m7/3TwEvAlcDwZt/TLG070kyw5dlrzwP2aeA93qCsGnWt5KlsLwL3knp1u9XIL9KqAfdl7/OyrD4fz+XpYf1Zaltkn80fs9e4PEt/C6nX9BLwKPCF7D17puy/m27alH0YhZH0FtLc/v1J/938PCLGN3DcMNLUyw+QhgKvAU6MiGer8h1JGnp4K/B74OyI+HE722A2UGTnfK6KiJPLrotZX8o4h7Mn6TqFB7OtUT8GxpNmF00mTfmcnc+gtLjhT4C5wOGkabdX9jIebmZmBSqjh7NJpJlKKK3yum1fPRxJBwD/Q7og7bYsbV/SSc5DI2JOlnYjsHlEvCd37HXA1hHR0kq7ZgOZezi2MSm8h1MJNk06nHQh3W25cn4FPJztq8x0mQD8R9Wxs4ADKmtLmQ0mETHawcY2FhvLtOgxvHZBWN4D2T6A3UhXjFfne4DUzt07VjszM+vTxjItegQbXtkMaSbNrrk81Mi3vGr/eiRNJV31zpAhQ8butNNO/atpZt26dWyyycYSz/vHbW3dVg+m05gv7j4w/x/yZzs4tbOtDz744DMRsV0jeTeWgANpimM11Uivfq5e0lNixExgJsC4ceNi/vx6q7I0rqenh/Hjx7elrIHObe0HZb+eixfXz1cSf7aDUzvbKumRRvNuLOF8ObXvvDic13o0y3Np1Xmgdg/JzMwKsrEEnEW8dq4mL39u5yHS0vTV+caQrixuZgq2mZm12cYScK4Hts+uswEguwvhrtk+It01cC5pYca8ScAd4dvWmpmVqvBzONligBOzpzsCW0s6Jnt+XUSsyta4mhcRxwNExB3ZNTZXSDqZ1GM5j7R21Zxc8ecCPZIuJl0UOjHb3tfxhpmZWV1lTBoYCfxnVVrl+ZtJ6zRtxms3SKo4lrSs/ffJLW2TzxARt2fB6yuke108DBwXETe1sf5m7VPwhddmZSo84ETEUta/s1+tPKNrpD0PfDLb6h07m6olb8zMrHwbyzkcMzPbyDngmJVp7Ni0mXWBjenCT7PBZ+HCsmtgVhj3cMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuFZamZlmjKl7BqYFcYBx6xMM2eWXQOzwnhIzczMCuGAY1amBQvSZtYFPKRmVqZx49KjV422LuAejpmZFcIBx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIRxwzMysEJ4WbVam+fPLroFZYRxwzMrk20tbF/GQmpmZFcIBx6xMU6emzawLOOCYlenSS9Nm1gUccMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuELP83KtPfeZdfArDAOOGZl8u2lrYt4SM3MzArhgGNmZoVwwDErk5Q2sy7ggGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK4RXGjAr04wZZdfArDAOOGZl8u2lrYsUPqQmaQ9Jt0haJelJSedI2rSPY6ZLil6203P5Lu8lz5jOt8zMzOoptIcjaQQwB7gfOBLYDfgmKfCdWefQ7wI3VKV9ADgVuL4qfRHwyaq0pa3V2KzDZs5Mj+7pWBcoekjtU8AQ4KiIWAHcLGlrYLqk87O0DUTE48Dj+TRJXwIWRcTdVdlfiog7O1B3s/abNi09OuBYFyh6SO1w4MaqwDKLFIQOarQQSdsAhwJXtrd6ZmbWKUUHnDGkIa8/i4hHgVXZvkYdA2xOClbV9pC0QtIrkm6X1HAgMzOzzlFEFPdi0hrglIi4uCr9ceCKiDijwXJuBYZFxNiq9M8DfyKdI9oOOAkYCxwYEb/qpaypwFSAUaNGjZ01q1YMa97KlSsZOnRoW8oa6NzW1o2fMAGAnrlz21ZmO/mzHZza2dYJEyYsiIhxDWWOiMI2YA3w+RrpTwBfbbCMHYBXgZMbyDsEeBiY3UjZY8eOjXaZO3du28oa6NzWfoC0DVD+bAendrYVmB8NxoCih9SWA8NrpA8Dnm+wjA8DAn7cV8aIWA1cB/jG8WZmJSs64Cyi6lyNpJ2ALak6t1PHscDtEfFYE69b3LihmZnVVPS06OuBUyRtFREvZmmTgNXAvL4OljQa2B/4TCMvJmkIaWbcglYqa9ZxvZxDHX3atXUPW/r1IzpRG7OOKrqHcwnwCnC1pEOyE/bTgQsjN1Va0hJJ36tx/LHAWuCq6h2Shkn6uaRpkg6WNAmYC+wIfK0DbTEzsyYU2sOJiOWSDga+DfyMdN7mIlLQqa5XreVujgVuiYhlNfa9AiwjrVgwEngZuAM4KCLmt6UBZmbWssIX74yI+4H39JFndC/p76hzzMvAUf2qnFnRxmYz+xd41NcGP68WbVamhQvLroFZYXwDNjMzK4QDjpmZFcIBx8zMCuGAY2ZmhXDAMTOzQniWmlmZpkwpuwZmhXHAMStT5RbTZl3AQ2pmZlaIpgKOpFrLzZhZqxYs8CoD1jWaHVJ7QtIVwGUR8UAnKmTWVcZlN0os8M67ZmVpdkhtBnAM8FtJv5Q0VdLWHaiXmZkNMk0FnIg4KyJ2BQ4FFgMXAk9J+qGkQzpRQTMzGxxamjQQEbdGxMeB7YHPAW8DbpS0VNJ0SX/RzkqamdnGr7+z1MYB7ybdNno58HPgBGCJpI/1s2wzMxtEmg44knaRdJakh4BbgB2Avwf+IiL+DtiFdK7ngrbW1MzMNmpNzVKTdCupR/M4cDlpttoj+TwR8aqkHwGfb1clzcxs49fstOhngInAzRF153HeDby55VqZdYv5vvu5dY9mA863gYW1go2kocDeEXFbRKwBHtngaDNbX+UW02ZdoNlzOHOBPXrZ97Zsv5mZ2QaaDTiqs28osKofdTHrPlOnps2sC/Q5pCbp3cD4XNIJkt5XlW0L4Ajg3vZVzawLXHppevSq0dYFGjmHsx/p4k6AAD4ErK3K8ydgEXBK+6pmZmaDSZ8BJyIuILumRtLDwAcj4u5OV8zMzAaXpmapRYSnOpuZWUsaOYczEbg9IlZkP9cVEde1pWZmZjaoNNLDuQbYH/hV9nPQ+2y1AHyTNjMz20AjAefNwFO5n82sXfbeu+wamBWmkUkDj9T62czawLeXti7SyDmcNzRTYET44k8zM9tAI0NqK0nnZhrlczhmZraBRgLO39NcwDGzRimbf1N38XWzwaGRcziXF1APMzMb5Pp7i2kzM7OGNDJp4FfA5Ii4X9Jd9DG8FhH7tqtyZmY2eDRyDuc+YHXuZw82m5lZ0xo5h/PJ3M+TO1obMzMbtFo+h6NkO0n1bspmZmYGNLlaNPx5Mc8zgbHZ8WslLQC+GhHXtrl+ZoPbjBll18CsME0FHEnTgO8AtwCfB/4IjASOAv5b0mciwn9BZo3y7aWtizTbwzkDmBkRn65Kv0TSJcAXAQccMzPbQLPncN4IXN3Lvp8A2/RVgKQ9JN0iaZWkJyWdI6nucjiSRkuKGtusGnmPlHSvpJcl3S9pUkMtMyvDzJlpM+sCzfZw5gIHATfX2HcQcFu9gyWNAOYA9wNHArsB3yQFvjMbeP2TgV/knj9TVf6BpMD3HeBEYCJwpaTlEXFTA+WbFWvatPTooTXrAo1c+LlH7um/AN+V9EZgNq+dw/kgcDhwQh/FfQoYAhwVESuAmyVtDUyXdH6WVs/iiLizzv4vAbdFxInZ87mS9gS+DDjgmJmVqJEezm9Z/2JPAdOyrfrunzdQf7Xow4EbqwLLLOA8Ug/pZw3UpyZJrwcmkHo2ebOAyyQNi4gXWi3fzMz6p5GAM6GNrzcGuDWfEBGPSlqV7esr4FwmaRtSz+pK4IsRUVkFYTdgc2BR1TEPkIbsdgfu6l/1zcysVY2sNDCvja83Ani+RvrybF9vXgH+lTQstgIYD5xKCjJH5sqmRvnLq/avR9JUYCrAqFGj6OnpqVf/hq1cubJtZQ10bmvrxmeP1WWetNfauscV9X77sx2cympr0xd+VkjaBNiiOr2BO37WWotNvaRXynwK+IdcUo+kp4HvSHpHRNxdp3z1kl4peyYwE2DcuHExfvz4+rVvUE9PD+0qa6BzW/uvuszJp9W/hnrpR9tfh1r82Q5OZbW1qWnR2XI2p0paAqwBXqyx1bMcGF4jfRi1ez71XJU97p0rmxrlV543W76ZmbVRs9fhnAicBnyP1HP4KnAO8CCwlGxoqo5FpHM1fyZpJ2BLNjz30peoenyIFATHVOUbA6zL6mg2sET4bp/WNZoNOFOAs4Dzs+ezI+JsYE9SwHhrH8dfD7xX0la5tEmk2x80e67omOxxAUBEvEK6TuhDVfkmAXd4hpqZWbmaPYfzZuDuiHhV0hqy4aqIWCfpO8B3ST2g3lxC6iVdLek8YFdgOnBhfqp0NmQ3LyKOz55PB7YiXfS5Ang3cApwdUT8Jlf+uaTzOxeTrhOamG3va7KdZmbWZs32cJ4FhmY/Pwq8M7dvBOmizl5FxHLgYNK1Oj8DzgYuIvWa8jZj/et5FpGu07kMuA44Drgge8yXfzup53MIcCPwt8BxXmXABqyxY9Nm1gWa7eH8AtiH9KX/I9IKAdsAfwI+S1pFuq6IuB94Tx95Rlc9n0W6gLNPETGb1LsxG/gWLiy7BmaFaTbgTAd2zH7+GmlIbTKpZ3Mz8Ll2VczMzAaXpgJORCwGFmc/v0K6J87nO1AvMzMbZPpz4eebgB2AJyPiifZVyczMBqNmJw0g6dOSHgMeAX4JPCrpcUmfaXvtzMxs0Gh2pYEvA98mXU9zBDAue7we+Jdsv5mZ2QaaHVL7LPC1iPhSVfoN2dpmnyWtPGBmjZgypewamBWm2YAzhN7v6jkPz1Iza45vL21dpNlzOLOBo3rZdzRwTf+qY2Zmg1Ujt5iemHt6PXC+pNFseIvpPYEvtL+KZoPYggXp0asNWBdoZEjtGja8lfSOwHtr5P0B6U6cZtaIcePSo1eMti7QSMB5c8drYWZmg14jt5h+pIiKmJnZ4Nb0SgOSNiNNEDgQ2AZ4Dvg56VYB9W/EbmZmXaupgCNpJHAT8HbSHT6fBg4gXX9zj6TDImJZuytpZmYbv2anRV8IvBHYLyJ2jYgDImJXYL8s/cJ2V9DMzAaHZgPORODUiLgrn5g9P520zI2ZmdkGmj2H83rgxV72vQi8rn/VMesy8+eXXQOzwjQbcO4ETpV0a0S8VEmUtCVwarbfzBrlCz6tizQbcE4C5gKPSbqJNGlgJOkiUAHj21o7MzMbNJo6hxMRdwNvBWYC2wGHkgLOJcBbI+KettfQbDCbOjVtZl2g4R6OpM2BfYGHI+K0zlXJrItceml69KrR1gWa6eG8CtwK/GWH6mJmZoNYwwEnItYBvwNGda46ZmY2WDV7Hc4XgS9L2qsTlTEzs8Gr2VlqZ5JWFLhb0hOkWWrrraseEfu2qW5mZjaINBtwfpttZmZmTWko4EgaQlrW5rfAH4A5EfF0Jytm1hX23rvsGpgVppFbTO8KzAFG55JXSPpwRNzUqYqZdYXKLabNukAjkwbOB9YBfwO8AdgT+DUwo4P1MjOzQaaRgHMAcGZE/CIiXo6IB4BpwM6Sduhs9czMbLBoJODsAPy+Ku0h0tpp27e9RmbdREqbWRdo9Dqc6DuLmZlZ7xqdFn2jpLU10m+pTo+Ikf2vlpmZDTaNBJyzO14LMzMb9PoMOBHhgGNmZv3W7FpqZmZmLXHAMTOzQjS7lpqZtdMMXz9t3cMBx6xMvr20dREPqZmZWSEccMzKNHNm2sy6QOEBR9Iekm6RtErSk5LOkbRpH8fsI+kySUuy4xZLOkvSFlX5pkuKGtv7OtsqsxZNm5Y2sy5Q6DkcSSNItzq4HzgS2A34JinwnVnn0ElZ3vOA3wFvB87NHo+uyvsCUB1gHuhv3c3MrH+KnjTwKWAIcFRErABulrQ1MF3S+VlaLedFxLLc8x5JLwMzJO0SEY/k9q2NiDs7U30zM2tV0UNqhwM3VgWWWaQgdFBvB1UFm4pfZ49eu83MbCNQdMAZAyzKJ0TEo8CqbF8z3kW6MdziqvThkp6RtEbSryUd1XJtzcysbRRR3J0HJK0BTomIi6vSHweuiIgzGixne+A3wHURMTmX/jFSj+duYCjpRnETgaMj4upeypoKTAUYNWrU2FmzZjXbrJpWrlzJ0KFD21LWQOe2tm78hAkA9Mydu176vU+8UPe4vXYc1rY61OPPdnBqZ1snTJiwICLGNZK3jIBzckT8c1X6E8DlEfHFBsp4HWniwZuAsRGxvE5eAf8DDImId/RV9rhx42L+/Pl9ZWtIT08P48ePb0tZA53b2g+Vm69V/R2OPu3auoct/foR7atDHf5sB6d2tlVSwwGn6CG15cDwGunDgOf7OjgLIFcAewIT6wUbgEjR9Grg7X1NvTYrRcQGwcZssCp6ltoiqs7VSNoJ2JKqczu9uIg0nfrQiGgkf4X/os3MSlZ0D+d64L2StsqlTQJWA/PqHSjpdOBzwMci4vZGXizrEX0QuCciXm2tymZm1g5F93AuAU4ErpZ0HrArMB24MD9VWtISYF5EHJ89Pw74GnA58ISk/XNlPlSZNi1pHvATUm9pS2AKsD/wgc42y6xFY8emxwULyq2HWQEKDTgRsVzSwcC3gZ+RzttcRAo61fXKn3M5LHucnG15nyQFIoAlwD8CO5CmTC8EjoiI69tRf7O2W7iw7BqYFabw2xNExP3Ae/rIM7rq+WQ2DDS1jju+H1UzM7MO8mrRZmZWCAccMzMrhAOOmZkVwgHHzMwKUfikATPLmTKl7BqYFcYBx6xMvr20dREPqZmZWSEccMzKtGCBVxmwruEhNbMyjctWdfeK0dYF3MMxM7NCOOCYmVkhHHDMzKwQDjhmZlYIBxwzMyuEA46ZmRXC06LNyjR/ftk1MCuMA45ZH0afdu2ffz5pr7VMzj0HWPr1I1ovvHKLabMu4CE1MzMrhAOOWZmmTk2bWRdwwDEr06WXps2sCzjgmJlZIRxwzMysEA44ZmZWCAccMzMrhAOOmZkVwhd+mpVp773LroFZYRxwzMrk20tbF/GQmpmZFcIBx8zMCuGAY1YmKW1mXcABx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIRxwzMysEA44ZmZWCK80YFamGTPKroFZYRxwzMrk20tbF3HAMTNGn3ZtzfST9lrL5Gzf0q8fUWSVbBDyORyzMs2cmTazLuAejlmZpk1Ljx5asy7ggGMbnd6Gf/I8/GM28BQ+pCZpD0m3SFol6UlJ50jatIHjhkm6TNJySS9I+qGkN9bId6SkeyW9LOl+SZM60xIzM2tGoQFH0ghgDhDAkcA5wEnA2Q0c/mNgPHACMBnYB5hdVf6BwE+AucDhwLXAlZIOa0sDzMysZUUPqX0KGAIcFRErgJslbQ1Ml3R+lrYBSQcA7wUOiojbsrQngF9KOiQi5mRZvwTcFhEnZs/nStoT+DJwU+eaZWbN8LBodyo64BwO3FgVWGYB5wEHAT+rc9zTlWADEBG/kvRwtm+OpNcDE4ATq46dBVwmaVhEvNCmdmzUOvXH7i8RG2j6+p3072Oxig44Y4Bb8wkR8aikVdm+3gLOGGBRjfQHsn0AuwGb18j3AGnocHfgrtaq3bfqX+z89QutqPWH4D8es4Ghnf9ctfJ33cjr13PSXmsZ368SWqOIKO7FpDXAKRFxcVX648AVEXFGL8fdDLwUER+oSv8BsGtEvEvSXwO3A++MiLtzed4C/A54b0RsMKwmaSpQmZP6NmBxyw1c37bAM20qa6BzWwevbmqv29qaXSJiu0YyljEtulaEUy/prRxX/Vy9pKfEiJlA26+8kzQ/Isa1u9yByG0dvLqpvW5r5xU9LXo5MLxG+jDg+RaOG547bnkurToPfZRvZmYdVnTAWcRr51wAkLQTsCW1z9H0elwmf27nIWBNjXxjgHXAgy3U18zM2qTogHM98F5JW+XSJgGrgXl9HLd9dp0NAJLGAbtm+4iIV0jX33yo6thJwB0lzFDrpgWy3NbBq5va67Z2WNGTBkYA9wO/JU2F3hW4ELg4Is7M5VsCzIuI43NpN5Bmmp1M6rGcB/wxIv4ml+dAoAf4Numi0IlZ/vfVmjBgZmbFKbSHExHLgYOBTUlToM8GLgLOqsq6WZYn71hSL+j7wBXAAuCDVeXfDhwDHALcCPwtcJyDjZlZ+Qrt4ZiZWffy/XCa1OnFRweSVtoqaZ+snUuy4xZLOkvSFkXVu1Wtfra54zeRtEBSSHp/J+vaX/1pq6SjJN1LdR/BAAAEwklEQVQlabWkZyXdIGnLTte5Vf34mx0n6aasjc9JmiNpvyLq3CpJb5E0Q9I9kl6V1NPgcYV8P/n2BE3ILT56P2nx0d2Ab5IC95l1DoW0+OjbSIuPVs5BzQb+pt5BZelHWydlec8jXXD7duDc7PHoDla5X/r52VacAOzYkQq2UX/aKukE0jnS84FTgBHAexig3yWttjWbPTsHWAh8PEs+BbhJ0tsj4pFO1rsf9iSdu74TeF0TxxXz/RQR3hrcgNNJ1/tsnUv7ArAqn1bjuANIF56+O5e2b5Z2SNntanNbt6uRNjVr6y5lt6vd7c3lHQEsA47P2vr+stvUgc92W+BFYErZbSigrZ8CXgWGV33GrwKfLrtddeq9Se7nq4CeBo4p7PvJQ2rN6W3x0SGkxUfrHbfB4qNAZfHRgailtkbEshrJv84eR7avem3X6mdbcS7wC+CWDtSt3Vpt64ezx3/vVMU6oNW2bg6sBVbm0lZmaap5xAAQEetaOKyw7ycHnOZssIhoRDxK+m+p1oWpvR6XyS8+OtC02tZa3kXqprdrnbpOaLm9kt4OfJI0BX9j0Gpb9yN9hsdLelzSGkm/lPSuzlW131pt60+yPN+UNFLSSNKM2uXAf3aormUp7PvJAac5I6i9RM7ybF+7jytTW+osaXvgi8D/j17udzRA9Ke93wL+NSKWtL1WndFqW7cnjfOfCZwK/F/gJeAGSaPaXck2aamtEfEk6XYnRwNPZ9tRpEWAa/XiN2aFfT854DSv04uPDiT9qrOk1wH/QRqK+Kc21qtTmm6vpGNJX8Jf6VSlOqSVz3YTYChwfET8MCJuAD5AOq/xD+2vYtu08rnuQDoHsoA0rHR49vO1knbuRCVLVsj3kwNOczq5+OhA02pbAZAk0gW6ewITI130O5A13V5JmwMXkGb0bCJpOLB1tnvLqiWcBpJWP9vnsseeSkLWa10A7NGuyrVZq209hTTz7piIuCELrkeTguvGMnTaqMK+nxxwmtPJxUcHmlbbWnERaRrqkRExUNuY10p7twTeRFqeaXm23ZPtm8VrkyUGmlY/2wdI//FWnzQX6RzdQNRqW8cA90XEmkpCRPwJuI80tXowKez7yQGnOR1bfHQAarWtSDod+BzwsUjLDW0MWmnvStI4f377SLbvDOCjnalqv7X62V5DCi4TKgmShgFjeS3QDjSttvUR4K+yYWEAlG5j/1fA0g7Us0zFfT+VPW98Y9pIJ9CeAm4mrdc2lfSl85WqfEuA71Wl3QD8nnTi8QOk2T4/L7tN7W4rcBzpv+DLgP2rtg2u0RkoW38+26r9oxn41+H05/d4dnbsJ4AjSF/ay4ARZbernW0lBdE1wLVZO99P+vJdA/yfsttVp71vIK0neQxwB6lHVnn+hjqfayHfT6W/QRvbRhqrvpX0H9JTpOsvNq3KsxS4vCptePYl/DywAvgRsG3Z7Wl3W4HLsy/cWtvkstvUic+2av+ADzj9aStp0sC/Ac9mx84B9iq7PR1q68HAbaRzV8+Rguv4stvTR1srv3+1ttF12lrI95MX7zQzs0L4HI6ZmRXCAcfMzArhgGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK8T/ArLcU/xD9Gw7AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot estimated values for delta\n", - "plt.bar(result_delta['values'], result_delta['probabilities'], width=0.5/len(result_delta['probabilities']))\n", - "plt.plot([exact_delta, exact_delta], [0,1], 'r--', linewidth=2)\n", - "plt.xticks(size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('Estimated Option Delta', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/aqua/finance/fixed_income_pricing.ipynb b/qiskit/aqua/finance/fixed_income_pricing.ipynb deleted file mode 100644 index fd7a9d810..000000000 --- a/qiskit/aqua/finance/fixed_income_pricing.ipynb +++ /dev/null @@ -1,346 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Pricing Fixed-Income Assets*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Stefan Woerner[1], Daniel Egger[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", - "### Affliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "\n", - "We seek to price a fixed-income asset knowing the distributions describing the relevant interest rates. The cash flows $c_t$ of the asset and the dates at which they occur are known. The total value $V$ of the asset is thus the expectation value of:\n", - "\n", - "$$V = \\sum_{t=1}^T \\frac{c_t}{(1+r_t)^t}$$\n", - "\n", - "Each cash flow is treated as a zero coupon bond with a corresponding interest rate $r_t$ that depends on its maturity. The user must specify the distribution modelling the uncertainty in each $r_t$ (possibly correlated) as well as the number of qubits he wishes to use to sample each distribution. In this example we expand the value of the asset to first order in the interest rates $r_t$. This corresponds to studying the asset in terms of its duration.\n", - "
\n", - "
\n", - "The approximation of the objective function follows the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.uncertainty_problems import FixedIncomeExpectedValue\n", - "from qiskit.aqua.components.uncertainty_models import MultivariateNormalDistribution" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncertainty Model\n", - "\n", - "We construct a circuit factory to load a multivariate normal random distribution in $d$ dimensions into a quantum state.\n", - "The distribution is truncated to a given box $\\otimes_{i=1}^d [low_i, high_i]$ and discretized using $2^{n_i}$ grid points, where $n_i$ denotes the number of qubits used for dimension $i = 1,\\ldots, d$.\n", - "The unitary operator corresponding to the circuit factory implements the following: \n", - "$$\\big|0\\rangle_{n_1}\\ldots\\big|0\\rangle_{n_d} \\mapsto \\big|\\psi\\rangle = \\sum_{i_1=0}^{2^n_-1}\\ldots\\sum_{i_d=0}^{2^n_-1} \\sqrt{p_{i_1,...,i_d}}\\big|i_1\\rangle_{n_1}\\ldots\\big|i_d\\rangle_{n_d},$$\n", - "where $p_{i_1, ..., i_d}$ denote the probabilities corresponding to the truncated and discretized distribution and where $i_j$ is mapped to the right interval $[low_j, high_j]$ using the affine map:\n", - "$$ \\{0, \\ldots, 2^{n_{j}}-1\\} \\ni i_j \\mapsto \\frac{high_j - low_j}{2^{n_j} - 1} * i_j + low_j \\in [low_j, high_j].$$\n", - "\n", - "In addition the the uncertainty model, we can also apply an affine map, e.g. resulting from a principal componant analyis. The interest rates used are then given by:\n", - "$$ \\vec{r} = A * \\vec{x} + b,$$\n", - "where $\\vec{x} \\in \\otimes_{i=1}^d [low_i, high_i]$ follows the given random distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example.\n", - "A = np.eye(2)\n", - "b = np.zeros(2) \n", - "\n", - "# specify the number of qubits that are used to represent the different dimenions of the uncertainty model\n", - "num_qubits = [2, 2]\n", - "\n", - "# specify the lower and upper bounds for the different dimension\n", - "low = [0, 0]\n", - "high = [0.12, 0.24]\n", - "mu = [0.12, 0.24]\n", - "sigma = 0.01*np.eye(2)\n", - "\n", - "# construct corresponding distribution\n", - "u = MultivariateNormalDistribution(num_qubits, low, high, mu, sigma)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xm4HFWd//H3h8QbthCWqPgjhIRF\nM3Hc2NSRVbagzxDFMCw6A7/BQZS4DILiAgIuM8gA6g8cjYRNhwHE5YljMCIoyKgYBARDEk0QwiWi\nRC4EDMkl5Pv7o6qx0+nb3be3qur+vJ6nn9t16pyq05Wb++2z1ClFBGZmZs3YLOsKmJlZcTmImJlZ\n0xxEzMysaQ4iZmbWNAcRMzNrmoOImZk1LfMgImm6pFskrZG0UtL5ksbUKbOPpCslLUvLLZX0KUmb\n1yjzOknPS1rV/k9hZtafxmZ5cknbAT8CHgBmArsBF5EEt0/WKHpsmvcC4HfAq4FPpz/fUeU8Ai4F\nHifjz2xm1kuybomcCmwBHB0RN0fEV4DzgNMlbVOj3AURcUBEfC0ifhIRXwLOBI6WtEuV/O8CXgpc\n0e4PYGaWN5JmpD00yySdVWX/AZLulrRe0qyKfZMl/VDSYkkPSJpS61xZB5EjgQURsbos7TqSwHLg\nSIUi4vEqyfekP19SnihpPEmL5QxguKXampnlXDoccBnJ39fpwPGSpldkWwGcBFxb5RDXABdGxN8A\n+wJ/qnW+rIPINGBJeUJErADWpPtG4++ADcDSivRzgMUR8d1mK2lmViD7Assi4sGIGCb5Yj6zPENE\nPBQR95H8zXxBGmzGRsTNab5nImJNrZNlHUS2A56skj6U7muIpB2BTwBfL2/VSHoFcBrwoRbraWZW\nFDsBj5RtD6ZpjXg58KSkb0u6R9KF9SY65WGQudoKkBohfdOM0gBwA/AM8K8Vu78IXBUR9zd4rFOA\nUwDGjRu3144veVkjxdompK6er+M2q/15xm4m1m9o/wKg0Y3LqO4sXKo2fM0bG2J9k/Udow31M+XA\nWLKt5+9+98iqiHhxK8fY/6DNY+iJ+p9j0f3PLQLWliXNiYg5ZdvV/gc0+gswFtgfeB1Jl9f1JN1e\nc2sVyNIQsG2V9AlUb6FsJJ11dQ3wSuBNETFUtu9I4E3AbEmlc2yeFtsWeDYi1pUfL/2HmAMwZfLU\n+Jvn3jL6T9SC4WmTunq+Tntqt3E195+8/07M/emjbT/v07t0Poqsm9yd4bUpk6oN/43OCWtey7Vb\n3ttU2cN2XFI/U07M2ubuzM49bTIPt3qMoSc28K3vT2zgXH9YGxF718gyCOxctj0JWNlgNQaBeyLi\nQQBJ3wXeQI0gknV31hIqxj4k7QxsRcVYyQguIenrmxkRlflfAWxNMgV4KH19FNg+fX9mSzW3vjZu\nxUDWVeiKmx8b7dCk5cBCYA9JU9OemuOAeaMou52kUqvqzSS3YIwo6yByE3BEOoOq5FjgWeC2WgUl\nfQx4P/CuiLijSpYbgYMrXlcDq9P3X2+59mYd9tBgSz0k1ociYj0wG1gALAZuiIhF6Y3cR8ELN2wP\nAscAX5W0KC37PMlM1lsk3U/SNfa1WufLujvrK8AHgG9LugDYFTgXuLhigHwZcFtEnJxunwB8DrgK\neFTSG8qOuTwiHo+IQZKmGWXHOQh4LiJ+0qkPZGbZuHH1npl2aeVJRMwH5leknVP2fiFJN1e1sjeT\n3LjdkExbIukYxiHAGOB7JDcaXgJ8qiLr2DRPyeHpz5OAn1e83tq5Gpv1H3dpWS1Zt0SIiAdI+t1q\n5ZlSsX0SSQAZ7bnOJWnpWBdMWL6u7uC6mRVb1mMiZmZtc+PqPbOuQt9xEDEzs6Y5iJhZXR4XsZE4\niFjPGf9wd+4m79a9Ip7mOzru0uouB5EcGVgyWD+TmVmOOIiYWUPcpWXVOIiYWc9xl1b3OIhYR01Y\nvq5+JjMrLAcRMzNrmoOImTWsSOMi7tLqDgcRswLwNF/LKwcRsxb0y3NFzEbiIGJmo+IuLSvnIGJm\nZk1zEDEzs6Y5iFjHZXGvSLfWz+pX7tKyEgcRs4LwDC1rlKQZkpZKWibprCr7D5B0t6T1kmZV2b+N\npEclXVrvXA4iZmY9RNIY4DLgSGA6cLyk6RXZVpA8HfbaEQ7zaeC2Rs7nIGJmPa/PurT2BZZFxIMR\nMQxcB8wszxARD0XEfcCGysKS9gJeCvywkZM5iJhZU4o0LtJndgIeKdseTNPqkrQZcBFwZqMncxDJ\nGT9TpHh8w6F12URJd5W9TqnYryplGp1p8j5gfkQ8UjdnamyjGc3MiuzG1Xsya5u7s67GiIae37LB\nbrfvr4qIvWtkGAR2LtueBKxssBpvBPaX9D5ga2BA0jMRscngfIlbImbWNHdp5dJCYA9JUyUNAMcB\n8xopGBHvjIjJETEFOAO4plYAAQcRs0LxNF+rJyLWA7OBBcBi4IaIWCTpfElHAUjaR9IgcAzwVUmL\nmj2fu7OsKyYsX8dTu43LuhrW5/LepdUuETEfmF+Rdk7Z+4Uk3Vy1jnEVcFW9c7klYmZmTXMQsZ7l\npU+6w+Mi/c1BxMz6Sp/deNhxDiJmbeB7RaxfOYiYWcvcpdW/HETMCsbTfFvnLq32cRAxM7OmOYhY\n12TxcCoz6ywHETNri6KNi7hLqz0cRMzMrGkOImZm1jQHETNrG3dp9R8HkRzyg6nap5tLn3TzhkNP\n87W8cBAxs77m1khrHETMzKxpDiJm1lZFGxex1jiIWFf5hkPLI3dpNc9BxMzMmuYgYlZQeZ6h5S6t\n/uEgYmZGb3VpSZohaamkZZLOqrL/AEl3S1ovaVZZ+msl/VzSIkn3STq23rkcRMzayA+nsqxJGgNc\nBhwJTAeOlzS9ItsK4CTg2or0NcA/RcQrgRnAFyRtW+t8DiJm1hHu0srMvsCyiHgwIoaB64CZ5Rki\n4qGIuA/YUJH+24j4Xfp+JfAnoGa/qYOImVmqIF1aEyXdVfY6pWL/TsAjZduDadqoSNoXGACW18o3\ndrQHNiua8Q8HT++irKthVtPq9Zs32Hr7/qqI2LtGhmq/7KNa/0fSy4CvAydGxIZaed0Ssa7zvSJm\nHTUI7Fy2PQlY2WhhSdsA3wc+GRG/qJffQcSswPI8zReKOS5SkC6tWhYCe0iaKmkAOA6Y10jBNP93\ngGsi4puNlHEQMTPrIRGxHpgNLAAWAzdExCJJ50s6CkDSPpIGgWOAr0palBb/B+AA4CRJ96av19Y6\nn8dEzMx6TETMB+ZXpJ1T9n4hSTdXZblvAN8YzbncEjGzjnKXVm9zEMkpP5iquHzDofUTBxEzM2ua\ng4iZWRXu0mqMg4hZweV9mi8Uc1zEGuMgYpnwDYdmvcFBxMxsBO7Sqi/zICJpuqRbJK2RtDK9IWZM\nnTIDki6U9FNJz0oacV0YSTtI+qqkx9K8SyT9U/s/ieXZ+IdHtXSQdYC7tHpTpjcbStoO+BHwAMlS\nxbsBF5EEt0/WKLol8G7gl8DPgDePcPxtgNuBZ4D3A6tI1tf3HEwzszbI+o71U4EtgKMjYjVwc/qH\n/1xJn0/TNhERT0raPiJC0mxGCCLAx4FxwN4R8Wya9uM2fwazTYxbMcC6ycNZV8Pa4MbVezJrm7uz\nrkZuZd2ddSSwoCJYXEcSWA6sVTAiGumf+L/A3LIAYmZmbZR1EJkGLClPiIgVJI9obKkDVdJU4CXA\nk5LmSxqW9Liki9OVKs16RhGm+YLHRXpR1t1Z2wFPVkkfSve1Ysf05+dJWjczgNcAnwPWAx+pLJA+\nIewUgIkTJ3L02a9vsQqtic17O9Ztt/UAJ+8/6geuNW3DQHcfTLVhoOazfNpu3Jrq13L7DVtywpqa\nC7F21TaPFC+Q3MPb2G7Mmho5Pti1uuRN1kEEqj9xSyOkj0aplbUoIv4lfX+rpPHAxyWdGxEb/VZE\nxBxgDsCUyVPj2/92Z4tVaM3wtE0W2ewps07albk/fbRr5+v20w27PSYyZdLjVdNPWPNart3y3q7W\npZ7DdlxSP1POeFykuqy7s4aAbaukT6B6C2U0nkh/Vg6k30oy2L5bi8fvuF5fhHHMuu5Ou+32NN9u\nL8RYlC4tKGa3lu8ZqS7rILKEirEPSTsDW1ExVtKE5UC1r4Klr6Pd7Wsws404kPSGrIPITcARaRdT\nybHAs8BtrRw4IoaBm9l0+u8hJAP3y1o5vpm1zoGk+LIOIl8B1gHflnRoOrB9LnBx+bRfScskzS0v\nKOlISbOA16bbs9LXLmXZzgdeJ+lKSYdLOgM4C/hcRHjxpj7kLq38cSAptkyDSEQMkbQMxgDfA84D\nLgE+VZF1bJqn3H8C3wROTre/mb4OLjv+L4G/J5mV9T2SKRSfBf6tnZ/DzFrjQNJekmZIWpp+AT+r\nyv4DJN0taX36Zbx834mSfpe+Tqx3rsxnZ0XEA4x8x3kpz5RG0kYou4DkgfWFNLBksKdnaU1Yvo6n\ndhuXdTU6qtt3rz80+OIRZ2rl2c2PTSvcrK083s2erj14GXAYMAgslDQv/VtbsgI4CTijouz2JF/i\n9yaZIfurtOzQSOfLujvLzKzQctgi2RdYFhEPpmPD15GsTfiCiHgoIu5j0wlGRwA3R8QTaeC4meQe\nuxE5iFjfyWJFX4+NNKaI3VoZmCjprrLXKRX7dwIeKdseTNMaMeqymXdnmZmVK2K3VjsMD49tNPiv\nioi9a+yvdldto9+cRl3WLREzyx23SFoyCOxctj0JWNmpsg4iBdDrd65n8ahcd2nlnwNJ0xYCe0ia\nmi42exwwr8GyC4DDJW2XPu/pcOpMTHIQMbPcciAZvYhYD8wm+eO/GLghIhalT409CkDSPpIGgWOA\nr0palJZ9Avg0SSBaCJyfpo3IYyJmXZTFdF+279rpOqJfx0haERHzgfkVaeeUvV9I0lVVrewVwBWN\nnsstEetb/fLc9XXDxf+u6BZJfo36t0vSq0jmIe8IbE6yWu5vgZ/VuiHFWtPrNx1aZxX1BsRybpHk\nU0NBRNKuwHuBdwIvJblB5UmSda+2BbYENki6DbgcuD4ivEquNawf7lwvyer56w4k1gl1u7MkXQ4s\nIlno8HzgdcDmEfHiiJgUEVuTPIb274H7SZ4kuFjSfp2rtll79EuXVknRZ2yBu7byppExkbXAtIg4\nLCK+EhH3RcTz5RkiYlVE3BQRHwJ2Ac6h8TskzfpOt6f7lnMgsXaqG0QiYnZEPNzoASNiQ0RcHxHX\nt1Y1M+sUBxJrF8/OKpBev+kwK1l1aWXZGukVDiTZaymISPpbSadJmp3O2jJrWhZ3rvezXmiNgANJ\n1poOIpLeC9wOHAS8BfilpPe1qV5m1gUOJNaqRmZnbTnCro8Cb4yIYyLiLcBpwCfaWTmzXpeHLi0H\nEmtFIy2R30p6Z5V0sfEDTfprrqT1lH6b6lvJgcSa1UgQOQE4XdLPJe1Tlv554BeSbpD0P8CXgX/v\nRCXtr3p9cL0fx0Xy0BoBBxJrTiNTfG8ned7uFcA8SddIellEXEbybPQ7gB+SdG39v47W1sw6yoHE\nRquhgfVIfA14BfBH4H5JHweWRMSX0te9nayoWaf1e5dWiQOJjcaoZmdFxOqIOBN4A/B6YImkWR2p\nmVkfyUuXVokDiTWqodlZkj4j6U5J90iaA6yNiJnAvwCfknSbpNd0vLZmZqPkQNJZjbRE5pIsrngR\ncDbJEvA3S1JE/IhkYcZvpmlzOlZTe4EH1zsnyy4tt0Y6x4GkcxoJIkcCZ0TEDRHxP8CJJGMjuwFE\nxPMRcWma9mzHampmXedAYvU0EkSWAP8oafv0xsP3AH8BNvo6HBFDEfHBDtTRrG/krTUCvRVI+oWk\nGZKWSlom6awq+8dJuj7df6ekKWn6iyRdLel+SYslfazeuRoJIicCewCrgKeBdwPHRMTa0Xwos6Lw\nLK1N9Uog6YfWiKQxwGUkvUjTgeMlTa/IdjIwFBG7A5cAF6TpxwDjIuJVwF7Ae0oBZiSN3CeyNCLe\nCIwHJkbE7hHxg8Y/knVCr4+LWP44kBTGvsCyiHgwIoaB64CZFXlmAlen728EDpEkkpVHtpI0FtgC\nGAZW1zpZI7Oz/lHSZhHxl0afoS5pd0n7N5LXrJp+vHO9JI9dWiUOJIWwE/BI2fYgmz4k8IU8EbEe\neArYgSSg/AX4A7AC+I+IeKLWyRrpzvow8KCkT9eaxitpB0nvlPQ94B7gZQ0c2yyX3KU1MgeSztCw\nGLdioO4LmCjprrLXKZWHqnL4yl/okfLsCzwP/B9gKvBhSbvWqvfYeh8sIl4r6Vjg/cAnJD0DLCYZ\nI1kHbJuebDIwBHwDODUiHq13bDOrbtyKAdZNHs66GiN6aPDFTJn0eNbVaNnNj03jsB2XZF2N0VoV\nEXvX2D8I7Fy2PQlYOUKewbTragLwBMlaiT+IiOeAP0n6X5Jlrx4c6WSNLntyfUTsRzLAfiZwL7Ae\n2IpkGZSrgRnAyyLiQw4gZlYUeWuRtMFCYA9JUyUNAMcB8yryzCOZNAUwC7g1IoKkC+vNSmxFsjpJ\nzShbtyVSLiKWA8tHU8Y6Z2DJIMPTJmVdDetTvdIagcK2SKqKiPWSZgMLgDHAFRGxSNL5wF0RMY/k\nJvKvS1pG0gI5Li1+GXAl8BuSLq8rI+K+WucbVRAx66YJy9fx1G7jMjv/+IeDp3ep1nXcHXnv0gIH\nkryKiPnA/Iq0c8reryWZzltZ7plq6bW09Ix1M7NeGWiHnuza6jgHEbMcy/N033IOJP3LQcSsBk/1\nbZwDSX9yECk437ne+4rSGgEHkn7kIGK51s93rheVA0l/aSmISHq7pA9IekVF+uzWqmWWH+7SGj0H\nkv7RdBCR9O/AB4HdSR5I9aGy3f/casXM7K+K1KXVixxIRtZKS+StwKER8QHgdcBRki5M92U3ud7M\ncqGXWiPgQDKSVoLIZunqj0TEn0mWPZkiaW6Lx7VR6vXB9TyMi+ShS6uIrREHkt7Xyh/7P0jas7SR\nrlt/LMlKkH/basXMrDc4kPS2hoNI+tjE35Q9J+QkKlaGjIgNEfFuwM8SMeuAIrZGwIGklzUcRNKl\ngV8CDKTbgxHx2Ah5f9ae6pnlRx66tIrMgaQ3jbY761rg7Z2oiLWm18dFrDc4kPSe0QaR3wNvk3Se\npOyWV7W+k4fB9bwoapdWiQNJbxntUvCfBbYEzgZOl/QT4G7g18Cv0+eNmJlZnxhtS2Q8ydMN3wFc\nCKwleZjJDcDvJD3d3uqZ5UtexkXcGrG8GO2TDYPkyYbLge+U0iVtTjKt11N7zawhvfRAq37WlpsC\nI2JtRNwVEVe143jWHA+uW9G4RVJ8vrPcCiMvg+vu0movB5L2kzRD0lJJyySdVWX/OEnXp/vvlDSl\nbN+rJf1c0iJJ96c9TSNyEDGzzDmQtI+kMcBlwJHAdOB4SdMrsp0MDEXE7sAlwAVp2bHAN4BTI+KV\nwEHAc7XO5yBiVmC90hoBB5I22hdYFhEPpstRXQfMrMgzE7g6fX8jcIgkAYcD90XEryFZFzEinq91\nMgcRsybkpUur1ziQtMVOwCNl24NpWtU86UK6TwE7AC8HQtICSXdL+ki9k432PhHLuYElgwxPm5R1\nNayLxq0YYN3k4ayr0Tb9OmtrzHDDX04mSrqrbHtORMwp2672KI7KA4+UZyywH7APsAa4RdKvIuKW\nkSrjIGKFMmH5Op7azYslWF9bFRF719g/COxctj2JisVyy/IMpuMgE4An0vTbImIVgKT5wJ7AiEHE\n3VlmTXKXVue4W6slC4E9JE2VNEByQ/i8ijzzgBPT97OAW9P7ABcAr5a0ZRpcDgQeqHWyzIOIpOmS\nbpG0RtJKSeenswvqlZsg6UpJQ5KekvRfknaoyDMg6Zx0Gtuz6U+v+2U9p5cG2EscSJqTjnHMJgkI\ni4EbImJR+rf1qDTbXGAHScuA04Gz0rJDwMUkgehe4O6I+H6t82XanSVpO+BHJJFuJrAbcBFJcPtk\nneLXA68A3g1sIJmi9l02fpbJvwOnpse6h6RZ9hlgW5Lnw5tZjvXr+EirImI+ML8i7Zyy92uBY0Yo\n+w2Sab4NyXpM5FRgC+DoiFgN3CxpG+BcSZ9P0zYh6Y3AEcCBEXF7mvYocKekQyPiR2nWE4D/jIiL\n0+0fS9oJeCc9HEQ8uN494x8Ont6l2hhl9/XaAHuJA0m+Zd2ddSSwoCJYXEcSWA6sU+6PpQACEBG/\nJFmq/siyfC8imbpW7kmqz0ywgsjLnevWPe7ayq+sg8g0YEl5QkSsIJlaVmuR/k3KpRZXlLsceI+k\nN0naOn2073uBS1uqtZl1nQNJPmUdRLYjaRlUGkr3tVruLOBbwB3A08DtwLcj4vymamuWc704wF7O\ngSR/sh4TgU1vgoGku6ne/MlGyp0JvAt4P3Af8Brg05L+XD7I9EJh6RTgFICJEydy9Nmvr1/7HIvN\n8/0HZfvtx3Hs8VObKvv8uHz1SG4YyE99Ngxs2Gj7pWPG8eGtd8moNh3w5C6MG1ifdS02clvWFchQ\n1kFkiGSmVKUJVG9plJer9pVk21I5SRNJZmKdFhFfS/ffLmkYuFTSpRHxp/LC6V2fcwCmTJ4a3/63\nO0fzWXIn74Prxx4/lev/+/dNl8/bTYd5GWAHNhpg//DWu3DRMw9nWJvO8GB7PmTdnbWEirEPSTsD\nW1F9zGPEcqnysZJdSQbW763Icw9J8Oyhr2bV+fki/avXu7Ug6dpy91b2sg4iNwFHSBpflnYs8Cy1\nW4g3ATtK2q+UIGlvksBxU5pU+uq1Z0XZvdKfDzVZZ8uJvM3S8h3s2XAgyVbWQeQrwDrg25IOTcck\nzgUuLp/2m95pPre0HRE/J7kb8xpJR0t6G/BfwB2le0Qi4o8kNx9eIOmDkg6W9K8kNyB+MyL6oi3s\n1kj/6ofWSIlbJdnJNIikt9gfAowBvgecR/KAlE9VZB2b5il3HElr5QrgGuBXwNsr8pxIMs33AyR3\nb54GfJXkgSzWA9waqa2fAgm4VZKFrAfWiYgHgDfXyTOlStqTwP9NXyOVWw2ckb7MuiJPd7EDbDa8\nWc/ezV5NKZB44L07su7Osi7o9S6tvLVG8sqtEusEBxGzDshbt1bJuBUDfRVMHEg6z0GkT7g10n15\nDSTQX60SD7p3loOIWZ9yq8TawUGkj7g10n15bo2U9FsgcTBpLwcRsw4rSiDpt2Bi7eEg0mfcGrFa\n+i2QOJi0zkHErAuK0Bopcauk+CTNkLQ0Xe3jrCr7x0m6Pt1/p6QpFfsnS3pGUt177BxE+pBbI9ko\nUiABt0qKStIY4DKSp7xOB46XNL0i28nAUETsTrJKyAUV+y/hr+sQ1uQgYmYjcqukkPYFlkXEgxEx\nTPLI8ZkVeWYCV6fvbwQOkSSAdC3CB4FFjZzMQaRPuTWSjaK1Rkr6LZAUPJjsBDxStj2YplXNExHr\ngaeAHSRtBXyUZB3DhjiImHVZkQNJvwWTnJoo6a6y1ykV+6st3Fb5SzdSnvOASyLimUYrk/kCjJad\ngSWDuX/6YSsmLF+Xu6cf9gIv5tgZY9ZGoy3oVRGxd439g8DOZduTgJUj5BmUNJbkabJPAK8HZkn6\nPMmTYjdIWhsRl450MrdEzDJQ1NZIiVslubYQ2EPSVEkDJI/NmFeRZx7JozIAZgG3RmL/iJiSrpz+\nBeBztQIIOIj0vV4fG8mzogcS8FhJHqVjHLNJHty3GLghIhZJOl/SUWm2uSRjIMuA04FNpgE3yt1Z\n1tPcpdV5pUDST11ceX9WSUTMJ3kQX3naOWXv1wLH1DnGuY2cyy0Rc2skQ73QGinppy6uorRKusFB\nxHpeXqf7lvRSIIH+6+Lqdw4iBrg1Yu3Vb62SfuYgYn3BrZFs9Esg6WcOIvYCt0ay1cuBxMGkdzmI\nWN/Ie2uk1zmQ9CYHEduIWyPZ6tXWSIlbJb3HQcT6ShFaI70eSMCtkl7iIGKbcGvEusGtkt7gIGJ9\nx62RfHEgKTYHEavKrZHs9VsgcTApJgcR60tFaI30IweS4nEQsRG5NZK9fmqNlLhVUiwOIta3itIa\n6cdAAm6VFIWDiNXk1ohlya2S/HMQsb7m1kgxOJDkl4OI1eXWSD44kLhVkkcOItb3itIasYQDSb44\niFhD3BrJh35vjZS4VVKbpBmSlkpaJmmT56dLGifp+nT/nZKmpOmHSfqVpPvTn2+udy4HETPcGikq\nB5JNSRoDXAYcCUwHjpc0vSLbycBQROwOXAJckKavAv4+Il4FnAh8vd75HETMCsatkY25VbKJfYFl\nEfFgRAwD1wEzK/LMBK5O398IHCJJEXFPRKxM0xcBm0saV+tkDiLWsF7v0ipSa8SBZFMOJC/YCXik\nbHswTauaJyLWA08BO1TkeQdwT0TU/I8xtqWqmpnlSCmQrJs8nHFNOmqipLvKtudExJyybVUpU/mt\no2YeSa8k6eI6vF5lHERsVAaWDDI8bVLW1eiYCcvX8dRuNVvvuTH+4eDpXar9LbBxKwYKF0i0drjR\n1v6qiNi7xv5BYOey7UnAyhHyDEoaC0wAngCQNAn4DvBPEbG8XmXcnWVWYO7WGlkfj5UsBPaQNFXS\nAHAcMK8izzySgXOAWcCtERGStgW+D3wsIv63kZM5iNio9frYiPWWfgsk6RjHbGABsBi4ISIWSTpf\n0lFptrnADpKWAacDpWnAs4HdgbMl3Zu+XlLrfO7OMqtQpC4tcLdWI/pkrOQFETEfmF+Rdk7Z+7XA\nMVXKfQb4zGjO5ZaINcWtkXxxt1Zj+q1V0g0OImZVFGm6r41OH4+VdISDiDXNrZF8cWtkdBxI2sNB\nxGwERWyNOJCMjlslrXMQsZa4NWK9wIGkeQ4iZjW4NdI/3CppjoOItcytkfxxIGmeA8noOIiY1VHE\n1oi1xq2SxjmIWFu4NZI/bo20zoGkPgcRswYUtTUy/uFgs2EHk1a4VVKbg4i1jVsj+eVWSescSKpz\nEDFrUFFbIyXjHw4Hkxa5VbIpBxFrK7dG8s+BpHUOJH/lIGI2CkVvjZS4VdI6t0oSDiLWdm6NFIeD\nSev6PZA4iJiNUq+0Rso5kFizHESsI9waKR63SqwZmQcRSdMl3SJpjaSV6SMcxzRQboKkKyUNSXpK\n0n9J2qFKvpmS7pe0VtIDko77q6QrAAAKtUlEQVTtzCexftKLrZESBxIbjUyDiKTtgB8BAcwEzgc+\nDJzXQPHrgYOAdwMnAfsA3604/n7At4AfA0eSPID+vyUd3pYPYDW5NVJcbpVYo7JuiZwKbAEcHRE3\nR8RXSALI6ZK2GamQpDcCRwAnRsS3IuI7wLuA/SQdWpb1bOD2iPhARPw4Is4EfgCcs+lRzUanl1sj\nJQ4mxSRphqSlkpZJOqvK/nGSrk/33ylpStm+j6XpSyUdUe9cWQeRI4EFEbG6LO06ksByYJ1yf4yI\n20sJEfFL4PfpPiSNAw4Gbqgoex3wRkkTWq++1ePWSG9wICmOdDjgMpK/hdOB4yVNr8h2MjAUEbsD\nlwAXpGWnA8cBrwRmAF+uN7yQdRCZBiwpT4iIFcCadF/D5VKLy8rtBryoSr7FJJ/75U3U12wj/dAa\nKXGrpDD2BZZFxIMRMUzyxXlmRZ6ZwNXp+xuBQyQpTb8uItZFxO+BZenxRjS2rVUfve2AJ6ukD6X7\nmim3a1kequQbqtj/AkmnAKekm+se5su/qVEHa9Rj1ZNv/QkTgVVdrUsn/CTrCtT2q7k9cp3z7RWt\nHmD1+scX/OCxL09sIOvmku4q254TEXPKtncCHinbHgReX3GMF/JExHpJTwE7pOm/qCi7U63KZB1E\nIBlUr6QR0pspV7mtkcqn/xBzACTdFRF716mDtcDXuDt8nTuv4o96UyJiRjvqwl//xm10+AbzNFJ2\nI1l3Zw0B21ZJn0D1lka9ctuWlRsqS6vMQ53jm5kV1SCwc9n2JGDlSHkkjSX5m/tEg2U3knUQWULF\n2IeknYGtqD7mMWK5VPlYyXLguSr5pgEbgN82UV8zs7xbCOwhaaqkAZKB8nkVeeYBJ6bvZwG3RkSk\n6cels7emAnsAv6x1sqyDyE3AEZLGl6UdCzwL3Fan3I7pfSAASNqbZDzkJoCIWEdyf8gxFWWPBX4e\nEU/VqducOvutdb7G3eHr3Hm5ucYRsR6YDSwgmUh0Q0QsSm/kPirNNhfYQdIy4HTgrLTsIpIZrQ+Q\n3A5xWkQ8X+t8SoJPNtKbDR8AfkMyxWxX4GLgCxHxybJ8y4DbIuLksrQfkMywOoOkZXEB8KeI2L8s\nz34kw56XktyI+JY0/4yI+GFHP5yZWR/ItCUSEUPAIcAY4HskNxpeAnyqIuvYNE+540haK1cA1wC/\nAt5ecfw7SJpqh5JE5aOAExxAzMzaI9OWiJmZFVvWYyId5cUdu6PT17ks/9skRTumUxZNJ6+xpAFJ\n56RLXTyb/jwvXfWhbzRzjdNrd6Gkn6bXbpNv5ZLGSPpomufP6euHkvbp3KfpoojoyRfJzYQrSRZ4\nPIxkna6/AJ9poOwPSJZQeQdJF9lvgZ9W5NkPWA98iWR5lQtJxmYOz/qz99J1Lsu7OfAgya2Ld2X9\nuXvpGpOMQ64hGWA9mGQR1GeBL2b92fN+jUluGRgi6S6/JfmTukmerdM8F5OMy5YWg10H7JX1Z2/5\n2mVdgQ7+Unws/YfbpiztI+l/lm1qlHsjyc01B5Sl7ZumHVqWtoBkWlx52fnAHVl/9l66zmX7zgZ+\nClzVh0Gk07/LjwEXVZS9mGR9usw/f56vcZqvNCwwe4QgMgbYriJtAHgIuDLrz97qq5e7s7y4Y3d0\n7DqXSJpM8h/6g+2qdMF0+hq/CKic8v4k1e9e7lXNXuMkatTe/3wkk4jK04aBRcBLmqtufvRyEPHi\njt3RyetcchHJXPe7W6hnkXX6Gl8OvEfSmyRtLWl/4L0kU+P7RbPXuCnpF9G9SG5xKLQ8rJ3VKbla\n3LGHdfI6I+lgkmfH9FNgrtTRa0xyo9kWwB1laV+OiPNHWc8ia/YaN+sT6XEv78Cxu6qXgwjkaHHH\nHteR65yu6fMlksHNEdYC7hud/F0+k+Shbu8H7gNeA3xa0p8jop8e4NbsNR4VSW8lCSIfjoil7Tx2\nFno5iLSyuOOLq6R7ccfqOnmd/yXdvlpS6RwDwJh0+y8R8VxTtS6Wjl1jSROBz5Asb/G1dP/tkoaB\nSyVdGhF/arrmxdHsNR6VdFrv9cBXI+IL7Tpulnp5TMSLO3ZHJ6/zK0hWEX2M5D/5EHA88Nr0fb/c\nl9PJa7wryfjevRV57iH5krlLE/UtomavccMkvZxkau8tJK2+ntDLQSTPizv2ko5dZ5KB3YMrXgtI\ngvTBwM1t+gx518lr/HD6c8+KsnulPx9qss5F0+w1boikl5H87i4Hjo86ixoWStZzjDv1Ihm0+gPJ\nH5pDSZ5Y+AwVNw+RPP5xbkXaD0hubDsaeBuwlJFvNvwCcBDwefr3ZsOOXecq57uK/rtPpNO/y98h\n6bL5IElw/leSKb83ZP3ZC3KNjyRZo+9ykvGTWelrl3T/FiQtvSeBtwJvKHu9LuvP3vK1y7oCHf7F\nmA7cSvJt4g/Ap4ExFXkeAq6qSNsWuDL9R18NXAtMrHL8t5GsQLyOpMl7XNafuRevc0WZvgsinb7G\nwDbAf5B8S342/UP5eWB81p+7INf4oTR4VL5OSvdPGWF/AA9l/blbfXkBRjMza1ovj4mYmVmHOYiY\nmVnTHETMzKxpDiJmZtY0BxEzM2uag4iZmTXNQcTMzJrmIGLWICV+LenEdHuapDvTZ5dfJ2nrivwH\nSHq0Mj3dd5mkud2qu1mnOIiYNe4fSJbHuDbdvork7u5/ILnb+eOljJI2I1kS52MR8UyVY10IvFPS\n7p2ssFmnOYhY35E00GTRDwBfj4jn0tbF64EPRcQC4LPAYWV5TyZZ6fnr1Q4UEQ+RPATqvU3WxSwX\nHESsp0naTNJfJH1I0hclPc6my543cpzdgb8DbkyTSoHo2fTnmlKapG1I1l36YNReV+hbJK0R/z+0\nwvIvr/W6XYEtgY+QPDfjBJr79n8I8Bfg1wAR8QTwe+D9krYnWfX1rjTv2cCPIuIXdY75M+ClwKua\nqI9ZLvTykw3NAF6d/rwiIj7ZwnH2AhZHxIaytNOAbwKfA34HnJa2WE4uO28ti4DngX1Jg5NZ0bgl\nYr3uVSRdTZ8tT5T0n+nMqUaXsd4RWFWeEBE3AS8heQLj30TECuBi4JKIGJR0mqQV6et9lQeMiPUk\nS7TvOOpPZZYTbolYr3sV8JOIeLYi/b+Bc0kevduIzUmC0UYiYg3p45AlHQq8BjhW0mtIxkX+Ls36\nc0l3RMR9FYdYlx7brJDcErFe92rg7srEiLg9Iv44iuM8QfKAp6okjSWZ0vuRNGAdBNwaEUsiYgnJ\nc7UPrFJ02/TYZoXkIGI9S9IWwG60Z7xhKTC1xv5TgaGIuL4sbcuy91sBqqjfi9M8v21D/cwy4SBi\nveyVJL/j7Qgi/wtMTv/wb0TSdsCnSJ5RXnI7cIikf5b0z8Cbgdsqiu5N8ojUn7WhfmaZ8JiI9bLS\noPryNhzrJyTdTjPY9AbC84B5EfFCt1lE3CPpI/x1QP+MiKgMZjOA2yLiz22on1km/Ix162uSIiJU\nPydI+iKwe0S8tQ3nHQM8DJwVEd9o9XhmWXF3lvUlSZdLGkzfD0q6vIFiFwIHSXp5G6pwDMnd7te1\n4VhmmXFLxGwUJB0H/CEiKsc3Rnuc44FHI+L29tTMLBsOImZm1jR3Z5mZWdMcRMzMrGkOImZm1jQH\nETMza5qDiJmZNc1BxMzMmuYgYmZmTXMQMTOzpv1/ZzufzULIqxUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# plot contour of probability density function\n", - "x = np.linspace(low[0], high[0], 2**num_qubits[0])\n", - "y = np.linspace(low[1], high[1], 2**num_qubits[1])\n", - "z = u.probabilities.reshape(2**num_qubits[0], 2**num_qubits[1])\n", - "plt.contourf(x, y, z)\n", - "plt.xticks(x, size=15)\n", - "plt.yticks(y, size=15)\n", - "plt.grid()\n", - "plt.xlabel('$r_1$ (%)', size=15)\n", - "plt.ylabel('$r_2$ (%)', size=15)\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Cash flow, payoff function, and exact expected value\n", - "\n", - "In the following we define the cash flow per period, the resulting payoff function and evaluate the exact expected value.\n", - "\n", - "For the payoff function we first use a first order approximation and then apply the same approximation technique as for the linear part of the payoff function of the [European Call Option](european_call_option_pricing.ipynb)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEUCAYAAAAfooCMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XuYXVV5x/Hvz8gl3JJQzIiIBkGb\nkoZ6GSwgyiA3gbZcBILCU4NoxEdJ1UDBIhDxCnJrKVQilBQFogIFIUQkyASjgCZcjA0BQwlIQC7t\nEMy1JHn7x9pDdjZn5pwzc84+M5Pf53nOc7LXXmuf9xw2ebP2WnsvRQRmZmbN9oZWB2BmZpsGJxwz\nMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVoo3tjqAgWSHHXaIMWPG\ntDqMQW/FihVsvfXWrQ7DrFc+Txtj/vz5L0XEm2qp64STM2bMGObNm9fqMAa9zs5OOjo6Wh2GWa98\nnjaGpKdqretLamZmVgonHDMzK4UTjpmZlaLUhCPpWEk/kbRU0nJJ8yV9rIZ2W0i6SNILklZImilp\nTIV6H5D0gKRVkp6UNLkZ38PMzOpXdg/nS8By4IvA3wH3ANdLOrVKu38BJgKnAccAOwB3Sdqyu4Kk\n3YA7gSeBw4ErgYslfarB38HMzPqg7FlqfxsRL+W2fy7pLaREdFmlBpLeCpwMfDIirs3KfktKLCcC\nV2VVTweeBU6MiLXZsd8GnCvp6vBKc2ZmLVVqD6eQbLo9BIzupdnB2fvNueMsBeYCh+bqHQrcnCWb\nbjOAtwJ/2aeAzcysYQbCpIF9gIW97B8LPBMRywvlj2b7kLQ1sDOwqEKd7mOYmVkLtfTGT0kHAEcA\nn+yl2ijg5QrlXdk+gJHZe7FeV+4YZmbWQi1LONkss+uBWyNiepXqlcZfVKG8p3GaHsdvJE0CJgG0\ntbXR2dlZJRSrZvny5f4dB6AFS5e1OoQBpW04XHbdra0OY0AYv9OIUj6nJQlH0vbALOBp0sB/b7rY\n0IPJG8mGHs3LubK8UYX9rxMR04BpAO3t7eFHXfSfHxkyME08c2arQxhQpoxfy0UL/HQvgCUndJTy\nOaWP4UjaCrgd2Bw4PCJWVGmyCNg5G6fJG5vtIzvGH3j9WE33dnFsx8zMSlb2jZ9vBH4MvBM4NCJe\nqKHZz7L3o3LHeQvwQVIvqdss4ChJw3JlE0iJ6Hf9idvMzPqv7P7kFcBhwD8A20vaK7fvoYhYI+lu\ngIg4IHt/RtLVwKWSBLwITAWeAn6Qa/8d4ATg+5K+B+wJfAb4rO/BMTNrvbITTvc9Nf9cYd8uwBJg\nWIV9k4EVwMXAVsAc4GMRsbq7QkQslvSRrM4s4I/AlIi4qsLxzMysZKUmnIgYU0Odjgpla0hPI/hS\nlbZzgff3MTwzM2uigXDjp5mZbQKccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDC\nMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVohUrfu4m6UpJj0haJ6mzhjZTJUUPry/n\n6k3voU5xJVAzMytZKxb0HkdahO1+0jLTtbgK+Gmh7EjgDDZe9RPSctInFcqW1BeimZk1WisSzm0R\ncSuApBuBHao1iIhngGfyZZLOBhZFxMOF6isi4v5GBWtmZo1R+iW1iFjf32NI2h44CLih/xGZmVkZ\nBuukgWOAzYAZFfbtLukVSWskzZW0X8mxmZlZBYM14RwPPBgRjxfKHwKmAH8LnAAMA+6S5GWnzcxa\nTBHRug/PxnAioqOONjuSxnPOiIgLq9QdDiwEHomII3uoMwmYBNDW1va+GTMqdZqsHsuXL2ebbbZp\ndRhWsGDpslaHMKC0DYfnV7U6ioFh/E4j+tx2//33nx8R7bXUbcWkgf46DhDww2oVI2KVpDtIPZ6e\n6kwDpgG0t7dHR0dHg8LcdHV2duLfceCZeObMVocwoEwZv5aLFgzGvwIbb8kJHaV8zmC8pHY8MDci\n/lBHm9Z148zMDBhkCUfSGGAvapydll1SOxSY37yozMysFqX3JyVtRbrxE2AnYDtJx2Tbd0TESkmL\ngTkRcXKh+fHAWuDGCscdAdwO/ABYTLq/54vZZxzX8C9iZmZ1acUFzNHAjwtl3du7kJ4K8EbSDLOi\n44G7I+LFCvvWAC8CX8k+YzVwH7BfRMzrf9hmZtYfpSeciFhCGvTvrc6YHsrf3Uub1cDR/YnNzMya\nZ1CN4ZiZ2eDlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGE\nY2ZmpXDCMTOzUjjhmJlZKZxwzMysFKUnHEm7SbpS0iOS1knqrKHNGElR4TWjQt0jJC2QtFrSQkkT\nmvJFzMysLq1YD2ccaQG2+4HN62x7GvDL3PZL+Z2S9gVuAq4AJmefc4Okroj4WZ8jNjOzfmtFwrkt\nIm4FkHQjaWXOWj0WEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCpV9Si4j1zTiupC2A/YEfFXbNAPbO\nlqA2M7MWGWyTBq7Jxn2ek3SxpOG5fbsCmwGLCm0eJX3Pd5UVpJmZvV4rLqn1xRrgctJlsVeADuAM\nUpI5IqszKnt/udC2q7B/I5ImAZMA2tra6OzsbFTMm6zly5f7dxyApoxf2+oQBpS24f5NupX1/+ug\nSDgR8Rzw+VxRp6TngSskvTsiHs5XLzRXD+Xdx54GTANob2+Pjo6OxgS9Cevs7MS/48Az8cyZrQ5h\nQJkyfi0XLRgUfwU23ZITOkr5nMF2SS3vxuz9vdl7d09mZKFe93ax52NmZiWqOb1LGgl8EHg/8GZg\nS+B/gceBXxZ6GWWIwvsTwKvAWGBOrt5YYD0pTjMza5GqCUfSh4BTgb8h3TfzNOn+lzXAe4CTgK0l\nPQlcDVweEa80LeINjsne5wNExBpJ9wDHAlfm6k0A7ouIZSXEZGZmPeg14UiaTbpkdRNwFPCrYjKR\nJODPgUNJf9mfJukTEXF7D8fcinRDJsBOwHaSupPHHRGxUtJiYE5EnJy1mQpsS7rp8xXgQ8DpwM0R\n8dvc4b9GGt+5FLgl+5zDgI9U+yHMzKy5qvVwfgocGRHLe6oQEUGairwIuETS+4HteznmaODHhbLu\n7V2AJVlcw3L7F5GeMvApYDipl/Ud4BuFWOZmyevrwGeBJ4GP+ykDZmat12vCiYgL6z1gRPy6yv4l\nbJg51lOdMYXtGaQbOGv5/FtIvRszMxtABvMsNTMzG0RqSjiS2iS9o1C2j6S7JD0o6XxJWzYnRDMz\nGwpq7eH8gDSGAoCkNwN3kAby55HGSy5oeHRmZjZk1Jpw2kkJpttxwDLggxExCfgMcHSDYzMzsyGk\n2rToe7I/jgCmSvoSacD/ncAWwJ1pVjRbATtK+nlWf3pEXNuckM3MbDCqNkttfwBJLwNTI+L27L6b\nPwCnR8T0bP/upHt0PtzkeM3MbJCq9dE29wEXStoG2I/0fLL8JbZxwH83ODYzMxtCak04k4GbgeuB\nlcDnIuKF3P7PAz9pcGxmZjaE1JRwIuL3wHhJo4BXImJdocrfAy+8vqWZmVlS12IQEdHVQ/lTjQnH\nzMyGql6nRUv6YL0HlDRC0vi+h2RmZkNRtftwfiTpl5I+mV1O65GkD0i6DHgK2LthEZqZ2ZBQ7ZLa\nO0gTBs4FrpT0OPA7NqyHM5L0hOf3kJ7ifAdwYETMa1rEZmY2KPXaw4mIVRFxPjCGtN7NraQksy9w\nOPAXpB7N6cDOEXFUtWQjaTdJV0p6RNI6SZ3VgpS0p6RrJC2WtFLSY5LOLT6/TdJUSVHh5fVwzMxa\nrNZZagHMzl79NY60KNr9pBVEazEB2BU4H/g9sAdpsbU9gI8W6i7j9QuuPdrXYM3MrDHqmqXWILdF\nxK0Akm4EdqihzfkR8WJuu1PSatJlvrcXZsmtjYj7GxivmZk1QOnr4UTE+j60ebFC8UPZ++j+RWRm\nZmUYzAuw7QOsBx4rlI+U9JKkVyU9JMlPsTYzGwBacUmt37L1eM4Cvh8Rr+R2LQb+EXgY2Ia0bMJN\nkj4aETf3cKxJwCSAtrY2Ojs7mxn6JmH58uX+HQegKePXtjqEAaVtuH+TbmX9/6o0H6A1usdwIqKj\njjabkyYvvBV4X09PP8jqCvgVMDwi3l3t2O3t7TFvnmd091dnZycdHR2tDsMKxpw5s9UhDChTxq/l\nogWD8t/cDbfk24f3ua2k+RHRXkvdmi+pSTpZ0jv7HFUDZAnkWrKZbr0lG3htdt3NwB6ShpUQopmZ\n9aCe9H4hsJ2kF4G5wC+y18N9mQjQR5cARwAHRcSiOtq1rhtnZmZAfZMGtictNf1N0l/gZwLzgC5J\nP5V0VhPie42kLwOnAidGxNwa2wg4CnikwhOuzcysRDX3cLLLUw9lr38BkHQQafD+YOAg4BvVjiNp\nK9KNnwA7kXpNx2Tbd0TESkmLgTkRcXLW5uOkRDcdWCppr9whn+ieNi1pDnATsAjYGvg0sBdwZK3f\n08zMmqOuETNJfwF8MPfaCfgv4HLS5bVajAZ+XCjr3t4FWJLFlR9zOTh7n5i98k4iJSJIs9S+AOxI\nmjL9IHB4RMyqMTYzM2uSmhOOpBeA7YD5wL3A54C5EbGsng+MiCWAqtQZU9ieyOsTTaV2J9cTi5mZ\nlaeeMZy1pF7H5tlrMzbuhZiZmfWo5oQTEW8hPR36CtIEgguBFyT9TtIVkiY0KUYzMxsC6nq0TUQs\njohrIuKkiNiNtGTBS8ApwPXNCNDMzIaGesZwhgHvZcOEgX1JPZ1lwExqnzRgZmaboHpmqS0jrer5\nR9KNn1NJSWZBtPL5OGZmNijUk3BOBe6NiCeaFYyZmQ1d9dz4eU1+W9JmEfFq40MyM7OhqK5JA5L2\nkTRL0p+A1ZL+JOkOSXs3KT4zMxsi6pk0cBBpcsBjwHeA54E24BjSks+HR8TspkRpZmaDXj1jON8A\nfgIcW5gkcJ6km0jPOnPCMTOziuq5pDYe+F4PM9KmZfvNzMwqqifhvAzs2sO+3bL9ZmZmFdWTcH4M\nfEvSiZK2BJC0paQTSZfbftSMAM3MbGioJ+GcAdwO/AewQtIyYEW2fXu2vypJu0m6UtIjktZJ6qyx\n3QhJ10jqkrRM0nWS/qxCvSMkLZC0WtJCP+PNzGxgqOc+nFXACZK+BuxJWnPmOeA3dS73PI60ANv9\npKdO1+qHwJ8DnyKtdXM+cAvpMTsASNqXtADbFcDk7HNukNQVET+r47PMzKzB6lqADSBLLvUkmKLb\nIuJWAEk3AjtUa5Dd53MIsF9E3JuVLQUekHRgbjr22aSnIUzOtu+RNA44B3DCMTNroV4TjqTd6zlY\nRCysoc76eo6ZORR4vjvZZMf5taQns32zJW0B7E/q2eTNAK6RNKLexeLMzKxxqvVwfgfU8mBOZfWa\ntSDbWCr3qh7N9kGaQbdZhXqPksaq3gX8pknxmZlZFdUSzv6lRFHdKCpPu+4C3pGrQ4V6XYX9G5E0\nCZgE0NbWRmdnZ58CXLDUnadubcPhsutubXUYA8b4nUa0OgQApoxf2+oQBpS24f5NuvX17716VUs4\nnwC+FhFPSvoQ8GBELC8hrkoq9bRUoby4rV7aExHTSDeu0t7eHh0dHX0KbuKZM/vUbiiaMn4tFy2o\ne3hwyFpyQkerQwB8jhb5PN2grHO02rToTwBvyv58D1DXmE4DdQEjK5SPZEOPpitXVqwDvjHVzKyl\nqiWc54AOSduQegpbStqqp1cT41zEhrGavPzYzhPAqxXqjSVNo368adGZmVlV1RLONODbpNU+g9TL\n+VMvr2aZBbw5u88GAEntpPGbWQARsSaL79hC2wnAfZ6hZmbWWr1ewIyI8yTNBP4CuBb4Oqkn0WdZ\nT+iwbHMnYDtJx2Tbd0TESkmLgTkRcXIWx32S7gSulXQaG278nFtYEuFrpKUSLiXdFHpY9vpIf2I2\nM7P+qzpiFhHzgfmSDgCuiYgn+/mZo0nPZcvr3t4FWJLFVZxifTxwCfDvpJ7Z7RTuuYmIuVny+jrw\nWeBJ4ON+yoCZWevV82ibkxrxgRGxhA0zx3qqM6ZC2cvASdmrt7a3kHo3ZmY2gNQ1JzAbNzkaeCuw\nZXF/RBzXoLjMzGyIqWeJ6c8ClwMvAb8H/q9ZQZmZ2dBTTw/nNNL4ySkR4dtzzcysLvWshzMauMHJ\nxszM+qKehDML+OtmBWJmZkNbPcsTXA5Mk7QZcBcVHhVTy/IEZma2aap3eQIB55IWNKNQ3szlCczM\nbJAbLMsTmJnZIFft0TZzygrEzMyGtponDUgaLWmX3LYkTZJ0qaS/bU54ZmY2VNQzS2068MXc9leB\nK0gPxvxPSRMbF5aZmQ019SSc9wI/B5D0BtLDMf8pIsYC3wC+0PjwzMxsqKgn4YwA/if78/uA7YHr\nsu2fA7vVchBJu0u6W9JKSc9KOk9Sr7PbJE2VFD28vpyrN72HOpUWbzMzsxLV82ibZ0hLTP8COBxY\nFBFLs30jgNXVDiBpFDAbWAgcAewKXERKfF/ppelVwE8LZUcCZ5AtwJaziNc/UXpJtdjMzKy56kk4\n/w5cIOlAUsL5cm7fXsCjNRzjFGA4cHREvALcJWk7YKqkC7Ky14mIZ0gJ7zWSziYlvYcL1VdExP01\nfSMzMytNzZfUIuJbwKnAH7P3f8nt3p7UC6nmUODOQmKZQUpC+9Uai6TtgYOAG2ptY2ZmrVXXejgR\ncS1pqeli+Sk1HmIs2cSDXNunJa3M9t1W43GOATYjJaui3SW9AmwB/AY4y/cTmZm1Xl0JB0DSG4G3\nUXkBtmrPUhtFhWewAV3ZvlodDzwYEY8Xyh8CHiCNEb0JmEK6bLdvRPy6juObmVmD1bMA22aky2if\nIPUeKqnlWWpRoUw9lFeKY0fS5bczXnfgiH8u1J1JSj7/RJpkUOl4k4BJAG1tbXR2dtYSxutMGe9V\nG7q1DffvkdfXc6rR/N9kYz5PNyjrHK2nh3MO8DfAyaTp0J8DVgAnkmabnVrDMbqAkRXKR1C551PJ\ncaQE9cNqFSNilaQ7gB6fhBAR04BpAO3t7dHR0VFjGBubeObMPrUbiqaMX8tFC+ruPA9ZS07oaHUI\ngM/RIp+nG5R1jtZzH85xwFTgR9n2ryPi2og4GJhLmuZczSLSWM1rJO0MbJ3tq8XxwNyI+EON9aHG\n3pOZmTVPPQlnZ+DxiFhHuucmP+ZyHfDRGo4xCzhE0ra5sgnAKqDqwL6kMaQp2DXNTpM0nDQzbn4t\n9c3MrHnqSTjPseFy2JPAh3L7dq3xGN8F1gA3SzowGz+ZClycnyotabGkqyu0Px5YC9xY3CFphKRf\nSPqMpAMkTQDuAXYCvlljfGZm1iT1XMDsBD5Imrr8PeBCSbuREsgEauh1RESXpAOAf82O8zJwCSnp\nFOOqNAHheODuiHixwr41wIukJxaMJvXC7gP2i4h51WIzM7PmqifhnAXsABARl0oS6X6Y4cBlwHm1\nHCSbOv3hKnXG9FD+7l7arAaOriUGMzMrX80JJyL+SHrKQPf2JaTeiZmZWVX1LMD2V5IO62HfYZL2\naFxYZmY21NQzaeAS4K972Lcn7u2YmVkv6l2A7Zc97LsPeE//wzEzs6GqnoQzjHSDZiVbA5v3Pxwz\nMxuq6kk4vyF75lgFkwBPPTYzsx7VMy16KjBb0gPAf5BmrO0I/D3wV6T1aczMzCqqZ1r0vZIOBr5F\nuu9GwHrScgAHRcQvmhOimZkNBfUuwNYJ7C1pK9Kz1LoiYmUzAjMzs6GlT8/mzpKME42ZmdWsnkkD\nZmZmfeaEY2ZmpXDCMTOzUpSecCTtLuluSSslPSvpPEmVliLItxkjKSq8ZlSoe4SkBZJWS1qYrYtj\nZmYtVuqC3pJGAbOBhaQlqXcFLiIlvq/UcIjT2PjxOi8Vjr8vcBNwBTAZOAy4QVJXRPys31/AzMz6\nrNSEA5xCWj/n6GyFz7skbQdMlXRBftXPHjwWEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCZV9SOxS4\ns5BYZpCS0H79ObCkLYD9gR8Vds0g3Ts0oj/HNzOz/ik74YwFFuULIuJp0j09Y2tof42kdZKek3Sx\npOG5fbsCmxWPDzxK+p7v6nvYZmbWX2VfUhsFvFyhvCvb15M1wOWky2KvAB3AGaQkc0Tu2FQ4fldh\nv5mZtUDZCQcgKpSph/LUIOI54PO5ok5JzwNXSHp3RDzcy/HVy+ciaRLZU7Db2tro7OzsPfoeTBm/\ntk/thqK24f498vp6TjWa/5tszOfpBmWdo2UnnC5gZIXyEVTu+fTmRtJstPcCD7OhJ1M8fvd2xeNH\nxDRgGkB7e3t0dHTUGUYy8cyZfWo3FE0Zv5aLFrTi3zID05ITOlodAuBztMjn6QZlnaNlj+EsojBW\nI2ln0gJuxbGXaqLw/gTwavH42fZ64PE6j29mZg1UdsKZBRwiadtc2QRgFTCnzmMdk73PB4iINcA9\nwLGFehOA+yJiWf3hmplZo5Tdn/wu6YbMmyWdD7yDtLDbxfmp0pIWA3Mi4uRseyqwLemmz1eADwGn\nAzdHxG9zx/8aaXznUuAW0o2fhwEfae7XMjOzakrt4UREF3AAMAy4DfgqcAlwbqHqG7M63RaR7tO5\nBrgD+Djwnew9f/y5pJ7PgcCdwN8BH/dTBszMWq/0EbOIWAh8uEqdMYXtGaQbOGs5/i2k3o2ZmQ0g\nflq0mZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfM\nzErhhGNmZqVwwjEzs1I44ZiZWSlKTziSdpd0t6SVkp6VdJ6kYVXa7CnpGkmLs3aPSTpX0paFelMl\nRYWX18MxM2uxUpcnkDQKmA0sBI4AdgUuIiW+r/TSdEJW93zg98AepMXW9gA+Wqi7jNcvuPZof2M3\nM7P+KXs9nFOA4cDR2Qqfd0naDpgq6YL8qp8F50fEi7ntTkmrgSslvT0insrtWxsR9zcnfDMz66uy\nL6kdCtxZSCwzSElov54aFZJNt4ey99GNC8/MzJql7IQzlrRc9Gsi4mlgZbavHvsA64HHCuUjJb0k\n6VVJD0k6us/RmplZw5SdcEYBL1co78r21UTSm4GzgO8XekuLgX8EjiON7TwL3OSkY2bWeoqI8j5M\nehU4LSL+uVC+FJgeEWfVcIzNSRMP3gq8LyK6eqkr4FfA8Ih4dw91JgGTANra2t43Y8aMWr/ORhYs\nXdandkNR23B4flWroxg4xu80otUhAD5Hi3yebtCfc3T//fefHxHttdQte9JAFzCyQvkIKvd8NpIl\nkGuBccAHeks2ABERkm4Gzpc0LCLWVagzDZgG0N7eHh0dHVW/RCUTz5zZp3ZD0ZTxa7loQdmn1sC1\n5ISOVocA+Bwt8nm6QVnnaNm/9iIKYzWSdga2pjC204NLSNOpD4qIWup3K68bZ2ZmFZU9hjMLOETS\ntrmyCcAqYE5vDSV9GTgVODEi5tbyYVmP6CjgkUq9GzMzK0/ZPZzvApOBmyWdD7wDmApcnB/8l7QY\nmBMRJ2fbHwe+CUwHlkraK3fMJ7qnTUuaA9xE6i1tDXwa2As4srlfy8zMqik14UREl6QDgH8FbiON\n21xCSjrFuPKPuzk4e5+YvfJOIiUiSLPUvgDsSJoy/SBweETMakT8ZmbWd6WPmEXEQuDDVeqMKWxP\n5PWJplK7k/sRmpmZNZGfFm1mZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJ\nx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWitITjqTdJd0taaWkZyWdJ2lYDe1GSLpG\nUpekZZKuk/RnFeodIWmBpNWSFkqa0JxvYmZm9Sg14UgaBcwmLfl8BHAeMAX4ag3Nfwh0AJ8iLVWw\nJ3BL4fj7khZguwc4FJgJ3CDpYMzMrKXKXg/nFGA4cHS2wuddkrYDpkq6IL/qZ56kvYFDgP0i4t6s\nbCnwgKQDI2J2VvVs4N6ImJxt3yNpHHAO8LPmfS0zM6um7EtqhwJ3FhLLDFIS2q9Ku+e7kw1ARPwa\neDLbh6QtgP2BHxXazgD2ljSi/+GbmVlflZ1wxgKL8gUR8TSwMttXc7vMo7l2uwKbVaj3KOl7vqsP\n8ZqZWYOUnXBGAS9XKO/K9vWnXfd7sV5XYb+ZmbVA2WM4kCYMFKmH8r60K26rl/ZImgRMyjaXS3qs\nShxWxWTYAXip1XEMFDq/1RFYJT5PN+jnOfr2WiuWnXC6gJEVykdQuQeTb/emCuUjc+26cmXFOvR0\n/IiYBkzr5bOtTpLmRUR7q+Mw643P0/KVfUltEYWxGkk7A1tTeYymx3aZ/NjOE8CrFeqNBdYDj/ch\nXjMza5CyE84s4BBJ2+bKJgCrgDlV2r05u88GAEntwDuyfUTEGtL9N8cW2k4A7ouIZf0P38zM+qrs\nhPNdYA1ws6QDs/GTqcDF+anSkhZLurp7OyLuA+4ErpV0tKQjgeuAubl7cAC+BnRIulRSh6QLgMNI\nN5haeXyJ0gYDn6clU0S1sfoGf6C0O/CvwN6kcZWrgKkRsS5XZwnQGRETc2UjgUuAo0iJ8nZgckRs\nNOiXJaOvA+8k3aczNSJmNPErmZlZDUpPOGZmtmny06KtISTtJulKSY9IWieps9UxmeVJOlbSTyQt\nlbRc0nxJH2t1XJuSVtyHY0PTONJ42f3A5i2OxaySL5Eus3+RdP/NYcD1knaIiMtaGtkmwpfUrCEk\nvSEi1md/vhHYISI6WhuV2QZZYimO+V4P7B0Ru7QorE2KL6lZQ3QnG7OBqphsMg8Bo8uOZVPlhGNm\nm7J9gIWtDmJT4TEcM9skSTqAtBDkJ1sdy6bCPRwz2+RIGgNcD9waEdNbGswmxAnHzDYpkrYnPRLr\naeDEFoezSXHCMbNNhqStSE8p2Rw4PCJWtDikTYrHcMxskyDpjcCPSY+9+kBEvNDikDY5TjjWENm/\nHA/LNncCtpN0TLZ9R0SsbE1kZq+5gnSO/gOwvaS9cvseyp44b03kGz+tIbJB2Cd72L1LRCwpLRiz\nCrKHAve0OqXP0RI44ZiZWSm4FeB6AAADsklEQVQ8acDMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzM\nrBROOGZmVgonHLMBStJUSZXWcOnLsS7M7kMxaxknHLOB6yrgkFYHYdYofrSN2QAjaTNgfUQ8AzzT\n6njMGsU9HLM+kjRd0jxJR0paJGm1pLmSds/VeYOkMyUtlrRG0uOSPlE4TqekGyVNkvQEsBp4S6VL\napJ2kXSLpFck/UnSbZJ2K9QZKel6SSskPSfprAqxj5R0laRns7iflvS9xv5CZhtzD8esf94OXAyc\nDawCvgrcKemdEbEauAz4BHAe8CBwEPDvkv4nIm7PHecDwK7AGcBKYFnxgyRtAdwNvAp8Glibfd4c\nSeMj4n+zqtcAHcAXgD8Cp2XHXps73MWk5ZW/mNXZGfhQf34Is2qccMz6ZwfgiIj4FYCk+cATwERJ\ns4HPAidFxH9k9WdL2hE4l7QuS7eRwHsi4o/dBZKKn3US8DbgXRHx31mdB4D/Bj4DfEvSOOBI4PiI\n+GFW5x7SYmOv5I71fuDy7jqZH/TtJzCrjROOWf+80J1sACLiqSzpvB8IYD3wn9laLN3uBj4maVhE\nrMvK5ueTTQ/eDzzYnWyyz3tG0i+BfbOiPbP3n+TqLJd0F/DXuWM9DJwuaR0wOyIer/ULm/WVx3DM\n+qfSIl4vADuSej/DSJfHXs29ppP+sbdjrs3zNXzWjj3Uex7YPvvzm4E/RcSqKnF+HrgFOAd4TNLv\nJR1fQwxmfeYejln/jO6h7L+A/yWNm3yA1NMpyieBWtYJeQ4YV6G8LfssSOMx20oaXkg6G8UZES8D\nk4HJkvYA/hG4TtJvI2JhDbGY1c09HLP+GS1pn+4NSW8D3gv8Gvg5qYczIiLmVXj9X52f9QDwPkm7\n5D5vJ9Lg/9ys6DfZ+9/l6mxDmqxQUUT8Fjid9PfB2DpjMquZezhm/fMS8H1J3bPUziP1XKZHxGpJ\n3wVmSLoAmAdsSeqlvCsiPlXnZ00nzWKbJekcYB0wNYvhSoCI+C9JPwH+TdJ2pF7R6aSZb6+RNBf4\nT+B3pN7Vp4EVpERp1hROOGb98xTwTeDbpCnS84CPZVOiAT4HPE76C/080kyxhcDV9X5QRKyRdCBp\nSvPVgIBO4OjclGiAicC/AZcCy4HLST2fY3J17svqjSElroeAQ7ObTc2awktMm/WRpOnAX0ZEe6tj\nMRsMPIZjZmalcMIxM7NS+JKamZmVwj0cMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkp\n/h/WI2xAUloInAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# specify cash flow\n", - "cf = [1.0, 2.0]\n", - "periods = range(1, len(cf)+1)\n", - "\n", - "# plot cash flow\n", - "plt.bar(periods, cf)\n", - "plt.xticks(periods, size=15)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('periods', size=15)\n", - "plt.ylabel('cashflow ($)', size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exact value: \t2.1942\n" - ] - } - ], - "source": [ - "# estimate real value\n", - "cnt = 0\n", - "exact_value = 0.0\n", - "for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])):\n", - " for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])):\n", - " prob = u.probabilities[cnt]\n", - " for t in range(len(cf)):\n", - " # evaluate linear approximation of real value w.r.t. interest rates\n", - " exact_value += prob * (cf[t]/pow(1 + b[t], t+1) - (t+1)*cf[t]*np.dot(A[:, t], np.asarray([x1, x2]))/pow(1 + b[t], t+2))\n", - " cnt += 1\n", - "print('Exact value: \\t%.4f' % exact_value)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# specify approximation factor\n", - "c_approx = 0.125\n", - "\n", - "# get fixed income circuit appfactory\n", - "fixed_income = FixedIncomeExpectedValue(u, A, b, cf, c_approx)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# set number of evaluation qubits (samples)\n", - "m = 5\n", - "\n", - "# construct amplitude estimation \n", - "ae = AmplitudeEstimation(m, fixed_income)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [ - "# result = ae.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=LegacySimulators.get_backend('statevector_simulator'))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exact value: \t2.1942\n", - "Estimated value:\t2.4600\n", - "Probability: \t0.8487\n" - ] - } - ], - "source": [ - "print('Exact value: \\t%.4f' % exact_value)\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEPCAYAAAD4aTuoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHiZJREFUeJzt3XuQHNV99vHvw11gkASISzAgwFgy\nGMqxAYNDYLmDeGMuxkgFflMiYAGvMSQl21wNAjuUhV8udhEKVHZEiG2JBAhvuAghLisQdzAiEF2w\nMOJuDM6CLEvICP3eP04vtHpnd2dmZ2Z7d59P1dTMnD595vSpnvlNd59zWhGBmZlZGa3T3xUwMzPr\njoOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUWQ8kTZHUnr1ulzSlxvXbJEWxrG7y3inp\n+R6WXyupQ9KGVX72ZySFpCNrqbNZmThImZXHDODzknYvLpC0LnACcFtErGp5zcz6iYOUWXn8P2AF\nMKHCsoOArUmBzGzIcJAyq5Ok/ST9p6Q3Jf1J0nxJJ9dbXkQsB+4ExldYPAF4G3gw++ztJE2X9LKk\nlZJelHSppPV7qO962em/MwrpP5T0u0LajpJuzk4vrpA0S9Ku9W6bWb3W6+8KmJVZREzJvW4rLN4R\neAS4HvgA+CtguqQ1ETEjW6cdULGsHswATpT0pYh4BiALPMcBv4yIj7J8o4B3gb8H3gPGApcAWwLf\nqnEz1yJpy2y73gYmZdt2ATBH0hifbrRWcpAyq1NEzOx8LUnAQ8CngW9S/2m5WaSgMwF4Jks7Atg8\nX2ZEzAfm5z7/EWAlcL2kcyJidZ2fDzAZ2BA4JCLey8p/FFgKTARu6EPZZjXx6T6zOkkaKemnkl4B\nPswek4DP1ltmdpTyH6SjKWXJ44FXgMdzn72OpMmSFkpamX32vwDDSIGyLw4FZgPLs1OE6wHvA78G\n9upj2WY1cZAyq9+NpADyY+BwYG/gn4GN+ljuDGAHYD9JGwHHADNi7VsWTAamAv8OfBXYBzg7W9bX\nz98SOJlPAm/n4wBg+z6WbVYTn+4zq0MWPI4GzoqI63Ppjfjj9wDpetAEYFtgU7qePvw6MDMiLs59\n9p69lPsRsBrYoJC+eeH9/wDPApdXKGNZL59h1lAOUmb12RBYF/i4E4GkTUlHNX26SVtEfCTp30mB\naDtgYUT8VyHbsPxnZ3rsWRgRIekN4HO5Oq8LHFzIej/p6O15d5Kw/uYgZVaHiHhf0lPAxZKWAWuA\n80jXbjZrwEfMAM4i9eq7uMLyOcCZkp4Gfgv8LTC6inL/A5gk6TnSda5vAhsX8vxf4CTgAUnXAm8C\n2wAHAu0R8W81b41ZnRykzOp3EjANuAn4A3At6Qf/rAaU/RipN91oYGaF5ZcAW5BOyQVwC/APwO29\nlHsx6ZrT5cCfgZ8CC4DTOjNExO8l7Qv8I3ANMAJ4C3gY6HbaJrNmUKtvHy/pM8B3gX2BzwMPVxh/\nUmm94aQvzLGkDh93AmdHxB8K+Y4BfgjsSvqHeWlE3NzIbTAzs9boj959uwPjgBezR7VuBtpI//gm\nknpSrfWvUdL+wK2kUflHAXcBMyQd3tdKm5lZ6/XHkdQ6EbEme30LsGVvR1KS9gMeBQ6MiIeytH2A\nJ4DDIuK+LG02sH5EHJxb925gs4jYvxnbY2ZmzdPyI6nOAFWjo4C3OwNUVs6TwMvZMrLbFxwEFC/q\nziSNNxleX43NzKy/DJTBvGOBRRXSF2bLAHYB1q+QbyFpO+ueBcDMzPrHQOndN5I0n1lRB7BzLg8V\n8nUUlq9F0iTSVDZstNFGX9phhx36VlMDYM2aNayzzkD5D1R+bs/Gcns2zosvvvhuRIxqVvkDJUhB\n5QGSqpBefK9u0lNixDRSN2LGjBkTixcv7ksdLdPe3k5bW1t/V2PQcHs2ltuzcbK5K5tmoPyV6CCN\n1SgawSdHTh25tGIeqHwkZmZmJTZQgtQiPrn2lJe/VvUSaRLMYr6xpNkAaunubmZmJTBQgtQsYJts\nHBQAkvYiXY+aBR/f4uBB0nxneeOBxyLi/RbV1czMGqTl16QkbUwazAtp8szNJJ2Qvb87IlZIWgLM\njYhTASLisWwM1E2SvkM6MpoKzOscI5X5AdAu6RrSQN9x2ePIpm+YmZk1XH90nNiKdA+cvM73O5Hm\nK1uPNMN03gTgatL9ej6eFimfISLmZQHvh8CZpHFUJ0XEvQ2sv5mZtUjLg1RELOWTHnfd5RldIe09\n4JTs0dO6t9P7JJtmZjYADJRrUmZmNgQ5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZ\nWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5\nSJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWmt198V\nMLO1jT7vri5pk/dYzcRC+tIfHd2qKpn1Gx9JmZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlI\nmZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZ\naTlImZlZabU8SEnaTdL9klZIelPSZZLW7WWdKZKim8f5uXw3dpNnbPO3zMzMGq2ld+aVNBK4D1gA\nHAPsAlxJCpYX9bDqz4B7CmnHAucCswrpi4BTCmlL66uxmZn1p1bfPv4MYBhwfEQsA+ZI2gyYIumK\nLK2LiHgdeD2fJun7wKKImF/I/qeIeLwJdTczsxZr9em+o4DZhWA0kxS4Dqy2EEmbA4cBMxpbPTMz\nK5NWB6mxpNNxH4uIV4EV2bJqnQCsTwpwRbtJWiZplaR5kqoOfmZmVi6tPt03EnivQnpHtqxaE4Bf\nR8SLhfRngSdI17xGAZNJpxT3j4gnKxUkaRIwCWDUqFG0t7fXUA3rzvLly92WdZq8x+ouaVsP65ru\n9q2f98+Bo9VBCiAqpKmb9K4ZpW1JpwbP7VJwxE8Kee8iBawLSB0tulYmYhowDWDMmDHR1tZWTTWs\nF+3t7bgt6zPxvLu6pE3eYzVXPr/213XpyW0tqtHg4/1z4Gj16b4OYESF9OFUPsKq5ERSULu5t4wR\nsRK4G/hitRU0M7PyaHWQWkTh2pOk7YFNKFyr6sEEYF5EvFbD51Z1lGZmZuXS6iA1CzhC0qa5tPHA\nSmBubytLGg3sS5W9+iQNI/UofKbWipqZWf9rdZC6HlgF3Cbp0KzTwhTgqny3dElLJP28wvoTgNXA\nLcUFkoZLeljS6ZIOkTQeeBDYDri8CdtiZmZN1tKOExHRIekQ4FrgDtJ1qKtJgapYr0pTJU0A7o+I\ndyosWwW8Q5q5YivgA+Ax4MCIeLohG2BmZi3V8t59EbEAOLiXPKO7Sf9CD+t8ABzfp8qZmVmpeBZ0\nMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrrZqClKRK\nUxWZmZk1Ra1HUm9IukLS55pSGzMzs5xag9QNwAnAC5KekDRJ0mZNqJeZmVltQSoiLomInYHDgMXA\nVcBbkn4p6dBmVNDMzIauujpORMQDEfG3wDbAt4ExwGxJSyVNkfQXjaykmZkNTX3t3bcXcADplvAd\nwMPAacASSd/oY9lmZjbE1RykJO0o6RJJLwH3A9sCfwf8RUT8b2BH0rWrHze0pmZmNuTUdNNDSQ+Q\njpxeB24EpkfEK/k8EfGRpF8B5zSqkmZmNjTVemfed4FxwJyIiB7yzQd2qrtWZmZm1H6671rg0UoB\nStKnJB0AEBEfFo+wzMzMalVrkHoQ2K2bZWOy5WZmZg1Ra5BSD8s+BazoQ13MzMzW0us1qewUXlsu\n6TRJRxaybQQcDTzfuKqZmdlQV03HiS+TBuwCBPB1YHUhz5+BRcB3G1c1MzMb6noNUhHxY7IxT5Je\nBo6LiPnNrpiZmVlNXdAjwt3KzcysZaq5JjUOmBcRy7LXPYqIuxtSMzMzG/KqOZK6E9gXeDJ7HXTf\nyy8A3xjRzMwaopogtRPwVu61mZlZS1TTceKVSq/NzMyarZprUhvXUmBEeECvmZk1RDWn+5aTrjVV\ny9ekzMysIaoJUn9HbUHKzMysIaq5JnVjC+phZmbWRV9vH29mZtY01XSceBKYGBELJD1FL6f+ImKf\nRlXOzMyGtmquSf03sDL32tenzMysJaq5JnVK7vXEptbGzMwsp+5rUkpGSerpRohmZmZ1qzlISRon\n6VHgA+B3wAeSHpV0dMNrZ2ZmQ1pNQUrS6cAdpAG+55BugHhO9v4/s+VmZmYNUdP9pIALgGkRcWYh\n/XpJ1wMXAjc0pGZmZjbk1Xq6bwvgtm6W3Qps3lsBknaTdL+kFZLelHSZpB6nUpI0WlJUeMyskPcY\nSc9L+kDSAknjq9oyMzMrnVqPpB4EDgTmVFh2IPBQTytLGgncBywAjgF2Aa4kBcuLqvj87wCP5N6/\nWyh/f1KwvA44GxgHzJDUERH3VlG+mZmVSDWDeXfLvf0p8DNJWwC3A78HtgKOA44CTuuluDOAYcDx\nEbEMmCNpM2CKpCuytJ4sjojHe1j+feChiDg7e/+gpN2BiwEHKTOzAaaaI6kXWHsAr4DTs0fxLr33\n0PMs6EcBswvBaCYwlXQkdkcV9alI0obAQaQjqLyZwHRJwyPi/XrLNzOz1qsmSB3UwM8bCzyQT4iI\nVyWtyJb1FqSmS9qcdAQ3A7gwIjpnw9gFWB9YVFhnIel04meBp/pWfTMza6VqZpyY28DPGwm8VyG9\nI1vWnVXAP5FO2S0D2oBzSYHpmFzZVCi/o7B8LZImAZMARo0aRXt7e0/1tyotX77cbVmnyXus7pK2\n9bCu6W7f+nn/HDhq7TjxMUnrABsV06u4M2+luf/UTXpnmW8BZ+WS2iW9DVwn6QsRMb+H8tVNemfZ\n04BpAGPGjIm2traea29VaW9vx21Zn4nn3dUlbfIeq7ny+bW/rktPbmtRjQYf758DR62DeSXpXElL\ngA+BP1Z49KQDGFEhfTiVj7B6ckv2/MVc2VQov/N9reWbmVk/q3Wc1NnAecDPSUco/whcBrwILCU7\nbdaDRaRrTx+TtD2wCV2vJfUmCs8vkQLn2EK+scCarI5mZjaA1BqkvglcAlyRvb89Ii4FdicFmV17\nWX8WcISkTXNp40m3Aqn12tcJ2fMzABGxijSO6+uFfOOBx9yzz8xs4Kn1mtROwPyI+EjSh2Sn0iJi\njaTrgJ+RjrS6cz3paOw2SVOBnYEpwFX5bunZ6cS5EXFq9n4KsClpIO8y4ADgu8BtEfFfufJ/QLpe\ndQ1pHNe47HFkjdtpZmYlUOuR1B+AT2WvXwX+MrdsJGmgbrciogM4hDSW6g7gUuBq0tFZ3nqsPd5q\nEWkc1XTgbuAk4MfZc778eaQjrEOB2cBXgZM824SZ2cBU65HUI8DepEDxK9JMEZsDfwa+BdzfWwER\nsQA4uJc8owvvZ5IG5fYqIm4nHUWZmdkAV2uQmgJsl72+nHS6byLpCGoO8O1GVczMzKymIBURi4HF\n2etVpHtJndOEepmZmfVpMO+ngW2BNyPijcZVyczMLKnn9vFnSnoNeAV4AnhV0uuS/k/Da2dmZkNa\nrTNOXAxcSxrvdDSwV/Y8C/hpttzMzKwhaj3d9y3g8oj4fiH9nmwuvW+RZqAwMzPrs1pP9w2j+7vv\nzqXChLNmZmb1qjVI3Q4c382yrwF39q06ZmZmn6jm9vHjcm9nAVdIGk3X28fvDnyv8VU0M7Ohqppr\nUnfS9Tbx2wFHVMj7C9Idc83MzPqsmiC1U9NrYWZmVkE1t49/pRUVMTMzK6p5xglJ65E6SewPbA78\nD/Aw6bYZqxtbPTMzG8pqClKStgLuBfYk3Yn3bWA/0vio5yQdHhHvNLqSZmY2NNXaBf0qYAvgyxGx\nc0TsFxE7A1/O0q9qdAXNzGzoqjVIjQPOjYin8onZ+/NJUySZmZk1RK1BakPgj90s+yOwQd+qY2Zm\n9olag9TjwLmSNsknZu/PzZabmZk1RK29+yYDDwKvSbqX1HFiK9LAXgFtDa2dmZkNaTUdSUXEfGBX\nYBowCjiMFKSuB3aNiOcaXkMzMxuyqj6SkrQ+sA/wckSc17wqmZmZJbUcSX0EPAB8rkl1MTMzW0vV\nQSoi1gC/AbZuXnXMzMw+UWvvvguBiyXt0YzKmJmZ5dXau+8i0swS8yW9QerdF/kMEbFPg+pmZmZD\nXK1B6oXsYWZm1nRVBSlJw0hTIr0A/A64LyLebmbFzMzMqrl9/M7AfcDoXPIySSdGxL3NqpiZmVk1\nHSeuANYAfw1sDOwOPAvc0MR6mZmZVRWk9gMuiohHIuKDiFgInA7sIGnb5lbPzMyGsmqC1LbAbwtp\nL5Hm6tum4TUyMzPLVDtOKnrPYmZm1ljVdkGfLWl1hfT7i+kRsVXfq2VmZlZdkLq06bUwMzOroNcg\nFREOUmZm1i9qnbvPzMysZRykzMystBykzMystBykzMystBykzMystBykzMystFoepCTtJul+SSsk\nvSnpMknr9rLO3pKmS1qSrbdY0iWSNirkmyIpKjyObO5WmZlZM9R608M+kTSSdNuPBcAxwC7AlaRg\neVEPq47P8k4FfgPsCfwge/5aIe/7QDEoLexr3c3MrPVaGqSAM4BhwPERsQyYI2kzYIqkK7K0SqZG\nxDu59+2SPgBukLRjRLySW7Y6Ih5vTvXNzKyVWn267yhgdiEYzSQFrgO7W6kQoDo9mz17rkAzs0Gq\n1UFqLLAonxARrwIrsmW1+ArpZoyLC+kjJL0r6UNJz0o6vu7amplZv2r16b6RwHsV0juyZVWRtA1w\nIfCvhaOyJcD3gPnAp0g3Z7xV0tci4rZuypoETAIYNWoU7e3t1VbDerB8+XK3ZZ0m79H1hgNbD+ua\n7vatn/fPgUMRrbtVlKQPge9ExE8K6W8AN0bEhVWUsQGp88WngS9FREcPeQU8CgyLiC/0VvaYMWNi\n8eLigZnVo729nba2tv6uxoA0+ry7uqRN3mM1Vz6/9n/KpT86ulVVGnS8fzaOpGciYq9mld/q030d\nwIgK6cOpfIS1lizo3ATsDozrKUABRIrAtwF79tbN3czMyqfVp/sWUbj2JGl7YBMK16q6cTWp6/ph\nEVFN/k6+s7CZ2QDU6iOpWcARkjbNpY0HVgJze1pR0vnAt4FvRMS8aj4sO/I6DnguIj6qr8pmZtZf\nWn0kdT1wNnCbpKnAzsAU4Kp8BwhJS4C5EXFq9v4k4HLgRuANSfvmynyps4u6pLnAraSjsk2AbwL7\nAsc2d7PMzKwZWhqkIqJD0iHAtcAdpOtQV5MCVbFe+WtIh2fPE7NH3imk4AWpd9/fA9uSuqf/Gjg6\nImY1ov5mZtZarT6SIiIWAAf3kmd04f1EuganSuud2oeqmZlZyXgWdDMzKy0HKTMzKy0HKTMzKy0H\nKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMz\nKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0H\nKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMz\nK631+rsCZmUy+ry7qsq39EdHN7kmZgY+kjIzsxJzkDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIz\ns9JykDIzs9JykDIzs9LyYF4z68KDmq0sWn4kJWk3SfdLWiHpTUmXSVq3ivWGS5ouqUPS+5J+KWmL\nCvmOkfS8pA8kLZA0vjlbYmZmzdbSICVpJHAfEMAxwGXAZODSKla/GWgDTgMmAnsDtxfK3x+4FXgQ\nOAq4C5gh6fCGbICZmbVUq0/3nQEMA46PiGXAHEmbAVMkXZGldSFpP+AI4MCIeChLewN4QtKhEXFf\nlvX7wEMRcXb2/kFJuwMXA/c2b7OskXyqycw6tTpIHQXMLgSjmcBU4EDgjh7We7szQAFExJOSXs6W\n3SdpQ+Ag4OzCujOB6ZKGR8T7DdqOIcMBw1rN+5zltTpIjQUeyCdExKuSVmTLugtSY4FFFdIXZssA\ndgHWr5BvIem05meBp3qq3MoPP6r6C9Kd7r44zfji+cts1hit+C6V8Tegr793raCIaN2HSR8C342I\nawrprwM3RcQF3aw3B/hTRBxbSP8FsHNEfEXSXwHzgL+MiPm5PJ8BfgMcERFdTvlJmgRMyt5+Hnih\n7g20vC2Bd/u7EoOI27Ox3J6NMyYiNm1W4f3RBb1SVFQ36fWsV3yvHtYnIqYB0wAkPR0Re/VSD6uC\n27Kx3J6N5fZsHElPN7P8VndB7wBGVEgfDrxXx3ojcut15NKKeeilfDMzK6FWB6lFfHINCQBJ2wOb\nUPmaU7frZfLXql4CPqyQbyywBnixjvqamVk/anWQmgUcISl//nI8sBKY28t622TjoACQtBewc7aM\niFhFGh/19cK644HHquzZN62KPFYdt2VjuT0by+3ZOE1ty1Z3nBgJLCB1TphKCjJXAddExEW5fEuA\nuRFxai7tHlIPve+QjoymAr+PiL/O5dkfaAeuJQ30HZflP7JSpwkzMyu3lh5JRUQHcAiwLqm7+aXA\n1cAlhazrZXnyJpCOtv4ZuAl4BjiuUP484ATgUGA28FXgJAcoM7OBqaVHUmZmZrUYdLfq8AS2jVVP\ne0raO2vLJdl6iyVdImmjQr4pkqLC48jmblX/qLMtR3fTRjMr5PW+2Xt7drfPhaTzc/lu7CZPpQ5c\nA56kz0i6QdJzkj6S1F7lek3/3RxUt+rITWC7gDSB7S7AlaRgfFEPq0KawHYMaQLbzmtetwPFa163\nAteRpl8aR5rAtmMwnlLsQ3uOz/JOJQ2k3hP4Qfb8tULe94FiUFrY17qXTR/3TUjXVh/JvV9rIKr3\nzarb82fAPYW0Y4FzyTph5SwCTimkLa2vxqW3O2mfeRzYoIb1mv+7GRGD5gGcTxovtVku7XvAinxa\nhfX2Iw32PSCXtk+WdmgubTbwQGHdu4F5/b3tJWvPURXSJmXtuWMubQrwbn9vZ8nbcnTWbv+rl/K9\nb1bRnt2UdRewsJB2I/B0f29nC9tzndzrW4D2KtZpye/mYDvd190EtsNIE9j2tF6XCWyBzglsyU1g\n+2+FdWcC+0ka3vfql05d7RkR71RIfjZ73qpx1RtQ6t03e+V982M1t6ekzYHDgBmNrd7AEhFr6lit\nJb+bgy1IdZmINiJeJf276ulccqMmsB1s6m3PSr5COh2wuJA+QtK7kj6U9Kyk4+uubbn1tS2nZ9cK\n3pJ0laRhuWXeN6l73zyB1HZdrvEBu0laJmmVpHmS+vRnYhBqye/mYAtSI6k8/VFHtqwv63U+F/N1\nFJYPJvW251okbQNcCPxr4Z/vEtIpmhNJ16reBG4dpIGq3rZcBfwTcCpp+MYNwJms/aPqffMTNe2b\npKEtv46I4ow0z5JuyPo3wMmkITFzJO1TR10Hq5b8bg6qjhOZUk1gOwjU254po7QB6VB/OfAPaxUc\n8YtC3juAR0k3qbytnsqWXM1tGRFvAWflktolvQ1cJ+kLkZvxv0I53jd7IGlb0qnBc7sUHPGTQt67\nSJ00LiB1tLCk6b+bg+1IyhPYNla97QmAJJEGXu8OjIs0mLtbka6o3gbsWc2wgQGmT21ZcEv2/MVc\n2VQo3/tmz04k/Vje3FvGiFhJutj/xd7yDiEt+d0cbEHKE9g2Vr3t2elqUvfgYyKimvydBuM//762\nZV4Unr1vUld7TiD1MHuths8djPtmvVryuznYglTZJ7AdaOptT7KBkd8GvhFpuqpeZUdexwHPRcRH\n9VW5tOpuywpOyJ6fAe+bubSq21PSaGBfquzVl3VUOYqszQ1o1e9mf/fPb3Bf/5HAW8Ac0vx9k0jX\nQn5YyLcE+Hkh7R7gt8DxpHPOi4GHC3n2B1YD1wBtwBWkfwOH9/e2l6k9gZNI/zink34I8o9RuXxz\nSYP7DicFp7uz9vxqf297idpyCmmQ6vHZepeRfohv9b5Z33c9Sz+P9A+/0pi+4cDDwOmkzirjSYNc\nVwF79fe2N6k9Nyb9+TkBeAz479z7jbtry1b8bvZ74zShsXcDHsi+yG+RZjpYt5BnKXBjIW1E9qP6\nHrAM+BWwZYXyjyXN4r6KdEg7ob+3uWztSRoIGd08Juby/TzbwVcCf8p+GI7q720uWVtOAJ4mzczx\n5+yH4jJgQ++b9X3Xs/T5wD3dlLsR6droa1lbvp/9GO/b39vcxLYc3cN3dnR3bdmK301PMGtmZqU1\n2K5JmZnZIOIgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpfX/AftE5VrV\nUDbMAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XuYHFWd//H3h4sQCIRrArJIAMUs\nrPsoiQguKxNBgbDPoggGlfWJXBKVFXd/gFxEDXhZAbmorEuCLsiqhF1k8QIYuWSCURGSAKIhQVjC\nVREwEEICEvj+/jg12FR6eqpnuqtmuj+v56mnp06dqv6enst36tSpU4oIzMzM2m29qgMwM7Pu4IRj\nZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxxrKUkzJUU/y1EFj7FbdpwtcuXTsuOMbk/0xeIY\n4jGvktRboN4Gkv5F0l2S1khaIek6SfsO8n2Hy2c6Lfcz8UdJcyXtWWDfnmyfvykjVms9Jxxrh2eA\nfeosPym4/27A54D8H/prs+Osbk2Yg46jrSStD1wDfAn4ITAFmAa8BPRK+uAgDjtcPtM+78zedwaw\nLTBP0msH2Gdxts/9bY7N2mSDqgOwjrQ2Im5t9UEj4gngiVYfdxj6BHAIcHBE1CbpH0iaA8yWND8i\nHh3qG1X4md4eEasAJC0EHgQ+BJybryhJwEYRsRJo+c+VlcdnOFYJSadJuk/S85Iel/QTSdtJ6gF+\nlFV7IOtCWZ7t86ruH0njs/UjJV0qaaWkR/q67iR9StJjkp6QdLak9Wref4KkOZIelrRa0m+zLqz1\nsu39xpFtf122/5+y/edKemOujTtm3WBrJC2XdGzBj+eTwLxcsunzaWBj4Jia91ku6SuSPiPpD5JW\nSfqupDEDtaVel5qkbSR9W9JTWdt6JU3Kta3vPf81+8xXZJ9H02eDEfEwKemNz449U9KTkvaVdDvw\nPHBEvS41SetnP0v3Snohi+WyXKyHSlqY/az9QdI5kjZsNk4bOp/hWFtIWudnKyLWZts+DJwOnAL8\nFtia1MWyKanb5CTgK8BhwO+BFwZ4u7OB7wLvA44Gvi3pLcBO2fpE4AvAHcCcbJ8dgGXZfs8CbwbO\nBEYB/9YoDklbAQuAp4CPkrqjTgVulLRbRKzJ/iv/AbANKTk8nx1/K+B3DT63HUl/eC+otz0i7pd0\nN/CO3KYPAPcBxwHbA+cA3wSOaNSWflwDvD7b50ngZFKX11si4r6aeu8Hfg1MB/4KOJ/UDfjxBsde\nh6TNSJ/LH2qKNwG+nbXjXuCxrF15s4APZ/XmZ8c5vObY7weuyOqdDuxK+v6ul7XPyhQRXry0bAFm\nAtHPMj6rcxHw/QbH+Ifa+jXl07Ly0dn6+Gz90po6mwMvkv6or19TfhtwZT/vJ9I/X6cD/1cgjs+T\nks1WNWVbkq5dHZ+tT8n2fVtNnZ2AtUBvg7bvne13aIM61wD31KwvB/7U97lkZR8CXgb+usnP9KBs\nfb+aOpuSzkBm5d7zfmCDmrILgT8M8PPR935jss98R+DK7HN5c+5n6NDcvj1Z+d9k6xOy9RMafF8f\nrP35yMqPBtYAW1f9+9Jti89wrB2eAQ6oU/5Y9noncIykM0kXrRdFxEtDeL+b+r6IiJWSngDm5455\nH/C6vhVJGwOnkf4wvw7YsGbbBpGdjfXjAOAGYGXNmdyzwCKgr+tpL+DxiPhVTWwPSlo0iPYVcUNk\n10QyVwPfAd4K3NPEcfYCnoiI+X0FEfGcpB8D+RFy83Kf0xJgrKTXRMSfB3ifp2u+fhI4OiLurCkL\n4PoBjjE5e72sn+27kb63/507476Z1C35N6SzIiuJE461w9qIWNhg+38Cm5G6Yj4LPCXpP4CZg0w8\nT+fW/9xP2cY162cDx5K6uRZn9Q8FzsjqraJ/25DORKbW2daX/LYD/lhn+x9Jbe9P30CAnRrU2amm\nXu1xXxGpW28V9buhGtkeeLxO+eOk7qpa9T5jAa/Jvm7kHaSuyCeBhyPi5dz2FQWS1tbAc5EGE9Sz\nTfZ6XT/bdxzg+NZiTjhWuuyPywXABdk1iw8BXyT9Eb24pDCOAL4eEef0FUg6pOC+fyINV/58nW3P\nZq9/AMbW2T6W1J1TV0Q8nF3Q/0fga/ntknYm/Weef++xuXqjgNGk6zXN+H3+WJlxpHa3yh25M7K8\nIs9NeQrYVNLm/SSdvnink67f5T1Q4D2shTxKzSoVEQ9HxJdJXV67Z8V9/9luXH+vlhhFzYVzpXtf\njszV6S+Om4A9gN9GxMLcsiyrczswTtLbat7jdcCANzgCXwX2l/TuOtu+kMX9rVz5u/TqmzcPI/3R\n7jvTLPqZ/orULfbKoARJm5CGaS8oEHuZbs5eP9zP9mWkf2LG1/k+LYyIp8oJ0/r4DMfaYQNJe9cp\nfzgiHpU0i/Tf562k6z2TgTeQRq1B+kMBMEPpvpPVEXF3i2O8AThe0n1ZLMcDG+Xq9BfH+cBRwM2S\nvk76ozYO2A9YEBFXkLpx7gL+R9IppFFqZ1G/my3v66TrRP8r6StAL6kb7hjSxf9/inXvwVkDXCvp\nXFK32LnA/0bEkgHa8ioRMVfSz4ErJZ1KOos4iZSg17lHpkoRsUzSbOA8SWOBW0g3th4eEUdGxMuS\nTgT+S9LmpGtCfwZ2Ad6T1Sv7htfuVvWoBS+dtdB4lNoZWZ1pwM9Jf+hXk4bWHpM7zomkEUZrgeU1\n+9UbpfYPuX2XA1/JlV0GLKxZHwf8L7CSdH3iHNKQ4leO318cWflrgUuzfV/I3vM7wB41dV5Hml1h\nTXaMGcBVNBilVrPvBsC/Zp/NGmAF6Q/mvnXqLgfOyz77x4HnSEOBt2j2M83KtgUuz95zDenC+lsL\nfMbrHKtOrEXqzASerFPeQ80otaxsfbLRhaRk8gjrjko7GPhZ9rmsJA1a+QI1I+y8lLMo+4aURtLr\nSeP69yb1Rf8sInoK7DeGNOzyPaSuwB+ThkM+lat3KOmH6Q2kH8IzI+LKVrbBbDjJrvlcFRG+r8SG\ntSqu4exBukfh3mwp6krSfzjHkv5LeivpfoRXKE1s+H1gHum/mmuBK/rpCzczsxJVcYazXmRDICVd\nBWwz0BmOpH2AX5BuRrslK9uLdIHzXRFxY1Y2F9gwIt5Zs+91wOYRMahZds2GO5/h2EhR+hlOrDve\nvoiDSTfR3VJznNtIwxoPBpC0Eeni83/n9p0D7NM3r5RZp4mI8U42NhKMlGHRE4CldcrvybZBmiNp\nwzr17iG1c7e2RWdmZgMaKcOit2Tdu5ohjaLZpaYOdeqtyG1/FUnTSTeGMWrUqIk77jg8bj5++eWX\nWW+9kfL/QHGd2K6ibdrs3nTJ8tndRsb/Pp34vYLObFeVbbr33nufjIhti9QdKQkH6t95rDrl+XU1\n2J+ImA3MBpg0aVIsXNhoRpby9Pb20tPTU3UYLdeJ7SrcJmU/isuWNa43THTi9wo6s11VtknSg0Xr\njpQ0v4L6T13cgr+c0ayoKcvXgfpnSGZmVpKRknCW8pdrNbVqr+3cT5qWPl9vAmma9maGYJuZWYuN\nlIRzPbBddp8NANkTCHfJthERL5Duvzkit+9U4JcR8UxJsZqZWR2lX8PJJgKckq3uAGwuqe8JfddF\nxOpsfqv5EXEMQET8MrvH5nJJJ5HOWM4mzVt1Y83hPw/0SrqQdFPolGw5qO0NMzOzhqoYNDAW+J9c\nWd/6zqQ5mjYgzZFU60jSlPb/Sc3UNrUVImJBlry+AHyMdJ/OByPipy2M32xwSr7J2my4KT3hRMRy\n/jJyrL864+uUPQ18JFsa7XsNuSlvzMyseiPlGo6ZmY1wTjhmZZk4MS1mXWok3fhpNrItXlx1BGaV\n8hmOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpPErNrCzHHVd1BGaVcsIxK8vs2VVHYFYpd6mZ\nmVkpnHDMyrJoUVrMupS71MzKMmlSevWs0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYK\nJxwzMyuFh0WblWXhwqojMKuUE45ZWfx4aety7lIzM7NSOOGYlWX69LSYdSknHLOyXHJJWsy6lBOO\nmZmVwoMGzIaZ8adeW6je8i8f0uZIzFrLZzhmZlYKJxwzMyuFE46ZmZXC13DMyrLnnlVHYFYpJxyz\nsvjx0tbl3KVmZmalcMIxM7NSOOGYlUVKi1mXcsIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuF\nE46ZmZXCMw2YlWXWrKojMKuUE45ZWfx4aetypXepSdpd0k2SVkt6TNJZktYfYJ+ZkqKf5bSaepf1\nU2dC+1tmZmaNlHqGI2lL4EZgCXAosCtwHinxndFg128CP8mVvQc4Bbg+V74U+EiubPngIjZrodmz\n06vPdKxLld2l9lFgFHBYRKwEbpC0OTBT0jlZ2Toi4hHgkdoySZ8BlkbEnbnqz0XErW2I3WxoZsxI\nr0441qXK7lI7GJibSyxzSElov6IHkbQV8C7gitaGZ2Zm7VJ2wplA6vJ6RUQ8BKzOthV1OLAhKVnl\n7S5ppaQXJC2QVDiRmZlZ+ygiynsz6UXg5Ii4MFf+CHB5RJxe8Dg3A2MiYmKu/JPAn0nXiLYFTgQm\nAvtGxG39HGs6MB1g3LhxE+fMqZfDyrdq1SpGjx5ddRgt14ntKtqmnsmTAeidN69hvbsffabQ+75p\nhzGF6g1WJ36voDPbVWWbJk+evCgiJhWpW0XCOSkivporfxS4LCI+XeAY25Ou55wSEV8ZoO4oUvK5\nKyLeM9CxJ02aFAsXLhyoWil6e3vp6empOoyW68R2FW5T36MJBvidG3/qtYXed/mXDylUb7A68XsF\nndmuKtskqXDCKbtLbQWwRZ3yMcDTBY/xfkDAlQNVjIg1wHWAHyZvZlaxshPOUnLXaiTtCGxK7tpO\nA0cCCyLi4Sbet7zTODMzq6vshHM9cKCkzWrKpgJrgPkD7SxpPLA3BUenZV1qBwOLmg3UrOUiBuxO\nM+tkZSeci4EXgKslHZBdsJ8JnF87VFrSfZK+VWf/I4G1wFX5DZLGSPqZpBmS9pc0FZgH7AB8qQ1t\nMTOzJpR642dErJC0P3AR8CPSdZsLSEknH1e96W6OBG6KiCfqbHsBeII0Y8FY4Hngl8B+ETE8RgKY\nmXWx0ifvjIglwDsHqDO+n/I3N9jneeCwIQVn1k4Ts1H8i9zDa93Js0WblWXx4qojMKuUH8BmZmal\ncMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1IzK8txx1UdgVmlnHDMytL3iGmzLuUuNTMzK0VTCUdS\nvelmzKyIRYs8y4B1tWa71B6VdDlwaUTc046AzDrWpOwZVZ4x2rpUs11qs4DDgd9I+pWk6ZI2b0Nc\nZmbWYZpKOBHxuYjYBXgXsAw4H/i9pO9KOqAdAZqZWWcY1KCBiLg5Ij4MbAd8AngjMFfSckkzJb22\nlUGamdnIN9RRapOAd5AeG70C+BlwLHCfpKOGeGwzM+sgTSccSTtJ+pyk+4GbgO2Bo4HXRsQ/ATuR\nrvWc29JIzcxsRGtqlJqkm0lnNI8Al5FGqz1YWyciXpL0PeCTrQrSzMxGvmaHRT8JTAFuiGg4tvNO\nYOdBR2XWiRb6SefW3ZpNOBcBi+slG0mjgT0j4paIeBF4cJ29zbpZ3yOmzbpUs9dw5gG797Ptjdl2\nMzOzdTSbcNRg22hg9RBiMets06enxaxLDdilJukdQE9N0bGSDspV2xg4BLi7daGZdZhLLkmvnjXa\nulSRazhvI93cCRDAEcDaXJ0/A0uBk1sXmpmZdZIBE05EnEt2T42kB4D3RsSd7Q7MzMw6S1Oj1CLC\nQ53NzGxQilzDmQIsiIiV2dcNRcR1LYnMzMw6SpEznB8DewO3ZV8H/Y9WC8APaTMzs3UUSTg7A7+v\n+drMBmPPPauOwKxSRQYNPFjvazNrkh8vbV2uyDWcTZo5YET45k8zM1tHkS61VaRrM0X5Go6Zma2j\nSMI5muYSjpnVo2ysTcOJ1s06V5FrOJeVEIeZmXW4oT5i2szMrJAigwZuA6ZFxBJJtzNA91pE7NWq\n4MzMrHMUuYbzW2BNzdfugDYzs6YVuYbzkZqvp7U1GjMz61iDvoajZFtJjR7KZmZmBjQ5WzS8Mpnn\nGcDEbP+1khYBX4yIa1scn1nnmDWr6gjMKtVUwpE0A/gGcBPwSeCPwFjgMOCHkj4eEf6tMqvHj5e2\nLtfsGc7pwOyI+Fiu/GJJFwOfBpxwzMxsHc1ew9kauLqfbd8HthroAJJ2l3STpNWSHpN0lqSG0+FI\nGi8p6ixz6tQ9VNLdkp6XtETS1EItM2u32bPTYtalmj3DmQfsB9xQZ9t+wC2Ndpa0JXAjsAQ4FNgV\nOI+U+M4o8P4nAT+vWX8yd/x9SYnvG8AJwBTgCkkrIuKnBY5v1j4zZqRXd61Zlypy4+fuNatfA74p\naWvgGv5yDee9wMHAsQMc7qPAKOCwiFgJ3CBpc2CmpHOyskaWRcStDbZ/BrglIk7I1udJ2gP4LOCE\nY2ZWoSJnOL/h1Td7CpiRLfmnf/6ExrNFHwzMzSWWOcDZpDOkHxWIpy5JGwGTSWc2teYAl0oaExHP\nDPb4ZmY2NEUSzuQWvt8E4Obagoh4SNLqbNtACedSSVuRzqyuAD4dEX2zIOwKbAgsze1zD6nLbjfg\n9qGFb2Zmg1VkpoH5LXy/LYGn65SvyLb15wXg30ndYiuBHuAUUpI5tObY1Dn+itz2V5E0HZgOMG7c\nOHp7exvFX5pVq1YNm1haqRPbVbRNPdnrQHVPfNPaQu/b7s+xE79X0JntGiltavrGzz6S1gM2zpcX\neOJnvbnY1E953zF/D/xzTVGvpMeBb0h6c0Tc2eD46qe879izgdkAkyZNip6ensbRl6S3t5fhEksr\ndWK7mm3TQHWnnVrs/unlHyr+noPRid8r6Mx2jZQ2NTUsOpvO5hRJ9wEvAs/WWRpZAWxRp3wM9c98\nGrkqe92z5tjUOX7ferPHNzOzFmr2PpwTgFOBb5HOHL4InAXcCywn65pqYCnpWs0rJO0IbMq6114G\nErnX+0lJcEKu3gTg5SxGs+pE+Gmf1tWaTTjHAZ8DzsnWr4mIM4E9SAnjDQPsfz1woKTNasqmkh5/\n0Oy1osOz10UAEfEC6T6hI3L1pgK/9Ag1M7NqNXsNZ2fgzoh4SdKLZN1VEfGypG8A3ySdAfXnYtJZ\n0tWSzgZ2AWYC59cOlc667OZHxDHZ+kxgM9JNnyuBdwAnA1dHxK9rjv950vWdC0n3CU3JloOabKeZ\nmbVYs2c4TwGjs68fAt5Ss21L0k2d/YqIFcD+pHt1fgScCVxAOmuqtQGvvp9nKek+nUuB64APAudm\nr7XHX0A68zkAmAv8I/BBzzJgw8LEiWkx61LNnuH8HHgr6Y/+90gzBGwF/Bk4njSLdEMRsQR45wB1\nxufW55Bu4BxQRFxDOrsxG14WL646ArNKNZtwZgI7ZF9/idSlNo10ZnMD8IlWBWZmZp2lqYQTEcuA\nZdnXL5CeifPJNsRlZmYdZig3fv4VsD3wWEQ82rqQzMysEzU7aABJH5P0MPAg8CvgIUmPSPp4y6Mz\nM7OO0exMA58FLiLdT3MIMCl7vR74WrbdzMxsHc12qR0PfCkiPpMr/0k2t9nxpJkHzCzvuOOqjsCs\nUs0mnFH0/1TP+XiUmln//Hhp63LNXsO5Bjisn23vA348tHDMzKxTFXnE9JSa1euBcySNZ91HTO8B\nfKr1IZp1iEWL0qtnG7AuVaRL7ces+yjpHYAD69T9DulJnGaWN2lSevWM0daliiScndsehZmZdbwi\nj5h+sIxAzMysszU904CkDUgDBPYFtgL+BPyM9KiAYg9jNzOzrtNUwpE0Fvgp8LekJ3w+DuxDuv/m\nLknvjognWh2kmZmNfM0Oiz4f2Bp4W0TsEhH7RMQuwNuy8vNbHaCZmXWGZhPOFOCUiLi9tjBbP400\nzY2Zmdk6mr2GsxHwbD/bngVeM7RwzDrYwoVVR2BWqWYTzq3AKZJujojn+golbQqckm03s3p8w6d1\nuWYTzonAPOBhST8lDRoYS7oJVEBPS6MzM7OO0dQ1nIi4E3gDMBvYFngXKeFcDLwhIu5qeYRmnWL6\n9LSYdanCZziSNgT2Ah6IiFPbF5JZh7rkkvTqWaOtSzVzhvMScDPw122KxczMOljhhBMRLwO/A8a1\nLxwzM+tUzd6H82ngs5Le1I5gzMysczU7Su0M0owCd0p6lDRK7VVzrUfEXi2KzczMOkizCec32WJm\nZtaUQglH0ijStDa/Af4A3BgRj7czMLOOs+eeVUdgVqkij5jeBbgRGF9TvFLS+yPip+0KzKzj9D1i\n2qxLFRk0cA7wMvD3wCbAHsAdwKw2xmVmZh2mSMLZBzgjIn4eEc9HxD3ADOB1krZvb3hmZtYpiiSc\n7YH/y5XdT5o7bbuWR2TWqaS0mHWpovfhxMBVzMzM+ld0WPRcSWvrlN+UL4+IsUMPy8zMOk2RhHNm\n26MwM7OON2DCiQgnHDMzG7Jm51IzMzMbFCccMzMrRbNzqZnZYM3yvdLW3ZxwzMrix0tbl3OXmpmZ\nlcIJx6wss2enxaxLlZ5wJO0u6SZJqyU9JuksSesPsM9bJV0q6b5sv2WSPidp41y9mZKiznJQe1tl\nVsCMGWkx61KlXsORtCXpUQdLgEOBXYHzSInvjAa7Ts3qng38Dvhb4PPZ6/tydZ8B8gnmnqHGbmZm\nQ1P2oIGPAqOAwyJiJXCDpM2BmZLOycrqOTsinqhZ75X0PDBL0k4R8WDNtrURcWt7wjczs8Equ0vt\nYGBuLrHMISWh/frbKZds+tyRvXruNjOzEaDshDMBWFpbEBEPAauzbc14O+nBcMty5VtIelLSi5Lu\nkHTYoKM1M7OWUUR5Tx6Q9CJwckRcmCt/BLg8Ik4veJztgF8D10XEtJryo0hnPHcCo0kPipsCvC8i\nru7nWNOB6QDjxo2bOGfOnGab1RarVq1i9OjRVYfRcp3YrqJt6pk8GYDeefMa1rv70WcKve+bdhhT\nqN5gdeL3CjqzXVW2afLkyYsiYlKRulUknJMi4qu58keByyLi0wWO8RrSwIO/AiZGxIoGdQX8AhgV\nEW8e6NiTJk2KhQsXDlStFL29vfT09FQdRst1YrsKt6nv4WsD/M6NP/XaQu+7/MuHFKo3WJ34vYLO\nbFeVbZJUOOGU3aW2AtiiTvkY4OmBds4SyOXAHsCURskGIFI2vRr424GGXpu1XcSAycask5U9Sm0p\nuWs1knYENiV3bacfF5CGU78rIorU7+PfcjOzipV9hnM9cKCkzWrKpgJrgPmNdpR0GvAJ4KiIWFDk\nzbIzovcCd0XES4ML2czMWqHsM5yLgROAqyWdDewCzATOrx0qLek+YH5EHJOtfxD4EnAZ8KikvWuO\neX/fsGlJ84Hvk86WNgWOA/YG3tPeZpkVMHFiel20qNo4zCpSasKJiBWS9gcuAn5Eum5zASnp5OOq\nveby7ux1WrbU+ggpEQHcB/wLsD1pyPRi4JCIuL4V8ZsNyeLFVUdgVqnSH08QEUuAdw5QZ3xufRrr\nJpp6+x0zhNDMzKyNPFu0mZmVwgnHzMxK4YRjZmalcMIxM7NSlD5owKxrHXdc1RGYVcoJx6wsfry0\ndTl3qZmZWSmccMzKsmiRZxmwruYuNbOyTMpmcPeM0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwU\nTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfoeMW3WpdylZmZmpXDCMSvL9OlpMetSTjhmZbnk\nkrSYdSknHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUvjGT7Oy7Lln1RGYVcoJx6wsfry0dTl3\nqZmZWSmccMzMrBROOGZlkdJi1qWccMzMrBROOGZmVgqPUjNrYPyp1w5Y58Q3raWn/aGYjXg+wzEz\ns1I44ZiZWSmccMzMrBS+hmNWllmzqo7ArFJOOGZl8eOlrcu5S83MzErhhGNWltmz02LWpdylZlaW\nGTPSq7vWrEs54ZhZ3RtcT3zTWqbVlC//8iFlhmQdqPQuNUm7S7pJ0mpJj0k6S9L6BfYbI+lSSSsk\nPSPpu5K2rlPvUEl3S3pe0hJJU9vTEjMza0apCUfSlsCNQACHAmcBJwJnFtj9SqAHOBaYBrwVuCZ3\n/H2B7wPzgIOBa4ErJL27JQ0wM7NBK7tL7aPAKOCwiFgJ3CBpc2CmpHOysnVI2gc4ENgvIm7Jyh4F\nfiXpgIi4Mav6GeCWiDghW58naQ/gs8BP29csK1OR+c3c/WM2/JSdcA4G5uYSyxzgbGA/4EcN9nu8\nL9kARMRtkh7Itt0oaSNgMnBCbt85wKWSxkTEMy1qh9XhiS6tKP/T0J3KTjgTgJtrCyLiIUmrs239\nJZwJwNI65fdk2wB2BTasU+8eUtfhbsDtgwu7OUV+mQZy2UGbDuq4RX5J/ctu3aC/n/NWDIao8nex\nyACPIqr4HVdElPdm0ovAyRFxYa78EeDyiDi9n/1uAJ6LiPfkyr8D7BIRb5f0d8AC4C0RcWdNndcD\nvwMOjIh1utUkTQf6xqm+EVg26Aa21jbAk1UH0Qad2K5ObBO4XSNJlW3aKSK2LVKximHR9TKc+ikf\nzH75dfVTngojZgPD7m48SQsjYlLVcbRaJ7arE9sEbtdIMlLaVPaw6BXAFnXKxwBPD2K/LWr2W1FT\nlq/DAMc3M7M2KzvhLOUv11wAkLQjsCn1r9H0u1+m9trO/cCLdepNAF4G7h1EvGZm1iJlJ5zrgQMl\nbVZTNhVYA8wfYL/tsvtsAJA0Cdgl20ZEvEC6/+aI3L5TgV+OwBFqw66br0U6sV2d2CZwu0aSEdGm\nsgcNbAksAX5DGgq9C3A+cGFEnFFT7z5gfkQcU1P2E9JIs5NIZyxnA3+MiL+vqbMv0AtcRLopdEpW\n/6B6AwbMzKw8pZ7hRMQKYH9gfdIQ6DOBC4DP5apukNWpdSTpLOg/gcuBRcB7c8dfABwOHADMBf4R\n+KCTjZlZ9Uo9wzEzs+7l5+EMI4Od2HS4k/R6SbMk3SXpJUm9Vcc0VJKOkPRDSY9KWiVpkaQPVB3X\nUEg6XNIvJD2VTX67TNIZkl5t2TrcAAADk0lEQVRTdWytImmH7PsVkkZXHc9QSJqWtSO/fLTq2Prj\nxxMMEzUTmy4hTWy6K3Ae6Z+CMxrsOhLsQbqedivQKX+8/h/wAPCvpBvupgDfk7RNRHy90sgGb2vS\nwJtzSbcR7AXMBLYD/rm6sFrqXGAVaWRsp3gnaeBVn/+rKpCBuEttmJB0GvAp0l27K7OyT5H9wvc3\nselIIGm9iHg5+/oqYJuI6Kk2qqHJEsuTubLvAftExM4VhdVykr4IHA9sGSP8j4Wkvwd+AHyJlHg2\ni4hV1UY1eJKmAZcygtrhLrXho7+JTUeRJjYdsfqSTSfJJ5vMHcDYsmNps6fogLPSrGv666RHonTa\ntDYjhhPO8LHOBKUR8RDQN7GpDX9vJ3WJjmiS1pe0SXabwQnAf4z0sxvSo1E2Bv696kDa4H5Ja7Nr\nbjOqDqYRX8MZPrak/vQ7K7JtNoxJ2p907e3oqmNpgeeAjbKvLwdOrjCWIcueDPx54KiIeFHSQLuM\nFL8nPQPsNtJtJB8ALpa0SURcUGlk/XDCGV4GO7GpVUjSeOB7wA8i4rJKg2mNtwObkAYNfJZ0I/XH\nK41oaL4I/Coirqs6kFaKiLmk+w37XJ89F+wMSV8djl3ZTjjDx2AnNrUKSdqKNL3SQ8BRFYfTEhGx\nOPtygaQngW9LOi8i7q8yrsHInvh7NPAOSX2/X5tkr2MkvRQRa+rvPSJdBbwfGM8wHK3mhDN8DHZi\nU6uIpE2AH5Muqh8SEc9VHFI79CWfnUkT5I40byA9mPGXdbY9AnwLOLbUiMoxLHtFnHCGj+uBkyVt\nFhHPZmVFJja1CkjaAPgf0h+0v4uIP1YcUrv8Xfb6QKVRDN4C0qPnax0EnEK6d2rYnQUM0ftIo/Ae\nrDqQepxwho+LSSOCrpbUN7HpTOD8kXwPDrxyJjAlW90B2FzS4dn6dRGxuprIhuQbpDZ9EthK0t41\n2+7IZi8fUbIJcm8Efgu8REo2JwJXjsTuNHhl+HpvbVl2zQ3gZyPl/pV6JH2fNGDg16RBA1Oz5YTh\neP0GnHCGjYhYkY10uog0senTpIlNZ1YZV4uMJZ0N1Opb3xlYXmo0rfHu7PWrdbaN1DbdDkwj9f+v\nJf33fxrpnyEbfpaRrk/tSBpctAT4cET8V6VRNeCZBszMrBS+8dPMzErhhGNmZqVwwjEzs1I44ZiZ\nWSmccMzMrBROOGZmVgonHDMzK4UTjpmZleL/A3AAGz/5q1y3AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# plot estimated values for \"a\" (direct result of amplitude estimation, not rescaled yet)\n", - "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", - "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('\"a\" Value', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.xlim((0,1))\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()\n", - "\n", - "# plot estimated values for fixed-income asset (after re-scaling and reversing the c_approx-transformation)\n", - "plt.bar(result['mapped_values'], result['probabilities'], width=3/len(result['probabilities']))\n", - "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", - "plt.xticks(size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('Estimated Option Price', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/aqua/finance/index.ipynb b/qiskit/aqua/finance/index.ipynb deleted file mode 100644 index 6003d95bb..000000000 --- a/qiskit/aqua/finance/index.ipynb +++ /dev/null @@ -1,50 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Qiskit Aqua Finance\n", - "\n", - "Qiskit Aqua Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the Financial domain. \n", - "\n", - "## Contents\n", - "\n", - "* [Portfolio Optimization](portfolio_optimization.ipynb)\n", - "* [European Call Option Pricing](european_call_option_pricing.ipynb)\n", - "* [Fixed-Income Asset Pricing](fixed_income_pricing.ipynb)\n", - "* More examples can be found in [commuity/aqua/finance](../../../community/aqua/finance)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_wor", - "language": "python", - "name": "qiskit_wor" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/qiskit/aqua/finance/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb similarity index 84% rename from qiskit/aqua/finance/portfolio_optimization.ipynb rename to qiskit/finance/optimization/portfolio_optimization.ipynb index 3b2da35d7..17c1fb0e1 100644 --- a/qiskit/aqua/finance/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -13,8 +13,9 @@ "collapsed": true }, "source": [ - "# _*Qiskit Aqua: Financial Portfolio Optimization*_ \n", + "# _*Qiskit Finance: Financial Portfolio Optimization*_ \n", "\n", + "Qiskit Finance is part of Qiskit Aqua.
\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", "\n", "***\n", @@ -57,20 +58,17 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "from qiskit import BasicAer\n", - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.aqua import Operator, run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import portfolio\n", - "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import COBYLA\n", - "from qiskit.aqua.components.initial_states import Zero\n", - "from qiskit.aqua.components.variational_forms import RY\n", + "from qiskit_aqua import QuantumInstance\n", + "from qiskit_aqua import Operator, run_algorithm\n", + "from qiskit_aqua.input import EnergyInput\n", + "from qiskit_aqua.translators.ising import portfolio\n", + "from qiskit_aqua.algorithms import VQE, QAOA, ExactEigensolver\n", + "from qiskit_aqua.components.optimizers import COBYLA\n", + "from qiskit_aqua.components.variational_forms import RY\n", "import numpy as np" ] }, @@ -86,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -105,7 +103,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -131,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -169,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -231,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -263,16 +261,16 @@ } ], "source": [ - "backend = LegacySimulators.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "seed = 50\n", "\n", "cobyla = COBYLA()\n", "cobyla.set_options(maxiter=250)\n", - "init_state = Zero(qubitOp.num_qubits)\n", - "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full', initial_state=init_state)\n", + "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full')\n", "vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", "vqe.random_seed = seed\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "\n", + "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -315,18 +313,47 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal: selection [1 1 0 0], value -0.5110\n", + "\n", + "----------------- Full result ---------------------\n", + "selection\tvalue\t\tprobability\n", + "---------------------------------------------------\n", + " [1 1 0 0]\t-0.5110\t\t0.1907\n", + " [0 0 1 1]\t-0.7012\t\t0.1853\n", + " [1 0 0 1]\t-0.4158\t\t0.1839\n", + " [0 1 1 0]\t-0.5149\t\t0.1789\n", + " [0 1 0 1]\t2.1421\t\t0.1584\n", + " [1 0 1 0]\t-0.2876\t\t0.0948\n", + " [1 1 1 0]\t2.6688\t\t0.0033\n", + " [0 0 0 1]\t4.0314\t\t0.0020\n", + " [1 0 1 1]\t3.0617\t\t0.0009\n", + " [0 1 1 1]\t4.9012\t\t0.0007\n", + " [1 0 0 0]\t4.0242\t\t0.0006\n", + " [0 1 0 0]\t4.5153\t\t0.0003\n", + " [0 0 1 0]\t3.4782\t\t0.0002\n", + " [1 1 1 1]\t15.6136\t\t0.0001\n", + " [0 0 0 0]\t16.0000\t\t0.0001\n", + " [1 1 0 1]\t4.6445\t\t0.0000\n" + ] + } + ], "source": [ - "backend = LegacySimulators.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "seed = 50\n", "\n", "cobyla = COBYLA()\n", "cobyla.set_options(maxiter=250)\n", - "qaoa = QAOA(qubitOp, cobyla, 3, operator_mode='matrix')\n", + "qaoa = QAOA(qubitOp, cobyla, 3, 'matrix')\n", "qaoa.random_seed = seed\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "\n", + "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", "\n", "result = qaoa.run(quantum_instance)\n", "\n", @@ -362,9 +389,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "qiskit_stable", "language": "python", - "name": "python3" + "name": "qiskit_stable" }, "language_info": { "codemirror_mode": { @@ -376,7 +403,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/finance/qiskit_finance.ipynb b/qiskit/finance/qiskit_finance.ipynb new file mode 100644 index 000000000..8cb272e63 --- /dev/null +++ b/qiskit/finance/qiskit_finance.ipynb @@ -0,0 +1,78 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Overview*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1], Christa Zoufal[1], Andrea Simonetto[1], Jakub Marecek[1], Martin Mevissen[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", + "\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook we provide an overview of Qiskit Finance tutorials and tutorials from other domains which might be relevant in finance.\n", + "\n", + "#### Machine Learning:\n", + "- Quantum Support Vector Machine for Credit Risk Rating\n", + "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", + "\n", + "#### Optimization:\n", + "- Portfolio Optimization\n", + "-
Portfolio Diversification\n", + " \n", + "#### Simulation:\n", + "- Option Pricing\n", + "- Credit Risk Analysis\n", + "- Fixed Income Pricing\n", + "\n", + "#### Data Providers:\n", + "- Stock Market Time Series" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb new file mode 100644 index 000000000..2844697bf --- /dev/null +++ b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb @@ -0,0 +1,631 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Pricing Asian Barrier Spreads*_ \n", + "\n", + "Qiskit Finance is part of Qiskit Aqua.
\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "An Asian barrier spread is a combination of 3 different option types, and as such, combines multiple possible features that the Qiskit Finance option pricing framework supports::\n", + "\n", + "- Asian option: The payoff depends on the average price over the considered time horizon.\n", + "- Barrier Option: The payoff is zero if a certain threshold is exceeded at any time within the considered time horizon.\n", + "- (Bull) Spread: The payoff follows a piecewise linear function (depending on the average price) starting at zero, increasing linear, staying constant.\n", + "\n", + "Suppose strike prices $K_1 < K_2$ and time periods $t=1,2$, with corresponding spot prices $(S_1, S_2)$ following a given multivariate distribution (e.g. generated by some stochastic process), and a barrier threshold $B>0$.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$\n", + "P(S_1, S_2) =\n", + "\\begin{cases}\n", + "\\min\\left\\{\\max\\left\\{\\frac{1}{2}(S_1 + S_2) - K_1, 0\\right\\}, K_2 - K_1\\right\\}, & \\text{ if } S_1, S_2 \\leq B \\\\\n", + "0, & \\text{otherwise.}\n", + "\\end{cases}\n", + "$$\n", + "\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ P(S_1, S_2) \\right].$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "c:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\tools\\qcvv\\__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", + " 'functionality and more.', DeprecationWarning)\n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from scipy.interpolate import griddata\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import QuantumRegister, QuantumCircuit, BasicAer, execute\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "\n", + "from arithmetic.weighted_sum_operator import WeightedSumOperator\n", + "from arithmetic.univariate_piecewise_linear_objective import UnivariatePiecewiseLinearObjective as PwlObjective\n", + "from uncertainty_problems.multivariate_objective import MultivariateObjective\n", + "from arithmetic.fixed_value_comparator import FixedValueComparator as Comparator\n", + "from random_distributions.multivariate_log_normal_distribution import MultivariateLogNormalDistribution" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "backend = BasicAer.get_backend('statevector_simulator')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a multivariate log-normal random distribution into a quantum state on $n$ qubits.\n", + "For every dimension $j = 1,\\ldots,d$, the distribution is truncated to a given interval $[low_j, high_j]$ and discretized using $2^{n_j}$ grid points, where $n_j$ denotes the number of qubits used to represent dimension $j$, i.e., $n_1+\\ldots+n_d = n$.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i_1,\\ldots,i_d} \\sqrt{p_{i_1\\ldots i_d}}\\big|i_1\\rangle_{n_1}\\ldots\\big|i_d\\rangle_{n_d},$$\n", + "where $p_{i_1\\ldots i_d}$ denote the probabilities corresponding to the truncated and discretized distribution and where $i_j$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^{n_j}-1\\} \\ni i_j \\mapsto \\frac{high_j - low_j}{2^{n_j} - 1} * i_j + low_j \\in [low_j, high_j].$$\n", + "\n", + "For simplicity, we assume both stock prices are independent and indentically distributed.\n", + "This assumption just simplifies the parametrization below and can be easily relaxed to more complex and also correlated multivariate distributions.\n", + "The only important assumption for the current implementation is that the discretization grid of the different dimensions has the same step size." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits per dimension to represent the uncertainty \n", + "num_uncertainty_qubits = 3\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# map to higher dimensional distribution\n", + "# for simplicity assuming dimensions are independent and identically distributed)\n", + "dimension = 2\n", + "num_qubits=[num_uncertainty_qubits]*dimension\n", + "low=low*np.ones(dimension)\n", + "high=high*np.ones(dimension)\n", + "mu=mu*np.ones(dimension)\n", + "cov=sigma**2*np.eye(dimension)\n", + "\n", + "# construct circuit factory\n", + "u = MultivariateLogNormalDistribution(num_qubits=num_qubits, low=low, high=high, mu=mu, cov=cov)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmcHXWd7/2ps2+9pLuTppNOyNpJN5CFpNO5CmpYJDIaGYdRGBBHRJhHGJnHe90YBxBHxavzOCrPjONycRm5cBGcjI6iEUdHYMhGEkzS+77v3Wdfqk7dP3p+xTndZ69fnao+5/t+vfKCnJyu+tXpOlWf+m4fQZZlEARBEARBlDImvRdAEARBEAShNSR4CIIgCIIoeUjwEARBEARR8pDgIQiCIAii5CHBQxAEQRBEyUOChyAIgiCIkseS5d+pZ50gCIIgiNWCkO4fKMJDEARBEETJQ4KHIAiCIIiShwQPQRAEQRAlDwkegiAIgiBKHhI8BEEQBEGUPCR4CIIgCIIoeUjwEARBEARR8pDgIQiCIAii5CHBQxAEQRBEyUOChyAIgiCIkocED0EQBEEQJQ8JHoIgCIIgSh4SPARBEARBlDwkeAiCIAiCKHlI8BAEQRAEUfKQ4CEIgiAIouQhwUMQBEEQRMlDgocgCIIgiJKHBA9BEARBECUPCR6CIAiCIEoeEjwEQRAEQZQ8JHgIgiAIgih5SPAQBEEQBFHykOAhCIIgCKLkIcFDEARBEETJQ4KHIAiCIIiShwQPQawyZFlGPB6HLMt6L4UgCGLVYNF7AQRB5E48HkcsFkMoFIIgCLBYLDCbzcofQRAgCILeyyQIgjAcQpanRHqEJAgDIMsyYrEYJEkCAESjUQiCoER7mMgRBAFmszlJCJEIIgiijEh7sSPBQxAGRpZliKIIURQBQBEuTPCkej/7w/5uMpmSRJDJZILJZCIRRBBEKZL2wkYpLYIwILIsQ5IkiKIIWZaTojSZHlJSRXMStwUAAwMDuPzyy2GxWGC1WkkEEQRRFpDgIQiDwep0WKrKZFLXW7BcBM3NzWHLli2Ix+MIh8NJ72WRIIvFQiKIIIiSggQPQRiEeDwOURQhSZIiUrQQG2yby4UUqweKRCIIh8PK+1gtUGJKjEQQQRCrDRI8BKEzsizD7/cjFAqhoqJC8yJjVuyc6vVU6bB4PA5JkhCNRpXXTSaTEgkiEUQQxGqABA9B6ERibc38/DwWFxdRVVWl97KSSCeCZFlGNBpNK4JYoTSJIIIgjAIJHoIoMkwwJNbpmM3mog0STBfhyefn8xFBy1NiJIIIgtADEjwEUUTSFSSrFSH5wntf6UQQsFQkPT4+jqamJsiynLImSG1hNkEQRDZI8BBEEUg1TydRIBRT8BQrwrK8ODoxihWLxZJmCSVOjWYpMRqYSBAET0jwEISGsDqdWCwGIHUkhL2+WlJahexv+f+bzWblNbYWURTTiiCaGk0QhFpI8BCEBrDuplgstmJwYCpMJlPZmoEmChwWDcokgsg6gyCIQiDBQxCcKWRwYClHeAohlQgCVk6NJusMgiByhQQPQXAiW51OJgRBQDwe13J5SfsyuuBJRy7WGQCUCdLV1dUkggiCAECChyBUk2udTiZWswjRm1Sft9/vRzAYhMPhSHqdrDMIonwhwUMQBcLqdEZHR+HxeOByuQq+eeYreNTcpPUQV3qIOZbqSlwDWWcQRPlCgocgCiCxTmd2dhZWqxVut7vg7a32OTyZMIp4IOsMgihvSPAQRB6kqtPh0WFVinN49CTXz5KsMwiifCDBQxA5kKkg2WQyqS44zlfwsFb3YuxrtaLm88lXBC2fFUQQhPEgwUMQGUjsAEo3T4eHgCjnOTyrgUzWGUwAhcNhzM/PY8OGDWSdQRAGhAQPQaQh13k6ekR4Vsu+GKUo5pZPjY7H4/D5fADIOoMgjAgJHoJYBnMylyQJQPY2cx4CopA5PIWmtfS0ligWegisxAggWWcQhPEgwUMQ/0WhgwOLHeFh6yrFqAlPii0c0glQss4gCGNAgocoe3Kp08kErwhPKae0yoV8Jmuz/5J1BkEUBxI8RFlTiO/VcnjYQlBb+uqHx+8vV+sMYKl2yGq1kggiiBwhwUOUJbIsIxAIYGpqCuvXr1eVNjCZTEq9T6HokX4pZfSs4eFNpoGJ4XAYHR0d2LFjR9LEaLLOIIiVkOAhyorEOp1oNIrJyUls2LBB1TZXW4qoXLq0jFLDowWJIigUCilRHrLOIIj0kOAhyoJUdTpms5nLjZhH0XIpUy43V71EL6vzycc6g0QQUY6Q4CFKnnR1OryECkV4jIdex6eXaEi330L9w8g6gyhFSPAQJUs8HocoipAkSbnwJ17AeU03Xm0RnnIQPEBpp7TUQNYZRLlCgocoOXKdp8Oju4ptp5gCQhRFDA8Pw2KxoLKyEi6Xi25CBmA1i8hcrDPYaywFtrw4miCMDgkeomTId57OaktpybKM8fFx9Pf3o76+HpFIBP39/QgGg7BYLKioqEBFRQUqKyvhdDozpjlW883ZyJSS8FxunQG8IYIikQhOnz6NvXv3Ku8l6wzC6JDgIVY9LByf7zwdXhfjYqS0vF4v2tvbUVFRgdbWViU6xY4hFovB5/PB6/VienoaoVBIiQAxIZQogkq9S0uP9NJqSWmpYfnAxMTCf7LOIIwOCR5iVcNjcKBatIyYRKNRdHV1IRQKoaWlBRUVFQCWBE4iVqsVNTU1qKmpSfpZn88Hn8+HqakphEIhWK1WSJIEWZbhdrvhcDg0vwEZrZBXK8pB8DDi8bjyXSPrDGK1QIKHWJUU6nulBVpEeOLxOIaGhjA6Oopt27ahvr4+7+Oz2Wyora1FbW2t8lo0GkV3dzfC4TC6u7sRCoVgs9mSIkHFEEGlSDkJHtYKn45crTPYe8g6gygGJHiIVQUTOmNjY1i3bp0hng55R3hmZmbQ1dWFtWvX4tChQ0k1FGqx2WxwuVzweDxYu3YtgKV6DBYJGh8fRzgcht1uV+qBKioqYLfbdf+cCeOQmE7NB7LOIPSEBA+xKmCzQ1j6qq+vD5dddpneywLAL8ITj8dx9uxZCIKAffv2wel0cljdSpYLNLvdDrvdjrq6OuW1SCQCr9cLn8+HsbExhMNhOByOpMJom81m2BtQKVlLGJHElJZasllnJMJGSbhcLhJBRN6Q4CEMz/I6HZ4RDx6ojfCIoqh0WzU3NyeloLQi23rtdjvWrl2rRIFkWU6KBI2OjiISiSgiKDESZBSohkc7tD7WdCJIFEWcP38ee/fuJesMIm9I8BCGxUh1OpkoVPAktpk3NjbC4/FgzZo1GqwwmUJTEQ6HAw6HY4UI8nq9WFxcxMjICCKRCJxOZ1IkiL231CmHY2TwjPDkSqLAsViWbl1knUHkAwkewnCwnD7rRDKq0GEUktLyer3o6OiAx+NBa2srbDYbxsfHi3LT5FVzlCiC1q1bB2DpdxcOh+Hz+bCwsIDh4WFEIhElisUiQTabTfX+jUi5uN7rIXjYfhMjvGSdQeQDCR7CMCTW6eQyOJAH7OavZj/5CAjWJRUIBNDc3Ky0mee7HbVotR9BEOB0OuF0OhURFAqF0NHRAZfLhfn5eQwNDSEWi62IBFmtVm7r0KuGp9giQK80ml77lSQp62dM1hlEOkjwEIZAr3k6bICfmrqgXCI8y9vMW1paVlxY8xE8agqli31BZ3VX9fX1qK+vB7B0AwqFQvD5fJibm8Pg4CBEUYTT6UxqkVcjgsoh2qKX8NAzwlPIfvO1zkjVJk+sfkjwELqid50OEw5qBE82oZJrm3k+gkfNzdUI1hKCIMDlcsHlciWJoGAwCJ/Ph9nZWQwMDEAURbhcLkUAqRVBWlMuhdJ6RLMA/t1hQGrrjFgstmJgIjsXrVYrWWesUkjwELrAQ+jwuNjzcExPF20JBoPo7OwEgJzazHm5txuNXH9HgiDA7XbD7XYrIweYCPJ6vZiZmUF/fz8kSYLL5UqKBLEiVj3RQ3zoGWkpxchSJhF04cIFtLS0KIKbrDNWH/pfJYiyIl+Dz3TwiMwAfBzTl0dMWIHuzMwMmpqacm4zL1bkRY8IT6H7SxRBDQ0NyrYCgQB8Ph+mp6fR19cHSZLgdruVeiBJknguPyfKyb9rtaW01MA+33g8DpvNlvRgQtYZqwsSPETRkCQJ4XBYCQeruXDxEjw8hgayi5ksy5iYmEBfXx8aGxvR1taW1zHmK74KvdnxEHl6IggCPB4PPB6PIoLi8bgSCZqcnMTMzAwEQcDc3FxSOkzLGU5Uw1O6+wWS03hknbE6IcFDaA5zMl9YWMDg4CCuuuoqLqkoHjdtXtuRJAmnTp2C2+1W2szzxQi1NasVk8mkiCAAcDgcsNvtcLvd8Pl8mJycRE9Pj2KayiJBHo+HqwgqlwhPKdTwaAFZZxgbEjyEZiyv0zGbzdxy/zwFjxqRkWjGuWfPHmXQXiGUckqr2DAhwCI7jHg8jkAgAK/Xi/Hxcfj9fsiyDI/Ho7y3UBFUbiktPeqmJEky3KT1bORjncEiQWxWEIkgvpDgIbiTrk7HYrFwS6XwEjyFpnfi8TiGh4cxMjKCrVu3YmFhQZXYYWspdSFSTFLdKEwmU0oR5Pf7Fd8wv98PAPB4PEphtMfjyRpZKLei5XLaL28yiaBIJIJwOJyUNovH43C73TQ1WiUkeAiuZJqnYzKZuBWT6pnSmp2dRWdnZ1KbeX9/v+q1lGqEx+hCzmQyobKyEpWVldiwYQOApUgCiwSNjo7C7/crtUMsHeZ2u3W/+Zbb4EG9IkvFIJ0ICgQC6O/vR0tLi/I6WWcURmmeOUTRYXU6kiQpX9zlX0BeIoXntvLZTmKb+d69e+FyuVTvP5F8hEGxJkOvVtQen9lsVkQQQ5IkJRI0PDyMQCCgiKDKykpEIhG1y84bKlou3n71+JzZd5UJG4CsM9RAgodQRT7zdIwoeHJJaRXaZp4vpTqHRy94X+zNZjOqqqpQVVWlvMZEkNfrhdfrxcLCAgYGBpIsM1wul2Y36XKM8BjBw6uYLK9bIuuMwiHBQxREIfN0eN7Qi1G0rLbNPF9KNaVVyiSKoHA4jNraWlRWViqRoMHBQQQCAZjN5qT2eF4iqByFhx77zcXDS8t9ZxNb+VhnmEwmfO1rX8PDDz/Mf7EGhwQPkTd6+V4lwjq+1JJOODE3czVt5vlSrPk4JHi0gxXnV1dXo7q6WnldFEX4fL60IohFgvIVL+UmPPQUPEaJ8ORKuqnRgUAAv/jFL0jwEEQm4vE4RFHMWKdTLLSq4Ul0M9+1a1denVfFdF1fbayWyc5q95nu92+xWLBmzRqsWbNGeS1RBPX39yMYDCq1Q4mRoEznFM3hKe39AkvnCa9CbUEQ4Pf7lXlV5QYJHiIreht8poJnDQ8rAkxsM0/lZp7LdlaD4NGjS0sPjD4TJ5UIisViigiamZlBMBiExWJJigQ5nc6k6d56pbT02K9ekRa9Izw8O9P8fr/qERqrFRI8RFpYnc7g4CDq6upgt9t1FzoMXukfk8kEr9eLoaEh1NXVZXQzz7YetSKilCM8RG5YrVbU1NSgpqZGeY2JIK/Xi+npaYRCIVgsFlRWVirFqsUWPuUWadG7aNlut3Pbns/nS5pDVU6Q4CFWwC6grE5ndnYW1dXVcDgc3Lav9uJsNptVz/QJBoMYGRmBLMvYt2+fqjZzHmKlWF1aJKy0QSvRkUoERaNR+Hw+ZVr0qVOnYLValShQRUUFHA6HZiKo3FJaRi9azgefz0cpLYIAUhck8xAXDB6pH2BJHMRisYJ+VpIk9PX1YWZmBnV1dbBarapn6vAyISXBwwej1fDwxmazoba2FrFYDJWVldi0aZMigrxeLyYmJhAOh2G1WpNqgniJIL1SWlS0rB6K8BBlT6Y6HZ6ChwkDtRetQqIhqdrMJycnEQqFVK0F4JfSylU0GSW1mCt6CBCj1/Dw3icTQYlzoiKRiFITND4+jkgkApvNlhQJKiRVXY4prVKJ8Pj9fhI8RHnC6nRYtCTdhGRegoeJJ7VFePlGVNK1mRvJdb1UIzyrTZytJrKJLLvdDrvdjrq6OuW1SCQCr9ereIeFw2E4HI6kwuhsNSPlNv+n1CI8VLRMlBWsMykWi2UdHMhr5g1QfIGRrc2cd7eX3tvIlVJPaemB3hGeXLHb7Vi7di3Wrl2rbINFgph3WCQSUURQYiSIoZfwKEcPL96CJxAIYNOmTdy2t5ogwVOG5Ds4UIuUFo/tZFpTrm3mvAqFeXSNFTPCU+qUeg1P4j7VCg9BEOBwOOBwOFaIIK/Xi8XFRYyMjCASicDpdKKiogKiKCIWixVlIGciegmeUorwUEqLKAsKnafD0wOLl3jKtKbZ2Vl0dXWhrq4ObW1tGZ/MeLa3r5YITzkULQP61PAUG60EQKIIWrdunbKvcDgMn88HSZJw8eJFxGIxOByOpMLoYougYlBKgoeKlomSJpc6nUwYNcKzfDuJbuZ79uzJqfPKaCmtYllLENpQ7M+2mN1SgiDA6XTC6XRicHAQ+/btgyzLCIVC8Pl8mJ+fx+DgIERRVCJBTAhZrVZua9ADPefw8Ba1FOEhSpJ86nQyYTabkwzo1KCF4GFt5tPT09i5c2debuZGKlo2mUxK9C0T8Xgc/f39WFhYUG4qlZWVedUYlIPVQ7FZrSktNQiCAJfLBZfLhfr6emVNTATNzs5iYGBAEUGJkSBeIqgY6DmHhzdUtEyUHDwNPnlGeHimtCRJwvj4uNJmfujQobyPk1d6p1hFyzMzM+jq6kJ9fT02b96MQCCAmZkZ9Pf3Q5IkuN1uRQB5PJ6UT6Xl0KVVSuklo+0zG+lEUDAYXCGCXC5XUiQom2jXSzjrGeHhDVlLECUDq9Pp7+9X8u88hvwZrUsrGAxibm4ONptNlZu5kSI8mVJaoVAIHR0dEAQB+/btg91uRzQaRUVFBS677DIASxflQCCQNIFXluWkdmO3261qjasJowkBLTCi4EmFIAhwu91wu93K+cpEELPM6OvrU0Q7O2cTRZCex6pXhEcLgUeCh1j1LC9IZtYQPC4QRorwsDZzn88Ht9uNK664QtV6jFbDs3wb8XgcAwMDmJiYQFNTkzJPJVXthslkUm4S69evB7B0ofb7/YpfWCAQUH5+YmJihRklUTgU4cmPRBHU0NAAYOl4mGhfLoI8Hg/i8ThX9/Bc0atoWYvIUjAYVD1ZfrVCgmeVwwqSRVFMqtOxWCyGi8qo2dbyNvMdO3bg3LlzXNbD4ylKi8GDLH112WWXFZSuA5YEZlVVFaqqqpTXFhcX0dfXh0gkgt7eXoRCIcWCQM303XJHD/Ghh8WDlmklQRDg8Xjg8XgUERSPxxEMBjE/Pw9RFHHu3DnIsrwiEqSlICm1gYelUo+ULyR4VjGZ6nTMZnPBXlPL0btLK1WbuSRJ3CIzRovwhEIhdHZ2KqamTqdT9foSsVgssNlsuPzyy5XXotEovF4vvF4vxsbGVgyeq6ysXFVFpuUSbdGjaLnYx2kymeDxeGC1WjE3N4c9e/YkpW8nJyfR09OjiCAm2tPVsBVCqQiecmgeyAQJnlUIS1cxEZKq+8psNufU8ZMLvFNakUgkp/eyuhVgZZu5kWpvAD6CR5ZlzM/PY2ZmJil9len9hdx4Uq3VZrOhrq5O2WfizJXEdmOXy5XUaZNraqHcL7RaUS4iC0iuo0lM3zKYCPJ6vUk1bB6PJ6mGrVABUSoDDwvt1i0FSPCsIvIZHMjTDqLYEZ5c2sx5fWGNIpxmZmbQ0dEBm82Wc/pKy4tW4syVxMFzrMh0amoKvb29SU/VrDNs+drL5eJaLlElPZ3SM93804kgv98Pn8+H0dFR+P1+AIDH40mKBBk1xcNb8MRisZLpNisEEjyrgHR1OpnQOw1VyLZkWcbk5CR6e3sLbjPPF73b0sPhMDo6OiDLMpqamjA/P6+52Cl0ramKTNkNhXkw+f1+CIKQ1GrMOyWXC+UiPvQSPKvFsdxkMilifMOGDQCWRASLBCWes8sjQUYQQVpMWfZ4PNy2t9ogwWNwCp2nY+SUVqpt+Xw+tLe3r3Az1xq9IkWpuq8WFhZWnbVE4g2FIYqiIoIGBgYQDAYRCoXQ3d2tvNfhcJRc5EePtJ1eRcurRfCkwmw2rzhnWTejz+fD8PAwAoGAItwrKiqUmsFiHzfZSvCFBI9BSazTYREdvewgeF5QlwuDbG7mq4V8RMTs7Cw6OztXdF8Vy1pCaywWC6qrq1FdXQ1g6UZ1+vRp1NTUwOv1YnJyEuFwGDabbUVn2GqnHMSHniktrY41VTdj4kiHaDSKM2fOJImgyspKuFwuTT9/URTJOJQjJHgMRqEGn8vhWcPDEyZ44vE4RkZGMDw8nNHNfLUgCEJWgZmYvkrVfZVv5IVn0bLWmEwm1NbWJtVjJbpxDw8PIxqNJk3ezdcuwwhQSqt09stEkMfjwfT0NK6++moleunz+TA4OIhAIACz2ZzUHu92u7n9TsgpnS+r62pSwvASOgyeKS2emM1mBINBnDhxIic389VCpnk+iemrHTt2YO3atSnfl68QKfT8MIrVg91ux9q1a5XPg7Xke71ezM7O5mWXkWp/q1lA50q51A0B+raGs/0uj14CS1EYn8+XVgSxSFAhn1k8Huea3qeUFqE7rE7nwoULaGxsTPoyFQrPlBYvWJt5IBBAW1sbl2mfRrmxpRMrLH1VX1+ftQi7mJEXI3ppJXowJdplsM6wTHYZRigw1QOK8GhPtiiLxWLBmjVrsGbNGuU1JoK8Xi/6+/sRDAZhsViSIkG5iCA2CoIX5WwcCpDg0RU2Jp3V6Ri17kYtiW3mmzdvxvj4OJcvMRMIRjjW5bVJ2dJXqSiW4NEjpVUobOicx+NJaZfBCkxZSzKLBK2W41NLOQkevfysCjneVCIoFospkaCZmZkVIiiVzYsWKS3q0iKKSrr0FZsgbERYQW0+X/zENvMNGzbg0KFDkCQJIyMjXNbERIYRnu6ZiIjH4xgcHMT4+HjG9FWmbRiRhXAI1Y7it5enIlWBaeITdW9vL+bn5+H3+1FTU6PcTErRLkOP81/PlJYeM2R4iQ6r1YqamhrU1NQorzERxAxUQ6EQLBaLUsgfiUS4/n59Pl9e16RSgwRPEck2T8fIgocVQef65WNt5i6XK6nNnIkCHvCcD6T2Im4ymRAIBPDqq6/mlL5Ktw0jRnhCYghf+MO/4/0b9uGq9Q0arqxwlj9Rt7e3o76+HvF4XEmHRSIR2O12JQq02uwyUlFOER7e9Sy5oqVxaCoRFI1GlUjQ4uIi/H4/7HZ70myrQsc6+P1+bN26lechrCpI8BQBWZaVNvNM83SMWHfDMJlMkCQpa4FxNBpFT08PfD4fdu3alfQUzrbDcwI0T1uIQm8c4XAYfX19CIfDaG1tLXjQnlFTWhe8XYhCxv8aeg3v816JQ7suz/5Dy/anB1arFRUVFZrZZRiBchM85bBfm82mdDR6vV40NTXBZDLB6/XC5/NhYmJCGeuQWBOUiwiiLi1CU/IZHMjT8JPB64KYTYwltplv2bIFzc3NKfer5UwftdvJ96KWmL5qaGhAKBRSNVXYqHN4+nyTAADZDDwzdQFBfwzXHdiu86ryJ5tdxvT0NPr6+hCPx7PaZRgF6tLSHi0jPLnu22q1JnndAUtjHVgkaHx8HOFweEUkaHkal7q0CE0opM3cYrEgHA5zWwMTKTyeWDMJHuZmXltbW9Q2c56CJ9/IyvLuK6/Xi2AwqGodRozwhMQQ5qMhsEuF7AT+db4D/t9FcfStLRquUh25Hl8mu4xE/6XlA+d4zlpRC0V4SnO/QGaxZbfbYbfbV4ggFgkaGxtDOByGw+HAT37yE+zcuRNerzcnwfPCCy/gwQcfhCRJuOeee/CpT30q6d//4z/+A3/1V3+F119/HU8//TRuvfVW5d++//3v42//9m8BAJ/5zGfwgQ98oJBD1wQSPJwpxPeKwXt2Ds/hg6nERSgUQmdnJ+Lx+Ao382LA0+k81+2k677iIVaM2Jbe6e/EXGTZ+Vst4MXRPoR+EcP73rFHg9XxoVAhkM5/iRWXslkrrMOm3DrDyk146BnhyXeSdqrZVuFwGDt27MCpU6dw9uxZ3Hbbbdi+fTsOHDiAAwcOoLW1VYl4AkvHe//99+P48eNobGxEa2srjh49ipaWNx5wNm3ahO9973v4yle+krT/ubk5fPazn8Xp06chCAL279+Po0ePJnWr6QkJHk6wYtxYLKYInXy/nLxreJiA4lHol7g2SZLQ39+PqakpxQdKD1hdEY/tZBM82bqveIivYkZ4ciUQH4MvuvI8FjYIeLl9EP7novjQn7TyXJ4hMZvNKwbOxWIx5Wl6cnISwWAQ586dKzm7jOWsdi+tQva7WovbWRr3jjvuwB133IF3vvOdeO655xAMBnH69Gm88sor6OnpwYMPPqj8zMmTJ7F9+3aluPm2227DsWPHkgTP5s2bAWDF7+OXv/wlbrzxRqUI+8Ybb8QLL7yA22+/XeMjzQ0SPBwo1OBzOby7tHibfoqiiImJiaQ2cz1rG3jX8KQjMX3V1taW8mlvNUV4chU8ITGEKkcQEcmReju7TDh3chzf+MHLeOD9bzJMiqdYWK3WJLuMU6dOobm5OckuIxaLwel0JtVVrNabJyMej+tS2K1nhKdUhKvf70dlZSXq6uqwadMmvOc971nxntHRUWzcuFH5e2NjI06cOJHT9lP97OjoqPqFc4IEjwqMbgfBU/DEYjF0dXWhurqai5s5j8JHrWt4wuGwkrLbu3dvxpTdaorw5EqnvxOCBUh3VIIgwHTQhM4XZ/Dlf/odPn7fWw0jevT6HLW0yzAK5TZ4UM+UFm8kScoquFN9d3L9Xqv52WJAgqcAWJ1OMBjEhQsXcPXVVxelE0qP7bE285mZGWzYsAHbt6vvzmHiQO1FhNfcmuU1PIUMD+QV4TESgfgYFgImAOnXJQgCzNebMXRsAZ/76ov49EcPw2oxxs3BCJ9nPnYZHo9HEUFGtssot8GDeqbSeH7OuV6fGhsbMTw8rPx9ZGREmXKey8/+9re/TfrZt73tbfksU1NI8OTB8jq8Td6nAAAgAElEQVQdi8WCaDTK7aQ0UkpLlmUMDw8rbeY8L8A8BQ/vGp5c0lepMFp0Ri3B/0pntS9kT78IggDzUQum/rcfn/2fv8Zn/vt1cNhXd9pGSzLZZfh8vpR2Gbl6LxUDKlou3n61ON5s51Brayu6u7vR39+PDRs24Omnn8ZTTz2V07ZvuukmPPTQQ5ifnwcA/OpXv8IXv/hF1WvmBQmeHElXp8PzJsfrBs4oVPDMzc2hs7Mzqc18ZGSEaz1QLqHVbPBMaUUiEZw/fx6SJGVNX2m5lnzQ8ubX5e+EwwHMhnI0/jQJML/XgoXvh/DI54/jrz95HSrdqWt/isFqE5/Z7DKY7QAbpqhnZ1g5Fi3rJXh41krlGjGyWCx44okncNNNN0GSJNx999244oor8PDDD+PAgQM4evQoTp06hT/+4z/G/Pw8fvrTn+KRRx7BxYsXUVNTg7/5m79Ba+tSI8PDDz+cNEVab0jwZIF3nU4meG83X8GTqc3cbDYjGo1yWVexio1zgVkPTE9Po7m5uWCfmVKL8ATiY3AA8MZyPycFqwDznRYE/lcUn33s1/j0Q9ehrqq4owqS1mOAaIgaUhlQRqNRpTNsfHwcwWAQ58+fT+oM09p+gXeqJVf0SqWVSu1QIBCA2+3O6b0333wzbr755qTXHnvsMeX/W1tb03oi3n333bj77rsLX6iGkOBJQzGFjlbkKnhyaTPnWV/EU/CoWRNLX5nNZuzcuVOVqZ4eER6tYOksAAiL+Z3zgkOA+Q4LIt8X8fnPvoiPP/RWrK+r1GKZZYnNZkuauHvy5Ek0NTUpdhlDQ0OIxWKa2mXoOYhPL8Gzmk1LGT6fr6yd0gESPCmRJClpnk62L5leTx7ZyBaVSeVmnu5CxtsDi1ftTSFWHKz7iqWvxsbGVK+llCI8LJ0lxgGpgEMSqgSY32tG7P9I+NJnf4uPfurN/BdpMPT63ethl6FXSksvSqV2qNx9tAASPClhF69cTnJeBbjL969115fP50NHRwecTicOHDiQdc6EUSM8+Wwnsftq+/btyg2CR7eXHoJHK6HN0lljWTq0MiFcZoLpZkD6uYS//9uXcPjdNSjmeMJS+V1k22cq0tllBAIBeL1e1XYZeqW09KJUIjwkeEjwpCSf9JXFYoEoitxOTGYHwWN7qURKNjfzfLZVKHoIHlaIvXbt2hXdVzxMO0vlBpCYzloSPIUjbBNgusaE+Etx/Oa5WTRuGsbBlo3Zf5ATpfI7SUc+woN1fFVUVKywy/D5fCntMioqKuB0OlfsQ6+Ih54R1FJIpZW7cShAgicl+ZzcTPDwmsTJhg/yFjzL28zTuZmng2cHGc+UVjahkpi+Suf3VUr1N2ph6SwAmAmpFDyCAOwzQfAD8rk4fvCVMwh8JIrDB7ZxWKmx0CvCo0Z4pLPLYJ1hk5OTCIfDsNlsigBinWHllNLSCxI8/CHBoxIjzc5Jt61UbeaFbEtLI1Le24nH4xgaGsLo6Ch27NiRZI6n1XqKCYtC8r7RBuKjYM3ki8tNQwtAEASYrjVB8sWBXuC5J/6A4Iei+KNrm1Vv20joJXh479NqtaKmpiaplZg5cLN02OLiItrb21FdXV00uwyj1klqCe+2dBI8JHhUw9sOgqeAisVimJ2dhSiKqt3MV1NKKzF9dejQoaxPSTxSWsUmGo1iYGAADocDlZWVKVMP+bKUzgopfw/l2aGVDkEQYH6HBdKzIjAJ/OLbnYhFYrjlht1ctp8KPWp4ik2xRMByu4wzZ85g27ZtCAaDmJ2dxcDAAERRVIqiWeqMZ3RCz84wveCZOQCMUcMjy7KuEUISPCkoJKXFCx4CirWZT05Owm634+qrr1a9LqN2aSWuKZf0VbrtFNLtpQeyLGNsbAwDAwNoaGhAOBzG1NQUwuEw7Ha70oVTWVmZ91N3YjpLlgGR4z1cMAkw/4kF0j+LgBf49Q/64DGLuOGw+nMz7T6LHBEohQhPrrhcLlRUVKC+vh5Asl3G5OQkenp6uNpllGPdkBZFy8zeRA8Su54XFhYUyyKTyQSXy4W6ujrU1taiurpas4ghCR6VGCmltbzNvLW1FWfPntV9XcvhbQmRT/oq03aMQrobmd/vx6VLl+DxeHDw4EHlaYmltljqYX5+HoODg0lP3ezJO9NNIzGdNREUUGiHVjoEiwDz7RbEnxQhR4F/eXIQUlzGTdfv57ofPdBDfOjVLZVKfCTaZTAkSVI6w5bbZbB6oFztMvQUPHpFI0otpSUIAn7605/il7/8JS5cuKCcG36/H7FYDB6PB1u2bMG1116L22+/HTt37uS+BhI8KjFKSitVmzkzOeUBzwur2WzmElExmUwIh8M4ceJEzumrdNsxiuBJVZcjSRJ6e3sxNzeH5uZmpbMuccaSIAhwOBxwOByK4Et86h4bG0tqRY7FYggGg0oqbHk6a8yvzUVesAtYd48DU98MQ44L+On3hhGPy3jHjQc02V+xWI1Fy2rI5VjNZrMithmJdhn9/f0IBoOwWCxJkUm73W6YzjC9piyzfZdKW/r4+DhuvfVW5Xe9d+9ebNy4EevXr4fD4UAsFsPo6CjOnz+P733ve3j88cfxrne9C4899hiam/nV+5HgSUG+Ka1IJMJt3/kKqExt5kYt8uMR4WHpq0AggEOHDqmqTzLS0MDla5menkZXVxcaGxvR1taWd2fdcpNKdsOZmZlBb28vQqEQbDYbvDVeJAbGplV2aGVi1iJhx31WdP3jkuj9tx+MIC7F8UdHDnLbRzkUua7GY0xnl8FE0Pj4OCKRiJKeZZGgUhn+p+e+9a7hueaaa3D06FHs3bs3q8XF2bNn8fWvfx1HjhzBP/7jP66wuSgUEjxpyPUmaLFYEAgEuO0319SR2jZzPVETUUlMX23ZsgWiKKoSO2rXwxt23oXDYXR0dAAA9u/fD4eDjxEnu+HYbDZcddVVAJa6cE76jye9byGi7c2lzwpsucOO/h8tPSz84kdjkOIncPTmNk33qxWl0qWlBzabDbW1taitrQWApPTswsIChoeHEQ6HIcsyBgcHFSHEM92TDj2LpbUQPInRtmLS0NCAL33pS8rfJUlSzl1ZlpOOU5Zl7Nu3D08++aQSmeYFCR6V8KxtAZZuSOFwOON7eLSZ64laF3eWvmKiTy08BY/am5AgCBgaGsL4+DiamppU+XvlimSOY40z+ZwLcOrQysRwbRzr/kjA1L8tPVj86n+PQ5ZexbvfdUjzffOGBA8/UqVn5+fnMTY2BrvdroldRjpKLcKjl+BhMAG5/LgkSYLX64Xb7U4yv2WRaV6srjulASlml1YmN/NiweMim6/AiEQi6OzsRCwWSzpuVrCsFh7WEkDq+pt8WFxchNfrRWVlZcH1SIWQ2J0FLHVoxYoU8JrfZkHtNTHMvrT09+P/ZwJS/BW8591vKs4COEGCR1tkWYbdbsdll12mdBrxtMtIB2/boHz3zVPA+Xw+XQVPuuN59dVX8cILL2BxcRH19fU4evQoWlpaNFkDCZ405JPS4i14lkc/cnEzzwSvCyOvQXe5Cp5s3Vc8hQrPuUD5XqRisRi6u7uVHPvmzZuLepFN7M4CgPkIwLtDKx0yAP9+C6q8IhZfX3rtNz+eQjz+Mm7948JNR8tBDJTTxON0nWGp7DL8fj+8Xq9il5FYPJ3OLiMdehYtA3zrMCORCLfUeCGwz5Fda00mE1555RV8+tOfhsPhwKFDh/Dss8/ie9/7Hn7wgx8onag8PwMSPCrRIqXFBFQ+bubZ1scj7cW2pfYCkMtnxtJXdXV1mkc7eKW08i1+lmUZExMT6Ovrw+bNm9Hc3IyzZ8/mvA21xdayLCMkhZO6swBgxFfcJ1pJFhC7zgKXN4bgwNLF7bfPTyMefwnv/ZNrirqWQimntnQ9yPVBwmw2o6qqKql5I9EuY2pqSinUZ1Eg1hmWCj1TWlqg1/ny5JNPoqenB5///OdhMpmUwvR//dd/RVNTE7797W8DAB5++GG84x3vwLPPPouDBw9yj7CR4FGJVhGefN3Ms22Pp+BROxQqk8BIl77SEj0ETyAQQHt7OxwOB1pbW5W8dTE7xmRZXpHOAoBJDTu00hGNC3DdYoXtn2OIzixdlP/jX2YQl36P9/3pNYa/sZdLSkuvbkY16Z1Mdhk+nw+jo6OIRqPK1PJEuww9U1o8Yb83vb5H27dvx1NPPYXbb78dH/vYx9Da2goA2LhxI9rb2/Hyyy9j69ataG9vx8LCQt6z1HKFBE8acj0xeEd4ZFnGwsICLl26lJebeTqMaAmRypdL7fBANfBKjeXy+cTjcfT19WF6ehq7du1Kas8Fiid42Pm9PJ0FAPMad2ilIxgXUHmHBd5vixCDS+t76aeziMd/j9vfd21eF2uyliidfQL861mW22Wwzkiv15tkl2EymWC327GwsMDdLiMTRhmTwYtrr70WX/va1/Cd73wHDz30EG688UY88MAD+Iu/+AucP38eDzzwALZt24aXX34Z1157Lf7sz/4MALinE0nwqITXl591HA0NDcFsNuPgwYNctq2FGalals/hmZ+fR0dHR1HSV6ngWcOT6UI1OzuLzs5ONDQ0oK2tLeWXuZiCJxALrkhnAUAgql80xSubsOZuC2a+KUL+r06xV/5tDpL0O9z5Z2/N6ztB1hLa7FOPmhat28MFQYDT6YTT6VTsMmRZRl9fH6LRqCZ2GZngfbwshaQnLS0t+NKXvoQnn3wSx44dQ3t7Oz784Q/jW9/6Fi5cuIBz587hoYcewr59+5Tzmvf5TYLHALB6lZqaGhw8eBBnzpzh9ovmLXh4Fvfqkb7KtB61pBNOkUgEHR0dkCQJ+/btg9PpzLiNYj3d9QS7kWopUZ1HEs2bTKj/kBkT//TGQk68sAC/7+e4/rodqKqqQmVlJRwOh2FSXeUSbdHTzqLY4zcEQYDFYoHH40nyDGNF0WrtMjLB21bC6/Um2X4UG3auWq1W3Hvvvbj99tvx8Y9/HJ/5zGfwnve8B3feeSeuvPJK5b1aQYInDcX4Uie2me/evVuZPsnzF25EDyxgaVLy6dOnsWPHDqxdu1bXGxfvtnRG4nDIXNN0vNaSDUEQEJDHsFzveKOAXKQOrUzM2M1oeL+M8R++8VlcfDkGq3UQ11+3HZOTkwiFQkl1F4mGqXqktPQQH8WOtpTbxOPl+zWZTGntMnw+n2KXYbVaFQFUUVGRtzgXRbFkpiyz78a5c+dw/PhxBAIBHDx4EN/85jdx7NgxfOELX8B//ud/4oEHHkgb+eYFCR4OsCf7XH9RkiRhYGAAk5OTyg1fK4yW0mLpK1mWuaSv8v3sM21DLYmRIq/Xi/b2dlRXV+c1HLJYEZ6YIKI6RTprRCMPrUKYXmNB/S0iJv/ljc/j3G8DEIR+3P3BwwCQ1jA1EonA5/Ohurq6ZFu3KaVljP0WapeROGBvObwFnp7GoYIg4Pnnn8eXv/xlNDQ0oLKyEj//+c/x0ksv4Qtf+ALe9a534cEHH8S9996L++67D3fccceK2kZekOBJQz4XklzbtWVZxtTUFHp6erB+/fqC2szzxSiCJzF9tXv3bpw/f57LF7rQ2TeJ8BIZgiBAFEW0t7fD6/WipaUl74sML/GVDV+FF1UpPrLJgLE6UmY3mbH2OhHTv3njtbP/7sV34r/B3R88nNIwNRAI4MKFC5iYmEBvby8EQUiKAuUzhyVXKKWl/X5XU2Qpk13G4uIihoeHEYvF4HQ6kzrD2INRKQkeAHjsscdw3XXX4S//8i9RVVWFU6dO4V3vehfe/e53o62tDd/4xjdw+vRp3HvvvXjuuefw3HPPJXXV8YIEDwdYa3qmdm1ebeb5oneXVjwex/DwMEZGRjRJX/Gov+GxHtblceHCBWzduhW7du0qaLvFivBYKlP7v81F9E9nJSNg8SoL1iyKmD/zxqvnf+fDd+Iv4p4PXQ+z+Y0bIaunsNvtaGpqUr6b7Gk70TA1UQRletrOhXISPEaNtGgBL+GRyi5DlmUEg0H4fL4Vdhnsus1r/3obh4ZCIbjdbmzZsgUA8KY3vQmiKCr3JkmScODAAbz22mt49NFHNavXIsHDAYvFklZUxGIx9PT0wOv15txmziNNw9AzwlOM7isjGH8Gg0G0t7cjFAph586dSoFjIeQjeAq92QXFEOo8sZT/5osaL/0TlwWEr7GgwhuDr/uNY/7D7wP4lvQi7r03WfQAyTU8qVIOiU/bQ0NDigltZWUlqqqq4PF48jpfy0XwlEpbuhH2KwgC3G433G73CruM0dFRBAIBnD17FgCSOsNcLlfea9I7wvOlL30JDz30EE6cOIH169ejq6sL119/Pfbu3QsAyndNlmU8+uijmq2DBE8a8k1pLR8+mFiwunnz5rye+HlNNGbbikajqrfDthWLpb5RJrI8fcWKsbVAT8ETj8cxMDCAiYkJ7Nq1C1NTU6qfTIoheFING2RE+I2U4kpMFmD5Iyscz8QQHn/juC++EsA/yb/GfffdsEL0ZPp8Us1hYb5M4+Pj8Pl8ii9T4o3GKF1hgD6dS6UoPDJR7GJpFqGsqqqC2+3Gxo0bV9hlBINBmM3mpM6wbGlavSM8t9xyCxwOB373u99henoab3/723HvvfcqnblMSGv9/SLBw4Hl05ZZZKOmpqYgN3MWMVI70RgobkorMX21fft2rFu3Lu0JzCuKpZfgmZubQ0dHB+rr65VarJmZGdVryadLq9DUV0BeOWwQAMLikreVUQnFBXjeZ0H8uyKivjfOq0v/GcQ/SsfxF//PDbBYCrs5CYIAj8cDj8ejODSziederzep+yYxFcZS0+USbSk3waPXpOVEoZXNLmN6ehqhUCjtuQksRXh4O4/ny5EjR3DkyJGU/8bOY0mSEIlEYDKZNPH9IsHDASZ4wuEwOjs7IUmSqshGJsf0QrZVjJRWvukrHsXGidspFtFoFJ2dnYhGo9i7d2/S7CAe9Tda1/AExRCq7Cu7swBg2G9CsUxDCyUCAXc9bMbPn5QwdumNtXacDOEf4sfxkftvLFj0LMdsNqO6uhrV1dXKa9FoVEmFjYyMKIWn7HwvZkSgXEQWoK/w0CuylOmBN51dBhNBzC7jqaeegsvlQiAQyEnwvPDCC3jwwQchSRLuuecefOpTn0r690gkgrvuugtnzpxBbW0tnnnmGWzevBmxWAz33HMPXnvtNYiiiLvuuguf/vSnlZ+Lx+MQRVGZxZPIxMQEZmZmMDMzg1OnTuH3v/89Ll68iN7e3lw/rpwhwZOGfCe6jo+Po6+vj0ubuVE6q3LZViQSQVdXF6LRaF4ij5dQKZbgkWUZo6OjGBwcxLZt21BfX7/iHOFVQJ2vAWk+52qmdNaEwTq0UlHnADY32HD9R4LoeknGmecFiP81GbrrdBj//zeO4/4HbtBMNNpsNtTV1aGurg7AG4Wno6OjWFxcVMxfE1NhbrdbE5FQThEevYSHXm34hQhnu90Ou92edG5WVVXh5ZdfxvPPP48zZ87g61//Onbt2oWDBw/immuuUTyt2D7vv/9+HD9+HI2NjWhtbcXRo0fR0tKivOe73/0u1qxZg56eHjz99NP45Cc/iWeeeQbPPvssIpEI/vCHPyAYDKKlpQW33347Nm/eDGDp2sgaA2ZmZvCHP/wBvb296O7uxuDgILq6utDf348tW7bgpptuwsc+9jGVn2BqSPCogLWZDw0NobKyklubuVEFT+INPZ/0Vbp1rRbB4/P50N7ejoqKiowpytUQ4UmXzgKA2bCxozsA0OAG1tgtMJuAndcCDU0yXvo+MDO4tPbu18L4xteP479dU1sUMcAKT9esWQOr1YotW7asqLkIBAKwWCxJ6QYe4fpyEjx67VcveEQKBUHAzp07sXPnTpw9exb33XcfDh48iI6ODpw6dQqvvfZakuA5efIktm/fjq1btwIAbrvtNhw7dixJ8Bw7dkwpKr711lvxwAMPKOdhIBCAKIpJXZDAUlT05ZdfxiuvvILXX38d09PTAJZmlbndbhw4cAB33nkn3va2t2k+DZoETwYy3Xz8fr/idr1t2zZEo1FuX0ieDuxaiCce3Ve8pjbzFDzLbyCiKKK3txfz8/NoaWlJmq6aCl6CRysBlymdBQBeA3ZoLWejxwSTIGCNzYrZSAyV9cCR/y7jwq9knP+5ADkuoPdcBJHIBPbuicHhKM74h8RzJ13NBUuFjY+PIxwOJ81gqayszLvWTw8RoFdKS6/96oVWk5bNZjOuuOIKXHHFFSveMzo6io0bNyp/b2xsxIkTJ9K+x2KxoKqqCrOzs7j11ltx7NgxNDQ0IBgM4qtf/aqSbrt06RLe//73o7W1FZWVlbjuuutw5ZVX4uDBgyvSbFqf0yR48iRVmzkrGuOFUSM8kiRhbm4OkUhEdfeV0VJarFiYXVSnpqbQ3d2NjRs3oqmpKaeLrR4prXzIlM4CgLBBO7QS2VKxdBOocVgwG1nqGDSZgd3vANa3LEV7vJMCRtrjeOLrL+IvH7wBdru6GTu5kO13ZrVaVwyiC4VC8Hq9mJmZQX9/P+LxeF7GlOUU4QGKb86qJ7xrwfx+f9YHtlTn8PLPPN17Tp48CbPZjLGxMczPz+Paa6/FDTfcgK1bt2L79u14+umnsX79eiV6xGDXS9ahpfW5RYInA4k3H1mWMTIygqGhoRVt5jwjMmx7RhI8sixjaGgIQ0NDsNls2L9/v+qLj9FSWiyyEo1G0d7eDpPJlPeASKOntDKls6ISEDdyixYAkyDj8oqlC+IauxUmhJD4m6+7HHjnp2Sc+Reg83cCBv4Qxde+ehwP/r83ai568hUfgiDA5XLB5XIlzWBJNKb0+/0wm80rUmFsP+UmeMoJ3uahfr8/6wy4xsZGDA8PK38fGRlZEYFh72lsbIQoilhcXERNTQ2eeuopHDlyBFarFevWrcOb3/xmnD59Glu3blWK+xPFTjwe1+VcojM3B+bn5/Hqq68iGAyira0NGzZsSLrQ8BY8RurSYsceiURw4MABWCwWLhdZo6W0BEHAwMAAXnvtNWzcuBF79uzJexq2kSM8QTGE6gzprLFV0KFVawcs/zVrxywIqLavvCFYbEDbe2Xc8EAczioZQxdj+Pu/O45whM8sqkyo/V4wY8rGxka0tLTg4MGD2L17N2praxEMBtHd3Y2TJ0/i/Pnz6O/vRygU4vZglCvllFrSy0YD4B/hCQQCWSPyra2t6O7uRn9/P6LRKJ5++mkcPXo06T1Hjx7F97//fQDAj3/8Y1x33XUQBAGbNm3Cb37zG2We1auvvopdu3YBWOrCuv/++3Hrrbfixz/+MaampmAymWCxWGAymWAymZTPORKJIBqN4vz58/jqV7+6IqWmForwZCAUCqGjowOiKGZM4fBMG7HthcNhLtsq9AvLuq8S01ds1DkPjJTSWlhYgNfrRWVlJdra2gq+0PAQK/kcD6/uLAAYDxr/2ad+2dev1mHFXCT1g8H6ZuDoX8s48QwwcCaGv//yr/BX/+NGzWp6tBICy9uPmYUJm7/S19eHvr6+pFSYx+PR7MlZj2GHeqFnNIt3V5osy1mvaxaLBU888QRuuukmSJKEu+++G1dccQUefvhhHDhwAEePHsWHPvQhvP/978f27dtRU1ODp59+GgBw//3344Mf/CCuvPJKyLKMD37wg9i9ezcA4ODBg/jKV76CZ599Fo8//ji+9rWvYffu3WhpaUF9fT0qKyshyzLGxsbQ3t6OF198EV1dXbjnnnvwgQ98gNtnAJDgycjExATWr1+ftc3cyCmtfEmcEL28+4pngTAvkahmTbFYDF1dXQgGg6iqqsLll1+u6qnKyBGeTOksAJgJGV/wbHQnC4o1tpVprUTsbuAtd8vYuFvGiadj+OqXj+PB/3EDXE7+A82KFfkQBAFOpxNOpxNzc3NobGyE2+1WpkSPjo7C7/crE3t5G6aWU0qr2FOWE+HZDp/P9eTmm2/GzTffnPTaY489pvy/w+HAs88+u+LnPB5PytcBwOVy4eabb8Zb3/pWHD9+HC+++CJOnjyJn/zkJ4jFYgiHw5AkCXa7Hdu2bcNtt92GO+64Q5NBiSR4MrB169acbspGTmnlA+u+qq2tTdl9ZTTTT7adXOwuEpFlGePj48rch5aWFpw/f94QYkULwZMtnQUAi1Hjpyk2Vyafj2bTUlorXZSHseUAsG6bjJd/GMNX/+ev8VcfvwFuF3/RU2yYyGLipqKiAhs2bAAAxTB1cXER09PTCAaDsNvtqg1T9Rp2qAelJu70TEXKsgy3241bbrkFt9xyC3w+HwYHBzE7O4t4PI7a2lq0tLRoHj0kwcOBfOwAcoF3iiwbbHowj+6rXNErpcXGCbjdbhw8eFCZ+sljPUaN8GRLZwFASDS24BEgY2vlyqftWnv6tFYi7jXAjQ/I6PhdFF///36Nj37sOrgTpmSrxWhTj1MZprJU2MLCgmKY6na7k1Jh2SIaeoiAcvHR0gq9hjYmws5TVhdVUVGBK6+8csX7tP4ekeDJgF6KWIuUVqoTKTF9lW56sFbwEnW5dntJkoS+vj7MzMygubk5yS4AMI5Y0WIOT7Z0lhQHJIN3aFXZAYdl5UV7jd0KAaGcPMAEE9B8GGjYFcX3f/TvuOvPDsPj5iN69JjIm+/NweFwwOFwYN26dcrP52uYqsdxlpuPFu8HHp/Pp/lAv1xJ/D0mHic7x8g8tAzhndJi4iIxXLiwsID29nbU1tYWZHCqlkJSUanIRSDMzMygs7MTGzZsQFtbW8qLJ48onRFTWrmksyaDxu/Qqk+jS1haaz6HKA+jugHY9ycR/Prcb3D93rehwq3+ZqBH2kXt03A2w9S+vr4VppSxWKxsWuFLxc7C5/Pp6pSeDj0CCiR4OMIrHKdF1xcTPDzSVzyO02w2IxKJqNoGkDkyEw6H0dHRAVmWsX///ozj/HlEVooZJUt9NcgAACAASURBVAqHw2hvb0coFFJuRlVVVUlzWoDc0lmjfuPXKTS6059vtXZrXoIHAMwWYP1VUVwK/zva3O9SuzwAxb+AaxFtSWWYGolE4PV64fV6MTs7i4WFhaQoEJvgqxXlltLSYuigUQQPuz7qlWIjwZOBfC5g7GbH40TVQvCIoojJyUnV6St2Q+Yxc0SrLi02KHFkZARNTU05mbkaKaWVaRvLu+hYh87i4iKmpqYQDofhcDgUAZQtnQUA02HjCx42cDAV+aS1liNYY/DHxuGxNhS+OBivhocndrsda9euxdq1axGJRLBx40aYTCZ4vV5MTk6ip6dHU8PUcvPv0sJWwggpreUCXY/PlwQPJ1inFo8TlfdFTJIknDt3DmvXrlWdvmJiTO2JqlXR8uLiItrb21FTU5OXzxePlBavwud06/D5fLh06RKqqqrQ1tYGQRAQi8WSilMT57SMTo+iujG75clCxNjpLADYXpX+nLWYBFTZLFiIFpYGHot2oYmD4Ck2egzGYzctt9sNt9uNhoalzy3RMHVgYADBYDDJMLWqqirvQZ4MivCow+fzZbWV0Bomzh999FG8+c1vxo033qjL75QEDyf0nJ2Tjmg0iq6uLvj9fuzcuVO5OKmBCR7W3aRmOzwED9tOLBZDd3c3/H4/rrzyyryfaHiktLSK8CQWXLe0tCgj4lOtN3FOy7h9HI4crilG79DyWGVU2DIfSK3DWrDgWZTmEI+LMJkKvxyWcoQnkXTiI9EwlZlLRqNRJRU2NjaGSCQCl8uVlArL5eFLr+JhPffLs6bSCDU87Dz99a9/jX/+53/GW97yFrz73e/Gm970ppwi8LwgwZOBfC4mes3OScXy7iuz2VzQzI1U8IzM8BCIgiAgEAjg5MmT2Lx5M5qbmwu6CRg1pTU3N4eOjg40NDSkLbhORy7pLFkGYtqYs3NjnTP7e2rsVvQVmNaSIcMndqLKttJBOh/KQfDkUzdks9lQV1eHuro65WeZYer09DR6e3shy3JWw1S9ioclSeJ23cwHrZzSjcC3v/1t/OxnP8Pzzz+P3/72t7jqqqtwxx13oK2tTUmVagkJHk7wHj4IFHZBW1hYQEdHB9asWaOkr3w+n6HMSAE+AiMYDOLixYuIRCJ405vepOriZLQ5PCw6F4lEsHfvXrjynBkTFINZu7MAYCYEGL1Da0OGgmWG2rTWRGxYleAppwhPofvMZpg6NDSEQCCgGKZWVVWhoqJCV8FTKimtbMahxaK5uRnNzc348Ic/jOeffx7PPPMMPvaxj+Gqq67Cn/7pn+Kd73wnamtrNfvcSfBwgrfgybcImt0gQ6HQipQOzyJonvNzCt1OPB5Hf38/pqamsG3bNsXFXQ1GaUsHlp7ITp06ha1bt+Kyyy4r6AbT5e/K2p0FACMB4w9Wu7wyt5udurRWEDFpEVZzYTeGchI8PMUHM0xlpqnAkuULS4WNj48rrvHsvRUVFapT6rlQKrVDfr9fSTPqTSwWg8lkQnV1Ne6++27cfffd+M53voPPfe5zuOeee7Bu3Tr8+Z//OT760Y+StUSxyediwruGh20v24mfy/BAnoJHb5fz2dlZdHZ2KikeJn7UYoS29FAopIwMOHTokCoRl0s6CwCmVoFp6LYUE5ZTUWO3oA8oKK0FAHPiJdSb/1uBP60PpSiyrFYramtrUVtbCwAYHx9HMBiE0+nE7Ows+vv7IUmS5oappRLh8fv9uhctM5hQPXv2LM6ePYtXX30VXV1dsFgsOHz4MPbu3Ysf/vCH+Na3voUf/ehHeMc73sF1/yR4spDrU7sWwwJFUcx400uVvkq3LZ4RHj0sISKRCDo7OyGKIvbt2wen843CDr08uZZTaIQnHo9jaGgIY2Nj2LhxI+bn51WJnVzTWQCwEDG24HFbBNQ5c7v4W0wmVNosWCwwyjMdncI6W2E3dD2iLXqgR9RDlmXY7XbU19ejvr5eWQebEj0yMqJEgXgapuopeHjWDhmhaJmt4x/+4R9w9uxZdHZ2wuv1oqGhAUeOHMF73/teNDU1AQC++MUv4s4778QjjzxCgseoWCwWLoP0GJlESqb0VbptRaNRzdelxXZkWcbIyAiGhoZWuLcD/NJIvNrS892G1+vFpUuXlInXoVAIc3NzqtaRy7BBRiBm7Jv0Bnd+N5xah7VgwROUJQSlQbgtm/P+2XIRPEDxo0qpRFY6w1SWCpuamkIoFFJmUrE/+aTCSimlZQTBMzIygm984xvYv38/3ve+9+Hmm2/G7t27lX9nn7fNZsP111+Pz33uc9zXQIKHExaLBcFgkOv2lkeMCvW+Wq0RnuVzZ1JFsHhdfHm1pee6DUmS0NPTg4WFBVxxxRXKBYmH8ArIYzmlswAgavAOrcvzvE7X2C3oR+FprdloT0GCh9COXNu0LRYLampqUFNTA2DpesmmRM/Pz2NwcDAvw1RKafGlpqYGTzzxBG655RbltcTJy4ni8o477sCRI0e4r4EETxb0TGklipRc01e5bEsNPNvJ0yGKInp6erC4uIiWlpaiPJ0Us0uLeXtt3LgRTU1NqiJWyz/HvNJZYcDoHVobK/Jbn1VtWkv0YkM8ArMpvyF55RThKTaFCgBBEFYYpsbjcQSDQWU2kN/vT2uYqtccnlKL8LDj6erqwquvvoq3v/3tsNlsEAQBJpNJ+d6cPXsWCwsLOHz4sOLxxhsSPJzg3aXFipbzTV+lgneEh4fpZzrYqPpNmzZh586dRbuJFGMOTzQaRUdHByRJSuvtpTZFl086azV0aDV68v/919oLT2tJALxiO9bY9ub1cyR4tINnaslkMq0wTBVFMckwNRgMwmazIRgMYn5+HtXV1UWdx1NqER52LOfOncOPfvQjPP744ynf981vfhNdXV04fPgwRFHUxNCaBA8neEd4TCYTpqam0NPTo8r7iq2Np+AJh8NctpVIKBRCe3s7LBYLDhw4UPAY+kLhJXhSIcsyxsbGMDAwgO3btyuFl+m2oWYd+aSzJg3eoeU0A3WO/M/5GocFfb7C9zsdGyHBYyC0rqWxWCxJ9izAUpPEmTNnlixaRkcRi8VWTInWKvrDW/DEYrGiX08ZPp8Pr7/+OlwuFy5evIja2lqcPXtWmbJts9ngdDrh9/uVMSNaQoInC7lexHi2pS8uLmJoaAgul0u19xXAP6XFo4aHEY/HMTAwgImJCezcuVNpRS02vIqflxMIBHDp0iW43W4cPHgwa9GkmnXkk84CgPmwsW/QGzxCQSJiKa1lhjda2Dm/IEURkWZgN9cV9PMEX/QoHrbb7bBardi+fTuAJUEbDAaxuLiouWEqz+iGHh5vifT39+ORRx7BmTNnIAgCotEo7rzzTjidTtjtdjidTlRUVGB0dBSTk5P4/Oc/D0C7wngSPJzgkdJKTF9t2rRJ2a5ajDh4EFj6Yp84cQLr1q3DoUOHdOmIYGgp5Jqbm5OeHjORr+BJjCzkk84CAH/M2BGeRk/h66u1WwsWPAAwF21Hg/PanN9PER7t0KtbKhFBEBTDVIYkSUoqjBmmWq3WpK6wQiIrWkyW1uvc3LJlC/76r/8asVgMjzzyCObm5nD06FHlc/P5fAgEAqirq8ODDz6I9773vQCgWfSMBA8n1AiBxNZrNl13enoai4uLuq8t1bbUCgMm7KLRKPbv3590ESkUtTccnoJnYWEB7e3tBQm5fASPICRHQPJJZwFAxFhetytQI3hq7Fb0+wpPvU6JM7gsHoeQ4++uHASPXtECIwieVJjNZlRXV6O6ulp5LdEwdXR0tCDDVJ7Hq3eEp6KiAocPHwYAxVPt6quv1m09JHiykOtFrNCL3eLiItrb21d0Xxk1KqOmS0uWZYyOjmJwcBBbt26F1+tNGiCoZk1qOyp4tKWLoohwOIyuri7s3r27ICFXaFt6vumsQBSQjd6hVUDBMsNmNqHSaoY3Vti5GpFl+KUeVJiacnp/sW8setzI9BJ1RhU8qUhnmLq4uJjSMLWqqgoul2vF8fH6nEOhUN4+fDwZGxuDw+FAdXU1rr76akQiEczPz8NkMil2IeyP2WzWvCuOBI9OZOu+4lkTxPMiVah48vv9uHTpEjwej1LLMjw8zCV8y0PwqJ1/MzU1he7ubphMJrS2tqoyWCxkHfmms4b9xr6BWE1AvUvdeVvrsBYseABgJtaPCmtuggcobtrA6E7pPNFrujMPEg1TGxoaACwdD0vpDA4OIhAIwGKxKFGgeDzO7ffr9Xo1ae/OlTvvvBM33HADHnroIdx777146aWXcPnllyu1OxUVFfB4PKiuroYsy7jrrruUQZJaQIInC7wvKqnSV6n2wbvrixf5Ch5JktDb24u5uTk0NzcnufbySiPp6XQeDofR3t4Ok8mEAwcOKMV5aijkYptvOmsyaOyW9Aa3ALPKz1FtWmtGDCDefwmVnrVZ6zGKLUBWm1O6GvQYAKilyDKZTKiqqkq6FiYapkYiEZw8eRJOpzOpHqiQek69Z/B85CMfUepRr7zySgQCAYiiiIWFBUxMTMDv9yMYDCIajWJkZASHDx/Ghg0bNDu/SfBwhD2dp/tFpUtfpYJnGoon+QiD6elpdHV1obGxEW1tbZqZmuoheBKnXjc1NWHt2rWq9s8o5EuebzoLAOYM3qG10a3+ZmMzm1BhNcNXYJRHBuConYNvxoGRkRGlNbmqqkqpx2A3xXIRPOUS4Sm2yGKGqTU1NZiZmcGBAwcQDoexuLiY0jC1qqoKbrc76+eit4/WrbfeCmDp8/zoRz+a9n2iKCIajSolDtSltQpgUZnlrcfRaBTd3d0IBoM5Dw/k7b7Oi1xECot6CIKQdsAeYLwIT66RFb/fj4sXL2a0vCgm+aazAMBr+A4tPhe8Woe1YMEDAF7THJq3XgMguTV5fHwcXV1dEAQBlZWVCIfDCIfDqg0rc6WcBI9ex6rnlGVBEOB0OuF0OnHZZZcpa/L7/fB6vRgeHlYMUxOjQA6HI+mz8vv9uqa0GNk+S4vFUpTrKAmeLOTzRWOt6UzwLE9ftbS05Lw9LVJaPC4cmcQFc/0eHR3NKephJMGTS9FyPB5Hb28vZmZm0NLSkhSS1pN801kAEDFetjQJNR1aidTarRhQkdbyxUWExXE4LA1JrcmJU3q9Xi/m5uYwODiI7u5uJRVRVVWVU1dOIehRT6NnJ1qx96tFa3iu+00nDkwmkyJsGImGqZOTk4pham9vL4ClVFkuU5ZfeOEFPPjgg5AkCffccw8+9alPJf17JBLBXXfdhTNnzqC2thbPPPMMNm/eDAB4/fXXcd9998Hr9cJkMuHUqVPKQ+5b3vIWxGIx1NbWoqKiAlVVVUpnG/t/9l+Xy4U9e/Zo+rsmwcORxOhHPumrVPAwkUy1NrUX33QnI2vFrqurw6FDh3J6OlpNKa25uTl0dHSgoaEBbW1taS+G2dKavCkknRURASN7hpoArHfz+fzUprUAYDbWgQ2WhpT/xgwrXS4XmpqaYLfblVREYlcOu9gnejWpoZwiPHqgd4QnV9IZpo6Pj+OnP/0pTp8+jYWFBQwPD6OtrQ0HDx7Enj17kurRJEnC/fffj+PHj6OxsRGtra04evQoWlpalPd897vfxZo1a9DT04Onn34an/zkJ/HMM89AFEXceeed+OEPf4g9e/ZgdnY2KcPR3NyMubk5BINBjI2Nobu7G4FAAKFQCKFQCJFIBNFoFKIoQhRFBAIBLp27aT8vzbZchlgsFoTDYQwODuaVvioGvATPcmKxmHISX3XVVXkdr9EiPKmIxWLo7OxEOBzG3r17s7Z4Ftt0sCvQBWee4Z3RgAlGNg2tdwmwmfmtr9auLq01JS6gIS7CZEr/3WECJFUqQpIk+P1+LC4uor+/X/FqYlGgysrKrBO4l6NHAXE5zBpiGDHCkwvMMPXIkSM4cuQIvvOd78BkMuFtb3sbTp48iW9961uYmJjAz372M+VnTp48ie3bt2Pr1q0AgNtuuw3Hjh1LEjzHjh3Do48+CmCpLueBBx6ALMv41a9+hd27d2PPnj0AsGJS/pe//GXluMLhsCJsYrEYYrEYotEootEoIpGIkhLWEhI8Wcj1C87mLVy8eBFNTU15pa+KAe8iaFmWMT4+jv7+fmzZsgXNzc15H6+RBM9yZFnG5OQkent7sWXLFjQ0NOR0fFpZVKQjGB9DvpeIcYObhvKq32HUOKwY8Bee1orJMnxiJ6psVxT082azeUVXTiQSweLiIubn5zE4OAhRFOHxeBQBlK0glSI82qJHZxiwlKLibRx6+eWXY8+ePdizZw8+/OEPr3jP6OgoNm7cqPy9sbERJ06cSPsei8WCqqoqzM7OKnVsN910E6anp3HbbbfhE5/4hPJzepqWpoIEDwdY+goAduzYocxbMBI8BY8kSTh9+jRcLldO/lBar4m34AmFQrh06RJsNhtaW1vzckrWQnylwx8LotqRXzoLAGZCxhHiqeBVv8Owm03wWM3wq4jyTMcGMwqefAWI3W7HunXrsG7dOgBLYiIQCGBxcVEpSGWzWZgISkxDkODRFr2OVQun9GxdWqke0JafW+neI4oiXnrpJZw6dQoulwvXX3899u/fj+uvvx6Li4v4xCc+gccffxx2ux1/93d/h7Vr18LtdiuO9eyPy+VCRUWF8n3QChI8OZDuqT2x++qKK67A7Ows16d7lh7h8cXjIS4kSUJ/f78yLDFXf6h08BIHPOwugKUv9cDAAMbGxgo2Mi1mhKfT2448tJiCN2ZswaNmwnI6au1WVYJnXgojJi3Cak5dqM7D2oQNYmMk2hQsb4sv9CFDDXoNO9QDvSI8WgiebFGWxsZGDA8PK38fGRlRivKXv6exsRGiKGJxcRE1NTX4v+y9eZQcZ3n2/avel1l7Fmk2SaNdM9p3Ie8JdjBBOSEEeAOJvw9Mwhv7DXFCwMkhxh/4nBdeEl6SOAGykBgbI2PjBeLEsY0d28KybI+8afZ91+zT+1pV3x/javXM9Mz08vQiqa9zfKzprn7qqe6qp6667/u6r/r6eq6//vpoZ+lbb72V8+fP8yu/8iu4XC7a2tqQJAmXy8X3vvc9ysrKCIVC0eaKsHDuh0IhtmzZwosvvpjR86xAeFJArPqqsbExmr5yOp1ClVUaSckHwjM9PU1XVxc1NTVRh+B0kU8pLZfLFW2AdezYsZQXnaxGeOQRHCl8LhDJb8JTJzjCAwvy9ME00loqMBtpY53+RPz3M3BjjmdToMnip6ammJ+fp6WlZVVZskjkIupxpURaktmvyDrLRPrwHDlyhO7ubvr7+6mrq+P06dM8/PDDi7Y5deoUDzzwACdOnOCxxx7jpptuiqay/s//+T/RurSXXnqJu+66C4Camhp++MMfUlpaitVq5aGHHiIcDuPxeKIFy16vl0AggMvlSukBM1kUCE8CiH1q19JXZWVly9RXBoOBYDAobL8aSRHxNJcq4QkGg3R0dKAoCgcOHMBqtTI1NSWkMFdUSisdHyxZlunp6WFubg6LxcL27YlbCaw0l2w8lXrCPkrNvqQ/F1FAzq2f4KqotEjYDOJv2Ga9jiKDHk8kjbRWaIJq08pPn5mOfsTK4u12OyaTiS1btiySJQcCASwWSzQNVlJSIuzGfTURHkVRctJfSzThSSSlZTAYuP/++7nllluQZZnPfOYzNDc3c88993D48GFOnTrFZz/7WX73d3+XrVu34nA4OH36NADl5eX8yZ/8SdRO59Zbb+XDH/5wdNzGxkZgIYWrmYiuhYIsPQ+gpa+8Xi/Nzc1xTyLRhcFaXx8RSHZusZ2Et23btii3KoqI6XQ6wuFwWmNo46RCeKanp+ns7Ix2gj579mzacxFhQpoIOpxtKaWzLua5Qkt0wXIsKixGPJ7Ur0+fquCTB7EbNi17L1edluPJkuPJ4mOjQKnK4nPR+yeXEZ7VrEQul/263e6EovG33nort95666LXvva1r0X/bbFYePTRR+N+9tOf/jSf/vSnE5pPa2srL7/8Mi6XC7PZzI4dO9i1axcbN27MyvVTIDwJYHR0lL6+vkXpq3gQSVAgd47pWu51pR5C+VZsrNfrkyJOoVCIjo4OIpEIBw8eFCqFFN0/aSWkms5akKTnL0QXLMfCkWZaC2Am1JNXhGcpkpHFx0aBEnl4yYUUPpcRnqulhicbCIfDPPTQQ/zVX/0VMzMz2Gw2gsEgLpeLvXv3cs8993DLLbdkfB4FwpMAbDZbQs0DL3fCE4lE6O7uxuVyrRjFArFERRRxSoRkxErpt2zZwrp16+KqEdJZ1EWltFabR6rpLIBpf74TnszdUC16HXaDHm86aa2IizoliF6X/af/WCRzniYii5dlGbvdvqos/mpKaV2ufXiWwu/3r9k7LJPQfr+XXnqJr371q+zbt49//Md/pK6uDkVRaG9v57777uP222/n9OnTnDx5slC0nGs4HI6EbsyZSGmJJDyhUCjue7E9ZzZu3MjOnTtXPeHyLcKTyDg+n4+2tjasVuuKUnptnHQWHFFNEFe76FNNZwHMB/M3nQXQkMEIDyyktbxppLVkwBlpx2Hav+j1fInwJIrVZPFDQ0N4vd5ovxVNGn81pbSulAgPkNNWAtrv98orr1BWVsa//uu/RovwATZv3sz+/fv54Ac/yM9+9jNOnjyZ0e++QHgEIhMRnkzX8Ph8Ptrb25PqOSOK8IiSk6/l7zUwMMDFixfZtWvXqlJ6EYRHRIRnrYiVWx4mVT2DP48VWiUmKDFldn4VZgNDnvTGmA6PLCM8kF2/J9FEIFYWX19fDyyXxXu9XiwWC7IsL3OLzxQKEZ7UkStJfyy0a8JoNFJTUxM9Nm1ukiRRWlpKTU1NwTw0X5DoQnY5pbQURaG/v5+JiQl27twZLXpMBCIjM6IiRfHGcTqdtLW1UVVVxfHjx9dcwETU34goWl6JNKmqyuD4IGW25JsNLnweIrlfA1dEvT3zNxiLQY/doMMbSf03mpdDBOVpzPrKtTfOELIRUVoqi+/v70ev16PX6xkbG8Pj8SwytMyELP5qlKWL3m+uOv6Hw+HoA+SnPvUpOjs7+d73vsfnP/95ysrKgAVS/cgjj2C327npppsyPt8C4REI0QWrBoNBiIoJFhMezQhz/fr1CRGB1cZKB5lKaWm1SG63Oyl/LxFkJVOkKRAI0N7ezqR9kpoU7dkmfRL5rNDKRMPBeHBYjHg96bWPmA21U2O9VtCMkkeufK2sVitVVVXL3OJdLhcXL16M+iGJksXninhcCSmtUCiUE2m9hrvuuotHHnmEhoYGKisrefPNN/nRj37Es88+S3NzMzabje7ubp555hl+67d+iwMHDgCZTcEVCE8eQ6/XEwikpyqJHSsUCvHee+8RCoUSMsJcbax8TWlNTk7S3d3Nhg0b1qxFWm2cdOYigvBoY6iqyujoKIODg2zfvh2nMpDyuFezQisWFWYjw2kSnsnINOsVBSlH9RH5Yi0RTxbv9/txuVxCZPGFlFbqSKTpYCZx/fXXYzQaUVWV2dlZTp06hd/vZ2JigjNnzuDz+VBVlcbGRh5++GE+8YlP8JGPfCSjv3mB8CSAXIUERRELVVWZnJxkZmaG3bt3x1UnJYNMp6JSGSccDvP2228DcPjw4ZR6WYgqOBaV0vL5fLS2tmK32zl27BgBNUipN7V0FsCkL98JT3auM6tBj82gw5dGWiuoqnjkHop16TWqTBX5QniWQpIkbDYbNpttkSze7Xbjcrno6+vD7/cnLIu/2ggPiLvf5Jrw/PZv/zYf+9jHUFUVVVUJBoOEw+Ho35prejAYJBgMsnHjRqAQ4bnsIGoxElET5Ha7aWtro6ioiJKSkugilA6S7XuzEkQQjFgyt3fv3rTM50QUHIuSpQ8PDzM1NbWovqpj+q2U1VkA86H8JTxWPVRYsncDrzAb8UXSi/JMh/spNuaG8OSCCKS6run1esrKyqJ1G0DUTmBubo6BgQEURYmuUaWlpdjtdqFegqngcjdK9Xg8CafzMwVJkqLnTC7l8RoKhEcwRCh9NKQT4YlEIvT29jI3N0dTUxM2m42Wlpa056TNS0SqLd0IlsfjiUrNy8rK0nbaFZXSSmcMj8fD/Pw8FotlmadXqs0GNXjz2DS0vkiX1YhFhcXIsDc9wjMT8dKgeDHo7IJmlTgud4m4xWLBYrEsksV7PB5cLheDg4NRWbxOp8NqtRIKhRJSkBZwCYnYSmQDGlHu7u7m2WefJRKJoNPpKCoqorq6mtLSUvR6PYcPH864KW6B8CSAZBZiLSojgvCk2odHq2NpaGhg+/bt0aiDKMWXqGLjVKMhiqLQ19fH1NQUTU1NWCwW3nvvvbTnI7KHTrLQVHOTk5OUlJSwadOmxWQn7KXUnHo6S1UhnB1P05SQrXSWBhFpLQWYD7dRaT4ibmIJIl9TWqkiVu0VK4vv7e0lGAzS2tpKOBzGbrdHo0BFRUWXfRQmFqJl5LlOaWmQJInW1lY+97nPEQqFOH/+fFTN5/dfWtPGxsaEZCBWQ4HwCIboZoHJjOX3+2lvb4+y5dg6FpGLo0jTz2QxNzdHe3s769ev59ixY9H6nXxxXU9lDE0+X11dzbFjx7hw4cKyxS+dZoMAc0HIZ4VWtgqWYyEirTUVHqcyB02Xc0F4sr1Pk8mE1WqloqKC6upqVFXF6/XicrkYHR1dJosvLS3FbDbnrOYyXYgmlG63e1F37Vzi61//Omazme9+97tcc8013H///WzcuJEnn3ySZ599li996UtpR+gTQYHwCIboZoGJjKUoCoODg4yPj7Njxw4qKlJtS5f4vER2lE4E4XCYrq4ufD7fMoVZriNOqY6hObXPz88vks/HGyPddNaIO/sS22SQLUl6LBwC0lpuJUIgMiZoRonjSovwJLJPSZIoKiqiqKhoRVl8MBjEarUuUoUlG23PVcO+TPho5bqGR8Ozzz7Lj370I/btearBNgAAIABJREFU20cgEGDXrl0cPXqUG264gd///d/n5Zdf5rbbbsv4PAqEJwGkktISgUSIxdzcHB0dHQk318vWvETi4sWL9Pb2smnTprjmrdm0qFgLkiQl9N1ovZDq6uo4evToomNaqvRKN50FMJHHHlpGHVTbsk94bAY9Vr0Ov5zebz4T7gSye2PJVdFytve5lloqEVk8QHFxcTQKZLVaV13Tc9XjSDThcbvdWYmarAVNmVVZWUkoFMJisTA/Px99/5Of/CQf/ehH+cEPfpDxuRQIT4JI9MldZEprtYsuFArR1dVFIBBg79692O3ZK5wURTDWQiAQoK2tDYPBsKrthajFKRt9eCKRyIqRKg1Lz7V001kAc8H8JTy1dgl9jtIQFRYjI2lGeSYj80B2FSi5ivDkYp/JkIC1ZPG9vb34/X7MZvOiKFBsseyV0mXZ6/XmRQ1PMBhk06ZNtLW1sX//fnbv3s2DDz7Ivn37kGWZZ555JmuO7gXCIxgiU1rxoKoqY2NjDAwMsHnzZtavX5/UIiRiocx0hEdVVYaGhhgZGWHHjh2LzOYyiUwXLU9NTdHV1cXGjRvZtWvXir/D0jGMymBac4L8V2jlCiIIT1hVKal2C5pRYrgaU1qpYjVZ/Ozs7DJZvNVqveybDkL+FC0bjUbuvPNOdDodRqORO+64g//1v/4XFy9eRJZlWlpa+NM//VMg8+d1gfAIhmg/rVh4PB7a29ux2+0rOn6vBo2opNtuXFSHZA2xJ7nWN6isrIzjx49n9UlLlPHn0u8mFArR0dGBLMsJNUWMnYcy04vO6Eclve8hLOcv4clF/Y4GUWkttdQraEYJ7u8qKFqGzJGs1WTxIyMjOJ1Ozp8/v8gtPtOy+EwQnmxFTlaD2WzmU5/6VDSN9Tu/8zvIsswTTzxBIBDgG9/4Bv/zf/5PIPNNfguEJ0Ekk9IKBtN7YlyKSCRCf38/MzMz7Nq1K+XKe1GER1SHZG1OGkHo7e1ldnaWpqamnFyooiM8qqpy8eJF+vr62LJlS8KSy9gxPOMvo25ITwYUDkbIY0V6TiM8sFC8PJpmlMejkwnLToz67KhiriTykQ/7jFV7lZWVMTw8zJYtW3C5XDidTkZGRjIui89E0XI+RHhggWBq659Op+O2225bVKScrfO5QHgEQ3S6R5Zlzp07R11dHceOHUvrpMg3009trOnpaXp7e6mtrU37GNOdS7rfj1ZwnGj90UpjqKoK4SAu/TywLq05eV1iDGgzAR0LNTy5RIU5fcKjArORNtbpT4iZ1Fr7y0EBMWTfZicXJEsrlF7qFp9pWbyo/m0aPB5PXkR4NLzwwgu89NJLTE1NodPpaGpq4vjx4+zevTtrTSULhEcwRKW0AoEAHR0dhMNhjhw5IoSp57J/TjyEQiG8Xi9DQ0McOHAAq9UqZNxUodPp0v7tJEnC5XLR0tLC9u3bqaqqSmkeqqqitjyKa0t5WvMB8Hiz20IgGayzSRh1uSU8dqMei15HIM201lRogmpTdp5Uc6UkyjZyRXjiEY/VZPFOpzPqFm+z2VKSxV+pER6fz8ff//3f853vfAez2cy6desIBoOcPn0am83GPffcw+23356VuRQIT4JIdHFJl/DEFuxu374dVVWFXQS56J8TD6qqMj4+Tn9/PxaLhaamJiFkJ92bQLrGnz6fj66uLlRV5dixYymnDrUIj3+ujYh5d8rz0TAXyN8bYy7rd2JRYTYy6ksvyuNTFXzyIHbDJjGTWgW5UEzlAvmeRltNFj85OZmULF6W5ZRMj1dCrgmP9j2++OKLfPvb3+YjH/kIf/7nfx4V2vT19XHffffxpS99CYfDwUc/+tFC0fLlhnRIhdPppL29HYfDES3YHR8fz1nn5kzA5/PR1taGxWLh6NGjtLe3C20amK4LfCpzUVWVwcFBxsbGqK+vx+12p1UnJUkSxvH3cFeKiXjNhvP3Ms91/Y6GCkv6hAdgJtSTFcJTiPBkDulEWtKRxYuor1x6HJn2plpr/zqdjpaWFtatW8e3vvUtSktLo+duU1MT3/3ud/nQhz7E888/z0c/+lFhPpQrIX9XwssUqUR4wuEw3d3deDwedu/evag7Zi6tKkQitht0rAO46KaB6SyOqczF4/HQ2tpKeXk5x44diyo90oEkSRS3PUPfddvSGkfDpGJeKJbJQ+QL4RGW1oq4qFOC6HWZ9Zu4WggPZL9uSHRqKVFZvKIoyLKMxWKJusWninw4PzSytW7dOioqKvB4PJSWli6al6qq0ULxbKBAeBJEJlJasSqeTZs2xe3NItqqQiThSfSi0iJXFRUVy7pBi5K4Z6NpYCyWGphqyjkR89CHPSjBOQLF6XfvlSMKs1J2m+Ilg2ybhq4Gh9nIWJpRHhlwRtpxmPaLmdQKyIcb2pWKbESV4sniL1y4gCRJi9zi05XF5+ocmZycZG5ujuLiYj7wgQ/w8ssv881vfpM77riDdevWRTvS/+AHP8BkMvHhD38YIOPfe4HwCEaipMLr9dLe3o7FYllVxSOSpIgcS7uxr/YkFIlE6Onpwel0LotcxY6TL8qxRGt4lpp9xl6kInr5VHY/i7tRjGuwzxlElbLXhTsZVFokrIb8uWlXWNInPABToeGsEJ4rySk8n5CLVJBOp0Ov11NTUxPtmh8KhVKWxee6xuurX/0q3//+96mrq6O8vDyayvvZz37G7t27sVqtdHR00Nrayq/+6q9SV1cHFPrwXHZY6weLjQzs3LmT8vLVVTj5mtLSxlqJ8GhdhRsaGtixY8eK34uolJaISNFac1nJ7DOZMdaEqmIbepfJXzuS+hgxcHtyX6S+EvIpugNQZNRj1ksE5fQIq1MJ8/Z7L2OQHNGbU3FxsVCCku0bWq4MNXOBTNeRrISl62kysngtEqTJ4r1eb0J2Q8888wxf+MIXkGWZ22+/nbvvvnvR+8FgkN/7vd+jpaWFiooKHnnkETZt2hR9f2hoiKamJu69916++MUvRl+/7bbb2LdvH+FwmJmZGSKRCH6/n/HxcWZmZpibm8Nut3Ps2DFefPFF3nnnHTZt2pTx6FqB8CQIEYvLzMwMnZ2d1NTULIsMrATRKa1QKCRkrJVu7MFgkI6ODhRF4dChQ1gsljXndDmktFYz+4xF2hGerpdRVBmPI305OsB8aPXvP5fIl/qdWFSYjYz50r9G1m2VKFEacTqdjI2NRW9OsSmKdBQ52U5pXU0ptLUMSzO539WI1lqy+PHxcc6ePcvTTz9Nc3Mzer0en88X169P298dd9zBc889R319PUeOHOHUqVM0NTVFt/mXf/kXysvL6enp4fTp03z5y1/mkUceib5/11138aEPfWjZ2MePH+f48eNrHrNWu6QddyGldQUgGAzS2dlJJBJJut+MXq8X1rk5k+kxVVUZHR1lcHCQbdu2JezSm+8prUgkQmdnJ36/f0Wzz6VjpEN4pJan8GyuQRV04U87I5DZ+tmUkS+S9FhUm0xCCM9kZJr1dit2uz16cwqHw9Gb0+joaDRFoZGgZDr3ZpuA5MqdPRfIlwhPIlgqi9+zZw/XXHMN//7v/87k5CQ33ngjAIcOHeL48eN8/OMfjz6Evv7662zdupXNmzcDC67lTz311CLC89RTT3HvvfcC8LGPfYw777wzeu49+eSTbN68ec1IknZcHo8nupaWlJRQX1+Pw+HI6nlVIDwJIpnFJfamNzw8zPDwMFu3bmXduuQ75hoMBrxeMT49oqNFGjnwer20tbVFQ5TJSCtFq7REjqGl5TZt2kRTU1NC50Ba83BOoE6M4tovJp0FMC1nf+FOFPkY4bGa9dhlGW+aN7ygquKReyjWbY++ZjQaqaiooKKiAriUotBqNDweT7RQVSNBK9X2XQ0RnlxFlXIV4RFBKnU6Hbt37yYQCDA+Ps4PfvADfD4fLS0tvPbaa4vGHx0dpaGhIfp3fX09586dWzRe7DbauTkzM4PVauWb3/wmzz33HH/1V3+14ny0PnIPPvgg//Zv/8bIyAh6vR6TycS2bdv4/Oc/z0033ZS137lAeDIAvV7P3Nwc3d3dlJWVpdWETnRURqQlRDgcpre3l8nJSXbt2pWStFCv1xMOp299ICJSpJGVUCgU7Q+UiNlnLNKJ8EivPYSChGtd8t2Z40GWVaYt6Su9MoESE5SY8i/CA9AQ9tOhT/97mw73U2zcvuL7sSkKrWgztlB1aGiISCRCUVFRlARpcuVsFy3newNAkRAtS88FYp3SbTYb1157Lddee+2ibeKtU0uJx0rbfPWrX+Wuu+6KW8e4dNvHHnuMP/zDP+TEiRN88pOfxGazMTY2xpkzZ/i1X/s1nn76aW6++eZkDzElFAiPYGjFWZ2dnezevTvtTpf5qtIKh8O0trZG/a9SXZjyKcIjSRJ+v5833ngjKbNPIfNQZNTut/BtqEIWpBDxT3pRdPkpSc/H6I6G0mI7CLAfm4l4aVC8GHSJq+SWFqoqihKNAmlyZaPRiN/vZ3Z2ltLS0qwoii63BoDpIFcpLZFIpMtyfX09w8PD0b9HRkai6del29TX1xOJRHA6nTgcDs6dO8djjz3Gl770Jebn59HpdFgsFu68887oZ7UI3X333cepU6f4/ve/v4ggqarKr//6r/OVr3yFkydPJlRknS4KhCdBrBVyU1WVyclJenp6MJlMQsgO5J9KKxKJ0NXVhdPppLGxkQ0bNqQ9J1GEJ52cfyAQ4MKFC4RCIU6ePJmymV3KEZ73/gNCYVyNNSntNx7cc2IK1DOBfKzf0aBzlGEfnsRrSq/4SQHmw21UmlNPUep0OoqLiykuLqa+vh5YqAlsaWlhfn6ewcFBFEVZFAWy2WzCUwRXizs75C6lJfL7dblcaxqHHjlyhO7ubvr7+6mrq+P06dM8/PDDi7Y5deoUDzzwACdOnOCxxx6Lpp9eeeWV6Db33nsvRUVFi8hO7PF0dXXx13/91xQVFREKhaJrpMlk4i/+4i/44Ac/mDWCWSA8AuDz+Whvb8doNEZPIpEkJV8aD05MTNDT08OmTZswmUxCHG5zXbQcW2y9detWBgYG0jqulAnP288A4KpJrNg7Ecx7VchTkVY+R3gAGpQwHQKqvafC41QKLho3m80YjUa2bt0KLBADt9uN0+mkv78fr9eLxWJZJFdO17KgkNLKLES3GUgkwmMwGLj//vu55ZZbkGWZz3zmMzQ3N3PPPfdw+PBhTp06xWc/+1l+93d/l61bt+JwODh9+nRS81BVlXXr1vHss8/yK7/yK8vW1tbWVkwm05pqXlEoEJ4ksPRmpigKAwMDXLx4kR07dkSLEUU5pkN+pLQCgQDt7e3o9fpok8SBgYG8UVdp4yQ7H5/PR2tra7TYWqfT0dfXl9Y8Ulq0pvtgZppARTFBu7gU1FxYn7+Ex56/ER6AkiIbCLiE3UqEQGQMi6F27Y1ThCZ317p9w8I163Q6mZ6epq+vL9rCfy0Dy5VwNUV4cnGsmXBKr6lZO1p86623cuutty567Wtf+1r03xaLhUcffXTVMTQV10r44z/+Y+666y7MZjPXXXcdVVVVRCIRuru7+cu//Es+8YlPrDlPUSgQnhSh9WVZt25dXLsEUSQll+RJVdWoymzHjh3RuoJUxlptTtmu4Yk1+9y1a1e0+aOqqrmRwp5dCCN7toi9KU7r8pPtWA1QYclvwqOvKMc+MoXXmH4UcybcSV0GCU88aNYFmjJUM7B0Op309PTg9/uxWq2LokCr3XCvpggPXP7+Xbl2StcgSRKf+9znmJ6e5oc//CFPPPEEJpOJUCjE4OAgN954I9/4xjeyNp8C4UkSoVCIzs5OQqHQin1ZRJKUdGtTYpHMRex2u2lra1tRZaaptNKFyJRWIuNox6WZfcYuMjlprBYOQn8bAM765NsWrARVhSlL7he8eKi36y6LJnb1kRCdAgjPZGSeGiWCTpe75XapgaWqqtEo0OTkJL29vQCLokAWiyX6O11thCfbuFIJTygUQpZl7r33Xm655RbeeecdxsbGKC0t5fDhw9x0001ZnU+B8CSBsbEx+vr62LJlS9QALR5EEp5sQ5Zl+vr6mJmZoampacXCN71eTyAQSHt/IlNaqxGwWEuP5ubmNQv6soa3HoeITMRqwlsuzjHYODqFNVxJWJ9/l3h9nsrRl6K0WExaK6yquCMdlJp2pz+YIEiShNVqxWq1RtWIkUgkGgWamJggEAhgs9miDtdXS0orFxBNeNxud16scR0dHdx99918//vf55prruGaa65Z9H6204f5txrmMUwmU0I9dQwGgzALh2xCS9PV1tZy9OjRVRebyymlpZl9rlu3Li0JfUbw3gsAuLfWgqALXwpF2Pra2/x/lVZOu7dwrmqzkHFFocE7BWQ3xZMK9I4y7KPTQtJaU+GhvCI88WAwGCgvL1+U4vX5fLhcLiYmJvB4PDidzmgEKF17jLVQIDypw+Px5JTwaETm4sWLnDlzJpql8Pv96PV6JElCp9Nl/fctEJ4kUF1dndBNXqSyKhsIh8N0dnYSDAYTtr7IdioqkXGWEp5EzD5zipF3wekCwL1BjDs6QN2LLZjlMAa9mdv13Rwen+Ch8r04Lfnhml6/Lj97Ay2DJAlLa83JAcLyPEa9uChepiFJEna7HbvdHvVlqq+vx+l04nK5GBsbIxQKRaNAazl4J4tcqKVyZWdxpaW0tKjNgQMHuO2223jkkUf4sz/7s6RslTKBAuHJAESntDR1mKjQnzaWqqpcvHiRvr4+Nm/ezPr16xPeRz6ZfsYbJ1Gzz5zi3IIJn6LT4aqqEDJk+ds9OIYvIlVfWlj2W11s877KadcWXqvObbTHKEeors19bUGiKC2ygQD9gQrMhttZpz+R/mA5gNbZ2WAwrGiPMTo6itvtxmAwLIoCpdrm4WpqdnilpbS0e8zY2BhvvPEGjz/+ODMzM+zcuROHw0FRURHFxcWYzWZqa2sXCWIyiQLhyQBENguES+mjdHtpxI4VDodpa2vDbDZHpeapjCNiPiIJT6zZZ7JGrVlFwA3DC4Wivk3VKAJ+W8vYDLUtCwXQOtvi7rt2vcJn9d0cGp/gR+V7mc9RtKcu5EEvwLYhW9BXlGEdncEvoJvxVHiCavPl6Tq+Up+YePYY4XAYp9MZ9QiLNUnV7DESITK5KpS+EghPMBjMWm+beNAIT1dXF2NjYxQVFfHd736XkpISzGYziqJgMBiYnJzkj/7oj/ja176WFbJZIDxJIJnoh8gIjzaeKMLT39/P1NTUot5ByUJUZCZdd/HY+Xi9Xs6dO5eU2WfO8PppUBaO27Up/e7Kel+QjS++gV5VUVGRzPEXDi3a84hrM2ert6S932RRr7/MatskiYZIkC4BhMenKvjkQeyGTenPK8tIhnwYjcYV7TGGhoai9hiaHH4lewztpphN5KrLsqgH2ljkw/r3oQ99iK1btxIMBvF4PHi9Xnw+H36/n0AgwMTEBNdddx1AVr73AuHJAESntERFUzRTQpvNtkySnas5iUAoFKKnpwePx8OJEyfSLqQUkT5cc4z2Vxe2A1y1aXZXVlXqf/EGZn9w4W/j6guHXa/wGX0Ph8cneLBsH/PW7EV78r3DcjyU2q0LPhECMBPqSZvw5KLOJB2z0nj2GKFQCKfTyfz8fNQktbi4OEqC7Hb7VZXSikQiwgrAtbUnl4RHp9Ph8Xjo7e2lpKSELVvWfrjKxnwLhCcDEE140h0vtni3rKyMhoaGtC/qfCA8sTVIdXV1GI3GtBcNEfVSa47Rcwa8PgAC1WWE0gw9V51ro3RiJvq3boXozlLstbq51/cqP3Fv5tUsRXsaqvM0xbgKDBVlWMdn8RsEpLUiLuqUIHpd6udprroei4xAmEwmqqqqqKqqio6vqcAGBgbw+XxEIhFKS0ujNUHZiPZcCXYWuSq8jsU//MM/8Ld/+7eMj49jNpvZt28fd999NzfeeOOybbP5fRcITxJIdJER2SwQ0iMX09PTdHZ20tDQwPbt22lvbxdCxnJNeAKBAG1tbRiNRo4ePUo4HGZubi7tcbVUXToX4VpjSG8+iXZ2uNPsrmzvH2fdhW7g0rkpWRK/rO16hf9X38OhLER7dIpCTX3p2hvmG3Q66sNBugUQHhlwRtpxmPanPMaVaPOg0+miTQ8bGhqAhR4uJpOJmZkZ+vv7URQlGgVKxR4jEeSyaFkUoQsGgxltF7AWfvrTn/L1r3+dw4cP88UvfhGXy8X999/Pn/7pn/KTn/yE7du35+QchgLhuSyQShF0KBSio6MDWZY5dOhQtIAt32pvkoWqqoyMjDA0NLTI7kKW5bxwXYc1vhv3FOr4cPRPVxrdlY2eABtefgsdixcOyZb8ZX0p2tPIq9VbU57Talgf8mA0iTNHzSbK7BZhaa2p8MhlR3hysU+dTkdFRUXUI0yW5WgUqLe3F5/Ph8ViiRKgtewxEsGVULTscrly2oLjJz/5CSdPnuQ73/lONIV5ww03cP3113P+/Hm2b9+es7kVCM9lgGSKoFVVZWxsjIGBAbZu3Rr10okdS0RkRvTil8iCqpl9FhUVLWsAKZLIpTvOaoRHeu1htLfCRRZ8palJRyVFZcMzZzEu6S6toqKzphaJWIj29HJ4fJIHy/YyZxW7aNYTFDpeNmGoKMcyPktAQJTHKYcIytOY9alJcdOpp0kVuaqnWepRGGuSGmuPMTU1FbXHiI0CxdpjpLLPbEEk4cl108HW1lY+9alPUVdXRzgcJhwOc/DgQWpra5mamgIu+RZmu9aoQHiSQLI/jKinokRJitfrpa2tLer+HS9Emo+2F2vVvKiqysDAAOPj44vMPmORqX4+QsdQVdTuN6N/uremns5ad7YV+7xr2euSIf3Feo/Vzb2+s/zE1cgv14mL9jTkR9/D1KDT0SAorQUwG2qnxnptSp9dSSKeSeSjl1Y8ewxZlqPijMnJSfx+PzabLaoGKy4uXpVYXAl9eNxud06bDrpcLhobG5EkCaPRGFXgybIcVQXnqoN2gfBkCNpNT8RJvBZJURSFgYEBJiYm2LlzZ1xCsHRe+YTVal7cbjetra04HI5VlWUiCU/GUlqtz0Dgkizb1ZBad+XSsVmq2nvj79skZiGx6RX+H30vhwRGe+or89O9PVGU2SwgKIs7GZlmvaIgpbDwXy0prVRIll6vX2aP4ff7o/5g3d3di+qFtChQOvsUAdGEJ5cprWAwyN13383DDz8c7dFUW1tLf38///mf/4miKNHv3mq1cvDgway1HygQngxBIykiTuLVjDrn5+dpb2+nuro6IZ+ofLS9iNdYMVmzT1GF4iJSWiuRL+mt/4jeLxWDHnelI+mxLV4vdc++ykq3nmQKlhOBFu151L2JM9Xb0hqrrj73ZobpwFBZjnl8lqCAKE9QVfHIPRTrkq9nuFzIRz7sU5IkbDYbNpuNmpqFfleRSCQaBRofHycYDEYbI/r9/pxER0Sm0nJtK/GJT3yCoaEhAoEAIyMjBAIBzp49y/79+zl79iy/+MUvCIfDqKrK7OwsExMTUbVeplEgPEkgmUVGpIop3liRSITu7m48Hg979+7Fbk8sX2AwGAgGxdVSiFh8lxKEXJp9iogUxY3wzAyiTk1G//Q0rkdNkgzrZJkNz5/HEFn5vJJsYlIusbDpFW7T93FofIoHy/Ywa01+Ma0KeLDas9M+PmN4P63VIyitNR3up9hYIDzZ3qfBYMDhcOBwLDxwaCapWnfo6elpxsbGFhVDZ0P1JOo3zXVK67777ovW7oTDYUKhEMFgEJ/PF/07EAgQCATwer3R3yEbKBCeJJGoOklkrcxSldbk5CTd3d1s3LiRnTt3Jk3ERKW0RKXttHFkWaa7uxun05kzs09RNTxLzxHptYcXZUPcm5JPZ9WfexfL1OyK76uoSNbMXdK734/2PDC+mZbNydX21Kv+DM0quyi3mYWltWYiXhoULwZdcsVNuShavpJJVqxJqt/vp6ysjJKSkmgUKB17jFwg10XLudz3WigQngxBJOHR0lCBQICOjg4kSeLw4cMpPXXodDqh8xKRe9br9czOzjI0NERDQwM7duzIWZdQUTU8i0iTHEbtey/6pwo41ycXwq3sG6SsbWj1/eolJF1mvzerXuXzjl7e7Jni4co9uMsSI6X11tw3QxMBQ6UD8/gcQQE1BwowF26jynwkuc8VipYzuk+9Xo/RaFzRJHV4eBiPx4PBYIgSoJXsMXIBt9sdlYMXsBgFwpMhiDQQ1el0uN1uWlpa2L59e1r5TpHzEhEtCofDzM/P4/V6OXjwYM7NPkXV8CwiTW89AeFL33mgroJIEmTVPudk/X+/s/aGpuypSw5XutgVPsuDXZtp2b52l+Z6R2qO2XkHnY76cIBeg5jo4+T8IFXrkiM8uSpazkVEI9vHuVItTTyT1FAoFI0CafYYRUVFi6JAicxf9O/p9XpzWrSczygQniSRaEpLVHGwx+PhwoULhMNhTp48mXY1u8jaIp1Ol9ZYWmrOYrHQ2NiYc7ID4mp4tDFUVUV69xeL3nc1Jm4WagiFaHjuHDpl7XNOMmf3crYbFT5f3cP5nkl+VLkH1yrRnvq6y7DD8goQmdbyWnV4+89gb7wm4c/kKr2UD2aUmUYyEWuTybTMJFVrjDg4OLjIJFWrBYoXBRLd+yfXKa18RoHwZAjpprRiVUo7duygu7tbiHRPpCw9VfIUCoVob29HVVUOHz7M4OBgXvi/gNiUlizLqGNtGObnF73vqkuw27CqsuHMW5hcidW/6DJYv7MaDla62BE+y0Ndm3kzTrTH7vZTskqrhMsNxopyTBfnCQmS0s64L2Cf3whlDQltfyXX0+Qa6RxnrNxdQzAYxOl0Mjs7y8DAAIqiLIoC2Ww24U7puS5azmcUCE+GYDAYCIVCa28YB7Ozs3R0dFBTU8OxY8eQJElYVEZ0bVEy84o1+4ztAi3a7iIrqiklAAAgAElEQVRd408RER6fz0dJSQmmNx5d9F6o1IY/wcVofVsPRX0XE9pWVVUke+4uZ7tR4Q+qezjaM8lDFXtwlV+K9qzz+oArh/Cg11MfDtAnKK01XV3KNs8rBIp+C8mwdqozV0XLVwPhEd140Gw2U11dTXX1wkOOoii43W6cTid9fX34/X4MBgPhcJjZ2VkhJqlut7sQ4VkBBcKTJBK9maaS0gqHw3R2dhIIBNi/fz82my2VKa45L5EprUTJwVKzz9jQrqg5iVCNpUO+VFVFURQqKysZGhpipL+bDwx3LdrGvbUuobFKJqepOtuW+M71OiR97m9IBypdbA+f5UfdjbyxbUHJVWvIr0aXIuCwmuhLYDtJljEFg5iDQUzBIKbAwv+NwQjGWRemcBCLHEI22jHv0RPa+ok1x8xV0XIhpZU+dDrdMnuMmZkZhoaGmJ6epq+vD1VVo435SkpKkjZJLaS0VkaB8GQIyURSVFVlYmKC3t5eGhsbqampydjiku2U1kpmn5mYk1ZTlAvCo6rqQgpLVSktLWXv3r3oXv03kBenx1wNa5uFmvx+6p99Y8XmgvEgGfPnZmQ3Kvx+VS9Heid5yLGHDY4rb5kxVjooGriILhyOkhhTMLBAbqJ/BzGEwwn9jqpvHmZG0OtfQG68afVtc+Q0nc195irFne3UnSRJGAwGioqKoqaasixHo0A9PT34/X6sVmuUKK1lj1EgPCvjyluJ8gSJEh6/3097eztGo5EjR45gMmVWzSJy0VpLpbWa2WcsLgsfrBWgRXW0J+DYxVJq/+WibWWTAY9j9dSOpChseOFNDIHk0qHZLlhOBAcq3OwIv8acaV+upyIe4Qj7nn4RfYkYKbJk0BE+/x7Gm8tRpntQK1fuc5QrwpNN5PIYc6EMiyUwer2esrIyysrKgEv2GC6Xi4mJCXp6egCiUaDS0lLMZnN03l6vd81GtM888wxf+MIXkGWZ22+/nbvvvnvR+8FgkN/7vd+jpaWFiooKHnnkETZt2sRzzz3H3XffTSgUwmQy8a1vfYubblqdoOcT8m+VzHMkk9JaLfqhqiqDg4OMjY2xY8eOaL+H1ZBvC91KKq1EzD5jodfrhXR/Fq2wWguxUZ2lrr/SwBvg8S7a3rOlBnWNp8e6t9qwja/cXHDFeeeoYHkt6J0Bit55GeXQJ9HlISlLFVJnP+qcD9VeLCyVaHSYCDzxMpbfMuAvqUUyxU9p59s6kAlcLUXSsHYaLdYeQzNJ1ewxXC4XFy9eZHZ2lu985zscPnw4+rC90gOmLMvccccdPPfcc9TX13PkyBFOnTpFU1NTdJt/+Zd/oby8nJ6eHk6fPs2Xv/xlHnnkESorK/n5z39ObW0tFy5c4JZbbmF0dFTsF5JBXDkrUJ5htQhPooaYsRBpRioK8UiddmwVFRUcP348oUUr3yI84XB41W1Wi+pEx3nz8WWvuTau3l25fGSM8rfim4KuBV0OC5ZXg3/Ij9njwvtYC0WfOpbr6QhD5I1+DAoo80H0FeLaKZgqdQSePov5FgOhrf8D4hCbq6GAON/WukwilTT8UnsMRVFwOBy88sorTE9Pc80112CxWDh+/DgnTpzgV3/1V6N1Q6+//jpbt25l8+bNAHzyk5/kqaeeWkR4nnrqKe69914APvaxj3HnnXeiqioHDhyIbtPc3EwgECAYDGbFekMEruyrJoeIR3hkWaazs5O2tjaam5vZvn17wie6yGJjUYidk6Io9PT00NraSlNTE9u2bUt4Uc43wrPaGFpURyM7cZ+0fXMwtrgrsipJuNat3DDS4vZQ9/z5pOp2omPrQDLm581BCSycA7a3zhO+eGXYSxAxoR8eBkB2y0TC4qItOqsBye9CfqcVfe9/xd3maiggFt2bJp8holBap9Oxb98+7rjjDsrKynjzzTd5+umnufnmm3nvvfcYGxuLbjs6OkpDw6UWCPX19cuiNLHbaB2lZ2ZmFm3z05/+lAMHDlw2ZAcKEZ6kkWpKa3p6mq6uLurq6jh69GjSC5ZGoETU+Ghpm3QXFI0caI7t69at4+jRo0mPK1qlle4Y8QomE4nqaNC//mNYMoavoRJ5hdbzukiEjc+/jm4VU9DVIBny98ZgrSiF8XkkRcbwwtuo/+NEvKDFZQW1by76pKhTZTDVgToibHxTnQ3fm11YqstQihtQ1zUv3n8hpZUR5KpQWpZlYbYUkUgkSp5KS0u5+eabufnmmxdtE+84l55Pa23T2trKl7/8ZZ599lkR084aCoQnQ9BOjlAoREdHB5FIhIMHD2KxWFIaLxNy8nQXFEmSmJycZGZmJinH9pXmky4yVcOzWq3OMqgqdL6x7GVXY+2KH2l47R3MM+7U52zO0+iOqoOJGCLwZgtccwQ2XN7LTvj5F4h9plUHOlC21KGLOIWML+klzBtt+H/+OrZiO8GSOiRr2aX9FQjPFbNPECuF93g8a67D9fX1DL8foQQYGRmhtrY27jb19fVEIhGcTmc0fTYyMsJv/uZv8sMf/pAtW9a2lckn5O+j4WUOVVUJhUK88cYbVFdXc+DAgZTJDoj1wBLRfHBmZobOzk70ej1HjhxJmexAfhGe2DE0oqN9Vzqdbs0bjdT5CwgsL8B21cZPZ1X1DFDakV50QLLkJ4FQ5DJQlpyz//QgqpwfJoupwDcTwTwxvug1SZFRQqmf//FgcJjRF+nxP/kqpp4nFkUMs014chH5KBCe1OByudbssnzkyBG6u7vp7+8nFApx+vRpTp06tWibU6dO8cADDwDw2GOPcdNNNyFJEvPz83z4wx/mf//v/83JkyeFzDmbKBCeJJHIQuPz+WhpaUGWZY4ePcr69evTXqBERnjSGSscDnPhwgUGBgbYsWNHwgZ5mZpPLEQSnoRqdeJ9/q3/WPZaoKKYYBxCaJ+bZ/1L76Y1XyCnHZZXgxyIQ2y8Xnjm7exPRhCsgyso6AbbUUzLe0ylA/MmO6rHT+i5s+jbn4iej7kgPFeDlUWmmw6uhNUUVckikR48BoOB+++/n1tuuYVdu3bx8Y9/nObmZu655x5+9rOfAfDZz36WmZkZtm7dyre//W2+8Y1vAHD//ffT09PD17/+dfbv38/+/fuZnJwUMvdsID9XyssUiqIwODgYlWO3t7cLO5FFmZFqY6VCMDSzT605osfjyRuiImocSZKIRCKLojoJY34UJpdbQXi2LE9nGUIhNvzXOaQ0n55VibyVeytznvhv/OJF1GN7kCovsw7MqoT04osrvq14JXQCg1c6ix5jrZXwyAy6N15FDpZA83UEAoGoB9Na9WQicLVEW3JFeESntBJxSr/11lu59dZbF732ta99Lfpvi8XCo48+uvRjfOUrX+ErX/lK+hPNEfJzpcxjrPSk43Q6aWtro6qqKirH1lJHIgrSchnhWWr2qVXli5rTWg0ME0W6hEdVVcxmM8FgkHPnzlFUVER5eTllZWUJRbJ0Z38U93VX/ZLuyqrKxpdaMHoCKc81CkN+1nKoqgoXx1be4J9Po37pd5B0Ykh8VjCvQ3KtUqcz0oO8cwf6YGL+Z4nAVGslMh0k/E4/5qKX6P7rxwk41lNy3VECB2SMDZeixxr5EU0UrpYIz5WQ0ioYh66OAuFJE5FIhO7ubtxuN3v27FnErrW6GxGEJxemn6qqMj4+Tn9//yKzTw2iLSFEjJOqLYSmwDIYDBw8eBBVVfF4PMzNzdHX14fX68VqtUY7oJaUlCxaHGdea6WqZ3l6KmI14SkvW/RaTWsX9kExYWCdKU8LlikB7yq1SZOT8NogfCAxb7F8gOdMC2vdStS5AKpVHEGQdBLmTXYCnW7CZ9vZ/NG9dD/uZu6hp5n+hx9jKLZjP9CE9cAurPt2YKhdMKnU0rDaf+ncyK+WaMuVEuEpEJ6VUSA8KUBz5Z6amqKrq4sNGzawc+fOZYuc6DSUiG7E2lhrEYxAIEBraytms3mZ2Wcy4ySCXKa0VlJgSZJEcXExxcXFbNiwIdrefX5+nrGxMTo6OjAYDJRY7fiffA3H/JtI9cv37dlSu6h5XMnEFJWvdaR3oDHI14JlOZhAM77HnsC79Q+wV18GRcyKgaK3WtbebmIQZdcu9IFVoltJwlBmQl9uQp4Loba0U3uknvf+aQIAvRe8r3VgaB1G/9P/xlBqx7KxFvOWekqONmOsdiyK0GiF98kQmKsl2pKrZoeFCE/2kJ+rZZ4jGAzS1rbgZB2b4lkKkVEZg8GAz+cTMtZqREVVVYaHhxkeHmbnzp2rWl7kI+FZq0uyhtiojvbZ1RDb3l2TcE69doH3PvcdAgMT7P5i/Ly5a8Ol7somn5/6595MqbngivOy5eclHJ4PJqSIsD36POoffhhJyvN6notBpATP9eDoNFaH2DSQaYMNvzOE6g9h881Qf20FI6/MIHv9yN6lDR3PR/9l39VI+fUHKbvuILZdm6LneyQSWRT9We38v1pSWrlqdijy+3W73Wta+VzNyM/VMs/R0dFBbW0t1dXVq24nUkqejaJlr9dLa2srxcXFq5p9atAiXelC1MWeKHFKqq9OHMj+IF3f+jH9//gzUBTKN+ox6ZfvV9FJuKoXCKOkKGx84Y2kTUFXg6qqeeuhFR6/SEL9V3t7oW0OmkszPaX08GoC0Z33YXJN4XVsoYhpYbvXW/ToG6uReydRp5zUb69irt+Cd2T1OjBvez/e9n5GvvdTjBWlOK4/RPl1Byk9sQfJakZRFGRZjq4H8dJguYq2iBJ8JIpcpbREwuPxsHHjxlxPI2+Rn6tlnmP//v0J3VjzQVm10lixkZBYdVlTU1PUpXct5Fvzs0RsIZKJ6sTDXEsn7/7x3+LtvdSKvflmC7Cc+Pk2rUN5f9Gua2nFenEu6f2tBkVvyLvfAEBRjZhdSfQWeuDHqF//IySzODIoFGETvJeclN4850RxSOjinBepwlKl4vNUo05MogxP0fRrNbz5QAA1saAm4RknE4+/wMTjLyAZDZQeacZxwyHKrj2AdcP6qOxduz60hwItGpRNXC1pNNEo1PCsjgLhySBEp7REEp5AYOHJMBWzz3zFaoRHdFQnuk8jlFUCcXbr2rSQznIMjeJ4py+p/SUC/a5miAyvvWGWIctly6w1VkUkQuTHz2G47fr8tJ0YmEs6DSk5p1Fr9kBwaO2NEx1TVbDuqcc3sVDwLg2P0/wb1Vx4bGaNTy6HGo4w/+o7zL/6DgDWLfVUXH8Ixw2HKDmwE1W30HE8EokwOjqK1WqNPiRlSg0Wi1yltLIdVRLd1LFAeFZHgfBkEKKVVaLH6u7uZmZmhubm5iviIolHeDIV1dHQdLMVSYnjvQW4aqqxutzUvnB+2fsioDPpIQ9V3Yo3edZiePc9PG17KW7Ow/qDF19O6WPK8DDSOgM6VdyPpHOPYDy0l3DLu6CCNeRiw0d3M/T4e5BGdZi/d4SR3hFGfvAUhhI75dcewH5iN2PlJmq3bY7WrWnX0lppsHRxtRQtq6pY5/tC0fLqKBCeFJCMgWgoJCZMLzKl5ff7GR0dpbGxMSWzz3zFUsKTqahOLBqa9cQL7wSqS5GNRhr/81V0kcwU5EqqmCJ20VDmXCl9ruj0k6hf/X0kQ4I5mmzAZ0IaTS2KJnnnUYx70YUGhU7JZHcRtlrB70cKBKhZP0nlHfsZfGWSmXfH1x5gDURcXqaePsPU02dAJzF7YCfccBjHDYewbalf5De3UhpMr9enRYCulqJl0XVDHo+H0tI8r4fLIQqEJ4PIt5SWLMt0d3czOztLeXk5jY2NQuYmSmWQ7jixthBpR3Xe7ODdu/4ublRHw7pdRgwrqIvcm2tpePVtzLMrdBtOE6qkQwqIK4oVBVVVkUeHSGkJ12wnfr157W2zhfb0UobqYC9KnR2dIqalBIAUdBPZ24jh3IJSVL04jqmohC0bJmnYv43el6ZxDwqqF1NUXC3tuFraGfjrB7HUV+N4n/yUHmnGaLrUUkC75mKvwdgoUDJpsKulD0+su7kIFFJaq6NAeFJAojdlkYQnnot3MpiZmaGjo4OGhgbq6uro6xNTU6J1SU73otXISjrjaA0MMx3V0bDrRjNxi3cAi9NDSdfKZCldBMsqMAlMlYiCz29FH07j5v7Ci6jHdyNVZt+wchlUHaxiJZEIpIAXRb8ZnSKulgeglEk8dTVIowsRHaWnk8DG7VgGO9jVZMB3zU66nxkiOCM2ChgYmWTsof9g7KH/QGezUP6BfThuOITjuoOYqsoXEZqlDx/JpMGulqLlTER41vLSuppRIDwZhMhC41QjH+FwmM7OToLBIAcPHsRqteL3+4XNSyMZ6V606RInLYw+NzdHR0cHDoeDsrKyFXskxUMiUR0NJrtEcYkST5yFP6CjOM3IwFpQi0uAFYwscwidsraPz5r4xx+j3v3p3NtOzEtI7tTSc7FQ+7tQNlWgi3gFTGoBEir2nZX4Ri+lsCyDXbjXbyMyMUv5VCu7j5uZNWxm8L+GUALiv0vFF2Dm+XPMPH8OgKI9W3Fcf4iKGw5jb2qMkgftml6a9lotDXYlkI9E9ymyUDocDmMymYSNd6WhQHgyCJGFxqlgqdmnRpryxXk9FhpxSsWGQ6vVMRqNnDhxApfLxdzcHCMjI4TDYYqLi6OeWFardRl5TCaqo6H5Q9a4ZMc9p0PSS0iWpA8jKdgrSsGXf4RH8kTSF2JPT8PZAThZn/6E0sH5diHDSOEgiuJAhzjCA6DzjGE8tp/wuUuS+eKL3YRqmhhsK6OkRkeFv5eym22MOKuYenlswW02Q/C814PnvR4G/+40RUf2YGyop+J4E5XX7sVUXhwlMEujQEvTYJFIhHA4nHZaOlnkomhZJMkSrfi6ElEgPCkgFymtZBAKhVbtBC2S8OTSByterY5Op8PhcOBwOICFRcztdjM3N0dXVxd+vx+73U55eTnl5eWE2od570/uTyiqo0FvNVO7TQ/K4uP2OHUMn4mw6zcMK2W6hEFCgPFoBqBOivEI46dPou67C6koRwXMigF++Yqw4dT+dgIbqrBIS7sipweTaZZwcRG4L9WKmcbbaNi1hZ7nxpk2V+DYW0NDUT8bfruKoWELU2eHSUfRtRIMNVXoHBXMd44y/19vA2/T/8//DpJE2b4tVF2/n6ob9lN+eCd688KDzdK6nnA4TEdHBxaLBZPJFF1bNGd40WqwWFwJRcuQf/3R8gkFwpNBiExpaVitsHcts08NoqwcQJzTebLjJKrA0ul0lJaWRpULqqri9XqZGZ/g/J9/F88Tr8L7snLJakJXasPmKMVYZEVn1CNJoEZklECQiNtHaNZF7U4F3RKy43XpGHolgn29DknQd7visSMhBZPvvZJpKKoZZgWm8v71SdQ7P5IT2wl1PIhO4LUrKTJ6ygGxhEcKebEc3UXgF28sel13sZdtN9bR/3qAyf/uYMpooPRAFTXr59nw6Y10n/fjaptKe/+64iKMG+vxjs8zd2EEiKMSU1Xm3+5h/u0euv/mMfQ2MxUndlN1/T6qbjhA8Y4GJEnC4/HQ2tpKQ0PDIhk8JJYGSxeXe6F0LixALjcUCE8GIZJYwCUCFS/n6/f7aWtrW9XsU4PIi0J0SmstpKvAkiSJSNcoc997Asv0PMY9mwjNuwjPuSEUgXkXwXkXq5Xdbj5mIzaE4/dIDL0SQY1AVbMeEEtyl6GiCknOv67EckRwsWR/P7TOwu7EOn+LROCFV7CJHnSgA2XHJnQhsalIvacf/ZZG5N7+Ra9L06Ns3u9gpK8ad88k8693MQ9IDZU4NlloPLiNvjMzuAeSnI9Bj3lbI0GfzOy7fagDF5L6uOwLMvmLFiZ/sWDXYVnvwH54G+Ft1ez55K9R8T7ZARJOgy1Vgy39TCK43OuGfD4fNpvws/aKQoHwpIBcsWitJiiW8CRj9pmpOWXL6TztvjrBEH3/9zSD/5x4rc5SWMslrJZLxcp+j8TAyzLK+5kXa5GS+XSWo5K4T9I5hpwJBf4DP0a97wvZtZ0Im7D2dAkfVkJF8RnRCV51JVTMG234+qTlHa5ds9TX+Zks3cBMy4JSTB2eZmYYnBWlVO+tpe54Lf3P9a2q6FJVFXl9JRGDmWDvJMqZDmHzD1ycJfDvC4XPv/y/P6ekadNC+uv6fTiON2OwLU7JL02DxRIfbY2A5NNgopsAJgJZloUVGbvdboqKBIgGrmAUCM9lhKXRlGTNPjMBUTU8qxEnEX11nG930fpnf4cviVqdeNj1QUv0puL36Rg8I6O8fy8u36qP23VZNCSbmXws4VFn5sUPKsvwkxdQP31N9mwn+mczUOHyPoa7kHduQx8UVOv0PnTei5iOHyB0Nk5X76CfKnM/oaN1uF+/GH05MuNk8r+dSEYD1Qe2IJn1jL3QQcR/qW7KUF2BrqoaV+84/rYJoXNeCa62AVxtA/R+90l0ZiOOo7ui9T+luxuRllz/6ajBcg2REZ5Cl+W1USA8WYCo3KqW0krV7DMTyHRKK92ojhIM0/c3jzDwj0+mHNWJRWUdoEDALzH4iowcuERwbNvKyYZUXNLnUSfi96EooIwPk5FbyFtvw7VHYVOW5LYpWkkkCtUZQTWLr7cw6iYJl5aiOp3L3pMUmXrdEL6P7GHw5x3EFi2r4Qjzr3cC4Ni1AdlsweNW8U26mGsfgvbsEJ14UIJhpl95l+lX3qX9vh9iqiih6rp90QiQta5q2WdSTYPlQuUkkvAUevCsjQLhSQHJLFQiGupp0Ov1uFwu2tra0jb71BoZpvuUkymVloiojuvdHlq/9Hd4u8QU0jaeNCEpKsGAxOArCrI/ZoHUSRQVBSELXEQXEuu6LgIy5ejkDPYe+ueHUO/9g8zbTvhMSGNJOL2ngvF+lF270AfGhA4rRfxYjmzD//ybK25jm3qPrb/ZRM/PeyGy/Abv71lIe1nLS7E11hCeceKfXE6gcoXQjIvRJ15h9IkFBV3RtvqF4ufr91N5cjeGovg1LGulwZzvk8RwOJxxNVgsREd4Cimt1VEgPClCkqSEngi0qEy6J7WiKDidTqanp9m/f3/aoUstMpPuBZ0JlZaQqM79jzL4vcdRZXEFNRsPGAgFVQbPKER8i397x/FNGMJiPZPiQS0tRwrnn4eW4s9w9MXnw/f4q9g/fiSz+2nLjvt8+OIculLxUR69ux/9jq3InT0rbmMcb2PHr2+h9/lJIp745fnynBPmnFSV6DEf3s3cmIfptweEzlUEPN0jeLpH6P/np5EMesoP73g/+rOfsv1b0Rnir7uxUaDR0VFGR0fZs2cPer0+q2kwkdYShZTW2igQngxDKzROpzBtfn6etrY2TCYTGzduFHJSa4QnlUZ/S8cJBtP3CYq1hdAWm1TIjutCL61f/Du8XWJb+ZfU6JBklcFfqoQ9y4lu+VYzpN+Ud01IFdWA2PoPEVDnxcqt48H22jnUG48iVWUo9aDq4MUXMjP2EhjmLuIq3kSpPgPRugoZVbd6ewTdxV62Xl9L/5tmghOrnLiyTLC9Gxuw9dqNhMzFjL3aRcSXfypBNSIz+1obs6+10fnNh7FuXEf50d2UNm+i6prdlDZvRIohF7Is097ejiRJHD58eBnxiC2CFqkGi0Whhie7KBCeDCOd5oORSITu7m7cbjf79u1jeno67zoki1Rpud1uwuEwBoMh+ahOKEz/3/+UgX94TGhUR8PmD5gZOKMSdi0fW2c2YPaLJVgrQSqysapmPkdQJy+uvZEI/FMGbSfmJCSPW/y4K8Dm8qGUI7zuySq7CJ84QPCXLatuJ82MsXlvOSMD1bi71ybRoZGLwEXqN9vQb9zFROsYnoH0e/mIhqqqlB7cyXz7CPMPPh993Vhqp/JEE1Unmyk6tIVhyUvDpo3U1dXFHSdeMfRKajBt+2SjQCKtJQrGoWujQHhSRLIprWQRa/a5c+dOJElibm4u7whPujU82gJSVlbG/Pw858+fR6fTUVZWRnl5OaWlpWtGodzt/bR+8e/wtA+kPI8V5wfY68qY61aQXfGlUZXXNCKFe4XvOx4kg5x3hEdRbeDMTiqI6Wl4tR+uaRA/9vk28WOuAml+ErVmDwTEk2WDOkaowoE6s0YRvXuO+trAgmz9zcTmoXj9KG0dOCSouXknHo/C+Nnu5ZL4HMBUVYahsoKps8tl82Gnl/Fn3mD8mYUmjXqbmdDxJlwnm6k82Yzj0PZoB+h4yIQaTHTRcmNjo5CxrlQUCE+GkayfVqzZ56FDh7BYLpkyGQwGIekjbV6iIjypjhMbLrZYLOzatQtY+A7m5+eZm5ujv79/4YmttDTqh6WlB5VwhIHvPk7//Y+iRtI7FslkxFxbibG0GMloQAmFCc25UebnqFpvRp5eOfVQWg9kqa5TDeRhwXI4y0+Vjz9FZPcfYSgTGMlTDPDqGXHjJbrb4RGkKj06wc0qJTmE5UAj/ucTUA0G/VSb+jHdtIPxF1au/Yn70e5+jMDmI+tRHFWMneslNCfWMywRqKpK2ZEmZt/uJzKc2DHIviATL7zFxAtvAaAzG6k4soOqk7upPNlMxdGdy3oAxWIlNVgyaTCR3ZELEZ61USA8GUYyKa2JiQl6enqWmX1qyEfTz1TGWarAWlqrYzQaqaqqoqpqQXIqyzLz8/PMz88zNDREJBLBNufH9TdPEkhCgaWqKiZHKcbqcgx2G0gQ8QYJTs0TvDhDuHuxasZo0bHh4HrkyZVtHAylFozuzBcrAygWG+aMdPdLD7I7w52l4+3zX59A+qPfQJgTwHgASbANTCKQPHModXvRhcSfQ3r3AIamHUTaOtfeWJEp87Vh+vXdDP57J8l6bUWmZmFqlppqI5H9W5kbcuLrzU66S6ooQbGYmTyTXoROCYaZOnOBqTMLnaMlowHHga1UXdNM5Qd2U3l8F8aS1TsZJ5sGU1VVGOkpEJ61USA8KUKkgWgwGKS9fcGZ+ciRIysWOOcj4UnWPqosc6sAACAASURBVCMVBZZer6eiooKKigqUiMzA9x6n/29/snJURydhrqnE6ChFZzahRmTCTi+B8Rn8k4nJbPVmHRsO1SBPTK+6XdU1m5AU8V1540FXXQvkn4eWOp1913bT8DC0zsNeQT2ofvnG2ttkCOpgH0qtBZ0qXnJvrJKJGAyQ4EOXbfrCqrL1taCGwugHhqkETDduIaCaGf1lF2pYfM2VCpQdaWLmjW7kgPgQqxqOMPN6BzOvd8C3fwo6HeX7NlP1fgqs6kQzJsfqBGMpAdIITiQSYWRkBKPRGBVrpKsGKxQt///svXd8HPWd//+cbdKuVlr13mV1yx3b2NgmJgRCKCEc+f4ScpgSfDgQ6pcQAvelJZBc6CSXhBDMwQWckNyZmARTLBdcsY2bZPVu9bK72pW2z/z+ULRYVlutthn0fDz4g93Zmc/IuzOvebfX9MwJHj+jUCiw2yfuaDjb7DM/P5/ExMRp9xVqgsfT/UwX1fEEc20rpx94mcFTI/UyMk04UowWRWQEyrAwHMMW7AODuHoHcTb3QLN33UxypUDO8jScndN/PireHrB0lhClBUdoCR5RkkHP7KZXe82bbyM9eTdC+Cw7hhwqqDzlmzV5gWA1IypykflhrIHcqsc2P5ew456Lck/a1j3B3nwGGZBdGo2QmkrX8TaGO3yTkg3PSEJSqOj5pNIn+/MIUUR/rB79sXpqf/UuALrSLHcKLGF1KeGJMVPuYnT+WU1NDQqFgiVLlgD4pBtsLsIzPXOCx89MVsMzE7PP6fbl7boC1aU167k6Thdn/vgh3dsPgFKFOj+L4c4+7HozGC046PWZB7VMDtkXZuDsmH66rCopErkxMOksAEFFQAYbzgRRjAFX4P4GY3C54E87kG5ciyDMomC2sd9/VhIeIjXVImZFI3P5vr0/Vj3IUEIc9Houlj1uW/cAl9EExhri1QKqy0sY7LfRc9jLIn+ZgG5pMX2HahDtfujUmyHGyhaMlS3Uv/J3ACLz00i4aD7xq0pJuGg+mrT4MdsPDQ1RUVFBenr6uO6w2XaDmUwmdDqdX87zi8Kc4PESb1NaszH79HVKy+GY/d1zqi4tX0R1hhrbOXnvSxg/83/aSBAgd002zjOeGXMmrkpHkDyoj/ARQijW71iCfAk5cQKaV0COd3OuJAmcH5YTINOKSREcVkTikeH7bjdBdKBemInl45lFB2fatj4tooS9poFwIG9VBk5tNO37az2OIqlzU3E5CGxUZ4aY6tox1bXTuPkDACKykyi861ryvn8Fvb291NfXU1paOqUFxLlpMMAd9ZmqG2zOWmJ6gu+e9gXn7DTU0NAQhw8fZnh4mJUrV87Y2Xw2M33Oxd8prdEnE1EU3U8jMxE7kijS/Idt7LvsvoCIHQTIWJXmsdgB0EYGToBIShWCNfC1MtMh6kNAhL36JpLTuwGawrAKVV/wvKLORmqqRlT4JyUhN7WiXFgy8w+a9KSl9BG3zLdjABydPUh1taRnhjPvGwvQ5SdPuq2glKO7oARjTSemuiClT70k5bILyP7Xr1JfX09bWxtLly71SpTIZDKUSiUqlYrw8HBUKhVKpdI9Gbq7u5va2tqgGEifT8z9dfzMaCSlqamJrq4uiouLvTb7DNWi5bPnEfkiqjPc2k3F//0VAwcqZr0+T8m9OAexzXNvI01OHPLBwF18hcQUhECMcp4BkiRBl2/9oLzCYoF/fAZXl838s6eDlI6bAMHlRHRGIcM/ww9V0TYcKhVMUlM46brsVhKUTdiXp49xW/cFosWK/XQNOiDhqwUM22R07Kt1G/1G5GdgM9lCOqozEYpINct+9UOSr1zByYoKIiMjWbx4sc9a0M+OAh09epQ77riDl19+ecwYkznGMyd4vMTTL67VaqWvr4+IiAhWrFgxqzHkvvTd8aV4GmW2tTqSJHHm7Y+ofmIzrqGJh/z5g7z1ebhaZ2YYGblABwRwJo5OB67QEjyiFAlDfjba9JRdu5FWLkBI9LyWR5JkSDs+xled7b5Aaq7ClZ+J3GHw+b4Fq4GwVQux7Zp5R5ogiaTLWulal4l+dyczbVv3BHtDCwogd3ECrsQUBo0iXTtPhsRAw5mgm5/Nhf/1ICRHcfToUXJzc6dtSPEGSZJ48803+cMf/sBf/vIXCgoKfH6MLxpzgsdPiKJIQ0MDfX19aDQa8vPzg72kMfhS8JydvgLvojrWzn4qfvRr+nYd88maPCX3knm4WmZeN6FR9kMAayZl4XII/Dy3KTEOSKiDvYizeXVmthPmVjNRFv97gM0EQZIY7HUQ46Nu+3NR2FpwpCUjtnsXqUm2tRJ3bTH12xq9aluflqQkzAotfeWViDYHMYUphCXFYh0wY6hsATG0xU/E5QuJ+uHl1Jm6Ge5uorS0lJiYqTu3vMFut/Pggw+i1+vZuXPnnEu6h8zV8PgBg8HAwYMHUSgUrFixItjLmRBfCZ7RuRJNTU2YTCOh+BnV6kgSHf+zi72X3h0EsZOP6IXYiShJQuMMnOcSgCCGnkO6Rpp8Cm1Q6OuDvY0eb67xgxWJL4jUd+AKS/DLvgXRRXhx0qz2oeysovDKNBRa3/z7SzIZ5ORi1KTQerCVnr2nEW0jDRXDzZ3oD1ViqWshIiGCpNVFJFxYhFIX4ZNj+wq5WsUFv7mby7c8TmRsNC6Xi6SkJBobGzlw4AAVFRWcOXMGs9nskSXRVHR1dXH11VeTm5vLli1b5sTODJiL8HjJRDf1UbNPs9nMwoULiYjwz4/SF5M5Zyt4zq7VWbhwIXq9nra2NkwmE2FhYcTExBATE0NUVNSkaTxbn4HTD/2W7u2HvF6Ht+RcUoDY4l39RuKiWBgOnGmiJMgQrKE1fwdA6p16KGNQ2Po3pMX3IkRO3YEoiQrknx4I0KJmjjQogp/0pMx0BuXSMhxHvZ89JOtqZN66VJqPhmHt8jLVGqnFGZ9K/6k2bOVV027uNA5hODrSFSmTCUSVpqKOi2GofQBzg+fNBr4mMj+NC994kLC8ZI4ePUpiYiIlJSXua7QoiphMJoxGI42NjQwNDREeHk50dDTR0dFERUV57Kd16NAh7r77bv7jP/6Dyy+/3J+n9YVkTvD4iFGzz8zMTLfZpz8YLRIOpuA5t1ZHo9Gg0WjccyUsFgsGg4GOjg6qq6tRKpVuHyydTodcLqfr/QNU/vi3OAYCX5eSfUkBkpdiB0FALQXIGXz0kAnJCFJopV5ESQm9TcFexsS89j9Id12DIEw+H0roCI6VhMd0NOIqKkJu88+NXBVhwqEOB4v3tXJCfwc5ZTGciUrEVOtZ27okSbiSUxi0gvlUG7i8FPKihK2hE9s/hU5UVhyarGQcQ3b0FU2ItsDkmzOuW8PSl+7A7LRx7NgxCgsLiY2NHbONTCZDp9Oh0+nIzMxEkiSsVit6vZ7Ozk5qamqQy+Xu6+PZfoGjSJLE66+/zhtvvMHWrVvJzc0NyPl90ZgTPLNkKrNPfzA6fHAy+4mZ7MfXHlijqNVq1Go1KSkpwIh1hl6vp7u7m+rPTmLbvAPbnsB1YJ1N9voC8FbsALErMhEsAXIGdx80FqTQasd1uXShW0za0gKn+mHBFLUTQbSS8BRpYAhJ4ztzybMRbCbCV5Zh3TnLv4NJT3qKlR5dFv2HJ/9dSQoFZGSjbzNgPuj7zjhb9wC27pGxDWHhSiIX5YNKyWBdJ9Yu3zcXyFQKFj79fXJvvZy2tjZ6enpYvHixR9d/QRDc18jU1FTgc8Nko9Ho9gs8ePAgcrmc1atX89prr2G1WikvL/db5uDLwJzg8RJBEKY1+zwbXxnE+cpeIhAeWKOEhYWRnJyMvKqdrh+/6b4wBZrM9YXQ2jyrfcTkq/FT1/CkCOFKfDZK2keIwyFe/vfmFsQnfohMPcGTvl0Fp4NnJeExPW0M584jQvJP+lRuaUaWmY44ww7FcdgsJCobCbukkI4d5ziVx8TgiEqg73gTjrrAtJaLNgfGE5+vI7Y4FVViDNZ+E4bKtlkLdU1WIhf+14PoFuZSWVmJQqFg6dKls+rAPdcweXTK8rvvvsvGjRsxGAysWLGC3/3ud6xevZrFixfP+qH3y8ic4PESURQxGAxTmn2OMipSfDEUylf2Ep4KFl/M1XGaLVQ/uZkzb30043X6ioyLi5C1zi4FI6hkhNkC34YtukKvYFkMQipyRrhcWP/rH6j/7WuM+7qGgJWEp8j7DIixEjJ/RHkkkfD8GIZnK3gARBe6odMoryqj+W9VCFnZDJmh/7N6CHAK+FyGmjoZahpJfWkTtUTkpyM6JQxVrTiMM/ttpV6xnAt+cw8OlcCRI0fIyMhwR2l8yegD6a5du3jppZe45JJLqK+vZ+/evfz+978nISGBp59+2ufH/aIzJ3i8RCaTUVRU5FHF/ahI8ZXg8fX8nMmY7VwdgP4DFVTc/zKWNh+MpveS9LWFyM/Mvt4kflUOgj3wdSsye2hNWJYkCanzTMiLBnVtLTSvg5yzqn8lYOeeoK1ppigG+5DSysDa6pf9y8wdiAsKkZ2chUWKMgwxOgm7oMVidCEvLGCwe5iB46FX4+UwmjEcqQZALpehW5KDIjICU2sfQ02TCzNBLqPssRspuOta+vr6qK+e3iLCW0RR5A9/+ANbtmxh27ZtZGVlAZCfn09+fj4333yzz4/5ZWFO8AQAX1pC+NIxfTJ8EdVxWWzU/vxNWl77uz+W6DGpawpQdPqmZiA6Sx4wZ/RRbBE6tIEc+OMBdmckQhAiXV7x6n8jPb4JQfHP6cLDKoSu0KqHmg7xTDtCggyZ5HkKeiZotENYtRFg9mDQU7gGV1QSNlGDWe/C0GDAUNc7YY1ZypIMRI2WnkN1SI7Q+g4DSC4R0+lm9//rcuJRZyZhN1kxVDQj2keus+EpsVz4+o+IW1lMQ0MDg4ODLF261C8pJYvFwn333YckSZSXl6NWh9Skq/OeOcEzCwRB8CjC42sPLF/tayJ8EtX5tJr6/9yKY2AQ7aJCHDYbVvMwKpkMmSgh2uyIwzZcFiu4/HMRB0hZXYCqu9UnxbXyCBVKc+BtCMJSUoDQ8HoaZchIaA0cnAqLBd47DN9cOPL/lc1BXY43CKYBxLQFyGz++f4pXBbClxdjLT8y9o0IHU5tAlZHGOY+J/q6fkwtA4Bn0SZry0gaKSE7CmVGGj3HmnCEgvfaJFg7+7F2jnSNhUeEoV2Si2ZeBmWP34Q8OoJjx44RFRXlU4uIszlz5gwbNmzgO9/5DnfeeeesaoLmmJg5wRMAfBmV8WVKSxAERFF0t7rPOqpjc3D66beoffl/3V44ZzNRtlwWpkShCUeuCUMerkIepkQWpkSmkCMo5MjksrNqMCRwiUguF6LDCQ4HLqsd0WrHZbEgWuzuNesWpRHW1+azyawJa7MRXPXTb+hjhAg1BM5lwyM0TgUh2p81MXs+wbxgHppsLbLy8mCvxiuklibElDBk0tTzhbxFPtyCPXsxNqODwS4rAzX9WLoGgXMFysxv9I6BQRwDg0SqlWgWz8fQ1Iu5KbRE/LlILhfp31pL7sarMA8NcdyPFhEAe/bs4Uc/+hEvvfQSF198sV+OMcec4AkIvozK+MMxXRCEWUd19CcaOLLpBQarZvYUKtoc2G0O0Pug9UkQUESEkbGuAE13k0+jR1GJroCnswAEeQimAnqCV4/lLZo/vov9hmtRW0KvANwTBIsJUZmDzO77KM+QLJ72XVZMFTWEFefTs79lwgeW2SLZHAydqEYJpK0pwGp20n/M88nYgSIiP52lv7uf6Pm5dHR00NbWRllZmV/awUVR5Le//S1bt27l73//OxkZvnWln2Msc4JnFngqDHwtUmw2m8/2ZT/LOdkbsSM6nFQ/9w7Vz/wZyRnkQW6SRPrKHDRdjeDDOidVvBbFYHBctWX2ABqUeoAohcFAgOcQ+QBBP4DxD6dQKZTI8U+UxN9ITXWImVHIXL4J+Ylh0XTXael4t9r9mq2imqiiJCz9Vhzd/vvuDZ8eETrJi9Ixy2QMnWpHcgR/EGTc9WtQ37iOKlM3rr0dKBQKCgsL0Wg0Pj/W8PAwd911F2q1mo8//njO6TwAzAmeABCKKS1JklAqldTU1BAfH09sbOyMC+QGq1o5vOl5DCcaZr0eX5B7WSnq3mafGwwmXJSBIM2ii8VLpMhoBEdoOYa6nL7vSgkE1rBkej86hWV+DpnpTciF4N9cZ4pgtyAyD5mHNTSTIcmVDA5n0vjqaUTL+OJzoaMXjUqJfUEWlpP+Ffq2ti6UQHxWFKqsdHqPNWEfCHydjypex+IX7yLp0mVYrVZOnjxJXFwcGo2G9vZ2ampqUKlUbjuI0Ynx3tLS0sJNN93Ehg0b2LRpk98m888xljnBEwDOjaTMhtmKp7NrdQoLCzGbzRgMBqqrq7FarURGRrp9sNRq9YQ/RMnlovZXWzn91B8R7aGRcpn3jTLCOhr9Mv1XGzUEQRg7IyQkAoHz7PIEV2jpL4/RW5IBI+aKJtoUeWQm1yObwnoiVJGaqxFzEpE5vRMFVlUuTX9pY7jlxNQb2h2oWtuJXJ6Pvq4Lhy9SzlPg1Jtw6qvQhinRXPLPOp/GwNT5JF6ylEUv3kV4YjR6vZ7q6uoxFhHp6ekAWK1WjEYjPT091NeP1PPpdDq3bY6nXVu7du3ixz/+Mb/+9a9Zs2aNf05qjgkRpukyOq9qEwONy+XyKFXV29uLXq+noKBg1sc0GAy0t7dTWlo6489O14ElSRImk4mBgQH0er1bAEVHR7sjQObGTo5seoGBw9WTHCXw5F+1AFWbfwqKFWlRFF4QnM4SYcFiFLbmoBx7MvpPOtAMBHeQ3ExxycKpPaJGHP48FRS1dB4ZCXXnpeghtwTFDK1GnOpkzux10L9/5hEbeWQEUlIS+iO1M/7sbNAU52K1uOg/6p8IsixMSeljN5N9yxUAtLa20tPTQ1lZmUfpJafTidFoxGAwYDAYcDgc7utldHQ0Go1mzDVWFEVefvll3n//fbZs2eKXgYVzAFNU1s9FeAKAPwqNZ4KnHViCIBAVFUVUVBTZ2dluAaTX66mprqbvnX2YNu9CsoVODUThNxehaPbfhTh1VTo4giPuBIUIvinX8gmiJKA2hdYQRE8wqgoQh+vGvDZ4tJ725YWkx1aNn8Qc4khN1Yj5Gcgchum3VUXS2xZL25+9t3VwmYbA1EjS6mL6TjTjMgfG52S4arTOJw2idPQcqvWZKWhkcRZLf/d/iSrKxOVyUVlZiVKpnJFFhEKhIC4ujri4OOBzV3SDwUB9fT3Dw8Ps2LEDSZJYsWIFb775JgkJCXz00UeEhYVNs/c5/MFco/8s8DTv6stW8pmmtEajOqIoIggCMpnM43WPCqB4IRzTY39l8LcfhZTYKf7WYr+KHYCI8ODd4AVnaNk3iFI0gsM3qdlAIUkwUDtxOsbwaS3tgyUh64E6GYIkItqmrreTZApMrjxO/n5gVmLnbKyVdUQnRaCbn+OT/XmKra0bW2UtcWla0i5ZgCpudnVkuf92NWs/eIaookyGhoY4cuQI8fHxFBcXz2r2zagrelZWFgsXLmTlypVce+21yGQyHn30UQ4fPkx9fT1PP/00H3/8MSaT92nCtrY2vvKVr1BcXExpaSkvvvjiuG2MRiNXXXUVCxcupLS0lM2bN3t9vC8KcxGeABCMwYO+mKsjSRLNb37EyYf/gDNAT3WeUnrdImjwbyFxZEkyMlNwWrClcA0y2/RP8IHEZTn/zAqHNTnYWidPwen31yBbU0pKROX5FelpqUYszENm7xv3li0sm6atnQzVT1On4wXOfgNgIOmi+fR8Wo0UwBo+p9GM8/hptEoFmvXzMbb2Y6rv9PjzYYkxLH7pLhLXLwFGSg3q6/1nESEIAp2dnWzbto1XXnmFlStX0t3dzf79+3n//fcpLy/nqaee8mrfCoWCZ599liVLlmAymVi6dCmXXnopJSUl7m1+/etfU1JSwrZt2+jt7aWwsJAbbrjhS206Oid4AkCgrSV8MS3Z0tHP0bt/RffHR71dqt+Yf/0ipDr/1xPELYwFS3AEj5CYDIRWS7pkDC3R6wn6gUhg6pqj/k+qES4uJTn8/BI9ohlkZ927HGHxdB6V0buzwu/HtlZUEzcvEatdwFwfWKsOyeFk6EQ1CiBtdT42m0Tfkalr+JIvX87C5+4kLF6HJEl+t4gQRZHnn3+eHTt28OGHH5KcnAxAUlIS1157Lddee+2s9p+SkkJKSgoAkZGRFBcX097ePkbwCIKAyWRCkiTMZjOxsbE+8XM8n/lyn/0smckcHl9PR54IX0V12v68i+MPvoLDGHotOWXXL0IMgNgBUAvBmwYrREWBI8QET/f5VazsVEQxeMKzwXZ9u6qRrS8lKcw36Z+A0N7AUHYWYXIr+r5kWrdUgitw+TlHRw9yuZzEi+bTs/+0X4YVTsdw9YhBafLCVIToGLoP1SJaP0+7y9UqSp+4lawbL0MQBBwOB6dOnfKrRYTJZGLTpk2kpqby4Ycf+j2i0tzczLFjx1ixYsWY1++8806uvvpqUlNTMZlM/OlPf/rS21XMCZ4AIJPJJhUpM2WyH6gvojrWXgPH7vtPOt47ONtl+h5BYMG/LMAVILETvSwT2XDwDDIFFYTSfDxR0oDx/Bo4qCcXyel52rOnvBrh0lISFeeP6LEZwmncY8Pe6v+ozoS4XNgqqklYkIm5dwhLe3DGKNjO9MCZHuJStahyMug70UJ4SjxLfns/kfkjbeWDg4OcPn3arxYRdXV13HLLLfzwhz9kw4YNfp+vYzabue6663jhhRfGpeU++OADFi1aRHl5OQ0NDVx66aWsWbPGL+m784Uvt9z7AjAqdJxO56zETvvf9vPRhXeGpNgR5DIWXFeGq65u+o19RGyR78fIzwTbUH9Qj38uLkdksJcwIyRk6Ctmno7s/qiaPrFk+g1DAJcmmvp32hjus6LMSg/qWuzNZwhzmgkvywzqOpxGM8Onaijc9A0u+scv3GKno6ODqqoqysrK/CJ2JEli+/bt3Hjjjfz2t7/lpptu8rvYcTgcXHfdddxwww1861vfGvf+5s2b+da3voUgCMybN4+cnByqq0NnnEgwmIvwzIJgT8f0RVTHNmCi8um3GThS45Hze6ARlDIKL5+Hqz5wxp2CQka4I3jRHUmhRE1opRNdptAYMOkpJnUBjj7vpgR3flCDeVU62brgfQemQxIEqo4qsBuMgAWHwYRucQG2ipqgXZckm4Owtg6iludjaOzB3hd48zllTgpZj95G0gVl7sh6TU0NDoeDpUuX+qWGxeVy8ctf/pJ9+/bx0Ucf+S16dDaSJHHrrbdSXFzMfffdN+E2mZmZ7NixgzVr1tDd3U1NTQ25ubl+X1soMyd4AsioMPEFoxEd8K5WB6Dj/U85fOevsJ7lmSOPjyQyOwlluAp7/yBDjR0+t2rwFHmYgpIr8hGbAutjFbcqB8HWFNBjno2QmIKAfyfbzhSpP7TqiaZjoGN2vzPTgS4Gvl5IbBAsRTzBoCzGXFH1+QsuEeORaoTcFML6BxDswcuH2mqbiNBq0C4rZOBIYP5+gkJO8i1Xo7luHXqziZZPP0Umk2G1Wt0t5/4QO4ODg2zcuJG8vDy2b9+OUqn0+TEmYt++fbz55puUlZWxaNEiAJ566ilaW0dsR26//Xb+/d//nZtuuomysjIkSeIXv/gF8fHxAVlfqDI3aXmW2O12jyIjBw8e5IILLpiV/wqMiKYjR44QERFBXFwcMTExM96n3WDm2IO/p/mP5dNuK1er0OalEhatxWWzYWnpxu7nMfMACo2K0svycAZY7ADMu7GQsMHApc/GUbwApRg69TKiJMO2tx1c50eUx4iOM3t9MC9IJpBxeS7RUmAnDE+HIyaHo680MdlAWUVyHAolCH3BF6nhJfn0V7TgHPSfS31EUTYFT92Jtvjz+UB6vZ6qqiqSk5NxOp0YDAYkSRpjBTHb4X/V1dXcdttt3Hvvvdxwww1Bj/jP4WZu0nKwGR0+6K3gObsDq7S0FIPBQH9/Pw0NDchkMrf/VXR09JTH6PzoKIfveBlLh2c1Ii6LHWNF85jX1GnxRKTHIyjlOPqMmJt8GwVSRaop+kpGUMSOTKNENRwcZ3T3GsLl4L/7w4wRxRhwBfdvMhMsUg7gg8iCKNH2QTPC5fPQiYFLqU6FpI6i8t0+prim4+zqRwxXEVkyD3tVcNdtPV2HLl6HMzsF40nfWkQICjkZt/8LGbddi0w1ElmRJMltEbFkyZIxFhEulwuj0Yher+fMmTPY7XaioqImtYKYDEmSeO+993jqqafYvHkzS5Ys8el5zeE/5iI8s8ThcHjUgXXs2DEKCwvRaDQzPsbZ05InmpTscDjQ6/Xo9XoMBsOEAsgxOMzxn/yBxtc/nPHxp0OuVhE5LxWlLgLJZmeouQuHwTv/KZVOQ8HqZKSO4LRAJ32tgHhNcG8S8sVFyIaD1xJ/LjZTIuLR0JvHNBGioKLmWCSi2XeKUVAqyLwsjSiXZy3u/kJCoLUnm87dzR5/JmpZMfaqOoQgtIyfS3hZIb2Hx7aNe0tEcc5IVKco2/3a2RYRhYWF07Zgn20FYTAYGB4eRqPREB0dTUxMDFqtdtw+XC4XTz/9NEeOHOGtt9760qeIQpRJVeuc4JklngqeU6dOkZWVNaOWQG/n6tjtdgwGg1sA2Y410//s37F3Bi7ErUmPR5MWj0whw9ZvxNzYiTBN6i8sLoKcJbHIe4PXoVSwYR5KY/BubJIgQ1kUhyCGTvrI0qaFhqrpNwwB9OHz6fjY92aTgkpJ1teSiXQ1+3zfnjKoKeH0f83830Gdl4HcYsalD3wR8bkokxOwigrMtd6lbAWlgsxN15P+/W8iU36eoBgaGqKiooKMjAyvTTklSWJ4eNh97TSbzahUKj788EN3rcw999xDaWkpTz31Fr0DKgAAIABJREFU1Jd+iF8IMyd4/IWngmc0nxwTE+PRfqeL6ni0NrOFE49spuHV92f8WV8jV4cROS8VlU6Dy2pnuKUTh+HzTqTwBC1Z8yNRBPGirIzRkP8VB4LomyGRXpGYijImdCYaS5KE9cggDIWWr9dESBI0duRhberwy/5l4WFkfTUOrSvw9VXO6AyObm5Hcnp3SZZHadFmJmBvCIHUpFxGWEnByLBCl+eRJ21pHgVP3UFEQdaY13t7e2loaKCkpMTnM2asVitvv/02H330EZ9++ilRUVFcddVVrF27ltWrVxMbG+v1vtva2rjxxhvp6upCJpOxceNG7r777nHb7dq1i3vuuQeHw0F8fDy7d++ezSl9GZir4fEXMzEQ9cYDy1ux0/PJKT7d9CJDzaGRGnFZbBhOje180mQkoE6Nwy46iI6XgehEjIpGsAyD3RbwIsDwhTEIoufePH4hJhYI7Kj+qbA51DAUuu3ZZ2PRZPlN7ACIVhvNO/rJuSSVCJf/jnMuUpiG6g/NXosdANegGWPlELplxdhOVQW3wNYlYjtVTcL8dMx6K5bWqeclCUoFWXf+H9JvuQZB8Xl94tkWEUuWLPHLROOwsDCio6NpaWlh+/btZGVlsX//fvbu3cuzzz7LDTfcwG233ebVvj3xwzIYDPzgBz9g+/btZGZm0tMTHKubLwpzgidAeOKn5YuojnPYysnH3qTuP//m7VIDxnBbL2KkCqlzgM7jVs6WGrJwJapoLSpdBMqIMBRqFcpwOXKlDLlMQi65EEQnMocNwWpBsAxNmzKbjtQsJQQ56i+olRA6AR5cds15M510wKAD/HtDkCw2GnYYSL8omlhFYMxdO3pSMbf4IE0nSRgPnyaiJBd6ehCHglsZb2/pIEylRLuqlN79E0+31pbNo+BndxCRP3agYSAsIpxOJ08++SSVlZXs2LHDHc35+te/zte//vVZ798TP6y33nqLb33rW2Rmjpx/IGb8fJGZEzwBYio/LV9FdfoOVnHo9hcw1wfu6dNbBJUCdUkq9sqJ0wOi1YG1S4+1y/O6I2WUBlW0FmVkOMqIcBRqJQqlDLlCQC6TkElOZE4HMrsVwToMVov77xyeFo3C2OqTc5sNMsEH7dQ+RG45P/LaToWWwUPNATmWYLHR9amS8NXxaKTxbuW+ZCiqmLZ3fDsdd+h0I6rEWMIzdDjaghvRlOwO7KdrSLxgHsaWPmw9IyJSUCrI+uH/R/rNV4+J6kBgLCIGBga49dZbWbp0Kdu2bZv1OJHpmMwPq7a2FofDwcUXX4zJZOLuu+/mxhtv9OtavsjMCZ5ZMpOUlsMxvjvBF1Edl9XOqSf/m5qXto4UMoQ4irQYVCr5pGLHWxyDwzhmMO9DUMhHBJJOQ6Iihf27NTgkO5pINWptOAqlgFwFcoWEXAkKuYhM7kLAhoADuWBHKXehUrpQypzIBdesnzQF28CsPu9rpF7/3tB9hUHIQ3IEbl6Oy2im5aCOnFXxhLv88zdy6VKofNM/86DsPQM49Ap0CwuxVlQHfYaMra4ZTYSaiOVFOCxO8p+6k4h5GeO26+jooK2tjbKyMiIi/GP/UlFRwcaNG3nkkUe47rrrguqH5XQ6OXr0KDt27MBisXDhhReycuVKCgoK/LqmLypzgidAKBQKLJbPcxW+iur0H6nl0MbnMdWeH3UW4QsyEBu7sduC74wpOV3Y+ozElqbTveO4+3XvGuoBuQwhTIFcHYZCo0KpGYkyycMUKMLkyMNkyFUyFCoZciUj/ykkFAoJhdyFUqciyfuj+xxRUkJvc7CXMS0SAgOnA9/Z5xww0nwohpwVMYS5fNsBKSnDqN3jQrT5r4BecjgxHKkicnEhzoYmcAS3M1ActpJ40UISb/4WsnM6oAJhESFJEn/5y1948cUX+eMf/0hpaanPj3Eu0/lhpaenEx8fT0REBBEREaxdu5YTJ07MCR4vmRM8AeLsGh5feGC5bA4qn36b6uf+ihQCMzamQxYRRsS8ZCyng582OpukNcUMHvVRysAlIg3bcQ7bcfaDdYYfj16Ux2e/aSXrG/mkXhhNZNQAClfwLCZcLh1Iof/dMmvycXQHZzK1o1dP05E4cpfpULl8VwDWbc7GWBuYiJXpWA1hmclIDityQ3C68aRIDapN30Z+0TJckjSmbsxqtXLq1CkSExPJzMz0W73Oo48+Sn19PeXl5URHR/v8GOfiiR/WNddcw5133onT6cRut3Po0CHuvfdev6/ti8qc4Jklnv74RgXPaPpq9LPe/HgHjtfz6cYXMJ4OgRZTD1BkxyO32kNO7MSuzMd8LDRsA+IuLMV45DQATf9TTdP/jLyeuDqD7EtTiEmzoXQEtkNDHD4/ypUHOgPjXzQZjq5+mo4lkLtIRCnOXqCatHk0vxPY76WttQtBE4a6MA97je/nGE2F9oIyUh6+nSH5iCVEc3MzoigSFRWFSqWiq6uL4uLiWbWAT0VfXx+33HILq1evZuvWrX6v1xnFEz+s4uJiLr/8chYsWIBMJuP73/8+8+fPD8j6vojMzeGZJaIoTlibcy4mk4nKykqKi4vRaDTTTgGdjMGaNg7c/AyGk8Gd+uoRgoB2aTbWUy1BMyCdjMhl2YjVoeFXpcxMQOoZmHYmSdS8WHKuziGhQEaY1Ikg+XdekKU5HJqD6CnmAXZVPHU7h0Oidi0sM5mcMgNK0Xune4cmlmPvmBCHg5de0i0rwXa6GsHff1KZQNJt3ybxX7+JIB97PXQ6ndTV1dHX14darcbhcBAZGemeHu+pDcR0HD9+nE2bNvHEE09w9dVXB72WaaZ0d3eTlJQU7GWEGnODB/3FdIJntFbH5XJx5swZ9Ho9FovF/eONjY1FrVbP+LidNU2c3roLZeMAQ0caGKwJjZv3KPIYDdr0OIaqQ6+2KGJpFtSExrrkmjBUsVoc3TMrVlbFhJN9TT4pizVEhPcic/m2l12SJKyHBsAaQqZeE9AlLKL/k9BxNA/PSSWnuA+FNPN/D0muoO50AgMng2OrcjaagiyEQQOi0T8pVUV8DJlP3IV2ccm49yayiBBFEbPZ7J4eP2oDMWqho9VqZyRWJEliy5Yt/OY3v+G///u/KSoq8uXpBYSf/vSn/O1vf+OHP/whX/va1+aEz+fMCR5/IUkSdvvErcST1epIkoTJZGJgYAC9Xo/VaiUqKsotgM42vDsXp9NJbW0tNpuNkpISt+OvtVtPzycV9Hxyip49JzHVBW94nbokDXqMOIzeP+n6C93yXJwhlAqMXV7E4LHZ3bAFhYyMy/NIXxOLLtaE3DH7AlqnpMOxu2LW+/EnLkFB1dFIhOGZVkv5F3V+Otn5nSikmY0Y6KOYeh+3oM8GRWwUmuQYHE2+fZiKvHARGf9+B4qY8VORPbWIkCSJoaEhtw+WyWQiPDzc7YMVFRU1aRTd4XDw8MMP09HRwebNm9HpdD47t0By/Phx9u3bx/PPP09ubi733HMPV1xxRbCXFQrMCR5/MZHgmakH1qiJ3agAGnXxHRVAo6JmYGCA2tpaMjMzSUlJmXKfls7+EQG05xQ9e08FZjaPUkbMkjxMn4WGs/S5xK0qxHoydNYWs7wI0yzFzkTEX5BK9mXpxGY6UDq7Ebz4GdstSbgOHfH52nxJiz0d86fB812bkox4Sub3I8ez1JQtJp9jr9QxlQt6UJDL0C0p8s10ZrmM5Nu/Q8J3r0SYQIzM1iLCYrG4fbAGBwdRKBRER0cjk8mIjY0lOjqanp4ebrnlFtavX89PfvITr0sLgsnoA/Qoe/fu5c033+T111/npZde4vrrr/dbvdN5wpzg8RfnCh5fdGCJosjg4CB6vZ6BgQHsdrt7f6WlpV5dDIbb++jZW0HPnpP0flKBudG3A8cUKdFERGkY8vF+fUXS2hLMn4VO6kOdFo9zcBDJB87RUxGRGUXONfNILJajlnUjiJ4dT98cRnhz6IjDiWjonIe1IXRsOM4lojSbrMxm5ExdayVFxHJsqxW7IYRGbJ+Dtiwf8Uw7ktW7aJoyOZ7MJ+4momx8O/XZFhFlZWUolb4pQh81Ud6+fTsvv/wyLpeLoaEhbrzxRu69997zzul8dFbbKC6Xy11gbbVaeeKJJ3j22Wd5/PHHuf322wPSaRaizAkef2Kz2bx2Np8Og8FAVVUVcXFxyOVy9Ho9TqfTHbqNiYnxykNmqK2Hnk8q6P1nCmyoxfsOIN2yPKy17bgsNq/34U+S15Zi+ix0UgWCUoYiJQapM7BDBhVaFdnX5JO6LBJtRB8y5+QpR9NnwygGQzR6AljC02n8OHTXN0rkglwy0honFT2SIKOxOY3eT0OjpmwqVKkJhKnlODtmdq2IWruM9J9sQqHTjnvvbIuIvLw8vxQNS5LkjoDcdtttNDc3s3fvXgYHB1m2bBkvv/yy1z5cnhqAAhw+fJiVK1fypz/9iX/5l3/x+BgOh4OTJ0+ydOlSABoaGsjKykKhUIyL9mzatIlt27bxyCOPsHHjxvMyguUD5gSPP7HZbO52c18JHZfLRUNDAyaTiZKSkjGFzS6XC6PRiF6vR6/X43K5xgggb56Qhlq6R+p/PjlFz55TDLf1TvsZQa0kdkEOxs9Ct5Mn1MQOgGp+BmKwi6YFSLs0l4x1CUQnDqFwfC4eXKIK+57AtibPlHbHQgyHQmOkwHRELZlHRmIdMmF8F55eVULNH6uCsCrvkIWpiJyfi/309H97QSEn5c7vEfftr094TQyERYTdbufBBx9Er9fz2muvodV+LrpsNhvHjx8fZ+cwEzo7O+ns7BxjALp169Yxflgwcs2+9NJLCQ8P55ZbbpmR4Dlw4AC/+c1v+MEPfsDjjz+OVqvle9/7Htdcc82Y/Y9Ge7761a/S29vLG2+8wcKFC70+t/OYOcHjL06dOsXTTz/N2rVrWbdunU8GYxmNRqqqqkhLSyM9PX3a/blcLnfuWq/XI0kSOp3OnbeeqQCSJImh5m53AXTPnlNYOsY+TavzklC4RCztoWs9ELk0B7EmtGb/hBWk4fKjo7e3RBbHkvrVZDJKw5FZXbj2Hw32kibFJddQc1CJZAst37Gp0F2QT3pcDbKzer0dMTkcfaWJkKvb8YCopcU4auomHaWgSksi88m70RTnTfj+qEXE/Pnz/WYR0dXVxc0338wVV1zBAw88EJBox+igwEsvvXTM6y+88AJKpZLDhw9z5ZVXzkjwAPy///f/eOaZZ1i8eDF33HEHX/nKV9zGo6OMip6Ojg6Kioq4++67efLJJ8elwr4EzAkef+FyuTh8+DDl5eXs2rWLrq4ulixZwpo1a7j44otJTk72WACJokhDQwNGo5GSkhI0Go1Xa3I6nWMEEOCO/kRHR894LLskSZgaOqjeupueT04SIVeh/+QUktO/c2BmQ9JFJZiPh07NDoAiVotCLuA0hI59xLlIgkBk2Tyik+RkxrWjFn1rmeAL+lUL6So/P6I7ZxO9soD06CoEASR1JCc+FLB2BW+S9mxR56Yht1tx9Y/9jui+soL0n9yOXDv++nW2RURpaanfhvwdOnSIu+++m//4j//g8ssv98sxzqW5uZm1a9dSUVExps6yvb2d7373u5SXl3Prrbd6LHhG01UVFRVcddVVxMfHc+WVV3L//fePiVSdva3T6UShUPDcc8/x6KOPUl1dTVpams/PNcSZEzyBYnT8d3l5Obt372ZgYIALLriAtWvXsmbNGhISEiYN71ZVVZGcnOzz8elOp9MtfgwGA4IgEB0d7Y4ATXfRsVgsVFZWotPp3Hl2c2MnfXtP0buvgt69p7AGuB5lKpJWl2A+WRsSw+jcCALRZdmYq5qDvZIpkfLScIyausoEklbNIzvPRozYTCjMZJMkqG/MwN4ZupHFqYhdXURK5GnaerPp3N0c7OXMGnlUBNqsJOz1zQgqJal330jstZdOeP0KhEWEJEm8/vrrvPHGG7z11lvk5U0cYfI1ZrOZdevW8fDDD4/zxLr++uu5//77WblyJTfddNOUgsdqtdLS0kJhYaH7tT//+c/cddddvPfee2zZsoWVK1eydu1ahoeHqaurY968eeTk5IzZT1VVFRs3buSGG27g9ttv9/0JhzZzgidYWK1W9u/fT3l5OXv27MFsNrNixQq3AFKr1Tz88MOUlZXx7W9/22/h3bNxOBxjBJBMJnO3wOt0OrcAkiTJHXouKiqatOpfkiSGmjrp3Tsifvr2VYxLgQWKxFXFDJ2qCy2xA8StKsV4+HSwlzElEfPz0B+ZuB4rPDuBnOXRZIQ3eNxq7Q/Mmnm0fBi6nVmeoFqxCOPBasSh0B7q6DECRFy0kPR/u57o+YUTbjIwMEBNTQ1FRUXExMT4ZRk2m40HHniAoaEhXn311YBcS2HkenrllVdy2WWXTeiJlZOTw+h9tq+vD41GwyuvvMI3v/lN9zaSJCFJEtdeey2rVq3iwQcfdEdrtmzZwr333ssrr7zC+vXr+drXvkZcXBzHjh3DaDSiVCp55513WL9+vTutJUkSV199NRkZGfznf/7nuOLmLzhzgidUMJvN7Nu3j/LycrZv305XVxfLli1jw4YNrF27lsjIyIB/Me12+xgBpFAoiIqKwmAwoNVqKSgomFEabKQGqGtE/OytoHdvBZYO/z+RJ64sYuh0A4SYmaq2MANbSwfSNNYRwUSVHIe1z4zTPHVrtKANJ+GCRArSBoiUBd5ostU0H9OJ0C6ongopPYuW3XXI1Sril+UjtbciDYVuO7onhOVnEvmTDRglJzabbYwFhFqtpq2tjZ6eHsrKyqYcqjobOjs72bBhA9deey333ntvwGpWJEliw4YNxMbG8sILL0y7/XQRnieffJKdO3fywQcfuGsvm5ub2bhxI4cPHyYxMZGOjg5SU1P57ne/y3XXXcdDDz1EfX09VVUjxe+jouedd97hqaeeYufOnV+2FvVJb6Bz5qEBRqvVsn79eg4fPkxERATvvvsufX19lJeX8+yzzyIIAhdddBFr167lwgsvDMhTikqlIikpyT2avL29ncbGRrRaLYODg5w4ccIdAZpqgukogiCgzUlBm5NCzr9+bUQAtXSPpMD+GQXydbFzwspChqtCT+wotGqkoeGQFjuCSokkU04rdgAks5Wena30yASiFmWSmWclPbwnIOkuhzIG06nzwENuEqToWNo/OwOShGvYRveeCuQR4cQvLUQ604o0fP4Jn6jl88l/7gEU/6zXGZ0ir9frqa2txWAwoFQqycjIwOFwEBYW5vMHuv3793Pffffx3HPP8dWvftWn+54OTwxAZ0J+fj4ffPAB7e3tZGdn43K5yM7O5qWXXuLUqVNUVlbyne98h48//pienh4yMzO56qqreOihh2hoaCAvL88doS8qKmLjxo1et9x/EZmL8ASBxx57DIVCwYMPPjimg0qSJPR6Pbt376a8vJwDBw4QHh7ORRddxLp161i+fLlXvlue4nA4qK4eaeEuKipyr81ms7mnQA8ODqJSqdwCKDIycsZPU5IkMdza7RY/vZ/MTgDFLy/AWtMUkqIi9oJCBo+HboGtJEloFxai/9T71n3tvGRSFmjIimhCKfivkL1btoi+PaFViO4pokJBr1WLpbl7wvdHhM+880r4xH51JXlP3YVMNb4LdNQiIj09HZ1O544em81m1Gq1e4yGN9ePUURR5LXXXuPtt99my5YtZGVlzfaUgs7AwAB5eXk8+uij3HPPPe601kQ89thj6HQ6qqqqOH36NP/4xz/GDaXt7e0lISEhEEsPJeZSWqGEp/lUSZLo7e1l586d7Ny5k0OHDqHT6dz1P8uWLXPbTsyW/v5+amtryc3NndaEzmq1uqdAm0wmwsLCxgigmT7BnS2A+vaNDEMcPjP9HCCA+GX5WBtakByh1zEWtTSf4RCyspiIyMVF9B/wTW2RMjqCjDXZZMSeQSP5trtLRE5dZTxOfeDTaLNFkiT0unQGP5s+OqXQqolbkofU1opkCV3hk3j9pWT/+FaECRoeprKIkCRpjAWEyWRCpVKN8cDypHPLYrFw3333IYoir7zyil8fBAPFaPv4ww8/zObNmzlw4ABZWVljZuycTV1dHddccw2tra28++67XHLJJUFYdUgyJ3i+CIwWEY+2wB85coTExETWrFnD2rVrWbx48Yxn7rhcLmpra7FarWPMSGeCxWIZI4DUarVbAM3UxXiUodZuej85RetHnzJwsApXt3HcNnFL87A1nkFyBK+IdjJUaXGIhkGwh97aRlHnpDHY0Ink6zXKZCRdOI+seVZifdTdZVSXcuaj8zOd5cgqoH3HqRl9RhGpIW5xLlJbC5IltMxR0/7tetJuv37c79pbiwir1eoWQEaj0e2BFRMTg06nGxfhOHPmDBs2bOA73/kOd9555xduxszOnTu5//77WbJkCa+88orbLX70PEfTaLW1tfT19VFUVMSjjz5KaWlpkFceMswJni8ikiTR0tJCeXk5O3fu5Pjx46Snp7uHIJaVlU35tGQwGKiurnY7E/sitz76BDeaAjObzWg0GrcAioiI8Og4drudqqoqlEolBQUF2Dr6R6I//0yDhcdpcbR0INr960XlDTKVgoisRCzNoekrBqCI0uCSqbB1+XecQOS8FLKW6UhV1SHH+3+rpt5ChkNsiKQnSGmZtHzifW2ZIlJD/JJcXC0t4KWPlc8QBLJ/fCtJ/+eycW/50iJi1ANrVAD19vby3nvvuZs6fvrTn/LSSy9x8cUXz+JkQpsHH3yQbdu2sXHjRu655x7g88xATU0N27ZtQ6vVcvvtt3Pw4EH+/Oc/89BDD30Z01cTMSd4vgyMDi4cFUAVFRXk5ua6BVBxcTEymQyLxcJrr73GihUrKC0t9Ws4WJIkhoeH3RGgoaEhIiIi3AJIo9GMuzj29fVRV1dHXl7epCPnh8/0oD9YycCBCgYOVmJpnbg2IhjEXViC8Ujo2gVIgLogm8GTgYuYKHURJF+YRnrsGaIVMxu8aA1PpeHj0BuAOC26aNobhnD4YNCkEBFGeEES2oF+CMKEaUEhJ+9ndxF32apx741aROTl5fnlhmsymdi+fTvvvPMOhw8fJjk5mbVr17pT+8nJybPavyd+WH/84x/5xS9+AYw0nvzmN7/xi23DaCSnt7eXjRs3Ul9fz1133cVtt90GjB8wOMrJkyfJzs72ylj6C8ic4PkyIooi1dXV7hRYVVUVqampNDU1cdlll/H000/PeOrybJEkiaGhIbcAGh4eRqvVusPXbW1t2Gy2GafXLO29DBysdIug4ZYuP57F5EQvmoe5MrTbpiOXFNO/vzI4B5cJ/0x32YkVmzxKd9Ua8nBUhJ4dx1RICgUDrmhMdb6dGSREhKEuSEbd34ssQNFNmSacgud/hG5F2bj3AmERMTw8zF133UV4eLh7psyhQ4fYs2cPe/bs4YknnmDVqvFCzFM88cPav38/xcXFxMTE8P777/PYY49x6NAhX5zeOEZFT0VFBb/4xS/4+9//zjPPPMPNN9887uHwS2gb4QlzgufLjsvl4pe//CVvv/02X//61zl9+jSNjY3Mnz/f/bSUk5MT8BlAkiRhNpvp6Oigo6MDuVzujv7ExsZ6HX2ydvYxMBoBOlDJcADSS6qEaGSiE+fg5C7kwSaiOAf98caQGMyozUsh+4JoUlW1k6a7XDI1NZ+GIVltAV6d90iSxHBiLr0H/GdaK4/SoC1KQdHZgcyPNWyKmCiKfv0TIkrGTiwetYhwOp2UlJT4zSKitbWVDRs2sGHDBjZt2hSQ69Nkflij6PV65s+fT3u752J2ssLj6WhqauK1117j5z//OXfccQff/va3ZyXuviTMCZ4vM1arlcsvv5x169bxyCOPuIsJnU4nx48fd6fAzpw5w6JFi9w+YGlpaX6/wIiiSHNzM/39/W7/sNE5HgMDA1itVqKiotxeYN4LoP4RAXRwJAU23OjjiIFMILokC3NNi2/360NUCTFYjdaQE2RKXQTpa7LIjO9AI46tKeoPW0DXjomnP4cqzqx8zuyoCMixlLoIYhdm42puRrD7NtWlSkmg6LePoM5KHfN6ICwiAHbt2sWPf/xjfv3rX7NmzRq/HONcJvPDOptnnnmG6upqXn311Sn39bvf/Y6hoaFx05fP7tL1NELzpz/9iXfffZe//e1vvPzyy3zjG9/wm8P8F4A5wfNlp7m5mezs7Cm3cTgcY4xQe3t7Wbp0KWvWrGHdunUkJSX59OI2PDxMZWUlsbGx5OTkTPjDF0VxjACy2WxERUURGxtLTEyM15NbrV0DIymwQyMRoKGG2aUeQt46QilHmZzEUN2ZYK9kcmQyklbmkZXvIFYcqS9qaMnGdiZ06rOmQ0pNp3Vf4GdCKaO1xC3MxtXUBD4QPur8TIp+/TCqxNgxrwfCIkIURX71q1/xj3/8g7fffjtg5pdT+WGNsnPnTn7wgx+wd+9e4uLiJtymu7ub6667ju7ubsLCwnjnnXcoKipCEIQxAue9995j3759LFu2jGXLlnk0R2jbtm04nU7WrVtHbGzstNt/SZkTPHPMHJvNxoEDB9i5cye7d+/GaDSyfPlyd7FgXFycVwLobI+u4uJidDqdx58VRZHBwUG3AHI4HGMEkLdziazdA+gPnWbgQAX9+0/NKAIUWZyFpbENxND9uWgXFTFwMIQF2Tlo81JIX5nM0GcNCLbzI50lRenobLZgHwieA7oyJpK4BVmITY1IXtb4RC4uouDFH6OI+rwmR5IkWltb/W4RMTQ0xB133EFMTAwvvfSSz+aMTcd0flgwUhh87bXX8v7771NQUDDhNkePHuWqq65i4cKF3H///cyfP3/CourHH3+crVu38r3vfY9du3axevVq7r33Xo/O90vmi+UNc4JnjtljsVjcPmB79uzBarWyYsUK1q1bx0UXXYROp5v2h2i32zl9+jRhYWEUFBSzTDBfAAAgAElEQVTMOvcviiJGo9HtBeZwONDpdG4BNNOx6t3d3TQ2NpITl4xU08HAgQr0hyox17ZNuL0iKgJVZBj2ntDtIpLNS8NaMfH6QxV1TiqDbQOIdgdxi3OJ0smRd7QghJh1yCiSXM4AcZhqQuPvrIqNJLYsC1djA8ygxifyokUU/vL/Ild/fuN1Op2cPn0alUpFQUGB34pkm5qauOmmm9i4cSPf//73A3ZT98QPq7W1lfXr1/PGG29MWEMjSRIul4tNmzZhNpt55pln3JGpc9NWu3fv5mc/+xlvv/02cXFxbN26lZ///Ofs2bNnzgbCN8wJnjl8j8lkYu/evZSXl7N3715cLherVq1i3bp1rFq1isjIyDHbNzY20t3dzbx58/w2L8Llco0RQC6Xa4wAmmwYmtPppKamBpfLRXFx8bjtbH0GdwRo4ECFWwDFLMvHdCJ0pymHZyZjbulFtIXevKLJUOekYjozgGNwrJu4MkpD/KIcIlR2ZB1tIfOUK0kSluR59OwLvQiaKjaK2LJMj4SP+qvLkW64lGGrxT07Kzw8nMbGRjIzM0lNTZ3y87Ph448/5pFHHuGVV15h5cqVfjvOROzdu5c1a9ZQVlbmFibn+mF9//vf569//as77aRQKDhy5MiY/fT09LB48WLuu+8+7r///kkjMYODg7S3t1NcXOx+bf369bz22mtkZWWFzPf6PGZO8MzhXyRJwmg0smfPHsrLy9m3bx8KhYKLLrqI5cuX8/bbbyOTyXj11VcD+hTjcrncQ8z0ej2iKBIdHU1sbCzR0dEolUqMRiNVVVVkZmaSkpLi2WDEfiP6I9Xo959Ef7CCobrQeLI/G5lGDeFqrAFwqvcV6uxUTO3jxc65hKfEEl+Shto5iKyvJ0CrmxhX1jzadgSpzd9DVHFRxM3PxNnQAM7xwifl5mvIuOsGBEFwz85qbW2lq6sLlUrlFkCz9b86F1EUef7559mxYwdbtmyZ9UydYFJVVcWKFSt4//33Wb16NTDyULhr1y76+vqIjIzkuuuuG3d96enp4YorruCDDz4gLi7OPatsDq+ZEzz+5pZbbuG9994jMTGRiorxHRqBGlwVKkiSRH9/P7///e95/vnnycvLQ6FQuG0wli9f7rc6gKkYFUCjk6Ct/5xem5eXR1JSktdziWy9BvSHKtAfqEB/sILhpuDOjZEkCU3xPIzHz58Op/DsFMwdBhzGmXWRRealEDsvAdVgD7LB8RYk/kRKSaP1YGh6uU2EKl5HbGkGrrOET+b9G0j51yvd24xaRJhMJubPn49CoRjjfzU4OOj2zxv1v/JGAJnNZjZt2kRKSgrPPffceZ/OMRqNrF27FplMxk9/+lNaWlp4+eWXqa+vx+Ua+X488sgjPPjgg25BM2rt88ADD/Dee+/x1ltvceLECR566CGio6ODeTrnM3OCx9/s2bMHrVbLjTfeOKHgCeTgqlDA6XTys5/9jB07drB582Zyc3Pp7u52G6F++umnxMbGugXQ0qVLA3rBs1gsVFZWotPp0Ol0GAwGDAYDgiCMiQB5W2Nk7epHf7DC/V+gJ0EHdbigF4Rnp2DuNM56KnHMghwik9Qoe86gcPo3jefSRNDd7sTef/4ZmoYl6Iidn0nW9y4l/htr3a97ahExaiA8KoCUSuUY/6vpfjd1dXXceuut3HnnnWzYsOELkcYRRZEXX3yRn/3sZwwMDCAIAmVlZVx88cWsWrWKv/71r/zv//4vhw8fZuHChe6UV2NjIw888ABZWVns3r2b119/nbKy8UMe5/CYOcETCJqbm7nyyisnFDxn483gqvONvr4+Nm/ezL333jth1ESSJNrb2ykvL6e8vJxjx46RnJzsboFfuHCh36ZAd3V10dzcTFFR0binKIfD4Y4AGQwGZDKZexCiJxfyybC29zIwKoAOnPJrmklTmIXhVIvX/k2BJjwrGXPXoE8sGEYRVAriF+cSFa1A3tmK4PJtBEaSCXSLMVjrQ9cvbSrkEeEs+8ODJFy82P3abCwibDabWwCdawB67oPD9u3befzxx3n11Ve54IILfHZOwWRUvBgMBo4fP8727du57LLLyMrKIjc3F4ATJ06wbt06fvKTn/CjH/3I/dldu3axfv16br75Zl5++WU0Gs3cBOXZMSd4AoGngsfTwVVfJiRJoqmpyT0D6MSJE2RmZrqHIJaWls66o8vpdFJdXY0kSRQVFXnk5uxwONwt8Ebj/9/emYdFVf5t/J4Z9kVWQREQEEVkEUER2cStxMhUsjSXEJVKScxSyaXUUtO0aHFN1NTMUksr0TcFQTZxQZFFdpBdtgGGdbbn/YPfnED2bRB9PtfFdenMmXOeMwxn7vPd7kpmErTkQt6dixIhBHW5T5n0F/d2Ahqe9o6Jp6yWGvi1Qgi4/dca3RUUhg9B9dMqCLi9J3aeRWaQEgbbGEFFTgBWYV7bV8MuUDfUFE/DB04ErSnyg9Vh/8tWqFn/Nz25ty0imhqAPnjwAN9++y3Gjx/P/J2fP3/+pRucV1JSAn19fXz33Xd4//33GZFUVFSEv/76Cz4+PgC6P5WZwkAFjzTojODpzOAqSmN4OC0tjZkCnZSUBFNTU8YGY/To0V0SGxJn+OHDh2Po0KHdXhefz28mgGRlZZkIUHdrGcRiMTKjY1EUdh/KeRXg3UsBv7Si64vjsCFvoAde8sBwFVcwHIKaYh74UhRnCroa0LbUh5KwCih52q1UykAoUm4L5RF6mHj2cygN1wUgPYuIrKwsbNy4EWVlZUxhtKOjI1xdXTF16tQWHZ1doTPmn4QQ+Pn5ISgoCEpKSjh58iRsbW17elrt0lS4CAQCnD59GgEBATh//jzMzMw6fA2l21DBIw06EjydGVxFaR2xWIykpCQmApSamgpzc3NGAI0YMaLNSc1ZWVngcrl94gwvCeWXl5ejqqoKcnJyjADqTDeLZC6RgoICRo4cCQ6H02iwmp7XGAGKaZwDJCjvuE5EZdxolEc/f63RraFgoIuakmqpip1nUTEZAq2ROpCvKgars8XOukORczcPYn7f+Vf1Fep2ZrA/tRlyWo2WCRKLCF1dXRgYGPRZHU1ycjJWrlyJjz76CIsWNXaCVVdXIyoqCmFhYVi4cCEsLS27vf/OmH8GBQXhhx9+QFBQEGJiYuDn59flGsrWxEhnhgDyeDxERkZi1apVcHNzw9GjR6Vu2vySQQWPNGhP8HQ0uIrSNUQiER49esQIoKysLFhbWzMCaPjw4UhJScG+ffuwadMmGBkZSSUnLinmLC8vB4/Hg5ycHDMDaNCgQc0ujpIx/R3NJSJiMWpSc/9XAxQP7u3EFn5YKtYjUX4npc/Oqzdh6WiAX1kPYcXz4+mlYWUEdT1VyJbmg1Vf1+o2RFkZRUUEDU+f3yGTbaH7qj1sD30MjlLjQEFpWEQQQnDlyhXs2rULx48f7/OIioTWzD/fe+89uLm5YeHChQAAMzMzhIaGdiraSwgBIQRsNhtcLhe3b9+GlpYWRowY0W6Unsvl4sSJE0hISMDly5cxb948/PTTT8w+X4RC7ecUKnj6moULFzLzFnR1dbF9+3YIBI1dIp0dXNVVOmqFl3D37l04ODjgt99+w5tvvtmjYz6vCIVCxMbGMikwSa2OxGm5s/N1epu6urpmAkhBQQEaGhqoqalBXV0dLC0tu9yeT0Qi8JKf/NcCn1eMqrRCiOuefwsGeX0d1JTVQNCP9gvtwZJtUuz8NBes/7VuEzYLFfJDUBmf3b8L7AaGS1+F5S4fsGU4UrOIEIlE2L17N+7du4ezZ89CW1u7T47zLG2Zf3p4eMDf3x/Ozs4AgGnTpmHPnj0YP358p/d948YNLF26FLKysqiuroaGhgZ++uknODo6Ql5evoWICQoKgr+/P4YOHYrly5fjrbfeAkDTVlKACp4XkY5a4YHGP64ZM2ZAQUEB3t7eL6zgkVBRUYHVq1eDw+Fg0aJFuHPnDkJDQ1FWVobx48czPmA6OjpSF0CEEFRUVCAxMREyMjIghEBRUZGJAKmoqHRrTWKhCFXxGSiLTEBZ5CNw7zyG6DkUP/LDdFBXUYuG0oHRxi2jogjtccZQkReigSWH4lsDI13YFDP/RTD1exMsFktqFhEVFRVYuXIlLCwssGvXLqmlb9oz/3zttdfw6aefNhM8e/fuhZ2dXaf2fffuXcyePRvvvPMO3nnnHXA4HOzfvx///vsvduzYgZUrV7b6fiYnJ2Pw4MFMJIh2X0mFNi+iNJE4gHF1dUV2dna72/zwww/w9PTE3bt3pbOofkQgEMDd3R1r167F22+/DQB49dVXsXXrVtTX1+P27dsIDg7GsWPHUF1dDXt7e0yePBkuLi7Q0NDocwH09OlTZGdnw8rKCmpqasxEWy6Xi6ysLNTU1EBJSYkRQMrKyp1aE1uGA/Vxo6A+bhRG+M6DmC9AxYM0lEXGoywqHhX3kvu95kR+2OABJXYAQFhdh8KIx9C0N0dFfCbULEaCI8tGfXYBhBXPZ4RKAovDhvX+1TBYMA1AoylnQkICDAwM+tQiIikpCT4+PtiwYQPefvttqd1UCAQCeHp6YtGiRa06nevr6yM3979p6Hl5eV16H+7evQtdXV18+OGHMDIyAgDMnj0bv/zyCxoaGiAUCpvNEZNEe0aPHt3s/1Ts9C9U8LzA5Ofn488//0RISMhLIXhkZWVx8+bNVsP0CgoKcHNzg5ubG4DGL4CoqCgEBwfjxx9/BJ/Px6RJk+Dq6gonJ6cW9TY9QeLTJRaLYWdnx7TDs1gsKCsrQ1lZGfr6+o3FyjU14HK5yMjIQG1tLZSVlRkBpKSk1DkBJCcLzYljoDlxDEauexuiugZw76egLDIe5ZHxqHiYBiKU3mTgRrFTP6DEDtA4q0bJeBhKIho7skpjkpnnBpnpQ1FXHWJeNWrSc8F6jmLhHCUF2B3bAJ2pjTUzxcXFyMzMhIWFRY+6odqDEILLly/j66+/xsmTJ6U6RZ4QguXLl8Pc3LxNp/PZs2fjxx9/xIIFCxATEwM1NbVW63ckGQ9JJ5nk7y0pKQl8Pp8RO6tXr8aRI0ewe/durFmzBkDzVNWzf6e0Xuf5gAqeF5i1a9diz549L1W+uLM1CcrKypgxYwZT2FhVVYXw8HCEhIRg3759IITA2dkZrq6umDRpElRUVLq1Hskwt874dLFYLKioqEBFRQUGBgaMACovL0d6ejpqa2uhoqLCCCBFRcVOXUg5ivLQdraGtrM1AEBYUwfunccoi3iEp2EPUPP4SZ8lr+WHDUZdZQMaSqVr+dBTFHQ1ATk5cB+0bgxblZKHqpQ8AABbWR7qYwwhpyCL+ieFneqo6yvY6spQ2eyJQi0O6p48QU1NDerr65sJ7d5GKBTiiy++QEJCAoKDg6Gpqdknx2mLyMhInD59GlZWVrCxsQHQ0vxz1qxZCAoKgqmpKZSUlHDixIkW+2maboqIiEB0dDSmT5+OcePGQVNTE7Kysrh37x7WrVuHlJQUXLp0CR4eHqivr8cXX3wBDw8PTJo0SXonTukytIZngNNeZ5ixsTFzx1JaWgolJSUcPXoUc+bMkfYyBxSSWpuwsDCEhIQgOjoacnJycHZ2xuTJkzFx4sQO29slxaFPnz6FhYVFrwxzI4Sguroa5eXlKC8vR319PVRVVZsJoM4iFouRmZmJyspKjNIfjtoHGSiLikdZZDx4j5/0eK0AIK+njboqPhpKujFTqB9RNTNATSEX/LLupa1URw6D0lANiGtqUZuWA4ilcxlVNtGD/a+fQclQF5WVlUhKaqw5YrFYUFRUbGb+2VsRh/Lycixfvhx2dnb44osvBtTNVVudUrt378ZXX32FadOmYdmyZXj99deRnJyMsWPHQiAQwN7eHmfPnoWJiQkIIQgPD8cnn3wCPz8/LFq0qB/OhPIMtGj5RaWz0529vLzg4eHxwhct9wWEEJSWljI+YDExMVBVVWUKoCdMmAB5eXlm+4KCAuTl5UFdXR2mpqZ9lrcnhIDH4zUzQh00aBAjgNqKdtXX1yMhIQGampowNjZucdFvKKtEeVRCYw1QZDxqMrpugSKvp406Hh8NxQNL7GjYmaEsNr3Xap5kVBWhZm4IWXkO6nOLIOijSJf6uJGYcHoL5LXVWlhEEEJQV1fH2KVIugUln5PuCqCEhAT4+Phgy5YtrbqAP++01i31008/wd/fH99++y1effVV6OrqMs8FBgZi5cqV2Lx5Mz788EOIxWJG7Dg6OuLUqVN9FkWjdAkqeF5EOmqFbwoVPL0HIQRFRUVMC/y9e/egra0NFxcXKCgo4OjRozhy5IjU5y2JxeJmAojP5zcTQPLy8igpKUF6enqX5q/UF5ahLDoBZRGPUBYZj7rc4na3lx+qhfoaIeoH0LwaQgi0JlmiOLz9G4eeomqqByU9zcboT3ouIOq535nOjPGwPfwJZJQVGIsIKysrKCkptbq9RABJvK+ajkuQCKD2RDohBBcvXkRAQABOnTrVo6GB/QEhBIsXL4aRkRF27tzZ7Lm3334bNTU1+O2335iobNNU16ZNm3DhwgUUFxfD1NQUubm5eOedd/Dtt9+22JbSb1DBQ+kdOjP7JzQ0FGvXroVAIIC2tjbCwsKkvErpQghBeno6/Pz8kJSUBG1tbWhra8PV1RWTJ0+GtbV1v4T6xWIxqqqqGAHE4/HA4XBgYmKCwYMHd9udvjbnKdMBVhYZj4ai/3zA5IZooaF2YIkdyHKgOMoAvIdZUj2sjIoi1MwNIKsg+7/oT9ejYYaLZ8Dyq/cBNqtHFhFNBVBVVRXk5eUZAdTUMkUoFOLzzz9Heno6Tp8+3cJ8dyBQXV2NAwcOwNPTE6ampszjdXV1sLe3h4ODAzMgUEJTIZORkYHIyEhoaWlBXV0dTk5OAOh8necIKngovUNHs38qKirg6OiIa9euwdDQEMXFxS+8SWB6ejreffddzJ07F+vWrQOLxUJGRgYzBfrRo0cwNjZmBNCYMWOkehdYW1uLhIQEDB48GGpqaswXm0gkgpqaGhMB6k44nhCCmowClEXFozwmCaUPs1CV1Ds1QNJAVmsQOINUUJ3a9bRdb6NiPATK+togdXWoSc8FOuikG7VhIUZ+9BYaGhp63SKiqQA6efIk7t69i/HjxyM2NhbTp0/H9u3bB+SX+7MRmJMnT0JPTw+vvPIKeDweZs+eDRkZGZw+fRpDhgxpVueTlZWFiooKjBs3rsP9UvoVKngovUd7dUMHDx5EQUEBvvzyy35YWf/w119/QU9Pr82prWKxGKmpqQgODkZoaCgeP34MMzMzuLi4wNXVtU+HwBUVFSE7Oxvm5uZQU1Nr9pxIJEJlZSUTARKLxVBXV2fu7LslgMRiVCXnoiT8EUrC41ESmQBBRd85ofcEZeOhaKiqQ33R8xeN4ig1dn7JKsmhIe8p+MX/rZHFYcPq6w9g+M4MqVhEAMC1a9ewf/9+KCsro7S0FFpaWnBzc8PkyZPh6OjY489vR5HjyspKLF68GDk5ORAKhfjkk0+wbNmyLh+naRQmLS0Nc+bMgby8PC5evAhjY2McO3YMPj4+OH78OObPn8+ktXg8Hnbs2AEdHR34+fl1OzpKkQpU8FB6j/YEjySVlZiYCB6PBz8/PyxdurQfVvn8IhaLkZCQwESA0tPTYWFhwfiAGRsb9/gLRCQSISUlBQKBAGPGjOmUeBGJRKioqGCKWwkhzQRQdybmEpEIlYnZKL7VKIBKoxMh5LXuVSVN1MaaoiIpB6La528idWsoG+lCxXAwWEIBRm9YAJ1pdlKxiCCE4Ny5czh48CDOnDkDc3NzAI2GnWFhYYiOjsa3337b489rR5HjXbt2obKyEnv27EFJSQnMzMxQVFTULeGRlZWF2tpaWFhY4OzZs9i3bx+GDx+O8+fPQ0ZGBm+99RauX7+OjRs3YuXKlcjPz0dQUBD27duHr7/+ultCiyJVqOCh9B7tCR5fX1/cu3cPwcHBqKurw6RJk3DlyhXqDt8OIpEIDx8+ZARQTk4Oxo4dCxcXF7i5uUFfX79LaQrJVF09Pb0uv7YpQqGwmQACwIgfDQ2NbqU0xEIRiu8+RuLFGxAnFaAmLkuqoqOxONkCxRFJQPvXvucOZeMhcP51M1RG60vFIkIgEGDLli3Iy8vDyZMnW0QIe5v2riu7d+9Gbm4uDhw4gOzsbMyYMQOpqamdOvem6aaoqCg4Oztjy5Yt2Lx5M+Tl5bF7924EBgZizpw52LdvHwBg7ty5iIqKQklJCYyMjFBRUYGDBw9iwYIFvXvSlL6AWktQpIO+vj60tbWZCcKurq6Ii4ujgqcdOBwO7OzsYGdnh/Xr10MgEOD+/fsICQmBr68viouLYWtrywggXV3dNkVMQUEBcnJyemWqroyMDFOADTR+AVZUVKCsrAyZmZlgsViM+FFXV++UACrjliMLPNhufhcaGhoQ8wUoj01DSUQ8SsLjURbzGOIGQY/W3SYcNjRtzVAcntg3++9DhkwbB4cT6yGUZ+P+/ft9bhFRXFwMb29vTJkyBd99912/16f4+vpi9uzZ0NPTA4/Hw2+//dapNUlczgHg/v37iIuLw9q1a7FmzRomYrlq1Srk5eXhjz/+gImJCVatWoXff/8dycnJePjwIZSUlDBhwgQYGhoy+xxoLfiURmiEh9Jl2rsTe/z4MXx9ffF///d/4PP5sLe3x7lz5wZc6+rzBJ/Px+3btxESEoKwsDBUVFRgwoQJmDx5MpydnaGtrY3Kykp89tln8Pb2hqWlpVQMGwUCAeMEX1lZCQ6HwwggNTW1ZgJILBYjIyMDPB4PlpaWbaYiRPV8lN9Laaz/CX+EsnupIIKez8SRUVWCgr4OKh5JtxOrNxi9zhNWny9B6f+EZl9aRABAbGwsVq9ejZ07d8LDw6PPjvMs7V1XLly4gMjISHzzzTfIyMjAjBkzEBcX18wRXcKNGzfA4XCgra0NKysrAI2egtu2bQOLxcJ3333HDAiURH9SU1Px6aefIikpCQcPHsSUKVNa7Jd2YQ0YaISH0js0nf2jr6/fYvaPubk5Zs6cCWtra7DZbKxYsaLHYkdaBY3PK3Jyckx9D9DYQRMdHY3g4GAcPnwYZWVlqKmpweuvv47hw4dL7aIsKysLHR0dpguPz+eDy+WiuLgYqampkJWVZUxQc3JyoKWlhXHjxrV7d8xRkMNgZysMdrYCPn0HwtoGlMUkNQqgiHhwY9NAuji7RtFgMERCDDixw1GSh/0hPxjMc2bEYl9aRBBCcObMGRw7dgznz59/rqKyJ06cgL+/P1gsFkxNTWFsbIzk5GTY29sz29TW1sLT0xOJiYkoKSmBWCzG559/jo8++ggTJkyAra0tbt26BX19fQCNgl3yXo4aNQq+vr744osvsHbtWvz9999MREcCFTsDHxrhoTz3SLOgcSBBCMGhQ4dw4sQJ+Pj4IC0tDRERERAKhXB0dISrqyscHR171UqgKzQ0NCAnJwd5eXmQlZWFoqIi0wLfdLZLVxDwalEa/Z8AqojLaLcWZ5CFMXhZRRBU1vbkVKSOspEunM9thtKoYUhISICamhpMTEz67PfI5/Ph7++PsrIynDhxotvecT2hvQjPBx98AF1dXWzbtg1Pnz6Fra0t4uLimHTr/fv34e7uDjMzM2zfvh1ycnK4cOECvv/+exw8eBDvv/8+/vjjD3z00UfQ09NDaGgo5OXlW0Rtjhw5gmPHjuHIkSOwtbWV2rlTehVatEwZ2PRVQeNAxsfHBzIyMti/fz/jo0UIQVVVFW7duoWQkBBERkaCw+EwRqgODg694uvVEYQQZGRkoLKyEpaWlpCXl0d9fX2z4XZycnLN7A268/viV1SjNCrhfymweFQmZjPPadibozQmRarO8L2Bsr0pLH/4AEqD1ZGZmclYRPQVRUVFWLZsGdzd3bFhw4Z++bvpaGp8QUEBvLy8UFhYCEII/P39sXjxYgDAvXv34OzsDGdnZ9y4caNZjc2sWbOQl5eHR48eAQC++eYbHDx4EB4eHggICADQ3CEdaIwY93WBNqVPoYKH0vuUlpYiPj4ehoaGGDFiRJ8eqz3BIxkYlpyczBQ0vvbaa326nueBoqIiDBkypN1tCCEoLy9njFBv374NRUVFxgjV3t6+11uaGxoakJCQAHV19XajEvX19cwMoKqqql7xd2ooq0JpZAIqErKQ80ckqpJze3o6UsXMby6MPp6LnLxclJWVQU5OrtlwyK4YxHaGO3fuYM2aNdi7dy9mzpzZq/uWFtHR0diyZQuePHmCiIgIDBkyBLW1tVBSUsI333yDrVu3IjY2FmZmZqiursaWLVvw119/Yd26dfD19WX201Qo0cLkAQ0VPJTe5fjx48wdUk5ODpSVlfHGG2/A29sbdnZ2vX6x6K2CxpcdQgiKi4tx8+ZNhIaGIiYmBhoaGswQRDs7ux6lAiWD8EaNGgUtLa0uvVZicCmxwWiaAlNRUenWZ6r+KRfF4QkovvUIxeHx4KX1/0Tl1uAoycP+oB/05zk1s4hgs9ktDGJVVVV7LIAIITh58iROnTqFs2fP9vkNS19z7do1rF+/HlpaWggNDWUeX7FiBSIiIhAZGQkNDQ2w2WxkZmbi008/RWJiIvbu3YtZs2b138IpfQEVPJSeI7nruXv3Ll577TVMmjQJGzZsgLKyMiIjI3HhwgUIhUKEh4f3+rHbEzyvvfYa/P394eLiAgCYOnUqvvrqq2YFjZTWIYSgoKAAISEhCAkJQWxsLHR1dZkiaRsbm051fBFCkJmZiYqKClhYWPQ4atTU4ZvL5aK6uhpKSkrMF72ysnKXBVBZWRmSou5Dq0SAmthMFN+KR3VmYY/W2RsoD9eB07ktUBw5tEOLCIlBrCQ1WF9fj0GDBjHdcZ0RQA0NDVi/fj1qampw7NgxqaQ4+wrJNUksFuPEiRPYsmUL5tLh13MAACAASURBVM+fj++//x6bNm3C119/jd9//x1z585t9rrIyEisWrUKGhoauHbtWp8NbqT0C1TwUHqOpIVz27ZtOHXqFK5fv44RI0aAEAKRSITIyEjcunULW7duhUgkAovFYn56Sk8KGimdhxCCJ0+eME7wDx8+hIGBAeMDZmlp2aJbpa6uDo8fP8agQYNgYmLSJzUghBDU1tYyAqimpgbKysrQ0NCApqYmlJSU2vycEUKQlZUFLpfL1BNJqM0rwdNb8Y0RoFvxqM1p3wm+t9GdYoNJJ9ejhiXslkVEVwVQYWEh4/v20UcfvRB1bhLRU1lZie+++w779+/H4MGDwePxcOTIEcyZM6fVFNW1a9dgY2PTYVqYMuCggofSe6xfvx6BgYE4c+ZMp8PBYrEYYrEYHA6nywKoJwWNlJ4hmZ8THByMmzdvIjExEaampnBxccHkyZORlZWFHTt24NKlSxg6dKjU1kUIQU1NDSOAamtroaKiwgggRUVFsFgs8Pl8JCYmQkVFBSNGjOjwC77mydNmAqguv7TPzsHMby6sti1FXkE+SkpKYGlp2eNIw7MCKD8/H2fOnIGrqyuGDBmCvXv34ptvvsH06dN76Syki1jcOJLg2d+jRNBkZ2dj9+7d+Pnnn3Ho0CEsW7asRSfWs0afdL7OCwcVPJTeIzExEfb29hg1ahS2bt2KuXPngsViQSgUgsVigcPh4Ndff0V+fj5WrFjR7Rbk/iQ3NxdLly5FUVER2Gw2fHx84Ofn12wbQgj8/PwQFBQEJSUlnDx58oVvZRWLxUhOTsb169dx9OhRVFRUwMHBAZMnT4arqytMTU375XdNCEF1dTUjgOrq6iAvL4+amhoYGxszs1e6vM/MQhSHx6P4VuNPfVF5j9fKUZTDhANrMGyeU59bRPD5fERGRuLnn39GVFQUBg0ahEmTJsHNzQ1ubm4wMDDo8TE6mpMFAKGhoYzPnra2NsLCwjq9f0n0eNiwYUytUUlJCVRUVFpN4d25cwdbtmxBRkYGYmJioK2tDaFQKJVhnJTnAip4KL3L1atXsW3bNty9exfjx4/H559/3qwzysvLC3/99Rd8fX0RGhqKsrIyvP/++3j//fdbHZxGCIFYLAaLxXouxFFhYSEKCwtha2vLDHy7dOkSxowZw2wTFBSEH374AUFBQYiJiYGfnx9iYmL6cdXSobS0FEuXLoW1tTW2bduGlJQUxgk+KysLlpaWTAps+PDhUu92IYQgNzcX+fn50NbWRnV1dbNUj6amZrciKYQQ8NLy/yd+HqE4PAENJRVd2ofycB04/boZciN0kZCQAENDwz6NjNXX12PdunUQiUQ4evQoZGVlERsbi9DQUISGhmLRokXM1OHu0tGcrIqKCjg6OuLatWswNDREcXExM6yyM2RmZmLr1q2oqqrC33//jVOnTmHfvn04evQoHBwcWn3NlStXsGHDBujp6eH69esAWkZ2KC8sVPBQep/Hjx/jzJkzOHz4MJSUlHDq1ClMmTIFRUVFWLhwIWJjY+Hg4AAfHx+EhITg3LlzOHnyJF5//fVO7V8Spr5//z4KCgrg4uICdXX1Pj6r1nnjjTfg6+uLGTNmMI+99957cHNzw8KFCwEAZmZmCA0NlWpqpz/w9fWFu7t7q63/QqEQDx48YIxQ8/PzYWNjw/iA6enp9akAEolESEpKAofDgZmZGZOqkKR6JBEgPp/fTAA1revpLIQQVCXnNhFA8eCX89rcXtdtLCb9vAGVonqpWETk5eXBy8sLCxYsgK+vb59+2bdXY3fw4EEUFBTgyy+/7Pb+AwICcPToUcjLyyMhIQF79+7FBx980EK4Sq4ZIpGIKWKePn06zpw50+1jUwYcVPBQeo9nCwBv376NadOmYcmSJTh8+DBCQkKwcOFCzJo1CydOnADQeJfn6emJmpoa3L59m7nbqqiowN9//42rV69ixIgRmD9/PqytrZsNA/P19UViYiJOnz7drdRET8nOzoarqysSEhKatbp7eHjA398fzs7OAIBp06Zhz549GD9+vNTX+LwiEAhw584dpg2+tLQUdnZ2TBeYjo5OrwkgiUt8Z4w1xWIxqqqqGC8wgUAANTU1RgB1pzWfiMWoTHqC4rB4FIfHoyQyAXxuNQDAbM0cWG1/F1lPshk/sb6yiACA8PBwrF+/Ht9//z3c3Nz67DgS2hM8klRWYmIieDwe/Pz8sHTp0k7tV3Kt4fF4sLa2xpMnT+Dj44PDhw93+Boul4svv/wS9fX1OHDgAJ2t8/JAvbQoPUcsFiMxMZEx5AMa76gdHBxgaGjIFA0/fvwYbDYbS5YsAdBYR6Curo6JEyfir7/+QlZWFoyNjZGWlgZ/f39cuXIF06dPx7///oszZ85g586deOedd9DQ0ICkpCSkp6dDXV29Q7ETHx8PQgisra177Zyrq6vh6emJgICAFnN9WrtZoBfU5sjKysLJyQlOTk7YsmULGhoaEB0djZs3b+L48ePg8Xiwt7eHq6srXFxcoKmp2a338OnTp8jKyup01ITNZkNdXR3q6uowNjaGWCxGZWUlysvLkZeXB6FQCHV1dabbqTMCiMVmQ93SGOqWxhi1ejbEIhEqE7LRUM6DptMYxMU/gpqaGmxsbPrscyIWi3HkyBH8+eefuHLlSq/U6PQUoVCI+/fvIzg4GHV1dZg0aRIcHBza9eqS3BBJ3qfExETMmDEDOTk5iIyMxD///AMPD49W01QsFguEEGhoaODzzz9n/m7p3yaFCh5Kp4mJicG0adOwf/9+zJs3D4MHDwaHw0FxcTGys7Mxc+ZMsFgsxMXFQVZWFhMnTgTwn+kel8uFlpYWIxS2bduG2NhYnDt3Dh4eHqiqqoK3tzc+++wzODk5gc/nw9vbG3FxcRg+fDj27duHmTNntmpGKhQKceTIERw8eBAcDgcWFhZYuHAhFi5c2MIEsLMIBAJ4enpi0aJFmDdvXovn9fX1kZv73yTfvLy8DiMLLzvy8vJMwSzQaPgYFRWF4OBgHDhwAHw+Hw4ODnB1dYWTkxPU1NTa/aISi8VIS0tDfX19j4w12Ww2I26ARiFfWVkJLpeL3NxciESiZgKoM8dhczjQGDsCVVVViI2N7XOLiNraWvj5+UFeXh43btx4bmbL6OvrQ1tbG8rKylBWVoarqyvi4uLaFDxNu6ZKS0uhra0NBwcHODg4ICoqCp9++il27doFIyMjWFpatil6ADBih9bvUACAfgIoncbY2BgffPABvv/+e8yZMwcbN27E2rVrYWlpCU1NTaxYsQLl5eV48OABFBQUoKysDEIIOBwO6usb6xZUVVVhZGQEPp+PS5cuYcWKFXj99dchIyMDTU1NbNy4kfG+GTlyJDw9PTFkyBCMHTsWx48fh4+PD+7fv8+sSSKeSkpKkJOTA2dnZ0RHR2PmzJk4d+4cVq5cCS6X2+VzJYRg+fLlMDc3x7p161rdZvbs2Th16hQIIbh9+zbU1NRe+Pqd3kZJSQnTp0/H7t27ERkZiZCQEMyaNQsxMTHw9PTE1KlTsWXLFvz777+orq5u9trMzExERkZCXl4e1tbWvZoi4nA40NTUxIgRIzB+/HiMHz8e2traqKqqwsOHD3Hnzh2kpqaipKQEQqGwzf0UFBTg8ePHsLa27lOxk5OTAw8PDzg5OSEwMPC5ETtAY/1beHg4hEIhamtrERMTA3Nz81a3lYyuAAB/f3/Mnj0bVlZWmD9/PrKysuDo6Ii1a9eiuroaW7duBY/HY4RMeXnbHXRU7FAAGuGhdIEhQ4Zg//798Pb2xsWLF3Hr1i0QQrB69Wq4u7vDwsIC165dQ01NDXg8Hm7dugVXV1cAjTUFCQkJ+OSTT8Bms3H37l3w+Xy4ubmBw+Ew+XWJGJJcoPLy8qCrq4uDBw9i6NChKC4ubnUwW3Z2NhISErBy5UqMHz8e48aNg5OTE9566y3s3r0be/fu7dJdXmRkJE6fPg0rKyvY2NgAaHRlz8nJAdA4/2fWrFkICgqCqakplJSUmHolSvdRVVWFu7s73N3dQQhBRUUFY4S6a9cuJkU2aNAgnDhxAseOHYORkVGfr4vD4UBLS4uxyxAKhaioqACXy0VWVhYAMNEfdXV1sNlsxiJi/PjxfTrnJTQ0FP7+/jhw4AAzbVyaNJ2Tpa+v32JOlrm5OWbOnAlra2uw2WysWLGi1Sgt0ChM+Hw+5syZg4SEBCxbtgx5eXkICwvD5MmTERgYiLlz5yIrKwtHjhyBv78/du3ahX/++Qfnzp3DV199BQsLC2mePmUAQQUPpdNIRImFhUWbF5VHjx6BEAJbW1scO3YMAoEADx8+xFdffYUJEyZgzpw5AIC4uDhoaWlBRUUFQGMYW0ZGBgkJCWCxWFBTU0NVVRXS0tIwfPhwJlWkq6vb7HiS0HVKSgpKS0uZgWpsNhuvv/46bGxskJ+f32K42LNt8Dk5OYiIiMC0adOgq6sLZ2fnVmt0nj32gQMHuvFOtk1n5v/88ssv2LNnDwBARUUFhw4dwtixY3t1Hc8DLBYLGhoaeOONN/DGG2+AEIKSkhKsWbMG0dHRGDp0KLZt2wYXFxe4uLjA3t6+W91W3UFGRgba2trMNG+hUMgUQKenp6O2thZqamoYPnx4n61BLBbjwIEDuHLlCq5evYphw4b12bHa49dff+1wm/Xr12P9+vWd2l9ERASSkpJw5MgRuLu7AwCKi4vxyiuvYN26dbh8+TJ8fX2Rn5+PkydP4saNG3jy5Ak+//xzKnYo7UIFD6XTNHUSlkw8fVZEJCcnQ0lJibn7cnd3h6qqKmbNmoXdu3czhcfDhg2DSCRiwtCSoWBnzpzB6NGjYW5ujpSUFBQVFTFRorYmoko6QFRVVTFhwgRmfRwOB6mpqbCzswOHw0FaWhq0tbWhoaHBDEiUUFJSghMnTqCurg7Lly/vt5y/jIwM9u/f32z+z4wZM5rN/zE2NkZYWBg0NDRw9epV+Pj4vBTzf7hcLry9vWFlZYUzZ86Aw+Hg6dOnCAkJwcWLF7Fx40ZoaWkxU6BtbW37tBOqKTIyMkxNW1lZGaysrEAIQVlZGTIyMsDhcJgIkJqaWo8jPjU1NfD19YW6ujquX78uNaEnDVJTU1FQUAAnJycAjWJSR0cHly5dgqWlJQIDA7Fz505s3LgR06ZNw7179+Du7o4JEyYAoE7nlLahgofSZZ4VC5ILTFZWFjIzMzF69Gjo6+vjzJkzOHnyJDIyMmBmZtZsH5MnT4aWlhYCAgJgYGAAVVVVnDhxAufOncOePXugpaWF3377DXw+n7mQPYvkuIWFhUhOToampiazPqFQiICAAHC5XEybNg1isRhr167FkydPcPz4cVy5cgWmpqaYN28elJWVYWdnh+vXrzP1GP2V8x86dChTB6Sqqgpzc3Pk5+c3EzyOjo7Mvx0cHJCXlyf1dfYHSUlJ8PHxwezZs5nHhgwZgnfeeQfvvPMOM3Dw5s2b+Pnnn+Hn54ehQ4cyU6Ctra37bNquxIOstLQUtra2jACRDNjj8/ngcrkoLi5GWloaI4A0NTWhpqbWpc9bVlYWvLy8sHLlSqxcuXLAfrk3valoOoZCTU0N2traePDgASZPngwZGRkIBAIYGRnBy8sL58+fx/r166Gjo4NZs2Yx9jaSiO1AfT8ofQ8VPJQeI7nA5ObmIjs7m0krNTQ0QF5evoXYAQB1dXV89913eP/99+Hk5ARDQ0OkpqZi6dKl+OCDDwA0pqnk5eWZaapt3RU/efIE6enpSE9Ph6ysLPT09KCsrIycnBwsWLAAc+fORWZmJqqqqpCTk4MNGzZAVVUVFy9exMSJE2FkZISzZ8/C3Nyc6SxrisQHjM1mS1UIZWdn48GDB62uSUJgYCAT9n/Rkcw7agsWiwVDQ0O8++67ePfddxnT0JCQEBw6dAiPHj2CkZEREwEaM2ZMr9TWCIVCxiLC1ta21c+InJwcdHV1mZQsn89HeXk5ioqKkJKSAllZWcYJvj0rlhs3bmDLli04cuQIJk2a1OO19xeSvyc+n89EYyXROGdnZ9TW1uL8+fOwsrKCpqYm85xAIICsrGyrlhK0MJnSEVTwUHqNyZMnIy4ujrlb62h2yauvvoqEhARcv34dKSkpjCcT0HhhGzRoEIqLi1FfX9/q6yVCKzU1Ffn5+QgJCYGWlhYiIyORkZHBpIMAICEhAffv38f8+fOxdetWDBs2DGVlZRg2bBgeP36MHTt2YMKECfjtt9+Y/dfX1zMXYmlfTNub/yPh5s2bCAwMREREhFTXNlBgsVgwMTGBiYkJVqxYwbSwh4SEYN++fXj8+DFGjRoFFxcXuLq6wszMrMu/Z8mww65aRMjJyWHIkCGMU3d9fT24XC4KCgqQnJwMOTk5qKurIz8/HxMnToSMjAwCAgJw48YN/PvvvwPW4VsSlWWz2YiMjMSHH34IgUAAeXl5bNmyBY6OjjAwMMBXX32FVatWwcDAACtXroSmpiaKioqQn58POzs7yMjI0NQVpesQQtr7oVD6DLFY3O7jMTExZNSoUcTQ0JD4+vqS7OzsFts2NDSQtWvXkmHDhrW7rx07dhBtbW1y7969Ftv8/vvvZPTo0eTkyZOEEEIEAgG5fPkyWbJkCTE2NiZjxowh/v7+JC0trdVjCIVCIhQKOz7hTsLn88krr7xC9u/f3+Y2cXFxxMTEhKSkpPTacV82RCIRiY+PJwEBAWTOnDnE0tKSzJ8/n/zwww8kLi6O8Hg8UlNT0+ZPVlYWCQ4OJkVFRe1u152fsrIyEh8fT15//XViYmJCRo4cSRwdHcnt27d79bNGCCHLli0jgwcPJhYWFu1ud+fOHcJms8n58+e7fAyxWExEIhHz/+TkZKKpqUkWL15MNm3aRKZPn06GDh1K1q1bR2prawkhhGzYsIEMGjSIjBkzhixcuJBMnDiRaGtrk9jY2C4fn/JS0aamodYSlH5HUgDd2t01l8vFH3/8gdTUVCxZsgSWlpbN8v05OTlYuXIlFBUVcenSJaawuWmBc0NDA7y8vJCdnY3o6GgAzWsGtm7dinPnzuHy5csYM2YMAgIC8Pnnn2PUqFFYsGABMzNoxowZ+PTTT6GsrAwAqKyshJqaWpfPl7RzZ0oIwbvvvgtNTU0EBAS0uk1OTg6mTp2KU6dONavnofQMkUiEuLg4xgcsJycHVlZWcHFxwZQpU6Cvr8/Uhx07dgz29vawsrLq08Lo9PR0eHt74+2334aWlhbCwsLw8OFDGBkZMTOsekpH5p9A43szY8YMKCgowNvbG2+++Wan9v348WOYmJg0K6r+4YcfUFNTg9TUVPz4449QUlICAKxbtw5Xr17F4sWLsXnzZgDA77//juvXr6OkpASamprYt28fNDU1aXSH0h5tfzDaU0NSVmUUSpcJDg4msrKyZPfu3YQQ0uzuVxLdSUpKIhMnTiTLly8nhJBmd5o1NTXkzTffJE5OToQQQurr68mgQYPIW2+9xWwjEolITEwMuXTpEqmpqSGEEBIQEEBmzZpFdHV1ia2tLTlx4gTh8/mdXvedO3davVsPDw8nAIiVlRUZO3YsGTt2LLly5Qo5dOgQOXToECGEkOXLlxN1dXXmeTs7u04fty1ycnKIm5sbGT16NBkzZgwJCAhod+3dvdMfSAgEAnL79m2ya9cu8sorrxBra2vy9ttvExsbG+Lt7U2qqqp6PbLT9OePP/4g1tbW5M6dO83WJRaLSXp6OomPj++1c83Kymo3wvPtt9+SH3/8kbz77rud/r37+fmRMWPGkNmzZzOPXb16lRgYGBA1NTXy8ccfE0II83dTVVVFPD09iZOTE0lISGi2r4aGBubfAoGg0+dFeSlpU9NQwUN57hEKhW2mv2pqasjZs2dJXl4eIaR5mkwibC5cuEBGjx5Njh8/3mJ/cXFxZPz48eSDDz4ghBBy7tw5Ii8vTyIiItpcz4cffkg4HA5ZsWIF+eWXX4ifnx8xNDQkwcHBHZ7LtWvXyNSpU4m1tTUxMDAgCgoKxNXVlQQGBpLy8vJOvBt9Q0FBAbl//z4hpPGLZ+TIkSQxMbHFdkKhkEyZMoW4u7u/8ILnWW7fvk1GjhxJlixZQqZMmUJsbGzIihUryOnTp0l2djaprq7uFaHD4/HIZ599RqZOnUqePn0qlXNrT/Dk5eURV1dXIhQKOyV4cnNziZWVFbG2tibffPMN+eeff5o9v3PnTqKurk48PDyYxySC5s6dO4TFYpFbt24RQlqmvZverFAobdCmpqFFy5TnnvY6aZSUlLBw4ULm/03D3JIUWUREBEpKSphuJzabzYTEExISwOVymeciIyMxYsQIZmCcZDtJiiwsLAyBgYE4fvw4li5dCrFYjGnTpiElJQU7duzA1KlT21zr/fv34e3tjbFjx2L9+vUYN24csrKycOHCBWzevBmamprMYEZp05l2eKAxHeHp6Ym7d+/2xzL7jZ9//hkHDx7E1atXMWLECACNhcbR0dEICQnB0aNHUV1dzfiAubi4QF1dvctpl6qqKrz33nswNjbGtWvXpDZHqD3Wrl2LPXv2dKqjraysDN7e3hg+fDj2798PExMTZhQAn8+HnJwcVq1ahdzcXPzyyy84evQofHx8mPMcOnQo5OXlkZaWBhcXlxbvH+3EovQEKngoA56OhgS6u7tDRkaG+fJuOqsjMTER8vLyzJCziooKsFisZm2vpEmd25UrV1BXV4fs7Gzk5ubCwMAAurq68PHxwapVq5iLemtrPH36NAoLC5GRkcF4HVlYWMDOzg6jRo1iXOhJP9cntNUOn5+fjz///BMhISEvneDR1dXFzZs3mXoTAFBQUMCUKVMwZcoUAI2ddVFRUQgJCcH3338PoVCISZMmMUaoqqqq7f5eU1JSsHz5cqxbtw6LFi16bmpU7t27hwULFgBoNPMMCgqCjIxMq+I8JycHiYmJCAwMxKhRoyASiZjn5OTkQAiBuro6/Pz8kJ+fj+3bt8PAwADu7u5oaGhAaGgo5OTkMHr0aKmdH+Ulor3wj7TjUBSKNOHxeGTq1KlkzJgxzGN//vknYbFY5ObNm62+ZuzYscTIyIiMHDmSsNlsoqamRhYsWEAmTJhAbG1tSVFRUauvq66uJu+++y5RVVVlUke9RVvpvu7A4/GIra0tuXjxYovn3nzzTRIdHU0IIV2q5XgZEYvFpLKykvzzzz/ko48+IhMnTiQODg7k448/JpcvXybFxcVMCqu6upr8/vvvZOzYsb3+2egsHdXwSOjo937x4kWipaVFbt++3ezxn3/+mWzbto0sXLiQ/Pvvv0QgEJCYmBhiaWlJ5OXliYuLC1m2bBlRUVEhq1ev7vH5UF5qaJcW5eWlLUsKAEhLS0Nubi6TiiovL4eXlxfy8/OxZcsWmJqagsvlwsLCAlpaWrCwsMC8efOwfft2ZGZmIjo6GteuXcOjR48wadIk7Ny5s01X7J9++gnvvfceRo0ahW3btsHDwwMqKioQCASQkZHp1h09+V806MaNG7CxsWG8nbqDQCCAh4cHXn311VYd4o2NjZloV2lpKZSUlHD06NF+S8MNJAgh4HK5CAsLQ0hICG7fvg0FBQU4OjqiqKgIhYWFOHv2bI9+f92lqfmnrq5uC/PPpnh5ecHDw6PNLq2kpCTY29tj8eLFePXVV8FisbBjxw7ExcVBXl6eMQpet24dtm/fjvPnz2P79u1oaGjA3r17oaWlxczi6i97F8qAh3ZpUSidJTExkXh4eBBFRUWip6dHFi9ezMz+2LRpEzE1NSVlZWXNIit8Pp+UlJS0uU/Jtn/++SexsbEhLBaLzJkzh+Tn57fYtitzfcRiMQkLCyMqKirk3LlzXTnNFvtZsmQJ8fPz69T2NMLTM8RiMXn69Cn5+eefiaen5wvReST5jB84cICoqKgQFotFWCwWsba2Jhs3biRJSUmksLCQvPnmm0RNTY3ExMQQsVhMPvvsM2JmZka2bNnC7KsrHY8UyjPQCA+F0hqkg5k4d+/eBZvNho2NDePm7uPjA2NjYyxfvhwmJiYoLi7G4MGDYWxs3OFxCCF4+PAhDhw4gJMnT8LR0RFXr15lZvt0Fsndb1RUFLZu3QoLCwt8//33Lc6nsrISZ8+exZIlSxhn+taIiIiAi4sLrKysmLvqXbt2IScnB0DX7/QpLzeSaec6OjqwtraGrq4uE2Wtq6uDsrIyfvzxR6xatQqlpaXYtGkTwsLCsHHjRnh7e/fz6ikDnDYjPFTwUCjPIBaLQQhpMw0WEhKCzz77DPfu3YOBgQE0NTXx1ltvYe3atV3yZpo9ezZCQ0ORmprKWAVs374dlZWVcHd3Z2wx2mPmzJlQUVHBt99+CwMDAwiFQsjIyDDF0w8fPsSvv/6KPXv2dHpd0iQ3NxdLly5FUVER2Gw2fHx84Ofn12K70NBQrF27FgKBANra2ggLC+uH1VI6or0bCMnzN27cwMKFC3H+/Hmm4DsxMRG+vr4oLCxEeHh4m2lhCqUT0JQWhdId2isIrqmpIcHBweT3338nBQUFzZ6TpKQCAwPJDz/8QLhcbrPnKysryVtvvUXMzMxIZmYmIYSQsrIy8uuvvxIPDw+ioKDQ4fEvXLhAZGVlSWRkZLNtCwoKiL+/P7G2tiY6Ojpk0qRJ5K+//mJmnUi2e/DgAVm2bBmJiYnp9PvR23Rm/g+XyyXm5ubkyZMnhBAitdk0lN5B8nkTi8UkPz+feHl5EScnJ5Kbm9vs833z5s1WZz9RKF2EzuGhULpDa3erIpEILBYLSkpKbc7dkUR6nj59iuPHjyMtLQ2LFi2Cnp4eeDweTp06hYsXL8Lf359JhamqqmLBggXIy8trdizJHJOmVFRU4Ndff8X48eMZewnJWnfu3InAwEBs3boVV69eBZvNxurVq/Hee+9h3bp1UFRUhEgkgo2NDR4/foyoqCjY29v3S5FoZ+b/qoGvkAAAB6xJREFUnD17FvPmzYOhoSEAQEdHR6prpPQMFouFR48eISkpCYcOHUJ2djaCgoKgr68P4L+okJubGwBarEzpO6jgoVC6SNO0lVgsbjbX51m8vb2hrKyMkydP4vDhw9DX14eqqiqys7Ph7++PDRs2MNtKLvKnT59m0jrP7lfyZRAbG4uUlBS8/fbbAMCksvLz8xEZGQlvb2+sX78eqamp2Lx5M5KTk1FQUMDMF5Kcg4qKCmpra5sdv79oa/5PamoqBAIB3NzcwOPx4Ofnh6VLl/bTKildJTIyEjNmzIC5uTlGjRqFa9euQVFRkfks0+GCFGlBBQ+F0gM6ujjr6upizZo1WLNmDYqKihAeHo76+nrGjLIpEhGSlJQEDw+PZo89S0xMDAghcHZ2brYODQ0N6Ovr4+nTp4iLi4O+vj5GjhyJkSNHttiHUCiEjY0Nbt26hU2bNnXtxHuZ6upqeHp6IiAgAIMGDWr2nFAoxP379xEcHIy6ujpMmjQJDg4OGDVqVD+t9vnB29sb//zzD3R0dFo1/vzll1+Y+i0VFRUcOnQIY8eOleoanZyccOHCBaipqTEDPiUCnUKRJlRKUyh9CCEEIpEIhBAMGTIE8+fPx5IlS1qIHfK/5oGoqCgMGjQIOjo6jIt8UyTCprCwEIqKirCwsGj2uJKSEry8vBAREYEpU6YgPz8fhYWFra5NRkYGIpEIXC4XAFo9njQQCATw9PTEokWLMG/evBbP6+vrY+bMmVBWVoa2tjZcXV0RFxfXDyt9/vDy8sK1a9fafN7Y2BhhYWF49OgRtm7dCh8fHymu7r/P9axZsxixIxaLqdih9AtU8FAofQiLxQKHw2HC9pIOMAmSf9fV1QEAbt26hVdffRUAmo3lb0p9fT2zn2e7WcRiMTw9PREVFQVLS0tER0fj448/Rn5+frPthEIhgMY0ko6ODkQiUb+kEgghWL58OczNzVsddggAb7zxBsLDwyEUClFbW4uYmBiYm5tLeaXPJ66urtDU1GzzeUdHR2hoaAAAHBwcmtWHSYPWUr00ZUXpL+gnj0KRIs/WLEj+ffDgQTg7O2PTpk1QU1MDgDaNIxUUFFBTUwN1dXUA/4kXyf4BQE1NDWZmZvD392fa6JvSNH2mp6eHhoaGXjrDrhEZGYnTp08jJCQENjY2sLGxQVBQEA4fPozDhw8DAMzNzTFz5kxYW1vD3t4eK1asgKWlZb+sdyATGBgId3f3/l4GhdJv0LgihfIc8Mknn2Dq1KkIDQ3F33//jQULFuCnn36Cqqpqs+0kNhn19fXQ1dVtNvfkn3/+QX5+Pt577z3ExsbC0NAQXl5eSExMxB9//AHgv44YFouF0tJSlJeXw9jYuJkppjRxdnZuFvFqi/Xr12P9+vW9euzOzACqrKzE4sWLkZOTA6FQiE8++QTLli3r1XVIg5s3byIwMBARERH9vRQKpd+ggodCeU6wtbWFra1tm6kd4L/IjKWlJe7evYva2lpmSjObzcbly5dRWlqK4uJijB07Fjdv3sTVq1cxYcIEAI0RJYloCg4OhlgsbtYC/jIhIyOD/fv3w9bWFjweD3Z2dpgxY0az9+PAgQMYM2YM/v77b5SUlMDMzAyLFi2CnJxcP668azx69AgrVqzA1atXoaWl1d/LoVD6DSp4KJTnBEmBM5vN7rDOYfr06di7dy8UFBSYx6ZOnQoej4fAwEDcvHkTGhoaUFRUhKamJjZu3MgcQyKazpw5AysrK9ja2vbdST3HdGYGEIvFAo/HAyEE1dXV0NTUHFAFtzk5OZg3bx5Onz5Nu9ooLz3UWoJCGYBkZWXh+PHjWL16NWNLIYEQghUrVsDT0xO1tbWYPn06U+8j4e7du3B0dMTZs2cxf/58aS79uSQ7Oxuurq5ISEho1hbP4/Ewe/ZsJCcng8fj4bfffsNrr73WjyttTkdO5ytWrMDFixcxfPhwAI1RrXv37vXnkimUvoZ6aVEoLxrl5eWQkZFhvqAlg9z+7//+D+Hh4fjyyy+bbS+p36moqMCaNWuQlpaG6Ojo/lj6c0V1dTUmT56MzZs3t2iLv3DhAiIjI/HNN98gIyMDM2bMQFxcXItZQRQK5bmhTcFDu7QolAGKpqZmsy9eSRps6NCh8PT0bFEMLCluPnr0KOLi4vDFF18AQKeKhl9UOpoBdOLECcybNw8sFgumpqYwNjZGcnJyP6yUQqH0FCp4KJQXDGtra4wbN67VGSg3b95EUFAQPv74Y0yfPh1A67NSXgY6MwPI0NAQwcHBABp90VJSUmBiYiLNZVIolF6CprQolJeI+/fvg81mw8rKakAV3/YFERERcHFxgZWVFRMd27VrF3JycgA01sAUFBTAy8sLhYWFIITA398fixcv7s9lUyiU9qE1PBQKhUKhUF54aA0PhUKhUCiUlxcqeCgUCoVCobzwUMFDoVAoFArlhYcKHgqFQqFQKC88VPBQKBQKhUJ54aGCh0KhUCgUygsPFTwUCoVCoVBeeKjgoVAoFAqF8sLT0ajVl3PmPIVCoVAolBcKGuGhUCgUCoXywkMFD4VCoVAolBceKngoFAqFQqG88FDBQ6FQKBQK5YWHCh4KhUKhUCgvPFTwUCgUCoVCeeH5f9zWocu/V8FtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot PDF of uncertainty model\n", + "x = [ v[0] for v in u.values ]\n", + "y = [ v[1] for v in u.values ]\n", + "z = u.probabilities\n", + "#z = map(float, z)\n", + "#z = list(map(float, z))\n", + "resolution = np.array([2**n for n in num_qubits])*1j\n", + "grid_x, grid_y = np.mgrid[min(x):max(x):resolution[0], min(y):max(y):resolution[1]]\n", + "grid_z = griddata((x, y), z, (grid_x, grid_y))\n", + "fig = plt.figure(figsize=(10, 8))\n", + "ax = fig.gca(projection='3d')\n", + "ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral)\n", + "ax.set_xlabel('Spot Price $S_1$ (\\$)', size=15)\n", + "ax.set_ylabel('Spot Price $S_2$ (\\$)', size=15)\n", + "ax.set_zlabel('Probability (\\%)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "For simplicity, we consider the sum of the spot prices instead of their average.\n", + "The result can be transformed to the average by just dividing it by 2.\n", + "\n", + "The payoff function equals zero as long as the sum of the spot prices $(S_1 + S_2)$ is less than the strike price $K_1$ and then increases linearly until the sum of the spot prices reaches $K_2$.\n", + "Then payoff stays constant to $K_2 - K_1$ unless any of the two spot prices exceeds the barrier threshold $B$, then the payoff goes immediately down to zero.\n", + "The implementation first uses a weighted sum operator to compute the sum of the spot prices into an ancilla register, and then uses a comparator, that flips an ancilla qubit from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $(S_1 + S_2) \\geq K_1$ and another comparator/ancilla to capture the case that $(S_1 + S_2) \\geq K_2$.\n", + "These ancillas are used to control the linear part of the payoff function.\n", + "\n", + "In addition, we add another ancilla variable for each time step and use additional comparators to check whether $S_1$, respectively $S_2$, exceed the barrier threshold $B$. The payoff function is only applied if $S_1, S_2 \\leq B$.\n", + "\n", + "The linear part itself is approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018.\n", + "\n", + "Since the weighted sum operator (in its current implementation) can only sum up integers, we need to map from the original ranges to the representable range to estimate the result, and reverse this mapping before interpreting the result. The mapping essentially corresponds to the affine mapping described in the context of the uncertainty model above." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# determine number of qubits required to represent total loss\n", + "weights = []\n", + "for n in num_qubits:\n", + " for i in range(n):\n", + " weights += [2**i]\n", + "n_s = WeightedSumOperator.get_required_sum_qubits(weights)\n", + "\n", + "# create circuit factory\n", + "agg = WeightedSumOperator(sum(num_qubits), weights)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price_1 = 3\n", + "strike_price_2 = 4\n", + "\n", + "# set the barrier threshold\n", + "barrier = 2.5\n", + "\n", + "# map strike prices and barrier threshold from [low, high] to {0, ..., 2^n-1}\n", + "max_value = 2**n_s - 1\n", + "low_ = low[0]\n", + "high_ = high[0]\n", + "\n", + "mapped_strike_price_1 = (strike_price_1 - dimension*low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)\n", + "mapped_strike_price_2 = (strike_price_2 - dimension*low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)\n", + "mapped_barrier = (barrier - low) / (high - low) * (2**num_uncertainty_qubits - 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# condition and condition result\n", + "conditions = []\n", + "barrier_thresholds = [2]*dimension\n", + "for i in range(dimension):\n", + " # target dimension of random distribution and corresponding condition (which is required to be True)\n", + " conditions += [(i, Comparator(num_qubits[i], mapped_barrier[i] + 1, geq=False))]\n", + " break # TODO" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [0, mapped_strike_price_1, mapped_strike_price_2]\n", + "slopes = [0, 1, 0]\n", + "offsets = [0, 0, mapped_strike_price_2 - mapped_strike_price_1]\n", + "f_min = 0\n", + "f_max = mapped_strike_price_2 - mapped_strike_price_1\n", + "bull_spread_objective = PwlObjective(\n", + " n_s,\n", + " 0,\n", + " max_value,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# define overall multivariate problem\n", + "asian_barrier_spread = MultivariateObjective(u, agg, bull_spread_objective, conditions=conditions)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFoCAYAAAD0LAJxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xe4XGW5/vHvnYQkEAKEDgKGjjRbpB4lCIQmIE3KoYM5qDQVf8ejHkDQo2JL6ESFKFKkCCLSAxuUJgGkE+khCYgkISEQEpI8vz/eNTBMZu89s/fMrJnZ9+e61jV73tWetbMza571NkUEZmZmZmZm1tr65R2AmZmZmZmZ9Z6TOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07uzMzMzMzM2oCTOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07urFcknSYpipZpkq6RtG6OMZ0iaaqkRZLGd1ZWZr/Saykstzcy/qJ4viTpiDLl4yVNbHAskvSopMOLyrr9ndbo3P0kHSfpEUlzJc2W9KSksySpXuetdSySzpX0m0bFambNrUnvn9tKeljSu5IiKxsi6QpJ07M4j+hk3/Gd3EN/3dCL+CCe0ZK+WKb8JUk/yyMms0YYkHcA1hZmAbtkP68DnAFMkLRJRLzdyEAkjQC+D3wH6ABeL1fWxSGKr6W4LA9fAlYExpeUnwEsmUMsw4DLoPzvuY7nvgIYBfwcuB9YGtgG2D4ioo7nrXUsPwWekfSjiHiuvmGaWYtomvtn5kLS5/nOwLys7CvAHsBhwFTg+S72fwY4sqSsnveHrowGngCuKynfG5je+HDMGsPJndXCgoi4P/v5fkmTgb8CuwFXNTiWjbLXcyNiNoCkQ0rLulB8LU0pIrq6sdbLCcAlEfFe9n6x33NPSeoP9I+I+WXW7QrsD+wWETcVrbo2h1q7XsUSES9J+hvpi9I36xSmmbWWZrp/QvpsHxcRd5WUTYqIayrY/+0WuIc+kncMZvXkZplWDw9lr8MBJG0t6fqsycnbkv4h6T8LG0vaPWvat3bxQSStnZXvWVT2JUmPS5on6RVJP5Q0IFs3Hrgk23RW1hzkpTJlI3t6YZI6JF1dUjYyO+6mhTgkTZS0k6THsmv+m6RNyhzvc5LulDRH0qzs+J/MrmVfYLuipi2nFR+/5Did/l6qjalMjOuRaqeuLhyLLn6nVcTyRUlPAu8CW3Zy+u2y1ztKV+RQa1eLWK4B/lOSP3vNrJxq75/LZ00oDy8+iJIXJf2iqOzzkh7Itv+XpPMkLZ2tG6nUDLM/MDb7XB+f3UOPBj5ZuBf19MJK75VF5R+6r1Z6v5LUX9L/SPpndr+Zog+6YnQAnwYOL7qHHpGtW6xZZgX3rSOyY2wm6bYspmck7dPT34dZvfgLhtXD8Oz1tez1o8A9wDGkph3XABdLOihbfzMwDfjQzQk4Avg3cCOApFHAH4CHgb2As4GTgXOy7c8AfpD9/Hlg62y70rKHuwpe0oCSpSc1RGuRmuH9EDgIWBm4svhYWUI0AXiPdO0HkJ7YfiS7ljuBR7KYtwbK9luo4PdScUyd2AF4G3g0e1/u9/xwlbEMB84EfkR6Qv1iJ+cuNEv6qaSPdhNnl7IvO6X/tostXRyiFrHcC6wCbNbD/c2svQ3PXiu6f0bEDOBaFm8KOTI71sUAkjYm3WvfID04PBU4mOyhHekze+vs559nP59BasJ4I6m55dZF23Sqis/UrlRyv7qQ1D3gSuALpBYRQ7J1X81ivrEo7r90Em+l9y1IXROuJ/1engWukLRGD6/RrD4iwouXHi/AaaSbxYBs2YCUlMwGViuzvbLtLgTuKCr/AekLvoq2ewn4WdE29wN3lhzv/wELgTWy90cAASxdtM1iZV1cS5RZdizapgO4umS/kdl2m2bvxwMLgPWLtvlits1GRWX3ARML11wmnquBjjLl44GJVf5eKoqpkzjGAQ+WlJX9nVYRSwCfqODva1XgsaJ/iydI/fy6/Lfs5FhHUP7f90NLPWMh/e0vAL5cr/+TXrx4aY2F2t0/dwQWAesUlf2u5D5xBSkZ6V9U9qXss2zrorIAjis574fuOV1cT+GzvXRZL1s/kqJ7ZdF+HRTdVyu5X5GaigZwQhfxTATGlyl/iZ5/tziqaJsVsjiPzftvyYuX4sU1d1YLK5Bqn94DJpE6hR8QEa8CSBqmNJrgy0XbjSbdyAouIj2hHJm93z57X3jq2B/4FIv3QfgDqQa626eJFZoFfKZkeaAHx3kpIp4tev9U9roGpNHHSE0RfxsRvWnmUs3vpcuYurAq6QtILWOZGhH/6O6YEfEa8ElS5/7zgeVIT3LvlTQwO+/5SqN2dvd7/DOL/9uWW3oUi6Q1JU2Q9LTSCJpnltaKRsQC4E3S79TMrBb3zwnAy2StXyQNBfYhu39mtgCujYiFRWXXkJKT/6jh9TzN4p+pr/TgON3dr7bPXsf34Njv68F3i1sLP0TEdNJgMa65s6biAVWsFmaRnhwGqSnJtJKEZTywFamJx1Okp5JfITV/ACAiXsjayB9JenJ5JPD3iHgy22RFYAngXyXnLrxfvkbXsiAiajHNwJsl7wuDhQzOXoeRnsK+2svzVPN76S6mzgwG3qlxLKXbdCr7MnIrcKuk40jNU48k3XTvAi4nPQF/rbNjZGbQy5FPu4nln8B/R8TELPG8jfQFq3QQgnl0/zs3s76hFvfPkHQxcJRS3+wvkb7fXVZ0nNUo+dyNiIWSplO7+yfAOw26h65AGrylVwN6Uf13i3Jx+fPcmopr7qwWFkTExIh4KCKmFt+YJA0GdgdOjYhzIuKO7IO/3N/er4F9JX2ExZ86vkF6YrlyyT6rZK8zanUx3XgXGFhS1pMb40xSM5rVehlPI34vM0i1VLWMpUe1lRGxiA+enA7Oyu6OiEqSxcP54Ml3V0uPYomIVwtfaiKN/PkYsGaZXZejcX+vZtbcanX/vJj0ebM9qQnhdRExs2j9q5R8Nme1VivQ2Psn1OYeOh0YImmZ3oXUNN8tzGrGyZ3V2yDS6FuF+XIKTUb2LLPtH0lPwa4g/W1eUViR1Zg8RBqKvtiXSEnSfTWNunNT+GAagIKdqj1IpPmLHgAO62JAk26fCDbo9zIJWLu7jWodi6RVOlm1J6kmsdrmsj1ullltLJJWIPURuaWkfCVgKVItn5lZVyq+f0bEK6SHTd8nNbO8uGSTB4C9s4SuYB9SDd/faht2p6Zkrx8rFEhaE9iwB8cqjFp8WBfbNMs91Kyh3CzT6ioiZkl6EDhF0mzSh+W3SU1RlinZ9l1JlwJfAy6PiNLmD6cCt2TNT64gjTh4BvCriJhCY1wLHC3pl6SRt7Yn9cHqiW8DtwM3SRpHGo1xa1LH9RtII33tJemLpJvitIiYVuY49f693EP691spIv7dzba1jOVKSW+RRkJ7ifRk9T9JzZG+XObvo0tZ/4ieTlxbcSySBpEGwxkTEU+XHGcEqdby3h7GYWZ9RDX3z8xvSH3HppCahRf7AWn05esknU/qJ/YT4JaIaEgCExFTsus5Q9I7pIe436EHtWMRMSm7b/5c0srA3aRWEftFxIHZZs8AO0vamfTZ/2J2HyjVDN8tzGrGNXfWCAeTRsL8HTCW1Afpd51se132elHpioi4FTiQ9AX5z8BJpCGbj6txvJ2KiL+Qbkb7kRK9j2Zx9ORYd5Nq/ZYCfk/qwL0dHzzdPI/0JPYi4EFSJ/pyx6n376WDdPPdpbsNaxzLb0kPoP6PlASPIzXn+XxE/KYHx+uNimLJnopfCjwSET8vc5xdgLs6+YJhZlaqmvvnDaQBUn6bNRt/X9Z/fVfSg6k/kpK9y0n3skY6GJhMuuf9H3A6qXVIT3yVVFN5CGnKgzHA3KL1PyAN8HIl6R66R7mDNMN3C7NaKgw7b9YUJJ1Jmu9t7dKbk+VH0ljScNa75x1LZyRFRPRkTsJaxvBrUjOqo0pHQc0Sv5eBb0fE7/OIz8zal6TdSAneBhHxXN7xmFk+XHNnTUHShpL2Jo0CdrYTu6bzU2CkpA263bLBJP1a0pTs5ylZgpVHHNsCR5Oe/j4i6R+STijaZH/SU+Uryu1vZtYTklaXtB3wY+BGJ3ZmfZuTO2sWF5KGbb4ROCvnWKxE1u/gaHo/umfNRcQxEbFGRCh7PSanOO7JYtgsIj6RLcV/ywKOzua6M1uMpP0lXZ/N2zhH0kOSDqpgv/UlXSPpX5JmS7pXUrfNqK1tjCbNdfcucHzOsZhZCUkXSXpd0hOdrFc2n+Vzkh6T9KmidQuzh8X/kHR9Redzs0wzM7P8SbqP1L/qOtIQ7bsB3wROiIizO9lnKPA4aXqVM4A5pC/7ewHbRsTfGxC6mZl1QtLnSJ/Nv4uITcus3430YGY3YEtgbERsma2bExFLV3M+j5ZpZmbWHPaIiDeK3t8haXXgG0DZ5A7YljSw0x4R8TiApDuAqcC+gJM7M7McRcTdkoZ3sclepMQvgPslLSdptYh4tSfnc7NMMzOzJlCS2BU8wuITLBdbInudVXScBaSpVXIdYMjMzCryEeCVovdTsjKAwZImSro/mxqrW32i5m7FFVeM4cOH1/08b7/9NkOGDKn7eRrN19VafF2txddVew899NAbEbFSLievvW2Ap7pYP4E09+LPJH2TlNQdS0oIx1dygoH9lowlB5SbNs3MrLnNfu/1mn3ebztycLw5o/rx/J56/L0nSX1eC8ZFxLgqDlHuQVyh39xaETFN0jqk1hyPR8TzXR2sTyR3w4cPZ+LEiXU/T0dHByNHjqz7eRrN19VafF2txddVe5JezuXENSZpB1JznaM62yYi3pE0kjQY1eSseDawV0R0lRS+b8kBy7DNygf0Mlozs8a7eerZNfu8f3PGIi67YZWq9/vER6e8GxEjenHqKcCaRe/XAKYBRETh9QVJHcAngS6TOzfLNDMzazJZ/4zLgD9FxPguthsCXEUaUGUvYCfSJNXXSPpkF/uNzpr6TJy/aG5nm5mZWf1dDxyWjZq5FTArIl6VNEzSIABJK5L6WHf70K5P1NyZmZm1CknLAzeRauIO6Wbzo4GNgTUi4s2s7HZJGwLfB/Yst1PWZGgcwLIDV/Gw2WZmdSLpcmAksGI2L++pZP2lI+ICUsuL3YDngHeAI7NdPwZcKGkRqULux5W0yHByZ2Zm1iQkLQXcAAwEdo+It7vZZSPg5aLEruAfwHZ1CNHMzKoQEV3OV5qNkvm1MuX3AptVez43yzQzM2sCkgaQmliuD+waEa9XsNvLwHBJw0rKP00aaMXMzPoQ19yZmZk1h/NITXNOBJbP+l4UPBIR8yRNAIiIHbLyy4DvADdKOpPUpOcQYAvgCw2L3MzMmkLDa+4krSfpQkmPSlqYjfxSyX7LSrpY0kxJsyRdKmmFOodrZmbWKKOy17HAfSXLatm6/tkCQES8AmwPvAlcSKr52xDYLyL+0piwzcysWeRRc7cJ6cnk/aQ+BZX6A+mGdQywCPgJcB3w2VoHaGZm1mgRMbyCbUaWKXsY2LUOIZmZWYvJI7n7c0T8CUDS1cCK3e0gaWtgZ2C7iLg7K5sKPCBpx4i4vZ4Bm5mZmZmZNbuGN8uMiOqnfk9PJP9VSOyy4/wdeBE/rTQzMzMzM2uZAVU2Ap4pU/50ts7MOhMBjz8O//pX3pH0yrBHH4X33ss7jN4bOBC22QaWWCLvSMzMzKzNtEpyN4zUWbzUTGCdcjtIGg2MBlhllVXo6OioW3AFc+bMach5Gs3X1VoK17XEjBmscvvtrHrzzSz94ot5h9VrH887gBp6+jvf4V877QS0/9+hmZmZNU6rJHcAUaZMnZQTEeOAcQAjRoyIkSNH1i+yTEdHB404T6P5ulrI/Pk8ceaZbPrgg3DjjbBgAWy5JXzrW7D55nlH1ysPP/wwn/rUp/IOo3dmz4bdduNjq6zCx7K/vbb8O6R9r8vMzKyZtUpyNxNYqUz5cpSv0TPre374Qxgzhk3feANWXRW+8Q04/HDYeOO8I6uJ2e+9B9tum3cYvTNnTnp999184zAzM7O21CrJ3TOUn/JgI9J0CGZ924MPwve+B6NG8dj227P5ySfDgFb5792HDB6cXufNyzcOMzMza0sNHy2zh24CVpX0H4UCSSNI/e1uyi0qs2YxdiwMHQpXXcWMrbZyYtesBgyAfv2c3JmZmVldNPwboKSlSJOYA3wEWEbSftn7GyPiHUnPAXdFxNEAEXGfpFuA30k6mQ8mMf+b57izPm/aNPjDH+C442CZZfKOxrozaJCbZZqZmVld5PF4f2XgqpKywvu1gZdIcfUv2eZA4JfARaQaxxuAE+oWpVmrOP98WLgQjj8+70isEoMHu+bOzMzM6qLhyV1EvEQa5bKrbYaXKXsTODJbzAxg7ly44ALYc09Yp+ysINZsBg1ycmdmZmZ10Sp97sysnMsugzfegJNOyjsSq5SbZZqZmVmdOLkza1URaSCVzTeH7bbLOxqrlJtlmpmZWZ14SD2zVnXnnfD443DRRaAuWzpbM3GzTDMzM6sT19yZtaqxY2GlleCgg/KOxKrhZplmZmZWJ07uzFrRc8/Bn/8Mxx77wcTY1hrcLNPMzMzqxMmdWSs6++w0IfZXvpJ3JFYtN8s0MzOzOnFyZ9ZqZs+Giy+GAw6A1VbLOxqrlptlmpmZWZ04uTNrNRddBG+95ekPWpWbZZqZmVmdOLkzayULF8JZZ8F//Ad8+tN5R2M94WaZZmZmVidO7sxayQ03wIsvwokn5h2J9ZSTOzMzM6sTJ3dmrWTMGFhrLfjiF/OOxHrKfe6sE5L2l3S9pKmS5kh6SFJFc51I+pykuyS9LenN7Oe16h2zmZk1Fyd3Zq3i0UehowOOOy6NlGmtyX3urHPfAOYAXwf2BO4ELpN0fFc7SdoFuB14NNvvEOA+wPOkmJn1Mf6GaNYqxo6FpZaCY47JOxLrDTfLtM7tERFvFL2/Q9LqpKTv7HI7SFoC+BXw04j4btGqG+oXppmZNSvX3Jm1gtdfh0svhSOOgGHD8o7GemPQIJg/HxYtyjsSazIliV3BI8DKXey2E7AGcG5dgjIzs5bi5M6sFVx4YUoITjgh70istwZnLeXmz883DmsV2wBPdbF+S2A6sJWkZyUtkPSEpD0aE56ZmTUTJ3dmzW7ePDjvPNh1V9hww7yjsd4aNCi9ummmdUPSDsBedF0rtyowBBgH/AzYhZQMXitps7oHaWZmXZK0i6RJkp6T9O0y6z8qaYKkxyR1SFqjaN3h2YO7ZyUdXsn5nNyZNbsrr4TXXvP0B+2ikNx5xEzrgqThwGXAnyJifBeb9iMNnPK9iLgwIm4HDgJeBP5fF8cfLWmipInzF82tWdxmZvYBSf1JD+h2BTYGDpK0cclmPwN+FxGbA6cDP8r2XR44ldRCYwvgVEnd9s1xcmfWzCLS9Acf+xiMGpV3NFYLhWaZrrmzTmQ39JuAyaSRL7syI3u9s1AQEQuBu0hfJMqKiHERMSIiRgzst2QvIzYzs05sATwXES9ExHzgClKLjGIbAxOyn+8sWr8zcFtEzIiImcBtpNYZXXJyZ9bM7rkHHn441dpJeUdjteBmmdYFSUuRRrocCOweEW93s8vTnR0K8Kg9Zmb5+gjwStH7KVlZsUeBfbOf9waGSlqhwn0X46kQzJrZmDFpdMxDD807EqsVN8u0TkgaAFwFrA9sGxGvV7DbLcACYAdgUnac/sB2QEd9IjUzaz/TFy7NJTO36cGeV64oaWJRwbiIGJf9XO7JfJS8Pxk4R9IRwN3AVNLneiX7LsbJnVmzevlluPZa+Na30vx21h7cLNM6dx6wG3AisLykrYrWPRIR8yRNAIiIHbLXVyWdC/xYkoDngNGk6RF+1NDozcz6pjciYkQn66YAaxa9XwOYVrxBREwD9gGQtDSwb0TMkjQFGFmyb0d3wTi5M2tW55yTmmJ+7Wt5R2K15GaZ1rlCx9qxZdatDbwE9C+z7lvA28D3gOVJc+PtHBHP1yFGMzOr3IPA+pLWJtXIHQgcXLyBpBWBGRGxCPgf4KJs1S3A/xUNojIqW98lJ3dmzWjOHPjVr2DffWHNNbvf3lqHkzvrREQMr2CbkWXK3gO+my1mZtYkImKBpONIiVp/4KKIeFLS6cDEiLieVDv3I0lBapb5tWzfGZLOICWIAKdHxIzFTlLCyZ1ZM/rtb2HWLDjppLwjsVorNMt0nzszM7O2FxE3AjeWlJ1S9PPVwNWd7HsRH9TkVcSjZZo1m0WL4KyzYIstYKutut/eWotr7szMzKxOXHNn1mxuvhn++U+49FJPf9COnNyZmZlZnbjmzqzZjB0Lq68O++2XdyRWD26WaWZmZnXi5M6smTz5JNx6K3z1qzBwYN7RWD245s7MzMzqxMmdWTM566xUszN6dN6RWL04uTMzM7M6cXJn1iymT4dLLoFDDoGVVso7GquXQnLnZplmZmZWY07uzJrFr34Fc+fCCSfkHYnVU6HPnWvuzMzMrMac3Jk1g/feg3POgR12gM02yzsaq6cBA6BfPyd3ZmZmVnOeCsGsGfzxjzB1KlxwQd6RWCMMGuRmmWZmZlZzTu7MmsGYMbDeerDbbnlHYo0weLBr7sxqaO6mH8k7BLOaWfKJqXmHYC3MyZ1Z3h54AO6/P42U2c8tpfuEQYOc3FnTc8Jklo+5m37ECZ71mJM7s7yNHQvLLANHHJF3JNYobpZpTWTRkks4kTNrMk7wrKcantxJ2hg4G9gaeBP4NfD9iFjYzX4jgP8DPg0IeBj4bkQ8UN+IzepoyhS46io4/ngYOjTvaKxR3CzTrNdmbjgw7xDM6mLYpPmAEzzrmYYmd5KGAbcDTwF7AesCPyeN2vm9LvZbM9vvYeCwrPhbwK2SNo+Il+sZt1ndnHceLFqUkjvrO9ws0/oAJ19mPTNzw4FO8KzHGl1zdyywJLBPRMwGbpO0DHCapDOzsnJ2B4Zm+70JIOle4A1gN+D8+oduVmPvvAPjxsFee8Haa+cdjTWSkztrYn09KXtr3UV5h2B93NDn+znBsx5rdHK3K3BLSRJ3BfATYDvgz53stwSwAJhTVDYnK1Md4jSrv0svhenT4cQT847EGm3wYPe5s6axcLBaLqFzAmbt7K11F72f4EFqpukEzyrV6ORuI+CO4oKImCzpnWxdZ8ndNcDpwM8l/TArOwWYCVxVp1jN6iciDaTyiU/A5z6XdzTWaIMGwdtv5x2FWW6cnJl1rZDgwQfNNAsDHznJs640OrkbRhpEpdTMbF1ZETFN0vbADcAJWfGrwM4R8e+aR2lWbxMmwJNPwvjxIFc+9zmDBsGMGXlHYdZrrZikLb32rLxDMOvSnBeXBconeOBmmta1PKZCiDJl6qQ8rZRWA64GHgKOyYq/BvxF0jYRMbnMPqOB0QCrrLIKHR0dvQy7e3PmzGnIeRrN11V7m/3v/zJ02DDuW201osYx+N+r+W3y1lssNX06D3Z0tNV1FWvX6+oLmj1hc3Jm7W7ptWc5wbMea3RyNxNYrkz5spSv0Sv4FinW/SLiPQBJdwDPAifzQW3e+yJiHDAOYMSIETFy5MheBV6Jjo4OGnGeRvN11dizz6ZJy089le1Gjar54f3v1QLWWAOmTmXkyJHtdV1F2vW62tHCQfkmdK2QrI1aa1LeIVgfcevkDQEneNZzjU7uniH1rXtfNs3BkGxdZzYCniwkdgARMV/Sk6TpFMxax1lnwcCBcOyxeUdiefFomVaGpP2BQ0nzuS4LTAJ+FhGXV3GM60hTDR0fEefUJdAKNEvC5qTMWk3hb/bWyRs6wbMeaXRydxPwLUlDI+KtrOwAYC5wVxf7vQzsJmlgRMwHkDQI2JTOB2Exaz5vvgkXXwwHHgirrpp3NJaXQYM8WqaV8w3gReDrfDDVz2WSVoyIs7vbWdIoYKv6hph/4uaEzfqCUWtNej/Bg9QPzwmeVaLRyd0FpCaUf5T0E2Ad4DTgF8XTI0h6DrgrIo7Oin5N6mt3raTzSH30vgasRtb00qwlXHRRGiXR0x/0bYMHu+bOytkjIt4oen+HpNVJSV+XyZ2kJYCxwHdJ98weyyt5yztpO3TYvbme36zgkpnbAB8kePBBM81CE2rPhWedaWhyFxEzJe0AnEOqcXsT+CUpwSuNq3/Rfg9J2gU4FbgkK34c2CkiHq133GY1sWBBapL5uc/Bpz6VdzSWJzfLtDJKEruCR0jNLLtzIqkVzMVUmdz1H7Sw7gldoxM3J2rWyg4ddm+XCR54LjzrXMNHy4yIp4DPd7PN8DJlE4AJdQrLrP6uvx5efhl+8Yu8I7G8DRoE8+fDouYeldCawjbAU11tIGlV4H9JNX+L1GTTqzixM2scJ3jWL+8AzPqMsWNh+HDYq5KH8NbWBg9Or/Pn5xuHNbWspctewLndbHomcEtE3F3/qKpXqHVolEKNh5lZX+TkzqwRHn4Y7r4bjj8e+vfvfntrb4MGpVc3zbROSBoOXAb8KSLGd7Hd1sB+pCmDqjn+aEkTJU1cMOudXkRaGSd4ZmaN4eTOrBHGjoUhQ+Coo/KOxJqBkzvrgqTlSaNLTwYO6WbzMcCFwCxJy0kqzCW7pKRlO9spIsZFxIiIGDFg2aVqEnd3nOCZmdWfkzuzenvtNbjiCjjySFhuue63t/ZXaJbp6RCshKSlgBuAgcDuEfF2N7tsCJwEzCxaIDXVnF6vOHsqjwTPSZ6Z9SVO7szq7YILUt+qE07IOxJrFq65szIkDQCuAtYHdo2I1yvY7QvA9iULwFnADpWcd+G8xjYVb3SCB67FM7O+w8mdWT3Nmwfnnw+77w7rr593NNYsnNxZeeeRJi4/A1he0lZFyyAASRMkvT9ydET8LSI6ipds1bMRcVelJy4Mr94oTvDMrK+QtIukSZKek/TtMut/Kekf2fJPSW8WrVtYtO76Ss7X8KkQzPqUK66A11+Hk07KOxJrJm6WaeWNyl7Hllm3NvASRXPA1tqcF5dt6ATmt07esOHTJFwycxtPlWBmDSOpP2nE452AKcCDkq7PpoYDICK+XrT98cAniw4xNyI+Uc05XXNnVi8RMGYMbLIJ7FBR6yjrK1yR3JeIAAAgAElEQVRzZ2VExPCIUCfLS9k2IyNiZDfHUUSc05MY8qjB80ArZtbGtgCei4gXImI+cAVpipvOHARc3psTOrkzq5e774Z//ANOPBGabFJhy5mTO2tijU7wwCNpmlnb+gjwStH7KVnZYiR9lNRK446i4sHZtDX3S/piJSd0s0yzehk7FlZYAQ7pbiRz63OKm2Uu1Zhh6M2q0egmmtD4ZppuomlmxWbPH9zTB00rSppY9H5cRIzLfi73dD86Oc6BwNURsbCobK2ImCZpHeAOSY9HxPNdBeOaO7N6ePFF+NOfYPRoWHLJvKOxZuOaO2sBc15ctu0HWnENnpnVwBuFeUOzZVzRuinAmkXv1wCmdXKcAylpkhkR07LXF4AOPtwfrywnd2b1cPbZ0K8ffPWreUdizcjJnbWQvpDgOckzszp5EFhf0tqSBpISuMVGvZS0ITAMuK+obFjRSMkrAtsCT5XuW8rJnVmtvfUW/OY3sP/+sMYaeUdjzcijZVqLafcED1yLZ2a1FxELgOOAW4CngSsj4klJp0vas2jTg4ArIqK4yebHgImSHgXuBH5cPMpmZ9znzqzWxo+H2bPTQCpm5bjmzlqQp0owM6teRNwI3FhSdkrJ+9PK7HcvsFm153PNnVktLVoEZ50FW20FW26ZdzTWrJzcWYtyDZ6ZWXNzcmdWSzfeCM8950nLrWuF5M7NMq0FeS48M7Pm5eTOrJbGjIGPfAT22SfvSKyZFfrcuebOWpTnwjMza05O7sxq5YknYMIEOO44WGKJvKOxZjZgQBpN1cmdtTAneGZmzcfJnVmtjB2b5rT78pfzjsRawaBBTu6s5TnBMzNrLk7uzGrhjTfg97+HQw+FFVbIOxprBYMHu8+dtQVPdm5m1jyc3JnVwrhx6Yu6pz+wSrnmru1I2lvSCdlktMXlx+UVUyP1hQTPSZ6ZNTsnd2a9NX8+nHsujBoFG2+cdzTWKpzctRVJPwZOBNYDbpNUPGTuUflE1XjtnuCBa/HMrLk5uTPrrauvhmnTXGtn1XGzzHazO7BjRJwAfBLYU9JPs3XKL6zGc4JnZpYfJ3dmvRGRpj/YYAPYZZe8o7FW4pq7dtMvIhYARMR0YBdguKTf0AfvtZ4Lz8wsH33uhmNWU/ffDw8+mGrt+vm/k1XByV27eVXSpwpvImI+cAAQwKa5RZUjj6RpZtZ4/jZq1htjx8Kyy8Jhh+UdibUaN8tsN0cA04oLImJRRBwDfDaXiJqAEzwzs8ZycmfWU6+8kvrbffnLsPTSeUdjrcY1d20lIqZExGudrLu30fE0Eyd4ZmaN4+TOrKfOPTf1ufva1/KOxFqRk7uWJGmspL+XKR8g6bOSdpK0TB6xNTPPhWdm1hhO7sx64p130tx2e+8Nw4fnHY21IjfLbFU7AHcWF0gaAkwEOoCbgamSjmh4ZC2gLyR4TvLMLE9O7sx64pJLYOZMOOmk7rc1K8c1d61qTaC0meUJwObAeOBg4M/AryVV1ddO0v6Srpc0VdIcSQ9JOqibfTaUdK6kpyW9I+mFrHZxuWrO3UjtnuCBa/HMLD9O7syqFZEGUvn0p2HbbfOOxlqVk7tWtQQwp6TsYGBKRBwdEX+IiEKC9/+qPPY3smN/HdiTVEN4maTju9hnJ2Bb4HxgN+AHwP7ArZIqusf3z+HP0AmemVl9OLkzq9Ztt8HTT6fpD9Sn5ia2WnJy16qeAbYsvJG0FrAJcH3Jdr8Htq7y2HtExMERcWVE3BERJwOXk5K+zlwOfDIizoqIjoi4iDRy52eoYpTOoc/3Y+jzjf1K4ATPzKz2nNyZVWvMGFh1VfjSl/KOxFqZ+9y1qouAkyWNkrQE8E3SXHbXlWz3OlDVMLoR8UaZ4keAlbvYZ3pERJl96Gq/zvSFBM8DrZhZO3NyZ1aNZ56Bm26Cr3411byY9ZRr7lrVucDtpIFT3gWOBx4HJpRsN5yU4PXWNsBTPdiHHuwHtH+CBx5J08zal5M7s2qcfTYMHAj/9V95R2KtbtAgmD8/9eG0lhHJl4DdgTOBU4Cdy9SefQl4ojfnkrQDsBcpoax0n6WAHwN3RcSTPT23E7zac4JnZo3g5M6sUjNnwvjx8J//CStX3drJ7MMGDwag33vv5RyI9URE3BQR/xMRP4iIfxWvk7QyMBS4sqfHlzQcuAz4U0SMr3AfAb8hNcc8qpttR0uaKGnigrlvl93GCV7tOcEzs3preHInaWNJE7Ihm6dJOl1S/wr33UfSg5LmSpou6eZsfiGz+vv1r9P8dieemHck1g6yZr2aPz/nQKzWIuL1iBhZaVJWStLywE3AZOCQKnb9CbA38MWIeKGbGMdFxIiIGDFgyc5vo3kkeO0+0IrnwjOzemrop7akYaS+CkFqanI6qTP69yvY9xjSU8ybgF2BY4BngQH1itfsfQsWwDnnwMiR8PGP5x2NtYMsuXPNnRXLmlXeAAwEdo+I8tVqi+/3deBk4LCI+GstY2p0ggceSdPMrKca/Yl9LLAksE9E3BYRF5ASu29IWqaznSStCPwSOD4iTsmGe742Io6PiFmNCd36tOuug8mTPWm51U6hWaZr7iwjaQBwFbA+sGtEVDQgi6SDgZ8D34yIHjcF7YoTvPpwgmdmtdboT+tdgVsiYnZR2RWkhG+7LvYrjDn/23oFZtalMWNg7bXhC1/IOxJrF665s8WdR5qI/AxgeUlbFS2DALJuDe+PzClpO2A8cCtwX8k+a9QyOM+FVx9O8Myslhqd3G1EmgD2fRExGXgnW9eZLYFJwNGSpkh6T9IDkvyJaPU3cSLccw+ccAL0r6h7qFn3nNzZ4kZlr2OB+0qW1bJ1/bOlYHtgCWDnMvscU48g+0KC54FWzKxVNTq5Gwa8WaZ8ZrauM6sCGwLfA/4b2AN4G7hZ0iq1DtLsQ8aOhaFD4aguB58zq46bZbaNbKCwQyV9R9KqWdl6koZWc5yIGB4R6mR5KdtmZESMLNrntC72Oa2Gl/kh7Z7ggUfSNLPWlMdgJOUmdVIn5QX9gKWB/SPiZgBJ9wIvA8cB/7vYAaXRwGiAVVZZhY6Ojt5FXYE5c+Y05DyN1peva+D06Wx1xRVM23NPnnv44cYE1kt9+d+rlQx75hk+Drw7a1ZbXVdBu/17lSNpaeAiYF9gAemeejPwGvB/pNEuT84twDob+nw/3lp3UcPON+fFZVl67cZ2s7918oaMWmtSw853ycxtOHTYvQ07n5m1n0YndzOB5cqUL0v5Gr2CGdlrR6EgImZLegjYuNwOETEOGAcwYsSIGDlyZA/CrU5HRweNOE+j9enrOuUUWLiQNX7yE9ZYb72GxNVbffrfq5VIAAwZMIBPtNN1Zdru36u8XwDbADsC9wDvFq27kZTYtW1yB07w6sEJnpn1RqObZT5DSd86SWsCQyjpi1fiaVLNnkrKBTTurmJ9y7vvwgUXwB57QIskdtZC3CyzHewD/HdE3AksLFn3MvDRxofUeJ4Lr/bcRNOsfUjaRdIkSc9J+nYn23xJ0lOSnpR0WVH54ZKezZbDKzlfo5O7m4CdS/ohHADMBe7qYr8bSInc9oUCScsCnwYerUOcZnD55fDvf3vScqsPD6jSDpYEpneybiiLJ3xty1Ml1J4nOzdrfZL6A+eSZgzYGDhI0sYl26wP/A+wbURsApyUlS8PnEoaWHIL4NRszvAudftpLOkwSStUeS2duQCYB/xR0o5Zv7jTgF8UT4+QZba/KbyPiInAn4DfZBns7sD1wHukX5hZbUWk6Q822wy237777c2q5eSuHTwIHNbJuv2APtW2zglefTjBM2tpWwDPRcQLETGfNAXcXiXbfBk4NyJmAhTNcbozcFtEzMjW3Qbs0t0JK/kkvhhYF0DSQklbVHQpZWSB7UAaxvnPpAnMf0nKSosN4MNDPQMcAlxH6uNwNSmx+3zhF2FWUx0d8NhjadJylbYGNquBrFmm3CyzlX0P2EfS7aRpBwLYTdIlwP4sfm9re07w6sMJnlnL+gjwStH7KVlZsQ2ADSTdI+l+SbtUse9iKhlQZSawevZzd6NadisingI+3802w8uUzQG+ki1m9TV2LKy4Ihx8cN6RWLsq1Nw5uWtZEfE3STsAPwbOId0jvw/cD+wYEQ/mGV9eCgleOw+0UkjwPNCKWftYOK9/Tx8WrShpYtH7cdnAjrD4eCGweC41AFgfGAmsAfxV0qYV7ruYSpK724FLJE3KDjhe0tudbRwRPa7ZM2sKzz8P118P3/3u+7UrZjXnZpltISLuAT4raUmyuVwj4p2cw2oKHkmz9pzgmTWlNyJiRCfrpgBrFr1fA5hWZpv7I+I94MUs51o/Kx9Zsm9Hd8FU0n7iKNKTyEdIGeSLwJNdLGat7eyzoX9/+Ioria2OnNy1PEkfl7QbQETMjYhphcRO0m6SNs83wvx5svPacxNNs5byILC+pLUlDQQOJI0bUuw6skEjJa1Iaqb5AnALMErSsGwglVFZWZe6rbnLblQ/y064I/DdiPAIldaeZs+Giy6CAw6A1VfvfnuznvJUCO3gl8BfSXPalfoM8E1SP/M+zTV4tecaPLPWEBELJB1HSsr6AxdFxJOSTgcmRsT1fJDEPUUaZflbETEdQNIZpAQR4PSImLH4WT6sktEyF0r6TPa2A5jdxeZmre3ii+Gtt9JAKmb1NGAA9OvnmrvW9inS5OXl3Ad8soGxNDXPhVd7rsEzaw0RcWNEbBAR60bED7OyU7LEjki+EREbR8RmEXFF0b4XRcR62XJxJeer5NN2PjAo+/kwYKXqLsmsRSxcCGedBdtsAyM6azptVkODBiEnd62sPzCkk3VDgIENjKXpeSTN2vNceGZWqpIBVZ4CTpN0HanP3X6SOvvmGxFxfs2iM2ukv/wFXngBfvzjvCOxvmLwYDfLbG0PAqOBa8usGw1MLFPepzW6iSbkM5JmI5togptpmtkHKknujgcuJPUtCODkLrYNwMmdtaYxY2DNNWHvvfOOxPqKQYOc3LW204DbJT0A/BZ4DViN1Mrl48BO+YVWuf7v9mqGo6o5wasPJ3hmBhU0y4yIe7P2n0uQau62ioh+nSylE4+btYbHHoM774Tjjkt9ocwaYdAg97lrYRFxN2n0skXA2cDVwFhgAbBTRPw1x/CqMmxSYx8yDH2+X9uPpOnJzs0sD9V+sm5PaqZp1l7GjoWlloJjjsk7EutL3Cyz5UVER0RsDQwlzWW0TERs20qJXUGjEzxo/6kSbp28oQdaMbOGqupTNSLuiog5kraU9E1JP8xet6xXgGZ19/rrcOmlcPjhsPzyeUdjfYlr7tpGRLwTEVNbfQJzJ3j14QTPzBqlqvZnkoYAVwE7k+ZhmA6sAPSXdDOwf6vf2KwPuvBCmDcPjj8+70isr/FomS1H0t+BIyLiKUkPkvqadyoitmhMZLUzbNJ8Zm7Y2IE+PRde7bkPnlnfVO3jsjOBrUmzqw+OiNWAwdn7rYGf1DY8szqbPx/OOw922QU+9rG8o7G+ZvBg19y1nieBuUU/d7e0pGGT5ufSD6+RXINnZu2o2pEj9gX+OyKuKhRExCLgKknDgNNJo2uatYYrr4TXXoMTT8w7EuuLBg2i34wZeUdhVYiII4t+PiLHUBqi0bV4edTgAW09kmYhwXMtnlnfUO1jsmWBVzpZ9wqwTO/CMWugiDT9wUYbwahReUdjfZGnQmhZkpaQtK2k1fOOpd7avQYPPJKmmbWPaj9BHwW+IknFhdn7r2TrzVrCMk88AQ89lGrt+jX+y4SZm2W2tIXAHUDN2nNL2l/S9ZKmSpoj6SFJB1Ww3yBJP5f0uqS3Jf1F0vBaxQVO8OrBCZ6Z1UO1n57fIQ2m8oykH0v6uqQfAU+T5vr5Tq0DNKuXNa65BpZbDg49NO9QrK9yzV3LyrokPAusUsPDfgOYA3wd2BO4E7hMUnfdHc4CjgBOBvYDVgRukzS4hrF5Lrw6cIJnZrVW7VQIdwCfBB4B9gd+CHwJeBj4VETcWfMIzerh5ZdZ6a9/hdGjYciQvKOxvsqjZba67wKnSNqsRsfbIyIOjogrI+KOiDgZuJyU9JUlaQ3gaODrEfG7iLgJ2Af4KHBIjeJ6n6dKqD3PhWdmtVT1J2ZEPBURB0bEuhGxVPZ6cER4cnNrHeeem16/9rV847C+zfPctbrvkaYD+oekyZIelPT34qWag0XEG2WKHwFW7mK3QofhPxYdZyrwN2DXas5fKSd49eEEz8xqoapPS0k/k7RxvYIxa4g5c+BXv+Lfn/0srLVW3tFYXzZ4sJtltrYngRuA3wETgCeo/VQI2wBdPTzdCJgSEXNKyp/O1tWFE7z6cIJnZr3Vk6kQvi7pIeAi4PKIaOwsoGa99bvfwZtvMmW//bp8HG5Wd665a2n1ngpB0g7AXsBRXWw2DHizTPnMbF3dFBK8dp8qwZOdm1krqbbP3drAjsAzwE+BVyVdJmnHegRnVnOLFsFZZ8FnPsPsTTbJOxrr6wrJXUTekVgVJC0paV9J35R0sKRaDqpSOMdw4DLgTxExvpvNy/0BqZPywvFHS5ooaeJ789/uaZhA+4+kOefFZdt+oBXX4Jm1j570ubszIg4DViNNWL4GcIuklyV9X9I6tQ7SrGZuuQUmTUrTH3x4Rg+zxhucDWY4b16+cVjFsnvck8BVpIecvwcmSarZZJmSlgduAibT/aAoM4HlypQvR/kaPQAiYlxEjIiIEUsM7P2gUu2e4EH7j6R5ycxtnOSZtYEefzpGxJyI+A1wKnAPsCbwP8A/Jf1J0kdrFKNZ7YwZA6utBvvvn3ckZjBoUHp1ctdKzgQWAZ8FlgI2IQ16cmEtDi5pKVI/voHA7hHRXbXaM8CakkoztI2ydQ3jBK/2PFWCmVWrR5+MkoZLOlXSC8CtpHl59geGkubmGQ5cUasgzWriqafg1lvTCJkDG9dHxKxTTu5a0dbA9yLinoh4NyKeBv4LWEvSar05sKQBpBrB9YFdI+L1Cna7NXvdu+g4q5OSz5t6E09POMGrPSd4ZlaNqgZUkXQocCTwOVJzkYuBiyNiStFmN0p6G7i9ZlGa1cJZZ6Uv06NH5x2JWVJolvnuu/nGYdVYDXihpOx5Uh+3VYFXe3Hs84DdgBOB5SVtVbTukYiYJ2kCQETskL1OkfQbYIwkAf8GTgNeJjUZbbhhk+Y3fJAVoK0HWikkeB5oxcy6U+0jr3HAa8DOEbFORJxRktgV/BP4Qa+jM6uVGTPSKJmHHAIrrZR3NGaJa+5aVb1GwCn02xsL3FeyFGoF+2dLsRNI0zH8ArgGmAGMiojcnhp4qoT68EArZtadaj8JV88mLJ/Q1UYR8WpEfL8XcZnV1q9+BXPnpoFUzJqFk7tWdYuk1wsLH9TWTSguz9ZVLCKGR4Q6WV7KthkZESNL9psXEd+IiJUiYkhE7BYRL9biQnvDCV59OMEzs65U1SwzImbWKxCzunnvPTjnHPj852GzzfKOxuwDHi2zFfnBZRU8F159eC48M+tMtZOYI+kA4MvABsDg0vUR4Xmhrblcey1MmQLnnZd3JGYfVqi5c5+7luFWKT2TRz+8Rid4QMP74TnBM7NSVbVfkHQw8FvgOdL8dteThmzuB8wGzql1gGa9NmYMrLsu7L573pGYfZibZVof4pE0a89z4ZlZqWo/+b4FnAF8LXt/XkQcBawNvAG8U8PYzHrv73+H++6DE06Afo2/0Zt1yc0yrY9xgld7nirBzIpV+6m3PnBPRCwEFgLLAETEW8BPgONqG55ZL40dC8ssA0cemXckZotzs0xrAv3mvtfQ8znBqz0neGZWUO0n3iwg+zbCVOBjResErFCLoMxqYupUuPJKOPpoGDo072jMFudmmdYklnxiakPPl0eC1+4jaTrBMzOoPrmbCGye/Xw9cIqkL0s6HPgp8EAtgzPrlfPOg4UL4ThXKFuTcrPMlibpFEmrd7JuNUmnNDqm3mj3BA/af6qEWydv6KkSzPq4aj/lfgRMzn4+Bfg7cB5wManP3ejahWbWC3PnwoUXwl57wTrr5B2NWXlultnqTiUNLlbO6tn6luIEr/Y8F55Z3yZpF0mTJD0n6dtdbLefpJA0Ins/XNJcSf/IlgsqOV9Fn3CSlpS0L7AtMEDSKhHxZkTsBSwNLBcRW0bEC5Ucz6zuLr0Upk+Hk07KOxKzzrlZZqsTEJ2sWwNoyblhneDVnhM8s75JUn/gXGBXYGPgIEkbl9luKHACi7eCfD4iPpEtx1Zyzm4/3SStAzwJXEVqenkJMEnSKICImBcRsys5mVlDRKSBVD7+cfjc5/KOxqxzTu5ajqTDJd0h6Q5SYnd+4X3Rci/we+CufKPtuTwSvHYfaMUJnlmftAXwXES8EBHzgSuAvcpsdwZwJtDrpjyVfLKdCSwCPgssBWwCPAJc2JMTStpY0gRJ70iaJun0LKutdP9+kh7Kqi2/0JMYrM3dcQc88USqtZPyjsasc4U+d26W2UreAaZni0gDjU0vWV4k3TtbuqtCoxM8aP+RNOe8uGzbD7TiufCsD1pR0sSipfiz/yPAK0Xvp2Rl75P0SWDNiLihzLHXlvSIpLskfbaSYAZUsM3WwDcj4p7s/dOS/it7XS0iXq3kRACShgG3A0+RstZ1gZ+TkszvVXiYYyj5pZh9yJgxsPLKcOCBeUdi1rUBA4h+/ZBr7lpGRFxFasmCpIuBM9q5S8KST0xl7qaNveUOmzSfmRsObNj5hj7fj7fWXdSw80FK8pZee1bDznfr5A0Ztdakhp0PUpJ36LB7G3pOs97oP6/HD3zeiIgRnawrV8vwfnN+Sf2AXwJHlNnuVWCtiJgu6dPAdZI26a7FZCVXsBpQeuN6Pgt21Qr2L3YssCSwT0TcFhEXAN8HviFpme52zpLDHwLfrfK81lc8+yz85S9w7LEf1IqYNbFFSyzhZpktKiKOjIgXJK0uad9s9Oh9OhtBs1Ut+cTUtu+H57nw6sM1eGZMAdYser8GMK3o/VBgU6BD0kvAVsD1kkZkXd+mA0TEQ6T8a4PuTljpp1lnHcartStwS0nGeQUp4duugv3PAO4BJtQoHms3Z58NAwbAV76SdyRmFVk0cKCTuxaVdRM4D3iZVJt3IXA18LKkc7Mnsm2jLyR47d4PzwmeWcM9CKwvaW1JA4EDSdPJARARsyJixYgYHhHDgfuBPSNioqSVCl3XsjFQ1mfxCrfFVPopdouk1wsLqZoQYEJxebauKxsBzxQXRMRkUh+GjbraUdLmwJHAyRXGbH3NrFlw8cVw0EGwarWVymb5WLTEEu5z17pOB44CvgMMJz2oHJ69Pwo4Lae46qbdEzxo/4FWPBeeWeNExALgOOAW4Gngyoh4MhtzZM9udv8c8JikR0kPDo+NiBndnbOSPnffr2CbSg0D3ixTPjNb15WzgXMj4jlJw2sYk7WLiy6COXPgxBPzjsSsYuFmma3sMOB7EfGzorLJwE8lBWlY65aayLwSje6H1+g+eND4fniN7oMHje+H5z541ldFxI3AjSVlZe8NETGy6OdrgGuqPV+3yV1E1DK5g/JNPLuaKwhJBwIbAntUepJspJrRAKussgodHR3VRdkDc+bMach5Gq0lrmvhQrY880zmbbYZ/5g9GyqItyWuqwd8Xa1lxIABvP7KKzzVZtfWrv9eJVYGHutk3WPZ+rbkBK/2nOCZWS1UUnNXSzOB5cqUL0v5Gj0kLUGaX+8nQD9JywGFwVeGSBoaEW+V7hcR44BxACNGjIiRI0f2PvpudHR00IjzNFpLXNe118Jrr7HkOedUHGtLXFcP+Lpay5xBg1h5mWVYuc2urV3/vUr8k9R/4tYy6w4EGjs8YYPlkeABbT2SphM8M+utRnf2foaSvnWS1gSGUNIXr8gQ0sgyvyAlhzOBR7N1V5Dm3LO+buxY+OhHYa9y80KaNS8PqNLSfgAcIel2ScdK2lvSf0m6HTg8W9/WPBde7fWVufDMrD4andzdBOwsaWhR2QHAXOCuTvaZA2xfshyUrfsO8J/1CdVaxiOPwF13wfHHp5EyzVqIk7vWFRFXAruQHkKOJfWNOAtYCtglmxOv7TnBq4++kOA5yTOrvUZ/Wl0AzAP+KGnHrF/cacAviqdHkPScpN9AGmUmIjqKF9IwoQCPR8QDjb0Eazpjx8KQIXD00XlHYlY1j5bZ2iLi1ojYmjRS5qrAkhGxTUTclnNoDeUErz7aPcED1+KZ1VpDP6kiYiawA9Af+DNpJM5fAqeWbDog28asa//6F1x+ORxxBCxXrjunWXPzaJntISIWRcTrEdGrDlqS1pN0oaRHJS2U1FHhfiMk3SppuqQZWVPRLXsTS7U82Xl9OMEzs2o0vA1bRDwFfL6bbYZ3s/4l0gib1tddcAHMnw8nnJB3JGY9smjgQHhrsTGhrEVkk9IeAWwBrEaaB/YB4LcR0ZPMYxNgN1ILlYpGDsn6rt8OPEyangHgW8CtkjaPiJd7EEePtftImoUEr50HWikkeB5oxaz1NP4RlFmtzJsH558Pu+0GG2yQdzRmPeJmma1L0seAZ4FzgU2BhdnrucBzkjbuwWH/HBFrRsT+wJMV7rM7MBTYJyL+EhF/AfYGliYlig3X7jV40P6TnYMHWjFrRU7urHX94Q+pWeZJJ+UdiVmPLXKzzFY2DpgFrBsRW0XEnhGxFbBeVn5BtQfsYbPOJYAFpAHICuZkZbm1cnGCV3tO8MysO07urDVFwJgxsPHGsOOOeUdj1mMeLbOljQBOiYjJxYXZ+1OAzzQojmuAd4CfS1pZ0sqk/uwzgVxH7MwjwWv3fnhO8MysK07urDX97W9pCoQTTwS5+6W1rkUDB7pZZut6CRjcybrBwORO1tVUREwjTRO0L/CvbNkH2Dki/t2IGLrikTRrz3PhmVlnnNxZaxozBpZfHg45JO9IzHrl/7d35+FyVNX6x79vEpIwE2ZEkCciruMAACAASURBVDAIAvLTawQZrgRUZgGRSUUB4SIKiNcJnBHkKiIYAgFkUATEiCgKyAwGZRAhIkKEaJgDqEDCEBIIJOv3x66GptPnnO7T1V3ddd7P89TT3dW7ulad09PqvWsvz5bZ044GvlM7K6Wk9wDHAkd1IghJqwGXAFOBHbNlKvA7SWv2sc0hku6UdOf8hfPaHqMTvPYYCgmekzyz5ji5s97z8MPwm9/Apz4FSyxRdDRmLVm42GJpxteIokOx5n0dWAa4VdKTWfmCJ4FbgGWBr0r6c2VpYxxfIs1+vWdEXB0RV5N68RYAX6y3QUScFRHjImLcyGGLtzG01znBa4+yJ3jgXjyzZnS8FIJZy047LQ3F/Mxnio7ErGULR2ZTuM+fD6NGFRuMNevebCnaBsC0iHilsiIi5kuaBqxTXFiLqiR4ZS+V0MkyCVBMqYROlkkAl0owa5STO+stL7wA55wDe+0Fb35z0dGYtWzhYoulKy+95OSux0TEgUXHkHkE2EnSyEptPUmjSGUZLi80sj64Fl7+nOCZGXhYpvWan/4UnnvO5Q+sNF5L7nzeXU+TtISkIyRNkvQNSW9p4XH2lLQnsDqwUuW2pCWyNjMknVu12TnAm4BLJe0saRfgN6Si6me1dmTt41IJ+StiiKYnWjHrLk7urHcsXAgTJ8Jmm6XFrAReG5bp5K4nSDpJ0j9q1i0N/AWYAOxDKoNwt6S3DmIXK5PKF/wSeA+wYdXtlbM2I4DhlQ0iYiqwA6mQ+QXA+cASwAci4u5BxNAxTvDy51IJZkObkzvrHVddBf/8p3vtrFSikty5HEKv2Aa4sGbdF4G3Av8TESuSetEeBr7R7INHxMMRoT6Wh7M2a0XEATXb3RAR742I5bNl64iY0vTRFcAJXv6c4JkNXU7urHdMmACrrw4f/nDRkZjlxsMye85apDID1T4M/D0ifgyQ1ZY7Cdiys6H1Lhc7z58TPLOhycmd9YZp0+D66+Gww6DyZdisBDwss+eMAF7rZpW0PPA24Maadg8Dq3YurN7nUgn5GyrFzp3kmb3OyZ31hlNOgdGj4ZBDio7ELFdvmC3TesE/gPFVt3fJLq+pabcyMKsTAZWJE7z2KHuCB+7FM6twcmfd7+mn4YIL4OMfhxVWKDoas1x5WGbPOQ04WtJESV8DTgQeAq6tabcd3VEDr+c4wWsPJ3hmQ4OTO+t+Z5+dejWOPLLoSMxy52GZvSUiziPNhrkH8BVgOvCh6gLiklYCdgN+W0SMZbD4vY+XfqKVpR8YVvrz8JzgmXWekzvrbq+8AqedBh/4AGy0UdHRmOXOs2X2noj4bkS8OSKWymaovKfm/qciYtWIOKOoGMui7AkelH+iFdfCM+ssJ3fW3S65BJ54wr12VloelmnWPyd4+fNMmmbl5eTOutspp8B668GOOxYdiVlbeFim2cCc4OXPCZ5ZOTm5s+71pz/B7benXrthfqpaObnnzqwxroWXPyd4ZuXjb8zWvSZMgGWXhf33LzoSs7ZxKQSzxnkmzfwNlVp4ZkOFkzvrTjNnpvPtDj4Yllqq6GjM2iY8LNOsKU7w2mMoJHhO8mwocHJn3WnSJIiAww8vOhKztvI5d2bNc4LXHmVP8MC9eNZ5knaQNF3SDElH17n/UEn3SPqrpJslbVh131ey7aZL2r6R/Tm5s+4zdy786Eew++6w1lpFR2PWVjF8eDqn1MMyzZoyVGrhdZoTPLP8SBoOTAJ2BDYEPlKdvGUuioi3R8Q7gO8DJ2fbbgjsC2wE7ACcnj1ev5zcWfe58EKYPRs+97miIzHrjFGj3HNnNkhDIcEr+0QrTvCsxDYFZkTEgxExH5gM7FbdICKer7q5JBDZ9d2AyRHxckQ8BMzIHq9fTu6su0SkiVTe+U7YaquiozHrjNGjndyZtaDsCR6UfyZNFzu3klodeKzq9sxs3RtIOkzSA6Seu882s20tJ3fWXa67Du67L/XaSUVHY9YZo0Z5WKZZi5zg5c+lEswasqKkO6uWQ6ruq/dlNhZZETEpItYBjgK+3sy2tUY0ErFZx5xyCqyyCuyzT9GRmHWOh2Wa5WLxex9n3sYD/rCdm0qCN3v9kR3b59IPDOOFdRZ2bH9zHlqWpcY+17H9QUrwtltzesf2d8HsLfj4mFs7tj/rTsNfisH+aPN0RIzr476ZwBpVt98MPNHPY00GzhjktoB77qybTJ8OV14Jn/50+rJrNlR4WKZZbjyTZv5cC89s0O4A1pM0VtJI0gQpl1U3kLRe1c2dgX9m1y8D9pU0StJYYD3gzwPt0MmddY+JE2HkSDj00KIjMessD8s0y5UTvPYYCgmekzzLU0S8ChwOXAPcB1wcEdMkHStp16zZ4ZKmSfor8Hlg/2zbacDFwN+Bq4HDImLBQPt0cmfdYfZsOO88+OhH07BMs6HEwzLNcucErz3KnuCBe/EsXxFxZUS8NSLWiYjjs3XfjIjLsutHRsRGEfGOiNgmS+oq2x6fbbd+RFzVyP6c3Fl3OPfcVN/uyCOLjsSs8zws06wtXAuvPZzgmXUvJ3dWvFdfhdNOg623hne8o+hozDrPwzItI2ldST+SdLekBZKmNLHtHpLukDRP0jOSrpa0ZBvD7RlDIcEr+0yaTvDMGuPkzor329/CI4+4aLkNXR6Waa/bCNgJ+Ee2NETSwcBFwFXAjsDBpJPyPSt2puwJHpS/VIJr4ZkNzMmdFW/CBBg7Fj74waIjMSuGh2Xa6y6PiDUiYi9g2oCtAUkrAj8EjsjO45gSEZdGxBER0dk57LucE7z8uRaeWXdxcmfFmjoVbr4ZjjgChg8vOhqzYrjnzjIRMZgCZntnlz/NM5aycoKXPyd4Zt2j48mdpA0l3SBprqQnsqlA+/1WL+ndkn4iaUa23XRJ35I0ulNxW5uccgostRR88pNFR2JWHJ9zZ63ZDJgOHCRppqRXJN0uyd9G+1BEglf2iVac4Jl1h46+8iWNAa4HAtgNOBb4AvDtATbdB1gHOIF0LsIkUh2In7UtWGu/J5+EyZPhwANh2c5/KJh1DffcWWtWBdYHvg4cBXwQeBG4WpJry/TBpRLy52LnZsXrdM/docDiwB4RcV1EnElK7D4vaZl+tjshIt4bEWdn5xJMBL4E7CHpLR2I29rhzDPTTJlHHFF0JGbF8jl31pphwFLAQRHxs4i4GtgdWEAqnrsISYdIulPSnfMXzutgqN3FCV57DIUEz0medatOv+J3BK6JiOer1k0mJXxb97VRRDxVZ/Vd2eXK+YVnHfPSS3DGGbDLLrDeekVHY1YsD8u01szKLqdUVmSfs1OBDettEBFnRcS4iBg3ctji7Y+wiznBa4+yJ3jgXjzrTp1+tW8A3F+9IiIeBeZm9zVjC2Ah6TwD6zU//zk89ZSLlptBSu7mz4eIoiOx3nQf6XQH1awX6XPSBjBUip2X/Tw8J3jF/Fhh3aXTyd0Y4Nk662dn9zVE0qrA14ALanoBrRdEpIlUNt4Ytt226GjMijc6mxtqfudn1bNSuIKUyG1TWSFpWeBdwN1FBdWLyp7gQfknWnEtPBvqiihuWu+nafWxftGG0kjgYmAO8L/9tDsEOARglVVWYcqUKU0H2qw5c+Z0ZD+dlvdxLffXv/KOu+/m/i9+kX/ddFNuj9ss/796S5mPa8Zjj7Eu8MfrrmPBUksVHVIuyvr/ajdJS5AmDgNYHVhG0p7Z7SsjYq6kGcBNEXEQQETcKem3wLmSjgaeBr4MvEKagMyasPi9jzNv49U7tr8x0+cze/2RHdsfpATvhXU616k756FlWWpsZ0suXvvo+my3ZucGd10wews+PubWju3PrC+dTu5mA8vVWb8s9Xv03kCSgPOBjYAtI2J2X20j4izgLIBx48bF+PHjBxNvU6ZMmUIn9tNpuR/XhAmwwgpscOyxbLB4ced6+P/VW8p8XOtutBEA/73pprByOU4jLuv/qwNWBn5Zs65yeyzwMOmzu7aE0H7AicDJwBLALcC2/X1OWt+c4OXPCV77FNEDbN2r08My76fm3DpJawBLUnMuXh9+SCqhsFtENNLeus2DD8Jll8Ghh0KBiZ1ZV6kMy/SMmUNeRDwcEepjeThrs1ZEHFCz3ZyI+HRErBARi0fE+yPiniKOoSxcCy9/roWXnyImybHe0OlnxlXA9pKWrlq3DzAP6Hd8nqSvAEcA+0XEze0L0drq1FNh+HD4zGeKjsSse4walS49Y6ZZV/FMmvlzLbzmtq+OvYjk2HpPp5O7M4GXgV9Len92XtwxwMnVE6NImiHp3KrbHwX+jzQk83FJ76laVursIdigPf88nHsu7L03vOlNRUdj1j0qyZ177sy6jhO89hgKCZ4nWrEidPTVnI39fx/pXIHLSQXMfwh8q6Zp7fkE22WXBwC31Sw7ty9iy9V558ELL7j8gVktD8s062pO8Nqj7AkeeCZN67yOv5Ij4u8RsW12TsBqEfGNiFhQ0+YN5xNExAH9nINwXqePwQZhwQKYOBE23xw23bToaMy6i3vuzLreUKmF12lO8Mzy5bMxrTOuvBIeeAA+97miIzHrPj7nzqxnDIUEr+wTrTjBszJzcmedMWECrLEG7LFH0ZGYdR8PyzTrKWVP8KD8M2m62LmVlZM7a7+//Q1uvBEOOwxGdLq0olkP8LBMs57jBC9/LpVg1jond9Z+Eyemmnb/8z9FR2LWnTws06wnuRZe/pzgmbXGyZ2111NPwYUXwv77w/LLFx2NWXfysEyznuWZNPPnWnhmg+fkztrrRz9KX1g/+9miIzHrXh6WadbTnOC1x1BI8JzkWd6c3Fn7zJ8Pp58O228Pb3tb0dGYdS8PyzTreU7w2qPsCR64F8/y5eTO2ueXv4Qnn3T5A7OBuOfOrBRcC689hlKC50TPWuXkztojAk45BdZfH7bbruhozLqbz7kzK5WhkOCVfaKVbujBKyIG631O7qw9brsN7rgDjjwShvlpZtavESPS68TDMs1Ko+wJHpR/Js0iauGZtcrfuq09JkyA5ZaDT3yi6EjMesOoUe65MysZJ3j5GwqlEuop4ritNzm5s/w9+ij8+teprt2SSxYdjVlvGD3ayZ1ZCTnBy99QTfDMGuHkzvI3aVK6PPzwYuMw6yWjRnlYpllJudh5/pzgWa+QtIOk6ZJmSDq6zv3vlfQXSa9K2rPmvgWS/potlzWyPyd3lq8XX4SzzoI99oA11yw6GrPe4WGZZqXmUgn5GwrFzq23SRoOTAJ2BDYEPiJpw5pmjwIHABfVeYh5EfGObNm1kX06ubN8XXABPPtsmkjFzBrnYZlmpecErz2GWoJXxN/YBm1TYEZEPBgR84HJwG7VDSLi4Yj4G7Awjx362WH5WbgwlT8YNw62cJ0Ws6a4585sSHCC1x5DLcGznrE68FjV7ZnZukaNlnSnpD9J2r2RDZzcWX6uvRbuvz8VLZeKjsast/icO7MhY6gUOy/7eXhO8CyzYpaAVZZDqu6r94U4mnjsNSNiHPBRYIKkdQbaYEQTD27Wv1NOgdVWg732KjoSs97jYZkGSFoX+BLwHmBj4I8RMb6J7YcBdwD/BXwwIq5oR5yWj8XvfZx5GzfzI35rxkyfz+z1R3Zsf5CSvBfWyWW0WUPmPLQsS419rmP7qyR42605vS2Pa50zbN4rg/3R5eksAatnJrBG1e03A080+sAR8UR2+aCkKcA7gQf628Y9d5aP++6Dq6+Gz3wGRnb2g8OsFDws05KNgJ2Af2RLsw6muSE/VrCy9+CBZ9K0Ie0OYD1JYyWNBPYFGpr1UtIYSaOy6ysCWwJ/H2g7J3eWj4kT05fTT32q6EjMepOHZVpyeUSsERF7AdOa2VDSGOB44Gtticzaxgle/pzgWTeIiFeBw4FrgPuAiyNimqRjJe0KIOndkmYCewE/klR5738bcKeku4HfA9+LiAGTOw/LtNbNmgXnnw8f+xistFLR0Zj1Jg/LNCAiWhm/dhxwC3BDTuFYBxUxRBPo6DDNsg/RhJTg5T1Esz9FJOrWnIi4EriyZt03q67fQRquWbvdrcDbm92fe+6sdeecA3PnuvyBWSs8LNNaIGkT4EDgi0XHYoPnmTTzV4ZaeEX0QlrvcnJnrXn1VTjtNNh2W9hkk6KjMetdHpZprTkVmBQRM4oOxFrjBK89ej3BM2uUkztrzaWXwmOPudfOrFXuubNBkrQvsD7wnSa2OaQybff8hfPaF5wNihO89nCCZ0OBkztrzYQJsM46sPPORUdi1tt8zp0NgqTFgBOBE4BhkpYDlsnuXlLS0vW2i4izImJcRIwbOWzxDkVrzRgqtfA6zQmelZ2TOxu8O+6AW2+FI46A4cOLjsast3lYpg3OkqQT8U8GZmfL3dl9k4G7CorLcjIUEryyz6TZbILnhNBa4eTOBu+UU2DppeHAA4uOxKz3jRoF8+dDRNGRWG+ZA2xTs3wku++rwMcKistyVPYED8pfKuHaR9d30mYd4eTOBueJJ+AXv4CDDoJllhm4vZn1b/TodDnf01oPZZKWkLSnpD1JxchXqtyWtETWZoakcyHVUIqIKdUL8Kfs4e6JiNsLORDLnRO8/PViLbwihrJab/EzxAbnjDNgwYI0JNPMWjdqVLr0eXdD3crAL7PlPcCGVbdXztqMADwWfghygpe/XkzwzPrj5M6aN28enHkm7LorrL120dGYlUMlufN5d0NaRDwcEepjeThrs1ZEHNDAY1zRqbitc4pI8Mo+0UoZauGZVTi5s+ZddBE8/TR87nNFR2JWHpVhme65M7MBuFRCe3RjgucC5tYsJ3fWnIg0kcomm8DWWxcdjVl5eFimmTXBCV57dGOCZ9YMJ3fWnN//Hu65J/XaSUVHY1YeHpZpZk1yLbz2cIJnvWxE0QFYj5kwAVZaCT7ykYHbmlnjPCzTzAZp8XsfZ97Gq3dsf2Omz2f2+iM7tr9KgvfCOgs7ts85Dy3LUmOf69j+nOBZXtxzZ42bMQOuuAIOPfT1L6Jmlg8PyzSzFpS9Bw+GxkyaZq1ycmeNO/VUGDECPv3poiMxKx8PyzSzFjnBy58TPOs1Tu6sMc8/Dz/5CeyzD6y2WtHRmJWPh2WaWQ6c4OWvVxK8IibZse7T8eRO0oaSbpA0V9ITko6VNGAxVknLSvqJpNmSnpP0M0krdCJmA378Y3jhBZc/MGsXD8s0s5y4Fl7+eiXBM+voK0PSGOB6IIDdgGOBLwDfbmDzXwDjgYOBA4B3A79pR5xWY8ECmDgRttoK3vWuoqMxKycPyzSzHLlUQv6KKHbenyJ6Ta37dbrn7lBgcWCPiLguIs4kJXafl7RMXxtJ2hzYHtg/In4VEZcC+wFbSXp/JwIfyla47TZ46CE48siiQzErLw/LNLOcOcFrj04leLX7KeJYrfd0+lmyI3BNRDxftW4yKeHrryL2jsC/I+IPlRUR8Wfgoew+y9usWXD55XDUUax32mmw5pqw++5FR2VWXh6WaWZt4ASvPbqpB8+sWqfr3G0A3Fi9IiIelTQ3u+/yfra7v876+7L72mvWLJg5c8BmSz7wACy/fNvDaYuFC+Hee+Hmm9MybVpav9hivPzWtzL65JPTTJlm1h6V5O7BB+Fvfys2lhwM+v1wk03yD8ZsiKskeK6Fl69O18Iza0Snv62PAZ6ts352dt9gtls7h7j695vfwEEHDdjs3W0PpAOWWQa23BI++tF0jt27381dt9/O+PHji47MrNyWXDL9gHLCCWnpcYN6Pxw+HF59Ne9QzCxT9mLnkJI8J3g2lBXRFRN11qmP9YPeTtIhwCEAq6yyClOmTGkixDcavcQSLPXtged8eemllxjdw8W9X3rTm5gzdmz6ggWpN+/225kzZ05Lf79u5ePqLUPhuJaeOJFRTz1VbEA5GdT7ocTTJfwfm3UTJ3j5c4Jn3aTTyd1sYLk665elfs9c9XYr1Vm/XF/bRcRZwFkA48aNi070PE2ZMoVxJezhmjJlSil77nxcvWVIHFeJjq+s74dmZeAEL39O8KxbdPoM1PupOUdO0hrAktQ/p67P7TJ9nYtnZmZmZn1wLbz85TnJiidsscHqdHJ3FbC9pKWr1u0DzANuGmC7VSVtVVkhaRzpfLur2hGomZmZWZl5Js38dVstPBt6Op3cnQm8DPxa0vuz8+KOAU6uLo8gaYakcyu3I+I24BrgfEl7SNod+Blwc0Rc39EjMDMzMysJJ3jtkXeC5xp31qiOPlMiYjbwPmA4qezBt4EfAt+qaToia1NtX1Lv3o+B84GpwIfaGa+ZmZlZ2TnBaw/34FkROj5bZkT8Hdh2gDZr1Vn3LHBgtpiZmZlZToZKLbxOTrICnmjFOs99vGZmZmYGFDPRSict/cCwnp5oxWwgTu7MzMzM7DVlT/Cgt2fShGL+ZjY4knaQND2bU+ToOvePkvSL7P7bJa1Vdd9XsvXTJW3fyP6c3JmZmZnZGzjBy1+jCZ57+spD0nBgErAjsCHwEUkb1jQ7CJgdEeuS5iI5Idt2Q9KcIxsBOwCnZ4/XLyd3ZmZmZrYIJ3j5c+I25GwKzIiIByNiPjAZ2K2mzW7AT7PrlwDvk6Rs/eSIeDkiHgJmZI/XLyd3ZmZmZlaXi53nz7XwhpTVgceqbs/M1tVtExGvAs8BKzS47SI6PltmEaZOnfq0pEc6sKsVgac7sJ9O83H1Fh9Xb/Fx5e8tBe23Jz3/yn+evvrxUzvxGdmobn1NDN24BpfftRbXNYPeciBD9/84ON0YV3VMub3fP//Kf665+vFTVxzEpqMl3Vl1+6yIOCu7rjrto+Z2X20a2XYRQyK5i4iVOrEfSXdGxLhO7KuTfFy9xcfVW3xcVrROfUY2qlufO46rOY6rOY6rce2KKSJ2yPsxSb1ta1TdfjPwRB9tZkoaASwLzGpw20V4WKaZmZmZmVn+7gDWkzRW0kjSBCmX1bS5DNg/u74ncGNERLZ+32w2zbHAesCfB9rhkOi5MzMzMzMz66SIeFXS4aSBxsOBH0fENEnHAndGxGXAucAFkmaQeuz2zbadJuli4O/Aq8BhEbFgoH06ucvXWQM36Uk+rt7i4+otPi6zN+rW547jao7jao7jalw3xtSniLgSuLJm3Terrr8E7NXHtscDxzezP6VePzMzMzMzM+tlPufOzMzMzMysBJzcmZmZWdtJWlfSjyTdLWmBpClNbj9M0lRJIWmXbohL0h6S7pA0T9Izkq6WtGSRcUkaJ+naLJ5Zkq6XtFlOMe0l6TJJj0uak/0/PtLAdqMknSTpP5JelPQ7SWvlEdNg45K0vqRJku6TNFfSg5JOkbRckXHVeYzfZM/5w7shLknvlXRT9n98Nru+ZpFxSVpP0q8k/VvS85JuldSOmS97gpM7MzMz64SNgJ2Af2RLsw6mgQK+gzCouCQdDFwEXAXsmMX3T/Kbz6DpuCStAVyfxfAJ4OPZ9Wsl5VEP7PPAHOB/gV2B3wMXSTpigO0mAgcAXyTNBrgicJ2k0TnENNi4PgBsCZxB+jt/h3Te07WS8vp+PNi/FwCStgPek1MsLceVJUzXA3dn2+0H3AYU9n+UtDRwHbA28GnS8+sJ4HJJm+YUV0/xOXdmZmbWdpKGRcTC7PolwIoRMb7BbceQEpyjgXOAD0bEFUXFJWlF4CHg8xFxdh5x5BTXocAkYIWIeDZbN4ZU8PnwiDijxZhWjIina9ZdBGweEWP72ObNwMPAJyPi/Gzd6qS/32ci4pxWYmohrhWAWVH1RThLpq4BxkfETUXEVdVuMeBvwA9Iz/kjIuK0VmMabFxZPA8C50fE1/KII6e4diD9wLJJRNyTrRsBPA6cFxFHtSPWbuaeO7MeJWlbSSdKulzSzZL+mF0/UdI2RceXF0mbSDpA0v6SNi46HjMbnEqiMkjHAbcAN+QUzmsGGdfe2eVP84yl2iDjWow0ZfqcqnVzsnXKIaan66y+C1i5n822yy5/XfU4jwM3k3o8WzaYuCLimerErmob+tuu3XFVORKYB/wkj1iqDTKuD5CKaE/KO56KQca1WHb5XNXjvAq8SA7P+V7kUgg5kCTgg8B/AQHcCVxZ502j60nalvRmuwEwhnQ8zwL3k47p9wWGlxtJm/D6/2tqRNxbcEgNk7Q8cCnw36RfPu/LLgUsB3wI+IKkPwB7RMSsomJtRvbr3Ncj4sHs9mjg56ShGZU36JD0K+BjEfFKMZEOjl9bZoOTPacOBP5f0bFU2QyYDhwk6WvAKsBfgP+NiFsLjOtXwLHASZIq06d/E5gN/LJN+9yCVIerLxsAMyNiTs36+4DxbYoJBo6rr20YxHbN7qPfx5e0KvANUg/1wvQ1s+0Gimsz4BngPZJOAMaSPr++EhGXFxjXDaSe4R9I+gIpqTuUlBCe18a4upZ77pqUnaT5tqrbY0jV4n9DGiv8BeBy4JZsHHBPkLS8pJtIY6n3IH2Zfgh4JLv+IeAGSVOy5KInSLpI0tpVt0dLupT0S9CPSb+I3S3p4mzIQS+YCKwKbBYR60TELhHx8YjYL7u+LrBp1uaUQiNtzr6k8zAqjge2Bw4jvUmvlF3fBfhqx6MbJL+2euq1Zd3pVGBSRMwoOpAqqwLrA18HjiL9wPsicLWkVYoKKiKeALYBPgz8O1v2ALaPiKfy3p+k9wG70X9vzhjSD1m1Zmf35a7BuGq3WQL4HnBTREwrOK7vA9dExB/aEUetBuNaFViSVGPuB8AOpKTrUklvLyquiJhL+pFgI+BRUgJ6FLBbRLQzSe9eEeGliQVYCGxadftcUjX5HarW7UB60/ph0fE2cVwXkn6FfHc/bcaRfqW5oOh4W/h/nQTMJf2qsyKwQnZ9LvCtouNt8JieJb1pDdRud+DZouNt4X/1BPDNOu2OBf5RdLxNHJdfWz3y2vLSuQW4BJjSQLt9gX8By2S31yL1Cu9ScFzXZXFUf/Yvk332H1dgXKsBM4DfZt9FApnCYAAAFDtJREFUdiD94DwTWDPnmNYiJY+XDtDubOCuOuuPBx5vw9+qobhqthFppMgzwNptem41+vfaPHvffEvVuiCdM1lkXGdncRxatW44aRKh3D+7mohrSVIny82kkT7vJ/24+Czwznb8zbp9cc9d63YFjo2IqysrsuvHk34t6xW7AF+OiDv6ahARd5JOZv9gx6LK30eA70XEmRHxdKQx92eSfoX6WMGxNWohjY0jV9a2V60MTKmz/iYgl2mXO8Svrd55bVkXyXp8TwROAIYpTVG/THb3kgWPjqkMd59SWRERzwNTgQ2LCCjzJdIpN3tGxNXZ95EPAwtIM1XmIhtlcBWpp2S/AZrPJp0yUGs56vfodSquaieQRlHsHtmpAQXGNQH4EfCcpOX0emmGxSUtW2Bclef8a6cQRMQC0mdyrs/5JuM6KNv/LhFxWURcHxEHknoVv51nXL3CyV3rliOdY1drKqkLu1c4YeidhOG3pPMptuyrgaQtSF+KLu1YVPnYQtJOknYi/YK6TJ02y5BOMu8Vfm31zmvLusuSpAkcTiYlCLNJU7ADTOb1yS+KcB+pF6P2tV3063gDYFpUnZMcEfOBacA6eewgG754BTAS2DkiXhxgk/uBNbRo/b8NsvtyMYi4Ktv9Lynx/URE/DGveFqIa33gc7z+nJ+drf8+6XOxqLju6+uhyPE5P4i4NgAeiWx22Cp/JafnfK/xhCqD82FJ47Lrs0nnAtVaEXi+cyG1rJIwPBURt9Rr0OMJQ+VcrjIkDEcCFwN/lPQv0ofjs6QvGsuR3uhWBa4l1YrpJSfX3N6O9CZfbUvSMJBe4ddW77y2rLvMIZ0/Vm1V0vC5rwI3djyi110BfIsU35UAWa/Ku0i91UV5BNhJ0sgsqUPSKGBj0vDMlmRTzP8SWA/YMiL+08Bm12aXHyINU0fSm0iTgn2m1ZhaiAtJHyUNKf9CRFycRyw5xLULi34//z3pfPtfL9q8Y3FdQ5p19X2kUw2QNBzYmvo/7HUqrkeAtSSNiYjZVevfRZpoZchxcjc4X6q5/UEW/VL2fnL8RaoDnDD0SMKQDf3ZQdLmpPMpKrMvQqpldA5wVUT8qaAQB6teDZuX66x7gfRh3Cv82uqR15a1V/aL/E7ZzdWBZSTtmd2+MiLmSppBmtDioEjTmU+peYy1sqv3RMTtRcQFaSi1pN8C50o6mvTe+2XgFXKaKn4wcZHe/w8mTXJxOqlX5TDSuXhn5RDW6VlMRwLLS6ousH1XRLws6QaAiHhfdjlT0rnAhGx28aeAY0hfyi/MIaZBxSVpa9JsitcCt9VsMzMiZhYRV0TcXPsg2WyZ/4wcau+1ENeTkiYB38v+jzOAQ0i9698tKi7gItKPPVdK+j7pfMX9SBPL7ZJTXD3FyV2TIqLRoax3Ar9oZyx5csLQcwkDEXEbcFvRceQlIh5psF1PjaH3a6v3XlvWNiuz6HT8ldtjSb+yjyBN0tBJg41rP1KP+8nAEqQ6fNvW9B50NK6ImKpU1PlbwAXZ6nuAD0TE3bSuUrOu3kzMlZjq/f8+S5pNtPK3ugn4SES8lENMg41rG1KNtO2zpdq3SQloEXF1wmDj+hLp//h1YHnS0OjtI+KBouKKiMeUavseTzpXcTTpR9Q9I+J3OcXVUxTRc6XYzMzMzMzMrIYnVDErKUlnZ0NhSqWsx2VmZmbWKg/LbBNJ15N6Rt83YOMeIulsYFjV+P5SKOlxbUM5f8Ap5XGV9DlY2uMyMzPrRk7u2keU8AsoJf1iTQmPKyLWLTqGdijrcVHC52CmrMdlZmbWdXzOnVmJSBpNmi75xIgozQyFZT0uMzMzszw5uWsTSYsBq0XEo0XH0ipJY0mzFD0UEQ8VHU9eevW4sumx+7Ic8BiwI3AzQETM7URcrSrrcfUnm9Y9Gp0ptFeU9bjMzMy6nYfKDIKkwyQ9IOkFSbdL+nidZv8F9FLCsJikiZJmSZqT1Qohq2kyA7gemCHpZ1nRyp5Q0uN6oZ/lMdKQ4Kuq1vWKUh6XpEOqCn1X1h0p6SngAeBBSf+WlEsx304p63GZmZn1Mp9z1yRJ+wKnAj8n1ffYEjhP0m7AxyNiXpHxteDLpMKnJwOzgCMkrQTsDhwA/AXYCvgB8ClSocleUMbjmgc8T4r5mZr7lgROA75PqvPSS8p6XGcAfyXVtEPSIcAPSYXNL8na7AmcKunZiLiokCibV9bjMjMz61keltkkSXcCN0bEl6vWvQ/4Gam44s4R8YykzYBbI6IneoMk3Q+cGxEnZre3Av4AfD4iJlS1+zbpGMcVE2lzynhckt5ESoC2IxVaPT0iFmT3LQvMBsZHxB+Ki7J5JT6uhcB7IuLP2e37gT9FxAE17S4ANoiId3c+yuaV9bjMzMx6mYdlNm994MrqFRFxA/AeYFngNknrFBFYi94C/Lnq9tTs8s817W4G1u5IRPko3XFFxBMR8VHgQ8AngXskbV9wWC0r63HVsQ6p57/WZGDDDseSp7Iel1lXkHSApKnZKSGzJd0l6eQ27WtvSQc00O4YSVG1PCHpV41+D5J0XvajedtJGibp8OzvNk/S85KmZaduqBMxmHWCk7vmPQesWLsyIh4GtiANUboV6LVfqV8kTVpR8XK21E5aMZzeGs5b1uMiIv4IvAuYBFwk6QrSjw89raTHNVrSEtmkMc8AC+q0WQD02lCKsh6XWVeR9BXgHOAaYA/gE8BvgV3btMu9SacuNOI5YPNs+SLwDuAGSUs2sO1xTeynVZOB7wC/Jv3d9if9WL9FeBiblUhPfZntElNJ52tdUntHRMzOhmheQpq2vZfeLKYD40gfFkTEQmDxOu02Ig0/7RVlPS7gteOZJGkycDzwR3rreVdXCY/r91XXBWxKmsyn2iakiWN6SVmPy6zbHA78KCK+WrXu8uyUgqK9GhF/yq7/SdKjpPfsnYBf1jbOJi8bHhHzI+KBTgQoaUdgL2CniLiq6q5L3WtnZeOeu+ZdCKwtafl6d2YTquxK+oWtl8ognExjX8DeD1za5ljyVNbjeoOIeCYiDgXeSfpV996CQ8pFSY7rQNIw08pyIFBvGNKmwK86GFerynpcZt1oOeBftSure5wqQxwl7S7pfkkvSbpZ0iLDorNhl/dIelnSY5KOlzSi8jjAh4Gtq4ZbHtNErJXTH9aqE9c04CVgs+r7amJ7r6TfZzNcPydpiqR3Vt2/laSbJM2V9IyksyUtPUBMW2eXN9be4V47Kxv33DUpIn5JnV+iatosAA7pTET5iIiGvnxFxI7tjiVPZT2uvkTE34G/Fx1H3nr5uCLipw2227PdseSprMdl1qX+Qprt+VHgioionVG44i2kHzW/QZqB+NvANZLWi4iXACRtB/wCOB/4Eql3/ThgBeDQ7PqapISyUspkZhOxrpVd/qtm3feBY4F/00epKEnjgetIowL2J51asSWwOnCXpC2BG4DfkGbjXQH4HjAmu92XF7PLEyWd5BqcVmZO7szMzMy622GkhOY8ICTdR+oR/0FEPF/VbkVgt4i4FUDSVFLdyQOAM7M2xwJTImL/7PbV2cjE70r6TkQ8IGkWMKxquGW/Kr1+pInJTifVIq0eor0C8P6I+OsAD/Vd4G5g+6oetaur7v8eaSbyfar2/TjpHL+NI6Kv0R1nk4ZlHkFKkqcBFwETI2LOgAdo1kM8LNPMzMysi0XE34C3kU77OJ10jus3gDslLVXV9D+VxC7b7hHSMMlN4bXz3f6LRUcg/YL0nXDzQYS3AvBKtkwnJXj7RMSTVW0eHyixyyZg2Qz4ab2hktnETZsDF0saUVlIs12/QpqIq66I+BdpeP/2pBqdy5HO575V0siqfZwh6XFJHqppPcvJnZmZmVmXi4iXI+LyiDg8IjYEDgbWAw6qavafOpv+B1gtu74isBhpaGS1yu268wkM4DnSDOHjgDcDa9VMWlL9+P0ZQ0pan+zn/uGk5PaVquVl0jGt0d+DR8SCiLg2Ij5DGnb6E+DtvDGh/Tkp+TXrWR6WaWZmZtZjIuJcSd8HNqhavXKdpisD07LrT5MSotp2q2SXswYRyqsRMVCtukZ6wmYDC3k9Ea31bPY4x1BTbzjzRAP7SMFELJR0LWkiqNFV6/8A4Ak0rZe5585a1snCqnmT9M1sCMbCbIawvtp1XfHYrO2gC8h2snjsQJTcLWn/mvVdU3S21VgkTZJ0bidiNbNykbRI0iZpJWBZ3tgrtrKkLararEnqifozvDbh21TS+WfV9iYlVrdlt+dTlfR0QkS8CNwOfKLee2p2/5+A9SPizjpL3eRO0ir11pOGuM7N9mlWGu65s5YoFVY9jjQL1tGkD4N3AfsBny8wtAFJGkeaSeyrwBTqD2cp4hj3Jg2dOa/B9s8BO2TX1ybFeoOkjbIPw74cR/2af0XYmzTk5qKa9ZOB7YCTSB/qSwFbANsUMH11q7GcCNwv6bsRMaN9YZpZCd0j6bfAtaTPqreQCobPBapnrn0auEBSZbbMY7P251W1+RZpBs2fkN7X3k76PDg7IiqzYt4P7CZpd9JMmU/0lTzl7GjSRCxXSTqLNMvl5sCdEXEF8GXS59tCUk3hF0hDLHcGvhYR/6jzmBdLegG4mFTPdmXgY8BuwP9ExLPtPSSzDosIL14GvQCPA5PqrFfRsTUQ+36kIR7LdNMxkj6wpjTY9hjg6Zp1W2XHtVcf2wwHRhb996+J6Rbg+Jp1O2bHsWM7/vbAeLISRw20zSUW0peWk4r+e3vx4qW3FtJsmdeShh6+REpSLgI2qGpzHqnW5B7AP0jnot0CbFzn8fYB7iH10M0kTS4your+FUm1X2dl733H9BHXIp9BddqcR0rOGrqPVJPuD6TE9VlSWYR3VN2/GWkGzedJyd/fSeUflu1jH5/M2s/MjncW8DtgfD8xR9H/cy9eBrsUHoCX3l6yN9ZvDNBmCnBJzbrx2QfGxlXrKh9MO2dv1nOzN+DlgXWzN/gXszabNBDb3tmH18ukQuavfXhl+4qaZfxgj7Em/t1Jv3q+RJrFa8MW4zqmn30u8sFK6o0L4Et14ppGOt/iv/v4UH1v9neeQ+oRnAK8s6bNVsBN2f/nGdIU00tX3b9R9kE6K/vb3Qcc1s8xrJvFW7uf72XrR7XpuTu+0Q/wvGIBPk2q/TSsHcfkxYuXobvUe0/3Mui/ZRQdgxcvg118zp21qlJYdX9JK+TweGuShpF8nVQIfgvgLNLQkcmkIqUjgMn9nedUVaT1L6ShF6eShrCcljU5DvhOdn1b0rCPv/TxcM0cY6WA7HHAR0nnQ1wjaXQTcf0euCuLaXPgnAH2WWut7LJeAdnvAjtRp4BsVjz2BlLytz/pl90/korHVtpUCsj+i/S/+Fz2eD+peqjLgAWkntFds2Ncup9430dKAu+uWV9ddPYt/WzfCXnFcitp4oK3tx6SmZnlSdI5kmZm12dKavbz16xwPufOWtVoYdVGLQ9sHhEPAEjaBPgSsH9EnJ+tE6lHbwNSr1A9jRRpfSC7747ov4hpM8c4UAHZ3IvHZvtpuoBsndx4oOKxMEABWVLStzawe0TckzW5YYDw3wXcFxELa9bnWnQ2e94Mr1o1PFv/hvfBiHi1zuZ5xTKNlPhuyqLJrJmZFSgiDi46BrNWuefOWhKNF1Zt1MOVxC5TmXjixjrrVqeOvIu0NnmMfRaQbVPxWMihgOxAxWOzNo0UkJ1FGmp6pqR96s3wVseqpEkA3iDyLzq7P2+sjVRJfl+pWRbRSCyS1pB0g6T7slk0v1/bu5wljs9mx2xmlpuIOCAixhUdh5kVy8mdtSwaK6zaqNpZq+bXWV9Z19c0zbkXaW3iGPsrINuO4rGQTwHZgYrHVtr0W0A2633bjtSD92PgX5L+KOmd/Tzu6OwxFhH5Fp29nPR3qiyHZuvfXbPU1UAsrwJHRcTbSIngZqSJDWq9TIenGDczM7OhwcMyLXexaGHVl4CRNc0Gm8g0oh1FWt+gzjFW9FdAtl1x5VFAdqDisdBgAdmIuB/4sKTFSBO3nAD8TtKb6wy9hHTcA/ZkRYtFZyPiGdIEMGTtl8rWN13rr14sWU/pk9n1+ZL+BqxRZ/PlyOE5aGZmZlbLPXfWkgYLq85k0SToA+2KKRov0tqQJorHQj8FZJuIq+uKx1a1abiAbES8EhE3kiaYWY2U1NQzHRhbvaKbis4OJpZs4p3dgWtq1q8ELEGaptzMzMwsV+65s1Y1Ulj1UuAgST8kTYSyDencpXZqpEhroxotHgsDF5Dt5eKxMEABWVJS+gPSeYQPkoZyHgXcHRF99VbdAnxT0koR8VS2rpuKzjYVi6RRpL/NhIionfBnHKn381bMzMzMcuaeO2vVsaRp9ieSkp/jSEMQN42IhwAi4nfAV0lT519KSo4+186gIuJaYF/Sl+nLs/2dBBw+iIcb8BirPEKa3fMYUvL2PGn2yZeaiOv0bD8/Bu4glYRou2x44wdIPUsXkhK0rUkJZqXNzaRaeCsBF5CO4cukSVT+TTrX7t+kRO+q7FjuI/Vy9WUKaZjiDlXrfkr68en/SAnnWaShvdtGxLktHWjzGo4lmzTnZ8BdEXFSncfaAbgpGyJqZmZmliv1MTGemTVJ0nmkouyeraxJkk4B1o2InVt4jIiI/k+8a7OsJtJw4JO1s45mid8jwNERcWER8ZmZmVm5uefOzLrBicB4SW9tdsNuKTqbFXg/iNQre5ekv0r6bFWTvUhDdScXEZ+ZmZmVn8+5M7PCRcRMSQeRJl5parKRbik6GxG3kMpJ9EXAQX0USTczMzNrmYdlmpmZmZmZlYCHZZqZmZmZmZWAkzszMzMzM7MScHJnZmZmZmZWAk7uzMzMzMzMSsDJnZmZmZmZWQk4uTMzMzMzMysBJ3dmZmZmZmYl4OTOzMzMzMysBP4/mfLGt2UT228AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function\n", + "plt.figure(figsize=(15,5))\n", + "plt.subplot(1,2,1)\n", + "x = np.linspace(sum(low), sum(high))\n", + "y = (x <= 5)*np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1)\n", + "plt.plot(x, y, 'r-')\n", + "plt.grid()\n", + "plt.title('Payoff Function (for $S_1 = S_2$)', size=15)\n", + "plt.xlabel('Sum of Spot Prices ($S_1 + S_2)$', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "\n", + "# plot contour of payoff function with respect to both time steps, including barrier\n", + "plt.subplot(1,2,2)\n", + "z = np.zeros((17, 17))\n", + "x = np.linspace(low[0], high[0], 17)\n", + "y = np.linspace(low[1], high[1], 17)\n", + "for i, x_ in enumerate(x):\n", + " for j, y_ in enumerate(y):\n", + " z[i, j] = np.minimum(np.maximum(0, x_ + y_ - strike_price_1), strike_price_2 - strike_price_1)\n", + " if x_ > barrier or y_ > barrier:\n", + " z[i, j] = 0\n", + " \n", + "plt.title('Payoff Function', size =15)\n", + "plt.contourf(x, y, z)\n", + "plt.colorbar()\n", + "# plt.plot(x, x, 'r')\n", + "plt.xlabel('Spot Price $S_1$', size=15)\n", + "plt.ylabel('Spot Price $S_2$', size=15)\n", + "plt.xticks(size=15)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.8023\n" + ] + } + ], + "source": [ + "# evaluate exact expected value\n", + "sum_values = np.sum(u.values, axis=1)\n", + "payoff = np.minimum(np.maximum(sum_values - strike_price_1, 0), strike_price_2 - strike_price_1)\n", + "leq_barrier = [ np.max(v) <= barrier for v in u.values ]\n", + "exact_value = np.dot(u.probabilities[leq_barrier], payoff[leq_barrier])\n", + "print('exact expected value:\\t%.4f' % exact_value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff\n", + "\n", + "We first verify the quantum circuit by simulating it and analyzing the resulting probability to measure the $|1\\rangle$ state in the objective qubit" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "state qubits: 5\n", + "circuit width: 19\n", + "circuit depth: 7760\n" + ] + } + ], + "source": [ + "num_req_qubits = asian_barrier_spread.num_target_qubits\n", + "num_req_ancillas = asian_barrier_spread.required_ancillas()\n", + "\n", + "q = QuantumRegister(num_req_qubits, name='q')\n", + "q_a = QuantumRegister(num_req_ancillas, name='q_a')\n", + "qc = QuantumCircuit(q, q_a)\n", + "\n", + "asian_barrier_spread.build(qc, q, q_a)\n", + "print('state qubits: ', num_req_qubits)\n", + "print('circuit width:', qc.width())\n", + "print('circuit depth:', qc.depth())" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "int" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(qc.width())" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "ename": "ModelValidationError", + "evalue": "{'n_qubits': [\"Value '19' is not the expected type \"]}", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mModelValidationError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mjob\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mexecute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mqc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbackend\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mbackend\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\execute.py\u001b[0m in \u001b[0;36mexecute\u001b[1;34m(circuits, backend, qobj_header, config, basis_gates, coupling_map, initial_layout, shots, max_credits, seed, qobj_id, seed_mapper, pass_manager, memory, **kwargs)\u001b[0m\n\u001b[0;32m 85\u001b[0m job = execute_circuits(circuits, backend, qobj_header=qobj_header,\n\u001b[0;32m 86\u001b[0m \u001b[0mrun_config\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mrun_config\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 87\u001b[1;33m transpile_config=transpile_config, **kwargs)\n\u001b[0m\u001b[0;32m 88\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 89\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mjob\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\execute.py\u001b[0m in \u001b[0;36mexecute_circuits\u001b[1;34m(circuits, backend, qobj_header, transpile_config, run_config, **kwargs)\u001b[0m\n\u001b[0;32m 128\u001b[0m \u001b[1;31m# assembling the circuits into a qobj to be run on the backend\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 129\u001b[0m qobj = assemble_circuits(new_circuits, qobj_header=qobj_header,\n\u001b[1;32m--> 130\u001b[1;33m run_config=run_config)\n\u001b[0m\u001b[0;32m 131\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 132\u001b[0m \u001b[1;31m# executing the circuits on the backend and returning the job\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\compiler\\assembler.py\u001b[0m in \u001b[0;36massemble_circuits\u001b[1;34m(circuits, run_config, qobj_header, qobj_id)\u001b[0m\n\u001b[0;32m 70\u001b[0m name=circuit.name)\n\u001b[0;32m 71\u001b[0m \u001b[1;31m# TODO: why do we need n_qubits and memory_slots in both the header and the config\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 72\u001b[1;33m \u001b[0mexperimentconfig\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mQasmQobjExperimentConfig\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn_qubits\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mn_qubits\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmemory_slots\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmemory_slots\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 73\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 74\u001b[0m \u001b[0minstructions\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\validation\\base.py\u001b[0m in \u001b[0;36m_decorated\u001b[1;34m(self, **kwargs)\u001b[0m\n\u001b[0;32m 243\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mValidationError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mex\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 244\u001b[0m raise ModelValidationError(\n\u001b[1;32m--> 245\u001b[1;33m ex.messages, ex.field_names, ex.fields, ex.data, **ex.kwargs) from None\n\u001b[0m\u001b[0;32m 246\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 247\u001b[0m \u001b[0minit_method\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mModelValidationError\u001b[0m: {'n_qubits': [\"Value '19' is not the expected type \"]}" + ] + } + ], + "source": [ + "job = execute(qc, backend=backend)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# evaluate resulting statevector\n", + "value = 0\n", + "for i, a in enumerate(job.result().get_statevector()):\n", + " b = ('{0:0%sb}' % asian_barrier_spread.num_target_qubits).format(i)[-asian_barrier_spread.num_target_qubits:]\n", + " prob = np.abs(a)**2\n", + " if prob > 1e-4 and b[0] == '1':\n", + " value += prob\n", + "\n", + "# map value to original range\n", + "mapped_value = asian_barrier_spread.value_to_estimation(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_)\n", + "print('Exact Operator Value: %.4f' % value)\n", + "print('Mapped Operator value: %.4f' % mapped_value)\n", + "print('Exact Expected Payoff: %.4f' % exact_value) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we use amplitude estimation to estimate the expected payoff." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, asian_barrier_spread)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.8407\n", + "Estimated value:\t0.8696\n", + "Probability: \t0.7163\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % (result['estimation'] / (2**num_uncertainty_qubits - 1) * (high_ - low_)))\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHhtJREFUeJzt3XuwXFWd9vHvw0UItxAEAoMMEbxEGClHI4LDSLhDeEcuokmh71QcNOqr4kyhAyJCQIcSHAEtxgJKJ7yMmjADDO9ACCFcTiBc1CBBnCRg0IBcRHEOxBiIQH7vH2sf7OzT5/Tuy1md0+f5VHV199prr157pdO/s/Zea21FBGZmZiNts25XwMzMxgYHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHbBiSZkvqK173SZrd5P5TJUW5rCHy3iTp4WG2XyapX9JWFT/7TZJC0jHN1NlspDjgmG065gJ/IWm/8gZJmwMnA9dHxPrsNTPrAAccs03H/wPWATPqbDsUmEgKSmajkgOOWYskHSTpvyQ9LekPkpZJ+nCr5UXEWuAmYHqdzTOAZ4E7i8/eQ9IcSb+U9KKkRyWdJ2nLYeq7RXGK7ZOl9K9K+nUpbS9J1xSn8NZJWiDpza0emxnAFt2ugNmmLCJm17yeWtq8F3APcDnwEvBXwBxJGyJibrFPH6ByWcOYC3xI0rsi4gGAIoicCHw/Il4t8u0CPAf8PfA8MBk4F9gZ+HSTh7kRSTsXx/UsMKs4trOARZLe6lN61ioHHLMWRcS8gdeSBNwFvAH4OK2f+lpACiAzgAeKtKOBnWrLjIhlwLKaz78HeBG4XNLnIuKVFj8f4HRgK+DwiHi+KP9eYDUwE7iijbJtDPMpNbMWSZog6VuSHgdeLh6zgLe0WmbRe/hPUi9HRfJ04HHg/prP3kzS6ZJWSHqx+Oz/C4wjBb12HAEsBNYWp+G2AF4AfgJMabNsG8MccMxadxUpGHwdOAp4N/CvwNZtljsX+HPgIElbA8cDc2Pjpd1PBy4E/gN4P3AAcFqxrd3P3xn4MH8KogOP9wF7tlm2jWE+pWbWgiIQHAd8JiIur0nvxB9xd5Cun8wAdge2Z/Apug8C8yLinJrP3r9Bua8CrwCvK6XvVHr/P8CDwAV1yljT4DPMhuSAY9aarYDNgdcuoEvantTbaOsmUxHxqqT/IAWVPYAVEfHTUrZxtZ9dGHaEXESEpKeAt9XUeXPgsFLW20m9qoc9QMA6yQHHrAUR8YKkHwPnSFoDbADOJF3r2KEDHzEX+AxpdNo5dbYvAj4laSnwC+BvgUkVyv1PYJakh0jXhT4ObFPK88/AKcAdki4DngZ2Aw4B+iLi35s+GjMccMzacQpwJXA18DvgMtKP92c6UPZ9pFFhk4B5dbafC7yedNorgGuBfwBuaFDuOaRrNBcAfwS+BSwHPjaQISJ+I+lA4J+AS4EdgWeAu4Ehl94xa0S5bzEt6U3AF4ADgb8A7q4zv6HefuNJX/4TSIMdbgJOi4jflfIdD3wVeDPpL7/zIuKaTh6DmZk1rxuj1PYDpgGPFo+qrgGmkv4Sm0kaEbTRX3OSDgauI83GPhaYD8yVdFS7lTYzs/Z0o4ezWURsKF5fC+zcqIcj6SDgXuCQiLirSDsA+CFwZETcVqQtBLaMiMNq9r0Z2CEiDh6J4zEzs2qy93AGgk2TjgWeHQg2RTk/An5ZbKNYsv1QoHxBcx5pPsP41mpsZmadMFomfk4GVtZJX1FsA9gH2LJOvhWk42x59reZmbVvtIxSm0BaX6qsH9i7Jg918vWXtm9E0izSciSMGzfuXXvu2d5E6g0bNrDZZqMljneX26o6t1V1bqvqOtFWjz766HMRsUuVvKMl4ED9yXSqk15+ryHSU2LElaShrUyZMiWWLl3aTh3p6+tj6tSpbZUxVritqnNbVee2qq4TbVWsJVjJaPkzoJ80F6BsR/7Uo+mvSSvngfo9JDMzy2S0BJyV/OlaTa3aazuPkRYYLOebTJoF3swQbDMz67DREnAWALsV82wAkDSFdP1mAby2rPudpPWnak0H7ouIFzLV1czM6sh+DUfSNqSJn5AWJtxB0snF+5sjYp2kVcDiiDgVICLuK+bYXC3p86Qey4XAkoE5OIWvAH2SLiVNCp1WPI4Z8QMzM7NhdWPQwK6ke3jUGnj/RtL6UVuQVuKtNQO4hHS/kdeWtqnNEBFLiuD1VeBTpHk6p0TErR2sv5mZtSB7wImI1fxp5NhQeSbVSXse+GjxGG7fG2i8gKGZmWU2Wq7hmJnZKOeAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZZA84kvaVdLukdZKelnS+pM0b7DNbUgzx+GJNvquGyDN55I/MzMyGs0XOD5M0AbgNWA4cD+wDfIMU+M4eZtfvALeU0k4AzgAWlNJXAh8tpa1urcZmZtYpWQMO8ElgHHBSRKwBFknaAZgt6aIibZCIeBJ4sjZN0peBlRGxrJT9DxFx/wjU3czM2pD7lNqxwMJSYJlHCkKHVC1E0k7AkcDczlbPzMxGSu6AM5l0yus1EfEEsK7YVtXJwJakYFW2r6Q1ktZLWiKpciAzM7ORk/uU2gTg+Trp/cW2qmYAP4mIR0vpDwI/JF0j2gU4nXTa7uCI+FG9giTNAmYBTJw4kb6+viaqMdjatWvbLmOscFtV57aqzm1VXe62yh1wAKJOmoZIH5xR2p10+u2MQQVHfLOUdz4p+JxFGmQwuDIRVwJXAkyZMiWmTp1apRpD6uvro90yxgq3VXVuq+rcVtXlbqvcp9T6gR3rpI+nfs+nng+RAtQ1jTJGxIvAzcA7q1bQzMxGRu6As5LStRpJewLbUrq2M4wZwJKI+FUTn1up92RmZiMnd8BZABwtafuatOnAi8DiRjtLmgQcSMXRaZLGkUbGPdBsRc3MrLNyB5zLgfXA9ZKOKC7YzwYurh0qLWmVpO/W2X8G8ApwbXmDpPGS7pb0CUmHS5oO3AnsAVwwAsdiZmZNyDpoICL6JR0OXAbcSLpucwkp6JTrVW+5mxnA7RHx2zrb1gO/Ja1YsCvwEnAfcEhELO3IAZiZWcuyj1KLiOXAYQ3yTBoi/R3D7PMScFJblTOzlk06c/6gtNVfO64LNbFNlVeLNjOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsyyaCjiS6i03Y2Zm1lCzPZynJF0k6W0jUhszM+tZzQacK4CTgZ9J+qGkWZJ2GIF6mZlZj2kq4ETEuRGxN3Ak8AhwMfCMpO9LOmIkKmhmZr2hpUEDEXFHRPwtsBvwWeCtwEJJqyXNlvRnnaykmZmNfu2OUpsCvI902+h+4G7gY8AqSR9ps2wzM+shTQccSXtJOlfSY8DtwO7A3wF/FhH/G9iLdK3n6x2tqZmZjWpN3YBN0h2kHs2TwFXAnIh4vDZPRLwq6QfA5zpVSTMzG/2avePnc8A0YFFExDD5lgFvbLlWZmbWc5o9pXYZcG+9YCNpO0nvA4iIl8s9HzMzG9uaDTh3AvsOse2txXYzM7NBmg04GmbbdsC6NupiZmY9rOE1nOI02dSapI9JOqaUbWvgOODhzlXNzMx6SZVBA+8hTe4ECOCDwCulPH8EVgJf6FzVzMyslzQMOBHxdYo5NZJ+CZwYEctGumJmZtZbmhoWHREe6mxmZi2pcg1nGrAkItYUr4cVETd3pGZmZtZTqvRwbgIOBH5UvA6GHq0WgG/SZmZmg1QJOG8Enql5bWZm1rQqgwYer/fazMysGVWu4WzTTIER4cmfZmY2SJVTamtJ12aq8jUcMzMbpErA+TuaCzhmZmaDVLmGc1WGepiZWY9r9xbTZmZmlVQZNPAjYGZELJf0YxqcXouIAzpVOTMz6x1VruH8N/BizWtfzzEzs6ZVuYbz0ZrXM0e0NmZm1rNavoajZBdJw92UzczMDGgh4EiaJule4CXg18BLku6VdFzHa2dmZj2jqYAj6RPAjaTJoJ8j3Yztc8X7/yq2m5mZDdLU/XCAs4ArI+JTpfTLJV0OfAm4oiM1MzOzntLsKbXXA9cPse06YKdGBUjaV9LtktZJelrS+ZKGXQ5H0iRJUecxr07e4yU9LOklScslTa90ZGZmNqKa7eHcCRwCLKqz7RDgruF2ljQBuA1YDhwP7AN8gxT4zq7w+Z8H7ql5/1yp/INJge/bwGnANGCupP6IuLVC+WZmNkKqTPzct+btt4DvSHo9cAPwG2BX4ETgWOBjDYr7JDAOOCki1gCLJO0AzJZ0UZE2nEci4v5htn8ZuCsiTive3ylpP+AcwAHHzKyLqvRwfsbGkz0FfKJ4lO/+eQvDrxZ9LLCwFFjmAReSekg3VqhPXZK2Ag4l9WxqzQPmSBofES+0Wr6ZmbWnSsA5tIOfNxm4ozYhIp6QtK7Y1ijgzJG0E6lnNRf4UkQMrIKwD7AlsLK0zwrSKbu3AD9ur/pmZtaqKisNLO7g500Anq+T3l9sG8p64F9Ip8XWAFOBM0hB5viasqlTfn9p+0YkzQJmAUycOJG+vr7h6t/Q2rVr2y5jrHBbVTca2ur0t78yKK0bdR4NbbWpyN1WzQ4aeI2kzYCty+kV7vhZby02DZE+UOYzwGdqkvokPQt8W9I7ImLZMOVriPSBsq8ErgSYMmVKTJ06dfjaN9DX10e7ZYwVbqvqRkNbzTxz/qC01R+emr0eo6GtNhW526rZiZ+SdIakVcDLwO/rPIbTD+xYJ3089Xs+w7m2eH5nTdnUKX/gfbPlm5lZBzU7D+c04Ezgu6Sewz8B5wOPAqspTk0NYyXpWs1rJO0JbMvgay+NROn5MVIQnFzKNxnYUNTRzMy6pNmA83HgXOCi4v0NEXEesB8pYLy5wf4LgKMlbV+TNp10+4NmrxWdXDw/ABAR60nzhD5YyjcduM8j1MzMuqvZazhvBJZFxKuSXqY4XRURGyR9G/gOqQc0lMtJvaTrJV0I7A3MBi6uHSpdnLJbHBGnFu9nA9uTJn2uAd4HfAG4PiJ+WlP+V0jXdy4lzROaVjyOafI4zcysw5rt4fwO2K54/QTwlzXbJpAmdQ4pIvqBw0lzdW4EzgMuIfWaam3BxvN5VpLm6cwBbgZOAb5ePNeWv4TU8zkCWAi8HzjFqwyYmXVfsz2ce4B3k370f0BaIWAn4I/Ap4HbGxUQEcuBwxrkmVR6P480gbOhiLiB1LsxM7NNSLMBZzawR/H6AtIptZmkns0i4LOdqpiZmfWWpgJORDwCPFK8Xk+6F87nRqBeZmbWY9qZ+PkGYHfg6Yh4qnNVMjOzXtTKLaY/JelXwOPAD4EnJD0p6f90vHZmZtYzml1p4BzgMtJ8muOAKcXzAuBbxXYzM7NBmj2l9mnggoj4cin9lmJts0+TVh4wMzPbSLOn1MYx9F09F1NnMU8zMzNoPuDcAJw0xLYPADe1Vx0zM+tVVW4xPa3m7QLgIkmTGHyL6f2Af+x8Fc3MrBdUuYZzE4NvJb0HcHSdvN8j3YnTzMxsI1UCzhtHvBZmZtbzqtxi+vEcFTEzs97W9EoDkrYgDRA4GNgJ+B/gbtKtAgbf1NzMzIwmA46kXYFbgf1Jd/h8FjiINP/mIUlHRcRvO11JMzMb/ZodFn0x8HrgPRGxd0QcFBF7A+8p0i/udAXNzKw3NBtwpgFnRMSPaxOL918kLXNjZmY2SLMBZyvg90Ns+z3wuvaqY2ZmvarZgHM/cIakbWsTi/dnFNvNzMwGaXaU2unAncCvJN1KGjSwK2kSqICpHa2dmZn1jKZ6OBGxDHgzcCWwC3AkKeBcDrw5Ih7qeA3NzKwnVO7hSNoSOAD4ZUScOXJVMjOzXtRMD+dV4A7gbSNUFzMz62GVA05EbAB+DkwcueqYmVmvanaU2peAcyS9fSQqY2ZmvavZUWpnk1YUWCbpKdIotajNEBEHdKhuZmbWQ5oNOD8rHmZmZk2pFHAkjSMta/Mz4NfAbRHx7EhWzMzMekuVW0zvDdwGTKpJXiPpQxFx60hVzMzMekuVQQMXARuAvwa2AfYDHgSuGMF6mZlZj6kScA4Czo6IeyLipYhYAXwC+HNJu49s9czMrFdUCTi7A78opT1GWjttt47XyMzMelLVeTjROIuZmdnQqg6LXijplTrpt5fTI2LX9qtlZma9pkrAOW/Ea2FmZj2vYcCJCAccMzNrW7NrqZmZmbXEAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtK+l2SeskPS3pfEmbN9jn3ZLmSFpV7PeIpHMlbV3KN1tS1HkcM7JHZWZmjTR7A7a2SJpAutXBcuB4YB/gG6TAd/Ywu04v8l4I/BzYH/hK8fyBUt4XgHKAWdFu3c3MrD1ZAw7wSWAccFJErAEWSdoBmC3poiKtngsj4rc17/skvQRcIWmviHi8ZtsrEXH/yFTfzMxalfuU2rHAwlJgmUcKQocMtVMp2Ax4sHj22m1mZqNA7oAzGVhZmxARTwDrim3NeC/pxnCPlNJ3lPScpJclPSjppJZra2ZmHaOIfHcekPQy8IWIuLSU/iRwdUScVbGc3YCfAjdHxMya9I+QejzLgO1IN4qbBnwgIq4foqxZwCyAiRMnvmvevHnNHtZG1q5dy3bbbddWGWOF26q60dBWDz/1wqC0t+8xPns9RkNbbSo60VaHHnroAxExpUrebgScz0fEN0vpTwFXRcSXKpTxOtLAgzcA74qI/mHyCrgXGBcR72hU9pQpU2Lp0qWNsg2rr6+PqVOntlXGWOG2qm40tNWkM+cPSlv9teOy12M0tNWmohNtJalywMl9Sq0f2LFO+njg+UY7FwHkamA/YNpwwQYgUjS9Hti/0dBrMzMbWblHqa2kdK1G0p7AtpSu7QzhEtJw6iMjokr+Ab5jqZlZl+Xu4SwAjpa0fU3adOBFYPFwO0r6IvBZ4CMRsaTKhxU9ohOBhyLi1daqbGZmnZC7h3M5cBpwvaQLgb2B2cDFtUOlJa0CFkfEqcX7U4ALgKuApyQdWFPmYwPDpiUtBq4j9Za2BT4OHAicMLKHZWZmjWQNOBHRL+lw4DLgRtJ1m0tIQadcr9prLkcVzzOLR62PkgIRwCrg74HdSUOmfwIcFxELOlF/MzNrXe4eDhGxHDisQZ5JpfczGRxo6u13ahtVMzOzEeTVos3MLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzyyL77QnMbNM26cz5G71f/bXjulQT6zXu4ZiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWxRbcrYGZj26Qz5w9KW/2147pQExtp7uGYmVkWDjhmZpaFT6mZ9SCfprJNUfYejqR9Jd0uaZ2kpyWdL2nzCvuNlzRHUr+kFyR9X9Lr6+Q7XtLDkl6StFzS9JE5EjMza0bWgCNpAnAbEMDxwPnA6cB5FXa/BpgKfAyYCbwbuKFU/sHAdcCdwLHAfGCupKM6cgBmZtay3KfUPgmMA06KiDXAIkk7ALMlXVSkDSLpIOBo4JCIuKtIewr4oaQjIuK2IuuXgbsi4rTi/Z2S9gPOAW4ducMys5x8ynB0yh1wjgUWlgLLPOBC4BDgxmH2e3Yg2ABExI8k/bLYdpukrYBDgdNK+84D5kgaHxEvdOg4zLIY+GE9/e2vMPPM+f5RbYODVPflDjiTgTtqEyLiCUnrim1DBZzJwMo66SuKbQD7AFvWybeCdOrwLcCPW6u2jaRWfgha/fHIvV+7+1r3lP/dhvs3q5q3Ub5e/64oIvJ9mPQy8IWIuLSU/iRwdUScNcR+i4A/RMQJpfTvAXtHxHsl/RWwBPjLiFhWk+dNwM+BoyNi0Gk1SbOAWcXbtwKPtHyAyc7Ac22WMVa4rapzW1XntqquE221V0TsUiVjN4ZF14twGiK9lf3K7zXM/kTElcCVDT67MklLI2JKp8rrZW6r6txW1bmtqsvdVrmHRfcDO9ZJHw8838J+O9bs11+TVs5Dg/LNzGyE5Q44K/nTNRcAJO0JbEv9azRD7leovbbzGPBynXyTgQ3Aoy3U18zMOiR3wFkAHC1p+5q06cCLwOIG++1WzLMBQNIUYO9iGxGxnjT/5oOlfacD92Ucodax03NjgNuqOrdVdW6r6rK2Ve5BAxOA5cDPSEOh9wYuBi6NiLNr8q0CFkfEqTVpt5BGmn2e1GO5EPhNRPx1TZ6DgT7gMtKk0GlF/mPqDRgwM7N8svZwIqIfOBzYnDQE+jzgEuDcUtYtijy1ZpB6Qf8KXA08AJxYKn8JcDJwBLAQeD9wioONmVn3Ze3hmJnZ2OXbE9ThBUara6WtJL27aKdVxX6PSDpX0talfLMlRZ3HMSN7VCOjxbaaNEQbzKuTd6x/r4b6voSkL9bku2qIPPUGJm3yJL1J0hWSHpL0qqS+ivtl/73y7QlKahYYXU5aYHQf4Buk4Hz2MLtCWmD0raQFRgeuM90AlK8zXQd8m7QMzzTSAqP9o+3UXxttNb3IeyFpUu7+wFeK5w+U8r4AlAPMinbrnlub3ytI1yLvqXm/0WQ9f68A+A5wSyntBOAMisFFNVYCHy2lrW6txl23H+nf+37gdU3sl//3KiL8qHkAXyTN6dmhJu0fgXW1aXX2O4g0ufR9NWkHFGlH1KQtBO4o7XszsKTbx56xrXapkzaraKu9atJmA891+zi73FaTinb5Xw3KH/PfqyHKmg+sKKVdBSzt9nF2sL02q3l9LdBXYZ+u/F75lNpgQy0wOo60wOhw+w1aYBQYWGCUmgVG/7207zzgIEnj269+Vi21VUT8tk7yg8Xzrp2r3ial1e9VQ/5e1SdpJ+BIYG5nq7dpiYgNLezWld8rB5zBBi0UGhFPkP66Gu4cb6cWGB1NWm2ret5L6taX17LbUdJzkl6W9KCkk1qubXe121ZzivPzz0i6WNK4mm3+XtV3MqldBl3vAvaVtEbSeklLJLUV9EehrvxeOeAMNoH6y+D0F9va2W/guZyvv7R9tGi1rTYiaTfgS8C/lf6qXUU6lfIh0rWdp4HrRmnQabWt1gP/ApxKmlJwBfApNv4R9feqvhnATyKivMrIg6QbP/4N8GHSFIxFkg5ooa6jVVd+rzxooL5NaoHRTVyrbZUySq8jddnXAv+wUcER3yvlvRG4l3RDvetbqWyXNd1WEfEM8JmapD5JzwLflvSOqFkZvU45Y/l7tTvp9NsZgwqO+GYp73zSAIWzSIMMxorsv1fu4QzmBUara7WtAJAk0iTe/YBpkSYGDynSFcvrgf2rDFPfxLTVViXXFs/vrCmbOuWPye9V4UOkH8ZrGmWMiBdJF8Lf2ShvD+nK75UDzmBeYLS6VttqwCWkYa/HR0SV/ANG41/s7bZVrSg9+3s12AzSSKpfNfG5o/F71aqu/F454Aw2FhYY7ZRW24piIt5ngY9EWpKooaJHdCLwUES82lqVu6bltqrj5OL5AfD3qkzSJOBAKo5OKwZgHEvRnmNEd36vuj2GfFN7kC6EPQMsIq3JNot0feGrpXyrgO+W0m4BfgGcRDoX/AhwdynPwcArwKXAVOAi0l8LR3X72HO1FXAK6a/JOaQfhtrHLjX5FpMmmx1FCjQ3F231/m4fe8a2mk2a9HhSsd/5pB/e6/y9Gvx/sEg/k/SXeb35XuOBu4FPkAZhTCdNmFwPTOn2sbfYXtuQ/gg5GbgP+O+a99sM1Vbd+L3qemNtig9gX+CO4j/2M6RZ8JuX8qwGriql7Vj8iD4PrAF+AOxcp/wTSCtmryd1X2d0+5hzthVp4l0M8ZhZk++7xX+IF4E/FD8Ux3b7mDO31QxgKWnFhT8WPxznA1v5ezX4/2CRvgy4ZYhytyZdB/xV0U4vFD+8B3b7mNtoq0nD/H+aNFRbdeP3yot3mplZFr6GY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXx/wFXjsDaQZ7WZgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYHFWd//H3h4sQuYZbQEViUGTB9VESEPaHMggKBB+jCMKq6xOFJK6uuPuIgooa8LKCAu6u648EFeSnElxg2UVucskEcEVJAiwaEgwa7iLgQAgJkcD398epCUVNz3T1dHf1dOfzep56evrUqerv6e6Z79SpU6cUEZiZmbXbRp0OwMzMNgxOOGZmVgknHDMzq4QTjpmZVcIJx8zMKuGEY2ZmlXDCsZaSNFtSDLN8qOQ+9sj2s22hfHq2ny3bE325OJrc5yWS+kvU20TSP0q6U9IaSQOSrpJ04Chfd6y8p9ML34k/SbpW0j4ltu3LtnlDFbFa6znhWDs8BRxQY7mm5PZ7AF8Gin/or8z2s7o1YY46jraStDFwOfB14L+BqcB04HmgX9IHRrHbsfKeDnp79rqzgB2B+ZJeUWebxdk297Y5NmuTTTodgPWkdRFxa6t3GhGPAY+1er9j0CeBI4EjIiKfpP9L0jxgrqQFEfFQsy/Uwff0tohYBSBpIXAf8EHgm8WKkgRsFhErgZZ/r6w6PsKxjpD0OUnLJT0r6VFJ10jaWVIfcEVW7Q9ZF8qKbJuXdP9Impg9P07S+ZJWSnpwsOtO0mclPSzpMUlnSNoo9/p7Spon6QFJqyX9NuvC2ihbP2wc2fpXZ9v/Odv+WkmvL7Rx16wbbI2kFZJOKPn2fAqYX0g2g74AbA4cn3udFZK+JemLkv4oaZWkH0vapl5banWpSdpB0g8lPZG1rV/SlELbBl/zn7L3fCB7Pxo+GoyIB0hJb2K279mSHpd0oKTbgGeBY2p1qUnaOPsu3SNpbRbLBYVYp0lamH3X/ijpTEmbNhqnNc9HONYWkoZ8tyJiXbbuw8DngZOB3wLbk7pYtiB1m5wEfAs4CngEWFvn5c4Afgy8D/go8ENJbwZ2y55PBr4K3A7My7Z5JbAs2+5p4E3AacA44J9HikPSdsAtwBPAx0jdUacA10vaIyLWZP+V/xewAyk5PJvtfzvgdyO8b7uS/vCeU2t9RNwr6S7gbYVVfwssB2YAuwBnAt8DjhmpLcO4HHhtts3jwGdIXV5vjojluXrvB/4XmAm8Cjib1A348RH2PYSkrUjvyx9zxS8Hfpi14x7g4axdRXOAD2f1FmT7OTq37/cDF2X1Pg/sTvp8N8raZ1WKCC9eWrYAs4EYZpmY1fkOcOkI+3hXvn6ufHpWvmX2fGL2/Pxcna2B50h/1DfOlf8auHiY1xPpn6/PA78vEcdXSMlmu1zZeNK5q09kz6dm274lV2c3YB3QP0Lb98+2mzZCncuBu3PPVwB/HnxfsrIPAi8Af9Xge3p49vygXJ0tSEcgcwqveS+wSa7s28Af63w/Bl9vm+w93xW4OHtf3lT4Dk0rbNuXlb8he75n9vzEET7X+/Lfj6z8o8AaYPtO/75saIuPcKwdngIOrVH+cPZ4B3C8pNNIJ60XRcTzTbzeDYM/RMRKSY8BCwr7XA68evCJpM2Bz5H+ML8a2DS3bpPIjsaGcShwHbAydyT3NLAIGOx62g94NCJ+lYvtPkmLRtG+Mq6L7JxI5jLgR8C+wN0N7Gc/4LGIWDBYEBHPSPoZUBwhN7/wPi0BdpL0soj4S53XeTL38+PARyPijlxZAFfX2cfB2eMFw6zfg/TZ/rRwxH0jqVvyDaSjIquIE461w7qIWDjC+h8AW5G6Yr4EPCHp/wKzR5l4niw8/8swZZvnnp8BnEDq5lqc1Z8GnJrVW8XwdiAdiRxbY91g8tsZ+FON9X8itX04gwMBdhuhzm65evn9rhepW28VtbuhRrIL8GiN8kdJ3VV5td5jAS/Lfh7J20hdkY8DD0TEC4X1AyWS1vbAM5EGE9SyQ/Z41TDrd62zf2sxJxyrXPbH5RzgnOycxQeBr5H+iJ5bURjHAP8WEWcOFkg6suS2fyYNV/5KjXVPZ49/BHaqsX4nUndOTRHxQHZC/93AvxbXS3oN6T/z4mvvVKg3DtiSdL6mEY8U95WZQGp3q9xeOCIrKnPflCeALSRtPUzSGYx3Jun8XdEfSryGtZBHqVlHRcQDEfENUpfXXlnx4H+2m9feqiXGkTtxrnTty3GFOsPFcQOwN/DbiFhYWJZldW4DJkh6S+41Xg3UvcAR+BfgEEnvrLHuq1nc3y+Uv0MvvXjzKNIf7cEjzbLv6a9I3WLrByVIejlpmPYtJWKv0o3Z44eHWb+M9E/MxBqf08KIeKKaMG2Qj3CsHTaRtH+N8gci4iFJc0j/fd5KOt9zMPA60qg1SH8oAGYpXXeyOiLuanGM1wGfkLQ8i+UTwGaFOsPFcTbwIeBGSf9G+qM2ATgIuCUiLiJ149wJ/Iekk0mj1E6ndjdb0b+RzhP9p6RvAf2kbrjjSSf//y6GXoOzBrhS0jdJ3WLfBP4zIpbUactLRMS1kn4BXCzpFNJRxEmkBD3kGplOiohlkuYCZ0naCbiJdGHr0RFxXES8IOnTwP+TtDXpnNBfgEnAe7J6VV/wumHr9KgFL721MPIotVOzOtOBX5D+0K8mDa09vrCfT5NGGK0DVuS2qzVK7V2FbVcA3yqUXQAszD2fAPwnsJJ0fuJM0pDi9fsfLo6s/BXA+dm2a7PX/BGwd67Oq0mzK6zJ9jELuIQRRqnltt0E+KfsvVkDDJD+YB5Yo+4K4KzsvX8UeIY0FHjbRt/TrGxH4MLsNdeQTqzvW+I9HrKvGrGWqTMbeLxGeR+5UWpZ2cZkowtJyeRBho5KOwK4OXtfVpIGrXyV3Ag7L9Usyj6Qykh6LWlc//6kvuibI6KvxHbbkIZdvofUFfgz0nDIJwr1ppG+TK8jfQlPi4iLW9kGs7EkO+dzSUT4uhIb0zpxDmdv0jUK92RLWReT/sM5gfRf0r6k6xHWU5rY8FJgPum/miuBi4bpCzczswp14ghno8iGQEq6BNih3hGOpAOA/yFdjHZTVrYf6QTnOyLi+qzsWmDTiHh7bturgK0jYlSz7JqNdT7CsW5R+RFODB1vX8YRpIvobsrt59ekYY1HAEjajHTy+aeFbecBBwzOK2XWayJiopONdYNuGRa9J7C0Rvnd2TpIcyRtWqPe3aR27tG26MzMrK5uGRY9nqFXNUMaRTMpV4ca9QYK619C0kzShWGMGzdu8q67dvfFxy+88AIbbdQt/0c0x20dG7a6J52KfXqP1vxPN5bb2mq90NZ77rnn8YjYsUzdbkk4UPvKY9UoLz7XCNsTEXOBuQBTpkyJhQtHmpFl7Ovv76evr6/TYVTCbR0jlP2KLVs2cr2SxnRbW6wX2irpvrJ1uyW1DlD7rovb8uIRzUCurFgHah8hmZlZRbol4SzlxXM1eflzO/eSpqUv1tuTNE17I0Owzcysxbol4VwN7JxdZwNAdgfCSdk6ImIt6fqbYwrbHgv8MiKeqihWMzOrofJzONlEgFOzp68EtpY0eIe+qyJidTa/1YKIOB4gIn6ZXWNzoaSTSEcsZ5Dmrbo+t/uvAP2Svk26KHRqthze9oaZmdmIOjFoYCfgPwplg89fQ5qjaRPSHEl5x5GmtP8Bualt8hUi4pYseX0V+HvSdTofiIiftzB+M8ur+OJx616VJ5yIWMGLI8eGqzOxRtmTwEeyZaRtL6cw5Y2ZmXVet5zDMTOzLueEY2bNmTw5LWZ1dNOFn2Y2Fi1e3OkIrEv4CMfMzCrhhGNmZpVwwjEzs0o44ZiZWSWccMzMrBIepWZmzZkxo9MRWJdwwjGz5syd2+kIrEu4S83MzCrhhGNmzVm0KC1mdbhLzcyaM2VKevSs0VaHj3DMzKwSTjhmZlYJJxwzM6uEE46ZmVXCCcfMzCrhhGNmZpXwsGgza87ChZ2OwLqEE46ZNce3l7aS3KVmZmaVcMIxs+bMnJkWszqccMysOeedlxazOpxwzMysEk44ZmZWCSccMzOrhBOOmZlVwgnHzMwq4Qs/zaw5++zT6QisSzjhmFlzfHtpK8ldamZmVgknHDMzq4QTjpk1R0qLWR1OOGZmVgknHDMzq4QTjpmZVcIJx8zMKuGEY2ZmlXDCMTOzSnimATNrzpw5nY7AuoQTjpk1x7eXtpIq71KTtJekGyStlvSwpNMlbVxnm9mSYpjlc7l6FwxTZ8/2t8zMzEZS6RGOpPHA9cASYBqwO3AWKfGdOsKm3wOuKZS9BzgZuLpQvhT4SKFsxegiNrO65s5Njz7SsTqq7lL7GDAOOCoiVgLXSdoamC3pzKxsiIh4EHgwXybpi8DSiLijUP2ZiLi1DbGbWS2zZqVHJxyro+outSOAawuJZR4pCR1UdieStgPeAVzU2vDMzKxdqk44e5K6vNaLiPuB1dm6so4GNiUlq6K9JK2UtFbSLZJKJzIzM2ufqrvUxgNP1igfyNaVdRywOCLuKZTfDvyKdI5oR+DTpG67AyPi17V2JGkmMBNgwoQJ9Pf3NxDG2LNq1aqub0NZbuvY0Jc9tiq+sdzWVtuQ2gpARFS2AM8Bn6pR/hDwtZL72AV4HjipRN1xwB+Ay8vse/LkydHt5s+f3+kQKuO2jhGQlhYZ021tsV5oK7AwSuaAqrvUBoBta5RvQ+0jn1reDwi4uF7FiFgDXAX4putmZh1WdcJZSuFcjaRdgS0onNsZwXHALRHxQAOvGw3UNTOzNqg64VwNHCZpq1zZscAaYEG9jSVNBPan5Og0SeNII+MWNRqomZU02KlmVkfVCedcYC1wmaRDsxP2s4GzIzdUWtJySd+vsf1xwDrgkuIKSdtIulnSLEmHSDoWmA+8Evh6G9piZmYNqHSUWkQMSDoE+A5wBem8zTmkpFOMq9Z0N8cBN0TEYzXWrQUeI81YsBPwLPBL4KCIWNiSBpiZ2ahVPnlnRCwB3l6nzsRhyt80wjbPAkc1FZyZNW7y5PS4aBETT7lyffGKbxzZoYBsrPJs0WbWnMWLOx2BdQnfgM3MzCrhhGNmZpVwwjEzs0o44ZiZWSWccMzMrBIepWZmzZkxo9MRWJdwwjGz5gzeYtqsDnepmZlZJRpKOJJqTTdjZhuyRYvSYlZHo11qD0m6EDg/Iu5uR0Bm1mWmTEmPnjHa6mi0S20OcDTwG0m/kjRT0tZtiMvMzHpMQwknIr4cEZOAdwDLgLOBRyT9WNKh7QjQzMx6w6gGDUTEjRHxYWBn4JPA64FrJa2QNFvSK1oZpJmZdb9mR6lNAd5Gum30AHAzcAKwXNKHmty3mZn1kIYTjqTdJH1Z0r3ADcAuwEeBV0TE3wG7kc71fLOlkZqZWVdraJSapBtJRzQPAheQRqvdl68TEc9L+gnwqVYFaWZm3a/RYdGPA1OB6yJGHAN5B/CaUUdlZt1joe/gbuU0mnC+AyyulWwkbQnsExE3RcRzwH1Dtjaz3jN4i2mzOho9hzMf2GuYda/P1puZmQ3RaMLRCOu2BFY3EYuZdaOZM9NiVkfdLjVJbwP6ckUnSDq8UG1z4EjgrtaFZmZd4bzz0qNnjbY6ypzDeQvp4k6AAI4B1hXq/AVYCnymdaGZmVkvqZtwIuKbZNfUSPoD8N6IuKPdgZmZWW9paJRaRHios5mZjUqZczhTgVsiYmX284gi4qqWRGZmZj2lzBHOz4D9gV9nPwfDj1YLwDdpMzOzIcoknNcAj+R+NjN70T77dDoC6xJlBg3cV+tnMzPAt5e20sqcw3l5IzuMCF/8aWZmQ5TpUltFOjdTls/hmJnZEGUSzkdpLOGY2YZE2RiiESeQNyt3DueCCuIwM7Me1+wtps3MzEopM2jg18D0iFgi6TbqdK9FxH6tCs7MzHpHmXM4vwXW5H52R62ZmTWszDmcj+R+nt7WaMzMrGeN+hyOkh0ljXRTNjMzM6DB2aJh/WSepwKTs+3XSVoEfC0irmxxfGY21s2Z0+kIrEs0lHAkzQK+C9wAfAr4E7ATcBTw35I+HhH+9pltSHx7aSup0SOczwNzI+LvC+XnSjoX+ALghGNmZkM0eg5ne+CyYdZdCmxXbweS9pJ0g6TVkh6WdLqkEafDkTRRUtRY5tWoO03SXZKelbRE0rGlWmZmozN3blrM6mj0CGc+cBBwXY11BwE3jbSxpPHA9cASYBqwO3AWKfGdWuL1TwJ+kXv+eGH/B5IS33eBE4GpwEWSBiLi5yX2b2aNmjUrPbprzeooc+HnXrmn/wp8T9L2wOW8eA7nvcARwAl1dvcxYBxwVESsBK6TtDUwW9KZWdlIlkXErSOs/yJwU0ScmD2fL2lv4EuAE46ZWQeVOcL5DS+92FPArGwp3v3zGkaeLfoI4NpCYpkHnEE6QrqiRDw1SdoMOJh0ZJM3Dzhf0jYR8dRo929mZs0pk3AObuHr7QncmC+IiPslrc7W1Us450vajnRkdRHwhYgYnAVhd2BTYGlhm7tJXXZ7ALc1F76ZmY1WmZkGFrTw9cYDT9YoH8jWDWct8O+kbrGVQB9wMinJTMvtmxr7HyisfwlJM4GZABMmTKC/v3+k+Me8VatWdX0bynJbx4a+7LG/v59P//W69eWjjXcst7XVNqS2wigu/BwkaSNg82J5iTt+1pqLTcOUD+7zEeAfckX9kh4FvivpTRFxxwj71zDlg/ueC8wFmDJlSvT19Y0c/RjX399Pt7ehLLd1bOnr62P6KS9e+73ig32j2k83tLVVNqS2QoPDorPpbE6WtBx4Dni6xjKSAWDbGuXbUPvIZySXZI/75PZNjf0PPm90/2Zm1kKNXodzInAK8H3SkcPXgNOBe4AVZF1TI1hKOleznqRdgS0Yeu6lnig83ktKgnsW6u0JvJDFaGatFuG7fVopjSacGcCXgTOz55dHxGnA3qSE8bo6218NHCZpq1zZsaTbHzR6rujo7HERQESsJV0ndEyh3rHALz1Czcyssxo9h/Ma4I6IeF7Sc2TdVRHxgqTvAt8jHQEN51zSUdJlks4AJgGzgbPzQ6WzLrsFEXF89nw2sBXpos+VwNuAzwCXRcT/5vb/FdL5nW+TrhOami2HN9hOMzNrsUaPcJ4Atsx+vh94c27deNJFncOKiAHgENK1OlcApwHnkI6a8jbhpdfzLCVdp3M+cBXwAeCb2WN+/7eQjnwOBa4F3g18wLMMmLXR5MlpMauj0SOcXwD7kv7o/4Q0Q8B2wF+AT5BmkR5RRCwB3l6nzsTC83mkCzjriojLSUc3ZlaFxYs7HYF1iUYTzmzgldnPXyd1qU0nHdlcB3yyVYGZmVlvaSjhRMQyYFn281rSPXE+1Ya4zMysxzRz4eergF2AhyPiodaFZGZmvajRQQNI+ntJDwD3Ab8C7pf0oKSPtzw6MzPrGY3ONPAl4Duk62mOBKZkj1cD/5qtNzMzG6LRLrVPAF+PiC8Wyq/J5jb7BGnmATPbUMyY0ekIrEs0mnDGMfxdPRfgUWpmGx7fXtpKavQczuXAUcOsex/ws+bCMTOzXlXmFtNTc0+vBs6UNJGht5jeG/hs60M0szFt0aL06NkGrI4yXWo/Y+itpF8JHFaj7o9Id+I0sw3FlCnp0TNGWx1lEs5r2h6FmZn1vDK3mL6vikDMzKy3NTzTgKRNSAMEDgS2A/4M3Ey6VcC6kbY1M7MNV0MJR9JOwM+BN5Lu8PkocADp+ps7Jb0zIh5rdZBmZtb9Gh0WfTawPfCWiJgUEQdExCTgLVn52a0O0MzMekOjCWcqcHJE3JYvzJ5/jjTNjZmZ2RCNnsPZDHh6mHVPAy9rLhwz6zoLF3Y6AusSjSacW4GTJd0YEc8MFkraAjg5W29mGxJf8GklNZpwPg3MBx6Q9HPSoIGdSBeBCuhraXRmZtYzGjqHExF3AK8D5gI7Au8gJZxzgddFxJ0tj9DMxraZM9NiVkfpIxxJmwL7AX+IiFPaF5KZdZXzzkuPnjXa6mjkCOd54Ebgr9oUi5mZ9bDSCSciXgB+B0xoXzhmZtarGr0O5wvAlyT9dTuCMTOz3tXoKLVTSTMK3CHpIdIotZfMSR4R+7UoNjMz6yGNJpzfZIuZmVlDSiUcSeNI09r8BvgjcH1EPNrOwMysS+yzT6cjsC5R5hbTk4DrgYm54pWS3h8RP29XYGbWJQZvMW1WR5lBA2cCLwBvBV4O7A3cDsxpY1xmZtZjyiScA4BTI+IXEfFsRNwNzAJeLWmX9oZnZma9okzC2QX4faHsXtLcaTu3PCIz6y5SWszqKHsdTtSvYmZmNryyw6KvlbSuRvkNxfKI2Kn5sMzMrNeUSTintT0KMzPreXUTTkQ44ZiZWdManUvNzMxsVJxwzMysEo3OpWZm9lJzfA24leOEY2bN8e2lrSR3qZmZWSWccMysOXPnpsWsjsoTjqS9JN0gabWkhyWdLmnjOtvsK+l8Scuz7ZZJ+rKkzQv1ZkuKGsvh7W2V2QZs1qy0mNVR6TkcSeNJtzpYAkwDdgfOIiW+U0fY9Nis7hnA74A3Al/JHt9XqPsUUEwwdzcbu5mZNafqQQMfA8YBR0XESuA6SVsDsyWdmZXVckZEPJZ73i/pWWCOpN0i4r7cunURcWt7wjczs9GqukvtCODaQmKZR0pCBw23USHZDLo9e/TcbWZmXaDqhLMnsDRfEBH3A6uzdY34G9KN4ZYVyreV9Lik5yTdLumoUUdrZmYto4jq7jwg6TngMxHx7UL5g8CFEfH5kvvZGfhf4KqImJ4r/xDpiOcOYEvSjeKmAu+LiMuG2ddMYCbAhAkTJs+bN6/RZo0pq1atYsstt+x0GJVwW8eGvoMPBqB//nzueuip9eV//cptRrW/sdzWVuuFth588MGLImJKmbqdSDgnRcS/FMofAi6IiC+U2MfLSAMPXgVMjoiBEeoK+B9gXES8qd6+p0yZEgsXLqxXbUzr7++nr6+v02FUwm0dIwZvvhbBxFOuXF+84htHjmp3Y7qtLdYLbZVUOuFU3aU2AGxbo3wb4Ml6G2cJ5EJgb2DqSMkGIFI2vQx4Y72h12Y2ShFpMauj6lFqSymcq5G0K7AFhXM7wziHNJz6HRFRpv4g/zaYmXVY1Uc4VwOHSdoqV3YssAZYMNKGkj4HfBL4UETcUubFsiOi9wJ3RsTzowvZzMxaoeojnHOBE4HLJJ0BTAJmA2fnh0pLWg4siIjjs+cfAL4OXAA8JGn/3D7vHRw2LWkBcCnpaGkLYAawP/Ce9jbLbAM2eXJ6XLSos3HYmFdpwomIAUmHAN8BriCdtzmHlHSKceXPubwze5yeLXkfISUigOXAPwK7kIZMLwaOjIirWxG/mdWweHGnI7AuUfntCSJiCfD2OnUmFp5PZ2iiqbXd8U2EZmZmbeTZos3MrBJOOGZmVgknHDMzq4QTjpmZVaLyQQNm1mNmzOh0BNYlnHDMrDm+vbSV5C41MzOrhBOOmTVn0SLPMmCluEvNzJozJZuZ3jNGWx0+wjEzs0o44ZiZWSWccMzMrBJOOGZmVgknHDMzq4RHqZnZEBNPuXL9zyu+cWQHI7Fe4oRjZs1ZuLDTEViXcMIxs+YM3mLarA6fwzEzs0o44ZhZc2bOTItZHU44Ztac885Li1kdTjhmZlYJJxwzM6uEE46ZmVXCCcfMzCrhhGNmZpXwhZ9m1px99ul0BNYlnHDMrDm+vbSV5C41MzOrhBOOmZlVwgnHzJojpcWsDiccMzOrhBOOmZlVwgnHzMwq4YRjZmaVcMIxM7NKOOGYmVklPNOAmTVnzpxOR2BdwgnHzJrj20tbSU44ZtZxE0+5cv3PFxy+RQcjsXbyORwza87cuWkxq8NHOGbWnFmz0qO71qwOJxyzHpXvpgJY8Y0jOxSJWVJ5l5qkvSTdIGm1pIclnS5p4xLbbSPpfEkDkp6S9GNJ29eoN03SXZKelbRE0rHtaYmZmTWi0oQjaTxwPRDANOB04NPAaSU2vxjoA04ApgP7ApcX9n8gcCkwHzgCuBK4SNI7W9IAMzMbtaq71D4GjAOOioiVwHWStgZmSzozKxtC0gHAYcBBEXFTVvYQ8CtJh0bE9VnVLwI3RcSJ2fP5kvYGvgT8vH3NMrOqucuw+1TdpXYEcG0hscwjJaGD6mz36GCyAYiIXwN/yNYhaTPgYOCnhW3nAQdI2qb58M2qNfGUK5l4ypXc9dBTQ/7AWuMG30+/l51R9RHOnsCN+YKIuF/S6mzdFSNst7RG+d3ZOoDdgU1r1LublFj3AG4bXdjWTqP9T/Wuh55ierZtI//d5l+v6u0a3dY6q5HPvEzd4neh1jVHvfx9UURU92LSc8BnIuLbhfIHgQsj4vPDbHcd8ExEvKdQ/iNgUkT8jaT/A9wCvDki7sjVeS3wO+CwiBjSrSZpJjA4nvP1wLJRN3Bs2AF4vNNBVMRt7U1ua3fZLSJ2LFOxE8Oia2U4DVM+mu2KzzVMeSqMmAv0zFVrkhZGxJROx1EFt7U3ua29q+pzOAPAtjXKtwGeHMV22+a2G8iVFetQZ/9mZtZmVSecpbx4zgUASbsCW1D7HM2w22Xy53buBZ6rUW9P4AXgnlHEa2ZmLVJ1wrkaOEzSVrmyY4E1wII62+2cXWcDgKQpwKRsHRGxlnT9zTGFbY8FfhkRTzUfflfome7BEtzW3uS29qiqBw2MB5YAvwHOICWMs4FvR8SpuXrLgQURcXyu7BrSSLOTSEcsZwB/ioi35uocCPQD3yFdFDo1q394rQEDZmZWnUqPcCJiADgE2Jg0BPo04Bzgy4Wqm2R18o4jHQX9ALgQWAS8t7D/W4CjgUOBa4F3Ax9wsjEz67xKj3DMzGzD5fvhdDlJMyT9LpusdJGkQ0psM1tS1FgOryLmeto9wetYMpq2Spo4zOc3r6q4R0PSayXNkXSnpOcl9Zfcrhs/14bb2q2fayN8e4IuJuk44FxgNumi148AP5O0b0T8ps7mTwHFBHN3y4NsUG6C1yWkCV53B84i/XN06gibQprg9fWkCV4Hz/NdDrx1pI06pcm2Qjo/+Yvc87F+AeHepPOqtwIva2C7rvqMQ3TUAAADS0lEQVRcM6NtK3Tf51peRHjp0oU0K8IPcs83Au4CflRnu9nA452Of5jYPke6pmrrXNlngdX5shrbHUC6uPdtubL9srJDO92uFrd1Ytaud3W6DQ22d6Pcz5cA/SW26brPtYm2duXn2sjiLrUuJWkSadTe+slKI+IF4D/IJjTtUm2b4HUMGm1bu1L2/WxUN36uo21rz3PC6V6DF7jWmqx0O0n15jbaVtLjkp6TdLuko1of4qgMmag1Iu4n/ddf6+LfYbfL5Cd4HWtG29ZB52fnBx6RdLakce0IssO68XNtVs9+rj6H073GZ4/FKXsGcusfG2bb5aSumzuALYFZwKWS3hcRl7U60AaNp/Y0RAO82OZGt5vUgrjaYbRtXQv8O+keTytJNyY8mXQOaFprQ+y4bvxcR6vnP1cnnDEku2fPLvXqRUT+P76GJivNtv9R4XWvAP6HdKO6TiccaP8Er2NJwzFHxCPAP+SK+iU9CnxX0psiN1t6j+jGz7VhG8Ln6i61seUYUldBvQVaOFlppDOWlwFvLDP8uM3aOcHrWDPattZySfa4T1MRjT3d+Lm2Uk99rk44Y0hEfC8iVG/Jqg8e5dSarPTPETFcd9qIIYw6+NZp5wSvY81o21pLFB57RTd+rq3UU5+rE06Xiojfk2bAXj9ZqaSNsudXN7IvSSJNE3RnRDzfyjhHoW0TvI5Bo21rLUdnj4taEdgY0o2fayv11ufa6XHZXka/AH8LPE+6SPBg4ALSH6s35OocBKwDDsqVLQBOBN5JSjRXkS6oe/cYaNN44BHgOtKceDOBVcBXC/WWA98vlF0D/B44CngP6Tqlmzvdpla3lXQd1VlZOw8FTs8+90s73aY67X056Q/o0cAvgd/mnr+8Vz7X0ba1Wz/Xht6XTgfgpckPEGZkX9y1wGLgkML6PtLheF+u7PvZL/Aa4BngZuCITrclF99ewI1ZfI8AXwE2LtRZAVxQKNsWOJ/Ut78S+AmwQ6fb0+q2kiayXUiaLeIv2ed/OrBZp9tTp60Ts+9irWVij32uDbe1Wz/XRhZP3mlmZpXwORwzM6uEE46ZmVXCCcfMzCrhhGNmZpVwwjEzs0o44ZiZWSWccMzMrBJOOGZmVon/Dx31YONW1cMZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "mapped_values = np.array(result['mapped_values']) / (2**num_uncertainty_qubits - 1) * (high_ - low_)\n", + "plt.bar(mapped_values, result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/qiskit/finance/simulation/basket_option_pricing.ipynb b/qiskit/finance/simulation/basket_option_pricing.ipynb new file mode 100644 index 000000000..5f6026a98 --- /dev/null +++ b/qiskit/finance/simulation/basket_option_pricing.ipynb @@ -0,0 +1,480 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Pricing Basket Options*_ \n", + "\n", + "Qiskit Finance is part of Qiskit Aqua.
\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "Suppose a basket option with strike price $K$ and two underlying assets whose spot pricse at maturity $S_T^1$, $S_T^2$ follow given random distributions.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$\\max\\{S_T^1 + S_T^2 - K, 0\\}$$\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ \\max\\{S_T^1 + S_T^2 - K, 0\\} \\right].$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "from mpl_toolkits.mplot3d import Axes3D\n", + "from scipy.interpolate import griddata\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import BasicAer, QuantumRegister, QuantumCircuit, execute\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_problems import MultivariateProblem\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective\n", + "from qiskit.aqua.components.uncertainty_models import MultivariateLogNormalDistribution\n", + "from qiskit.aqua.circuits import WeightedSumOperator" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a multivariate log-normal random distribution into a quantum state on $n$ qubits.\n", + "For every dimension $j = 1,\\ldots,d$, the distribution is truncated to a given interval $[low_j, high_j]$ and discretized using $2^{n_j}$ grid points, where $n_j$ denotes the number of qubits used to represent dimension $j$, i.e., $n_1+\\ldots+n_d = n$.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i_1,\\ldots,i_d} \\sqrt{p_{i_1\\ldots i_d}}\\big|i_1\\rangle_{n_1}\\ldots\\big|i_d\\rangle_{n_d},$$\n", + "where $p_{i_1\\ldots i_d}$ denote the probabilities corresponding to the truncated and discretized distribution and where $i_j$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^{n_j}-1\\} \\ni i_j \\mapsto \\frac{high_j - low_j}{2^{n_j} - 1} * i_j + low_j \\in [low_j, high_j].$$\n", + "\n", + "For simplicity, we assume both stock prices are independent and indentically distributed.\n", + "This assumption just simplifies the parametrization below and can be easily relaxed to more complex and also correlated multivariate distributions.\n", + "The only important assumption for the current implementation is that the discretization grid of the different dimensions has the same step size." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits per dimension to represent the uncertainty \n", + "num_uncertainty_qubits = 2\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# map to higher dimensional distribution\n", + "# for simplicity assuming dimensions are independent and identically distributed)\n", + "dimension = 2\n", + "num_qubits=[num_uncertainty_qubits]*dimension\n", + "low=low*np.ones(dimension)\n", + "high=high*np.ones(dimension)\n", + "mu=mu*np.ones(dimension)\n", + "cov=sigma**2*np.eye(dimension)\n", + "\n", + "# construct circuit factory\n", + "u = MultivariateLogNormalDistribution(num_qubits=num_qubits, low=low, high=high, mu=mu, cov=cov)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUadv/LOb3jcdQiihJyG00ARCEPUAD/UQ6+EPEAEFUUTFAnjYERsqCIhoODhPkPMsKKJHAkSqVCGdEEI6IcludjfJJlvm90fcMSGFlN1NYT7/KJnZmXcgO/PM+33f97Gk4DELnWs7sBqj6sAvFjm3JXEePqCtQ+i0GHQmjBc71wA9m2MSyD3uSP9b2zoQyyMzVTLx9cF89+DBtg6lxSimDsNj/s3kKewoPH2a8vJywsPD8fb2tvi5qqqqeP7551Eqlezfv19ySW8i0pKWlTEajWg0GvLy8hgxYgRBQUFtLnbAcoLHPFfi0qVLaDQa4PqZKJOmGN2plFaf29I4Dghu6xA6LeokHUKVNN+otVyNTaayonmZ4Y6Cwi2HPn/reFkK50Bvxu9YweRdrzLm1mjc3NwwGo0EBgaSkZHB0aNHSUhIICcnB61W2yRLosYoKCjgzjvvpHfv3uzYsUMSO81AyvC0kOs91AVBID8/n0uXLuHg4MDQoUMtdm5LTOZsreCpOVdnyJAhKJVKsrOz0Wg0ODk54e3tjbe3N56ennXaJw1H9oCh/S0dOXTzAixTFC5Rm8LjBW0dQqdA0BvIOe1Gn3EVbR2KVRg134eM3TIEY8eopev5wESGvb0AJx8PdDod58+fJyAggLCwMPEebTKZ0Gg0lJaWkpGRQVlZGc7OzigUChQKBZ6enk320zp+/DhLlizh7bffZsqUKda8tE6JJHisgE6nIzExEScnJ0aNGsWJEycsdmxzkXBbCp5ra3VcXV1xdXUVWy0rKipQqVTk5eWRkpKCg4MD3t7e4pdbd+Bwq2K3FvYKeyTBYx3Up9uPWWRH58ovqfQY2QUHx86XMXM0XmXMylEcfeV4W4fSKM6B3oz46HG6/XU0AEqlkpSUFAYMGICPj0+tfeVyOV5eXnh5edGjRw8EQUCn06FUKsnPzyc1NRU7OzsUCgVeXl4oFIo6xc2CILB161a2bdvGt99+S+/e0rywliAJHgsiCAI5OTlkZWUxcOBAfH19LX4Oc9dXa6v9LeGB1VCtjouLCy4uLnTt2hWAyspKlEolV65cIf/Az3TNbYczRRwdkDtUtnUUnRKj3kRViiR4LIWpTEfeeW96RnbOmqiQSDVnu7pSkV/e1qHUS6+/T2LoW/Nw8vFAEASysrIoLCxk2LBhTeqSkslk4j0yKCgIqG5oUalUlJaWkpWVhcFg4NixY9jZ2TFu3Dg+//xzdDodcXFxTe7qlaiLJHhayLUP+vLychITE3F3d2f06NF15iFYyiDOUvYSrfXAas61ODk5Eejvj9fxw1Ts/q4l4Vodp8H9kMk6Rhq9o6FOrsRU2Y5NIjsg+XvT6TZEgb19+1sabi0OVDHulcHsW9C+xlY4d/Fh5LrHCZo6Cqiuz0xKSsLe3p7IyMgW+V+ZcXBwwN/fH39/f+DPOTvfffcdCxYsQKVSMXr0aD755BPGjRtn0Rb3GwlJ8LQCsy9KZmYm+fn5hIaG1luRbxYplhgKZSl7iaYKlqZmdRrDmJuD9tP1GDPa11TlmjiF92zrEDotpac7dqtxe8Sg1FCQ2o/g8M452yioSxHdb+lFdmxmW4cCQK+Zkxj21nwcvasLhM0WEd27dxezNJbE/EJ64MABPvroI2655RbS09M5dOgQn376Kf7+/qxevdri5+3sSIKnFWg0GhISEvD19WXMmDENKnyzSLGU4LH0/JyGaE1WB0AwmdD9/CMV//kS9O273kAebPnWUYlqSs9Iy1nWIPP7CwQN9ETetHrXDoUMgZGPB7S54HHp6sOIdYsJmjJS/NnVq1dJT08nPDzcKlYOJpOJzz77jB07drB792569qx+GevXrx/9+vXj4Ycftvg5bxQkwdMKsrKyCAsLu+4vvSUtISzpmN4QFsnqFF6h7NOPMaQmWyNEi2PylCY0WAOTwYTmd2ngoFUo1pCXHkLwgHZYE2cBPOyLiXwmklPvnWqT8/d66BaGvTUPR0V1VkcQBC5evNgqi4jrUVFRwdNPP40gCMTFxTV7OK1E40h3+VYwaNCgJil8S3tgWepY9VFziKDZkbc5YkcQBHRx/6N0xTMdRuwAePhJ6+HWQJ1Wham89Z5tEvVzZd/VVs91ac+E3WLEydu2dgkuQb5Efb2K0ZueEsWOXq/nzJkzgGUtImqSk5PDtGnTiIyMZOvWrZLYsQJShscGWDIrY8klLXMNkrnVvbVZHVNJMWWfbUR//neLxGcr7EOCkMmkdnRrINXvWJeKS/kU5wzFr/vVtg7FKsgNGia+NYqfH423yflCZt3G0DfnikIHqksXEhMTrWYRARAfH89zzz3HRx99xMSJE61yDglJ8NgES2ZlLJ0tMhqNyGSy1tXqCAJVR36lfPvnCOVlFonNljgN6dfWIXRaSs/kt3UInZ6cWBV+c9o6CusRGFRAlzFBFBzLs9o57Pw86L7yHoJvH4PRyU68F+bl5ZGdnU1ERIRV2sFNJhObNm3i22+/5ccff6R79+4WP4fEn0iCpxW0xEC0tdjZ2VFZaZl5MXZ2dlRV/dku3KKsjrqUspjN6E/9ZpGY2gLHvl3aOoROicloQnMmo63D6PRoEzJRFUagCChp61CsgkwwEvVCH3b9zTqCJ2TWbQx542EqZEZUKhWpqalUVFSInbUDBgzA1dXV4uctLy/nySefxMXFhX379klO5zZAEjw2oD0uaQmCgIODA6mpqfj5+eHj49PsNeOqE8cp2/oJwh8eWh0VnbsMaZSX5dGm6zFq2+fwuM5G9kEdinvbOgrr4SrPY/Cjgzn3yTmLHdOlmx8j1y+m622RADgBCoUCnU7HuXPn8PX1xdXVldzcXFJTU3F0dBTtILy8vJpsB1Efly9fZs6cOcyePZuFCxe2C3/FGwFJ8NiAazMpraG14qlmrc6AAQPQarWoVCpSUlLQ6XR4eHiIPlguLi71fhFNZVrKt39O1ZFfW3Mp7QZFkAcgTVm2NKrTqrYO4Yah9PgFNLeG4eFd2tahWI3BdzmQ9C97DGWtz5b3nvMXhrwxF0ev2q869VlEBAdXmwrrdDpKS0spLCwkPT0dAC8vL9E2p6mFzAcOHOCFF17g448/JioqqtXXItF0JMHTCtpqSaulx7p2ro69vb34xtKrVy8EQUCj0VBSUkJqaqoogBQKhZgB0p8/S9lnGxGUnaMYVebphtxeEjvWQKrfsS05hyF0WltHYT3sDComvDmGuCWHWnwM12A/Rqx/gq63Dq/186ZYRDg7O+Ps7ExgYCAABoOB0tJSVCoV2dnZ6PV68X6pUChwdXWt9YwwmUysW7eOn376ib1791plYKFE40iCxwZYo9C4OTS1A0smk+Hp6Ymnp2ctAaRUKrmQcB6PuJ9RJJ23yHW0F5yHDUBKJlsewSSglup3bEpxfDLlE/vj6q5t61CsRnCfInzC/ShJLGr2Z3vPmcyQNx6uk9UxGo0kJibi4ODQLIsIe3t7fH19Rc9Esyu6SqUiPT2d8vJyYmNjEQSB0aNHs337dvz9/fnf//6Hk5NTs+OXaD3SHJ5W0NQMjyVbyZu7pNWauTpmARRUoaXnjn92OrED4BgqdUVYA9WFCoylnffB2y4xCaTGte+J5q1FZtIz8eWwZn3GNdiP6O9eYeT6xXXETllZGSdPnsTPz4/Q0NBW+WGZXdF79uzJkCFDGDNmDNOnT0cul7Nq1SpOnDhBeno6q1evZt++fWhaUfuYnZ3NzTffTGhoKOHh4Xz44Yd19iktLeWOO+5gyJAhhIeHExMT0+LzdRYkwWMD2mJJyyx0DAZDy9vNqyop+2IrmtWvYCrqnHM+HLr7tHUInZLiE51z+m97p+xoFpUVnbvbx8MplwF/D23Svr0fnsyU3z6myy3D62y7evUq586dIzQ01CrLSzKZjPz8fHbv3s0nn3xCVlYWX3zxBUOGDOGnn35qlReWvb097733HsnJyRw7doyPP/6YpKSkWvt8/PHHhIWF8fvvv3PgwAGeeeYZi9WSdlSkJS0bYGtridZ6YAEYLl5Au3k9pnzrzb5oDzj4OAC28Sa7kdAldY4arw6H3kDuGQ96j+3c060jZ3pw4T9yTFX1u8W7dvdn5IYn6XLz0DrbbGERYTKZWLt2LbGxsfzyyy906VI9+iIwMJDp06czffr0Vh2/a9eudO3aFQAPDw9CQ0PJzc0lLOzP7JdMJkOj0SAIAlqtFh8fH4v4OXZkpAxPK2hO0bKlpyPXh0WyOgY95f/Zgfq1lZ1e7CCXI3e8sd94rIEgCKhPS/U7bcWVn1PRVzm0dRhWxcFYzPhXx9S7rc8jU5ny2/p6xY4tLCI0Gg2zZs3iypUrtcSOtcjMzOTMmTOMHj261s8XL15McnIyQUFBRERE8OGHH7Zqya4zcGNfvY2Qy+UNipTm0pCAaa0HFoAh6zLql19E9/3XYKF42zOO4SHIZJ3/Om1N2WU9hhJ1W4dxw2IsqyAvwbutw7A6vSJK8ezlJf7ZtUcAE3e/zogPF+HgUXdQoFqt5tSpUwQHB9O3b1+rzL65cOECt99+O3feeSfr1q2ziqCqiVarZcaMGXzwwQd1fB1//vlnhg4dSl5eHmfPnmXx4sWo1Tf291ISPB0ci2R1jEYqdn+DetXzGLMuWynS9ofToN5tHUKnRHWm886C6Sjk772I0dC5b+8yo46bVlXX8vSZN5Upx9cRePOQevfNy8sjOTmZiIgIq/hhCYLA3r17mTVrFps2bWLOnDlWHyao1+uZMWMGM2fO5O67766zPSYmhrvvvhuZTEbfvn0JCQkhJSXFqjG1d27sBb1W0tbTMS1Rq2PMz0W7+WOMFy9YIcL2jWNv6xgB3uiUnr7S1iHc8BhK1BSk9aFbWGFbh2JVfAMq6P3pfPS9/ElIT0WhUODt7Y2np6eYWU9NTUWv1xMZGWmVGhaj0cg777zD4cOH+d///mc1g9GaCILAI488QmhoKE8//XS9+/To0YPY2FiioqK4cuUKqamp9O59Y7/kSYLHhpiFiSUwZ3SgZR5YgslE5b69lH/1Bdyglfv2Aa5IE5YtiyAIqM9causwJIDcvVl0HeCMvOUOCO0ao89AjGEPMdKx2tm8oqIClUpFXl4eKSkpyOVydDqd2HJuDbGjVqtZsGABffr0Ye/evTg42KZ26vDhw2zfvp2IiAiGDq2uVXrzzTfJysoC4LHHHuOll15izpw5REREIAgCa9aswc/PzybxtVckwdNKZDKZKDwaw/y20Rr/FfjTAystLQ1fX1+8vb2bXYhmvFpI2ZYNGJITWxVLR8fOTarfsTTluQb0hVKHVnugKq+YjIR+9B3SufzMBJkcQ++/YuxxM8j+vPe5uLjg4uJC165dUSqVJCcnExwcjMFg4MyZMwiCUMsKorXD/1JSUpg/fz5Lly5l5syZNs34jx8//rrPnaCgIH755RcbRdQxkASPjTAPH2yp4Kk5LTk8PByVSkVxcTEXL15ELpeL/lcKhaLBcwiCQOXBOMr/vRV0nbtt9XrYdfVFLu/cQ9raAtWZG7sosr1ReqQMYXDbL79bCsFJQdWg2QheIfVvr2ERMXz48FoWEUajkdLSUpRKJTk5OVRVVeHp6dmgFUSDMQgCP/zwA2+++SYxMTEMH153xo9E+0QSPK2kqRke8yyellTt1+zAksvlODk5ERgYKHq66PV6lEolRUVFpKen1yuATMoSyj7fhP73M80+f2fEaeiAtg6hUyLV77QvKi7mUZw7BL/g5lsxtDeMfuHoQ/8ODm71b7+ORYSdnR0+Pj6iKWh9VhCurq5iHZC7u3udYxiNRlavXs3JkyeJjY294ZeIOhqS4LERLRk+eK0HVkOt5g4ODgQEBIjFclVVVahUqmoBdOECnhdT8T8Yi1xX0foL6STIpYJlq6A+ndnWIUhcQ26cGr9ZbR1FyxFkdhj63IGxezQ0kIEpKysjISGB7t27N3lqstkKwmwHIQgC5eXlqFQqsrKy0Gq1ODo68ssvv4i1Mk899RTh4eHs2bPnhh/i1xHp3H2L7YiWemAZjcZmz9VxdHQkICCAfl27EHbiMIE//yCJnWvxrzunQ6J1lOfrqcrv+JmEzobm3CVUVzvmXB6Tsw9VkU9i7DGxQbFz9epVzp8/32qLCJlMhpubG926dWPQoEGMGTOGsLAwAgMD+eKLL4iOjubixYsIgsBPP/1ESUlJi88FTfPDAjhw4ABDhw4lPDyc6OjoVp3zRkeSqK2kOQaiTfXAakpW53pUnTpBWcwnCGppJkp9eHR1B27sOiZLozrTcjNECeuSc7AKxT1tHUXzMPoPRj/wAXCo/+WkpkXE8OHDrTLkz8nJCYVCweXLl9m7dy89e/bkyJEjHDp0iPfee4+ZM2cyf/78Fh3b7Ic1fPhwNBoNkZGR3HbbbbXsIVQqFYsWLWLv3r306NGDwsLOPWbA2kiCx0Y0ZUnr2lqdlggdU1kZ5f+KoerwwZaG2vlxdkTuILWjWxrVqYK2DkGiAVTH0tDcGoaHov2/AAkyOwz9/oax2/gGszp6vZ7z58/j6enJsGHDrFKUbTAYeO2110hMTCQ2Nlas/Zk6dSpTp05t9fGb4of173//m7vvvpsePXoA2GTGT2dGWtKyEY0taV07LbmlYkef8DvqFc9IYuc6OA0dgIzrF5pLNI+i4zfe8MqORM6Rto7g+phc/Kga8RTG4KgGxY4tLCJKSkq49957cXBwYPfu3aLYsRYN+WGlpaWhVCqZOHEikZGRbNu2zapxdHakDE8rac6Sll5ftw3aElkdQVdB+Y5/URknzVxoCk5hPds6hE6HOq8CCtt/9uBGpvhgChUT+uLiXtbWodSLMWAY+oH3g71zg/vk5eWRnZ1NREQEbm71d2u1loSEBBYsWMDKlSuZMWOG1Vv6G/PDMhgMnDp1itjYWCoqKrjpppsYM2YM/fv3t2pMnRVJ8NgIe3t7Kir+LBy2VK2OPjWZsk8/xlQotQM3Fcee1n1buxEpS5CWCNs9RhM5J5zpd3P7EjyCzB5D/7sxBt3UYFbHFhYRgiDwn//8hw8//JAvvviC8PBwi5/jWq7nhxUcHIyfnx9ubm64ubkxYcIEfv/9d0nwtBBJ8NiImjU8lvDAEqqqqPh6B7q9P0AT5gBJ/Im9nzNSwbJlKT0tFVN2BAr3JdPjpu44ObcPgaqzV5DocBNlufYoyi6Is8NqWjTodDrOnz9PQEAAPXr0sFq9zqpVq0hPTycuLg6FQmHxc1xLU/yw7rrrLhYvXozBYKCqqorjx4+zdOlScUVAonlIgqeVNPXLZxY85uUr82db8uU1ZFxEu3kdprzcZn9WAuycmzcPSeL6qE9fbusQJJqAUKkn94wnvW+62tahYAwcAQPuJdzeCb1eL05BzszMxGQy4enpiaOjIwUFBYSGhlqtjqaoqIi5c+cybtw4vv3221bb/zSVpvhhhYaGMmXKFAYPHoxcLmfevHkMGjRIPEZJSQk+Pj4W9WnszMiuMyVYSh1cB5PJVG9tzrVoNBoSExMJDQ3F1dW1xercmJeLduOHGC9LBo0twaFfDwJfnNjWYXQqKosNHJ/677YOQ6KJ2Hm4MmJ5AA4ObWOtIsgdMPS/B2PXUQ0uYRkMBi5cuEBRUREuLi7o9Xo8PDzEDFBTbSCux9mzZ1m4cCGvvvoqd955Z4cRDUajkVWrVrF//35WrVrFiBEj8PHxkTI/1TT4jyhleKyMuVbHycmJgIAA0tPTqaioEL+8Pj4+uLi4NPl4dkHd8HrtbYovXyb/cDwBmlKcsjMxZmdJS1tNQBbava1D6HQoz7avmhCJxjFqyslP8KbHMNsvQ5rcuqAPn43g3rXBfYxGI0lJSTg4ODBu3DjReFmr1aJUKmvZQJgtdNzd3ZslVgRBYMeOHWzcuJGdO3cycOBAS1yezbCzs2PatGnI5XKeeOIJ+vXrx8svv8yIESPaOrR2jZThaSWCIFBVVdXgtvpqdQRBQKPRUFJSglKpRKfT4enpKQqgmoZ312IwGEhLS6OyspKwsDDR8dek1WBITUGfkoghJQljVqYkgOrB6fE78I/smFNn2yup76Zz5asO0PMs8Sdertz0og929ra7Rxi6jsbQfwbYNTwgsKkWEYIgUFZWhkqlQqVSodFocHZ2Fn2wPD09G8x06PV6VqxYQV5eHjExMXh5ebX62mzJtctXP/30EzExMfz888989tlnTJ48GQ8Pjxt5mavBi5YETyupT/Bc24F1vVods4mdWQCZXXzNAsgsakpKSkhLS6NHjx507dq18WOWlWFIS8aQkoQ+JQljZoYkgICA9+fhqKhfoEq0jBN/j6UiXaon62iEPDKcbqHW7+4U7BzR978XU9eRje539epVLl68SFhYWJ327KZQUVGBSqVCqVSiVquxt7dHoVAgl8vx8fFBoVBQWFjI3LlzmTRpEsuXL2/3yz81l6iuXa4yGo1ivZFarWbJkiV8/fXXvPXWW8ydOxdnZ+cbVfRIgsdaXCt4LNGBZTKZUKvVKJVKSkpKqKqqEo8XHh7eopuBqbwMw4VUDMmJfwqgPwTZjUTQp/OR27WPDpXOQJXKyLG/fNHWYUi0AKdgfyKfdMSaz3yTe1D1EpZbYIP71LSIiIiIqNWh1RrMJsp79+5l3bp1GI1GysrKmDVrFkuXLu0wTucVFRVcunRJnMB8+fJlevasniV2raCZPn06CQkJvPrqqzz44INtEm87QBI81qSysrLZWZ2molKpSE5OxtfXFzs7O5RKJQaDQUzdent7t8hDRqioQH8hpbYAaoa5aUdEpvCg2/vT2zqMTsWVg2pSl33b1mFItJD+jw8jIMQ6tTyGoLEY+v2t0SWsmhYRffr0sUo2QhAEtm/fztatW5k/fz6ZmZkcOnQItVrNiBEjWLduXYt9uLKzs5k1axYFBQXI5XIWLFjAkiVL6t33xIkTjBkzhp07d3LPPU03NtuzZw/fffcdCxYsYPny5QQGBjJr1ixuvfVWcR9ztken03HTTTfh6enJZ599Rt++fVt0XR0cqWjZ2pjFjqWEjtFo5OLFi2g0GoYOHVqrsNloNIotnNnZ2RiNxloCqClvSDIXFxwHD8Nx8DCgelqz4UKaWANkyEjvdALIefiAtg6h01F6uu3bmyVaTvr3Wfg/6WRRoSHYOaEfeD+mwOGN7qdWq0lKSqJ3795W84iqqqri+eefR6lUsm/fPtzd3cVtlZWVnD17tlWmo00xAIXqe/bzzz/P5MmTGz1ezYyN+f9vv/12fvrpJ8aNG8fYsWOZMmUKQ4YMqfU5Ozs7jEYjzs7OxMTEMHLkSH755Rf69u1ba+nrRkcSPK3k/PnzrF69mgkTJhAdHS2avLWG0tJSkpOT6datG/369atzM7Kzs8PHx0ecS2E0GsW168uXLyMIAl5eXuK6dZMEkLMLDhFDcIio/iIJlbo/BFAShpREDBcvdHgBJO/bcGeIRMtQn85u6xAkWoEpu5jCrDACe1rGFsTkEVy9hOXq3+h+trCIKCgo4OGHH+b2229n2bJldep1nJyc6nhXNZemGIACrFu3jhkzZnDixIkGj1VT7BgMBnGa9G+//cbXX39NREQEd9xxB/fcc08dkSYIgih6hg4dypIlS3jjjTeYM2cOrq71u83fiEiCp5WEhYXx5JNPEhcXx5IlSygoKGD48OFERUUxceJEunTp0uS3J5PJxMWLFyktLWXw4MFN/kW1s7PD19cXX19foPrLYhZAly5Vz+sxZ38UCkWTxrLLnJxxGDQYh0GDq2OrrCT38K/oEs7hV1qCkJkBTZg/1K4IkL74lkSvMVKeJgmejk7BrzoCLWAvZwiOwtD3LpA3fH+paRExYsQIq2Uejh8/zpIlS3j77beZMmWKVc5xLQ0ZgObm5vLNN98QFxfXqOCB6nqdF154gYULF4qt8idPnsTZ2ZlNmzaxZcsW4uPjGTp0KOXl5WRkZBAeHo6/f7XANP993n///cTHx/PDDz9w3333WeFqOyaS4GkldnZ2jBkzhjFjxrB8+XJx/HdcXBzz58+npKSEkSNHMmHCBKKiovD3969XAKnVapKTk+nSpQuRkZGtSjHb29vj5+cnFuUZDAaxADojIwOZTIZCoRAzQNe76VRUVJCYmIhX9570mTgJuVyOUFWFIeMChuSk6mWw9LR2L4A8u3khWUpYDtXv5VLnXydAczaD0imD8PJTtujzgr0z+oEPYgoY0uh+trCIEASBrVu3sm3bNr755hv69Olj8XPUR2MGoE899RRr1qy57n1WJpPh6OjIrl27GD9+fK3ZQDqdDoPBwIoVK3jggQcICAjgyJEj6HQ6FAoF3333HUOGDBGXr8LDw3F0dCQ1NRWoW9x8oyIVLVsZnU7HkSNHiIuLIz4+Hq1Wy+jRo0UB5OLiwooVK4iIiOC+++6zWnq3Jnq9HqVSiVKpRKVSIZfLxRZ4Ly8v8YspCIKYeh44cGCj/jKCXo8hI726DT45EUN6KjQwn6hNsJPTbfMsZLIbrzPNWlxYl0n+9vi2DkPCAniPHUD43dpmf04t9yHL5y+4+ffE29u7wRliJSUlpKamMnDgQLy9rTMHq7KykmXLllFWVsaWLVtsci+F6vvptGnTmDx5cr2eWCEhIZifs0VFRbi6urJ582b+9re/1drPLFYeffRR3NzcWL16NU5OTpw7d47HHnuMtLQ0/P39ycvLo0uXLsydO5dbbrmFxYsX4+joSHx8fK3jfPTRR3z11VfExsaKo01uEKQurfaCVqvl8OHDxMXFsXfvXgoKChgxYgSzZ89mwoQJeHh42FyJV1VV1RJA9vb2TsvH3AAAIABJREFUeHp6olKpcHd3p3///s12JxYMegwZF/+YA5SIIS0VqtquHdxp2AD8n2jder1EbU7MPkBFclZbhyFhIYa+FIq7l7rJ+xu6T6Qq5HbU2nLx/lFZWVnLAsLFxYXs7GwKCwuJiIhodKhqa8jPz2f27NlMnz6dpUuX2my+jiAIzJ49Gx8fHz744IPr7j9nzhymTZvWaJfWq6++ys6dOzlz5oxYq3P69GnOnDlDZmYmDzzwAN999x3Ozs4sWrSI999/n48//phTp07RpUsX8ThHjx4lISGBWbNmSYLHvEESPLZHr9ezZs0a9uzZw/vvv09RURFxcXEcPnwYmUzG+PHjmTBhAjfddJPN3lJqkpubS0ZGBu7u7lRWVuLg4CBmgBqbYNoYgsGA4VK1ADKkJqFPSwGd7ZaXPB6ajNekhmeBSDSPKo2RY7f9G0zSLaKz4HdLOAOnqq67n2Dvij7s75j8BtXd9scUefMSukqlwsHBge7du+Pj49NsC4imcOTIEZ5++mnef//9Wq3atuDQoUNERUUREREh3hevNQA1IwgCDz/8cIOCx7zsVFxcTN++fVm2bBnLly9v8NzPPvssAwcOJDY2ltLSUv773//WEpSCIFBcXNxh5g1ZEEnwtCdefvll7O3tef7552t1UAmCgFKp5ODBg8TFxXH06FGcnZ0ZP3480dHRjBo1qlm+W81Fr9eTkpICwMCBA8XYKisrxSnQarUaR0dHUQB5eHi0TAAZjRgzM8QuMH1qCugqLHo9NfF96f9wCZHWsC1F0TEtSU/+t63DkLAgMjs7Iv/RG2e38gb3MXn2omrQbHBufFnKbBERHByMl5eXmD3WarW4uLiIYzRaev+A6gLozz//nC+//JIdO3aIw/jaKxqNBg8Pj+vuV1lZyYoVK/jxxx/Ztm0bI0eOrNcU9NSpUzzwwANcvXqVvXv3MmbMGGuF3tGQBE97oqkFZIIgcPXqVfbv38/+/fs5fvw4Xl5eYv3PiBEjLJaqLC4uJi0tjd69exMY2HgmRKfTiW9wGo0GJyenWgKoJW9wgtGI8XLmn3OA0pIRyhu+8TaXwI/m4+AuTVi2FOkbL5MXc7Ctw5CwMF3uGEzf6OJ6txl63IKh9+0gb7z4tjGLCEEQallAaDQaHB0da3lgNaVzq6KigqeffhqTycTmzZut+iJoCZYtW8bly5cZNmwYU6ZMYdiwYY3uHxsby4svvkhISAgbNmzA19dXrM3Zt28f33//PWfOnEGtVhMeHs4777xDt27dbHQ17R5J8HQGzEXEcXFxHDhwgJMnTxIQEEBUVBQTJkxg2LBhzR7LbjQaSUtLQ6fT1TIjbQ4VFRW1BJCLi4sogFqawhZMRgyXMyn57RiViedxv5IPFS0XQEGfPYJc1r67yDoSp+cfQvt7RluHIWFh5M5OjFjZDUfnP18OBAc39GEzMfmGNfLJlltE6HQ6UQCVlpaKHlje3t54eXnVqR/Myclh9uzZPPjggyxevLhd+2Gp1WoeeOAB/P39WbBgAZ9++in9+/fnxRdfBGj03rh69Wq2bdvGrbfeyrp168Sfm7uAFQoFCxcuZPfu3Rw7doznn3++RbZDnRBJ8HRGBEHg8uXLxMXFsX//fs6ePUtwcLA4BDEiIqLRtyWVSkVKSoroTGyJtXXzG5x5CUyr1eLq6ioKIDc3tyadp6qqiuTkZBwcHOjfvz92chnG7CzRDNWQkoRQ1rSuErvuAXR9xTazOG4EDDoTRyd9iWDo2IMoJeqn273DCBldbTdh8upN1aBZ4NRwhyZY1iLC7IFlFkBXr17lhx9+EJs6Xn/9dT766CMmTpzY4nPYitjYWL7//ns+/PBDoNomYtmyZZw6darBAm7z8pXJZOK5557j+++/Z+LEiWzevFncR6fT1fr8yZMnCQ0NbZOaz3aIJHhuBMyDC80CKCEhgd69e4sCKDQ0FLlcTkVFBZ9//jmjR48mPDzcqulgQRAoLy8XM0BlZWW4ubmJAsjV1bXOzbGoqIgLFy7Qp0+fBkfOCyYTxtzs6jlAqdXLYIJGU+++btPG4313b4tf241K8YkyEh//uq3DkLASdp5ujFzuD31vxtBr8nWXsMwWEX369BEH4FkSjUbD3r172bVrFydOnKBLly5MmDBBXNqv2ZnUEprih/XFF1+wZs0aANzd3dm4cWMde4f6KCsrQ6PR0KVLFwwGA2VlZdx///188cUX4qBYqFvmYBY9SqWS7du389JLLzF16lSefvppRo0aJe5XcyKzhIgkeG5ETCYTKSkp4hJYcnIyQUFBXLp0icmTJ7N69Wqbf1kEQaCsrEwUQOXl5bi7u4vp6+zsbCorK5u9vCaYTBjzcqttMP7IAgnq6nH53kvvwy3COu2wNyIXP80m99P9bR2GhJWQuzgR+umLuISFX3df85yuQYMGWS27UF5ezpNPPomzszMbNmxAEASOHz9OfHw88fHxvPrqq4wdO7bFx8/Pzyc/P7+WH9a3335byx7iyJEjhIaG4u3tzU8//cTLL7/M8ePH6z1efQXGZnJycrj//vs5dOgQMpmMS5cuERISUu++ZhFkNBo5e/Ys8+fPx93dnaFDh/Lmm2/W8gWTqIUkeG50jEYj77zzDl9++SVTp04lKSmJjIwMBg0aJL4thYSE2HwGkCAIaLVa8vLyyMvLw87OTsz++Pj4tDj7JAgCprxc9KlJuIR74uxbiox2NAixA3PmsaNoTl9o6zAkrICdpxv9PlqO++D+je5ntogwGAyEhYVZzSIiKyuL2bNnM3v2bBYuXGiT+9Ndd93F4sWLue222+rdrlQqGTRoELm5uXW21TTqLCwsJCAgoJYA+vXXX9m8eTPbt29n0aJFeHt7s2rVqkYNTM2fz8nJISEhgddee43FixczderURofB3sBIbuk3MjqdjilTphAdHc3JkyfFYkKDwcDZs2eJi4tj2bJl5OTkMHToUNEHrFu3bla/wZg70dRqNaNGjcLV1VWc45GSkoJOp8PT01P0AmuqAJLJZNh1C8auWzACUCEIyNBiJxQhF4qxE4qQIRUxNxdjpQltQmZbhyFhBRz8FPT7eCWu/Rpv77aFRQTAgQMHeOGFF/j444+JioqyyjmupSE/rJp89tlnTJ06tdbPzIkDOzs7cnJyePHFF8nMzGTbtm21MjgODg5cvnyZKVOm4O/vz4YNG64bk1ksBQcHExwczLhx47Czs5NMQVuAlOG5QcjMzKRXr16N7qPX6zlx4oS4BHb16lUiIyOJiooiOjqawMBAi97cysvLSUxMxMfHh5CQkHrTwCaTqdYgs8rKSjw9PfHx8Wl0lP11EQRkaP4QQEXYCSWSAGoCJafLSXjsP20dhoSFcQzyp/+Gl3Du0bXR/WxhEWEymVi/fj179uzhyy+/tFm7tVarJTo6mhUrVnD33XfXu8/+/ftZtGgRhw4dqlWDY2b37t3MmTOHwYMH07dvX1auXFlrPtCPP/7IHXfcwYYNG2oNJTQajeTm5tKjRw/LX9iNh7SkJdF8KisrOXr0KPv37+fgwYOUlpYyatQosVjQ19e3ZS3nNTy6QkND8fLyavJnTSYTarVaFEB6vb6WAGrxXCJBQEYpdkIxGAqRC8XY20m//tdy6bMcsj+Ja+swJCyIc0g3+m98CceAug9wM4IgkJWVZXWLiLKyMh5//HG8vb356KOPbGaJcD0/LIBz584xffp0fvrpJ/r3r7vk9/333zNv3jzmzZvHggUL6NmzJzKZrFZB8tWrV8nLy6tV8JyWlsaDDz7IPffcI7arS7QKSfBItJ6KigrRByw+Ph6dTsfo0aOJjo5m/PjxeHl5XVcAVVVVkZSUhJOTU3W7eSvX/k0mE6WlpaKXj16vx8vLSxRAja2N18eVK1fIyMhgwID++HnLxeUvuVCCDKkN++zi46h/S23rMCQsRc8u6BdNxy3QT1w2vnZ0hMFgICkpCUdHR/r372+1uTeXLl1izpw5LFiwgHnz5tmsnrApflhZWVlMmjSJbdu2NVggPW/ePMrKytiwYYOY/TLX9DRUyPz999/zwgsvsGLFCmbOnGm5i7qxkQSPhOXRaDQcOnSIuLg4Dh06hNFoZOzYsURHRzN27Ng6Y9QzMjK4cuUKffv2tUr7KlTfYGoKIKPRWEsANTQMzWAwkJqaitFoJDQ0tO5+ggk5qmsE0I3lvG7Umzg66StMlVLxd2fAPTKMfmufR+7mInZOKpVKysrKxNlZzs7OZGRk0KNHD4KCgqwWy759+1i5ciWbN2+2uUVCU/yw5s2bx9dffy0uT9nb23Py5Emg+qWrqKiIkSNHsnjxYpYtWyYKnMYEzyuvvMLatWvx8/MjPT0dqM40NXd4rEQdJMEjYV0EQaC0tJT4+HjRCNXe3p7x48czatQovvzyS+RyOVu2bGl21qU1GI1GcYiZUqnEZDKhUCjw8fFBoVDg4OBAaWkpycnJ9OjRg65duzbtzVIwXiOAlJ1eACnP6Tg/76u2DkPCAnhFRdJnzVLkznWXjMyzs7KysigoKMDR0VEUQK31v7oWk8nE2rVriY2NZceOHa2eqdNWVFZWMmDAAB566CFef/11oHoi8q5du7h48SIGg4E333xT7Gh79913+fXXX9m5cycTJkzgrrvuYsWKFW18FZ0GSfBYm7lz5/LDDz8QEBBAQkJCne0tHVzVUTE79X766aesXbuWPn36YG9vL9pgjBo1ymp1AI1hFkDmSdC6Pxzb+/TpQ2BgYMvnEglG5IJS7AKTo0TWyb4+mf/MI+vjfW0dhkQr8Zk6nl4vP47cof7fdbNFhEajYdCgQdjb29fyv1Kr1aJ/ntn/qiUCSKvVsnDhQrp27cr7779v0xchSyIIAnq9nqVLl7Jx40b+/ve/o1Qq+emnnwDo0qULBQUFjBgxgl27dtGzZ08SEhIYNKjabX737t2sW7eOd955p1M/E2yIJHisTXx8PO7u7syaNatewdOcwVWdAYPBwBtvvEFsbCwxMTH07t2bK1euiEaov/32Gz4+PqIAioyMtOkNr6KigsTERLy8vPDy8kKlUqFSqZDJZLUyQC2uMRIM1wggVYcXQKefOI72uFS/05Hxv/cv9Hj+EWQNCJSmWkSYDYTNAsjBwaGW/9X1vjcXLlzgkUceYfHixcyePdvm87+swa+//sqaNWvYs2cPISEh3H777fzlL3/hlltu4b///S+zZ89m9erVPPfcc7U+d/nyZd5//31CQkJYtGhRhxV+7QhJ8NiCzMxMpk2bVq/gqUljg6s6C0VFRcTExLB06dJ6syaCIJCbm0tcXBxxcXGcOXOGLl26iC3wQ4YMsdoU6IKCAjIzMxk4cGCdwV16vV7MAKlUKuRyuTgIsSk38gYRDMiFkmsEUMfBpDdx6JavQCfV73RUujw8nW6LH2xQXLTGIqKyslIUQNcagF774rB3715eeeUVtmzZwsiRI1t1Te2NsrIyEhISGDx4MHK5XOwyU6vVjBs3jltuuYW1a9fW+TfYuHEj8fHxrF27li5dutSxmpBoFpLgsQVNFTzvvvsuKSkpbNmyxUaRtX8EQeDSpUviDKDff/+dHj16iEMQw8PDW93RZTAYSElJQRAEBg4c2KTiQL1eL7bAl5aWipOgzTfyFtcyCHpRAFUPQVS3awGkStJxbo5Uv9NR6fbkQ3Sdc1eD2y1tEVHTAPTMmTOsXbuWESNGiN/zXbt2NeiT11moWah89epVwsLCeO6551i2bJm4T01hM27cOMaOHcs777zTJvF2IiTBYwuaIniuN7hKohqTycSFCxdEI9SkpCT69u0r2mAMHDiwWWLD7Azfs2dPunZtfLhaY1RVVdUSQA4ODmIGqKW1DIIgkJtziaryHHr39MDZvhQ59RuhthVJn6RT9NmRtg5DornIZPRcPh//GfXbJNjKIuLSpUs8//zzFBcXi7Npxo4dy4QJE5g0aVKdjs7m0BTzT0EQWLJkCXv27MHV1ZWtW7cyfPjwZp+rqZmXmhYTVVVVfPrpp2zatInt27czdOjQevf99ddfeffdd/n2228BpAxPy5EEjy24nuC53uAqiYYxmUwkJSWJGaC0tDRCQ0NFAdSnT58GJzVfunQJpVJpFWd4cyq/pKQEtVqNo6OjKICa0s1inkvk7OxMv379/nzgCJXYCcV/doGhtWjczeXUk8coO5bWpjFINA+ZvR0hrz2Bz+Rx9W43W0QEBgbSvXt3qz1gU1JSmD9/PkuXLmXmzJnIZDK0Wi1Hjhzh4MGDPPjgg2IBb0toivnnnj17WLduHXv27OH48eMsWbKkyTWU5mfktUMEm0JSUhK7d+/mlVde4cUXX+Sll15q8BySwLEYkuCxBY0JnqYMrpJoOkajkXPnzokC6NKlSwwePFgUQD179iQ1NZV3332X5cuX06tXL6sNTKuJuZizpKQEjUaDo6OjOAPI09Oz1k3NPKa/SXOJBN01AqjMylfyJyaDiaN/+S9GbbnNzinROmRODvR551kU4+vPYtjCIkIQBH788UfefPNNPv/88xZlVFpCfeafjz76KBMnTuTBBx8EYMCAARw4cOC62d6ay1KxsbF88803uLm5MWjQIP7v//6vwc+lpqby3HPPkZeXR35+PqtXrxb3v564acxtXaJJSOah1ubBBx/kwIEDFBUVERwczCuvvIJeX+3N9Nhjj/Hqq69SXFzMokWLgNqDq1rK9VrhzZw4cYIxY8awc+dO7rnnnlads71gZ2fHsGHDGDZsGM888wwGg4HTp08TFxfH0qVLxVqd2bNn4+zsbLO3J2dnZ7p27SreSCsqKlAqlWRnZ6PRaHB2dsbb25uysjIqKioYNmxY09rzZc4YZd0w0g09IBMq/hA/xciFIuRYT4xoM/SS2OlA2Lm70PeDF/EYHlpnW02LiCb/7rUAo9HI6tWrOXnyJPv27cPPz88q57mWhsw/c3Nz6d69u/jn4OBgcnNzryt4zMJj9erVvPLKK0RHR1NSUsLatWs5fPgwS5cuZcCAAXU+5+vrS1BQEIMHD2bu3LmigWhTxIwkdqyHJHgsxJdfftno9i1btli8SHnOnDksXryYWbNmNbiP0Wjk+eefZ/LkyRY9d3vD3t6eUaNG0b9/f86fP090dDQzZ87kt99+49FHH6W4uJgRI0aIPmABAQE2EUEuLi64uLgQFBSEIAioVCoSExOxt7dHEARSUlLEDJC7u3uTYxJkLhhlwRgJBkAmlNcYgliMnAqLXYPqtMpix5KwLvYKD/p9vBK30N51ttW0iIiMjLTag1WlUjF//nzCw8PZs2eP1botr0Wr1TJjxgw++OADPD09a22rbyWjqd+1M2fOsGXLFtauXcvMmTPx9PTk1KlTYofZm2++iY+Pj7i/yWTCz8+P999/X1xCNwsdScy0LZLg6cBMmDCBzMzMRvdZt24dM2bM4MSJE7YJqg3R6/VMnTqVp556ivvvvx+AyZMn89JLL6HT6Th27BixsbFs2bIFrVbLqFGjiI6OJioqCm9vb6sLoCtXrpCZmUlERAReXl7iRFulUsmlS5fEkf5mAXStp1FjCDJXjDJXjHT/wwj1WgGka3HcpWfyW/xZCdvhEOhL/w0v4RJS113c3C7dvXt3q1pEJCUlsWDBAp577jnuv/9+m2VW9Xo9M2bMYObMmfU6nQcHB5OdnS3+OScnp96/h/qWm44fP45Wq2X69OmikPrqq6+QyWSMHz++ltiBPzM0ZrEjCIIkdNoJkuDpxOTm5vLNN98QFxd3QwgeBwcH9u/fX2+a3tnZmYkTJzJx4kSg+gFw5MgRYmNjWb9+PVVVVdx0001MmDCBcePG1am3aQ1mny6TyURkZKTYDi+TyXBzc8PNzY3g4GAEQRA9jS5evEh5eTlubm6iAHJ1dW1aTDIZAm4YZW4Y6fGHACoTBZCdUIyMyibFLpgENKczWnP5ErYgwBuv1xdi9Peq89AuLCwkIyOD8PDwVnVDNYYgCHz33Xe88847bN261aYTgwVB4JFHHiE0NLRBp/M777yT9evX88ADD3D8+HG8vLzqLGfV7KwqKirC3d0dZ2dncZ5Oly5d0Ol0REVFkZ+fzy+//MItt9wiWtY01HUrFSO3HyTB04l56qmnWLNmjdVaTdsjTa1JcHNz47bbbhMLG9VqNb/++itxcXG8++67CILA+PHjmTBhAjfddBPu7u4tisc8zK0pPl0ymQx3d3fc3d3p3r27KIBKSkpIT0+nvLwcd3d3UQC5uLg0QwC5Y5S5Y6TnHwJIi51QjKEyD3tKcHSovz9Be6kKQ2nbdohJNI5Lv550e3spGrmJjIwMMVOoUCgoKytDp9PVEtqWxmAw8Nprr5GQkEBsbGydjIe1OXz4MNu3byciIkJs+b7W/PP2229nz5499O3bF1dXV2JiYmodo6bYeeutt4iPj2fWrFnce++9KBQK1Go1b7zxBh988AFhYWHExcXRv39/1Go1S5cuZcyYMTz22GM2vW6J5iN1aXVwGusMCwkJEdeui4qKcHV1ZfPmzfztb3+zdZgdCnOtzcGDB4mLi+Po0aM4Ojoyfvx4oqOjGT169HXb283FoVeuXCE8PNwiw9wEQUCr1VJSUkJJSQk6nQ4PD49aAqipmEzVD8fS0lLCw8NwcdKLy1/VGaDqgvvsXYVcemdvq2OXsA5ug/vT76MXsff8U5CbjXyTkpKAaiHt4uJSy/zTUlmHkpISHnnkESIjI3nttdfa/ctVTWFTH3fffTfHjh1jwYIF/OUvfxE7aqdMmcIvv/zCAw88wOeff46zszOVlZV8/fXXrF69mmeffZbZs2fb6jIkGkdqS++sNHW685w5c5g2bVqn6dKyJYIgUFRUJPqAHT9+HA8PD7EAeuTIkeIIeaieWpuTk4NCoaBv375WW78XBAGNRlPLCNXT01MUQA1lu3Q6HQkJCfj4+BASElL34ScIyFBjJxSR88/j5Mfsxai1XBG0hGXwHDOYPu8tw86l9r/ztRYRgiBQUVEh2qWYuwXNvyctFUAJCQksWLCAlStXMmPGjA6zdFNRUcG5c+fqdHLFxMSwatUqYmJiiI6OrlVsnZOTw/jx4wkKCmL27Nn4+/tz+PBhNmzYwPLlyxucryPRJkiCpzNSsxU+MDCwTit8TSTBYzkEQaCgoECcAn3y5En8/PyIiorC2dmZzZs388knn9h83pLJZKolgKqqqmoJICcnJ65evUp6enqz5q8IBiNlKRloTiai+S0B7dkUTLqm1QBJWAfFpNH0fnMJcsfay1Rmi4iIiAhcXV3r/axZAJm9r2qOSzALoMZEuiAIfP3113zwwQds27atVUMDbY1Wq2XmzJn4+vqyefPmWqLmvvvuIzs7m6NHj4o/EwRBLDpOTU1l1apVxMfH4+fnh6OjIytWrGD69OmAND+nHSEJHgnL0JTZPwcOHOCpp55Cr9fj5+fHwYMHbRylbREEgfT0dJYsWUJSUhJ+fn74+fkxYcIEoqOjGTx4cJuk+k0mE2q1WhRAGo0GOzs7evfujb+/f4tdmU16PWUJ6WhOJKA5mYj291QEvcHC0Us0hO+dN9Nr5aPI7P/8nWqtRURNAaRWq3FychIFUE3LFIPBwKpVq0hPT2f79u11zHc7AsePHycyMhJ7e3tRpBgMBmbOnMmVK1c4cOAA0PCAwCtXruDg4IC9vT2enp61RJFEu0ASPBKWIT4+Hnd3d2bNmlWv4FGpVIwdO5a9e/fSo0cPCgsLO71JYHp6OrNnz2b69Ok8/fTTyGQyLl68KE6BPnfuHCEhIaIACgsLs+nNsby8nISEBPz9/fHy8hIfbEajES8vLzED1NKiVpOuEu25NDQnElCfTKQ8MR3BYLTwVUgABPz9r3R/ehayGr8/1rCIqCmAtm7dyokTJxgxYgSnT5/m1ltv5ZVXXmn39TrXcm0GZvHixVRUVPDZZ58BsGjRIr799lt2795NZGRkrc8eO3aM7Oxs7rjjjlpLxVJWp10iCR4Jy9FY3dCGDRvIy8vj9ddfb4PI2obvv/+eoKAgRowYUe92k8lEWloasbGxHDhwgOTkZAYMGEBUVBQTJkygf//+VrtpFhQUkJmZSWhoKF5eXrW2GY1GSktLxQyQyWRCoVCIb/YtFUDG8gq0Z1JQn0hAcyKB8pRL0Ph9RqIJBD12H13n31OvPYk1LSIA9u7dy3vvvYebmxtFRUX4+voyceJEoqOjGTt2bKt/f6+XOS4tLeWhhx4iKysLg8HAs88+y8MPP9zk49fM1hgMBqqqqnjsscc4fPgwzzzzDIsWLaK4uJj+/fszadIk3njjDdHvsKSkhGeeeQZ7e3vWrl3b4o5NCZshCR4Jy9GY4DEvZSUmJqLRaFiyZEmjk6BvREwmEwkJCWIGKD09nfDwcNEHLCQkpNUPEKPRSGpqKnq9nrCwsCaJF6PRiEqlEotbBUGoJYBaOjHXoNaiOZ1cvQR2IoGK9KwWHedGpvuyhwl88HbxzzUtIiIiIqxmESEIAjt27GDDhg3861//IjS02q4iPz+fgwcPcvToUdauXdvq39frZY7ffPNNSktLWbNmDVevXmXAgAEUFBQ0aVm2ptjZunUrKpWKp556SnRwP3fuHB9++CGTJ09m9+7dTJ8+nVGjRjF9+nRcXFz45ZdfOHr0KLt27RLneEm0ayTBI2E5GhM8ixcv5uTJk8TGxlJRUcFNN93Ejz/+KLnDN4LRaOTs2bOiAMrKymLIkCFERUUxceJEgoODm7VMYZ6qGxQU1OzP1sRgMNQSQIAofry9vVu8pKHNLyT5u59xuVyIkJJF5eW8Fh3nhkAuo9fLj+M3LVr8UU2LCGtmB/V6PStXriQnJ4etW7fWyRBamsbuK6tXryY7O5uPP/6YzMxMbrvtNtLS0mpde301NzWXnOLj45k0aRKvv/46CxcuxMvLi4MHD/KPf/yDyspK/v3vf9PpVs6kAAAgAElEQVS7d2+++eYb/vnPf7Jv3z569eqFn58fW7dupVevXpKrecdAEjwSlqOxG9Nbb72FTqfj5ZdfBuCRRx5hypQp3HvvvTaOsuOi1+s5deqU2AVWWFjI8OHDRQEUGBjY4E03Ly+PrKwsq0zV1ev1ogAqLS1FJpOJ4kehUDRJANXXJVZ1tQTNiUQ0J86jPplIVW6hRePuqMgc7Om9+im8J/3ZPm0ri4jCwkLmzp3LzTffzIoVK2xSp9LYfUWj0XDnnXeSkpKCRqNh586d/PWvfxW3NzZfp6qqinfeeYeysjIA/vGPf9TKiH3xxResWbOGPn36sGvXLuzt7dHpdBQXFyOXy8WJzNeb4SPRbpAEj4TlaOzGlJyczOLFi/n555+pqqpi1KhR7Nixo0O1rrY3qqqqOHbsGHFxcRw8eBCVSsXIkSOJjo5m/Pjx+Pn5UVpayj/+8Q/mzp3LoEGDbGLYqNfrUSqVogCys7MTBZCXl1eth4PJZOLixYtoNBoGDRrU6FJEZV4hmhOJqE+cR3MiAf1VpdWvpb0hd3Gi7/vP4Tl6sPgzW1hEAJw+fZrHH3+cN954g2nTplntPNfS2H3lP//5D4cPH+b999/n4sWL3Hbbbfz+++94eHiIHVKlpaWsXr0ajUaDu7s7S5YsISgoiO3bt/Pss89SUVHB+vXrmTVrVp3OqtWrV/P5558zffp03n777Trnl8ROh6JBwSNZS0g0i5qzf4KDg+vM/gkNDWXKlCkMHjwYuVzOvHnzWi12rF3Q2N5xdHQU63uguoPm6NGjxMbGsmnTJoqLiykrK+OOO+6gZ8+eNrsxOzg4EBAQIHbhVVVVoVQqKSwsJC0tDQcHB9EENSsrC19fX4YNG3bdJQGnoACc7grA766bEQSByqx8sQBaczIRg1Jti8trM+w83Oi3bjnug6uXgQVBEMWiNS0iBEHgX//6F1u2bGHXrl3tahk6JiaGF154AZlMRt++fQkJCSE5OZnRo0cjk8k4ePAg999/Pz179hSX/A4cOMDGjRu57777SEhI4N133+Xs2bPMmjULmUyGTCYTl7wWLVpEfn4+mzZtIiwsjDlz5tQ6vyR2OgdShkeiRVy7lm00Vrchy+Vyi69xW7OgsSMjCAIbN24kJiaGBQsWcOHCBQ4dOoTBYGDs2LFMmDCBsWPHWtRKoDlUVlaSlZVFTk4ODg4OuLi4iC3wNWe7NAdBENBdzK4WQCcT0JxMwqgps0L0bYO9r4L+G1bi2q8nUC0iExIS8PLyonfv3lb7d6yqquKFF16guLiYmJiYNulEaizDs3DhQgIDA3n55Ze5cuUKw4cP5/fff8fPz49NmzaxaNEinn32WZ566ikUCgUXLlxg3Lhx3H777Xz11VdcvnyZ5557jgMHDhATE8Ptt98uih3zf5OSkvjnP//Js88+i7+/v82vX8JiSEtaEpanoKCAoqIiwsPDrf5AbW1BY2dkwYIF2Nvb895774k+WoIgoFariY+PJy4ujsOHD2NnZycaoY4ZM8Yivl7Xw5yVKC0tZdCgQTg5OaHT6WoNt3N0dKxlb9AiAWQ0Up52uXoG0IkEtGeSMZXrrHBFNsDXC/3iu/Ho00McC5CRkSFaRFiLgoICHn74YaZOncpzzz3XJt+b602Nz8vLY86cOeTn5yMIAi+88AIPPfQQx44dY9q0afTs2ZNTp04Bf76Mbdy4kccff1wcA3HkyBFWrlyJVqvliy++oF+/fg0uVUnzdTo0kuCRsBxqtZrPPvuMnTt3UlRURGFhIUOGDOGhhx7i7rvvtsrNuTUFjZ2VgoICunTp0ug+giBQUlIiGqEeO3YMFxcX0Qh11KhRFm9prqysJCEhAYVC0WhWQqfTiTOA1Gq1RfydTHoD5UkX0ZxMrBZAv6cgVOpbe0lWxzmkG/03voSDvw8ajYbMzEyKi4txdHSsNRyyOQaxTeG3337jySef5O2332bKlCkWPbYtUKlUrF+/nrVr1/Lyyy/zxBNPUFlZiZOTEzt27ODRRx9l//79DB8+HICdO3fy1ltv0b17d3bt2oWTk1Md0SN1YnV4JMEj0XrMbz3r16/n9ddfZ9KkSSxcuBCtVsvevXvZs2cP9913H2+88YbFz92SgkZPT0+Lx9HREQSBwsJC9u/fz4EDBzh+/Dje3t7iEMTIyMhWLQWaB+H1798fX1/fZn3WbHBptsGouQTm7u7eMgFUpafsfBrq36rrf8rOp7W7KdCuob3pt34FDt6edSwi5HJ5HYNYDw+PVgsgQRDYunUr27Zt49///jd9+vSx8FVZH7MwycrK4rXXXmPXrl3s2rWL2267DYB77rmHs2fPcuzYMXx9fcXfn/fee48tW7YwZswYYmJi2vISJKyDJHgkWo9Z8ERFReHj48POnTtxdnYWXbs3bdqEQqFgwYIF6PV67OzsLJYWbkzw/PWvf+WFF14gKioKgEmTJvHWW28xatQoi5y7MyMIAnl5ecTFxREXF8fp06cJDAwUi6SHDh3apI4vQRDIyMhApVIRHh7e6qxRTYdvpVKJVqvF1dVVfNC7ubk1WwAVFxeTdj6RHno7hJRMNCcSKUtKB1Pb3ebcI8Pot/Z57Nxdm2QRYTaINS8N6nQ6PD09xe64pgigyspKli1bRllZGVu2bLHJEqe1OX36NMuXLyc9PZ3//e9/PPbYY5w/f559+/YRFhYG/Hn/0mq1PPHEE6jVav71r3/h7OwsZXQ6F5LgkbAco0aNQi6Xs2vXLrp3796kFLDBYEAmk7W426GlBY0SzUMQBC5f/v/27j2u5vuPA/jrnEqpKBUVKVG6qLQala6S2xgmdxstMTbTGMvGz/Dr5zdmmyGGGdZm8zN3qg2VKddidFuF7jfS7ZxOl3N5//5o57uOruhi+TwfD48H53zP93yPTt/v+/v5vD/vdxZXA+iPP/5A//79uT5gNjY2DX6GVVVVSElJQc+ePTFw4MB2yX0gIohEIi4AqqyshIaGBnr16gUdHR2oq6s3+R0kImRkZKC0tJTLJ5KTCkUQ3E7hVoCJUjM7rA2GlpsDBm1ZAb6a6jO3iHjaAKigoIDr+7Z8+fIulacSHh6O1atXIyEhAS4uLvjhhx9gamqqkI8j/3txcTE7P3RdLOBh2s7evXuxePFiLFy4EKtXr4apqSmAuros8iWzhw4dgr6+PsaMGfPcJ9VnTWhknp+8fs7FixcRFRWFpKQkmJmZwd3dHZ6ensjIyMDGjRtx8uRJrkBbRyAiVFZWcgGQSCSCpqYmFwB1794dPB4PtbW1SEpKgqamJgYNGtTid1FSJoAgPhmCuLok6OoHue1y/Drj3TBg/XvgKSshOzsbjx49go2NzXOPjD0ZAOXl5eGHH36Ah4cHDAwMsGXLFnz55Zfw8fFpo0/S/urn2DSWTCy/4ZLJZNi/fz/+85//wMvLCwcPHlR4vqV9M10GC3iYtlNZWYnPPvsMISEhEAqFmDdvHtasWcMFPgUFBZg2bRoKCwuxZs0a7NixA5aWlnj//fcxYsSIRvcplUrB4/FemDvOnJwczJs3D4WFheDz+Vi0aBECAwMVtiEiBAYGIiwsDOrq6jh48CCXHNlVyWQy/Pnnnzh//jz27t2LsrIyODs7w9PTEx4eHjAzM+uUnyERQSgUcgFQVVUVVFVVUVlZCVNTUxgZGT3TfsXFpRDEJ3N1gGpyCp/7WHtPGw3j1QGQymTt3iKitrYWsbGxOHToEK5cuYKePXvCxcUFXl5e8PLyQv/+/Z/7PVqqkwUA0dHRXJ89PT09XLp0qVX7FgqFOH78OKRSKVdbKzw8HH379sXQoUO57eRBTVlZGbZv346tW7di8+bNWLJkCVtx9fJhAQ/T9sLDw7Fr1y6EhYVhwoQJ2LdvH/T19REbGwt/f388evQIPj4+GDlyJA4ePAiJRILTp0+jX79+T/U+MTExUFFRwauvvtphd2MFBQUoKCiAg4MDV/Dt5MmTXD4AAISFhWHHjh0ICwvD9evXERgYiOvXr3fI8XWm4uJizJs3D3Z2dli/fj1SU1O5TvAZGRmwsbHhpsBMTEw6PD+CiJCTk4O8vDzo6elBKBQqTPXo6Og880hKbWExKuLq2mAIbiaitvDxU73e4O030G/pbIhEIiQmJsLY2LhdR8aqq6uxYsUKSKVS7N27FyoqKrh16xaio6MRHR2NuXPnYu7cuc/1Hi3VySorK8OIESMQEREBY2NjPHz4kCtW2ZKKigp89NFHiIyMxNdff42jR4/ixIkTOHfuXIObJ3nQk5mZiX//+984ffo0Tpw4ATc3Nxb0vFxYwMO0nSeHgbds2YLVq1fj+PHjmDJlCnbt2oWlS5ciJCQES5YsAQDEx8fD09MTq1evxtq1a7l9FBYWIjw8HAkJCXB3d8e4cePQvXt3SCQSKCsrQyQSYe7cudDT08O+fftadXwymYw7wbXVSW7y5MlYunQptwIEAN555x14eXlh9uzZAAALCwtER0d36NROZ1i6dCnGjx/f6NJ/iUSC27dvc41Q8/LyYG9vz/UB69u3b7sGQFKpFMnJyVBSUoKFhYXCVEj91U61tbUKAVD9vJ7WIiLU5BZBIA+A4pIgLi5rcvt+y+bC0G9Kh7WIyM3NhZ+fH2bNmoWlS5e26wW/uRy7Xbt2IT8/H8HBwc+079TUVCxcuBC3b99Gr169cOzYMTg4ODR78xMfH4/ly5fj7t27yM3N7ZRCikynYa0lmOdXWloKJSUlbrm3PKiYM2cO1q9fj6SkJEyZMgUJCQkwNjbGnDlzANRdGBwdHWFlZYX79+9DJBJBXV0d8fHxWLx4MXJzczFw4ED8/PPPMDMzw549e2BlZYWamhrcunULmZmZCsPXjSEipKWlwdDQ8Jmr+DYlMzMTt2/fhpOTk8LjeXl5ClMCRkZGyMvL6/IBz86dO5t8TllZGcOGDcOwYcMQFBQEsViMGzduICoqCkuWLEFxcTEcHR25VWB9+vRpswCoucaafD4fWlpa0NLS4hJZKyoqUFpaisTERIjFYmhpaXEBUGuW5vN4PKj1N4BafwP0fmNUXRXojDwuAKqIS4K0XAjweDD5eCH0fH1w7969dm8RAQCXL1/GqlWrsH37dnh5ebXb+7RGWloaxGIxvLy8IBAIEBgYiHnz5rX69fr6+nj48CGkUikGDx6MwYMHQ0lJqdlRG0dHR6xatQq1tbUs2GE4LOBhWiQfKt65cyd+/PFHfPPNN3BycuKmBZKTkyEWi2FkZAShUIjExESYm5tDS0uLOymJxWKulor8bvqdd96BWCzG8ePHYWNjg/T0dEyePBmbNm1CaGgoTp48icDAQDx69AiGhob4/fff4eTk1OjdeH5+Pt59911ERUWhb9++GDVqFN58802MHDnyuRppCoVC+Pr6Ytu2bQ3q+jQ2OsqWtypSUVGBq6srXF1dsXbtWtTU1ODq1auIiorCd999B4FAgOHDh8PDw4Mrd/As/4dFRUXIyMho9agJn8+HtrY2tLW1uQCovLwcJSUlyM3NhUQigba2NrfaqbUBUPeBRug+0Ah9ZowFyWSoupcNqaASqrbmuH37NrS0tGBvb99u3xOZTIY9e/Zw0z5tkaPzvCQSCeLj43Hx4kVUVVXBxcUFzs7OTfbqenIEWV5NPD4+HocPH8batWuxY8cOhbYQ9cnPV6+//nqDx5iXGwt4mBbJTxQ+Pj64du0ali1bhqFDh8LV1RXJycnYs2cPRowYgddeew2pqalITEzEtGnTANSt3FJVVUVKSgrKy8u5LtrXr1/H7du3cfjwYbi4uAAAHBwcsGzZMvznP/9BcXExZs6ciaNHjyI2NhaVlZUYO3YsJk+ejJ07d3JLSuUnsvz8fBQUFMDf3x9eXl44evQoAgIC4O/vj08//bRVJ7wntxGLxfD19cXcuXMxderUBtsbGRkhJyeH+3dubm6DkQVGkaqqKpcwCwAikQhXrlzBxYsXERISgtraWjg7O8PDwwOurq7Q0tJq9ucmk8mQnp6O6urq5xo14fP5XHAD1F10y8vLUVpaipycHEilUoUAqDXvw+PzoT54ACoqKnDr1q12bxEhEokQGBgIVVVVXLhwoc0raD8rIyMj6OnpQUNDAxoaGvDw8MCdO3caDXjkU9kAEBkZCVVVVejq6mLChAkYPXo0SkpKcO7cOXz11VdNLqtv7PvCgh0GYAEP8xRcXFxw+PBhhIeH48iRIwgJCYGOjg5WrVqF+fPno3fv3vjhhx+gpKSEjIwMPH78mKu2e+rUKVRXV3MXurNnz8LU1BTOzs4A/j7RGRsbo6amBkBdF/SKigq8+uqrOHPmDIqKilBdXa1QP0N+IktNTUVeXh4WLFgAFxcXvPHGGwgODsaGDRvg6uoKHx+fFoOe+s8RERYsWAArKyusWLGi0e0nTZqEnTt3YtasWbh+/Tq0tLS6/HRWW1NXV4ePjw+3TFogECAmJgYXL17El19+CZlMBldXV64Rav3piQcPHnDTioMHD27Ti5qSkhJ0dHSgo6MDoC4AKisrQ2lpKbKyskBECgFQU6OI+fn5yMnJgZ2dHdTV1dvs+J6UnZ0NPz8/zJs3D0uWLHmhLvDy/DeJRILa2lpcv34dy5cvb3RbZWVlPH78GBMnTkRhYSHy8/OhqamJwMBAfPLJJ/j444+Rl5eH/fv3w8LCAq+99hqXN9a/f/8WW60wLzcW8DBPRUtLC7NmzcKsWbMA1F2g6k8hJCcnQ19fH1VVVdizZw8mTJiAX3/9FRs2bEBgYCDc3NwAAImJiTAxMeGqvMpkMgB1yYYGBgaQyWS4d+8eCgoKMHnyZABoMt9DKpUiKSkJampqXACloaGBoKAgbN++HdnZ2QAUAxqZTAYejwciAp/PR0JCAkQiEZycnEBEiI2NRWhoKGxtbWFvbw+griu7fF+LFy/Ga6+9hrCwMJiZmUFdXZ2VqW8DPXr0wPjx4zF+/HgQEcrKyrhGqJs2beKmyHr27IkDBw7g22+/xYABA9r9uJSUlKCrq8sF8BKJhAuAMjIyAIALfrS1tcHn87kWEe29ujA6OhqrV69GSEgIV228I9Wvk2VkZNSgTpaVlRXGjRsHOzs78Pl8BAQEwMbGptF9FRcX47XXXoOGhgYOHToEkUiEmJgYrF+/HmVlZfj888/x8ccfY8WKFVx397i4OPzyyy84c+YMC3iY5hFRc38YpgGJREJisZj7t1QqJSKi7OxsGjlyJM2YMYNSU1Np4MCBpKqqSvr6+jR//nyFfaxcuZIGDx5MVVVV3GNisZisra1p1qxZRET07bffkpmZGZ06dYp73/pkMhkREeXl5dG4ceNo9OjRREQkEomIiOjevXvE4/Hou+++IyKi/Pz8Jj/Td999R0OGDKE7d+489f9HW8rOziYvLy+ytLQka2tr2rZtW4NtfvjhB7K1tSVbW1tycXGhP/74oxOOtOPJZDIqKiqimTNnkrGxMTk5OZGHhwetWbOGIiIiqKSkhCorKzvlT3l5OWVmZtLt27fp4sWLdObMGfr9998pKyuLKioq2uU9BQIBffbZZ+Tu7k65ubmd/eNpE1euXKE+ffpQRESEwuOff/458fl8+umnn4iI6MSJE+Tp6Um9e/cmS0tLunTpUmccLvNiajKmYSM8zFNr6m41OTkZjx49wsSJEzF48GDcv38f6enpEAgEXEE++mtaafLkyfjqq6+wc+dOBAQEQCgU4ptvvkFKSgp2794NAIiLi4OmpiYcHR0BoMkVGRkZGcjMzMTYsWMBAN27d0dpaSm2bt2K3r17Y9iwYcjKysKkSZPwyiuv4MMPP8SlS5fg7e0NS0tL8Pl8vP3225gxY0an9xWSJ2jWr/8zevRohfo/pqamuHTpEnr16oXw8HAsWrTopaj/U1paCn9/f9ja2nJTp0VFRYiMjMSxY8cQFBQEXV1drgq0g4NDu66Eqk9ZWRm9e/eGkpISHj9+DFtbWxARHj9+jPv370NJSYkbAZLnsT2PyspKLF26FNra2jh//vwzLat/EVVVVaG0tJQbqZEnMK9cuRK//vortmzZglmzZmHKlClwc3Pj6j51796d1dphWsQCHua5yU8ySUlJyMrK4oIbqVQKc3NzhW3l00rOzs5Yt24dgoODceTIESgpKSElJQUfffQRPDw8UFJSgszMTPTv358rVPjkdJb832lpaSgqKsL27dvx/fffw87ODuXl5UhMTMS6detgY2ODX3/9FWKxGCdPnoRIJEJcXBxOnDiBsLAwlJaWIi4uDiNGjGg04HnePmBPw9DQkMsD6tGjB6ysrJCXl6cQ8NQvuObs7Izc3PZpf/CiSU5OxqJFizBp0iTuMQMDA8yZMwdz5szhCg5GRUXh0KFDCAwMhKGhIVcF2s7O7rlW7DWH/upBVlxcDAcHBy4AkRfYq62tRWlpKR4+fIj09HQuANLR0YGWltZTXagzMjLg5+eHhQsXYuHChS9Uvk5r0F+rGxs7blVVVWhqaiImJgZWVlbo1q0bl983Y8YMfPLJJ0hKSsKQIUOgp6fH5fOxFhFMa7CAh2kzK1aswJgxY2BlZQWgbiSImkgUVlZWxrp16/D666/j9OnTqKmpwY4dOzBs2DAAdRcIsVjM5QI0RSwWc+X509LSEBcXh1u3bqGoqAjBwcHw9vYGANy+fRt//vkn1q9fjxkzZqBPnz4oKSmBqqoqoqOjERAQgM2bN+O9997j9l1bW4tu3bq120WyJU3V/6lv//79GD9+fAceVeeR5381hcfjwdjYGPPnz8f8+fO5pqGRkZHYvXs37t69iwEDBnAjQNbW1m1ykZRIJNx30MHBodHgpVu3btDX14e+vj6Auu9WSUkJCgsLkZqaChUVFa4TfHN1pC5cuIC1a9diz5493OrGf5L654OEhASUlJRATU2N+47LSxhs374dzs7OcHBw4H7/8vPz0aNHD5iYmDTYLwt2mNZglZaZF458aHr79u3473//CwsLC/j7+8PX15cbgZGfOHNzc+Hv7w8+n4+IiIhG9ycWi/H2228jJiaGm16o79///jcOHz6MX375BUOGDOFGgs6cOYP4+HhYWlpi9uzZmDBhQoPu00QEqVTaplWdgbr6P56enlizZk2jS+IBICoqCu+++y5iYmK4ZFqmafIl7JGRkYiMjERKSgoGDx4Md3d3eHh4wMLC4ql/hvJih8/bIqK6uppr+FlRUYFu3bpBW1sbeXl5cHJygrKyMrZt24YLFy7g559//kcm59afcvrss8+wceNGqKqqory8HNOnT8fChQvh4+ODhw8fwsHBASYmJli+fDlGjRqFtLQ0LFu2DGZmZti/fz9UVVX/cSNbTIdp8ovBJjyZTiUPGOoH3vKT4rJly3DixAlYWloiISEBVVVVDV6flZWFBw8ecMuapVIp11pCvs+MjAxkZGTAy8sLSkpKkEgk3HPV1dVISkqCtrY2hgwZAgDYsGEDZs6cidzcXEyfPh0aGhpYt24dTp8+za0mA4CamhrweDwoKys/1YWy/mclIkgkEoX9tlT/BwDu3r2LgIAAnDp1igU7rcTn82FhYYElS5bg6NGjuHv3LjZu3Ag+n4/g4GC4uLjAz88P3333He7du6fwM2nMw4cPkZCQAGtr6+cuR6CmpgZDQ0NYW1vD2dmZm8IMCQmBo6MjHBwcEB4ejs2bN7d5LR9/f3/06dOnyZVTcjdv3oSSkhJ++eWXZreTSqWNPib/HcnIyMDRo0exc+dOhIeH48SJE7h16xaCg4Nx4cIF9OnTB5GRkRCJRFiwYAEsLS0xadIkdOvWDfv27YOamhoLdphnwqa0mE7VUm6Ms7Mzt9T8ydcBwK1bt/DgwQOMGjWKe1x+YpUvPU9KSsKjR4+4cvb1T5b3799HRkYG7OzsAACxsbHYsmULVqxYga1bt0IikaC6uhoRERHQ1NQEn8+HQCDAgQMHcPbsWWRmZsLNzQ3vv/8+XnnllVZ9ZtlfXbINDAzQu3dvhSkz+qv+j4WFBebPn9/o67OzszF16lSEhoY2Wa2WaRmfz4eNjQ1sbGwQGBgIqVSKO3fuIDIyEp988gmys7Nha2sLd3d3jBw5EkZGRuDxeJBIJPj2228xfPjwdmsRoaamhoEDByI4OBj+/v6YOXMmdHV1sWvXLvzxxx8YMGAAAgICFKoJPys/Pz8sXbq02XYPUqkUQUFB3MKA5raT/z6HhobC0NAQPj4+UFJSgkAgQEBAAFefa/r06VxJCzU1Naxbtw779u2DtbU1Bg8ejLCwMKSnpyM9PR09e/bE9OnTG7wHwzyV5pZwdcDyMYZpllQqbbAcvb7U1FTasGFDo8/Jl60HBweTubk53b17l3tcvpT+yJEjNGjQIG7p+uLFi8nS0pLS09Mb3WdhYSHNnj2beDweLVu2jLZu3UpeXl7k5uZGJSUlLX6e0NBQGj16NDk4OJCWlhb179+fli5dSteuXSOpVEq///47ASAzMzPS1NQkPp9PCxcupN27d9Pu3buJiGjBggWkra1NQ4cOpaFDh5Kjo2OL79uS1iyHl7tx4wbx+Xw6evToc7/vi0wsFtO1a9do06ZNNGbMGLKzs6OZM2eSvb09+fv7t9tyc/mf48ePk52dHd24cUPhuGQyGd27d48SEhLa7LNmZGTQkCFDmnz+q6++op07d9L8+fNb/LmnpqaSs7MzWVpakoWFBZWVlRERUVpaGo0aNYr09fXJz8+PiIhqa2u5133xxRdkaGhIFy9eJKK/f3/ra+5cwDB/aTKmYQEP06VVVVXRuHHjaOjQoY0+v3btWjIzM6OkpCQiIrKxsSE/Pz8SCoVEVHfSlclkXN2hDRs2kLGxMZ0/f56I6i6Kly9fJiMjI1q3bl2zx3Lu3DlSV1enN954g3766Se6fPkyff755+Tm5kbW1taUlZXFbZudnU1ERPb29vSvf/2Le6/2kp+fT/Hx8UREVMNbngEAAA/XSURBVFFRQebm5tz/SX0SiYRGjhxJ48eP7/IBz5OuXbtG5ubm9NZbb9HIkSPJ3t6eAgICKDQ0lDIzM0koFLZZfZ1169aRt7c3FRUVdchnay7gyc3NJQ8PD5JIJC0GPOHh4dSrVy+aOXMmXbp0qcHxR0dHk4ODA2lra3Pf9/q1uLS1tWnTpk1t8ImYlxirw8N0TfJpq6bm9CUSCby8vFBeXs5tL5/yEolESE9PR79+/bicCXlejjw5Wl6NWT6EHhERAWVlZUgkEgB1q83c3Ny4vmKA4koU+d8LCgqwbds29O3bF8ePH+eOz8nJCW5ubjhw4ACMjY25x+VNH7Ozs+Hr6wugfVeitGY5PADs2LEDvr6+uHnzZrsdy4vo0KFD2LVrF8LDwzFo0CAAdflfV69eRWRkJPbu3QuhUMj1AXN3d4e2tvZT55pUVFTgnXfegampKSIiIjqsjlBzPvjgA2zevLnF719ZWRl27NiBOXPmYMOGDVxuGf2Vp6esrAxPT0988MEHWL9+PZYtW4aTJ09yPb8yMzOhpqbW6bWwmK6LBTzMP1pLycKampoICgpqdPvU1FRcvXoVnp6eAOqCnXHjxuH48eOoqanhaqnIL1pVVVWIi4uDiYkJfH19IRaLYW1tjblz5yImJgaTJ0+GWCxWuEjJXysUClFUVAQ9PT2FfauoqDTIU5IHSbm5uRAKhRg6dKjCvpojv5N5nhVjTS2Hz8vLw4kTJxAZGfnSBTz6+vqIiopS6IelpqaGkSNHYuTIkQDqfsZXrlxBZGQktm/fDolEAhcXF64Rao8ePZr9GaampmLBggVYsWIF5s6d+8Ik5sbFxXGtZIqLixEWFgZlZWVMmTJFYbuCggJER0djzpw50NXV5ern8Hg8yGQyPHz4EH369MFbb72FvLw8fP7555g5cyY2bdoEkUiE8PBwlJeXc2UtGKbNNTf807GjUAzT9mQyWZPz/lVVVXTq1CmKjY3lHouNjaUBAwbQW2+9RQkJCZSSkkKJiYlERJSUlES6urp0/PhxKi0tpYiICProo4/I0dGR+vXrR+vXr28070Bu+vTpxOPxaO7cuZSSksI9Xj+PgejvqauQkBAaPny4wmPtTSAQkIODAx07dqzBc9OmTaOrV68SEbUql+NlJpPJqLy8nM6ePUvLly8nJycncnZ2pg8//JBOnTpFDx8+5KawhEIh/e9//6OhQ4dy04odraUcHrnmfu5XrlwhAwMDOnjwIPdYWloaLVy4kIYPH04aGho0b948unnzJtXU1NC7775LPB6PtLS0aOLEiWRiYqLwWoZ5Rk3GNKwOD8M84aeffsKaNWvw6NEjGBsb44033sDixYuhq6uLcePGwdzcHN9++63CawoLCwGg2fooAoEA//3vf7Fjxw4AQFBQENauXdvk9qNHj4a7uzvWrVvH3S035+7du/jiiy+wevXqZ7pLFovFmDhxIsaOHdtoh3hTU1NuSX1xcTHU1dWxd+/eBnf6TENEhNLSUly6dAmRkZG4du0a1NTUMGLECBQWFqKgoACHDx/mKgd3pPrNP/X19Rs0/6zPz88PEydOxLRp0xrdl5ubGwoKCuDp6QklJSV8//334PF4sLW1xaBBg3Du3DnY29vj0KFD4PP5WLFiBZKTkxEcHKywT9YmgnkOTQ+NNhcNdXxgxjAdS75aqzFpaWn0008/0Z07d7jt9u7dS5aWlvTZZ59RamoqFRUVUUJCgkLiZXMqKirof//7H9nZ2VG3bt0aTXT+9ddfqaioiHr27Nniyi/5cSUnJ9P48eNp5syZJBAIiOjvFS15eXmUk5PT7D5kMhm99dZbFBgY2KrPwUZ4no+8EeqhQ4fI19e3w0bw2ov8e1hcXEw+Pj5kaGhIOjo69O6779Lx48e57c6dO0c8Ho/2799PRHVJzm5ubuTm5kYPHz4kooYjngzzlNgID8O0VnN1PogIW7ZswbZt2yASiWBnZweZTIa1a9c+VYuHzMxMuLi4wNzcHL///jt3R1tdXY1Nmzbh8OHDePDgAWbMmIEFCxZg9OjRze5vypQp4PF42Lp1K5dUS3/lAh08eBClpaVYvnx5k60+YmJi4O7uDltbW+7OetOmTcjOzgbw9Hf6zMtH/h2urKyEQCBA9+7doaWl1WA7XV1dzJkzhxvpPHDgAL7++msYGRnh7NmzHX3YTNfT5AgPS1pmmCfIgx35zUD9AIHH4yEoKAhBQUG4c+cObt68CVVVVbi7uyvsQx5YbNu2Da+++ipcXV0V9iOVSqGtrY2+ffuioqICPXv2hEwmg5qaGjZu3IiNGzciLy8Pv/32GyorKxX2+aTz58/j9OnTiImJ4YKd2tpahIaGIj4+HqmpqVwRQ/nr5RenCxcuoLq6GmPGjEELNz8KDh482Optm5OTk4N58+ahsLAQfD4fixYtQmBgYIPtoqOj8cEHH0AsFkNPTw+XLl1qk/dn2o48UNbQ0OBWWj05FXv+/HloaWkpFEz08/NDcnIyrl+/jsLCwn9k2wzmH6K54Z8OHYRimH+A5pKgn1RdXU1Tpkwhe3t72rdvH2VlZVFRURHdv3+fFi9eTDwej06cOMHt92mPg4goMzOTXn/9dXJ3d+eeKysro0WLFpG6ujqNGTOGdHR0SE1NjZycnLikY7mrV6+SmZlZk4UW21tr6v+UlpaSlZUVV7elo2rTMG1HKBTSjRs3yMXFhcaOHUuPHz8mor+nwsrLy6mmpqYzD5HpOlgdHoZpC/VbYch/iZpKrlRRUcHatWvxzTffYM2aNQgKCoKFhQXKysqQl5eHzZs3Y8qUKSAifP/99/jxxx/h6OiIsWPHwsXFhVu63hj6a7Tn8uXLuHfvHlauXMk9d/PmTURFReHTTz+Fq6srfv75Z0yePBnnzp3D/fv34ezszL3e1tYWxcXFqK2tbdv/qFZqTf2fw4cPY+rUqVydoj59+nTKsTJPTyqV4ssvv0RRURGOHTsGKysrnD17Fnw+X+F3p2fPngBYsjLTvljAwzDPqLmCh0DdEL+joyP27duHPXv2ICoqCjdu3EC/fv3g5eXFXcB5PB7mzZsHR0dH7NmzB97e3rCxsYG+vj68vb3x8ccfN/reAHD58mVoampytYSAukCrtLQUrq6uEAqFGDJkCHx8fDB8+HCIRCIAfwdMjx8/hqOjIy5cuNCgyGBHa6r+T1paGsRiMby8vCAQCBAYGNhs3yfmxSEQCHDw4EEMGDAAK1euxHvvvQeg6Tw5Fuww7YkFPAzTjuQdt/l8PkaNGsU1OX0Sj8eDjY0N+vfvj+nTp+PIkSOIjo5GQUEBt5/6FwMejweRSIQHDx7AxMSEy90BAHd3dwwZMgSzZ8+GgYEBPvzwQwB1d9HyO+n6d9YVFRUoLS0F0HmNGYVCIXx9fbFt2zbuGOUkEgni4+Nx8eJFVFVVwcXFBc7OzqxxKuo6nZ89exZ9+vRBYmJig+d//PFHbN68GUBdEc7du3dzhSzbm0wmg7a2Ni5fvgyZTMYtuWfNP5nOwsJphmlHfD5foXu7PABqTGpqKsLCwriqtl5eXpg9eza3nycVFBSguroa+vr63P7l20ZERGD27NnIycnBjz/+iNjY2AavJyJoa2sjJycHvXv3BtC+7SuaIhaL4evri7lz52Lq1KkNnjcyMsK4ceOgoaEBPT09eHh44M6dOx1+nC8iPz8/RERENPm8qakpLl26hLt37+Jf//oXFi1a1GHHJv/O6ujocMEO1WvTwjAdjQU8DNNB6gc/jYmIiEC/fv24JehSqbTZ/SkrK6O4uBgmJiYNtldTU+NygSoqKjBx4kRERkYqvJ7H46GqqgolJSXo1q3bs36s50JEWLBgAaysrBotdggAkydPxuXLlyGRSCASiXD9+nXWfuAvHh4e0NHRafL5ESNGoFevXgAAZ2dn5ObmdtShNepFaZfBvJzYlBbDdCJ5Lk1aWhquXLmCCRMmQFNTE0Dzoy1EBBMTExQWFnLTWSoqKrh27RoGDBgAAwMDJCcnY9asWZg4cSJeeeUVhIWFwdvbW2EkKDY2Fj169Gj2otmeYmNjERoaCltbW9jb2wNoWP/HysoK48aNg52dHfh8PgICAmBjY9Mpx/tPtn///qeqFcUwXQ0LeBimE8lkMigpKeHkyZNQUVHB2LFjW/U6Ho+H6upq9O3bl8u/AYDQ0FDweDwsX74caWlpeOWVV5Cbm4vy8nJudROfz4dEIuGmvgwMDLgEamqi1k97cXNza1X9n1WrVmHVqlVt+t6tqQFUXl6ON998E9nZ2ZBIJFi5ciXefvvtNj2OjhAVFYX9+/cjJiamsw+FYToNm9JimE4kH8X54osv4O3tzeXjtIaysjJcXV0RHx8PoG5Ky8/PD1lZWRgxYgR+/vln7N27F76+vqipqcGcOXMavO/Jkyfh5OQEc3NzAC/XlIOysjK++OILpKSk4Nq1awgJCUFycrLCNiEhIbC2tsadO3cQHR2NDz/8sNOW8D+ru3fvIiAgAKdOnYKurm5nHw7DdBoW8DDMCyAyMhJ+fn6t3p6IoKysDF1dXW6puZKSEoYNG4YzZ87g66+/ho2NDYRCIcaPH4+YmBgYGRlx01k8Hg+RkZF48OAB3nzzzUZbAHR1hoaGcHBwAKBYA6g+Ho8HgUAAIoJQKISOjk6LTVxfJNnZ2Zg6dSpCQ0PZqjbmpcd6aTHMC+JZppPS09Nx7949eHl5oXv37hCLxVBRUcH27dvRu3dvbpWXnHx5+4MHDxAUFITHjx83SGZ+GWVmZsLDwwOJiYkKy+IFAgEmTZqEP//8EwKBAEeOHMGECRM68UgVtdTpPCAgAMeOHeMS25WVlREXF9eZh8ww7a3JkygLeBimCzp06BDs7e0VmoHWt3LlSty8eROffvopvL29X+raKEKhEJ6enlizZk2DZfG//PILYmNj8eWXX+L+/fsYPXo07ty506BWEMMwL4wmAx42pcUwXZCvry9sbGwaDXZ+++03fP/99/joo4/g7e0NoHPq77wIWqoBdODAAUydOhU8Hg9mZmYwNTXFn3/+2QlHyjDM82IBD8N0QZqamo0GMdXV1SgqKsJXX331Qk3NdIbW1AAyNjbGxYsXAQBFRUVITU3FwIEDO/IwGYZpI2xKi2FeMvLf+ZdpRVZjYmJi4O7urjDt92QNoPz8fPj5+aGgoABEhNWrV+PNN9/szMNmGKZ5LIeHYRiGYZguj+XwMAzDMAzz8mIBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbo8FvAwDMMwDNPlsYCHYRiGYZgujwU8DMMwDMN0ecotPP9yl2JlGIZhGKZLYCM8DMMwDMN0eSzgYRiGYRimy2MBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbq8/wOXqHpe+0QqrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot PDF of uncertainty model\n", + "x = [ v[0] for v in u.values ]\n", + "y = [ v[1] for v in u.values ]\n", + "z = u.probabilities\n", + "#z = map(float, z)\n", + "#z = list(map(float, z))\n", + "resolution = np.array([2**n for n in num_qubits])*1j\n", + "grid_x, grid_y = np.mgrid[min(x):max(x):resolution[0], min(y):max(y):resolution[1]]\n", + "grid_z = griddata((x, y), z, (grid_x, grid_y))\n", + "fig = plt.figure(figsize=(10, 8))\n", + "ax = fig.gca(projection='3d')\n", + "ax.plot_surface(grid_x, grid_y, grid_z, cmap=plt.cm.Spectral)\n", + "ax.set_xlabel('Spot Price $S_T^1$ (\\$)', size=15)\n", + "ax.set_ylabel('Spot Price $S_T^2$ (\\$)', size=15)\n", + "ax.set_zlabel('Probability (\\%)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "The payoff function equals zero as long as the sum of the spot prices at maturity $(S_T^1 + S_T^2)$ is less than the strike price $K$ and then increases linearly.\n", + "The implementation first uses a weighted sum operator to compute the sum of the spot prices into an ancilla register, and then uses a comparator, that flips an ancilla qubit from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $(S_T^1 + S_T^2) \\geq K$.\n", + "This ancilla is used to control the linear part of the payoff function.\n", + "\n", + "The linear part itself is approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018.\n", + "\n", + "Since the weighted sum operator (in its current implementation) can only sum up integers, we need to map from the original ranges to the representable range to estimate the result, and reverse this mapping before interpreting the result. The mapping essentially corresponds to the affine mapping described in the context of the uncertainty model above." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# determine number of qubits required to represent total loss\n", + "weights = []\n", + "for n in num_qubits:\n", + " for i in range(n):\n", + " weights += [2**i]\n", + "n_s = WeightedSumOperator.get_required_sum_qubits(weights)\n", + "\n", + "# create circuit factory\n", + "agg = WeightedSumOperator(sum(num_qubits), weights)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price = 3.5\n", + "\n", + "# map strike price from [low, high] to {0, ..., 2^n-1}\n", + "max_value = 2**n_s - 1\n", + "low_ = low[0]\n", + "high_ = high[0]\n", + "mapped_strike_price = (strike_price - dimension*low_) / (high_ - low_) * (2**num_uncertainty_qubits - 1)\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [0, mapped_strike_price]\n", + "slopes = [0, 1]\n", + "offsets = [0, 0]\n", + "f_min = 0\n", + "f_max = 2*(2**num_uncertainty_qubits - 1) - mapped_strike_price\n", + "basket_objective = PwlObjective(\n", + " n_s,\n", + " 0,\n", + " max_value,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# define overall multivariate problem\n", + "basket_option = MultivariateProblem(u, agg, basket_objective)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEzCAYAAAAbwoWxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XecFPX9x/HXR4oooIAIFlRssWsi2DUcYkUFRayxF6LRqBiNieanWDCxl9gbqKggdhEBwTvsCtgVNEYRsSG9I+Xz++M7F9dl72737nZnZ+/9fDz2sbezM7PvXZb57HznO98xd0dERKS2Vok7gIiIJJsKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiRQtM+tnZp5y+87MnjSzTWPMtIeZvWtmi83Mo2nNzWywmc2Icp5UxbID095P5e2+gr6JX/L0MbNDM0yfbGbXx5FJkqlx3AFEajAHOCD6exPgSmCMmW3j7gtiyHM3MA3YH1gSTTsTOAQ4AfgW+G81y08CTk6bNq2eM2arD/Ax8Eza9MOAGYWPI0mlQiLFbpm7vxX9/ZaZTQFeBboDQ2PIsyVwj7uPTZv2mbs/mcXyC1LeT1Fy9/fiziDJoqYtSZoJ0X1HADPbzcyei5q9FpjZ+2b2h8qZzaxN1Ax1YupKLPjKzG5Mmba3mb0dzf+jmd1hZi2i58qipqxGwC1Rk9RAM5sMnAr8rrKpqrZvrPI1zGzbtOkVZvZEyuOBZjbezPY1sw+j9/2amW2TtlwjM/u7mX1uZkvMbKqZDaxcJ9AJODGlie2k6LmVmrbM7Egz+yhazzdm1t/MGqc8f1K0ju3M7KUo0yQz61Xbz0OSQ4VEkqZjdP9DdL8R8DpwGqF56UlggJkdA+DuM4GnWbk5qSxa1wAAM9saGAFMBw4HLgOOBSo34O8Cu0V/3xD9fSWhGWg4oclqt5R5qmRmjVNvWb3rlW0IXAf0B44B2gGPm5mlzHM3cDnwOHAw8BegefTcn6LMw1Nyv1BF3v2AIYTPoCfwb+AC4LYMsz8KPEf4XP4DDDazDrV8j5IQatqSopeysd0EuAOYB4wGcPfBKfMZ8ArQATgdeCx66n5glJlt4u5fRtNOBia4+0fR40uBr4Ee7r48Wt9MYIiZ7ebubxKa1gAmpzZPmdlPQPssm6w6AUvT3t/m7v5FFsumagPs4e7/idaxCqFgbgFMMrMtCXtK57r7rSnLDQFw90/NbAHwUxa5rwAq3L1yr25E9Dn808yucvepKfPe5O4PRJkmAD8SithdOb4/SRDtkUixW4uw4V0KfEYoJke5+/cAZtbazG41s69T5usD/CZlHWMIReLEaJmWQC+ivZHIzsDTlUUk8iSwDNizHt/PRGCntNs3tVjP5MoiEvk0uq/89d81uh9Yi3X/j5k1AnZk5eNRQwjbj/Q9sFGVf7j7DEJHAu2RlDjtkUixmwPsAzihOes7//WQ1QOBXQnNTJ8Ccwm9qHpWzuDubmYDgFPMrB9wJOG7/2jKetYl/HomZbnlZjaD8Ou/vix09/H1sJ7ZaY9/ju6bRfdrEQ7sz63j67QFmpD22aQ8Tv9sMuVqhpQ0FRIpdsuq2vCaWTPgIOBsd78rZXqmPe0BhOMeXYGTgGfcfVbK898TjjOkrr8RYYM8sy5vIAeLo/umadPbEI7d5GIG0NzM1qhjMZlO2Mtrlza9fXRfqM9GipiatiTJViX0oqo8n6Oy2apH+ozu/g2h2eVyQlPVgLRZ3gYOi4pHpV6EH1uv1W/sKlUea9iqcoKZbUA47pGrl6P7E6qZp8a9haipbwJwRNpTRwIrgDdrkU1KjPZIJLHcfY6ZjQMuNbO5hA3b3wjNYWtkWOR+Qlv/VOCltOeuAt4DnjGzOwnt+tcAI6MD7Xnn7lOj93OlmS0k/NC7mFr86nf3z8zsHuAGM2tH6ITQCujt7kdHs00C9jez/Ql7MF9FxzXSXQaMjJoHBwPbEZoS70070C4NlPZIJOmOBb4CHgJuIRwgf6iKeYcRDp4/6O4rUp9w90+AAwlNOE8RCstjQO/8xK7SscAUYBBwNaHH1Ge1XNefCHtgxxG6+d4MLEp5/irCwf/HgXGE7tMrcfdRwNFAZ+B54DxCF+iza5lLSozpUrvSUJhZd0Ix+U0tutuKSBVUSKTkmdl6wOaEE+mmuPvBMUcSKSlq2pKGoA/hXJLFwJ9jziJScrRHIiIidaI9EhERqZMG0f23bdu23rFjx7yse8GCBTRv3rzmGYtUkvMre3ySnD/J2aGw+SdMmDDd3deuab4GUUg6duzI+PH1MSrFyioqKigrK8vLugshyfmVPT5Jzp/k7FDY/NEYdjVS05aIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComISClavBhOOQU+q+1VCLKnQiIiUmoWLYKePWHAAHj77by/XIM4s11EpMFYsAB69IDycnjgATihuqst1w8VEhGRUjF/Phx0ELz2Gjz4IBx/fEFeVoVERKQUzJ0L3bvDW2/BoEFwzDEFe2kVEhGRpJszBw44AMaPh8cegyOOKOjLq5CIiCTZrFmw337wwQcwdCgcemjBI6iQiIgk1YwZsM8+8Omn8NRTcPDBscQoaPdfMzvCzJ4zs2/NbL6ZTTCzGhvyzGxVM7vBzKaZ2QIze8HMOuY/sYhIkfrpJ+jaFSZOhGeeia2IQOHPIzkfmA/0BXoA5cCjZvbnGpa7FTgJuADoDbQFXjKzZvmLKiJSpH78MRSRL76AYcPgwANjjVPopq1D3H16yuOXzWw9QoH5d6YFzKwDcCpwirs/FE37EPgKOA64L7+RRUSKR9Pp06GsDKZMgeHDw98xK+geSVoRqfQe0K6axfaL7p9KWc+3wGtAvGVYRKSQpk7lt337wtSpMGJEURQRKI4hUnYHPq3m+S2Bqe4+P236xOg5EZHS9/XX0KULTWfOhJEjYa+94k70P+bu8b24WTfgJUKz1cAq5rkX2Mndf5s2/apoufWqWK4P0Aegffv2nQYPHlyf0f9n/vz5tGjRIi/rLoQk51f2+CQ5fxKzN/v+e37bty+N58/nrSuuYNmOOxbkdbt27TrB3TvXOKO7x3IDOgI/Ak/XMN+9wHsZpvcHvs3mtTp16uT5Ul5enrd1F0KS8yt7fJKcP3HZ//Mf9w02cG/d2n38+ILmB8Z7FtvYWJq2zKwN8CIwhXDAvDqzgFYZprcCZtdzNBGR4vH559ClCyxcGAZh7NQp7kQZFbyQmNnqwDCgKXCQuy+oYZFJwAZm1jxt+pbRcyIipWfixFBEli4NRWSHHeJOVKVCn5DYGBgKbA4c6O7TslhsVHR/WMp61gP2IuzViIiUlo8//qVHVkUFbLddnGlqVOjzSO4AugPnAm3MbNeU595z9yVmNgbA3btF91PN7H7gZjMz4CegH/A1MKiQ4UVE8u6DD8KwJ02bwssvwxZbxJ2oRoUuJJXnhNyS4bmNgclAowzPnQMsAG4EVgfGAse4++I8ZBQRice778K++0Lz5qGIbLZZ3ImyUtBC4u4ds5inLMO0JYSz38+v/1QiIkVg3Lgwiu+aa4ZjIhtvHHeirBXDCYkiIg3bm2+G5qw2bWDs2EQVEVAhERGJ16uvhj2R9u1DEdloo7gT5UyFREQkLhUV4cqGHTqEvzt0iDtRraiQiIjEYfTocI31jh1DEVkv42hPiaBCIiJSaCNGhAtRbbZZKCLt28edqE5USERECmnYMOjZE7baKnTxXXvtuBPVmQqJiEihPPMM9OoVzlQfMwbato07Ub1QIRERKYQnnoAjjoAddwzHR9q0iTtRvVEhERHJtyFD4OijYeedYdQoaJVpQPPkUiEREcmnQYPg2GNhjz3ClQ3XWCPuRPVOhUREJF8GDoQTTggj+Q4fDgm7MmO2VEhERPLh3nvhlFPC0CfPPx8GYixRKiQiIvXtjjugT59w1vpzz8Hqq8edKK9USERE6tOtt8JZZ8Ehh8DTT0OzZnEnyjsVEhGR+nLDDXDuuXDYYaG776qrxp2oIFRIRETqw7/+BRdcEM4VGTIkXOGwgVAhERGpqyuvhL//HY45Bh59FJo0iTtRQamQiIjUljtcemm4HX88PPwwNC70Fczjp0IiIlIb7nDxxWFv5JRTYMAAaNQo7lSxaHilU0SkrtzhwgvDwfU//jF0912l4f4uVyEREcmFO/TtC7fcErr5/vvfYBZ3qlg13BIqIpKrFSvg7LNDETnvPBWRiAqJiEg2VqyAM88MzVh//SvceKOKSERNWyIiNVm+HE47LQzCePHFcNVVKiIpVEhERKqzbBmcfHIYDr5fv9DVV0XkV1RIRESqsmxZOD9k8OCwF3LJJXEnKkoqJCIimSxdGs5Uf/JJuPba0N1XMlIhERFJt2QJHHUUPPtsOKjet2/ciYqaComISKrFi6F3b3jhhdC99+yz405U9FRIREQqLVoUhoAfORLuuiuctS41UiEREQFYuBB69oQxY+D++8P4WZIVFRIRkfnzwxUNX3klnCtywglxJ0oUFRIRadjmzYPu3eGNN8Iw8MceG3eixCn4EClmtpmZ3W1mH5jZcjOryGKZjmbmGW6DCxBZRErVnDmw337w5pvhXBEVkVqJY49kG6A78BaQ67UoLwBeT3k8vb5CiUgDM2sW7L8/vP8+DB0aDrJLrcRRSJ5392cBzOwJoG0Oy37m7m/lJ5aINBgzZsC++8Inn4QTDg85JO5EiVbwQuLuKwr9miIilZrMng177w2ffQbPPAMHHhh3pMRL2jDyA6LjKt+b2Y1mtlrcgUQkQX78kd/27Quffw7PPaciUk/M3eN78ahpy93LaphvXeASYBQwFygDLgJGuXvPKpbpA/QBaN++fafBg/NzXH7+/Pm0aNEiL+suhCTnV/b4JDF/0xkz2OH881n1xx/5+Oqrmb3jjnFHqpVCfvZdu3ad4O6da5zR3WO7AU8AFbVc9kzAgd/WNG+nTp08X8rLy/O27kJIcn5lj0/i8n/zjfvmm7s3b+7v3nxz3GnqpJCfPTDes9geJ61pK9UT0X0yf1aISGFMmQJlZfDDDzByJHN22CHuRCUnyYXE0+5FRH5t8mTo0gWmT4dRo2CPPeJOVJKSfGZ77+h+QqwpRKQ4/fe/0LVrGP5k9GjoXHNTv9ROwQuJma1OOCERYH1gDTOrLArD3X2hmX0BjHX3U6Nl+gEtCScjzgV+D1wIPOXuHxYyv4gkwOefhy6+ixeHQRh/97u4E5W0OPZI2gFD06ZVPt4YmEzI1Sjl+UmEs9pPA1YDpgDXAf3zGVREEmjSpFBEli6Fl1+G7bePO1HJi+OExMmA1TBPx7THgwGNqyUi1fvkk1BEzKCiArbZJu5EDUKSD7aLiPziww9D76xGjVRECkyFRESS7913w4H1VVeFsWNhyy3jTtSgqJCISLKNGwfdukGLFuHCVJtvHneiBkeFRESS6623YJ99oHXrsCeyySZxJ2qQVEhEJJleey1clGrttUMR6dgx7kQNlgqJiCTP2LFwwAGw7rrh7w02iDtRg6ZCIiLJMmZMGP59ww1DEVl//bgTNXgqJCKSHCNHwsEHw6abhi6+66wTdyJBhUREkmL4cOjRA7bYAsrLoV27uBNJRIVERIrfc8/BoYfCttuGYU/ato07kaRQIRGR4vbUU3D44WHgxTFjoE2buBNJGhUSESleQ4bAkUfCTjuF64m0ahV3IsmgxkJiZieY2VqFCCMi8j+PPgrHHgu77x4Osq+5ZtyJpArZ7JEMADYFMLPlZrZzfiOJSIP34INw3HHw+9/Diy9Cy5ZxJ5JqZFNIZgHrRX8burStiOTT/ffDySeH8bNeeAGaN487kdQgm+uRjAYeNrPPCEVkoJktqGpmd9cei4jUzl13wZlnhrPWn3oKVlst7kSShWwKySnAn4AtgB2Br4Cf8hlKRBqg226DP/85nHA4dCg0axZ3IslSjYXE3RcC1wOY2T7AJe7+Qb6DiUgDctNNcP754VyRIUOgadO4E0kOsum1tdzMdooeVgBz85pIRBqWa68NRaR3b3j8cRWRBMrmYPvPwKrR3ycAa+cvjog0KP37w0UXwdFHw2OPQZMmcSeSWsjmGMmnQD8ze4bQa6u3mXWuYl539zvrLZ2IlCZ3uPzycDvuOBgwABpnszmSYpTNv9yfgbuBmwi9ti6oZl4HVEhEpGru8I9/wNVXh26+994LjRrFnUrqoMamLXd/w923c/cmhD2SXd19lSpu+jaISNXcQ1PW1VdDnz5w330qIiUg17G2uhKaukREcuMeDqpfdx2cdRbceSesouH+SkFOjZLuPhbAzHYB9gTaADOB19z97fqPJyIlwR3OOSecK3LeeXDjjWAWdyqpJzkVEjNrDgwF9geWAzOAtYBGZjYCOCI670REJFixIpytfs89cOGFcM01KiIlJtf9ymuB3YCjgWbuvi7QLHq8G3BN/cYTkURbvhxOPz0UkYsvVhEpUbkWksOBi9x9qLuvAHD3Fe4+FPgbcER9BxSRhFq+PPTKeuABuOwyuOoqFZESlWvH7TWBb6p47htgjbrFEZGSsGwZHH88DB4cCsgll8SdSPIo1z2SD4AzzX79syJ6fGb0vIg0ZEuXwjHHhCJyzTUqIg1ArnskFwMvApPM7GngR6AdcBjQETiwXtOJSLL8/HMY7uTpp0PPrL59404kBZBr99+Xzex3wKWE4yHrAt8DbwO93F3nmIg0VEuWhIEXhw2DW28NQ8JLg5Dz4DZRsTg6D1lEJKkWLYJevWDECLjjjtDdVxqMnI6RmNn1ZrZ1vsKISAItXAg9esDIkWHcLBWRBqc23X8/MrN3zOwMM1sz1xc0s83M7G4z+yC61klFlsutaWYDzGyWmc0xs0fMbK1cX19E6tGCBeGKhmPGhBF8Tzst7kQSg5wKibtvDOwDTAKuA743s0ejKydmaxugO/B5dMvWEKAMOA04CdgJeCaH5UWkPs2bBwceCGPHwqBBcOKJcSeSmNTmGEk5UG5mLYCjgBOBkWY2FRgIPOjuX1aziufd/VkAM3sCaFvTa5rZboRhWbq4+yvRtG+Bt81sH3cfnev7EJHaazR/Puy/P7zzTrgg1ZFHxh1JYlTroTfdfb673w9cBrwObAD8HfjczJ41s42qWG5FLV7uQODHyiISrecd4CvU5ViksGbPZocLL4Rx48L11VVEGrxaFRIz62hml5nZl8AoYD6hO3BLoAfhnJLB9RUS2JLQnJZuYvSciBTCzJnQrRstvvgCnnwSDj887kRSBMzds5/Z7HjgZOD3wBRgADDA3aemzdcFGB1dDKu69T0BtHX3shrmewlY4O6Hpk0fBGzi7rtnWKYP0Aegffv2nQYPrs+69ov58+fTokWLvKy7EJKcX9kLq8mcOezwl7+w+pQpjL/4YhaWlcUdqVaS+NmnKmT+rl27TnD3qi6t/j+5HiO5B3ga2N/dx1Qz3+fAVTmuuyaZKp5VMR13v4eQl86dO3tZnr70FRUV5GvdhZDk/MpeQNOmwT77wLffwrBhLGzaNFn5UyTus09TjPlzLSTrufusmmZy9++By2sXKaNZwNoZprcCZtfj64hIuh9+gG7d4Kuvwlnr3bpBRUXcqaSI5Nr9t8YikieTyHwspKpjJyJSH777DsrK4Ouv4cUXQxERSZPzwXYzO8rMRpvZFDObln7LR0jCQJHrmNmeKTk6A5tEz4lIffvmG+jSJTRnjRgR/hbJINchUo4FHgS+ADoAzwHDovXMBW7LYh2rm1lvM+sNrA+sXfnYzFaP5vnCzO6vXMbd3wRGAg+ZWS8zOxR4hHCteJ1DIlLfJk8OhWPaNBg1Cvbcs8ZFpOHK9RjJhcCVwL8IPaLucPd3zawl8BKQzfXa2xGu+56q8vHGwOQoV6O0eY4GbgIeIBSuYcA5OeYXkZp8+SV07Qpz58Lo0bDTTnEnkiKXayHZHHjd3Zeb2XKiKyK6+zwzu4awob++uhW4+2RCb6vq5umYYdpsQtfjk3PMLCLZ+s9/YO+9w0CMY8bAjjvGnUgSINdjJHOAVaO/vwW2SnnOAA2iKJJUkyaF5qzFi+Hll1VEJGu57pGMB7YnHK94DrjUzJYBPxMudvV2/cYTkYL45JPQI8sdysth223jTiQJkmsh+SdQOYbWpdHfdxCOZ4wjOpNcRBLko49CEWncOOyJbKlRhyQ3WRUSM1uNMPR7R+AHM2vv7j8CPc1sVWBVd5+bv5gikhfvvx/OWG/WLBSR3/wm7kSSQDUWEjPbBBhNKCKV5prZke4+yt2XAEvylE9E8mXCBNh3X2jZMhSRTTeNO5EkVDYH268FVgB7AasTLkz1HnB3HnOJSD69/XZozlpzzXBhKhURqYNsCsluwD/c/XV3X+zuE4E/Ahua2br5jSci9e6NN8KeSNu2oYh07Bh3Ikm4bArJukD6FQ//S+juu069JxKR/Hn11XBlw3XWCUVkww3jTiQlINvzSLK/aImIFKfycjjgAOjQIRSR9dePO5GUiGy7/46MzhdJNyZ9uru3q3ssEalXL70EPXqEYyFjxkD79nEnkhKSTSGpz+uKiEihvfgiHHYYbLFFGDtr7UyX9hGpvRoLiburkIgk1fPPQ+/esM02Ya9kLY1iJPUv5+uRiEhCPP00HH44bL99aM5SEZE8USERKUVDh8IRR0CnTqE5q3XruBNJCVMhESk1jz0GxxwDu+4KI0eGkw5F8kiFRKSUPPwwHHcc7LFHuDzuGmvEnUgaABUSkVLxwANw4olQVgbDh0OLFnEnkgZChUSkFNxzD5x6ahj6ZNgwaN487kTSgKiQiCTd7bfDH/8IBx0Ezz4Lq60WdyJpYFRIRJLs5pvh7LOhZ0948slwXRGRAlMhEUmq66+Hvn3DuSJDh8Kqq8adSBooFRKRJLr6arjwQjjqqNDdt0mTuBNJA6ZCIpIk7nD55XDJJfCHP8CgQSoiErtsR/8Vkbi5w//9H/TvDyedBPfdB40axZ1KRIVEJBHc4W9/g2uvhdNPh7vuglXUoCDFQYVEpNi5w/nnhx5aZ54Jt92mIiJFRd9GkWLmDuecE4rIOeeEc0ZURKTI6BspUqxWrPhlD6Ryj8Qs7lQiK1EhESlGK1ZAnz5w993h2Mj116uISNFSIREpNsuXw8knw/33h15aV1+tIiJFTQfbRYrJsmVwwgnhJMMrrgiFRKTIqZCIFIulS8NJhkOHwj//GZq0RBJAhUSkGPz8c7iq4VNPheMhf/lL3IlEslbwYyRmtrWZjTGzhWb2nZldYWbVnp5rZh3NzDPcBhcqt0jeLFkCvXuHInLzzSoikjgF3SMxs9bAaOBToCewKXADoaD9I4tVXAC8nvJ4en1nFCmoxYvD6L3Dh4dzRP70p7gTieSs0E1bZwCrAb3cfS7wkpmtAfQzs2ujadX5zN3fyntKkUJYuBAOPRRGjw5XODz99LgTidRKoZu2DgRGphWMwYTi0qXAWURis8qiRXDwwaGIPPCAiogkWqELyZbApNQJ7j4FWBg9V5MBZrbczL43sxvNTNcUleSZN4/t//Y3GDsWHnoojOQrkmDm7oV7MbOlwIXufnPa9KnAQ+5+cRXLrQtcAowC5gJlwEXAKHfvWcUyfYA+AO3bt+80eHB+jsvPnz+fFi1a5GXdhZDk/EnM3mjBAra/6CJaTpzIpEsuYdree8cdqVaS+NlXSnJ2KGz+rl27TnD3zjXO6O4FuwFLgXMzTP8W6J/jus4EHPhtTfN26tTJ86W8vDxv6y6EJOdPXPZZs9x32cW9cWP/uF+/uNPUSeI++xRJzu5e2PzAeM9ie1zopq1ZQKsM09cEZue4riei+x3rlEikEGbOhH33hXffhaFD+amLDglK6Sh0IZlE2rEQM9sAaE7asZMseNq9SHGaPh26dYMPPwznihx6aNyJROpVoQvJi8D+ZtYyZdpRwCJgbI7r6h3dT6iPYCJ5MW0a7L03TJwIzz4bemqJlJhCn0dyF3AO8JSZXQNsAvQDbvSULsFm9gUw1t1PjR73A1oSTkacC/weuBB4yt0/LOQbEMnaDz+EPZGvvoJhw2CffeJOJJIXBS0k7j7LzLoBtwHPE46L3EQoJum5UodNmUQ4q/00wjknU4DrgP55jixSO999F/ZEvvkmnLVeVhZ3IpG8Kfigje7+KVBtn0d375j2eDDhxEWR4jd1aigi338PI0bAXnvFnUgkrzT6r0h9+vrrUESmT4dRo2C33eJOJJJ3KiQi9eWrr6BrV5gzB156CXbeOe5EIgWhQiJSH774IuyJzJ8PY8bAjjq9SRoOFRKRuvr887AnsmQJlJfDDjvEnUikoFRIROpi4sSwJ7J8eSgi220XdyKRgiv4FRJFSsbHH4duve5QUaEiIg2WColIbXzwQSgijRuH4eC33jruRCKxUSERydW774bmrNVXD0Vkiy3iTiQSKxUSkVyMGxeGPWnZMhSRzTaLO5FI7FRIRLL15pthvKw2bUIR2XjjuBOJFAUVEpFsvPoq7LcftG8fishGG8WdSKRoqJCI1KSiAg44ADp0CH936BB3IpGiokIiUp3Ro6F799CMVVEB660XdyKRoqNCIlKVkSPhkENg883DyYbt28edSKQoqZCIZPLCC9CjB2y1Fbz8Mqy9dtyJRIqWColIumefhcMOg+23DwMwrrVW3IlEipoKiUiqJ5+E3r3D6L0vvQStW8edSKToqZCIVBoyBI46CnbZJVyUqlWruBOJJIIKiQjAoEFw7LGwxx7h8rhrrBF3IpHEUCERGTgQTjghDMI4fDi0aBF3IpFEUSGRhu3ee+Hkk2HffWHYMGjePO5EIomjQiIN1x13QJ8+4YTDZ5+F1VaLO5FIIqmQSMN0yy1w1lnhXJGnnoJmzeJOJJJYKiTS8NxwA5x3HvTqBUOHwqqrxp1IJNFUSKRh+ec/4YIL4MgjYfBgaNo07kQiiadCIg3HFVfAxReHbr6PPAJNmsSdSKQkqJBI6XOHSy+Fyy6DE0+Ehx4K11oXkXqh/01S2tzDXsi//gWnngr33AOr6PeTSH1SIZHS5R6Oh9x4I5xxBtx+u4qISB6okEhpcg89s269Fc5y9osrAAAStUlEQVQ+O9ybxZ1KpCTp55mUnhUrwjkit94KffuqiIjkmQqJlJYVK+CPf4Q774S//jWcM6IiIpJXKiRSOpYvDwfU77sP/vGPcIBdRUQk73SMRErDsmVh8MVBg+Dyy0N3XxEpiILvkZjZ1mY2xswWmtl3ZnaFmTXKYrk1zWyAmc0yszlm9oiZ6RqoAkuXwvHHhyLSv7+KiEiBFbSQmFlrYDTgQE/gCuAvwOVZLD4EKANOA04CdgKeyUdOSZBx4+Cgg8JwJ9ddF84ZEZGCKnTT1hnAakAvd58LvGRmawD9zOzaaNpKzGw3YH+gi7u/Ek37FnjbzPZx99EFyi/FwB1GjGCHiy+G99+HNdcMQ8KfeWbcyUQapEI3bR0IjEwrGIMJxaVLDcv9WFlEANz9HeCr6DlpCH7+OQxvsv320L07q0+dCtdfD1OmqIiIxKjQeyRbAi+nTnD3KWa2MHru+WqWm5Rh+sToufy4/fYw0F81dl+6NNGD/yUq/6JFMG8ebLMNPPggb627Ll323TfuVCINXqELSWtgdobps6LnarPcJpkWMLM+QB+A9u3bU1FRkVNQgNYLF9J2112rnWfp0qU0ScqGOINE5Tdjxq67MnOXXcCM+fPn1+rftRgkOTskO3+Ss0OR5nf3gt2ApcC5GaZ/C/SvZrmXgKczTH8EeL2m1+3UqZPnS3l5ed7WXQhJzq/s8Uly/iRndy9sfmC8Z7FtL/QxkllAqwzT1yTzHkdNy7WqYTkREcmzQheSSaQd0zCzDYDmZD4GUuVykaqOnYiISIEUupC8COxvZi1Tph0FLALG1rDcOma2Z+UEM+tMOD7yYj6CiohIdgpdSO4ClgBPmdk+0QHxfsCNntIl2My+MLP7Kx+7+5vASOAhM+tlZocSjo+85jqHREQkVgUtJO4+C+gGNCJ09b0cuAm4LG3WxtE8qY4m7LU8ADwETAAOy2deERGpWcEHbXT3T4G9a5inY4Zps4GTo5uIiBQJDSMvIiJ1okIiIiJ1YuGck9JmZj8BX+dp9W2B6XladyEkOb+yxyfJ+ZOcHQqbfyN3X7ummRpEIcknMxvv7p3jzlFbSc6v7PFJcv4kZ4fizK+mLRERqRMVEhERqRMVkrq7J+4AdZTk/MoenyTnT3J2KML8OkYiIiJ1oj0SERGpExUSERGpExUSERGpExUSERGpk4IP2ijS0JjZ3sCBhAuxtQaccGXPScBwdy+PMV5OzGx7YEfCe5jg7h/HHEmKgHptNRCltDGDZGzQzKwN8DSwF/AVMJFw2WgjXCZ6S8LF2V4Bern7zJiirsTMHgX+4e5fRo+bAY8BPQj5IXz2TwJ/cPelsQStQSl974v5O69CUktmZsAh/PIPO57wxSyqDzTJGzNI9gbNzAYBOwHHufu4KubpDAwCxrn78YXMVx0zWwHs6u7vRI9vAM4EzgeeIHzmRwA3Ate4++VxZc0kyd/7RH7n3V23Gm7AG8BWKY9bA+OAFcDc6LYimq9l3HnTsg8CPgN2qmaezoRfaA/HnTdDthXAzimPbwAWAmcQBq9bK/p7IXBZ3HnTss8GemYx36HA7Ljz1vC5fwdcmmG+K4DP486bIVdiv/dJ/M7HHiAJtwz/sPcDM4EDUqYdQPjFc1PcedOyJ3ZjVsVnn5gNWvQdOTSL+Q4DZsadt4bPfRnw+wzzdQMWx503Q67Efu+T+J1Xr63a6QFc4e4jKidEf/cHesWWKrMV/LI7XB2L5i127YCKDNPHAhsWNkqNngVuMLM9qprBzHYHriM0wxSb3c2su5l1B2YAa2SYZw1gUWFjZaWUvvdF/51Xr63aaUU4JpJuArBOgbPUpHJj9pO7v55phiLfmEHYoLWN/k7SBu1c4HHgVTP7gdCMMpvQvl3ZTr8OMAroG1fIatyY9ng/YFjatD2A/xQmTk6S/r1P1HdehSR7h0cHRiE0YWW62EtbwvGSYpL0jRkkdIPm7nOBA8xsN0LTZ2XPIQgXJroPeNHd34opYnU2zjBtSYZp8wht+MUm6d/7RH3n1WsrC1EPlnQD3f2UtPnuBrZ2970Kkyx7VWzMZhH+gxXrxgwz2yjD5CXu/kPafJcBk9x9SGGSSRIk8XufxO+8Ckk9MrPTgf+6+8txZxERKRQVEpGYmdm9wCrufmrcWXKV5OxSf3SMRIDkbxASnr8ryR33LsnZE/29Kabs2iOpR2Y2mvCZdos7S67M7AvCl3KTuLPURtLzSzyS/L0ppuyJ/SVRpIyEfqbuvlkxfCFrK2n5zayZmd1jZpvHnSVXSc6eLmnfm1TFlF17JA2YmW1M6Ob5lbt/FXeeXBV7fjNbvZqnWwHfEAYUfA3A3RcWIlc2kpy9JmbWEXB3/zrmKDkr1uyJ/PVcrMysiZkVxZmmlaJMt5rZTDObb2bXRtNvB74ARgNfmNkjZtYo1rAZJDz/vGpu3xD2YF9MmVZMkpwdM+uTckJf5bRzzewn4L/Al2b2o5n9KZ6EVUtidh1sz5KZnUUY+bQd8Clwm7s/nDbbjoSBG4tpg/ZX4DTCCU4zgT+b2dqEMYZOAt4F9gSuB/4I3BFPzColOf8iwgmq1xPOTk7VHLgNuJZwTkOxSXJ2gDuB9wknfmJmfYCbCCcpPhHN0xv4t5nNdvdHY0mZWfKyxz3YVxJuwNGE8XgeAS4gDKmwnPCPulrKfLsAy+POm5Z9EnBhyuM9o/dyXtp8lwPj485bSvmB9YBHCRuEPwONUp5bM3ofKw2EWAy3JGePMqYPfDiJcBJx+nwPE4bwjz1zkrOraSs7FwDXu/sf3P16dz+MMGTBnkC5ma0Vb7xqbQS8k/J4QnT/Ttp8rxGuz1BsEpvf3b9z92MJo/ueAnxkZvvHHCsrSc5ehU0J1/RINxjYusBZclX02VVIsrMFMDx1gruPAXYl/Dp708w2jSNYFhYQDo5WWhLd0g+ONqI4mzqTnh93fxXoBNwOPGpmwwjfqaKX5OxAMzNbPeo4MIPQipBuOWH8rWKTqOwqJNmZQxiQ8VfcfTKwO2H3/w3C1fCKzWeEC/gA4O4r3H01d38/bb5tgMmFDJalpOcH/pf7duA3wFTgVYpkI1CTBGcv55fOAO2AnTPMsz2h80CxSVT2ovwFV4QmEA7uPpH+hLvPMrNu0XO3Unz/wW4kXFGtJvtQnMNpJz3/r7j7DOAMM7sV2Bwomutu1yRh2U/OMO37DNN2JlyytpgkLrvOI8mCmR1BGGr6YK/i2s5R19M7gX3dPdMQ3CIiJUmFRERE6kTHSEREpE5USEREpE5USEREpE5USEQk78zsTjP71sxiPyhrZhuY2Rgzm2hmn5jZtWZmcedKMhUSESmExwhj0RWDZcBF7r4V8DvC0Ea94o2UbCokDYCZnWRmE8xsnpnNMrP3zOzGuHNlw8wujX7JrjCzgdXMV7D3aGZHmtlJWc7bz8w85fadmT2ZzUgIZjbQzMbXOXA9sOADMzsxbfoqZnZ29HkvMrO50a/8W1N/5bv7K+7+Y4GyVpvJ3b939/FRrp+BD4ENUpa/3czuL0TWUqHuvyXOzP4OXEkYqbUcaEYY8uI4d98szmw1MbPOwDjgYqACmObu/80wX0Hfo5k9AbR197Is5u0HnAccEE3aJMraCNjG3RdUs+ymhEFBYz/xz8yOAq4DNnX3pSnTHyeMO3cD8BbQgjDaQ1d375xhPe7ueW1GyiVTNE7e+8B+7j4xmtaRMFDitu7+RT6zloy4R43ULb834Fvg9gzTLe5sWWQ/jjBSwBrF9B4JoxhUZDlvP2B62rQ9o/d1RBXLNAKaxv35p2V6HeifNu3A6H0cmO1nHzY5Ob1uWS7L5JIJWJXww+MvGeYdDdwQ9+eelJuatkpfK+CH9Ike/W8BMLOK6Fc2KdPKoqaYbVOmDTSz8WZ2kJl9amYLzewFM2tjZpuZWbmZLYjm2b6mYFET0UdmtsTMvjGz/mbWuPK1CMNkA8yJspTV9j2m5T/UzCaZ2WIze83Mtk6br6ZchwNdUpqr+tX0XtNUjmDcMUOuT4DFwC6ZmrbM7PfR5zzfzOZE/3a/S5tnTzMbG/37zDCze82sZcrz25jZCAsXC1tg4aDzWVWFNbPNCL/o04cI6hLdv5y+TPpnX0BZZbIwEsUjwHvufkOG9TwJ/MHMtI3Mgj6k0vcu4WJQJ1r9DHe/IXAF8A+gD2EDcw9hSOvBhAvuNAYGp7aRpzOz/YAhUb6ewL8Jw/XfFs1yJXBV9PfewG7RvJnk8h43IozfdSVwLGH05pFm1iyHXOXAe1Gm3YD7anjNdB2j+x/Spl0L/BPoDqx06eCokI4BlgInAkcRBlBcP2WePaJ5fiD8W5wXrW9AyqqeI4wcexzQI3qPLalaN8IozB+kTa9slrvOzDaqZvlCyjbT3YQBEf9SxfNvAO2B7eoxW+mKe5dIt/zeCCOEfknY3V8BfEIoBGukzFMBPJG2XFm0zLYp0wYSerxsmjLt2mi+E1KmdY+mbVVNrreA8rRpfyVs4DpEj0+K1tOiru8xJb8Du6dM2yh6T2fkkCvnpi1CcW1MGEG3nHD1wXXTcv02Q97xKY/fBMZTTZMdobCk59+78t+SMIq1A9vl8B26hwwXUALWIRyo9uj2MeF41kr/XoRiOzWabypwXxWvZSmfVWNCEfO0aY2ryVpjJmCP6LmPCMdH3gfOSVtP4+h7cXoc/2+TdtMeSYlz9w+BrQi/PO8g/Ef9P2C8mbWoxSon+68PeFcejHw5w7T1ySBqVtgRGJr21BDCXvJuuQTK8T1Oc/c3Upb9mtDUtHN950qxFmEvYilhWPxNgKPcPXVE12995aHx/8fMmhO6qT7o0ZYuwzyrRxkfN7PGlTfCRb+WEjogzCQMPX6XmR1lZu2yyL8O0WVfU7n7D4Tus/sTBixtBfQH3jCzpmnznubuHdzdovvTqnitE/nls1pKOFZB2rSlmRfNLpO7vx7l2M7dfxvdbk1bzzJgdvTepQYqJA2Auy9x9+fd/Wx335pwDfTNgVNrsbrZaY9/zjC9clqzKtbRFmgCpHcHrXzcJtdQObzHaRkWnwasm49ckTmEa9V0BjoAHd39xSpeoyqtCQUy03DiqfM0IhTT1I3uEsL72sDdVxB6NP0APAD8YGavph9nSdMsWsdK3H25u49y9z8Rmj0HEJqDalt0nyd8VpW3M6LpO6XdqlSPmZZQ9XdYUuh6JA2Qu99vZtcCW0aTFgNN02ar7UYzG9MJG7j0X8Pto/uMQ/XnIsN7rJTpF3g7QnNYvnIt8+i8hWrUdHB6FqHZbt1q5pkdracfaVf0jHwH4O6TgMPNrAmwF3AN8IKZdYgKTbqZZPHL3N1XmNkowvU0arUB9nDNkxmVjyv3KLP4/PKRqRX18F1sCLRHUuIyNV2Y2dqEg8yVv4KnsvIGd998ZXL35YTmpCPSnjqSsLF8M5f1ZfkeK7Uzs91T5tuQ0Jz1Tg65fqbAv1Q9nG/yNnBCVZ0YonneArZw9/EZbt+lzb/U3V8mdD5Yl19f0jjVZ8CvrrFjZu2rmLcH4TLIb0fznWRm70e3JVFvufctnDzaJLt3n51sMmWbJ/r+rA58Xp8ZS5X2SErfR2b2LDCK0ISzEaEX0kLgwWiep4FTzewm4AWgK6GNOZ8uI/SWGkDo7bUdoUfUve4+Ncd1ZfMeK00HHjaz/wMWEQ7KTyMc2M421ySgp5kdSijC36VvpPPkb4RjBi+a2T2EHkq7EQ7ID4vm+SswxsxWEDoFzCM07xwEXEIogNcTjvt8SWgOuwj4wKu4aBvhHJJLzWxtd/8pmva4mc0DHidc4rgd8AdCT7fT3X02gLsPBAZG3WjnAXtEex35kE2mbPN0JuzdvZHhOUkX99F+3fJ7A84ibGC/IzRhTQYeBbZMm+/vhIOw84BBhF9xmXptjU9b7iTSelYRurI64YqS1WU7itBz5mfCBrk/KT1yMq27ju9xIKHXUy/CL80lhI3ktjnmaksovjOjfP2qydaPtBMSM8yz0udazefdBXiFUCRnE3qApff22gUYQegZtgD4lLDXsSZh4/owoYgsJhwreQzYsJp8TQnNTcenTDsleo2p0ec0k/AjpKyKdWwBTK3F97eMLE9IzCVTTXmAW0jr/aZb1TcNkSINRnQy4baeYegOqZ6Z3QJs5u4H1XL5I4ETa7t8fasuT9R772vgb+4+qODhEkjHSEQkG9cBZWb2m1ouvwPh/I5iUV2eIwjNnoMLFyfZVEhEpEYejg+dSvW9xqqzPSufGR+n6vIYcKqHc0kkC2raEpG8M7MpwP4ejbAbt2LLk3QqJCKSV2bWmtARooWHLtbKU2JUSEREpE50jEREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROrk/wEcnLjB7dtalgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", + "x = np.linspace(sum(low), sum(high))\n", + "y = np.maximum(0, x - strike_price)\n", + "plt.plot(x, y, 'r-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Sum of Spot Prices ($S_T^1 + S_T^2)$', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.4870\n" + ] + } + ], + "source": [ + "# evaluate exact expected value\n", + "sum_values = np.sum(u.values, axis=1)\n", + "exact_value = np.dot(u.probabilities[sum_values>= strike_price], sum_values[sum_values>= strike_price]-strike_price)\n", + "print('exact expected value:\\t%.4f' % exact_value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff\n", + "\n", + "We first verify the quantum circuit by simulating it and analyzing the resulting probability to measure the $|1\\rangle$ state in the objective qubit" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "state qubits: 5\n", + "circuit width: 14\n", + "circuit depth: 188\n" + ] + } + ], + "source": [ + "num_qubits = basket_option.num_target_qubits\n", + "num_ancillas = basket_option.required_ancillas()\n", + "\n", + "q = QuantumRegister(num_qubits, name='q')\n", + "q_a = QuantumRegister(num_ancillas, name='q_a')\n", + "qc = QuantumCircuit(q, q_a)\n", + "\n", + "basket_option.build(qc, q, q_a)\n", + "print('state qubits: ', num_qubits)\n", + "print('circuit width:', qc.width())\n", + "print('circuit depth:', qc.depth())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "job = execute(qc, backend=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact Operator Value: 0.3954\n", + "Mapped Operator value: 0.4969\n", + "Exact Expected Payoff: 0.4870\n" + ] + } + ], + "source": [ + "# evaluate resulting statevector\n", + "value = 0\n", + "for i, a in enumerate(job.result().get_statevector()):\n", + " b = ('{0:0%sb}' % basket_option.num_target_qubits).format(i)[-basket_option.num_target_qubits:]\n", + " prob = np.abs(a)**2\n", + " if prob > 1e-4 and b[0] == '1':\n", + " value += prob\n", + "\n", + "# map value to original range\n", + "mapped_value = basket_option.value_to_estimation(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_)\n", + "print('Exact Operator Value: %.4f' % value)\n", + "print('Mapped Operator value: %.4f' % mapped_value)\n", + "print('Exact Expected Payoff: %.4f' % exact_value) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we use amplitude estimation to estimate the expected payoff." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 5\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, basket_option)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % (result['estimation'] / (2**num_uncertainty_qubits - 1) * (high_ - low_)))\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "mapped_values = np.array(result['mapped_values']) / (2**num_uncertainty_qubits - 1) * (high_ - low_)\n", + "plt.bar(mapped_values, result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/simulation/bull_spread_pricing.ipynb b/qiskit/finance/simulation/bull_spread_pricing.ipynb new file mode 100644 index 000000000..ea7a786b1 --- /dev/null +++ b/qiskit/finance/simulation/bull_spread_pricing.ipynb @@ -0,0 +1,516 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Pricing Bull Spreads*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "Suppose a bull spread with strike prices $K_1 < K_2$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$\\min\\{\\max\\{S_T - K_1, 0\\}, K_2 - K_1\\}$$\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ \\min\\{\\max\\{S_T - K_1, 0\\}, K_2 - K_1\\} \\right]$$\n", + "
\n", + "as well as the corresponding $\\Delta$, i.e., the derivative of the option price with respect to the spot price, defined as:\n", + "
\n", + "
\n", + "$$\n", + "\\Delta = \\mathbb{P}\\left[K_1 \\leq S \\leq K_2\\right]\n", + "$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", + "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", + "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits to represent the uncertainty\n", + "num_uncertainty_qubits = 3\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K_1$, then increases linearly, and is bounded by $K_2$.\n", + "The implementation uses two comparators, that flip an ancilla qubit each from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K_1$ and $S_T \\leq K_2, and these ancillas are used to control the linear part of the payoff function.\n", + "\n", + "The linear part itself is then approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price_1 = 1.5\n", + "strike_price_2 = 2.5\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2]\n", + "slopes = [0, 1, 0]\n", + "offsets = [0, 0, strike_price_2 - strike_price_1]\n", + "f_min = 0\n", + "f_max = strike_price_2 - strike_price_1\n", + "bull_spread_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "bull_spread = UnivariateProblem(\n", + " uncertainty_model,\n", + " bull_spread_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XnclXP+x/HXWyEtshaGuq0/YxlDGQymVcm+hwzZmuzGTjNKqaFBGJJoJCJLtoi0mxgkxpasLRSRSuUmLZ/fH9/r1ul07vs+93auc93n83w8zuO+r+tc1znv+3Q6n3Nd3+v7/crMcM455yprvbgDOOecSzYvJM4556rEC4lzzrkq8ULinHOuSryQOOecqxIvJM4556rEC4nLW5J6SbKU2zxJIyXtGGOmAyW9LelnSRatayBphKTvo5xdS9l3aNrfU3K7P6d/xJo83SQdk2H9LEm3xJHJJVPduAM4V44fgEOj33cA+gDjJe1uZj/GkOde4FugI7A8WncecCRwOjAX+LyM/WcAZ6at+7aaM2arG/AB8Eza+mOB73MfxyWVFxKX71aa2evR769LmgP8BzgMeCKGPLsCg81sctq6j81sZBb7/5jy9+QlM3sn7gwuWfzUlkuaadHPIgBJB0h6Ljrt9aOk/0nqUrKxpM2i01BnpD6IgpmSbktZ11bSG9H28yUNlNQwuq91dCqrDnBHdEpqqKRZwNnA3iWnqir7h5U8h6Q90tZPkvRkyvJQSW9JOkTSe9HfPUXS7mn71ZF0raRPJC2X9JWkoSWPCbQAzkg5xdY1um+dU1uSTpL0fvQ4X0rqK6luyv1do8fYU9LYKNMMScdV9vVwyeGFxCVNUfTzm+hnc+BV4BzC6aWRwAOSTgEws4XA06x7Oql19FgPAEjaDXgJWAAcD/QETgVKPsDfBg6Ifr81+r0P4TTQaMIpqwNStimVpLqpt6z+6nU1A/4J9AVOAZoAj0tSyjb3AjcAjwNHAJcDDaL7zo8yj07J/UIpeTsAjxFeg6OBfwFXAHdl2PwR4DnC6/IpMELStpX8G11C+Kktl/dSPmx3AAYCS4FxAGY2ImU7Aa8A2wLnAo9Gdw0BXpa0g5l9Ea07E5hmZu9Hy9cDs4GjzGxV9HgLgcckHWBm/yWcWgOYlXp6StJ3QNMsT1m1AFak/X07m9lnWeybajPgQDP7NHqM9QgF8/+AGZJ2JRwpXWJmd6bs9xiAmU2X9CPwXRa5ewOTzKzkqO6l6HX4h6QbzeyrlG0HmNm/o0zTgPmEIjaogn+fSxA/InH5bnPCB+8K4GNCMelsZl8DSNpU0p2SZqds1w3YJeUxxhOKxBnRPo2A44iORiJ/AJ4uKSKRkcBK4KBq/Hs+AvZNu31ZiceZVVJEItOjnyXf/ttEP4dW4rF/JakOsA/rtkc9Rvj8SD8Ce7nkFzP7nnAhgR+R1HJ+ROLy3Q9Ae8AIp7Pm2dpDVg8F9iecZpoOLCFcRXV0yQZmZpIeAM6S1As4ifDefyTlcbYmfHsmZb9Vkr4nfPuvLsVm9lY1PM7itOVfop/1op+bExr2l1TxebYA1ifttUlZTn9tMuWqh6vVvJC4fLeytA9eSfWAw4ELzWxQyvpMR9oPENo92gBdgWfMbFHK/V8T2hlSH78O4QN5YVX+gAr4Ofq5Qdr6zQhtNxXxPdBA0sZVLCYLCEd5TdLWN41+5uq1cXnMT225JNuQcBVVSX+OktNWR6VvaGZfEk673EA4VfVA2iZvAMdGxaPEcYQvW1OqN3apStoafluyQtJ2hHaPipoQ/Ty9jG3KPVqITvVNA05Mu+skYDXw30pkc7WMH5G4xDKzHyRNBa6XtITwwXYN4XTYxhl2GUI41/8VMDbtvhuBd4BnJN1DOK9/MzAmamivcWb2VfT39JFUTPiidx2V+NZvZh9LGgzcKqkJ4SKETYATzOzkaLMZQEdJHQlHMDOjdo10PYEx0enBEcCehFOJ96U1tLsC5UckLulOBWYCw4A7CA3kw0rZ9nlC4/mDZrY69Q4z+xDoRDiF8xShsDwKnFAzsUt1KjAHeBjoR7hi6uNKPtb5hCOw0wiX+d4O/JRy/42Exv/HgamEy6fXYWYvAycDLYFRwKWES6AvrGQuV8vIp9p1hULSYYRiskslLrd1zpXCC4mr9SRtA+xM6Eg3x8yOiDmSc7WKn9pyhaAboS/Jz8BFMWdxrtbxIxLnnHNV4kckzjnnqqQgLv/dYostrKioqFL7/vjjjzRo0KD8DfNEkvImKSskK2+SskKy8iYpK1Qt77Rp0xaY2Zblbmhmtf7WokULq6yJEydWet84JClvkrKaJStvkrKaJStvkrKaVS0v8JZl8Rnrp7acc85ViRcS55xzVeKFxDnnXJXkvJBI2knSvZLelbQqmvIzm/0aS3pA0iJJP0gaLmnzGo7rnHOuHHFctbU7cBjwOusOl12WxwijoJ5DGJzvZuAZ4ODqDuiccy57cZzaGmVm25nZicCH2ewg6QCgI3CGmY00s6cJA9EdJKl9DWZ1zrlg+HAoKqJV27ZQVBSW81kO8+b8iMTSRl3NUidgvpm9kvI4b0qaGd03rrryOefcOoYPh27doLgYAcyeHZYBunSJM1lmOc6blA6JuxLmTkj3UXSfc87VnB49oLh47XXFxXDBBfBxZUf5r0F33pk5b48eNVJIYh1rS9KTwBZm1rqc7cYS5p8+Jm39w8AOZvbHDPt0IwzWR9OmTVuMGDGiUhmXLVtGw4YNK7VvHJKUN0lZIVl5k5QV8j9vq7ZtUYbPSgOQcp6nXGZkSmUSkydMyHBPZm3atJlmZi3L2y4pRyQQ/ZulUSnrMbPBwGCAli1bWuvWrSv1pJMmTaKy+8YhSXmTlBWSlTdJWSHP877yCtSpAytXrnOXmjeHWbNyn6k8RUXhdFYaNWtWI69zUvqRLCJME5puE2BxjrM45wrBsmVw0UXQqhVssglsuOHa99evD337xpOtPH37hnypajBvUgrJDDK3hZTWduKcc5U3fjzsuSfcfTdcfHE46hgyBJo3xyRo3hwGD87PhnYIuQYPzlnepBSSF4GtJB1UskJSS2CH6D7nnKu6JUvgL3+B9u1h/fXDaa077oAGDcKH8KxZoY1h1qz8LSIlcpg3520kkuoTOiQC/AbYWNIJ0fJoMyuW9Bkw2czOBjCz/0oaAwyTdAVrOiROMTO/9Nc5V3VjxsC558LcuXD55dC797qnh1xGcTS2NwGeSFtXsrw9MIuQq07aNicDA4B/E46kngcurrGUzrnCsHgxXHYZPPAA7LorvPoq7L9/3KkSJY4OibMg45VpqdsUZVi3GDgzujnnXNU9/3w4lTV/PlxzDfTsCfXqxZ0qcZLSRuKcc9Vn4UL485/hyCNhs83g9dfhH//wIlJJXkicc4Xl6adht91gxAi4/nqYNg1altvnzpUhSR0SnXOu8r77Di68EB5/HH7/e3jppfDTVZkfkTjnajczeOyxcBTy9NPQpw+8+aYXkWrkRyTOudrrm2/g/PNDAWnZMlyZtccecaeqdfyIxDlX+5jBww/D7rvD6NFw003w3/96EakhfkTinKtd5s6F7t3Dpb3777+mf4irMX5E4pyrHcxC0dh99zBW1m23wZQpXkRywI9InHPJN2dOmAFwzBg4+OAwwOLOO8edqmD4EYlzLrnM4N57Q9vHlCnwr3/BpEleRHLMj0icc8k0cyaccw5MmABt28L998P228edqiD5EYlzLllWr4a77grzhUydCoMGwbhxXkRi5Eckzrnk+OwzOPvsME9Ihw5w333QrFncqQqeH5E45/LfqlUwYAD87nfw7ruhMf2ll7yI5Ak/InHO5bcZM+Css0KHwsMPD43rv/lN3KlcCj8icc7lp5UroX//MCbWjBnw0EMwapQXkTzkRyTOufzzwQfhKGTqVDj2WBg4ELbaKu5UrhR+ROKcyx8rVsCNN8I++4TLe0eMgJEjvYjkOT8icc7FZ/hw6NGDVnPmhGKxwQYwezacdFK4xHfLLeNO6LLghcQ5F4/hw8OwJsXFCODrr8P6Sy6B22+PM5mrID+15ZyLR48eUFy87vpnnsl9FlclXkicc/GYM6di613e8kLinMu9H36A9dfPfJ93MkwcLyTOudz68cfQsXDlSthww7Xvq18f+vaNJ5erNC8kzrnc+eknOOqo0Ev9scfCUCfNm2MSNG8OgwdDly5xp3QV5FdtOedy45df4IQTYOJEGDYs/A7QpQuTJ02idevWscZzleeFxDlX81auhFNPhdGjw1hZp50WdyJXjXJ+akvSbpLGSyqWNE9Sb0l1stivpaSXJX0vaaGkcZL2y0Vm51wVrFoFXbuGHuq33x76jrhaJaeFRNKmwDjAgKOB3sDlwA3l7LddtF9d4HTgz9HvL0tqXpOZnXNVYAbnnRc6H/brFzobulon16e2ugMbAceZ2RJgrKSNgV6S+kfrMjkcaBTttxhA0mvAAuAw4J6aj+6cqxAzuPTSMPlUjx5w7bVxJ3I1JNentjoBY9IKxghCcWlVxn7rAyuBZSnrlkXrVN0hnXNVZAbXXQd33gl//Sv06RN3IleDcl1IdgVmpK4wszlAcXRfaUZG29wqqYmkJsAAYBHwRA1ldc5VVt++cNNN0L073HoryL/v1WYys9w9mbQCuNLMbk9b/xUwzMyuK2Pf3wPPAyWz2nwNdDKzd0vZvhvQDaBp06YtRowYUanMy5Yto2HDhpXaNw5JypukrJCsvHFm3fbxx9npnnv4pkMHZlx9NaxX/vdVf21rTlXytmnTZpqZtSx3QzPL2Q1YAVySYf1coG8Z+20NfAY8Cxwa3UYBXwHNynveFi1aWGVNnDix0vvGIUl5k5TVLFl5Y8s6cKAZmJ14otmKFVnv5q9tzalKXuAty+KzPdeN7YuATTKsbwwsLmO/KwkXBpxgZisAJE0APgWuAC6u5pzOuYp68EE4/3w44gh4+GGo693UCkWu20hmkNYWEl3a24C0tpM0uwIflhQRADP7BfgQ2LEGcjrnKuLxx8PUuO3bwxNPhAmqXMHIdSF5EegoqVHKus7AT8DkMvabDewh6dd3p6QNgT2AWTWQ0zmXrVGjwvhYBx4Y5hKpVy/uRC7Hcl1IBgHLgacktY8axHsBt1nKJcGSPpM0JGW/+4FtgKclHS7pCOAZQtvJ4Jyld86tbezYMGbWPvvA889DgwZxJ3IxyGkhMbNFQDugDqGx/AbCZbw90zatG21Tst80QgN7I+AhYBhQHzjESrlqyzlXw155BY4+Gn77W3jxRdh447gTuZjkvDXMzKYDbcvZpijDuvHA+BqK5ZyriDfeCHOKFBXByy/DZpvFncjFyOcjcc5VzP/+B4ceCk2bwrhx0KRJ3IlczLyQOOeyN306HHIINGoE48fDNtvEncjlAS8kzrnsfPZZuLy3bl2YMCHMaOgcPrGVcy4bs2dDu3awYgVMngw77RR3IpdHvJA458o2b14oIkuWhCOR3XaLO5HLM15InHOl++67cDpr/vzQsL733nEncnnIC4lzLrNFi0LD+qxZoZ/Ifj6ztcvMC4lzbl1LloRLfD/6KAyB0qqseedcofNC4pxbW3FxGMH37bdh5Ejo0CHuRC7PeSFxzq3x889wzDHw6qvwyCNw1FFxJ3IJ4IXEOResWAEnnRQGYhw6FDp3jjuRSwjvkOicg5Urw1Dwo0bBwIFwxhlxJ3IJ4oXEuUK3ejWcfXaYkOqWW+C88+JO5BLGC4lzhcwMLrgAhg2D3r3h8svjTuQSyAuJc4XKLBSOQYPgmmvgb3+LO5FLKC8kzhWq66+HAQPg4ouhXz+Q4k7kEsoLiXOF6B//gBtvhHPOCcXEi4irAi8kzhWaO+6A664LV2kNGgTr+ceAqxp/BzlXSO67Dy69FI47LvQVqVMn7kSuFvBC4lyhePhh+Mtf4LDD4NFHwwRVzlUDLyTOFYInnwydDNu0Cb9vsEHciVwt4oXEudruhRfglFNg//3h2Wdho43iTuRqGS8kztVm48fD8cfDXnvB6NHQsGHciVwt5IXEudpk+HAoKqJV27aw1VbQqRPsvDOMGQONG8edztVS3trmXG0xfDh06wbFxQjC9LhSGDtr883jTudqMT8ica626NEjTEqVygz6948njysYOS8kknaTNF5SsaR5knpLyupidknHSZoq6SdJ30t6SVKDms7sXCLMmVOx9c5Vk5wWEkmbAuMAA44GegOXAzdkse85wCPAi0An4BzgU/z0nHPB1ltnXt+sWW5zuIKT6w/h7sBGwHFmtgQYK2ljoJek/tG6dUjaAhgAXGRm96Xc9XSNJ3YuCb78EpYvX3d9/frQt2/u87iCkutTW52AMWkFYwShuLQqY7+Top8P1lQw5xLrm2+gXbswVW6fPtC8OSZB8+YweHAYU8u5GlRuIZF0uqTquuRjV2BG6gozmwMUR/eVZj/gY+BsSV9JWiHpDUl/rKZcziXTggXQvj3MmwcvvhjmFJk1i8kTJsCsWV5EXE7IzMreQFoFHGBmb6b+Xqknk1YAV5rZ7WnrvwKGmdl1pew3BvgjsAS4Cvg++tkS2NnM5mfYpxvQDaBp06YtRowYUZnILFu2jIYJ6sSVpLxJygr5l7fusmXsddll1J89m/dvuonFe+/96335lrU8ScqbpKxQtbxt2rSZZmYty93QzMq8AQuAY6LfVwP7lrdPGY+1Argkw/q5QN8y9htLaKA/NGXdxsAioE95z9uiRQurrIkTJ1Z63zgkKW+SsprlWd4lS8z2399s/fXNRo9e5+68ypqFJOVNUlazquUF3rIsPtuzaWwfBzwk6ePow3yopB/LKEx/KOOxFgGbZFjfGFhcxn4Lo5+TUp5niaRpwG5l7Odc7VNcDEcdBVOnwhNPhN7rzsUom0JyFnA+8H/APsBM4LtKPt8M0tpCJG0HNCCt7STNR4Qilj6NmwhHSc4VhuXLw1wikyeHnuzHHht3IufKLyRmVgzcAiCpPdDDzN6t5PO9CFwpqZGZLY3WdQZ+AiaXsd/zQE+gDTA6ytIYaFGSzblab8UKOPnkMG7WkCFhRF/n8kA2V22tkrRvtDiJ0OBdWYOA5cBTktpHDeK9gNss5ZJgSZ9JGlKybGZvAc8CQySdIelw4DlCm8vdVcjjXDKsWgWnnw7PPAP/+hecdVbciZz7VTb9SH4BNox+Px3YsrJPZmaLgHZAHWAUoUf7AMLRRqq60TapTgOeAW4DniQUkbbRYzpXe61eDeeeCyNGwM03w4UXxp3IubVk00YyndDz/BlCm8QJkkq7HMzM7J6yHszMpgNty9mmKMO6ZcB50c25wmAGF18MDzwAPXvCVVfFnci5dWRTSC4C7iUcORhwRRnbGlBmIXHOZcksFI6774YrrgiFxLk8VO6pLTN7zcz2NLP1CUck+5vZeqXcshrF1zmXhRtugFtugfPPD0PBK/2iRefyQ0XH2mpDONXlnKtJ/fuHQnLmmaFx3YuIy2MVGv3XzCYDSNoPOAjYjNBZcIqZvVH98ZwrQHfdBVdfHS71ve8+WM/nn3P5rUKFJJpE6gmgI7CKMObV5kAdSS8BJ0b9TpxzlfHvf8NFF8HRR8OwYVDHzxa7/FfRrzr9gQOAk4F6ZrY1UC9aPgC4uXrjOVdAHn0UzjkHOnaExx6D9dePO5FzWaloITkeuNrMnjCz1QBmttrMngCuAU6s7oDOFYSnn4Y//xn+9Cd46inYcMPy93EuT1S0kDQGvizlvi8JI/I65yripZegc2fYd18YNSrMauhcglS0kLwLnCetfQlJtHxedL9zLlsTJ4aBF/fYI0xM1ahR3Imcq7CKztl+HWHgxRmSngbmA02AY4EiwlS6zrlsvPYaHHkk7LADvPwybJJphgXn8l9FL/+dIGlv4HpCe8jWwNfAG8Bx0fAnzrnyTJsW5hHZZhsYNw622CLuRM5VWkWPSErGyjq5BrI4Vxg++AA6dIBNN4Xx42HrreNO5FyVVKiNRNItknxGQucq65NPoH17qFcvFJHttos7kXNVVpnLf9+X9Kak7tHkUs65bMycCe3ahWHhx4+HHXeMO5Fz1aJChcTMtgfaE6bF/SfwtaRHopkTnXOl+eqrUER+/BHGjoVddy1/H+cSosKD+JjZRDM7ndDQfhGwLTBG0mxJN0jaobpDOpdo8+eH01kLFoRpcvfaK+5EzlWrSo8GZ2bLzGwIYXbDV4HtgGuBTyQ9K6l5NWV0Lrm+/x4OOQS+/BJGjw6dDp2rZSpVSCQVSeop6QvgZWAZ4XLgRsBRhD4lI6orpHOJ9MMPYdysTz6BZ5+Fgw6KO5FzNaKio//+GTgT+BMwB3gAeMDMvkrZbLSkH4Fx1ZbSuaRZtgwOOwzeey+Mo9XemxFd7VXRfiSDgaeBjmY2voztPgFurHQq55Lsp5/CMPCvvx5G8T388LgTOVejKlpItjGzReVtZGZfAzdULpJzCfbLL3DCCWEMrWHDwu/O1XIVHSKl3CLiXMFauRJOOSU0qt97L5x2WtyJnMuJCg+RIqkzcC6wC2FSq7WYWZNqyOVcsqxaBV27hrlEBgyAbt3iTuRczlR0iJRTgQeBzwj9R54Dno8eZwlwV3UHdC7vmUH37jB8OPTrB5deGnci53Kqopf/Xgn0AS6Ilgea2VnA9sACwOdrd4XFLBSO+++HHj3g2mvjTuRczlW0kOwMvGpmq4BVRDMimtlSwnztF1ZvPOfymBlcdx3ceSf89a/Qp0/ciZyLRUULyQ9AyWTSc4HfptwnYPPqCOVcIvTtCzfdFE5r3XorrD1xqHMFo6KF5C3gd9HvzwHXSzpX0hmEQRzfKO8BJO0mabykYknzJPWWVCfbAJLWkzRNkkk6ooL5naset90Gf/87nH463H23FxFX0Cp61dY/gJIxtK6Pfh8I1AGmAmVeqiJpU0KP9+nA0cCOwK2Egva3LDOcA/ymgrmdqz733AOXXw4nnghDhsB6lR6yzrlaIatCImkj4DDCGFrfSGpqZvOBoyVtCGxoZkuyeKjuwEaEaXmXAGMlbQz0ktS/vMeIClFf4Brg/myyO1etHnwQzj8/zLX+8MNQt8JX0DtX65T7vyAaFn4coYiUWCLpJDN72cyWA8uzfL5OwJi0gjGC0FDfChhVzv59CCMNlzU8i3PVa/hw6NGDVrNnh+U99oDHH4cNNog3l3N5Iptj8v7AauBgoD6wO/AOcG8lnm9XwqRYvzKzOYTLhsuc6UfS7wgDRl5Ried1rnKGDw+dC2fP5tdWkM8/h5Ej40zlXF6RmZW9gTQXuNzMRqSs2wX4CNg2GlcruyeTVgBXmtntaeu/AoaZ2XVl7DsZeMPMrpJUBMwEjjSz50vZvhtRm03Tpk1bjBhRuVHtly1bRsOGDSu1bxySlDcJWfc/+WTqzZ+/zvqfmzbl9Uq+p3IhCa9tqiTlTVJWqFreNm3aTDOzluVuaGZl3ghHI39IW1cnWr93efun7bcCuCTD+rlA3zL2Oxn4Btg4Wi4CDDgim+dt0aKFVdbEiRMrvW8ckpQ3EVkls9BjZO2bFHeyMiXitU2RpLxJympWtbzAW5bFZ2y2l5uUfdiSvUXAJhnWNwYWZ9pB0vqES4tvBtaTtAlRR0iggaRG1ZTNubW9UcbV7M2a5S6Hc3ku20tOxkhamWH9+PT1VvagjTNIawuRtB3QgLS2kxQNCON63RbdUo0APgd2KuM5nau4d96BQw+FLbeEpUvDHCMl6tcPnRGdc0B2haQ65xV5EbhSUiMLw6oAdAZ+AiaXss8yoE3auq2AR4HrgAnVmM85mD4dOnSARo3gP/+BKVOgRw9szhzUrFkoIl26xJ3SubxRbiExs+osJIOAi4GnJN0M7AD0Am6zlEuCJX0GTDazs81sJTAp9UGixnaA982s3N70zmXt00+hXTtYf32YMAGaNw+3Ll2YPGkSrVu3jjuhc3knp72pzGyRpHaE4eZHEdpFBhCKSXqurIdNca5azJ4disjKlTB5MuzkZ0ydy0bOu+Wa2XSgbTnbFJVz/yzABzdy1WfevFBEli4NRyK77RZ3IucSw8d3cO7bb0MRmT8fxo2DvfeOO5FzieKFxBW2hQtDw/rs2fDii7DffnEnci5xvJC4wrVkCXTqBB99BKNGQatWcSdyLpG8kLjC9OOPcMQR8PbbYdysDh3iTuRcYnkhcYXn55/hmGPg1VfhkUfgqKPiTuRconkhcYXll1/ChFTjxsHQodC5c9yJnEs8n9rNFY6VK+G00+D552HgQDjjjLgTOVcreCFxhWH1ajjrLHjiCbj1VjjvvLgTOVdreCFxtZ9ZmB73oYegd2+47LK4EzlXq3ghcbWbWSgc994L11wDf/tb3Imcq3W8kLja7e9/h9tvh4svhn79QD6yjnPVzQuJq7369QtDvp9zTigmXkScqxFeSFztdPvt0KNHmDdk0CAvIs7VIC8krvYZPBj++lc4/vjQV6SOz0jgXE3yQuJql4cegu7d4bDDQq/1ut7n1rma5oXE1R5PPgldu0KbNuH3DTaIO5FzBcELiasdXngBTjkF9t8fnn0WNtoo7kTOFQwvJC75xo0L7SF77QWjR0PDhnEncq6geCFxyTZlChx9NOyyC4wZA40bx53IuYLjhcQl19SpoVF9u+1g7FjYfPO4EzlXkLyQuGR6913o2BG22CKc2mraNO5EzhUsLyQueT76CA45BBo0gPHjYdtt407kXEHzQuKS5fPPoX17WG+9UES23z7uRM4VPO+t5ZJjzhxo1w6WL4dJk0IDu3Mudl5IXDJ8/XUoIosXw4QJsMcecSdyzkW8kLj899134XTW11+Hq7P22SfuRM65FDlvI5G0m6TxkoolzZPUW1KZo+pJ2lfSA5I+i/b7WFJPSfVyldvFZPHicHXWF1/AqFFwwAFxJ3LOpcnpEYmkTYFxwHTgaGBH4FZCQStr6rrO0bY3A58CvwP6RD+Pr8HILk5Ll0KnTvDBB/Dcc2EMLedc3sn1qa3uwEbAcWa2BBgraWOgl6T+0bpMbjaz71KWJ0n6GbhXUnMzm13DuV2uFRfDkUeGTodPPAGHHhp3IudcKXJ9aqsTMCatYIwgFJdWpe2UVkQ+iNQJAAAc4klEQVRKvBP9bFJ98VxeWL4cjj0WXnklDAt/7LFxJ3LOlSHXhWRXYEbqCjObAxRH91XEH4HVwMfVE83lhRUroHNnePlluP/+MKKvcy6vycxy92TSCuBKM7s9bf1XwDAzuy7Lx9kKeA8YbWZdS9mmG9ANoGnTpi1GjBhRqczLli2jYYJGk01S3nWyrlrFbn370mTiRD69+GLm5tmRSKJf2zyXpLxJygpVy9umTZtpZtay3A3NLGc3YAVwSYb1c4G+WT7GBsArwBfAptns06JFC6usiRMnVnrfOCQp71pZV60y69rVDMz6948tU1kS+9omQJLyJimrWdXyAm9ZFp+xuW5sXwRskmF9Y2BxeTtLEjAM2B040MwWVW88FwszuOiiML96z55w5ZVxJ3LOVUCuC8kM0tpCJG0HNCCt7aQUAwiXDR9iZtls7/KdWSgcAweGnz17xp3IOVdBuS4kLwJXSmpkZkujdZ2Bn4DJZe0o6VrgIuAkM5tSszFdjRo+HHr0oNWcObDxxvDDD3DBBXDzzSDFnc45V0G5vmprELAceEpS+6hBvBdwm6VcEhz1YB+Ssnwq0I9wWmuupP1Tblvm9k9wVTJ8OHTrBrNnI7NQROrUCXOtexFxLpFyWkiiNo12QB1gFHAD4XRV+vmMutE2JTpEP7sC/027HV5ziV2169EjdDZMtWoV/K2sgQ2cc/ks54M2mtl0oG052xSlLXclFBGXdHPmVGy9cy7v+cRWLndefTVMSJVJs2a5zeKcqzZeSFzNM4Nbb4VWrWDzzaFe2qDN9etD377xZHPOVZkXElezFi0KY2VdcQUccwx88kkY+qR5c0yC5s1h8GDo0iXupM65SvJC4mrOtGnQogW88ALcfnsYxbdx41A0Zs1i8oQJMGuWFxHnEs4Liat+ZqGD4R//CCtXwn/+A5dc4pf3OldLeSFx1WvpUjj11NDBsF07eOed0EfEOVdreSFx1ef992HffeHxx6FfP3j++dC47pyr1XLej8TVUkOHwvnnhzaQ8eOhdeu4EznncsSPSFzVFBfD2WfDmWeGU1jvvONFxLkC44XEVd4nn4Ti8e9/hyFOxo6FrbaKO5VzLsf81JarnMcfD0ciG24IL74Ihx4adyLnXEz8iMRVzPLlYRKqzp1hzz3DqSwvIs4VNC8kLnuzZsHBB8Ndd8Fll8HkybDddnGncs7FzE9tueyMGgWnnx46Gz71VBj2xDnn8CMSV54VK+Dqq+Goo2D77cOwJ15EnHMp/IjElW7uXDj5ZJgyBbp3hwED1h251zlX8LyQuMzGjg2DKRYXh+lxTz017kTOuTzlp7bc2latgl69oGNHaNIEpk71IuKcK5Mfkbg1vv02HIWMGxca1gcOhAYN4k7lnMtzXkhcMGVK6BuycGGYeOqss3zYd+dcVvzUVqEzg3/+M4yPVb8+vP566LHuRcQ5lyU/IilkixbBGWeEPiInnABDhsDGG8edyjmXMH5EUqimToV99oGXXoI77wxjZ3kRcc5VgheSQmMGd98NBx0Eq1eHaXAvushPZTnnKs0LSSFZuhROOQUuvBAOOSQMuLjffnGncs4lnBeSQvHee9CyJTz5JNx0Ezz3HGy2WdypnHO1gDe2F4IHHgjT4G66KUyYAH/6U9yJnHO1SM6PSCTtJmm8pGJJ8yT1llQni/0aS3pA0iJJP0gaLmnzXGROrOLiMAXuWWfBgQeGU1leRJxz1SynRySSNgXGAdOBo4EdgVsJBe1v5ez+GPB/wDnAauBm4Bng4JrKm2gffxwu6f3wQ7j++nCrU269ds65Csv1EUl3YCPgODMba2aDgBuAyySVeu2ppAOAjsAZZjbSzJ4GTgMOktS+RpIOHw5FRbRq2xaKisJyPkvNu+WWsNde8M034fLeG27wIuKcqzG5LiSdgDFmtiRl3QhCcWlVzn7zzeyVkhVm9iYwM7qveg0fDt26wezZyAxmzw7L+VpM0vMuWBDmEbn+eujQIe50zrlaLteN7bsCE1JXmNkcScXRfaPK2G9GhvUfRfdVrx49QvtCquJi6NoV+vWr9qersk8+gZUr1163ejXcemvoI+KcczUo14VkU2BxhvWLovsqs98OmXaQ1A3oBtC0aVMmTZqUdchWc+aQqXuerVzJd1tumfXj5MqW06dnzjtnDpMr8Hfn2rJlyyr07xK3JOVNUlZIVt4kZYXc5I3j8l/LsE6lrK/0fmY2GBgM0LJlS2vdunX2CZs1C6ez0p+seXOa5OMbqKgoc95mzajQ351jkyZNyut86ZKUN0lZIVl5k5QVcpM3120ki4BNMqxvTOYjjvL226Sc/Sqnb98wEm6q+vXD+nyUtLzOuVol14VkBmltGpK2AxqQuQ2k1P0ipbWdVE2XLjB4MDRvjknQvHlY7tKl2p+qWiQtr3OuVsl1IXkR6CipUcq6zsBPwORy9ttK0kElKyS1JLSPvFgTQenSBWbNYvKECTBrVv5/KCctr3Ou1sh1IRkELAeektQ+ahDvBdyWekmwpM8kDSlZNrP/AmOAYZKOk3QMMByYYmbjcvoXOOecW0tOC4mZLQLaAXUIl/reAAwAeqZtWjfaJtXJhKOWfwPDgGnAsTWZ1znnXPlyftWWmU0H2pazTVGGdYuBM6Obc865POHDyDvnnKsSLyTOOeeqRGbl9QNMPknfAev22MvOFsCCaoxT05KUN0lZIVl5k5QVkpU3SVmhanmbm1m5w3kURCGpCklvmVnLuHNkK0l5k5QVkpU3SVkhWXmTlBVyk9dPbTnnnKsSLyTOOeeqxAtJ+QbHHaCCkpQ3SVkhWXmTlBWSlTdJWSEHeb2NxDnnXJX4EYlzzrkq8ULinHOuSryQOOecqxIvJM4556rEC4lzzrkqiWPOdlcNopklDyPMW/+EmX0vaVvgCmBHYBYw2Mzejy8lSLoaGB13jmxJ2gioa2ZLU9ZtCVwI7AasBv4HDDSzH+JJ6Vx+8ct/I5JEmN/kcOC3wGbAKmA+8Dow1Mw+iS/hGpL+ALwMNARWAguBjsBoQuYPgT2ArYD2ZvafmKIiaTVghCmRHwEeM7PP4spTHkmjgU/N7JJo+QDCLJyrCXPgCGgB/AK0NbMPY8y6N7CRmb2Wsu5Q4FrWFL13gV6p2+SL6P/ckcA+hPfIW4QvHXn9oSRpY8LYVW3NbErceeDXTG2BDYAXzOzH6AvQBYSZZL8gfLGcVyPPn+f/ZjkRveCjCR8Q8wmzOP6G8OZ+kfAP8X9AHzPrE1fOEpLGEo4mjwV+JEwOdgzhg+4EM1shaUPgGaCembWJMetq4GZgT+AQQu63CUXlcTObG1e2TCQtAM42s2ej5dcJr/ExJUcpkhoDzwE/m1nHGLO+Dowys77R8lnA/cBEYAKh6LUDDgaOL/mbYsr6GuF1/Sha3pTwZagFsCzarCHhS1vH1CPCOEg6v4y7NwL+CdwBfApgZgNzkSsTSTsB44HtolUzgQ7AWGAT4HPC59dPQAsz+6raQ5hZwd+ARwlviD1T1m0DvASMjJZbEd7wZ+VB3u+BTinLTQjfPjukbXc4sCDmrKuBP0S/bwp0i970K6PbpGjd5nG/rlHGYuBPKcu/pL+uKa/tjzFnXZKaDfgM+FeG7QYB7+bL+yBaHkI4kj40Zd2hwCJgQB68D1YTju5Xl3JLvW9VzFkfJxx57kQ4k/JQ9Hn2GtAo2maLaJt7ayKDN7YHnYBrLOU8voVDwO7AMZK2NrPJQD/gkpgyprLolrpM2rpMy7Eys0VmNtjM2gHbApcTDsUHAfMkvRBrwOADIPUIbj7hP2e6zQlFJ06r05abA09m2O5JwjfSfHIU0NvMXipZEf3eFzgutlRrPAd8C5wN1DGz9UpuhPeDgNbRuvRpwXPtIKCvmX1mZguBvxHaSW+x6MjOzBYAt7P2e7vaeCEJRPiGkW5VdF/jaPkNYJdchSrDNOAKSY0krQdcB8wFzpNUB0BSXeB8wgdj3jGzb8zsDjP7I7A90JNwFBi3m4BrJJ0VvYZ9gX9KOkTSBpI2jNoh/kH4Jhin/wBdUpY/BDINF74v4f2RTzYhtImkm0Zo24uVmR0DnAFcCUyVdGDq3fGkKtWmwDcpyyX/1ulzMH1B+AJX7fyqrWAccKOk98zsC/j1HO6dhH+gkkb2hkA+XKnTg3D+cyHh9FAxoaHtSeBTSSWN7dsQThfkNTObTfgAvykPsjwl6SLCt7cBwMeELxIl35yN8OXiOcKHTJyuA16Nvkz8i9DI/qCkzQinDCG0kVwKXBNLwrUdL6mk0C0CMk2YtAXhlF3szOxlSb8jvH4vSHqJcFVkrO03GXxLOBotsQq4l3A0naoJNZTdG9uB6LLZlwiH/7MJ58W3JzS6n2JmL0bb9SfMGNY5rqwlosxHEL4MjDSzryVtBVzFmr/jfjN7O8aYSOoJ3Gc1dLVITZG0OdAZ+APhG/J6hML9EfC8mU2LMd6vJP0euAfYjzVFjpTfFxFOId0RT8Iguugi3VAzOyttu3uB3czs4Nwky070f6s/4bTbvYTi0sbMXok1GCDpGWBh+muZYbt/Ab81s/bVnsELSRCdEjoJ2AuoR2i4fCQ65+hcXpP0W0IxSS96r5nZijizVYSkc4HPzWxC3FkyiS4HH0D4sna45cFl1ZKaAvXNbGY5211GuOhifLVn8EJS+0iqY2aZ2nzyhqR6hAbB1cBn+fhhF7WR7EBKnyIzmxNvKufyjze2p5G0u6TjJZ0j6ezo993jzpVO0nGSnpE0WtKR0brOkmYBv0iaHX27i5Wk06L+DSXLdSXdRPjG/B7hYoCFkvLhHD4AklpIeo5wPvkj4FVC/4aZkuZK6i2pfqwhaxFF4s6RiaSN0v+tJf0++lxoEVeuvBPn9c/5dAPOIrQrZLp2fBVhyJEz484ZZT0pyjUFeJbQ2H4uoW1nCKE366NR7o4xZ50OnJeyfGuU9+/AgYRLF3sROktdlwevbQdC29hbhCuzehE6pf4SZb6ccHXU/4BN8yDvEYR+Oe8Dj5HSByZlm/2Iv69DB6I+DSnrjiF0Tl0JrIhe88Pjfk2jbI2Bp6NcK4H7gDrAg2mfC68CW8SdN8u/6fiaeh/E/sflww24KHrD3E3oBbxF9KapE/1+EHBX9AFzQR7knQoMSlnuEmW7NW27B4BxMWctBlqlLH8LXJJhuyuA2Xnw2k4DHizlPTKLcBRfL/oAHBhz1kNSPszuirKvioq1UrbLh0KyirU7JB4bfRi/Fv3bXxH9vpIMHUBjyHsnYRiUi4DToy8PI4Evo6K4JaH/2VzgnrjzZvk31Vgh8TYSQNIXhA/m/uVsdxXQ3cx2yE2yUnMsAY4zs3HRcmPC1TntLaWRMjrlda+ZxdY/Q9LXwIVmNjJaXk44SpqUtt0hwHNmtlHuU66V4yfgKDMbm7Z+U8KIArub2UeSTgduNrOt48gZZZpCGBfszJR1ZxE+BMcSrjj8WdJ+hEb32DrORVdt7W9mb0bLbwNzzezItO1GAw3MrFUMMVNzzAT6mdl90fLehEJ9ppk9mLLduYQj6e3jSQqS/p3lps0JnSir/X3gbSTBVsCbWWz3JnnQWYpwaWfqm6FkrKLFadstI3T8itNzhM6TG0TL44BTMmx3CuFbX9y+JVy5l24vwute0o9oNms6qsZlD+Dh1BVm9m/CcD77AxOiPiX5aA/CZbTpBhMGcYxbE9b0H4NoTC3CuFWpPiNzf5hcOoNwlLRnObfmpT1AVXmHxOA94FxJr5hZpuvdS0YqPTfaNm6zCaO7jgEws1XRZYkfpW23A2v3eI3DtYQe2B9Iuh8YBdwsaQ/WdJprC+xNGAk2boOBPpIaENoefiH0DO8BTLQ1/WF2AOK+gutnoEH6SjObFvXEHkM4XdQrx7lKk3r64wfWfAFK9SP58QV3JqEgT46WDyacivsjoW2yxIHE/z74FHjTzE4vayNJJxDa0aqdF5LgckKHxOmSniIMeb6Y8MbfBNiVcE53W/Kjp/hTpA11YGZvZNjuVNZ+0+ecmS2UtD/hg/gywjc9gAOi2y+E0zAHm9nUeFKuYWZ9o9Mw1xCGbYHwPniU0AmtxArC2Gtxeo9wnv659DvM7IuomIwGhuY4V2nGSFoZ/d4Y+D1rvkyU2BX4OpehSjEIuEPSnoSidxLhS9H1khoSBkDcB/grEPeI4K8TClx5UjusVitvI4lI2pHQK/xQ1gzHXOJLwpU7/zSz9EPbvCWpGbDYzPJiyAkASUWs3Wnuc8vPPiTrE/q51AO+yKfXsISkvxCGSdnbSuk4Gx1ZPU1oP4vtm340wkG6T83skbTtJkXr8+HS9YsJp1zXJ4wSMUjSKYQ2qJJBOwcDV8f5Ho4uQz7QzO4sZ7stCG18k8varlIZvJCsK7puvKRtYbGZxT3Kq3MuT0Snubcws+/izpIvvJDUMtFh99tAl3w4VaQETl2rhExj7Fy+8EKSIvoAaQJ8bGbrNARGh4aHmdmwnIdbO8dhZdzdgNCgdg3REPJmNjoXuTJRgqauhWRNY5ytaByuE82sd8w5Yp0OtqqiI5HUqYGnEf6O2D9EFUZVPp7w/2momc2QtBdwA2u+/NxtKfO/VKu4O8nkww3YEHiC8EGxitCQOgRonLZd7B27ohxJmr1tAXB0yvLrhKuhGqWsa0y4OmZMHry2YwlT1W5CODd+F/AVYQSB9VPeLy8SruKK/f2bxd9UYx3RKpBhJ8LVhiXvy88JH3BfEIr1VMLw8fOBbfPgNXuNMFJuyfKmUcbVUc4lrOlQ2SiunFG2joQvYt9Er+sSwgRWiwidVe+O/t+tIkwZXf0Z4v4Hy4cbcD3hKq1zCRMDXRK9oT8Fdk7ZLl8KyTTClS1nEq4NT739LnqDn1SyLuasiZm6NsqRpGmMm2V56x73+5Y8mA62gnkTMzVwVCyeIMzkCOECjEXAkLTtHgJer5EMcf+D5cONcLnvhWnrtgJeAb4DDojW5UshEWGe828JwzZsn3Jf4+g/wTpjLsWU9U2gZ8ryl8DJGbY7HfguD/IuSPuw2DJ6PQ9J2+6wPCgkJUef5d3y4ch0HnBSynLzKNdxadudCXySB++D9ELyHXBphu1iH9qHcHly+5TlTaP8bdO260C4eKjaM3g/kmA70joamtk3ktoRqvg4SV3Ij+vbsfCuGCzpceBG4D1Jd0W/55ubgOGSvgSGsWbq2u8Jp7NEOAzPh6lrYc00xq8SOselTmM8wULnz3yZxngpMAG4v5ztDiJc2h6n2KeDraJ8nhr4J9bumFrye/pwQ/UJnVirnReSYB6wM+EI5FcWrg0/WdLthEPHWBvZ05nZYuBCSYMJ17Z/CtxMHs0pbcmauhaSNY3xm4R2vBfK2iia+yVusU8HWwlJmRr4VUJHyU+jLLcQRt2+OhqtY2k0Ht9VhMJX7fyqLX4d9GwHM2tdxjbXEr5Nm8U4+F1ZJJ1MmA50W8LgbLFPA1pCCZm6FhI1jfHfgW5mlt6BNn27PwE3mFmb3CTLmCH26WArQgmaGljSToQx7EreB7MIR/lPEkYKmA0UEb4YtTGz/1V7Bi8kv1461xm4ycy+L2O7Uwnnys8sbZu4RaddGgDLLM9nSXSFQ3kwHWxNUJ5MDRz1HzuQcKXheDP7KepYfQ5rvvw8YmZf1cjzeyFxzjlXFfkwyqarIZLukzQk7hzZSFJWSF5e52qSN7ZXgKT7gPXM7Oy4s2SpDcn5spCkrJCgvJLGEc4+tIs7S3mSlBWSlbcms3ohqZjEfHgAmNlOcWfIVpKyQuLyiuS8b5OUFZKVt8ayehtJLRZd9tnEzOKeeKdcScoKycvrXE1KSiXNC5LqRXN8JMXhhJnekiBJWSFBeSWtn5T3bZKyQrLy1mRWLyQVk5gPD1cYJF0g6XNJSyW9IenPGTbbhzx43yYpKyQrb9xZvY0kgSRle816pp64OZWkrJCsvFEH1H8RpgF+h9CPYKiko4E/m9lPceZLlaSskKy8+ZDV20io8IfHbnH3bFeY9/pjwjAIZfkNsF+ceZOUFZKVV9JbwAQzuyplXTtgOKF38+EWJuXaD3jNs2YvSXnzIasXEpL14QEg6X+Eybc6l7PdCcBjMb/JE5M1ypGYvJKWAkea2aS09UWE+VLqAJ0I40HF/WGXmKyQrLz5kNXbSIIPgA/M7MSybsBtcQeNvAHsn8V2JQMixilJWSFZeX8gfDisxcxmAX8kDIn/GrBvbmNllKSskKy8sWf1IxJ+HXjtUDNrXs52xxPm8I61AEvaEdjdzJ4rZ7uNCJeopg/VnTNJyhrlSExeSc8CS83stFLu34gwcF8nYh5sNElZozyJyZsPWb2QkKwPD+dKSDoR+CtwhJktLGWbOsA9hMFGt89lvrQcickaZUlM3nzI6oXEOedclXgbiXPOuSrxQuKcc65KvJC4giKpq6RpUQ/gRZLekVQjV+NJ2kVSL0mbZLFtL0mWcpsnaWTUflfevl2jfRpWT3LnKsYLiSsYCtMl3w+MAY4DTgeeBY6qoafcBegJlFtIIj8AB0S3K4DfA+MlNShnvxeifYormdO5KvEhUlwhuRC418yuS1k3StINcQVKs9LMXo9+f13SHOA/wGHAE+kbR1fi1DGz74DvchfTubX5EYkrJJsA36SvtJRLFyUVRaeJTpX0UHQK7FtJPdP3k9Q2GiDvZ0nzJQ0sOb0kqTUwKtp0ZvSYsyqYd1r0syh6zKGS3pJ0jKQPgZ+B/TKd2pK0kaT+kmZLWi5ppqR/pOU/R9KH0f2zJV2Fc5XgRySukLwNXBR903/ezL4vY9t/As8DJwB/AnpKWmBmdwNI2g14CRgLHA9sB9wE7AAcGj3XFcAthNNoXwPLK5i3KPr5Tdq6/kBvYD5hNNe12lEkiXDK7gCgD6Eg/QY4OGWbK4F+0WNNAloAfSQVm9ldFczpCp2Z+c1vBXEDfgd8QRjeZDXwIeEDeeOUbYqi+19O2/c+YC5hqmWAEcCnhFNLJducFO17QLR8RLRclEW2XoShLOpGt12AicASYOtom6HR4/0+bd+u0fqG0XLHaPmoUp5rY2AZ0DNtfW9C0apTXl6/+S315qe2XMEws/eA3xIa1wcSxsr6O/BWhiuenk5bfgrYBtg2Wv4D8LSZrUrZZiSwEjiokhE3B1ZEt48JRzedzezrlG3mmtn/ynmctsBCK32khgOABsATkuqW3IAJQFPW/I3OZcVPbbmCYmbLCW0XowAknU24kuts4I6UTb9N27VkeWtgTvRzftpjr5L0PbBZJeP9ALQnHE18A8wzs/ShJ+avs9e6NiecSitNyQB/H5Zy/3aADwPksuaFxBU0MxsiqT+wa9pdTUpZ/jrl51rbRFdRbQ5kHO8oCyvN7K1ytslmTKPvCYWuNCX5jiBzYfo4i+dw7ld+assVDEnpxQFJWwKNWfcD9di05ZIG86+i5TeAY6PikbpNXWBKtPxL9LNeFWJXxnhgM0lHlHL/f4GfgG3M7K0Mt6W5i+pqAz8icYXk/WjI7ZcJp6qaE66sKgYeTNt292h6gZGEq7bOBi4xs9XR/TcSpjV9RtI9hHaFm4ExZvbfaJuSb/Z/kTQCKDaz92vmT1vLWEKny0ck9SZcQbY18Ccz+4uZLZbUC7hDUnPgFcKXyl2ANmaWXkSdK5MXEldIegNHA3cS2jG+IUz409nMZqZtexXh1M9IQn+NPsCvl8Wa2YeSOhEuoX2KcHXVo9F+JdvMlnQFcDFwEeFopqgm/rBUZmaSjo0yX0qYInoe8EjKNv0lzSMMP3454W/8BHispvO52seHkXcuRTQ96UzC1KXPx5vGuWTwNhLnnHNV4oXEOedclfipLeecc1XiRyTOOeeqxAuJc865KvFC4pxzrkq8kDjnnKsSLyTOOeeq5P8BYAgkm/oTYvEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", + "x = uncertainty_model.values\n", + "y = np.minimum(np.maximum(0, x - strike_price_1), strike_price_2 - strike_price_1)\n", + "plt.plot(x, y, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.5049\n", + "exact delta value: \t0.9291\n" + ] + } + ], + "source": [ + "# evaluate exact expected value (normalized to the [0, 1] interval)\n", + "exact_value = np.dot(uncertainty_model.probabilities, y)\n", + "exact_delta = sum(uncertainty_model.probabilities[np.logical_and(x >= strike_price_1, x <= strike_price_2)])\n", + "print('exact expected value:\\t%.4f' % exact_value)\n", + "print('exact delta value: \\t%.4f' % exact_delta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, bull_spread)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.5049\n", + "Estimated value:\t0.5000\n", + "Probability: \t0.9955\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHeRJREFUeJzt3XuUXGWd7vHvA0EItwACgUGGCF4iDCyPRIQ5jHS4E84RQTRZ6JkVB416VJhZ6ICIENBhGRwuuhgXsHTgcEYTZoDhDJcQwqXDXQ0SjJMEDBqQiyhOkxgTIiG/88e7A5Xd1V27Lv1Wuvv5rFWrqt797rfe/aZSv977vWxFBGZmZkNti25XwMzMRgcHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHbBCSZkrqLV73SprZ5P49kqJc1gB5b5O0eJDtV0rqk7R1xc9+h6SQdHwzdTYbKg44ZpuP2cBfSDqgvEHSlsCpwM0RsS57zcw6wAHHbPPx/4A1wLQ62yYD40lByWxYcsAxa5GkwyT9h6QXJP1R0iJJH2+1vIhYDdwGTK2zeRrwEnBf8dl7SbpW0q8krZX0lKQLJW01SH3HFJfYPltK/4ak35TS9pF0Q3EJb42kuZLe2eqxmQGM6XYFzDZnETGz5nVPafM+wEPAVcCrwH8HrpW0ISJmF/v0AiqXNYjZwMckHRwRjwEUQeRk4AcR8XqRbzfgZeBvgVeAicAFwK7A55s8zE1I2rU4rpeAGcWxnQvMl/RuX9KzVjngmLUoIuZsfC1JwP3A24BP0/qlr7mkADINeKxIOw7YpbbMiFgELKr5/IeAtcBVks6MiPUtfj7AWcDWwFER8UpR/sPACmA6cHUbZdso5ktqZi2StLOk70h6BniteMwA3tVqmcXZw7+TznJUJE8FngEerfnsLSSdJWmppLXFZ/8fYCwp6LXjaGAesLq4DDcGWAn8FJjUZtk2ijngmLXuOlIw+BZwLPB+4J+Bbdosdzbw58BhkrYBTgJmx6ZLu58FzAL+DfgQcAhwRrGt3c/fFfg4bwbRjY8PAnu3WbaNYr6kZtaCIhCcCHwhIq6qSe/EH3H3kvpPpgF7AjvQ/xLdR4E5EXF+zWcf1KDc14H1wFtK6buU3v8X8DhwcZ0yVjX4DLMBOeCYtWZrYEvgjQ50STuQzjbauslURLwu6d9IQWUvYGlE/KyUbWztZxcGHSEXESHpeeA9NXXeEjiylPUe0lnVYg8QsE5ywDFrQUSslPQT4HxJq4ANwDmkvo4dO/ARs4EvkEannV9n+3zgc5IWAr8E/hqYUKHcfwdmSHqC1C/0aWDbUp5/BE4D7pV0JfACsAdwBNAbEf/a9NGY4YBj1o7TgGuA64HfA1eSfry/0IGyHyGNCpsAzKmz/QLgraTLXgHcCPwdcEuDcs8n9dFcDPwJ+A6wBPjUxgwR8VtJhwL/AFwB7AS8CDwADLj0jlkjyn2LaUnvAL4MHAr8BfBAnfkN9fYbR/ryf5g02OE24IyI+H0p30nAN4B3kv7yuzAibujkMZiZWfO6MUrtAGAK8FTxqOoGoIf0l9h00oigTf6ak3Q4cBNpNvYJwO3AbEnHtltpMzNrTzfOcLaIiA3F6xuBXRud4Ug6DHgYOCIi7i/SDgF+BBwTEXcXafOArSLiyJp97wB2jIjDh+J4zMysmuxnOBuDTZNOAF7aGGyKcn4M/KrYRrFk+2Sg3KE5hzSfYVxrNTYzs04YLhM/JwLL6qQvLbYB7AdsVSffUtJxtjz728zM2jdcRqntTFpfqqwP2LcmD3Xy9ZW2b0LSDNJyJIwdO/bgvfdubyL1hg0b2GKL4RLHu8ttVZ3bqjq3VXWdaKunnnrq5YjYrUre4RJwoP5kOtVJL7/XAOkpMeIa0tBWJk2aFAsXLmynjvT29tLT09NWGaOF26qxCefcDsBZB67n0sVjWPHNE7tco82fv1fVdaKtirUEKxkufwb0keYClO3Em2c0fTVp5TxQ/wzJzMwyGS4BZxlv9tXUqu3beZq0wGA530TSLPBmhmCbmVmHDZeAMxfYo5hnA4CkSaT+m7nwxrLu95HWn6o1FXgkIlZmqquZmdWRvQ9H0rakiZ+QFibcUdKpxfs7ImKNpOXAgog4HSAiHinm2Fwv6UukM5ZZwIMb5+AUvg70SrqCNCl0SvE4fsgPzMzMBtWNQQO7k+7hUWvj+7eT1o8aQ1qJt9Y04HLS/UbeWNqmNkNEPFgEr28AnyPN0zktIu7qYP3NzKwF2QNORKzgzZFjA+WZUCftFeCTxWOwfW+h8QKGZmaW2XDpwzEzs2HOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtL+keSWskvSDpIklbNthnpqQY4PGVmnzXDZBn4tAfmZmZDWZMzg+TtDNwN7AEOAnYD7iUFPjOG2TX7wF3ltI+DJwNzC2lLwM+WUpb0VqNzcysU7IGHOCzwFjglIhYBcyXtCMwU9IlRVo/EfEc8FxtmqSvAcsiYlEp+x8j4tEhqLuZmbUh9yW1E4B5pcAyhxSEjqhaiKRdgGOA2Z2tnpmZDZXcAWci6ZLXGyLiWWBNsa2qU4GtSMGqbH9JqyStk/SgpMqBzMzMho4iIt+HSa8BX46IK0rpzwHXR8S5Fcu5FxgXEQeX0s8E/kTqI9oNOAs4GDg8In48QFkzgBkA48ePP3jOnHoxrLrVq1ez/fbbt1XGaOG2amzx8ysBGD8WXloLB+41rss12vz5e1VdJ9pq8uTJj0XEpCp5c/fhANSLcBogvX9GaU/S5bez+xUc8e1S3ttJwedc0iCD/pWJuAa4BmDSpEnR09NTpRoD6u3tpd0yRgu3VWPTz7kdgLMOXM+li8ew4uM93a3QMODvVXW52yr3JbU+YKc66eOAVyqW8TFSgLqhUcaIWAvcAbyvagXNzGxo5A44yyj11UjaG9iOUt/OIKYBD0bEr5v43HzXDc3MrK7cAWcucJykHWrSpgJrgQWNdpY0ATiUiqPTJI0ljYx7rNmKmplZZ+UOOFcB64CbJR1ddNjPBC6rHSotabmk79fZfxqwHrixvEHSOEkPSPqMpKMkTQXuA/YCLh6CYzEzsyZkHTQQEX2SjgKuBG4l9dtcTgo65XrVW+5mGnBPRPyuzrZ1wO9IKxbsDrwKPAIcERELO3IAZmbWsuyj1CJiCXBkgzwTBkh/7yD7vAqc0lblzMxsyHi1aDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8uiqYAjqd5yM2ZmZg01e4bzvKRLJL1nSGpjZmYjVrMB52rgVODnkn4kaYakHYegXmZmNsI0FXAi4oKI2Bc4BngSuAx4UdIPJB09FBU0M7ORoaVBAxFxb0T8NbAH8EXg3cA8SSskzZT0Z52spJmZDX/tjlKbBHyQdNvoPuAB4FPAckmfaLNsMzMbQZoOOJL2kXSBpKeBe4A9gb8B/iwi/hewD6mv51sdramZmQ1rTd2ATdK9pDOa54DrgGsj4pnaPBHxuqQfAmd2qpJmZjb8NXvHz5eBKcD8iIhB8i0C3t5yrczMbMRp9pLalcDD9YKNpO0lfRAgIl4rn/mYmdno1mzAuQ/Yf4Bt7y62m5mZ9dNswNEg27YH1rRRFzMzG8Ea9uEUl8l6apI+Jen4UrZtgBOBxZ2rmpmZjSRVBg18gDS5EyCAjwLrS3n+BCwDvty5qpmZ2UjSMOBExLco5tRI+hVwckQsGuqKmZnZyNLUsOiI8FBnMzNrSZU+nCnAgxGxqng9qIi4oyM1MzOzEaXKGc5twKHAj4vXwcCj1QLwTdrMzKyfKgHn7cCLNa/NzMyaVmXQwDP1XpuZmTWjSh/Ots0UGBGe/GlmZv1UuaS2mtQ3U5X7cMzMrJ8qAedvaC7gmJmZ9VOlD+e6DPUwM7MRrt1bTJuZmVVSZdDAj4HpEbFE0k9ocHktIg7pVOXMzGzkqNKH85/A2prX7s8xM7OmVenD+WTN6+lDWhszMxuxWu7DUbKbpMFuymZmZga0EHAkTZH0MPAq8BvgVUkPSzqx47UzM7MRo6mAI+kzwK2kyaBnkm7Gdmbx/j+K7WZmZv00dT8c4Fzgmoj4XCn9KklXAV8Fru5IzczMbERp9pLaW4GbB9h2E7BLowIk7S/pHklrJL0g6SJJgy6HI2mCpKjzmFMn70mSFkt6VdISSVMrHZmZmQ2pZs9w7gOOAObX2XYEcP9gO0vaGbgbWAKcBOwHXEoKfOdV+PwvAQ/VvH+5VP7hpMD3XeAMYAowW1JfRNxVoXwzMxsiVSZ+7l/z9jvA9yS9FbgF+C2wO3AycALwqQbFfRYYC5wSEauA+ZJ2BGZKuqRIG8yTEfHoINu/BtwfEWcU7++TdABwPuCAY2bWRVXOcH7OppM9BXymeJTv/nkng68WfQIwrxRY5gCzSGdIt1aoT12StgYmk85sas0BrpU0LiJWtlq+mZm1p0rAmdzBz5sI3FubEBHPSlpTbGsUcK6VtAvpzGo28NWI2LgKwn7AVsCy0j5LSZfs3gX8pL3qm5lZq6qsNLCgg5+3M/BKnfS+YttA1gH/RLostgroAc4mBZmTasqmTvl9pe2bkDQDmAEwfvx4ent7B6t/Q6tXr267jNHCbdXYWQeuB2D82PTa7dWYv1fV5W6rZgcNvEHSFsA25fQKd/ystxabBkjfWOaLwBdqknolvQR8V9J7I2LRIOVrgPSNZV8DXAMwadKk6OnpGbz2DfT29tJuGaOF26qx6efcDqRgc+niMaz4eE93KzQM+HtVXe62anbipySdLWk58BrwhzqPwfQBO9VJH0f9M5/B3Fg8v6+mbOqUv/F9s+WbmVkHNTsP5wzgHOD7pDOHfwAuAp4CVlBcmhrEMlJfzRsk7Q1sR/++l0ai9Pw0KQhOLOWbCGwo6mhmZl3SbMD5NHABcEnx/paIuBA4gBQw3tlg/7nAcZJ2qEmbSrr9QbN9RacWz48BRMQ60jyhj5byTQUe8Qg1M7PuarYP5+3Aooh4XdJrFJerImKDpO8C3yOdAQ3kKtJZ0s2SZgH7AjOBy2qHSheX7BZExOnF+5nADqRJn6uADwJfBm6OiJ/VlP91Uv/OFaR5QlOKx/FNHqeZmXVYs2c4vwe2L14/C/y3mm07kyZ1Digi+oCjSHN1bgUuBC4nnTXVGsOm83mWkebpXAvcAZwGfKt4ri3/QdKZz9HAPOBDwGleZcDMrPuaPcN5CHg/6Uf/h6QVAnYB/gR8HrinUQERsQQ4skGeCaX3c0gTOBuKiFtIZzdmZrYZaTbgzAT2Kl5fTLqkNp10ZjMf+GKnKmZmZiNLUwEnIp4EnixeryPdC+fMIaiXmZmNMO1M/HwbsCfwQkQ837kqmZnZSNTKLaY/J+nXwDPAj4BnJT0n6X93vHZmZjZiNLvSwPnAlaT5NCcCk4rnucB3iu1mZmb9NHtJ7fPAxRHxtVL6ncXaZp8nrTxgZma2iWYvqY1l4Lt6LqDOYp5mZmbQfMC5BThlgG0fAW5rrzpmZjZSVbnF9JSat3OBSyRNoP8tpg8A/r7zVTQzs5GgSh/ObfS/lfRewHF18v4L6U6cZmZmm6gScN4+5LUwM7MRr8otpp/JUREzMxvZml5pQNIY0gCBw4FdgP8CHiDdKmB9Z6tnZmYjRVMBR9LuwF3AQaQ7fL4EHEaaf/OEpGMj4nedrqSZmQ1/zQ6Lvgx4K/CBiNg3Ig6LiH2BDxTpl3W6gmZmNjI0G3CmAGdHxE9qE4v3XyEtc2NmZtZPswFna+APA2z7A/CW9qpjZmYjVbMB51HgbEnb1SYW788utpuZmfXT7Ci1s4D7gF9Luos0aGB30iRQAT0drZ2ZmY0YTZ3hRMQi4J3ANcBuwDGkgHMV8M6IeKLjNTQzsxGh8hmOpK2AQ4BfRcQ5Q1clMzMbiZo5w3kduBd4zxDVxczMRrDKASciNgC/AMYPXXXMzGykanaU2leB8yUdOBSVMTOzkavZUWrnkVYUWCTpedIotajNEBGHdKhuZmY2gjQbcH5ePMzMzJpSKeBIGkta1ubnwG+AuyPipaGsmJmZjSxVbjG9L3A3MKEmeZWkj0XEXUNVMTMzG1mqDBq4BNgA/BWwLXAA8Dhw9RDWy8zMRpgqAecw4LyIeCgiXo2IpcBngD+XtOfQVs/MzEaKKgFnT+CXpbSnSWun7dHxGpmZ2YhUdR5ONM5iZmY2sKrDoudJWl8n/Z5yekTs3n61zMxspKkScC4c8lqYmdmI1zDgRIQDjpmZta3ZtdTMzMxa4oBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZllkDziS9pd0j6Q1kl6QdJGkLRvs835J10paXuz3pKQLJG1TyjdTUtR5HD+0R2VmZo00ewO2tkjamXSrgyXAScB+wKWkwHfeILtOLfLOAn4BHAR8vXj+SCnvSqAcYJa2W3czM2tP1oADfBYYC5wSEauA+ZJ2BGZKuqRIq2dWRPyu5n2vpFeBqyXtExHP1GxbHxGPDk31zcysVbkvqZ0AzCsFljmkIHTEQDuVgs1GjxfPXrvNzGwYyB1wJgLLahMi4llgTbGtGX9JujHck6X0nSS9LOk1SY9LOqXl2pqZWccoIt+dByS9Bnw5Iq4opT8HXB8R51YsZw/gZ8AdETG9Jv0TpDOeRcD2pBvFTQE+EhE3D1DWDGAGwPjx4w+eM2dOs4e1idWrV7P99tu3VcZo4bZqbPHzKwEYPxZeWgsH7jWuyzXa/Pl7VV0n2mry5MmPRcSkKnm7EXC+FBHfLqU/D1wXEV+tUMZbSAMP3gYcHBF9g+QV8DAwNiLe26jsSZMmxcKFCxtlG1Rvby89PT1tlTFauK0am3DO7QCcdeB6Ll08hhXfPLHLNdr8+XtVXSfaSlLlgJP7klofsFOd9HHAK412LgLI9cABwJTBgg1ApGh6M3BQo6HXZmY2tHKPUltGqa9G0t7AdpT6dgZwOWk49TERUSX/Rr5jqZlZl+U+w5kLHCdph5q0qcBaYMFgO0r6CvBF4BMR8WCVDyvOiE4GnoiI11urspmZdULuM5yrgDOAmyXNAvYFZgKX1Q6VlrQcWBARpxfvTwMuBq4Dnpd0aE2ZT28cNi1pAXAT6WxpO+DTwKHAh4f2sMzMrJGsASci+iQdBVwJ3Erqt7mcFHTK9artczm2eJ5ePGp9khSIAJYDfwvsSRoy/VPgxIiY24n6m5lZ63Kf4RARS4AjG+SZUHo/nf6Bpt5+p7dRNTMzG0JeLdrMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLLIHHEn7S7pH0hpJL0i6SNKWFfYbJ+laSX2SVkr6gaS31sl3kqTFkl6VtETS1KE5EjMza0bWgCNpZ+BuIICTgIuAs4ALK+x+A9ADfAqYDrwfuKVU/uHATcB9wAnA7cBsScd25ADMzKxlYzJ/3meBscApEbEKmC9pR2CmpEuKtH4kHQYcBxwREfcXac8DP5J0dETcXWT9GnB/RJxRvL9P0gHA+cBdQ3dYZmbWSO5LaicA80qBZQ4pCB3RYL+XNgYbgIj4MfCrYhuStgYmA/9a2ncOcJikce1X38zMWpX7DGcicG9tQkQ8K2lNse3WQfZbVid9abENYD9gqzr5lpIC67uAn7RWbbPhZcI5t/dLW/HNE7tQE7M35Q44OwOv1EnvK7a1st++NXmok6+vtH0TkmYAM4q3qyU9OUg9qtgVeLnNMkYLt1VFZxRtpVmtl9HOvsOMv1fVdaKt9qmaMXfAgTRgoEwDpLeyX/m9BtmfiLgGuKbBZ1cmaWFETOpUeSOZ26o6t1V1bqvqcrdV7j6cPmCnOunjqH8G02i/nWr266tJK+ehQflmZjbEcgecZbzZ5wKApL2B7ajfRzPgfoXavp2ngdfq5JsIbACeaqG+ZmbWIbkDzlzgOEk71KRNBdYCCxrst0cxzwYASZNI/TdzASJiHWn+zUdL+04FHomIle1Xv5KOXZ4bBdxW1bmtqnNbVZe1rRTRqOukgx+WJn4uAX4OzCIFjMuAKyLivJp8y4EFEXF6TdqdpJFmXyKdscwCfhsRf1WT53CgF7iSNCl0SpH/+IjwPBwzsy7KeoYTEX3AUcCWpCHQFwKXAxeUso4p8tSaRjoL+mfgeuAx4ORS+Q8CpwJHA/OADwGnOdiYmXVf1jMcMzMbvbxadB1eYLS6VtpK0vuLdlpe7PekpAskbVPKN1NS1HkcP7RHNTRabKsJA7TBnDp5R/v3aqDvS0j6Sk2+6wbIU29g0mZP0jskXS3pCUmvS+qtuF/236tuzMPZrNUsMLqEtMDofsClpOB83iC7Qlpg9N2kBUY39jPdApT7mW4CvgucQepnmi2pb7hd+mujraYWeWcBvwAOAr5ePH+klHclUA4wS9ute25tfq8g9UU+VPN+k8l6/l4B8D3gzlLah4GzKQYX1VgGfLKUtqK1GnfdAaR/70eBtzSxX/7fq4jwo+YBfIU0p2fHmrS/B9bUptXZ7zDS5NIP1qQdUqQdXZM2D7i3tO8dwIPdPvaMbbVbnbQZRVvtU5M2E3i528fZ5baaULTL/2hQ/qj/Xg1Q1u3A0lLadcDCbh9nB9tri5rXNwK9Ffbpyu+VL6n15wVGq2uprSLid3WSHy+ed+9c9TYrrX6vGvL3qj5JuwDHALM7W73NS0RsaGG3rvxeOeD012+h0Ih4lvTX1WDXeDu1wOhw0mpb1fOXpNP68lp2O0l6WdJrkh6XdErLte2udtvq2uL6/IuSLpM0tmabv1f1nUpql379XcD+klZJWifpQUltBf1hqCu/Vw44/Q3FAqM71+ShTr5BFxjdjLXaVpuQtAfwVeD/lv6qXU66lPIxUt/OC8BNwzTotNpW64B/Ak4nTSm4Gvgcm/6I+ntV3zTgpxFRXmXkcdKNH/8n8HHSFIz5kg5poa7DVVd+rzxooL7NaoHRzVyrbZUySm8hnbKvBv5uk4Ij/qWU91bgYdIN9W5upbJd1nRbRcSLwBdqknolvQR8V9J7I2LRIOWP5u/VnqTLb2f3Kzji26W8t5MGKJxLGmQwWmT/vfIZTn9eYLS6VtsKAEkiTeI9AJgSaWLwgCL1WN4MHFRlmPpmpq22KrmxeH5fTdnUKX9Ufq8KHyP9MN7QKGNErCV1hL+vUd4RpCu/Vw44/XmB0epabauNLicNez0pIqrk32g4/sXeblvVitKzv1f9TSONpPp1E587HL9XrerK75UDTn+jYYHRTmm1rSgm4n0R+ESkJYkaKs6ITgaeiIjXW6ty17TcVnWcWjw/Bv5elUmaABxKxdFpxQCMEyjac5Tozu9Vt8eQb24PUkfYi8B80ppsM0j9C98o5VsOfL+UdifwS+AU0rXgJ4EHSnkOB9YDVwA9wCWkvxaO7fax52or4DTSX5PXkn4Yah+71eRbQJpsdiwp0NxRtNWHun3sGdtqJmnS4ynFfheRfnhv8veq///BIv0c0l/m9eZ7jQMeAD5DGoQxlTRhch0wqdvH3mJ7bUv6I+RU4BHgP2vebztQW3Xj96rrjbU5PoD9gXuL/9gvkmbBb1nKswK4rpS2U/Ej+gqwCvghsGud8j9MWjF7Hen0dVq3jzlnW5Em3sUAj+k1+b5f/IdYC/yx+KE4odvHnLmtpgELSSsu/Kn44bgI2Nrfq/7/B4v0RcCdA5S7Dakf8NdFO60sfngP7fYxt9FWEwb5/zRhoLbqxu+VF+80M7Ms3IdjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZfH/AS+PdwbC0b8LAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuUHVWZ/vHvkwQhcr8loIM0AZEhwcU4AeG3GEkCyHUJIpjIMC4kCDIM6AgjoKDhMkqQBGdABZZcdFCCA0xmCJcYSDqAihIETLgEAwQwQAgQCDEBuby/P3Y1nJyc7j63rtN1+vmsdVZ37dpV592nuvvt2rVrlyICMzOzvjao1QGYmdnA4IRjZma5cMIxM7NcOOGYmVkunHDMzCwXTjhmZpYLJxxrKkmTJEU3r6Or3MeO2X42KSs/JtvPBn0TfXVxNLjPGyR1VlFviKSvSXpI0mpJyyXdKmmvOt+3v3ymx5T9TLwoaaakT1Sx7Zhsm1F5xGrN54RjfeE1YM8Kr9ur3H5H4DtA+R/6W7L9rGpOmHXH0ackDQamA98F/g84CDgGeAfolHRUHbvtL59pl3HZ+54AbAnMkfShXrb5Q7bNE30cm/WRIa0OwNrS2xFxb7N3GhHLgGXN3m8/dDJwMHBgRJQm6f+VNA24QtLciFjS6Bu18DO9LyJWAkiaBzwN/CPw/fKKkgSsGxErgKb/XFl+fIZjLSHpTEmLJL0haamk2yVtJWkMcHNW7amsC2Vxts0a3T+SOrLlCZKulrRC0p+7uu4kfUPSc5KWSZosaVDJ++8kaZqkZyWtkvRw1oU1KFvfbRzZ+o9k27+SbT9T0sfK2rhN1g22WtJiScdV+fF8FZhTlmy6fAtYD5hY8j6LJV0k6WxJL0haKennkjburS2VutQkbSHpp5JeztrWKWl0Wdu63vNfs898efZ51Hw2GBHPkpJeR7bvSZJekrSXpPuAN4AjK3WpSRqc/Sw9LunNLJZrymI9VNK87GftBUkXSlqn1jitcT7DsT4haa2frYh4O1v3ReCbwOnAw8DmpC6W9UndJqcBFwGHA88Db/bydpOBnwOfA44Ffirp74Bts+W/B84HHgCmZdt8GFiYbfc6sCtwDjAU+F5PcUjaDLgHeBn4Cqk76gzgDkk7RsTq7L/y/wW2ICWHN7L9bwb8qYfPbRvSH96LK62PiCckzQc+VbbqC8Ai4MvA1sCFwE+AI3tqSzemAztk27wE/Bupy+vvImJRSb3PA38Ejgf+BphK6gb85x72vRZJG5I+lxdKij8I/DRrx+PAc1m7yl0OfDGrNzfbzxEl+/48cF1W75vA9qTjOyhrn+UpIvzyq2kvYBIQ3bw6sjqXAjf2sI9DSuuXlB+TlW+QLXdky1eX1NkIeIv0R31wSfnvgeu7eT+R/vn6JvBkFXGcR0o2m5WUbUq6dnVStnxQtu0nS+psC7wNdPbQ9j2y7Q7toc504NGS5cXAK12fS1b2j8C7wN/W+JkekC3vXVJnfdIZyOVl7/kEMKSk7AfAC738fHS938bZZ74NcH32uexa9jN0aNm2Y7LyUdnyTtnyKT0c16dLfz6y8mOB1cDmrf59GWgvn+FYX3gN2LdC+XPZ1weBiZLOIV20vj8i3mng/e7s+iYiVkhaBswt2+ci4CNdC5LWA84k/WH+CLBOybohkZ2NdWNfYBawouRM7nXgfqCr62l3YGlE/K4ktqcl3V9H+6oxK7JrIpmbgGuB3YBHa9jP7sCyiJjbVRARf5E0AygfITen7HN6BBgm6QMR8dde3ufVku9fAo6NiAdLygK4rZd9jM2+XtPN+h1Jx/aXZWfcs0ndkqNIZ0WWEycc6wtvR8S8HtZfBWxI6or5NvCypB8Dk+pMPK+WLf+1m7L1SpYnA8eRurn+kNU/FDgrq7eS7m1BOhMZX2FdV/LbCnixwvoXSW3vTtdAgG17qLNtSb3S/b4nUrfeSip3Q/Vka2BphfKlpO6qUpU+YwEfyL7vyadIXZEvAc9GxLtl65dXkbQ2B/4SaTBBJVtkX2/tZv02vezfmswJx3KX/XG5GLg4u2bxj8C/k/6IXpZTGEcCl0TEhV0Fkg6ucttXSMOVz6uw7vXs6wvAsArrh5G6cyqKiGezC/qfAf6zfL2k7Uj/mZe/97CyekOBDUjXa2rxfPm+MsNJ7W6WB8rOyMpV89yUl4H1JW3UTdLpivd40vW7ck9V8R7WRB6lZi0VEc9GxAWkLq+ds+Ku/2zXq7xVUwyl5MK50r0vE8rqdBfHncBI4OGImFf2WpjVuQ8YLumTJe/xEaDXGxyB/wD2kfTpCuvOz+K+sqx8P6158+bhpD/aXWea1X6mvyN1i703KEHSB0nDtO+pIvY8zc6+frGb9QtJ/8R0VDhO8yLi5XzCtC4+w7G+METSHhXKn42IJZIuJ/33eS/pes9Y4KOkUWuQ/lAAnKB038mqiJjf5BhnASdJWpTFchKwblmd7uKYChwNzJZ0CemP2nBgb+CeiLiO1I3zEPDfkk4njVI7l8rdbOUuIV0n+h9JFwGdpG64iaSL//8Ua9+Dsxq4RdL3Sd1i3wf+JyIe6aUta4iImZJ+DVwv6QzSWcRppAS91j0yrRQRCyVdAUyRNAy4i3Rj6xERMSEi3pV0KvBfkjYiXRP6KzACOCyrl/cNrwNbq0ct+NVeL3oepXZWVucY4NekP/SrSENrJ5bt51TSCKO3gcUl21UapXZI2baLgYvKyq4B5pUsDwf+B1hBuj5xIWlI8Xv77y6OrPxDwNXZtm9m73ktMLKkzkdIsyuszvZxAnADPYxSK9l2CPCv2WezGlhO+oO5V4W6i4Ep2We/FPgLaSjwJrV+plnZlsDPsvdcTbqwvlsVn/Fa+6oQazV1JgEvVSgfQ8kotaxsMNnoQlIy+TNrj0o7ELg7+1xWkAatnE/JCDu/8nkpOyC5kbQDaVz/HqS+6LsjYkwV221MGnZ5GKkrcAZpOOTLZfUOJf0wfZT0Q3hORFzfzDaY9SfZNZ8bIsL3lVi/1oprOCNJ9yg8nr2qdT3pP5zjSP8l7Ua6H+E9ShMb3gjMIf1XcwtwXTd94WZmlqNWnOEMimwIpKQbgC16O8ORtCfwG9LNaHdlZbuTLnDuFxF3ZGUzgXUiYlzJtrcCG0VEXbPsmvV3PsOxosj9DCfWHm9fjQNJN9HdVbKf35OGNR4IIGld0sXnX5ZtOw3Ys2teKbN2ExEdTjZWBEUZFr0T8FiF8kezdZDmSFqnQr1HSe3csc+iMzOzXhVlWPSmrH1XM6RRNCNK6lCh3vKy9WuQdDzpxjCGDh3699tsU+ybj999910GDSrK/xGNGUht3fDxdLnz9R3b//+mgXRc26Gtjz/++EsRsWU1dYuScKDynceqUF6+rB62JyKuAK4AGD16dMyb19OMLP1fZ2cnY8aMaXUYuRgIbe044xYAFk4+JBUsXNhD7fYwEI5rl3Zoq6Snq61blNS6nMpPXdyE989olpeUldeBymdIZmaWk6IknMd4/1pNqdJrO0+QpqUvr7cTaZr2WoZgm5lZkxUl4dwGbJXdZwNA9gTCEdk6IuJN0v03R5ZtOx74bUS8llOsZmZWQe7XcLKJAA/KFj8MbCSp6wl9t0bEqmx+q7kRMREgIn6b3WPzM0mnkc5YJpPmrbqjZPfnAZ2SfkC6KfSg7HVAnzfMzMx61IpBA8OA/y4r61rejjRH0xDSHEmlJpCmtL+KkqltSitExD1Z8jofOJF0n85REfGrJsZvlrtLrp3OlPlDWNzqQMwakHvCiYjFvD9yrLs6HRXKXgW+lL162nY6ZVPemJlZ6xXlGo6ZmRVcke7DMRuwxp/1dcasFlxQ7UNJzfofJxyzAhi2+MmKz302KxJ3qZmZWS6ccMzMLBdOOGZmlgsnHDMzy4UTjpmZ5cKj1MwKYMHY/fjjK4M4qtWBmDXACcesAOZMPIkp84c44VihuUvNzMxy4TMcswLY8qlFjHrBv65WbD7DMSuACWefxoyffq3VYZg1xAnHzMxy4YRjZma5cMIxM7NcOOGYmVkunHDMzCwXTjhmZpYLD+w3K4Bp513EtYuGMKPVgZg1wAnHrACWbbcDC1b619WKzV1qZmaWC//LZFYAY6/8IZu/MgguOLjVoZjVzQnHrABGzZnFqFYHYdYgd6mZmVkunHDMzCwXTjhmZpYLJxwzM8uFE46ZmeXCo9TMCuDFjhEsXS12aXUgZg1wwjErgOvPn8qU+UNY3OpAzBrgLjUzM8uFE46ZmeXCCcesAE4++jAWTz6k1WGYNcQJx8zMcuGEY2ZmuXDCMTOzXDjhmJlZLpxwzMwsF044ZmaWC880YFYAs489kVlLBvO9Vgdi1gCf4ZgVwMPj9ue6XQ9odRhmDck94UjaWdKdklZJek7SuZIG97LNJEnRzevMknrXdFNnp75vmZmZ9STXLjVJmwJ3AI8AhwLbA1NIie+sHjb9CXB7WdlhwOnAbWXljwFfKitbXF/EZv3DyNkz+cKSwcDBrQ7FrG55X8P5CjAUODwiVgCzJG0ETJJ0YVa2loj4M/Dn0jJJZwOPRcSDZdX/EhH39kHsZi0z7qofMw6AS1ociVn98u5SOxCYWZZYppGS0N7V7kTSZsB+wHXNDc/MzPpK3glnJ1KX13si4hlgVbauWkcA65CSVbmdJa2Q9KakeyRVncjMzKzv5N2ltinwaoXy5dm6ak0A/hARj5eVPwD8jnSNaEvgVFK33V4R8ftKO5J0PHA8wPDhw+ns7KwhjP5n5cqVhW9DtQZCW0/d5e01ltu9vTAwjmuXgdRWaM19OFGhTN2Ur11R2prU/Xb6WjuO+I+yureQks83SYMM1g4m4grgCoDRo0fHmDFjqgmj3+rs7KTobajWQGjrMWfcAsDJ2XK7txcGxnHtMpDaCvl3qS0HNqlQvjGVz3wq+TwpQV3fW8WIWA3cCnyi2gDNzKxv5J1wHqPsWo2kbYD1Kbu204MJwD0R8WwN71vV2ZOZmfWdvBPObcD+kjYsKRsPrAbm9raxpA5gD6ocnSZpKGlk3P21BmrWn1xy7XQ6Tp/R6jDMGpJ3wrkMeBO4SdK+2QX7ScDU0qHSkhZJurLC9hOAt4EbyldI2ljS3ZJOkLSPpPHAHODDwHf7oC1mZlaDXAcNRMRySfsAlwI3k67bXExKOuVxVZruZgJwZ0Qsq7DuTWAZacaCYcAbwG+BvSNiXlMaYGZmdct9lFpEPALZTdPd1+nopnzXHrZ5Azi8oeDM+qnxZ32dMasFF3hqGysuP57ArACGLX6SYa0OwqxBfjyBmZnlwgnHzMxy4YRjZma5cMIxM7NcOOGYmVkuPErNrAAWjN2PP74yiKNaHYhZA5xwzApgzsSTmDJ/iBOOFZq71MzMLBc1neFIGhwR7/RVMGZW2ZZPLWLUC+6QsGKr9QxniaQLJf1tn0RjZhVNOPs0Zvz0a60Ow6whtSacy4EjgAWSfifpeEkb9UFcZmbWZmpKOBHxnYgYAewHLASmAs9L+rmkffsiQDMzaw91DRqIiNkR8UVgK9Lj1j8GzJS0WNIkSR9qZpBmZlZ8jY5SGw18ivTY6OXA3cBxwCJJRze4bzMzayM1JxxJ20r6jqQngDuBrYFjgQ9FxD8B25Ku9Xy/qZGamVmh1TosejbpjObPwDXA1RHxdGmdiHhH0i+ArzYrSDMzK75aB/a/BBwEzIqI6KHeg8B2dUdlZmuYdt5FXLtoCDNaHYhZA2pNOJcCf6iUbCRtAHwiIu6KiLeAp9fa2szqsmy7HViw0jd+WrHVeg1nDrBzN+s+lq03MzNbS63/MqmHdRsAqxqIxcy6MfbKH7L5K4PggoNbHYpZ3XpNOJI+BYwpKTpO0gFl1dYDDgbmNy80M+syas4sRrU6CLMGVXOG80nSzZ0AARwJvF1W56/AY8C/NS80MzNrJ70mnIj4Ptk9NZKeAj4bEQ/2dWBmZtZearqGExEe6mxmZnWp5hrOQcA9EbEi+75HEXFrUyIzM7O2Us0ZzgxgD+D32fdB96PVAhjcnNDMzKydVJNwtgOeL/nezHL2YscIlq4Wu7Q6ELMGVDNo4OlK35tZfq4/fypT5g9hcasDMWtANddwPljLDiPCN3+amdlaqulSW0m6NlMtX8MxM7O1VJNwjqW2hGNmTXby0Yelu68v8K+iFVc113CuySEOMzNrc40+YtrMzKwq1Qwa+D1wTEQ8Iuk+eulei4jdmxWcmZm1j2qu4TwMrC753p3IZmZWs2qu4Xyp5Ptj+jQaMzNrW3Vfw1GypaSeHspmZmYG1JFwJB0k6TfAG8ALwBuSfiPJjyI06yOzjz2RM/f/l1aHYdaQmhKOpBOAm0k3g36V9DC2r2bL/5etN7Mme3jc/ly3a/mDds2Kpabn4QDfBK6IiBPLyi+TdBnwLeDypkRmZmZtpdYutc2Bm7pZdyOwWW87kLSzpDslrZL0nKRzJfU4HY6kDklR4TWtQt1DJc2X9IakRySNr6plZv3YyNkz+cKDt7c6DLOG1HqGMwfYG5hVYd3ewF09bSxpU+AO4BHgUGB7YAop8Z1VxfufBvy6ZPmlsv3vRUp8PwJOAQ4CrpO0PCJ+VcX+zfqlcVf9mHEAXNLiSMzqV82NnzuXLP4n8BNJmwPTgReBYcBngQOB43rZ3VeAocDhEbECmCVpI2CSpAuzsp4sjIh7e1h/NnBXRJySLc+RNBL4NuCEY2bWQtWc4SxgzZs9BZyQvcqf/nk7Pc8WfSAwsyyxTAMmk86Qbq4inookrQuMJZ3ZlJoGXC1p44h4rd79m5lZY6pJOGOb+H47AbNLCyLiGUmrsnW9JZyrJW1GOrO6DvhWRHTNgrA9sA7wWNk2j5K67HYE7mssfDMzq1c1Mw3MbeL7bQq8WqF8ebauO28CPyR1i60AxgCnk5LMoSX7psL+l5etX4Ok44HjAYYPH05nZ2dP8fd7K1euLHwbqjUQ2nrqLm+vsdzu7YWBcVy7DKS2Qu2DBt4jaRCwXnl5FU/8rDQXm7op79rn80DpXW+dkpYCP5K0a0Q82MP+1U15176vAK4AGD16dIwZM6bn6Pu5zs5Oit6Gag2Eth5zxi0A6Vk40PbthYFxXLsMpLZC7Td+StLpkhYBbwGvV3j1ZDmwSYXyjal85tOTG7KvnyjZNxX237Vc6/7NzKyJar0P5xTgDOBK0pnDvwPnAo8Di8m6pnrwGOlazXskbQOsz9rXXnoTZV+fICXBncrq7QS8m8VoVkiXXDudjtNntDoMs4bUmnC+DHwHuDBbnh4R5wAjSQnjo71sfxuwv6QNS8rGkx5/UOu1oiOyr/cDRMSbpPuEjiyrNx74rUeomZm1Vq3XcLYDHoyIdyS9RdZdFRHvSvoR8BPSGVB3LiOdJd0kaTIwApgETC0dKp112c2NiInZ8iRgQ9JNnyuATwH/BtwUEX8s2f95pOs7PyDdJ3RQ9vIkVGZmLVbrGc7LwAbZ988Af1eyblPSTZ3diojlwD6ke3VuBs4BLiadNZUawpr38zxGuk/nauBW4Cjg+9nX0v3fQzrz2ReYCXwGOMqzDFjRjT/r69x8zVdbHYZZQ2o9w/k1sBvpj/4vSDMEbAb8FTgJuLO3HUTEI5DN0tF9nY6y5WmkGzh7FRHTSWc3Zm1j2OInGdbqIMwaVGvCmQR8OPv+u6QutWNIZzazeH/0ppmZ2RpqSjgRsRBYmH3/JulZOD7PNzOzXjVy4+ffAFsDz0XEkuaFZGZm7aieR0yfKOlZ4Gngd8Azkv4s6Z+bHp2ZmbWNWmca+DZwKel+moOB0dnX24D/zNabmZmtpdYutZOA70bE2WXlt2dzm51EmnnAzJpowdj9+OMrg9a8D8CsYGrtUhtK90/1nEuFyTzNrHFzJp7ENw/wIFArtloTznTg8G7WfQ7wZE9mZlZRNY+YPqhk8TbgQkkdrP2I6ZHAN5ofoplt+dQiRr1Q96BSs36hmp/gGaz9KOkPA/tXqHst6UmcZtZEE84+jQkAnt7GCqyahLNdn0dhZmZtr5pHTD+dRyBmZtbeau4UljSENEBgL2Az4BXgbtKjAt7uaVszMxu4ako4koYBvwI+TnrC51JgT9L9Nw9J+nRELGt2kGZmVny1DoueCmwOfDIiRkTEnhExAvhkVj612QGamVl7qDXhHAScHhH3lRZmy2eSprkxMzNbS63XcNYFXu9m3evABxoLx8wqmXbeRVy7aIjvrLZCq/UM517gdEnrlxZmy6dn682syZZttwMLttqh1WGYNaTWM5xTgTnAs5J+RRo0MIx0E6iAMU2NzszM2kZNZzgR8SDwUeAKYEtgP1LCuQz4aEQ81PQIzYyxV/6Q795+SavDMGtI1Wc4ktYBdgeeiogz+i4kMys3as4sRrU6CLMG1XKG8w4wG/jbPorFzMzaWNUJJyLeBf4EDO+7cMzMrF3VOkrtW8C3Je3SF8GYmVn7qnWU2lmkGQUelLSENEotSitExO5Nis3MzNpIrQlnQfYyMzOrSVUJR9JQ0rQ2C4AXgDsiYmlfBmZm73uxYwRLVwv3ZVuRVfOI6RHAHUBHSfEKSZ+PiF/1VWBm9r7rz5/KlPlDWNzqQMwaUM2ggQuBd4F/AD4IjAQeAC7vw7jMzKzNVJNw9gTOiohfR8QbEfEocALwEUlb9214ZmbWLqpJOFsDT5aVPUGaO22rpkdkZms5+ejDWDz5kFaHYdaQau/Did6rmJmZda/aYdEzJb1dofzO8vKIGNZ4WGZm1m6qSTjn9HkUZmbW9npNOBHhhGNmZg2rdS41MzOzujjhmJlZLmqdS83MWmD2sScya8lgvtfqQMwa4DMcswJ4eNz+XLfrAa0Ow6whTjhmZpYLd6mZFcDI2TP5wpLBwMGtDsWsbrmf4UjaWdKdklZJek7SuZIG97LNbpKulrQo226hpO9IWq+s3iRJUeHlvggrtHFX/Zjvzby01WGYNSTXMxxJm5IedfAIcCiwPTCFlPjO6mHT8VndycCfgI8D52VfP1dW9zWgPME82mjsZmbWmLy71L4CDAUOj4gVwCxJGwGTJF2YlVUyOSKWlSx3SnoDuFzSthHxdMm6tyPi3r4J38zM6pV3l9qBwMyyxDKNlIT27m6jsmTT5YHsq+duMzMrgLwTzk7AY6UFEfEMsCpbV4v/R3ow3MKy8k0kvSTpLUkPSDq87mjNzKxp8u5S2xR4tUL58mxdVSRtBXwL+K+ys6VFwDeAB4ENSA+Ku1HS5yLipm72dTxwPMDw4cPp7OysNox+aeXKlYVvQ7UGQltP3WXNSdrbvb0wMI5rl4HUVgBF5PeoG0lvAadFxH+UlS8BromIb1Wxjw+QBh78DfD3EbG8h7oCfgMMjYhde9v36NGjY968eb1V69c6OzsZM2ZMq8PIxUBoa8cZtwC8//C1HH9fW2UgHNcu7dBWSfdHxOhq6ubdpbYc2KRC+cZUPvNZQ5ZAfgaMBA7qKdkARMqmNwEf723otVl/dsm10+k4fUarwzBrSN5dao9Rdq1G0jbA+pRd2+nGxaTh1PtFRDX1u7T/v4VmZv1c3mc4twH7S9qwpGw8sBqY29OGks4ETgaOjoh7qnmz7Izos8BDEfFOfSGbmVkz5H2GcxlwCnCTpMnACGASMLX04r+kRcDciJiYLR8FfBe4BlgiaY+SfT7RNWxa0lzgRtLZ0vrAl4E9gMP6tllmfWv8WV9nzGrBBZ7axoor14QTEcsl7QNcCtxMum5zMSnplMdVes3l09nXY7JXqS+REhGkUWpfA7YmDZn+A3BwRNzWjPjNWmXY4id9w5kVXu6Td0bEI8C4Xup0lC0fw9qJptJ2ExsIzczM+pAfT2BmZrlwwjEzs1w44ZiZWS6ccMzMLBd+4qdZASwYux9/fGUQR7U6ELMGOOGYFcCciScxZf4QJxwrNHepmZlZLnyGY1YAWz61iFEv+NfVis1nOGYFMOHs05jx06+1OgyzhjjhmJlZLpxwzMwsF044ZmaWCyccMzPLhROOmZnlwgnHzMxy4YH9ZgUw7byLuHbREGa0OhCzBjjhmBXAsu12YMFK/7pasblLzczMcuF/mcwKYOyVP2TzVwbBBQe3OhSzujnhmBXAqDmzGNXqIMwa5C41MzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7NceJSaWQG82DGCpavFLq0OxKwBTjhmBXD9+VOZMn8Ii1sdiFkD3KVmZma5cMIxM7NcOOGYFcDJRx/G4smHtDoMs4Y44ZiZWS6ccMzMLBdOOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcuGZBswKYPaxJzJryWC+1+pAzBrgMxyzAnh43P5ct+sBrQ7DrCFOOGZmlgt3qZkVwMjZM/nCksHAwa0OxaxuTjhmBTDuqh8zDoBLWhyJWf3cpWZmZrnIPeFI2lnSnZJWSXpO0rmSBlex3caSrpa0XNJrkn4uafMK9Q6VNF/SG5IekTS+b1piZma1yDXhSNoUuAMI4FDgXOBU4JwqNr8eGAMcBxwD7AZML9v/XsCNwBzgQOAW4DpJn25KA8zMrG55X8P5CjAUODwiVgCzJG0ETJJ0YVa2Fkl7AvsDe0fEXVnZEuB3kvaNiDuyqmcDd0XEKdnyHEkjgW8Dv+q7ZpmZWW/y7lI7EJhZllimkZLQ3r1st7Qr2QBExO+Bp7J1SFoXGAv8smzbacCekjZuPHwzM6tX3mc4OwGzSwsi4hlJq7J1N/ew3WMVyh/N1gFsD6xTod6jpMS6I3BffWGbFU/HGbessbz4Ag+pttbKO+FsCrxaoXx5tq6e7UaU1KFCveVl69cg6Xjg+GxxpaSFPcRRBFsAL7U6iJwMmLaqq61S/fuY3Lx4+tiAOa60R1u3rbZiK+7DiQpl6qa8nu3Kl9VNeSqMuAK4opf3LgxJ8yJidKvjyIPb2p7c1vaV9zWc5cAmFco3pvIZTG/bbVKy3fKSsvI69LJ/MzPrY3knnMd4/5oLAJK2Adan8jWabrfLlF7beQJ4q0K9nYB3gcfriNfMzJok74RzG7C/pA1LysYDq4G5vWy3VXafDQCSRpOu39wGEBFvku6/ObJs2/HAbyPitcbDL4S26R6sgtvantzWNqWI3i6dNPFDax62AAAEXElEQVTN0o2fjwALgMmkhDEV+EFEnFVSbxEwNyImlpTdThppdhrpjGUy8GJE/ENJnb2ATuBS0k2hB2X1D4gI34djZtZCuZ7hRMRyYB9gMGkI9DnAxcB3yqoOyeqUmkA6C7oK+BlwP/DZsv3fAxwB7AvMBD4DHOVkY2bWerme4ZiZ2cDl2aILTtKXJf0pm6z0fkn7VLHNJElR4dUvHinZ1xO89if1tFVSRzfHb1pecddD0g6SLpf0kKR3JHVWuV0Rj2vNbS3qca2Fn4dTYJImAJcBk4B7gC8BMyTtFhELetn8NaA8wTza9CBrVDLB6yOkCV63B6aQ/jk6q4dNIU3w+jHSBK9d1/mmA//Q00at0mBbIV2f/HXJcn+/gXAk6brqvcAHatiuUMc1U29boXjHtXoR4VdBX8BC4KqS5UHAfODaXrabBLzU6vi7ie1M0j1VG5WUfQNYVVpWYbs9STf3fqqkbPesbN9Wt6vJbe3I2nVIq9tQY3sHlXx/A9BZxTaFO64NtLWQx7WWl7vUCkrSCNKovfcmK42Id4H/JpvQtKD6bILXfqjethZS9vNZqyIe13rb2vaccIqr6wbXSpOVbiZpy16230TSS5LekvSApMObH2Jd1pqoNSKeIf3XX+nm3263y5RO8Nrf1NvWLldn1weelzRV0tC+CLLFinhcG9W2x9XXcIqrmslKl3Wz7SJS182DwAbACcCNkj4XETc1O9Aa9eUEr/1NvW19E/gh6RlPK0gPJjyddA3o0OaG2HJFPK71avvj6oTTj2TP7Nm6t3oRUfofX02TlWbbX1v2vjcDvyE9qK7VCQf6foLX/qTmmCPieeBfSoo6JS0FfiRp14h4sMkxtloRj2vNBsJxdZda/3Ikqaugtxc0cbLSSFcsbwI+Xs3w4z7WlxO89jf1trWSG7Kvn2goov6niMe1mdrquDrh9CMR8ZOIUG+vrHrXWU6lyUpfiYjuutN6DKHu4JunLyd47W/qbWslUfa1XRTxuDZTWx1XJ5yCiognSTNgvzdZqaRB2fJttexLkkjTBD0UEe80M8469NkEr/1QvW2t5Ijs6/3NCKwfKeJxbab2Oq6tHpftV/0v4AvAO6SbBMcC15D+WI0qqbM38Dawd0nZXOAU4NOkRHMr6Ya6z/SDNm0KPA/MIs2JdzywEji/rN4i4MqystuBJ4HDgcNI9ynd3eo2NbutpPuopmTt3Bc4NzvuN7a6Tb2094OkP6BHAL8FHi5Z/mC7HNd621rU41rT59LqAPxq8ADCl7Mf3DeBPwD7lK0fQzodH1NSdmX2C7wa+AtwN3Bgq9tSEt/OwOwsvueB84DBZXUWA9eUlW0CXE3q218B/ALYotXtaXZbSRPZziPNFvHX7PifC6zb6vb00taO7Gex0qujzY5rzW0t6nGt5eXJO83MLBe+hmNmZrlwwjEzs1w44ZiZWS6ccMzMLBdOOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcvH/Aed/d/Zvwhw9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Delta\n", + "\n", + "The Delta is a bit simplier to evaluate than the expected payoff.\n", + "Similarly to the expected payoff, we use comparator circuits and ancilla qubits to identify the cases where $K_1 \\leq S_T \\leq K_2$.\n", + "However, since we are only interested in the probability of this condition being true, we can directly use an ancilla qubit as the objective qubit in amplitude estimation without any futher approximation." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2]\n", + "slopes = [0, 0, 0]\n", + "offsets = [0, 1, 0]\n", + "f_min = 0\n", + "f_max = 1\n", + "c_approx = 1 # no approximation necessary\n", + "bull_spread_delta_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "bull_spread_delta = UnivariateProblem(\n", + " uncertainty_model,\n", + " bull_spread_delta_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae_delta = AmplitudeEstimation(m, bull_spread_delta)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact delta: \t0.9291\n", + "Esimated value:\t0.9410\n", + "Probability: \t0.4189\n" + ] + } + ], + "source": [ + "print('Exact delta: \\t%.4f' % exact_delta)\n", + "print('Esimated value:\\t%.4f' % result_delta['estimation'])\n", + "print('Probability: \\t%.4f' % result_delta['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu4HFWZ7/Hvj4sSCSRBSGAYIIJiBkbPSMLNcSSRmwTPRAEF0dE4QKKj4vgIchEhgHoE5HIGxyFBheGoxBnEzHC/ZgdxQEkQRSBgkHAXAwRCSMBA3vPHqi2V3r337kt19YXf53nq6e5Vq6rf1Z30u2vVqlWKCMzMzFptvXYHYGZmrw9OOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCscJImiUpBlk+XuM+dsz2M7qifHq2n5Gtib62OJrc52WS+mqot4Gkf5b0a0mrJS2XdLWk9zT4vp3ymU7P/XtYK+l5Sb+RdJ6kHRrcZ5+ky3Kv95P0z8VFbUVywrGiPQ/sWWW5tsbtdwROASp/6K/K9rOqmDAbjqOlJK0PzAO+Afw3MBWYDrwK9Ek6vIHddspn2u99wLuBg4HvAfsBv5F0QAH73g9wwulQG7Q7AOs5r0TE7UXvNCKWAcuK3m8H+jxwIHBAROST9H9JmgvMkbQgIh5v9o3a+JneERErs+c3SroAuBL4kaTxEfF8G2KyEvgIx0on6QRJSyS9JOkpSddK2lLSZOCKrNpDWdfL0mybdbp/JI3PXh8m6SJJKyQ91t91J+nLkp6QtEzSGZLWy73/BElzJT0qaZWke7IurPWy9YPGka3fNtv+2Wz76yS9vaKN22TdYKslLZV0ZI0fzxeA+RXJpt9XgI2AI3Lvs1TStyR9VdIfJK2U9ENJo4ZrS7UuNUmbS/p3Sc9kbeuTNKmibf3v+cXsM1+efR4NHQ1GxMukRDsa+GjufdaTdHz2b+VlSQ9I+uRg+5E0C/gSsF2u6+7ibN2ekv47+zfxoqS7JH2skXitcT7CscJJGvDvKiJeydZ9AjgROA64B3gzqYtlY+BO4BjgW8BBwJPAy8O83RnAD0ndM/8I/LukdwHbZa8nAl8DfgXMzbbZGrg/2+4F4G+AU4ERwP8ZKg5JmwG3As8AnyZ1Rx1P+kt9x4hYLUnAfwGbk5LDS9n+NwN+N8Tntg0wHji32vqIeFDS3cB7K1Z9FFgCHAVsBZwJfBf48FBtGcQ84K3ZNk8DxwLzJb0rIpbk6n0E+A0wA/hL4BxSN+A/DbHvQUXEYkmPAXsAF2TF5wOfBE7L2rEv8H1Jz0TElVV2813gbaR/Tx/KyvqP4LYDfp7t+yXgb4GLJK2NiEsbidkaEBFevBSyALOAGGQZn9X5NvCTIfbxgXz9XPn0rHxk9np89vqiXJ1NgTWkH/X1c+W/BH48yPuJ9IfXicDva4jjdFKy2SxXNoZ07uqz2eup2ba75+psB7wC9A3R9j2y7aYNUWcecF/u9VLg2f7PJSv7GLAW+Ks6P9P3Z6/3ytXZmPSjPbviPR8ENsiVnQf8YZh/H+u8X5X1twHXZM/fmrXhkxV1LiF1yfW/7gMuy73+FrB0mDj6v/PZwM3t/n/zelp8hGNFex7Yp0r5E9njXcARkk4lnbReFBGvNvF+N/U/iYgVkpYBCyr2uQTYtv+FpI2AE0g/zNsCG+bWbRDZ0dgg9gFuAFbkjuReABYB/V1PuwFPRcQvcrE9LGlRA+2rxQ3x2jkRgMuBHwC7AvfVsZ/dgGURsaC/ICJelHQlUDlCbn7F53QvMFbSGyLiT/WF/2fKPd+blHB+WnHEfBPwUUnr1/PvRtIY0lHmNNIR7vrZqqbPhVntnHCsaK9ExMIh1n8f2ITUFXMy8IykfwNmNZh4nqt4/adByjbKvT4DOJL0A3RnVn8acFJWbyWD25x0JHJolXX9yW9L4I9V1v+R1PbB9P/4bTdEne0Y+CO5zntF6tZbSepeq8dWwFNVyp8idQfmVfuMBbwhe96IrYHF2fPNSUlhsAEEWwGP1bHvi0nf2+mk5LgC+Azpe7eSOOFYqSJiLekcxbnZOYuPAV8n/YheMNS2BfowcH5EnNlfIOnAGrd9ljRc+fQq617IHv8AjK2yfiywerAdR8Sj2Qn9vwf+pXK9pLcAf13lvcdW1BsBjCSdr6nHk5X7yowjtbtlJP0V6VzQbVnRs6QuyL8lHelUqpbQB9v3RqSRf5+LiAty5R40VTJ/4NY2EfFoRHyT1OW1U1bc/9fxRtW3KsQIcifOla59OayizmBx3ATsDNwTEQsrlvuzOncA4yTtnnuPbYFdaojt/wJ7S9qvyrqvZXF/r6J8X6178eZBpHMl/UeatX6mvyB1i/15UIKkN5F+rG+tIfaGSHojKcE+x2sDO24mHeGMqvI5Lxyi267yaBbgjdm+8t/5JqTEbiXyEY4VbQNJe1QpfzQiHpc0m/TX6+2k7pIppJFFx2X1+n+0Zypdd7IqIu4uOMYbgM9KWpLF8lnSj1LeYHGcA3wcuFnS+aQjs3HAXsCtkUY8XQ38GvhPSceRRkWdRm1/lZ9POk/0U0nfIp0U34Q02u0DwD/EwGtwVgNXSTqL1NV0FvDTiLh3mLasIyKuk/Rz4MeSjicNjjiGlKDPqiH2Wu0qaTXwJtIR20zSIJBDIrsGJyLuV7o+Z66kM0nJcyNSst8xIgYbZr6YlOynA78Fno6IpZLuAE6WtIJ0xHQ86d/fpgW2y4bT7lELXnpnYehRaidldaaThqc+SxpS/BvgiIr9fAl4mNSlsjS3XbVRah+o2HYp8K2KsouBhbnX44CfkvrxnyINIz6KihFU1eLIyv8CuCjb9uXsPX8A7Jyrsy1pdoXV2T5mApcxxCi13LYbAF/MPpvVwHLgGuA9VeouBc7OPvungBeBS4HR9X6mWdkWpJFgy7P3XgDsWsNnPGBfVWLtr9O/vADcTTqq26FKfZFmDbgn+5yXZfF8Ilenj3VHqW2UfTd/zN7j4qz8raSjpheBR4AvZ5/Z0+3+f/N6WpR9GaWR9FbS2P49SH/d/CwiJtew3SjS0MsPkroCrwSOjohnKupNI3U9vA34PXBqRPy4yDaYdYrsnM9lEXFMu2MxG047zuHsTLpO4YFsqdWPgcmk0UXTSUM+5+UrKE1u+BNgPnAAadjtpYP0h5uZWYnacYSzXqSRSijN8rr5cEc4kvYE/od0QdotWdlupJOc+0bEjVnZdcCGEfG+3LZXA5tGREMz7Zp1Mh/hWDcp/QinP9nU6QDShXS35PbzS+ChbF3/SJcpwH9UbDsX2LN/bimzXhIR451srFt0y7DoCbx2QVjefdk6gB1IV4xX1ruP1M4dWxadmZkNq1uGRY9h4JXNkEbSbJ+rQ5V6yyvWr0PSDNJV74wYMWLiNtts01Sga9euZb31uiWPN8/t7W1ub2fY5IF0uvuFHYv9u7mI9j7wwANPR8QWtdTtloQDaYhjJVUpr3ytQcpTYcQcYA7ApEmTYuHCoWZlGV5fXx+TJ09uah/dxO3tbW5vh1D2M3b//UPXq1MR7ZX0cK11Oy+VV7ec6ndeHM1rRzTLc2WVdaD6EZKZmZWkWxLOYl47V5OXP7fzIGlq+sp6E0hXFtczBNvMzArWLQnnGmDL7DobALK7EG6frSPSXQPnkyZmzDsUuC1821ozs7Yq/RxONhng1Ozl1sCmkg7JXl8dEauyOa4WRMQRABFxW3aNzSWSjiEdsZxBmrvqxtzuTwf6JJ1Huih0ara8v+UNMzOzIbVj0MBY4D8ryvpfv4U0T9MGvHaDpH6Hkaa1/z65qW3yFSLi1ix5fY10r4uHgMMj4voC4zczK1fJF+i3SukJJyKWsu6d/arVGV+l7DngU9ky1LbzqJjyxszM2q9bzuGYmVmXc8IxM+t0Eyempct104WfZmavT3fe2e4ICuEjHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUniUmplZpzvqqHZHUAgnHDOzTjdnTrsjKIS71MzMrBROOGZmnW7RorR0OXepmZl1ukmT0mOXzxrtIxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8LNrMrNMtXNjuCArhhGNm1ul64PbS4C41MzMriROOmVmnmzEjLV3OCcfMrNNdeGFaupwTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKXzhp5lZp9tll3ZHUAgnHDOzTtcDt5cGd6mZmVlJnHDMzKwUTjhmZp1OSkuXc8IxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YmXW62bPbHUEhnHDMzDpdD9xeGtrQpSZpJ0k3SVol6QlJp0laf5htZkmKQZYTcvUuHqTOhNa3zMzMhlLqEY6kMcCNwL3ANGAH4GxS4jtpiE2/C1xbUfZB4DjgmoryxcCnKsqWNhaxmVkHmDMnPXb5kU7ZXWqfBkYAB0XECuAGSZsCsySdmZUNEBGPAY/lyyR9FVgcEXdVVH8xIm5vQexmZu0xc2Z67PKEU3aX2gHAdRWJZS4pCe1V604kbQbsC1xabHhmZtYqZSecCaQurz+LiEeAVdm6Wh0CbEhKVpV2krRC0suSbpVUcyIzM7PWUUSU92bSGuDYiDivovwx4JKIOLHG/dwMjIqIiRXlXwD+RDpHtAXwJWAi8J6I+OUg+5oBzAAYN27cxLlzq+Ww2q1cuZKRI0c2tY9u4vb2Nre3M0yeMgWAvvnzC91vEe2dMmXKooiYVFPliChtAdYAX6hS/jjw9Rr3sRXwKnBMDXVHAA8B82rZ98SJE6NZ8+fPb3of3cTt7W1ub4eAtBSsiPYCC6PGHFB2l9pyYHSV8lHAczXu4yOAgB8PVzEiVgNXA71xQ3Azsy5WdsJZTMW5GknbABtTcW5nCIcBt0bEo3W8b3n9hmZmVlXZCecaYH9Jm+TKDgVWAwuG21jSeGAPahydJmkEaWTconoDNTPrGP2dal2u7IRzAfAycLmkfbIT9rOAcyI3VFrSEknfq7L9YcArwGWVKySNkvQzSTMl7S3pUGA+sDXwjRa0xczM6lDqhZ8RsVzS3sC3gStI523OJSWdyriqTXdzGHBTRCyrsu5lYBlpxoKxwEvAbcBeEbGwkAaYmVnDSp+8MyLuBd43TJ3xg5T/zRDbvAQc1FRwZmadaGJ2Bcii7j474Nmizcw63Z13tjuCQvgGbGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfAoNTOzTnfUUe2OoBBOOGZmna7/FtNdzl1qZmZWiroSjqRq082YmVkrLVrU9bMMQP1dao9LugS4KCLua0VAZmZWYVJ2Q80unzG63i612cAhwG8l/ULSDEmbtiAuMzPrMXUlnIg4JSK2B/YF7gfOAZ6U9ENJ+7QiQDMz6w0NDRqIiJsj4hPAlsDngbcD10laKmmWpL8oMkgzM+t+zY5SmwS8l3Tb6OXAz4AjgSWSPt7kvs3MrIfUnXAkbSfpFEkPAjcBWwH/CPxFRPwDsB3pXM9ZhUZqZmZdra5RapJuJh3RPAZcTBqt9nC+TkS8KulHwBeKCtLMzLpfvcOinwamAjdEDDk+7y7gLQ1HZWZmr1m4sN0RFKLehPNt4M5qyUbSSGCXiLglItYADw/Y2szM6td/i+kuV+85nPnAToOse3u23szMbIB6E46GWDcSWNVELGZmVs2MGWnpcsN2qUl6LzA5V3SkpPdXVNsIOBC4u7jQzMwMgAsvTI9dPmt0Ledwdidd3AkQwIeBVyrq/AlYDBxbXGhmZtZLhk04EXEW2TU1kh4CPhQRd7U6MDMz6y11jVKLCA91NjOzhtRyDmcqcGtErMieDykiri4kMjMz6ym1HOFcCewB/DJ7Hgw+Wi0A36TNzMwGqCXhvAV4MvfczMzKtMsu7Y6gELUMGni42nMzMytJD9xeGmo7h/OmenYYEb7408zMBqilS20l6dxMrXwOx8zMBqgl4fwj9SUcMzMrkrJxWkNO0t/5ajmHc3EJcZiZWY9r9hbTZmZmNall0MAvgekRca+kOximey0idisqODMz6x21nMO5B1ide97dnYhmZtYWtZzD+VTu+fSWRmNmZj2r4XM4SraQNNRN2czMzIA6Z4uGP0/meRIwMdv+FUmLgK9HxFUFx2dmZrNntzuCQtSVcCTNBL4D3AR8AfgjMBY4CPhvSf8UEb3xyZiZdYoeuL001H+EcyIwJyI+U1F+gaQLgK8ATjhmZjZAvedw3gxcPsi6nwCbDbcDSTtJuknSKklPSDpN0pDT4UgaLymqLHOr1J0m6W5JL0m6V9KhNbXMzKxTzZmTli5X7xHOfGAv4IYq6/YCbhlqY0ljgBuBe4FpwA7A2aTEd1IN738M8PPc66cr9v8eUuL7DnA0MBW4VNLyiLi+hv2bmXWemTPTY5d3rdVy4edOuZf/AnxX0puBebx2DudDwAHAkcPs7tPACOCgiFgB3CBpU2CWpDOzsqHcHxG3D7H+q8AtEXF09nq+pJ2BkwEnHDOzNqrlCOe3rHuxp4CZ2VJ5989rGXq26AOA6yoSy1zgDNIR0hU1xFOVpDcCU0hHNnlzgYskjYqI5xvdv5mZNaeWhDOlwPebANycL4iIRyStytYNl3AukrQZ6cjqUuArEdE/C8IOwIbA4opt7iN12e0I3NFc+GZm1qhaZhpYUOD7jQGeq1K+PFs3mJeBfyV1i60AJgPHkZLMtNy+qbL/5RXr1yFpBjADYNy4cfT19Q0V/7BWrlzZ9D66idvb29zezjA5eyw6trLbW/eFn/0krQdsVFlewx0/q83FpkHK+/f5JPC5XFGfpKeA70j6m4i4a4j9a5Dy/n3PAeYATJo0KSZPnjx09MPo6+uj2X10E7e3t7m9naXo2Mpub13DorPpbI6TtARYA7xQZRnKcmB0lfJRVD/yGcpl2eMuuX1TZf/9r+vdv5mZFaje63COBo4Hvkc6cvg6cBrwALCUrGtqCItJ52r+TNI2wMYMPPcynKh4fJCUBCdU1JsArM1iNDPrPhFdf7dPqD/hHAWcApyZvZ4XEacCO5MSxtuG2f4aYH9Jm+TKDiXd/qDec0WHZI+LACLiZdJ1Qh+uqHcocJtHqJmZtVe953DeAtwVEa9KWkPWXRURayV9B/gu6QhoMBeQjpIul3QGsD0wCzgnP1Q667JbEBFHZK9nAZuQLvpcAbwXOBa4PCJ+k9v/6aTzO+eRrhOami3vr7OdZmZWsHqPcJ4BRmbPHwHelVs3hnRR56AiYjmwN+lanSuAU4FzSUdNeRuw7vU8i0nX6VwEXA0cDpyVPeb3fyvpyGcf4Drg74HDPcuAmXW1iRPT0uXqPcL5ObAr6Uf/R6QZAjYD/gR8ljSL9JAi4l7gfcPUGV/xei7pAs5hRcQ80tGNmVlvuPPOdkdQiHoTzixg6+z5N0hdatNJRzY3AJ8vKjAzM+stdSWciLgfuD97/jLpnjhfaEFcZmbWY5q58PMvga2AJyLi8eJCMjOzXlTvoAEkfUbSo8DDwC+ARyQ9JumfCo/OzMx6Rr0zDZwMfJt0Pc2BwKTs8RrgX7L1ZmZmA9TbpfZZ4BsR8dWK8muzuc0+S5p5wMzMinLUUe2OoBD1JpwRDH5XzwV4lJqZWfF64PbSUP85nHnAQYOsOxi4srlwzMysV9Vyi+mpuZfXAGdKGs/AW0zvDHy5+BDNzF7nFi1Kj10+20AtXWpXMvBW0lsD+1ep+wPSnTjNzKwokyalxy6fMbqWhPOWlkdhZmbDGn/8Veu8XvrNA9sUSWNqucX0w2UEYmZmva3umQYkbUAaIPAeYDPgWeBnpFsFvFJseGZm1ivqSjiSxgLXA+8k3eHzKWBP0vU3v5a0X0QsKzpIMzPrfvUOiz4HeDOwe0RsHxF7RsT2wO5Z+TlFB2hmZr2h3i61qcDnIuKOfGFE3CHpBOD8wiIzM3udqRwUAN03MGAo9R7hvBF4YZB1LwBvaC4cMzMbYOHCtHS5ehPO7cBxkjbOF2avj8vWm5lZkV6nt5j+EjAfeFTS9aRBA2NJF4EKmFxodGZm1jPqvePnXZLeBhwD7EoarfYkcAFwTkQ8XXyIZmavczNmpMfNprU3jibVnHAkbQjsBjwUEce3LiQzM1vHhRemx+O6O+HUcw7nVeBm4K9aFIuZmfWwmhNORKwFfgeMa104ZmbWq+odpfYV4GRJ72hFMGZm1rvqHaV2EmlGgbskPU4apbbOfNkRsVtBsZmZWQ+pN+H8NlvMzMzqUlPCkTSCNK3Nb4E/ADdGxFOtDMzMzDK77NLuCApRyy2mtwduBMbnildI+khEXN+qwMzMLNN/i+kqc611k1oGDZwJrAX+DngTsDPwK2B2C+MyM7MeU0vC2RM4KSJ+HhEvRcR9wExgW0lbtTY8MzPrFbUknK2A31eUPUiaO23LwiMyM7N1SWnpcrVehxPDVzEzMxtcrcOir5P0SpXymyrLI2Js82GZmVmvqSXhnNryKMzMrOcNm3AiwgnHzMyaVu9camZmZg1xwjEzs1LUO5eamZmVbXZ2nX3lBSpdxgnHzKzT9d9i+nUwtY2ZmVnTfIRjZtbp5szJnmzd1jCaVfoRjqSdJN0kaZWkJySdJmn9YbbZVdJFkpZk290v6RRJG1XUmyUpqizvb22rzMxaaObMtHS5Uo9wJI0h3ergXmAasANwNinxnTTEpodmdc8Afge8Ezg9ezy4ou7zQGWCua/Z2M3MrDlld6l9GhgBHBQRK4AbJG0KzJJ0ZlZWzRkRsSz3uk/SS8BsSdtFxMO5da9ExO2tCd/MzBpVdpfaAcB1FYllLikJ7TXYRhXJpt+vskfP3WZm1gXKTjgTgMX5goh4BFiVravHu0k3hru/ony0pKclrZH0K0kHNRytmZkVRhHl3XlA0hrg2Ig4r6L8MeCSiDixxv1sCfwGuDoipufKP0464rkLGEm6UdxU4OCIuHyQfc0AZgCMGzdu4ty5c+tt1jpWrlzJyJEjm9pHN3F7e5vbW667H39+QNk7th7F5ClTADj/B/MGrGtGEe2dMmXKooiYVEvddgyLrpbhNEj5wIrSG4D/AFYCX1xnxxE/qKh7BfA/wMlA1YQTEXOAOQCTJk2KyZMn1xLGoPr6+mh2H93E7e1tbm+5ple5sHPpxyb/+fnZd28w6LpGlN3esrvUlgOjq5SPAp4bbmNJAi4BdgamRsTyoepHOny7HHjncEOvzcw6VkRaulzZRziLqThXI2kbYGMqzu0M4lzScOp9I6KW+v26/5syM+tyZR/hXAPsL2mTXNmhwGpgwVAbSjoB+Dzw8Yi4tZY3y46IPgT8OiJebSxkMzMrQtkJ5wLgZeBySftkJ+xnAefkh0pnMwp8L/f6cOAbpO60xyXtkVu2yNVbIOloSftJ+hBwFbBH9h5mZt1p4sS0dLlSu9QiYrmkvYFvA1eQztucy8CEsAGQP+eyX/Y4PVvyPgVcnD1fAvwzsBVpyPSdwIERcU0R8ZuZtcWdd6bHfdsbRrNKH6UWEfcC7xumzviK19MZmGiqbXdEE6GZmVkL+fYEZmZWCiccMzMrhROOmZmVwgnHzMxK4Tt+mpl1uqOOancEhXDCMTPrdP23mK4y11o3cZeamZmVwkc4ZmadbtGidkdQCB/hmJl1ukmT0tLlnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEz63QLF6alyznhmJl1uh65xbQTjpmZlcJT25iZdboZM9LjZtPaG0eTnHDMzDrdhRemx+O6O+G4S83MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZm1ul22aXdERTCRzhmZp1u0aKeuM20E46ZmZXCCcfMzErhhGNm1umktHQ5JxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8tY2ZWaebPTs9/r69YTTLCcfMrCTjj79qnddLv3lgbRv232K6YvvB9lvXvkvkLjUzMyuFj3DMzDrdnDnZk63bGkaznHDMzDrdzJnp8bgr2xtHk9ylZmZmpSg94UjaSdJNklZJekLSaZLWr2G7UZIukrRc0vOSfijpzVXqTZN0t6SXJN0r6dDWtMTMzOpRapeapDHAjcC9wDRgB+BsUuI7aZjNfwy8HTgSWAucAcwD/i63//cAPwG+AxwNTAUulbQ8Iq4vtDFmZpmGR5+1UCeOXCv7HM6ngRHAQRGxArhB0qbALElnZmUDSNoT2B/YKyJuycoeB34haZ+IuDGr+lXglog4Ons9X9LOwMmAE46ZWRuVnXAOAK6rSCxzSUcrewFXDLHdU/3JBiAifinpoWzdjZLeCEwhHdnkzQUukjQqIp4vqB1m1uM68ailWZVt+tI7XmFyie9fdsKZANycL4iIRyStytYNlnAmAIurlN+XrYPUPbdhlXr3kbrsdgTuaCxss+7STHdKftt6fpAafc9Gtitrm9eD8cdfVdrnoIgo5Y0AJK0Bjo2I8yrKHwMuiYgTB9nuBuDFiPhgRfkPgO0j4t2S/ha4FXhXRNyVq/NW4HfA/tXO40iaAWSX8fJ24P6GG5hsDjzd5D66idvb29ze3lZEe7eLiC1qqdiO63CqZTgNUt7IdpWvNUh5KoyYA8yptq4RkhZGxKSi9tfp3N7e5vb2trLbW/aw6OXA6Crlo4DnGthudG675bmyyjoMs38zM2uxshPOYl475wKApG2Ajal+jmbQ7TL5czsPAmuq1JtAGkb9QAPxmplZQcpOONcA+0vaJFd2KLAaWDDMdltm19kAIGkSsH22joh4GZgPfLhi20OB20ocoVZY91yXcHt7m9vb20ptb9mDBsaQLvr8LWko9PbAOcB5EXFSrt4SYEFEHJEru5Y00uwYXrvw848RUXnhZx/wbdJFoVOz+u/3hZ9mZu1V6hFORCwH9gbWJw2BPhU4FzilouoGWZ28w0hHQd8HLgEWAR+q2P+twCHAPsB1wN8DhzvZmJm1X6lHOGZm9vrl2aJr1OpJRztNI+2VtGvW1iXZdvdLOkXSRmXF3ahGv9/c9utJWiQpJH2glbEWoZn2SjpI0h2SVkt6RtK1kjZudczNaOKzaIoDAAAEj0lEQVT/7yRJ12ftfFbSjZJ2LyPmZkh6q6TZkn4t6VVJfTVu19LfK98PpwatnnS00zTR3kOzumeQLrZ9J3B69nhwC0NuSpPfb78j6ZK7YzXTXklHks6RngkcC4wB3kcH/5Y02t5sBO2NwJ3AJ7LiY4HrJb0zIh5uZdxN2pl0Dvt24A11bNfa36uI8DLMApxAus5n01zZl4FV+bIq2+1JuuD0vbmy3bKyfdrdrha0d4sqZTOy9m7X7nYV3d5c3THAMuCIrK0faHebWvT9bg68ABzV7jaU1N5PA68Coyu+61eBz7S7XcO0eb3c88uAvhq2afnvlbvUajPYpKMjSJOODrXdgElHgf5JRztVQ+2NiGVVin+VPY4tLrzCNfr99jsd+DlwUwtia4VG2/uR7PHfWxVYizTa3g2BV4CVubKVWZmqbtEhImJtA5u1/PfKCac2AyYPjYhHSH8hVbsgddDtMvlJRztRo+2t5t2kQ/Nm56hrpYbbK+mdwKdIw++7RaPt3Z30PR4h6TFJayT9QtK7WxdqIRpt70+yOmdLGitpLGlU7XLgP1sUazu1/PfKCac2Y6g+Nc7ybF3R27VbIXFL2hL4CvD/YpB7HXWIZtp7PvCvEbGk8Khap9H2bknq3z8JOA7438CLwLWSxhUdZIEaam9EPEG65cnBwFPZchBpIuBqR/PdruW/V044tWv1pKOdpqm4Jb0B+A9SF8QXC4yrVepur6TDSD/AX2tVUC3UyPe7HjASOCIifhgR1wIfJJ3T+FzxIRaqke93K9L5j0WkLqUDsudXSdq2FUF2gJb+Xjnh1KaVk452okbbC4AkkS7O3RmYGumC305Wd3slbQicRRrFs56k0cCm2eqNK6Zv6jSNfr/PZo99/QXZkesiYKeigmuBRtt7LGn03SERcW2WYA8mJdhu6kKtVct/r5xwatPKSUc7UaPt7XcuafjptIjo5Hb2a6S9GwN/SZqaaXm2/DpbN5fXBkt0oka/3/tIf+lWnjAX6Txdp2q0vROAeyJiTX9BRPwJuIc0tLrXtPz3ygmnNi2bdLRDNdpeJJ0AfB74eKSphrpBI+1dSerfzy8fzdadCHysNaEWotHv90pScpnSXyBpFDCR15JtJ2q0vQ8Df511DwOgdCv7vwaWtiDOdmv971W7x4t3w0I6YfYkcANpnrYZpB+cr1XUWwJ8r6LsWuD3pJONHySN8vlZu9vUivYCh5P+Ar4I2KNiGXCNTqcszXy/FevH0x3X4TTz73letu0ngQNJP9jLgDHtblfR7SUl0jXAVVlbP0D64V0D/K92t2uYNr+JNK/kIcBtpKOy/tdvGuL7benvVds/mG5ZSH3UN5P+KnqSdO3F+hV1lgIXV5SNzn6AnwNWAD8CNm93e1rRXuDi7Ae32jK93W1qxfdbsb4rEk4z7SUNGvg34Jls2xuBd7S7PS1s797ALaTzV8+SEuzkdrenhvb2/1ustowfor0t/b3y5J1mZlYKn8MxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqX4/1KdOlmYTp5uAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for delta\n", + "plt.bar(result_delta['values'], result_delta['probabilities'], width=0.5/len(result_delta['probabilities']))\n", + "plt.plot([exact_delta, exact_delta], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Delta', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb new file mode 100644 index 000000000..90b4e34b4 --- /dev/null +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -0,0 +1,1386 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Credit Risk Analysis*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1]\n", + "\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "This tutorial shows how quantum algorithms can be used for credit risk analysis.\n", + "More precisecly, how Quantum Amplitude Estimation (QAE) can be used to estimate risk measures with a quadratic speed-up over classical Monte Carlo simulation.\n", + "The tutorial is based on the following two papers:\n", + "- Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger. [Woerner2019]\n", + "- Quantum Credit Risk Analysis. Daniel J. Egger et al. [Egger2019]\n", + "\n", + "A general introduction to QAE can be found in the following paper and tutorial:\n", + "- Quantum Amplitude Amplification and Estimation. Gilles Brassard et al.\n", + "- Qiskit Tutorial on Quantum Amplitude Estimation\n", + "\n", + "The structure of the tutorial is as follows:\n", + "1. [Problem Definition](#Problem-Definition)\n", + "2. [Uncertainty Model](#Uncertainty-Model)\n", + "3. [Expected Loss](#Expected-Loss)\n", + "4. [Cumulative Distribution Function](#Cumulative-Distribution-Function)\n", + "5. [Value at Risk](#Value-at-Risk)\n", + "6. [Conditional Value at Risk](#Conditional-Value-at-Risk)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit import QuantumRegister, QuantumCircuit, BasicAer, execute\n", + "\n", + "from qiskit.aqua.components.uncertainty_models import GaussianConditionalIndependenceModel as GCI\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective\n", + "from qiskit.aqua.components.uncertainty_problems import MultivariateProblem\n", + "from qiskit.aqua.circuits import WeightedSumOperator\n", + "from qiskit.aqua.circuits import FixedValueComparator as Comparator\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# define backend to be used\n", + "backend = BasicAer.get_backend('statevector_simulator')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Problem Definition\n", + "\n", + "In this tutorial we want to analyze the credit risk of a portfolio of $K$ assets.\n", + "The default probability of every asset $k$ follows a *Gaussian Conditional Independence* model, i.e., given a value $z$ sampled from a latent random variable $Z$ following a standard normal distribution, the default probability of asset $k$ is given by\n", + "\n", + "$$p_k(z) = F\\left( \\frac{F^{-1}(p_k^0) - \\sqrt{\\rho_k}z}{\\sqrt{1 - \\rho_k}} \\right) $$\n", + "\n", + "where $F$ denotes the cummulative distribution function of $Z$, $p_k^0$ is the default probability of asset $k$ for $z=0$ and $\\rho_k$ is the sensitivity of the default probability of asset $k$ with respect to $Z$. Thus, given a concrete realization of $Z$ the individual default events are assumed to be independent from each other.\n", + "\n", + "We are interested in analyzing risk measures of the total loss\n", + "\n", + "$$ L = \\sum_{k=1}^K \\lambda_k X_k(Z) $$\n", + "\n", + "where $\\lambda_k$ denotes the \\emph{loss given default} of asset $k$, and given $Z$, $X_k(Z)$ denotes a Bernoulli variable representing the default event of asset $k$. More precisely, we are interested in the expected value $\\mathbb{E}[L]$, the Value at Risk (VaR) of $L$ and the Conditional Value at Risk of $L$ (also called Expected Shortfall). Where VaR and CVaR are defined as\n", + "\n", + "$$ \\text{VaR}_{\\alpha}(L) = \\inf \\{ x \\mid \\mathbb{P}[L <= x] \\geq 1 - \\alpha \\}$$\n", + "\n", + "with confidence level $\\alpha \\in [0, 1]$, and\n", + "\n", + "$$ \\text{CVaR}_{\\alpha}(L) = \\mathbb{E}[ L \\mid L \\geq \\text{VaR}_{\\alpha}(L) ].$$\n", + "\n", + "For more details on the considered problem see [Egger2019].\n", + "\n", + "The problem is defined by the following parameters:\n", + "- number of qubits used to represent $Z$, denoted by $n_z$\n", + "- trunaction value for $Z$, denoted by $z_{\\text{max}}$, i.e., Z is assumed to take $2^{n_z}$ equidistant values in $\\{-z_{max}, ..., +z_{max}\\}$ \n", + "- the base default probabilities for each asset $p_0^k \\in (0, 1)$, $k=1, ..., K$\n", + "- sensitivities of the default probabilities with respect to $Z$, denoted by $\\rho_k \\in [0, 1)$\n", + "- loss given default for asset $k$, denoted by $\\lambda_k$\n", + "- confidence level for VaR / CVaR $\\alpha \\in [0, 1]$." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# set problem parameters\n", + "n_z = 2\n", + "z_max = 2\n", + "z_values = np.linspace(-z_max, z_max, 2**n_z)\n", + "p_zeros = [0.15, 0.25]\n", + "rhos = [0.1, 0.05]\n", + "lgd = [1, 2]\n", + "K = len(p_zeros)\n", + "alpha = 0.05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We now construct a circuit that loads the uncertainty model. This can be achieved by creating a quantum state in a register of $n_z$ qubits that represents $Z$ following a standard normal distribution. This state is then used to control single qubit Y-rotations on a second qubit register of $K$ qubits, where a $|1\\rangle$ state of qubit $k$ represent the default event of asset $k$. The resulting quantum state can be written as\n", + "\n", + "$$ |\\Psi\\rangle = \\sum_{i=0}^{2^{n_z}-1} \\sqrt{p_z^i} |z_i \\rangle \\bigotimes_{k=1}^K \n", + "\\left( \\sqrt{1 - p_k(z_i)}|0\\rangle + \\sqrt{p_k(z_i)}|1\\rangle\\right),$$\n", + "\n", + "where we denote by $z_i$ the $i$-th value of the discretized and trucated $Z$." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# construct circuit factory for uncertainty model (Gaussian Conditional Independence model)\n", + "u = GCI(n_z, z_max, p_zeros, rhos)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# determine the number of qubits required to represent the uncertainty model\n", + "num_qubits = u.num_target_qubits\n", + "\n", + "# initialize quantum register and circuit\n", + "q = QuantumRegister(num_qubits, name='q')\n", + "qc = QuantumCircuit(q)\n", + "\n", + "# construct circuit\n", + "u.build(qc, q)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now use the simulator to validate the circuit that constructs $|\\Psi\\rangle$ and compute the corresponding exact values for\n", + "- expected loss $\\mathbb{E}[L]$\n", + "- PDF and CDF of $L$ \n", + "- value at risk $VaR(L)$ and corresponding probability\n", + "- conditional value at risk $CVaR(L)$" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# run the circuit and analyze the results\n", + "job = execute(qc, backend=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# analyze uncertainty circuit and determine exact solutions\n", + "p_z = np.zeros(2**n_z)\n", + "p_default = np.zeros(K)\n", + "values = []\n", + "probabilities = []\n", + "for i, a in enumerate(job.result().get_statevector()):\n", + " \n", + " # get binary representation\n", + " b = ('{0:0%sb}' % num_qubits).format(i)\n", + " prob = np.abs(a)**2\n", + "\n", + " # extract value of Z and corresponding probability \n", + " i_normal = int(b[-n_z:], 2)\n", + " p_z[i_normal] += prob\n", + "\n", + " # determine overall default probability for k \n", + " loss = 0\n", + " for k in range(K):\n", + " if b[K - k - 1] == '1':\n", + " p_default[k] += prob\n", + " loss += lgd[k]\n", + " values += [loss]\n", + " probabilities += [prob] \n", + "\n", + "values = np.array(values)\n", + "probabilities = np.array(probabilities)\n", + " \n", + "expected_loss = np.dot(values, probabilities)\n", + "\n", + "losses = np.sort(np.unique(values))\n", + "pdf = np.zeros(len(losses))\n", + "for i, v in enumerate(losses):\n", + " pdf[i] += sum(probabilities[values == v])\n", + "cdf = np.cumsum(pdf)\n", + "\n", + "i_var = np.argmax(cdf >= 1-alpha)\n", + "exact_var = losses[i_var]\n", + "exact_cvar = np.dot(pdf[(i_var+1):], losses[(i_var+1):])/sum(pdf[(i_var+1):])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected Loss E[L]: 0.6409\n", + "Value at Risk VaR[L]: 2.0000\n", + "P[L <= VaR[L]]: 0.9591\n", + "Conditional Value at Risk CVaR[L]: 3.0000\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAElCAYAAAAhjw8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFMX5+PHPw3KuyC2iCCwYAfEiisoRBQEPCHxVbjziqgke0QTjbVAXNPFEjLcEI0bxt4DBW1ExAQ3gAUriAahR5JBbkBs5nt8f1bsOs7MzPcd27+w879erX7NT3dX9TPcwRXV1VYmqYowxxqSjWtgBGGOMyX5WmBhjjEmbFSbGGGPSZoWJMcaYtFlhYowxJm1WmBhjjEmbFSbGpEFEeoiIikhRSMcv8I4/MSp9opdeEEZcXgyhnhsTLCtMTMq8H4qs76gkIkUln8Vb9orIJhH5VkReE5HrRaR5BR270DtmYUXsvyKVV5CZ3FQ97ACMqURmATO9v/cDDgK6AX2A0SJSpKp3RuX5ADgcWBdUkFFWeMf/IaTjxxP2uTEBssLEmJ/MVNWiyAQREWAAMB64Q0SILFBUdRuwKNAoI6jqrjCPH0/Y58YEy25zmcCISC8RmS4i34vIDhH5QkTuFJH6MbZtIyLjReQrEdnu5flERB4TkcYR29UUkd+JyEciskFEtonIEhF5UUR6pxuzOv8ABnlJt4rIQRHHj9ku4Cd+EZkJPOlleTLqVluBt03JLbgeInKOiLwvIltEZIm3PtGtpmoi8gcRWeSd8+UiMk5E6kVv6O1nZqydRLfBeJ/3G2/1BVGxF8Y7N966w0Tk7yKyQkR+FJHvvPeHxdg28hwMEpEPvOv8vYgUV9QtSJMcq5mYQIjIJcCjwFZgKrAG6AFcD/QXkW6qutHb9iDgQ6Ae8BrwD6A20Bo4H3gIWO/teiIwHPgU+DuwHTgY+AVwBjAjE/Gr6r9E5N/efgcAD8f5rH7jnwhsBM4EXgQWROxmY9RurwZOBV4G/gWUKYDLMQ44GZjiHeN0YCRwkoj8QlV3+NxPtJlAA+D3wH+AFyLWLYiVoYSIHI+7LvsDLwGfA+2Bc4EzRaSXqs6LkfVy4P+8PLOAE4GhwDEi0lFVd6b4WUwmqKottqS0AOq+Qgm3awXsBDYB7aPWPeLtZ3xE2pVe2u9j7Gs/oI73d31gLzAPyIuxbWOfn6PIO15Rgu1u87Z7KiKtR3Rev/F77wu9bQsTxLYV+HmM9QXe+olR6RO99HVAq4j0arjCTYGbY1zPmeXEUbK/gkTHTnBuBFjopZ8btf1QL30RUC3GOdgEHBWV51lv3ZCw/z3k+mK3uUwQzgNqAg+pavQ99D8Cm4HzRaRW1Lrt0TtS1a2qWpKuuB+nnbhCJXrb9dFpaVrhvR7gc/tE8SdjvKp+nEK+v6jqtxHH3wtciztfF6Wwv3R1xdVC5qrqpMgVqjoZ+DfQDlcDjPaAqn4SlfZX7/WETAdqkmOFiQnCsd7rP6NXqOoG4GPcbaD2XvJLwBbgYRH5h4iMEJEjvMbwyLybcLd9ugILROQWETlFRPIr6HOUHD/R49C+4k/SBynmmxWdoKpfA8uAAhFpkEZMqSj3uxCV/vMY62Ld+lrmvTZMJyiTPitMTBBK7u+vLGd9SXoDAO9/0icA04DewOO4NpFvReR3UXmHAqOBOt7rP4H1IvK0iByYsU/gHOy9ro23UZLx+7UqxXyrE+zPb9tLpiT1XYgS3Y4EsNt7zUsnKJM+K0xMEEr6QDQrZ/1BUduhqgtVdSjQGOgE3ID7vv5FRC6O2G67qhapalugJe6W2r+91+cy+ingFO/1/UQb+o0/Cal2Di2vQC25FpH9U5TyH8rJVA0m6e+CyQ5WmJgglNzr7xG9wrvN0hHYgWuY3Yeq7lbV+ap6F+6pLYCzYh1EVZd59+FPB74EfhH5GHE6RKQnrgPjduB5v/l8xL/He62o/1l3j04QkTZAC2CJek/QeTZ46dHb5+GuUbRUYi/3uxCV/lES+zSVgBUmJgjPALuAK0XkZ1HrbsM9QvuMeo92isgJ5dyiKknb5m13gIicGGO7/XCPne4GfkwncHEG4B5nBrhVVePecvIbv6fkIYGW6cQZx+9FpFVEbNWAe3D/9p+M2vYDoKWInBaVPgr3RF60DbjaTDKxzwYW4wr6QZErvPcnA1/gapcmi1g/E5O2OB3mAC5X1SUiMhLXN+MjEZmCa3foDnTBPQp6fUSec4Dfisgs4Cvcj9ahQH/ck1v3e9s1B94TkYW4/8kuwxVM/XC3UR5Q1c1JfJQeER3s6uDaSLrh+ofsBK5X1Xt87Mdv/ABzcYXLSBFpxE9tHA+qaiZu9czGPZwwGXfr6HTgGGA+cHfUtvd661/0tv8e93BDa1y/kh6RG6vqFhF5H9dnZRKuENgDvKSq/40VjKqqiFwAvAVMFpEXcde/Ha7Gthn4lffUmckmYT+bbEv2Lnj9TBIsDSK2Pw14E/fjuhP3Q3t35DbedifiOjj+B/eDtt3b9kngyIjtGgC34BrdV3j7XIn74RsOiM/PURQV817cj9q3uE6H1wPNy8nbg7J9KXzFH7H9GbhCZUtEDAVRsfUo5/gFxO9n0gbX4XER7lbiClxhVq+c/f0f7qmpHbhaUzGuVjIxMq6I7X+Ge6JuvXfeSvvMxDo3EfnaAU9712uX9/oM0C7O9SlzDsr7/LYEv4h3QYwxxpiUWZuJMcaYtFlhYowxJm1WmBhjjEmbFSbGGGPSlhOPBjdp0kQLCgrCDiPnLV6/GIB2jduFHInxbZO7ZtSza5aSxd75a5ed52/+/PnrVNXXwKY5UZgUFBQwb16sMeJMkHpM7AHAzMKZocZhkjCjh3vtPTPMKLJXjx7udebMMKNImYh8m3grx25zGWOMSVtO1ExM5TDq5FFhh2CSdaRds7SMyp3zZ4WJCUzvNmlPyW6C1syuWVp65875s9tcJjALVi1gwaq404ObymbDAreY1CxY4JYcYDUTE5iR00cC1gCfVea7a2YN8Cka6Z2/LG2AT4bVTIwxxqTNaibGmJRs2rSJNWvWsGvXrrBDqbxuvdW9Liwz71uoatSoQdOmTalXr17G9mmFiTEmaZs2bWL16tU0b96cOnXqICJhh1Q5VfNu/lSiTouqyvbt21mxYgVAxgoUu81ljEnamjVraN68Ofn5+VaQZBkRIT8/n+bNm7NmzZqM7ddqJgkU3PBq2CGEasmdv8zYvv7c688Z25cJyDGxr9muXbuoU6dOwMFkoebNw46gXHXq1MnoLUorTExgurboGnYIJlkHlH/NrEbiQ926YUdQrkxfP7vNZQIzZ9kc5iybE3YYJhlr57jFpGbLFrfkAKuZmMDc9PZNgPUzySr/cdfM+pmkyGvkrkwN8BXFaibGmJxVVFSEiMRcnnnmGWbOnFn6vkGDBqX5lixZgojwyiuvlLvvHj16IO3bI+3b89BDDwXxcUJlNRNjTE6rX78+06dPL5P+s5/9jE8//RSASZMm0bZt26T2+8gjj7Dpk0/oMmxYRuKs7KwwMcbktOrVq9O5c+e42xx99NEceeSRSe23Q4cOkJeXTmhZxW5zGWOMSZvVTExg7j/j/rBDMMk6Ljeu2e7du8ukVa+egZ/HFi3S30eWsMLEBKZjs45hh2CS1TC5a1YyNXOkIUcM4fLjL2fbrm30ndS3zPrCjoUUdixk3bZ1DJoyqMz6yzpdxtAjh7Lsh2Wc//z5ZdZf3eVq+rfrn1SckdavX0+NGjXKpH/zzTcp77NUfn76+8gSgRcmItIBeBDoAmwEJgCjVXWPj7wDgBuBI4FtwIfAQFXdWnERm0yZ8fUMwCbJyiqr3DWrypNk1a9fnxkzZpRJP/jgg1myZEl6O9+0Kb38WSTQwkREGgIzgM+BM4FDgbG4tpu481uKyK+Bh4C7gWuBhkBPrHaVNW5/53bACpOs8qm7Zn4Lk3h9iPJr5Mdd3yS/Sdz1Leq3qJA+StWrV6dTp04Z3y8AK1dWzH4roaB/iC8F6gADVHUT8JaI1AOKRORuL60MEWkCjAOuVNW/Rqx6vsIjNsYYk1DQT3P1Ad6IKjSKcQVM9zj5hnivT1VUYMYYY1IXdM2kPfDPyARVXSoi27x1L5eT70RgMXCxiPwROBD4CLhKVW3gIGNMynbv3s17771XJr2FjyexZs+ezY4dO/ZJKygoqLjbZpVY0IVJQ1yje7QN3rryNAPa4dpVrgPWe6/TReQwVV0dnUFERgAjAFq2bJlm2MaYquqHH36gS5cuZdJvu+02fvGLX8TNe+edd5ZJu+CCC5g4cWKmwssaYTRea4w0KSe9RDWgLjBYVacDiMgc4FvgCuDmMgdRHQ+MB+jUqVO8fZuAPN7v8bBDMMk6oWpfs6KiIoqKispdP3PmTAD27NnDnj17yPN6tBcUFKAa/2dlz549aCWezyTTgm4z2QA0iJFen9g1lhLfe68zSxK8dpf5QIdMBWcqVrsm7WjXpOqPnlql1GvnlhzXsWNHGjdunFSeXr16UWP//Ssooson6JrJIlzbSCkRaQHs560rz0JczSV6NhcB9mYyQFNxXl7smsTS6WBmArbca8Y8JDev2XHHHceHH34IJN8j/vHHH2fzd98B0CrJcb2yUdCFyevAtSKyv6pu9tKGAtuBWXHyvQLcCpwCvAYgIvWB44B7Ky5ck0lj544FrDDJKovcNcvVwmT//fdPuTG9XeQcJgcckKGIKq+gb3M9BuwEpolIb6+RvAi4L/JxYRH5SkSeKHmvqvOAF4EnROQCEfkl8BKwC3g4yA9gjDGmrEALE1XdAPQC8nCPAY/GdUa8NWrT6t42kc4DXgDuA57DFSQ9vX0aY4wJUeBPc6nq57hhUOJtUxAjbQtwmbcYY4ypRGw+E2OMMWmzQRJNYJ4+++mwQzDJ6mLXLC2tW4cdQWCsMDGBaVE/dyYKqjL2s2uWlpo1w44gMHabywRm8qeTmfzp5LDDMMn4drJbTGq+/94tOcAKExOYR+c9yqPzHg07DJOMLx91SxXTr18/jjrqqHLXX3HFFTRs2JCdO3cm3Nfu3bsRkdKlTp06dOjQgXvuuYfdK1fC2rX7bL9lyxaaNm3K7NmzS9MOOeQQbrjhhnKPcckll3DJJZf4+GThscLEGJNzhg8fzqeffspnn31WZt2ePXt47rnnGDBgALVq1fK9z+uuu465c+fy6quvctppp3Hddddx79/+Vma7v/zlL7Rr145u3bolte+nnnoqM1MJVxArTIwxOefMM88kPz+f4uLiMuv+9a9/sXr1aoYPH57UPlu3bk3nzp3p2bMn999/P7169eLvL764zzZ79uzhkUce4aKLLkpq34ceeiidO3fmscceSypfkKwwMcbknLp169KvXz8mTy7bHlRcXMyBBx7IKaecwooVK7jwwgtp3bo1derUoW3bttx6663s2rUr4TGOOeYYlkVN2/vWW2+xevVqzj777KRjHjhwIE8//XTC0YrDYk9zGWMyZ0aPsmkth0Dby2H3NpjZt+z6NoVu2bEO/j2o7PrDLoNWQ2HrMph7ftn17a9Oaeyw4cOHM2XKFObPn89xxx0HwK5du3j++ec599xzycvLY+3atTRp0oT777+fBg0asGjRIkaPHs26det4+OH4IzktXbqU1occsk/a22+/zeGHH06DBrEGT4+va9eurFy5ks8//5wjjjgi6fwVzQoTE5jnhjwXdggmWb+outesT58+NGjQgOLi4tLC5I033uD7778vvcXVsWNHOnbsWJqnW7du1KlTh0svvZS//OUv+4wkvHfvXnbv3s22bdt46aWXePHFF5n01FPQpk3pNvPnz+fIFEcQPuqooxARPvjgAytMTG5rkt8k7BBMsmonec16zyx/XfX8+OtrN4m/fr8W8dcnqVatWpx99tlMmTKFu+++GxFh8uTJtGrVis6dOwOugBg3bhwTJkxgyZIl+0zRu3z5cgoKCkrf//a3v+W3v/1t6ftrr72WwVHtLqtWrUq5IKhZsyb16tVj1apVKeWvaNZmYgIzccFEJi6YGHYYJhlfT3RLFTV8+HCWLl3K3Llz2bFjBy+++CLDhw9HxE2dNHbsWK6//noGDx7MSy+9xAcffMADDzwAUGbu9xtvvJEPP/yQt956i759+3Lvvffy5tSpsG5d6TY7duxI6gmxaLVq1Spz3MrCaiYmMCUFSWHHwlDjMEkoKUjaFIYZRYXp2bMnBx54IMXFxaxcuZLNmzfv8xTX1KlTGTZsGGPGjClN++9//xtzXy1btiyd++Tkk0/miCOO4Nqbb+bUF15AmrgaXqNGjdi4Md6ksvFt3LiRRo0apZy/IlnNxBiTs/Ly8hg8eDBTp07l2Wef5fDDD+foo48uXb99+/YyNYlJkyYl3G/NmjUZM2YM/128mNffeac0vV27din3FVm5ciU//vgjbdu2TSl/RbPCxBiT04YPH86qVat4/vnnOeecc/ZZd+qpp/Lss8/y6KOP8sYbb3DuueeyZMkSX/sdMmQIh7VqxT1PlM7zR7du3fjoo49iPt67ePFinnvuuX2W6dOnl66fN28e1apVo0uXLql90Apmt7mMMTmtS5cuFBQUsGTJEoYNG7bPutGjR7N+/XpuuukmRIRBgwYxbtw4zjrrrIT7zcvL44YRI7j4j3/kww8/5Pjjj+ess87id7/7He+9916ZQuGFF17ghRde2Cft0EMP5auvvgJg+vTp9OzZM6XHioNghYkxJqeJSLm3nvbff3+eeuqpMumRNYvq1auX25HwooEDuWjgQPDmgz/44IM5/fTTKS4u3qcwWb58edwYd+/ezbRp0xg3blzCzxMWK0xMYF4797WwQzDJ6mHXLC0/+1mZpJtvvpnTTz+dMWPGUL9+fV+7KS4upn79+gwePDjTEWaMtZmYwOTXyCe/Rn7YYZhkVM93i0lNXp5bInTu3Jk77riDpUuX+t6NiDBhwgTyovZVmQReMxGRDsCDQBdgIzABGK2qe+LkKQBi1UMnq+qwGOmmEnrkw0cAuPz4y0OOxPj2hbtmtLVrlpI1a9xr06b7JF9+eXLn89xzz81URBUm0MJERBoCM4DPgTOBQ4GxuBrSKB+7uAaYHfF+XXkbmspnymdTACtMsspSd82sMEnRhg3uNaowqYqCrplcCtQBBqjqJuAtEakHFInI3V5aPItV9b0Kj9IYY0xSfBcmInIUcALQDKgNfA98AcxR1Q0+d9MHeCOq0CgG7gK6Ay/7jccYY0zlEbcwEZE2wGXAucCBwF5cO8dOoAGQD+wVkVm4to/Jqro3zi7bA/+MTFDVpSKyzVuXqDB5UkQaAWuA/wf8UVW3J8hjjDGmgpX7NJeITAA+AzoCY4CfA7VV9QBVPURV6wJNgf7AJ8DdwEIR+UWc4zXEFUbRNnjryrMTeBi4GOgFPI4r5MpOk/ZT/CNEZJ6IzFsbNQezMcaYzIpXM9kBtFfVb8vbQFXXAa8Dr4vIH4DBQPMEx4zVu0fKSS85zkrgioikmSKyGnhERDqq6oIYecYD4wE6depUOacmyzEzC2eGHYJJVgaHfM9JXmfFXFBuzURVr4hXkMTYfq+qTlbVsvNg/mQD7vZYtPrErrHEUzJrz7FJ5jPGmH1MmzatdKiSWrVq0bZtW0aNGsW8efMQEf7xj3/EzLd69WqqV6/O3Xff7ftYo0aNQkRKl2bNmtG/f38+/fTTmNvfddddnHrqqaXvJ0yYgIiUOxT9smXLqFu3Lt9+6/vnOyNS7rQoInVFpG6S2Rbh2kYi99MC2M9blwyNejWV3L1z7uXeOfeGHYZJxsJ73VKFXX311QwePJg2bdrw9NNP8+abb3LVVVfx8ssv86c//YnDDjuM4uLYd9SnTp3K3r17GTp0aOydr1rlliiNGjVi7ty5zJ07l3HjxrFw4UJOPfXUMsPTb968mXvuuYcbbrjB9+dp0aIFAwcO5LbbbvOdJxOSLkxE5HAR+RDYBPzgtUt08Jn9deB0Edk/Im0osB2YlWQoJZNFz08ynwnJK1+8witfvBJ2GCYZK15xSxX18ssvc9999/HXv/6VCRMm0L9/f7p3785ll13GRx99xIgRIxg2bBivvvoqW7ZsKZO/uLiYrl270qpVq9gH+OEHt0SpUaMGnTt3pnPnzgwfPpyJEyeyatUq3nzzzX22e+aZZ6hbty69evVK6nNdeOGFPPPMM2zY4PdB2/SlUjOZAEwF9gcOBhYDE33mfQzXmD5NRHqLyAigCLgv8nFhEflKRJ6IeF8kImNFZICXbwwwDpimqrFnqjHGmATGjRvHsccey0UXXVRmXV5eHn369GH48OFs376dF198cZ/1y5YtY86cOftMpvXkk0/SrVs3GjVqRKNGjehVWMhHn32WMI5jjjmmdJ+RnnrqKQYOHJj05zr55JOpV68eU6ZMSTpvquI9zTXO61AYrT3woKpuVdXVwFOAr9lavP4ovYA83GPAo3GFwq1Rm1b3timxCNcP5UngNeAc4B7v1RhjkrZr1y7mzJnDGWecEXe7ww8/nGOOOabMra7JkydTrVq1fQZf/PbbbyksLGTq1KlMmjSJZk2acNJ55yVsvygZp6t169alaZs3b+bDDz+ka9euyX40qlWrxoknnsiMGTOSzpuqeE9z1Qe+FJFbgcf1pzGW3waeFpG/4fqZ3Oil+aKqnwM9E2xTEPW+mDiPARtjKokePcqmDRkCl18O27ZB375l1xcWumXdOhg0qOz6yy6DoUNh2TI4//yy66++Gvr3TzrU9evXs3PnTlq2bJlw2+HDh3PLLbewYcMGGjZ0vRiKi4vp1asXTSOGSikqKir9e+/evZzasiXt+/Zl0qRJ3HTTTfvsc/fu3QB88803XHnllRx77LH069evdP3HH3/M3r17OfLII5P+bOBqO08//XRKeVMR72mui4C+uP/9/0dETvFW/QZYCtwO3AS8g+v/YUxcdWrUoU6NOmGHYZKRV8ctVZiIJNxm2LBh7Nq1i+effx6A//3vf8yfP3+fW1wAn332GWeddRYHHnggeXl51DjySP63dClffPHFPtutXr2aGjVqUKNGDdq2bcsnn3zCtGnTqFmzZuk2q7yG+ybe/PHJatKkCatXr04pbyri9oBX1fnAySIyDNf7/GPgD6r6h0CiM1XK6+e+HnYIJlmnJHnNZs4sf11+fvz1TZrEX9+iRfz1SWrcuDG1atXyNRR8q1at6NKlC8XFxVx00UUUFxdTq1Ytzj777NJtfvjhB0477TSaN2/OuHHjaNmyJbVr1+bCCy8s8xhv48aNmT59Onv27OHjjz/mmmuu4dxzz+Xdd98tLdxK8kTPQe9XrVq1+PHHH9m7dy/VqlX8bCO+xuZS1WIReQG4HpgvIo8Dt6vq1gqNzhhjKkiNGjXo1q0bb7zxBrfffnvC7YcPH87IkSNZs2YNxcXF9O3bd5/JrWbPns13333HrFmz+FnEpFjRj/uCm52xU6dOAJx44onUqlWLiy66iGnTppU2uDdq1Kg0f926yfbCcPnq168fSEECCZ7mEpF2InKZiPweOFZVRwNHAy2AL0SkMIAYTRVx26zbuG1WsM++mzR9cptbqqiRI0cyb968mFPz7t27l+nTp5e+HzJkCABjxozh008/LXOLa/t2N0xgZE3inWnTEk7JC3DBBRfQvn177rrrrtK0dl7v+fKmFE5kyZIltG3r69mojCi3ZiIivwYewg3MuA0YLSLPqurlwHki0gW4X0SuAH6vqrPL25cxAG9/457TuLn7zSFHYnxb7T1bc1TVvGb9+/fnD3/4AxdffDGzZ8/mzDPPpG7duixatIjHHnuMgoKC0qe9mjZtSs+ePXnkkUeoW7fuPo3lAF27diU/P59f//rXXHPNNSxdupTRN9/MwT7mMqlWrRo33ngjF1xwAbNmzaJ79+4cdthhHHDAAcyfP5+TTjqpTJ7nn3+eGjVq7JN2wgknlD5QMG/ePLp3757qqUlavJrJrcBvVbWvqg7CPZp7iYg0A1DVuap6Im7WRHvSyhiTlcaOHcvkyZP58ssvOeecczj11FMZO3YsvXr14tFHH91n2+HDh6OqnHnmmdSps++DCQcddBBTp05l2bJl9O/fnwceeIDxY8bQ+pBDfMVxzjnn0KZNm32GZhkwYACvvx673eqcc85h8ODB+yzvvPMO4Br4FyxYkFIflVTJT0/8Rq0QWQ7crKpPeu+PAv4DNPcGXozcdr/K3H7SqVMnnTdvXkp5C254NcPRZJcld/4yY/vqMbEHYAM+ZpUZPdxr1ICPCxcu5PDDDw88nKyzeLF7TXHAx5J+Jt999x0HHHCA73wPP/wwDz74IIsWxR+lKtF1FJH5qtrJzzHj1Uxux43K+7KITMENd/JEdEECUJkLEmOMyVbHH388PXv25OGHH/adZ+/evTzwwAOMGuVnJvTMidfP5DHciLzTgbnAWar6m6ACM1VP4/zGNM5vHHYYJhm1GrvFpCYvzy1pGDduHI0b+78GK1eupLCwkHPOCXaAkET9TBYCCwOKxVRx/xgSexhvU4mdZNcsLRGPCKeqQ4cOdOjgdyxdaN68OTfeeGPax01WvLG5yj4+kICI1PfaVowxxuSQeG0mU0RktohcJCLxptRFRLqJyIPAt0CXjEZoqowbZ9zIjTOC/x+TScOCG90SQ3kP75gIy5e7pRLK9PWLd5urDfA73CPCj4vIF8CnwDrcMPINgNa4ueHr4Ebz7a2qqT02Zaq8ucvnhh2CSda62NesRo0abN++nfz8/IADyjJbK++zSdu3by/TTyUd5RYmqroduEtE7sYNG98TOA43BH1t4HvcXCbPAi+q6pqMRWWMqdSaNm3KihUraN68OXXq1PE1WKKpHFSV7du3s2LFCg488MCM7Tfh2Fze0PMzvMUYY6hXz0119N1337Fr166Qo6nESqbs3bs33Dii1KhRgwMPPLD0OmaCr4EejTEmWr169TL6Y1QlXXaZe83gaMeVlRUmJjCH1PM3rISpRPLtmqXF51AqVYEVJiYwzwx4JuwQTLK62jVLyzO5c/6CGejeGGNMlRZ4YSIiHUTkbRHZJiLficgYEfE93oCIVBPH/gXAAAAfEUlEQVSR+SKiItIvcQ5TWYycPpKR00eGHYZJxvyRbjGpGTnSLTnA120uEbkX+Juqfp7OwbzOjzOAz4EzgUOBsbhCze+oZL8GmqcThwnHglULwg7BJGuDXbO0LMid8+e3ZjIQ+EREPhCRS0WkfsIcsV2K6+A4QFXf8gaTHA38QUQSPhbiFUZ/Av6Y4vGNMcZUAF+Fiaq2BnoDi4B7gJUi8qyI9E7yeH2AN1R1U0RaMa6A8TMl2G3AbODtJI9rjDGmAvluM1HVf6nqr4CDgCuBQ4A3RORbERktIm187KY9rkCK3O9S3LTA7eNlFJGjgQuBa/zGbIwxJhhJN8Cr6hZVfQI3ZtdsoAVwI/CFiLwoIq3iZG8IbIyRvsFbF8+DwMOq+pWfOEVkhIjME5F5a9eu9ZPFVLC2jdvStnHbsMMwydi/rVtMatq2dUsOSKqfiYgUABd4SwvgLWAw8Apu/K47cLet4o0cHGuoSiknveS4w4B2QH+/sarqeGA8uGl7/eYzFWd8//Fhh2CSdaJds7SMz53z5/dprvNxt5hOBpYCTwJPqmrk2MqvichW4o/htQE32nC0+sSusSAiNXDtNHcB1USkAVDSWL+fiOyvqpv9fA5jjDEVw2/NZDzwPHC6qsZr/P4CN3d8eRYR1TYiIi2A/YhqS4mwH6595j5viVQM/A9IfzozU+FGvDwCsBpKVnnfXTOroaRohHf+cqCG4rcwOVhVNyTaSFVX4h71Lc/rwLVRtYmhwHZgVjl5tgCnRKU1A/4fcBPwz0Rxmcrhi/VfhB2CSdZmu2Zp+SJ3zp/fBvj5InJMrBUicqSIfO1zP4/hJtaaJiK9RWQEUATcF/m4sIh8JSJPAKjqblWdGbkA73mbfqKq7/s8tjHGmArit2ZSANQqZ10+7jZUQqq6QUR6AQ8BL+PaScbhCpTouHwPsWKMMSZc5RYmXo/0yMbyZiLSMmqz2sAwYIXfA3pDsvRMsE1BgvVLcE+AGWOMqQTi1UyuwvUlUW95vpztBLg6w3GZKqhjs45hh2CS1dCuWVo65s75i1eYPAvMwxUWL+F6ni+O2uZHYLHXi92YuO4/4/6wQzDJOs6uWVruz53zV25hoqpfAl8CiMgpwEfWn8MYY0wsvhrgVbW8x3aN8e28aecBNuNiVpnjrpnNuJii87zzlwMzLsZrgF+D66T4sYisJc5wJwCq2jTTwZmqZfmm5Yk3MpXLNrtmaVmeO+cvXs3kYWB1xN82vpUxxpiY4rWZjI74uyiQaIwxxmSlwOeAN8YYU/XEazOZksyOVHVI+uGYqqzLIfFmJjCVUhO7ZmnpkjvnL16byQGBRWFywh297wg7BJOsjnbN0nJH7py/eG0m0SP1GmOMMTFZm4kJzMApAxk4ZWDYYZhkvDvQLSY1Awe6JQfEazO5HJiqqmu9v+NS1UcyGpmpctZvWx92CCZZO+2apWV97py/eG0mD+HG5lrr/R2PAlaYGGNMjorXZlIt1t/GGGNMNCskjDHGpM3vTIuISE2gEDgBOAhYCbwPPKWqP1ZIdKZK6dW6V9ghmGQdaNcsLb1y5/yJauIht0TkcGA6cDAwH1gDNAWOBVYBZ3gzKFZKnTp10nnz5qWUt+CGVzMcTXZZcucvww7BGBMSEZmvqp38bOu3ZjIe+AE4KXIiLG8a31eBx4CTkw3UGGNM1eC3zaQTcEv0jIre+1uA4/0eUEQ6iMjbIrJNRL4TkTEikpcgzxEiMt3bfqeILBWRCSJykN/jmvD1mdSHPpP6hB2GSca/+rjFpKZPH7fkAL81kyVA7XLW1QZ8TdsrIg2BGcDnwJnAocBYXKE2Kk7W+sA3wN+B74DWuPnpjxOR41V1t5/jm3Bt37U97BBMsvbYNUvL9tw5f34LkxuAsSLyjaq+X5IoIp2BMcC1PvdzKVAHGKCqm4C3RKQeUCQid3tpZajqHGBORNJMEVkOvAkcDXzk8/jGGGMqQLwe8B+y74RY9YA53gyMJQ3wTYH1wE3ACz6O1wd4I6rQKAbuAroDLycRe0nX0ppJ5DHGGFMB4tVMPmPfwuSzDByvPfDPyARVXSoi27x1cQsTEamGi7k1cCfwIfBBBuIyxhiThng94Asr4HgNgY0x0jd46xJ5DTjd+3s+0FdV98baUERGACMAWrZsmXykJuP6te0XdggmWc3tmqWlX+6cP9+dFjMoVscWKSc92pVAI+AwXIP96yLSTVV3lDmI6njcI8106tTJ5q+vBK7pek3YIZhkHW7XLC3X5M75S6YHfAFwHtCWGE92+ZxpcQPQIEZ6fWLXWKKP8aX35/si8i7uCa9zgL/5OLYxxpgK4qswEZHjgFnAMlxh8l9cAVAALAe+8nm8Rbi2kch9twD289b5pqrfisj3QJtk8pnw9JjYA4CZhTNDjcMkYUYP99p7ZphRZK8ePdzrzJlhRhEIv50W7wH+ARyJuyV1saq2AX6Buz11t8/9vA6cLiL7R6QNBbbjCivfRKQd0BhXOzHGGBMiv4VJR+BZoKSxuzaU9v8YjXuyyo/HgJ3ANBHp7TWSFwH3RT4uLCJficgTEe/vFZE7ReRsETnFm6zrDeB/uEeLjTHGhMhvYaLAj+pGhVwDtIpYtwzXIJ54J6obgF5AHu4x4NHAOFxv9kjVvW1KzANOAp7AjQX2O1xNqbOqbvX5GYwxxlQQvw3wn+OGPvkXMBe4SkTmAT8C1+FqCL54owv3TLBNQdT7YqwGYowxlVYyowaX1EZuwg1jUtJgvhUYlOG4TBU05Ag/D/yZSqWlXbO0DMmd8+erMFHVpyP+XujNb9IV13bynqquqaD4TBVy+fGXhx2CSVZbu2ZpuTx3zl9KnRZVdQuudmKMb9t2bQMgv0Z+yJEY33a7a0Z1u2Yp2eadv/yqf/6S6bTYFBhJ2Wl7H1DV1RUTnqlK+k7qC1g/k6wy010z62eSor7e+bN+Jo6IdAO+BC4B1gFve6+XAl96640xxuQovzWTh3ADK/aPfBRXROoCrwAP4uaDN8YYk4P89jNpD4yN7tPhtZ3cCxye6cCMMcZkD7+FyedAs3LWHUSS42oZY4ypWvze5roSeFpEtgAvqOpOEakFnI2b0vdXFRWgqToKOxaGHYJJVpvCsCPIboWFYUcQmHjT9q5l3zlG9sONz4VXqNT10ncAz+Om8DWmXFaYZCErTNJjhQkAD+NvwipjfFm3bR0ATfKbhByJ8W2Hu2bUtmuWknXe+WtS9c9fvGl7iwKMw+SAQVPcqDvWzySL/NsbKcn6maRmkHf+cqCfSVI94EWkJnAUburc74FPVPXHigjMGGNM9vD7NBcich2wGvgAN5fIh8BqEbm2gmIzxhiTJfxO2zsSuAM3udVkXKFyIG6WxDtEZKeqPlBhURpjjKnU/N7m+i1wp6r+MSJtMfCOiGzETVZlhYkxxuQov4VJC9zEWLHMBK7OSDSmSrus02Vhh2CSdZhds7Rcljvnz29hshQ4DZgRY92p3npj4hp65NCwQzDJamXXLC1Dc+f8+S1MHgAeEJFGwHO4NpOmwGCgEHeby5i4lv2wDIAW9VuEHInxbau7Zuxn1ywly7zz16Lqnz+/My0+JCI7gVuBi3CdGQX4DrhUVSf4PaCIdMCNMtwF2AhMAEar6p44eY4HLgdOAg4GluF649+lqjv8HtuE6/znzwesn0lWmeuumfUzSdH53vmzfiY/UdW/isgE4BB+mhxruar67iUvIg1xt8o+B84EDgXG4h5RHhUn61Bv27tw86ocDdzmvQ70e3xjjDEVI2FhIiK1gf8Cv1PV6bhawbIUj3cpUAcYoKqbgLdEpB5QJCJ3e2mx3KWqayPezxSRHcDjItJKVb9NMR5jjDEZkLAwUdUdItIA2JuB4/UB3ogqNIpxNY7uwMvlxLA2RvLH3mtTwAoTUyUV3PBqqMcvbrMegGEhxrHkzl+Gdmzjn98e8JOACzNwvPZEzX2iqkuBbd66ZHTFFXCLMxCXMcaYNCTzaPAQEZkHvIZ7miuyrURV9VEf+2mIa3SPtsFb54uINAP+CDxd3q0xERkBjABo2bKl312bCnR1F+uOlG3+uvbssEPIblfnznfeb2Ey1ns9iNhzvSvgpzAp2TaalJNedkM32OQUYAtwVbkHUR0PjAfo1KmTDaVfCfRv1z/sEEyS3t58YtghZLf+ufOd9/tosO8BIRPYADSIkV6f2DWWfYiIAH8HjgC6qeqGDMVlArB4nbsj2a5Ju5AjMX61qbUcgK93HhJyJFlqsXcXvl3V/84nNQR9Biwiqm1ERFrgZnH0M4/8ONwjxaeqqs07n2UueeUSwPqZZJM/N38IgGFf3xlyJFnqEvedt34mEbzbS4XACfzUz+R94Kkk5jR5HbhWRPZX1c1e2lBgOzArwfFvxM1FP0RV/+03bmOMMRXP1+0rETkc11nwYeBIYI/3+jDwlder3Y/HgJ3ANBHp7TWSFwH3RTaki8hXIvJExPtzgD/jbnGtEJHOEcsBPo9tjDGmgvitmYwHfgBO8h7lBUBEWgKv4gqJkxPtRFU3iEgv4CFcn5KNuFtXRTHiyot4f5r3WugtkS4EJvr6FMYYYyqE38KkEzA8siAB10dERG7BjZPli6p+DvRMsE1B1PtCyhYixhhjKgm/hckSoHY562pjQ9AbH0adHG/4NVMZPbhmWNghZLdRufOd91uY3ACMFZFvVPX9kkQR6QyMAWweeJNQ7za9ww7BJGn2lo5hh5DdeufOd95vYTIKqAfMEZE1wBrcmFhNgfXATSJyU8nGqnpCpgM12W/BqgUAdGxmP1DZokPtrwH4fEebkCPJUgvcd56OVf8777cw+dRbjEnZyOkjAetnkk1uOXg8YP1MUjbSfeetn4lHVTMxyKMxxpgqKlPDpBhjjMlhVpgYY4xJmxUmxhhj0hb0QI8mh/2515/DDsEk6e5VF4QdQnb7c+58560wMYHp2qJr2CGYJH207fCwQ8huXXPnO2+3uUxg5iybw5xlc8IOwyTh2PyFHJu/MOwwstecOW7JAVYzMYG56W3Xr9X6mWSP65o9BVg/k5Td5PXlzoF+JlYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gTm/jPuDzsEk6Qx340IO4Tsdn/ufOetMDGBsaHns48NPZ+mHBh6voTd5jKBmfH1DGZ8PSPsMEwSutVdQLe6C8IOI3vNmOGWHBB4zUREOgAPAl2AjcAEYLSq7omTpybwJ6Azbj762qoqAYRrMuj2d24HbMbFbHJl02LAZlxM2e3uO58LMy4GWjMRkYbADECBM3FT/l4NjE6QNR/4NbANyI3upMYYk0WCrplcCtQBBqjqJuAtEakHFInI3V5aGaq6UUQaqaqKyBVAzwBjNsYYk0DQbSZ9gDeiCo1iXAHTPV5GVdWKDMwYY0zqgq6ZtAf+GZmgqktFZJu37uWA4zEVrOCGV0v/XlVzfZm0qm7Jnb8MOwRjAhF0YdIQ1+gebYO3LmNEZAQwAqBly5aZ3LVJUeNdV4QdgknSTSvsmqXl8cfDjiAwYfQziXW7SspJT/0gquOB8QCdOnWyW2SVQA09JOwQTJK+3mnXLC3t2oUdQWCCbjPZADSIkV6f2DUWU4Vsq/Y+26q9H3YYJgm99n+fXvvbNUvZyy+7JQcEXTNZhGsbKSUiLYD9vHWmCttU/XkA8n88MeRIjF+/OcBds7c32zVLydix7rV//3DjCEDQNZPXgdNFZP+ItKHAdmBWwLEYY4zJkKALk8eAncA0EentNZIXAfdFPi4sIl+JyBORGUWkj4gMAjp67wd5S6vgwjfGGBNLoLe5VHWDiPQCHsI9BrwRGIcrUKLjyotKexSILDimeq8XAhMzHasxxhj/An+aS1U/J0EPdlUt8JNmjDGmcrAh6E1gmuy6OuwQTJKuWmbXLC1PPx12BIGxwsQEproeEHYIJkkrd9k1S0uLFmFHEBibz8QEZmveO2zNeyfsMEwS+tV/h3717ZqlbPJkt+QAq5mYwGzOew2A/facHHIkxq/zGrtr9soPds1S8uij7nXo0HDjCIDVTIwxxqTNChNjjDFps8LEGGNM2qwwMcYYkzZrgDeBOeDHG8MOwSTpsm/tmqXluefCjiAwVpiYwORRP+wQTJI27LFrlpYmTcKOIDB2m8sEZkveDLbkzQg7DJOEQQ1nMKihXbOUTZzolhxgNRMTmJKCpO6e3iFHYvwqKUie25C916zghldDO3bxs24+k2GLwhtJYMmdvwzkOFYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gSm6Y9FYYdgklT4TVHYIWS1wsFFYYcQGCtMTGCqUTvsEEySdqhds3TsqJE7589uc5nAbM57lc154T2maZJ3XuNXOa+xXbNUnffRq5z3UW6cv8ALExHpICJvi8g2EflORMaISJ6PfPVF5EkR2SAiP4jIJBFpHETMJjO25r3L1rx3ww7DJKFf/XfpV9+uWar6LXqXfoty4/wFeptLRBoCM4DPgTOBQ4GxuEJtVILsk4F2wK+BvcBdwAvASRUVrzHGGH+CbjO5FKgDDFDVTcBbIlIPKBKRu720MkSkC3A60F1V3/HSVgDvi0hvVbXxHowxJkRB3+bqA7wRVWgU4wqY7gnyrS4pSABU9QPgG2+dMcaYEAVdmLQHFkUmqOpSYJu3znc+z8IE+YwxxgRAVDW4g4nsAq5V1fuj0pcDf1fVm8rJ9xawVVXPikp/Bmijql1j5BkBjPDetgMWlxNWE2BdUh8kWBZfeiy+9FX2GC2+9MSLr5Wq+hqlMox+JrFKLyknPeV8qjoeGJ8oGBGZp6qdEm0XFosvPRZf+ip7jBZfejIVX9C3uTYADWKk1wc2ppCvQYJ8xhhjAhB0YbKIqDYOEWkB7EfsNpFy83nKa0sxxhgToKALk9eB00Vk/4i0ocB2YFaCfM1E5BclCSLSCWjjrUtHwlthIbP40mPxpa+yx2jxpScj8QXdAN8Q12HxU1ynwzbAfcD9qjoqYruvgFmqenFE2nSgLXANP3VaXKOq1mnRGGNCFmjNRFU3AL2APOBlYDQwDrg1atPq3jaRhuFqL38D/g7MB86uyHiNMcb4E2jNxBhjTNWUk6MGi8hvRORLEdkhIvNFpJePPEUiojGWM1KModIPeJlKjCJSUM55Ks5wbD8TkcdF5D8iskdEZvrMF8j5SyW+oM6dd6zBIvKSiKwQkS3ev4PhPvLVEpGxIrJGRLaKyKsiUlCJ4ot1/t6rgPgGicgcEVnv/Y4sFpFRIlIzQb6gvn9Jx5fu9y/n5jMRkWHAY0AR8G/gQuAVETleVT9NkP0HILrwWJhCDJV+wMs0YwTXtjU74n2mO20dAfQF3gPi/gOOEtSAoanGBxV/7gD+gBuO6Cpv/32BZ0Wkiao+GCffA8AgL99a3L+jt0TkKFXdUQniA/c9fS7i/eYMxlWiMfAv4B5c94QTcOeiGXBFnHxBff9SjQ9S/f6pak4tuJ7wf4t4Xw34BHgmQb4iYF2GYrgR13emXkTadbhhZerFydcF10nz5Ii0E7y03hk+T6nGWODF06+Cr2O1iL+fA2b6yBPk+UslvkDOnXesJjHSngW+iZPnEGA38KuItObAj8Cvw47P20aBKyr6/JVz7D/hfrilnPWBff9SjC+t719O3eYSkTa4J8KmlKSp6l5gKsEOGJkNA16mGmMgvOuWrMDOX4rxBUZVY/1v82OgaZxsp3mv0yL2swJXw8/0+UslvrCtJ34tNOwBaxPFl5acKkz4qeNjdEfHhUAjEUk0Bk0DEVknIrtE5GMRGZBGHJV9wMtUYyzxpNdWsFJE7hOROhmOLxXZMmBoWOeuK+62ZnnaA8tVdUtUelDnL1F8JYpEZLf3b/VvItKoogISkTwRyRfXB+53wKPq/Tc/hsC/f0nGVyKl71+utZk09F6jh2DZELF+bTl5v8Ld5lkA1AUuAf4hIgNVdVo5eeLFEWsYmA0RMSabr02SMSSSaow7gYeBN4FNQA/gelyby5mZDTFpQZ6/VIR27sQ9hHImcFGczVL9TqTNZ3wAT+G6HawFOgE3A8eIyAmquqcCQtsK1PL+/jtwbZxtw/j+JRNfWt+/rC9MRKQ+cFCi7VQ18n8E0SWzlJMemf+ZqOO+DMwBbiGi2p+EQAa8TFPSx1LVlezbwDdTRFYDj4hIR1VdkOEYkxXk+UtKWOfOexrrWeBFVZ2YKMxYuygnPSOSiU9VCyPeviMiC4HXgP64hu5M6wrk49o+bgEeAi6PF2KMtIo8f77jS/f7VxVucw3GVRMTLfBTDSR60MiS974HjfSqitOAo8XHI71RsmHAy1RjjKXkyZpj04oofdk4YGiFnjvvFtDrwFLgvASbB37+kowvlunAFiro/KnqR6r6b1W9D3cb6TIRObSczQM/f0nGF4vv71/WFyaqOkFVJdHibV5SO4m+P9ke+F5Vy7vFFTeEFPJkw4CXqcYYi0a9hiUbBwytsHMnIvnAK7hG2V+q6tYEWRYBLURkv6j0Cjl/KcRXRkT7QBDfvY+819blrA/7+5covlh8n7+sL0ySoapfA1/gajMAiEg1731SA0aKiOCGc/lPCvdiK+OAl5mKMZZB3uv8TASWhiDPX6ZUyLkTkeq4pxgPA/qo6hof2d70XkuHMRKRg3F9JDJ6/lKML9Z+zsC1cQbx3evmvX5Tzvqwv3+J4ovF//evop9trmwLMBzYg+t4dwowEfcDeWTENt1xz9N3j0ibhasmnob7x/QartPR/6UQQ0NgJfAW0Bs3I+QW4Pao7b4CnohKmw58DQwAzsL1m3m3As5TSjHi+uOM9eLrDYzxzu8/MhxfvvdFHwTMBT6LeJ9fCc5f0vEFde68Y43H/W/zd0DnqKWWt83bwNtR+R7HdWI7H9eB9z3gS6B22PF539HxwBCgJ67z3UbgfSAvw/FN9/bfx/tNGO39+ygu799GwN+/pONL9/uX0Q+QLQvwG+9E7sRV/XpFre/hfZF7RKQ94X0JtuOekHgX9z+mVGPoAPzT299K4LboLzywBJgYldYAeNL7R7IJ1zBZpoNXhs5T0jHiBuSchxst4EfvPI8p+QHIYGwF3jWKtRSEff5SiS+ocxdx7ETxzSSqsyXuyaD7cE9LbcX9p6p1ZYgPN4jsbFx/il3AMlyP/foVEN9tuNHPt3jfpY+AK4Ea5f3bCPj7l3R86X7/bKBHY4wxacupNhNjjDEVwwoTY4wxabPCxBhjTNqsMDHGGJM2K0yMMcakzQoTY4wxabPCxOQccVMwV8TshWkRkUJvmtS6KeR9UESeLGfdxFhT64pIc29K3MowYrLJclaYGJPlvDHTfo2bAtY3dRNbTcaNJmtMWqwwMSb7XQp8pBHTLIhIdRG5Q0SWA78CFovI5yIyNCrvk8BwEWkcYLymCrLCxJgYRKS1iLwgIptEZLOIvCwiP4va5mIR+UxEtnuz+s0SkSMi1t8oIl+JyA4RWS0i00WkWQWE+yt+Giq8xO9xk7k9gBvy5CLgb0B0oTEb+B43lIYxKcv6ybGMyTQRqYUbRHAXbhy33biB8maJyFGq+r2InAw8hrtFNBeoB3TBzfeCiPwKuAk3U91nuB/xnrgh/DMZazvgENxEbZG6A/9U1btFpAMwW1WXROdXVRWR93AD+z2cydhMbrHCxJiyLgRaAm3VTVuAiLyPG+jzEuAO3Mx1/1XVOyLyvRTx9wnAm6r6SERaKjNyJnKc9/ppVPpKoK/PmtB/cIWmMSmz21zGlHUCrg3i65IEVV2OuyVUMhfFAuDnIjJORE4WkZpR+1iA+zEfLSInpDAbp1/NgB1aduKoP+FG9f0G+D/gGhHpFp3Zsw5o6s3RY0xKrDAxpqyDgNUx0lcDjQBUdQauBnMybij0dSLySMQshH/D3eYagptPY7WI3FYBhUpt3FQK+1DVpcBRuLl3vsYVgv8Wkfti7GMn7i6F3akwKbPCxJiyVgJNY6QfiGusBkBVn1LV47z0a4FC4GZv3V5VHaeqh+Numd2LK1wyfTvpe6CeN2PoPlR1l6pOx90COwu4CrhKRFpGbdoA2KKquzIcm8khVpgYU9b7wHEiUjpXtog0B7oC/47eWFXXqurjuAnTOsRYv0xV78RNNlRmfZoWAwK0ikws55bVh95ro6j0Atx01sakzKq1JlfVFJFBMdJn4aZyvh54XURuwU3zXIRrW3gcQERG436UZ3rpP8c9QXWDt/5xXK3hPdzMdafg5jO/3kdsZ4nIjqi0D1X12xjbfoB72uw49p3b+1kR+Rh4B/cE2XG4mskKYGHUPjrh2oOMSV2mp4u0xZbKvuAKhvKmhO3hbdMGeAHYjJv69BXgsIh99MM9PrwW2IGrIdwApbOXFvJTH45twH+BixPEVRgnrsI4+V6h7FzjZ+PmAV8F7MVNETsT+HnUdk1whVH3sK+LLdm92LS9xmQ5ETkbmAAcrKplGuNFZCJQpDH6mYjIJcA1uMeg7cfApMzaTIzJfi/gbl+dn0wmr13l98CfrCAx6bLCxJgs5xUEI3A99mN5AdgYI70ZMAl4uoJCMznEbnMZY4xJm9VMjDHGpM0KE2OMMWmzwsQYY0zarDAxxhiTNitMjDHGpO3/Ax1gWfeCPolOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VGXa+PHvnYQEEnrvhI7YBRWkBSmWLZZXxXVdV9eCawfXfd91m7r72y7YFdZedlF3Leta6AGliGAXaYHQewmE9OT+/XFOJsMwmcwkM3Mmyf25rrkm58x5nrlnksw9zzlPEVXFGGOMibUkrwMwxhjTOFjCMcYYExeWcIwxxsSFJRxjjDFxYQnHGGNMXFjCMcYYExeWcIwJk4hki4hn4whE5HkRURHJ9NuX6e573qu43Dg8fW9M/WAJxyQsEcl1P0zDuT0fZp2B5YpFZK+IfCoiT4vIBSKSHMPXkxuLumMtWLIzJlIpXgdgTAgPAa1DPJ4OTAWSga8jrPt+9z7ZfY4TgR8B1wMrReSHqrouoMw17nN65RfAn4DtHsZQHa/fG1MPWMIxCUtVH6ruMRER4DWchPFv4MEI674vSJ2dgEeBy4F5IjJUVff4ldkSyXNEm6ruBHZ6GUN1vH5vTP1gp9RMffUAcBnwGXCNRmGOJlXdDVwJZAM9gHv9Hw92nUIcPxaRpe6puSIR2Sois0VkkntMlluuF9CrulOB7na2iHR2T+9tF5FyEbnWfTzkaS0RGSQib4nIARE5KiIficjEIMfd59aTFeSx464JubH/2N3c5Bd7bqj3xt2fJCI3i8gnIpLvxvWJiPxURI77/PF7D9qLyEwR2eme9vxGRK4L9rpN/WEtHFPviMiVwK+AXcD3VbUgWnWraoWI/B7IAn4gIlNqSGb/D+dU1yacFlce0AU4E6el9CqQi3MK7y63jH/L7fOA+toCy4F84A2gAtgdRui9gWU4pxZnuDFMAt4XkatU9dUw6qjO/cDFwKnAw8Ahd/+haktUeQm4CtgKPA0ocAnwBDAS+GGQMq2BJUAJ8C+gKc6Xi2dFpEJVX6j1KzHeUlW72a3e3ICzgEL3dnYtyqvzZx/ymDSg1D22t9/+7MCywH5gG5AepJ72Adu5QG5NsQEvAilBHn/efTzTb1+mX7m/Bhw/1H0dB4GWfvvvc4/PCvIclfU9X9NzBzwe7L35gVvmU6C53/4MYKX72FXVvAdPA8l++wcDZcBqr/8G7Vb7m51SM/WGiHQD3sL5xnuDqn4ci+dR1WKcRALQIYwipUB5kHr21eLpS4CfqWpZhOXycE4z+j//SuAVnBbDJbWIpa5+4t7/n6rm+8V1FPhfd/OGIOUKgKmqWu5XZjVOq+cEEWkRo3hNjFnCMfWCiKQD/8E5VfRHVX0l1k/p3td0begVnFbBNyLyRxE5X0Ra1eF5c9Wvo0IEPlXVI0H2Z7v3p9c+pFo7A+eUYHaQxxbhJOlgca1X1cNB9m9170P1XDQJzBKOSXhuj7QXcD7A3gZ+GePna4pzLQVgbw2HT8G5NnMU+D/gfWCfiLwtIv1q8fS7alEGqr/OU1lfXZJgbbUCDqhqSeADbgtuH8Hjqu7aUGWrLybjpEzsWcIx9cH9OBeNvwSuVvekfgyNxOlQs1tVc0MdqKrlqvqwqp4KdAL+B3gT+D7wgYikRfjctX1tnarZ39m9z/PbV+HeB+s0FM3WQx7QVkSaBD4gIilAeyBYS8Y0UJZwTEJze6T9GtiD0yMtv4YidX2+JKpaUP+IpKyq7lHVN1T1CmAB0Bc4ye+QcmL37fyMaq5tZLn3n/ntO+je9why/NBq6q+8nhJJ/J/hfMaMDvLYaLeuTyOoz9RzlnBMwhKRM4HncC6kX6qqm2P8fB2BWTgf0luAP9RwfJqIjHNP+fnvb0LVKTn/Ltv7gQ4i0ixqQVdpBfwmII6hON2O83BaXZVWuPfXuS2NyuN7BNbhp7ITRc8IYnrWvf+jew2u8nnScWZMAHgmgvpMPWfjcExCcr+tv43TI+0TYIKITAhRJFdVn4+g/vvcH5OomtpmJJCK84H8wzB6mTUD5gG5IvIxsNmNdwJwAvAfVf3W7/j5OONzPhCRxUAx8IWqvhNu3CEsBm4QkbNxenNVjsNJAib7X4RX1Y/d5x8NrBCRBTin5L4HzCZ4y2c+cA/wdxH5F844oUOq+lh1AanqP0TkIuAKnE4Vb+GcMrwYZ9zQa3Ho/GESidf9su1mt2A3jh1fEs4tO8x6A8sV41y8XgX8HTgfSKqmbDZ+Y02AJsDPcToKbAGKcDoZLAduBlIDymcAT+KM2ykjYLxLTa+D0ONwnsdJcm/jnDIrwEk851VTV2v39e5x34OvgZuoZhyOW2Yq8K17vOI3pijwvfHbnwTcgjPupsC9rQJuDfY+h3oPgr1+u9Wvm7i/SGOMMSam7BqOMcaYuLCEY4wxJi4s4RhjjIkLSzjGGGPiwrpF+2nfvr1mZmbWquzRo0fJyMiIbkBRYHFFxuKKjMUVmYYY16pVq/apajiT3Fq3aP/bkCFDtLYWLlxY67KxZHFFxuKKjMUVmYYYF7BSw/yMtVNqxhhj4sISjjHGmLiwhGOMMSYuLOEYY4yJC+ulZhqUo8VlzFicw8vLNnOwoJQ26U24engvJo/uS0aa/bl7xX4vBizhmAbkaHEZlzyxhM37Cyguc9YYO1BQyoxFG/ng6128ecsI+3DzgP1eTCX7LZsGY8binGM+1CoVl1Wwad9Rfv3W11w2pHvIOlbvLyd1Q02rEsRffY7rX6u2sWnfUUrLj50ouLisgs37C5ixOIepEwbGMkyTICzhmAbj5WWbj0s2lUrLlTc+284bn22vuaJPPo5yZFHSAOMqLqvg5eVbLOE0EtZpwDQYBwtKvQ7B1MLBghKvQzBxYi0c02C0SW/CgRBJJyVJODOzbbWPAxw6dJDWrdtEO7Q6q89xfZJ7gLKK6tfdapOeGu2wTIKyhGMajKuH9+LxBTmUB1lUMC0liclj+tR46iY7O5usrGGxCrHW6nNc0+auZcaijUFPd6alJHH1sJ6xCs8kGDulZhqMC0/qUm2y6dUuncmj+3oQlZk8ui+92qWTlnL8x0231s3s99KIWMIxDcbfP9zk+zklSRCBthmpTB7Tx7reeigjLYU3bxnB5DF9aJtx7Omz4X3b2e+lEbHftGkQcvbm8+Zn23zb/7xpWI3Xa0z8ZKSlMHXCQKZOGMjCNXu47vlPAHh95TZuHduPrq2beRyhiQdr4ZgG4aF566m8Lj2qf3tLNgksa2AHTu/ZGoCS8goeXbDB44hMvFjCMfXeml2H+e+XO3zbd0+0MR2JTET4md/v6PWVW9myv8DDiEy8WMIx9d70ueuo7Csw/oSOnNajtbcBmRqd07cdZ/d2WqFlFcrD89d7HJGJB0s4pl77enses7/Z7dueMmGAh9GYcInIMS3RNz/bRs7efA8jMvEQ94QjIoNFZL6IFIjIDhF5QESSIyifJCKrRERF5LtBHr9IRL4SkSIRWS0ik6L7CkwimTZ3ne/nC0/uzIldW3kYjYnEWb3bMqp/ewAqFB6eZ62chi6uCUdE2gDzAAUuAh4A7gbuj6CaG4Bu1dQ/Evg3sBC4AHgX+KeITKxD2CZBrdp8kAVr9gAgAneNt9ZNfePfynnnyx2s3XXEw2hMrMW7hXMz0Ay4VFXnqupTOMlmqoi0rKmwm7D+H/DLag75NbBYVe9Q1YWqeg/wAfCb6IRvEsl0v9bNRad2ZUCnFh5GY2rjtB6tGX9CRwBUj/2dmoYn3gnnAmC2qh722zcLJwmNCaP874AlwPzAB0QkDRgLvBbw0CxguIjYuZYGZPnG/XzkToufnCTcaa2besv/utsH3+zi6+15HkZjYineCWcQsMZ/h6puAQrcx6olIqcA1wE/q+aQvkCTwPqBb3Fep30iNRCqyrQ5Vd+ELz29G73bZ3gYkamLE7u24oKTOvu2p1krp8GKd8JpAxwKsv+g+1gojwKPq2p1o8QqywfWfzDgcVPPfbRhHytyDwDQJFm4Y1x/jyMydTVlwgBEnJ8XrNnDp1sOhi5g6iUvprYJNk+5VLPfeVDkSmAg8L1a1C8hnhcRuQm4CaBTp05kZ2eH8RTHy8/Pr3XZWGpocakqv1te5Nse2TWZnC9XkONxXLHWGOI6u3Myy3eWA/DrV5dzz5m1n+6mMbxf0RSvuOKdcA4CwUbltSJ4ywcRaQL8FfgzkCQirYHKDgYZItJCVY9Q1ZIJrL9yO2j9qjoTmAkwdOhQzcrKCu+VBHCmaa9d2VhqaHHN/3Y3G/NWApCaksQfrh5Nl1bRm4erob1fsRbNuHqemM+E6Yspr1C+2V9B054nM6xPO8/jiqbGHle8T6mtIeBajYj0ADI4/tpLpQygOzANJ6kcBL5wH5sFfOb+nAOUBtbvblcAdmK4nquoUB70u3bzw7N7RjXZGG/16dCcS0+vGvEwbc46NMhyE6b+infCeR84T0T8+69OAgqBRdWUycfpfeZ/+4H72L3ADwFUtRhn/M3lAeUnActU1bq+1HOzv9nF6p1OB8emTZL4aZato9LQ3DGuPylJzlnwFbkHfD0RTcMQ74TzFFAMvCEi493rJ/cB0/y7SovIBhF5BkBVy1Q12/8GLHcP/UpVP/ar/3dAlog8JCJZIvIX4EKcAaamHiuvUKbPq2rd/PicTDq2aOphRCYWerRNZ9KZPXzbD1orp0GJa8JR1YPAOCAZeAdn0Od04LcBh6a4x0Ra/0fAZcB4YDbwfeAqVZ1Th7BNAvjvlztYt9uZaysjNdlWiWzAbju3H6nu6qCfbz3km03C1H9x76WmqquBc2s4JrOGx3Op6n0W+NhbwFu1DM8koLLyCh7ym2fr+pG9j1s50jQcXVo144dn9+S5JbmAMy5n7MCOJCUF/Zc39YjNFm0S3hufbWfTvqMAtGyawvWj+ngckYm1n2b1pWkT5+Ppmx2Hmf3NLo8jMtFgCccktJKyCh7xWyvlxlF9aNWsiYcRmXjo2KIpPx6e6duePm8d5RV2Lae+s4RjEtrrq7ay7WAhAG3Sm3DdyN4eR2TiZfKYvmSkOpdy1+3OP2ZVV1M/WcIxCauotJxH51fNZHTzmL40T/NicgzjhbYZqfzE7wvGQ/PWU1Ze4WFEpq4s4ZiE9c8VW9h12JnGpn3zNK7xO8ViGocbRvWhZVPnS8amfUd587PtHkdk6sISjklIhSXlPL6waoa0W8f2pVlqxD3lTT3XqlkTbvTrJPLIgvWUlFkrp76yhGMS0ovLctmXXwxAl1ZN+cFZPb0NyHjmupG9aZPudBTZeqCQ11dt9TgiU1uWcEzCyS8u46lFVa2b287tR9Mm1rpprJqnpXDzmKqBvo8t2EBRabmHEZnasoRjEs5zH23iYEEpAN3bNOPyIT1qKGEaumuGZ9K+eRoAO/OK+OeKLR5HZGrDEo5JKHmFpfz9w42+7TvG9fdNc2Iar2apydziN1nr4wtzKCyxVk59Y//JJqE88+FGDheVAdC7fcYx09Wbxu2qs3vSuaUzYeu+/GJeWp7rbUAmYpZwTMI4cLSEZz7a5Nu+a3x/UpLtT9Q4mjZJ5rZz+/m2n8zOIb+4zMOITKTsv9kkjBmLczjqniYZ0Kk53z2lq8cRmURzxdAedG/jLLp3sKCU55dsqqGESSSWcExC2HOkiBeW5vq2p4wfQLLNDmwCpKYkcce4/r7tmYs3kldY6mFEJhKWcExCeDI7h6JSZ0Df4C4tOe/Ezh5HZBLVpad3o3f7DAAOF5XxjF8nE5PY4p5wRGSwiMwXkQIR2SEiD4hIyEEWInKiiHzgHl8sIltE5GkR6RJw3PMiokFug2L7qkxd7Mwr5JWPq7q53j1xgK19YqqVkpzEXeOrWjnPLsnlwNESDyMy4YprwhGRNsA8QIGLcJZ+vhtn5c9QWgGbgJ8B5+GsEDoeeE9EAmdzXAMMD7jlRucVmFh4bMEG33Qlp/VozbmDOnockUl03z2lK/07NgecgcIzFufUUMIkgnhPvXsz0Ay4VFUPA3NFpCVwn4j8xd13HFVdCiz125UtItuAOcApwKd+jx1V1eWxCd9E29YDBby2smqqkrsnDkDEWjcmtOQkYeqEAfz0Fedf/4WluVw/sjcdWzT1ODITSrxPqV0AzA5ILLNwktCYCOva797bWsP12CPz11Na7iysdVZmW0b2a+9xRKa+OO/Ezgzu0hKAotIKnsy2Vk6ii3fCGYRzystHVbcABe5jIYlIkoikishA4E/AJ8CKgMMGi8hh91rPRyISaSIzcbJp31He8Jtufqq1bkwEktxWTqVXPt7CzrxCDyMyNRHV+C3bKiKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCrhQVff4PX4nUAKsBjrgXB8aAoxU1cDEVFnmJuAmgE6dOg2ZNWtWbV4a+fn5NG/evFZlYymR43olJ4VlO51xNye2S+KeM5t5HFViv18W1/FUld8tL2JjnnMN8NweKVxzYprncVWnIcY1duzYVao6NJxjvVg+MViGk2r2B7odaAv0B34FvC8iI1S1CEBVHz6mUpF3cZLPvcDFQYNRnQnMBBg6dKhmZWWF9yoCZGdnU9uysZSocb3yzgKW76r6Nvq7ScM4o2cbDyNyJOr7ZXFVL7nbXq551vk++eGOcu7/wVnkfLnC87iCSYT3K5h4xRXvU2oHgdZB9rcCDtVUWFXXq+rHqvoyTkvndOCqEMcXAu8BZ9QuXBMrb24oobJxfe6gjgmRbEz9NKp/e87KbAtAabny6IL1HkdkqhN2C0dETgbOAjoDTYEDwDpgqaoeDLOaNQRcqxGRHkAGAdd2aqKqm0XkANCnxoPDaz2ZOPlmRx4rd1fN9Ot/Ht6YSIkIUycO4MqZTufUf3+6nTNGWG+1RBQy4YhIH+CnwA+BTkAFTkukGKelkg5UiMgi4GngVVUNtf7r+8A9ItJCVY+4+yYBhcCiSAJ3Ow60wxmfU90xzXB6xq2KpG4TW9PnrvP9fN6JnTipWysPozENwbA+7RjRrx1LNuynvEJ5e0MJV3odlDlOtafURORp4BvgNJwBmqcDTVW1g6p2V9XmQEfge8BXwF+Ab0VkZIjnewonWb0hIuPdC/b3AdP8u0qLyAYRecZv+28i8icRuURExorILcBsIAenWzUi0kpEPhSRySIyTkQmAQuBbsAfIn1jTGx8vvUQ8751+nmIwBRr3ZgomTphoO/n5TvLWb/7SIijjRdCXcMpAgap6gRVfUpVv1TVY1Y8UtV9qvq+qt4F9AJ+g/MBH5R76m0ckAy8gzPDwHScmQP8pbjHVFoJjAKeAd4F7gD+DQxT1aPuMcXAXpzOBO/hdAQ4BIxR1ZUhXqeJowfnrPX9/N1TujKoc0sPozENyZBebRg7sAPgnEOfPm9d6AIm7qo9paaqt0VSkXsq7dUwjlsNnFvDMZkB27NwWzIhyhQBl9YYqPHMJ7kH+HD9PsDplug/H5Yx0TB1wkAWrt0LwHtf7eKbHXmc2NVO2SaKWvdSE5HmIpJ4HcpNQlJV/ja7qnVzTtcU+nawPx8TXSd3b8V5J3bybU+faz3WEknECUdEThCRT4DDQJ6IrBSRwdEPzTQkS3P28/GmAwCkJAkX9WvicUSmoZoyYQCV81XM+3Y3n2+tccSFiZPatHCeBl4HWgBdgbXA81GMyTQwqnrMtZvLh/agY7otxWRiY1DnlpzVueoS8LS5di0nUYTqpTbdnck50CDgUVU9qqq7gRcA62pkqpW9di+fbnG+ZaYmJ3G737r0xsTCxf1SqVxSafG6vXySe8DbgAwQuoXTClgvIjfLsTMqzgdeEpELReQy4I/uPmOOo6rHfMP8wVk96Nra+znTTMPWpXkSF59e1WHWv4VtvFNtwlHVnwAX4kwd84WIjHUfuhHYAvweZ46yxcD1MY7T1FNzVu/mq+15AKSlJHHrWGvdmPi4c1x/UtxmzvKNB1i6YZ/HEZmQJ9JVdZWqjsYZOPmciLwJtFXVqap6hnuboqp2Vc4cp6JCmTanqnVzzfBedGxpU46Y+OjVLoPLh3b3bf9tzlriOTu+OV5YV27dcTCDgM+BVSLyRxHJiGlkpt5796udrHVHe6enJnPzmL4eR2Qam9vO7U9qsvMx9+mWQ2Sv2+txRI1byIQjIgNF5KfuOjNnqOr9OEs69wDWici1cYjR1ENl5RXHjPS+bkQm7ZqneRiRaYy6tW7GD87q4dueNmedtXI8FKqX2g3AFzhzpY0C3hORJ1R1m6peDVwG/NQdhzMiPuGa+uLtz3ewca8z61CLtBRuHBXOpN7GRN+tY/uRluJ81H21PY85q3d7HFHjFaqF81vgVlW9UFUvA8YAk0WkM4CqLlPVs4FHqWHaGdO4lJZX8PD8qhHeN4zqQ+v0VA8jMo1Zx5ZNuWZ4L9/29LnrqKiwVo4XQiUcwVmOoFKFu++YRedV9QUC1rgxjdu/Vm1jy4ECAFqnN+EnIzO9Dcg0ejeP6Ut6qjMYdM2uI7z71U6PI2qcQiWc3wNPiMg7IvIazno1z6jqcb8pvxmbTSNXXFbOo36tm8mj+9KiqU1jY7zVrnka143I9G1Pn7eOsvJQS3eZWAg1DucpnKWZPwCWARer6o3xCszUT7NWbGVHXhEA7Zun8uNzetVQwpj4uHFUH1qkORPkb9x7lLc/3+FxRI1PTeNwvlXVx1V1uqoujldQpn4qKi3n8YUbfNvOaYywVzE3JqZap6dy/ajevu2H56+n1Fo5cRWql9qoSCtzV908uYZjBovIfBEpEJEdIvKAiCTXUOZEEfnAPb5YRLaIyNMi0iXIsReJyFciUiQiq92VP00cvLx8M3uOFAPQqWUaVw+z1o1JLD8Z2ZvW6c4p3i0HCvj3qm0eR9S4hGrhvCYiS0TkJyLSJlQlIjJCRB4FNgPDQxzXBpiHsyDfRThLV9+Ns/JnKK2ATcDPgPNwetCNx+mq7fsK7S5v/W+cpaUvwFkd9J8iMrGG+k0dHS0u44nsHN/2bWP70bRJyO8RxsRdy6ZNuGl0VRf9R+avp7isPEQJE02hznf0wVnK+bfADBFZB3wN7MNZzrk10Bs4HWiGs6zz+BqWc77ZPfZSVT0MzHVnpL5PRP7i7juOqi4FlvrtyhaRbcAcnIGon7r7fw0sVtU73O2FInIiztLXc0LEZero+aW5HDhaAjiD7a44s0cNJYzxxrXnZPLsR5vYl1/CjrwiXv1kK9cMz/Q6rEYhVKeBQlX9M5CJ01p4GyfJjAS+A5yA06K5B+ihqpfUkGxw65kdkFhm4SShMRHGvt+9TwUQkTRgLPBawHGzgOEiYuvMxsjholJmLt7o275jXD/SUqx1YxJTemrKMdMsPbZgA0Wl1sqJhxrnUlPHPFW9V1XPU9VTVXWgqg5X1WtV9e+quifM5xsErAmofwtQQBhjeUQkSURSRWQg8CfgE2CF+3BfoElg/cC3OK/T1uyJkWc+3EReYSkAvdqlc+kZ3WsoYYy3rh7Wi04tnamW9hwp5uXlmz2OqHGQeM4rJCKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCriwMtm50+t8BJyuqp/7lekHrAfOU9XjTquJyE3ATQCdOnUaMmtW7SZNyM/Pp3nz5rUqG0uxjiu/RLlncQGFZc72TaekcU7XmnumNdb3q7YsrsiEE9f8LaW8tNo5DdwiFf46Op2mKRKyTDzi8kJd4ho7duwqVR0azrFe9FkNluGkmv2BbgfaAv2BXwHvi8gIVS0KUb9Us9/ZqToTmAkwdOhQzcrKCiOM42VnZ1PbsrEU67j+/MEaCsuczgL9Ojbnf68cTXJSzf+0jfX9qi2LKzLhxDW8rJwFf1vE9kOFHCmBnOQe3JoV2/Wa6vP7FQ3xXlj+IM51oECtgBrX1FHV9ar6saq+jNPSOR1ngbjKuglSf+W2rdkTZfvyi3l+Sa5v+67x/cNKNsYkgrSU5GOWO5+5eCOHi0o9jKjhi3fCWUPAtRoR6QFkcPy1l5BUdTNwAKc3HUAOUBpYv7tdAazDRNVT2TkUuhdbB3VuwYUnHTcsypiE9j9DutOrXToAeYWlPPvRJo8jatjinXDeB84TkRZ++yYBhThztYXN7TjQDmd8DqpajDP+5vKAQycBy1Q1r7ZBm+PtPlzES34XWqdOGECStW5MPdMkOYk7x/X3bT/z4SYOFZR4GFHDFlbCEZG/icjgKDzfUzhjeN4QkfHuBfv7gGn+XaVFZIOIPBPw/H8SkUtEZKyI3ALMxmnV+F/l/x2QJSIPiUiWiPwFuBBngKmJoscXbqC4zJkW5JTurZgwuJPHERlTOxed1o2+HZwFjI8Ulx3Txd9EV7gtnP8BvhKRFSJyc23HtKjqQWAckAy8gzPDwHScwaX+UtxjKq3EWQTuGZzZA+7AmVFgmP9M1ar6Ec7CcONxEtL3gauC9U4ztbftYAH/XLHFtz11wgBErHVj6qfkJGHKhKpRE88tyWVffrGHETVcYfVSU9XeIjIWuA74KzBNRN4CnlXVeZE8oaquBs6t4ZjMgO1ZhLnIm6q+BbwVSUwmMo8t2EBpudPpb0ivNowZ0MHjiIypmwtP6sKgzhtYs+sIhaXlPJWdw6++G42TOsZf2NdwVHWhql4DdMHpntwdmC0im0XkfhGxNYQbgdx9R3ndb8LDuyda68bUf0lJwlS/Vs5Lyzez+3BRiBKmNiLuNKCq+ar6DM5psCVAD+AXwDoReVtEbIrgBuyR+espd5fnHd6nHef0be9xRMZEx4TBnTilu3O1oLis4pilNkx0RJRwRCRTRH4rIhtxJsPMx+kV1gLnekkmYZ76MvXPhj1HeOvz7b7tuyfabEGm4RA5tpXzzxVb2HawwMOIGp5we6n9SEQWABuAHwPPAb1V9UJV/beqFqvqezgX88Oa4sDUP9Pnrcdt3DBmQAeGZrb1NiBjomzMgA4M6eWsxlJarjy2wFo50RRuC2cmsAtnPrI+qvo7VQ22ctE64PdRi84kjG93HubdL3f6tv2/CRrTUIgId/v9bb++ahub9x8NUcJEItyE01VVr1LV+aEOUtWdqlrTYmqmHpo+t2qihgmDO3FI9tmwAAAgAElEQVRqj2AzFBlT/53Trz3D+7QDoLxCeXj+eo8jajjCTTirROTUYA+IyEnuNR3TQH257RBzVu/2bVvrxjR0/tcn3/psOxv25HsYTcMRbsLJBNKqeSwdp4u0aaCm+bVuvnNKF07o0tLDaIyJvaGZbX3jyyoUHppnUzFGQ7UJR0RaikhPEenp7upcue13GwBcCWyvrh5Tv63afIDstXsBSBKYMr5/DSWMaRj8W/L//XIn3+48HOJoE45QLZwpQC7O5JgKvOn+7H/7FrgLeCSmURrPPDin6pvdRad1o1/HFiGONqbhOLVHa8afUDVHoP91TFM7oaa2+QfOHGYC/Af4GbA24JgSYK27TLRpYJbm7GNpzn7AmW/Kf1ZdYxqDqRMGMO9b5/rlnNW7+WpbHid3r9VUkoYQCUdV1+MszYw7j9qnqnokXoEZb6kq0/xaN5ed0Z3M9hkeRmRM/A3u2pLvnNyFd79yhgQ8OHctz193lsdR1V9hdRpQ1UWWbBqXxev3sXKzs4hqk2Th9nGxXXrXmEQ1ZUJ/Kpd6yl67l1WbD3gbUD0WqtPAHhE53f15r7td7S1+IZtYU1UenFN19vTKM3vSvU26hxEZ451+HVtw0WndfNv+1zVNZEJdw3kc2O33s8Y+HJMI5n27hy+3OQukpqYkcetYa92Yxu3Ocf35zxc7KK9QlubsZ1nOfob3bed1WPVOqGs49/v9fF+0ntBdOfRRYDhwCHgauF9Vy0OUORO4BWcRtq7AVpxODX9W1SK/4+7j+MXcAC5Q1Q+i9RoasooKPWbczY+G9aJzq6YeRmSM9zLbZ3DZGd15deVWAKbNXctrfYbb0hwRinh5groQkTbAPJzW0kU4Sz/fjbPyZyiTgL7An3GWjH4cmAq8EuTYPJxk5n9bFoXwG4X3v97lG2/QrEkyP83q63FExiSG28f1o0myk2A+yT3I4vX7PI6o/qm2hSMir0VSkapeEcZhNwPNgEtV9TAwV0RaAveJyF/cfcH8WVX3+m1ni0gRMENEeqnqZr/HylR1eSSxG0d5hTLdb0T1j8/JpH3z6iaYMKZx6d4mnUln9uDl5c4okGlz1jK6f3tr5UQgVAunQ4S3cFwAzA5ILLNwktCY6goFJJtKn7n3HcN8blOD/3xRNWdU87QUJo+2RVyN8Xfb2P6kpjgfm19sy2Pet9ZfKhKhruGMjcHzDQIWBDzPFhEpcB97J4K6zgEqOH4wamsR2Qe0Ar4Gfqeqb9Q+5MahrLyCh+dVzYr7k5G9aZOR6mFExiSezq2acvXZvXh2ySbAmWdw3KCOJCVZKyccohq/zmciUgrco6oPBezfBryoqveGWU9n4EvgPVW91m//1Tgtns+B5sBknGs+/1Nd0hGRm4CbADp16jRk1qzaLVian59P8+bNa1U2lsKNa/G2Up79ugSAjCbwl9HpZDSJ3T9RfX+/4s3iikws48orVu5ZXECJ283p1tPSOLNzqA6/8YmrLuoS19ixY1epalgLb4a6hnML8Lqq7nV/DklVnwgzvmAZTqrZHyyuVOA1nOWtpwTE8HLAse8AS4HfAEETjqrOxFlgjqFDh2pWVlY4YRwnOzub2paNpXDiKimr4Jd/y/Zt33LuQL4T467Q9fn98oLFFZlYx/VtxRqeWpQDwOwdTZh6xWiSw2jlNNb3q1KotPwYzlxqe92fQ1EgnIRzEAi2clcrnC7SIYlzde5F4ERghKoeDBmUqorIG8CfRSQ5VNfrxuzVlVvZfqgQgLYZqVx7Tqa3ARmT4CaP7sPLyzeTX1zGhj35vPPFDi4+vVvNBRu5ajsNqGqSqq7w+znULTnM51uDc63GR0R6ABnuYzWZjtOd+iJVDed438uJ4NhGpai0nMcWVF27+emYvmSkhXd6wJjGqk1GKj8Z2du3/dC8dZSVV3gYUf0Q13E4wPvAeSLiP8f9JKAQWBSqoIj8ArgduFpVPwrnydwW0SXAF9a6Ce6Vj7ew+3AxAB1apHH1sF4eR2RM/XD9yN60bOp8OcvdX8Abn9qyYDUJO+GISKqI3CQiT4vIu+79je41lXA9BRQDb4jIePeC/X3ANP+u0iKyQUSe8du+CvgDzum07SIyzO/Wwe+4RSJyh4hMFJFLgHeBYe5zmAAFJWU8mb3Bt33b2H40Sw23sWpM49aqWRMmj6kaGP3w/PWUlFkrJ5SwEo6InICzVMHjwElAuXv/OLDBna6mRu41l3FAMk4X6PtxTpMFTkeT4h5TaaJ7fy3OrAH+t+/4HbcBZ0G4t4GXgRbAd1T1P+HE19i8sHQz+/KdnmldWzXlyrN6eByRMfXLtedk0tYdPrD9UKFv6hsTXLgn62fiTBkzyn+xNXf56XdxWi6jw6lIVVcD59ZwTGbA9rU4yaamuq8PJwYDR4pKmbE4x7d927n9SUux1o0xkchIS+HmMX34w3vOJeXHF2zg8iHdadrE/peCCfeU2lDgN4Ere7rbvwHOjHZgJraeW5LLoYJSAHq2Tefyod09jsiY+ulHwzLp0MKZAmrX4SL+8bEtgFydcBNOLlDdlMFNAXuH65G8glL+/uFG3/Yd4/rTJDne/UeMaRiapSZzq98kt09kb6CgpMzDiBJXuJ8y/wf8XkTO9t8pIsNwZnz+32gHZmLn7x9u5EiR8w/Rp0MGF5/W1eOIjKnffnB2T7q6y3jsyy/hxWWbayjROIVa8fMTEVkhIiuAXwItgaUislNEvhCRncASnEGbYU1JY7y3P7/YNw8UwF3jB5BirRtj6iQtJZnbzu3v235qUQ5Hiko9jCgxheo08A3HDpj8JsaxmDiYsXgjBe4kUAM7teC7J3fxOCJjGobLh3bnyUUb2HqgkEMFpTy3JJc7xvWvuWAjEmq26GvjGIeJgz2Hi3hxWa5ve8qEATbLrTFR0iQ5iTvHDeBnr38BOKeufzw8k1bpTTyOLHHYuZRG5InsHIpKnYFpJ3VryXkndvI4ImMalotP60qf9hkAHCkqO6Zzjgl/HA4ikglcDQwgSI+1MFf8NB7ZcajwmO6ad08YaCsVGhNlKclJ3DVhAHf801kf8rklm7huRCbtbOVcIPyZBobgLGb2Q/fWH2dszmU4U8e0j1WAJjoeXbCBEndywdN7tiZrYLiLtBpjIvHdk7swsJMzXeTRknJmLLZWTqVwT6n9Ffg3znQ2Alyvqn2AkTgdC/4Sm/BMNGzZX8DrflNuWOvGmNhJShKmTKjqLPDislz2HCnyLqAEEm7COQ34B86SzuCeUlPVpTjzof0p+qGZaHlkwXrKKpwOh2f3bsuIfu08jsiYhu28EztzYteWABSVVvDEwpwaSjQO4SYcBUrUWY96D+A/h/1WnFNsJgHtzK/gjU+3+bbvnmitG2NiTUS4e+IA3/Y/Pt7CDneRw8Ys3ISzGqicu2EZMEVE+otIL+DngKXvBPV2Tglu44ZR/dtzVu+23gZkTCMxdmBHTuvhLHBcUl7BYws31FCi4Qs34cwEOrs/3wt0wVmhcyNwNvCz6Idm6mrtriN8vLNq3bmpEwaEONoYE00iws8mDvRtv/bJVvYUNO71csLqFq2qL/n9/K27Ps45ONdylqvqnhjFZ+pg+tx1vqkixg3qyOk923gajzGNzYh+7Tird1tWbDpAWYXyn5xSGvP4kVoN/FTVfFWdo6r/iTTZiMhgEZkvIgUiskNEHhCRkItHiMiZIvKcuxJogYisFZHfishx44FEZISIfCwihSKySUTuiPT1NQRfb8/jg292+banWOvGmLgTEe72+99bsr2MjXvzPYzIW5EsMd1RRP4gIvNE5Bv3/v+JSNjD1UWkDTAPpxPCRTgzTd+N09MtlEk415D+DFyIs9LoVOCVgPr7AbOBTTgrgc4AponIDeHG2FBMm7vO9/MFJ3XmpG6tPIzGmMbr7D7tGNXfGaqowEPz1nsbkIfCOqUmIiOA94AyYC5OJ4KOwM3A7SJygaouCaOqm4FmwKWqehiYKyItgftE5C/uvmD+rKp7/bazRaQImCEivVS1ci7we4AdwNWqWgYscFcl/a2IPOP2smvwPt1ykAVrnIanYK0bY7w2dcIAPly/D4B3vtzBrWP7MbBzC4+jir9wWziPAauAnqp6pareoapX4nSP/hR4NMx6LgBmBySWWThJaEx1hQKSTaXP3PuOAfW/4SYb//q74wxabRSm+7Vuzu6SzIBOje8P25hEcnrPNowb5HxUqcJD89bVUKJhCjfhDAIeVNWj/jtVNR/4G3BCBPWsCahjC1DgPhaJc3AGoq4FEJEMoEdg/cC3fs/d4H28cb/vm1SSwMX9Uj2OyBgDx55peP/rXXy9Pc/DaLwR7uSdq6nqFh2osot0ONoAh4LsP+g+FhYR6YyzKNxLfq2l1u59YP0H/Z47WF03ATcBdOrUiezs7HDDOEZ+fn6ty0aLqvLHFVVTaIzomkJzLfA8rmAS4f0KxuKKjMUVmdPaKZ/vdwZe/3LWMqYMOa7fkyfi9X6Fm3BuB14SkXzgLVUtFpE04BKc5aevieA5g11HkWr2H3+gSCrwGpAPTAmz/mr3q+pMnHFGDB06VLOyssIJ4zjZ2dnUtmy0fLh+L+tmrwAgJUn4ww9HkfPlCs/jCiYR3q9gLK7IWFyR2X5kAV8sLUQVvthbTss+p3JGAgxXiNf7FWqJ6b0iskdE9gBv4bRw/gEUiEgezmmwV9z9b4b5fAepaon4a0Xwlk9gTAK8CJwIXKiqB/0eriwfWH+bgMcbJFXlwTlV54WvOLMHPdqmexiRMSZQtxZJfO+Urr5t/+utjUGoFs7jhNnqiMAaAq6liEgPIIPwTstNx+lOPUFVA68FHRWRrYH1+22He9qvXlq4dg+fb3VyampKEref28/jiIwxwdw1vj///XIHFQofrt/Hxxv3c3afxjGhbqglpu+LwfO9D9wjIi1U9Yi7bxJQCCwKVVBEfoFzau8KVf0oRP2XiMivVLVyTpdJOBOMfl3n6BNUYOvmqrN60qVVMw8jMsZUp0+H5lx6Rnf+tcqZVPfBuet49aZhjWJS3YhmGhCRVBEZIiIT3PtIu0A9BRQDb4jIePeC/X3ANP+u0u6MAs/4bV8F/AHndNp2ERnmd/NfSeyvOF2gXxKRsSLyc2Ay8EBDHoMz+5tdfLPDefuaNknilrF9ayhhjPHSneP6k5LkJJgVmw6wZMN+jyOKj0hmGvg5sBtYgTOa/xNgt4jcE24d7jWXcUAy8A7ODAPTgd8GHJriHlNpont/Lc5s1f637/jVvwE4H+iH09q5BbhbVZ8ON8b6prxCj5lV4MfDM+nYIjF6vhhjguvRNp0rzuzh2/7bnLU04O/EPuHONHAX8EecFsqrOImnE87pqj+KSLGqPhJOXaq6Gji3hmMyA7avxUk24dT/EXBWOMc2BP/9cgfrdjtzM2WkJjN5jLVujKkPbhvbj3+t3EZJeQWfbz3EwrV7OHdQ2DOF1UvhtnBuBf6kqreq6mJVXeve34ozv1mjnCDTa2XlFTzsNy/TT0b2pm2GDfQ0pj7o2roZV53d07f94Jx1Db6VE27C6QEsrOaxbJzrJibO3vxsOxv3OZM/tGiawg0j+3gckTEmEreM7UvTJs7H8Dc7DjPbb4b3hijchLOFqusogSa4j5s4Kimr4JEFVa2bG0f1oVV6Ew8jMsZEqmOLplwzPNO3PW3uOsorGm4rJ9yE8wjwMxF5WkTOF5HTReQ8EXkaZ5mAh2IXognm9VVb2XrAWSO9TXoTrhuR6W1AxphamTy6DxmpTh+pdbvz+e+XOzyOKHbCSjiq+hhO9+LzcZYpWInTC+x84GZVfSJmEZrjFJWW89iCqvXRJ4/pS4um1roxpj5q1zyN60b09m0/PG89ZeUNcynqsLtFq+rfca7l9AKGu/c9GnKX40Q1a8UWduY5k3S2b57GNcN7eRyRMaYubhzVhxZNnU7DG/cd5a3PG2Yrp8aEIyJNRWSdiJyvjq2qusK9b7gnGxNUYUk5jy3M8W3fktWX9NRw52A1xiSiVulNuHFUVaefh+evo7QBtnJqTDiqWoQzIWbDe/X10EvLc9mXXwxA55ZNj+lWaYypv64bkUlrt+PP1gOFvL5ym8cRRV+4p9ReAa6LZSCmZvnFZTyZXdW6ue3cfjRtkhyihDGmvmjRtAk3+w3cfnTBeopKy0OUqH/CPRezBbhCRFbidBrYzbEzSauqPhnt4Myxnl+yiYMFpQB0b9OMK4b2qKGEMaY+uWZ4L57+cCP78kvYmVfErBVbuNavQ0F9F27CedC97wKcEeRxBSzhxFBeYSkzF2/0bd8xrj+pKRHNvWqMSXDpqSncktWPB/67GoDHs3OYdGZPmqU2jDMZ4XaLTqrh1jDejQT2zIcbOVxUBkDv9hlceno3jyMyxsTCVWf3pHNLZwLevUeKeWl5rrcBRZF9Ra4HDh4t4dklub7tO8f1JyXZfnXGNERNmyRzq98Cik8t2kh+cZmHEUVPJMsTpIrITe5sA++69zfWYk0cE6EZi6v+4Pp3bM73Tu1aQwljTH02aWgPurV2FlE8cLSEF5bmehtQlISVcETkBGA9zrLTJwHl7v3jwAYRGRyzCBu5vUeKj/ljmzJhAMlJDX9lQGMas9SUJO4c19+3PWNRDnmFpR5GFB3htnBmAnlAX1UdpqrfV9VhOAud5eGskxMWERksIvNFpEBEdojIAyIS8hqQ27r6q4h8KCKFIhJ0wKmIPC8iGuQ2KNz4Es2T2TkUul0jB3dpyfkndvY4ImNMPFx6Rjcy26UDcLiojGc+2uRxRHUXbsIZCvxGVY+ZFdrd/g1wZjiViEgbYB5Or7aLgAeAu3FW/gwlHbgBKACW1nDsGpypd/xvueHEl2h25hXy8sebfdtTJwwgyVo3xjQKKclJ3DV+gG/72Y82cfBoiYcR1V24CScXqG7d4qaEvzzBzUAz4FJVnauqT+Ekm6ki0rK6Qqp6CGirqucBb9bwHEdVdXnArSjM+BLK4ws3UFLmTPBwao/WjDuho8cRGWPi6XundqV/x+aAM/B7ht/QiPoo3ITzf8DvReRs/50iMgynlfK/YdZzATBbVQ/77ZuFk4TGhCrY2OZt23qggFc/2erbvnvCAESsdWNMY5KcJEyZUNXKeWFpLnuPFHsYUd2Em3B+BbQElorIThH5QkR2AkuAVsC9IrKi8hainkE4p7x83NNyBe5j0TBYRA6LSLGIfCQiIRNZonp0wXpKy50ce2ZmG0b1b+9xRMYYL5x/YmdO6OKcACosLT9meqv6RsJpOIjIc5FUqqpB510TkVLgHlV9KGD/NuBFVb03jFhuAx5V1eO+7ovInUAJsBrogHN9aAgwUlWDJkIRuQm4CaBTp05DZs2aVVMIQeXn59O8efNalQ2062gF935USOXCf/93VlMGta3d2NpoxhVNFldkLK7INLS4PttTxsOfOi2blCT46+hmtGkavbF4dXm/xo4du0pVh4ZzbFhT21SXQGopWIaTavZHVrHqw8dUKvIuTvK5F7i4mjIzcXrhMXToUM3KyqrVc2dnZ1PbsoHumvUZFeqs5jmiXztuvnRYreuKZlzRZHFFxuKKTEOLa4wq2XuX8sXWQ5RVwKqiDvz+/JM9jytS8R6ufhBnqYNArYBD0X4yVS3EmWw02PxvCWn97iO8/UXV4ktTJwz0MBpjTCIQEab6Xct59ZOtbDtY4GFEtRPvhLOGgGs1ItIDyCDg2k6U1ZsOBw/NW0/lWc6xAzswpFcbbwMyxiSE0f3bc2am83lQWq48On9DDSUST7wTzvvAeSLSwm/fJKAQWBTtJxORZjg941ZFu+5Y+GZHHu9+tdO3ba0bY0wlp5VT9Znwr0+3kbvvqIcRRS7eCecpoBh4Q0TGuxfs7wOm+XeVFpENIvKMf0ERuUBELgNOc7cvc2+93O1W7kwEk0VknIhMAhYC3YA/xOXV1dH0uet9P08c3ImTu7fyMBpjTKIZ3rcd5/RtB0B5hfLw/PU1lEgscU04qnoQGAckA+/gDPqcDvw24NAU9xh/TwKvA9e726+7t7HudjGwF6cL93s4HQEOAWNUdWVUX0gMfL71EPO+3Q2ACEydOKCGEsaYxuhuv8+Gtz7fzvrdRzyMJjLhLsAWNaq6Gji3hmMyw9kX8HgRcGldYvPStLnrfD9/5+QuDOpc7cQLxphGbEivtmQN7ED22r2oOtd9H/9h/egXZYuqJIBPcg+weN1eAJKEY+ZPMsaYQHf7Xct596udrN5xOMTRicMSTgJ4cM5a388Xn96Nfh0Tb8CaMSZxnNy9FRMHd/Jt+58hSWSWcDy2dMM+lm88ADjzJvmvgWGMMdXxn2Nt3re7+WJr1IcyRp0lHA+pKn/za91cMbQ7vdpleBiRMaa+OKFLS757Shff9oP1oJVjCcdD2ev28ukW51tJanISt51rrRtjTPjuGj+AyiWyFq/by8rcA94GVANLOB5RVabNqfpG8oOzqtYwN8aYcPTr2JyLT+/m235wTmK3cizheGTO6t18tT0PgLSUJG4d28/jiIwx9dGd4/qT7DZzlm3cz9IN+zyOqHqWcDxQUaFM9zvf+qNhvejYsroFVY0xpnq92mVw+ZDuvu0H564jUdertITjgfe+3smaXc7o4PTUZG7O6utxRMaY+uz2cf1JTXY+zldtPsgid1xforGEE2flAa2ba8/JpH3zNA8jMsbUd91aN+PKs3r4tqclaCvHEk6cvf35dnL2OjO8tkhL4abRfTyOyBjTENw6th9pKc5H+pfb8pi7erfHER3PEk4clZZX8NC8qtldrx/Vm9bpqR5GZIxpKDq1bMqPhvXybU+bu46KisRq5VjCiaN/r9rGlgPOKn2tmjXhJyN7exyRMaYhuTmrL+mpzkT7a3Yd4b2vd9ZQIr4s4cRJcVk5jy6oWqFv8pg+tGzaxMOIjDENTfvmaVx7TqZve/rcdZQnUCsn7glHRAaLyHwRKRCRHSLygIgErn0TWCZVRP7qLrBWKCLVvoMicpGIfCUiRSKy2l2IzXOvfrKV7YcKAWiXkcqPh2d6G5AxpkG6aXQfWqQ5K8/k7D3K259v9ziiKnFNOCLSBpgHKHAR8ABwN85CbKGkAzcABcDSEPWPBP6Ns9LnBcC7wD9FZGKdg6+DotJyHvNr3fw0qy8ZaXFfisgY0wi0Tk/l+lFVp+sfnr+e0vIKDyOqEu8Wzs1AM+BSVZ2rqk/hJJupIlLtimOqeghoq6rnAW+GqP/XwGJVvUNVF6rqPcAHwG+i9xIi9/Lyzew5UgxAp5ZpXO13Yc8YY6LtJyN706qZc8p+8/4C/r1qm8cROeKdcC4AZquq/2pBs3CS0JhQBbWGTuUikoaz3PRrAQ/NAoaLSKvIw627o8VlPJmd49u+dWw/mjYJeQbRGGPqpGXTJscMuXh0wQaKy8o9jMgR74QzCFjjv0NVt+CcKhtUx7r7Ak0C6we+xXmdniyj+cKyXPYfLQGcwVmTzuwRuoAxxkTBtedk0i7DGXax/VAhr32y1eOI4p9w2gDBVgk66D5W17oJUv/BgMfj5nBRKTMWbfRt335uP9JSrHVjjIm9jLQUfuo3bdajCzZQVOptK8eLK9fBTo1JNfujUb+EeF5E5CbgJoBOnTqRnZ1dqyfNz88/ruxbG0rIKywFoEMzoX1+DtnZG4OUjp1gcSUCiysyFldkLC5Hz3KldZpwqFjZc6SY+19ZwHmZxw/HiFdc8U44B4HWQfa3InjLJ9K6CVJ/5XbQ+lV1JjATYOjQoZqVlVWrJ8/Ozsa/7KGCEm5fuNC3/YvvncL4M7oHKRlbgXElCosrMhZXZCyuKrvSc/nN298AMGcr/OoHI4/rJRuvuOJ9Sm0NAddqRKQHkMHx114ilQOUBtbvblcAcV2ZaObijRwpLgOgb4cMLjqtWw0ljDEm+iad2YOurZzlT/YfLeGFZbmexRLvhPM+cJ6ItPDbNwkoBBbVpWJVLcYZf3N5wEOTgGWqmleX+iOxL7+Y55fm+ranTBjgWyDJGGPiKS0lmTvGVS1fP2PRRg4XlXoSS7wTzlNAMfCGiIx3r5/cB0zz7yotIhtE5Bn/giJygYhcBpzmbl/m3vwHtfwOyBKRh0QkS0T+AlyIM8A0bp7KzqGgxLk4N6hzCy48qUs8n94YY47xP0O607NtOgB5haU8+9EmT+KIa8JR1YPAOCAZeAdn0Od04LcBh6a4x/h7EngduN7dft29jfWr/yPgMmA8MBv4PnCVqs6J6gsJYffhIl5avtm3PWXCAJKsdWOM8VCT5CTu9GvlPPPhJg4VlMQ9jrj3UlPV1cC5NRyTGc6+asq+BbxVm9ii4fGFGyguc6aROLlbKyYO7uRVKMYY43Px6d14InsDOXuPcqS4jJmLN/Lz8+s6/DEyNlt0FG0/VMisFVWDq6ZOHICItW6MMd5LThLuGl81/v35pbnszy+OawyWcKLosQXrKXEnyRvSqw1ZAzp4HJExxlT5zsldGNTZ6bNVUFLOU4tyaigRXZZwomRPQQWvrayaIO/uCda6McYklqQkYcqEqlbOi8s2s/twUfyeP27P1MC9vaHUt9DRsD5tOadfe48jMsaY400c3ImTuzlzGReXVfDEwg01lIgeSzh1cLS4jGlz13Lq/XNYsqPMt/+Wsf08jMoYY6onIkydWNXKeWHZZq794ChnPDCHaXPXcrS4LETpurGEU0tHi8u45IklzFi00TdfGkCSwO//uzqmvzRjjKmLM3u1oWmTYz/+DxQ4kw1f8sSSmH1+WcKppRmLc9i8v8DXBbpShToLHs1YHN+LccYYE66ZH270XQLwV1xWEdPPL0s4tfTyss3HJZtKxWUVvLx8S5wjMsaY8Ly8bDOl5cEn6I/l55clnFo6WBB6LqKDHoziNcaYcHj1+WUJp5bapB+/psSxj6fGKRJjjImMV59flnBq6erhvUhLCf72paUkcVjREjcAAAuZSURBVPWwnnGOyBhjwuPV55clnFqaPLovvdqlH/dLS0tJole7dCaP7ltNSWOM8ZZXn1+WcGopIy2FN28ZweQxfWibkYoAbTNSmTymD2/eMuK4FfWMMSZRePX5ZZ+KdZCRlsLUCQOZOmFgwi5pa4wxwXjx+WUtHGOMMXFhCccYY0xcWMIxxhgTF5ZwjDHGxIWoBp/eoDESkb3A5loWbw/si2I40WJxRcbiiozFFZmGGFcvVQ1rtUlLOFEiIitVdajXcQSyuCJjcUXG4opMY4/LTqkZY4yJC0s4xhhj4sISTvTM9DqAalhckbG4ImNxRaZRx2XXcIwxxsSFtXCMMcbEhSUcY4wxcWEJJ0Ii0lJE7heRFSKSJyK7RORNERkQZvnBIjJfRApEZIeIPCAiyVGKbZKIvCEiO0VEReTaMMvd5x4feDvfy7jcsiNE5GMRKRSRTSJyRzRi8qv/RhFZLyJFIrJKRMaFUSZq71dt/x5EpJWIPCciB92/w1dEpF2kzx/NuEQks5r3ZVYU4+onIjNE5AsRKReR7DDLxfr9ijiuWL9fInK5iPxHRLaLSL779/2DMMqliciDIrJHRI6KyLsikhmNmGy26Mj1BG4EngF+CaQDvwA+FpFTVHVrdQVFpA0wD1gNXAT0BR7ESfy/ikJslwGZwH+BGyIsmwcEfmB+G4WYoJZxiUg/YLZb7hfAWcA0ESlQ1afrGpSIXAk8BdwHfARcB/xXRM5U1a9rKF7n96uOfw+vAgNx3s8K4M/AW8CoSGKIQVwAPwOW+G1Hc6DjicCFwHIgkmUpY/Z+1TEuiN37NRXYBExx67wQ+IeItFfVR0OUewTnf3YKsBfn/2OuiJysqkV1ikhV7RbBDcgAmgXsawvkA7+toewvgINAS799PwcK/PfVIbYk9745oMC1YZa7D9gXw/estnHNANYBKX77ngC24nZ4qWNca4Fn/eMEvgJejsf7Vdu/B2C4+z6O9tt3lrtvvIdxZboxfDfWf0vuz/8CssMoE9P3qw5xxfT9AtoH2fcPYFOIMt2BMuAav33dgBLghrrGZKfUIqSqR1W1MGDfAZwpcTrWUPwCYLaqHvbbNwtoBoyJQmwVda0jFuoQ1wXAG6pa5rdvFs4/xUl1iUlE+gADgNcq97lxvu4+bzzU9u/hAmC3qi6u3KGqK3C+zUYj9pj+ndZFLf+WYv1+JeT/nqoGayl9RujPqYnu/Rt+9WzHOQNQ5/fKEk4UiEgHoB/OKYhQBgFr/Heo6hacb46DYhNd2FqLyD4RKRWRz0TkUi+DEZEM4P+3d+6xdlRVHP5+gpY2FlpCwkNvKIqgaKIxkpQGw60ihljBWrAKaHxg1YQYY1QSNVpa/ENIUeMDFIHGGCwoj8ZoGxpsaRtaDRAwaaixVIWSWsWWEBuo2iz/2PvAOHfOa86cuUR+XzKZO/vuvWaddfaZNfu5JijZixe6rUa1V6d8lfxj83faiybsVbc+TCmXebRPuXHr1eGWPI6xV9J1kmY2oNMojNteo9KmvRbQ+zn1emBPRPyzlN6IrTyG0wyrSF1q/Qb75gJPV6QfyP+bLnaRukweJnV7fQq4Q9KSiLizZ8nxMSefy/Y6kM+j2qtTvpf8v3cp25S96taHXuVeM8T9m9brEPB94B7gGWASuJI0BnRhA3rVZdz2qkur9soTYi4EPt4j21ifUXY4pBkswIn98kXElLckSZ8BLgOWRMQ/Brhd1UpbVaWPotcwRMRPS/f9JXA/8DUKTeu29eqIGTS9pl5lOepz36Ht1U+dirTK+tBQuUEZWn5E7AWuKCRtkrQP+IGkt0TEww3pVodx22to2rRXnmV2K7A2Ilb3U61KRJf0obDDSVwM3DhAPv3PhXQB8F3gyoi4a4DyB3jhzb3IMVS/VdTSa1QiIiTdCXxT0hERcXga9OrYo2yvbi0TGE6vTktmDmnGGYXrbvIrGcBe3Ri2PhTLVXX5zelTblDq6lXFL0gTPd5KahFOB+O2V5M0bi9JxwLrgMdJL8e96PbdN2Irj+EAEfHjiFC/o1hG0gJSF9oNEXHtgLfaSakfVNIEaebblNZAHb0apvKNpg29IuIgaTZaud+429jLsHrtLMkryt8fEd2603qqPWT+oepDr3KZbmMVw1JXryqidJ4Oxm2vJmnUXpJmkZYVvAJ4T/5d9WInMJHHUIs0Yis7nBpIeiPpS1wPDLMQcR3wbkmzC2lLgWeB+5rTcDQkCVgMPDLE2/o4WAcsLi04XEpyRP3WyfQkInaTplxf3EmT9LJ8vW4YWSPYq259WAecIOnsgg5vI41HDKV7w3pVcVE+P9iAXnUZt72apDF7STqSNOvydcD5EfG3AYrdk8+LC3JOIq1XGt1Wo86rfqkdpCmFT5Cap5PA/MJxRiHfyUydzz4X2AtsAM4FlpEmG1zdkG5nkCrsZaQ3pO/l63MKec7JehXT7iM5zvNyRfs1aXHcBdOs16nZPrcCC0kD9f+mgfUAWf6HgMOkxYwLgdWkh+qb2rDXoPWBNEnhplLaemA38H7gfaQ1RVsaskstvUjrk1Zlnc4FVmR73tGEXvkes3LduQjYBuwoXM+aDnvV1Wvc9iLtAB25rs4vHTNynnuBe0vlfkhaKPph0uLm7cAfgaNG1qkpg79UDpKTiS7HpkK+eVQsciQ9fH+TK9ZeYCVwREO6LR9Ar47+k4W0m/KP8VngILCF9EbUlM1q6ZXTzwZ+BzwH/Bn4bMPf5yfzg+AQ8BDwzi7f91jsNUh9yJ97dSltDnALqV/9GZJTnrLQbwS7DK0X8EHgAdKY2L+yXVeQH24N6dX5XVUd86bRXkPrNW575fv102kTpUWqwAzgOtIszYOkF6pTmtDJ4QmMMca0gsdwjDHGtIIdjjHGmFawwzHGGNMKdjjGGGNawQ7HGGNMK9jhGGOMaQU7HGNqIGmyS3jg4vHRFvRYLemBcd/HmCbw5p3G1OMhUiTJKm4gbTG/pT11jHnxY4djTA0iRcPcXk6XtAx4M/CxiHisdcWMeRHjLjVjGkLS6cC3gNuiR8wRSVdJ+mveLLSYvih3xZ2arz8iaauk/ZIOSNqYN53spcNySVNCC2e5V5TSLpe0Q9IhSX+R9KUhPq4xQ2OHY0wDSHo5aX+up4BP98m+BjietDFokQ8AD0bErnw9D/gJaQfrS4A9wGZJI0eplPRF4HrgbmBR/ntl2SkZ0yTuUjOmGa4mdaVNRkTPQFUR8aik35O2/N8IIGkGKfzvykK+FZ2/c2toA3AmadftFdRE0tHA10m7P1+Vkzfk2ClflXR9TG9YCvN/ils4xoyIpIXAF4BvRMTWAYvdBizJMUsAzgdmA7cX5L5B0l057PBhUmiG04HTRlT5LFIwtZ9LOrJzkHaHPh549YjyjanEDseYEZA0l9Tt9VsKrZMBWAMcB7wjXy8FtkXE41nubFIwrAng86QAWGcCjwBHjaj2cfm8g+TEOsfGnD4xonxjKnGXmjGj8SPgaODSiPjPoIUiYndeP7NU0lbgvcCXC1nOIrU03hURz4f2lXRMH9HPkcIJP092ikX25/MiYF+FjD/0/wTGDI8djjE1kfQJciTTiPhTDRFrgK+QurJmksIBd5iZz4cK91tAmkjQK/zwHmC2pFdFxJM57bxSnm2kwGonRcSvauhtTC3scIypgaTXAt8mrcV5TNL8imx7ImJPDzG3A9fmY3NE7C38bzsprPONkq4htXaWA0+WhZRYT3ImN0taBZxCadZcRDwtaTnwHUknA5tJ3eunAQsjYjHGjAGP4RhTj7cDryTFh9/W5bi8l4CIeAK4HziR1Nop/m8faTr0CcBa4HMkx7GLHkTEU8ASkoO6mzSj7ZKKfNcAy0iTFdYCPwMuxbsjmDHiENPGGGNawS0cY4wxrWCHY4wxphXscIwxxrSCHY4xxphWsMMxxhjTCnY4xhhjWsEOxxhjTCvY4RhjjGmF/wIUWjkwfA87egAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYHFW9//H3h30PASTsRPAqBONGQJBtWBRBvSjiDQhegyjivYhCFAERAvJTgxdQwQVECXJVQFkUEwyLTDCyCQIXDAGChF0WSYCQBQLf3x/nNHQq3T01M901YfJ5PU8/PX2qzqlTPdX97Trn1ClFBGZmZp22zEBXwMzMlg4OOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAeQORNFxSSJpQSJ+Q04f3o+yuXMa4XuQZl/N09XW7fSVppqSZVW+3LEnLSzpJ0v2SFuT36aMVbj8kdVe1vU5rxzFeYhu9Pp4ldUuKQlrDz1KjdUuUPyaXNaY3+ZZUDjhtkg8KX9S0hMoBKuoeL0v6l6S7JF0g6ROSVmjjJscCJwCPA/8DnARMb2P5vdbXHwh1P3TqHwslPSlpoqS9OlTlQa8vP/TeyJYb6ApYWxwLfAd4rB9l3AJsCTzTlhotub4PzCb92FoDeBvwMeAg4H5Jn4qIm9uwnQ8Dc4D3R8RLbShvSfAc8L3890rAO4G9gb0lfSkifjBgNRs4/wms0oF1ay4DbgKe6GW+JZIDziAQEU/QzwMyIuYywL/AK/K9iJhZnyBpCPBN4IvAZEnbRUR/34sNgH8NomADMDsixtUnSDoY+DnwLUnn5uNoqRERD3di3bo8z5EC/aDgJrUOqu9zyX9fKOkZSfMl3Srpw03yrS7pdEmP5nWnSzqKJv+vYvu2pO3z60tb1O2e3LewVn7d9NRe0taS/ijpBUnPS7pG0vY97XOT5Y3avFeQdLikSZIeyvV6Nm+n4801EfFcRBwB/AIYQjpbLNZ7FUnHSrpD0ouS5ki6UdIBhfUm5P17M7BpXRPUzLp1xki6RNI/JM3L7+lfJB3UqH6t+qvKNpPl/Cfml9fVN4+1ylfCBOBFYFVgq7yt144lSdvmZrdnVeiDycfVJZKeyv/zhyT9SNL6Lba3jKSj8mdifv6MnCFpjQb7vKukcyRNy+/xPEl3SzpR0kqtdkrSpyXdnvM8JennktZrsF7pfpniuvkzcl1+eaIWbbLsyus07cORtJGks/JxtECpifj3krZpsO7qkr6R9//5/Fl+QNJFkrYuU/928BlONTYlNVn9A7gAWAsYDfxO0h4RUTvokLQicC2wDXAn8EtgTeAbwC5lNhYRN0q6F/iwpLUj4l/1yyVtC2wBXBIRz7YqS9L7gGuAFYBLgRnAu4Bu4E9l6lPCWqSmrhuAq4GngfWBjwCTJH0uIs5t07ZaOYnU7PFhSWtExPMAktYk7eu7gb+RftEvA+wJ/ErSVhFxfC7jcmAm8OX8utYENbtuOz8GpgHXk85M1yY1TV0g6W0R8Y0O7Nv3gI+SjqHzcx3brfjFuz2puXcq6T1bB3gJQOnH1iWAgN8CDwFbA18A9pG0Q/FMNDsD2Bm4GPgd6X/wZWAnSTtGxPy6db9GOs5vACaSmgF3AMYBXfmz90qDbRwJfAC4CPgjsCNwcM7z3oh4uuT70ZPL8/OngSmkz1TNzFYZJb0HuIr02ZlM+myuQ/ofT5X0sYiYlNdV3o/3ATcC5wILgY2BLuDPwG1t2J+eRYQfbXiQPmxRSBteSwdOLCzbM6dPKqQfl9MvAZapS38z8GxeNqGQZ0JOH16XdmxOO7xBXX+Yl32kLq0rp42rSxOpmS2AfQplfKlu37oa7POE4nbz8u4G79OKwEYN1h0C3J33e+XCspnAzF78f2YW36Mm6z2S19u1wft7dGHdlUgf5FeBd5WtH7B5g7QVSD80XgY27EVZ44r/g7rjsbvMuiXeu9r/dLE6AJ/Jy+bU/kd1x1IAn2+QZzVSX+ErwE6FZV/L+a5qcow/A2xal74M6bMSwDcKeTYD1GD738zrj27y/rwEvLuw7Iy87Gcljufa/o/r67p1y8fk5WPq0pYj/fCbD+xSWH8DUl/uE8CKOW1kLuOyBuUvAwztzfHQn4eb1KrxEHBKfUJETAYeBrYtrHsw6Qvs6Ih4tW79B4HedMpekMv5dH2i0kis/YGngCt7KON9pE716yPid4VlZwEP9KI+TUXEgoh4tEH6c6RfxkNJZ3xVqA28eBOApLVJAwpujYhTC/WbT/qCFPDJshuIiMXet0h9PT8kfZns3qead96auZlsnKTvSJoE/CwvOy4i5hXWvyMizm5Qzj6ks7qLIuLPhWWnkQLs+yVt0iDv9yPiodqL/Bn5KulY/0z9ihHxj8jfqgW1s849GywDuCAibi+kjSP1pXwyt0IMpA8BmwNnRsSU+gUR8ThwKrAeix9Hxf8PEfFqRMzqVEWL3KRWjTui8an7I6RmByC1swJvAR5p9KVE+oV0YoP0xUTEo5KuJX1wR0TEtLzoI6TT8DMiYmEPxbwnP08pLoiIVyRNJR34/SZpK9IXx86k5rRiG/uG7dhOmark59oX1TbAskCzoavL5+ctS28gfZF+jfSFsAmwcmGVqva1t4bw+vH3CunM80rgrMjNNwW3NCmndlwt1iQbEQslXU86q3o36UdZvUbH4j8kPQIMl7RmRMwGkLQq6Uz8Y8BbgdV5/f8Lzd/nRtt4TtIdpCbJLYE7muStQu07Y9Mmx+S/5ectgUmk5ts7gAMkbUpqipxK+hFV6aAWB5xqzG6SvpBFBwIMyc9PNln/n73c7gTg/aSznK/ltNoZz/kl8re7Pg1J2o705bMcqVnp98Dz5KYq0i/iqn5VbpCfa+30a+fnbWh9lrVamcIlbUb6Ih5Kaju/ivTL+RXSl+ynqW5fe+uhiBjei/WbHR+146rZyMpa+poNlrU6FjfNZc+WtDzpmNqW1Cx7Eel/+nJe/0Sav889He9DmiyvSu2Y/EQP660Gr/043I10Xdh+wPi8/AVJ5wPHRsScjtS0wAFnyVIb/jisyfLFRsn04DLSF/dBko4jndnsBdwZEXd2qD61ZsBmx1ajL5HjSb/yd42I7voFko4lBZyOk/QWYCPSD4FaJ2rtPTgjIo5qw2aOIn1hHBwREwrbP4BCE2j2KqmPp5FG7+eSotnordp72ux4Xr+wXr1hwL0N0mtl1fLsQwo250fEmPoV8yi4Vi0FPR3vAz1M+bV9jIjfl8mQm82OBI7Mx/kuwOeBw0nH0Kc6UdEi9+EsQSLiBVJn4IaSGjVVdfWyvHmk0TwbAHsAB5ICQZmzG0gjsqDB6DhJy5JG7xTV2oM3bpBnDVLTRtFbgGeLwabZtjvohPx8Rf5fQDobeRXYqU3beEt+vqTBsmb7OgsYln+1F43qxbZrzbrL9iJPJ9T6R7qKCyQtx+vH1d+Ky2l8LG5GOt5m1prT6Nv73GobQ0hn2/OBe3rI3xt9+Z/clJ/7dExGxIyI+BlpP+dQ0Q86cMBZEp1H+r+Ml/Ta/0fSm4Ej+lDehPz8n/mxkDTUuowbSL8md5ZUPCgPp0H/Tf6ing7sIGlELT0HqNNZvL8CUifxWpLeUZ8o6RCad+y2jaQ1JP2A9CtvNnBMbVlEPEV6v0bl6xgWO3OTtHn+/5QxMz93FcrYE/hskzy3kH4oHFzIM4Y0zLes2vD4Rp3xVbqc1P9zQG5Orfdl0uiya6LxhZJfyv0QAOTPyHdJn5nz6tabmZ+76jPn4DSe1j4l6d2FtHGkprRfR8SCHvL3Rl/+J78jDdj5b0l7N1pB6Vq8VfLfb859pEVDSc2Kiw0m6BQ3qS15TiONpf848DdJk0kH+mjSdRv/3pvCIuIvkmaQ2nuXJ/16f6pk3shf+lcDlyhdSDqDNKXJHqQhwR9skPW7pNFLf5H0G9Kvwl3z9u/M+et9jxRYpkq6mNRkMIr0S/e3pHbndvmypNmkzuPa1DY7ky5cvA84KCLuK+Q5nNQRezLpy2gqqZ1/A1LH7DbAAcCDJbb/I1Lg+I2kS0ij4t5Oeh8vJv2fi87MeX4saXfSYJN3kkYR/oE0jU4Z15HO1r4t6e3ks9GIOKVlrjaLiDmSPgP8BpiSj5GHSdfhfIDUV/L5Jtn/Atwh6SLScbIn6b24jTQ6q+YK0rF6lKSRpLOqTUjv1URaf8FfSTp2Lyb1J+2YHzOp+zHSJveSjoH9Jb1Eeh+CNFLuoUYZIuJlSfuSrr+ZKOkG0qCAuaQzvW1IQXv9nPZO4DJJt5H6sx4njcLch/SZ7CkAt09V468H+4PW1+FMaJKnu5gnp69BOht4jPRlPZ00GeRmjcqjwXU4heXH1+oHfLzJOl00uR6A9EXwR+CF/LiGNFJmHE2u6wAOAf4OLCB9gZxN6rtots8fJjUVvEA6y7iKFAjGULgOIa8/k75dh1N7vEz6lX0XaQj5fsAKLfKvQAo8N5C+6BaQvhyuJf0qX7ts/UiB4k+kL/wXSCOGPtrD/2BH0g+OuaR+uYnAO5r9D2hwHU5OP4j05TSv0THbpL6147jU+91qPwrrbUPqZ3yadO3Lw6SLYjdosG7tGN+M9FmYTvpsPEb6wbJGgzwbk85OH8v7+3fgaNIP7ZbXKeXjrvY+PU06e1q/zGe42f43Wrfufbg2H1ev1v8/aXL852XrkmbFuDsfF3OA+0k/0g4ClsvrbQR8ixSs/0k6dh8lBda9yn6G2vFQrpCZmVlHuQ/HzMwq4YBjZmaVcMAxM7NKOOCYmVklPCy6zjrrrBPDhw8f6Gq84b344ousuuqqA10Ns5Z8nLbHbbfd9kxEvKnMug44dYYPH86tt9460NV4w+vu7qarq2ugq2HWko/T9pDU8HqhRtykZmZmlXDAMTOzSlQecCSNkHStpLmSHpd0cp5nq1WebSSdJ2lGznevGtyXXK/f3734aDT9ipmZVajSPhxJQ0nTokwjzeOzOWnusGVI0680MzqvO540dcM7SLeJfQdpzrF6z7H4/F7tnN3VzMz6oOpBA4eRZgveNyKeB67OU9aPk3RqTmtkfEQ8Xfe6W9J84GxJm8aik9wtjIibMDOzJUrVTWp7AZMLgeVCUhBqeo+KQrCpqd1TY932Vc/MzDql6oCzBWmW19dEuufF3LysN95Hmlm1ePe/NSU9I+llSbfnabzNzGyAVd2kNpQ09XzRrLysFEnrAV8n3TOi/mxpBmn68TtI9/P+POk+Lh+PiEublHUocCjAsGHD6O7uLlsNa2LOnDl+H22J5+O0epXenkDSy8BXIuL7hfTHSPd4+XqJMlYgDTzYCNg60r26m60r0v1LVo6Id/VU9qhRo8IXfvafL6izNwIfp+0h6baIKHWr86rPcGYBazZIH0LjM59F5ADyC2ArYIdWwQZeu2PlpaTbNS8bEa+0Wt9sMBt+zMSBrsISZezIhYzxewLAzO98qJLtVB1wplPoq5G0Men2vtMb5ljUGaTh1O+PiDLr1/guc2ZmA6zqQQNXAntKWr0ubTTpNq5TWmWUdCzwRdI956eW2Vg+I/oYcKfPbszMBlbVZzg/AY4ALpU0nnR/8nHA6fWd/5JmAFMi4pD8+pOke3JPAB6TtF1dmQ/Uhk1LmgJcQjpbWhX4HLAd6X7xZmY2gCoNOBExS9LuwFnAFaR+mzNIQadYr/rpbj6Qn8fkR72DSYEI0ii1LwPrk4ZM/w34UERc2Y76m5lZ31V+e4KImAbs1sM6wwuvx7B4oGmU75B+VM3MzDrIs0WbmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaYSkayXNlfS4pJMlLdtDnm0knSdpRs53r6QTJa3UYN0dJN0saZ6kByUd0bm9MTOzsparcmOShgLXANOAfYDNgdNIge/4FllH53XHA/cD7wC+mZ8/Xlf+W4DJwB+AY4FtgdMlzY2Ic9u9P2ZmVl6lAQc4DFgZ2DcingeulrQGME7SqTmtkfER8XTd625J84GzJW0aEQ/l9K8CjwMHRcRC4E+SNgFOlPSziIjO7JaZmfWk6ia1vYDJhcByISkI7dIsUyHY1Nyen9ctlH9pDjb15W8EvL1PNTYzs7aoOuBsAUyvT4iIh4G5eVlvvA94FbgXQNKqwMbF8oF76rZtZmYDpOomtaHA7Abps/KyUiStB3wduKDubGnN/Fwsf1bdthuVdShwKMCwYcPo7u4uWw1rYs6cOX4fl0BjRy7seaWlyLCV/Z7UVPV5rTrgADTqR1GT9MVXlFYALgbmAEeWLL9pekScA5wDMGrUqOjq6ipTDWuhu7sbv49LnjHHTBzoKixRxo5cyGl3DcRX4JJn5oFdlWyn6nd7Fq+fidQbQuMzn0VIEvALYCtgh4iYVbe4lr9Y/tDCcjMzGwBVB5zpFPpSJG0MrMrifS+NnEEaTv3+iCj2Bb0o6ZFi+XWvy5RvZmYdUvWggSuBPSWtXpc2GpgHTGmVUdKxwBdJQ56ntij/Y4ULSUcDjwB397nWZmbWb6XPcCSNJF1IuR6wEvAscB9wQ6Fpq5WfAEcAl0oaD2wGjANOrx8qLWkGMCUiDsmvPwl8C5gAPCZpu7oyH6gbNv1d4EDgAkk/BbYBPg98wdfgmJkNrJYBR9JmwBdIX+LDSMOQZwMLSH0lqwCvSpoCnAtcFBGvNisvImZJ2h04C7gil3UGKegU61V/lvKB/DwmP+odTApERMQMSR8ETied7fwTGOtZBszMBl7TgCPpXFKgmQqcDNwA/D0iXqlbZx3SWcSewKmkGQMOadHkRURMA3ZrVamIGF54PYbFA02zvFNJZ2JmZrYEaXWGMx/Yom7amMVExDOkM4krJR0FfALYsL1VNDOzwaBpwImIw3tTUG5Ku6jfNTIzs0Gpz6PUJK0mabV2VsbMzAavXgccSVtK+ivwPPCcpFsljWh/1czMbDDpyxnOucBvgNWBDUiTZ05oY53MzGwQahpwJJ2R71VTtAVwZkS8GBFPAucDb+1UBc3MbHBodYYzBLhf0mF5DrOaa0kXVu4taT/g2znNzMysqaYBJyI+A+wNfBK4U9KuedHngIeBU4DjgOuBQzpcTzMze4NrOdNARNwG7Cxpf+A8SbcDR0XEUZXUzszMBo1SgwYi4kJS380dwG2Svp3vsGlmZlZKy4Aj6W2SviDpS8B7IuIk4B2kWznfJ2lMBXU0M7NBoNUotc8CdwIfAXYCJkn6UUQ8GhEHAfsBX8jX4exQTXXNzOyNqtUZzonAf0fE3hGxH7AL8HlJ6wFExI0R8V7gTODCzlfVzMzeyFoFHJFuR1Dzak6rHyJNRJzP4nfZNDMzW0SrUWqnAD+StC/pjpx7AD+LiCeKK0bEix2qn5mZDRKtZov+Sb6x2m7ACsBZEXF9ZTUzM7NBpafrcO4B7qmoLmZmNoi1GqW2U28LkzRE0sj+VcnMzAajVoMGLpb0F0mfkTS0VSGSdpB0JvAQsH1ba2hmZoNCqya1zYAjSMOjz5Z0H3A38AywAFgTeDPwbmBlYBKwR0Tc2tEam5nZG1KrQQPzgPGSTgV2Jw0e2Jo0BHol4FnSvXB+BfwuIp7qfHXNzOyNquWgAYCICOCa/DAzM+uTvtzx08zMrNcccMzMrBIOOGZmVgkHHDMzq4QDjpmZVaJUwJH0P5JGdLoyZmY2eJU9w/k4cJekWyQdJmlIXzcoaYSkayXNlfS4pJMlLdtDnhUkfVfSnyXNkxRN1psgKRo8fPsEM7MBVirgRMSbSbcnmA58F3hC0q8k7dGbjeUpcq4BAtgHOBkYC5zUQ9ZVgM8Cc4Ebelh3Oml6nfrHzN7U08zM2q/HCz9rIuI64DpJqwGjgU8DkyU9CkwAzo+If/RQzGGkaXD2jYjngaslrQGMk3RqTmu07dmS1oqIkHQ4adaDZl6MiJvK7peZmVWj14MGImJORPyMNMfaX4CNgWOB+yT9TtKmLbLvBUwuBJYLSUFolx6227AZzczM3hh6FXAkDZd0oqR/AFcBc4BPAKsD/w4MJwWQZrYgNXm9JiIeJjWVtaufZYSk5yUtkDRVUstAZmZm1SjVpCbpU8DBwM7Aw8B5wHkR8WjdapMkvUjrOdeGArMbpM/Ky/rrduBmYBrwJlL/0NWSdoyIWxplkHQocCjAsGHD6O7ubkM1lm5z5szx+7gEGjty4UBXYYkybGW/JzVVfV7L9uGcA1wG7BkR17ZY7z7glB7KatQ0pibpvRIR31+kUGkiKfgcB3y0SZ5zSPvHqFGjoqurq7/VWOp1d3fj93HJM+aYiQNdhSXK2JELOe2u0t3Yg9rMA7sq2U7Zd3uDiJjV00oR8QStR5zNIt1Hp2gIjc98+iUi5kmaBHyk3WWbmVnvlO3DuU3SOxstkPT23KdTxnQKfTWSNgZWpdC302YecGBmNsDKBpzhwIpNlq0CbFSynCuBPSWtXpc2GpgHTClZRmmSViaNjLut3WWbmVnvNG1Sy9fH1Dd/rSdpk8JqKwH7A4+V3N5PSLetvlTSeNJtrMcBp9cPlZY0A5gSEYfUpe1FOhN6V369X17014h4KM9+8Afgf4EZwDrAkcCGwH+UrF+fDXf7+GvGjlzo/oI6M7/zoYGugtkSoVUfzpGka20iPy5rsp5Io8F6FBGzJO0OnAVcQeq3OYMUdIr1Kk5382Og/hqf3+Tng0kXni4AngaOB9YF5gM3ArtExK1l6mdmZp3TKuD8CriVFFB+D3wFuLewzkvAvflamlIiYhqtZwogIoaXSSssnw/sW7YeZmZWraYBJyLuB+4HkLQr8LeIeKGqipmZ2eBSalh0RLS9Q9/MzJYurQYNPEW60PN2SU/Tw9DiiFi33ZUzM7PBo9UZzg+BJ+v+9rUsZmbWZ636cE6q+3tcJbUxM7NBq9e3JzAzM+uLVn04F/emoIjo+MWVZmb2xtWqD+dNldXCzMwGvVZ9OLtWWREzMxvc3IdjZmaVaNWH81/AbyLi6fx3SxHxo7bWzMzMBpVWfThnkeZSezr/3UoADjhmZtZUqz6cZRr9bWZm1hcOJGZmVolSk3cCSFoBGANsC6wPPAHcDJwfES91pHZmZjZolDrDkbQl6VYFPwTeDrySn38IzJA0omM1NDOzQaHsGc45wHPATvU3W8u3nJ5IunX0zu2vnpmZDRZl+3BGAScU7+yZX58AbNPuipmZ2eBSNuDMBFZqsmwloPQtps3MbOlUNuAcA5wi6b31iZK2A04GvtbuipmZ2eDSaqaBv7LoTdfWAG7IdwJ9Clg3P/4FHAdc3sF6mpnZG1yrQQN/Z9GA8/cO18XMzAaxVjMNjKmwHmZmNsh5pgEzM6tEb2YaGA4cBLyVBiPWfMdPMzNrpVTAkbQ1MAV4hBRw/g8YAgwHHgVmdKh+ZmY2SJRtUvsucAlpOhsBh0TEZsCOpIEFp3amemZmNliUDTjvAn4FvJpfrwQQETcAJwHfaX/VzMxsMCkbcAJ4KSKCdA3OpnXLHgH+rd0VMzOzwaVswJkGbJ7/vhE4UtK/SdoUOBp4oOwGJY2QdK2kuZIel3SypGV7yLOCpO9K+rOkeZKixbr7SLpL0nxJ0ySNLls3MzPrnLIB5xxgvfz3caT74UwH/gG8F/hKmUIkDQWuIZ0x7UOaFmcsqVmulVWAzwJzgRtalL8jqa/pOmAv0kzWv5b0gTL1MzOzzik1Si0iLqj7+558f5z3kfpyboqIp0pu7zBgZWDfiHgeuFrSGsA4SafmtEbbny1prYgISYcDuzUp/xvA9RFxRH59naStSDNaX1WyjmZm1gF9uvAzIuZExFUR8fteBBtIZx2TC4HlQlIQ2qWHbTZtRgOQtCKwK3BxYdGFwPaShvSinmZm1malA46kdSV9S9I1kv6en/+fpGG92N4WpKa41+R76szNy/pjc2D5YvnAPaT9fGs/yzczs34oe+HnDsAkYCFwNWkQwbqkJrIvStorIv5SoqihwOwG6bPysv6o5S+WP6uwfBGSDgUOBRg2bBjd3d192vjYkQv7lG8wGray3496fT2m2s3/k0X5OH1dVcdo2altzgJuAz4SES/WEiWtBvwBOBN4T8myGjWNqUl6XxTLUYvtEhHnkAZFMGrUqOjq6urTRsccM7FP+QajsSMXctpdpWdNGvRmHtg10FUAfIwW+Th9XVXHaNkmtS2A0+qDDaS+HOB/gC1LljMLWLNB+hAan/n0Ru1Mplh+7XV/yzczs37ozXU46zVZVhsiXcZ0Cn01kjYGVu1FGc08ALxcLD+/fhW4r5/lm5lZP5QNOF8EjpM0Oo8GQ9KKkvYn3X768JLlXAnsKWn1urTRwDzS5KB9FhELSNfffKKwaDRwY0Q815/yzcysf1rdYvppFu33WJU0nxqS5gCr5fT5wGWkQQQ9+QlwBHCppPHAZsA44PT6odKSZgBTIuKQurS9ch3elV/vlxf9NSIeyn9/E+iW9D3SLa/3zo8PlqibmZl1UKsesx/Svo58ACJilqTdSYMQriD1q5xBCjrFehWnu/kxi87h9pv8fDAwIZc/NQeiU4AvAA8Cn4wIX/RpZjbAWt1ielwnNhgR02g+U0BtneFl0prkvZx0dmNmZkuQXo0JlLQCMBJYC3gWuCsiXupExczMbHDpzUwDRwNPArcAk4G/Ak9K+mqH6mZmZoNI2ZkGvgx8m9TpfxEp8AwjjQD7tqQFEfGDjtXSzMze8Mo2qf038J2I+Hpd2r3A9ZJmk0aeOeCYmVlTZZvUNiZd49JIN7BRW2pjZmaDVtmA8zDQ7CZm78/LzczMmirbpPYD4AeS1gJ+S+rDWZd0Vf8YUpOamZlZU2Xv+HmWpAXAicBnSBeECngcOCwizu1cFc3MbDAofR1ORPxU0rmk/pr1gSeAR3u6E6eZmRmU6MORtJKk+yR9MJJHIuKW/OxgY2ZmpfQYcCJiPukk5YaKAAALG0lEQVSeMq92vjpmZjZYlR2l9kvSJJlmZmZ9UrYP52HgPyTdCkwijVKrb06LiPhxuytnZmaDR9mAc1p+Xh94T4PlQbp9gJmZWUNlh0WXnuTTzMysEQcSMzOrROnrcPK9cMYA2/L6dTg3A+f7njhmZtaTUmc4krYE7ifddvrtwCv5+YfADEkjOlZDMzMbFMqe4ZwDPAfsFBGvTdQpaRNgIuk+OTu3v3pmZjZYlO3DGQWcUB9sAPLrE4Bt2l0xMzMbXMoGnJnASk2WrYRvT2BmZj0oG3COAU6R9N76REnbAScDX2t3xczMbHAp24dzPLAGcIOkp4CnSPfDWRf4F3CcpONqK0fEtu2uqJmZvbGVDTh354eZmVmflJ1pwBN3mplZv3imATMzq4QDjpmZVcIBx8zMKuGAY2Zmlag84EgaIelaSXMlPS7pZEnLlsg3RNJ5kmZJek7SLyWtXVhngqRo8Niic3tkZmZllJ4tuh0kDQWuAaYB+wCbk27utgzpWp9WLgLeBnwWeBUYD1wO7FRYbzqL3w57Zn/qbWZm/VdpwAEOA1YG9o2I54GrJa0BjJN0ak5bjKTtgT2BXSLi+pz2GHCzpD0i4pq61V+MiJs6uxtmZtZbVTep7QVMLgSWC0lBaJce8j1ZCzYAEXEL8GBeZmZmS7iqA84WpCav1+QZp+fmZaXzZfc0yDdC0vOSFkiaKqlVIDMzs4pU3aQ2FJjdIH1WXtaXfJvVvb6ddBfSacCbgLGkZrsd8xnRYiQdChwKMGzYMLq7u3vYhcbGjlzYp3yD0bCV/X7U6+sx1W7+nyzKx+nrqjpGqw44ANEgTU3Se5UvIr6/yEJpIin4HAd8tGGhEeeQbjDHqFGjoqurq4dqNDbmmIl9yjcYjR25kNPuGohDa8k088Cuga4C4GO0yMfp66o6RqtuUpsFrNkgfQiNz2B6yrdmq3wRMQ+YBLynF3U0M7MOqDrgTKfQ5yJpY2BVGvfRNM2XNevbKerp7MnMzDqs6oBzJbCnpNXr0kYD84ApPeRbT9KOtQRJo0j9N1c2yyRpZdIottv6U2kzM+u/qgPOT4AFwKWS9sgd9uOA0+uHSkuaIelntdcRcSMwGfiFpH0lfRT4JTC1dg1Onongz5I+L2l3SaOB64ANgW9VtYNmZtZYpT1mETFL0u7AWcAVpP6XM0hBp1iv4nQ3++d1f04KlH8AjqhbvgB4mjRjwbrAfOBG0sWit7Z1R8zMrNcqH6IREdOA3XpYZ3iDtNmkKWsa3gwuIuYD+7ahimZm1gGeLdrMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJIyRdK2mupMclnSxp2RL5hkg6T9IsSc9J+qWktRust4+kuyTNlzRN0ujO7ImZmfVGpQFH0lDgGiCAfYCTgbHASSWyXwR0AZ8FxgDbAJcXyt8RuAS4DtgLmAj8WtIH2rIDZmbWZ8tVvL3DgJWBfSPieeBqSWsA4ySdmtMWI2l7YE9gl4i4Pqc9BtwsaY+IuCav+g3g+og4Ir++TtJWwAnAVZ3bLTMz60nVTWp7AZMLgeVCUhDapYd8T9aCDUBE3AI8mJchaUVgV+DiQt4Lge0lDel/9c3MrK+qDjhbANPrEyLiYWBuXlY6X3ZPXb7NgeUbrHcPaT/f2of6mplZm1TdpDYUmN0gfVZe1pd8m9WtQ4P1ZhWWL0LSocCh+eUcSfe2qIeVcASsAzwz0PVYUmj8QNfAGvFx+rp+HqObll2x6oADacBAkZqk9yVf8bVa5CcizgHO6WHb1guSbo2IUQNdD7NWfJxWr+omtVnAmg3Sh9D4DKanfGvW5ZtVl1Zchx7KNzOzDqs64Eyn0FcjaWNgVRr30TTNl9X37TwAvNxgvS2AV4H7+lBfMzNrk6oDzpXAnpJWr0sbDcwDpvSQb718nQ0AkkaR+m+uBIiIBaTrbz5RyDsauDEinut/9a0kN1HaG4GP04opoqeukzZuLF34OQ24GxhPChinA9+LiOPr1psBTImIQ+rS/kgaafYV0hnLeOCpiNipbp0dgW7gLNJFoXvn9T8YEb4Ox8xsAFV6hhMRs4DdgWWBK0gzDJwBnFhYdbm8Tr39SWdBPwd+AdwGfKxQ/lRgP2APYDLw78AnHWzMzAZepWc4Zma29PJs0dY2fZ2Y1awKkt4i6WxJd0p6RVL3QNdpaTMQ1+HYIFQ3Mes00sSsmwOnkX7UHN8iq1lVtiL1694ErDDAdVkquUnN2kLSscDRwKa1ufIkHQ2MA9ZrNjGrWVUkLRMRr+a/fwusExFdA1urpYub1Kxd+joxq1klasHGBo4DjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461U18nZjWzpYADjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461S18nZjWzpYQv/LR2+QlwBHCppNrErOOA030Nji0JJK1CuvATYENgDUn75deTImLuwNRs6eELP61tJI0gzdS9Panf5lxgXES8MqAVMwMkDQcebLL4zRExs7LKLKUccMzMrBLuwzEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx6zDlDwoKSS9ZQC2v62kcVVv16zIAces87YHhue/9x+A7W8LnDgA2zVbhAOOWecdALwI3Jz/NlsqOeCYdZCkZYFPAL8Hfg6MkPSOuuVrSjpX0uOS5kt6WNJP65ZvJOliSU9JmifpAUnfLGxjR0lTJM2V9C9JP61NoippDHBm/jvyo7vjO27WgCfvNOus3YBhwIXAVNJccwcA/5eXnw68DzgS+CewMbBzXf5fACsDh5Lmp9uMuttASNoBuBa4HNgPWBv4Dukuq/sBE4HTgLGkpj0AT6ZqA8JzqZl1kKSfAx8DhkXES5ImAiOAzSIiJN0NnB0RZzbJPwc4ICKuaLL8z8DCiNi1Lm03UhAaGRF3SzocODMi1N69M+sdN6mZdYikFUnB5rKIeCkn/5o0gGC7/PoO4KuS/kvSWxsUcwfwbUljJG1SKH8V0lnLxZKWqz1IZ1IvA1u3fafM+sEBx6xz9iLddntS7qtZE+gGFvD64IHDSc1hJwD3SrpfUv1IttHArcAZwEOS7pC0e142FFgW+BEpwNQeC4DlSc1zZksMN6mZdYiki4D/aLL4SWDD+nsF5cEER5OC0ciImFa3bBnS8OZxwE7AJsB84IWcNqnBNh6PiMfdpGZLCgccsw6QtBopqPwOOKew+N2kwQLvj4hrCvnWBx4HPh4RlzYod3vgBmDriPibpBuAByPiwBZ1ORQ4G1g5Iub3Y7fM+sUBx6wDJB0I/C+wXUTcXFi2PPAEKRi9DbgMuBsI4HOkprgtSGcvk0kj1e4DViSNNtuSNOhgnqQdSQMELgZ+m/NsAnwI+HpE3CdpZ2AKcAzwJ+D5iLi3c3tv1pgDjlkHSPoD8NaIaDQQAEk/IjWdTQD2IA0keAW4HTghIv6cBx2cRRomvTEwF7gJODYi7qor673ASaTh1csCDwF/BE6KiOckCRgPHASsB1wfEV1t3mWzHjngmJlZJTxKzczMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlV4v8DdUqlmkdTpu0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print('Expected Loss E[L]: %.4f' % expected_loss)\n", + "print('Value at Risk VaR[L]: %.4f' % exact_var)\n", + "print('P[L <= VaR[L]]: %.4f' % cdf[exact_var])\n", + "print('Conditional Value at Risk CVaR[L]: %.4f' % exact_cvar)\n", + "\n", + "# plot loss PDF, expected loss, var, and cvar\n", + "plt.bar(losses, pdf)\n", + "plt.axvline(expected_loss, color='green', linestyle='--', label='E[L]')\n", + "plt.axvline(exact_var, color='orange', linestyle='--', label='VaR(L)')\n", + "plt.axvline(exact_cvar, color='red', linestyle='--', label='CVaR(L)')\n", + "plt.legend(fontsize=15)\n", + "plt.xlabel('Loss L ($)', size=15)\n", + "plt.ylabel('probability (%)', size=15)\n", + "plt.title('Loss Distribution', size=20)\n", + "plt.xticks(size=15)\n", + "plt.yticks(size=15)\n", + "plt.show()\n", + "\n", + "# plot results for Z\n", + "plt.plot(z_values, p_z, 'o-', linewidth=3, markersize=8)\n", + "plt.grid()\n", + "plt.xlabel('Z value', size=15)\n", + "plt.ylabel('probability (%)', size=15)\n", + "plt.title('Z Distribution', size=20)\n", + "plt.xticks(size=15)\n", + "plt.yticks(size=15)\n", + "plt.show()\n", + "\n", + "# plot results for default probabilities\n", + "plt.bar(range(K), p_default)\n", + "plt.xlabel('Asset', size=15)\n", + "plt.ylabel('probability (%)', size=15)\n", + "plt.title('Individual Default Probabilities', size=20)\n", + "plt.xticks(range(K), size=15)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Expected Loss\n", + "\n", + "To estimate the expected loss, we first apply a weighted sum operator to sum up individual losses to total loss:\n", + "\n", + "$$ \\mathcal{S}: |x_1, ..., x_K \\rangle_K |0\\rangle_{n_S} \\mapsto |x_1, ..., x_K \\rangle_K |\\lambda_1x_1 + ... + \\lambda_K x_K\\rangle_{n_S}. $$\n", + "\n", + "The required number of qubits to represent the result is given by\n", + "\n", + "$$ n_s = \\lfloor \\log_2( \\lambda_1 + ... + \\lambda_K ) \\rfloor + 1. $$\n", + "\n", + "Once we have the total loss distribution in a quantum register, we can use the techniques described in [Woerner2019] to map a total loss $L \\in \\{0, ..., 2^{n_s}-1\\}$ to the amplitude of an objective qubit by an operator\n", + "\n", + "$$ | L \\rangle_{n_s}|0\\rangle \\mapsto \n", + "| L \\rangle_{n_s} \\left( \\sqrt{1 - L/(2^{n_s}-1)}|0\\rangle + \\sqrt{L/(2^{n_s}-1)}|1\\rangle \\right), $$\n", + "\n", + "which allows to run amplitude estimation to evaluate the expected loss." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# determine number of qubits required to represent total loss\n", + "n_s = WeightedSumOperator.get_required_sum_qubits(lgd)\n", + "\n", + "# create circuit factory (add Z qubits with weight/loss 0)\n", + "agg = WeightedSumOperator(n_z + K, [0]*n_z + lgd)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# define linear objective function\n", + "breakpoints = [0]\n", + "slopes = [1]\n", + "offsets = [0]\n", + "f_min = 0\n", + "f_max = sum(lgd)\n", + "c_approx = 0.25\n", + "\n", + "objective = PwlObjective(\n", + " agg.num_sum_qubits,\n", + " 0,\n", + " 2**agg.num_sum_qubits-1, # max value that can be reached by the qubit register (will not always be reached)\n", + " breakpoints, \n", + " slopes, \n", + " offsets, \n", + " f_min, \n", + " f_max, \n", + " c_approx\n", + ")\n", + "\n", + "# define overall multivariate problem\n", + "multivariate = MultivariateProblem(u, agg, objective)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before we use QAE to estimate the expected loss, we validate the quantum circuit representing the objective function by just simulating it directly and analyzing the probability of the objective qubit being in the $|1\\rangle$ state, i.e., the value QAE will eventually approximate." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "num_qubits = multivariate.num_target_qubits\n", + "num_ancillas = multivariate.required_ancillas()\n", + "\n", + "q = QuantumRegister(num_qubits, name='q')\n", + "q_a = QuantumRegister(num_ancillas, name='q_a')\n", + "qc = QuantumCircuit(q, q_a)\n", + "\n", + "multivariate.build(qc, q, q_a)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                ┌───┐┌────────────────┐┌───┐»\n",
+       "  q_0: |0>──────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
+       "          ┌────────────────┐┌──────────────────┐└─┬─┘└────────────────┘└─┬─┘»\n",
+       "  q_1: |0>┤ U3(1.5708,0,0) ├┤      U1(0)       ├──■──────────────────────■──»\n",
+       "          ├────────────────┤├──────────────────┤                            »\n",
+       "  q_2: |0>┤   Ry(1.1847)   ├┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
+       "          ├────────────────┤├──────────────────┤                            »\n",
+       "  q_3: |0>┤   Ry(1.3696)   ├┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
+       "          └────────────────┘└──────────────────┘                            »\n",
+       "  q_4: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_0: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_1: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_2: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_3: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "«       ┌────────────────┐┌───┐┌───────┐┌───┐┌───────┐                        »\n",
+       "«  q_0: ┤ U3(1.5708,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n",
+       "«       └────────────────┘└─┬─┘└───────┘└─┬─┘└───────┘  │                     »\n",
+       "«  q_1: ────────────────────■─────────────■─────────────┼─────────────────────»\n",
+       "«                                                     ┌─┴─┐┌─────────────────┐»\n",
+       "«  q_2: ──────────────────────────────────────────────┤ X ├┤ U3(0.14182,0,0) ├»\n",
+       "«                                                     └───┘└─────────────────┘»\n",
+       "«  q_3: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«  q_4: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_0: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_1: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_3: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«                                                             »\n",
+       "«  q_0: ──■────■───────────────────────────────────────────■──»\n",
+       "«         │    │                                           │  »\n",
+       "«  q_1: ──┼────┼───────────────────────────────■───────────┼──»\n",
+       "«       ┌─┴─┐  │  ┌──────────────────┐┌────────┴────────┐  │  »\n",
+       "«  q_2: ┤ X ├──┼──┤ U3(-0.28365,0,0) ├┤        X        ├──┼──»\n",
+       "«       └───┘┌─┴─┐└──────────────────┘├─────────────────┤┌─┴─┐»\n",
+       "«  q_3: ─────┤ X ├────────────────────┤ U3(0.11174,0,0) ├┤ X ├»\n",
+       "«            └───┘                    └─────────────────┘└───┘»\n",
+       "«  q_4: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_0: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_1: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_2: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_3: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«                                                                            ░ »\n",
+       "«  q_0: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«  q_1: ────────────────────────────■────────────■───────────────────────■───░─»\n",
+       "«       ┌─────────────────┐┌────────┴─────────┐  │                       │   ░ »\n",
+       "«  q_2: ┤ U3(0.28365,0,0) ├┤        X         ├──┼───────────────────────┼───░─»\n",
+       "«       └─────────────────┘├──────────────────┤┌─┴─┐┌─────────────────┐┌─┴─┐ ░ »\n",
+       "«  q_3: ───────────────────┤ U3(-0.22349,0,0) ├┤ X ├┤ U3(0.22349,0,0) ├┤ X ├─░─»\n",
+       "«                          └──────────────────┘└───┘└─────────────────┘└───┘ ░ »\n",
+       "«  q_4: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_0: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_1: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_2: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_3: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«                                                ░               »\n",
+       "«  q_0: ─────────────────────────────────────────░───────────────»\n",
+       "«                                                ░               »\n",
+       "«  q_1: ─────────────────────────────────────────░───────────────»\n",
+       "«                                                ░               »\n",
+       "«  q_2: ──■────■────■─────────■──────────────────░───────────────»\n",
+       "«         │    │    │         │                  ░               »\n",
+       "«  q_3: ──┼────┼────┼─────────┼────■────■────────░───────────────»\n",
+       "«         │    │    │         │    │    │        ░ ┌────────────┐»\n",
+       "«  q_4: ──┼────┼────┼─────────┼────┼────┼────────░─┤ Ry(1.1781) ├»\n",
+       "«         │  ┌─┴─┐  │  ┌───┐  │    │    │  ┌───┐ ░ └────────────┘»\n",
+       "«q_a_0: ──■──┤ X ├──┼──┤ X ├──■────┼────┼──┤ X ├─░───────────────»\n",
+       "«         │  └───┘┌─┴─┐└───┘  │  ┌─┴─┐┌─┴─┐└───┘ ░               »\n",
+       "«q_a_1: ──┼───────┤ X ├───────┼──┤ X ├┤ X ├──────░───────────────»\n",
+       "«       ┌─┴─┐     └─┬─┘     ┌─┴─┐└───┘└─┬─┘      ░               »\n",
+       "«q_a_2: ┤ X ├───────■───────┤ X ├───────■────────░───────────────»\n",
+       "«       └───┘               └───┘                ░               »\n",
+       "«q_a_3: ─────────────────────────────────────────░───────────────»\n",
+       "«                                                ░               »\n",
+       "«                                                                             »\n",
+       "«  q_0: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«  q_1: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«  q_2: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«  q_3: ──────────────────────────────────────────────────────────────────────»\n",
+       "«       ┌────────────────┐┌───┐┌─────────────────┐┌───┐┌────────────────┐┌───┐»\n",
+       "«  q_4: ┤ U3(0.1309,0,0) ├┤ X ├┤ U3(-0.1309,0,0) ├┤ X ├┤ U3(0.2618,0,0) ├┤ X ├»\n",
+       "«       └────────────────┘└─┬─┘└─────────────────┘└─┬─┘└────────────────┘└─┬─┘»\n",
+       "«q_a_0: ────────────────────■───────────────────────■──────────────────────┼──»\n",
+       "«                                                                          │  »\n",
+       "«q_a_1: ───────────────────────────────────────────────────────────────────■──»\n",
+       "«                                                                             »\n",
+       "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_3: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«                                ░                                          ░ \n",
+       "«  q_0: ─────────────────────────░──────────────────────────────────────────░─\n",
+       "«                                ░                                          ░ \n",
+       "«  q_1: ─────────────────────────░──────────────────────────────────────────░─\n",
+       "«                                ░                                          ░ \n",
+       "«  q_2: ─────────────────────────░──────────────────■────■─────────■────■───░─\n",
+       "«                                ░                  │    │         │    │   ░ \n",
+       "«  q_3: ─────────────────────────░───■─────────■────┼────┼─────────┼────┼───░─\n",
+       "«       ┌─────────────────┐┌───┐ ░   │         │    │    │         │    │   ░ \n",
+       "«  q_4: ┤ U3(-0.2618,0,0) ├┤ X ├─░───┼─────────┼────┼────┼─────────┼────┼───░─\n",
+       "«       └─────────────────┘└─┬─┘ ░   │  ┌───┐  │    │    │  ┌───┐┌─┴─┐  │   ░ \n",
+       "«q_a_0: ─────────────────────┼───░───┼──┤ X ├──┼────■────┼──┤ X ├┤ X ├──■───░─\n",
+       "«                            │   ░ ┌─┴─┐└───┘┌─┴─┐  │  ┌─┴─┐└───┘└───┘  │   ░ \n",
+       "«q_a_1: ─────────────────────■───░─┤ X ├─────┤ X ├──┼──┤ X ├────────────┼───░─\n",
+       "«                                ░ └─┬─┘     └───┘┌─┴─┐└─┬─┘          ┌─┴─┐ ░ \n",
+       "«q_a_2: ─────────────────────────░───■────────────┤ X ├──■────────────┤ X ├─░─\n",
+       "«                                ░                └───┘               └───┘ ░ \n",
+       "«q_a_3: ─────────────────────────░──────────────────────────────────────────░─\n",
+       "«                                ░                                          ░ 
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc.draw()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "job = execute(qc, backend=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact Expected Loss: 0.6409\n", + "Exact Operator Value: 0.3906\n", + "Mapped Operator value: 0.6640\n" + ] + } + ], + "source": [ + "# evaluate resulting statevector\n", + "value = 0\n", + "for i, a in enumerate(job.result().get_statevector()):\n", + " b = ('{0:0%sb}' % multivariate.num_target_qubits).format(i)[-multivariate.num_target_qubits:]\n", + " am = np.round(np.real(a), decimals=4)\n", + " if np.abs(am) > 1e-6 and b[0] == '1':\n", + " value += am**2\n", + "\n", + "print('Exact Expected Loss: %.4f' % expected_loss) \n", + "print('Exact Operator Value: %.4f' % value)\n", + "print('Mapped Operator value: %.4f' % multivariate.value_to_estimation(value))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we run QAE to estimate the expected loss with a quandratic speed-up over classical Monte Carlo simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.6409\n", + "Estimated value:\t0.7548\n", + "Probability: \t0.9507\n" + ] + } + ], + "source": [ + "# run amplitude estimation\n", + "num_eval_qubits = 5\n", + "ae = AmplitudeEstimation(num_eval_qubits, multivariate)\n", + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n", + "\n", + "# print results\n", + "print('Exact value: \\t%.4f' % expected_loss)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHfBJREFUeJzt3XvUHFWd7vHvw0UItwACgUGGCF4ijCyPvCLMYSThTjhHBNFkoWdWHDTqUWFmoQMiQkCHJTgCuhgXsHTgcEYTZoDhDJcQwuUNdzVIECcJGDQgF1Gcl8QYiEB+549dgUq9/XZX36rTneezVq/u3rVr966dTv/eqn0pRQRmZmbdtkmvK2BmZhsHBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JjVIWmWpOHs9bCkWU3uP1lSFMsaI+9Nkh6ts/1SSSOStij52W+TFJKObqbOZt3igGO24ZgN/IWkfYsbJG0KnAhcHxFrKq+ZWQc44JhtOP4fsBqYXmPbFGACKSiZ9SUHHLMWSTpI0n9IelbSHyUtkvSxVsuLiFXATcC0GpunA88Dd2WfvbukKyX9StJLkh6XdK6kzevUd7PsEttnCulfl/SbQtqekq7JLuGtljRX0ttbPTYzgM16XQGzDVlEzMq9nlzYvCdwH3AZ8DLw34ErJa2NiNnZPsOAimXVMRv4qKT9I+IhgCyIHA/8ICJey/LtDLwA/C3wIjAJOAfYCfhck4e5Hkk7Zcf1PDAzO7YzgfmS3ulLetYqBxyzFkXEnHWvJQm4G3gL8Clav/Q1lxRApgMPZWlHATvmy4yIRcCi3OffB7wEXCbp1Ih4tcXPBzgN2AI4LCJezMq/H1gOzAAub6Ns24j5kppZiyTtIOk7kp4EXskeM4F3tFpmdvbw76SzHGXJ04AngQdzn72JpNMkLZH0UvbZ/wcYRwp67TgcmAesyi7DbQasAH4KDLVZtm3EHHDMWncVKRh8EzgSeB/wz8CWbZY7G/hz4CBJWwLHAbNj/aXdTwMuAP4N+CBwAHBKtq3dz98J+BhvBNF1jw8Ae7RZtm3EfEnNrAVZIDgW+HxEXJZL78QfcXeS+k+mA7sB2zL6Et1HgDkRcXbus/drUO5rwKvAmwrpOxbe/xfwMHB+jTJWNvgMszE54Ji1ZgtgU+D1DnRJ25LONtq6yVREvCbp30hBZXdgSUT8rJBtXP6zM3VHyEVESHoGeFeuzpsChxay3kE6q3rUAwSskxxwzFoQESsk/QQ4W9JKYC1wBqmvY7sOfMRs4POk0Wln19g+H/ispIXAL4G/BiaWKPffgZmSHiH1C30K2KqQ5x+Bk4A7JV0KPAvsChwCDEfEvzZ9NGY44Ji14yTgCuBq4PfApaQf7893oOwHSKPCJgJzamw/B3gz6bJXANcCfwfc0KDcs0l9NOcDfwK+AywGPrkuQ0T8VtKBwD8AlwDbA88B9wBjLr1j1oiqvsW0pLcBXwIOBP4CuKfG/IZa+40nffk/RBrscBNwSkT8vpDvOODrwNtJf/mdGxHXdPIYzMyseb0YpbYvMBV4PHuUdQ0wmfSX2AzSiKD1/pqTdDBwHWk29jHAzcBsSUe2W2kzM2tPL85wNomItdnra4GdGp3hSDoIuB84JCLuztIOAH4EHBERt2dp84DNI+LQ3L63ANtFxMHdOB4zMyun8jOcdcGmSccAz68LNlk5PwZ+lW0jW7J9ClDs0JxDms8wvrUam5lZJ/TLxM9JwNIa6UuybQB7A5vXyLeEdJwtz/42M7P29csotR1I60sVjQB75fJQI99IYft6JM0kLUfCuHHj9t9jj85MpF67di2bbNIv8bx33E7luJ3KcTuV08l2evzxx1+IiJ3L5O2XgAO1J9OpRnrxvcZIT4kRV5CGtjI0NBQLFy5sp46vGx4eZvLkyR0pa5C5ncpxO5Xjdiqnk+2UrSVYSr/8KTBCmgtQtD1vnNGM5NKKeaD2GZKZmVWkXwLOUt7oq8nL9+08QVpgsJhvEmkWeDNDsM3MrMP6JeDMBXbN5tkAIGmI1H8zF15f1v0u0vpTedOAByJiRUV1NTOzGirvw5G0FWniJ6SFCbeTdGL2/paIWC1pGbAgIk4GiIgHsjk2V0v6IumM5QLg3nVzcDJfA4YlXUKaFDo1exzd9QMzM7O6ejFoYBfSPTzy1r1/K2n9qM1IK/HmTQcuJt1v5PWlbfIZIuLeLHh9HfgsaZ7OSRFxWwfrb2ZmLag84ETEct4YOTZWnok10l4EPpE96u17A40XMDQzs4r1Sx+OmZn1OQccMzOrhAOOmZlVop9WGjDriYln3Fx3+/JvHFtRTcz6m89wzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpWoPOBI2kfSHZJWS3pW0nmSNm2wzyxJMcbjy7l8V42RZ1L3j8zMzOrZrMoPk7QDcDuwGDgO2Bv4FinwnVVn1+8BtxbSPgScDswtpC8FPlFIW95ajc3MrFMqDTjAZ4BxwAkRsRKYL2k7YJakC7O0USLiaeDpfJqkrwJLI2JRIfsfI+LBLtTdzMzaUPUltWOAeYXAMocUhA4pW4ikHYEjgNmdrZ6ZmXVL1QFnEumS1+si4ilgdbatrBOBzUnBqmgfSSslrZF0r6TSgczMzLpHEVHdh0mvAF+KiEsK6U8DV0fEmSXLuRMYHxH7F9JPBf5E6iPaGTgN2B84OCJ+PEZZM4GZABMmTNh/zpxaMax5q1atYptttulIWYOsH9rp0WdW1N3+7t3Hd70O/dBOGwK3UzmdbKcpU6Y8FBFDZfJW3YcDUCvCaYz00Rml3UiX304fVXDEtwt5byYFnzNJgwxGVybiCuAKgKGhoZg8eXKZajQ0PDxMp8oaZP3QTjPOuLnu9uUfm9z1OvRDO20I3E7l9Kqdqr6kNgJsXyN9PPBiyTI+SgpQ1zTKGBEvAbcA7y1bQTMz646qA85SCn01kvYAtqbQt1PHdODeiPh1E59b3XVDMzOrqeqAMxc4StK2ubRpwEvAgkY7S5oIHEjJ0WmSxpFGxj3UbEXNzKyzqg44lwFrgOslHZ512M8CLsoPlZa0TNL3a+w/HXgVuLa4QdJ4SfdI+rSkwyRNA+4CdgfO78KxmJlZEyodNBARI5IOAy4FbiT121xMCjrFetVa7mY6cEdE/K7GtjXA70grFuwCvAw8ABwSEQs7cgBmZtayykepRcRi4NAGeSaOkf6eOvu8DJzQVuXMzKxrvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWiqYAjqdZyM2ZmZg01e4bzjKQLJb2rK7UxM7OB1WzAuRw4Efi5pB9Jmilpuy7Uy8zMBkxTAScizomIvYAjgMeAi4DnJP1A0uHdqKCZmQ2GlgYNRMSdEfHXwK7AF4B3AvMkLZc0S9KfdbKSZmbW/9odpTYEfIB02+gR4B7gk8AySR9vs2wzMxsgTQccSXtKOkfSE8AdwG7A3wB/FhH/C9iT1NfzzY7W1MzM+lpTN2CTdCfpjOZp4Crgyoh4Mp8nIl6T9EPg1E5V0szM+l+zd/x8AZgKzI+IqJNvEfDWlmtlZmYDp9lLapcC99cKNpK2kfQBgIh4pXjmY2ZmG7dmA85dwD5jbHtntt3MzGyUZgOO6mzbBljdRl3MzGyANezDyS6TTc4lfVLS0YVsWwLHAo92rmpmZjZIygwaeD9pcidAAB8BXi3k+ROwFPhS56pmZmaDpGHAiYhvks2pkfQr4PiIWNTtipmZ2WBpalh0RHios5mZtaRMH85U4N6IWJm9risibulIzczMbKCUOcO5CTgQ+HH2Ohh7tFoAvkmbmZmNUibgvBV4LvfazMysaWUGDTxZ67WZmVkzyvThbNVMgRHhyZ9mZjZKmUtqq0h9M2W5D8fMzEYpE3D+huYCjpmZ2Shl+nCuqqAeZmY24Nq9xbSZmVkpZQYN/BiYERGLJf2EBpfXIuKATlXOzMwGR5k+nP8EXsq9dn+OmZk1rUwfzidyr2d0tTZmZjawWu7DUbKzpHo3ZTMzMwNaCDiSpkq6H3gZ+A3wsqT7JR3b8dqZmdnAaCrgSPo0cCNpMuippJuxnZq9/49su5mZ2ShN3Q8HOBO4IiI+W0i/TNJlwFeAyztSMzMzGyjNXlJ7M3D9GNuuA3ZsVICkfSTdIWm1pGclnSep7nI4kiZKihqPOTXyHifpUUkvS1osaVqpIzMzs65q9gznLuAQYH6NbYcAd9fbWdIOwO3AYuA4YG/gW6TAd1aJz/8icF/u/QuF8g8mBb7vAqcAU4HZkkYi4rYS5ZuZWZeUmfi5T+7td4DvSXozcAPwW2AX4HjgGOCTDYr7DDAOOCEiVgLzJW0HzJJ0YZZWz2MR8WCd7V8F7o6IU7L3d0naFzgbcMAxM+uhMmc4P2f9yZ4CPp09inf/vJX6q0UfA8wrBJY5wAWkM6QbS9SnJklbAFNIZzZ5c4ArJY2PiBWtlm9mZu0pE3CmdPDzJgF35hMi4ilJq7NtjQLOlZJ2JJ1ZzQa+EhHrVkHYG9gcWFrYZwnpkt07gJ+0V30zM2tVmZUGFnTw83YAXqyRPpJtG8sa4J9Il8VWApOB00lB5rhc2dQof6SwfT2SZgIzASZMmMDw8HC9+pe2atWqjpU1yPqhnU5796t1t1dR/35opw2B26mcXrVTs4MGXidpE2DLYnqJO37WWotNY6SvK/M54PO5pGFJzwPflfSeiFhUp3yNkb6u7CuAKwCGhoZi8uTJ9Wtf0vDwMJ0qa5D1QzvNOOPmutuXf2xy1+vQD+20IXA7ldOrdmp24qcknS5pGfAK8Icaj3pGgO1rpI+n9plPPddmz+/NlU2N8te9b7Z8MzProGbn4ZwCnAF8n3Tm8A/AecDjwHKyS1N1LCX11bxO0h7A1ozue2kkCs9PkILgpEK+ScDarI5mZtYjzQacTwHnABdm72+IiHOBfUkB4+0N9p8LHCVp21zaNNLtD5rtKzoxe34IICLWkOYJfaSQbxrwgEeomZn1VrN9OG8FFkXEa5JeIbtcFRFrJX0X+B7pDGgsl5HOkq6XdAGwFzALuCg/VDq7ZLcgIk7O3s8CtiVN+lwJfAD4EnB9RPwsV/7XSP07l5DmCU3NHkc3eZxmZtZhzZ7h/B7YJnv9FPDfctt2IE3qHFNEjACHkebq3AicC1xMOmvK24z15/MsJc3TuRK4BTgJ+Gb2nC//XtKZz+HAPOCDwEleZcDMrPeaPcO5D3gf6Uf/h6QVAnYE/gR8DrijUQERsRg4tEGeiYX3c0gTOBuKiBtIZzdmZrYBaTbgzAJ2z16fT7qkNoN0ZjMf+EKnKmZmZoOlqYATEY8Bj2Wv15DuhXNqF+plZmYDpp2Jn28BdgOejYhnOlclMzMbRK3cYvqzkn4NPAn8CHhK0tOS/nfHa2dmZgOj2ZUGzgYuJc2nORYYyp7nAt/JtpuZmY3S7CW1zwHnR8RXC+m3ZmubfY608oCZmdl6mr2kNo6x7+q5gBqLeZqZmUHzAecG4IQxtn0YuKm96piZ2aAqc4vpqbm3c4ELJU1k9C2m9wX+vvNVNDOzQVCmD+cmRt9KenfgqBp5/4V0J04zM7P1lAk4b+16LczMbOCVucX0k1VUxMzMBlvTKw1I2ow0QOBgYEfgv4B7SLcKqH/zdzMz22g1FXAk7QLcBuxHusPn88BBpPk3j0g6MiJ+1+lKmplZ/2t2WPRFwJuB90fEXhFxUETsBbw/S7+o0xU0M7PB0GzAmQqcHhE/ySdm779MWubGzMxslGYDzhbAH8bY9gfgTe1Vx8zMBlWzAedB4HRJW+cTs/enZ9vNzMxGaXaU2mnAXcCvJd1GGjSwC2kSqIDJHa2dmZkNjKbOcCJiEfB24ApgZ+AIUsC5DHh7RDzS8RqamdlAKH2GI2lz4ADgVxFxRveqZGZmg6iZM5zXgDuBd3WpLmZmNsBKB5yIWAv8ApjQveqYmdmganaU2leAsyW9uxuVMTOzwdXsKLWzSCsKLJL0DGmUWuQzRMQBHaqbmZkNkGYDzs+zh5mZWVNKBRxJ40jL2vwc+A1we0Q8382KmZnZYClzi+m9gNuBibnklZI+GhG3datiZmY2WMoMGrgQWAv8FbAVsC/wMHB5F+tlZmYDpkzAOQg4KyLui4iXI2IJ8GngzyXt1t3qmZnZoCgTcHYDfllIe4K0dtquHa+RmZkNpLLzcKJxFjMzs7GVHRY9T9KrNdLvKKZHxC7tV8vMzAZNmYBzbtdrYWZmA69hwIkIBxwzM2tbs2upmZmZtcQBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEpUHHEn7SLpD0mpJz0o6T9KmDfZ5n6QrJS3L9ntM0jmStizkmyUpajyO7u5RmZlZI83egK0tknYg3epgMXAcsDfwLVLgO6vOrtOyvBcAvwD2A76WPX+4kHcFUAwwS9qtu5mZtafSgAN8BhgHnBARK4H5krYDZkm6MEur5YKI+F3u/bCkl4HLJe0ZEU/mtr0aEQ92p/pmZtaqqi+pHQPMKwSWOaQgdMhYOxWCzToPZ89eu83MrA9UHXAmAUvzCRHxFLA629aMvyTdGO6xQvr2kl6Q9IqkhyWd0HJtzcysYxRR3Z0HJL0CfCkiLimkPw1cHRFnlixnV+BnwC0RMSOX/nHSGc8iYBvSjeKmAh+OiOvHKGsmMBNgwoQJ+8+ZM6fZw6pp1apVbLPNNh0pa5D1Qzs9+syKutvfvfv4rtehH9ppQ+B2KqeT7TRlypSHImKoTN5eBJwvRsS3C+nPAFdFxFdKlPEm0sCDtwD7R8RInbwC7gfGRcR7GpU9NDQUCxcubJStlOHhYSZPntyRsgZZP7TTxDNurrt9+TeO7Xod+qGdNgRup3I62U6SSgecqi+pjQDb10gfD7zYaOcsgFwN7AtMrRdsACJF0+uB/RoNvTYzs+6qepTaUgp9NZL2ALam0LczhotJw6mPiIgy+dfxHUvNzHqs6jOcucBRkrbNpU0DXgIW1NtR0peBLwAfj4h7y3xYdkZ0PPBIRLzWWpXNzKwTqj7DuQw4Bbhe0gXAXsAs4KL8UGlJy4AFEXFy9v4k4HzgKuAZSQfmynxi3bBpSQuA60hnS1sDnwIOBD7U3cMyM7NGKg04ETEi6TDgUuBGUr/NxaSgU6xXvs/lyOx5RvbI+wQpEAEsA/4W2I00ZPqnwLERMbcT9Tczs9ZVfYZDRCwGDm2QZ2Lh/QxGB5pa+53cRtXMzKyLvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKlF5wJG0j6Q7JK2W9Kyk8yRtWmK/8ZKulDQiaYWkH0h6c418x0l6VNLLkhZLmtadIzEzs2ZsVuWHSdoBuB1YDBwH7A18ixT4zmqw+zXAO4FPAmuBC4AbgL/KlX8wcB3wXeAUYCowW9JIRNzW0YOxnpl4xs0N8yz/xrEV1MTMmlFpwAE+A4wDToiIlcB8SdsBsyRdmKWNIukg4CjgkIi4O0t7BviRpMMj4vYs61eBuyPilOz9XZL2Bc4GHHCsbxSD6mnvfpUZuTQHVOtHVV9SOwaYVwgsc0hB6JAG+z2/LtgARMSPgV9l25C0BTAF+NfCvnOAgySNb7/6ZmbWqqrPcCYBd+YTIuIpSauzbTfW2W9pjfQl2TZIl+c2r5FvCSmwvgP4SWvVHizduiTlS139q+p/O39XNk5VB5wdgBdrpI9k21rZb69cHmrkGylsX4+kmcDM7O0qSY/VqUczdgJe6FBZldMFlZXblXbqVv179VmnFNqpyuPr1We2+Hl9/f+uQp1spz3LZqw64ABEjTSNkd7KfsX3qrM/EXEFcEWDz26apIURMdTpcgeN26kct1M5bqdyetVOVffhjADb10gfT+0zmEb7bZ/bbySXVsxDg/LNzKzLqg44S3mjzwUASXsAW1O7j2bM/TL5vp0ngFdq5JtEGkb9eAv1NTOzDqk64MwFjpK0bS5tGvASsKDBfrtm82wAkDRE6r+ZCxARa4C7gI8U9p0GPBARK9qvflM6fpluQLmdynE7leN2Kqcn7aSIRl0nHfywNPFzMfBz0sTNvYCLgEsi4qxcvmXAgog4OZd2K2mk2Rd5Y+LnbyOiOPFzGLiUNCl0apb/aE/8NDPrrUrPcCJiBDgM2JQ0BPpc4GLgnELWzbI8edNJZ0H/DFwNPAQcXyj/XuBE4HBgHvBB4CQHGzOz3qv0DMfMzDZeXi26AS822lgrbSTpfVn7LMv2e0zSOZK2LOSbJSlqPI7u7lF1XovtNHGM459TI2/ff5eg5XYa63sSkr6cy3fVGHlqDUraoEl6m6TLJT0i6TVJwyX369lvUy/m4fQNLzbaWBttNC3LewHwC2A/4GvZ84cLeVcAxQCzpN26V6nN7xKkvsj7cu/Xm7Q3CN8laKudvgfcWkj7EHA62cCinKXAJwppy1urcU/tS/p3fhB4UxP79e63KSL8GOMBfJk0v2e7XNrfA6vzaTX2O4g00fQDubQDsrTDc2nzgDsL+94C3NvrY6+gjXaukTYza6M9c2mzgBd6fZw9bKeJWZv8jwbl9/13qZ12GqOsm4ElhbSrgIW9Ps4OtdUmudfXAsMl9unpb5MvqdXnxUYba6mNIuJ3NZIfzp536Vz1NhitfpcaGqDvEnSonSTtCBwBzO5s9TYcEbG2hd16+tvkgFPfqEVDI+Ip0l9b9a75dmqx0X7QahvV8pekU/zienbbS3pB0iuSHpZ0Qsu17Z122+nK7Dr9c5IukjQut21QvkvQue/TiaQ2GdXXBewjaaWkNZLuldRWwO8zPf1tcsCprxuLje6Qy0ONfHUXG90AtdpG65G0K/AV4P8W/rpdRrqk8lFS386zwHV9GHRabac1wD8BJ5OmFFwOfJb1f0gH5bsEHfo+kaZR/DQiiiuMPAycBvxP4GOk6RfzJR3QQl37UU9/mzxooLENarHRDVSrbZQySm8inb6vAv5uvYIj/qWQ90bgftJN9a5vpbI91HQ7RcRzwOdzScOSnge+K+k9EbGoTvn9+F2C9r9Pu5Euv50+quCIbxfy3kwaoHAmaZDBxqBnv00+w6nPi4021mobASBJpIm8+wJTI00OHlOk3svrgf3KDE/fgLTVTgXXZs/vzZVNjfL77bsEnWmnj5J+HK9plDEiXiJ1hr+3Ud4B0dPfJgec+rzYaGOtttE6F5OGvx4XEWXyr9Nvf7W32055UXgelO8SdKadppNGU/26ic/tt+9Tq3r62+SAU9/GtNhoq1ptI7IJeV8APh5pWaKGsjOi44FHIuK11qrcEy23Uw0nZs8PwUB9l6DNdpI0ETiQkqPTssEXx5C15Uagt79NvR5LviE/SJ1jzwHzSeuzzST1M3y9kG8Z8P1C2q3AL4ETSNeGHwPuKeQ5GHgVuASYDFxI+gviyF4fe7fbCDiJ9FfllaQfiPxj51y+BaSJZ0eSAs0tWRt9sNfHXlE7zSJNfDwh2+880o/vdYP2XWqnnXLpZ5D+Oq81z2s8cA/wadIAjGmkSZNrgKFeH3sLbbUV6Y+PE4EHgP/Mvd9qrHbq5W9TzxttQ38A+wB3Zv/JnyPNht+0kGc5cFUhbfvsx/RFYCXwQ2CnGuV/iLR69hrSKe30Xh9zFW1EmoAXYzxm5PJ9P/vP8RLwx+wH45heH3OF7TQdWEhabeFP2Q/IecAWg/hdarWdcumLgFvHKHdLUv/fr7M2WpH9+B7Y62NusZ0m1vk/NHGsdurlb5MX7zQzs0q4D8fMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVeL/A/DOldtOjqMQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8XeO97/HPty5tCHFNqNqCam2qZ9cKpZTEpYjzqlZpbNvpoSTR9pR9Tinq0mBzirrs1rEltNQ+JbpRu1TcYiWkdWmSammEUnGJS4UQETSR3/7jGTOmueZca8615hxjZub7fr3Ga67xjGeM+ZtLrN98LuMZigjMzMxa7UNFB2BmZqsGJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44VjHkTRBUtTYjig6vmokDc3iHt7Ea/5Q0rw+6kyQtKBZ72nWm9WLDsCsRd4A9q9S/mTegdRpKPB9YBowr9BIzFrECcc61bKIeKDoIMzsfe5Ss1WSpBMlvSNpu7KynSUtk3RMtj8y64b7gqRbJb0l6VlJx1a53u6SpktaIulVSVdIWqeizhaSrpO0IKv3R0mHZ91oj2TVukvdf2XnbSBpoqSXs5h/K+mzFddeT9K1WYwvSjq1ib+rLSXdLGmRpDcl3SLp4xV1jpb0J0lvZ59vuqTty46fIunJLP6XJd0uaZNmxWgrB7dwrGNJ6vHvOyKWZT9eCBwE/EzSrqT/F34G3BkRV1ac9hPg34EfAwcD/ybp+Yi4NXuf3YCpwM3AIcCGwA+A9bN9JA0F7geWACcAzwGfAjYHXgT+Cfg58C1gdtln+DBwN7AecCLwV+AbwN2StomIl7KqVwEjgX8GXsreY2ug9Hn7JXv/qcBSYGx2vTOB6ZJ2iIjXJO0BXA6ckX3GdYFdgSHZNb4GfA84CfhT9vvZC1h7ILHZSigivHnrqA2YAESNbXhZvY8Di4HTgYuA14CPlh0fmZ0zqeL6dwEPlO3fB3RX1NkrO/dT2f7/Bd4CNq0R86ey+iMryo8G/gZsU1a2OvAUcEG2v3127piyOoOzzzOvjt/Vgl6OH0tKMluVlX0si+mUbP8EYFYv17gUuLHofxfeit/cpWad6g1gpyrbC6UKEfEk6Vv36cDxwLcj4oWel+KXFfs3AV2SVpO0Funb/C8krV7agBmkVkFXds5ewO0R8WKDn2MfYBbwdNm1AaYDI7Kfd8pef1X22RaTEuNA7QzMjoi/lF37eeA3wO5Z0cPAZyRdLGkPSWtWXONhYLSkM7Nuy9WaEJethJxwrFMti4iZVba/VdS7MXt9DfiPGtf6a5X91YGNSN1mqwGXkRJMaXsXWIPUZQapG6nRZEP2HrtUXHspcFTZtTcB3oyIt/uIuz82BV6uUv4ysAFARNydxbMHaZbdAkmXSSp1mf2U1KX2VeBB4GVJZzvxrHo8hmOruonAs6RpyRNIfxgrDa2yvwxYAHyE1J01AbityrmlFtOrpD/ejXoNmEkat6n0bvb6ErCOpEEVSacy7v54kdRlV2lYFhsAEfEz0njYxqRxrouBRcDJEbE8279Y0uak8apzgPmksR9bRbiFY6usbDD7QOAI4DvAdyXtXKXql6vsz4qI9yLiLeAB4JM1WlSlhDMV2E/SsBrhlFpeH6kon0oaa3q2yrVLM9t+l71+seyzDQb27fUXUJ8HSd2HW5ZdezPgc6Ruww+IiFciYiJpXGu7Ksefi4gfkO6H6nHcOptbONapVpe0S5Xy5yJivqSPAf9KGnh/AHhA0sGkb+mfiYh3ys45QNI5pHGTg0l/yA8qO/5dYKqk5cANwJvA35GS2akR8QTpG/7XgPuyaz0H/D2wdkScT2plvQ38T0lvAEsjYiZwDWngfpqkHwJ/IXXP7Qy8FBEXR8SfJP2KNHtuXVKr5ETSjLh6rCnpkCrl04GrSeNcUySdAbxHNtGA1DpE0pmk7rVpWflngD2Bk7PjE0mtoQdIY2ujgG2y69qqpOhZC968NXuj91lqp2V1bifd+7Jm2XmbAQuBC7P9kdk5+wFTSH/Anwe+WeU9P5tdcxFpNtoc0sy3IWV1tgCuz95jCfAH4LCy4/8EPEFq7URZ+RBScnwuO/Y8aeLCbmV11gcmZ+/9MmmK8g+pb5Zard/VyKzOVqQp32+SZvXdygdnzf13UkvsFeAd4HFSslF2/EjSJIPXss/9R+Doov+deMt/K/2DyE12w9iJpIHQTwH3RcTIOs4bAlwCfInUFXgrcFxEvFpR7yDgX0jfoP4CnBkR1zfzM9iqQdJIoBvYISIeLTgcs5VeEWM42wOjSd/knmjgvOtJ3ziPIX1j2on0rWsFSbuTZh11AwcAvwauk/SFgQZtZmYDU0QL50ORZq0g6QZgo75aONmd4L8F9oyIe7OynUkDmvtGmpaJpDuANSJir7JzbwPWjYjde17ZrDa3cMyaK/cWTinZNOgA4OVSssmu8xDwdHastATHKOAXFedOBnbNuuTM6hYR0yJCTjZmzbGyTIveFphbpfyx7BikdaPWqFLvMdLn/ETLojMzsz6tLNOi1wder1K+kDSDplSHKvUWVhz/AEnjgHEAgwYN6tp8882rVWuZ5cuX86EPtWfeb+fYoPXxrfNEGmJ88xONf1dZ1X93A9HOsUF7x1dEbE888cSCiNi4nrorS8KBNE2zkqqUV+6rl/OJiEnAJIARI0bEzJkzBxJjw6ZNm8bIkSNzfc96tXNskEN8yv7pPP54w6eu8r+7AWjn2KC94ysiNknP1Fu3PdN0TwtJy7NXWo/3WzQLy8oq60D1FpKZmeVkZUk4c3l/rKZc+djOU6RFDSvrbQssp7Ep2GZm1mQrS8KZAmyS3WcDgKQRpPGbKQAR8S5pCuuhFeeOAe6PiDdyitXMzKrIfQwne37I6Gx3M2DdsnWcbouIJZKeBKZHxNEAEXF/do/NNZJOILVYzgNmlO7ByZxNWnPqEtJNoaOzbf+WfzAzM+tVEZMGhtLzuSOl/S2BeaS4Kp+VcRhpAcSfUra0TXmFiJiRJa9/IS3n/jRweETc2cT4bVWR803RZp0u94QTEfN4f+ZYrTrDq5S9TnrI01F9nHszFUvemJlZ8VaWMRwzM1vJOeGY1dLVlTYza4qV6cZPs3zNnl10BGYdxQnHrE7DT/71ip/n/eDAAiMxWzm5S83MzHLhhGNmZrlwwjEzs1w44ZiZWS48acCslrFji47ArKM44ZjVMmlS0RGYdRR3qZmZWS6ccMxqmTUrbWbWFO5SM6tlxIj06lWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjV4sdLmzWVu9TMzCwXTjhmtYwblzYzawonHLNarrgibWbWFE44ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma58I2fZrXsuGPREZh1FCccs1r8eGmzpnKXmpmZ5cIJx8zMcuGEY1aLlDYzawonHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmuXDCMTOzXDjhmJlZLrzSgFktEycWHYFZR3HCMavFj5c2a6rcu9QkbSdpqqQlkl6QdJak1fo4Z4KkqLGdUlbv6hp1tm39JzMzs97k2sKRtD5wNzAHOAjYGriQlPhO6+XUK4HbK8q+BJwETKkonwscVVE2r38R2ypt0qT06paOWVPk3aV2LDAIODgiFgF3SVoXmCDp/Kysh4h4Hni+vEzS6cDciHi4ovpbEfFAC2K3Vc348enVCcesKfLuUjsAuKMisUwmJaE9672IpA2AfYHrmhuemZm1St4JZ1tSl9cKEfEssCQ7Vq9DgDVIyarSdpIWSXpX0gxJdScyMzNrHUVEfm8mLQVOjIhLKsqfB66JiO/VeZ17gCER0VVRfjzwN9IY0cbAd4AuYPeIeKjGtcYB4wCGDRvWNXlytRzWOosXL2bw4MG5vme92jk2aH18I0eNAmBadzcAj8x/Y8WxHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEbhuwFDi+Svl84Jw6r7Ep8B5wQh11BwFPAzfXc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9Tqv8VVAwPV9VYyIt4HbAD+c3sysYHknnLlUjNVI2hxYm4qxnV4cBsyIiOcaeN/8+g3NzKyqvBPOFGA/SeuUlY0B3gam93WypOHALtQ5O03SINLMuFmNBmpGqVPNzJoi74RzOfAucJOkfbIB+wnARVE2VVrSk5J+UuX8w4BlwA2VByQNkXSfpPGS9pY0BugGNgPObcFnMTOzBuR642dELJS0N3ApcAtp3OZiUtKpjKvacjeHAVMj4pUqx94FXiGtWDAUeAe4H9gzImY25QOYmVm/5b54Z0TMAfbqo87wGuX/0Ms57wAHDyg4s3Jd2az7We6RNWsGrxZtVsvs2UVHYNZR/AA2MzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7NceJaaWS1jxxYdgVlHccIxq6X0iGkzawp3qZmZWS4aSjiSqi03Y9aZZs3yKgNmTdRol9p8SdcAV0XEY60IyKxtjMgeYugVo82aotEutYnAIcCjkh6UNE7Sui2Iy8zMOkxDCScivh8RWwH7Ao8DFwEvSvq5pH1aEaCZmXWGfk0aiIh7IuJrwCbAt4FPAndImidpgqSPNjNIMzNb+Q10ltoIYA/SY6MXAvcBxwBPSjpigNc2M7MO0nDCkbSFpO9LegqYCmwKfB34aET8D2AL0ljPBU2N1MzMVmoNzVKTdA+pRfM8cDVpttoz5XUi4j1J1wLHNytIMzNb+TU6LXoBMBq4K6LXuaIPA1v2OyqzdjDTTyY3a6ZGE86lwOxqyUbSYGDHiLg3IpYCz/Q422xlUnrEtJk1RaNjON3AdjWOfTI7bmZm1kOjCUe9HBsMLBlALGbtZdy4tJlZU/TZpSZpD2BkWdExkvavqPYR4EDgkeaFZlawK65Ir1412qwp6hnD+Szp5k6AAA4FllXU+RswFzixeaGZmVkn6TPhRMQFZPfUSHoa+HJEPNzqwMzMrLM0NEstIjzV2czM+qWeMZzRwIyIWJT93KuIuK0pkZmZWUepp4VzK7AL8FD2c1B7tloAfkibmZn1UE/C2RJ4sexns1XDjjsWHYFZR6ln0sAz1X4263h+vLRZU9UzhrNWIxeMCN/8aWZmPdTTpbaYNDZTL4/hmJlZD/UknK/TWMIx6wzK5sb0ujC6mdWrnjGcq3OIw8zMOtxAHzFtZmZWl3omDTwEHBkRcyT9jj661yJi52YFZ2ZmnaOeMZw/AW+X/ewObTMza1g9YzhHlf18ZEujMTOzjtXvMRwlG0vq7aFsZmZmQIOrRcOKxTxPA7qy85dJmgWcExG/bnJ8ZsWZOLHoCMw6SkMJR9J44DJgKnA88FdgKHAw8CtJ34wI/19qncGPlzZrqkZbON8DJkXENyrKL5d0OXAq4IRjZmY9NDqGsyFwU41jNwIb9HUBSdtJmippiaQXJJ0lqdflcCQNlxRVtslV6h4k6RFJ70iaI2lMXZ/MrNKkSWkzs6ZotIXTDewJ3FXl2J7Avb2dLGl94G5gDnAQsDVwISnxnVbH+58A/KZsf0HF9XcnJb7LgOOA0cB1khZGxJ11XN/sfePHp1d3rZk1RT03fm5Xtvsj4EpJGwI38/4YzpeBA4Bj+rjcscAg4OCIWATcJWldYIKk87Oy3jweEQ/0cvx04N6IOC7b75a0PXAG4IRjZlagelo4j/LBmz0FjM+2yqd/3k7vq0UfANxRkVgmA+eRWki31BFPVZI+DIwitWzKTQaukjQkIt7o7/XNzGxg6kk4o5r4ftsC95QXRMSzkpZkx/pKOFdJ2oDUsroOODUiSqsgbA2sAcytOOcxUpfdJ4DfDSx8MzPrL0WOS69LWgqcGBGXVJQ/D1wTEd+rcd6mpBlwdwKLgJHAScCdEXFQVmc3YAbwmYh4uOzcjwN/BvarNo4jaRwwDmDYsGFdkyf3mIfQUosXL2bw4MG5vme92jk2aH18I0el71rTursBeGT++w3kHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEvzZSq2Gtyq2Pc5YCx1cpn0+6cbSR9/8GqUvvH7L93bL9/1ZRb5usfN++rtnV1RV56+7uzv0969XOsUXkEF96Es6K3S1OunXF1pdV/nc3AO0cW0R7x1dEbMDMqPPvdkPTorPlbE6S9GSWPN6ssvVmIbBelfIhwOuNxALckL3uWHZtqly/tN/o9c3MrIkavQ/nOOBk4CekyQLnAGcBTwDzyLqmejGXNFazgqTNgbXpOfbSl6h4fYqUBLetqLctsDyL0ax+pTaOmTVFowlnLPB94Pxs/+aIOBPYnpQwtunj/CnAfpLWKSsbQ3r8wfQGYzkke50FEBHvku4TOrSi3hjg/vAMNTOzQjV64+eWwMMR8V42AWA9gIhYLuky4EpSC6iWy0mtpJsknQdsBUwALoqyqdJZl930iDg6258ArEO66XMRsAdwInBTRPyx7PpnA9MkXUK6T2h0tu3f4Oc0M7Mma7SF8ypQmgLxLPCZsmPrk27qrCkiFgJ7k+7VuQU4E7iY1GoqtzofvJ9nLuk+nauA24DDgQuy1/LrzyC1fPYB7gC+CBweXmXA+qOrK21m1hSNtnB+A+xE+qN/LWmFgA2AvwHfIq0i3auImAPs1Ued4RX7k0k3cPYpIm4mtW7MBmb27KIjMOsojSacCcBm2c/nkrrUjiS1bO4Cvt2swMzMrLM0lHAi4nHg8eznd0nPxDm+BXGZmVmHafiJnyWSPgZsCrwQEfObF5KZmXWiRicNIOkbkp4DngEeBJ6V9LykbzY9OjMz6xiNrjRwBnAp6X6aA4ER2esU4EfZcTMzsx4a7VL7FnBuRJxeUX67pJez42c1JTKzoo0dW3QEZh2l0YQziNpP9ZyOZ6lZJ/Hjpc2aqtExnJuBg2sc+wpw68DCMTOzTlXPI6ZHl+1OAc6XNJyej5jeHvhu80M0K8isWenVqw2YNUU9XWq30vNR0psB+1Wp+/9JT+I0W/mNyJ4p5RWjzZqinoSzZcujMDOzjtdnwomIZ/IIxMzMOlvDKw1IWp00QWB3YAPgNeA+0qMCljU3PDMz6xQNJRxJQ4E7gU+TnvD5MrAr6f6bP0j6QkS80uwgzcxs5dfotOiLgA2Bz0bEVhGxa0RsBXw2K7+o2QGamVlnaDThjAZOiojflRdm+6eQlrkxMzProdExnA8Db9Y49iaw5sDCMWsjM2cWHYFZR2k04TwAnCTpnoh4q1QoaW3gpOy4WWfwDZ9mTdVowvkO0A08J+lO0qSBoaSbQAWMbGp0ZmbWMRoaw4mIh4FtgEnAxsC+pIRzObBNRPyh6RGaFWXcuLSZWVPU3cKRtAawM/B0RJzcupDM2sQVV6RXrxpt1hSNtHDeA+4B/r5FsZiZWQerO+FExHLgz8Cw1oVjZmadqtH7cE4FzpC0QyuCMTOzztXoLLXTSCsKPCxpPmmW2gfWbo+InZsUm5mZdZBGE86j2WZmZtaQuhKOpEGkZW0eBV4C7o6Il1sZmFnhdtyx6AjMOko9j5jeCrgbGF5WvEjSVyPizlYFZla40iOmzawp6pk0cD6wHPg8sBawPfB7YGIL4zIzsw5TT8LZFTgtIn4TEe9ExGPAeODvJG3a2vDMzKxT1JNwNgX+UlH2FGnttE2aHpFZu5DSZmZNUe99ONF3FTMzs9rqnRZ9h6RlVcqnVpZHxNCBh2VmZp2mnoRzZsujMDOzjtdnwokIJxwzMxuwRtdSMzMz6xcnHDMzy0Wja6mZrTom+t5ms2ZywjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hS5JxxJ20maKmmJpBcknSVptT7O2UnSVZKezM57XNL3JX2kot4ESVFl27+1n8o60vjxaTOzpsh1DEfS+qRHHcwBDgK2Bi4kJb7Tejl1TFb3PODPwKeBs7PXr1TUfQOoTDCPDTR2MzMbmLwnDRwLDAIOjohFwF2S1gUmSDo/K6vmvIh4pWx/mqR3gImStoiIZ8qOLYuIB1oTvpmZ9VfeXWoHAHdUJJbJpCS0Z62TKpJNye+zV6/dZma2Esg74WwLzC0viIhngSXZsUZ8jvRguMcryteTtEDSUkm/l3Rwv6M1M7OmUUR+Tx6QtBQ4MSIuqSh/HrgmIr5X53U2Af4I3BYRR5aVH0Fq8TwMDCY9KG408JWIuKnGtcYB4wCGDRvWNXny5EY/1oAsXryYwYMH5/qe9Wrn2KD18Y0cNQqAad3dADwy/40Vx3bYbEihsQ1UO8fXzrFBe8dXRGyjRo2aFREj6qocEbltwFLg+Crl84Fz6rzGmsC9pIfCrd9HXQH3Aw/Xc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9b5OliTgGmB7YHRELOytfvbLuAn4dF9Tr816KKUcM2uKvGepzaVirEbS5sDaVIzt1HAxaTr1vhFRT/0S/9UwMytY3i2cKcB+ktYpKxsDvA1M7+1ESacA3waOiIgZ9bxZ1iL6MvCHiHivfyGbmVkz5N3CuRw4DrhJ0nnAVsAE4KIomyot6UlgekQcne0fDpwLXA3Ml7RL2TWfimzatKTpwI2k1tLawFhgF+BLrf1Y1pG6utLrrFnFxmHWIXJNOBGxUNLewKXALaRxm4tJSacyrvIxly9kr0dmW7mjSIkI4Engn4FNSVOmZwMHRsSUZsRvq5jZs4uOwKyj5P54goiYA+zVR53hFftH0jPRVDvv6AGEZmZmLeTVos3MLBdOOGZmlgsnHDMzy4UTjpmZ5SL3SQNmK42xY4uOwKyjOOGY1eLHS5s1lbvUzMwsF044ZrXMmuVVBsyayF1qZrWMyB7x4RWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjVUnrEtJk1hbvUzMwsF044ZrWMG5c2M2sKJxyzWq64Im1m1hROOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmufCNn2a17Lhj0RGYdRQnHLNa/Hhps6Zyl5qZmeXCCcfMzHLhhGNWi5Q2M2sKJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS680oBZLRMnFh2BWUdxwjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hTuUjOrZfz49OquNbOmcAvHzMxykXvCkbSdpKmSlkh6QdJZklar47whkq6StFDSG5J+LmnDKvUOkvSIpHckzZE0pjWfxMzMGpFrwpG0PnA3EMBBwFnAd4Az6zj9emAkcAxwJLATcHPF9XcHbgS6gQOAXwPXSfpCUz6AtZVH5r/B8JN/XXQYZlanvMdwjgUGAQdHxCLgLknrAhMknZ+V9SBpV2A/YM+IuDcrmw88KGmfiLg7q3o6cG9EHJftd0vaHjgDuLN1H8usdUpJdd4PDiw4ErOBybtL7QDgjorEMpmUhPbs47yXS8kGICIeAp7OjiHpw8Ao4BcV504GdpU0ZODhm5lZf+XdwtkWuKe8ICKelbQkO3ZLL+fNrVL+WHYMYGtgjSr1HiMl1k8Av+tf2J2nld+a/Y185VfeVZnXf8fSe169/9q5vJ/lL++Esz7wepXyhdmx/py3VVkdqtRbWHH8AySNA0rzXhdLeryXOFphI2BBzu+5gs7r9fCAYuvj2s2wEbCg5e9T5amfdbxn0/+7Nvlz1h1fDv8dP2DUecX+P1GHdo6viNi2qLdiEffhRJUy1Sjvz3mV+6pRngojJgGF3d0naWZEjCjq/XvTzrFBe8fXzrFBe8fXzrFBe8fXzrFB/mM4C4H1qpQPoXoLpq/z1is7b2FZWWUd+ri+mZm1WN4JZy7vj7kAIGlzYG2qj9HUPC9TPrbzFLC0Sr1tgeXAE/2I18zMmiTvhDMF2E/SOmVlY4C3gel9nLdJdp8NAJJGkMZvpgBExLuk+28OrTh3DHB/RLwx8PBbop0X62rn2KC942vn2KC942vn2KC942vn2FBEX0MnTXyzdOPnHOBR4DxSwrgIuCQiTiur9yQwPSKOLiu7nTTT7ARSi+U84K8R8fmyOrsD04BLSTeFjs7q7x8Rvg/HzKxAubZwImIhsDewGmkK9JnAxcD3K6quntUpdxipFfRT4BpgFvDliuvPAA4B9gHuAL4IHO5kY2ZWvFxbOGZmturyatFtQNK6ks6U9FC2MOlLkn4p6RNFx1YiaYykmyS9KCkkHVlQHP1a/DUPkj4uaaKkP0h6T9K0omMqkXSopF9Jmi9psaRZkv6x6LhKJB0i6beSXs0W3n1c0mmS1iw6tkqSNst+hyFpcBvEc2QWS+V2bNGxVfLzcNrD3wFjgZ8ApwJrAaeQ1or7dEQ8V2RwmUOA4cCtpAVUc1e2+Osc0uKvWwMXkr44ndbLqXnZnjRu+ADQbn8o/w9pKaj/TboxcDRwraSNIuLHhUaWbEia9HMB6RaGnYEJwCbA/yourKouABaTZte2k71IE7BK/lJUILW4S60NSFobWB4Rb5eVbQA8C1wQEfWspt1Skj4UEcuzb3RvAkdFxNU5x3AK8F1gi9J6fJK+S/aHqdbir3kp/Y6yn28ANoqIkUXGVJIllgUVZdcCu0bElgWF1StJ5wDfAtaPNvlDJenzwH8C55ISzzoRsbjgmI4ErmqHWPriLrU2EBFvlSebrOw14BlgaDFRfVDpD2nB+rv4ay7a5HdUVWWyyfyeNvn3VcOrtFFLMeu6/THpsSrturRNW3PCaVOSNgY+Tuo+sqTHIq4R8SxQWvzVGvM52uzfl6TVJK2V3eJwHPBv7dK6IT1e5SPA/ys6kBqekrQsG/8aX3Qw1XgMp31dSOonnlx0IG2kv4u/WgVJe5PGwb5edCwV3gI+nP18DXBigbGskD1d+GzgiIhYqioLuhboRdKzwB4i3U7yj8DlktaKiIsLjayCE06LZM/f2bSvehHRY0kfSd8AjgC+EhGvtiC8AcUkpRQRAAACcUlEQVRXsP4u/moZScOBa4H/zHscrg6fI02a2Zn04MRLgW8WGlFyDvBgRNxWdCCVIuIO0n2HJVOy54OdJulf26mr1wmndQ4Frqij3ge+Kkn6Iqmf+KSI+GUrAsv0K76C9XfxV8tkk1GmkCakHFFwOD1ExOzsxxmSFgA/k3RhRDxVVEzZU4O/DuwhqfTvb63sdYik9yrHYNvADcBXSTNL22a2msdwWiQirowI9bWVnyPpc6QutMsj4oJ2i68N9HfxVwMkrUWa1r4mcGBEvFVwSH0pJZ+iZ9FtQ3q44/2kLz0LeX8c53nSF8R21VYtf7dw2kT2LepW4HbSYKn1NAU4UdI6EfFmVlbP4q+rPEmrA/9B+uO5W0T8teCQ6rFb9vp0oVHADNLj68vtD5xEup+pbVoQZb5Cmkn3TNGBlHPCaQOShpISzWLgR8DOZYOSiyKi8JlEkrYDtiPN0gEYIWkx8EpE5PXH/nJSMr5JUmnx1wnARUXfgwMrWhCjs93NgHUlHZLt3xYRS4qJDIDLSLEdD2wgaZeyY7/PVlsvTLY4793An4D3SMnmO8D1RXanwYop5dPKy7JxMID7ir73RdKNpAkDfyRNGhiTbce10/gN+MbPtiBpJOku62qmt8PNg5Im0HORVcg5vizxXQrsShq3uRKYEBHv5RVDLdkfoVrfxreMiHm5BVNB0jxqPwq40NgAJJ1NWox3OLCM1Gq4itS9vLTA0Kpqp5stJZ1LatFsThpznUNagf/fi4yrGiccMzPLhScNmJlZLpxwzMwsF044ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7Nc/BdtOPoFOYDNHAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for expected loss (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.axvline(expected_loss, color='red', linestyle='--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Expected Loss', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cumulative Distribution Function\n", + "\n", + "Instead of the expected loss (which could also be estimated efficiently using classical techniques) we now estimate the cummulitave distribution function (CDF) of the loss.\n", + "Classically, this either involves evaluating all the possible combinations of defaulting assets, or many classical samples in a Monte Carlo simulation. Algoritms based on QAE have the potential to significantly speed up this analysis in the future.\n", + "\n", + "To estimate the CDF, i.e., in the probability $ \\mathbb{P}[L \\leq x] $, we again apply $\\mathcal{S}$ to compute the total loss, and then apply a comparator that for a given value $x$ acts as\n", + "\n", + "$$ \\mathcal{C}: |L\\rangle_n|0> \\mapsto \n", + "\\begin{cases} \n", + "|L\\rangle_n|1> & \\text{if}\\quad L \\leq x \\\\\n", + "|L\\rangle_n|0> & \\text{if}\\quad L > x.\n", + "\\end{cases} $$\n", + "\n", + "The resulting quantum state can be written as\n", + "\n", + "$$ \\sum_{L = 0}^{x} \\sqrt{p_{L}}|L\\rangle_{n_s}|1\\rangle + \n", + "\\sum_{L = x+1}^{2^{n_s}-1} \\sqrt{p_{L}}|L\\rangle_{n_s}|1\\rangle, $$\n", + "\n", + "where we directly assume the summed up loss values and corresponding probabilities instead of presenting the details of the uncertainty model.\n", + "\n", + "The CDF($x$) equals the probability of measuring $|1\\rangle$ in the objective qubit and QAE can be directly used to estimate it." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# define value x to evaluate the CDF(x)\n", + "def get_cdf_operator_factory(x_eval):\n", + "\n", + " # comparator as objective\n", + " cdf_objective = Comparator(agg.num_sum_qubits, x_eval+1, geq=False)\n", + " \n", + " # define overall uncertainty problem\n", + " multivariate_cdf = MultivariateProblem(u, agg, cdf_objective)\n", + " \n", + " return multivariate_cdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we first use quantum simulation to validate the quantum circuit." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# set x value to estimate the CDF\n", + "x_eval = 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# get operator\n", + "multivariate_cdf = get_cdf_operator_factory(x_eval)\n", + "\n", + "# get required number of qubits\n", + "num_qubits = multivariate_cdf.num_target_qubits\n", + "num_ancillas = multivariate_cdf.required_ancillas() # TODO: why do we need two more ancillas?\n", + "\n", + "# construct circuit\n", + "q = QuantumRegister(num_qubits, name='q')\n", + "q_a = QuantumRegister(num_ancillas, name='q_a')\n", + "qc = QuantumCircuit(q, q_a)\n", + "\n", + "multivariate_cdf.build(qc, q, q_a)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "job = execute(qc, backend=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
                                                ┌───┐┌────────────────┐┌───┐»\n",
+       "  q_0: |0>──────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
+       "          ┌────────────────┐┌──────────────────┐└─┬─┘└────────────────┘└─┬─┘»\n",
+       "  q_1: |0>┤ U3(1.5708,0,0) ├┤      U1(0)       ├──■──────────────────────■──»\n",
+       "          ├────────────────┤├──────────────────┤                            »\n",
+       "  q_2: |0>┤   Ry(1.1847)   ├┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
+       "          ├────────────────┤├──────────────────┤                            »\n",
+       "  q_3: |0>┤   Ry(1.3696)   ├┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
+       "          └────────────────┘└──────────────────┘                            »\n",
+       "  q_4: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_0: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_1: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_2: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "q_a_3: |0>──────────────────────────────────────────────────────────────────»\n",
+       "                                                                            »\n",
+       "«       ┌────────────────┐┌───┐┌───────┐┌───┐┌───────┐                        »\n",
+       "«  q_0: ┤ U3(1.5708,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n",
+       "«       └────────────────┘└─┬─┘└───────┘└─┬─┘└───────┘  │                     »\n",
+       "«  q_1: ────────────────────■─────────────■─────────────┼─────────────────────»\n",
+       "«                                                     ┌─┴─┐┌─────────────────┐»\n",
+       "«  q_2: ──────────────────────────────────────────────┤ X ├┤ U3(0.14182,0,0) ├»\n",
+       "«                                                     └───┘└─────────────────┘»\n",
+       "«  q_3: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«  q_4: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_0: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_1: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«q_a_3: ──────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                             »\n",
+       "«                                                             »\n",
+       "«  q_0: ──■────■───────────────────────────────────────────■──»\n",
+       "«         │    │                                           │  »\n",
+       "«  q_1: ──┼────┼───────────────────────────────■───────────┼──»\n",
+       "«       ┌─┴─┐  │  ┌──────────────────┐┌────────┴────────┐  │  »\n",
+       "«  q_2: ┤ X ├──┼──┤ U3(-0.28365,0,0) ├┤        X        ├──┼──»\n",
+       "«       └───┘┌─┴─┐└──────────────────┘├─────────────────┤┌─┴─┐»\n",
+       "«  q_3: ─────┤ X ├────────────────────┤ U3(0.11174,0,0) ├┤ X ├»\n",
+       "«            └───┘                    └─────────────────┘└───┘»\n",
+       "«  q_4: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_0: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_1: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_2: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«q_a_3: ──────────────────────────────────────────────────────»\n",
+       "«                                                             »\n",
+       "«                                                                            ░ »\n",
+       "«  q_0: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«  q_1: ────────────────────────────■────────────■───────────────────────■───░─»\n",
+       "«       ┌─────────────────┐┌────────┴─────────┐  │                       │   ░ »\n",
+       "«  q_2: ┤ U3(0.28365,0,0) ├┤        X         ├──┼───────────────────────┼───░─»\n",
+       "«       └─────────────────┘├──────────────────┤┌─┴─┐┌─────────────────┐┌─┴─┐ ░ »\n",
+       "«  q_3: ───────────────────┤ U3(-0.22349,0,0) ├┤ X ├┤ U3(0.22349,0,0) ├┤ X ├─░─»\n",
+       "«                          └──────────────────┘└───┘└─────────────────┘└───┘ ░ »\n",
+       "«  q_4: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_0: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_1: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_2: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«q_a_3: ─────────────────────────────────────────────────────────────────────░─»\n",
+       "«                                                                            ░ »\n",
+       "«                                                ░                 ░           »\n",
+       "«  q_0: ─────────────────────────────────────────░─────────────────░───────────»\n",
+       "«                                                ░                 ░           »\n",
+       "«  q_1: ─────────────────────────────────────────░─────────────────░───────────»\n",
+       "«                                                ░                 ░           »\n",
+       "«  q_2: ──■────■────■─────────■──────────────────░─────────────────░───────────»\n",
+       "«         │    │    │         │                  ░                 ░           »\n",
+       "«  q_3: ──┼────┼────┼─────────┼────■────■────────░─────────────────░───■───────»\n",
+       "«         │    │    │         │    │    │        ░      ┌───┐┌───┐ ░   │       »\n",
+       "«  q_4: ──┼────┼────┼─────────┼────┼────┼────────░──────┤ X ├┤ X ├─░───┼───────»\n",
+       "«         │  ┌─┴─┐  │  ┌───┐  │    │    │  ┌───┐ ░      └─┬─┘└───┘ ░   │  ┌───┐»\n",
+       "«q_a_0: ──■──┤ X ├──┼──┤ X ├──■────┼────┼──┤ X ├─░───■────┼────■───░───┼──┤ X ├»\n",
+       "«         │  └───┘┌─┴─┐└───┘  │  ┌─┴─┐┌─┴─┐└───┘ ░   │    │    │   ░ ┌─┴─┐└───┘»\n",
+       "«q_a_1: ──┼───────┤ X ├───────┼──┤ X ├┤ X ├──────░───┼────■────┼───░─┤ X ├─────»\n",
+       "«       ┌─┴─┐     └─┬─┘     ┌─┴─┐└───┘└─┬─┘      ░   │    │    │   ░ └─┬─┘     »\n",
+       "«q_a_2: ┤ X ├───────■───────┤ X ├───────■────────░───┼────┼────┼───░───■───────»\n",
+       "«       └───┘               └───┘                ░ ┌─┴─┐  │  ┌─┴─┐ ░           »\n",
+       "«q_a_3: ─────────────────────────────────────────░─┤ X ├──■──┤ X ├─░───────────»\n",
+       "«                                                ░ └───┘     └───┘ ░           »\n",
+       "«                                      ░ \n",
+       "«  q_0: ───────────────────────────────░─\n",
+       "«                                      ░ \n",
+       "«  q_1: ───────────────────────────────░─\n",
+       "«                                      ░ \n",
+       "«  q_2: ───────■────■─────────■────■───░─\n",
+       "«              │    │         │    │   ░ \n",
+       "«  q_3: ──■────┼────┼─────────┼────┼───░─\n",
+       "«         │    │    │         │    │   ░ \n",
+       "«  q_4: ──┼────┼────┼─────────┼────┼───░─\n",
+       "«         │    │    │  ┌───┐┌─┴─┐  │   ░ \n",
+       "«q_a_0: ──┼────■────┼──┤ X ├┤ X ├──■───░─\n",
+       "«       ┌─┴─┐  │  ┌─┴─┐└───┘└───┘  │   ░ \n",
+       "«q_a_1: ┤ X ├──┼──┤ X ├────────────┼───░─\n",
+       "«       └───┘┌─┴─┐└─┬─┘          ┌─┴─┐ ░ \n",
+       "«q_a_2: ─────┤ X ├──■────────────┤ X ├─░─\n",
+       "«            └───┘               └───┘ ░ \n",
+       "«q_a_3: ───────────────────────────────░─\n",
+       "«                                      ░ 
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc.draw()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Operator CDF(2) = 0.9591\n", + "Exact CDF(2) = 0.9591\n" + ] + } + ], + "source": [ + "# evaluate resulting statevector\n", + "var_prob = 0\n", + "for i, a in enumerate(job.result().get_statevector()):\n", + " b = ('{0:0%sb}' % multivariate_cdf.num_target_qubits).format(i)[-multivariate_cdf.num_target_qubits:]\n", + " prob = np.abs(a)**2\n", + " if prob > 1e-6 and b[0] == '1':\n", + " var_prob += prob\n", + "print('Operator CDF(%s)' % x_eval + ' = %.4f' % var_prob)\n", + "print('Exact CDF(%s)' % x_eval + ' = %.4f' % cdf[x_eval])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we run QAE to estimate the CDF for a given $x$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# run amplitude estimation\n", + "num_eval_qubits = 4\n", + "ae_cdf = AmplitudeEstimation(num_eval_qubits, multivariate_cdf)\n", + "# result_cdf = ae_cdf.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result_cdf = ae_cdf.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.9591\n", + "Estimated value:\t0.9619\n", + "Probability: \t0.9958\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4HFWd//H3hz0gkIAQGIcxLCKyKKMRQRmJsiRgMBLRQPQ3RHHixuaDGkDUgE4w+LANkYE8IsFRQH/Aj5kEkrDesAgqSCIYAgYNiCwjeiHGQGT5/v6outCp20t1375Vtzuf1/P007dPnTr97UPT31TVOacUEZiZmQ229coOwMzM1g1OOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmLWRpImSbpX0nKQ1kh6R9G1Jb0y3R8XjBUmPS7pW0uFV2pqeqd/3uDlT712SeiVtkb5+q6TvSXpI0mpJv5N0gaThmf2+J+nSwewPs0oblB2AWbeQdA5wEnAZcB6wEtgd+BywB3BEWvUc4GpgQ2AH4MPAf0uaExGfzjT7PDCuSlmlbwMXR8TK9PXBwPuA/wR+DeyU1tlP0r4R8Wpa77vAMklnRcTy1j61WX7ySgNmA5ceofwPcGxE/CCzbX3gkIiYLymA4yNiVqbOp4FLgSkRcXlaNh04LiLeWOd93wI8AuwaEb9Ny7YG/hIV/3NLOgRYCIyJiEUV5TcDSyLi5NY/vVk+PqVm1h5fAn6VTTYAEfFKRMyvt3O638+Bzzf5vscAv+5LNmlbf47+/5K8P33eNlN+DfAJSf4tsEHnL5nZAEnaEHgvsGCATd0EvCttr7L9DTIPVWw+EPhZjrbfmz4vzZT/DBgJ7NVq0GZ5OeGYDdzWwMbA4wNs5wmS66pbZdp+KfM4ECBNPP8MPFivUUmbAt8BFkXEbzKbfwO8AuwzwNjNGvKgAbP2GegFUVUpex44KFP2cPo8giTRPVuzwSQpXUpyKu1D2e0R8bKk54DtWgnYrBlOOGYD92dgDfBPA2znTSRHMH+pKHs5Iu6tUX+T9HlNnTZnkoyOOzgiflejzpqKtswGjU+pmQ1QRLwE3AWMHWBThwD3pe3l8ef0eXi1jZK+BHwZ+NeIuKNOO8NZO8mZDQonHLP2OB8YLemY7AZJ60nKzqXJ1vk0yXWU/8z7hhGxhuS60Y5V2ptMMt/n5Ij4aZ333QbYlGRotdmg8ik1szaIiLmSzgUulfQ+4L+BVcBuJBM/V/D6KLZRkvYlmfj5j8AE4OPADyLih02+9V3AuyoLJB0AzAFuBO5O36vPExHxRMXr0STXnvKMdDMbkMKPcCTtIukSSUskvSKpJ+d+W0q6LF3C43lJP04nuGXrTZD0gKQXJS2VNKntH8KsinTy5CTgLcAVJMOcTwZuYe35NScDd6fbzwY2AiZExLEtvO21wAGShlWUfYAkmY1N36fy8ZnM/uNIRq/9GbNBVvhKA5ImALOAe4A9gWciYkyO/RYAbyU5J/0qycXQZyLiXyrq7A/0ABcB/w84jOR/7nERcWNbP4jZECBpI5Lh1F+MiP/b5L7rA48Bp0TEjwYjPrNKZSSc9frWcpJ0NfDGRglH0n4kh/wHRMTtadk+JDOzD46Im9OyhcCGEfHBin1vALaIiP0H4/OYlU3SV0iOkJr6jks6CvgW8LaIeHlQgjOrUPgptYqFA5txKMnRzO0V7fwC+H26DUkbk5xKyF4gvYpk0cItW4vYbMibBdzUwndcJGu/OdlYITpl0MBuwLIq5Q+l2wB2Jjlvna33EEli3RX45WAFaFaWiHgBOKOF/a4chHDMauqUhDMCeK5KeS/J0ut9dahSrzezfS2SpgJTAYYNG/auHXbYYWCRpl599VXWW8+jzhtxP+XjfspnXeynzR9JRrT/ddddc+/Tzn565JFHno2IbfLU7ZSEA9WXDVGV8uxr1ShPCiNmA7MBRo8eHffeW2tSd3N6enoYM2ZMW9rqZu6nfNxP+awr/TTqlOtf+/vhmeOTsiPOXavOiu/0W8noNe3sJ0mP5a3bKf8U6KX6bOrhvH5E01tRlq0D1Y+QzMysIJ2ScJbx+rWaSpXXdh4lWYcqW283kmHUnkltZlaiTkk484Ht0nk2AEgaTXL9Zj68tszHbcDHMvtOAu6OiOxtec3MrECFX8NJ781xWPryTcAWko5MX98QEaslLSeZ/XwsQETcnc6x+aGkyomfd/bNwUl9C+iRdD5wXfo+h9H/nvBmZlawMgYNbAtkZ0T3vd6RZM2pDYD1M3WOAs4DfkByZDYPOKGyQkTcmSavb5MsJfJ7YLJXGTCzbjVq2ryyQ8it8IQTESuofqOpyjqjqpQ9B3wqfdTb9zqSoxszMxtCOuUajpmZdTgnHDOzDjZ3zonMnXNi2WHk0kkTP83MLGOvZx4tO4TcfIRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIj1IzM+tgV7xjbNkh5OaEY2bWwU4bd3zZIeTmU2pmZlYIJxwzsw6259PL2fPp5WWHkYtPqZmZdbB5l58EdMaq0T7CMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwsOizcw62Phjzi87hNyccMzMOtiD2+1Sdgi5+ZSamZkVwgnHzKyDzVhwITMWXFh2GLk44ZiZdbDJSxYyecnCssPIxQnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQnvhpZtbBHhi5c9kh5OaEY2bWwQ6fckHZIeTmU2pmZlYIJxwzMyuEE46ZWQdbMXM8K2aOLzuMXJxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZmYd7NSxx5UdQm5OOGZmHezKvceVHUJuhZ9Sk7S7pFskrZb0pKQzJa3fYJ/pkqLG49SKenNq1Nlt8D+ZmZnVU+gRjqQRwM3AUmACsDNwDkniO73Ort8HFmTKPgJMA+ZnypcBn8qUrWgtYjOzoe3oxclPYycc6RR9Su1zwDBgYkSsBG6StAUwXdLZaVk/EfEE8ERlmaSvA8siYnGm+t8i4p5BiN3MbMg5a+EsoDMSTtGn1A4FFmYSy1UkSeiAvI1I2go4GLiyveGZmdlgKTrh7EZyyus1EfE4sDrdlteRwIYkySprd0krJa2RdKek3InMzMwGT9Gn1EYAz1Up70235XUU8KuIeCRTfj/wc5JrRNsAJ5Octts/In5RrSFJU4GpACNHjqSnp6eJMGpbtWpV29rqZu6nfNxP+awr/XTyXi83LKvXD2X1UxnDoqNKmWqU968obU9y+m1av4YjLsjUvZ4k+ZxGMsigfzARs4HZAKNHj44xY8bkCaOhnp4e2tVWN3M/5eN+ymdd6acpp1z/2t/Hp8/nPLD2z/mKT4ypuX9Z/VT0KbVeYHiV8i2pfuRTzcdJEtRPGlWMiBeAG4B35g3QzMwGR9EJZxmZazWSdgA2I3Ntp46jgDsj4g9NvG+uoyczMxs8RZ9Smw98RdLmEfHXtGwS8AKwqNHOkkYB+wJfyPNmkoaRjIy7r5VgzcyGulHT5pUdQm5FH+FcDKwBrpV0UHrBfjpwbuVQaUnLJV1aZf+jgJeBq7MbJG0p6Q5Jn5V0oKRJwG3Am4AZg/BZzMysCYUe4UREr6QDgVnAXJLrNueRJJ1sXNWWuzkKuCUi/lRl2xrgTyQrFmwLvAjcDRwQEfe25QOYmVnLCh+lFhFLgQ82qDOqRvnedfZ5EZg4oODMzDrM3DknAnD4lAsa1CyfV4s2M+tgez3zaNkh5OYbsJmZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcKj1MzMOtgV7xhbdgi5OeGYmXWw08Yd37jSEOFTamZmVoimEo6kasvNmJlZSfZ8ejl7Pr287DByafYI54+Szpb0tkGJxszMmjLv8pOYd/lJZYeRS7MJ5xLgSOBBST+XNFXSFoMQl5mZdZmmEk5EfDMidgIOBh4GzgWekvRjSQcNRoBmZtYdWho0EBG3RsS/AtuR3FL7rcBCSSskTZf0D+0M0szMOt9AR6mNBt5PctvoXuAO4DPAckmfHGDbZmbWRZpOOJLeLOmbkh4FbgG2Bz4N/ENE/B/gzSTXer7b1kjNzKyjNTXxU9KtJEc0TwBzgMsi4rHKOhHxiqQrgBPbFaSZmXW+ZlcaeBY4DLgpIqJOvcXAji1HZWZmuYw/5vyyQ8it2YQzC/hVtWQj6Q3AOyPi9oh4CXis395mZtZWD263S9kh5NbsNZzbgN1rbHtrut3MzKyfZhOO6mx7A7B6ALGYmVmTZiy4kBkLLiw7jFwanlKT9H5gTEXRZySNy1TbBPgQ8ED7QjMzs0YmL1kIdMaq0Xmu4byHZHInQAAfA17O1Pk7sAz4SvtCMzOzbtIw4UTEd0nn1Ej6PXBERCwe7MDMzKy7NDVKLSI81NnMzFqS5xrOYcCdEbEy/buuiLihLZGZmVlXyXOEMw/YF/hF+ndQe7RaAL5Jm5mZ9ZMn4ewIPFXxt5mZDREPjNy57BByyzNo4LFqf5uZWfkOn3JB2SHklucazqbNNBgRnvxpZmb95Dmltork2kxevoZjZmb95Ek4n6a5hGNmZgVZMXM8AKOmzSs5ksbyXMOZU0AcZmbW5QZ6i2kzM7Nc8gwa+AUwJSKWSvolDU6vRcQ+7QrOzMy6R55rOL8BXqj429dzzMysaXmu4Xyq4u8pgxqNmZl1rZav4SixjaR6N2UzMzMDmlwtGl5bzPN04F3p/i9Lug/494i4vs3xmZlZHaeOPa7sEHJrKuFI+ixwEXALcCLwv8C2wETgfyR9ISIuaXuUZmZW1ZV7Z2/APHQ1e4RzGjA7Ij6fKb9Y0sXA1wAnHDMz66fZazhbA9fW2HYNsFWjBiTtLukWSaslPSnpTEl1l8ORNEpSVHlcVaXuBEkPSHpR0lJJk3J9MjOzDnT04gUcvXhB2WHk0uwRzm3AAcBNVbYdANxeb2dJI4CbgaXABGBn4BySxHd6jvf/MnBXxetnM+3vT5L4LgJOAA4DrpTUGxE35mjfzKyjnLVwFtAZp9byTPzcveLlfwDfl7Q1cB2vX8M5AjgU+EyD5j4HDAMmRsRK4CZJWwDTJZ2dltXzcETcU2f714HbI+KE9PVtkvYAvgE44ZiZlSjPEc6DrD3ZU8Bn00f27p8LqL9a9KHAwkxiuQqYSXKENDdHPFVJ2hj4AMmRTaWrgMskbRkRz7favpmZDUyehPOBNr7fbsCtlQUR8bik1em2RgnnMklbkRxZXQl8LSL6VkHYGdgQWJbZ5yGSU3a7Ar8cWPhmZtaqPCsNLGrj+40AnqtS3ptuq2UN8D2S02IrgTHANJIkM6Gibaq035vZvhZJU4GpACNHjqSnp6de/LmtWrWqbW11M/dTPu6nfNaVfjp5r5cbltXrh7L6qemJn30krQdski3PccfPamuxqUZ5X5tPAZWzm3okPQNcJGnviFhcp33VKO9rezYwG2D06NExZsyY+tHn1NPTQ7va6mbup3zcT/msK/005ZTX59gfnz6f88DaP+crPjGm5v5l9VNTw6LT5WymSVoOvAT8tcqjnl5geJXyLal+5FPP1enzOyvapkr7fa+bbd/MzNqo2SOcE4BTgLOBfwe+DbwCHAVsBMxosP8ykms1r5G0A7AZ/a+9NBKZ50dJkuBuQOVpwN2AV4FHmmzfzGzI64Q7ffZpduLnvwHfJEk4ANdFxBnAHiQJ4y0N9p8PjJW0eUXZJJLbHzR7rejI9Pk+gIhYQzJP6GOZepOAuz1CzcysXM0e4ewILI6IVyS9RHq6KiJelXQR8H2SI6BaLiY5SrpW0kxgJ2A6cG7lUOn0lN2iiDg2fT0d2Jxk0udK4P3AV4BrI+LXFe1/i+T6zvkk84QOSx9Df0aUmVmXa/YI58/AG9K/Hwf+uWLbCJJJnTVFRC9wIMlcnbnAGcB5JEdNlTZg7fk8y0jm6VwG3ABMBr6bPle2fyfJkc9BwELgw8BkrzJgZt1q7pwTmTvnxLLDyKXZI5y7gHeT/OhfQbJCwFbA34EvkqwiXVdELAU+2KDOqMzrq0gmcDYUEdeRHN2YmXW9vZ55tOwQcms24UwH3pT+PYPklNoUkiObm3h9hJ6Zmdlamko4EfEw8HD69xqSe+J0xrGcmZmVaiATP/8R2B54MiL+2L6QzMysGzU7aABJn5f0B+Ax4OfA45KekPSFtkdnZmZdo9mVBr4BzCKZT/MhYHT6PB/4j3S7mZlZP82eUvsiMCMivp4pX5CubfZF4My2RGZmZg1d8Y6xZYeQW7MJZxi17+q5CI9SMzMr1GnjOudnt9lrONcBE2ts+yjQOYv6mJlZofLcYvqwipfzgbMljaL/Lab3AL7a/hDNzKyWPZ9eDsCD2+1SciSN5TmlNo/+t5J+E1DtxOGPSO7EaWZmBZh3+UlAZ6wanSfh7DjoUZiZWdfLc4vpx4oIxMzMulvTKw1I2oBkgMD+wFbAX4A7SG4V0P9G22ZmZjSZcCRtC9wIvB1YATwD7Ecy/2aJpEMi4k/tDtLMzDpfs8OizwW2Bt4TETtFxH4RsRPwnrT83HYHaGZm3aHZhHMYMC0ifllZmL4+lWSZGzMzs36avYazMfDXGtv+Cmw0sHDMzKwZ4485v+wQcms24dwDTJN0a0T8ra9Q0mbAtHS7mZkVpBMmfPZpNuGcDNwG/EHSjSSDBrYlmQQqYExbozMzs67R1DWciFgMvAWYDWwDHEyScC4G3hIRS9oeoZmZ1TRjwYXMWHBh2WHkkvsIR9KGwD7A7yPilMELyczM8pq8ZCHQGatGN3OE8wpwK/C2QYrFzMy6WO6EExGvAr8FRg5eOGZm1q2anYfzNeAbkvYajGDMzKx7NTtK7XSSFQUWS/ojySi1qKwQEfu0KTYzM+sizSacB9OHmZlZU3IlHEnDSJa1eRB4Grg5Ip4ZzMDMzKyxB0buXHYIueW5xfROwM3AqIrilZI+HhE3DlZgZmbW2OFTLig7hNzyDBo4G3gV+BdgU2AP4H7gkkGMy8zMukyehLMfcHpE3BURL0bEQ8BngX+StP3ghmdmZt0iT8LZHvhdpuxRkrXTtmt7RGZmltuKmeNZMXN82WHkknceTjSuYmZmVlveYdELJb1cpfyWbHlEbDvwsMzMrNvkSThnDHoUZmbW9RomnIhwwjEzswFrdi01MzOzljjhmJlZIZpdS83MzIaQU8ceV3YIuTnhmJl1sCv3Hld2CLn5lJqZmRXCCcfMrIMdvXgBRy9eUHYYuRSecCTtLukWSaslPSnpTEnrN9jn3ZIuk7Q83e9hSd+UtEmm3nRJUeXROcecZmZNOGvhLM5aOKvsMHIp9BqOpBEktzpYCkwAdgbOIUl8p9fZdVJadybwW+DtwLfS549m6j4PZBPMQwON3czMBqboQQOfA4YBEyNiJXCTpC2A6ZLOTsuqmRkRf6p43SPpReASSW+OiMcqtr0cEfcMTvhmZtaqok+pHQoszCSWq0iS0AG1dsokmz73p89eu83MrAMUnXB2A5ZVFkTE48DqdFsz3ktyY7iHM+XDJT0r6SVJ90ua2HK0ZmbWNkWfUhsBPFelvDfdlouk7YCvAf+VOVpaDnwVWAy8geRGcddI+mhEXFujranAVICRI0fS09OTN4y6Vq1a1ba2upn7KR/3Uz7rSj+dvFf/xfuzZfX6oax+KmPiZ7V766hGef+K0kbAT4FVwJfWajjiR5m6c4GfAd8AqiaciJgNzAYYPXp0jBkzJk8YDfX09NCutrqZ+ykf91M+60o/TTnl+tf+Pj59PueBtX/OV3xiTM39y+qnohNOLzC8SvmWVD/yWYskAT8E9gDeFxG99epHREi6Fpgpaf2IeKWFmM3MhqxR0+aVHUJuRSecZWSu1UjaAdiMzLWdGs4jGU59cETkqd/Hdyw1MytZ0YMG5gNjJW1eUTYJeAFYVG9HSaeSHD1+MiLuzPNm6RHREcASH92YmZWr6COci4ETgGslzQR2AqYD51Ze/Je0HFgUEcemrycDM4A5wB8l7VvR5qN9w6YlLQKuITla2gz4N2Bf4COD+7HMzMoxd86JABw+5YKSI2ms0IQTEb2SDgRmAXNJrtucR5J0snFVLndzSPo8JX1U+hRJIoJklNpJwPYkQ6Z/BXwoIua3I34zs6Fmr2ceLTuE3AofpRYRS4EPNqgzKvN6Cv0TTbX9jh1AaGZmNoi8WrSZmRXCCcfMzArhhGNmZoVwwjEzs0KUsbSNmZm1yRXvGFt2CLk54ZiZdbDTxh3fuNIQ4VNqZmZWCCccM7MOtufTy9nz6eVlh5GLT6mZmXWweZefBHTGqtE+wjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcLDos3MOtj4Y84vO4TcnHDMzDrYg9vtUnYIufmUmpmZFcIJx8ysg81YcCEzFlxYdhi5OOGYmXWwyUsWMnnJwrLDyMUJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwzMysEJ74aWbWwR4YuXPZIeTmhGNm1sEOn3JB2SHk5lNqZmZWCCccMzMrhBOOmVkHWzFzPCtmji87jFyccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhfBKA2ZmHezUsceVHUJuTjhmZh3syr3HlR1Cbj6lZmZmhXDCMTPrYEcvXsDRixeUHUYuPqVmZtbBzlo4C+iMU2s+wjEzs0IUnnAk7S7pFkmrJT0p6UxJ6+fYb0tJl0nqlfS8pB9L2rpKvQmSHpD0oqSlkiYNzicxM7NmFJpwJI0AbgYCmACcCZwMnJFj958AY4DPAFOAdwPXZdrfH7gGuA04FLgeuFLSIW35AGZm1rKir+F8DhgGTIyIlcBNkrYApks6Oy3rR9J+wFjggIi4PS37I/BzSQdFxM1p1a8Dt0fECenr2yTtAXwDuHHwPpaZmTVS9Cm1Q4GFmcRyFUkSOqDBfs/0JRuAiPgF8Pt0G5I2Bj4A/DSz71XAfpK2HHj4ZmbWqqKPcHYDbq0siIjHJa1Ot82ts9+yKuUPpdsAdgY2rFLvIZLEuivwy9bCNjN73ahTrm9YZ8V3PlRAJJ2l6IQzAniuSnlvuq2V/XaqqEOVer2Z7WuRNBWYmr5cJenhOnE0443As21qq5u5n/JxP+UzZPpJMwt6n74/Mnf9bPD+7eynN+etWMY8nKhSphrlreyXfa0a5UlhxGxgdoP3bpqkeyNidLvb7Tbup3zcT/m4n/Ipq5+KvobTCwyvUr4l1Y9gGu03vGK/3oqybB0atG9mZoOs6ISzjNevuQAgaQdgM6pfo6m5X6ry2s6jwEtV6u0GvAo80kK8ZmbWJkUnnPnAWEmbV5RNAl4AFjXYb7t0ng0AkkaTXL+ZDxARa0jm33wss+8k4O6IeH7g4Tel7afpupT7KR/3Uz7up3xK6SdFNLp00sY3SyZ+LgUeBGaSJIxzgfMj4vSKesuBRRFxbEXZApKRZl8mOWKZCfxvRPxLRZ39gR5gFsmk0MPS+uMiwvNwzMxKVOgRTkT0AgcC65MMgT4DOA/4ZqbqBmmdSkeRHAX9APghcB9wRKb9O4EjgYOAhcCHgclONmZm5Sv0CMfMzNZdXi26AS822lgrfSTp3Wn/LE/3e1jSNyVtkqk3XVJUeQz9tdgzWuynUTU+/1VV6nb8dwla7qda35OQdGpFvTk16lQblDSkSdpF0iWSlkh6RVJPzv1K+23y/XDqqFhsdCnJYqM7A+eQJOrT6+wKyWKjbyVZbLTvmtN1QPaa0zXARcAJJNecrpTU2ymnAQfQR5PSujOB3wJvB76VPn80U/d5IJtgHhpo7EUa4HcJkmuRd1W8XmvSXjd8l2BA/fR9IHsXso8A00gHFlVYBnwqU7aitYhLtQfJf+d7gI2a2K+836aI8KPGAziVZH7PFhVlXwVWV5ZV2W8/komm768o2yctO6iibCFwa2bfG4A7y/7sBfTRNlXKpqZ99OaKsunAs2V/zhL7aVTaJ+MbtN/x36WB9FONtq4HHsqUzQHuLftztqmv1qv4+2qgJ8c+pf42+ZRafV5stLGW+igi/lSl+P70edv2hTdktPpdaqiLvkvQpn6StBVwMHBle8MbOiLi1RZ2K/W3yQmnvn6LhkbE4yT/2qp3zrddi412glb7qJr3khziZ9ezGy7pWUkvSbpf0sSWoy3PQPvpsvQ8/VOSzpU0rGJbt3yXoH3fpyNJ+qTftS5gd0krJa2RdKekASX8DlPqb5MTTn2DsdjoiIo6VKlXd7HRIajVPlqLpO2ArwH/lfnX7XKSUyofJ7m28yRwTQcmnVb7aQ3wPeBYkikFlwCfZ+0f0m75LkGbvk8k0yh+FRHZFUbuJ7np4+HAJ0imX9wkaZ8WYu1Epf42edBAY0NqsdEhqtU+SipKG5Ecvq8CvrRWwxE/ytSdC/yM5KZ617YSbIma7qeIeAo4rqKoR9IzwEWS9o6IxXXa78TvEgz8+7Q9yem3af0ajrggU/d6kgEKp5EMMlgXlPbb5COc+rzYaGOt9hEAkkQykXcP4LBIJgfXFMnVy2uBt+cZnj6EDKifMq5On99Z0TZV2u+07xK0p58+TvLj+JNGFSPiBZKL4e9sVLdLlPrb5IRTnxcbbazVPupzHsnw1wkRkad+n077V/tA+6lSZJ675bsE7emno0hGU/2hiffttO9Tq0r9bXLCqW9dWmy0Va32EemEvOOBT0ayLFFD6RHREcCSiHiltZBL0XI/VXFk+nwfdNV3CQbYT5JGAfuSc3RaOvjiUNK+XAeU+9tU9ljyofwguTj2FHATyfpsU0muM3w7U285cGmmbAHwO2Aiybnhh4E7MnX2B14GzgfGAGeT/AvikLI/+2D3ETCZ5F+Vl5H8QFQ+tqmot4hk4tkhJInmhrSPPlz2Zy+on6aTTHycmO53JsmP7zXd9l0aSD9VlJ9C8q/zavO8tgTuAD5LMgBjEsmkyTXA6LI/ewt9tSnJPz6OBO4GflPxetNa/VTmb1PpnTbUH8DuwK3p/+RPkcyGXz9TZwUwJ1M2PP0xfQ5YCVwBvLFK+x8hWT17Dckh7VFlf+b7FSn1AAAAk0lEQVQi+ohkAl7UeEypqHdp+j/HC8Df0h+MQ8v+zAX201HAvSSrLfw9/QE5E9i4G79LrfZTRfliYEGNdjchuf73h7SPnk9/fPct+zO32E+j6vw/NKpWP5X52+TFO83MrBC+hmNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCvH/AZS9ZydPm2mDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# print results\n", + "print('Exact value: \\t%.4f' % cdf[x_eval])\n", + "print('Estimated value:\\t%.4f' % result_cdf['estimation'])\n", + "print('Probability: \\t%.4f' % result_cdf['max_probability'])\n", + "\n", + "# plot estimated values for \"a\"\n", + "plt.bar(result_cdf['values'], result_cdf['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.axvline(cdf[x_eval], color='red', linestyle='--', linewidth=2)\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('CDF(%s)' % x_eval, size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Value at Risk\n", + "\n", + "In the following we use a bisection search and QAE to efficiently evaluate the CDF to estimate the value at risk." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def run_ae_for_cdf(x_eval, num_eval_qubits=3, simulator='statevector_simulator'):\n", + " \n", + " # run amplitude estimation\n", + " multivariate_var = get_cdf_operator_factory(x_eval)\n", + " ae_var = AmplitudeEstimation(num_eval_qubits, multivariate_var)\n", + " result_var = ae_var.run(BasicAer.get_backend(simulator))\n", + " \n", + " return result_var['estimation']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def bisection_search(objective, target_value, low_level, high_level, low_value=None, high_value=None):\n", + " \"\"\"\n", + " Determines the smallest level such that the objective value is still larger than the target\n", + " :param objective: objective function\n", + " :param target: target value\n", + " :param low_level: lowest level to be considered\n", + " :param high_level: highest level to be considered\n", + " :param low_value: value of lowest level (will be evaluated if set to None)\n", + " :param high_value: value of highest level (will be evaluated if set to None)\n", + " :return: dictionary with level, value, num_eval\n", + " \"\"\"\n", + "\n", + " # check whether low and high values are given and evaluated them otherwise\n", + " print('--------------------------------------------------------------------')\n", + " print('start bisection search for target value %.3f' % target_value)\n", + " print('--------------------------------------------------------------------')\n", + " num_eval = 0\n", + " if low_value is None:\n", + " low_value = objective(low_level)\n", + " num_eval += 1\n", + " if high_value is None:\n", + " high_value = objective(high_level)\n", + " num_eval += 1 \n", + " \n", + " # check if low_value already satisfies the condition\n", + " if low_value > target_value:\n", + " return {'level': low_level, 'value': low_value, 'num_eval': num_eval, 'comment': 'returned low value'}\n", + " elif low_value == target_value:\n", + " return {'level': low_level, 'value': low_value, 'num_eval': num_eval, 'comment': 'success'}\n", + "\n", + " # check if high_value is above target\n", + " if high_value < target_value:\n", + " return {'level': high_level, 'value': high_value, 'num_eval': num_eval, 'comment': 'returned low value'}\n", + " elif high_value == target_value:\n", + " return {'level': high_level, 'value': high_value, 'num_eval': num_eval, 'comment': 'success'}\n", + "\n", + " # perform bisection search until\n", + " print('low_level low_value level value high_level high_value')\n", + " print('--------------------------------------------------------------------')\n", + " while high_level - low_level > 1:\n", + "\n", + " level = int(np.round((high_level + low_level) / 2.0))\n", + " num_eval += 1\n", + " value = objective(level)\n", + "\n", + " print('%2d %.3f %2d %.3f %2d %.3f' \\\n", + " % (low_level, low_value, level, value, high_level, high_value))\n", + "\n", + " if value >= target_value:\n", + " high_level = level\n", + " high_value = value\n", + " else:\n", + " low_level = level\n", + " low_value = value\n", + "\n", + " # return high value after bisection search\n", + " print('--------------------------------------------------------------------')\n", + " print('finished bisection search')\n", + " print('--------------------------------------------------------------------')\n", + " return {'level': high_level, 'value': high_value, 'num_eval': num_eval, 'comment': 'success'}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--------------------------------------------------------------------\n", + "start bisection search for target value 0.950\n", + "--------------------------------------------------------------------\n", + "low_level low_value level value high_level high_value\n", + "--------------------------------------------------------------------\n", + "-1 0.000 1 0.691 3 1.000\n", + " 1 0.691 2 0.962 3 1.000\n", + "--------------------------------------------------------------------\n", + "finished bisection search\n", + "--------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# run bisection search to determine VaR\n", + "num_eval_qubits = 4\n", + "objective = lambda x: run_ae_for_cdf(x, num_eval_qubits=num_eval_qubits)\n", + "bisection_result = bisection_search(objective, 1-alpha, min(losses)-1, max(losses), low_value=0, high_value=1)\n", + "var = bisection_result['level']" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Estimated Value at Risk: 2\n", + "Exact Value at Risk: 2\n", + "Estimated Probability: 0.962\n", + "Exact Probability: 0.959\n" + ] + } + ], + "source": [ + "print('Estimated Value at Risk: %2d' % var)\n", + "print('Exact Value at Risk: %2d' % exact_var)\n", + "print('Estimated Probability: %.3f' % bisection_result['value'])\n", + "print('Exact Probability: %.3f' % cdf[exact_var])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Conditional Value at Risk\n", + "\n", + "Last, we compute the CVaR, i.e. the expected value of the loss conditional to it being larger than or equal to the VaR.\n", + "To do so, we evaluate a piecewise linear objective function $f(L)$, dependent on the total loss $L$, that is given by\n", + "\n", + "$$ f(L) = \\begin{cases} \n", + "0 & \\text{if}\\quad L \\leq VaR \\\\\n", + "L & \\text{if}\\quad L > VaR.\n", + "\\end{cases} $$\n", + "\n", + "To normalize, we have to devide the resulting expected value by the VaR-probability, i.e. $\\mathbb{P}[L \\leq VaR]$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# define linear objective\n", + "breakpoints = [0, var]\n", + "slopes = [0, 1]\n", + "offsets = [0, 0] # subtract VaR and add it later to the estimate\n", + "f_min = 0\n", + "f_max = 3 - var\n", + "c_approx = 0.25\n", + "\n", + "cvar_objective = PwlObjective(\n", + " agg.num_sum_qubits,\n", + " 0,\n", + " 2**agg.num_sum_qubits-1, # max value that can be reached by the qubit register (will not always be reached)\n", + " breakpoints, \n", + " slopes, \n", + " offsets, \n", + " f_min, \n", + " f_max, \n", + " c_approx\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "var = 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "multivariate_cvar = MultivariateProblem(u, agg, cvar_objective)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "num_qubits = multivariate_cvar.num_target_qubits\n", + "num_ancillas = multivariate_cvar.required_ancillas()\n", + "\n", + "q = QuantumRegister(num_qubits, name='q')\n", + "q_a = QuantumRegister(num_ancillas, name='q_a')\n", + "qc = QuantumCircuit(q, q_a)\n", + "\n", + "multivariate_cvar.build(qc, q, q_a)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we first use quantum simulation to validate the quantum circuit." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "job = execute(qc, backend=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Estimated CVaR: 3.3796\n", + "Exact CVaR: 3.0000\n" + ] + } + ], + "source": [ + "# evaluate resulting statevector\n", + "value = 0\n", + "for i, a in enumerate(job.result().get_statevector()):\n", + " b = ('{0:0%sb}' % multivariate_cvar.num_target_qubits).format(i)[-multivariate_cvar.num_target_qubits:]\n", + " am = np.round(np.real(a), decimals=4)\n", + " if np.abs(am) > 1e-6 and b[0] == '1':\n", + " value += am**2\n", + "\n", + "# normalize and add VaR to estimate\n", + "value = multivariate_cvar.value_to_estimation(value)\n", + "normalized_value = value / (1.0 - bisection_result['value']) + var\n", + "print('Estimated CVaR: %.4f' % normalized_value)\n", + "print('Exact CVaR: %.4f' % exact_cvar)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we run QAE to estimate the CVaR." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# run amplitude estimation\n", + "num_eval_qubits = 7\n", + "ae_cvar = AmplitudeEstimation(num_eval_qubits, multivariate_cvar)\n", + "# result_cvar = ae_cvar.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result_cvar = ae_cvar.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print results\n", + "print('Exact CVaR: \\t%.4f' % exact_cvar)\n", + "print('Estimated CVaR:\\t%.4f' % (result_cvar['estimation'] / (1.0 - bisection_result['value']) + var))\n", + "print('Probability: \\t%.4f' % result_cvar['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result_cvar['values'], result_cvar['probabilities'], width=0.5/len(result_cvar['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for expected loss (after re-scaling and reversing the c_approx-transformation)\n", + "normalized_values = np.array(result_cvar['mapped_values']) / (1.0 - bisection_result['value']) + var\n", + "plt.bar(normalized_values, result_cvar['probabilities'])\n", + "plt.axvline(exact_cvar, color='red', linestyle='--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('CvaR', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/qiskit/finance/simulation/european_call_option_pricing.ipynb b/qiskit/finance/simulation/european_call_option_pricing.ipynb new file mode 100644 index 000000000..b1dd21893 --- /dev/null +++ b/qiskit/finance/simulation/european_call_option_pricing.ipynb @@ -0,0 +1,515 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Pricing European Call Options*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "Suppose a European call option with strike price $K$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$\\max\\{S_T - K, 0\\}$$\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ \\max\\{S_T - K, 0\\} \\right]$$\n", + "
\n", + "as well as the corresponding $\\Delta$, i.e., the derivative of the option price with respect to the spot price, defined as:\n", + "
\n", + "
\n", + "$$\n", + "\\Delta = \\mathbb{P}\\left[S_T \\geq K\\right]\n", + "$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", + "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", + "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits to represent the uncertainty\n", + "num_uncertainty_qubits = 2\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAE0CAYAAAAPLBVzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYXFW57/HvT8YQpsgQEJAwKXKIojRqRKURFAEVZQpHrhrAE/EIeDWICIoh6BWCwEEBISJEnMIgDkwyBDvIDBE0gkGDJBECyJAQMhAJee8fazenqFR1VXXt6p3q+n2ep57uWnt6a3V1vbXXWnttRQRmZmZ5eV3RAZiZ2eDixGJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcrV60QEUYeONN44RI0YUdvzFixczdOjQwo7fKVzPA8d1PTCKrufp06c/GxGb1FqvIxPLiBEjuP/++ws7fk9PD93d3YUdv1O4ngeO63pgFF3PkubUs56bwszMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsVx155b21hxEnXtfU9uNGLmdMk/uYffr+TW1v1ol8xmJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsV04sZmaWq8ITi6SdJE2VtETSPEkTJK1WY5sRkqLCY8pAxW1mZpUVOm2+pGHALcDDwAHAdsBZpIT39Tp2cTxwR8nzZ/OO0czMGlP0/ViOBoYAB0bEQuBmSesD4yVNzMr68khE3N3yKM3MrG5FN4XtC9xYlkCmkJLNHsWEZGZmzSg6sewIzCwtiIi5wJJsWS2XSnpF0pOSzpY0pBVBmplZ/YpuChsGLKhQPj9bVs0y4HzgJmAh0A18ldRHc0C+IZqZWSOKTiwAUaFMVcrTBhFPAseUFPVIehq4QNIuEfHgSjuUxgJjAYYPH05PT09TQTdj0aJFhR6/XYwbubyp7YcPaX4f/jvVx+/pgdEu9Vx0YpkPbFihfAMqn8n05SrgAuAdwEqJJSImAZMAurq6oru7u8Hd56enp4cij98uxpx4XVPbjxu5nLNmNPcWn314d1Pbdwq/pwdGu9Rz0X0sMynrS5G0FTCUsr6XOkTZTzMzK0DRieUGYB9J65WUjQaWAtMa3NfB2c/peQRmZmb9U3RT2IXAccDVks4AtgXGA2eXDkGWNAuYFhFHZc/HA+uRLo5cCLwf+ApwdUT8eSBfgJmZvVahiSUi5kvaCzgPuIbUr3IOKbmUWh0oneZlJumq+8+SrnmZC5wJfLvFIZuZWQ1Fn7EQEQ8DH6ixzoiy51NIF1Kamdkqpug+FjMzG2ScWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsV04sZmaWKycWMzPLlROLmZnlyonFzMxy5cRiZma5cmIxM7NcObGYmVmunFjMzCxXDd+aWNJI4J3AZsDawPPA34A7I2J+vuGZmVm7qSuxSNoW+DxwODAcWAEsAJYBGwLrACskTQMuBi6PiBUtidjMzFZpNZvCJF0MPATsAkwA3g6sHRGbRMSWEbEusCnwUWAGMBH4q6T3ti5sMzNbVdVzxvISsGNEzKm2QkQ8C9wA3CDpy8AhwBb5hGhmrTTixOua3se4kcsZ08R+Zp++f9Mx2KqjZmKJiGMa2WHWBHZ5vyMyM7O21nDnfSlJOwN7AAKmRcSMXKIyM7O21e/hxpI+D9wGdAP7AfdK+u+c4jIzszZVT+f9OlUWfRUYFRGHRMR+wBeAkxsNQNJOkqZKWiJpnqQJklZrYPvXSZouKSR9pNHjm5lZvuo5Y/mbpMMrlIs07LhXNHpwScOAW7JtDyCNOhsHnNrAbj6LBwqYma0y6kksnwS+LOkuSbuVlE8E7pZ0haRrgQuA0xs8/tHAEODAiLg5Ii4kJZUvS1q/1sZZYvo2/ThTMjOz1qiZWCLiNqALuAT4raTLJG0eEecDHwBuB24iNYt9v8Hj7wvcGBELS8qmkJLNHnVsfxpwBzC1weOamVmL1NV5H8kPgTcDTwMzJJ0EzIyI72WPB/tx/B2BmWXHmgssyZZVJemtwBHA8f04rpmZtYgiGu4aQdL2wFnAW4GvRMRV/Tq49HK2/f+UlT8OXBYRJ/Wx7TTgnog4QdII4DHgoxFxbZX1xwJjAYYPH77rlClT+hNyLhYtWsS6665b2PHbxYwnXmhq++FD4OmlzcUwcosNmttBG2i2nqH5uu6Ees5D0Z8de+655/SI6Kq1Xs3rWLJRYScBHwTWBO4DJkTEAZL2Bs6RdCxwXET8qR+xVspsqlLeG9NhpLOnj9Z9kIhJwCSArq6u6O7ubizKHPX09FDk8dtFM1dyQ7oa/KwZTV2qxezDu5vavh00W8/QfF13Qj3noV0+O+ppCvsR6QP8LOAbpFmNb5akiLiFNIfYlVnZpAaPP580iWW5DUiTXK5E0hrAmcAZwOskbQj0dvQPlbRegzGYmVmO6kks+wLHR8QVWTPTZ0hnC9sBRMQrEXFeVtboyfBMyvpSJG0FDKWs76XEUGBL4GxSYpoP9J4pTQEeaDAGMzPLUT3nrjOBT0maTpqQ8nPAYuDx0pWye7F8scHj3wB8RdJ6EfFiVjaalKCmVdlmEbBnWdlmwC9ITXa3NhiDmZnlqJ7E8hlgMvAsqd/jMeCQiHgph+NfCBwHXC3pDGBbYDxwdukQZEmzSHORHRURy4Ge0p1knfcAMyLinhziMjOzfqpnduNHgFGShgJr5nmXyIiYL2kv4DzgGlK/yjmk5FIeZ93TvJiZWXHqHsYREYtJTWC5ioiHSRda9rXOiBrLZ5NGkpmZWcHqmYTyU41MCplts72k9/U/LDMza1f1jAobBzwq6TRJb6u2kqSNJB0u6RrSyKzN8wrSzMzaRz19LLtIGg0cC5wsaRHwV1Jn/jLSdSjbAG8kDf39KXB0RDzRsqjNzGyVVVcfS0RcDlwuaTtgb+AdpCG+Q0lzh91GmgyyJyJeblGsZmbWBhqagyEiHgUebVEsZmY2CPT71sRmZmaVOLGYmVmunFjMzCxXTixmZparhhKLpI9IcjIyM7OqGk0SvwGekHSGpLe0IiAzM2tvjSaW7Uh3YTwU+IukuyT9l6T1a2xnZmYdoqHEEhGzI+KbEbEN6VbFs0izET8p6SeSyu+TYmZmHabf/SURcWtEfAp4EzAdOBy4RdJjkr4kqbmbjZuZWVvqd2KRtIekycAjwM7A+cCHgCuBU4HL8gjQzMzaS0NnFZK2Jt1R8jPACNKdHMcCV0fEsmy1qZLuIk1GaWZmHabR5qp/APNItyq+JCIeq7LeQ8C9TcRlZmZtqtHE8lHgdxGxoq+VIuJvgDvyzcw6UKN9LF2k6fJXImlzSac0H5KZmbWzRhPLN4Etqyx7Q7bczMw6WKOJRUBUWbYl6Q6SZmbWwWr2sUjqHQUGKan8QNLCstXWBkYCN+UbnpmZtZt6Ou+XAM9lvwt4AXi+bJ1/AzcAF+QXmpmZtaOaiSUiriRd9IikS4EJfQwzNjOzDtfoXGFH5J1UJO0kaaqkJZLmSZogabUa2/yHpN9l6y+TNFfSxZI2zzM2MzNrXKHzeUkaBtwCPAwcQJo9+SxSwvt6H5tuADxGmjZmHrANaUTarpJ2i4jlrYzbzMyqq6fz/l5gTEQ8LOk+qo8KAyAi3tnA8Y8GhgAHRsRC4OZsCv7xkiZmZZWOcSdwZ0lRj6THSYMH3gr8sYEYzMwsR/WcsTwELC35vc/E0qB9gRvLEsgU4AxgD+CaBvbVO8BgzZxiMzOzfqin8/6Ikt/H5Hz8HYFby443V9KSbFmfiSW7TfLqpKaw04H78BxlZmaFKvr+9cOABRXK52fLarkeWAbMBF4PfKTWPGZmZtZaiui7ZauefpVSjfSxSHoZOD4izi0rfwKYHBEn19h+B1JC2YHU2b8Y2D0iXqqw7ljSFP8MHz581ylTptQbZu4WLVrEuuuuW9jx28WMJ15oavvhQ+DppbXX68vILTZobgdtoNl6hubruhPqOQ9Ff3bsueee0yOiq9Z69fax5NmvUmo+sGGF8g2ofCbzGhHx9+zXeyT9gTRS7JPAJRXWnQRMAujq6oru7u5+hty8np4eijx+uxhz4nVNbT9u5HLOmtHcwMfZh3c3tX07aLaeofm67oR6zkO7fHbU08cypoXHn0nqS3mVpK2AodmyukXEHEnPA9vmF56ZmTWq6D6WG4B9JK1XUjaaNAptWiM7kvRmYCPSWYuZmRWk6OtYLgSOA66WdAbpbGM8cHbpEGRJs4BpEXFU9vy7wHLgHlKT2VuAE4BHScOVzcysIIVexxIR8yXtBZxHGlq8ADiHlFxKrQ6UTvNyP3AsqTN+bWAu8EvgOxGxOK/4zMyscUVfx0JEPAx8oMY6I8qeT8FnJmZmq6SGh3FIWhMYA7wT2Bx4ktQk9eOI+Heu0ZmZWdtpqPNe0luAvwPnAzsDr2Q/zwdmSdop9wjNzKytNHrGMol0o6/3RcTc3kJJbwSuI3XGvz+/8MzMrN00Oty4CzilNKlAmt8LOAXYLa/AzMysPTWaWGaTRmFV0js6y8zMOlijieVE4FuS3lVaKOndwATgq3kFZmZm7ameCyTLL4pcH7hT0r+AfwGbZo/ngJOAX7cgTjMzaxP9mYTyoRbFYmZmg0DRk1CamdkgU/QklGZmNsg4sZiZWa76M6XLaOC/gDdRYehxRGyaQ1xmZtamGp3S5ZPAj4FZwJbAb4Frs/0sJM1SbGZmHazRprCvAKcBX8ieXxARRwLbAM8CS3KMzczM2lCjiWUH4I6IeIU0AeX6ABHxInAGcEy+4ZmZWbtpNLG8AKyV/f4E6c6NvUS6NbCZmXWwRjvv7wfeCtxI6l85RdJy4N+kSSjvyTc8MzNrN40mlu8AW2e/n5L9fgHptsH3kW4VbGZmHayhxBIRdwN3Z78vAA6QtBawVkQsbEF8ZmbWZnK7NbEk35rYzMx8a2IzM8uXb01sZma58q2JzcwsV741sZmZ5arwWxNL2knSVElLJM2TNEHSajW22U3SpZJmZds9IumbkqolPTMzGyCF3ppY0jDgFuBh4ABgO+AsUsL7eh+bjs7WPYM0mOCtpDnM3gocVO/xzcwsf0XfmvhoYAhwYHYdzM2S1gfGS5rYx7UxZ0TEMyXPeyS9BFwkaeuImJNjjGZm1oCib028L3BjWQKZQjoT2QO4pkpMz1QofiD7uSngxGJmVpCGL5AEkPQGYBTwelIT2N0RMa8fu9oRuLW0ICLmSlqSLauYWKp4D7ACeKQfcZiZWU4aSixZp/r3SXeQLO1gf0XSJODYiFjRwC6HAQsqlM/PltUb12bAycBPPLWMmVmxGj1jORU4ktRJfznwNDCc1Jk+gXT2ckqD+4wKZapSvvKKaYqZK4BFwJf6WG8s2SSZw4cPp6enp8Ew87No0aJCj98uxo1c3tT2w4c0v49O+Ds1W0fQfF13Qj3noV0+OxpNLJ8Gvh4R3y0pmwucKSmA42gsscwHNqxQvgGVz2ReQ5KAy4D/AHaPiPnV1o2ISaSZA+jq6oru7u4GwsxXT08PRR6/XYw58bqmth83cjlnzehXa++rZh/e3dT27aDZeobm67oT6jkP7fLZ0eg7YVPgz1WW/Tlb3oiZpL6UV0naChiaLavlHNIw5Q9GRD3rm5lZizV6geTfgMOqLDuMxjvObwD2kbReSdloYCkwra8NJX0NOBb4PxFxe4PHNTOzFmn0jOVbwJRs0smrSH0smwKHAHtSPelUcyGp+exqSWcA2wLjgbNLO+ElzQKmRcRR2fNPAv8PmAw8kV353+vRKsORzcxsADR6o68rJC0gdeKfC6wBvAxMBz4cETc3uL/5kvYCziMNLV5Aat4aXyHO0lFoH8p+jskepY4gJRwzMytA3YlF0hqkm3v9JSJGSXodsDHwbINDjF8jIh4GPlBjnRFlz8ewckIxM7NVQCN9LK+QLmZ8C0BErIiIfzWTVMzMbPCpO7FkCeTvpOtWzMzMKmp0VNjJwCmSRrYiGDMza3+Njgr7OrAR8KCkJ0ijwl5zhXxEvDOn2MzMrA01mlgeAv7SikDMzGxwaHS48ZgWxWFmZoNEXYlF0hBgP2AE8CQwNSKebmFcZmbWpuq5NfG2pNsHjygpXijp0Ii4qVWBmZlZe6pnVNhE0g203gesQ5pJ+AHgohbGZWZmbaqexDKKNFX+HRHxUkT8Ffgc8EZJm7c2PDMzazf1JJbNgX+UlT1KuhnXZrlHZGZmba3eCyTrupujmZlZvcONb5RU6b6jU8vLI6LRm32ZmdkgUk9iObXlUZiZ2aBRM7FEhBOLmZnVrdFJKM3MzPrkxGJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuSo8sUjaSdJUSUskzZM0QdJqNbZZU9KZkv4gaakkz75sZraKKDSxSBpGuu1xAAcAE4Bx1J74ch3gs8AS4M5WxmhmZo2pd9r8VjkaGAIcGBELgZslrQ+MlzQxK1tJRCyQ9PqICEnHAB8YwJjNzKwPRTeF7QvcWJZAppCSzR59bRgRbv4yM1sFFZ1YdgRmlhZExFxSE9eOhURkZmZNKbopbBiwoEL5/GxZbiSNBcYCDB8+nJ6enjx335BFixYVevx2MW5kpZuW1m/4kOb30Ql/p2brCJqv606o5zy0y2dH0YkFUsd9OVUp7/9BIiYBkwC6urqiu7s7z903pKenhyKP3y7GnHhdU9uPG7mcs2Y09xaffXh3U9u3g2brGZqv606o5zy0y2dH0U1h84ENK5RvQOUzGTMzW8UVnVhmUtaXImkrYChlfS9mZtYeik4sNwD7SFqvpGw0sBSYVkxIZmbWjKITy4XAMuBqSXtnHezjgbNLhyBLmiXpR6UbStpX0sHALtnzg7PH1gMXvpmZlSu08z4i5kvaCzgPuIbUr3IOKbmUWh0on+blB0BpErky+3kEMDnvWM3MrD6FjwqLiIepceV8RIyop8zMzIpXdFOYmZkNMk4sZmaWKycWMzPLlROLmZnlyonFzMxy5cRiZma5cmIxM7NcObGYmVmunFjMzCxXTixmZpYrJxYzM8uVE4uZmeXKicXMzHLlxGJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXK1edABmZp1gxInXNb2PcSOXM6bJ/cw+ff+m46il8DMWSTtJmippiaR5kiZIWq2O7TaQdKmk+ZJekPQzSRsNRMxmZlZdoWcskoYBtwAPAwcA2wFnkRLe12tsfjnwZuCzwArgDODXwPtaFa+ZmdVWdFPY0cAQ4MCIWAjcLGl9YLykiVnZSiSNAvYB9oiI27KyJ4B7JO0dEbcMUPxmZlam6KawfYEbyxLIFFKy2aPGdk/3JhWAiLgXeCxbZmZmBSk6sewIzCwtiIi5wJJsWd3bZf5aYzszM2uxopvChgELKpTPz5b1Z7ttc4irqk4a2WFm1h+KiOIOLr0MHB8R55aVPwFMjoiTq2x3M7AoIj5RVv4zYERE7F5hm7HA2Ozpm4FHcngJ/bUx8GyBx+8UrueB47oeGEXX89YRsUmtlYo+Y5kPbFihfAMqn5GUblfpxW1YbbuImARMajTAVpB0f0R0FR3HYOd6Hjiu64HRLvVcdB/LTMr6RCRtBQylch9K1e0y1fpezMxsgBSdWG4A9pG0XknZaGApMK3GdptJem9vgaQuUv/KDa0I1MzM6lN0YrkQWAZcLWnvrB9kPHB26RBkSbMk/aj3eUTcBdwIXCbpQEkfB34G3N4m17CsEk1yHcD1PHBc1wOjLeq50M57SFO6AOcBo0j9IxcD4yPilZJ1ZgM9ETGmpGxD4BzgE6QEeS1wXES4A9HMrECFJxYzMxtcim4KMzOzQcaJxczMcuXEYmZmuXJiMTOzXDmxtJCSAyX9SNKdkmZKekjSrZL+n6Q3FR3jYCdpXUl/k7Rb0bG0O0kHSPqFpCmS9sjKPiTpQUkvSpoh6XNFx9nuJK0v6eOSDpU0NCvbRNJ4SZdlP99QdJx98aiwFpG0CXA9sCvwNOl6nS2AIF3EuS1pzrLTIuK0ouIcDCTt18fioaSbwp0I/AUgIq4fiLgGE0mfBH4KPEC6LOA9wJHAJcCvsvIu4GDgcxFxcUGhtjVJ2wNTga2yoseADwE3k6asepT0ubEU2DUiHi8izlqcWFpE0i9I/2gHRsSMrOwNpH/ExRFxUPat7zrS9TeXFBdte5O0gpSwVWWV0mURETVvfW2vJemPwF0R8YXs+RjSBc7/ExEnlqx3DtAdEW8vJNA2J+kKUuI4CHgeOBd4N/AMsE9EvChpY1LyuTsiVskzRCeWFpG0ADgqIn5ZVj6C9K1jy4h4UtJJwOiIeNvARzk4SJoOvAE4Cbi1bPEGwIPAYcA9ABExZ0ADHAQkvQh8LCJ+nz1fD3iBlERuK1lvL+BXEbF+MZG2N0nzgP8bEVdkz7cmnbUcHBFXl6x3BPC1iFglm9Pdx9I6Al6pUP5KtmyD7Pk9wCr55mgjXcA3gTOAs4HXRcScLIH0JpGnSsqscS8Aw0ue9/5ePsv4JkDFW4pbXYYBT5U8fyL7Wf6+/Qew5YBE1A9OLK1zC/AtSa/eeEzSMOB7pDfO37LidUn/tNZPkUwiJegngT9L+k5vx6fl4mbS+3m/bPLXScAfgPG973FJOwDfAO4oLsy29y9g65LnrwAXkfppS20KvDhQQTXKiaV1vpj9fCSbRPNhYB6wJ6mJbEW2fHf6nsnZ6hQRCyLiGFKdjgL+Dowh9bFYc75Gug/StcBtwNrAAaRv0n/PmspmkgZLfK2oIAeBB0ifEcCrX5o+X6GT/v3AjAGNrAHuY2khSasBhwJvI/0jzgJ+HhHPFxpYh5B0GDCR1GTwmr4Aa5wkkc4K14iIv5SUfZTU4TwHuD4iFhUXZXuTNBxYJyIeq7Hel4E/RcTUgYmsMU4sNqhJWp30LXpR6YzZZtY6Rd+auCNI+g/S3S2HkZplFgAzI+KhQgPrHPuT+gieKTqQdiXpXcB9JU24ZlX5jKWFJB1JGq20JStfYxHAP4FTI+LSgY6tU0jagHQ9QHdE/KHoeNpVdq3QM8CVwC8iwh30BZJ0EHDFqnpNls9YWkTSsaShr5OAKcBfSZ2fkM5cdiRdW3GhpHUi4vxCAh0EJN3bx+LVSEl9UtbBTES8c0ACG3weBP4T+LykJ0jv6ykR8cdiw7JVjc9YWkTSP4ALI2JijfVOAI6OiG37Ws+qy75NPwX8jpXPDNckfRjemK1DRBwxoAEOAlkdv5s0amlf0peij5D6r2YBPyclmUcKC3IQkFTvDBxbk87CV8kzFieWFpG0BNgvInpqrNdNGkmzzkDENRhJ+jhwFvA48MWIeLBk2Yb8b1OYR4X1U29iiYh7S8qGAB8jJZkPk5L4n0hNZWcWEmibk/QK6VqsJ2usOgzYxomlw0i6mzR1y6eqdXhmQzV/CmwXEe8eyPgGG0lrAScAXyE10ZwcEc9kfSzzcWJpSqXEUrZ8feBAUpLZMyLWGsj4BgtJM4F7I+LTNdY7GLh8VU0s7mNpnXGkppmHJV1NunhsAanTfkNSH8snSB37Hy4qyMEiIpYBp0n6Mens5e+STgMuKzayzhARC4HJwGRJGxUcTju7mzRzdC19TbpaOCeWFomIOyTtQvoWfTj/Ow12r3+Sps8/MyIeHej4BquImAscImlP0sywx+Er7/MwjTrnAIuI51ocy2D2faCewRDTKLlCf1XjprABImkd0pkKwIKIWFJkPJ0gm/lgLOlq8e9HxD8KDsmsIzixmJlZrjwJZYtJ2krSrpLWrbJ8Y0l9dtRZ3yR9VdLIouPoBJLeJ+kgSW+psnwLSacMdFyDiaSubHbu0yXtmJW9TdKvs9s/XyNple6X9RlLi2SjlH5KGikDsILUkfzliHihZL13AXeuqqM72kHJHSRnkq6nuDwiZhUb1eCSja67EdiN1GkcQA9wZOk9bvx+bo6kfYBrSEPkF5Pub3MAcDXwMOki1V1Jf4eDIuLXBYXaJ5+xtM5XgQ8CRwPvAo4nXVB2f3bfCsvXRNKd9k4h3argPklfkrRFwXENFqeSBqB8mHQvkANJd+28X1I9o5isPqcAvwG2iIjtgNNJSeXqiNg9Ir6QXZrwc+DEPvZTKCeW1vkk8PWI+GFE3B8R55Kmz38SuFPSqGLDG3R+FREfATYDPk8awXQmMEdSj6SxHgbblI+Srg26OSKejYjfAO8g3dDulmzuKmvezsBFJTNx/4B0t9mfla33E9IlC6skJ5bW2Qr4c2lBRDwF7AVMJf0zfryIwAaziJgfEZMiYi/SNULjSFeEXwjMk3RdoQG2r81It8N9VUQsjYj/BM4DLpd0XCGRDS5LSdPk9Or9fUjZeusALw1IRP3gxNI684CVmrwi4uWIOAz4IWmm2LEDHViniIinIuLciHgPsA1ppuk3FBxWu5oDVBwgERG9Mx6cQ6pj6787gFMk7SRpS+C7pL6Vr0paD17t7zoBmF5cmH1z532LZJPJbRsR3X2s8zXg26Q7kLqzs59qTTdizZN0PjAqIt7RxzqfBC4FVvf7uX8kbU9qXuy9oHo26ULIq0hNX3OAEcBy0tQ5D668l+L5yvvWuQAYLWmjalciR8R3JM0hdfJb/51KmoDSWudc0vREwyJifqUVIuLn2XT63QMa2SASEbMk7QzsDqwBTI2IpdlktZ8l3QL6J6RbnK+y73mfsZiZWa7cx2JmZrlyYimYpB9K+lHRcXQC13XrSbpF0tSi4xjsVvV6dh9L8fbECX6guK5bT7iOB8IqXc/uYzEzs1ytshmvU0haW9Ibi46jE7iuW0/SGq7j1lvV69mJpXj7k+a4stZzXTdB0hckPSrpRUn3SPpUhdXegeu4KYOhnp1YzKwmSYeR7m54N+m6oXmk2xBfJal8uhHrp8Gq98+BAAAKT0lEQVRSz+5jaRFJt9a56ibATr5Suf9c160n6X7g1mz6lt6yvUiTI84G9o+I5zxtfnMGSz37jKV13g8MB56r8XixqAAHEdd1670ZuL60ICKmAu8mzb57l6TtighskBkU9ezhxq3zF+CRiBjd10qSDgYuH5iQBi3Xdeu9AGxcXhgRs7P7sVwH3AmcNtCBDTKDop59xtI695C+ZdQSpDHp1n+u69abDlS8zUM2d9hewP3A9wYyqEFoUNSzE0vrTASOrWO960lTulv/ua5b76fAtpJeX2lhRCwFPgZcDMwdyMAGmUFRz+68NzOzXPmMxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYOpSkMZKmZ/MRzZf0gKSzW3SsQyWNqWO98ZKi5DFP0i/rvSBM0uTsyuXC1fuas3V7X/ffqyyflS0f36oYGtzva+o57+NIep2kY7L35FJJCyU9JOl7kvo1XFzJnyR9psryyZJGVFl2vu/j0xgnlg4k6Wuk4Yo3AgcCnwZ+QxrG2AqHAmPqXPcFYFT2OB7YBZgqaWgd257WwHFarZHXDPASsI2krtJCSbsBW2fLWx1DvcrrOe/jTAG+BVxNek9+hjRU/D3R/2GshwLDgJ/3Y9szgcMlbd/PY3ccX3nfmY4BLoqIk0rKrpF0alEBlVgeEXdnv98taS7wB2A/4MrylSWtBqwWEf+OiEcHMM68LQb+CBxGugCu12HArcCuRQTVa6DqWdK+wCHAfhFxQ8miX/X3bCVzHPCTiHi55Firk5Lkp4A3AP8p6VHg1Ih4dYaG7Kr324HPA+OaiKFj+IylM20IPFVeWPptsLe5Q9LHJc2U9JKk2yXtVL5d1hQyQ9IySf+U9O3snxZJk4GDgD1KmrjGNxDr9OzniApxPUT6Jv+u0mVlsb1f0u8lLZL0gqQeSW8vWf5eSdMkLZH0nNLti9frKyBJoyT9NmuqWyzpQUmHl9ZdP1/zFODQ3g/Q7OehWXluMWR1cFXZ/rqzdXYurcta9VztOJL2l7RC0jZlx9kmK692drxH9nOliUX7e7aSnWm8B7iqbNEXgRNIV7FfDxwJXAJsVGE3vySdtfgzsw4+Y+lMfwSOzc4Gro2I56qstzVwNvANYClpGu8bJe0QES8BSPoQaf6ty4CvAG8lfQvcCDg6+/2NpGT239l+H28g1hHZz6fKyiYCE4CnqXJfCkndwM3A70nNKYuB3YEtgAck7Q5MBX4NHJzFfDqpyeTgPmLaGrgDuJD0gbs7cKmkFRHxC/r/mq8GfgC8l3SW9j7SjMy/IjXHDEQMpUZQu56rHedJ0pTvnwHGl6w/BniGsokWSyzOfp4p6ayImNNgzJXsle33T2Xle5BmEp6YfWG6IyJmV9nHnaSJTkdW2I+Viwg/OuxB+vD/B2nurBXAQ6QPj/VL1pmcLX9PSdnWwHLg6JKyu4Hfl+3/BOAVYMvs+VVATx1xjQeeJX3hWR14EykpLAQ2L4trlwrbTwbuL3l+F6lZSVWO94cKsX8g2//OddalslgvIn1I9ZbX9ZpLX3f2+2+A87PfLwB+nf3+LDA+jxiAHuCqsrLu0tfdYD1XO863SMlIJXHOBr7bR11sBvw5O3aQJhg9CVi3iff7JOC+CuUXAf/MjjkZGNHHPlbP3vv/1d84Ounh07oOFBF/Bt5C6hi9gPQP/w3gfknrlqz6r4i4s2S7OaSmqXfCq+3u72Dlvo/LSc2so/oR3kbAy9njEWBbYHREPFmyzhMR8WBfO8k6+98F/DiyT4ay5etk8V0hafXeB3B7duyqfRqShimNUJpTEutYUiJs1hTgYElrkc6aVmoGG4AYetWs5xouIX0Z6c6e75k9v7TaBhHxFPB2YB/S2duGwLeBOyWtCa+OaHwweyzLmmofVBrluEaF3W5GSszlvk06k3mM9L9wfHYWWymu5cCCbF9WgxNLh4qIZRFxTUQcExE7AZ8FdgCOKlntXxU2/Rewefb7xsAapGaSUr3PK06kV8MLwG5AF7Al6VvkDWXrlB+vkmGkhPlkH8tXIyXWl0sey0ivaas+9j0ZGE1qnvpQFu8lwNp1xFXLb4F1SR96Q4FrCoihVz31XFVE/IN0dnREVnQEcG9EPFRju1ci4qaI+G9SM9ulpCaoUdnyyRGxC+lLzXJg94jYJSJ2jZLO+RJrk/6u5ceZm+33E6Qz+PcCt6v6sPtl5Fu/g5b7WAyAiPiRpInAjiXFm1ZYdVNS0xmkb4EvV1hvePbz+X6Esjwial2LUk8n7nxSM9/mVZYvyPYznsrt/fMqbSRpbWB/4JiIuLCkPJcvaRGxWNK1wJeAKyNicfk6OcTwErBmWVmlLwF5zFB7MfBDpSHuB9LgqKqIWCHpJlJSKv9Q3wGYH9X7CHs9T5UzjSwR/U7plsDjSVPWnyPpf7LEU2pD+vee7jg+Y+lAklZKGJI2Id2hrvRb6qZKNxfqXeeNpG+J90L6ZklqGjukbHeHkj7U78qe/5sB/qaXfSDfA3y6d5RVheV3A2+OiPsrPComFmAt0pnOq9+As1Fk5aOcmnnNPyCdqVxYZXmzMTzOa79AAHywX5H2fRxIAxL+TWrSex1VmvYAJA2vsuhjwBLS37PU26ivI/0RKtwuodL7Argv+/n6snU3AdYB/lbH8Tqez1g60wxJvwFuIjVtbU26GHEJ8OOS9Z4FfiKpd1TYhGz9ySXrfJM0UuxS0ofGSNJIoR9GRO8opJnAAZI+TvpQm9fHB3eeTgRuAW6QNInUnj6K1PF8LWmQwVRJK0gd0C+Sml72B06OiJU+RCLiBUn3AadIWkhKoCeSmvDWL1m13685InpITUjVljcbw6+AoySdQ7oj4Z6kPo3+qvpaI+IlST8DvgD8IiIW9LGfKyS9CFxB6uTfFDgcOIDUaV6+7dtIHf213EGqq00i4pmS8p9LegC4jdTsuCvpTPEJ4K9l++gincHdidVW9OgBPwb+Qfonv4nU3PMS6Z/458COJetMJo2oOpD0LW0Z6R90pdFSpLb+GaRvpo+T+gdWL1m+MenD7Hmy5qcqcY0nGx3VR+yTKRmRVGsZaUjpbaSkuYA0ymyXkuXvAn5HGnm2GHiYNMR6gz5i2J50ncVi0s2WTiiPvd7X3MDrfs2osGZjAL5GGhH1IunmUh9j5VFhddVzrdcK7J2V713jNR6Z/S0ez95Lz5MSX3eV9a8BDqvj/b4m8BzwqbLyT2THe4qUnBeSEvrbK+zjXMpGEPpR/eEbfVlF2YVvO0dEV611zfqS9d2NBraJiBU57ncusE9ElJ9dVFr3XGD7iNi/yvLJpIQ4u8Ky1YA5wIkR8dOmgu4Qbgozs5aQ9GZgJ9JUKKfmnFSGkS4erbfP40zgEUlvigpNnDUcQmoKrto/ZK/lznsza5WLSE2s15OmTclNRMyPiCGRBpDUs/7jpKH01UYJ/prUVFqJgKMiXctidXBTmJmZ5cpnLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsV/8fCNvmrGBWMBkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K$ and then increases linearly.\n", + "The implementation uses a comparator, that flips an ancilla qubit from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K$, and this ancilla is used to control the linear part of the payoff function.\n", + "\n", + "The linear part itself is then approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price = 2\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price]\n", + "slopes = [0, 1]\n", + "offsets = [0, 0]\n", + "f_min = 0\n", + "f_max = uncertainty_model.high - strike_price\n", + "european_call_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "european_call = UnivariateProblem(\n", + " uncertainty_model,\n", + " european_call_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm83OPd//HX2y4hEVSaFklpNTd3V1G0WkHb1NKq1Fa7cqfcqPZu8VMqEUuJSsptDZrUmlKx1h5OVN1ViaVIY6ksInbHEokQ+fz+uL6HMZmzn/l+55x5Px+PecyZa77XzGfyzZnPuZbvdSkiMDMz66jlig7AzMy6NycSMzPrFCcSMzPrFCcSMzPrFCcSMzPrFCcSMzPrFCcSq1mSRkmKktt8SddK2rDAmL4h6SFJ70qKrKy3pEmSXsviPKCZuhPLPk/T7eJcP8RH8YyQ9MMK5bMl/a6ImKx7WqHoAMxa8SbwveznDYCTgCmSNomIdwqI50LgZWAYsDgrOxT4PrAf8Dzw7xbqzwQOLCt7uYtjbKsRwOPA9WXluwCv5R+OdVdOJFbrlkTE37Of/y5pLvBXYAfgmgLiGQyMj4ipZWVPRsS1baj/TsnnqUkR8XDRMVj34q4t626mZ/eDACRtKenGrNvrHUmPSNq76WBJa2bdUPuXvoiSWZLGlpRtK+mB7PiXJJ0nabXsuaFZV9bywFlZl9RESbOBg4CvNHVVdfSDNb2HpP8sK2+Q9OeSxxMlTZP0HUn/zD73fZI2Kau3vKRjJT0labGkeZImNr0msCmwf0kX2wHZc8t0bUnaXdJj2es8J+kUSSuUPH9A9hpfkHRnFtNMScM7+u9h3YcTiXU3g7L7F7P7gcDfgINJ3UvXAhMk/RggIl4HrmPZ7qSh2WtNAJC0MXAb8CrwI2AksBfQ9AX+ELBl9vOZ2c8nkbqBbiF1WW1ZckyzJK1QemvTp17W+sAZwCnAj4F1gKslqeSYC4ETgauBnYBfAr2z5/47i/mWkrj/0ky83wX+RPo32Bn4X+BXwDkVDr8SuJH07/I0MEnSuh38jNZNuGvLal7Jl+0GwHnA28BdABExqeQ4AfcC6wL/BVyVPXUJcIekDSLi2azsQGB6RDyWPT4BmAP8ICI+yF7vdeBPkraMiP8jda0BzC7tnpL0CtC/jV1WmwLvl32+z0XEM22oW2pN4BsR8XT2GsuREubngZmSBpNaSkdGxNkl9f4EEBEzJL0DvNKGuEcDDRHR1Kq7Lft3+K2kkyNiXsmx4yLiD1lM04GXSEnsgnZ+PutG3CKxWrcW6Yv3feBJUjLZIyJeAJDUT9LZkuaUHDcC2KjkNaaQksT+WZ3VgeFkrZHM14DrmpJI5lpgCbBVF36efwGbld2e68DrzG5KIpkZ2X3TX//bZPcTO/DaH5K0PPBVlh2P+hPp+6O8BXZH0w8R8RppIoFbJD2cWyRW694Evg0EqTtrfnx8yeqJwBakbqYZwFukWVQ7Nx0QESFpAvATSaOA3Un/968seZ0BpL+eKan3gaTXSH/9d5WFETGtC17njbLH72X3q2T3a5EG9t/q5PusDaxI2b9NyePyf5tKca2C9WhOJFbrljT3xStpFWBH4PCIuKCkvFJLewJp3GMb4ADg+ohoLHn+BdI4Q+nrL0/6Qn69Mx+gHd7N7lcqK1+TNHbTHq8BvSX16WQyeZXUylunrLx/dp/Xv43VMHdtWXe2MmkWVdP1HE3dVj8oPzAiniN1u5xI6qqaUHbIA8AuWfJoMpz0x9Z9XRt2s5rGGv6jqUDSeqRxj/a6O7vfr4VjWm0tZF1904Hdyp7aHVgK/F8HYrMexi0S67Yi4k1JDwInSHqL9MX2/0jdYX0qVLmE1Nc/D7iz7LmTgYeB6yWdT+rXPx24PRtor7qImJd9npMkLST9ofdrOvBXf0Q8KWk8cKakdUiTENYAdo2IPbPDZgLDJA0jtWBmZeMa5UYCt2fdg5OAL5C6Ei8qG2i3OuUWiXV3ewGzgEuBs0gD5Jc2c+zNpMHzP0bE0tInIuIJYHtSF85kUmK5Cti1OmE3ay9gLnA5cCppxtSTHXyt/ya1wPYhTfP9PbCo5PmTSYP/VwMPkqZPLyMi7gD2BIYANwE/J02BPryDcVkPI2+1a/VC0g6kZLJRB6bbmlkznEisx5P0KeBzpAvp5kbETgWHZNajuGvL6sEI0rUk7wJHFByLWY/jFomZmXWKWyRmZtYpdTH9d+21145BgwZ1qO4777xD7969Wz/QcuXzUnt8TmpTZ87L9OnTX42IT7R2XF0kkkGDBjFtWsdWpWhoaGDo0KFdG5B1ms9L7fE5qU2dOS/ZGnatcteWmZl1ihOJmZl1ihOJmZl1ihOJmZl1ihOJmZl1ihOJmVlPdMUVMGgQW2+7LQwalB5XSe6JRNLGkqZIWihpvqTRZXtANFdviKQ7JL0m6XVJd0naPI+Yzcy6lSuugBEjYM4cFAFz5qTHVUomuSYSSf2Au0jbpu5MWiL7l6Slrluqt15WbwXSRj37Zj/fIWlgNWM2M+t2jjsOFi78eNnCham8CvK+IPEQYFVgeLb9552S+gCjJI1pYUvQHYHVs3pvAEi6n7QN6A7A+dUP3cysm5g7t33lnZR319b2pB3nShPGJFJy2bqFeiuSNiRaUFK2ICtTVwdpZtatrb125fL116/K2+WdSAaTtvf8UETMBRZmzzXn2uyYMyWtk20dOg5oJG2damZmALNmwTvvgMr+xu7VC045pSpvmXfXVj/gjQrljdlzFUXEfEnbkHa3+1lW/AIwLCJeqVRH0gjSPhT079+fhoaGDgW8YMGCDte16vF5qT0+J8VbbvFivnLEEayy3HLMPuQQ1ps8mZVffpnF66zDswcfzMuf/jRU4xxFRG434H3gyArlzwOntFBvAPAMcAPwvex2EzAPWL+19910002jo+65554O17Xq8XmpPT4nBVu6NOKAAyIg4uabPyzuzHkBpkUbvtvzbpE0AmtUKO9L5ZZKk6NIraddI+J9AEl3A08Dv+KjVoqZWX266CKYOBFOOAF23DHXt857jGQmZWMh2dTe3pSNnZQZDDzRlEQAIuI94AlgwyrEaWbWffzjH3DEETBsWEokOcs7kdwKDJO0eknZHsAiYGoL9eYA/ylppaYCSSsD/wnMrkKcZmbdw6uvwq67woAB6YLD5Vu9vrvL5Z1ILgAWA5MlfTsbEB8FjI2SKcGSnpF0SUm9i4FPAddJ2lHSTsD1pLGT8blFb2ZWSz74AH78Y3j5Zbj2WlhrrULCyDWRREQjsB2wPGmw/ETSNN6RZYeukB3TVG86aYB9deAy4FKgF/CdiHi0+pGbmdWgE06Au+6C886DTTctLIzct9qNiBnAtq0cM6hC2RRgSpXCMjPrXm64AU49Ff7rv+AnPyk0FK/+a2bW3Tz9NOy3X2qFnH120dE4kZiZdSvvvAPDh8MKK6RxkVVWKTqi/Lu2zMysgyLScvBPPAG33QYDa2PxcycSM7Pu4txz4cor4eST4bvfLTqaD7lry8ysO7j/fvjFL+D734djjy06mo9xIjEzq3Uvvgi77Za6si69FJarra9ud22ZmdWyJUtgzz2hsRFuuQXWqLRcYbGcSMzMatmxx8LUqXDZZfClLxUdTUW11T4yM7OP/PnP8LvfwWGHwT77FB1Ns5xIzMxq0b/+BQceCFtsAWPHFh1Ni5xIzMxqzdtvp4sOV10VrrkGVlqp9ToF8hiJmVktiYCDDoKnnkoLMq67btERtSr3FomkjSVNkbRQ0nxJoyW1uIC+pFGSoplbbU2oNjPrjHHjUivktNNgm22KjqZNcm2RSOoH3AXMAHYm7W54JimhHd9C1YuB28rKfggcQ9osy8ys+5s6FY4+OnVr/epXRUfTZnl3bR0CrAoMzzayulNSH2CUpDGlm1uVioh5wLzSMkm/AWZGxCPVDtrMrOqefx523x0++1mYMAGkoiNqs7y7trYHbi9LGJNIyWXrtr6IpDWB7wBXdW14ZmYFeO+9lETeeSet6NunT9ERtUveiWQwMLO0ICLmAguz59pqV2BFUhIyM+vejjoqraV1ySWwySZFR9NueXdt9QPeqFDemD3XVnsCD0XEU80dkO0HPwKgf//+NDQ0tOPlP7JgwYIO17Xq8XmpPT4nHbPOXXex8dln89yuu/Lv/v2hi/8N8zgvRUz/jQplaqZ82QOlAaRusGNafJOI8cB4gCFDhsTQoUPbF2WmoaGBjta16vF5qT0+Jx3w2GNpltZWW7HelVey3oordvlb5HFe8u7aagQqrTjWl8otlUp2JyWeP3VVUGZmuXvzzTQ7q08fuPpqqEISyUveLZKZlI2FSFoP6E3Z2EkL9gTui4jnujg2M7N8LF0K++8Ps2fDPffAgAFFR9QpebdIbgWGSVq9pGwPYBEwtbXKkgYBW+DZWmbWnY0ZAzfckBZk3GqroqPptLwTyQXAYmCypG9nA+KjgLGlU4IlPSPpkgr19wSWAH/OI1gzsy53111w3HFpj5Gf/azoaLpErl1bEdEoaTvgHOAm0rjIOFIyKY+r0rIpewJTIuKVasZpZlYVc+fCj38MgwfDRRd1q4sOW5L7rK2ImAFs28oxg5op/3I1YjIzq7rFi2HXXdP95Mmw2mpFR9RlvPqvmVkejjwSHnwwJZHPf77oaLqU9yMxM6u2iRPhwgvhmGNgl12KjqbLOZGYmVXTww/DoYfCttvCyScXHU1VOJGYmVXL66/Dj34Ea60FV10FK/TM0YSe+anMzIq2dCnsuy/Mmwf33gvrrFN0RFXjRGJmVg0nnwy33ALnnQdbbFF0NFXlri0zs652660wahTstx8cckjR0VSdE4mZWVeaNQv23hu++EU4//wec9FhS5xIzMy6yqJFaXB96dK002GvXkVHlAuPkZiZdYUIOOywNN33pptgww2Ljig3bpGYmXWFiy+GCRPgN7+BnXYqOppc5Z5IJG0saYqkhZLmSxotqdICjZXqDpf0oKRFkl6TdJuk3tWO2cysRQ8+CIcfDsOGwciRRUeTu1wTiaR+wF2kbXV3BkYDvwRObEPdg4ErSXuabA8cDDyNu+fMrEivvprGRQYMgCuugOXb9Hdxj5L3l/AhwKrA8Gz/kTsl9QFGSRpTuidJKUlrk5abPyIiLip56rqqR2xm1pwPPkjLwr/8Mtx3X7qCvQ7l3bW1PXB7WcKYREouW7dQb/fs/o/VCszMrN1OOCFtVHXuuTBkSNHRFCbvRDKYsr3ZI2IusJCyvdzLbA48CRwkaZ6k9yU9IOnr1QvVzKwFN94Ip54KBx8MBx1UdDSFyrtrqx9pV8Ryjdlzzfkk8HngeOBo4LXs/jZJn4uIl8orZNv4jgDo378/DQ0NHQp4wYIFHa5r1ePzUnvq6ZysOm8emx5yCIs22oiHd9uNpTX8ufM4L0UMVEeFMjVT3mQ5YDVgt4i4DUDS/cAc4HDgN8u8ScR4YDzAkCFDYujQoR0KtqGhgY7Wterxeak9dXNO3nkn7bW+8sqsfscdfGvgwKIjalEe5yXvRNIIrFGhvC+VWypNXs/uG5oKIuItSdOBjbssOjOzlkTAiBHw+ONpPa0aTyJ5yTuRzKRsLETSekBvysZOyvyL1GIpX7RGwNKuDNDMrFnnngtXXgknnZSuGTEg/8H2W4FhklYvKdsDWARMbaHezaSksU1TgaS+wKbAo1WI08zs4+6/H37xi3TV+q9/XXQ0NSXvRHIBsBiYLOnb2YD4KGBs6ZRgSc9IuqTpcURMA24ALpG0v6QdgRuB94Fz8/wAZlaHXnoJdtstdWVddhks59WlSuXatRURjZK2A84BbiKNi4wjJZPyuMovD90HOAMYC/QC/gZsGxGN1YzZzOrckiWwxx7Q2Jg2qlqj0jBvfct91lZEzAC2beWYQRXKFgCHZjczs3wceyxMnQp//CN86UtFR1OT3D4zM2vOn/8Mv/sd/Pd/p90OrSInEjOzSmbOhAMPTPutjxtXdDQ1zYnEzKzc22/D8OGw6qpwzTWw0kpFR1TTvAS7mVmpiLR21pNPwp13wrrrFh1RzXMiMTMrNW5caoWcfjps2+K8IMu4a8vMrMm998LRR8Muu8BRRxUdTbfhRGJmBjB/Puy+O2y4IUycCCpfkcma464tM7P33ktXrr/9NkyZAn36FB1Rt+JEYmZ21FFpLa2rroJNNik6mm7HXVtmVt+uugrOPht+/nPYc8+io+mWnEjMrH49/njaKnerrWDMmKKj6bZyTySSNpY0RdJCSfMljZZUvkBjeZ1BkqLCbVJecZtZD/Pmm+miwz594OqrYcUVi46o28p1jERSP+AuYAawM7AhcCYpoR3fhpf4FWnV3yavdnWMZlYHli6F/feHZ5+Fe+6BAQOKjqhby3uw/RBgVWB4tv/InZL6AKMkjSndk6QZT0bE36sepZn1bGPGwA03pIsPv/nNoqPp9vLu2toeuL0sYUwiJZetc47FzOrRlClw3HFpj5Ejjyw6mh4h70QymLK92SNiLrCQsr3cmzFB0geSXpA0VtKq1QjSzHqo555LM7MGD4aLL/ZFh10k766tfqRdEcs1Zs81ZzFpS907gLeAocAxpDGWnStVyLbxHQHQv39/GhoaOhTwggULOlzXqsfnpfbU+jnRe+/xlSOPpNfChUw/5hgWTZtWdEi5yOO8FHFBYlQoUzPlqULEC8DhJUUNkl4CzpP05Yh4pEKd8cB4gCFDhsTQoUM7FGxDQwMdrWvV4/NSe2r+nBx6aNpj5Npr2Xz48KKjyU0e56XVri1J+0laq4verxGotOFxXyq3VFry5+z+q52KyMx6vokT4YIL0oKMdZRE8tKWMZIJpC4ksvGJr3Xi/WZSNhYiaT2gN2VjJ20QZfdmZst65JHUGtlmGzjllKKj6ZHakkgagU9lP7fYBdUGtwLDJK1eUrYHsAiY2s7X2jW7n96JeMysJ2tsTC2QtdaCSZNgBS8vWA1t+Ve9C7hM0pOkJDJR0jvNHRwRLbVYLgB+BkyWdDqwATAKGFs6JVjSM8DUiDgoezwKWJ10MeJbwLeAo4DJEfHPNnwGM6s3S5fCPvvAvHlpn5F11ik6oh6rLYnkJ8B/A58njUfMAl7pyJtFRKOk7YBzgJtI4yLjSMmkPK7SZVNmkq5qP5h0zclc4AzA7VQzq+zkk+GWW+Dcc2GLLYqOpkdrNZFExELgdwCSvg0cFxGPdvQNI2IG0OL+lRExqOzxJNKFi2Zmrbv1Vhg1CvbdN42PWFW1ZdbWB5I2yx42kLqWzMxq06xZsPfe8IUvpJlavuiw6toy2P4esHL2837AJ6oXjplZJyxaBLvumsZHJk+GXr2KjqgutGWMZAZpUcXrSbO2dpU0pJljIyLO77LozMzaKgIOOwweeghuuintvW65aEsiOQK4kDQoHqRB7+YE4ERiZvm7+GKYMAGOPx522qnoaOpKq11bEXF/RHwhIlYktUi2iIjlmrm1uEGVmVlVPPggHH44fPe7aZDdctXe1X+3IXV1mZnVhldfTeMiAwbAlVfC8v57Nm/tuswzIqYCSNoc2ApYE3gduC8iHuj68MzMWvDBB7DXXvDSS3DffekKdstduxKJpN7ANcAw4APgNWAtYHlJtwG7ZdedmJlV38iRcOedcNFFMKS5OUBWbe3t2hoDbAnsCawSEQOAVbLHWwKnd214ZmbNuPHGtAjjQQfBwQcXHU1da28i+RFwTERcExFLASJiaURcA/w/YLeuDtDMbBnPPJOuWt90UzjnnKKjqXvtTSR9geeaee45oE/nwjEza8XChWlF3xVWgD//GVZZpeiI6l57E8mjwKHSx9ccyB4fmj1vZlYdEfDTn8Ljj6cZWoMGFR2R0f5E8mvSQPtMSadJ+oWk3wL/Ar6bPd8iSRtLmiJpoaT5kkZLavN8PUnLSZouKST5qiOzenLeeXD55XDiiTBsWNHRWKa903/vlvQV4ATSeMgA4AXgAWB4trJvsyT1I+1vMgPYmbTz4pmkhHZ8G8M4GPh0e+I2sx7g/vvh5z+HHXeE444rOhor0e7twrJksWcH3+8Q0n4iw7ONrO6U1Ie0lteY0s2tKskS0Smkgf2LOxiDmXU3L70Eu+0G668Pl10Gy7W3M8WqqV1nQ9LvJG3ciffbHri9LGFMIiWXrdtQ/yTSLolTOhGDmXUnS5bAnnvC66+nFX379Ss6IivTkem/j0n6h6RDJPVtZ/3BpN0OPxQRc4GF2XPNkvRF4EBaXjTSzHqaX/8aGhrgwgvhS18qOhqroL1jJJ+RtA3pC/0MYGy2vPwfIuKuNrxEP9L2uuUas+da8r/AuRHxjKRBrb2RpBHACID+/fvT0NDQhvCWtWDBgg7Xterxeak91Tgna0+dyn+ecQbP/+AHPL3++imhWLvk8rsSER26AasBBwH3kpZLmQOcCGzQQp33gSMrlD8PnNJCvT2BF4E+2eNBpCXrd2pLrJtuuml01D333NPhulY9Pi+1p8vPyb/+FbHaahGbbx7x7rtd+9p1pDPnBZgWbfiO7fCIVUQsiIhLgJGkcYv1gGOBpyTdIGlghWqNwBoVyvtSuaWCpBVJrZ/TgeUkrcFHFz72lrR6Rz+DmdWoBQvSRYerrpouOlx55dbrWGE6lEgkDZI0UtKzwB3AAtJ04NWBH5BaDJMqVJ1J2ViIpPWA3pSNnZToDawLjCUlokY+uvBxEvBwRz6DmdWoiLR+1pNPwqRJsO66RUdkrWjv6r/7ksZHvgXMBSYAEyJiXslht0h6h3S9SLlbgaMkrR4Rb2dlewCLgKnNvO0C0j4opT4JXEW6APLu9nwGM6txv/89XH01nHYabLtt0dFYG7T3OpLxwHXAsIhoaQruU8DJFcovAH4GTJZ0OrABMAoYGyVTgiU9A0yNiIMiYgnQUPoiJYPtj4X3QTHrOe69F446CnbZBY4+uuhorI3am0g+FRGNrR0UES+QBt7LyxslbQecA9xEGhcZR0om5XF5mzOzejJ/Puy+O2y4Ydp7/eNL+lkNa+/031aTSBteYwbQYns1Iga18vxs0v7xZtYTvP9+SiJvvw1TpkDf9l6iZkVq9xIpkvYA/gvYiLSp1cdExDpdEJeZ1ZOjjoK//Q2uugo22aToaKyd2rtEyl7AH4FnSDOpbgRuzl7nLVKXlZlZ2111FZx1Fhx5ZFoKxbqd9k7/PYq03tVh2ePzIuInwGeAV0lLnZiZtc3jj6dtcr/xDTjjjKKjsQ5qbyL5HPC3iPiAdDV7H4BsKu/pwOFdG56Z9VhvvpkuOuzTB665BlZcseiIrIPam0jeBJouMX0e+I+S5wSs1RVBmVkPFwEHHADPPpuuGRkwoOiIrBPaO9g+DfgicDtpfOQESUuA90ibXfmaDjNr3ZgxcP31MHYsfPObRUdjndTeRPJboGkNrROyn88jXfPxINlqu2ZmzZoyJS0Nv/vuacdD6/balEgkrQrsQFpD60VJ/SPiJWBnSSsDK0cruxuamfHcc2lm1uc/D5dc4osOe4hWE4mkDUjrZg0qKX5L0u4RcUdELAYWVyk+M+spFi+GXXdN95Mnw2qrFR2RdZG2DLaPAZYC3wR6AZuQVty9sIpxmVlP84tfwD/+ARMnwuAWN0S1bqYtiWRL4PiI+FtEvBsR/wJ+CqwvyVMtzKx1f/wjnH9+uoJ9+PCio7Eu1pZEMgB4tqzs36Tpvp9s7xtK2ljSFEkLJc2XNFpSiws0StpE0m3Z8YslzZV0sROZWTfwyCNwyCEwdCicemrR0VgVtHXWVnTFm0nqRxpvmQHsDGwInElKaMe3ULUvMAu4FJhPupJ+JLCppM2ypebNrNY0NqYWyFprpU2qVmj38n7WDbT1rN6eXS9Sbkp5eSuLNh4CrAoMz2Z53SmpDzBK0pjmZn5FxP3A/SVFDZLmkXZn/CLwUBs/h5nlZelS2GcfmDcPpk6F/v2LjsiqpC2JZJl9RTphe+D2soQxibS8ytakPUra6rXsfqUuis3MutIpp8Att8C558KWWxYdjVVRq4kkIroykQymbGvciJgraWH2XIuJRNJypJg/A5xGugjyH10Yn5l1hdtug5EjU4vk0EOLjsaqLO8Oy36kXRHLNWbPteYWYFj283Rgh4hYWulASSPIrrTv378/DQ0N7Q4WYMGCBR2ua9Xj81J7ms7JKi+8wKY//SmLP/MZHtp7b5ZOnVp0aHUtj9+VIka+Kg3cq5nyckcAa5JWIT4euFXSNyLi3WXeJGI8aY95hgwZEkOHDu1QsA0NDXS0rlWPz0vtaWhoYOjmm8NWW8Fyy7Hi7bfzrc9+tuiw6l4evyt5J5JGYI0K5X2p3FL5mIh4OvvxAUl/Jc3k2gv4Q5dFaGbtc8UVcNxxbD13LvTqBe+8AzfeCE4idSPvRDKTNBbyIUnrAb2z59osIuZIeh3YoOvCM7N2ueIKGDECFi5EkJLICivAW156r560dz+SzroVGCZp9ZKyPYBFQLs6UiV9nrT/yayuC8/M2uW442Bh2caoS5akcqsbebdILgB+BkyWdDqpNTEKGFs6JVjSM8DUiDgoe/w7YAlpv5M3SBtqHU26wn5Snh/AzErMndu+cuuRck0kEdEoaTvgHNJU3zeAcaRkUh5X6bIp00gD7SOAVYC5wLXAbyPinSqHbWaVPPggLL98aoGUW3/9/OOxwuQ+aysiZgDbtnLMoLLHk3DLw6w2LF4Mo0alXQ779k1dW4tLdpLo1StdjGh1I+8xEjPrzh58EL76VTjttLTn+qxZaYOqgQMJCQYOhPHjYe+9i47UcuREYmatW7wYjj0Wttgizci69daUQPr2TUlj9mym3n03zJ7tJFKHvBSnmbXswQdT62PGDPjJT2Ds2JRAzDJukZhZZYsXw69/nRZcfPPNtABjUyvErIRbJGa2rPJWyJlnwhqVFqUwc4vEzEo11wpxErEWuEViZsm0aakV8sQTboVYu7hFYlbvFi9OS5pssQW88YZbIdZubpGY1bPSVsiBB6YZWU4g1k5ukZjVo/JWyF/+An/4g5OIdYhbJGb1xq0Q62K5t0gkbSxpiqSFkuZLGi1p+VbqbCZpgqRnsnpPShopaZW84jbr9tzUv3RxAAAXpElEQVQKsSrJtUUiqR9wFzAD2BnYEDiTlNCOb6HqHtmxpwNPA18ETsruf1TFkM16hmnTUuvj8cfdCrEul3fX1iHAqsDwbP+ROyX1AUZJGlO6J0mZ0yPilZLHDZLeBS6UNDAi5lQ5brPuafFiGD0aTj8d+vdPrZAddig6Kuth8u7a2h64vSxhTCIll62bq1SWRJo8nN2v03XhmfUg06bBkCFw6qmw775pTMRJxKog70QymLK92SNiLrCQsr3c2+DrwFLgya4JzayHKB0Lef311AqZMMFdWVY1eXdt9SPtiliuMXuuTSR9EjgOuKy57jBJI0g7KtK/f38aGhraHSzAggULOlzXqsfnpbLVnnySwaefzmqzZvHC977Hvw87jCW9ekEO/1Y+J7Upj/NSxPTfqFCmZsqXPVBaCbgaWAD8otk3iRgPjAcYMmRIDB06tN2BAjQ0NNDRulY9Pi9lFi+Gk05KG05lYyEDdtiBATmG4HNSm/I4L3knkkagUvu6L5VbKh8jScClwCbANyKisWvDM+uGpk9P14U8/ni6HzsW+rW5gW/WaXmPkcykbCxE0npAb8rGTpoxjjRteOeIaMvxZj3X4sVw/PGw+eZpLOTmm9NYiJOI5SzvRHIrMEzS6iVlewCLgKktVZR0LHAEsE9E3Fe9EM26genT04ysU05JM7Iefxx23LHoqKxO5Z1ILgAWA5MlfTsbEB8FjC0dNM+uYL+k5PFewKmkbq3nJW1RcvtEvh/BrECLF8NvfuNWiNWUXMdIIqJR0nbAOcBNpHGRcaRkUh5X6bIp383uD8hupQ4EJnZtpGY1qHQsZP/9Ydw4JxCrCbnP2oqIGcC2rRwzqOzxASybQMzqw+LFcPLJ8NvfphlZN9/sbiyrKV7916yWPfRQan24FWI1zPuRmNWi995LYyFf+9pHYyETJzqJWE1yi8Ss1jz0UBoLeewxt0KsW3CLxKxWlLZCXn0VbrrJrRDrFtwiMasFpa2Q/faD3//eCcS6DbdIzIpUqRXyxz86iVi34haJWVHcCrEewi0Ss7y99x6ccIJbIdZjuEVilie3QqwHcovELA/lrZAbb3QrxHoMt0jMqu3hh1Mr5J//dCvEeqTcWySSNpY0RdJCSfMljZa0fCt1VpJ0hqS/SlokqU27KZoV6r33YOTI1Ap55RW3QqzHyjWRSOoH3EXaVndnYDTwS+DEVqr2Ag4GFgL3VzNGsy7x8MOw2WYwejT8+MfwxBPw/e8XHZVZVeTdIjkEWBUYHhF3RsQFpCTyP5L6NFcpIt4A1oyIYcB1+YRq1gGlrZCXX06tkEsvdSvEerS8E8n2wO2lm1gBk0jJZeuWKkaEu7OstrkVYnUq70QymLK92SNiLqnLanDFGma1rrlWyJprFh2ZWS7ynrXVj7QrYrnG7Dmz7uWRR9KMrEcfTXun//73TiBWd4qY/lupi0rNlHdYth/8CID+/fvT0NDQoddZsGBBh+ta9RR9XvT++wy8/HLWv+IK3u/bl6dOOYXXvv71NMW3ThV9TqyyPM5L3omkEVijQnlfKrdUOiwixgPjAYYMGRJDhw7t0Os0NDTQ0bpWPYWel9JWyD77sPJZZ/EFt0L8u1Kj8jgveY+RzKRsLETSekBvysZOzGpO01jIZpvBSy/BDTfAZZe5K8vqXt6J5FZgmKTVS8r2ABYBU3OOxaztHnkkDaaPHg177plmZP3gB0VHZVYT8k4kFwCLgcmSvp2NY4wCxpZOCZb0jKRLSitK2l7SrsCXs8e7ZreB+YVvdee992DUKLdCzFqQ6xhJRDRK2g44B7iJNC4yjpRMyuMqXzblfKA0aVyT3R8ITOzqWM3Kx0I46ywnELMKcp+1FREzgG1bOWZQW8rMquK99+DUU+GUU2DttVMrxN1YZs3y6r9mpdwKMWs370diBqkVcuKJHgsx6wC3SMzcCjHrFLdIrH65FWLWJdwisfr06KOw//7pfu+94eyznUDMOsgtEqsv77+fWiFDhsCLL8L118PllzuJmHWCWyRWPx59NI2FPPKIWyFmXcgtEuv5SlshL7zgVohZF3OLxHq20lbIXnulVshaaxUdlVmP4haJ9UzlrZDrroMrrnASMasCt0is53ErxCxXbpFYz/H++2mZd7dCzHKVeyKRtLGkKZIWSpovabSk8pV+K9XrK2mCpEZJb0q6QpK/ISx59NG0X8jIkbD77mm/kB/+sOiozOpCrolEUj/gLtL+7DsDo4FfAie2ofqfgKHAwcABwGbA9dWI07oRt0LMCpd3i+QQYFVgeETcGREXkJLI/0jq01wlSVsCw4D9I+LaiLgO2AfYStK3qxLpFVfAoEFsve22MGhQemzFKz0vn/oUfO5zboWYFSzvRLI9cHvpbojAJFJy2bqVei9FxL1NBRHxD2BW9lzXuuIKGDEC5sxBETBnTnrsZFKs8vPywgvp3Pz8526FmBUo71lbg4G7SwsiYq6khdlzN7VQb2aF8n9lz3Wt446DhQs/XrZwYZoJdOqpXf521kZPPQVLlixbft11MG5c/vGYGZB/IulH2l63XGP2XEfqbVCpQrYf/AiA/v3709DQ0OYgt547F1UojyVLeOUTn2jz61jX+sSMGZXPy9y5TG3H+bXqWLBgQbt+zywfeZyXIq4jiQplaqa8w/UiYjwwHmDIkCExdOjQtke4/vqpy6T8zQYOZB3/ohRn0KDK52X99WnX+bWqaGho8HmoQXmcl7zHSBqBNSqU96Vyi6O1emu0Uq9jTjkFevX6eFmvXqnciuPzYlaT8k4kMykb05C0HtCbymMgzdbLNDd20jl77w3jx8PAgYQEAwemx3vv3eVvZe3g82JWk/JOJLcCwyStXlK2B7AImNpKvU9K2qqpQNIQ0vjIrdUIlL33htmzmXr33TB7tr+saoXPi1nNyTuRXAAsBiZL+nY2ID4KGFs6JVjSM5IuaXocEf8H3A5cKmm4pB8CVwD3RcRduX4CMzP7mFwTSUQ0AtsBy5Om+p4IjANGlh26QnZMqT1JrZY/AJcC04FdqhmvmZm1LvdZWxExA9i2lWMGVSh7Azgwu5mZWY3w6r9mZtYpTiRmZtYpimjtOsDuT9IrwLJXsrXN2sCrXRiOdQ2fl9rjc1KbOnNeBkZEq8t51EUi6QxJ0yJiSNFx2Mf5vNQen5PalMd5cdeWmZl1ihOJmZl1ihNJ68YXHYBV5PNSe3xOalPVz4vHSMzMrFPcIjEzs05xIjEzs05xIjEzs05xIjEzs05xIjEzs05xIrFuSdJqkp6StFnRsZjVu9yXka9VkkTa32RH4D+ANYEPgJeAvwMTI+Kp4iKsP5J2aOHp3sBngW0kfQIgIm7JJbA6J2ln0v5AAs6PiKmSvguMATYEZgPnRMSFxUVZXyT1IW3PsRLwl4h4J/u9OIy0k+yzwPiImF+V9/d1JJD9g98CbEpKHIuBTwNB2sp3A+DzwEkRcVJRcdYbSUtJ50DNHFL6XERE+WZo1sUk7QVcDjwMvAF8HfgJacO567LyIcCuwE8j4uKCQq0bkj4LTAHWy4pmAd8F7gTWAP5N+v5aBGwaEfO6OgZ3bSVnk/7BvxQRA7KNtQYCdwNLIuILwHeAYyT9pLgw687DwMvAQcBnym5fJiWRPbPHGxQUY735FakVsmlEbAccCkwAzoqIvSLijIjYg/Q7dViRgdaRU0lJfSPSSr/3A7cBL5JW792M9PvxIvCbqkQQEXV/y07CjyqUDyJ1bw3IHv8aeLToeOvlRkoUI0jJ5FrgMyXP9QWWAt8qOs56ugFvA9uUPF690nkgban9VtHx1sMNmA/sXvJ4YHZOhpcddyDwVDVicIskESlhlPsge65v9vgBUta3HEQynvRv/gLwT0m/ldS74NDq2ZtA/5LHTT+X71nxCeCtXCKyfqTWRpPns/vyPZieBdatRgBOJMldwMmSPuwekdSP1Dx/EWgaZF+N9ItkOYqINyLicOAbwJbA08ABpDESy9edpN+VHSRtRVoQ8K/AqKbfH0mfI3Wh/K24MOvKy6RWSJMPgAtJ472l1iG1KLucE0lyZHb/pKRnJM0gNRe3AQ6KiKXZ898AphYRoEFE/DMihgL/A/yS5gfhrXqOBRqBm4F7gVWAnUl//T4t6W1gJmlW3bFFBVlnHiZ9VwEftuQPjWUH1b8FPFaNADxrKyNpeWB34EukX45ngCsj4vVCA7OKJK1A+rJaEBGVuiWtSrKp8hsBK0bE4yVl3yfNDpoD3BIRC4qLsn5I6g/0iohZrRz3P6Qx3ildHoMTiXVHWSLZHbgzIl4pOh6zeuZEUkbSJsBg0gBWkGZ0zYyIJwoNzD5GUl/gdWBoRPy16HjqhaTNgQdLunvNnEiaZNeHjCTNaijvew/gOeDEiJiQd2z1StI/Wnh6eeArwJNkA4gR8bU84qpn2UWirwDXAFdFhAfUuwlJPwKujipcuOslUgBJRwBjSTNQJgH/Ig0oQmqZDCZd+HaBpF4RcW4hgdafIaRZc7exbHJfiZRIZvPxqY9WfY8APwYOlfQ86XdmUkQ8VGxYVhS3SABJzwIXRMSYVo47GjgkInwVdQ4k/RA4E5gHHBkRj5Q8twYfdW3dW1CIdSdrkWxBmim0PekPrJ1IEx+eAa4kJZUnCwuyzkj6QxsPHUj6fenyFokTCSBpIbBDRDS0ctxQ0myUXnnEZSBpZeBo4CjSX77HRcQr2RhJI04kuWpKJBHxj5KyVYEfkJLK90itxUdJXV9nFBJoHZH0AemC3RdaObQfaXUIJ5JqkPR30sJm+zY3iJhNb7wc2DAitsgzPgNJ65NaJ98BTgIuJV1w5USSo0qJpOz5PsBwUlLZJiJWzjO+eiRpJvCPiNivleN2Bf7kMZLq+SWpH36GpMmkC6reIA2yr0EaI9mFNBD/vaKCrGcRMRfYTdI2wFnAz/CV7TUnIt4CJgITJa1VcDj14u+kVZhb09JK2p3iRAJExN8kfZnUhbI3Hy3H3OQ50nLyZ0TEv/OOzz4SEfdI+gppMceNSOMnlp+ptHENrYh4rcqxWPK/QFsmOkyl5Ar4ruSurQok9SK1RADeiIiFRcZjZlbLnEisZkk6hjS5oSrrA5lZ1/CijSUkrSdpU0mrNfP82pJaHNCyLvVb4BFJT0g6LtsJzmqApG9K+pGk/2jm+U9LOiHvuOqVpCHZFgunSRqclX1J0vWSHpN0k6Sqje+6RcKHU0wvJ802gbQpzKXA/0TEmyXHbQ7cX41ZD7asbIbQ6UDTDpUrkPqCryRdoft8C9WtCrJp17cDm5EGbgNoAH4SEXNKjvPvSk4kDQNuIl1X9Q5pL5idgcnADNIFpJuSztmPIuL6ro7BLZLkGNIX1SHA5qTtRHcCpmV7K1hxrouInYBPkrZ1fQs4A5gjqUHSCM8OytWJpMko3yPtbzEc+BTpd6UtM4es650A3AB8OiI2BE4jJZHJEfGNiDgsu2ThSuD/VSMAJ5JkL+D4iLgoIqZFxFmk5eRfAO6XtGWx4VlENEbE+Ej7hK9LmrK9EnABMF/SXwoNsH58n3RR6J0R8WpE3AB8lbQ53F3Zek6Wr/8ELizZTuF80q6uV5QddxnpUoYu50SSrAf8s7QgIl4k7Ts9hfQL8sMiArNlRcSLEXFWRHwd+Axpsc1PFRxWvfgkacvWD0XEooj4MXAO8CdJPysksvq1iLRETZOmn1ctO64X8G41AnAiSeYDy3RhRcT7EbEncBFptdMReQdmLYuIORFxWkR8pehY6sQc0pjVMiKiaSmbcaTkbvn4G3CCpI0lrQv8jjQ2coyk1eHDsa2jgenVCMCD7Xy46NkG2TauzR1zLHAKaSdLDyDmQNJI4KKImF90LJZIOhfYMiK+2sIxewETgBX8u1J92WzGu/joQurZpAsP/0zqypoDDAKWkJateWTZV+lkDE4kaeocsAdwWktX42a/IN+JiANzC86shkjaiDQx5cqIaGzhuK1J66CdmFtwdSy7ZOEbwIrAlIhYlF1YfTAfbX98ZYV93Lvm/Z1IzMysMzxGYt2epIskXVJ0HGb1yos2toOki4DlIuKgomOxj9kG/1FUUyTdRerx2K7oWCyp5jlxImkff2HVoIjw0im1R/h3pdZU7Zx4jMS6PUmrAOtke5aYWc78F0M7SFol26nPasuOwKyig7CPSFrRvyu1pZrnxImkffyFZXVP0mGS/i3pbUkPSNq3wmFfxb8ruSn6nHiMxGqWpLvbeOgnqhqIfUjSnqQd+a4CHiZduzBR0s7AvhGxqMj46lEtnBOPkdDuL6yNfbVuPiQtAZ4kLffQkk8Dm/u8VJ+kacDd2XIoTWXbkRYInA3sGBGveRn5/NTCOXEiwV9YtUrSI8CTEbFHK8ftCvzJ56X6JL0NfD8iGsrKBwG3AssD2wNr40SSi1o4J+7aSh6nHV9Y+YRkwAOkfS9aE6SpjVZ9b5K+kD4mImZn+5H8BbgfOCnvwOpY4efEg+3JA8AWbTjOX1j5GgMc0YbjbiEtJ2/VNx2ouKVCtvbWdsA04Ow8g6pzhZ8TJ5LEX1g1KCL+HRE3tuG4RaXbvFpVXQ5sIGnNSk9mA7s/AC4GfF1PPgo/Jx4jMTOzTnGLxMzMOsWJxMzMOsWJxOqKpAMkTc+uAG6U9LCksVV6r40kjZK0RhuOHSUpSm7zJV0racM21D0gq7Na10Ru1j5OJFY3su2SLwZuB4YD+wE3kAYiq2Ej0t7lrSaSzJvAltntV8CXgSmSerdS7y9ZnYUdjNOsU3wdidWTw4ELI+LXJWU3SaqV7WCXRMTfs5//Lmku8FdgB+Ca8oMlLQ8sHxGvAK/kF6bZx7lFYvVkDeDF8sIombooaVDWTbSXpMuyLrCXJY0srydp22yBvHclvSTpvKbuJUlDgZuyQ2dlrzm7nfFOz+4HZa85UdI0ST+U9ATwLrB5pa4tSatKGiNpjqTFkmZJ+m1Z/AdLeiJ7fo6kozHrALdIrJ48BByR/aV/c0S81sKxZwA3A7sC3wJGSno1Is4FkLQxcBtwJ/AjYD3gNGAD0tX4D5G6p35H6kZ7AVjczngHZfcvlpWNAUYDL5FWc/3YOIokkbrstiRdzTydtLzPN0uOOQo4NXutBmBT4CRJCyPinHbGafUuInzzrS5uwBeBZ0krFCwFniB9IfcpOWZQ9vwdZXUvAp4nbbUMMAl4mtS11HTM7lndLbPHO2WPB7UhtlHAq6Q/7lYgja/cA7wFDMiOmZi93pfL6h6Qla+WPR6WPf5BM+/VB1gAjCwrH01KWsu3Fq9vvpXe3LVldSMi/gn8B2lw/TzScje/AaZVmPF0XdnjycCngHWzx18DrouID0qOuRZYAmzVwRDXAt7Pbk+SWjd7RMQLJcc8HxGPtPI62wKvR/OrAmwJ9AaukbRC0w24G+jPR5/RrE3ctWV1JSIWk8YubgKQdBBpJtdBwFklh75cVrXp8QDSMhMDSF1Lpa/9gaTXgIpLVbTBm8C3Sa2JF4H5EVG+9MRLy9Ra1lqkrrTmNC3w90Qzz68HeMkZazMnEqtrEXGJpDHA4LKn1mnm8Qsl9x87JptFtRbwegfDWRIR01o5pi1rGr1GSnTNaYpvJyonpifb8B5mH3LXltUNSeXJAUmfAPqy7BfqLmWPmwbM52WPHwB2yZJH6TErAPdlj9/L7lfpRNgdMQVYU9JOzTz/f8Ai4FMRMa3C7e38QrWewC0SqyePSboBuIPUVTWQNLNqIfDHsmM3kXQhadzjW6SuryMjYmn2/MmkbU2vl3Q+aVzhdOD2iPi/7Jimv+x/KmkSsDAiHqvOR/uYO0kXXV4paTRpBtkA4FsR8dOIeEPSKOAsSQOBe0l/VG4EbBMR5UnUrEVOJFZPRgM7k/ZlWJM0DnE/aUB7VtmxR5O6fq4lXa9xEvDhtNiIeELS9qQptJNJs6uuyuo1HTNH0q+An5G2KZjHR1N6qyYiQtIuWcw/J20RPR+4suSYMZLmA78Afkn6jE/hjdusA7yMvFmJbHvSWaStS28uNhqz7sFjJGZm1ilOJGZm1inu2jIzs05xi8TMzDrFicTMzDrFicTMzDrFicTMzDrFicTMzDrl/wMGQWFBW3mZCgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", + "x = uncertainty_model.values\n", + "y = np.maximum(0, x - strike_price)\n", + "plt.plot(x, y, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.1342\n", + "exact delta value: \t0.4446\n" + ] + } + ], + "source": [ + "# evaluate exact expected value (normalized to the [0, 1] interval)\n", + "exact_value = np.dot(uncertainty_model.probabilities, y)\n", + "exact_delta = sum(uncertainty_model.probabilities[x >= strike_price])\n", + "print('exact expected value:\\t%.4f' % exact_value)\n", + "print('exact delta value: \\t%.4f' % exact_delta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, european_call)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.1342\n", + "Estimated value:\t0.1061\n", + "Probability: \t0.6636\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHhRJREFUeJzt3XuwXFWd9vHvw0UItxAEAsMwRPASYaQcjQgOI0Hu4X3lIpoUOlNx0KivijOFDogIAR1K8BXQYiygdMLLqybMAMM7XEIIlxMIFzVIECcJGDQgF1GcAzEGIpDf+8fawZ19+pzefTmrc855PlVd3b322qvXXun076y911pbEYGZmdlw26zXFTAzs7HBAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMRuCpNmS+orXfZJmt7j/VElRLWuQvDdKeniI7ZdK6pe0Vc3PfqOkkHR0K3U2Gy4OOGabjrnAX0rar7pB0ubAScB1EbEue83MusABx2zT8f+AtcCMBtsOBSaSgpLZiOSAY9YmSQdJ+k9JT0v6g6Slkj7cbnkRsQa4EZjeYPMM4FngzuKz95A0R9IvJb0o6VFJ50racoj6blGcYvtkJf2rkn5dSdtL0tXFKby1kuZLelO7x2YGsEWvK2C2KYuI2aXXUyub9wLuAS4DXgL+GpgjaX1EzC326QNULWsIc4EPSXpnRDwAUASRE4DvR8SrRb5dgOeAfwCeByYD5wA7A59u8TA3Imnn4rieBWYVx3YmsFDSW3xKz9rlgGPWpoiYt+G1JAF3AX8OfJz2T33NJwWQGcADRdpRwE7lMiNiKbC09Pn3AC8Cl0n6XES80ubnA5wGbAUcFhHPF+XfC6wCZgKXd1C2jWE+pWbWJkkTJH1L0uPAy8VjFvDmdssseg//QerlqEieDjwO3F/67M0knSZpuaQXi8/+P8A4UtDrxOHAAmBNcRpuC+AF4CfAlA7LtjHMAcesfVeSgsHXgSOBdwH/CmzdYblzgb8ADpK0NXAcMDc2Xtr9NOAC4N+B9wMHAKcW2zr9/J2BD/OnILrh8V5gzw7LtjHMp9TM2lAEgmOBz0TEZaX0bvwRdwfp+skMYHdgewaeovsgMC8izi599v5Nyn0VeAV4XSV9p8r7/wYeBM5vUMbqJp9hNigHHLP2bAVsDrx2AV3S9qTeRkc3mYqIVyX9Oymo7AEsj4ifVrKNK392YcgRchERkp4C3lqq8+bA+ypZbyf1qh72AAHrJgccszZExAuSfgycLWk1sB44g3StY4cufMRc4DOk0WlnN9i+EPiUpCXAL4C/AybVKPc/gFmSHiJdF/o4sE0lz/8GTgbukHQp8DSwG3AI0BcR/9by0ZjhgGPWiZOBK4CrgN8Bl5J+vD/ThbLvI40KmwTMa7D9HOD1pNNeAVwD/CNwfZNyzyZdozkf+CPwLWAZ8LENGSLiN5IOBP4ZuATYEXgGuBsYdOkds2aU+xbTkt4IfAE4EPhL4O4G8xsa7Tee9OU/njTY4Ubg1Ij4XSXfccBXgTeR/vI7NyKu7uYxmJlZ63oxSm0/YBrwaPGo62pgKukvsZmkEUEb/TUn6WDgWtJs7GOAm4C5ko7stNJmZtaZXvRwNouI9cXra4Cdm/VwJB0E3AscEhF3FWkHAD8EjoiI24q0BcCWEfG+0r43AztExMHDcTxmZlZP9h7OhmDTomOAZzcEm6KcHwG/LLZRLNl+KFC9oDmPNJ9hfHs1NjOzbhgpEz8nAysapC8vtgHsA2zZIN9y0nG2PfvbzMw6N1JGqU0grS9V1Q/sXcpDg3z9le0bkTSLtBwJ48aNe+eee3Y2kXr9+vVsttlIieO95baqz21Vn9uqvm601aOPPvpcROxSJ+9ICTjQeDKdGqRX32uQ9JQYcQVpaCtTpkyJJUuWdFJH+vr6mDp1akdljBVuq/rcVvW5rerrRlsVawnWMlL+DOgnzQWo2pE/9Wj6S2nVPNC4h2RmZpmMlICzgj9dqykrX9t5jLTAYDXfZNIs8FaGYJuZWZeNlIAzH9itmGcDgKQppOs38+G1Zd3vJK0/VTYduC8iXshUVzMzayD7NRxJ25AmfkJamHAHSScV72+OiLWSVgKLIuIUgIi4r5hjc5Wkz5N6LBcAizfMwSl8BeiTdAlpUui04nH0sB+YmZkNqReDBnYl3cOjbMP7N5DWj9qCtBJv2QzgYtL9Rl5b2qacISIWF8Hrq8CnSPN0To6IW7tYfzMza0P2gBMRq/jTyLHB8kxqkPY88NHiMdS+19N8AUMzM8tspFzDMTOzEc4Bx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyyyB5wJO0r6XZJayU9Lek8SZs32We2pBjk8cVSvisHyTN5+I/MzMyGskXOD5M0AbgNWAYcB+wDfIMU+M4aYtfvALdU0o4HTgfmV9JXAB+tpK1qr8ZmZtYtWQMO8ElgHHBiRKwGFkraAZgt6cIibYCIeBJ4spwm6cvAiohYWsn+h4i4fxjqbmZmHch9Su0YYEElsMwjBaFD6hYiaSfgCGBud6tnZmbDJXfAmUw65fWaiHgCWFtsq+skYEtSsKraV9JqSeskLZZUO5CZmdnwyX1KbQLwfIP0/mJbXTOAn0TEo5X0B4Efkq4R7QKcRjptd3BE/KhRQZJmAbMAJk6cSF9fXwvVGGjNmjUdlzFWuK3qc1vV57aqL3db5Q44ANEgTYOkD8wo7U46/Xb6gIIjvlnJexMp+JxJGmQwsDIRVwBXAEyZMiWmTp1apxqD6uvro9Myxgq3VX1uq/rcVvXlbqvcp9T6gR0bpI+ncc+nkQ+RAtTVzTJGxIvAzcA76lbQzMyGR+6As4LKtRpJewLbUrm2M4QZwOKI+FULn1ur92RmZsMnd8CZDxwlaftS2nTgRWBRs50lTQIOpOboNEnjSCPjHmi1omZm1l25A85lwDrgOkmHFxfsZwMXlYdKS1op6bsN9p8BvAJcU90gabykuyV9QtJhkqYDdwJ7AOcPw7GYmVkLsg4aiIh+SYcBlwI3kK7bXEwKOtV6NVruZgZwe0T8tsG2dcBvSSsW7Aq8BNwHHBIRS7pyAGZm1rbso9QiYhnwviZ5Jg2S/vYh9nkJOLGjypmZ2bDxatFmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWRUsBR1Kj5WbMzMyaarWH85SkCyW9dVhqY2Zmo1ara6ldDvwtcJqkJcB3gXnllZ7NNmWTzrhpQNqqrx3bg5qYjT0t9XAi4pyI2Bs4AngEuAh4RtL3JR0+HBU0M7PRoa1BAxFxR0T8HbAb8FngLcACSaskzZb0Z92spJmZjXydjlKbAryXdNvofuBu4GPASkkf6bBsMzMbRVoOOJL2knSOpMeA24Hdgb8H/iwi/hbYi3St5+tdramZmY1oLQ0akHQHqUfzJHAlMCciHi/niYhXJf0A+Fy3KmlmZiNfq6PUngOmAQsjIobItxR4Q9u1MjOzUafVU2qXAvc2CjaStpP0XoCIeLna8zEzs7Gt1YBzJ7DvINveUmw3MzMboNWAoyG2bQes7aAuZmY2ijW9hlOcJptaSvqYpKMr2bYGjgUe7l7VzMxsNKkzaODdpMmdAAF8EHilkuePwArgC92rmpmZjSZNA05EfJ1iTo2kXwInRMTS4a6YmZmNLi0Ni44ID3U2M7O21LmGMw1YHBGri9dDioibu1IzMzMbVer0cG4EDgR+VLwOBh+tFoBv0mZmZgPUCThvAJ4pvTYzM2tZnUEDjzd6bWZm1oo613C2aaXAiPDkTzMzG6DOKbU1pGszdfkajpmZDVAn4Pw9rQUcMzOzAepcw7kyQz3MzGyU6/QW02ZmZrXUGTTwI2BmRCyT9GOanF6LiAO6VTkzMxs96lzD+S/gxdJrX88xM7OW1bmG89HS65nDWhszMxu12r6Go2QXSUPdlM3MzAxoI+BImibpXuAl4NfAS5LulXRs12tnZmajRksBR9IngBtIk0E/R7oZ2+eK9/9ZbDczMxugpfvhAGcCV0TEpyrpl0m6DPgScHlXamZmZqNKq6fUXg9cN8i2a4GdmhUgaV9Jt0taK+lpSedJGnI5HEmTJEWDx7wGeY+T9LCklyQtkzS91pGZmdmwarWHcydwCLCwwbZDgLuG2lnSBOA2YBlwHLAP8A1S4Durxud/Hrin9P65SvkHkwLft4FTgWnAXEn9EXFrjfLNzGyY1Jn4uW/p7beA70h6PXA98BtgV+AE4BjgY02K+yQwDjgxIlYDCyXtAMyWdGGRNpRHIuL+IbZ/GbgrIk4t3t8paT/gbMABx8ysh+r0cH7GxpM9BXyieFTv/nkLQ68WfQywoBJY5gEXkHpIN9SoT0OStgIOJfVsyuYBcySNj4gX2i3fzMw6UyfgHNrFz5sM3FFOiIgnJK0ttjULOHMk7UTqWc0FvhQRG1ZB2AfYElhR2Wc56ZTdm4Efd1Z9MzNrV52VBhZ18fMmAM83SO8vtg1mHfAvpNNiq4GpwOmkIHNcqWwalN9f2b4RSbOAWQATJ06kr69vqPo3tWbNmo7LGCt60Vanve2VAWkj4d/L36v63Fb15W6rVgcNvEbSZsDW1fQad/xstBabBknfUOYzwGdKSX2SngW+LentEbF0iPI1SPqGsq8ArgCYMmVKTJ06dejaN9HX10enZYwVvWirmWfcNCBt1Yfz1qEd/l7V57aqL3dbtTrxU5JOl7QSeBn4fYPHUPqBHRukj6dxz2co1xTP7yiVTYPyN7xvtXwzM+uiVufhnAqcAXyX1HP4Z+A84FFgFcWpqSGsIF2reY2kPYFtGXjtpZmoPD9GCoKTK/kmA+uLOpqZWY+0GnA+DpwDXFi8vz4izgX2IwWMNzXZfz5wlKTtS2nTSbc/aPVa0UnF8wMAEbGONE/og5V804H7PELNzKy3Wr2G8wZgaUS8KullitNVEbFe0reB75B6QIO5jNRLuk7SBcDewGzgovJQ6eKU3aKIOKV4PxvYnjTpczXwXuALwHUR8dNS+V8hXd+5hDRPaFrxOLrF4zQzsy5rtYfzO2C74vUTwF+Vtk0gTeocVET0A4eR5urcAJwLXEzqNZVtwcbzeVaQ5unMAW4GTga+XjyXy19M6vkcDiwA3g+c7FUGzMx6r9Uezj3Au0g/+j8grRCwE/BH4NPA7c0KiIhlwPua5JlUeT+PNIGzqYi4ntS7MTOzTUirAWc2sEfx+nzSKbWZpJ7NQuCz3aqYmZmNLi0FnIh4BHikeL2OdC+czw1DvczMbJTpZOLnnwO7A09HxFPdq5KZmY1G7dxi+lOSfgU8DvwQeELSk5L+V9drZ2Zmo0arKw2cDVxKmk9zLDCleJ4PfKvYbmZmNkCrp9Q+DZwfEV+upN9SrG32adLKA2ZmZhtp9ZTaOAa/q+ciGizmaWZmBq0HnOuBEwfZ9gHgxs6qY2Zmo1WdW0xPK72dD1woaRIDbzG9H/BP3a+imZmNBnWu4dzIwFtJ7wEc1SDv90h34jQzM9tInYDzhmGvhZmZjXp1bjH9eI6KmJnZ6NbySgOStiANEDgY2An4b+Bu0q0CBt4w3szMjBYDjqRdgVuB/Ul3+HwWOIg0/+YhSUdGxG+7XUkzMxv5Wh0WfRHweuDdEbF3RBwUEXsD7y7SL+p2Bc3MbHRoNeBMA06PiB+XE4v3XyQtc2NmZjZAqwFnK+D3g2z7PfC6zqpjZmajVasB537gdEnblhOL96cX283MzAZodZTaacCdwK8k3UoaNLAraRKogKldrZ2ZmY0aLfVwImIp8CbgCmAX4AhSwLkMeFNEPNT1GpqZ2ahQu4cjaUvgAOCXEXHG8FXJzMxGo1Z6OK8CdwBvHaa6mJnZKFY74ETEeuDnwMThq46ZmY1WrY5S+xJwtqS3DUdlzMxs9Gp1lNpZpBUFlkp6ijRKLcoZIuKALtXNzMxGkVYDzs+Kh5mZWUtqBRxJ40jL2vwM+DVwW0Q8O5wVMzOz0aXOLab3Bm4DJpWSV0v6UETcOlwVMzOz0aXOoIELgfXA3wDbAPsBDwKXD2O9zMxslKkTcA4CzoqIeyLipYhYDnwC+AtJuw9v9czMbLSoE3B2B35RSXuMtHbabl2vkZmZjUp15+FE8yxmZmaDqzsseoGkVxqk315Nj4hdO6+WmZmNNnUCzrnDXgszMxv1mgaciHDAMTOzjrW6lpqZmVlbHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLIvsAUfSvpJul7RW0tOSzpO0eZN93iVpjqSVxX6PSDpH0taVfLMlRYPH0cN7VGZm1kyrN2DriKQJpFsdLAOOA/YBvkEKfGcNsev0Iu8FwM+B/YGvFM8fqOR9AagGmOWd1t3MzDqTNeAAnwTGASdGxGpgoaQdgNmSLizSGrkgIn5bet8n6SXgckl7RcTjpW2vRMT9w1N9MzNrV+5TascACyqBZR4pCB0y2E6VYLPBg8Wz124zMxsBcgecycCKckJEPAGsLba14j2kG8M9UknfUdJzkl6W9KCkE9uurZmZdY0i8t15QNLLwBci4pJK+pPAVRFxZs1ydgN+CtwcETNL6R8h9XiWAtuRbhQ3DfhARFw3SFmzgFkAEydOfOe8efNaPayNrFmzhu22266jMsaKXrTVw0+9MCDtbXuMz1qHdvh7VZ/bqr5utNWhhx76QERMqZO3FwHn8xHxzUr6U8CVEfGlGmW8jjTw4M+Bd0ZE/xB5BdwLjIuItzcre8qUKbFkyZJm2YbU19fH1KlTOypjrOhFW00646YBaau+dmzWOrTD36v63Fb1daOtJNUOOLlPqfUDOzZIHw8832znIoBcBewHTBsq2ABEiqbXAfs3G3ptZmbDK/cotRVUrtVI2hPYlsq1nUFcTBpOfURE1Mm/ge9YambWY7l7OPOBoyRtX0qbDrwILBpqR0lfBD4LfCQiFtf5sKJHdALwUES82l6VzcysG3L3cC4DTgWuk3QBsDcwG7ioPFRa0kpgUUScUrw/GTgfuBJ4StKBpTIf2zBsWtIi4FpSb2lb4OPAgcDxw3tYZmbWTNaAExH9kg4DLgVuIF23uZgUdKr1Kl9zObJ4nlk8yj5KCkQAK4F/AHYnDZn+CXBsRMzvRv3NzKx9uXs4RMQy4H1N8kyqvJ/JwEDTaL9TOqiamZkNI68WbWZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkW2YdFm41EI3XRT7NNiXs4ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWxRa8rYNaOSWfcNCBt1deO7UFNzKwu93DMzCwLBxwzM8vCp9TMhplP/5kl7uGYmVkW2QOOpH0l3S5praSnJZ0nafMa+42XNEdSv6QXJH1f0usb5DtO0sOSXpK0TNL04TkSMzNrRdaAI2kCcBsQwHHAecBpwLk1dr8amAp8DJgJvAu4vlL+wcC1wJ3AMcBNwFxJR3blAMzMrG25r+F8EhgHnBgRq4GFknYAZku6sEgbQNJBwFHAIRFxV5H2FPBDSYdHxG1F1i8Dd0XEqcX7OyXtB5wN3Dp8h2Wd8DWOwW1om9Pe9gozz7jJ7WIjWu6AcwywoBJY5gEXAIcANwyx37Mbgg1ARPxI0i+LbbdJ2go4FDi1su88YI6k8RHxQpeOwwbh4LFp8L+DbYpyB5zJwB3lhIh4QtLaYttgAWcysKJB+vJiG8A+wJYN8i0nnTp8M/Dj9qqdR7MfiTo/ItU8g/3I1M3Xal4b+dr99243yLWznwPqyKSIyPdh0svAFyLikkr6k8BVEXHmIPstBP4QEcdX0r8H7B0R75H018Bi4K8iYmkpzxuBnwNHRcSA02qSZgGzirdvAR5p+wCTnYHnOixjrHBb1ee2qs9tVV832mqviNilTsZezMNpFOE0SHo7+1Xfa4j9iYgrgCuafHZtkpZExJRulTeaua3qc1vV57aqL3db5R4W3Q/s2CB9PPB8G/vtWNqvv5RWzUOT8s3MbJjlDjgr+NM1FwAk7QlsS+NrNIPuVyhf23kMeLlBvsnAeuDRNuprZmZdkjvgzAeOkrR9KW068CKwqMl+uxXzbACQNAXYu9hGRKwjzb/5YGXf6cB9GUeode303BjgtqrPbVWf26q+rG2Ve9DABGAZ8DPSUOi9gYuASyLirFK+lcCiiDillHYLaaTZ50k9lguA30TE35TyHAz0AZeSJoVOK/If3WjAgJmZ5ZO1hxMR/cBhwOakIdDnAhcD51SyblHkKZtB6gX9K3AV8ABwQqX8xcBJwOHAAuD9wMkONmZmvZe1h2NmZmOXV4tuwAuM1tdOW0l6V9FOK4v9HpF0jqStK/lmS4oGj6OH96iGR5ttNWmQNpjXIO9Y/14N9n0JSV8s5btykDyNBiZt8iS9UdLlkh6S9Kqkvpr7Zf+98v1wKkoLjC4jLTC6D/ANUnA+a4hdIS0w+hbSAqMbrjNdD1SvM10LfJu0DM800gKj/SPt1F8HbTW9yHsBaVLu/sBXiucPVPK+AFQDzPJO655bh98rSNci7ym932iynr9XAHwHuKWSdjxwOsXgopIVwEcraavaq3HP7Uf6974feF0L++X/vYoIP0oP4IukOT07lNL+CVhbTmuw30GkyaXvLaUdUKQdXkpbANxR2fdmYHGvjz1jW+3SIG1W0VZ7ldJmA8/1+jh73FaTinb5H03KH/Pfq0HKuglYXkm7EljS6+PsYnttVnp9DdBXY5+e/F75lNpAgy0wOo60wOhQ+w1YYBTYsMAopQVG/62y7zzgIEnjO69+Vm21VUT8tkHyg8Xzrt2r3ial3e9VU/5eNSZpJ+AIYG53q7dpiYj1bezWk98rB5yBBiwUGhFPkP66Guocb7cWGB1J2m2rRt5D6tZX17LbUdJzkl6W9KCkE9uubW912lZzivPzz0i6SNK40jZ/rxo7idQuA653AftKWi1pnaTFkjoK+iNQT36vHHAGmkDjZXD6i22d7LfhuZqvv7J9pGi3rTYiaTfgS8D/rfxVu5J0KuVDpGs7TwPXjtCg025brQP+BTiFNKXgcuBTbPwj6u9VYzOAn0REdZWRB0k3fvyfwIdJUzAWSjqgjbqOVD35vfKggcY2qQVGN3HttlXKKL2O1GVfA/zjRgVHfK+S9wbgXtIN9a5rp7I91nJbRcQzwGdKSX2SngW+LentUVoZvUE5Y/l7tTvp9NvpAwqO+GYl702kAQpnkgYZjBXZf6/cwxnIC4zW125bASBJpEm8+wHTIk0MHlSkK5bXAfvXGaa+iemorSquKZ7fUSqbBuWPye9V4UOkH8arm2WMiBdJF8Lf0SzvKNKT3ysHnIG8wGh97bbVBheThr0eFxF18m8wEv9i77StyqLy7O/VQDNII6l+1cLnjsTvVbt68nvlgDPQWFhgtFvabSuKiXifBT4SaUmipooe0QnAQxHxantV7pm226qBk4rnB8DfqypJk4ADqTk6rRiAcQxFe44Rvfm96vUY8k3tQboQ9gywkLQm2yzS9YWvVvKtBL5bSbsF+AVwIulc8CPA3ZU8BwOvAJcAU4ELSX8tHNnrY8/VVsDJpL8m55B+GMqPXUr5FpEmmx1JCjQ3F231/l4fe8a2mk2a9Hhisd95pB/ea/29Gvh/sEg/g/SXeaP5XuOBu4FPkAZhTCdNmFwHTOn1sbfZXtuQ/gg5CbgP+K/S+20Ga6te/F71vLE2xQewL3BH8R/7GdIs+M0reVYBV1bSdix+RJ8HVgM/AHZuUP7xpBWz15G6rzN6fcw524o08S4Gecws5ftu8R/iReAPxQ/FMb0+5sxtNQNYQlpx4Y/FD8d5wFb+Xg38P1ikLwVuGaTcrUnXAX9VtNMLxQ/vgb0+5g7aatIQ/58mDdZWvfi98uKdZmaWha/hmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZln8f71kyEGzD+XrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu4HVV9//H3h4sQuYRwC2iRGBRTUB8lAaE/KkFQIPQxiiBUrU8UkthasX3Agooa8FJBAWutPxJUKD8toQVKi9zkkhPAipIEKBoSDBruIuCBEBIige/vjzUHhjn7es6e2efs83k9zzz77DVrzV6zMtnfPWvWrFFEYGZmVrZNul0BMzMbGxxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjHSVpnqSos3ykxW3smW1nu0L6rGw7W5dT+9bqMcxtXiqpr4V8m0n6O0l3SVovqV/S1ZIOHOLnjpQ2nVU4Jn4v6TpJ+7RQdnpW5s1V1NU6zwHHyvA0cECN5doWy+8JfAkoftFflW1nXWeqOeR6lErSpsAVwNeA/wZmALOAF4A+SR8awmZHSpsOeFf2uXOBnYBFkl7TpMyyrMx9JdfNSrJZtytgPWljRNzW6Y1GxOPA453e7gj0KeBI4IiIyAfp/5K0EFggaXFEPDzcD+pim94eEWsBJC0B7gc+DHyjmFGSgC0iYg3Q8ePKquMzHOsKSZ+VtErSc5Iek3StpF0kTQeuzLL9NutCWZ2VeUX3j6RJ2fvjJF0gaY2khwa67iT9g6RHJD0u6UxJm+Q+f4qkhZIelLRO0q+yLqxNsvV165Gtf11W/g9Z+eskvamwj7tl3WDrJa2WdEKLzfNpYFEh2Az4PLAlcHzuc1ZL+qakL0j6naS1kn4kaXyzfanVpSZpR0n/KunJbN/6JE0r7NvAZ/591ub9WXu0fTYYEQ+Sgt6kbNvzJD0h6UBJtwPPAcfU6lKTtGl2LN0raUNWlwsLdZ0paUl2rP1O0lmSNm+3njZ8PsOxUkgadGxFxMZs3UeBzwGnAL8CdiB1sWxF6jY5GfgmcBTwKLChycedCfwI+ADwceBfJb0d2D17PxX4CnAHsDAr81pgZVbuGeBtwOnAOOAfG9VD0vbArcCTwCdI3VGnAjdI2jMi1me/yv8L2JEUHJ7Ltr898OsG7bYb6Yv33FrrI+I+SXcD7yys+ktgFTAb2BU4C/gecEyjfanjCuANWZkngM+QurzeHhGrcvk+CPwvMAf4E+AcUjfg3zTY9iCStiG1y+9yya8G/jXbj3uBR7L9KpoPfDTLtzjbztG5bX8QuDjL9zlgD9K/7ybZ/lmVIsKLl44twDwg6iyTsjzfAS5rsI2/yOfPpc/K0rfO3k/K3l+Qy7Mt8DzpS33TXPovgEvqfJ5IP74+B/ymhXp8mRRsts+lTSBdu/pk9n5GVvYduTy7AxuBvgb7vn9WbmaDPFcA9+Terwb+MNAuWdqHgReBP22zTQ/P3h+Uy7MV6QxkfuEz7wM2y6V9C/hdk+Nj4PPGZ22+G3BJ1i5vKxxDMwtlp2fpb87eT8nen9jg3/X+/PGRpX8cWA/s0O3/L2Nt8RmOleFp4NAa6Y9kr3cCx0s6nXTRemlEvDCMz7tx4I+IWCPpcWBxYZurgNcNvJG0JfBZ0hfz64DNc+s2i+xsrI5DgeuBNbkzuWeApcBA19N+wGMR8fNc3e6XtHQI+9eK6yO7JpK5HPghsC9wTxvb2Q94PCIWDyRExLOSfgwUR8gtKrTTcmBnSa+KiD82+Zyncn8/AXw8Iu7MpQVwTZNtHJy9Xlhn/Z6kf9t/L5xx30Tqlnwz6azIKuKAY2XYGBFLGqz/AbANqSvmi8CTkv4vMG+Igeepwvs/1knbMvf+TOAEUjfXsiz/TOC0LN9a6tuRdCZybI11A8FvF+D3Ndb/nrTv9QwMBNi9QZ7dc/ny231JpG69tdTuhmpkV+CxGumPkbqr8mq1sYBXZX838k5SV+QTwIMR8WJhfX8LQWsH4NlIgwlq2TF7vbrO+t2abN86zAHHKpd9uZwLnJtds/gw8FXSl+h5FVXjGOCfI+KsgQRJR7ZY9g+k4cpfrrHumez1d8DONdbvTOrOqSkiHswu6L8X+HZxvaTXk36ZFz9750K+ccDWpOs17Xi0uK3MRNJ+d8odhTOyolaem/IksJWkbesEnYH6ziFdvyv6bQufYR3kUWrWVRHxYER8ndTltVeWPPDLdsvapTpiHLkL50r3vhxXyFOvHjcCewO/ioglhWVllud2YKKkd+Q+43VA0xscgX8CDpH0nhrrvpLV+/uF9HfrlTdvHkX60h4402y1TX9O6hZ7aVCCpFeThmnf2kLdq3RT9vrROutXkn7ETKrx77QkIp6sppo2wGc4VobNJO1fI/3BiHhY0nzSr8/bSNd7DgbeSBq1BumLAmCu0n0n6yLi7g7X8Xrgk5JWZXX5JLBFIU+9epwDfAS4SdI/k77UJgIHAbdGxMWkbpy7gP+QdApplNoZ1O5mK/pn0nWi/5T0TaCP1A13POni/1/F4Htw1gNXSfoGqVvsG8B/RsTyJvvyChFxnaSfApdIOpV0FnEyKUAPukemmyJipaQFwNmSdgZuJt3YenREHBcRL0o6Cfh/krYlXRP6IzAZeF+Wr+obXse2bo9a8NJbC41HqZ2W5ZkF/JT0Rb+ONLT2+MJ2TiKNMNoIrM6VqzVK7S8KZVcD3yykXQgsyb2fCPwnsIZ0feIs0pDil7Zfrx5Z+muAC7KyG7LP/CGwdy7P60izK6zPtjEXuJQGo9RyZTcD/j5rm/VAP+kL88AaeVcDZ2dt/xjwLGko8HbttmmWthNwUfaZ60kX1vdtoY0HbatGXVvJMw94okb6dHKj1LK0TclGF5KCyUMMHpV2BHBL1i5rSINWvkJuhJ2XahZl/yCVkfQG0rj+/Ul90bdExPQWyo0nDbt8H6kr8Mek4ZBPFvLNJB1MbyQdhKdHxCWd3AezkSS75nNpRPi+EhvRunENZ2/SPQr3ZkurLiH9wjmB9CtpX9L9CC9RmtjwMmAR6VfNVcDFdfrCzcysQt04w9kksiGQki4Fdmx2hiPpAOB/SDej3Zyl7Ue6wPnuiLghS7sO2Dwi3pUrezWwbUQMaZZds5HOZzg2WlR+hhODx9u34gjSTXQ357bzC9KwxiMAJG1Buvj874WyC4EDBuaVMus1ETHJwcZGg9EyLHoKsKJG+j3ZOkhzJG1eI989pP3cs7TamZlZU6NlWPQEBt/VDGkUzeRcHmrk6y+sfwVJc0g3hjFu3Lipu+02cm4+fvHFF9lkk9Hym6B6nWyfbe5NlxOf2bN3fpf4+GnObdRYK+1z7733PhERO7WyvdEScKD2nceqkV58rwbliYgFwAKAadOmxZIljWZkqVZfXx/Tp0/vdjVGrI62j7LDZOXKxvlGER8/zbmNGmulfSTd3+r2Rkto76f2Uxe34+Uzmv5cWjEP1D5DMjOzioyWgLOCl6/V5OWv7dxHmpa+mG8KaZr2doZgm5lZh42WgHMNsEt2nw0A2RMIJ2friIgNpPtvjimUPRb4WUQ8XVFdzcyshsqv4WQTAc7I3r4W2FbSwBP6ro6Iddn8Vosj4niAiPhZdo/NRZJOJp2xnEmat+qG3Oa/DPRJ+hbpptAZ2XJ46TtmZmYNdWPQwM7AfxTSBt6/njRH02akOZLyjiNNaf8DclPb5DNExK1Z8PoK8Nek+3Q+FBE/6WD9rRdVfAO02VhUecCJiNW8PHKsXp5JNdKeAj6WLY3KXkFhyhszM+u+0XINx8zMRjkHHDOAqVPTYmalGU03fpqVZ9mybtfArOf5DMfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIepWYGMHt2t2tg1vMccMwAFizodg3Mep671MzMrBIOOGYAS5emxcxK4y41M4Bp09KrZ402K43PcMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlfCwaDOAJUu6XQOznueAYwZ+vLRZBdylZmZmlXDAMQOYMyctZlYaBxwzgPPPT4uZlcYBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEr7x0wxgn326XQOznueAYwZ+vLRZBdylZmZmlXDAMTOzSjjgmAFIaTGz0jjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4ZkGzADmz+92Dcx6ngOOGfjx0mYVqLxLTdJekm6UtE7SI5LOkLRpkzLzJEWd5bO5fBfWyTOl/D0zM7NGKj3DkTQBuAFYDswE9gDOJgW+0xoU/R5wbSHtfcApwDWF9BXAxwppq4dWYxszFixIrz7TMStN1V1qnwDGAUdFxBrgeknbAvMknZWlDRIRDwEP5dMkfQFYERF3FrI/GxG3lVB362Vz56ZXBxyz0lTdpXYEcF0hsCwkBaGDWt2IpO2BdwMXd7Z6ZmZWlqoDzhRSl9dLIuIBYF22rlVHA5uTglXRXpLWSNog6VZJLQcyMzMrT9VdahOAp2qk92frWnUcsCwi7i2k3wH8nHSNaCfgJFK33YER8YtaG5I0B5gDMHHiRPr6+tqoRrnWrl07ouoz0nSyfaZnr73U3j5+mnMbNdbx9omIyhbgeeDTNdIfBr7a4jZ2BV4ATm4h7zjgt8AVrWx76tSpMZIsWrSo21UY0TraPpCWHuLjpzm3UWOttA+wJFqMAVV3qfUD29VIH0/tM59aPggIuKRZxohYD1wN+IH1ZmZdVnXAWUHhWo2k3YCtKFzbaeA44NaIeLCNz4028pqZWQmqDjjXAIdJ2iaXdiywHljcrLCkScD+tDg6TdI40si4pe1W1MaYgU41MytN1QHnPGADcLmkQ7ML9vOAcyI3VFrSKknfr1H+OGAjcGlxhaTxkm6RNFfSIZKOBRYBrwW+VsK+mJlZGyodpRYR/ZIOAb4DXEm6bnMuKegU61VrupvjgBsj4vEa6zYAj5NmLNgZeA74GXBQRCzpyA6YmdmQVT55Z0QsB97VJM+kOulva1DmOeCoYVXOxq6pU9PrUve+mpXFs0WbASxb1u0amPU8P4DNzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSHqVmBjB7drdrYNbzHHDM4OVHTJtZadylZmZmlWgr4EiqNd2M2ei3dKlnGTArWbtdag9Lugi4ICLuKaNCZl0xbVp69YzRZqVpN+DMB/4KOEnSEuD7wML8TM9mI9mkU68alLb660d2oSZmY09bXWoR8aWImAy8G1gJnAM8KulHkg4to4JmZtYbhjRoICJuioiPArsAnwLeBFwnabWkeZJe08lKmpnZ6DfcUWrTgHeSHhvdD9wCnACskvSRYW7bzMx6SNsBR9Lukr4k6T7gRmBX4OPAayLir4DdSdd6vtHRmpqZ2ajW1qABSTeRzmgeAi4kjVa7P58nIl6Q9G/ApztVSTMzG/3aHaX2BDADuD6i4fjRO4HXD7lWZlVb4qeQm5Wt3YDzHWBZrWAjaWtgn4i4OSKeB+4fVNpspBp4xLSZlabdaziLgL3qrHtTtt7MzGyQdgOOGqzbGlg3jLqYdc+cOWkxs9I07VKT9E5gei7pBEmHF7JtCRwJ3N25qplV6Pzz06tnjTYrTSvXcN5BurkTIIBjgI2FPH8EVgCf6VzVzMyslzQNOBHxDbJ7aiT9Fnh/RNxZdsXMzKy3tDVKLSI81NnMzIaklWs4M4BbI2JN9ndDEXF1R2pmZmY9pZUznB8D+wO/yP4O6o9WC8APaTMzs0FaCTivBx7N/W3We/bZp9s1MOt5rQwauL/W32Y9xY+XNitdK9dwXt3OBiPCN3+amdkgrXSprSVdm2mVr+GYmdkgrQScj9NewDEbfZSNg2k4CbqZDUcr13AurKAeZmbW44b7iGkzM7OWtDJo4BfArIhYLul2mnSvRcR+naqcmZn1jlau4fwKWJ/7253cZmbWtlau4Xws9/esUmtjZmY9a8jXcJTsJKnRQ9nMzMyANmeLhpcm8zwNmJqV3yhpKfDViLiqw/Uzq8b8+d2ugVnPayvgSJoLfBe4Efg08HtgZ+Ao4L8l/U1E+H+ujT5+vLRZ6do9w/kcsCAi/rqQfp6k84DPAw44ZmY2SLvXcHYALq+z7jJg+2YbkLSXpBslrZP0iKQzJDWcDkfSJElRY1lYI+9MSXdLek7ScknHtrRnNrYtWJAWMytNu2c4i4CDgOtrrDsIuLlRYUkTgBuA5cBMYA/gbFLgO62Fzz8Z+Gnu/ROF7R9ICnzfBU4EZgAXS+qPiJ+0sH0bq+bOTa/uWjMrTSs3fu6Ve/tt4HuSdgCu4OVrOO8HjgBOaLK5TwDjgKMiYg1wvaRtgXmSzsrSGlkZEbc1WP8F4OaIODF7v0jS3sAXAQccM7MuauUM55e88mZPAXOzpfj0z2tpPFv0EcB1hcCyEDiTdIZ0ZQv1qUnSFsDBpDObvIXABZLGR8TTQ92+mZkNTysB5+AOft4U4KZ8QkQ8IGldtq5ZwLlA0vakM6uLgc9HxMAsCHsAmwMrCmXuIXXZ7QncPrzqm5nZULUy08DiDn7eBOCpGun92bp6NgD/QuoWWwNMB04hBZmZuW1TY/v9hfWvIGkOMAdg4sSJ9PX1Nap/pdauXTui6jPSDKV9TnrLxkFpfX19TM/93St8/DTnNmqs0+3T9o2fAyRtAmxZTG/hiZ+15mJTnfSBbT4K/G0uqU/SY8B3Jb0tIu5ssH3VSR/Y9gJgAcC0adNi+vTpjWtfob6+PkZSfUaaobTPrFMH35u8+sMvb6OX2tvHT3Nuo8Y63T5tDYvOprM5RdIq4HngmRpLI/3AdjXSx1P7zKeRS7PXfXLbpsb2B963u30zM+ugdu/DORE4Ffg+6czhq8AZwL3AarKuqQZWkK7VvETSbsBWDL720kwUXu8jBcEphXxTgBezOprVFuGnfZqVrN2AMxv4EnBW9v6KiDgd2JsUMN7YpPw1wGGStsmlHUt6/EG714qOzl6XAkTEBtJ9QscU8h0L/Mwj1MzMuqvdazivB+6MiBckPU/WXRURL0r6LvA90hlQPeeRzpIul3QmMBmYB5yTHyqdddktjojjs/fzgG1IN32uAd4JfAa4PCL+N7f9L5Ou73yLdJ/QjGw5vM39NDOzDmv3DOdJYOvs7weAt+fWTSDd1FlXRPQDh5Du1bkSOB04l3TWlLcZr7yfZwXpPp0LgKuBDwHfyF7z27+VdOZzKHAd8F7gQ55lwJqaOjUtZlaads9wfgrsS/rS/zfSDAHbA38EPkmaRbqhiFgOvKtJnkmF9wtJN3A2FRFXkM5uzFq3bFm3a2DW89oNOPOA12Z/f43UpTaLdGZzPfCpTlXMzMx6S1sBJyJWAiuzvzeQnonz6RLqZWZmPWY4N37+CbAr8EhEPNy5KpmZWS9qd9AAkv5a0oPA/cDPgQckPSTpbzpeOzMz6xntzjTwReA7pPtpjgSmZa/XAN/O1puZmQ3SbpfaJ4GvRcQXCunXZnObfZI084DZ6DJ7drdrYNbz2g0446j/VM/FeJSajVZ+vLRZ6dq9hnMFcFSddR8Afjy86piZWa9q5RHTM3JvrwHOkjSJwY+Y3hv4h85X0awCS5emV882YFaaVrrUfszgR0m/FjisRt4fkp7EaTa6TJuWXj1jtFlpWgk4ry+9FmZm1vNaecT0/VVUxMzMelvbMw1I2ow0QOBAYHvgD8AtpEcFDH5gvJmZGW0GHEk7Az8B3kp6wudjwAGk+2/ukvSeiHi805U0M7PRr91h0ecAOwDviIjJEXFAREwG3pGln9PpCpqZWW9oN+DMAE6JiNvzidn7z5KmuTEzMxuk3Ws4WwDP1Fn3DPCq4VXHrEuWLOl2Dcx6XrsB5zbgFEk3RcSzA4mStgJOydabjT6+4dOsdO0GnJOARcCDkn5CGjSwM+kmUAHTO1o7MzPrGW1dw4mIO4E3AguAnYB3kwLOecAbI+KujtfQrApz5qTFzErT8hmOpM2B/YDfRsSp5VXJrAvOPz+9etZos9K0c4bzAnAT8Kcl1cXMzHpYywEnIl4Efg1MLK86ZmbWq9q9D+fzwBclvaWMypiZWe9qd5TaaaQZBe6U9DBplNor5nOPiP06VDczM+sh7QacX2aLmZlZW1oKOJLGkaa1+SXwO+CGiHiszIqZVWqffbpdA7Oe18ojpicDNwCTcslrJH0wIn5SVsXMKjXwiGkzK00rgwbOAl4E/hx4NbA3cAcwv8R6mZlZj2kl4BwAnBYRP42I5yLiHmAu8DpJu5ZbPTMz6xWtBJxdgd8U0u4jzZ22S8drZNYNUlrMrDSt3ocTzbOYmZnV1+qw6OskbayRfmMxPSJ2Hn61zMys17QScE4vvRZmZtbzmgaciHDAMTOzYWt3LjUzM7MhccAxM7NKtDuXmllvmu/7mM3K5oBjBn68tFkF3KVmZmaVcMAxA1iwIC1mVprKA46kvSTdKGmdpEcknSFp0yZl9pV0gaRVWbmVkr4kactCvnmSosZyeLl7ZaPe3LlpMbPSVHoNR9IE0qMOlgMzgT2As0mB77QGRY/N8p4J/Bp4K/Dl7PUDhbxPA8UAc89w625mZsNT9aCBTwDjgKMiYg1wvaRtgXmSzsrSajkzIh7Pve+T9BwwX9LuEXF/bt3GiLitnOqbmdlQVd2ldgRwXSGwLCQFoYPqFSoEmwF3ZK+eu83MbBSoOuBMAVbkEyLiAWBdtq4df0Z6MNzKQvp2kp6Q9LykOyQdNeTamplZxyiiuicPSHoe+ExEfKuQ/hBwUUR8rsXt7AL8L3B1RMzKpX+EdMZzJ7A16UFxM4APRMTldbY1B5gDMHHixKkLFy5sd7dKs3btWrbeeutuV2PEGkr73P3w04PS3vLa8Uw/+GAA+hYt6kjdRgIfP825jRprpX0OPvjgpRExrZXtdSPgnBwR/1RIfxi4MCI+38I2XkUaePAnwNSI6G+QV8D/AOMi4m3Ntj1t2rRYsmRJs2yV6evrY/r06d2uxog1lPaZdOpVg9JWf/3Ilx++VuH/h7L5+GnObdRYK+0jqeWAU3WXWj+wXY308cBTzQpnAeQiYG9gRqNgAxApml4OvLXZ0Gsb4yJ6KtiYjURVj1JbQeFajaTdgK0oXNup41zScOp3R0Qr+Qf4m8TMrMuqPsO5BjhM0ja5tGOB9cDiRgUlfRb4FPCRiLi1lQ/LzojeD9wVES8MrcpmZtYJVZ/hnAecCFwu6UxgMjAPOCc/VFrSKmBxRByfvf8Q8DXgQuBhSfvntnnfwLBpSYuBy0hnS1sBs4H9gfeVu1s26k2dml6XLu1uPcx6WKUBJyL6JR0CfAe4knTd5lxS0CnWK3/N5T3Z66xsyfsYKRABrAL+DtiVNGR6GXBkRFzTifpbD1u2rNs1MOt5lT+eICKWA+9qkmdS4f0sBgeaWuWOH0bVzMysRJ4t2szMKuGAY2ZmlXDAMTOzSjjgmJlZJSofNGA2Is2e3e0amPU8Bxwz8OOlzSrggGPWouLEn6u/fmSXamI2OvkajhmkGQY8y4BZqXyGYwYwLZtd3TNGm5XGZzhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0p4WLQZwJIl3a6BWc9zwDGDlx8xbWalcZeamZlVwgHHDGDOnLSYWWkccMwAzj8/LWZWGgccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NK+MZPM4B99ul2Dcx6ngOOGfjx0mYVcJeamZlVwgHHzMwq4YBjBiClxcxK44BjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEZxowA5g/v9s1MOt5Djg2Kk069SpOestGZp161Utpq79+5NA36MdLm5XOXWpmZlYJBxwzgAUL0mJmpXGXmhnA3LnptYSutUm5bj8YZtef2SjmMxwzM6tE5QFH0l6SbpS0TtIjks6QtGkL5cZLukBSv6SnJf1I0g418s2UdLek5yQtl3RsOXtiZmbtqDTgSJoA3AAEMBM4AzgJOL2F4pcA04ETgFnAvsAVhe0fCFwGLAKOAK4CLpb0no7sgJmZDVnV13A+AYwDjoqINcD1krYF5kk6K0sbRNIBwGHAQRFxc5b2MPBzSYdGxA1Z1i8AN0fEidn7RZL2Br4I/KS83bLh8DWO+tw21kuqDjhHANcVAstC4EzgIODKBuUeGwg2ABHxC0m/zdbdIGkL4GDgxELZhcAFksZHxNMd2g+ro/gFCf6S7IaO36dk1gFVB5wpwE35hIh4QNK6bF29gDMFWFEj/Z5sHcAewOY18t1D6jrcE7h9aNWuTv4L+6S3bGR6nXVQ+wuk1V/E7fxy9q/ssWWo/95D/bExlHL+YTM6KSKq+zDpeeAzEfGtQvpDwEUR8bk65a4Hno2I9xXSfwhMjog/k/R/gFuBt0fEnbk8bwB+DRwWEYO61STNAQbGwr4JWDnkHey8HYEnul2JEczt05jbpzm3UWOttM/uEbFTKxvrxn04tSKc6qQPpVzxveqkp8SIBcCIvONP0pKImNbteoxUbp/G3D7NuY0a63T7VD0suh/Yrkb6eOCpIZTbLleuP5dWzEOT7ZuZWcmqDjgrePmaCwCSdgO2ovY1mrrlMvlrO/cBz9fINwV4Ebh3CPU1M7MOqTrgXAMcJmmbXNqxwHpgcZNyu2T32QAgaRowOVtHRGwg3X9zTKHsscDPRukItRHZ1TeCuH0ac/s05zZqrKPtU/WggQnAcuCXpKHQk4FzgG9FxGm5fKuAxRFxfC7tWtJIs5NJZyxnAr+PiD/P5TkQ6AO+Q7opdEaW//BaAwbMzKw6lZ7hREQ/cAiwKWkI9OnAucCXClk3y/LkHUc6C/oBcBGwFHh/Yfu3AkcDhwLXAe8FPuRgY2bWfZWe4ZiZ2djl2aJHEEmzJf06m3h0qaRDWigzT1LUWA6vos5lKHuC114wlDaSNKnOsbKwqnpXRdIbJM2XdJekFyT1tVhuTBxDQ2mfThw/fh7OCCHpOOA8YB7pBtaPAT+WtG9E/LJJ8aeBYoC5p+OVrEBugtflpAle9wDOJv04Oq1BUUgTvL6JNMHrwHW+K4A/b1RotBlmG0G6rvnGM5b+AAADaklEQVTT3PtevPFxb9I13NuAV7VRbkwcQwy9fWA4x09EeBkBC2mGgx/k3m8C3A38sEm5ecAT3a5/B9vhs6R7qrbNpf0DsC6fVqPcAaSbe9+ZS9svSzu02/s1QtpoUtYef9HtfaigjTbJ/X0p0NdCmbF0DA2lfYZ9/LhLbQSQNJk0Au/fB9Ii4kXgP0iTk44l9SZ4HUea4LVRuUETvAIDE7z2kqG20ZiR/f9p15g5hobYPsPmgDMyDNysWmvi0e0lNZunaDtJT0h6XtIdko7qfBUrM2ii1oh4gPTrvdbNv3XLZfITvPaKobbRgAuyfvtHJZ0jaVwZlRyFxtIxNBxDPn58DWdkmJC9Fqff6c+tf7xO2VWk7pQ7ga2BucBlkj4QEZd3uqIVmEDtaYj6ebmd2i03uQP1GkmG2kYbgH8hPRtqDemBhqeQrgHN7GwVR6WxdAwNxbCPHweckkgaD+zaLF9E5H9RtTXxaFb+h4XPvRL4H9JD50ZjwIHyJ3jtBW3va0Q8CvxtLqlP0mPAdyW9LXKzrI9hY+kYaksnjh93qZXnGNKpeLMFOjjxaKSre5cDb21lKPEIVOYEr71iqG1Uy6XZ6z7DqlFvGEvHUKe0dfw44JQkIr4XEWq2ZNkHznJqTTz6h4io153WsApDrnx3lTnBa68YahvVEoXXsWwsHUOd0tbx44AzAkTEb0izWb808aikTbL317SzLUkiTflzV0S80Ml6VqS0CV57yFDbqJajs9elnajYKDeWjqFOae/46fZ4cC8vjXH/S+AF0o17BwMXkr5A3pzLcxCwETgol7YYOBF4DynQXE26Ye293d6nIbbDBOBR4HrSnHhzgLXAVwr5VgHfL6RdC/wGOAp4H+neplu6vU8jpY1I92ydnbXPocAZ2TF2Wbf3qYQ2enX2ZXg08DPgV7n3r/Yx1H77dOL46fqOe3nFQTA7+0feACwDDimsn046dZ2eS/t+9h9kPfAscAtwRLf3ZZjtsBdwU7ZPjwJfBjYt5FkNXFhI2w64gNTfvgb4N2DHbu/PSGkj0gS4S0gzU/wxO9bOALbo9v6U0D6Tsv8rtZZJY/0YGkr7dOL48eSdZmZWCV/DMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaV+P9H9G7tkaKVdwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Delta\n", + "\n", + "The Delta is a bit simplier to evaluate than the expected payoff.\n", + "Similarly to the expected payoff, we use a comparator circuit and an ancilla qubit to identify the cases where $S_T > K$.\n", + "However, since we are only interested in the probability of this condition being true, we can directly use this ancilla qubit as the objective qubit in amplitude estimation without any futher approximation." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price]\n", + "slopes = [0, 0]\n", + "offsets = [0, 1]\n", + "f_min = 0\n", + "f_max = 1\n", + "c_approx = 1 # no approximation necessary\n", + "european_delta_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "european_call_delta = UnivariateProblem(\n", + " uncertainty_model,\n", + " european_delta_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae_delta = AmplitudeEstimation(m, european_call_delta)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact delta: \t0.4446\n", + "Esimated value:\t0.4510\n", + "Probability: \t0.9452\n" + ] + } + ], + "source": [ + "print('Exact delta: \\t%.4f' % exact_delta)\n", + "print('Esimated value:\\t%.4f' % result_delta['estimation'])\n", + "print('Probability: \\t%.4f' % result_delta['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYXFWd//H3h0VB1iAQGAaIgIgs/pSEzWEkyB5wUEDZHI0DdHQcXB7EACIEcHACssyEmSGNCvpTiCMiIwkkrA1G2RIMhiVgwLCDLIEQEpDlO3+c21CpVHdXVde9t7r4vJ6nnq577rm3vqequ7597j33XEUEZmZmeVuh7ADMzOzdwQnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjjWMpImSIo+Hp+vcx9bZvtZu6p8bLaf1fOJvr44BrnPyyX11FFvJUnfkHS3pKWSFkq6WtKuTb5uu7ynYyt+H96S9JKkP0o6X9LmTe6zR9LlFct7S/pG66K2VnLCsVZ7CdilxmN6ndtvCZwKVH/RT8v2s6Q1YTYdR64krQhcCZwJ/AYYA4wF3gR6JB3RxG7b5T3t9Ung48DBwI+AvYE/StqvBfveG3DCaVMrlR2AdZw3IuK2Vu80Ip4Fnm31ftvQscD+wH4RUZmk/1fSFKBb0s0R8cRgX6jE9/TOiFicPb9e0oXAVOBSSSMi4qUSYrICuIdjhZN0oqT5kl6V9Iyk6ZI2kDQauCqr9ufs0MuCbJtlDv9IGpEtHybpYkmLJD3ee+hO0rclPSnpWUkTJa1Q8fpbSZoi6TFJSyTdmx3CWiFb32cc2fpNsu1fyLafIelDVW3cODsMtlTSAklH1/n2fB24qSrZ9PoOsApwVMXrLJD0A0nflfS0pMWSfi5prYHaUuuQmqR1Jf1E0vNZ23okjapqW+9rfjN7zxdm70dTvcGIeI2UaNcGDq94nRUknZD9rrwm6UFJX+xrP5ImAMcBm1YcurskW7eLpN9kvxOvSJoj6chm4rXmuYdjLSdpud+riHgjW/cF4CRgPHAv8H7SIZbVgLuAbwE/AA4CngJeG+DlJgI/Jx2e+SfgJ5I+BmyaLY8Evgf8AZiSbbMR8EC23cvAR4HTgFWB7/cXh6R1gJnA88CXSYejTiD9p75lRCyVJOB/gXVJyeHVbP/rAH/q533bGBgBnFdrfUQ8JGku8ImqVYcD84FjgA2Bs4AfAp/try19uBLYItvmOeB44CZJH4uI+RX1Pgf8EegC/hY4l3QY8J/72XefImKepMeBnYELs+JJwBeB07N27AX8WNLzETG1xm5+CHyQ9Pv0maystwe3KfC7bN+vAn8HXCzprYi4rJmYrQkR4YcfLXkAE4Do4zEiq3MB8Kt+9nFAZf2K8rFZ+erZ8ohs+eKKOmsCr5O+1FesKL8D+EUfryfSP14nAQ/XEccZpGSzTkXZMNK5q69my2OybXeqqLMp8AbQ00/bd862O7CfOlcC91csLwBe6H1fsrIjgbeADzf4nu6bLe9WUWc10pf25KrXfAhYqaLsfODpAX4/lnm9GutvBa7Jnm+RteGLVXV+Sjok17vcA1xesfwDYMEAcfR+5pOBG8v+u3k3PdzDsVZ7CdizRvmT2c85wFGSTiOdtJ4dEW8O4vVu6H0SEYskPQvcXLXP+cAmvQuSVgFOJH0xbwKsXLFupch6Y33YE7gOWFTRk3sZmA30HnraEXgmIm6viO0RSbObaF89rot3zokAXAH8DNgBuL+B/ewIPBsRN/cWRMQrkqYC1SPkbqp6n+4D1pf0noj4a2Phv00Vz/cgJZxfV/WYbwAOl7RiI783koaRepkHknq4K2arBn0uzOrnhGOt9kZEzOpn/Y+BNUiHYk4Bnpf038CEJhPPi1XLf+2jbJWK5YnA0aQvoLuy+gcCJ2f1FtO3dUk9kUNrrOtNfhsAf6mx/i+ktvel98tv037qbMryX5LLvFakw3qLSYfXGrEh8EyN8mdIhwMr1XqPBbwne96MjYB52fN1SUmhrwEEGwKPN7DvS0if2xmk5LgI+Arpc7eCOOFYoSLiLdI5ivOycxZHAv9K+hK9sL9tW+izwKSIOKu3QNL+dW77Amm48hk11r2c/XwaWL/G+vWBpX3tOCIey07o/wPwH9XrJX0A2LbGa69fVW9VYHXS+ZpGPFW9r8xwUrtzI+nDpHNBt2ZFL5AOQf4dqadTrVZC72vfq5BG/v1LRFxYUe5BUwXzG26liYjHIuLfSIe8ts6Ke/87XqX2Vi2xKhUnzpWufTmsqk5fcdwAbAPcGxGzqh4PZHXuBIZL2qniNTYBtq8jtn8H9pC0d41138vi/lFV+V5a9uLNg0jnSnp7mvW+p7eTDou9PShB0vtIX9Yz64i9KZLeS0qwL/LOwI4bST2ctWq8z7P6OWxX3ZsFeG+2r8rPfA1SYrcCuYdjrbaSpJ1rlD8WEU9Imkz67/U20uGS3Ukji8Zn9Xq/tMcpXXeyJCLmtjjG64CvSpqfxfJV0pdSpb7iOBf4PHCjpEmkntlwYDdgZqQRT1cDdwO/lDSeNCrqdOr7r3wS6TzRryX9gHRSfA3SaLcDgH+M5a/BWQpMk3Q26VDT2cCvI+K+AdqyjIiYIel3wC8knUAaHPEtUoI+u47Y67WDpKXA+0g9tnGkQSCHRHYNTkQ8oHR9zhRJZ5GS5yqkZL9lRPQ1zHweKdmPBe4BnouIBZLuBE6RtIjUYzqB9Pu3ZgvbZQMpe9SCH53zoP9RaidndcaShqe+QBpS/EfgqKr9HAc8QjqksqBiu1qj1A6o2nYB8IOqskuAWRXLw4Ffk47jP0MaRnwMVSOoasWRlf8NcHG27WvZa/4M2Kaiziak2RWWZvsYB1xOP6PUKrZdCfhm9t4sBRYC1wC71qi7ADgne++fAV4BLgPWbvQ9zcrWI40EW5i99s3ADnW8x8vtq0asvXV6Hy8Dc0m9us1r1Bdp1oB7s/f52SyeL1TU6WHZUWqrZJ/NX7LXuCQr34LUa3oFeBT4dvaePVf238276aHswyiMpC1IY/t3Jv1389uIGF3HdmuRhl5+mnQocCrwtYh4vqregaRDDx8EHgZOi4hftLINZu0iO+dzeUR8q+xYzAZSxjmcbUjXKTyYPer1C2A0aXTRWNKQzysrKyhNbvgr4CZgP9Kw28v6OB5uZmYFKqOHs0KkkUoozfK67kA9HEm7AL8nXZB2S1a2I+kk514RcX1WNgNYOSI+WbHt1cCaEdHUTLtm7cw9HBtKCu/h9CabBu1HupDulor93AH8OVvXO9Jld+B/qradAuzSO7eUWSeJiBFONjZUDJVh0VvxzgVhle7P1gFsTrpivLre/aR2bplbdGZmNqChMix6GMtf2QxpJM1mFXWoUW9h1fplSOoiXfXOqquuOnLjjTceVKBvvfUWK6wwVPL44Lm9/VvjwXSa8uUth+b/O/58O1sr2vvggw8+FxHr1VN3qCQcSEMcq6lGefWy+ihPhRHdQDfAqFGjYtas/mZlGVhPTw+jR48e1D6GErd3AMp+/R54oP96bcqfb2drRXslPVJv3aGSyhdS+86La/NOj2ZhRVl1HajdQzIzs4IMlYQzj3fO1VSqPLfzEGlq+up6W5GuLG5kCLaZmbXYUEk41wAbZNfZAJDdhXCzbB2R7hp4E2lixkqHAreGb1trZlaqws/hZJMBjskWNwLWlHRItnx1RCzJ5ri6OSKOAoiIW7NrbH4q6VukHstE0txV11fs/gygR9L5pItCx2SPfXNvmJmZ9auMQQPrA7+sKutd/gBpnqaVeOcGSb0OI01r/2MqpraprBARM7Pk9T3SvS7+DBwREde2MH6z+hV8YbVZOys84UTEApa9s1+tOiNqlL0IfCl79LftlVRNeWNmZuUbKudwzMxsiHPCMcvTyJHpYWZD6sJPs6HnrrvKjsCsbbiHY2ZmhXAPx6wAI06Ytszygn/bv6RIzMrjHo6ZmRXCCcfMzArhhGNmZoXwORyzPB1zDJfe8WjZUZi1BfdwzPLU3c1J+x5bdhRmbcEJx8zMCuGEY5an2bPZ9un5ZUdh1haccMzyNGoUU3/yjbKjMGsLTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoVwwjEzs0J4ahuzPM2axQGTZpYdhVlbcMIxy9PIkdyzwdNlR2HWFnxIzczMCuGEY5anri7OnD6p7CjM2oITjlmeLrqII+6eUXYUZm3BCcfMzArhhGNmZoVwwjEzs0I44ZiZWSGccMzMrBC+8NMsT9tvz9wnXio7CrO24IRjlqfZs/nUCdPKjsKsLfiQmpmZFcIJx8zMCuGEY5YniQUTDyg7CrO24IRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEZxowy9PkyZx4xdyyozBrC044Znnq6uKyhz21jRmUcEhN0taSbpC0RNKTkk6XtOIA20yQFH08Tqyod0kfdbbKv2VmZtafQns4koYB1wP3AQcCmwPnkBLfyf1s+kNgelXZp4HxwDVV5fOAL1WVLWguYrNB6u7m8Dlzueyj+5YdiVnpij6k9mVgVeCgiFgEXCdpTWCCpLOysuVExOPA45Vlkr4LzIuIOVXVX4mI23KI3axx48bxfXDCMaP4Q2r7ATOqEssUUhLard6dSFoH2Au4rLXhmZlZXopOOFuRDnm9LSIeBZZk6+p1CLAyKVlV21rSIkmvSZopqe5EZmZm+Sn6kNow4MUa5QuzdfU6DLgrIh6sKv8DcDvpHNF6wHGkw3a7RsQdtXYkqQvoAhg+fDg9PT0NhLG8xYsXD3ofQ4nb27/R2c/jtntjmfKh8p758+1sRbe3jGHRUaNMfZQvX1HakHT4bfxyO47496q600jJ5yTSIIPlg4noBroBRo0aFaNHj64njD719PQw2H0MJW5vfc6Zu+yf2oIjG99HGfz5drai21v0IbWFwNo1yteids+nls+REtQvBqoYEUuBq4Ht6w3QzMzyUXTCmUfVuRpJGwOrUXVupx+HATMj4rEGXreu3pOZmeWn6IRzDbCPpDUqyg4FlgI3D7SxpBHAztQ5Ok3SqqSRcbMbDdSsJSIYMX5q2VGYtYWiE86FwGvAFZL2zE7YTwDOrRwqLWm+pB/V2P4w4A3g8uoVktaS9FtJ4yTtIelQ4CZgI+DMHNpiZmYNKHTQQEQslLQHcAFwFem8zXmkpFMdV63pbg4DboiIZ2usew14ljRjwfrAq8CtwG4RMaslDTAzs6YVPkotIu4DPjlAnRF9lH+0n21eBQ4aVHBmrTZyJFc98RKfGvvvA9c163CeLdosT3fdxXZlx2DWJnwDNjMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQniUmlmejjmGS+94tOwozNqCezhmeeru5qR9jy07CrO24IRjZmaFaCjhSKo13YyZ9WX2bLZ9en7ZUZi1hUZ7OE9IOkvSh3OJxqzTjBrF1J98o+wozNpCowlnMnAIcI+k2yV1SVozh7jMzKzDNJRwIuLUiNgM2At4ADgXeErSzyXtmUeAZmbWGZoaNBARN0bEF4ANgGOBDwEzJC2QNEHS37QySDMzG/oGO0ptFPAJ0m2jFwK/BY4G5kv6/CD3bWZmHaThhCNpU0mnSnoIuAHYEPgn4G8i4h+BTUnnes5uaaRmZjakNTTTgKQbST2ax4FLgIsj4pHKOhHxpqRLga+3KkgzMxv6Gp3a5jlgDHBdREQ/9eYAH2g6KrNOMWsWB0yaWXYUZm2h0UNqFwC/r5VsJK0u6RMAEfF6dc/H7F1p5Eju2WCLsqMwawuNJpybgK37WPehbL2ZmdlyGk046mfd6sCSQcRi1nm6ujhz+qSyozBrCwOew8kOk42uKDpa0r5V1VYB9gfmti40sw5w0UUcAZ4x2oz6Bg3sRLq4EyCAzwJvVNX5KzAPOL51oZmZWScZMOFExNlk19RI+jPwmYiYk3dgZmbWWRoaFh0RHupsZmZNqecczhhgZkQsyp73KyKubklkZmbWUerp4UwFdgbuyJ4HfY9WC8A3aTMzs+XUk3A+ADxV8dzM6rX99sx94qWyozBrC/UMGnik1nMzq8Ps2XzqhGllR2HWFuo5h/O+RnYYEb7408zMllPPIbXFpHMz9fI5HDMzW049CeefaCzhmFkviQXAiPFTy47ErHT1nMO5pIA4zMysww32FtNmZmZ1qWfQwB3A2Ii4T9KdDHB4LSJ2bFVwZmbWOeo5h3MvsLTiuc/nmJlZw+o5h/Oliudjc43GzMw6VtPncJSsJ6m/m7KZmZkBTSQcSWMk/R54FXgaeFXS7yXt3/LozIa6yZM5cZ9/KTsKs7bQUMKRNA64inQx6NdJN2P7erb8m2y9mfXq6uKyj1bfINfs3amh++EAJwHdEfGVqvILJV0IfAeY3JLIzMysozR6SO39wBV9rPsVsM5AO5C0taQbJC2R9KSk0yX1Ox2OpBGSosZjSo26B0qaK+lVSfdJOrSulpnlobubw+dMLzsKs7bQaA/nJmA34Loa63YDbulvY0nDgOuB+4ADgc2Bc0iJ7+Q6Xv9bwO8qlp+r2v+upMT3X8DXgDHAZZIWRsS1dezfrLXGjeP74MNqZtR34efWFYv/AfxQ0vuBK4G/AOsDnwH2A44eYHdfBlYFDoqIRcB1ktYEJkg6KyvrzwMRcVs/678L3BIRX8uWb5K0DXAK4IRjZlaieno497DsxZ4CxmWP6rt/Tqf/2aL3A2ZUJZYpwERSD+mqOuKpSdJ7gd1JPZtKU4CLJa0VEb4TlplZSepJOLu38PW2Am6sLIiIRyUtydYNlHAulrQOqWd1GfCdiOidBWFzYGVgXtU295MO2W0J3Dm48M3MrFn1zDRwcwtfbxjwYo3yhdm6vrwG/CfpsNgiYDQwnpRkDqzYNzX2v7Bq/TIkdQFdAMOHD6enp6e/+Ae0ePHiQe9jKHF7+zc6+3ncdm8sUz5U3jN/vp2t6PY2OmjgbZJWAFapLq/jjp+15mJTH+W9+3wKqLx6rkfSM8B/SfpoRMzpZ//qo7x3391AN8CoUaNi9OjR/Uc/gJ6eHga7j6HE7a3POXOX/VNbcGTj+yiDP9/OVnR7G73wU5LGS5oPvA68XOPRn4XA2jXK16J2z6c/l2c/t6/YNzX237vc6P7NzKyFGr0O52vACcCPSD2HfwVOBx4EFpAdmurHPNK5mrdJ2hhYjeXPvQwkqn4+REqCW1XV2wp4K4vRrFgRvtunWabRhHMMcCpwVrZ8ZUScBmxDShgfHGD7a4B9JK1RUXYo6fYHjZ4rOiT7ORsgIl4jXSf02ap6hwK3eoSamVm5Gj2H8wFgTkS8Kel1ssNVEfGWpP8CfkjqAfXlQlIv6QpJE4HNgAnAuZVDpbNDdjdHxFHZ8gRgDdJFn4uATwDHA1dExB8r9n8G6fzO+aTrhMZkD191Z2ZWskZ7OM8Dq2fPHwU+VrFuGOmizj5FxEJgD9K1OlcBpwHnkXpNlVZi2et55pGu07kYuBo4Ajg7+1m5/5mkns+ewAzgH4AjPMuAlWbkSK665OtlR2HWFhrt4fwO2IH0pX8paYaAdYC/Al8FbhhoBxFxH/DJAeqMqFqeQrqAc0ARcSWpd2NWvrvuYruyYzBrE40mnAnARtnzM0mH1MaSejbXAce2KjAzM+ssDSWciHgAeCB7/hrpXjg+XmBmZgMazIWffwtsCDwZEU+0LiQzM+tEzdxi+iuSHgMeAW4HHpX0uKR/bnl0ZmbWMRqdaeAU4ALS9TT7A6Oyn9cA/5GtNzMzW06jh9S+CpwZEd+tKp+ezW32VdLMA2YGcMwxXHrHo2VHYdYWGj2ktip939XzZmpM5mn2rtbdzUn7evCmGTSecK4EDupj3cGAJ40yM7Oa6rnF9JiKxWuAsySNYPlbTG8DfLv1IZoNYbNns+3T87lngy3KjsSsdPWcw5nK8reS3gjYp0bdn5HuxGlmAKNGMRU8Y7QZ9SWcD+QehZmZdbx6bjH9SBGBmJlZZ2t4pgFJK5EGCOwKrAO8APyWdKuAN/rb1szM3r0aSjiS1geuBT5CusPnM8AupOtv7pa0d0Q82+ogzcxs6Gt0WPS5wPuBnSJis4jYJSI2A3bKys9tdYBmZtYZGk04Y4DxEXFnZWG2fCJpmhszM7PlNHoO573Ay32sexl4z+DCMesws2ZxwKSZZUdh1hYa7eHcBoyXtFplYbY8PltvZr1GjvRFn2aZRns4xwE3AY9JupY0aGB90kWgAka3NDozM+sYDfVwImIO8EGgG1gP2IuUcC4EPhgRd7c8QrOhrKuLM6dPKjsKs7ZQdw9H0srAjsCfI+KE/EIy6yAXXcQR4BmjzWish/MmcCPw4ZxiMTOzDlZ3womIt4A/AcPzC8fMzDpVo6PUvgOcImm7PIIxM7PO1egotZNJMwrMkfQEaZRaVFaIiB1bFJuZmXWQRhPOPdnDzMysIXUlHEmrkqa1uQd4Grg+Ip7JMzCzjrD99sx94qWyozBrC/XcYnoz4HpgREXxIkmfi4hr8wrMrCPMns2nTphWdhRmbaGeQQNnAW8Bfw+8D9gG+AMwOce4zMysw9STcHYBTo6I30XEqxFxPzAO2ETShvmGZ2ZmnaKehLMh8HBV2UOkudM2aHlEZp1EYsHEA8qOwqwt1HsdTgxcxczMrG/1DoueIemNGuU3VJdHxPqDD8vMzDpNPQnntNyjMDOzjjdgwokIJxwzMxu0RudSMzMza4oTjpmZFaLRudTMrBGTJ3PiFXPLjsKsLTjhmOWpq4vLHvbUNmbgQ2pmZlYQJxyzPHV3c/ic6WVHYdYWCk84kraWdIOkJZKelHS6pBUH2GYHSRdLmp9t94CkUyWtUlVvgqSo8dg331aZ9WHcOL4/44KyozBrC4Wew5E0jHSrg/uAA4HNgXNIie/kfjY9NKs7EfgT8BHgjOznwVV1XwKqE8z9g43dzMwGp+hBA18GVgUOiohFwHWS1gQmSDorK6tlYkQ8W7HcI+lVYLKkTSPikYp1b0TEbfmEb2ZmzSr6kNp+wIyqxDKFlIR262ujqmTT6w/ZT8/dZmY2BBSdcLYC5lUWRMSjwJJsXSM+Trox3ANV5WtLek7S65L+IOmgpqM1M7OWUURxdx6Q9DpwfEScX1X+OPDTiDipzv1sAPwRuDoixlaUf57U45kDrE66UdwY4OCIuKKPfXUBXQDDhw8fOWXKlEabtYzFixez+uqrD2ofQ4nb27/Ru+8OwKSfXblM+XYbrdXSuPLiz7eztaK9u+++++yIGFVP3TIu/KyV4dRH+fIVpfcA/wMsBr65zI4jflZV9yrg98ApQM2EExHdQDfAqFGjYvTo0fWE0aeenh4Gu4+hxO2tzzlzl/1TW3Bk4/sogz/fzlZ0e4s+pLYQWLtG+VrAiwNtLEnAT4FtgDERsbC/+pG6b1cAHxlo6LVZLiIYMX5q2VGYtYWiezjzqDpXI2ljYDWqzu304TzScOq9IqKe+r18x1Izs5IV3cO5BthH0hoVZYcCS4Gb+9tQ0onAscDnI2JmPS+W9Yg+A9wdEW82F7KZmbVC0QnnQuA14ApJe2Yn7CcA51YOlc5mFPhRxfIRwJmkw2lPSNq54rFeRb2bJX1N0t6SPgNMA3bOXsOseCNHctUlXy87CrO2UOghtYhYKGkP4ALgKtJ5m/NYPiGsBFSec9k7+zk2e1T6EnBJ9nw+8A1gQ9KQ6buA/SPimlbEb9awu+5iu7JjMGsThY9Si4j7gE8OUGdE1fJYlk80tbY7ahChmZlZjjxbtJmZFcIJx8zMCuGEY2ZmhXDCMTOzQpQxtY3Zu8cxx3DpHY+WHYVZW3APxyxP3d2ctO+xZUdh1haccMzMrBBOOGZ5mj2bbZ+eX3YUZm3BCccsT6NGMfUn3yg7CrO24IRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEp7Yxy9OsWRwwqa47opt1PCccszyNHMk9GzxddhRmbcGH1MzMrBBOOGZ56urizOmTyo7CrC044Zjl6aKLOOLuGWVHYdYWnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhCz/N8rT99sx94qWyozBrC044ZnmaPZtPnTCt7CjM2oIPqZmZWSGccMzMrBBOOGZ5klgw8YCyozBrC044ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeKYBszxNnsyJV8wtOwqztuCEY5anri4ue9hT25iBD6mZmVlBnHDM8tTdzeFzppcdhVlbcMIxy9O4cXx/xgVlR2HWFpxwzMysEIUnHElbS7pB0hJJT0o6XdKKdWy3lqSLJS2U9JKkn0t6f416B0qaK+lVSfdJOjSflti7yYgTpjHihGnMfeKlt5+bWWMKTTiShgHXAwEcCJwOHAecVsfmvwBGA0cDY4EdgCur9r8r8CvgJmA/YBpwmaS9W9IAMzNrWtHDor8MrAocFBGLgOskrQlMkHRWVrYcSbsA+wC7RcQtWdkTwO2S9oyI67Oq3wVuiYivZcs3SdoGOAW4Nr9mmeWjuie14N/2LykSs8Er+pDafsCMqsQyhZSEdhtgu2d6kw1ARNwB/Dlbh6T3ArsD/1O17RRgF0lrDT58MzNrVtE9nK2AGysLIuJRSUuydVf1s928GuX3Z+sANgdWrlHvflJi3RK4s7mwrd3UOodSz3//zW431AymnZXbHrfdG4xuVVD2rqeIKO7FpNeB4yPi/Kryx4GfRsRJfWx3HfBKRHy6qvxnwGYR8XFJfwfMBD4WEXMq6mwB/AnYJyKWO6wmqQvoyhY/BDzQdAOTdYHnBrmPocTt7Wxub2drRXs3jYj16qlYxtQ2tTKc+ihvZrvqZfWzPRHRDXQP8Np1kzQrIka1an/tzu3tbG5vZyu6vUWfw1kIrF2jfC3gxSa2W7tiu4UVZdV1GGD/ZmaWs6ITzjzeOecCgKSNgdWofY6mz+0yled2HgJer1FvK+At4MEm4jUzsxYpOuFcA+wjaY2KskOBpcDNA2y3QXadDQCSRgGbZeuIiNdI1998tmrbQ4FbI+KlwYdfl5Ydnhsi3N7O5vZ2tkLbW/SggWHAfcCQ1kpaAAAFXUlEQVQ9wERSwjgXOD8iTq6oNx+4OSKOqiibThpp9i1Sj2Ui8JeI+PuKOrsCPcAFpItCx2T19601YMDMzIpTaA8nIhYCewArkoZAnwacB5xaVXWlrE6lw0i9oB8DPwVmA5+p2v9M4BBgT2AG8A/AEU42ZmblK7SHY2Zm716eLbpOeU862m6aaa+kHbK2zs+2e0DSqZJWKSruZjX7+VZsv4Kk2ZJC0gF5xtoKg2mvpIMk3SlpqaTnJU2XtFreMQ/GIP5+R0m6NmvnC5Kul7RTETEPhqQtJE2WdLekNyX11Lldrt9XvsV0HSomHb2PNOno5sA5pIR9cj+bQpp09EOkSUd7zz1dCfx9fxuVaRDtPTSrO5F0se1HgDOynwfnGPKgDPLz7XU0sFEuAbbYYNor6WjSOdKzgOOBYcAnaePvkmbbm42gvR64C/hCVnw8cK2kj0TEI3nGPUjbkM5h3wa8p4Ht8v2+igg/BngAJ5Ku81mzouzbwJLKshrb7UK64PQTFWU7ZmV7lt2uHNq7Xo2yrqy9m5bdrla3t6LuMOBZ4KisrQeU3aacPt91gZeBY8puQ0Ht/TLwJrB21Wf9JvCVsts1QJtXqHh+OdBTxza5f1/5kFp9cpt0tE011d6IeLZG8R+yn+u3LryWa/bz7XUG8Dvghhxiy0Oz7f1c9vMneQWWk2bbuzLwBrC4omxxVqaaW7SJiHiric1y/75ywqnPcpOHRsSjpP+Qal2Q2ud2mcpJR9tRs+2t5eOkrvlg56jLU9PtlfQR4Euk4fdDRbPt3Yn0OR4l6XFJr0u6XdLH8wu1JZpt76+yOudIWl/S+qRRtQuBX+YUa5ly/75ywqnPMGpPjbMwW9fq7crWkrglbQB8B/j/0ce9jtrEYNo7CfjPiJjf8qjy02x7NyAd3z8ZGA98CngFmC5peKuDbKGm2hsRT5JueXIw8Ez2OIg0EXCt3vxQl/v3lRNO/fKedLTdDCpuSe8h3ZtoMfDNFsaVl4bbK+kw0hfw9/IKKkfNfL4rAKsDR0XEzyNiOvBp0jmNf2l9iC3VzOe7Ien8x2zSIaX9sufTJG2SR5BtINfvKyec+uQ56Wg7ara9AEgS6eLcbYAxkS74bWcNt1fSysDZpFE8K0haG1gzW71a1fRN7abZz/eF7GdPb0HWc50NbN2q4HLQbHuPJ42+OyQipmcJ9mBSgh1Kh1Drlfv3lRNOffKcdLQdNdveXueRhp8eGBHt3M5ezbR3NeBvSVMzLcwed2frpvDOYIl21Oznez/pP93qE+YinadrV822dyvg3oh4vbcgIv4K3EsaWt1pcv++csKpT26TjrapZtuLpBOBY4HPR5pqaChopr2LScf3Kx+HZ+tOAo7MJ9SWaPbznUpKLrv3Fijdun0k7yTbdtRsex8Bts0ODwNv38p+W2BBDnGWLf/vq7LHiw+FB+mE2VPAdaR52rpIXzjfq6o3H/hRVdl04GHSycZPk0b5/LbsNuXRXuAI0n/AFwM7Vz2Wu0anXR6D+Xyr1o9gaFyHM5jf5yuzbb8I7E/6wn4WGFZ2u1rdXlIifR2YlrX1ANIX7+vA/yu7XQO0+X2keSUPAW4l9cp6l9/Xz+eb6/dV6W/MUHmQjlHfSPqv6CnStRcrVtVZAFxSVbZ29gX8IrAIuBRYt+z25NFe4JLsC7fWY2zZbcrj861aPyQSzmDaSxo08N/A89m21wPbld2eHNu7B3AL6fzVC6QEO7rs9tTR3t7fxVqPEf20N9fvK0/eaWZmhfA5HDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwzMysEE44ZmZWiP8DfaqI377r9ZEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for delta\n", + "plt.bar(result_delta['values'], result_delta['probabilities'], width=0.5/len(result_delta['probabilities']))\n", + "plt.plot([exact_delta, exact_delta], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Delta', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/simulation/european_put_option_pricing.ipynb b/qiskit/finance/simulation/european_put_option_pricing.ipynb new file mode 100644 index 000000000..24df0749c --- /dev/null +++ b/qiskit/finance/simulation/european_put_option_pricing.ipynb @@ -0,0 +1,515 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Pricing European Put Options*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "Suppose a European put option with strike price $K$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$\\max\\{K - S_T, 0\\}$$\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ \\max\\{K - S_T, 0\\} \\right]$$\n", + "
\n", + "as well as the corresponding $\\Delta$, i.e., the derivative of the option price with respect to the spot price, defined as:\n", + "
\n", + "
\n", + "$$\n", + "\\Delta = -\\mathbb{P}\\left[S_T \\leq K\\right]\n", + "$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", + "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", + "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits to represent the uncertainty\n", + "num_uncertainty_qubits = 3\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "The payoff function decreases linearly with an increasing spot price at maturity $S_T$ until it reaches zero for a spot price equal to the strike price $K$, it stays constant to zero for larger spot prices.\n", + "The implementation uses a comparator, that flips an ancilla qubit from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\leq K$, and this ancilla is used to control the linear part of the payoff function.\n", + "\n", + "The linear part itself is then approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price = 2\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price]\n", + "slopes = [-1, 0]\n", + "offsets = [strike_price - uncertainty_model.low, 0]\n", + "f_min = 0\n", + "f_max = strike_price - uncertainty_model.low\n", + "european_put_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "european_put = UnivariateProblem(\n", + " uncertainty_model,\n", + " european_put_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYFNXZxuHfA6hsCgiK5BOZmKgETaKOiaKJCqK4RRQXEFxww13c45IIoijuSxRxIeKOirtRkU2MGo2giUaESBQQUFTEZQSR5f3+ODXSND3TPVtV18x7X1ddM119qufppum3q07VOTIznHPOuepqlHQA55xz6eaFxDnnXI14IXHOOVcjXkicc87ViBcS55xzNeKFxDnnXI14IXFFS9IQSZaxLJD0mKSfJZhpF0lvSfpekkXrWkgaI2lRlHNABduOzno+5ctdsT6J1XkGSjowx/rZkq5NIpNLpyZJB3Auj6+BvaPfNwcuAyZK2trMvksgz+3AZ0BPYFm07mTgD8BRwHzgf5VsPwM4JmvdZ7WcsVADgf8AT2atPwhYFH8cl1ZeSFyxW2Fmr0e/vy5pLvB3YF/g0QTydAbuMLMpWetmmtljBWz/XcbzKUpm9nbSGVy6+KEtlzbTop8lAJK6Sno6Ouz1naR/Sepf3ljShtFhqKMzH0TBR5Kuz1jXXdIbUfuFkkZIahndt3t0KKsxcFN0SGq0pNnAccB25YeqqvvEyv+GpG2y1r8kaWzG7dGSpkraU9I70fN+RdLWWds1lnShpP9KWiZpnqTR5Y8JlAJHZxxiGxDdt9ahLUmHSXo3epyPJQ2T1CTj/gHRY/xS0vgo0wxJvav7erj08ELi0qYk+vlp9LMT8CpwPOHw0mPA3ZIOBzCzL4EnWPtw0u7RY90NIKkL8ALwBXAwMBjoB5R/gL8FdI1+vy76/TLCYaDnCIesuma0qZCkJplLQc96bZsB1wDDgMOBjYFHJCmjze3ApcAjwP7AOUCL6L5ToszPZeT+WwV59wIeJrwGvYC/AOcCt+Ro/iDwNOF1+QAYI2nTaj5HlxJ+aMsVvYwP282BEcC3wAQAMxuT0U7Ay8CmwAnAQ9Fdo4AXJW1uZh9G644BppnZu9HtS4A5wAFmtjJ6vC+BhyV1NbN/EA6tAczOPDwl6XOgfYGHrEqB5VnPbwszm1XAtpk2BHYxsw+ix2hEKJhbATMkdSbsKQ0ys5sztnsYwMymS/oO+LyA3EOBl8ysfK/uheh1uFLS5WY2L6PtDWb21yjTNGAhoYiNrOLzcynieySu2LUlfPAuB2YSikkfM/sEQFIbSTdLmpPRbiCwZcZjTCQUiaOjbdYHehPtjUR+CzxRXkQijwErgN/V4vN5H/hN1vJxNR5ndnkRiUyPfpZ/++8W/Rxdjcf+kaTGwPas3R/1MOHzI3sP7MXyX8xsEeFEAt8jqed8j8QVu6+BHoARDmctsDWHrB4N7EQ4zDQd+IZwFlWv8gZmZpLuBo6VNAQ4jPDefzDjcToQvj2Tsd1KSYsI3/5ryxIzm1oLj/NV1u0fop9No59tCR3739Tw77QD1iHrtcm4nf3a5MrVFFeveSFxxW5FRR+8kpoC+wGnmdnIjPW59rTvJvR7dAMGAE+a2eKM+z8h9DNkPn5jwgfylzV5AlXwffRz3az1GxL6bqpiEdBC0gY1LCZfEPbyNs5a3z76Gddr44qYH9pyabYe4Syq8us5yg9bHZDd0Mw+Jhx2uZRwqOrurCZvAAdFxaNcb8KXrVdqN3aFyvsaflG+QlJHQr9HVU2Kfh5VSZu8ewvRob5pwKFZdx0GrAL+UY1srp7xPRKXWmb2taQ3gUskfUP4YLuAcDhsgxybjCIc658HjM+673LgbeBJSbcRjutfBYyLOtrrnJnNi57PZZKWEL7oXUQ1vvWb2UxJdwDXSdqYcBJCa+AQM+sbNZsB9JTUk7AH81HUr5FtMDAuOjw4Bvgl4VDinVkd7a6B8j0Sl3b9gI+Ae4GbCB3k91bQ9llC5/k9ZrYq8w4zew/Yh3AI53FCYXkIOKRuYleoHzAXuB+4gnDG1MxqPtYphD2wIwin+d4ILM24/3JC5/8jwJuE06fXYmYvAn2BHYBngDMJp0CfVs1crp6RT7XrGgpJ+xKKyZbVON3WOVcBLySu3pP0E2ALwoV0c81s/4QjOVev+KEt1xAMJFxL8j1wesJZnKt3fI/EOedcjfgeiXPOuRppEKf/tmvXzkpKSqq17XfffUeLFi3yNywSacqbpqyQrrxpygrpypumrFCzvNOmTfvCzDbK29DM6v1SWlpq1TV58uRqb5uENOVNU1azdOVNU1azdOVNU1azmuUFploBn7F+aMs551yNxF5IJHWRNFHSkmgyoqFZw1JUtN0Okl5UmBf7S0kTJO0YR2bnnHMVi7WQSGpDmEfCCKOzDiVMtnNpnu06Rts1IYwddGT0+4uSOtVlZuecc5WLu7P9JKAZ0NvCiKTjJW0ADJF0tVU8Sul+wPrRdl8BSHqNMDLpvsBtdR/dOedcLnEf2tqHMAheZsEYQyguu1Wy3TqEMZLKMtaVReuUcwvnnHOxiLuQdCaMOPojM5sLLInuq8hjUZvrJG0cjWZ6A7CYtWduqx0PPAAlJezWvTuUlITbzjnn1hLrle2SlgPnmdmNWevnAfea2UWVbLstYcC9/4tWfQLsY2b/rqD9QMLQGLRv3750zJgxuZrltPGECWx17bU0XvbjNBesXG89Zp57Lp/16FHw4yShrKyMli1bJh2jIGnKCunKm6askK68acoKNcvbrVu3aWa2Q96GhZwjXFsLYaa1QTnWzweGVbJdB2AW8BSwd7Q8Q5hXYrN8f7fK15F06mQGay+dOlXtcRKQpnPc05TVLF1505TVLF1505TVLJ7rSOLubF9MmFwnWyvWnus503mEEwMOMbPlAJImAR8A5wJn1GrKuXOrtt455xqwuPtIZpDVFxKd2tuCrL6TLJ2B98qLCICZ/QC8B/ys1lNutlnV1jvnXAMWdyF5njC15/oZ6/oQZm2bUsl2c4BtJK1bvkLSesA2wOxaTzlsGDRvvuY6CS68sNb/lHPOpV3chWQksAx4XFKPqEN8CHC9ZZwSLGmWpFEZ290F/AR4QtJ+kvYHniT0ndxR6yn794c77oBOnTAJNtkkFJKnn4ZVq/Jv75xzDUishcTMFgN7AI0JneWXEk7jHZzVtEnUpny7aYQO9vWB+whzcjcH9rQKztqqsf79YfZspkyaBJ98AjfdBM89B1dfXSd/zjnn0ir2YeTNbDrQPU+bkhzrJhJmuUvGqafC3/8OF18MXbvCbpVdP+mccw2Hj/5bKAnuvBN+9jM4/HBYuDDpRM45VxS8kFTFBhvA2LGweDH06wcrVyadyDnnEueFpKp+9Su49VaYNAmGDk06jXPOJc4LSXUccwwcfTRcdhm8+GLSaZxzLlFeSKpDghEjYOutw9ld8+Ylncg55xLjhaS6mjeHRx+FpUuhb19Yvjz/Ns45Vw95IamJzp3DmVyvvgoXVThwsXPO1WteSGrq8MPh5JPh2mvhqaeSTuOcc7HzQlIbrr8ett8eBgyAjz5KOo1zzsXKC0ltaNo09JeYwWGHQcaEWM45V995Iaktm28Oo0fD1KlwzjlJp3HOudh4IalNBx4IZ58dLlh8+OGk0zjnXCxiLySSukiaKGmJpAWShkpqnGebIZKsgqW4JgkZPjwM6nj88TBzZtJpnHOuzsVaSCS1ASYABvQChgLnEIaTr8xdQNes5arovufrJGx1rbNO2BtZbz049FBYsiTpRM45V6fi3iM5CWgG9Daz8WY2klBEzpa0QUUbmdk8M3s9cwF+Ccwws3/FE70KOnaE+++H//wHTjst6TTOOVen4i4k+wDjMmdDBMYQikvBE3xI2hDYE3ioduPVor33DnOX3H13WJxzrp6Ku5B0BmZkrjCzucCS6L5CHQKsQyhCxWvIEOjWLUyK9e67Sadxzrk6ITOL749Jy4HzzOzGrPXzgHvNrKBxRiRNAlqZWWklbQYCAwHat29fOmZM9WpOWVkZLVu2rNa2AOt++SWlJ5zAyhYtmDZyJCubN6/2YxWipnnjlKaskK68acoK6cqbpqxQs7zdunWbZmY75G1oZrEtwHJgUI7184FhBT5GB2AlcG6hf7e0tNSqa/LkydXeNuNBzBo1Muvb12zVqpo/XqV/anKdPn5tSlNWs3TlTVNWs3TlTVNWs5rlBaZaAZ+xcR/aWgy0zrG+FfBVgY9xGCAgPRdq7L57mLtkzBi47bak0zjnXK2Ku5DMIKsvRFJHoAVZfSeV6Au8YmYf13K2unXBBbDPPnDWWeHqd+ecqyfiLiTPAz0lrZ+xrg+wFJiSb2NJJcBOFPPZWhVp1Ajuuw/atw/XlyxenHQi55yrFXEXkpHAMuBxST2iDvEhwPWWcUqwpFmSRuXYvi+wAhgbR9ha17YtPPJImFHxmGPCII/OOZdysRYSM1sM7AE0Bp4hXIx4AzA4q2mTqE22vsBEM/u8LnPWqZ12gmuuCXOXXH990mmcc67GmsT9B81sOtA9T5uSCtZvWxeZYjdoEPz97/DHP4bCsssuSSdyzrlq89F/kyDBX/8KnTpBnz7weXp3sJxzzgtJUlq1CpNhffEFHHEErFqVdCLnnKsWLyRJ2n57uOkmePFFGDYs6TTOOVctXkiSNnAg9O8PgwfDxIlJp3HOuSrzQpI0CUaOhM6doV8/WLAg6UTOOVclXkiKQcuWMHYslJXB4YfDihVJJ3LOuYJ5ISkWXbqEPZOXX4ZLLkk6jXPOFcwLSTE58sgw1/uVV8Lf/pZ0GuecK4gXkmJz883w61+HojJnTtJpnHMuLy8kxaZZs3B9yYoV4WLFH35IOpFzzlXKC0kx2mKLcOX7G2/A+ecnncY55yrlhaRYHXIInHFGuGDxsceSTuOccxWKvZBI6iJpoqQlkhZIGiop10i/ubbtLelNSUslLZL0gqQWdZ05MddcA7/9LRx7LMyalXQa55zLKdZCIqkNMAEwoBcwFDiHMJx8vm2PBx4kTI61D3A88AEJjGAcm3XXDfOXNG4cJsNaujTpRM45t5a4P4RPApoBvaOJrMZL2gAYIunqzMmtMklqR5i35HQzuzPjrifqPHHSOnWCe++FP/wBzjwTbr896UTOObeGuA9t7QOMyyoYYwjFZbdKtjss+nlPXQUravvvH+YuueMOuP/+pNM459wa4i4knYEZmSvMbC6wJLqvIjsCM4HjJM2TtFzSG5J2rruoRebyy+H3v4cTT4Tp05NO45xzP5LFOG+4pOXAeWZ2Y9b6ecC9ZnZRBduNA3YGvgHOBxZFP3cAtjCzhTm2GQgMBGjfvn3pmDFjqpW5rKyMli1bVmvb2rbuF1+ww8CBLN9gA9667TZWNmu2VptiyptPmrJCuvKmKSukK2+askLN8nbr1m2ame2Qt6GZxbYAy4FBOdbPB4ZVst14Qgf93hnrNgAWA5fl+7ulpaVWXZMnT672tnViwgQzyax/f7NVq9a6u+jyViJNWc3SlTdNWc3SlTdNWc1qlheYagV8tsd9aGsx0DrH+lbAV5Vs92X086XyFRb6WaYBXWorXCrssQcMGQIPPAB33ZV0Gueci72QzCCrL0RSR6AFWX0nWd4n7JEoa72AhjdH7cUXw557wumnw9tvJ53GOdfAxV1Ingd6Slo/Y10fYCkwpZLtniUUjW7lKyS1AkqBf9dBzuLWuHHYI2nXLlxf8vXXSSdyzjVgcReSkcAy4HFJPaIO8SHA9ZZxSrCkWZJGld82s6nAU8AoSUdL2g94mtDncmucT6BobLQRjBkDs2fDccdBjCdNOOdcplgLiZktBvYAGgPPEK5ovwEYnNW0SdQm0xHAk8D1wFhCEekePWbD9LvfwfDhYSyum29OOo1zroGKfXgRM5sOdM/TpiTHujLg5Ghx5c45J8yqeNZZMHw4uy1cCJttBsOGQf/+SadzzjUAPvpv2knhyneATz9FZmFCrIEDQz+Kc87VMS8k9cEVV6zdR7JkSTi7yznn6pgXkvpg7tyqrXfOuVrkhaQ+2Gyzqq13zrla5IWkPhg2DJo3X3u9T9PrnIuBF5L6oH//MMR8p06YBB06QJMm4bTglSuTTuecq+e8kNQX/fvD7NlMmTQJFiwIhWXSJLg07+STzjlXI15I6qtjjoEBA8I8JuPGJZ3GOVePeSGpz269FbbeGo44AubNSzqNc66e8kJSnzVvDmPHwvffQ58+sHx50omcc/WQF5L6bqut4M474bXX4MILk07jnKuHvJA0BH37wimnwHXXwVNPJZ3GOVfPxF5IJHWRNFHSEkkLJA2VlD3Sb/Y2JZIsx1K9idgbouuvh9JSOPpo+PDDpNM45+qRWEf/ldQGmABMB3oBPwOuIxS0PxXwEOcCr2bc/qK2M9Zb660HjzwC228Phx0Gr7wCTZsmnco5Vw/EvUdyEtAM6G1m481sJGFOkrMlbVDA9jPN7PWMZVadpq1vNt8c7rkHpk0Lw88751wtiLuQ7AOMy5wNERhDKC67xZylYerVKxSRESPCDIvOOVdDcReSzsCMzBVmNhdYEt2Xz92SVkr6RNL1kprVRch678orYeed4YQTYObMpNM451JOFuNc35KWA+eZ2Y1Z6+cB95rZRRVs1wG4GHgR+AbYHfgj8KKZ9apgm4HAQID27duXjqnmt++ysjJatmxZrW2TUGje9T7/nB2OP55lbdvy1ogRrEqgv6S+vrbFIE1ZIV1505QVapa3W7du08xsh7wNzSy2hTDP+qAc6+cDw6r4WCcDBmybr21paalV1+TJk6u9bRKqlPeFF8wkswED6ixPZer1a5uwNGU1S1feNGU1q1leYKoV8Hkc96GtxUDrHOtbAV9V8bHGRj+3r1GihqxnT/jTn2D0aLj77qTTOOdSKu5CMoOsvhBJHYEWZPWdFMCyfrrqGDwYunULFyy+807SaZxzKRR3IXke6Clp/Yx1fYClwJQqPtYh0c9ptRGswWrcGB58EFq3hkMPhW++yb+Nc85lyFtIJB0lqW0t/b2RwDLgcUk9og7xIcD1lnFKsKRZkkZl3B4i6TpJvaPthgI3AI+bmX+NrqlNNgmnAs+aBQMHQownYDjn0q+QPZK7CVegE516+9vq/jEzWwzsATQGniFcjHgDMDiraZOoTbkZhOtM7gaeA/oB10Q/XW3Ybbcwd8nDD4drTJxzrkCFDJGyGPhJ9LuoYZ+EmU0HuudpU5J1ewzhwkVXl/74xzB0yllnwW9/C7/5TdKJnHMpUEghmQDcJ2kmoYiMlvRdRY3NrNp7LC5hjRrBvffCdtuF8bjeegvatEk6lXOuyBVSSI4FTgG2Ipxq+xHweV2Gcglq2zYM7rjrrmGq3iefBCnpVM65Ipa3kJjZEuBaAEk9gIvN7N91HcwlaKed4Jpr4Mwzwxwm556bdCLnXBEr5KytlZLKD5a/RBiixNV3Z5wBBx8MF1wAr76av71zrsEq5KytH4D1ot+PAjaquziuaEgwahSUlIT53j/3o5nOudwK6SOZDgyR9CThrK1DJFU0iJeZ2W21ls4lq1UrePRR6NoVjjgCnnsuXMDonHMZCikkpwO3E673MMIshRUxwAtJfbLddnDzzXDiiTBsGFxySdKJnHNFJu+hLTN7zcx+aWbrEPZIdjKzRhUs/nW1PjrhhLBHMmQITJyYdBrnXJGp6lhb3QiHulxDIsFtt0HnztCvHyxYkHQi51wRKeTQ1o/MbAqApB2B3wEbAl8Cr5jZG7UfzxWNli1h7Nhwtfvhh4c9kyZVevs45+qpKu2RSGoh6TngNeBKwsWKVwKvSfqbpOZ1kNEViy5d4Pbb4eWX4c9/TjqNc65IVPXQ1tVAV6Av0NTMOgBNo9tdgatqN54rOkccEfpMhg+HZ59NOo1zrghUtZAcDPzRzB41s1UAZrbKzB4FLgAOzfcAkrpImihpiaQFkoZKKriTXlIjSdMkmaT9q5jf1Yabb4Ztt4WjjoI5c5JO45xLWFULSSvg4wru+xjYoLKNJbUhDAJpQC9gKHAOYTj5Qh0P/F8V2rva1rRpuL5kxYowuOMPPySdyDmXoKoWkn8DJ0trjuIX3T45ur8yJwHNgN5mNt7MRhKKyNmSKi1C0d9pAwwDLq5iblfbfv7zMM/7P/8J552XdBrnXIKqWkguAnoCMyQNl3SWpCuB94G9ovsrsw8wLnM2RMI8I80IE1flcxnwKuAXMxSDgw+GQYPCoa6xY5NO45xLSJUKiZlNArYD3ib0hwwDDgPeArY3s8l5HqIzYbbDzMecCyyJ7quQpF8Bx1D5lfUubldfDTvuCMceCx98kHQa51wCZDHOzy1pOXCemd2YtX4ecK+ZVbhHI2kK8IaZnS+phDAvyh/MLOepQ9F88AMB2rdvXzpmTPUmWCwrK6Nly5bV2jYJSeRdb+FCdhg4kGUbbcRbt97KqvXWy78R/trWpTRlhXTlTVNWqFnebt26TTOzisZWXM3MCl4I85J0qco2WdsvBwblWD8fGFbJdn2BT4ENotslhA77/Qv5u6WlpVZdkydPrva2SUgs77PPmoHZCScUvIm/tnUnTVnN0pU3TVnNapYXmGoFfMZW5/TfdyX9U9JJklpVcfvFQOsc61sBX+XaQNI6wDWEa1QaSWrN6rPDWkhav4oZXF3Yb78wd8mdd8J99yWdxjkXo6r2kfwU6EHo57gG+ETSg9HMiYWYQVZfiKSOQAuy+k4ytAA2Ba4nFKLFrD47bAyhv8YVg8suC1P0nnQSvPde0mmcczGp6h4JZjbZzI4COhCGmN8UGCdpjqRLJW1eyebPAz2z9iL6AEuBKRVsU0YYLDJzOTy67yKgf1Wfg6sjTZrAmDFhXK5DD4WysqQTOediUOVCUs7MysxsFDCYcEpuR+BC4L+SnpLUKcdmI4FlwOOSekQd4kOA6y3jlGBJsySNiv7OCjN7KXMBXo+avms+WGRx6dABHnoIZswIeyYxnszhnEtGtQqJpBJJgyV9CLxI2Gs4FFgfOIDQGb7WaVJmthjYA2gMPEO4GPEGQjHK1CRq49Koe3e49FJ44IHQZ+Kcq9eqNA64pCMJ13LsCswF7gbuNrN5Gc2ek/QdYSiUtZjZdKB7ZX/HzEry3D+bMMmWK1YXXwyvvAJnnAE77ADbb590IudcHanqHskdhNNwe5rZ5mZ2WVYRKfdf4PIap3Pp1agR3H8/tGsX+ku+/jrpRM65OlLVQvITM+tnZpUOUWJmn5hZVQZidPXRRhvBww+HEYKPPdb7S5yrp6p6+u/iugri6qlddoGrroLHH4ebbko6jXOuDlS5s11SH0kTJM2V9Fn2UhchXcqdfTb06hVGCX799fztnXOpUtWpdvsB9wCzCNePPA08Gz3ON8AttR3Q1QNSGHJ+003D/CWLFiWdyDlXi6q6R3IeYSj3U6PbI8zsWOCnwBeEUXydW1ubNmEyrIUL4cgjYdWqpBM552pJVQvJFsCrZrYSWEk05pWZfUsYC+u02o3n6pUddoAbboDnn4e2bdmte3coKQnXmzjnUquqheRroHyM8PnALzLuE9C2NkK5eqxVK2jcGL76CpmFM7oGDvRi4lyKVbWQTAV+Ff3+NHCJpBMkHU0YxNGHK3GVu/hiWLlyzXVLloT1zrlUqtKV7cCVQPkYWpdEv48gDGfyJtFEUs5VaO7cqq13zhW9ggqJpGbAvoQxtD6V1N7MFgK9JK0HrGdrzsPuXG6bbRYOZ+Va75xLpbyHtqJh4d8DHiUcvroPmClpLwAzW+ZFxBVs2DBo3nzt9YcdFn8W51ytKKSP5GpgFfB7oDmwNWEyqdur8wcldZE0UdISSQskDZVU6Ui/kraW9ELUfll0MeRdkjpUJ4NLUP/+cMcd0KkTJkHHjuH6kr/+FT7+OOl0zrlqKKSQdAX+ZGavmtn3ZvY+cCKwWVU/yCW1IYwKbEAvYChwDmE4+cq0Aj4CzgV6Eoad70EYabiq/Twuaf37w+zZTJk0KfSNTJgAy5ZBnz6wfHnS6ZxzVVRIIekAfJi17n+E0303qeLfOwloBvQ2s/FmNpJQRM6WtEFFG5nZa2Z2spk9GE1udTdwArAtq88ic2m11VZw113wj3/AhRcmncY5V0WFnv5bW8O27gOMy+pTGUMoLrtV8bHKx9lYtzaCuYT16QOnngrXXQdPPpl0GudcFRRaSMZlDcz4SbR+YhUHbewMzMhcYWZzCUOrdM4XQlIjSetK2goYTjjl+J8FPgdX7K67DkpLYcAA+DB7J9g5V6xkeeaIkJQ9DW6lKpuHRNJy4DwzuzFr/TzgXjO7KE+WFwh9JADTgH3NLGfxiuaDHwjQvn370jFj1pr5tyBlZWW0bNmyWtsmIU15c2Vt+sknlA4cyPcdOvD2Lbewat3i2eFM+2tbzNKUN01ZoWZ5u3XrNs3Mdsjb0MxiW4DlwKAc6+cDwwrYfgtgR+AIwp7NNKBpvu1KS0utuiZPnlztbZOQprwVZn3qKTMwO/nkWPPkUy9e2yKVprxpympWs7zAVCvgs73K85HU0GKgdY71rYCv8m1sZh+Y2Rtmdj9hz2Q7oF/tRnSJO+AAOPdcuO02eOihpNM45/KIu5DMIKsvRFJHoAVZfSf5mNkc4Etg81pL54rHFVeE2RVPOAFmVOmt4ZyLWdyF5Hmgp6T1M9b1AZYCU6ryQFGHe1vC9SWuvllnHRgzBpo1g0MOCQM7OueKUtyFZCSwDHhcUo+oQ3wIcL1lnBIsaZakURm3r5U0XNJBkrpJOgUYR7iepXq96K74bbppGF5++vRwarBzrijFWkjMbDGwB2G04GcIFyPeQLhSPVOTqE25qYQhWkYBfwPOAB4DdjKz7+o4tkvSXnvBn/8Mo0eHYVScc0Un9uFFzGw60D1Pm5Ks22PwPY+G65JL4JVXwl7JDjvAr3wwA+eKSdyHtpyrusaN4cEHw7zvhxwC3/hg084VEy8kLh3atw+d7//7XziTK8+FtM65+Hghcemx665hPpNHHoERI5JO45yLeCFx6XL++bDffnDWWfDmm0mncc7hhcSlTaNGcM890KEDHHooLF6cdCLO/MjgAAAgAElEQVTnGjwvJC592rYNh7cWLICjj/b+EucS5oXEpdOOO8K118Izz4SfzrnEeCFx6XX66XDwwWFWxVdeSTqNcw2WFxKXXhKMGgU//WmYYfHzz5NO5FyD5IXEpVurVvDoo7BoEfTvDytXJp3IuQbHC4lLv223hb/8BcaPD9eZOOdi5YXE1Q/HHw9HHglDhsCECUmnca5Bib2QSOoiaaKkJZIWSBoqqXGebX4j6e5oePklkmZKGiypaVy5XZGTwoyKv/gF9OsXTg12zsUi1kIiqQ0wATCgFzAUOIcwnHxl+gA/A64C9gVuBc4GHqizsC59WrQI/SXffQd9+8KKFUkncq5BiHsY+ZOAZkDvaCKr8ZI2AIZIujpzcqssV5lZ5ik5L0n6HrhdUqdo2l3noEsXuP32cJjrT3+C4cOTTuRcvRf3oa19gHFZBWMMobjsVtFGWUWk3NvRz41rL56rF444AgYOhKuugmefTTqNc/Ve3IWkMzAjc4WZzQWWRPdVxc7AKmBm7URz9cpNN4WzuY46Cub4DqtzdUkW4zhFkpYD55nZjVnr5wH3mtlFBT7OJsA7wHNmNqCCNgOBgQDt27cvHTOmehMslpWV0bJly2ptm4Q05a3rrM3mz6f0xBNZ0rEjb998M7bOOjV6PH9t606a8qYpK9Qsb7du3aaZ2Q55G5pZbAuwHBiUY/18YFiBj7Eu8DLwIdCmkG1KS0utuiZPnlztbZOQpryxZH3sMTMwO+OMGj+Uv7Z1J01505TVrGZ5galWwGds3Ie2FgOtc6xvBXyVb2NJAu4Ftgb2NTMfQ9xVrndvOPNMuPlmGDs26TTO1UtxF5IZZPWFSOoItCCr76QCNxBOG+5lZoW0dy50uu+0Exx7LHzwQdJpnKt34i4kzwM9Ja2fsa4PsBSYUtmGki4ETgeOMDMf6tUVbt114eGHYZ11wmRYS5cmnci5eiXuQjISWAY8LqlH1CE+BLjeMk4Jjq5gH5Vxux9wBeGw1nxJO2UsG8X7FFwqbbYZ3Hcf/PvfcMYZSadxrl6JtZBEfRp7AI2BZwhXtN8ADM5q2iRqU26v6OcA4B9Zy351l9jVK/vuG+YuuesuuPfepNM4V2/EfWU7ZjYd6J6nTUnW7QGEIuJczQwdCq+9BiefDKWlsPXWSSdyLvV89F/XsDRpAg89BOuvH/pLysqSTuRc6nkhcQ1Phw6hmMycCSeeCDFelOtcfeSFxDVM3brBpZfCgw/CnXcmnca5VPNC4hquiy6Cnj3DWVxvvZV0GudSywuJa7gaNYL774d27UJ/yddfJ53IuVTyQuIatnbt4JFHYO5cOOYY7y9xrhq8kDi3885hAqwnngjDzzvnqsQLiXMAZ58NvXrBeefB668nnca5VPFC4hyABKNHQ8eOcNhhsGhR0omcSw0vJM6Va90aHn0UFi4Mc76vWpV0IudSwQuJc5lKS+HGG+H558Pw8865vLyQOJftpJOgb1/405/gpZeSTuNc0Yu9kEjqImmipCWSFkgaKqlxnm3WlXSNpL9LWirJz9F0dUeCO+6ALbaAww+HTz9NOpFzRS3WQiKpDTABMMJMh0OBcwjDyVemOXA8sAR4rS4zOgeEQR3Hjg0XKXbvDp06sVv37lBSAg88kHQ654pK3HskJwHNgN5mNt7MRhKKyNmSNqhoIzP7CtjQzHoCT8QT1TV422wTOt3ffx/mzkVmMGcODBzoxcS5DHEXkn2AcZmzIQJjCMVlt8o2NPNLjl0Cxo1be92SJXDxxfFnca5IxV1IOgMzMleY2VzCIavOMWdxLr+5c6u23rkGKO4ZEtsAX+VYvzi6r9ZE88EPBGjfvj0vVfPsm7Kysmpvm4Q05U1D1p023pimCxeutX5F06a88dRTLG/VKoFU+aXhtc2Uprxpygox5TWz2BZgOTAox/r5wLACH+M0oiNdhS6lpaVWXZMnT672tklIU95UZL3/frPmzc3CcI5hadLETDJr08ZsxAizFSuSTrmWVLy2GdKUN01ZzWqWF5hqBXzGxn1oazHQOsf6VuTeU3EuWf37h1OBO3XCJOjUKQyl8u67sO22cMop8JvfwD/+kXRS5xITdyGZQVZfiKSOQAuy+k6cKxr9+8Ps2UyZNAlmzw63t94aJk6Ehx+Gzz4LIwgPGBCGV3GugYm7kDwP9JS0fsa6PsBSYErMWZyrGSkM8DhjBlxwQZi2d8stw1D0K1Yknc652MRdSEYCy4DHJfWIOsSHANdbxinBkmZJGpW5oaR9JB0CbBvdPiRaOsUX37kcWraEK6+E//wHunaFM8+E7baDKf7dyDUMsRYSM1sM7AE0Bp4hXIx4AzA4q2mTqE2m24BHgeOi249GS7e6yutclWy5ZRjs8Ykn4NtvYffdoV8/WLAg6WTO1anYx9oys+lm1t3MmplZBzP7s5mtzGpTYmYDcqxTjmV0nPmdq5QEBx4I06fDJZfA44/DVlvBNdfADz8knc65OuGj/zpXF5o3h0svDQWlWzc4/3z49a9hwoSkkzlX67yQOFeXNt8cnn4ann0Wli+HPfeEQw7xK+NdveKFxLk47Ldf6Iy//HJ47jno3BmGDYNly5JO5lyNeSFxLi5Nm4bBHmfMgH33DRNnbbNNKCzOpZgXEufittlmYa6TF1+Exo3D3soBB8CHHyadzLlq8ULiXFL23BPeeQeuvhomTYIuXWDwYFi6NOlkzlWJFxLnkrTuunDeeTBzJvTuDUOHhoLy5JNhiEjnUsALiXPF4P/+Lwyx8tJL4Ur5gw4K/Sj//W/SyZzLywuJc8Vkt93grbfgxhvhtddCZ/yFF8J33yWdzLkKeSFxrtissw4MGhT2Rvr1g+HDw+nCjzzih7tcUfJC4lyxat8+zH3y6quw0UbQpw/06BGulneuiHghca7Y7bwzvPkmjBgBb78dhlo55xz45pv82zoXg9gLiaQukiZKWiJpgaShkrJH+s21XStJd0taLOlrSQ9IahtHZucS17gxnHxyONx1zDFwww1hMMj77/fDXS5xsRYSSW2ACYABvYChwDmE4eTzeRjYHTgeGAD8BniyLnI6V7TatQtT/77xRriw8cgjYddd4d//TjqZa8Di3iM5CWgG9Daz8WY2klBEzpa0QUUbSeoK9ASONrPHzOwJ4Ajgd5J6xBHcuaJSPk/8XXeFIVe23x5OPx3uvBNKStite3coKYEHHkg6aeUeeCA9edOUFeLNa2axLcDLwJisdZsR9lD+UMl2Q4FPc6z/ELgu398tLS216po8eXK1t01CmvKmKatZEeddtMjs1FPNwkGuNZfmzc3uvz/phLndf3/Il4a8acpqVmt5galWwGd7k7orUTl1BiZlrjCzuZKWRPc9U8l2M3Ksfz+6z7mGa8MN4ZZbwiRan3yy5n1LlsCAAXDFFYlEq9R//7v23PbFmjdNWaHivBdfDP371/qfi7uQtAG+yrF+cXRfdbbbPNcG0XzwAwHat2/PSy+9VKWg5crKyqq9bRLSlDdNWaH48+726acox3pbsYLPN9oo9jz5bDR9emrypikrVJJ37lym1MV7uJDdltpagOXAoBzr5wPDKtluPPBEjvUPAK/m+7t+aKs4pSmrWQryduqU+/BWp05JJ8stTXnTlNWs1vJS4KGtuDvbFwOtc6xvRe49jnzbtc6znXMNx7BhYYrfTM2bh/XFKE1505QVYs8bdyGZQVafhqSOQAty94FUuF2kor4T5xqe/v3DqcGdOmESdOoUbtfBMfFakaa8acoKseeNu5A8D/SUtH7Guj7AUmBKnu02kfS78hWSdiD0jzxfF0GdS6X+/WH2bKZMmgSzZxfvB125NOVNU1aINW/chWQksAx4XFKPqEN8CHC9mf043oOkWZJGld82s38A44B7JfWWdCChf+QVM5sQ6zNwzjm3hlgLiZktBvYAGhNO9b0UuAEYnNW0SdQmU1/CXstfgXuBacBBdZnXOedcfnGf/ouZTQe652lTkmPdV8Ax0eKcc65I+Oi/zjnnasQLiXPOuRpRuOakfpP0OTCnmpu3A76oxTh1LU1505QV0pU3TVkhXXnTlBVqlreTmeW9dL9BFJKakDTVzHZIOkeh0pQ3TVkhXXnTlBXSlTdNWSGevH5oyznnXI14IXHOOVcjXkjyuyPpAFWUprxpygrpypumrJCuvGnKCjHk9T4S55xzNeJ7JM4552rEC4lzzrka8ULinHOuRryQOOecqxEvJM4552ok9tF/Xe2IZpbcFxDwqJktkrQpcC7wM2A2cIeZvZtcSpD0R+C5pHMUSlIzoImZfZuxbiPgNKALsAr4FzDCzL5OJqVzxcVP/41IEmF+k/2AXwAbAiuBhcDrwGgz+29yCVeT9FvgRaAlsAL4EugJPEfI/B6wDbAJ0MPM/p5QVCStAowwJfKDwMNmNiupPPlIeg74wMwGRbe7EmbhXEWYA0dAKfAD0N3M3ksw63ZAMzN7LWPd3sCFrC56/waGZLYpFtH/uT8A2xPeI1MJXzqK+kNJ0gaEsau6m9krSeeBHzN1B9YF/mZm30VfgE4lzCT7IeGL5YI6+ftF/m8Wi+gFf47wAbGQMIvj/xHe3M8T/iG2Ai4zs8uSyllO0njC3uRBwHeEycEOJHzQHWJmyyWtBzwJNDWzbglmXQVcBfwS2JOQ+y1CUXnEzOYnlS0XSV8Ax5nZU9Ht1wmv8YHleymSWgFPA9+bWc8Es74OPGNmw6LbxwJ3AZOBSYSitwfwe+Dg8ueUUNbXCK/r+9HtNoQvQ6VAWdSsJeFLW8/MPcIkSDqlkrubAdcANwEfAJjZiDhy5SLp58BEoGO06iNgL2A80Br4H+HzaylQambzaj2EmTX4BXiI8Ib4Zca6nwAvAI9Ft3cjvOGPLYK8i4B9Mm5vTPj2uVdWu/2ALxLOugr4bfR7G2Bg9KZfES0vRevaJv26RhmXALtm3P4h+3XNeG2/SzjrN5nZgFnAX3K0Gwn8u1jeB9HtUYQ96b0z1u0NLAZuKIL3wSrC3v2qCpbM+1YmnPURwp7nzwlHUu6LPs9eA9aP2rSL2txeFxm8sz3YB7jAMo7jW9gFPAk4UFIHM5sCXAEMSihjJouWzNtkrct1O1FmttjM7jCzPYBNgXMIu+IjgQWS/pZowOA/QOYe3ELCf85sbQlFJ0mrsm53AsbmaDeW8I20mBwADDWzF8pXRL8PA3onlmq1p4HPgOOAxmbWqHwhvB8E7B6ty54WPG6/A4aZ2Swz+xL4E6Gf9FqL9uzM7AvgRtZ8b9caLySBCN8wsq2M7msV3X4D2DKuUJWYBpwraX1JjYCLgPnAyZIaA0hqApxC+GAsOmb2qZndZGY7Az8FBhP2ApM2HLhA0rHRazgMuEbSnpLWlbRe1A9xJeGbYJL+DvTPuP0ekGu48N8Q3h/FpDWhTyTbNELfXqLM7EDgaOA84E1Ju2TenUyqCrUBPs24Xf5vnT0H04eEL3C1zs/aCiYAl0t6x8w+hB+P4d5M+Acq72RvCRTDmToXE45/fkk4PLSE0NE2FvhAUnln+08IhwuKmpnNIXyADy+CLI9LOp3w7e0GYCbhi0T5N2cjfLl4mvAhk6SLgFejLxN/IXSy3yNpQ8IhQwh9JGcCFySScE0HSyovdIuBXBMmtSMcskucmb0o6VeE1+9vkl4gnBWZaP9NDp8R9kbLrQRuJ+xNZ9qYOsrune1AdNrsC4Td/zmE4+I/JXS6H25mz0ftribMGNYnqazlosz7E74MPGZmn0jaBDif1c/jLjN7K8GYSBoM3Gl1dLZIXZHUFugD/JbwDbkRoXC/DzxrZtMSjPcjSdsCtwE7srrIkfH7YsIhpJuSSRhEJ11kG21mx2a1ux3oYma/jydZYaL/W1cTDrvdTigu3czs5USDAZKeBL7Mfi1ztPsL8Asz61HrGbyQBNEhocOAXwNNCR2XD0bHHJ0rapJ+QSgm2UXvNTNbnmS2qpB0AvA/M5uUdJZcotPBbyB8WdvPiuC0akntgeZm9lGedmcTTrqYWOsZvJDUP5Iam1muPp+iIakpoUNwFTCrGD/soj6Szcm4psjM5iabyrni453tWSRtLelgScdLOi76feukc2WT1FvSk5Kek/SHaF0fSbOBHyTNib7dJUrSEdH1DeW3m0gaTvjG/A7hZIAvJRXDMXwAJJVKeppwPPl94FXC9Q0fSZovaaik5omGrEcUSTpHLpKaZf9bS9o2+lwoTSpX0Uny/OdiWoBjCf0Kuc4dX0kYcuSYpHNGWQ+Lcr0CPEXobD+B0LczinA160NR7p4JZ50OnJxx+7oo75+BXQinLg4hXCx1URG8tnsR+samEs7MGkK4KPWHKPM5hLOj/gW0KYK8+xOuy3kXeJiMa2Ay2uxI8tc67EV0TUPGugMJF6euAJZHr/l+Sb+mUbZWwBNRrhXAnUBj4J6sz4VXgXZJ5y3wOR1cV++DxJ9cMSzA6dEb5lbCVcDtojdN4+j33wG3RB8wpxZB3jeBkRm3+0fZrstqdzcwIeGsS4DdMm5/BgzK0e5cYE4RvLbTgHsqeI/MJuzFN40+AEcknHXPjA+zW6LsK6NirYx2xVBIVrLmBYkHRR/Gr0X/9udGv68gxwWgCeS9mTAMyunAUdGXh8eAj6OiuBHh+rP5wG1J5y3wOdVZIfE+EkDSh4QP5qvztDsfOMnMNo8nWYU5vgF6m9mE6HYrwtk5PSyjkzI65HW7mSV2fYakT4DTzOyx6PYywl7SS1nt9gSeNrNm8adcI8dS4AAzG5+1vg1hRIGtzex9SUcBV5lZhyRyRpleIYwLdkzGumMJH4LjCWccfi9pR0Kne2IXzkVnbe1kZv+Mbr8FzDezP2S1ew5oYWa7JRAzM8dHwBVmdmd0eztCoT7GzO7JaHcCYU/6p8kkBUl/LbBpJ8JFlLX+PvA+kmAT4J8FtPsnRXCxFOHUzsw3Q/lYRV9ltSsjXPiVpKcJF0+uG92eAByeo93hhG99SfuMcOZetl8TXvfy64jmsPpC1aRsA9yfucLM/koYzmcnYFJ0TUkx2oZwGm22OwiDOCZtY1ZfPwbRmFqEcasyzSL39TBxOpqwl/TLPEunih6gpvyCxOAd4ARJL5tZrvPdy0cqPSFqm7Q5hNFdxwGY2crotMT3s9ptzppXvCbhQsIV2P+RdBfwDHCVpG1YfdFcd2A7wkiwSbsDuExSC0Lfww+EK8MvBibb6uthNgeSPoPre6BF9kozmxZdiT2OcLhoSMy5KpJ5+ONrVn8ByvQdxfEF9yNCQZ4S3f494VDczoS+yXK7kPz74APgn2Z2VGWNJB1C6EerdV5IgnMIFyROl/Q4Ycjzrwhv/NZAZ8Ix3U0pjivFHydrqAMzeyNHu36s+aaPnZl9KWknwgfx2YRvegBdo+UHwmGY35vZm8mkXM3MhkWHYS4gDNsC4X3wEOEitHLLCWOvJekdwnH6p7PvMLMPo2LyHDA65lwVGSdpRfR7K2BbVn+ZKNcZ+CTOUBUYCdwk6ZeEoncY4UvRJZJaEgZA3B44C0h6RPDXCQUun8wLVmuV95FEJP2McFX43qwejrncx4Qzd64xs+xd26IlaTPgKzMriiEnACSVsOZFc/+z4ryGZB3CdS5NgQ+L6TUsJ+lEwjAp21kFF85Ge1ZPEPrPEvumH41wkO0DM3swq91L0fpiOHX9DMIh13UIo0SMlHQ4oQ+qfNDOO4A/Jvkejk5D3sXMbs7Trh2hj29KZe2qlcELydqi88bL+xa+MrOkR3l1zhWJ6DB3OzP7POksxcILST0T7Xa/BfQvhkNFSuHUtUrJNMbOFQsvJBmiD5CNgZlmtlZHYLRruK+Z3Rt7uDVz7FvJ3S0IHWoXEA0hb2bPxZErF6Vo6lpI1zTGhYrG4TrUzIYmnCPR6WBrKtoTyZwaeBrheST+IaowqvLBhP9Po81shqRfA5ey+svPrZYx/0utSvoimWJYgPWARwkfFCsJHamjgFZZ7RK/sCvKkabZ274AemXcfp1wNtT6GetaEc6OGVcEr+14wlS1rQnHxm8B5hFGEFgn4/3yPOEsrsTfvwU8pzq7EK0KGX5OONuw/H35P8IH3IeEYv0mYfj4hcCmRfCavUYYKbf8dpso46oo5zesvqBy/aRyRtl6Er6IfRq9rt8QJrBaTLhY9dbo/91KwpTRtZ8h6X+wYliASwhnaZ1AmBhoUPSG/gDYIqNdsRSSaYQzW44hnBueufwqeoMfVr4u4aypmbo2ypGmaYw3K3A5Ken3LUUwHWwV86ZmauCoWDxKmMkRwgkYi4FRWe3uA16vkwxJ/4MVw0I43fe0rHWbAC8DnwNdo3XFUkhEmOf8M8KwDT/NuK9V9J9grTGXEsr6T2Bwxu2Pgb452h0FfF4Eeb/I+rDYKHo998xqt28RFJLyvc98SzHsmS4ADsu43SnK1Tur3THAf4vgfZBdSD4HzszRLvGhfQinJ/fIuN0myt89q91ehJOHaj2DX0cSdCTrQkMz+1TSHoQqPkFSf4rj/HYsvCvukPQIcDnwjqRbot+LzXDgAUkfA/eyeuraRYTDWSLshhfD1LWwehrjVwkXx2VOYzzJwsWfxTKN8bfAJOCuPO1+Rzi1PUmJTwdbQ8U8NfBS1rwwtfz37OGGmhMuYq11XkiCBcAWhD2QH1k4N7yvpBsJu46JdrJnM7OvgNMk3UE4t/0D4CqKaE5pS9fUtZCuaYz/SejH+1tljaK5X5KW+HSw1ZCWqYFfJVwo+UGU5VrCqNt/jEbr+DYaj+98QuGrdX7WFj8Oera5me1eSZsLCd+mzRIc/K4ykvoSpgPdlDA4W+LTgJZTSqauhVRNY/xnYKCZZV9Am91uV+BSM+sWT7KcGRKfDrYqlKKpgSX9nDCGXfn7YDZhL38sYaSAOUAJ4YtRNzP7V61n8ELy46lzfYDhZraoknb9CMfKj6moTdKiwy4tgDIr8lkSXcOhIpgOti6oSKYGjq4f24VwpuFEM1saXVh9PKu//DxoZvPq5O97IXHOOVcTxTDKpqsjku6UNCrpHIVIU1ZIX17n6pJ3tleBpDuBRmZ2XNJZCtSN9HxZSFNWSFFeSRMIRx/2SDpLPmnKCunKW5dZvZBUTWo+PADM7OdJZyhUmrJC6vKK9Lxv05QV0pW3zrJ6H0k9Fp32ubGZJT3xTl5pygrpy+tcXUpLJS0KkppGc3ykxX6Emd7SIE1ZIUV5Ja2TlvdtmrJCuvLWZVYvJFWTmg8P1zBIOlXS/yR9K+kNSUfmaLY9RfC+TVNWSFfepLN6H0kKSSr0nPVcV+LGKk1ZIV15owtQ/0KYBvhtwnUEoyX1Ao40s6VJ5suUpqyQrrzFkNX7SKjyh0eXpK9sV5j3eiZhGITK/B+wY5J505QV0pVX0lRgkpmdn7FuD+ABwtXN+1mYlGtH4DXPWrg05S2GrF5ISNeHB4CkfxEm3+qTp90hwMMJv8lTkzXKkZq8kr4F/mBmL2WtLyHMl9IY2IcwHlTSH3apyQrpylsMWb2PJPgP8B8zO7SyBbg+6aCRN4CdCmhXPiBiktKUFdKV92vCh8MazGw2sDNhSPzXgN/EGyunNGWFdOVNPKvvkfDjwGt7m1mnPO0OJszhnWgBlvQzYGszezpPu2aEU1Szh+qOTZqyRjlSk1fSU8C3ZnZEBfc3Iwzctw8JDzaapqxRntTkLYasXkhI14eHc+UkHQqcBexvZl9W0KYxcBthsNGfxpkvK0dqskZZUpO3GLJ6IXHOOVcj3kfinHOuRryQOOecqxEvJK5BkTRA0rToCuDFkt6WVCdn40naUtIQSa0LaDtEkmUsCyQ9FvXf5dt2QLRNy9pJ7lzVeCFxDYbCdMl3AeOA3sBRwFPAAXX0J7cEBgN5C0nka6BrtJwLbAtMlNQiz3Z/i7ZZUs2cztWID5HiGpLTgNvN7KKMdc9IujSpQFlWmNnr0e+vS5oL/B3YF3g0u3F0Jk5jM/sc+Dy+mM6tyfdIXEPSGvg0e6VlnLooqSQ6TNRP0n3RIbDPJA3O3k5S92iAvO8lLZQ0ovzwkqTdgWeiph9Fjzm7inmnRT9LosccLWmqpAMlvQd8D+yY69CWpGaSrpY0R9IySR9JujIr//GS3ovunyPpfJyrBt8jcQ3JW8Dp0Tf9Z81sUSVtrwGeBQ4BdgUGS/rCzG4FkNQFeAEYDxwMdASGA5sDe0d/61zgWsJhtE+AZVXMWxL9/DRr3dXAUGAhYTTXNfpRJIlwyK4rcBmhIP0f8PuMNucBV0SP9RJQClwmaYmZ3VLFnK6hMzNffGkQC/Ar4EPC8CargPcIH8gbZLQpie5/MWvbO4H5hKmWAcYAHxAOLZW3OSzatmt0e//odkkB2YYQhrJoEi1bApOBb4AOUZvR0eNtm7XtgGh9y+h2z+j2ARX8rQ2AMmBw1vqhhKLVOF9eX3zJXPzQlmswzOwd4BeEzvURhLGy/gxMzXHG0xNZtx8HfgJsGt3+LfCEma3MaPMYsAL4XTUjtgWWR8tMwt5NHzP7JKPNfDP7V57H6Q58aRWP1NAVaAE8KqlJ+QJMAtqz+jk6VxA/tOUaFDNbRui7eAZA0nGEM7mOA27KaPpZ1qbltzsAc6OfC7Mee6WkRcCG1Yz3NdCDsDfxKbDAzLKHnli41lZra0s4lFaR8gH+3qvg/o6ADwPkCuaFxDVoZjZK0tVA56y7Nq7g9icZP9doE51F1RbIOd5RAVaY2dQ8bQoZ02gRodBVpDzf/uQuTDML+BvO/cgPbbkGQ1J2cUDSRkAr1v5APSjrdnmH+bzo9hvAQVHxyGzTBHgluv1D9LNpDWJXx0RgQ0n7V3D/P4ClwE/MbGqO5dv4orr6wPdIXEPybjTk9ouEQ1WdCGdWLQHuyWq7dTS9wGOEs7aOAwaZ2aro/ssJ05o+Kek2Qr/CVcA4M/tH1Kb8m/2JksYAS8zs3bp5amsYT7jo8kFJQwlnkP5sLIQAAADXSURBVHUAdjWzE83sK0lDgJskdQJeJnyp3BLoZmbZRdS5SnkhcQ3JUKAXcDOhH+NTwoQ/fczso6y25xMO/TxGuF7jMuDH02LN7D1J+xBOoX2ccHbVQ9F25W3mSDoXOAM4nbA3U1IXTyyTmZmkg6LMZxKmiF4APJjR5mpJCwjDj59DeI7/BR6u63yu/vFh5J3LEE1P+hFh6tJnk03jXDp4H4lzzrka8ULinHOuRvzQlnPOuRrxPRLnnHM14oXEOedcjXghcc45VyNeSJxzztWIFxLnnHM18v+Uexx1pZGDtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", + "x = uncertainty_model.values\n", + "y = np.maximum(0, strike_price - x)\n", + "plt.plot(x, y, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.1040\n", + "exact delta value: \t-0.5300\n" + ] + } + ], + "source": [ + "# evaluate exact expected value (normalized to the [0, 1] interval)\n", + "exact_value = np.dot(uncertainty_model.probabilities, y)\n", + "exact_delta = -sum(uncertainty_model.probabilities[x <= strike_price])\n", + "print('exact expected value:\\t%.4f' % exact_value)\n", + "print('exact delta value: \\t%.4f' % exact_delta)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, european_put)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.1040\n", + "Estimated value:\t0.1032\n", + "Probability: \t0.9826\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHfdJREFUeJzt3XuwXGWd7vHvw0UItwACgUGGCF4ijJRHtghzGEm4E84RQTQp9EzFQaMeFWYKHRARAjqUwRHQYiygdMLhjCbMAMMZLiGEyw6EixokiJMEDBqQiyjOJjEGIpDf+eNd0c7avXevvuy3s3s/n6qu7n7Xu95+15tO//Za72UpIjAzMxtpW3S7AmZmNjY44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZsOQNEtSf/G6X9KsJvefLCnKZQ2R9xZJjw2z/QpJA5K2qfjZb5EUko5vps5mI8UBx2zzMRf4C0kHljdI2hI4FbgxItZnr5lZBzjgmG0+/h+wDpheZ9sUYAIpKJmNSg44Zi2SdJik/5D0nKTfS1oq6SOtlhcRa4FbgGl1Nk8HXgDuKT57b0lzJP1C0suSnpB0oaSth6nvVsUltk+V0r8q6VeltH0lXVdcwlsnab6kt7Z6bGYAW3W7Amabs4iYVfN6cmnzvsD9wJXAK8B/B+ZI2hARc4t9+gGVyxrGXODDkg6OiIcBiiByMvC9iHi9yLc78CLwt8BLwCTgAmA34DNNHuYmJO1WHNcLwMzi2M4FFkp6uy/pWasccMxaFBHzNr6WJOBe4E3AJ2j90td8UgCZDjxcpB0H7FpbZkQsBZbWfP79wMvAlZLOjIjXWvx8gLOAbYCjIuKlovwHgFXADOCqNsq2McyX1MxaJGkXSd+S9BTwavGYCbyt1TKLs4d/J53lqEieBjwFPFTz2VtIOkvSckkvF5/9f4BxpKDXjqOBBcDa4jLcVsBq4MdAX5tl2xjmgGPWumtIweDrwLHAe4B/BrZts9y5wJ8Dh0naFjgJmBubLu1+FjAb+Dfg/cAhwBnFtnY/fzfgI/wpiG58vA/Yp82ybQzzJTWzFhSB4ETgsxFxZU16J/6Iu5vUfzId2AvYkcGX6D4EzIuI82s++6AG5b4OvAa8oZS+a+n9fwGPABfXKWNNg88wG5IDjllrtgG2BP7YgS5pR9LZRls3mYqI1yX9Gymo7A0sj4iflLKNq/3swrAj5CIiJD0LvKOmzlsCR5ay3kU6q3rMAwSskxxwzFoQEasl/Qg4X9IaYANwDqmvY6cOfMRc4LOk0Wnn19m+EPi0pCXAz4G/BiZWKPffgZmSHiX1C30C2K6U5x+B04C7JV0BPAfsCRwB9EfEvzZ9NGY44Ji14zTgauBa4LfAFaQf7892oOwHSaPCJgLz6my/AHgj6bJXANcDfwfc1KDc80l9NBcDfwC+BSwDPr4xQ0T8WtKhwD8AlwM7A88D9wFDLr1j1ohy32Ja0luALwCHAn8B3FdnfkO9/caTvvwfIA12uAU4IyJ+W8p3EvBV4K2kv/wujIjrOnkMZmbWvG6MUjsQmAo8UTyqug6YTPpLbAZpRNAmf81JOhy4gTQb+wTgVmCupGPbrbSZmbWnG2c4W0TEhuL19cBujc5wJB0GPAAcERH3FmmHAD8AjomIO4u0BcDWEXFkzb63ATtFxOEjcTxmZlZN9jOcjcGmSScAL2wMNkU5PwR+UWyjWLJ9ClDu0JxHms8wvrUam5lZJ4yWiZ+TgBV10pcX2wD2B7auk2856Thbnv1tZmbtGy2j1HYhrS9VNgDsV5OHOvkGSts3IWkmaTkSxo0bd/A++7Q3kXrDhg1sscVoiePd5baqzm1Vnduquk601RNPPPFiROxeJe9oCThQfzKd6qSX32uI9JQYcTVpaCt9fX2xZMmSdupIf38/kydPbquMscJtVZ3bqjq3VXWdaKtiLcFKRsufAQOkuQBlO/OnM5qBmrRyHqh/hmRmZpmMloCzgj/11dSq7dt5krTAYDnfJNIs8GaGYJuZWYeNlktq84EvSzo8IhYDSOoj9d/Mh7Ssu6R7SOtP1d6vYxrwYESszlxn2wxNPOfWQWmrvnZiF2piNvZkDziStiNN/IS0MOFOkk4t3t8WEeskrQQWRcTpABHxYDHH5lpJnyedscwGFm+cg1P4CtAv6XLSpNCpxeP4ET8wMzMbVjfOcPYg3cOj1sb3byatH7UVaSXeWtOBy0j3G/nj0ja1GSJicRG8vgp8mjRP57SIuKOD9TczsxZkDzgRsYo/jRwbKs/EOmkvAR8rHsPtexONFzA0M7PMRsugATMzG+UccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsi+wBR9IBku6StE7Sc5IukrRlg31mSYohHl+syXfNEHkmjfyRmZnZcLbK+WGSdgHuBJYBJwH7A98gBb7zhtn1O8DtpbQPAGcD80vpK4CPldJWtVZjMzPrlKwBB/gUMA44JSLWAAsl7QTMknRJkTZIRDwDPFObJunLwIqIWFrK/vuIeGgE6m5mZm3IfUntBGBBKbDMIwWhI6oWImlX4BhgbmerZ2ZmIyV3wJlEuuT1RxHxNLCu2FbVqcDWpGBVdoCkNZLWS1osqXIgMzOzkaOIyPdh0qvAFyLi8lL6M8C1EXFuxXLuBsZHxMGl9DOBP5D6iHYHzgIOBg6PiB8OUdZMYCbAhAkTDp43r14Mq27t2rXssMMObZUxVnSjrR57dvWgtHfuPT5rHVrh71V1bqvqOtFWU6ZMeTgi+qrkzd2HA1AvwmmI9MEZpb1Il9/OHlRwxDdLeW8lBZ9zSYMMBlcm4mrgaoC+vr6YPHlylWoMqb+/n3bLGCu60VYzzrl1UNqqj+StQyv8varObVVd7rbKfUltANi5Tvp44KWKZXyYFKCua5QxIl4GbgPeXbWCZmY2MnIHnBWU+mok7QNsT6lvZxjTgcUR8csmPjffdUMzM6srd8CZDxwnaceatGnAy8CiRjtLmggcSsXRaZLGkUbGPdxsRc3MrLNyB5wrgfXAjZKOLjrsZwGX1g6VlrRS0nfr7D8deA24vrxB0nhJ90n6pKSjJE0D7gH2Bi4egWMxM7MmZB00EBEDko4CrgBuJvXbXEYKOuV61VvuZjpwV0T8ps629cBvSCsW7AG8AjwIHBERSzpyAGZm1rLso9QiYhlwZIM8E4dIf9cw+7wCnNJW5czMbMR4tWgzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLoqmAI6necjNmZmYNNXuG86ykSyS9Y0RqY2ZmPavZgHMVcCrwU0k/kDRT0k4jUC8zM+sxTQWciLggIvYDjgEeBy4Fnpf0PUlHj0QFzcysN7Q0aCAi7o6Ivwb2BD4HvB1YIGmVpFmS/qyTlTQzs9Gv3VFqfcD7SLeNHgDuAz4OrJT00TbLNjOzHtJ0wJG0r6QLJD0J3AXsBfwN8GcR8b+AfUl9PV/vaE3NzGxUa+oGbJLuJp3RPANcA8yJiKdq80TE65K+D5zZqUqamdno1+wdP18EpgILIyKGybcUeHPLtTIzs57T7CW1K4AH6gUbSTtIeh9ARLxaPvMxM7OxrdmAcw9wwBDb3l5sNzMzG6TZgKNhtu0ArGujLmZm1sMa9uEUl8km1yR9XNLxpWzbAicCj3WuamZm1kuqDBp4L2lyJ0AAHwJeK+X5A7AC+ELnqmZmZr2kYcCJiK9TzKmR9Avg5IhYOtIVMzOz3tLUsOiI8FBnMzNrSZU+nKnA4ohYU7weVkTc1pGamZlZT6lyhnMLcCjww+J1MPRotQB8kzYzMxukSsB5M/B8zWszM7OmVRk08FS912ZmZs2o0oezXTMFRoQnf5qZ2SBVLqmtJfXNVOU+HDMzG6RKwPkbmgs4ZmZmg1Tpw7kmQz3MzKzHtXuLaTMzs0qqDBr4ITAjIpZJ+hENLq9FxCGdqpyZmfWOKn04/wm8XPPa/TlmZta0Kn04H6t5PWNEa2NmZj2r5T4cJbtLGu6mbGZmZkALAUfSVEkPAK8AvwJekfSApBM7XjszM+sZTQUcSZ8EbiZNBj2TdDO2M4v3/1FsNzMzG6Sp++EA5wJXR8SnS+lXSroS+BJwVUdqZmZmPaXZS2pvBG4cYtsNwK6NCpB0gKS7JK2T9JykiyQNuxyOpImSos5jXp28J0l6TNIrkpZJmlbpyMzMbEQ1e4ZzD3AEsLDOtiOAe4fbWdIuwJ3AMuAkYH/gG6TAd16Fz/88cH/N+xdL5R9OCnzfBs4ApgJzJQ1ExB0VyjczsxFSZeLnATVvvwV8R9IbgZuAXwN7ACcDJwAfb1Dcp4BxwCkRsQZYKGknYJakS4q04TweEQ8Ns/3LwL0RcUbx/h5JBwLnAw44ZmZdVOUM56dsOtlTwCeLR/nun7cz/GrRJwALSoFlHjCbdIZ0c4X61CVpG2AK6cym1jxgjqTxEbG61fLNzKw9VQLOlA5+3iTg7tqEiHha0rpiW6OAM0fSrqQzq7nAlyJi4yoI+wNbAytK+ywnXbJ7G/Cj9qpvZmatqrLSwKIOft4uwEt10geKbUNZD/wT6bLYGmAycDYpyJxUUzZ1yh8obd+EpJnATIAJEybQ398/XP0bWrt2bdtljBXdaKuz3vnaoLTR8O/l71V1bqvqcrdVs4MG/kjSFsC25fQKd/ystxabhkjfWObzwGdrkvolvQB8W9K7ImLpMOVriPSNZV8NXA3Q19cXkydPHr72DfT399NuGWNFN9pqxjm3Dkpb9ZG8dWiFv1fVua2qy91WzU78lKSzJa0EXgV+V+cxnAFg5zrp46l/5jOc64vnd9eUTZ3yN75vtnwzM+ugZufhnAGcA3yXdObwD8BFwBPAKopLU8NYQeqr+SNJ+wDbM7jvpZEoPT9JCoKTSvkmARuKOpqZWZc0G3A+AVwAXFK8vykiLgQOJAWMtzbYfz5wnKQda9KmkW5/0Gxf0anF88MAEbGeNE/oQ6V804AHPULNzKy7mu3DeTOwNCJel/QqxeWqiNgg6dvAd0hnQEO5knSWdKOk2cB+wCzg0tqh0sUlu0URcXrxfhawI2nS5xrgfcAXgBsj4ic15X+F1L9zOWme0NTicXyTx2lmZh3W7BnOb4EditdPA/+tZtsupEmdQ4qIAeAo0lydm4ELgctIZ021tmLT+TwrSPN05gC3AacBXy+ea8tfTDrzORpYALwfOM2rDJiZdV+zZzj3A+8h/eh/n7RCwK7AH4DPAHc1KiAilgFHNsgzsfR+HmkCZ0MRcRPp7MbMzDYjzQacWcDexeuLSZfUZpDObBYCn+tUxczMrLc0FXAi4nHg8eL1etK9cM4cgXqZmVmPaWfi55uAvYDnIuLZzlXJzMx6USu3mP60pF8CTwE/AJ6W9Iyk/93x2pmZWc9odqWB84ErSPNpTgT6iuf5wLeK7WZmZoM0e0ntM8DFEfHlUvrtxdpmnyGtPGBmZraJZi+pjWPou3ouos5inmZmZtB8wLkJOGWIbR8EbmmvOmZm1quq3GJ6as3b+cAlkiYy+BbTBwJ/3/kqmplZL6jSh3MLg28lvTdwXJ28/0K6E6eZmdkmqgScN494LczMrOdVucX0UzkqYmZmva3plQYkbUUaIHA4sCvwX8B9pFsFDL5hvJmZGU0GHEl7AHcAB5Hu8PkCcBhp/s2jko6NiN90upJmZjb6NTss+lLgjcB7I2K/iDgsIvYD3lukX9rpCpqZWW9oNuBMBc6OiB/VJhbvv0ha5sbMzGyQZgPONsDvhtj2O+AN7VXHzMx6VbMB5yHgbEnb1yYW788utpuZmQ3S7Ci1s4B7gF9KuoM0aGAP0iRQAZM7WjszM+sZTZ3hRMRS4K3A1cDuwDGkgHMl8NaIeLTjNTQzs55Q+QxH0tbAIcAvIuKckauSmZn1ombOcF4H7gbeMUJ1MTOzHlY54ETEBuBnwISRq46ZmfWqZkepfQk4X9I7R6IyZmbWu5odpXYeaUWBpZKeJY1Si9oMEXFIh+pmZmY9pNmA89PiYWZm1pRKAUfSONKyNj8FfgXcGREvjGTFzMyst1S5xfR+wJ3AxJrkNZI+HBF3jFTFzMyst1QZNHAJsAH4K2A74EDgEeCqEayXmZn1mCoB5zDgvIi4PyJeiYjlwCeBP5e018hWz8zMekWVgLMX8PNS2pOktdP27HiNzMysJ1WdhxONs5iZmQ2t6rDoBZJeq5N+Vzk9IvZov1pmZtZrqgScC0e8FmZm1vMaBpyIcMAxM7O2NbuWmpmZWUsccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsi+wBR9IBku6StE7Sc5IukrRlg33eI2mOpJXFfo9LukDStqV8syRFncfxI3tUZmbWSLM3YGuLpF1ItzpYBpwE7A98gxT4zhtm12lF3tnAz4CDgK8Uzx8s5V0NlAPM8nbrbmZm7ckacIBPAeOAUyJiDbBQ0k7ALEmXFGn1zI6I39S875f0CnCVpH0j4qmaba9FxEMjU30zM2tV7ktqJwALSoFlHikIHTHUTqVgs9EjxbPXbjMzGwVyB5xJwIrahIh4GlhXbGvGX5JuDPd4KX1nSS9KelXSI5JOabm2ZmbWMYrId+cBSa8CX4iIy0vpzwDXRsS5FcvZE/gJcFtEzKhJ/yjpjGcpsAPpRnFTgQ9GxI1DlDUTmAkwYcKEg+fNm9fsYW1i7dq17LDDDm2VMVZ0o60ee3b1oLR37j0+ax1a4e9VdW6r6jrRVlOmTHk4Ivqq5O1GwPl8RHyzlP4scE1EfKlCGW8gDTx4E3BwRAwMk1fAA8C4iHhXo7L7+vpiyZIljbINq7+/n8mTJ7dVxljRjbaaeM6tg9JWfe3ErHVohb9X1bmtqutEW0mqHHByX1IbAHaukz4eeKnRzkUAuRY4EJg6XLABiBRNbwQOajT02szMRlbuUWorKPXVSNoH2J5S384QLiMNpz4mIqrk38h3LDUz67LcZzjzgeMk7ViTNg14GVg03I6Svgh8DvhoRCyu8mHFGdHJwKMR8XprVTYzs07IfYZzJXAGcKOk2cB+wCzg0tqh0pJWAosi4vTi/WnAxcA1wLOSDq0p88mNw6YlLQJuIJ0tbQ98AjgU+MDIHpaZmTWSNeBExICko4ArgJtJ/TaXkYJOuV61fS7HFs8ziketj5ECEcBK4G+BvUhDpn8MnBgR8ztRfzMza13uMxwiYhlwZIM8E0vvZzA40NTb7/Q2qmZmZiPIq0WbmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmlkX2gCPpAEl3SVon6TlJF0nassJ+4yXNkTQgabWk70l6Y518J0l6TNIrkpZJmjYyR2JmZs3IGnAk7QLcCQRwEnARcBZwYYXdrwMmAx8HZgDvAW4qlX84cANwD3ACcCswV9KxHTkAMzNr2VaZP+9TwDjglIhYAyyUtBMwS9IlRdogkg4DjgOOiIh7i7RngR9IOjoi7iyyfhm4NyLOKN7fI+lA4HzgjpE7LDMzayR3wDkBWFAKLPOA2cARwM3D7PfCxmADEBE/lPSLYtudkrYBpgBnlPadB8yRND4iVnfoOGyMmXjOrYPSVn3txC7UxGz0yh1wJgF31yZExNOS1hXbhgo4k4AVddKXF9sA9ge2rpNvOenS4duAH7VWbdvcjKYAMJrqajaScgecXYCX6qQPFNta2W+/mjzUyTdQ2r4JSTOBmcXbtZIeH6YeVewGvNhmGWNFR9tKs0fHfi3u6+9VdW6r6jrRVvtWzZg74EAaMFCmIdJb2a/8XsPsT0RcDVzd4LMrk7QkIvo6VV4vc1tV57aqzm1VXe62yj0segDYuU76eOqfwTTab+ea/QZq0sp5aFC+mZmNsNwBZwV/6nMBQNI+wPbU76MZcr9Cbd/Ok8CrdfJNAjYAT7RQXzMz65DcAWc+cJykHWvSpgEvA4sa7LdnMc8GAEl9pP6b+QARsZ40/+ZDpX2nAQ9mHKHWsctzY4Dbqjq3VXVuq+qytpUiGnWddPDD0sTPZcBPSUOh9wMuBS6PiPNq8q0EFkXE6TVpt5NGmn2edMYyG/h1RPxVTZ7DgX7gCtKk0KlF/uMjwvNwzMy6KOsZTkQMAEcBW5KGQF8IXAZcUMq6VZGn1nTSWdA/A9cCDwMnl8pfDJwKHA0sAN4PnOZgY2bWfVnPcMzMbOzyatF1eIHR6lppK0nvKdppZbHf45IukLRtKd8sSVHncfzIHtXIaLGtJg7RBvPq5B3r36uhvi8h6Ys1+a4ZIk+9gUmbPUlvkXSVpEclvS6pv+J+2X+vujEPZ7NWs8DoMtICo/sD3yAF5/OG2RXSAqNvJy0wurGf6Sag3M90A/Bt0jI8U0kLjA6Mtkt/bbTVtCLvbOBnwEHAV4rnD5byrgbKAWZ5u3XPrc3vFaS+yPtr3m8yWc/fKwC+A9xeSvsAcDbF4KIaK4CPldJWtVbjrjuQ9O/9EPCGJvbL/3sVEX7UPIAvkub07FST9vfAutq0OvsdRppc+r6atEOKtKNr0hYAd5f2vQ1Y3O1jz9hWu9dJm1m01b41abOAF7t9nF1uq4lFu/yPBuWP+e/VEGXdCiwvpV0DLOn2cXawvbaoeX090F9hn678XvmS2mBDLTA6jrTA6HD7DVpgFNi4wCg1C4z+a2nfecBhksa3X/2sWmqriPhNneRHiuc9Ole9zUqr36uG/L2qT9KuwDHA3M5Wb/MSERta2K0rv1cOOIMNWig0Ip4m/XU13DXeTi0wOpq02lb1/CXptL68lt3Okl6U9KqkRySd0nJtu6vdtppTXJ9/XtKlksbVbPP3qr5TSe0yqL8LOEDSGknrJS2W1FbQH4W68nvlgDPYSCwwuktNHurkG3aB0c1Yq221CUl7Al8C/m/pr9qVpEspHyb17TwH3DBKg06rbbUe+CfgdNKUgquAT7Ppj6i/V/VNB34cEeVVRh4h3fjxfwIfIU3BWCjpkBbqOlp15ffKgwbq26wWGN3MtdpWKaP0BtIp+1rg7zYpOOJfSnlvBh4g3VDvxlYq22VNt1VEPA98tiapX9ILwLclvSsilg5T/lj+Xu1Fuvx29qCCI75ZynsraYDCuaRBBmNF9t8rn+EM5gVGq2u1rQCQJNIk3gOBqZEmBg8pUo/ljcBBVYapb2baaquS64vnd9eUTZ3yx+T3qvBh0g/jdY0yRsTLpI7wdzfK20O68nvlgDOYFxitrtW22ugy0rDXkyKiSv6NRuNf7O22Va0oPft7Ndh00kiqXzbxuaPxe9WqrvxeOeAMNhYWGO2UVtuKYiLe54CPRlqSqKHijOhk4NGIeL21KndNy21Vx6nF88Pg71WZpInAoVQcnVYMwDiBoj3HiO78XnV7DPnm9iB1hD0PLCStyTaT1L/w1VK+lcB3S2m3Az8HTiFdC34cuK+U53DgNeByYDJwCemvhWO7fey52go4jfTX5BzSD0PtY/eafItIk82OJQWa24q2en+3jz1jW80iTXo8pdjvItIP7w3+Xg3+P1ikn0P6y7zefK/xwH3AJ0mDMKaRJkyuB/q6fewtttd2pD9CTgUeBP6z5v12Q7VVN36vut5Ym+MDOAC4u/iP/TxpFvyWpTyrgGtKaTsXP6IvAWuA7wO71Sn/A6QVs9eTTl+nd/uYc7YVaeJdDPGYUZPvu8V/iJeB3xc/FCd0+5gzt9V0YAlpxYU/FD8cFwHb+Hs1+P9gkb4UuH2Icrcl9QP+smin1cUP76HdPuY22mriMP+fJg7VVt34vfLinWZmloX7cMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7Ms/j98rI3cKFEY0QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEPCAYAAADrvntcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuUHVWZ9/Hvj4sQuYZbQAdpATHDRVEDwvsyEgXlYjSKIBcdjYLBUbnMQg0gakCNE5SbML7AUgmOQpgBhpkESOSSDuCAApIMGBJMNIBAImBDiAmRwPP+sauxqJzurtN9zqnuPr/PWmedrl276jy1U+mna9eufRQRmJmZVWG9qgMwM7P25SRkZmaVcRIyM7PKOAmZmVllnITMzKwyTkJmZlYZJyFrKEmTJUUPr0+W3Mdu2X62LJRPyPazaXOiLxfHAPd5raTOEvU2kHSqpPmSVkvqknSTpAP6+bmDpU0nFM6JP0maLemdJbYdm22zZytitdZwErJmeB7Yv8ZrVsntdwO+CRR/+d+Y7WdVY8LsdxxNJWl94AZgCvDfwOHABOBloFPScf3Y7WBp027vyz73RGBbYI6kN/SxzW+ybZY0OTZroQ2qDsCGpbURcU+jdxoRTwNPN3q/g9BJwAeBwyIin7j/S9J04HJJcyPiiYF+UIVtem9ErASQdB/wKPAJ4HvFipIEbBQRK4CGn1dWLV8JWSUknSFpsaQXJS2XNEvS9pLGAjOyan/Iul+WZtu8putIUke2fIykKyStkPTH7m4/SV+V9KSkpyVNlbRe7vNHS5ou6XFJqyT9Nuv+Wi9b32Mc2fo3Zdv/Odt+tqS3Fo5xx6wLbbWkpZJOKNk8pwBzCgmo29eAjYHjc5+zVNL3JX1d0jJJKyX9XNIWfR1Lre44SdtIulLSs9mxdUoaUzi27s/856zNu7L2qPuqMSIeJyXCjmzfkyU9I+kASfcCLwJH1eqOk7R+di49ImlNFsu0QqzjJd2XnWvLJJ0racN647Tm8JWQNYWkdc6tiFibrfsUcCYwCfgtsDWpe2YTUpfLl4HvA0cATwFr+vi4qcDPgY8BnwWulPQOYKds+V3At4EHgOnZNm8EFmXbvQDsDZwNjAC+21sckrYC7gKeBT5P6so6HbhV0m4RsTr76/2/gG1ICePFbP9bAb/rpd12JP0yvqDW+ohYIulB4D2FVccCi4HPATsA5wI/Ao7q7Vh6cAOwa7bNM8BXSN1l74iIxbl6Hwf+F5gI/B1wPqkL8Qu97HsdkjYjtcuyXPHrgSuz43gEeDI7rqLLgE9l9eZm+zkyt++PA1dn9c4EdiH9+66XHZ9VLSL88qthL2AyED28OrI6lwDX9bKPcfn6ufIJWfmm2XJHtnxFrs7mwEukX/Tr58p/DVzTw+eJ9AfZmcDvS8TxLVIC2ipXNpJ0L+yL2fLh2bbvztXZCVgLdPZy7Ptl243vpc4NwMO55aXAn7vbJSv7BPAK8Pd1tumh2fKBuTqbkK5ULit85hJgg1zZhcCyPs6P7s/bImvzHYFrsnbZu3AOjS9sOzYr3zNbHp0tn9zLv+uj+fMjK/8ssBrYuur/L36Fr4SsKZ4HDq5R/mT2Pg84XtLZpBvj90fEywP4vNu6f4iIFZKeBuYW9rkYeFP3gqSNgTNIv6zfBGyYW7dBZFdtPTgYuAVYkbviewG4H+juttoXWB4Rv8rF9qik+/txfGXcEtk9lsz1wM+AfYCH69jPvsDTETG3uyAi/iJpJlAcmTen0E4LgO0kvS4i/trH5zyX+/kZ4LMRMS9XFsDNfezjvdn7tB7W70b6t/33wpX57aQuzT1JV09WIScha4a1EXFfL+t/AmxG6sb5BvCspP8HTO5nMnqusPzXHso2zi1PBU4gdZH9Jqs/Hjgrq7eSnm1DumI5usa67oS4PfCnGuv/RDr2nnQPNtiplzo75erl9/uqSF2CK6ndhdWbHYDlNcqXk7q68mq1sYDXZT/35j2kbsxngMcj4pXC+q4SiWxr4C+RBizUsk32flMP63fsY//WAk5C1nLZL5wLgAuyeyCfAL5D+sV6aYvCOAq4OCLO7S6Q9MGS2/6ZNHT6WzXWvZC9LwO2q7F+O1JXUE0R8Xg2aODDwA+K6yW9mfQXfPGztyvUGwFsSrr/U4+nivvKjCIdd6M8ULhyKyrzHTPPAptI2ryHRNQd70TS/cCiP5T4DGsyj46zSkXE4xHxL6Tust2z4u6/gDeuvVVDjCB3c17p2ZxjCnV6iuM2YA/gtxFxX+G1KKtzLzBK0rtzn/EmoM+HMoGLgIMkfaDGum9ncf+4UP5+vfaB0yNIv8i7r0jLtumvSF1qrw58kPR60pDxu0rE3kq3Z++f6mH9ItIfNh01/p3ui4hnWxOm9cZXQtYMG0jar0b54xHxhKTLSH+l3kO6f/Re4C2k0XKQfnkAnKj0XMyqiHiwwTHeAnxR0uIsli8CGxXq9BTH+cAngdslXUz6RTcKOBC4KyKuJnUBzQf+Q9Ik0ui4c6jdRVd0Mem+039K+j7QSerCO540wOAfY91nhFYDN0r6HqlL7XvAf0bEgj6O5TUiYrakXwLXSDqddLXxZVLSXucZnipFxCJJlwPnSdoOuIP0MO6REXFMRLwi6TTg3yRtTrrH9FdgZ+AjWb1WP6RrRVWPjPBreL3ofXTcWVmdCcAvSb/8V5GG+R5f2M9ppJFNa4Glue1qjY4bV9h2KfD9Qtk04L7c8ijgP4EVpPsd55KGN7+6/57iyMrfAFyRbbsm+8yfAXvk6ryJNEvE6mwfJwLX0svouNy2GwD/nLXNaqCL9Ev0gBp1lwLnZW2/HPgLaVjylvW2aVa2LfDT7DNXk27e71OijdfZV41Yy9SZDDxTo3wsudFxWdn6ZKMaSQnmj6w7Gu4w4M6sXVaQBsZ8m9zIPr+qeyn7R2oZSbuSnjvYj9S3fWdEjC2x3RakIaAfIXUjziQNzXy2UG886QR7C+nEPDsirmnkMZgNJtk9pGsjws+92JBTxT2hPUjPUDySvcq6hvSX0Amkv6b2IT0v8SqlyR2vA+aQ/vq5Ebi6h751MzOrWBVXQutFNhxT0rXANn1dCUnaH/gf0gN0d2Rl+5Juor4/Im7NymYDG0bE+3Lb3gRsHhH9mn3YbLDzlZANZS2/Eop1nwco4zDSg3935Pbza9IQy8MAJG1EusH974VtpwP7d8+jZTbcRESHE5ANVUNliPZoYGGN8oezdZDmhNqwRr2HSce5W9OiMzOzfhkqQ7RHsu7T2ZBG7+ycq0ONel2F9a8haSLpYTZGjBjxrh13rP4h6ldeeYX11hsqfx9UZyDttNkj6XbkC7sN/79NfD6V57YqJ99OjzzyyDMRsW1/9zVUkhDUfoJaNcqLy+pleyLicuBygDFjxsR99/U220xrdHZ2Mnbs2KrDGPQG1E7KTotFi3qvNwz4fCrPbVVOvp0kPTqQfQ2VlN9F7W+33JK/Xfl05cqKdaD2lZSZmVVoqCShhfzt3k9e/l7REtIU/sV6o0lT2tczHNzMzFpgqCShm4Hts+eAAMi+6XHnbB0RsYb0fNBRhW2PBu6OiOdbFKsNYh2n30jH6Te+ZtnMqtPye0LZZIiHZ4tvBDaX1P1NiDdFxKpsPq+5EXE8QETcnT0D9FNJXyZd2UwlzdN1a2733wI6JV1IepD18Ox1aNMPzMzM6lbFwITtgP8olHUvv5k0J9UGpDmh8o4hTf//E3LT9uQrRMRdWUL7NvBPpOeIjouIXzQwfhsGOibNrDoEM6OCJBQRS/nbiLWe6nTUKHsO+Ez26m3bGyhM52NmZoPTULknZGZmw5CTkLWlGdNOYca0U6oOw6ztDaWHVc0aZq/lS6oOwczwlZCZmVXIScjMzCrjJGRmZpVxEjIzs8o4CZmZWWU8Os7a0lVvP6TqEMwMJyFrU2ceelLVIZgZ7o4zM7MKOQlZW9pz2WL2XLa46jDM2p6746wtzbzyVMCzaZtVzVdCZmZWGSchMzOrjJOQmZlVxknIzMwq4yRkZmaVcRIyM7PKeIi2taVxn76w6hDMDCcha1MPbb9r1SGYGe6OMzOzCjkJWVuaMutipsy6uOowzNqek5C1pePmz+a4+bOrDsOs7TkJmZlZZZyEzMysMk5CZmZWGSchMzOrjJOQmZlVxg+rWlt6cNQuVYdgZjgJWZv60ISLqg7BzHB3nJmZVchJyMzMKuMkZG1p6dRxLJ06ruowzNqek5CZmVXGScjMzCrjJGRmZpVxEjIzs8o4CZmZWWWchMzMrDKeMcHa0hmHfKnqEMwMJyFrU1fvfWjVIZgZFXTHSdpd0m2SVkl6UtI5ktbvY5vJkqKH1xm5etN6qDO6+UdmZmb1aumVkKSRwK3AAmA8sAtwHikZntXLpj8CZhXKPgJMAm4ulC8EPlMoW9q/iG24OnZeOp18RWRWrVZ3x30eGAEcERErgFskbQ5MlnRuVraOiPgj8Md8maSvAwsjYl6h+l8i4p4mxG7DyHdnXwI4CZlVrdXdcYcBswvJZjopMR1YdieStgLeD1zd2PDMzKyVWp2ERpO6y14VEY8Bq7J1ZR0JbEhKYEW7S1ohaY2kuySVTm5mZtZare6OGwk8V6O8K1tX1jHAbyLikUL5A8CvSPectgVOI3X5HRARv661I0kTgYkAo0aNorOzs44wmmPlypWDIo7Brj/tdNpea9dZHu5t7fOpPLdVOY1spyqGaEeNMvVQvm5FaQdS192kdXYccVGh7o2khHQmaSDDusFEXA5cDjBmzJgYO3ZsmTCaqrOzk8EQx2DXn3aacPqNAJyULZ/34AYs/UR9+xhqfD6V57Yqp5Ht1OruuC5gyxrlW1D7CqmWj5OS1jV9VYyI1cBNwDvLBmhmZq3T6iS0kMK9H0k7AptQuFfUi2OAuyLi8To+t9RVlpmZtVaru+NuBr4iabOIeCErOxpYDczta2NJHcB+wBfKfJikEaQReff3J1gbvjomzaw6BDOj9VdClwJrgOslHZwNCpgMnJ8fti1psaQf19j+GGAtcG1xhaQtJN0p6URJB0k6GpgDvBGY0oRjMTOzAWrplVBEdEk6CLgEmEG6D3QBKREV46o1lc8xwG0R8XSNdWuAp0kzL2wHvAjcDRwYEfc15ADMzKyhWj46LiIWAO/ro05HD+V797LNi8ARAwrO2saMaacA8KEJF/VR08yaybNoW1vaa/mSqkMwM/yldmZmViEnITMzq4yTkJmZVcZJyMzMKuMkZGZmlfHoOGtLV739kKpDMDOchKxNnXnoSX1XMrOmc3ecmZlVpq4kJKnWVDpmQ86eyxaz57LFVYdh1vbqvRJ6QtK5kv6+KdGYtcjMK09l5pWnVh2GWdurNwldBhwJPCTpV5ImStq8CXGZmVkbqCsJRcQ3I2Jn4P3AIuB84ClJP5d0cDMCNDOz4atfAxMi4vaI+BSwPXAS8FZgtqSlkiZLekMjgzQzs+FpoKPjxgDvIX1ldxdwJ3ACsFjSJwe4bzMzG+bqTkKSdpL0TUlLgNuAHYDPAm+IiH8EdiLdO/peQyM1M7Nhp66HVSXdTrry+SMwDbgiIh7N14mIlyVdBZzSqCDNzGx4qnfGhGeAw4FbIiJ6qTcPeHO/ozJrsnGfvrDqEMyM+pPQJcBvaiUgSZsC74yIOyLiJeDRdbY2GyQe2n7XqkMwM+q/JzQH2L2HdW/N1puZmZVSbxJSL+s2BVYNIBazlpky62KmzLq46jDM2l6f3XGS3gOMzRWdIOnQQrWNgQ8CDzYuNLPmOW7+bMCzaZtVrcw9oXeTHkgFCOAoYG2hzl+BhcBXGheamZkNd30moYj4HtkzP5L+AHw0IuY1OzAzMxv+6hodFxEedm1mZg1T5p7Q4cBdEbEi+7lXEXFTQyIzM7Nhr8yV0ExgP+DX2c9Bz6PkAvAX35mZWSllktCbgadyP5sNeQ+O2qXqEMyMcgMTHq31s9lQ9qEJF1UdgplR7p7Q6+vZYUT4gVUzMyulTHfcStK9nrJ8T8jMzEopk4Q+S31JyGzQWzp1HAAdk2ZWHIlZeytzT2haC+IwM7M2NNCv9zYzM+u3MgMTfg1MiIgFku6lj665iNi3UcGZmdnwVuae0G+B1bmffX/IzMwaosw9oc/kfp7Q1GjMzKyt9PuekJJtJfX2RXdmZmY9qmsWbXh1QtOzgHdl26+VdD/wnYi4scHxmTXFGYd8qeoQzIw6k5CkE4EfArcBpwB/ArYDjgD+W9IXIuKyhkdp1mBX7138cmAzq0K9V0JnApdHxD8Vyi+VdCnwNcBJyMzMSqn3ntDWwPU9rLsO2KqvHUjaXdJtklZJelLSOZJ6nepHUoekqPGaXqPueEkPSnpR0gJJR5c6Mmsrx86bxbHzZlUdhlnbq/dKaA5wIHBLjXUHAnf0trGkkcCtwAJgPLALcB4pGZ5V4vO/DPwyt/xMYf8HkJLhD4GTgcOBqyV1RcQvSuzf2sR3Z18CuFvOrGplHlbdPbf4A+BHkrYGbuBv94Q+ChwGnNDH7j4PjACOiIgVwC2SNgcmSzo3K+vNooi4p5f1XwfuiIiTs+U5kvYAvgE4CZmZDTJlroQe4rUPqAo4MXsVv2V1Fr3Pon0YMLuQbKYDU0lXUjNKxFOTpI2A95KugPKmA1dI2iIinu/v/s3MrPHKJKH3NvDzRgO35wsi4jFJq7J1fSWhKyRtRboCuxr4WkR0z+awC7AhsLCwzcOk7r7dgHsHFr6ZmTVSmRkT5jbw80YCz9Uo78rW9WQN8K+kLrUVwFhgEinxjM/tmxr77yqsfw1JE4GJAKNGjaKzs7O3+Fti5cqVgyKOwa4/7XTaXmvXWR7ube3zqTy3VTmNbKe6H1btJmk9YONieYlvVq0195x6KO/e51NA/unCTknLgR9K2jsi5vWyf/VQ3r3vy4HLAcaMGRNjx47tPfoW6OzsZDDEMdj1p50mnJ6epz4pWz7vwQ1Y+on69jHU+Hwqz21VTiPbqa4h2tlUPZMkLQZeAl6o8epNF7BljfItqH2F1Jtrs/d35vZNjf13L9e7fzMza7J6r4ROBk4HzgW+A3wbeBk4BngdMKWP7ReS7v28StKOwCasey+nL1F4X0JKjKOBfBfiaOAV4JE692/DmL9R1WxwqPdh1c8B3yQlIYAbIuJsYA9SEnlLH9vfDBwiabNc2dGkr4qo997Tkdn7/QARsYb0HNNRhXpHA3d7ZJyZ2eBT75XQm4F5EfGypJfIuroi4hVJPwR+RLpS6smlpKup6yVNBXYGJgPn54dtZ919cyPi+Gx5MrAZ6UHVFcB7gK8A10fE/+b2/y3S/aILSc8xHZ69/ESimdkgVO+V0LPAptnPjwHvyK0bSXoQtUcR0QUcRHqWaAZwNnAB6eoqbwNe+7zRQtJzRFcANwHHAd/L3vP7v4t0hXQwMBv4MHCcZ0uwohnTTmHGtFOqDsOs7dV7JfRLYB9SIriKNNPBVsBfgS+SZtfuVUQsAN7XR52OwvJ00kOnfYqIG0hXQWY92mv5kqpDMDPqT0KTgTdmP08hdcdNIF0B3cLfRr6amZn1qa4kFBGLgEXZz2tI3ynkPg0zM+uXgTys+nfADsCTEfFE40IyM7N2Ue/ABCT9k6THgUeBXwGPSfqjpC80PDozMxvW6p0x4RvAJaTnfT4IjMnebwZ+kK03MzMrpd7uuC8CUyLi64XyWdlcbl8EzmlIZGZNdNXbD6k6BDOj/iQ0gp6/PXUuHh1nQ8SZh/pUNRsM6r0ndANwRA/rPgZ4Qi4zMyutzNd7H55bvBk4V1IH63699x7AVxsfolnj7blsMQAPbb9rxZGYtbcy3XEzWfdrvN8I1OpU/xnpG0/NBrWZV54KeDZts6qVSUJvbnoUZmbWlsp8vfejrQjEzMzaT90zJkjagDQI4QBgK+DPwJ2kr1VY29jwzMxsOKsrCUnaDvgF8DZgKbAc2J/0fNB8SR+IiKcbHaSZmQ1P9Q7RPh/YGnh3ROwcEftHxM7Au7Py8xsdoJmZDV/1JqHDgUkRcW++MFs+gzSFj5mZWSn13hPaCHihh3UvAK8bWDhmrTHu0xdWHYKZUX8SugeYJOn2iPhLd6GkTYBJ2XqzQc8PqZoNDvUmodOAOcDjkn5BGpiwHenBVQFjGxqdmZkNa3XdE4qIecBbgMuBbYH3k5LQpcBbImJ+wyM0a4Ipsy5myqyLqw7DrO2VvhKStCGwL/CHiDi9eSGZNd9x82cDnk3brGr1XAm9DNwO/H2TYjEzszZTOglFxCvA74BRzQvHzMzaSb3PCX0N+IakvZoRjJmZtZd6R8edRZoZYZ6kJ0ij4yJfISL2bVBsZmY2zNWbhB7KXmZmZgNWKglJGkGasuchYBlwa0Qsb2ZgZs304Khdqg7BzCj39d47A7cCHbniFZI+HhG/aFZgZs30oQkXVR2CmVFuYMK5wCvAPwCvB/YAHgAua2JcZmbWBsokof2BsyLilxHxYkQ8DJwIvEnSDs0Nz8zMhrMySWgH4PeFsiWkueK2b3hEZi2wdOo4lk4dV3UYZm2v7HNC0XcVMzOz+pQdoj1b0toa5bcVyyNiu4GHZWZm7aBMEjq76VGYmVlb6jMJRYSTkJmZNUW9c8eZmZk1jJOQmZlVpt6548yGhTMO+VLVIZgZTkLWpq7e+9CqQzAz3B1nZmYVchKytnTsvFkcO29W1WGYtb2WJyFJu0u6TdIqSU9KOkfS+n1ss4+kKyQtzrZbJOmbkjYu1JssKWq83Pdir/Hd2Zfw3dmXVB2GWdtr6T0hSSNJXwuxABgP7AKcR0qGZ/Wy6dFZ3anA74C3Ad/K3j9WqPs8UEw6Dw80djMza7xWD0z4PDACOCIiVgC3SNocmCzp3KyslqkR8XRuuVPSi8BlknaKiEdz69ZGxD3NCd/MzBqp1d1xhwGzC8lmOikxHdjTRoUE1O2B7N1z1ZmZDVGtTkKjgYX5goh4DFiVravH/yF92d6iQvmWkp6R9JKkByQd0e9ozcysqVrdHTcSeK5GeVe2rhRJ2wNfA/6tcFW1GPgqMA/YlPTle9dJ+lhEXN/DviYCEwFGjRpFZ2dn2TCaZuXKlYMijsGuP+102l5r11ke7m3t86k8t1U5DW2niGjZC3gJOKVG+RPAd0ru43XAHaQv2hvZR10BdwPzyuz7Xe96VwwGc+bMqTqEIaE/7bTTpJmx06SZERAB6edhzudTeW6rcvLtBNwXA8gLrb4S6gK2rFG+BbWvkF5DkoCfAnsA/zciunqrHxEh6XpgqqT1I+LlfsRsw1DHpJlVh2BmtL47biGFez+SdgQ2oXCvqAcXkIZ2vz8iytTv5m+GNTMbhFo9MOFm4BBJm+XKjgZWA3N721DSGcBJwCcj4q4yH5ZdOX0UmO+rIDOzwafVV0KXAicD10uaCuwMTAbOj9wAA0mLgbkRcXy2fBwwBZgGPCFpv9w+l0Q2hFvSXOA60lXVJsDngP2AjzT3sGyomTHtFAA+NOGiiiMxa28tTUIR0SXpIOASYAbpPtAFpERUjCs/lc8HsvcJ2SvvM6TkBGl03KnADqTh278BPhgRNzcifhs+9lq+pOoQzIwKvsohIhYA7+ujTkdheQLrJp9a2x0/gNDMzKzFPIu2mZlVxknIzMwq4yRkZmaVcRIyM7PKtHxggtlgcNXbD6k6BDPDScja1JmHnlR1CGaGu+PMzKxCTkLWlvZctpg9ly2uOgyztufuOGtLM688FfBs2mZV85WQmZlVxknIzMwq4yRkZmaVcRIyM7PKOAmZmVllnITMzKwyHqJtbWncpy+sOgQzw0nI2tRD2+9adQhmhrvjzMysQk5C1pamzLqYKbMurjoMs7bnJGRt6bj5szlu/uyqwzBre05CZmZWGSchMzOrjJOQmZlVxknIzMwq4yRkZmaV8cOq1pYeHLVL1SGYGU5C1qY+NOGiqkMwM9wdZ2ZmFXISMjOzyjgJWVtaOnUcS6eOqzoMs7bnJGRmZpVxEjIzs8o4CZmZWWWchMzMrDJOQmZmVhknITMzq4xnTLC2dMYhX6o6BDPDScja1NV7H1p1CGaGu+PMzKxCTkLWlo6dN4tj582qOgyztufuOGtL3519CeBuObOq+UrIzMwq0/IkJGl3SbdJWiXpSUnnSFq/xHZbSLpCUpek5yX9XNLWNeqNl/SgpBclLZB0dHOOxMzMBqqlSUjSSOBWIIDxwDnAacDZJTa/BhgLnABMAPYBbijs/wDgOmAOcBhwI3C1pA805ADMzKyhWn1P6PPACOCIiFgB3CJpc2CypHOzsnVI2h84BDgwIu7Iyp4AfiXp4Ii4Nav6deCOiDg5W54jaQ/gG8AvmndYZmbWH61OQocBswvJZjowFTgQmNHLdsu7ExBARPxa0h+ydbdK2gh4L3ByYdvpwBWStoiI5xt0HNZmOk6/cZ2ypf/ywQoiMRteWp2ERgO35wsi4jFJq7J1PSWh0cDCGuUPZ+sAdgE2rFHvYVK3427Avf0L2wabjtNv5LS91jIhlxwGa1JwAjPrWauT0EjguRrlXdm6/my3c64ONep1Fda/hqSJwMRscaWkRb3E0SrbAM9UHcRgd3KhnTS1/Lbq/mHquLq2e80++rndQLftB59P5bmtysm3004D2VEVzwlFjTL1UN6f7YrL6qE8FUZcDlzex2e3lKT7ImJM1XEMdm6nctxO5bmtymlkO7V6iHYXsGWN8i2ofaXT13Zb5rbrypUV69DH/s3MrAKtTkIL+ds9HAAk7QhsQu17Pj1ul8nfK1oCvFSj3mjgFeCRfsRrZmZN1OokdDNwiKTNcmVHA6uBuX1st332HBAAksaQ7gfdDBARa0jPBx1V2PZo4O4hNjJuUHUPDmJup3LcTuW5rcppWDspoq9bMY2TPay6AHiINCx7Z+B84MKIOCtXbzEwNyKOz5XNIo1w+zLpymYq8KeI+IdcnQOATuAS0oOsh2f1D40IPydkZjbItPRKKCK6gIOA9UnDsc8GLgC+Wai6QVYn7xjS1dJPgJ8C9wMfLez/LuBI4GBgNvBh4DgnIDOzwamlV0JmZmZ5nkV7EJD0OUm/yyZdvV/SQSW2mSwparyG/HcTNHuS2+GkP20lqaOHc2d6q+Kji43mAAADuklEQVRuNUm7SrpM0nxJL0vqLLldW51T/WmngZ5P/j6hikk6BrgUmAzcBXwGmClpn4h4qI/NnweKSefhhgfZQrlJbheQJrndBTiP9AfTWb1sCmmS27eSJrntvm94A/APvW00VA2wrSDdL/1lbnk4P6S5B+ke8T3A6+rYrq3OKfrfTtDf8yki/KrwBSwCfpJbXg94EPhZH9tNBp6pOv4mtMcZpGe+Ns+VfRVYlS+rsd3+pAeS35Mr2zcrO7jq4xpkbdWRtcu4qo+hhW21Xu7na4HOEtu04znVn3Ya0Pnk7rgKSdqZNOLv37vLIuIV4D9IE7O2o54muR1BmuS2t+3WmeQW6J7kdjjqb1u1nez/Vb3a7pzqZzsNiJNQtbofrK016epWkrbtY/stJT0j6SVJD0g6ovEhttw6k9VGxGOkv+5rPbDc43aZ/CS3w01/26rbFVm//1OSzpc0ohlBDmHteE4NRL/OJ98TqlaZSVef7mHbxaSul3nApsCJwHWSPhYR1zc60BZq5iS3w01/22oN8K+k79haQfqyyEmke0rjGxvikNaO51R/DOh8chJqMElbADv0VS8i8n9h1TXparb9zwqfOwP4H9IX+A3lJATNn+R2OKn7mCPiKeBLuaJOScuBH0raOyLmNTjGoawdz6m6DPR8cndc4x1Fulzv6wUNnHQ10h3C64G3lRnOPIg1c5Lb4aa/bVXLtdn7OwcU0fDSjudUo5Q+n5yEGiwifhQR6uuVVe++Gqo16eqfI6KnrrheQ+h38INDMye5HW7621a1ROHd2vOcapTS55OTUIUi4vek2b1fnXRV0nrZ8s317EuSSNMYzY+IlxsZZ4s1bZLbYai/bVXLkdn7/Y0IbJhox3OqUcqfT1WPS2/3F3As8DLp4cL3AtNIv0T2zNU5EFgLHJgrmwucDHyAlHxuIj1M9+Gqj2mA7TESeAq4hTQH4ERgJfDtQr3FwI8LZbOA3wNHAB8hPYN1Z9XHNNjaivSM2XlZOx0MnJOdc9dVfUxNbKvXZ78YjwTuBn6bW369z6n+t9NAz6fKD9qvAPhc9g+7BvgNcFBh/VjSZe3YXNmPs/8cq4G/AHcCh1V9LA1qj92B27Njewr4FrB+oc5SYFqhbEvgClJ//QrgKmCbqo9nsLUVaTLg+0gzbvw1O/fOATaq+nia2E4d2f+hWq8On1P9b6eBnk+ewNTMzCrje0JmZlYZJyEzM6uMk5CZmVXGScjMzCrjJGRmZpVxEjIzs8o4CZmZWWWchMzMrDL/H3eMm+91HpXKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Delta\n", + "\n", + "The Delta is a bit simplier to evaluate than the expected payoff.\n", + "Similarly to the expected payoff, we use a comparator circuit and an ancilla qubit to identify the cases where $S_T \\leq K$.\n", + "However, since we are only interested in the (negative) probability of this condition being true, we can directly use this ancilla qubit as the objective qubit in amplitude estimation without any futher approximation." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price]\n", + "slopes = [0, 0]\n", + "offsets = [1, 0]\n", + "f_min = 0\n", + "f_max = 1\n", + "c_approx = 1\n", + "european_delta_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "european_call_delta = UnivariateProblem(\n", + " uncertainty_model,\n", + " european_delta_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae_delta = AmplitudeEstimation(m, european_call_delta)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result_delta = ae_delta.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact delta: \t-0.5300\n", + "Esimated value:\t-0.5490\n", + "Probability: \t0.5918\n" + ] + } + ], + "source": [ + "print('Exact delta: \\t%.4f' % exact_delta)\n", + "print('Esimated value:\\t%.4f' % -result_delta['estimation'])\n", + "print('Probability: \\t%.4f' % result_delta['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu0XEWZ/vHvw0WJBEIQExgEYlBgYJwlJCKMjCRyDy5RBIPoOFFI4gyKM4urghrAG6CAyjgkoEF+KmEGkRmQW4CcIAwISUS5BQwS7iJIIIQEJPD+/qjdsNOnu09fd+ecfj5r7dWna9euruo+p99TtWvXVkRgZmbWaet0uwJmZtYbHHDMzKwQDjhmZlYIBxwzMyuEA46ZmRXCAcfMzArhgGNtI2mGpKiyfarOMrbLytmkLH1KVs7wztS+vnq0WOalkvrqyLeepH+T9DtJqyQtk3SVpD2afN215T2dkvt9eE3S85J+L+kcSds2WWafpEtzz/eV9G/tq7W1kwOOtdvzwO4VtmvqPH474GtA+Rf9r7JyVranmk3Xo6MkrQtcDnwT+F9gEjAFeBXok3R4E8WuLe9pyQeBfwA+BvwI2Bf4vaQD2lD2voADzlpqvW5XwIac1RFxW7sLjYingafbXe5a6AvAgcABEZEP0v8jaQ4wS9L8iHi81Rfq4nt6R0SsyH6+XtJ5wJXAzyWNiYjnu1AnK4B7OFY4SV+StETSS5KeknSNpM0lTQCuyLI9lA29LM2OWWP4R9KY7PlhkmZLWi7psdLQnaTjJT0h6WlJp0taJ/f6O0iaI+lRSSsl3ZMNYa2T7a9aj2z/1tnxz2bHXytp+7I2bpUNg62StFTSkXW+PV8E5pUFm5KTgA2AI3Kvs1TSdyR9RdKfJK2Q9DNJIwZqS6UhNUmbSfqJpL9kbeuTNL6sbaXX/PfsPV+WvR9N9QYj4mVSoN0E+ETuddaRdGL2u/KypAck/XO1ciTNAI4BtskN3V2Y7dtd0v9mvxMvSrpT0iebqa81zz0caztJ/X6vImJ1tu/TwJeBE4B7gLeShlg2BBYBxwLfAQ4GngReHuDlTgd+Rhqe+SzwE0k7A9tkz8cBXwd+C8zJjtkSuD877gXgPcApwDDgW7XqIWlT4GbgL8DnSMNRJ5L+U98uIlZJEvA/wGak4PBSVv6mwB9qvG9bAWOAsyvtj4gHJd0FfKBs1yeAJcBUYAvgDOAC4NBabanicuCd2THPAMcB8yTtHBFLcvk+DvwemAa8HTiLNAz4rzXKrioiFkt6DNgNOC9L/gHwz8CpWTv2AX4s6S8RcWWFYi4A3kX6ffpollbqwW0D3JKV/RLwfmC2pNci4uJm6mxNiAhv3tqyATOAqLKNyfKcC/yiRhkfyufPpU/J0odnz8dkz2fn8mwMvEL6Ul83l347cEmV1xPpH68vA3+sox6nkYLNprm0kaRzV0dlzydlx74vl2cbYDXQV6Ptu2XHHVQjz+XAfbnnS4FnS+9LlvZJ4DXgbxt8T/fPnu+Zy7Mh6Ut7ZtlrPgisl0s7B/jTAL8fa7xehf23AldnP78za8M/l+W5iDQkV3reB1yae/4dYOkA9Sh95jOBG7v9d9NLm3s41m7PA3tXSH8ie7wTOELSKaST1gsj4tUWXu+G0g8RsVzS08D8sjKXAFuXnkjaAPgS6Yt5a2D93L71IuuNVbE3MBdYnuvJvQAsBEpDT7sCT0XEb3J1e1jSwibaV4+58cY5EYDLgJ8C7wXua6CcXYGnI2J+KSEiXpR0JVA+Q25e2ft0LzBK0psi4q+NVf91yv28Fyng/LKsx3wD8AlJ6zbyeyNpJKmXeRCph7tutqvlc2FWPwcca7fVEbGgxv4fAxuRhmK+CvxF0n8CM5oMPM+VPf9rlbQNcs9PB44kfQEtyvIfBJyc5VtBdZuReiKTK+wrBb/NgT9X2P9nUturKX35bVMjzzb0/5Jc47UiDeutIA2vNWIL4KkK6U+RhgPzKr3HAt6U/dyMLYHF2c+bkYJCtQkEWwCPNVD2haTP7TRScFwO/Avpc7eCOOBYoSLiNdI5irOzcxafBL5B+hI9r9axbXQo8IOIOKOUIOnAOo99ljRd+bQK+17IHv8EjKqwfxSwqlrBEfFodkL/w8D3y/dLegfwdxVee1RZvmHAcNL5mkY8WV5WZjSp3R0j6W9J54JuzZKeJQ1Bvp/U0ylXKaBXK3sD0sy/z0fEebl0T5oqmN9w65qIeDQivk0a8toxSy79d7xB5aPaYhi5E+dK174cVpanWj1uAHYC7omIBWXb/VmeO4DRkt6Xe42tgV3qqNv3gL0k7Vth39ezev+oLH0frXnx5sGkcyWlnma97+lvSMNir09KkPQW0pf1zXXUvSmS3kwKsM/xxsSOG0k9nBEV3ucFNYbtynuzAG/Oysp/5huRArsVyD0ca7f1JO1WIf3RiHhc0kzSf6+3kYZLJpJmFp2Q5St9aU9Xuu5kZUTc1eY6zgWOkrQkq8tRpC+lvGr1OAv4FHCjpB+QemajgT2BmyPNeLoK+B3w35JOIM2KOpX6/iv/Aek80S8lfYd0Unwj0my3DwH/FP2vwVkF/ErSmaShpjOBX0bEvQO0ZQ0Rca2kW4BLJJ1ImhxxLClAn1lH3ev1XkmrgLeQemzTSZNADonsGpyIuF/p+pw5ks4gBc8NSMF+u4ioNs18MSnYTwHuBp6JiKWS7gC+Kmk5qcd0Iun3b+M2tssG0u1ZC96GzkbtWWonZ3mmkKanPkuaUvx74Iiyco4BHiYNqSzNHVdpltqHyo5dCnynLO1CYEHu+Wjgl6Rx/KdI04inUjaDqlI9svS/AWZnx76cveZPgZ1yebYmra6wKitjOnApNWap5Y5dD/j37L1ZBSwDrgb2qJB3KfDd7L1/CngRuBjYpNH3NEt7G2km2LLstecD763jPe5XVoW6lvKUtheAu0i9um0r5Bdp1YB7svf56aw+n87l6WPNWWobZJ/Nn7PXuDBLfyep1/Qi8AhwfPaePdPtv5te2pR9GIWR9E7S3P7dSP/d/DoiJtRx3AjS1MuPkIYCrwSOjoi/lOU7iDT08C7gj8ApEXFJO9tgtrbIzvlcGhHHdrsuZgPpxjmcnUjXKTyQbfW6BJhAml00hTTl8/J8BqXFDX8BzAMOIE27vbjKeLiZmRWoGz2cdSLNVEJpldfNBurhSNod+D/SBWk3ZWm7kk5y7hMR12dp1wLrR8QHc8deBWwcEU2ttGu2NnMPxwaTwns4pWDToANIF9LdlCvnduChbF9ppstE4L/Kjp0D7F5aW8psKImIMQ42NlgMlmnRO/DGBWF592X7ALYlXTFenu8+Uju361jtzMxsQINlWvRI+l/ZDGkmzdhcHirkW1a2fw2SppGuemfYsGHjttpqq5Yq+tprr7HOOoMljrfO7W3NRg+k05gvbLd2/j/kz3doa0d7H3jggWci4m315B0sAQfSFMdyqpBe/lxV0lNixCxgFsD48eNjwYJaq7IMrK+vjwkTJrRUxmDi9rZI2a/n/ffXztcl/nyHtna0V9LD9eYdLKF8GZXvvLgJb/RoluXSyvNA5R6SmZkVZLAEnMW8ca4mL39u50HS0vTl+XYgXVncyBRsMzNrs8EScK4GNs+uswEguwvh2Gwfke4aOI+0MGPeZODW8G1rzcy6qvBzONligJOyp1sCG0s6JHt+VUSszNa4mh8RRwBExK3ZNTYXSTqW1GM5nbR21fW54k8D+iSdQ7oodFK27d/xhpmZWU3dmDQwCvjvsrTS83eQ1mlajzdukFRyGGlZ+x+TW9omnyEibs6C19dJ97p4CDg8Iq5rY/3N2qfgC6/NuqnwgBMRS1nzzn6V8oypkPYc8Jlsq3Xs5ZQteWNmZt03WM7hmJnZIOeAY9ZN48alzawHDKYLP82GnkWLul0Ds8K4h2NmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVgjPUjPrpqlTu10Ds8I44Jh106xZ3a6BWWE8pGZmZoVwwDHrpoUL02bWAzykZtZN48enR68abT3APRwzMyuEA46ZmRXCAcfMzArhgGNmZoVwwDEzs0I44JiZWSE8LdqsmxYs6HYNzArjgGPWTb69tPUQD6mZmVkhHHDMumnatLSZ9QAHHLNuOv/8tJn1AAccMzMrhAOOmZkVwgHHzMwK4YBjZmaFcMAxM7NC+MJPs27aZZdu18CsMA44Zt3k20tbD/GQmpmZFcIBx8zMCuGAY9ZNUtrMeoADjpmZFcIBx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIRxwzMysEF5pwKybZs7sdg3MCuOAY9ZNvr209ZDCh9Qk7SjpBkkrJT0h6VRJ6w5wzAxJUWX7Ui7fhVXy7ND5lpmZWS2F9nAkjQSuB+4FDgK2Bb5LCnwn1zj0AuCasrSPACcAV5elLwY+U5a2tLkam3XYrFnp0T0d6wFFD6l9DhgGHBwRy4G5kjYGZkg6I0vrJyIeAx7Lp0n6CrA4Iu4sy/5iRNzWgbqbtd/06enRAcd6QNFDagcA15YFljmkILRnvYVI2hTYB7i4vdUzM7NOKTrg7EAa8npdRDwCrMz21esQYH1SsCq3o6Tlkl6WdLOkugOZmZl1jiKiuBeTXgGOi4hzytIfAy6KiC/XWc6NwIiIGFeW/kXgr6RzRG8DjgHGAXtExO1VypoGTAMYPXr0uDlzKsWw+q1YsYLhw4e3VMZg4va2ZsLEiQD0zZvXtjLbyZ/v0NaO9k6cOHFhRIyvK3NEFLYBrwBfrJD+OPCNOsvYAngVOLaOvMOAh4DL6yl73Lhx0ap58+a1XMZg4va2CNK2lvLnO7S1o73AgqgzBhQ9pLYM2KRC+gjguTrL+Dgg4JKBMkbEKuAqwDeONzPrsqIDzmLKztVI2grYkLJzOzUcBtwcEY828LrFjRuamVlFRQecq4H9JG2US5sMrALmD3SwpDHAbtQ5O03SMNLMuIWNVtSsEKVBNbMeUHTAOQ94GbhM0t7ZCfsZwFmRmyotaYmkH1U4/jBgNXBp+Q5JIyT9WtJ0SXtJmgzMA7YEvtmBtpiZWQMKvfAzIpZJ2gs4F7iCdN7mbFLQKa9XpeVuDgNuiIinK+x7GXiatGLBKOAl4FZgz4hY0JYGmJlZ0wpfvDMi7gU+OECeMVXS31PjmJeAg1uqnFnRxmUz+xd61NeGPq8WbdZNixZ1uwZmhfEN2MzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuFZambdNHVqt2tgVhgHHLNuKt1i2qwHeEjNzMwK0VDAkVRpuRkza9bChV5lwHpGo0Nqj0u6CJgdEfd1okJmPWV8dqNErxhtPaDRIbWZwCHA3ZJ+I2mapI07UC8zMxtiGgo4EfG1iBgL7APcD5wFPCnpZ5L27kQFzcxsaGhq0kBE3BgRnwY2B74AbA9cK2mppBmS/qadlTQzs8Gv1Vlq44EPkG4bvQz4NXAksETSp1os28zMhpCGA46kbSR9TdKDwA3AFsBngb+JiH8CtiGd6zmzrTU1M7NBraFZapJuJPVoHgMuJM1WezifJyJelfRz4IvtqqSZmQ1+jU6LfgaYBMyNqDmP807gHU3XyqxXLPDdz613NBpwzgUWVQo2koYDu0TETRHxCvBwv6PNbE2lW0yb9YBGz+HMA3assm/7bL+ZmVk/jQYc1dg3HFjZQl3Mes+0aWkz6wEDDqlJ+gAwIZd0pKT9y7JtABwI3NW+qpn1gPPPT49eNdp6QD3ncN5HurgTIIBDgdVlef4KLAaOa1/VzMxsKBkw4ETEmWTX1Eh6CPhoRNzZ6YqZmdnQ0tAstYjwVGczM2tKPedwJgE3R8Ty7OeaIuKqttTMzMyGlHp6OFcCuwG3Zz8H1WerBeCbtJnljDnxV/3Sln77wC7UxKy76gk47wCezP1sZu2yyy7droFZYeqZNPBwpZ/NrA18e2nrIfWcw3lLIwVGhC/+NDOzfuoZUltBOjdTL5/DMTOzfuoJOJ+lsYBjZvVSNv+m5uLrZkNDPedwLiygHmZmNsS1eotpMzOzutQzaeB2YEpE3CvpDgYYXouIXdtVOTMzGzrqOYdzD7Aq97MHm83MrGH1nMP5TO7nKR2tjZmZDVlNn8NR8jZJtW7KZmZmBjS4WjS8vpjnycC47PjVkhYC34iI/otGmVl1M2d2uwZmhWko4EiaDvwQuAH4IvBnYBRwMPC/kv41IvwXZFYv317aekijPZwvA7Mi4l/K0s+TdB5wEuCAY2Zm/TR6DuetwGVV9v0C2HSgAiTtKOkGSSslPSHpVEk1l8ORNEZSVNjmVMh7kKS7JL0k6V5Jk+tqmVk3zJqVNrMe0GgPZx6wJzC3wr49gZtqHSxpJHA9cC9wELAt8F1S4Du5jtc/Frgl9/yZsvL3IAW+HwJHA5OAiyUti4jr6ijfrFjTp6dHD61ZD6jnws8dc0+/D1wg6a3A5bxxDuejwAHAkQMU9zlgGHBwRCwH5kraGJgh6YwsrZb7I+K2Gvu/AtwUEUdnz+dJ2gn4KuCAY2bWRfX0cO5mzYs9BUzPtvK7f15D7dWiDwCuLQssc4DTST2kK+qoT0WS3gxMJPVs8uYAsyWNiIjnmy3fzMxaU0/AmdjG19sBuDGfEBGPSFqZ7Rso4MyWtCmpZ3UxcFJElFZB2BZYH1hcdsx9pCG77YA7Wqu+mZk1q56VBua38fVGAs9VSF+W7avmZeA/SMNiy4EJwAmkIHNQrmwqlL+sbP8aJE0DpgGMHj2avr6+WvUf0IoVK1ouYzBxewd2zLtX90srlTGh7Pnaxp/v0FZ0exu+8LNE0jrABuXpddzxs9JabKqSXirzSeDzuaQ+SU8BP5T0noi4s0b5qpJeKnsWMAtg/PjxMWHChNq1H0BfXx+tljGYuL0Dm3Ji/+uhl35yzTLW1vfQn+/QVnR7G5oWnS1nc4KkJcArwAsVtlqWAZtUSB9B5Z5PLZdmj7vkyqZC+aXnjZZvZmZt1Oh1OEcDJwI/IvUcvgGcCjwALCUbmqphMelczeskbQVsSP9zLwOJsscHSUFwh7J8OwCvZXU0W7tE+G6f1jMaDThTga8BZ2TPL4+IU4CdSAHjXQMcfzWwn6SNcmmTSbc/aPRc0SHZ40KAiHiZdJ3QoWX5JgO3eoaamVl3NXoO5x3AnRHxqqRXyIarIuI1ST8ELiD1gKo5j9RLukzS6cBYYAZwVn6qdDZkNz8ijsiezwA2Il30uRz4AHAccFlE/D5X/mmk8zvnkK4TmpRt+zfYTjMza7NGezh/AYZnPz8C7JzbN5J0UWdVEbEM2It0rc4VwCnA2aReU956rHk9z2LSdTqzgauAw4Ezs8d8+TeTej57A9cCHwYO9yoDttYaNy5tZj2g0R7OLcB7SV/6PyetELAp8FfgKNIq0jVFxL3ABwfIM6bs+RzSBZwDiojLSb0bs7XfokXdroFZYRoNODOALbOfv0kaUptC6tnMBb7QroqZmdnQ0lDAiYj7gfuzn18m3RPnix2ol5mZDTGtXPj5dmAL4ImIeLx9VTIzs6Go0UkDSPoXSY8CDwO/AR6R9Jikf2177czMbMhodKWBrwLnkq6nORAYnz1eDXw/229mZtZPo0NqRwHfjIivlKVfk61tdhRp5QEzq8fUqd2ugVlhGg04w6h+V8/5eJaaWWN8e2nrIY2ew7kcOLjKvo8BV7ZWHTMzG6rqucX0pNzTq4EzJI2h/y2mdwKOb38VzYawhQvTo1cbsB5Qz5DalfS/lfSWwH4V8v6UdCdOM6vH+PHp0StGWw+oJ+C8o+O1MDOzIa+eW0w/XERFzMxsaGt4pQFJ65EmCOwBbAo8C/yadKuA/jdvNzMzo8GAI2kUcB3w96Q7fD4F7E66/uZ3kvaNiKfbXUkzMxv8Gp0WfRbwVuB9ETE2InaPiLHA+7L0s9pdQTMzGxoaDTiTgBMi4o58Yvb8S6RlbszMzPpp9BzOm4EXqux7AXhTa9Ux6zELFnS7BmaFaTTg3AacIOnGiHixlChpQ+CEbL+Z1csXfFoPaTTgHAPMAx6VdB1p0sAo0kWgAia0tXZmZjZkNHQOJyLuBN4FzALeBuxDCjjnAe+KiN+1vYZmQ9m0aWkz6wF193AkrQ/sCjwUESd2rkpmPeT889OjV422HtBID+dV4EbgbztUFzMzG8LqDjgR8RrwB2B056pjZmZDVaPX4ZwEfFXSuztRGTMzG7oanaV2MmlFgTslPU6apbbGuuoRsWub6mZmZkNIowHn7mwzMzNrSF0BR9Iw0rI2dwN/Aq6PiKc6WTGznrDLLt2ugVlh6rnF9FjgemBMLnm5pI9HxHWdqphZTyjdYtqsB9QzaeAM4DXgH4G3ADsBvwVmdrBeZmY2xNQTcHYHTo6IWyLipYi4D5gObC1pi85Wz8zMhop6As4WwB/L0h4krZ22edtrZNZLpLSZ9YB6r8OJgbOYmZlVV++06Gslra6QfkN5ekSMar1aZmY21NQTcE7peC3MzGzIGzDgRIQDjpmZtazRtdTMzMya4oBjZmaFaHQtNTNrp5m+ftp6hwOOWTf59tLWQzykZmZmhXDAMeumWbPSZtYDCg84knaUdIOklZKekHSqpHUHOOa9kmZLWpIdd7+kr0naoCzfDElRYdu/s60ya9L06Wkz6wGFnsORNJJ0q4N7gYOAbYHvkgLfyTUOnZzlPR34A/D3wGnZ48fK8j4PlAeY+1qtu5mZtaboSQOfA4YBB0fEcmCupI2BGZLOyNIqOT0ins4975P0EjBT0jYR8XBu3+qIuK0z1Tczs2YVPaR2AHBtWWCZQwpCe1Y7qCzYlPw2e/TabWZmg0DRAWcHYHE+ISIeAVZm+xrxD6Qbw91flr6JpGckvSLpt5IObrq2ZmbWNooo7s4Dkl4BjouIc8rSHwMuiogv11nO5sDvgasiYkou/VOkHs+dwHDSjeImAR+LiMuqlDUNmAYwevTocXPmzGm0WWtYsWIFw4cPb6mMwcTtHdhdjz/fL+3dW44AYMLEiQD0zZvXeuU6wJ/v0NaO9k6cOHFhRIyvJ283As6xEfG9svTHgQsj4qQ6yngTaeLB24FxEbGsRl4B/wcMi4j3DFT2+PHjY8GCBQNlq6mvr48JEya0VMZg4vYObMyJv+qXtvTbB6YfSjdfK/DvsBH+fIe2drRXUt0Bp+ghtWXAJhXSRwDPDXRwFkAuAnYCJtUKNgCRoullwN8PNPXarCsi1tpgY9ZuRc9SW0zZuRpJWwEbUnZup4qzSdOp94mIevKX+C/aBqXy3tHrPSOzQajoHs7VwH6SNsqlTQZWAfNrHSjpS8AXgE9FxM31vFjWI/oo8LuIeLW5KpuZWTsU3cM5DzgauEzS6cBYYAZwVn6qtKQlwPyIOCJ7fjjwTeBC4HFJu+XKfLA0bVrSfOAXpN7ShsBUYDfgI51tllmTxo1LjwsXdrceZgUoNOBExDJJewHnAleQztucTQo65fXKn3PZN3uckm15nyEFIoAlwL8BW5CmTC8CDoyIq9tRf7O2W7So2zUwK0zhtyeIiHuBDw6QZ0zZ8yn0DzSVjjuihaqZmVkHebVoMzMrhAOOmZkVwgHHzMwK4YBjZmaFKHzSgJnlTJ3a7RqYFcYBx6ybfHtp6yEeUjMzs0I44Jh108KFXmXAeoaH1My6aXy2qrtXjLYe4B6OmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQnhZt1k0LFnS7BmaFccAx66bSLabNeoCH1MzMrBAOOGbdNG1a2sx6gAOOWTedf37azHqAA46ZmRXCAcfMzArhgGNmZoVwwDEzs0I44JiZWSF84adZN+2yS7drYFYYBxyzbvLtpa2HeEjNzMwK4YBjZmaFcMAx6yYpbWY9wAHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQDjhmZlYIrzRg1k0zZ3a7BmaFccAxq8OYE38FwDHvXs2U7Oel3z6w9YJ9e2nrIR5SMzOzQriHY9ZNs2alxzb3dEo9sry29MjMWuCAY9ZN06enRw+tWQ/wkJqZmRWi8IAjaUdJN0haKekJSadKWreO40ZImi1pmaTnJf1M0lsr5DtI0l2SXpJ0r6TJnWmJmZk1otAhNUkjgeuBe4GDgG2B75IC38kDHH4JsD1wJPAacDpwOfCPufL3AH4B/BA4GpgEXCxpWURc19bG2KDkcxtm3VP0OZzPAcOAgyNiOTBX0sbADElnZGn9SNod2A/YMyJuytIeB34jae+IuD7L+hXgpog4Ons+T9JOwFcBBxyzOuSD8jHvXs2E7lXFhpiiA84BwLVlgWUOqbeyJ3BFjeOeKgUbgIi4XdJD2b7rJb0ZmEjq2eTNAWZLGhERz7epHdZl7qmsffyZ2ECKDjg7ADfmEyLiEUkrs33VAs4OwOIK6fdl+yANz61fId99pCG77YA7mqv24FH+R1/tD77efK3mHSh/s8fY0FHU70yjx3Tqb6SXKSKKezHpFeC4iDinLP0x4KKI+HKV4+YCL0bER8rSfwqMjYh/kPR+4GZg54i4M5fnncAfgP0qnceRNA0ozUndHri/6QYmmwHPtFjGYOL2Dm1u79DWjvZuExFvqydjN67DqRThVCW9mePKn6tKekqMmAXMGuC16yZpQUSMb1d5azu3d2hze4e2ottb9LToZcAmFdJHAM81cdwmueOW5dLK8zBA+WZm1mFFB5zFvHHOBQBJWwEbUvkcTdXjMvlzOw8Cr1TItwNpGvUDTdTXzMzapOiAczWwn6SNcmmTgVXA/AGO2zy7zgYASeOBsdk+IuJlYB5waNmxk4FbC5yh1rbhuUHC7R3a3N6hrdD2Fj1pYCTpos+7SVOhxwJnAedExMm5fEuA+RFxRC7tGtJMs2N548LPP0dE+YWffcC5pItCJ2X59/eFn2Zm3VVoDycilgF7AeuSpkCfApwNfK0s63pZnrzDSL2gHwMXAQuBj5aVfzNwCLA3cC3wYeBwBxszs+4rtIdjZma9y6tFt0DSZEmXSXpSUkia0sCx75f0G0mrJD0kqXyFhLWSpKmS/pAtjrpQ0l51HCNJn5d0T7Zo61JJP5BUaebhWqWZ9mbHvUXS6ZIeyY79o6RRTJ2TAAAF10lEQVTjO13fVjXb3tzxO0t6VdKguJalyd/n6ZLmSnoqW0j4Fkn7FlHfenV6keRmOeC05hBgDHBlIwdlF6NeCzwEHAjMBM6SdGS7K9hOkg4DziMNaR4A3ANcKenvBjj0C8D3gUtJ7f0WcDjwk87VtnXNtjf7w76KtEDtScD+wDc6W9vWtfD5lo4X6fzp0x2rZBu10N6TSH+700nfAUuAayR9uIPVrVtukeQg/Q6eChxDOoUxkEuACaRFkqcA7yWdD2+PiPDW5Aaskz0Ozz7cKXUeN5M0TXu9XNoPgUfJhjnXxo20CsOP8+0H7gJ+OsBxtwG/KEs7GngV2LDb7epAez9Hui5sVLfbUER7c/n/ifTl+03gmW63p4Of72YV0v4PmNftNmV1+VL2+7dxLu14YGU+rcJxu2ffYx/Ipe2ape3djrq5h9OCiHityUMPAC6LiNW5tDnA24G6/pssmqSxpFmC/1VKy9r/36T21LI+UD4t/TnSKhDqn737WmzvZ4H/iog/d66G7dVie8kudTidNCv0rx2qZtu00t6IqDRc+FtgVDvr2IJqiyQPIy2SXOu4foskk3pzA/4O1MMBp2CSNgS2ovIio1D5Ate1Qaleleq9qaRaayldAHxc0iRJG0naGTgRuDAiVnSgru3QVHslvQnYGXgsG/9elY2Fz1a6FcfaqpXPF9ItQO6LiPYNv3RWq+0ttzvpko+1Qb/FjiPiEVIPp9b3Sz2LJLekG2up9bpqS+2UluYZWWBdGlGqV616Vxy7j4j/zP4DvoI3/sm5nDQGvrZqtr1vJf1dHQ/cQJqavzVwJmlFjY+3vabt0fTnK2l74CjgfZ2pWkc03d5ykj5L+ifjmPZUrWUjqbyU1zJqf7/UOm5sG+rlgJMnaQSwxUD5IqLWMjz1qjYfvbB56k22t6HFUbPX+QTpP+CTgVtIt5I4DfgR8OkGqtySgtpbCqjLgEMj4pXstV8BfiJp24h4sP5aN6+ozxf4Hqm3eldjNWyvAtubf81xwA+A70XEvHqOKUinF0luigPOmg4Fzq8jXyvnHUr/QZRPCa72H1cnNdLe/OKo+fMxNRdHlbQOb/xBfitLvknSE6SZPedExKKGa96cjrc3d9wtpWCTKd0HakfSun9FKOLzPQB4P/D53DT3DdIubQKsirTsVBGK+HzfKCSdB/oVqSe7tvRuoLVFkisNJeYXSW6Jz+HkRMQFEaGBthZf40XSbLRKi4xC7UVM26rB9pbqVanez0ZEteGHzUjDTHeWpf82e9y25YbUqYj2RsRK4OEKu0rlNjvRpGEFfb7bk2Zp/oH0hbUMOAHYNPv5uLY2qoaC2guApFGkSxseBg6LiFfb2pjWdHKR5JY44HTH1cBHyy7EmkwKRHd3p0q1RcQfSVO5X18cNeu9HEq2gGoVT5NOVu5Slj4ue1zavlq2TwvthXRd1h7ZBIKSvUjBpqvDTtW00N5LSbd2z28/AZZnP/+/DlW5Ja18vpKGk66zAvhQ9k/G2qRjiyS3rB1zq3t1Iw2PHAJ8ijTGeW72fM9cnj2B1WVp7wRWAD8n/VEeT7q1wpHdbtMA7f0E6dqZk7N6X0j6Jf67Adp7NvAS8BXgg8BU4AnS9TnrdLtdHWjvNqQhiCtI00mnkf7bP7/bbepEeyuUM4PBcR1Os5/vdaSp34cDu+W3brcpq99I4ElgLmldyWnZ983Xy/ItAX5UlnYN8EfgYOAjpGuVft22unX7zRnMW/aHFRW2vlyeCVnahLJj9wBuz76IlwJHd7s9dbZ5avaL+jKwCNirbH+/9gJvJl2dvZjU23mYtCz6Wn9hZDPtzdLHA7/OvsCeAs4BNuh2ezrV3rI8gyLgNNveKn/zAUS325Or446k84arsuBzGrBuWZ6lpMke+bRNgNmkf5iWk/4p7neha7ObF+80M7NC+ByOmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQDjhmZlYIBxwzMyvE/weGMzbfCuSABgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for delta\n", + "plt.bar(-np.array(result_delta['values']), result_delta['probabilities'], width=0.5/len(result_delta['probabilities']))\n", + "plt.plot([exact_delta, exact_delta], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Delta', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/simulation/fixed_income_pricing.ipynb b/qiskit/finance/simulation/fixed_income_pricing.ipynb new file mode 100644 index 000000000..82c826368 --- /dev/null +++ b/qiskit/finance/simulation/fixed_income_pricing.ipynb @@ -0,0 +1,351 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Pricing Fixed-Income Assets*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "\n", + "We seek to price a fixed-income asset knowing the distributions describing the relevant interest rates. The cash flows $c_t$ of the asset and the dates at which they occur are known. The total value $V$ of the asset is thus the expectation value of:\n", + "\n", + "$$V = \\sum_{t=1}^T \\frac{c_t}{(1+r_t)^t}$$\n", + "\n", + "Each cash flow is treated as a zero coupon bond with a corresponding interest rate $r_t$ that depends on its maturity. The user must specify the distribution modelling the uncertainty in each $r_t$ (possibly correlated) as well as the number of qubits he wishes to use to sample each distribution. In this example we expand the value of the asset to first order in the interest rates $r_t$. This corresponds to studying the asset in terms of its duration.\n", + "
\n", + "
\n", + "The approximation of the objective function follows the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms.single_sample.amplitude_estimation.ae import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_models import MultivariateNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import FixedIncomeExpectedValue" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "backend = BasicAer.get_backend('statevector_simulator')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a multivariate normal random distribution in $d$ dimensions into a quantum state.\n", + "The distribution is truncated to a given box $\\otimes_{i=1}^d [low_i, high_i]$ and discretized using $2^{n_i}$ grid points, where $n_i$ denotes the number of qubits used for dimension $i = 1,\\ldots, d$.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n_1}\\ldots\\big|0\\rangle_{n_d} \\mapsto \\big|\\psi\\rangle = \\sum_{i_1=0}^{2^n_-1}\\ldots\\sum_{i_d=0}^{2^n_-1} \\sqrt{p_{i_1,...,i_d}}\\big|i_1\\rangle_{n_1}\\ldots\\big|i_d\\rangle_{n_d},$$\n", + "where $p_{i_1, ..., i_d}$ denote the probabilities corresponding to the truncated and discretized distribution and where $i_j$ is mapped to the right interval $[low_j, high_j]$ using the affine map:\n", + "$$ \\{0, \\ldots, 2^{n_{j}}-1\\} \\ni i_j \\mapsto \\frac{high_j - low_j}{2^{n_j} - 1} * i_j + low_j \\in [low_j, high_j].$$\n", + "\n", + "In addition the the uncertainty model, we can also apply an affine map, e.g. resulting from a principal componant analyis. The interest rates used are then given by:\n", + "$$ \\vec{r} = A * \\vec{x} + b,$$\n", + "where $\\vec{x} \\in \\otimes_{i=1}^d [low_i, high_i]$ follows the given random distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example.\n", + "A = np.eye(2)\n", + "b = np.zeros(2) \n", + "\n", + "# specify the number of qubits that are used to represent the different dimenions of the uncertainty model\n", + "num_qubits = [2, 2]\n", + "\n", + "# specify the lower and upper bounds for the different dimension\n", + "low = [0, 0]\n", + "high = [0.12, 0.24]\n", + "mu = [0.12, 0.24]\n", + "sigma = 0.01*np.eye(2)\n", + "\n", + "# construct corresponding distribution\n", + "u = MultivariateNormalDistribution(num_qubits, low, high, mu, sigma)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4HFWd//H3h8QbthCWqPgjhIRFM3Hc2NSRVbagzxDFMCw6A7/BQZS4DILiAgIuM8gA6g8cjYRNhwHE5YljMCIoyKgYBARDEk0QwiWiRC4EDMkl5Pv7o6qx0+nb3be3qur+vJ6nn9t16pyq05Wb++2z1ClFBGZmZs3YLOsKmJlZcTmImJlZ0xxEzMysaQ4iZmbWNAcRMzNrmoOImZk1LfMgImm6pFskrZG0UtL5ksbUKbOPpCslLUvLLZX0KUmb1yjzOknPS1rV/k9hZtafxmZ5cknbAT8CHgBmArsBF5EEt0/WKHpsmvcC4HfAq4FPpz/fUeU8Ai4FHifjz2xm1kuybomcCmwBHB0RN0fEV4DzgNMlbVOj3AURcUBEfC0ifhIRXwLOBI6WtEuV/O8CXgpc0e4PYGaWN5JmpD00yySdVWX/AZLulrRe0qyKfZMl/VDSYkkPSJpS61xZB5EjgQURsbos7TqSwHLgSIUi4vEqyfekP19SnihpPEmL5QxguKXampnlXDoccBnJ39fpwPGSpldkWwGcBFxb5RDXABdGxN8A+wJ/qnW+rIPINGBJeUJErADWpPtG4++ADcDSivRzgMUR8d1mK2lmViD7Assi4sGIGCb5Yj6zPENEPBQR95H8zXxBGmzGRsTNab5nImJNrZNlHUS2A56skj6U7muIpB2BTwBfL2/VSHoFcBrwoRbraWZWFDsBj5RtD6ZpjXg58KSkb0u6R9KF9SY65WGQudoKkBohfdOM0gBwA/AM8K8Vu78IXBUR9zd4rFOAUwDGjRu3144veVkjxdompK6er+M2q/15xm4m1m9o/wKg0Y3LqO4sXKo2fM0bG2J9k/Udow31M+XAWLKt5+9+98iqiHhxK8fY/6DNY+iJ+p9j0f3PLQLWliXNiYg5ZdvV/gc0+gswFtgfeB1Jl9f1JN1ec2sVyNIQsG2V9AlUb6FsJJ11dQ3wSuBNETFUtu9I4E3AbEmlc2yeFtsWeDYi1pUfL/2HmAMwZfLU+Jvn3jL6T9SC4WmTunq+Tntqt3E195+8/07M/emjbT/v07t0Poqsm9yd4bUpk6oN/43OCWtey7Vb3ttU2cN2XFI/U07M2ubuzM49bTIPt3qMoSc28K3vT2zgXH9YGxF718gyCOxctj0JWNlgNQaBeyLiQQBJ3wXeQI0gknV31hIqxj4k7QxsRcVYyQguIenrmxkRlflfAWxNMgV4KH19FNg+fX9mSzW3vjZuxUDWVeiKmx8b7dCk5cBCYA9JU9OemuOAeaMou52kUqvqzSS3YIwo6yByE3BEOoOq5FjgWeC2WgUlfQx4P/CuiLijSpYbgYMrXlcDq9P3X2+59mYd9tBgSz0k1ociYj0wG1gALAZuiIhF6Y3cR8ELN2wPAscAX5W0KC37PMlM1lsk3U/SNfa1WufLujvrK8AHgG9LugDYFTgXuLhigHwZcFtEnJxunwB8DrgKeFTSG8qOuTwiHo+IQZKmGWXHOQh4LiJ+0qkPZGbZuHH1npl2aeVJRMwH5leknVP2fiFJN1e1sjeT3LjdkExbIukYxiHAGOB7JDcaXgJ8qiLr2DRPyeHpz5OAn1e83tq5Gpv1H3dpWS1Zt0SIiAdI+t1q5ZlSsX0SSQAZ7bnOJWnpWBdMWL6u7uC6mRVb1mMiZmZtc+PqPbOuQt9xEDEzs6Y5iJhZXR4XsZE4iFjPGf9wd+4m79a9Ip7mOzru0uouB5EcGVgyWD+TmVmOOIiYWUPcpWXVOIiYWc9xl1b3OIhYR01Yvq5+JjMrLAcRMzNrmoOImTWsSOMi7tLqDgcRswLwNF/LKwcRsxb0y3NFzEbiIGJmo+IuLSvnIGJmZk1zEDEzs6Y5iFjHZXGvSLfWz+pX7tKyEgcRs4LwDC1rlKQZkpZKWibprCr7D5B0t6T1kmZV2b+NpEclXVrvXA4iZmY9RNIY4DLgSGA6cLyk6RXZVpA8HfbaEQ7zaeC2Rs7nIGJmPa/PurT2BZZFxIMRMQxcB8wszxARD0XEfcCGysKS9gJeCvywkZM5iJhZU4o0LtJndgIeKdseTNPqkrQZcBFwZqMncxDJGT9TpHh8w6F12URJd5W9TqnYryplGp1p8j5gfkQ8UjdnamyjGc3MiuzG1Xsya5u7s67GiIae37LBbrfvr4qIvWtkGAR2LtueBKxssBpvBPaX9D5ga2BA0jMRscngfIlbImbWNHdp5dJCYA9JUyUNAMcB8xopGBHvjIjJETEFOAO4plYAAQcRs0LxNF+rJyLWA7OBBcBi4IaIWCTpfElHAUjaR9IgcAzwVUmLmj2fu7OsKyYsX8dTu43LuhrW5/LepdUuETEfmF+Rdk7Z+4Uk3Vy1jnEVcFW9c7klYmZmTXMQsZ7lpU+6w+Mi/c1BxMz6Sp/deNhxDiJmbeB7RaxfOYiYWcvcpdW/HETMCsbTfFvnLq32cRAxM7OmOYhY12TxcCoz6ywHETNri6KNi7hLqz0cRMzMrGkOImZm1jQHETNrG3dp9R8HkRzyg6nap5tLn3TzhkNP87W8cBAxs77m1khrHETMzKxpDiJm1lZFGxex1jiIWFf5hkPLI3dpNc9BxMzMmuYgYlZQeZ6h5S6t/uEgYmZGb3VpSZohaamkZZLOqrL/AEl3S1ovaVZZ+msl/VzSIkn3STq23rkcRMzayA+nsqxJGgNcBhwJTAeOlzS9ItsK4CTg2or0NcA/RcQrgRnAFyRtW+t8DiJm1hHu0srMvsCyiHgwIoaB64CZ5Rki4qGIuA/YUJH+24j4Xfp+JfAnoGa/qYOImVmqIF1aEyXdVfY6pWL/TsAjZduDadqoSNoXGACW18o3drQHNiua8Q8HT++irKthVtPq9Zs32Hr7/qqI2LtGhmq/7KNa/0fSy4CvAydGxIZaed0Ssa7zvSJmHTUI7Fy2PQlY2WhhSdsA3wc+GRG/qJffQcSswPI8zReKOS5SkC6tWhYCe0iaKmkAOA6Y10jBNP93gGsi4puNlHEQMTPrIRGxHpgNLAAWAzdExCJJ50s6CkDSPpIGgWOAr0palBb/B+AA4CRJ96av19Y6n8dEzMx6TETMB+ZXpJ1T9n4hSTdXZblvAN8YzbncEjGzjnKXVm9zEMkpP5iquHzDofUTBxEzM2uag4iZWRXu0mqMg4hZweV9mi8Uc1zEGuMgYpnwDYdmvcFBxMxsBO7Sqi/zICJpuqRbJK2RtDK9IWZMnTIDki6U9FNJz0oacV0YSTtI+qqkx9K8SyT9U/s/ieXZ+IdHtXSQdYC7tHpTpjcbStoO+BHwAMlSxbsBF5EEt0/WKLol8G7gl8DPgDePcPxtgNuBZ4D3A6tI1tf3HEwzszbI+o71U4EtgKMjYjVwc/qH/1xJn0/TNhERT0raPiJC0mxGCCLAx4FxwN4R8Wya9uM2fwazTYxbMcC6ycNZV8Pa4MbVezJrm7uzrkZuZd2ddSSwoCJYXEcSWA6sVTAiGumf+L/A3LIAYmZmbZR1EJkGLClPiIgVJI9obKkDVdJU4CXAk5LmSxqW9Liki9OVKs16RhGm+YLHRXpR1t1Z2wFPVkkfSve1Ysf05+dJWjczgNcAnwPWAx+pLJA+IewUgIkTJ3L02a9vsQqtic17O9Ztt/UAJ+8/6geuNW3DQHcfTLVhoOazfNpu3Jrq13L7DVtywpqaC7F21TaPFC+Q3MPb2G7Mmho5Pti1uuRN1kEEqj9xSyOkj0aplbUoIv4lfX+rpPHAxyWdGxEb/VZExBxgDsCUyVPj2/92Z4tVaM3wtE0W2ewps07albk/fbRr5+v20w27PSYyZdLjVdNPWPNart3y3q7WpZ7DdlxSP1POeFykuqy7s4aAbaukT6B6C2U0nkh/Vg6k30oy2L5bi8fvuF5fhHHMuu5Ou+32NN9uL8RYlC4tKGa3lu8ZqS7rILKEirEPSTsDW1ExVtKE5UC1r4Klr6Pd7Wsws404kPSGrIPITcARaRdTybHAs8BtrRw4IoaBm9l0+u8hJAP3y1o5vpm1zoGk+LIOIl8B1gHflnRoOrB9LnBx+bRfScskzS0vKOlISbOA16bbs9LXLmXZzgdeJ+lKSYdLOgM4C/hcRHjxpj7kLq38cSAptkyDSEQMkbQMxgDfA84DLgE+VZF1bJqn3H8C3wROTre/mb4OLjv+L4G/J5mV9T2SKRSfBf6tnZ/DzFrjQNJekmZIWpp+AT+ryv4DJN0taX36Zbx834mSfpe+Tqx3rsxnZ0XEA4x8x3kpz5RG0kYou4DkgfWFNLBksKdnaU1Yvo6ndhuXdTU6qtt3rz80+OIRZ2rl2c2PTSvcrK083s2erj14GXAYMAgslDQv/VtbsgI4CTijouz2JF/i9yaZIfurtOzQSOfLujvLzKzQctgi2RdYFhEPpmPD15GsTfiCiHgoIu5j0wlGRwA3R8QTaeC4meQeuxE5iFjfyWJFX4+NNKaI3VoZmCjprrLXKRX7dwIeKdseTNMaMeqymXdnmZmVK2K3VjsMD49tNPivioi9a+yvdldto9+cRl3WLREzyx23SFoyCOxctj0JWNmpsg4iBdDrd65n8ahcd2nlnwNJ0xYCe0iami42exwwr8GyC4DDJW2XPu/pcOpMTHIQMbPcciAZvYhYD8wm+eO/GLghIhalT409CkDSPpIGgWOAr0palJZ9Avg0SSBaCJyfpo3IYyJmXZTFdF+279rpOqJfx0haERHzgfkVaeeUvV9I0lVVrewVwBWNnsstEetb/fLc9XXDxf+u6BZJfo36t0vSq0jmIe8IbE6yWu5vgZ/VuiHFWtPrNx1aZxX1BsRybpHkU0NBRNKuwHuBdwIvJblB5UmSda+2BbYENki6DbgcuD4ivEquNawf7lwvyer56w4k1gl1u7MkXQ4sIlno8HzgdcDmEfHiiJgUEVuTPIb274H7SZ4kuFjSfp2rtll79EuXVknRZ2yBu7byppExkbXAtIg4LCK+EhH3RcTz5RkiYlVE3BQRHwJ2Ac6h8TskzfpOt6f7lnMgsXaqG0QiYnZEPNzoASNiQ0RcHxHXt1Y1M+sUBxJrF8/OKpBev+kwK1l1aWXZGukVDiTZaymISPpbSadJmp3O2jJrWhZ3rvezXmiNgANJ1poOIpLeC9wOHAS8BfilpPe1qV5m1gUOJNaqRmZnbTnCro8Cb4yIYyLiLcBpwCfaWTmzXpeHLi0HEmtFIy2R30p6Z5V0sfEDTfprrqT1lH6b6lvJgcSa1UgQOQE4XdLPJe1Tlv554BeSbpD0P8CXgX/vRCXtr3p9cL0fx0Xy0BoBBxJrTiNTfG8ned7uFcA8SddIellEXEbybPQ7gB+SdG39v47W1sw6yoHERquhgfVIfA14BfBH4H5JHweWRMSX0te9nayoWaf1e5dWiQOJjcaoZmdFxOqIOBN4A/B6YImkWR2pmVkfyUuXVokDiTWqodlZkj4j6U5J90iaA6yNiJnAvwCfknSbpNd0vLZmZqPkQNJZjbRE5pIsrngRcDbJEvA3S1JE/IhkYcZvpmlzOlZTe4EH1zsnyy4tt0Y6x4GkcxoJIkcCZ0TEDRHxP8CJJGMjuwFExPMRcWma9mzHampmXedAYvU0EkSWAP8oafv0xsP3AH8BNvo6HBFDEfHBDtTRrG/krTUCvRVI+oWkGZKWSlom6awq+8dJuj7df6ekKWn6iyRdLel+SYslfazeuRoJIicCewCrgKeBdwPHRMTa0Xwos6LwLK1N9Uog6YfWiKQxwGUkvUjTgeMlTa/IdjIwFBG7A5cAF6TpxwDjIuJVwF7Ae0oBZiSN3CeyNCLeCIwHJkbE7hHxg8Y/knVCr4+LWP44kBTGvsCyiHgwIoaB64CZFXlmAlen728EDpEkkpVHtpI0FtgCGAZW1zpZI7Oz/lHSZhHxl0afoS5pd0n7N5LXrJp+vHO9JI9dWiUOJIWwE/BI2fYgmz4k8IU8EbEeeArYgSSg/AX4A7AC+I+IeKLWyRrpzvow8KCkT9eaxitpB0nvlPQ94B7gZQ0c2yyX3KU1MgeSztCwGLdioO4LmCjprrLXKZWHqnL4yl/okfLsCzwP/B9gKvBhSbvWqvfYeh8sIl4r6Vjg/cAnJD0DLCYZI1kHbJuebDIwBHwDODUiHq13bDOrbtyKAdZNHs66GiN6aPDFTJn0eNbVaNnNj03jsB2XZF2N0VoVEXvX2D8I7Fy2PQlYOUKewbTragLwBMlaiT+IiOeAP0n6X5Jlrx4c6WSNLntyfUTsRzLAfiZwL7Ae2IpkGZSrgRnAyyLiQw4gZlYUeWuRtMFCYA9JUyUNAMcB8yryzCOZNAUwC7g1IoKkC+vNSmxFsjpJzShbtyVSLiKWA8tHU8Y6Z2DJIMPTJmVdDetTvdIagcK2SKqKiPWSZgMLgDHAFRGxSNL5wF0RMY/kJvKvS1pG0gI5Li1+GXAl8BuSLq8rI+K+WucbVRAx66YJy9fx1G7jMjv/+IeDp3ep1nXcHXnv0gIHkryKiPnA/Iq0c8reryWZzltZ7plq6bW09Ix1M7NeGWiHnuza6jgHEbMcy/N033IOJP3LQcSsBk/1bZwDSX9yECk437ne+4rSGgEHkn7kIGK51s93rheVA0l/aSmISHq7pA9IekVF+uzWqmWWH+7SGj0Hkv7RdBCR9O/AB4HdSR5I9aGy3f/casXM7K+K1KXVixxIRtZKS+StwKER8QHgdcBRki5M92U3ud7McqGXWiPgQDKSVoLIZunqj0TEn0mWPZkiaW6Lx7VR6vXB9TyMi+ShS6uIrREHkt7Xyh/7P0jas7SRrlt/LMlKkH/basXMrDc4kPS2hoNI+tjE35Q9J+QkKlaGjIgNEfFuwM8SMeuAIrZGwIGklzUcRNKlgV8CDKTbgxHx2Ah5f9ae6pnlRx66tIrMgaQ3jbY761rg7Z2oiLWm18dFrDc4kPSe0QaR3wNvk3SepOyWV7W+k4fB9bwoapdWiQNJbxntUvCfBbYEzgZOl/QT4G7g18Cv0+eNmJlZnxhtS2Q8ydMN3wFcCKwleZjJDcDvJD3d3uqZ5UtexkXcGrG8GO2TDYPkyYbLge+U0iVtTjKt11N7zawhvfRAq37WlpsCI2JtRNwVEVe143jWHA+uW9G4RVJ8vrPcCiMvg+vu0movB5L2kzRD0lJJyySdVWX/OEnXp/vvlDSlbN+rJf1c0iJJ96c9TSNyEDGzzDmQtI+kMcBlwJHAdOB4SdMrsp0MDEXE7sAlwAVp2bHAN4BTI+KVwEHAc7XO5yBiVmC90hoBB5I22hdYFhEPpstRXQfMrMgzE7g6fX8jcIgkAYcD90XEryFZFzEinq91MgcRsybkpUur1ziQtMVOwCNl24NpWtU86UK6TwE7AC8HQtICSXdL+ki9k432PhHLuYElgwxPm5R1NayLxq0YYN3k4ayr0Tb9OmtrzHDDX04mSrqrbHtORMwp2672KI7KA4+UZyywH7APsAa4RdKvIuKWkSrjIGKFMmH5Op7azYslWF9bFRF719g/COxctj2JisVyy/IMpuMgE4An0vTbImIVgKT5wJ7AiEHE3VlmTXKXVue4W6slC4E9JE2VNEByQ/i8ijzzgBPT97OAW9P7ABcAr5a0ZRpcDgQeqHWyzIOIpOmSbpG0RtJKSeenswvqlZsg6UpJQ5KekvRfknaoyDMg6Zx0Gtuz6U+v+2U9p5cG2EscSJqTjnHMJgkIi4EbImJR+rf1qDTbXGAHScuA04Gz0rJDwMUkgehe4O6I+H6t82XanSVpO+BHJJFuJrAbcBFJcPtkneLXA68A3g1sIJmi9l02fpbJvwOnpse6h6RZ9hlgW5Lnw5tZjvXr+EirImI+ML8i7Zyy92uBY0Yo+w2Sab4NyXpM5FRgC+DoiFgN3CxpG+BcSZ9P0zYh6Y3AEcCBEXF7mvYocKekQyPiR2nWE4D/jIiL0+0fS9oJeCc9HEQ8uN494x8Ont6l2hhl9/XaAHuJA0m+Zd2ddSSwoCJYXEcSWA6sU+6PpQACEBG/JFmq/siyfC8imbpW7kmqz0ywgsjLnevWPe7ayq+sg8g0YEl5QkSsIJlaVmuR/k3KpRZXlLsceI+kN0naOn2073uBS1uqtZl1nQNJPmUdRLYjaRlUGkr3tVruLOBbwB3A08DtwLcj4vymamuWc704wF7OgSR/sh4TgU1vgoGku6ne/MlGyp0JvAt4P3Af8Brg05L+XD7I9EJh6RTgFICJEydy9Nmvr1/7HIvN8/0HZfvtx3Hs8VObKvv8uHz1SG4YyE99Ngxs2Gj7pWPG8eGtd8moNh3w5C6MG1ifdS02clvWFchQ1kFkiGSmVKUJVG9plJer9pVk21I5SRNJZmKdFhFfS/ffLmkYuFTSpRHxp/LC6V2fcwCmTJ4a3/63O0fzWXIn74Prxx4/lev/+/dNl8/bTYd5GWAHNhpg//DWu3DRMw9nWJvO8GB7PmTdnbWEirEPSTsDW1F9zGPEcqnysZJdSQbW763Icw9J8Oyhr2bV+fki/avXu7Ug6dpy91b2sg4iNwFHSBpflnYs8Cy1W4g3ATtK2q+UIGlvksBxU5pU+uq1Z0XZvdKfDzVZZ8uJvM3S8h3s2XAgyVbWQeQrwDrg25IOTcckzgUuLp/2m95pPre0HRE/J7kb8xpJR0t6G/BfwB2le0Qi4o8kNx9eIOmDkg6W9K8kNyB+MyL6oi3s1kj/6ofWSIlbJdnJNIikt9gfAowBvgecR/KAlE9VZB2b5il3HElr5QrgGuBXwNsr8pxIMs33AyR3b54GfJXkgSzWA9waqa2fAgm4VZKFrAfWiYgHgDfXyTOlStqTwP9NXyOVWw2ckb7MuiJPd7EDbDa8Wc/ezV5NKZB44L07su7Osi7o9S6tvLVG8sqtEusEBxGzDshbt1bJuBUDfRVMHEg6z0GkT7g10n15DSTQX60SD7p3loOIWZ9yq8TawUGkj7g10n15bo2U9FsgcTBpLwcRsw4rSiDpt2Bi7eEg0mfcGrFa+i2QOJi0zkHErAuK0Bopcauk+CTNkLQ0Xe3jrCr7x0m6Pt1/p6QpFfsnS3pGUt177BxE+pBbI9koUiABt0qKStIY4DKSp7xOB46XNL0i28nAUETsTrJKyAUV+y/hr+sQ1uQgYmYjcqukkPYFlkXEgxExTPLI8ZkVeWYCV6fvbwQOkSSAdC3CB4FFjZzMQaRPuTWSjaK1Rkr6LZAUPJjsBDxStj2YplXNExHrgaeAHSRtBXyUZB3DhjiImHVZkQNJvwWTnJoo6a6y1ykV+6st3Fb5SzdSnvOASyLimUYrk/kCjJadgSWDuX/6YSsmLF+Xu6cf9gIv5tgZY9ZGoy3oVRGxd439g8DOZduTgJUj5BmUNJbkabJPAK8HZkn6PMmTYjdIWhsRl450MrdEzDJQ1NZIiVslubYQ2EPSVEkDJI/NmFeRZx7JozIAZgG3RmL/iJiSrpz+BeBztQIIOIj0vV4fG8mzogcS8FhJHqVjHLNJHty3GLghIhZJOl/SUWm2uSRjIMuA04FNpgE3yt1Z1tPcpdV5pUDST11ceX9WSUTMJ3kQX3naOWXv1wLH1DnGuY2cyy0Rc2skQ73QGinppy6uorRKusFBxHpeXqf7lvRSIIH+6+Lqdw4iBrg1Yu3Vb62SfuYgYn3BrZFs9Esg6WcOIvYCt0ay1cuBxMGkdzmIWN/Ie2uk1zmQ9CYHEduIWyPZ6tXWSIlbJb3HQcT6ShFaI70eSMCtkl7iIGKbcGvEusGtkt7gIGJ9x62RfHEgKTYHEavKrZHs9VsgcTApJgcR60tFaI30IweS4nEQsRG5NZK9fmqNlLhVUiwOIta3itIa6cdAAm6VFIWDiNXk1ohlya2S/HMQsb7m1kgxOJDkl4OI1eXWSD44kLhVkkcOItb3itIasYQDSb44iFhD3BrJh35vjZS4VVKbpBmSlkpaJmmT56dLGifp+nT/nZKmpOmHSfqVpPvTn2+udy4HETPcGikqB5JNSRoDXAYcCUwHjpc0vSLbycBQROwOXAJckKavAv4+Il4FnAh8vd75HETMCsatkY25VbKJfYFlEfFgRAwD1wEzK/LMBK5O398IHCJJEXFPRKxM0xcBm0saV+tkDiLWsF7v0ipSa8SBZFMOJC/YCXikbHswTauaJyLWA08BO1TkeQdwT0TU/I8xtqWqmpnlSCmQrJs8nHFNOmqipLvKtudExJyybVUpU/mto2YeSa8k6eI6vF5lHERsVAaWDDI8bVLW1eiYCcvX8dRuNVvvuTH+4eDpXar9LbBxKwYKF0i0drjR1v6qiNi7xv5BYOey7UnAyhHyDEoaC0wAngCQNAn4DvBPEbG8XmXcnWVWYO7WGlkfj5UsBPaQNFXSAHAcMK8izzySgXOAWcCtERGStgW+D3wsIv63kZM5iNio9frYiPWWfgsk6RjHbGABsBi4ISIWSTpf0lFptrnADpKWAacDpWnAs4HdgbMl3Zu+XlLrfO7OMqtQpC4tcLdWI/pkrOQFETEfmF+Rdk7Z+7XAMVXKfQb4zGjO5ZaINcWtkXxxt1Zj+q1V0g0OImZVFGm6r41OH4+VdISDiDXNrZF8cWtkdBxI2sNBxGwERWyNOJCMjlslrXMQsZa4NWK9wIGkeQ4iZjW4NdI/3CppjoOItcytkfxxIGmeA8noOIiY1VHE1oi1xq2SxjmIWFu4NZI/bo20zoGkPgcRswYUtTUy/uFgs2EHk1a4VVKbg4i1jVsj+eVWSescSKpzEDFrUFFbIyXjHw4Hkxa5VbIpBxFrK7dG8s+BpHUOJH/lIGI2CkVvjZS4VdI6t0oSDiLWdm6NFIeDSev6PZA4iJiNUq+0Rso5kFizHESsI9waKR63SqwZmQcRSdMl3SJpjaSV6SMcxzRQboKkKyUNSXpK0n9J2qFKvpmS7pe0VtIDko77q6QrAAAKtUlEQVTtzCexftKLrZESBxIbjUyDiKTtgB8BAcwEzgc+DJzXQPHrgYOAdwMnAfsA3604/n7At4AfA0eSPID+vyUd3pYPYDW5NVJcbpVYo7JuiZwKbAEcHRE3R8RXSALI6ZK2GamQpDcCRwAnRsS3IuI7wLuA/SQdWpb1bOD2iPhARPw4Is4EfgCcs+lRzUanl1sjJQ4mxSRphqSlkpZJOqvK/nGSrk/33ylpStm+j6XpSyUdUe9cWQeRI4EFEbG6LO06ksByYJ1yf4yI20sJEfFL4PfpPiSNAw4Gbqgoex3wRkkTWq++1ePWSG9wICmOdDjgMpK/hdOB4yVNr8h2MjAUEbsDlwAXpGWnA8cBrwRmAF+uN7yQdRCZBiwpT4iIFcCadF/D5VKLy8rtBryoSr7FJJ/75U3U12wj/dAaKXGrpDD2BZZFxIMRMUzyxXlmRZ6ZwNXp+xuBQyQpTb8uItZFxO+BZenxRjS2rVUfve2AJ6ukD6X7mim3a1kequQbqtj/AkmnAKekm+se5su/qVEHa9Rj1ZNv/QkTgVVdrUsn/CTrCtT2q7k9cp3z7RWtHmD1+scX/OCxL09sIOvmku4q254TEXPKtncCHinbHgReX3GMF/JExHpJTwE7pOm/qCi7U63KZB1EIBlUr6QR0pspV7mtkcqn/xBzACTdFRF716mDtcDXuDt8nTuv4o96UyJiRjvqwl//xm10+AbzNFJ2I1l3Zw0B21ZJn0D1lka9ctuWlRsqS6vMQ53jm5kV1SCwc9n2JGDlSHkkjSX5m/tEg2U3knUQWULF2IeknYGtqD7mMWK5VPlYyXLguSr5pgEbgN82UV8zs7xbCOwhaaqkAZKB8nkVeeYBJ6bvZwG3RkSk6cels7emAnsAv6x1sqyDyE3AEZLGl6UdCzwL3Fan3I7pfSAASNqbZDzkJoCIWEdyf8gxFWWPBX4eEU/VqducOvutdb7G3eHr3Hm5ucYRsR6YDSwgmUh0Q0QsSm/kPirNNhfYQdIy4HTgrLTsIpIZrQ+Q3A5xWkQ8X+t8SoJPNtKbDR8AfkMyxWxX4GLgCxHxybJ8y4DbIuLksrQfkMywOoOkZXEB8KeI2L8sz34kw56XktyI+JY0/4yI+GFHP5yZWR/ItCUSEUPAIcAY4HskNxpeAnyqIuvYNE+540haK1cA1wC/At5ecfw7SJpqh5JE5aOAExxAzMzaI9OWiJmZFVvWYyId5cUdu6PT17ks/9skRTumUxZNJ6+xpAFJ56RLXTyb/jwvXfWhbzRzjdNrd6Gkn6bXbpNv5ZLGSPpomufP6euHkvbp3KfpoojoyRfJzYQrSRZ4PIxkna6/AJ9poOwPSJZQeQdJF9lvgZ9W5NkPWA98iWR5lQtJxmYOz/qz99J1Lsu7OfAgya2Ld2X9uXvpGpOMQ64hGWA9mGQR1GeBL2b92fN+jUluGRgi6S6/JfmTukmerdM8F5OMy5YWg10H7JX1Z2/52mVdgQ7+Unws/YfbpiztI+l/lm1qlHsjyc01B5Sl7ZumHVqWtoBkWlx52fnAHVl/9l66zmX7zgZ+ClzVh0Gk07/LjwEXVZS9mGR9usw/f56vcZqvNCwwe4QgMgbYriJtAHgIuDLrz97qq5e7s7y4Y3d07DqXSJpM8h/6g+2qdMF0+hq/CKic8v4k1e9e7lXNXuMkatTe/3wkk4jK04aBRcBLmqtufvRyEPHijt3RyetcchHJXPe7W6hnkXX6Gl8OvEfSmyRtLWl/4L0kU+P7RbPXuCnpF9G9SG5xKLQ8rJ3VKbla3LGHdfI6I+lgkmfH9FNgrtTRa0xyo9kWwB1laV+OiPNHWc8ia/YaN+sT6XEv78Cxu6qXgwjkaHHHHteR65yu6fMlksHNEdYC7hud/F0+k+Shbu8H7gNeA3xa0p8jop8e4NbsNR4VSW8lCSIfjoil7Tx2Fno5iLSyuOOLq6R7ccfqOnmd/yXdvlpS6RwDwJh0+y8R8VxTtS6Wjl1jSROBz5Asb/G1dP/tkoaBSyVdGhF/arrmxdHsNR6VdFrv9cBXI+IL7Tpulnp5TMSLO3ZHJ6/zK0hWEX2M5D/5EHA88Nr0fb/cl9PJa7wryfjevRV57iH5krlLE/UtomavccMkvZxkau8tJK2+ntDLQSTPizv2ko5dZ5KB3YMrXgtIgvTBwM1t+gx518lr/HD6c8+KsnulPx9qss5F0+w1boikl5H87i4Hjo86ixoWStZzjDv1Ihm0+gPJH5pDSZ5Y+AwVNw+RPP5xbkXaD0hubDsaeBuwlJFvNvwCcBDwefr3ZsOOXecq57uK/rtPpNO/y98h6bL5IElw/leSKb83ZP3ZC3KNjyRZo+9ykvGTWelrl3T/FiQtvSeBtwJvKHu9LuvP3vK1y7oCHf7FmA7cSvJt4g/Ap4ExFXkeAq6qSNsWuDL9R18NXAtMrHL8t5GsQLyOpMl7XNafuRevc0WZvgsinb7GwDbAf5B8S342/UP5eWB81p+7INf4oTR4VL5OSvdPGWF/AA9l/blbfXkBRjMza1ovj4mYmVmHOYiYmVnTHETMzKxpDiJmZtY0BxEzM2uag4iZmTXNQcTMzJrmIGLWICV+LenEdHuapDvTZ5dfJ2nrivwHSHq0Mj3dd5mkud2qu1mnOIiYNe4fSJbHuDbdvork7u5/ILnb+eOljJI2I1kS52MR8UyVY10IvFPS7p2ssFmnOYhY35E00GTRDwBfj4jn0tbF64EPRcQC4LPAYWV5TyZZ6fnr1Q4UEQ+RPATqvU3WxSwXHESsp0naTNJfJH1I0hclPc6my543cpzdgb8DbkyTSoHo2fTnmlKapG1I1l36YNReV+hbJK0R/z+0wvIvr/W6XYEtgY+QPDfjBJr79n8I8Bfg1wAR8QTwe+D9krYnWfX1rjTv2cCPIuIXdY75M+ClwKuaqI9ZLvTykw3NAF6d/rwiIj7ZwnH2AhZHxIaytNOAbwKfA34HnJa2WE4uO28ti4DngX1Jg5NZ0bglYr3uVSRdTZ8tT5T0n+nMqUaXsd4RWFWeEBE3AS8heQLj30TECuBi4JKIGJR0mqQV6et9lQeMiPUkS7TvOOpPZZYTbolYr3sV8JOIeLYi/b+Bc0kevduIzUmC0UYiYg3p45AlHQq8BjhW0mtIxkX+Ls36c0l3RMR9FYdYlx7brJDcErFe92rg7srEiLg9Iv44iuM8QfKAp6okjSWZ0vuRNGAdBNwaEUsiYgnJc7UPrFJ02/TYZoXkIGI9S9IWwG60Z7xhKTC1xv5TgaGIuL4sbcuy91sBqqjfi9M8v21D/cwy4SBiveyVJL/j7Qgi/wtMTv/wb0TSdsCnSJ5RXnI7cIikf5b0z8Cbgdsqiu5N8ojUn7WhfmaZ8JiI9bLSoPryNhzrJyTdTjPY9AbC84B5EfFCt1lE3CPpI/x1QP+MiKgMZjOA2yLiz22on1km/Ix162uSIiJUPydI+iKwe0S8tQ3nHQM8DJwVEd9o9XhmWXF3lvUlSZdLGkzfD0q6vIFiFwIHSXp5G6pwDMnd7te14VhmmXFLxGwUJB0H/CEiKsc3Rnuc44FHI+L29tTMLBsOImZm1jR3Z5mZWdMcRMzMrGkOImZm1jQHETMza5qDiJmZNc1BxMzMmuYgYmZmTXMQMTOzpv1/ZzufzULIqxUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot contour of probability density function\n", + "x = np.linspace(low[0], high[0], 2**num_qubits[0])\n", + "y = np.linspace(low[1], high[1], 2**num_qubits[1])\n", + "z = u.probabilities.reshape(2**num_qubits[0], 2**num_qubits[1])\n", + "plt.contourf(x, y, z)\n", + "plt.xticks(x, size=15)\n", + "plt.yticks(y, size=15)\n", + "plt.grid()\n", + "plt.xlabel('$r_1$ (%)', size=15)\n", + "plt.ylabel('$r_2$ (%)', size=15)\n", + "plt.colorbar()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cash flow, payoff function, and exact expected value\n", + "\n", + "In the following we define the cash flow per period, the resulting payoff function and evaluate the exact expected value.\n", + "\n", + "For the payoff function we first use a first order approximation and then apply the same approximation technique as for the linear part of the payoff function of the [European Call Option](european_call_option_pricing.ipynb)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEUCAYAAAAfooCMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYXVV5x/Hvz8gl3JJQzIiIBkGbkoZ6GSwgyiA3gbZcBILCU4NoxEdJ1UDBIhDxCnJrKVQilBQFogIFIUQkyASjgCZcjA0BQwlIQC7tEMy1JHn7x9pDdjZn5pwzc84+M5Pf53nOc7LXXmuf9xw2ebP2WnsvRQRmZmbN9oZWB2BmZpsGJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVoo3tjqAgWSHHXaIMWPGtDqMQW/FihVsvfXWrQ7DrFc+Txtj/vz5L0XEm2qp64STM2bMGObNm9fqMAa9zs5OOjo6Wh2GWa98njaGpKdqretLamZmVgonHDMzK4UTjpmZlaLUhCPpWEk/kbRU0nJJ8yV9rIZ2W0i6SNILklZImilpTIV6H5D0gKRVkp6UNLkZ38PMzOpXdg/nS8By4IvA3wH3ANdLOrVKu38BJgKnAccAOwB3Sdqyu4Kk3YA7gSeBw4ErgYslfarB38HMzPqg7FlqfxsRL+W2fy7pLaREdFmlBpLeCpwMfDIirs3KfktKLCcCV2VVTweeBU6MiLXZsd8GnCvp6vBKc2ZmLVVqD6eQbLo9BIzupdnB2fvNueMsBeYCh+bqHQrcnCWbbjOAtwJ/2aeAzcysYQbCpIF9gIW97B8LPBMRywvlj2b7kLQ1sDOwqEKd7mOYmVkLtfTGT0kHAEcAn+yl2ijg5QrlXdk+gJHZe7FeV+4YZmbWQi1LONkss+uBWyNiepXqlcZfVKG8p3GaHsdvJE0CJgG0tbXR2dlZJRSrZvny5f4dB6AFS5e1OoQBpW04XHbdra0OY0AYv9OIUj6nJQlH0vbALOBp0sB/b7rY0IPJG8mGHs3LubK8UYX9rxMR04BpAO3t7eFHXfSfHxkyME08c2arQxhQpoxfy0UL/HQvgCUndJTyOaWP4UjaCrgd2Bw4PCJWVGmyCNg5G6fJG5vtIzvGH3j9WE33dnFsx8zMSlb2jZ9vBH4MvBM4NCJeqKHZz7L3o3LHeQvwQVIvqdss4ChJw3JlE0iJ6Hf9idvMzPqv7P7kFcBhwD8A20vaK7fvoYhYI+lugIg4IHt/RtLVwKWSBLwITAWeAn6Qa/8d4ATg+5K+B+wJfAb4rO/BMTNrvbITTvc9Nf9cYd8uwBJgWIV9k4EVwMXAVsAc4GMRsbq7QkQslvSRrM4s4I/AlIi4qsLxzMysZKUmnIgYU0Odjgpla0hPI/hSlbZzgff3MTwzM2uigXDjp5mZbQKccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVohUrfu4m6UpJj0haJ6mzhjZTJUUPry/n6k3voU5xJVAzMytZKxb0HkdahO1+0jLTtbgK+Gmh7EjgDDZe9RPSctInFcqW1BeimZk1WisSzm0RcSuApBuBHao1iIhngGfyZZLOBhZFxMOF6isi4v5GBWtmZo1R+iW1iFjf32NI2h44CLih/xGZmVkZBuukgWOAzYAZFfbtLukVSWskzZW0X8mxmZlZBYM14RwPPBgRjxfKHwKmAH8LnAAMA+6S5GWnzcxaTBHRug/PxnAioqOONjuSxnPOiIgLq9QdDiwEHomII3uoMwmYBNDW1va+GTMqdZqsHsuXL2ebbbZpdRhWsGDpslaHMKC0DYfnV7U6ioFh/E4j+tx2//33nx8R7bXUbcWkgf46DhDww2oVI2KVpDtIPZ6e6kwDpgG0t7dHR0dHg8LcdHV2duLfceCZeObMVocwoEwZv5aLFgzGvwIbb8kJHaV8zmC8pHY8MDci/lBHm9Z148zMDBhkCUfSGGAvapydll1SOxSY37yozMysFqX3JyVtRbrxE2AnYDtJx2Tbd0TESkmLgTkRcXKh+fHAWuDGCscdAdwO/ABYTLq/54vZZxzX8C9iZmZ1acUFzNHAjwtl3du7kJ4K8EbSDLOi44G7I+LFCvvWAC8CX8k+YzVwH7BfRMzrf9hmZtYfpSeciFhCGvTvrc6YHsrf3Uub1cDR/YnNzMyaZ1CN4ZiZ2eDlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFKUnHEm7SbpS0iOS1knqrKHNGElR4TWjQt0jJC2QtFrSQkkTmvJFzMysLq1YD2ccaQG2+4HN62x7GvDL3PZL+Z2S9gVuAq4AJmefc4Okroj4WZ8jNjOzfmtFwrktIm4FkHQjaWXOWj0WEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCpV9Si4j1zTiupC2A/YEfFXbNAPbOlqA2M7MWGWyTBq7Jxn2ek3SxpOG5fbsCmwGLCm0eJX3Pd5UVpJmZvV4rLqn1xRrgctJlsVeADuAMUpI5IqszKnt/udC2q7B/I5ImAZMA2tra6OzsbFTMm6zly5f7dxyApoxf2+oQBpS24f5NupX1/+ugSDgR8Rzw+VxRp6TngSskvTsiHs5XLzRXD+Xdx54GTANob2+Pjo6OxgS9Cevs7MS/48Az8cyZrQ5hQJkyfi0XLRgUfwU23ZITOkr5nMF2SS3vxuz9vdl7d09mZKFe93ax52NmZiWqOb1LGgl8EHg/8GZgS+B/gceBXxZ6GWWIwvsTwKvAWGBOrt5YYD0pTjMza5GqCUfSh4BTgb8h3TfzNOn+lzXAe4CTgK0lPQlcDVweEa80LeINjsne5wNExBpJ9wDHAlfm6k0A7ouIZSXEZGZmPeg14UiaTbpkdRNwFPCrYjKRJODPgUNJf9mfJukTEXF7D8fcinRDJsBOwHaSupPHHRGxUtJiYE5EnJy1mQpsS7rp8xXgQ8DpwM0R8dvc4b9GGt+5FLgl+5zDgI9U+yHMzKy5qvVwfgocGRHLe6oQEUGairwIuETS+4HteznmaODHhbLu7V2AJVlcw3L7F5GeMvApYDipl/Ud4BuFWOZmyevrwGeBJ4GP+ykDZmat12vCiYgL6z1gRPy6yv4lbJg51lOdMYXtGaQbOGv5/FtIvRszMxtABvMsNTMzG0RqSjiS2iS9o1C2j6S7JD0o6XxJWzYnRDMzGwpq7eH8gDSGAoCkNwN3kAby55HGSy5oeHRmZjZk1Jpw2kkJpttxwDLggxExCfgMcHSDYzMzsyGk2rToe7I/jgCmSvoSacD/ncAWwJ1pVjRbATtK+nlWf3pEXNuckM3MbDCqNkttfwBJLwNTI+L27L6bPwCnR8T0bP/upHt0PtzkeM3MbJCq9dE29wEXStoG2I/0fLL8JbZxwH83ODYzMxtCak04k4GbgeuBlcDnIuKF3P7PAz9pcGxmZjaE1JRwIuL3wHhJo4BXImJdocrfAy+8vqWZmVlS12IQEdHVQ/lTjQnHzMyGql6nRUv6YL0HlDRC0vi+h2RmZkNRtftwfiTpl5I+mV1O65GkD0i6DHgK2LthEZqZ2ZBQ7ZLaO0gTBs4FrpT0OPA7NqyHM5L0hOf3kJ7ifAdwYETMa1rEZmY2KPXaw4mIVRFxPjCGtN7NraQksy9wOPAXpB7N6cDOEXFUtWQjaTdJV0p6RNI6SZ3VgpS0p6RrJC2WtFLSY5LOLT6/TdJUSVHh5fVwzMxarNZZagHMzl79NY60KNr9pBVEazEB2BU4H/g9sAdpsbU9gI8W6i7j9QuuPdrXYM3MrDHqmqXWILdFxK0Akm4EdqihzfkR8WJuu1PSatJlvrcXZsmtjYj7GxivmZk1QOnr4UTE+j60ebFC8UPZ++j+RWRmZmUYzAuw7QOsBx4rlI+U9JKkVyU9JMlPsTYzGwBacUmt37L1eM4Cvh8Rr+R2LQb+EXgY2Ia0bMJNkj4aETf3cKxJwCSAtrY2Ojs7mxn6JmH58uX+HQegKePXtjqEAaVtuH+TbmX9/6o0H6A1usdwIqKjjjabkyYvvBV4X09PP8jqCvgVMDwi3l3t2O3t7TFvnmd091dnZycdHR2tDsMKxpw5s9UhDChTxq/logWD8t/cDbfk24f3ua2k+RHRXkvdmi+pSTpZ0jv7HFUDZAnkWrKZbr0lG3htdt3NwB6ShpUQopmZ9aCe9H4hsJ2kF4G5wC+y18N9mQjQR5cARwAHRcSiOtq1rhtnZmZAfZMGtictNf1N0l/gZwLzgC5JP5V0VhPie42kLwOnAidGxNwa2wg4CnikwhOuzcysRDX3cLLLUw9lr38BkHQQafD+YOAg4BvVjiNpK9KNnwA7kXpNx2Tbd0TESkmLgTkRcXLW5uOkRDcdWCppr9whn+ieNi1pDnATsAjYGvg0sBdwZK3f08zMmqOuETNJfwF8MPfaCfgv4HLS5bVajAZ+XCjr3t4FWJLFlR9zOTh7n5i98k4iJSJIs9S+AOxImjL9IHB4RMyqMTYzM2uSmhOOpBeA7YD5wL3A54C5EbGsng+MiCWAqtQZU9ieyOsTTaV2J9cTi5mZlaeeMZy1pF7H5tlrMzbuhZiZmfWo5oQTEW8hPR36CtIEgguBFyT9TtIVkiY0KUYzMxsC6nq0TUQsjohrIuKkiNiNtGTBS8ApwPXNCNDMzIaGesZwhgHvZcOEgX1JPZ1lwExqnzRgZmaboHpmqS0jrer5R9KNn1NJSWZBtPL5OGZmNijUk3BOBe6NiCeaFYyZmQ1d9dz4eU1+W9JmEfFq40MyM7OhqK5JA5L2kTRL0p+A1ZL+JOkOSXs3KT4zMxsi6pk0cBBpcsBjwHeA54E24BjSks+HR8TspkRpZmaDXj1jON8AfgIcW5gkcJ6km0jPOnPCMTOziuq5pDYe+F4PM9KmZfvNzMwqqifhvAzs2sO+3bL9ZmZmFdWTcH4MfEvSiZK2BJC0paQTSZfbftSMAM3MbGioJ+GcAdwO/AewQtIyYEW2fXu2vypJu0m6UtIjktZJ6qyx3QhJ10jqkrRM0nWS/qxCvSMkLZC0WtJCP+PNzGxgqOc+nFXACZK+BuxJWnPmOeA3dS73PI60ANv9pKdO1+qHwJ8DnyKtdXM+cAvpMTsASNqXtADbFcDk7HNukNQVET+r47PMzKzB6lqADSBLLvUkmKLbIuJWAEk3AjtUa5Dd53MIsF9E3JuVLQUekHRgbjr22aSnIUzOtu+RNA44B3DCMTNroV4TjqTd6zlYRCysoc76eo6ZORR4vjvZZMf5taQns32zJW0B7E/q2eTNAK6RNKLexeLMzKxxqvVwfgfU8mBOZfWatSDbWCr3qh7N9kGaQbdZhXqPksaq3gX8pknxmZlZFdUSzv6lRFHdKCpPu+4C3pGrQ4V6XYX9G5E0CZgE0NbWRmdnZ58CXLDUnadubcPhsutubXUYA8b4nUa0OgQApoxf2+oQBpS24f5NuvX17716VUs4nwC+FhFPSvoQ8GBELC8hrkoq9bRUoby4rV7aExHTSDeu0t7eHh0dHX0KbuKZM/vUbiiaMn4tFy2oe3hwyFpyQkerQwB8jhb5PN2grHO02rToTwBvyv58D1DXmE4DdQEjK5SPZEOPpitXVqwDvjHVzKylqiWc54AOSduQegpbStqqp1cT41zEhrGavPzYzhPAqxXqjSVNo368adGZmVlV1RLONODbpNU+g9TL+VMvr2aZBbw5u88GAEntpPGbWQARsSaL79hC2wnAfZ6hZmbWWr1ewIyI8yTNBP4CuBb4Oqkn0WdZT+iwbHMnYDtJx2Tbd0TESkmLgTkRcXIWx32S7gSulXQaG278nFtYEuFrpKUSLiXdFHpY9vpIf2I2M7P+qzpiFhHzgfmSDgCuiYgn+/mZo0nPZcvr3t4FWJLFVZxifTxwCfDvpJ7Z7RTuuYmIuVny+jrwWeBJ4ON+yoCZWevV82ibkxrxgRGxhA0zx3qqM6ZC2cvASdmrt7a3kHo3ZmY2gNQ1JzAbNzkaeCuwZXF/RBzXoLjMzGyIqWeJ6c8ClwMvAb8H/q9ZQZmZ2dBTTw/nNNL4ySkR4dtzzcysLvWshzMauMHJxszM+qKehDML+OtmBWJmZkNbPcsTXA5Mk7QZcBcVHhVTy/IEZma2aap3eQIB55IWNKNQ3szlCczMbJAbLMsTmJnZIFft0TZzygrEzMyGtponDUgaLWmX3LYkTZJ0qaS/bU54ZmY2VNQzS2068MXc9leBK0gPxvxPSRMbF5aZmQ019SSc9wI/B5D0BtLDMf8pIsYC3wC+0PjwzMxsqKgn4YwA/if78/uA7YHrsu2fA7vVchBJu0u6W9JKSc9KOk9Sr7PbJE2VFD28vpyrN72HOpUWbzMzsxLV82ibZ0hLTP8COBxYFBFLs30jgNXVDiBpFDAbWAgcAewKXERKfF/ppelVwE8LZUcCZ5AtwJaziNc/UXpJtdjMzKy56kk4/w5cIOlAUsL5cm7fXsCjNRzjFGA4cHREvALcJWk7YKqkC7Ky14mIZ0gJ7zWSziYlvYcL1VdExP01fSMzMytNzZfUIuJbwKnAH7P3f8nt3p7UC6nmUODOQmKZQUpC+9Uai6TtgYOAG2ptY2ZmrVXXejgRcS1pqeli+Sk1HmIs2cSDXNunJa3M9t1W43GOATYjJaui3SW9AmwB/AY4y/cTmZm1Xl0JB0DSG4G3UXkBtmrPUhtFhWewAV3ZvlodDzwYEY8Xyh8CHiCNEb0JmEK6bLdvRPy6juObmVmD1bMA22aky2ifIPUeKqnlWWpRoUw9lFeKY0fS5bczXnfgiH8u1J1JSj7/RJpkUOl4k4BJAG1tbXR2dtYSxutMGe9VG7q1DffvkdfXc6rR/N9kYz5PNyjrHK2nh3MO8DfAyaTp0J8DVgAnkmabnVrDMbqAkRXKR1C551PJcaQE9cNqFSNilaQ7gB6fhBAR04BpAO3t7dHR0VFjGBubeObMPrUbiqaMX8tFC+ruPA9ZS07oaHUIgM/RIp+nG5R1jtZzH85xwFTgR9n2ryPi2og4GJhLmuZczSLSWM1rJO0MbJ3tq8XxwNyI+EON9aHG3pOZmTVPPQlnZ+DxiFhHuucmP+ZyHfDRGo4xCzhE0ra5sgnAKqDqwL6kMaQp2DXNTpM0nDQzbn4t9c3MrHnqSTjPseFy2JPAh3L7dq3xGN8F1gA3SzowGz+ZClycnyotabGkqyu0Px5YC9xY3CFphKRfSPqMpAMkTQDuAXYCvlljfGZm1iT1XMDsBD5Imrr8PeBCSbuREsgEauh1RESXpAOAf82O8zJwCSnpFOOqNAHheODuiHixwr41wIukJxaMJvXC7gP2i4h51WIzM7PmqifhnAXsABARl0oS6X6Y4cBlwHm1HCSbOv3hKnXG9FD+7l7arAaOriUGMzMrX80JJyL+SHrKQPf2JaTeiZmZWVX1LMD2V5IO62HfYZL2aFxYZmY21NQzaeAS4K972Lcn7u2YmVkv6l2A7Zc97LsPeE//wzEzs6GqnoQzjHSDZiVbA5v3PxwzMxuq6kk4vyF75lgFkwBPPTYzsx7VMy16KjBb0gPAf5BmrO0I/D3wV6T1aczMzCqqZ1r0vZIOBr5Fuu9GwHrScgAHRcQvmhOimZkNBfUuwNYJ7C1pK9Kz1LoiYmUzAjMzs6GlT8/mzpKME42ZmdWsnkkDZmZmfeaEY2ZmpXDCMTOzUpSecCTtLuluSSslPSvpPEmVliLItxkjKSq8ZlSoe4SkBZJWS1qYrYtjZmYtVuqC3pJGAbOBhaQlqXcFLiIlvq/UcIjT2PjxOi8Vjr8vcBNwBTAZOAy4QVJXRPys31/AzMz6rNSEA5xCWj/n6GyFz7skbQdMlXRBftXPHjwWEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCZV9SOxS4s5BYZpCS0H79ObCkLYD9gR8Vds0g3Ts0oj/HNzOz/ik74YwFFuULIuJp0j09Y2tof42kdZKek3SxpOG5fbsCmxWPDzxK+p7v6nvYZmbWX2VfUhsFvFyhvCvb15M1wOWky2KvAB3AGaQkc0Tu2FQ4fldhv5mZtUDZCQcgKpSph/LUIOI54PO5ok5JzwNXSHp3RDzcy/HVy+ciaRLZU7Db2tro7OzsPfoeTBm/tk/thqK24f498vp6TjWa/5tszOfpBmWdo2UnnC5gZIXyEVTu+fTmRtJstPcCD7OhJ1M8fvd2xeNHxDRgGkB7e3t0dHTUGUYy8cyZfWo3FE0Zv5aLFrTi3zID05ITOlodAuBztMjn6QZlnaNlj+EsojBWI2ln0gJuxbGXaqLw/gTwavH42fZ64PE6j29mZg1UdsKZBRwiadtc2QRgFTCnzmMdk73PB4iINcA9wLGFehOA+yJiWf3hmplZo5Tdn/wu6YbMmyWdD7yDtLDbxfmp0pIWA3Mi4uRseyqwLemmz1eADwGnAzdHxG9zx/8aaXznUuAW0o2fhwEfae7XMjOzakrt4UREF3AAMAy4DfgqcAlwbqHqG7M63RaR7tO5BrgD+Djwnew9f/y5pJ7PgcCdwN8BH/dTBszMWq/0EbOIWAh8uEqdMYXtGaQbOGs5/i2k3o2ZmQ0gflq0mZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSlKTziSdpd0t6SVkp6VdJ6kYVXa7CnpGkmLs3aPSTpX0paFelMlRYWX18MxM2uxUpcnkDQKmA0sBI4AdgUuIiW+r/TSdEJW93zg98AepMXW9gA+Wqi7jNcvuPZof2M3M7P+KXs9nFOA4cDR2Qqfd0naDpgq6YL8qp8F50fEi7ntTkmrgSslvT0insrtWxsR9zcnfDMz66uyL6kdCtxZSCwzSElov54aFZJNt4ey99GNC8/MzJql7IQzlrRc9Gsi4mlgZbavHvsA64HHCuUjJb0k6VVJD0k6us/RmplZw5SdcEYBL1co78r21UTSm4GzgO8XekuLgX8EjiON7TwL3OSkY2bWeoqI8j5MehU4LSL+uVC+FJgeEWfVcIzNSRMP3gq8LyK6eqkr4FfA8Ih4dw91JgGTANra2t43Y8aMWr/ORhYsXdandkNR23B4flWroxg4xu80otUhAD5Hi3yebtCfc3T//fefHxHttdQte9JAFzCyQvkIKvd8NpIlkGuBccAHeks2ABERkm4Gzpc0LCLWVagzDZgG0N7eHh0dHVW/RCUTz5zZp3ZD0ZTxa7loQdmn1sC15ISOVocA+Bwt8nm6QVnnaNm/9iIKYzWSdga2pjC204NLSNOpD4qIWup3K68bZ2ZmFZU9hjMLOETStrmyCcAqYE5vDSV9GTgVODEi5tbyYVmP6CjgkUq9GzMzK0/ZPZzvApOBmyWdD7wDmApcnB/8l7QYmBMRJ2fbHwe+CUwHlkraK3fMJ7qnTUuaA9xE6i1tDXwa2As4srlfy8zMqik14UREl6QDgH8FbiON21xCSjrFuPKPuzk4e5+YvfJOIiUiSLPUvgDsSJoy/SBweETMakT8ZmbWd6WPmEXEQuDDVeqMKWxP5PWJplK7k/sRmpmZNZGfFm1mZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWitITjqTdJd0taaWkZyWdJ2lYDe1GSLpGUpekZZKuk/RnFeodIWmBpNWSFkqa0JxvYmZm9Sg14UgaBcwmLfl8BHAeMAX4ag3Nfwh0AJ8iLVWwJ3BL4fj7khZguwc4FJgJ3CDpYMzMrKXKXg/nFGA4cHS2wuddkrYDpkq6IL/qZ56kvYFDgP0i4t6sbCnwgKQDI2J2VvVs4N6ImJxt3yNpHHAO8LPmfS0zM6um7EtqhwJ3FhLLDFIS2q9Ku+e7kw1ARPwaeDLbh6QtgP2BHxXazgD2ljSi/+GbmVlflZ1wxgKL8gUR8TSwMttXc7vMo7l2uwKbVaj3KOl7vqsP8ZqZWYOUnXBGAS9XKO/K9vWnXfd7sV5XYb+ZmbVA2WM4kCYMFKmH8r60K26rl/ZImgRMyjaXS3qsShxWxWTYAXip1XEMFDq/1RFYJT5PN+jnOfr2WiuWnXC6gJEVykdQuQeTb/emCuUjc+26cmXFOvR0/IiYBkzr5bOtTpLmRUR7q+Mw643P0/KVfUltEYWxGkk7A1tTeYymx3aZ/NjOE8CrFeqNBdYDj/chXjMza5CyE84s4BBJ2+bKJgCrgDlV2r05u88GAEntwDuyfUTEGtL9N8cW2k4A7ouIZf0P38zM+qrshPNdYA1ws6QDs/GTqcDF+anSkhZLurp7OyLuA+4ErpV0tKQjgeuAubl7cAC+BnRIulRSh6QLgMNIN5haeXyJ0gYDn6clU0S1sfoGf6C0O/CvwN6kcZWrgKkRsS5XZwnQGRETc2UjgUuAo0iJ8nZgckRsNOiXJaOvA+8k3aczNSJmNPErmZlZDUpPOGZmtmny06KtISTtJulKSY9IWieps9UxmeVJOlbSTyQtlbRc0nxJH2t1XJuSVtyHY0PTONJ42f3A5i2OxaySL5Eus3+RdP/NYcD1knaIiMtaGtkmwpfUrCEkvSEi1md/vhHYISI6WhuV2QZZYimO+V4P7B0Ru7QorE2KL6lZQ3QnG7OBqphsMg8Bo8uOZVPlhGNmm7J9gIWtDmJT4TEcM9skSTqAtBDkJ1sdy6bCPRwz2+RIGgNcD9waEdNbGswmxAnHzDYpkrYnPRLraeDEFoezSXHCMbNNhqStSE8p2Rw4PCJWtDikTYrHcMxskyDpjcCPSY+9+kBEvNDikDY5TjjWENm/HA/LNncCtpN0TLZ9R0SsbE1kZq+5gnSO/gOwvaS9cvseyp44b03kGz+tIbJB2Cd72L1LRCwpLRizCrKHAve0OqXP0RI44ZiZWSm4FeB6AAADsklEQVQ8acDMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHLMBStJUSZXWcOnLsS7M7kMxaxknHLOB6yrgkFYHYdYofrSN2QAjaTNgfUQ8AzzT6njMGsU9HLM+kjRd0jxJR0paJGm1pLmSds/VeYOkMyUtlrRG0uOSPlE4TqekGyVNkvQEsBp4S6VLapJ2kXSLpFck/UnSbZJ2K9QZKel6SSskPSfprAqxj5R0laRns7iflvS9xv5CZhtzD8esf94OXAycDawCvgrcKemdEbEauAz4BHAe8CBwEPDvkv4nIm7PHecDwK7AGcBKYFnxgyRtAdwNvAp8Glibfd4cSeMj4n+zqtcAHcAXgD8Cp2XHXps73MWk5ZW/mNXZGfhQf34Is2qccMz6ZwfgiIj4FYCk+cATwERJs4HPAidFxH9k9WdL2hE4l7QuS7eRwHsi4o/dBZKKn3US8DbgXRHx31mdB4D/Bj4DfEvSOOBI4PiI+GFW5x7SYmOv5I71fuDy7jqZH/TtJzCrjROOWf+80J1sACLiqSzpvB8IYD3wn9laLN3uBj4maVhErMvK5ueTTQ/eDzzYnWyyz3tG0i+BfbOiPbP3n+TqLJd0F/DXuWM9DJwuaR0wOyIer/ULm/WVx3DM+qfSIl4vADuSej/DSJfHXs29ppP+sbdjrs3zNXzWjj3Uex7YPvvzm4E/RcSqKnF+HrgFOAd4TNLvJR1fQwxmfeYejln/jO6h7L+A/yWNm3yA1NMpyieBWtYJeQ4YV6G8LfssSOMx20oaXkg6G8UZES8Dk4HJkvYA/hG4TtJvI2JhDbGY1c09HLP+GS1pn+4NSW8D3gv8Gvg5qYczIiLmVXj9X52f9QDwPkm75D5vJ9Lg/9ys6DfZ+9/l6mxDmqxQUUT8Fjid9PfB2DpjMquZezhm/fMS8H1J3bPUziP1XKZHxGpJ3wVmSLoAmAdsSeqlvCsiPlXnZ00nzWKbJekcYB0wNYvhSoCI+C9JPwH+TdJ2pF7R6aSZb6+RNBf4T+B3pN7Vp4EVpERp1hROOGb98xTwTeDbpCnS84CPZVOiAT4HPE76C/080kyxhcDV9X5QRKyRdCBpSvPVgIBO4OjclGiAicC/AZcCy4HLST2fY3J17svqjSElroeAQ7ObTc2awktMm/WRpOnAX0ZEe6tjMRsMPIZjZmalcMIxM7NS+JKamZmVwj0cMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkp/h/WI2xAUloInAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# specify cash flow\n", + "cf = [1.0, 2.0]\n", + "periods = range(1, len(cf)+1)\n", + "\n", + "# plot cash flow\n", + "plt.bar(periods, cf)\n", + "plt.xticks(periods, size=15)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('periods', size=15)\n", + "plt.ylabel('cashflow ($)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t2.1942\n" + ] + } + ], + "source": [ + "# estimate real value\n", + "cnt = 0\n", + "exact_value = 0.0\n", + "for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])):\n", + " for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])):\n", + " prob = u.probabilities[cnt]\n", + " for t in range(len(cf)):\n", + " # evaluate linear approximation of real value w.r.t. interest rates\n", + " exact_value += prob * (cf[t]/pow(1 + b[t], t+1) - (t+1)*cf[t]*np.dot(A[:, t], np.asarray([x1, x2]))/pow(1 + b[t], t+2))\n", + " cnt += 1\n", + "print('Exact value: \\t%.4f' % exact_value)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# specify approximation factor\n", + "c_approx = 0.125\n", + "\n", + "# get fixed income circuit appfactory\n", + "fixed_income = FixedIncomeExpectedValue(u, A, b, cf, c_approx)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (samples)\n", + "m = 5\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, fixed_income)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=backend)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t2.1942\n", + "Estimated value:\t2.4600\n", + "Probability: \t0.8487\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEPCAYAAAD4aTuoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHiZJREFUeJzt3XuQHNV99vHvw11gkASISzAgwFgyGMqxAYNDYLmDeGMuxkgFflMiYAGvMSQl21wNAjuUhV8udhEKVHZEiG2JBAhvuAghLisQdzAiEF2wMOJuDM6CLEvICP3eP04vtHpnd2dmZ2Z7d59P1dTMnD595vSpnvlNd59zWhGBmZlZGa3T3xUwMzPrjoOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUWQ8kTZHUnr1ulzSlxvXbJEWxrG7y3inp+R6WXyupQ9KGVX72ZySFpCNrqbNZmThImZXHDODzknYvLpC0LnACcFtErGp5zcz6iYOUWXn8P2AFMKHCsoOArUmBzGzIcJAyq5Ok/ST9p6Q3Jf1J0nxJJ9dbXkQsB+4ExldYPAF4G3gw++ztJE2X9LKklZJelHSppPV7qO962em/MwrpP5T0u0LajpJuzk4vrpA0S9Ku9W6bWb3W6+8KmJVZREzJvW4rLN4ReAS4HvgA+CtguqQ1ETEjW6cdULGsHswATpT0pYh4BiALPMcBv4yIj7J8o4B3gb8H3gPGApcAWwLfqnEz1yJpy2y73gYmZdt2ATBH0hifbrRWcpAyq1NEzOx8LUnAQ8CngW9S/2m5WaSgMwF4Jks7Atg8X2ZEzAfm5z7/EWAlcL2kcyJidZ2fDzAZ2BA4JCLey8p/FFgKTARu6EPZZjXx6T6zOkkaKemnkl4BPswek4DP1ltmdpTyH6SjKWXJ44FXgMdzn72OpMmSFkpamX32vwDDSIGyLw4FZgPLs1OE6wHvA78G9upj2WY1cZAyq9+NpADyY+BwYG/gn4GN+ljuDGAHYD9JGwHHADNi7VsWTAamAv8OfBXYBzg7W9bXz98SOJlPAm/n4wBg+z6WbVYTn+4zq0MWPI4GzoqI63Ppjfjj9wDpetAEYFtgU7qePvw6MDMiLs599p69lPsRsBrYoJC+eeH9/wDPApdXKGNZL59h1lAOUmb12RBYF/i4E4GkTUlHNX26SVtEfCTp30mBaDtgYUT8VyHbsPxnZ3rsWRgRIekN4HO5Oq8LHFzIej/p6O15d5Kw/uYgZVaHiHhf0lPAxZKWAWuA80jXbjZrwEfMAM4i9eq7uMLyOcCZkp4Gfgv8LTC6inL/A5gk6TnSda5vAhsX8vxf4CTgAUnXAm8C2wAHAu0R8W81b41ZnRykzOp3EjANuAn4A3At6Qf/rAaU/RipN91oYGaF5ZcAW5BOyQVwC/APwO29lHsx6ZrT5cCfgZ8CC4DTOjNExO8l7Qv8I3ANMAJ4C3gY6HbaJrNmUKtvHy/pM8B3gX2BzwMPVxh/Umm94aQvzLGkDh93AmdHxB8K+Y4BfgjsSvqHeWlE3NzIbTAzs9boj959uwPjgBezR7VuBtpI//gmknpSrfWvUdL+wK2kUflHAXcBMyQd3tdKm5lZ6/XHkdQ6EbEme30LsGVvR1KS9gMeBQ6MiIeytH2AJ4DDIuK+LG02sH5EHJxb925gs4jYvxnbY2ZmzdPyI6nOAFWjo4C3OwNUVs6TwMvZMrLbFxwEFC/qziSNNxleX43NzKy/DJTBvGOBRRXSF2bLAHYB1q+QbyFpO+ueBcDMzPrHQOndN5I0n1lRB7BzLg8V8nUUlq9F0iTSVDZstNFGX9phhx36VlMDYM2aNayzzkD5D1R+bs/Gcns2zosvvvhuRIxqVvkDJUhB5QGSqpBefK9u0lNixDRSN2LGjBkTixcv7ksdLdPe3k5bW1t/V2PQcHs2ltuzcbK5K5tmoPyV6CCN1SgawSdHTh25tGIeqHwkZmZmJTZQgtQiPrn2lJe/VvUSaRLMYr6xpNkAaunubmZmJTBQgtQsYJtsHBQAkvYiXY+aBR/f4uBB0nxneeOBxyLi/RbV1czMGqTl16QkbUwazAtp8szNJJ2Qvb87IlZIWgLMjYhTASLisWwM1E2SvkM6MpoKzOscI5X5AdAu6RrSQN9x2ePIpm+YmZk1XH90nNiKdA+cvM73O5HmK1uPNMN03gTgatL9ej6eFimfISLmZQHvh8CZpHFUJ0XEvQ2sv5mZtUjLg1RELOWTHnfd5RldIe094JTs0dO6t9P7JJtmZjYADJRrUmZmNgQ5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWmt198VMLO1jT7vri5pk/dYzcRC+tIfHd2qKpn1Gx9JmZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZabU8SEnaTdL9klZIelPSZZLW7WWdKZKim8f5uXw3dpNnbPO3zMzMGq2ld+aVNBK4D1gAHAPsAlxJCpYX9bDqz4B7CmnHAucCswrpi4BTCmlL66uxmZn1p1bfPv4MYBhwfEQsA+ZI2gyYIumKLK2LiHgdeD2fJun7wKKImF/I/qeIeLwJdTczsxZr9em+o4DZhWA0kxS4Dqy2EEmbA4cBMxpbPTMzK5NWB6mxpNNxH4uIV4EV2bJqnQCsTwpwRbtJWiZplaR5kqoOfmZmVi6tPt03EnivQnpHtqxaE4BfR8SLhfRngSdI17xGAZNJpxT3j4gnKxUkaRIwCWDUqFG0t7fXUA3rzvLly92WdZq8x+ouaVsP65ru9q2f98+Bo9VBCiAqpKmb9K4ZpW1JpwbP7VJwxE8Kee8iBawLSB0tulYmYhowDWDMmDHR1tZWTTWsF+3t7bgt6zPxvLu6pE3eYzVXPr/213XpyW0tqtHg4/1z4Gj16b4OYESF9OFUPsKq5ERSULu5t4wRsRK4G/hitRU0M7PyaHWQWkTh2pOk7YFNKFyr6sEEYF5EvFbD51Z1lGZmZuXS6iA1CzhC0qa5tPHASmBubytLGg3sS5W9+iQNI/UofKbWipqZWf9rdZC6HlgF3Cbp0KzTwhTgqny3dElLJP28wvoTgNXALcUFkoZLeljS6ZIOkTQeeBDYDri8CdtiZmZN1tKOExHRIekQ4FrgDtJ1qKtJgapYr0pTJU0A7o+IdyosWwW8Q5q5YivgA+Ax4MCIeLohG2BmZi3V8t59EbEAOLiXPKO7Sf9CD+t8ABzfp8qZmVmpeBZ0MzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrrZqClKRKUxWZmZk1Ra1HUm9IukLS55pSGzMzs5xag9QNwAnAC5KekDRJ0mZNqJeZmVltQSoiLomInYHDgMXAVcBbkn4p6dBmVNDMzIauujpORMQDEfG3wDbAt4ExwGxJSyVNkfQXjaykmZkNTX3t3bcXcADplvAdwMPAacASSd/oY9lmZjbE1RykJO0o6RJJLwH3A9sCfwf8RUT8b2BH0rWrHze0pmZmNuTUdNNDSQ+QjpxeB24EpkfEK/k8EfGRpF8B5zSqkmZmNjTVemfed4FxwJyIiB7yzQd2qrtWZmZm1H6671rg0UoBStKnJB0AEBEfFo+wzMzMalVrkHoQ2K2bZWOy5WZmZg1Ra5BSD8s+BazoQ13MzMzW0us1qewUXlsu6TRJRxaybQQcDTzfuKqZmdlQV03HiS+TBuwCBPB1YHUhz5+BRcB3G1c1MzMb6noNUhHxY7IxT5JeBo6LiPnNrpiZmVlNXdAjwt3KzcysZaq5JjUOmBcRy7LXPYqIuxtSMzMzG/KqOZK6E9gXeDJ7HXTfyy8A3xjRzMwaopogtRPwVu61mZlZS1TTceKVSq/NzMyarZprUhvXUmBEeECvmZk1RDWn+5aTrjVVy9ekzMysIaoJUn9HbUHKzMysIaq5JnVjC+phZmbWRV9vH29mZtY01XSceBKYGBELJD1FL6f+ImKfRlXOzMyGtmquSf03sDL32tenzMysJaq5JnVK7vXEptbGzMwsp+5rUkpGSerpRohmZmZ1qzlISRon6VHgA+B3wAeSHpV0dMNrZ2ZmQ1pNQUrS6cAdpAG+55BugHhO9v4/s+VmZmYNUdP9pIALgGkRcWYh/XpJ1wMXAjc0pGZmZjbk1Xq6bwvgtm6W3Qps3lsBknaTdL+kFZLelHSZpB6nUpI0WlJUeMyskPcYSc9L+kDSAknjq9oyMzMrnVqPpB4EDgTmVFh2IPBQTytLGgncBywAjgF2Aa4kBcuLqvj87wCP5N6/Wyh/f1KwvA44GxgHzJDUERH3VlG+mZmVSDWDeXfLvf0p8DNJWwC3A78HtgKOA44CTuuluDOAYcDxEbEMmCNpM2CKpCuytJ4sjojHe1j+feChiDg7e/+gpN2BiwEHKTOzAaaaI6kXWHsAr4DTs0fxLr330PMs6EcBswvBaCYwlXQkdkcV9alI0obAQaQjqLyZwHRJwyPi/XrLNzOz1qsmSB3UwM8bCzyQT4iIVyWtyJb1FqSmS9qcdAQ3A7gwIjpnw9gFWB9YVFhnIel04meBp/pWfTMza6VqZpyY28DPGwm8VyG9I1vWnVXAP5FO2S0D2oBzSYHpmFzZVCi/o7B8LZImAZMARo0aRXt7e0/1tyotX77cbVmnyXus7pK29bCu6W7f+nn/HDhq7TjxMUnrABsV06u4M2+luf/UTXpnmW8BZ+WS2iW9DVwn6QsRMb+H8tVNemfZ04BpAGPGjIm2traea29VaW9vx21Zn4nn3dUlbfIeq7ny+bW/rktPbmtRjQYf758DR62DeSXpXElLgA+BP1Z49KQDGFEhfTiVj7B6ckv2/MVc2VQov/N9reWbmVk/q3Wc1NnAecDPSUco/whcBrwILCU7bdaDRaRrTx+TtD2wCV2vJfUmCs8vkQLn2EK+scCarI5mZjaA1BqkvglcAlyRvb89Ii4FdicFmV17WX8WcISkTXNp40m3Aqn12tcJ2fMzABGxijSO6+uFfOOBx9yzz8xs4Kn1mtROwPyI+EjSh2Sn0iJijaTrgJ+RjrS6cz3paOw2SVOBnYEpwFX5bunZ6cS5EXFq9n4KsClpIO8y4ADgu8BtEfFfufJ/QLpedQ1pHNe47HFkjdtpZmYlUOuR1B+AT2WvXwX+MrdsJGmgbrciogM4hDSW6g7gUuBq0tFZ3nqsPd5qEWkc1XTgbuAk4MfZc778eaQjrEOB2cBXgZM824SZ2cBU65HUI8DepEDxK9JMEZsDfwa+BdzfWwERsQA4uJc8owvvZ5IG5fYqIm4nHUWZmdkAV2uQmgJsl72+nHS6byLpCGoO8O1GVczMzKymIBURi4HF2etVpHtJndOEepmZmfVpMO+ngW2BNyPijcZVyczMLKnn9vFnSnoNeAV4AnhV0uuS/k/Da2dmZkNarTNOXAxcSxrvdDSwV/Y8C/hpttzMzKwhaj3d9y3g8oj4fiH9nmwuvW+RZqAwMzPrs1pP9w2j+7vvzqXChLNmZmb1qjVI3Q4c382yrwF39q06ZmZmn6jm9vHjcm9nAVdIGk3X28fvDnyv8VU0M7OhqpprUnfS9Tbx2wFHVMj7C9Idc83MzPqsmiC1U9NrYWZmVkE1t49/pRUVMTMzK6p5xglJ65E6SewPbA78D/Aw6bYZqxtbPTMzG8pqClKStgLuBfYk3Yn3bWA/0vio5yQdHhHvNLqSZmY2NNXaBf0qYAvgyxGxc0TsFxE7A1/O0q9qdAXNzGzoqjVIjQPOjYin8onZ+/NJUySZmZk1RK1BakPgj90s+yOwQd+qY2Zm9olag9TjwLmSNsknZu/PzZabmZk1RK29+yYDDwKvSbqX1HFiK9LAXgFtDa2dmZkNaTUdSUXEfGBXYBowCjiMFKSuB3aNiOcaXkMzMxuyqj6SkrQ+sA/wckSc17wqmZmZJbUcSX0EPAB8rkl1MTMzW0vVQSoi1gC/AbZuXnXMzMw+UWvvvguBiyXt0YzKmJmZ5dXau+8i0swS8yW9QerdF/kMEbFPg+pmZmZDXK1B6oXsYWZm1nRVBSlJw0hTIr0A/A64LyLebmbFzMzMqrl9/M7AfcDoXPIySSdGxL3NqpiZmVk1HSeuANYAfw1sDOwOPAvc0MR6mZmZVRWk9gMuiohHIuKDiFgInA7sIGnb5lbPzMyGsmqC1LbAbwtpL5Hm6tum4TUyMzPLVDtOKnrPYmZm1ljVdkGfLWl1hfT7i+kRsVXfq2VmZlZdkLq06bUwMzOroNcgFREOUmZm1i9qnbvPzMysZRykzMystBykzMystBykzMystBykzMystBykzMystFoepCTtJul+SSskvSnpMknr9rLO3pKmS1qSrbdY0iWSNirkmyIpKjyObO5WmZlZM9R608M+kTSSdNuPBcAxwC7AlaRgeVEPq47P8k4FfgPsCfwge/5aIe/7QDEoLexr3c3MrPVaGqSAM4BhwPERsQyYI2kzYIqkK7K0SqZGxDu59+2SPgBukLRjRLySW7Y6Ih5vTvXNzKyVWn267yhgdiEYzSQFrgO7W6kQoDo9mz17rkAzs0Gq1UFqLLAonxARrwIrsmW1+ArpZoyLC+kjJL0r6UNJz0o6vu7amplZv2r16b6RwHsV0juyZVWRtA1wIfCvhaOyJcD3gPnAp0g3Z7xV0tci4rZuypoETAIYNWoU7e3t1VbDerB8+XK3ZZ0m79H1hgNbD+ua7vatn/fPgUMRrbtVlKQPge9ExE8K6W8AN0bEhVWUsQGp88WngS9FREcPeQU8CgyLiC/0VvaYMWNi8eLigZnVo729nba2tv6uxoA0+ry7uqRN3mM1Vz6/9n/KpT86ulVVGnS8fzaOpGciYq9mld/q030dwIgK6cOpfIS1lizo3ATsDozrKUABRIrAtwF79tbN3czMyqfVp/sWUbj2JGl7YBMK16q6cTWp6/phEVFN/k6+s7CZ2QDU6iOpWcARkjbNpY0HVgJze1pR0vnAt4FvRMS8aj4sO/I6DnguIj6qr8pmZtZfWn0kdT1wNnCbpKnAzsAU4Kp8BwhJS4C5EXFq9v4k4HLgRuANSfvmynyps4u6pLnAraSjsk2AbwL7Asc2d7PMzKwZWhqkIqJD0iHAtcAdpOtQV5MCVbFe+WtIh2fPE7NH3imk4AWpd9/fA9uSuqf/Gjg6ImY1ov5mZtZarT6SIiIWAAf3kmd04f1EuganSuud2oeqmZlZyXgWdDMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzK631+rsCZmUy+ry7qsq39EdHN7kmZgY+kjIzsxJzkDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9LyYF4z68KDmq0sWn4kJWk3SfdLWiHpTUmXSVq3ivWGS5ouqUPS+5J+KWmLCvmOkfS8pA8kLZA0vjlbYmZmzdbSICVpJHAfEMAxwGXAZODSKla/GWgDTgMmAnsDtxfK3x+4FXgQOAq4C5gh6fCGbICZmbVUq0/3nQEMA46PiGXAHEmbAVMkXZGldSFpP+AI4MCIeChLewN4QtKhEXFflvX7wEMRcXb2/kFJuwMXA/c2b7OskXyqycw6tTpIHQXMLgSjmcBU4EDgjh7We7szQAFExJOSXs6W3SdpQ+Ag4OzCujOB6ZKGR8T7DdqOIcMBw1rN+5zltTpIjQUeyCdExKuSVmTLugtSY4FFFdIXZssAdgHWr5BvIem05meBp3qq3MoPP6r6C9Kd7r44zfji+cts1hit+C6V8Tegr793raCIaN2HSR8C342IawrprwM3RcQF3aw3B/hTRBxbSP8FsHNEfEXSXwHzgL+MiPm5PJ8BfgMcERFdTvlJmgRMyt5+Hnih7g20vC2Bd/u7EoOI27Ox3J6NMyYiNm1W4f3RBb1SVFQ36fWsV3yvHtYnIqYB0wAkPR0Re/VSD6uC27Kx3J6N5fZsHElPN7P8VndB7wBGVEgfDrxXx3ojcut15NKKeeilfDMzK6FWB6lFfHINCQBJ2wObUPmaU7frZfLXql4CPqyQbyywBnixjvqamVk/anWQmgUcISl//nI8sBKY28t622TjoACQtBewc7aMiFhFGh/19cK644HHquzZN62KPFYdt2VjuT0by+3ZOE1ty1Z3nBgJLCB1TphKCjJXAddExEW5fEuAuRFxai7tHlIPve+QjoymAr+PiL/O5dkfaAeuJQ30HZflP7JSpwkzMyu3lh5JRUQHcAiwLqm7+aXA1cAlhazrZXnyJpCOtv4ZuAl4BjiuUP484ATgUGA28FXgJAcoM7OBqaVHUmZmZrUYdLfq8AS2jVVPe0raO2vLJdl6iyVdImmjQr4pkqLC48jmblX/qLMtR3fTRjMr5PW+2Xt7drfPhaTzc/lu7CZPpQ5cA56kz0i6QdJzkj6S1F7lek3/3RxUt+rITWC7gDSB7S7AlaRgfFEPq0KawHYMaQLbzmtetwPFa163AteRpl8aR5rAtmMwnlLsQ3uOz/JOJQ2k3hP4Qfb8tULe94FiUFrY17qXTR/3TUjXVh/JvV9rIKr3zarb82fAPYW0Y4FzyTph5SwCTimkLa2vxqW3O2mfeRzYoIb1mv+7GRGD5gGcTxovtVku7XvAinxahfX2Iw32PSCXtk+WdmgubTbwQGHdu4F5/b3tJWvPURXSJmXtuWMubQrwbn9vZ8nbcnTWbv+rl/K9b1bRnt2UdRewsJB2I/B0f29nC9tzndzrW4D2KtZpye/mYDvd190EtsNIE9j2tF6XCWyBzglsyU1g+2+FdWcC+0ka3vfql05d7RkR71RIfjZ73qpx1RtQ6t03e+V982M1t6ekzYHDgBmNrd7AEhFr6litJb+bgy1IdZmINiJeJf276ulccqMmsB1s6m3PSr5COh2wuJA+QtK7kj6U9Kyk4+uubbn1tS2nZ9cK3pJ0laRhuWXeN6l73zyB1HZdrvEBu0laJmmVpHmS+vRnYhBqye/mYAtSI6k8/VFHtqwv63U+F/N1FJYPJvW251okbQNcCPxr4Z/vEtIpmhNJ16reBG4dpIGq3rZcBfwTcCpp+MYNwJms/aPqffMTNe2bpKEtv46I4ow0z5JuyPo3wMmkITFzJO1TR10Hq5b8bg6qjhOZUk1gOwjU254po7QB6VB/OfAPaxUc8YtC3juAR0k3qbytnsqWXM1tGRFvAWflktolvQ1cJ+kLkZvxv0I53jd7IGlb0qnBc7sUHPGTQt67SJ00LiB1tLCk6b+bg+1IyhPYNla97QmAJJEGXu8OjIs0mLtbka6o3gbsWc2wgQGmT21ZcEv2/MVc2VQo3/tmz04k/Vje3FvGiFhJutj/xd7yDiEt+d0cbEHKE9g2Vr3t2elqUvfgYyKimvydBuM//762ZV4Unr1vUld7TiD1MHuths8djPtmvVryuznYglTZJ7AdaOptT7KBkd8GvhFpuqpeZUdexwHPRcRH9VW5tOpuywpOyJ6fAe+bubSq21PSaGBfquzVl3VUOYqszQ1o1e9mf/fPb3Bf/5HAW8Ac0vx9k0jXQn5YyLcE+Hkh7R7gt8DxpHPOi4GHC3n2B1YD1wBtwBWkfwOH9/e2l6k9gZNI/zink34I8o9RuXxzSYP7DicFp7uz9vxqf297idpyCmmQ6vHZepeRfohv9b5Z33c9Sz+P9A+/0pi+4cDDwOmkzirjSYNcVwF79fe2N6k9Nyb9+TkBeAz479z7jbtry1b8bvZ74zShsXcDHsi+yG+RZjpYt5BnKXBjIW1E9qP6HrAM+BWwZYXyjyXN4r6KdEg7ob+3uWztSRoIGd08Juby/TzbwVcCf8p+GI7q720uWVtOAJ4mzczx5+yH4jJgQ++b9X3Xs/T5wD3dlLsR6droa1lbvp/9GO/b39vcxLYc3cN3dnR3bdmK301PMGtmZqU12K5JmZnZIOIgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpfX/AftE5VrVUDbMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYHFWd//H3h4sQCIRrArJIAMUsrPsoiQguKxNBgbDPoggGlfWJXBKVFXd/gFxEDXhZAbmorEuCLsiqhF1k8QIYuWSCURGSAKIhQVjCVREwEEICEvj+/jg12FR6eqpnuqtmuj+v56mnp06dqv6enst36tSpU4oIzMzM2m29qgMwM7Pu4IRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxxrKUkzJUU/y1EFj7FbdpwtcuXTsuOMbk/0xeIY4jGvktRboN4Gkv5F0l2S1khaIek6SfsO8n2Hy2c6Lfcz8UdJcyXtWWDfnmyfvykjVms9Jxxrh2eAfeosPym4/27A54D8H/prs+Osbk2Yg46jrSStD1wDfAn4ITAFmAa8BPRK+uAgDjtcPtM+78zedwawLTBP0msH2Gdxts/9bY7N2mSDqgOwjrQ2Im5t9UEj4gngiVYfdxj6BHAIcHBE1CbpH0iaA8yWND8iHh3qG1X4md4eEasAJC0EHgQ+BJybryhJwEYRsRJo+c+VlcdnOFYJSadJuk/S85Iel/QTSdtJ6gF+lFV7IOtCWZ7t86ruH0njs/UjJV0qaaWkR/q67iR9StJjkp6QdLak9Wref4KkOZIelrRa0m+zLqz1su39xpFtf122/5+y/edKemOujTtm3WBrJC2XdGzBj+eTwLxcsunzaWBj4Jia91ku6SuSPiPpD5JWSfqupDEDtaVel5qkbSR9W9JTWdt6JU3Kta3vPf81+8xXZJ9H02eDEfEwKemNz449U9KTkvaVdDvwPHBEvS41SetnP0v3Snohi+WyXKyHSlqY/az9QdI5kjZsNk4bOp/hWFtIWudnKyLWZts+DJwOnAL8Ftia1MWyKanb5CTgK8BhwO+BFwZ4u7OB7wLvA44Gvi3pLcBO2fpE4AvAHcCcbJ8dgGXZfs8CbwbOBEYB/9YoDklbAQuAp4CPkrqjTgVulLRbRKzJ/iv/AbANKTk8nx1/K+B3DT63HUl/eC+otz0i7pd0N/CO3KYPAPcBxwHbA+cA3wSOaNSWflwDvD7b50ngZFKX11si4r6aeu8Hfg1MB/4KOJ/UDfjxBsdeh6TNSJ/LH2qKNwG+nbXjXuCxrF15s4APZ/XmZ8c5vObY7weuyOqdDuxK+v6ul7XPyhQRXry0bAFmAtHPMj6rcxHw/QbH+Ifa+jXl07Ly0dn6+Gz90po6mwMvkv6or19TfhtwZT/vJ9I/X6cD/1cgjs+Tks1WNWVbkq5dHZ+tT8n2fVtNnZ2AtUBvg7bvne13aIM61wD31KwvB/7U97lkZR8CXgb+usnP9KBsfb+aOpuSzkBm5d7zfmCDmrILgT8M8PPR935jss98R+DK7HN5c+5n6NDcvj1Z+d9k6xOy9RMafF8frP35yMqPBtYAW1f9+9Jti89wrB2eAQ6oU/5Y9noncIykM0kXrRdFxEtDeL+b+r6IiJWSngDm5455H/C6vhVJGwOnkf4wvw7YsGbbBpGdjfXjAOAGYGXNmdyzwCKgr+tpL+DxiPhVTWwPSlo0iPYVcUNk10QyVwPfAd4K3NPEcfYCnoiI+X0FEfGcpB8D+RFy83Kf0xJgrKTXRMSfB3ifp2u+fhI4OiLurCkL4PoBjjE5e72sn+27kb63/507476Z1C35N6SzIiuJE461w9qIWNhg+38Cm5G6Yj4LPCXpP4CZg0w8T+fW/9xP2cY162cDx5K6uRZn9Q8FzsjqraJ/25DORKbW2daX/LYD/lhn+x9Jbe9P30CAnRrU2ammXu1xXxGpW28V9buhGtkeeLxO+eOk7qpa9T5jAa/Jvm7kHaSuyCeBhyPi5dz2FQWS1tbAc5EGE9SzTfZ6XT/bdxzg+NZiTjhWuuyPywXABdk1iw8BXyT9Eb24pDCOAL4eEef0FUg6pOC+fyINV/58nW3PZq9/AMbW2T6W1J1TV0Q8nF3Q/0fga/ntknYm/Weef++xuXqjgNGk6zXN+H3+WJlxpHa3yh25M7K8Is9NeQrYVNLm/SSdvnink67f5T1Q4D2shTxKzSoVEQ9HxJdJXV67Z8V9/9luXH+vlhhFzYVzpXtfjszV6S+Om4A9gN9GxMLcsiyrczswTtLbat7jdcCANzgCXwX2l/TuOtu+kMX9rVz5u/TqmzcPI/3R7jvTLPqZ/orULfbKoARJm5CGaS8oEHuZbs5eP9zP9mWkf2LG1/k+LYyIp8oJ0/r4DMfaYQNJe9cpfzgiHpU0i/Tf562k6z2TgTeQRq1B+kMBMEPpvpPVEXF3i2O8AThe0n1ZLMcDG+Xq9BfH+cBRwM2Svk76ozYO2A9YEBFXkLpx7gL+R9IppFFqZ1G/my3v66TrRP8r6StAL6kb7hjSxf9/inXvwVkDXCvpXFK32LnA/0bEkgHa8ioRMVfSz4ErJZ1KOos4iZSg17lHpkoRsUzSbOA8SWOBW0g3th4eEUdGxMuSTgT+S9LmpGtCfwZ2Ad6T1Sv7htfuVvWoBS+dtdB4lNoZWZ1pwM9Jf+hXk4bWHpM7zomkEUZrgeU1+9UbpfYPuX2XA1/JlV0GLKxZHwf8L7CSdH3iHNKQ4leO318cWflrgUuzfV/I3vM7wB41dV5Hml1hTXaMGcBVNBilVrPvBsC/Zp/NGmAF6Q/mvnXqLgfOyz77x4HnSEOBt2j2M83KtgUuz95zDenC+lsLfMbrHKtOrEXqzASerFPeQ80otaxsfbLRhaRk8gjrjko7GPhZ9rmsJA1a+QI1I+y8lLMo+4aURtLrSeP69yb1Rf8sInoK7DeGNOzyPaSuwB+ThkM+lat3KOmH6Q2kH8IzI+LKVrbBbDjJrvlcFRG+r8SGtSqu4exBukfh3mwp6krSfzjHkv5LeivpfoRXKE1s+H1gHum/mmuBK/rpCzczsxJVcYazXmRDICVdBWwz0BmOpH2AX5BuRrslK9uLdIHzXRFxY1Y2F9gwIt5Zs+91wOYRMahZds2GO5/h2EhR+hlOrDvevoiDSTfR3VJznNtIwxoPBpC0Eeni83/n9p0D7NM3r5RZp4mI8U42NhKMlGHRE4CldcrvybZBmiNpwzr17iG1c7e2RWdmZgMaKcOit2Tdu5ohjaLZpaYOdeqtyG1/FUnTSTeGMWrUqIk77jg8bj5++eWXWW+9kfL/QHGd2K6ibdrs3nTJ8tndRsb/Pp34vYLObFeVbbr33nufjIhti9QdKQkH6t95rDrl+XU12J+ImA3MBpg0aVIsXNhoRpby9Pb20tPTU3UYLdeJ7SrcJmU/isuWNa43THTi9wo6s11VtknSg0XrjpQ0v4L6T13cgr+c0ayoKcvXgfpnSGZmVpKRknCW8pdrNbVqr+3cT5qWPl9vAmma9maGYJuZWYuNlIRzPbBddp8NANkTCHfJthERL5Duvzkit+9U4JcR8UxJsZqZWR2lX8PJJgKckq3uAGwuqe8JfddFxOpsfqv5EXEMQET8MrvH5nJJJ5HOWM4mzVt1Y83hPw/0SrqQdFPolGw5qO0NMzOzhqoYNDAW+J9cWd/6zqQ5mjYgzZFU60jSlPb/Sc3UNrUVImJBlry+AHyMdJ/OByPipy2M32xwSr7J2my4KT3hRMRy/jJyrL864+uUPQ18JFsa7XsNuSlvzMyseiPlGo6ZmY1wTjhmZZk4MS1mXWok3fhpNrItXlx1BGaV8hmOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpPErNrCzHHVd1BGaVcsIxK8vs2VVHYFYpd6mZmVkpnHDMyrJoUVrMupS71MzKMmlSevWs0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfx4aety7lIzM7NSOOGYlWX69LSYdSknHLOyXHJJWsy6lBOOmZmVwoMGzIaZ8adeW6je8i8f0uZIzFrLZzhmZlYKJxwzMyuFE46ZmZXC13DMyrLnnlVHYFYpJxyzsvjx0tbl3KVmZmalcMIxM7NSOOGYlUVKi1mXcsIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YlWXWrKojMKuUE45ZWfx4aetypXepSdpd0k2SVkt6TNJZktYfYJ+ZkqKf5bSaepf1U2dC+1tmZmaNlHqGI2lL4EZgCXAosCtwHinxndFg128CP8mVvQc4Bbg+V74U+EiubPngIjZrodmz06vPdKxLld2l9lFgFHBYRKwEbpC0OTBT0jlZ2Toi4hHgkdoySZ8BlkbEnbnqz0XErW2I3WxoZsxIr0441qXK7lI7GJibSyxzSElov6IHkbQV8C7gitaGZ2Zm7VJ2wplA6vJ6RUQ8BKzOthV1OLAhKVnl7S5ppaQXJC2QVDiRmZlZ+ygiynsz6UXg5Ii4MFf+CHB5RJxe8Dg3A2MiYmKu/JPAn0nXiLYFTgQmAvtGxG39HGs6MB1g3LhxE+fMqZfDyrdq1SpGjx5ddRgt14ntKtqmnsmTAeidN69hvbsffabQ+75phzGF6g1WJ36voDPbVWWbJk+evCgiJhWpW0XCOSkivporfxS4LCI+XeAY25Ou55wSEV8ZoO4oUvK5KyLeM9CxJ02aFAsXLhyoWil6e3vp6empOoyW68R2FW5T36MJBvidG3/qtYXed/mXDylUb7A68XsFndmuKtskqXDCKbtLbQWwRZ3yMcDTBY/xfkDAlQNVjIg1wHWAHyZvZlaxshPOUnLXaiTtCGxK7tpOA0cCCyLi4Sbet7zTODMzq6vshHM9cKCkzWrKpgJrgPkD7SxpPLA3BUenZV1qBwOLmg3UrOUiBuxOM+tkZSeci4EXgKslHZBdsJ8JnF87VFrSfZK+VWf/I4G1wFX5DZLGSPqZpBmS9pc0FZgH7AB8qQ1tMTOzJpR642dErJC0P3AR8CPSdZsLSEknH1e96W6OBG6KiCfqbHsBeII0Y8FY4Hngl8B+ETE8RgKYmXWx0ifvjIglwDsHqDO+n/I3N9jneeCwIQVn1k4Ts1H8i9zDa93Js0WblWXx4qojMKuUH8BmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1IzK8txx1UdgVmlnHDMytL3iGmzLuUuNTMzK0VTCUdSvelmzKyIRYs8y4B1tWa71B6VdDlwaUTc046AzDrWpOwZVZ4x2rpUs11qs4DDgd9I+pWk6ZI2b0NcZmbWYZpKOBHxuYjYBXgXsAw4H/i9pO9KOqAdAZqZWWcY1KCBiLg5Ij4MbAd8AngjMFfSckkzJb22lUGamdnIN9RRapOAd5AeG70C+BlwLHCfpKOGeGwzM+sgTSccSTtJ+pyk+4GbgO2Bo4HXRsQ/ATuRrvWc29JIzcxsRGtqlJqkm0lnNI8Al5FGqz1YWyciXpL0PeCTrQrSzMxGvmaHRT8JTAFuiGg4tvNOYOdBR2XWiRb6SefW3ZpNOBcBi+slG0mjgT0j4paIeBF4cJ29zbpZ3yOmzbpUs9dw5gG797Ptjdl2MzOzdTSbcNRg22hg9RBiMets06enxaxLDdilJukdQE9N0bGSDspV2xg4BLi7daGZdZhLLkmvnjXaulSRazhvI93cCRDAEcDaXJ0/A0uBk1sXmpmZdZIBE05EnEt2T42kB4D3RsSd7Q7MzMw6S1Oj1CLCQ53NzGxQilzDmQIsiIiV2dcNRcR1LYnMzMw6SpEznB8DewO3ZV8H/Y9WC8APaTMzs3UUSTg7A7+v+drMBmPPPauOwKxSRQYNPFjvazNrkh8vbV2uyDWcTZo5YET45k8zM1tHkS61VaRrM0X5Go6Zma2jSMI5muYSjpnVo2ysTcOJ1s06V5FrOJeVEIeZmXW4oT5i2szMrJAigwZuA6ZFxBJJtzNA91pE7NWq4MzMrHMUuYbzW2BNzdfugDYzs6YVuYbzkZqvp7U1GjMz61iDvoajZFtJjR7KZmZmBjQ5WzS8MpnnGcDEbP+1khYBX4yIa1scn1nnmDWr6gjMKtVUwpE0A/gGcBPwSeCPwFjgMOCHkj4eEf6tMqvHj5e2LtfsGc7pwOyI+Fiu/GJJFwOfBpxwzMxsHc1ew9kauLqfbd8HthroAJJ2l3STpNWSHpN0lqSG0+FIGi8p6ixz6tQ9VNLdkp6XtETS1EItM2u32bPTYtalmj3DmQfsB9xQZ9t+wC2Ndpa0JXAjsAQ4FNgVOI+U+M4o8P4nAT+vWX8yd/x9SYnvG8AJwBTgCkkrIuKnBY5v1j4zZqRXd61Zlypy4+fuNatfA74paWvgGv5yDee9wMHAsQMc7qPAKOCwiFgJ3CBpc2CmpHOyskaWRcStDbZ/BrglIk7I1udJ2gP4LOCEY2ZWoSJnOL/h1Td7CpiRLfmnf/6ExrNFHwzMzSWWOcDZpDOkHxWIpy5JGwGTSWc2teYAl0oaExHPDPb4ZmY2NEUSzuQWvt8E4Obagoh4SNLqbNtACedSSVuRzqyuAD4dEX2zIOwKbAgsze1zD6nLbjfg9qGFb2Zmg1VkpoH5LXy/LYGn65SvyLb15wXg30ndYiuBHuAUUpI5tObY1Dn+itz2V5E0HZgOMG7cOHp7exvFX5pVq1YNm1haqRPbVbRNPdnrQHVPfNPaQu/b7s+xE79X0JntGiltavrGzz6S1gM2zpcXeOJnvbnY1E953zF/D/xzTVGvpMeBb0h6c0Tc2eD46qe879izgdkAkyZNip6ensbRl6S3t5fhEksrdWK7mm3TQHWnnVrs/unlHyr+noPRid8r6Mx2jZQ2NTUsOpvO5hRJ9wEvAs/WWRpZAWxRp3wM9c98Grkqe92z5tjUOX7ferPHNzOzFmr2PpwTgFOBb5HOHL4InAXcCywn65pqYCnpWs0rJO0IbMq6114GErnX+0lJcEKu3gTg5SxGs+pE+Gmf1tWaTTjHAZ8DzsnWr4mIM4E9SAnjDQPsfz1woKTNasqmkh5/0Oy1osOz10UAEfEC6T6hI3L1pgK/9Ag1M7NqNXsNZ2fgzoh4SdKLZN1VEfGypG8A3ySdAfXnYtJZ0tWSzgZ2AWYC59cOlc667OZHxDHZ+kxgM9JNnyuBdwAnA1dHxK9rjv950vWdC0n3CU3JloOabKeZmbVYs2c4TwGjs68fAt5Ss21L0k2d/YqIFcD+pHt1fgScCVxAOmuqtQGvvp9nKek+nUuB64APAudmr7XHX0A68zkAmAv8I/BBzzJgw8LEiWkx61LNnuH8HHgr6Y/+90gzBGwF/Bk4njSLdEMRsQR45wB1xufW55Bu4BxQRFxDOrsxG14WL646ArNKNZtwZgI7ZF9/idSlNo10ZnMD8IlWBWZmZp2lqYQTEcuAZdnXL5CeifPJNsRlZmYdZig3fv4VsD3wWEQ82rqQzMysEzU7aABJH5P0MPAg8CvgIUmPSPp4y6MzM7OO0exMA58FLiLdT3MIMCl7vR74WrbdzMxsHc12qR0PfCkiPpMr/0k2t9nxpJkHzCzvuOOqjsCsUs0mnFH0/1TP+XiUmln//Hhp63LNXsO5Bjisn23vA348tHDMzKxTFXnE9JSa1euBcySNZ91HTO8BfKr1IZp1iEWL0qtnG7AuVaRL7ces+yjpHYAD69T9DulJnGaWN2lSevWM0daliiScndsehZmZdbwij5h+sIxAzMysszU904CkDUgDBPYFtgL+BPyM9KiAYg9jNzOzrtNUwpE0Fvgp8LekJ3w+DuxDuv/mLknvjognWh2kmZmNfM0Oiz4f2Bp4W0TsEhH7RMQuwNuy8vNbHaCZmXWGZhPOFOCUiLi9tjBbP400zY2Zmdk6mr2GsxHwbD/bngVeM7RwzDrYwoVVR2BWqWYTzq3AKZJujojn+golbQqckm03s3p8w6d1uWYTzonAPOBhST8lDRoYS7oJVEBPS6MzM7OO0dQ1nIi4E3gDMBvYFngXKeFcDLwhIu5qeYRmnWL69LSYdanCZziSNgT2Ah6IiFPbF5JZh7rkkvTqWaOtSzVzhvMScDPw122KxczMOljhhBMRLwO/A8a1LxwzM+tUzd6H82ngs5Le1I5gzMysczU7Su0M0owCd0p6lDRK7VVzrUfEXi2KzczMOkizCec32WJmZtaUQglH0ijStDa/Af4A3BgRj7czMLOOs+eeVUdgVqkij5jeBbgRGF9TvFLS+yPip+0KzKzj9D1i2qxLFRk0cA7wMvD3wCbAHsAdwKw2xmVmZh2mSMLZBzgjIn4eEc9HxD3ADOB1krZvb3hmZtYpiiSc7YH/y5XdT5o7bbuWR2TWqaS0mHWpovfhxMBVzMzM+ld0WPRcSWvrlN+UL4+IsUMPy8zMOk2RhHNm26MwM7OON2DCiQgnHDMzG7Jm51IzMzMbFCccMzMrRbNzqZnZYM3yvdLW3ZxwzMrix0tbl3OXmpmZlcIJx6wss2enxaxLlZ5wJO0u6SZJqyU9JuksSesPsM9bJV0q6b5sv2WSPidp41y9mZKiznJQe1tlVsCMGWkx61KlXsORtCXpUQdLgEOBXYHzSInvjAa7Ts3qng38Dvhb4PPZ6/tydZ8B8gnmnqHGbmZmQ1P2oIGPAqOAwyJiJXCDpM2BmZLOycrqOTsinqhZ75X0PDBL0k4R8WDNtrURcWt7wjczs8Equ0vtYGBuLrHMISWh/frbKZds+tyRvXruNjOzEaDshDMBWFpbEBEPAauzbc14O+nBcMty5VtIelLSi5LukHTYoKM1M7OWUUR5Tx6Q9CJwckRcmCt/BLg8Ik4veJztgF8D10XEtJryo0hnPHcCo0kPipsCvC8iru7nWNOB6QDjxo2bOGfOnGab1RarVq1i9OjRVYfRcp3YrqJt6pk8GYDeefMa1rv70WcKve+bdhhTqN5gdeL3CjqzXVW2afLkyYsiYlKRulUknJMi4qu58keByyLi0wWO8RrSwIO/AiZGxIoGdQX8AhgVEW8e6NiTJk2KhQsXDlStFL29vfT09FQdRst1YrsKt6nv4WsD/M6NP/XaQu+7/MuHFKo3WJ34vYLObFeVbZJUOOGU3aW2AtiiTvkY4OmBds4SyOXAHsCURskGIFI2vRr424GGXpu1XcSAycask5U9Sm0puWs1knYENiV3bacfF5CGU78rIorU7+PfcjOzipV9hnM9cKCkzWrKpgJrgPmNdpR0GvAJ4KiIWFDkzbIzovcCd0XES4ML2czMWqHsM5yLgROAqyWdDewCzATOrx0qLek+YH5EHJOtfxD4EnAZ8KikvWuOeX/fsGlJ84Hvk86WNgWOA/YG3tPeZpkVMHFiel20qNo4zCpSasKJiBWS9gcuAn5Eum5zASnp5OOqveby7ux1WrbU+ggpEQHcB/wLsD1pyPRi4JCIuL4V8ZsNyeLFVUdgVqnSH08QEUuAdw5QZ3xufRrrJpp6+x0zhNDMzKyNPFu0mZmVwgnHzMxK4YRjZmalcMIxM7NSlD5owKxrHXdc1RGYVcoJx6wsfry0dTl3qZmZWSmccMzKsmiRZxmwruYuNbOyTMpmcPeM0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfoeMW3WpdylZmZmpXDCMSvL9OlpMetSTjhmZbnkkrSYdSknHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUvjGT7Oy7Lln1RGYVcoJx6wsfry0dTl3qZmZWSmccMzMrBROOGZlkdJi1qWccMzMrBROOGZmVgqPUjNrYPyp1w5Y58Q3raWn/aGYjXg+wzEzs1I44ZiZWSmccMzMrBS+hmNWllmzqo7ArFJOOGZl8eOlrcu5S83MzErhhGNWltmz02LWpdylZlaWGTPSq7vWrEs54ZhZ3RtcT3zTWqbVlC//8iFlhmQdqPQuNUm7S7pJ0mpJj0k6S9L6BfYbI+lSSSskPSPpu5K2rlPvUEl3S3pe0hJJU9vTEjMza0apCUfSlsCNQACHAmcBJwJnFtj9SqAHOBaYBrwVuCZ3/H2B7wPzgIOBa4ErJL27JQ0wM7NBK7tL7aPAKOCwiFgJ3CBpc2CmpHOysnVI2gc4ENgvIm7Jyh4FfiXpgIi4Mav6GeCWiDghW58naQ/gs8BP29csK1OR+c3c/WM2/JSdcA4G5uYSyxzgbGA/4EcN9nu8L9kARMRtkh7Itt0oaSNgMnBCbt85wKWSxkTEMy1qh9XhiS6tKP/T0J3KTjgTgJtrCyLiIUmrs239JZwJwNI65fdk2wB2BTasU+8eUtfhbsDtgwu7OUV+mQZy2UGbDuq4RX5J/ctu3aC/n/NWDIao8nexyACPIqr4HVdElPdm0ovAyRFxYa78EeDyiDi9n/1uAJ6LiPfkyr8D7BIRb5f0d8AC4C0RcWdNndcDvwMOjIh1utUkTQf6xqm+EVg26Aa21jbAk1UH0Qad2K5ObBO4XSNJlW3aKSK2LVKximHR9TKc+ikfzH75dfVTngojZgPD7m48SQsjYlLVcbRaJ7arE9sEbtdIMlLaVPaw6BXAFnXKxwBPD2K/LWr2W1FTlq/DAMc3M7M2KzvhLOUv11wAkLQjsCn1r9H0u1+m9trO/cCLdepNAF4G7h1EvGZm1iJlJ5zrgQMlbVZTNhVYA8wfYL/tsvtsAJA0Cdgl20ZEvEC6/+aI3L5TgV+OwBFqw66br0U6sV2d2CZwu0aSEdGmsgcNbAksAX5DGgq9C3A+cGFEnFFT7z5gfkQcU1P2E9JIs5NIZyxnA3+MiL+vqbMv0AtcRLopdEpW/6B6AwbMzKw8pZ7hRMQKYH9gfdIQ6DOBC4DP5apukNWpdSTpLOg/gcuBRcB7c8dfABwOHADMBf4R+KCTjZlZ9Uo9wzEzs+7l5+EMI4Od2HS4k/R6SbMk3SXpJUm9Vcc0VJKOkPRDSY9KWiVpkaQPVB3XUEg6XNIvJD2VTX67TNIZkl5t2TrcAAADk0lEQVRTdWytImmH7PsVkkZXHc9QSJqWtSO/fLTq2PrjxxMMEzUTmy4hTWy6K3Ae6Z+CMxrsOhLsQbqedivQKX+8/h/wAPCvpBvupgDfk7RNRHy90sgGb2vSwJtzSbcR7AXMBLYD/rm6sFrqXGAVaWRsp3gnaeBVn/+rKpCBuEttmJB0GvAp0l27K7OyT5H9wvc3selIIGm9iHg5+/oqYJuI6Kk2qqHJEsuTubLvAftExM4VhdVykr4IHA9sGSP8j4Wkvwd+AHyJlHg2i4hV1UY1eJKmAZcygtrhLrXho7+JTUeRJjYdsfqSTSfJJ5vMHcDYsmNps6fogLPSrGv666RHonTatDYjhhPO8LHOBKUR8RDQN7GpDX9vJ3WJjmiS1pe0SXabwQnAf4z0sxvSo1E2Bv696kDa4H5Ja7NrbjOqDqYRX8MZPrak/vQ7K7JtNoxJ2p907e3oqmNpgeeAjbKvLwdOrjCWIcueDPx54KiIeFHSQLuMFL8nPQPsNtJtJB8ALpa0SURcUGlk/XDCGV4GO7GpVUjSeOB7wA8i4rJKg2mNtwObkAYNfJZ0I/XHK41oaL4I/Coirqs6kFaKiLmk+w37XJ89F+wMSV8djl3ZTjjDx2AnNrUKSdqKNL3SQ8BRFYfTEhGxOPtygaQngW9LOi8i7q8yrsHInvh7NPAOSX2/X5tkr2MkvRQRa+rvPSJdBbwfGM8wHK3mhDN8DHZiU6uIpE2AH5Muqh8SEc9VHFI79CWfnUkT5I40byA9mPGXdbY9AnwLOLbUiMoxLHtFnHCGj+uBkyVtFhHPZmVFJja1CkjaAPgf0h+0v4uIP1YcUrv8Xfb6QKVRDN4C0qPnax0EnEK6d2rYnQUM0ftIo/AerDqQepxwho+LSSOCrpbUN7HpTOD8kXwPDrxyJjAlW90B2FzS4dn6dRGxuprIhuQbpDZ9EthK0t412+7IZi8fUbIJcm8Efgu8REo2JwJXjsTuNHhl+HpvbVl2zQ3gZyPl/pV6JH2fNGDg16RBA1Oz5YTheP0GnHCGjYhYkY10uog0senTpIlNZ1YZV4uMJZ0N1Opb3xlYXmo0rfHu7PWrdbaN1DbdDkwj9f+vJf33fxrpnyEbfpaRrk/tSBpctAT4cET8V6VRNeCZBszMrBS+8dPMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZleL/A3AAGz/5q1y3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\" (direct result of amplitude estimation, not rescaled yet)\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.xlim((0,1))\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for fixed-income asset (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=3/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/simulation/iron_condor_pricing.ipynb b/qiskit/finance/simulation/iron_condor_pricing.ipynb new file mode 100644 index 000000000..511e62073 --- /dev/null +++ b/qiskit/finance/simulation/iron_condor_pricing.ipynb @@ -0,0 +1,408 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Pricing Iron Condor Option*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "Suppose a iron condor option with strike prices $K_1 < K_2 < K_3 < K_4$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$ F(S_T) = \n", + "\\begin{cases}\n", + "0 ,& S_T < K_1 \\\\\n", + "S_T - K_1 ,& K_1 \\leq S_T < K_2 \\\\\n", + "K_2 - K_1 ,& K_2 \\leq S_T < K_3 \\\\\n", + "K_3 - S_T ,& K_3 \\leq S_T < K_4 \\\\\n", + "0 ,& S_T \\geq K_4. \n", + "\\end{cases}$$\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ F(S_T) \\right].$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", + "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", + "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits to represent the uncertainty\n", + "num_uncertainty_qubits = 3\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K_1$, then increases linearly, and is bounded by $K_2$.\n", + "The implementation uses two comparators, that flip an ancilla qubit each from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K_1$ and $S_T \\leq K_2, and these ancillas are used to control the linear part of the payoff function.\n", + "\n", + "The linear part itself is then approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price_1 = 1.438\n", + "strike_price_2 = 1.896\n", + "strike_price_3 = 2.126\n", + "strike_price_4 = strike_price_3 + strike_price_2 - strike_price_1\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2, strike_price_3, strike_price_4]\n", + "slopes = [0, 1, 0, -1, 0]\n", + "offsets = [0, 0, strike_price_2 - strike_price_1, strike_price_2 - strike_price_1, 0]\n", + "f_min = 0\n", + "f_max = strike_price_2 - strike_price_1\n", + "iron_condor_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "iron_condor = UnivariateProblem(\n", + " uncertainty_model,\n", + " iron_condor_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYVPX1x/H3AVQ6YsPOWmJBUxRLVNSAKBI7FlAUFRRRQNjENM0vtpBiCktRAUUQRcHeoqIoYC8QYwyKjaZUaSIu0vb8/jh3ZRh2d2a2zHfuzHk9zzy7c+fe3c8Ow5y599tEVXHOOeeqq17oAM455+LNC4lzzrka8ULinHOuRryQOOecqxEvJM4552rEC4lzzrka8ULicpaI3CQimnBbKCKPish+ATMdJyL/FpHvRESjbU1EZIKILI9yXlbJsWOT/p7y291Z/SM25+ktImdXsH2uiPw9RCYXTw1CB3Auha+BU6Pv9wVuBV4SkUNU9dsAeUYCS4FOwLpo29XAGUAPYAHweRXHzwIuT9q2tJYzpqs38D/giaTt5wDLsx/HxZUXEpfrNqrqW9H3b4nIfOBV4OfAwwHyHASMUtVpSds+VtVH0zj+24S/Jyep6nuhM7h48UtbLm5mRF+LAETkGBF5Krrs9a2I/EdEupfvLCI7RJehLk38IWLmiMg/E7Z1EJG3o/2XiMgdItI0euxn0aWs+sCQ6JLUWBGZC/QCDiu/VFXdP6z8d4jIoUnbp4rIIwn3x4rIdBE5WUT+G/3dr4nIIUnH1ReR34nIJyKyTkS+FJGx5T8TaAtcmnCJ7bLosa0ubYnIBSLyQfRzvhCRQSLSIOHxy6Kf8UMReTHKNEtEulT3+XDx4YXExU1R9HVx9LU18DpwBXZ56VFgjIhcCKCqK4DH2fpy0s+inzUGQETaAM8Dy4BzgRuBi4DyN/B/A8dE3/8j+v5W7DLQs9glq2MS9qmUiDRIvKX1V29tb+BvwCDgQmAX4CERkYR9RgI3Aw8BpwO/BJpEj10TZX42Ife/Ksl7CjARew7OAoYB1wHDK9j9AeAp7Hn5FJggIntW8290MeGXtlzOS3iz3Re4A/gGmAygqhMS9hPgFWBP4Ergweih0cALIrKvqs6Otl0OzFDVD6L7fwDmAWeq6qbo560AJorIMar6JnZpDWBu4uUpEfkKaJXmJau2wIakv+8HqvpZGscm2gE4TlU/jX5GPaxgHgjMEpGDsDOlAao6NOG4iQCq+qGIfAt8lUbuW4Cpqlp+Vvd89Dz8WUT+qKpfJuw7WFXviTLNAJZgRWxEhn+fixE/I3G5bkfsjXcD8DFWTLqq6iIAEWkpIkNFZF7Cfr2BAxJ+xktYkbg0OqYZ0IXobCRyFPB4eRGJPApsBNrV4t/zEXBk0u2LavycueVFJPJh9LX803/76OvYavzs74lIfeBwtm6Pmoi9fySfgb1Q/o2qLsc6EvgZSZ7zMxKX674GOgKKXc5aqFtOWT0W+Cl2melDYDXWi+qs8h1UVUVkDNBTRG4CLsBe+w8k/JzdsE/PJBy3SUSWY5/+a0upqk6vhZ+zKun++uhrw+jrjljD/uoa/p6dgG1Iem4S7ic/NxXlaojLa15IXK7bWNkbr4g0BE4D+qnqiITtFZ1pj8HaPdoDlwFPqOrKhMcXYe0MiT+/PvaGvKImf0AGvou+bpu0fQes7SYTy4EmItK8hsVkGXaWt0vS9lbR12w9Ny6H+aUtF2fbYb2oysdzlF+2OjN5R1X9ArvscjN2qWpM0i5vA+dExaNcF+zD1mu1G7tS5W0NB5dvEJG9sHaPTL0cfe1RxT4pzxaiS30zgPOTHroAKAPerEY2l2f8jMTFlqp+LSLvAn8QkdXYG9tvscthzSs4ZDR2rf9L4MWkx/4IvAc8ISJ3Ytf1/wpMihra65yqfhn9PbeKSCn2Qe96qvGpX1U/FpFRwD9EZBesE8L2wHmq2i3abRbQSUQ6YWcwc6J2jWQ3ApOiy4MTgB9ilxLvSmpodwXKz0hc3F0EzAHGAUOwBvJxlez7DNZ4fq+qliU+oKozgc7YJZzHsMLyIHBe3cSu1EXAfOB+4E9Yj6mPq/mzrsHOwC7GuvmWAGsTHv8j1vj/EPAu1n16K6r6AtANOAJ4GhiIdYHuV81cLs+IL7XrCoWI/BwrJgdUo7utc64SXkhc3hOR3YEfYAPp5qvq6YEjOZdX/NKWKwS9sbEk3wH9A2dxLu/4GYlzzrka8TMS55xzNVIQ3X932mknLSoqqtax3377LU2aNEm9Y46IU944ZYV45Y1TVohX3jhlhZrlnTFjxjJV3Tnljqqa97e2bdtqdU2ZMqXax4YQp7xxyqoar7xxyqoar7xxyqpas7zAdE3jPdYvbTnnnKsRLyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOpTJ+PBQVcWKHDlBUZPdzVZyyurxREONInKu28eOhd28oLUUA5s2z+wDdu4dMtrU4ZXV5xQuJc1W54QYoLd1yW2kp9O0LH1d3dvc6MnRoxVlvuMELiatTXkicq8r8+RVv//pr+OMfs5sllcrmzavsb3CulngbiXNV2Xvvire3bg1lZbl1a906s7/BuVrihcS5qlx33dbbGjeGQYOynyWVQYMsW6JGjXIzq8srXkicq8rChfZ1991REfvUP2pUbrY5dO9u2Vq35vuLXGeckZtZXV7xQuJcZUpLYeRIOOccWLCAaS+/DHPn5vYbc/fuMHcu06ZMgZNOgtdfhw0bQqdyec4LiXOVue8+WLECiotDJ6me4mJYsAAeeSR0EpfnvJA4V5GyMigpgbZtoV270Gmqp3NnOOAAGDy48h5dztUCLyTOVeSFF2DWLBg4EERCp6meevVgwAB49114443QaVwe80LiXEUGD4bddoMLLgidpGYuvRRatrSzK+fqiBcS55LNnGlnJP36wbbbhk5TM02a2DQpjz1mHQWcqwNeSJxLVlICDRtunqcq7vr2tctzw4aFTuLylBcS5xJ99ZX11urRA3baKXSa2rHXXnD++XD33fDNN6HTuDzkhcS5RCNHwrp11kidT4qLYfVqGDMmdBKXh7yQOFdu3Tq4/Xbo1AnatAmdpnYddRQceywMGQKbNoVO4/KMFxLnyj30ECxeHN8BiKkMHAizZ8Mzz4RO4vKMFxLnwAbsDR4MBx8Mp5wSOk3dOOccmyts8ODQSVye8ULiHMArr8B778V7AGIqDRpA//4wbZr9rc7VEi8kzoF1+d1xR7jkktBJ6lavXja2xAcoulrkhcS5zz+HJ5+EPn1s/Y58tv320LMnPPggLFoUOo3LE15InBs61C77XHNN6CTZce21sHEj3HFH6CQuT2S9kIhIGxF5SURKRWShiNwiIvUzOL6eiMwQERWR0+syqysAX38N99wDXbvC7ruHTpMd++9vC16NGAFr14ZO4/JAVguJiLQEJgMKnAXcAvwSuDmDH3MFsEftp3MFafRoWLPGGtkLSXExLFsG48eHTuLyQLbPSPoAjYAuqvqiqo7AisgvRKR5qoOjQjQIuKFuY7qCsHGjXdY6/nhbd6SQnHgi/OQn1ujua5W4Gsp2IekMTFLV1QnbJmDF5cQ0jr8VeB14qQ6yuULz5JMwb17+DkCsioidhc2cCS++GDqNi7lsF5KDgFmJG1R1PlAaPVYpEfkRcDlwXZ2lc4Vl8GDYZx8488zQScLo1g1atfKuwK7GRLN4WisiG4BfqWpJ0vYvgXGqen0Vx04D3lbVX4tIETAHOENVK5zvQUR6A70BWrVq1XbChAnVyrxmzRqaNm1arWNDiFPekFmbzZpF26uv5rO+ffnyvPPSOiYfn9vW48axz5gxvDN2LKWtW2chWcXy8bnNFTXJ2759+xmqekTKHVU1azdgAzCggu0LgEFVHNcNWAw0j+4XYQ32p6fze9u2bavVNWXKlGofG0Kc8gbNetFFqs2aqX79ddqH5OVzu2SJ6nbbqV51VZ3mSSUvn9scUZO8wHRN4z0225e2VgLbV7C9BbCqogNEZBvgb8BfgXoisj1Q3jDfRESa1UVQl8cWLLAJGq+4Apqn7OOR33bZBS6+GMaNg+XLQ6dxMZXtQjKLpLYQEdkLaEJS20mCJsCewD+xQrQSeD96bALgkwa5zAwfDmVlNu+Us0b3tWth1KjQSVxMZbuQPAd0SjqL6AqsBaZVcswaoH3S7cLoseuB7nUT1eWl0lJbvOrss62h3cGhh0LHjlZg168PncbFULYLyQhgHfCYiHSMGsRvAv6pCV2CReQzERkNoKobVXVq4g14K9r1A1V9O7t/gou1ceNg5crC7PJbleJiWLgQHnkkdBIXQ1ktJKq6EjgJqA88jQ1GHAzcmLRrg2gf52pPWZl1dW3bFo47LnSa3HLqqXDggdYl2gcougw1yPYvVNUPgQ4p9ilK8fhcIE8XjXB1ZtIk+PhjuP/+/F1zpLrq1bN16q+5Bl5/Hdq1C53IxYjP/usKx+DBNjHj+eeHTpKbevSAli19gKLLmBcSVxj+9z+bCqRvX9h229BpclOTJnDVVfD44zBnTug0Lka8kLjCMGSILVp11VWhk+S2vn3tMtewYaGTuBjxQuLy31dfwX332aWbHXcMnSa37bmnXfq7+25YvTr1/s7hhcQVghEjYN06a0x2qRUXwzffwJgxoZO4mPBC4vLbunW2pOypp8LBB4dOEw9HHmndo4cMgU2bQqdxMeCFxOW3iRNh8WIfgJipgQOtwf2pp0IncTHghcTlL1Xr8tumDZx8cug08XL22dC6tXcFdmnxQuLy1yuvwH/+Y5+ufQBiZho0gGuvtefw3/8OncblOC8kLn8NHmy9tC6+OHSSeOrVC5o2tefRuSp4IXH56bPP7Pp+nz42fsRlrkUL6NnT2pkWLgydxuUwLyQuPw0bZpdn+vYNnSTerr0WNm60nm/OVcILics/X38N99wD3brBbruFThNv++0HZ55pY3HWrg2dxuUoLyQu/9x9N6xZY43sruaKi20Z3vvvD53E5SgvJC6/bNxol7VOOAEOPzx0mvxwwglw2GHWFdjXKnEV8ELi8ssTT8C8eT4AsTaJ2Nndhx/CCy+ETuNykBcSl18GD4Z994UzzgidJL906wa77uoDFF2FvJC4/PHOO/DGG9bTqL6v1Fyrtt3WesA9/zx89FHoNC7HeCFx+aOkBJo3t7EPrvZddRVst52flbiteCFx+eHLL+Hhh200drNmodPkp513hksugXHjYNmy0GlcDvFC4vLD8OFQVmaXtVzdGTgQvvsORo0KncTlEC8kLv6+/dbe2M45B4qKQqfJb4ccYjMpDx8O69eHTuNyhBcSF3/jxsHKlT4AMVuKi2HRInjoodBJXI7wQuLirazMGn+POMJW9XN1r1MnOOgg62rtAxQdXkhc3D3/PHzyiX1K9jVHsqNePRgwwNYpee210GlcDvBC4uJt8GDYfXc477zQSQpLjx6www6+VokDvJC4OPvgA5g8Gfr1swFzLnsaN7ZxJU88AbNnh07jAvNC4uJryBBbtKp379BJClPfvjaDwLBhoZO4wLyQuHhautSmNe/Rw5bTddm3xx5wwQUwejSsXh06jQvIC4mLpxEjYN067/IbWnExfPONLSTmClbWC4mItBGRl0SkVEQWisgtIlLlDHsicoiIPB/tv05E5ovI3SLiy98VonXrbOnXzp2tG6oL54gjoF07GDoUNm0KncYFktVCIiItgcmAAmcBtwC/BG5OcWgLYA5wHdAJuBHoCDwrIg3qLLDLTRMmwJIlfjaSKwYOhDlz4MknQydxgWT7TbgP0AjooqqrgRdFpDlwk4jcFm3biqq+AbyRsGmqiHwJvAD8CPh3Hed2uULVupyWT9Xhwjv7bJuapqQEunQJncYFkO1LW52BSUkFYwJWXE7M8Gctj756v89CMm0avP++fQr2AYi5oX59myzz1VdhxozQaVwA2S4kBwGzEjeo6nygNHqsSiJST0S2FZEDgb8A7wLv1EVQl6MGD4addoLu3UMncYl69oSmTX2AYoESzeJcOSKyAfiVqpYkbf8SGKeq16c4/nmsjQRgBvBzVV1ayb69gd4ArVq1ajthwoRqZV6zZg1Nmzat1rEhxClvplkbLVjAUZdcwryLL2ZugMWr8vm5rQ37Dx/O7k88wVsPPsj6nXfO6Fh/butOTfK2b99+hqoekXJHVc3aDdgADKhg+wJgUBrH/wA4GrgYO7OZATRMdVzbtm21uqZMmVLtY0OIU96Ms/bvr7rNNqoLF9ZJnlTy+rmtDZ9/riqiev31GR/qz23dqUleYLqm8d6e7UtbK4HtK9jeAliV6mBV/VRV31bV+7Ezk8OAi2o3ostJq1bZWIVu3WA37/Wdk/bdF846y8b4lJaGTuOyKNuFZBZJbSEishfQhKS2k1RUdR6wAti31tK53HX33baAVXFx6CSuKsXFsGIF3Hdf6CQui7JdSJ4DOolI4qLaXYG1wLRMflDU4L4jNr7E5bONG20+pxNPhMMOC53GVeX44+Hww60rcFlZ6DQuS7JdSEYA64DHRKRj1CB+E/BPTegSLCKficjohPt/F5G/iMg5ItJeRK4BJgGfY92HXT57/HGYP98HIMaBiP07zZoFL7wQOo3LkqwWElVdCZwE1Aeexka0D8ZGqidqEO1TbjpwPDAa+BdwLfAo8FNV/baOY7vQBg+26+9nnBE6iUtH167WjuVdgQtG1qcXUdUPgQ4p9ilKuj8BP/MoTG+/DW++aVPG169ySjaXK7bd1qaY//3vYeZMm4XA5TWf/dfltpISaN4cLr88dBKXiauugoYN7QOAy3teSFzu+uILePhhuOIKaNYs9f4ud+y0E1xyifXeWrYsdBpXx1IWEhHpISK+cpDLvttvt0ka+/cPncRVx8CB8N13MHJk6CSujqVzRjIG2A9ARDaJyFF1G8k5bMzIqFFwzjk2s6yLnzZt4JRT7APB+vWh07g6lE4hWQnsHn0v2FoiztWte++FlSt9AGLcFRfDokUwcWLoJK4OpdNrazJwn4h8jBWRsSJSaZdbVfUzFlczZWXWSHvkkXDssaHTuJro1AkOPti6Al98sU/9n6fSKSQ9gWuAA4HDsZHkX9VlKFfgnnsOPvkExo/3N564E4EBA6BPH1uv5IQTQidydSBlIVHVUuDvACLSEbhBVd+v62CugA0eDHvsAeefHzqJqw2XXALXX2//rl5I8lI6vbY2iciR0d2pQIXL4TpXKz74AF56Cfr1g222CZ3G1YbGje2M5Mkn4fPPQ6dxdSCdxvb1wHbR9z2AzFascS4TJSXQqBH07h06iatN11xjMxMMGxY6iasD6bSRfAjcJCJPYL22zhORylbMUlW9s9bSucKydKm1i1x+OeywQ+g0rjbtsYfNwTV6NNx8M7RoETqRq0XpFJL+wEhsckUFrqtiXwW8kLjqGTEC1q2zxlmXf4qL7YPC6NHwi1+ETuNqUcpLW6r6hqr+UFW3wc5Ifqqq9Sq5+ax6rnrWrYM77oDOneGgg1Lv7+KnbVto1w6GDrU1ZlzeyHSurfbYpS7nateDD8KSJT4AMd8VF8O8edbw7vJGRtPIq+o0ABE5GmgH7IAtd/uaqr5d+/FcQVC1RvZDDoGOHUOncXXprLNgn32sK/C554ZO42pJRoVERJoADwOdgE3Acmy52/oi8jxwfjTuxLn0TZ0K778Pd93lAxDzXf36cO21dmby7rs2e4GLvUwvbd0GHAN0Axqq6m5Aw+j+McBfazeeKwiDB9u04927h07isqFnT1sWoKQkdBJXSzItJOcCv1HVh1W1DEBVy1T1YeC3gA9Fdpn59FN45hm4+mobP+LyX/Pm0KsXPPQQLFgQOo2rBZkWkhbAF5U89gXQvGZxXMEZOhQaNLBC4grHtdfa5Jy33x46iasFmRaS94GrRba8kB3dvzp63Lm0NFizBsaMgQsvhN12Cx3HZdM++1jD+8iRUOrNqnGXaSG5HmtonyUifxGRYhH5M/ARcEr0uHNVGz8eioo47owzbAGrAw4InciFUFwMK1bAXntxYocOtoDZ+PGhU7lqyLT778sichjwB6w9ZDdgEfA20EVVfYyJq9r48TaPVmkp35/W/ulP9ibije2FZf5866W3YoW9FubN2zzHmr8WYiXTMxJU9UNV7aaq+6lq4+jrRV5EXFpuuGHrSxmlpbbdFZYbbrAxRIn8tRBLGRUSEfm7iLSpqzCuAMyfn9l2l7/8tZA3qtP99wMReUdE+oiIT+HpMrP33pltd/nLXwt5I6NCoqr7AB2BWcDfgEUi8kC0cqJzqQ0aZKObEzVubNtdYRk0yP7tE/lrIZaq00YyRVV7YA3t/YE9gUkiMk9EbhaRfWs7pMsjJ5xg4weaNUNFoHVrGDXKG1cLUffu9m/fujXft5T84x/+WoihjAtJOVVdo6qjgRuB14G9gN8Bn4jIkyLSupYyunwyfLj11Pnvf5n28sswd66/cRSy7t1h7lzeHTPG7i9bFjaPq5ZqFRIRKRKRG0VkNvACsAbrDtwMOBMoAibUVkiXJ7791j6Bduli3X2di5QWFUGnTjbSff360HFchjLttXWJiLwMfAZcCowB9lHVn6vqo6q6TlWfBa4FKluO1xWqe++FVatg4MDQSVwuGjgQFi+GiRNDJ3EZyvSMZBSwGOikqvuq6q2q+mUF+30C/LGiHyAibUTkJREpFZGFInKLiFS5sqKIHCkiY0Tks+i4j6MzooYZ5nehlJXBkCE2bfixx4ZO43JRp05w8ME2G3Ty+BKX0zIa2Q7srqorU+2kqouAm5O3i0hLYDK2yuJZwH7AP7CC9vsqfmTXaN+/Ap8CPwJujb766jhx8Nxz8MknNrLd1xxxFRGBAQOgTx949VXrmOFiIdMpUlIWkRT6AI2w6VRWAy+KSHPgJhG5LdpWkb+q6lcJ96eKyHfASBFprarzapjL1bWSEth9dzjfVxpwVbjkErj+ejsr8UISGxk3totIVxGZLCLzRWRp8i3F4Z2BSUkFYwJWXE6s7KCkIlLuvejrLhn9AS77PvgAJk+Gfv1gm21Cp3G5rHFjOyN58kmYPTt0GpemTBvbLwLuxRrb9wSeAp6Jfs5qYHiKH3EQNpjxe6o6HyiNHsvEsUAZ8HGGx7lsKymxRavKJ+RzrirXXGODVocODZ3EpSnTM5JfYW0TfaP7d6hqT2AfYBlWEKrSElhVwfaV0WNpEZFdgRuA+6q4HOZywdKl1i7SowfsuGPoNC4O9tgDunaFe+6B1f7fOw5EM+gdISJrgNNVdaqIbABOVtWp0WPnAINVtaiK4zcA16nqkKTtC4Cxqppy2k8R2RZrsN8TaFtZu42I9AZ6A7Rq1arthAnVG9ayZs0amjZtWq1jQ8i1vK3vvZd9xo7lnXvvpTRpDqVcy5pKnPLGKStsnbfZxx/Ttk8fPrvmGr7MsXa1uD+3mWjfvv0MVU09lENV074BC7CuvwBzgasTHusCfJPi+KXAjRVsXwP8Ko3fL1ibynLgoHRzt23bVqtrypQp1T42hJzK+913qq1aqXbuXOHDOZU1DXHKG6esqpXkbddOtahIdePGrOepSl48t2kCpmsa77GZXtqajnW5BWsf+YOIXCkil2KTOL6d4vhZJLWFiMheQBOS2k4qMRjrNnyWqqazvwtpwgRYssQHILrqGTjQptB58snQSVwKmRaSPwPliwX8AXgHuAMb4b6M6FJSFZ4DOolIs4RtXYG1wLSqDhSR32GTRF6sqq9lmNtlm6o1srdpAyefHDqNi6Ozz7apdEpKQidxKaRVSESkkYicCxwHNBCRVqq6SlXPApoC26vq0aqaqr/eCGAd8JiIdIzaMW4C/qkJjebRCPbRCfcvAv4EjAMWiMhPE247Z/D3umyZNg3+8x/7VOkDEF111K8P/fvb4MQZM0KncVVIWUiiaeFnAg9jl6/uAz4WkVMA1ObXSqtrhVrD+ElAfeBpbPT7YGwG4UQNon3KnRJ9vQx4M+l2Wjq/22VZSYn10rr44tBJXJz16gVNm9oARZez0jkjuQ0br3E80Bg4BBsMOLI6v1BtzfcOqtpIVXdT1f9T1U1J+xSp6mUJ9y9TVankNrY6OVwd+uwzeOopG1jWqFHoNC7OWrSwYjJxIixcGDqNq0Q6heQY4Peq+rqqfqeqHwFXAXuLyG51G8/F0tCh0KAB9O2bel/nUunfHzZtsinmXU5Kp5DsBiS3fXyOdcXdtdYTuXhbtcoGknXrBrv55wxXC/bbD846C0aOhNJUY55dCOn22vI5nV16Ro+2Bay8y6+rTQMHwvLlcP/9oZO4CqRbSCYlTcy4KNr+UoaTNrp8tnEjDBtms7YefnjoNC6fnHACHHaYdeLwtUpyTjrTyG+1rohzFXriCZg3z3vYuNonYmcll14KL7xgi2C5nJGykKiqFxKXnpIS2GcfOPPM0ElcPuraFX7zG3udeSHJKRmvR+Jchd59F15/Ha691gaSOVfbttvOpph//nn46KPQaVwCLySudpSUQLNm0LNn6CQun/XpYwVlyJDU+7qs8ULiam7BAnjoIbjiCmjePHQal8923tmW4x03znpxuZzghcTV3PDhUFZmA8ecq2sDBsDatTauxOUELySuZkpL7T/02WdbQ7tzde3QQ21G6dtvh/XrQ6dxeCFxNTVuHKxc6QMQXXYNHGhzbz38cOgkDi8kribKyqzRs21baNcudBpXSE49FQ480Aco5ggvJK76Jk2CWbN8zRGXffXqWVvJ9OnW7dwF5YXEVV9JiU3MeMEFoZO4QtSjB7Rs6Sso5gAvJK56Zs60qSr69YNttw2dxhWiJk2gd294/HGYMyd0moLmhcRVT0kJNGxo/5GdC6VfP7vMNXx46CQFzQuJy9xXX8F999mlhZ12Cp3GFbI994Tzz4e774ZvvgmdpmB5IXGZGzkS1q2zxk7nQhs4EFavhjFjQicpWF5IXGbWr7eBYJ06QZs2odM4B0cdBccea13RN20KnaYgeSFxmZk4ERYv9gGILrcMHAizZ8PTT4dOUpC8kLj0qdqiVQcf7OtBuNxyzjmw997eFTgQLyQufa++Cu+95wMQXe5p0MCo1nPKAAAfqUlEQVQmDZ02zV6jLqu8kLj0lZTADjvAxReHTuLc1q64wsaW+FlJ1nkhcemZPdvWZO/TBxo3Dp3Gua1tvz1cfjk8+CAsWhQ6TUHxQuLSM3SoLaF7zTWhkzhXuQEDYONGuPPO0EkKihcSl9rq1XDPPdC1K+yxR+g0zlVu//3hjDOskKxdGzpNwfBC4lIbPdpGDXuXXxcHAwfCsmXwwAOhkxQMLySuaps22WWtdu3giCNCp3EutZ/9DH78Y+uq7muVZIUXEle1J5+EuXP9bMTFh4i9XmfOhJdeCp2mIHghcVUrKYGiIluT3bm4uPBC2GUXOytxdS7rhURE2ojISyJSKiILReQWEamf4phtReRvIvKqiKwVET9fzYYZM2wQ4rXXWo8t5+Jiu+2sh+Gzz9oqnq5OZbWQiEhLYDKgwFnALcAvgZtTHNoYuAIoBd6oy4wuQUkJNG0KPXuGTuJc5q6+2hZdGzo0dJK8l+0zkj5AI6CLqr6oqiOwIvILEWle2UGqugrYQVU7AY9nJ2qBW7gQJkyAXr2gRYvQaZzL3C67QPfucO+9sGJF6DR5LduFpDMwSVVXJ2ybgBWXE6s6UNW7X2TV7bdbj63+/UMnca76Bg6E0lK4667QSfJatgvJQcAWFyxVdT52yeqgLGdxlSkttcWrzjoL9tsvdBrnqu9HP4IOHWDYMNiwIXSavNUgy7+vJbCqgu0ro8dqjYj0BnoDtGrViqlTp1br56xZs6bax4ZQG3l3e/ppDly+nPdOPJGv6/BvL8TnNlvilBXqNu+OHTvyw5df5sNbb2Vphw41/nn+3FZAVbN2AzYAAyrYvgAYlObP6Ed0pSvdW9u2bbW6pkyZUu1jQ6hx3rIy1YMPVj3sMPu+DhXcc5tFccqqWsd5N21S/cEPVI86qlZe04X03ALTNY332Gxf2loJbF/B9hZUfKbisu2FF+Cjj6C42NcccfmhXj2bzPGdd+Ctt0KnyUvZLiSzSGoLEZG9gCYktZ24QEpKYNddbYJG5/LFpZfaNPM+QLFOZLuQPAd0EpFmCdu6AmuBaVnO4pJ99BE8/zz07Wv9753LF02bwpVXwqOPwrx5odPknWwXkhHAOuAxEekYNYjfBPxTE7oEi8hnIjI68UAR6Swi5wE/ie6fF91aZy9+nhsyxEYEX3VV6CTO1b5+/exy7fDhoZPknawWElVdCZwE1AeexgYjDgZuTNq1QbRPojuBh4Fe0f2Ho1v7uspbUJYvh3Hj4JJLYOedQ6dxrvbtvTece66NKVmzJnSavJLt7r+o6odAlX3wVLUonW2uFo0caQsBDRgQOolzdae4GB56CMaOtTMUVyt89l8H69fbSPaTT4ZDDw2dxrm689OfwtFH22XcsrLQafKGFxIHDz9sc2sVF4dO4lzdKy6Gzz6Df/0rdJK84YWk0Klal98DD4ROnUKnca7unXsu7LWXdwWuRV5ICt3rr8P06Ta5XT1/ObgC0KCBtY9MmQLvvx86TV7wd45CV1ICLVtaby3nCsWVV0Ljxvb6dzXmhaSQzZkDjz9u40aaNAmdxrnsadkSLrsMHngAliwJnSb2vJAUsmHD7HJW376hkziXfQMGWI/FO+8MnST2vJAUqtWr4e674fzzYc89Q6dxLvsOOABOO80KyXffhU4Ta15ICtWYMfDNN9bI7lyhKi6GpUvhwQdDJ4k1LySFaNMmGDoUjj0WjjoqdBrnwunQAX74Q+sK7Kt5V5sXkkL09NMwe7YPQHROxM7KP/jAugO7avFCUohKSqB1azj77NBJnAvvootsolIfoFhtXkgKzXvvwbRp0L+/DcxyrtA1bAhXXw3PPAOffho6TSx5ISk0JSU2ZqRXr9T7Olcorr7aFnMbMiR0kljyQlJIFi2y3ik9e9qyo845s+uucOGF1ptx5crQaWLHC0khueMO2LgRrr02dBLncs/AgVBaauOrXEa8kBSKtWthxAg44wzYf//QaZzLPT/5CfzsZzbjw8aNodPEiheSQjF+PCxb5l1+natKcTF88QU89ljoJLHihaQQlK858uMfw4knhk7jXO467TTYbz+fFThDXkgKweTJMHOmfdoSCZ3GudxVv75N5vjmm/D226HTxIYXkkJQUgKtWkG3bqGTOJf7Lr8cWrTwAYoZ8EKS72bNgmefhWuuge22C53GudzXtClccQU88oi1l7iUvJDku6FDrYD06RM6iXPx0b+/tS0OHx46SSx4IclnK1bAvfdC9+6wyy6h0zgXH61bQ5cuMGoUfPtt6DQ5zwtJPhs1ygZY+ZojzmWuuBhWrbIPY65KXkjy1YYNdlp+0km23oJzLjPHHANHHmnzb5WVhU6T07yQ5KtHHoEFC3wAonPVJWL/fz75BJ57LnSanOaFJB+pWtfFAw6Azp1Dp3Euvs47D/bYwwcopuCFJB+9+Sa8+64NrKrn/8TOVds220C/fjao94MPQqfJWf4uk49KSmya+B49QidxLv5694ZGjXytkipkvZCISBsReUlESkVkoYjcIiL10ziuhYiMEZGVIvK1iIwXkR2zkTlOtlu8GB591F78TZuGjuNc/O2wA1x6Kdx/PyxdGjpNTspqIRGRlsBkQIGzgFuAXwI3p3H4ROBnwBXAZcCRwBN1kTPO9njiCWsk7NcvdBTn8seAAbBunS3F4LaS7TOSPkAjoIuqvqiqI7Ai8gsRaV7ZQSJyDNAJuFRVH1XVx4GLgXYi0rFOko4fD0VFnNihAxQV2f1cNn487L03e02caCPZX3kldCLn8sdBB8GPfgQ33xyv94QsvYdlu5B0Biap6uqEbROw4lLV/OadgSWq+v27o6q+A8yJHqtd48fbpaF58xBVmDfP7ufqC6c87xdfIGCDEHM5r3NxM348fPwxlJXF6z0hS+9hDerkp1buIODlxA2qOl9ESqPHnq7iuFkVbP8oeqx23XCDvRknKi2Fyy6DP/2p1n9djX3yydYrupWW2t/RvXuYTM7lkxtusEtbifw94XvZLiQtgVUVbF8ZPVad4/at6AAR6Q30BmjVqhVTp05NO+SJ8+dT0aodunEjX+28c9o/J1t2/vDDivPOn8+0DP7ubFuzZk1G/y6hxSlvnLJC7uf194QUVDVrN2ADMKCC7QuAQVUc9yLweAXbxwOvp/q9bdu21Yy0bq1qw/q2vLVundnPyZa45Y1MmTIldISMxClvnLKqxiBv3P6P1VJeYLqm8d6e7TaSlcD2FWxvQcVnHKmO2z7FcdUzaBA0brzltsaNbXsuilte5+Imbv/Hspw324VkFkltGiKyF9CEittAKj0uUlnbSc10724z57ZujYrYlNKjRuVue0Pc8joXN3H7P5blvNkuJM8BnUSkWcK2rsBaYFqK43YVkXblG0TkCKx9pG5mU+veHebOZdrLL8Pcubn7gikXt7zOxU3c/o9lMW+2C8kIYB3wmIh0jBrEbwL+qQldgkXkMxEZXX5fVd8EJgHjRKSLiJyNtY+8pqqTs/oXOOec20JWC4mqrgROAupjXX1vBgYDNybt2iDaJ1E37KzlHmAcMAM4py7zOuecSy3b3X9R1Q+BDin2Kapg2yrg8ujmnHMuR/jsv84552rEC4lzzrkaERtzkt9E5CtgXjUP3wlYVotx6lqc8sYpK8Qrb5yyQrzyxikr1Cxva1VNOXS/IApJTYjIdFU9InSOdMUpb5yyQrzyxikrxCtvnLJCdvL6pS3nnHM14oXEOedcjXghSW1U6AAZilPeOGWFeOWNU1aIV944ZYUs5PU2EuecczXiZyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOOedqJOuz/7raEa0s+XNAgIdVdbmI7AlcB+wHzAVGqeoH4VKCiPwGeDZ0jnSJSCOggap+k7BtZ6Af0AYoA/4D3KGqX4dJ6Vxu8e6/ERERbH2T04CDgR2ATcAS4C1grKp+Ei7hZiJyFPAC0BTYCKwAOgHPYplnAocCuwIdVfXVQFERkTJAsSWRHwAmqupnofKkIiLPAp+q6oDo/jHYKpxl2Bo4ArQF1gMdVHVmwKyHAY1U9Y2EbacCv2Nz0XsfuClxn1wR/Z87Azgce41Mxz505PSbkog0x+au6qCqr4XOA99n6gBsC/xLVb+NPgD1xVaSnY19sFxYJ78/x//NsiJ6wp/F3iCWYKs47oG9uJ/D/iEOBG5V1VtD5SwnIi9iZ5PnAN9ii4Odjb3RnaeqG0RkO+AJoKGqtg+YtQz4K/BD4GQs97+xovKQqi4Ila0iIrIM6KWqT0b338Ke47PLz1JEpAXwFPCdqnYKmPUt4GlVHRTd7wncDUwBXsaK3knA8cC55X9ToKxvYM/rR9H9ltiHobbAmmi3ptiHtk6JZ4QhiMg1VTzcCPgbMAT4FEBV78hGroqIyP7AS8Be0aY5wCnAi8D2wOfY+9daoK2qflnrIVS14G/Ag9gL4ocJ23YHngceje6fiL3ge+ZA3uVA54T7u2CfPk9J2u80YFngrGXAUdH3LYHe0Yt+Y3SbGm3bMfTzGmUsBU5IuL8++XlNeG6/DZx1dWI24DNgWAX7jQDez5XXQXR/NHYmfWrCtlOBlcDgHHgdlGFn92WV3BIf2xQ460PYmef+2JWU+6L3szeAZtE+O0X7jKyLDN7YbjoDv9WE6/hqp4B9gLNFZDdVnQb8CRgQKGMijW6J90naVtH9oFR1paqOUtWTgD2BX2Kn4iOAhSLyr6ABzf+AxDO4Jdh/zmQ7YkUnpLKk+62BRyrY7xHsE2kuORO4RVWfL98QfT8I6BIs1WZPAUuBXkB9Va1XfsNeDwL8LNqWvCx4trUDBqnqZ6q6Avg91k76d43O7FR1GVDClq/tWuOFxAj2CSPZpuixFtH9t4EDshWqCjOA60SkmYjUA64HFgBXi0h9ABFpAFyDvTHmHFVdrKpDVPVYYB/gRuwsMLS/AL8VkZ7RczgI+JuInCwi24rIdlE7xJ+xT4IhvQp0T7g/E6houvAjsddHLtkeaxNJNgNr2wtKVc8GLgV+BbwrIsclPhwmVaVaAosT7pf/WyevwTQb+wBX67zXlpkM/FFE/quqs+H7a7hDsX+g8kb2pkAu9NS5Abv+uQK7PFSKNbQ9AnwqIuWN7btjlwtymqrOw97A/5IDWR4Tkf7Yp7fBwMfYB4nyT86Kfbh4CnuTCel64PXow8QwrJH9XhHZAbtkCNZGMhD4bZCEWzpXRMoL3UqgogWTdsIu2QWnqi+IyI+w5+9fIvI81isyaPtNBZZiZ6PlNgEjsbPpRLtQR9m9sR2Ius0+j53+z8Oui++DNbpfqKrPRfvdhq0Y1jVU1nJR5tOxDwOPquoiEdkV+DWb/467VfXfAWMiIjcCd2kd9RapKyKyI9AVOAr7hFwPK9wfAc+o6oyA8b4nIj8B7gSOZnORI+H7ldglpCFhEpqo00WysaraM2m/kUAbVT0+O8nSE/3fug277DYSKy7tVfWVoMEAEXkCWJH8XFaw3zDgYFXtWOsZvJCY6JLQBcCPgYZYw+UD0TVH53KaiByMFZPkoveGqm4ImS0TInIl8Lmqvhw6S0Wi7uCDsQ9rp2kOdKsWkVZAY1Wdk2K/X2CdLl6q9QxeSPKPiNRX1YrafHKGiDTEGgTLgM9y8c0uaiPZl4QxRao6P2wq53KPN7YnEZFDRORcEblCRHpF3x8SOlcyEekiIk+IyLMicka0rauIzAXWi8i86NNdUCJycTS+ofx+AxH5C/aJ+b9YZ4AVIpIL1/ABEJG2IvIUdj35I+B1bHzDHBFZICK3iEjjoCHziERC56iIiDRK/rcWkZ9E7wttQ+XKOSH7P+fSDeiJtStU1Hd8EzblyOWhc0ZZL4hyvQY8iTW2X4m17YzGRrM+GOXuFDjrh8DVCff/EeX9P+A4rOviTdhgqetz4Lk9BWsbm471zLoJG5S6Psr8S6x31H+AljmQ93RsXM4HwEQSxsAk7HM04cc6nEI0piFh29nY4NSNwIboOT8t9HMaZWsBPB7l2gjcBdQH7k16X3gd2Cl03jT/pnPr6nUQ/I/LhRvQP3rB3I6NAt4petHUj75vBwyP3mD65kDed4ERCfe7R9n+kbTfGGBy4KylwIkJ95cCAyrY7zpgXg48tzOAeyt5jczFzuIbRm+AdwTOenLCm9nwKPumqFhLwn65UEg2seWAxHOiN+M3on/766LvN1LBANAAeYdi06D0B3pEHx4eBb6IiuLO2PizBcCdofOm+TfVWSHxNhJARGZjb8y3pdjv10AfVd03O8kqzbEa6KKqk6P7LbDeOR01oZEyuuQ1UlWDjc8QkUVAP1V9NLq/DjtLmpq038nAU6raKPspt8ixFjhTVV9M2t4Sm1HgEFX9SER6AH9V1d1C5IwyvYbNC3Z5wrae2Jvgi1iPw+9E5Gis0T3YwLmo19ZPVfWd6P6/gQWqekbSfs8CTVT1xAAxE3PMAf6kqndF9w/DCvXlqnpvwn5XYmfS+4RJCiJyT5q7tsYGUdb668DbSMyuwDtp7PcOOTBYCuvamfhiKJ+raFXSfmuwgV8hPYUNntw2uj8ZuLCC/S7EPvWFthTruZfsx9jzXj6OaB6bB6qGcihwf+IGVb0Hm87np8DL0ZiSXHQo1o022ShsEsfQdmHz+DGI5tTC5q1K9BkVj4fJpkuxs6Qfpri1ruwH1JQPSDT/Ba4UkVdUtaL+7uUzlV4Z7RvaPGx210kAqrop6pb4UdJ++7LliNcQfoeNwP6fiNwNPA38VUQOZfOguQ7AYdhMsKGNAm4VkSZY28N6bGT4DcAU3TweZl8gdA+u74AmyRtVdUY0EnsSdrnopiznqkzi5Y+v2fwBKNG35MYH3DlYQZ4W3T8euxR3LNY2We44wr8OPgXeUdUeVe0kIudh7Wi1zguJ+SU2IPFDEXkMm/J8FfbC3x44CLumuye5MVL8MZKmOlDVtyvY7yK2fNFnnaquEJGfYm/Ev8A+6QEcE93WY5dhjlfVd8Ok3ExVB0WXYX6LTdsC9jp4EBuEVm4DNvdaSP/FrtM/lfyAqs6OismzwNgs56rMJBHZGH3fAvgJmz9MlDsIWJTNUJUYAQwRkR9iRe8C7EPRH0SkKTYB4uFAMRB6RvC3sAKXSuKA1VrlbSQREdkPGxV+KpunYy73BdZz52+qmnxqm7NEZG9glarmxJQTACJSxJaD5j7X3BxDsg02zqUhMDuXnsNyInIVNk3KYVrJwNnozOpxrP0s2Cf9aIaDZJ+q6gNJ+02NtudC1/VrsUuu22CzRIwQkQuxNqjySTtHAb8J+RqOuiEfp6pDU+y3E9bGN62q/aqVwQvJ1qJ+4+VtC6tUNfQsr865HBFd5t5JVb8KnSVXeCHJM9Fp97+B7rlwqUhiuHStxGQZY+dyhReSBNEbyC7Ax6q6VUNgdGr4c1Udl/VwW+b4eRUPN8Ea1H5LNIW8qj6bjVwVkRgtXQvxWsY4XdE8XOer6i2BcwRdDramojORxKWBZ2B/R/A3UbFZlc/F/j+NVdVZIvJj4GY2f/i5XRPWf6lVoQfJ5MIN2A54GHuj2IQ1pI4GWiTtF3xgV5QjTqu3LQPOSrj/FtYbqlnCthZY75hJOfDcvogtVbs9dm18OPAlNoPANgmvl+ewXlzBX79p/E11NhAtgwz7Y70Ny1+Xn2NvcLOxYv0uNn38EmDPHHjO3sBmyi2/3zLKWBblXM3mAZXNQuWMsnXCPogtjp7X1dgCViuxwaq3R//vNmFLRtd+htD/YLlwA/6A9dK6ElsYaED0gv4U+EHCfrlSSGZgPVsux/qGJ95+FL3ALyjfFjhrbJaujXLEaRnjvdO89Qn9uiUHloPNMG9slgaOisXD2EqOYB0wVgKjk/a7D3irTjKE/gfLhRvW3bdf0rZdgVeAr4Bjom25UkgEW+d8KTZtwz4Jj7WI/hNsNedSoKzvADcm3P8C6FbBfj2Ar3Ig77KkN4udo+fz5KT9fp4DhaT87DPVLRfOTBcCFyTcbx3l6pK03+XAJznwOkguJF8BAyvYL/jUPlj35I4J91tG+Tsk7XcK1nmo1jP4OBKzF0kDDVV1sYichFXxySLSndzo347aq2KUiDwE/BH4r4gMj77PNX8BxovIF8A4Ni9duxy7nCXYaXguLF0Lm5cxfh0bHJe4jPHLaoM/c2UZ42+Al4G7U+zXDuvaHlLw5WBrKJeXBl7LlgNTy79Pnm6oMTaItdZ5ITELgR9gZyDfU+sb3k1ESrBTx6CN7MlUdRXQT0RGYX3bPwX+Sg6tKa3xWroW4rWM8TtYO96/qtopWvsltODLwVZDXJYGfh0bKPlplOXv2Kzbv4lm6/gmmo/v11jhq3Xea4vvJz3bV1V/VsU+v8M+TasGnPyuKiLSDVsOdE9scrbgy4CWk5gsXQuxWsb4/4Deqpo8gDZ5vxOAm1W1fXaSVZgh+HKwmZAYLQ0sIvtjc9iVvw7mYmf5j2AzBcwDirAPRu1V9T+1nsELyfdd57oCf1HV5VXsdxF2rfzyyvYJLbrs0gRYozm+SqIrHJIDy8HWBcmRpYGj8WPHYT0NX1LVtdHA6ivY/OHnAVX9sk5+vxcS55xzNZELs2y6OiIid4nI6NA50hGnrBC/vM7VJW9sz4CI3AXUU9VeobOkqT3x+bAQp6wQo7wiMhm7+nBS6CypxCkrxCtvXWb1QpKZ2Lx5AKjq/qEzpCtOWSF2eYX4vG7jlBXilbfOsnobSR6Lun3uoqqhF95JKU5ZIX55natLcamkOUFEGkZrfMTFadhKb3EQp6wQo7wisk1cXrdxygrxyluXWb2QZCY2bx6uMIhIXxH5XES+EZG3ReSSCnY7nBx43cYpK8Qrb+is3kYSQyKSbp/1ikbiZlWcskK88kYDUIdhywC/h40jGCsiZwGXqOrakPkSxSkrxCtvLmT1NhIyfvNoE3pku9i61x9j0yBUZQ/g6JB545QV4pVXRKYDL6vqrxO2nQSMx0Y3n6a2KNfRwBueNX1xypsLWb2QEK83DwAR+Q+2+FbXFPudB0wM/CKPTdYoR2zyisg3wBmqOjVpexG2Xkp9oDM2H1ToN7vYZIV45c2FrN5GYv4H/E9Vz6/qBvwzdNDI28BP09ivfELEkOKUFeKV92vszWELqjoXOBabEv8N4MjsxqpQnLJCvPIGz+pnJHw/8dqpqto6xX7nYmt4By3AIrIfcIiqPpViv0ZYF9XkqbqzJk5ZoxyxySsiTwLfqOrFlTzeCJu4rzOBJxuNU9YoT2zy5kJWLyTE683DuXIicj5QDJyuqisq2ac+cCc22eg+2cyXlCM2WaMsscmbC1m9kDjnnKsRbyNxzjlXI15InHPO1YgXEldQROQyEZkRjQBeKSLviUid9MYTkQNE5CYR2T6NfW8SEU24LRSRR6P2u1THXhYd07R2kjuXGS8krmCILZd8NzAJ6AL0AJ4EzqyjX3kAcCOQspBEvgaOiW7XAT8BXhKRJimO+1d0TGk1czpXIz5Fiisk/YCRqnp9wranReTmUIGSbFTVt6Lv3xKR+cCrwM+Bh5N3jnri1FfVr4CvshfTuS35GYkrJNsDi5M3akLXRREpii4TXSQi90WXwJaKyI3Jx4lIh2iCvO9EZImI3FF+eUlEfgY8He06J/qZczPMOyP6WhT9zLEiMl1EzhaRmcB3wNEVXdoSkUYicpuIzBORdSIyR0T+nJT/ChGZGT0+T0R+jXPV4GckrpD8G+gffdJ/RlWXV7Hv34BngPOAE4AbRWSZqt4OICJtgOeBF4Fzgb2AvwD7AqdGv+s64O/YZbRFwLoM8xZFXxcnbbsNuAVYgs3mukU7iogIdsnuGOBWrCDtARyfsM+vgD9FP2sq0Ba4VURKVXV4hjldoVNVv/mtIG7Aj4DZ2PQmZcBM7A25ecI+RdHjLyQdexewAFtqGWAC8Cl2aal8nwuiY4+J7p8e3S9KI9tN2FQWDaLbAcAUYDWwW7TP2Ojn/STp2Mui7U2j+52i+2dW8ruaA2uAG5O234IVrfqp8vrNb4k3v7TlCoaq/hc4GGtcvwObK+v/gOkV9Hh6POn+Y8DuwJ7R/aOAx1V1U8I+jwIbgXbVjLgjsCG6fYyd3XRV1UUJ+yxQ1f+k+DkdgBVa+UwNxwBNgIdFpEH5DXgZaMXmv9G5tPilLVdQVHUd1nbxNICI9MJ6cvUChiTsujTp0PL7uwHzo69Lkn72JhFZDuxQzXhfAx2xs4nFwEJVTZ56YslWR21tR+xSWmXKJ/ibWcnjewE+DZBLmxcSV9BUdbSI3AYclPTQLpXcX5TwdYt9ol5UOwIVzneUho2qOj3FPunMabQcK3SVKc93OhUXpo/T+B3Ofc8vbbmCISLJxQER2RlowdZvqOck3S9vMP8yuv82cE5UPBL3aQC8Ft1fH31tWIPY1fESsIOInF7J428Ca4HdVXV6BbdvshfV5QM/I3GF5INoyu0XsEtVrbGeVaXAvUn7HhItL/Ao1murFzBAVcuix/+ILWv6hIjcibUr/BWYpKpvRvuUf7K/SkQmAKWq+kHd/GlbeBEbdPmAiNyC9SDbDThBVa9S1VUichMwRERaA69gHyoPANqranIRda5KXkhcIbkFOAsYirVjLMYW/OmqqnOS9v01dunnUWy8xq3A991iVXWmiHTGutA+hvWuejA6rnyfeSJyHXAt0B87mymqiz8skaqqiJwTZR6ILRG9EHggYZ/bRGQhNv34L7G/8RNgYl3nc/nHp5F3LkG0POkcbOnSZ8KmcS4evI3EOedcjXghcc45VyN+acs551yN+BmJc865GvFC4pxzrka8kDjnnKsRLyTOOedqxAuJc865Gvl/T2D1lNDCAdoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", + "x = uncertainty_model.values\n", + "def payoff(x):\n", + " if x <= strike_price_1:\n", + " return 0\n", + " elif x < strike_price_2:\n", + " return x - strike_price_1\n", + " elif x < strike_price_3:\n", + " return strike_price_2 - strike_price_1\n", + " elif x < strike_price_4:\n", + " return strike_price_2 - strike_price_1 + strike_price_3 - x\n", + " else:\n", + " return 0\n", + "y = [payoff(x_) for x_ in x]\n", + "plt.plot(x, y, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.3569\n" + ] + } + ], + "source": [ + "# evaluate exact expected value (normalized to the [0, 1] interval)\n", + "exact_value = np.dot(uncertainty_model.probabilities, y)\n", + "print('exact expected value:\\t%.4f' % exact_value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 5\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, iron_condor)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.3569\n", + "Estimated value:\t0.3428\n", + "Probability: \t0.9697\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHjVJREFUeJzt3XvUHFWd7vHvw0UIt3APDDJE8BJhZHnkFWEOI4ncwzlyEU0WembFQaMeFWYWOiAiBHRYBkdAF+MClk44nNGEGWA4wyWEcHnDXQgSxEkCBg13EZyXxBiIQH7nj13BSr39dlffqvN2ns9avd7uXbt27dqp9K+rau9digjMzMy6bZNeV8DMzDYODjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDGrQ9IMSYPZ+0FJM5pcf6KkKJY1Qt4bJT1WZ/mlkoYkbVFy2++UFJKObqbOZt3igGO24ZgN/IWk/YoLJG0KnARcFxFrKq+ZWQc44JhtOP4fsBqYWmPZJGAcKSiZjUoOOGYtknSwpP+Q9LykP0haJOmTrZYXEauAG4EpNRZPBV4E7sy2vYekWZJ+LelVSU9IOk/S5nXqu1l2ie3zhfRvSfpNIW0vSVdnl/BWS5or6V2t7psZwGa9roDZhiwiZuTeTyws3gu4F7gMeA3478AsSWsjYna2ziCgYll1zAY+IemAiHgYIAsiJwA/jog3s3y7AC8Dfwu8AkwAzgV2Br7Y5G6uR9LO2X69CEzP9u0sYL6k9/iSnrXKAcesRRExZ917SQLuAt4OfJbWL33NJQWQqcDDWdpRwI75MiNiEbAot/17gVeByySdFhFvtLh9gNOBLYDDIuKVrPz7gOXANODyNsq2jZgvqZm1SNIOkr4v6Sng9ew1HXh3q2VmZw//TjrLUZY8BXgKeCC37U0knS5piaRXs23/H2AMKei143BgHrAquwy3GbAC+Bkw0GbZthFzwDFr3ZWkYPAd4Ejgg8A/A1u2We5s4M+BgyVtCRwHzI71p3Y/HZgJ/BvwUeBA4NRsWbvb3xn4JH8KouteHwb2bLNs24j5kppZC7JAcCzwpYi4LJfeiR9xd5Dun0wFdge2Zfgluo8DcyLinNy2929Q7pvAG8DbCuk7Fj7/F/AIcEGNMlY22IbZiBxwzFqzBbAp8NYNdEnbks422nrIVES8KenfSEFlD2BJRPy8kG1MftuZuj3kIiIkPQe8N1fnTYGPFLLeTjqreswdBKyTHHDMWhARKyQ9BJwjaSWwFjiTdK9juw5sYjbwJVLvtHNqLJ8PfEHSQuBXwF8D40uU++/AdEmPku4LfRbYqpDnH4GTgTskXQo8D+wGHAoMRsS/Nr03ZjjgmLXjZOAK4Crgd8ClpC/vL3Wg7PtJvcLGA3NqLD8X2Il02SuAa4C/A65vUO45pHs0FwB/BL4PLAY+sy5DRPxW0kHAPwCXANsDLwB3AyNOvWPWiKp+xLSkdwJfBQ4C/gK4u8b4hlrrjSUd/MeTOjvcCJwaEb8r5DsO+BbwLtIvv/Mi4upO7oOZmTWvF73U9gMmA09kr7KuBiaSfolNI/UIWu/XnKRDgGtJo7GPAW4CZks6st1Km5lZe3pxhrNJRKzN3l8D7NzoDEfSwcB9wKERcVeWdiDwU+CIiLgtS5sHbB4RH8mtezOwXUQc0o39MTOzcio/w1kXbJp0DPDiumCTlfMg8OtsGdmU7ZOA4g3NOaTxDGNbq7GZmXXCaBn4OQFYWiN9SbYMYB9g8xr5lpD2s+XR32Zm1r7R0kttB9L8UkVDwN65PNTIN1RYvh5J00nTkTBmzJgD9tyzMwOp165dyyabjJZ43jtup3LcTuW4ncrpZDs98cQTL0fELmXyjpaAA7UH06lGevGzRkhPiRFXkLq2MjAwEAsXLmynjm8ZHBxk4sSJHSmrn7mdynE7leN2KqeT7ZTNJVjKaPkpMEQaC1C0PX86oxnKpRXzQO0zJDMzq8hoCThL+dO9mrz8vZ0nSRMMFvNNII0Cb6YLtpmZddhoCThzgd2ycTYASBog3b+ZC29N634naf6pvCnA/RGxoqK6mplZDZXfw5G0FWngJ6SJCbeTdFL2+eaIWC1pGbAgIk4BiIj7szE2V0n6CumMZSZwz7oxOJlvAoOSLiENCp2cvY7u+o6ZmVldveg0sCvpGR556z6/gzR/1GakmXjzpgIXk5438tbUNvkMEXFPFry+BXyBNE7n5Ii4tYP1NzOzFlQecCJiOX/qOTZSnvE10l4BPp296q17PY0nMDSznPFn3tQwz/JvH1tBTayfjZZ7OGZmNso54JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklKg84kvaVdLuk1ZKel3S+pE0brDNDUozw+lou35Uj5JnQ/T0zM7N6NqtyY5J2AG4DFgPHAfsA3yUFvrPrrPpD4JZC2vHAGcDcQvpS4NOFtOWt1djMzDql0oADfB4YA5wYESuB+ZK2A2ZIujBLGyYingWezadJ+gawNCIWFbL/ISIe6ELdzcysDVVfUjsGmFcILHNIQejQsoVI2hE4Apjd2eqZmVm3VB1wJpAueb0lIp4GVmfLyjoJ2JwUrIr2lbRS0hpJ90gqHcjMzKx7FBHVbUx6HfhqRFxSSH8WuCoizipZzh3A2Ig4oJB+GvBH0j2iXYDTgQOAQyLiwRHKmg5MBxg3btwBc+bUimHNW7VqFdtss01Hyupnbqdyut1Ojz23omGe9+0xtmvb7xQfT+V0sp0mTZr0cEQMlMlb9T0cgFoRTiOkD88o7U66/HbGsIIjvlfIexMp+JxF6mQwvDIRVwBXAAwMDMTEiRPLVKOhwcFBOlVWP3M7ldPtdpp25k0N8yz/ZPe23yk+nsrpVTtVfUltCNi+RvpY4JWSZXyCFKCubpQxIl4FbgY+ULaCZmbWHVUHnKUU7tVI2hPYmsK9nTqmAvdExDNNbLe664ZmZlZT1QFnLnCUpG1zaVOAV4EFjVaWNB44iJK90ySNIfWMe7jZipqZWWdVHXAuA9YA10k6PLthPwO4KN9VWtIyST+qsf5U4A3gmuICSWMl3S3pc5IOkzQFuBPYA7igC/tiZmZNqLTTQEQMSToMuBS4gXTf5mJS0CnWq9Z0N1OB2yPipRrL1gAvkWYs2BV4DbgfODQiFnZkB8zMrGWV91KLiMXARxrkGT9C+vvrrPMacGJblTMzs67xbNFmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVommAo6kWtPNmJmZNdTsGc5zki6U9N6u1MbMzPpWswHncuAk4BeSfippuqTtulAvMzPrM00FnIg4NyL2Bo4AHgcuAl6Q9GNJh3ejgmZm1h9a6jQQEXdExF8DuwFfBt4DzJO0XNIMSX/WyUqamdno124vtQHgw6THRg8BdwOfAZZJ+lSbZZuZWR9pOuBI2kvSuZKeBG4Hdgf+BviziPhfwF6kez3f6WhNzcxsVGvqAWyS7iCd0TwLXAnMioin8nki4k1JPwFO61Qlzcxs9Gv2iZ8vA5OB+RERdfItAt7Rcq3MzKzvNHtJ7VLgvlrBRtI2kj4MEBGvF898zMxs49ZswLkT2HeEZe/JlpuZmQ3TbMBRnWXbAKvbqIuZmfWxhvdwsstkE3NJn5F0dCHblsCxwGOdq5qZmfWTMp0GPkQa3AkQwMeBNwp5/ggsBb7auaqZmVk/aRhwIuI7ZGNqJP0aOCEiFnW7YmZm1l+a6hYdEe7qbGZmLSlzD2cycE9ErMze1xURN3ekZmZm1lfKnOHcCBwEPJi9D0burRaAH9JmZmbDlAk47wBeyL03MzNrWplOA0/Vem9mZtaMMvdwtmqmwIjw4E8zMxumzCW1VaR7M2X5Ho6ZmQ1TJuD8Dc0FHDMzs2HK3MO5soJ6mJlZn2v3EdNmZmallOk08CAwLSIWS3qIBpfXIuLATlXOzMz6R5l7OP8JvJp77/s5ZmbWtDL3cD6dez+tq7UxM7O+1fI9HCW7SKr3UDYzMzOghYAjabKk+4DXgN8Ar0m6T9KxHa+dmZn1jaYCjqTPATeQBoOeRnoY22nZ5//IlpuZmQ3T1PNwgLOAKyLiC4X0yyRdBnwduLwjNTMzs77S7CW1nYDrRlh2LbBjowIk7SvpdkmrJT0v6XxJdafDkTReUtR4zamR9zhJj0l6TdJiSVNK7ZmZmXVVs2c4dwKHAvNrLDsUuKveypJ2AG4DFgPHAfsA3yUFvrNLbP8rwL25zy8Xyj+EFPh+AJwKTAZmSxqKiFtLlG9mZl1SZuDnvrmP3wd+KGkn4Hrgt8CuwAnAMcBnGhT3eWAMcGJErATmS9oOmCHpwiytnscj4oE6y78B3BURp2af75S0H3AO4IBjZtZDZc5wfsH6gz0FfC57FZ/+eQv1Z4s+BphXCCxzgJmkM6QbStSnJklbAJNIZzZ5c4BZksZGxIpWyzczs/aUCTiTOri9CcAd+YSIeFrS6mxZo4AzS9KOpDOr2cDXI2LdLAj7AJsDSwvrLCFdsns38FB71Tczs1aVmWlgQQe3twPwSo30oWzZSNYA/0S6LLYSmAicQQoyx+XKpkb5Q4Xl65E0HZgOMG7cOAYHB+vVv7RVq1Z1rKx+5nYqp9vtdPr73miYZzT8O/l4KqdX7dRsp4G3SNoE2LKYXuKJn7XmYtMI6evKfAH4Ui5pUNKLwA8kvT8iFtUpXyOkryv7CuAKgIGBgZg4cWL92pc0ODhIp8rqZ26ncrrdTtPOvKlhnuWf7N72O8XHUzm9aqdmB35K0hmSlgGvA7+v8apnCNi+RvpYap/51HNN9vcDubKpUf66z82Wb2ZmHdTsOJxTgTOBH5HOHP4BOB94AlhOdmmqjqWkezVvkbQnsDXD7700EoW/T5KC4IRCvgnA2qyOZmbWI80GnM8C5wIXZp+vj4jzgP1IAeNdDdafCxwladtc2hTS4w+avVd0Uvb3YYCIWEMaJ/TxQr4pwP3uoWZm1lvN3sN5B7AoIt6U9DrZ5aqIWCvpB8APSWdAI7mMdJZ0naSZwN7ADOCifFfp7JLdgog4Jfs8A9iWNOhzJfBh4KvAdRHx81z53yTd37mENE5ocvY6usn9NDOzDmv2DOd3wDbZ+6eB/5ZbtgNpUOeIImIIOIw0VucG4DzgYtJZU95mrD+eZylpnM4s4GbgZOA72d98+feQznwOB+YBHwVO9iwDZma91+wZzr3AB0lf+j8hzRCwI/BH4IvA7Y0KiIjFwEca5Blf+DyHNICzoYi4nnR2Y2ZmG5BmA84MYI/s/QWkS2rTSGc284Evd6piZmbWX5oKOBHxOPB49n4N6Vk4p3WhXmZm1mfaGfj5dmB34PmIeK5zVTIzs37UyiOmvyDpGeAp4KfA05KelfS/O147MzPrG83ONHAOcClpPM2xwED2dy7w/Wy5mZnZMM1eUvsicEFEfKOQfks2t9kXSTMPmJmZrafZS2pjGPmpnguoMZmnmZkZNB9wrgdOHGHZx4Ab26uOmZn1qzKPmJ6c+zgXuFDSeIY/Yno/4O87X0UzM+sHZe7h3MjwR0nvARxVI++/kJ7EaWZmtp4yAecdXa+FmZn1vTKPmH6qioqYmVl/a3qmAUmbkToIHALsCPwXcDfpUQGNH4xuZmYbpaYCjqRdgVuB/UlP+HwROJg0/uZRSUdGxEudrqSZmY1+zXaLvgjYCfhQROwdEQdHxN7Ah7L0izpdQTMz6w/NBpzJwBkR8VA+Mfv8NdI0N2ZmZsM0G3C2AH4/wrLfA29rrzpmZtavmg04DwBnSNo6n5h9PiNbbmZmNkyzvdROB+4EnpF0K6nTwK6kQaACJna0dmZm1jeaOsOJiEXAu4ArgF2AI0gB5zLgXRHxaMdraGZmfaH0GY6kzYEDgV9HxJndq5KZmfWjZs5w3gTuAN7bpbqYmVkfKx1wImIt8EtgXPeqY2Zm/arZXmpfB86R9L5uVMbMzPpXs73UzibNKLBI0nOkXmqRzxARB3aobmZm1keaDTi/yF5mZmZNKRVwJI0hTWvzC+A3wG0R8WI3K2ZmZv2lzCOm9wZuA8bnkldK+kRE3NqtipmZWX8p02ngQmAt8FfAVsB+wCPA5V2sl5mZ9ZkyAedg4OyIuDciXouIJcDngD+XtHt3q2dmZv2iTMDZHfhVIe1J0txpu3W8RmZm1pfKjsOJxlnMzMxGVrZb9DxJb9RIv72YHhG7tl8tMzPrN2UCznldr4WZmfW9hgEnIhxwzMysbc3OpWZmZtYSBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0pUHnAk7SvpdkmrJT0v6XxJmzZY54OSZklalq33uKRzJW1ZyDdDUtR4Hd3dvTIzs0aafQBbWyTtQHrUwWLgOGAf4LukwHd2nVWnZHlnAr8E9ge+mf39WCHvCqAYYJa0W3czM2tPpQEH+DwwBjgxIlYC8yVtB8yQdGGWVsvMiHgp93lQ0mvA5ZL2ioincsveiIgHulN9MzNrVdWX1I4B5hUCyxxSEDp0pJUKwWadR7K/nrvNzGwUqDrgTACW5hMi4mlgdbasGX9JejDc44X07SW9LOl1SY9IOrHl2pqZWccooronD0h6HfhqRFxSSH8WuCoizipZzm7Az4GbI2JaLv1TpDOeRcA2pAfFTQY+FhHXjVDWdGA6wLhx4w6YM2dOs7tV06pVq9hmm206UlY/czuV0+12euy5FQ3zvG+PsV3bfqf4eCqnk+00adKkhyNioEzeXgScr0TE9wrpzwFXRsTXS5TxNlLHg7cDB0TEUJ28Au4DxkTE+xuVPTAwEAsXLmyUrZTBwUEmTpzYkbL6mdupnG630/gzb2qYZ/m3j+3a9jvFx1M5nWwnSaUDTtWX1IaA7WukjwVeabRyFkCuAvYDJtcLNgCRoul1wP6Nul6bmVl3Vd1LbSmFezWS9gS2pnBvZwQXk7pTHxERZfKv4yeWmpn1WNVnOHOBoyRtm0ubArwKLKi3oqSvAV8GPhUR95TZWHZGdALwaES82VqVzcysE6o+w7kMOBW4TtJMYG9gBnBRvqu0pGXAgog4Jft8MnABcCXwnKSDcmU+ua7btKQFwLWks6Wtgc8CBwHHd3e3zMyskUoDTkQMSToMuBS4gXTf5mJS0CnWK3/P5cjs77TslfdpUiACWAb8LbA7qcv0z4BjI2JuJ+pvZmatq/oMh4hYDHykQZ7xhc/TGB5oaq13ShtVMzOzLvJs0WZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6tE5QFH0r6Sbpe0WtLzks6XtGmJ9cZKmiVpSNIKST+WtFONfMdJekzSa5IWS5rSnT0xM7NmVBpwJO0A3AYEcBxwPnA6cF6J1a8GJgKfAaYBHwSuL5R/CHAtcCdwDHATMFvSkR3ZATMza9lmFW/v88AY4MSIWAnMl7QdMEPShVnaMJIOBo4CDo2Iu7K054CfSjo8Im7Lsn4DuCsiTs0+3ylpP+Ac4Nbu7ZaZNWP8mTc1zLP828dWUBOrUtUB5xhgXiGwzAFmAocCN9RZ78V1wQYgIh6U9Ots2W2StgAmAacW1p0DzJI0NiJWdGg/zLqq+IV8+vveYFouzV/GNhpVHXAmAHfkEyLiaUmrs2UjBZwJwNIa6UuyZQD7AJvXyLeEdOnw3cBDrVXbNmaNfo37y3/D5X+7DUvVAWcH4JUa6UPZslbW2zuXhxr5hgrL1yNpOjA9+7hK0uN16tGMnYGXO1RWPxv17aSZ3d/GqYV2qmKbRVVvs8XtNXU89aIdNxCd/H+3V9mMVQccSB0GijRCeivrFT+rzvpExBXAFQ223TRJCyNioNPl9hu3Uzlup3LcTuX0qp2q7hY9BGxfI30stc9gGq23fW69oVxaMQ8Nyjczsy6rOuAs5U/3XACQtCewNbXv0Yy4XiZ/b+dJ4PUa+SYAa4EnWqivmZl1SNUBZy5wlKRtc2lTgFeBBQ3W2y0bZwOApAHS/Zu5ABGxhjT+5uOFdacA9/egh1rHL9P1KbdTOW6nctxO5fSknRTR6NZJBzeWBn4uBn5B6gq9N3ARcElEnJ3LtwxYEBGn5NJuIfU0+wrpjGUm8NuI+KtcnkOAQeBS0qDQyVn+oyPC43DMzHqo0jOciBgCDgM2JXWBPg+4GDi3kHWzLE/eVNJZ0D8DVwEPAycUyr8HOAk4HJgHfBQ42cHGzKz3Kj3DMTOzjZdni27Ak4021kobSfpg1j7LsvUel3SupC0L+WZIihqvo7u7V53XYjuNH2H/59TIO+qPJWi5nUY6TkLS13L5rhwhT61OSRs0Se+UdLmkRyW9KWmw5Ho9+27qxTicUSM32ehi0mSj+wDfJQXqs+usCmmy0feQJhtdd8/peqB4z+la4AekKXkmkyYbHRotlwHbaKMpWd6ZwC+B/YFvZn8/Vsi7AigGmCXt1r1KbR5LkO5F3pv7vN6gvX44lqCtdvohcEsh7XjgDLKORTlLgU8X0pa3VuOe2o/07/wA8LYm1uvdd1NE+DXCC/gaaXzPdrm0vwdW59NqrHcwaaDph3NpB2Zph+fS5gF3FNa9Gbin1/teQRvtUiNtetZGe+XSZgAv93o/e9hO47M2+R8Nyh/1x1I77TRCWTcBSwppVwILe72fHWqrTXLvrwEGS6zT0+8mX1Krb6TJRseQJhutt96wyUaBdZONkpts9F8L684BDpY0tv3qV6KlNoqIl2okP5L93bVz1dtgtHosNdRHxxJ0qJ0k7QgcAczubPU2HBGxtoXVevrd5IBT37BJQyPiadKvrXrXfDs12eho0Gob1fKXpFP84nx220t6WdLrkh6RdGLLte2ddttpVnad/gVJF0kak1vWL8cSdO54OonUJsPudQH7SlopaY2keyS1FfBHmZ5+Nzng1NeNyUZ3yOWhRr66k41ugFpto/VI2g34OvB/C79ul5EuqXyCdG/neeDaURh0Wm2nNcA/AaeQhhRcDnyB9b9I++VYgg4dT6RhFD+LiOIMI4+QHvr4P4FPkoZfzJd0YAt1HY16+t3kTgONbVCTjW6gWm2jlFF6G+n0fRXwd+sVHPEvhbw3APeRHqp3XSuV7aGm2ykiXgC+lEsalPQi8ANJ74+IRXXKH43HErR/PO1Ouvx2xrCCI75XyHsTqYPCWaROBhuDnn03+QynPk822lirbQSAJJEG8u4HTI40OHhEke5eXgfsX6Z7+gakrXYquCb7+4Fc2dQof7QdS9CZdvoE6cvx6kYZI+JV0s3wDzTK2yd6+t3kgFOfJxttrNU2WudiUvfX4yKiTP51Rtuv9nbbKS8Kf/vlWILOtNNUUm+qZ5rY7mg7nlrV0+8mB5z6NqbJRlvVahuRDcj7MvCpSNMSNZSdEZ0APBoRb7ZW5Z5ouZ1qOCn7+zD01bEEbbaTpPHAQZTsnZZ1vjiGrC03Ar39bup1X/IN+UW6OfYCMJ80P9t00n2GbxXyLQN+VEi7BfgVcCLp2vDjwN2FPIcAbwCXABOBC0m/II7s9b53u42Ak0m/KmeRviDyr11y+RaQBp4dSQo0N2dt9NFe73tF7TSDNPDxxGy980lfvtf227HUTjvl0s8k/TqvNc5rLHA38DlSB4wppEGTa4CBXu97C221FenHx0nA/cB/5j5vNVI79fK7qeeNtqG/gH2BO7L/5C+QRsNvWsizHLiykLZ99mX6CrAS+Amwc43yjyfNnr2GdEo7tdf7XEUbkQbgxQivabl8P8r+c7wK/CH7wjim1/tcYTtNBRaSZlv4Y/YFcj6wRT8eS622Uy59EXDLCOVuSbr/90zWRiuyL9+Der3PLbbT+Dr/h8aP1E69/G7y5J1mZlYJ38MxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpX4/3wikDlpOrGeAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYXFWd//H3h0WIBMKagAwSQTHDMqKEzWGkIyBbMIgg62gUDCqy+CATQISwTJyAbBPGgfwcCQ5CcIBhhgAJa4LgBkiYIBAMGlYTWQIhJuzf3x/nNhTVVdW3qqtudVc+r+epp7vOPefW91RV17fvueeeUkRgZmbWaiu1OwAzM1sxOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCceaStIESVHldkTOfWyR7WftsvKx2X4Gtyb6fHH0cZ/XSpqVo94qkk6Q9JCk5ZIWS7pZ0i4NPm5/eU7Hlr0n/iJppqRP5WjblbXZuohYrfmccKwVXgF2rnCbkbP9FsAZQPkH/U3ZfpY1J8yG42gpSSsDNwATgf8F9gHGAm8DsyQd1sBu+8tz2u2z2eMeDWwA3CXpQ720+V3W5okWx2Ytskq7A7CO9FZE/LrZO42I54Hnm73ffuhYYF9g74goTdL/I2kaMEXS7Ih4tq8P1Mbn9L6IWAog6X7gSeBw4LzyipIErBYRS4Cmv6+sOD7CsbaQdIqk+ZJek7RI0gxJG0rqAm7Mqv0pG0JZkLV53/CPpOHZ/UMkXS5piaRnuofuJP2TpOckPS9pkqSVSh5/hKRpkp6WtEzS77MhrJWy7VXjyLZ/OGv/UtZ+pqSPl/Vxk2wYbLmkBZKOyvn0HA/cVZZsun0PWB04suRxFkj6oaTvS1ooaamkn0ka0ltfKg2pSVpf0hWSXsz6NkvSyLK+dT/md7LnfHH2fNR9NBgRT5OS3vBs3xMkvSBpF0n3Aa8BB1UaUpO0cvZeelzS61ksU8tiHSPp/uy9tlDSuZJWrTdO6zsf4VhLSOrx3oqIt7JtXwZOBcYDvwfWIw2xrEEaNvku8EPgAODPwOu9PNwk4GfAF4GvAVdI+iSwaXZ/O+Ac4EFgWtZmY2Be1u5VYFvgTGAQ8INacUhaF7gHeBH4Bmk46mTgdklbRMTy7L/y/wHWJyWH17L9rwv8ocbztgnpg/fCStsj4glJc4HPlG06FJgPfB3YCDgX+DFwUK2+VHED8NGszQvASaQhr09GxPySel8C/g8YB/wNcAFpGPBbNfbdg6Q1Sc/LwpLiDwJXZP14HHgu61e5y4AvZ/VmZ/s5sGTfXwKuzuqdCmxOen1XyvpnRYoI33xr2g2YAESV2/CsziXAdTX2Mbq0fkn52Kx8cHZ/eHb/8pI6awFvkj7UVy4p/y1wTZXHE+mfr1OBP+aI42xSslm3pGwd0rmrY7L7+2RtdyypsynwFjCrRt93ytqNqVHnBuDRkvsLgJe6n5es7HDgHeBv63xO98ru71pSZw3SEchlZY/5BLBKSdlFwMJe3h/djzcke843Aa7Jnpdty95DY8radmXlW2f3R2T3j6vxuj5Z+v7Iyr8GLAfWa/ffy4p28xGOtcIrwO4Vyp/Lfs4BjpR0Jumk9QMR8XYfHu+O7l8iYomk54HZZfucD3y4+46k1YFTSB/MHwZWLdm2SmRHY1XsDtwGLCk5knsVeADoHnraAVgUEb8pie1JSQ800L88bovsnEjmeuBKYHvg0Tr2swPwfETM7i6IiL9Kmg6Uz5C7q+x5egQYKukDEfFGL4/zcsnvLwBfi4g5JWUB3NLLPkZlP6dW2b4F6bX9edkR952kYcmtSUdFVhAnHGuFtyLi/hrbfwKsSRqKOR14UdK/AxMaTDwvl91/o0rZ6iX3JwFHkYa5fpfVHwOcltVbSnXrk45EDq6wrTv5bQj8pcL2v5D6Xk33RIBNa9TZtKRe6X7fFWlYbymVh6Fq2QhYVKF8EWm4qlSl51jAB7Lfa/kMaSjyBeDpiHinbPviHElrPeCvkSYTVLJ+9vPmKts36WX/1mROOFa47MPlQuDC7JzF4cA/kz5ELy0ojIOAyRFxbneBpH1ztn2JNF357ArbXs1+LgSGVtg+lDScU1FEPJ2d0P888K/l2yV9hPSfefljDy2rNwgYTDpfU48/l+8rM4zU72Z5sOyIrFye7015EVhD0lpVkk53vONI5+/K/SnHY1gTeZaatVVEPB0R/0Ia8toyK+7+z3b1yq2aYhAlJ86Vrn05pKxOtTjuALYCfh8R95fd5mV17gOGSdqx5DE+DPR6gSNwMbCbpM9V2HZOFvd/lJXvofdfvHkA6UO7+0gz73P6G9Kw2LuTEiR9kDRN+54csRfpzuznl6tsn0f6J2Z4hdfp/oh4sZgwrZuPcKwVVpG0U4XypyPiWUmXkf77/DXpfM8o4GOkWWuQPigAjla67mRZRMxtcoy3AcdImp/FcgywWlmdanFcABwB3ClpMulDbRiwK3BPRFxNGsZ5CPgvSeNJs9TOovIwW7nJpPNE/y3ph8As0jDckaST//8YPa/BWQ7cJOk80rDYecB/R8QjvfTlfSJipqR7gWsknUw6ivguKUH3uEamnSJinqQpwPmShgJ3ky5sPTAiDomIdySdCPynpLVI54TeADYD9s/qFX3B64qt3bMWfOusG7VnqZ2W1RkL3Ev6oF9Gmlp7ZNl+TiTNMHoLWFDSrtIstdFlbRcAPywrmwrcX3J/GPDfwBLS+YlzSVOK391/tTiy8g8Bl2dtX88e80pgq5I6HyatrrA828fRwLXUmKVW0nYV4DvZc7McWEz6wNylQt0FwPnZc78I+CtpKvDa9T6nWdkGwE+zx1xOOrG+fY7nuMe+KsSap84E4IUK5V2UzFLLylYmm11ISibP0HNW2t7AL7LnZQlp0so5lMyw862Ym7IXpDCSPkqa178TaSz6FxHRlaPdENK0y/1JQ4HTSdMhXyyrN4b0ZvoY6U14ZkRc08w+mPUn2TmfayPC15VYv9aOczhbka5ReDy75XUN6T+co0j/JW1Puh7hXUoLG14H3EX6r+Ym4OoqY+FmZlagdhzhrBTZFEhJ1wLr93aEI2ln4Jeki9Huzsp2IJ3g3CMibs/KZgKrRsRnS9reDKwVEQ2tsmvW3/kIxwaKwo9woud8+zz2Jl1Ed3fJfn5Lmta4N4Ck1Ugnn39e1nYasHP3ulJmnSYihjvZ2EAwUKZFjwAeq1D+aLYN0hpJq1ao9yipn1u0LDozM+vVQJkWvQ49r2qGNItms5I6VKi3uGz7+0gaR7owjEGDBm23ySb5Lj5+5513WGmlgZKvK+uEPoD70WprPp5Otb66Re//s/XXPtTL/cjv8ccffyEiNshTd6AkHKh85bEqlJffV432RMQUYArAyJEj4/77a63I8p5Zs2bR1dWVq25/1Ql9APej5ZT9Cc2bV7se/bgPdXI/8pP0ZN66AyWFL6byty6uzXtHNItLysrrQOUjJDMzK8hASTiP8d65mlKl53aeIC1LX15vBGmZ9nqmYJuZWZMNlIRzC7Bhdp0NANk3EG6WbSMiXiddf3NQWduDgV9FxCsFxWpmZhUUfg4nWwhwn+zuxsBakrq/oe/miFiWrW81OyKOBIiIX2XX2PxU0ndJRyyTSOtW3V6y+7OBWZIuIl0Uuk9226vlHTMzs5raMWlgKPBfZWXd9z9CWqNpFdIaSaUOIS1p/xNKlrYprRAR92TJ6xzgm6TrdA6LiFubGL/ZiqXgi8OtcxWecCJiAe/NHKtWZ3iFspeBr2a3Wm1voGzJGzPrafjJNzXcdsG/5P3qILP3DJRzOGZmNsA54ZhZTTdOPZ4bpx7f7jCsAwykCz/NrA22WfREu0OwDuEjHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQniWmpnVdNUn9mx3CNYhnHDMrKZT9zq23SFYh/CQmpmZFcIJx8xq2nrhfLZeOL/dYVgH8JCamdU0/YoTABg+fnqbI7GBzkc4ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeFq0mdU0+isXtTsE6xBOOGZW08MbfrTdIViH8JCamZkVwgnHzGqaOGMyE2dMbncY1gGccMyspsMemslhD81sdxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4Qs/zaymucM2b3cI1iGccMyspv3GXtzuEKxDeEjNzMwK4YRjZmaFcMIxs5oWTBrNgkmj2x2GdQAnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIbzSgJnVdMqe3253CNYhnHDMrKart92r3SFYhyh8SE3SlpLukLRM0nOSzpK0ci9tJkiKKrdTSupNrVJnROt7ZmZmtRR6hCNpHeB24BFgDLA5cD4p8Z1Wo+mPgRllZfsD44FbysofA75aVragsYjN7NA56U/PRzrWV0UPqX0DGAQcEBFLgNskrQVMkHRuVtZDRDwDPFNaJun7wGMRMaes+l8j4tctiN1shfSDmZcATjjWd0UPqe0NzCxLLNNISWjXvDuRtC6wB3B1c8MzM7NWKTrhjCANeb0rIp4ClmXb8joQWJWUrMptKWmJpNcl3SMpdyIzM7PWUUQU92DSm8BJEXFRWfkzwE8j4tSc+7kTGBIR25WVHw+8QTpHtAFwIrAdsEtE/LbKvsYB4wCGDRu23bRplXJYT0uXLmXw4MG56vZXndAHcD8aNffZV3LVO/aI/QGYfOUN75Zts/GQinX9WvQvRfRj1KhRD0TEyDx12zEtulKGU5XynhWljUjDb+N77Dji4rK6N5GSz6mkSQY9g4mYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ih5SWwysXaF8CPByzn18iZSgrumtYkQsB24GPpU3QDMza42iE85jlJ2rkbQJsAZl53ZqOAS4JyKeruNxixs3NDOziooeUrsFOEnSmhHxalZ2MLAcmN1bY0nDgZ2Ab+V5MEmDSDPjHmgkWDOD4eOntzsE6xBFH+FcCrwOXC9p9+yE/QTggtKp0pLmS/qPCu0PAd4Cri3fIGmIpF9IOlrSbpIOBu4CNgYmtqAvZmZWh0KPcCJisaTdgEuAG0nnbS4kJZ3yuCotd3MIcEdEPF9h2+vA86QVC4YCrwG/AnaNiPub0gEzM2tY4bPUIuIR4LO91BlepXzbGm1eAw7oU3Bm1sONU48HYL+xF/dS06w2rxZtZjVts+iJdodgHcJfwGZmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVgjPUjOzmq76xJ7tDsE6hBOOmdV06l7H9l7JLAcPqZmZWSHqSjiSKi03Y2YdbOuF89l64fx2h2EdoN4jnGclnSvpb1sSjZn1O9OvOIHpV5zQ7jCsA9SbcC4DDgQelvQbSeMkrdWCuMzMrMPUlXAi4oyI2AzYA5gHXAD8WdLPJO3eigDNzKwzNDRpICLujIgvAxuSvvL848BMSQskTZD0oWYGaWZmA19fZ6mNBD5D+troxcAvgKOA+ZKO6OO+zcysg9SdcCRtKukMSU8AdwAbAV8DPhQR/whsSjrXc15TIzUzswGtrgs/Jd1JOqJ5BpgKXB4RT5bWiYi3JV0FHN+sIM3MbOCrd6WBF4B9gNsiImrUmwN8pOGozKzfGP2Vi9odgnWIehPOJcDvKiUbSYOBT0XE3RHxJvBkj9ZmNuA8vOFH2x2CdYh6z+HcBWxZZdvHs+1mZmY91JtwVGPbYGBZH2Ixs35o4ozJTJwxud1hWAfodUhN0meArpKioyTtVVZtdWBfYG7zQjOz/uCwh2YCXjXa+i7POZwdSRd3AgRwEPBWWZ03gMeAk5oXmpmZdZJeE05EnEd2TY2kPwFfiIg5rQ7MzMw6S12z1CLCU53NzKwhec7h7APcExFLst9rioibmxKZmZl1lDxHONOBnYDfZr8H1WerBeAvaTMzsx7yJJyPAH8u+d3MViBzh23e7hCsQ+SZNPBkpd/NbMWw39iL2x2CdYg853A+WM8OI8IXf5qZWQ95htSWks7N5OVzOGZm1kOehPM16ks4ZtZBFkwaDcDw8dPbHIkNdHnO4UwtIA4zM+twff2KaTMzs1zyTBr4LTA2Ih6RdB+9DK9FxA7NCs7MzDpHnnM4vweWl/zu8zlmZla3POdwvlry+9iWRmNmZh2r4XM4SjaQVOtL2czMzIA6V4uGdxfzPA3YLmv/lqQHgH+OiJuaHJ+Ztdkpe3673SFYh6gr4Ug6GvgRcAdwPPAXYChwAPC/kr4VEZc1PUoza5urty3/gl+zxtR7hHMqMCUivllWfqmkS4HvAU44ZmbWQ73ncNYDrq+y7Tpg3d52IGlLSXdIWibpOUlnSaq5HI6k4ZKiwm1ahbpjJM2V9JqkRyQdnKtnZlbRoXNmcOicGe0OwzpAvUc4dwG7ArdV2LYrcHetxpLWAW4HHgHGAJsD55MS32k5Hv+7wL0l918o2/8upMT3I+A4YB/gakmLI+LWHPs3szI/mHkJ4KE167s8F35uWXL3X4EfS1oPuIH3zuF8AdgbOKqX3X0DGAQcEBFLgNskrQVMkHRuVlbLvIj4dY3t3wfujojjsvt3SdoKOB1wwjEza6M8RzgP8/6LPQUcnd3Kv/1zBrVXi94bmFmWWKYBk0hHSDfmiKciSasBo0hHNqWmAZdLGhIRrzS6fzMz65s8CWdUEx9vBHBnaUFEPCVpWbatt4RzuaR1SUdWVwPfi4juVRA2B1YFHitr8yhpyG4L4L6+hW9mZo3Ks9LA7CY+3jrAyxXKF2fbqnkd+DfSsNgSoAsYT0oyY0r2TYX9Ly7b/j6SxgHjAIYNG8asWbNqxf+upUuX5q7bX3VCH8D9aNSJ27zVcP1qcfq16F/6Wz/qvvCzm6SVgNXLy3N842eltdhUpbx7n38GSq8+myVpEfAjSdtGxJwa+1eV8u59TwGmAIwcOTK6urpqR98dwKxZ5K3bX3VCH8D9aNTYk/Ndp31s9vP8ue99XCw4vKtiXb8W/Ut/60dd06Kz5WzGS5oPvAm8WuFWy2Jg7QrlQ6h85FPLtdnPT5Xsmwr7775f7/7NzKyJ6j3COQ44GTgX+GfgHOBt4BDgA8DEXto/RjpX8y5JmwBr0PPcS2+i7OcTpCQ4AigdBhwBvAM8Xuf+zQx/06c1T70Xfn4dOIOUcABuiIgzga1ICeNjvbS/BdhT0polZQeTvv6g3nNFB2Y/HwCIiNdJ1wkdVFbvYOBXnqFmZtZe9R7hfASYExFvS3qTbLgqIt6R9CPgx6QjoGouJR0lXS9pErAZMAG4oHSqdDZkNzsijszuTwDWJF30uQT4DHAScH1E/F/J/s8mnd+5iHSd0D7ZzVesmZm1Wb1HOC8Cg7PfnwI+WbJtHdJFnVVFxGJgN9K1OjcCZwIXko6aSq3C+6/neYx0nc7lwM3AYcB52c/S/d9DOvLZHZgJfB44zKsMmDXuxqnHc+PU49sdhnWAeo9w7gW2J33oX0VaIWBd4A3gGNIq0jVFxCPAZ3upM7zs/jTSBZy9iogbSEc3ZtYE2yx6ot0hWIeoN+FMADbOfp9IGlIbSzqyuY33ZlCamZm9T10JJyLmAfOy318nfSeOj7XNzKxXfbnw82+AjYDnIuLZ5oVkZmadqN5JA0j6pqSngSeB3wBPSXpG0reaHp2ZmXWMelcaOB24hHQ9zb7AyOznLcC/ZtvNzMx6qHdI7RhgYkR8v6x8Rra22THAWU2JzMz6has+sWe7Q7AOUW/CGUT1b/WcjWepmXWcU/fyn7U1R73ncG4ADqiy7YuAF10yM7OK8nzF9D4ld28BzpU0nJ5fMb0V8E/ND9HM2mnrhfMBeHjDj7Y5Ehvo8gypTafnV0lvDFQa2L2S9E2cZtYhpl9xAuBVo63v8iScj7Q8CjMz63h5vmL6ySICMTOzzlb3SgOSViFNENgFWBd4CfgF6asC6vuSdDMzW2HUlXAkDQVuBf4OWAAsAnYmXX/zkKTPRcTzzQ7SzMwGvnqnRV8ArAfsGBGbRcTOEbEZsGNWfkGzAzQzs85Qb8LZBxgfEfeVFmb3TyEtc2NmZtZDvedwVgNerbLtVeADfQvHzPqb0V+5qN0hWIeoN+H8Ghgv6c6I+Gt3oaQ1gPHZdjPrIL7g05ql3oRzInAX8LSkW0mTBoaSLgIV0NXU6MzMrGPUdQ4nIuYAHwOmABsAe5ASzqXAxyLioaZHaGZtNXHGZCbOmNzuMKwD5D7CkbQqsAPwp4g4uXUhmVl/cthDMwGvGm19V88RztvAncDftigWMzPrYLkTTkS8A/wBGNa6cMzMrFPVex3O94DTJW3TimDMzKxz1TtL7TTSigJzJD1LmqUWpRUiYocmxWZmZh2k3oTzcHYzMzOrS66EI2kQaVmbh4GFwO0RsaiVgZlZ/zB32ObtDsE6RJ6vmN4MuB0YXlK8RNKXIuLWVgVmZv3DfmMvbncI1iHyTBo4F3gH+Afgg8BWwIPAZS2My8zMOkyehLMzcFpE3BsRr0XEo8DRwIclbdTa8MzMrFPkSTgbAX8sK3uCtHbahk2PyMz6lQWTRrNg0uh2h2EdIO91ONF7FTMzs+ryToueKemtCuV3lJdHxNC+h2VmZp0mT8I5s+VRmJlZx+s14USEE46ZmfVZvWupmZmZNcQJx8zMClHvWmpmtoI5Zc9vtzsE6xBOOGZW09Xb7tXuEKxDeEjNzMwK4YRjZjUdOmcGh86Z0e4wrAMUnnAkbSnpDknLJD0n6SxJK/fSZntJl0uan7WbJ+kMSauX1ZsgKSrcPCZg1qAfzLyEH8y8pN1hWAco9ByOpHVIX3XwCDAG2Bw4n5T4TqvR9OCs7iTgD8DfAWdnP79YVvcVoDzBPNrX2M3MrG+KnjTwDWAQcEBELAFuk7QWMEHSuVlZJZMi4vmS+7MkvQZcJmnTiHiyZNtbEfHr1oRvZmaNKnpIbW9gZllimUZKQrtWa1SWbLo9mP302m1mZgNA0QlnBPBYaUFEPAUsy7bV49OkL4abV1a+tqQXJL0p6UFJBzQcrZmZNY0iivvmAUlvAidFxEVl5c8AP42IU3PuZ0Pg/4CbI2JsSfkRpCOeOcBg0hfF7QN8MSKur7KvccA4gGHDhm03bdq0XH1ZunQpgwcPzlW3v+qEPoD70ai5z76Sq96xR+wPwOQrb3i3bJuNh1Ss69eifymiH6NGjXogIkbmqduOCz8rZThVKe9ZUfoA8HNgKfCd9+044sqyujcCvwROByomnIiYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ik44i4G1K5QPAV7urbEkAT8FtgL+PiIW16ofESHpemCSpJUj4u0GYjZboQ0fP73dIViHKDrhPEbZuRpJmwBrUHZup4oLSdOp94iIPPW7+RtLzczarOhJA7cAe0pas6TsYGA5MLtWQ0mnkI7uj4iIe/I8WHZE9AXgIR/dmJm1V9FHOJcCxwHXS5oEbAZMAC4onSotaT4wOyKOzO4fBkwEpgLPStqpZJ9PdE+bljQbuI50tLQG8HVgJ2D/1nbLrHPdOPV4APYbe3GbI7GBrtCEExGLJe0GXALcSDpvcyEp6ZTHVbrczeeyn2OzW6mvkhIRwHzgBGAj0pTp3wH7RsQtzYjfbEW0zaIn2h2CdYjCZ6lFxCPAZ3upM7zs/lh6JppK7Y7sQ2hmZtZCXi3azMwK4YRjZmaFcMIxM7NCOOGYmVkh2rG0jZkNIFd9Ys92h2AdwgnHzGo6da9je69kloOH1MzMrBBOOGZW09YL57P1wvntDsM6gIfUzKym6VecAHjVaOs7H+GYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhadFmVtPor1zU7hCsQzjhmFlND2/40XaHYB3CQ2pmZlYIJxwzq2nijMlMnDG53WFYB3DCMbOaDntoJoc9NLPdYVgHcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEL/w0s5rmDtu83SFYh3DCMbOa9ht7cbtDsA7hITUzMyuEE46ZmRXCCcfMalowaTQLJo1udxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZlbTKXt+u90hWIdwwjGzmq7edq92h2AdwkNqZmZWCCccM6vp0DkzOHTOjHaHYR3AQ2pmVtMPZl4CeGjN+s5HOGZmVojCE46kLSXdIWmZpOcknSVp5Rzthki6XNJiSa9I+pmk9SrUGyNprqTXJD0i6eDW9MTMzOpRaMKRtA5wOxDAGOAs4ETgzBzNrwG6gKOAscD2wA1l+98FuA64C9gbuAm4WtLnmtIBMzNrWNHncL4BDAIOiIglwG2S1gImSDo3K+tB0s7AnsCuEXF3VvYs8BtJu0fE7VnV7wN3R8Rx2f27JG0FnA7c2rpumVktw0++qeG2C/5l3yZGYu1UdMLZG5hZllimAZOAXYEba7Rb1J1sACLit5L+lG27XdJqwCjguLK204DLJQ2JiFea1A+zppv77CuMbeCD2R/INlAUnXBGAHeWFkTEU5KWZduqJZwRwGMVyh/NtgFsDqxaod6jpKHDLYD7GgvbVjT+j3zg8WvW/xWdcNYBXq5Qvjjb1ki7zUrqUKHe4rLt7yNpHDAuu7tU0rwacZRaH3ghZ93+qhP6AP2sH5rUcNOG+tGHx8u3/+5fSr71s8ZjNv21aHX/qjxGv3pP9UER/dg0b8V2XIcTFcpUpbyRduX3VaU8FUZMAab08tg9H1i6PyJG1tuuP+mEPoD70Z90Qh/A/WiVoqdFLwbWrlA+hMpHML21W7uk3eKSsvI69LJ/MzNrsaITzmO8d84FAEmbAGtQ+RxN1XaZ0nM7TwBvVqg3AngHeLyBeM3MrEmKTji3AHtKWrOk7GBgOTC7l3YbZtfZACBpJOn8zS0AEfE66fqbg8raHgz8qgUz1OoehuuHOqEP4H70J53QB3A/WkIRvZ06aeKDpQs/HwEeJk2F3gy4ALgoIk4rqTcfmB0RR5aUzSDNNPusb93LAAAGwUlEQVQu6YhlEvCXiPiHkjq7ALOAS0gXhe6T1d8rInwdjplZGxV6hBMRi4HdgJVJU6DPBC4EziirukpWp9QhpKOgnwA/BR4AvlC2/3uAA4HdgZnA54HDnGzMzNqv0CMcMzNbcXm16JwkfV3SH7JFQR+QtFud7T8p6W1JbZ3b30g/JB0t6TZJi7KFU+8tYn26Vi/0WpRG+iFp+6wP87N28ySdIWn1ouKuEFNDr0dJ+5Wy91xIGt17i+brSx8kHSDpPknLJb0oaYakNVodc5VYGv3bGCnp1iz+lyTdLmnHImIGICJ86+VGGs57m7RW2yjSkN5yYOuc7QXcCywEXhho/QCeIp183B/YA7iCdB7t8y2MdR3gOdJir3uQ1uH7K3BOjrYzgD8BXyQNuz4O/KJNz3lD/QB+CNwNfJ20aO1xwCvAdQOpH2X7GJf9DQQweiD1gbRo8GukBYe7svfVZGDIQOkHsAnp8pA7gX2z26zsfbVpIbEX/WQNxBswD/hJyf2VgLnAlTnb/yMwH5jY5oTTUD+A9SuU/RK4q4WxnkK6tmqtkrJ/ApaVllVot3P2gfaZkrIdsrLd2/CcN9qPDSqUjcv6selA6UdJ3XWA54Ej25hwGn0t1gdeBb5edMxN7sc3SP9wrl32urwNfLOI2D2k1gtJm5Fmx/28uywi3gH+i7RwaG/t1yTNqPsu8EaLwuxVX/oREZWGAR8EhjYzxjLVFnodRFrotVa7Hgu9ko54en29WqChfkTE8xWKH8x+tvJ5r6bR16Pb2aSj/DtaEFtejfbhS9nPK1oVWJ0a7ceqwFvA0pKypVmZKrZoMiec3nVfSFppUdB1JW3QS/vTgUcj4oZe6rVaX/tRbmfSFPdW6bFga0Q8RfovrtJFwFXbZUoXei1So/2o5NOkocy86/01U8P9kPR3wFdJ/3S1U6N92JH0nB8p6RlJb0r6jaRPty7Umhrtx3VZnfMlDZU0lDRLeDHpH8+Wc8LpXUOLggJI+jhwDHBCC+KqV8P9KCfpa8AngR81Ia5qWrHQa+4+NlFT4pG0IfA94D+jyvdGtVhf+jEZ+LeImN/0qOrTaB82BD4OnAaMB/YjnTOZIWlYs4PMoaF+RMRzpHO3XwQWZbcDgD2rHFE3XTsW72w7SUOAjXqrFxGl/0XUtSho5mJgakTMrS/CfArsR+ljbkf6ALk4Iu7K06YPWr3Qa1H6FI+kD5CGQpcC32liXPWqux+SDiF9WO/XqqDq1MhrsRIwGDgoImYASPol8CTwbdIknKI18lpsBFxLuobxqKz4GOAmSZ/OjpJaaoVMOKTlb/5fjnri/YuCli6PU3NRUEl7A38PfFtSd93V0yatDSyPtBxPX7S8H+/bSToPdBNpHP7E/GE2pC8LvVYaHixd6LVIjfYDSG8W0mzCrYC/j3TxdDvU3Q9JqwLnkc5hrpS979fKNq8hac2IeLUVwVbR6GvxUvZzVndBRCyR9ACwZdOiy6/RfpxE+sw/MCLeBJB0J/AH0nBn+ZdXNt0KOaQWET+OCPV2y6p3Hx1UWhT0pRqHoh8n/Vf0B9IbZDHpcHzd7PeTBkg/AMjGe2eS/qs7JCLe7mv8vWjlQq9FarQf3S4ExgBjyo5Ui9ZIP9YA/oa0fFX338BD2bZpvDcJoiiNvhaPko4cyk+si3ROrWiN9mME8PvuZAMQEW8Avyd9gWXLrZAJpx4R8UfSdRzvLgoqaaXs/i01ml5LGi8tvV0BLMl+/88WhVxRH/qBpMHAzdnd0RGxrFVxlmjZQq8Fa7QfSDoFOBY4ItKyTe3USD+W0vNv4NBs26nA4a0JtapGX4vppOQyqrsgG87ejvcSaJEa7ceTwNbZEC0AklYDtgYWtCDOnto5n3yg3Eh/JG+TThqOAqZSdsEkaTriW8CuNfYzgfZeh9NQP4BbSVO6DwN2Kr21MNZ1gD8Dt5HWxhtH+gA7p6zefOA/yspmAH8knRDdnzTDqJ0Xftbdj+y5DuDy8uecCtfo9Nd+VNjPcNp74Wej76kbsrZfIV0wOZt0XdE6A6UfpAT5JmlYfF9gNCl5vQl8opDYi36yBuqNdMX3fOB14HfAbmXbu7I/pK4a+5hAGxNOo/3I7le8tTjWLUlXRS/P/sDOBlYuq7OANDGjtGzt7IP6ZdIR5VVUuHi1wOe87n6Q/hmo9ryPHSj9qLCPtiWcPr6nBgP/DryYtb0d2GYgvaeyst1IK1i8lN1m1/rMavbNi3eamVkhfA7HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPqkbRjapwSQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/simulation/option_pricing.ipynb b/qiskit/finance/simulation/option_pricing.ipynb new file mode 100644 index 000000000..b69deeaf9 --- /dev/null +++ b/qiskit/finance/simulation/option_pricing.ipynb @@ -0,0 +1,90 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Option Pricing*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1], Christa Zoufal[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", + "\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook we provide an overview of the available Qiskit Finance tutorials on how to use Quantum Amplitude Estimation (QAE) for option pricing. We analyze different types of options with increasing complexity, featuring:\n", + "- single asset / multi asset (basket) options\n", + "- piecewise linear payoff functions (arbitrary number of break points, possibly non-continuous)\n", + "- path-dependency (sum/average, barrier, etc.)\n", + "\n", + "The basic ideas on using QAE for option pricing and risk analysis are provided here:
\n", + "Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger (2019).\n", + "\n", + "A Qiskit Aqua tutorial on QAE can be found here:
\n", + "Qiskit Tutorial on QAE\n", + "\n", + "We provide tutorials for the following types simple options:\n", + "\n", + "- European Call Option (univariate, payoff with 2 segments)\n", + "- European Put Option (univariate, payoff with 2 segments)\n", + "- Bull Spread (univariate, payoff with 3 segments)\n", + "- Iron Condor (univariate, payoff with 5 segments)\n", + "\n", + "Note that the provided framework can cover all options of this type, i.e., options that are fully determined by a piecewise linear payoff with respect to the spot price at maturity of the underlying asset.\n", + "However, the framework also allows to price more complex options, for instance, options that depend on multiple assets or are path-dependent:\n", + "\n", + "- Basket Option (multivariate, payoff with 2 segments)\n", + "- Asian Barrier Spread (multivariate, path-dependent, payoff with 3 segments)\n", + "\n", + "All examples illustrate how to use the genereric Qiskit Finance framework to construct operators that can be analyzed with QAE. The same framework can be easily adjusted to estimate risk as well, for instance, the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also known as Expected Shortfall). How to use Qiskit Finance for risk analysis is illustrated in the following tutorial:\n", + "Credit Risk Analysis\n", + "\n", + "An example of how quantum Generative Adversarial Networks (qGANs) can be used to learn and efficiently load generic random distributions for option pricing can be found here:\n", + "QGANs to learn and load random distributions for option pricing" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 16fda551b484811a76df7d84cf758bd652ebae41 Mon Sep 17 00:00:00 2001 From: CZ Date: Tue, 16 Apr 2019 19:36:45 +0200 Subject: [PATCH 052/116] Create execute_qgan.ipynb --- .../machine_learning/execute_qgan.ipynb | 12528 ++++++++++++++++ 1 file changed, 12528 insertions(+) create mode 100644 qiskit/finance/machine_learning/execute_qgan.ipynb diff --git a/qiskit/finance/machine_learning/execute_qgan.ipynb b/qiskit/finance/machine_learning/execute_qgan.ipynb new file mode 100644 index 000000000..32a914048 --- /dev/null +++ b/qiskit/finance/machine_learning/execute_qgan.ipynb @@ -0,0 +1,12528 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: qGANs for Loading Random Distributions*_ \n", + "\n", + "Qiskit Finance is part of Qiskit Aqua.
\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Christa Zoufal[1,2], Stefan Woerner[1]\n", + "### Affliation\n", + "- [1]IBMQ\n", + "- [2]ETH Zurich\n", + "\n", + "### Introduction\n", + "Given $k$-dimensional data samples, we employ a quantum Generative Adversarial Network (qGAN) to learn the data's underlying random distribution and to load it directly into a quantum state: \n", + "$$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle$$\n", + "where $p_{\\theta}^{j}$ describe the occurrence probabilities of the basis states $\\vert j\\rangle$. \n", + "\n", + "The aim of the qGAN training is to generate a state $\\lvert g_{\\theta}\\rangle$ where $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, describe a probability distribution that is close to the distribution underlying the training data $X=\\left\\{x^0, \\ldots, x^{k-1} \\right\\}$.\n", + "\n", + "For further details please refer to https://arxiv.org/abs/1904.00043." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#!/usr/bin/env python\n", + "# coding: utf-8\n", + "from __future__ import absolute_import, division, print_function\n", + "\n", + "import numpy as np\n", + "\n", + "import matplotlib\n", + "matplotlib.use('TkAgg')\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline\n", + "\n", + "\n", + "import time\n", + "\n", + "start = time.time()\n", + "\n", + "from torch import optim\n", + "from qiskit.aqua.algorithms.adaptive.qgan.discriminator import DiscriminatorNet\n", + "\n", + "from qiskit.aqua.components.optimizers import ADAM\n", + "from qiskit.aqua.components.uncertainty_models import UniformDistribution, UnivariateVariationalDistribution \n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "from qiskit.aqua.algorithms.adaptive.qgan.qgan import QGAN\n", + "\n", + "from qiskit.aqua import aqua_globals, QuantumInstance\n", + "\n", + "from qiskit.providers.ibmq import IBMQ\n", + "from qiskit import Aer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load the Training Data\n", + "First, we need to load the $k$-dimensional training data samples (here k=1).
\n", + "Next, the data resolution is set, i.e. the min/max data values and the number of qubits used to represent each data dimension." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Number training data samples\n", + "N = 10000 \n", + "\n", + "# Load data samples from log-normal distribution with mean=1 and standard deviation=1\n", + "mu = 1\n", + "sigma = 1\n", + "real_data = np.random.lognormal(mean = mu, sigma=sigma, size=N)\n", + "\n", + "# Set the data resolution\n", + "# Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]]\n", + "bounds = np.array([0.,3.]) \n", + "# Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]\n", + "num_qubits = [2]\n", + "k = len(num_qubits)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialize the qGAN\n", + "The qGAN consists of a quantum generator $G_{\\theta}$, a variational quantum circuit, and a classical discriminator $D_{\\phi}$, a neural network.
\n", + "To implement the quantum generator, we choose a depth-$1$ variational form that implements $R_Y$ rotations and $CZ$ gates which takes a uniform distribution as an input state. Notably, for $k>1$ the generator's parameters must be chosen carefully. For example, the circuit depth should $>1$ becaue the higher the circuit depth the because higher circuit depths enable the representation of more complex structures.
\n", + "The classical discriminator is given by a $3$-layer neural network that applies linear transformations, leaky ReLU functions in the hidden layers and a sigmoid function in the output layer. Notably, the neural network is implemented with PyTorch. Please refer to https://pytorch.org/get-started/locally/ for PyTorch installation instructions.
\n", + "Here, both networks are updated with the ADAM optimization algorithm." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Set number of training epochs\n", + "# Note: The algorithm's runtime can be shortened by reducing the number of training epochs.\n", + "num_epochs = 3000\n", + "# Batch size\n", + "batch_size = 1000\n", + "\n", + "# Initialize qGAN\n", + "qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)\n", + "\n", + "# Set quantum instance to run the quantum generator\n", + "backend = Aer.get_backend('statevector_simulator')\n", + "qgan.set_quantum_instance(QuantumInstance(backend=backend, shots=batch_size, coupling_map=None, circuit_caching=False))\n", + "\n", + "\n", + "# Set entangler map\n", + "entangler_map = [[0, 1]]\n", + " \n", + "# Set variational form\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", + "# Set generator's initial parameters\n", + "init_params = aqua_globals.random.rand(var_form._num_parameters) * 2 * 1e-2\n", + "# Set an initial state for the generator circuit\n", + "init_dist = UniformDistribution(np.sum(num_qubits), low=bounds[0], high=bounds[1])\n", + "# Set generator circuit\n", + "g_circuit = UnivariateVariationalDistribution(np.sum(num_qubits), var_form, init_params,\n", + " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", + "# Set generator optimizer\n", + "g_optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-5, beta_1=0.9, beta_2=0.99, noise_factor=1e-6,\n", + " eps=1e-10, amsgrad=True)\n", + "# Set quantum generator\n", + "qgan.set_generator(generator_circuit=g_circuit, generator_optimizer=g_optimizer)\n", + "\n", + "# Set discriminator network\n", + "d_net = DiscriminatorNet(n_features=k)\n", + "# Set discriminator optimizer\n", + "d_optimizer = optim.Adam(d_net.parameters(), lr=1e-5, amsgrad=True)\n", + "# Set classical discriminator neural network\n", + "qgan.set_discriminator(discriminator_net=d_net, discriminator_optimizer=d_optimizer)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run the qGAN Training\n", + "During the training the discriminator's and the generator's parameters are updated alternately w.r.t the following loss functions:\n", + "$$ L_G\\left(\\phi, \\theta\\right) = -\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log\\left(D_{\\phi}\\left(g^{l}\\right)\\right)\\right] $$\n", + "and\n", + "$$ L_D\\left(\\phi, \\theta\\right) =\n", + "\t\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log D_{\\phi}\\left(x^{l}\\right) + \\log\\left(1-D_{\\phi}\\left(g^{l}\\right)\\right)\\right], $$\n", + "with $m$ denoting the batch size and $g^l$ describing the data samples generated by the quantum generator." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/3000...\n", + "Loss Discriminator: 0.6973\n", + "Loss Generator: 0.6708\n", + "Relative Entropy: 0.1718\n", + "Epoch 2/3000...\n", + "Loss Discriminator: 0.6962\n", + "Loss Generator: 0.679\n", + "Relative Entropy: 0.1719\n", + "Epoch 3/3000...\n", + "Loss Discriminator: 0.6948\n", + "Loss Generator: 0.6824\n", + "Relative Entropy: 0.172\n", + "Epoch 4/3000...\n", + "Loss Discriminator: 0.6934\n", + "Loss Generator: 0.6843\n", + "Relative Entropy: 0.172\n", + "Epoch 5/3000...\n", + "Loss Discriminator: 0.692\n", + "Loss Generator: 0.6861\n", + "Relative Entropy: 0.1719\n", + "Epoch 6/3000...\n", + "Loss Discriminator: 0.6909\n", + "Loss Generator: 0.6863\n", + "Relative Entropy: 0.1719\n", + "Epoch 7/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.6854\n", + "Relative Entropy: 0.1718\n", + "Epoch 8/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.6867\n", + "Relative Entropy: 0.1718\n", + "Epoch 9/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6898\n", + "Relative Entropy: 0.1717\n", + "Epoch 10/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6905\n", + "Relative Entropy: 0.1717\n", + "Epoch 11/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.6892\n", + "Relative Entropy: 0.1716\n", + "Epoch 12/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.6938\n", + "Relative Entropy: 0.1715\n", + "Epoch 13/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.6957\n", + "Relative Entropy: 0.1715\n", + "Epoch 14/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.6967\n", + "Relative Entropy: 0.1714\n", + "Epoch 15/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.6958\n", + "Relative Entropy: 0.1713\n", + "Epoch 16/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.1713\n", + "Epoch 17/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.1712\n", + "Epoch 18/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.1711\n", + "Epoch 19/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.171\n", + "Epoch 20/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.171\n", + "Epoch 21/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.1709\n", + "Epoch 22/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.1708\n", + "Epoch 23/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.1708\n", + "Epoch 24/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.1707\n", + "Epoch 25/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.1706\n", + "Epoch 26/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1706\n", + "Epoch 27/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.1705\n", + "Epoch 28/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.1704\n", + "Epoch 29/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1704\n", + "Epoch 30/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1703\n", + "Epoch 31/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1702\n", + "Epoch 32/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1701\n", + "Epoch 33/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1701\n", + "Epoch 34/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.17\n", + "Epoch 35/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1699\n", + "Epoch 36/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1699\n", + "Epoch 37/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1698\n", + "Epoch 38/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1697\n", + "Epoch 39/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1697\n", + "Epoch 40/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1696\n", + "Epoch 41/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1695\n", + "Epoch 42/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1695\n", + "Epoch 43/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1694\n", + "Epoch 44/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1693\n", + "Epoch 45/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1692\n", + "Epoch 46/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1692\n", + "Epoch 47/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1691\n", + "Epoch 48/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.169\n", + "Epoch 49/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.169\n", + "Epoch 50/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1689\n", + "Epoch 51/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1688\n", + "Epoch 52/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1688\n", + "Epoch 53/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1687\n", + "Epoch 54/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1686\n", + "Epoch 55/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1686\n", + "Epoch 56/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1685\n", + "Epoch 57/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1684\n", + "Epoch 58/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1683\n", + "Epoch 59/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1683\n", + "Epoch 60/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1682\n", + "Epoch 61/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1681\n", + "Epoch 62/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1681\n", + "Epoch 63/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.168\n", + "Epoch 64/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1679\n", + "Epoch 65/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1679\n", + "Epoch 66/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1678\n", + "Epoch 67/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1677\n", + "Epoch 68/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1677\n", + "Epoch 69/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1676\n", + "Epoch 70/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1675\n", + "Epoch 71/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1675\n", + "Epoch 72/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1674\n", + "Epoch 73/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1673\n", + "Epoch 74/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1673\n", + "Epoch 75/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1672\n", + "Epoch 76/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1671\n", + "Epoch 77/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.167\n", + "Epoch 78/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.167\n", + "Epoch 79/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1669\n", + "Epoch 80/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1668\n", + "Epoch 81/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1668\n", + "Epoch 82/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1667\n", + "Epoch 83/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1666\n", + "Epoch 84/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1666\n", + "Epoch 85/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1665\n", + "Epoch 86/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1664\n", + "Epoch 87/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7385\n", + "Relative Entropy: 0.1664\n", + "Epoch 88/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1663\n", + "Epoch 89/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1662\n", + "Epoch 90/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1662\n", + "Epoch 91/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1661\n", + "Epoch 92/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.166\n", + "Epoch 93/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.166\n", + "Epoch 94/3000...\n", + "Loss Discriminator: 0.6664\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1659\n", + "Epoch 95/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1658\n", + "Epoch 96/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1658\n", + "Epoch 97/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1657\n", + "Epoch 98/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1656\n", + "Epoch 99/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1655\n", + "Epoch 100/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1655\n", + "Epoch 101/3000...\n", + "Loss Discriminator: 0.666\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1654\n", + "Epoch 102/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1653\n", + "Epoch 103/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1653\n", + "Epoch 104/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1652\n", + "Epoch 105/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1651\n", + "Epoch 106/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1651\n", + "Epoch 107/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.165\n", + "Epoch 108/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1649\n", + "Epoch 109/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1649\n", + "Epoch 110/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1648\n", + "Epoch 111/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1647\n", + "Epoch 112/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1647\n", + "Epoch 113/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1646\n", + "Epoch 114/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1645\n", + "Epoch 115/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1645\n", + "Epoch 116/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1644\n", + "Epoch 117/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1643\n", + "Epoch 118/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7387\n", + "Relative Entropy: 0.1643\n", + "Epoch 119/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1642\n", + "Epoch 120/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1641\n", + "Epoch 121/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1641\n", + "Epoch 122/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7381\n", + "Relative Entropy: 0.164\n", + "Epoch 123/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1639\n", + "Epoch 124/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1639\n", + "Epoch 125/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1638\n", + "Epoch 126/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1637\n", + "Epoch 127/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1637\n", + "Epoch 128/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1636\n", + "Epoch 129/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1635\n", + "Epoch 130/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1635\n", + "Epoch 131/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1634\n", + "Epoch 132/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1633\n", + "Epoch 133/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1632\n", + "Epoch 134/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1632\n", + "Epoch 135/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1631\n", + "Epoch 136/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.163\n", + "Epoch 137/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.163\n", + "Epoch 138/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1629\n", + "Epoch 139/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1628\n", + "Epoch 140/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1628\n", + "Epoch 141/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1627\n", + "Epoch 142/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1626\n", + "Epoch 143/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1626\n", + "Epoch 144/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1625\n", + "Epoch 145/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1624\n", + "Epoch 146/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1624\n", + "Epoch 147/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1623\n", + "Epoch 148/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1622\n", + "Epoch 149/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1622\n", + "Epoch 150/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1621\n", + "Epoch 151/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.162\n", + "Epoch 152/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.162\n", + "Epoch 153/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1619\n", + "Epoch 154/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1618\n", + "Epoch 155/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1618\n", + "Epoch 156/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1617\n", + "Epoch 157/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1616\n", + "Epoch 158/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1616\n", + "Epoch 159/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1615\n", + "Epoch 160/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1614\n", + "Epoch 161/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1614\n", + "Epoch 162/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1613\n", + "Epoch 163/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1612\n", + "Epoch 164/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1612\n", + "Epoch 165/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1611\n", + "Epoch 166/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.161\n", + "Epoch 167/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.161\n", + "Epoch 168/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1609\n", + "Epoch 169/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1608\n", + "Epoch 170/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1608\n", + "Epoch 171/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1607\n", + "Epoch 172/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1606\n", + "Epoch 173/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7375\n", + "Relative Entropy: 0.1606\n", + "Epoch 174/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1605\n", + "Epoch 175/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1604\n", + "Epoch 176/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1604\n", + "Epoch 177/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1603\n", + "Epoch 178/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1602\n", + "Epoch 179/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1602\n", + "Epoch 180/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1601\n", + "Epoch 181/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.16\n", + "Epoch 182/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.16\n", + "Epoch 183/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1599\n", + "Epoch 184/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1598\n", + "Epoch 185/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1598\n", + "Epoch 186/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1597\n", + "Epoch 187/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1596\n", + "Epoch 188/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1596\n", + "Epoch 189/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1595\n", + "Epoch 190/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1594\n", + "Epoch 191/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1594\n", + "Epoch 192/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1593\n", + "Epoch 193/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1592\n", + "Epoch 194/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1592\n", + "Epoch 195/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1591\n", + "Epoch 196/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.159\n", + "Epoch 197/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.159\n", + "Epoch 198/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1589\n", + "Epoch 199/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1588\n", + "Epoch 200/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1588\n", + "Epoch 201/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1587\n", + "Epoch 202/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1587\n", + "Epoch 203/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1586\n", + "Epoch 204/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1585\n", + "Epoch 205/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1585\n", + "Epoch 206/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1584\n", + "Epoch 207/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7375\n", + "Relative Entropy: 0.1583\n", + "Epoch 208/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1583\n", + "Epoch 209/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1582\n", + "Epoch 210/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1581\n", + "Epoch 211/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1581\n", + "Epoch 212/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.158\n", + "Epoch 213/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1579\n", + "Epoch 214/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1579\n", + "Epoch 215/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1578\n", + "Epoch 216/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1577\n", + "Epoch 217/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1577\n", + "Epoch 218/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1576\n", + "Epoch 219/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1575\n", + "Epoch 220/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1575\n", + "Epoch 221/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1574\n", + "Epoch 222/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1573\n", + "Epoch 223/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1573\n", + "Epoch 224/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1572\n", + "Epoch 225/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1571\n", + "Epoch 226/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1571\n", + "Epoch 227/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.157\n", + "Epoch 228/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1569\n", + "Epoch 229/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1569\n", + "Epoch 230/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1568\n", + "Epoch 231/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1567\n", + "Epoch 232/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1567\n", + "Epoch 233/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1566\n", + "Epoch 234/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1565\n", + "Epoch 235/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1565\n", + "Epoch 236/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1564\n", + "Epoch 237/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1564\n", + "Epoch 238/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1563\n", + "Epoch 239/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1562\n", + "Epoch 240/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1562\n", + "Epoch 241/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1561\n", + "Epoch 242/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.156\n", + "Epoch 243/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.156\n", + "Epoch 244/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1559\n", + "Epoch 245/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1558\n", + "Epoch 246/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1558\n", + "Epoch 247/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1557\n", + "Epoch 248/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1556\n", + "Epoch 249/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1556\n", + "Epoch 250/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1555\n", + "Epoch 251/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1554\n", + "Epoch 252/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1554\n", + "Epoch 253/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1553\n", + "Epoch 254/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1552\n", + "Epoch 255/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1552\n", + "Epoch 256/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1551\n", + "Epoch 257/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1551\n", + "Epoch 258/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.155\n", + "Epoch 259/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1549\n", + "Epoch 260/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1549\n", + "Epoch 261/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1548\n", + "Epoch 262/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1547\n", + "Epoch 263/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1547\n", + "Epoch 264/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1546\n", + "Epoch 265/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1545\n", + "Epoch 266/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1545\n", + "Epoch 267/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1544\n", + "Epoch 268/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1543\n", + "Epoch 269/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1543\n", + "Epoch 270/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1542\n", + "Epoch 271/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1541\n", + "Epoch 272/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1541\n", + "Epoch 273/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.154\n", + "Epoch 274/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.154\n", + "Epoch 275/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1539\n", + "Epoch 276/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1538\n", + "Epoch 277/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1538\n", + "Epoch 278/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1537\n", + "Epoch 279/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1536\n", + "Epoch 280/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1536\n", + "Epoch 281/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1535\n", + "Epoch 282/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1534\n", + "Epoch 283/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1534\n", + "Epoch 284/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1533\n", + "Epoch 285/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1532\n", + "Epoch 286/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1532\n", + "Epoch 287/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1531\n", + "Epoch 288/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.153\n", + "Epoch 289/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.153\n", + "Epoch 290/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1529\n", + "Epoch 291/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1529\n", + "Epoch 292/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1528\n", + "Epoch 293/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1527\n", + "Epoch 294/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1527\n", + "Epoch 295/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1526\n", + "Epoch 296/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1525\n", + "Epoch 297/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1525\n", + "Epoch 298/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1524\n", + "Epoch 299/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1523\n", + "Epoch 300/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1523\n", + "Epoch 301/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1522\n", + "Epoch 302/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1521\n", + "Epoch 303/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1521\n", + "Epoch 304/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.152\n", + "Epoch 305/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.152\n", + "Epoch 306/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1519\n", + "Epoch 307/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1518\n", + "Epoch 308/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1518\n", + "Epoch 309/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1517\n", + "Epoch 310/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1516\n", + "Epoch 311/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1516\n", + "Epoch 312/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1515\n", + "Epoch 313/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1514\n", + "Epoch 314/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1514\n", + "Epoch 315/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1513\n", + "Epoch 316/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1513\n", + "Epoch 317/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1512\n", + "Epoch 318/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1511\n", + "Epoch 319/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1511\n", + "Epoch 320/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.151\n", + "Epoch 321/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1509\n", + "Epoch 322/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1509\n", + "Epoch 323/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1508\n", + "Epoch 324/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1507\n", + "Epoch 325/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1507\n", + "Epoch 326/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1506\n", + "Epoch 327/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1506\n", + "Epoch 328/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1505\n", + "Epoch 329/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1504\n", + "Epoch 330/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1504\n", + "Epoch 331/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1503\n", + "Epoch 332/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1502\n", + "Epoch 333/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1502\n", + "Epoch 334/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1501\n", + "Epoch 335/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.15\n", + "Epoch 336/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.15\n", + "Epoch 337/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1499\n", + "Epoch 338/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1499\n", + "Epoch 339/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1498\n", + "Epoch 340/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1497\n", + "Epoch 341/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1497\n", + "Epoch 342/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1496\n", + "Epoch 343/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1495\n", + "Epoch 344/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1495\n", + "Epoch 345/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1494\n", + "Epoch 346/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1493\n", + "Epoch 347/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1493\n", + "Epoch 348/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1492\n", + "Epoch 349/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1492\n", + "Epoch 350/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1491\n", + "Epoch 351/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.149\n", + "Epoch 352/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.149\n", + "Epoch 353/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1489\n", + "Epoch 354/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1488\n", + "Epoch 355/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1488\n", + "Epoch 356/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1487\n", + "Epoch 357/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1487\n", + "Epoch 358/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1486\n", + "Epoch 359/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1485\n", + "Epoch 360/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1485\n", + "Epoch 361/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1484\n", + "Epoch 362/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1483\n", + "Epoch 363/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1483\n", + "Epoch 364/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1482\n", + "Epoch 365/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1482\n", + "Epoch 366/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1481\n", + "Epoch 367/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.148\n", + "Epoch 368/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.148\n", + "Epoch 369/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1479\n", + "Epoch 370/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1478\n", + "Epoch 371/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1478\n", + "Epoch 372/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1477\n", + "Epoch 373/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1476\n", + "Epoch 374/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1476\n", + "Epoch 375/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1475\n", + "Epoch 376/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1475\n", + "Epoch 377/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1474\n", + "Epoch 378/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1473\n", + "Epoch 379/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1473\n", + "Epoch 380/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1472\n", + "Epoch 381/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1471\n", + "Epoch 382/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1471\n", + "Epoch 383/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.147\n", + "Epoch 384/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.147\n", + "Epoch 385/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1469\n", + "Epoch 386/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1468\n", + "Epoch 387/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1468\n", + "Epoch 388/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1467\n", + "Epoch 389/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1466\n", + "Epoch 390/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1466\n", + "Epoch 391/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1465\n", + "Epoch 392/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1465\n", + "Epoch 393/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1464\n", + "Epoch 394/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1463\n", + "Epoch 395/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1463\n", + "Epoch 396/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1462\n", + "Epoch 397/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1461\n", + "Epoch 398/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1461\n", + "Epoch 399/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.146\n", + "Epoch 400/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.146\n", + "Epoch 401/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1459\n", + "Epoch 402/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1458\n", + "Epoch 403/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1458\n", + "Epoch 404/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1457\n", + "Epoch 405/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1457\n", + "Epoch 406/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1456\n", + "Epoch 407/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1455\n", + "Epoch 408/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1455\n", + "Epoch 409/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1454\n", + "Epoch 410/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1453\n", + "Epoch 411/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1453\n", + "Epoch 412/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1452\n", + "Epoch 413/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1452\n", + "Epoch 414/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1451\n", + "Epoch 415/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.145\n", + "Epoch 416/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.145\n", + "Epoch 417/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1449\n", + "Epoch 418/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1448\n", + "Epoch 419/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1448\n", + "Epoch 420/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1447\n", + "Epoch 421/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1447\n", + "Epoch 422/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1446\n", + "Epoch 423/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1445\n", + "Epoch 424/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1445\n", + "Epoch 425/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1444\n", + "Epoch 426/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1444\n", + "Epoch 427/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1443\n", + "Epoch 428/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1442\n", + "Epoch 429/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1442\n", + "Epoch 430/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1441\n", + "Epoch 431/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.144\n", + "Epoch 432/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.144\n", + "Epoch 433/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1439\n", + "Epoch 434/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1439\n", + "Epoch 435/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1438\n", + "Epoch 436/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1437\n", + "Epoch 437/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1437\n", + "Epoch 438/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1436\n", + "Epoch 439/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1436\n", + "Epoch 440/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1435\n", + "Epoch 441/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1434\n", + "Epoch 442/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1434\n", + "Epoch 443/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1433\n", + "Epoch 444/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1432\n", + "Epoch 445/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1432\n", + "Epoch 446/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1431\n", + "Epoch 447/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1431\n", + "Epoch 448/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.143\n", + "Epoch 449/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1429\n", + "Epoch 450/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1429\n", + "Epoch 451/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1428\n", + "Epoch 452/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1428\n", + "Epoch 453/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1427\n", + "Epoch 454/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1426\n", + "Epoch 455/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1426\n", + "Epoch 456/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1425\n", + "Epoch 457/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1424\n", + "Epoch 458/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1424\n", + "Epoch 459/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1423\n", + "Epoch 460/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1423\n", + "Epoch 461/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1422\n", + "Epoch 462/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1421\n", + "Epoch 463/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1421\n", + "Epoch 464/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.142\n", + "Epoch 465/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.142\n", + "Epoch 466/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1419\n", + "Epoch 467/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1418\n", + "Epoch 468/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1418\n", + "Epoch 469/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1417\n", + "Epoch 470/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1417\n", + "Epoch 471/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1416\n", + "Epoch 472/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1415\n", + "Epoch 473/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1415\n", + "Epoch 474/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1414\n", + "Epoch 475/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1414\n", + "Epoch 476/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1413\n", + "Epoch 477/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1412\n", + "Epoch 478/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1412\n", + "Epoch 479/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1411\n", + "Epoch 480/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.141\n", + "Epoch 481/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.141\n", + "Epoch 482/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1409\n", + "Epoch 483/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1409\n", + "Epoch 484/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1408\n", + "Epoch 485/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1407\n", + "Epoch 486/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1407\n", + "Epoch 487/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1406\n", + "Epoch 488/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1406\n", + "Epoch 489/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1405\n", + "Epoch 490/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1404\n", + "Epoch 491/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1404\n", + "Epoch 492/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1403\n", + "Epoch 493/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1403\n", + "Epoch 494/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1402\n", + "Epoch 495/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1401\n", + "Epoch 496/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1401\n", + "Epoch 497/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.14\n", + "Epoch 498/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.14\n", + "Epoch 499/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1399\n", + "Epoch 500/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1398\n", + "Epoch 501/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1398\n", + "Epoch 502/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1397\n", + "Epoch 503/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1397\n", + "Epoch 504/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1396\n", + "Epoch 505/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1395\n", + "Epoch 506/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1395\n", + "Epoch 507/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1394\n", + "Epoch 508/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1394\n", + "Epoch 509/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1393\n", + "Epoch 510/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1392\n", + "Epoch 511/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1392\n", + "Epoch 512/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1391\n", + "Epoch 513/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1391\n", + "Epoch 514/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.139\n", + "Epoch 515/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1389\n", + "Epoch 516/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1389\n", + "Epoch 517/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1388\n", + "Epoch 518/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1388\n", + "Epoch 519/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1387\n", + "Epoch 520/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1386\n", + "Epoch 521/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1386\n", + "Epoch 522/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1385\n", + "Epoch 523/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1385\n", + "Epoch 524/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1384\n", + "Epoch 525/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1383\n", + "Epoch 526/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1383\n", + "Epoch 527/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1382\n", + "Epoch 528/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1382\n", + "Epoch 529/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1381\n", + "Epoch 530/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.138\n", + "Epoch 531/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.138\n", + "Epoch 532/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1379\n", + "Epoch 533/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1379\n", + "Epoch 534/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1378\n", + "Epoch 535/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1377\n", + "Epoch 536/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1377\n", + "Epoch 537/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1376\n", + "Epoch 538/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1376\n", + "Epoch 539/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1375\n", + "Epoch 540/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1374\n", + "Epoch 541/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1374\n", + "Epoch 542/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1373\n", + "Epoch 543/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1373\n", + "Epoch 544/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1372\n", + "Epoch 545/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1371\n", + "Epoch 546/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1371\n", + "Epoch 547/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.137\n", + "Epoch 548/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.137\n", + "Epoch 549/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1369\n", + "Epoch 550/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1368\n", + "Epoch 551/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1368\n", + "Epoch 552/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1367\n", + "Epoch 553/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1367\n", + "Epoch 554/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1366\n", + "Epoch 555/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1366\n", + "Epoch 556/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1365\n", + "Epoch 557/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1364\n", + "Epoch 558/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1364\n", + "Epoch 559/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1363\n", + "Epoch 560/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1363\n", + "Epoch 561/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1362\n", + "Epoch 562/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1361\n", + "Epoch 563/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1361\n", + "Epoch 564/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.136\n", + "Epoch 565/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.136\n", + "Epoch 566/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1359\n", + "Epoch 567/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1358\n", + "Epoch 568/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1358\n", + "Epoch 569/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1357\n", + "Epoch 570/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1357\n", + "Epoch 571/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1356\n", + "Epoch 572/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1355\n", + "Epoch 573/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1355\n", + "Epoch 574/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1354\n", + "Epoch 575/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1354\n", + "Epoch 576/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1353\n", + "Epoch 577/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1353\n", + "Epoch 578/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1352\n", + "Epoch 579/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1351\n", + "Epoch 580/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1351\n", + "Epoch 581/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.135\n", + "Epoch 582/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.135\n", + "Epoch 583/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1349\n", + "Epoch 584/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1348\n", + "Epoch 585/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1348\n", + "Epoch 586/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1347\n", + "Epoch 587/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1347\n", + "Epoch 588/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1346\n", + "Epoch 589/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1345\n", + "Epoch 590/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1345\n", + "Epoch 591/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1344\n", + "Epoch 592/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1344\n", + "Epoch 593/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1343\n", + "Epoch 594/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1343\n", + "Epoch 595/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1342\n", + "Epoch 596/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1341\n", + "Epoch 597/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1341\n", + "Epoch 598/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.134\n", + "Epoch 599/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.134\n", + "Epoch 600/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1339\n", + "Epoch 601/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1338\n", + "Epoch 602/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1338\n", + "Epoch 603/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1337\n", + "Epoch 604/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1337\n", + "Epoch 605/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1336\n", + "Epoch 606/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1336\n", + "Epoch 607/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1335\n", + "Epoch 608/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1334\n", + "Epoch 609/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1334\n", + "Epoch 610/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1333\n", + "Epoch 611/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1333\n", + "Epoch 612/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1332\n", + "Epoch 613/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1331\n", + "Epoch 614/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1331\n", + "Epoch 615/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.133\n", + "Epoch 616/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.133\n", + "Epoch 617/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1329\n", + "Epoch 618/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1329\n", + "Epoch 619/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1328\n", + "Epoch 620/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1327\n", + "Epoch 621/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1327\n", + "Epoch 622/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1326\n", + "Epoch 623/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1326\n", + "Epoch 624/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1325\n", + "Epoch 625/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1324\n", + "Epoch 626/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1324\n", + "Epoch 627/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1323\n", + "Epoch 628/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1323\n", + "Epoch 629/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1322\n", + "Epoch 630/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1322\n", + "Epoch 631/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1321\n", + "Epoch 632/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.132\n", + "Epoch 633/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.132\n", + "Epoch 634/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1319\n", + "Epoch 635/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1319\n", + "Epoch 636/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1318\n", + "Epoch 637/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1318\n", + "Epoch 638/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1317\n", + "Epoch 639/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1316\n", + "Epoch 640/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1316\n", + "Epoch 641/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1315\n", + "Epoch 642/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1315\n", + "Epoch 643/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1314\n", + "Epoch 644/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1314\n", + "Epoch 645/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1313\n", + "Epoch 646/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1312\n", + "Epoch 647/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1312\n", + "Epoch 648/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1311\n", + "Epoch 649/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1311\n", + "Epoch 650/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.131\n", + "Epoch 651/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.131\n", + "Epoch 652/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1309\n", + "Epoch 653/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1308\n", + "Epoch 654/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1308\n", + "Epoch 655/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1307\n", + "Epoch 656/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1307\n", + "Epoch 657/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1306\n", + "Epoch 658/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1305\n", + "Epoch 659/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1305\n", + "Epoch 660/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1304\n", + "Epoch 661/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1304\n", + "Epoch 662/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1303\n", + "Epoch 663/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1303\n", + "Epoch 664/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1302\n", + "Epoch 665/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1301\n", + "Epoch 666/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1301\n", + "Epoch 667/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.13\n", + "Epoch 668/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.13\n", + "Epoch 669/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1299\n", + "Epoch 670/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1299\n", + "Epoch 671/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1298\n", + "Epoch 672/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1297\n", + "Epoch 673/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1297\n", + "Epoch 674/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1296\n", + "Epoch 675/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1296\n", + "Epoch 676/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1295\n", + "Epoch 677/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1295\n", + "Epoch 678/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1294\n", + "Epoch 679/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1293\n", + "Epoch 680/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1293\n", + "Epoch 681/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1292\n", + "Epoch 682/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1292\n", + "Epoch 683/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1291\n", + "Epoch 684/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1291\n", + "Epoch 685/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.129\n", + "Epoch 686/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.129\n", + "Epoch 687/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1289\n", + "Epoch 688/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1288\n", + "Epoch 689/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1288\n", + "Epoch 690/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1287\n", + "Epoch 691/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1287\n", + "Epoch 692/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1286\n", + "Epoch 693/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1286\n", + "Epoch 694/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1285\n", + "Epoch 695/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1284\n", + "Epoch 696/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1284\n", + "Epoch 697/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1283\n", + "Epoch 698/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1283\n", + "Epoch 699/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1282\n", + "Epoch 700/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1282\n", + "Epoch 701/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1281\n", + "Epoch 702/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.128\n", + "Epoch 703/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.128\n", + "Epoch 704/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1279\n", + "Epoch 705/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1279\n", + "Epoch 706/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1278\n", + "Epoch 707/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1278\n", + "Epoch 708/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1277\n", + "Epoch 709/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1277\n", + "Epoch 710/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1276\n", + "Epoch 711/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1275\n", + "Epoch 712/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1275\n", + "Epoch 713/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1274\n", + "Epoch 714/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1274\n", + "Epoch 715/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1273\n", + "Epoch 716/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1273\n", + "Epoch 717/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1272\n", + "Epoch 718/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1271\n", + "Epoch 719/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1271\n", + "Epoch 720/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.127\n", + "Epoch 721/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.127\n", + "Epoch 722/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1269\n", + "Epoch 723/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1269\n", + "Epoch 724/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1268\n", + "Epoch 725/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1268\n", + "Epoch 726/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1267\n", + "Epoch 727/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1266\n", + "Epoch 728/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1266\n", + "Epoch 729/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1265\n", + "Epoch 730/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1265\n", + "Epoch 731/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1264\n", + "Epoch 732/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1264\n", + "Epoch 733/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1263\n", + "Epoch 734/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1262\n", + "Epoch 735/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1262\n", + "Epoch 736/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1261\n", + "Epoch 737/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1261\n", + "Epoch 738/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.126\n", + "Epoch 739/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.126\n", + "Epoch 740/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1259\n", + "Epoch 741/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1259\n", + "Epoch 742/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1258\n", + "Epoch 743/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1257\n", + "Epoch 744/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1257\n", + "Epoch 745/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1256\n", + "Epoch 746/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1256\n", + "Epoch 747/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1255\n", + "Epoch 748/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1255\n", + "Epoch 749/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1254\n", + "Epoch 750/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1254\n", + "Epoch 751/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1253\n", + "Epoch 752/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1252\n", + "Epoch 753/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1252\n", + "Epoch 754/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1251\n", + "Epoch 755/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1251\n", + "Epoch 756/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.125\n", + "Epoch 757/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.125\n", + "Epoch 758/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1249\n", + "Epoch 759/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1249\n", + "Epoch 760/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1248\n", + "Epoch 761/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1247\n", + "Epoch 762/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1247\n", + "Epoch 763/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1246\n", + "Epoch 764/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1246\n", + "Epoch 765/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1245\n", + "Epoch 766/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1245\n", + "Epoch 767/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1244\n", + "Epoch 768/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1244\n", + "Epoch 769/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1243\n", + "Epoch 770/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1242\n", + "Epoch 771/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1242\n", + "Epoch 772/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1241\n", + "Epoch 773/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1241\n", + "Epoch 774/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.124\n", + "Epoch 775/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.124\n", + "Epoch 776/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1239\n", + "Epoch 777/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1239\n", + "Epoch 778/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1238\n", + "Epoch 779/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1238\n", + "Epoch 780/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1237\n", + "Epoch 781/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1236\n", + "Epoch 782/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1236\n", + "Epoch 783/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1235\n", + "Epoch 784/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1235\n", + "Epoch 785/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1234\n", + "Epoch 786/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1234\n", + "Epoch 787/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1233\n", + "Epoch 788/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1233\n", + "Epoch 789/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1232\n", + "Epoch 790/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1231\n", + "Epoch 791/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1231\n", + "Epoch 792/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.123\n", + "Epoch 793/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.123\n", + "Epoch 794/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1229\n", + "Epoch 795/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1229\n", + "Epoch 796/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1228\n", + "Epoch 797/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1228\n", + "Epoch 798/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1227\n", + "Epoch 799/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1227\n", + "Epoch 800/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1226\n", + "Epoch 801/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1225\n", + "Epoch 802/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1225\n", + "Epoch 803/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1224\n", + "Epoch 804/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1224\n", + "Epoch 805/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1223\n", + "Epoch 806/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1223\n", + "Epoch 807/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1222\n", + "Epoch 808/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1222\n", + "Epoch 809/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1221\n", + "Epoch 810/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1221\n", + "Epoch 811/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.122\n", + "Epoch 812/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1219\n", + "Epoch 813/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1219\n", + "Epoch 814/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1218\n", + "Epoch 815/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1218\n", + "Epoch 816/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1217\n", + "Epoch 817/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1217\n", + "Epoch 818/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1216\n", + "Epoch 819/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1216\n", + "Epoch 820/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1215\n", + "Epoch 821/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1215\n", + "Epoch 822/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1214\n", + "Epoch 823/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1213\n", + "Epoch 824/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1213\n", + "Epoch 825/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1212\n", + "Epoch 826/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1212\n", + "Epoch 827/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1211\n", + "Epoch 828/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1211\n", + "Epoch 829/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.121\n", + "Epoch 830/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.121\n", + "Epoch 831/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1209\n", + "Epoch 832/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1209\n", + "Epoch 833/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1208\n", + "Epoch 834/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1208\n", + "Epoch 835/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1207\n", + "Epoch 836/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1206\n", + "Epoch 837/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1206\n", + "Epoch 838/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1205\n", + "Epoch 839/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1205\n", + "Epoch 840/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1204\n", + "Epoch 841/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1204\n", + "Epoch 842/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1203\n", + "Epoch 843/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1203\n", + "Epoch 844/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1202\n", + "Epoch 845/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1202\n", + "Epoch 846/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1201\n", + "Epoch 847/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1201\n", + "Epoch 848/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.12\n", + "Epoch 849/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1199\n", + "Epoch 850/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1199\n", + "Epoch 851/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1198\n", + "Epoch 852/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1198\n", + "Epoch 853/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1197\n", + "Epoch 854/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1197\n", + "Epoch 855/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1196\n", + "Epoch 856/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1196\n", + "Epoch 857/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1195\n", + "Epoch 858/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1195\n", + "Epoch 859/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1194\n", + "Epoch 860/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1194\n", + "Epoch 861/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1193\n", + "Epoch 862/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1192\n", + "Epoch 863/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1192\n", + "Epoch 864/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1191\n", + "Epoch 865/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1191\n", + "Epoch 866/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.119\n", + "Epoch 867/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.119\n", + "Epoch 868/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1189\n", + "Epoch 869/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1189\n", + "Epoch 870/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1188\n", + "Epoch 871/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1188\n", + "Epoch 872/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1187\n", + "Epoch 873/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1187\n", + "Epoch 874/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1186\n", + "Epoch 875/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1186\n", + "Epoch 876/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1185\n", + "Epoch 877/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1184\n", + "Epoch 878/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1184\n", + "Epoch 879/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1183\n", + "Epoch 880/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1183\n", + "Epoch 881/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1182\n", + "Epoch 882/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1182\n", + "Epoch 883/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1181\n", + "Epoch 884/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1181\n", + "Epoch 885/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.118\n", + "Epoch 886/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.118\n", + "Epoch 887/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1179\n", + "Epoch 888/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1179\n", + "Epoch 889/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1178\n", + "Epoch 890/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1178\n", + "Epoch 891/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1177\n", + "Epoch 892/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1177\n", + "Epoch 893/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1176\n", + "Epoch 894/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1175\n", + "Epoch 895/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1175\n", + "Epoch 896/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1174\n", + "Epoch 897/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1174\n", + "Epoch 898/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1173\n", + "Epoch 899/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1173\n", + "Epoch 900/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1172\n", + "Epoch 901/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1172\n", + "Epoch 902/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1171\n", + "Epoch 903/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1171\n", + "Epoch 904/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.117\n", + "Epoch 905/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.117\n", + "Epoch 906/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1169\n", + "Epoch 907/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1169\n", + "Epoch 908/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1168\n", + "Epoch 909/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1168\n", + "Epoch 910/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1167\n", + "Epoch 911/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1166\n", + "Epoch 912/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1166\n", + "Epoch 913/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1165\n", + "Epoch 914/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1165\n", + "Epoch 915/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1164\n", + "Epoch 916/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1164\n", + "Epoch 917/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1163\n", + "Epoch 918/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1163\n", + "Epoch 919/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1162\n", + "Epoch 920/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1162\n", + "Epoch 921/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1161\n", + "Epoch 922/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1161\n", + "Epoch 923/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.116\n", + "Epoch 924/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.116\n", + "Epoch 925/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1159\n", + "Epoch 926/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1159\n", + "Epoch 927/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1158\n", + "Epoch 928/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1158\n", + "Epoch 929/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1157\n", + "Epoch 930/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1157\n", + "Epoch 931/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1156\n", + "Epoch 932/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1155\n", + "Epoch 933/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1155\n", + "Epoch 934/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1154\n", + "Epoch 935/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1154\n", + "Epoch 936/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1153\n", + "Epoch 937/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1153\n", + "Epoch 938/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1152\n", + "Epoch 939/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1152\n", + "Epoch 940/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1151\n", + "Epoch 941/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1151\n", + "Epoch 942/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.115\n", + "Epoch 943/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.115\n", + "Epoch 944/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1149\n", + "Epoch 945/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1149\n", + "Epoch 946/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1148\n", + "Epoch 947/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1148\n", + "Epoch 948/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1147\n", + "Epoch 949/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1147\n", + "Epoch 950/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1146\n", + "Epoch 951/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1146\n", + "Epoch 952/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1145\n", + "Epoch 953/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1145\n", + "Epoch 954/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1144\n", + "Epoch 955/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1144\n", + "Epoch 956/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1143\n", + "Epoch 957/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1142\n", + "Epoch 958/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1142\n", + "Epoch 959/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1141\n", + "Epoch 960/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1141\n", + "Epoch 961/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.114\n", + "Epoch 962/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.114\n", + "Epoch 963/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1139\n", + "Epoch 964/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1139\n", + "Epoch 965/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1138\n", + "Epoch 966/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1138\n", + "Epoch 967/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1137\n", + "Epoch 968/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1137\n", + "Epoch 969/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1136\n", + "Epoch 970/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1136\n", + "Epoch 971/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1135\n", + "Epoch 972/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1135\n", + "Epoch 973/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1134\n", + "Epoch 974/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1134\n", + "Epoch 975/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1133\n", + "Epoch 976/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1133\n", + "Epoch 977/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1132\n", + "Epoch 978/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1132\n", + "Epoch 979/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1131\n", + "Epoch 980/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1131\n", + "Epoch 981/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.113\n", + "Epoch 982/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.113\n", + "Epoch 983/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1129\n", + "Epoch 984/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1129\n", + "Epoch 985/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1128\n", + "Epoch 986/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1128\n", + "Epoch 987/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1127\n", + "Epoch 988/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1127\n", + "Epoch 989/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1126\n", + "Epoch 990/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1126\n", + "Epoch 991/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1125\n", + "Epoch 992/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1125\n", + "Epoch 993/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1124\n", + "Epoch 994/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1123\n", + "Epoch 995/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1123\n", + "Epoch 996/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1122\n", + "Epoch 997/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1122\n", + "Epoch 998/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1121\n", + "Epoch 999/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1121\n", + "Epoch 1000/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.112\n", + "Epoch 1001/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.112\n", + "Epoch 1002/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1119\n", + "Epoch 1003/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1119\n", + "Epoch 1004/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1118\n", + "Epoch 1005/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1118\n", + "Epoch 1006/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1117\n", + "Epoch 1007/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1117\n", + "Epoch 1008/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1116\n", + "Epoch 1009/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1116\n", + "Epoch 1010/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1115\n", + "Epoch 1011/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1115\n", + "Epoch 1012/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1114\n", + "Epoch 1013/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1114\n", + "Epoch 1014/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1113\n", + "Epoch 1015/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1113\n", + "Epoch 1016/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1112\n", + "Epoch 1017/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1112\n", + "Epoch 1018/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1111\n", + "Epoch 1019/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1111\n", + "Epoch 1020/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.111\n", + "Epoch 1021/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.111\n", + "Epoch 1022/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1109\n", + "Epoch 1023/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1109\n", + "Epoch 1024/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1108\n", + "Epoch 1025/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1108\n", + "Epoch 1026/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1107\n", + "Epoch 1027/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1107\n", + "Epoch 1028/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1106\n", + "Epoch 1029/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1106\n", + "Epoch 1030/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1105\n", + "Epoch 1031/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1105\n", + "Epoch 1032/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1104\n", + "Epoch 1033/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1104\n", + "Epoch 1034/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1103\n", + "Epoch 1035/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1103\n", + "Epoch 1036/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1102\n", + "Epoch 1037/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1102\n", + "Epoch 1038/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1101\n", + "Epoch 1039/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1101\n", + "Epoch 1040/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.11\n", + "Epoch 1041/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.11\n", + "Epoch 1042/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1099\n", + "Epoch 1043/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1099\n", + "Epoch 1044/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1098\n", + "Epoch 1045/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1098\n", + "Epoch 1046/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1097\n", + "Epoch 1047/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1097\n", + "Epoch 1048/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1096\n", + "Epoch 1049/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1096\n", + "Epoch 1050/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1095\n", + "Epoch 1051/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1095\n", + "Epoch 1052/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1094\n", + "Epoch 1053/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1094\n", + "Epoch 1054/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1093\n", + "Epoch 1055/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1093\n", + "Epoch 1056/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1092\n", + "Epoch 1057/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1092\n", + "Epoch 1058/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1091\n", + "Epoch 1059/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1091\n", + "Epoch 1060/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.109\n", + "Epoch 1061/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.109\n", + "Epoch 1062/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1089\n", + "Epoch 1063/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1089\n", + "Epoch 1064/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1088\n", + "Epoch 1065/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1088\n", + "Epoch 1066/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1087\n", + "Epoch 1067/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1087\n", + "Epoch 1068/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1086\n", + "Epoch 1069/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1086\n", + "Epoch 1070/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1085\n", + "Epoch 1071/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1085\n", + "Epoch 1072/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1084\n", + "Epoch 1073/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1084\n", + "Epoch 1074/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1083\n", + "Epoch 1075/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1083\n", + "Epoch 1076/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1082\n", + "Epoch 1077/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1082\n", + "Epoch 1078/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1081\n", + "Epoch 1079/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1081\n", + "Epoch 1080/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.108\n", + "Epoch 1081/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.108\n", + "Epoch 1082/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1079\n", + "Epoch 1083/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1079\n", + "Epoch 1084/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1078\n", + "Epoch 1085/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1078\n", + "Epoch 1086/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1077\n", + "Epoch 1087/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1077\n", + "Epoch 1088/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1076\n", + "Epoch 1089/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1076\n", + "Epoch 1090/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1075\n", + "Epoch 1091/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1075\n", + "Epoch 1092/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1074\n", + "Epoch 1093/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1074\n", + "Epoch 1094/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1073\n", + "Epoch 1095/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1073\n", + "Epoch 1096/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1072\n", + "Epoch 1097/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1072\n", + "Epoch 1098/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1071\n", + "Epoch 1099/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1071\n", + "Epoch 1100/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.107\n", + "Epoch 1101/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.107\n", + "Epoch 1102/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1069\n", + "Epoch 1103/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.1069\n", + "Epoch 1104/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1068\n", + "Epoch 1105/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1068\n", + "Epoch 1106/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1067\n", + "Epoch 1107/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1067\n", + "Epoch 1108/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1067\n", + "Epoch 1109/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1066\n", + "Epoch 1110/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1066\n", + "Epoch 1111/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1065\n", + "Epoch 1112/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1065\n", + "Epoch 1113/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1064\n", + "Epoch 1114/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1064\n", + "Epoch 1115/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1063\n", + "Epoch 1116/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1063\n", + "Epoch 1117/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1062\n", + "Epoch 1118/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1062\n", + "Epoch 1119/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1061\n", + "Epoch 1120/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1061\n", + "Epoch 1121/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.106\n", + "Epoch 1122/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.106\n", + "Epoch 1123/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1059\n", + "Epoch 1124/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1059\n", + "Epoch 1125/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1058\n", + "Epoch 1126/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1058\n", + "Epoch 1127/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1057\n", + "Epoch 1128/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1057\n", + "Epoch 1129/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1056\n", + "Epoch 1130/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1056\n", + "Epoch 1131/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1055\n", + "Epoch 1132/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1055\n", + "Epoch 1133/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1054\n", + "Epoch 1134/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1054\n", + "Epoch 1135/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1053\n", + "Epoch 1136/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1053\n", + "Epoch 1137/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1052\n", + "Epoch 1138/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1052\n", + "Epoch 1139/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1051\n", + "Epoch 1140/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1051\n", + "Epoch 1141/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.105\n", + "Epoch 1142/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.105\n", + "Epoch 1143/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1049\n", + "Epoch 1144/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1049\n", + "Epoch 1145/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1049\n", + "Epoch 1146/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1048\n", + "Epoch 1147/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1048\n", + "Epoch 1148/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1047\n", + "Epoch 1149/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1047\n", + "Epoch 1150/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1046\n", + "Epoch 1151/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1046\n", + "Epoch 1152/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1045\n", + "Epoch 1153/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1045\n", + "Epoch 1154/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1044\n", + "Epoch 1155/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1044\n", + "Epoch 1156/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1043\n", + "Epoch 1157/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1043\n", + "Epoch 1158/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1042\n", + "Epoch 1159/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1042\n", + "Epoch 1160/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1041\n", + "Epoch 1161/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1041\n", + "Epoch 1162/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.104\n", + "Epoch 1163/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.104\n", + "Epoch 1164/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1039\n", + "Epoch 1165/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1039\n", + "Epoch 1166/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1038\n", + "Epoch 1167/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1038\n", + "Epoch 1168/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1037\n", + "Epoch 1169/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1037\n", + "Epoch 1170/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1037\n", + "Epoch 1171/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1036\n", + "Epoch 1172/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1036\n", + "Epoch 1173/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1035\n", + "Epoch 1174/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1035\n", + "Epoch 1175/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1034\n", + "Epoch 1176/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1034\n", + "Epoch 1177/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1033\n", + "Epoch 1178/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1033\n", + "Epoch 1179/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1032\n", + "Epoch 1180/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1032\n", + "Epoch 1181/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.1031\n", + "Epoch 1182/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1031\n", + "Epoch 1183/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.103\n", + "Epoch 1184/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.103\n", + "Epoch 1185/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1029\n", + "Epoch 1186/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1029\n", + "Epoch 1187/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1028\n", + "Epoch 1188/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1028\n", + "Epoch 1189/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1027\n", + "Epoch 1190/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1027\n", + "Epoch 1191/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1027\n", + "Epoch 1192/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1026\n", + "Epoch 1193/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1026\n", + "Epoch 1194/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1025\n", + "Epoch 1195/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1025\n", + "Epoch 1196/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1024\n", + "Epoch 1197/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1024\n", + "Epoch 1198/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1023\n", + "Epoch 1199/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1023\n", + "Epoch 1200/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1022\n", + "Epoch 1201/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1022\n", + "Epoch 1202/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1021\n", + "Epoch 1203/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1021\n", + "Epoch 1204/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.102\n", + "Epoch 1205/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.102\n", + "Epoch 1206/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1019\n", + "Epoch 1207/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1019\n", + "Epoch 1208/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1018\n", + "Epoch 1209/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1018\n", + "Epoch 1210/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1018\n", + "Epoch 1211/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1017\n", + "Epoch 1212/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1017\n", + "Epoch 1213/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1016\n", + "Epoch 1214/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1016\n", + "Epoch 1215/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1015\n", + "Epoch 1216/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.1015\n", + "Epoch 1217/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1014\n", + "Epoch 1218/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1014\n", + "Epoch 1219/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1013\n", + "Epoch 1220/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1013\n", + "Epoch 1221/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1012\n", + "Epoch 1222/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1012\n", + "Epoch 1223/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1011\n", + "Epoch 1224/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1011\n", + "Epoch 1225/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.101\n", + "Epoch 1226/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.101\n", + "Epoch 1227/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.101\n", + "Epoch 1228/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1009\n", + "Epoch 1229/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1009\n", + "Epoch 1230/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1008\n", + "Epoch 1231/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1008\n", + "Epoch 1232/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1007\n", + "Epoch 1233/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1007\n", + "Epoch 1234/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1006\n", + "Epoch 1235/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1006\n", + "Epoch 1236/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1005\n", + "Epoch 1237/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1005\n", + "Epoch 1238/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1004\n", + "Epoch 1239/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1004\n", + "Epoch 1240/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.1003\n", + "Epoch 1241/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1003\n", + "Epoch 1242/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1003\n", + "Epoch 1243/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1002\n", + "Epoch 1244/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1002\n", + "Epoch 1245/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1001\n", + "Epoch 1246/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1001\n", + "Epoch 1247/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1\n", + "Epoch 1248/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.1\n", + "Epoch 1249/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.0999\n", + "Epoch 1250/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.0999\n", + "Epoch 1251/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.0998\n", + "Epoch 1252/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0998\n", + "Epoch 1253/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0997\n", + "Epoch 1254/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.0997\n", + "Epoch 1255/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.0997\n", + "Epoch 1256/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.0996\n", + "Epoch 1257/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.0996\n", + "Epoch 1258/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0995\n", + "Epoch 1259/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0995\n", + "Epoch 1260/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0994\n", + "Epoch 1261/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0994\n", + "Epoch 1262/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0993\n", + "Epoch 1263/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0993\n", + "Epoch 1264/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0992\n", + "Epoch 1265/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.0992\n", + "Epoch 1266/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0991\n", + "Epoch 1267/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0991\n", + "Epoch 1268/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0991\n", + "Epoch 1269/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.099\n", + "Epoch 1270/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.099\n", + "Epoch 1271/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0989\n", + "Epoch 1272/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0989\n", + "Epoch 1273/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.0988\n", + "Epoch 1274/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.0988\n", + "Epoch 1275/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0987\n", + "Epoch 1276/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0987\n", + "Epoch 1277/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.0986\n", + "Epoch 1278/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.0986\n", + "Epoch 1279/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0985\n", + "Epoch 1280/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0985\n", + "Epoch 1281/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.0985\n", + "Epoch 1282/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.0984\n", + "Epoch 1283/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0984\n", + "Epoch 1284/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0983\n", + "Epoch 1285/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0983\n", + "Epoch 1286/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0982\n", + "Epoch 1287/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0982\n", + "Epoch 1288/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0981\n", + "Epoch 1289/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.0981\n", + "Epoch 1290/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.098\n", + "Epoch 1291/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.098\n", + "Epoch 1292/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.098\n", + "Epoch 1293/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.0979\n", + "Epoch 1294/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.0979\n", + "Epoch 1295/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0978\n", + "Epoch 1296/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0978\n", + "Epoch 1297/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0977\n", + "Epoch 1298/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0977\n", + "Epoch 1299/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0976\n", + "Epoch 1300/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0976\n", + "Epoch 1301/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0975\n", + "Epoch 1302/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.0975\n", + "Epoch 1303/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0975\n", + "Epoch 1304/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0974\n", + "Epoch 1305/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0974\n", + "Epoch 1306/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.0973\n", + "Epoch 1307/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0973\n", + "Epoch 1308/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0972\n", + "Epoch 1309/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0972\n", + "Epoch 1310/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0971\n", + "Epoch 1311/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0971\n", + "Epoch 1312/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.097\n", + "Epoch 1313/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.097\n", + "Epoch 1314/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.097\n", + "Epoch 1315/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0969\n", + "Epoch 1316/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0969\n", + "Epoch 1317/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0968\n", + "Epoch 1318/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.0968\n", + "Epoch 1319/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0967\n", + "Epoch 1320/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0967\n", + "Epoch 1321/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.0966\n", + "Epoch 1322/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0966\n", + "Epoch 1323/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0965\n", + "Epoch 1324/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0965\n", + "Epoch 1325/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0965\n", + "Epoch 1326/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.0964\n", + "Epoch 1327/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0964\n", + "Epoch 1328/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0963\n", + "Epoch 1329/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0963\n", + "Epoch 1330/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0962\n", + "Epoch 1331/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0962\n", + "Epoch 1332/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0961\n", + "Epoch 1333/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0961\n", + "Epoch 1334/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0961\n", + "Epoch 1335/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.096\n", + "Epoch 1336/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.096\n", + "Epoch 1337/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0959\n", + "Epoch 1338/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0959\n", + "Epoch 1339/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0958\n", + "Epoch 1340/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0958\n", + "Epoch 1341/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.0957\n", + "Epoch 1342/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0957\n", + "Epoch 1343/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0957\n", + "Epoch 1344/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0956\n", + "Epoch 1345/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0956\n", + "Epoch 1346/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0955\n", + "Epoch 1347/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0955\n", + "Epoch 1348/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.0954\n", + "Epoch 1349/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.0954\n", + "Epoch 1350/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0953\n", + "Epoch 1351/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0953\n", + "Epoch 1352/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0953\n", + "Epoch 1353/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0952\n", + "Epoch 1354/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0952\n", + "Epoch 1355/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0951\n", + "Epoch 1356/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0951\n", + "Epoch 1357/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.095\n", + "Epoch 1358/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.095\n", + "Epoch 1359/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0949\n", + "Epoch 1360/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0949\n", + "Epoch 1361/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0949\n", + "Epoch 1362/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0948\n", + "Epoch 1363/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0948\n", + "Epoch 1364/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0947\n", + "Epoch 1365/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0947\n", + "Epoch 1366/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0946\n", + "Epoch 1367/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0946\n", + "Epoch 1368/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0945\n", + "Epoch 1369/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0945\n", + "Epoch 1370/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0945\n", + "Epoch 1371/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0944\n", + "Epoch 1372/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0944\n", + "Epoch 1373/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0943\n", + "Epoch 1374/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0943\n", + "Epoch 1375/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0942\n", + "Epoch 1376/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0942\n", + "Epoch 1377/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0941\n", + "Epoch 1378/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0941\n", + "Epoch 1379/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0941\n", + "Epoch 1380/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.094\n", + "Epoch 1381/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.094\n", + "Epoch 1382/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.0939\n", + "Epoch 1383/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0939\n", + "Epoch 1384/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0938\n", + "Epoch 1385/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0938\n", + "Epoch 1386/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.0937\n", + "Epoch 1387/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0937\n", + "Epoch 1388/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0937\n", + "Epoch 1389/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0936\n", + "Epoch 1390/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0936\n", + "Epoch 1391/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.0935\n", + "Epoch 1392/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0935\n", + "Epoch 1393/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0934\n", + "Epoch 1394/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0934\n", + "Epoch 1395/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0933\n", + "Epoch 1396/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0933\n", + "Epoch 1397/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0933\n", + "Epoch 1398/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0932\n", + "Epoch 1399/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0932\n", + "Epoch 1400/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0931\n", + "Epoch 1401/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0931\n", + "Epoch 1402/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.093\n", + "Epoch 1403/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.093\n", + "Epoch 1404/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0929\n", + "Epoch 1405/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0929\n", + "Epoch 1406/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0928\n", + "Epoch 1407/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0928\n", + "Epoch 1408/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0928\n", + "Epoch 1409/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.0927\n", + "Epoch 1410/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0927\n", + "Epoch 1411/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0926\n", + "Epoch 1412/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0926\n", + "Epoch 1413/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0925\n", + "Epoch 1414/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0925\n", + "Epoch 1415/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0924\n", + "Epoch 1416/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0924\n", + "Epoch 1417/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0923\n", + "Epoch 1418/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0923\n", + "Epoch 1419/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0923\n", + "Epoch 1420/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.0922\n", + "Epoch 1421/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0922\n", + "Epoch 1422/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0921\n", + "Epoch 1423/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0921\n", + "Epoch 1424/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.092\n", + "Epoch 1425/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.092\n", + "Epoch 1426/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0919\n", + "Epoch 1427/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0919\n", + "Epoch 1428/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0918\n", + "Epoch 1429/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0918\n", + "Epoch 1430/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0918\n", + "Epoch 1431/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0917\n", + "Epoch 1432/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0917\n", + "Epoch 1433/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0916\n", + "Epoch 1434/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0916\n", + "Epoch 1435/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0915\n", + "Epoch 1436/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0915\n", + "Epoch 1437/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0914\n", + "Epoch 1438/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0914\n", + "Epoch 1439/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0913\n", + "Epoch 1440/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0913\n", + "Epoch 1441/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0913\n", + "Epoch 1442/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0912\n", + "Epoch 1443/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0912\n", + "Epoch 1444/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0911\n", + "Epoch 1445/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0911\n", + "Epoch 1446/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.091\n", + "Epoch 1447/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.091\n", + "Epoch 1448/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0909\n", + "Epoch 1449/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0909\n", + "Epoch 1450/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0908\n", + "Epoch 1451/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0908\n", + "Epoch 1452/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0907\n", + "Epoch 1453/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0907\n", + "Epoch 1454/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0907\n", + "Epoch 1455/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.0906\n", + "Epoch 1456/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0906\n", + "Epoch 1457/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0905\n", + "Epoch 1458/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0905\n", + "Epoch 1459/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0904\n", + "Epoch 1460/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0904\n", + "Epoch 1461/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0903\n", + "Epoch 1462/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0903\n", + "Epoch 1463/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0902\n", + "Epoch 1464/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0902\n", + "Epoch 1465/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0901\n", + "Epoch 1466/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0901\n", + "Epoch 1467/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0901\n", + "Epoch 1468/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.09\n", + "Epoch 1469/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.09\n", + "Epoch 1470/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0899\n", + "Epoch 1471/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0899\n", + "Epoch 1472/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0898\n", + "Epoch 1473/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0898\n", + "Epoch 1474/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0897\n", + "Epoch 1475/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0897\n", + "Epoch 1476/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0896\n", + "Epoch 1477/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0896\n", + "Epoch 1478/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0896\n", + "Epoch 1479/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0895\n", + "Epoch 1480/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0895\n", + "Epoch 1481/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0894\n", + "Epoch 1482/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0894\n", + "Epoch 1483/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0893\n", + "Epoch 1484/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0893\n", + "Epoch 1485/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0893\n", + "Epoch 1486/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0892\n", + "Epoch 1487/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0892\n", + "Epoch 1488/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0891\n", + "Epoch 1489/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0891\n", + "Epoch 1490/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.089\n", + "Epoch 1491/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.089\n", + "Epoch 1492/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0889\n", + "Epoch 1493/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0889\n", + "Epoch 1494/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0888\n", + "Epoch 1495/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0888\n", + "Epoch 1496/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0887\n", + "Epoch 1497/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0887\n", + "Epoch 1498/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0887\n", + "Epoch 1499/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0886\n", + "Epoch 1500/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0886\n", + "Epoch 1501/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0885\n", + "Epoch 1502/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0885\n", + "Epoch 1503/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0884\n", + "Epoch 1504/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0884\n", + "Epoch 1505/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0883\n", + "Epoch 1506/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0883\n", + "Epoch 1507/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0882\n", + "Epoch 1508/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0882\n", + "Epoch 1509/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0881\n", + "Epoch 1510/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0881\n", + "Epoch 1511/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.088\n", + "Epoch 1512/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.088\n", + "Epoch 1513/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.088\n", + "Epoch 1514/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0879\n", + "Epoch 1515/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0879\n", + "Epoch 1516/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0878\n", + "Epoch 1517/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0878\n", + "Epoch 1518/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0877\n", + "Epoch 1519/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0877\n", + "Epoch 1520/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0876\n", + "Epoch 1521/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.0876\n", + "Epoch 1522/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0875\n", + "Epoch 1523/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0875\n", + "Epoch 1524/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0874\n", + "Epoch 1525/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0874\n", + "Epoch 1526/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0873\n", + "Epoch 1527/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0873\n", + "Epoch 1528/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0873\n", + "Epoch 1529/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0872\n", + "Epoch 1530/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0872\n", + "Epoch 1531/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0871\n", + "Epoch 1532/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0871\n", + "Epoch 1533/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.087\n", + "Epoch 1534/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.087\n", + "Epoch 1535/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0869\n", + "Epoch 1536/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0869\n", + "Epoch 1537/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0868\n", + "Epoch 1538/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0868\n", + "Epoch 1539/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0867\n", + "Epoch 1540/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0867\n", + "Epoch 1541/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0866\n", + "Epoch 1542/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0866\n", + "Epoch 1543/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0866\n", + "Epoch 1544/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0865\n", + "Epoch 1545/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0865\n", + "Epoch 1546/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0864\n", + "Epoch 1547/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0864\n", + "Epoch 1548/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0863\n", + "Epoch 1549/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0863\n", + "Epoch 1550/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0862\n", + "Epoch 1551/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0862\n", + "Epoch 1552/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0861\n", + "Epoch 1553/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0861\n", + "Epoch 1554/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.086\n", + "Epoch 1555/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.086\n", + "Epoch 1556/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.086\n", + "Epoch 1557/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0859\n", + "Epoch 1558/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0859\n", + "Epoch 1559/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0858\n", + "Epoch 1560/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.0858\n", + "Epoch 1561/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0857\n", + "Epoch 1562/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0857\n", + "Epoch 1563/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0856\n", + "Epoch 1564/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0856\n", + "Epoch 1565/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0855\n", + "Epoch 1566/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0855\n", + "Epoch 1567/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0854\n", + "Epoch 1568/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0854\n", + "Epoch 1569/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0853\n", + "Epoch 1570/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0853\n", + "Epoch 1571/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0853\n", + "Epoch 1572/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0852\n", + "Epoch 1573/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0852\n", + "Epoch 1574/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0851\n", + "Epoch 1575/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0851\n", + "Epoch 1576/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.085\n", + "Epoch 1577/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.085\n", + "Epoch 1578/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0849\n", + "Epoch 1579/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0849\n", + "Epoch 1580/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0848\n", + "Epoch 1581/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0848\n", + "Epoch 1582/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0848\n", + "Epoch 1583/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0847\n", + "Epoch 1584/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0847\n", + "Epoch 1585/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0846\n", + "Epoch 1586/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0846\n", + "Epoch 1587/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0845\n", + "Epoch 1588/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0845\n", + "Epoch 1589/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0844\n", + "Epoch 1590/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0844\n", + "Epoch 1591/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0843\n", + "Epoch 1592/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0843\n", + "Epoch 1593/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0843\n", + "Epoch 1594/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0842\n", + "Epoch 1595/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0842\n", + "Epoch 1596/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0841\n", + "Epoch 1597/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0841\n", + "Epoch 1598/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.084\n", + "Epoch 1599/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.084\n", + "Epoch 1600/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0839\n", + "Epoch 1601/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0839\n", + "Epoch 1602/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0838\n", + "Epoch 1603/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0838\n", + "Epoch 1604/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0837\n", + "Epoch 1605/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0837\n", + "Epoch 1606/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0836\n", + "Epoch 1607/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0836\n", + "Epoch 1608/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0836\n", + "Epoch 1609/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0835\n", + "Epoch 1610/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0835\n", + "Epoch 1611/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0834\n", + "Epoch 1612/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0834\n", + "Epoch 1613/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0833\n", + "Epoch 1614/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0833\n", + "Epoch 1615/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0832\n", + "Epoch 1616/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0832\n", + "Epoch 1617/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0831\n", + "Epoch 1618/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0831\n", + "Epoch 1619/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.083\n", + "Epoch 1620/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.083\n", + "Epoch 1621/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.083\n", + "Epoch 1622/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0829\n", + "Epoch 1623/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0829\n", + "Epoch 1624/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0828\n", + "Epoch 1625/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0828\n", + "Epoch 1626/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0827\n", + "Epoch 1627/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0827\n", + "Epoch 1628/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0826\n", + "Epoch 1629/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0826\n", + "Epoch 1630/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0825\n", + "Epoch 1631/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0825\n", + "Epoch 1632/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0825\n", + "Epoch 1633/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0824\n", + "Epoch 1634/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0824\n", + "Epoch 1635/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0823\n", + "Epoch 1636/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0823\n", + "Epoch 1637/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0822\n", + "Epoch 1638/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0822\n", + "Epoch 1639/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0821\n", + "Epoch 1640/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0821\n", + "Epoch 1641/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0821\n", + "Epoch 1642/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.082\n", + "Epoch 1643/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.082\n", + "Epoch 1644/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0819\n", + "Epoch 1645/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0819\n", + "Epoch 1646/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0818\n", + "Epoch 1647/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0818\n", + "Epoch 1648/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0817\n", + "Epoch 1649/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0817\n", + "Epoch 1650/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0817\n", + "Epoch 1651/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0816\n", + "Epoch 1652/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0816\n", + "Epoch 1653/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0815\n", + "Epoch 1654/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0815\n", + "Epoch 1655/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0814\n", + "Epoch 1656/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0814\n", + "Epoch 1657/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0813\n", + "Epoch 1658/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0813\n", + "Epoch 1659/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0812\n", + "Epoch 1660/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0812\n", + "Epoch 1661/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0811\n", + "Epoch 1662/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0811\n", + "Epoch 1663/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0811\n", + "Epoch 1664/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.081\n", + "Epoch 1665/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.081\n", + "Epoch 1666/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0809\n", + "Epoch 1667/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0809\n", + "Epoch 1668/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0808\n", + "Epoch 1669/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0808\n", + "Epoch 1670/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0807\n", + "Epoch 1671/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0807\n", + "Epoch 1672/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0806\n", + "Epoch 1673/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0806\n", + "Epoch 1674/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0806\n", + "Epoch 1675/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0805\n", + "Epoch 1676/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0805\n", + "Epoch 1677/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0804\n", + "Epoch 1678/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0804\n", + "Epoch 1679/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0803\n", + "Epoch 1680/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0803\n", + "Epoch 1681/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0802\n", + "Epoch 1682/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0802\n", + "Epoch 1683/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0801\n", + "Epoch 1684/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0801\n", + "Epoch 1685/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0801\n", + "Epoch 1686/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.08\n", + "Epoch 1687/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.08\n", + "Epoch 1688/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0799\n", + "Epoch 1689/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0799\n", + "Epoch 1690/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0798\n", + "Epoch 1691/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0798\n", + "Epoch 1692/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0797\n", + "Epoch 1693/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0797\n", + "Epoch 1694/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0796\n", + "Epoch 1695/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0796\n", + "Epoch 1696/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0796\n", + "Epoch 1697/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0795\n", + "Epoch 1698/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0795\n", + "Epoch 1699/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0794\n", + "Epoch 1700/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0794\n", + "Epoch 1701/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0793\n", + "Epoch 1702/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0793\n", + "Epoch 1703/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0792\n", + "Epoch 1704/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0792\n", + "Epoch 1705/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0791\n", + "Epoch 1706/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0791\n", + "Epoch 1707/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0791\n", + "Epoch 1708/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.079\n", + "Epoch 1709/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.079\n", + "Epoch 1710/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0789\n", + "Epoch 1711/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0789\n", + "Epoch 1712/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0788\n", + "Epoch 1713/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0788\n", + "Epoch 1714/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0787\n", + "Epoch 1715/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0787\n", + "Epoch 1716/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0787\n", + "Epoch 1717/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0786\n", + "Epoch 1718/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0786\n", + "Epoch 1719/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0785\n", + "Epoch 1720/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0785\n", + "Epoch 1721/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0784\n", + "Epoch 1722/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0784\n", + "Epoch 1723/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0783\n", + "Epoch 1724/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0783\n", + "Epoch 1725/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0782\n", + "Epoch 1726/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0782\n", + "Epoch 1727/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0782\n", + "Epoch 1728/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0781\n", + "Epoch 1729/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0781\n", + "Epoch 1730/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.078\n", + "Epoch 1731/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.078\n", + "Epoch 1732/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0779\n", + "Epoch 1733/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0779\n", + "Epoch 1734/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0778\n", + "Epoch 1735/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0778\n", + "Epoch 1736/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0778\n", + "Epoch 1737/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0777\n", + "Epoch 1738/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0777\n", + "Epoch 1739/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0776\n", + "Epoch 1740/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0776\n", + "Epoch 1741/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0775\n", + "Epoch 1742/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0775\n", + "Epoch 1743/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0774\n", + "Epoch 1744/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0774\n", + "Epoch 1745/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0774\n", + "Epoch 1746/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0773\n", + "Epoch 1747/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0773\n", + "Epoch 1748/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0772\n", + "Epoch 1749/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0772\n", + "Epoch 1750/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0771\n", + "Epoch 1751/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0771\n", + "Epoch 1752/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0771\n", + "Epoch 1753/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.077\n", + "Epoch 1754/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.077\n", + "Epoch 1755/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0769\n", + "Epoch 1756/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0769\n", + "Epoch 1757/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0768\n", + "Epoch 1758/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0768\n", + "Epoch 1759/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0767\n", + "Epoch 1760/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0767\n", + "Epoch 1761/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0767\n", + "Epoch 1762/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0766\n", + "Epoch 1763/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0766\n", + "Epoch 1764/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0765\n", + "Epoch 1765/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0765\n", + "Epoch 1766/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0764\n", + "Epoch 1767/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0764\n", + "Epoch 1768/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0763\n", + "Epoch 1769/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0763\n", + "Epoch 1770/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0763\n", + "Epoch 1771/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0762\n", + "Epoch 1772/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0762\n", + "Epoch 1773/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0761\n", + "Epoch 1774/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0761\n", + "Epoch 1775/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.076\n", + "Epoch 1776/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.076\n", + "Epoch 1777/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0759\n", + "Epoch 1778/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0759\n", + "Epoch 1779/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0759\n", + "Epoch 1780/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0758\n", + "Epoch 1781/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0758\n", + "Epoch 1782/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0757\n", + "Epoch 1783/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0757\n", + "Epoch 1784/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0756\n", + "Epoch 1785/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0756\n", + "Epoch 1786/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0756\n", + "Epoch 1787/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0755\n", + "Epoch 1788/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0755\n", + "Epoch 1789/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0754\n", + "Epoch 1790/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0754\n", + "Epoch 1791/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0753\n", + "Epoch 1792/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0753\n", + "Epoch 1793/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0752\n", + "Epoch 1794/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0752\n", + "Epoch 1795/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0752\n", + "Epoch 1796/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0751\n", + "Epoch 1797/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0751\n", + "Epoch 1798/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.075\n", + "Epoch 1799/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.075\n", + "Epoch 1800/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0749\n", + "Epoch 1801/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0749\n", + "Epoch 1802/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0749\n", + "Epoch 1803/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0748\n", + "Epoch 1804/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0748\n", + "Epoch 1805/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0747\n", + "Epoch 1806/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0747\n", + "Epoch 1807/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0746\n", + "Epoch 1808/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0746\n", + "Epoch 1809/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0745\n", + "Epoch 1810/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0745\n", + "Epoch 1811/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0745\n", + "Epoch 1812/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0744\n", + "Epoch 1813/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0744\n", + "Epoch 1814/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0743\n", + "Epoch 1815/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0743\n", + "Epoch 1816/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0742\n", + "Epoch 1817/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0742\n", + "Epoch 1818/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0742\n", + "Epoch 1819/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0741\n", + "Epoch 1820/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0741\n", + "Epoch 1821/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.074\n", + "Epoch 1822/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.074\n", + "Epoch 1823/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0739\n", + "Epoch 1824/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0739\n", + "Epoch 1825/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0739\n", + "Epoch 1826/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0738\n", + "Epoch 1827/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0738\n", + "Epoch 1828/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0737\n", + "Epoch 1829/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0737\n", + "Epoch 1830/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0736\n", + "Epoch 1831/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0736\n", + "Epoch 1832/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0736\n", + "Epoch 1833/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0735\n", + "Epoch 1834/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0735\n", + "Epoch 1835/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0734\n", + "Epoch 1836/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0734\n", + "Epoch 1837/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0733\n", + "Epoch 1838/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0733\n", + "Epoch 1839/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0733\n", + "Epoch 1840/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0732\n", + "Epoch 1841/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0732\n", + "Epoch 1842/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0731\n", + "Epoch 1843/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0731\n", + "Epoch 1844/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.073\n", + "Epoch 1845/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.073\n", + "Epoch 1846/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.073\n", + "Epoch 1847/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0729\n", + "Epoch 1848/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0729\n", + "Epoch 1849/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0728\n", + "Epoch 1850/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0728\n", + "Epoch 1851/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0727\n", + "Epoch 1852/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0727\n", + "Epoch 1853/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0726\n", + "Epoch 1854/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0726\n", + "Epoch 1855/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0726\n", + "Epoch 1856/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0725\n", + "Epoch 1857/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0725\n", + "Epoch 1858/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0724\n", + "Epoch 1859/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0724\n", + "Epoch 1860/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0723\n", + "Epoch 1861/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0723\n", + "Epoch 1862/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0723\n", + "Epoch 1863/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0722\n", + "Epoch 1864/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0722\n", + "Epoch 1865/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0721\n", + "Epoch 1866/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0721\n", + "Epoch 1867/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.072\n", + "Epoch 1868/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.072\n", + "Epoch 1869/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.072\n", + "Epoch 1870/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0719\n", + "Epoch 1871/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0719\n", + "Epoch 1872/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0718\n", + "Epoch 1873/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0718\n", + "Epoch 1874/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0717\n", + "Epoch 1875/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0717\n", + "Epoch 1876/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0717\n", + "Epoch 1877/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0716\n", + "Epoch 1878/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0716\n", + "Epoch 1879/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0715\n", + "Epoch 1880/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0715\n", + "Epoch 1881/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0715\n", + "Epoch 1882/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0714\n", + "Epoch 1883/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0714\n", + "Epoch 1884/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0713\n", + "Epoch 1885/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0713\n", + "Epoch 1886/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0712\n", + "Epoch 1887/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0712\n", + "Epoch 1888/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0712\n", + "Epoch 1889/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0711\n", + "Epoch 1890/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0711\n", + "Epoch 1891/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.071\n", + "Epoch 1892/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.071\n", + "Epoch 1893/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0709\n", + "Epoch 1894/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0709\n", + "Epoch 1895/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0709\n", + "Epoch 1896/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0708\n", + "Epoch 1897/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0708\n", + "Epoch 1898/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0707\n", + "Epoch 1899/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0707\n", + "Epoch 1900/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0706\n", + "Epoch 1901/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0706\n", + "Epoch 1902/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0706\n", + "Epoch 1903/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0705\n", + "Epoch 1904/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0705\n", + "Epoch 1905/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0704\n", + "Epoch 1906/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0704\n", + "Epoch 1907/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0703\n", + "Epoch 1908/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0703\n", + "Epoch 1909/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0703\n", + "Epoch 1910/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0702\n", + "Epoch 1911/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0702\n", + "Epoch 1912/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0701\n", + "Epoch 1913/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0701\n", + "Epoch 1914/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.07\n", + "Epoch 1915/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.07\n", + "Epoch 1916/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.07\n", + "Epoch 1917/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0699\n", + "Epoch 1918/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0699\n", + "Epoch 1919/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0698\n", + "Epoch 1920/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0698\n", + "Epoch 1921/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0697\n", + "Epoch 1922/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0697\n", + "Epoch 1923/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0697\n", + "Epoch 1924/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0696\n", + "Epoch 1925/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0696\n", + "Epoch 1926/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0695\n", + "Epoch 1927/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0695\n", + "Epoch 1928/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0695\n", + "Epoch 1929/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0694\n", + "Epoch 1930/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0694\n", + "Epoch 1931/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0693\n", + "Epoch 1932/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0693\n", + "Epoch 1933/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0692\n", + "Epoch 1934/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0692\n", + "Epoch 1935/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0692\n", + "Epoch 1936/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0691\n", + "Epoch 1937/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0691\n", + "Epoch 1938/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.069\n", + "Epoch 1939/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.069\n", + "Epoch 1940/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.069\n", + "Epoch 1941/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0689\n", + "Epoch 1942/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0689\n", + "Epoch 1943/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0688\n", + "Epoch 1944/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0688\n", + "Epoch 1945/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0687\n", + "Epoch 1946/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0687\n", + "Epoch 1947/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0687\n", + "Epoch 1948/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0686\n", + "Epoch 1949/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0686\n", + "Epoch 1950/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0685\n", + "Epoch 1951/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0685\n", + "Epoch 1952/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0684\n", + "Epoch 1953/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0684\n", + "Epoch 1954/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0684\n", + "Epoch 1955/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0683\n", + "Epoch 1956/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0683\n", + "Epoch 1957/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0682\n", + "Epoch 1958/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0682\n", + "Epoch 1959/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0682\n", + "Epoch 1960/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0681\n", + "Epoch 1961/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0681\n", + "Epoch 1962/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.068\n", + "Epoch 1963/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.068\n", + "Epoch 1964/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0679\n", + "Epoch 1965/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0679\n", + "Epoch 1966/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0679\n", + "Epoch 1967/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0678\n", + "Epoch 1968/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0678\n", + "Epoch 1969/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0677\n", + "Epoch 1970/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0677\n", + "Epoch 1971/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0677\n", + "Epoch 1972/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0676\n", + "Epoch 1973/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0676\n", + "Epoch 1974/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0675\n", + "Epoch 1975/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0675\n", + "Epoch 1976/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0675\n", + "Epoch 1977/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0674\n", + "Epoch 1978/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0674\n", + "Epoch 1979/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0673\n", + "Epoch 1980/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0673\n", + "Epoch 1981/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0672\n", + "Epoch 1982/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0672\n", + "Epoch 1983/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0672\n", + "Epoch 1984/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0671\n", + "Epoch 1985/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0671\n", + "Epoch 1986/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.067\n", + "Epoch 1987/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.067\n", + "Epoch 1988/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.067\n", + "Epoch 1989/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0669\n", + "Epoch 1990/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0669\n", + "Epoch 1991/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0668\n", + "Epoch 1992/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0668\n", + "Epoch 1993/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0667\n", + "Epoch 1994/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0667\n", + "Epoch 1995/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0667\n", + "Epoch 1996/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0666\n", + "Epoch 1997/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0666\n", + "Epoch 1998/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0665\n", + "Epoch 1999/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0665\n", + "Epoch 2000/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0665\n", + "Epoch 2001/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0664\n", + "Epoch 2002/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0664\n", + "Epoch 2003/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0663\n", + "Epoch 2004/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0663\n", + "Epoch 2005/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0663\n", + "Epoch 2006/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0662\n", + "Epoch 2007/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0662\n", + "Epoch 2008/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0661\n", + "Epoch 2009/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0661\n", + "Epoch 2010/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0661\n", + "Epoch 2011/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.066\n", + "Epoch 2012/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.066\n", + "Epoch 2013/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0659\n", + "Epoch 2014/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0659\n", + "Epoch 2015/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0658\n", + "Epoch 2016/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0658\n", + "Epoch 2017/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0658\n", + "Epoch 2018/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0657\n", + "Epoch 2019/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0657\n", + "Epoch 2020/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0656\n", + "Epoch 2021/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0656\n", + "Epoch 2022/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0656\n", + "Epoch 2023/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0655\n", + "Epoch 2024/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0655\n", + "Epoch 2025/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0654\n", + "Epoch 2026/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0654\n", + "Epoch 2027/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0654\n", + "Epoch 2028/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0653\n", + "Epoch 2029/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0653\n", + "Epoch 2030/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0652\n", + "Epoch 2031/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0652\n", + "Epoch 2032/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0652\n", + "Epoch 2033/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0651\n", + "Epoch 2034/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0651\n", + "Epoch 2035/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.065\n", + "Epoch 2036/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.065\n", + "Epoch 2037/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0649\n", + "Epoch 2038/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0649\n", + "Epoch 2039/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0649\n", + "Epoch 2040/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0648\n", + "Epoch 2041/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0648\n", + "Epoch 2042/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0647\n", + "Epoch 2043/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0647\n", + "Epoch 2044/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0647\n", + "Epoch 2045/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0646\n", + "Epoch 2046/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0646\n", + "Epoch 2047/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0645\n", + "Epoch 2048/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0645\n", + "Epoch 2049/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0645\n", + "Epoch 2050/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0644\n", + "Epoch 2051/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0644\n", + "Epoch 2052/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0643\n", + "Epoch 2053/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0643\n", + "Epoch 2054/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0643\n", + "Epoch 2055/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0642\n", + "Epoch 2056/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0642\n", + "Epoch 2057/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0641\n", + "Epoch 2058/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0641\n", + "Epoch 2059/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0641\n", + "Epoch 2060/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.064\n", + "Epoch 2061/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.064\n", + "Epoch 2062/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0639\n", + "Epoch 2063/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0639\n", + "Epoch 2064/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0639\n", + "Epoch 2065/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0638\n", + "Epoch 2066/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0638\n", + "Epoch 2067/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0637\n", + "Epoch 2068/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0637\n", + "Epoch 2069/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0637\n", + "Epoch 2070/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0636\n", + "Epoch 2071/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0636\n", + "Epoch 2072/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0635\n", + "Epoch 2073/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0635\n", + "Epoch 2074/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0635\n", + "Epoch 2075/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0634\n", + "Epoch 2076/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0634\n", + "Epoch 2077/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0633\n", + "Epoch 2078/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0633\n", + "Epoch 2079/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0633\n", + "Epoch 2080/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0632\n", + "Epoch 2081/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0632\n", + "Epoch 2082/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0631\n", + "Epoch 2083/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0631\n", + "Epoch 2084/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0631\n", + "Epoch 2085/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.063\n", + "Epoch 2086/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.063\n", + "Epoch 2087/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0629\n", + "Epoch 2088/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0629\n", + "Epoch 2089/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0629\n", + "Epoch 2090/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0628\n", + "Epoch 2091/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0628\n", + "Epoch 2092/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0627\n", + "Epoch 2093/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0627\n", + "Epoch 2094/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0627\n", + "Epoch 2095/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0626\n", + "Epoch 2096/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0626\n", + "Epoch 2097/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0625\n", + "Epoch 2098/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0625\n", + "Epoch 2099/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0625\n", + "Epoch 2100/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0624\n", + "Epoch 2101/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0624\n", + "Epoch 2102/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0623\n", + "Epoch 2103/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0623\n", + "Epoch 2104/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0623\n", + "Epoch 2105/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0622\n", + "Epoch 2106/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0622\n", + "Epoch 2107/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0621\n", + "Epoch 2108/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0621\n", + "Epoch 2109/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0621\n", + "Epoch 2110/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.062\n", + "Epoch 2111/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.062\n", + "Epoch 2112/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0619\n", + "Epoch 2113/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0619\n", + "Epoch 2114/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0619\n", + "Epoch 2115/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0618\n", + "Epoch 2116/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0618\n", + "Epoch 2117/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0618\n", + "Epoch 2118/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0617\n", + "Epoch 2119/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0617\n", + "Epoch 2120/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0616\n", + "Epoch 2121/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0616\n", + "Epoch 2122/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0616\n", + "Epoch 2123/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0615\n", + "Epoch 2124/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0615\n", + "Epoch 2125/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0614\n", + "Epoch 2126/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0614\n", + "Epoch 2127/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0614\n", + "Epoch 2128/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0613\n", + "Epoch 2129/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0613\n", + "Epoch 2130/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0612\n", + "Epoch 2131/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0612\n", + "Epoch 2132/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0612\n", + "Epoch 2133/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0611\n", + "Epoch 2134/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0611\n", + "Epoch 2135/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.061\n", + "Epoch 2136/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.061\n", + "Epoch 2137/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.061\n", + "Epoch 2138/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0609\n", + "Epoch 2139/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0609\n", + "Epoch 2140/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0608\n", + "Epoch 2141/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0608\n", + "Epoch 2142/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0608\n", + "Epoch 2143/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0607\n", + "Epoch 2144/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0607\n", + "Epoch 2145/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0607\n", + "Epoch 2146/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0606\n", + "Epoch 2147/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0606\n", + "Epoch 2148/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0605\n", + "Epoch 2149/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0605\n", + "Epoch 2150/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0605\n", + "Epoch 2151/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0604\n", + "Epoch 2152/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0604\n", + "Epoch 2153/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0603\n", + "Epoch 2154/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0603\n", + "Epoch 2155/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0603\n", + "Epoch 2156/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0602\n", + "Epoch 2157/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0602\n", + "Epoch 2158/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0601\n", + "Epoch 2159/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0601\n", + "Epoch 2160/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0601\n", + "Epoch 2161/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.06\n", + "Epoch 2162/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.06\n", + "Epoch 2163/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.06\n", + "Epoch 2164/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0599\n", + "Epoch 2165/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0599\n", + "Epoch 2166/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0598\n", + "Epoch 2167/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0598\n", + "Epoch 2168/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0598\n", + "Epoch 2169/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0597\n", + "Epoch 2170/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0597\n", + "Epoch 2171/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0596\n", + "Epoch 2172/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0596\n", + "Epoch 2173/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0596\n", + "Epoch 2174/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0595\n", + "Epoch 2175/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0595\n", + "Epoch 2176/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0594\n", + "Epoch 2177/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0594\n", + "Epoch 2178/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0594\n", + "Epoch 2179/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0593\n", + "Epoch 2180/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0593\n", + "Epoch 2181/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0593\n", + "Epoch 2182/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0592\n", + "Epoch 2183/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0592\n", + "Epoch 2184/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0591\n", + "Epoch 2185/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0591\n", + "Epoch 2186/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0591\n", + "Epoch 2187/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.059\n", + "Epoch 2188/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.059\n", + "Epoch 2189/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0589\n", + "Epoch 2190/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0589\n", + "Epoch 2191/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0589\n", + "Epoch 2192/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0588\n", + "Epoch 2193/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0588\n", + "Epoch 2194/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0588\n", + "Epoch 2195/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0587\n", + "Epoch 2196/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0587\n", + "Epoch 2197/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0586\n", + "Epoch 2198/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0586\n", + "Epoch 2199/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0586\n", + "Epoch 2200/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0585\n", + "Epoch 2201/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0585\n", + "Epoch 2202/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0585\n", + "Epoch 2203/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0584\n", + "Epoch 2204/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0584\n", + "Epoch 2205/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0583\n", + "Epoch 2206/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0583\n", + "Epoch 2207/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0583\n", + "Epoch 2208/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0582\n", + "Epoch 2209/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0582\n", + "Epoch 2210/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0581\n", + "Epoch 2211/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0581\n", + "Epoch 2212/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0581\n", + "Epoch 2213/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.058\n", + "Epoch 2214/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.058\n", + "Epoch 2215/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.058\n", + "Epoch 2216/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0579\n", + "Epoch 2217/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0579\n", + "Epoch 2218/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0578\n", + "Epoch 2219/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0578\n", + "Epoch 2220/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0578\n", + "Epoch 2221/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0577\n", + "Epoch 2222/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0577\n", + "Epoch 2223/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0577\n", + "Epoch 2224/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0576\n", + "Epoch 2225/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0576\n", + "Epoch 2226/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0575\n", + "Epoch 2227/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0575\n", + "Epoch 2228/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0575\n", + "Epoch 2229/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0574\n", + "Epoch 2230/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0574\n", + "Epoch 2231/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0573\n", + "Epoch 2232/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0573\n", + "Epoch 2233/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0573\n", + "Epoch 2234/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0572\n", + "Epoch 2235/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0572\n", + "Epoch 2236/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0572\n", + "Epoch 2237/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0571\n", + "Epoch 2238/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0571\n", + "Epoch 2239/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.057\n", + "Epoch 2240/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.057\n", + "Epoch 2241/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.057\n", + "Epoch 2242/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0569\n", + "Epoch 2243/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0569\n", + "Epoch 2244/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0569\n", + "Epoch 2245/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0568\n", + "Epoch 2246/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0568\n", + "Epoch 2247/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0567\n", + "Epoch 2248/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0567\n", + "Epoch 2249/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0567\n", + "Epoch 2250/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0566\n", + "Epoch 2251/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0566\n", + "Epoch 2252/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0566\n", + "Epoch 2253/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0565\n", + "Epoch 2254/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0565\n", + "Epoch 2255/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0564\n", + "Epoch 2256/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0564\n", + "Epoch 2257/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0564\n", + "Epoch 2258/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0563\n", + "Epoch 2259/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0563\n", + "Epoch 2260/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0563\n", + "Epoch 2261/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0562\n", + "Epoch 2262/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0562\n", + "Epoch 2263/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0561\n", + "Epoch 2264/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0561\n", + "Epoch 2265/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0561\n", + "Epoch 2266/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.056\n", + "Epoch 2267/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.056\n", + "Epoch 2268/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.056\n", + "Epoch 2269/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0559\n", + "Epoch 2270/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0559\n", + "Epoch 2271/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0558\n", + "Epoch 2272/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0558\n", + "Epoch 2273/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0558\n", + "Epoch 2274/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0557\n", + "Epoch 2275/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0557\n", + "Epoch 2276/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0557\n", + "Epoch 2277/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0556\n", + "Epoch 2278/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0556\n", + "Epoch 2279/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0556\n", + "Epoch 2280/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0555\n", + "Epoch 2281/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0555\n", + "Epoch 2282/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0554\n", + "Epoch 2283/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0554\n", + "Epoch 2284/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0554\n", + "Epoch 2285/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0553\n", + "Epoch 2286/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0553\n", + "Epoch 2287/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0553\n", + "Epoch 2288/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0552\n", + "Epoch 2289/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0552\n", + "Epoch 2290/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0551\n", + "Epoch 2291/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0551\n", + "Epoch 2292/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0551\n", + "Epoch 2293/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.055\n", + "Epoch 2294/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.055\n", + "Epoch 2295/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.055\n", + "Epoch 2296/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0549\n", + "Epoch 2297/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0549\n", + "Epoch 2298/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0548\n", + "Epoch 2299/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0548\n", + "Epoch 2300/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0548\n", + "Epoch 2301/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0547\n", + "Epoch 2302/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0547\n", + "Epoch 2303/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0547\n", + "Epoch 2304/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0546\n", + "Epoch 2305/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0546\n", + "Epoch 2306/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0546\n", + "Epoch 2307/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0545\n", + "Epoch 2308/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0545\n", + "Epoch 2309/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0544\n", + "Epoch 2310/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0544\n", + "Epoch 2311/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0544\n", + "Epoch 2312/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0543\n", + "Epoch 2313/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0543\n", + "Epoch 2314/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0543\n", + "Epoch 2315/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0542\n", + "Epoch 2316/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0542\n", + "Epoch 2317/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0542\n", + "Epoch 2318/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0541\n", + "Epoch 2319/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0541\n", + "Epoch 2320/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.054\n", + "Epoch 2321/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.054\n", + "Epoch 2322/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.054\n", + "Epoch 2323/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0539\n", + "Epoch 2324/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0539\n", + "Epoch 2325/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0539\n", + "Epoch 2326/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0538\n", + "Epoch 2327/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0538\n", + "Epoch 2328/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0538\n", + "Epoch 2329/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0537\n", + "Epoch 2330/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0537\n", + "Epoch 2331/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0536\n", + "Epoch 2332/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0536\n", + "Epoch 2333/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0536\n", + "Epoch 2334/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0535\n", + "Epoch 2335/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0535\n", + "Epoch 2336/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0535\n", + "Epoch 2337/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0534\n", + "Epoch 2338/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0534\n", + "Epoch 2339/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0534\n", + "Epoch 2340/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0533\n", + "Epoch 2341/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0533\n", + "Epoch 2342/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0532\n", + "Epoch 2343/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0532\n", + "Epoch 2344/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0532\n", + "Epoch 2345/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0531\n", + "Epoch 2346/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0531\n", + "Epoch 2347/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0531\n", + "Epoch 2348/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.053\n", + "Epoch 2349/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.053\n", + "Epoch 2350/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.053\n", + "Epoch 2351/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0529\n", + "Epoch 2352/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0529\n", + "Epoch 2353/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0528\n", + "Epoch 2354/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0528\n", + "Epoch 2355/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0528\n", + "Epoch 2356/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0527\n", + "Epoch 2357/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0527\n", + "Epoch 2358/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0527\n", + "Epoch 2359/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0526\n", + "Epoch 2360/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0526\n", + "Epoch 2361/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0526\n", + "Epoch 2362/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0525\n", + "Epoch 2363/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0525\n", + "Epoch 2364/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0525\n", + "Epoch 2365/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0524\n", + "Epoch 2366/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0524\n", + "Epoch 2367/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0523\n", + "Epoch 2368/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0523\n", + "Epoch 2369/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0523\n", + "Epoch 2370/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0522\n", + "Epoch 2371/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0522\n", + "Epoch 2372/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0522\n", + "Epoch 2373/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0521\n", + "Epoch 2374/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0521\n", + "Epoch 2375/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0521\n", + "Epoch 2376/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.052\n", + "Epoch 2377/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.052\n", + "Epoch 2378/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.052\n", + "Epoch 2379/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0519\n", + "Epoch 2380/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0519\n", + "Epoch 2381/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0518\n", + "Epoch 2382/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0518\n", + "Epoch 2383/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0518\n", + "Epoch 2384/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0517\n", + "Epoch 2385/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0517\n", + "Epoch 2386/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0517\n", + "Epoch 2387/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0516\n", + "Epoch 2388/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0516\n", + "Epoch 2389/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0516\n", + "Epoch 2390/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0515\n", + "Epoch 2391/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0515\n", + "Epoch 2392/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0515\n", + "Epoch 2393/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0514\n", + "Epoch 2394/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0514\n", + "Epoch 2395/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0513\n", + "Epoch 2396/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0513\n", + "Epoch 2397/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0513\n", + "Epoch 2398/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0512\n", + "Epoch 2399/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0512\n", + "Epoch 2400/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0512\n", + "Epoch 2401/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0511\n", + "Epoch 2402/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0511\n", + "Epoch 2403/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0511\n", + "Epoch 2404/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.051\n", + "Epoch 2405/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.051\n", + "Epoch 2406/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.051\n", + "Epoch 2407/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0509\n", + "Epoch 2408/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0509\n", + "Epoch 2409/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0509\n", + "Epoch 2410/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0508\n", + "Epoch 2411/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0508\n", + "Epoch 2412/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0507\n", + "Epoch 2413/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0507\n", + "Epoch 2414/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0507\n", + "Epoch 2415/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0506\n", + "Epoch 2416/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0506\n", + "Epoch 2417/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0506\n", + "Epoch 2418/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0505\n", + "Epoch 2419/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0505\n", + "Epoch 2420/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0505\n", + "Epoch 2421/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0504\n", + "Epoch 2422/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0504\n", + "Epoch 2423/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0504\n", + "Epoch 2424/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0503\n", + "Epoch 2425/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0503\n", + "Epoch 2426/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0503\n", + "Epoch 2427/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0502\n", + "Epoch 2428/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0502\n", + "Epoch 2429/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0502\n", + "Epoch 2430/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0501\n", + "Epoch 2431/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0501\n", + "Epoch 2432/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0501\n", + "Epoch 2433/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.05\n", + "Epoch 2434/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.05\n", + "Epoch 2435/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0499\n", + "Epoch 2436/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0499\n", + "Epoch 2437/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0499\n", + "Epoch 2438/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0498\n", + "Epoch 2439/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0498\n", + "Epoch 2440/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0498\n", + "Epoch 2441/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0497\n", + "Epoch 2442/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0497\n", + "Epoch 2443/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0497\n", + "Epoch 2444/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0496\n", + "Epoch 2445/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0496\n", + "Epoch 2446/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0496\n", + "Epoch 2447/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0495\n", + "Epoch 2448/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0495\n", + "Epoch 2449/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0495\n", + "Epoch 2450/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0494\n", + "Epoch 2451/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0494\n", + "Epoch 2452/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0494\n", + "Epoch 2453/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0493\n", + "Epoch 2454/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0493\n", + "Epoch 2455/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0493\n", + "Epoch 2456/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0492\n", + "Epoch 2457/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0492\n", + "Epoch 2458/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0492\n", + "Epoch 2459/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0491\n", + "Epoch 2460/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0491\n", + "Epoch 2461/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.049\n", + "Epoch 2462/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.049\n", + "Epoch 2463/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.049\n", + "Epoch 2464/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0489\n", + "Epoch 2465/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0489\n", + "Epoch 2466/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0489\n", + "Epoch 2467/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0488\n", + "Epoch 2468/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0488\n", + "Epoch 2469/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0488\n", + "Epoch 2470/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0487\n", + "Epoch 2471/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0487\n", + "Epoch 2472/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0487\n", + "Epoch 2473/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0486\n", + "Epoch 2474/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0486\n", + "Epoch 2475/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0486\n", + "Epoch 2476/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0485\n", + "Epoch 2477/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0485\n", + "Epoch 2478/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0485\n", + "Epoch 2479/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0484\n", + "Epoch 2480/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0484\n", + "Epoch 2481/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0484\n", + "Epoch 2482/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0483\n", + "Epoch 2483/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0483\n", + "Epoch 2484/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0483\n", + "Epoch 2485/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0482\n", + "Epoch 2486/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0482\n", + "Epoch 2487/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0482\n", + "Epoch 2488/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0481\n", + "Epoch 2489/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0481\n", + "Epoch 2490/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0481\n", + "Epoch 2491/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.048\n", + "Epoch 2492/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.048\n", + "Epoch 2493/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.048\n", + "Epoch 2494/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0479\n", + "Epoch 2495/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0479\n", + "Epoch 2496/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0479\n", + "Epoch 2497/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0478\n", + "Epoch 2498/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0478\n", + "Epoch 2499/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0478\n", + "Epoch 2500/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0477\n", + "Epoch 2501/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0477\n", + "Epoch 2502/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0477\n", + "Epoch 2503/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0476\n", + "Epoch 2504/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0476\n", + "Epoch 2505/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0476\n", + "Epoch 2506/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0475\n", + "Epoch 2507/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0475\n", + "Epoch 2508/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0475\n", + "Epoch 2509/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0474\n", + "Epoch 2510/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0474\n", + "Epoch 2511/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0473\n", + "Epoch 2512/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0473\n", + "Epoch 2513/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0473\n", + "Epoch 2514/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0472\n", + "Epoch 2515/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0472\n", + "Epoch 2516/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0472\n", + "Epoch 2517/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0471\n", + "Epoch 2518/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0471\n", + "Epoch 2519/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0471\n", + "Epoch 2520/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.047\n", + "Epoch 2521/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.047\n", + "Epoch 2522/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.047\n", + "Epoch 2523/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0469\n", + "Epoch 2524/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0469\n", + "Epoch 2525/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0469\n", + "Epoch 2526/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0468\n", + "Epoch 2527/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0468\n", + "Epoch 2528/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0468\n", + "Epoch 2529/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0467\n", + "Epoch 2530/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0467\n", + "Epoch 2531/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0467\n", + "Epoch 2532/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0466\n", + "Epoch 2533/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0466\n", + "Epoch 2534/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0466\n", + "Epoch 2535/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0465\n", + "Epoch 2536/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0465\n", + "Epoch 2537/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0465\n", + "Epoch 2538/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0464\n", + "Epoch 2539/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0464\n", + "Epoch 2540/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0464\n", + "Epoch 2541/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0463\n", + "Epoch 2542/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0463\n", + "Epoch 2543/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0463\n", + "Epoch 2544/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0462\n", + "Epoch 2545/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0462\n", + "Epoch 2546/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0462\n", + "Epoch 2547/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0461\n", + "Epoch 2548/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0461\n", + "Epoch 2549/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0461\n", + "Epoch 2550/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0461\n", + "Epoch 2551/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.046\n", + "Epoch 2552/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.046\n", + "Epoch 2553/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.046\n", + "Epoch 2554/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0459\n", + "Epoch 2555/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0459\n", + "Epoch 2556/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0459\n", + "Epoch 2557/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0458\n", + "Epoch 2558/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0458\n", + "Epoch 2559/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0458\n", + "Epoch 2560/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0457\n", + "Epoch 2561/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0457\n", + "Epoch 2562/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0457\n", + "Epoch 2563/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0456\n", + "Epoch 2564/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0456\n", + "Epoch 2565/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0456\n", + "Epoch 2566/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0455\n", + "Epoch 2567/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0455\n", + "Epoch 2568/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0455\n", + "Epoch 2569/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0454\n", + "Epoch 2570/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0454\n", + "Epoch 2571/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0454\n", + "Epoch 2572/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0453\n", + "Epoch 2573/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0453\n", + "Epoch 2574/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0453\n", + "Epoch 2575/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0452\n", + "Epoch 2576/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0452\n", + "Epoch 2577/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0452\n", + "Epoch 2578/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0451\n", + "Epoch 2579/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0451\n", + "Epoch 2580/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0451\n", + "Epoch 2581/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.045\n", + "Epoch 2582/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.045\n", + "Epoch 2583/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.045\n", + "Epoch 2584/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0449\n", + "Epoch 2585/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0449\n", + "Epoch 2586/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0449\n", + "Epoch 2587/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0448\n", + "Epoch 2588/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0448\n", + "Epoch 2589/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0448\n", + "Epoch 2590/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0447\n", + "Epoch 2591/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0447\n", + "Epoch 2592/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0447\n", + "Epoch 2593/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0446\n", + "Epoch 2594/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0446\n", + "Epoch 2595/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0446\n", + "Epoch 2596/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0445\n", + "Epoch 2597/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0445\n", + "Epoch 2598/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0445\n", + "Epoch 2599/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0444\n", + "Epoch 2600/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0444\n", + "Epoch 2601/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0444\n", + "Epoch 2602/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0444\n", + "Epoch 2603/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0443\n", + "Epoch 2604/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0443\n", + "Epoch 2605/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0443\n", + "Epoch 2606/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0442\n", + "Epoch 2607/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0442\n", + "Epoch 2608/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0442\n", + "Epoch 2609/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0441\n", + "Epoch 2610/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0441\n", + "Epoch 2611/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0441\n", + "Epoch 2612/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.044\n", + "Epoch 2613/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.044\n", + "Epoch 2614/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.044\n", + "Epoch 2615/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0439\n", + "Epoch 2616/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0439\n", + "Epoch 2617/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0439\n", + "Epoch 2618/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0438\n", + "Epoch 2619/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0438\n", + "Epoch 2620/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0438\n", + "Epoch 2621/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0437\n", + "Epoch 2622/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0437\n", + "Epoch 2623/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0437\n", + "Epoch 2624/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0436\n", + "Epoch 2625/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0436\n", + "Epoch 2626/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0436\n", + "Epoch 2627/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0435\n", + "Epoch 2628/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0435\n", + "Epoch 2629/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0435\n", + "Epoch 2630/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0435\n", + "Epoch 2631/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0434\n", + "Epoch 2632/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0434\n", + "Epoch 2633/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0434\n", + "Epoch 2634/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0433\n", + "Epoch 2635/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0433\n", + "Epoch 2636/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0433\n", + "Epoch 2637/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0432\n", + "Epoch 2638/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0432\n", + "Epoch 2639/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0432\n", + "Epoch 2640/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0431\n", + "Epoch 2641/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0431\n", + "Epoch 2642/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0431\n", + "Epoch 2643/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.043\n", + "Epoch 2644/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.043\n", + "Epoch 2645/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.043\n", + "Epoch 2646/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0429\n", + "Epoch 2647/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0429\n", + "Epoch 2648/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0429\n", + "Epoch 2649/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0429\n", + "Epoch 2650/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0428\n", + "Epoch 2651/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0428\n", + "Epoch 2652/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0428\n", + "Epoch 2653/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0427\n", + "Epoch 2654/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0427\n", + "Epoch 2655/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0427\n", + "Epoch 2656/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0426\n", + "Epoch 2657/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0426\n", + "Epoch 2658/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0426\n", + "Epoch 2659/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0425\n", + "Epoch 2660/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0425\n", + "Epoch 2661/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0425\n", + "Epoch 2662/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0424\n", + "Epoch 2663/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0424\n", + "Epoch 2664/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0424\n", + "Epoch 2665/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0423\n", + "Epoch 2666/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0423\n", + "Epoch 2667/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0423\n", + "Epoch 2668/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0423\n", + "Epoch 2669/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0422\n", + "Epoch 2670/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0422\n", + "Epoch 2671/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0422\n", + "Epoch 2672/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0421\n", + "Epoch 2673/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0421\n", + "Epoch 2674/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0421\n", + "Epoch 2675/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.042\n", + "Epoch 2676/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.042\n", + "Epoch 2677/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.042\n", + "Epoch 2678/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0419\n", + "Epoch 2679/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0419\n", + "Epoch 2680/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0419\n", + "Epoch 2681/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0418\n", + "Epoch 2682/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0418\n", + "Epoch 2683/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0418\n", + "Epoch 2684/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0418\n", + "Epoch 2685/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0417\n", + "Epoch 2686/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0417\n", + "Epoch 2687/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0417\n", + "Epoch 2688/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0416\n", + "Epoch 2689/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0416\n", + "Epoch 2690/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0416\n", + "Epoch 2691/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0415\n", + "Epoch 2692/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0415\n", + "Epoch 2693/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0415\n", + "Epoch 2694/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0414\n", + "Epoch 2695/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0414\n", + "Epoch 2696/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.6987\n", + "Relative Entropy: 0.0414\n", + "Epoch 2697/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0414\n", + "Epoch 2698/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0413\n", + "Epoch 2699/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0413\n", + "Epoch 2700/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0413\n", + "Epoch 2701/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0412\n", + "Epoch 2702/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0412\n", + "Epoch 2703/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0412\n", + "Epoch 2704/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0411\n", + "Epoch 2705/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0411\n", + "Epoch 2706/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0411\n", + "Epoch 2707/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.041\n", + "Epoch 2708/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.041\n", + "Epoch 2709/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.041\n", + "Epoch 2710/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.041\n", + "Epoch 2711/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0409\n", + "Epoch 2712/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0409\n", + "Epoch 2713/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0409\n", + "Epoch 2714/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0408\n", + "Epoch 2715/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0408\n", + "Epoch 2716/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0408\n", + "Epoch 2717/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0407\n", + "Epoch 2718/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0407\n", + "Epoch 2719/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0407\n", + "Epoch 2720/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0406\n", + "Epoch 2721/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0406\n", + "Epoch 2722/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0406\n", + "Epoch 2723/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0406\n", + "Epoch 2724/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0405\n", + "Epoch 2725/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0405\n", + "Epoch 2726/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0405\n", + "Epoch 2727/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0404\n", + "Epoch 2728/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0404\n", + "Epoch 2729/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0404\n", + "Epoch 2730/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0403\n", + "Epoch 2731/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0403\n", + "Epoch 2732/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.6979\n", + "Relative Entropy: 0.0403\n", + "Epoch 2733/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0403\n", + "Epoch 2734/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0402\n", + "Epoch 2735/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0402\n", + "Epoch 2736/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.0402\n", + "Epoch 2737/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0401\n", + "Epoch 2738/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0401\n", + "Epoch 2739/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0401\n", + "Epoch 2740/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.04\n", + "Epoch 2741/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.04\n", + "Epoch 2742/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.04\n", + "Epoch 2743/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.04\n", + "Epoch 2744/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0399\n", + "Epoch 2745/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0399\n", + "Epoch 2746/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0399\n", + "Epoch 2747/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0398\n", + "Epoch 2748/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0398\n", + "Epoch 2749/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0398\n", + "Epoch 2750/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0397\n", + "Epoch 2751/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0397\n", + "Epoch 2752/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0397\n", + "Epoch 2753/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0397\n", + "Epoch 2754/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0396\n", + "Epoch 2755/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0396\n", + "Epoch 2756/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6977\n", + "Relative Entropy: 0.0396\n", + "Epoch 2757/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0395\n", + "Epoch 2758/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0395\n", + "Epoch 2759/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0395\n", + "Epoch 2760/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0394\n", + "Epoch 2761/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0394\n", + "Epoch 2762/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0394\n", + "Epoch 2763/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0394\n", + "Epoch 2764/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0393\n", + "Epoch 2765/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0393\n", + "Epoch 2766/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0393\n", + "Epoch 2767/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0392\n", + "Epoch 2768/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0392\n", + "Epoch 2769/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0392\n", + "Epoch 2770/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0391\n", + "Epoch 2771/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0391\n", + "Epoch 2772/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0391\n", + "Epoch 2773/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0391\n", + "Epoch 2774/3000...\n", + "Loss Discriminator: 0.6898\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.039\n", + "Epoch 2775/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.039\n", + "Epoch 2776/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.039\n", + "Epoch 2777/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0389\n", + "Epoch 2778/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0389\n", + "Epoch 2779/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0389\n", + "Epoch 2780/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0388\n", + "Epoch 2781/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0388\n", + "Epoch 2782/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0388\n", + "Epoch 2783/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0388\n", + "Epoch 2784/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0387\n", + "Epoch 2785/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0387\n", + "Epoch 2786/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0387\n", + "Epoch 2787/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0386\n", + "Epoch 2788/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0386\n", + "Epoch 2789/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0386\n", + "Epoch 2790/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0386\n", + "Epoch 2791/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0385\n", + "Epoch 2792/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0385\n", + "Epoch 2793/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0385\n", + "Epoch 2794/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0384\n", + "Epoch 2795/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.6967\n", + "Relative Entropy: 0.0384\n", + "Epoch 2796/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0384\n", + "Epoch 2797/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0384\n", + "Epoch 2798/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0383\n", + "Epoch 2799/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.6982\n", + "Relative Entropy: 0.0383\n", + "Epoch 2800/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0383\n", + "Epoch 2801/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0382\n", + "Epoch 2802/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0382\n", + "Epoch 2803/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0382\n", + "Epoch 2804/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0381\n", + "Epoch 2805/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0381\n", + "Epoch 2806/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0381\n", + "Epoch 2807/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0381\n", + "Epoch 2808/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.038\n", + "Epoch 2809/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6975\n", + "Relative Entropy: 0.038\n", + "Epoch 2810/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.038\n", + "Epoch 2811/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0379\n", + "Epoch 2812/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0379\n", + "Epoch 2813/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0379\n", + "Epoch 2814/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0379\n", + "Epoch 2815/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0378\n", + "Epoch 2816/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0378\n", + "Epoch 2817/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0378\n", + "Epoch 2818/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0377\n", + "Epoch 2819/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0377\n", + "Epoch 2820/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0377\n", + "Epoch 2821/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0377\n", + "Epoch 2822/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0376\n", + "Epoch 2823/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0376\n", + "Epoch 2824/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0376\n", + "Epoch 2825/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0375\n", + "Epoch 2826/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0375\n", + "Epoch 2827/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0375\n", + "Epoch 2828/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0375\n", + "Epoch 2829/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0374\n", + "Epoch 2830/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0374\n", + "Epoch 2831/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0374\n", + "Epoch 2832/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0373\n", + "Epoch 2833/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0373\n", + "Epoch 2834/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0373\n", + "Epoch 2835/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0373\n", + "Epoch 2836/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0372\n", + "Epoch 2837/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0372\n", + "Epoch 2838/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0372\n", + "Epoch 2839/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0371\n", + "Epoch 2840/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6985\n", + "Relative Entropy: 0.0371\n", + "Epoch 2841/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0371\n", + "Epoch 2842/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0371\n", + "Epoch 2843/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.037\n", + "Epoch 2844/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.037\n", + "Epoch 2845/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.037\n", + "Epoch 2846/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0369\n", + "Epoch 2847/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0369\n", + "Epoch 2848/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0369\n", + "Epoch 2849/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0369\n", + "Epoch 2850/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.698\n", + "Relative Entropy: 0.0368\n", + "Epoch 2851/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0368\n", + "Epoch 2852/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0368\n", + "Epoch 2853/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0367\n", + "Epoch 2854/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0367\n", + "Epoch 2855/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0367\n", + "Epoch 2856/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0367\n", + "Epoch 2857/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0366\n", + "Epoch 2858/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0366\n", + "Epoch 2859/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0366\n", + "Epoch 2860/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0365\n", + "Epoch 2861/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0365\n", + "Epoch 2862/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0365\n", + "Epoch 2863/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0365\n", + "Epoch 2864/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0364\n", + "Epoch 2865/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0364\n", + "Epoch 2866/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0364\n", + "Epoch 2867/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0363\n", + "Epoch 2868/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0363\n", + "Epoch 2869/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0363\n", + "Epoch 2870/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.6974\n", + "Relative Entropy: 0.0363\n", + "Epoch 2871/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0362\n", + "Epoch 2872/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0362\n", + "Epoch 2873/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.697\n", + "Relative Entropy: 0.0362\n", + "Epoch 2874/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6967\n", + "Relative Entropy: 0.0361\n", + "Epoch 2875/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0361\n", + "Epoch 2876/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0361\n", + "Epoch 2877/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.6976\n", + "Relative Entropy: 0.0361\n", + "Epoch 2878/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.036\n", + "Epoch 2879/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.036\n", + "Epoch 2880/3000...\n", + "Loss Discriminator: 0.6893\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.036\n", + "Epoch 2881/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.036\n", + "Epoch 2882/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0359\n", + "Epoch 2883/3000...\n", + "Loss Discriminator: 0.69\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0359\n", + "Epoch 2884/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0359\n", + "Epoch 2885/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0358\n", + "Epoch 2886/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0358\n", + "Epoch 2887/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0358\n", + "Epoch 2888/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0358\n", + "Epoch 2889/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0357\n", + "Epoch 2890/3000...\n", + "Loss Discriminator: 0.6898\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0357\n", + "Epoch 2891/3000...\n", + "Loss Discriminator: 0.6894\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0357\n", + "Epoch 2892/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0356\n", + "Epoch 2893/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0356\n", + "Epoch 2894/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0356\n", + "Epoch 2895/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0356\n", + "Epoch 2896/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0355\n", + "Epoch 2897/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6985\n", + "Relative Entropy: 0.0355\n", + "Epoch 2898/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0355\n", + "Epoch 2899/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0355\n", + "Epoch 2900/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0354\n", + "Epoch 2901/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0354\n", + "Epoch 2902/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0354\n", + "Epoch 2903/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0353\n", + "Epoch 2904/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0353\n", + "Epoch 2905/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0353\n", + "Epoch 2906/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0353\n", + "Epoch 2907/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0352\n", + "Epoch 2908/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0352\n", + "Epoch 2909/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0352\n", + "Epoch 2910/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0352\n", + "Epoch 2911/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0351\n", + "Epoch 2912/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0351\n", + "Epoch 2913/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6967\n", + "Relative Entropy: 0.0351\n", + "Epoch 2914/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.035\n", + "Epoch 2915/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.035\n", + "Epoch 2916/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.035\n", + "Epoch 2917/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.035\n", + "Epoch 2918/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0349\n", + "Epoch 2919/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0349\n", + "Epoch 2920/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0349\n", + "Epoch 2921/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0349\n", + "Epoch 2922/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0348\n", + "Epoch 2923/3000...\n", + "Loss Discriminator: 0.6895\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0348\n", + "Epoch 2924/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.6986\n", + "Relative Entropy: 0.0348\n", + "Epoch 2925/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.0347\n", + "Epoch 2926/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0347\n", + "Epoch 2927/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0347\n", + "Epoch 2928/3000...\n", + "Loss Discriminator: 0.6894\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0347\n", + "Epoch 2929/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0346\n", + "Epoch 2930/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0346\n", + "Epoch 2931/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0346\n", + "Epoch 2932/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0346\n", + "Epoch 2933/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0345\n", + "Epoch 2934/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0345\n", + "Epoch 2935/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0345\n", + "Epoch 2936/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0344\n", + "Epoch 2937/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6977\n", + "Relative Entropy: 0.0344\n", + "Epoch 2938/3000...\n", + "Loss Discriminator: 0.69\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0344\n", + "Epoch 2939/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0344\n", + "Epoch 2940/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0343\n", + "Epoch 2941/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0343\n", + "Epoch 2942/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0343\n", + "Epoch 2943/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0343\n", + "Epoch 2944/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0342\n", + "Epoch 2945/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.0342\n", + "Epoch 2946/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0342\n", + "Epoch 2947/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0341\n", + "Epoch 2948/3000...\n", + "Loss Discriminator: 0.6899\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0341\n", + "Epoch 2949/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0341\n", + "Epoch 2950/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.0341\n", + "Epoch 2951/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.034\n", + "Epoch 2952/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.034\n", + "Epoch 2953/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.034\n", + "Epoch 2954/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.6986\n", + "Relative Entropy: 0.034\n", + "Epoch 2955/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0339\n", + "Epoch 2956/3000...\n", + "Loss Discriminator: 0.6895\n", + "Loss Generator: 0.6987\n", + "Relative Entropy: 0.0339\n", + "Epoch 2957/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0339\n", + "Epoch 2958/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0339\n", + "Epoch 2959/3000...\n", + "Loss Discriminator: 0.6899\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0338\n", + "Epoch 2960/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6949\n", + "Relative Entropy: 0.0338\n", + "Epoch 2961/3000...\n", + "Loss Discriminator: 0.6894\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0338\n", + "Epoch 2962/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0337\n", + "Epoch 2963/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0337\n", + "Epoch 2964/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0337\n", + "Epoch 2965/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0337\n", + "Epoch 2966/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0336\n", + "Epoch 2967/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0336\n", + "Epoch 2968/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0336\n", + "Epoch 2969/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6973\n", + "Relative Entropy: 0.0336\n", + "Epoch 2970/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0335\n", + "Epoch 2971/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0335\n", + "Epoch 2972/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6986\n", + "Relative Entropy: 0.0335\n", + "Epoch 2973/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0335\n", + "Epoch 2974/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0334\n", + "Epoch 2975/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0334\n", + "Epoch 2976/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0334\n", + "Epoch 2977/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0334\n", + "Epoch 2978/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.6976\n", + "Relative Entropy: 0.0333\n", + "Epoch 2979/3000...\n", + "Loss Discriminator: 0.6903\n", + "Loss Generator: 0.6978\n", + "Relative Entropy: 0.0333\n", + "Epoch 2980/3000...\n", + "Loss Discriminator: 0.6898\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0333\n", + "Epoch 2981/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0333\n", + "Epoch 2982/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0332\n", + "Epoch 2983/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0332\n", + "Epoch 2984/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0332\n", + "Epoch 2985/3000...\n", + "Loss Discriminator: 0.6894\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0331\n", + "Epoch 2986/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0331\n", + "Epoch 2987/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0331\n", + "Epoch 2988/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0331\n", + "Epoch 2989/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.033\n", + "Epoch 2990/3000...\n", + "Loss Discriminator: 0.6899\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.033\n", + "Epoch 2991/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.033\n", + "Epoch 2992/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.033\n", + "Epoch 2993/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0329\n", + "Epoch 2994/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0329\n", + "Epoch 2995/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.6955\n", + "Relative Entropy: 0.0329\n", + "Epoch 2996/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0329\n", + "Epoch 2997/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0328\n", + "Epoch 2998/3000...\n", + "Loss Discriminator: 0.6895\n", + "Loss Generator: 0.6972\n", + "Relative Entropy: 0.0328\n", + "Epoch 2999/3000...\n", + "Loss Discriminator: 0.6898\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0328\n", + "Epoch 3000/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0328\n", + "qGAN training runtime: 162.18758081595104 min\n" + ] + } + ], + "source": [ + "# Run qGAN\n", + "qgan.run()\n", + "\n", + "# Runtime\n", + "end = time.time()\n", + "print('qGAN training runtime: ', (end - start)/60., ' min')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training Progress & Outcome\n", + "Now, we plot the evolution of the generator's and the discriminator's loss functions during the training as well as the progress in the relative entropy between the trained and the target distribution.\n", + "
Finally, we also compare the cumulative distribution function (CDF) of the trained distribution to the CDF of the target distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnWd4VNXWgN+VHiB0EkooQXpJAoSqIGLv6BVFsKBeEBX7VfF+1yviFXsXFSuKBRV7BQtRkGIAQ+8hQOiElpA6mfX9mJKZZCYZkkwyCft9njw5u561zyRnzV5777VEVTEYDAaDoSyCaloAg8FgMAQ+RlkYDAaDoVyMsjAYDAZDuRhlYTAYDIZyMcrCYDAYDOVilIXBYDAYysUoC8NJh4isFZHhVdTXcBHJqKK+xonIwqroy8f7XSYiO0UkW0T6VON9x4rIvOq6n6FqMMrCUAoRSReRXPtLZJ+IzBSRBjUtV1Whqj1VNbkibUVERaRTFYtUUzwDTFLVBqr6tz9uICId7M8sxJGnqh+q6jn+uJ/BfxhlYfDGxaraAOgLJAH/KVlBbFTZ35DrC8VQLbQH1ta0EIbagVEWhjJR1V3Aj0AvABFJFpHHRORPIAfoKCKtReQbETkkIltEZLyjvYhEish7InJYRNaLyP2uZhv7LOYBEVkFHBeREHt/n4vIARHZJiJ3uNQfICLLROSYfdbznD0/QkQ+EJFMETkiIikiEuNpTPZ7nmW/niIin4rI+yKSZTdRJXlp94f9cqV91nWVS9m9IrJfRPaIyA0u+eEi8oyI7LDL+7qIRPry7EVkiH0cR+2/h7iUjRORNLvM20RkrD2/k4j8bm9zUEQ+8dBvuIhkA8H2sWy157vNmuwzyv/Zr4eLSEYZ44wUkWdFZLv93gvt43Q8syP2Zza4pLmtnHEmi8ijIvKnfazzRKS5L8/PULUYZWEoExFpC1wAuJoprgUmAFHAdmA2kAG0Bq4AponICHvdh4EOQEfgbOAaD7e5GrgQaAxYgW+BlUAb4EzgLhE51173ReBFVW0InAJ8as+/HmgEtAWaAROBXB+HeYl9DI2Bb4BXPFVS1WH2ywS76cbxIm5pv3cb4CZguog0sZc9AXQBEoFO9jr/LU8gEWkKfA+8ZB/Pc8D3ItJMROrb889X1ShgCJBqb/ooMA9oAsQCL3sYR7591ugYyynlyePDOJ8B+tllaQrcj+2zdDyzxvZnttjXcbpUGwPcAEQDYcC/fJTXUIUYZWHwxlcicgRYCPwOTHMpm6mqa1XVgu0FcirwgKrmqWoq8BZwnb3ulcA0VT2sqhnYXgoleUlVd6pqLtAfaKGqU1W1QFXTgDeB0fa6hUAnEWmuqtmqusQlvxnQSVWLVHW5qh7zcawLVfUHVS0CZgEJPrZzUAhMVdVCVf0ByAa6iohgU6p3q+ohVc3C9hxHl9GXgwuBzao6S1UtqvoxsAG42F5uBXqJSKSq7lFVhzmpEJt5qbX986jKBXNv4wwCbgTuVNVd9ue/SFXzq2CcAO+q6ib738en2BSvoZoxysLgjZGq2lhV26vqrfZ/VAc7Xa5bA44XoYPt2L59Ospd67tee8prD7S2m5KO2BXWvwGHSekmbN/UN9hNFhfZ82cBc4HZIrJbRJ4SkVAfx7rX5ToHiJATWz/JtCtO1z4aAC2AesByl7H8ZM8vj9bYnqMr24E2qnocuArb7GmPiHwvIt3sde4HBPjLblK78QTGUR7extkciAC2VqBPr+N0SZf8fOrMZovahFEWhorg6qp4N9BURKJc8toBu+zXe7CZQxy0Lae/ncA2u6Jy/ESp6gUAqrpZVa/GZpJ4EpgjIvXt33YfUdUe2EwhF1E8u6kpDmIzhfV0GUsjFxNQWezGpjhdcT5XVZ2rqmcDrbB9E3/Tnr9XVceramvgZuBV8X33Vg425eagpY/tDgJ52MyCJSnPrXWZ4zQEDkZZGCqFqu4EFgGP2xeZ47F9+//AXuVT4EERaSIibYBJ5XT5F5AltkXvSBEJFpFeItIfQESuEZEWqmoFjtjbWEXkDBHpLSLBwDFsJhNr1Y4WgH3Y1l/KxS7jm8DzIhINICJtXNZfyuIHoIuIjBHbov9VQA/gOxGJEZFL7WsX+djMQVZ7/6NExKGcD2N7Wfv6HFKBMfZnfh5w+gmM8x3gObFtTgi2L2SHAwfs9/f2zLyO00eZDdWEURaGquBqbIvYu4EvgYdV9Rd72VRsi9/bgF+AOdhecB6xrxtchM0uvQ3bt9a3sC2sApwHrLXv5nkRGG03kbW0930MWI9tnWVWlY2wmCnAe3az0pU+1H8A2AIsEZFj2J5B1/IaqWomtudwL5CJzbx0kaoexPZ/ew+2530I20v9FnvT/sBS+/P5Bts6QpqPY7sT21rBEWAs8JWP7cC26LwaSLHL9CQQpKo5wGPAn/ZnNugExmkIIMQEPzJUJyJyC7YXvE/fWg0GQ2BgZhYGvyIirUTkVBEJEpGu2L5BflnTchkMhhPDnJg1+JswYAYQh828MRt4tUYlMhgMJ4wxQxkMBoOhXIwZymAwGAzlYpSFwWAwGMqlzqxZNG/eXDt06FDh9sePH6d+/fpVJ1ANUVfGAWYsgUpdGUtdGQdUbizLly8/qKrlehWoM8qiQ4cOLFu2rMLtk5OTGT58eNUJVEPUlXGAGUugUlfGUlfGAZUbi4iUdLfiEWOGMhgMBkO5GGVhMBgMhnLxq7IQkfNEZKPYAuJM9lD+vIik2n822b1yupY3tAdc8RhfwGAwGAzVg9/WLOwO3aZjC3iTAaSIyDequs5RR1Xvdql/O1AyaPyjFEfaMhgClsLCQjIyMsjLy/NY3qhRI9avX1/NUvmHujKWujIO8G0sERERxMbGEhrqq+d+d/y5wD0A2OJwYiYis4FLgXVe6l+NLaoa9vr9sMUw+AlbDGiDIWDJyMggKiqKDh06YIt55E5WVhZRUVEeWtY+6spY6so4oPyxqCqZmZlkZGQQFxdXoXv40wzVBvegNhm4BzRxIiLtsbmD+M2eDgKexYRPNNQS8vLyaNasmUdFYTDUNCJCs2bNvM58fSFQts6OBubY3VMD3Ar8oKoZZf3zicgEbGEriYmJITk5ucICZGdnV6p9oFBXxgG1ayyNGjUiOzvba3lRURFZWVley2sTdWUsdWUc4PtY8vLyKv4/pap++QEGA3Nd0g8CD3qp+zcwxCX9IbADSMcWz+AY8ERZ9+vXr59Whvnz51eqfaBQV8ahWrvGsm7dujLLjx075ncZ9u7dq1dffbXGxcVp3759ddCgQfrFF19U+X18Hcv8+fP1zz//rNS95s+frxdeeGGl+vDGTz/9pD169NCEhATNycmpsn4fe+wxt/TgwYOrrG9v+PqZePo7BZapD+90f5qhUoDOIhInImHYZg/flKxkjx3cBFjsyFPVsaraTlU7YDNFva+qpXZTGQwGG6rKyJEjGTZsGGlpaSxfvpzZs2eTkZHh1/taLBavZcnJySxatKjK+qtqPv30Ux588EFSU1OJjIyssn6nTZvmlj7RZxCo+E1ZqC2w+yRgLrbIZZ+q6loRmSoil7hUHQ3Mtmu4gEWtNvEK9mWz/eFfydt+pJwWBkP18dtvvxEWFsbEiROdee3bt+f2228HbGaK++67j/79+xMfH8+MGTOA4pO/V1xxBd26dWPs2LGO2T3Lly/n9NNPp1+/fpx77rns2bMHgAsuuIC77rqLpKQkXnzxRb799lsGDhxInz59OOuss9i3bx/p6em8/vrrPP/88yQmJrJgwQLS09MZMWIE8fHxnHnmmezYsQOAcePGMXHiRAYOHMj999/vdYyHDh1i5MiRxMfHM2jQIFatWgXA77//TmJiIomJifTp04esrCz27NnDsGHDSExMpFevXixYsMCtr7feeosvvviChx56iLFjx5KcnMxFF13kLJ80aRIzZ84EbN4hHn74Yfr27Uvv3r3ZsGEDYDOT3nDDDfTu3Zv4+Hg+//xzJk+eTG5uLomJiYwdOxaABg1sIddVlfvuu49evXrRu3dvPvnkk3I/g4DCl+lHbfjxpxlq7/srdHGLx3Tr3d/rulEf6eIWj+mK/q+q1WrVjBcX6bElOyp176qkNpluyqM2jaWmzVAvvvii3nXXXV7LZ8yYoY8++qiqqubl5Wm/fv00LS1N58+frw0bNtSdO3dqUVGRDho0SBcsWKAFBQU6ePBg3b9/v6qqzp49W2+44QZVVT3ttNP0lltucfZ96NAhtVqtqqr65ptv6j333KOqqg8//LA+/fTTznoXXXSRzpw5U1VV3377bb300ktVVfX666/XCy+8UC0WSym5Xc1QkyZN0ilTpqiq6q+//qoJCQnOfhcuXKiqqllZWVpYWKjPPPOM/u9//1NVVYvF4vH5jxkzRj/77LNS91FVve222/Tdd99VVdX27dvrSy+9pKqq06dP15tuuklVVe+//36988473Z6Dqmr9+vXd7uNIz5kzR8866yy1WCy6d+9ebdu2re7evdvrZ3AiVIcZKlAWuAOabff+CMD+D1Kdefnph9nxyG/seXUpAIP2/7tGZDMEHkuip5VfqQKcyN/YbbfdxsKFCwkLCyMlJYV58+axatUq5syZA8DRo0fZvHkzYWFhDBgwgNjYWAASExNJT0+ncePGrFmzhrPPPhuwzUxatWrl7P+qq65yXmdkZHDVVVexZ88eCgoKvG7NXLx4MV988QUA1157rdssYtSoUQQHB5c5poULF/L5558DMGLECDIzMzl27Binnnoq99xzD2PHjuXyyy8nNjaW/v37c+ONN1JYWMjIkSNJTEz0+dl54vLLLwegX79+zjH88ssvzJ4921mnSZMm5cp/9dVXExwcTExMDKeffjopKSk0bNjQ42dw2mmnVUrmqsa4+6gEDkVhMNQ0PXv2ZMWKFc709OnT+fXXXzlw4ABgsyC8/PLLpKamkpqayrZt2zjnnHMACA8Pd7YLDg7GYrGgqvTs2dNZf/Xq1cybN89Zz9XD6e23386kSZNYvXo1M2bMqND2zMp4f508eTJvvfUWubm5nHrqqWzYsIFhw4bxxx9/0KZNG8aNG8f7779fZh8hISFYrVZnuuQYHM/I8XyqGk+fQaBhZhZVRPbfuzk8dzOx/xpKwd4stj/0C63vGEyDPq1rWjRDNeNpBuDvA2AjRozg3//+N6+99hq33HILADk5Oc7yc889l9dee40RI0YQGhrKpk2baNPG47EnALp27cqBAwdYvHgxgwcPprCwkE2bNtGzZ89SdY8ePers67333nPmR0VFcezYMWd6yJAhzJ49m2uvvZYPP/yQoUOHntAYhw4dyocffshDDz1EcnIyzZs3p2HDhmzdupXevXvTu3dvUlJS2LBhA5GRkcTGxjJ+/Hjy8/NZsWIF1113nde+27dvz7p168jPzyc3N5dff/213G/2Z599NtOnT+eFF14A4PDhwzRp0oTQ0FAKCwtLnZQeOnQoM2bM4Prrr+fQoUP88ccfPP300841kEDHzCyqiDXnzmTXc3+y7h8fsvX2bzn0/UbWnDuzpsUynCSICF999RW///47cXFxDBgwgOuvv54nn3wSgH/+85/06NGDvn370qtXL26++eYyv72GhYUxZ84cHnjgARISEkhMTPS6q2fKlCmMGjWKfv360bx5c2f+xRdfzJdffulc4H755Zd59913iY+PZ9asWbz44osnNMYpU6awfPly4uPjmTx5slMxvfDCC/Tq1Yv4+HhCQ0M5//zzSU5OJiEhgT59+vDJJ59w5513ltl327ZtufLKK+nVqxdXXnklffqU9DxUmv/85z8cPnyYXr16kZCQwPz58wGYMGEC8fHxzgVuB5dddhnx8fEkJCQwYsQInnrqKVq2bHlCz6AmqTMxuJOSktRf8SwqY4Ou7rUM46O/Zli/fj3du3f3Wn4yuZaoLdSVcYDvY/H0dyoiy1W1XJdKZmZRDo4tsxVub1fG1oKicmqWbmMwGAyBglEW5WDNq9xC055XlrD3rRT+in2Sw79uLbe+WqysOftdtt75XaXuazAYDFWJURblkNLh6Uq13/HofNL//TMA2/9dvJuk8OBx0u79geOr97nVP75qL8dX7eXAx6sqdV+DwWCoSoyyqEbyth1m1RlvYc2zkP6fn9k/K5XVZ76NNbewpkUzGAyGMjHKoprJWbuflUPfIPOL4rAeO6b9XoMSGQwGQ/kYZVEGhZk55VeqAPkl/EodTU47ofZ524+Ql3aoKkUyGAyGMjHKogy2Tvq2Wu9XsC/bp4Xt1P6vkjroddRiLbeu4eQhODiYxMREevbsSUJCAs8++6zzVPKyZcu44447Kn2P119/nY8++uiE2gwZMqTC95s5cya7d++ucHuwnc945plnKtWHN1566SW6d+9e6kxFZUhPT3d7xlX12VUWc4K7DI74sHupKnCsWWx/6GdyNx70uZ0WFiEhRt8bbERGRpKaavNftn//fsaMGcOxY8d45JFHSEpKIimpctGJLRYLEydOPOGAQZVx0T1z5kx69epF69a+e0IoKioq189UVfHqq6/yyy+/OP06VQUOZTFmzBiAKvnsqgLzpgkA8nccBaBgT/n/hG5nMEwIT4MXoqOjeeONN3jllVdQVTcX3J5cegM8+eST9O7dm4SEBCZPtoWPGT58uJs78ilTpvDSSy85y+6++26SkpLo3r07KSkpXH755XTu3Jn//Oc/TlkcLrrLcsU9depU+vfvT69evZgwYQKqypw5c1i2bBljx44lMTHR6YajT58+9O7dmxtvvJH8/HzA5kb8gQceoG/fvnz22Wden0tqaiqDBg0iPj6eMWPGcPjwYcA2Q+jRowfx8fGMHj26zOfkYOLEiaSlpXH++efz/PPPl5rB9OrVi/T0dNLT0+nevTvjx4+nZ8+enHPOOeTm5gKwZcsWzjrrLBISEujbty9bt25l8uTJLFiwgMTERJ5//nm3z86bm/Zp06Zx4403Mnz4cDp27Oj8jKoSoywCiSAfXv4ezusV7M/m8K9bzWE+gxsdO3akqKiI/fv3u+U/88wzTJ8+ndTUVBYsWEBkZCQ//vgjX3/9NUuXLmXlypVuHmELCgpYtmwZ9957b6l7hIWFsWzZMiZOnMill17K9OnTWbNmDTNnziQzM7NU/b///psXXniBdevWkZaWxp9//gnY4kekpKSwZs0acnNz+e6777jiiitISkriww8/JDU1FRFh3LhxfPLJJ6xevRqLxcJrr73m7LtZs2asWLHC+bL3xHXXXceTTz7JqlWr6NGjB4888ggATzzxBH///TerVq3i9ddf9/qcXHn99ddp3bo18+fP5+677y7zs9i8eTO33XYba9eupXHjxk7vuWPHjuW2225j5cqVLFq0iFatWvHEE08wdOhQUlNTS/X78MMP06dPH1atWsW0adPc/F1t2LCBuXPn8tdff/HII49QWFi1uyyNGcoLh+durtb7WQtLn/BeEj2N2AeGEXuvzaGZ5VgeW25xCTZoVw4rh8yg6Fg+nd++HOqG94Jazc1Jb/il3xnLJlRJP55cev/yyy/ccMMN1KtXD4CmTZs667u6Iy/JJZfY4pj17t2bnj17Ot2Yd+zYkZ07d9KsWTO3+t5ccc+fP5+nnnqKnJwcDh06RM+ePbn44ovd2m7cuJG4uDi6dOkCwPXXX8/06dO56667ypUTbA4Pjxw5wumnnw7AmDFjuOGGGwCcvpxGjhzJyJEjvT6nihIXF+d0k96vXz/S09PJyspi165dXHbZZQBERESU2483N+0AF154IeHh4YSHhxMdHc2+ffuq1DxmZhZe2Hit96msP1hz1jseZw0ZT/7B7ulLANj1/CKO/LzFWeaYSBQds03Fs/7a6Xc5DbWHtLQ0goODiY6Odsv35NK7LMpyH+5wrR0UFOTmZjsoKMijo0JPrrjz8vK49dZbmTNnDqtXr2b8+PHV7ub8+++/57bbbmPFihX0798fi8Vyws+pLDfn1eGC3N/3MDMLD9TELqOc9Qe8lu145Dda3zYIy6ESW3lLmZ1sZqzslXs4+Olq2j54OsENwjFUL55mANXttO7AgQNMnDiRSZMmISXWtjy59D777LOZOnUqY8eOpV69ehw6dMhtduFPHC/V5s2bk52dzZw5c7jiiisAm5tzx1pB165dSU9PZ8uWLXTq1IlZs2Y5Zwm+0KhRI5o0acKCBQsYOnQos2fP5vTTT8dqtbJz507OOOMMTjvtNGbPnk12djaZmZmlnlO3bt289t+hQwe++862m3HFihVs27atTHmioqKIjY3lq6++YuTIkeTn51NUVOQ25pJ4c9NeHRhl4YH9H6/0WhZUL5ReP1zPquFvVaNEUJRTWMoFiDXfQnD9sFJ115z9LgASEkz7R86sFvkMNY8j9nNhYSEhISFce+213HPPPaXqvfDCC8yfP5+goCB69uzJ+eefT3h4OKmpqSQlJREWFsYFF1zAtGn+ifhXksaNGzN+/Hh69epFy5Yt6d+/v7PMEZ87MjKSxYsX8+677zJq1CgsFgv9+/d3iznuC++99x4TJ04kJyeHdu3aMWvWLIqKirjmmms4evQoqsodd9xB48aNeeihh0o9p7L4xz/+wfvvv0/Pnj0ZOHCg01xWFrNmzeLmm2/mv//9L6GhoXz22WfEx8cTHBxMQkIC48aNc3OXPmXKFG688Ubi4+OpV6+eW/wQf2NclNtxdYe9Y1oyu1/wvN0vaeu9hESFc2zJDtL/72dySvh2cqXxOZ04Mm+L1/IToenF3Tj0rfs0uF7PaOLn/9PpQr3VxAFsGxFCxJU22Zte2JUu7/6jSu5fExgX5YFJXRlLXRkHGBflNYa3Hamd3xxJSJTNrNNwUDvif73Jax/tHh5B0wu7VplMJRUF2FyH5LmeBi8heF35ImAwGGoeoyw84UVbNL3Qu72yJK1uHUhQmP+tfK5uP3LW7iN0evXu4jIYDCcHRln4SNTgtmWelm581im0ubc4Zq+I0PTiboS18e/iU+GB487ro3+kE/y794Vyg8FgqChGWfiKF4tOeIcmAHR+63JirnOP2xsUFky32WXv/a4svvqvsuZZ2P9BKgV7T8xVg8F3jNnPEMhU9u/T7IbyRAkzVFC9UDr872yPVRMX3Yy1oIjgeqGIhxPYQaHV46PGIy5/GxnPLmT3i4sIb9eY3r/cwL53V9D8yt6E+3nmc7IQERFBZmYmzZo1K7VV1WCoaVSVzMxMnw7+ecOvykJEzgNeBIKBt1T1iRLlzwNn2JP1gGhVbSwi7YEvsc18QoGXVfV1f8rqLrh7sv+2f3l9AUhIEMF281RQRAh9V99BUHixggiPa+JWP2pALFl/ZVStvF44/OMmVg57g67vj+LYwu0A5O84wrb7fyLzq/Uc+GQ1iUtObOuhwTOxsbFkZGRw4IBnM2BeXl6l/lEDiboylroyDvBtLBEREZU60e03ZSEiwcB04GwgA0gRkW9U1Rn1R1Xvdql/O+Cw4+wBBqtqvog0ANbY21bOV7GPZKfsckufyDfFsJgGpdo2Oj2Oo7/bDugENSh9LsKf5G44SPr//YzrNCNrmW18JiZG1REaGkpcXJzX8uTkZLf98rWZujKWujIOqJ6x+HPNYgCwRVXTVLUAmA1cWkb9q4GPAVS1QFXz7fnhfpazFI4Xe1XR5NxOxYkaMGtrQRHZy4v1bEHGMfdyq5K340jJZgaDweDEny/hNoCrs6IMe14p7GanOOA3l7y2IrLK3seT1TWrKEn9hJaV7iPmhn7O69CmkWXU9A+FJd2ElCB98lxSk15l/0feT64bDIaTG7+d4BaRK4DzVPWf9vS1wEBVneSh7gNArKre7qGsNfAVcLGq7itRNgGYABATE9Nv9uzZFZY3Ozvb6XffcQIawHJ+Kyw3eDcv+ErQisMELTtE0SVtCL9jRaX7qyoKJnUm7BXb2QxrbCQFzwXOtNz1M6ntmLEEHnVlHFC5sZxxxhk+neD25wL3LqCtSzrWnueJ0cBtngpUdbeIrAGGAnNKlL0BvAE2dx+VcQ3h6lpiCcXKYsBTo0qtQ1SI4cWXx9r3YN2lH1S+zyrAoSjA5rVzSAC516hN7j7Kw4wl8Kgr44DqGYs/zVApQGcRiRORMGwK4ZuSlUSkG9AEWOySFysikfbrJsBpwEY/yuqVoIiq16cNB7dzv0dkgOxgFjjy21ZW9H2FrJTq2bFlMBhqB35TFqpqASYBc4H1wKequlZEporIJS5VRwOz1d0e1h1YKiIrgd+BZ1R1tb9kLRM/b5mvH9+ShkM7ONM16vhPhA2jP6Eg4xhrL3yfnU/9UXOyGAyGgMKvX2lV9QfghxJ5/y2RnuKh3c9AvD9l8xVPB+2qgpY3D2DvjL9ofcdgwmIacGTeFlrdOpAmF5Tv1thflBzprmcW0vb+YTUii8FgCCwCxP4RyPhHWbSfeiZt7hxMaHNbdK/+6fcRXC8UgIF7JmPNL8JyOJe/+7zil/t7wlMAJktWPplfrqPZxd0IaVL9O7kMBkNgYJRFOUiofyx1IuJUFIBTUQBIcBDB9YLc8mqKzTd9wdHkbRz6Zj3d54ypaXEMBkMNYRwJloPUpG+nAOBosu2A4tE/0snPOFrD0hgMhprCKIty8NeaRUUIjWlAhyfOpfE5nWh4arvyG1Qxf/edXiqvKKew2uUwGAzVj1EWAc4pL11UnFCl5Y396PbBlcTc2M97o2ri4Jw1pHR4mn3vFR8yLMrO5+CcNRRl55fR0mAw1DbMmkWA02J0PFvv+M6WcNlcHNqivucGfmZJ9DQiOjUlb0uxE8Jt9/1EUEQohZk5ZKdkcOj7jTS9tDtd3rysRmQ0GAxVj1EWtQmXoyhRA9vSoF8bspd7OxTvP1wVhYOtt7sHYfIUM9xgMNRejBmqBLkB7Lbb9dSiiNDrx+trTJaKUrAvu6ZFMBgMFcAoixLsnxk4Tv5K4cHpY5f3rqgBQXxASodx3D19CSt6v8Tu6UtqSCiDwVBRjLIoSSCHxLSWzmp6fhcantaesNZR1S9PWRQpq4a9yZLoaRRm2lyk73jkN7ffANaCInLW7zfxqw2GAMcoi1pAl/euILhxBJ3mmZkCAAAgAElEQVTfudxjeffPx9BnuUenvTVK7saDAKw+822vdTbf9AWrTn+Lg5+uqS6xDAZDBTDKoiQBOLFoen4XkjbeTaNT23ssFxEkOHA/yoLdWV7LDs+1uUg/8Mmq6hLHYDBUgMB9w9QQWhSY5hBf4oDHjOuLRpT+SOOeOo9Wtwz0h1gnRhlDUGvxczcmKYMh8DDKogTWvOITye3/d1YNSnLixD11HvkzBxJaIlhTzLi+tH/kTPquKhWIsHopS+HZFcTmiV+T2v9VrPmWahLKYDD4glEWJbC6uK9oNWFADUpSQYKEPstupdOMS0sVhbWMot/6u2pEaWiR1W1msWHspxxfvdeZzlpqC7aU+cVa8nccrZHzIwaDwTtGWZTAWgd8HQWFhxDSpJ7HstBm9QhrGUXru4ZUq0xLWz0BLia+Iz9vYfWZ7xRXsKpz1xQQ2LvSDIaTEKMsShBxStOaFqFqsJZt94+9+9RqEsR3LC7KwpprIeiPA1gO52LNs7D/45UU7DcH+gyGmsK4+yhBXXFTUb93DAAhzbwELHL95h4sbt/6awxXM9Xo2YQBG1M+I2pAW3a/vJiIzs1I/PPmGhPPYDiZMcqiBJYsm7fUsDYNa1iSyhHaoj5919xBSFS4x/KgiBBi7xuKhAdz5Lc0shbtqGYJS5P5TWlFnbU0A2uubbE7b3MmRdkFBDcIq1D/qurTrjKDwVAaY4YqgeWgzRQSGl0zXl2rkrDoBgRFeo+2F3vfUNrcMcTNjUjXD0bR/MreNbLVNuPJPzzmu26lTen4DJajeeSs38+eGX/ZFs59YNv9P7FyyAyseWaXlcFQEczMwguFB47XtAjVh4sFqsk5nWlyTmcsh3PZ89rSmpPJhZzV+9zSx1fvZf3lHwEQXD+M6GsSy+1jn93n19EF6TQ5u1PVC2kw1HGMsvBC0MkUTtXDIbiQJpEk/DmBg1+u4/iqvRTsOkbO2v01IFxpdkyd77zO2XiQo79vQ4sULSxi92tL6fz6pYS1DDBfWQZDLccoCy9I2MmjLMJae16fiezcnLb3D3OmV/R9hYKMY9UllleOp+5xS68f9bFbevvDv9J5xsjqFMlgqPMYZeGFk0lZtH/0LBBoeVNSmfVCm9ZzKouYm/qRu+EAx/6s2YXxvW+mlMorOmZCuhoMVY1Z4PZC0EmkLMKiG9D59ZFE9Y8ts16n14tPhbd7aATNLu/pb9HKp5zzJAD7P0itBkEMhrqNX5WFiJwnIhtFZIuITPZQ/ryIpNp/NonIEXt+oogsFpG1IrJKRK7yp5yeaHPvadV9y4AnslMzBmy/j6TN9xBcL5Tml/UkomPgHWI88utWdkxLxlpQRObX60i75wdnmVqsrD5vJmn3/VhzAhoMtRC/maFEJBiYDpwNZAApIvKNqq5z1FHVu13q3w70sSdzgOtUdbOItAaWi8hcVT3iL3kdBDcMp+hYPvV6RPv7VrWSoMhQ53bc4AZhJCy+Gaxqc+cRQOx+YRFaUMSeV913dGX/vZvjK2w/HZ8+v4akMxhqH/6cWQwAtqhqmqoWALOB0t7tirka+BhAVTep6mb79W5gP9DCj7ICUJRT6LR3B3J8iEDCEUuj5w/XV/iwnL8oqSiAwDipbjDUQvz5RmwD7HRJZ9jzSiEi7YE44DcPZQOAMGCrH2R0I3/74eL7hhhlcSJEJbWhf9q/iL7Ww5mHADo0fWC2CbJkMFSEQNkNNRqYo6pFrpki0gqYBVyvqqWO6orIBGACQExMDMnJyRUWIDs7m5SMZTicY/y5ZBHUD5TH4zvZ2dmVeg6VRU4pJBwoSmhM8Eqb1VBDBCkMjG/0roctk3/8FSKrZyNDTX8uVUldGUtdGQdUz1j8+TbcBbR1Scfa8zwxGnALIi0iDYHvgf9T1SWeGqnqG8AbAElJSTp8+PAKC5ucnMyArr1YiW3nzNDThwWcWcUXkpOTqcxzqDTDIX/kGYRFN2Bpa9s6RnBIMNbCwHOzEXH9Uk555WKaXdytTLcoVUGNfy5VSF0ZS10ZB1TPWPxpa0kBOotInIiEYVMI35SsJCLdgCbAYpe8MOBL4H1VneNHGd0JKraXGDNUxQlv3dDt+Ul44M7Qtk76lh2PJVe4fVFOIdun/Er2yj3lVzYYajF+eyOqqgWYBMwF1gOfqupaEZkqIpe4VB0NzFb3wMtXAsOAcS5ba8t3AFRpoV2ugwPI0F7LCQpgZQFwcM4ajiRvc8YBz1m3nyPz05zlhZk57H17GZajeaXa7n5pEXteXcqas9+tNnkNhprAr1+fVfUHVe2iqqeo6mP2vP+q6jcudaao6uQS7T5Q1VBVTXT58fvJKrUUL4ucVL6h/ETsfUMBaPt/w5GIwFUYlkO5bLjyY1YOfQOAVcPfYsNVs8nfZTutvunGz0l/cB5pd39fqm3+dr/v5jYYAgJja3FB7dsq63X3+y7dk4LY+4bSb+2dRI+OJ/6XG0+4veW8ln6Qyjt5mzM5trjYfUnBniwAshbbNvUdTd5WupGJj2E4STDKwhVHbASzXlFlhLawxQWJ7NKc5lf1BqDF2ASPdTu9VnwMJzSmAZYb4oga0s7/QrrgNlMooQcchtJji3dwdEG6xzpZS3eS8cwCp0nLYKgrBK5toAZwBNIxB/L8wykvXUTc4+cgYSEc+HBlqfLm/+hJg6Q2FO7NIrJLcxauXErPr65hSfS0apPx4JdOBwNoQREF+9zjfuduyWTdpR8A0O2T0Rz8bI1b+dqLZwEQ0bEpzQPBd5bBUEUYZeGCY83CKAv/ICIEN/Ac5tVBRPvGRLRvXE0Sleaoy8K2Qyk4UeX46r3O5IarZrsVW47kOq8LdtW8K3eDoSoxb0UXHGsWEmLs0P6m43MX0PDUdvRddTsAEZ28OyTsu+aO6hKrXMraUr3m/PeqURKDoXoxysIFZzxnM7PwO9HXJNLjy2sIaxlF/7R/kfDHBK91w6IbVKNk3rHmFJY568zbesh5nfn1eqy5hW7lOx9PZu87ywH7dty3UtxmIwZDIGPeiq4YM1SNENwgrNYcgtw+pZT7Mo8cX7WX7Y+41D2Yz67nF5E+eS4Am8d/Sfq/f2brHd/5Q0yDocqpHf+h1YTTDGUO5AUcQZGBsbyWn364/Ep2Dn27wXkt+W5uzzi2cDsAh3/aXDWCGQx+xigLF6z5gee/yGBDa+FOVFenha7eAbbeVfpwnzdyNh7g6O8ezncYDNWMURYu7JhqMxt4PHxlqFGiXc5mNDqjI03O7VyD0viOWpUDs1cRlFp8fuPAR+7bhg//soWC/cVbdHc+8TtbbvkaVWXV0DdZP+pj8sxJcUMNExhz+wDBdYHSEFi0f+QsmpzbheCoMOr3ikHCgtFCK3+1f8oZ0Kj1nUPIXpZBUU4hx/8ODMd+S1s+DkBZPm03jvmU4EYR9N98DwC7nvsTKHaXApC/80iFtxRnr9jN4XmbaXPvacaNjaHCGGVhqBUEhQXTeHicW56EBbuZd9r933AAslfuqXWO/Yo8OCl0861ZCTPcmvNmArbT9C1vSqp4R4aTGmOGciEirklNi2A4QRoOtoVMadA/1pnXIKEVvX+5kaSNd3trFpD8PeA1Mp5b6Ey7r3lUftHGOD00VAajLFxoNKIjAB2mnV3Dkhh8pfMblxH7wDC6vHO5W379+JaENImsIakqRn76YTKe+MOZXndJ8Qlytdpcp5tNGIaawigLF7TQfs7C2HVrDaEt6hN772mExZR/cC+sVRS95/+zGqSqeva8ttTmOn3MJ+XW3ffeCv5Omk5+xtFqkMxwsmCUhQtaaNsLb5RF3aRP6iQiT/HuViSQcfisOrZgO1nLdlGwL5vja/dz6LsNFGbm8PeA19j1vG1hfNt9P5G/4yh/953uvu5hMFQCs8DtgnNmUUtOExt8JzSmASKC1oHzlmsvcPdBFd6uEfk7jrLz8d9pfcdgt7LsZcVh7/MzjmLNLSQoMpTcLZlY8yzU7xVTLTIbaj/mreiC1TGzCDMzi7pGcP0w20UdDFaUv6PY3LR+1MduZa5rHIe+20jqabZogCuHzGD1iLcpynH3X2UweMMoCxccZqggM7Oou1RCVzQf1YsOT55bdbL4AYcbESclrFAFO93XMYqy8/0skaGuYN6KLjjNUGZmUfewKwkpZ2YR3NA93ka32aOd12Gtomh5Q78qF60mKe95GAwOjLJwwbnAHWKURV2h/WO2bdDt/2ffDh1U/HKMXzCeU166iL6rbif6uj4AtLp1oLO8+VW9aWzfTg3UylCpe2b8VXYFl+dRePA4uWnGi4HBM2aB2wWnsggzOrSu0Gp8f2Ku70uQfbYoQUL3z8dAkFCvawvqdW0BQNxT59Hyn0lEdm1OcL0wdr34J7H3ngZAZPcW5K4/QJOzO9XYOCrKkXlbSuWtvfj94oTLxGJ5jxcBW7CpQIkhYggczFvRheLdUGZmUZcIKmFWbDS0A41Obe+WJ0FCvW4tEBFaTRxAv3V3EdHBdqK/14/jiF8wnoaD2wHQ9NLu5d4zuGE40dckVtEIqpaspRnOa09mqPxt7m7YrQVFHPxyLYWZOVUqR17aITaOm8PxNfuqtF+DfzDKwgXHbqiSLxfDyYfrSzS4XqhzBgLQ5c3LGLT/3yRt8u5OpNOrl1A/vqVfZawKLEfz2DfrbyxZ7gvdW277hr1vLwNg1wt/suXmr1l3+Yde+ynKLmDdPz5k/+xVPt970w2fc/iHTaVjnRsCEqMsXCg+wW0ei6F8Qhp7dycSNbhdrTgQt/nmr9h2749svPYzZ97u15Zy8LM1pD84j6xlu9j1jM1fVe76A1772fvOco4t2E6aS+S/rL8y2PbATxQdL/DYJn/XMQCKssyOrNqAX9+KInKeiGwUkS0iMtlD+fMikmr/2SQiR1zKfhKRIyJSbXEnzQluQ2Won9jKeS0C1IIFcYcr96xFO5x5h3/Y5LwueQDQEwc+Xc3O/80vlb/2ovfZ9+4Kdr+8uNw+Cg/lYPHgedcQOPhNWYhIMDAdOB/oAVwtIj1c66jq3aqaqKqJwMvAFy7FTwPX+ks+T5iZhaEydJt9VU2L4Hd2Pp6MbLDNCBwzp62Tvi2zTcHurHL7Xd7tBZZ1fq7yAhr8hj93Qw0AtqhqGoCIzAYuBdZ5qX818LAjoaq/ishwP8pXCquZWRgqSFD9MEKb1nOmJTioVm61LY9dzy8iHNiyCnK3ZtLrh+vLb2SOctQJ/Kks2gA7XdIZwEBPFUWkPRAH/OZHecrFeYLbKAuDjzi21TZItC1md3nncqx5FoIiQwmOLCs+Xu3m4Jw1AORuOliqLPPbDTS7uJszbTmaR8HeLDKeXoBalehrEonq16baZDVUDeKvRTgRuQI4T1X/aU9fCwxU1Uke6j4AxKrq7SXyhwP/UtWLvNxjAjABICYmpt/s2bMrLG92djbN7lyHZFnIe6s/NKyd/+jZ2dk0aFA39sjXirEczCdk3l4sF7SCxmHuZQVWQp/dQPDfdTfokDYLQzJLL2BbhrcgJLl4QbyoVyOC1xS7Gsn7YBDh41OQ3CK3dnmfDvGfsCWoFX9fPlKZsZxxxhnLVbXcEIr+nFnsAtq6pGPteZ4YDdx2ojdQ1TeANwCSkpJ0+PDhJ9qFk+TkZEIkmCIsnHb6UEIaRVS4r5okOTmZyjyHQKLWjOWKMsrOGcGS6Gk+dxUR14TGZ55CZNfmbLvvp8rL5mc8KQrATVEAhO3Mx1UtdNlSn10hIRThrixOP/10ry5Idj3/J5nfrKfnd9cVO4asBLXm78sHqmMs/lzJTQE6i0iciIRhUwjflKwkIt2AJkD5Wyb8jNkNZfAH/dbeSf6LfQiKLP3dzPXgXvQ1iSQsmUiHaecQc31fWt1is9p2evWSapPVX5SMMb5jyq+et8x6MHQUZuaw7YGf2Pn47+Ss3e80gRmqF7/NLFTVIiKTgLlAMPCOqq4VkanAMlV1KI7RwGwtYQ8TkQVAN6CBiGQAN6nqXH/JC2Y3lME/hLaoj7aKJLhRBNbcbABCmkRiOZxL4zNPodml3bEWFtHkLHd3Iu2mjKDVrQMJi2lAaEwD0v9vHh2fvYCi44VEdGjM+is+cnNPXhco2HWM8LaNnGktsrK8+wtuderixoHagF99Q6nqD8APJfL+WyI9xUvbof6TzOMNUYsJfmTwH13fu4Itt31D3BPnUq97NMdX76PRGXFezS4i4gwX22hoBxL+mOBW3uqWgaQ/OM/vclcnf/ebTvR1fchLO0Sj4R2JuaFvqToigrWgiPTJc2lyXmeanNO5BiQ9+TBvRQdFtm8rEhpk3DYb/EKDPq1JXDSRRsPiCG1Rn8YjOlbqby1mXF+bU8Q6xv73/+bYwu0eD/o5SH9wLvs/SGXjNZ+VKjv41To2XvcZRTmFHPltK0uip7F9ao1utKwTGGXhwOJQFma9wlA7kOAgGg3tUNNi+BV1ifTnIPPbDeyflepMrxr+FmsvncXRhekAbJnwFYd/2sy+d5azYfQnAOx5ZUm1yFuXMcrCgVEWBkPA4XCb7sqxBelu6Zx1+8lavJP1l3/klp/5tfv530M/bSLjuYXl3nPvO8vZMPZTrAVF5db1hjXP4tUnVm3FKAsH9vWKILO4bTDUCY6v3OuW3nTdHDKe+IPsFbvLbJc+eS5Hft7Coe83lCrTIivHV+9Fi6xl9pHS+VlS4p5xroPWBcyb0UGRmVkYaifdvxzrvG42sjtd3i/r4Idh7UXvs3ni1255RccLOPrndjclYM0rbQLbMXU+q898h1VnvFXmPTTfNiupSx51TaQ8O2LMUIZaSqNT2zNo/78pPHickGb1OPzTZmdZ9y/Hsv4y73Eo6hq+bKtVi5XML9bCaNtp8bwdR0hNetVDxdJZe15bCkDuhtJuTuo6ZmbhwGU3lMFQGwltXt+2u8rlhVkyImD0tYk0H9XLLU/CPX9Bqte9hcf8QGZpy8d9r2w/2uVRUbiUO3DE33AWW5VjS3ZQlF3G2kSJzW6HvtvA6vNmUrCnfE+8gYZ5MzpwnLEwUfIMtZ0y/L2FtWlI0/O7ONOd376c/mn/ot1DZwAQ+8AwZ1loi/r+kzEACJmZzr73Vngt3/3SYlYkvMzxNfsozMzh7z6vuJXv/zCVdZd8wPorP/Z+kxIfxaYbv+D4it1sua2UM4viJgF66NAoCwcOM5Q5kGeo5ZTlG7TVxIFE9oh2psNiGhAUGkyrSYPos+I22txzqrMssnu0py7qDCE/7inT/1betsMU7Mli66RvS50iBzj0/UYAspd5c3nnHU/eesEWSGppy8c5+vu2E+7T35g3owO7sjDxtw21Hi/aIqheKMH1Qons2JTYB4bRcnwSUQNiAdup6PDYRogICYtupuMLF9Lsoq7l3mrQ/n9XqeiBSM66/R7zXV/oalVnMCifPHl7qeIIJLX1zmoLEOozZoHbgXH1Yagr+PCyir33NK9lkZ2aEdmpGVl/ZXit0+Oba6nXtXmFxKszFBU/59VnvYMWWOg+ZwwhzYqDYHk1KZX3GQWgFwmjLOyIY4HbzCwMtRw/hahxIyKuCSFNIv1/o1pCzpp9AKyIf5nwdsWOEPO2HWb/hyuJvibBLZJiuR9R4OkKoyycONcsjLIw1HK8maHCq+7f3dXdenCDsLJ3BJ1kuHoCXnvBewBk/bWTTtN9dzUfiIf5jM3FQZFZszDUEUq8Z7p/MYaIjk3p+uGVJ9aPh2+3nd++nIK7uhDSsDg4WP+0f9FnRXHssla3DKTLu/84sXvVcY7M28Kyzs8500VZ+RxbvIP0h37Gmmch89sN5KUdKi4/FniH+Xz6qiEidwLvAlnAW0AfYLKq1h3/yGbNwlBHCG7gHkWu0WkdSFwy8YT7iexmO2cRGtOAwn22OBxNzu2MNWpvqbrhscWml9a3D7Kd+QgNcsaIMbij+UWsu/QDAPbOSKlhaXzD13npjar6ooiciy2q3bXALKAOKQuzZmGoGzQ+6xRajEmg4ZB2leonJCqcpC33EBQRSvayDKwFVt9m3nYrWMfnLmTr7bbdPc1Gdifzq/WVkudkJXdrJqHRDQiJCi9VVngoh/WjPiZ4cH0Y7l85fP0a7ZiQXgDMUtW1BOQSTCUw5ywMdQQJDuKUFy6kxZW9K91XSMMIgsKCaTikPY2Hx/nUxrF1tOmFxYf/6se3otnlPdzqxT19XqXlq6tYcwrZcsvXHPpuAysHz2DZKc9y8PO1HEl2P3+x59Wl5KzeR+gbaX6Xydc343IRmYdNWcwVkShKWUZrN0F7cgHbP5rBYKgE9plFcINwoq9NhGCh+aheNDrdXdnEXF86Cp6hmIOfr2XTjV8401tu+ZoNJU6LH19V2iToL3x9M94ETAb6q2oOEArc4DepaoCQL22nMA9+sbaGJTEYajkuu7E6PnsBA3c+QFhMA1pcFU+oPUysL7R/9CyP+U1c3JWcjGx/5Dd2Pf8nRdkFHE2uvpPeviqLwcBGVT0iItcA/wHqVqR4O1qJgCcGw8lMWJuGSEiQ26E0KDbtSpDQ+KxTPLYNb9+4VF6rmwfQd/UdpfI7vXYp8cn/dMvr+d11dJ01qqKi1yr2TF/Czsd/J/Ob6l0D8lVZvAbkiEgCcC+wFXjfb1IZDIZaR5+UW+m/7V8EVcDNf8/vrvOYH+ZhJiJBQmTX5s7NKL1+GkfUgNhyAxLVNfLSD7ul/T1+X3dDWVRVReRS4BVVfVtEbvKnYAaDoXYhIUHlbxDxcnQ5pFEEMeP6sm/mCur3aUXbB4d77yNIkOAg+m+5F4LFqZy0KDC9tfqL3S8scktrQRES6b81V1+VRZaIPIhty+xQEQnCtm5hMBgMPhPZqZlbOnHZrWi+haCIEOKeOo/2U88iKKLs15IE2TZilqzXILFV1Qpb2/Dz5hxfe78KyMd23mIvEAs87TepDAZDnaTl+CRiHxhG7/m2NYeIdo2J7FzskNCTojjllYvdM4I879oPb9uIxJRb6fLeFUQNaUdEx6ZEdivuu+X4JLf6ljNjSNpyT0WHEnD4e9u/T73bFcSHQCMRuQjIU1WzZmEwGE6IoPAQYu89jfo9fY+VEdGhSXFCKPOEV0T7xjQ9vws9v7qGxCUT3ZwdtvvPGW51LTefYjtHUj+sZDe1EvGiRKsKn5SFiFwJ/AWMAq4ElopIuVHhReQ8EdkoIltEZLKH8udFJNX+s0lEjriUXS8im+0/1/s+JIPBUJdwnW0MSL/PFjrWV1xdhHt5mfr7JVtX8HXN4v+wnbHYDyAiLYBfgDneGohIMDAdOBvIAFJE5BtVXeeoo6p3u9S/HZvPKUSkKfAwkIRtSWy5va378r/BYKjz1OsdQ/S1iUR2bU5Q5IktlboueouXXVpB4cEU1b6Q2NWOr0auIIeisJPpQ9sBwBZVTVPVAmA2cGkZ9a8GHMcTzwV+VtVDdgXxM1AtvgEiuzQrv5LBYKg2RISOz15AqwkDTryxy8RCgoTWtw8uVaXLSXI+o7L4OrP4SUTmUvwyvwr4oZw2bYCdLukMYKCniiLSHogDfiujbRsfZa0QGhGE5Flp/79z/Hkbg8FQjXR89nw2jPmEdg+PACA0pn6pOlH93F8t/dP+ReZX62iQ1Iaj89PYP3sVuesPVIu8gYxPykJV7xORfwCOaO5vqOqXVSjHaGCOqp7Q8WkRmQBMAIiJiSE5ObnCAoTEhBOyPZeVaWtRtle4n5omOzu7Us8hkDBjCUxq3Vhe6M0aDkByMrQvIjShMdYhzdzGEeFSfcGyRbb9nnuPQHcIaR9MSInD0kXxjQheFVhOLPz9mfgcOktVPwc+P4G+dwFtXdKx9jxPjAZuc0nvwt3hbiyQ7EGmN4A3AJKSknT48OElq/jMIlkJQFL/JOr3blnhfmqa5ORkKvMcAgkzlsCk1o/l3DMB93EswXbArdnlPehcYmyWvoPY8chvtBiTwNrzbZHvWvbuwIFVK6tNZF/w92dSprIQkSw8n7kUQFW1YRnNU4DOIhKH7eU/Ghjj4R7dsMXIWOySPReYJiKOPXPnAA+WJWulcTg/C8BA6QaDoXpwPfPhIKRhBB2fvcAt72TcQVXmIrWqRqlqQw8/UeUoClTVAkzC9uJfD3yqqmtFZKqIuAajHQ3MVi12Vamqh4BHsSmcFGCqPc9/2N2qnIx/BAbDyU5wY5shquHgtuXULJt6vWOo1yvG5/otJ/Sv1P2qk6qL4O4BVf2BEgvhqvrfEukpXtq+A7zjN+FK39D22ygLg+GkI3HJRPLSDhOV5OM+GhESFk5g24Nzafd/Z7DmvJkAdHr5YnLWH2DLLV/71E1EXJPyKwUIflUWtQqHFcooC4PhpCO0aT1Cm9Yrv6IdCRIiuzSnx+djAeiTOon8HUep1yOanA2+75xqck5n0h+sHdGpTVg4B1YzszAYDGXTcGh7gFIhYsNbN6ThILsJy8srpO1/hpfKC2/biJY3ezZFDdxdyulFjXLSzyyKLFbycwspsNq2z5mZhcFg8Eb3T66mYG8W4bGNvNZpPLyj7feZp3Dk160AxD11HjHj+rLzf8ml6refehbBUeEUHjjO/vf+dub72zHgiRJY0tQAy39J4+4z3mNxSLgtwygLg8HgBQkJKlNRAIQ0iWTAzvvp+tGV9Jo7jtj7hhJ9TWKpehGdbd4iRIS29w+jyVmdvPbZ5u4hNOjXmo4vXli5AVSCk35mEWKPtuWMMWWUhcFgqCRB4bZXa4M+rWnQp3Wp8qgh7ejyzuVueY3PLA45G/vAMLeysNYN6fXjOCyHc0nje3teFAW7q8+p1Uk/swi1K4uiAtuahTFDGQwGf9PknM6lFtR9Mju5vJ8SFk0kKLL6vu+f9MoiJNT2CIocn4E5lGcwGPxEm3tOJaxNQ6KvjvdYHn2tzVzVYrStPKJjUwAaDu1gq+DyegoKO/FY55XBmKEcZii7ktCCE3JPZTAYDD7TdvLpxD4wzGtMjo7PXq+26UcAACAASURBVECHJ851xhWP//2fWA7nEtYyylbBtV01W0FO+pmF0wxlT1sLLDUnjMFgqPOUF7wpyCXuRlB4SLGioITho5qNICe9snDMLIrsn4Jj2mcwGAyBhrrG5xCpVrO5URahxWaosDYN3bS6wWAwBDIdptni7xSO6+D3e5k1C+fMAiT4pNedBoMhkFF3J+DRYxJoelFXFq5Y4vdbn/TKItRlgVvMpMJgMAQwjvMbroQ0jPBQs+o56ZWF29ZZc8bCYDAEMEHhIfT+5cYacQVilIVzN5SYFRyDwRDw1I+vmUieJ/3r0bHAbWYWBoPB4J2TXlkEhwQRFGTbgqZGVxgMBoNHTnplARBit/8VmZmFwWAweMQoC2yzCwBrkHkcBoPB4AnzdsRlR5SZWRgMBoNHjLIAQoId22eNsjAYDAZPGGVB8ZqF1egKg8Fg8IhRFhSboaxmZmEwGAweMcoCCAm2KQljhjIYDAbPGGWBy24ooysMBoPBI35VFiJynohsFJEtIjLZS50rRWSdiKwVkY9c8p8UkTX2n6v8KadjgdtiZhYGg8HgEb/5hhKRYGA6cDaQAaSIyDequs6lTmfgQeBUVT0sItH2/AuBvkAiEA4ki8iPqnrML7LmFgKQvWafP7o3GAyGKic/t5CQ0GCnZcTf+PMuA4AtqpqmqgXAbODSEnXGA9NV9TCAqu635/cA/lBVi6oeB1YB5/lL0PxNBwGzZmEwGGoHBXkW7hj6LlNHz6m2e/rT62wbYKdLOgMYWKJOFwAR+RMIBqao6k/ASuBhEXkWqAecAazDTwTb44kYZWEwGPxBbnYBBXkWGjWvV27dz19ayrz3V3LXqxfSfUAbAI4dymXatV9weN9xGjWvR8Kw9gDsTT/C2//5jehEi1/lh5p3UR4CdAaGA7HAHyLSW1XniUh/YBFwAFgMFJVsLCITgAkAMTExJCcnV0iIYHv0qSKhwn0ECtnZ2bV+DA7MWAKTujIWf46jyKKkfneANj0b0LJzPT6+bxMo/OPRUwiLLDvK2rz3NwHwwq3fc/UzXSjMt/LXZ/s4vO84AEcP5vDHF+ud9f/6aQv8BFHN/TMWB/5UFruAti7pWHueKxnAUlUtBLaJyCZsyiNFVR8DHgOwL3xvKnkDVX0DeAMgKSlJhw8fXiFBV+hKwHbOoqJ9BArJycm1fgwOzFgCk7oyFn+O4/c569i0cDObFh5hxrIJfKy211f3jgm07dqc7CN57E47TJe+rZxt8nMLWb90F66vui5t43nkKt9MTf37DKJ+I/9FzfOnskgBOotIHDYlMRoYU6LOV8DVwLsi0hybWSrNvjjeWFUzRSQeiAfm+UvQEHuowiJjhTIYDBXk+NE858t6S+peZ/6ODQed1+v/2oUECc+M/5bc7AIARODC8f347o3lpfr0VVEAhEX411DktwVuVbUAk4C5wHrgU1VdKyJTReQSe7W5QKaIrAPmA/epaiYQCiyw578BXGPvzy9E9YwGICKhVTk1DQbDyUxhQRHfvrGcHRsOonbztdWq/PLRau45833++Ny2tPrXT1ucbR675gvn9ecvLuXRqz93KgoAVTwqihMl1EN87qrEr72r6g/ADyXy/utyrcA99h/XOnnYdkRVC8F2b7PSuHoCnxsMhsCmMN/Cl9NT6HdmHKck2MKYLv5uE398sZ60Vfu8vtw/fHwh+3YcrU5Rqw1zghuwe/vAYq1ZOQwGQ9VTZLHy47t/s3PjwVJlx4/m8cS4r3j8ui+xWtWZP//Ttfz60WqeuukbVvyaRmG+hZlTkklbVf5ZrF8+XF2l8vvCKQMb+f0eNb0bKiBwPIQiLbOawWAIQFSV7esO0LJDYyLqhwG2cwgbl+2mW//W/PnNRr6ansJX01OYsWyCs13aX0f5+F/vO9N/fL4OtSrdBrTh69eWOfNnPPALp8THVN+ATpDmbaIYMMr/8hllQfH0qkiNtjAYahurF+5g+t1zadWxCVM+HQXA+1N/J2XeVgZd0BlLofuu++PH8gmPDGHpp+6zhI+f/NPrPbb6MKOoDuJ6R/P/7Z13fFRV+v/fzyQhIQkQQgldQui9i9I7iAiLqOiKYlkU165Y+dnWr6JYV90VdLGsCgqriFRFCQiC0ruEFiUQWqihhCRzfn/cm8lMkskEyCSZ5Hm/XvPKveeee+9z5k7mM+c55zzPnk2HPMp639ASSPH7vVUscO9ZqFgoij/Y+PMfrFm0m5uf6n7JA7HOTCeblu8lrnUM6xbv4ZfvrKmmybuPkbA2mYQ1+1n1/S4AVs7b4XHurH+tYv7UdZd0/+Jk/AfX8PwNMzj4R/a4SFBQ0UzjVLEAHFmL8nTMQlEuGWemky9f+4Vml9ehba/6ALz30EIA6jSqQv+bW3vUT0/LIDPD6XIhAaQeP8f6+EQ6DYwjtHyIR/34GVv58rVf8rz362O/y9e2QBSKCtHlqdMwmjtf6ktQsINR47vy9r3Z84Yad6jFjqTc4zGFjYoFVpwR0J6FohQGaxbtJn7GVuJnbPUYIwArbMXhpJMcSDxOq2712L/7GM9fPwOAntc1p3X3yzh6IJXl3/5O4pbD/LHtMJ0GNmTBx+vpeW0zKsdEehWKQOSauzsy54M19L2xFX1vakVUtXDS0zI5djCVw0knqd+iOpE5Zmk271KHO17sw5Zf9jLgljbUbhjNjiT/26piAaRtPQRBIWQ6VSwUJSeZGU5OnzhHxSq+4xqB1SvI4otXlnH0QKpr3zgNE4ZPB2DA6NYsn73ddWzJjK0smeEZAm59fCJL/2eFttjyy15KG0PubM/g29vhcGS7ksqFBRNzWRQxl0V5Pa/zoIZ0HtSwKEx0oVNnAWfKGQDO2X8VRbFwZjp5afTXjB/4GYf2Fmz9wI512auXl8zYyqaf/3TtZ7r5er//70ZOn0jL91onU85eoMVFT+MOnot573ljYJ712veJZeK8v+YqdxeKkoz2LMiOOpuelitWoaKUWdLTMnhiyBeunsKWFUlUr2vN5z+cdJLU4+eIbVmdxK2H+fmbbRw7eJqBt7RhzaLdXq+5cekfRWJ7UdBlSCNueqIboeVDuKvjFFd5mx6XMen70UwcM4uU/acAePyjYdRtXIWQ0GBeXXAz8z9ax5A72xeX6ReFigUQhD3AXcx2KIo/OLL/FEFBQuWYyAs6b9fGgx4uJYdDOHMqjW2LjzLtUcuV1Kh9TXasTXbV8eUqOrLv1AXZUNQ4ggRnARdc3fZ8b9f26Ak9+PqdX3nwvSEAVIwuj3Fzazdolb0OolLVcEaN71pIFhcd6oYCguyHmllEGacUpajIzHDy9DXTeGLIF/nWO7LvJHM/XOuKWXQ29TxvjpvrUef3Vft4qPcnrJ+bPfPGXSgCkahqnuMwd7/a37UdFhGSszr1mlUFrF6FO92GN+WNH2+lXtOqrrLBt7cDyDX7K1DRngUQkhUQLLycj5qKElicP5cdf3P+R+v4ZfZ24trUYMxzvTzqPXPtV2RmOFm3eA8TPr/WI1JqFmt/3ONvc4ucifP+Ssr+UziCHOxNSKF193rc/HR3Ms5n0n1EMx7o8REZ6dY4y+Db2zF0bAcO/nE838HnLHqMaEbLK+tSOSbC380oEvSnNBBmi0Ramv+zTSlKYZGSfIo5H6zh9ElrkDjtbDo/f7ONl2/9Js9gdrPeW8WhvSdZMcczNUz6+Uwy7cBoe7enkLznGG/cPcf/DSgGsnoGYLmcRISqtSsSXSOSNj0uQ0To/pdm9L6hJcEhQby5eAydBsQx7rUBDL+nE0HBDmrFRRc473V0jUiklGTg1J4FEHTeEolzZ9KL2RJFKTivj/2OlORUEtYm06JLHb5+5zfXsc/+bymPTB7KmVP5zzYyxrDsm20eZc9dN8Mv9vqbDv0a5Dm4PnZiP6Y8sYhuw5syekIP12C0FOD7vlxYMHe+1LewTQ1IVCyAoPOZYAzpadYvrIL+alAUf2GM4cSRM0RV8+7CSEm21i9sX7Wf7av2exw7fy6D1OPneGrotDzP/eT5eE4dO8emZX/meTwQadm1LrEtqzPzrZUe5R36NWDi3JuIqm69l1nxlarHlS8OMwOWMi8WJtOJOA0hxpAuwvlzGZSP1LELxX8cSDzOgk/WM3RsB6rUrJBnnWmvLGfJzK3c+VJfOg2I8zj2zbu/sX/X0Xzv4QhysH31fq/Hs+IplQYat6+JAToNiCMkNJj+N7fm/h4fkebmKXCfCTZu0gB++W47jur5v4eKJyoW9uBViIF04Nzp8yoWil95afTXpJ3NYP+uYzz16V/yrLNkprWSef7UdURVCyeudQxH9p9i5/oDLPh4vc977N54kCklJFLqxVCtTkUe+vcQJo6ZxcmUs4hYGeXceXHWKKrVqZjn+eNeG8Bb98zN81ilquEMvq0d8fHxhWx16abMi4XTDl8cbH8SddxCuVgWfLyepB0p3PFiH6+DmvOmriPtrDVGdmDPsVzHjx06zbf/XuXa37fzKK/9Lf/geIHMqwtu5rFBn+UqH3Jne6rUrMA/vhnF6RPnCAsPYd/Oo6QeP8fkxxcBeBUKgGada3P3pP7UaVTFb7aXNcq8WJjzlliE2Avzzp1WsVAujm/etQaYm3aqTeMONV2rncGKifTl67/w07TNrrK0sxn8NH0zlw9uSESlMPbtPMoLo2YWud3+4rGpw3j19m+9Hn9m+kgqVQ2nSadarjGX257vxaZlf7riHoWFhxAWbq13aNyhFhnpmTRuX5PmV9Txef92vWMLoRVKFioW6VliYZF2VsVCuTT+++JSAEY91pWoauG0uKIuyQlnWDJtR666X772Cz9O20SPEc3YXEoC5bXqXo973xwEQNdrmrBv11EefG8ID/b62FXnqjvaUbthNAD3vDaA1++ew+WDG9FlSGO6DGns9drBIUE8MmWoX+1X8qbMi4VTexaKn5j+qpV5LbZldWq08T7D7si+Ux7TXgONyKgwj7Ag7rMJb3mmZ6769741iJZd67r2wyLK8fR/R/jXSOWSKfNikZV4O9h2MeuYheJOeloGuzcdomHbGvlOqc5a1JYXezYfQsK9+9cDjY4jqnPnk8NYH5/I76v2M3RsB14a/TUpyanUqB/FdQ92yfO8u17px8mjZ2nVrV4RW6wUBioW9sB2Vs8iTcVCcWPKE4vY+POfDLy1DSPuuxywBOSV276lSadaXPtAFz58+kfW/OA90irA7t9OFoW5hUrvG1qw+MstPDZ1GNE1IomqFo6IEB8fj4jQrnesa1zgpe9u8nm99n0b+NtkxY+U+dVnWbPxslRTexalm3Onz/PDZxs5duh0rmPbfk3ijXFzXMl6MtIz2WjnYvhpevbA9JYVSexNSGHR55sY1/kDn0IRSMS2qu7aHjW+K5NXjyWudQyVq0eUmrAVysVR5sUCO+Jslmj8Nj/3IKRSepj51kpmvrWS18d+x5lTaRzZnx0y+62/z2P7qv18/tLPAB6JedLTMvn0H0sAKC3fmaPGX0n3vzT1KBv/wTX0ur4F4z+8ppisUkoqfnVDicgg4G2sNNcfGmMm5lHneuA5rO/rDcaYm+zyV4EhWIL2A/CAMX5Ikm1fcluQtRAvaYeu6gxUnJlOjh5IpWrtihhjSFiTTJ1G0URUys5hnBU76HDSSR7q/QkAk74fTcXo7NAPm3/Zy10dpzDi/ss9rr/82+04Mw3hFUOLoDX+oU6jaJJ2HPVYGX7Tk91554H51LYD5N34WODlWlD8j9/EQkSCgPeA/kASsEpEZhtjtrrVaQQ8CXQ1xhwTkep2+ZVAVyArEPwyoCcQX+iG2vJT35lBokOHcAKZKU8sYt3iRHpc2wxxCEtmbKVKrQq8NPtGAE4dO8uZU+dznXcg8TiRlXILwNf//DVXWc6IrSWVd5ffzr1dp+Yqf/SDa9i38yhxbbKT8TgcwgPvXFWU5ikBiD+/HTsDO40xuwFEZDowDHDPyP434D1jzDEAY8whu9wAYUA5QLCWQfgldkFWNqtmJp1Egj2SlyiBxbrFiQAs/V92FNWU/af4bvJqmnSqzetj814J7a28pBNRKdRrDuuQ0Ox/7YpVyrtyWZePLEfDtjWKxD6ldOHPMYvagPsqoyS7zJ3GQGMRWS4iK223FcaYFcBiINl+LTTGbMMf2G6oINsP7Z4KUSl+ls/enisg3okjZ1jw8XpOnziHM9PJq7d/y6cvLPF6jTkfrA1YQciP4fd0omaslYRn3GsDuPVZa01Dlpusx7XNqFE/SsVBKRSK2+8SDDQCegF1gKUi0gqoCjSzywB+EJHuxpif3U8WkbHAWICYmJiLCgwmf54mFHAYa5788WMnAzrAWGpqakDbv+vXE4RFBlG7RSQHEo+z+F3L7XP14/X5+dP9tOxbhQ3zj5Caks6q+C20GliVXRsPsiuAg+b5onylYM6eyJ2YK2FHAt3GVuXsiSiOkwgVYMTzcQSVs6a31r4CanWpxt6N1uyuyrVDC+WzEeifsSxKSzugaNriT7HYB9R1269jl7mTBPxqjEkH9ohIAtnisdIYkwogIvOBKwAPsTDGTAGmAHTs2NH06tXrgo08veUQm9hAcJDVySoXHMrFXKekEB8fH7D2n0w5w7RHraByk1eP5aup81zHln54kJMp51n+WXbO56TNp6nfqG6u6wQ6rbrV48zJNIJCHDwyeSjGGE4dPcvjV32OMzO759u4cRN69G/m83qml6Fbn0PUalCZsIhLj6gcyJ8xd0pLO6Bo2uJPN9QqoJGIxIpIOWAUMDtHnVlYwoCIVMVyS+0G/gR6ikiwiIRgDW77xw1lu52C7ZHudDv8h+If9m4/wubl2Ql3MtIzOXHkDBNvm8XKednTlp1O4zGvP8vnnpNl3/zuP2OLkJ4jm7u273ixD49NHcYjk60YSCJCxSrhPD/zeiuvc9e6hEWE0KFvwQLliQgNWsUUilAoZRe/9SyMMRkici+wEGvq7FRjzBYReQFYbYyZbR8bICJbgUxgvDEmRURmAn2ATViD3QuMMX5yOttjFvaee4J7pXBwZjpJSU6lUtVwXvzr1wC8POcmIiqFcn/3j1z19mw65Noe1/kD2l5ddiYbtOpWz5XDwls+lep1K/HXp7oDlpg6HKVkwYcSEPh1zMIYMw+Yl6PsGbdtAzxsv9zrZAJ3+dO27JtZf4IcAk7I0J5FofPsyK84tNcz3MWJI2d47+GF+Z63fs4Rf5pVYhg9oQetutXj4fevJrpGpO8TQIVCKXLK/ArurNlPDqyVuRnpTpyZ3oPCKd7JzHDy8XPxrP5hl0d5TqHIIikhpSjM8hsReazNALjx8Qtb1NZtuLWKuknHWvkm9FGU4qS4Z0MVP/bUWXGAsT1Q6eczCS1f9nR04Sfr2bXxIHe/2h9HkIP0tAz+ed98WnWvx4DRbfI9d8PSP/iX3VNYMSeB3ZsOcTLljNfVwF+/k3vBW6BRsUp4nusc2veJZdory6lUNRyHPSf72MHsWFQPv381dZtUYfm321UclIBBxSJrconbYOrujQdpdrnvTFyljaycCr+v2k/zLnVYtziRhLXJJKxN9ikW/8rhUvrxi00ArFq4K6/qJKxJzrO8pNKwbQ12rj/gUebMcHLrsz1ZNut3dm3InrpbsUo4k74fTfmIEBxBDkTg+3k/se9XB72ub0Fca2v1dP+bW6MogULZ+/mcA9ciPDcXcFaO5LJK1owwbzkaErccYun/tnLs0Gke6vMJM95cUZTmFQt5ZWerWDWcK4c24bH/DHOVjbivs3UsujwhocEEBTtwBDkIqxDMHS/2cQmFogQaZV4sstxQCFSvZ+VMDuRAcYXBd++v5uVbvvEQi60rk1zbL986i89fXsYTV33OmZNpLPp8U3GYWWh0GdIoV1nXYU1c23FtYnA4hJEPdqFCdHnGTuxH6+71GPNsdha491bcwdOfjWDALfn3wBQlUFE3lJsbqnL1CA79eaJMDHAbY/jk+SXUaVyFfje18ji21x54Ttx62FX29r3zeODdq6jfolqR2lkUdBrYkJVzrTUe978zGBHh3Jl0ln+7HbCC74HlNur311aICB36eSbyCQ4J0rhiSqmmzIuFuxsqec8xABZ9sYmmnXKGsSpd7Nl8yBVBNadYeOPte+dRp1G0P80qcqrWruCx3+IKa0X42h+zExq5T1PVBEBKWUXdUGSHT8haJbzp5z+9VS41pKdlrydx/2L0RWnI91G7Ybbg3fFinzzr1IorXaKoKJdKme9ZuLSijC1ycrpF1538+CKadKxVjNYUDVVqRlIrLpqRD3bh2ZFfAd57CjXqR/HYf66hckzBFskpSmmnzItFaQxJnnY2naBgB0HBDt59cAHlwoK565X+nD+XwdEDqfz05WaWzNjqcU7OMOCBREhokEdPyRv1mlbl7kkDPMqiqmWvhchJXBsN7a0oWZR5sXCfDVWSMcb49JefP5dBZoaT+7t/RESlUO78v75sXm6lFJn74Vpmv7+6KEwtcp6ZPpL/95cvfdar2aCya/vZr67j1NGzVI6JpHJMJCPu66yuJ0XJBxULWytMCRaLyY/9wNEDqTz+8XCvMYG2rNjLP++bT2wna0Xw6RNpvH1vdliuQBaKXtc158/tKez2krOiWp2KtLiyLlVrVXAF42txZV0GjLYWvVWoXJ41i3YzaExb1zm1GlQGN/EYeGtbFEXxjoqFq2chiEOK3S2VsDaZz15cyi3P9HRlOFv70x4Ajh867RFo7mzqeYKCHZQLC+bbf1tisGdV3nGYAoH6zat5TNcNDhVeW3gr5SPL4XQaxnX+AIBJ349m/ID/uuqJCPf/czAAYREhLPxkA4PGtKVx+5quOu6D2oqiXDhlfjaUyVpSIbi+cIqKbb8msWyWZz6GN+6ew8E/TzDpztn5rvdIP5/Jg70+5r5uU3FmOikNMzqDgrM/jm/8dCsj/9HQFa7bvUcVWj6YUeOvdG27M+K+y/nnz7d5CIWiKJeO9ixMdk+i2eXZayuSdqRQp1EVv976rb9bbqJG7WoQc5mVS9m9Z7Pg4/VcdUd71/5Xr/9Cy6716Da8Kb/M3u4qH3f5h361099EVQvn4clDPYILRlQMRby43IKCHfS4tjmh4SF5rocJLR/iN1sVpayiYuE2ddZ9APlfDy/kpe9uKtglCjD47I7TaVizKHttQ0pyKl+8spxyoUEe9db+uMdDLNYtTmTd4kS6DW/KFxOXFfh+xUnj9jVJWJt30MAXZ43ip+mbGTSmLZWqhnPjY11xZji9Bth7+rMRZGY4CQ6x3qcrhzbJs56iKIVPmRcLY/Ieo0hJTvWo400MMjOcTLxtFrXjohnzXC9XmbtLJScr5iTw6QtLXPvuA9E5bVv1fe6orSeOnPF67ZJGZOUwJnxxLb//to++N7a02v6PpYA1MH3Do1e66kZVi+Dvbw7yei0Np6EoxUeZH7PIb+psSvIpVsxJ4JF+n7riJeVk386j/LntiCt0xoo5CdzT5UM2LfO+CnzXhgNej7mTtOMoHz71Y67yxwZ9VqDz/c2Tn/7FY7/TwLhcdTr2j6Nu4yr0v7k1jiAHIaFl/veJogQkKhauQIK5Dz01dBofPxfP6RNpTPPi9nHmmD318XPxALz74AL27TzKsUOnc53jzRcfKLz2w2gmrx5L/ebVuP0fvQErb/ToCT08Btqr161I+76xHue2612fhm1rMPzvnYrQYkVRLhX9mefMnjqbH5mZTpxOk2udwwE7+CDA4STPaasvjJoJwNtLbyO0fDDfTVlDpSrhnDgcOG6knNSoH0WFyuVd+5cPbkTnQQ1dbrqn/juC/7v5awAe/2h4LvddSGgw4z+8pugMVhSlUCjzYuFtzCIniVsOM67zB9z1Sj/a97XCUzudho+ejXfVmTB8ep7nPtDjo0u209/c8/oA/vXI9z7rTfh8RK4yd0Go17Qqz345kvIVQomMCitUGxVFKT7UDeWaDVWw6pMfX+Ta/vP3I4VvTzHRpmd9n3Uq2NnffFErLprK1SMKwSpFUUoKKhbOfAYtfFDcq70Li8Ydci9gu3psh1xlj0y+uijMURSlBKJikWM21LjXBnivW0qpGWvFSKplx0rq0K8BQ8d2oH2f2DzrKYpS9tAxixwdi9iW1Qt03uzJq5n7wVr/GFXEZA053P/uVaycm0CPa5sDcNer/Tlx5AyT7pxNr+tbFKOFiqIUN37tWYjIIBHZLiI7ReQJL3WuF5GtIrJFRL6wy3qLyHq31zkRGe4XI3P0LCpVDfd5yrbf9pUaoQBcalG5egSDb2tHRMVQ16FKVcN5cdaoAqdeVRSldOK3noWIBAHvAf2BJGCViMw2xmx1q9MIeBLoaow5JiLVAYwxi4G2dp1oYCfge6rOxWAKNnXWnbfumesXU4qaKjUjSUlOpXmXOsVtiqIoJRx/uqE6AzuNMbsBRGQ6MAxwT9H2N+A9Y8wxAGPMoTyuMxKYb4zxy+KECl3q0XT6DWz4Y5ur7Ko72jHvP+v8cbsiZ9CYtsS1iWHR55uIrhnJiu+sleZ9b2zJkL91IHn3MeLaxBSzlYqilHT86YaqDex120+yy9xpDDQWkeUislJE8goMNAqY5icbKRcTSVSfOExsdp6IQApQ1/yKOq6YVHkhDqF198t4+P2rGfNsdr0hd7YnomIoDdvWuKAgiIqilE2Ke4A7GGgE9ALqAEtFpJUx5jiAiNQEWgEL8zpZRMYCYwFiYmKIj4+/aENSU1Nd5585nn7R1/E3jiBhxPNxzJywE4CYVoa0SO/5s0+mH8jzfVm2fDmh4UG5TyhBuD+TQEfbUvIoLe2AommLP8ViH1DXbb+OXeZOEvCrMSYd2CMiCVjisco+fj3wjX08F8aYKcAUgI4dO5pevXpdtLHx8fFknX/y6Fm+Zc9FX8ufBAU76D+oD/0G9ubUsXNUjLZCb0wjwaNey651aXllXXpd38Kj55BVr2fPHmINrgAACo9JREFU7oRFlCs6wy8C92cS6GhbSh6lpR1QNG3xpxtqFdBIRGJFpByWO2l2jjqzsHoViEhVLLfUbrfjN+JHF5Q3gkOKZvlJ9boVfdaZvHqsx37vG1oCVoiNLKHIi/veHkzvG1rmcjHd+VJfRk/oUeKFQlGUkoXfvhWNMRnAvVgupG3AV8aYLSLygohkRZJbCKSIyFZgMTDeGJMCICL1sXomS3Je299kJdfxN0071eadZbfT5apGeR6/8fGuHvtNOtVi+D2+o7XmN/2304A4ug1vemGGKopS5vHrmIUxZh4wL0fZM27bBnjYfuU8N5HcA+JFQn6JiwoTCRLKhQVz2wu9WTlvR67jOX/9N2gV49W2h9+/mhVzEtj7x37umOA9gZCiKMrFUNwD3CUSR1DRzA7ydperx1pTWjsNyJ1MyBtNOtaiScdaxMfHUysuunAMVBRFsVGxyIOimkoac1lUrrLrH7mCvjd6WS1dwHDqiqIohY0GEvRCjfq5v8gLm54jm+cqi64RmausfotqALTtHZvrmKIoSlGgYuGFZ78cSYV8Zhs9NnXYJV2/fZ/YPMcfqtetlPte/xnGy3Nuon7zapd0T0VRlItF3VBecAQ5eH7m9ezdfoQ3x3nGgnpk8tXEtY6hcfuaJKxNdpW3612fdYsT87xe5ZgIel3Xgna961M5JpKQUM8ZV8/NuI7DSSep3TD3eENQsCPPHoeiKEpRoWKRDxEVQ2naKfeErMYdagEw9pV+zP1wLVcObUJ4xVA2LEl0iUWH/g1Y80P2kpFxrw3gsmbeewY1YytrvghFUUosKhYFoNnltdn2a87F51ChcnlGjc9eC9FjRDP2bk+hfd9Y1ufoYdRtXMXfZiqKovgNHbMoAAXNnhcSGsyY53rRuvtlNOlUy1X+9GcjcATpW60oSuCiPYsCEFo+hLsn9ef98T8U+JxOAxsSGRXGZc2qERkV5kfrFEVR/I+KRQFp1zuWe98aRPV6uWcr5YXDIbS4oq7vioqiKAGAisUF0KpbveI2QVEUpVhQR7qiKIriExULRVEUxScqFoqiKIpPVCwURVEUn6hYKIqiKD5RsVAURVF8omKhKIqi+ETFQlEURfGJioWiKIriExULRVEUxSdiSkleZxE5DPxxCZeoChwpJHOKk9LSDtC2lFRKS1tKSzvg0tpymTHGZxrOUiMWl4qIrDbGdCxuOy6V0tIO0LaUVEpLW0pLO6Bo2qJuKEVRFMUnKhaKoiiKT1QssplS3AYUEqWlHaBtKamUlraUlnZAEbRFxywURVEUn2jPQlEURfFJmRcLERkkIttFZKeIPFHc9hQEEUkUkU0isl5EVttl0SLyg4jssP9WtstFRP5pt2+jiLQvZtunisghEdnsVnbBtovIrXb9HSJyawlpx3Miss9+LutF5Cq3Y0/a7dguIgPdyov98ycidUVksYhsFZEtIvKAXR6Iz8VbWwLq2YhImIj8JiIb7HY8b5fHisivtk1fikg5uzzU3t9pH6/vq30XjDGmzL6AIGAX0AAoB2wAmhe3XQWwOxGomqPsVeAJe/sJ4BV7+ypgPiBAF+DXYra9B9Ae2HyxtgPRwG77b2V7u3IJaMdzwKN51G1uf7ZCgVj7MxdUUj5/QE2gvb1dAUiwbQ7E5+KtLQH1bOz3NtLeDgF+td/rr4BRdvn7wDh7+x7gfXt7FPBlfu27GJvKes+iM7DTGLPbGHMemA4MK2abLpZhwCf29ifAcLfyT43FSiBKRGoWh4EAxpilwNEcxRdq+0DgB2PMUWPMMeAHYJD/rc/GSzu8MQyYboxJM8bsAXZiffZKxOfPGJNsjFlrb58CtgG1Cczn4q0t3iiRz8Z+b1Pt3RD7ZYA+wEy7POczyXpWM4G+IiJ4b98FU9bFojaw120/ifw/WCUFA3wvImtEZKxdFmOMSba3DwAx9nYgtPFCbS/JbbrXds1MzXLbEEDtsN0X7bB+yQb0c8nRFgiwZyMiQSKyHjiEJby7gOPGmIw8bHLZax8/AVShENtR1sUiUOlmjGkPDAb+LiI93A8aq/8ZkNPcAtl24N9AHNAWSAZeL15zLgwRiQT+BzxojDnpfizQnksebQm4Z2OMyTTGtAXqYPUGmhanPWVdLPYBdd3269hlJRpjzD777yHgG6wP0sEs95L995BdPRDaeKG2l8g2GWMO2v/gTuADsrv7Jb4dIhKC9eX6uTHma7s4IJ9LXm0J5GdjjDkOLAauwHL5Bedhk8te+3glIIVCbEdZF4tVQCN7hkE5rIGh2cVsU76ISISIVMjaBgYAm7Hszpp9civwrb09G7jFnsHSBTjh5looKVyo7QuBASJS2XYnDLDLipUcY0F/wXouYLVjlD1jJRZoBPxGCfn82b7t/wDbjDFvuB0KuOfirS2B9mxEpJqIRNnb5YH+WOMvi4GRdrWczyTrWY0EfrJ7g97ad+EU1eh+SX1hzexIwPIHPl3c9hTA3gZYsxs2AFuybMbyT/4I7AAWAdEme1bFe3b7NgEdi9n+aVhugHQs/+kdF2M7cDvWYN1O4LYS0o7/2nZutP9Ja7rVf9pux3ZgcEn6/AHdsFxMG4H19uuqAH0u3toSUM8GaA2ss+3dDDxjlzfA+rLfCcwAQu3yMHt/p328ga/2XehLV3AriqIoPinrbihFURSlAKhYKIqiKD5RsVAURVF8omKhKIqi+ETFQlEURfGJioVSphGRKBG5x22/lojMzO+cQrx3fRG5qSjupSiXioqFUtaJworYCYAxZr8xZmQ+9QuT+oCKhRIQqFgoZZ2JQJyd42CS/Wt/M4CIjBGRWWLlckgUkXtF5GERWSciK0Uk2q4XJyIL7MCOP4tIrhg+ItJTsnMprLNX4U8EuttlD9mB4yaJyCo74N1d9rm9RGSpiMy1cxK8LyIOu/7HIrJZrPwmDxXh+6aUMYJ9V1GUUs0TQEtjBWzLilTqTkusyKVhWKtjHzfGtBORN4FbgLew8h/fbYzZISKXA//CCiXtzqPA340xy+0gd+fsez9qjLnavvdYrNAZnUQkFFguIt/b53fGyk3wB7AAGAHsAWobY1ra50cVxhuiKHmhYqEo+bPYWHkRTonICeA7u3wT0Nr+4r8SmGGFJQKsRDM5WQ68ISKfA18bY5Lc6mcxwL5mlhusElYsn/PAb8aY3QAiMg0rrMWPQAMReQeYC3yf84KKUlioWChK/qS5bTvd9p1Y/z8OrBwDbfO7iDFmoojMxYo3tFzyTm8pwH3GGI/geyLSi9zhwY0x5piItMFKOnQ3cD1WbCZFKXR0zEIp65zCSr95URgrV8IeEbkOXPmp2+SsJyJxxphNxphXsCKaNs3j3guBcXaIbUSksR1ZGKCzHQHVAdwALBORqoDDGPM/YAJWmldF8QsqFkqZxhiTgvVLf7OITLrIy/wVuENEsiIB55V+80H7HhuxItXOx4oomikiG+zB6Q+BrcBae5B9Mtm9/1XAu1hhqvdg5TGpDcSLlU3tM+DJi7RfUXyiUWcVpYRju6FcA+GKUhxoz0JRFEXxifYsFEVRFJ9oz0JRFEXxiYqFoiiK4hMVC0VRFMUnKhaKoiiKT1QsFEVRFJ+oWCiKoig++f8Ch0SNNjS6iwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX9//HXJyv7DhEBBRVFaq0KWncRqogbLmix1ipaqVLs1134WZVS697ab1tbtyKtWnHtt7agqEjc6sLmwiIQNtlXEQKEkOTz++NeYIhJZkgyme39fDzmkbucO/M5mWQ+c84991xzd0RERGqSlegAREQk+SlZiIhIVEoWIiISlZKFiIhEpWQhIiJRKVmIiEhUShaSlsysj5ktq8Pxj5rZHfUZk0gqU7KQpGVmi81sm5kVm9kqMxtrZs3i8DpXmNn7kdvc/Rp3/3UcXiuyTjsff4rx2EIz+2l9xyQSCyULSXbnuHsz4AjgSGBkguOpD+e4e7OIx/D6eFIzy6mP5xGpipKFpAR3XwVMJEgaAJhZvpk9ZGZfmdnqsOuocVXHm9kIM1tgZpvNbLaZnR9uPxR4FDgu/Ja/Mdw+1szuDpfnmNnZEc+VY2ZrzeyocP1YM/uvmW00s8/MrE9t6rizhRPW6WszW2RmA8J9vwFOAv4U2RoxMzezn5vZfGB+uO14M5tiZt+EP4+PeI1CM7vXzD4xs01m9i8zaxPuG29m11WK6fOdvyvJbEoWkhLMrDMwACiK2HwfcDBBAjkI6ATcWc1TLCD4sG0J/Ap4xsw6uvsc4Brgw/Bbfqsqjn0OuCRivT+wzt2nm1knYDxwN9AGuBl42cza166mfB+YC7QDHgD+ambm7rcD7wHDq2iNnBce1zP84B8P/AFoC/wOGG9mbSPK/wS4EugIlIVlAf4G/HhnITP7HsHvdHwt6yJpRMlCkt3/mdlmYCmwBrgLwMwMGArc4O4b3H0zcA8wuKoncfcX3X2Fu1e4+/ME38KPiTGGfwDnmlmTcP1HBAkEgg/XCe4+IXzuN4GpwJlR6rQx4nF1xL4l7v6Eu5cTfHh3BAqixHdv+DvYBpwFzHf3p929zN2fA74Ezoko/7S7z3T3LcAdwMVmlg28ChxsZt3DcpcBz7t7aZTXlwygZCHJ7jx3bw70AXoQfOMGaA80Aabt/NAFXg+3f4uZ/cTMPo0oe1jEc9XI3YuAOcA5YcI4lyCBAOwPXBT54Q+cSPAhX1OdWkU8nojYtyridbeGi9FO6i+NWN4XWFJp/xKCFkJV5ZcAuUA7dy8Bngd+bGZZBK2pp6O8tmQInRCTlODu75jZWOAhgm6XdcA24DvuvrymY81sf+AJoB9Bd1O5mX0K2M6njyGEnV1RWcDsMIFA8MH7tLtfXe2R9ae6OCO3ryBIYJH2I0ikO3WptG8Hwe8TgtbM08D7wFZ3/7DW0UpaUctCUsnvgdPM7HvuXkGQAB42sw4AZtbJzPpXcVxTgg/UtWG5IQQti51WA53NLK+G1x4HnA5cy+5WBcAzBC2O/maWbWaNwms8OteyjjVZDRwQpcwEgq6kH4Un4n8I9AT+E1Hmx2bWM2wljQZeCru9CJNDBfBb1KqQCEoWkjLcfS3wd3afxL6N4IT3R2a2CXgLOKSK42YTfPh9SPCB+13gg4gibwOzgFVmtq7y8eFzrAyPP56gq2bn9qXAQOD/ESSjpcAt1Py/9e9K11n8M0rVd/pfYFA4UuoPVRVw9/XA2cBNwHrgVuBsd4+s19PAWIIur0bALyo9zd8JfkfPxBiXZADTzY9EMoeZFQLPuPuTNZT5CTDU3U9ssMAk6allISK7hF1Tw4DHEx2LJBclCxEBIDzfs5agq+4fUYpLhlE3lIiIRKWWhYiIRKVkISIiUaXNRXnt2rXzrl271vr4LVu20LRp0/oLKEHSpR6guiSrdKlLutQD6laXadOmrXP3qHOZpU2y6Nq1K1OnTq318YWFhfTp06f+AkqQdKkHqC7JKl3qki71gLrVxcwqTw9TJXVDiYhIVEoWIiISlZKFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCEiIlGlzUV5tbV69Q7+8Ic1LF2az+GHl9GmTcb/SkREviXjPxknTNjEPfesBvL5+OO5vPvuwRQU5CY6LBGRpJLx3VBDhrTl3nv3BWDevO0MHLiAkpKKBEclIpJcMj5ZrF27g5NPbsZRR5UB8PHHW7nhhmUJjkpEJLlkfLJo2TKbUaNWMn160CN3yCH53HhjhwRHJSKSXDI+WeTlZfHCC93o0qWc009vzkcfHUL37o0SHZaISFLJ+BPcAK1a5fDww1sZOLA3OTmW6HBERJJOxrcsdmrb1pUoRESqoWQRg4oKZ/t2jZASkcylZBHFli3lXHzxIi6/fAnunuhwREQSQucsarB8eSnnnruA6dO3AXDooY24666OCY5KRKThqWVRgyFDluxKFACjRq3kpZe+TmBEIiKJoWRRg0cf3Y927XY3vr773UYcfXSTBEYkIpIYShY1OOCAfF555QByc41zzmnJBx8cwv775yc6LBGRBqdzFlGcdFIzPvjgYI46qgnZ2RpaKyKZSckiBkcf3TTRIYiIJJS6oeqookLDaUUk/SlZ1ME335QzYEARTz65LtGhiIjElbqhaumrr0o566wiZs4sYdKkzey/fx6nndYi0WGJiMSFWha1sGOH07fvfGbOLAGgvBwGDVrIzJnbohwpIpKa4poszOwMM5trZkVmNqKK/Seb2XQzKzOzQZX27Wdmb5jZHDObbWZd4xnr3sjNNR58sBMWMTiqR49GtG+vhpqIpKe4JQszywYeAQYAPYFLzKxnpWJfAVcA/6jiKf4OPOjuhwLHAGviFWttnH9+Kx58sBMAF17YismTde9uEUlf8fwqfAxQ5O4LAcxsHDAQmL2zgLsvDvftMaVrmFRy3P3NsFxxHOOstRtv7MABB+QzcGBLsrJ0DYaIpK94dkN1ApZGrC8Lt8XiYGCjmb1iZjPM7MGwpZJUzIzzz2+lRCEiaS9ZO9lzgJOAIwm6qp4n6K76a2QhMxsKDAUoKCigsLCw1i9YXFxcp+Or4s4e5zUaQjzqkSiqS3JKl7qkSz2ggeri7nF5AMcBEyPWRwIjqyk7FhgUsX4s8E7E+mXAIzW9Xq9evbwuJk+eXKfjK1u3boefeupc/89/Ntbr80ZT3/VIJNUlOaVLXdKlHu51qwsw1WP4TI9nN9QUoLuZdTOzPGAw8OpeHNvKzNqH632JONeR7IqKSjjuuLlMnlzMD3+4iE8/3ZrokERE6iRuycLdy4DhwERgDvCCu88ys9Fmdi6AmR1tZsuAi4DHzGxWeGw5cDMwycy+AAx4Il6x1qfNm8s54YR5zJ+/HYAtWyo466wFLFtWmuDIRERqL67nLNx9AjCh0rY7I5anAJ2rOfZN4PB4xhcPzZtnc8cd+3Dddct2bTvkkHyaN0+68/MiIjHTFdxxMHx4B66/vgMAl1zSmtdeO4iWLZUsRCR1JetoqJT30EOdOPLIxvz4x200tFZEUp6SRZxkZxs/+UnbRIchIlIv1A2VIOXlug+GiKQOJYsEWLVqB8ceO5eXX/460aGIiMREyaKBzZ0bXIMxdepWLr10Me+/n5TTXomI7EHJogEVF5dzyinzWLw4uOZi+3bn3HMXMG9eSYIjExGpmZJFA2rWLJt7791zLsXjjmvKvvtqanMRSW5KFg1syJC2/OpXHQG46qq2/OtfB9Ksma7BEJHkpqGzCXDHHftw5JGNOfvsllhDT0srIlILShYJYGacc06rRIchIhIzdUMloeLi8p1Ts4uIJAUliySzZMl2evf+kgcfXJ3oUEREdlGySCKzZm3jhBPmMXfudm67bQVjxqxLdEgiIoCSRdLYscM5++wFLF++Y9e2q6/+inff3ZzAqEREAkoWSSI313jqqf3Jz989OurCC1vx/e83TWBUIiIBJYsk0qdPc557rhtZWTBsWDuee64b+fl6i0Qk8TR0Nsmcf34rpkzpwZFHNtY1GCKSNJQsktBRRzVJdAgiIntQH0eKWbVqB5s2lSc6DBHJMEoWKaSoqITjj5/LeectoKSkItHhiEgGUbJIETNmbOWEE+axaFEpkycX86MfLaKsTFd5i0jDULJIESNGLGfNmrJd6//85zc8/rgu2hORhqFkkSL+8Y9uHHpoo13rV1zRhqFD2yUwIhHJJEoWKaJt2xzeeOMg9t8/j1/8oj1//ev+5ORoaK2INAwNnU0hnTvnMW1aD9q0ydY1GCLSoOLasjCzM8xsrpkVmdmIKvafbGbTzazMzAZVsb+FmS0zsz/FM85U0rZtjhKFiDS4uCULM8sGHgEGAD2BS8ysZ6ViXwFXAP+o5ml+DbwbrxjTzaJF23nvPTUWRaT+xfOT5RigyN0XApjZOGAgMHtnAXdfHO771kUDZtYLKABeB3rHMc60MHv2Nk47rYhVqxrzve9t5NxzdSc+Eak/8eyG6gQsjVhfFm6LysyygN8CN8chrrQzffpWTjllPitW7KCiwrj44kVMmrQp0WGJSBpJ1j6LYcAEd19WU/+8mQ0FhgIUFBRQWFhY6xcsLi6u0/GJVFiYw/r1jYHgd7V9u/Pww7PJzi5JbGB1lMrvSWWqS/JJl3pAA9XF3ePyAI4DJkasjwRGVlN2LDAoYv1ZgvMZi4F1wCbgvpper1evXl4XkydPrtPxifbEE2sdpjlM82uuWeLl5RWJDqnOUv09iaS6JJ90qYd73eoCTPUYPtPj2bKYAnQ3s27AcmAw8KNYDnT3S3cum9kVQG93/9ZoKtntpz9tx+bN5XzyyUL+/OcuGjElIvUqbucs3L0MGA5MBOYAL7j7LDMbbWbnApjZ0Wa2DLgIeMzMZsUrnkxwww0F/Oxn25UoRKTexfWchbtPACZU2nZnxPIUoHOU5xhL0E0ldeTuSiQiUiua7iNDzJmzjZNOmsfSpaWJDkVEUpCSRQb44ott9Okznw8+2ELfvvNZsUIJQ0T2jpJFmisqKuHUU+ftmt68qGg7/frN5+uvy6IcKSKym5JFmuvaNZ++fZvvse2UU5rTsmV2giISkVSkZJHmcnKMZ5/txsCBLQG47rr2/OUvXcjK0oluEYldsl7BLfUoN9d4/vluPPvsBoYMaasRUSKy15QsMkR+fhZXXqk764lI7agbSgD48ssSiovLEx2GiCQpJQvhiy+CazDOPHOBEoaIVEnJIsPNnLmNvn3ns25dGe+9V8yAAUVKGCLyLUoWGe6225azbt3uay7ef38LTz21PoERiUgyUrLIcM8+25XevZvsWv/FL9ozfHj7BEYkIslIo6EyXKtWObz55kGcdloRxx3XlN//vrOG1orItyhZCK1a5VBY2J0mTbKUKESkSkoWAkDTppr+Q0Sqp3MWEtVnn23l3HMXsGmTRkmJZColC6nRZ59tpV+/+fz7399wxhlFShgiGUrJQqo1e/Y2+vWbz/r1QYL48MMtnHbafLZtq0hwZCLS0JQspFqdOuXRvXujPbadempzGjXSSXCRTKNkIdVq2TKbiRMP4thjmwLBNRj33ruvRkyJZCCNhpIatWiRzRtvHMSTT67j+us7KFGIZCglC4mqefNsbrihINFhiEgCqRtK6mzKlC3Mn1+S6DBEJI6iJgszO8fMlFSkSjNmbOX004s4+eR5zJ69LdHhiEicxJIEfgjMN7MHzKxHvAOS1DFr1jZOO20+GzeWs2pVGaecMp9PP92a6LBEJA6iJgt3/zFwJLAAGGtmH5rZUDNrHvfoJKmNHbt+1zUYAOvWlTFhwqYERiQi8RJT95K7bwJeAsYBHYHzgelmdl0cY5Mkd//9nbj22t339b7ppg6MHKkT4SLpKOpoKDM7FxgCHAT8HTjG3deYWRNgNvDHGo49A/hfIBt40t3vq7T/ZOD3wOHAYHd/Kdx+BPAXoAVQDvzG3Z/f++pJPGVlGY880oXGjbPYvt158MFOGlorkqZiGTp7IfCwu78budHdt5rZVdUdZGbZwCPAacAyYIqZverusyOKfQVcAdxc6fCtwE/cfb6Z7QtMM7OJ7r4xhnilAZkZDz3UadeyiKSnqMnC3S83s33CFoYDU9x9VbhvUg2HHgMUuftCADMbBwwkaI3sfO7F4b49Jhty93kRyyvMbA3QHlCySELRksTKlTvo2DG3gaIRkXiIZejsVcAnwAXAIOAjM7syhufuBCyNWF8WbtsrZnYMkEdwgl1SzMcfb+Hgg2dx//2rEh2KiNSBuXvNBczmAse7+/pwvS3wX3c/JMpxg4Az3P2n4fplwPfdfXgVZccC/9l5ziJie0egELjc3T+q4rihwFCAgoKCXuPGjauxLjUpLi6mWbNmtT4+WSRTPRYuzOL665uyeXPQ8rjkku1cffV2Yu2tSqa61JXqknzSpR5Qt7qceuqp09y9d9SC7l7jA/gvkBexnkeQLKIddxwwMWJ9JDCymrJjgUGVtrUAplfeXt2jV69eXheTJ0+u0/HJIlnqUVpa4d26feEwbY/Hm29+E/NzJEtd6oPqknzSpR7udasLMNVj+IyNZehsEfCxmY0ys7uAj4B5Znajmd1Yw3FTgO5m1s3M8oDBwKsxvB5h+X8Cf/dKrQ1JDbm5xlNP7U/z5rv/xO68cx9+8IMWCYxKRGorlmSxAPg/gpPbAP8CFgHNw0eV3L0MGA5MBOYAL7j7LDMbHZ4sx8yONrNlwEXAY2Y2Kzz8YuBk4Aoz+zR8HLH31ZNEOuWU5rz9dnfats3muuvaM2pUx0SHJCK1FMtoqF8BmFmzcL041id39wnAhErb7oxYngJ0ruK4Z4BnYn0dSV69ezdlxoxD6dQpV0NrRVJYLKOhDjOzGcAsYJaZTTOz78Q/NEkXXbrkkZVVfaIoK6t5kIWIJF4s3VCPAze6+/7uvj9wE/BEfMOSTDF58mZ69pzNl19qinORZBZLsmjq7pN3rrh7IdA0bhFJxpgxYysDBy5g/vztnHDCXD76aEuiQxKRasSSLBaa2R1m1jV8/BJYGO/AJL0tX17KgAFFbN4cXLy/YUM5P/jBfFau3JHgyESkKrEkiysJptp4BXgZaBduE6m1goJczj235R7b7rqro6YFEUlSNY6GCicDvN3df9FA8UiGyMkxHntsP/bZJ5df/3oVN97YgZtv7pDosESkGjUmC3cvN7MTGyoYySxmxujR+3LSSc3o16+5htaKJLFYpiifYWavAi8Cu85AuvsrcYtKMsppp9V8Vbe7K5GIJFgs5ywaAeuBvsA54ePseAYlstOECd9wxhlFbNxYluhQRDJaLC2LJ939g8gNZnZCnOIR2WX27GxuuWURW7dWcOKJ8xg//kD23z8/0WGJZKRYWhZV3Ta12lupitSHuXNLGDmyMVu3BkNrZ80q4aST5u1aF5GGVW3LwsyOA44H2leaXbYFwT21ReKmbdscunSpYNas3d9n7rijI02axPL9RkTqW03/eXlAM4KE0jzisYngjnkicdOuXQ6//e1WBg1qBcDIkQVcfXW7BEclkrmqbVm4+zvAO2Y21t2XNGBMIgDk58Pzz3fjuee+5pJLWic6HJGMFssJ7nwzexzoGlne3fvGKyiRnbKyjEsvbVNjmYoKr3FWWxGpu1iSxYvAo8CTQHl8wxHZO+PGbeDRR9fxyisH0KZNLH/OIlIbsfx3lbn7X+IeicheevfdzVx++RJKS53jj5/L+PEHceCBGlorEg+xDC35t5kNM7OOZtZm5yPukYnUYO7cEs47byGlpR6ub6dPn3mUlGhorUg8xNKyuDz8eUvENgcOqP9wRGLToUMOhx/emHfe2X2X3wcf7ESjRhpaKxIPUf+z3L1bFQ8lCkmo1q1zmDjxIC69NBglNWpURwYPVoNXJF6itizMrAlwI7Cfuw81s+7AIe7+n7hHJ1KD/Pwsnn66K+ef34oLLmiV6HBE0losbfangFKCq7kBlgN3xy0ikb1gZlx4YesaZ6XVJIQidRdLsjjQ3R8AdgC4+1ZAg9olJTz66Fp69pzDlCm6v7dIXcSSLErNrDHBSW3M7EBge1yjEqkHb721ieHDl7Jy5Q5OPnkeL774daJDEklZsSSLu4DXgS5m9iwwCbg1rlGJ1NGSJdu56KJFlIeXkZaUOFdeuYS1a3ckNjCRFBXLaKg3gQuAK4DngN7uXhjfsETqpnPnPK6+uu2udTN4+umutG+fm8CoRFJXTIPS3X29u4939/+4+7pYn9zMzjCzuWZWZGYjqth/splNN7MyMxtUad/lZjY/fFxe+ViRmmRnGw880JkxY/YnN9e49959Oe88jZgSqa24TaZjZtnAI8BpwDJgipm96u6zI4p9RdBiubnSsW0Iur96E5wrmRYeq05n2StDhrTl2GOb0KNHo0SHIpLS4nm56zFAkbsvdPdSYBwwMLKAuy9298+BynM09AfedPcNYYJ4EzgjjrFKGjv00MbVDq11d15//RvcvYGjEkktMSULMzvRzIaEy+3NrFsMh3UClkasLwu3xaIux4rE7KGH1jBgwAJ++tOv2L5d80qJVCeWK7h3dgcdQnCBXi7wDHBCfEOLzsyGAkMBCgoKKCwsrPVzFRcX1+n4ZJEu9YD41+WTT7IZMaIJYIwZs56PPlrN6NHbaNu2/lsZel+ST7rUAxqmLrGcszgfOBKYDuDuK8yseQzHLQe6RKx3DrfFYjnQp9KxhZULufvjwOMAvXv39j59+lQuErPCwkLqcnyySJd6QHzrUlpaweWXzyboIQ2sWJHP4YcfTvfu9X9+Q+9L8kmXekDD1CWmi/I86NDdeVFe0xifewrQ3cy6mVkeMBh4NcZjJwKnm1lrM2sNnB5uE6kXeXlZvP76gRx0UHD/i6wsGDeuW1wShUg6iCVZvGBmjwGtzOxq4C3giWgHuXsZMJzgQ34O8IK7zzKz0WZ2LoCZHW1my4CLgMfMbFZ47Abg1wQJZwowOtwmUm8OPbQxn3xyCP37t+D++zvRv3+LRIckkrSidkO5+0NmdhqwieC8xZ3hhXpRufsEYEKlbXdGLE8h6GKq6tgxwJhYXkektlq3zmH8+APJ0m0wRGoU9V/EzG4EZrv7Le5+c6yJQiRVZGdbtUNrKyqcIUMW8/bbmxs4KpHkEsv3qebAG2b2npkNN7OCeAclkizuvnsVY8du4LTT5vPAA6t0PYZkrFjmhvqVu38H+DnQEXjHzN6Ke2QiCfbaa98watRKACoq4LbbVnDXXSsTHJVIYuxNT+0aYBWwHugQn3BEksfs2SV7rLdvn8PVV7dLUDQiiRXLOYthZlZIMDV5W+Bqdz883oGJJNpNNxUwfvyBtG6dvWtobZcueYkOSyQhYrkorwtwvbt/Gu9gRJLNgAEtmTatB++9V0zfvrFciyqSnqpNFmbWwt03AQ+G620i9+u6B8kU3brl061bfrX7N24so7TU6dBB98qQ9FVTN9Q/wp/TgKnhz2kR6yIZr7zc+dGPFtO795dMnar7fEv6qrZl4e5nhz9jmWFWJCONGrWS117bBMCJJ87j0Uf344or2kY5SiT1xHKCe1Is20QyTWHhZu6+e9Wu9e3bnUcfXUtZma7FkPRTbbIws0bheYp24YR+bcJHV3RvCRFOPLEZN9ywexR5QUEOL798ADk5VV8NLpLKahoN9TPgemBfgvMUO/8DNgF/inNcIkkvJ8f43e8606tXE4YN+4oXXzyATp00tFbSU03nLP4X+F8zu87d/9iAMYmklEsvbcNZZ7WgVau43dJeJOFimXX2j2Z2GNATaBSx/e/xDEwkldSUKNatK2PMmHyOP76CvDxNbyupKZYT3HcBfwwfpwIPAOfGOS6RtFBW5lxyySKefjqffv3ms3r1jkSHJFIrsXzNGQT0A1a5+xDge0DLuEYlkiZuv30Fb70VTG/+/vtbOProL1mwYHuCoxLZe7Eki23uXgGUmVkLggkFu0Q5RiTjbdpUzgsvfL3Hts6d8+jcWVd6S+qJJVlMNbNWBLdSnQZMBz6Ma1QiaaBFi2ymTu1Bv37BnFKdOuXyyisHkJ+v8xaSemI5wT0sXHzUzF4HWrj75/ENSyQ9tG2bw+uvH8SPf/wRN998CPvso1aFpKaaJhI8qqZ97j49PiGJpJecHOOaa7bTu3fTasuUlzvZ2bqYT5JXTS2L39awz4G+9RyLSEZavXoH/frN55579uXcc1slOhyRKtV0Ud6pDRmISCbascP54Q8XMWtWCQMHLuTOO/fhrrs6kpWlVoYkl1ius2hiZr80s8fD9e5mdnb8QxNJf7feupx33inetT569CrGjFmfwIhEqhbLsIyngFLg+HB9OXB33CISySBdu+aRnb17vW/f5priXJJSLMniQHd/ANgB4O5b2T2poIjUwf/8TwcmTepOhw457LdfHuPGddWstZKUYpn5rNTMGhOc1MbMDgR0CapIPTnllOZMm9aDDRvKaN9eQ2slOcWSLO4CXge6mNmzwAnAFfEMSiTTBFd2Vz+9+YwZW+nUKVf3+ZaEqbEbyswM+BK4gCBBPAf0dvfCWJ7czM4ws7lmVmRmI6rYn29mz4f7Pw5vrISZ5ZrZ38zsCzObY2Yj96pWImlk5codnHlmEb17f8mUKbrPtyRGjcnC3R2Y4O7r3X28u//H3dfF8sRmlg08AgwgmN78EjPrWanYVcDX7n4Q8DBwf7j9IiDf3b8L9AJ+tjORiGSS0tIKBg1ayKpVZSxduoOTTprHmDEx/QuK1KtYTnBPN7Oja/HcxwBF7r7Q3UuBccDASmUGAn8Ll18C+oWtGQeamlkO0JhgNNamWsQgktL+8pd1/Pe/u1sT27c78+frlKE0vFiSxfeBD81sgZl9HnYNxTI3VCdgacT6Mr597+5dZdy9DPgGaEuQOLYAK4GvgIfcfUMMrymSVoYNa8/11+++z/fppzfn7rv3TWBEkqliOcHdP+5RfNsxQDnB/b9bA++Z2VvuvjCykJkNBYYCFBQUUFhYWOsXLC4urtPxySJd6gGqy04DB0LTpjk880w+w4at4L33ltdvcHspXd6XdKkHNFBd3D0uD+A4YGLE+khgZKUyE4HjwuUcYB3BNRyPAJcdVfQgAAAUVklEQVRFlBsDXFzT6/Xq1cvrYvLkyXU6PlmkSz3cVZfKduyoqHsg9SBd3pd0qYd73eoCTPUYPtPjObH+FKC7mXUzszxgMPBqpTKvApeHy4OAt8PgvyKcqNDMmgLHEozKEslYNV2s9847mxkyZDFbt1Y0YESSSWLphqoVdy8zs+EErYdsYIy7zzKz0QSZ7FXgr8DTZlYEbCBIKBC0LJ4ys1kELY2nXPfQEKnSsmWlXHzxItasKePTT7fxyisH0K1bfqLDkjQTt2QB4O4TgAmVtt0ZsVxCMEy28nHFVW0XkT1t317BhRcuZM2aMgA+/XQbRx/9JUVF36FVq7j+e0uG0f0dRVLY2rVlbNpUvse2//mfDkoUUu+ULERSWOfOeXzySQ8uuCC4aVL//i24/fZ9EhyVpCN9/RBJcc2bZ/PSS9149NF1XHRRa904SeJCLQuRNGBmXHtte9q1q/7737vvbqaiwhswKkknShYiGWDixE306TOfs89ewPr1ZYkOR1KQkoVImlu6tJRLL12EO7z22iaOPHIOn3yi2Wtl7yhZiKS5n/98KevX7x4xtWLFDkpL1R0le0fJQiTN/fnPXTjuuKa71keP3pcTT2yWwIgkFWk0lEia69w5j3feOZgRI5Yzc+Y2RowoSHRIkoKULEQyQG6u8dvfdmbHDq92aG1ZmWMG2dkaeivfpm4okQySm1t9Irj99hX071/EqlU7GjAiSRVKFiLC669/wwMPrGbSpM0cccQc3npLN6aUPSlZiGS4FStKueyyJbvWV68u48orl1BSounOZTclC5EMZ2Z85zuNdq1nZcEzz3SlUSN9PMhu+msQyXAdO+YyaVJ37rprH8xg9OiOnHxy80SHJUlGo6FEhOxsY9SofTn77JYceWSTRIcjSUgtCxHZpXfvptUOnS0treCSSxYxd64+NjKRWhYiEpM77ljJuHFf89JLTdm0aTU33dRB06FnEH1FEJGoJk3axAMPrAagrMy49dbl3HPPqgRHJQ1JyUJEopo8uXiP9c6dcxk2rH2CopFEULIQkajuvntfXn65G61bZ2PmPPNMV9q0US92JlGyEJGYXHBBaz7//FBuvbWEU07R0NpMo2QhIjHr3DmPM86ofu6ouXNLuPvulZSV6X4Z6UbJQkTqxY4dzmWXLeaOO1ZywglzmTevJNEhST1SshCRenHPPauYMmUrAJ98spUjjpjD3LlKGOlCyUJE6mzLlnKeeGLdHtv692/BwQfnJygiqW9xTRZmdoaZzTWzIjMbUcX+fDN7Ptz/sZl1jdh3uJl9aGazzOwLM2tU+XgRSQ5Nm2YzY0YPzjuvJQAdOuTw+OP7YaaL9tJF3Ma+mVk28AhwGrAMmGJmr7r77IhiVwFfu/tBZjYYuB/4oZnlAM8Al7n7Z2bWFtAdWUSSWPv2ubzyygH87W8b6NAhh/btcxMdktSjeA6UPgYocveFAGY2DhgIRCaLgcCocPkl4E8WfBU5Hfjc3T8DcPf1cYxTROqJmXHFFW1rLPPssxto3TqbM89s2UBRSX2IZzdUJ2BpxPqycFuVZdy9DPgGaAscDLiZTTSz6WZ2axzjFJEGsnjxdq655ivOOmsBQ4YsZuPGskSHJDFK1kswc4ATgaOBrcAkM5vm7pMiC5nZUGAoQEFBAYWFhbV+weLi4jodnyzSpR6guiSr2talogJuvrkJxcXBx87YsRt4++21jBmzhezseg4yBnpP9k48k8VyoEvEeudwW1VlloXnKVoC6wlaIe+6+zoAM5sAHAXskSzc/XHgcYDevXt7nz59ah1sYWEhdTk+WaRLPUB1SVa1rcvHH2/hs8/m7rHt//2/rvTrl5g5pvSe7J14dkNNAbqbWTczywMGA69WKvMqcHm4PAh4290dmAh818yahEnkFPY81yEiKeb732/KRx8dQs+ewcDGH/ygOUOHtktwVBKruLUs3L3MzIYTfPBnA2PcfZaZjQamuvurwF+Bp82sCNhAkFBw96/N7HcECceBCe4+Pl6xikjDOPropkyf3oPf/GYVV13VVkNrU0hcz1m4+wRgQqVtd0YslwAXVXPsMwTDZ0UkjeTnZzF69L41lvnFL5ZyxhktNGIqiegKbhFJKi+++DV//ONazjprAZddtph16zRiKhkk62goEclAa9bsYNiw3SPun3lmA5s2lfOvfx2YwKgE1LIQkSTy9tub2bBhd0siL8+4776au6ykYShZiEjSGDy4DR9/fAiHH94YgF/+ch8OPbRxgqMSUDeUiCSZ3r2bMnVqD558ch1XXVX91CElJRU0aqTvuw1Fv2kRSTq5uca117YnL6/qj6iNG8vo0WM2d965gu3bKxo4usykZCEiKWfEiBUsWVLKr3+9iiOOmMM772xOdEhpT8lCRFLKu+9u5rHHdt9o6csvt/Pee8UJjCgzKFmISErZts3ZZ5/dp1sPOSSfW24pSGBEmUHJQkRSSv/+LZgzpydXX90WM/jzn/cjP18fZfGm37CIpJxWrXJ4/PH9+fLLnvTt27zacs8/v4HNm8sbMLL0pWQhIinr4IMbVbvv/feLGTx4MT17zuaVV74mmNBaakvJQkTSzo4dzrXXfgXAsmU7uPDCRdxyS+Xb6cjeULIQkbTz2GNrmTmzZI9tF1zQKkHRpAclCxFJO0OGtOW22wrICQdNXXZZG44/vllig0pxShYiknaaNs3mvvs6MWPGoQwY0IL77+9UbdmSEl0BHgslCxFJW4cd1pgJEw6iY8fcKveXlFRwxBFz+MUvlvL117pvRk2ULEQkY/3ud2uYO3c7f/zjWg4+eDZPPbU+0SElLSULEclIa9YYv/nNql3r69aVMXXqlgRGlNyULEQkI61bl0VBwe5pQ9q2zebXv9aNlqqjZCEiGalnz3JmzerJ6NEdadzYuOeeTrRpo1v8VEe/GRHJWI0bZ3HHHR0ZMqRttSfBAX71q5W0b5/D0KHtyMmxBowweahlISIZr3PnPLKzq04Cc+eWcPfdK/n5z5fyve/N4fXXv2ng6JKDkoWISA1uuWU5ZeGo2tmzS7j22qWUlmbetRlKFiIi1fjqq1ImTdrzLnz339+p2tu9prPMq7GISIz22y+PefN6cvnlbQA44YSmXHRRZs4xpRPcIiI16NQpj7Fju3LddR3IzQWzqs9tvPvuZj76aAvXXdeBxo3T73t4XGtkZmeY2VwzKzKzEVXszzez58P9H5tZ10r79zOzYjO7OZ5xiohE06tXEw4/vEmV+9ydm25azm23reDgg2cxZsw6ysvT6/4ZcUsWZpYNPAIMAHoCl5hZz0rFrgK+dveDgIeB+yvt/x3wWrxiFBGpDy+9tJGpU7cCwf0zrrrqK2bM2JrgqOpXPFsWxwBF7r7Q3UuBccDASmUGAn8Ll18C+lnYxjOz84BFwKw4xigiUmcPPLB6j/ULL2xF795NExRNfMQzWXQClkasLwu3VVnG3cuAb4C2ZtYMuA34VRzjExGpF6+/fhA33dSBvDwjOxt+85v0mzYkWU9wjwIedvfi6k4mAZjZUGAoQEFBAYWFhbV+weLi4jodnyzSpR6guiSrdKlLfdfj7LOhd2/js89yWLnyI1au/HaZkhJ44IHGDBpUSs+e5fX22g3ynrh7XB7AccDEiPWRwMhKZSYCx4XLOcA6wID3gMXhYyOwARhe0+v16tXL62Ly5Ml1Oj5ZpEs93FWXZJUudUlEPR54YJXDNIdpfvbZ833GjC318rx1qQsw1WP4TI9ny2IK0N3MugHLgcHAjyqVeRW4HPgQGAS8HQZ/0s4CZjYKKHb3P8UxVhGRuNq8uZz77989Jfp//rOJww5rzBFHVD3CKtnELVm4e5mZDSdoPWQDY9x9lpmNJshkrwJ/BZ42syKC1sPgeMUjIpJIL7+8kfXrd3c9tWiRxS23FCQwor0T13MW7j4BmFBp250RyyXARVGeY1RcghMRaUBXXNGW/fbL45e/XMGHH27hhhs6VDsl+o4dTm5ucs1um36XGYqIJKm+fZvzwQcHM378gdxwQ/WtiquvXkL//vN5//3iBoyuZsk6GkpEJC2ZGWee2bLa/QsXbueZZzZQXg5vvLGZU09txksvHZDwGzOpZSEikkTuvXcV5RGjateuLaN16+zEBRRSshARSRIVFc7ixaV7bLv11oJqJy9sSEoWIiJJIivLePPN7hQWdqdfv+bst18egwe3qbKsu/OXv6xl48ayhomtQV5FRERidsopzXnrre5Mm9aj2lFREyZsYtiwpey330z+8Y+8uMekZCEikqTatav+pPbOyQs3b67AG2A2dCULEZEU89FHW3j33WBYbfPmWQwcWBrliLpTshARSTE9euRzzz370qFDDtdc045mzeL/mkoWIiIpplWrHEaO3IclSw7j9ts7Nshr6qI8EZEU1ahRFo0aNcxrqWUhIiJRKVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUZk3xHSFDcDM1gJL6vAU7YB19RROIqVLPUB1SVbpUpd0qQfUrS77u3v7aIXSJlnUlZlNdffeiY6jrtKlHqC6JKt0qUu61AMapi7qhhIRkaiULEREJColi90eT3QA9SRd6gGqS7JKl7qkSz2gAeqicxYiIhKVWhYiIhJVxicLMzvDzOaaWZGZjUh0PLEws8Vm9oWZfWpmU8NtbczsTTObH/5sHW43M/tDWL/PzeyoBMc+xszWmNnMiG17HbuZXR6Wn29mlydJPUaZ2fLwffnUzM6M2DcyrMdcM+sfsT3hf39m1sXMJpvZbDObZWb/E25Pqfelhnqk3PtiZo3M7BMz+yysy6/C7d3M7OMwrufNLC/cnh+uF4X7u0ar415z94x9ANnAAuAAIA/4DOiZ6LhiiHsx0K7StgeAEeHyCOD+cPlM4DXAgGOBjxMc+8nAUcDM2sYOtAEWhj9bh8utk6Aeo4CbqyjbM/zbyge6hX9z2cny9wd0BI4Kl5sD88KYU+p9qaEeKfe+hL/bZuFyLvBx+Lt+ARgcbn8UuDZcHgY8Gi4PBp6vqY61iSnTWxbHAEXuvtDdS4FxwMAEx1RbA4G/hct/A86L2P53D3wEtDKzhrlpbxXc/V1gQ6XNext7f+BNd9/g7l8DbwJnxD/63aqpR3UGAuPcfbu7LwKKCP72kuLvz91Xuvv0cHkzMAfoRIq9LzXUozpJ+76Ev9vicDU3fDjQF3gp3F75Pdn5Xr0E9DMzo/o67rVMTxadgKUR68uo+Y8rWTjwhplNM7Oh4bYCd18ZLq8CCsLlVKjj3saezHUaHnbNjNnZbUMK1SPsvjiS4Jtsyr4vleoBKfi+mFm2mX0KrCFIvAuAje5eVkVcu2IO938DtKUe65LpySJVnejuRwEDgJ+b2cmROz1of6bkMLdUjh34C3AgcASwEvhtYsPZO2bWDHgZuN7dN0XuS6X3pYp6pOT74u7l7n4E0JmgNdAjkfFkerJYDnSJWO8cbktq7r48/LkG+CfBH9Lqnd1L4c81YfFUqOPexp6UdXL31eE/eAXwBLub+0lfDzPLJfiAfdbdXwk3p9z7UlU9Uvl9AXD3jcBk4DiCLr+cKuLaFXO4vyWwnnqsS6YniylA93CEQR7BiaFXExxTjcysqZk137kMnA7MJIh75+iTy4F/hcuvAj8JR7AcC3wT0bWQLPY29onA6WbWOuxSOD3cllCVzgWdT/C+QFCPweGIlW5Ad+ATkuTvL+zb/iswx91/F7Erpd6X6uqRiu+LmbU3s1bhcmPgNIJzMJOBQWGxyu/JzvdqEPB22Bqsro57ryHP8Cfjg2BkxzyC/sDbEx1PDPEeQDC64TNg1s6YCfonJwHzgbeANr57VMUjYf2+AHonOP7nCLoCdhD0n15Vm9iBKwlO1hUBQ5KkHk+HcX4e/pN2jCh/e1iPucCAZPr7A04k6GL6HPg0fJyZau9LDfVIufcFOByYEcY8E7gz3H4AwYd9EfAikB9ubxSuF4X7D4hWx7196ApuERGJKtO7oUREJAZKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWktHMrJWZDYtY39fMXqrpmHp87a5m9qOGeC2RulKykEzXimDGTgDcfYW7D6qhfH3qCihZSEpQspBMdx9wYHifgwfDb/szAczsCjP7Pwvu5bDYzIab2Y1mNsPMPjKzNmG5A83s9XBix/fM7Ftz+JjZKbb7fgozwqvw7wNOCrfdEE4c96CZTQknvftZeGwfM3vXzMaH9yR41MyywvJjzWymBfc3uaEBf2+SYXKiFxFJayOAwzyYsG3nbKWRDiOYvbQRwdWxt7n7kWb2MPAT4PcE9z++xt3nm9n3gT8TTCUd6Wbg5+7+QTjRXUn42je7+9nhaw8lmDrjaDPLBz4wszfC448huDfBEuB14AJgEdDJ3Q8Lj29VH78QkaooWYjUbLIH90bYbGbfAP8Ot38BHB5+8B8PvBhMTQQEN5qp7APgd2b2LPCKuy+LKL/T6eFz7uwGa0kwl08p8Im7LwQws+cIpraYBBxgZn8ExgNvVH5CkfqiZCFSs+0RyxUR6xUE/z9ZBPcYOKKmJ3H3+8xsPMGcQx9Y1be3NOA6d99j8j0z68O3pwd3d//azL5HcNOha4CLCeZmEql3OmchmW4zwS04a8WD+yUsMrOLYNf9qb9XuZyZHejuX7j7/QSzmvao4rUnAteG02xjZgeHMwsDHBPOgpoF/BB438zaAVnu/jLwS4LbvIrEhZKFZDR3X0/wTX+mmT1Yy6e5FLjKzHbOBFzVLTivD1/jc4KZal8jmFG03Mw+C09OPwnMBqaHJ9kfY3frfwrwJ4JpqhcR3MekE1Bowd3UngFG1jJ+kag066xIkgu7oXadCBdJBLUsREQkKrUsREQkKrUsREQkKiULERGJSslCRESiUrIQEZGolCxERCQqJQsREYnq/wP05kqxKaiiBAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl81fWd7/HX55zsC4EkENYIsiaAIAKiVEXFGVqnWq06WKtt1XFar3emduqt7bVOhzvTmbYzvaNTq+NMN3vboq0dpS21Y1VcUGTRIJAAIiIEkGws2bfzvX+cGHOyb7/zOyd5Px8PHg/O9/c9v/PhR5J3vr/l+zXnHCIiIgABvwsQEZHYoVAQEZF2CgUREWmnUBARkXYKBRERaadQEBGRdgoFERFpp1AQ6Qcz+5SZbTezGjM7bma/N7OPmNk3zKzZzKrb/uw3s++Z2aQO711lZqG2937w5zd+/ntEeqJQEOmDmX0J+Ffgm0AekA98H7i6rcvjzrlMIBu4BpgI7OgYDMAx51xGhz8fj96/QKT/FAoivTCzLGAd8D+cc792ztU655qdc79xzt3TsW9b+x7gz4Fy4G98KFlkSBQKIr27AEgB/qu/b3DOtQJPAxd5VZSIVxQKIr3LASqccy0DfN8xwqeTPjDZzE51+HPD8JUoMnwS/C5AJMZVArlmljDAYJgCVHV4fcw5N3V4SxMZfhopiPTuNaAR+ER/32BmAeDjwMteFSXiFY0URHrhnDttZvcDD5lZC/DfQDOwGrgUqPugr5klALOBbxC+A+m7US9YZIg0UhDpg3PuX4AvAfcRvqvoCHAX8FRblz83sxrgNLCB8Cmn85xzx3woV2RITIvsiIjIBzRSEBGRdgoFERFpp1AQEZF2CgUREWmnUBARkXZx95xCbm6umz59ut9lDEptbS3p6el+lxG3dPyGTsdwaOL5+O3YsaPCOTe+r35xFwrTp09n+/btfpcxKJs2bWLVqlV+lxG3dPyGTsdwaOL5+JnZe/3pp9NHIiLSTqEgIiLtFAoiItIu7q4pdKe5uZnS0lIaGhr8LqVXWVlZlJSU+F3GoKSkpDB16lQSExP9LkVEPDQiQqG0tJTMzEymT5+OmfldTo+qq6vJzMz0u4wBc85RWVlJaWkpM2bM8LscEfHQiDh91NDQQE5OTkwHQjwzM3JycmJ+JCYy3JyD18/A9Xsg/SW4jEtIfwlu2ANbz4S3jzQjYqQA9CsQnIOt1fDPR2BjJdSHIDUAV+bAl6fBskxQrnRPgSujTXMIbtkLGyqgIQQhAIy6EDxZHv4Z8vFceGweJI6IX6/DPPunmNkPzazMzHb3sN3M7EEzO2Bmb5nZEq9qgfB/8KdK4LIi+HU51IXAQft/8GVF4e3NocHtPyMjY1jr9dP06dOpqKjwuwwR3zj3YSDUtQfCh0JAbQiergj3G0kjBi/z7cfAml62f5TwKlWzgTuAh70qZDT9B7e2tvpdgkjc21oNv2n7edGb+lC437bq6NQVDZ6FgnPuJSIXLu/sauAxF7YFGGtmk7yoJZr/wc457rnnHhYsWMDChQt5/PHHAQiFQtx9993MmzePK664go997GP86le/6vL+D56YvO6665g3bx433XQTHyyE9Nxzz3HuueeycOFCbr31VhobG4Hwb/Zf+cpXWLJkCb/85S9ZtWoVd999N0uXLqWgoIBt27Zx7bXXMnv2bO677772z/rEJz7Beeedx/z583n00UcH/48WGWH+5Uj450F/1IfC/UcKP68pTCG8rOEHStvajg92h7ZpiBURHjGc/0b329yqvt//61//mqKiInbu3ElFRQXLli3j4osvZvPmzRw+fJji4mLKysooKCjg1ltv7XYfb775Jnv27GHy5MmsXLmSzZs3s3TpUj772c/y3HPPMWfOHG655RYefvhhvvjFLwKQk5PDG2+EC3/kkUdISkpi+/btPPDAA1x99dXs2LGD7OxsZs6cyd13301OTg4//OEPyc7Opr6+nmXLlvHJT36SnJycwRw2kRHld5Vdzyj0JNTWf6SIiwvNZnYH4VNM5OXlsWnTpojtWVlZVFdXA97e7hn+jN63P//881xzzTXU1dWRlpbGhRdeyEsvvcSLL77I1Vdf3T6h1kUXXUR9fX2XfdbV1XHeeeeRlZVFbW0t8+fPp6SkhEAgQH5+PpMmTaK6uprrr7+e//iP/+C2227DOceVV17Zvq/W1lZWr15NdXU1M2fOZN68eWRkZNDU1MRZZ53F3r17Oeecc/jOd77Db3/7WwCOHDlCUVERy5cvxzlHTU0NycnJEbU1NDR0OfbRVFNT4+vnjwTxfgz3H26KyufUTbtiQHed1LU6Hn3sWQ8rCpuTn+T5Z/gZCkeBaR1eT21r68I59yjwKMDSpUtd5wmpSkpKonL/f1+fkZmZSVJSEikpKe19ExMTSU1NJSkpiUAg0N6ekJBAamoqxcXF/OVf/iUA69atY8yYMaSlpbX3S0lJITExkfT0dILBYHt7WloaCQkJZGZmYmbk5eW1bwsGg4wbN47MzEwyMjIi9peYmEhycjI7duzg5Zdf5vXXXyctLY1Vq1a179/MyMjI6PLvTUlJ4dxzzx2mozlw8TwZWayI92O47s7Dnn9G7ZiEyJ9M/WCtjvVb5nlTUAfP35Lv+Wf4eSPVBuCWtruQVgCnnXODPnUUKy666CIef/xxWltbKS8v56WXXmL58uWsXLmSp59+mlAoxIkTJ9p/Wzv//PMpKiqiqKiIq666qsf9zp07l0OHDnHgwAEAfvrTn3LJJZcMus7Tp08zbtw40tLS2Lt3L1u2bBn0vkRGAgccnZnB9tUTB3ZvesiRc6zes7qizbORgpn9AlgF5JpZKfC3QCKAc+4RYCPwMeAAUAd8bqif2dM5/xv2hG877c85wgBw3Xh4fP7garjmmmt47bXXWLRoEWbGt7/9bSZOnMgnP/lJnnnmGQoLC5k2bRpLliwhKyur3/tNSUnhRz/6Eddffz0tLS0sW7aMz3/+84MrElizZg2PPPIIBQUFzJ07lxUrVgx6XyLxrikpwL5l2VRMSRvwewMhR/7+kXP7kbk4u/9y6dKlrvN6CiUlJRQUFPT4ntfPwOVF4YvIfUkLwAuLYfmYoVba1fHjx5k0aRKVlZUsX76czZs3M3HixOH/II/0dZy9Fu+nPmJBvB/Dyzw4fXRyQjLFy3NoSuvmd+SQg0DPo4ZAS4jco/UUvl5JNB7vfP77gz99ZGY7nHNL++oXFxeah2p5ZvjJw6crer/NLDUAV+WGn2z2wg033EB1dTVNTU18/etfj6tAEBlpQgF4d34Wh+eN6XK6KNgcYvabVVTlpVIxJZVQwCLDIeQIhBy5R+sp2BqdQIiWUREKZuFH0W/ZG34Oob7TA2wBIKUtEB6b591UFxs3bozLCfFERpq6jASKV+RQnZ3cZVtmZSPzt1SSWtvCxEN1VGcncXhOJpWTU3FBw1rD1xDy91Uz5mR07oaKplERChCem+TnBeEH03qc+8iDU0YiEjsc8P70dN4+dxytnScsco6zSs4wfc9pAm1n1Q0YU9XEgi3hBxHWrtgblbuM/DRqQgHCI4DlY+CJQV5EFpH41Zxo7D8vm7L89C7bkutaKHi9knHljT5UFltGVSiIyOh0KjeZ4vNzaEzv+iNvfGkdc7dXkdg0yNkwRxiFgoiMWCGD9wqzOFQwpstdRIGWELOLTjLpYO2IulA8VCNoFvDYc/vtt1NcXDws++rPdNbf/OY3I15feOGFw/LZIvGoPi3Im5fmcWh+VpdAyDjZxNJn32eyAqGLETlSGO57mQd7b/B//ud/DmsdffnmN7/J1772tfbXr776alQ/XyRWnJiWxr7zsmlN6vp777R9Zzh71ykCOlvULY0UhkltbS1XXnklixYtYsGCBTz++OOsWrWKDx60y8jI4L777mP+/PmsXr2arVu3smrVKs4++2w2bNgAwI9//GPuuuuu9n3+2Z/9WbeTl3U35fW9995LfX09ixcv5qabbmr/TOh5Ou/epukWiUctCUbJsmyKL8jtEghJ9a2c82IZs3YqEHozIkcKfnjmmWeYPHkyv/vd74Dw3EIPP/zhukG1tbVcfPHFPPDAA1xzzTXcd999PPvssxQXF/OZz3ym13mPOutuyut/+qd/4nvf+x5FRUVd+vc0nTd0P033Rz7ykSEeDZHoO5OdRPH5OdRnJnbZln2snoJtlSQ1Kg36opHCMFm4cCHPPvssX/nKV3j55Ze7zGuUlJTEFVdc0d73kksuITExkYULF3Lo0KEBfdaDDz7IokWLWLFiBUeOHOHtt9/utf8rr7zCjTfeSDAYJC8vj0suuYRt27YBsHz5cqZOnUogEGDx4sUDrkXEb87gvXljeOOyvC6BEGh1zH6jinNeKVcg9JNGCsNkzpw5vPHGG2zcuJH77ruPyy+/PGJ7YmIi1vaodCAQaF+rIBAI0NLSAoSn0w6FPvzCbWho6PI5mzZt4o9//COvvfZa+5TX3fXrr45rJgSDwfZaROJBY2qQ4uU5nMpL6bIt7XQT87dUknG62YfK4pdGCsPk2LFjpKWl8elPf5p77rmnfRW0gZg+fTpFRUWEQiGOHDnC1q1bu/TpbcrrxMREmpu7fgP0NJ23SDwrn5zK1j+Z2G0gTDlQzdI/nlAgDIJGCsNk165d3HPPPQQCARITE3n44Yf58pe/PKB9rFy5khkzZlBYWEhBQQFLlizp0qe3Ka/vuOMOzjnnHJYsWcLPfvaz9vaepvPeu3fv4P/BIj5pDRoHFo/l2Myu84glNrYyb1sVuSNofYNoGxVTZ8eK6urquJ4Qz+/jHO/TPseCeD+Gy796nD0rcqnL6noxedyJBgperyS5odWzz/d77iNNnS0iAjgHDx6F7asn4oKRj5tZyHH2rlNM21etB9GGgUJBRGLaiSb47F54pgroFAip1c0UbqkckVNY+0WhICIx6/eV4UAo6+Z68cR3a5j95kkSWuLrFHisGzGh4Jxrv+VThl+8XXuS+NbQCvcehAeOdt2W0BRizo4q8o7URb+wUWBEhEJKSgqVlZXk5OQoGDzgnKOyspKUlK63/okMt+Ja+FQx7Kztui2rvIHC1ytJqfPuYvJoNyJCYerUqZSWllJeXu53Kb1qaGiI2x+sKSkpTJ061e8yZARzDh49Dncf6LqWehD42+nw3C/L2ldFE2+MiFBITExkxowZfpfRp02bNnHuuef6XYZIzKlshtv3wVPdzA4/PQV+VgAXZsELCgTPjYhQEJH49fxJuLkEjnVzA9HaCfDIHMjST6qo0aEWEV80h+D+Q/Ctw9B5AJARhIdmw8154bXVJXoUCiISdQfq4FMlsK2667ZlmfDzApiVFv26RBPiiUgUOQc/eR8Wb+8aCAZ8NR82n6tA8JNGCiISFaea4Qtvw/qyrtumJMFPC+DScdGvSyIpFETEc5tPw03F8F5j123X5MJ/zIWcrnPciQ8UCiLimZYQ/MNhWHcIOq97lhqAf50FfzFJF5NjiUJBRDzxXkN4dLD5TNdti9LhF4VQkB79uqR3CgURGXaPl8Ff7oPT3cxGcfdU+MezIVm3ucQkhYKIDJvqFvirA/Dj97tum5AIP5kHa3KiX5f0n0JBRIbFtjPhZw8OdLMS5kez4UfzIC8p+nXJwGgAJyJDEnLhp5IvfLNrICQZPDALfrdQgRAvNFIQkUE72gi3lMDzp7puK0gLX0xelBH9umTwFAoiMihPlcNt+6Cqpeu2z0+Gf5kJacHo1yVDo1AQkQGpa4W/eQceOdZ1W3YC/GAufGJ89OuS4aFQEJF+21kDNxZDSTcrYV42Fh4rgCnJ0a9Lho8uNItIn5yDB0ph+Y6ugZBg8K2z4dlFCoSRQCMFEenViSb43F74fVXXbbNSw9NcLxsT/brEGwoFEenRM5Xwmb1Q1tx12+cmwoOzIEM/RUYU/XeKSBeNIbj3IPxraddtWcHwEplr86Jfl3hPoSAiEUpqwxeTd9Z23bZyDPy/ApieGv26JDo8vdBsZmvMbJ+ZHTCze7vZnm9mL5jZm2b2lpl9zMt6RKRnzsG/H4PzdnQNhADwjemwabECYaTzbKRgZkHgIeAKoBTYZmYbnHPFHbrdBzzhnHvYzAqBjcB0r2oSke5VNsNf7IP/qui67axk+FkhrMyKfl0SfV6ePloOHHDOHQQws/XA1UDHUHDAB/ctZAHdPA4jIl564STcXAJHm7puWzsBHp4NY7Uq2qjhZShMAY50eF0KnN+pzzeA/zaz/wmkA6s9rEdEOmgOwf2HwpPZuU7bMoLw0Gy4OU+roo025lznL4dh2rHZdcAa59ztba9vBs53zt3Voc+X2mr4FzO7APgBsMA5F+q0rzuAOwDy8vLOW79+vSc1e62mpoaMDM0ONlg6fgPngBIyeYJpbCGHJhcgyUIs4hQnSOY9uh7PuZzh65QwhW7mwPbZ/sPdDGeiKDu9garaFN8+f07+4KeavfTSS3c455b21c/LkcJRYFqH11Pb2jq6DVgD4Jx7zcxSgFygrGMn59yjwKMAS5cudatWrfKoZG9t2rSJeK09FsT78bvszsNR/byQQcnyHCqmpBIKGAQMDBoJstVldx0COEf+3jNM3HOaH4QmeVLT89/PH9L710X5GHa2dsVe1m+Z59vnP3/L0I5ff3h599E2YLaZzTCzJGAtsKFTn8PA5QBmVgCkAOUe1iQyKjg6BEJCIBwIHXUKhMS6Fha/WMbMXacJhJBRzLNQcM61AHcBfwBKCN9ltMfM1pnZVW3d/gb4CzPbCfwC+Kzz6nyWyChyJjvpw0DoS8hRuLWScWWN3hcmMc/Th9eccxsJ32base3+Dn8vBlZ6WYPIaHRkTmb4lFE/HTs7g2yFgqBZUkVGpMrJqV1PGfUkYOH+IigUREakUHBg95EOtL+MXAoFkREoEBrYpblAqy7lSZhCQWSEOTMuiRAD+M0/5Mg5FnvPJIg/FAoiI0hNViI7Lx4PAzgdFAg58vdXe1iVxBOFgsgIUZuZQNElE2hJDvb7PYGWELlH68ms8vdJYYkdCgWREaAuI4GiVRNoTokMhLTTTQRaQtD5GkPItQdCwdbKgZxskhFOi+yIxLn6tCBFl0ygKTXy23nq/jPMLDpFTXYSh+dkUjk5FRc0rDV8DSF/XzVjTmqEIJEUCiJxrDE1SNGqCTSmR34rTz5QzayiUxgwpqqJBVsqAf/n7pHYp9NHInGqKTlA0SUTaMiIXOxg4rs1zHnjpE4JyaAoFETiUFNSOBDqxkQGwoTDtczbXqVAkEFTKIjEmeZEY+clE6gdGzm3fm5pHQWvV2J6Dk2GQKEgEkdaEoy3Lp5AzbjIQMg+Vs/8LRUEFAgyRAoFkTjRGjTeumg8Z3KSI9rHnWhgwavlWgdBhoVCQSQOtAaNXR8Zz+nxkUtBZpU3sPCVcoIKBBkmCgWRGBcKwO4LcjmZFxkIYyobOeflcoKazE6GkUJBJIaFDPasyKWq03oHGSebOOelMhJaFAgyvBQKIjHKGZScn0PF1LSI9vRTTSx6sYzEZgWCDD+FgkgMcsDepdmU5adHtKeeaWbxi2UkNekignhDoSASYxywf8k43p+REdGeUtMSDoRGBYJ4R6EgEkMccGDxWI7NyoxoT65tYfGmE6TUt/pTmIwaCgWRGOGAgwuzKJ0zJqI9qT48QkitUyCI9xQKIjHivcIxHC7IimhLbGhl8aYy0mpafKpKRhuFgkgMODw3k3cXjI1oS2hsZfGLZaRXKxAkehQKIj4rnZXBO4vGRbQFm0IseqmcjNPNPlUlo5VCQcRHx85O5+0l2RFtweYQi14u06po4guFgohP3j8rjX3nRQZCoCXEwlfKyapUIIg/FAoiPiibmkbJshywD5fDsVbHws0VjCtv9LEyGe0UCiJRVj45leIVORDoEAghx4JXK8g+0eBjZSIKBZGoqsxLYc8FubgOgUDIUbilgtzj9f4VJtJGoSASJSfHJ7N7ZS4u2CEQnKNgayUTShUIEhsUCiJRsPk0vHXReEIJkd9yc7dXMfFwnU9ViXSlUBDx2LYz8NG36BIIs9+oYvK7tT5VJdI9hYKIh3bWwJ++BdWdpi2aWXSSqQdq/ClKpBcKBRGPFNfC6p1wstMsFTN2nSJ/f7U/RYn0QaEg4oG36+DynVDRaZaKs4pPM73kjD9FifSDQkFkmL1bD5fthPc7PZQ8bd8ZZuw+7U9RIv2kUBAZRqUN4RFCaaeHku+cDDN3nsK6f5tIzFAoiAyT9xvDgfBup4eSb50I/zYbBYLEBYWCyDAobwoHwv5Oz6B9agI8OjdiRguRmKZQEBmik83wJ29Bcadn0D6ZCz+ZB0EFgsQRhYLIEJxpgTVvQVGnRw7+LAd+XggJ+g6TOKMvWZFBqm2FK3fB1k6PHFwxDn5ZCEn67pI45OmXrZmtMbN9ZnbAzO7toc8NZlZsZnvM7Ode1iMyXOpb4apd8EqnO0wvzoKnFkBK0J+6RIYqwasdm1kQeAi4AigFtpnZBudccYc+s4GvAiudcyfNbIJX9YgMl8YQXLsHnj8V2b5iDPx2IaQpECSOeTlSWA4ccM4ddM41AeuBqzv1+QvgIefcSQDnXJmH9YgMWXMI/nwPPFMV2b4kA36/EDI9+zVLJDrMOefNjs2uA9Y4525ve30zcL5z7q4OfZ4C9gMrgSDwDefcM93s6w7gDoC8vLzz1q9f70nNXqupqSEjI8PvMuKW38evFfgHCnmByAHt2dTwXYrIoqX7N7bZf9j/dZez0xuoqk3x7fPn5CcN6f1+H8N4Pn6XXnrpDufc0r76+f17TQIwG1gFTAVeMrOFzrmIgblz7lHgUYClS5e6VatWRbnM4bFp0ybitfZY4OfxCzn43F544URk+7w02LQ4g7ykj/S5j3V3Hvaouv5bu2Iv67fM8+3zn78lf0jv9/sYxvvx6w8vTx8dBaZ1eD21ra2jUmCDc67ZOfcu4VHDbA9rEhkw5+AL++GxToEwMwX+uAjyhvbLr0hM8TIUtgGzzWyGmSUBa4ENnfo8RXiUgJnlAnOAgx7WJDIgzsEXD8CjxyPb85PhucUwJdmfukS84lkoOOdagLuAPwAlwBPOuT1mts7Mrmrr9geg0syKgReAe5xzlV7VJDIQzsFXD8KDnca3k5Pg+cVwln+nlkU84+k1BefcRmBjp7b7O/zdAV9q+yMSU9a9B986Etk2IRGeWwQzU/2pScRreuZSpBvfOgzfOBTZlp0QvoYwL92XkkSiQqEg0skDpXBvpytbWUF4dhEs1B3FMsIpFEQ6ePRY+MJyRxlBeOYcWJLpT00i0aRQEGnzk/fh8/sj21ID8LuFsCLLn5pEok2hIAI8Xga37oWOz/cnG2xYABeP9a0skahTKMio91Q53FQMoQ5tiQZPLoDV2b6VJeKLAYWCmaW3zX4qMiL8vhJuKA7Pa/SBILC+EK7M8asqEf/0GgpmFjCzT5nZ78ysDNgLHG9b/+A7ZjYrOmWKDL/nToanwG7ucM7IgMcK4NrxvpUl4qu+RgovADMJr3kw0Tk3zTk3AfgIsAX4lpl92uMaRYbdy6fCi+Q0hCLbfzAXPpXnT00isaCvJ5pXO+eaOzc656qAJ4EnzSzRk8pEPLL1THgZzbpOgfD92fC5Sf7UJBIreh0pfBAIZra68zYz+0zHPiLx4M1q+NO3oLo1sv27M+ELU/ypSSSW9PdC8/1m9nDbheY8M/sN8HEvCxMZbrtr4IqdcKrTWjj/MAPuntb9e0RGm/6GwiXAO0AR8Arwc+fcdZ5VJTLM9tfB6p1Q2SkQvn4WfO0sf2oSiUX9DYVxhNdcfgdoBM4yM/OsKpFhdLAeLiuCE51OdH55GvzddD8qEold/Q2FLcAzzrk1wDJgMrDZs6pEhsmRBrh8JxzttLTvXVPg22eDfrURidTf9RRWO+cOAzjn6oG/MrOLvStLZOiON8JlO+FQQ2T77ZPggVkKBJHu9PXw2nSADwKhI+fcSxY21ZvSRAavrCk8QjhQH9n+6Tx4ZA4EFAgi3eprpPAdMwsATwM7gHIgBZgFXApcDvwtUOplkSIDUdUcvsuopC6y/frx8KO5EFQgiPSo11Bwzl1vZoXATcCtwESgnvCayxuBf3DONfSyC5GoOt0Sfg7hrdrI9o/nwM8KIEFTQIr0qs9vEedcMfD3wG8Ih8G7wDbgVwoEiSU1LfCxt2B7dWT7n4yDJwohUYEg0qf+Xmj+CXAGeLDt9aeAx4AbvChKYtNld3a5tBRVa1c0sa6HGlqDxlsXjefUhJSI9rFlDTQ8Wc7HWl237xuI57+fP+R9iMS6/obCAudcYYfXL5hZsRcFiQxUKAC7VuZ2CYQxFY0sfKWc4DAEgsho0d8B9RtmtuKDF2Z2PrDdm5JE+i9ksOeCXE5OTI1oz6xqZNHLZSS0KBBEBqK/I4XzgFfN7IOxez6wz8x2Ac45d44n1Yn0ImRQvCKHiilpEe3pp5pY9FI5Cc0KBJGB6m8orPG0CpEBcgZ7l+VQPi09oj3tdDOLXywjsSnUwztFpDf9CgXn3HteFyLSmQPOZCdxZO4YKiel8EJwGoHJjpxj9YSCRmWnEUJqdTOLXzxBUqMCQWSw+jtSEImqkEHJ8hwqpqQSClj7I8ihBKN8WlqXOSpSaltY/GIZyZ2XUhORAVEoSMxxdAiE7p426xQISXUtLN50gpS61q59RWRA9DiPxJwz2Uk9B0JnzjG76CSptQoEkeGgUJCYc2ROZviUUX84KJua1nc/EekXhYLEnMrJqf2fxjRg4f4iMiwUChJzQgOcxnSg/UWkZwoFiTmBAU5LMdD+ItIzhYLEnJxj9RDq5w/6UPi5BREZHgoFiTnT9lfT3xNCgZAjf3913x1FpF8UChJzzmQn4fpxoTnQEiL3aD2ZVU1RqEpkdNDDaxJTTo5P5p3F4yIbnYt8YC3kCIQcuUfrKdha2e9RhYj0TaEgMaMhLcieC3IjRgmBlhBZ5Y2cHp+MCxrWGr6GkL+vmjEnNUIQGW4KBYkJrUFj18rxNKcEI9oLt1Qyvu1C8toVe1m/ZZ4f5YmMGrqmIL5zwN6l2dSMS4pon74mNOzPAAAQWUlEQVT7VHsgiEh0KBTEd0fmZlJ2VuS6CLmldUwvPuNTRSKjl0JBfFWZl8I7C8dGtKWfbtIFZBGfeBoKZrbGzPaZ2QEzu7eXfp80M2dmS72sR2JLXUYCxRfkRsxzlNAUYsHmCq2tLOITz0LBzILAQ8BHgULgRjMr7KZfJvDXwOte1SKxpyXB2LUyl5akDl+CIUfhaxWk1bT4V5jIKOflSGE5cMA5d9A51wSsB67upt//Ab4FNHhYi8SQDxbRqcuKvLA8c9cpck7oy0DET16GwhTgSIfXpW1t7cxsCTDNOfc7D+uQGHOocAwVndZAmPBeLdP2aboKEb/59pyCmQWA7wKf7UffO4A7APLy8ti0aZOntXmlpqYmbmsHWLti6A+LFaWO54Xx+RFt05rO8L8CW0la0fv6ytnpDaxdsXfINQzWpk0Hh/T+4Th+Q6VjODTxfvz6w5zz5oKemV0AfMM596dtr78K4Jz7x7bXWcA7QE3bWyYCVcBVzrntPe136dKlbvv2HjfHtE2bNrFq1Sq/yxi0y+48PKT3145JYMflE2lN/HCAmtjQytI/vt+v9ZX9fnjt+e/n992pF0M9fsNBx3Bo4vn4mdkO51yfN/N4efpoGzDbzGaYWRKwFtjwwUbn3GnnXK5zbrpzbjqwhT4CQeJXc2L4ieWOgWAhx/zXKvoVCCISHZ6FgnOuBbgL+ANQAjzhnNtjZuvM7CqvPldijzMoXpFLfWZiRPusopOMK2/0qSoR6Y6n1xSccxuBjZ3a7u+h7yovaxH/HFw4lqpJkesoTzpYw5QDNT28Q0T8oieaxVMnpqVxeN6YiLYxFY3MeaNKTyyLxCCFgnimemwie5dlR7Ql1bew4NVyAr3faCQiPlEoiCeakgPsWjmeUEKHC8utjgWbK0huUCKIxCqFggy7kMGeC3JpTI+8ZDV3RxVZWjpTJKYpFGTYHVg8jlMTUiLaprxdzaRDtT5VJCL9pVCQYXV8RjpHZ2dGtI090cCsopM+VSQiA6FQkGFzOjuJfUsiLyyn1LYwf0sFAc2ELRIXFAoyLBpTguxemYsLfnijaaAlxILN5SQ16sKySLxQKMiQhQKw+8JcmlIjLyzP21ZF5qlmn6oSkcFQKMiQOGD/kmzO5CZHtOeXnCbvSJ0/RYnIoCkUZEiOzsrg+NkZEW3Zx+s5e/dpnyoSkaFQKMignRyfzIHF4yLaUqubKdxSgenCskhcUijIoDSkBdlzQS4u8OGF5WBziIWby0lsViKIxCuFggxYazC8NkJzSjCiveD1StLPtPhUlYgMB4WCDIgD9i7LpmZcUkT79N2nGH+s3p+iRGTYKBRkQA7PzaQsPz2iLbe0junFZ3yqSESGk0JB+q1yYgoHzxkb0ZZ+uomCrZVaG0FkhFAoSL8cqAsvqYl9+OM/oSnEgs0VJLTowrLISKFQkD5Vt8DVu6ElqcOXS8gx/7UK0mp0YVlkJFEoSK9CDm4ugeJODyfP3HWK7BMN/hQlIp5RKEiv1h2Cpysj2/Leq2Xavmpf6hERbykUpEdPlcPfvRfZllHVxNztVbqwLDJCKRSkW3tq4ea9kW2JDa0sfLWcYKsuLIuMVAoF6eJkM3xiN9S0ftiWYLDg1QpS6lp7fqOIxD2FgkRodbC2GA50ejj5gVkwtqLRn6JEJGoUChLhqwfhvzstp3z7JPjCZH/qEZHoUihIu1+cgO8ciWy7YAx8b3bEM2siMoIpFASAN6vhtn2RbZOT4Mn5kKyvEpFRQ9/uQllT+MJyfejDtiSDXy+ASck9v09ERh6FwijXHILr98DhTteQ/30OnD/Gn5pExD8KhVHu7gPwUqfllP9qCnx2kj/1iIi/FAqj2A+Ow0PHItsuHQv/PNOfekTEfwqFUWrLabhzf2TbWcnwRCEk6qtCZNTSt/8odKwRrt0DTR1mq0gNwFMLIDep5/eJyMinUBhlGlrh2t1wvCmy/UfzYHGmPzWJSOxQKIwizsGdb8PrnWa9vjcf/nyCPzWJSGxRKIwiDx2FH70f2fbRbPj7Gf7UIyKxR6EwSmw6CV88ENk2OxV+XgBBTWEhIm0UCqPAew1wfTF0nPQ6MwhPL4Cxib6VJSIxSKEwwtW1hqewqGiObP9/BVCQ7k9NIhK7FAojmHNw614oqolsXzcdrsr1pSQRiXEKhRHsO0fg8fLItmty4X+f5U89IhL7FAoj1DOVcO/ByLb5afCTeRDQhWUR6YGnoWBma8xsn5kdMLN7u9n+JTMrNrO3zOw5M9PvsMPg7brwkpodHlhmXAI8vRAyE3wrS0TigGehYGZB4CHgo0AhcKOZFXbq9iaw1Dl3DvAr4Nte1TNanGmBq3fD6Q63GgWAxwthZqpvZYlInPBypLAcOOCcO+icawLWA1d37OCce8E5V9f2cgsw1cN6RryQg5tLoKQusv3bM+GKbH9qEpH44mUoTAE6rvhb2tbWk9uA33tYz4i37hBsqIxsu2kCfElRKyL9ZM65vnsNZsdm1wFrnHO3t72+GTjfOXdXN30/DdwFXOKca+xm+x3AHQB5eXnnrV+/3pOavVZTU0NGRoYn+36ZXO5nQUTbbKr5N94kmVAP7xqY/Yeb+u7koez0BqpqU3z7/Dn5Q5tC1u/jBzqGQxXPx+/SSy/d4Zxb2lc/L0PhAuAbzrk/bXv9VQDn3D926rca+DfCgVDW136XLl3qtm/f7kHF3tu0aROrVq0a9v3uqYUVb0BNh+sI4xNh+3mQP4xfv5fdeXj4djYIa1fsZf2Web59/vPfzx/S+/0+fqBjOFTxfPzMrF+h4OXpo23AbDObYWZJwFpgQ8cOZnYu8O/AVf0JBOmqqhmu3hUZCAkGT84f3kAQkdHBs1BwzrUQPiX0B6AEeMI5t8fM1pnZVW3dvgNkAL80syIz29DD7qQbLSG4sRjeaYhsf3AWXDTWn5pEJL55ete6c24jsLFT2/0d/r7ay88f6b72Lvz3yci22yfB5yf7U4+IxD890Rynfn4iPI1FRxeMge/NBtMTyyIySAqFOPRGNdy2L7JtclL4OkKy/kdFZAj0IyTOlDWFp8Ju6HCXabLBfy2AScn+1SUiI4NCIY40h+D6PXCk05Mcj8yB5WP8qUlERhaFQhy5+wC8dDqy7a+mwGcn+VOPiIw8CoU48YPj8NCxyLZLx8I/z/SnHhEZmRQKceC10/CF/ZFt01PgiUJI1P+giAwj/UiJcUcb4do90NxhNpK0ADy1AHKHNo2MiEgXCoUY1tAK1+6G9zvNAfajebDIm3n1RGSUUyjEKOfgC2/D1urI9nvz4YYJ/tQkIiOfQiFGfe8o/Pj9yLaPZsPfz/CnHhEZHUbVir3+T7vbxLp+1HByfDI7L5kAgQ/nq0g900z1f73PFc2Dn+p8qNMWi8jIp5FCjKlPC7Lnwlxch0AINodYuLmcxCEEgohIfygUYkhr0Ni9cjzNycGI9sItlaRXt/hUlYiMJgqFGOGAvcuyqRkXeZ/pjN2nyD1e709RIjLqKBRixOF5mZTlp0e0jS+t46ziMz5VJCKjkUIhBlROTOHgwsil0tJPNTFvayVaGkFEokmh4LO6jASKV+RGrIyT0NjKws0VJLTowrKIRJdCwUctCcauleNpSerw3xByzN9SSWqtLiyLSPQpFHzigJLzc6jLSoxon/nWKbJPNPhTlIiMegoFnxyan0XFlLSItrxDtUzbX93DO0REvKdQ8EH5lFQOzc+KaMusamTujipdWBYRX42qaS6izQFnspM4MncMlZNSeCE4jcBkRygQ+aM/saGVBZsrCLbqwrKI+Euh4JGQQcnyHCqmpIZDoC0IQgmdxgIhx4JXK0ipb/WhShGRSAoFDzg6BEJC72foMk41kVXRGJ3CRET6oGsKHjiTndSvQACoG5NIdbaWUBOR2KBQ8MCROZldrhv0JBQwDs/J9LgiEZH+USh4oHJyasRaCL0KWLi/iEgMUCh4IBQc2I2lA+0vIuIVhYIHAgO8tXSg/UVEvKJQ8EDOsXoI9fMHfciF+4uIxACFggem7a8m0M9QCIQc+ZraQkRihELBA2Oqmsg9Wk+gJdRrv0BLiNyj9WRWNUWpMhGR3ikUPGBAwdbKD4Oh86gh5NoDoUAL6YhIDNETzR4JOCh8vZLq7CQOz8mkcnIqLmhYa/gaQv6+asac1AhBRGKLQsFDRvhU0oItlQCsXbGX9Vvm+VuUiEgvdPpIRETaKRRERKSdQkFERNopFEREpJ1CQURE2ikURESknUJBRETaeRoKZrbGzPaZ2QEzu7eb7clm9njb9tfNbLqX9YiISO88CwUzCwIPAR8FCoEbzaywU7fbgJPOuVnA/wW+5VU9IiLSNy9HCsuBA865g865JmA9cHWnPlcDP2n7+6+Ay81MUwGJiPjEy1CYAhzp8Lq0ra3bPs65FuA0kONhTSIi0gtzzptVv8zsOmCNc+72ttc3A+c75+7q0Gd3W5/SttfvtPWp6LSvO4A72l7OBfZ5UrT3coGKPntJT3T8hk7HcGji+fid5Zwb31cnLyfEOwpM6/B6altbd31KzSwByAIqO+/IOfco8KhHdUaNmW13zi31u454peM3dDqGQzMajp+Xp4+2AbPNbIaZJQFrgQ2d+mwAPtP29+uA551XQxcREemTZyMF51yLmd0F/AEIAj90zu0xs3XAdufcBuAHwE/N7ABQRTg4RETEJ56up+Cc2whs7NR2f4e/NwDXe1lDjIn7U2A+0/EbOh3DoRnxx8+zC80iIhJ/NM2FiIi0UyhESV9TfkjPzOyHZlbWdguzDJCZTTOzF8ys2Mz2mNlf+11TPDGzFDPbamY7247f3/ldk5d0+igK2qb82A9cQfghvm3Ajc65Yl8LixNmdjFQAzzmnFvgdz3xxswmAZOcc2+YWSawA/iEvv76p22WhXTnXI2ZJQKvAH/tnNvic2me0EghOvoz5Yf0wDn3EuG702QQnHPHnXNvtP29Giih6+wC0gMXVtP2MrHtz4j9bVqhEB39mfJDxHNtMxGfC7zubyXxxcyCZlYElAHPOudG7PFTKIiMEmaWATwJfNE5d8bveuKJc67VObeY8MwMy81sxJ7GVChER3+m/BDxTNu58CeBnznnfu13PfHKOXcKeAFY43ctXlEoREd/pvwQ8UTbhdIfACXOue/6XU+8MbPxZja27e+phG8Y2etvVd5RKERB27TgH0z5UQI84Zzb429V8cPMfgG8Bsw1s1Izu83vmuLMSuBm4DIzK2r78zG/i4ojk4AXzOwtwr/gPeuc+63PNXlGt6SKiEg7jRRERKSdQkFERNopFEREpJ1CQURE2ikURESknUJBRETaKRRERKSdQkFkiMxsmZm91TbvfnrbnPsjdm4cGdn08JrIMDCzvwdSgFSg1Dn3jz6XJDIoCgWRYdA2p9U2oAG40DnX6nNJIoOi00ciwyMHyAAyCY8YROKSRgoiw8DMNhBeUW8G4aUv7/K5JJFBSfC7AJF4Z2a3AM3OuZ+3rcf9qpld5px73u/aRAZKIwUREWmnawoiItJOoSAiIu0UCiIi0k6hICIi7RQKIiLSTqEgIiLtFAoiItJOoSAiIu3+P505ZfntSOkXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot progress w.r.t the generator's and the discriminator's loss function\n", + "t_steps = np.arange(num_epochs)\n", + "plt.figure(figsize=(6,5))\n", + "plt.title(\"Progress in the loss function\")\n", + "plt.plot(t_steps, qgan.g_loss, label = \"Generator loss function\", color = 'mediumvioletred', linewidth = 2)\n", + "plt.plot(t_steps, qgan.d_loss, label = \"Discriminator loss function\", color = 'rebeccapurple', linewidth = 2)\n", + "plt.grid()\n", + "plt.legend(loc = 'best')\n", + "plt.xlabel('time steps')\n", + "plt.ylabel('loss')\n", + "plt.show()\n", + "\n", + "\n", + "# Plot progress w.r.t relative entropy\n", + "plt.figure(figsize=(6,5))\n", + "plt.title(\"Relative Entropy \")\n", + "plt.plot(np.linspace(0, num_epochs, len(qgan.rel_entr)), qgan.rel_entr, color ='mediumblue', lw=4, ls=':')\n", + "plt.grid()\n", + "plt.xlabel('time steps')\n", + "plt.ylabel('relative entropy')\n", + "plt.show()\n", + "\n", + "#Plot the PDF of the resulting distribution against the target distribution, i.e. log-normal\n", + "log_normal = np.random.lognormal(mean=1, sigma=1, size=100000)\n", + "log_normal = np.round(log_normal)\n", + "log_normal = log_normal[log_normal <= bounds[1]]\n", + "temp = []\n", + "for i in range(int(bounds[1]+1)):\n", + " temp += [np.sum(log_normal==i)]\n", + "log_normal = np.array(temp / sum(temp))\n", + "\n", + "plt.figure(figsize=(6,5))\n", + "plt.title(\"CDF\")\n", + "samples_g, prob_g = qgan.generator.get_samples(qgan.quantum_instance, shots=10000)\n", + "samples_g = np.array(samples_g)\n", + "samples_g = samples_g.flatten()\n", + "num_bins = len(prob_g)\n", + "plt.bar(samples_g, np.cumsum(prob_g), color='royalblue', width= 0.8, label='simulation')\n", + "plt.plot( np.cumsum(log_normal),'-o', label='log-normal', color='deepskyblue', linewidth=4, markersize=12)\n", + "plt.xticks(np.arange(min(samples_g), max(samples_g)+1, 1.0))\n", + "plt.grid()\n", + "plt.xlabel('x')\n", + "plt.ylabel('p(x)')\n", + "plt.legend(loc='best')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "QiskitDevenv", + "language": "python", + "name": "qiskitdevenv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From acb2a7886dbd1530f600caa12196129c57304e1b Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Tue, 16 Apr 2019 18:44:56 +0100 Subject: [PATCH 053/116] Time series tutorial --- .../finance/data_providers/time_series.ipynb | 198 +++++++++++++++++- 1 file changed, 188 insertions(+), 10 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index aed94d68d..a3c423018 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -33,31 +33,121 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [], "source": [ - "from qiskit.aqua.input.finance import *\n", - "from qiskit.aqua.input.finance.wikipedia import StockMarket\n", + "%matplotlib inline\n", + "from qiskit.aqua.translators.data_providers import *\n", + "from qiskit.aqua.translators.data_providers.wikipediadataprovider import StockMarket\n", "import warnings\n", - "warnings.filterwarnings(\"ignore\",category=DeprecationWarning)\n", + "warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n", "import datetime" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Evolution of the stock price:\n", + "GOOG\n", + "Date\n", + "2016-01-04 741.84\n", + "2016-01-05 742.58\n", + "2016-01-06 743.62\n", + "2016-01-07 726.39\n", + "2016-01-08 714.47\n", + "2016-01-11 716.03\n", + "2016-01-12 726.07\n", + "2016-01-13 700.56\n", + "2016-01-14 714.72\n", + "2016-01-15 694.45\n", + "2016-01-19 701.79\n", + "2016-01-20 698.45\n", + "2016-01-21 706.59\n", + "2016-01-22 725.25\n", + "2016-01-25 711.67\n", + "2016-01-26 713.04\n", + "2016-01-27 699.99\n", + "2016-01-28 730.96\n", + "2016-01-29 742.95\n", + "Name: Adj. Close, dtype: float64\n", + "AAPL\n", + "Date\n", + "2016-01-04 101.783763\n", + "2016-01-05 99.233131\n", + "2016-01-06 97.291172\n", + "2016-01-07 93.185040\n", + "2016-01-08 93.677776\n", + "2016-01-11 95.194629\n", + "2016-01-12 96.576222\n", + "2016-01-13 94.093220\n", + "2016-01-14 96.151117\n", + "2016-01-15 93.842021\n", + "2016-01-19 93.387931\n", + "2016-01-20 93.513531\n", + "2016-01-21 93.040118\n", + "2016-01-22 97.986799\n", + "2016-01-25 96.073825\n", + "2016-01-26 96.605206\n", + "2016-01-27 90.257610\n", + "2016-01-28 90.904929\n", + "2016-01-29 94.044912\n", + "Name: Adj. Close, dtype: float64\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEsCAYAAADNd3h6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VPWd//HXJzcSICQEAgKBAoJc1MolXlovtbit2lovdW2p25W6bml/xW7d7m/V9qe/rb+fbW3317XtbtfWra24tlir9bLW+lhFacV6aUAUEZBLuYRbIBBuIbeZz++PcxKGEMgkJDkzh/fz8TiPOed7zpn5fGHyPme+c2bG3B0REYmvnKgLEBGR3qWgFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGXF3UBAEOHDvWxY8dGXYaISFZZsmTJLncv72y7jAj6sWPHUlVVFXUZIiJZxcw2prOdhm5ERGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRibmMuI6+JySSTnMiSSLptCSc5mSyra0l4bQkk7SE6xpbkjQnkjS1BFNzIklTItlheyIJF08q56zRpVF3UURipKE5wR/X7WLyKYMYWVrUq4+V1UH/05fX893nVtOcTNKbP3177wvvMX1MKZ/74FguP2MEBXl6ISQiXbd9bwMvrqph4codvLJuFw3NSb7+scnMvejUXn3crA76M0eVcNOF48jLMfJycsjLtWA+N4f83LAtx4L23HA+xyjIywmm3Jy2+fzcYLlf63zY3tCc4PEl1Tz06ka+8sgy7i5eyWfPfR/XnzuG8uJ+Uf8TiEgGSyad5Vv2sjAM9xVb9wFQMbiI2WePYdbkYZw7vqzX6zDvzVPhNFVWVnqmfwVCMun8Yc1OHvzjBhat3kl+rnHF+0fyuQ+O1bCOiLQ52NjC4rW7eHFlDS+urmHn/kZyDGa+bzCzJg/nkinDmDhsIGZ2wo9lZkvcvbKz7bL6jL4v5eQYF08axsWThrF+5wEeenUjjy2p5ok3tzBtdCk3nq9hHZGT2Xs79vPtZ1fyyrpamlqSFBfm8aHTyrlkyjA+dNowygYURFabzuhPwIHGFh5fUs38P25g/a6DlBf346/OHcO1MyoYXdY/6vL6RDLpbKk7xIiSQvJydZCTk9NTy7Zw++PL6V+QyzXTRzFryjDOHltGfi//TaR7Rq+g7wHJpPPy2l08+MqfeWn1TgBOGz6w7WXa9NGlsQnBZNJ5r2Y/r62r5bX1u3n9z7XsqW9m6ohB3HPtmby/QsNYcfPnXQf5j5fX898rtlNSlM/I0iJGlBQyoqSIkaWFnFJSxMiSQkaUFjGw38k1SNDYkuDuZ1byn69t5JyxZfzr9dMZPqiwzx5fQR+RTbX1PL9yBy+u2sHr63fTknRKivK5eFI5syYP4+LThlHSPz/qMtOWTDqrd+zntfW1vLa+ltf/vJu6+mYgeEPpvPFDmDBsID9b/Gd2HWjkxvPH8dWPnMaAk+wPPo7erq7jx79fx+/e2U5+bg4fnTqcloSzbe8htu5tYNeBxqOudisuzGNkSREjSgvbDgYjSgqPODgUFeRG06EeVr2nnnm/fJO3Ntcx96Lx/OOlk3r9DL49BX0G2NfQzOI1u1i4soZFq2uoPdhEbo4x832DuWTyMC6ZMoxTy3vmTZnjSSadhDuJpJN0pyXpQVvr5CnzSedgY4KqjbuPGeznjR/CuePKjhie2nuome8+t4pfvL6JUaVF3H31GXx48rBe7Zf0PHfnD2t28eNF63h1fS3FhXn89Xnv43Pnj2VY8ZFnqk0tSXbsa2Db3oYg/Osa2B4eBLbtPcS2ugZqDzYd9Ril/fODVwMlheEBof0rhEL65WX2wWDR6hpu+dUyEgnnn697P5edMSKSOhT0GSaRdN6qruOlVTUsXFnDu9uCy6xGlxUxaXhx8EGvMIgTR4QwJJLBB7eSyeCDX0mn3TYervO2UE+d7+5/8eiyIs4bFwb7+DIqBnf+vsOfNuzma79ZztqaA3zirJH87yumdvsy1JZEklfX1/Jfb20lLzeHL1w0nvcNGdCt+5Lja0kk+e3ybfzk9+t5d9s+ThlUyE0XjGP2OaMpLuz+K9CG5gQ79jWwtS4M/70NbK07xPa9DW0HhNYTiVRDBxYwoqSIU0oK24aFWl8ZnDIoOBh0dPbsHnwgsrE5SUNLou22oTlBQ3OSwf3zmXACV7wkks4PFq7hX19cw6Thxdz32ZmMGxrdc1JBn+G21h3ipdU1vLSqhm17G8jNMXIsuM4/J8fIteD6/xwzcnPCKXW+/fY5hOtzyM0JrhLKC/dpnc/p4D5yU7ZpfcyC3BzOrChJK9g70tiS4MeL1vOjl9ZSmJ/D//r4FD5VOTqtPy53Z9nmOp5atpVn3t7GrgONFPfLoykRfLL5k9NH8eVZExkz5OR4s7u3HWpK8GjVZv7j5fVU7znEqeUD+MKHTuXqaaP67Aqy+qaW4FVBysGg9RVC6/L+hpYj9jGD8oH9KCrIbQvxhuYEjS3JTh9v3NABXHbGKVx+ximcOaok7dDffbCJrzzyJi+v2cW1Myq4++ozIh+G6rGgN7NJwK9SmsYD/xt4KGwfC2wAPuXueyz4V/sB8DGgHvicuy893mOcjEF/Mlhbs5+v/+Yd3tiwm3PHlfHtT57J+PKBx9z2qWVbeWrZVjbtrqcgL4dZk4Zx1bSRfHjyMPYdaua+36/jF69vIpl0rp1Rwc2zJpw0Vzf1pETSWbfzAM8u38b8P25gT30zM8aU8sUPncpfTBlOTk7vDiV2x4HGFrbVhcNCdYcPBk0tSfrl5VKYn0Nhfi798nPplxfMF+bnHF6Xl0thfi4bdx/kuXe288d1tSSSzqjSorbQnzFm8DH7vnTTHub9Yim1B5u468rTmX12eicuva1XzujNLBfYApwLzAN2u/s9ZnY7MNjdbzOzjwFfJgj6c4EfuPu5x7tfBX18JZPOr6o2861nV9LYkuTLH57AFz50KgV5OWytO8R/vRWE+7vb9pFj8MFTh3LltJFcevoplBQdPWSwY18D9y1axy/fCAL/usoK5n14QrdffcRdMums33WQ5VvqWF69j+Vb6lixdR/1TQkALpk8jC9efCpnj+39T2dmkrr6Jp5/dwfPvbOdl9fsoimRZFhxPy49PQj9c8aVkZebg7sz/48b+OazKxk+qJAff3YmZ4wqibr8Nr0V9B8F/sndzzez1cDF7r7NzEYAi9x9kpn9JJxfEO7Ttt2x7ldBH381+xq465l3+e3b2zht+EAG9y/gjQ27cYezRpdy1VkjueL9IxiW5qVp2/c28O+L1vLIG5txnOsqRzPvwxMY1ctfDtWZlkSSg00JDjUlONjUQn1jgvqmFupbl5sS1De2HL1Nc2t7uE1TgoLcHIYMLGDIgALKBvRjyMACygYEy8F8P8oGFDCoMA8zI5l0Nu6u5+3qOpZX72X5lr2s2LqPA43BsEdhfg6njyzhzFHBVDl2sN7zAPY3NPPiqhqee2c7L62uoaE5SdmAAj4yZTj7G5t5dvl2Lpk8jH/51LSMu2Kut4L+Z8BSd/83M6tz99KUdXvcfbCZPQPc4+6Lw/aFwG3uXtXuvuYCcwHGjBkzc+PGtH7MXLLcC+/u4O7fvktOjnHVWaO4atpIxp7Am1lb6w7x74vW8qs/bQbg02cHgT+i5PiBn0j64QBuPByuB5taggBubGm3fDiw65taguUwnNvamhI0pTFG3CrHYEBBHkUFuQzol0f/gtxwCuYbW5LUHmxi98FGdh9o4mB4Ft5efq5RNqCA+qZE21h2QV4OU0cM4v0VYbBXlDChfGBsPs/RWw41Jfj9ezX87p3tLFxZQ31TC//w0Un8jw+dmpFDWj0e9GZWAGwFTnf3HccJ+t8C324X9Le6+5Jj3bfO6OVEbak7xI9eWsuvqzZjGBdPKifpHBXOh5qDEE/nTbtWOUZb+A7ol0dRfi4D+h0O5P4FeQzolxsEdru2w9uk7hu09cvL6dI4b0NzIgj+A03UHmxk98Emdh9sYteB4GCQn5sTBnspE4cP7PNruuOmsSXBgYYWhgzM3C8v7I3vurmc4Gx+R7i8w8xGpAzd1ITt1cDolP0qCA4QIr1mVGkR37rmTL508an86KV1vL6+lsIwkAcV5TOipPBw6PY7MpCPCOIjwjpo62og95bC/FxGlRZFPjx1suiXl0u/gZl9PX+6uhL0nwEWpCw/DcwB7glvn0ppv9nMHiF4M3bv8cbnRXpSxeD+fPuTZ0ZdhkhGSSvozaw/8BHgCynN9wCPmtlNwCbgurD9WYIrbtYSXF55Y49VKyIiXZZW0Lt7PTCkXVstcEkH2zrBpZciIpIB9G6NiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcWkFvZqVm9piZrTKzlWb2ATMrM7PnzWxNeDs43NbM7IdmttbM3jazGb3bBREROZ50z+h/ADzn7pOBs4CVwO3AQnefCCwMlwEuByaG01zgvh6tWEREuqTToDezQcBFwAMA7t7k7nXAVcD8cLP5wNXh/FXAQx54DSg1sxE9XrmIiKQlnTP68cBO4Odm9qaZ/dTMBgDD3X0bQHg7LNx+FLA5Zf/qsE1ERCKQTtDnATOA+9x9OnCQw8M0HbEO2vyojczmmlmVmVXt3LkzrWJFRKTr0gn6aqDa3V8Plx8jCP4drUMy4W1NyvajU/avALa2v1N3v9/dK929sry8vLv1i4hIJzoNenffDmw2s0lh0yXAu8DTwJywbQ7wVDj/NHBDePXNecDe1iEeERHpe3lpbvdl4BdmVgCsB24kOEg8amY3AZuA68JtnwU+BqwF6sNtRUQkImkFvbsvAyo7WHVJB9s6MO8E6xIRkR6iT8aKiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMylFfRmtsHMlpvZMjOrCtvKzOx5M1sT3g4O283Mfmhma83sbTOb0ZsdEBGR4+vKGf2H3X2au1eGy7cDC919IrAwXAa4HJgYTnOB+3qqWBER6boTGbq5Cpgfzs8Hrk5pf8gDrwGlZjbiBB5HREROQLpB78B/m9kSM5sbtg13920A4e2wsH0UsDll3+qwTUREIpCX5nbnu/tWMxsGPG9mq46zrXXQ5kdtFBww5gKMGTMmzTJERKSr0jqjd/et4W0N8ARwDrCjdUgmvK0JN68GRqfsXgFs7eA+73f3SnevLC8v734PRETkuDoNejMbYGbFrfPAR4F3gKeBOeFmc4CnwvmngRvCq2/OA/a2DvGIiEjfS2foZjjwhJm1bv9Ld3/OzP4EPGpmNwGbgOvC7Z8FPgasBeqBG3u8ahERSVunQe/u64GzOmivBS7poN2BeT1SnYiInDB9MlZEJOYU9CIiMaegFxGJOQW9iEjMpfuBKRGRPtfc3Ex1dTUNDQ1RlxKpwsJCKioqyM/P79b+CnoRyVjV1dUUFxczduxYwku8TzruTm1tLdXV1YwbN65b96GhGxHJWA0NDQwZMuSkDXkAM2PIkCEn9KpGQS8iGe1kDvlWJ/pvoKAXETmOHTt2cP311zN+/HhmzpzJBz7wAZ544gkAFi9ezDnnnMPkyZOZPHky999//xH73n///W3rzjnnHBYvXty2rqWlha9//etMnDiRadOmMW3aNL75zW/2Sh80Ri8icgzuztVXX82cOXP45S9/CcDGjRt5+umn2b59O9dffz1PPvkkM2bMYNeuXVx66aWMGjWKj3/84zzzzDP85Cc/YfHixQwdOpSlS5dy9dVX88Ybb3DKKadwxx13sH37dpYvX05hYSH79+/ne9/7Xu91JOpp5syZLiLS3rvvvhvp47/wwgt+0UUXdbjujjvu8DvvvPOo7S+44AJ3d7/gggt84cKFR+1zxx13+MGDB72srMz37duXdi0d/VsAVZ5GxuqMXkSywl3/tYJ3t+7r0fucOnIQ//SJ04+5fsWKFcyY0fHPXq9YsYI5c+Yc0VZZWcmKFSva1s+cOfOo9fPnz2ft2rWMGTOG4uLiE+xBejRGLyKSpnnz5nHWWWdx9tln4+4dvkl6vDdOj7XPz3/+c6ZNm8bo0aPZvHlzB3ueGJ3Ri0hWON6Zd285/fTTefzxx9uWf/SjH7Fr1y4qKyu59NJLqaqq4sorr2xbv2TJEqZOnQrA1KlTWbJkCbNmzWpbv3TpUqZOncqECRPYtGkT+/fvp7i4mBtvvJEbb7yRM844g0Qi0eP90Bm9iMgxzJo1i4aGBu677762tvr6eiA4u3/wwQdZtmwZALW1tdx2223ceuutANx6663cdttt1NbWArBs2TIefPBBvvSlL9G/f39uuukmbr755rbr4xOJBE1NTb3SD53Ri4gcg5nx5JNP8vd///d897vfpby8nAEDBvCd73yHESNG8PDDD/P5z3+e/fv34+7ccsstfOITnwDgyiuvZMuWLXzwgx/EzCguLubhhx9mxIgRAHzzm9/kzjvv5IwzzqC4uJiioiLmzJnDyJEje74fwRu30aqsrPSqqqqoyxCRDLNy5UqmTJkSdRkZoaN/CzNb4u6Vne2roRsRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYm5tIPezHLN7E0zeyZcHmdmr5vZGjP7lZkVhO39wuW14fqxvVO6iIikoytn9F8BVqYsfwe4190nAnuAm8L2m4A97j4BuDfcTkQkaz3xxBOYGatWrTqi/d5776WwsJC9e/e2tS1atIiSkhKmT5/OlClTuOuuu9rar7jiij6tu1VaQW9mFcDHgZ+GywbMAh4LN5kPXB3OXxUuE66/xPTLASKSxRYsWMAFF1zAI488clT72Wef3fb99K0uvPBC3nzzTaqqqnj44YdZsmRJX5Z7lHTP6L8P3Aokw+UhQJ27t4TL1cCocH4UsBkgXL833P4IZjbXzKrMrGrnzp3dLF9EpHcdOHCAV155hQceeOCIoF+3bh0HDhzg7rvvZsGCBR3uO2DAAGbOnMm6dev6qtwOdfoVCGZ2BVDj7kvM7OLW5g429TTWHW5wvx+4H4JPxqZVrYicvH53O2xf3rP3ecqZcPk9x93kySef5LLLLuO0006jrKyMpUuXMmPGDBYsWMBnPvMZLrzwQlavXk1NTQ3Dhg07Yt/a2lpee+017rzzTqI8oU3njP584Eoz2wA8QjBk832g1MxaDxQVwNZwvhoYDRCuLwF292DNIiJ9ZsGCBcyePRuA2bNnt529P/LII8yePZucnBw++clP8utf/7ptn5dffpnp06fz0Y9+lNtvv53TT+/7b95M1ekZvbt/DfgaQHhG/z/d/a/M7NfAXxKE/xzgqXCXp8PlV8P1L3omfKGOiGS3Ts68e0NtbS0vvvgi77zzDmZGIpHAzPjsZz/LmjVr+MhHPgJAU1MT48ePZ968eUAwRv/MM8/0eb3HciLX0d8GfNXM1hKMwT8Qtj8ADAnbvwrcfmIliohE47HHHuOGG25g48aNbNiwgc2bNzNu3DhuueUWvvGNb7BhwwY2bNjA1q1b2bJlCxs3boy65A51KejdfZG7XxHOr3f3c9x9grtf5+6NYXtDuDwhXL++NwoXEeltCxYs4Jprrjmi7dprr2XDhg1HtV9zzTVHXZXT3sKFC6moqGibXn311R6vuSP6mmIRyVj6muLD9DXFIiJyTAp6EZGYU9CLiMScgl5EMlomvI8YtRP9N1DQi0jGKiwspLa29qQOe3entraWwsLCbt9Hpx+YEhGJSkVFBdXV1ZF+fUAmKCwspKKiotv7K+hFJGPl5+czbty4qMvIehq6ERGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjrNOjNrNDM3jCzt8xshZndFbaPM7PXzWyNmf3KzArC9n7h8tpw/dje7YKIiBxPOmf0jcAsdz8LmAZcZmbnAd8B7nX3icAe4KZw+5uAPe4+Abg33E5ERCLSadB74EC4mB9ODswCHgvb5wNXh/NXhcuE6y8xM+uxikVEpEvSGqM3s1wzWwbUAM8D64A6d28JN6kGRoXzo4DNAOH6vcCQDu5zrplVmVnVyf7rMSIivSmtoHf3hLtPAyqAc4ApHW0W3nZ09n7UDz66+/3uXunuleXl5enWKyIiXdSlq27cvQ5YBJwHlJpZ608RVgBbw/lqYDRAuL4E2N0TxYqISNelc9VNuZmVhvNFwF8AK4GXgL8MN5sDPBXOPx0uE65/0U/mn3AXEYlYOj8OPgKYb2a5BAeGR939GTN7F3jEzO4G3gQeCLd/APhPM1tLcCY/uxfqFhGRNHUa9O7+NjC9g/b1BOP17dsbgOt6pDoRETlh+mSsiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcp0FvZqPN7CUzW2lmK8zsK2F7mZk9b2ZrwtvBYbuZ2Q/NbK2ZvW1mM3q7EyIicmzpnNG3AP/g7lOA84B5ZjYVuB1Y6O4TgYXhMsDlwMRwmgvc1+NVi4hI2joNenff5u5Lw/n9wEpgFHAVMD/cbD5wdTh/FfCQB14DSs1sRI9XLiIiaenSGL2ZjQWmA68Dw919GwQHA2BYuNkoYHPKbtVhm4iIRCDtoDezgcDjwC3uvu94m3bQ5h3c31wzqzKzqp07d6ZbhoiIdFFaQW9m+QQh/wt3/03YvKN1SCa8rQnbq4HRKbtXAFvb36e73+/ule5eWV5e3t36RUSkE+lcdWPAA8BKd/+XlFVPA3PC+TnAUyntN4RX35wH7G0d4hERkb6Xl8Y25wN/DSw3s2Vh29eBe4BHzewmYBNwXbjuWeBjwFqgHrixRysWEZEu6TTo3X0xHY+7A1zSwfYOzDvBukREpIfok7EiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnOdBr2Z/czMaszsnZS2MjN73szWhLeDw3Yzsx+a2Voze9vMZvRm8SIi0rl0zugfBC5r13Y7sNDdJwILw2WAy4GJ4TQXuK9nyhQRke7K62wDd/+DmY1t13wVcHE4Px9YBNwWtj/k7g68ZmalZjbC3bf1VMFH2LUGdq6GwhIoKg1uC0ugoBhyNColIgJpBP0xDG8Nb3ffZmbDwvZRwOaU7arDtt4J+lXPwAvfOLrdcqDfoMPBf8SBoBQKBkLBgHAaCP0GHp5PXdevGHLze6V0kazhDg11sH9H8LeVkws5ee2m9m25YBZ15RLqbtAfS0f/s97hhmZzCYZ3GDNmTPcebcYcOHUWNOwNpkN1h+cb9gZPztb52nWH1zcfTP8xcgtgwDAYNAKKT4Hi9rcjg9vCkt5/YrtDMgGegGRLynwyWPZESlu7+bZ9kinrWw7vn9qWbIGWRmg5FNw2H4KWhvA2bG9uOHybaIT8/kceWNsfaAsHBQfZ1nWehKYD0Lg/mJoOQOMBaNof3rZbxsP7HBTcHjFfHM6Hj6ODc9e4Q30t1G2Eus1Qtwn2hrety037u36/1i78czs5MKRz8Gibzw+W8ZTnb8vRz//Uv4tkAgr6w9DTYOhEGDopmB8wpMf/SdPmHvwt5OT26sN0N+h3tA7JmNkIoCZsrwZGp2xXAWzt6A7c/X7gfoDKysoODwad6l8WTF2VTEJzfRAmTQdTQiWcP6J9Pxyogf3bgqGiP/8hOFi0l1d0+ACQVxA+4ZIdBHOygwDuKJTbz7dwjGNm38krhLx+QV/zCw/f5vYLDqI7Vx0+sHqyhx6zKHjFBcH/RUtDenXm9w8PvOHBt3W+7WBsHa8/YlvabZvufu237Wi/Y61vN+8O+OHbI9pIWRfKyQkDNjclaHMPn4mnrks0BkG+d3Pw95Cq3yAoHRNMYy+A0tHBcxuOPCFofV4fd7m1rbkL+ySgueno9YnmI+8PCw8A7fub23H7vq3B33Dq86ioDMonHRn+QycGfU83gFtPwhKNcGhPcOCsr4X63SnztR23f/x7MOOG9B6nm7ob9E8Dc4B7wtunUtpvNrNHgHOBvb02Pn8icnKC8GgNkK5qqocD22H/9uCJs397cCDYH7Y11R9+guX1O/oPrMM/xpS2nLyU9TlHP3k7ajvqMTr6A2/XdsTjtLuf/MIw2AshvygI83Tf93APDpJtr6z2tXultTe4r4LicNisdfisODg7b20rGBicBaZqaQwCv2Fv+GpgX3D/jfvC9n3QuDd49dFROKbOtwWkpxxDjxGqx9yv/fyxtqXzbdvv19FB4rgHFjo+YfAkJJqObsvJCwJtwl8EQV46BkrC26LSY/73Zr1kMji47XovmHauDk7iVj0L9Q8d3i6vEAaNInjVcIyDUeuBxxOdPKhB0WDoPyQ4OS0dAyOnBcvDpvZmb4NH99QnYkcbmC0geON1KLAD+CfgSeBRYAywCbjO3XebmQH/RnCVTj1wo7tXdVZEZWWlV1V1upmISO+q333kAWDfluDEJzf/GMNL7abcvOAVQv8hR05Fpb0yPGNmS9y9stPtOgv6vqCgFxHpunSDXtcgiojEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjLiA9MmdlOYGMfPdxQYFcfPVZvUR8yQ7b3IdvrB/Xhfe5e3tlGGRH0fcnMqtL5JFkmUx9Qj17jAAAJRElEQVQyQ7b3IdvrB/UhXRq6ERGJOQW9iEjMnYxBf3/UBfQA9SEzZHsfsr1+UB/SctKN0YuInGxOxjN6EZGTioJeRCTmFPQiIjGnoM8iZjbYzIqjrqMnmFk3ftU9GmYW4x9QBTPr5o8nRy+bnketzKzczKab2Zl99W8f66A3s79Jma8ws4VmVmdmfzSz06KsLV1mNtLMHjKzvQSfnlthZpvM7Btmlh91fekws/PNbKWZrTCzc83seaDKzDab2Qeiri8Nu8zsBTO7Kaah/27UBaTDzO5ImZ9qZu8BS8xsg5mdG2FpaQlrfgF4FXgd+Cmw3MweNLOS3nzsWAc9cHPK/L8Q/KB5GfDPwH2RVNR1DwM/c/cS4DrgcWAKkAf8KMrCuuBe4FPA3wK/Be5y9/HAVcD/i7KwNK0Evg/MAtaZ2VNmNtvMiiKuK21m9tVjTP8AZMsZ/SdT5v8Z+Iq7jyN4bt0bTUld8jNgnrtPAC4AVoX1vwI80JsPHPegT3Wau//E3ZPu/gRB4GeDIe6+CMDdfwNc5O4H3f0O4KJIK0tfvrsvd/dXgZ3uvhjA3ZcC2RCWze7+jLv/FVAB/IIgXKrN7JfRlpa2bwGDgeJ200CyMwdGuvvvANz9DbLjeVTk7quhreYzw/n/AKb25gPn9eadZ4AKM/shYEC5meW7e3O4LiuGPYCdZvZZ4EXgWmADgJkZ2fMHmlrn19qtK+jLQrrJWmfc/RDBK8NHw5fbV0dWVdcsBZ509yXtV5jZ30ZQT3eMN7OnCf4/Ksysv7vXh+uy4e95nZndCSwkeHWyDCAcgu3VLI570P9jynwVwdnLHjM7BXg6mpK67G8IhjduJ3hitA5HlXF0aGaqO1v/KN39ydZGMzsVeCjCutL1i44a3X0vML+Pa+muG4Hdx1iXLV8KdlW75RwAMxtOdgzF/g3w9XB6C/hK2N4fuKE3H1ifjBURiblseenfLWaWZ2ZfMLPfmdnbZvZWOP/FLLpiJev7cDxmltXfVZIt9ZtZbvg8+r9mdn67dXcca79Mku19aFf/B9ut69X6Y31Gb2YLgDqCl9fVYXMFMAcoc/dPR1VbumLSh2O98W3AW+5e0Zf1dFW21w9gZj8lGCJ4A/hr4Pfu/tVw3VJ3nxFlfenI9j5EWX/cg361u086xrr33D3jr6WPSR8SBL8gZinNHi6PcveMfkM22+sHMLO33f394Xwe8O8Ev2z0GeA1d58eZX3pyPY+RFl/rIduCN54vc7M2vppZjlm9mlgT4R1dUUc+rAeuNjdx6VM48NriHdEXVwasr1+SLm6yd1b3H0uwZv7L5I919Fnex8iqz/uQT8b+Etgh5m9F36SbgfBpU2zI60sfXHow/cJruHuyHf7spBuyvb6Ifgk8mWpDe7+f4CfA2Mjqajrsr0PkdUf66GbVGY2hKC/WftDwnHog4j0vbif0bdx91p335UtV0l0JA59aJXtfcj2+kF9yAR9Vf9JE/QpsuXDIcejPkQv2+sH9SET9En9J2PQ10RdQA9QH6KX7fWD+pAJ+qT+k2aMXkTkZHUyntED2T+2B+pDJsj2+kF9yAS9XX+sv9Ssk080fqwva+ku9SF62V4/qA+ZIMr6Yz10E5NPNKoPEcv2+kF9yARR1h/rM3qCTzRe4u6b2q8ws80R1NMd6kP0sr1+UB8yQWT1x32MPg6faFQfopft9YP6kAkiqz/WQzciIhL/oRvMbDLBL9OMIhgP2wo87e4rIy2sC9SH6GV7/aA+ZIKo6o/10I2Z3QY8QvBmxxvAn8L5BWZ2e5S1pUt9iF621w/qQyaIsv5YD92E3/R4esoPgre2FwAr3H1iNJWlT32IXrbXD+pDJoiy/lif0QNJYGQH7SPCddlAfYhettcP6kMmiKz+uI/R3wIsNLM1QOvlS2OACcDNkVXVNepD9LK9flAfMkFk9cd66AaCX2MCziF488MIfnf1T+6eiLSwLlAfopft9YP6kAmiqj/2Qd+emc1192z/Xgz1IWLZXj+oD5mgr+qP+xh9R74YdQE9QH2IXrbXD+pDJuiT+k/GoLfON8l46kP0sr1+UB8yQZ/UfzIO3VS4e3XUdZwI9SF62V4/qA+ZoK/qj/UZvZmda2aDwvkiM7sLuM/MvmNmJRGXlxb1IXrZXj+oD5kgyvpjHfTAz4D6cP4HQAnwnbDt51EV1UXqQ/SyvX5QHzJBZPXH/Tr6HHdvCecr3X1GOL/YzJZFVVQXqQ/Ry/b6QX3IBJHVH/cz+nfM7MZw/i0zqwQws9OA5mPvllHUh+hle/2gPmSCyOqP9Zux4bjXD4ALgV3ADIJPpG0G/s7d34qwvLSoD9HL9vpBfcgEUdYf66BvZWbFwHiCoapqd98RcUldpj5EL9vrB/UhE0RR/0kR9B0xs4HufiDqOk6E+hC9bK8f1IdM0Nv1x32M/njejbqAHqA+RC/b6wf1IRP0av2xvurGzL56rFXAwL6spbvUh+hle/2gPmSCKOuP+xn9twh+jLe43TSQ7Om7+hC9bK8f1IdMEFn9sT6jB5YCT7r7kvYrzOxvI6inO9SH6GV7/aA+ZILI6o/1m7FmNgnY7e47O1g3PBverVcfopft9YP6kAmirD/WQS8iItkxrtVtZlZiZveY2Sozqw2nlWFbadT1pUN9iF621w/qQyaIsv5YBz3wKLAHuNjdh7j7EODDYduvI60sfepD9LK9flAfMkFk9cd66MbMVrv7pK6uyyTqQ/SyvX5QHzJBlPXH/Yx+o5ndambDWxvMbLiZ3cbhX2HPdOpD9LK9flAfMkFk9cc96D8NDAF+b2Z7zGw3sAgoAz4VZWFdoD5EL9vrB/UhE0RWf6yHbgDMbDJQAbyW+l0SZnaZuz8XXWXpUx+il+31g/qQCSKr391jOwF/B6wGngQ2AFelrFsadX3qQ3b0IdvrVx8yY4qy/rh/MvbzwEx3P2BmY4HHzGysu/8AsubX49WH6GV7/aA+ZILI6o970Od6+PLI3TeY2cUE/7jvIzueGKA+ZIJsrx/Uh0wQWf1xfzN2u5lNa10I/5GvAIYCZ0ZWVdeoD9HL9vpBfcgEkdUf6zdjzawCaHH37R2sO9/dX4mgrC5RH6KX7fWD+pAJoqw/1kEvIiLxH7oRETnpKehFRGJOQS8iEnMKehGRmFPQi4jE3P8H50NuO7MIc7MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A time-series similarity measure:\n", + "[[1.00000000e+00 8.44268222e-05]\n", + " [8.44268222e-05 1.00000000e+00]]\n", + "A covariance matrix:\n", + "[[269.60118129 25.42252332]\n", + " [ 25.42252332 7.86304499]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJMAAAD8CAYAAABzR5aaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAADENJREFUeJzt3VuIXeUZxvH/45jEqqjRsWhbNYpBDVarDmmtUAIajFaSC2NJbtSiBMQgFAoKgkKv0t6UiqElHvBw4YFc6CjBYFBR8JQRNB5CzBiQhqTm2NhQT6NvL/aK3e7smdmT9c6atWc/PwizZtaX/X0DD2tm1l7v9yoiMMtw1FQvwKYPh8nSOEyWxmGyNA6TpXGYLE2pMEk6WdKLkrYWH2ePMu5bSe8W/wbLzGn1pTL3mST9BdgXEask3QXMjog724w7GBHHl1indYGyYdoCLIiInZJOB16JiPPajHOYekDZMP07Ik5q+nx/RBz2o07SCPAuMAKsiohnRnm9FcAKgOOO1WXnnzvziNdWBx9vOnaql5DiP+zfExGnjjfu6PEGSNoAnNbm1N0TWM+ZEbFD0jnAS5Lej4hPWgdFxBpgDcDAxcfE2+vPmMAU9XP1T34x1UtIsSHWftrJuHHDFBFXjXZO0meSTm/6MbdrlNfYUXzcJukV4BLgsDBZdyt7a2AQuKk4vgl4tnWApNmSZhXH/cAVwEcl57UaKhumVcBCSVuBhcXnSBqQ9GAx5gJgSNJ7wMs0fmdymKahcX/MjSUi9gJXtvn6EHBrcfw68PMy81h38B1wS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaVLCJGmRpC2Shov6udbzsyQ9VZx/S9KcjHmtXkqHSVIfsBq4BpgHLJc0r2XYLcD+iDgX+Cvw57LzWv1kXJnmA8MRsS0ivgaeBJa0jFkCPFocrwWulKSEua1GMsL0U+CfTZ9vL77WdkxEjAAHgFNaX0jSCklDkoZ27/02YWlWpYwwtbvCtJYJdzKGiFgTEQMRMXDqKX0JS7MqZYRpO9BcevszYMdoYyQdDZwI7EuY22okI0wbgbmSzpY0E1hGozizWXOx5lLgpfA2v9NOqbo5aPwOJGklsB7oAx6OiA8l/QkYiohB4CHgcUnDNK5Iy8rOa/VTOkwAEbEOWNfytXuajr8EbsiYy+rLd8AtjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlqaoI82ZJu5u6Yd6aMa/VS+knLZuKMBfSKBzYKGmwTX+UpyJiZdn5rL4yHtv9vggTQNKhIsxSzXY+3nRs1/drW7/j3aleQoq+0zsbV1URJsD1kjZJWiupbVfC5iLMb/gqYWlWpaqKMJ8D5kTERcAG/l8q/sP/1FSEOYNZCUuzKlVShBkReyPi0KXmAeCyhHmtZiopwixarh6yGNicMK/VTFVFmHdIWkyje/g+4Oay81r9lGpFP5lO0MnxSx3WZLOrTJ+/5obfiYiB8cb5DrilcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJYmq27uYUm7JH0wynlJuq+oq9sk6dKMea1esq5MjwCLxjh/DTC3+LcC+HvSvFYjKWGKiFcZu0vTEuCxaHgTOKnluXCbBqr6namj2jrXzXW3qsI04eaFrpvrPlWFqZMGh9blqgrTIHBj8Vfdr4ADEbGzormtIin95iQ9ASwA+iVtB+4FZgBExD9o9KK7FhgG/gv8PmNeq5es5oXLxzkfwO0Zc1l9+Q64pXGYLI3DZGkcJkvjMFkah8nSOEyWxmGyNA6TpXGYLI3DZGkcJkvjMFkah8nSOEyWxmGyNFUVYS6QdKCpeeE9GfNavaQ8aUmjCPN+4LExxrwWEdclzWc1VFURpvWArCtTJy6X9B6NEqc/RsSHrQMkraBRPg5wcEOs3TLJa+oH9kzWi3faQTLBpH4fwFmdDEprxCNpDvB8RFzY5twJwHcRcVDStcDfImJuysQlSBrqpMFM3dXl+6jkr7mI+DwiDhbH64AZkvqrmNuqU0mYJJ0mScXx/GLevVXMbdWpqghzKXCbpBHgC2BZ1KPR3ZqpXkCSWnwftW1eaN3Hd8AtjcNkaXo2TJIWSdpS7LN511Sv50iM9zZW1XoyTJL6gNU09tqcByyXNG9qV3VEHmHsvUQr1ZNhAuYDwxGxLSK+Bp6kse9mV6nb21i9GqaO9ti0ienVMHW0x6ZNTK+GyXtsToJeDdNGYK6ksyXNBJbR2HfTSujJMEXECLASWA9sBp5u90hM3RVvY70BnCdpu6RbpnQ9fjvFspS6Mkk6WdKLkrYWH2ePMu7bpue//eNkmip1ZZL0F2BfRKwq7iLPjog724w7GBHHl1indYGyYdoCLIiInUVjnVci4rw24xymHlA2TP+OiJOaPt8fEYf9qCueY3oXGAFWRcQzo7ze98+AH3esLjv/3JlHvLY62Lr5hKleQorPv9m9JyJOHW/cuA/HSdoAnNbm1N0TWM+ZEbFD0jnAS5Lej4hPWgdFxBqKB70GLj4m3l5/RuuQrvLbS6+e6iWkeGHn6k87GTdumCLiqtHOSfpM0ulNP+Z2jfIaO4qP2yS9AlwCHBYm625l7zMNAjcVxzcBz7YOkDRb0qziuB+4Avio5LxWQ2XDtApYKGkrsLD4HEkDkh4sxlwADBU1cy/T+J3JYZqGShUURMRe4Mo2Xx8Cbi2OXwd+XmYe6w49+XaKTQ6HydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS5PViGfMXdgkzZL0VHH+rWIDeptmSoepw13YbgH2R8S5wF+BP5ed1+on48rUyS5sS4BHi+O1wJWHNpm36SMjTJ3swvb9mGIHkgPAKa0vJGmFpCFJQ7v3fpuwNKtSRpg62YWto53aImJNRAxExMCpp/QlLM2qlBGmTnZh+36MpKOBE6nRxp6WIyNMnezC1lysuRR4qSa9UyxR6UY8ETEi6dAubH3AwxHxoaQ/AUMRMQg8BDwuaZjGFWlZ2XmtflK6OhU95Na1fO2epuMvgRsy5rL68h1wS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsTVV1czdL2t3UwPDWjHmtXko/HNdUN7eQxrPeGyUNtmlp8VRErCw7n9VXVXVz1gMyHtttVzf3yzbjrpf0G+Bj4A8R8c/WAc3NC4/pO77r+7WN/OuzqV5Cpaqqm3sOmBMRFwEb+H917w//U1Pd3MyjfpSwNKtSJXVzEbE3Ir4qPn0AuCxhXquZSurmii6ZhywGNifMazVTVd3cHZIW02j4vA+4uey8Vj+luodPphNn/jh+3f+7qV5GKdPlF/ANsfadiBgYb5zvgFsah8nSOEyWxmGyNA6TpXGYLI3DZGkcJkvjMFkah8nSOEyWxmGyNA6TpXGYLI3DZGkcJkuTVYT5sKRdkj4Y5bwk3VcUaW6SdGnGvFYvWVemR4BFY5y/Bphb/FsB/D1pXquRlDBFxKuM3aVpCfBYNLwJnNRSZGDTQFW/M3XS4PAHzQu//u6LipZmWaoK04SbF7oIs/tUFaZOGhxal6sqTIPAjcVfdb8CDkTEzormtoqk9JuT9ASwAOiXtB24F5gBEBH/oNGL7lpgGPgv8PuMea1espoXLh/nfAC3Z8xl9eU74JbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydJUVYS5QNKBpk6Y92TMa/WS8qQljSLM+4HHxhjzWkRclzSf1VBVRZjWA7KuTJ24XNJ7NEqc/hgRH7YOaO6ECRx8YefqLZO8pn5gzyTPUYXJ/j7O6mRQWlcnSXOA5yPiwjbnTgC+i4iDkq4F/hYRc1MmLkHSUCfdiuquLt9HJX/NRcTnEXGwOF4HzJDUX8XcVp1KwiTpNEkqjucX8+6tYm6rTlVFmEuB2ySNAF8Ay6IeXRPXTPUCktTi+6htJ0zrPr4DbmkcJkvTs2GStEjSlmKfzbumej1HYry3sarWk2GS1AesprHX5jxguaR5U7uqI/IIY+8lWqmeDBMwHxiOiG0R8TXwJI19N7tK3d7G6tUwdbTHpk1Mr4apoz02bWJ6NUzeY3MS9GqYNgJzJZ0taSawjMa+m1ZCT4YpIkaAlcB6YDPwdLtHYuqueBvrDeA8Sdsl3TKl6/HbKZalJ69MNjkcJkvjMFkah8nSOEyWxmGyNA6TpfkfNWwLE1CFyHYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "wiki = WikipediaDriver(token = \"\",\n", - " tickers = [\"GOOG\"],\n", + "wiki = WikipediaDataProvider(token = \"\",\n", + " tickers = [\"GOOG\", \"AAPL\"],\n", " stockmarket = StockMarket.NASDAQ.value,\n", " start = datetime.datetime(2016,1,1),\n", " end = datetime.datetime(2016,1,30))\n", - "wiki.run()" + "wiki.run()\n", + "wiki.plot()" ] }, { @@ -68,6 +158,94 @@ "\n", "If you would like to download professional data, you will have to set-up a token with one of the major providers.\n" ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You need to replace REPLACE-ME with a valid token.\n" + ] + } + ], + "source": [ + "from qiskit.aqua.translators.data_providers.dataondemandprovider import StockMarket\n", + "try:\n", + " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", + " tickers = [\"GOOG\", \"AAPL\"],\n", + " stockmarket = StockMarket.NASDAQ.value,\n", + " start = datetime.datetime(2016,1,1),\n", + " end = datetime.datetime(2016,1,30))\n", + " nasdaq.run()\n", + " nasdaq.plot()\n", + "except QiskitFinanceError: \n", + " print(\"You need to replace REPLACE-ME with a valid token.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You need to replace REPLACE-ME with a valid token.\n" + ] + } + ], + "source": [ + "from qiskit.aqua.translators.data_providers.dataondemandprovider import StockMarket\n", + "try:\n", + " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", + " tickers = [\"GOOG\", \"AAPL\"],\n", + " stockmarket = StockMarket.NASDAQ.value,\n", + " start = datetime.datetime(2016,1,1),\n", + " end = datetime.datetime(2016,1,30))\n", + " nasdaq.run()\n", + " nasdaq.plot()\n", + "except QiskitFinanceError: \n", + " print(\"You need to replace REPLACE-ME with a valid token.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You need to replace REPLACE-ME with a valid token.\n" + ] + } + ], + "source": [ + "from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket\n", + "try:\n", + " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", + " tickers = [\"AIBGl\", \"AVSTl\"],\n", + " stockmarket = StockMarket.LONDON.value,\n", + " start = datetime.datetime(2019,1,1),\n", + " end = datetime.datetime(2019,1,30))\n", + " lse.run()\n", + " lse.plot()\n", + "except QiskitFinanceError: \n", + " print(\"You need to replace REPLACE-ME with a valid token.\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -90,5 +268,5 @@ } }, "nbformat": 4, - "nbformat_minor": 1 + "nbformat_minor": 2 } From f8408aa5384869e8e9a37cb879069a6b8cc39a84 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Tue, 16 Apr 2019 19:15:07 +0100 Subject: [PATCH 054/116] Minor improvements --- .../finance/data_providers/time_series.ipynb | 49 ++++++------------- 1 file changed, 16 insertions(+), 33 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index a3c423018..bb6641b93 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -161,40 +161,22 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { - "name": "stdout", + "name": "stderr", "output_type": "stream", "text": [ - "You need to replace REPLACE-ME with a valid token.\n" + "/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/urllib3/connectionpool.py:847: InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings\n", + " InsecureRequestWarning)\n" ] - } - ], - "source": [ - "from qiskit.aqua.translators.data_providers.dataondemandprovider import StockMarket\n", - "try:\n", - " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", - " tickers = [\"GOOG\", \"AAPL\"],\n", - " stockmarket = StockMarket.NASDAQ.value,\n", - " start = datetime.datetime(2016,1,1),\n", - " end = datetime.datetime(2016,1,30))\n", - " nasdaq.run()\n", - " nasdaq.plot()\n", - "except QiskitFinanceError: \n", - " print(\"You need to replace REPLACE-ME with a valid token.\")" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ + }, { "name": "stdout", "output_type": "stream", "text": [ + "'Accessing NASDAQ Data on Demand failed.'\n", "You need to replace REPLACE-ME with a valid token.\n" ] } @@ -202,20 +184,21 @@ "source": [ "from qiskit.aqua.translators.data_providers.dataondemandprovider import StockMarket\n", "try:\n", - " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", + " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", " tickers = [\"GOOG\", \"AAPL\"],\n", " stockmarket = StockMarket.NASDAQ.value,\n", " start = datetime.datetime(2016,1,1),\n", - " end = datetime.datetime(2016,1,30))\n", - " nasdaq.run()\n", - " nasdaq.plot()\n", - "except QiskitFinanceError: \n", + " end = datetime.datetime(2016,1,2))\n", + " nasdaq.run()\n", + " nasdaq.plot()\n", + "except QiskitFinanceError as e:\n", + " print(e)\n", " print(\"You need to replace REPLACE-ME with a valid token.\")" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -229,13 +212,13 @@ "source": [ "from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket\n", "try:\n", - " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", + " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", " tickers = [\"AIBGl\", \"AVSTl\"],\n", " stockmarket = StockMarket.LONDON.value,\n", " start = datetime.datetime(2019,1,1),\n", " end = datetime.datetime(2019,1,30))\n", - " lse.run()\n", - " lse.plot()\n", + " lse.run()\n", + " lse.plot()\n", "except QiskitFinanceError: \n", " print(\"You need to replace REPLACE-ME with a valid token.\")" ] From 56aa0ea33ea9888c12e1f7532378ed627328d5c0 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Thu, 18 Apr 2019 10:51:58 +0200 Subject: [PATCH 055/116] streamline all tutorials --- .../optimization/portfolio_optimization.ipynb | 1 - .../asian_barrier_spread_pricing.ipynb | 136 ++++++------------ .../simulation/basket_option_pricing.ipynb | 64 +++++++-- .../simulation/credit_risk_analysis.ipynb | 117 ++++++++------- .../european_call_option_pricing.ipynb | 42 +++--- 5 files changed, 179 insertions(+), 181 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index 17c1fb0e1..042776d81 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -15,7 +15,6 @@ "source": [ "# _*Qiskit Finance: Financial Portfolio Optimization*_ \n", "\n", - "Qiskit Finance is part of Qiskit Aqua.
\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", "\n", "***\n", diff --git a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb index 2844697bf..fb7233aed 100644 --- a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb +++ b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" ] }, { @@ -13,7 +13,6 @@ "source": [ "# _*Qiskit Finance: Pricing Asian Barrier Spreads*_ \n", "\n", - "Qiskit Finance is part of Qiskit Aqua.
\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", "\n", "***\n", @@ -61,16 +60,7 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\tools\\qcvv\\__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", - " 'functionality and more.', DeprecationWarning)\n" - ] - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "from mpl_toolkits.mplot3d import Axes3D\n", @@ -80,21 +70,10 @@ "\n", "from qiskit import QuantumRegister, QuantumCircuit, BasicAer, execute\n", "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "\n", - "from arithmetic.weighted_sum_operator import WeightedSumOperator\n", - "from arithmetic.univariate_piecewise_linear_objective import UnivariatePiecewiseLinearObjective as PwlObjective\n", - "from uncertainty_problems.multivariate_objective import MultivariateObjective\n", - "from arithmetic.fixed_value_comparator import FixedValueComparator as Comparator\n", - "from random_distributions.multivariate_log_normal_distribution import MultivariateLogNormalDistribution" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "backend = BasicAer.get_backend('statevector_simulator')" + "from qiskit.aqua.circuits import WeightedSumOperator, FixedValueComparator as Comparator\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective\n", + "from qiskit.aqua.components.uncertainty_problems import MultivariateProblem\n", + "from qiskit.aqua.components.uncertainty_models import MultivariateLogNormalDistribution" ] }, { @@ -117,12 +96,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# number of qubits per dimension to represent the uncertainty \n", - "num_uncertainty_qubits = 3\n", + "num_uncertainty_qubits = 2\n", "\n", "# parameters for considered random distribution\n", "S = 2.0 # initial spot price\n", @@ -156,12 +135,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXmcHXWd7/2ps2+9pLuTppNOyNpJN5CFpNO5CmpYJDIaGYdRGBBHRJhHGJnHe90YBxBHxavzOCrPjONycRm5cBGcjI6iEUdHYMhGEkzS+77v3Wdfqk7dP3p+xTndZ69fnao+5/t+vfKCnJyu+tXpOlWf+m4fQZZlEARBEARBlDImvRdAEARBEAShNSR4CIIgCIIoeUjwEARBEARR8pDgIQiCIAii5CHBQxAEQRBEyUOChyAIgiCIkseS5d+pZ50gCIIgiNWCkO4fKMJDEARBEETJQ4KHIAiCIIiShwQPQRAEQRAlDwkegiAIgiBKHhI8BEEQBEGUPCR4CIIgCIIoeUjwEARBEARR8pDgIQiCIAii5CHBQxAEQRBEyUOChyAIgiCIkocED0EQBEEQJQ8JHoIgCIIgSh4SPARBEARBlDwkeAiCIAiCKHlI8BAEQRAEUfKQ4CEIgiAIouQhwUMQBEEQRMlDgocgCIIgiJKHBA9BEARBECUPCR6CIAiCIEoeEjwEQRAEQZQ8JHgIgiAIgih5SPAQBEEQBFHykOAhCIIgCKLkIcFDEARBEETJQ4KHIAiCIIiShwQPQawyZFlGPB6HLMt6L4UgCGLVYNF7AQRB5E48HkcsFkMoFIIgCLBYLDCbzcofQRAgCILeyyQIgjAcQpanRHqEJAgDIMsyYrEYJEkCAESjUQiCoER7mMgRBAFmszlJCJEIIgiijEh7sSPBQxAGRpZliKIIURQBQBEuTPCkej/7w/5uMpmSRJDJZILJZCIRRBBEKZL2wkYpLYIwILIsQ5IkiKIIWZaTojSZHlJSRXMStwUAAwMDuPzyy2GxWGC1WkkEEQRRFpDgIQiDwep0WKrKZFLXW7BcBM3NzWHLli2Ix+MIh8NJ72WRIIvFQiKIIIiSggQPQRiEeDwOURQhSZIiUrQQG2yby4UUqweKRCIIh8PK+1gtUGJKjEQQQRCrDRI8BKEzsizD7/cjFAqhoqJC8yJjVuyc6vVU6bB4PA5JkhCNRpXXTSaTEgkiEUQQxGqABA9B6ERibc38/DwWFxdRVVWl97KSSCeCZFlGNBpNK4JYoTSJIIIgjAIJHoIoMkwwJNbpmM3mog0STBfhyefn8xFBy1NiJIIIgtADEjwEUUTSFSSrFSH5wntf6UQQsFQkPT4+jqamJsiynLImSG1hNkEQRDZI8BBEEUg1TydRIBRT8BQrwrK8ODoxihWLxZJmCSVOjWYpMRqYSBAET0jwEISGsDqdWCwGIHUkhL2+WlJahexv+f+bzWblNbYWURTTiiCaGk0QhFpI8BCEBrDuplgstmJwYCpMJlPZmoEmChwWDcokgsg6gyCIQiDBQxCcKWRwYClHeAohlQgCVk6NJusMgiByhQQPQXAiW51OJgRBQDwe13J5SfsyuuBJRy7WGQCUCdLV1dUkggiCAECChyBUk2udTiZWswjRm1Sft9/vRzAYhMPhSHqdrDMIonwhwUMQBcLqdEZHR+HxeOByuQq+eeYreNTcpPUQV3qIOZbqSlwDWWcQRPlCgocgCiCxTmd2dhZWqxVut7vg7a32OTyZMIp4IOsMgihvSPAQRB6kqtPh0WFVinN49CTXz5KsMwiifCDBQxA5kKkg2WQyqS44zlfwsFb3YuxrtaLm88lXBC2fFUQQhPEgwUMQGUjsAEo3T4eHgCjnOTyrgUzWGUwAhcNhzM/PY8OGDWSdQRAGhAQPQaQh13k6ekR4Vsu+GKUo5pZPjY7H4/D5fADIOoMgjAgJHoJYBnMylyQJQPY2cx4CopA5PIWmtfS0ligWegisxAggWWcQhPEgwUMQ/0WhgwOLHeFh6yrFqAlPii0c0glQss4gCGNAgocoe3Kp08kErwhPKae0yoV8Jmuz/5J1BkEUBxI8RFlTiO/VcnjYQlBb+uqHx+8vV+sMYKl2yGq1kggiiBwhwUOUJbIsIxAIYGpqCuvXr1eVNjCZTEq9T6HokX4pZfSs4eFNpoGJ4XAYHR0d2LFjR9LEaLLOIIiVkOAhyorEOp1oNIrJyUls2LBB1TZXW4qoXLq0jFLDowWJIigUCilRHrLOIIj0kOAhyoJUdTpms5nLjZhH0XIpUy43V71EL6vzycc6g0QQUY6Q4CFKnnR1OryECkV4jIdex6eXaEi330L9w8g6gyhFSPAQJUs8HocoipAkSbnwJ17AeU03Xm0RnnIQPEBpp7TUQNYZRLlCgocoOXKdp8Oju4ptp5gCQhRFDA8Pw2KxoLKyEi6Xi25CBmA1i8hcrDPYaywFtrw4miCMDgkeomTId57OaktpybKM8fFx9Pf3o76+HpFIBP39/QgGg7BYLKioqEBFRQUqKyvhdDozpjlW883ZyJSS8FxunQG8IYIikQhOnz6NvXv3Ku8l6wzC6JDgIVY9LByf7zwdXhfjYqS0vF4v2tvbUVFRgdbWViU6xY4hFovB5/PB6/VienoaoVBIiQAxIZQogkq9S0uP9NJqSWmpYfnAxMTCf7LOIIwOCR5iVcNjcKBatIyYRKNRdHV1IRQKoaWlBRUVFQCWBE4iVqsVNTU1qKmpSfpZn88Hn8+HqakphEIhWK1WSJIEWZbhdrvhcDg0vwEZrZBXK8pB8DDi8bjyXSPrDGK1QIKHWJUU6nulBVpEeOLxOIaGhjA6Oopt27ahvr4+7+Oz2Wyora1FbW2t8lo0GkV3dzfC4TC6u7sRCoVgs9mSIkHFEEGlSDkJHtYKn45crTPYe8g6gygGJHiIVQUTOmNjY1i3bp0hng55R3hmZmbQ1dWFtWvX4tChQ0k1FGqx2WxwuVzweDxYu3YtgKV6DBYJGh8fRzgcht1uV+qBKioqYLfbdf+cCeOQmE7NB7LOIPSEBA+xKmCzQ1j6qq+vD5dddpneywLAL8ITj8dx9uxZCIKAffv2wel0cljdSpYLNLvdDrvdjrq6OuW1SCQCr9cLn8+HsbExhMNhOByOpMJom81m2BtQKVlLGJHElJZasllnJMJGSbhcLhJBRN6Q4CEMz/I6HZ4RDx6ojfCIoqh0WzU3NyeloLQi23rtdjvWrl2rRIFkWU6KBI2OjiISiSgiKDESZBSohkc7tD7WdCJIFEWcP38ee/fuJesMIm9I8BCGxUh1OpkoVPAktpk3NjbC4/FgzZo1GqwwmUJTEQ6HAw6HY4UI8nq9WFxcxMjICCKRCJxOZ1IkiL231CmHY2TwjPDkSqLAsViWbl1knUHkAwkewnCwnD7rRDKq0GEUktLyer3o6OiAx+NBa2srbDYbxsfHi3LT5FVzlCiC1q1bB2DpdxcOh+Hz+bCwsIDh4WFEIhElisUiQTabTfX+jUi5uN7rIXjYfhMjvGSdQeQDCR7CMCTW6eQyOJAH7OavZj/5CAjWJRUIBNDc3Ky0mee7HbVotR9BEOB0OuF0OhURFAqF0NHRAZfLhfn5eQwNDSEWi62IBFmtVm7r0KuGp9giQK80ml77lSQp62dM1hlEOkjwEIZAr3k6bICfmrqgXCI8y9vMW1paVlxY8xE8agqli31BZ3VX9fX1qK+vB7B0AwqFQvD5fJibm8Pg4CBEUYTT6UxqkVcjgsoh2qKX8NAzwlPIfvO1zkjVJk+sfkjwELqid50OEw5qBE82oZJrm3k+gkfNzdUI1hKCIMDlcsHlciWJoGAwCJ/Ph9nZWQwMDEAURbhcLkUAqRVBWlMuhdJ6RLMA/t1hQGrrjFgstmJgIjsXrVYrWWesUkjwELrAQ+jwuNjzcExPF20JBoPo7OwEgJzazHm5txuNXH9HgiDA7XbD7XYrIweYCPJ6vZiZmUF/fz8kSYLL5UqKBLEiVj3RQ3zoGWkpxchSJhF04cIFtLS0KIKbrDNWH/pfJYiyIl+Dz3TwiMwAfBzTl0dMWIHuzMwMmpqacm4zL1bkRY8IT6H7SxRBDQ0NyrYCgQB8Ph+mp6fR19cHSZLgdruVeiBJknguPyfKyb9rtaW01MA+33g8DpvNlvRgQtYZqwsSPETRkCQJ4XBYCQeruXDxEjw8hgayi5ksy5iYmEBfXx8aGxvR1taW1zHmK74KvdnxEHl6IggCPB4PPB6PIoLi8bgSCZqcnMTMzAwEQcDc3FxSOkzLGU5Uw1O6+wWS03hknbE6IcFDaA5zMl9YWMDg4CCuuuoqLqkoHjdtXtuRJAmnTp2C2+1W2szzxQi1NasVk8mkiCAAcDgcsNvtcLvd8Pl8mJycRE9Pj2KayiJBHo+HqwgqlwhPKdTwaAFZZxgbEjyEZiyv0zGbzdxy/zwFjxqRkWjGuWfPHmXQXiGUckqr2DAhwCI7jHg8jkAgAK/Xi/Hxcfj9fsiyDI/Ho7y3UBFUbiktPeqmJEky3KT1bORjncEiQWxWEIkgvpDgIbiTrk7HYrFwS6XwEjyFpnfi8TiGh4cxMjKCrVu3YmFhQZXYYWspdSFSTFLdKEwmU0oR5Pf7Fd8wv98PAPB4PEphtMfjyRpZKLei5XLaL28yiaBIJIJwOJyUNovH43C73TQ1WiUkeAiuZJqnYzKZuBWT6pnSmp2dRWdnZ1KbeX9/v+q1lGqEx+hCzmQyobKyEpWVldiwYQOApUgCiwSNjo7C7/crtUMsHeZ2u3W/+Zbb4EG9IkvFIJ0ICgQC6O/vR0tLi/I6WWcURmmeOUTRYXU6kiQpX9zlX0BeIoXntvLZTmKb+d69e+FyuVTvP5F8hEGxJkOvVtQen9lsVkQQQ5IkJRI0PDyMQCCgiKDKykpEIhG1y84bKlou3n71+JzZd5UJG4CsM9RAgodQRT7zdIwoeHJJaRXaZp4vpTqHRy94X+zNZjOqqqpQVVWlvMZEkNfrhdfrxcLCAgYGBpIsM1wul2Y36XKM8BjBw6uYLK9bIuuMwiHBQxREIfN0eN7Qi1G0rLbNPF9KNaVVyiSKoHA4jNraWlRWViqRoMHBQQQCAZjN5qT2eF4iqByFhx77zcXDS8t9ZxNb+VhnmEwmfO1rX8PDDz/Mf7EGhwQPkTd6+V4lwjq+1JJOODE3czVt5vlSrPk4JHi0gxXnV1dXo7q6WnldFEX4fL60IohFgvIVL+UmPPQUPEaJ8ORKuqnRgUAAv/jFL0jwEEQm4vE4RFHMWKdTLLSq4Ul0M9+1a1denVfFdF1fbayWyc5q95nu92+xWLBmzRqsWbNGeS1RBPX39yMYDCq1Q4mRoEznFM3hKe39AkvnCa9CbUEQ4Pf7lXlV5QYJHiIreht8poJnDQ8rAkxsM0/lZp7LdlaD4NGjS0sPjD4TJ5UIisViigiamZlBMBiExWJJigQ5nc6k6d56pbT02K9ekRa9Izw8O9P8fr/qERqrFRI8RFpYnc7g4CDq6upgt9t1FzoMXukfk8kEr9eLoaEh1NXVZXQzz7YetSKilCM8RG5YrVbU1NSgpqZGeY2JIK/Xi+npaYRCIVgsFlRWVirFqsUWPuUWadG7aNlut3Pbns/nS5pDVU6Q4CFWwC6grE5ndnYW1dXVcDgc3Lav9uJsNptVz/QJBoMYGRmBLMvYt2+fqjZzHmKlWF1aJKy0QSvRkUoERaNR+Hw+ZVr0qVOnYLValShQRUUFHA6HZiKo3FJaRi9azgefz0cpLYIAUhck8xAXDB6pH2BJHMRisYJ+VpIk9PX1YWZmBnV1dbBarapn6vAyISXBwwej1fDwxmazoba2FrFYDJWVldi0aZMigrxeLyYmJhAOh2G1WpNqgniJIL1SWlS0rB6K8BBlT6Y6HZ6ChwkDtRetQqIhqdrMJycnEQqFVK0F4JfSylU0GSW1mCt6CBCj1/Dw3icTQYlzoiKRiFITND4+jkgkApvNlhQJKiRVXY4prVKJ8Pj9fhI8RHnC6nRYtCTdhGRegoeJJ7VFePlGVNK1mRvJdb1UIzyrTZytJrKJLLvdDrvdjrq6OuW1SCQCr9ereIeFw2E4HI6kwuhsNSPlNv+n1CI8VLRMlBWsMykWi2UdHMhr5g1QfIGRrc2cd7eX3tvIlVJPaemB3hGeXLHb7Vi7di3Wrl2rbINFgph3WCQSUURQYiSIoZfwKEcPL96CJxAIYNOmTdy2t5ogwVOG5Ds4UIuUFo/tZFpTrm3mvAqFeXSNFTPCU+qUeg1P4j7VCg9BEOBwOOBwOFaIIK/Xi8XFRYyMjCASicDpdKKiogKiKCIWixVlIGciegmeUorwUEqLKAsKnafD0wOLl3jKtKbZ2Vl0dXWhrq4ObW1tGZ/MeLa3r5YITzkULQP61PAUG60EQKIIWrdunbKvcDgMn88HSZJw8eJFxGIxOByOpMLoYougYlBKgoeKlomSJpc6nUwYNcKzfDuJbuZ79uzJqfPKaCmtYllLENpQ7M+2mN1SgiDA6XTC6XRicHAQ+/btgyzLCIVC8Pl8mJ+fx+DgIERRVCJBTAhZrVZua9ADPefw8Ba1FOEhSpJ86nQyYTabkwzo1KCF4GFt5tPT09i5c2debuZGKlo2mUxK9C0T8Xgc/f39WFhYUG4qlZWVedUYlIPVQ7FZrSktNQiCAJfLBZfLhfr6emVNTATNzs5iYGBAEUGJkSBeIqgY6DmHhzdUtEyUHDwNPnlGeHimtCRJwvj4uNJmfujQobyPk1d6p1hFyzMzM+jq6kJ9fT02b96MQCCAmZkZ9Pf3Q5IkuN1uRQB5PJ6UT6Xl0KVVSuklo+0zG+lEUDAYXCGCXC5XUiQom2jXSzjrGeHhDVlLECUDq9Pp7+9X8u88hvwZrUsrGAxibm4ONptNlZu5kSI8mVJaoVAIHR0dEAQB+/btg91uRzQaRUVFBS677DIASxflQCCQNIFXluWkdmO3261qjasJowkBLTCi4EmFIAhwu91wu93K+cpEELPM6OvrU0Q7O2cTRZCex6pXhEcLgUeCh1j1LC9IZtYQPC4QRorwsDZzn88Ht9uNK664QtV6jFbDs3wb8XgcAwMDmJiYQFNTkzJPJVXthslkUm4S69evB7B0ofb7/YpfWCAQUH5+YmJihRklUTgU4cmPRBHU0NAAYOl4mGhfLoI8Hg/i8ThX9/Bc0atoWYvIUjAYVD1ZfrVCgmeVwwqSRVFMqtOxWCyGi8qo2dbyNvMdO3bg3LlzXNbD4ylKi8GDLH112WWXFZSuA5YEZlVVFaqqqpTXFhcX0dfXh0gkgt7eXoRCIcWCQM303XJHD/Ghh8WDlmklQRDg8Xjg8XgUERSPxxEMBjE/Pw9RFHHu3DnIsrwiEqSlICm1gYelUo+ULyR4VjGZ6nTMZnPBXlPL0btLK1WbuSRJ3CIzRovwhEIhdHZ2KqamTqdT9foSsVgssNlsuPzyy5XXotEovF4vvF4vxsbGVgyeq6ysXFVFpuUSbdGjaLnYx2kymeDxeGC1WjE3N4c9e/YkpW8nJyfR09OjiCAm2tPVsBVCqQiecmgeyAQJnlUIS1cxEZKq+8psNufU8ZMLvFNakUgkp/eyuhVgZZu5kWpvAD6CR5ZlzM/PY2ZmJil9len9hdx4Uq3VZrOhrq5O2WfizJXEdmOXy5XUaZNraqHcL7RaUS4iC0iuo0lM3zKYCPJ6vUk1bB6PJ6mGrVABUSoDDwvt1i0FSPCsIvIZHMjTDqLYEZ5c2sx5fWGNIpxmZmbQ0dEBm82Wc/pKy4tW4syVxMFzrMh0amoKvb29SU/VrDNs+drL5eJaLlElPZ3SM93804kgv98Pn8+H0dFR+P1+AIDH40mKBBk1xcNb8MRisZLpNisEEjyrgHR1OpnQOw1VyLZkWcbk5CR6e3sLbjPPF73b0sPhMDo6OiDLMpqamjA/P6+52Cl0ramKTNkNhXkw+f1+CIKQ1GrMOyWXC+UiPvQSPKvFsdxkMilifMOGDQCWRASLBCWes8sjQUYQQVpMWfZ4PNy2t9ogwWNwCp2nY+SUVqpt+Xw+tLe3r3Az1xq9IkWpuq8WFhZWnbVE4g2FIYqiIoIGBgYQDAYRCoXQ3d2tvNfhcJRc5EePtJ1eRcurRfCkwmw2rzhnWTejz+fD8PAwAoGAItwrKiqUmsFiHzfZSvCFBI9BSazTYREdvewgeF5QlwuDbG7mq4V8RMTs7Cw6OztXdF8Vy1pCaywWC6qrq1FdXQ1g6UZ1+vRp1NTUwOv1YnJyEuFwGDabbUVn2GqnHMSHniktrY41VTdj4kiHaDSKM2fOJImgyspKuFwuTT9/URTJOJQjJHgMRqEGn8vhWcPDEyZ44vE4RkZGMDw8nNHNfLUgCEJWgZmYvkrVfZVv5IVn0bLWmEwm1NbWJtVjJbpxDw8PIxqNJk3ezdcuwwhQSqt09stEkMfjwfT0NK6++moleunz+TA4OIhAIACz2ZzUHu92u7n9TsgpnS+r62pSwvASOgyeKS2emM1mBINBnDhxIic389VCpnk+iemrHTt2YO3atSnfl68QKfT8MIrVg91ux9q1a5XPg7Xke71ezM7O5mWXkWp/q1lA50q51A0B+raGs/0uj14CS1EYn8+XVgSxSFAhn1k8Huea3qeUFqE7rE7nwoULaGxsTPoyFQrPlBYvWJt5IBBAW1sbl2mfRrmxpRMrLH1VX1+ftQi7mJEXI3ppJXowJdplsM6wTHYZRigw1QOK8GhPtiiLxWLBmjVrsGbNGuU1JoK8Xi/6+/sRDAZhsViSIkG5iCA2CoIX5WwcCpDg0RU2Jp3V6Ri17kYtiW3mmzdvxvj4OJcvMRMIRjjW5bVJ2dJXqSiW4NEjpVUobOicx+NJaZfBCkxZSzKLBK2W41NLOQkevfysCjneVCIoFospkaCZmZkVIiiVzYsWKS3q0iKKSrr0FZsgbERYQW0+X/zENvMNGzbg0KFDkCQJIyMjXNbERIYRnu6ZiIjH4xgcHMT4+HjG9FWmbRiRhXAI1Y7it5enIlWBaeITdW9vL+bn5+H3+1FTU6PcTErRLkOP81/PlJYeM2R4iQ6r1YqamhrU1NQorzERxAxUQ6EQLBaLUsgfiUS4/n59Pl9e16RSgwRPEck2T8fIgocVQef65WNt5i6XK6nNnIkCHvCcD6T2Im4ymRAIBPDqq6/mlL5Ktw0jRnhCYghf+MO/4/0b9uGq9Q0arqxwlj9Rt7e3o76+HvF4XEmHRSIR2O12JQq02uwyUlFOER7e9Sy5oqVxaCoRFI1GlUjQ4uIi/H4/7HZ70myrQsc6+P1+bN26lechrCpI8BQBWZaVNvNM83SMWHfDMJlMkCQpa4FxNBpFT08PfD4fdu3alfQUzrbDcwI0T1uIQm8c4XAYfX19CIfDaG1tLXjQnlFTWhe8XYhCxv8aeg3v816JQ7suz/5Dy/anB1arFRUVFZrZZRiBchM85bBfm82mdDR6vV40NTXBZDLB6/XC5/NhYmJCGeuQWBOUiwiiLi1CU/IZHMjT8JPB64KYTYwltplv2bIFzc3NKfer5UwftdvJ96KWmL5qaGhAKBRSNVXYqHN4+nyTAADZDDwzdQFBfwzXHdiu86ryJ5tdxvT0NPr6+hCPx7PaZRgF6tLSHi0jPLnu22q1JnndAUtjHVgkaHx8HOFweEUkaHkal7q0CE0opM3cYrEgHA5zWwMTKTyeWDMJHuZmXltbW9Q2c56CJ9/IyvLuK6/Xi2AwqGodRozwhMQQ5qMhsEuF7AT+db4D/t9FcfStLRquUh25Hl8mu4xE/6XlA+d4zlpRC0V4SnO/QGaxZbfbYbfbV4ggFgkaGxtDOByGw+HAT37yE+zcuRNerzcnwfPCCy/gwQcfhCRJuOeee/CpT30q6d//4z/+A3/1V3+F119/HU8//TRuvfVW5d++//3v42//9m8BAJ/5zGfwgQ98oJBD1wQSPJwpxPeKwXt2Ds/hg6nERSgUQmdnJ+Lx+Ao382LA0+k81+2k677iIVaM2Jbe6e/EXGTZ+Vst4MXRPoR+EcP73rFHg9XxoVAhkM5/iRWXslkrrMOm3DrDyk146BnhyXeSdqrZVuFwGDt27MCpU6dw9uxZ3Hbbbdi+fTsOHDiAAwcOoLW1VYl4AkvHe//99+P48eNobGxEa2srjh49ipaWNx5wNm3ahO9973v4yle+krT/ubk5fPazn8Xp06chCAL279+Po0ePJnWr6QkJHk6wYtxYLKYInXy/nLxreJiA4lHol7g2SZLQ39+PqakpxQdKD1hdEY/tZBM82bqveIivYkZ4ciUQH4MvuvI8FjYIeLl9EP7novjQn7TyXJ4hMZvNKwbOxWIx5Wl6cnISwWAQ586dKzm7jOWsdi+tQva7WovbWRr3jjvuwB133IF3vvOdeO655xAMBnH69Gm88sor6OnpwYMPPqj8zMmTJ7F9+3aluPm2227DsWPHkgTP5s2bAWDF7+OXv/wlbrzxRqUI+8Ybb8QLL7yA22+/XeMjzQ0SPBwo1OBzOby7tHibfoqiiImJiaQ2cz1rG3jX8KQjMX3V1taW8mlvNUV4chU8ITGEKkcQEcmReju7TDh3chzf+MHLeOD9bzJMiqdYWK3WJLuMU6dOobm5OckuIxaLwel0JtVVrNabJyMej+tS2K1nhKdUhKvf70dlZSXq6uqwadMmvOc971nxntHRUWzcuFH5e2NjI06cOJHT9lP97OjoqPqFc4IEjwqMbgfBU/DEYjF0dXWhurqai5s5j8JHrWt4wuGwkrLbu3dvxpTdaorw5EqnvxOCBUh3VIIgwHTQhM4XZ/Dlf/odPn7fWw0jevT6HLW0yzAK5TZ4UM+UFm8kScoquFN9d3L9Xqv52WJAgqcAWJ1OMBjEhQsXcPXVVxelE0qP7bE285mZGWzYsAHbt6vvzmHiQO1FhNfcmuU1PIUMD+QV4TESgfgYFgImAOnXJQgCzNebMXRsAZ/76ov49EcPw2oxxs3BCJ9nPnYZHo9HEUFGtssot8GDeqbSeH7OuV6fGhsbMTw8rPx9ZGREmXKey8/+9re/TfrZt73tbfksU1NI8OTB8jq8Td6nAAAgAElEQVQdi8WCaDTK7aQ0UkpLlmUMDw8rbeY8L8A8BQ/vGp5c0lepMFp0Ri3B/0pntS9kT78IggDzUQum/rcfn/2fv8Zn/vt1cNhXd9pGSzLZZfh8vpR2Gbl6LxUDKlou3n61ON5s51Brayu6u7vR39+PDRs24Omnn8ZTTz2V07ZvuukmPPTQQ5ifnwcA/OpXv8IXv/hF1WvmBQmeHElXp8PzJsfrBs4oVPDMzc2hs7Mzqc18ZGSEaz1QLqHVbPBMaUUiEZw/fx6SJGVNX2m5lnzQ8ubX5e+EwwHMhnI0/jQJML/XgoXvh/DI54/jrz95HSrdqWt/isFqE5/Z7DKY7QAbpqhnZ1g5Fi3rJXh41krlGjGyWCx44okncNNNN0GSJNx999244oor8PDDD+PAgQM4evQoTp06hT/+4z/G/Pw8fvrTn+KRRx7BxYsXUVNTg7/5m79Ba+tSI8PDDz+cNEVab0jwZIF3nU4meG83X8GTqc3cbDYjGo1yWVexio1zgVkPTE9Po7m5uWCfmVKL8ATiY3AA8MZyPycFqwDznRYE/lcUn33s1/j0Q9ehrqq4owqS1mOAaIgaUhlQRqNRpTNsfHwcwWAQ58+fT+oM09p+gXeqJVf0SqWVSu1QIBCA2+3O6b0333wzbr755qTXHnvsMeX/W1tb03oi3n333bj77rsLX6iGkOBJQzGFjlbkKnhyaTPnWV/EU/CoWRNLX5nNZuzcuVOVqZ4eER6tYOksAAiL+Z3zgkOA+Q4LIt8X8fnPvoiPP/RWrK+r1GKZZYnNZkuauHvy5Ek0NTUpdhlDQ0OIxWKa2mXoOYhPL8Gzmk1LGT6fr6yd0gESPCmRJClpnk62L5leTx7ZyBaVSeVmnu5CxtsDi1ftTSFWHKz7iqWvxsbGVK+llCI8LJ0lxgGpgEMSqgSY32tG7P9I+NJnf4uPfurN/BdpMPT63ethl6FXSksvSqV2qNx9tAASPClhF69cTnJeBbjL969115fP50NHRwecTicOHDiQdc6EUSM8+Wwnsftq+/btyg2CR7eXHoJHK6HN0lljWTq0MiFcZoLpZkD6uYS//9uXcPjdNSjmeMJS+V1k22cq0tllBAIBeL1e1XYZeqW09KJUIjwkeEjwpCSf9JXFYoEoitxOTGYHwWN7qURKNjfzfLZVKHoIHlaIvXbt2hXdVzxMO0vlBpCYzloSPIUjbBNgusaE+Etx/Oa5WTRuGsbBlo3Zf5ATpfI7SUc+woN1fFVUVKywy/D5fCntMioqKuB0OlfsQ6+Ih54R1FJIpZW7cShAgicl+ZzcTPDwmsTJhg/yFjzL28zTuZmng2cHGc+UVjahkpi+Suf3VUr1N2ph6SwAmAmpFDyCAOwzQfAD8rk4fvCVMwh8JIrDB7ZxWKmx0CvCo0Z4pLPLYJ1hk5OTCIfDsNlsigBinWHllNLSCxI8/CHBoxIjzc5Jt61UbeaFbEtLI1Le24nH4xgaGsLo6Ch27NiRZI6n1XqKCYtC8r7RBuKjYM3ki8tNQwtAEASYrjVB8sWBXuC5J/6A4Iei+KNrm1Vv20joJXh479NqtaKmpiaplZg5cLN02OLiItrb21FdXV00uwyj1klqCe+2dBI8JHhUw9sOgqeAisVimJ2dhSiKqt3MV1NKKzF9dejQoaxPSTxSWsUmGo1iYGAADocDlZWVKVMP+bKUzgopfw/l2aGVDkEQYH6HBdKzIjAJ/OLbnYhFYrjlht1ctp8KPWp4ik2xRMByu4wzZ85g27ZtCAaDmJ2dxcDAAERRVIqiWeqMZ3RCz84wveCZOQCMUcMjy7KuEUISPCkoJKXFCx4CirWZT05Owm634+qrr1a9LqN2aSWuKZf0VbrtFNLtpQeyLGNsbAwDAwNoaGhAOBzG1NQUwuEw7Ha70oVTWVmZ91N3YjpLlgGR4z1cMAkw/4kF0j+LgBf49Q/64DGLuOGw+nMz7T6LHBEohQhPrrhcLlRUVKC+vh5Asl3G5OQkenp6uNpllGPdkBZFy8zeRA8Su54XFhYUyyKTyQSXy4W6ujrU1taiurpas4ghCR6VGCmltbzNvLW1FWfPntV9XcvhbQmRT/oq03aMQrobmd/vx6VLl+DxeHDw4EHlaYmltljqYX5+HoODg0lP3ezJO9NNIzGdNREUUGiHVjoEiwDz7RbEnxQhR4F/eXIQUlzGTdfv57ofPdBDfOjVLZVKfCTaZTAkSVI6w5bbZbB6oFztMvQUPHpFI0otpSUIAn7605/il7/8JS5cuKCcG36/H7FYDB6PB1u2bMG1116L22+/HTt37uS+BhI8KjFKSitVmzkzOeUBzwur2WzmElExmUwIh8M4ceJEzumrdNsxiuBJVZcjSRJ6e3sxNzeH5uZmpbMuccaSIAhwOBxwOByK4Et86h4bG0tqRY7FYggGg0oqbHk6a8yvzUVesAtYd48DU98MQ44L+On3hhGPy3jHjQc02V+xWI1Fy2rI5VjNZrMithmJdhn9/f0IBoOwWCxJkUm73W6YzjC9piyzfZdKW/r4+DhuvfVW5Xe9d+9ebNy4EevXr4fD4UAsFsPo6CjOnz+P733ve3j88cfxrne9C4899hiam/nV+5HgSUG+Ka1IJMJt3/kKqExt5kYt8uMR4WHpq0AggEOHDqmqTzLS0MDla5menkZXVxcaGxvR1taWd2fdcpNKdsOZmZlBb28vQqEQbDYbvDVeJAbGplV2aGVi1iJhx31WdP3jkuj9tx+MIC7F8UdHDnLbRzkUua7GY0xnl8FE0Pj4OCKRiJKeZZGgUhn+p+e+9a7hueaaa3D06FHs3bs3q8XF2bNn8fWvfx1HjhzBP/7jP66wuSgUEjxpyPUmaLFYEAgEuO0319SR2jZzPVETUUlMX23ZsgWiKKoSO2rXwxt23oXDYXR0dAAA9u/fD4eDjxEnu+HYbDZcddVVAJa6cE76jye9byGi7c2lzwpsucOO/h8tPSz84kdjkOIncPTmNk33qxWl0qWlBzabDbW1taitrQWApPTswsIChoeHEQ6HIcsyBgcHFSHEM92TDj2LpbUQPInRtmLS0NCAL33pS8rfJUlSzl1ZlpOOU5Zl7Nu3D08++aQSmeYFCR6V8KxtAZZuSOFwOON7eLSZ64laF3eWvmKiTy08BY/am5AgCBgaGsL4+DiamppU+XvlimSOY40z+ZwLcOrQysRwbRzr/kjA1L8tPVj86n+PQ5ZexbvfdUjzffOGBA8/UqVn5+fnMTY2BrvdroldRjpKLcKjl+BhMAG5/LgkSYLX64Xb7U4yv2WRaV6srjulASlml1YmN/NiweMim6/AiEQi6OzsRCwWSzpuVrCsFh7WEkDq+pt8WFxchNfrRWVlZcH1SIWQ2J0FLHVoxYoU8JrfZkHtNTHMvrT09+P/ZwJS/BW8591vKs4COEGCR1tkWYbdbsdll12mdBrxtMtIB2/boHz3zVPA+Xw+XQVPuuN59dVX8cILL2BxcRH19fU4evQoWlpaNFkDCZ405JPS4i14lkc/cnEzzwSvCyOvQXe5Cp5s3Vc8hQrPuUD5XqRisRi6u7uVHPvmzZuLepFN7M4CgPkIwLtDKx0yAP9+C6q8IhZfX3rtNz+eQjz+Mm7948JNR8tBDJTTxON0nWGp7DL8fj+8Xq9il5FYPJ3OLiMdehYtA3zrMCORCLfUeCGwz5Fda00mE1555RV8+tOfhsPhwKFDh/Dss8/ie9/7Hn7wgx8onag8PwMSPCrRIqXFBFQ+bubZ1scj7cW2pfYCkMtnxtJXdXV1mkc7eKW08i1+lmUZExMT6Ovrw+bNm9Hc3IyzZ8/mvA21xdayLCMkhZO6swBgxFfcJ1pJFhC7zgKXN4bgwNLF7bfPTyMefwnv/ZNrirqWQimntnQ9yPVBwmw2o6qqKql5I9EuY2pqSinUZ1Eg1hmWCj1TWlqg1/ny5JNPoqenB5///OdhMpmUwvR//dd/RVNTE7797W8DAB5++GG84x3vwLPPPouDBw9yj7CR4FGJVhGefN3Ms22Pp+BROxQqk8BIl77SEj0ETyAQQHt7OxwOB1pbW5W8dTE7xmRZXpHOAoBJDTu00hGNC3DdYoXtn2OIzixdlP/jX2YQl36P9/3pNYa/sZdLSkuvbkY16Z1Mdhk+nw+jo6OIRqPK1PJEuww9U1o8Yb83vb5H27dvx1NPPYXbb78dH/vYx9Da2goA2LhxI9rb2/Hyyy9j69ataG9vx8LCQt6z1HKFBE8acj0xeEd4ZFnGwsICLl26lJebeTqMaAmRypdL7fBANfBKjeXy+cTjcfT19WF6ehq7du1Kas8Fiid42Pm9PJ0FAPMad2ilIxgXUHmHBd5vixCDS+t76aeziMd/j9vfd21eF2uyliidfQL861mW22Wwzkiv15tkl2EymWC327GwsMDdLiMTRhmTwYtrr70WX/va1/Cd73wHDz30EG688UY88MAD+Iu/+AucP38eDzzwALZt24aXX34Z1157Lf7sz/4MALinE0nwqITXl591HA0NDcFsNuPgwYNctq2FGalals/hmZ+fR0dHR1HSV6ngWcOT6UI1OzuLzs5ONDQ0oK2tLeWXuZiCJxALrkhnAUAgql80xSubsOZuC2a+KUL+r06xV/5tDpL0O9z5Z2/N6ztB1hLa7FOPmhat28MFQYDT6YTT6VTsMmRZRl9fH6LRqCZ2GZngfbwshaQnLS0t+NKXvoQnn3wSx44dQ3t7Oz784Q/jW9/6Fi5cuIBz587hoYcewr59+5Tzmvf5TYLHALB6lZqaGhw8eBBnzpzh9ovmLXh4Fvfqkb7KtB61pBNOkUgEHR0dkCQJ+/btg9PpzLiNYj3d9QS7kWopUZ1HEs2bTKj/kBkT//TGQk68sAC/7+e4/rodqKqqQmVlJRwOh2FSXeUSbdHTzqLY4zcEQYDFYoHH40nyDGNF0WrtMjLB21bC6/Um2X4UG3auWq1W3Hvvvbj99tvx8Y9/HJ/5zGfwnve8B3feeSeuvPJK5b1aQYInDcX4Uie2me/evVuZPsnzF25EDyxgaVLy6dOnsWPHDqxdu1bXGxfvtnRG4nDIXNN0vNaSDUEQEJDHsFzveKOAXKQOrUzM2M1oeL+M8R++8VlcfDkGq3UQ11+3HZOTkwiFQkl1F4mGqXqktPQQH8WOtpTbxOPl+zWZTGntMnw+n2KXYbVaFQFUUVGRtzgXRbFkpiyz78a5c+dw/PhxBAIBHDx4EN/85jdx7NgxfOELX8B//ud/4oEHHkgb+eYFCR4OsCf7XH9RkiRhYGAAk5OTyg1fK4yW0mLpK1mWuaSv8v3sM21DLYmRIq/Xi/b2dlRXV+c1HLJYEZ6YIKI6RTprRCMPrUKYXmNB/S0iJv/ljc/j3G8DEIR+3P3BwwCQ1jA1EonA5/Ohurq6ZFu3KaVljP0WapeROGBvObwFnp7GoYIg4Pnnn8eXv/xlNDQ0oLKyEj//+c/x0ksv4Qtf+ALe9a534cEHH8S9996L++67D3fccceK2kZekOBJQz4XklzbtWVZxtTUFHp6erB+/fqC2szzxSiCJzF9tXv3bpw/f57LF7rQ2TeJ8BIZgiBAFEW0t7fD6/WipaUl74sML/GVDV+FF1UpPrLJgLE6UmY3mbH2OhHTv3njtbP/7sV34r/B3R88nNIwNRAI4MKFC5iYmEBvby8EQUiKAuUzhyVXKKWl/X5XU2Qpk13G4uIihoeHEYvF4HQ6kzrD2INRKQkeAHjsscdw3XXX4S//8i9RVVWFU6dO4V3vehfe/e53o62tDd/4xjdw+vRp3HvvvXjuuefw3HPPJXXV8YIEDwdYa3qmdm1ebeb5oneXVjwex/DwMEZGRjRJX/Gov+GxHtblceHCBWzduhW7du0qaLvFivBYKlP7v81F9E9nJSNg8SoL1iyKmD/zxqvnf+fDd+Iv4p4PXQ+z+Y0bIaunsNvtaGpqUr6b7Gk70TA1UQRletrOhXISPEaNtGgBL+GRyi5DlmUEg0H4fL4Vdhnsus1r/3obh4ZCIbjdbmzZsgUA8KY3vQmiKCr3JkmScODAAbz22mt49NFHNavXIsHDAYvFklZUxGIx9PT0wOv15txmziNNw9AzwlOM7isjGH8Gg0G0t7cjFAph586dSoFjIeQjeAq92QXFEOo8sZT/5osaL/0TlwWEr7GgwhuDr/uNY/7D7wP4lvQi7r03WfQAyTU8qVIOiU/bQ0NDigltZWUlqqqq4PF48jpfy0XwlEpbuhH2KwgC3G433G73CruM0dFRBAIBnD17FgCSOsNcLlfea9I7wvOlL30JDz30EE6cOIH169ejq6sL119/Pfbu3QsAyndNlmU8+uijmq2DBE8a8k1pLR8+mFiwunnz5rye+HlNNGbbikajqrfDthWLpb5RJrI8fcWKsbVAT8ETj8cxMDCAiYkJ7Nq1C1NTU6qfTIoheFING2RE+I2U4kpMFmD5Iyscz8QQHn/juC++EsA/yb/GfffdsEL0ZPp8Us1hYb5M4+Pj8Pl8ii9T4o3GKF1hgD6dS6UoPDJR7GJpFqGsqqqC2+3Gxo0bV9hlBINBmM3mpM6wbGlavSM8t9xyCxwOB373u99henoab3/723HvvfcqnblMSGv9/SLBw4Hl05ZZZKOmpqYgN3MWMVI70RgobkorMX21fft2rFu3Lu0JzCuKpZfgmZubQ0dHB+rr65VarJmZGdVryadLq9DUV0BeOWwQAMLikreVUQnFBXjeZ0H8uyKivjfOq0v/GcQ/SsfxF//PDbBYCrs5CYIAj8cDj8ejODSziederzep+yYxFcZS0+USbSk3waPXpOVEoZXNLmN6ehqhUCjtuQksRXh4O4/ny5EjR3DkyJGU/8bOY0mSEIlEYDKZNPH9IsHDASZ4wuEwOjs7IUmSqshGJsf0QrZVjJRWvukrHsXGidspFtFoFJ2dnYhGo9i7d2/S7CAe9Tda1/AExRCq7Cu7swBg2G9CsUxDCyUCAXc9bMbPn5QwdumNtXacDOEf4sfxkftvLFj0LMdsNqO6uhrV1dXKa9FoVEmFjYyMKIWn7HwvZkSgXEQWoK/w0CuylOmBN51dBhNBzC7jqaeegsvlQiAQyEnwvPDCC3jwwQchSRLuuecefOpTn0r690gkgrvuugtnzpxBbW0tnnnmGWzevBmxWAz33HMPXnvtNYiiiLvuuguf/vSnlZ+Lx+MQRVGZxZPIxMQEZmZmMDMzg1OnTuH3v/89Ll68iN7e3lw/rpwhwZOGfCe6jo+Po6+vj0ubuVE6q3LZViQSQVdXF6LRaF4ij5dQKZbgkWUZo6OjGBwcxLZt21BfX7/iHOFVQJ2vAWk+52qmdNaEwTq0UlHnADY32HD9R4LoeknGmecFiP81GbrrdBj//zeO4/4HbtBMNNpsNtTV1aGurg7AG4Wno6OjWFxcVMxfE1NhbrdbE5FQThEevYSHXm34hQhnu90Ou92edG5WVVXh5ZdfxvPPP48zZ87g61//Onbt2oWDBw/immuuUTyt2D7vv/9+HD9+HI2NjWhtbcXRo0fR0tKivOe73/0u1qxZg56eHjz99NP45Cc/iWeeeQbPPvssIpEI/vCHPyAYDKKlpQW33347Nm/eDGDp2sgaA2ZmZvCHP/wBvb296O7uxuDgILq6utDf348tW7bgpptuwsc+9jGVn2BqSPCogLWZDw0NobKyklubuVEFT+INPZ/0Vbp1rRbB4/P50N7ejoqKiowpytUQ4UmXzgKA2bCxozsA0OAG1tgtMJuAndcCDU0yXvo+MDO4tPbu18L4xteP479dU1sUMcAKT9esWQOr1YotW7asqLkIBAKwWCxJ6QYe4fpyEjx67VcveEQKBUHAzp07sXPnTpw9exb33XcfDh48iI6ODpw6dQqvvfZakuA5efIktm/fjq1btwIAbrvtNhw7dixJ8Bw7dkwpKr711lvxwAMPKOdhIBCAKIpJXZDAUlT05ZdfxiuvvILXX38d09PTAJZmlbndbhw4cAB33nkn3va2t2k+DZoETwYy3Xz8fr/idr1t2zZEo1FuX0ieDuxaiCce3Ve8pjbzFDzLbyCiKKK3txfz8/NoaWlJmq6aCl6CRysBlymdBQBeA3ZoLWejxwSTIGCNzYrZSAyV9cCR/y7jwq9knP+5ADkuoPdcBJHIBPbuicHhKM74h8RzJ13NBUuFjY+PIxwOJ81gqayszLvWTw8RoFdKS6/96oVWk5bNZjOuuOIKXHHFFSveMzo6io0bNyp/b2xsxIkTJ9K+x2KxoKqqCrOzs7j11ltx7NgxNDQ0IBgM4qtf/aqSbrt06RLe//73o7W1FZWVlbjuuutw5ZVX4uDBgyvSbFqf0yR48iRVmzkrGuOFUSM8kiRhbm4OkUhEdfeV0VJarFiYXVSnpqbQ3d2NjRs3oqmpKaeLrR4prXzIlM4CgLBBO7QS2VKxdBOocVgwG1nqGDSZgd3vANa3LEV7vJMCRtrjeOLrL+IvH7wBdru6GTu5kO13ZrVaVwyiC4VC8Hq9mJmZQX9/P+LxeF7GlOUU4QGKb86qJ7xrwfx+f9YHtlTn8PLPPN17Tp48CbPZjLGxMczPz+Paa6/FDTfcgK1bt2L79u14+umnsX79eiV6xGDXS9ahpfW5RYInA4k3H1mWMTIygqGhoRVt5jwjMmx7RhI8sixjaGgIQ0NDsNls2L9/v+qLj9FSWiyyEo1G0d7eDpPJlPeASKOntDKls6ISEDdyixYAkyDj8oqlC+IauxUmhJD4m6+7HHjnp2Sc+Reg83cCBv4Qxde+ehwP/r83ai568hUfgiDA5XLB5XIlzWBJNKb0+/0wm80rUmFsP+UmeMoJ3uahfr8/6wy4xsZGDA8PK38fGRlZEYFh72lsbIQoilhcXERNTQ2eeuopHDlyBFarFevWrcOb3/xmnD59Glu3blWK+xPFTjwe1+VcojM3B+bn5/Hqq68iGAyira0NGzZsSLrQ8BY8RurSYsceiURw4MABWCwWLhdZo6W0BEHAwMAAXnvtNWzcuBF79uzJexq2kSM8QTGE6gzprLFV0KFVawcs/zVrxywIqLavvCFYbEDbe2Xc8EAczioZQxdj+Pu/O45whM8sqkyo/V4wY8rGxka0tLTg4MGD2L17N2praxEMBtHd3Y2TJ0/i/Pnz6O/vRygU4vZglCvllFrSy0YD4B/hCQQCWSPyra2t6O7uRn9/P6LRKJ5++mkcPXo06T1Hjx7F97//fQDAj3/8Y1x33XUQBAGbNm3Cb37zG2We1auvvopdu3YBWOrCuv/++3Hrrbfixz/+MaampmAymWCxWGAymWAymZTPORKJIBqN4vz58/jqV7+6IqWmForwZCAUCqGjowOiKGZM4fBMG7HthcNhLtsq9AvLuq8S01ds1DkPjJTSWlhYgNfrRWVlJdra2gq+0PAQK/kcD6/uLAAYDxr/2ad+2dev1mHFXCT1g8H6ZuDoX8s48QwwcCaGv//yr/BX/+NGzWp6tBICy9uPmYUJm7/S19eHvr6+pFSYx+PR7MlZj2GHeqFnNIt3V5osy1mvaxaLBU888QRuuukmSJKEu+++G1dccQUefvhhHDhwAEePHsWHPvQhvP/978f27dtRU1ODp59+GgBw//3344Mf/CCuvPJKyLKMD37wg9i9ezcA4ODBg/jKV76CZ599Fo8//ji+9rWvYffu3WhpaUF9fT0qKyshyzLGxsbQ3t6OF198EV1dXbjnnnvwgQ98gNtnAJDgycjExATWr1+ftc3cyCmtfEmcEL28+4pngTAvkahmTbFYDF1dXQgGg6iqqsLll1+u6qnKyBGeTOksAJgJGV/wbHQnC4o1tpVprUTsbuAtd8vYuFvGiadj+OqXj+PB/3EDXE7+A82KFfkQBAFOpxNOpxNzc3NobGyE2+1WpkSPjo7C7/crE3t5G6aWU0qr2FOWE+HZDp/P9eTmm2/GzTffnPTaY489pvy/w+HAs88+u+LnPB5PytcBwOVy4eabb8Zb3/pWHD9+HC+++CJOnjyJn/zkJ4jFYgiHw5AkCXa7Hdu2bcNtt92GO+64Q5NBiSR4MrB169acbspGTmnlA+u+qq2tTdl9ZTTTT7adXOwuEpFlGePj48rch5aWFpw/f94QYkULwZMtnQUAi1Hjpyk2Vyafj2bTUlorXZSHseUAsG6bjJd/GMNX/+ev8VcfvwFuF3/RU2yYyGLipqKiAhs2bAAAxTB1cXER09PTCAaDsNvtqg1T9Rp2qAelJu70TEXKsgy3241bbrkFt9xyC3w+HwYHBzE7O4t4PI7a2lq0tLRoHj0kwcOBfOwAcoF3iiwbbHowj+6rXNErpcXGCbjdbhw8eFCZ+sljPUaN8GRLZwFASDS24BEgY2vlyqftWnv6tFYi7jXAjQ/I6PhdFF///36Nj37sOrgTpmSrxWhTj1MZprJU2MLCgmKY6na7k1Jh2SIaeoiAcvHR0gq9hjYmws5TVhdVUVGBK6+8csX7tP4ekeDJgF6KWIuUVqoTKTF9lW56sFbwEnW5dntJkoS+vj7MzMygubk5yS4AMI5Y0WIOT7Z0lhQHJIN3aFXZAYdl5UV7jd0KAaGcPMAEE9B8GGjYFcX3f/TvuOvPDsPj5iN69JjIm+/NweFwwOFwYN26dcrP52uYqsdxlpuPFu8HHp/Pp/lAv1xJ/D0mHic7x8g8tAzhndJi4iIxXLiwsID29nbU1tYWZHCqlkJSUanIRSDMzMygs7MTGzZsQFtbW8qLJ48onRFTWrmksyaDxu/Qqk+jS1haaz6HKA+jugHY9ycR/Prcb3D93rehwq3+ZqBH2kXt03A2w9S+vr4VppSxWKxsWuFLxc7C5/Pp6pSeDj0CCiR4OMIrHKdF1xcTPDzSVzyO02w2IxKJqNoGkDkyEw6H0dHRAVmWsX///ozj/HlEVooZJUt9NcgAACAASURBVAqHw2hvb0coFFJuRlVVVUlzWoDc0lmjfuPXKTS6059vtXZrXoIHAMwWYP1VUVwK/zva3O9SuzwAxb+AaxFtSWWYGolE4PV64fV6MTs7i4WFhaQoEJvgqxXlltLSYuigUQQPuz7qlWIjwZOBfC5g7GbH40TVQvCIoojJyUnV6St2Q+Yxc0SrLi02KHFkZARNTU05mbkaKaWVaRvLu+hYh87i4iKmpqYQDofhcDgUAZQtnQUA02HjCx42cDAV+aS1liNYY/DHxuGxNhS+OBivhocndrsda9euxdq1axGJRLBx40aYTCZ4vV5MTk6ip6dHU8PUcvPv0sJWwggpreUCXY/PlwQPJ1inFo8TlfdFTJIknDt3DmvXrlWdvmJiTO2JqlXR8uLiItrb21FTU5OXzxePlBavwud06/D5fLh06RKqqqrQ1tYGQRAQi8WSilMT57SMTo+iujG75clCxNjpLADYXpX+nLWYBFTZLFiIFpYGHot2oYmD4Ck2egzGYzctt9sNt9uNhoalzy3RMHVgYADBYDDJMLWqqirvQZ4MivCow+fzZbWV0Bomzh999FG8+c1vxo033qjL75QEDyf0nJ2Tjmg0iq6uLvj9fuzcuVO5OKmBCR7W3aRmOzwED9tOLBZDd3c3/H4/rrzyyryfaHiktLSK8CQWXLe0tCgj4lOtN3FOy7h9HI4crilG79DyWGVU2DIfSK3DWrDgWZTmEI+LMJkKvxyWcoQnkXTiI9EwlZlLRqNRJRU2NjaGSCQCl8uVlArL5eFLr+JhPffLs6bSCDU87Dz99a9/jX/+53/GW97yFrz73e/Gm970ppwi8LwgwZOBfC4mes3OScXy7iuz2VzQzI1U8IzM8BCIgiAgEAjg5MmT2Lx5M5qbmwu6CRg1pTU3N4eOjg40NDSkLbhORy7pLFkGYtqYs3NjnTP7e2rsVvQVmNaSIcMndqLKttJBOh/KQfDkUzdks9lQV1eHuro65WeZYer09DR6e3shy3JWw1S9ioclSeJ23cwHrZzSjcC3v/1t/OxnP8Pzzz+P3/72t7jqqqtwxx13oK2tTUmVagkJHk7wHj4IFHZBW1hYQEdHB9asWaOkr3w+n6HMSAE+AiMYDOLixYuIRCJ405vepOriZLQ5PCw6F4lEsHfvXrjynBkTFINZu7MAYCYEGL1Da0OGgmWG2rTWRGxYleAppwhPofvMZpg6NDSEQCCgGKZWVVWhoqJCV8FTKimtbMahxaK5uRnNzc348Ic/jOeffx7PPPMMPvaxj+Gqq67Cn/7pn+Kd73wnamtrNfvcSfBwgrfgybcImt0gQ6HQipQOzyJonvNzCt1OPB5Hf38/pqamsG3bNsXFXQ1GaUsHlp7ITp06ha1bt+Kyyy4r6AbT5e/K2p0FACMB4w9Wu7wyt5udurRWEDFpEVZzYTeGchI8PMUHM0xlpqnAkuULS4WNj48rrvHsvRUVFapT6rlQKrVDfr9fSTPqTSwWg8lkQnV1Ne6++27cfffd+M53voPPfe5zuOeee7Bu3Tr8+Z//OT760Y+StUSxyediwruGh20v24mfy/BAnoJHb5fz2dlZdHZ2KikeJn7UYoS29FAopIwMOHTokCoRl0s6CwCmVoFp6LYUE5ZTUWO3oA8oKK0FAHPiJdSb/1uBP60PpSiyrFYramtrUVtbCwAYHx9HMBiE0+nE7Ows+vv7IUmS5oappRLh8fv9uhctM5hQPXv2LM6ePYtXX30VXV1dsFgsOHz4MPbu3Ysf/vCH+Na3voUf/ehHeMc73sF1/yR4spDrU7sWwwJFUcx400uVvkq3LZ4RHj0sISKRCDo7OyGKIvbt2wen843CDr08uZZTaIQnHo9jaGgIY2Nj2LhxI+bn51WJnVzTWQCwEDG24HFbBNQ5c7v4W0wmVNosWCwwyjMdncI6W2E3dD2iLXqgR9RDlmXY7XbU19ejvr5eWQebEj0yMqJEgXgapuopeHjWDhmhaJmt4x/+4R9w9uxZdHZ2wuv1oqGhAUeOHMF73/teNDU1AQC++MUv4s4778QjjzxCgseoWCwWLoP0GJlESqb0VbptRaNRzdelxXZkWcbIyAiGhoZWuLcD/NJIvNrS892G1+vFpUuXlInXoVAIc3NzqtaRy7BBRiBm7Jv0Bnd+N5xah7VgwROUJQSlQbgtm/P+2XIRPEDxo0qpRFY6w1SWCpuamkIoFFJmUrE/+aTCSimlZQTBMzIygm984xvYv38/3ve+9+Hmm2/G7t27lX9nn7fNZsP111+Pz33uc9zXQIKHExaLBcFgkOv2lkeMCvW+Wq0RnuVzZ1JFsHhdfHm1pee6DUmS0NPTg4WFBVxxxRXKBYmH8ArIYzmlswAgavAOrcvzvE7X2C3oR+FprdloT0GCh9COXNu0LRYLampqUFNTA2DpesmmRM/Pz2NwcDAvw1RKafGlpqYGTzzxBG655RbltcTJy4ni8o477sCRI0e4r4EETxb0TGklipRc01e5bEsNPNvJ0yGKInp6erC4uIiWlpaiPJ0Us0uLeXtt3LgRTU1NqiJWyz/HvNJZYcDoHVobK/Jbn1VtWkv0YkM8ArMpvyF55RThKTaFCgBBEFYYpsbjcQSDQWU2kN/vT2uYqtccnlKL8LDj6erqwquvvoq3v/3tsNlsEAQBJpNJ+d6cPXsWCwsLOHz4sOLxxhsSPJzg3aXFipbzTV+lgneEh4fpZzrYqPpNmzZh586dRbuJFGMOTzQaRUdHByRJSuvtpTZFl086azV0aDV68v/919oLT2tJALxiO9bY9ub1cyR4tINnaslkMq0wTBVFMckwNRgMwmazIRgMYn5+HtXV1UWdx1NqER52LOfOncOPfvQjPP744ynf981vfhNdXV04fPgwRFHUxNCaBA8neEd4TCYTpqam0NPTo8r7iq2Np+AJh8NctpVIKBRCe3s7LBYLDhw4UPAY+kLhJXhSIcsyxsbGMDAwgO3btyuFl+m2oWYd+aSzJg3eoeU0A3WO/M/5GocFfb7C9zsdGyHBYyC0rqWxWCxJ9izAUpPEmTNnlixaRkcRi8VWTInWKvrDW/DEYrGiX08ZPp8Pr7/+OlwuFy5evIja2lqcPXtWmbJts9ngdDrh9/uVMSNaQoInC7lexHi2pS8uLmJoaAgul0u19xXAP6XFo4aHEY/HMTAwgImJCezcuVNpRS02vIqflxMIBHDp0iW43W4cPHgwa9GkmnXkk84CgPmwsW/QGzxCQSJiKa1lhjda2Dm/IEURkWZgN9cV9PMEX/QoHrbb7bBardi+fTuAJUEbDAaxuLiouWEqz+iGHh5vifT39+ORRx7BmTNnIAgCotEo7rzzTjidTtjtdjidTlRUVGB0dBSTk5P4/Oc/D0C7wngSPJzgkdJKTF9t2rRJ2a5ajDh4EFj6Yp84cQLr1q3DoUOHdOmIYGgp5Jqbm5OeHjORr+BJjCzkk84CAH/M2BGeRk/h66u1WwsWPAAwF21Hg/PanN9PER7t0KtbKhFBEBTDVIYkSUoqjBmmWq3WpK6wQiIrWkyW1uvc3LJlC/76r/8asVgMjzzyCObm5nD06FHlc/P5fAgEAqirq8ODDz6I9773vQCgWfSMBA8n1AiBxNZrNl13enoai4uLuq8t1bbUCgMm7KLRKPbv3590ESkUtTccnoJnYWEB7e3tBQm5fASPICRHQPJJZwFAxFhetytQI3hq7Fb0+wpPvU6JM7gsHoeQ4++uHASPXtECIwieVJjNZlRXV6O6ulp5LdEwdXR0tCDDVJ7Hq3eEp6KiAocPHwYAxVPt6quv1m09JHiykOtFrNCL3eLiItrb21d0Xxk1KqOmS0uWZYyOjmJwcBBbt26F1+tNGiCoZk1qOyp4tKWLoohwOIyuri7s3r27ICFXaFt6vumsQBSQjd6hVUDBMsNmNqHSaoY3Vti5GpFl+KUeVJiacnp/sW8setzI9BJ1RhU8qUhnmLq4uJjSMLWqqgoul2vF8fH6nEOhUN4+fDwZGxuDw+FAdXU1rr76akQiEczPz8NkMil2IeyP2WzWvCuOBI9OZOu+4lkTxPMiVah48vv9uHTpEjwej1LLMjw8zCV8y0PwqJ1/MzU1he7ubphMJrS2tqoyWCxkHfmms4b9xr6BWE1AvUvdeVvrsBYseABgJtaPCmtuggcobtrA6E7pPNFrujMPEg1TGxoaACwdD0vpDA4OIhAIwGKxKFGgeDzO7ffr9Xo1ae/OlTvvvBM33HADHnroIdx777146aWXcPnllyu1OxUVFfB4PKiuroYsy7jrrruUQZJaQIInC7wvKqnSV6n2wbvrixf5Ch5JktDb24u5uTk0NzcnufbySiPp6XQeDofR3t4Ok8mEAwcOKMV5aijkYptvOmsyaOyW9Aa3ALPKz1FtWmtGDCDefwmVnrVZ6zGKLUBWm1O6GvQYAKilyDKZTKiqqkq6FiYapkYiEZw8eRJOpzOpHqiQek69Z/B85CMfUepRr7zySgQCAYiiiIWFBUxMTMDv9yMYDCIajWJkZASHDx/Ghg0bNDu/SfBwhD2dp/tFpUtfpYJnGoon+QiD6elpdHV1obGxEW1tbZqZmuoheBKnXjc1NWHt2rWq9s8o5EuebzoLAOYM3qG10a3+ZmMzm1BhNcNXYJRHBuConYNvxoGRkRGlNbmqqkqpx2A3xXIRPOUS4Sm2yGKGqTU1NZiZmcGBAwcQDoexuLiY0jC1qqoKbrc76+eit4/WrbfeCmDp8/zoRz+a9n2iKCIajSolDtSltQpgUZnlrcfRaBTd3d0IBoM5Dw/k7b7Oi1xECot6CIKQdsAeYLwIT66RFb/fj4sXL2a0vCgm+aazAMBr+A4tPhe8Woe1YMEDAF7THJq3XgMguTV5fHwcXV1dEAQBlZWVCIfDCIfDqg0rc6WcBI9ex6rnlGVBEOB0OuF0OnHZZZcpa/L7/fB6vRgeHlYMUxOjQA6HI+mz8vv9uqa0GNk+S4vFUpTrKAmeLOTzRWOt6UzwLE9ftbS05Lw9LVJaPC4cmcQFc/0eHR3NKephJMGTS9FyPB5Hb28vZmZm0NLSkhSS1pN801kAEDFetjQJNR1aidTarRhQkdbyxUWExXE4LA1JrcmJU3q9Xi/m5uYwODiI7u5uJRVRVVWVU1dOIehRT6NnJ1qx96tFa3iu+00nDkwmkyJsGImGqZOTk4pham9vL4ClVFkuU5ZfeOEFPPjgg5AkCffccw8+9alPJf17JBLBXXfdhTNnzqC2thbPPPMMNm/eDAB4/fXXcd9998Hr9cJkMuHUqVPKQ+5b3vIWxGIx1NbWoqKiAlVVVUpnG/t/9l+Xy4U9e/Zo+rsmwcORxOhHPumrVPAwkUy1NrUX33QnI2vFrqurw6FDh3J6OlpNKa25uTl0dHSgoaEBbW1taS+G2dKavCkknRURASN7hpoArHfz+fzUprUAYDbWgQ2WhpT/xgwrXS4XmpqaYLfblVREYlcOu9gnejWpoZwiPHqgd4QnV9IZpo6Pj+OnP/0pTp8+jYWFBQwPD6OtrQ0HDx7Enj17kurRJEnC/fffj+PHj6OxsRGtra04evQoWlpalPd897vfxZo1a9DT04Onn34an/zkJ/HMM89AFEXceeed+OEPf4g9e/ZgdnY2KcPR3NyMubk5BINBjI2Nobu7G4FAAKFQCKFQCJFIBNFoFKIoQhRFBAIBLp27aT8vzbZchlgsFoTDYQwODuaVvioGvATPcmKxmHISX3XVVXkdr9EiPKmIxWLo7OxEOBzG3r17s7Z4Ftt0sCvQBWee4Z3RgAlGNg2tdwmwmfmtr9auLq01JS6gIS7CZEr/3WECJFUqQpIk+P1+LC4uor+/X/FqYlGgysrKrBO4l6NHAXE5zBpiGDHCkwvMMPXIkSM4cuQIvvOd78BkMuFtb3sbTp48iW9961uYmJjAz372M+VnTp48ie3bt2Pr1q0AgNtuuw3Hjh1LEjzHjh3Do48+CmCpLueBBx6ALMv41a9+hd27d2PPnj0AsGJS/pe//GXluMLhsCJsYrEYYrEYotEootEoIpGIkhLWEhI8Wcj1C87mLVy8eBFNTU15pa+KAe8iaFmWMT4+jv7+fmzZsgXNzc15H6+RBM9yZFnG5OQkent7sWXLFjQ0NOR0fFpZVKQjGB9DvpeIcYObhvKq32HUOKwY8Bee1orJMnxiJ6psVxT082azeUVXTiQSweLiIubn5zE4OAhRFOHxeBQBlK0glSI82qJHZxiwlKLibRx6+eWXY8+ePdizZw8+/OEPr3jP6OgoNm7cqPy9sbERJ06cSPsei8WCqqoqzM7OKnVsN910E6anp3HbbbfhE5/4hPJzepqWpoIEDwdY+goAduzYocxbMBI8BY8kSTh9+jRcLldO/lBar4m34AmFQrh06RJsNhtaW1vzckrWQnylwx8LotqRXzoLAGZCxhHiqeBVv8Owm03wWM3wq4jyTMcGMwqefAWI3W7HunXrsG7dOgBLYiIQCGBxcVEpSGWzWZgISkxDkODRFr2OVQun9GxdWqke0JafW+neI4oiXnrpJZw6dQoulwvXX3899u/fj+uvvx6Li4v4xCc+gccffxx2ux1/93d/h7Vr18LtdiuO9eyPy+VCRUWF8n3QChI8OZDuqT2x++qKK67A7Ows16d7lh7h8cXjIS4kSUJ/f78yLDFXf6h08BIHPOwugKUv9cDAAMbGxgo2Mi1mhKfT2448tJiCN2ZswaNmwnI6au1WVYJnXgojJi3Cak5dqM7D2oQNYmMk2hQsb4sv9CFDDXoNO9QDvSI8WgiebFGWxsZGDA8PK38fGRlRivKXv6exsRGiKGJxcRE1NTX4v+y9eZQcZ3n2/avel1l7Fmk2SaNdM9p3Ie8JdjBBOSEEeAOJvw9Mwhv7DXFCwMkhxh/4nBdeEl6SOAGykBgbI2PjBeLEsY0d28KybI+8afZ91+zT+1pV3x/javXM9Mz08vQiqa9zfKzprn7qqe6qp6667/u6r/r6eq6//vpoZ+lbb72V8+fP8yu/8iu4XC7a2tqQJAmXy8X3vvc9ysrKCIVC0eaKsHDuh0IhtmzZwosvvpjR86xAeFJArPqqsbExmr5yOp1ClVUaSckHwjM9PU1XVxc1NTVRh+B0kU8pLZfLFW2AdezYsZQXnaxGeOQRHCl8LhDJb8JTJzjCAwvy9ME00loqMBtpY53+RPz3M3BjjmdToMnip6ammJ+fp6WlZVVZskjkIupxpURaktmvyDrLRPrwHDlyhO7ubvr7+6mrq+P06dM8/PDDi7Y5deoUDzzwACdOnOCxxx7jpptuiqay/s//+T/RurSXXnqJu+66C4Camhp++MMfUlpaitVq5aGHHiIcDuPxeKIFy16vl0AggMvlSukBM1kUCE8CiH1q19JXZWVly9RXBoOBYDAobL8aSRHxNJcq4QkGg3R0dKAoCgcOHMBqtTI1NSWkMFdUSisdHyxZlunp6WFubg6LxcL27YlbCaw0l2w8lXrCPkrNvqQ/F1FAzq2f4KqotEjYDOJv2Ga9jiKDHk8kjbRWaIJq08pPn5mOfsTK4u12OyaTiS1btiySJQcCASwWSzQNVlJSIuzGfTURHkVRctJfSzThSSSlZTAYuP/++7nllluQZZnPfOYzNDc3c88993D48GFOnTrFZz/7WX73d3+XrVu34nA4OH36NADl5eX8yZ/8SdRO59Zbb+XDH/5wdNzGxkZgIYWrmYiuhYIsPQ+gpa+8Xi/Nzc1xTyLRhcFaXx8RSHZusZ2Et23btii3KoqI6XQ6wuFwWmNo46RCeKanp+ns7Ix2gj579mzacxFhQpoIOpxtKaWzLua5Qkt0wXIsKixGPJ7Ur0+fquCTB7EbNi17L1edluPJkuPJ4mOjQKnK4nPR+yeXEZ7VrEQul/263e6EovG33nort95666LXvva1r0X/bbFYePTRR+N+9tOf/jSf/vSnE5pPa2srL7/8Mi6XC7PZzI4dO9i1axcbN27MyvVTIDwJYHR0lL6+vkXpq3gQSVAgd47pWu51pR5C+VZsrNfrkyJOoVCIjo4OIpEIBw8eFCqFFN0/aSWkms5akKTnL0QXLMfCkWZaC2Am1JNXhGcpkpHFx0aBEnl4yYUUPpcRnqulhicbCIfDPPTQQ/zVX/0VMzMz2Gw2gsEgLpeLvXv3cs8993DLLbdkfB4FwpMAbDZbQs0DL3fCE4lE6O7uxuVyrRjFArFERRRxSoRkxErpt2zZwrp16+KqEdJZ1EWltFabR6rpLIBpf74TnszdUC16HXaDHm86aa2IizoliF6X/af/WCRzniYii5dlGbvdvqos/mpKaV2ufXiWwu/3r9k7LJPQfr+XXnqJr371q+zbt49//Md/pK6uDkVRaG9v57777uP222/n9OnTnDx5slC0nGs4HI6EbsyZSGmJJDyhUCjue7E9ZzZu3MjOnTtXPeHyLcKTyDg+n4+2tjasVuuKUnptnHQWHFFNEFe76FNNZwHMB/M3nQXQkMEIDyyktbxppLVkwBlpx2Hav+j1fInwJIrVZPFDQ0N4vd5ovxVNGn81pbSulAgPkNNWAtrv98orr1BWVsa//uu/RovwATZv3sz+/fv54Ac/yM9+9jNOnjyZ0e++QHgEIhMRnkzX8Ph8Ptrb25PqOSOK8IiSk6/l7zUwMMDFixfZtWvXqlJ6EYRHRIRnrYiVWx4mVT2DP48VWiUmKDFldn4VZgNDnvTGmA6PLCM8kF2/J9FEIFYWX19fDyyXxXu9XiwWC7IsL3OLzxQKEZ7UkStJfyy0a8JoNFJTUxM9Nm1ukiRRWlpKTU1NwTw0X5DoQnY5pbQURaG/v5+JiQl27twZLXpMBCIjM6IiRfHGcTqdtLW1UVVVxfHjx9dcwETU34goWl6JNKmqyuD4IGW25JsNLnweIrlfA1dEvT3zNxiLQY/doMMbSf03mpdDBOVpzPrKtTfOELIRUVoqi+/v70ev16PX6xkbG8Pj8SwytMyELP5qlKWL3m+uOv6Hw+HoA+SnPvUpOjs7+d73vsfnP/95ysrKgAVS/cgjj2C327npppsyPt8C4REI0QWrBoNBiIoJFhMezQhz/fr1CRGB1cZKB5lKaWm1SG63Oyl/LxFkJVOkKRAI0N7ezqR9kpoU7dkmfRL5rNDKRMPBeHBYjHg96bWPmA21U2O9VtCMkkeufK2sVitVVVXL3OJdLhcXL16M+iGJksXninhcCSmtUCiUE2m9hrvuuotHHnmEhoYGKisrefPNN/nRj37Es88+S3NzMzabje7ubp555hl+67d+iwMHDgCZTcEVCE8eQ6/XEwikpyqJHSsUCvHee+8RCoUSMsJcbax8TWlNTk7S3d3Nhg0b1qxFWm2cdOYigvBoY6iqyujoKIODg2zfvh2nMpDyuFezQisWFWYjw2kSnsnINOsVBSlH9RH5Yi0RTxbv9/txuVxCZPGFlFbqSKTpYCZx/fXXYzQaUVWV2dlZTp06hd/vZ2JigjNnzuDz+VBVlcbGRh5++GE+8YlP8JGPfCSjv3mB8CSAXIUERRELVVWZnJxkZmaG3bt3x1UnJYNMp6JSGSccDvP2228DcPjw4ZR6WYgqOBaV0vL5fLS2tmK32zl27BgBNUipN7V0FsCkL98JT3auM6tBj82gw5dGWiuoqnjkHop16TWqTBX5QniWQpIkbDYbNpttkSze7Xbjcrno6+vD7/cnLIu/2ggPiLvf5Jrw/PZv/zYf+9jHUFUVVVUJBoOEw+Ho35prejAYJBgMsnHjRqAQ4bnsIGoxElET5Ha7aWtro6ioiJKSkugilA6S7XuzEkQQjFgyt3fv3rTM50QUHIuSpQ8PDzM1NbWovqpj+q2U1VkA86H8JTxWPVRYsncDrzAb8UXSi/JMh/spNuaG8OSCCKS6run1esrKyqJ1G0DUTmBubo6BgQEURYmuUaWlpdjtdqFegqngcjdK9Xg8CafzMwVJkqLnTC7l8RoKhEcwRCh9NKQT4YlEIvT29jI3N0dTUxM2m42Wlpa056TNS0SqLd0IlsfjiUrNy8rK0nbaFZXSSmcMj8fD/Pw8FotlmadXqs0GNXjz2DS0vkiX1YhFhcXIsDc9wjMT8dKgeDHo7IJmlTgud4m4xWLBYrEsksV7PB5cLheDg4NRWbxOp8NqtRIKhRJSkBZwCYnYSmQDGlHu7u7m2WefJRKJoNPpKCoqorq6mtLSUvR6PYcPH864KW6B8CSAZBZiLSojgvCk2odHq2NpaGhg+/bt0aiDKMWXqGLjVKMhiqLQ19fH1NQUTU1NWCwW3nvvvbTnI7KHTrLQVHOTk5OUlJSwadOmxWQn7KXUnHo6S1UhnB1P05SQrXSWBhFpLQWYD7dRaT4ibmIJIl9TWqkiVu0VK4vv7e0lGAzS2tpKOBzGbrdHo0BFRUWXfRQmFqJl5LlOaWmQJInW1lY+97nPEQqFOH/+fFTN5/dfWtPGxsaEZCBWQ4HwCIboZoHJjOX3+2lvb4+y5dg6FpGLo0jTz2QxNzdHe3s769ev59ixY9H6nXxxXU9lDE0+X11dzbFjx7hw4cKyxS+dZoMAc0HIZ4VWtgqWYyEirTUVHqcyB02Xc0F4sr1Pk8mE1WqloqKC6upqVFXF6/XicrkYHR1dJosvLS3FbDbnrOYyXYgmlG63e1F37Vzi61//Omazme9+97tcc8013H///WzcuJEnn3ySZ599li996UtpR+gTQYHwCIboZoGJjKUoCoODg4yPj7Njxw4qKlJtS5f4vER2lE4E4XCYrq4ufD7fMoVZriNOqY6hObXPz88vks/HGyPddNaIO/sS22SQLUl6LBwC0lpuJUIgMiZoRonjSovwJLJPSZIoKiqiqKhoRVl8MBjEarUuUoUlG23PVcO+TPho5bqGR8Ozzz7Lj370I/btearBNgAAIABJREFU20cgEGDXrl0cPXqUG264gd///d/n5Zdf5rbbbsv4PAqEJwGkktISgUSIxdzcHB0dHQk318vWvETi4sWL9Pb2smnTprjmrdm0qFgLkiQl9N1ovZDq6uo4evToomNaqvRKN50FMJHHHlpGHVTbsk94bAY9Vr0Ov5zebz4T7gSye2PJVdFytve5lloqEVk8QHFxcTQKZLVaV13Tc9XjSDThcbvdWYmarAVNmVVZWUkoFMJisTA/Px99/5Of/CQf/ehH+cEPfpDxuRQIT4JI9MldZEprtYsuFArR1dVFIBBg79692O3ZK5wURTDWQiAQoK2tDYPBsKrthajFKRt9eCKRyIqRKg1Lz7V001kAc8H8JTy1dgl9jtIQFRYjI2lGeSYj80B2FSi5ivDkYp/JkIC1ZPG9vb34/X7MZvOiKFBsseyV0mXZ6/XmRQ1PMBhk06ZNtLW1sX//fnbv3s2DDz7Ivn37kGWZZ555JmuO7gXCIxgiU1rxoKoqY2NjDAwMsHnzZtavX5/UIiRiocx0hEdVVYaGhhgZGWHHjh2LzOYyiUwXLU9NTdHV1cXGjRvZtWvXir/D0jGMymBac4L8V2jlCiIIT1hVKal2C5pRYrgaU1qpYjVZ/Ozs7DJZvNVqveybDkL+FC0bjUbuvPNOdDodRqORO+64g//1v/4XFy9eRJZlWlpa+NM//VMg8+d1gfAIhmg/rVh4PB7a29ux2+0rOn6vBo2opNtuXFSHZA2xJ7nWN6isrIzjx49n9UlLlPHn0u8mFArR0dGBLMsJNUWMnYcy04vO6Eclve8hLOcv4clF/Y4GUWkttdQraEYJ7u8qKFqGzJGs1WTxIyMjOJ1Ozp8/v8gtPtOy+EwQnmxFTlaD2WzmU5/6VDSN9Tu/8zvIsswTTzxBIBDgG9/4Bv/zf/5PIPNNfguEJ0Ekk9IKBtN7YlyKSCRCf38/MzMz7Nq1K+XKe1GER1SHZG1OGkHo7e1ldnaWpqamnFyooiM8qqpy8eJF+vr62LJlS8KSy9gxPOMvo25ITwYUDkbIY0V6TiM8sFC8PJpmlMejkwnLToz67KhiriTykQ/7jFV7lZWVMTw8zJYtW3C5XDidTkZGRjIui89E0XI+RHhggWBq659Op+O2225bVKScrfO5QHgEQ3S6R5Zlzp07R11dHceOHUvrpMg3009trOnpaXp7e6mtrU37GNOdS7rfj1ZwnGj90UpjqKoK4SAu/TywLq05eV1iDGgzAR0LNTy5RIU5fcKjArORNtbpT4iZ1Fr7y0EBMWTfZicXJEsrlF7qFp9pWbyo/m0aPB5PXkR4NLzwwgu89NJLTE1NodPpaGpq4vjx4+zevTtrTSULhEcwRKW0AoEAHR0dhMNhjhw5IoSp57J/TjyEQiG8Xi9DQ0McOHAAq9UqZNxUodPp0v7tJEnC5XLR0tLC9u3bqaqqSmkeqqqitjyKa0t5WvMB8Hiz20IgGayzSRh1uSU8dqMei15HIM201lRogmpTdp5Uc6UkyjZyRXjiEY/VZPFOpzPqFm+z2VKSxV+pER6fz8ff//3f853vfAez2cy6desIBoOcPn0am83GPffcw+23356VuRQIT4JIdHFJl/DEFuxu374dVVWFXQS56J8TD6qqMj4+Tn9/PxaLhaamJiFkJ92bQLrGnz6fj66uLlRV5dixYymnDrUIj3+ujYh5d8rz0TAXyN8bYy7rd2JRYTYy6ksvyuNTFXzyIHbDJjGTWgW5UEzlAvmeRltNFj85OZmULF6W5ZRMj1dCrgmP9j2++OKLfPvb3+YjH/kIf/7nfx4V2vT19XHffffxpS99CYfDwUc/+tFC0fLlhnRIhdPppL29HYfDES3YHR8fz1nn5kzA5/PR1taGxWLh6NGjtLe3C20amK4LfCpzUVWVwcFBxsbGqK+vx+12p1UnJUkSxvH3cFeKiXjNhvP3Ms91/Y6GCkv6hAdgJtSTFcJTiPBkDulEWtKRxYuor1x6HJn2plpr/zqdjpaWFtatW8e3vvUtSktLo+duU1MT3/3ud/nQhz7E888/z0c/+lFhPpQrIX9XwssUqUR4wuEw3d3deDwedu/evag7Zi6tKkQitht0rAO46KaB6SyOqczF4/HQ2tpKeXk5x44diyo90oEkSRS3PUPfddvSGkfDpGJeKJbJQ+QL4RGW1oq4qFOC6HWZ9Zu4WggPZL9uSHRqKVFZvKIoyLKMxWKJusWninw4PzSytW7dOioqKvB4PJSWli6al6qq0ULxbKBAeBJEJlJasSqeTZs2xe3NItqqQiThSfSi0iJXFRUVy7pBi5K4Z6NpYCyWGphqyjkR89CHPSjBOQLF6XfvlSMKs1J2m+Ilg2ybhq4Gh9nIWJpRHhlwRtpxmPaLmdQKyIcb2pWKbESV4sniL1y4gCRJi9zi05XF5+ocmZycZG5ujuLiYj7wgQ/w8ssv881vfpM77riDdevWRTvS/+AHP8BkMvHhD38YIOPfe4HwCEaipMLr9dLe3o7FYllVxSOSpIgcS7uxr/YkFIlE6Onpwel0LotcxY6TL8qxRGt4lpp9xl6kInr5VHY/i7tRjGuwzxlElbLXhTsZVFokrIb8uWlXWNInPABToeGsEJ4rySk8n5CLVJBOp0Ov11NTUxPtmh8KhVKWxee6xuurX/0q3//+96mrq6O8vDyayvvZz37G7t27sVqtdHR00Nrayq/+6q9SV1cHFPrwXHZY6weLjQzs3LmT8vLVVTj5mtLSxlqJ8GhdhRsaGtixY8eK34uolJaISNFac1nJ7DOZMdaEqmIbepfJXzuS+hgxcHtyX6S+EvIpugNQZNRj1ksE5fQIq1MJ8/Z7L2OQHNGbU3FxsVCCku0bWq4MNXOBTNeRrISl62kysngtEqTJ4r1eb0J2Q8888wxf+MIXkGWZ22+/nbvvvnvR+8FgkN/7vd+jpaWFiooKHnnkETZt2hR9f2hoiKamJu69916++MUvRl+/7bbb2LdvH+FwmJmZGSKRCH6/n/HxcWZmZpibm8Nut3Ps2DFefPFF3nnnHTZt2pTx6FqB8CQIEYvLzMwMnZ2d1NTULIsMrATRKa1QKCRkrJVu7MFgkI6ODhRF4dChQ1gsljXndDmktFYz+4xF2hGerpdRVBmPI305OsB8aPXvP5fIl/qdWFSYjYz50r9G1m2VKFEacTqdjI2NRW9OsSmKdBQ52U5pXU0ptLUMSzO539WI1lqy+PHxcc6ePcvTTz9Nc3Mzer0en88X169P298dd9zBc889R319PUeOHOHUqVM0NTVFt/mXf/kXysvL6enp4fTp03z5y1/mkUceib5/11138aEPfWjZ2MePH+f48eNrHrNWu6QddyGldQUgGAzS2dlJJBJJut+MXq8X1rk5k+kxVVUZHR1lcHCQbdu2JezSm+8prUgkQmdnJ36/f0Wzz6VjpEN4pJan8GyuQRV04U87I5DZ+tmUkS+S9FhUm0xCCM9kZJr1dit2uz16cwqHw9Gb0+joaDRFoZGgZDr3ZpuA5MqdPRfIlwhPIlgqi9+zZw/XXHMN//7v/87k5CQ33ngjAIcOHeL48eN8/OMfjz6Evv7662zdupXNmzcDC67lTz311CLC89RTT3HvvfcC8LGPfYw777wzeu49+eSTbN68ec1IknZcHo8nupaWlJRQX1+Pw+HI6nlVIDwJIpnFJfamNzw8zPDwMFu3bmXduuQ75hoMBrxeMT49oqNFGjnwer20tbVFQ5TJSCtFq7REjqGl5TZt2kRTU1NC50Ba83BOoE6M4tovJp0FMC1nf+FOFPkY4bGa9dhlGW+aN7ygquKReyjWbY++ZjQaqaiooKKiAriUotBqNDweT7RQVSNBK9X2XQ0RnlxFlXIV4RFBKnU6Hbt37yYQCDA+Ps4PfvADfD4fLS0tvPbaa4vGHx0dpaGhIfp3fX09586dWzRe7DbauTkzM4PVauWb3/wmzz33HH/1V3+14ny0PnIPPvgg//Zv/8bIyAh6vR6TycS2bdv4/Oc/z0033ZS137lAeDIAvV7P3Nwc3d3dlJWVpdWETnRURqQlRDgcpre3l8nJSXbt2pWStFCv1xMOp299ICJSpJGVUCgU7Q+UiNlnLNKJ8EivPYSChGtd8t2Z40GWVaYt6Su9MoESE5SY8i/CA9AQ9tOhT/97mw73U2zcvuL7sSkKrWgztlB1aGiISCRCUVFRlARpcuVsFy3newNAkRAtS88FYp3SbTYb1157Lddee+2ibeKtU0uJx0rbfPWrX+Wuu+6KW8e4dNvHHnuMP/zDP+TEiRN88pOfxGazMTY2xpkzZ/i1X/s1nn76aW6++eZkDzElFAiPYGjFWZ2dnezevTvtTpf5qtIKh8O0trZG/a9SXZjyKcIjSRJ+v5833ngjKbNPIfNQZNTut/BtqEIWpBDxT3pRdPkpSc/H6I6G0mI7CLAfm4l4aVC8GHSJq+SWFqoqihKNAmlyZaPRiN/vZ3Z2ltLS0qwoii63BoDpIFcpLZFIpMtyfX09w8PD0b9HRkai6del29TX1xOJRHA6nTgcDs6dO8djjz3Gl770Jebn59HpdFgsFu68887oZ7UI3X333cepU6f4/ve/v4ggqarKr//6r/OVr3yFkydPJlRknS4KhCdBrBVyU1WVyclJenp6MJlMQsgO5J9KKxKJ0NXVhdPppLGxkQ0bNqQ9J1GEJ52cfyAQ4MKFC4RCIU6ePJmymV3KEZ73/gNCYVyNNSntNx7cc2IK1DOBfKzf0aBzlGEfnsRrSq/4SQHmw21UmlNPUep0OoqLiykuLqa+vh5YqAlsaWlhfn6ewcFBFEVZFAWy2WzCUwRXizs75C6lJfL7dblcaxqHHjlyhO7ubvr7+6mrq+P06dM8/PDDi7Y5deoUDzzwACdOnOCxxx6Lpp9eeeWV6Db33nsvRUVFi8hO7PF0dXXx13/91xQVFREKhaJrpMlk4i/+4i/44Ac/mDWCWSA8AuDz+Whvb8doNEZPIpEkJV8aD05MTNDT08OmTZswmUxCHG5zXbQcW2y9detWBgYG0jqulAnP288A4KpJrNg7Ecx7VchTkVY+R3gAGpQwHQKqvafC41QKLho3m80YjUa2bt0KLBADt9uN0+mkv78fr9eLxWJZJFdO17KgkNLKLES3GUgkwmMwGLj//vu55ZZbkGWZz3zmMzQ3N3PPPfdw+PBhTp06xWc/+1l+93d/l61bt+JwODh9+nRS81BVlXXr1vHss8/yK7/yK8vW1tbWVkwm05pqXlEoEJ4ksPRmpigKAwMDXLx4kR07dkSLEUU5pkN+pLQCgQDt7e3o9fpok8SBgYG8UVdp4yQ7H5/PR2tra7TYWqfT0dfXl9Y8Ulq0pvtgZppARTFBu7gU1FxYn7+Ex56/ER6AkiIbCLiE3UqEQGQMi6F27Y1ThCZ317p9w8I163Q6mZ6epq+vL9rCfy0Dy5VwNUV4cnGsmXBKr6lZO1p86623cuutty567Wtf+1r03xaLhUcffXTVMTQV10r44z/+Y+666y7MZjPXXXcdVVVVRCIRuru7+cu//Es+8YlPrDlPUSgQnhSh9WVZt25dXLsEUSQll+RJVdWoymzHjh3RuoJUxlptTtmu4Yk1+9y1a1e0+aOqqrmRwp5dCCN7toi9KU7r8pPtWA1QYclvwqOvKMc+MoXXmH4UcybcSV0GCU88aNYFmjJUM7B0Op309PTg9/uxWq2LokCr3XCvpggPXP7+Xbl2StcgSRKf+9znmJ6e5oc//CFPPPEEJpOJUCjE4OAgN954I9/4xjeyNp8C4UkSoVCIzs5OQqHQin1ZRJKUdGtTYpHMRex2u2lra1tRZaaptNKFyJRWIuNox6WZfcYuMjlprBYOQn8bAM765NsWrARVhSlL7he8eKi36y6LJnb1kRCdAgjPZGSeGiWCTpe75XapgaWqqtEo0OTkJL29vQCLokAWiyX6O11thCfbuFIJTygUQpZl7r33Xm655RbeeecdxsbGKC0t5fDhw9x0001ZnU+B8CSBsbEx+vr62LJlS9QALR5EEp5sQ5Zl+vr6mJmZoampacXCN71eTyAQSHt/IlNaqxGwWEuP5ubmNQv6soa3HoeITMRqwlsuzjHYODqFNVxJWJ9/l3h9nsrRl6K0WExaK6yquCMdlJp2pz+YIEiShNVqxWq1RtWIkUgkGgWamJggEAhgs9miDtdXS0orFxBNeNxud16scR0dHdx99918//vf55prruGaa65Z9H6204f5txrmMUwmU0I9dQwGgzALh2xCS9PV1tZy9OjRVRebyymlpZl9rlu3Li0JfUbw3gsAuLfWgqALXwpF2Pra2/x/lVZOu7dwrmqzkHFFocE7BWQ3xZMK9I4y7KPTQtJaU+GhvCI88WAwGCgvL1+U4vX5fLhcLiYmJvB4PDidzmgEKF17jLVQIDypw+Px5JTwaETm4sWLnDlzJpql8Pv96PV6JElCp9Nl/fctEJ4kUF1dndBNXqSyKhsIh8N0dnYSDAYTtr7IdioqkXGWEp5EzD5zipF3wekCwL1BjDs6QN2LLZjlMAa9mdv13Rwen+Ch8r04Lfnhml6/Lj97Ay2DJAlLa83JAcLyPEa9uChepiFJEna7HbvdHvVlqq+vx+l04nK5GBsbIxQKRaNAazl4J4tcqKVyZWdxpaW0tKjNgQMHuO2223jkkUf4sz/7s6RslTKBAuHJAESntDR1mKjQnzaWqqpcvHiRvr4+Nm/ezPr16xPeRz6ZfsYbJ1Gzz5zi3IIJn6LT4aqqEDJk+ds9OIYvIlVfWlj2W11s877KadcWXqvObbTHKEeors19bUGiKC2ygQD9gQrMhttZpz+R/mA5gNbZ2WAwrGiPMTo6itvtxmAwLIoCpdrm4WpqdnilpbS0e8zY2BhvvPEGjz/+ODMzM+zcuROHw0FRURHFxcWYzWZqa2sXCWIyiQLhyQBENguES+mjdHtpxI4VDodpa2vDbDZHpeapjCNiPiIJT6zZZ7JGrVlFwA3DC4Wivk3VKAJ+W8vYDLUtCwXQOtvi7rt2vcJn9d0cGp/gR+V7mc9RtKcu5EEvwLYhW9BXlGEdncEvoJvxVHiCavPl6Tq+Up+YePYY4XAYp9MZ9QiLNUnV7DESITK5KpS+EghPMBjMWm+beNAIT1dXF2NjYxQVFfHd736XkpISzGYziqJgMBiYnJzkj/7oj/ja176WFbJZIDxJIJnoh8gIjzaeKMLT39/P1NTUot5ByUJUZCZdd/HY+Xi9Xs6dO5eU2WfO8PppUBaO27Up/e7Kel+QjS++gV5VUVGRzPEXDi3a84hrM2ert6S932RRr7/MatskiYZIkC4BhMenKvjkQeyGTenPK8tIhnwYjcYV7TGGhoai9hiaHH4lewztpphN5KrLsqgH2ljkw/r3oQ99iK1btxIMBvF4PHi9Xnw+H36/n0AgwMTEBNdddx1AVr73AuHJAESntERFUzRTQpvNtkySnas5iUAoFKKnpwePx8OJEyfSLqQUkT5cc4z2Vxe2A1y1aXZXVlXqf/EGZn9w4W/j6guHXa/wGX0Ph8cneLBsH/PW7EV78r3DcjyU2q0LPhECMBPqSZvw5KLOJB2z0nj2GKFQCKfTyfz8fNQktbi4OEqC7Hb7VZXSikQiwgrAtbUnl4RHp9Ph8Xjo7e2lpKSELVvWfrjKxnwLhCcDEE140h0vtni3rKyMhoaGtC/qfCA8sTVIdXV1GI3GtBcNEfVSa47Rcwa8PgAC1WWE0gw9V51ro3RiJvq3boXozlLstbq51/cqP3Fv5tUsRXsaqvM0xbgKDBVlWMdn8RsEpLUiLuqUIHpd6udprroei4xAmEwmqqqqqKqqio6vqcAGBgbw+XxEIhFKS0ujNUHZiPZcCXYWuSq8jsU//MM/8Ld/+7eMj49jNpvZt28fd999NzfeeOOybbP5fRcITxJIdJER2SwQ0iMX09PTdHZ20tDQwPbt22lvbxdCxnJNeAKBAG1tbRiNRo4ePUo4HGZubi7tcbVUXToX4VpjSG8+iXZ2uNPsrmzvH2fdhW7g0rkpWRK/rO16hf9X38OhLER7dIpCTX3p2hvmG3Q66sNBugUQHhlwRtpxmPanPMaVaPOg0+miTQ8bGhqAhR4uJpOJmZkZ+vv7URQlGgVKxR4jEeSyaFkUoQsGgxltF7AWfvrTn/L1r3+dw4cP88UvfhGXy8X999/Pn/7pn/KTn/yE7du35+QchgLhuSyQShF0KBSio6MDWZY5dOhQtIAt32pvkoWqqoyMjDA0NLTI7kKW5bxwXYc1vhv3FOr4cPRPVxrdlY2eABtefgsdixcOyZb8ZX0p2tPIq9VbU57Talgf8mA0iTNHzSbK7BZhaa2p8MhlR3hysU+dTkdFRUXUI0yW5WgUqLe3F5/Ph8ViiRKgtewxEsGVULTscrly2oLjJz/5CSdPnuQ73/lONIV5ww03cP3113P+/Hm2b9+es7kVCM9lgGSKoFVVZWxsjIGBAbZu3Rr10okdS0RkRvTil8iCqpl9FhUVLWsAKZLIpTvOaoRHeu1htLfCRRZ8palJRyVFZcMzZzEu6S6toqKzphaJWIj29HJ4fJIHy/YyZxW7aNYTFDpeNmGoKMcyPktAQJTHKYcIytOY9alJcdOpp0kVuaqnWepRGGuSGmuPMTU1FbXHiI0CxdpjpLLPbEEk4cl108HW1lY+9alPUVdXRzgcJhwOc/DgQWpra5mamgIu+RZmu9aoQHiSQLI/jKinokRJitfrpa2tLer+HS9Emo+2F2vVvKiqysDAAOPj44vMPmORqX4+QsdQVdTuN6N/uremns5ad7YV+7xr2euSIf3Feo/Vzb2+s/zE1cgv14mL9jTkR9/D1KDT0SAorQUwG2qnxnptSp9dSSKeSeSjl1Y8ewxZlqPijMnJSfx+PzabLaoGKy4uXpVYXAl9eNxud06bDrpcLhobG5EkCaPRGFXgybIcVQXnqoN2gfBkCNpNT8RJvBZJURSFgYEBJiYm2LlzZ1xCsHRe+YTVal7cbjetra04HI5VlWUiCU/GUlqtz0Dgkizb1ZBad+XSsVmq2nvj79skZiGx6RX+H30vhwRGe+or89O9PVGU2SwgKIs7GZlmvaIgpbDwXy0prVRIll6vX2aP4ff7o/5g3d3di+qFtChQOvsUAdGEJ5cprWAwyN13383DDz8c7dFUW1tLf38///mf/4miKNHv3mq1cvDgway1HygQngxBIykiTuLVjDrn5+dpb2+nuro6IZ+ofLS9iNdYMVmzT1GF4iJSWiuRL+mt/4jeLxWDHnelI+mxLV4vdc++ykq3nmQKlhOBFu151L2JM9Xb0hqrrj73ZobpwFBZjnl8lqCAKE9QVfHIPRTrkq9nuFzIRz7sU5IkbDYbNpuNmpqFfleRSCQaBRofHycYDEYbI/r9/pxER0Sm0nJtK/GJT3yCoaEhAoEAIyMjBAIBzp49y/79+zl79iy/+MUvCIfDqKrK7OwsExMTUbVeplEgPEkgmUVGpIop3liRSITu7m48Hg979+7Fbk8sX2AwGAgGxdVSiFh8lxKEXJp9iogUxY3wzAyiTk1G//Q0rkdNkgzrZJkNz5/HEFn5vJJsYlIusbDpFW7T93FofIoHy/Ywa01+Ma0KeLDas9M+PmN4P63VIyitNR3up9hYIDzZ3qfBYMDhcOBwLDxwaCapWnfo6elpxsbGFhVDZ0P1JOo3zXVK67777ovW7oTDYUKhEMFgEJ/PF/07EAgQCATwer3R3yEbKBCeJJGoOklkrcxSldbk5CTd3d1s3LiRnTt3Jk3ERKW0RKXttHFkWaa7uxun05kzs09RNTxLzxHptYcXZUPcm5JPZ9WfexfL1OyK76uoSNbMXdK734/2PDC+mZbNydX21Kv+DM0quyi3mYWltWYiXhoULwZdcsVNuShavpJJVqxJqt/vp6ysjJKSkmgUKB17jFwg10XLudz3WigQngxBJOHR0lCBQICOjg4kSeLw4cMpPXXodDqh8xKRe9br9czOzjI0NERDQwM7duzIWZdQUTU8i0iTHEbtey/6pwo41ycXwq3sG6SsbWj1/eolJF1mvzerXuXzjl7e7Jni4co9uMsSI6X11tw3QxMBQ6UD8/gcQQE1BwowF26jynwkuc8VipYzuk+9Xo/RaFzRJHV4eBiPx4PBYIgSoJXsMXIBt9sdlYMXsBgFwpMhiDQQ1el0uN1uWlpa2L59e1r5TpHzEhEtCofDzM/P4/V6OXjwYM7NPkXV8CwiTW89AeFL33mgroJIEmTVPudk/X+/s/aGpuypSw5XutgVPsuDXZtp2b52l+Z6R2qO2XkHnY76cIBeg5jo4+T8IFXrkiM8uSpazkVEI9vHuVItTTyT1FAoFI0CafYYRUVFi6JAicxf9O/p9XpzWrSczygQniSRaEpLVHGwx+PhwoULhMNhTp48mXY1u8jaIp1Ol9ZYWmrOYrHQ2NiYc7ID4mp4tDFUVUV69xeL3nc1Jm4WagiFaHjuHDpl7XNOMmf3crYbFT5f3cP5nkl+VLkH1yrRnvq6y7DD8goQmdbyWnV4+89gb7wm4c/kKr2UD2aUmUYyEWuTybTMJFVrjDg4OLjIJFWrBYoXBRLd+yfXKa18RoHwZAjpprRiVUo7duygu7tbiHRPpCw9VfIUCoVob29HVVUOHz7M4OBgXvi/gNiUlizLqGNtGObnF73vqkuw27CqsuHMW5hcidW/6DJYv7MaDla62BE+y0Ndm3kzTrTH7vZTskqrhMsNxopyTBfnCQmS0s64L2Cf3whlDQltfyXX0+Qa6RxnrNxdQzAYxOl0Mjs7y8DAAIqiLIoC2Ww24U7puS5azmcUCE+GYDAYCIVCa28YB7Ozs3R0dFBTU8OxY8eQJElYVEZ0bVEy84o1+4ztAi3a7iIrqiklAAAgAElEQVRd408RER6fz0dJSQmmNx5d9F6o1IY/wcVofVsPRX0XE9pWVVUke+4uZ7tR4Q+qezjaM8lDFXtwlV+K9qzz+oArh/Cg11MfDtAnKK01XV3KNs8rBIp+C8mwdqozV0XLVwPhEd140Gw2U11dTXX1wkOOoii43W6cTid9fX34/X4MBgPhcJjZ2VkhJqlut7sQ4VkBBcKTJBK9maaS0gqHw3R2dhIIBNi/fz82my2VKa45L5EprUTJwVKzz9jQrqg5iVCNpUO+VFVFURQqKysZGhpipL+bDwx3LdrGvbUuobFKJqepOtuW+M71OiR97m9IBypdbA+f5UfdjbyxbUHJVWvIr0aXIuCwmuhLYDtJljEFg5iDQUzBIKbAwv+NwQjGWRemcBCLHEI22jHv0RPa+ok1x8xV0XIhpZU+dDrdMnuMmZkZhoaGmJ6epq+vD1VVo435SkpKkjZJLaS0VkaB8GQIyURSVFVlYmKC3t5eGhsbqampydjiku2U1kpmn5mYk1ZTlAvCo6rqQgpLVSktLWXv3r3oXv03kBenx1wNa5uFmvx+6p99Y8XmgvEgGfPnZmQ3Kvx+VS9Heid5yLGHDY4rb5kxVjooGriILhyOkhhTMLBAbqJ/BzGEwwn9jqpvHmZG0OtfQG68afVtc+Q0nc195irFne3UnSRJGAwGioqKoqaasixHo0A9PT34/X6sVmuUKK1lj1EgPCvjyluJ8gSJEh6/3097eztGo5EjR45gMmVWzSJy0VpLpbWa2WcsLgsfrBWgRXW0J+DYxVJq/+WibWWTAY9j9dSOpChseOFNDIHk0qHZLlhOBAcq3OwIv8acaV+upyIe4Qj7nn4RfYkYKbJk0BE+/x7Gm8tRpntQK1fuc5QrwpNN5PIYc6EMiyUwer2esrIyysrKgEv2GC6Xi4mJCXp6egCiUaDS0lLMZnN03l6vd81GtM888wxf+MIXkGWZ22+/nbvvvnvR+8FgkN/7vd+jpaWFiooKHnnkETZt2sRzzz3H3XffTSgUwmQy8a1vfYubblqdoOcT8m+VzHMkk9JaLfqhqiqDg4OMjY2xY8eOaL+H1ZBvC91KKq1EzD5jodfrhXR/Fq2wWguxUZ2lrr/SwBvg8S7a3rOlBnWNp8e6t9qwja/cXHDFeeeoYHkt6J0Bit55GeXQJ9HlISlLFVJnP+qcD9VeLCyVaHSYCDzxMpbfMuAvqUUyxU9p59s6kAlcLUXSsHYaLdYeQzNJ1ewxXC4XFy9eZHZ2lu985zscPnw4+rC90gOmLMvccccdPPfcc9TX13PkyBFOnTpFU1NTdJt/+Zd/oby8nJ6eHk6fPs2Xv/xlHnnkESorK/n5z39ObW0tFy5c4JZbbmF0dFTsF5JBXDkrUJ5htQhPooaYsRBpRioK8UiddmwVFRUcP348oUUr3yI84XB41W1Wi+pEx3nz8WWvuTau3l25fGSM8rfim4KuBV0OC5ZXg3/Ij9njwvtYC0WfOpbr6QhD5I1+DAoo80H0FeLaKZgqdQSePov5FgOhrf8D4hCbq6GAON/WukwilTT8UnsMRVFwOBy88sorTE9Pc80112CxWDh+/DgnTpzgV3/1V6N1Q6+//jpbt25l8+bNAHzyk5/kqaeeWkR4nnrqKe69914APvaxj3HnnXeiqioHDhyIbtPc3EwgECAYDGbFekMEruyrJoeIR3hkWaazs5O2tjaam5vZvn17wie6yGJjUYidk6Io9PT00NraSlNTE9u2bUt4Uc43wrPaGFpURyM7cZ+0fXMwtrgrsipJuNat3DDS4vZQ9/z5pOp2omPrQDLm581BCSycA7a3zhO+eGXYSxAxoR8eBkB2y0TC4qItOqsBye9CfqcVfe9/xd3maiggFt2bJp8holBap9Oxb98+7rjjDsrKynjzzTd5+umnufnmm3nvvfcYGxuLbjs6OkpDw6UWCPX19cuiNLHbaB2lZ2ZmFm3z05/+lAMHDlw2ZAcKEZ6kkWpKa3p6mq6uLurq6jh69GjSC5ZGoETU+Ghpm3QXFI0caI7t69at4+jRo0mPK1qlle4Y8QomE4nqaNC//mNYMoavoRJ5hdbzukiEjc+/jm4VU9DVIBny98ZgrSiF8XkkRcbwwtuo/+NEvKDFZQW1by76pKhTZTDVgToibHxTnQ3fm11YqstQihtQ1zUv3n8hpZUR5KpQWpZlYbYUkUgkSp5KS0u5+eabufnmmxdtE+84l55Pa23T2trKl7/8ZZ599lkR084aCoQnQ9BOjlAoREdHB5FIhIMHD2KxWFIaLxNy8nQXFEmSmJycZGZmJinH9pXmky4yVcOzWq3OMqgqdL6x7GVXY+2KH2l47R3MM+7U52zO0+iOqoOJGCLwZgtccwQ2XN7LTvj5F4h9plUHOlC21KGLOIWML+klzBtt+H/+OrZiO8GSOiRr2aX9FQjPFbNPECuF93g8a67D9fX1DL8foQQYGRmhtrY27jb19fVEIhGcTmc0fTYyMsJv/uZv8sMf/pAtW9a2lckn5O+j4WUOVVUJhUK88cYbVFdXc+DAgZTJDoj1wBLRfHBmZobOzk70ej1HjhxJmexAfhGe2DE0oqN9Vzqdbs0bjdT5CwgsL8B21cZPZ1X1DFDakV50QLLkJ4FQ5DJQlpyz//QgqpwfJoupwDcTwTwxvug1SZFRQqmf//FgcJjRF+nxP/kqpp4nFkUMs014chH5KBCe1OByudbssnzkyBG6u7vp7+8nFApx+vRpTp06tWibU6dO8cADDwDw2GOPcdNNNyFJEvPz83z4wx/mf//v/83JkyeFzDmbKBCeJJHIQuPz+WhpaUGWZY4ePcr69evTXqBERnjSGSscDnPhwgUGBgbYsWNHwgZ5mZpPLEQSnoRqdeJ9/q3/WPZaoKKYYBxCaJ+bZ/1L76Y1XyCnHZZXgxyIQ2y8Xnjm7exPRhCsgyso6AbbUUzLe0ylA/MmO6rHT+i5s+jbn4iej7kgPFeDlUWmmw6uhNUUVckikR48BoOB+++/n1tuuYVdu3bx8Y9/nObmZu655x5+9rOfAfDZz36WmZkZtm7dyre//W2+8Y1vAHD//ffT09PD17/+dfbv38/+/fuZnJwUMvdsID9XyssUiqIwODgYlWO3t7cLO5FFmZFqY6VCMDSzT605osfjyRuiImocSZKIRCKLojoJY34UJpdbQXi2LE9nGUIhNvzXOaQ0n55VibyVeytznvhv/OJF1GN7kCovsw7MqoT04osrvq14JXQCg1c6ix5jrZXwyAy6N15FDpZA83UEAoGoB9Na9WQicLVEW3JFeESntBJxSr/11lu59dZbF732ta99Lfpvi8XCo48+uvRjfOUrX+ErX/lK+hPNEfJzpcxjrPSk43Q6aWtro6qqKirH1lJHIgrSchnhWWr2qVXli5rTWg0ME0W6hEdVVcxmM8FgkHPnzlFUVER5eTllZWUJRbJ0Z38U93VX/ZLuyqrKxpdaMHoCKc81CkN+1nKoqgoXx1be4J9Po37pd5B0Ykh8VjCvQ3KtUqcz0oO8cwf6YGL+Z4nAVGslMh0k/E4/5qKX6P7rxwk41lNy3VECB2SMDZeixxr5EU0UrpYIz5WQ0ioYh66OAuFJE5FIhO7ubtxuN3v27FnErrW6GxGEJxemn6qqMj4+Tn9//yKzTw2iLSFEjJOqLYSmwDIYDBw8eBBVVfF4PMzNzdHX14fX68VqtUY7oJaUlCxaHGdea6WqZ3l6KmI14SkvW/RaTWsX9kExYWCdKU8LlikB7yq1SZOT8NogfCAxb7F8gOdMC2vdStS5AKpVHEGQdBLmTXYCnW7CZ9vZ/NG9dD/uZu6hp5n+hx9jKLZjP9CE9cAurPt2YKhdMKnU0rDaf+ncyK+WaMuVEuEpEJ6VUSA8KUBz5Z6amqKrq4sNGzawc+fOZYuc6DSUiG7E2lhrEYxAIEBraytms3mZ2Wcy4ySCXKa0VlJgSZJEcXExxcXFbNiwIdrefX5+nrGxMTo6OjAYDJRY7fiffA3H/JtI9cv37dlSu6h5XMnEFJWvdaR3oDHI14JlOZhAM77HnsC79Q+wV18GRcyKgaK3WtbebmIQZdcu9IFVoltJwlBmQl9uQp4Loba0U3uknvf+aQIAvRe8r3VgaB1G/9P/xlBqx7KxFvOWekqONmOsdiyK0GiF98kQmKsl2pKrZoeFCE/2kJ+rZZ4jGAzS1rbgZB2b4lkKkVEZg8GAz+cTMtZqREVVVYaHhxkeHmbnzp2rWl7kI+FZq0uyhtiojvbZ1RDb3l2TcE69doH3PvcdAgMT7P5i/Ly5a8Ol7somn5/6595MqbngivOy5eclHJ4PJqSIsD36POoffhhJyvN6notBpATP9eDoNFaH2DSQaYMNvzOE6g9h881Qf20FI6/MIHv9yN6lDR3PR/9l39VI+fUHKbvuILZdm6LneyQSWRT9We38v1pSWrlqdijy+3W73Wta+VzNyM/VMs/R0dFBbW0t1dXVq24nUkqejaJlr9dLa2srxcXFq5p9atAiXelC1MWeKHFKqq9OHMj+IF3f+jH9//gzUBTKN+ox6ZfvV9FJuKoXCKOkKGx84Y2kTUFXg6qqeeuhFR6/SEL9V3t7oW0OmkszPaX08GoC0Z33YXJN4XVsoYhpYbvXW/ToG6uReydRp5zUb69irt+Cd2T1OjBvez/e9n5GvvdTjBWlOK4/RPl1Byk9sQfJakZRFGRZjq4H8dJguYq2iBJ8JIpcpbREwuPxsHHjxlxPI2+Rn6tlnmP//v0J3VjzQVm10lixkZBYdVlTU1PUpXct5Fvzs0RsIZKJ6sTDXEsn7/7x3+LtvdSKvflmC7Cc+Pk2rUN5f9Gua2nFenEu6f2tBkVvyLvfAEBRjZhdSfQWeuDHqF//IySzODIoFGETvJeclN4850RxSOjinBepwlKl4vNUo05MogxP0fRrNbz5QAA1saAm4RknE4+/wMTjLyAZDZQeacZxwyHKrj2AdcP6qOxduz60hwItGpRNXC1pNNEo1PCsjgLhySBEp7REEp5AYOHJMBWzz3zFaoRHdFQnuk8jlFUCcXbr2rSQznIMjeJ4py+p/SUC/a5miAyvvWGWIctly6w1VkUkQuTHz2G47fr8tJ0YmEs6DSk5p1Fr9kBwaO2NEx1TVbDuqcc3sVDwLg2P0/wb1Vx4bGaNTy6HGo4w/+o7zL/6DgDWLfVUXH8Ixw2HKDmwE1W30HE8EokwOjqK1WqNPiRlSg0Wi1yltLIdVRLd1LFAeFZHgfBkEKKVVaLH6u7uZmZmhubm5iviIolHeDIV1dHQdLMVSYnjvQW4aqqxutzUvnB+2fsioDPpIQ9V3Yo3edZiePc9PG17KW7Ow/qDF19O6WPK8DDSOgM6VdyPpHOPYDy0l3DLu6CCNeRiw0d3M/T4e5BGdZi/d4SR3hFGfvAUhhI75dcewH5iN2PlJmq3bY7WrWnX0lppsHRxtRQtq6pY5/tC0fLqKBCeFJCMgWgoJCZMLzKl5ff7GR0dpbGxMSWzz3zFUsKTqahOLBqa9cQL7wSqS5GNRhr/81V0kcwU5EqqmCJ20VDmXCl9ruj0k6hf/X0kQ4I5mmzAZ0IaTS2KJnnnUYx70YUGhU7JZHcRtlrB70cKBKhZP0nlHfsZfGWSmXfH1x5gDURcXqaePsPU02dAJzF7YCfccBjHDYewbalf5De3UhpMr9enRYCulqJl0XVDHo+H0tI8r4fLIQqEJ4PIt5SWLMt0d3czOztLeXk5jY2NQuYmSmWQ7jixthBpR3Xe7ODdu/4ublRHw7pdRgwrqIvcm2tpePVtzLMrdBtOE6qkQwqIK4oVBVVVkUeHSGkJ12wnfr157W2zhfb0UobqYC9KnR2dIqalBIAUdBPZ24jh3IJSVL04jqmohC0bJmnYv43el6ZxDwqqF1NUXC3tuFraGfjrB7HUV+N4n/yUHmnGaLrUUkC75mKvwdgoUDJpsKulD0+su7kIFFJaq6NAeFJAojdlkYQnnot3MpiZmaGjo4OGhgbq6uro6xNTU6J1SU73otXISjrjaA0MMx3V0bDrRjNxi3cAi9NDSdfKZCldBMsqMAlMlYiCz29FH07j5v7Ci6jHdyNVZt+wchlUHaxiJZEIpIAXRb8ZnSKulgeglEk8dTVIowsRHaWnk8DG7VgGO9jVZMB3zU66nxkiOCM2ChgYmWTsof9g7KH/QGezUP6BfThuOITjuoOYqsoXEZqlDx/JpMGulqLlTER41vLSuppRIDwZhMhC41QjH+FwmM7OToLBIAcPHsRqteL3+4XNSyMZ6V606RInLYw+NzdHR0cHDoeDsrKyFXskxUMiUR0NJrtEcYkST5yFP6CjOM3IwFpQi0uAFYwscwidsraPz5r4xx+j3v3p3NtOzEtI7tTSc7FQ+7tQNlWgi3gFTGoBEir2nZX4Ri+lsCyDXbjXbyMyMUv5VCu7j5uZNWxm8L+GUALiv0vFF2Dm+XPMPH8OgKI9W3Fcf4iKGw5jb2qMkgftml6a9lotDXYlkI9E9ymyUDocDmMymYSNd6WhQHgyCJGFxqlgqdmnRpryxXk9FhpxSsWGQ6vVMRqNnDhxApfLxdzcHCMjI4TDYYqLi6OeWFardRl5TCaqo6H5Q9a4ZMc9p0PSS0iWpA8jKdgrSsGXf4RH8kTSF2JPT8PZAThZn/6E0sH5diHDSOEgiuJAhzjCA6DzjGE8tp/wuUuS+eKL3YRqmhhsK6OkRkeFv5eym22MOKuYenlswW02Q/C814PnvR4G/+40RUf2YGyop+J4E5XX7sVUXhwlMEujQEvTYJFIhHA4nHZaOlnkomhZJMkSrfi6ElEgPCkgFymtZBAKhVbtBC2S8OTSByterY5Op8PhcOBwOICFRcztdjM3N0dXVxd+vx+73U55eTnl5eWE2od570/uTyiqo0FvNVO7TQ/K4uP2OHUMn4mw6zcMK2W6hEFCgPFoBqBOivEI46dPou67C6koRwXMigF++Yqw4dT+dgIbqrBIS7sipweTaZZwcRG4L9WKmcbbaNi1hZ7nxpk2V+DYW0NDUT8bfruKoWELU2eHSUfRtRIMNVXoHBXMd44y/19vA2/T/8//DpJE2b4tVF2/n6ob9lN+eCd688KDzdK6nnA4TEdHBxaLBZPJFF1bNGd40WqwWFwJRcuQf/3R8gkFwpNBiExpaVitsHcts08NoqwcQJzTebLjJKrA0ul0lJaWRpULqqri9XqZGZ/g/J9/F88Tr8L7snLJakJXasPmKMVYZEVn1CNJoEZklECQiNtHaNZF7U4F3RKy43XpGHolgn29DknQd7visSMhBZPvvZJpKKoZZgWm8v71SdQ7P5IT2wl1PIhO4LUrKTJ6ygGxhEcKebEc3UXgF28sel13sZdtN9bR/3qAyf/uYMpooPRAFTXr59nw6Y10n/fjaptKe/+64iKMG+vxjs8zd2EEiKMSU1Xm3+5h/u0euv/mMfQ2MxUndlN1/T6qbjhA8Y4GJEnC4/HQ2tpKQ0PDIhk8JJYGSxeXe6F0LixALjcUCE8GIZJYwCUCFS/n6/f7aWtrW9XsU4PIi0J0SmstpKvAkiSJSNcoc997Asv0PMY9mwjNuwjPuSEUgXkXwXkXq5Xdbj5mIzaE4/dIDL0SQY1AVbMeEEtyl6GiCknOv67EckRwsWR/P7TOwu7EOn+LROCFV7CJHnSgA2XHJnQhsalIvacf/ZZG5N7+Ra9L06Ns3u9gpK8ad88k8693MQ9IDZU4NlloPLiNvjMzuAeSnI9Bj3lbI0GfzOy7fagDF5L6uOwLMvmLFiZ/sWDXYVnvwH54G+Ft1ez55K9R8T7ZARJOgy1Vgy39TCK43OuGfD4fNpvws/aKQoHwpIBcsWitJiiW8CRj9pmpOWXL6TztvjrBEH3/9zSD/5x4rc5SWMslrJZLxcp+j8TAyzLK+5kXa5GS+XSWo5K4T9I5hpwJBf4DP0a97wvZtZ0Im7D2dAkfVkJF8RnRCV51JVTMG234+qTlHa5ds9TX+Zks3cBMy4JSTB2eZmYYnBWlVO+tpe54Lf3P9a2q6FJVFXl9JRGDmWDvJMqZDmHzD1ycJfDvC4XPv/y/P6ekadNC+uv6fTiON2OwLU7JL02DxRIfbY2A5NNgopsAJgJZloUVGbvdboqKBIgGrmAUCM9lhKXRlGTNPjMBUTU8qxEnEX11nG930fpnf4cviVqdeNj1QUv0puL36Rg8I6O8fy8u36qP23VZNCSbmXws4VFn5sUPKsvwkxdQP31N9mwn+mczUOHyPoa7kHduQx8UVOv0PnTei5iOHyB0Nk5X76CfKnM/oaN1uF+/GH05MuNk8r+dSEYD1Qe2IJn1jL3QQcR/qW7KUF2BrqoaV+84/rYJoXNeCa62AVxtA/R+90l0ZiOOo7ui9T+luxuRllz/6ajBcg2REZ5Cl+W1USA8WYCo3KqW0krV7DMTyHRKK92ojhIM0/c3jzDwj0+mHNWJRWUdoEDALzH4iowcuERwbNvKyYZUXNLnUSfi96EooIwPk5FbyFtvw7VHYVOW5LYpWkkkCtUZQTWLr7cw6iYJl5aiOp3L3pMUmXrdEL6P7GHw5x3EFi2r4Qjzr3cC4Ni1AdlsweNW8U26mGsfgvbsEJ14UIJhpl95l+lX3qX9vh9iqiih6rp90QiQta5q2WdSTYPlQuUkkvAUevCsjQLhSQHJLFQiGupp0Ov1uFwu2tra0jb71BoZpvuUkymVloiojuvdHlq/9Hd4u8QU0jaeNCEpKsGAxOArCrI/ZoHUSRQVBSELXEQXEuu6LgIy5ejkDPYe+ueHUO/9g8zbTvhMSGNJOL2ngvF+lF270AfGhA4rRfxYjmzD//ybK25jm3qPrb/ZRM/PeyGy/Abv71lIe1nLS7E11hCeceKfXE6gcoXQjIvRJ15h9IkFBV3RtvqF4ufr91N5cjeGovg1LGulwZzvk8RwOJxxNVgsREd4Cimt1VEgPClCkqSEngi0qEy6J7WiKDidTqanp9m/f3/aoUstMpPuBZ0JlZaQqM79jzL4vcdRZXEFNRsPGAgFVQbPKER8i397x/FNGMJiPZPiQS0tRwrnn4eW4s9w9MXnw/f4q9g/fiSz+2nLjvt8+OIculLxUR69ux/9jq3InT0rbmMcb2PHr2+h9/lJIp745fnynBPmnFSV6DEf3s3cmIfptweEzlUEPN0jeLpH6P/np5EMesoP73g/+rOfsv1b0Rnir7uxUaDR0VFGR0fZs2cPer0+q2kwkdYShZTW2igQngxDKzROpzBtfn6etrY2TCYTGzduFHJSa4QnlUZ/S8cJBtP3CYq1hdAWm1TIjutCL61f/Du8XWJb+ZfU6JBklcFfqoQ9y4lu+VYzpN+Ud01IFdWA2PoPEVDnxcqt48H22jnUG48iVWUo9aDq4MUXMjP2EhjmLuIq3kSpPgPRugoZVbd6ewTdxV62Xl9L/5tmghOrnLiyTLC9Gxuw9dqNhMzFjL3aRcSXfypBNSIz+1obs6+10fnNh7FuXEf50d2UNm+i6prdlDZvRIohF7Is097ejiRJHD58eBnxiC2CFqkGi0Whhie7KBCeDCOd5oORSITu7m7cbjf79u1jeno67zoki1Rpud1uwuEwBoMh+ahOKEz/3/+UgX94TGhUR8PmD5gZOKMSdi0fW2c2YPaLJVgrQSqysapmPkdQJy+uvZEI/FMGbSfmJCSPW/y4K8Dm8qGUI7zuySq7CJ84QPCXLatuJ82MsXlvOSMD1bi71ybRoZGLwEXqN9vQb9zFROsYnoH0e/mIhqqqlB7cyXz7CPMPPh993Vhqp/JEE1Unmyk6tIVhyUvDpo3U1dXFHSdeMfRKajBt+2SjQCKtJQrGoWujQHhSRLIprWQRa/a5c+dOJElibm4u7whPujU82gJSVlbG/Pw858+fR6fTUVZWRnl5OaWlpWtGodzt/bR+8e/wtA+kPI8V5wfY68qY61aQXfGlUZXXNCKFe4XvOx4kg5x3hEdRbeDMTiqI6Wl4tR+uaRA/9vk28WOuAml+ErVmDwTEk2WDOkaowoE6s0YRvXuO+trAgmz9zcTmoXj9KG0dOCSouXknHo/C+Nnu5ZL4HMBUVYahsoKps8tl82Gnl/Fn3mD8mYUmjXqbmdDxJlwnm6k82Yzj0PZoB+h4yIQaTHTRcmNjo5CxrlQUCE+GkayfVqzZ56FDh7BYLpkyGQwGIekjbV6iIjypjhMbLrZYLOzatQtY+A7m5+eZm5ujv79/4YmttDTqh6WlB5VwhIHvPk7//Y+iRtI7FslkxFxbibG0GMloQAmFCc25UebnqFpvRp5eOfVQWg9kqa5TDeRhwXI4y0+Vjz9FZPcfYSgTGMlTDPDqGXHjJbrb4RGkKj06wc0qJTmE5UAj/ucTUA0G/VSb+jHdtIPxF1au/Yn70e5+jMDmI+tRHFWMneslNCfWMywRqKpK2ZEmZt/uJzKc2DHIviATL7zFxAtvAaAzG6k4soOqk7upPNlMxdGdy3oAxWIlNVgyaTCR3ZELEZ61USA8GUYyKa2JiQl6enqWmX1qyEfTz1TGWarAWlqrYzQaqaqqoqpqQXIqyzLz8/PMz88zNDREJBLBNufH9TdPEkhCgaWqKiZHKcbqcgx2G0gQ8QYJTs0TvDhDuHuxasZo0bHh4HrkyZVtHAylFozuzBcrAygWG+aMdPdLD7I7w52l4+3zX59A+qPfQJgTwHgASbANTCKQPHModXvRhcSfQ3r3AIamHUTaOtfeWJEp87Vh+vXdDP57J8l6bUWmZmFqlppqI5H9W5kbcuLrzU66S6ooQbGYmTyTXoROCYaZOnOBqTMLnaMlowHHga1UXdNM5Qd2U3l8F8aS1TsZJ5sGU1VVGOkpEJ61USA8KUKkgWgwGKS9fcGZ+ciRIysWOOcj4UnWPqosc6sAACAASURBVCMVBZZer6eiooKKigqUiMzA9x6n/29/snJURydhrqnE6ChFZzahRmTCTi+B8Rn8k4nJbPVmHRsO1SBPTK+6XdU1m5AU8V1540FXXQvkn4eWOp1913bT8DC0zsNeQT2ofvnG2ttkCOpgH0qtBZ0qXnJvrJKJGAyQ4EOXbfrCqrL1taCGwugHhqkETDduIaCaGf1lF2pYfM2VCpQdaWLmjW7kgPgQqxqOMPN6BzOvd8C3fwo6HeX7NlP1fgqs6kQzJsfqBGMpAdIITiQSYWRkBKPRGBVrpKsGKxQt///svXd8HPWd//+cbdKuVlr13mV1yx3b2NgmJgRCKCEc+f4ScpgSfDgQ6pcQAvelJZBc6CSXhBDMwQWckNyZmARTLBdcsY2bZPVu9bK72pW2z/z+ULRYVlutthn0fDz4g93Zmc/IuzOvebfX9MwJHj+jUCiw2yfuaDjb7DM/P5/ExMRp9xVqgsfT/UwX1fEEc20rpx94mcFTI/UyMk04UowWRWQEyrAwHMMW7AODuHoHcTb3QLN33UxypUDO8jScndN/PireHrB0lhClBUdoCR5RkkHP7KZXe82bbyM9eTdC+Cw7hhwqqDzlmzV5gWA1IypykflhrIHcqsc2P5ew456Lck/a1j3B3nwGGZBdGo2QmkrX8TaGO3yTkg3PSEJSqOj5pNIn+/MIUUR/rB79sXpqf/UuALrSLHcKLGF1KeGJMVPuYnT+WU1NDQqFgiVLlgD4pBtsLsIzPXOCx89MVsMzE7PP6fbl7boC1aU167k6Thdn/vgh3dsPgFKFOj+L4c4+7HozGC046PWZB7VMDtkXZuDsmH66rCopErkxMOksAEFFQAYbzgRRjAFX4P4GY3C54E87kG5ciyDMomC2sd9/VhIeIjXVImZFI3P5vr0/Vj3IUEIc9Houlj1uW/cAl9EExhri1QKqy0sY7LfRc9jLIn+ZgG5pMX2HahDtfujUmyHGyhaMlS3Uv/J3ACLz00i4aD7xq0pJuGg+mrT4MdsPDQ1RUVFBenr6uO6w2XaDmUwmdDqdX87zi8Kc4PESb1NaszH79HVKy+GY/d1zqi4tX0R1hhrbOXnvSxg/83/aSBAgd002zjOeGXMmrkpHkDyoj/ARQijW71iCfAk5cQKaV0COd3OuJAmcH5YTINOKSREcVkTikeH7bjdBdKBemInl45lFB2fatj4tooS9poFwIG9VBk5tNO37az2OIqlzU3E5CGxUZ4aY6tox1bXTuPkDACKykyi861ryvn8Fvb291NfXU1paOqUFxLlpMMAd9ZmqG2zOWmJ6gu+e9gXn7DTU0NAQhw8fZnh4mJUrV87Y2Xw2M33Oxd8prdEnE1EU3U8jMxE7kijS/Idt7LvsvoCIHQTIWJXmsdgB0EYGToBIShWCNfC1MtMh6kNAhL36JpLTuwGawrAKVV/wvKLORmqqRlT4JyUhN7WiXFgy8w+a9KSl9BG3zLdjABydPUh1taRnhjPvGwvQ5SdPuq2glKO7oARjTSemuiClT70k5bILyP7Xr1JfX09bWxtLly71SpTIZDKUSiUqlYrw8HBUKhVKpdI9Gbq7u5va2tqgGEifT8z9dfzMaCSlqamJrq4uiouLvTb7DNWi5bPnEfkiqjPc2k3F//0VAwcqZr0+T8m9OAexzXNvI01OHPLBwF18hcQUhECMcp4BkiRBl2/9oLzCYoF/fAZXl838s6eDlI6bAMHlRHRGIcM/ww9V0TYcKhVMUlM46brsVhKUTdiXp49xW/cFosWK/XQNOiDhqwUM22R07Kt1G/1G5GdgM9lCOqozEYpINct+9UOSr1zByYoKIiMjWbx4sc9a0M+OAh09epQ77riDl19+ecwYkznGMyd4vMTTL67VaqWvr4+IiAhWrFgxqzHkvvTd8aV4GmW2tTqSJHHm7Y+ofmIzrqGJh/z5g7z1ebhaZ2YYGblABwRwJo5OB67QEjyiFAlDfjba9JRdu5FWLkBI9LyWR5JkSDs+xled7b5Aaq7ClZ+J3GHw+b4Fq4GwVQux7Zp5R5ogiaTLWulal4l+dyczbVv3BHtDCwogd3ECrsQUBo0iXTtPhsRAw5mgm5/Nhf/1ICRHcfToUXJzc6dtSPEGSZJ48803+cMf/sBf/vIXCgoKfH6MLxpzgsdPiKJIQ0MDfX19aDQa8vPzg72kMfhS8JydvgLvojrWzn4qfvRr+nYd88maPCX3knm4WmZeN6FR9kMAayZl4XII/Dy3KTEOSKiDvYizeXVmthPmVjNRFv97gM0EQZIY7HUQ46Nu+3NR2FpwpCUjtnsXqUm2tRJ3bTH12xq9aluflqQkzAotfeWViDYHMYUphCXFYh0wY6hsATG0xU/E5QuJ+uHl1Jm6Ge5uorS0lJiYqTu3vMFut/Pggw+i1+vZuXPnnEu6h8zV8PgBg8HAwYMHUSgUrFixItjLmRBfCZ7RuRJNTU2YTCOh+BnV6kgSHf+zi72X3h0EsZOP6IXYiShJQuMMnOcSgCCGnkO6Rpp8Cm1Q6OuDvY0eb67xgxWJL4jUd+AKS/DLvgXRRXhx0qz2oeysovDKNBRa3/z7SzIZ5ORi1KTQerCVnr2nEW0jDRXDzZ3oD1ViqWshIiGCpNVFJFxYhFIX4ZNj+wq5WsUFv7mby7c8TmRsNC6Xi6SkJBobGzlw4AAVFRWcOXMGs9nskSXRVHR1dXH11VeTm5vLli1b5sTODJiL8HjJRDf1UbNPs9nMwoULiYjwz4/SF5M5Zyt4zq7VWbhwIXq9nra2NkwmE2FhYcTExBATE0NUVNSkaTxbn4HTD/2W7u2HvF6Ht+RcUoDY4l39RuKiWBgOnGmiJMgQrKE1fwdA6p16KGNQ2Po3pMX3IkRO3YEoiQrknx4I0KJmjjQogp/0pMx0BuXSMhxHvZ89JOtqZN66VJqPhmHt8jLVGqnFGZ9K/6k2bOVV027uNA5hODrSFSmTCUSVpqKOi2GofQBzg+fNBr4mMj+NC994kLC8ZI4ePUpiYiIlJSXua7QoiphMJoxGI42NjQwNDREeHk50dDTR0dFERUV57Kd16NAh7r77bv7jP/6Dyy+/3J+n9YVkTvD4iFGzz8zMTLfZpz8YLRIOpuA5t1ZHo9Gg0WjccyUsFgsGg4GOjg6qq6tRKpVuHyydTodcLqfr/QNU/vi3OAYCX5eSfUkBkpdiB0FALQXIGXz0kAnJCFJopV5ESQm9TcFexsS89j9Id12DIEw+H0roCI6VhMd0NOIqKkJu88+NXBVhwqEOB4v3tXJCfwc5ZTGciUrEVOtZ27okSbiSUxi0gvlUG7i8FPKihK2hE9s/hU5UVhyarGQcQ3b0FU2ItsDkmzOuW8PSl+7A7LRx7NgxCgsLiY2NHbONTCZDp9Oh0+nIzMxEkiSsVit6vZ7Ozk5qamqQy+Xu6+PZfoGjSJLE66+/zhtvvMHWrVvJzc0NyPl90ZgTPLNkKrNPfzA6fHAy+4mZ7MfXHlijqNVq1Go1KSkpwIh1hl6vp7u7m+rPTmLbvAPbnsB1YJ1N9voC8FbsALErMhEsAXIGdx80FqTQasd1uXShW0za0gKn+mHBFLUTQbSS8BRpYAhJ4ztzybMRbCbCV5Zh3TnLv4NJT3qKlR5dFv2HJ/9dSQoFZGSjbzNgPuj7zjhb9wC27pGxDWHhSiIX5YNKyWBdJ9Yu3zcXyFQKFj79fXJvvZy2tjZ6enpYvHixR9d/QRDc18jU1FTgc8Nko9Ho9gs8ePAgcrmc1atX89prr2G1WikvL/db5uDLwJzg8RJBEKY1+zwbXxnE+cpeIhAeWKOEhYWRnJyMvKqdrh+/6b4wBZrM9YXQ2jyrfcTkq/FT1/CkCOFKfDZK2keIwyFe/vfmFsQnfohMPcGTvl0Fp4NnJeExPW0M584jQvJP+lRuaUaWmY44ww7FcdgsJCobCbukkI4d5ziVx8TgiEqg73gTjrrAtJaLNgfGE5+vI7Y4FVViDNZ+E4bKtlkLdU1WIhf+14PoFuZSWVmJQqFg6dKls+rAPdcweXTK8rvvvsvGjRsxGAysWLGC3/3ud6xevZrFixfP+qH3y8ic4PESURQxGAxTmn2OMipSfDEUylf2Ep4KFl/M1XGaLVQ/uZkzb30043X6ioyLi5C1zi4FI6hkhNkC34YtukKvYFkMQipyRrhcWP/rH6j/7WuM+7qGgJWEp8j7DIixEjJ/RHkkkfD8GIZnK3gARBe6odMoryqj+W9VCFnZDJmh/7N6CHAK+FyGmjoZahpJfWkTtUTkpyM6JQxVrTiMM/ttpV6xnAt+cw8OlcCRI0fIyMhwR2l8yegD6a5du3jppZe45JJLqK+vZ+/evfz+978nISGBp59+2ufH/aIzJ3i8RCaTUVRU5FHF/ahI8ZXg8fX8nMmY7VwdgP4DFVTc/zKWNh+MpveS9LWFyM/Mvt4kflUOgj3wdSsye2hNWJYkCanzTMiLBnVtLTSvg5yzqn8lYOeeoK1ppigG+5DSysDa6pf9y8wdiAsKkZ2chUWKMgwxOgm7oMVidCEvLGCwe5iB46FX4+UwmjEcqQZALpehW5KDIjICU2sfQ02TCzNBLqPssRspuOta+vr6qK+e3iLCW0RR5A9/+ANbtmxh27ZtZGVlAZCfn09+fj4333yzz4/5ZWFO8AQAX1pC+NIxfTJ8EdVxWWzU/vxNWl77uz+W6DGpawpQdPqmZiA6Sx4wZ/RRbBE6tIEc+OMBdmckQhAiXV7x6n8jPb4JQfHP6cLDKoSu0KqHmg7xTDtCggyZ5HkKeiZotENYtRFg9mDQU7gGV1QSNlGDWe/C0GDAUNc7YY1ZypIMRI2WnkN1SI7Q+g4DSC4R0+lm9//rcuJRZyZhN1kxVDQj2keus+EpsVz4+o+IW1lMQ0MDg4ODLF261C8pJYvFwn333YckSZSXl6NWh9Skq/OeOcEzCwRB8CjC42sPLF/tayJ8EtX5tJr6/9yKY2AQ7aJCHDYbVvMwKpkMmSgh2uyIwzZcFiu4/HMRB0hZXYCqu9UnxbXyCBVKc+BtCMJSUoDQ8HoaZchIaA0cnAqLBd47DN9cOPL/lc1BXY43CKYBxLQFyGz++f4pXBbClxdjLT8y9o0IHU5tAlZHGOY+J/q6fkwtA4Bn0SZry0gaKSE7CmVGGj3HmnCEgvfaJFg7+7F2jnSNhUeEoV2Si2ZeBmWP34Q8OoJjx44RFRXlU4uIszlz5gwbNmzgO9/5DnfeeeesaoLmmJg5wRMAfBmV8WVKSxAERFF0t7rPOqpjc3D66beoffl/3V44ZzNRtlwWpkShCUeuCUMerkIepkQWpkSmkCMo5MjksrNqMCRwiUguF6LDCQ4HLqsd0WrHZbEgWuzuNesWpRHW1+azyawJa7MRXPXTb+hjhAg1BM5lwyM0TgUh2p81MXs+wbxgHppsLbLy8mCvxiuklibElDBk0tTzhbxFPtyCPXsxNqODwS4rAzX9WLoGgXMFysxv9I6BQRwDg0SqlWgWz8fQ1Iu5KbRE/LlILhfp31pL7sarMA8NcdyPFhEAe/bs4Uc/+hEvvfQSF198sV+OMcec4AkIvozK+MMxXRCEWUd19CcaOLLpBQarZvYUKtoc2G0O0Pug9UkQUESEkbGuAE13k0+jR1GJroCnswAEeQimAnqCV4/lLZo/vov9hmtRW0KvANwTBIsJUZmDzO77KM+QLJ72XVZMFTWEFefTs79lwgeW2SLZHAydqEYJpK0pwGp20n/M88nYgSIiP52lv7uf6Pm5dHR00NbWRllZmV/awUVR5Le//S1bt27l73//OxkZvnWln2Msc4JnFngqDHwtUmw2m8/2ZT/LOdkbsSM6nFQ/9w7Vz/wZyRnkQW6SRPrKHDRdjeDDOidVvBbFYHBctWX2ABqUeoAohcFAgOcQ+QBBP4DxD6dQKZTI8U+UxN9ITXWImVHIXL4J+Ylh0XTXael4t9r9mq2imqiiJCz9Vhzd/vvuDZ8eETrJi9Ixy2QMnWpHcgR/EGTc9WtQ37iOKlM3rr0dKBQKCgsL0Wg0Pj/W8PAwd911F2q1mo8//njO6TwAzAmeABCKKS1JklAqldTU1BAfH09sbOyMC+QGq1o5vOl5DCcaZr0eX5B7WSnq3mafGwwmXJSBIM2ii8VLpMhoBEdoOYa6nL7vSgkE1rBkej86hWV+DpnpTciF4N9cZ4pgtyAyD5mHNTSTIcmVDA5n0vjqaUTL+OJzoaMXjUqJfUEWlpP+Ffq2ti6UQHxWFKqsdHqPNWEfCHydjypex+IX7yLp0mVYrVZOnjxJXFwcGo2G9vZ2ampqUKlUbjuI0Ynx3tLS0sJNN93Ehg0b2LRpk98m888xljnBEwDOjaTMhtmKp7NrdQoLCzGbzRgMBqqrq7FarURGRrp9sNRq9YQ/RMnlovZXWzn91B8R7aGRcpn3jTLCOhr9Mv1XGzUEQRg7IyQkAoHz7PIEV2jpL4/RW5IBI+aKJtoUeWQm1yObwnoiVJGaqxFzEpE5vRMFVlUuTX9pY7jlxNQb2h2oWtuJXJ6Pvq4Lhy9SzlPg1Jtw6qvQhinRXPLPOp/GwNT5JF6ylEUv3kV4YjR6vZ7q6uoxFhHp6ekAWK1WjEYjPT091NeP1PPpdDq3bY6nXVu7du3ixz/+Mb/+9a9Zs2aNf05qjgkRpukyOq9qEwONy+XyKFXV29uLXq+noKBg1sc0GAy0t7dTWlo6489O14ElSRImk4mBgQH0er1bAEVHR7sjQObGTo5seoGBw9WTHCXw5F+1AFWbfwqKFWlRFF4QnM4SYcFiFLbmoBx7MvpPOtAMBHeQ3ExxycKpPaJGHP48FRS1dB4ZCXXnpeghtwTFDK1GnOpkzux10L9/5hEbeWQEUlIS+iO1M/7sbNAU52K1uOg/6p8IsixMSeljN5N9yxUAtLa20tPTQ1lZmUfpJafTidFoxGAwYDAYcDgc7utldHQ0Go1mzDVWFEVefvll3n//fbZs2eKXgYVzAFNU1s9FeAKAPwqNZ4KnHViCIBAVFUVUVBTZ2dluAaTX66mprqbvnX2YNu9CsoVODUThNxehaPbfhTh1VTo4giPuBIUIvinX8gmiJKA2hdYQRE8wqgoQh+vGvDZ4tJ725YWkx1aNn8Qc4khN1Yj5Gcgchum3VUXS2xZL25+9t3VwmYbA1EjS6mL6TjTjMgfG52S4arTOJw2idPQcqvWZKWhkcRZLf/d/iSrKxOVyUVlZiVKpnJFFhEKhIC4ujri4OOBzV3SDwUB9fT3Dw8Ps2LEDSZJYsWIFb775JgkJCXz00UeEhYVNs/c5/MFco/8s8DTv6stW8pmmtEajOqIoIggCMpnM43WPCqB4IRzTY39l8LcfhZTYKf7WYr+KHYCI8ODd4AVnaNk3iFI0gsM3qdlAIUkwUDtxOsbwaS3tgyUh64E6GYIkItqmrreTZApMrjxO/n5gVmLnbKyVdUQnRaCbn+OT/XmKra0bW2UtcWla0i5ZgCpudnVkuf92NWs/eIaookyGhoY4cuQI8fHxFBcXz2r2zagrelZWFgsXLmTlypVce+21yGQyHn30UQ4fPkx9fT1PP/00H3/8MSaT92nCtrY2vvKVr1BcXExpaSkvvvjiuG2MRiNXXXUVCxcupLS0lM2bN3t9vC8KcxGeABCMwYO+mKsjSRLNb37EyYf/gDNAT3WeUnrdImjwbyFxZEkyMlNwWrClcA0y2/RP8IHEZTn/zAqHNTnYWidPwen31yBbU0pKROX5FelpqUYszENm7xv3li0sm6atnQzVT1On4wXOfgNgIOmi+fR8Wo0UwBo+p9GM8/hptEoFmvXzMbb2Y6rv9PjzYYkxLH7pLhLXLwFGSg3q6/1nESEIAp2dnWzbto1XXnmFlStX0t3dzf79+3n//fcpLy/nqaee8mrfCoWCZ599liVLlmAymVi6dCmXXnopJSUl7m1+/etfU1JSwrZt2+jt7aWwsJAbbrjhS206Oid4AkCgrSV8MS3Z0tHP0bt/RffHR71dqt+Yf/0ipDr/1xPELYwFS3AEj5CYDIRWS7pkDC3R6wn6gUhg6pqj/k+qES4uJTn8/BI9ohlkZ927HGHxdB6V0buzwu/HtlZUEzcvEatdwFwfWKsOyeFk6EQ1CiBtdT42m0Tfkalr+JIvX87C5+4kLF6HJEl+t4gQRZHnn3+eHTt28OGHH5KcnAxAUlIS1157Lddee+2s9p+SkkJKSgoAkZGRFBcX097ePkbwCIKAyWRCkiTMZjOxsbE+8XM8n/lyn/0smckcHl9PR54IX0V12v68i+MPvoLDGHotOWXXL0IMgNgBUAvBmwYrREWBI8QET/f5VazsVEQxeMKzwXZ9u6qRrS8lKcw36Z+A0N7AUHYWYXIr+r5kWrdUgitw+TlHRw9yuZzEi+bTs/+0X4YVTsdw9YhBafLCVIToGLoP1SJaP0+7y9UqSp+4lawbL0MQBBwOB6dOnfKrRYTJZGLTpk2kpqby4Ycf+j2i0tzczLFjx1ixYsWY1++8806uvvpqUlNTMZlM/OlPf/rS21XMCZ4AIJPJJhUpM2WyH6gvojrWXgPH7vtPOt47ONtl+h5BYMG/LMAVILETvSwT2XDwDDIFFYTSfDxR0oDx/Bo4qCcXyel52rOnvBrh0lISFeeP6LEZwmncY8Pe6v+ozoS4XNgqqklYkIm5dwhLe3DGKNjO9MCZHuJStahyMug70UJ4SjxLfns/kfkjbeWDg4OcPn3arxYRdXV13HLLLfzwhz9kw4YNfp+vYzabue6663jhhRfGpeU++OADFi1aRHl5OQ0NDVx66aWsWbPGL+m784Uvt9z7AjAqdJxO56zETvvf9vPRhXeGpNgR5DIWXFeGq65u+o19RGyR78fIzwTbUH9Qj38uLkdksJcwIyRk6Ctmno7s/qiaPrFk+g1DAJcmmvp32hjus6LMSg/qWuzNZwhzmgkvywzqOpxGM8Onaijc9A0u+scv3GKno6ODqqoqysrK/CJ2JEli+/bt3Hjjjfz2t7/lpptu8rvYcTgcXHfdddxwww1861vfGvf+5s2b+da3voUgCMybN4+cnByqq0NnnEgwmIvwzIJgT8f0RVTHNmCi8um3GThS45Hze6ARlDIKL5+Hqz5wxp2CQka4I3jRHUmhRE1opRNdptAYMOkpJnUBjj7vpgR3flCDeVU62brgfQemQxIEqo4qsBuMgAWHwYRucQG2ipqgXZckm4Owtg6iludjaOzB3hd48zllTgpZj95G0gVl7sh6TU0NDoeDpUuX+qWGxeVy8ctf/pJ9+/bx0Ucf+S16dDaSJHHrrbdSXFzMfffdN+E2mZmZ7NixgzVr1tDd3U1NTQ25ubl+X1soMyd4AsioMPEFoxEd8K5WB6Dj/U85fOevsJ7lmSOPjyQyOwlluAp7/yBDjR0+t2rwFHmYgpIr8hGbAutjFbcqB8HWFNBjno2QmIKAfyfbzhSpP7TqiaZjoGN2vzPTgS4Gvl5IbBAsRTzBoCzGXFH1+QsuEeORaoTcFML6BxDswcuH2mqbiNBq0C4rZOBIYP5+gkJO8i1Xo7luHXqziZZPP0Umk2G1Wt0t5/4QO4ODg2zcuJG8vDy2b9+OUqn0+TEmYt++fbz55puUlZWxaNEiAJ566ilaW0dsR26//Xb+/d//nZtuuomysjIkSeIXv/gF8fHxAVlfqDI3aXmW2O12jyIjBw8e5IILLpiV/wqMiKYjR44QERFBXFwcMTExM96n3WDm2IO/p/mP5dNuK1er0OalEhatxWWzYWnpxu7nMfMACo2K0svycAZY7ADMu7GQsMHApc/GUbwApRg69TKiJMO2tx1c50eUx4iOM3t9MC9IJpBxeS7RUmAnDE+HIyaHo680MdlAWUVyHAolCH3BF6nhJfn0V7TgHPSfS31EUTYFT92Jtvjz+UB6vZ6qqiqSk5NxOp0YDAYkSRpjBTHb4X/V1dXcdttt3Hvvvdxwww1Bj/jP4WZu0nKwGR0+6K3gObsDq7S0FIPBQH9/Pw0NDchkMrf/VXR09JTH6PzoKIfveBlLh2c1Ii6LHWNF85jX1GnxRKTHIyjlOPqMmJt8GwVSRaop+kpGUMSOTKNENRwcZ3T3GsLl4L/7w4wRxRhwBfdvMhMsUg7gg8iCKNH2QTPC5fPQiYFLqU6FpI6i8t0+prim4+zqRwxXEVkyD3tVcNdtPV2HLl6HMzsF40nfWkQICjkZt/8LGbddi0w1ElmRJMltEbFkyZIxFhEulwuj0Yher+fMmTPY7XaioqImtYKYDEmSeO+993jqqafYvHkzS5Ys8el5zeE/5iI8s8ThcHjUgXXs2DEKCwvRaDQzPsbZ05InmpTscDjQ6/Xo9XoMBsOEAsgxOMzxn/yBxtc/nPHxp0OuVhE5LxWlLgLJZmeouQuHwTv/KZVOQ8HqZKSO4LRAJ32tgHhNcG8S8sVFyIaD1xJ/LjZTIuLR0JvHNBGioKLmWCSi2XeKUVAqyLwsjSiXZy3u/kJCoLUnm87dzR5/JmpZMfaqOoQgtIyfS3hZIb2Hx7aNe0tEcc5IVKco2/3a2RYRhYWF07Zgn20FYTAYGB4eRqPREB0dTUxMDFqtdtw+XC4XTz/9NEeOHOGtt9760qeIQpRJVeuc4JklngqeU6dOkZWVNaOWQG/n6tjtdgwGg1sA2Y410//s37F3Bi7ErUmPR5MWj0whw9ZvxNzYiTBN6i8sLoKcJbHIe4PXoVSwYR5KY/BubJIgQ1kUhyCGTvrI0qaFhqrpNwwB9OHz6fjY92aTgkpJ1teSiXQ1+3zfnjKoKeH0f83830Gdl4HcYsalD3wR8bkokxOwigrMtd6lbAWlgsxN15P+/W8iU36eoBgaGqKiooKMjAyvTTklSWJ4eNh97TSbzahUKj788EN3rcw999xDaWkpTz31Fr0DKgAAIABJREFU1Jd+iF8IMyd4/IWngmc0nxwTE+PRfqeL6ni0NrOFE49spuHV92f8WV8jV4cROS8VlU6Dy2pnuKUTh+HzTqTwBC1Z8yNRBPGirIzRkP8VB4LomyGRXpGYijImdCYaS5KE9cggDIWWr9dESBI0duRhberwy/5l4WFkfTUOrSvw9VXO6AyObm5Hcnp3SZZHadFmJmBvCIHUpFxGWEnByLBCl+eRJ21pHgVP3UFEQdaY13t7e2loaKCkpMTnM2asVitvv/02H330EZ9++ilRUVFcddVVrF27ltWrVxMbG+v1vtva2rjxxhvp6upCJpOxceNG7r777nHb7dq1i3vuuQeHw0F8fDy7d++ezSl9GZir4fEXMzEQ9cYDy1ux0/PJKT7d9CJDzaGRGnFZbBhOje180mQkoE6Nwy46iI6XgehEjIpGsAyD3RbwIsDwhTEIoufePH4hJhYI7Kj+qbA51DAUuu3ZZ2PRZPlN7ACIVhvNO/rJuSSVCJf/jnMuUpiG6g/NXosdANegGWPlELplxdhOVQW3wNYlYjtVTcL8dMx6K5bWqeclCUoFWXf+H9JvuQZB8Xl94tkWEUuWLPHLROOwsDCio6NpaWlh+/btZGVlsX//fvbu3cuzzz7LDTfcwG233ebVvj3xwzIYDPzgBz9g+/btZGZm0tMTHKubLwpzgidAeOKn5YuojnPYysnH3qTuP//m7VIDxnBbL2KkCqlzgM7jVs6WGrJwJapoLSpdBMqIMBRqFcpwOXKlDLlMQi65EEQnMocNwWpBsAxNmzKbjtQsJQQ56i+olRA6AR5cds15M510wKAD/HtDkCw2GnYYSL8omlhFYMxdO3pSMbf4IE0nSRgPnyaiJBd6ehCHglsZb2/pIEylRLuqlN79E0+31pbNo+BndxCRP3agYSAsIpxOJ08++SSVlZXs2LHDHc35+te/zte//vVZ798TP6y33nqLb33rW2Rmjpx/IGb8fJGZEzwBYio/LV9FdfoOVnHo9hcw1wfu6dNbBJUCdUkq9sqJ0wOi1YG1S4+1y/O6I2WUBlW0FmVkOMqIcBRqJQqlDLlCQC6TkElOZE4HMrsVwToMVov77xyeFo3C2OqTc5sNMsEH7dQ+RG45P/LaToWWwUPNATmWYLHR9amS8NXxaKTxbuW+ZCiqmLZ3fDsdd+h0I6rEWMIzdDjaghvRlOwO7KdrSLxgHsaWPmw9IyJSUCrI+uH/R/rNV4+J6kBgLCIGBga49dZbWbp0Kdu2bZv1OJHpmMwPq7a2FofDwcUXX4zJZOLuu+/mxhtv9OtavsjMCZ5ZMpOUlsMxvjvBF1Edl9XOqSf/m5qXto4UMoQ4irQYVCr5pGLHWxyDwzhmMO9DUMhHBJJOQ6Iihf27NTgkO5pINWptOAqlgFwFcoWEXAkKuYhM7kLAhoADuWBHKXehUrpQypzIBdesnzQF28CsPu9rpF7/3tB9hUHIQ3IEbl6Oy2im5aCOnFXxhLv88zdy6VKofNM/86DsPQM49Ap0CwuxVlQHfYaMra4ZTYSaiOVFOCxO8p+6k4h5GeO26+jooK2tjbKyMiIi/GP/UlFRwcaNG3nkkUe47rrrguqH5XQ6OXr0KDt27MBisXDhhReycuVKCgoK/LqmLypzgidAKBQKLJbPcxW+iur0H6nl0MbnMdWeH3UW4QsyEBu7sduC74wpOV3Y+ozElqbTveO4+3XvGuoBuQwhTIFcHYZCo0KpGYkyycMUKMLkyMNkyFUyFCoZciUj/ykkFAoJhdyFUqciyfuj+xxRUkJvc7CXMS0SAgOnA9/Z5xww0nwohpwVMYS5fNsBKSnDqN3jQrT5r4BecjgxHKkicnEhzoYmcAS3M1ActpJ40UISb/4WsnM6oAJhESFJEn/5y1948cUX+eMf/0hpaanPj3Eu0/lhpaenEx8fT0REBBEREaxdu5YTJ07MCR4vmRM8AeLsGh5feGC5bA4qn36b6uf+ihQCMzamQxYRRsS8ZCyng582OpukNcUMHvVRysAlIg3bcQ7bcfaDdYYfj16Ux2e/aSXrG/mkXhhNZNQAClfwLCZcLh1Iof/dMmvycXQHZzK1o1dP05E4cpfpULl8VwDWbc7GWBuYiJXpWA1hmclIDityQ3C68aRIDapN30Z+0TJckjSmbsxqtXLq1CkSExPJzMz0W73Oo48+Sn19PeXl5URHR/v8GOfiiR/WNddcw5133onT6cRut3Po0CHuvfdev6/ti8qc4Jklnv74RgXPaPpq9LPe/HgHjtfz6cYXMJ4OgRZTD1BkxyO32kNO7MSuzMd8LDRsA+IuLMV45DQATf9TTdP/jLyeuDqD7EtTiEmzoXQEtkNDHD4/ypUHOgPjXzQZjq5+mo4lkLtIRCnOXqCatHk0vxPY76WttQtBE4a6MA97je/nGE2F9oIyUh6+nSH5iCVEc3MzoigSFRWFSqWiq6uL4uLiWbWAT0VfXx+33HILq1evZuvWrX6v1xnFEz+s4uJiLr/8chYsWIBMJuP73/8+8+fPD8j6vojMzeGZJaIoTlibcy4mk4nKykqKi4vRaDTTTgGdjMGaNg7c/AyGk8Gd+uoRgoB2aTbWUy1BMyCdjMhl2YjVoeFXpcxMQOoZmHYmSdS8WHKuziGhQEaY1Ikg+XdekKU5HJqD6CnmAXZVPHU7h0Oidi0sM5mcMgNK0Xune4cmlmPvmBCHg5de0i0rwXa6GsHff1KZQNJt3ybxX7+JIB97PXQ6ndTV1dHX14darcbhcBAZGemeHu+pDcR0HD9+nE2bNvHEE09w9dVXB72WaaZ0d3eTlJQU7GWEGnODB/3FdIJntFbH5XJx5swZ9Ho9FovF/eONjY1FrVbP+LidNU2c3roLZeMAQ0caGKwJjZv3KPIYDdr0OIaqQ6+2KGJpFtSExrrkmjBUsVoc3TMrVlbFhJN9TT4pizVEhPcic/m2l12SJKyHBsAaQqZeE9AlLKL/k9BxNA/PSSWnuA+FNPN/D0muoO50AgMng2OrcjaagiyEQQOi0T8pVUV8DJlP3IV2ccm49yayiBBFEbPZ7J4eP2oDMWqho9VqZyRWJEliy5Yt/OY3v+G///u/KSoq8uXpBYSf/vSn/O1vf+OHP/whX/va1+aEz+fMCR5/IUkSdvvErcST1epIkoTJZGJgYAC9Xo/VaiUqKsotgM42vDsXp9NJbW0tNpuNkpISt+OvtVtPzycV9Hxyip49JzHVBW94nbokDXqMOIzeP+n6C93yXJwhlAqMXV7E4LHZ3bAFhYyMy/NIXxOLLtaE3DH7AlqnpMOxu2LW+/EnLkFB1dFIhOGZVkv5F3V+Otn5nSikmY0Y6KOYeh+3oM8GRWwUmuQYHE2+fZiKvHARGf9+B4qY8VORPbWIkCSJoaEhtw+WyWQiPDzc7YMVFRU1aRTd4XDw8MMP09HRwebNm9HpdD47t0By/Phx9u3bx/PPP09ubi733HMPV1xxRbCXFQrMCR5/MZHgmakH1qiJ3agAGnXxHRVAo6JmYGCA2tpaMjMzSUlJmXKfls7+EQG05xQ9e08FZjaPUkbMkjxMn4WGs/S5xK0qxHoydNYWs7wI0yzFzkTEX5BK9mXpxGY6UDq7Ebz4GdstSbgOHfH52nxJiz0d86fB812bkox4Sub3I8ez1JQtJp9jr9QxlQt6UJDL0C0p8s10ZrmM5Nu/Q8J3r0SYQIzM1iLCYrG4fbAGBwdRKBRER0cjk8mIjY0lOjqanp4ebrnlFtavX89PfvITr0sLgsnoA/Qoe/fu5c033+T111/npZde4vrrr/dbvdN5wpzg8RfnCh5fdGCJosjg4CB6vZ6BgQHsdrt7f6WlpV5dDIbb++jZW0HPnpP0flKBudG3A8cUKdFERGkY8vF+fUXS2hLMn4VO6kOdFo9zcBDJB87RUxGRGUXONfNILJajlnUjiJ4dT98cRnhz6IjDiWjonIe1IXRsOM4lojSbrMxm5ExdayVFxHJsqxW7IYRGbJ+Dtiwf8Uw7ktW7aJoyOZ7MJ+4momx8O/XZFhFlZWUolb4pQh81Ud6+fTsvv/wyLpeLoaEhbrzxRu69997zzul8dFbbKC6Xy11gbbVaeeKJJ3j22Wd5/PHHuf322wPSaRaizAkef2Kz2bx2Np8Og8FAVVUVcXFxyOVy9Ho9TqfTHbqNiYnxykNmqK2Hnk8q6P1nCmyoxfsOIN2yPKy17bgsNq/34U+S15Zi+ix0UgWCUoYiJQapM7BDBhVaFdnX5JO6LBJtRB8y5+QpR9NnwygGQzR6AljC02n8OHTXN0rkglwy0honFT2SIKOxOY3eT0OjpmwqVKkJhKnlODtmdq2IWruM9J9sQqHTjnvvbIuIvLw8vxQNS5LkjoDcdtttNDc3s3fvXgYHB1m2bBkvv/yy1z5cnhqAAhw+fJiVK1fypz/9iX/5l3/x+BgOh4OTJ0+ydOlSABoaGsjKykKhUIyL9mzatIlt27bxyCOPsHHjxvMyguUD5gSPP7HZbO52c18JHZfLRUNDAyaTiZKSkjGFzS6XC6PRiF6vR6/X43K5xgggb56Qhlq6R+p/PjlFz55TDLf1TvsZQa0kdkEOxs9Ct5Mn1MQOgGp+BmKwi6YFSLs0l4x1CUQnDqFwfC4eXKIK+57AtibPlHbHQgyHQmOkwHRELZlHRmIdMmF8F55eVULNH6uCsCrvkIWpiJyfi/309H97QSEn5c7vEfftr094TQyERYTdbufBBx9Er9fz2muvodV+LrpsNhvHjx8fZ+cwEzo7O+ns7BxjALp169Yxflgwcs2+9NJLCQ8P55ZbbpmR4Dlw4AC/+c1v+MEPfsDjjz+OVqvle9/7Htdcc82Y/Y9Ge7761a/S29vLG2+8wcKFC70+t/OYOcHjL06dOsXTTz/N2rVrWbdunU8GYxmNRqqqqkhLSyM9PX3a/blcLnfuWq/XI0kSOp3OnbeeqQCSJImh5m53AXTPnlNYOsY+TavzklC4RCztoWs9ELk0B7EmtGb/hBWk4fKjo7e3RBbHkvrVZDJKw5FZXbj2Hw32kibFJddQc1CJZAst37Gp0F2QT3pcDbKzer0dMTkcfaWJkKvb8YCopcU4auomHaWgSksi88m70RTnTfj+qEXE/Pnz/WYR0dXVxc0338wVV1zBAw88EJBox+igwEsvvXTM6y+88AJKpZLDhw9z5ZVXzkjwAPy///f/eOaZZ1i8eDF33HEHX/nKV9zGo6OMip6Ojg6Kioq4++67efLJJ8elwr4EzAkef+FyuTh8+DDl5eXs2rWLrq4ulixZwpo1a7j44otJTk72WACJokhDQwNGo5GSkhI0Go1Xa3I6nWMEEOCO/kRHR894LLskSZgaOqjeupueT04SIVeh/+QUktO/c2BmQ9JFJZiPh07NDoAiVotCLuA0hI59xLlIgkBk2Tyik+RkxrWjFn1rmeAL+lUL6So/P6I7ZxO9soD06CoEASR1JCc+FLB2BW+S9mxR56Yht1tx9Y/9jui+soL0n9yOXDv++nW2RURpaanfhvwdOnSIu+++m//4j//g8ssv98sxzqW5uZm1a9dSUVExps6yvb2d7373u5SXl3Prrbd6LHhG01UVFRVcddVVxMfHc+WVV3L//fePiVSdva3T6UShUPDcc8/x6KOPUl1dTVpams/PNcSZEzyBYnT8d3l5Obt372ZgYIALLriAtWvXsmbNGhISEiYN71ZVVZGcnOzz8elOp9MtfgwGA4IgEB0d7Y4ATXfRsVgsVFZWotPp3Hl2c2MnfXtP0buvgt69p7AGuB5lKpJWl2A+WRsSw+jcCALRZdmYq5qDvZIpkfLScIyausoEklbNIzvPRozYTCjMZJMkqG/MwN4ZupHFqYhdXURK5GnaerPp3N0c7OXMGnlUBNqsJOz1zQgqJal330jstZdOeP0KhEWEJEm8/vrrvPHGG7z11lvk5U0cYfI1ZrOZdevW8fDDD4/zxLr++uu5//77WblyJTfddNOUgsdqtdLS0kJhYaH7tT//+c/cddddvPfee2zZsoWVK1eydu1ahoeHqaurY968eeTk5IzZT1VVFRs3buSGG27g9ttv9/0JhzZzgidYWK1W9u/fT3l5OXv27MFsNrNixQq3AFKr1Tz88MOUlZXx7W9/22/h3bNxOBxjBJBMJnO3wOt0OrcAkiTJHXouKiqatOpfkiSGmjrp3Tsifvr2VYxLgQWKxFXFDJ2qCy2xA8StKsV4+HSwlzElEfPz0B+ZuB4rPDuBnOXRZIQ3eNxq7Q/Mmnm0fBi6nVmeoFqxCOPBasSh0B7q6DECRFy0kPR/u57o+YUTbjIwMEBNTQ1FRUXExMT4ZRk2m40HHniAoaEhXn311YBcS2HkenrllVdy2WWXTeiJlZOTw+h9tq+vD41GwyuvvMI3v/lN9zaSJCFJEtdeey2rVq3iwQcfdEdrtmzZwr333ssrr7zC+vXr+drXvkZcXBzHjh3DaDSiVCp55513WL9+vTutJUkSV199NRkZGfznf/7nuOLmLzhzgidUMJvN7Nu3j/LycrZv305XVxfLli1jw4YNrF27lsjIyIB/Me12+xgBpFAoiIqKwmAwoNVqKSgomFEabKQGqGtE/OytoHdvBZYO/z+RJ64sYuh0A4SYmaq2MANbSwfSNNYRwUSVHIe1z4zTPHVrtKANJ+GCRArSBoiUBd5ostU0H9OJ0C6ongopPYuW3XXI1Sril+UjtbciDYVuO7onhOVnEvmTDRglJzabbYwFhFqtpq2tjZ6eHsrKyqYcqjobOjs72bBhA9deey333ntvwGpWJEliw4YNxMbG8sILL0y7/XQRnieffJKdO3fywQcfuGsvm5ub2bhxI4cPHyYxMZGOjg5SU1P57ne/y3XXXcdDDz1EfX09VVUjxe+jouedd97hqaeeYufOnV+2FvVJb6Bz5qEBRqvVsn79eg4fPkxERATvvvsufX19lJeX8+yzzyIIAhdddBFr167lwgsvDMhTikqlIikpyT2avL29ncbGRrRaLYODg5w4ccIdAZpqgukogiCgzUlBm5NCzr9+bUQAtXSPpMD+GQXydbFzwspChqtCT+wotGqkoeGQFjuCSokkU04rdgAks5Wena30yASiFmWSmWclPbwnIOkuhzIG06nzwENuEqToWNo/OwOShGvYRveeCuQR4cQvLUQ604o0fP4Jn6jl88l/7gEU/6zXGZ0ir9frqa2txWAwoFQqycjIwOFwEBYW5vMHuv3793Pffffx3HPP8dWvftWn+54OTwxAZ0J+fj4ffPAB7e3tZGdn43K5yM7O5qWXXuLUqVNUVlbyne98h48//pienh4yMzO56qqreOihh2hoaCAvL88doS8qKmLjxo1et9x/EZmL8ASBxx57DIVCwYMPPjimg0qSJPR6Pbt376a8vJwDBw4QHh7ORRddxLp161i+fLlXvlue4nA4qK4eaeEuKipyr81ms7mnQA8ODqJSqdwCKDIycsZPU5IkMdza7RY/vZ/MTgDFLy/AWtMUkqIi9oJCBo+HboGtJEloFxai/9T71n3tvGRSFmjIimhCKfivkL1btoi+PaFViO4pokJBr1WLpbl7wvdHhM+880r4xH51JXlP3YVMNb4LdNQiIj09HZ1O544em81m1Gq1e4yGN9ePUURR5LXXXuPtt99my5YtZGVlzfaUgs7AwAB5eXk8+uij3HPPPe601kQ89thj6HQ6qqqqOH36NP/4xz/GDaXt7e0lISEhEEsPJeZSWqGEp/lUSZLo7e1l586d7Ny5k0OHDqHT6dz1P8uWLXPbTsyW/v5+amtryc3NndaEzmq1uqdAm0wmwsLCxgigmT7BnS2A+vaNDEMcPjP9HCCA+GX5WBtakByh1zEWtTSf4RCyspiIyMVF9B/wTW2RMjqCjDXZZMSeQSP5trtLRE5dZTxOfeDTaLNFkiT0unQGP5s+OqXQqolbkofU1opkCV3hk3j9pWT/+FaECRoeprKIkCRpjAWEyWRCpVKN8cDypHPLYrFw3333IYoir7zyil8fBAPFaPv4ww8/zObNmzlw4ABZWVljZuycTV1dHddccw2tra28++67XHLJJUFYdUgyJ3i+CIwWEY+2wB85coTExETWrFnD2rVrWbx48Yxn7rhcLmpra7FarWPMSGeCxWIZI4DUarVbAM3UxXiUodZuej85RetHnzJwsApXt3HcNnFL87A1nkFyBK+IdjJUaXGIhkGwh97aRlHnpDHY0Ink6zXKZCRdOI+seVZifdTdZVSXcuaj8zOd5cgqoH3HqRl9RhGpIW5xLlJbC5IltMxR0/7tetJuv37c79pbiwir1eoWQEaj0e2BFRMTg06nGxfhOHPmDBs2bOA73/kOd9555xduxszOnTu5//77WbJkCa+88orbLX70PEfTaLW1tfT19VFUVMSjjz5KaWlpkFceMswJni8ikiTR0tJCeXk5O3fu5Pjx46Snp7uHIJaVlU35tGQwGKiurnY7E/sitz76BDeaAjObzWg0GrcAioiI8Og4drudqqoqlEolBQUF2Dr6R6I//0yDhcdpcbR0INr960XlDTKVgoisRCzNoekrBqCI0uCSqbB1+XecQOS8FLKW6UhV1SHH+3+rpt5ChkNsiKQnSGmZtHzifW2ZIlJD/JJcXC0t4KWPlc8QBLJ/fCtJ/+eycW/50iJi1ANrVAD19vby3nvvuZs6fvrTn/LSSy9x8cUXz+JkQpsHH3yQbdu2sXHjRu655x7g88xATU0N27ZtQ6vVcvvtt3Pw4EH+/Oc/89BDD30Z01cTMSd4vgyMDi4cFUAVFRXk5ua6BVBxcTEymQyLxcJrr73GihUrKC0t9Ws4WJIkhoeH3RGgoaEhIiIi3AJIo9GMuzj29fVRV1dHXl7epCPnh8/0oD9YycCBCgYOVmJpnbg2IhjEXViC8Ujo2gVIgLogm8GTgYuYKHURJF+YRnrsGaIVMxu8aA1PpeHj0BuAOC26aNobhnD4YNCkEBFGeEES2oF+CMKEaUEhJ+9ndxF32apx741aROTl5fnlhmsymdi+fTvvvPMOhw8fJjk5mbVr17pT+8nJybPavyd+WH/84x/5xS9+AYw0nvzmN7/xi23DaCSnt7eXjRs3Ul9fz1133cVtt90GjB8wOMrJkyfJzs72ylj6C8ic4PkyIooi1dXV7hRYVVUVqampNDU1cdlll/H000/PeOrybJEkiaGhIbcAGh4eRqvVusPXbW1t2Gy2GafXLO29DBysdIug4ZYuP57F5EQvmoe5MrTbpiOXFNO/vzI4B5cJ/0x32YkVmzxKd9Ua8nBUhJ4dx1RICgUDrmhMdb6dGSREhKEuSEbd34ssQNFNmSacgud/hG5F2bj3AmERMTw8zF133UV4eLh7psyhQ4fYs2cPe/bs4YknnmDVqvFCzFM88cPav38/xcXFxMTE8P777/PYY49x6NAhX5zeOEZFT0VFBb/4xS/4+9//zjPPPMPNN9887uHwS2gb4QlzgufLjsvl4pe//CVvv/02X//61zl9+jSNjY3Mnz/f/bSUk5MT8BlAkiRhNpvp6Oigo6MDuVzujv7ExsZ6HX2ydvYxMBoBOlDJcADSS6qEaGSiE+fg5C7kwSaiOAf98caQGMyozUsh+4JoUlW1k6a7XDI1NZ+GIVltAV6d90iSxHBiLr0H/GdaK4/SoC1KQdHZgcyPNWyKmCiKfv0TIkrGTiwetYhwOp2UlJT4zSKitbWVDRs2sGHDBjZt2hSQ69Nkflij6PV65s+fT3u752J2ssLj6WhqauK1117j5z//OXfccQff/va3ZyXuviTMCZ4vM1arlcsvv5x169bxyCOPuIsJnU4nx48fd6fAzpw5w6JFi9w+YGlpaX6/wIiiSHNzM/39/W7/sNE5HgMDA1itVqKiotxeYN4LoP4RAXRwJAU23OjjiIFMILokC3NNi2/360NUCTFYjdaQE2RKXQTpa7LIjO9AI46tKeoPW0DXjomnP4cqzqx8zuyoCMixlLoIYhdm42puRrD7NtWlSkmg6LePoM5KHfN6ICwiAHbt2sWPf/xjfv3rX7NmzRq/HONcJvPDOptnnnmG6upqXn311Sn39bvf/Y6hoaFx05fP7tL1NELzpz/9iXfffZe//e1vvPzyy3zjG9/wm8P8F4A5wfNlp7m5mezs7Cm3cTgcY4xQe3t7Wbp0KWvWrGHdunUkJSX59OI2PDxMZWUlsbGx5OTkTPjDF0VxjACy2WxERUURGxtLTEyM15NbrV0DIymwQyMRoKGG2aUeQt46QilHmZzEUN2ZYK9kcmQyklbmkZXvIFYcqS9qaMnGdiZ06rOmQ0pNp3Vf4GdCKaO1xC3MxtXUBD4QPur8TIp+/TCqxNgxrwfCIkIURX71q1/xj3/8g7fffjtg5pdT+WGNsnPnTn7wgx+wd+9e4uLiJtymu7ub6667ju7ubsLCwnjnnXcoKipCEIQxAue9995j3759LFu2jGXLlnk0R2jbtm04nU7WrVtHbGzstNt/SZkTPHPMHJvNxoEDB9i5cye7d+/GaDSyfPlyd7FgXFycVwLobI+u4uJidDqdx58VRZHBwUG3AHI4HGMEkLdziazdA+gPnWbgQAX9+0/NKAIUWZyFpbENxND9uWgXFTFwMIQF2Tlo81JIX5nM0GcNCLbzI50lRenobLZgHwieA7oyJpK4BVmITY1IXtb4RC4uouDFH6OI+rwmR5IkWltb/W4RMTQ0xB133EFMTAwvvfSSz+aMTcd0flgwUhh87bXX8v7771NQUDDhNkePHuWqq65i4cKF3H///cyfP3/CourHH3+crVu38r3vfY9du3axevVq7r33Xo/O90vmi+UNc4JnjtljsVjcPmB79uzBarWyYsUK1q1bx0UXXYROp5v2h2i32zl9+jRhYWEUFBSzTDBfAAAgAElEQVTMOvcviiJGo9HtBeZwONDpdG4BNNOx6t3d3TQ2NpITl4xU08HAgQr0hyox17ZNuL0iKgJVZBj2ntDtIpLNS8NaMfH6QxV1TiqDbQOIdgdxi3OJ0smRd7QghJh1yCiSXM4AcZhqQuPvrIqNJLYsC1djA8ygxifyokUU/vL/Ild/fuN1Op2cPn0alUpFQUGB34pkm5qauOmmm9i4cSPf//73A3ZT98QPq7W1lfXr1/PGG29MWEMjSRIul4tNmzZhNpt55pln3JGpc9NWu3fv5mc/+xlvv/02cXFxbN26lZ///Ofs2bNnzgbCN8wJnjl8j8lkYu/evZSXl7N3715cLherVq1i3bp1rFq1isjIyDHbNzY20t3dzbx58/w2L8Llco0RQC6Xa4wAmmwYmtPppKamBpfLRXFx8bjtbH0GdwRo4ECFWwDFLMvHdCJ0pymHZyZjbulFtIXevKLJUOekYjozgGNwrJu4MkpD/KIcIlR2ZB1tIfOUK0kSluR59OwLvQiaKjaK2LJMj4SP+qvLkW64lGGrxT07Kzw8nMbGRjIzM0lNTZ3y87Ph448/5pFHHuGVV15h5cqVfjvOROzdu5c1a9ZQVlbmFibn+mF9//vf569//as77aRQKDhy5MiY/fT09LB48WLuu+8+7r///kkjMYODg7S3t1NcXOx+bf369bz22mtkZWWFzPf6PGZO8MzhXyRJwmg0smfPHsrLy9m3bx8KhYKLLrqI5cuX8/bbbyOTyXj11VcD+hTjcrncQ8z0ej2iKBIdHU1sbCzR0dEolUqMRiNVVVVkZmaSkpLi2WDEfiP6I9Xo959Ef7CCobrQeLI/G5lGDeFqrAFwqvcV6uxUTO3jxc65hKfEEl+Shto5iKyvJ0CrmxhX1jzadgSpzd9DVHFRxM3PxNnQAM7xwifl5mvIuOsGBEFwz85qbW2lq6sLlUrlFkCz9b86F1EUef7559mxYwdbtmyZ9UydYFJVVcWKFSt4//33Wb16NTDyULhr1y76+vqIjIzkuuuuG3d96enp4YorruCDDz4gLi7OPatsDq+ZEzz+5pZbbuG9994jMTGRiorxHRqBGlwVKkiSRH9/P7///e95/vnnycvLQ6FQuG0wli9f7rc6gKkYFUCjk6Ct/5xem5eXR1JSktdziWy9BvSHKtAfqEB/sILhpuDOjZEkCU3xPIzHz58Op/DsFMwdBhzGmXWRRealEDsvAdVgD7LB8RYk/kRKSaP1YGh6uU2EKl5HbGkGrrOET+b9G0j51yvd24xaRJhMJubPn49CoRjjfzU4OOj2zxv1v/JGAJnNZjZt2kRKSgrPPffceZ/OMRqNrF27FplMxk9/+lNaWlp4+eWXqa+vx+Ua+X488sgjPPjgg25BM2rt88ADD/Dee+/x1ltvceLECR566CGio6ODeTrnM3OCx9/s2bMHrVbLjTfeOKHgCeTgqlDA6XTys5/9jB07drB582Zyc3Pp7u52G6F++umnxMbGugXQ0qVLA3rBs1gsVFZWotPp0Ol0GAwGDAYDgiCMiQB5W2Nk7epHf7DC/V+gJ0EHdbigF4Rnp2DuNM56KnHMghwik9Qoe86gcPo3jefSRNDd7sTef/4ZmoYl6Iidn0nW9y4l/htr3a97ahExaiA8KoCUSuUY/6vpfjd1dXXceuut3HnnnWzYsOELkcYRRZEXX3yRn/3sZwwMDCAIAmVlZVx88cWsWrWKv/71r/zv//4vhw8fZuHChe6UV2NjIw888ABZWVns3r2b119/nbKy8UMe5/CYOcETCJqbm7nyyisnFDxn483gqvONvr4+Nm/ezL333jth1ESSJNrb2ykvL6e8vJxjx46RnJzsboFfuHCh36ZAd3V10dzcTFFR0binKIfD4Y4AGQwGZDKZexCiJxfyybC29zIwKoAOnPJrmklTmIXhVIvX/k2BJjwrGXPXoE8sGEYRVAriF+cSFa1A3tmK4PJtBEaSCXSLMVjrQ9cvbSrkEeEs+8ODJFy82P3abCwibDabWwCdawB67oPD9u3befzxx3n11Ve54IILfHZOwWRUvBgMBo4fP8727du57LLLyMrKIjc3F4ATJ06wbt06fvKTn/CjH/3I/dldu3axfv16br75Zl5++WU0Gs3cBOXZMSd4AoGngsfTwVVfJiRJoqmpyT0D6MSJE2RmZrqHIJaWls66o8vpdFJdXY0kSRQVFXnk5uxwONwt8Ebj/9/emYdFVf5t/J4Z9kVWQREQEEVkEUER2cStxMhUsjSXEJVKScxSyaXUUtO0aHFN1NTMUksr0TcFQTZxQZFFdpBdtgGGdbbn/YPfnED2bRB9PtfFdenMmXOeMwxn7vPd7kpmErTkQt6dixIhBHW5T5n0F/d2Ahqe9o6Jp6yWGvi1Qgi4/dca3RUUhg9B9dMqCLi9J3aeRWaQEgbbGEFFTgBWYV7bV8MuUDfUFE/DB04ErSnyg9Vh/8tWqFn/Nz25ty0imhqAPnjwAN9++y3Gjx/P/J2fP3/+pRucV1JSAn19fXz33Xd4//33GZFUVFSEv/76Cz4+PgC6P5WZwkAFjzTojODpzOAqSmN4OC0tjZkCnZSUBFNTU8YGY/To0V0SGxJn+OHDh2Po0KHdXhefz28mgGRlZZkIUHdrGcRiMTKjY1EUdh/KeRXg3UsBv7Si64vjsCFvoAde8sBwFVcwHIKaYh74UhRnCroa0LbUh5KwCih52q1UykAoUm4L5RF6mHj2cygN1wUgPYuIrKwsbNy4EWVlZUxhtKOjI1xdXTF16tQWHZ1doTPmn4QQ+Pn5ISgoCEpKSjh58iRsbW17elrt0lS4CAQCnD59GgEBATh//jzMzMw6fA2l21DBIw06EjydGVxFaR2xWIykpCQmApSamgpzc3NGAI0YMaLNSc1ZWVngcrl94gwvCeWXl5ejqqoKcnJyjADqTDeLZC6RgoICRo4cCQ6H02iwmp7XGAGKaZwDJCjvuE5EZdxolEc/f63RraFgoIuakmqpip1nUTEZAq2ROpCvKgars8XOukORczcPYn7f+Vf1Fep2ZrA/tRlyWo2WCRKLCF1dXRgYGPRZHU1ycjJWrlyJjz76CIsWNXaCVVdXIyoqCmFhYVi4cCEsLS27vf/OmH8GBQXhhx9+QFBQEGJiYuDn59flGsrWxEhnhgDyeDxERkZi1apVcHNzw9GjR6Vu2vySQQWPNGhP8HQ0uIrSNUQiER49esQIoKysLFhbWzMCaPjw4UhJScG+ffuwadMmGBkZSSUnLinmLC8vB4/Hg5ycHDMDaNCgQc0ujpIx/R3NJSJiMWpSc/9XAxQP7u3EFn5YKtYjUX4npc/Oqzdh6WiAX1kPYcXz4+mlYWUEdT1VyJbmg1Vf1+o2RFkZRUUEDU+f3yGTbaH7qj1sD30MjlLjQEFpWEQQQnDlyhXs2rULx48f7/OIioTWzD/fe+89uLm5YeHChQAAMzMzhIaGdiraSwgBIQRsNhtcLhe3b9+GlpYWRowY0W6Unsvl4sSJE0hISMDly5cxb948/PTTT8w+X4RC7ecUKnj6moULFzLzFnR1dbF9+3YIBI1dIp0dXNVVOmqFl3D37l04ODjgt99+w5tvvtmjYz6vCIVCxMbGMikwSa2OxGm5s/N1epu6urpmAkhBQQEaGhqoqalBXV0dLC0tu9yeT0Qi8JKf/NcCn1eMqrRCiOuefwsGeX0d1JTVQNCP9gvtwZJtUuz8NBes/7VuEzYLFfJDUBmf3b8L7AaGS1+F5S4fsGU4UrOIEIlE2L17N+7du4ezZ89CW1u7T47zLG2Zf3p4eMDf3x/Ozs4AgGnTpmHPnj0YP358p/d948YNLF26FLKysqiuroaGhgZ++uknODo6Ql5evoWICQoKgr+/P4YOHYrly5fjrbfeAkDTVlKACp4XkY5a4YHGP64ZM2ZAQUEB3t7eL6zgkVBRUYHVq1eDw+Fg0aJFuHPnDkJDQ1FWVobx48czPmA6OjpSF0CEEFRUVCAxMREyMjIghEBRUZGJAKmoqHRrTWKhCFXxGSiLTEBZ5CNw7zyG6DkUP/LDdFBXUYuG0oHRxi2jogjtccZQkReigSWH4lsDI13YFDP/RTD1exMsFktqFhEVFRVYuXIlLCwssGvXLqmlb9oz/3zttdfw6aefNhM8e/fuhZ2dXaf2fffuXcyePRvvvPMO3nnnHXA4HOzfvx///vsvduzYgZUrV7b6fiYnJ2Pw4MFMJIh2X0mFNi+iNJE4gHF1dUV2dna72/zwww/w9PTE3bt3pbOofkQgEMDd3R1r167F22+/DQB49dVXsXXrVtTX1+P27dsIDg7GsWPHUF1dDXt7e0yePBkuLi7Q0NDocwH09OlTZGdnw8rKCmpqasxEWy6Xi6ysLNTU1EBJSYkRQMrKyp1aE1uGA/Vxo6A+bhRG+M6DmC9AxYM0lEXGoywqHhX3kvu95kR+2OABJXYAQFhdh8KIx9C0N0dFfCbULEaCI8tGfXYBhBXPZ4RKAovDhvX+1TBYMA1AoylnQkICDAwM+tQiIikpCT4+PtiwYQPefvttqd1UCAQCeHp6YtGiRa06nevr6yM3979p6Hl5eV16H+7evQtdXV18+OGHMDIyAgDMnj0bv/zyCxoaGiAUCpvNEZNEe0aPHt3s/1Ts9C9U8LzA5Ofn488//0RISMhLIXhkZWVx8+bNVsP0CgoKcHNzg5ubG4DGL4CoqCgEBwfjxx9/BJ/Px6RJk+Dq6gonJ6cW9TY9QeLTJRaLYWdnx7TDs1gsKCsrQ1lZGfr6+o3FyjU14HK5yMjIQG1tLZSVlRkBpKSk1DkBJCcLzYljoDlxDEauexuiugZw76egLDIe5ZHxqHiYBiKU3mTgRrFTP6DEDtA4q0bJeBhKIho7skpjkpnnBpnpQ1FXHWJeNWrSc8F6jmLhHCUF2B3bAJ2pjTUzxcXFyMzMhIWFRY+6odqDEILLly/j66+/xsmTJ6U6RZ4QguXLl8Pc3LxNp/PZs2fjxx9/xIIFCxATEwM1NbVW63ckGQ9JJ5nk7y0pKQl8Pp8RO6tXr8aRI0ewe/durFmzBkDzVNWzf6e0Xuf5gAqeF5i1a9diz549L1W+uLM1CcrKypgxYwZT2FhVVYXw8HCEhIRg3759IITA2dkZrq6umDRpElRUVLq1Hskwt874dLFYLKioqEBFRQUGBgaMACovL0d6ejpqa2uhoqLCCCBFRcVOXUg5ivLQdraGtrM1AEBYUwfunccoi3iEp2EPUPP4SZ8lr+WHDUZdZQMaSqVr+dBTFHQ1ATk5cB+0bgxblZKHqpQ8AABbWR7qYwwhpyCL+ieFneqo6yvY6spQ2eyJQi0O6p48QU1NDerr65sJ7d5GKBTiiy++QEJCAoKDg6Gpqdknx2mLyMhInD59GlZWVrCxsQHQ0vxz1qxZCAoKgqmpKZSUlHDixIkW+2maboqIiEB0dDSmT5+OcePGQVNTE7Kysrh37x7WrVuHlJQUXLp0CR4eHqivr8cXX3wBDw8PTJo0SXonTukytIZngNNeZ5ixsTFzx1JaWgolJSUcPXoUc+bMkfYyBxSSWpuwsDCEhIQgOjoacnJycHZ2xuTJkzFx4sQO29slxaFPnz6FhYVFrwxzI4Sguroa5eXlKC8vR319PVRVVZsJoM4iFouRmZmJyspKjNIfjtoHGSiLikdZZDx4j5/0eK0AIK+njboqPhpKujFTqB9RNTNATSEX/LLupa1URw6D0lANiGtqUZuWA4ilcxlVNtGD/a+fQclQF5WVlUhKaqw5YrFYUFRUbGb+2VsRh/Lycixfvhx2dnb44osvBtTNVVudUrt378ZXX32FadOmYdmyZXj99deRnJyMsWPHQiAQwN7eHmfPnoWJiQkIIQgPD8cnn3wCPz8/LFq0qB/OhPIMtGj5RaWz0529vLzg4eHxwhct9wWEEJSWljI+YDExMVBVVWUKoCdMmAB5eXlm+4KCAuTl5UFdXR2mpqZ9lrcnhIDH4zUzQh00aBAjgNqKdtXX1yMhIQGampowNjZucdFvKKtEeVRCYw1QZDxqMrpugSKvp406Hh8NxQNL7GjYmaEsNr3Xap5kVBWhZm4IWXkO6nOLIOijSJf6uJGYcHoL5LXVWlhEEEJQV1fH2KVIugUln5PuCqCEhAT4+Phgy5YtrbqAP++01i31008/wd/fH99++y1effVV6OrqMs8FBgZi5cqV2Lx5Mz788EOIxWJG7Dg6OuLUqVN9FkWjdAkqeF5EOmqFbwoVPL0HIQRFRUVMC/y9e/egra0NFxcXKCgo4OjRozhy5IjU5y2JxeJmAojP5zcTQPLy8igpKUF6enqX5q/UF5ahLDoBZRGPUBYZj7rc4na3lx+qhfoaIeoH0LwaQgi0JlmiOLz9G4eeomqqByU9zcboT3ouIOq535nOjPGwPfwJZJQVGIsIKysrKCkptbq9RABJvK+ajkuQCKD2RDohBBcvXkRAQABOnTrVo6GB/QEhBIsXL4aRkRF27tzZ7Lm3334bNTU1+O2335iobNNU16ZNm3DhwgUUFxfD1NQUubm5eOedd/Dtt9+22JbSb1DBQ+kdOjP7JzQ0FGvXroVAIIC2tjbCwsKkvErpQghBeno6/Pz8kJSUBG1tbWhra8PV1RWTJ0+GtbV1v4T6xWIxqqqqGAHE4/HA4XBgYmKCwYMHd9udvjbnKdMBVhYZj4ai/3zA5IZooaF2YIkdyHKgOMoAvIdZUj2sjIoi1MwNIKsg+7/oT9ejYYaLZ8Dyq/cBNqtHFhFNBVBVVRXk5eUZAdTUMkUoFOLzzz9Heno6Tp8+3cJ8dyBQXV2NAwcOwNPTE6ampszjdXV1sLe3h4ODAzMgUEJTIZORkYHIyEhoaWlBXV0dTk5OAOh8necIKngovUNHs38qKirg6OiIa9euwdDQEMXFxS+8SWB6ejreffddzJ07F+vWrQOLxUJGRgYzBfrRo0cwNjZmBNCYMWOkehdYW1uLhIQEDB48GGpqaswXm0gkgpqaGhMB6k44nhCCmowClEXFozwmCaUPs1CV1Ds1QNJAVmsQOINUUJ3a9bRdb6NiPATK+togdXWoSc8FOuikG7VhIUZ+9BYaGhp63SKiqQA6efIk7t69i/HjxyM2NhbTp0/H9u3bB+SX+7MRmJMnT0JPTw+vvPIKeDweZs+eDRkZGZw+fRpDhgxpVueTlZWFiooKjBs3rsP9UvoVKngovUd7dUMHDx5EQUEBvvzyy35YWf/w119/QU9Pr82prWKxGKmpqQgODkZoaCgeP34MMzMzuLi4wNXVtU+HwBUVFSE7Oxvm5uZQU1Nr9pxIJEJlZSUTARKLxVBXV2fu7LslgMRiVCXnoiT8EUrC41ESmQBBRd85ofcEZeOhaKiqQ33R8xeN4ig1dn7JKsmhIe8p+MX/rZHFYcPq6w9g+M4MqVhEAMC1a9ewf/9+KCsro7S0FFpaWnBzc8PkyZPh6OjY489vR5HjyspKLF68GDk5ORAKhfjkk0+wbNmyLh+naRQmLS0Nc+bMgby8PC5evAhjY2McO3YMPj4+OH78OObPn8+ktXg8Hnbs2AEdHR34+fl1OzpKkQpU8FB6j/YEjySVlZiYCB6PBz8/PyxdurQfVvn8IhaLkZCQwESA0tPTYWFhwfiAGRsb9/gLRCQSISUlBQKBAGPGjOmUeBGJRKioqGCKWwkhzQRQdybmEpEIlYnZKL7VKIBKoxMh5LXuVSVN1MaaoiIpB6La528idWsoG+lCxXAwWEIBRm9YAJ1pdlKxiCCE4Ny5czh48CDOnDkDc3NzAI2GnWFhYYiOjsa3337b489rR5HjXbt2obKyEnv27EFJSQnMzMxQVFTULeGRlZWF2tpaWFhY4OzZs9i3bx+GDx+O8+fPQ0ZGBm+99RauX7+OjRs3YuXKlcjPz0dQUBD27duHr7/+ultCiyJVqOCh9B7tCR5fX1/cu3cPwcHBqKurw6RJk3DlyhXqDt8OIpEIDx8+ZARQTk4Oxo4dCxcXF7i5uUFfX79LaQrJVF09Pb0uv7YpQqGwmQACwIgfDQ2NbqU0xEIRiu8+RuLFGxAnFaAmLkuqoqOxONkCxRFJQPvXvucOZeMhcP51M1RG60vFIkIgEGDLli3Iy8vDyZMnW0QIe5v2riu7d+9Gbm4uDhw4gOzsbMyYMQOpqamdOvem6aaoqCg4Oztjy5Yt2Lx5M+Tl5bF7924EBgZizpw52LdvHwBg7ty5iIqKQklJCYyMjFBRUYGDBw9iwYIFvXvSlL6AWktQpIO+vj60tbWZCcKurq6Ii4ujgqcdOBwO7OzsYGdnh/Xr10MgEOD+/fsICQmBr68viouLYWtrywggXV3dNkVMQUEBcnJyemWqroyMDFOADTR+AVZUVKCsrAyZmZlgsViM+FFXV++UACrjliMLPNhufhcaGhoQ8wUoj01DSUQ8SsLjURbzGOIGQY/W3SYcNjRtzVAcntg3++9DhkwbB4cT6yGUZ+P+/ft9bhFRXFwMb29vTJkyBd99912/16f4+vpi9uzZ0NPTA4/Hw2+//dapNUlczgHg/v37iIuLw9q1a7FmzRomYrlq1Srk5eXhjz/+gImJCVatWoXff/8dycnJePjwIZSUlDBhwgQYGhoy+xxoLfiURmiEh9Jl2rsTe/z4MXx9ffF///d/4PP5sLe3x7lz5wZc6+rzBJ/Px+3btxESEoKwsDBUVFRgwoQJmDx5MpydnaGtrY3Kykp89tln8Pb2hqWlpVQMGwUCAeMEX1lZCQ6HwwggNTW1ZgJILBYjIyMDPB4PlpaWbaYiRPV8lN9Laaz/CX+EsnupIIKez8SRUVWCgr4OKh5JtxOrNxi9zhNWny9B6f+EZl9aRABAbGwsVq9ejZ07d8LDw6PPjvMs7V1XLly4gMjISHzzzTfIyMjAjBkzEBcX18wRXcKNGzfA4XCgra0NKysrAI2egtu2bQOLxcJ3333HDAiURH9SU1Px6aefIikpCQcPHsSUKVNa7Jd2YQ0YaISH0js0nf2jr6/fYvaPubk5Zs6cCWtra7DZbKxYsaLHYkdaBY3PK3Jyckx9D9DYQRMdHY3g4GAcPnwYZWVlqKmpweuvv47hw4dL7aIsKysLHR0dpguPz+eDy+WiuLgYqampkJWVZUxQc3JyoKWlhXHjxrV7d8xRkMNgZysMdrYCPn0HwtoGlMUkNQqgiHhwY9NAuji7RtFgMERCDDixw1GSh/0hPxjMc2bEYl9aRBBCcObMGRw7dgznz59/rqKyJ06cgL+/P1gsFkxNTWFsbIzk5GTY29sz29TW1sLT0xOJiYkoKSmBWCzG559/jo8++ggTJkyAra0tbt26BX19fQCNgl3yXo4aNQq+vr744osvsHbtWvz9999MREcCFTsDHxrhoTz3SLOgcSBBCMGhQ4dw4sQJ+Pj4IC0tDRERERAKhXB0dISrqyscHR171UqgKzQ0NCAnJwd5eXmQlZWFoqIi0wLfdLZLVxDwalEa/Z8AqojLaLcWZ5CFMXhZRRBU1vbkVKSOspEunM9thtKoYUhISICamhpMTEz67PfI5/Ph7++PsrIynDhxotvecT2hvQjPBx98AF1dXWzbtg1Pnz6Fra0t4uLimHTr/fv34e7uDjMzM2zfvh1ycnK4cOECvv/+exw8eBDvv/8+/vjjD3z00UfQ09NDaGgo5OXlW0Rtjhw5gmPHjuHIkSOwtbWV2rlTehVatEwZ2PRVQeNAxsfHBzIyMti/fz/jo0UIQVVVFW7duoWQkBBERkaCw+EwRqgODg694uvVEYQQZGRkoLKyEpaWlpCXl0d9fX2z4XZycnLN7A268/viV1SjNCrhfymweFQmZjPPadibozQmRarO8L2Bsr0pLH/4AEqD1ZGZmclYRPQVRUVFWLZsGdzd3bFhw4Z++bvpaGp8QUEBvLy8UFhYCEII/P39sXjxYgDAvXv34OzsDGdnZ9y4caNZjc2sWbOQl5eHR48eAQC++eYbHDx4EB4eHggICADQ3CEdaIwY93WBNqVPoYKH0vuUlpYiPj4ehoaGGDFiRJ8eqz3BIxkYlpyczBQ0vvbaa326nueBoqIiDBkypN1tCCEoLy9njFBv374NRUVFxgjV3t6+11uaGxoakJCQAHV19XajEvX19cwMoKqqql7xd2ooq0JpZAIqErKQ80ckqpJze3o6UsXMby6MPp6LnLxclJWVQU5OrtlwyK4YxHaGO3fuYM2aNdi7dy9mzpzZq/uWFtHR0diyZQuePHmCiIgIDBkyBLW1tVBSUsI333yDrVu3IjY2FmZmZqiursaWLVvw119/Yd26dfD19WX201Qo0cLkAQ0VPJTe5fjx48wdUk5ODpSVlfHGG2/A29sbdnZ2vX6x6K2CxpcdQgiKi4tx8+ZNhIaGIiYmBhoaGswQRDs7ux6lAiWD8EaNGgUtLa0uvVZicCmxwWiaAlNRUenWZ6r+KRfF4QkovvUIxeHx4KX1/0Tl1uAoycP+oB/05zk1s4hgs9ktDGJVVVV7LIAIITh58iROnTqFs2fP9vkNS19z7do1rF+/HlpaWggNDWUeX7FiBSIiIhAZGQkNDQ2w2WxkZmbi008/RWJiIvbu3YtZs2b138IpfQEVPJSeI7nruXv3Ll577TVMmjQJGzZsgLKyMiIjI3HhwgUIhUKEh4f3+rHbEzyvvfYa/P394eLiAgCYOnUqvvrqq2YFjZTWIYSgoKAAISEhCAkJQWxsLHR1dZkiaRsbm051fBFCkJmZiYqKClhYWPQ4atTU4ZvL5aK6uhpKSkrMF72ysnKXBVBZWRmSou5Dq0SAmthMFN+KR3VmYY/W2RsoD9eB07ktUBw5tEOLCIlBrCQ1WF9fj0GDBjHdcZ0RQA0NDVi/fj1qampw7NgxqaQ4+wrJNUksFuPEiRPYsmUL5tLh13MAACAASURBVM+fj++//x6bNm3C119/jd9//x1z585t9rrIyEisWrUKGhoauHbtWp8NbqT0C1TwUHqOpIVz27ZtOHXqFK5fv44RI0aAEAKRSITIyEjcunULW7duhUgkAovFYn56Sk8KGimdhxCCJ0+eME7wDx8+hIGBAeMDZmlp2aJbpa6uDo8fP8agQYNgYmLSJzUghBDU1tYyAqimpgbKysrQ0NCApqYmlJSU2vycEUKQlZUFLpfL1BNJqM0rwdNb8Y0RoFvxqM1p3wm+t9GdYoNJJ9ejhiXslkVEVwVQYWEh4/v20UcfvRB1bhLRU1lZie+++w779+/H4MGDwePxcOTIEcyZM6fVFNW1a9dgY2PTYVqYMuCggofSe6xfvx6BgYE4c+ZMp8PBYrEYYrEYHA6nywKoJwWNlJ4hmZ8THByMmzdvIjExEaampnBxccHkyZORlZWFHTt24NKlSxg6dKjU1kUIQU1NDSOAamtroaKiwgggRUVFsFgs8Pl8JCYmQkVFBSNGjOjwC77mydNmAqguv7TPzsHMby6sti1FXkE+SkpKYGlp2eNIw7MCKD8/H2fOnIGrqyuGDBmCvXv34ptvvsH06dN76Syki1jcOJLg2d+jRNBkZ2dj9+7d+Pnnn3Ho0CEsW7asRSfWs0afdL7OCwcVPJTeIzExEfb29hg1ahS2bt2KuXPngsViQSgUgsVigcPh4Ndff0V+fj5WrFjR7Rbk/iQ3NxdLly5FUVER2Gw2fHx84Ofn12wbQgj8/PwQFBQEJSUlnDx58oVvZRWLxUhOTsb169dx9OhRVFRUwMHBAZMnT4arqytMTU375XdNCEF1dTUjgOrq6iAvL4+amhoYGxszs1e6vM/MQhSHx6P4VuNPfVF5j9fKUZTDhANrMGyeU59bRPD5fERGRuLnn39GVFQUBg0ahEmTJsHNzQ1ubm4wMDDo8TE6mpMFAKGhoYzPnra2NsLCwjq9f0n0eNiwYUytUUlJCVRUVFpN4d25cwdbtmxBRkYGYmJioK2tDaFQKJVhnJTnAip4KL3L1atXsW3bNty9exfjx4/H559/3qwzysvLC3/99Rd8fX0RGhqKsrIyvP/++3j//fdbHZxGCIFYLAaLxXouxFFhYSEKCwtha2vLDHy7dOkSxowZw2wTFBSEH374AUFBQYiJiYGfnx9iYmL6cdXSobS0FEuXLoW1tTW2bduGlJQUxgk+KysLlpaWTAps+PDhUu92IYQgNzcX+fn50NbWRnV1dbNUj6amZrciKYQQ8NLy/yd+HqE4PAENJRVd2ofycB04/boZciN0kZCQAENDwz6NjNXX12PdunUQiUQ4evQoZGVlERsbi9DQUISGhmLRokXM1OHu0tGcrIqKCjg6OuLatWswNDREcXExM6yyM2RmZmLr1q2oqqrC33//jVOnTmHfvn04evQoHBwcWn3NlStXsGHDBujp6eH69esAWkZ2KC8sVPBQep/Hjx/jzJkzOHz4MJSUlHDq1ClMmTIFRUVFWLhwIWJjY+Hg4AAfHx+EhITg3LlzOHnyJF5//fVO7V8Spr5//z4KCgrg4uICdXX1Pj6r1nnjjTfg6+uLGTNmMI+99957cHNzw8KFCwEAZmZmCA0NlWpqpz/w9fWFu7t7q63/QqEQDx48YIxQ8/PzYWNjw/iA6enp9akAEolESEpKAofDgZmZGZOqkKR6JBEgPp/fTAA1revpLIQQVCXnNhFA8eCX89rcXtdtLCb9vAGVonqpWETk5eXBy8sLCxYsgK+vb59+2bdXY3fw4EEUFBTgyy+/7Pb+AwICcPToUcjLyyMhIQF79+7FBx980EK4Sq4ZIpGIKWKePn06zpw50+1jUwYcVPBQeo9nCwBv376NadOmYcmSJTh8+DBCQkKwcOFCzJo1CydOnADQeJfn6emJmpoa3L59m7nbqqiowN9//42rV69ixIgRmD9/PqytrZsNA/P19UViYiJOnz7drdRET8nOzoarqysSEhKatbp7eHjA398fzs7OAIBp06Zhz549GD9+vNTX+LwiEAhw584dpg2+tLQUdnZ2TBeYjo5OrwkgiUt8Z4w1xWIxqqqqGC8wgUAANTU1RgB1pzWfiMWoTHqC4rB4FIfHoyQyAXxuNQDAbM0cWG1/F1lPshk/sb6yiACA8PBwrF+/Ht9//z3c3Nz67DgS2hM8klRWYmIieDwe/Pz8sHTp0k7tV3Kt4fF4sLa2xpMnT+Dj44PDhw93+Boul4svv/wS9fX1OHDgAJ2t8/JAvbQoPUcsFiMxMZEx5AMa76gdHBxgaGjIFA0/fvwYbDYbS5YsAdBYR6Curo6JEyfir7/+QlZWFoyNjZGWlgZ/f39cuXIF06dPx7///oszZ85g586deOedd9DQ0ICkpCSkp6dDXV29Q7ETHx8PQgisra177Zyrq6vh6emJgICAFnN9WrtZoBfU5sjKysLJyQlOTk7YsmULGhoaEB0djZs3b+L48ePg8Xiwt7eHq6srXFxcoKmp2a338OnTp8jKyup01ITNZkNdXR3q6uowNjaGWCxGZWUlysvLkZeXB6FQCHV1dabbqTMCiMVmQ93SGOqWxhi1ejbEIhEqE7LRUM6DptMYxMU/gpqaGmxsbPrscyIWi3HkyBH8+eefuHLlSq/U6PQUoVCI+/fvIzg4GHV1dZg0aRIcHBza9eqS3BBJ3qfExETMmDEDOTk5iIyMxD///AMPD49W01QsFguEEGhoaODzzz9n/m7p3yaFCh5Kp4mJicG0adOwf/9+zJs3D4MHDwaHw0FxcTGys7Mxc+ZMsFgsxMXFQVZWFhMnTgTwn+kel8uFlpYWIxS2bduG2NhYnDt3Dh4eHqiqqoK3tzc+++wzODk5gc/nw9vbG3FxcRg+fDj27duHmTNntmpGKhQKceTIERw8eBAcDgcWFhZYuHAhFi5c2MIEsLMIBAJ4enpi0aJFmDdvXovn9fX1kZv73yTfvLy8DiMLLzvy8vJMwSzQaPgYFRWF4OBgHDhwAHw+Hw4ODnB1dYWTkxPU1NTa/aISi8VIS0tDfX19j4w12Ww2I26ARiFfWVkJLpeL3NxciESiZgKoM8dhczjQGDsCVVVViI2N7XOLiNraWvj5+UFeXh43btx4bmbL6OvrQ1tbG8rKylBWVoarqyvi4uLaFDxNu6ZKS0uhra0NBwcHODg4ICoqCp9++il27doFIyMjWFpatil6ADBih9bvUACAfgIoncbY2BgffPABvv/+e8yZMwcbN27E2rVrYWlpCU1NTaxYsQLl5eV48OABFBQUoKysDEIIOBwO6usb6xZUVVVhZGQEPp+PS5cuYcWKFXj99dchIyMDTU1NbNy4kfG+GTlyJDw9PTFkyBCMHTsWx48fh4+PD+7fv8+sSSKeSkpKkJOTA2dnZ0RHR2PmzJk4d+4cVq5cCS6X2+VzJYRg+fLlMDc3x7p161rdZvbs2Th16hQIIbh9+zbU1NRe+Pqd3kZJSQnTp0/H7t27ERkZiZCQEMyaNQsxMTHw9PTE1KlTsWXLFvz777+orq5u9trMzExERkZCXl4e1tbWvZoi4nA40NTUxIgRIzB+/HiMHz8e2traqKqqwsOHD3Hnzh2kpqaipKQEQqGwzf0UFBTg8ePHsLa27lOxk5OTAw8PDzg5OSEwMPC5ETtAY/1beHg4hEIhamtrERMTA3Nz81a3lYyuAAB/f3/Mnj0bVlZWmD9/PrKysuDo6Ii1a9eiuroaW7duBY/HY4RMeXnbHXRU7FAAGuGhdIEhQ4Zg//798Pb2xsWLF3Hr1i0QQrB69Wq4u7vDwsIC165dQ01NDXg8Hm7dugVXV1cAjTUFCQkJ+OSTT8Bms3H37l3w+Xy4ubmBw+Ew+XWJGJJcoPLy8qCrq4uDBw9i6NChKC4ubnUwW3Z2NhISErBy5UqMHz8e48aNg5OTE9566y3s3r0be/fu7dJdXmRkJE6fPg0rKyvY2NgAaHRlz8nJAdA4/2fWrFkICgqCqakplJSUmHolSvdRVVWFu7s73N3dQQhBRUUFY4S6a9cuJkU2aNAgnDhxAseOHYORkVGfr4vD4UBLS4uxyxAKhaioqACXy0VWVhYAMNEfdXV1sNlsxiJi/PjxfTrnJTQ0FP7+/jhw4AAzbVyaNJ2Tpa+v32JOlrm5OWbOnAlra2uw2WysWLGi1Sgt0ChM+Hw+5syZg4SEBCxbtgx5eXkICwvD5MmTERgYiLlz5yIrKwtHjhyBv78/du3ahX/++Qfnzp3DV199BQsLC2mePmUAQQUPpdNIRImFhUWbF5VHjx6BEAJbW1scO3YMAoEADx8+xFdffYUJEyZgzpw5AIC4uDhoaWlBRUUFQGMYW0ZGBgkJCWCxWFBTU0NVVRXS0tIwfPhwJlWkq6vb7HiS0HVKSgpKS0uZgWpsNhuvv/46bGxskJ+f32K42LNt8Dk5OYiIiMC0adOgq6sLZ2fnVmt0nj32gQMHuvFOtk1n5v/88ssv2LNnDwBARUUFhw4dwtixY3t1Hc8DLBYLGhoaeOONN/DGG2+AEIKSkhKsWbMG0dHRGDp0KLZt2wYXFxe4uLjA3t6+W91W3UFGRgba2trMNG+hUMgUQKenp6O2thZqamoYPnx4n61BLBbjwIEDuHLlCq5evYphw4b12bHa49dff+1wm/Xr12P9+vWd2l9ERASSkpJw5MgRuLu7AwCKi4vxyiuvYN26dbh8+TJ8fX2Rn5+PkydP4saNG3jy5Ak+//xzKnYo7UIFD6XTNHUSlkw8fVZEJCcnQ0lJibn7cnd3h6qqKmbNmoXdu3czhcfDhg2DSCRiwtCSoWBnzpzB6NGjYW5ujpSUFBQVFTFRorYmoko6QFRVVTFhwgRmfRwOB6mpqbCzswOHw0FaWhq0tbWhoaHBDEiUUFJSghMnTqCurg7Lly/vt5y/jIwM9u/f32z+z4wZM5rN/zE2NkZYWBg0NDRw9epV+Pj4vBTzf7hcLry9vWFlZYUzZ86Aw+Hg6dOnCAkJwcWLF7Fx40ZoaWkxU6BtbW37tBOqKTIyMkxNW1lZGaysrEAIQVlZGTIyMsDhcJgIkJqaWo8jPjU1NfD19YW6ujquX78uNaEnDVJTU1FQUAAnJycAjWJSR0cHly5dgqWlJQIDA7Fz505s3LgR06ZNw7179+Du7o4JEyYAoE7nlLahgofSZZ4VC5ILTFZWFjIzMzF69Gjo6+vjzJkzOHnyJDIyMmBmZtZsH5MnT4aWlhYCAgJgYGAAVVVVnDhxAufOncOePXugpaWF3377DXw+n7mQPYvkuIWFhUhOToampiazPqFQiICAAHC5XEybNg1isRhr167FkydPcPz4cVy5cgWmpqaYN28elJWVYWdnh+vXrzP1GP2V8x86dChTB6Sqqgpzc3Pk5+c3EzyOjo7Mvx0cHJCXlyf1dfYHSUlJ8PHxwezZs5nHhgwZgnfeeQfvvPMOM3Dw5s2b+Pnnn+Hn54ehQ4cyU6Ctra37bNquxIOstLQUtra2jACRDNjj8/ngcrkoLi5GWloaI4A0NTWhpqbWpc9bVlYWvLy8sHLlSqxcuXLAfrk3valoOoZCTU0N2traePDgASZPngwZGRkIBAIYGRnBy8sL58+fx/r166Gjo4NZs2Yx9jaSiO1AfT8ofQ8VPJQeI7nA5ObmIjs7m0krNTQ0QF5evoXYAQB1dXV89913eP/99+Hk5ARDQ0OkpqZi6dKl+OCDDwA0pqnk5eWZaapt3RU/efIE6enpSE9Ph6ysLPT09KCsrIycnBwsWLAAc+fORWZmJqqqqpCTk4MNGzZAVVUVFy9exMSJE2FkZISzZ8/C3Nyc6SxrisQHjM1mS1UIZWdn48GDB62uSUJgYCAT9n/Rkcw7agsWiwVDQ0O8++67ePfddxnT0JCQEBw6dAiPHj2CkZEREwEaM2ZMr9TWCIVCxiLC1ta21c+InJwcdHV1mZQsn89HeXk5ioqKkJKSAllZWcYJvj0rlhs3bmDLli04cuQIJk2a1OO19xeSvyc+n89EYyXROGdnZ9TW1uL8+fOwsrKCpqYm85xAIICsrGyrlhK0MJnSEVTwUHqNyZMnIy4ujrlb62h2yauvvoqEhARcv34dKSkpjCcT0HhhGzRoEIqLi1FfX9/q6yVCKzU1Ffn5+QgJCYGWlhYiIyORkZHBpIMAICEhAffv38f8+fOxdetWDBs2DGVlZRg2bBgeP36MHTt2YMKECfjtt9+Y/dfX1zMXYmlfTNub/yPh5s2bCAwMREREhFTXNlBgsVgwMTGBiYkJVqxYwbSwh4SEYN++fXj8+DFGjRoFFxcXuLq6wszMrMu/Z8mww65aRMjJyWHIkCGMU3d9fT24XC4KCgqQnJwMOTk5qKurIz8/HxMnToSMjAwCAgJw48YN/PvvvwPW4VsSlWWz2YiMjMSHH34IgUAAeXl5bNmyBY6OjjAwMMBXX32FVatWwcDAACtXroSmpiaKioqQn58POzs7yMjI0NQVpesQQtr7oVD6DLFY3O7jMTExZNSoUcTQ0JD4+vqS7OzsFts2NDSQtWvXkmHDhrW7rx07dhBtbW1y7969Ftv8/vvvZPTo0eTkyZOEEEIEAgG5fPkyWbJkCTE2NiZjxowh/v7+JC0trdVjCIVCIhQKOz7hTsLn88krr7xC9u/f3+Y2cXFxxMTEhKSkpPTacV82RCIRiY+PJwEBAWTOnDnE0tKSzJ8/n/zwww8kLi6O8Hg8UlNT0+ZPVlYWCQ4OJkVFRe1u152fsrIyEh8fT15//XViYmJCRo4cSRwdHcnt27d79bNGCCHLli0jgwcPJhYWFu1ud+fOHcJms8n58+e7fAyxWExEIhHz/+TkZKKpqUkWL15MNm3aRKZPn06GDh1K1q1bR2prawkhhGzYsIEMGjSIjBkzhixcuJBMnDiRaGtrk9jY2C4fn/JS0aamodYSlH5HUgDd2t01l8vFH3/8gdTUVCxZsgSWlpbN8v05OTlYuXIlFBUVcenSJaawuWmBc0NDA7y8vJCdnY3o6GgAzWsGtm7dinPnzuHy5csYM2YMAgIC8Pnnn2PUqFFYsGABMzNoxowZ+PTTT6GsrAwAqKyshJqaWpfPl7RzZ0oIwbvvvgtNTU0EBAS0uk1OTg6mTp2KU6dONavnofQMkUiEuLg4xgcsJycHVlZWcHFxwZQpU6Cvr8/Uhx07dgz29vawsrLq08Lo9PR0eHt74+2334aWlhbCwsLw8OFDGBkZMTOsekpH5p9A43szY8YMKCgowNvbG2+++Wan9v348WOYmJg0K6r+4YcfUFNTg9TUVPz4449QUlICAKxbtw5Xr17F4sWLsXnzZgDA77//juvXr6OkpASamprYt28fNDU1aXSH0h5tfzDaU0NSVmUUSpcJDg4msrKyZPfu3YQQ0uzuVxLdSUpKIhMnTiTLly8nhJBmd5o1NTXkzTffJE5OToQQQurr68mgQYPIW2+9xWwjEolITEwMuXTpEqmpqSGEEBIQEEBmzZpFdHV1ia2tLTlx4gTh8/mdXvedO3davVsPDw8nAIiVlRUZO3YsGTt2LLly5Qo5dOgQOXToECGEkOXLlxN1dXXmeTs7u04fty1ycnKIm5sbGT16NBkzZgwJCAhod+3dvdMfSAgEAnL79m2ya9cu8sorrxBra2vy9ttvExsbG+Lt7U2qqqp6PbLT9OePP/4g1tbW5M6dO83WJRaLSXp6OomPj++1c83Kymo3wvPtt9+SH3/8kbz77rud/r37+fmRMWPGkNmzZzOPXb16lRgYGBA1NTXy8ccfE0II83dTVVVFPD09iZOTE0lISGi2r4aGBubfAoGg0+dFeSlpU9NQwUN57hEKhW2mv2pqasjZs2dJXl4eIaR5mkwibC5cuEBGjx5Njh8/3mJ/cXFxZPz48eSDDz4ghBBy7tw5Ii8vTyIiItpcz4cffkg4HA5ZsWIF+eWXX4ifnx8xNDQkwcHBHZ7LtWvXyNSpU4m1tTUxMDAgCgoKxNXVlQQGBpLy8vJOvBt9Q0FBAbl//z4hpPGLZ+TIkSQxMbHFdkKhkEyZMoW4u7u/8ILnWW7fvk1GjhxJlixZQqZMmUJsbGzIihUryOnTp0l2djaprq7uFaHD4/HIZ599RqZOnUqePn0qlXNrT/Dk5eURV1dXIhQKOyV4cnNziZWVFbG2tibffPMN+eeff5o9v3PnTqKurk48PDyYxySC5s6dO4TFYpFbt24RQlqmvZverFAobdCmpqFFy5TnnvY6aZSUlLBw4ULm/03D3JIUWUREBEpKSphuJzabzYTEExISwOVymeciIyMxYsQIZmCcZDtJiiwsLAyBgYE4fvw4li5dCrFYjGnTpiElJQU7duzA1KlT21zr/fv34e3tjbFjx2L9+vUYN24csrKycOHCBWzevBmamprMYEZp05l2eKAxHeHp6Ym7d+/2xzL7jZ9//hkHDx7E1atXMWLECACNhcbR0dEICQnB0aNHUV1dzfiAubi4QF1dvctpl6qqKrz33nswNjbGtWvXpDZHqD3Wrl2LPXv2dKqjraysDN7e3hg+fDj2798PExMTZhQAn8+HnJwcVq1ahdzcXPzyyy84evQofHx8mPMcOnQo5OXlkZaWBhcXlxbvH+3EovQEKngoA56OhgS6u7tDRkaG+fJuOqsjMTER8vLyzJCziooKsFisZm2vpEmd25UrV1BXV4fs7Gzk5ubCwMAAurq68PHxwapVq5iLemtrPH36NAoLC5GRkcF4HVlYWMDOzg6jRo1iXOhJP9cntNUOn5+fjz///BMhISEvneDR1dXFzZs3mXoTAFBQUMCUKVMwZcoUAI2ddVFRUQgJCcH3338PoVCISZMmMUaoqqqq7f5eU1JSsHz5cqxbtw6LFi16bmpU7t27hwULFgBoNPMMCgqCjIxMq+I8JycHiYmJCAwMxKhRoyASiZjn5OTkQAiBuro6/Pz8kJ+fj+3bt8PAwADu7u5oaGhAaGgo5OTkMHr0aKmdH+Ulor3wj7TjUBSKNOHxeGTq1KlkzJgxzGN//vknYbFY5ObNm62+ZuzYscTIyIiMHDmSsNlsoqamRhYsWEAmTJhAbG1tSVFRUauvq66uJu+++y5RVVVlUke9RVvpvu7A4/GIra0tuXjxYovn3nzzTRIdHU0IIV2q5XgZEYvFpLKykvzzzz/ko48+IhMnTiQODg7k448/JpcvXybFxcVMCqu6upr8/vvvZOzYsb3+2egsHdXwSOjo937x4kWipaVFbt++3ezxn3/+mWzbto0sXLiQ/Pvvv0QgEJCYmBhiaWlJ5OXliYuLC1m2bBlRUVEhq1ev7vH5UF5qaJcW5eWlLUsKAEhLS0Nubi6TiiovL4eXlxfy8/OxZcsWmJqagsvlwsLCAlpaWrCwsMC8efOwfft2ZGZmIjo6GteuXcOjR48wadIk7Ny5s01X7J9++gnvvfceRo0ahW3btsHDwwMqKioQCASQkZHp1h09+V806MaNG7CxsWG8nbqDQCCAh4cHXn311VYd4o2NjZloV2lpKZSUlHD06NF+S8MNJAgh4HK5CAsLQ0hICG7fvg0FBQU4OjqiqKgIhYWFOHv2bI9+f92lqfmnrq5uC/PPpnh5ecHDw6PNLq2kpCTY29tj8eLFePXVV8FisbBjxw7ExcVBXl6eMQpet24dtm/fjvPnz2P79u1oaGjA3r17oaWlxczi6i97F8qAh3ZpUSidJTExkXh4eBBFRUWip6dHFi9ezMz+2LRpEzE1NSVlZWXNIit8Pp+UlJS0uU/Jtn/++SexsbEhLBaLzJkzh+Tn57fYtitzfcRiMQkLCyMqKirk3LlzXTnNFvtZsmQJ8fPz69T2NMLTM8RiMXn69Cn5+eefiaen5wvReST5jB84cICoqKgQFotFWCwWsba2Jhs3biRJSUmksLCQvPnmm0RNTY3ExMQQsVhMPvvsM2JmZka2bNnC7KsrHY8UyjPQCA+F0hqkg5k4d+/eBZvNho2NDePm7uPjA2NjYyxfvhwmJiYoLi7G4MGDYWxs3OFxCCF4+PAhDhw4gJMnT8LR0RFXr15lZvt0Fsndb1RUFLZu3QoLCwt8//33Lc6nsrISZ8+exZIlSxhn+taIiIiAi4sLrKysmLvqXbt2IScnB0DX7/QpLzeSaec6OjqwtraGrq4uE2Wtq6uDsrIyfvzxR6xatQqlpaXYtGkTwsLCsHHjRnh7e/fz6ikDnDYjPFTwUCjPIBaLQQhpMw0WEhKCzz77DPfu3YOBgQE0NTXx1ltvYe3atV3yZpo9ezZCQ0ORmprKWAVs374dlZWVcHd3Z2wx2mPmzJlQUVHBt99+CwMDAwiFQsjIyDDF0w8fPsSvv/6KPXv2dHpd0iQ3NxdLly5FUVER2Gw2fHx84Ofn12K70NBQrF27FgKBANra2ggLC+uH1VI6or0bCMnzN27cwMKFC3H+/Hmm4DsxMRG+vr4oLCxEeHh4m2lhCqUT0JQWhdId2isIrqmpIcHBweT3338nBQUFzZ6TpKQCAwPJDz/8QLhcbrPnKysryVtvvUXMzMxIZmYmIYSQsrIy8uuvvxIPDw+ioKDQ4fEvXLhAZGVlSWRkZLNtCwoKiL+/P7G2tiY6Ojpk0qRJ5K+//mJmnUi2e/DgAVm2bBmJiYnp9PvR23Rm/g+XyyXm5ubkyZMnhBAitdk0lN5B8nkTi8UkPz+feHl5EScnJ5Kbm9vs833z5s1WZz9RKF2EzuGhULpDa3erIpEILBYLSkpKbc7dkUR6nj59iuPHjyMtLQ2LFi2Cnp4eeDweTp06hYsXL8Lf359JhamqqmLBggXIy8trdizJHJOmVFRU4Ndff8X48eMZewnJWnfu3InAwEBs3boVV69eBZvNxurVq/Hee+9h3bp1UFRUhEgkgo2NDR4/foyoqCjY29v3S5FoZ+b/qoGvkAAAB6xJREFUnD17FvPmzYOhoSEAQEdHR6prpPQMFouFR48eISkpCYcOHUJ2djaCgoKgr68P4L+okJubGwBarEzpO6jgoVC6SNO0lVgsbjbX51m8vb2hrKyMkydP4vDhw9DX14eqqiqys7Ph7++PDRs2MNtKLvKnT59m0jrP7lfyZRAbG4uUlBS8/fbbAMCksvLz8xEZGQlvb2+sX78eqamp2Lx5M5KTk1FQUMDMF5Kcg4qKCmpra5sdv79oa/5PamoqBAIB3NzcwOPx4Ofnh6VLl/bTKildJTIyEjNmzIC5uTlGjRqFa9euQVFRkfks0+GCFGlBBQ+F0gM6ujjr6upizZo1WLNmDYqKihAeHo76+nrGjLIpEhGSlJQEDw+PZo89S0xMDAghcHZ2brYODQ0N6Ovr4+nTp4iLi4O+vj5GjhyJkSNHttiHUCiEjY0Nbt26hU2bNnXtxHuZ6upqeHp6IiAgAIMGDWr2nFAoxP379xEcHIy6ujpMmjQJDg4OGDVqVD+t9vnB29sb//zzD3R0dFo1/vzll1+Y+i0VFRUcOnQIY8eOleoanZyccOHCBaipqTEDPiUCnUKRJlRKUyh9CCEEIpEIhBAMGTIE8+fPx5IlS1qIHfK/5oGoqCgMGjQIOjo6jIt8UyTCprCwEIqKirCwsGj2uJKSEry8vBAREYEpU6YgPz8fhYWFra5NRkYGIpEIXC4XAFo9njQQCATw9PTEokWLMG/evBbP6+vrY+bMmVBWVoa2tjZcXV0RFxfXDyt9/vDy8sK1a9fafN7Y2BhhYWF49OgRtm7dCh8fHymu7r/P9axZsxixIxaLqdih9AtU8FAofQiLxQKHw2HC9pIOMAmSf9fV1QEAbt26hVdffRUAmo3lb0p9fT2zn2e7WcRiMTw9PREVFQVLS0tER0fj448/Rn5+frPthEIhgMY0ko6ODkQiUb+kEgghWL58OczNzVsddggAb7zxBsLDwyEUClFbW4uYmBiYm5tLeaXPJ66urtDU1GzzeUdHR2hoaAAAHBwcmtWHSYPWUr00ZUXpL+gnj0KRIs/WLEj+ffDgQTg7O2PTpk1QU1MDgDaNIxUUFFBTUwN1dXUA/4kXyf4BQE1NDWZmZvD392fa6JvSNH2mp6eHhoaGXjrDrhEZGYnTp08jJCQENjY2sLGxQVBQEA4fPozDhw8DAMzNzTFz5kxYW1vD3t4eK1asgKWlZb+sdyATGBgId3f3/l4GhdJv0LgihfIc8Mknn2Dq1KkIDQ3F33//jQULFuCnn36Cqqpqs+0kNhn19fXQ1dVtNvfkn3/+QX5+Pt577z3ExsbC0NAQXl5eSExMxB9//AHgv44YFouF0tJSlJeXw9jYuJkppjRxdnZuFvFqi/Xr12P9+vW9euzOzACqrKzE4sWLkZOTA6FQiE8++QTLli3r1XVIg5s3byIwMBARERH9vRQKpd+ggodCeU6wtbWFra1tm6kd4L/IjKWlJe7evYva2lpmSjObzcbly5dRWlqK4uJijB07Fjdv3sTVq1cxYcIEAI0RJYloCg4OhlgsbtYC/jIhIyOD/fv3w9bWFjweD3Z2dpgxY0az9+PAgQMYM2YM/v77b5SUlMDMzAyLFi2CnJxcP668azx69AgrVqzA1atXoaWl1d/LoVD6DSp4KJTnBEmBM5vN7rDOYfr06di7dy8UFBSYx6ZOnQoej4fAwEDcvHkTGhoaUFRUhKamJjZu3MgcQyKazpw5AysrK9ja2vbdST3HdGYGEIvFAo/HAyEE1dXV0NTUHFAFtzk5OZg3bx5Onz5Nu9ooLz3UWoJCGYBkZWXh+PHjWL16NWNLIYEQghUrVsDT0xO1tbWYPn06U+8j4e7du3B0dMTZs2cxf/58aS79uSQ7Oxuurq5ISEho1hbP4/Ewe/ZsJCcng8fj4bfffsNrr73WjyttTkdO5ytWrMDFixcxfPhwAI1RrXv37vXnkimUvoZ6aVEoLxrl5eWQkZFhvqAlg9z+7//+D+Hh4fjyyy+bbS+p36moqMCaNWuQlpaG6Ojo/lj6c0V1dTUmT56MzZs3t2iLv3DhAiIjI/HNN98gIyMDM2bMQFxcXItZQRQK5bmhTcFDu7QolAGKpqZmsy9eSRps6NCh8PT0bFEMLCluPnr0KOLi4vDFF18AQKeKhl9UOpoBdOLECcybNw8sFgumpqYwNjZGcnJyP6yUQqH0FCp4KJQXDGtra4wbN67VGSg3b95EUFAQPv74Y0yfPh1A67NSXgY6MwPI0NAQwcHBABp90VJSUmBiYiLNZVIolF6CprQolJeI+/fvg81mw8rKakAV3/YFERERcHFxgZWVFRMd27VrF3JycgA01sAUFBTAy8sLhYWFIITA398fixcv7s9lUyiU9qE1PBQKhUKhUF54aA0PhUKhUCiUlxcqeCgUCoVCobzwUMFDoVAoFArlhYcKHgqFQqFQKC88VPBQKBQKhUJ54aGCh0KhUCgUygsPFTwUCoVCoVBeeKjgoVAoFAqF8sLT0ajVl3PmPIVCoVAolBcKGuGhUCgUCoXywkMFD4VCoVAolBceKngoFAqFQqG88FDBQ6FQKBQK5YWHCh4KhUKhUCgvPFTwUCgUCoVCeeH5f9zWocu/V8FtAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUaf//7Wb3fSekEAIgSSUhBBa6CVBLAgiFs7uUVQ4VKR5igW/gg0bFhA4BIEfnIqHngUFvINQpBqkpjdCGpC2m2zKJlvm90duR0IKSXY3m4R5/cfO7MwzYXf2Pc/neZ63JQWPSehc34HVFDUH/2ORc1sSx6H9bB1Cp0WvNWLI6FwD9Noco0DeSXv63mbrQCyPzFjNhLcG8uMjh2wdSqvxnDwEtzm3kO9pR8Hp01RWVhIREYGXl5fFz1VTU8PSpUtRqVQcOHBAcklvJtKSlpUxGAxoNBry8/MZNmwYAQEBNhc7YDnBY5orcfHiRTQaDXDjTJRRU4z2j2Szz21p7PsF2jqETktZohahRppvZC6F+5OormpZZrij4OmSS+i9HS9L4ejvxbgdrzJp5xuMui0GFxcXDAYD/v7+ZGZmcvz4ceLj48nNzaW8vLxZlkRNceXKFaZNm0ZISAg7duyQxE4LkDI8reRGP+qCIHD58mUuXryIUqlk8ODBFju3JSZzmit4rp2rM2jQIFQqFTk5OWg0GhwcHPDy8sLLywt3d/d67ZP6Y7tB3/6WjpTdPQDLFIVL1KXg5BVbh9ApEHR6ck+7EDq2ytahWIURc7zJ3CVDMHSMWrqeD09gyPtzcfB2Q6vVcuHCBfz8/Ojfv794jzYajWg0GkpLS8nMzKSiogJHR0c8PT3x9PTE3d292X5aJ0+eZOHChbz//vvceeed1ry0TokkeKyAVqslISEBBwcHRowYQVxcnMWObSoStqXgub5Wx9nZGWdnZ7HVsqqqCrVaTX5+PsnJySiVSry8vMQvt/bgUbNitxYKTwWS4LEOZafbj1lkR+fqf1IIGt4VpX3ny5jZGwoZtWwEx1ectHUoTeLo78Ww1c/S/a6RAKhUKpKTk+nXrx/e3t519pXL5Xh4eODh4UFQUBCCIKDValGpVFy+fJmUlBTs7Ozw9PTEw8MDT0/PesXNgiCwdetWtm3bxg8//EBIiDQvrDVIgseCCIJAbm4u2dnZhIWF4ePjY/FzmLq+zK32t4QHVmO1Ok5OTjg5OdGtWzcAqqurUalUXL16lcsHf6VbXjucKWKvRK6stnUUnRKDzkhNsiR4LIWxQkv+BS96RnXOmqjgqDLOdnOm6nKlrUNpkF6PTmTwu0/h4O2GIAhkZ2dTUFDAkCFDmtUlJZPJxHtkQEAAUNvQolarKS0tJTs7G71ez4kTJ7Czs2Ps2LFs3rwZrVZLbGxss7t6JeojCZ5Wcv0PfWVlJQkJCbi6ujJy5Mh68xAsZRBnKXsJcz2wWnItDg4O+HfpgsfJo1Tt+rE14Vodh4F9kMk6Rhq9o1GWVI2xuh2bRHZALu9Np/sgTxSK9rc0bC5Kahi7YiD75ravsRWOXb0ZvuZZAiaPAGrrMxMTE1EoFERFRbXK/8qEUqmkS5cudOnSBfhzzs6PP/7I3LlzUavVjBw5kg0bNjB27FiLtrjfTEiCxwxMvihZWVlcvnyZ8PDwBivyTSLFEkOhLGUv0VzB0tysTlMY8nIp3/gZhsz2NVX5Whwieto6hE5L6emO3WrcHtGrNFxJ6UNgROecbRTQtYget/YiZ3+WrUMBoNdjExny7hzsvWoLhE0WET169BCzNJbE9EB68OBBVq9eza233kp6ejpHjhxh48aNdOnShZUrV1r8vJ0dSfCYgUajIT4+Hh8fH0aNGtWowjeJFEsJHkvPz2kMc7I6AILRiPbXX6j69mvQte96A3mg5VtHJWopPSMtZ1mDrJ/SCAhzR968etcOhQyB4c/62VzwOHXzZtia+QTcOVx8rbCwkPT0dCIiIqxi5WA0Gvniiy/YsWMHu3btomfP2oexPn360KdPH2bPnm3xc94sSILHDLKzs+nfv/8NP/SWtISwpGN6Y1gkq1NwlYqNa9GnJFkjRItjdJcmNFgDo96I5pw0cNAqFGvITw8msF87rImzAG6KYqKej+KPVX/Y5Py9Hr+VIe8+hb1nbVZHEAQyMjLMsoi4EVVVVSxZsgRBEIiNjW3xcFqJppHu8mYwYMCAZil8S3tgWepYDXHtEEGTI29LxI4gCGhj/0vpq893GLED4OYrrYdbg7LUGoyV5nu2STTM1X2FZs91ac/0v9WAg1fb2iU4Bfgw/rvXGfmPRaLY0el0nDlzBrCsRcS15ObmMnXqVKKioti6daskdqyAlOFpAyyZlbHkkpapBsnU6m5uVsdYUkzFF+vRXThnkfjaCkVwADKZ1I5uDaT6HetSdfEyxbmD8e1RaOtQrIJcr2HCuyP49W+H2+R8wTNuZ/A7T4hCB2pLFxISEqxmEQFw+PBhXnzxRVavXs2ECROscg4JSfC0CZbMylg6W2QwGJDJZObV6ggCNcd+o3L7ZoTKCovE1pY4DOpj6xA6LaVnLts6hE5P7n41vrNsHYX18A+4QtdRAVw5kW+1c9j5utFj2V8InDIKg4OdeC/Mz88nJyeHyMhIq7SDG41G/vGPf/DDDz/wyy+/0KNHD4ufQ+JPJMFjBq0xEDUXOzs7qqstMy/Gzs6Ompo/24VbldUpK6Viy+fo/vjdIjHZAvveXW0dQqfEaDCiOZNp6zA6PeXxWagLIvH0K7F1KFZBJhgY/1IoO++1juAJnnE7g96eTZXMgFqtJiUlhaqqKrGztl+/fjg7O1v8vJWVlSxYsAAnJyf27dsnOZ23AZLgaQPa45KWIAgolUpSUlLw9fXF29u7xWvGNXEnqdi6AeF/HlodFa2rDGmUl+UpT9dhKG+fw+M6GzmHtHg+YOsorIezPJ+BfxvI+Q3nLXZMp+6+DP9sPt1ujwLAAfD09ESr1XL+/Hl8fHxwdnYmLy+PlJQU7O3tRTsIDw+PZttBNMSlS5eYNWsWM2fO5Omnn24X/oo3A5LgaQOuz6SYg7ni6dpanX79+lFeXo5arSY5ORmtVoubm5vog+Xk5NTgF9FYUU7l9s3UHPvNnEtpN3gGuAHSlGVLoz6ttnUINw2lJ9PQ3NYfN69SW4diNQbeoyTxnwr0FeZny0Nm3cGgt5/A3qPuo05DFhGBgbWmwlqtltLSUgoKCkhPTwfAw8NDtM1pbiHzwYMHeemll1i7di3jx483+1okmo8keMzAVktarT3W9XN1FAqF+MTSq1cvBEFAo9FQUlJCSkqKKIA8PT3FDJDuwlkqvliPoOocxagydxfkCknsWAOpfqdtyT0K4VNtHYX1sNOriX5nFLELj7T6GM6Bvgz77Dm63Ta0zuvNsYhwdHTE0dERf39/APR6PaWlpajVanJyctDpdOL90tPTE2dn5zq/EUajkTVr1rBnzx727t1rlYGFEk0jCZ42wBqFxi2huR1YMpkMd3d33N3d6wgglUpFWvwF3GJ/xTPxgkWuo73gOKQfUjLZ8ghGgTKpfqdNKT6cROWEvji7lts6FKsRGFqEd4QvJQlFLX5vyKxJDHp7dr2sjsFgICEhAaVS2SKLCIVCgY+Pj+iZaHJFV6vVpKenU1lZyf79+xEEgZEjR7J9+3a6dOnCf//7XxwcHFocv4T5SHN4zKC5GR5LtpK3dEnLnLk6JgEUUFVOzx3/r9OJHQD7cKkrwhqo06owlHbeH952iVEgJbZ9TzQ3F5lRx4Tl/Vv0HudAX2J+XMHwz+bXEzsVFRWcOnUKX19fwsPDzfLDMrmi9+zZk0GDBjFq1Cjuu+8+5HI5r7/+OnFxcaSnp7Ny5Ur27duHxozax5ycHG655RbCw8OJiIjg008/rbdPaWkpd999N4MGDSIiIoItW7a0+nydBUnwtAG2WNIyCR29Xt/6dvOaaiq+3Ipm5QqMRZ1zzoeyh7etQ+iUFMd1zum/7Z2K49lUV3Xubh83hzz6PRrerH1DZk/izt/X0vXWofW2FRYWcv78ecLDw62yvCSTybh8+TK7du1iw4YNZGdn8+WXXzJo0CD27NljlheWQqFg1apVJCUlceLECdauXUtiYmKdfdauXUv//v05d+4cBw8e5Pnnn7dYLWlHRVrSagPa2lrCXA8sAH1GGuWff4bxsvVmX7QHlN5KoG28yW4mtImdo8arw6HTk3fGjZAxnXu6ddRjbqR9K8dY07BbvHOPLgxft4Cutwyut60tLCKMRiMff/wx+/fv5z//+Q9du9aOvvD39+e+++7jvvvuM+v43bp1o1u3bgC4ubkRHh5OXl4e/fv/mf2SyWRoNBoEQaC8vBxvb2+L+Dl2ZKQMjxm0pGjZ0tORG8IiWR29jspvd1D25rJOL3aQy5Hb39xPPNZAEATKTkv1O7bi6q8p6GqUtg7DqigNxYx7Y1SD20KfnMydv3/WoNhpC4sIjUbDjBkzuHr1ah2xYy2ysrI4c+YMI0eOrPP6/PnzSUpKIiAggMjISD799FOzluw6Azf31bcRcrm8UZHSUhoTMOZ6YAHosy9RtvxltD99BxaKtz1jHxGMTNb5r7OtqbikQ19SZuswbloMFVXkx3vZOgyr0yuyFPdeHuK/nYP8mLDrLYZ9+gxKt/qDAsvKyvjjjz8IDAykd+/eVpl9k5aWxpQpU5g2bRpr1qyxiqC6lvLycqZPn84nn3xSz9fx119/ZfDgweTn53P27Fnmz59PWdnN/b2UBE8HxyJZHYOBql3fU/b6UgzZl6wUafvDYUCIrUPolKjPdN5ZMB2Fy3szMOg79+1dZtAy+vXaWp7QpyZz58k1+N8yqMF98/PzSUpKIjIy0ip+WIIgsHfvXmbMmME//vEPZs2aZfVhgjqdjunTp/PYY49x//3319u+ZcsW7r//fmQyGb179yY4OJjk5GSrxtTeubkX9MzE1tMxLVGrY7icR/nnazFkpFkhwvaNfYh1jABvdkpPX7V1CDc9+pIyrqSG0r1/ga1DsSo+flWEbJyDrlcX4tNT8PT0xMvLC3d3dzGznpKSgk6nIyoqyio1LAaDgQ8++ICjR4/y3//+12oGo9ciCAJPPvkk4eHhLFmypMF9goKC2L9/P+PHj+fq1aukpKQQEnJzP+RJgqcNMQkTS2DK6EDrPLAEo5HqfXup/NeXcJNW7iv8nJEmLFsWQRAoO3PR1mFIAHl7s+nWzxF56x0Q2jUG7zAM/R9nuH2ts3lVVRVqtZr8/HySk5ORy+VotVqx5dwaYqesrIy5c+cSGhrK3r17USrbpnbq6NGjbN++ncjISAYPrq1Veuedd8jOzgZg3rx5vPbaa8yaNYvIyEgEQeC9997D19e3TeJrr0iCx0xkMpkoPJrC9LRhjv8K/OmBlZqaio+PD15eXi0uRDMUFlCxaR36pASzYuno2LlI9TuWpjJPj65A6tBqD9TkF5MZ34fegzqXn5kgk6MPuQtD0C0g+/Pe5+TkhJOTE926dUOlUpGUlERgYCB6vZ4zZ84gCEIdKwhzh/8lJyczZ84cFi9ezGOPPdamGf9x48bd8HcnICCA//znP20UUcdAEjxthGn4YGsFz7XTkiMiIlCr1RQXF5ORkYFcLhf9rzw9PRs9hyAIVB+KpfKrraDt3G2rN8Kumw9yeece0mYL1Gdu7qLI9kbpsQqEgbZffrcUgoMnNQNmIngEN7z9GouIoUOH1rGIMBgMlJaWolKpyM3NpaamBnd390atIBqNQRD4+eefeeedd9iyZQtDh9af8SPRPpEEj5k0N8NjmsXTmqr9azuw5HI5Dg4O+Pv7i54uOp0OlUpFUVER6enpDQogo6qEis3/QHfuTIvP3xlxGNzP1iF0SqT6nfZFVUY+xXmD8A1suRVDe8PgG4Eu/FFQujS8/QYWEXZ2dnh7e4umoA1ZQTg7O4t1QK6urvWOYTAYWLlyJadOnWL//v03/RJRR0MSPG1Ea4YPXu+B1ViruVKpxM/PTyyWq6mpQa1W1wqgtDTcM1Locmg/cm2V+RfSSZBLBctWoex0lq1DkLiOvNgyfGfYOorWI8js0IfejaFHDDSSgamoqCA+Pp4ePXo0e2qyyQrCZAchCAKVlZWo1Wqys7MpLy/H3t6e//znP2KtzKJFi4iIiGD37t03/RC/jkjn7ltsR7TWA8tgMLR4ro69vT1+fn706daV/nFH8f/1Z0nsXE+X+nM6JMyj8rKOmssdP5PQ2dCcv4i6sGPO5TE6elMTtQBD0IRGxU5hYSEXLlww2yJCJpPh4uJC9+7dGTBgAKNGjaJ///74+/vz5ZdfEhMTQ0ZGBoIgsGfPHkpKSlp9LmieHxbAwYMHGTx4MBEREcTExJh1zpsdSaKaSUsMRJvrgdWcrM6NqPkjjootGxDKpJkoDeHWzRW4ueuYLI36TOvNECWsS+6hGjz/YusoWoahy0B0YQ+DsuGHk2stIoYOHWqVIX8ODg54enpy6dIl9u7dS8+ePTl27BhHjhxh1apVPPbYY8yZM6dVxzb5YQ0dOhSNRkNUVBS33357HXsItVrNM888w969ewkKCqKgoHOPGbA2kuBpI5qzpHV9rU5rhI6xooLKf26h5uih1oba+XG0R66U2tEtjfqPK7YOQaIR1CdS0dzWHzfP9v8AJMjs0Pe5F0P3cY1mdXQ6HRcuXMDd3Z0hQ4ZYpShbr9fz5ptvkpCQwP79+8Xan8mTJzN58mSzj98cP6yvvvqK+++/n6CgIIA2mfHTmZGWtNqIppa0rp+W3Fqxo4s/R9mrz0ti5wY4DO6HjBsXmku0jKKTN9/wyo5E7jFbR3BjjE6+1AxbhCFwfKNipy0sIkpKSnjggQdQKpXs2rVLFDvWojE/rNTUVFQqFRMmTCAqKopt27ZZNY7OjpThMZOWLGnpdPXboC2R1RG0VVTu+CfVsdLMhebg0L+nrUPodJTlV0FB+88e3MwUH0qmKro3Tq4Vtg6lQQx+Q9CFPQQKx0b3yc/PJycnh8jISFxcGu7WMpf4+Hjmzp3LsmXLmD59utVb+pvyw9Lr9fzxxx/s37+fqqoqRo8ezahRo+jbt69VY+qsSIKnjVAoFFRV/Vk4bKlaHV1KEhUb12IskNqBm4t9T+s+rd2MVMRLS4TtHoOR3DhH+tzSvgSPIFOg73s/hoDRjWZ12sIiQhAEvv32Wz799FO+/PJLIiIiLH6O67mRH1ZgYCC+vr64uLjg4uJCdHQ0586dkwRPK5EETxtxbQ2PJTywhJoaqr7bgXbvz9CMOUASf6LwdUQqWLYspaelYsqOQMG+JIJG98DBsX0IVK3CkwTlaCryFHhWpImzw661aNBqtVy4cAE/Pz+CgoKsVq/z+uuvk56eTmxsLJ6enhY/x/U0xw/rnnvuYf78+ej1empqajh58iSLFy+2emydFUnwmElzv3wmwWNavjK9tzVfXn1mBuWfr8GYn9fi90qAnWPL5iFJ3Jiy05dsHYJEMxCqdeSdcSdkdKGtQ8HgPwz6PUCEwgGdTidOQc7KysJoNOLu7o69vT1XrlwhPDzcanU0RUVFPPHEE4wdO5YffvjBbPuf5tIcP6zw8HDuvPNOBg4ciFwu56mnnmLAgAFtEl9nRHaDKcFS6uAGGI3GBmtzrkej0ZCQkEB4eDjOzs4t9r8yYcjPo3z9pxguSQaNrUHZJwj/lyfYOoxORXWxnpOTv7J1GBLNxM7NmWGv+KFU2sZaRZAr0ff9C4ZuIxpdwtLr9aSlpVFUVISTkxM6nQ43NzcxA9RcG4gbcfbsWZ5++mneeOMNpk2b1uEsOK5evSpO3JcQafQ/UcrwWBlTrY6DgwN+fn6kp6dTVVUlfnm9vb1xcnJq9vHsArrj8eb7FF+6xOWjh/HTlOKQk4UhJ1ta2moGsvAetg6h06E6275qQiSaxqCp5HK8F0FD2n4Z0ujSFV3ETATXbo3uYzAYSExMRKlUMnbsWNF4uby8HJVKVccGwmSh4+rq2iKxIggCO3bsYP369XzzzTeEhYVZ4vLalLfeeouffvqJ5557jjvuuEMSPs1AyvCYiSAI1NTUNLqtoVodQRDQaDSUlJSgUqnQarW4u7uLAuhaw7vr0ev1pKamUl1dTf/+/UXHX2O5Bn1KMrrkBPTJiRiysyQB1AAOz95Nl6iOOXW2vZLyYTpX/9UBep4l/sTDmdEve2OnaLt7hL7bSPR9p4Nd4wMCm2sRIQgCFRUVqNVq1Go1Go0GR0dH0QfL3d290Sy6Tqfj1VdfJT8/ny1btuDh4WH2tdmCs2fPcvToUT7++GNCQkJYtGgRU6ZMsXVY7YFGla8keMykIcFzfQfWjWp1TCZ2JgFkcvE1CSCTqCkpKSE1NZWgoCC6devW9DErKtCnJqFPTkSXnIghK1MSQIDfR09h79mwQJVoHXGP7qcqXaon62gEPzmU7uHW7+4U7OzR9X0AY7fhTe5XWFhIRkYG/fv3r9ee3RyqqqpQq9WoVCrKyspQKBR4enoil8vx9vbG09OTgoICnnjiCSZOnMgrr7zS6tICW2J6gDZx5MgRtm/fztatW1m9ejUPPPCA1ecGtXOkJa22ojUdWNea2AUHB2M0GikrK0OlUhEfH09NTY14vIiIiGbdDOQuLtgPGYb9kGEAGCsr0KeloE9K+FMA/U+Q3Uwo3DrWGn17p0ZtkMROByX/1xy69bPHmr/5RteA2iUsl8aXW661iIiKiqrTodUSnJyccHJyEqcXm0yU9+7dy5o1azAYDFRUVDBjxgzmzZvX4cTO9bPaDAYDdnZ2jBs3jmHDhuHj48OCBQtQqVTMmzevTTrNOhp2y5cvb2p7kxslarM3JoFjNBrFacqt7cAyvdfR0REvLy+cnZ0pKirC19cXNzc38vLyRCdfg8GAvb19s7oKZEp77Lp2QzlgEI4TbsNx0lQUYeHIvbwRjMZaz61OngGSebrhMbmPrcPoVBSdLKf4v8m2DkOiFRjKKnHq2xsXL+vUYOkDxqAbMAscGl8y0ul0nDt3DgcHB/r372/RDik7OztcXFwYOHAgjo6OJCcn8/zzz1NaWsqqVatYs2YNp0+fZtKkSa0+b05ODvfeey/vvfce69evR6/XM2rUqAb3jYuLIygoiIiIiDr2ETdCp9Nx9uxZunfvDkBGRgbu7u4oFArxQVihUHDrrbeSn5/PP//5T7y9vRk6dGiHK8K2ECsa2yBleCyEaQnLHKFzLQaDgYyMDDQaDYMHD65T2GwwGMQWzpycHAwGg7h27eXl1awnJJmTE/YDh2A/cAhQO61Zn5Yq1gDpM9OhBe7uHQHHof1sHUKno/S07dubJVpP+k/ZdFngYNEfRsHOAV3YQxj9hza5X1lZGYmJiYSEhFjNI6qmpoalS5eiUqnYt28frq6u4rbq6mrOnj1rlulocwxAofaevXTpUiZNmtTic5w6dYr169fzzDPPsGLFClxdXXn88ce555576mV71q9fT1paGuvXr2f06NEMGjSo1dfWGZEEj5lcuHCBlStXEh0dTUxMjGjyZg6lpaUkJSXRvXt3+vTpU+9mZGdnh7e3t7hOazAYxLXrS5cuIQgCHh4e4rp1swSQoxPKyEEoI2u/IEK19n8CKBF9cgL6jLQOL4DkvRvvDJFoHWWnc2wdgoQZGHOKKcjuj39Py9iCGN0Ca5ewnLs0uV9bWERcuXKF2bNnM2XKFF544YV6S1gODg71vKtaSnMMQAHWrFnD9OnTiYuLa/E5Ro8ezZ49e5g4cSJDhgzhr3/9KyNGjKizj52dnSh6tm3bRlhYGN9++y2DBg0Sl8IkJMFjNv3792fBggXExsaycOFCrly5wtChQxk/fjwTJkyga9euzX56MhqNZGRkUFpaysCBA3F2dm7W++zs7PDx8cHHxweo7eQyCaCLF2vn9ZiyP56ens0ayy5zcEQ5YCDKAQNrY6uuJu/ob2jjz+NbWoKQlQnNmD/UrvBr3t9TonnoNAYqUyXB09G58psWfwvYy+kDx6PvfQ/IG7+/XGsRMWzYMKsN+Tt58iQLFy7k/fff584777TKOa6nMQPQvLw8vv/+e2JjY1skeEzLVfHx8Wzfvp2IiAjuuOMOpk2bVidTZdrXzs4OvV5PQEAAy5cv5/XXX2fevHniUpiEJHjMxs7OjlGjRjFq1CheeeUVcfx3bGwsc+bMoaSkhOHDhxMdHc348ePp0qVLgwKorKyMpKQkunbtSlRUlFkpZoVCga+vL76+vkCtAFKpVJSUlJCZmYlMJsPT01PMAN3oplNVVUVCQgIePXoSOmEicrkcoaYGfWYa+qTE2mWw9NR2L4Dcu3sgWUpYDvW5yk5f93UzoDmbSemdA/DwVbXq/YLCEV3YIxj9ml4+aQuLCEEQ2Lp1K9u2beP7778nNDTU4udoiKYMQBctWsR7773XLHGn1Wq5dOkS/fr1E/8+iYmJVFVVsX79enbs2MHevXuJjo6msrKStLQ0evfuTXBwMID4MDt58mS+//57du3axbx58yx8tR0XSfBYGHt7e8aPH8/48eOB2g/wsWPHiI2NZePGjZSXlzNy5EhRADk5OfHqq68SGRnJgw8+aJX0rkKhoEuXLnTpUptm1ul0qFQqioqKSE9PRy6Xiy3wHh4e4hdTEAQx9RwWFlan6l9mb48yLAJlWAROPICg06HPTK9tg09KQJ+eAo3MJ7IJdnLk9u0onk6A+kyxrUOQsBC5h3V41PeuvCFlcm+yPe/AxeCHl1bb6AyxkpISUlJSCAsLw8vLOnOwqqureeGFF6ioqCA2NtZqS2XXcyMD0FOnTvHwww8DtTYWu3fvRqFQcO+994r7CIKAIAg89NBDjBkzhqVLl6LX61EoFGJt6OXLl1mxYgV33HEH27Zt48yZM5SWlqJUKtm5cycTJ04Ul7VM9+vz58+Lx79JC5jrIM3haWPKy8s5evQosbGx7N27lytXrjBs2DBmzpxJpacUUQAAIABJREFUdHQ0bm5ubf7BrKmpQaVSoVKpUKvVKBQK3N3dUavVuLq60rdv3xa7Ewt6HfrMjP/NAUpAn5oCNbYzLHQY0o8uz5m3Xi9Rl7iZB6lKyrZ1GBIWYvBr4bh6lDV7f32PCdQET6GsvFK8f1RXV9exgHByciInJ4eCggIiIyObHKpqDpcvX2bmzJncd999LF68uM1qVgRBYObMmXh7e/PJJ5/ccP9Zs2YxdepU/vKXvzS4/c033+TAgQP8+uuvYu1lVlYWc+fOJS4uDj8/P/Lz8wkICODRRx9l+vTpvPzyy6Snp5OUlAT8WcC8c+dO3nnnHQ4cOHCztahLc3jaC66urkycOJG4uDhcXFz48ccfKSoqIjY2llWrViGTyRg3bhzR0dGMHj26TZ5S7O3t8ff3F0eT5+XlkZmZiaurK2VlZZw7d07MADU1wfRaZAolyr5hKPuG4TTtfgS9Hv3FWgGkT0lEl5oM2rZbXrKP6NVm57oZqNEYqEqR6nc6E7nH5IRNvvF+gsIZXf9HMfoOQA54etrj6elJcHCwOEVepVKRmpqKWq1GqVTSo0cPdDodDg6W7QgDOHbsGEuWLOGjjz7itttus+ixb0RzDEBbQp8+ffj111/Jy8ujV69eGAwGevXqxerVq7lw4QIJCQk88sgj7Nu3j4KCAoKCgrj77rt5+eWXycjIIDQ0VMzQh4WFMXfuXLO60DobUobHBixfvhyFQsHSpUvrdFAJgoBKpeLQoUPExsZy/PhxHB0dGTduHDExMYwYMaJFvlstRafTkZxcO1MlLCxMjK26ulqcAl1WVoa9vb0ogNzc3Fr1NCUYDBiyMsUuMF1KMmirLHo91+Lz2l9xCpZSupai6EQ5iQv+beswJCyIzM6OqP8LwdGlstF9jO69qBkwExybXpYyWUQEBgbi4eEhZo/Ly8txcnISx2i09v4BtQXQmzdv5uuvv2bHjh307GmBymsbU1JSQmhoKK+//jqLFi0Sl7UaYvny5Xh4eJCUlERiYiK7d++uVz9UWFgoljLcREjWEu2J5q6nCoJAYWEhBw4c4MCBA5w8eRIPDw+x/mfYsGGi7YS5FBcXk5qaSkhIyA1N6LRarVgErdFocHBwqCOAWvMEJxgMGC5l/TkHKDUJobLxG29L8V89B6Wr7ZbUOhvp6y+Rv+WQrcOQsDBd7x5I75iGa7P0QbeiD5kC8qaLb5uyiBAEoY4FhEajwd7evo4HVnOKe6uqqliyZAlGo5HPP//cqg+CbYWpffzVV19ly5YtHD9+nJ49e4pLVNeTlpbGPffcQ3Z2Nj/++CO33nqrDaJul0iCpzNgKiKOjY3l4MGDnDp1Cj8/P8aPH090dDRDhgxp8Vh2g8FAamoqWq22jhlpS6iqqqojgJycnEQB1FIXYxOC0YD+UhYlv5+gOuECrlcvQ1XrBVDAF08il7XvLrKOxOk5Ryg/l2nrMCQsjNzRgWHLumPv+OfDgaB0Qdf/MYw+TU8HvtYiIjIystn3Iq1WKwqg0tJS0QPLy8sLDw+PehmO3NxcZs6cySOPPML8+fM73YyZAwcO8PzzzzN06FA+//xz0S3edJ2mZbTU1FSKiooICwvj9ddfJyIiwsaRtxskwdMZEQSBS5cuERsby4EDBzh79iyBgYHiEMTIyMgmn5bUajXJycmiM7El1tZNT3CmJbDy8nKcnZ1FAeTi4tKs89TU1JCUlIRSqaRv377YyWUYcrJFM1R9ciJCRXmzYrLr4Ue3FW0zi+NmQK81cnzi1wj6jj2IUqJhuj8whOCRBQAYPUKoGTADHJouetXpdFy4cAF3d3dCQ0PNupeYPLBMAqiwsJCff/5ZbOp46623WL16NRMmTGj1Odo7S5cuZdeuXcydO5dFixYBf64MpKSksGvXLlxdXZk3bx4nTpzgX//6Fy+//PLNuHzVEJLguRkwDS40CaD4+HhCQkJEARQeHo5cLqeqqorNmzczcuRIIiIirJoOFgSByspKMQNUUVGBi4uLKICcnZ3r3RyLiopIS0sjNDS00ZHzgtGIIS+ndg5QSu0ymKDRNLivy9RxeN0fYvFru1kpjqsg4dnvbB2GhJWwc3dh+CtdoPct6HtNuuESlskiIjQ01Co/uBqNhr1797Jz507i4uLo2rUr0dHR4tJ+165dzTp+Tk4OM2bM4MqVK8jlcubOncvChQvr7PPll1/y3nvvAbWNJ+vXr7eKbYMpk1NYWMjcuXNJT09nwYIFzJkzB/hT9Fxf23P+/Hl69erVKpf5TogkeG5GjEYjycnJ4hJYUlISAQEBXLx4kUmTJrFy5coWt5ubiyAIVFRUiAKosrISV1dXMX2dk5NDdXV1i5fXBKMRQ35erQ3G/7JAQlntuHyvxQ/iEmmddtibkYyNOeRtPGDrMCSshNzJgfCNL+PU/8ZLJKY5XQMGDLBaR2llZSULFizA0dGRdevWIQgCJ0+e5PDhwxw+fJg33niDMWPGtPr4ly9f5vLly3X8sH744Yc69hDHjh0jPDwcLy8v9uzZw/Llyzl58qQlLq8eJtETHx/Pe++9xy+//MKHH37I7Nmz6z0cSrYRDSIJnpsdg8HABx98wNdff83kyZNJTEwkMzOTAQMGiE9LwcHBbT4DSBAEysvLyc/PJz8/Hzs7OzH74+3t3erskyAIGPPz0KUk4hThjqNPKTKkwYOW4My842hOp9k6DAkrYOfuQp/Vr+A6sG+T+5ksIvR6vcVdzq8lOzubmTNnMnPmTJ5++uk2uT/dc889zJ8/n9tvv73B7SqVigEDBpCXl9fsYzZWeHwjLl68yObNm3n33Xd59tlnefDBB80SdzcJkuC5mdFqtdx5553ExMSwbNkysZhQr9dz9uxZcQksNzeXwYMHiz5g3bt3t/oNxmg0kpWVRXFxMf3798fZ2Vmc41FSUoJWq8Xd3V30Amv18psgIKMcO6EIuVCMnVCEDKmIuaUYqo0cu/UbhBrpb9fZUPp60mftMpz7NN3e3RYWEQAHDx7kpZdeYu3ateLkemuTlZVFdHQ08fHxjS4PffjhhyQnJ7Np06Ymj7VhwwYqKipYsmRJndev7dJtbobmm2++4ccff+Snn35izZo13HXXXVZzmO8ESILnZicrK4tevXo1uY9OpyMuLk5cAissLCQqKorx48cTExODv7+/RW9ulZWVJCQk4O3tTXBwcINffKPRWEcAVVdX4+7ujre3N15eXq2f3CoIyND8TwAVYSeUSAKoGZScriR+3re2DkPCwtgHdKHvutdwDOrW5H5tYRFhNBr57LPP2L17N19//XWbmV+Wl5cTExPDq6++2qBFBNR2UD3zzDMcOXJENGu+nqtXrzJ9+nSuXr2Kg4MDO3fuJCwsDJlMVkfg/Pzzzxw9epRhw4YxbNiwZs0R2rVrF3q9npiYGLy9vVt/sZ0bSfBItJzq6mqOHz/OgQMHOHToEKWlpYwYMUIsFvTx8Wldy/k1Hl3h4eF4eHg0+71Go5GysjJRAOl0ujoCqNVziQQBGaXYCcWgL0AuFKOwkz7+13Pxi1xyNsTaOgwJC+IY3J2+61/D3q/hH3Co/c5mZ2db3SKioqKCZ599Fi8vL1avXm2xOWM3QqfTMXXqVCZNmlQvI2Pi/Pnz3HfffezZs4e+fRte8vvjjz+4++67GTRoEM8//zwDBgxosKh6xYoV/PDDDzz++OMcPHiQsWPHsnjx4mZdr+SLdUMkwSNhPlVVVaIP2OHDh9FqtYwcOZKYmBjGjRuHh4fHDb+INTU1JCYm4uDgUNtububav9FopLS0VPTy0el0eHh4iAKopWPVr169SmZmJv369cXXSy4uf8mFEmRIbdhn55+k7PcUW4chYSl6dkX3zH24+PuKy8bXj47Q6/UkJiZib29P3759rVYke/HiRWbNmsXcuXN56qmn2uxHvTl+WNnZ2UycOJFt27Y1WEMjCAIGg4Gnn36a8vJyPvzwQzEzdf2y1aFDh3j77bf5+uuv8fHx4YcffuDdd9/l8OHDkg2EZZAEj4Tl0Wg0HDlyhNjYWI4cOYLBYGDMmDHExMQwZswY3Nzc6uyfmZnJ1atX6d27t9XmRRgMhjoCyGAw1BFAjQ1D0+v1pKSkYDAYCA8Pr7+fYESO+joBZLTKNbRXDDojxyf+C2O1VPzdGXCN6k+fj5cid3ESOydVKhUVFRXi7CxHR0cyMzMJCgoiICDAarHs27ePZcuW8fnnnzNq1Cirnachjhw5wvjx44mMjBSFyfV+WE899RTfffeduOykUCg4depUneMUFBQwZMgQlixZwvPPP99oJqasrIy8vDzCw8PF1yZOnMjmzZvp2bOnlL0xH0nwSFgXQRAoLS3l8OHDxMbGcvToURQKBePGjWPEiBF8/fXXyOVyNm3a1KZPMQaDQRxiplKpMBqNeHp64u3tjaenJ0qlktLSUpKSkggKCqJbt27Nu+EIhusEkKrTCyDVeS0XnvqXrcOQsAAe46MIfW8xcsf6Syim2VnZ2dlcuXIFe3t7UQCZ6391PUajkY8//pj9+/ezY8cOs2fq2JKkpCRGjhzJnj17GDt2LFD7UHjw4EGKiopwc3Nj+vTp9e4vBQUFTJkyhV9//RUfHx9xVplEq5EEj7V54okn+Pnnn/Hz8yM+Pr7e9rYaXNVeEASB4uJiNm7cyMcff0xoaCgKhUK0wRgxYoTV6gCawiSATJOgtf9zbA8NDcXf37/1c4kEA3JBJXaByVEh62Rfn6z/l0/22n22DkPCTLwnj6PX8meRKxv+rJssIjQaDQMGDEChUNTxvyorKxP980z+V60RQOXl5Tz99NN069aNjz76qMMv55SWlhIdHY1cLuett97i0qVLrFmzhvT0dAyG2uXwZcuWsXTpUlHQmKx9XnjhBX7++We++uorzp07x8svv4ynZ9PTrSUaRRI81ubw4cO4uroyY8aMBgVPWw6uag/o9Xrefvtt9u/fz5YtWwgJCeHq1auiEervv/+Ot7e3KICioqLa9IZXVVVFQkICHh4eeHh4oFarUavVyGSyOhmgVtcYCfrrBJC6wwug08+dpPykVL/TkenywB0ELX0SWSMCpbkWESYDYZMAUiqVdfyvbvS9SUtL48knn2T+/PnMnDmzUyzjGI1GPv30U95++21KSkqQyWRERkYyYcIExowZw3fffcf3339PXFwcgwYNEpe8MjMzeeGFF+jZsyeHDh1i69atREZG2vpyOjKS4GkLsrKymDp1aoOC51paM7iqo1FUVMSWLVtYvHhxg1kTQRDIy8sjNjaW2NhYzpw5Q9euXcUW+EGDBlltCvSVK1fIysoiLCys3lOUTqcTM0BqtRq5XC4OQmzOjbxRBD1yoeQ6AdRxMOqMHLn1X6CV6nc6Kl1n30f3+Y80Ki7MsYiorq4WBdD1BqDXPzjs3buXFStWsGnTJoYPH27WNbUXTOJFrVZz9uxZ9u7dy6RJk+jZsychIbW2NufOnSMmJoZXXnmFF198UXzvwYMHmThxIrNnz2bNmjU4OztLE5TNQxI8bUFzBU9zB1fdTAiCwMWLF8UZQOfOnSMoKEgcghgREWF2R5deryc5ORlBEAgLC2uWm7NOpxNb4EtLS8VJ0KYbeatvSoJOFEC1QxDL2rUAUidqOT9Lqt/pqHRf8DjdZt3T6HZLW0RcawB65swZPv74Y4YNGyZ+z3fu3HnTDc4rLCwkMDCQTz/9lHnz5oki6cqVK/z000/MnTsXaP1UZgkRSfC0Bc0RPM0ZXCVRmx5OS0sTp0AnJibSu3dv0QYjLCysRWLD5Azfs2dPunVrerhaU9TU1NQRQEqlUswAtbaWQRAE8nIvUlOZS0hPNxwVpchp2AjVViRuSKfoi2O2DkOipchk9HxlDl2mN2yT0FYWERcvXmTp0qUUFxcjk8kQBIExY8YQHR3NxIkT63V0toTmmH8KgsDChQvZvXs3zs7ObN26laFDh5p7WU1yrXDR6XRs376dTz75hJ07d9KvX78bvkei1TQqeNrWOfIm5/z58zz11FPs2bNHEjs3QC6X069fP/r168fTTz+N0WgkMTGR2NhY3nnnHVJTUwkPDxcFUGhoaKOTmi9evIhKpWLQoEFmO8Pb29vj7++Pv78/8GcqPz8/n+TkZOzt7UUB1JxuFtNcIkdHR/r0GQt2dmgBhGrshOI/u8AoNytuc6lKKLLp+SVajkxhR/Cbz+E9aWyD200WEf7+/vTo0cNqdTTJycnMmTOHxYsX89hjjyGTySgvL+fYsWMcOnSI0NBQBgwY0OrjKxQKVq1aVcf88/bbb69j/rlnzx7S0tJIS0vj5MmTPP300y2uoWxIjDQ1BNC0r0aj4ejRo7z11ltMmDCB0NDQRs8hiR3rImV4LEhTGZ4bDa6SaBkGg4Hz58+LS2AXL15k4MCBogDq2bMnKSkpfPjhh7zyyiv06tWrTdbETcWcJSUlaDQa7O3txRlA7u7udW6OpjH9zZpLJGivE0AVVr6SPzHqjRy/498Yyivb7JwS5iFzUBL6wd/xHNdwFqMtLCIEQeCXX37hnXfeYfPmzVbPqJhoyPzzb3/7GxMmTOCRRx4BoF+/fhw8eLBZ2V5BEBAEAblcjkql4sSJE/j4+BAaGtrkg6tKpWLLli3Ex8fz448/cv/997Nx40bxmJ2hULudImV4rM0jjzwizlsIDAxkxYoV6HS13kzz5s3jjTfeoLi4mGeeeQZoeHBVS7lRK7yJuLg4Ro0axTfffMNf/vIXs87ZXrCzs2PIkCEMGTKE559/Hr1ez+nTp4mNjWXx4sVirc7MmTNxdHRss5uLo6Mj3bp1E2+kVVVVqFQqcnJy0Gg0ODo64uXlRUVFBVVVVQwZMqR57fkyRwyy7hjojg6QCVX/Ez/FyIUi5FhPjJRn6iSx04Gwc3Wi9ycv4zY0vN62ay0imv3ZawUGg4GVK1dy6tQp9u3bh6+vr1XOcz1ZWVmcOXOGkSNH1nk9Ly+PHj16iP8ODAwkLy+vWYJHJpMhk8nYt28fM2bMQKlUUl5ejpeXFxs3bmTMmDE4ODjUEzHHjx9n69atdOvWjfXr1/Pggw8C0rKVLZEEj4X4+uuvm9y+adMmixcpz5o1i/nz5zNjxoxG9zEYDCxdupRJkyZZ9NztDYVCwYgRI+jbty8XLlwgJiaGxx57jN9//52//e1vFBcXM2zYMNEHzM/Pr01EkJOTE05OTgQEBCAIAmq1moSEBBQKBYIgkJycLGaAXF1dmx2TIHPCIAvEQCAAMqHymiGIxcipstg1qE+rLXYsCeui8HSjz9pluISH1Nt2rUVEVFSU1TKearWaOXPmEBERwe7du63WbXk95eXlTJ8+nU8++aSe03lDKxkt+f7HxcXx17/+lUcffZRHH30UOzs7Vq1axcMPP8wbb7zBnDlz6v09p0yZQkhICF26dBEzQUajURI7NkQSPB2Y6OhosrKymtxnzZo1TJ8+nbi4uLYJyobodDomT57MokWLeOihhwCYNGkSr732GlqtlhMnTrB//342bdpEeXk5I0aMICYmhvHjx+Pl5WV1AXT16lWysrKIjIzEw8NDnGirUqm4ePGiONLfJICu9zRqCkHmjEHmjIEe/zNCvV4AaVsdd+mZy61+r0TbofT3oe+613AKru8uXlFRQXx8PD169LCqRURiYiJz587lxRdf5KGHHmqzzKpOp2P69Ok89thjDTqdBwYGkpOTI/47Nze3RX+HuLg4/P39ee655+jVqxcA06ZN48svv6S6uhq9Xl9njpgp2xMWFlbn31KruW2RBE8nJi8vj++//57Y2NibQvAolUoOHDjQYJre0dGRCRMmMGHCBKD2B+DYsWPs37+fzz77jJqaGkaPHk10dDRjx46tV29jDiafLqPRSFRUlNgOL5PJcHFxwcXFhcDAQARBED2NMjIyqKysxMXFRRRAzs7OzYtJJkPABYPMBQNB/xNAFaIAshOKkVHdrNgFo4DmdKY5ly/RFvh54fHW0xi6eNRbWikoKCAzM5OIiAizuqGaQhAEfvzxRz744AO2bt3aplPkBUHgySefJDw8vFGn82nTpvHZZ5/x8MMPc/LkSTw8PBpczjJlgkydZKa/Y2JiIjU1NaLYefbZZ9mwYQMrV65kwYIFQN2lquu/p1K9TvtAEjydmEWLFvHee+/dVCnU5tYkuLi4cPvtt4uFjWVlZfz222/Exsby4YcfIggC48aNIzo6mtGjR+Pq6tqqeEzD3Jrj0yWTyXB1dcXV1ZUePXqIAqikpIT09HQqKytxdXUVBZCTk1MLBJArBpkrBnr+TwCVYycUo6/OR0EJ9sqG+xPKL9agL7Vth5hE0zj16Un39xejkRvJzMwUM4Wenp5UVFSg1WrrCG1Lo9frefPNN4mPj2f//v14e3tb5TyNcfToUbZv305kZCSDBw8G6pt/Tpkyhd27d9O7d2+cnZ3ZsmVLveNcO+zvyJEjHD9+nNtuu40hQ4bg7e2NUqnk1KlTLFmyhJSUFH744QemTp2KVqvlzTffZOrUqYwePbrtLlyixUhdWh2cpjrDgoODxSeWoqIinJ2d+fzzz7n33nvbOswOhanW5tChQ8TGxnL8+HHs7e0ZN24cMTExjBw58obt7abi0KtXrxIREWGRYW6CIFBeXk5JSQklJSVotVrc3NzqCKDmYjTW/jiWlpYSEdEfJweduPxVmwGqLbjP2VnAxQ/2mh27hHVwGdiXPqtfRuH+pyA3GfkmJiYCtULaycmpjvmnpTIOJSUlPPnkk0RFRfHmm292qIerxjqlVq5cybvvvsutt97K7Nmzufvuu0lOTmbQoEHodDpGjBjBV199RUhICIIg8Ntvv/H3v/+dhQsX8thjj9ngSiSuQxo82Flp7nTnWbNmMXXq1E7TpdWWCIJAUVGR6AN28uRJ3NzcxALo4cOH4+Dwp+t0fn4+ubm5eHp60rt3b6ut2wuCgEajqWOE6u7uLgqgxrJdWq2W+Ph4vL29CQ4Orn/TFwRklGEnFJH7/05yecteDOWWK4KWsAzuowYSuuoF7Jzq/j9fbxEhCAJVVVWiXYqpW9D0OWmtAIqPj2fu3LksW7asQRfw9k5D3VIbN27kpZde4uOPP2bSpEnivC2AL774gjlz5vDqq6/y3HPPYTQaRbEzZswYtm3bZrUsmkSLkARPZ+TaVnh/f/96rfDXIgkeyyEIAleuXBGnQJ86dQpfX1/Gjx+Po6Mjn3/+ORs2bGjzeUtGo7GOAKqpqakjgBwcHCgsLCQ9Pb1F81cEvYGK5Ew0pxLQ/B5P+dlkjNrm1QBJWAfPiSMJeWchcvu6P7Ami4jIyEicnZ0bfK9JAJm8r64dl2ASQE2JdEEQ+O677/jkk0/Ytm2bWUMDbYEgCDz++OP06tWLt99+u862hx56iIqKCr755hsxK3vtUtcrr7zCt99+S0FBAb179yYnJ4dHH32Ujz/+uN6+EjZDEjwSlqE5s38OHjzIokWL0Ol0+Pr6cujQoTaOsm0RBIH09HQWLlxIYmIivr6++Pr6Eh0dTUxMDAMHDrRJqt9oNFJWViYKII1Gg52dndgq21p3eqNOR0V8Opq4eDSnEig/l4Kg01s4eonG8Jl2C72W/Q2Z4s/PlLkWEdcKoLKyMhwcHEQBdK1lil6v5/XXXyc9PZ3t27fXM9/tCJSXl7N27VqmT59O7969xderqqoYMWIEo0aNEgcEmrhWyGRkZHD06FF8fHzw9PRk7NjaSdbSfJ12gyR4JCzD4cOHcXV1ZcaMGQ0KHrVazZgxY9i7dy9BQUEUFBR0epPA9PR0Zs6cyX333ceSJUuQyWRkZGSIU6DPnz9PcHCwKID69+/fpk+BlZWVxMfH06VLFzw8PMQfNoPBgIeHh5gBam063qitpvx8Kpq4eMpOJVCZkI6gN1j4KiQA/B69ix5LZiC75vNjDYuIawXQ1q1biYuLY9iwYZw+fZrbbruNFStWdMgf9+szMFu3biUgIIA77rgDjUbDtGnTUCgUbN++na5du9ap87l48SJqtZohQ4bc8LgSNkUSPBKWo6m6oXXr1pGfn89bb71lg8hsw08//URAQADDhg1rcLvRaCQ1NZX9+/dz8OBBkpKS6NevH+PHjyc6Opq+ffta7WZ55coVsrKyCA8Px8PDo842g8FAaWmpmAEyGo14enqKT/atFUCGyirKzyRTFhePJi6eyuSL0PR9RqIZBMx7kG5z/tKgPYk1LSIA9u7dy6pVq3BxcaGoqAgfHx8mTJhATEwMY8aMMfvze6PMcWlpKY8//jjZ2dno9Xr+/ve/M3v27Baf59osTFpaGvfeey8ODg589913BAcHs2nTJubOncvmzZt54IEHxGUtjUbDG2+8gZ+fHwsXLmx1dlSiTZAEj4TlaErwmJayEhIS0Gg0LFy4sMlJ0DcjRqOR+Ph4MQOUnp5ORESE6AMWHBxs9g+IwWAgJSUFnU5H//79myVeDAYDarVaLG4VBKGOAGrtxFx9WTma00m1S2Bx8VSlZ7fqODczPV6Yjf8jU8R/X2sRERkZaTWLCEEQ2LFjB+vWreOf//wn4eG1dhWXL1/m0KFDHD9+nI8//tjsz+uNMsfvvPMOpaWlvPfeexQWFtKvXz+uXLnSKuFx8eJFKisriYiI4KuvvuLDDz+kZ8+e7Ny5E4VCwYMPPsh///tfli5dypw5c8jLy2P37t18+OGHfPDBB60SWhJtiiR4JCxHU4Jn/vz5nDp1iv3791NVVcXo0aP55Zdf6Nu3rw0i7RgYDAbOnj0rCqDs7GwGDRrE+PHjmTBhAoGBgS1apjBN1Q0ICGjxe69Fr9fXEUCAKH68vLxavaRRfrmApB9/xelSAUJyNtWX8lt1nJsCuYxey5/Fd2qM+NK1FhHWzA7qdDqWLVtGbm4uW7durZchtDRN3VdWrlxJTk4Oa9euJSsri9tvv53U1NRmXfu1y015NrjyAAAgAElEQVTHjh1j3LhxLFu2jFdffRUHBwdWrlzJF198wb333suHH34IwH333cexY8coLCykV69eqNVq1q1bx8MPP2zZi5awBpJ5qETbEBgYiK+vrzhBODo6mnPnzkmCpwns7OyIiooiKiqKF154AZ1Oxx9//EFsbCzz58+noKCAoUOHigLI39+/URGTn59Pdna2RabqKhQKsQAban8A1Wo1xcXFZGZmIpPJRPHj6enZLAFUWFhIelYGYQ9NFZdgagpL0MQloIm7QNmpBGryCsyKu7MgUyoIWbkIr4l/GmG2lUVEQUEBTzzxBLfccguffvqpzetT5s+fz7Rp0wgICECj0fDNN980KyaTyznAH3/8wblz51i0aBELFiwQM5bPPPMMubm5/Pvf/yYkJIRnnnmGf/3rXyQnJ3P27FmcnZ0ZPnw4QUFB4jE7Wgu+RC1ShkeixTT1JJaUlMT8+fP59ddfqampYcSIEezYsaPDta62J2pqajhx4gSxsbEcOnQItVrN8OHDiYmJYdy4cfj6+lJaWsr//d//8cQTTzBgwIA2MWzU6XSoVCpKSkooLS3Fzs5OFEAeHh51BJDRaCQjIwONRsOAAQOaXIqozi9AE5dAWdwFNHHx6ApVVr+W9obcyYHeH72I+8iB4mttYREBcPr0aZ599lnefvttpk6darXzXE9T95Vvv/2Wo0eP8tFHH5GRkcHtt9/OuXPn6pmEAuzbtw87Ozt8fX2JjIwEaj0Fly9fjkwm49NPPxUHBJqyP6mpqbz88sskJiaybt06brnllnrHlbqwOgxShkfCMlw7+ycwMLDe7J/w8HDuvPNOBg4ciFwu56mnnjJb7LRVQWN7xd7eXqzvgdoOmuPHj7N//37+8Y9/UFxcTEVFBXfffTc9e/Zss5uyUqnEz89P7MKrqalBpVJRUFBAamoqSqVSNEHNzs7Gx8eHIUOG3PDp2CHAD4d7/PC95xYEQaA6+7JYAK05lYBeVdYWl2cz7Nxc6LPmFVwH1mZFBUEQxaI1LSIEQeCf//wnmzZtYufOne0qK7tlyxZeeuklZDIZvXv3Jjg4mOTkZEaMGCHuU1lZyfTp00lISKCwsBCj0cjrr7/O4sWLGT58OEOHDuXw4cMEBgYCtYLd9Lfs27cv8+fP580332TRokXs2rVLzOiYkMROx0fK8Ei0e9qyoLEjIQgC69evZ8uWLcydO5e0tDSOHDmCXq9nzJgxREdHM2bMGItaCbSE6upqsrOzyc3NRalU4uTkJLbAXzvbpSUIgoA2I6dWAJ2KR3MqEYOmwgrR2waFjyd91y3DuU9PoFZExsfH4+HhQUhIiNX+H2tqanjppZcoLi5my5YtrfaOM4emMjxPP/00/v7+LF++nKtXrzJ06FDOnTsnLrf+8ccfTJ48mX79+rFixQrs7e359ttvWb16NevWrWPevHn8+9//ZvHixQQEBHDw4EEcHBzqZW02bNjApk2b2LBhA0OHDm2za5ewKFLRskTHxloFjR2ZuXPnolAoWLVqleijJQgCZWVlHD58mNjYWI4ePYqdnZ1ohDpq1CiL+HrdCFNWorS0lAEDBuDg4IBWq60z3M7e3r6OvUGrBJDBQGXqpdoZQHHxlJ9JwliptcIVtQE+Hujm349baJA4FiAzM1O0iLAWV65cYfbs2UyePJkXX3zRJt+bG02Nz8/PZ9asWVy+fBlBEHjppZd4/PHHATh16hTjxo1j3Lhx7Nu3r06NzZQpU8jNzeX8+fMAfPTRR6xbt46pU6fyySefAHUd0qE2Y2ztAm0JqyIJHgnLU1RUxIULFwgKCiI0NNSq52pK8JgGhiUnJ4sFjXfddZdV42kPXLlyha5duza5jyAIlJSUiEaoJ06cwMnJSTRCHTFihMVbmqurq4mPj8fT07PJrIRWqxVnAJWVlVnE38mo01OZmIHmVEKtADqXjFCtM/eSrI5jcHf6rn8NZRdvNBoNWVlZFBcXY29vX2c4ZEsMYpvD77//zoIFC3j//fe58847LXrstuL48eMsW7aMS5cuceTIEbp27UplZSXOzs589NFHvPbaa5w+fZp+/fpRXl7OsmXL+Omnn1iyZAnz588Xj3OtUJIKkzs0kuCRsCybN28Wn5Cys7NxcXHhnnvu4YknniAqKsriNwtLFTTe7AiCQEFBAQcOHODgwYOcPHkSLy8vcQhiVFSUWUuBpkF4ffv2xcfHp0XvNRlcmmwwrl0Cc3V1bZ0AqtFRcSGVst9r638qLqS2uynQzuEh9PnsVZRe7vUsIuRyeT2DWDc3N7MFkCAIbN26lW3btvHVV19Z/YHF2uzdu5cXXngBHx8fDh48KL7+1FNPceTIEY4ePYqXlxdyuZzMzExefvllEhISeP/995kyZUrjB5boiEiCR8J8TE89cXFx3HXXXYwePZoXX3wRFxcXjh49yrfffoter+e3336z+LmbEjx33XUXL730EuPHjwdg4sSJvPvuu3UKGiUaRhAE8vPziY2NJTY2ltOnT+Pv7y8WSQ8ePLhZHV+CIJCZmYlarSYiIsLsrNG1Dt8qlYry8nKcnZ3FH3oXF5cWC6Di4mJSLyQQpLNDSM5CE5dARWI6GP9/e3ce1dS97QH8m4CizAQEB0BARZkpTgiCcxUftSpqpU6IiK1yi9eWSq206qtafbXl2jre4kjVOrTaqvCqTAoiKioWUEAFAwEENEIAGZLs9wcv5xoZBGVQ/H3WYi1NTs75nRBO9vkNe3fcZU5zsDUG/LASKprqzSoRoSgQqxgarKqqgra2Nrc6rjkBUHV1NYKCglBRUYGff/65XYY424rimiSXy7F3716sXr0aM2fOxNatW7Fq1Sr8z//8D44ePYpp06YpvS4hIQFLly6Fnp4eIiMj2yxxI9MhWMDDvDrFEs41a9bgwIEDOHfuHPr16wcigkwmQ0JCAi5cuICQkBDIZDLweDzu51W9yoRGpvmICA8ePOAqwd+8eRMmJiZcHTBbW9t6q1WePn2K27dvQ1tbGxYWFm0yB4SIUFlZyQVAFRUV0NDQgJ6eHgQCAdTV1Rv9nBERsrOzIRaLuflECrLySkhu3OZWgFVm5LRbGQydkU7ot3kF+N3UXrpEREsDoIKCAq7u2z//+c9OMc9NEfSUlpbiX//6F7Zs2YIePXpAIpFg165dmDp1aoNDVJGRkXB0dHzhsDDzxmEBD9N6goKCEBYWhvDw8GZ3B8vlcsjlcqioqLQ4AHqVCY3Mq1Hkz4mKikJMTAzS0tLQv39/uLm5YdSoUcjOzsa6detw8uRJ9OrVq93aRUSoqKjgAqDKykpoampyAVD37t3B4/FQU1ODtLQ0aGpqol+/fi/8gpc+kUCSnA7JtbpJ0FX389qk/QKPkTBbsww8VRUIhUIUFxfD1tb2lXsang+ARCIRwsPD4e7ujp49e2Lz5s34/vvvMX78+FY6k/Yll8sBoN7vURHQ5OTkYOPGjdi/fz927NiBhQsX1luJ9XyhT5Zfp9NhAQ/TetLS0jBs2DBYWloiJCQE06ZNA4/Hg1QqBY/Hg4qKCg4fPgyRSAQ/P7+XXoLckXJzczF//nwUFhaCz+fD398fgYGBStsQEQIDA3H27Fmoq6tj3759nX4pq1wux507d3Du3Dns3r0bT548gbOzM0aNGgV3d3f079+/Q37XRITy8nIuAHr69CnU1NRQUVEBc3NzLvdKS9WWiCFJTufyAFXnFr5yW3vMmADTYD/I5PI2LxFRU1ODhIQE7N+/H5cuXYK2tjZGjBiB0aNHY/To0TAxMXnlY7woTxYAxMbGcnX2DAwMEBcX1+z9K3qP+/Tpw801Ki4uhqamZoNDeFeuXMHq1atx7949JCUlwcDAAFKptF2ScTKvBRbwMK0rIiICa9aswdWrVzFkyBB8/fXXSiujfHx88McffyAgIACxsbF49OgRPvroI3z00UcNJk4jIsjlcvB4vNciOCooKEBBQQGcnJy4hG8nT56EtbU1t83Zs2fx448/4uzZs0hKSkJgYCCSkpI6sNXto6SkBPPnz4e9vT3WrFmDjIwMrhJ8dnY2bG1tuSGwvn37tvtqFyJCbm4uRCIRDAwMUF5erjTUIxAIXronpaawBGXX6spgSK6moqbwUYte33PhNPQJ8EZlZSVSU1Nhamrapj1jVVVVWLFiBWQyGXbv3o0uXbrg+vXriI2NRWxsLObMmcNlHX5ZL8qT9eTJE7i4uCAyMhKmpqYoKiriklU2x/379xESEoKysjL8+eefOHDgAL777jvs3r0bzs7ODb7mzJkz+Pzzz9G7d2+cO3cOQP2eHabTYgEP0/pu376N8PBw7Ny5E+rq6jhw4ADGjBmDwsJCeHt74/r163B2doa/vz+io6Nx5MgR7Nu3D++9916z9q/opk5OTkZ+fj7c3Nygq6vbxmfVsPfffx8BAQGYMGEC99iSJUswevRoeHt7AwAGDhyI2NjYdh3a6QgBAQHw8PBocOm/VCrFjRs3uEKoIpEIjo6OXB2w3r17t2kAJJPJkJ6eDhUVFQwcOJAbqlAM9Sh6gGpqapQCoGfn9TQXEaE67yEkigDoWhpqS540un2fT+agl8/UdisRkZeXBx8fH8yePRsBAQFt+mXf1By77du3Iz8/H998881L7z80NBS7d++GmpoaUlNTsXnzZnz88cf1AlfFNUMmk3GTmMePH4/w8PCXPjbzxmEBD9N6np8AePnyZYwbNw7z5s3Dzp07ER0dDW9vb0yePBl79+4FUHeX5+XlhYqKCly+fJm723ry5An+/PNPREREoF+/fpg5cybs7e2VkoEFBAQgLS0NBw8efOmhiVeRk5MDd3d3pKamKi119/T0RHBwMEaOHAkAGDduHDZt2oQhQ4a0extfV7W1tbhy5Qq3DL6kpASDBw/mVoEZGhq2WgDUksKacrkcZWVlXC2w2tpa6OjocAHQyyzNJyJUZYu4AKjsWhpkpeUAj4e+XyyGgdd4pXpibVUiAgAuXryIoKAgbN26FaNHj26z4yg0FfAohrLS0tIgkUgQGBiI+fPnN2u/imuNRCKBvb09Hjx4AH9/f+zcufOFrxGLxfjmm29QVVWFbdu2sdw6bw9WS4t5dXK5HGlpaVxBPqDujtrZ2RmmpqbcpOHbt2+Dz+dj3rx5AOrmEejq6mL48OH4448/kJ2dDXNzc2RlZSE4OBhnzpzB+PHj8ddffyE8PBzr16/Hhx9+iOrqaqSnp+Pu3bvQ1dV9YbDz999/g4hgb2/f5HYtUV5eDi8vL4SGhtbL69PQzQK7oCrr0qULXF1d4erqitWrV6O6uhqJiYmIiYnBnj17IJFIMGzYMLi7u8PNzQ0CgeCl3sOHDx8iOzu72b0mfD4furq60NXVhbm5OeRyOUpLS/H48WPk5eVBKpVCV1eXW+3UnACIx+Ohu4UxulsYw3DWRJBcjqd3hZBJKqBmNwA3btyAjo4OHB0d2+xzIpfLsWvXLvz+++84c+ZMq8zReVVSqRTJycmIiorC06dPMWLECDg7OzdZq0txQ6R4n9LS0jBhwgQIhUIkJCTg9OnT8PT0bHCYisfjgYigp6eHr7/+mvu7ZX+bDAt4mGZLSkrCuHHjsGXLFkyfPh09evSAiooKioqKkJOTg0mTJoHH4yElJQVdunTB8OHDAfyn6J5YLIa+vj4XKKxZswbXr1/HkSNH4OnpibKyMvj6+uKrr76Cq6srampq4Ovri5SUFPTt2xffffcdJk2a1GAxUqlUil27dmH79u1QUVGBjY0NvL294e3tXa8IYHPV1tbCy8sLc+bMwfTp0+s9b2xsjNzcXO7/eXl5L+xZeNupqalxE2aBuoKPly5dQlRUFLZt24aamho4OzvD3d0drq6u0NHRafKLSi6XIysrC1VVVa9UWJPP53PBDVAXyJeWlkIsFiM3NxcymUwpAGrOcXh8PtQtzVBWVobr16+3eYmIyspKBAYGQk1NDefPn39tcssYGxvDwMAAGhoa0NDQgLu7O1JSUhoNeJ5dNVVSUgIDAwM4OzvD2dkZly5dwhdffIENGzbAzMwMtra2jQY9ALhgh83fYQCAfQKYZjM3N8fHH3+MrVu3YurUqVi5ciWWL18OW1tbCAQC+Pn54fHjx7hx4wa6desGDQ0NEBFUVFRQVVWF+/fvQ0tLC2ZmZqipqcHJkyfh5+eH9957D6qqqhAIBFi5ciVX+2bAgAHw8vJCz5494eDggD179sDf3x/JyclcmxTBU3FxMYRCIUaOHInExERMmjQJR44cweLFiyEWi1t8rkSERYsWwcrKCitWrGhwmylTpuDAgQMgIly+fBk6Ojqdfv5Oa1NXV8f48eOxceNGJCQkIDo6GpMnT0ZSUhK8vLwwduxYrF69Gn/99RfKy8uVXnv//n0kJCRATU0N9vb2rTpEpKKiAoFAgH79+mHIkCEYMmQIDAwMUFZWhps3b+LKlSvIzMxEcXExpFJpo/vJz8/H7du3YW9v36bBjlAohKenJ1xdXREWFvbaBDtA3fy3ixcvQiqVorKyEklJSbCysmpwW0XqCgAIDg7GlClTYGdnh5kzZyI7OxsuLi5Yvnw5ysvLERISAolEwgUyjx8/brQNLNhhANbDw7RAz549sWXLFvj6+uLEiRO4cOECiAjLli2Dh4cHbGxsEBkZiYqKCkgkEly4cAHu7u4A6uYUpKam4rPPPgOfz8fVq1dRU1OD0aNHQ0VFhRtfVwRDigtUXl4ejIyMsH37dvTq1QtFRUUNJmbLyclBamoqFi9ejCFDhuCdd96Bq6srZs2ahY0bN2Lz5s0tustLSEjAwYMHYWdnB0dHRwB1VdmFQiGAuvw/kydPxtmzZ9G/f3+oq6tz85WYl6elpQUPDw94eHiAiPDkyROuEOqGDRu4ITJtbW3s3bsXP//8M8zMzNq8XSoqKtDX1+fKZUilUjx58gRisRjZ2dkAwPX+6Orqgs/ncyUihgwZ0qZ5XmJjYxEcHIxt27Zx2cbb07N5soyNjevlybKyssKkSZNgb28PPp8PPz+/BntpgbrApKamBlOnTkVqaioWLlyIvLw8xMXFYdSoUQgLC8O0adOQnZ2NXbt2ITg4GBs2bMDp06dx5MgRfPvtt7CxsWnP02feICzgYZpNEZTY2Ng0elG5desWiAhOTk74+eefUVtbi5s3b+Lbb7/F0KFDMXXqVABASkoK9PX1oampCaCuG1tVVRWpqang8XjQ0dFBWVkZsrKy0LdvX26oyMjISOl4iq7rjIwMlJSUcAnV+Hw+3nvvPTg6OkIkEtVLLvb8MnihUIj4+HiMGzcORkZGGDlyZINzdJ4/9rZt217inWxcc/L//PLLL9i0aRMAQFNTEzt27ICDg0OrtuN1wOPxoKenh/fffx/vv/8+iAjFxcX45JNPkJiYiF69emHNmjVwc3ODm5sbhg0b9lKrrV6GqqoqDAwMuGzeUqmUmwB99+5dVFZWQkdHB3379m2zNsjlcmzbtg1nzpxBREQE+vTp02bHasrhw4dfuE1QUBCCgoKatb/4+Hikp6dj165d8PDwAAAUFRXh3XffxYoVK3Dq1CkEBARAJBJh3759OH/+PB48eICvv/6aBTtMk1jAwzTbs5WEFRlPnw8i7ty5A3V1de7uy8PDA1paWpg8eTI2btzITTzu06cPZDIZ1w2tSAoWHh6OQYMGwcrKChkZGSgsLOR6iRrLiKpYAaKlpYWhQ4dy7VNRUUFmZiYGDx4MFRUVZGVlwcDAAHp6elyCRIXi4mLs3bsXT58+xaJFizpszF9VVRVbtmxRyv8zYcIEpfw/5ubmiIuLg56eHiIiIuDv7/9W5P8Ri8Xw9fWFnZ0dwsPDoaKigocPHyI6OhonTpzAypUroa+vz2WBdnJyatOVUM9SVVXl5rQ9evQIdnZ2ICI8evQI9+7dg4qKCtcDpKOj88o9PhUVFQgICICuri7OnTvXboFee8jMzER+fj5cXV0B1AWThoaGOHnyJGxtbREWFob169dj5cqVGDduHK5duwYPDw8MHToUAKt0zjSOBTxMiz0fLCguMNnZ2bh//z4GDRoEY2NjhIeHY9++fbh37x4GDhyotI9Ro0ZBX18foaGhMDExgZaWFvbu3YsjR45g06ZN0NfXx6+//oqamhruQvY8xXELCgpw584dCAQCrn1SqRShoaEQi8UYN24c5HI5li9fjgcPHmDPnj04c+YM+vfvj+nTp0NDQwODBw/GuXPnuPkYHTXm36tXL24ekJaWFqysrCASiZQCHhcXF+7fzs7OyMtrm/IHr5v09HT4+/tjypQp3GM9e/bEhx9+iA8//JBLOBgTE4P9+/cjMDAQvXr14rJA29vbt1m2XUUNspKSEjg5OXEBiCLBXk1NDcRiMYqKipCVlcUFQAKBADo6Oi36vGVnZ8PHxweLFy/G4sWL39gv92dvKp5NQ6GjowMDAwPcuHEDo0aNgqqqKmpra2FmZgYfHx8cO3YMQUFBMDQ0xOTJk7nyNooe2zf1/WDaHgt4mFemuMDk5uYiJyeHG1aqrq6GmppavWAHAHR1dfGvf/0LH330EVxdXWFqaorMzEzMnz8fH3/8MYC6YSo1NTUum2pjd8UPHjzA3bt3cffuXXTp0gW9e/eGhoYGhEIhZs+ejWnTpuH+/fsoKyuDUCjE559/Di0tLZw4cQLDhw+HmZkZDh06BCsrK25l2bMUdcD4fH67BkI5OTm4ceNGg21SCAsL47r9OztFvqPG8Hg8mJqaYsGCBViwYAFXNDQ6Oho7duzArVu3YGZmxvUAWVtbt8rcGqlUypWIcHJyavAz0rVrVxgZGXFDsjU1NXj8+DEKCwuRkZGBLl26cJXgmyrFcv78eaxevRq7du3CiBEjXrntHUXx91RTU8P1xip640aOHInKykocO3YMdnZ2EAgE3HO1tbXo0qVLgyUl2MRk5kVYwMO0mlGjRiElJYW7W3tR7pKJEyciNTUV586dQ0ZGBleTCai7sGlra6OoqAhVVVUNvl4RaGVmZkIkEiE6Ohr6+vpISEjAvXv3uOEgAEhNTUVycjJmzpyJkJAQ9OnTB48ePUKfPn1w+/ZtrFu3DkOHDsWvv/7K7b+qqoq7ELf3xbSp/D8KMTExCAsLQ3x8fLu27U3B4/FgYWEBCwsL+Pn5cUvYo6Oj8d133+H27duwtLSEm5sb3N3dMXDgwBb/nhXJDltaIqJr167o2bMnV6m7qqoKYrEY+fn5uHPnDrp27QpdXV2IRCIMHz4cqqqqCA0Nxfnz5/HXX3+9sRW+Fb2yfD4fCQkJ+Mc//oHa2lqoqalh9erVcHFxgYmJCb799lssXboUJiYmWLx4MQQCAQoLCyESiTB48GCoqqqyoSum5YioqR+GaTNyubzJx5OSksjS0pJMTU0pICCAcnJy6m1bXV1Ny5cvpz59+jS5r3Xr1pGBgQFdu3at3jZHjx6lQYMG0b59+4iIqLa2lk6dOkXz5s0jc3Nzsra2puDgYMrKymrwGFKplKRS6YtPuJlqamro3XffpS1btjS6TUpKCllYWFBGRkarHfdtI5PJ6O+//6bQ0FCaOnUq2dra0syZM+nHH3+klJQUkkgkVFFR0ehPdnY2RUVFUWFhYZPbvczPo0eP6O+//6b33nuPLCwsaMCAAeTi4kKXL19u1c8aEdHChQupR48eZGNj0+R2V65cIT6fT8eOHWvxMeRyOclkMu7/d+7cIYFAQHPnzqVVq1bR+PHjqVevXrRixQqqrKwkIqLPP/+ctLW1ydramry9vWn48OFkYGBA169fb/HxmbdKozENKy3BdDjFBOiG7q7FYjF+++03ZGZmYt68ebC1tVUa7xcKhVi8eDG6d++OkydPchObn53gXF1dDR8fH+Tk5CAxMRGA8pyBkJAQHDlyBKdOnYK1tTVCQ0Px9ddfw9LSErNnz+ZyBk2YMAFffPEFNDQ0AAClpaXQ0dFp8flSE3emRIQFCxZAIBAgNDS0wW2EQiHGjh2LAwcOKM3nYV6NTCZDSkoKVwdMKBTCzs4Obm5uGDNmDIyNjbn5YT///DOGDRsGOzu7Np0YfffuXfj6+uKDDz6Avr4+4uLicPPmTZiZmXE5rF7Vi4p/AnXvzYQJE9CtWzf4+vpixowZzdr37du3YWFhoTSp+scff0RFRQUyMzPx008/QV1dHQCwYsUKREREYO7cufjyyy8BAEePHsW5c+dQXFwMgUCA7777DgKBgPXuME1p/IPRVDTUzlEZw7RYVFQUdenShTZu3EhEpHT3q+jdSU9Pp+HDh9OiRYuIiJTuNCsqKmjGjBnk6upKRERVVVWkra1Ns2bN4raRyWSUlJREJ0+epIqKCiIiCg0NpcmTJ5ORkRE5OTnR3r17qaamptntvnLlSoN36xcvXiQAZGdnRw4ODuTg4EBnzpyhHTt20I4dO4iIaNGiRaSrq8s9P3jw4GYftzFCoZBGjx5NgwYNImtrawoNDW2y7S97p/8mqa2tpcuXL9OGDRvo3XffJXt7e/rggw/I0dGRfH19qaysrNV7dp79+e2338je3p6uXLmi1C65XE53796lv//+u9XONTs7u8kenh9++IF++uknWrBgQbN/74GBgWRtbU1TpkzhHouIiCATExPS0dGhTz/9lIiI+7spKysjLy8vcnV1pdTUVKV9VVdXc/+ura1t9nkxb6VGYxoW8DCvPalU2ujwV0VFBR06dIjy8vKISHmYTBHYHD9+nAYNGkR79uypt7+UlBQaMmQIffzxx0REdOTIEVJTU6P4+PhG2/OPf/yDVFRUyM/Pj3755RcKDAwkU1NTioqKeuG5REZG0tixY8ne3p5MTEyoW7du5O7uTmFhYfT48eNmvBttIz8/n5KTk4mo7otnwIABlJaWVm87qVRKY8aMIQ8Pj04f8Dzv8uXLNGDAAJo3bx6NGTOGHB0dyc/Pjw4ePEg5OTlUXl7eKnSOR4UAAA/GSURBVIGORCKhr776isaOHUsPHz5sl3NrKuDJy8sjd3d3kkqlzQp4cnNzyc7Ojuzt7en777+n06dPKz2/fv160tXVJU9PT+4xRUBz5coV4vF4dOHCBSKqP+z97M0KwzSi0ZiGTVpmXntNraRRV1eHt7c39/9nu7kVQ2Tx8fEoLi7mVjvx+XyuSzw1NRVisZh7LiEhAf369eMSxim2UwyRxcXFISwsDHv27MH8+fMhl8sxbtw4ZGRkYN26dRg7dmyjbU1OToavry8cHBwQFBSEd955B9nZ2Th+/Di+/PJLCAQCLjFje2vOcnigbjjCy8sLV69e7Yhmdpj9+/dj+/btiIiIQL9+/QDUTTROTExEdHQ0du/ejfLycq4OmJubG3R1dVs87FJWVoYlS5bA3NwckZGR7ZZHqCnLly/Hpk2bmrWi7dGjR/D19UXfvn2xZcsWWFhYcKkAampq0LVrVyxduhS5ubn45ZdfsHv3bvj7+3Pn2atXL6ipqSErKwtubm713j+2Eot5FSzgYd54L0oS6OHhAVVVVe7L+9lcHWlpaVBTU+OSnD158qSu6vUzy17pmXluZ86cwdOnT5GTk4Pc3FyYmJjAyMgI/v7+WLp0KXdRb6iNBw8eREFBAe7du8fVOrKxscHgwYNhaWnJVaGnDp6f0NhyeJFIhN9//x3R0dFvXcBjZGSEmJgYbr4JAHTr1g1jxozBmDFjANStrLt06RKio6OxdetWSKVSjBgxgiuEqqWl1eTvNSMjA4sWLcKKFSswZ86c12aOyrVr1zB79mwAdcU8z549C1VV1QaDc6FQiLS0NISFhcHS0hIymYx7rmvXriAi6OrqIjAwECKRCGvXroWJiQk8PDxQXV2N2NhYdO3aFYMGDWq382PeIk11/7R3PxTDtCeJREJjx44la2tr7rHff/+deDwexcTENPgaBwcHMjMzowEDBhCfzycdHR2aPXs2DR06lJycnKiwsLDB15WXl9OCBQtIS0uLGzpqLY0N970MiURCTk5OdOLEiXrPzZgxgxITE4mIWjSX420kl8uptLSUTp8+Tf/85z9p+PDh5OzsTJ9++imdOnWKioqKuCGs8vJyOnr0KDk4OLT6Z6O5XjSHR+FFv/cTJ06Qvr4+Xb58Wenx/fv305o1a8jb25v++usvqq2tpaSkJLK1tSU1NTVyc3OjhQsXkqamJi1btuyVz4d5q7FVWszbq7GSFACQlZWF3Nxcbijq8ePH8PHxgUgkwurVq9G/f3+IxWLY2NhAX18fNjY2mD59OtauXYv79+8jMTERkZGRuHXrFkaMGIH169c3WhX73//+N5YsWQJLS0usWbMGnp6e0NTURG1tLVRVVV/qjp7+vzfo/PnzcHR05Go7vYza2lp4enpi4sSJDVaINzc353q7SkpKoK6ujt27d3fYMNybhIggFosRFxeH6OhoXL58Gd26dYOLiwsKCwtRUFCAQ4cOvdLv72U9W/zTyMioXvHPZ/n4+MDT07PRVVrp6ekYNmwY5s6di4kTJ4LH42HdunVISUmBmpoaVyh4xYoVWLt2LY4dO4a1a9eiuroamzdvhr6+PpeLq6PKuzBvPLZKi2GaKy0tjTw9Pal79+7Uu3dvmjt3Lpf7Y9WqVdS/f3969OiRUs9KTU0NFRcXN7pPxba///47OTo6Eo/Ho6lTp5JIJKq3bUvy+sjlcoqLiyNNTU06cuRIS06z3n7mzZtHgYGBzdqe9fC8GrlcTg8fPqT9+/eTl5dXp1h5pPiMb9u2jTQ1NYnH4xGPxyN7e3tauXIlpaenU0FBAc2YMYN0dHQoKSmJ5HI5ffXVVzRw4EBavXo1t6+WrHhkmOewHh6GaQi9ICfO1atXwefz4ejoyFVz9/f3h7m5ORYtWgQLCwsUFRWhR48eMDc3f+FxiAg3b97Etm3bsG/fPri4uCAiIoLL7dNcirvfS5cuISQkBDY2Nti6dWu98yktLcWhQ4cwb948rjJ9Q+Lj4+Hm5gY7OzvurnrDhg0QCoUAWn6nz7zdFNnODQ0NYW9vDyMjI66X9enTp9DQ0MBPP/2EpUuXoqSkBKtWrUJcXBxWrlwJX1/fDm4984ZrtIeHBTwM8xy5XA4ianQYLDo6Gl999RWuXbsGExMTCAQCzJo1C8uXL29RbaYpU6YgNjYWmZmZXKmAtWvXorS0FB4eHlxZjKZMmjQJmpqa+OGHH2BiYgKpVApVVVVu8vTNmzdx+PBhbNq0qdntak+5ubmYP38+CgsLwefz4e/vj8DAwHrbxcbGYvny5aitrYWBgQHi4uI6oLXMizR1A6F4/vz58/D29saxY8e4Cd9paWkICAhAQUEBLl682OiwMMM0AxvSYpiX0dSE4IqKCoqKiqKjR49Sfn6+0nOKIamwsDD68ccfSSwWKz1fWlpKs2bNooEDB9L9+/eJiOjRo0d0+PBh8vT0pG7dur3w+MePH6cuXbpQQkKC0rb5+fkUHBxM9vb2ZGhoSCNGjKA//viDy3Wi2O7GjRu0cOFCSkpKavb70dqak/9HLBaTlZUVPXjwgIio3XLTMK1D8XmTy+UkEonIx8eHXF1dKTc3V+nzHRMT02DuJ4ZpIZaHh2FeRkN3qzKZDDweD+rq6o3m3VH09Dx8+BB79uxBVlYW5syZg969e0MikeDAgQM4ceIEgoODuaEwLS0tzJ49G3l5eUrHUuQxedaTJ09w+PBhDBkyhCsvoWjr+vXrERYWhpCQEERERIDP52PZsmVYsmQJVqxYge7du0Mmk8HR0RG3b9/GpUuXMGzYsA6ZJNqc/D+HDh3C9OnTYWpqCgAwNDRs1zYyr4bH4+HWrVtIT0/Hjh07kJOTg7Nnz8LY2BjAf3qFRo8eDYBNVmbaDgt4GKaFnh22ksvlSnl9nufr6wsNDQ3s27cPO3fuhLGxMbS0tJCTk4Pg4GB8/vnn3LaKi/zBgwe5YZ3n96v4Mrh+/ToyMjLwwQcfAAA3lCUSiZCQkABfX18EBQUhMzMTX375Je7cuYP8/Hwuv5DiHDQ1NVFZWal0/I7SWP6fzMxM1NbWYvTo0ZBIJAgMDMT8+fM7qJVMSyUkJGDChAmwsrKCpaUlIiMj0b17d+6zzJILMu2FBTwM8wpedHE2MjLCJ598gk8++QSFhYW4ePEiqqqquGKUz1IEIenp6fD09FR67HlJSUkgIowcOVKpHXp6ejA2NsbDhw+RkpICY2NjDBgwAAMGDKi3D6lUCkdHR1y4cAGrVq1q2Ym3svLycnh5eSE0NBTa2tpKz0mlUiQnJyMqKgpPnz7FiBEj4OzsDEtLyw5q7evD19cXp0+fhqGhYYOFP3/55Rdu/pampiZ27NgBBweHdm2jq6srjh8/Dh0dHS7BpyJAZ5j2xEJphmlDRASZTAYiQs+ePTFz5kzMmzevXrBD/7944NKlS9DW1oahoSFXRf5ZisCmoKAA3bt3h42NjdLj6urq8PHxQXx8PMaMGQORSISCgoIG26aqqgqZTAaxWAwADR6vPdTW1sLLywtz5szB9OnT6z1vbGyMSZMmQUNDAwYGBnB3d0dKSkoHtPT14+Pjg8jIyEafNzc3R1xcHG7duoWQkBD4+/u3Y+v+87mePHkyF+zI5XIW7DAdggU8DNOGeDweVFRUuG57xQowBcW/nz59CgC4cOECJk6cCABKafmfVVVVxe3n+dUscrkcXl5euHTpEmxtbZGYmIhPP/0UIpFIaTupVAqgbhjJ0NAQMpmsQ4YSiAiLFi2ClZVVg8kOAeD999/HxYsXIZVKUVlZiaSkJFhZWbVzS19P7u7uEAgEjT7v4uICPT09AICzs7PS/LD20NBQLxuyYjoK++QxTDt6fs6C4t/bt2/HyJEjsWrVKujo6ABAo4Uju3XrhoqKCujq6gL4T/Ci2D8A6OjoYODAgQgODuaW0T/r2eGz3r17o7q6upXOsGUSEhJw8OBBREdHw9HREY6Ojjh79ix27tyJnTt3AgCsrKwwadIk2NvbY9iwYfDz84OtrW2HtPdNFhYWBg8Pj45uBsN0GNavyDCvgc8++wxjx45FbGws/vzzT8yePRv//ve/oaWlpbSdokxGVVUVjIyMlPKenD59GiKRCEuWLMH169dhamoKHx8fpKWl4bfffgPwnxUxPB4PJSUlePz4MczNzZWKYrankSNHKvV4NSYoKAhBQUGteuzm5AAqLS3F3LlzIRQKIZVK8dlnn2HhwoWt2o72EBMTg7CwMMTHx3d0Uximw7CAh2FeE05OTnBycmp0aAf4T8+Mra0trl69isrKSi5LM5/Px6lTp1BSUoKioiI4ODggJiYGERERGDp0KIC6HiVF0BQVFQW5XK60BPxtoqqqii1btsDJyQkSiQSDBw/GhAkTlN6Pbdu2wdraGn/++SeKi4sxcOBAzJkzB127du3AlrfMrVu34Ofnh4iICOjr63d0cximw7CAh2FeE4oJznw+/4XzHMaPH4/NmzejW7du3GNjx46FRCJBWFgYYmJioKenh+7du0MgEGDlypXcMRRBU3h4OOzs7ODk5NR2J/Uaa04OIB6PB4lEAiJCeXk5BALBGzXhVigUYvr06Th48CBb1ca89VhpCYZ5A2VnZ2PPnj1YtmwZV5ZCgYjg5+cHLy8vVFZWYvz48dx8H4WrV6/CxcUFhw4dwsyZM9uz6a+lnJwcuLu7IzU1VWlZvEQiwZQpU3Dnzh1IJBL8+uuv+K//+q8ObKmyF1U69/Pzw4kTJ9C3b18Adb1a165d68gmM0xbY7W0GKazefz4MVRVVbkvaEUit//93//FxYsX8c033yhtr5i/8+TJE3zyySfIyspCYmJiRzT9tVJeXo5Ro0bhyy+/rLcs/vjx40hISMD333+Pe/fuYcKECUhJSamXK4hhmNdGowEPW6XFMG8ogUCg9MWrGAbr1asXvLy86k0GVkxu3r17N1JSUvDf//3fANCsScOd1YtyAO3duxfTp08Hj8dD//79YW5ujjt37nRASxmGeVUs4GGYTsbe3h7vvPNOgzlQYmJicPbsWXz66acYP348gIZzpbwNmpMDyNTUFFFRUQDq6qJlZGTAwsKiPZvJMEwrYUNaDPMWSU5OBp/Ph52d3Rs1+bYtxMfHw83NDXZ2dlzv2IYNGyAUCgHUzYHJz8+Hj48PCgoKQEQIDg7G3LlzO7LZDMM0jc3hYRiGYRim02NzeBiGYRiGeXuxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCdHgt4GIZhGIbp9FjAwzAMwzBMp8cCHoZhGIZhOr0XpVp9O3POMwzDMAzTqbAeHoZhGIZhOj0W8DAMwzAM0+mxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCd3v8BOdq7m+geacUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -230,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -247,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -270,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -279,13 +258,12 @@ "barrier_thresholds = [2]*dimension\n", "for i in range(dimension):\n", " # target dimension of random distribution and corresponding condition (which is required to be True)\n", - " conditions += [(i, Comparator(num_qubits[i], mapped_barrier[i] + 1, geq=False))]\n", - " break # TODO" + " conditions += [(i, Comparator(num_qubits[i], mapped_barrier[i] + 1, geq=False))]" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -311,12 +289,12 @@ ")\n", "\n", "# define overall multivariate problem\n", - "asian_barrier_spread = MultivariateObjective(u, agg, bull_spread_objective, conditions=conditions)" + "asian_barrier_spread = MultivariateProblem(u, agg, bull_spread_objective, conditions=conditions)" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -370,7 +348,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -401,7 +379,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -409,8 +387,8 @@ "output_type": "stream", "text": [ "state qubits: 5\n", - "circuit width: 19\n", - "circuit depth: 7760\n" + "circuit width: 15\n", + "circuit depth: 1441\n" ] } ], @@ -430,22 +408,11 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "int" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "type(qc.width())" + "job = execute(qc, backend=BasicAer.get_backend('statevector_simulator'))" ] }, { @@ -454,30 +421,15 @@ "metadata": {}, "outputs": [ { - "ename": "ModelValidationError", - "evalue": "{'n_qubits': [\"Value '19' is not the expected type \"]}", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mModelValidationError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mjob\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mexecute\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mqc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbackend\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mbackend\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\execute.py\u001b[0m in \u001b[0;36mexecute\u001b[1;34m(circuits, backend, qobj_header, config, basis_gates, coupling_map, initial_layout, shots, max_credits, seed, qobj_id, seed_mapper, pass_manager, memory, **kwargs)\u001b[0m\n\u001b[0;32m 85\u001b[0m job = execute_circuits(circuits, backend, qobj_header=qobj_header,\n\u001b[0;32m 86\u001b[0m \u001b[0mrun_config\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mrun_config\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 87\u001b[1;33m transpile_config=transpile_config, **kwargs)\n\u001b[0m\u001b[0;32m 88\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 89\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mjob\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\execute.py\u001b[0m in \u001b[0;36mexecute_circuits\u001b[1;34m(circuits, backend, qobj_header, transpile_config, run_config, **kwargs)\u001b[0m\n\u001b[0;32m 128\u001b[0m \u001b[1;31m# assembling the circuits into a qobj to be run on the backend\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 129\u001b[0m qobj = assemble_circuits(new_circuits, qobj_header=qobj_header,\n\u001b[1;32m--> 130\u001b[1;33m run_config=run_config)\n\u001b[0m\u001b[0;32m 131\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 132\u001b[0m \u001b[1;31m# executing the circuits on the backend and returning the job\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\compiler\\assembler.py\u001b[0m in \u001b[0;36massemble_circuits\u001b[1;34m(circuits, run_config, qobj_header, qobj_id)\u001b[0m\n\u001b[0;32m 70\u001b[0m name=circuit.name)\n\u001b[0;32m 71\u001b[0m \u001b[1;31m# TODO: why do we need n_qubits and memory_slots in both the header and the config\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 72\u001b[1;33m \u001b[0mexperimentconfig\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mQasmQobjExperimentConfig\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mn_qubits\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mn_qubits\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmemory_slots\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmemory_slots\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 73\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 74\u001b[0m \u001b[0minstructions\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;32mc:\\workspaces\\sandbox-git-quantum-apps\\qiskit-terra-wor\\qiskit\\validation\\base.py\u001b[0m in \u001b[0;36m_decorated\u001b[1;34m(self, **kwargs)\u001b[0m\n\u001b[0;32m 243\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mValidationError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mex\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 244\u001b[0m raise ModelValidationError(\n\u001b[1;32m--> 245\u001b[1;33m ex.messages, ex.field_names, ex.fields, ex.data, **ex.kwargs) from None\n\u001b[0m\u001b[0;32m 246\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 247\u001b[0m \u001b[0minit_method\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mModelValidationError\u001b[0m: {'n_qubits': [\"Value '19' is not the expected type \"]}" + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact Operator Value: 0.6303\n", + "Mapped Operator value: 0.8319\n", + "Exact Expected Payoff: 0.8023\n" ] } ], - "source": [ - "job = execute(qc, backend=backend)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], "source": [ "# evaluate resulting statevector\n", "value = 0\n", @@ -486,6 +438,9 @@ " prob = np.abs(a)**2\n", " if prob > 1e-4 and b[0] == '1':\n", " value += prob\n", + " # all other states should have zero probability due to ancilla qubits\n", + " if i > 2**num_req_qubits:\n", + " break\n", "\n", "# map value to original range\n", "mapped_value = asian_barrier_spread.value_to_estimation(value) / (2**num_uncertainty_qubits - 1) * (high_ - low_)\n", @@ -498,17 +453,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Next we use amplitude estimation to estimate the expected payoff." + "Next we use amplitude estimation to estimate the expected payoff.\n", + "Note that this can take a while since we are simulating a large number of qubits. The way we designed the operator (asian_barrier_spread) impliesthat the number of actual state qubits is significantly smaller, thus, helping to reduce the overall simulation time a bit." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# set number of evaluation qubits (=log(samples))\n", - "m = 6\n", + "m = 3\n", "\n", "# construct amplitude estimation \n", "ae = AmplitudeEstimation(m, asian_barrier_spread)" @@ -516,7 +472,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -526,33 +482,33 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Exact value: \t0.8407\n", - "Estimated value:\t0.8696\n", - "Probability: \t0.7163\n" + "Exact value: \t0.8023\n", + "Estimated value:\t0.5000\n", + "Probability: \t0.6958\n" ] } ], "source": [ "print('Exact value: \\t%.4f' % exact_value)\n", - "print('Estimated value:\\t%.4f' % (result['estimation'] / (2**num_uncertainty_qubits - 1) * (high_ - low_)))\n", + "print('Estimated value:\\t%.4f' % (result['estimation'] / (2**num_uncertainty_qubits - 1) * (high_ - low_)))\n", "print('Probability: \\t%.4f' % result['max_probability'])" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHhtJREFUeJzt3XuwXFWd9vHvw0UItxAEAoMMEbxEGClHI4LDSLhDeEcuokmh71QcNOqr4kyhAyJCQIcSHAEtxgJKJ7yMmjADDO9ACCFcTiBc1CBBnCRg0IBcRHEOxBiIQH7vH2sf7OzT5/Tuy1md0+f5VHV199prr157pdO/s/Zea21FBGZmZiNts25XwMzMxgYHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHbBiSZkvqK173SZrd5P5TJUW5rCHy3iTp4WG2XyapX9JWFT/7TZJC0jHN1NlspDjgmG065gJ/IWm/8gZJmwMnA9dHxPrsNTPrAAccs03H/wPWATPqbDsUmEgKSmajkgOOWYskHSTpvyQ9LekPkpZJ+nCr5UXEWuAmYHqdzTOAZ4E7i8/eQ9IcSb+U9KKkRyWdJ2nLYeq7RXGK7ZOl9K9K+nUpbS9J1xSn8NZJWiDpza0emxnAFt2ugNmmLCJm17yeWtq8F3APcDnwEvBXwBxJGyJibrFPH6ByWcOYC3xI0rsi4gGAIoicCHw/Il4t8u0CPAf8PfA8MBk4F9gZ+HSTh7kRSTsXx/UsMKs4trOARZLe6lN61ioHHLMWRcS8gdeSBNwFvAH4OK2f+lpACiAzgAeKtKOBnWrLjIhlwLKaz78HeBG4XNLnIuKVFj8f4HRgK+DwiHi+KP9eYDUwE7iijbJtDPMpNbMWSZog6VuSHgdeLh6zgLe0WmbRe/hPUi9HRfJ04HHg/prP3kzS6ZJWSHqx+Oz/C4wjBb12HAEsBNYWp+G2AF4AfgJMabNsG8MccMxadxUpGHwdOAp4N/CvwNZtljsX+HPgIElbA8cDc2Pjpd1PBy4E/gN4P3AAcFqxrd3P3xn4MH8KogOP9wF7tlm2jWE+pWbWgiIQHAd8JiIur0nvxB9xd5Cun8wAdge2Z/Apug8C8yLinJrP3r9Bua8CrwCvK6XvVHr/P8CDwAV1yljT4DPMhuSAY9aarYDNgdcuoEvantTbaOsmUxHxqqT/IAWVPYAVEfHTUrZxtZ9dGHaEXESEpKeAt9XUeXPgsFLW20m9qoc9QMA6yQHHrAUR8YKkHwPnSFoDbADOJF3r2KEDHzEX+AxpdNo5dbYvAj4laSnwC+BvgUkVyv1PYJakh0jXhT4ObFPK88/AKcAdki4DngZ2Aw4B+iLi35s+GjMccMzacQpwJXA18DvgMtKP92c6UPZ9pFFhk4B5dbafC7yedNorgGuBfwBuaFDuOaRrNBcAfwS+BSwHPjaQISJ+I+lA4J+AS4EdgWeAu4Ehl94xa0S5bzEt6U3AF4ADgb8A7q4zv6HefuNJX/4TSIMdbgJOi4jflfIdD3wVeDPpL7/zIuKaTh6DmZk1rxuj1PYDpgGPFo+qrgGmkv4Sm0kaEbTRX3OSDgauI83GPhaYD8yVdFS7lTYzs/Z0o4ezWURsKF5fC+zcqIcj6SDgXuCQiLirSDsA+CFwZETcVqQtBLaMiMNq9r0Z2CEiDh6J4zEzs2qy93AGgk2TjgWeHQg2RTk/An5ZbKNYsv1QoHxBcx5pPsP41mpsZmadMFomfk4GVtZJX1FsA9gH2LJOvhWk42x59reZmbVvtIxSm0BaX6qsH9i7Jg918vWXtm9E0izSciSMGzfuXXvu2d5E6g0bNrDZZqMljneX26o6t1V1bqvqOtFWjz766HMRsUuVvKMl4ED9yXSqk15+ryHSU2LElaShrUyZMiWWLl3aTh3p6+tj6tSpbZUxVritqnNbVee2qq4TbVWsJVjJaPkzoJ80F6BsR/7Uo+mvSSvngfo9JDMzy2S0BJyV/OlaTa3aazuPkRYYLOebTJoF3swQbDMz67DREnAWALsV82wAkDSFdP1mAby2rPudpPWnak0H7ouIFzLV1czM6sh+DUfSNqSJn5AWJtxB0snF+5sjYp2kVcDiiDgVICLuK+bYXC3p86Qey4XAkoE5OIWvAH2SLiVNCp1WPI4Z8QMzM7NhdWPQwK6ke3jUGnj/RtL6UVuQVuKtNQO4hHS/kdeWtqnNEBFLiuD1VeBTpHk6p0TErR2sv5mZtSB7wImI1fxp5NhQeSbVSXse+GjxGG7fG2i8gKGZmWU2Wq7hmJnZKOeAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZZA84kvaVdLukdZKelnS+pM0b7DNbUgzx+GJNvquGyDN55I/MzMyGs0XOD5M0AbgNWA4cD+wDfIMU+M4eZtfvALeU0k4AzgAWlNJXAh8tpa1urcZmZtYpWQMO8ElgHHBSRKwBFknaAZgt6aIibZCIeBJ4sjZN0peBlRGxrJT9DxFx/wjU3czM2pD7lNqxwMJSYJlHCkKHVC1E0k7AkcDczlbPzMxGSu6AM5l0yus1EfEEsK7YVtXJwJakYFW2r6Q1ktZLWiKpciAzM7ORk/uU2gTg+Trp/cW2qmYAP4mIR0vpDwI/JF0j2gU4nXTa7uCI+FG9giTNAmYBTJw4kb6+viaqMdjatWvbLmOscFtV57aqzm1VXe62yh1wAKJOmoZIH5xR2p10+u2MQQVHfLOUdz4p+JxFGmQwuDIRVwJXAkyZMiWmTp1apRpD6uvro90yxgq3VXVuq+rcVtXlbqvcp9T6gR3rpI+nfs+nng+RAtQ1jTJGxIvAzcA7q1bQzMxGRu6As5LStRpJewLbUrq2M4wZwJKI+FUTn1up92RmZiMnd8BZABwtafuatOnAi8DiRjtLmgQcSMXRaZLGkUbGPdBsRc3MrLNyB5zLgfXA9ZKOKC7YzwYurh0qLWmVpO/W2X8G8ApwbXmDpPGS7pb0CUmHS5oO3AnsAVwwAsdiZmZNyDpoICL6JR0OXAbcSLpucwkp6JTrVW+5mxnA7RHx2zrb1gO/Ja1YsCvwEnAfcEhELO3IAZiZWcuyj1KLiOXAYQ3yTBoi/R3D7PMScFJblTOzlk06c/6gtNVfO64LNbFNlVeLNjOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsyyaCjiS6i03Y2Zm1lCzPZynJF0k6W0jUhszM+tZzQacK4CTgZ9J+qGkWZJ2GIF6mZlZj2kq4ETEuRGxN3Ak8AhwMfCMpO9LOmIkKmhmZr2hpUEDEXFHRPwtsBvwWeCtwEJJqyXNlvRnnaykmZmNfu2OUpsCvI902+h+4G7gY8AqSR9ps2wzM+shTQccSXtJOlfSY8DtwO7A3wF/FhH/G9iLdK3n6x2tqZmZjWpN3YBN0h2kHs2TwFXAnIh4vDZPRLwq6QfA5zpVSTMzG/2avePnc8A0YFFExDD5lgFvbLlWZmbWc5o9pXYZcG+9YCNpO0nvA4iIl8s9HzMzG9uaDTh3AvsOse2txXYzM7NBmg04GmbbdsC6NupiZmY9rOE1nOI02dSapI9JOqaUbWvgOODhzlXNzMx6SZVBA+8hTe4ECOCDwCulPH8EVgJf6FzVzMyslzQMOBHxdYo5NZJ+CZwYEctGumJmZtZbmhoWHREe6mxmZi2pcg1nGrAkItYUr4cVETd3pGZmZtZTqvRwbgIOBH5UvA6GHq0WgG/SZmZmg1QJOG8Enql5bWZm1rQqgwYer/fazMysGVWu4WzTTIER4cmfZmY2SJVTamtJ12aq8jUcMzMbpErA+TuaCzhmZmaDVLmGc1WGepiZWY9r9xbTZmZmlVQZNPAjYGZELJf0YxqcXouIAzpVOTMz6x1VruH8N/BizWtfzzEzs6ZVuYbz0ZrXM0e0NmZm1rNavoajZBdJw92UzczMDGgh4EiaJule4CXg18BLku6VdFzHa2dmZj2jqYAj6RPAjaTJoJ8j3Yztc8X7/yq2m5mZDdLU/XCAs4ArI+JTpfTLJV0OfAm4oiM1MzOzntLsKbXXA9cPse06YKdGBUjaV9LtktZJelrS+ZKGXQ5H0iRJUecxr07e4yU9LOklScslTa90ZGZmNqKa7eHcCRwCLKqz7RDgruF2ljQBuA1YDhwP7AN8gxT4zq7w+Z8H7ql5/1yp/INJge/bwGnANGCupP6IuLVC+WZmNkKqTPzct+btt4DvSHo9cAPwG2BX4ETgWOBjDYr7JDAOOCki1gCLJO0AzJZ0UZE2nEci4v5htn8ZuCsiTive3ylpP+AcwAHHzKyLqvRwfsbGkz0FfKJ4lO/+eQvDrxZ9LLCwFFjmAReSekg3VqhPXZK2Ag4l9WxqzQPmSBofES+0Wr6ZmbWnSsA5tIOfNxm4ozYhIp6QtK7Y1ijgzJG0E6lnNRf4UkQMrIKwD7AlsLK0zwrSKbu3AD9ur/pmZtaqKisNLO7g500Anq+T3l9sG8p64F9Ip8XWAFOBM0hB5viasqlTfn9p+0YkzQJmAUycOJG+vr7h6t/Q2rVr2y5jrHBbVTca2ur0t78yKK0bdR4NbbWpyN1WzQ4aeI2kzYCty+kV7vhZby02DZE+UOYzwGdqkvokPQt8W9I7ImLZMOVriPSBsq8ErgSYMmVKTJ06dfjaN9DX10e7ZYwVbqvqRkNbzTxz/qC01R+emr0eo6GtNhW526rZiZ+SdIakVcDLwO/rPIbTD+xYJ3089Xs+w7m2eH5nTdnUKX/gfbPlm5lZBzU7D+c04Ezgu6Sewz8B5wOPAqspTk0NYyXpWs1rJO0JbMvgay+NROn5MVIQnFzKNxnYUNTRzMy6pNmA83HgXOCi4v0NEXEesB8pYLy5wf4LgKMlbV+TNp10+4NmrxWdXDw/ABAR60nzhD5YyjcduM8j1MzMuqvZazhvBJZFxKuSXqY4XRURGyR9G/gOqQc0lMtJvaTrJV0I7A3MBi6uHSpdnLJbHBGnFu9nA9uTJn2uAd4HfAG4PiJ+WlP+V0jXdy4lzROaVjyOafI4zcysw5rt4fwO2K54/QTwlzXbJpAmdQ4pIvqBw0lzdW4EzgMuIfWaam3BxvN5VpLm6cwBbgZOAb5ePNeWv4TU8zkCWAi8HzjFqwyYmXVfsz2ce4B3k370f0BaIWAn4I/Ap4HbGxUQEcuBwxrkmVR6P480gbOhiLiB1LsxM7NNSLMBZzawR/H6AtIptZmkns0i4LOdqpiZmfWWpgJORDwCPFK8Xk+6F87nRqBeZmbWY9qZ+PkGYHfg6Yh4qnNVMjOzXtTKLaY/JelXwOPAD4EnJD0p6f90vHZmZtYzml1p4BzgMtJ8muOAKcXzAuBbxXYzM7NBmj2l9mnggoj4cin9lmJts0+TVh4wMzPbSLOn1MYx9F09F1NnMU8zMzNoPuDcAJw0xLYPADe1Vx0zM+tVVW4xPa3m7QLgIkmTGHyL6f2Af+x8Fc3MrBdUuYZzE4NvJb0HcHSdvN8j3YnTzMxsI1UCzhtHvBZmZtbzqtxi+vEcFTEzs97W9EoDkrYgDRA4GNgJ+B/gbtKtAgbf1NzMzIwmA46kXYFbgf1Jd/h8FjiINP/mIUlHRcRvO11JMzMb/ZodFn0x8HrgPRGxd0QcFBF7A+8p0i/udAXNzKw3NBtwpgFnRMSPaxOL918kLXNjZmY2SLMBZyvg90Ns+z3wuvaqY2ZmvarZgHM/cIakbWsTi/dnFNvNzMwGaXaU2unAncCvJN1KGjSwK2kSqICpHa2dmZn1jKZ6OBGxDHgzcCWwC3AkKeBcDrw5Ih7qeA3NzKwnVO7hSNoSOAD4ZUScOXJVMjOzXtRMD+dV4A7gbSNUFzMz62GVA05EbAB+DkwcueqYmVmvanaU2peAcyS9fSQqY2ZmvavZUWpnk1YUWCbpKdIotajNEBEHdKhuZmbWQ5oNOD8rHmZmZk2pFHAkjSMta/Mz4NfAbRHx7EhWzMzMekuVW0zvDdwGTKpJXiPpQxFx60hVzMzMekuVQQMXARuAvwa2AfYDHgSuGMF6mZlZj6kScA4Czo6IeyLipYhYAXwC+HNJu49s9czMrFdUCTi7A78opT1GWjttt47XyMzMelLVeTjROIuZmdnQqg6LXijplTrpt5fTI2LX9qtlZma9pkrAOW/Ea2FmZj2vYcCJCAccMzNrW7NrqZmZmbXEAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtK+l2SeskPS3pfEmbN9jn3ZLmSFpV7PeIpHMlbV3KN1tS1HkcM7JHZWZmjTR7A7a2SJpAutXBcuB4YB/gG6TAd/Ywu04v8l4I/BzYH/hK8fyBUt4XgHKAWdFu3c3MrD1ZAw7wSWAccFJErAEWSdoBmC3poiKtngsj4rc17/skvQRcIWmviHi8ZtsrEXH/yFTfzMxalfuU2rHAwlJgmUcKQocMtVMp2Ax4sHj22m1mZqNA7oAzGVhZmxARTwDrim3NeC/pxnCPlNJ3lPScpJclPSjppJZra2ZmHaOIfHcekPQy8IWIuLSU/iRwdUScVbGc3YCfAjdHxMya9I+QejzLgO1IN4qbBnwgIq4foqxZwCyAiRMnvmvevHnNHtZG1q5dy3bbbddWGWOF26q60dBWDz/1wqC0t+8xPns9RkNbbSo60VaHHnroAxExpUrebgScz0fEN0vpTwFXRcSXKpTxOtLAgzcA74qI/mHyCrgXGBcR72hU9pQpU2Lp0qWNsg2rr6+PqVOntlXGWOG2qm40tNWkM+cPSlv9teOy12M0tNWmohNtJalywMl9Sq0f2LFO+njg+UY7FwHkamA/YNpwwQYgUjS9Hti/0dBrMzMbWblHqa2kdK1G0p7AtpSu7QzhEtJw6iMjokr+Ab5jqZlZl+Xu4SwAjpa0fU3adOBFYPFwO0r6IvBZ4CMRsaTKhxU9ohOBhyLi1daqbGZmnZC7h3M5cBpwvaQLgb2B2cDFtUOlJa0CFkfEqcX7U4ALgKuApyQdWFPmYwPDpiUtBq4j9Za2BT4OHAicMLKHZWZmjWQNOBHRL+lw4DLgRtJ1m0tIQadcr9prLkcVzzOLR62PkgIRwCrg74HdSUOmfwIcFxELOlF/MzNrXe4eDhGxHDisQZ5JpfczGRxo6u13ahtVMzOzEeTVos3MLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzyyL77QnMbNM26cz5G71f/bXjulQT6zXu4ZiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWxRbcrYGZj26Qz5w9KW/2147pQExtp7uGYmVkWDjhmZpaFT6mZ9SCfprJNUfYejqR9Jd0uaZ2kpyWdL2nzCvuNlzRHUr+kFyR9X9Lr6+Q7XtLDkl6StFzS9JE5EjMza0bWgCNpAnAbEMDxwPnA6cB5FXa/BpgKfAyYCbwbuKFU/sHAdcCdwLHAfGCupKM6cgBmZtay3KfUPgmMA06KiDXAIkk7ALMlXVSkDSLpIOBo4JCIuKtIewr4oaQjIuK2IuuXgbsi4rTi/Z2S9gPOAW4ducMys5x8ynB0yh1wjgUWlgLLPOBC4BDgxmH2e3Yg2ABExI8k/bLYdpukrYBDgdNK+84D5kgaHxEvdOg4zLIY+GE9/e2vMPPM+f5RbYODVPflDjiTgTtqEyLiCUnrim1DBZzJwMo66SuKbQD7AFvWybeCdOrwLcCPW6u2jaRWfgha/fHIvV+7+1r3lP/dhvs3q5q3Ub5e/64oIvJ9mPQy8IWIuLSU/iRwdUScNcR+i4A/RMQJpfTvAXtHxHsl/RWwBPjLiFhWk+dNwM+BoyNi0Gk1SbOAWcXbtwKPtHyAyc7Ac22WMVa4rapzW1XntqquE221V0TsUiVjN4ZF14twGiK9lf3K7zXM/kTElcCVDT67MklLI2JKp8rrZW6r6txW1bmtqsvdVrmHRfcDO9ZJHw8838J+O9bs11+TVs5Dg/LNzGyE5Q44K/nTNRcAJO0JbEv9azRD7leovbbzGPBynXyTgQ3Aoy3U18zMOiR3wFkAHC1p+5q06cCLwOIG++1WzLMBQNIUYO9iGxGxnjT/5oOlfacD92Ucodax03NjgNuqOrdVdW6r6rK2Ve5BAxOA5cDPSEOh9wYuBi6NiLNr8q0CFkfEqTVpt5BGmn2e1GO5EPhNRPx1TZ6DgT7gMtKk0GlF/mPqDRgwM7N8svZwIqIfOBzYnDQE+jzgEuDcUtYtijy1ZpB6Qf8KXA08AJxYKn8JcDJwBLAQeD9wioONmVn3Ze3hmJnZ2OXbE9ThBUara6WtJL27aKdVxX6PSDpX0talfLMlRZ3HMSN7VCOjxbaaNEQbzKuTd6x/r4b6voSkL9bku2qIPPUGJm3yJL1J0hWSHpL0qqS+ivtl/73y7QlKahYYXU5aYHQf4Buk4Hz2MLtCWmD0raQFRgeuM90AlK8zXQd8m7QMzzTSAqP9o+3UXxttNb3IeyFpUu7+wFeK5w+U8r4AlAPMinbrnlub3ytI1yLvqXm/0WQ9f68A+A5wSyntBOAMisFFNVYCHy2lrW6txl23H+nf+37gdU3sl//3KiL8qHkAXyTN6dmhJu0fgXW1aXX2O4g0ufR9NWkHFGlH1KQtBO4o7XszsKTbx56xrXapkzaraKu9atJmA891+zi73FaTinb5Xw3KH/PfqyHKmg+sKKVdBSzt9nF2sL02q3l9LdBXYZ+u/F75lNpgQy0wOo60wOhw+w1aYBQYWGCUmgVG/7207zzgIEnj269+Vi21VUT8tk7yg8Xzrp2r3ial1e9VQ/5e1SdpJ+BIYG5nq7dpiYgNLezWld8rB5zBBi0UGhFPkP66Gu4cb6cWGB1NWm2ret5L6taX17LbUdJzkl6W9KCkk1qubXe121ZzivPzz0i6WNK4mm3+XtV3MqldBl3vAvaVtEbSeklLJLUV9EehrvxeOeAMNoH6y+D0F9va2W/guZyvv7R9tGi1rTYiaTfgS8C/lf6qXUU6lfIh0rWdp4HrRmnQabWt1gP/ApxKmlJwBfApNv4R9feqvhnATyKivMrIg6QbP/4N8GHSFIxFkg5ooa6jVVd+rzxooL5NaoHRTVyrbZUySq8jddnXAv+wUcER3yvlvRG4l3RDvetbqWyXNd1WEfEM8JmapD5JzwLflvSOqFkZvU45Y/l7tTvp9NsZgwqO+GYp73zSAIWzSIMMxorsv1fu4QzmBUara7WtAJAk0iTe/YBpkSYGDynSFcvrgf2rDFPfxLTVViXXFs/vrCmbOuWPye9V4UOkH8ZrGmWMiBdJF8Lf2ShvD+nK75UDzmBeYLS6VttqwCWkYa/HR0SV/ANG41/s7bZVrSg9+3s12AzSSKpfNfG5o/F71aqu/F454Aw2FhYY7ZRW24piIt5ngY9EWpKooaJHdCLwUES82lqVu6bltqrj5OL5AfD3qkzSJOBAKo5OKwZgHEvRnmNEd36vuj2GfFN7kC6EPQMsIq3JNot0feGrpXyrgO+W0m4BfgGcRDoX/AhwdynPwcArwKXAVOAi0l8LR3X72HO1FXAK6a/JOaQfhtrHLjX5FpMmmx1FCjQ3F231/m4fe8a2mk2a9HhSsd/5pB/e6/y9Gvx/sEg/k/SXeb35XuOBu4FPkAZhTCdNmFwPTOn2sbfYXtuQ/gg5GbgP+O+a99sM1Vbd+L3qemNtig9gX+CO4j/2M6RZ8JuX8qwGriql7Vj8iD4PrAF+AOxcp/wTSCtmryd1X2d0+5hzthVp4l0M8ZhZk++7xX+IF4E/FD8Ux3b7mDO31QxgKWnFhT8WPxznA1v5ezX4/2CRvgy4ZYhytyZdB/xV0U4vFD+8B3b7mNtoq0nD/H+aNFRbdeP3yot3mplZFr6GY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXx/wFXjsDaQZ7WZgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHdRJREFUeJzt3XvQHVWd7vHvw0UItxAEAoMMEbxEGCiPRoQ5jIQ7hHNEEE0KPVNx0KhHxZmKDqgIAR1KcLhoMRZQOnA8owkzwHCGSwjh8oa7GiSIkwQMGu6iOC/EmBAJ+Z0/Vgc7vff77vt633fzfKp27b1Xr169eqWzf293r7VaEYGZmVmvbTbSFTAzs9cHBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx2wYkuZIGig+D0ia0+L6UyVFtawh8t4o6ZFhll8qaVDSVk1u+y2SQtKxrdTZrFcccMxGj7nAX0jar7pA0ubAycB1EbEue83MusABx2z0+H/AGmBGnWWHARNJQclsTHLAMWuTpIMl/YekZyX9QdISSR9pt7yIWA3cCEyvs3gG8DxwZ7HtPSRdKelXktZKekzSOZK2HKa+WxSX2D5VSf+6pF9X0vaSdHVxCW+NpPmS3truvpkBbDHSFTAbzSJiTunz1MrivYB7gcuAl4H/DlwpaUNEzC3WGQBULWsYc4EPS3p3RDwIUASRE4EfRMSrRb5dgBeAvwVeBCYDZwM7A59pcTc3IWnnYr+eB2YV+/ZlYKGkt/uSnrXLAcesTRExb+NnSQLuAt4EfIL2L33NJwWQGcCDRdoxwE7lMiNiCbCktP17gbXAZZI+HxHr29w+wGxgK+CIiHixKP8+YCUwE7i8g7LtdcyX1MzaJGmCpG9LegJ4pXjNAt7WbpnF2cO/k85yVCRPB54AHihtezNJsyUtk7S22Pb/AcaRgl4njgQWAKuLy3BbAC8BPwWmdFi2vY454Ji17ypSMPgmcDTwHuCfga07LHcu8OfAwZK2Bk4A5samU7vPBs4H/g14P3AgcFqxrNPt7wx8hD8F0Y2v9wF7dli2vY75kppZG4pAcDzw2Yi4rJTejT/i7iDdP5kB7A5sT+0lug8B8yLirNK2D2hQ7qvAeuANlfSdKt//C3gIOK9OGasabMNsSA44Zu3ZCtgceO0GuqTtSWcbHT1kKiJelfRvpKCyB7AsIn5WyTauvO3CsD3kIiIkPQO8o1TnzYHDK1lvJ51VPeIOAtZNDjhmbYiIlyT9BDhL0ipgA3AG6V7HDl3YxFzgs6TeaWfVWb4Q+LSkxcAvgb8GJjVR7r8DsyQ9TLov9Algm0qefwROAe6QdCnwLLAbcCgwEBH/2vLemOGAY9aJU4ArgO8DvwMuJf14f7YLZd9P6hU2CZhXZ/nZwBtJl70CuAb4O+D6BuWeRbpHcx7wR+DbwFLg4xszRMRvJB0E/ANwCbAj8BxwNzDk1DtmjSj3I6YlvQX4InAQ8BfA3XXGN9Rbbzzp4P8AqbPDjcBpEfG7Sr4TgK8DbyX95XdORFzdzX0wM7PWjUQvtf2AacBjxatZVwNTSX+JzST1CNrkrzlJhwDXkkZjHwfcBMyVdHSnlTYzs86MxBnOZhGxofh8DbBzozMcSQcD9wGHRsRdRdqBwI+AoyLitiJtAbBlRBxeWvdmYIeIOKQX+2NmZs3JfoazMdi06Djg+Y3Bpijnx8CvimUUU7YfBlRvaM4jjWcY316NzcysG8bKwM/JwPI66cuKZQD7AFvWybeMtJ9tj/42M7POjZVeahNI80tVDQJ7l/JQJ99gZfkmJM0iTUfCuHHj3r3nnnkHUm/YsIHNNhsrcT8Pt0ktt0ktt0mtkWiTxx577IWI2KWZvGMl4ED9wXSqk179riHSU2LEFaSurUyZMiUWL17cSR1bNjAwwNSpU7Nuc7Rzm9Rym9Rym9QaiTYp5hJsylj582CQNBagakf+dEYzWEqr5oH6Z0hmZpbJWAk4y/nTvZqy8r2dx0kTDFbzTSaNAm+lC7aZmXXZWAk484HdinE2AEiaQrp/Mx9em9b9TtL8U2XTgfsj4qVMdTUzszqy38ORtA1p4CekiQl3kHRy8f3miFgjaQWwKCJOBYiI+4sxNt+X9AXSGcv5wD0bx+AUvgYMSLqENCh0WvE6tuc7ZmZmwxqJTgO7kp7hUbbx+5tJ80dtQZqJt2wGcDHpeSOvTW1TzhAR9xTB6+vAp0njdE6JiFu7WH8zM2tD9oATESv5U8+xofJMqpP2IvCx4jXcutfTeAJDMzPLbKzcwzEzszHOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtK+l2SWskPSvpXEmbN1hnjqQY4vWlUr6rhsgzufd7ZmZmw9ki58YkTQBuA5YCJwD7ABeSAt+Zw6z6XeCWStoHgNOB+ZX05cDHKmkr26uxmZl1S9aAA3wKGAecFBGrgIWSdgDmSLqgSKsREU8DT5fTJH0VWB4RSyrZ/xARD/Sg7mZm1oHcl9SOAxZUAss8UhA6tNlCJO0EHAXM7W71zMysV3IHnMmkS16viYgngTXFsmadDGxJClZV+0paJWmdpHskNR3IzMysd3JfUpsAvFgnfbBY1qwZwE8j4rFK+kPAj0j3iHYBZpMu2x0SET+uV5CkWcAsgIkTJzIwMNBCNTq3evXq7Nsc7dwmtdwmtdwmtUZ7m+QOOABRJ01DpNdmlHYnXX47vabgiG9V8t5ECj5fJnUyqK1MxBXAFQBTpkyJqVOnNlONrhkYGCD3Nkc7t0ktt0ktt0mt0d4muS+pDQI71kkfT/0zn3o+TApQVzfKGBFrgZuBdzVbQTMz643cAWc5lXs1kvYEtqVyb2cYM4B7IuKpFrbb1NmTmZn1Tu6AMx84RtL2pbTpwFpgUaOVJU0CDqLJ3mmSxpF6xj3YakXNzKy7cgecy4B1wHWSjixu2M8BLip3lZa0QtL36qw/A1gPXFNdIGm8pLslfVLSEZKmA3cCewDn9WBfzMysBVk7DUTEoKQjgEuBG0j3bS4mBZ1qvepNdzMDuD0ifltn2Trgt6QZC3YFXgbuBw6NiMVd2QEzM2tb9l5qEbEUOLxBnklDpL9zmHVeBk7qqHJmZtYzni3azMyycMAxM7MsHHDMzCyLkZhpwOx1a9IZN7W13uz91zOzjXVXfuP4trZn1gs+wzEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLFoKOJLqTTdjZmbWUKtnOM9IukDSO3pSGzMz61utBpzLgZOBn0v6kaRZknboQb3MzKzPtBRwIuLsiNgbOAp4FLgIeE7SDyQd2YsKmplZf2ir00BE3BERfw3sBnwOeDuwQNJKSXMk/Vk3K2lmZmNfp73UpgDvIz02ehC4G/g4sELSRzss28zM+kjLAUfSXpLOlvQ4cDuwO/A3wJ9FxP8C9iLd6/lmV2tqZmZjWkuTd0q6g3RG8zRwFXBlRDxRzhMRr0r6IfD5blXSzMzGvlZni34BmAYsjIgYJt8S4M1t18rMzPpOq5fULgXuqxdsJG0n6X0AEfFK9czHzMxe31oNOHcC+w6x7O3FcjMzsxqtBhwNs2w7YE0HdTEzsz7W8B5OcZlsainp45KOrWTbGjgeeKR7VTMzs37STKeB95IGdwIE8CFgfSXPH4HlwBe7VzUzM+snDQNORHyTYkyNpF8BJ0bEkl5XzMzM+ktL3aIjwl2dzcysLc3cw5kG3BMRq4rPw4qIm7tSMzMz6yvNnOHcCBwE/Lj4HAzdWy0AP6TNzMxqNBNw3gw8V/psZmbWsmY6DTxR77OZmVkrmrmHs00rBUaEB3+amVmNZi6prSbdm2mW7+GYmVmNZgLO39BawDEzM6vRzD2cqzLUw8zM+lynj5g2MzNrSjOdBn4MzIyIpZJ+QoPLaxFxYLcqZ2Zm/aOZezj/Cawtffb9HDMza1kz93A+Vvo8s6e1MTOzvtX2PRwlu0ga7qFsZmZmQBsBR9I0SfcBLwO/Bl6WdJ+k47teOzMz6xstBRxJnwRuIA0G/TzpYWyfL77/R7HczMysRkvPwwG+DFwREZ+upF8m6TLgK8DlXamZmZn1lVYvqb0RuG6IZdcCOzUqQNK+km6XtEbSs5LOlTTsdDiSJkmKOq95dfKeIOkRSS9LWippelN7ZmZmPdXqGc6dwKHAwjrLDgXuGm5lSROA24ClwAnAPsCFpMB3ZhPb/wJwb+n7C5XyDyEFvu8ApwHTgLmSBiPi1ibKNzOzHmlm4Oe+pa/fBr4r6Y3A9cBvgF2BE4HjgI83KO5TwDjgpIhYBSyUtAMwR9IFRdpwHo2IB4ZZ/lXgrog4rfh+p6T9gLMABxwzsxHUzBnOz9l0sKeATxav6tM/b2H42aKPAxZUAss84HzSGdINTdSnLklbAYeRzmzK5gFXShofES+1W76ZmXWmmYBzWBe3Nxm4o5wQEU9KWlMsaxRwrpS0E+nMai7wlYjYOAvCPsCWwPLKOstIl+zeBvyks+qbmVm7mplpYFEXtzcBeLFO+mCxbCjrgH8iXRZbBUwFTicFmRNKZVOn/MHK8k1ImgXMApg4cSIDAwPD1b/rVq9enX2bo10/t8ns/de3td7Ece2t26/tCP19nLRrtLdJq50GXiNpM2DranoTT/ysNxebhkjfWOZzwGdLSQOSnge+I+mdEbFkmPI1RPrGsq8ArgCYMmVKTJ06dfjad9nAwAC5tzna9XObzDzjprbWm73/ei58pPX/ris/MrWt7Y0F/XyctGu0t0mrAz8l6XRJK4BXgN/XeQ1nENixTvp46p/5DOea4v1dpbKpU/7G762Wb2ZmXdTqOJzTgDOA75HOHP4BOBd4DFhJcWlqGMtJ92peI2lPYFtq7700EpX3x0lBcHIl32RgQ1FHMzMbIa0GnE8AZwMXFN+vj4hzgP1IAeOtDdafDxwjaftS2nTS4w9avVd0cvH+IEBErCONE/pQJd904H73UDMzG1mtXhR+M7AkIl6V9ArF5aqI2CDpO8B3SWdAQ7mMdJZ0naTzgb2BOcBF5a7SxSW7RRFxavF9DrA9adDnKuB9wBeB6yLiZ6Xyv0a6v3MJaZzQtOJ1bIv7aWZmXdbqGc7vgO2Kz08C/620bAJpUOeQImIQOII0VucG4BzgYtJZU9kWbDqeZzlpnM6VwM3AKcA3i/dy+feQznyOBBYA7wdO8SwDZmYjr9UznHuB95B+9H9ImiFgJ+CPwGeA2xsVEBFLgcMb5JlU+T6PNICzoYi4nnR2Y2Zmo0irAWcOsEfx+TzSJbWZpDObhcDnulUxMzPrLy0FnIh4FHi0+LyO9Cycz/egXmZm1mc6Gfj5JmB34NmIeKZ7VTIzs37UziOmPy3pKeAJ4EfAk5KelvS/u147MzPrG63ONHAWcClpPM3xwJTifT7w7WK5mZlZjVYvqX0GOC8ivlpJv6WY2+wzpJkHzMzMNtHqJbVxDP1Uz0XUmczTzMwMWg841wMnDbHsg8CNnVXHzMz6VTOPmJ5W+jofuEDSJGofMb0f8Pfdr6KZmfWDZu7h3Ejto6T3AI6pk/dfSE/iNDMz20QzAefNPa+FmZn1vWYeMf1EjoqYmVl/a3mmAUlbkDoIHALsBPwXcDfpUQHtPbDdzMz6XksBR9KuwK3AAaQnfD4PHEwaf/OwpKMj4rfdrqSZmY19rXaLvgh4I/DeiNg7Ig6OiL2B9xbpF3W7gmZm1h9aDTjTgNMj4iflxOL7l0jT3JiZmdVoNeBsBfx+iGW/B97QWXXMzKxftRpwHgBOl7RtObH4fnqx3MzMrEarvdRmA3cCT0m6ldRpYFfSIFABU7taOzMz6xstneFExBLgrcAVwC7AUaSAcxnw1oh4uOs1NDOzvtD0GY6kLYEDgV9FxBm9q5KZmfWjVs5wXgXuAN7Ro7qYmVkfazrgRMQG4BfAxN5Vx8zM+lWrvdS+Apwlaf9eVMbMzPpXq73UziTNKLBE0jOkXmpRzhARB3apbmZm1kdaDTg/L15mZmYtaSrgSBpHmtbm58Cvgdsi4vleVszMzPpLM4+Y3hu4DZhUSl4l6cMRcWuvKmZmZv2lmU4DFwAbgL8CtgH2Ax4CLu9hvczMrM80E3AOBs6MiHsj4uWIWAZ8EvhzSbv3tnpmZtYvmgk4uwO/rKQ9Tpo7bbeu18jMzPpSs+NwonEWMzOzoTXbLXqBpPV10m+vpkfErp1Xy8zM+k0zAeecntfCzMz6XsOAExEOOGZm1rFW51IzMzNriwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lfS7ZLWSHpW0rmSNm+wznskXSlpRbHeo5LOlrR1Jd8cSVHndWxv98rMzBpp9QFsHZE0gfSog6XACcA+wIWkwHfmMKtOL/KeD/wCOAD4WvH+wUrel4BqgFnWad3NzKwzWQMO8ClgHHBSRKwCFkraAZgj6YIirZ7zI+K3pe8Dkl4GLpe0V0Q8UVq2PiIe6E31zcysXbkvqR0HLKgElnmkIHToUCtVgs1GDxXvnrvNzGwMyB1wJgPLywkR8SSwpljWir8kPRju0Ur6jpJekPSKpIckndR2bc3MrGsUke/JA5JeAb4YEZdU0p8Gvh8RX26ynN2AnwE3R8TMUvpHSWc8S4DtSA+KmwZ8MCKuG6KsWcAsgIkTJ7573rx5re5WR1avXs12222XdZujXT+3ySPPvNTWehPHwfNrW19v/z3Gt7W9saCfj5N2jUSbHHbYYQ9GxJRm8o5EwPlCRHyrkv4McFVEfKWJMt5A6njwJuDdETE4TF4B9wHjIuKdjcqeMmVKLF68uFG2rhoYGGDq1KlZtzna9XObTDrjprbWm73/ei58pPVbriu/cXxb2xsL+vk4addItImkpgNO7ktqg8COddLHAy82WrkIIN8H9gOmDRdsACJF0+uAAxp1vTYzs97K3UttOZV7NZL2BLalcm9nCBeTulMfFRHN5N/ITyw1Mxthuc9w5gPHSNq+lDYdWAssGm5FSV8CPgd8NCLuaWZjxRnRicDDEfFqe1U2M7NuyH2GcxlwGnCdpPOBvYE5wEXlrtKSVgCLIuLU4vspwHnAVcAzkg4qlfn4xm7TkhYB15LOlrYFPgEcBHygt7tlZmaNZA04ETEo6QjgUuAG0n2bi0lBp1qv8j2Xo4v3mcWr7GOkQASwAvhbYHdSl+mfAsdHxPxu1N/MzNqX+wyHiFgKHN4gz6TK95nUBpp6653aQdXMzKyHPFu0mZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRvZeamdlIa3dOu3b185x2rfAZjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWxRYjXQHLY9IZN2Xd3spvHJ91e2Y2+vkMx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycC81M7NRpt1epbP3X8/MNtbN1avUZzhmZpZF9oAjaV9Jt0taI+lZSedK2ryJ9cZLulLSoKSXJP1A0hvr5DtB0iOSXpa0VNL03uyJmZm1IuslNUkTgNuApcAJwD7AhaTAd2aD1a8G3g58HNgAnA9cD/xVqfxDgGuB7wCnAdOAuZIGI+LWru5MRc5TYA+qNLOxKPc9nE8B44CTImIVsFDSDsAcSRcUaTUkHQwcAxwaEXcVac8AP5J0ZETcVmT9KnBXRJxWfL9T0n7AWUBPA46ZmQ0v9yW144AFlcAyjxSEDm2w3vMbgw1ARPwY+FWxDElbAYcB/1pZdx5wsKTxnVffzMzalTvgTAaWlxMi4klgTbGs6fUKy0rr7QNsWSffMtJ+vq2N+pqZWZfkvqQ2AXixTvpgsayd9fYu5aFOvsHK8k1ImgXMKr6ulvToMPXoutNgZ+CFVtbR+T2qTBd1WMeW26TftXOcwNg4VjowZo6TXP8OI3Sc7NVsxpEYhxN10jREejvrVb9rmPWJiCuAKxpsu2ckLY6IKSO1/dHIbVLLbVLLbVJrtLdJ7ktqg8COddLHU/8MptF6O5bWGyylVfPQoHwzM+ux3AFnOZV7NZL2BLal/j2aIdcrlO/tPA68UiffZFI36sfaqK+ZmXVJ7oAzHzhG0valtOnAWmBRg/V2K8bZACBpCun+zXyAiFgH3Al8qLLudOD+iHip8+r3xIhdzhvF3Ca13Ca13Ca1RnWbKKLRrZMubiwN/FwK/Jw0cHNv4CLgkog4s5RvBbAoIk4tpd1C6mn2Bf408PM3EVEd+DkAXEoaFDqtyH9srwd+mpnZ8LKe4UTEIHAEsDlwA3AOcDFwdiXrFkWeshmks6B/Br4PPAicWCn/HuBk4EhgAfB+4BQHGzOzkZf1DMfMzF6/PFt0F3hC0lrttImk9xTtsaJY71FJZ0vaupJvjqSo8zq2t3vVmTbbZNIQ+zqvTt4xd5xA2+0y1DEQkr5UynfVEHmGG2g+oiS9RdLlkh6W9KqkgSbXG/W/J34eTof6eULSdnXQJtOLvOcDvwAOAL5WvH+wkvcloBpglnVa917p8DiBdC/y3tL3TQb3jcXjBDpql+8Ct1TSPgCcTtGRqGQ58LFK2sr2apzFfqR/vweAN7Sw3uj/PYkIvzp4AV8ijQHaoZT296TpenYYZr2DSYNR31dKO7BIO7KUtgC4o7LuzcA9I73vPWiTXeqkzSraZK9S2hzghZHez0xtMqnY///RoPwxd5x00i5DlHUTsKySdhWweKT3s8X92Kz0+RpgoIl1xsTviS+pdc4TktZqq00i4rd1kh8q3nftXvVGRLvHSUNj+DiBLrWLpJ2Ao4C53a1efhGxoY3VxsTviQNO5zwhaa1226SevyRdHqjOcbejpBckvSLpIUkntV3bPDptkyuL6/nPSbpI0rjSsrF6nED3jpWTSW1Qc28L2FfSKknrJN0jqaMAP0qNid8TB5zO9WJC0gmlPNTJN+yEpKNAu22yCUm7AV8B/m/lL+AVpMsuHybd23kWuHaUB51222Qd8E/AqaQhBZcDn2bTH9axepxAl44V0rCJn0ZEdUaRh4DZwP8EPkIabrFQ0oFt1HU0GxO/J+400B2jakLSUaLdNkkZpTeQTv1XA3+3ScER/1LJewNwH+lBe9e1U9lMWm6TiHgO+GwpaUDS88B3JL0zIpYMU/5YOE6g82Nld9Llt9NrCo74ViXvTaQOCl8mdTLoJ6P+98RnOJ3zhKS12m0TACSJNLh3P2BapAHDQ4p05/M64IBmuqOPkI7apOKa4v1dpbKpU/5oP06gO+3yYdKP5tWNMkbEWtJN8nc1yjvGjInfEwecznlC0lrttslGF5O6yJ4QEc3k32g0/yXfaZuUReV9rB4n0J12mUHqZfVUC9sdzcdKO8bE74kDTuc8IWmtdtuEYtDe54CPRpqqqKHijOhE4OGIeLW9Kvdc221Sx8nF+4Mwpo8T6LBdJE0CDqLJ3mlFZ4vjKNquj4yN35OR7nM+1l+kG23PAQtJc7jNIt13+Hol3wrge5W0W4BfAieRric/CtxdyXMIsB64BJgKXED6a+Tokd73brcJcArpL88rST8i5dcupXyLSIPWjiYFmpuLNnn/SO97D9pkDmkg5EnFeueSfoyvHevHSSftUko/g/RXe70xXOOBu4FPkjpcTCcNplwHTBnpfR+mTbYh/VFxMnA/8J+l79sM1R5j4fdkxBu3H17AvsAdxQ/Bc6TR8ZtX8qwErqqk7Vj8uL4IrAJ+COxcp/wPkGbYXkc6PZ4x0vvcizYhDdKLIV4zS/m+V/zHWgv8ofhROW6k97lHbTIDWEyaWeGPxQ/NucBW/XCctNsupfQlwC1DlLs16d7eU0WbvFT8KB800vvcoD0mDfP/YNJQ7TEWfk88eaeZmWXhezhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFv8fsuyGxQkHuroAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -564,7 +520,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYHFWd//H3h4sQuYZbQEViUGTB9VESEPaHMggKBB+jCMKq6xOFJK6uuPuIgooa8LKCAu6u648EFeSnElxg2UVucskEcEVJAiwaEgwa7iLgQAgJkcD398epCUVNz3T1dHf1dOfzep56evrUqerv6e6Z79SpU6cUEZiZmbXbRp0OwMzMNgxOOGZmVgknHDMzq4QTjpmZVcIJx8zMKuGEY2ZmlXDCsZaSNFtSDLN8qOQ+9sj2s22hfHq2ny3bE325OJrc5yWS+kvU20TSP0q6U9IaSQOSrpJ04Chfd6y8p9ML34k/SbpW0j4ltu3LtnlDFbFa6znhWDs8BRxQY7mm5PZ7AF8Gin/or8z2s7o1YY46jraStDFwOfB14L+BqcB04HmgX9IHRrHbsfKeDnp79rqzgB2B+ZJeUWebxdk297Y5NmuTTTodgPWkdRFxa6t3GhGPAY+1er9j0CeBI4EjIiKfpP9L0jxgrqQFEfFQsy/Uwff0tohYBSBpIXAf8EHgm8WKkgRsFhErgZZ/r6w6PsKxjpD0OUnLJT0r6VFJ10jaWVIfcEVW7Q9ZF8qKbJuXdP9Impg9P07S+ZJWSnpwsOtO0mclPSzpMUlnSNoo9/p7Spon6QFJqyX9NuvC2ihbP2wc2fpXZ9v/Odv+WkmvL7Rx16wbbI2kFZJOKPn2fAqYX0g2g74AbA4cn3udFZK+JemLkv4oaZWkH0vapl5banWpSdpB0g8lPZG1rV/SlELbBl/zn7L3fCB7Pxo+GoyIB0hJb2K279mSHpd0oKTbgGeBY2p1qUnaOPsu3SNpbRbLBYVYp0lamH3X/ijpTEmbNhqnNc9HONYWkoZ8tyJiXbbuw8DngZOB3wLbk7pYtiB1m5wEfAs4CngEWFvn5c4Afgy8D/go8ENJbwZ2y55PBr4K3A7My7Z5JbAs2+5p4E3AacA44J9HikPSdsAtwBPAx0jdUacA10vaIyLWZP+V/xewAyk5PJvtfzvgdyO8b7uS/vCeU2t9RNwr6S7gbYVVfwssB2YAuwBnAt8DjhmpLcO4HHhtts3jwGdIXV5vjojluXrvB/4XmAm8Cjib1A348RH2PYSkrUjvyx9zxS8Hfpi14x7g4axdRXOAD2f1FmT7OTq37/cDF2X1Pg/sTvp8N8raZ1WKCC9eWrYAs4EYZpmY1fkOcOkI+3hXvn6ufHpWvmX2fGL2/Pxcna2B50h/1DfOlf8auHiY1xPpn6/PA78vEcdXSMlmu1zZeNK5q09kz6dm274lV2c3YB3QP0Lb98+2mzZCncuBu3PPVwB/HnxfsrIPAi8Af9Xge3p49vygXJ0tSEcgcwqveS+wSa7s28Af63w/Bl9vm+w93xW4OHtf3lT4Dk0rbNuXlb8he75n9vzEET7X+/Lfj6z8o8AaYPtO/75saIuPcKwdngIOrVH+cPZ4B3C8pNNIJ60XRcTzTbzeDYM/RMRKSY8BCwr7XA68evCJpM2Bz5H+ML8a2DS3bpPIjsaGcShwHbAydyT3NLAIGOx62g94NCJ+lYvtPkmLRtG+Mq6L7JxI5jLgR8C+wN0N7Gc/4LGIWDBYEBHPSPoZUBwhN7/wPi0BdpL0soj4S53XeTL38+PARyPijlxZAFfX2cfB2eMFw6zfg/TZ/rRwxH0jqVvyDaSjIquIE461w7qIWDjC+h8AW5G6Yr4EPCHp/wKzR5l4niw8/8swZZvnnp8BnEDq5lqc1Z8GnJrVW8XwdiAdiRxbY91g8tsZ+FON9X8itX04gwMBdhuhzm65evn9rhepW28VtbuhRrIL8GiN8kdJ3VV5td5jAS/Lfh7J20hdkY8DD0TEC4X1AyWS1vbAM5EGE9SyQ/Z41TDrd62zf2sxJxyrXPbH5RzgnOycxQeBr5H+iJ5bURjHAP8WEWcOFkg6suS2fyYNV/5KjXVPZ49/BHaqsX4nUndOTRHxQHZC/93AvxbXS3oN6T/z4mvvVKg3DtiSdL6mEY8U95WZQGp3q9xeOCIrKnPflCeALSRtPUzSGYx3Jun8XdEfSryGtZBHqVlHRcQDEfENUpfXXlnx4H+2m9feqiXGkTtxrnTty3GFOsPFcQOwN/DbiFhYWJZldW4DJkh6S+41Xg3UvcAR+BfgEEnvrLHuq1nc3y+Uv0MvvXjzKNIf7cEjzbLv6a9I3WLrByVIejlpmPYtJWKv0o3Z44eHWb+M9E/MxBqf08KIeKKaMG2Qj3CsHTaRtH+N8gci4iFJc0j/fd5KOt9zMPA60qg1SH8oAGYpXXeyOiLuanGM1wGfkLQ8i+UTwGaFOsPFcTbwIeBGSf9G+qM2ATgIuCUiLiJ149wJ/Iekk0mj1E6ndjdb0b+RzhP9p6RvAf2kbrjjSSf//y6GXoOzBrhS0jdJ3WLfBP4zIpbUactLRMS1kn4BXCzpFNJRxEmkBD3kGplOiohlkuYCZ0naCbiJdGHr0RFxXES8IOnTwP+TtDXpnNBfgEnAe7J6VV/wumHr9KgFL721MPIotVOzOtOBX5D+0K8mDa09vrCfT5NGGK0DVuS2qzVK7V2FbVcA3yqUXQAszD2fAPwnsJJ0fuJM0pDi9fsfLo6s/BXA+dm2a7PX/BGwd67Oq0mzK6zJ9jELuIQRRqnltt0E+KfsvVkDDJD+YB5Yo+4K4KzsvX8UeIY0FHjbRt/TrGxH4MLsNdeQTqzvW+I9HrKvGrGWqTMbeLxGeR+5UWpZ2cZkowtJyeRBho5KOwK4OXtfVpIGrXyV3Ag7L9Usyj6Qykh6LWlc//6kvuibI6KvxHbbkIZdvofUFfgz0nDIJwr1ppG+TK8jfQlPi4iLW9kGs7EkO+dzSUT4uhIb0zpxDmdv0jUK92RLWReT/sM5gfRf0r6k6xHWU5rY8FJgPum/miuBi4bpCzczswp14ghno8iGQEq6BNih3hGOpAOA/yFdjHZTVrYf6QTnOyLi+qzsWmDTiHh7bturgK0jYlSz7JqNdT7CsW5R+RFODB1vX8YRpIvobsrt59ekYY1HAEjajHTy+aeFbecBBwzOK2XWayJiopONdYNuGRa9J7C0Rvnd2TpIcyRtWqPe3aR27tG26MzMrK5uGRY9nqFXNUMaRTMpV4ca9QYK619C0kzShWGMGzdu8q67dvfFxy+88AIbbdQt/0c0x20dG7a6J52KfXqP1vxPN5bb2mq90NZ77rnn8YjYsUzdbkk4UPvKY9UoLz7XCNsTEXOBuQBTpkyJhQtHmpFl7Ovv76evr6/TYVTCbR0jlP2KLVs2cr2SxnRbW6wX2irpvrJ1uyW1DlD7rovb8uIRzUCurFgHah8hmZlZRbol4SzlxXM1eflzO/eSpqUv1tuTNE17I0Owzcysxbol4VwN7JxdZwNAdgfCSdk6ImIt6fqbYwrbHgv8MiKeqihWMzOrofJzONlEgFOzp68EtpY0eIe+qyJidTa/1YKIOB4gIn6ZXWNzoaSTSEcsZ5Dmrbo+t/uvAP2Svk26KHRqthze9oaZmdmIOjFoYCfgPwplg89fQ5qjaRPSHEl5x5GmtP8Bualt8hUi4pYseX0V+HvSdTofiIiftzB+M8ur+OJx616VJ5yIWMGLI8eGqzOxRtmTwEeyZaRtL6cw5Y2ZmXVet5zDMTOzLueEY2bNmTw5LWZ1dNOFn2Y2Fi1e3OkIrEv4CMfMzCrhhGNmZpVwwjEzs0o44ZiZWSWccMzMrBIepWZmzZkxo9MRWJdwwjGz5syd2+kIrEu4S83MzCrhhGNmzVm0KC1mdbhLzcyaM2VKevSs0VaHj3DMzKwSTjhmZlYJJxwzM6uEE46ZmVXCCcfMzCrhhGNmZpXwsGgza87ChZ2OwLqEE46ZNce3l7aS3KVmZmaVcMIxs+bMnJkWszqccMysOeedlxazOpxwzMysEk44ZmZWCSccMzOrhBOOmZlVwgnHzMwq4Qs/zaw5++zT6QisSzjhmFlzfHtpK8ldamZmVgknHDMzq4QTjpk1R0qLWR1OOGZmVgknHDMzq4QTjpmZVcIJx8zMKuGEY2ZmlXDCMTOzSnimATNrzpw5nY7AuoQTjpk1x7eXtpIq71KTtJekGyStlvSwpNMlbVxnm9mSYpjlc7l6FwxTZ8/2t8zMzEZS6RGOpPHA9cASYBqwO3AWKfGdOsKm3wOuKZS9BzgZuLpQvhT4SKFsxegiNrO65s5Njz7SsTqq7lL7GDAOOCoiVgLXSdoamC3pzKxsiIh4EHgwXybpi8DSiLijUP2ZiLi1DbGbWS2zZqVHJxyro+outSOAawuJZR4pCR1UdieStgPeAVzU2vDMzKxdqk44e5K6vNaLiPuB1dm6so4GNiUlq6K9JK2UtFbSLZJKJzIzM2ufqrvUxgNP1igfyNaVdRywOCLuKZTfDvyKdI5oR+DTpG67AyPi17V2JGkmMBNgwoQJ9Pf3NxDG2LNq1aqub0NZbuvY0Jc9tiq+sdzWVtuQ2gpARFS2AM8Bn6pR/hDwtZL72AV4HjipRN1xwB+Ay8vse/LkydHt5s+f3+kQKuO2jhGQlhYZ021tsV5oK7AwSuaAqrvUBoBta5RvQ+0jn1reDwi4uF7FiFgDXAX4putmZh1WdcJZSuFcjaRdgS0onNsZwXHALRHxQAOvGw3UNTOzNqg64VwNHCZpq1zZscAaYEG9jSVNBPan5Og0SeNII+MWNRqomZU02KlmVkfVCedcYC1wmaRDsxP2s4GzIzdUWtJySd+vsf1xwDrgkuIKSdtIulnSLEmHSDoWmA+8Evh6G9piZmYNqHSUWkQMSDoE+A5wBem8zTmkpFOMq9Z0N8cBN0TEYzXWrQUeI81YsBPwLPBL4KCIWNiSBpiZ2ahVPnlnRCwB3l6nzsRhyt80wjbPAkc1FZyZNW7y5PS4aBETT7lyffGKbxzZoYBsrPJs0WbWnMWLOx2BdQnfgM3MzCrhhGNmZpVwwjEzs0o44ZiZWSWccMzMrBIepWZmzZkxo9MRWJdwwjGz5gzeYtqsDnepmZlZJRpKOJJqTTdjZhuyRYvSYlZHo11qD0m6EDg/Iu5uR0Bm1mWmTEmPnjHa6mi0S20OcDTwG0m/kjRT0tZtiMvMzHpMQwknIr4cEZOAdwDLgLOBRyT9WNKh7QjQzMx6w6gGDUTEjRHxYWBn4JPA64FrJa2QNFvSK1oZpJmZdb9mR6lNAd5Gum30AHAzcAKwXNKHmty3mZn1kIYTjqTdJH1Z0r3ADcAuwEeBV0TE3wG7kc71fLOlkZqZWVdraJSapBtJRzQPAheQRqvdl68TEc9L+gnwqVYFaWZm3a/RYdGPA1OB6yJGHAN5B/CaUUdlZt1joe/gbuU0mnC+AyyulWwkbQnsExE3RcRzwH1Dtjaz3jN4i2mzOho9hzMf2GuYda/P1puZmQ3RaMLRCOu2BFY3EYuZdaOZM9NiVkfdLjVJbwP6ckUnSDq8UG1z4EjgrtaFZmZd4bzz0qNnjbY6ypzDeQvp4k6AAI4B1hXq/AVYCnymdaGZmVkvqZtwIuKbZNfUSPoD8N6IuKPdgZmZWW9paJRaRHios5mZjUqZczhTgVsiYmX284gi4qqWRGZmZj2lzBHOz4D9gV9nPwfDj1YLwDdpMzOzIcoknNcAj+R+NjN70T77dDoC6xJlBg3cV+tnMzPAt5e20sqcw3l5IzuMCF/8aWZmQ5TpUltFOjdTls/hmJnZEGUSzkdpLOGY2YZE2RiiESeQNyt3DueCCuIwM7Me1+wtps3MzEopM2jg18D0iFgi6TbqdK9FxH6tCs7MzHpHmXM4vwXW5H52R62ZmTWszDmcj+R+nt7WaMzMrGeN+hyOkh0ljXRTNjMzM6DB2aJh/WSepwKTs+3XSVoEfC0irmxxfGY21s2Z0+kIrEs0lHAkzQK+C9wAfAr4E7ATcBTw35I+HhH+9pltSHx7aSup0SOczwNzI+LvC+XnSjoX+ALghGNmZkM0eg5ne+CyYdZdCmxXbweS9pJ0g6TVkh6WdLqkEafDkTRRUtRY5tWoO03SXZKelbRE0rGlWmZmozN3blrM6mj0CGc+cBBwXY11BwE3jbSxpPHA9cASYBqwO3AWKfGdWuL1TwJ+kXv+eGH/B5IS33eBE4GpwEWSBiLi5yX2b2aNmjUrPbprzeooc+HnXrmn/wp8T9L2wOW8eA7nvcARwAl1dvcxYBxwVESsBK6TtDUwW9KZWdlIlkXErSOs/yJwU0ScmD2fL2lv4EuAE46ZWQeVOcL5DS+92FPArGwp3v3zGkaeLfoI4NpCYpkHnEE6QrqiRDw1SdoMOJh0ZJM3Dzhf0jYR8dRo929mZs0pk3AObuHr7QncmC+IiPslrc7W1Us450vajnRkdRHwhYgYnAVhd2BTYGlhm7tJXXZ7ALc1F76ZmY1WmZkGFrTw9cYDT9YoH8jWDWct8O+kbrGVQB9wMinJTMvtmxr7HyisfwlJM4GZABMmTKC/v3+k+Me8VatWdX0bynJbx4a+7LG/v59P//W69eWjjXcst7XVNqS2wigu/BwkaSNg82J5iTt+1pqLTcOUD+7zEeAfckX9kh4FvivpTRFxxwj71zDlg/ueC8wFmDJlSvT19Y0c/RjX399Pt7ehLLd1bOnr62P6KS9e+73ig32j2k83tLVVNqS2QoPDorPpbE6WtBx4Dni6xjKSAWDbGuXbUPvIZySXZI/75PZNjf0PPm90/2Zm1kKNXodzInAK8H3SkcPXgNOBe4AVZF1TI1hKOleznqRdgS0Yeu6lnig83ktKgnsW6u0JvJDFaGatFuG7fVopjSacGcCXgTOz55dHxGnA3qSE8bo6218NHCZpq1zZsaTbHzR6rujo7HERQESsJV0ndEyh3rHALz1Czcyssxo9h/Ma4I6IeF7Sc2TdVRHxgqTvAt8jHQEN51zSUdJlks4AJgGzgbPzQ6WzLrsFEXF89nw2sBXpos+VwNuAzwCXRcT/5vb/FdL5nW+TrhOami2HN9hOMzNrsUaPcJ4Atsx+vh94c27deNJFncOKiAHgENK1OlcApwHnkI6a8jbhpdfzLCVdp3M+cBXwAeCb2WN+/7eQjnwOBa4F3g18wLMMmLXR5MlpMauj0SOcXwD7kv7o/4Q0Q8B2wF+AT5BmkR5RRCwB3l6nzsTC83mkCzjriojLSUc3ZlaFxYs7HYF1iUYTzmzgldnPXyd1qU0nHdlcB3yyVYGZmVlvaSjhRMQyYFn281rSPXE+1Ya4zMysxzRz4eergF2AhyPiodaFZGZmvajRQQNI+ntJDwD3Ab8C7pf0oKSPtzw6MzPrGY3ONPAl4Duk62mOBKZkj1cD/5qtNzMzG6LRLrVPAF+PiC8Wyq/J5jb7BGnmATPbUMyY0ekIrEs0mnDGMfxdPRfgUWpmGx7fXtpKavQczuXAUcOsex/ws+bCMTOzXlXmFtNTc0+vBs6UNJGht5jeG/hs60M0szFt0aL06NkGrI4yXWo/Y+itpF8JHFaj7o9Id+I0sw3FlCnp0TNGWx1lEs5r2h6FmZn1vDK3mL6vikDMzKy3NTzTgKRNSAMEDgS2A/4M3Ey6VcC6kbY1M7MNV0MJR9JOwM+BN5Lu8PkocADp+ps7Jb0zIh5rdZBmZtb9Gh0WfTawPfCWiJgUEQdExCTgLVn52a0O0MzMekOjCWcqcHJE3JYvzJ5/jjTNjZmZ2RCNnsPZDHh6mHVPAy9rLhwz6zoLF3Y6AusSjSacW4GTJd0YEc8MFkraAjg5W29mGxJf8GklNZpwPg3MBx6Q9HPSoIGdSBeBCuhraXRmZtYzGjqHExF3AK8D5gI7Au8gJZxzgddFxJ0tj9DMxraZM9NiVkfpIxxJmwL7AX+IiFPaF5KZdZXzzkuPnjXa6mjkCOd54Ebgr9oUi5mZ9bDSCSciXgB+B0xoXzhmZtarGr0O5wvAlyT9dTuCMTOz3tXoKLVTSTMK3CHpIdIotZfMSR4R+7UoNjMz6yGNJpzfZIuZmVlDSiUcSeNI09r8BvgjcH1EPNrOwMysS+yzT6cjsC5R5hbTk4DrgYm54pWS3h8RP29XYGbWJQZvMW1WR5lBA2cCLwBvBV4O7A3cDsxpY1xmZtZjyiScA4BTI+IXEfFsRNwNzAJeLWmX9oZnZma9okzC2QX4faHsXtLcaTu3PCIz6y5SWszqKHsdTtSvYmZmNryyw6KvlbSuRvkNxfKI2Kn5sMzMrNeUSTintT0KMzPreXUTTkQ44ZiZWdManUvNzMxsVJxwzMysEo3OpWZm9lJzfA24leOEY2bN8e2lrSR3qZmZWSWccMysOXPnpsWsjsoTjqS9JN0gabWkhyWdLmnjOtvsK+l8Scuz7ZZJ+rKkzQv1ZkuKGsvh7W2V2QZs1qy0mNVR6TkcSeNJtzpYAkwDdgfOIiW+U0fY9Nis7hnA74A3Al/JHt9XqPsUUEwwdzcbu5mZNafqQQMfA8YBR0XESuA6SVsDsyWdmZXVckZEPJZ73i/pWWCOpN0i4r7cunURcWt7wjczs9GqukvtCODaQmKZR0pCBw23USHZDLo9e/TcbWZmXaDqhLMnsDRfEBH3A6uzdY34G9KN4ZYVyreV9Lik5yTdLumoUUdrZmYto4jq7jwg6TngMxHx7UL5g8CFEfH5kvvZGfhf4KqImJ4r/xDpiOcOYEvSjeKmAu+LiMuG2ddMYCbAhAkTJs+bN6/RZo0pq1atYsstt+x0GJVwW8eGvoMPBqB//nzueuip9eV//cptRrW/sdzWVuuFth588MGLImJKmbqdSDgnRcS/FMofAi6IiC+U2MfLSAMPXgVMjoiBEeoK+B9gXES8qd6+p0yZEgsXLqxXbUzr7++nr6+v02FUwm0dIwZvvhbBxFOuXF+84htHjmp3Y7qtLdYLbZVUOuFU3aU2AGxbo3wb4Ml6G2cJ5EJgb2DqSMkGIFI2vQx4Y72h12Y2ShFpMauj6lFqSymcq5G0K7AFhXM7wziHNJz6HRFRpv4g/zaYmXVY1Uc4VwOHSdoqV3YssAZYMNKGkj4HfBL4UETcUubFsiOi9wJ3RsTzowvZzMxaoeojnHOBE4HLJJ0BTAJmA2fnh0pLWg4siIjjs+cfAL4OXAA8JGn/3D7vHRw2LWkBcCnpaGkLYAawP/Ce9jbLbAM2eXJ6XLSos3HYmFdpwomIAUmHAN8BriCdtzmHlHSKceXPubwze5yeLXkfISUigOXAPwK7kIZMLwaOjIirWxG/mdWweHGnI7AuUfntCSJiCfD2OnUmFp5PZ2iiqbXd8U2EZmZmbeTZos3MrBJOOGZmVgknHDMzq4QTjpmZVaLyQQNm1mNmzOh0BNYlnHDMrDm+vbSV5C41MzOrhBOOmTVn0SLPMmCluEvNzJozJZuZ3jNGWx0+wjEzs0o44ZiZWSWccMzMrBJOOGZmVgknHDMzq4RHqZnZEBNPuXL9zyu+cWQHI7Fe4oRjZs1ZuLDTEViXcMIxs+YM3mLarA6fwzEzs0o44ZhZc2bOTItZHU44Ztac885Li1kdTjhmZlYJJxwzM6uEE46ZmVXCCcfMzCrhhGNmZpXwhZ9m1px99ul0BNYlnHDMrDm+vbSV5C41MzOrhBOOmZlVwgnHzJojpcWsDiccMzOrhBOOmZlVwgnHzMwq4YRjZmaVcMIxM7NKOOGYmVklPNOAmTVnzpxOR2BdwgnHzJrj20tbSU44ZtZxE0+5cv3PFxy+RQcjsXbyORwza87cuWkxq8NHOGbWnFmz0qO71qwOJxyzHpXvpgJY8Y0jOxSJWVJ5l5qkvSTdIGm1pIclnS5p4xLbbSPpfEkDkp6S9GNJ29eoN03SXZKelbRE0rHtaYmZmTWi0oQjaTxwPRDANOB04NPAaSU2vxjoA04ApgP7ApcX9n8gcCkwHzgCuBK4SNI7W9IAMzMbtaq71D4GjAOOioiVwHWStgZmSzozKxtC0gHAYcBBEXFTVvYQ8CtJh0bE9VnVLwI3RcSJ2fP5kvYGvgT8vH3NMrOqucuw+1TdpXYEcG0hscwjJaGD6mz36GCyAYiIXwN/yNYhaTPgYOCnhW3nAQdI2qb58M2qNfGUK5l4ypXc9dBTQ/7AWuMG30+/l51R9RHOnsCN+YKIuF/S6mzdFSNst7RG+d3ZOoDdgU1r1LublFj3AG4bXdjWTqP9T/Wuh55ierZtI//d5l+v6u0a3dY6q5HPvEzd4neh1jVHvfx9UURU92LSc8BnIuLbhfIHgQsj4vPDbHcd8ExEvKdQ/iNgUkT8jaT/A9wCvDki7sjVeS3wO+CwiBjSrSZpJjA4nvP1wLJRN3Bs2AF4vNNBVMRt7U1ua3fZLSJ2LFOxE8Oia2U4DVM+mu2KzzVMeSqMmAv0zFVrkhZGxJROx1EFt7U3ua29q+pzOAPAtjXKtwGeHMV22+a2G8iVFetQZ/9mZtZmVSecpbx4zgUASbsCW1D7HM2w22Xy53buBZ6rUW9P4AXgnlHEa2ZmLVJ1wrkaOEzSVrmyY4E1wII62+2cXWcDgKQpwKRsHRGxlnT9zTGFbY8FfhkRTzUfflfome7BEtzW3uS29qiqBw2MB5YAvwHOICWMs4FvR8SpuXrLgQURcXyu7BrSSLOTSEcsZwB/ioi35uocCPQD3yFdFDo1q394rQEDZmZWnUqPcCJiADgE2Jg0BPo04Bzgy4Wqm2R18o4jHQX9ALgQWAS8t7D/W4CjgUOBa4F3Ax9wsjEz67xKj3DMzGzD5fvhdDlJMyT9LpusdJGkQ0psM1tS1FgOryLmeto9wetYMpq2Spo4zOc3r6q4R0PSayXNkXSnpOcl9Zfcrhs/14bb2q2fayN8e4IuJuk44FxgNumi148AP5O0b0T8ps7mTwHFBHN3y4NsUG6C1yWkCV53B84i/XN06gibQprg9fWkCV4Hz/NdDrx1pI06pcm2Qjo/+Yvc87F+AeHepPOqtwIva2C7rvqMQ3TUAAADS0lEQVRcM6NtK3Tf51peRHjp0oU0K8IPcs83Au4CflRnu9nA452Of5jYPke6pmrrXNlngdX5shrbHUC6uPdtubL9srJDO92uFrd1Ytaud3W6DQ22d6Pcz5cA/SW26brPtYm2duXn2sjiLrUuJWkSadTe+slKI+IF4D/IJjTtUm2b4HUMGm1bu1L2/WxUN36uo21rz3PC6V6DF7jWmqx0O0n15jbaVtLjkp6TdLuko1of4qgMmag1Iu4n/ddf6+LfYbfL5Cd4HWtG29ZB52fnBx6RdLakce0IssO68XNtVs9+rj6H073GZ4/FKXsGcusfG2bb5aSumzuALYFZwKWS3hcRl7U60AaNp/Y0RAO82OZGt5vUgrjaYbRtXQv8O+keTytJNyY8mXQOaFprQ+y4bvxcR6vnP1cnnDEku2fPLvXqRUT+P76GJivNtv9R4XWvAP6HdKO6TiccaP8Er2NJwzFHxCPAP+SK+iU9CnxX0psiN1t6j+jGz7VhG8Ln6i61seUYUldBvQVaOFlppDOWlwFvLDP8uM3aOcHrWDPattZySfa4T1MRjT3d+Lm2Uk99rk44Y0hEfC8iVG/Jqg8e5dSarPTPETFcd9qIIYw6+NZp5wSvY81o21pLFB57RTd+rq3UU5+rE06Xiojfk2bAXj9ZqaSNsudXN7IvSSJNE3RnRDzfyjhHoW0TvI5Bo21rLUdnj4taEdgY0o2fayv11ufa6XHZXka/AH8LPE+6SPBg4ALSH6s35OocBKwDDsqVLQBOBN5JSjRXkS6oe/cYaNN44BHgOtKceDOBVcBXC/WWA98vlF0D/B44CngP6Tqlmzvdpla3lXQd1VlZOw8FTs8+90s73aY67X056Q/o0cAvgd/mnr+8Vz7X0ba1Wz/Xht6XTgfgpckPEGZkX9y1wGLgkML6PtLheF+u7PvZL/Aa4BngZuCITrclF99ewI1ZfI8AXwE2LtRZAVxQKNsWOJ/Ut78S+AmwQ6fb0+q2kiayXUiaLeIv2ed/OrBZp9tTp60Ts+9irWVij32uDbe1Wz/XRhZP3mlmZpXwORwzM6uEE46ZmVXCCcfMzCrhhGNmZpVwwjEzs0o44ZiZWSWccMzMrBJOOGZmVon/Dx31YONW1cMZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEPCAYAAADvS6thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYXVV9//H3h4sQCPdLQIoEUKQgfSxEhP6oTAQVQh+jCIaq9YkCia0V6w8roKgBL22Qi1XKjwQValWCBUrLXW4TwAqYBCgaAgYJd7k5EIaEQMj398faA5udM+cyc/bZM2c+r+fZz5mz9lr7rHX2ZL7Za6+1tiICMzOzKq1TdQXMzMwcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudgZG0laZakGGT7RJPH2C07zuaF9OnZccaXU/vm6jHMY14sqbeJfOtJ+gdJd0taKalP0lWSDhji546U73R64XfiKUnXStq7ibI9WZl3dKKu1lkORlaG54H9a2zXNFl+N+DrQDEIXJkdZ0V7qjnkepRK0rrAZcC3gf8GpgDTgVeBXkkfG8JhR8p3OuC92efOBLYBbpL05gZlFmVlHii5blaB9aqugHWl1RFxW7sPGhFPA0+3+7gj0OeAw4BDIyIfwP9L0jxgrqT5EfHYcD+owu/01xHRDyBpAfAQ8HHgO8WMkgRsEBHLgbb/XtnI4Csjq4SkkyQtlfSSpCclXSNpO0k9wOVZtgezbpllWZk3dClJmpi9P0rS+ZKWS3p0oDtQ0pckPS7paUmzJa2T+/zdJc2T9IikFZJ+m3WLrZPtH7Qe2f63ZOX/mJW/VtLbC23cMetaWylpmaRjmvx6Pg/cVAhEA74CbAgcnfucZZJOl/RVSX+Q1C/pp5I2a9SWWt10kraW9G+Sns3a1itpUqFtA5/5hew778u+j5avIiPiEVJAnJgde5akZyQdIOnXwEvAkbW66SStm/0u3S9pVVaXCwp1nSppQfa79gdJp0lav9V6Wrl8ZWSlkLTW71ZErM72fRL4MnAC8FtgK1K3zcakrpgvAqcDhwNPAKsafNxs4KfAR4BPA/8m6c+BnbL3+wDfBO4E5mVldgDuy8q9ALwTOAUYB/xTvXpI2hK4FXgW+Aypi+tE4HpJu0XEyux/8/8FbE0KHC9lx98S+F2d721H0h/ls2rtj4gHJN0DvKew66+BpcCxwPbAacAPgCPrtWUQlwFvzco8A/wjqRvtzyNiaS7fR4H/BWYAfwKcSepa/Ls6x16LpE1I38sfcskbAf+WteN+4PGsXUVzgE9m+eZnxzkid+yPAhdm+b4M7Eo6v+tk7bORIiK8eWvbBswCYpBtYpbnbOCSOsf4q3z+XPr0LH189n5i9v78XJ5NgVdIf/DXzaXfAVw0yOeJ9B+zLwO/b6Ie3yAFoi1zaVuQ7pV9Nns/JSv77lyenYDVQG+dtu+XlZtaJ89lwL2598uAPw58L1nax4E1wJ+2+J0ekr0/MJdnY9KVy5zCZz4ArJdL+y7whwa/HwOft1n2ne8IXJR9L+8s/A5NLZTtydLfkb3fPXt/XJ3z+lD+9yNL/zSwEtiq6n8v3l7ffGVkZXgeOLhG+uPZ613A0ZJOId1AXxgRrw7j824Y+CEilkt6GphfOOZS4C0DbyRtCJxE+qP9FmD93L71IruKG8TBwHXA8twV4AvAQmCgO2tf4MmIuD1Xt4ckLRxC+5pxXWT3YDKXAj8B3gXc28Jx9gWejoj5AwkR8aKkK4DiSL6bCt/TYmBbSW+KiJcbfM5zuZ+fAT4dEXfl0gK4usExJmevFwyyfzfSuf154Ur9RlJX5ztIV1M2AjgYWRlWR8SCOvt/BGxC6t75GvCspP8HzBpiUHqu8P7lQdI2zL2fDRxD6jpblOWfCpyc5etncFuTrmCm1dg3EBi3A56qsf8pUtsHMzAoYac6eXbK5csf9zWRugr7qd21Vc/2wJM10p8kdYHl1fqOBbwp+7me95C6N58BHomINYX9fU0EtK2AFyMNbKhl6+z1qkH279jg+NZBDkbWcdkfnrOAs7J7JB8HvkX6A3tuh6pxJPD9iDhtIEHSYU2W/SNpyPU3aux7IXv9A7Btjf3bkrqIaoqIR7LBBR8EvlfcL2ln0v/oi5+9bSHfOGA86f5QK54oHiszgdTudrmzcCVX1MyzbZ4FNpa06SABaaC+M0j3C4sebOIzrEM8ms4qFRGPRMQ/k7rR9siSB/5HvGHtUm0xjtxNfKW5PUcV8gxWjxuAPYHfRsSCwnZflufXwARJ7859xluAhpM7gX8BDpL0/hr7vpnV+4eF9PfpjRNXDyf9QR+4Qm32O72d1NX22gAJSRuRhprf2kTdO+nG7PWTg+y/j/QfnIk1ztOCiHi2M9W0ZvjKyMqwnqT9aqQ/EhGPSZpD+l/rbaT7S5OBt5FG10H6IwIwU2lezYqIuKfNdbwO+KykpVldPgtsUMgzWD3OBD4B3Cjp+6Q/eBOAA4FbI+JCUtfQ3cB/SDqBNJruVGp33RV9n3Rf6j8lnQ70krr2jiYNRPibWHuO0UrgSknfIXW1fQf4z4hY3KAtbxAR10r6JXCRpBNJVx9fJAXvteYAVSki7pM0FzhD0rbAzaRJvUdExFERsUbS8cC/S9qUdA/qZWAX4ENZvk5P9rXBVD2Cwlt3bdQfTXdylmc68EtSEFhBGh58dOE4x5NGQq0GluXK1RpN91eFssuA0wtpFwALcu8nAP8JLCfdDzmNNCz6teMPVo8s/c3A+VnZVdln/gTYM5fnLaRVJ1Zmx5gJXEyd0XS5susBX8i+m5VAH+mP6QE18i4Dzsi++yeBF0nDmTdv9TvN0rYBfpx95krSTf53NfEdr3WsGnVtJs8s4Jka6T3kRtNlaeuSjYIkBZpHWXv03KHALdn3spw0gOab5EYCeqt+U3ayOkbSW0nzFvYj9X3fEhE9TZTbjDR09EOk7sUrSEM6ny3km0r6RXsb6Rf0lIi4qJ1tMBtJsntMF0eE583YqFXFPaM9SXMw7s+2Zl1E+p/RMaT/Xb2LNN/iNUqLSF4C3ET639CVwIWD9L2bmdkIUcWV0TqRDeOUdDGwdaMrI0n7A/9Dmoh3c5a2L+lm6/si4vos7Vpg/Yh4b67sVcCmETGk1Y7NRjpfGVk36PiVUaw9n6AZh5ImEN6cO84dpKGZhwJI2oB0I/znhbLzgP0H1uky6zYRMdGByEa70TK0e3dgSY30e7N9kNacWr9GvntJ7dyttNqZmdmwjJah3Vuw9mxvSKN9dsnloUa+vsL+N5A0gzQpjnHjxu2zww47sM46oyVGt2bNmjVd2zbo7vZV3bZN7k+3d1/Yrf3/p6u6bWXr5vatWbOGpUuXPhMR2wz3WKMlGEHtGdmqkV58rzrliYi5wFyASZMmxemnn05PT88wqjly9fb2dm3boLvbV3nblP0zuu+++vmGoPK2layb29fb28vkyZMfasexRku47qP20zY35/Urob5cWjEP1L6yMjOzEWC0BKMlvH5vKC9/L+kB0qMDivl2Jy2l38owcjMz66DREoyuBrbL5hEBkD15cpdsHxGxijS/6MhC2WnAryLi+Q7V1czMWtTxe0bZootTsrc7AJtKGngy41URsSJbL2x+RBwNEBG/yuYQ/VjSF0lXOrNJ64Bdnzv8N4BeSd8lTYidkm2HlN4wMzMbsioGMGwL/EchbeD9zqQ1r9YjrTmVdxTpsQM/IrccUD5DRNyaBbZvAn9Lmof0sYj4RRvrbzb2dHhyvI09HQ9GEbGM10e4DZZnYo2054BPZVu9spdRWCbIzMxGttFyz8jMzLqYg5GZNbbPPmkzK8lomvRqZlVZtKjqGliX85WRmZlVzsHIzMwq52BkZmaVczAyM7PKORiZmVnlPJrOzBo79tiqa2BdzsHIzBqbO7fqGliXczedmZlVzsHIzBpbuDBtZiVxN52ZNTZpUnr16t1WEl8ZmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq56HdZtbYggVV18C6nIORmTXmR45bydxNZ2ZmlXMwMrPGZsxIm1lJHIzMrLHzzkubWUkcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudJr2bW2N57V10D63IORmbWmB85biVzN52ZmVXOwcjMzCrnYGRmjUlpMyuJg5GZmVXOwcjMzCrnYGRmZpVzMDIzs8o5GJmZWeUcjMzMrHJegcHMGpszp+oaWJdzMDKzxvzIcStZx7vpJO0h6QZJKyQ9LulUSes2KDNLUgyynZTLd8EgeXYvv2VmZjZUHb0ykrQFcD2wGJgK7AqcQQqKJ9cp+gPgmkLah4ATgKsL6UuATxXSlg2txmYGwNy56dVXSFaSTnfTfQYYBxweEcuB6yRtCsySdFqWtpaIeBR4NJ8m6avAkoi4q5D9xYi4rYS6m41dM2emVwcjK0mnu+kOBa4tBJ15pAB1YLMHkbQl8D7gwvZWz8zMqtDpYLQ7qRvtNRHxMLAi29esI4D1SYGsaA9JyyWtknSrpKaDnJmZVaPT3XRbAM/VSO/L9jXrKGBRRNxfSL8TuJ10T2ob4HhSV+ABEXFHrQNJmgHMAJgwYQL9/f309va2UJXRo5vbBt3dvqrb1pO9llGHqttWtm5uX39/f9uOVcXQ7qiRpkHS184obU/q0jthrQNH/Esh75WkwPRl0oCHtSsTMReYCzBp0qQYP348PT09zVRl1Ont7e3atkF3t2+ktK2MOoyUtpWlm9vXziDb6W66PmDzGumbUfuKqZaPkoLXRY0yRsRK4Cpg72YraGZmndfpYLSEwr0hSTsCG1O4l1THUcCtEfFIC5/b1FWXmZlVo9PB6GrgA5I2yaVNA1YC8xsVljQR2I8mR9FJGkcawbew1YqaWU5E2sxK0ulgdC6wCrhU0sHZ4IFZwJn54d6Slkr6YY3yRwGrgYuLOyRtJukWSTMlHSRpGnATsAPw7RLaYmZmbdLRAQwR0SfpIOBs4HLSfaKzSAGpWK9aSwQdBdwQEU/X2LcKeJq0ksO2wEvAr4ADI2JBWxpgZmal6PhouohYDLy3QZ6Jg6S/s06Zl4DDh1U5M6ttn33S60L3eFs5vGq3mTW2aFHVNbAu54frmZlZ5RyMzMyscu6mM6vIxBOvbDrv8XutZnqT+Zf982FDrZJZZXxlZGZmlXMwMjOzyrmbzswaO/bYqmtgXc7ByMwaG3jsuFlJ3E1nZmaVaykYSaq1RI+ZdbuFC736gpWq1W66xyT9GDg/Iu4to0JmNgJNmpRevXK3laTVbro5wBHAbyTdLmmGpE1LqJeZmY0hLQWjiPh6ROwCvA+4DzgTeELSTyUdXEYFzcys+w1pAENE3BgRnwS2Az4HvB24VtIySbMkvbmdlTQzs+423NF0k4D3kB4l3gfcAhwDLJX0iWEe28zMxoiWg5GknSR9XdIDwA3A9sCngTdHxN8AO5HuLX2nrTU1M7Ou1dJoOkk3kq6EHgUuII2qeyifJyJelfQz4PPtqqSZmXW3Vod2PwNMAa6LqDvG8y5g5yHXysxGlgULqq6BdblWg9HZwKJagUjSeGDviLg5Il4BHlqrtJmNTgOPHTcrSav3jG4C9hhk39uz/WZmZi1pNRipzr7xwIph1MXMRqoZM9JmVpKG3XSS3gP05JKOkXRIIduGwGHAPe2rmpmNGOedl169ereVpJl7Ru8mTWwFCOBIYHUhz8vAEuAf21c1MzMbKxoGo4j4DtmcIUkPAh+OiLvKrpiZmY0dLY2miwgP1zYzs7Zr5p7RFODWiFie/VxXRFzVlpqZmdmY0cyV0RXAfsAd2c/B4KPqAvAD+MzMrCXNBKOdgSdyP5vZWLP33lXXwLpcMwMYHqr1s5mNIX7kuJWsmXtGG7VywIjwxFczM2tJM910/aR7Qc3yPSMzM2tJM8Ho07QWjMys2ygbs1R3sX6zoWvmntEFHaiHmZmNYcN97LiZmdmwNTOA4Q5gekQslvRrGnTZRcS+7aqcmZmNDc3cM/otsDL3szuNzcysrZq5Z/Sp3M/TS62NmZmNSUO+Z6RkG0n1HrhnZmbWUEurdsNrC6eeDOyTlV8taSHwrYi4ss31M7ORYM6cqmtgXa6lYCRpJnAOcAPweeApYFvgcOC/Jf1dRPi31qzb+JHjVrJWr4y+DMyNiL8tpJ8r6VzgK4CDkZmZtaTVe0ZbAZcOsu8SYMtGB5C0h6QbJK2Q9LikUyXVXUJI0kRJUWObVyPvVEn3SHpJ0mJJ05pqmZkNbu7ctJmVpNUro5uAA4Hrauw7ELi5XmFJWwDXA4uBqcCuwBmkoHhyE5//ReCXuffPFI5/ACkongMcB0wBLpTUFxG/aOL4ZlbLzJnp1d11VpJmJr3ukXv7PeAHkrYCLuP1e0YfBg4FjmlwuM8A44DDI2I5cJ2kTYFZkk7L0uq5LyJuq7P/q8DNEXFc9v4mSXsCXwMcjMzMRqhmrox+wxsnugqYmW3Fp75eQ/1Vuw8Fri0EnXnAbNKV1eVN1KcmSRsAk0lXRHnzgPMlbRYRzw/1+GZmVp5mgtHkNn7e7sCN+YSIeFjSimxfo2B0vqQtSVdkFwJfiYiB1SF2BdYHlhTK3EvqBtwN+PXwqm9mZmVoZgWG+W38vC2A52qk92X7BrMK+FdSV9tyoAc4gRSApuaOTY3j9xX2v4GkGcAMgAkTJtDf309vb2+9Noxa3dw2GH3tO36v1U3nnTCu+fxlfAc9JR57tJ23VnVz+/r7+9t2rJYnvQ6QtA6wYTG9iSe91lrbToOkDxzzCeDvc0m9kp4EzpH0zoi4q87xNUj6wLHnAnMBJk2aFOPHj6enp6d+C0ap3t7erm0bjL72TT+x+Tnix++1mjPuae6f67KP9wyxRo2V8f2OtvPWqm5uXzuDbEtDu7MlgE6QtBR4BXihxlZPH7B5jfTNqH3FVM/F2eveuWNT4/gD71s9vpmZdUir84yOA04Efki64vgWcCpwP7CMrLurjiWke0OvkbQjsDFr3+tpJAqvD5AC5O6FfLsDa7I6mtlQRPgpr1aqVoPRscDXgdOy95dFxCnAnqRg8rYG5a8GPiBpk1zaNNIjKlq9N3VE9roQICJWkeZBHVnINw34lUfSmZmNXK3eM9oZuCsiXpX0ClkXWESskXQO8APSldNgziVdXV0qaTawCzALODM/3DvrBpwfEUdn72cBm5AmvC4H3gP8I3BpRPxv7vjfIN1P+i5pHtSUbDukxXaamVkHtXpl9CwwPvv5YeDPc/u2IE1oHVRE9AEHkeYiXQ6cApxFutrKW483zldaQpqHdD5wFfAx4DvZa/74t5KumA4GrgU+CHzMqy+YDdM++6TNrCStXhn9EngXKSD8jLRywpbAy8BnSat51xURi4H3NsgzsfB+HmnyakMRcRnpqsjM2mXRoqprYF2u1WA0C9gh+/nbpG666aQrouuAz7WrYmZmNna0FIwi4j7gvuznVaRnGn2+hHqZmdkYMpxJr38CbA88HhGPta9KZmY21rQ6gAFJfyvpEeAh4HbgYUmPSvq7ttfOzMzGhFZXYPgacDZpvtBhwKTs9Wrge9l+MzOzlrTaTfdZ4NsR8dVC+jXZWnGfJa3IYGbd5Nhjq66BdblWg9E4Bn+a63w8ms6sO/mR41ayVu8ZXQYcPsi+jwBXDK86ZmY2FjXz2PEpubdXA6dJmsjajx3fE/hS+6toZpVbuDC9ehUGK0kz3XRXsPbjxXcAPlAj709IT2A1s24yaVJ69crdVpJmgtHOpdfCzMzGtGYeO/5QJypiZmZjV8srMEhajzRY4QBgS+CPwC2kxzmsbm/1zMxsLGgpGEnaFvgF8GekJ7s+CexPml90t6T3R8TT7a6kmZl1t1aHdp8JbAW8OyJ2iYj9I2IX4N1Z+pntrqCZmXW/VoPRFOCEiPh1PjF7fxJpaSAzM7OWtHrPaAPghUH2vQC8aXjVMbMRacGCqmtgXa7VYHQbcIKkGyPixYFESRsDJ2T7zazbeLKrlazVYHQ8cBPwiKRfkAYwbEuaACugp621MzOzMaGle0YRcRfwNmAusA3wPlIwOhd4W0Tc3fYamln1ZsxIm1lJmr4ykrQ+sC/wYEScWF6VzGzEOe+89OrVu60krVwZvQrcCPxpSXUxM7MxqulgFBFrgN8BE8qrjpmZjUWtzjP6CvA1SXuVURkzMxubWh1NdzJppYW7JD1GGk33hjXlI2LfNtXNzMzGiFaD0W+yzczMrG2aCkaSxpGWAvoN8Afg+oh4ssyKmdkIsvfeVdfAulwzjx3fBbgemJhLXi7poxHxi7IqZmYjyMBjx81K0swAhtOANcBfAhsBewJ3AnNKrJeZmY0hzQSj/YGTI+KXEfFSRNwLzATeImn7cqtnZmZjQTPBaHvg94W0B0hr0W3X9hqZ2cgjpc2sJM3OM4rGWczMzIam2aHd10paXSP9hmJ6RGw7/GqZmdlY0kwwOqX0WpiZ2ZjWMBhFhIORmZmVqtW16czMzNrOwcjMzCrX6tp0ZjYWzfEcdyuXg5GZNeZHjlvJ3E1nZmaVczAys8bmzk2bWUk6Howk7SHpBkkrJD0u6VRJ6zYo8y5J50tampW7T9LXJW1YyDdLUtTYDim3VWZdbubMtJmVpKP3jCRtQXocxWJgKrArcAYpKJ5cp+i0LO9s4HfAnwHfyF4/Usj7PFAMPvcOt+5mZlaeTg9g+AwwDjg8IpYD10naFJgl6bQsrZbZEfF07n2vpJeAOZJ2ioiHcvtWR8Rt5VTfzMzK0OluukOBawtBZx4pQB04WKFCIBpwZ/bqtfDMzEa5Tgej3YEl+YSIeBhYke1rxV+QHvp3XyF9c0nPSHpF0p2SDh9ybc3MrCM63U23BfBcjfS+bF9TJG0HfAX498JV1lLgS8BdwHjSQwAvkfSRiLh0kGPNAGYATJgwgf7+fnp7e5utyqjSzW2D0de+4/eqtRB+bRPGNZ+/jO+gp8Rjj7bz1qpubl9/f3/bjlXFpNdaz0bSIOlrZ5TeBPwc6Ae+8IYDR/ykkPdy4H+ArwE1g1FEzAXmAkyaNCnGjx9PT09PM1UZdXp7e7u2bTD62jf9xCubznv8Xqs5457m/rku+3jPEGvUWBnf72g7b63q5va1M8h2upuuD9i8Rvpm1L5iegNJAn4M7AlMiYi+evkjIkhB6M8aDR83szoi0mZWkk5fGS2hcG9I0o7AxhTuJQ3iLNKQ8PdFRDP5B/hfkZnZCNbpK6OrgQ9I2iSXNg1YCcyvV1DSScDngE9ExK3NfFh2JfVh4O6IeHVoVTYzs7J1+sroXOA44FJJs4FdgFnAmfmBCJKWAvMj4ujs/ceAbwMXAI9J2i93zAcGhn5Lmg9cQrrK2hg4FtgP+FC5zTLrcvvsk14XLqy2Hta1OhqMIqJP0kHA2cDlpPtEZ5ECUrFe+Xs8789ep2db3qdIQQrSaLp/ALYnDfteBBwWEVe3o/5mY9aiRVXXwLpcx0fTRcRi4L0N8kwsvJ/O2kGoVrmjh1E1MzOriFftNjOzyjkYmZlZ5RyMzMyscg5GZmZWuSqWAzKz0ebYY6uugXU5ByMza2wMPHJ8YgtrBbbigkM2LuW43cbddGZmVjkHIzNrbOFCr75gpXI3nZk1NmlSevXK3VYSXxmZmVnlHIzMzKxyDkZmZlY5ByMzM6ucg5GZmVXOwcjMzCrnod1m1tiCBVXXwLqcg5GZNTbw2HGzkribzszMKudgZGaNzZiRNrOSOBiZWWPnnZc2s5I4GJmZWeUcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc6TXs2ssb33rroG1uUcjMysMT9y3ErmbjozM6ucg5GZmVXOwcjMGpPSZlYSByMzM6ucg5GZmVXOwcjMzCrnYGRmZpXzPKMx5J7Hnmf6iVe2/bjL/vmwth/TzMYWXxmZmVnlfGVkZo3NmVN1DazLORiZWWN+5LiVzN10ZmZWOQcjM2ts7ty0mZXE3XRm1tjMmenV3XWVmljCaFgYGSNifWVkZmaV63gwkrSHpBskrZD0uKRTJa3bRLnNJJ0vqU/S85J+KmmrGvmmSrpH0kuSFkuaVk5LzMysXTraTSdpC+B6YDEwFdgVOIMUFE9uUPwi4O3AMcAaYDZwGfCXueMfAFwCnAMcB0wBLpTUFxG/aGtjCrr58tnMrGydvmf0GWAccHhELAeuk7QpMEvSaVnaWiTtD3wAODAibs7SHgNul3RwRFyfZf0qcHNEHJe9v0nSnsDXgFKDkZmZDV2nu+kOBa4tBJ15pAB1YINyTw4EIoCIuAN4MNuHpA2AycDPC2XnAftL2mz41TczszJ0OhjtDizJJ0TEw8CKbF/T5TL35srtCqxfI9+9pHbuNoT6mplZB3S6m24L4Lka6X3ZvqGU2yWXhxr5+gr730DSDGBgvGr/5MmTnwWeqVOXjtLsth5ua0poW5vrOByltG8kOK6FtpV6Psp52mvXnjeAybNHfvuG8TuzNbBTO+pQxTyjqJGmQdKHUq74XoOkp8SIucBrs/kkLYiISQ3qMip1c9ugu9vnto1e3dy+rG0T23GsTnfT9QGb10jfjNpXPo3KbZ4r15dLK+ahwfHNzKxCnQ5GSyjcG5K0I7Axte8JDVouk7+X9ADwSo18u5OGgt8/hPqamVkHdDoYXQ18QNImubRpwEpgfoNy22XziACQNIl0v+hqgIhYBdwEHFkoOw34VUQ832Qdu3kBrm5uG3R3+9y20aub29e2timi0a2a9skmvS4GfkOatLoLcCbw3Yg4OZdvKTA/Io7OpV1DGhH3RV6f9PpURBQnvfYCZ5MmxE7J8h9S9qRXMzMbuo5eGUVEH3AQsC5wOXAKcBbw9ULW9bI8eUeRrp5+BPwYWAh8uHD8W4EjgIOBa4EPAh9zIDIzG9k6emVkZmZWy5hetVvSNEmXSnpCUkia3kLZ/yPpdkkrJT0o6bjGpTpP0rGSfpctHLtQ0kFNlJmVfR/F7ZBO1LlGfUpdXLdKQ2mbpImDnJ95nap3MyS9VdIcSXdLelVSb5PlRvx5g6G1bzScO0lHSvpvSY9J6s/+bvx1E+U2kHSGpKckvSjpSkkTm/3csf48oyOkxBHQAAAFP0lEQVSAicAVpAVYmyLpraRuwCuAk4B9gTMlrYiIH5RQzyGRdBRwLjALuBX4FHCFpHdFxG8aFH8eKAafe9teyQbKXly3SsNsG6T7ob/MvR9pEyv3JN23vQ14UwvlRvR5yxlq+2Bkn7v/S1pq7Qukek0BfiZp64j4fp1y3yP9Tf0C8DTp7851kvaKiJcafmpEjNkNWCd7HU+aFDu9yXJzSEPF18ulnQM8Qtb1ORI24D7gR/n2AvcAP2lQbhbwTNX1z+pyEmkO2aa5tC+RlpDatE65/bNz+p5c2r5Z2sFVt2uYbZuYteOvqm5Dg/atk/v5YqC3iTIj/rwNs30j/twBW9dI+xnwYJ0yfwKsBj6ZS9sBeBk4ppnPHdPddBGxZohFDwUujYjVubR5pBPyjmFXrA0k7UIaffjawrFZe/+DbHHZUaK0xXVHgKG2bVQY4r+v0XDegGH9/RjRIqLWVdqdwLZ1ir0/e700d5zHSD0yTZ23MR2MhkLSxsCO1F6QFeov+NpJA/WoVc8tJW3ToPzmkp6R9IqkOyUd3v4qNqXMxXWrNtS2DTg/u1fxhKQzJY0ro5IdNhrOWzuMtnP3F6Tu5MHsDjwaEf2F9KbP21i/ZzQUgy0vVHdB1go0s3Ds04OUXUrqLrqL1IU5E7hE0kci4tJBypSlzMV1qzbUtq0C/pX0jK7lQA9wAume09T2VrHjRsN5G45Rd+6yQU9TgU/XyTbU3+XXdFUwyp5ZtH2jfBFRb+mhZg02Jr60sfJDbF9LC8dm5X9S+NzLgf8hPaSw08EIyl9ct0ot1zEingD+PpfUK+lJ4BxJ74yIu9pcx04bDedtSEbbuctGw/0M+K+IuKBB9mGdt64KRqSlgM5rIt9w1sEfiP7FBVkHuxJpp1bal184Nr8UUssLx0ZESLoUmC1p3Yh4tdmybTCcxXVrdUXmF9et2lDbVsvFpEE0e5OuaEer0XDe2m1EnjtJW5KWW3sY+ESD7M0sZl1XV90ziogfRIQabcP8jBdJo+ZqLcgK9Rd8HZYW2zdQj1r1/GNEDNZFV7cKQ6780JW5uG7Vhtq2WqLwOlqNhvPWbiPu3EnaiDR15U3AYdnfvXqWADtm99Tzmj5vXRWMOuhq4MOFyYnTSEGq0fydjoiI35OGn7+2cKykdbL3V7dyLEkiLb10d4eviqDExXVHgKG2rZYjsteF7ahYhUbDeWu3EXXuJK1HGnX7NuDQiHiqiWIDS669tkSbpDeT5oY1d96qHtNe5QbsQfpF+ATpfyVnZ+8PzOU5kDR+Pp/2VqCf1Jc6mXSz/xWaHE/fwfb9NfAqaQLlZOAC0h+6dzRo33zgONJwzQ8DV5EmH36wgjZsATwBXEdac3BG9t1/s5BvKfDDQto1wO+Bw4EPkeZd3VL1eRlu20jzwM7I2nUwcGp2Xi+puk2Fem+U/Xs6AvgV8Nvc+41G63kbTvtGw7kjrcQd2d+A/QrbBlmeG4AbCuXmkCbJ/g1pwvxtwO+ADZv63KobXvGXPiv70otbby5PT5bWUyh7AHAH8BKwDDiu6vYM0sZjs38Qq4BFwEGF/Wu1D/hh9sdgJfAicAvpf0hVtWEP4MasPk8A3wDWLeRZBlxQSNscOJ/UZ72c9J+HtSb0VXx+Wm4badHgBaR7gS9n5/fUgT8UI2Xj9QmetbaJo/m8DbV9o+HcZXVu1K5eCpN8gQ1IT2F4Ovu7cRWwc7Of64VSzcyscr5nZGZmlXMwMjOzyjkYmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq9/8BvfWTGtFF1N8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/basket_option_pricing.ipynb b/qiskit/finance/simulation/basket_option_pricing.ipynb index 5f6026a98..230c1dd28 100644 --- a/qiskit/finance/simulation/basket_option_pricing.ipynb +++ b/qiskit/finance/simulation/basket_option_pricing.ipynb @@ -13,7 +13,6 @@ "source": [ "# _*Qiskit Finance: Pricing Basket Options*_ \n", "\n", - "Qiskit Finance is part of Qiskit Aqua.
\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", "\n", "***\n", @@ -208,7 +207,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -248,7 +247,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -280,7 +279,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -309,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -317,8 +316,8 @@ "output_type": "stream", "text": [ "state qubits: 5\n", - "circuit width: 14\n", - "circuit depth: 188\n" + "circuit width: 11\n", + "circuit depth: 184\n" ] } ], @@ -338,7 +337,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -347,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -385,7 +384,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -398,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { "scrolled": true }, @@ -410,9 +409,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.4870\n", + "Estimated value:\t0.5351\n", + "Probability: \t0.9826\n" + ] + } + ], "source": [ "print('Exact value: \\t%.4f' % exact_value)\n", "print('Estimated value:\\t%.4f' % (result['estimation'] / (2**num_uncertainty_qubits - 1) * (high_ - low_)))\n", @@ -421,9 +430,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHjRJREFUeJzt3Xm0XGWd7vHvwyCEKcyBRpoIDhFalleOCH1pOZE53CuDaLLQ2ys2GvWq0L3QBhEhoM0y2AK6aBewtMPltiZ0A81thhDCcAJhUIMEsZOAQQMyiGIfEmMgAvndP94d3NmnTtWuOlW7UsXzWatWVb373W+9+02lfmfvd9iKCMzMzDpts25XwMzM3hgccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY1aHpJmShrLXQ5JmNrn/oKQoljVK3pslPVpn++WShiVtVfKz3yopJB3bTJ3NOsUBx2zTMQf4C0kHFDdI2hw4BbghItZVXjOzNnDAMdt0/D9gLTCtxrbJwARSUDLrSQ44Zi2SdKik/5D0rKQ/SFoi6aOtlhcRa4Cbgak1Nk8Dngfuzj57L0mzJf1S0kuSHpd0gaQt69R3i+wS26cL6V+T9OtC2j6Srs0u4a2VNE/S21o9NjOALbpdAbNNWUTMzL0eLGzeB7gPuAJ4GfjvwGxJ6yNiTrbPEKBiWXXMAT4i6aCIeAggCyInAd+PiNeyfLsBLwB/C7wITALOB3YFPtvkYW5E0q7ZcT0PzMiO7RxggaR3+JKetcoBx6xFETF3w2tJAu4B3gx8ktYvfc0jBZBpwENZ2jHAzvkyI2IJsCT3+fcBLwFXSDojIl5t8fMBzgS2Ao6IiBez8u8HVgLTgSvHULa9gfmSmlmLJO0k6duSngReyR4zgLe3WmZ29vDvpLMcZclTgSeBB3OfvZmkMyUtk/RS9tn/BxhHCnpjcSQwH1iTXYbbAlgF/AQYGGPZ9gbmgGPWuqtJweAbwNHAe4F/BrYeY7lzgD8HDpW0NXACMCc2Xtr9TGAW8G/AB4GDgdOzbWP9/F2Bj/KnILrh8X5g7zGWbW9gvqRm1oIsEBwPfC4irsilt+OPuLtI/SfTgD2B7Rl5ie7DwNyIOC/32Qc2KPc14FXgTYX0nQvv/wt4GLioRhmrG3yG2agccMxasxWwOfB6B7qk7UlnG2O6yVREvCbp30hBZS9gWUT8tJBtXP6zM3VHyEVESHoGeGeuzpsDHyhkvZN0VvWoBwhYOzngmLUgIlZJ+jFwnqTVwHrgbFJfxw5t+Ig5wOdIo9POq7F9AfAZSYuBXwB/DUwsUe6/AzMkPULqF/oksE0hzz8CpwJ3SboceBbYAzgcGIqIf236aMxwwDEbi1OBq4BrgN8Bl5N+vD/XhrIfII0KmwjMrbH9fGAX0mWvAK4D/g64sUG555H6aC4C/gh8G1gKfGJDhoj4jaRDgH8ALgN2BJ4D7gVGXXrHrBFVfYtpSW8FvggcAvwFcG+N+Q219htP+vKfSBrscDNwekT8rpDvBOBrwNtIf/ldEBHXtvMYzMysed0YpXYAMAV4PHuUdS0wSPpLbDppRNBGf81JOgy4njQb+zjgFmCOpKPHWmkzMxubbpzhbBYR67PX1wG7NjrDkXQocD9weETck6UdDPwQOCoi7sjS5gNbRsQHcvveCuwQEYd14njMzKycys9wNgSbJh0HPL8h2GTl/Aj4ZbaNbMn2yUCxQ3MuaT7D+NZqbGZm7dArEz8nActrpC/LtgHsB2xZI98y0nG2PPvbzMzGrldGqe1EWl+qaBjYN5eHGvmGC9s3ImkGaTkSxo0bd9Dee7dnIvX69evZbLNeiefd43Yqx+1UjtupnHa20+OPP/5CROxWJm+vBByoPZlONdKL7zVKekqMuIo0tJWBgYFYvHjxWOr4uqGhIQYHB9tSVj9zO5XjdirH7VROO9spW0uwlF75U2CYNBegaEf+dEYznEsr5oHaZ0hmZlaRXgk4y/lTX01evm/nCdICg8V8k0izwJsZgm1mZm3WK5fU5gFfkXRYRCwCkDRA6r+ZB2lZd0l3k9afyt+vYyrwQESsqrjO1icmnn1L3e0rv358RTUx622VBxxJ25AmfkJamHAHSadk72+NiLWSVgALI+I0gIh4IJtjc42kL5DOWGYBizbMwcl8FRiSdBlpUuiU7HFsxw/MzMzq6sYZzu6ke3jkbXj/FtL6UVuQVuLNmwZcSrrfyOtL2+QzRMSiLHh9DfgMaZ7OqRFxexvrb2ZmLag84ETESv40cmy0PBNrpL0IfDx71Nv3RhovYGhmZhXrlUEDZmbW4xxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJ+0u6U9JaSc9KulDS5g32mSkpRnl8KZfv6lHyTOr8kZmZWT1bVPlhknYC7gCWAicA+wHfJAW+c+vs+l3gtkLaicBZwLxC+nLg44W0la3V2MzM2qXSgAN8GhgHnBwRq4EFknYAZkq6OEsbISKeBp7Op0n6CrA8IpYUsv8hIh7sQN3NzGwMqr6kdhwwvxBY5pKC0OFlC5G0M3AUMKe91TMzs06pOuBMIl3yel1EPAWszbaVdQqwJSlYFe0vabWkdZIWSSodyMzMrHMUEdV9mPQK8MWIuKyQ/jRwTUScU7Kcu4DxEXFQIf0M4I+kPqLdgDOBg4DDIuJHo5Q1A5gBMGHChIPmzq0Vw5q3Zs0atttuu7aU1c96oZ0efWZV3e3v2mt8x+vQC+20KXA7ldPOdpo8efJDETFQJm/VfTgAtSKcRkkfmVHak3T57awRBUd8q5D3FlLwOYc0yGBkZSKuAq4CGBgYiMHBwTLVaGhoaIh2ldXPeqGdpp99S93tKz862PE69EI7bQrcTuV0q52qvqQ2DOxYI3088GLJMj5CClDXNsoYES8BtwLvKVtBMzPrjKoDznIKfTWS9ga2pdC3U8c0YFFE/KqJz63uuqGZmdVUdcCZBxwjaftc2lTgJWBho50lTQQOoeToNEnjSCPjHmq2omZm1l5VB5wrgHXADZKOzDrsZwKX5IdKS1oh6Xs19p8GvApcV9wgabykeyV9StIRkqYCdwN7ARd14FjMzKwJlQ4aiIhhSUcAlwM3kfptLiUFnWK9ai13Mw24MyJ+W2PbOuC3pBULdgdeBh4ADo+IxW05ADMza1nlo9QiYinwgQZ5Jo6S/u46+7wMnDymypmZWcd4tWgzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq0RTAUdSreVmzMzMGmr2DOcZSRdLemdHamNmZn2r2YBzJXAK8DNJP5Q0Q9IOHaiXmZn1maYCTkScHxH7AkcBjwGXAM9J+r6kIztRQTMz6w8tDRqIiLsi4q+BPYDPA+8A5ktaKWmmpD9rZyXNzKz3jXWU2gDwftJto4eBe4FPACskfWyMZZuZWR9pOuBI2kfS+ZKeAO4E9gT+BviziPhfwD6kvp5vtLWmZmbW05q6AZuku0hnNE8DVwOzI+LJfJ6IeE3SD4Az2lVJMzPrfc3e8fMFYAqwICKiTr4lwFtarpWZmfWdZi+pXQ7cXyvYSNpO0vsBIuKV4pmPmZm9sTUbcO4G9h9l2zuy7WZmZiM0G3BUZ9t2wNox1MXMzPpYwz6c7DLZYC7pE5KOLWTbGjgeeLR9VTMzs35SZtDA+0iTOwEC+DDwaiHPH4HlwBfbVzUzM+snDQNORHyDbE6NpF8CJ0XEkk5XzMzM+ktTw6IjwkOdzcysJWX6cKYAiyJidfa6roi4tS01MzOzvlLmDOdm4BDgR9nrYPTRagH4Jm1mZjZCmYDzFuC53GszM7OmlRk08GSt12ZmZs0o04ezTTMFRoQnf5qZ2QhlLqmtIfXNlOU+HDMzG6FMwPkbmgs4ZmZmI5Tpw7m6gnqYmVmfG+stps3MzEopM2jgR8D0iFgq6cc0uLwWEQe3q3JmZtY/yvTh/CfwUu61+3PMzKxpZfpwPp57Pb2jtTEzs77Vch+Okt0k1bspm5mZGdBCwJE0RdL9wMvAr4GXJd0v6fi2187MzPpGUwFH0qeAm0iTQc8g3YztjOz9f2TbzczMRmjqfjjAOcBVEfGZQvoVkq4Avgxc2ZaamZlZX2n2ktouwA2jbLse2LlRAZL2l3SnpLWSnpV0oaS6y+FImigpajzm1sh7gqRHJb0saamkqaWOzMzMOqrZM5y7gcOBBTW2HQ7cU29nSTsBdwBLgROA/YBvkgLfuSU+/wvAfbn3LxTKP4wU+L4DnA5MAeZIGo6I20uUb2ZmHVJm4uf+ubffBr4raRfgRuA3wO7AScBxwCcaFPdpYBxwckSsBhZI2gGYKeniLK2exyLiwTrbvwLcExGnZ+/vlnQAcB7ggGNm1kVlznB+xsaTPQV8KnsU7/55G/VXiz4OmF8ILHOBWaQzpJtK1KcmSVsBk0lnNnlzgdmSxkfEqlbLNzOzsSkTcCa38fMmAXflEyLiKUlrs22NAs5sSTuTzqzmAF+OiA2rIOwHbAksL+yzjHTJ7u3Aj8dWfTMza1WZlQYWtvHzdgJerJE+nG0bzTrgn0iXxVYDg8BZpCBzQq5sapQ/XNi+EUkzgBkAEyZMYGhoqF79S1uzZk3byupnvdBOZ77r1brbq6h/L7TTpsDtVE632qnZQQOvk7QZsHUxvcQdP2utxaZR0jeU+RzwuVzSkKTnge9IendELKlTvkZJ31D2VcBVAAMDAzE4OFi/9iUNDQ3RrrL6WS+00/Szb6m7feVHBzteh15op02B26mcbrVTsxM/JeksSSuAV4Df13jUMwzsWCN9PLXPfOq5Lnt+T65sapS/4X2z5ZuZWRs1Ow/ndOBs4HukM4d/AC4EHgdWkl2aqmM5qa/mdZL2BrZlZN9LI1F4foIUBCcV8k0C1md1NDOzLmk24HwSOB+4OHt/Y0RcABxAChhva7D/POAYSdvn0qaSbn/QbF/RKdnzQwARsY40T+jDhXxTgQc8Qs3MrLua7cN5C7AkIl6T9ArZ5aqIWC/pO8B3SWdAo7mCdJZ0g6RZwL7ATOCS/FDp7JLdwog4LXs/E9ieNOlzNfB+4IvADRHx01z5XyX171xGmic0JXsc2+RxmplZmzV7hvM7YLvs9VPAf8tt24k0qXNUETEMHEGaq3MTcAFwKemsKW8LNp7Ps5w0T2c2cCtwKvCN7Dlf/iLSmc+RwHzgg8CpXmXAzKz7mj3DuQ94L+lH/wekFQJ2Bv4IfBa4s1EBEbEU+ECDPBML7+eSJnA2FBE3ks5uzMxsE9JswJkJ7JW9voh0SW066cxmAfD5dlXMzMz6S1MBJyIeAx7LXq8j3QvnjA7Uy8zM+sxYJn6+GdgTeDYinmlflczMrB+1covpz0j6FfAk8EPgKUlPS/rfba+dmZn1jWZXGjgPuJw0n+Z4YCB7ngd8O9tuZmY2QrOX1D4LXBQRXymk35atbfZZ0soDZmZmG2n2kto4Rr+r50JqLOZpZmYGzQecG4GTR9n2IeDmsVXHzMz6VZlbTE/JvZ0HXCxpIiNvMX0A8Pftr6KZmfWDMn04NzPyVtJ7AcfUyPsvpDtxmpmZbaRMwHlLx2thZmZ9r8wtpp+soiJmZtbfml5pQNIWpAEChwE7A/8F3Eu6VUD9m7+bmdkbVlMBR9LuwO3AgaQ7fD4PHEqaf/OIpKMj4rftrqSZmfW+ZodFXwLsArwvIvaNiEMjYl/gfVn6Je2uoJmZ9YdmA84U4KyI+HE+MXv/JdIyN2ZmZiM0G3C2An4/yrbfA28aW3XMzKxfNRtwHgTOkrRtPjF7f1a23czMbIRmR6mdCdwN/ErS7aRBA7uTJoEKGGxr7czMrG80dYYTEUuAtwFXAbsBR5ECzhXA2yLikbbX0MzM+kLpMxxJWwIHA7+MiLM7VyUzM+tHzZzhvAbcBbyzQ3UxM7M+VjrgRMR64OfAhM5Vx8zM+lWzo9S+DJwn6V2dqIyZmfWvZkepnUtaUWCJpGdIo9QinyEiDm5T3czMrI80G3B+lj3MzMyaUirgSBpHWtbmZ8CvgTsi4vlOVszMzPpLmVtM7wvcAUzMJa+W9JGIuL1TFTMzs/5SZtDAxcB64K+AbYADgIeBKztYLzMz6zNlAs6hwLkRcV9EvBwRy4BPAX8uac/OVs/MzPpFmYCzJ/CLQtoTpLXT9mh7jczMrC+VnYcTjbOYmZmNruyw6PmSXq2RfmcxPSJ2H3u1zMys35QJOBd0vBZmZtb3GgaciHDAMTOzMWt2LTUzM7OWOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzBPu+VNFvSimy/xySdL2nrQr6ZkqLG49jOHpWZmTXS7A3YxkTSTqRbHSwFTgD2A75JCnzn1tl1apZ3FvBz4EDgq9nzhwp5VwHFALNsrHU3M7OxqTTgAJ8GxgEnR8RqYIGkHYCZki7O0mqZFRG/zb0fkvQycKWkfSLiydy2VyPiwc5U38zMWlX1JbXjgPmFwDKXFIQOH22nQrDZ4OHs2Wu3mZn1gKoDziRgeT4hIp4C1mbbmvGXpBvDPVZI31HSC5JekfSwpJNbrq2ZmbWNIqq784CkV4AvRsRlhfSngWsi4pyS5ewB/BS4NSKm59I/RjrjWQJsR7pR3BTgQxFxwyhlzQBmAEyYMOGguXPnNntYNa1Zs4btttuuLWX1s15op0efWVV3+7v2Gt/xOvRCO20K3E7ltLOdJk+e/FBEDJTJ242A84WI+FYh/Rng6oj4coky3kQaePBm4KCIGK6TV8D9wLiIeHejsgcGBmLx4sWNspUyNDTE4OBgW8rqZ73QThPPvqXu9pVfP77jdeiFdtoUuJ3KaWc7SSodcKq+pDYM7FgjfTzwYqOdswByDXAAMKVesAGIFE1vAA5sNPTazMw6q+pRassp9NVI2hvYlkLfziguJQ2nPioiyuTfwHcsNTPrsqrPcOYBx0jaPpc2FXgJWFhvR0lfAj4PfCwiFpX5sOyM6CTgkYh4rbUqm5lZO1R9hnMFcDpwg6RZwL7ATOCS/FBpSSuAhRFxWvb+VOAi4GrgGUmH5Mp8YsOwaUkLgetJZ0vbAp8EDgFO7OxhmZlZI5UGnIgYlnQEcDlwE6nf5lJS0CnWK9/ncnT2PD175H2cFIgAVgB/C+xJGjL9E+D4iJjXjvqbmVnrqj7DISKWAh9okGdi4f10RgaaWvudNoaqmZlZB3m1aDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzEfuMlzZY0LGmVpO9L2qVGvhMkPSrpZUlLJU3tzJGYmVkzKg04knYC7gACOAG4EDgTuKDE7tcCg8AngOnAe4EbC+UfBlwP3A0cB9wCzJF0dFsOwMzMWrZFxZ/3aWAccHJErAYWSNoBmCnp4ixtBEmHAscAh0fEPVnaM8APJR0ZEXdkWb8C3BMRp2fv75Z0AHAecHvnDsvMzBqpOuAcB8wvBJa5wCzgcOCmOvs9vyHYAETEjyT9Mtt2h6StgMnA6YV95wKzJY2PiFVtOg7rooln39Iwz8qvH19BTcysGVUHnEnAXfmEiHhK0tps22gBZxKwvEb6smwbwH7AljXyLSNdOnw78OPWqm1lOBC0T7Etz3zXq0zPpbkdrRdVHXB2Al6skT6cbWtlv31zeaiRb7iwfSOSZgAzsrdrJD1Wpx7N2BV4oU1l9Q3NGpHUkXaq8TkdU8VnnV5opyqPr8f4/1057WynfcpmrDrgQBowUKRR0lvZr/hedfYnIq4Crmrw2U2TtDgiBtpdbr9xO5XjdirH7VROt9qp6mHRw8CONdLHU/sMptF+O+b2G86lFfPQoHwzM+uwqgPOcv7U5wKApL2BbandRzPqfpl8384TwCs18k0C1gOPt1BfMzNrk6oDzjzgGEnb59KmAi8BCxvst0c2zwYASQOk/pt5ABGxjjT/5sOFfacCD3RhhFrbL9P1KbdTOW6nctxO5XSlnRTRqOukjR+WJn4uBX5GGgq9L3AJcFlEnJvLtwJYGBGn5dJuI400+wLpjGUW8JuI+KtcnsOAIeBy0qTQKVn+YyPC83DMzLqo0jOciBgGjgA2Jw2BvgC4FDi/kHWLLE/eNNJZ0D8D1wAPAScVyl8EnAIcCcwHPgic6mBjZtZ9lZ7hmJnZG5dXi27Ai4021kobSXpv1j4rsv0ek3S+pK0L+WZKihqPYzt7VO3XYjtNHOX459bI2/PfJWi5nUb7noSkL+XyXT1KnlqDkjZpkt4q6UpJj0h6TdJQyf269tvUjXk4PSO32OhS0mKj+wHfJAXqc+vsCmmx0XeQFhvd0Od0I1Dsc7oe+A5pSZ4ppMVGh3vlMuAY2mhqlncW8HPgQOCr2fOHCnlXAcUAs2ysda/SGL9LkPoi78u932jSXj98l2BM7fRd4LZC2onAWWQDi3KWAx8vpK1srcZddQDp3/lB4E1N7Ne936aI8GOUB/Al0vyeHXJpfw+szafV2O9Q0kTT9+fSDs7SjsylzQfuKux7K7Co28deQRvtViNtRtZG++TSZgIvdPs4u9hOE7M2+R8Nyu/579JY2mmUsm4BlhXSrgYWd/s429RWm+VeXwcMldinq79NvqRW32iLjY4jLTZab78Ri40CGxYbJbfY6L8W9p0LHCpp/NirX4mW2igiflsj+eHseff2VW+T0ep3qaE++i5Bm9pJ0s7AUcCc9lZv0xER61vYrau/TQ449Y1YNDQiniL9tVXvmm+7FhvtBa22US1/STrFL65nt6OkFyS9IulhSSe3XNvuGWs7zc6u0z8n6RJJ43Lb+uW7BO37Pp1CapMRfV3A/pJWS1onaZGkMQX8HtPV3yYHnPo6sdjoTrk81MhXd7HRTVCrbbQRSXsAXwb+b+Gv2xWkSyofIfXtPAtc34NBp9V2Wgf8E3AaaUrBlcBn2PiHtF++S9Cm7xNpGsVPIqK4wsjDpJs+/k/go6TpFwskHdxCXXtRV3+bPGigsU1qsdFNVKttlDJKbyKdvq8B/m6jgiP+pZD3JuB+0k31bmilsl3UdDtFxHPA53JJQ5KeB74j6d0RsaRO+b34XYKxf5/2JF1+O2tEwRHfKuS9hTRA4RzSIIM3gq79NvkMpz4vNtpYq20EgCSRJvIeAEyJNDl4VJF6L28ADiwzPH0TMqZ2Krgue35PrmxqlN9r3yVoTzt9hPTjeG2jjBHxEqkz/D2N8vaJrv42OeDU58VGG2u1jTa4lDT89YSIKJN/g177q32s7ZQXhed++S5Be9ppGmk01a+a+Nxe+z61qqu/TQ449b2RFhttVattRDYh7/PAxyItS9RQdkZ0EvBIRLzWWpW7ouV2quGU7Pkh6KvvEoyxnSRNBA6h5Oi0bPDFcWRt+QbQ3d+mbo8l35QfpM6x54AFpPXZZpD6Gb5WyLcC+F4h7TbgF8DJpGvDjwH3FvIcBrwKXAYMAheT/oI4utvH3uk2Ak4l/VU5m/QDkX/slsu3kDTx7GhSoLk1a6MPdvvYK2qnmaSJjydn+11I+vG9vt++S2Npp1z62aS/zmvN8xoP3At8ijQAYypp0uQ6YKDbx95CW21D+uPjFOAB4D9z77cZrZ26+dvU9Ubb1B/A/sBd2X/y50iz4Tcv5FkJXF1I2zH7MX0RWA38ANi1RvknklbPXkc6pZ3W7WOuoo1IE/BilMf0XL7vZf85XgL+kP1gHNftY66wnaYBi0mrLfwx+wG5ENiqH79LrbZTLn0JcNso5W5N6v/7VdZGq7If30O6fcwtttPEOv+HJo7WTt38bfLinWZmVgn34ZiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSvx/kIORc9agYsAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X20XFV9//H3hwchPAUCEpAiASqlULssuSC0VC4CCqGrqQiGKnVFHhJbKtYfalARA1R/BQRspZYELehPJShSLASMPN0gKkgSsGhIKGh4BgkGQkxAAt/fH3vfMJw7987MnZkzmcnntdZZM7PPPme+Z+698717n332UURgZmbWbht1OgAzM9swOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcdaStJMSTHMckKd+9gr72fbQvnUvJ+t2hN9fXE0uc+rJQ3UUW8TSf8k6eeS1khaIekGSQeP8n3Xl890auF34jeS5knar45t+/M2f1JGrNZ6TjjWDs8DB1VZflDn9nsBnwOKX/Rz835WtybMUcfRVpI2Bq4FvgD8NzAJmAq8AgxIev8odru+fKaD3pnfdzrwRuA2SW+qsc2ivM1DbY7N2mSTTgdgPWltRNzZ6p1GxDPAM63e73roI8DRwFERUZmkvy9pDjBb0vyIeLzZN+rgZ3p3RKwCkLQAeBj4AHBBsaIkAZtFxEqg5b9XVh63cKwjJH1K0oOSXpT0tKQfSNpJUj9wXa7269yFsixv87ruH0kT8uvjJV0uaaWkxwa77iR9UtITkp6RdJ6kjSref29JcyQ9Kmm1pF/mLqyN8vph48jr35y3/23efp6kPyoc4665G2yNpGWSTq7z4/kocFsh2Qz6DLA5cFLF+yyT9EVJn5X0lKRVkr4laWytY6nWpSZpB0lfl/RsPrYBSX2FYxt8z4/lz3xF/jwabg1GxKOkpDch73umpOWSDpZ0N/AicFy1LjVJG+ffpQckvZRjuaIQ62RJC/Lv2lOSzpe0aaNxWvPcwrG2kDTkdysi1uZ1HwQ+DcwAfglsT+pi2ZLUbfJx4IvAMcCTwEs13u484FvAe4ETga9L+jNgt/x6IvDPwD3AnLzNLsDSvN0LwNuAs4ExwP8dKQ5J44A7gGeBD5O6o84Abpa0V0Ssyf+Vfx/YgZQcXsz7Hwf87wif266kL96Lq62PiIck3Qe8o7Dqb4EHgVOAnYHzga8Cx410LMO4FvjDvM1y4BOkLq8/i4gHK+q9D/gfYBrwB8BFpG7Afxhh30NI2pr0uTxVUbwF8PV8HA8AT+TjKpoFfDDXm5/3c2zFvt8HXJnrfRrYk/Tz3Sgfn5UpIrx4adkCzARimGVCrnMJ8L0R9vFXlfUryqfm8q3y6wn59eUVdbYBXiZ9qW9cUf4z4Kph3k+kf74+DfyqjjjOJSWbcRVl25HOXZ2aX0/K2769os5uwFpgYIRjPzBvN3mEOtcC91e8Xgb8dvBzyWUfAF4F/rjBz/TI/PqQijpbklogswrv+RCwSUXZl4Cnavx+DL7f2PyZ7wpclT+XtxV+hyYXtu3P5X+SX++dX582ws/14crfj1x+IrAG2L7Tfy8b2uIWjrXD88DhVcqfyI/3AidJOpt00nphRLzSxPvdMvgkIlZKegaYX9jng8CbB19I2hz4FOmL+c3AphXrNoncGhvG4cBNwMqKltwLwEJgsOvpAODpiLirIraHJS0cxfHV46bI50Sya4BvAvsD9zewnwOAZyJi/mBBRPxO0vVAcYTcbYXPaTGwo6Q3RMTva7zPcxXPlwMnRsS9FWUB3FhjH4fmxyuGWb8X6Wf7nUKL+1ZSt+SfkFpFVhInHGuHtRGxYIT1/wlsTeqKOQt4VtJ/ADNHmXieK7z+/TBlm1e8Pg84mdTNtSjXnwycmeutYng7kFoiU6qsG0x+OwG/qbL+N6RjH87gQIDdRqizW0W9yv2uE6lbbxXVu6FGsjPwdJXyp0ndVZWqfcYC3pCfj+QdpK7I5cCjEfFqYf2KOpLW9sDvIg0mqGaH/HjDMOt3rbF/azEnHCtd/nK5GLg4n7P4APB50pfopSWFcRzw5Yg4f7BA0tF1bvtb0nDlc6useyE/PgXsWGX9jqTunKoi4tF8Qv+vgX8rrpe0O+k/8+J771ioNwbYinS+phFPFveVjScdd6vcU2iRFdVz35RngS0lbTNM0hmMdxrp/F3Rr+t4D2shj1KzjoqIRyPiX0hdXvvk4sH/bDevvlVLjKHixLnStS/HF+oMF8ctwL7ALyNiQWFZmuvcDYyX9PaK93gzUPMCR+BfgcMkvavKun/OcX+tUH6EXn/x5jGkL+3Blma9n+ldpG6xdYMSJG1BGqZ9Rx2xl+nW/PjBYdYvJf0TM6HKz2lBRDxbTpg2yC0ca4dNJB1YpfzRiHhc0izSf593ks73HAq8hTRqDdIXBcB0petOVkfEfS2O8SbgVEkP5lhOBTYr1BkujouAE4BbJX2Z9KU2HjgEuCMiriR14/wc+K6kGaRRaudQvZut6Muk80T/JemLwACpG+4k0sn/v4uh1+CsAeZKuoDULXYB8F8RsbjGsbxORMyT9GPgKklnkFoRHycl6CHXyHRSRCyVNBu4UNKOwO2kC1uPjYjjI+JVSacD/0/SNqRzQr8H9gD+Jtcr+4LXDVunRy146a2FkUepnZnrTAV+TPqiX00aWntSYT+nk0YYrQWWVWxXbZTaXxW2XQZ8sVB2BbCg4vV44L+AlaTzE+eThhSv2/9wceTyNwGX521fyu/5TWDfijpvJs2usCbvYzpwNSOMUqvYdhPgY/mzWQOsIH1hHlyl7jLgwvzZPw38jjQUeNtGP9Nc9kbgG/k915BOrO9fx2c8ZF9VYq2nzkxgeZXyfipGqeWyjcmjC0nJ5DGGjko7CvhR/lxWkgat/DMVI+y8lLMo/0BKI+kPSeP6DyT1Rf8oIvrr2G4sadjl35C6Aq8nDYd8tlBvMumX6S2kX8KzI+KqVh6D2fokn/O5OiJ8XYmt1zpxDmdf0jUKD+SlXleR/sM5mfRf0v6k6xHWUZrY8HvAbaT/auYCVw7TF25mZiXqRAtno8hDICVdDexQq4Uj6SDgJ6SL0W7PZQeQTnAeERE357J5wKYR8c6KbW8AtomIUc2ya7a+cwvHukXpLZwYOt6+HkeRLqK7vWI/PyMNazwKQNJmpJPP3ylsOwc4aHBeKbNeExETnGysG3TLsOi9gSVVyu/P6yDNkbRplXr3k45zr7ZFZ2ZmNXXLsOjtGHpVM6RRNHtU1KFKvRWF9a8jaRrpwjDGjBkzcddde+fi41dffZWNNuqW/ykaV9bxbf1AOtX4wl7l/c/in1136+XjKx7bAw88sDwi3ljPtt2ScKD6lceqUl58rRG2JyJmA7MB+vr6YsGCkWZk6S4DAwP09/d3Ooy2Ke34lH+Fli4duV4L+WfX3Xr5+IrHJunherftlhS8gup3XdyW11o0KyrKinWgegvJzMxK0i0JZwmvnaupVHlu5yHStPTFenuTpmlvZAi2mZm1WLcknBuBnfJ1NgDkOxDukdcRES+Rrr85rrDtFOCnEfF8SbFaj5pwxtx1i5k1rvRzOHkiwEn55S7ANpIG79B3Q0SszvNbzY+IkwAi4qf5GptvSPo4qcVyHmneqpsrdn8uMCDpS6SLQifl5ci2H5iZmY2oEy2cHYHv5uVA0gzBg68Hp0XfhDRHUqXjSXM6/SdpnqeFwHsqK0TEHaTbyx4OzCNN8f7+iPhhOw7ENhARaTGzppTewomIZbw2cmy4OhOqlD0HfCgvI217LYUpb8zMrPO65RyOmZl1OSccs1omTkyLmTWlmy78NOuMRYvS4xGdDcOs27mFY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCo9SM6vllFM6HYFZT3DCMatl9uz06Ek7zZriLjUzMyuFWzhmtSxc2OkIzHqCWzhmtfT1pcXMmuKEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOWS0LFqTFzJrihGNWi28xbdYSTjhmZlYKT21jVsu0aelx3OTOxmHW5ZxwzGq57LL0OMMJx6wZ7lIzM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFR6mZ1bLffp2OwKwnuIVjVsvChb7NtFkLOOGYmVkpnHDMzKwUTjhmtUhpMbOmOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhqW3Mapk1Kz3+qrNhmHU7JxyzWgZvMX3G3M7GYdblSu9Sk7SPpFskrZb0hKRzJG1cY5uZkmKY5VMV9a4Yps7e7T8yMzMbSaktHEnbATcDi4HJwJ7AhaTEd+YIm34V+EGh7G+AGcCNhfIlwIcKZctGF7EZMHt2frJLR8Mw63Zld6l9GBgDHBMRK4GbJG0DzJR0fi4bIiIeAx6rLJP0WWBJRNxbqP67iLizDbHbhmr69PQ44/rOxmHW5cruUjsKmFdILHNISeiQenciaRxwBHBla8MzM7N2KTvh7E3q8lonIh4BVud19ToW2JSUrIr2kbRS0kuS7pBUdyIzM7P2KbtLbTvguSrlK/K6eh0PLIqIBwrl9wB3kc4RvRE4ndRtd3BE/KzajiRNA6YBjB8/noGBgQbCWL+tWrWqp46nqKzj68+Pp7917bqydr+vf3bdrZePr5lj68Sw6KhSpmHKh1aUdiZ1v80YsuOIfy3UnUtKPp8mDTIYGkzEbGA2QF9fX/T399cTRlcYGBigl46nqOzju/C+1/5cln2gve/rn1136+Xja+bYyu5SWwFsW6V8LNVbPtW8j5SgrqpVMSLWADcAvim9mVmHlZ1wllA4VyNpV2BLCud2RnA8cEdEPNrA+9bVejIzs/YpO+HcCLxb0tYVZVOANcD8WhtLmgAcSJ2j0ySNIY2MW9hooGbrRKTFzJpSdsK5FHgJuEbS4fmE/Uzgosqh0pIelPS1KtsfD6wFri6ukDRW0o8kTZd0mKQpwG2kq/W+0IZjMTOzBpQ6aCAiVkg6DLgEuI503uZiUtIpxlVtupvjgVsi4pkq614CniHNWLAj8CLwU+CQiFjQkgMwM7NRK32UWkQsBt5Zo86EYcrfNsI2LwLHNBWcWTUTJ6bHI87pbBxmXc6zRZvVsmhRejyis2GYdTvfgM3MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZWyymndDoCs57ghGNWy+Atps+Y29k4zLqcu9TMzKwUDbVwJG0cEa+0Kxiz9dJCz/1q1gqNtnAel3S+pD9uSzRm66O+vrSYWVMaTTizgGOBX0i6S9I0Sdu0IS4zM+sxDSWciPhcROxBmlVqKXAR8KSkb0k6vB0BmplZbxjVoIGIuDUiPgjsBHwE+CNgnqRlkmZKelMrgzQzs+7X7Ci1PuAdpNtGrwB+BJwMPCjphCb3bWZmPaThhCNpN0mfk/QQcAuwM3Ai8KaI+DtgN9K5ngtaGqmZmXW1RodF30pq0TwGXAFcHhEPV9aJiFckfRv4aKuCNDOz7tfoTAPLgUnATRERI9S7F9h91FGZrU8W5DuUf/epzsZh1uUa7VK7BPhJtWQjaStJ7wCIiJeLLR+zrjVx4mu3mTazUWs04dwG7DPMuj/K683MzIZotEtNI6zbCljdRCxm66dp09LjuMmdjcOsy9VMOLmbrL+i6GRJRxaqbQ4cDdzXutDM1hOXXZYeZzjhmDWjnhbO20kXdwIEcBywtlDn98AS4BOtC83MzHpJzYQTEReQr6mR9GvgPRFxb7sDMzOz3tLQOZyI8FBnMzMblXrO4UwC7oiIlfn5iCLihpZEZmZmPaWeFs71wIHAz/LzYPjRagFs3JrQzMysl9STcHYHnqx4brZh2W+/Tkdg1hPqGTTwcLXnZhuMwVtMnzG3s3GYdbl6zuFs0cgOI8IXf5qZ2RD1dKmtIp2bqZfP4ZiZ2RD1JJwTaSzhmPUW5TEyM67vbBxmXa6eczhXlBCHmZn1uGZvMW1mZlaXegYN/AyYGhGLJd1Nje61iDigVcGZmVnvqOcczi+BNRXPfT7HzMwaVs85nA9VPJ/a1mjMzKxnjfocjpI3ShrppmxmZmbAKBKOpEmSfgK8CDwFvCjpJ5KObnl0ZuuDWbPSYmZNaSjhSJoOXEe6GPSjpJuxfTS//u+83qy3TJv22m2mzWzUGrofDvBpYHZE/H2h/FJJlwKfAfyvoJmZDdFol9r2wDXDrPseMK7WDiTtI+kWSaslPSHpHEkjTocjaYKkqLLMqVJ3sqT7JL0oabGkKXUdmdlwZs9Oi5k1pdEWzm3AIcBNVdYdAtw+0saStgNuBhYDk4E9gQtJie/MOt7/48CPK14vL+z/YFLi+wpwGjAJuFLSioj4YR37Nxtqeu4p9tQ2Zk2p58LPfSpe/hvwVUnbA9cCvwF2BN4DHAWcXGN3HwbGAMdExErgJknbADMlnZ/LRrI0Iu4cYf1ngdsj4rT8+jZJ+wJnAU44ZmYdVE8L5xe8/mJPAdPzUrz75w8Yebboo4B5hcQyBziP1EK6ro54qpK0GXAoqWVTaQ5wuaSxEfH8aPdvZmbNqSfhHNrC99sbuLWyICIekbQ6r6uVcC6XNI7UsroS+ExEDM6CsCewKbCksM39pC67vYC7mwvfzMxGq56ZBua38P22A56rUr4irxvOS8C/k7rFVgL9wAxSkplcsW+q7H9FYf3rSJoGTAMYP348AwMDI8XfVVatWtVTx1NU1vH158fT37p2XVm739c/u+7Wy8fXzLE1OmhgHUkbAZsXy+u442e1udg0TPngPp8E/rGiaEDS08BXJL0tIu4dYf8apnxw37OB2QB9fX3R398/cvRdZGBggF46nqKyj+/C+177c1n2gfa+r3923a2Xj6+ZY2v0wk9JmiHpQeBl4IUqy0hWANtWKR9L9ZbPSK7Oj/tV7Jsq+x983ej+zcyshRq9Duc04Azga6SWw+eBc4AHgGXkrqkRLCGdq1lH0q7Algw991JLFB4fIiXBvQv19gZezTGaNS4iLWbWlEYTzinA54Dz8+trI+JsYF9SwnhLje1vBN4taeuKsimk2x80eq7o2Py4ECAiXiJdJ3Rcod4U4KceoWZm1lmNnsPZHbg3Il6R9DK5uyoiXpX0FeCrpBbQcC4ltZKukXQesAcwE7iocqh07rKbHxEn5dczga1JF32uBN4BfAK4JiL+p2L/55LO73yJdJ3QpLwc2eBxmplZizXawnkW2Co/fwT4s4p125Eu6hxWRKwADiNdq3MdcDZwManVVGkTXn89zxLSdTqXAzcA7wcuyI+V+7+D1PI5HJgH/DXwfs8yYE2ZODEtZtaURls4Pwb2J33pf5s0Q8A44PfAqcAttXYQEYuBd9aoM6Hweg7pAs6aIuJaUuvGrDUWLUqPR3Q2DLNu12jCmQnskp9/gdSlNpXUsrkJ+EirAjMzs97SUMKJiKXA0vz8JdK9cD7ahrjMzKzHNHPh5x8AOwNPRMTjrQvJzMx60WhuMf33kh4FHgbuAh6R9Jikf2h5dGZm1jManWngLOAS0vU0RwN9+fFG4N/yejMzsyEa7VI7FfhCRHy2UP6DPLfZqaSZB8x6xymndDoCs57QaJfaGIa/q+d8qkzmadb1fItps5ZoNOFcCxwzzLr3Ar4Hr5mZVVXPLaYnVby8EThf0gSG3mJ6X+CTrQ/RrMMWLux0BGY9oZ5zONcz9FbSuwDvrlL3m6Q7cZr1jr6+9DjDDXizZtSTcHZvexRmZtbz6rnF9MNlBGJmZr2t4ZkGJG1CGiBwMDAO+C3wI9KtAtaOtK2ZmW24Gko4knYEfgj8KekOn08DB5Guv/m5pHdFxDOtDtLMzLpfo8OiLwK2B94eEXtExEERsQfw9lx+UasDNDOz3tBowpkEzIiIuysL8+tPkaa5MTMzG6LRhLMZ8MIw614A3tBcOGbroQUL0mJmTWk04dwJzJC0ZWVhfj0jrzfrLb7FtFlLNDpK7XTgNuBRST8kDRrYkXQRqID+lkZnZmY9o9E7ft4r6S3Ax4H9SaPVngQuBS6KiOWtD9Gsw6ZNS4/jJnc2DrMuV3fCkbQpcADw64g4o30hma1nLrssPc5wwjFrRiPncF4BbgX+uE2xmJlZD6s74UTEq8D/AuPbF46ZmfWqRkepfQY4S9Jb2xGMmZn1rkZHqZ1JmlHgXkmPk0apRWWFiDigRbGZmVkPaTTh/CIvZmZmDakr4UgaQ5rW5hfAU8DNEfF0OwMzW2/st1+nIzDrCfXcYnoP4GZgQkXxSknvi4gftisws/XG4C2mz5jb2TjMulw9gwbOB14F/hLYAtgXuAeY1ca4zMysx9STcA4CzoyIH0fEixFxPzAdeLOkndsbnpmZ9Yp6Es7OwK8KZQ+R5k7bqeURma1vpLSYWVPqvQ4nalcxMzMbXr3DoudJWlul/JZieUTs2HxYZmbWa+pJOGe3PQozM+t5NRNORDjhmJlZ0xqdS83MzGxUnHDMzKwUjc6lZrbhmZWvcS5eHGBmDXHCMatl8BbTntrGrCnuUjMzs1K4hWNWy+zZ+ckuHQ3DrNuV3sKRtI+kWyStlvSEpHMkbVxjm/0lXS7pwbzdUkmfk7R5od5MSVFlObK9R2U9bfr0tJhZU0pt4UjajnSrg8XAZGBP4EJS4jtzhE2n5LrnAf8L/Clwbn58b6Hu80AxwdzfbOxmZtacsrvUPgyMAY6JiJXATZK2AWZKOj+XVXNeRDxT8XpA0ovALEm7RcTDFevWRsSd7QnfzMxGq+wutaOAeYXEMoeUhA4ZbqNCshl0T3703G1mZl2g7ISzN7CksiAiHgFW53WN+HPSjeGWFsq3lbRc0suS7pF0zKijNTOzllFEeXcekPQy8ImI+FKh/DHgGxHx6Tr3sxPwP8ANETG1ovwEUovnXmAr0o3iJgHvjYhrhtnXNGAawPjx4yfOmTOn0cNab61atYqtttqq02G0TVnH13/ooQB8+ZvXrit76y5j2/qe/tl1t14+vuKxHXrooQsjoq+ebTsxLLpahtMw5UMrSm8AvgOsAj72uh1HfLNQ9zrgJ8BZQNWEExGzgdkAfX190d/fX08YXWFgYIBeOp6iso/vwvte+3NZ9oH2vq9/dt2tl4+vmWMru0ttBbBtlfKxwHO1NpYk4BvAvsCkiFgxUv1IzbdrgD+tNfTabFgRaTGzppTdwllC4VyNpF2BLSmc2xnGxaTh1EdERD31B/nbwsysw8pu4dwIvFvS1hVlU4A1wPyRNpT0KeAjwAkRcUc9b5ZbRO8Bfh4Rr4wuZDMza4WyE86lwEvANZIOzyfsZwIXVQ6VzjMKfK3i9fuBL5C60x6XdGDF8saKevMlnSbpXZLeA8wFDszvYTY6EyemxcyaUmqXWkSskHQYcAlwHem8zcUMTQibAJXnXN6VH6fmpdKHgCvy8weBfwJ2Jg2ZXgQcHRE3tiJ+20AtWpQej+hsGGbdrvRRahGxGHhnjToTCq+nMjTRVNvupCZCMzOzNvLtCczMrBROOGZmVgonHDMzK4UTjpmZlcJ3/DSr5ZRTOh2BWU9wwjGrZfAW02fM7WwcZl3OXWpmZlYKt3DMalm4sNMRmPUEt3DMaunrS4uZNcUJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccs1oWLEiLmTXFCcesFt9i2qwlnHDMzKwUntrGrJZp09LjuMmdjcOsyznhmNVy2WXpcYYTjlkz3KVmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1Izq2W//TodgVlPcAvHrJaFC32babMWcMIxM7NSOOGYmVkpnHDMapHSYmZNccIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCU9uY1TJrVnr8VWfDMOt2TjhmtQzeYvqMuZ2Nw6zLuUvNzMxK4RaOWS2zZ+cnu3Q0DLNu54RjVsv06elxxvWdjcOsy7lLzczMSlF6wpG0j6RbJK2W9ISkcyRtXMd2YyVdLmmFpOclfUvS9lXqTZZ0n6QXJS2WNKU9R2JmZo0oNeFI2g64GQhgMnAOcDpwdh2bXwX0AycDU4H9gWsL+z8Y+B5wG3AUMBe4UtK7WnIAZmY2amWfw/kwMAY4JiJWAjdJ2gaYKen8XDaEpIOAdwOHRMTtuexx4C5Jh0fEzbnqZ4HbI+K0/Po2SfsCZwE/bN9hmZlZLWV3qR0FzCskljmkJHRIje2eHkw2ABHxM+DXeR2SNgMOBb5T2HYOcJCksc2Hb+uT+x5/nglnzGWCr48x6wplt3D2Bm6tLIiIRyStzuuuG2G7JVXK78/rAPYENq1S735SYt0LuHt0YVsjKhPAsn85uoORdL9iMvXnad2s7ISzHfBclfIVed1ottujog5V6q0orH8dSdOAfCk5qyQtHSGObrMDsLyTAei8tu5+3fG1+X2S8/5q3dMS3q/qz66U4yxHx38326yXj694bLvVu2EnrsOJKmUapnw02xVfa5jyVBgxG5hdbV23k7QgIvo6HUe79PLx9fKxgY+vmzVzbGWfw1kBbFulfCzVWzC1ttu2YrsVFWXFOtTYv5mZtVnZCWcJr51zAUDSrsCWVD9HM+x2WeW5nYeAl6vU2xt4FXhgFPGamVmLlJ1wbgTeLWnrirIpwBpgfo3tdsrX2QAgqY90/uZGgIh4iXT9zXGFbacAP42I55sPv+v0ZFdhhV4+vl4+NvDxdbNRH5siap06aZ184edi4BfAeaSEcRHwpYg4s6Leg8D8iDipouwHpJFmHye1WM4DfhMRf1lR52BgALiEdFHopFz/yIjwdThmZh1UagsnIlYAhwEbk4ZAnw1cDHyuUHWTXKfS8aRW0H8C3wAWAu8p7P8O4FjgcGAe8NfA+51szMw6r9QWjpmZbbg8W/QGQtIUSddIelJSSJra6ZhGY7STv3YDSX8oaZakn0t6RdJAp2NqFUnHSfpvSY9LWiVpoaS/7XRcrSLpWEk/kfRsnjh4qaQzJb2h07G1mqRd8s8wJG3VyLa+H86G41hgAnA9aQLUrlMx+eti0uSvewIXkv5xOnOETbvFvqTzjncCvfZF9X9rUEebAAADJElEQVRIU1F9jHTR4CTg25J2iIgvdzSy1tieNGjpAtIlGAcAM4GdgH/sXFhtcQGwijS6uCHuUttASNooIl7N/5G8AHwoIq7ocFgNkfQp4JPAboPz8Un6JPkPe7jJX7vF4M8oP78a2CEi+jsbVWvkxLK8UPZt4KCI2L1DYbWVpM8DpwLbRY980Ur6S+D7wBdIiWfriFhV7/buUttADH6RdbnRTv7aFXrkZ1RVMdlk9wA7lh1LiZ6lh1qquev6y6Tbyoxq2h4nHOsmQyZxjYhHgMHJX627/Dmpe7RnSNpY0hb5Eo3TgP/oldYN6fYymwP/Ptod+ByOdZPRTv5q6xlJh5HOw53Y6Vha7HfAZvn5N4BPdDCWlsl3Vz4XOCEiXpZUa5OqnHC6VL6/z8616kXESFMGdaPRTv5q6wlJE4BvA9/vtvOIdfhzYAvSoIGzSBeh/0NHI2qNzwN3RcQNzezECad7HQdcVke90f0rsn4a7eSvtp6QNI40HdUjwAkdDqflImJRfnqHpOXA1yVdGBEPdTKuZuS7Jp8IvEPS4N/fFvlxrKRXImJNPfvyOZwuFRFfjQjVWjodZ4uNdvJXWw9I2oI0LP8NwNER8bsOh9Rug8mn20fhvYV0c8ufkv7pW8Fr53EeIw0kqItbONZNbgQ+IWnriHghl9Uz+at1mKRNgO+Svrz+IiJ+0+GQyvAX+fHXHY2ieXcAhxbKjgRmkK6n+lW9O3LC2UBI2gfYhzTKBKBP0irgmYjoli/rS0kjf66RNDj560zgom6/BgfWtQAm5Ze7ANtIOja/viEiVncmspb4CunYPgqMk3Rgxbp78mzvXStPLnwz8EvgFVKyOR24qpu702DdkPaByrJ8Hg7gR41ch+MLPzcQkmYydJJUSLNy95cbzejlxHkJcBDpvM1XgZkR8UpHA2uB/Ec83H/Du0fEstKCaTFJyxj+VsRdfWwAks4lTSY8AVhL+q//cuDSiHi5g6G1RZ4a63IavPDTCcfMzErhQQNmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBT/H1PMymNpY69NAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# plot estimated values for \"a\"\n", "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb index 90b4e34b4..c7c70ffec 100644 --- a/qiskit/finance/simulation/credit_risk_analysis.ipynb +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -444,8 +444,6 @@ " »\n", "q_a_2: |0>──────────────────────────────────────────────────────────────────»\n", " »\n", - "q_a_3: |0>──────────────────────────────────────────────────────────────────»\n", - " »\n", "« ┌────────────────┐┌───┐┌───────┐┌───┐┌───────┐ »\n", "« q_0: ┤ U3(1.5708,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n", "« └────────────────┘└─┬─┘└───────┘└─┬─┘└───────┘ │ »\n", @@ -463,8 +461,6 @@ "« »\n", "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n", "« »\n", - "«q_a_3: ──────────────────────────────────────────────────────────────────────»\n", - "« »\n", "« »\n", "« q_0: ──■────■───────────────────────────────────────────■──»\n", "« │ │ │ »\n", @@ -482,8 +478,6 @@ "« »\n", "«q_a_2: ──────────────────────────────────────────────────────»\n", "« »\n", - "«q_a_3: ──────────────────────────────────────────────────────»\n", - "« »\n", "« ░ »\n", "« q_0: ─────────────────────────────────────────────────────────────────────░─»\n", "« ░ »\n", @@ -501,8 +495,6 @@ "« ░ »\n", "«q_a_2: ─────────────────────────────────────────────────────────────────────░─»\n", "« ░ »\n", - "«q_a_3: ─────────────────────────────────────────────────────────────────────░─»\n", - "« ░ »\n", "« ░ »\n", "« q_0: ─────────────────────────────────────────░───────────────»\n", "« ░ »\n", @@ -520,8 +512,6 @@ "« ┌─┴─┐ └─┬─┘ ┌─┴─┐└───┘└─┬─┘ ░ »\n", "«q_a_2: ┤ X ├───────■───────┤ X ├───────■────────░───────────────»\n", "« └───┘ └───┘ ░ »\n", - "«q_a_3: ─────────────────────────────────────────░───────────────»\n", - "« ░ »\n", "« »\n", "« q_0: ──────────────────────────────────────────────────────────────────────»\n", "« »\n", @@ -539,8 +529,6 @@ "« »\n", "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n", "« »\n", - "«q_a_3: ──────────────────────────────────────────────────────────────────────»\n", - "« »\n", "« ░ ░ \n", "« q_0: ─────────────────────────░──────────────────────────────────────────░─\n", "« ░ ░ \n", @@ -557,12 +545,10 @@ "«q_a_1: ─────────────────────■───░─┤ X ├─────┤ X ├──┼──┤ X ├────────────┼───░─\n", "« ░ └─┬─┘ └───┘┌─┴─┐└─┬─┘ ┌─┴─┐ ░ \n", "«q_a_2: ─────────────────────────░───■────────────┤ X ├──■────────────┤ X ├─░─\n", - "« ░ └───┘ └───┘ ░ \n", - "«q_a_3: ─────────────────────────░──────────────────────────────────────────░─\n", - "« ░ ░ " + "« ░ └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -766,7 +752,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -787,7 +773,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -796,7 +782,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "scrolled": true }, @@ -821,8 +807,6 @@ " »\n", "q_a_2: |0>──────────────────────────────────────────────────────────────────»\n", " »\n", - "q_a_3: |0>──────────────────────────────────────────────────────────────────»\n", - " »\n", "« ┌────────────────┐┌───┐┌───────┐┌───┐┌───────┐ »\n", "« q_0: ┤ U3(1.5708,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n", "« └────────────────┘└─┬─┘└───────┘└─┬─┘└───────┘ │ »\n", @@ -840,8 +824,6 @@ "« »\n", "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n", "« »\n", - "«q_a_3: ──────────────────────────────────────────────────────────────────────»\n", - "« »\n", "« »\n", "« q_0: ──■────■───────────────────────────────────────────■──»\n", "« │ │ │ »\n", @@ -859,8 +841,6 @@ "« »\n", "«q_a_2: ──────────────────────────────────────────────────────»\n", "« »\n", - "«q_a_3: ──────────────────────────────────────────────────────»\n", - "« »\n", "« ░ »\n", "« q_0: ─────────────────────────────────────────────────────────────────────░─»\n", "« ░ »\n", @@ -878,8 +858,6 @@ "« ░ »\n", "«q_a_2: ─────────────────────────────────────────────────────────────────────░─»\n", "« ░ »\n", - "«q_a_3: ─────────────────────────────────────────────────────────────────────░─»\n", - "« ░ »\n", "« ░ ░ »\n", "« q_0: ─────────────────────────────────────────░─────────────────░───────────»\n", "« ░ ░ »\n", @@ -894,11 +872,9 @@ "«q_a_0: ──■──┤ X ├──┼──┤ X ├──■────┼────┼──┤ X ├─░───■────┼────■───░───┼──┤ X ├»\n", "« │ └───┘┌─┴─┐└───┘ │ ┌─┴─┐┌─┴─┐└───┘ ░ │ │ │ ░ ┌─┴─┐└───┘»\n", "«q_a_1: ──┼───────┤ X ├───────┼──┤ X ├┤ X ├──────░───┼────■────┼───░─┤ X ├─────»\n", - "« ┌─┴─┐ └─┬─┘ ┌─┴─┐└───┘└─┬─┘ ░ │ │ │ ░ └─┬─┘ »\n", - "«q_a_2: ┤ X ├───────■───────┤ X ├───────■────────░───┼────┼────┼───░───■───────»\n", - "« └───┘ └───┘ ░ ┌─┴─┐ │ ┌─┴─┐ ░ »\n", - "«q_a_3: ─────────────────────────────────────────░─┤ X ├──■──┤ X ├─░───────────»\n", - "« ░ └───┘ └───┘ ░ »\n", + "« ┌─┴─┐ └─┬─┘ ┌─┴─┐└───┘└─┬─┘ ░ ┌─┴─┐ │ ┌─┴─┐ ░ └─┬─┘ »\n", + "«q_a_2: ┤ X ├───────■───────┤ X ├───────■────────░─┤ X ├──■──┤ X ├─░───■───────»\n", + "« └───┘ └───┘ ░ └───┘ └───┘ ░ »\n", "« ░ \n", "« q_0: ───────────────────────────────░─\n", "« ░ \n", @@ -915,12 +891,10 @@ "«q_a_1: ┤ X ├──┼──┤ X ├────────────┼───░─\n", "« └───┘┌─┴─┐└─┬─┘ ┌─┴─┐ ░ \n", "«q_a_2: ─────┤ X ├──■────────────┤ X ├─░─\n", - "« └───┘ └───┘ ░ \n", - "«q_a_3: ───────────────────────────────░─\n", - "« ░ " + "« └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 21, @@ -934,7 +908,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -967,7 +941,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -980,7 +954,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1034,7 +1008,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1050,7 +1024,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -1118,7 +1092,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -1148,7 +1122,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1188,7 +1162,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -1215,7 +1189,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -1224,7 +1198,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, "outputs": [], "source": [ @@ -1233,7 +1207,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -1256,7 +1230,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -1265,7 +1239,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": {}, "outputs": [ { @@ -1302,7 +1276,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ @@ -1315,9 +1289,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 36, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact CVaR: \t3.0000\n", + "Estimated CVaR:\t3.8670\n", + "Probability: \t0.7146\n" + ] + } + ], "source": [ "# print results\n", "print('Exact CVaR: \\t%.4f' % exact_cvar)\n", @@ -1327,9 +1311,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHd9JREFUeJzt3Xu0HFWd9vHvw0UItxAEAoMMEbxEGFmORgSHkXCH8I5cRJOFvrPioFFfFWcWOkRECOiwBEdAF+MClg68jJowAwzvQAghXE4gXNQgQZwkYNCAXERxDsQYiEB+7x+7DnbqdJ/T1Zd9cvo8n7V6dfeuXdW7djr9nKraVaWIwMzMrNs2G+kGmJnZ2ODAMTOzLBw4ZmaWhQPHzMyycOCYmVkWDhwzM8vCgWM2BElzJPUVr/skzak4/1RJUV5Wg7o3SXp4iOmXSuqXtFWTn/0mSSHpmCptNusWB47ZpmMu8BeS9itPkLQ5cDJwfUSsz94ysw5w4JhtOv4fsA6YUWfaocBEUiiZjUoOHLMWSTpI0n9JelrSHyQtk/ThVpcXEWuBm4DpdSbPAJ4F7iw+ew9JV0r6paQXJT0q6VxJWw7R3i2KXWyfLJV/VdKvS2V7Sbqm2IW3TtICSW9udd3MALYY6QaYbcoiYk7N66mlyXsB9wCXAS8BfwVcKWlDRMwt5ukDVF7WEOYCH5L0roh4AKAIkROB70fEq0W9XYDngL8HngcmA+cAOwOfrriaG5G0c7FezwKzinU7E1gk6a3epWetcuCYtSgi5g28liTgLuANwMdpfdfXAlKAzAAeKMqOBnaqXWZELAOW1Xz+PcCLwGWSPhcRr7T4+QCnA1sBh0fE88Xy7wVWAzOBy9tYto1h3qVm1iJJEyR9S9LjwMvFYxbwllaXWWw9/CdpK0dF8XTgceD+ms/eTNLpklZIerH47P8LjCOFXjuOABYCa4vdcFsALwA/Aaa0uWwbwxw4Zq27ihQGXweOAt4N/CuwdZvLnQv8OXCQpK2B44G5sfGl3U8HLgD+A3g/cABwWjGt3c/fGfgwfwrRgcf7gD3bXLaNYd6lZtaCIgiOAz4TEZfVlHfij7g7SMdPZgC7A9szeBfdB4F5EXF2zWfvP8xyXwVeAV5XKt+p9P5/gAeB8+ssY80wn2HWkAPHrDVbAZsDrx1Al7Q9aWujrZtMRcSrkv6DFCp7ACsi4qelauNqP7sw5Ai5iAhJTwFvq2nz5sBhpaq3k7aqHvYAAeskB45ZCyLiBUk/Bs6WtAbYAMwmHevYoQMfMRf4DGl02tl1pi8CPiVpKfAL4G+BSU0s9z+BWZIeIh0X+jiwTanOPwOnAHdIuhR4GtgNOAToi4h/r7w2ZjhwzNpxCnAFcDXwO+BS0o/3Zzqw7PtIo8ImAfPqTD8HeD1pt1cA1wL/ANwwzHLPJh2jOR/4I/AtYDnwsYEKEfEbSQcC/wRcAuwIPAPcDTS89I7ZcJT7FtOS3gR8ATgQ+Avg7jrnN9Sbbzzpy38CabDDTcBpEfG7Ur3jga8Cbyb95XduRFzTyXUwM7PqRmKU2n7ANODR4tGsa4CppL/EZpJGBG3015ykg4HrSGdjHwvMB+ZKOqrdRpuZWXtGYgtns4jYULy+Fth5uC0cSQcB9wKHRMRdRdkBwA+BIyPitqJsIbBlRBxWM+/NwA4RcXA31sfMzJqTfQtnIGwqOhZ4diBsiuX8CPhlMY3iku2HAuUDmvNI5zOMb63FZmbWCaPlxM/JwMo65SuKaQD7AFvWqbeCtJ4tn/1tZmbtGy2j1CaQri9V1g/sXVOHOvX6S9M3ImkW6XIkjBs37l177tn6idQbNmxgs81GS4aPLPdVNe6v5rmvqmm3vx599NHnImKXZuqOlsCB+ifTqU55+b0alKfCiCtIQ1uZMmVKLF26tOUG9vX1MXXq1JbnH0vcV9W4v5rnvqqm3f4qriXYlNHyZ0A/6VyAsh350xZNf01ZuQ7U30IyM7NMRkvgrORPx2pq1R7beYx0gcFyvcmks8CrDME2M7MOGy2BswDYrTjPBgBJU0jHbxbAa5d1v5N0/ala04H7IuKFTG01M7M6sh/DkbQN6cRPSBcm3EHSycX7myNinaRVwOKIOBUgIu4rzrG5WtLnSVssFwBLBs7BKXwF6JN0Cemk0GnF45iur5iZmQ1pJAYN7Eq6h0etgfdvJF0/agvSlXhrzQAuJt1v5LVL29RWiIglRXh9FfgU6TydUyLi1g6238zMWpA9cCJiNX8aOdaozqQ6Zc8DHy0eQ817A8NfwNDMzDIbLcdwzMxslHPgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFtkDR9K+km6XtE7S05LOk7T5MPPMkRQNHl+sqXdVgzqTu79mZmY2lC1yfpikCcBtwHLgeGAf4Buk4DtriFm/A9xSKjsBOANYUCpfCXy0VLa6tRabmVmnZA0c4JPAOOCkiFgDLJK0AzBH0oVF2SAR8STwZG2ZpC8DKyNiWan6HyLi/i603czM2pB7l9qxwMJSsMwjhdAhzS5E0k7AkcDczjbPzMy6JXfgTCbt8npNRDwBrCumNetkYEtSWJXtK2mNpPWSlkhqOsjMzKx7cu9SmwA8X6e8v5jWrBnATyLi0VL5g8APSceIdgFOJ+22OzgiflRvQZJmAbMAJk6cSF9fX4VmbGzt2rVtzT+WuK+qcX81z31VTc7+yh04AFGnTA3KB1eUdiftfjtj0IIjvlmqO58UPmeSBhkMbkzEFcAVAFOmTImpU6c204y6+vr6aGf+scR9VY37q3nuq2py9lfuXWr9wI51ysdTf8unng+RAuqa4SpGxIvAzcA7m22gmZl1R+7AWUnpWI2kPYFtKR3bGcIMYElE/KrC5za19WRmZt2TO3AWAEdL2r6mbDrwIrB4uJklTQIOpMnRaZLGkUbGPVC1oWZm1lm5A+cyYD1wvaQjigP2c4CLaodKS1ol6bt15p8BvAJcW54gabykuyV9QtLhkqYDdwJ7AOd3YV3MzKyCrIMGIqJf0uHApcCNpOM2F5NCp9yuepe7mQHcHhG/rTNtPfBb0hULdgVeAu4DDomIpR1ZATMza1n2UWoRsRw4bJg6kxqUv2OIeV4CTmqrcdYzJs2eD8Dqrx03wi0xswG+WrSZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWVRKXAk1bvcjJmZ2bCqbuE8JelCSW/rSmvMzKxnVQ2cy4GTgZ9J+qGkWZJ26EK7zMysx1QKnIg4JyL2Bo4EHgEuAp6R9H1JR3SjgWZm1htaGjQQEXdExN8CuwGfBd4KLJS0WtIcSX/WyUaamdno1+4otSnA+0i3je4H7gY+BqyS9JE2l21mZj2kcuBI2kvSOZIeA24Hdgf+DviziPjfwF6kYz1f72hLzcxsVKt0AzZJd5C2aJ4ErgKujIjHa+tExKuSfgB8rlONNDOz0a/qHT+fA6YBiyIihqi3DHhjy60yM7OeU3WX2qXAvfXCRtJ2kt4HEBEvl7d8zMxsbKsaOHcC+zaY9tZiupmZ2SBVA0dDTNsOWNdGW8zMrIcNewyn2E02taboY5KOKVXbGjgOeLhzTTMzs17SzKCB95BO7gQI4IPAK6U6fwRWAl/oXNPMzKyXDBs4EfF1inNqJP0SODEilnW7YWZm1lsqDYuOCA91NjOzljRzDGcasCQi1hSvhxQRN3ekZWZm1lOa2cK5CTgQ+FHxOmg8Wi0A36TNzMwGaSZw3gg8U/PazMyssmYGDTxe77WZmVkVzRzD2abKAiPCJ3+amdkgzexSW0s6NtMsH8MxM7NBmgmcv6Na4JiZmQ3SzDGcqzK0w8zMely7t5g2MzNrSjODBn4EzIyI5ZJ+zDC71yLigE41zszMekczx3D+G3ix5rWP55iZWWXNHMP5aM3rmV1tjZmZ9ayWj+Eo2UXSUDdlMzMzA1oIHEnTJN0LvAT8GnhJ0r2Sjut468zMrGdUChxJnwBuJJ0M+jnSzdg+V7z/r2K6mZnZIJXuhwOcCVwREZ8qlV8m6TLgS8DlHWmZmZn1lKq71F4PXN9g2nXATsMtQNK+km6XtE7S05LOkzTk5XAkTZIUdR7z6tQ9XtLDkl6StFzS9KbWzMzMuqrqFs6dwCHAojrTDgHuGmpmSROA24DlwPHAPsA3SMF3VhOf/3ngnpr3z5WWfzAp+L4NnAZMA+ZK6o+IW5tYvpmZdUkzJ37uW/P2W8B3JL0euAH4DbArcCJwLPCxYRb3SWAccFJErAEWSdoBmCPpwqJsKI9ExP1DTP8ycFdEnFa8v1PSfsDZgAPHzGwENbOF8zM2PtlTwCeKR/nun7cw9NWijwUWloJlHnABaQvpxibaU5ekrYBDSVs2teYBV0oaHxEvtLp8MzNrTzOBc2gHP28ycEdtQUQ8IWldMW24wLlS0k6kLau5wJciYuAqCPsAWwIrS/OsIO2yewvw4/aab2ZmrWrmSgOLO/h5E4Dn65T3F9MaWQ/8C2m32BpgKnAGKWSOr1k2dZbfX5q+EUmzgFkAEydOpK+vb6j2D2nt2rVtzT+WdLuvTn/7KwA98+/h71bz3FfV5OyvqoMGXiNpM2DrcnkTd/ysdy02NSgfWOYzwGdqivokPQt8W9I7ImLZEMtXg/KBZV8BXAEwZcqUmDp16tCtH0JfXx/tzD+WdLuvZs6eD8DqD3fvM3Lyd6t57qtqcvZX1RM/JekMSauAl4Hf13kMpR/YsU75eOpv+Qzl2uL5nTXLps7yB95XXb6ZmXVQ1fNwTgNmA98lbTn8E3Ae8CiwmmLX1BBWko7VvEbSnsC2DD72MpwoPT9GCsHJpXqTgQ1FG83MbIRUDZyPA+cAFxbvb4iIc4H9SIHx5mHmXwAcLWn7mrLppNsfVD1WdHLx/ABARKwnnSf0wVK96cB9HqFmZjayqh7DeSOwLCJelfQyxe6qiNgg6dvAd0hbQI1cRtpKul7SBcDewBzgotqh0sUuu8URcWrxfg6wPemkzzXA+4AvANdHxE9rlv8V0vGdS0jnCU0rHsdUXE8zM+uwqls4vwO2K14/AfxlzbQJpJM6G4qIfuBw0rk6NwLnAheTtppqbcHG5/OsJJ2ncyVwM3AK8PXiuXb5S0hbPkcAC4H3A6f4KgNmZiOv6hbOPcC7ST/6PyBdIWAn4I/Ap4Hbh1tARCwHDhumzqTS+3mkEziHFRE3kLZuzMxsE1I1cOYAexSvzyftUptJ2rJZBHy2Uw0zM7PeUilwIuIR4JHi9XrSvXA+14V2mZlZj2nnxM83ALsDT0fEU51rkpmZ9aJWbjH9KUm/Ah4Hfgg8IelJSf+n460zM7OeUfVKA2cDl5LOpzkOmFI8LwC+VUw3MzMbpOoutU8D50fEl0vltxTXNvs06coDZmZmG6m6S20cje/quZg6F/M0MzOD6oFzA3BSg2kfAG5qrzlmZtarmrnF9LSatwuACyVNYvAtpvcD/rHzTTQzs17QzDGcmxh8K+k9gKPr1P0e6U6cZmZmG2kmcN7Y9VaYmVnPa+YW04/naIiZmfW2ylcakLQFaYDAwcBOwP8Ad5NuFfBKZ5tnZma9olLgSNoVuBXYn3SHz2eBg0jn3zwk6aiI+G2nG2lmZqNf1WHRFwGvB94TEXtHxEERsTfwnqL8ok430MzMekPVwJkGnBERP64tLN5/kXSZGzMzs0GqBs5WwO8bTPs98Lr2mmNmZr2qauDcD5whadvawuL9GcV0MzOzQaqOUjsduBP4laRbSYMGdiWdBCpgakdbZ2ZmPaPSFk5ELAPeDFwB7AIcSQqcy4A3R8RDHW+hmZn1hKa3cCRtCRwA/DIiZnevSWZm1ouqbOG8CtwBvK1LbTEzsx7WdOBExAbg58DE7jXHzMx6VdVRal8Czpb09m40xszMelfVUWpnka4osEzSU6RRalFbISIO6FDbzMysh1QNnJ8VDzMzs0qaChxJ40iXtfkZ8Gvgtoh4tpsNMzOz3tLMLab3Bm4DJtUUr5H0oYi4tVsNMzOz3tLMoIELgQ3AXwPbAPsBDwKXd7FdZmbWY5oJnIOAsyLinoh4KSJWAJ8A/lzS7t1tnpmZ9YpmAmd34BelssdI107breMtMjOzntTseTgxfBUzM7PGmh0WvVDSK3XKby+XR8Su7TfLzMx6TTOBc27XW2FmZj1v2MCJCAeOmZm1req11MzMzFriwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLInvgSNpX0u2S1kl6WtJ5kjYfZp53S7pS0qpivkcknSNp61K9OZKizuOY7q6VmZkNp+oN2NoiaQLpVgfLgeOBfYBvkILvrCFmnV7UvQD4ObA/8JXi+QOlui8A5YBZ0W7bzcysPVkDB/gkMA44KSLWAIsk7QDMkXRhUVbPBRHx25r3fZJeAi6XtFdEPF4z7ZWIuL87zTczs1bl3qV2LLCwFCzzSCF0SKOZSmEz4MHi2dduMzMbBXIHzmRgZW1BRDwBrCumVfFe0o3hHimV7yjpOUkvS3pQ0kktt9bMzDpGEfnuPCDpZeALEXFJqfxJ4OqIOLPJ5ewG/BS4OSJm1pR/hLTFswzYjnSjuGnAByLi+gbLmgXMApg4ceK75s2bV3W1XrN27Vq22267lucfS7rdVw8/9QIAb99jfNc+Iyd/t5rnvqqm3f469NBDH4iIKc3UHYnA+XxEfLNU/hRwVUR8qYllvI408OANwLsion+IugLuBcZFxDuGW/aUKVNi6dKlw1VrqK+vj6lTp7Y8/1jS7b6aNHs+AKu/dlzXPiMnf7ea576qpt3+ktR04OTepdYP7FinfDzw/HAzFwFyNbAfMG2osAGIlKbXA/sPN/TazMy6K/cotZWUjtVI2hPYltKxnQYuJg2nPjIimqk/wHcsNTMbYbm3cBYAR0vavqZsOvAisHioGSV9Efgs8JGIWNLMhxVbRCcCD0XEq6012czMOiH3Fs5lwGnA9ZIuAPYG5gAX1Q6VlrQKWBwRpxbvTwHOB64CnpJ0YM0yHxsYNi1pMXAdaWtpW+DjwIHACd1dLTMzG07WwImIfkmHA5cCN5KO21xMCp1yu2qPuRxVPM8sHrU+SgoigFXA3wO7k4ZM/wQ4LiIWdKL9ZmbWutxbOETEcuCwYepMKr2fyeCgqTffqW00zczMushXizYzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHBs1Jo0ez6TZs8f6WaYWZMcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwLExZ9Ls+UyaPX+km2E25jhwzMwsCweOmZllscVIN8BsKLW7vlZ/7bgRbImZtSv7Fo6kfSXdLmmdpKclnSdp8ybmGy/pSkn9kl6Q9H1Jr69T73hJD0t6SdJySdO7syZmZlZF1sCRNAG4DQjgeOA84HTg3CZmvwaYCnwMmAm8G7ihtPyDgeuAO4FjgfnAXElHdWQFzMysZbl3qX0SGAecFBFrgEWSdgDmSLqwKBtE0kHA0cAhEXFXUfYU8ENJR0TEbUXVLwN3RcRpxfs7Je0HnA3c2r3Vsl4xsAvPu+/MOi/3LrVjgYWlYJlHCqFDhpnv2YGwAYiIHwG/LKYhaSvgUODfS/POAw6SNL795lu3jIahygNt3NTbabapyr2FMxm4o7YgIp6QtK6YduMQ862sU76imAawD7BlnXorSMH6FuDHrTV7bGv0V3+nynvFUOvXzLRG0816hSIi34dJLwNfiIhLSuVPAldHxJkN5lsE/CEiTiiVfw/YOyLeK+mvgCXAX0bEspo6bwJ+DhwdEYN2q0maBcwq3r4VeKTlFYSdgefamH8scV9V4/5qnvuqmnb7a6+I2KWZiiMxLLpewqlBeSvzld9riPmJiCuAK4b57KZIWhoRUzqxrF7nvqrG/dU891U1Ofsr9zGcfmDHOuXjgedbmG/Hmvn6a8rKdRhm+WZm1mW5A2clfzrmAoCkPYFtqX+MpuF8hdpjO48BL9epNxnYADzaQnvNzKxDcgfOAuBoSdvXlE0HXgQWDzPfbsV5NgBImgLsXUwjItaTzr/5YGne6cB9EfFC+80fVkd2zY0R7qtq3F/Nc19Vk62/cg8amAAsB34GXEAKjIuASyLirJp6q4DFEXFqTdktpJFmnydtsVwA/CYi/rqmzsFAH3Ap6aTQaUX9Y+oNGDAzs3yybuFERD9wOLA5aQj0ucDFwDmlqlsUdWrNIG0F/StwNfAAcGJp+UuAk4EjgIXA+4FTHDZmZiMv6xaOmZmNXb49QYkvLlpNK/0l6d1FX60q5ntE0jmSti7VmyMp6jyO6e5adUeLfTWpQR/Mq1PX363G35mQ9MWaelc1qFNvcNImT9KbJF0u6SFJr0rqa3K+rL9bvj1BjZqLiy4nXVx0H+AbpGA+a4hZIV1c9K2ki4sOHGO6ASgfY7oO+DZwGukY01xJ/aNxt18b/TW9qHsB6aTc/YGvFM8fKNV9ASgHzIp2255bm98tSMci76l5v9GJev5uveY7wC2lshOAMygGGNVYCXy0VLa6tRaPuP1I/+b3A6+rMF/e362I8KN4AF8knc+zQ03ZPwLrasvqzHcQ6cTS99WUHVCUHVFTthC4ozTvzcCSkV73zP21S52yWUV/7VVTNgd4bqTXc4T7alLRL/9rmOX7u9V4WfOBFaWyq4ClI72eHeyvzWpeXwv0NTFP9t8t71LbmC8uWk1L/RURv61T/GDxvGvnmrdJafW7NSx/txqTtBNwJDC3s83btETEhhZmy/675cDZ2KCLhEbEE6S/qobat9upi4uONq32Vz3vJW3Sl69lt6Ok5yS9LOlBSSe13NqR1W5fXVnsm39G0kWSxtVM83ersZNJfTPomBewr6Q1ktZLWiKpreAfhbL/bjlwNjaB+pfA6S+mtTPfwHO5Xn9p+mjSan9tRNJuwJeAfyv9RbuKtBvlQ6RjO08D143S0Gm1r9YD/wKcSjql4HLgU2z8A+rvVmMzgJ9ERPlKIw+Sbv74N8CHSadhLJJ0QAttHa2y/2550MBgm9TFRUeBVvsrVZReR9pcXwv8w0YLjvheqe6NwL2kG+pd30pjR1jlvoqIZ4DP1BT1SXoW+Lakd0TNldHrLGesf7d2J+1+O2PQgiO+Wao7nzRA4UzSIIOxIuvvlrdwNuaLi1bTan8BIEmkk3j3A6ZFOjG4oUhHK68H9m9mqPompq2+Krm2eH5nzbKps/wx+90qfIj0w3jNcBUj4kXSgfB3Dle3h2T/3XLgbMwXF62m1f4acDFpyOvxEdFM/QGj8S/2dvuqVpSe/d2qbwZpJNWvKnzuaPxutSr775YDZ2O9fnHRTmu1vyhOwvss8JFIlyQaVrFFdCLwUES82lqTR0zLfVXHycXzA+DvVj2SJgEH0uTotGIQxrEUfTpG5P/dGunx45vSg3QA7BlgEel6bLNIxxa+Wqq3CvhuqewW4BfASaR9wI8Ad5fqHAy8AlwCTAUuJP2VcNRIr3vO/gJOIf0leSXpR6H2sUtNvcWkE82OIgXNzUV/vX+k1z1jX80hnfB4UjHfeaQf3ev83ar/f7Eon036y7zeOV/jgbuBT5AGYkwnnTC5Hpgy0uveYn9tQ/pD5GTgPuC/a95v06ivcv9ujXhHbWoPYF/gjuI/9TOkM+A3L9VZDVxVKtux+AF9HlgD/ADYuc7yTyBdLXs9abN1xkivc+7+Ip10Fw0eM2vqfbf4z/Ai8IfiR+LYkV7nzH01A1hKuuLCH4sfjfOArfzdqv9/sShfBtzSYLlbk44F/qroqxeKH94DR3qd2+irSUP8n5rUqK9y/2754p1mZpaFj+GYmVkWDhwzM8vCgWNmZlk4cMzMLAsHjpmZZeHAMTOzLBw4ZmaWhQPHzMyy+P/sRLFWrSgmxQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm0XGWZ7/Hvj9FASJiHppEwaS60XiUBAWlImAlLEQSDXL0dhSRgL+EqIsgYUFyCi6Ft9JKg4mXZGFpM0zIECHACRBFMAgoNYZJB0EbAAxjCEOC5f7z7wKZS59Suc6p27dT5fdbaq6re/e5dT1VOznP2O21FBGZmZu22SqcDMDOz4cEJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZiWQdKikWyW9KOl1SQ9L+pakDVv8Pk9Iimx7Q9Ijks6VtHYr38dsMJxwzNpM0vnAz4E/AJ8H9gMuBD4BXNqGt7wC2BXYB7gc+ArwL214H7OmyBM/zdpH0ieAXwJHRcSPa/atCuwXEXNb+H5PAFdFxNdyZZcAU4C1IuLtVr2XWbN8hWPWXl8BFtcmG4CIeCsi5kp6XNJ5tfslXSXpjuz52pIulvSQpGXZMd+XNKpADL8D1gQ2GuqHMRsKJxyzNpG0OrAbcEODqv8OfEaScseOBCYBV2ZFawGrAqcCBwKnA3uRmuoaeT/wN+D5ZuI3a7XVOh2AWRfbgHRl8VSDerOBrwMfA36TlX0iO/bnABHxHHBs3wGSVgMeBxZIen9E5N9D2f41gD2AY4BzIuKtIX8isyHwFY5Z+w3YURoR9wAPA5NzxZOB+RHxbF+BpM9LukfSUmA5sCDb9YGaU3412/8KMBfoiYhzh/YRzIbOCcesfV4AXic1aTVyJXC4klHAAaQrHwAkHUIacXYncDiwC3BItvt9Nef6KbATMAG4DDhE0rGYdZgTjlmbRMRy4FfA/gWqzwY2B3YHPkXqr5mT2384cFdEfCki5kbEXUBvP+d6NiIWRsRtEfFF4FbgbM/FsU5zwjFrr4uA8ZL+qXaHpFUkHQAQEQ8A95Oa0iYD8yLihVz1EaSrpbz/VTCGbwAbAkc1GbtZS3nQgFkbRcQ1ki4AfiTp48B/AkuBsaTO/Cd4dxTblcDxwGhgas2p5gHfl3QqcBdpBNveBWO4W9I84CuSvu/BA9YpvsIxa7OIOIF01bIdaRWAecAJwC3kRp6RmtU2BN4Grq45zUzgfFJCmgNsCRzZRBjfAsYAn2n6A5i1SOkrDUjaFjiR1On5D8AdETGhwHGjSc0TnyIlymuB42qaHZB0MOk/13akpUTOiogrMTOzjurEFc4OpOaAh7OtqCtJo26OJi3TsRM1fwVK2h34BdBDmhx3HfAzSfsNNWgzMxuaTlzhrNK3npOkq4ANG13hSNoV+DWwZ0TcnpXtTGrL3jcibs7KbgRWj4i9csdeD4yKiN3b8XnMzKyY0q9wBrl44IGkoZ63585zN2mm9YEAktYEJpKWCcmbDeyaNcmZmVmHrCyDBsYCS+qUP5jtA9gGWL1OvQdJn7N2NraZmZVoZRkWvR7wYp3yXmDrXB3q1Out2f8ekqYB0wBGjBgxbostthgwkLfffptVVllZ8nQyHGJe5+HUHfi3D3Tu74rh8D1XgWMuR9GYH3744ecjotBK5CtLwoH661GpTnnta/VTngojZgGzAMaPHx8LFy4cMIj58+czYcKERrFWyrCIuW+h5Yceaks8RQyL77kCHHM5isYs6cmi51xZUm4vsG6d8nV594qmN1dWWwfqXyGZmVlJVpaEs4R3+2ry8n07j5FWyK2tN5Y0ka6ZIdhmZtZiK0vCmQtsms2zAUDSeFL/zVyAiHidNP/m8JpjJwN3RsRLJcVqZmZ1lN6HI2kt0sRPSKvjjpJ0WPb6+ohYJulR4LaIOAogIu7M5thcLulrpCuWc4EFfXNwMt8E5ku6iDQpdFK2HdD2D2ZmZgPqxKCBjVnxtrh9r7ciLWa4Gml59rwjgAuBH5Nb2iZfISIWZMnrW6Q1qh4HjoyIm1oYv1VRyROYzax5pSeciHiCd0eO9VdnTJ2yF4EvZNtAx17NigsfmplZh60sfThmZraSc8Kx7jBuXNrMrLJWpomfZv1bvLjTEZhZA77CMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhUepWXeYOrXTEZhZA0441h1mzep0BGbWgJvUzMysFE441h0WLUqbmVWWm9SsO4wfnx69arRZZfkKx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCg+Ltu6wcGGnIzCzBpxwrDv49tJmlecmNTMzK4UTjnWHadPSZmaV5YRj3eHSS9NmZpXlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgpP/LTusOOOnY7AzBpwwrHu4NtLm1Wem9TMzKwUTjhmZlYKJxzrDlLazKyynHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqXwSgPWHWbO7HQEZtaAE451B99e2qzySm9Sk7S9pFskLZP0J0lnS1q1wTEzJEU/2zdy9X7ST52x7f9kZmY2kFKvcCStB9wMPAAcDGwDnE9KfKcNcOgPgRtqyj4FnATMrSlfAnyhpuyJwUVsK41Zs9Kjr3TMKqvsJrVjgBHAoRHxMjBP0ihghqTzsrIVRMTTwNP5MkmnA0si4t6a6q9ExG/aELtV2fTp6dEJx6yyym5SOxC4sSaxzCYloT2LnkTS+sC+wM9aG56ZmbVL2QlnLKnJ6x0R8RSwLNtX1GHA6qRkVWt7SS9Lel3SAkmFE5mZmbWPIqK8N5OWAydGxEU15U8Dl0fEKQXPcyswOiLG1ZQfD7xB6iPaCDgBGAfsHhF393OuacA0gE022WTc7Nn1cti7li5dysiRI4uEWRnDIeYJEycCML+np10hNTQcvucqcMzlKBrzxIkTF0XE+EInjYjSNmA5cHyd8meAcwqeYzPgLeBrBeqOAB4Hri5y7nHjxkUjPT09DetUzbCIGdLWQcPie64Ax1yOojEDC6NgDii7Sa0XWLdO+WjgxYLn+Awg4MpGFSPiVeB6wDe8NzPrsLITzhJq+mokbQGsTU3fzgCOABZExB+beN/y2g3NzKyushPOXGB/SevkyiYDrwK3NTpY0hhgFwqOTpM0gjQyblGzgdpKpq9Rzcwqq+yEcwnwOjBH0j5Zh/0M4ILIDZWW9KikH9U5/gjgTeCq2h2SRku6Q9J0SXtLmgz0AJsD327DZzEzsyaUOvEzInol7Q1cDFxD6re5kJR0auOqt9zNEcAtEfFcnX2vA8+RVizYGHgNuBPYMyIWtuQDmJnZoJW+eGdEPADs1aDOmH7KPzLAMa8Bhw4pOFt5jctGyC9KradjTr7unV1PfOegTkRkZjW8WrR1h8WLOx2BmTXgG7CZmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9SsO0yd2ukIzKwBJxzrDn23mDazynKTmpmZlaKphCOp3nIzZp23aNE7qwyYWTU126T2jKTLgcsi4sF2BGQ2KOOzGw56xWizymq2SW0mcBhwv6S7JE2TNKoNcZmZWZdpKuFExJkRsTWwL/AQcAHwZ0n/JmmfdgRoZmbdYVCDBiLi1oj438CmwJeBDwI3SnpC0gxJf9fKIM3MbOU31FFq44E9SLeN7gXuAI4GHpX0uSGe28zMukjTCUfSlpLOlPQYcAuwGfBF4O8i4vPAlqS+nu+2NFIzM1upNTVKTdKtpCuap4GfkEarPZmvExFvSboCOL5VQZqZ2cqv2WHRzwOTgHkRA44/vRfYatBRmTVroe8iblZ1zSaci4HF9ZKNpJHAjhFxe0QsB55c4Wizdum7xbSZVVazfTg9wPb97Ptgtt/MzGwFzSYcDbBvJLBsCLGYDd60aWkzs8pq2KQmaQ9gQq7oaEkH1FR7H3AQcF/rQjNrwqWXpkevGm1WWUX6cD5GmtwJEMDhwJs1dd4AlgAnti40MzPrJg0TTkR8l2xOjaTHgUMi4t52B2ZmZt2lqVFqEeGhzmZmNihF+nAmAQsi4uXs+YAi4vqWRGZmZl2lyBXOtcAuwN3Z86D/0WoB+CZtZma2giIJZyvgz7nnZtWz446djsDMGigyaODJes/NKsW3lzarvCJ9OGs1c8KI8ORPMzNbQZEmtaWkvpmi3IdjZmYrKJJwvkhzCcesfMrGsQy4iLmZdVKRPpyflBCHmZl1uaHeYtrMzKyQIoMG7gamRMQDkn5Lg+a1iNi5VcGZmVn3KNKH81/Aq7nnbiQ3M7OmFenD+ULu+ZS2RmNmZl1r0H04SjaSNNBN2czMzIAmV4uGdxbzPA0Ylx3/pqRFwDkRcV2L4zMrZubMTkdgZg00lXAkTQd+ANwCHA/8BdgYOBT4paQvRYT/51v5fHtps8pr9grnFGBWRBxbU36JpEuAUwEnHDMzW0GzfTgbAHP62fcLYP1GJ5C0vaRbJC2T9CdJZ0sacDkcSWMkRZ1tdp26B0u6T9Jrkh6QNLnQJ7OV26xZaTOzymr2CqcH2BOYV2ffnsDtAx0saT3gZuAB4GBgG+B8UuI7rcD7fw34Ve718zXn352U+H4AHAdMAn4mqTcibipwfltZTZ+eHt20ZlZZRSZ+bp97+T3gh5I2AK7m3T6cQ4ADgaMbnO4YYARwaES8DMyTNAqYIem8rGwgD0XEbwbYfzpwe0Qcl73ukbQDcAbghGNm1kFFrnDu572TPQVMz7bau3/ewMCrRR8I3FiTWGYD55KukK4pEE9dktYEJpKubPJmA5dJGh0RLw32/GZmNjRFEs7EFr7fWODWfEFEPCVpWbavUcK5TNL6pCurnwGnRkTfKgjbAKsDS2qOeZDUZPcB4LdDC9/MzAZLUeJy7pKWAydGxEU15U8Dl0fEKf0ctxlpBNxNwMvABOAk4KaIODir83FgAfDRiLg3d+y2wCPA/vX6cSRNA6YBbLLJJuNmz15hHMJ7LF26lJEjRxb6vFUxHGKeMDH9XTS/pweA+55592L2Q5uPbm1w/RgO33MVOOZyFI154sSJiyJifKGTRsSgNtJVw1q1W4NjlgPH1yl/hjRxtJn3P5bUpPeR7PXHs9f/s6bedln5vo3OOW7cuGikp6enYZ2qGRYxpzvhvPNyy5OufWcry7D4nivAMZejaMzAwij4e7upYdHZcjYnSXo0Sx5/q7MNpBdYt075aODFZmIBrsoed8ydmzrn73vd7PnNzKyFmp2HcxxwMvAj0mCBc4CzgYeBJ8iapgawhNRX8w5JWwBrs2LfSyNR8/gYKQmOrak3Fng7i9G6Vd81jplVVrMJZypwJnBe9vrqiDgL2IGUMLZrcPxcYH9J6+TKJpNuf3Bbk7Eclj0uAoiI10nzhA6vqTcZuDM8Qs3MrKOanfi5FXBvRLyVDQBYFyAi3pb0A+CHpCug/lxCukqaI+lcYGtgBnBB5IZKZ012t0XEUdnrGcA6pEmfLwN7ACcCcyLi97nzfxOYL+ki0jyhSdl2QJOf08zMWqzZK5wXgL5hC08BH83tW480qbNfEdEL7E2aq3MNcBZwIemqKW813jufZwlpns5lwPXAkcB3s8f8+ReQrnz2AW4EPgkcGV5loPuNG5c2M6usZq9wfgXsRPqlfwVphYD1gTeAfyatIj2giHgA2KtBnTE1r2eTJnA2FBFXk65ubDhZvLjTEZhZA80mnBnA5tnzb5Oa1KaQrmzmAV9uVWBmZtZdmko4EfEQ8FD2/HXSPXGOb0NcZmbWZZq+42cfSX8PbAb8KSKeaV1IZmbWjZodNICkYyX9EXgSuAt4StLTkr7U8ujMzKxrNLvSwBnAxaT5NAcB47PHucD3sv1mZmYraLZJ7Z+Bb0fE6TXlN0h6Ntt/dksiM2vG1KmdjsDMGmg24Yyg/7t63oZHqVmn+PbSZpXXbB/O1cCh/ez7NHDt0MIxM7NuVeQW05NyL+cC50kaw4q3mN4B+HrrQzQrYNGi9OjVBswqq0iT2rWseCvpzYH969T9KelOnGblGp/d/8krRptVVpGEs1XbozAzs67XMOFExJNlBGJmZt2t6ZUGJK1GGiCwO7A+8FfgDtKtAt5sbXhmZtYtmko4kjYGbgI+TLrD57PArqT5N7+TtF9EPNfqIM3MbOXX7LDoC4ANgI9FxNYRsWtEbA18LCu/oNUBmplZd2g24UwCToqI3+YLs9ffIC1zY2ZmtoJm+3DWBP7Wz76/AWsMLRyzQVq4sNMRmFkDzSac3wAnSbo1Il7pK5S0NnBStt+sfJ7waVZ5zSacE4Ae4I+SbiINGtiYNAlUwISWRmdmZl2jqT6ciLgX2A6YBWwE7EtKOJcA20XE71oeoVkR06alzcwqq/AVjqTVgZ2BxyPi5PaFZDYIl16aHr1qtFllNXOF8xZwK/A/2hSLmZl1scIJJyLeBh4BNmlfOGZm1q2anYdzKnCGpA+1IxgzM+tezY5SO420osC9kp4hjVJ7z3rwEbFzi2IzM7Mu0mzCuT/bzMzMmlIo4UgaQVrW5n7gv4GbI+LZdgZm1pQdd+x0BGbWQJFbTG8N3AyMyRW/LOkzEXFTuwIza0rfLabNrLKKDBo4D3gb+EdgLWAH4B5gZhvjMjOzLlMk4ewKnBYRv4qI1yLiQWA68H5Jm7U3PDMz6xZFEs5mwB9qyh4jrZ22acsjMhsMKW1mVllF5+FE4ypmZmb9Kzos+kZJb9Ypv6W2PCI2HnpYZmbWbYoknLPaHoWZmXW9hgknIpxwzMxsyJpdS83MzGxQnHDMzKwUza6lZlZNMz0P2azqnHCsO/j20maV5yY1MzMrhROOdYdZs9JmZpVVesKRtL2kWyQtk/QnSWdLWrXBMTtJukzSo9lxD0k6U9L7aurNkBR1tgPa+6ms46ZPT5uZVVapfTiS1iPd6uAB4GBgG+B8UuI7bYBDJ2d1zwUeAT4MfDN7/HRN3ZeA2gTz4FBjNzOzoSl70MAxwAjg0Ih4GZgnaRQwQ9J5WVk950bEc7nX8yW9BsyUtGVEPJnb92ZE/KY94ZuZ2WCV3aR2IHBjTWKZTUpCe/Z3UE2y6XNP9ui128zMVgJlJ5yxwJJ8QUQ8BSzL9jVjN9KN4R6qKV9X0vOSlku6R9Khg47WzMxaRhHl3XlA0nLgxIi4qKb8aeDyiDil4Hk2BX4PXB8RU3LlnyNd8dwLjCTdKG4S8OmImNPPuaYB0wA22WSTcbNnzx7wvZcuXcrIkSOLhFkZwyHmCRMnAjC/pweA+5556Z19H9p8dGuD68dw+J6rwDGXo2jMEydOXBQR4wudNCJK24DlwPF1yp8Bzil4jjWA20k3hVuvQV0BdwL3Fjn3uHHjopGenp6GdapmWMQMactsedK172xlGRbfcwU45nIUjRlYGAVzQNlNar3AunXKRwMvNjpYkoDLgR2ASRHRO1D97MuYA3y40dBrW8n1pRwzq6yyR6ktoaavRtIWwNrU9O3040LScOp9I6JI/T7+TWRm1mFlX+HMBfaXtE6ubDLwKnDbQAdK+gbwZeBzEbGgyJtlV0SHAL+LiLcGF7KZmbVC2Vc4lwDHAXMknQtsDcwALojcUGlJjwK3RcRR2esjgW8DPwGekbRL7pyPRTZsWtJtwC9IV0trA1OBXYBPtfdjWceNG5ceFy3qbBxm1q9SE05E9EraG7gYuIbUb3MhKenUxpXvc9kve5ySbXlfICUigEeB/wNsRhoyvRg4KCLmtiJ+q7DFizsdgZk1UPrtCSLiAWCvBnXG1LyewoqJpt5xRw0hNDMzayOvFm1mZqVwwjEzs1I44ZiZWSmccMzMrBSlDxowa4upUzsdgZk14IRj3cG3lzarPDepmZlZKZxwrDssWuRVBswqzk1q1h3GZ7fj8IrRZpXlKxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJqttMacfN07z5/oXBhmVpATjnWHhQs7HYGZNeCEY92h7xbTZlZZ7sMxM7NSOOFYd5g2LW1mVllOONYdLr00bWZWWU44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmal8MRP6w477tjpCMysAScc6w6+vbRZ5blJzczMSuGEY2ZmpXDCse4gpc3MKssJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCq80YN1h5sxOR2BmDTjhWHfw7aXNKs8Jx4adMSdf987zJ75zUAcjMRte3Idj3WHWrLSZWWX5Cse6w/Tp6dFNa2aV5YRjlebmL7PuUXqTmqTtJd0iaZmkP0k6W9KqBY4bLekySb2SXpL0b5I2qFPvYEn3SXpN0gOSJrfnk5iZWTNKTTiS1gNuBgI4GDgbOAE4q8DhVwITgKOBKcBOwNU1598d+AXQAxwIXAf8TNJ+LfkAZmY2aGU3qR0DjAAOjYiXgXmSRgEzJJ2Xla1A0q7A/sCeEXF7VvYMcJekfSLi5qzq6cDtEXFc9rpH0g7AGcBN7ftY1i3chGfWPmUnnAOBG2sSy2zgXGBP4JoBjnu2L9kARMTdkh7P9t0saU1gInBczbGzgcskjY6Il1r0OayF8r/kobq/6J2MzIam7IQzFrg1XxART0lalu3rL+GMBZbUKX8w2wewDbB6nXoPkpoOPwD8dnBhD2/9/aJtVXk3GHPydZzwoTeZkn3G/j537b7a/d32vZjlKSLKezNpOXBiRFxUU/40cHlEnNLPcfOAVyLiUzXlPwW2jojdJH0cWAB8NCLuzdXZFngE2D8iVmhWkzQN6BtL+0HgoQYfY0Pg+QZ1qsYxl8Mxl8Mxl6NozFtGxEZFTtiJYdH1Mpz6KR/McbWv1U95KoyYBRSeMShpYUSML1q/ChxzORxzORxzOdoRc9nDonuBdeuUjwZeHMRx6+aO682V1dahwfnNzKzNyk44S3i3zwUASVsAa1O/j6bf4zL5vp3HgOV16o0F3gYeHkS8ZmbWImUnnLnA/pLWyZVNBl4Fbmtw3KbZPBsAJI0Hts72ERGvk+bfHF5z7GTgzhaOUFsZF+xyzOVwzOVwzOVoecxlDxpYD3gAuJ80FHpr4ALgoog4LVfvUeC2iDgqV3YDaaTZ10hXLOcCf4mIf8zV2R2YD1xMmhQ6Kat/QL0BA2ZmVp5Sr3AiohfYG1iVNAT6LOBC4MyaqqtldfKOIF0F/Ri4HFgEHFJz/gXAYcA+wI3AJ4EjnWzMzDqv1CscMzMbvnw/nAIkjZJ0lqS7s4VD/1vSf0j6QJ26hRYZLSnuyZLmSPqzpJA0pZ96m2efZ6mk5yVdLGmtksMd9MKuZZG0raSZkn4n6S1J8+vUkaRTJP1R0quSbpf0kQ6Ei6TDJf1S0jPZv+0iSZ+tU2+qpEeyBW8XSdq7E/FmsRwm6deSXsjieUjSaZLWyNWpzHdcT/b/aWn2f25krrwycUuaksVXux3TznidcIp5PzCV1Ex3GDAd2Iy0ltsWNXUbLjJaosOAMcC1/VWQtBrpc21JGmBxPGngRamdnBrawq5l2YHUL/gw/Y96PJm0pt+5wCeApaSllzYtJcL3+mr2/l8hNS/3AFdI+nJfBUlHAJeQmqkPBP4LuFbSP5QfLgAbkOI8Oovnx8CppL7ePlX6juv5LimmWlWMey9g19w2J7ev9fFGhLcGG2nY9oiasvWzf4Azc2W7kn5h7pEr2zkr26cDca+SPY7MYphSp85ngbeArXJlnyENzNiuxFi/QZpLNSpX9nVgWb6swz8Hq+SeXwXMr9n/PuAl4Iyan53ngG91IN4N65RdATyee/0Q8OP8ZwTuA37a6e87F9M5pHl0qtp3XCfWfwT+ShqsFMDIiv5sTMnHV2d/W+L1FU4BEfFKRLxaU/ZX4Elg41xx3UVGgb5FRksVEW8XqHYg8NuIeDxXdjXwBnBAWwLrP456C7uOIC3s2nEFvs/dgFHAv+eOeYU0QKYT//71liW5h+xnVtLWpJGf+XjfBn5OB+IdwAtAX5Napb7jvKz5919JV+e1331l4+5HW+J1whkkSRsB25KGefcpssho1awQc0S8QZpIW2bM9eJ4inSFU9XvrtZY0tXiIzXlVfr33413f2b7Yqq34O362c94R0haVdJa2VSH44D/G+nP7Cp/x8eQrgy+X2dfVeN+TNKbWV/Z9Fx5W+L1LaYH73xSk9rsXNl61F9Cp5c056iKBop5vWEYx1CsByyNiLdqynuBtSStkSXzjsgGAxwMfDEr6vtea7/33tz+50oIrZ5XgDWz55cDJ2bPK/kdZwODvgl8LiKWS6qtUrW4/0zqn7mbNAXls8AlktaKiAvbFe+wTTiSRpM6/gcUEStcsUg6Fvgc8OmIeKH2kHpv1095U4YSc6ND6r1dP+XtVJU4hqK/z9DfvlJIGkPqv/nPiPhJze6mFrwtyW7AWqQ+0DNIk7m/lO2r4nd8DnBXRFw/QJ3KxB0RN5IGC/WZq3RPsdMk/csAMQ0p3mGbcEgjsS4tUO89f6pI+iSpnfakiPiPmrq9QL1miPwio0MxqJgbKLIwahkGu7BrlfQC60hateYvw3WBZRGxvBNBSVqftATUU6Q/lPrkF7zNL/3U8QVvI2Jx9nSBpOeB/yfpfCr4HSvdVfiLwB6S+r67vmkFoyW9RQXjruMq0oChMbQp3mHbhxMRP4wINdryx0jajdSEdklEfLfOaYssMlpqzAXUW1B1DVIT4JBjHmIcRRZ2rZIlpOaJbWvKW/LvPxjZfKprSZ3uB2Udv336Yqq34O1fI6JTzWm1+pLPVlTwOwa2I9388U7SL+pe3u3HeZr0B2oV4+5P0KZ4h23CaVb2V8y1wA2seBvrPg0XGa2gucBOkrbMlX2S1H5+Q8lxDGZh1yr5NfAyuQVks1/4n6AD//7ZHKufk34hHhgRf8nvj4g/kOYT5eNdJXtdpZ/Xj2ePj1Ox7zizgHR7+/x2brZvEmleThXjrvVp0ui6J2lTvMO5Sa0wSRuTfvkuBb4H7JzrFHw5Ih4AiIg7Jd0IXC4pv8jogoi4uQNxbw9sTxo5AzBe0lLguYjo+yV+FWli3RxJp5OasC4EroiI2hEq7XQJKZHPkdS3sOsM4IKaodIdk/3WVBloAAABUklEQVSHm5S93BwYJemw7PX1EbFM0neA0yX1kv4S/CrpD7t/LT1g+AEp3uNJo852ye27J9IK6zOAn0p6AvgV8E+kBHVkuaEmSov03kyagPoWKdmcAFwZEY9ldar0HfcNP5+fL8v6zADuiIilWVll4pb0C9KAgd+TrmQmZ9tx2dD419oSbxmTjFb2jbRyQPSzza+puy5wGan9+2VSR+0KE/BKintGwZj/njT3ZilpzsP3gbU6EO/2wK2kq5o/k0b9rNrpf/9cfGMG+DkYk9URKYE/nX2OO0i3Pe9EvE80ijerNxV4FHid1Hy1dwe/42+SVpNfmv0fWgx8GVg9V6cy3/EAn2MKNRMrqxQ38G3SpN9lWSyLgM/X1Gl5vF6808zMSuE+HDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWiv8PBF6ohXaEv4IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "# plot estimated values for \"a\"\n", "plt.bar(result_cvar['values'], result_cvar['probabilities'], width=0.5/len(result_cvar['probabilities']))\n", diff --git a/qiskit/finance/simulation/european_call_option_pricing.ipynb b/qiskit/finance/simulation/european_call_option_pricing.ipynb index b1dd21893..464abe28f 100644 --- a/qiskit/finance/simulation/european_call_option_pricing.ipynb +++ b/qiskit/finance/simulation/european_call_option_pricing.ipynb @@ -88,7 +88,7 @@ "outputs": [], "source": [ "# number of qubits to represent the uncertainty\n", - "num_uncertainty_qubits = 2\n", + "num_uncertainty_qubits = 3\n", "\n", "# parameters for considered random distribution\n", "S = 2.0 # initial spot price\n", @@ -118,7 +118,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAE0CAYAAAAPLBVzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYXFW57/HvT8YQpsgQEJAwKXKIojRqRKURFAEVZQpHrhrAE/EIeDWICIoh6BWCwEEBISJEnMIgDkwyBDvIDBE0gkGDJBECyJAQMhAJee8fazenqFR1VXXt6p3q+n2ep57uWnt6a3V1vbXXWnttRQRmZmZ5eV3RAZiZ2eDixGJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcrV60QEUYeONN44RI0YUdvzFixczdOjQwo7fKVzPA8d1PTCKrufp06c/GxGb1FqvIxPLiBEjuP/++ws7fk9PD93d3YUdv1O4ngeO63pgFF3PkubUs56bwszMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsVx155b21hxEnXtfU9uNGLmdMk/uYffr+TW1v1ol8xmJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsV04sZmaWq8ITi6SdJE2VtETSPEkTJK1WY5sRkqLCY8pAxW1mZpUVOm2+pGHALcDDwAHAdsBZpIT39Tp2cTxwR8nzZ/OO0czMGlP0/ViOBoYAB0bEQuBmSesD4yVNzMr68khE3N3yKM3MrG5FN4XtC9xYlkCmkJLNHsWEZGZmzSg6sewIzCwtiIi5wJJsWS2XSnpF0pOSzpY0pBVBmplZ/YpuChsGLKhQPj9bVs0y4HzgJmAh0A18ldRHc0C+IZqZWSOKTiwAUaFMVcrTBhFPAseUFPVIehq4QNIuEfHgSjuUxgJjAYYPH05PT09TQTdj0aJFhR6/XYwbubyp7YcPaX4f/jvVx+/pgdEu9Vx0YpkPbFihfAMqn8n05SrgAuAdwEqJJSImAZMAurq6oru7u8Hd56enp4cij98uxpx4XVPbjxu5nLNmNPcWn314d1Pbdwq/pwdGu9Rz0X0sMynrS5G0FTCUsr6XOkTZTzMzK0DRieUGYB9J65WUjQaWAtMa3NfB2c/peQRmZmb9U3RT2IXAccDVks4AtgXGA2eXDkGWNAuYFhFHZc/HA+uRLo5cCLwf+ApwdUT8eSBfgJmZvVahiSUi5kvaCzgPuIbUr3IOKbmUWh0oneZlJumq+8+SrnmZC5wJfLvFIZuZWQ1Fn7EQEQ8DH6ixzoiy51NIF1Kamdkqpug+FjMzG2ScWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsV04sZmaWKycWMzPLlROLmZnlyonFzMxy5cRiZma5cmIxM7NcObGYmVmunFjMzCxXDd+aWNJI4J3AZsDawPPA34A7I2J+vuGZmVm7qSuxSNoW+DxwODAcWAEsAJYBGwLrACskTQMuBi6PiBUtidjMzFZpNZvCJF0MPATsAkwA3g6sHRGbRMSWEbEusCnwUWAGMBH4q6T3ti5sMzNbVdVzxvISsGNEzKm2QkQ8C9wA3CDpy8AhwBb5hGhmrTTixOua3se4kcsZ08R+Zp++f9Mx2KqjZmKJiGMa2WHWBHZ5vyMyM7O21nDnfSlJOwN7AAKmRcSMXKIyM7O21e/hxpI+D9wGdAP7AfdK+u+c4jIzszZVT+f9OlUWfRUYFRGHRMR+wBeAkxsNQNJOkqZKWiJpnqQJklZrYPvXSZouKSR9pNHjm5lZvuo5Y/mbpMMrlIs07LhXNHpwScOAW7JtDyCNOhsHnNrAbj6LBwqYma0y6kksnwS+LOkuSbuVlE8E7pZ0haRrgQuA0xs8/tHAEODAiLg5Ii4kJZUvS1q/1sZZYvo2/ThTMjOz1qiZWCLiNqALuAT4raTLJG0eEecDHwBuB24iNYt9v8Hj7wvcGBELS8qmkJLNHnVsfxpwBzC1weOamVmL1NV5H8kPgTcDTwMzJJ0EzIyI72WPB/tx/B2BmWXHmgssyZZVJemtwBHA8f04rpmZtYgiGu4aQdL2wFnAW4GvRMRV/Tq49HK2/f+UlT8OXBYRJ/Wx7TTgnog4QdII4DHgoxFxbZX1xwJjAYYPH77rlClT+hNyLhYtWsS6665b2PHbxYwnXmhq++FD4OmlzcUwcosNmttBG2i2nqH5uu6Ees5D0Z8de+655/SI6Kq1Xs3rWLJRYScBHwTWBO4DJkTEAZL2Bs6RdCxwXET8qR+xVspsqlLeG9NhpLOnj9Z9kIhJwCSArq6u6O7ubizKHPX09FDk8dtFM1dyQ7oa/KwZTV2qxezDu5vavh00W8/QfF13Qj3noV0+O+ppCvsR6QP8LOAbpFmNb5akiLiFNIfYlVnZpAaPP580iWW5DUiTXK5E0hrAmcAZwOskbQj0dvQPlbRegzGYmVmO6kks+wLHR8QVWTPTZ0hnC9sBRMQrEXFeVtboyfBMyvpSJG0FDKWs76XEUGBL4GxSYpoP9J4pTQEeaDAGMzPLUT3nrjOBT0maTpqQ8nPAYuDx0pWye7F8scHj3wB8RdJ6EfFiVjaalKCmVdlmEbBnWdlmwC9ITXa3NhiDmZnlqJ7E8hlgMvAsqd/jMeCQiHgph+NfCBwHXC3pDGBbYDxwdukQZEmzSHORHRURy4Ge0p1knfcAMyLinhziMjOzfqpnduNHgFGShgJr5nmXyIiYL2kv4DzgGlK/yjmk5FIeZ93TvJiZWXHqHsYREYtJTWC5ioiHSRda9rXOiBrLZ5NGkpmZWcHqmYTyU41MCplts72k9/U/LDMza1f1jAobBzwq6TRJb6u2kqSNJB0u6RrSyKzN8wrSzMzaRz19LLtIGg0cC5wsaRHwV1Jn/jLSdSjbAG8kDf39KXB0RDzRsqjNzGyVVVcfS0RcDlwuaTtgb+AdpCG+Q0lzh91GmgyyJyJeblGsZmbWBhqagyEiHgUebVEsZmY2CPT71sRmZmaVOLGYmVmunFjMzCxXTixmZparhhKLpI9IcjIyM7OqGk0SvwGekHSGpLe0IiAzM2tvjSaW7Uh3YTwU+IukuyT9l6T1a2xnZmYdoqHEEhGzI+KbEbEN6VbFs0izET8p6SeSyu+TYmZmHabf/SURcWtEfAp4EzAdOBy4RdJjkr4kqbmbjZuZWVvqd2KRtIekycAjwM7A+cCHgCuBU4HL8gjQzMzaS0NnFZK2Jt1R8jPACNKdHMcCV0fEsmy1qZLuIk1GaWZmHabR5qp/APNItyq+JCIeq7LeQ8C9TcRlZmZtqtHE8lHgdxGxoq+VIuJvgDvyzcw6UKN9LF2k6fJXImlzSac0H5KZmbWzRhPLN4Etqyx7Q7bczMw6WKOJRUBUWbYl6Q6SZmbWwWr2sUjqHQUGKan8QNLCstXWBkYCN+UbnpmZtZt6Ou+XAM9lvwt4AXi+bJ1/AzcAF+QXmpmZtaOaiSUiriRd9IikS4EJfQwzNjOzDtfoXGFH5J1UJO0kaaqkJZLmSZogabUa2/yHpN9l6y+TNFfSxZI2zzM2MzNrXKHzeUkaBtwCPAwcQJo9+SxSwvt6H5tuADxGmjZmHrANaUTarpJ2i4jlrYzbzMyqq6fz/l5gTEQ8LOk+qo8KAyAi3tnA8Y8GhgAHRsRC4OZsCv7xkiZmZZWOcSdwZ0lRj6THSYMH3gr8sYEYzMwsR/WcsTwELC35vc/E0qB9gRvLEsgU4AxgD+CaBvbVO8BgzZxiMzOzfqin8/6Ikt/H5Hz8HYFby443V9KSbFmfiSW7TfLqpKaw04H78BxlZmaFKvr+9cOABRXK52fLarkeWAbMBF4PfKTWPGZmZtZaiui7ZauefpVSjfSxSHoZOD4izi0rfwKYHBEn19h+B1JC2YHU2b8Y2D0iXqqw7ljSFP8MHz581ylTptQbZu4WLVrEuuuuW9jx28WMJ15oavvhQ+DppbXX68vILTZobgdtoNl6hubruhPqOQ9Ff3bsueee0yOiq9Z69fax5NmvUmo+sGGF8g2ofCbzGhHx9+zXeyT9gTRS7JPAJRXWnQRMAujq6oru7u5+hty8np4eijx+uxhz4nVNbT9u5HLOmtHcwMfZh3c3tX07aLaeofm67oR6zkO7fHbU08cypoXHn0nqS3mVpK2AodmyukXEHEnPA9vmF56ZmTWq6D6WG4B9JK1XUjaaNAptWiM7kvRmYCPSWYuZmRWk6OtYLgSOA66WdAbpbGM8cHbpEGRJs4BpEXFU9vy7wHLgHlKT2VuAE4BHScOVzcysIIVexxIR8yXtBZxHGlq8ADiHlFxKrQ6UTvNyP3AsqTN+bWAu8EvgOxGxOK/4zMyscUVfx0JEPAx8oMY6I8qeT8FnJmZmq6SGh3FIWhMYA7wT2Bx4ktQk9eOI+Heu0ZmZWdtpqPNe0luAvwPnAzsDr2Q/zwdmSdop9wjNzKytNHrGMol0o6/3RcTc3kJJbwSuI3XGvz+/8MzMrN00Oty4CzilNKlAmt8LOAXYLa/AzMysPTWaWGaTRmFV0js6y8zMOlijieVE4FuS3lVaKOndwATgq3kFZmZm7ameCyTLL4pcH7hT0r+AfwGbZo/ngJOAX7cgTjMzaxP9mYTyoRbFYmZmg0DRk1CamdkgU/QklGZmNsg4sZiZWa76M6XLaOC/gDdRYehxRGyaQ1xmZtamGp3S5ZPAj4FZwJbAb4Frs/0sJM1SbGZmHazRprCvAKcBX8ieXxARRwLbAM8CS3KMzczM2lCjiWUH4I6IeIU0AeX6ABHxInAGcEy+4ZmZWbtpNLG8AKyV/f4E6c6NvUS6NbCZmXWwRjvv7wfeCtxI6l85RdJy4N+kSSjvyTc8MzNrN40mlu8AW2e/n5L9fgHptsH3kW4VbGZmHayhxBIRdwN3Z78vAA6QtBawVkQsbEF8ZmbWZnK7NbEk35rYzMx8a2IzM8uXb01sZma58q2JzcwsV741sZmZ5arwWxNL2knSVElLJM2TNEHSajW22U3SpZJmZds9IumbkqolPTMzGyCF3ppY0jDgFuBh4ABgO+AsUsL7eh+bjs7WPYM0mOCtpDnM3gocVO/xzcwsf0XfmvhoYAhwYHYdzM2S1gfGS5rYx7UxZ0TEMyXPeyS9BFwkaeuImJNjjGZm1oCib028L3BjWQKZQjoT2QO4pkpMz1QofiD7uSngxGJmVpCGL5AEkPQGYBTwelIT2N0RMa8fu9oRuLW0ICLmSlqSLauYWKp4D7ACeKQfcZiZWU4aSixZp/r3SXeQLO1gf0XSJODYiFjRwC6HAQsqlM/PltUb12bAycBPPLWMmVmxGj1jORU4ktRJfznwNDCc1Jk+gXT2ckqD+4wKZapSvvKKaYqZK4BFwJf6WG8s2SSZw4cPp6enp8Ew87No0aJCj98uxo1c3tT2w4c0v49O+Ds1W0fQfF13Qj3noV0+OxpNLJ8Gvh4R3y0pmwucKSmA42gsscwHNqxQvgGVz2ReQ5KAy4D/AHaPiPnV1o2ISaSZA+jq6oru7u4GwsxXT08PRR6/XYw58bqmth83cjlnzehXa++rZh/e3dT27aDZeobm67oT6jkP7fLZ0eg7YVPgz1WW/Tlb3oiZpL6UV0naChiaLavlHNIw5Q9GRD3rm5lZizV6geTfgMOqLDuMxjvObwD2kbReSdloYCkwra8NJX0NOBb4PxFxe4PHNTOzFmn0jOVbwJRs0smrSH0smwKHAHtSPelUcyGp+exqSWcA2wLjgbNLO+ElzQKmRcRR2fNPAv8PmAw8kV353+vRKsORzcxsADR6o68rJC0gdeKfC6wBvAxMBz4cETc3uL/5kvYCziMNLV5Aat4aXyHO0lFoH8p+jskepY4gJRwzMytA3YlF0hqkm3v9JSJGSXodsDHwbINDjF8jIh4GPlBjnRFlz8ewckIxM7NVQCN9LK+QLmZ8C0BErIiIfzWTVMzMbPCpO7FkCeTvpOtWzMzMKmp0VNjJwCmSRrYiGDMza3+Njgr7OrAR8KCkJ0ijwl5zhXxEvDOn2MzMrA01mlgeAv7SikDMzGxwaHS48ZgWxWFmZoNEXYlF0hBgP2AE8CQwNSKebmFcZmbWpuq5NfG2pNsHjygpXijp0Ii4qVWBmZlZe6pnVNhE0g203gesQ5pJ+AHgohbGZWZmbaqexDKKNFX+HRHxUkT8Ffgc8EZJm7c2PDMzazf1JJbNgX+UlT1KuhnXZrlHZGZmba3eCyTrupujmZlZvcONb5RU6b6jU8vLI6LRm32ZmdkgUk9iObXlUZiZ2aBRM7FEhBOLmZnVrdFJKM3MzPrkxGJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuSo8sUjaSdJUSUskzZM0QdJqNbZZU9KZkv4gaakkz75sZraKKDSxSBpGuu1xAAcAE4Bx1J74ch3gs8AS4M5WxmhmZo2pd9r8VjkaGAIcGBELgZslrQ+MlzQxK1tJRCyQ9PqICEnHAB8YwJjNzKwPRTeF7QvcWJZAppCSzR59bRgRbv4yM1sFFZ1YdgRmlhZExFxSE9eOhURkZmZNKbopbBiwoEL5/GxZbiSNBcYCDB8+nJ6enjx335BFixYVevx2MW5kpZuW1m/4kOb30Ql/p2brCJqv606o5zy0y2dH0YkFUsd9OVUp7/9BIiYBkwC6urqiu7s7z903pKenhyKP3y7GnHhdU9uPG7mcs2Y09xaffXh3U9u3g2brGZqv606o5zy0y2dH0U1h84ENK5RvQOUzGTMzW8UVnVhmUtaXImkrYChlfS9mZtYeik4sNwD7SFqvpGw0sBSYVkxIZmbWjKITy4XAMuBqSXtnHezjgbNLhyBLmiXpR6UbStpX0sHALtnzg7PH1gMXvpmZlSu08z4i5kvaCzgPuIbUr3IOKbmUWh0on+blB0BpErky+3kEMDnvWM3MrD6FjwqLiIepceV8RIyop8zMzIpXdFOYmZkNMk4sZmaWKycWMzPLlROLmZnlyonFzMxy5cRiZma5cmIxM7NcObGYmVmunFjMzCxXTixmZpYrJxYzM8uVE4uZmeXKicXMzHLlxGJmZrlyYjEzs1w5sZiZWa6cWMzMLFdOLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXK1edABmZp1gxInXNb2PcSOXM6bJ/cw+ff+m46il8DMWSTtJmippiaR5kiZIWq2O7TaQdKmk+ZJekPQzSRsNRMxmZlZdoWcskoYBtwAPAwcA2wFnkRLe12tsfjnwZuCzwArgDODXwPtaFa+ZmdVWdFPY0cAQ4MCIWAjcLGl9YLykiVnZSiSNAvYB9oiI27KyJ4B7JO0dEbcMUPxmZlam6KawfYEbyxLIFFKy2aPGdk/3JhWAiLgXeCxbZmZmBSk6sewIzCwtiIi5wJJsWd3bZf5aYzszM2uxopvChgELKpTPz5b1Z7ttc4irqk4a2WFm1h+KiOIOLr0MHB8R55aVPwFMjoiTq2x3M7AoIj5RVv4zYERE7F5hm7HA2Ozpm4FHcngJ/bUx8GyBx+8UrueB47oeGEXX89YRsUmtlYo+Y5kPbFihfAMqn5GUblfpxW1YbbuImARMajTAVpB0f0R0FR3HYOd6Hjiu64HRLvVcdB/LTMr6RCRtBQylch9K1e0y1fpezMxsgBSdWG4A9pG0XknZaGApMK3GdptJem9vgaQuUv/KDa0I1MzM6lN0YrkQWAZcLWnvrB9kPHB26RBkSbMk/aj3eUTcBdwIXCbpQEkfB34G3N4m17CsEk1yHcD1PHBc1wOjLeq50M57SFO6AOcBo0j9IxcD4yPilZJ1ZgM9ETGmpGxD4BzgE6QEeS1wXES4A9HMrECFJxYzMxtcim4KMzOzQcaJxczMcuXEYmZmuXJiMTOzXDmxtJCSAyX9SNKdkmZKekjSrZL+n6Q3FR3jYCdpXUl/k7Rb0bG0O0kHSPqFpCmS9sjKPiTpQUkvSpoh6XNFx9nuJK0v6eOSDpU0NCvbRNJ4SZdlP99QdJx98aiwFpG0CXA9sCvwNOl6nS2AIF3EuS1pzrLTIuK0ouIcDCTt18fioaSbwp0I/AUgIq4fiLgGE0mfBH4KPEC6LOA9wJHAJcCvsvIu4GDgcxFxcUGhtjVJ2wNTga2yoseADwE3k6asepT0ubEU2DUiHi8izlqcWFpE0i9I/2gHRsSMrOwNpH/ExRFxUPat7zrS9TeXFBdte5O0gpSwVWWV0mURETVvfW2vJemPwF0R8YXs+RjSBc7/ExEnlqx3DtAdEW8vJNA2J+kKUuI4CHgeOBd4N/AMsE9EvChpY1LyuTsiVskzRCeWFpG0ADgqIn5ZVj6C9K1jy4h4UtJJwOiIeNvARzk4SJoOvAE4Cbi1bPEGwIPAYcA9ABExZ0ADHAQkvQh8LCJ+nz1fD3iBlERuK1lvL+BXEbF+MZG2N0nzgP8bEVdkz7cmnbUcHBFXl6x3BPC1iFglm9Pdx9I6Al6pUP5KtmyD7Pk9wCr55mgjXcA3gTOAs4HXRcScLIH0JpGnSsqscS8Aw0ue9/5ePsv4JkDFW4pbXYYBT5U8fyL7Wf6+/Qew5YBE1A9OLK1zC/AtSa/eeEzSMOB7pDfO37LidUn/tNZPkUwiJegngT9L+k5vx6fl4mbS+3m/bPLXScAfgPG973FJOwDfAO4oLsy29y9g65LnrwAXkfppS20KvDhQQTXKiaV1vpj9fCSbRPNhYB6wJ6mJbEW2fHf6nsnZ6hQRCyLiGFKdjgL+Dowh9bFYc75Gug/StcBtwNrAAaRv0n/PmspmkgZLfK2oIAeBB0ifEcCrX5o+X6GT/v3AjAGNrAHuY2khSasBhwJvI/0jzgJ+HhHPFxpYh5B0GDCR1GTwmr4Aa5wkkc4K14iIv5SUfZTU4TwHuD4iFhUXZXuTNBxYJyIeq7Hel4E/RcTUgYmsMU4sNqhJWp30LXpR6YzZZtY6Rd+auCNI+g/S3S2HkZplFgAzI+KhQgPrHPuT+gieKTqQdiXpXcB9JU24ZlX5jKWFJB1JGq20JStfYxHAP4FTI+LSgY6tU0jagHQ9QHdE/KHoeNpVdq3QM8CVwC8iwh30BZJ0EHDFqnpNls9YWkTSsaShr5OAKcBfSZ2fkM5cdiRdW3GhpHUi4vxCAh0EJN3bx+LVSEl9UtbBTES8c0ACG3weBP4T+LykJ0jv6ykR8cdiw7JVjc9YWkTSP4ALI2JijfVOAI6OiG37Ws+qy75NPwX8jpXPDNckfRjemK1DRBwxoAEOAlkdv5s0amlf0peij5D6r2YBPyclmUcKC3IQkFTvDBxbk87CV8kzFieWFpG0BNgvInpqrNdNGkmzzkDENRhJ+jhwFvA48MWIeLBk2Yb8b1OYR4X1U29iiYh7S8qGAB8jJZkPk5L4n0hNZWcWEmibk/QK6VqsJ2usOgzYxomlw0i6mzR1y6eqdXhmQzV/CmwXEe8eyPgGG0lrAScAXyE10ZwcEc9kfSzzcWJpSqXEUrZ8feBAUpLZMyLWGsj4BgtJM4F7I+LTNdY7GLh8VU0s7mNpnXGkppmHJV1NunhsAanTfkNSH8snSB37Hy4qyMEiIpYBp0n6Mens5e+STgMuKzayzhARC4HJwGRJGxUcTju7mzRzdC19TbpaOCeWFomIOyTtQvoWfTj/Ow12r3+Sps8/MyIeHej4BquImAscImlP0sywx+Er7/MwjTrnAIuI51ocy2D2faCewRDTKLlCf1XjprABImkd0pkKwIKIWFJkPJ0gm/lgLOlq8e9HxD8KDsmsIzixmJlZrjwJZYtJ2krSrpLWrbJ8Y0l9dtRZ3yR9VdLIouPoBJLeJ+kgSW+psnwLSacMdFyDiaSubHbu0yXtmJW9TdKvs9s/XyNple6X9RlLi2SjlH5KGikDsILUkfzliHihZL13AXeuqqM72kHJHSRnkq6nuDwiZhUb1eCSja67EdiN1GkcQA9wZOk9bvx+bo6kfYBrSEPkF5Pub3MAcDXwMOki1V1Jf4eDIuLXBYXaJ5+xtM5XgQ8CRwPvAo4nXVB2f3bfCsvXRNKd9k4h3argPklfkrRFwXENFqeSBqB8mHQvkANJd+28X1I9o5isPqcAvwG2iIjtgNNJSeXqiNg9Ir6QXZrwc+DEPvZTKCeW1vkk8PWI+GFE3B8R55Kmz38SuFPSqGLDG3R+FREfATYDPk8awXQmMEdSj6SxHgbblI+Srg26OSKejYjfAO8g3dDulmzuKmvezsBFJTNx/4B0t9mfla33E9IlC6skJ5bW2Qr4c2lBRDwF7AVMJf0zfryIwAaziJgfEZMiYi/SNULjSFeEXwjMk3RdoQG2r81It8N9VUQsjYj/BM4DLpd0XCGRDS5LSdPk9Or9fUjZeusALw1IRP3gxNI684CVmrwi4uWIOAz4IWmm2LEDHViniIinIuLciHgPsA1ppuk3FBxWu5oDVBwgERG9Mx6cQ6pj6787gFMk7SRpS+C7pL6Vr0paD17t7zoBmF5cmH1z532LZJPJbRsR3X2s8zXg26Q7kLqzs59qTTdizZN0PjAqIt7RxzqfBC4FVvf7uX8kbU9qXuy9oHo26ULIq0hNX3OAEcBy0tQ5D668l+L5yvvWuQAYLWmjalciR8R3JM0hdfJb/51KmoDSWudc0vREwyJifqUVIuLn2XT63QMa2SASEbMk7QzsDqwBTI2IpdlktZ8l3QL6J6RbnK+y73mfsZiZWa7cx2JmZrlyYimYpB9K+lHRcXQC13XrSbpF0tSi4xjsVvV6dh9L8fbECX6guK5bT7iOB8IqXc/uYzEzs1ytshmvU0haW9Ibi46jE7iuW0/SGq7j1lvV69mJpXj7k+a4stZzXTdB0hckPSrpRUn3SPpUhdXegeu4KYOhnp1YzKwmSYeR7m54N+m6oXmk2xBfJal8uhHrp8Gq98+BAAAKT0lEQVRSz+5jaRFJt9a56ibATr5Suf9c160n6X7g1mz6lt6yvUiTI84G9o+I5zxtfnMGSz37jKV13g8MB56r8XixqAAHEdd1670ZuL60ICKmAu8mzb57l6TtighskBkU9ezhxq3zF+CRiBjd10qSDgYuH5iQBi3Xdeu9AGxcXhgRs7P7sVwH3AmcNtCBDTKDop59xtI695C+ZdQSpDHp1n+u69abDlS8zUM2d9hewP3A9wYyqEFoUNSzE0vrTASOrWO960lTulv/ua5b76fAtpJeX2lhRCwFPgZcDMwdyMAGmUFRz+68NzOzXPmMxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYOpSkMZKmZ/MRzZf0gKSzW3SsQyWNqWO98ZKi5DFP0i/rvSBM0uTsyuXC1fuas3V7X/ffqyyflS0f36oYGtzva+o57+NIep2kY7L35FJJCyU9JOl7kvo1XFzJnyR9psryyZJGVFl2vu/j0xgnlg4k6Wuk4Yo3AgcCnwZ+QxrG2AqHAmPqXPcFYFT2OB7YBZgqaWgd257WwHFarZHXDPASsI2krtJCSbsBW2fLWx1DvcrrOe/jTAG+BVxNek9+hjRU/D3R/2GshwLDgJ/3Y9szgcMlbd/PY3ccX3nfmY4BLoqIk0rKrpF0alEBlVgeEXdnv98taS7wB2A/4MrylSWtBqwWEf+OiEcHMM68LQb+CBxGugCu12HArcCuRQTVa6DqWdK+wCHAfhFxQ8miX/X3bCVzHPCTiHi55Firk5Lkp4A3AP8p6VHg1Ih4dYaG7Kr324HPA+OaiKFj+IylM20IPFVeWPptsLe5Q9LHJc2U9JKk2yXtVL5d1hQyQ9IySf+U9O3snxZJk4GDgD1KmrjGNxDr9OzniApxPUT6Jv+u0mVlsb1f0u8lLZL0gqQeSW8vWf5eSdMkLZH0nNLti9frKyBJoyT9NmuqWyzpQUmHl9ZdP1/zFODQ3g/Q7OehWXluMWR1cFXZ/rqzdXYurcta9VztOJL2l7RC0jZlx9kmK692drxH9nOliUX7e7aSnWm8B7iqbNEXgRNIV7FfDxwJXAJsVGE3vySdtfgzsw4+Y+lMfwSOzc4Gro2I56qstzVwNvANYClpGu8bJe0QES8BSPoQaf6ty4CvAG8lfQvcCDg6+/2NpGT239l+H28g1hHZz6fKyiYCE4CnqXJfCkndwM3A70nNKYuB3YEtgAck7Q5MBX4NHJzFfDqpyeTgPmLaGrgDuJD0gbs7cKmkFRHxC/r/mq8GfgC8l3SW9j7SjMy/IjXHDEQMpUZQu56rHedJ0pTvnwHGl6w/BniGsokWSyzOfp4p6ayImNNgzJXsle33T2Xle5BmEp6YfWG6IyJmV9nHnaSJTkdW2I+Viwg/OuxB+vD/B2nurBXAQ6QPj/VL1pmcLX9PSdnWwHLg6JKyu4Hfl+3/BOAVYMvs+VVATx1xjQeeJX3hWR14EykpLAQ2L4trlwrbTwbuL3l+F6lZSVWO94cKsX8g2//OddalslgvIn1I9ZbX9ZpLX3f2+2+A87PfLwB+nf3+LDA+jxiAHuCqsrLu0tfdYD1XO863SMlIJXHOBr7bR11sBvw5O3aQJhg9CVi3iff7JOC+CuUXAf/MjjkZGNHHPlbP3vv/1d84Ounh07oOFBF/Bt5C6hi9gPQP/w3gfknrlqz6r4i4s2S7OaSmqXfCq+3u72Dlvo/LSc2so/oR3kbAy9njEWBbYHREPFmyzhMR8WBfO8k6+98F/DiyT4ay5etk8V0hafXeB3B7duyqfRqShimNUJpTEutYUiJs1hTgYElrkc6aVmoGG4AYetWs5xouIX0Z6c6e75k9v7TaBhHxFPB2YB/S2duGwLeBOyWtCa+OaHwweyzLmmofVBrluEaF3W5GSszlvk06k3mM9L9wfHYWWymu5cCCbF9WgxNLh4qIZRFxTUQcExE7AZ8FdgCOKlntXxU2/Rewefb7xsAapGaSUr3PK06kV8MLwG5AF7Al6VvkDWXrlB+vkmGkhPlkH8tXIyXWl0sey0ivaas+9j0ZGE1qnvpQFu8lwNp1xFXLb4F1SR96Q4FrCoihVz31XFVE/IN0dnREVnQEcG9EPFRju1ci4qaI+G9SM9ulpCaoUdnyyRGxC+lLzXJg94jYJSJ2jZLO+RJrk/6u5ceZm+33E6Qz+PcCt6v6sPtl5Fu/g5b7WAyAiPiRpInAjiXFm1ZYdVNS0xmkb4EvV1hvePbz+X6Esjwial2LUk8n7nxSM9/mVZYvyPYznsrt/fMqbSRpbWB/4JiIuLCkPJcvaRGxWNK1wJeAKyNicfk6OcTwErBmWVmlLwF5zFB7MfBDpSHuB9LgqKqIWCHpJlJSKv9Q3wGYH9X7CHs9T5UzjSwR/U7plsDjSVPWnyPpf7LEU2pD+vee7jg+Y+lAklZKGJI2Id2hrvRb6qZKNxfqXeeNpG+J90L6ZklqGjukbHeHkj7U78qe/5sB/qaXfSDfA3y6d5RVheV3A2+OiPsrPComFmAt0pnOq9+As1Fk5aOcmnnNPyCdqVxYZXmzMTzOa79AAHywX5H2fRxIAxL+TWrSex1VmvYAJA2vsuhjwBLS37PU26ivI/0RKtwuodL7Argv+/n6snU3AdYB/lbH8Tqez1g60wxJvwFuIjVtbU26GHEJ8OOS9Z4FfiKpd1TYhGz9ySXrfJM0UuxS0ofGSNJIoR9GRO8opJnAAZI+TvpQm9fHB3eeTgRuAW6QNInUnj6K1PF8LWmQwVRJK0gd0C+Sml72B06OiJU+RCLiBUn3AadIWkhKoCeSmvDWL1m13685InpITUjVljcbw6+AoySdQ7oj4Z6kPo3+qvpaI+IlST8DvgD8IiIW9LGfKyS9CFxB6uTfFDgcOIDUaV6+7dtIHf213EGqq00i4pmS8p9LegC4jdTsuCvpTPEJ4K9l++gincHdidVW9OgBPwb+Qfonv4nU3PMS6Z/458COJetMJo2oOpD0LW0Z6R90pdFSpLb+GaRvpo+T+gdWL1m+MenD7Hmy5qcqcY0nGx3VR+yTKRmRVGsZaUjpbaSkuYA0ymyXkuXvAn5HGnm2GHiYNMR6gz5i2J50ncVi0s2WTiiPvd7X3MDrfs2osGZjAL5GGhH1IunmUh9j5VFhddVzrdcK7J2V713jNR6Z/S0ez95Lz5MSX3eV9a8BDqvj/b4m8BzwqbLyT2THe4qUnBeSEvrbK+zjXMpGEPpR/eEbfVlF2YVvO0dEV611zfqS9d2NBraJiBU57ncusE9ElJ9dVFr3XGD7iNi/yvLJpIQ4u8Ky1YA5wIkR8dOmgu4Qbgozs5aQ9GZgJ9JUKKfmnFSGkS4erbfP40zgEUlvigpNnDUcQmoKrto/ZK/lznsza5WLSE2s15OmTclNRMyPiCGRBpDUs/7jpKH01UYJ/prUVFqJgKMiXctidXBTmJmZ5cpnLGZmlisnFjMzy5UTi5mZ5cqJxczMcuXEYmZmuXJiMTOzXDmxmJlZrpxYzMwsV/8fCNvmrGBWMBkAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -214,7 +214,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm83OPd//HX2y4hEVSaFklpNTd3V1G0WkHb1NKq1Fa7cqfcqPZu8VMqEUuJSsptDZrUmlKx1h5OVN1ViaVIY6ksInbHEokQ+fz+uL6HMZmzn/l+55x5Px+PecyZa77XzGfyzZnPuZbvdSkiMDMz66jlig7AzMy6NycSMzPrFCcSMzPrFCcSMzPrFCcSMzPrFCcSMzPrFCcSq1mSRkmKktt8SddK2rDAmL4h6SFJ70qKrKy3pEmSXsviPKCZuhPLPk/T7eJcP8RH8YyQ9MMK5bMl/a6ImKx7WqHoAMxa8SbwveznDYCTgCmSNomIdwqI50LgZWAYsDgrOxT4PrAf8Dzw7xbqzwQOLCt7uYtjbKsRwOPA9WXluwCv5R+OdVdOJFbrlkTE37Of/y5pLvBXYAfgmgLiGQyMj4ipZWVPRsS1baj/TsnnqUkR8XDRMVj34q4t626mZ/eDACRtKenGrNvrHUmPSNq76WBJa2bdUPuXvoiSWZLGlpRtK+mB7PiXJJ0nabXsuaFZV9bywFlZl9RESbOBg4CvNHVVdfSDNb2HpP8sK2+Q9OeSxxMlTZP0HUn/zD73fZI2Kau3vKRjJT0labGkeZImNr0msCmwf0kX2wHZc8t0bUnaXdJj2es8J+kUSSuUPH9A9hpfkHRnFtNMScM7+u9h3YcTiXU3g7L7F7P7gcDfgINJ3UvXAhMk/RggIl4HrmPZ7qSh2WtNAJC0MXAb8CrwI2AksBfQ9AX+ELBl9vOZ2c8nkbqBbiF1WW1ZckyzJK1QemvTp17W+sAZwCnAj4F1gKslqeSYC4ETgauBnYBfAr2z5/47i/mWkrj/0ky83wX+RPo32Bn4X+BXwDkVDr8SuJH07/I0MEnSuh38jNZNuGvLal7Jl+0GwHnA28BdABExqeQ4AfcC6wL/BVyVPXUJcIekDSLi2azsQGB6RDyWPT4BmAP8ICI+yF7vdeBPkraMiP8jda0BzC7tnpL0CtC/jV1WmwLvl32+z0XEM22oW2pN4BsR8XT2GsuREubngZmSBpNaSkdGxNkl9f4EEBEzJL0DvNKGuEcDDRHR1Kq7Lft3+K2kkyNiXsmx4yLiD1lM04GXSEnsgnZ+PutG3CKxWrcW6Yv3feBJUjLZIyJeAJDUT9LZkuaUHDcC2KjkNaaQksT+WZ3VgeFkrZHM14DrmpJI5lpgCbBVF36efwGbld2e68DrzG5KIpkZ2X3TX//bZPcTO/DaH5K0PPBVlh2P+hPp+6O8BXZH0w8R8RppIoFbJD2cWyRW694Evg0EqTtrfnx8yeqJwBakbqYZwFukWVQ7Nx0QESFpAvATSaOA3Un/968seZ0BpL+eKan3gaTXSH/9d5WFETGtC17njbLH72X3q2T3a5EG9t/q5PusDaxI2b9NyePyf5tKca2C9WhOJFbrljT3xStpFWBH4PCIuKCkvFJLewJp3GMb4ADg+ohoLHn+BdI4Q+nrL0/6Qn69Mx+gHd7N7lcqK1+TNHbTHq8BvSX16WQyeZXUylunrLx/dp/Xv43VMHdtWXe2MmkWVdP1HE3dVj8oPzAiniN1u5xI6qqaUHbIA8AuWfJoMpz0x9Z9XRt2s5rGGv6jqUDSeqRxj/a6O7vfr4VjWm0tZF1904Hdyp7aHVgK/F8HYrMexi0S67Yi4k1JDwInSHqL9MX2/0jdYX0qVLmE1Nc/D7iz7LmTgYeB6yWdT+rXPx24PRtor7qImJd9npMkLST9ofdrOvBXf0Q8KWk8cKakdUiTENYAdo2IPbPDZgLDJA0jtWBmZeMa5UYCt2fdg5OAL5C6Ei8qG2i3OuUWiXV3ewGzgEuBs0gD5Jc2c+zNpMHzP0bE0tInIuIJYHtSF85kUmK5Cti1OmE3ay9gLnA5cCppxtSTHXyt/ya1wPYhTfP9PbCo5PmTSYP/VwMPkqZPLyMi7gD2BIYANwE/J02BPryDcVkPI2+1a/VC0g6kZLJRB6bbmlkznEisx5P0KeBzpAvp5kbETgWHZNajuGvL6sEI0rUk7wJHFByLWY/jFomZmXWKWyRmZtYpdTH9d+21145BgwZ1qO4777xD7969Wz/QcuXzUnt8TmpTZ87L9OnTX42IT7R2XF0kkkGDBjFtWsdWpWhoaGDo0KFdG5B1ms9L7fE5qU2dOS/ZGnatcteWmZl1ihOJmZl1ihOJmZl1ihOJmZl1ihOJmZl1ihOJmVlPdMUVMGgQW2+7LQwalB5XSe6JRNLGkqZIWihpvqTRZXtANFdviKQ7JL0m6XVJd0naPI+Yzcy6lSuugBEjYM4cFAFz5qTHVUomuSYSSf2Au0jbpu5MWiL7l6Slrluqt15WbwXSRj37Zj/fIWlgNWM2M+t2jjsOFi78eNnCham8CvK+IPEQYFVgeLb9552S+gCjJI1pYUvQHYHVs3pvAEi6n7QN6A7A+dUP3cysm5g7t33lnZR319b2pB3nShPGJFJy2bqFeiuSNiRaUFK2ICtTVwdpZtatrb125fL116/K2+WdSAaTtvf8UETMBRZmzzXn2uyYMyWtk20dOg5oJG2damZmALNmwTvvgMr+xu7VC045pSpvmXfXVj/gjQrljdlzFUXEfEnbkHa3+1lW/AIwLCJeqVRH0gjSPhT079+fhoaGDgW8YMGCDte16vF5qT0+J8VbbvFivnLEEayy3HLMPuQQ1ps8mZVffpnF66zDswcfzMuf/jRU4xxFRG434H3gyArlzwOntFBvAPAMcAPwvex2EzAPWL+19910002jo+65554O17Xq8XmpPT4nBVu6NOKAAyIg4uabPyzuzHkBpkUbvtvzbpE0AmtUKO9L5ZZKk6NIraddI+J9AEl3A08Dv+KjVoqZWX266CKYOBFOOAF23DHXt857jGQmZWMh2dTe3pSNnZQZDDzRlEQAIuI94AlgwyrEaWbWffzjH3DEETBsWEokOcs7kdwKDJO0eknZHsAiYGoL9eYA/ylppaYCSSsD/wnMrkKcZmbdw6uvwq67woAB6YLD5Vu9vrvL5Z1ILgAWA5MlfTsbEB8FjI2SKcGSnpF0SUm9i4FPAddJ2lHSTsD1pLGT8blFb2ZWSz74AH78Y3j5Zbj2WlhrrULCyDWRREQjsB2wPGmw/ETSNN6RZYeukB3TVG86aYB9deAy4FKgF/CdiHi0+pGbmdWgE06Au+6C886DTTctLIzct9qNiBnAtq0cM6hC2RRgSpXCMjPrXm64AU49Ff7rv+AnPyk0FK/+a2bW3Tz9NOy3X2qFnH120dE4kZiZdSvvvAPDh8MKK6RxkVVWKTqi/Lu2zMysgyLScvBPPAG33QYDa2PxcycSM7Pu4txz4cor4eST4bvfLTqaD7lry8ysO7j/fvjFL+D734djjy06mo9xIjEzq3Uvvgi77Za6si69FJarra9ud22ZmdWyJUtgzz2hsRFuuQXWqLRcYbGcSMzMatmxx8LUqXDZZfClLxUdTUW11T4yM7OP/PnP8LvfwWGHwT77FB1Ns5xIzMxq0b/+BQceCFtsAWPHFh1Ni5xIzMxqzdtvp4sOV10VrrkGVlqp9ToF8hiJmVktiYCDDoKnnkoLMq67btERtSr3FomkjSVNkbRQ0nxJoyW1uIC+pFGSoplbbU2oNjPrjHHjUivktNNgm22KjqZNcm2RSOoH3AXMAHYm7W54JimhHd9C1YuB28rKfggcQ9osy8ys+5s6FY4+OnVr/epXRUfTZnl3bR0CrAoMzzayulNSH2CUpDGlm1uVioh5wLzSMkm/AWZGxCPVDtrMrOqefx523x0++1mYMAGkoiNqs7y7trYHbi9LGJNIyWXrtr6IpDWB7wBXdW14ZmYFeO+9lETeeSet6NunT9ERtUveiWQwMLO0ICLmAguz59pqV2BFUhIyM+vejjoqraV1ySWwySZFR9NueXdt9QPeqFDemD3XVnsCD0XEU80dkO0HPwKgf//+NDQ0tOPlP7JgwYIO17Xq8XmpPT4nHbPOXXex8dln89yuu/Lv/v2hi/8N8zgvRUz/jQplaqZ82QOlAaRusGNafJOI8cB4gCFDhsTQoUPbF2WmoaGBjta16vF5qT0+Jx3w2GNpltZWW7HelVey3oordvlb5HFe8u7aagQqrTjWl8otlUp2JyWeP3VVUGZmuXvzzTQ7q08fuPpqqEISyUveLZKZlI2FSFoP6E3Z2EkL9gTui4jnujg2M7N8LF0K++8Ps2fDPffAgAFFR9QpebdIbgWGSVq9pGwPYBEwtbXKkgYBW+DZWmbWnY0ZAzfckBZk3GqroqPptLwTyQXAYmCypG9nA+KjgLGlU4IlPSPpkgr19wSWAH/OI1gzsy53111w3HFpj5Gf/azoaLpErl1bEdEoaTvgHOAm0rjIOFIyKY+r0rIpewJTIuKVasZpZlYVc+fCj38MgwfDRRd1q4sOW5L7rK2ImAFs28oxg5op/3I1YjIzq7rFi2HXXdP95Mmw2mpFR9RlvPqvmVkejjwSHnwwJZHPf77oaLqU9yMxM6u2iRPhwgvhmGNgl12KjqbLOZGYmVXTww/DoYfCttvCyScXHU1VOJGYmVXL66/Dj34Ea60FV10FK/TM0YSe+anMzIq2dCnsuy/Mmwf33gvrrFN0RFXjRGJmVg0nnwy33ALnnQdbbFF0NFXlri0zs652660wahTstx8cckjR0VSdE4mZWVeaNQv23hu++EU4//wec9FhS5xIzMy6yqJFaXB96dK002GvXkVHlAuPkZiZdYUIOOywNN33pptgww2Ljig3bpGYmXWFiy+GCRPgN7+BnXYqOppc5Z5IJG0saYqkhZLmSxotqdICjZXqDpf0oKRFkl6TdJuk3tWO2cysRQ8+CIcfDsOGwciRRUeTu1wTiaR+wF2kbXV3BkYDvwRObEPdg4ErSXuabA8cDDyNu+fMrEivvprGRQYMgCuugOXb9Hdxj5L3l/AhwKrA8Gz/kTsl9QFGSRpTuidJKUlrk5abPyIiLip56rqqR2xm1pwPPkjLwr/8Mtx3X7qCvQ7l3bW1PXB7WcKYREouW7dQb/fs/o/VCszMrN1OOCFtVHXuuTBkSNHRFCbvRDKYsr3ZI2IusJCyvdzLbA48CRwkaZ6k9yU9IOnr1QvVzKwFN94Ip54KBx8MBx1UdDSFyrtrqx9pV8Ryjdlzzfkk8HngeOBo4LXs/jZJn4uIl8orZNv4jgDo378/DQ0NHQp4wYIFHa5r1ePzUnvq6ZysOm8emx5yCIs22oiHd9uNpTX8ufM4L0UMVEeFMjVT3mQ5YDVgt4i4DUDS/cAc4HDgN8u8ScR4YDzAkCFDYujQoR0KtqGhgY7Wterxeak9dXNO3nkn7bW+8sqsfscdfGvgwKIjalEe5yXvRNIIrFGhvC+VWypNXs/uG5oKIuItSdOBjbssOjOzlkTAiBHw+ONpPa0aTyJ5yTuRzKRsLETSekBvysZOyvyL1GIpX7RGwNKuDNDMrFnnngtXXgknnZSuGTEg/8H2W4FhklYvKdsDWARMbaHezaSksU1TgaS+wKbAo1WI08zs4+6/H37xi3TV+q9/XXQ0NSXvRHIBsBiYLOnb2YD4KGBs6ZRgSc9IuqTpcURMA24ALpG0v6QdgRuB94Fz8/wAZlaHXnoJdtstdWVddhks59WlSuXatRURjZK2A84BbiKNi4wjJZPyuMovD90HOAMYC/QC/gZsGxGN1YzZzOrckiWwxx7Q2Jg2qlqj0jBvfct91lZEzAC2beWYQRXKFgCHZjczs3wceyxMnQp//CN86UtFR1OT3D4zM2vOn/8Mv/sd/Pd/p90OrSInEjOzSmbOhAMPTPutjxtXdDQ1zYnEzKzc22/D8OGw6qpwzTWw0kpFR1TTvAS7mVmpiLR21pNPwp13wrrrFh1RzXMiMTMrNW5caoWcfjps2+K8IMu4a8vMrMm998LRR8Muu8BRRxUdTbfhRGJmBjB/Puy+O2y4IUycCCpfkcma464tM7P33ktXrr/9NkyZAn36FB1Rt+JEYmZ21FFpLa2rroJNNik6mm7HXVtmVt+uugrOPht+/nPYc8+io+mWnEjMrH49/njaKnerrWDMmKKj6bZyTySSNpY0RdJCSfMljZZUvkBjeZ1BkqLCbVJecZtZD/Pmm+miwz594OqrYcUVi46o28p1jERSP+AuYAawM7AhcCYpoR3fhpf4FWnV3yavdnWMZlYHli6F/feHZ5+Fe+6BAQOKjqhby3uw/RBgVWB4tv/InZL6AKMkjSndk6QZT0bE36sepZn1bGPGwA03pIsPv/nNoqPp9vLu2toeuL0sYUwiJZetc47FzOrRlClw3HFpj5Ejjyw6mh4h70QymLK92SNiLrCQsr3cmzFB0geSXpA0VtKq1QjSzHqo555LM7MGD4aLL/ZFh10k766tfqRdEcs1Zs81ZzFpS907gLeAocAxpDGWnStVyLbxHQHQv39/GhoaOhTwggULOlzXqsfnpfbU+jnRe+/xlSOPpNfChUw/5hgWTZtWdEi5yOO8FHFBYlQoUzPlqULEC8DhJUUNkl4CzpP05Yh4pEKd8cB4gCFDhsTQoUM7FGxDQwMdrWvV4/NSe2r+nBx6aNpj5Npr2Xz48KKjyU0e56XVri1J+0laq4verxGotOFxXyq3VFry5+z+q52KyMx6vokT4YIL0oKMdZRE8tKWMZIJpC4ksvGJr3Xi/WZSNhYiaT2gN2VjJ20QZfdmZst65JHUGtlmGzjllKKj6ZHakkgagU9lP7fYBdUGtwLDJK1eUrYHsAiY2s7X2jW7n96JeMysJ2tsTC2QtdaCSZNgBS8vWA1t+Ve9C7hM0pOkJDJR0jvNHRwRLbVYLgB+BkyWdDqwATAKGFs6JVjSM8DUiDgoezwKWJ10MeJbwLeAo4DJEfHPNnwGM6s3S5fCPvvAvHlpn5F11ik6oh6rLYnkJ8B/A58njUfMAl7pyJtFRKOk7YBzgJtI4yLjSMmkPK7SZVNmkq5qP5h0zclc4AzA7VQzq+zkk+GWW+Dcc2GLLYqOpkdrNZFExELgdwCSvg0cFxGPdvQNI2IG0OL+lRExqOzxJNKFi2Zmrbv1Vhg1CvbdN42PWFW1ZdbWB5I2yx42kLqWzMxq06xZsPfe8IUvpJlavuiw6toy2P4esHL2837AJ6oXjplZJyxaBLvumsZHJk+GXr2KjqgutGWMZAZpUcXrSbO2dpU0pJljIyLO77LozMzaKgIOOwweeghuuintvW65aEsiOQK4kDQoHqRB7+YE4ERiZvm7+GKYMAGOPx522qnoaOpKq11bEXF/RHwhIlYktUi2iIjlmrm1uEGVmVlVPPggHH44fPe7aZDdctXe1X+3IXV1mZnVhldfTeMiAwbAlVfC8v57Nm/tuswzIqYCSNoc2ApYE3gduC8iHuj68MzMWvDBB7DXXvDSS3DffekKdstduxKJpN7ANcAw4APgNWAtYHlJtwG7ZdedmJlV38iRcOedcNFFMKS5OUBWbe3t2hoDbAnsCawSEQOAVbLHWwKnd214ZmbNuPHGtAjjQQfBwQcXHU1da28i+RFwTERcExFLASJiaURcA/w/YLeuDtDMbBnPPJOuWt90UzjnnKKjqXvtTSR9geeaee45oE/nwjEza8XChWlF3xVWgD//GVZZpeiI6l57E8mjwKHSx9ccyB4fmj1vZlYdEfDTn8Ljj6cZWoMGFR2R0f5E8mvSQPtMSadJ+oWk3wL/Ar6bPd8iSRtLmiJpoaT5kkZLavN8PUnLSZouKST5qiOzenLeeXD55XDiiTBsWNHRWKa903/vlvQV4ATSeMgA4AXgAWB4trJvsyT1I+1vMgPYmbTz4pmkhHZ8G8M4GPh0e+I2sx7g/vvh5z+HHXeE444rOhor0e7twrJksWcH3+8Q0n4iw7ONrO6U1Ie0lteY0s2tKskS0Smkgf2LOxiDmXU3L70Eu+0G668Pl10Gy7W3M8WqqV1nQ9LvJG3ciffbHri9LGFMIiWXrdtQ/yTSLolTOhGDmXUnS5bAnnvC66+nFX379Ss6IivTkem/j0n6h6RDJPVtZ/3BpN0OPxQRc4GF2XPNkvRF4EBaXjTSzHqaX/8aGhrgwgvhS18qOhqroL1jJJ+RtA3pC/0MYGy2vPwfIuKuNrxEP9L2uuUas+da8r/AuRHxjKRBrb2RpBHACID+/fvT0NDQhvCWtWDBgg7Xterxeak91Tgna0+dyn+ecQbP/+AHPL3++imhWLvk8rsSER26AasBBwH3kpZLmQOcCGzQQp33gSMrlD8PnNJCvT2BF4E+2eNBpCXrd2pLrJtuuml01D333NPhulY9Pi+1p8vPyb/+FbHaahGbbx7x7rtd+9p1pDPnBZgWbfiO7fCIVUQsiIhLgJGkcYv1gGOBpyTdIGlghWqNwBoVyvtSuaWCpBVJrZ/TgeUkrcFHFz72lrR6Rz+DmdWoBQvSRYerrpouOlx55dbrWGE6lEgkDZI0UtKzwB3AAtJ04NWBH5BaDJMqVJ1J2ViIpPWA3pSNnZToDawLjCUlokY+uvBxEvBwRz6DmdWoiLR+1pNPwqRJsO66RUdkrWjv6r/7ksZHvgXMBSYAEyJiXslht0h6h3S9SLlbgaMkrR4Rb2dlewCLgKnNvO0C0j4opT4JXEW6APLu9nwGM6txv/89XH01nHYabLtt0dFYG7T3OpLxwHXAsIhoaQruU8DJFcovAH4GTJZ0OrABMAoYGyVTgiU9A0yNiIMiYgnQUPoiJYPtj4X3QTHrOe69F446CnbZBY4+uuhorI3am0g+FRGNrR0UES+QBt7LyxslbQecA9xEGhcZR0om5XF5mzOzejJ/Puy+O2y4Ydp7/eNL+lkNa+/031aTSBteYwbQYns1Iga18vxs0v7xZtYTvP9+SiJvvw1TpkDf9l6iZkVq9xIpkvYA/gvYiLSp1cdExDpdEJeZ1ZOjjoK//Q2uugo22aToaKyd2rtEyl7AH4FnSDOpbgRuzl7nLVKXlZlZ2111FZx1Fhx5ZFoKxbqd9k7/PYq03tVh2ePzIuInwGeAV0lLnZiZtc3jj6dtcr/xDTjjjKKjsQ5qbyL5HPC3iPiAdDV7H4BsKu/pwOFdG56Z9VhvvpkuOuzTB665BlZcseiIrIPam0jeBJouMX0e+I+S5wSs1RVBmVkPFwEHHADPPpuuGRkwoOiIrBPaO9g+DfgicDtpfOQESUuA90ibXfmaDjNr3ZgxcP31MHYsfPObRUdjndTeRPJboGkNrROyn88jXfPxINlqu2ZmzZoyJS0Nv/vuacdD6/balEgkrQrsQFpD60VJ/SPiJWBnSSsDK0cruxuamfHcc2lm1uc/D5dc4osOe4hWE4mkDUjrZg0qKX5L0u4RcUdELAYWVyk+M+spFi+GXXdN95Mnw2qrFR2RdZG2DLaPAZYC3wR6AZuQVty9sIpxmVlP84tfwD/+ARMnwuAWN0S1bqYtiWRL4PiI+FtEvBsR/wJ+CqwvyVMtzKx1f/wjnH9+uoJ9+PCio7Eu1pZEMgB4tqzs36Tpvp9s7xtK2ljSFEkLJc2XNFpSiws0StpE0m3Z8YslzZV0sROZWTfwyCNwyCEwdCicemrR0VgVtHXWVnTFm0nqRxpvmQHsDGwInElKaMe3ULUvMAu4FJhPupJ+JLCppM2ypebNrNY0NqYWyFprpU2qVmj38n7WDbT1rN6eXS9Sbkp5eSuLNh4CrAoMz2Z53SmpDzBK0pjmZn5FxP3A/SVFDZLmkXZn/CLwUBs/h5nlZelS2GcfmDcPpk6F/v2LjsiqpC2JZJl9RTphe+D2soQxibS8ytakPUra6rXsfqUuis3MutIpp8Att8C558KWWxYdjVVRq4kkIroykQymbGvciJgraWH2XIuJRNJypJg/A5xGugjyH10Yn5l1hdtug5EjU4vk0EOLjsaqLO8Oy36kXRHLNWbPteYWYFj283Rgh4hYWulASSPIrrTv378/DQ0N7Q4WYMGCBR2ua9Xj81J7ms7JKi+8wKY//SmLP/MZHtp7b5ZOnVp0aHUtj9+VIka+Kg3cq5nyckcAa5JWIT4euFXSNyLi3WXeJGI8aY95hgwZEkOHDu1QsA0NDXS0rlWPz0vtaWhoYOjmm8NWW8Fyy7Hi7bfzrc9+tuiw6l4evyt5J5JGYI0K5X2p3FL5mIh4OvvxAUl/Jc3k2gv4Q5dFaGbtc8UVcNxxbD13LvTqBe+8AzfeCE4idSPvRDKTNBbyIUnrAb2z59osIuZIeh3YoOvCM7N2ueIKGDECFi5EkJLICivAW156r560dz+SzroVGCZp9ZKyPYBFQLs6UiV9nrT/yayuC8/M2uW442Bh2caoS5akcqsbebdILgB+BkyWdDqpNTEKGFs6JVjSM8DUiDgoe/w7YAlpv5M3SBtqHU26wn5Snh/AzErMndu+cuuRck0kEdEoaTvgHNJU3zeAcaRkUh5X6bIp00gD7SOAVYC5wLXAbyPinSqHbWaVPPggLL98aoGUW3/9/OOxwuQ+aysiZgDbtnLMoLLHk3DLw6w2LF4Mo0alXQ779k1dW4tLdpLo1StdjGh1I+8xEjPrzh58EL76VTjttLTn+qxZaYOqgQMJCQYOhPHjYe+9i47UcuREYmatW7wYjj0Wttgizci69daUQPr2TUlj9mym3n03zJ7tJFKHvBSnmbXswQdT62PGDPjJT2Ds2JRAzDJukZhZZYsXw69/nRZcfPPNtABjUyvErIRbJGa2rPJWyJlnwhqVFqUwc4vEzEo11wpxErEWuEViZsm0aakV8sQTboVYu7hFYlbvFi9OS5pssQW88YZbIdZubpGY1bPSVsiBB6YZWU4g1k5ukZjVo/JWyF/+An/4g5OIdYhbJGb1xq0Q62K5t0gkbSxpiqSFkuZLGi1p+VbqbCZpgqRnsnpPShopaZW84jbr9tzUv3RxAAAXpElEQVQKsSrJtUUiqR9wFzAD2BnYEDiTlNCOb6HqHtmxpwNPA18ETsruf1TFkM16hmnTUuvj8cfdCrEul3fX1iHAqsDwbP+ROyX1AUZJGlO6J0mZ0yPilZLHDZLeBS6UNDAi5lQ5brPuafFiGD0aTj8d+vdPrZAddig6Kuth8u7a2h64vSxhTCIll62bq1SWRJo8nN2v03XhmfUg06bBkCFw6qmw775pTMRJxKog70QymLK92SNiLrCQsr3c2+DrwFLgya4JzayHKB0Lef311AqZMMFdWVY1eXdt9SPtiliuMXuuTSR9EjgOuKy57jBJI0g7KtK/f38aGhraHSzAggULOlzXqsfnpbLVnnySwaefzmqzZvHC977Hvw87jCW9ekEO/1Y+J7Upj/NSxPTfqFCmZsqXPVBaCbgaWAD8otk3iRgPjAcYMmRIDB06tN2BAjQ0NNDRulY9Pi9lFi+Gk05KG05lYyEDdtiBATmG4HNSm/I4L3knkkagUvu6L5VbKh8jScClwCbANyKisWvDM+uGpk9P14U8/ni6HzsW+rW5gW/WaXmPkcykbCxE0npAb8rGTpoxjjRteOeIaMvxZj3X4sVw/PGw+eZpLOTmm9NYiJOI5SzvRHIrMEzS6iVlewCLgKktVZR0LHAEsE9E3Fe9EM26genT04ysU05JM7Iefxx23LHoqKxO5Z1ILgAWA5MlfTsbEB8FjC0dNM+uYL+k5PFewKmkbq3nJW1RcvtEvh/BrECLF8NvfuNWiNWUXMdIIqJR0nbAOcBNpHGRcaRkUh5X6bIp383uD8hupQ4EJnZtpGY1qHQsZP/9Ydw4JxCrCbnP2oqIGcC2rRwzqOzxASybQMzqw+LFcPLJ8NvfphlZN9/sbiyrKV7916yWPfRQan24FWI1zPuRmNWi995LYyFf+9pHYyETJzqJWE1yi8Ss1jz0UBoLeewxt0KsW3CLxKxWlLZCXn0VbrrJrRDrFtwiMasFpa2Q/faD3//eCcS6DbdIzIpUqRXyxz86iVi34haJWVHcCrEewi0Ss7y99x6ccIJbIdZjuEVilie3QqwHcovELA/lrZAbb3QrxHoMt0jMqu3hh1Mr5J//dCvEeqTcWySSNpY0RdJCSfMljZa0fCt1VpJ0hqS/SlokqU27KZoV6r33YOTI1Ap55RW3QqzHyjWRSOoH3EXaVndnYDTwS+DEVqr2Ag4GFgL3VzNGsy7x8MOw2WYwejT8+MfwxBPw/e8XHZVZVeTdIjkEWBUYHhF3RsQFpCTyP5L6NFcpIt4A1oyIYcB1+YRq1gGlrZCXX06tkEsvdSvEerS8E8n2wO2lm1gBk0jJZeuWKkaEu7OstrkVYnUq70QymLK92SNiLqnLanDFGma1rrlWyJprFh2ZWS7ynrXVj7QrYrnG7Dmz7uWRR9KMrEcfTXun//73TiBWd4qY/lupi0rNlHdYth/8CID+/fvT0NDQoddZsGBBh+ta9RR9XvT++wy8/HLWv+IK3u/bl6dOOYXXvv71NMW3ThV9TqyyPM5L3omkEVijQnlfKrdUOiwixgPjAYYMGRJDhw7t0Os0NDTQ0bpWPYWel9JWyD77sPJZZ/EFt0L8u1Kj8jgveY+RzKRsLETSekBvysZOzGpO01jIZpvBSy/BDTfAZZe5K8vqXt6J5FZgmKTVS8r2ABYBU3OOxaztHnkkDaaPHg177plmZP3gB0VHZVYT8k4kFwCLgcmSvp2NY4wCxpZOCZb0jKRLSitK2l7SrsCXs8e7ZreB+YVvdee992DUKLdCzFqQ6xhJRDRK2g44B7iJNC4yjpRMyuMqXzblfKA0aVyT3R8ITOzqWM3Kx0I46ywnELMKcp+1FREzgG1bOWZQW8rMquK99+DUU+GUU2DttVMrxN1YZs3y6r9mpdwKMWs370diBqkVcuKJHgsx6wC3SMzcCjHrFLdIrH65FWLWJdwisfr06KOw//7pfu+94eyznUDMOsgtEqsv77+fWiFDhsCLL8L118PllzuJmHWCWyRWPx59NI2FPPKIWyFmXcgtEuv5SlshL7zgVohZF3OLxHq20lbIXnulVshaaxUdlVmP4haJ9UzlrZDrroMrrnASMasCt0is53ErxCxXbpFYz/H++2mZd7dCzHKVeyKRtLGkKZIWSpovabSk8pV+K9XrK2mCpEZJb0q6QpK/ISx59NG0X8jIkbD77mm/kB/+sOiozOpCrolEUj/gLtL+7DsDo4FfAie2ofqfgKHAwcABwGbA9dWI07oRt0LMCpd3i+QQYFVgeETcGREXkJLI/0jq01wlSVsCw4D9I+LaiLgO2AfYStK3qxLpFVfAoEFsve22MGhQemzFKz0vn/oUfO5zboWYFSzvRLI9cHvpbojAJFJy2bqVei9FxL1NBRHxD2BW9lzXuuIKGDEC5sxBETBnTnrsZFKs8vPywgvp3Pz8526FmBUo71lbg4G7SwsiYq6khdlzN7VQb2aF8n9lz3Wt446DhQs/XrZwYZoJdOqpXf521kZPPQVLlixbft11MG5c/vGYGZB/IulH2l63XGP2XEfqbVCpQrYf/AiA/v3709DQ0OYgt547F1UojyVLeOUTn2jz61jX+sSMGZXPy9y5TG3H+bXqWLBgQbt+zywfeZyXIq4jiQplaqa8w/UiYjwwHmDIkCExdOjQtke4/vqpy6T8zQYOZB3/ohRn0KDK52X99WnX+bWqaGho8HmoQXmcl7zHSBqBNSqU96Vyi6O1emu0Uq9jTjkFevX6eFmvXqnciuPzYlaT8k4kMykb05C0HtCbymMgzdbLNDd20jl77w3jx8PAgYQEAwemx3vv3eVvZe3g82JWk/JOJLcCwyStXlK2B7AImNpKvU9K2qqpQNIQ0vjIrdUIlL33htmzmXr33TB7tr+saoXPi1nNyTuRXAAsBiZL+nY2ID4KGFs6JVjSM5IuaXocEf8H3A5cKmm4pB8CVwD3RcRduX4CMzP7mFwTSUQ0AtsBy5Om+p4IjANGlh26QnZMqT1JrZY/AJcC04FdqhmvmZm1LvdZWxExA9i2lWMGVSh7Azgwu5mZWY3w6r9mZtYpTiRmZtYpimjtOsDuT9IrwLJXsrXN2sCrXRiOdQ2fl9rjc1KbOnNeBkZEq8t51EUi6QxJ0yJiSNFx2Mf5vNQen5PalMd5cdeWmZl1ihOJmZl1ihNJ68YXHYBV5PNSe3xOalPVz4vHSMzMrFPcIjEzs05xIjEzs05xIjEzs05xIjEzs05xIjEzs05xIrFuSdJqkp6StFnRsZjVu9yXka9VkkTa32RH4D+ANYEPgJeAvwMTI+Kp4iKsP5J2aOHp3sBngW0kfQIgIm7JJbA6J2ln0v5AAs6PiKmSvguMATYEZgPnRMSFxUVZXyT1IW3PsRLwl4h4J/u9OIy0k+yzwPiImF+V9/d1JJD9g98CbEpKHIuBTwNB2sp3A+DzwEkRcVJRcdYbSUtJ50DNHFL6XERE+WZo1sUk7QVcDjwMvAF8HfgJacO567LyIcCuwE8j4uKCQq0bkj4LTAHWy4pmAd8F7gTWAP5N+v5aBGwaEfO6OgZ3bSVnk/7BvxQRA7KNtQYCdwNLIuILwHeAYyT9pLgw687DwMvAQcBnym5fJiWRPbPHGxQUY735FakVsmlEbAccCkwAzoqIvSLijIjYg/Q7dViRgdaRU0lJfSPSSr/3A7cBL5JW792M9PvxIvCbqkQQEXV/y07CjyqUDyJ1bw3IHv8aeLToeOvlRkoUI0jJ5FrgMyXP9QWWAt8qOs56ugFvA9uUPF690nkgban9VtHx1sMNmA/sXvJ4YHZOhpcddyDwVDVicIskESlhlPsge65v9vgBUta3HEQynvRv/gLwT0m/ldS74NDq2ZtA/5LHTT+X71nxCeCtXCKyfqTWRpPns/vyPZieBdatRgBOJMldwMmSPuwekdSP1Dx/EWgaZF+N9ItkOYqINyLicOAbwJbA08ABpDESy9edpN+VHSRtRVoQ8K/AqKbfH0mfI3Wh/K24MOvKy6RWSJMPgAtJ472l1iG1KLucE0lyZHb/pKRnJM0gNRe3AQ6KiKXZ898AphYRoEFE/DMihgL/A/yS5gfhrXqOBRqBm4F7gVWAnUl//T4t6W1gJmlW3bFFBVlnHiZ9VwEftuQPjWUH1b8FPFaNADxrKyNpeWB34EukX45ngCsj4vVCA7OKJK1A+rJaEBGVuiWtSrKp8hsBK0bE4yVl3yfNDpoD3BIRC4qLsn5I6g/0iohZrRz3P6Qx3ildHoMTiXVHWSLZHbgzIl4pOh6zeuZEUkbSJsBg0gBWkGZ0zYyIJwoNzD5GUl/gdWBoRPy16HjqhaTNgQdLunvNnEiaZNeHjCTNaijvew/gOeDEiJiQd2z1StI/Wnh6eeArwJNkA4gR8bU84qpn2UWirwDXAFdFhAfUuwlJPwKujipcuOslUgBJRwBjSTNQJgH/Ig0oQmqZDCZd+HaBpF4RcW4hgdafIaRZc7exbHJfiZRIZvPxqY9WfY8APwYOlfQ86XdmUkQ8VGxYVhS3SABJzwIXRMSYVo47GjgkInwVdQ4k/RA4E5gHHBkRj5Q8twYfdW3dW1CIdSdrkWxBmim0PekPrJ1IEx+eAa4kJZUnCwuyzkj6QxsPHUj6fenyFokTCSBpIbBDRDS0ctxQ0myUXnnEZSBpZeBo4CjSX77HRcQr2RhJI04kuWpKJBHxj5KyVYEfkJLK90itxUdJXV9nFBJoHZH0AemC3RdaObQfaXUIJ5JqkPR30sJm+zY3iJhNb7wc2DAitsgzPgNJ65NaJ98BTgIuJV1w5USSo0qJpOz5PsBwUlLZJiJWzjO+eiRpJvCPiNivleN2Bf7kMZLq+SWpH36GpMmkC6reIA2yr0EaI9mFNBD/vaKCrGcRMRfYTdI2wFnAz/CV7TUnIt4CJgITJa1VcDj14u+kVZhb09JK2p3iRAJExN8kfZnUhbI3Hy3H3OQ50nLyZ0TEv/OOzz4SEfdI+gppMceNSOMnlp+ptHENrYh4rcqxWPK/QFsmOkyl5Ar4ruSurQok9SK1RADeiIiFRcZjZlbLnEisZkk6hjS5oSrrA5lZ1/CijSUkrSdpU0mrNfP82pJaHNCyLvVb4BFJT0g6LtsJzmqApG9K+pGk/2jm+U9LOiHvuOqVpCHZFgunSRqclX1J0vWSHpN0k6Sqje+6RcKHU0wvJ802gbQpzKXA/0TEmyXHbQ7cX41ZD7asbIbQ6UDTDpUrkPqCryRdoft8C9WtCrJp17cDm5EGbgNoAH4SEXNKjvPvSk4kDQNuIl1X9Q5pL5idgcnADNIFpJuSztmPIuL6ro7BLZLkGNIX1SHA5qTtRHcCpmV7K1hxrouInYBPkrZ1fQs4A5gjqUHSCM8OytWJpMko3yPtbzEc+BTpd6UtM4es650A3AB8OiI2BE4jJZHJEfGNiDgsu2ThSuD/VSMAJ5JkL+D4iLgoIqZFxFmk5eRfAO6XtGWx4VlENEbE+Ej7hK9LmrK9EnABMF/SXwoNsH58n3RR6J0R8WpE3AB8lbQ53F3Zek6Wr/8ELizZTuF80q6uV5QddxnpUoYu50SSrAf8s7QgIl4k7Ts9hfQL8sMiArNlRcSLEXFWRHwd+Axpsc1PFRxWvfgkacvWD0XEooj4MXAO8CdJPysksvq1iLRETZOmn1ctO64X8G41AnAiSeYDy3RhRcT7EbEncBFptdMReQdmLYuIORFxWkR8pehY6sQc0pjVMiKiaSmbcaTkbvn4G3CCpI0lrQv8jjQ2coyk1eHDsa2jgenVCMCD7Xy46NkG2TauzR1zLHAKaSdLDyDmQNJI4KKImF90LJZIOhfYMiK+2sIxewETgBX8u1J92WzGu/joQurZpAsP/0zqypoDDAKWkJateWTZV+lkDE4kaeocsAdwWktX42a/IN+JiANzC86shkjaiDQx5cqIaGzhuK1J66CdmFtwdSy7ZOEbwIrAlIhYlF1YfTAfbX98ZYV93Lvm/Z1IzMysMzxGYt2epIskXVJ0HGb1yos2toOki4DlIuKgomOxj9kG/1FUUyTdRerx2K7oWCyp5jlxImkff2HVoIjw0im1R/h3pdZU7Zx4jMS6PUmrAOtke5aYWc78F0M7SFol26nPasuOwKyig7CPSFrRvyu1pZrnxImkffyFZXVP0mGS/i3pbUkPSNq3wmFfxb8ruSn6nHiMxGqWpLvbeOgnqhqIfUjSnqQd+a4CHiZduzBR0s7AvhGxqMj46lEtnBOPkdDuL6yNfbVuPiQtAZ4kLffQkk8Dm/u8VJ+kacDd2XIoTWXbkRYInA3sGBGveRn5/NTCOXEiwV9YtUrSI8CTEbFHK8ftCvzJ56X6JL0NfD8iGsrKBwG3AssD2wNr40SSi1o4J+7aSh6nHV9Y+YRkwAOkfS9aE6SpjVZ9b5K+kD4mImZn+5H8BbgfOCnvwOpY4efEg+3JA8AWbTjOX1j5GgMc0YbjbiEtJ2/VNx2ouKVCtvbWdsA04Ow8g6pzhZ8TJ5LEX1g1KCL+HRE3tuG4RaXbvFpVXQ5sIGnNSk9mA7s/AC4GfF1PPgo/Jx4jMTOzTnGLxMzMOsWJxMzMOsWJxOqKpAMkTc+uAG6U9LCksVV6r40kjZK0RhuOHSUpSm7zJV0racM21D0gq7Na10Ru1j5OJFY3su2SLwZuB4YD+wE3kAYiq2Ej0t7lrSaSzJvAltntV8CXgSmSerdS7y9ZnYUdjNOsU3wdidWTw4ELI+LXJWU3SaqV7WCXRMTfs5//Lmku8FdgB+Ca8oMlLQ8sHxGvAK/kF6bZx7lFYvVkDeDF8sIombooaVDWTbSXpMuyLrCXJY0srydp22yBvHclvSTpvKbuJUlDgZuyQ2dlrzm7nfFOz+4HZa85UdI0ST+U9ATwLrB5pa4tSatKGiNpjqTFkmZJ+m1Z/AdLeiJ7fo6kozHrALdIrJ48BByR/aV/c0S81sKxZwA3A7sC3wJGSno1Is4FkLQxcBtwJ/AjYD3gNGAD0tX4D5G6p35H6kZ7AVjczngHZfcvlpWNAUYDL5FWc/3YOIokkbrstiRdzTydtLzPN0uOOQo4NXutBmBT4CRJCyPinHbGafUuInzzrS5uwBeBZ0krFCwFniB9IfcpOWZQ9vwdZXUvAp4nbbUMMAl4mtS11HTM7lndLbPHO2WPB7UhtlHAq6Q/7lYgja/cA7wFDMiOmZi93pfL6h6Qla+WPR6WPf5BM+/VB1gAjCwrH01KWsu3Fq9vvpXe3LVldSMi/gn8B2lw/TzScje/AaZVmPF0XdnjycCngHWzx18DrouID0qOuRZYAmzVwRDXAt7Pbk+SWjd7RMQLJcc8HxGPtPI62wKvR/OrAmwJ9AaukbRC0w24G+jPR5/RrE3ctWV1JSIWk8YubgKQdBBpJtdBwFklh75cVrXp8QDSMhMDSF1Lpa/9gaTXgIpLVbTBm8C3Sa2JF4H5EVG+9MRLy9Ra1lqkrrTmNC3w90Qzz68HeMkZazMnEqtrEXGJpDHA4LKn1mnm8Qsl9x87JptFtRbwegfDWRIR01o5pi1rGr1GSnTNaYpvJyonpifb8B5mH3LXltUNSeXJAUmfAPqy7BfqLmWPmwbM52WPHwB2yZJH6TErAPdlj9/L7lfpRNgdMQVYU9JOzTz/f8Ai4FMRMa3C7e38QrWewC0SqyePSboBuIPUVTWQNLNqIfDHsmM3kXQhadzjW6SuryMjYmn2/MmkbU2vl3Q+aVzhdOD2iPi/7Jimv+x/KmkSsDAiHqvOR/uYO0kXXV4paTRpBtkA4FsR8dOIeEPSKOAsSQOBe0l/VG4EbBMR5UnUrEVOJFZPRgM7k/ZlWJM0DnE/aUB7VtmxR5O6fq4lXa9xEvDhtNiIeELS9qQptJNJs6uuyuo1HTNH0q+An5G2KZjHR1N6qyYiQtIuWcw/J20RPR+4suSYMZLmA78Afkn6jE/hjdusA7yMvFmJbHvSWaStS28uNhqz7sFjJGZm1ilOJGZm1inu2jIzs05xi8TMzDrFicTMzDrFicTMzDrFicTMzDrFicTMzDrl/wMGQWFBW3mZCgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYVOX5xvHvLRY6IgghESGaX2I0GuOaWGKioBGNJioi2BuKGDVqIiaKEUQxir0hFgJi0LWAhQQLPZZYwBiNiIFIEVARXMuySH1+f7xnZRhmd2bLzJmz+3yua67dc+ac2XuGYd45b5WZ4ZxzztXWFnEHcM45l2xekDjnnKsTL0icc87ViRckzjnn6sQLEuecc3XiBYlzzrk68YLEFS1JgyVZym2ppHGSdo4x008lvSHpK0kW7WshqVTSiijn6VWcOzrt+VTe7i/ok9iYp5+kozPsXyDpxjgyuWTaMu4AzmXxOXBY9PtOwNXAFEm7mdnKGPLcAywDegCro33nAr8CTgWWAP+r5vw5wBlp+5bVc8Zc9QP+AzyZtv8YYEXh47ik8oLEFbt1ZvZK9PsrkhYBLwC/BB6LIc8uwL1mNiNt33tmNi6H81emPJ+iZGb/ijuDSxav2nJJMyv62RVA0n6Sno6qvVZKelPSSZUHS9ouqoY6LfVBFMyXdHPKvu6SXo2O/1jScEkto/sOiqqymgC3RVVSoyUtAPoCP6qsqqrtE6v8G5J+kLZ/uqTHU7ZHS5op6ReS3oqe94uSdks7r4mkyyT9V9JqSYslja58TKAEOC2liu306L7NqrYk9Zb0dvQ4H0gaKmnLlPtPjx5jd0mTokxzJPWs7evhksMLEpc0XaOfH0U/uwAvAWcRqpfGAaMknQBgZp8CT7B5ddJB0WONApC0K/AssBw4FhgEnAhUfoC/AewX/X5T9PvVhGqgiYQqq/1SjqmSpC1Tbzk9683tCNwADAVOADoAj0pSyjH3AFcBjwJHAr8HWkT3/SbKPDEl99+ryHso8AjhNTgKuAO4BLgzw+EPAU8TXpe5QKmkHWr5HF1CeNWWK3opH7Y7AcOBL4HJAGZWmnKcgH8AOwBnAw9Hd40Enpe0k5m9H+07A5hlZm9H21cCC4Ffm9n66PE+BR6RtJ+Z/ZNQtQawILV6StInQMccq6xKgLVpz+//zGxeDuem2g74qZnNjR5jC0KB+T1gjqRdCFdKF5rZ7SnnPQJgZrMlrQQ+ySH3EGC6mVVe1T0bvQ5/lnSNmS1OOfYWM/tLlGkW8DGhEBtRw+fnEsSvSFyxa0f44F0LvEcoTPqY2YcAktpKul3SwpTj+gHfTXmMKYRC4rTonFZAT6KrkchPgCcqC5HIOGAdcEA9Pp93gR+n3T6oxeMsqCxEIrOjn5Xf/rtFP0fX4rG/JqkJsBebt0c9Qvj8SL8Ce77yFzNbQehI4FckDZxfkbhi9zlwCGCE6qyltumU1aOBfQnVTLOBLwi9qI6qPMDMTNIo4ExJg4HehPf+QymP04nw7ZmU89ZLWkH49l9fKsxsZj08zmdp22uin02jn+0IDftf1PHvtAe2Iu21SdlOf20y5WqKa9C8IHHFbl1VH7ySmgJHAOeb2YiU/ZmutEcR2j26AacDT5pZWcr9HxLaGVIfvwnhA/nTujyBGvgq+rl12v7tCG03NbECaCGpdR0Lk+WEq7wOafs7Rj8L9dq4IuZVWy7JtiH0oqocz1FZbfXr9APN7ANCtctVhKqqUWmHvAocExUelXoSvmy9WL+xq1TZ1vD9yh2SOhPaPWpqavTz1GqOyXq1EFX1zQKOS7urN7AB+GctsrkGxq9IXGKZ2eeSXgeulPQF4YPtj4TqsNYZThlJqOtfDExKu+8a4F/Ak5LuJtTrXw88FzW0552ZLY6ez9WSKghf9C6nFt/6zew9SfcCN0nqQOiEsC3Qy8yOjw6bA/SQ1INwBTM/atdINwh4LqoeLAV2J1Ql3pfW0O4aKb8icUl3IjAfGAPcRmggH1PFsX8jNJ4/YGYbUu8ws3eAwwlVOOMJBcvDQK/8xK7SicAi4K/AtYQeU+/V8rF+Q7gCO5nQzfdWYFXK/dcQGv8fBV4ndJ/ejJk9DxwP7A1MAC4idIE+v5a5XAMjX2rXNRaSfkkoTL5bi+62zrkqeEHiGjxJ3wT+jzCQbpGZHRlzJOcaFK/aco1BP8JYkq+AC2LO4lyD41ckzjnn6sSvSJxzztVJo+j+2759e+vatWutzl25ciUtWrTIfmCRSFLeJGWFZOVNUlZIVt4kZYW65Z01a9ZyM9s+64Fm1uBvJSUlVlvTpk2r9blxSFLeJGU1S1beJGU1S1beJGU1q1teYKbl8BnrVVvOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTrwgcc65hmjsWOjalQO7d4euXcN2nhS8IJG0q6QpkiokLZU0JG0NiKrO21vS85JWSPpU0mRJ+xQis3POJcrYsdCvHyxciMxg4cKwnafCpKAFiaS2wGTCsqlHEabI/j1hquvqzuscnbclYaGeU6Lfn5fUJZ+ZnXMucQYOhIqKTfdVVIT9eVDoke39gWZATwvLf06S1BoYLGmYVb0k6BFAq+i8zwAkvUxYBvSXwN35j+6ccwmxaFHN9tdRoau2DiesOJdaYJQSCpcDqzlvK8KCROUp+8qjfarvkM45l2jt22fev+OOeflzhS5IdiEs7/k1M1sEVET3VWVcdMxNkjpES4feApQRlk51zjkHMH8+rFwJSvuO3bw5DB2alz9Z0GnkJa0FBpjZrWn7FwNjzOzyas7dk7C63beiXR8Ch5vZv6s4vh9hHQo6duxYUlpaWqvM5eXltGzZslbnxiFJeZOUFZKVN0lZIVl5iznrFqtX86MLLqDphx+y4JRT6Dx+PNssW8bqDh14/6yzWHbIITV6vG7dus0ys72zHpjLhFz1dQPWAhdm2L8EGFrNeZ2AecBTwGHRbQKwGNgx29/1SRuLU5KymiUrb5KymiUrb9Fm3bDB7PTTzcDsb3/7enchJm0sdGN7GbBthv1tgM+qOW8AoWNALzNbCyBpKjAXuAT4bT3ndM65ZLnvPhg9Gq68Eo44oqB/utBtJHNIawuJuva2IK3tJM0uwDuVhQiAma0B3gF2zkNO55xLjtdegwsugB49QkFSYIUuSJ4BekhqlbKvD7AKmFHNeQuBH0jaunKHpG2AHwAL8pDTOeeSYfly6NULOnUKAw6bZB3fXe8KXZCMAFYD4yUdEjWIDwZutpQuwZLmSRqZct79wDeBJyQdIelI4ElC28m9BUvvnHPFZP16OOEEWLYMxo2Ddu1iiVHQgsTMyoCDgSaExvKrCN14B6UdumV0TOV5swgN7K2AB4ExQHPgF1ZFry3nnGvwrrwSJk+G4cOhpCS2GAVfs93MZgPdsxzTNcO+KcCUPMVyzrlkeeopuPZaOPtsOPPMWKP47L/OOZc0c+fCqaeGq5Dbb487jRckzjmXKCtXQs+esOWWoV2kadO4ExW+ass551wtmYXp4N95B559FroUx+TnXpA451xS3HUXPPQQXHMNHHpo3Gm+5lVbzjmXBC+/DBdfDL/6FVx2WdxpNuEFiXPOFbuPP4bjjgtVWWPGwBbF9dHtVVvOOVfM1q2DPn2grAwmToRtM01XGC8vSJxzrphddhnMmAEPPgg//GHcaTIqrusj55xzGz3+ONx4I5x3Hpx8ctxpquQFiXPOFaN334UzzoB994Wbb447TbW8IHHOuWLz5Zdh0GGzZvDYY7D11tnPiZG3kTjnXDExg7594b//DRMy7rBD3ImyKvgViaRdJU2RVCFpqaQhkqqdQF/SYElWxa24OlQ751xd3HJLuAq57jro1i3uNDkp6BWJpLbAZGA2cBRhdcObCAXaFdWcej/wbNq+o4E/EBbLcs655JsxAy69NFRrXXJJ3GlyVuiqrf5AM6BntJDVJEmtgcGShqUubpXKzBYDi1P3SfoTMMfM3sx3aOecy7slS6B3b/jOd2DUKJDiTpSzQldtHQ48l1ZglBIKlwNzfRBJ2wG/AB6u33jOOReDNWtCIbJyZZjRt3XruBPVSKELkl2AOak7zGwRUBHdl6tewFaEQsg555JtwIAwl9bIkbDbbnGnqTGZWeH+mLQWGGBmt6btXwyMMbPLc3ycqUAbM6tybcloPfh+AB07diwpLa1dmVNeXk7Lli1rdW4ckpQ3SVkhWXmTlBWSlbe+s3aYPJldhw7lg169+N9559Xb41aqS95u3brNMrO9sx5oZgW7AWuBCzPsXwIMzfExOgHrgUty/bslJSVWW9OmTav1uXFIUt4kZTVLVt4kZTVLVt56zfrWW2bNm5v97Gdma9bU3+OmqEteYKbl8Blb6KqtMiDTjGNtgM9yfIzegIBH6iuUc84V3Oefh95ZrVvDI4/AVlvFnajWCt1raw5pbSGSOgMtSGs7qcbxwItm9kE9Z3POucLYsAFOOw0WLIBp06BTp7gT1Umhr0ieAXpIapWyrw+wCpiR7WRJXYF98d5azrkkGzYMnnoqTMh4wAFxp6mzQhckI4DVwHhJh0QN4oOBmy2lS7CkeZJGZjj/eGAd8HghwjrnXL2bPBkGDoTjj4ff/jbuNPWioFVbZlYm6WDgTmACoV3kFkJhkp4r07QpxwNTzOyTfOZ0zrm8WLQITjgBvv99uO++RA06rE7BJ200s9lA9yzHdK1i/575yOScc3m3ejX06hV+jh8PCenunAuf/dc55wrhoovg9ddDIfLd78adpl75eiTOOZdvo0fDiBHwhz/AMcfEnabeeUHinHP59K9/wbnnQvfucM01cafJCy9InHMuXz79FI49Ftq3h4cfhi0bZmtCw3xWzjkXtw0b4JRTYPFieOEF6NAh7kR54wWJc87lwzXXwMSJMHw47LNP3Gnyyqu2nHOuvj3zDAweDKeeCv37x50m77wgcc65+jR/Ppx0EuyxB9x9d4MZdFgdL0icc66+rFoVGtfNwkqHzZvHnaggvI3EOefqgxmcd17o7jthAuy8c9yJCsavSJxzrj7cfz+MGgV/+hMceWTcaQqq4AWJpF0lTZFUIWmppCGSMk3QmOncnpJel7RK0gpJz0pqke/MzjlXrddfh/PPhx49YNCguNMUXEELEkltgcmAAUcBQ4DfA1flcO5ZwEOENU0OB84C5uLVc865OC1fHtpFOnWCsWOhSU7fixuUQn8I9weaAT2j9UcmSWoNDJY0LHVNklSS2hOmm7/AzO5LueuJvCd2zrmqrF8fpoVftgxeegnatYs7USwKXbV1OPBcWoFRSihcDqzmvN7RzwfyFcw552ps0KCwUNVdd0FJSdxpYlPogmQX0tZmN7NFQAVpa7mn2Qd4D+grabGktZJelbR//qI651w1nn4ahg6Fs86Cvn3jThMrmVnh/pi0FhhgZrem7V8MjDGzy6s47zlgf+AL4FJgRfRzb+D/zOzjDOf0A/oBdOzYsaS0tLRWmcvLy2mZoAVokpQ3SVkhWXmTlBWSlbe8vJztP/uMkv79WfWtb/GvO+5gw9Zbxx2rSnV5bbt16zbLzPbOeqCZFewGrAUuzLB/CTC0mvMmERroD0vZ1xooA67O9ndLSkqstqZNm1brc+OQpLxJymqWrLxJymqWkLx//atZly62QTLbaiuzFi3MFiyIO1VWdXltgZmWw2d7oau2yoBtM+xvQ1i/vSqfRj+nV+6w0M4yC9i1vsI551xGY8dCv36wcCEyg7VrYd06ePHFuJMVhUIXJHNIawuR1BloQVrbSZp3CVck6ZPWCNhQnwGdc24zAwdCRcWm+1avDvtdwQuSZ4Aeklql7OsDrAJmVHPe3wiFRrfKHZLaACXAv/OQ0znnNlq0qGb7G5lCFyQjgNXAeEmHRA3ig4GbLaVLsKR5kkZWbpvZTOApYKSk0yQdATxNaHO5q5BPwDnXCH3rW5n377hjYXMUqYIWJGZWBhwMNAEmEEa03wKkzymwZXRMqpOBJ4GbgccJhUj36DGdcy4/1q2DTL2emjcP3X9d4acXMbPZQPcsx3TNsK8cODe6OedcYVx2GcyZExaoeuYZbNEitOOOoRA56aS40xUFn6fKOeeqMm4c3Hgj/OY3YfQ6MGP6dA466KB4cxUZn0beOecymTMHTj8d9t0Xbrkl7jRFzQsS55xL9+WX0LMnNGsGjz0GRTxyvRh41ZZzzqUyC3NnvfceTJoEO+wQd6Ki5wWJc86luvXWcBVy/fXQvdp+QS7iVVvOOVfpH/+AAQPgmGPCT5cTL0iccw5g6VLo3Rt23hlGjwalz8jkquJVW845t2YNHHcclJfDlCnQunXciRLFCxLnnBswAF5+GUpLYbfd4k6TOF615Zxr3B5+GG6/HS66CPr0iTtNInlB4pxrvP7zn7BU7gEHwLBhcadJrIIXJJJ2lTRFUoWkpZKGSEqfoDH9nK6SLMOtduvnOufc55+HQYetW8Ojj8JWW8WdKLEK2kYiqS0wGZgNHAXsDNxEKNCuyOEhLgFeStleXt8ZnXONwIYNcNppMH8+TJsGnTrFnSjRCt3Y3h9oBvSM1h+ZJKk1MFjSsNQ1Sarwnpm9kveUzrmGbdgweOqpMIfWAQfEnSbxCl21dTjwXFqBUUooXA4scBbnXGM0ZUpYIrdPH7jwwrjTNAiFLkh2IW1tdjNbBFSQtpZ7FUZJWi/pQ0k3S2qWj5DOuQbqgw/g+ONhl13g/vt90GE9kZkV7o9Ja4EBZnZr2v7FwBgzu7yK8zoBA4HngS+Ag4A/AM+b2VFVnNMP6AfQsWPHktLS2rXLl5eX0zLT6mhFKkl5k5QVkpU3SVmhMHm1Zg0/uvBCmi9axKy772ZVLZfJbUyvbbdu3WaZ2d5ZDzSzgt0Iy+NemGH/EmBoDR/rXMCAPbMdW1JSYrU1bdq0Wp8bhyTlTVJWs2TlTVJWswLl7d/fDMzGjavTwzSm1xaYaTl8Hmet2pJ0qqR2tSrONlcGbJthfxvgsxo+1uPRz73qlMg51/A98ACMGAGXXhq6/Lp6lUsbyShCN12i9omf1OHvzSGtLURSZ6AFaW0nObC0n845t7k33wzrrXfrFtZZd/Uul4KkDPhm9Luo2wf3M0APSa1S9vUBVgEzavhYvaKfs+qQxznXkJWVhSuQdu3CPFpb+vSC+ZDLqzoZeFDSe4RCZLSklVUdbGbVXbGMAH4LjJd0PbATMBi42VK6BEuaB8wws77R9mCgFWEw4hfAz4EBwHgzeyuH5+Cca2w2bICTT4bFi8M6Ix06xJ2owcqlIDkT+A3wPUJ7xHzgk9r8MTMrk3QwcCcwgdAucguhMEnPlTptyhzCqPazCGNOFgE3AH6d6pzL7JprYOJEuOsu2HffuNM0aFkLEjOrAG4EkHQIMNDM/l3bP2hms4Fq1680s65p26WEgYvOOZfds8/C4MFwyilw7rlxp2nwcum1tV7Sj6PN6YSqJeecK07z58OJJ8Luu4eeWj7oMO9yaWxfA2wT/X4qsH3+4jjnXB2sWgW9eoX2kfHjoXnzuBM1Crm0kcwmTKr4JKHXVi9JVY10NDO7u97SOedcrszgvPPgjTdgwoSw9roriFwKkguAewiN4kZo9K6KAV6QOOcK7/77YdQouOIKOPLIuNM0KlmrtszsZTPb3cy2IlyR7GtmW1Rxq3aBKuecy4vXX4fzz4dDDw2N7K6gajr7bzdCVZdzzhWH5ctDu0inTvDQQ9DEv88WWo2GeZrZDABJ+wAHANsBnwIvmtmr9R/POeeqsX596KH18cfw4othBLsruBoVJJJaAI8BPYD1wAqgHdBE0rPAcdG4E+ecy79Bg2DSJLjvPtg7+2znLj9qWrU1DNgPOB5oamadgKbR9n7A9fUbzznnqjBhQpiEsW9fOOusuNM0ajUtSI4F/mBmj5nZBgAz22BmjwF/BI6r74DOObeZefPCqPWSErjzzrjTNHo1LUjaAB9Ucd8HQOu6xXHOuSwqKsKMvk2awOOPQ9OmcSdq9GpakPwbOFfadM6BaPvc6H7nnMsPMzjnHPjPf0IPra5d407kqHlBcjmhoX2OpOskXSzpz8C7wKHR/dWStKukKZIqJC2VNERSzv31JG0haZYkk+SjjpxrTIYPh7/+Fa66Cnr0iDuNi9S0++9UST8CriS0h3QCPgReBXpGM/tWSVJbwvoms4GjCCsv3kQo0K7IMcZZwLdqkts51wD8859w8cVwxBEwcGDcaVyKGi8XFhUWx9fy7/UnrCfSM1rIapKk1oS5vIalLm6VSVQQDSU07N9fywzOuaT5+OMw6LBzZ3jwQdiippUpLp9q9K8h6UZJu9bh7x0OPJdWYJQSCpcDczj/asIqiVPqkME5lyTr1sHxx8Onn4YZfdu2jTuRS1Ob7r9vS3pNUn9JbWp4/i6E1Q6/ZmaLgIrovipJ2gM4g+onjXTONTSXXw7Tp8M998APfxh3GpeBzKxmJ0jdCB/oxxCWw30S+IuZTc7h3LXAADO7NW3/YmCMmVXZWC9pBvCqmV0qqSthyd9fmdnfqji+H9APoGPHjiWlpbVbYLG8vJyWLVvW6tw4JClvkrJCsvImKStUnbf9jBn8YPBglvz618y9+OIYkm2uoby2uejWrdssM8s+ZYCZ1eoGtAT6Av8gTJeyELgK2Kmac9YCF2bYvwQYWs15xwMfAa2j7a6EKeuPzCVrSUmJ1da0adNqfW4ckpQ3SVnNkpU3SVnNqsj77rtmrVqZ7bOP2VdfFTxTVRrEa5sjYKbl8Blb6xYrMys3s5HAIEK7RWfgMuC/kp6S1CXDaWXAthn2twE+y/R3JG0F3ECYfmULSduyceBjC0mtavscnHNFqrw8DDps2jQMOtxmm+znuNjUqiCR1FXSIEnvA88D5YTuwK2AXxOuGDLVJc0hrS1EUmegBWltJylaADsANxMKojI2DnwsBf5Vm+fgnCtSZmH+rPfeg9JS2GGHuBO5LGo6++8phPaRnwOLgFHAKDNbnHLYREkrCeNF0j0DDJDUysy+jPb1AVYBM6r4s+WEdVBSfQN4mDAAcmpNnoNzrsjdeis8+ihcdx107x53GpeDmo4juRd4AuhhZtV1wf0vcE2G/SOA3wLjJV0P7AQMBm62lC7BkuYBM8ysr5mtA6anPkjU2A7wtvk6KM41HC+8AAMGwDHHwKWXxp3G5aimBck3zaws20Fm9iGh4T19f5mkg4E7gQmEdpFbCIVJei5f5sy5xuTDD6F3b9h557D2+qZT+rkiVtMpUrIWIjk8xmyg2utVM+ua5f4FhPXjnXMNgNatg+OOgy++gMmToU1Nh6i5ONV4ihRJfYCzge8SFrXahJl1qIdczrnGYOxYGDiQny9cGLbPOw922y3eTK7GajpFyonAA8A8Qk+qp4G/RY/zBaHKyjnnshs7Fvr1g4ULN1YvjBoV9rtEqWn33wGE+a7Oi7aHm9mZwLeB5YSpTpxzLruBA8MiVakqKnxm3wSqaUHyf8BLZraeMJq9NUDUlfd64Pz6jeeca7AWLarZfle0alqQfA5UDjFdAnw/5T4B7eojlHOugTOreoncHXcsbBZXZzVtbJ8J7AE8R2gfuVLSOmANYbErH9PhnMtu2DBYtQq22grWrt24v3lzGDo0vlyuVmp6RfJnwoh2CAXHa8Bwwgj35USz7TrnXJWmTAlTw/fpExrXu3TBJOjSBe69F046Ke6EroZyuiKR1Az4JWEOrY8kdTSzj4GjJG0DbGNZVjd0zjk++ABOOAG+9z24/35o2RJOOokZ06dz0EEHxZ3O1VLWgkTSToR5s7qm7P5CUm8ze97MVgOr85TPOddQrF4dBh1+9VVY6TBBa3q46uVStTUM2AD8DGgO7EaYcfeePOZyzjU0F18Mr74Ko0fDLtUuiOoSJpeCZD/gCjN7ycy+MrN3gXOAHSV1ym8851yDMGYM3H13mJCxZ8+407h6lktB0gl4P23f/wjdfb9R0z8oaVdJUyRVSFoqaYikaidolLSbpGej41dLWiTpfi/InEuAN9+Ec86Bgw6Ca6+NO43Lg1y7/9ZsYfcqSGpLaG+ZDRwF7AzcRCjQrqjm1DaENdrHAEsJI+kHASWSfhxNNe+cKzZlZXDssdCuXVikassaT+/nEiDXf9XnovEi6aak788yaWN/oBnQM+rlNUlSa2CwpGFV9fwys5eBl1N2TZe0mLA64x7AGzk+D+dcoWzYAKecEnpqzZgBHTvGncjlSS4FyWbritTB4cBzaQVGKWF6lQMJa5TkakX0c+t6yuacq09Dh8Lf/w533QX77Rd3GpdHWQsSM6vPgmQX0pbGNbNFkiqi+6otSCRtQcj8beA64HXCoEjnXDF59lkYNAhOPhnOPTfuNC7PZFYvzR+5/TFpLTDAzG5N278YGGNml2c5/1mgR7Q5C/ilmS2r4th+RCPtO3bsWFJaWlqrzOXl5bRMUH/3JOVNUlZIVt44szb96CNKzjmH1e3b88Zdd7Ghqjm1Uvhrmz91ydutW7dZZrZ31gPNrGA3YC1wYYb9S4ChOZz/f8A+wMnAHEJh0jTbeSUlJVZb06ZNq/W5cUhS3iRlNUtW3tiyrlplttdeZm3amM2dm/Np/trmT13yAjMth8/2QnehKAO2zbC/DWH99mqZ2dzo11clvUDoyXUi8Jd6S+icq73zz4c33oCnn4bvfCfuNK5AajppY13NIbSFfE1SZ6BFdF/OzGwh8CmwU72lc87V3v33w8iRcMUV8KtfxZ3GFVChC5JngB6SWqXs6wOsAmbU5IEkfY+w/sn8+ovnnKuVmTPDeuuHHgqDB8edxhVYoau2RgC/BcZLup5wNTEYuNlSugRLmgfMMLO+0faNwDrCeiefERbUupQwwr52rejOufqxfHkYdPiNb4T11ptUO1GFa4AKWpCYWZmkg4E7CV19PwNuIRQm6blS340zgQsIvbCaEtZEGQf82cxW5jm2c64q69eH9UM++gheegnat487kYtBwecrMLPZQPcsx3RN2y7FrzycKz6DB8Pzz8N998He2XuJuoap0G0kzrmGYsIEuOYaOPNMOOusuNO4GHlB4pyruXnzwjxae+0Fd94ZdxoXMy9InHM1U1FmcUuSAAAgAElEQVQRGtebNIFx46BZs7gTuZj5nM7OudyZhbVF3n4bJk6Erl3jTuSKgBckzrnc3X03/PWvMGQIHHZY3GlckfCqLedcbl55BS66CI44AgYOjDuNKyJekDjnslu2DHr1gs6d4cEHYQv/6HAbedWWc65669bB8cfDihXwz39C27ZxJ3JFxgsS51z1Bg6EadPggQdgzz3jTuOKkF+fOueqNm4cDBsWVjk89dS407gi5QWJcy6z996DM86An/wEbrkl7jSuiBW8IJG0q6QpkiokLZU0RFK104VK+rGkUZLmRee9J2mQpOxreDrnaq68HHr2hG22gccfDz+dq0JB20gktQUmA7OBo4CdgZsIBdoV1ZzaJzr2emAusAdwdfTz2DxGdq7xMQtzZ82ZEyZk7Nw57kSuyBW6sb0/0AzoGa0/MklSa2CwpGGpa5Kkud7MPknZni7pK+AeSV2i1RKdc/XhttvgkUfguuvg4IPjTuMSoNBVW4cDz6UVGKWEwuXAqk5KK0Qq/Sv62aH+4jnXyL3wAlxyCRx9NFx6adxpXEIUuiDZhbS12c1sEVBB2lruOdgf2AC8Vz/RnGvkPvwQeveGnXaC0aNBijuRSwiZWeH+mLQWGGBmt6btXwyMMbPLc3ycbwBvARPN7PQqjulHWFGRjh07lpSW1m5drPLyclq2bFmrc+OQpLxJygrJylvTrFq3jh/+7ne0mjuXN4YPZ+W3v53HdJtryK9t3OqSt1u3brPMLPuKZWZWsBuwFrgww/4lwNAcH2Nr4B/A+0DbXM4pKSmx2po2bVqtz41DkvImKatZsvLWOOtFF5mB2UMP5SVPNg36tY1ZXfICMy2Hz9hCN7aXAdtm2N+GsH57tSQJGAPsBvzUzMrqN55zjVBpKdx6K1x4IZxwQtxpXAIVuiCZQ1pbiKTOQAvS2k6qcAuh2/AvzCyX451z1XnnHejbF376U7jhhrjTuIQqdGP7M0APSa1S9vUBVgEzqjtR0mXABcDJZvZi/iI610h88UUYdNiqFTz6KGy1VdyJXEIVuiAZAawGxks6JGoQHwzcbCldgqMR7CNTtk8EriVUay2RtG/KbfvCPgXnGgAzOP10+N//QiHyzW/GncglWEGrtsysTNLBwJ3ABEK7yC2EwiQ9V+q0KYdGP0+PbqnOAEbXb1LnGrgbboAnnoCbb4af/zzuNC7hCj6NvJnNBrpnOaZr2vbpbF6AOOdqY+pUuOyyMGbkooviTuMaAJ/917nGZPHisEjV974HI0f6oENXL7wgca6xWL06LJe7ahWMHw8JGlTnipuvkOhcY/G738Grr4Zp4Xep6YxEzlXNr0icawzGjIHhw2HAADjWV15w9csLEucaujffhHPOgYMOgmuvjTuNa4C8IHGuISsrC1cg220XpkLZ0muzXf3zd5VzDdWGDXDqqfDBBzBjBnTsGHci10B5QeJcQzJ2LAwcyIGLFkHr1vD553DnnbDffnEncw2YFyTONRRjx0K/flBRgSAUIk2awLaZJtx2rv54G4lzDcXAgVBRsem+9evDfufyyAsS5xqKRYtqtt+5elLwgkTSrpKmSKqQtFTSEElNspyztaQbJL0gaZWkwq0P7FwSfPEFNG+e+b4ddyxsFtfoFLQgkdQWmAwYYYGqIcDvgauynNocOAuoAF7OZ0bnEufFF+GHP4SVKzdfU6R5cxg6NJ5crtEo9BVJf6AZ0NPMJpnZCEIh8jtJras6ycw+A7Yzsx7AE4WJ6lyRW7MmtH8ceCBssQW89BKMGgVdumASdOkC994LJ50Ud1LXwBW6IDkceC51ESuglFC4HFjdidFC9M45gDlzYP/9w0j1008Po9f33z8UGgsWMGPqVFiwwAsRVxCFLkh2IW1tdjNbRKiy8lnknMvGLMyZtddeoaAYPz5MB9+qVdZTncuXQo8jaUtYFTFdWXSfc64qH30EZ54JzzwDPXqEaqxOneJO5RwqZI2RpLXAJWZ2W9r+JcBoM8va4V3S+cAdZlbtijzRevD9ADp27FhSWlpaq8zl5eW0TNC6DUnKm6SsEG/edi++yPduvJEmq1bxfv/+LDn66GoXpfLXNn+SlBXqlrdbt26zzGzvrAeaWcFuwDJgUIb95cCAHB/jfKImk1xvJSUlVlvTpk2r9blxSFLeJGU1iynvl1+anXWWGZjtuafZO+/kdJq/tvmTpKxmdcsLzLQcPmML3UYyh7S2EEmdgRaktZ041+i98gr86EehDeSPfwyLUu26a9ypnNtMoQuSZ4AeklJbBvsAq4AZBc7iXHFatw4GD4YDDghdfKdPhz//GbbeOu5kzmVU6Mb2EcBvgfGSrgd2AgYDN1tKl2BJ84AZZtY3Zd/hhCuXPaPtXtFdr5vZwsLEdy7P5s2Dk08OVx+nnAJ33AFt2sSdyrlqFbQgMbMySQcDdwITCD24biEUJum50qdNuRvokrL9WPTzDGB0fWd1rqDMQhXWRReF0emlpdCnT9ypnMtJwaeRN7PZQPcsx3TNZZ9zDcInn8DZZ8NTT8HBB8Po0bDDDnGnci5nPvuvc3GaOBF23z2MDbn5Znj+eS9EXOJ4QeJcHCoq4Lzz4IgjoEMHmDkTLr44zJnlXML4u9a5Qps1K0xxMnw4/O538Npr4arEuYTygsS5Qlm/PkyyuO++UF4OkyfDTTdB06ZxJ3OuTnzNducKYf780J33pZegd28YMQLa+vRyrmHwKxLn8skMHnggLDz19tvw4IOha68XIq4B8YLEuXxZsSJcfZx+epjq5K23wmDDaiZbdC6JvCBxLh8mTYI99ghjQ66/HqZODSsWOtcAeUHiXH1atSqMTj/00DC1yauvwqWXQpP0iRqcazi8sd25+vLvf4elbd95By64IFyJNGsWdyrn8s6vSJyrqw0b4IYb4Mc/Du0izz4Lt9/uhYhrNPyKxLm6WLQITjstTPXesyfccw+0bx93KucKquBXJJJ2lTRFUoWkpZKGSMpagSypjaRRksokfS5prKR2hcjsXEYPPxwa1GfOhL/8BR5/3AsR1ygV9IpEUltgMjAbOArYGbiJUKBdkeX0R4DvAWcBG4DrgSeBn+Urr3MZffYZ/OY3oSDZf/8wNmSnneJO5VxsCn1F0h9oBvQ0s0lmNgK4CvidpNZVnSRpP6AHcJqZjTOzJ4CTgQMkHZKXpGPHQteuHNi9O3TtGraLWZLyJikrbJq3Y0fYeWd47DG4+mqYMcMLEdfoFbogORx4LnU1RKCUULgcmOW8j83sH5U7zOw1YH50X/0aOxb69YOFC5EZLFwYtov1Ay9JeZOUFTbPu2wZlJXBlVfCFVfAlt7M6Fyh/xfsAkxN3WFmiyRVRPdNqOa8ORn2vxvdV78GDgzTfKeqqAgjlK+9tt7/XJ39979hne9UxZo3SVkhc97K1Qz/9Kd4MjlXZApdkLQlLK+briy6rzbnZaxXkNQP6AfQsWNHpk+fnnPIAxctItMkFrZuHZ9sv33Oj1Mo28+enZi8ScoK1eRdtIgZNXhPFVp5eXmN3vNxS1LeJGWFAuU1s4LdgLXAhRn2LwGGVnPeJOCJDPvHAi9l+7slJSVWI126mIXvnZveunSp2eMUSpLyJimrWfLyRqZNmxZ3hBpJUt4kZTWrW15gpuXw2V7oNpIyYNsM+9uQ+Yoj23nbZjmvdoYOhebNN93XvHnYX4ySlDdJWSF5eZ2LQaELkjmktWlI6gy0IHMbSJXnRapqO6mbk06Ce++FLl0wKUy2d++9YX8xSlLeJGWF5OV1LgaFLkieAXpIapWyrw+wCpiR5bxvSDqgcoekvQntI8/kIygnnQQLFjBj6lRYsKD4PziSlDdJWSF5eZ0rsEIXJCOA1cB4SYdEDeKDgZstpUuwpHmSRlZum9k/geeAMZJ6Sjqa0D7yoplNLugzcM45t4mCFiRmVgYcDDQhdPW9CrgFGJR26JbRMamOJ1y1/AUYA8wCjslnXuecc9kVfDSVmc0Gumc5pmuGfZ8BZ0Q355xzRcKnkXfOOVcnXpA455yrE4UxJw2bpE+AhbU8vT2wvB7j5FuS8iYpKyQrb5KyQrLyJikr1C1vFzPLOuVEoyhI6kLSTDPbO+4cuUpS3iRlhWTlTVJWSFbeJGWFwuT1qi3nnHN14gWJc865OvGCJLt74w5QQ0nKm6SskKy8ScoKycqbpKxQgLzeRuKcc65O/IrEOedcnXhB4pxzrk68IHHOOVcnXpA455yrEy9InHPO1UnBZ/919SNaWfKXgIDHzGyFpB2AS4CdgQXAvWb2dnwpQdIfgIlx58iVpGbAlmb2Zcq+7YHzgV2BDcCbwHAz+zyelM4VF+/+G5EkwvomRwDfB7YD1gMfA68Ao83sv/El3EjST4DngZbAOuBToAcwkZD5HeAHwDeAQ8zshZiiImkDYIQlkR8CHjGzeXHlyUbSRGCumV0Ybe9HWIVzA2ENHAElwBqgu5m9E2PWHwHNzOzllH2HAZexsdD7NzA49ZhiEf2f+xWwF+E9MpPwpaOoP5QktSbMXdXdzF6MOw98nak7sDXwdzNbGX0BOo+wkuz7hC+WS/Py94v836wgohd8IuED4mPCKo7fIry5nyH8Q3wPuNrMro4rZyVJkwhXk8cAKwmLgx1N+KDrZWZrJW0DPAk0NbNuMWbdAFwP7A78gpD7DUKh8qiZLYkrWyaSlgN9zeypaPsVwmt8dOVViqQ2wNPAV2bWI8asrwATzGxotH0mcD8wDZhKKPQOBn4GHFv5nGLK+jLhdX032m5L+DJUApRHh7UkfGnrkXpFGAdJv6nm7mbADcBtwFwAMxteiFyZSPoOMAXoHO2aDxwKTAK2Bf5H+PxaBZSY2eJ6D2Fmjf4GPEx4Q+yesu+bwLPAuGj7QMIb/swiyLsCODxluwPh2+ehaccdASyPOesG4CfR722BftGbfl10mx7taxf36xplrAB+nrK9Jv11TXltV8ac9YvUbMA84I4Mx40A/l0s74NoeyThSvqwlH2HAWXALUXwPthAuLrfUMUt9b71MWd9lHDl+R1CTcqD0efZy0Cr6Jj20TH35CODN7YHhwN/tJR6fAuXgP2BoyV1MrMZwLXAhTFlTGXRLXWbtH2ZtmNlZmVmdq+ZHQzsAPyecCk+Algq6e+xBgz+A6RewX1M+M+Zrh2h0InThrTtLsDjGY57nPCNtJj8GhhiZs9W7oh+Hwr0jC3VRk8Dy4C+QBMz26LyRng/CDgo2pe+LHihHQAMNbN5ZvYpcAWhnfRGi67szGw5cCubvrfrjRckgQjfMNKtj+5rE22/Cny3UKGqMQu4RFIrSVsAlwNLgHMlNQGQtCXwG8IHY9Exs4/M7DYz2x/4NjCIcBUYt+uAP0o6M3oNhwI3SPqFpK0lbRO1Q/yZ8E0wTi8AJ6VsvwNkmi78x4T3RzHZltAmkm4WoW0vVmZ2NHAaMAB4XdJPU++OJ1WV2gIfpWxX/lunr8H0PuELXL3zXlvBZOAaSW+Z2fvwdR3u7YR/oMpG9pZAMfTUGUio//yUUD1UQWhoexyYK6mysf2bhOqComZmCwkf4NcVQZbxki4gfHu7BXiP8EWi8puzEb5cPE34kInT5cBL0ZeJOwiN7A9I2o5QZQihjeQi4I+xJNzUsZIqC7oyINOCSe0JVXaxM7PnJe1BeP3+LulZQq/IWNtvMlhGuBqttB64h3A1naoDecruje1A1G32WcLl/0JCvfi3CY3uJ5jZM9FxwwgrhvWJK2ulKPORhC8D48zsQ0nfAC5l4/O438zeiDEmkgYB91meeovki6R2QB/gJ4RvyFsQCu53gb+Z2awY431N0p7A3cA+bCzkSPm9jFCFdFs8CYOo00W60WZ2Ztpx9wC7mtnPCpMsN9H/rWGEard7CIVLNzP7R6zBAElPAp+mv5YZjrsD+L6ZHVLvGbwgCaIqod7AD4GmhIbLh6I6R+eKmqTvEwqT9ELvZTNbG2e2mpB0NvA/M5sad5ZMou7gtxC+rB1hRdCtWlJHoLmZzc9y3O8InS6m1HsGL0gaHklNzCxTm0/RkNSU0CC4AZhXjB92URvJTqSMKTKzRfGmcq74eGN7Gkm7STpW0lmS+ka/7xZ3rnSSekp6UtJESb+K9vWRtABYI2lh9O0uVpJOjsY3VG5vKek6wjfmtwidAT6VVAx1+ABIKpH0NKE++V3gJcL4hvmSlkgaIql5rCEbEEXizpGJpGbp/9aS9ow+F0riylV04uz/XEw34ExCu0KmvuPrCVOOnBF3zihr7yjXi8BThMb2swltOyMJo1kfjnL3iDnrbODclO2borx/An5K6Lo4mDBY6vIieG0PJbSNzST0zBpMGJS6Jsr8e0LvqDeBtkWQ90jCuJy3gUdIGQOTcsw+xD/W4VCiMQ0p+44mDE5dB6yNXvMj4n5No2xtgCeiXOuA+4AmwANpnwsvAe3jzpvjczo2X++D2J9cMdyAC6I3zF2EUcDtozdNk+j3A4A7ow+Y84og7+vAiJTtk6JsN6UdNwqYHHPWCuDAlO1lwIUZjrsEWFgEr+0s4IEq3iMLCFfxTaMPwOExZ/1FyofZnVH29VFhrZTjiqEgWc+mAxKPiT6MX47+7S+Jfl9HhgGgMeS9nTANygXAqdGXh3HAB1GhuD1h/NkS4O648+b4nPJWkHgbCSDpfcIH87Asx10K9DeznQqTrMocXwA9zWxytN2G0DvnEEtppIyqvO4xs9jGZ0j6EDjfzMZF26sJV0nT0477BfC0mTUrfMpNcqwCfm1mk9L2tyXMKLCbmb0r6VTgejPrFEfOKNOLhHnBzkjZdybhQ3ASocfhV5L2ITS6xzZwLuq1ta+ZvRZtvwEsMbNfpR03EWhhZgfGEDM1x3zgWjO7L9r+EaGgPsPMHkg57mzClfS340kKkv6S46FdCIMo6/194G0kwTeA13I47jWKYLAUoWtn6puhcq6iz9KOKycM/IrT04TBk1tH25OBEzIcdwLhW1/clhF67qX7IeF1rxxHtJCNA1Xj8gPgr6k7zOwvhOl89gWmRmNKitEPCN1o091LmMQxbh3YOH4Mojm1CPNWpZpH5vEwhXQa4Spp9yy3LlU9QF35gMTgLeBsSf8ws0z93StnKj07OjZuCwmzuz4HYGbro26J76YdtxObjniNw2WEEdj/kXQ/MAG4XtIP2DhorjvwI8JMsHG7F7haUgtC28MawsjwgcA02zgeZicg7h5cXwEt0nea2axoJPZzhOqiwQXOVZXU6o/P2fgFKNVKiuML7nxCgTwj2v4ZoSpuf0LbZKWfEv/7YC7wmpmdWt1BknoR2tHqnRckwe8JAxJnSxpPmPL8M8Ibf1tgF0Kd7g4Ux0jx8aRNdWBmr2Y47kQ2fdMXnJl9Kmlfwgfx7wjf9AD2i25rCNUwPzOz1+NJuZGZDY2qYf5ImLYFwvvgYcIgtEprCXOvxektQj390+l3mNn7UWEyERhd4FxVeU7Suuj3NsCebPwyUWkX4MNChqrCCOA2SbsTCr3ehC9FV0pqSZgAcS/gYiDuGcFfIRRw2aQOWK1X3kYSkbQzYVT4YWycjrnSB4SeOzeYWfqlbdGStCPwmZkVxZQTAJK6sumguf9ZcY4h2YowzqUp8H4xvYaVJJ1DmCblR1bFwNnoyuoJQvtZbN/0oxkO0s01s4fSjpse7S+Gruu/JVS5bkWYJWKEpBMIbVCVk3beC/whzvdw1A35p2Z2e5bj2hPa+GZUd1ytMnhBsrmo33hl28JnZhb3LK/OuSIRVXO3N7NP4s5SLLwgaWCiy+43gJOKoapICVy6VglZxti5YuEFSYroA6QD8J6ZbdYQGF0a/tLMxhQ83KY5flnN3S0IDWp/JJpC3swmFiJXJkrQ0rWQrGWMcxXNw3WcmQ2JOUesy8HWVXQlkro08CzC84j9Q1RhVuVjCf+fRpvZHEk/BK5i45efuyxl/Zd6FfcgmWK4AdsAjxE+KNYTGlJHAm3Sjot9YFeUI0mrty0HjkrZfoXQG6pVyr42hN4xzxXBazuJsFTttoS68TuBxYQZBLZKeb88Q+jFFfv7N4fnlLeBaDXI8B1Cb8PK9+X/CB9w7xMK69cJ08d/DOxQBK/Zy4SZciu320YZN0Q5v2DjgMpWceWMsvUgfBH7KHpdvyAsYFVGGKx6V/T/bj1hyej6zxD3P1gx3IArCb20ziYsDHRh9IaeC/xfynHFUpDMIvRsOYPQNzz1tkf0Bu9duS/mrIlZujbKkaRljHfM8dY/7vctRbAcbA3zJmZp4KiweIywkiOEDhhlwMi04x4EXslLhrj/wYrhRujue37avm8A/wA+AfaL9hVLQSLCOufLCNM2fDvlvjbRf4LN5lyKKetrwKCU7Q+A4zMcdyrwSRHkXZ72YbF99Hr+Iu24XxZBQVJ59ZntVgxXpkuB3inbXaJcPdOOOwP4bxG8D9ILkk+AizIcF/vUPoTuyYekbLeN8ndPO+5QQuehes/g40iCzqQNNDSzjyQdTCjFJ0s6ieLo346Fd8W9kh4FrgHeknRn9HuxuQ4YK+kDYAwbl65dQajOEuEyvBiWroWNyxi/RBgcl7qM8VQLgz+LZRnjL4GpwP1ZjjuA0LU9TrEvB1tHxbw08Co2HZha+Xv6dEPNCYNY650XJMFS4P8IVyBfs9A3/HhJtxIuHWNtZE9nZp8B50u6l9C3fS5wPUW0prQla+laSNYyxq8R2vH+Xt1B0dovcYt9OdhaSMrSwC8RBkrOjbLcSJh1+w/RbB1fRvPxXUoo+Oqd99ri60nPdjKzg6o55jLCt2mzGCe/q46k4wnLge5AmJwt9mVAKykhS9dCopYx/hPQz8zSB9CmH/dz4Coz61aYZBkzxL4cbE0oQUsDS/oOYQ67yvfBAsJV/uOEmQIWAl0JX4y6mdmb9Z7BC5Kvu871Aa4zsxXVHHcioa78jKqOiVtU7dICKLciXyXRNR4qguVg80FFsjRwNH7sp4SehlPMbFU0sPosNn75ecjMFufl73tB4pxzri6KYZZNlyeS7pM0Mu4cuUhSVkheXufyyRvba0DSfcAWZtY37iw56kZyviwkKSskKK+kyYTah4PjzpJNkrJCsvLmM6sXJDWTmA8PADP7TtwZcpWkrJC4vCI579skZYVk5c1bVm8jacCibp8dzCzuhXeySlJWSF5e5/IpKSVpUZDUNFrjIymOIKz0lgRJygoJyitpq6S8b5OUFZKVN59ZvSCpmcR8eLjGQdJ5kv4n6UtJr0o6JcNhe1EE79skZYVk5Y07q7eRJJCkXPusZxqJW1BJygrJyhsNQL2DsAzwvwjjCEZLOgo4xcxWxZkvVZKyQrLyFkNWbyOhxh8eu8Y9sl1h3ev3CNMgVOdbwD5x5k1SVkhWXkkzgalmdmnKvoOBsYTRzUdYWJRrH+Blz5q7JOUthqxekJCsDw8ASW8SFt/qk+W4XsAjMb/JE5M1ypGYvJK+BH5lZtPT9nclrJfSBDicMB9U3B92ickKycpbDFm9jST4D/AfMzuuuhtwc9xBI68C++ZwXOWEiHFKUlZIVt7PCR8OmzCzBcD+hCnxXwZ+XNhYGSUpKyQrb+xZ/YqErydeO8zMumQ57ljCGt6xFsCSdgZ2M7OnsxzXjNBFNX2q7oJJUtYoR2LySnoK+NLMTq7i/maEifsOJ+bJRpOUNcqTmLzFkNULEpL14eFcJUnHARcDR5rZp1Uc0wS4mzDZ6LcLmS8tR2KyRlkSk7cYsnpB4pxzrk68jcQ551ydeEHinHOuTrwgcY2KpNMlzYpGAJdJ+pekvPTGk/RdSYMlbZvDsYMlWcptqaRxUftdtnNPj85pWT/JnasZL0hco6GwXPL9wHNAT+BU4Cng13n6k98FBgFZC5LI58B+0e0SYE9giqQWWc77e3RORS1zOlcnPkWKa0zOB+4xs8tT9k2QdFVcgdKsM7NXot9fkbQIeAH4JfBY+sFRT5wmZvYJ8EnhYjq3Kb8icY3JtsBH6TstpeuipK5RNdGJkh6MqsCWSRqUfp6k7tEEeV9J+ljS8MrqJUkHAROiQ+dHj7mghnlnRT+7Ro85WtJMSUdLegf4CtgnU9WWpGaShklaKGm1pPmS/pyW/yxJ70T3L5R0Kc7Vgl+RuMbkDeCC6Jv+38xsRTXH3gD8DegF/BwYJGm5md0FIGlX4FlgEnAs0Bm4DtgJOCz6W5cANxKq0T4EVtcwb9fo50dp+4YBQ4CPCbO5btKOIkmEKrv9gKsJBdK3gJ+lHDMAuDZ6rOlACXC1pAozu7OGOV1jZ2Z+81ujuAF7AO8TpjfZALxD+EBunXJM1+j+59POvQ9YQlhqGaAUmEuoWqo8pnd07n7R9pHRdtccsg0mTGWxZXT7LjAN+ALoFB0zOnq8PdPOPT3a3zLa7hFt/7qKv9UaKAcGpe0fQii0mmTL6ze/pd68ass1Gmb2FvB9QuP6cMJcWX8CZmbo8fRE2vZ44JvADtH2T4AnzGx9yjHjgHXAAbWM2A5YG93eI1zd9DGzD1OOWWJmb2Z5nO7Ap1b1TA37AS2AxyRtWXkDpgId2fgcncuJV225RsXMVhPaLiYASOpL6MnVF7gt5dBlaadWbncCFkU/P0577PWSVgDb1TLe58AhhKuJj4ClZpY+9cTHm521uXaEqrSqVE7w904V93cGfBoglzMvSFyjZmYjJQ0Ddkm7q0MV2x+m/NzkmKgXVTsg43xHOVhnZjOzHJPLnEYrCAVdVSrzHUnmgum9HP6Gc1/zqi3XaEhKLxyQtD3Qhs0/UI9J265sMF8cbb8KHBMVHqnHbAm8GG2viX42rUPs2pgCbCfpyCru/yewCvimmc3McPuycFFdQ+BXJK4xeTuacvt5QlVVF0LPqgrggbRjd4uWFxhH6LXVF7jQzDZE919DWNb0SUl3E9oVrgeeM7N/RsdUfrM/R1IpUGFmb+fnqW1iEmHQ5UOShhB6kHUCfrWMHXsAAADVSURBVG5m55jZZ5IGA7dJ6gL8g/Cl8rtANzNLL0Sdq5YXJK4xGQIcBdxOaMf4iLDgTx8zm5927KWEqp9xhPEaVwNfd4s1s3ckHU7oQjue0Lvq4ei8ymMWSroE+C1wAeFqpms+nlgqMzNJx0SZLyIsEb0UeCjlmGGSlhKmH/894Tn+F3gk3/lcw+PTyDuXIlqedD5h6dK/xZvGuWTwNhLnnHN14gWJc865OvGqLeecc3XiVyTOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTv4faiZuMWvWF98AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -248,8 +248,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "exact expected value:\t0.1342\n", - "exact delta value: \t0.4446\n" + "exact expected value:\t0.1133\n", + "exact delta value: \t0.4700\n" ] } ], @@ -270,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -283,7 +283,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -293,16 +293,16 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Exact value: \t0.1342\n", + "Exact value: \t0.1133\n", "Estimated value:\t0.1061\n", - "Probability: \t0.6636\n" + "Probability: \t0.9378\n" ] } ], @@ -314,12 +314,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHhRJREFUeJzt3XuwXFWd9vHvw0UItxAEAsMwRPASYaQcjQgOI0Hu4X3lIpoUOlNx0KivijOFDogIAR1K8BXQYiygdMLLqybMAMM7XEIIlxMIFzVIECcJGDQgF1GcAzEGIpDf+8fawZ19+pzefTmrc855PlVd3b322qvXXun076y911pbEYGZmdlw26zXFTAzs7HBAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMRuCpNmS+orXfZJmt7j/VElRLWuQvDdKeniI7ZdK6pe0Vc3PfqOkkHR0K3U2Gy4OOGabjrnAX0rar7pB0ubAScB1EbEue83MusABx2zT8f+AtcCMBtsOBSaSgpLZiOSAY9YmSQdJ+k9JT0v6g6Slkj7cbnkRsQa4EZjeYPMM4FngzuKz95A0R9IvJb0o6VFJ50racoj6blGcYvtkJf2rkn5dSdtL0tXFKby1kuZLelO7x2YGsEWvK2C2KYuI2aXXUyub9wLuAS4DXgL+GpgjaX1EzC326QNULWsIc4EPSXpnRDwAUASRE4DvR8SrRb5dgOeAfwCeByYD5wA7A59u8TA3Imnn4rieBWYVx3YmsFDSW3xKz9rlgGPWpoiYt+G1JAF3AX8OfJz2T33NJwWQGcADRdpRwE7lMiNiKbC09Pn3AC8Cl0n6XES80ubnA5wGbAUcFhHPF+XfC6wCZgKXd1C2jWE+pWbWJkkTJH1L0uPAy8VjFvDmdssseg//QerlqEieDjwO3F/67M0knSZpuaQXi8/+P8A4UtDrxOHAAmBNcRpuC+AF4CfAlA7LtjHMAcesfVeSgsHXgSOBdwH/CmzdYblzgb8ADpK0NXAcMDc2Xtr9NOAC4N+B9wMHAKcW2zr9/J2BD/OnILrh8V5gzw7LtjHMp9TM2lAEgmOBz0TEZaX0bvwRdwfp+skMYHdgewaeovsgMC8izi599v5Nyn0VeAV4XSV9p8r7/wYeBM5vUMbqJp9hNigHHLP2bAVsDrx2AV3S9qTeRkc3mYqIVyX9Oymo7AEsj4ifVrKNK392YcgRchERkp4C3lqq8+bA+ypZbyf1qh72AAHrJgccszZExAuSfgycLWk1sB44g3StY4cufMRc4DOk0WlnN9i+EPiUpCXAL4C/AybVKPc/gFmSHiJdF/o4sE0lz/8GTgbukHQp8DSwG3AI0BcR/9by0ZjhgGPWiZOBK4CrgN8Bl5J+vD/ThbLvI40KmwTMa7D9HOD1pNNeAVwD/CNwfZNyzyZdozkf+CPwLWAZ8LENGSLiN5IOBP4ZuATYEXgGuBsYdOkds2aU+xbTkt4IfAE4EPhL4O4G8xsa7Tee9OU/njTY4Ubg1Ij4XSXfccBXgTeR/vI7NyKu7uYxmJlZ63oxSm0/YBrwaPGo62pgKukvsZmkEUEb/TUn6WDgWtJs7GOAm4C5ko7stNJmZtaZXvRwNouI9cXra4Cdm/VwJB0E3AscEhF3FWkHAD8EjoiI24q0BcCWEfG+0r43AztExMHDcTxmZlZP9h7OhmDTomOAZzcEm6KcHwG/LLZRLNl+KFC9oDmPNJ9hfHs1NjOzbhgpEz8nAysapC8vtgHsA2zZIN9y0nG2PfvbzMw6N1JGqU0grS9V1Q/sXcpDg3z9le0bkTSLtBwJ48aNe+eee3Y2kXr9+vVsttlIieO95baqz21Vn9uqvm601aOPPvpcROxSJ+9ICTjQeDKdGqRX32uQ9JQYcQVpaCtTpkyJJUuWdFJH+vr6mDp1akdljBVuq/rcVvW5rerrRlsVawnWMlL+DOgnzQWo2pE/9Wj6S2nVPNC4h2RmZpmMlICzgj9dqykrX9t5jLTAYDXfZNIs8FaGYJuZWZeNlIAzH9itmGcDgKQppOs38+G1Zd3vJK0/VTYduC8iXshUVzMzayD7NRxJ25AmfkJamHAHSScV72+OiLWSVgKLIuIUgIi4r5hjc5Wkz5N6LBcAizfMwSl8BeiTdAlpUui04nH0sB+YmZkNqReDBnYl3cOjbMP7N5DWj9qCtBJv2QzgYtL9Rl5b2qacISIWF8Hrq8CnSPN0To6IW7tYfzMza0P2gBMRq/jTyLHB8kxqkPY88NHiMdS+19N8AUMzM8tspFzDMTOzEc4Bx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyyyB5wJO0r6XZJayU9Lek8SZs32We2pBjk8cVSvisHyTN5+I/MzMyGskXOD5M0AbgNWAYcB+wDfIMU+M4aYtfvALdU0o4HTgfmV9JXAB+tpK1qr8ZmZtYtWQMO8ElgHHBiRKwGFkraAZgt6cIibYCIeBJ4spwm6cvAiohYWsn+h4i4fxjqbmZmHch9Su0YYEElsMwjBaFD6hYiaSfgCGBud6tnZmbDJXfAmUw65fWaiHgCWFtsq+skYEtSsKraV9JqSeskLZZUO5CZmdnwyX1KbQLwfIP0/mJbXTOAn0TEo5X0B4Efkq4R7QKcRjptd3BE/KhRQZJmAbMAJk6cSF9fXwvVGGjNmjUdlzFWuK3qc1vV57aqL3db5Q44ANEgTYOkD8wo7U46/Xb6gIIjvlnJexMp+JxJGmQwsDIRVwBXAEyZMiWmTp1apxqD6uvro9Myxgq3VX1uq/rcVvXlbqvcp9T6gR0bpI+ncc+nkQ+RAtTVzTJGxIvAzcA76lbQzMyGR+6As4LKtRpJewLbUrm2M4QZwOKI+FULn1ur92RmZsMnd8CZDxwlaftS2nTgRWBRs50lTQIOpOboNEnjSCPjHmi1omZm1l25A85lwDrgOkmHFxfsZwMXlYdKS1op6bsN9p8BvAJcU90gabykuyV9QtJhkqYDdwJ7AOcPw7GYmVkLsg4aiIh+SYcBlwI3kK7bXEwKOtV6NVruZgZwe0T8tsG2dcBvSSsW7Aq8BNwHHBIRS7pyAGZm1rbso9QiYhnwviZ5Jg2S/vYh9nkJOLGjypmZ2bDxatFmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWRUsBR1Kj5WbMzMyaarWH85SkCyW9dVhqY2Zmo1ara6ldDvwtcJqkJcB3gXnllZ7NNmWTzrhpQNqqrx3bg5qYjT0t9XAi4pyI2Bs4AngEuAh4RtL3JR0+HBU0M7PRoa1BAxFxR0T8HbAb8FngLcACSaskzZb0Z92spJmZjXydjlKbAryXdNvofuBu4GPASkkf6bBsMzMbRVoOOJL2knSOpMeA24Hdgb8H/iwi/hbYi3St5+tdramZmY1oLQ0akHQHqUfzJHAlMCciHi/niYhXJf0A+Fy3KmlmZiNfq6PUngOmAQsjIobItxR4Q9u1MjOzUafVU2qXAvc2CjaStpP0XoCIeLna8zEzs7Gt1YBzJ7DvINveUmw3MzMboNWAoyG2bQes7aAuZmY2ijW9hlOcJptaSvqYpKMr2bYGjgUe7l7VzMxsNKkzaODdpMmdAAF8EHilkuePwArgC92rmpmZjSZNA05EfJ1iTo2kXwInRMTS4a6YmZmNLi0Ni44ID3U2M7O21LmGMw1YHBGri9dDioibu1IzMzMbVer0cG4EDgR+VLwOBh+tFoBv0mZmZgPUCThvAJ4pvTYzM2tZnUEDjzd6bWZm1oo613C2aaXAiPDkTzMzG6DOKbU1pGszdfkajpmZDVAn4Pw9rQUcMzOzAepcw7kyQz3MzGyU6/QW02ZmZrXUGTTwI2BmRCyT9GOanF6LiAO6VTkzMxs96lzD+S/gxdJrX88xM7OW1bmG89HS65nDWhszMxu12r6Go2QXSUPdlM3MzAxoI+BImibpXuAl4NfAS5LulXRs12tnZmajRksBR9IngBtIk0E/R7oZ2+eK9/9ZbDczMxugpfvhAGcCV0TEpyrpl0m6DPgScHlXamZmZqNKq6fUXg9cN8i2a4GdmhUgaV9Jt0taK+lpSedJGnI5HEmTJEWDx7wGeY+T9LCklyQtkzS91pGZmdmwarWHcydwCLCwwbZDgLuG2lnSBOA2YBlwHLAP8A1S4Durxud/Hrin9P65SvkHkwLft4FTgWnAXEn9EXFrjfLNzGyY1Jn4uW/p7beA70h6PXA98BtgV+AE4BjgY02K+yQwDjgxIlYDCyXtAMyWdGGRNpRHIuL+IbZ/GbgrIk4t3t8paT/gbMABx8ysh+r0cH7GxpM9BXyieFTv/nkLQ68WfQywoBJY5gEXkHpIN9SoT0OStgIOJfVsyuYBcySNj4gX2i3fzMw6UyfgHNrFz5sM3FFOiIgnJK0ttjULOHMk7UTqWc0FvhQRG1ZB2AfYElhR2Wc56ZTdm4Efd1Z9MzNrV52VBhZ18fMmAM83SO8vtg1mHfAvpNNiq4GpwOmkIHNcqWwalN9f2b4RSbOAWQATJ06kr69vqPo3tWbNmo7LGCt60Vanve2VAWkj4d/L36v63Fb15W6rVgcNvEbSZsDW1fQad/xstBabBknfUOYzwGdKSX2SngW+LentEbF0iPI1SPqGsq8ArgCYMmVKTJ06dejaN9HX10enZYwVvWirmWfcNCBt1Yfz1qEd/l7V57aqL3dbtTrxU5JOl7QSeBn4fYPHUPqBHRukj6dxz2co1xTP7yiVTYPyN7xvtXwzM+uiVufhnAqcAXyX1HP4Z+A84FFgFcWpqSGsIF2reY2kPYFtGXjtpZmoPD9GCoKTK/kmA+uLOpqZWY+0GnA+DpwDXFi8vz4izgX2IwWMNzXZfz5wlKTtS2nTSbc/aPVa0UnF8wMAEbGONE/og5V804H7PELNzKy3Wr2G8wZgaUS8KullitNVEbFe0reB75B6QIO5jNRLuk7SBcDewGzgovJQ6eKU3aKIOKV4PxvYnjTpczXwXuALwHUR8dNS+V8hXd+5hDRPaFrxOLrF4zQzsy5rtYfzO2C74vUTwF+Vtk0gTeocVET0A4eR5urcAJwLXEzqNZVtwcbzeVaQ5unMAW4GTga+XjyXy19M6vkcDiwA3g+c7FUGzMx6r9Uezj3Au0g/+j8grRCwE/BH4NPA7c0KiIhlwPua5JlUeT+PNIGzqYi4ntS7MTOzTUirAWc2sEfx+nzSKbWZpJ7NQuCz3aqYmZmNLi0FnIh4BHikeL2OdC+czw1DvczMbJTpZOLnnwO7A09HxFPdq5KZmY1G7dxi+lOSfgU8DvwQeELSk5L+V9drZ2Zmo0arKw2cDVxKmk9zLDCleJ4PfKvYbmZmNkCrp9Q+DZwfEV+upN9SrG32adLKA2ZmZhtp9ZTaOAa/q+ciGizmaWZmBq0HnOuBEwfZ9gHgxs6qY2Zmo1WdW0xPK72dD1woaRIDbzG9H/BP3a+imZmNBnWu4dzIwFtJ7wEc1SDv90h34jQzM9tInYDzhmGvhZmZjXp1bjH9eI6KmJnZ6NbySgOStiANEDgY2An4b+Bu0q0CBt4w3szMjBYDjqRdgVuB/Ul3+HwWOIg0/+YhSUdGxG+7XUkzMxv5Wh0WfRHweuDdEbF3RBwUEXsD7y7SL+p2Bc3MbHRoNeBMA06PiB+XE4v3XyQtc2NmZjZAqwFnK+D3g2z7PfC6zqpjZmajVasB537gdEnblhOL96cX283MzAZodZTaacCdwK8k3UoaNLAraRKogKldrZ2ZmY0aLfVwImIp8CbgCmAX4AhSwLkMeFNEPNT1GpqZ2ahQu4cjaUvgAOCXEXHG8FXJzMxGo1Z6OK8CdwBvHaa6mJnZKFY74ETEeuDnwMThq46ZmY1WrY5S+xJwtqS3DUdlzMxs9Gp1lNpZpBUFlkp6ijRKLcoZIuKALtXNzMxGkVYDzs+Kh5mZWUtqBRxJ40jL2vwM+DVwW0Q8O5wVMzOz0aXOLab3Bm4DJpWSV0v6UETcOlwVMzOz0aXOoIELgfXA3wDbAPsBDwKXD2O9zMxslKkTcA4CzoqIeyLipYhYDnwC+AtJuw9v9czMbLSoE3B2B35RSXuMtHbabl2vkZmZjUp15+FE8yxmZmaDqzsseoGkVxqk315Nj4hdO6+WmZmNNnUCzrnDXgszMxv1mgaciHDAMTOzjrW6lpqZmVlbHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLIvsAUfSvpJul7RW0tOSzpO0eZN93iVpjqSVxX6PSDpH0taVfLMlRYPH0cN7VGZm1kyrN2DriKQJpFsdLAOOA/YBvkEKfGcNsev0Iu8FwM+B/YGvFM8fqOR9AagGmOWd1t3MzDqTNeAAnwTGASdGxGpgoaQdgNmSLizSGrkgIn5bet8n6SXgckl7RcTjpW2vRMT9w1N9MzNrV+5TascACyqBZR4pCB0y2E6VYLPBg8Wz124zMxsBcgecycCKckJEPAGsLba14j2kG8M9UknfUdJzkl6W9KCkE9uurZmZdY0i8t15QNLLwBci4pJK+pPAVRFxZs1ydgN+CtwcETNL6R8h9XiWAtuRbhQ3DfhARFw3SFmzgFkAEydOfOe8efNaPayNrFmzhu22266jMsaKXrTVw0+9MCDtbXuMz1qHdvh7VZ/bqr5utNWhhx76QERMqZO3FwHn8xHxzUr6U8CVEfGlGmW8jjTw4M+Bd0ZE/xB5BdwLjIuItzcre8qUKbFkyZJm2YbU19fH1KlTOypjrOhFW00646YBaau+dmzWOrTD36v63Fb1daOtJNUOOLlPqfUDOzZIHw8832znIoBcBewHTBsq2ABEiqbXAfs3G3ptZmbDK/cotRVUrtVI2hPYlsq1nUFcTBpOfURE1Mm/ge9YambWY7l7OPOBoyRtX0qbDrwILBpqR0lfBD4LfCQiFtf5sKJHdALwUES82l6VzcysG3L3cC4DTgWuk3QBsDcwG7ioPFRa0kpgUUScUrw/GTgfuBJ4StKBpTIf2zBsWtIi4FpSb2lb4OPAgcDxw3tYZmbWTNaAExH9kg4DLgVuIF23uZgUdKr1Kl9zObJ4nlk8yj5KCkQAK4F/AHYnDZn+CXBsRMzvRv3NzKx9uXs4RMQy4H1N8kyqvJ/JwEDTaL9TOqiamZkNI68WbWZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkW2YdFm41EI3XRT7NNiXs4ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWxRa8rYNaOSWfcNCBt1deO7UFNzKwu93DMzCwLBxwzM8vCp9TMhplP/5kl7uGYmVkW2QOOpH0l3S5praSnJZ0nafMa+42XNEdSv6QXJH1f0usb5DtO0sOSXpK0TNL04TkSMzNrRdaAI2kCcBsQwHHAecBpwLk1dr8amAp8DJgJvAu4vlL+wcC1wJ3AMcBNwFxJR3blAMzMrG25r+F8EhgHnBgRq4GFknYAZku6sEgbQNJBwFHAIRFxV5H2FPBDSYdHxG1F1i8Dd0XEqcX7OyXtB5wN3Dp8h2Wd8DWOwW1om9Pe9gozz7jJ7WIjWu6AcwywoBJY5gEXAIcANwyx37Mbgg1ARPxI0i+LbbdJ2go4FDi1su88YI6k8RHxQpeOwwbh4LFp8L+DbYpyB5zJwB3lhIh4QtLaYttgAWcysKJB+vJiG8A+wJYN8i0nnTp8M/Dj9qqdR7MfiTo/ItU8g/3I1M3Xal4b+dr99243yLWznwPqyKSIyPdh0svAFyLikkr6k8BVEXHmIPstBP4QEcdX0r8H7B0R75H018Bi4K8iYmkpzxuBnwNHRcSA02qSZgGzirdvAR5p+wCTnYHnOixjrHBb1ee2qs9tVV832mqviNilTsZezMNpFOE0SHo7+1Xfa4j9iYgrgCuafHZtkpZExJRulTeaua3qc1vV57aqL3db5R4W3Q/s2CB9PPB8G/vtWNqvv5RWzUOT8s3MbJjlDjgr+NM1FwAk7QlsS+NrNIPuVyhf23kMeLlBvsnAeuDRNuprZmZdkjvgzAeOkrR9KW068CKwqMl+uxXzbACQNAXYu9hGRKwjzb/5YGXf6cB9GUeode303BjgtqrPbVWf26q+rG2Ve9DABGAZ8DPSUOi9gYuASyLirFK+lcCiiDillHYLaaTZ50k9lguA30TE35TyHAz0AZeSJoVOK/If3WjAgJmZ5ZO1hxMR/cBhwOakIdDnAhcD51SyblHkKZtB6gX9K3AV8ABwQqX8xcBJwOHAAuD9wMkONmZmvZe1h2NmZmOXV4tuwAuM1tdOW0l6V9FOK4v9HpF0jqStK/lmS4oGj6OH96iGR5ttNWmQNpjXIO9Y/14N9n0JSV8s5btykDyNBiZt8iS9UdLlkh6S9Kqkvpr7Zf+98v1wKkoLjC4jLTC6D/ANUnA+a4hdIS0w+hbSAqMbrjNdD1SvM10LfJu0DM800gKj/SPt1F8HbTW9yHsBaVLu/sBXiucPVPK+AFQDzPJO655bh98rSNci7ym932iynr9XAHwHuKWSdjxwOsXgopIVwEcraavaq3HP7Uf6974feF0L++X/vYoIP0oP4IukOT07lNL+CVhbTmuw30GkyaXvLaUdUKQdXkpbANxR2fdmYHGvjz1jW+3SIG1W0VZ7ldJmA8/1+jh73FaTinb5H03KH/Pfq0HKuglYXkm7EljS6+PsYnttVnp9DdBXY5+e/F75lNpAgy0wOo60wOhQ+w1YYBTYsMAopQVG/62y7zzgIEnjO69+Vm21VUT8tkHyg8Xzrt2r3ial3e9VU/5eNSZpJ+AIYG53q7dpiYj1bezWk98rB5yBBiwUGhFPkP66Guocb7cWGB1J2m2rRt5D6tZX17LbUdJzkl6W9KCkE9uubW912lZzivPzz0i6SNK40jZ/rxo7idQuA653AftKWi1pnaTFkjoK+iNQT36vHHAGmkDjZXD6i22d7LfhuZqvv7J9pGi3rTYiaTfgS8D/rfxVu5J0KuVDpGs7TwPXjtCg025brQP+BTiFNKXgcuBTbPwj6u9VYzOAn0REdZWRB0k3fvyfwIdJUzAWSjqgjbqOVD35vfKggcY2qQVGN3HttlXKKL2O1GVfA/zjRgVHfK+S9wbgXtIN9a5rp7I91nJbRcQzwGdKSX2SngW+LentUVoZvUE5Y/l7tTvp9NvpAwqO+GYl702kAQpnkgYZjBXZf6/cwxnIC4zW125bASBJpEm8+wHTIk0MHlSkK5bXAfvXGaa+iemorSquKZ7fUSqbBuWPye9V4UOkH8arm2WMiBdJF8Lf0SzvKNKT3ysHnIG8wGh97bbVBheThr0eFxF18m8wEv9i77StyqLy7O/VQDNII6l+1cLnjsTvVbt68nvlgDPQWFhgtFvabSuKiXifBT4SaUmipooe0QnAQxHxantV7pm226qBk4rnB8DfqypJk4ADqTk6rRiAcQxFe44Rvfm96vUY8k3tQboQ9gywkLQm2yzS9YWvVvKtBL5bSbsF+AVwIulc8CPA3ZU8BwOvAJcAU4ELSX8tHNnrY8/VVsDJpL8m55B+GMqPXUr5FpEmmx1JCjQ3F231/l4fe8a2mk2a9Hhisd95pB/ea/29Gvh/sEg/g/SXeaP5XuOBu4FPkAZhTCdNmFwHTOn1sbfZXtuQ/gg5CbgP+K/S+20Ga6te/F71vLE2xQewL3BH8R/7GdIs+M0reVYBV1bSdix+RJ8HVgM/AHZuUP7xpBWz15G6rzN6fcw524o08S4Gecws5ftu8R/iReAPxQ/FMb0+5sxtNQNYQlpx4Y/FD8d5wFb+Xg38P1ikLwVuGaTcrUnXAX9VtNMLxQ/vgb0+5g7aatIQ/58mDdZWvfi98uKdZmaWha/hmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZln8f71kyEGzD+XrAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHe9JREFUeJzt3Xm0XGWd7vHvwyCEKcyBRpoIDhFalleOCH1pSWQO98ogmiz09oqNRr0qdC+0QUQIaLMMtoAu2gUsbbjc1oRuoLkNIYQwnDCrQYLYScCgARlEsQ+JMRCB/O4f7w5W9qlzatdw3sqp83zWqlVV7373W+9+U6nf2fsdtiICMzOzkbZZtytgZmZjgwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGM2DEmzJPUXr/slzWpy/8mSolzWEHlvkfTYMNsvlzQgaauKn/1WSSHp2GbqbDZSHHDMNh1zgL+QdEB5g6TNgVOAGyNiXfaamXWAA47ZpuP/AWuB6XW2TQEmkIKS2ajkgGPWIkmHSvoPSc9J+oOkJZI+2mp5EbEGuAWYVmfzdOAF4O7is/eSdLWkX0p6WdITki6QtOUw9d2iuMT26VL61yT9upS2j6Trikt4ayXNl/S2Vo/NDGCLblfAbFMWEbNqXk8ubd4HuB+4AngF+O/A1ZLWR8ScYp9+QOWyhjEH+IikgyLiYYAiiJwEfD8iXi/y7Qa8CPwt8BIwCTgf2BX4bJOHuRFJuxbH9QIwszi2c4CFkt7hS3rWKgccsxZFxNwNryUJuAd4M/BJWr/0NZ8UQKYDDxdpxwA715YZEUuAJTWffz/wMnCFpDMi4rUWPx/gTGAr4IiIeKko/wFgJTADuLKNsm0M8yU1sxZJ2knStyU9BbxaPGYCb2+1zOLs4d9JZzkqkqcBTwEP1Xz2ZpLOlLRM0svFZ/8fYBwp6LXjSGABsKa4DLcFsAr4CdDXZtk2hjngmLXuGlIw+AZwNPBe4J+Brdssdw7w58ChkrYGTgDmxMZLu58JzAb+DfggcDBwerGt3c/fFfgofwqiGx7vB/Zus2wbw3xJzawFRSA4HvhcRFxRk96JP+LuIvWfTAf2BLZn8CW6DwNzI+K8ms8+sEG5rwOvAW8qpe9cev9fwCPARXXKWN3gM8yG5IBj1pqtgM2BNzrQJW1POtto6yZTEfG6pH8jBZW9gGUR8dNStnG1n10YdoRcRISkZ4F31tR5c+ADpax3ks6qHvMAAeskBxyzFkTEKkk/Bs6TtBpYD5xN6uvYoQMfMQf4HGl02nl1ti8EPiNpMfAL4K+BiRXK/XdgpqRHSf1CnwS2KeX5R+BU4C5JlwPPAXsAhwP9EfGvTR+NGQ44Zu04FbgKuBb4HXA56cf7cx0o+0HSqLCJwNw6288HdiFd9grgeuDvgJsalHseqY/mIuCPwLeBpcAnNmSIiN9IOgT4B+AyYEfgeeBeYMild8waUe5bTEt6K/BF4BDgL4B768xvqLffeNKX/0TSYIdbgNMj4nelfCcAXwPeRvrL74KIuK6Tx2BmZs3rxii1A4CpwBPFo6rrgMmkv8RmkEYEbfTXnKTDgBtIs7GPA+YBcyQd3W6lzcysPd04w9ksItYXr68Hdm10hiPpUOAB4PCIuKdIOxj4IXBURNxRpC0AtoyID9TseyuwQ0QcNhLHY2Zm1WQ/w9kQbJp0HPDChmBTlPMj4JfFNool26cA5Q7NuaT5DONbq7GZmXXCaJn4OQlYXid9WbENYD9gyzr5lpGOs+XZ32Zm1r7RMkptJ9L6UmUDwL41eaiTb6C0fSOSZpKWI2HcuHEH7b13exOp169fz2abjZY43l1uq+rcVtW5rarrRFs98cQTL0bEblXyjpaAA/Un06lOevm9hkhPiRFXkYa20tfXF4sXL26njvT39zN58uS2yhgr3FbVua2qc1tV14m2KtYSrGS0/BkwQJoLULYjfzqjGahJK+eB+mdIZmaWyWgJOMv5U19Nrdq+nSdJCwyW800izQJvZgi2mZl12GgJOPOBPYp5NgBI6iP138yHN5Z1v5u0/lStacCDEbEqU13NzKyO7H04krYhTfyEtDDhDpJOKd7fGhFrJa0AFkXEaQAR8WAxx+ZaSV8gnbHMBu7bMAen8FWgX9JlpEmhU4vHsSN+YGZmNqxuDBrYnXQPj1ob3r+FtH7UFqSVeGtNBy4l3W/kjaVtajNExH1F8Poa8BnSPJ1TI+L2DtbfzMxakD3gRMRK/jRybKg8E+ukvQR8vHgMt+9NNF7A0MzMMhstfThmZjbKOeCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRajafFOs7ZNPHveoLSVXz++CzUxG3t8hmNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZF9oAjaX9Jd0paK+k5SRdK2rzBPrMkxRCPL9Xku2aIPJNG/sjMzGw4W+T8MEk7AXcAS4ETgP2Ab5IC37nD7Ppd4LZS2onAWcD8Uvpy4OOltJWt1djMzDola8ABPg2MA06OiNXAQkk7ALMkXVykDRIRzwDP1KZJ+gqwPCKWlLL/ISIeGoG6m5lZG3JfUjsOWFAKLHNJQejwqoVI2hk4CpjT2eqZmdlIyR1wJpEueb0hIp4G1hbbqjoF2JIUrMr2l7Ra0jpJ90mqHMjMzGzkKCLyfZj0KvDFiLislP4McG1EnFOxnLuA8RFxUCn9DOCPpD6i3YAzgYOAwyLiR0OUNROYCTBhwoSD5s6tF8OqW7NmDdttt11bZYwV3Wirx55dNSjtXXuNz1qHVvh7VZ3bqrpOtNWUKVMejoi+Knlz9+EA1ItwGiJ9cEZpT9Llt7MGFRzxrVLeeaTgcw5pkMHgykRcBVwF0NfXF5MnT65SjSH19/fTbhljRTfaasbZ8walrfxo3jq0wt+r6txW1eVuq9yX1AaAHeukjwdeqljGR0gB6rpGGSPiZeBW4D1VK2hmZiMjd8BZTqmvRtLewLaU+naGMR24LyJ+1cTn5rtuaGZmdeUOOPOBYyRtX5M2DXgZWNRoZ0kTgUOoODpN0jjSyLiHm62omZl1Vu6AcwWwDrhR0pFFh/0s4JLaodKSVkj6Xp39pwOvAdeXN0gaL+leSZ+SdISkacDdwF7ARSNwLGZm1oSsgwYiYkDSEcDlwM2kfptLSUGnXK96y91MB+6MiN/W2bYO+C1pxYLdgVeAB4HDI2JxRw7AzMxaln2UWkQsBT7QIM/EIdLfPcw+rwAnt1U5MzMbMV4t2szMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJoKuBIqrfcjJmZWUPNnuE8K+liSe8ckdqYmVnPajbgXAmcAvxM0g8lzZS0wwjUy8zMekxTAScizo+IfYGjgMeBS4DnJX1f0pEjUUEzM+sNLQ0aiIi7IuKvgT2AzwPvABZIWilplqQ/62Qlzcxs9Gt3lFof8H7SbaMHgHuBTwArJH2szbLNzKyHNB1wJO0j6XxJTwJ3AnsCfwP8WUT8L2AfUl/PNzpaUzMzG9WaugGbpLtIZzTPANcAV0fEU7V5IuJ1ST8AzuhUJc3MbPRr9o6fLwJTgYUREcPkWwK8peVamZlZz2n2ktrlwAP1go2k7SS9HyAiXi2f+ZiZ2djWbMC5G9h/iG3vKLabmZkN0mzA0TDbtgPWtlEXMzPrYQ37cIrLZJNrkj4h6dhStq2B44HHOlc1MzPrJVUGDbyPNLkTIIAPA6+V8vwRWA58sXNVMzOzXtIw4ETENyjm1Ej6JXBSRCwZ6YqZmVlvaWpYdER4qLOZmbWkSh/OVOC+iFhdvB5WRNzakZqZmVlPqXKGcwtwCPCj4nUw9Gi1AHyTNjMzG6RKwHkL8HzNazMzs6ZVGTTwVL3XZmZmzajSh7NNMwVGhCd/mpnZIFUuqa0h9c1U5T4cMzMbpErA+RuaCzhmZmaDVOnDuSZDPczMrMe1e4tpMzOzSqoMGvgRMCMilkr6MQ0ur0XEwZ2qnJmZ9Y4qfTj/Cbxc89r9OWZm1rQqfTgfr3k9Y0RrY2ZmPavlPhwlu0ka7qZsZmZmQAsBR9JUSQ8ArwC/Bl6R9ICk4zteOzMz6xlNBRxJnwJuJk0GPYN0M7Yzivf/UWw3MzMbpKn74QDnAFdFxGdK6VdIugL4MnBlR2pmZmY9pdlLarsANw6x7QZg50YFSNpf0p2S1kp6TtKFkoZdDkfSRElR5zG3Tt4TJD0m6RVJSyVNq3RkZmY2opo9w7kbOBxYWGfb4cA9w+0saSfgDmApcAKwH/BNUuA7t8LnfwG4v+b9i6XyDyMFvu8ApwNTgTmSBiLi9grlm5nZCKky8XP/mrffBr4raRfgJuA3wO7AScBxwCcaFPdpYBxwckSsBhZK2gGYJeniIm04j0fEQ8Ns/wpwT0ScXry/W9IBwHmAA46ZWRdVOcP5GRtP9hTwqeJRvvvnbQy/WvRxwIJSYJkLzCadId1coT51SdoKmEI6s6k1F7ha0viIWNVq+WZm1p4qAWdKBz9vEnBXbUJEPC1pbbGtUcC5WtLOpDOrOcCXI2LDKgj7AVsCy0v7LCNdsns78OP2qm9mZq2qstLAog5+3k7AS3XSB4ptQ1kH/BPpsthqYDJwFinInFBTNnXKHyht34ikmcBMgAkTJtDf3z9c/Rtas2ZN22WMFd1oqzPf9dqgtNHw7+XvVXVuq+pyt1WzgwbeIGkzYOtyeoU7ftZbi01DpG8o83ngczVJ/ZJeAL4j6d0RsWSY8jVE+oayrwKuAujr64vJkycPX/sG+vv7abeMsaIbbTXj7HmD0lZ+NG8dWuHvVXVuq+pyt1WzEz8l6SxJK4BXgd/XeQxnANixTvp46p/5DOf64vk9NWVTp/wN75st38zMOqjZeTinA2cD3yOdOfwDcCHwBLCS4tLUMJaT+mreIGlvYFsG9700EqXnJ0lBcFIp3yRgfVFHMzPrkmYDzieB84GLi/c3RcQFwAGkgPG2BvvPB46RtH1N2jTS7Q+a7Ss6pXh+GCAi1pHmCX24lG8a8KBHqJmZdVezfThvAZZExOuSXqW4XBUR6yV9B/gu6QxoKFeQzpJulDQb2BeYBVxSO1S6uGS3KCJOK97PArYnTfpcDbwf+CJwY0T8tKb8r5L6dy4jzROaWjyObfI4zcysw5o9w/kdsF3x+mngv9Vs24k0qXNIETEAHEGaq3MzcAFwKemsqdYWbDyfZzlpns7VwK3AqcA3iufa8u8jnfkcCSwAPgic6lUGzMy6r9kznPuB95J+9H9AWiFgZ+CPwGeBOxsVEBFLgQ80yDOx9H4uaQJnQxFxE+nsxszMNiHNBpxZwF7F64tIl9RmkM5sFgKf71TFzMystzQVcCLiceDx4vU60r1wzhiBepmZWY9pZ+Lnm4E9geci4tnOVcnMzHpRK7eY/oykXwFPAT8Enpb0jKT/3fHamZlZz2h2pYHzgMtJ82mOB/qK5/nAt4vtZmZmgzR7Se2zwEUR8ZVS+m3F2mafJa08YGZmtpFmL6mNY+i7ei6izmKeZmZm0HzAuQk4eYhtHwJuaa86ZmbWq6rcYnpqzdv5wMWSJjL4FtMHAH/f+SqamVkvqNKHcwuDbyW9F3BMnbz/QroTp5mZ2UaqBJy3jHgtzMys51W5xfRTOSpiZma9remVBiRtQRogcBiwM/BfwL2kWwUMvmG8mZkZTQYcSbsDtwMHku7w+QJwKGn+zaOSjo6I33a6kmZmNvo1Oyz6EmAX4H0RsW9EHBoR+wLvK9Iv6XQFzcysNzQbcKYCZ0XEj2sTi/dfIi1zY2ZmNkizAWcr4PdDbPs98Kb2qmNmZr2q2YDzEHCWpG1rE4v3ZxXbzczMBml2lNqZwN3AryTdTho0sDtpEqiAyR2tnZmZ9YymznAiYgnwNuAqYDfgKFLAuQJ4W0Q82vEamplZT6h8hiNpS+Bg4JcRcfbIVcnMzHpRM2c4rwN3Ae8cobqYmVkPqxxwImI98HNgwshVx8zMelWzo9S+DJwn6V0jURkzM+tdzY5SO5e0osASSc+SRqlFbYaIOLhDdTMzsx7SbMD5WfEwMzNrSqWAI2kcaVmbnwG/Bu6IiBdGsmJmZtZbqtxiel/gDmBiTfJqSR+JiNtHqmJmZtZbqgwauBhYD/wVsA1wAPAIcOUI1svMzHpMlYBzKHBuRNwfEa9ExDLgU8CfS9pzZKtnZma9okrA2RP4RSntSdLaaXt0vEZmZtaTqs7DicZZzMzMhlZ1WPQCSa/VSb+znB4Ru7dfLTMz6zVVAs4FI14LMzPreQ0DTkQ44JiZWduaXUvNzMysJQ44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZF9oAjaX9Jd0paK+k5SRdK2rzBPu+VdLWkFcV+j0s6X9LWpXyzJEWdx7Eje1RmZtZIszdga4uknUi3OlgKnADsB3yTFPjOHWbXaUXe2cDPgQOBrxbPHyrlXQWUA8yydutuZmbtyRpwgE8D44CTI2I1sFDSDsAsSRcXafXMjojf1rzvl/QKcKWkfSLiqZptr0XEQyNTfTMza1XuS2rHAQtKgWUuKQgdPtROpWCzwSPFs9duMzMbBXIHnEnA8tqEiHgaWFtsa8Zfkm4M93gpfUdJL0p6VdIjkk5uubZmZtYxish35wFJrwJfjIjLSunPANdGxDkVy9kD+Clwa0TMqEn/GOmMZwmwHelGcVOBD0XEjUOUNROYCTBhwoSD5s6d2+xhbWTNmjVst912bZUxVnSjrR57dtWgtHftNT5rHVrh71V1bqvqOtFWU6ZMeTgi+qrk7UbA+UJEfKuU/ixwTUR8uUIZbyINPHgzcFBEDAyTV8ADwLiIeHejsvv6+mLx4sWNsg2rv7+fyZMnt1XGWNGNtpp49rxBaSu/fnzWOrTC36vq3FbVdaKtJFUOOLkvqQ0AO9ZJHw+81GjnIoBcCxwATB0u2ABEiqY3Agc2GnptZmYjK/coteWU+mok7Q1sS6lvZwiXkoZTHxURVfJv4DuWmpl1We4znPnAMZK2r0mbBrwMLBpuR0lfAj4PfCwi7qvyYcUZ0UnAoxHxemtVNjOzTsh9hnMFcDpwo6TZwL7ALOCS2qHSklYAiyLitOL9qcBFwDXAs5IOqSnzyQ3DpiUtAm4gnS1tC3wSOAQ4cWQPy8zMGskacCJiQNIRwOXAzaR+m0tJQadcr9o+l6OL5xnFo9bHSYEIYAXwt8CepCHTPwGOj4j5nai/mZm1LvcZDhGxFPhAgzwTS+9nMDjQ1NvvtDaqZmZmI8irRZuZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFlt0uwJmo8HEs+cNSlv59eO7UBOz0Sv7GY6k/SXdKWmtpOckXShp8wr7jZd0taQBSaskfV/SLnXynSDpMUmvSFoqadrIHImZmTUja8CRtBNwBxDACcCFwJnABRV2vw6YDHwCmAG8F7ipVP5hwA3A3cBxwDxgjqSjO3IAZmbWstyX1D4NjANOjojVwEJJOwCzJF1cpA0i6VDgGODwiLinSHsW+KGkIyPijiLrV4B7IuL04v3dkg4AzgNuH7nDstx8icts9Ml9Se04YEEpsMwlBaHDG+z3woZgAxARPwJ+WWxD0lbAFOBfS/vOBQ6VNL796puZWatyn+FMAu6qTYiIpyWtLbbdPMx+y+ukLyu2AewHbFkn3zJSYH078OPWqm1VtXLm0etnK+0c34Z9z3zXa8w4e15PtYuNPbkDzk7AS3XSB4ptrey3b00e6uQbKG3fiKSZwMzi7RpJjw9Tjyp2BV5ss4yeotlDbhqyrYbZp5XP2aT2a2Xf04u2auczxxD/H6yuE221T9WM3RgWHXXSNER6K/uV32uY/YmIq4CrGnx2ZZIWR0Rfp8rrZW6r6txW1bmtqsvdVrn7cAaAHeukj6f+GUyj/Xas2W+gJq2chwblm5nZCMsdcJbzpz4XACTtDWxL/T6aIfcr1PbtPAm8WiffJGA98EQL9TUzsw7JHXDmA8dI2r4mbRrwMrCowX57FPNsAJDUR+q/mQ8QEetI828+XNp3GvBgRKxqv/qVdOzy3BjgtqrObVWd26q6rG2liEZdJx38sDTxcynwM2A2KWBcAlwWEefW5FsBLIqI02rSbiONNPsC6YxlNvCbiPirmjyHAf3A5aRJoVOL/MdGhOfhmJl1UdYznIgYAI4ANicNgb4AuBQ4v5R1iyJPremks6B/Bq4FHgZOKpV/H3AKcCSwAPggcKqDjZlZ92U9wzEzs7HLtyeowwuMVtdKW0l6b9FOK4r9Hpd0vqStS/lmSYo6j2NH9qhGRottNXGINphbJ+9Y/14N9X0JSV+qyXfNEHnqDUza5El6q6QrJT0q6XVJ/RX3y/575dsTlNQsMLqUtMDofsA3ScH53GF2hbTA6DtIC4xu6Ge6CSj3M90AfAc4ndTPNEfSwGi79NdGW00r8s4Gfg4cCHy1eP5QKe8qoBxglrVb99za/F5B6ou8v+b9RpP1/L0C4LvAbaW0E4GzKAYX1VgOfLyUtrK1GnfdAaR/74eANzWxX/7fq4jwo+YBfIk0p2eHmrS/B9bWptXZ71DS5NL316QdXKQdWZO2ALirtO+twH3dPvaMbbVbnbSZRVvtU5M2C3ix28fZ5baaWLTL/2hQ/pj/Xg1R1jxgWSntGmBxt4+zg+21Wc3r64H+Cvt05ffKl9QG8wKj1bXUVhHx2zrJjxTPu3euepuUVr9XDfl7VZ+knYGjgDmdrd6mJSLWt7BbV36vHHAGG7RQaEQ8TfrrarhrvJ1aYHQ0abWt6vlL0ml9eS27HSW9KOlVSY9IOrnl2nZXu211dXF9/nlJl0gaV7PN36v6TiG1y6D+LmB/SaslrZN0n6S2gv4o1JXfKwecwUZigdGdavJQJ9+wC4xuwlptq41I2gP4MvB/S3/VriBdSvkIqW/nOeCGURp0Wm2rdcA/AaeRphRcCXyGjX9E/b2qbzrwk4gorzLyCOnGj/8T+ChpCsZCSQe3UNfRqiu/Vx40UN8mtcDoJq7VtkoZpTeRTtnXAH+3UcER/1LKezPwAOmGeje2Utkua7qtIuJ54HM1Sf2SXgC+I+ndEbFkmPLH8vdqT9Llt7MGFRzxrVLeeaQBCueQBhmMFdl/r3yGM5gXGK2u1bYCQJJIk3gPAKZGmhg8pEg9ljcCB1YZpr6JaautSq4vnt9TUzZ1yh+T36vCR0g/jNc1yhgRL5M6wt/TKG8P6crvlQPOYF5gtLpW22qDS0nDXk+IiCr5NxiNf7G321a1ovTs79Vg00kjqX7VxOeOxu9Vq7rye+WAM9hYWGC0U1ptK4qJeJ8HPhZpSaKGijOik4BHI+L11qrcNS23VR2nFM8Pg79XZZImAodQcXRaMQDjOIr2HCO683vV7THkm9qD1BH2PLCQtCbbTFL/wtdK+VYA3yul3Qb8AjiZdC34ceDeUp7DgNeAy4DJwMWkvxaO7vax52or4FTSX5NXk34Yah+71eRbRJpsdjQp0NxatNUHu33sGdtqFmnS48nFfheSfnhv8Pdq8P/BIv1s0l/m9eZ7jQfuBT5FGoQxjTRhch3Q1+1jb7G9tiH9EXIK8CDwnzXvtxmqrbrxe9X1xtoUH8D+wF3Ff+znSbPgNy/lWQlcU0rbsfgRfQlYDfwA2LVO+SeSVsxeRzp9nd7tY87ZVqSJdzHEY0ZNvu8V/yFeBv5Q/FAc1+1jztxW04HFpBUX/lj8cFwIbOXv1eD/g0X6EuC2IcrdmtQP+KuinVYVP7yHdPuY22iricP8f5o4VFt14/fKi3eamVkW7sMxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsvj/ZHaRRfrB76AAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -331,7 +331,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu4HVV9//H3h4sQuYRwC2iRGBRTUB8lAaE/KkFQIPQxiiBUrU8UkthasX3Agooa8FJBAWutPxJUKD8toQVKi9zkkhPAipIEKBoSDBruIuCBEBIige/vjzUHhjn7es6e2efs83k9zzz77DVrzV6zMtnfPWvWrFFEYGZmVrZNul0BMzMbGxxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjHSVpnqSos3ykxW3smW1nu0L6rGw7W5dT+9bqMcxtXiqpr4V8m0n6O0l3SVovqV/S1ZIOHOLnjpQ2nVU4Jn4v6TpJ+7RQdnpW5s1V1NU6zwHHyvA0cECN5doWy+8JfAkoftFflW1nXWeqOeR6lErSpsAVwNeA/wZmALOAF4A+SR8awmZHSpsOeFf2uXOBnYBFkl7TpMyyrMx9JdfNSrJZtytgPWljRNzW6Y1GxOPA453e7gj0KeBI4IiIyAfp/5K0EFggaXFEPDzcD+pim94eEWsBJC0B7gc+DHyjmFGSgC0iYg3Q8ePKquMzHOsKSZ+VtErSc5Iek3StpF0kTQeuzLL9NutCWZ2VeUX3j6RJ2fvjJF0gaY2khwa67iT9g6RHJD0u6UxJm+Q+f4qkhZIelLRO0q+yLqxNsvV165Gtf11W/g9Z+eskvamwj7tl3WDrJa2WdEKLzfNpYFEh2Az4PLAlcHzuc1ZL+qakL0j6naS1kn4kaXyzfanVpSZpR0n/KunJbN/6JE0r7NvAZ/591ub9WXu0fTYYEQ+Sgt6kbNvzJD0h6UBJtwPPAcfU6lKTtGl2LN0raUNWlwsLdZ0paUl2rP1O0lmSNm+3njZ8PsOxUkgadGxFxMZs3UeBzwGnAL8CdiB1sWxF6jY5GfgmcBTwKLChycedCfwI+ADwceBfJb0d2D17PxX4CnAHsDAr81pgZVbuGeBtwOnAOOAfG9VD0vbArcCTwCdI3VGnAjdI2jMi1me/yv8L2JEUHJ7Ltr898OsG7bYb6Yv33FrrI+I+SXcD7yys+ktgFTAb2BU4C/gecEyjfanjCuANWZkngM+QurzeHhGrcvk+CPwvMAf4E+AcUjfg3zTY9iCStiG1y+9yya8G/jXbj3uBR7L9KpoPfDTLtzjbztG5bX8QuDjL9zlgD9K/7ybZ/lmVIsKLl44twDwg6iyTsjzfAS5rsI2/yOfPpc/K0rfO3k/K3l+Qy7Mt8DzpS33TXPovgEvqfJ5IP74+B/ymhXp8mRRsts+lTSBdu/pk9n5GVvYduTy7AxuBvgb7vn9WbmaDPFcA9+Terwb+MNAuWdqHgReBP22zTQ/P3h+Uy7MV6QxkfuEz7wM2y6V9C/hdk+Nj4PPGZ22+G3BJ1i5vKxxDMwtlp2fpb87eT8nen9jg3/X+/PGRpX8cWA/s0O3/L2Nt8RmOleFp4NAa6Y9kr3cCx0s6nXTRemlEvDCMz7tx4I+IWCPpcWBxYZurgNcNvJG0JfBZ0hfz64DNc+s2i+xsrI5DgeuBNbkzuWeApcBA19N+wGMR8fNc3e6XtHQI+9eK6yO7JpK5HPghsC9wTxvb2Q94PCIWDyRExLOSfgwUR8gtKrTTcmBnSa+KiD82+Zyncn8/AXw8Iu7MpQVwTZNtHJy9Xlhn/Z6kf9t/L5xx30Tqlnwz6azIKuKAY2XYGBFLGqz/AbANqSvmi8CTkv4vMG+Igeepwvs/1knbMvf+TOAEUjfXsiz/TOC0LN9a6tuRdCZybI11A8FvF+D3Ndb/nrTv9QwMBNi9QZ7dc/ny231JpG69tdTuhmpkV+CxGumPkbqr8mq1sYBXZX838k5SV+QTwIMR8WJhfX8LQWsH4NlIgwlq2TF7vbrO+t2abN86zAHHKpd9uZwLnJtds/gw8FXSl+h5FVXjGOCfI+KsgQRJR7ZY9g+k4cpfrrHumez1d8DONdbvTOrOqSkiHswu6L8X+HZxvaTXk36ZFz9750K+ccDWpOs17Xi0uK3MRNJ+d8odhTOyolaem/IksJWkbesEnYH6ziFdvyv6bQufYR3kUWrWVRHxYER8ndTltVeWPPDLdsvapTpiHLkL50r3vhxXyFOvHjcCewO/ioglhWVllud2YKKkd+Q+43VA0xscgX8CDpH0nhrrvpLV+/uF9HfrlTdvHkX60h4402y1TX9O6hZ7aVCCpFeThmnf2kLdq3RT9vrROutXkn7ETKrx77QkIp6sppo2wGc4VobNJO1fI/3BiHhY0nzSr8/bSNd7DgbeSBq1BumLAmCu0n0n6yLi7g7X8Xrgk5JWZXX5JLBFIU+9epwDfAS4SdI/k77UJgIHAbdGxMWkbpy7gP+QdApplNoZ1O5mK/pn0nWi/5T0TaCP1A13POni/1/F4Htw1gNXSfoGqVvsG8B/RsTyJvvyChFxnaSfApdIOpV0FnEyKUAPukemmyJipaQFwNmSdgZuJt3YenREHBcRL0o6Cfh/krYlXRP6IzAZeF+Wr+obXse2bo9a8NJbC41HqZ2W5ZkF/JT0Rb+ONLT2+MJ2TiKNMNoIrM6VqzVK7S8KZVcD3yykXQgsyb2fCPwnsIZ0feIs0pDil7Zfrx5Z+muAC7KyG7LP/CGwdy7P60izK6zPtjEXuJQGo9RyZTcD/j5rm/VAP+kL88AaeVcDZ2dt/xjwLGko8HbttmmWthNwUfaZ60kX1vdtoY0HbatGXVvJMw94okb6dHKj1LK0TclGF5KCyUMMHpV2BHBL1i5rSINWvkJuhJ2XahZl/yCVkfQG0rj+/Ul90bdExPQWyo0nDbt8H6kr8Mek4ZBPFvLNJB1MbyQdhKdHxCWd3AezkSS75nNpRPi+EhvRunENZ2/SPQr3ZkurLiH9wjmB9CtpX9L9CC9RmtjwMmAR6VfNVcDFdfrCzcysQt04w9kksiGQki4Fdmx2hiPpAOB/SDej3Zyl7Ue6wPnuiLghS7sO2Dwi3pUrezWwbUQMaZZds5HOZzg2WlR+hhODx9u34gjSTXQ357bzC9KwxiMAJG1Buvj874WyC4EDBuaVMus1ETHJwcZGg9EyLHoKsKJG+j3ZOkhzJG1eI989pP3cs7TamZlZU6NlWPQEBt/VDGkUzeRcHmrk6y+sfwVJc0g3hjFu3Lipu+02cm4+fvHFF9lkk9Hym6B6nWyfbe5NlxOf2bN3fpf4+GnObdRYK+1z7733PhERO7WyvdEScKD2nceqkV58rwbliYgFwAKAadOmxZIljWZkqVZfXx/Tp0/vdjVGrI62j7LDZOXKxvlGER8/zbmNGmulfSTd3+r2Rkto76f2Uxe34+Uzmv5cWjEP1D5DMjOzioyWgLOCl6/V5OWv7dxHmpa+mG8KaZr2doZgm5lZh42WgHMNsEt2nw0A2RMIJ2friIgNpPtvjimUPRb4WUQ8XVFdzcyshsqv4WQTAc7I3r4W2FbSwBP6ro6Iddn8Vosj4niAiPhZdo/NRZJOJp2xnEmat+qG3Oa/DPRJ+hbpptAZ2XJ46TtmZmYNdWPQwM7AfxTSBt6/njRH02akOZLyjiNNaf8DclPb5DNExK1Z8PoK8Nek+3Q+FBE/6WD9rRdVfAO02VhUecCJiNW8PHKsXp5JNdKeAj6WLY3KXkFhyhszM+u+0XINx8zMRjkHHDOAqVPTYmalGU03fpqVZ9mybtfArOf5DMfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIepWYGMHt2t2tg1vMccMwAFizodg3Mep671MzMrBIOOGYAS5emxcxK4y41M4Bp09KrZ402K43PcMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlfCwaDOAJUu6XQOznueAYwZ+vLRZBdylZmZmlXDAMQOYMyctZlYaBxwzgPPPT4uZlcYBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEr7x0wxgn326XQOznueAYwZ+vLRZBdylZmZmlXDAMTOzSjjgmAFIaTGz0jjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4ZkGzADmz+92Dcx6ngOOGfjx0mYVqLxLTdJekm6UtE7SI5LOkLRpkzLzJEWd5bO5fBfWyTOl/D0zM7NGKj3DkTQBuAFYDswE9gDOJgW+0xoU/R5wbSHtfcApwDWF9BXAxwppq4dWYxszFixIrz7TMStN1V1qnwDGAUdFxBrgeknbAvMknZWlDRIRDwEP5dMkfQFYERF3FrI/GxG3lVB362Vz56ZXBxyz0lTdpXYEcF0hsCwkBaGDWt2IpO2BdwMXd7Z6ZmZWlqoDzhRSl9dLIuIBYF22rlVHA5uTglXRXpLWSNog6VZJLQcyMzMrT9VdahOAp2qk92frWnUcsCwi7i2k3wH8nHSNaCfgJFK33YER8YtaG5I0B5gDMHHiRPr6+tqoRrnWrl07ouoz0nSyfaZnr73U3j5+mnMbNdbx9omIyhbgeeDTNdIfBr7a4jZ2BV4ATm4h7zjgt8AVrWx76tSpMZIsWrSo21UY0TraPpCWHuLjpzm3UWOttA+wJFqMAVV3qfUD29VIH0/tM59aPggIuKRZxohYD1wN+IH1ZmZdVnXAWUHhWo2k3YCtKFzbaeA44NaIeLCNz4028pqZWQmqDjjXAIdJ2iaXdiywHljcrLCkScD+tDg6TdI40si4pe1W1MaYgU41MytN1QHnPGADcLmkQ7ML9vOAcyI3VFrSKknfr1H+OGAjcGlxhaTxkm6RNFfSIZKOBRYBrwW+VsK+mJlZGyodpRYR/ZIOAb4DXEm6bnMuKegU61VrupvjgBsj4vEa6zYAj5NmLNgZeA74GXBQRCzpyA6YmdmQVT55Z0QsB97VJM+kOulva1DmOeCoYVXOxq6pU9PrUve+mpXFs0WbASxb1u0amPU8P4DNzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSHqVmBjB7drdrYNbzHHDM4OVHTJtZadylZmZmlWgr4EiqNd2M2ei3dKlnGTArWbtdag9Lugi4ICLuKaNCZl0xbVp69YzRZqVpN+DMB/4KOEnSEuD7wML8TM9mI9mkU68alLb660d2oSZmY09bXWoR8aWImAy8G1gJnAM8KulHkg4to4JmZtYbhjRoICJuioiPArsAnwLeBFwnabWkeZJe08lKmpnZ6DfcUWrTgHeSHhvdD9wCnACskvSRYW7bzMx6SNsBR9Lukr4k6T7gRmBX4OPAayLir4DdSdd6vtHRmpqZ2ajW1qABSTeRzmgeAi4kjVa7P58nIl6Q9G/ApztVSTMzG/3aHaX2BDADuD6i4fjRO4HXD7lWZlVb4qeQm5Wt3YDzHWBZrWAjaWtgn4i4OSKeB+4fVNpspBp4xLSZlabdaziLgL3qrHtTtt7MzGyQdgOOGqzbGlg3jLqYdc+cOWkxs9I07VKT9E5gei7pBEmHF7JtCRwJ3N25qplV6Pzz06tnjTYrTSvXcN5BurkTIIBjgI2FPH8EVgCf6VzVzMyslzQNOBHxDbJ7aiT9Fnh/RNxZdsXMzKy3tDVKLSI81NnMzIaklWs4M4BbI2JN9ndDEXF1R2pmZmY9pZUznB8D+wO/yP4O6o9WC8APaTMzs0FaCTivBx7N/W3We/bZp9s1MOt5rQwauL/W32Y9xY+XNitdK9dwXt3OBiPCN3+amdkgrXSprSVdm2mVr+GYmdkgrQScj9NewDEbfZSNg2k4CbqZDUcr13AurKAeZmbW44b7iGkzM7OWtDJo4BfArIhYLul2mnSvRcR+naqcmZn1jlau4fwKWJ/7253cZmbWtlau4Xws9/esUmtjZmY9a8jXcJTsJKnRQ9nMzMyANmeLhpcm8zwNmJqV3yhpKfDViLiqw/Uzq8b8+d2ugVnPayvgSJoLfBe4Efg08HtgZ+Ao4L8l/U1E+H+ujT5+vLRZ6do9w/kcsCAi/rqQfp6k84DPAw44ZmY2SLvXcHYALq+z7jJg+2YbkLSXpBslrZP0iKQzJDWcDkfSJElRY1lYI+9MSXdLek7ScknHtrRnNrYtWJAWMytNu2c4i4CDgOtrrDsIuLlRYUkTgBuA5cBMYA/gbFLgO62Fzz8Z+Gnu/ROF7R9ICnzfBU4EZgAXS+qPiJ+0sH0bq+bOTa/uWjMrTSs3fu6Ve/tt4HuSdgCu4OVrOO8HjgBOaLK5TwDjgKMiYg1wvaRtgXmSzsrSGlkZEbc1WP8F4OaIODF7v0jS3sAXAQccM7MuauUM55e88mZPAXOzpfj0z2tpPFv0EcB1hcCyEDiTdIZ0ZQv1qUnSFsDBpDObvIXABZLGR8TTQ92+mZkNTysB5+AOft4U4KZ8QkQ8IGldtq5ZwLlA0vakM6uLgc9HxMAsCHsAmwMrCmXuIXXZ7QncPrzqm5nZULUy08DiDn7eBOCpGun92bp6NgD/QuoWWwNMB04hBZmZuW1TY/v9hfWvIGkOMAdg4sSJ9PX1Nap/pdauXTui6jPSDKV9TnrLxkFpfX19TM/93St8/DTnNmqs0+3T9o2fAyRtAmxZTG/hiZ+15mJTnfSBbT4K/G0uqU/SY8B3Jb0tIu5ssH3VSR/Y9gJgAcC0adNi+vTpjWtfob6+PkZSfUaaobTPrFMH35u8+sMvb6OX2tvHT3Nuo8Y63T5tDYvOprM5RdIq4HngmRpLI/3AdjXSx1P7zKeRS7PXfXLbpsb2B963u30zM+ugdu/DORE4Ffg+6czhq8AZwL3AarKuqQZWkK7VvETSbsBWDL720kwUXu8jBcEphXxTgBezOprVFuGnfZqVrN2AMxv4EnBW9v6KiDgd2JsUMN7YpPw1wGGStsmlHUt6/EG714qOzl6XAkTEBtJ9QscU8h0L/Mwj1MzMuqvdazivB+6MiBckPU/WXRURL0r6LvA90hlQPeeRzpIul3QmMBmYB5yTHyqdddktjojjs/fzgG1IN32uAd4JfAa4PCL+N7f9L5Ou73yLdJ/QjGw5vM39NDOzDmv3DOdJYOvs7weAt+fWTSDd1FlXRPQDh5Du1bkSOB04l3TWlLcZr7yfZwXpPp0LgKuBDwHfyF7z27+VdOZzKHAd8F7gQ55lwJqaOjUtZlaads9wfgrsS/rS/zfSDAHbA38EPkmaRbqhiFgOvKtJnkmF9wtJN3A2FRFXkM5uzFq3bFm3a2DW89oNOPOA12Z/f43UpTaLdGZzPfCpTlXMzMx6S1sBJyJWAiuzvzeQnonz6RLqZWZmPWY4N37+CbAr8EhEPNy5KpmZWS9qd9AAkv5a0oPA/cDPgQckPSTpbzpeOzMz6xntzjTwReA7pPtpjgSmZa/XAN/O1puZmQ3SbpfaJ4GvRcQXCunXZnObfZI084DZ6DJ7drdrYNbz2g0446j/VM/FeJSajVZ+vLRZ6dq9hnMFcFSddR8Afjy86piZWa9q5RHTM3JvrwHOkjSJwY+Y3hv4h85X0awCS5emV882YFaaVrrUfszgR0m/FjisRt4fkp7EaTa6TJuWXj1jtFlpWgk4ry+9FmZm1vNaecT0/VVUxMzMelvbMw1I2ow0QOBAYHvgD8AtpEcFDH5gvJmZGW0GHEk7Az8B3kp6wudjwAGk+2/ukvSeiHi805U0M7PRr91h0ecAOwDviIjJEXFAREwG3pGln9PpCpqZWW9oN+DMAE6JiNvzidn7z5KmuTEzMxuk3Ws4WwDP1Fn3DPCq4VXHrEuWLOl2Dcx6XrsB5zbgFEk3RcSzA4mStgJOydabjT6+4dOsdO0GnJOARcCDkn5CGjSwM+kmUAHTO1o7MzPrGW1dw4mIO4E3AguAnYB3kwLOecAbI+KujtfQrApz5qTFzErT8hmOpM2B/YDfRsSp5VXJrAvOPz+9etZos9K0c4bzAnAT8Kcl1cXMzHpYywEnIl4Efg1MLK86ZmbWq9q9D+fzwBclvaWMypiZWe9qd5TaaaQZBe6U9DBplNor5nOPiP06VDczM+sh7QacX2aLmZlZW1oKOJLGkaa1+SXwO+CGiHiszIqZVWqffbpdA7Oe18ojpicDNwCTcslrJH0wIn5SVsXMKjXwiGkzK00rgwbOAl4E/hx4NbA3cAcwv8R6mZlZj2kl4BwAnBYRP42I5yLiHmAu8DpJu5ZbPTMz6xWtBJxdgd8U0u4jzZ22S8drZNYNUlrMrDSt3ocTzbOYmZnV1+qw6OskbayRfmMxPSJ2Hn61zMys17QScE4vvRZmZtbzmgaciHDAMTOzYWt3LjUzM7MhccAxM7NKtDuXmllvmu/7mM3K5oBjBn68tFkF3KVmZmaVcMAxA1iwIC1mVprKA46kvSTdKGmdpEcknSFp0yZl9pV0gaRVWbmVkr4kactCvnmSosZyeLl7ZaPe3LlpMbPSVHoNR9IE0qMOlgMzgT2As0mB77QGRY/N8p4J/Bp4K/Dl7PUDhbxPA8UAc89w625mZsNT9aCBTwDjgKMiYg1wvaRtgXmSzsrSajkzIh7Pve+T9BwwX9LuEXF/bt3GiLitnOqbmdlQVd2ldgRwXSGwLCQFoYPqFSoEmwF3ZK+eu83MbBSoOuBMAVbkEyLiAWBdtq4df0Z6MNzKQvp2kp6Q9LykOyQdNeTamplZxyiiuicPSHoe+ExEfKuQ/hBwUUR8rsXt7AL8L3B1RMzKpX+EdMZzJ7A16UFxM4APRMTldbY1B5gDMHHixKkLFy5sd7dKs3btWrbeeutuV2PEGkr73P3w04PS3vLa8Uw/+GAA+hYt6kjdRgIfP825jRprpX0OPvjgpRExrZXtdSPgnBwR/1RIfxi4MCI+38I2XkUaePAnwNSI6G+QV8D/AOMi4m3Ntj1t2rRYsmRJs2yV6evrY/r06d2uxog1lPaZdOpVg9JWf/3Ilx++VuH/h7L5+GnObdRYK+0jqeWAU3WXWj+wXY308cBTzQpnAeQiYG9gRqNgAxApml4OvLXZ0Gsb4yJ6KtiYjURVj1JbQeFajaTdgK0oXNup41zScOp3R0Qr+Qf4m8TMrMuqPsO5BjhM0ja5tGOB9cDiRgUlfRb4FPCRiLi1lQ/LzojeD9wVES8MrcpmZtYJVZ/hnAecCFwu6UxgMjAPOCc/VFrSKmBxRByfvf8Q8DXgQuBhSfvntnnfwLBpSYuBy0hnS1sBs4H9gfeVu1s26k2dml6XLu1uPcx6WKUBJyL6JR0CfAe4knTd5lxS0CnWK3/N5T3Z66xsyfsYKRABrAL+DtiVNGR6GXBkRFzTifpbD1u2rNs1MOt5lT+eICKWA+9qkmdS4f0sBgeaWuWOH0bVzMysRJ4t2szMKuGAY2ZmlXDAMTOzSjjgmJlZJSofNGA2Is2e3e0amPU8Bxwz8OOlzSrggGPWouLEn6u/fmSXamI2OvkajhmkGQY8y4BZqXyGYwYwLZtd3TNGm5XGZzhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0p4WLQZwJIl3a6BWc9zwDGDlx8xbWalcZeamZlVwgHHDGDOnLSYWWkccMwAzj8/LWZWGgccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NK+MZPM4B99ul2Dcx6ngOOGfjx0mYVcJeamZlVwgHHzMwq4YBjBiClxcxK44BjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEZxowA5g/v9s1MOt5Djg2Kk069SpOestGZp161Utpq79+5NA36MdLm5XOXWpmZlYJBxwzgAUL0mJmpXGXmhnA3LnptYSutUm5bj8YZtef2SjmMxwzM6tE5QFH0l6SbpS0TtIjks6QtGkL5cZLukBSv6SnJf1I0g418s2UdLek5yQtl3RsOXtiZmbtqDTgSJoA3AAEMBM4AzgJOL2F4pcA04ETgFnAvsAVhe0fCFwGLAKOAK4CLpb0no7sgJmZDVnV13A+AYwDjoqINcD1krYF5kk6K0sbRNIBwGHAQRFxc5b2MPBzSYdGxA1Z1i8AN0fEidn7RZL2Br4I/KS83bLh8DWO+tw21kuqDjhHANcVAstC4EzgIODKBuUeGwg2ABHxC0m/zdbdIGkL4GDgxELZhcAFksZHxNMd2g+ro/gFCf6S7IaO36dk1gFVB5wpwE35hIh4QNK6bF29gDMFWFEj/Z5sHcAewOY18t1D6jrcE7h9aNWuTv4L+6S3bGR6nXVQ+wuk1V/E7fxy9q/ssWWo/95D/bExlHL+YTM6KSKq+zDpeeAzEfGtQvpDwEUR8bk65a4Hno2I9xXSfwhMjog/k/R/gFuBt0fEnbk8bwB+DRwWEYO61STNAQbGwr4JWDnkHey8HYEnul2JEczt05jbpzm3UWOttM/uEbFTKxvrxn04tSKc6qQPpVzxveqkp8SIBcCIvONP0pKImNbteoxUbp/G3D7NuY0a63T7VD0suh/Yrkb6eOCpIZTbLleuP5dWzEOT7ZuZWcmqDjgrePmaCwCSdgO2ovY1mrrlMvlrO/cBz9fINwV4Ebh3CPU1M7MOqTrgXAMcJmmbXNqxwHpgcZNyu2T32QAgaRowOVtHRGwg3X9zTKHsscDPRukItRHZ1TeCuH0ac/s05zZqrKPtU/WggQnAcuCXpKHQk4FzgG9FxGm5fKuAxRFxfC7tWtJIs5NJZyxnAr+PiD/P5TkQ6AO+Q7opdEaW//BaAwbMzKw6lZ7hREQ/cAiwKWkI9OnAucCXClk3y/LkHUc6C/oBcBGwFHh/Yfu3AkcDhwLXAe8FPuRgY2bWfZWe4ZiZ2djl2aJHEEmzJf06m3h0qaRDWigzT1LUWA6vos5lKHuC114wlDaSNKnOsbKwqnpXRdIbJM2XdJekFyT1tVhuTBxDQ2mfThw/fh7OCCHpOOA8YB7pBtaPAT+WtG9E/LJJ8aeBYoC5p+OVrEBugtflpAle9wDOJv04Oq1BUUgTvL6JNMHrwHW+K4A/b1RotBlmG0G6rvnGM5b+AAADaklEQVTT3PtevPFxb9I13NuAV7VRbkwcQwy9fWA4x09EeBkBC2mGgx/k3m8C3A38sEm5ecAT3a5/B9vhs6R7qrbNpf0DsC6fVqPcAaSbe9+ZS9svSzu02/s1QtpoUtYef9HtfaigjTbJ/X0p0NdCmbF0DA2lfYZ9/LhLbQSQNJk0Au/fB9Ii4kXgP0iTk44l9SZ4HUea4LVRuUETvAIDE7z2kqG20ZiR/f9p15g5hobYPsPmgDMyDNysWmvi0e0lNZunaDtJT0h6XtIdko7qfBUrM2ii1oh4gPTrvdbNv3XLZfITvPaKobbRgAuyfvtHJZ0jaVwZlRyFxtIxNBxDPn58DWdkmJC9Fqff6c+tf7xO2VWk7pQ7ga2BucBlkj4QEZd3uqIVmEDtaYj6ebmd2i03uQP1GkmG2kYbgH8hPRtqDemBhqeQrgHN7GwVR6WxdAwNxbCPHweckkgaD+zaLF9E5H9RtTXxaFb+h4XPvRL4H9JD50ZjwIHyJ3jtBW3va0Q8CvxtLqlP0mPAdyW9LXKzrI9hY+kYaksnjh93qZXnGNKpeLMFOjjxaKSre5cDb21lKPEIVOYEr71iqG1Uy6XZ6z7DqlFvGEvHUKe0dfw44JQkIr4XEWq2ZNkHznJqTTz6h4io153WsApDrnx3lTnBa68YahvVEoXXsWwsHUOd0tbx44AzAkTEb0izWb808aikTbL317SzLUkiTflzV0S80Ml6VqS0CV57yFDbqJajs9elnajYKDeWjqFOae/46fZ4cC8vjXH/S+AF0o17BwMXkr5A3pzLcxCwETgol7YYOBF4DynQXE26Ye293d6nIbbDBOBR4HrSnHhzgLXAVwr5VgHfL6RdC/wGOAp4H+neplu6vU8jpY1I92ydnbXPocAZ2TF2Wbf3qYQ2enX2ZXg08DPgV7n3r/Yx1H77dOL46fqOe3nFQTA7+0feACwDDimsn046dZ2eS/t+9h9kPfAscAtwRLf3ZZjtsBdwU7ZPjwJfBjYt5FkNXFhI2w64gNTfvgb4N2DHbu/PSGkj0gS4S0gzU/wxO9bOALbo9v6U0D6Tsv8rtZZJY/0YGkr7dOL48eSdZmZWCV/DMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaV+P9H9G7tkaKVdwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYHVWd//H3h0WIrGEL6CAxIDIsihIQZhiJggYwGkWQRUejYHBjmQc1gKgBNU5QNmH8AY9KcBTCDDDMECCRJR3AAWVLBgwJBg17EDAQQkIk8P39caqhcvv2Xbrvrdvd9Xk9z31u16lTdb91Uulv16lT5yoiMDMza7e1Oh2AmZmVgxOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHCspSRNlhS9vD7T4D52zPazaUX5hGw/G7Yn+sbi6Oc+r5TU1UC9dSSdKGmepJWSlkq6XtK+ffzcgdKmEyrOib9ImiXpvQ1sOybbZtciYrXWc8KxdngB2KfKa2aD2+8IfBeo/EV/XbafFa0Js89xtJWktYFrgCnA/wAHAxOAV4EuSUf1YbcDpU27fTD73GOBLYHZkt5SZ5t7s20ebnNs1ibrdDoAG5JWR8Sdrd5pRDwDPNPq/Q5AxwEfAQ6KiHyS/m9J04GLJc2JiCf6+0EdbNO7ImI5gKS7gUeATwM/qqwoScB6EbEMaPl5ZcXxFY51hKRTJC2S9LKkpyXNlLS1pDHAtVm1P2ddKIuzbdbo/pE0Mls+QtIlkpZJery7607SNyU9KekZSVMlrZX7/J0kTZf0mKQVkv6QdWGtla3vNY5s/duy7f+abT9L0jsrjnHbrBtspaTFko5psHlOAGZXJJtu3wLWB47Ofc5iST+W9G1JSyQtl/RrSZvUO5ZqXWqStpB0qaTnsmPrkjS64ti6P/NfsjZfmrVH01eDEfEYKemNzPY9WdKzkvaVdBfwMnBYtS41SWtn59JDklZlsUyriHW8pLuzc22JpDMlrdtsnNZ/vsKxtpDU49yKiNXZus8CpwKTgD8Am5O6WDYgdZt8HfgxcAjwFLCqzsdNBX4NfBL4AnCppPcA22XLewDfB+4DpmfbvBVYmG33IrA7cDowDPhhrTgkbQbcDjwHfInUHXUycJOkHSNiZfZX+X8DW5CSw8vZ/jcD/lij3bYl/eI9p9r6iHhY0v3A+ytWHQksAr4IbAOcCfwMOKzWsfTiGmCHbJtngW+QurzeExGLcvU+BfwfMBH4O+BsUjfgV2rsuwdJG5HaZUmu+M3ApdlxPAQ8mR1XpYuAz2b15mT7OTS3708Bl2f1TgW2J/37rpUdnxUpIvzyq2UvYDIQvbxGZnUuAK6qsY9x+fq58glZ+YbZ8shs+ZJcnY2BV0i/1NfOlf8euKKXzxPpj69TgT81EMf3SMlms1zZcNK9q69mywdn274vV2c7YDXQVePY9862G1+jzjXAg7nlxcBfu9slK/s08Brw90226YHZ8n65OhuQrkAuqvjMh4F1cmXnAkvqnB/dn7dJ1ubbAldk7bJ7xTk0vmLbMVn5rtnyTtny8TX+XR/Jnx9Z+ReAlcDmnf7/UraXr3CsHV4ADqhS/mT2Phc4WtLppJvW90TEq/34vJu7f4iIZZKeAeZU7HMR8LbuBUnrA6eQfjG/DVg3t26dyK7GenEAcCOwLHcl9yJwD9Dd9bQX8HRE/C4X2yOS7unD8TXixsjuiWSuBn4F7Ak82MR+9gKeiYg53QUR8ZKkGUDlCLnZFe00H9hK0psi4m91Puf53M/PAl+IiLm5sgBuqLOPD2Tv03pZvyPp3/Y/Kq64byF1S+5KuiqygjjhWDusjoi7a6z/BbARqSvmO8Bzkv4fMLmPief5iuW/9VK2fm55KnAMqZvr3qz+eOC0rN5yercF6Urk8CrrupPf1sBfqqz/C+nYe9M9EGC7GnW2y9XL7/d1kbr1llO9G6qWbYCnq5Q/TequyqvWxgLelP1cy/tJXZHPAo9FxGsV65c2kLQ2B16KNJigmi2y9+t7Wb9tnf1biznhWOGyXy7nAOdk9yw+DfyA9Ev0woLCOAw4PyLO7C6Q9JEGt/0rabjy96qsezF7XwJsVWX9VqTunKoi4rHshv7HgJ9Urpf0dtJf5pWfvVVFvWHAhqT7Nc14qnJfmRGk426V+yquyCo18r0pzwEbSNq4l6TTHe9E0v27Sn9u4DOshTxKzToqIh6LiH8ldXntnBV3/2W7fvWtWmIYuRvnSs++HFFRp7c4bgZ2Af4QEXdXvBZmde4CRkh6X+4z3gbUfcAROA/YX9KHq6z7fhb3zyvKP6Q1H948hPRLu/tKs9E2/R2pW+z1QQmS3kwapn17A7EX6Zbs/bO9rF9I+iNmZJV/p7sj4rliwrRuvsKxdlhH0t5Vyh+LiCckXUT66/NO0v2eDwDvII1ag/SLAuBYpedOVkTE/S2O8Ubgq5IWZbF8FVivok5vcZwNfAa4RdL5pF9qI4D9gNsj4nJSN8484D8lTSKNUjuD6t1slc4n3Sf6L0k/BrpI3XBHk27+/3P0fAZnJXCdpB+RusV+BPxXRMyvcyxriIhZkn4LXCHpZNJVxNdJCbrHMzKdFBELJV0MnCVpK+BW0oOth0bEERHxmqSTgH+XtDHpntDfgFHAx7N6RT/wWm6dHrXg19B6UXuU2mlZnQnAb0m/6FeQhtYeXbGfk0gjjFYDi3PbVRulNq5i28XAjyvKpgF355ZHAP8FLCPdnziTNKT49f33FkdW/hbgkmzbVdln/grYJVfnbaTZFVZm+zgWuJIao9Ry264D/EvWNiuBpaRfmPtWqbsYOCtr+6eBl0hDgTdttk2zsi2BX2afuZJ0Y33PBtq4x76qxNpIncnAs1XKx5AbpZaVrU02upCUTB6n56i0g4DbsnZZRhq08n1yI+z8Kual7B+kMJJ2II3r35vUF31bRIxpYLtNSMMuP07qCpxBGg75XEW98aST6R2kk/D0iLiilcdgNpBk93yujAg/V2IDWifu4exCekbhoezVqCtIf+EcQ/oraU/S8wivU5rY8CpgNumvmuuAy3vpCzczswJ14gpnrciGQEq6Etii3hWOpH2A/yU9jHZrVrYX6QbnhyLipqxsFrBuRHwwt+31wMYR0adZds0GOl/h2GBR+BVO9Bxv34iDSA/R3Zrbz+9JwxoPApC0Hunm839UbDsd2Kd7XimzoSYiRjrZ2GAwWIZF7wQsqFL+YLYO0hxJ61ap9yDpOHdsW3RmZlbXYBkWPZyeTzVDGkUzKleHKvWWVqxfg6SJpAfDGDZs2B7bbjtwHj5+7bXXWGutwfI3QfH60z4bPZRuH76449D9O8TnT31uo9oaaZ+HHnro2YjYspH9DZaEA9WfPFaV8spl1dieiLgYuBhg9OjRcffdtWZkKVZXVxdjxozpdBgDVr/aR9lpsXBh7XqDmM+f+txGtTXSPpIeaXR/gyW1L6X6ty5uyhtXNEtzZZV1oPoVkpmZFWSwJJwFvHGvJi9/b+dh0rT0lfV2Ik3T3swQbDMza7HBknBuALbOnrMBIPsGwlHZOiJiFen5m8Mqtj0cuCMiXigoVjMzq6LwezjZRIAHZ4tvBTaW1P0NfddHxIpsfqs5EXE0QETckT1j80tJXyddsUwlzVt1U2733wO6JJ1Leij04Ox1YNsPzMzMaurEoIGtgP+sKOtefjtpjqZ1SHMk5R1BmtL+F+SmtslXiIjbs+T1feDLpOd0joqI37QwfhsKCn7g2cw6kHAiYjFvjBzrrc7IKmXPA5/PXrW2vYaKKW/MzKzzBss9HDMzG+SccKyc9tgjvcysMIPpwU+z1rn33k5HYFY6vsIxM7NCOOGYmVkhnHDMzKwQTjhWKiNPvo6RJ1+3xrKZFcMJx8zMCuFRalZKl717bKdDMCsdJxwrpVMPPK7TIZiVjrvUzMysEE44Vkq7LlnErksWdToMs1Jxl5qV0oxLTwRg5KQZHY7ErDx8hWNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4SHRVspjfvcuZ0Owax0nHCslB7YeodOh2BWOu5SMzOzQjjhWClNmXk+U2ae3+kwzErFCcdK6ah5szhq3qxOh2FWKk44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8IOfVkr3j9i+0yGYlY4TjpXSRyec1+kQzErHXWpmZlYIJxwzMyuEE46V0uKp41g8dVynwzArFSccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhPNOAldIpY7/W6RDMSscJx0rp8t0P7HQIZqVTeJeapJ0l3SxphaQnJZ0hae0620yWFL28TsnVm9ZLnZ3af2RmZlZLoVc4koYDNwHzgfHA9sBZpMR3Wo1NfwbMrCj7ODAJuKGifAHw+YqyxX2L2IaqI+em08lXOmbFKbpL7UvAMOCQiFgG3ChpY2CypDOzsh4i4nHg8XyZpG8DCyJibkX1lyLizjbEbkPID2ddADjhmBWp6C61g4BZFYllOikJ7dfoTiRtBnwIuLy14ZmZWbsUnXB2InV5vS4iHgVWZOsadSiwLilZVdpZ0jJJqyTdLqnhRGZmZu1TdJfacOD5KuVLs3WNOgK4NyIeqii/D/gd6R7RlsBJpG67fSPi99V2JGkiMBFgxIgRdHV1NRFGey1fvnxAxTPQ9KV9TtptdY/lodrGPn/qcxvV1ur26cSw6KhSpl7Ke1aUtiF1v03qseOI8yrqXkdKPqeSBhn0DCbiYuBigNGjR8eYMWMaCaMQXV1dDKR4Bpq+tM+Ek68D4Lhs+az712Hxp5vbx2Dh86c+t1FtrW6forvUlgKbVinfhOpXPtV8ipSgrqhXMSJWAtcD7200QDMza4+iE84CKu7VSNoW2ICKezs1HAHcHhGPNfG5DV09mZlZ+xTdpXYD8A1JG0XEi1nZ4cBKYE69jSWNBPYGvtLIh0kaRhoZd09fgrWha+SkGZ0Owax0ir7CuRBYBVwt6YDshv1k4Oz8UGlJiyT9vMr2RwCrgSsrV0jaRNJtko6VtL+kw4HZwFuBKW04FjMza0KhVzgRsVTS/sAFwLWk+zbnkJJOZVzVprs5Arg5Ip6psm4V8AxpxoKtgJeBO4D9IuLulhyAmZn1WeGj1CJiPvDBOnVG9lK+e41tXgYO6VdwVhrXTjsBgI9OOK9OTTNrFc8WbaW029MPdzoEs9LxF7CZmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCo9SslC5799hOh2BWOk44VkqnHnhc/Upm1lLuUjMzs0I0lXAkVZtuxmzQ2XXJInZdsqjTYZiVSrNXOE9IOlPS37clGrOCzLj0RGZcemKnwzArlWYTzkXAocADkn4naaKkjdsQl5mZDTFNJZyI+G5EjAI+BCwEzgaekvRrSQe0I0AzMxsa+jRoICJuiYjPAluTvh7+ncAsSYslTZb0llYGaWZmg19/R6mNBt5P+tropcBtwDHAIkmf6ee+zcxsCGk64UjaTtJ3JT0M3AxsA3wBeEtE/DOwHelez49aGqmZmQ1qTT34KekW0hXN48A04JKIeCRfJyJelXQZcEKrgjQzs8Gv2ZkGngUOBm6MiKhRby7w9j5HZdZm4z53bqdDMCudZhPOBcC91ZKNpA2B90bErRHxCvBIj63NBogHtt6h0yGYlU6z93BmAzv3su6d2XozM7Memk04qrFuQ2BFP2IxK8yUmeczZeb5nQ7DrFTqdqlJej8wJld0jKQDK6qtD3wEuL91oZm1z1HzZgGeNdqsSI3cw3kf6eFOgAAOA1ZX1PkbsAD4RutCMzOzoaRuwomIH5E9UyPpz8AnImJuuwMzM7OhpalRahHhoc5mZtYnjdzDORi4PSKWZT/XFBHXtyQyMzMbUhq5wpkB7A38Pvs56H20WgD+kjYzM+uhkYTzduCp3M9mg979I7bvdAhmpdPIoIFHqv1sNph9dMJ5nQ7BrHQauYfz5mZ2GBF++NPMzHpopEttOeneTKN8D8fMzHpoJOF8geYSjtmAt3jqOABGTprR4UjMyqORezjTCojDzMyGuP5+xbSZmVlDGhk08HtgQkTMl3QXdbrXImKvVgVnZmZDRyP3cP4ArMz97Ps5ZmbWtEbu4Xw+9/OEtkZjZmZDVp/v4SjZUlKtL2UzMzMDmpwtGl6fzPM0YI9s+9WS7gF+EBHXtTg+s7Y4ZezXOh2CWek0lXAkHQv8FLgZOAH4C7AVcAjwP5K+EhEXtTxKsxa7fPfKL601s3Zr9grnVODiiPhyRfmFki4EvgU44ZiZWQ/N3sPZHLi6l3VXAZvV24GknSXdLGmFpCclnSGp5nQ4kkZKiiqv6VXqjpd0v6SXJc2XdHhDR2alcuTcmRw5d2anwzArlWavcGYD+wE3Vlm3H3BrrY0lDQduAuYD44HtgbNIie+0Bj7/68Bvc8vPVux/X1Li+ylwPHAwcLmkpRHxmwb2byXxw1kXAO5aMytSIw9+7pxb/AnwM0mbA9fwxj2cTwAHAcfU2d2XgGHAIRGxDLhR0sbAZElnZmW1LIyIO2us/zZwa0Qcny3PlrQL8B3ACcfMrIMaucJ5gDUf9hRwbPaq/PbPmdSeLfogYFZFYpkOTCVdIV3bQDxVSVoP+ADpyiZvOnCJpE0i4oW+7t/MzPqnkYTzgRZ+3k7ALfmCiHhU0opsXb2Ec4mkzUhXVpcD34qI7lkQtgfWBRZUbPMgqctuR+Cu/oVvZmZ91chMA3Na+HnDgeerlC/N1vVmFfBvpG6xZcAYYBIpyYzP7Zsq+19asX4NkiYCEwFGjBhBV1dXrfgLtXz58gEVz0DTl/Y5abfVPZaHahv7/KnPbVRbq9un6Qc/u0laC1i/sryBb/ysNhebeinv3udTQP5JvS5JTwM/lbR7RMytsX/1Ut6974uBiwFGjx4dY8aMqR19gbq6uhhI8Qw0fWmfCSenZ5OPy5bPun8dFn+6uX0MFj5/6nMb1dbq9mlqWHQ2nc0kSYuAV4AXq7xqWQpsWqV8E6pf+dRyZfb+3ty+qbL/7uVm929mZi3U7BXO8cDJwJnAD4DvA68CRwBvAqbU2X4B6V7N6yRtC2xAz3sv9UTF+8OkJLgTkO8G3Al4DXioyf3bEOZv+jQrXrMPfn4R+C4p4QBcExGnA7uQEsY76mx/AzBW0ka5ssNJX3/Q7L2iQ7P3ewAiYhXpOaHDKuodDtzhEWpmZp3V7BXO24G5EfGqpFfIuqsi4jVJPwV+RroC6s2FpKukqyVNBUYBk4Gz80Olsy67ORFxdLY8GdiI9NDnMuD9wDeAqyPi/3L7/x7p/s65pOeEDs5efrrPzKzDmr3CeQ7YMPv5UeA9uXXDSQ919ioilgL7k57VuRY4HTiHdNWUtw5rPs+zgPScziXA9cBRwI+y9/z+bydd+RwAzAI+BhzlWQas0rXTTuDaaSd0OgyzUmn2Cue3wJ6kX/qXkWYI2Az4G/BV0izSNUXEfOCDdeqMrFieTnqAs66IuIZ0dWPWq92efrjTIZiVTrMJZzLw1uznKaQutQmkK5sbeWO0qZmZ2RqaSjgRsRBYmP28ivSdOO6XMDOzuvrz4OffAdsAT0bEE60LyczMhqJmBw0g6cuSHgMeAX4HPCrpcUlfaXl0ZmY2ZDQ708B3gAtIz9N8BBidvd8A/CRbb2Zm1kOzXWpfBaZExLcrymdmc5t9FTijJZGZtdFl7x7b6RDMSqfZhDOM3r/Vcw4epWaDxKkH+lQ1K1qz93CuAQ7pZd0nAU9QZWZmVTXyFdMH5xZvAM6UNJKeXzG9C/DN1odo1nq7LlkEwANb79DhSMzKo5EutRn0/CrptwLVOsF/RfomTrMBbcalJwKeNdqsSI0knLe3PQozMxvyGvmK6UeKCMTMzIa2pmcakLQOaYDAvsBmwF+B20hfFbC61rZmZlZeTSUcSVsBvwHeBSwGngb2IT1/M0/ShyPimVYHaWZmg1+zw6LPBjYH3hcRoyJin4gYBbwvKz+71QGamdnQ0GzCORiYFBF35Quz5VNI09yYmZn10Ow9nPWAF3tZ9yLwpv6FY1aMcZ87t9MhmJVOswnnTmCSpFsi4qXuQkkbAJOy9WYDnh/4NCteswnnJGA28Jik35AGDWxFeghUwJiWRmdmZkNGU/dwImIu8A7gYmBL4EOkhHMh8I6ImNfyCM3aYMrM85ky8/xOh2FWKg1f4UhaF9gL+HNEnNy+kMza76h5swDPGm1WpGaucF4FbgH+vk2xmJnZENZwwomI14A/AiPaF46ZmQ1VzT6H8y3gO5J2a0cwZmY2dDU7Su000owCcyU9QRqlFvkKEbFXi2IzM7MhpNmE80D2MjMza0pDCUfSMNK0Ng8AS4CbIuLpdgZm1k73j9i+0yGYlU4jXzE9CrgJGJkrXibpUxHxm3YFZtZOH51wXqdDMCudRgYNnAm8BvwT8GZgF+A+4KI2xmVmZkNMIwlnH+C0iPhtRLwcEQ8CxwJvk7RNe8MzM7OhopGEsw3wp4qyh0lzp23d8ojMCrB46jgWTx3X6TDMSqXR53CifhUzM7PeNTosepak1VXKb64sj4it+h+WmZkNNY0knNPbHoWZmQ15dRNORDjhmJlZvzU7l5qZmVmfOOGYmVkhmp1LzWxIOGXs1zodglnpOOFYKV2++4GdDsGsdNylZmZmhXDCsVI6cu5Mjpw7s9NhmJVK4QlH0s6Sbpa0QtKTks6QtHadbfaUdImkRdl2CyV9V9L6FfUmS4oqL/ef2Bp+OOsCfjjrgk6HYVYqhd7DkTSc9FUH84HxwPbAWaTEd1qNTQ/P6k4F/gi8C/he9v7JirovAJUJ5sH+xm5mZv1T9KCBLwHDgEMiYhlwo6SNgcmSzszKqpkaEc/klrskvQxcJGm7iHgkt251RNzZnvDNzKyviu5SOwiYVZFYppOS0H69bVSRbLrdl7177jYzs0Gg6ISzE7AgXxARjwIrsnXN+AfSF8MtrCjfVNKzkl6RdJ+kQ/ocrZmZtUzRXWrDgeerlC/N1jVE0tbAt4B/r7haWgR8E5gLbEj6orirJH0yIq7uZV8TgYkAI0aMoKurq9Ew2m758uUDKp6Bpi/tc9Juq3ssD9U29vlTn9uotpa3T0QU9gJeAU6oUv4E8IMG9/Em4FbSl8INr1NXwB3A3Eb2vccee8RAMnv27E6HMKD1pX22mzQjtps0IwIiIP08RPn8qc9tVFsj7QPcHQ3mgKKvcJYCm1Yp34TqVz5rkCTgl8AuwD9GxNJa9SMiJF0NTJW0dkS82oeYbQgaOWlGp0MwK52iE84CKu7VSNoW2ICKezu9OIc0nPpDEdFI/W7+xlIzsw4retDADcBYSRvlyg4HVgJzam0o6RTgOOAzEXF7Ix+WXRF9Apjnqxszs84q+grnQuB44GpJU4FRwGTg7Mjd/Je0CJgTEUdny0cBU4BpwBOS9s7t8+HIhk1LmgNcRbpa2gD4IrA38PH2HpYNNtdOOwGAj044r8ORmJVHoQknIpZK2h+4ALiWdN/mHFLSqYwrP93Nh7P3Cdkr7/OkRARplNqJwDakIdP3Ah+JiBtaEb8NHbs9/XCnQzArncK/niAi5gMfrFNnZMXyBHommmrbHd2P0MzMrI08W7SZmRXCCcfMzArhhGNmZoVwwjEzs0IUPmjAbCC47N1jOx2CWek44VgpnXrgcZ0Owax03KVmZmaFcMKxUtp1ySJ2XbKo02GYlYq71KyUZlx6IuBZo82K5CscMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhPCzaSmnc587tdAhmpeOEY6X0wNY7dDoEs9Jxl5qZmRXCCcdKacrM85ky8/xOh2FWKk44VkpHzZvFUfNmdToMs1JxwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4Qf/LRSun/E9p0Owax0nHCslD464bxOh2BWOu5SMzOzQjjhmJlZIZxwrJQWTx3H4qnjOh2GWak44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGZBqyUThn7tU6HYFY6TjhWSpfvfmCnQzArHXepmZlZIZxwrJSOnDuTI+fO7HQYZqXiLjUrpR/OugBw15pZkZxwzBo08uTr1lhe/K8f6VAkZoNT4V1qknaWdLOkFZKelHSGpLUb2G4TSZdIWirpBUm/lrR5lXrjJd0v6WVJ8yUd3p4jMTOzZhSacCQNB24CAhgPnAGcBJzewOZXAGOAY4AJwJ7ANRX73xe4CpgNHARcB1wu6cMtOQAzM+uzorvUvgQMAw6JiGXAjZI2BiZLOjMr60HSPsBYYL+IuDUrewL4naQDIuKmrOq3gVsj4vhsebakXYDvAL9p32FZ0UaefB0n7baaCbluLndxmQ1sRXepHQTMqkgs00lJaL862z3dnWwAIuL3wJ+zdUhaD/gA8B8V204H9pG0Sf/DNzOzvir6Cmcn4JZ8QUQ8KmlFtu7aGtstqFL+YLYOYHtg3Sr1HiQl1h2Bu/oWtjWq8sY61L/yGOo34/tzfEO9baxcFBHFfZj0CvCNiDi3ovxx4JcRcWov290IvBQRH68o/xUwKiL+QdI/ArcD74mIubk6OwB/BMZGRI9uNUkTgYnZ4juBhX0+wNbbAni200EMYG6f2tw+9bmNamukfbaLiC0b2VknhkVXy3Dqpbwv21Uuq8b2RMTFwMV1PrsjJN0dEaM7HcdA5fapze1Tn9uotla3T9H3cJYCm1Yp3wR4vg/bbZrbbmmurLIOdfZvZmZtVnTCWcAb91wAkLQtsAHV79H0ul0mf2/nYeCVKvV2Al4DHupDvGZm1iJFJ5wbgLGSNsqVHQ6sBObU2W7r7DkbACSNBkZl64iIVaTnbw6r2PZw4I6IeKH/4RduQHb1DSBun9rcPvW5jWprafsUPWhgODAfeACYSkoYZwPnRsRpuXqLgDkRcXSubCZppNnXSVcsU4G/RMQ/5ersC3QBF5AeCj04q39gtQEDZmZWnEKvcCJiKbA/sDZpCPTpwDnAdyuqrpPVyTuCdBX0C+CXwD3AJyr2fztwKHAAMAv4GHCUk42ZWecVeoVjZmbl5e/DGUD09nnYAAAD60lEQVQkfVHSH7OJR++RtH8D20yWFFVeg3be/XZP8DoU9KWNJI3s5VyZXlTcRZG0g6SLJM2T9Kqkrga3K8U51Jf2acX5468nGCAkHQFcCEwmPcD6eWCGpD0j4oE6m78AVCaYB1seZAFyE7zOJ03wuj1wFumPo9NqbAppgtd3kiZ47b7Pdw3wT7U2Gmz62UaQ7mv+Nrc8FB983IV0D/dO4E1NbFeKc4i+tw/05/yJCL8GwIs0w8EvcstrAfcDv6qz3WTg2U7H38J2OIX0TNXGubJvAivyZVW224f0cO/7c2V7ZWUHdPq4BkgbjczaY1ynj6GANlor9/OVQFcD25TpHOpL+/T7/HGX2gAgaRRpBN7rE49GxGvAf5JNTloibZvgdQjpaxuVRvb/p1mlOYf62D795oQzMHQ/rFpt4tHNJNWbp2hTSc9KekXSfZIOaX2IhekxUWtEPEr6673aw7+9bpfJT/A6VPS1jbpdkvXbPyXpbEnD2hHkIFSmc6g/+nz++B7OwDA8e6+cfmdpbv0zvWy7iNSdMhfYEDgWuErSJyPi6lYHWoDhVJ+GaClvtFOz241qQVwDSV/baBXwb6TvhlpG+kLDSaR7QONbG+KgVKZzqC/6ff444bRJ9v0729SrFxH5v6iamng02/5XFZ97LfC/pC+dG4wJB9o/wetQ0PSxRsRTwNdyRV2SngZ+Kmn3yM2yXmJlOoea0orzx11q7XMY6VK83gtaOPFopLt7VwPvamQo8QDUzgleh4q+tlE1V2bv7+1XRENDmc6hVmnq/HHCaZOI+FlEqN4rq959lVNt4tG/RkRv3Wk1Q+hz8J3Vzgleh4q+tlE1UfFeZmU6h1qlqfPHCWcAiIg/kWazfn3iUUlrZcs3NLMvSSJN+TMvIl5tZZwFadsEr0NIX9uomkOz93taEdggV6ZzqFWaO386PR7cr9fHuB8JvEp6cO8DwDTSL5Bdc3X2A1YD++XK5gDHAx8mJZrrSQ+sfazTx9THdhgOPAXcSJoTbyKwHPh+Rb1FwM8rymYCfwIOAT5Oerbptk4f00BpI9IzW2dl7XMAcEZ2jl3V6WNqQxu9OftleChwB/CH3PKbfQ413z6tOH86fuB+rXESfDH7R14F3AvsX7F+DOnSdUyu7OfZf5CVwEvAbcBBnT6WfrbDzsAt2TE9BXwPWLuizmJgWkXZpsAlpP72ZcBlwBadPp6B0kakCXDvJs1M8bfsXDsDWK/Tx9OG9hmZ/V+p9hpZ9nOoL+3TivPHk3eamVkhfA/HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPwCFufQ3YMYwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -378,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -410,7 +410,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -423,7 +423,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -433,16 +433,16 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Exact delta: \t0.4446\n", + "Exact delta: \t0.4700\n", "Esimated value:\t0.4510\n", - "Probability: \t0.9452\n" + "Probability: \t0.5918\n" ] } ], @@ -454,12 +454,12 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYXFWd//H3h0VB1iAQGAaIgIgs/pSEzWEkyB5wUEDZHI0DdHQcXB7EACIEcHACssyEmSGNCvpTiCMiIwkkrA1G2RIMhiVgwLCDLIEQEpDlO3+c21CpVHdXVde9t7r4vJ6nnq577rm3vqequ7597j33XEUEZmZmeVuh7ADMzOzdwQnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjjWMpImSIo+Hp+vcx9bZvtZu6p8bLaf1fOJvr44BrnPyyX11FFvJUnfkHS3pKWSFkq6WtKuTb5uu7ynYyt+H96S9JKkP0o6X9LmTe6zR9LlFct7S/pG66K2VnLCsVZ7CdilxmN6ndtvCZwKVH/RT8v2s6Q1YTYdR64krQhcCZwJ/AYYA4wF3gR6JB3RxG7b5T3t9Ung48DBwI+AvYE/StqvBfveG3DCaVMrlR2AdZw3IuK2Vu80Ip4Fnm31ftvQscD+wH4RUZmk/1fSFKBb0s0R8cRgX6jE9/TOiFicPb9e0oXAVOBSSSMi4qUSYrICuIdjhZN0oqT5kl6V9Iyk6ZI2kDQauCqr9ufs0MuCbJtlDv9IGpEtHybpYkmLJD3ee+hO0rclPSnpWUkTJa1Q8fpbSZoi6TFJSyTdmx3CWiFb32cc2fpNsu1fyLafIelDVW3cODsMtlTSAklH1/n2fB24qSrZ9PoOsApwVMXrLJD0A0nflfS0pMWSfi5prYHaUuuQmqR1Jf1E0vNZ23okjapqW+9rfjN7zxdm70dTvcGIeI2UaNcGDq94nRUknZD9rrwm6UFJX+xrP5ImAMcBm1YcurskW7eLpN9kvxOvSJoj6chm4rXmuYdjLSdpud+riHgjW/cF4CRgPHAv8H7SIZbVgLuAbwE/AA4CngJeG+DlJgI/Jx2e+SfgJ5I+BmyaLY8Evgf8AZiSbbMR8EC23cvAR4HTgFWB7/cXh6R1gJnA88CXSYejTiD9p75lRCyVJOB/gXVJyeHVbP/rAH/q533bGBgBnFdrfUQ8JGku8ImqVYcD84FjgA2Bs4AfAp/try19uBLYItvmOeB44CZJH4uI+RX1Pgf8EegC/hY4l3QY8J/72XefImKepMeBnYELs+JJwBeB07N27AX8WNLzETG1xm5+CHyQ9Pv0maystwe3KfC7bN+vAn8HXCzprYi4rJmYrQkR4YcfLXkAE4Do4zEiq3MB8Kt+9nFAZf2K8rFZ+erZ8ohs+eKKOmsCr5O+1FesKL8D+EUfryfSP14nAQ/XEccZpGSzTkXZMNK5q69my2OybXeqqLMp8AbQ00/bd862O7CfOlcC91csLwBe6H1fsrIjgbeADzf4nu6bLe9WUWc10pf25KrXfAhYqaLsfODpAX4/lnm9GutvBa7Jnm+RteGLVXV+Sjok17vcA1xesfwDYMEAcfR+5pOBG8v+u3k3PdzDsVZ7CdizRvmT2c85wFGSTiOdtJ4dEW8O4vVu6H0SEYskPQvcXLXP+cAmvQuSVgFOJH0xbwKsXLFupch6Y33YE7gOWFTRk3sZmA30HnraEXgmIm6viO0RSbObaF89rot3zokAXAH8DNgBuL+B/ewIPBsRN/cWRMQrkqYC1SPkbqp6n+4D1pf0noj4a2Phv00Vz/cgJZxfV/WYbwAOl7RiI783koaRepkHknq4K2arBn0uzOrnhGOt9kZEzOpn/Y+BNUiHYk4Bnpf038CEJhPPi1XLf+2jbJWK5YnA0aQvoLuy+gcCJ2f1FtO3dUk9kUNrrOtNfhsAf6mx/i+ktvel98tv037qbMryX5LLvFakw3qLSYfXGrEh8EyN8mdIhwMr1XqPBbwne96MjYB52fN1SUmhrwEEGwKPN7DvS0if2xmk5LgI+Arpc7eCOOFYoSLiLdI5ivOycxZHAv9K+hK9sL9tW+izwKSIOKu3QNL+dW77Amm48hk11r2c/XwaWL/G+vWBpX3tOCIey07o/wPwH9XrJX0A2LbGa69fVW9VYHXS+ZpGPFW9r8xwUrtzI+nDpHNBt2ZFL5AOQf4dqadTrVZC72vfq5BG/v1LRFxYUe5BUwXzG26liYjHIuLfSIe8ts6Ke/87XqX2Vi2xKhUnzpWufTmsqk5fcdwAbAPcGxGzqh4PZHXuBIZL2qniNTYBtq8jtn8H9pC0d41138vi/lFV+V5a9uLNg0jnSnp7mvW+p7eTDou9PShB0vtIX9Yz64i9KZLeS0qwL/LOwI4bST2ctWq8z7P6OWxX3ZsFeG+2r8rPfA1SYrcCuYdjrbaSpJ1rlD8WEU9Imkz67/U20uGS3Ukji8Zn9Xq/tMcpXXeyJCLmtjjG64CvSpqfxfJV0pdSpb7iOBf4PHCjpEmkntlwYDdgZqQRT1cDdwO/lDSeNCrqdOr7r3wS6TzRryX9gHRSfA3SaLcDgH+M5a/BWQpMk3Q26VDT2cCvI+K+AdqyjIiYIel3wC8knUAaHPEtUoI+u47Y67WDpKXA+0g9tnGkQSCHRHYNTkQ8oHR9zhRJZ5GS5yqkZL9lRPQ1zHweKdmPBe4BnouIBZLuBE6RtIjUYzqB9Pu3ZgvbZQMpe9SCH53zoP9RaidndcaShqe+QBpS/EfgqKr9HAc8QjqksqBiu1qj1A6o2nYB8IOqskuAWRXLw4Ffk47jP0MaRnwMVSOoasWRlf8NcHG27WvZa/4M2Kaiziak2RWWZvsYB1xOP6PUKrZdCfhm9t4sBRYC1wC71qi7ADgne++fAV4BLgPWbvQ9zcrWI40EW5i99s3ADnW8x8vtq0asvXV6Hy8Dc0m9us1r1Bdp1oB7s/f52SyeL1TU6WHZUWqrZJ/NX7LXuCQr34LUa3oFeBT4dvaePVf238276aHswyiMpC1IY/t3Jv1389uIGF3HdmuRhl5+mnQocCrwtYh4vqregaRDDx8EHgZOi4hftLINZu0iO+dzeUR8q+xYzAZSxjmcbUjXKTyYPer1C2A0aXTRWNKQzysrKyhNbvgr4CZgP9Kw28v6OB5uZmYFKqOHs0KkkUoozfK67kA9HEm7AL8nXZB2S1a2I+kk514RcX1WNgNYOSI+WbHt1cCaEdHUTLtm7cw9HBtKCu/h9CabBu1HupDulor93AH8OVvXO9Jld+B/qradAuzSO7eUWSeJiBFONjZUDJVh0VvxzgVhle7P1gFsTrpivLre/aR2bplbdGZmNqChMix6GMtf2QxpJM1mFXWoUW9h1fplSOoiXfXOqquuOnLjjTceVKBvvfUWK6wwVPL44Lm9/VvjwXSa8uUth+b/O/58O1sr2vvggw8+FxHr1VN3qCQcSEMcq6lGefWy+ihPhRHdQDfAqFGjYtas/mZlGVhPTw+jR48e1D6GErd3AMp+/R54oP96bcqfb2drRXslPVJv3aGSyhdS+86La/NOj2ZhRVl1HajdQzIzs4IMlYQzj3fO1VSqPLfzEGlq+up6W5GuLG5kCLaZmbXYUEk41wAbZNfZAJDdhXCzbB2R7hp4E2lixkqHAreGb1trZlaqws/hZJMBjskWNwLWlHRItnx1RCzJ5ri6OSKOAoiIW7NrbH4q6VukHstE0txV11fs/gygR9L5pItCx2SPfXNvmJmZ9auMQQPrA7+sKutd/gBpnqaVeOcGSb0OI01r/2MqpraprBARM7Pk9T3SvS7+DBwREde2MH6z+hV8YbVZOys84UTEApa9s1+tOiNqlL0IfCl79LftlVRNeWNmZuUbKudwzMxsiHPCMcvTyJHpYWZD6sJPs6HnrrvKjsCsbbiHY2ZmhXAPx6wAI06Ytszygn/bv6RIzMrjHo6ZmRXCCcfMzArhhGNmZoXwORyzPB1zDJfe8WjZUZi1BfdwzPLU3c1J+x5bdhRmbcEJx8zMCuGEY5an2bPZ9un5ZUdh1haccMzyNGoUU3/yjbKjMGsLTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoVwwjEzs0J4ahuzPM2axQGTZpYdhVlbcMIxy9PIkdyzwdNlR2HWFnxIzczMCuGEY5anri7OnD6p7CjM2oITjlmeLrqII+6eUXYUZm3BCcfMzArhhGNmZoVwwjEzs0I44ZiZWSGccMzMrBC+8NMsT9tvz9wnXio7CrO24IRjlqfZs/nUCdPKjsKsLfiQmpmZFcIJx8zMCuGEY5YniQUTDyg7CrO24IRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEZxowy9PkyZx4xdyyozBrC044Znnq6uKyhz21jRmUcEhN0taSbpC0RNKTkk6XtOIA20yQFH08Tqyod0kfdbbKv2VmZtafQns4koYB1wP3AQcCmwPnkBLfyf1s+kNgelXZp4HxwDVV5fOAL1WVLWguYrNB6u7m8Dlzueyj+5YdiVnpij6k9mVgVeCgiFgEXCdpTWCCpLOysuVExOPA45Vlkr4LzIuIOVXVX4mI23KI3axx48bxfXDCMaP4Q2r7ATOqEssUUhLard6dSFoH2Au4rLXhmZlZXopOOFuRDnm9LSIeBZZk6+p1CLAyKVlV21rSIkmvSZopqe5EZmZm+Sn6kNow4MUa5QuzdfU6DLgrIh6sKv8DcDvpHNF6wHGkw3a7RsQdtXYkqQvoAhg+fDg9PT0NhLG8xYsXD3ofQ4nb27/R2c/jtntjmfKh8p758+1sRbe3jGHRUaNMfZQvX1HakHT4bfxyO47496q600jJ5yTSIIPlg4noBroBRo0aFaNHj64njD719PQw2H0MJW5vfc6Zu+yf2oIjG99HGfz5drai21v0IbWFwNo1yteids+nls+REtQvBqoYEUuBq4Ht6w3QzMzyUXTCmUfVuRpJGwOrUXVupx+HATMj4rEGXreu3pOZmeWn6IRzDbCPpDUqyg4FlgI3D7SxpBHAztQ5Ok3SqqSRcbMbDdSsJSIYMX5q2VGYtYWiE86FwGvAFZL2zE7YTwDOrRwqLWm+pB/V2P4w4A3g8uoVktaS9FtJ4yTtIelQ4CZgI+DMHNpiZmYNKHTQQEQslLQHcAFwFem8zXmkpFMdV63pbg4DboiIZ2usew14ljRjwfrAq8CtwG4RMaslDTAzs6YVPkotIu4DPjlAnRF9lH+0n21eBQ4aVHBmrTZyJFc98RKfGvvvA9c163CeLdosT3fdxXZlx2DWJnwDNjMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQniUmlmejjmGS+94tOwozNqCezhmeeru5qR9jy07CrO24IRjZmaFaCjhSKo13YyZ9WX2bLZ9en7ZUZi1hUZ7OE9IOkvSh3OJxqzTjBrF1J98o+wozNpCowlnMnAIcI+k2yV1SVozh7jMzKzDNJRwIuLUiNgM2At4ADgXeErSzyXtmUeAZmbWGZoaNBARN0bEF4ANgGOBDwEzJC2QNEHS37QySDMzG/oGO0ptFPAJ0m2jFwK/BY4G5kv6/CD3bWZmHaThhCNpU0mnSnoIuAHYEPgn4G8i4h+BTUnnes5uaaRmZjakNTTTgKQbST2ax4FLgIsj4pHKOhHxpqRLga+3KkgzMxv6Gp3a5jlgDHBdREQ/9eYAH2g6KrNOMWsWB0yaWXYUZm2h0UNqFwC/r5VsJK0u6RMAEfF6dc/H7F1p5Eju2WCLsqMwawuNJpybgK37WPehbL2ZmdlyGk046mfd6sCSQcRi1nm6ujhz+qSyozBrCwOew8kOk42uKDpa0r5V1VYB9gfmti40sw5w0UUcAZ4x2oz6Bg3sRLq4EyCAzwJvVNX5KzAPOL51oZmZWScZMOFExNlk19RI+jPwmYiYk3dgZmbWWRoaFh0RHupsZmZNqecczhhgZkQsyp73KyKubklkZmbWUerp4UwFdgbuyJ4HfY9WC8A3aTMzs+XUk3A+ADxV8dzM6rX99sx94qWyozBrC/UMGnik1nMzq8Ps2XzqhGllR2HWFuo5h/O+RnYYEb7408zMllPPIbXFpHMz9fI5HDMzW049CeefaCzhmFkviQXAiPFTy47ErHT1nMO5pIA4zMysww32FtNmZmZ1qWfQwB3A2Ii4T9KdDHB4LSJ2bFVwZmbWOeo5h3MvsLTiuc/nmJlZw+o5h/Oliudjc43GzMw6VtPncJSsJ6m/m7KZmZkBTSQcSWMk/R54FXgaeFXS7yXt3/LozIa6yZM5cZ9/KTsKs7bQUMKRNA64inQx6NdJN2P7erb8m2y9mfXq6uKyj1bfINfs3amh++EAJwHdEfGVqvILJV0IfAeY3JLIzMysozR6SO39wBV9rPsVsM5AO5C0taQbJC2R9KSk0yX1Ox2OpBGSosZjSo26B0qaK+lVSfdJOrSulpnlobubw+dMLzsKs7bQaA/nJmA34Loa63YDbulvY0nDgOuB+4ADgc2Bc0iJ7+Q6Xv9bwO8qlp+r2v+upMT3X8DXgDHAZZIWRsS1dezfrLXGjeP74MNqZtR34efWFYv/AfxQ0vuBK4G/AOsDnwH2A44eYHdfBlYFDoqIRcB1ktYEJkg6KyvrzwMRcVs/678L3BIRX8uWb5K0DXAK4IRjZlaieno497DsxZ4CxmWP6rt/Tqf/2aL3A2ZUJZYpwERSD+mqOuKpSdJ7gd1JPZtKU4CLJa0VEb4TlplZSepJOLu38PW2Am6sLIiIRyUtydYNlHAulrQOqWd1GfCdiOidBWFzYGVgXtU295MO2W0J3Dm48M3MrFn1zDRwcwtfbxjwYo3yhdm6vrwG/CfpsNgiYDQwnpRkDqzYNzX2v7Bq/TIkdQFdAMOHD6enp6e/+Ae0ePHiQe9jKHF7+zc6+3ncdm8sUz5U3jN/vp2t6PY2OmjgbZJWAFapLq/jjp+15mJTH+W9+3wKqLx6rkfSM8B/SfpoRMzpZ//qo7x3391AN8CoUaNi9OjR/Uc/gJ6eHga7j6HE7a3POXOX/VNbcGTj+yiDP9/OVnR7G73wU5LGS5oPvA68XOPRn4XA2jXK16J2z6c/l2c/t6/YNzX237vc6P7NzKyFGr0O52vACcCPSD2HfwVOBx4EFpAdmurHPNK5mrdJ2hhYjeXPvQwkqn4+REqCW1XV2wp4K4vRrFgRvtunWabRhHMMcCpwVrZ8ZUScBmxDShgfHGD7a4B9JK1RUXYo6fYHjZ4rOiT7ORsgIl4jXSf02ap6hwK3eoSamVm5Gj2H8wFgTkS8Kel1ssNVEfGWpP8CfkjqAfXlQlIv6QpJE4HNgAnAuZVDpbNDdjdHxFHZ8gRgDdJFn4uATwDHA1dExB8r9n8G6fzO+aTrhMZkD191Z2ZWskZ7OM8Dq2fPHwU+VrFuGOmizj5FxEJgD9K1OlcBpwHnkXpNlVZi2et55pGu07kYuBo4Ajg7+1m5/5mkns+ewAzgH4AjPMuAlWbkSK665OtlR2HWFhrt4fwO2IH0pX8paYaAdYC/Al8FbhhoBxFxH/DJAeqMqFqeQrqAc0ARcSWpd2NWvrvuYruyYzBrE40mnAnARtnzM0mH1MaSejbXAce2KjAzM+ssDSWciHgAeCB7/hrpXjg+XmBmZgMazIWffwtsCDwZEU+0LiQzM+tEzdxi+iuSHgMeAW4HHpX0uKR/bnl0ZmbWMRqdaeAU4ALS9TT7A6Oyn9cA/5GtNzMzW06jh9S+CpwZEd+tKp+ezW32VdLMA2YGcMwxXHrHo2VHYdYWGj2ktip939XzZmpM5mn2rtbdzUn7evCmGTSecK4EDupj3cGAJ40yM7Oa6rnF9JiKxWuAsySNYPlbTG8DfLv1IZoNYbNns+3T87lngy3KjsSsdPWcw5nK8reS3gjYp0bdn5HuxGlmAKNGMRU8Y7QZ9SWcD+QehZmZdbx6bjH9SBGBmJlZZ2t4pgFJK5EGCOwKrAO8APyWdKuAN/rb1szM3r0aSjiS1geuBT5CusPnM8AupOtv7pa0d0Q82+ogzcxs6Gt0WPS5wPuBnSJis4jYJSI2A3bKys9tdYBmZtYZGk04Y4DxEXFnZWG2fCJpmhszM7PlNHoO573Ay32sexl4z+DCMesws2ZxwKSZZUdh1hYa7eHcBoyXtFplYbY8PltvZr1GjvRFn2aZRns4xwE3AY9JupY0aGB90kWgAka3NDozM+sYDfVwImIO8EGgG1gP2IuUcC4EPhgRd7c8QrOhrKuLM6dPKjsKs7ZQdw9H0srAjsCfI+KE/EIy6yAXXcQR4BmjzWish/MmcCPw4ZxiMTOzDlZ3womIt4A/AcPzC8fMzDpVo6PUvgOcImm7PIIxM7PO1egotZNJMwrMkfQEaZRaVFaIiB1bFJuZmXWQRhPOPdnDzMysIXUlHEmrkqa1uQd4Grg+Ip7JMzCzjrD99sx94qWyozBrC/XcYnoz4HpgREXxIkmfi4hr8wrMrCPMns2nTphWdhRmbaGeQQNnAW8Bfw+8D9gG+AMwOce4zMysw9STcHYBTo6I30XEqxFxPzAO2ETShvmGZ2ZmnaKehLMh8HBV2UOkudM2aHlEZp1EYsHEA8qOwqwt1HsdTgxcxczMrG/1DoueIemNGuU3VJdHxPqDD8vMzDpNPQnntNyjMDOzjjdgwokIJxwzMxu0RudSMzMza4oTjpmZFaLRudTMrBGTJ3PiFXPLjsKsLTjhmOWpq4vLHvbUNmbgQ2pmZlYQJxyzPHV3c/ic6WVHYdYWCk84kraWdIOkJZKelHS6pBUH2GYHSRdLmp9t94CkUyWtUlVvgqSo8dg331aZ9WHcOL4/44KyozBrC4Wew5E0jHSrg/uAA4HNgXNIie/kfjY9NKs7EfgT8BHgjOznwVV1XwKqE8z9g43dzMwGp+hBA18GVgUOiohFwHWS1gQmSDorK6tlYkQ8W7HcI+lVYLKkTSPikYp1b0TEbfmEb2ZmzSr6kNp+wIyqxDKFlIR262ujqmTT6w/ZT8/dZmY2BBSdcLYC5lUWRMSjwJJsXSM+Trox3ANV5WtLek7S65L+IOmgpqM1M7OWUURxdx6Q9DpwfEScX1X+OPDTiDipzv1sAPwRuDoixlaUf57U45kDrE66UdwY4OCIuKKPfXUBXQDDhw8fOWXKlEabtYzFixez+uqrD2ofQ4nb27/Ru+8OwKSfXblM+XYbrdXSuPLiz7eztaK9u+++++yIGFVP3TIu/KyV4dRH+fIVpfcA/wMsBr65zI4jflZV9yrg98ApQM2EExHdQDfAqFGjYvTo0fWE0aeenh4Gu4+hxO2tzzlzl/1TW3Bk4/sogz/fzlZ0e4s+pLYQWLtG+VrAiwNtLEnAT4FtgDERsbC/+pG6b1cAHxlo6LVZLiIYMX5q2VGYtYWiezjzqDpXI2ljYDWqzu304TzScOq9IqKe+r18x1Izs5IV3cO5BthH0hoVZYcCS4Gb+9tQ0onAscDnI2JmPS+W9Yg+A9wdEW82F7KZmbVC0QnnQuA14ApJe2Yn7CcA51YOlc5mFPhRxfIRwJmkw2lPSNq54rFeRb2bJX1N0t6SPgNMA3bOXsOseCNHctUlXy87CrO2UOghtYhYKGkP4ALgKtJ5m/NYPiGsBFSec9k7+zk2e1T6EnBJ9nw+8A1gQ9KQ6buA/SPimlbEb9awu+5iu7JjMGsThY9Si4j7gE8OUGdE1fJYlk80tbY7ahChmZlZjjxbtJmZFcIJx8zMCuGEY2ZmhXDCMTOzQpQxtY3Zu8cxx3DpHY+WHYVZW3APxyxP3d2ctO+xZUdh1haccMzMrBBOOGZ5mj2bbZ+eX3YUZm3BCccsT6NGMfUn3yg7CrO24IRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEp7Yxy9OsWRwwqa47opt1PCccszyNHMk9GzxddhRmbcGH1MzMrBBOOGZ56urizOmTyo7CrC044Zjl6aKLOOLuGWVHYdYWnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhCz/N8rT99sx94qWyozBrC044ZnmaPZtPnTCt7CjM2oIPqZmZWSGccMzMrBBOOGZ5klgw8YCyozBrC044ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeKYBszxNnsyJV8wtOwqztuCEY5anri4ue9hT25iBD6mZmVlBnHDM8tTdzeFzppcdhVlbcMIxy9O4cXx/xgVlR2HWFpxwzMysEIUnHElbS7pB0hJJT0o6XdKKdWy3lqSLJS2U9JKkn0t6f416B0qaK+lVSfdJOjSflti7yYgTpjHihGnMfeKlt5+bWWMKTTiShgHXAwEcCJwOHAecVsfmvwBGA0cDY4EdgCur9r8r8CvgJmA/YBpwmaS9W9IAMzNrWtHDor8MrAocFBGLgOskrQlMkHRWVrYcSbsA+wC7RcQtWdkTwO2S9oyI67Oq3wVuiYivZcs3SdoGOAW4Nr9mmeWjuie14N/2LykSs8Er+pDafsCMqsQyhZSEdhtgu2d6kw1ARNwB/Dlbh6T3ArsD/1O17RRgF0lrDT58MzNrVtE9nK2AGysLIuJRSUuydVf1s928GuX3Z+sANgdWrlHvflJi3RK4s7mwrd3UOodSz3//zW431AymnZXbHrfdG4xuVVD2rqeIKO7FpNeB4yPi/Kryx4GfRsRJfWx3HfBKRHy6qvxnwGYR8XFJfwfMBD4WEXMq6mwB/AnYJyKWO6wmqQvoyhY/BDzQdAOTdYHnBrmPocTt7Wxub2drRXs3jYj16qlYxtQ2tTKc+ihvZrvqZfWzPRHRDXQP8Np1kzQrIka1an/tzu3tbG5vZyu6vUWfw1kIrF2jfC3gxSa2W7tiu4UVZdV1GGD/ZmaWs6ITzjzeOecCgKSNgdWofY6mz+0yled2HgJer1FvK+At4MEm4jUzsxYpOuFcA+wjaY2KskOBpcDNA2y3QXadDQCSRgGbZeuIiNdI1998tmrbQ4FbI+KlwYdfl5Ydnhsi3N7O5vZ2tkLbW/SggWHAfcCQ1kpaAAAFXUlEQVQ9wERSwjgXOD8iTq6oNx+4OSKOqiibThpp9i1Sj2Ui8JeI+PuKOrsCPcAFpItCx2T19601YMDMzIpTaA8nIhYCewArkoZAnwacB5xaVXWlrE6lw0i9oB8DPwVmA5+p2v9M4BBgT2AG8A/AEU42ZmblK7SHY2Zm716eLbpOeU862m6aaa+kHbK2zs+2e0DSqZJWKSruZjX7+VZsv4Kk2ZJC0gF5xtoKg2mvpIMk3SlpqaTnJU2XtFreMQ/GIP5+R0m6NmvnC5Kul7RTETEPhqQtJE2WdLekNyX11Lldrt9XvsV0HSomHb2PNOno5sA5pIR9cj+bQpp09EOkSUd7zz1dCfx9fxuVaRDtPTSrO5F0se1HgDOynwfnGPKgDPLz7XU0sFEuAbbYYNor6WjSOdKzgOOBYcAnaePvkmbbm42gvR64C/hCVnw8cK2kj0TEI3nGPUjbkM5h3wa8p4Ht8v2+igg/BngAJ5Ku81mzouzbwJLKshrb7UK64PQTFWU7ZmV7lt2uHNq7Xo2yrqy9m5bdrla3t6LuMOBZ4KisrQeU3aacPt91gZeBY8puQ0Ht/TLwJrB21Wf9JvCVsts1QJtXqHh+OdBTxza5f1/5kFp9cpt0tE011d6IeLZG8R+yn+u3LryWa/bz7XUG8Dvghhxiy0Oz7f1c9vMneQWWk2bbuzLwBrC4omxxVqaaW7SJiHiric1y/75ywqnPcpOHRsSjpP+Qal2Q2ud2mcpJR9tRs+2t5eOkrvlg56jLU9PtlfQR4Euk4fdDRbPt3Yn0OR4l6XFJr0u6XdLH8wu1JZpt76+yOudIWl/S+qRRtQuBX+YUa5ly/75ywqnPMGpPjbMwW9fq7crWkrglbQB8B/j/0ce9jtrEYNo7CfjPiJjf8qjy02x7NyAd3z8ZGA98CngFmC5peKuDbKGm2hsRT5JueXIw8Ez2OIg0EXCt3vxQl/v3lRNO/fKedLTdDCpuSe8h3ZtoMfDNFsaVl4bbK+kw0hfw9/IKKkfNfL4rAKsDR0XEzyNiOvBp0jmNf2l9iC3VzOe7Ien8x2zSIaX9sufTJG2SR5BtINfvKyec+uQ56Wg7ara9AEgS6eLcbYAxkS74bWcNt1fSysDZpFE8K0haG1gzW71a1fRN7abZz/eF7GdPb0HWc50NbN2q4HLQbHuPJ42+OyQipmcJ9mBSgh1Kh1Drlfv3lRNOffKcdLQdNdveXueRhp8eGBHt3M5ezbR3NeBvSVMzLcwed2frpvDOYIl21Oznez/pP93qE+YinadrV822dyvg3oh4vbcgIv4K3EsaWt1pcv++csKpT26TjrapZtuLpBOBY4HPR5pqaChopr2LScf3Kx+HZ+tOAo7MJ9SWaPbznUpKLrv3Fijdun0k7yTbdtRsex8Bts0ODwNv38p+W2BBDnGWLf/vq7LHiw+FB+mE2VPAdaR52rpIXzjfq6o3H/hRVdl04GHSycZPk0b5/LbsNuXRXuAI0n/AFwM7Vz2Wu0anXR6D+Xyr1o9gaFyHM5jf5yuzbb8I7E/6wn4WGFZ2u1rdXlIifR2YlrX1ANIX7+vA/yu7XQO0+X2keSUPAW4l9cp6l9/Xz+eb6/dV6W/MUHmQjlHfSPqv6CnStRcrVtVZAFxSVbZ29gX8IrAIuBRYt+z25NFe4JLsC7fWY2zZbcrj861aPyQSzmDaSxo08N/A89m21wPbld2eHNu7B3AL6fzVC6QEO7rs9tTR3t7fxVqPEf20N9fvK0/eaWZmhfA5HDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwzMysEE44ZmZWiP8DfaqI377r9ZEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XucXEWd9/HPl4sSCSRBSGARiKAYYfVRErm4riQCIsFnUUCD6GpcSKLrirsvQC6iBFAfAQVWXZcEFZZHJa6I7MqdQCaIC0oSQQQSDBLuYoCBEBIwIb/9o07LSU/PTF9Pz3R/36/XefV0nTrVVd0z/ZuqU6eOIgIzM7NW26TdFTAzs+7ggGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHGsaSbMlRT/bx6osY/esnNFl6dOzcka2pvbV1aPBMi+X1FNFvs0k/bOkuyStldQr6RpJ76rzdYfKezo99/uwQdJzkn4r6QJJu9VZZo+ky3PP3yvpn5tXa2smBxxrtueA/Sps11V5/O7A6UD5F/3VWTlrmlPNuuvRUpI2Ba4Evgr8NzAVmA68DPRIOrqOYofKe1ryHuCdwBHA94D3Ar+VdEgTyn4v4IAzRG3W7gpYx1kfEbc3u9CIWAmsbHa5Q9BngUOBQyIiH6T/S9I8YK6khRHxWKMv1Mb39I6IWJ39PF/ShcBVwI8kjY+I59pQJyuAezhWOEmnSFou6UVJT0q6TtL2kiYDP8+yPZgNvazIjtlo+EfS+Oz5UZIulrRK0qOloTtJn5f0uKSVks6WtEnu9SdImifpEUlrJN2TDWFtku3vtx7Z/p2z45/Jjr9e0pvK2rhTNgy2VtIKScdW+fZ8DlhQFmxKvgBsARyTe50Vkr4u6YuS/ihptaQfSho1WFsqDalJ2lbSf0h6Omtbj6RJZW0rvea/ZO95b/Z+1NUbjIiXSIF2NPCR3OtsIunk7HflJUn3S/pEf+VImg0cD+ySG7q7JNu3n6T/zn4nXpB0p6SP1lNfq597ONZ0kvr8XkXE+mzfx4FTgZOAe4DXkoZYtgSWACcAXwcOB54AXhrk5c4GfkganvkH4D8kvR3YJXs+Efgy8BtgXnbMjsCy7LjngbcBZwAjgP83UD0kbQPcCjwNfIo0HHUy6T/13SNirSQB/wVsSwoOL2blbwP8foD3bSdgPHB+pf0R8YCku4F3l+36CLAcmAHsAJwDfBf40EBt6ceVwBuyY54CTgQWSHp7RCzP5fsw8FtgJvA64DzSMOA/DlB2vyJiqaRHgX2BC7PkbwGfAM7M2nEQ8H1JT0fEVRWK+S7wRtLv0weztFIPbhfgl1nZLwJ/A1wsaUNEXFZPna0OEeHNW1M2YDYQ/WzjszzfBn46QBnvz+fPpU/P0kdmz8dnzy/O5dkaWEf6Ut80l/5r4Mf9vJ5I/3idCvyhinqcRQo22+TSxpDOXX0mez41O3afXJ5dgPVAzwBt3zc77rAB8lwJ3Jd7vgJ4pvS+ZGkfBTYAb67xPX1f9nz/XJ4tSV/ac8pe8wFgs1zaBcAfB/n92Oj1Kuy/Dbg2+/kNWRs+UZbnUtKQXOl5D3B57vnXgRWD1KP0mc8Bbm733003be7hWLM9BxxYIf3x7PFO4BhJZ5BOWi+OiJcbeL2bSj9ExCpJK4GFZWUuB3YuPZG0BXAK6Yt5Z2Dz3L7NIuuN9eNA4EZgVa4n9zywGCgNPe0NPBkRv8rV7SFJi+toXzVujFfOiQBcAfwAeAdwXw3l7A2sjIiFpYSIeEHSVUD5DLkFZe/TvcBYSa+KiD/XVv2/UO7nA0gB52dlPeabgI9I2rSW3xtJY0i9zMNIPdxNs10Nnwuz6jngWLOtj4hFA+z/PrAVaSjmS8DTkv4dmF1n4Hm27Pmf+0nbIvf8bOBY0hfQkiz/YcBpWb7V9G9bUk9kWoV9peC3PfCnCvv/RGp7f0pffrsMkGcX+n5JbvRakYb1VpOG12qxA/BkhfQnScOBeZXeYwGvyn6ux47A0uznbUlBob8JBDsAj9ZQ9iWkz+0sUnBcBXya9LlbQRxwrFARsYF0juL87JzFR4GvkL5ELxzo2Cb6EPCtiDinlCDp0CqPfYY0XfmsCvuezx7/CIytsH8ssLa/giPikeyE/t8B3yzfL+n1wF9XeO2xZflGACNJ52tq8UR5WZlxpHa3jKQ3k84F3ZYlPUMagvwbUk+nXKWA3l/ZW5Bm/v1TRFyYS/ekqYL5Dbe2iYhHIuJrpCGvPbLk0n/HW1Q+qilGkDtxrnTty1Flefqrx03AnsA9EbGobFuW5bkDGCdpn9xr7AzsVUXd/hU4QNJ7K+z7clbv75WlH6SNL948nHSupNTTrPY9/RVpWOwvkxIkvYb0ZX1rFXWvi6RXkwLss7wyseNmUg9nVIX3edEAw3blvVmAV2dl5T/zrUiB3QrkHo4122aS9q2Q/khEPCZpDum/19tJwyVTSDOLTsrylb60Zyldd7ImIu5uch1vBD4jaXlWl8+QvpTy+qvHecDHgJslfYvUMxsH7A/cGmnG0zXAXcBPJJ1EmhV1JtX9V/4t0nmin0n6Oumk+Fak2W7vB/4++l6Dsxa4WtK5pKGmc4GfRcS9g7RlIxFxvaRfAj+WdDJpcsQJpAB9bhV1r9Y7JK0FXkPqsc0iTQI5MrJrcCJimdL1OfMknUMKnluQgv3uEdHfNPOlpGA/Hfgd8FRErJB0B/AlSatIPaaTSb9/WzexXTaYds9a8NY5GwPPUjstyzOdND31GdKU4t8Cx5SVczzwEGlIZUXuuEqz1N5fduwK4OtlaZcAi3LPxwE/I43jP0maRjyDshlUleqRpf8VcHF27EvZa/4A2DOXZ2fS6gprszJmAZczwCy13LGbAf+SvTdrgV7gWuBdFfKuAL6RvfdPAi8AlwGja31Ps7TtSDPBerPXXgi8o4r3uE9ZFepaylPangfuJvXqdquQX6RVA+7J3ueVWX0+nsvTw8az1LbIPps/Za9xSZb+BlKv6QXgYeDz2Xv2VLv/brppU/ZhFEbSG0hz+/cl/Xfzi4iYXMVxo0hTLz9AGgq8CjguIp4uy3cYaejhjcAfgDMi4sfNbIPZUJGd87k8Ik5od13MBtOOczh7kq5TuD/bqvVjYDJpdtF00pTPK/MZlBY3/CmwADiENO32sn7Gw83MrEDt6OFsEmmmEkqrvG47WA9H0n7A/5AuSLslS9ubdJLzoIiYn6VdD2weEe/JHXsNsHVE1LXSrtlQ5h6ODSeF93BKwaZGh5AupLslV86vgQezfaWZLlOA/yw7dh6wX2ltKbNOEhHjHWxsuBgu06In8MoFYXn3ZfsAdiNdMV6e7z5SO3dvWe3MzGxQw2Va9Bj6XtkMaSbNrrk8VMjXW7Z/I5Jmkq56Z8SIERN32mmnhiq6YcMGNtlkuMTxxrm9jdnq/nQa8/ndh+b/Q/58O1sz2nv//fc/FRHbVZN3uAQcSFMcy6lCevlz9ZOeEiPmAnMBJk2aFIsWDbQqy+B6enqYPHlyQ2UMJ25vg5T9ei5bNnC+NvHn29ma0V5JD1Wbd7iE8l4q33lxNK/0aHpzaeV5oHIPyczMCjJcAs5SXjlXk5c/t/MAaWn68nwTSFcW1zIF28zMmmy4BJxrge2z62wAyO5CuGu2j0h3DVxAWpgxbxpwW/i2tWZmbVX4OZxsMcCp2dMdga0lHZk9vyYi1mRrXC2MiGMAIuK27BqbSyWdQOqxnE1au2p+rvizgB5JF5AuCp2abe9recPMzGxA7Zg0MBb4SVla6fnrSes0bcYrN0gqOYq0rP33yS1tk88QEbdmwevLpHtdPAgcHRE3NLH+Zs1T8IXXZu1UeMCJiBVsfGe/SnnGV0h7Fvhktg107JWULXljZmbtN1zO4ZiZ2TDngGPWThMnps2sCwynCz/NOs+SJe2ugVlh3MMxM7NCOOCYmVkhHHDMzKwQDjhmZlYIBxwzMyuEZ6mZtdOMGe2ugVlhHHDM2mnu3HbXwKwwHlIzM7NCOOCYtdPixWkz6wIeUjNrp0mT0qNXjbYu4B6OmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQnhZt1k6LFrW7BmaFccAxayffXtq6iIfUzMysEA44Zu00c2bazLqAA45ZO110UdrMuoADjpmZFcIBx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIXzhp1k77bVXu2tgVhgHHLN28u2lrYt4SM3MzArhgGNmZoVwwDFrJyltZl3AAcfMzArhgGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVgivNGDWTnPmtLsGZoVxwDFrJ99e2rpI4UNqkvaQdJOkNZIel3SmpE0HOWa2pOhnOyWX75J+8kxofcvMzGwghfZwJI0B5gP3AocBuwHfIAW+0wY49LvAdWVpHwBOAq4tS18KfLIsbUV9NTZrsblz06N7OtYFih5S+xQwAjg8IlYBN0raGpgt6ZwsrY+IeBR4NJ8m6YvA0oi4syz7CxFxewvqbtZ8s2alRwcc6wJFD6kdAlxfFljmkYLQ/tUWImkb4CDgsuZWz8zMWqXogDOBNOT1FxHxMLAm21etI4HNScGq3B6SVkl6SdKtkqoOZGZm1jqKiOJeTFoHnBgRF5SlPwpcGhGnVlnOzcCoiJhYlv454M+kc0TbAccDE4F3RcSv+ylrJjATYNy4cRPnzasUw6q3evVqRo4c2VAZw4nb25jJU6YA0LNgQdPKbCZ/vp2tGe2dMmXK4oiYVFXmiChsA9YBn6uQ/hjwlSrL2AF4GTihirwjgAeBK6spe+LEidGoBQsWNFzGcOL2NgjSNkT58+1szWgvsCiqjAFFD6n1AqMrpI8Cnq2yjA8DAn48WMaIWAtcA/jG8WZmbVZ0wFlK2bkaSTsBW1J2bmcARwG3RsQjNbxuceOGZmZWUdEB51rgYElb5dKmAWuBhYMdLGk8sC9Vzk6TNII0M25xrRU1K0RpUM2sCxQdcC4EXgKukHRgdsJ+NnBe5KZKS1ou6XsVjj8KWA9cXr5D0ihJv5A0S9IBkqYBC4Adga+2oC1mZlaDQi/8jIheSQcA3wZ+Tjpvcz4p6JTXq9JyN0cBN0XEygr7XgJWklYsGAu8CNwG7B8Ri5rSADMzq1vhi3dGxL3AewbJM76f9LcNcMyLwOENVc6saBOzmf2LPeprnc+rRZu105Il7a6BWWF8AzYzMyuEA46ZmRXCAcfMzArhgGNmZoVwwDEzs0J4lppZO82Y0e4amBXGAcesnUq3mDbrAh5SMzOzQtQUcCRVWm7GzOq1eLFXGbCuUeuQ2mOSLgUujoj7WlEhs64yKbtRoleMti5Q65DaHOBI4HeSfiVppqStW1AvMzPrMDUFnIg4PSJ2BQ4ClgHnAU9I+qGkA1tRQTMz6wx1TRqIiJsj4uPA9sBngTcB10taIWm2pL9qZiXNzGz4a3SW2iTg3aTbRvcCvwCOBZZL+liDZZuZWQepOeBI2kXS6ZIeAG4CdgD+AfiriPh7YBfSuZ5zm1pTMzMb1mqapSbpZlKP5lHgEtJstYfyeSLiZUk/Aj7XrEqamdnwV+u06KeAqcCNEQPO47wTeH3dtTLrFot893PrHrUGnG8DSyoFG0kjgb0i4paIWAc81OdoM9tY6RbTZl2g1nM4C4A9+tn3pmy/mZlZH7UGHA2wbySwpoG6mHWfmTPTZtYFBh1Sk/RuYHIu6VhJ7yvLtgVwKHB386pm1gUuuig9etVo6wLVnMPZh3RxJ0AAHwLWl+X5M7AUOLF5VTMzs04yaMCJiHPJrqmR9CDwwYi4s9UVMzOzzlLTLLWI8FRnMzOrSzXncKYCt0bEquznAUXENU2pmZmZdZRqejhXAfsCv85+DvqfrRaAb9JmljP+5Kv7pK342qFtqIlZe1UTcF4PPJH72cyaZa+92l0Ds8JUM2ngoUo/m1kT+PbS1kWqOYfzmloKjAhf/GlmZn1UM6S2mnRuplo+h2NmZn1UE3D+gdoCjplVS9n8mwEXXzfrDNWcw7mkgHqYmVmHa/QW02ZmZlWpZtLAr4HpEXGvpDsYZHgtIvZuVuXMzKxzVHMO5x5gbe5nDzabmVnNqjmH88ncz9NbWhszM+tYdZ/DUbKdpIFuymZmZgbUuFo0/GUxz9OAidnx6yUtBr4SEX0XjTKz/s2Z0+4amBWmpoAjaRbwHeAm4HPAn4CxwOHAf0v6x4jwX5BZtXx7aesitfZwTgXmRsSny9IvlHQh8AXAAcfMzPqo9RzOa4Er+tn3U2CbwQqQtIekmyStkfS4pDMlDbgcjqTxkqLCNq9C3sMk3S3pRUn3SppWVcvM2mHu3LSZdYFaezgLgP2BGyvs2x+4ZaCDJY0B5gP3AocBuwHfIAW+06p4/ROAX+aeP1VW/rtIge87wHHAVOAySb0RcUMV5ZsVa9as9OihNesC1Vz4uUfu6TeB70p6LXAlr5zD+SBwCHDsIMV9ChgBHB4Rq4AbJW0NzJZ0TpY2kGURcfsA+78I3BIRx2XPF0jaE/gS4IBjZtZG1fRwfsfGF3sKmJVt5Xf/vI6BV4s+BLi+LLDMA84m9ZB+XkV9KpL0amAKqWeTNw+4WNKoiHiu3vLNzKwx1QScKU18vQnAzfmEiHhY0pps32AB52JJ25B6VpcBX4iI0ioIuwGbA0vLjrmPNGS3O3BHY9U3M7N6VbPSwMImvt4Y4NkK6b3Zvv68BPwbaVhsFTAZOIkUZA7LlU2F8nvL9m9E0kxgJsC4cePo6ekZqP6DWr16dcNlDCdu7+COf8v6PmmlMiaXPR9q/Pl2tqLbW/OFnyWSNgG2KE+v4o6fldZiUz/ppTKfAP4pl9Qj6UngO5LeFhF3DlC++kkvlT0XmAswadKkmDx58sC1H0RPTw+NljGcuL2Dm35y3+uhV3x04zKG6nvoz7ezFd3emqZFZ8vZnCRpObAOeL7CNpBeYHSF9FFU7vkM5PLsca9c2VQov/S81vLNzKyJar0O5zjgZOB7pJ7DV4AzgfuBFWRDUwNYSjpX8xeSdgK2pO+5l8FE2eMDpCA4oSzfBGBDVkezoSXCd/u0rlFrwJkBnA6ckz2/MiLOAPYkBYw3DnL8tcDBkrbKpU0j3f6g1nNFR2aPiwEi4iXSdUIfKss3DbjNM9TMzNqr1nM4rwfujIiXJa0jG66KiA2SvgN8l9QD6s+FpF7SFZLOBnYFZgPn5adKZ0N2CyPimOz5bGAr0kWfq4B3AycCV0TEb3Pln0U6v3MB6Tqhqdn2vhrbaWZmTVZrD+dpYGT288PA23P7xpAu6uxXRPQCB5Cu1fk5cAZwPqnXlLcZG1/Ps5R0nc7FwDXA0cC52WO+/FtJPZ8DgeuBvwOO9ioDNmRNnJg2sy5Qaw/nl8A7SF/6PyKtELAN8GfgM6RVpAcUEfcC7xkkz/iy5/NIF3AOKiKuJPVuzIa+JUvaXQOzwtQacGYDO2Y/f5U0pDad1LO5EfhssypmZmadpaaAExHLgGXZzy+R7onzuRbUy8zMOkwjF36+DtgBeDwiHmtelczMrBPVOmkASZ+W9AjwEPAr4GFJj0r6x6bXzszMOkatKw18Cfg26XqaQ4FJ2eO1wDez/WZmZn3UOqT2GeCrEfHFsvTrsrXNPkNaecDMqjFjRrtrYFaYWgPOCPq/q+dCPEvNrDa+vbR1kVrP4VwJHN7PviOAqxqrjpmZdapqbjE9Nff0WuAcSePpe4vpPYHPN7+KZh1s8eL06NUGrAtUM6R2FX1vJb0jcHCFvD8g3YnTzKoxaVJ69IrR1gWqCTivb3ktzMys41Vzi+mHiqiImZl1tppXGpC0GWmCwLuAbYBngF+QbhXQ9+btZmZm1BhwJI0FbgDeSrrD55PAfqTrb+6S9N6IWNnsSpqZ2fBX67To84DXAvtExK4RsV9E7Arsk6Wf1+wKmplZZ6g14EwFToqIO/KJ2fNTSMvcmJmZ9VHrOZxXA8/3s+954FWNVcesyyxa1O4amBWm1oBzO3CSpJsj4oVSoqQtgZOy/WZWLV/waV2k1oBzPLAAeETSDaRJA2NJF4EKmNzU2pmZWceo6RxORNwJvBGYC2wHHEQKOBcCb4yIu5peQ7NONnNm2sy6QNU9HEmbA3sDD0bEya2rklkXueii9OhVo60L1NLDeRm4GXhzi+piZmYdrOqAExEbgN8D41pXHTMz61S1XofzBeBLkt7SisqYmVnnqnWW2mmkFQXulPQYaZbaRuuqR8TeTaqbmZl1kFoDzu+yzczMrCZVBRxJI0jL2vwO+CMwPyKebGXFzLrCXnu1uwZmhanmFtO7AvOB8bnkVZI+HBE3tKpiZl2hdItpsy5QzaSBc4ANwN8CrwH2BH4DzGlhvczMrMNUE3D2A06LiF9GxIsRcR8wC9hZ0g6trZ6ZmXWKagLODsAfytIeIK2dtn3Ta2TWTaS0mXWBaq/DicGzmJmZ9a/aadHXS1pfIf2m8vSIGNt4tczMrNNUE3DOaHktzMys4w0acCLCAcfMzBpW61pqZmZmdXHAMTOzQtS6lpqZNdMcXz9t3cMBx6ydfHtp6yIeUjMzs0I44Ji109y5aTPrAoUHHEl7SLpJ0hpJj0s6U9KmgxzzDkkXS1qeHbdM0umStijLN1tSVNje19pWmdVp1qy0mXWBQs/hSBpDutXBvcBhwG7AN0iB77QBDp2W5T0b+D3wVuCs7PGIsrzPAeUB5r5G625mZo0petLAp4ARwOERsQq4UdLWwGxJ52RplZwdEStzz3skvQjMkbRLRDyU27c+Im5vTfXNzKxeRQ+pHQJcXxZY5pGC0P79HVQWbEp+kz167TYzs2Gg6IAzAViaT4iIh4E12b5avJN0Y7hlZemjJT0laZ2k30g6vO7amplZ0yiiuDsPSFoHnBgRF5SlPwpcGhGnVlnO9sBvgWsiYnou/WOkHs+dwEjSjeKmAkdExBX9lDUTmAkwbty4ifPmzau1WRtZvXo1I0eObKiM4cTtHdzdjz3XJ+0tO44CYPKUKQD0LFjQeOVawJ9vZ2tGe6dMmbI4IiZVk7cdAeeEiPjXsvTHgEsi4gtVlPEq0sSD1wETI6J3gLwC/gcYERFvG6zsSZMmxaJFiwbLNqCenh4mT57cUBnDids7uPEnX90nbcXXDk0/lG6+VuDfYS38+Xa2ZrRXUtUBp+ghtV5gdIX0UcCzgx2cBZBLgT2BqQMFG4BI0fQK4K2DTb02a4uIIRtszJqt6FlqSyk7VyNpJ2BLys7t9ON80nTqgyKimvwl/ou2Yam8d/SXnpHZMFR0D+da4GBJW+XSpgFrgYUDHSjpFOCzwMci4tZqXizrEX0QuCsiXq6vymZm1gxF93AuBI4DrpB0NrArMBs4Lz9VWtJyYGFEHJM9Pxr4KnAJ8JikfXNlPlCaNi1pIfBTUm9pS2AGsC/wgdY2y6xOEyemx8WL21sPswIUGnAiolfSAcC3gZ+TztucTwo65fXKn3N5b/Y4PdvyPkkKRADLgX8GdiBNmV4CHBoR1zaj/mZNt2RJu2tgVpjCb08QEfcC7xkkz/iy59PpG2gqHXdMA1UzM7MW8mrRZmZWCAccMzMrhAOOmZkVwgHHzMwKUfikATPLmTGj3TUwK4wDjlk7+fbS1kU8pGZmZoVwwDFrp8WLvcqAdQ0PqZm106RsVXevGG1dwD0cMzMrhAOOmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhPC3arJ0WLWp3DcwK44Bj1k6lW0ybdQEPqZmZWSEccMzaaebMtJl1AQccs3a66KK0mXUBBxwzMyuEA46ZmRXCAcfMzArhgGNmZoVwwDEzs0L4wk+zdtprr3bXwKwwDjhm7eTbS1sX8ZCamZkVwgHHzMwK4YBj1k5S2sy6gAOOmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQXmnArJ3mzGl3DcwK44BjVoXxJ18NwPFvWc/07OcVXzu08YJ9e2nrIh5SMzOzQriHY9ZOc+emxyb3dEo9srym9MjMGuCAY9ZOs2alRw+tWRfwkJqZmRWi8IAjaQ9JN0laI+lxSWdK2rSK40ZJulhSr6TnJP1Q0msr5DtM0t2SXpR0r6RprWmJmZnVotAhNUljgPnAvcBhwG7AN0iB77RBDv8x8CbgWGADcDZwJfC3ufLfBfwU+A5wHDAVuExSb0Tc0NTG2LDkcxtm7VP0OZxPASOAwyNiFXCjpK2B2ZLOydL6kLQfcDCwf0TckqU9BvxK0oERMT/L+kXglog4Lnu+QNKewJcABxyzKuSD8vFvWc/k9lXFOkzRAecQ4PqywDKP1FvZH/j5AMc9WQo2ABHxa0kPZvvmS3o1MIXUs8mbB1wsaVREPNekdlibuacy9PgzscEUHXAmADfnEyLiYUlrsn39BZwJwNIK6fdl+yANz21eId99pCG73YE76qv28FH+R9/fH3y1+RrNO1j+eo+xzlHU70ytx7Tqb6SbKSKKezFpHXBiRFxQlv4ocGlEnNrPcTcCL0TEB8rSfwDsGhHvlPQ3wK3A2yPizlyeNwC/Bw6udB5H0kygNCf1TcCyuhuYbAs81WAZw4nb29nc3s7WjPbuEhHbVZOxHdfhVIpw6ie9nuPKn6uf9JQYMReYO8hrV03SooiY1Kzyhjq3t7O5vZ2t6PYWPS26FxhdIX0U8Gwdx43OHdebSyvPwyDlm5lZixUdcJbyyjkXACTtBGxJ5XM0/R6XyZ/beQBYVyHfBNI06vvrqK+ZmTVJ0QHnWuBgSVvl0qYBa4GFgxy3fXadDQCSJgG7ZvuIiJeABcCHyo6dBtxW4Ay1pg3PDRNub2dzeztboe0tetLAGNJFn78jTYXeFTgPuCAiTsvlWw4sjIhjcmnXkWaancArF37+KSLKL/zsAb5Nuih0apb/fb7w08ysvQrt4UREL3AAsClpCvQZwPnA6WVZN8vy5B1F6gV9H7gUWAx8sKz8W4EjgQOB64G/A452sDEza79CezhmZta9vFp0lVq96OhQU097Jb0ja+vy7Lhlkk6XtEVR9a5XvZ9v7vhNJC2WFJLe38q6NkMj7ZV0uKQ7JK2V9LSk6yRt2eo6N6KBv99Jkm7I2vkcdGfsAAAEjklEQVSMpPmS9imizo2Q9AZJcyTdJellST1VHtfS7yvfD6cKrV50dKhpoL3Tsrxnky62fStwVvZ4RAur3JAGP9+SY4EdW1LBJmukvZKOJZ0jPQc4ERgDvIch/F1Sb3uzGbTzgSXAx7PkE4EbJL01Ih5qZb0btCfpHPbtwKtqOK6131cR4W2QDTiFdJ3P1rm0zwNr8mkVjtuPdMHpu3Npe2dpB7a7XS1o73YV0mZm7d2l3e1qdntzeccAK4Fjsra+v91tatHnuy3wPDCj3W0oqL2fAl4GRpd91i8Dn253uwZp8ya5ny8Heqo4puXfVx5Sq05/i46OIC06OtBxfRYdBUqLjg5VdbU3IlZWSP5N9ji2edVruno/35KzgF8CN7Wgbq1Qb3s/nD3+R6sq1iL1tndzYD2wOpe2OktTxSOGiIjYUMdhLf++csCpTp/FQyPiYdJ/SJUuSO33uEx+0dGhqN72VvJOUte80TXqWqnu9kp6K/BJ0vT74aLe9u5D+hyPkfSopHWSfiXpna2ralPU296fZnm+IWmspLGkWbW9wE9aVNd2avn3lQNOdcZQeWmc3mxfs49rt6bUW9L2wBeA/x/93OtoiGikvd8C/i0ilje9Vq1Tb3u3J43vnwacBPxf4AXgOknjml3JJqqrvRHxOOmWJ0cAT2bb4aSFgCv15oe7ln9fOeBUr9WLjg41DdVb0quA/yQNQfxLE+vVKjW3V9JRpC/gL7eqUi1Uz+e7CTASOCYifhgR1wEfIJ3T+KfmV7Gp6vl8dyCd/1hMGlI6JPv5akk7t6KSQ0BLv68ccKrTykVHh6J62wuAJJEuzt0TmBrpgt+hrOb2StocOJc0i2cTSaOBrbPdW5Yt3zTU1Pv5PpM99pQSsp7rYmCPZlWuBept74mk2XdHRsR1WYA9ghRgh9MQarVa/n3lgFOdVi46OhTV296S80nTTw+LiKHczpJ62rsl8DrS0ky92XZXtm8er0yWGIrq/XzvI/2nW37CXKTzdENVve2dANwTEetKCRHxZ+Ae0tTqTtPy7ysHnOq0bNHRIare9iLpFOCzwMciLTU0HNTT3tWk8f389pFs36nAR1tT1aao9/O9ihRcppQSJI0CJvJKsB2K6m3vQ8BfZ8PDACjdyv6vgRUtqGe7tf77qt3zxYfDRjph9gRwI2mdtpmkL5wvl+VbDnyvLO064A+kk40fIM3y+UW729SK9gJHk/4DvhjYt2zrc43OUNka+XzL9o9neFyH08jv85XZsZ8ADiV9Ya8ExrS7Xc1uLymQrgOuztr6ftIX7zrg/7S7XYO0+TWkdSWPBG4j9cpKz18zwOfb0u+rtr8xw2UjjVHfTPqv6AnStRebluVZAVxSljY6+wJ+FlgF/AjYtt3taUV7gUuyL9xK2/R2t6kVn2/Z/mERcBppL2nSwL8DT2fHzgfe0u72tLC9BwC3kM5fPUMKsJPb3Z4q2lv6Xay0jR+gvS39vvLinWZmVgifwzEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuGAY2Zmhfhf0iRe8/WZSJgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] From 4727ba2e4b44d8648b21ca68c470de484ac158e3 Mon Sep 17 00:00:00 2001 From: CZ Date: Thu, 18 Apr 2019 13:44:53 +0200 Subject: [PATCH 056/116] notebooks qgans --- .../aqua/artificial_intelligence/index.ipynb | 1 + ...ns_for_loading_random_distributions.ipynb} | 6 +- .../european_call_option_pricing.ipynb | 2 +- .../qgans_option_pricing.ipynb | 193 ++++++++++++++++++ 4 files changed, 197 insertions(+), 5 deletions(-) rename qiskit/{finance/machine_learning/execute_qgan.ipynb => aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb} (99%) create mode 100644 qiskit/finance/machine_learning/qgans_option_pricing.ipynb diff --git a/qiskit/aqua/artificial_intelligence/index.ipynb b/qiskit/aqua/artificial_intelligence/index.ipynb index b0c063914..d36d3ccac 100644 --- a/qiskit/aqua/artificial_intelligence/index.ipynb +++ b/qiskit/aqua/artificial_intelligence/index.ipynb @@ -13,6 +13,7 @@ "## Contents\n", "\n", "* [Quantum SVM for Classification](qsvm_kernel_classification.ipynb)\n", + "* [qGANs for Loading Random Distributions](qgans_for_loading_random_distributions.ipynb)\n", "* More examples can be found in [commuity/aqua/artificial_intelligence](../../../community/aqua/artificial_intelligence)" ] }, diff --git a/qiskit/finance/machine_learning/execute_qgan.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb similarity index 99% rename from qiskit/finance/machine_learning/execute_qgan.ipynb rename to qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb index 32a914048..f9c3abb7b 100644 --- a/qiskit/finance/machine_learning/execute_qgan.ipynb +++ b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb @@ -4,9 +4,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# _*Qiskit Finance: qGANs for Loading Random Distributions*_ \n", + "# _*Qiskit Aqua: qGANs for Loading Random Distributions*_ \n", "\n", - "Qiskit Finance is part of Qiskit Aqua.
\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", "\n", "***\n", @@ -23,7 +22,7 @@ "\n", "The aim of the qGAN training is to generate a state $\\lvert g_{\\theta}\\rangle$ where $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, describe a probability distribution that is close to the distribution underlying the training data $X=\\left\\{x^0, \\ldots, x^{k-1} \\right\\}$.\n", "\n", - "For further details please refer to https://arxiv.org/abs/1904.00043." + "For further details please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." ] }, { @@ -60,7 +59,6 @@ "\n", "from qiskit.aqua import aqua_globals, QuantumInstance\n", "\n", - "from qiskit.providers.ibmq import IBMQ\n", "from qiskit import Aer" ] }, diff --git a/qiskit/aqua/finance/european_call_option_pricing.ipynb b/qiskit/aqua/finance/european_call_option_pricing.ipynb index 4ef0c1a31..14d879bee 100644 --- a/qiskit/aqua/finance/european_call_option_pricing.ipynb +++ b/qiskit/aqua/finance/european_call_option_pricing.ipynb @@ -280,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [ { diff --git a/qiskit/finance/machine_learning/qgans_option_pricing.ipynb b/qiskit/finance/machine_learning/qgans_option_pricing.ipynb new file mode 100644 index 000000000..c3b9ea5c1 --- /dev/null +++ b/qiskit/finance/machine_learning/qgans_option_pricing.ipynb @@ -0,0 +1,193 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: qGAN Option Pricing*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Christa Zoufal[1,2], Stefan Woerner[1]\n", + "### Affliation\n", + "- [1]IBMQ\n", + "- [2]ETH Zurich\n", + "\n", + "### Introduction\n", + "We can train a quantum Generative Adversarial Network (qGAN) - see [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb) - to learn and load a model for the spot price of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff - see [European Call Option Pricing](../../aqua/finance/european_call_option_pricing.ipynb)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", + " from collections import MutableMapping\n" + ] + } + ], + "source": [ + "#!/usr/bin/env python\n", + "# coding: utf-8\n", + "from __future__ import absolute_import, division, print_function\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue\n", + "from qiskit.aqua.components.uncertainty_models import UnivariateVariationalDistribution, NormalDistribution\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "from qiskit.aqua import aqua_globals, QuantumInstance\n", + "\n", + "from qiskit import BasicAer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "The Black-Scholes model assumes that the spot price at maturity $S_T$ for a European call option is log-normally distributed. Thus, we can train a qGAN on samples from a log-normal distribution, as it is shown in [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb), and use the resulting model as uncertainty model underlying the option.\n", + "In the following, we construct the quantum circuit for loading the uncertainty model. The circuit output reads $$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle,$$ whereby the probabilites $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, represent a model of the target distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Set upper and lower data values\n", + "bounds = np.array([0.,7.])\n", + "# Set number of qubits used in the uncertainty model\n", + "num_qubits = [3]\n", + "\n", + "# Set entangler map\n", + "entangler_map = []\n", + "for i in range(sum(num_qubits)):\n", + " entangler_map.append([i, int(np.mod(i+1, sum(num_qubits)))])\n", + "\n", + "# Set variational form\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", + "# Load the trained circuit parameters\n", + "g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]\n", + "# Set an initial state for the generator circuit\n", + "init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1])\n", + "# Set generator circuit\n", + "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params,\n", + " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = g_circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW5x/HvTxAJBEJkCauE1QhGwQQxgiYRZb3XIALxgl6DaARF1It4EVHC4r0ssqiAiAoREYdFLsome4KRPYJEQpAgIZIgCGQhqwl57x+nRmsq3dPdMz1TM5nf53n6melTp6re6unpt6vOqXMUEZiZmXW3N5UdgJmZ9U1OQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKUpPQJJ2kXS3pCWS5ko6XdJaNdbZVdJvs/rLJc2W9BNJW1SoO0bSNEnLJE2XNLbrjsbMzOq1dpk7lzQQuAuYDowBdgDOIyXGU9pZdQDwHHAlMBfYDjgVGCZpj4hYmW1/b+BXwCXA8cCBwC8lzYuIO2rFt8kmm8TgwYM7dnAFixcvZv3112/KtrpSb4kTek+sjrO5ekuc0HtibWacU6dOfSUiNq2rckSU9gC+AcwDNsyVfR1Yki+rc1sfAQJ4T67sduCeQr1bgSn1bHPYsGHRLPfee2/TttWVekucEb0nVsfZXL0lzojeE2sz4wQejTo/t8u+BHcAcHtELMyVtQD9gJENbuvV7Oc6AJLeAowGri3UawFGSBrQeLhmZtYsZSegIcCMfEFEzCadAQ2ptbKkN0laR9LbgbOAR4CHs8U7AG8ubh94inTcO3cudDMz6wxFiaNhS1oBnBgRFxbKXwCujIiTa6z/W2C/7OlU4MCIeDlbthcwBdg9Ih7PrbMj8AywX1RoB5I0HhgPMGjQoGEtLS0dPbw2Fi1aRP/+/Zuyra7UW+KE3hOr42yu3hIn9J5Ymxnn6NGjp0bE8Loq13utrisewArgKxXKXwD+p471dwL2BD5JOtOZCqybLduL1Ca0W2GdHbPyfWtt321APVtvidVxNldviTOi98RaVhtQqb3gSB0QKrXFDMyWtSsinsl+fUjS70g9444ALs+tX9z+wNy+zcysJGW3Ac2g0NYjaRtgPVZvu2lXRDwPvAZsnxU9SzrDKrYlDQFWAX/uQLxmZtYkZSeg24D9JG2QKxsLLAUmN7KhrCPCxqSzICJiOXAvcFih6ljggYhY0NGgzcys88q+BHcp6QbRGySdTTp7mQCcH7mu2ZJmApMj4ujs+XeBlcBDwHzgHaT7h54ldbNudQYwSdKFwI2kG1EPBPbv2sMyM7NaSk1AETFP0j7ARcBNpGRyASkJ5a0N5IfneRT4Eqm32rrAbNKIB/8bEYtz258i6VDgTOBYsjaiqGMUhL5i8Em3tHl+wtCVjCuUzTrroO4Mycz6iLLPgIiI6cCHatQZXHjeQtsznfbWvZF09mNmZj1I2W1AZmbWRzkBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlaL0BCRpF0l3S1oiaa6k0yWtVWOdPSRdIWlmtt7Tkk6VtG6h3gRJUeGxf9celZmZ1bJ2mTuXNBC4C5gOjAF2AM4jJcZT2ll1bFb3bOAZ4F3AGdnPjxfqLgCKCeepzsZuZmadU2oCAo4B+gGHRMRC4E5JGwITJJ2TlVVyVkS8kns+SdIy4EeSto2I53PLVkbEg10TvpmZdVTZl+AOAG4vJJoWUlIaWW2lQvJp9Vj2c8vmhWdmZl2l7AQ0BJiRL4iI2cCSbFkjRgCrgGcL5RtJekXSCkmPSTqkw9GamVnTKCLK27m0AjgxIi4slL8AXBkRJ9e5nc2BJ4BbI2JcrvyTwGaks6MNgM8DBwIfj4gbqmxrPDAeYNCgQcNaWloaPayKFi1aRP/+/ZuyrWaaNmdBm+eD+sFLS9vWGbrVgG6MqH499TUtcpzN1VvihN4TazPjHD169NSIGF5P3V6fgCStQ+rIsDUwLCLmtVNXwP1Av4jYrda2hw8fHo8++mitanWZNGkSo0aNasq2mmnwSbe0eX7C0JWcN61t0+Cssw7qzpDq1lNf0yLH2Vy9JU7oPbE2M05JdSegsi/BzQMqfb0emC1rV5ZQrgR2BQ5sL/kARMq2NwDvqtXV28zMulbZveBmUGjrkbQNsB6FtqEqLiR13/5IRNRTHyCyh5mZlajsM6DbgP0kbZArGwssBSa3t6KkbwDHAZ+MiCn17Cw7Y/o48MeIeKNjIZuZWTOUfQZ0KXA8cIOks4HtgQnA+fmu2ZJmApMj4ujs+RHA/wATgTmS3pfb5rMR8fes3mTgV6SzqfWBzwF7Agd37WGZmVktpSagiJgnaR/gIuAmYD5wASkJ5a0N5Nts9s1+jsseeUeREhPATOArwBakLtp/AA6KiNuaEb+ZmXVc2WdARMR04EM16gwuPB/H6omn0npHdyI0MzPrQmW3AZmZWR/lBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMStHwSAiShgLvBTYH1gVeA/4M3F9rOgQzM7NWdSUgSdsDxwJHAoNI46rNB5YDG5GmT1iVDf75E+CaiFjVJRGbmdkaoeYlOEk/AZ4EdgNOB3YH1o2ITSNi64joT5r2+t+BacA5wFOS9u66sM3MrLer5wxoKTAkIp6vViEiXiHN7XObpP8CDgO2ak6IZma2JqqZgCLiS41sMLv0dk2HIzIzsz6hU9MxSHonMBIQacK4aU2Jyqxg8Em3rFZ2wtCVjMuVzzrroO4Mycw6qcPdsCUdC9wHjAIOBB6W9IUmxWVmZmu4mmdAktaLiCUVFv03MCIins7qHU3qpHBJc0M0M7M1UT1nQH+WdGSFcpG6Y7dyt2szM6tbPQnoCOAESQ9Kem+u/BzgQUnXSrqZdOZzVlcEaWZma56aCSgi7gOGkW4w/bWkKyVtEREXAx8CpgB3kC7H/aBLozUzszVGXb3gIiKAn0i6FvgW8CdJ5wPfjYg/dmWAZma2ZmqoF1xELIyIE4E9SePBzZB0aJdEZmZma7R6huJZT9KZkh6S9Jiky4BlETEGGA+cKmmypHd3ebRmZrbGqOcM6Kekcd7OI11+2xy4U5Ii4k7g3cB1WdlljQYgaRdJd0taImmupNMlrVVjnT0kXSFpZrbe05JOlbRuhbp7ZclzmaTnJB3faIxmZtZ89bQBHQAcliUbJP0eeBXYAZiZDb1zkaSrgVMb2bmkgcBdwHRgTLbN80iJ8ZR2Vh2b1T0beAZ4F3BG9vPjue3vCNwO3Ax8g3TZ8HxJSyLiJ43EamZmzVVPApoBfErSVGAZ8HlgMfBCvlJEvAZ8ucH9HwP0Aw6JiIWks6gNgQmSzsnKKjkrGwC11SRJy4AfSdo2N3DqicBc4JMRsRK4R9LbSJcNf5p1rjAzsxLUcwnu08BOwCvA68DnSGdEy5qw/wOA2wuJpoWUlEZWW6mQfFo9lv3csrD9G7Lkk9/+1sA7OxSxmZk1RT33AT0dESOADYBNImKHiPhtk/Y/hHSGld/fbGBJtqwRI0ijMTwLIGl9YJvi9oGncvs2M7OSqMyrUJJWACdGxIWF8heAKyPi5Dq3sznwBHBrRIzLyrYiXSb8WETcmKu7NrAC+HxErNZpQtJ4Uu8+Bg0aNKylpaUjh7aaRYsW0b9//6Zsq5mmzVnQ5vmgfvDS0rZ1hm41oBsjqqwYJ6wea0+Is5Ke+rcvcpzN11tibWaco0ePnhoRw+upW89gpJ8Cro6IN+oNIGv83yIiflfvOh0laR3gWmAR8NXObi9LSpcBDB8+PEaNGtXZTQIwadIkmrWtZhpXmObghKErOW9a27fFrCNHdWNElRXjhNVj7QlxVtJT//ZFjrP5ekusZcVZTxvQfwHPSjqjvXt9JG0s6UhJNwGPA1vUse15QKWvrQOzZe2SJOBKYFfgwIjIrzM/+1nc/sDcvs3MrCT1zIi6u6SxwJeAb0paRGpHeQVYDmwEbAe8jfShfhVwTETMqWP/Myi0xUjaBliP1dtuKrmQ1H37IxFRbEtaLOmvxe3nntezfTMz6yJ1DcUTEddExN6k3nAnks5wVgLrAy8BPwP2J112+0qdyQfgNmA/SRvkysYCS4HJ7a0o6RvAcaQu1lPa2f7HCje2jgX+CvypzhjNzKwLNDQld0Q8S9bLrEkuBY4HbpB0NrA9MAE4P981W9JM0pTfR2fPjwD+B5gIzJH0vtw2n42Iv2e/nwscCfxc0o+BPUj3MR3re4DMzMrVUAJqtoiYJ2kf4CLgJlK7zQWkJJS3NpA/i9k3+zkue+QdRUpMRMRMSfsD55POhv4GnOBREMzMyldqAgKIiOmkeYXaqzO48HwcqyeeautOIQ3BY2ZmPUhD0zGYmZk1S+lnQGZrmsEV7q3K38c066yDujsksx6poTMgSf8uyWdNZmbWaY0mkxuBFySdLekdXRGQmZn1DY0moB2AHwOHA3+S9ICkz2VTKJiZmdWtoQQUEbMi4tSI2A74CDCT1G36RUk/lzS6K4I0M7M1T4fbcyLinoj4FLAzMJV0w+ddkv4i6avZqNNmZmYVdTgBSRopaSLwNGlyt4tJN4heD5xGGiTUzMysoobOUiRtS5oh9dPAYGASae6cGyJieVbtbkkPkAYlNTMzq6jRy2R/AeaShrq5PCKeq1LvSeDhTsRlZmZruEYT0L8Bt0fEqvYqRcSfAXdIMDOzqhptA9oD2LzSAklbSPp250MyM7O+oNEEdCqwdZVlW2bLzczMamo0AQmoNo/O1niaazMzq1PNNiBJrb3eICWfH0paWKi2LjAUuKO54ZmZ2Zqqnk4IS4BXs98FLABeK9T5B2nCt0uaF5qZma3JaiagiLgOuA5A0hXA6e10vzYzM6tLQ92wI+KorgrEzMz6Fs/tY2ZmpainE8LDwLiImC7pEar3ggMgIt7brODMzGzNVc8luCeBpbnf201AZmZm9ainE8JRud/HdWk0ZmbWZ5TeBiRpF0l3S1oiaa6k0yWtVWOddSSdK+l3kpZKqnhWJmmipKjwGNI1R2NmZvWqpw2oZrtPXiNtQJIGAncB04ExpCm/zyMlxlPaWXU94LOkEbfvBz7UTt0ZQLH33qx6YzQzs65RbxtQV7X7HAP0Aw6JiIXAnZI2BCZIOicrW01EzJf01ogIScfRfgJaHBEPNj90MzPrjHragMZ14f4PIE3vkE80LcDZwEjgpnbicmcIM7NerOw2oCGkS2T/FBGzScP/NKudZhdJCyUtlzRF0sgmbdfMzDqh7PuABgLzK5TPy5Z11mPAQ6Q2pk2BE0iX+faOCM/YamZWItW6kpUf/03SRGonoLqH65G0AjgxIi4slL8AXBkRJ9exjeOAH0SE6qi7HqlN648RcXCVOuOB8QCDBg0a1tLSUvtA6rBo0SL69+/flG0107Q5C9o8H9QPXlrats7QrQZ0Y0SVFeOE1WPtCXFC7de0p8RZ1FPfo0W9JU7oPbE2M87Ro0dPjYjh9dQt+z6geUCl/8aBdMHcQhGxRNKtwL+3U+cy4DKA4cOHx6hRo5qy70mTJtGsbTXTuJNuafP8hKErOW9a27fFrCNHdWNElRXjhNVj7QlxQu3XtKfEWdRT36NFvSVO6D2xlhVnQ4ORQroHBxgHvBfYAniRdJnrZxHxjwY3N4NCW4+kbUjdrGdUXKPzAo/mYGZWuoY6IUh6B/AMcDHwTuCN7OfFwExJuzS4/9uA/SRtkCsbSxr6Z3KD26pJUj/gIGBqs7dtZmaNafQM6DLShHQfyHqrASDpbcDNwKXABxvY3qXA8cANks4GtgcmAOfnu2ZLmglMjoijc2UHAOsDu2XPD80WPRIRz0sakMV0FTAT2AT4KrAlcFgDMZqZWRdoNAENB/4jn3wgdZ2WdCpwdSMbi4h5kvYBLiLd8zMfuICUhIpxFofn+SGwbe75ddnPo4CJwHLg76QRFTYDlgEPACMj4tFG4jQzs+ZrNAHNAtatsmxdYHaVZVVFxHTaH8mAiBhcT1lh+TLgkEbjMTOz7tHojagnAWdK2jNfKOl9wBnAfzcrMDMzW7N1ZDDSDYH7Jb0MvEy6vLUZ8CpwMnBjF8RpZmZrmI4MRvpkF8ViZmZ9SNmDkZqZWR9V9mCkZmbWRzkBmZlZKToyFM9Y4HPAzlTokh0RmzUhLjMzW8M1OhTPEcDPSCMLbA38hjTawJuAhaQbSs3MzGpq9BLciaT7fb6YPb8kIj4DbAe8QppIzszMrKZGE9BOwO8j4g3SQKQbAkTE66RptI9rbnhmZramajQBLQTekv0+B3hHbpmAjZsRlJmZrfka7YTwCPAu4HZS+8+3Ja0E/gF8G3iwueGZmdmaqtEE9L/8awTqb2e//5B0JvUI8PnmhWZmZmuyhhJQRDxIdpYTEfOBMZLeArwlP3+PmZlZLU2bkltSR6bkNjOzPqrsKbnNzKyPKntKbjMz66Ma7YY9HPh2pSm5gVOBPZoVmJmZrdkaTUCzaPKU3GZm1jd5Sm4zMyuFp+Q2M7NSeEpuMzMrhafkNjOzUnRoRlRJW0r6uKTPSTpE0pYdDUDSLpLulrRE0lxJp0taq8Y660g6V9LvJC2VFO3UHSNpmqRlkqZnE+qZmVnJGr0RdS1JlwDPA9cBPwKuB56XdLGkRrc3ELiLdIlvDHA6cAJwWo1V1wM+S5p/6P52tr838CvgXuAA4Bbgl5L2bSROMzNrvkZvRD0N+Ayps8E1wEvAIGAsKXm8ShqktF7HAP2AQ7Kx5O6UtCEwQdI51caXi4j5kt4aESHpOOBDVbb/LeC+iDg+e36vpF2zGO9oIE4zM2uyRi/B/SdwSkScGxGzI2J59vNc0of9uAa3dwBweyHRtJCS0sj2VoyIqpfdALJBUkcD1xYWtQAjJA1oMFYzM2uiRhPQZsATVZY9kS1vxBBgRr4gG1VhSbasM3YA3lzcPvAU6bh37uT2zcysE1TjRKJtZekJ4NGI+EyFZZcDwyLi3Q1sbwVwYkRcWCh/AbgyIk6uYxvHAT+ICBXK9wKmALtHxOO58h1JA6ruFxGrXYaTNB4YDzBo0KBhLS0t9R5OuxYtWkT//v2bsq1mmjZnQZvng/rBS0vb1hm6Vfkni8U4YfVYe0KcUPs17SlxFvXU92hRb4kTek+szYxz9OjRUyNieD11G20DOhNoyQYfvZ7UBrQZcBjpctcnGtxejxMRl5EGXWX48OExatSopmx30qRJNGtbzTTupFvaPD9h6ErOm9b2bTHryFHdGFFlxThh9Vh7QpxQ+zXtKXEW9dT3aFFviRN6T6xlxdnohHTXSppP6ozwPdIlrhXAVGD/iLizwf3PAyp9HRyYLeuM1vWL2x9YWG5mZiWoOwFJejNpEro/RcSIrMv1JsArEbGqg/ufQaGtR9I2pG7WxbabRj1LSo5DgMm58iHAKuDPndy+mZl1QiOdEN4A7iFLGBGxKiJe7kTyAbgN2E/SBrmyscBS2iaNhkXEctL9P4cVFo0FHoiI1RsVzMys29R9BhQRqyQ9A2zexP1fChwP3CDpbGB7YAJwfr5rtqSZwOSIODpXdgCwPrBb9vzQbNEjEfF89vsZwCRJF5IGST0we+zfxGMwM7MOaLQTwjeBsyVNi4hpnd15RMyTtA9wEXATMB+4gJSEinEWh+f5IbBt7vl12c+jgInZ9qdkielM4FjgOeCISr3fzMysezWagE4BNgYelzSH1AuuTT/uiHhvIxuMiOlUH8mgtc7gesqqrHsjniLCzKzHaTQBPQn8qSsCMTOrZHCFbu3Fru6zzjqoO0OyJmm0G/a4LorDzMz6mLoSkKR+pMb7wcCLwN0R8VIXxmVmZmu4eqbk3p40ZcLgXPFCSYe7Md/MzDqqnvuAziHduPkB0g2iuwKPkeYCMjMz65B6EtAI0hQMv4+IZRHxFPB54G2Stuja8MzMbE1VTwLaAvhLoexZQDT3plQzM+tD6h2Kp/45G8zMzOpQbzfs2yWtrFB+d7E8IhqdlM7MzPqgehLQaV0ehZmZ9Tk1E1BEOAGZmVnTNToUj9Wp1vAhHjrEzPq6RuYDMjMzaxonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFL4R1cysCYo3n4NvQK/FZ0BmZlYKJyAzMytF6QlI0i6S7pa0RNJcSadLWquO9QZIukLSPEkLJP1C0saFOhMlRYXHkK47IjMzq0epbUCSBgJ3AdOBMcAOwHmkxHhKjdWvBXYGPgusAs4GbgQ+UKg3AziqUDarM3GbmVnnld0J4RigH3BIRCwE7pS0ITBB0jlZ2WokjQD2BUZGxH1Z2RzgIUkfjoi7ctUXR8SDXXsYZmbWqLIvwR0A3F5INC2kpDSyxnovtSYfgIh4GHguW2ZmZj1c2QloCOkS2T9FxGxgSbas7vUyT1VYbxdJCyUtlzRFUnuJzczMuokiorydSyuAEyPiwkL5C8CVEXFylfXuJF1aO7hQfhWwfUS8P3v+ZeAfpDamTYETgGHA3tkZU6VtjwfGAwwaNGhYS0tLh45t2pwFbZ4P6gcvLf3X86FbDejQdputVpzQM2Itxgm99zXtKXEWLVq0iP79+5cdxmr8Hu16zfzbjx49empEDK+nbtltQF0qIr6Xfy7pVuBJ4GTg4CrrXAZcBjB8+PAYNWpUh/Y9rsKMqOdN+9fLPevIjm232WrFCT0j1mKc0Htf054SZ9GkSZPo6Pu9K/k92vXK+tuXfQluHlDpK8HAbFlT14uIJcCtwHsaiNHMzLpA2QloBoU2G0nbAOtRuY2n6nqZam1DeZE9zMysRGUnoNuA/SRtkCsbCywFJtdYb3NJe7cWSBoObJ8tq0hSP+AgYGpngjYzs84ruw3oUuB44AZJZ5MSyATg/HzXbEkzgckRcTRARDwg6Q7gSklf4183ok5pvQdI0gDgZuAqYCawCfBVYEvgsO45PDOznqc4cGpZg6aWmoAiYp6kfYCLgJuA+cAFpCSUtzZQHJ5nbFb3ctKZ3M2kZNZqOfB30ogKmwHLgAdIN68+2tQDMTOzhpV9BkRETAc+VKPO4Apl80lD7BSH2Wldvgw4pAkhmplZFyg9AZlZOXrKZRjru8ruhGBmZn2UE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSlJ6AJO0i6W5JSyTNlXS6pLXqWG+ApCskzZO0QNIvJG1cod4YSdMkLZM0XdLYrjkSMzNrRKkJSNJA4C4ggDHA6cAJwGl1rH4tMAr4LDAO2AO4sbD9vYFfAfcCBwC3AL+UtG9TDsDMzDps7ZL3fwzQDzgkIhYCd0raEJgg6ZysbDWSRgD7AiMj4r6sbA7wkKQPR8RdWdVvAfdFxPHZ83sl7Qp8G7ij6w7LzMxqKfsS3AHA7YVE00JKSiNrrPdSa/IBiIiHgeeyZUh6CzCadKaU1wKMkDSg8+GbmVlHlZ2AhgAz8gURMRtYki2re73MU7n1dgDeXKHeU6Tj3rkD8ZqZWZMoIsrbubQCODEiLiyUvwBcGREnV1nvTmBxRBxcKL8K2D4i3i9pL2AKsHtEPJ6rsyPwDLBfRKx2GU7SeGB89vTtwNMdPsC2NgFeadK2ulJviRN6T6yOs7l6S5zQe2JtZpzbRsSm9VQsuw2ox4mIy4DLmr1dSY9GxPBmb7fZekuc0HtidZzN1VvihN4Ta1lxln0Jbh5QqS1mYLasM+u1/izWG1hYbmZmJSg7Ac2g0NYjaRtgPSq38VRdL5NvG3oWWFGh3hBgFfDnDsRrZmZNUnYCug3YT9IGubKxwFJgco31Ns/u8wFA0nBg+2wZEbGcdP/PYYV1xwIPRMSCzoffkKZf1usivSVO6D2xOs7m6i1xQu+JtZQ4y+6EMBCYDvwJOJuUQM4HLoyIU3L1ZgKTI+LoXNntwE7A10hnNGcDL0fEB3J19gYmAReRblI9MKu/f6UOCGZm1n1KPQOKiHnAPsBawE2kERAuAE4tVF07q5M3lnSWdDlwJTAV+Fhh+1OAQ4EPA7cDHwWOcPIxMytfqWdAZmbWd5XdBmRmZn2UE5CZmZXCCcjMkLSupMsk7VR2LNZ3uA2oC0jqTxpMdQhtb3ydQerNt6is2BohaV1gs2x8vh5L0puBLXpinJK2A7YDnouI50qOZb12Fm8E/JU0mO8UgIhY0h1xNUrSYCAi4vmSQ6lK0mhgF1IP3T9GxP0lh4SkPYFHImJV2bH8U0T40aQHINKcRotIb7xFpH/qvxbKTiNL/j35AXwceKPkGL5Iuql4KfBH4FMV6uxZZpykQW+/D7yW/X3PycovBt7I/u5vAL8A1ioxzjdqPFbln5f8dx8PbFIo+zLw91yMLwFfKDnO84Azc8+3AB7IXstlwPIs1t8CA0qOdVX2ml0E7FVmLK0PjwXXXBOA/yIlmJaI+Gt+oaStgU+QuplHVt+qkPQJ4AfAL4HHgPcDEyWNAT4ZEcvKjC/n66SJEc8nJaEvSdoUOJg0WeIfgL2B7wKfBy4pJ0yWAguzOF4tLFuf9MF0Du2PQtJdfgg8TjZAZjZI8AWk6VWuJ/3/HAb8QNL8iLi6pDgPB/479/wiUhIaSXYmmf1+Jen9cTTlehz4D+DYbNDna0ifVX8oJZqyM+Ca9ADmAOPrqDcemFNinPfU+ZhGuWcWj5KdTeTK9gH+RvqWuXFWVvYZ0AzSqO6tz/cmfdv8SqHeacCjJca5JXA16UP9S+TOxkhjJq4CPlhWfIVYVwHvLbzGV1So93PSZaWy4lwGfCD3fDFwWIV6RwCv9oTXlHTG/tHsvfA66QztadIX47d3Z0zuhNBcG5EuF9XybFa3LB+UWGc2AAALs0lEQVQEBpG+Bbf3eL2sADNvB27NF0TE3cD7SK/fA5K2LyOwgm2Bh3PPp2Y/Hy7Um0Ia7aMUETE3Io4ADiF9E58mab+y4mnQDqTJJItaSG0tZZlNep+2Wkk6yyxaCKzTLRHVEBErIuI32XthM1JynA6cBEyX9AdJJ3ZHLL4E11wPAl+X9GBELK5UQdL6pFP2B7o1sraeBGZExNj2Kkk6lHSKXpYFpHlK2oiIWZLeD9xCeh3P6O7AChbT9gvF8uxRbMRfix7wPxcR90l6D3AscLWk+yn/Naxk3VzHiVdJ39SL3iBdjivL5cAESb+LiKdJl9q+KemhiJgPIOmtwMm0P75lKSJiKel//BpJG5K+nHwCOBM4t6v3X/o/wxrmOOAuYHY2Vt0MYH62bACpV9x+pA+nfUqJMHkQ2L+OekHqWFGWqaR2lOuLCyJinqR9smXfp9wPoaeBYcCvs9hWkaaVL9oVmNV9YVWXxXixpBbgO8DvKPc1rOTe3O8iXT66q1DnXaROPmU5F3gn8ISke0ij7O9G+gyYRop7KCmBfrK0KOsQEQuBiaR21o27Y5/uht1kkjYifbPcn8rdsG8DLm39dlQGSTsAu0bEb2rU60fqhl1Kd1dJhwFfBf4tIl6rUmctUoP1RyJiu+6MLxfDx0ntUe2OKCzpNuDhiCiOdVg6SbuQBvf9XbXXupvj+XSF4hejMI6jpOtJZ/OnVKjfbSTtDxxFao/cnJR45gFPATcDl0VEqZe0Jd0LHBsRPaGTCeAEZGZmJXEnBDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACsnZJGidpqqTXJc2T9Jik87toX4dLGldHvQmSIveYK+lXWe++evYzUdKjnQ64Ceo95qxu63E/U2X5M9nyCV0VQ4PbbfM6N3s/kt4k6bjsPblU0kJJT0r6vqQO3T6g5PEqvfBaj2lwlWUXSfppR/bbVzkBWVWSvgH8hDSd+SHAf5LudfloF+3ycNLYafVYAIzIHl8j3Xtxd3ajby1nNLCfrtbIMUMa+mU7ScPzhZL2AAZny7s6hnoVX+dm7+ca0g2TN5Dek58mjZzx/uh4997DgbeShqlp1HeBIyXt2MF99zm+EdXacxzwo4g4OVd2k6TTygooZ2VEPJj9/qCk2aSbKQ8EritWzu4XWisi/hER9QyX1FMtJg1u+gnSWHmtPkEav29YGUG16q7XWdIBwKHAgRFxW27R/3X07CdzPPDziFiR29fapGT6KdJ4ev8h6VngtIj450gh2QgdU0j3AZ7QiRj6DJ8BWXs2Ig382Ub+22XrZRZJB0uaIWmZpCnZjY1tZJdgpklaLumvkr6T/XMjaSJp+oeRuUtrExqItXX8tcEV4nqSdGawZ35ZIbYPSrpX0iJJCyRNkrR7bvkHJE2WtETSq5J+LGmD9gKSNELSbyS9KGlxdmnnyPxr18FjbgEOb/2gzX4eToWx0joTQ/YaXF/Y3qiszjvzr2Wt17nafiQdKGmV0rxJ+f1sl5WPqfIajMx+3lNc0NGzn+zM5f2sPvLGl0kjnn+fdIb1GdIQPJVGC/gV6SzIn6118BmQtecPpKkFZgM3R0RxCP9W25KGmv8Wacj/04DbJe0U2ZQJkvYlXTK5EjiRNITKGaR/4mOy399GSnpfyLb7QgOxDs5+/q1Qdg5pjqa/ARUnhJM0CriTNPTLp0lnGXsBWwGPSdqLNATMjaRv3RsDZ5FGuTi0nZi2BX4PXEr6YN4LuELSqoj4JR0/5htIoz/sTTrr+wCwaVZeHL+rq2LIG0zt17nafl4E5pJe9wm5+uOAl0nj/VXSOtbiuZLOa9JoHftk2/1joXwkcE9EnJN9sfp9RMyqso37SQP9Dq2wHSsqc3hwP3r2g5Qk/kIaI2wVaRDT04ENc3UmZsvfnyvbljQq8DG5sgeBewvb/zppMMmts+fXA5PqiGsCaUqBtbPHzqTksZA0M2o+rt0qrD+R3LQIpAFNH6XKJIGkD/li7B/Ktv/OOl9LZbH+iPRh1lpe1zHnjzv7/dfAxdnvlwA3Zr+/AkxoRgzAJOD6Qtmo/HE3+DpX28+ZpKSlXJyzgO+281psDjyR7TuAP5EG/Ozfiff7ZVSY2iF7vf6a7XMiMLidbaydvfc/19E4+tLDp4lWVUQ8AbyD1MB7CemD4VvAo0rTjrd6OXJTDkf6NjqVNHhka7vAe1i9beYa0mXgER0Ib2NgRfZ4mjTNwdiIeDFXZ05EPN7eRrJOC3sCP4vsE6SwfL0svmslrd36IE2tsIJ22lwkDVTqkfV8LtbxpITZWS3AoZLeQjoLqzRVQVfH0Krm61zD5aQvLaOy56Oz51dUWyEi/gbsThrc94ekM6vvAPdLWgfSeHLZJcfHs8u+M7LfpypN4160OdkEeAXfIZ0ZPUf6X/hadlZcKa6VpAGIN69xzIbbgKyGiFgeETdFxHERsQtp5s+daDuz48sVVn2ZNDMkpCkV3kyaDjiv9flbOxDaAmAPYDiwNelb6W2FOsX9VTKQlFhfbGf5WqQEvCL3WE46pm3a2fZEYCzpsti+WbyXA+vWEVctvwH6kz4c1wduKiGGVvW8zlVFxF9IZ1tHZUVHkQZtfbLGem9ExB0R8QXS5b0rSJe+RmTLfxYRu5G+/KwkTUO9W0QMi1wng5x1SX/X4n5mZ9v9GOmKwN7AFFW/HWE5zX1911huA7KGRMRPJZ1DGum71WYVqm5GumQH6Vvligr1BmU/OzL68sqIqHUvTz2N0fNIlxe3qLJ8Pv+aPv3WCsvnVlpJ0rrAvwFfjIhLc+VN+dIXEYsl3UwaLfy6qDD/VBNiWMbqk6gNrFCvGSMa/wT4sVLX/0NosBdZRKySdAcpeRU//HcC5kX1NsxWr1HlzCVLWL9VmiZ+AmmakAskXZglqLyN6Nh7us/xGZBVJWm1xCJpU9LcRvlvvZspTRDXWudtpG+dD0P6pkq6JHdYYXOHkz78Wyfn+wfd/M0x++B+CPjP1l5lFZY/SJqq+NEKj4oJCHgL6f/rn9+os15zxXuoOnPMPySd+VxaZXlnY3iBtl80IJ1FdVR7x3pDtryFFHPFS4oAkgZVWfRR0iSADxXK3019HQKeBlab0qPS+wJ4JPv51kLdTYH1SPMCWQ0+A7L2TJP0a+AO0iW1bUk3fS4Bfpar9wpwlaRT+FcvuJdJl39anUrqGXcF6cNlKKln1I8jorXX1QxgjKSDSR9+c9v5gG+mk0i93G6TdBnpev8IUgP6zaTOEndLWkVqSH+ddMnnIOCbEbHah01ELJD0CPBtSQtJifYk0qXDDXNVO3zMETGJdOmq2vLOxvB/wNGSLiD1RhtNfRMZVlP1WCNimaRfAF8Efhntz5d1raTXgWtJnRU2A44ExpAa/4vrvpvUYaGW35Neq00j4u+58qslPQbcR7rcOYx05jmHNN9P3nDSGeH9WG1l94Lwo+c+SB8Gd5AuMy0j/bNfDQzJ1ZlI6kF2COlb33LSP/JqvcNIbRHTSN90XyC1X6ydW74J6UPvNbLLXlXimkDWG6yd2CeS64FVaxmpq+19pOQ6n9Srbrfc8j2B35J62i0GppO6ng9oJ4Ydgbuz+rNJiaxN7PUecwPH3aYXXGdjAL5B6gH2OnAV6Syj2Auurte51rECH87KP1zjGD+T/S1eyN5Lr5ES5Kgq9W8CPlHH+30d0sylnyqUfyzb399ISXwhKfHvXmEb36PQY9KP6g9PSGedkt1g+M6IGF6rrll7srbFw4HtI00Z3qztzgb2i4ji2Uqlut8DdoyIg6osn0hKnLMqLFsLeB44KSKu6lTQfYQvwZlZqSS9HdiFNITNaU1OPgNJN+nW2yZzLvBnSTtHhUurNRxGugRdtf3K2nInBDMr249Il3ZvJQ130zQRMS8i+kXqCFNP/RdIl/iq9Yq8kXSJthIBR0e6F8jq4EtwZmZWCp8BmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmal+H/C0E4RTJkX9wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff\n", + "Now, the trained uncertainty model can be used as part of a quantum circuit to evaluate the expectation value of the option's payoff function." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Estimated value:\t1.2580\n", + "Probability: \t0.8785\n" + ] + } + ], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price = 2\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# construct circuit factory for payoff function\n", + "european_call = EuropeanCallExpectedValue(\n", + " uncertainty_model,\n", + " strike_price=strike_price,\n", + " c_approx=c_approx\n", + ")\n", + "# set number of evaluation qubits (samples)\n", + "m = 5\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, european_call)\n", + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "QiskitDevenv", + "language": "python", + "name": "qiskitdevenv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 877c9f9e48d4c6f15747a00c6c6f6b52de6fcc2f Mon Sep 17 00:00:00 2001 From: CZ Date: Thu, 18 Apr 2019 18:58:13 +0200 Subject: [PATCH 057/116] update --- .../qgans_for_loading_random.ipynb | 12526 +++++++++++ ...ans_for_loading_random_distributions.ipynb | 17778 ++++++++-------- ...ricing.ipynb => qgan_option_pricing.ipynb} | 11 +- qiskit/finance/machine_learning/qgans.ipynb | 194 + 4 files changed, 21615 insertions(+), 8894 deletions(-) create mode 100644 qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb rename qiskit/finance/machine_learning/{qgans_option_pricing.ipynb => qgan_option_pricing.ipynb} (92%) create mode 100644 qiskit/finance/machine_learning/qgans.ipynb diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb new file mode 100644 index 000000000..8288dcfb8 --- /dev/null +++ b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb @@ -0,0 +1,12526 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: qGANs for Loading Random Distributions*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Christa Zoufal[1,2], Stefan Woerner[1]\n", + "### Affliation\n", + "- [1]IBMQ\n", + "- [2]ETH Zurich\n", + "\n", + "### Introduction\n", + "Given $k$-dimensional data samples, we employ a quantum Generative Adversarial Network (qGAN) to learn the data's underlying random distribution and to load it directly into a quantum state: \n", + "$$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle$$\n", + "where $p_{\\theta}^{j}$ describe the occurrence probabilities of the basis states $\\vert j\\rangle$. \n", + "\n", + "The aim of the qGAN training is to generate a state $\\lvert g_{\\theta}\\rangle$ where $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, describe a probability distribution that is close to the distribution underlying the training data $X=\\left\\{x^0, \\ldots, x^{k-1} \\right\\}$.\n", + "\n", + "For further details please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#!/usr/bin/env python\n", + "# coding: utf-8\n", + "from __future__ import absolute_import, division, print_function\n", + "\n", + "import numpy as np\n", + "\n", + "import matplotlib\n", + "matplotlib.use('TkAgg')\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline\n", + "\n", + "\n", + "import time\n", + "\n", + "start = time.time()\n", + "\n", + "from torch import optim\n", + "from qiskit.aqua.algorithms.adaptive.qgan.discriminator import DiscriminatorNet\n", + "\n", + "from qiskit.aqua.components.optimizers import ADAM\n", + "from qiskit.aqua.components.uncertainty_models import UniformDistribution, UnivariateVariationalDistribution \n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "from qiskit.aqua.algorithms.adaptive.qgan.qgan import QGAN\n", + "\n", + "from qiskit.aqua import aqua_globals, QuantumInstance\n", + "\n", + "from qiskit import BasicAer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load the Training Data\n", + "First, we need to load the $k$-dimensional training data samples (here k=1).
\n", + "Next, the data resolution is set, i.e. the min/max data values and the number of qubits used to represent each data dimension." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Number training data samples\n", + "N = 10000 \n", + "\n", + "# Load data samples from log-normal distribution with mean=1 and standard deviation=1\n", + "mu = 1\n", + "sigma = 1\n", + "real_data = np.random.lognormal(mean = mu, sigma=sigma, size=N)\n", + "\n", + "# Set the data resolution\n", + "# Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]]\n", + "bounds = np.array([0.,3.]) \n", + "# Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]\n", + "num_qubits = [2]\n", + "k = len(num_qubits)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Initialize the qGAN\n", + "The qGAN consists of a quantum generator $G_{\\theta}$, a variational quantum circuit, and a classical discriminator $D_{\\phi}$, a neural network.
\n", + "To implement the quantum generator, we choose a depth-$1$ variational form that implements $R_Y$ rotations and $CZ$ gates which takes a uniform distribution as an input state. Notably, for $k>1$ the generator's parameters must be chosen carefully. For example, the circuit depth should $>1$ becaue the higher the circuit depth the because higher circuit depths enable the representation of more complex structures.
\n", + "The classical discriminator is given by a $3$-layer neural network that applies linear transformations, leaky ReLU functions in the hidden layers and a sigmoid function in the output layer. Notably, the neural network is implemented with PyTorch. Please refer to https://pytorch.org/get-started/locally/ for PyTorch installation instructions.
\n", + "Here, both networks are updated with the ADAM optimization algorithm." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Set number of training epochs\n", + "# Note: The algorithm's runtime can be shortened by reducing the number of training epochs.\n", + "num_epochs = 3000\n", + "# Batch size\n", + "batch_size = 1000\n", + "\n", + "# Initialize qGAN\n", + "qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)\n", + "\n", + "# Set quantum instance to run the quantum generator\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "qgan.set_quantum_instance(QuantumInstance(backend=backend, shots=batch_size, coupling_map=None, circuit_caching=False))\n", + "\n", + "\n", + "# Set entangler map\n", + "entangler_map = [[0, 1]]\n", + " \n", + "# Set variational form\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", + "# Set generator's initial parameters\n", + "init_params = aqua_globals.random.rand(var_form._num_parameters) * 2 * 1e-2\n", + "# Set an initial state for the generator circuit\n", + "init_dist = UniformDistribution(np.sum(num_qubits), low=bounds[0], high=bounds[1])\n", + "# Set generator circuit\n", + "g_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, init_params,\n", + " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", + "# Set generator optimizer\n", + "g_optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-5, beta_1=0.9, beta_2=0.99, noise_factor=1e-6,\n", + " eps=1e-10, amsgrad=True)\n", + "# Set quantum generator\n", + "qgan.set_generator(generator_circuit=g_circuit, generator_optimizer=g_optimizer)\n", + "\n", + "# Set discriminator network\n", + "d_net = DiscriminatorNet(n_features=k)\n", + "# Set discriminator optimizer\n", + "d_optimizer = optim.Adam(d_net.parameters(), lr=1e-5, amsgrad=True)\n", + "# Set classical discriminator neural network\n", + "qgan.set_discriminator(discriminator_net=d_net, discriminator_optimizer=d_optimizer)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run the qGAN Training\n", + "During the training the discriminator's and the generator's parameters are updated alternately w.r.t the following loss functions:\n", + "$$ L_G\\left(\\phi, \\theta\\right) = -\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log\\left(D_{\\phi}\\left(g^{l}\\right)\\right)\\right] $$\n", + "and\n", + "$$ L_D\\left(\\phi, \\theta\\right) =\n", + "\t\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log D_{\\phi}\\left(x^{l}\\right) + \\log\\left(1-D_{\\phi}\\left(g^{l}\\right)\\right)\\right], $$\n", + "with $m$ denoting the batch size and $g^l$ describing the data samples generated by the quantum generator." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/3000...\n", + "Loss Discriminator: 0.6977\n", + "Loss Generator: 0.6754\n", + "Relative Entropy: 0.1783\n", + "Epoch 2/3000...\n", + "Loss Discriminator: 0.6964\n", + "Loss Generator: 0.6806\n", + "Relative Entropy: 0.1783\n", + "Epoch 3/3000...\n", + "Loss Discriminator: 0.6948\n", + "Loss Generator: 0.6832\n", + "Relative Entropy: 0.1784\n", + "Epoch 4/3000...\n", + "Loss Discriminator: 0.6935\n", + "Loss Generator: 0.6851\n", + "Relative Entropy: 0.1784\n", + "Epoch 5/3000...\n", + "Loss Discriminator: 0.6923\n", + "Loss Generator: 0.687\n", + "Relative Entropy: 0.1784\n", + "Epoch 6/3000...\n", + "Loss Discriminator: 0.6912\n", + "Loss Generator: 0.6864\n", + "Relative Entropy: 0.1783\n", + "Epoch 7/3000...\n", + "Loss Discriminator: 0.6901\n", + "Loss Generator: 0.6865\n", + "Relative Entropy: 0.1783\n", + "Epoch 8/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.6879\n", + "Relative Entropy: 0.1782\n", + "Epoch 9/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6894\n", + "Relative Entropy: 0.1781\n", + "Epoch 10/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.6924\n", + "Relative Entropy: 0.1781\n", + "Epoch 11/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.6923\n", + "Relative Entropy: 0.178\n", + "Epoch 12/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.6922\n", + "Relative Entropy: 0.1779\n", + "Epoch 13/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.6939\n", + "Relative Entropy: 0.1779\n", + "Epoch 14/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.6968\n", + "Relative Entropy: 0.1778\n", + "Epoch 15/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.1777\n", + "Epoch 16/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.1777\n", + "Epoch 17/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.1776\n", + "Epoch 18/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.1775\n", + "Epoch 19/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.1775\n", + "Epoch 20/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.1774\n", + "Epoch 21/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.1773\n", + "Epoch 22/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.1772\n", + "Epoch 23/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.1772\n", + "Epoch 24/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.1771\n", + "Epoch 25/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.177\n", + "Epoch 26/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.177\n", + "Epoch 27/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.1769\n", + "Epoch 28/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.1768\n", + "Epoch 29/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1768\n", + "Epoch 30/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1767\n", + "Epoch 31/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1766\n", + "Epoch 32/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1765\n", + "Epoch 33/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1765\n", + "Epoch 34/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1764\n", + "Epoch 35/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1763\n", + "Epoch 36/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1763\n", + "Epoch 37/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1762\n", + "Epoch 38/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1761\n", + "Epoch 39/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1761\n", + "Epoch 40/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.176\n", + "Epoch 41/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1759\n", + "Epoch 42/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1759\n", + "Epoch 43/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1758\n", + "Epoch 44/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1757\n", + "Epoch 45/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1756\n", + "Epoch 46/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1756\n", + "Epoch 47/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1755\n", + "Epoch 48/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1754\n", + "Epoch 49/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1754\n", + "Epoch 50/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1753\n", + "Epoch 51/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1752\n", + "Epoch 52/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1752\n", + "Epoch 53/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1751\n", + "Epoch 54/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.175\n", + "Epoch 55/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.175\n", + "Epoch 56/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1749\n", + "Epoch 57/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1748\n", + "Epoch 58/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1747\n", + "Epoch 59/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1747\n", + "Epoch 60/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1746\n", + "Epoch 61/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1745\n", + "Epoch 62/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1745\n", + "Epoch 63/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1744\n", + "Epoch 64/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1743\n", + "Epoch 65/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1743\n", + "Epoch 66/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1742\n", + "Epoch 67/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1741\n", + "Epoch 68/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1741\n", + "Epoch 69/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.174\n", + "Epoch 70/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1739\n", + "Epoch 71/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1739\n", + "Epoch 72/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1738\n", + "Epoch 73/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1737\n", + "Epoch 74/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1736\n", + "Epoch 75/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1736\n", + "Epoch 76/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1735\n", + "Epoch 77/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1734\n", + "Epoch 78/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1734\n", + "Epoch 79/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1733\n", + "Epoch 80/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.1732\n", + "Epoch 81/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1732\n", + "Epoch 82/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1731\n", + "Epoch 83/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.173\n", + "Epoch 84/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.173\n", + "Epoch 85/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1729\n", + "Epoch 86/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1728\n", + "Epoch 87/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7375\n", + "Relative Entropy: 0.1728\n", + "Epoch 88/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1727\n", + "Epoch 89/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1726\n", + "Epoch 90/3000...\n", + "Loss Discriminator: 0.6652\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1726\n", + "Epoch 91/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.1725\n", + "Epoch 92/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1724\n", + "Epoch 93/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1723\n", + "Epoch 94/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1723\n", + "Epoch 95/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1722\n", + "Epoch 96/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1721\n", + "Epoch 97/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1721\n", + "Epoch 98/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.172\n", + "Epoch 99/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1719\n", + "Epoch 100/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1719\n", + "Epoch 101/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1718\n", + "Epoch 102/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1717\n", + "Epoch 103/3000...\n", + "Loss Discriminator: 0.6651\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1717\n", + "Epoch 104/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.1716\n", + "Epoch 105/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1715\n", + "Epoch 106/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1715\n", + "Epoch 107/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1714\n", + "Epoch 108/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1713\n", + "Epoch 109/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1713\n", + "Epoch 110/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1712\n", + "Epoch 111/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1711\n", + "Epoch 112/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1711\n", + "Epoch 113/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.171\n", + "Epoch 114/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1709\n", + "Epoch 115/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1708\n", + "Epoch 116/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1708\n", + "Epoch 117/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1707\n", + "Epoch 118/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1706\n", + "Epoch 119/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1706\n", + "Epoch 120/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1705\n", + "Epoch 121/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1704\n", + "Epoch 122/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1704\n", + "Epoch 123/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1703\n", + "Epoch 124/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1702\n", + "Epoch 125/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1702\n", + "Epoch 126/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1701\n", + "Epoch 127/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.17\n", + "Epoch 128/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.17\n", + "Epoch 129/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1699\n", + "Epoch 130/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1698\n", + "Epoch 131/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1698\n", + "Epoch 132/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1697\n", + "Epoch 133/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1696\n", + "Epoch 134/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1696\n", + "Epoch 135/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1695\n", + "Epoch 136/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1694\n", + "Epoch 137/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1694\n", + "Epoch 138/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1693\n", + "Epoch 139/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1692\n", + "Epoch 140/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1692\n", + "Epoch 141/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1691\n", + "Epoch 142/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.169\n", + "Epoch 143/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.169\n", + "Epoch 144/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1689\n", + "Epoch 145/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1688\n", + "Epoch 146/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1688\n", + "Epoch 147/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1687\n", + "Epoch 148/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1686\n", + "Epoch 149/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1686\n", + "Epoch 150/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1685\n", + "Epoch 151/3000...\n", + "Loss Discriminator: 0.6664\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1684\n", + "Epoch 152/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1684\n", + "Epoch 153/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1683\n", + "Epoch 154/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1682\n", + "Epoch 155/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1681\n", + "Epoch 156/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1681\n", + "Epoch 157/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.168\n", + "Epoch 158/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1679\n", + "Epoch 159/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1679\n", + "Epoch 160/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1678\n", + "Epoch 161/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1677\n", + "Epoch 162/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1677\n", + "Epoch 163/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1676\n", + "Epoch 164/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1675\n", + "Epoch 165/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1675\n", + "Epoch 166/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1674\n", + "Epoch 167/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1673\n", + "Epoch 168/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1673\n", + "Epoch 169/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1672\n", + "Epoch 170/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1671\n", + "Epoch 171/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1671\n", + "Epoch 172/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.167\n", + "Epoch 173/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1669\n", + "Epoch 174/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1669\n", + "Epoch 175/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1668\n", + "Epoch 176/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1667\n", + "Epoch 177/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1667\n", + "Epoch 178/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1666\n", + "Epoch 179/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1665\n", + "Epoch 180/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1665\n", + "Epoch 181/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7375\n", + "Relative Entropy: 0.1664\n", + "Epoch 182/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1663\n", + "Epoch 183/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1663\n", + "Epoch 184/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1662\n", + "Epoch 185/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1661\n", + "Epoch 186/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1661\n", + "Epoch 187/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.166\n", + "Epoch 188/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1659\n", + "Epoch 189/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1659\n", + "Epoch 190/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1658\n", + "Epoch 191/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1657\n", + "Epoch 192/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1657\n", + "Epoch 193/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1656\n", + "Epoch 194/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1655\n", + "Epoch 195/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1655\n", + "Epoch 196/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1654\n", + "Epoch 197/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1653\n", + "Epoch 198/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1653\n", + "Epoch 199/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1652\n", + "Epoch 200/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1651\n", + "Epoch 201/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1651\n", + "Epoch 202/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.165\n", + "Epoch 203/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.165\n", + "Epoch 204/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1649\n", + "Epoch 205/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1648\n", + "Epoch 206/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1648\n", + "Epoch 207/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1647\n", + "Epoch 208/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1646\n", + "Epoch 209/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1646\n", + "Epoch 210/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1645\n", + "Epoch 211/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1644\n", + "Epoch 212/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1644\n", + "Epoch 213/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1643\n", + "Epoch 214/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1642\n", + "Epoch 215/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1642\n", + "Epoch 216/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1641\n", + "Epoch 217/3000...\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.164\n", + "Epoch 218/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.164\n", + "Epoch 219/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1639\n", + "Epoch 220/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1638\n", + "Epoch 221/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1638\n", + "Epoch 222/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1637\n", + "Epoch 223/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1636\n", + "Epoch 224/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1636\n", + "Epoch 225/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1635\n", + "Epoch 226/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1634\n", + "Epoch 227/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1634\n", + "Epoch 228/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1633\n", + "Epoch 229/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1632\n", + "Epoch 230/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1632\n", + "Epoch 231/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1631\n", + "Epoch 232/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.163\n", + "Epoch 233/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.163\n", + "Epoch 234/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1629\n", + "Epoch 235/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1628\n", + "Epoch 236/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1628\n", + "Epoch 237/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1627\n", + "Epoch 238/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1626\n", + "Epoch 239/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1626\n", + "Epoch 240/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1625\n", + "Epoch 241/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1624\n", + "Epoch 242/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1624\n", + "Epoch 243/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1623\n", + "Epoch 244/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1623\n", + "Epoch 245/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1622\n", + "Epoch 246/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1621\n", + "Epoch 247/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1621\n", + "Epoch 248/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.162\n", + "Epoch 249/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1619\n", + "Epoch 250/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1619\n", + "Epoch 251/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1618\n", + "Epoch 252/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1617\n", + "Epoch 253/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1617\n", + "Epoch 254/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1616\n", + "Epoch 255/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1615\n", + "Epoch 256/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1615\n", + "Epoch 257/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1614\n", + "Epoch 258/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1613\n", + "Epoch 259/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1613\n", + "Epoch 260/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1612\n", + "Epoch 261/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1611\n", + "Epoch 262/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1611\n", + "Epoch 263/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.161\n", + "Epoch 264/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1609\n", + "Epoch 265/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1609\n", + "Epoch 266/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1608\n", + "Epoch 267/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1608\n", + "Epoch 268/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1607\n", + "Epoch 269/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1606\n", + "Epoch 270/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1606\n", + "Epoch 271/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1605\n", + "Epoch 272/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1604\n", + "Epoch 273/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1604\n", + "Epoch 274/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1603\n", + "Epoch 275/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1602\n", + "Epoch 276/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1602\n", + "Epoch 277/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1601\n", + "Epoch 278/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.16\n", + "Epoch 279/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.16\n", + "Epoch 280/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1599\n", + "Epoch 281/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1598\n", + "Epoch 282/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1598\n", + "Epoch 283/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1597\n", + "Epoch 284/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1597\n", + "Epoch 285/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1596\n", + "Epoch 286/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1595\n", + "Epoch 287/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1595\n", + "Epoch 288/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1594\n", + "Epoch 289/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1593\n", + "Epoch 290/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1593\n", + "Epoch 291/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1592\n", + "Epoch 292/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1591\n", + "Epoch 293/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1591\n", + "Epoch 294/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.159\n", + "Epoch 295/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1589\n", + "Epoch 296/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1589\n", + "Epoch 297/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1588\n", + "Epoch 298/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1587\n", + "Epoch 299/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1587\n", + "Epoch 300/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1586\n", + "Epoch 301/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1586\n", + "Epoch 302/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1585\n", + "Epoch 303/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1584\n", + "Epoch 304/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1584\n", + "Epoch 305/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1583\n", + "Epoch 306/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1582\n", + "Epoch 307/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1582\n", + "Epoch 308/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1581\n", + "Epoch 309/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.158\n", + "Epoch 310/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.158\n", + "Epoch 311/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1579\n", + "Epoch 312/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1578\n", + "Epoch 313/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1578\n", + "Epoch 314/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1577\n", + "Epoch 315/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1577\n", + "Epoch 316/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1576\n", + "Epoch 317/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1575\n", + "Epoch 318/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1575\n", + "Epoch 319/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1574\n", + "Epoch 320/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1573\n", + "Epoch 321/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1573\n", + "Epoch 322/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1572\n", + "Epoch 323/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1571\n", + "Epoch 324/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1571\n", + "Epoch 325/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.157\n", + "Epoch 326/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.157\n", + "Epoch 327/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1569\n", + "Epoch 328/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1568\n", + "Epoch 329/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1568\n", + "Epoch 330/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1567\n", + "Epoch 331/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1566\n", + "Epoch 332/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1566\n", + "Epoch 333/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1565\n", + "Epoch 334/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1564\n", + "Epoch 335/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1564\n", + "Epoch 336/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1563\n", + "Epoch 337/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1563\n", + "Epoch 338/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1562\n", + "Epoch 339/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1561\n", + "Epoch 340/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1561\n", + "Epoch 341/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.156\n", + "Epoch 342/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1559\n", + "Epoch 343/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1559\n", + "Epoch 344/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1558\n", + "Epoch 345/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1557\n", + "Epoch 346/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1557\n", + "Epoch 347/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1556\n", + "Epoch 348/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1556\n", + "Epoch 349/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1555\n", + "Epoch 350/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1554\n", + "Epoch 351/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1554\n", + "Epoch 352/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1553\n", + "Epoch 353/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1552\n", + "Epoch 354/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1552\n", + "Epoch 355/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1551\n", + "Epoch 356/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.155\n", + "Epoch 357/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.155\n", + "Epoch 358/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1549\n", + "Epoch 359/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1549\n", + "Epoch 360/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1548\n", + "Epoch 361/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1547\n", + "Epoch 362/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1547\n", + "Epoch 363/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1546\n", + "Epoch 364/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1545\n", + "Epoch 365/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1545\n", + "Epoch 366/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1544\n", + "Epoch 367/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1544\n", + "Epoch 368/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1543\n", + "Epoch 369/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1542\n", + "Epoch 370/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1542\n", + "Epoch 371/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1541\n", + "Epoch 372/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.154\n", + "Epoch 373/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.154\n", + "Epoch 374/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1539\n", + "Epoch 375/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1538\n", + "Epoch 376/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1538\n", + "Epoch 377/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1537\n", + "Epoch 378/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1537\n", + "Epoch 379/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1536\n", + "Epoch 380/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1535\n", + "Epoch 381/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1535\n", + "Epoch 382/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1534\n", + "Epoch 383/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1533\n", + "Epoch 384/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1533\n", + "Epoch 385/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1532\n", + "Epoch 386/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1532\n", + "Epoch 387/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1531\n", + "Epoch 388/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.153\n", + "Epoch 389/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.153\n", + "Epoch 390/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1529\n", + "Epoch 391/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1528\n", + "Epoch 392/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1528\n", + "Epoch 393/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1527\n", + "Epoch 394/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1527\n", + "Epoch 395/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1526\n", + "Epoch 396/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1525\n", + "Epoch 397/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1525\n", + "Epoch 398/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1524\n", + "Epoch 399/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1523\n", + "Epoch 400/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1523\n", + "Epoch 401/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1522\n", + "Epoch 402/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1522\n", + "Epoch 403/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1521\n", + "Epoch 404/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.152\n", + "Epoch 405/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.152\n", + "Epoch 406/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1519\n", + "Epoch 407/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1518\n", + "Epoch 408/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1518\n", + "Epoch 409/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1517\n", + "Epoch 410/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1517\n", + "Epoch 411/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1516\n", + "Epoch 412/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1515\n", + "Epoch 413/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1515\n", + "Epoch 414/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1514\n", + "Epoch 415/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1513\n", + "Epoch 416/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1513\n", + "Epoch 417/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1512\n", + "Epoch 418/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1512\n", + "Epoch 419/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1511\n", + "Epoch 420/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.151\n", + "Epoch 421/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.151\n", + "Epoch 422/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1509\n", + "Epoch 423/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1508\n", + "Epoch 424/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1508\n", + "Epoch 425/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1507\n", + "Epoch 426/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1507\n", + "Epoch 427/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1506\n", + "Epoch 428/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1505\n", + "Epoch 429/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1505\n", + "Epoch 430/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1504\n", + "Epoch 431/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1504\n", + "Epoch 432/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1503\n", + "Epoch 433/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1502\n", + "Epoch 434/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1502\n", + "Epoch 435/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1501\n", + "Epoch 436/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.15\n", + "Epoch 437/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.15\n", + "Epoch 438/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1499\n", + "Epoch 439/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1499\n", + "Epoch 440/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1498\n", + "Epoch 441/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1497\n", + "Epoch 442/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1497\n", + "Epoch 443/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1496\n", + "Epoch 444/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1496\n", + "Epoch 445/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1495\n", + "Epoch 446/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1494\n", + "Epoch 447/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1494\n", + "Epoch 448/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1493\n", + "Epoch 449/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1492\n", + "Epoch 450/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1492\n", + "Epoch 451/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1491\n", + "Epoch 452/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1491\n", + "Epoch 453/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.149\n", + "Epoch 454/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1489\n", + "Epoch 455/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1489\n", + "Epoch 456/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1488\n", + "Epoch 457/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1488\n", + "Epoch 458/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1487\n", + "Epoch 459/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1486\n", + "Epoch 460/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1486\n", + "Epoch 461/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1485\n", + "Epoch 462/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1484\n", + "Epoch 463/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1484\n", + "Epoch 464/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1483\n", + "Epoch 465/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1483\n", + "Epoch 466/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1482\n", + "Epoch 467/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1481\n", + "Epoch 468/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1481\n", + "Epoch 469/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.148\n", + "Epoch 470/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.148\n", + "Epoch 471/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1479\n", + "Epoch 472/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1478\n", + "Epoch 473/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1478\n", + "Epoch 474/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1477\n", + "Epoch 475/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1477\n", + "Epoch 476/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1476\n", + "Epoch 477/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1475\n", + "Epoch 478/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1475\n", + "Epoch 479/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1474\n", + "Epoch 480/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1473\n", + "Epoch 481/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1473\n", + "Epoch 482/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1472\n", + "Epoch 483/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1472\n", + "Epoch 484/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1471\n", + "Epoch 485/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.147\n", + "Epoch 486/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.147\n", + "Epoch 487/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1469\n", + "Epoch 488/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1469\n", + "Epoch 489/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1468\n", + "Epoch 490/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1467\n", + "Epoch 491/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1467\n", + "Epoch 492/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1466\n", + "Epoch 493/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1466\n", + "Epoch 494/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1465\n", + "Epoch 495/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1464\n", + "Epoch 496/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1464\n", + "Epoch 497/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1463\n", + "Epoch 498/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1463\n", + "Epoch 499/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1462\n", + "Epoch 500/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1461\n", + "Epoch 501/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1461\n", + "Epoch 502/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.146\n", + "Epoch 503/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1459\n", + "Epoch 504/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1459\n", + "Epoch 505/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1458\n", + "Epoch 506/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1458\n", + "Epoch 507/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1457\n", + "Epoch 508/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1456\n", + "Epoch 509/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1456\n", + "Epoch 510/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1455\n", + "Epoch 511/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1455\n", + "Epoch 512/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1454\n", + "Epoch 513/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1453\n", + "Epoch 514/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1453\n", + "Epoch 515/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1452\n", + "Epoch 516/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1452\n", + "Epoch 517/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1451\n", + "Epoch 518/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.145\n", + "Epoch 519/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.145\n", + "Epoch 520/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1449\n", + "Epoch 521/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1449\n", + "Epoch 522/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1448\n", + "Epoch 523/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1447\n", + "Epoch 524/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1447\n", + "Epoch 525/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1446\n", + "Epoch 526/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1446\n", + "Epoch 527/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1445\n", + "Epoch 528/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1444\n", + "Epoch 529/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1444\n", + "Epoch 530/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1443\n", + "Epoch 531/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1443\n", + "Epoch 532/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1442\n", + "Epoch 533/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1441\n", + "Epoch 534/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1441\n", + "Epoch 535/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.144\n", + "Epoch 536/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.144\n", + "Epoch 537/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1439\n", + "Epoch 538/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1438\n", + "Epoch 539/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1438\n", + "Epoch 540/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1437\n", + "Epoch 541/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1437\n", + "Epoch 542/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1436\n", + "Epoch 543/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1435\n", + "Epoch 544/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1435\n", + "Epoch 545/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1434\n", + "Epoch 546/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1434\n", + "Epoch 547/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1433\n", + "Epoch 548/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1432\n", + "Epoch 549/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1432\n", + "Epoch 550/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1431\n", + "Epoch 551/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1431\n", + "Epoch 552/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.143\n", + "Epoch 553/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1429\n", + "Epoch 554/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1429\n", + "Epoch 555/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1428\n", + "Epoch 556/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1428\n", + "Epoch 557/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1427\n", + "Epoch 558/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1427\n", + "Epoch 559/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1426\n", + "Epoch 560/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1425\n", + "Epoch 561/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1425\n", + "Epoch 562/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1424\n", + "Epoch 563/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1424\n", + "Epoch 564/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1423\n", + "Epoch 565/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1422\n", + "Epoch 566/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1422\n", + "Epoch 567/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1421\n", + "Epoch 568/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1421\n", + "Epoch 569/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.142\n", + "Epoch 570/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1419\n", + "Epoch 571/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1419\n", + "Epoch 572/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1418\n", + "Epoch 573/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1418\n", + "Epoch 574/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1417\n", + "Epoch 575/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1416\n", + "Epoch 576/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1416\n", + "Epoch 577/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1415\n", + "Epoch 578/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1415\n", + "Epoch 579/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1414\n", + "Epoch 580/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1413\n", + "Epoch 581/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1413\n", + "Epoch 582/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1412\n", + "Epoch 583/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1412\n", + "Epoch 584/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1411\n", + "Epoch 585/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1411\n", + "Epoch 586/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.141\n", + "Epoch 587/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1409\n", + "Epoch 588/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1409\n", + "Epoch 589/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1408\n", + "Epoch 590/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1408\n", + "Epoch 591/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1407\n", + "Epoch 592/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1406\n", + "Epoch 593/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1406\n", + "Epoch 594/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1405\n", + "Epoch 595/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1405\n", + "Epoch 596/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1404\n", + "Epoch 597/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1403\n", + "Epoch 598/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1403\n", + "Epoch 599/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1402\n", + "Epoch 600/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1402\n", + "Epoch 601/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1401\n", + "Epoch 602/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1401\n", + "Epoch 603/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.14\n", + "Epoch 604/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1399\n", + "Epoch 605/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1399\n", + "Epoch 606/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1398\n", + "Epoch 607/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1398\n", + "Epoch 608/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1397\n", + "Epoch 609/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1396\n", + "Epoch 610/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1396\n", + "Epoch 611/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1395\n", + "Epoch 612/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1395\n", + "Epoch 613/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1394\n", + "Epoch 614/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1394\n", + "Epoch 615/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1393\n", + "Epoch 616/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1392\n", + "Epoch 617/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1392\n", + "Epoch 618/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1391\n", + "Epoch 619/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1391\n", + "Epoch 620/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.139\n", + "Epoch 621/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1389\n", + "Epoch 622/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1389\n", + "Epoch 623/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1388\n", + "Epoch 624/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1388\n", + "Epoch 625/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1387\n", + "Epoch 626/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1387\n", + "Epoch 627/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1386\n", + "Epoch 628/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1385\n", + "Epoch 629/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1385\n", + "Epoch 630/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1384\n", + "Epoch 631/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1384\n", + "Epoch 632/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1383\n", + "Epoch 633/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1382\n", + "Epoch 634/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1382\n", + "Epoch 635/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1381\n", + "Epoch 636/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1381\n", + "Epoch 637/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.138\n", + "Epoch 638/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.138\n", + "Epoch 639/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1379\n", + "Epoch 640/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1378\n", + "Epoch 641/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1378\n", + "Epoch 642/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1377\n", + "Epoch 643/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1377\n", + "Epoch 644/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1376\n", + "Epoch 645/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1376\n", + "Epoch 646/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1375\n", + "Epoch 647/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1374\n", + "Epoch 648/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1374\n", + "Epoch 649/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1373\n", + "Epoch 650/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1373\n", + "Epoch 651/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1372\n", + "Epoch 652/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1371\n", + "Epoch 653/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1371\n", + "Epoch 654/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.137\n", + "Epoch 655/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.137\n", + "Epoch 656/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1369\n", + "Epoch 657/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1369\n", + "Epoch 658/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1368\n", + "Epoch 659/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1367\n", + "Epoch 660/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1367\n", + "Epoch 661/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1366\n", + "Epoch 662/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1366\n", + "Epoch 663/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1365\n", + "Epoch 664/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1365\n", + "Epoch 665/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1364\n", + "Epoch 666/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1363\n", + "Epoch 667/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1363\n", + "Epoch 668/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1362\n", + "Epoch 669/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1362\n", + "Epoch 670/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1361\n", + "Epoch 671/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1361\n", + "Epoch 672/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.136\n", + "Epoch 673/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1359\n", + "Epoch 674/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1359\n", + "Epoch 675/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1358\n", + "Epoch 676/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1358\n", + "Epoch 677/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1357\n", + "Epoch 678/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1357\n", + "Epoch 679/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1356\n", + "Epoch 680/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1355\n", + "Epoch 681/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1355\n", + "Epoch 682/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1354\n", + "Epoch 683/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1354\n", + "Epoch 684/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1353\n", + "Epoch 685/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1353\n", + "Epoch 686/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1352\n", + "Epoch 687/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1351\n", + "Epoch 688/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1351\n", + "Epoch 689/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.135\n", + "Epoch 690/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.135\n", + "Epoch 691/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1349\n", + "Epoch 692/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1349\n", + "Epoch 693/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1348\n", + "Epoch 694/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1347\n", + "Epoch 695/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1347\n", + "Epoch 696/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1346\n", + "Epoch 697/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1346\n", + "Epoch 698/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1345\n", + "Epoch 699/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1345\n", + "Epoch 700/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1344\n", + "Epoch 701/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1343\n", + "Epoch 702/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1343\n", + "Epoch 703/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1342\n", + "Epoch 704/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1342\n", + "Epoch 705/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1341\n", + "Epoch 706/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1341\n", + "Epoch 707/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.134\n", + "Epoch 708/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1339\n", + "Epoch 709/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1339\n", + "Epoch 710/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1338\n", + "Epoch 711/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1338\n", + "Epoch 712/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1337\n", + "Epoch 713/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1337\n", + "Epoch 714/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1336\n", + "Epoch 715/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1335\n", + "Epoch 716/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1335\n", + "Epoch 717/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1334\n", + "Epoch 718/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1334\n", + "Epoch 719/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1333\n", + "Epoch 720/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1333\n", + "Epoch 721/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1332\n", + "Epoch 722/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1332\n", + "Epoch 723/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1331\n", + "Epoch 724/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.133\n", + "Epoch 725/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.133\n", + "Epoch 726/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1329\n", + "Epoch 727/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1329\n", + "Epoch 728/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1328\n", + "Epoch 729/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1328\n", + "Epoch 730/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1327\n", + "Epoch 731/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1326\n", + "Epoch 732/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1326\n", + "Epoch 733/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1325\n", + "Epoch 734/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1325\n", + "Epoch 735/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1324\n", + "Epoch 736/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1324\n", + "Epoch 737/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1323\n", + "Epoch 738/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1323\n", + "Epoch 739/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1322\n", + "Epoch 740/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1321\n", + "Epoch 741/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1321\n", + "Epoch 742/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.132\n", + "Epoch 743/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.132\n", + "Epoch 744/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1319\n", + "Epoch 745/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1319\n", + "Epoch 746/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1318\n", + "Epoch 747/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1318\n", + "Epoch 748/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1317\n", + "Epoch 749/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1316\n", + "Epoch 750/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1316\n", + "Epoch 751/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1315\n", + "Epoch 752/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1315\n", + "Epoch 753/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1314\n", + "Epoch 754/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1314\n", + "Epoch 755/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1313\n", + "Epoch 756/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1312\n", + "Epoch 757/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1312\n", + "Epoch 758/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1311\n", + "Epoch 759/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1311\n", + "Epoch 760/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.131\n", + "Epoch 761/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.131\n", + "Epoch 762/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1309\n", + "Epoch 763/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1309\n", + "Epoch 764/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1308\n", + "Epoch 765/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1307\n", + "Epoch 766/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1307\n", + "Epoch 767/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1306\n", + "Epoch 768/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1306\n", + "Epoch 769/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1305\n", + "Epoch 770/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1305\n", + "Epoch 771/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1304\n", + "Epoch 772/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1304\n", + "Epoch 773/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1303\n", + "Epoch 774/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1302\n", + "Epoch 775/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1302\n", + "Epoch 776/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1301\n", + "Epoch 777/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1301\n", + "Epoch 778/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.13\n", + "Epoch 779/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.13\n", + "Epoch 780/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1299\n", + "Epoch 781/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1299\n", + "Epoch 782/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1298\n", + "Epoch 783/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1298\n", + "Epoch 784/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1297\n", + "Epoch 785/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1296\n", + "Epoch 786/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1296\n", + "Epoch 787/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1295\n", + "Epoch 788/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1295\n", + "Epoch 789/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1294\n", + "Epoch 790/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1294\n", + "Epoch 791/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1293\n", + "Epoch 792/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1293\n", + "Epoch 793/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1292\n", + "Epoch 794/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1291\n", + "Epoch 795/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1291\n", + "Epoch 796/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.129\n", + "Epoch 797/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.129\n", + "Epoch 798/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1289\n", + "Epoch 799/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1289\n", + "Epoch 800/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1288\n", + "Epoch 801/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1288\n", + "Epoch 802/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1287\n", + "Epoch 803/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1286\n", + "Epoch 804/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1286\n", + "Epoch 805/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1285\n", + "Epoch 806/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1285\n", + "Epoch 807/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1284\n", + "Epoch 808/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1284\n", + "Epoch 809/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1283\n", + "Epoch 810/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1283\n", + "Epoch 811/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1282\n", + "Epoch 812/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1282\n", + "Epoch 813/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1281\n", + "Epoch 814/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.128\n", + "Epoch 815/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.128\n", + "Epoch 816/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1279\n", + "Epoch 817/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1279\n", + "Epoch 818/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1278\n", + "Epoch 819/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1278\n", + "Epoch 820/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1277\n", + "Epoch 821/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1277\n", + "Epoch 822/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1276\n", + "Epoch 823/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1276\n", + "Epoch 824/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1275\n", + "Epoch 825/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1274\n", + "Epoch 826/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1274\n", + "Epoch 827/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1273\n", + "Epoch 828/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1273\n", + "Epoch 829/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1272\n", + "Epoch 830/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1272\n", + "Epoch 831/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1271\n", + "Epoch 832/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1271\n", + "Epoch 833/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.127\n", + "Epoch 834/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.127\n", + "Epoch 835/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1269\n", + "Epoch 836/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1268\n", + "Epoch 837/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1268\n", + "Epoch 838/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1267\n", + "Epoch 839/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1267\n", + "Epoch 840/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1266\n", + "Epoch 841/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1266\n", + "Epoch 842/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1265\n", + "Epoch 843/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1265\n", + "Epoch 844/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1264\n", + "Epoch 845/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1264\n", + "Epoch 846/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1263\n", + "Epoch 847/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1263\n", + "Epoch 848/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1262\n", + "Epoch 849/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1261\n", + "Epoch 850/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1261\n", + "Epoch 851/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.126\n", + "Epoch 852/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.126\n", + "Epoch 853/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1259\n", + "Epoch 854/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1259\n", + "Epoch 855/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1258\n", + "Epoch 856/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1258\n", + "Epoch 857/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1257\n", + "Epoch 858/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1257\n", + "Epoch 859/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1256\n", + "Epoch 860/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1256\n", + "Epoch 861/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1255\n", + "Epoch 862/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1254\n", + "Epoch 863/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1254\n", + "Epoch 864/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1253\n", + "Epoch 865/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1253\n", + "Epoch 866/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1252\n", + "Epoch 867/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1252\n", + "Epoch 868/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1251\n", + "Epoch 869/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1251\n", + "Epoch 870/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.125\n", + "Epoch 871/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.125\n", + "Epoch 872/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1249\n", + "Epoch 873/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1249\n", + "Epoch 874/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1248\n", + "Epoch 875/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1247\n", + "Epoch 876/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1247\n", + "Epoch 877/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1246\n", + "Epoch 878/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1246\n", + "Epoch 879/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1245\n", + "Epoch 880/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1245\n", + "Epoch 881/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1244\n", + "Epoch 882/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1244\n", + "Epoch 883/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1243\n", + "Epoch 884/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1243\n", + "Epoch 885/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1242\n", + "Epoch 886/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1242\n", + "Epoch 887/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1241\n", + "Epoch 888/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1241\n", + "Epoch 889/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.124\n", + "Epoch 890/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1239\n", + "Epoch 891/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1239\n", + "Epoch 892/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1238\n", + "Epoch 893/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1238\n", + "Epoch 894/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1237\n", + "Epoch 895/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1237\n", + "Epoch 896/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1236\n", + "Epoch 897/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1236\n", + "Epoch 898/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1235\n", + "Epoch 899/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1235\n", + "Epoch 900/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1234\n", + "Epoch 901/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1234\n", + "Epoch 902/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1233\n", + "Epoch 903/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1233\n", + "Epoch 904/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1232\n", + "Epoch 905/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1232\n", + "Epoch 906/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1231\n", + "Epoch 907/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.123\n", + "Epoch 908/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.123\n", + "Epoch 909/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1229\n", + "Epoch 910/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1229\n", + "Epoch 911/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1228\n", + "Epoch 912/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1228\n", + "Epoch 913/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1227\n", + "Epoch 914/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1227\n", + "Epoch 915/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1226\n", + "Epoch 916/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1226\n", + "Epoch 917/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1225\n", + "Epoch 918/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1225\n", + "Epoch 919/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1224\n", + "Epoch 920/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1224\n", + "Epoch 921/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1223\n", + "Epoch 922/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1223\n", + "Epoch 923/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1222\n", + "Epoch 924/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1221\n", + "Epoch 925/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1221\n", + "Epoch 926/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.122\n", + "Epoch 927/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.122\n", + "Epoch 928/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1219\n", + "Epoch 929/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1219\n", + "Epoch 930/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1218\n", + "Epoch 931/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1218\n", + "Epoch 932/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1217\n", + "Epoch 933/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1217\n", + "Epoch 934/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1216\n", + "Epoch 935/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1216\n", + "Epoch 936/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1215\n", + "Epoch 937/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1215\n", + "Epoch 938/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1214\n", + "Epoch 939/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1214\n", + "Epoch 940/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1213\n", + "Epoch 941/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1213\n", + "Epoch 942/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1212\n", + "Epoch 943/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1212\n", + "Epoch 944/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1211\n", + "Epoch 945/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.121\n", + "Epoch 946/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.121\n", + "Epoch 947/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1209\n", + "Epoch 948/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1209\n", + "Epoch 949/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1208\n", + "Epoch 950/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1208\n", + "Epoch 951/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1207\n", + "Epoch 952/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1207\n", + "Epoch 953/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1206\n", + "Epoch 954/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1206\n", + "Epoch 955/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1205\n", + "Epoch 956/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1205\n", + "Epoch 957/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1204\n", + "Epoch 958/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1204\n", + "Epoch 959/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1203\n", + "Epoch 960/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1203\n", + "Epoch 961/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1202\n", + "Epoch 962/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1202\n", + "Epoch 963/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1201\n", + "Epoch 964/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1201\n", + "Epoch 965/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.12\n", + "Epoch 966/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.12\n", + "Epoch 967/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1199\n", + "Epoch 968/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1199\n", + "Epoch 969/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1198\n", + "Epoch 970/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1197\n", + "Epoch 971/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1197\n", + "Epoch 972/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1196\n", + "Epoch 973/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1196\n", + "Epoch 974/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1195\n", + "Epoch 975/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1195\n", + "Epoch 976/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1194\n", + "Epoch 977/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1194\n", + "Epoch 978/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1193\n", + "Epoch 979/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1193\n", + "Epoch 980/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1192\n", + "Epoch 981/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1192\n", + "Epoch 982/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1191\n", + "Epoch 983/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1191\n", + "Epoch 984/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.119\n", + "Epoch 985/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.119\n", + "Epoch 986/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1189\n", + "Epoch 987/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1189\n", + "Epoch 988/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1188\n", + "Epoch 989/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1188\n", + "Epoch 990/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1187\n", + "Epoch 991/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1187\n", + "Epoch 992/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1186\n", + "Epoch 993/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1186\n", + "Epoch 994/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1185\n", + "Epoch 995/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1185\n", + "Epoch 996/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1184\n", + "Epoch 997/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1184\n", + "Epoch 998/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1183\n", + "Epoch 999/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1183\n", + "Epoch 1000/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1182\n", + "Epoch 1001/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1182\n", + "Epoch 1002/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1181\n", + "Epoch 1003/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.118\n", + "Epoch 1004/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.118\n", + "Epoch 1005/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1179\n", + "Epoch 1006/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1179\n", + "Epoch 1007/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1178\n", + "Epoch 1008/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1178\n", + "Epoch 1009/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1177\n", + "Epoch 1010/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1177\n", + "Epoch 1011/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1176\n", + "Epoch 1012/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1176\n", + "Epoch 1013/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1175\n", + "Epoch 1014/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1175\n", + "Epoch 1015/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1174\n", + "Epoch 1016/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1174\n", + "Epoch 1017/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1173\n", + "Epoch 1018/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1173\n", + "Epoch 1019/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1172\n", + "Epoch 1020/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1172\n", + "Epoch 1021/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1171\n", + "Epoch 1022/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1171\n", + "Epoch 1023/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.117\n", + "Epoch 1024/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.117\n", + "Epoch 1025/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1169\n", + "Epoch 1026/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1169\n", + "Epoch 1027/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1168\n", + "Epoch 1028/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1168\n", + "Epoch 1029/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1167\n", + "Epoch 1030/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1167\n", + "Epoch 1031/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1166\n", + "Epoch 1032/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1166\n", + "Epoch 1033/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1165\n", + "Epoch 1034/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1165\n", + "Epoch 1035/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1164\n", + "Epoch 1036/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1164\n", + "Epoch 1037/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1163\n", + "Epoch 1038/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1163\n", + "Epoch 1039/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1162\n", + "Epoch 1040/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1162\n", + "Epoch 1041/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1161\n", + "Epoch 1042/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1161\n", + "Epoch 1043/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.116\n", + "Epoch 1044/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.116\n", + "Epoch 1045/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1159\n", + "Epoch 1046/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1159\n", + "Epoch 1047/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1158\n", + "Epoch 1048/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1158\n", + "Epoch 1049/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1157\n", + "Epoch 1050/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1157\n", + "Epoch 1051/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1156\n", + "Epoch 1052/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1156\n", + "Epoch 1053/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1155\n", + "Epoch 1054/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1155\n", + "Epoch 1055/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1154\n", + "Epoch 1056/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1154\n", + "Epoch 1057/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1153\n", + "Epoch 1058/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1153\n", + "Epoch 1059/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1152\n", + "Epoch 1060/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1152\n", + "Epoch 1061/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1151\n", + "Epoch 1062/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1151\n", + "Epoch 1063/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.115\n", + "Epoch 1064/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.115\n", + "Epoch 1065/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1149\n", + "Epoch 1066/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1149\n", + "Epoch 1067/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1148\n", + "Epoch 1068/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1148\n", + "Epoch 1069/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1147\n", + "Epoch 1070/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1147\n", + "Epoch 1071/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1146\n", + "Epoch 1072/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1146\n", + "Epoch 1073/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1145\n", + "Epoch 1074/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1145\n", + "Epoch 1075/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1144\n", + "Epoch 1076/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1144\n", + "Epoch 1077/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1143\n", + "Epoch 1078/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1143\n", + "Epoch 1079/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1142\n", + "Epoch 1080/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1142\n", + "Epoch 1081/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1141\n", + "Epoch 1082/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1141\n", + "Epoch 1083/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.114\n", + "Epoch 1084/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.114\n", + "Epoch 1085/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1139\n", + "Epoch 1086/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1139\n", + "Epoch 1087/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1138\n", + "Epoch 1088/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1138\n", + "Epoch 1089/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1137\n", + "Epoch 1090/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1137\n", + "Epoch 1091/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1136\n", + "Epoch 1092/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1136\n", + "Epoch 1093/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1135\n", + "Epoch 1094/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1135\n", + "Epoch 1095/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1134\n", + "Epoch 1096/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1134\n", + "Epoch 1097/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1133\n", + "Epoch 1098/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1133\n", + "Epoch 1099/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1132\n", + "Epoch 1100/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1132\n", + "Epoch 1101/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1131\n", + "Epoch 1102/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1131\n", + "Epoch 1103/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.113\n", + "Epoch 1104/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.113\n", + "Epoch 1105/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1129\n", + "Epoch 1106/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1129\n", + "Epoch 1107/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1128\n", + "Epoch 1108/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1128\n", + "Epoch 1109/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1127\n", + "Epoch 1110/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1127\n", + "Epoch 1111/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1126\n", + "Epoch 1112/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1126\n", + "Epoch 1113/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1125\n", + "Epoch 1114/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1125\n", + "Epoch 1115/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1124\n", + "Epoch 1116/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1124\n", + "Epoch 1117/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1123\n", + "Epoch 1118/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1123\n", + "Epoch 1119/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1122\n", + "Epoch 1120/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1122\n", + "Epoch 1121/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1121\n", + "Epoch 1122/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1121\n", + "Epoch 1123/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.112\n", + "Epoch 1124/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.112\n", + "Epoch 1125/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1119\n", + "Epoch 1126/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1119\n", + "Epoch 1127/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1118\n", + "Epoch 1128/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1118\n", + "Epoch 1129/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1118\n", + "Epoch 1130/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1117\n", + "Epoch 1131/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1117\n", + "Epoch 1132/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1116\n", + "Epoch 1133/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1116\n", + "Epoch 1134/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1115\n", + "Epoch 1135/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1115\n", + "Epoch 1136/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1114\n", + "Epoch 1137/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1114\n", + "Epoch 1138/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1113\n", + "Epoch 1139/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1113\n", + "Epoch 1140/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1112\n", + "Epoch 1141/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1112\n", + "Epoch 1142/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1111\n", + "Epoch 1143/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1111\n", + "Epoch 1144/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.111\n", + "Epoch 1145/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.111\n", + "Epoch 1146/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1109\n", + "Epoch 1147/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1109\n", + "Epoch 1148/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1108\n", + "Epoch 1149/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1108\n", + "Epoch 1150/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1107\n", + "Epoch 1151/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1107\n", + "Epoch 1152/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1106\n", + "Epoch 1153/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1106\n", + "Epoch 1154/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1105\n", + "Epoch 1155/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1105\n", + "Epoch 1156/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1104\n", + "Epoch 1157/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1104\n", + "Epoch 1158/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1103\n", + "Epoch 1159/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1103\n", + "Epoch 1160/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1102\n", + "Epoch 1161/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1102\n", + "Epoch 1162/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1101\n", + "Epoch 1163/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1101\n", + "Epoch 1164/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1101\n", + "Epoch 1165/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.11\n", + "Epoch 1166/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.11\n", + "Epoch 1167/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1099\n", + "Epoch 1168/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1099\n", + "Epoch 1169/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1098\n", + "Epoch 1170/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1098\n", + "Epoch 1171/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1097\n", + "Epoch 1172/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1097\n", + "Epoch 1173/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1096\n", + "Epoch 1174/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1096\n", + "Epoch 1175/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1095\n", + "Epoch 1176/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1095\n", + "Epoch 1177/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1094\n", + "Epoch 1178/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1094\n", + "Epoch 1179/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1093\n", + "Epoch 1180/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.1093\n", + "Epoch 1181/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1092\n", + "Epoch 1182/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1092\n", + "Epoch 1183/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1091\n", + "Epoch 1184/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.1091\n", + "Epoch 1185/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.109\n", + "Epoch 1186/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.109\n", + "Epoch 1187/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1089\n", + "Epoch 1188/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1089\n", + "Epoch 1189/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1089\n", + "Epoch 1190/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1088\n", + "Epoch 1191/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1088\n", + "Epoch 1192/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1087\n", + "Epoch 1193/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1087\n", + "Epoch 1194/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1086\n", + "Epoch 1195/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1086\n", + "Epoch 1196/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1085\n", + "Epoch 1197/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1085\n", + "Epoch 1198/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1084\n", + "Epoch 1199/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1084\n", + "Epoch 1200/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1083\n", + "Epoch 1201/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1083\n", + "Epoch 1202/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1082\n", + "Epoch 1203/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1082\n", + "Epoch 1204/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1081\n", + "Epoch 1205/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1081\n", + "Epoch 1206/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.108\n", + "Epoch 1207/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.108\n", + "Epoch 1208/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1079\n", + "Epoch 1209/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1079\n", + "Epoch 1210/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1079\n", + "Epoch 1211/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1078\n", + "Epoch 1212/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1078\n", + "Epoch 1213/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1077\n", + "Epoch 1214/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1077\n", + "Epoch 1215/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1076\n", + "Epoch 1216/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1076\n", + "Epoch 1217/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1075\n", + "Epoch 1218/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1075\n", + "Epoch 1219/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1074\n", + "Epoch 1220/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1074\n", + "Epoch 1221/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1073\n", + "Epoch 1222/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1073\n", + "Epoch 1223/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1072\n", + "Epoch 1224/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1072\n", + "Epoch 1225/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1071\n", + "Epoch 1226/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1071\n", + "Epoch 1227/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1071\n", + "Epoch 1228/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.107\n", + "Epoch 1229/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.107\n", + "Epoch 1230/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1069\n", + "Epoch 1231/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.1069\n", + "Epoch 1232/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1068\n", + "Epoch 1233/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1068\n", + "Epoch 1234/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1067\n", + "Epoch 1235/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1067\n", + "Epoch 1236/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1066\n", + "Epoch 1237/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1066\n", + "Epoch 1238/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1065\n", + "Epoch 1239/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1065\n", + "Epoch 1240/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1064\n", + "Epoch 1241/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1064\n", + "Epoch 1242/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1063\n", + "Epoch 1243/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1063\n", + "Epoch 1244/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1063\n", + "Epoch 1245/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1062\n", + "Epoch 1246/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1062\n", + "Epoch 1247/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1061\n", + "Epoch 1248/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1061\n", + "Epoch 1249/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.106\n", + "Epoch 1250/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.106\n", + "Epoch 1251/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1059\n", + "Epoch 1252/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1059\n", + "Epoch 1253/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1058\n", + "Epoch 1254/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1058\n", + "Epoch 1255/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1057\n", + "Epoch 1256/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1057\n", + "Epoch 1257/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1056\n", + "Epoch 1258/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1056\n", + "Epoch 1259/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1056\n", + "Epoch 1260/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1055\n", + "Epoch 1261/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1055\n", + "Epoch 1262/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1054\n", + "Epoch 1263/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.1054\n", + "Epoch 1264/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1053\n", + "Epoch 1265/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1053\n", + "Epoch 1266/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1052\n", + "Epoch 1267/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1052\n", + "Epoch 1268/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1051\n", + "Epoch 1269/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.1051\n", + "Epoch 1270/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.105\n", + "Epoch 1271/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.105\n", + "Epoch 1272/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.105\n", + "Epoch 1273/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1049\n", + "Epoch 1274/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.1049\n", + "Epoch 1275/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1048\n", + "Epoch 1276/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1048\n", + "Epoch 1277/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1047\n", + "Epoch 1278/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.1047\n", + "Epoch 1279/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1046\n", + "Epoch 1280/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1046\n", + "Epoch 1281/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1045\n", + "Epoch 1282/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1045\n", + "Epoch 1283/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1044\n", + "Epoch 1284/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1044\n", + "Epoch 1285/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1044\n", + "Epoch 1286/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1043\n", + "Epoch 1287/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1043\n", + "Epoch 1288/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1042\n", + "Epoch 1289/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1042\n", + "Epoch 1290/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1041\n", + "Epoch 1291/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1041\n", + "Epoch 1292/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.104\n", + "Epoch 1293/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.104\n", + "Epoch 1294/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1039\n", + "Epoch 1295/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1039\n", + "Epoch 1296/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1038\n", + "Epoch 1297/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1038\n", + "Epoch 1298/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1038\n", + "Epoch 1299/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1037\n", + "Epoch 1300/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1037\n", + "Epoch 1301/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1036\n", + "Epoch 1302/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1036\n", + "Epoch 1303/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1035\n", + "Epoch 1304/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1035\n", + "Epoch 1305/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1034\n", + "Epoch 1306/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1034\n", + "Epoch 1307/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1033\n", + "Epoch 1308/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1033\n", + "Epoch 1309/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1033\n", + "Epoch 1310/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1032\n", + "Epoch 1311/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1032\n", + "Epoch 1312/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1031\n", + "Epoch 1313/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1031\n", + "Epoch 1314/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.103\n", + "Epoch 1315/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.103\n", + "Epoch 1316/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1029\n", + "Epoch 1317/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1029\n", + "Epoch 1318/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1028\n", + "Epoch 1319/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1028\n", + "Epoch 1320/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.1027\n", + "Epoch 1321/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.1027\n", + "Epoch 1322/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1027\n", + "Epoch 1323/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1026\n", + "Epoch 1324/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1026\n", + "Epoch 1325/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1025\n", + "Epoch 1326/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1025\n", + "Epoch 1327/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1024\n", + "Epoch 1328/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1024\n", + "Epoch 1329/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1023\n", + "Epoch 1330/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.1023\n", + "Epoch 1331/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1022\n", + "Epoch 1332/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1022\n", + "Epoch 1333/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1022\n", + "Epoch 1334/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1021\n", + "Epoch 1335/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1021\n", + "Epoch 1336/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.102\n", + "Epoch 1337/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.102\n", + "Epoch 1338/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1019\n", + "Epoch 1339/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1019\n", + "Epoch 1340/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1018\n", + "Epoch 1341/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1018\n", + "Epoch 1342/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1017\n", + "Epoch 1343/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1017\n", + "Epoch 1344/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1017\n", + "Epoch 1345/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1016\n", + "Epoch 1346/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1016\n", + "Epoch 1347/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1015\n", + "Epoch 1348/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1015\n", + "Epoch 1349/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1014\n", + "Epoch 1350/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1014\n", + "Epoch 1351/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1013\n", + "Epoch 1352/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1013\n", + "Epoch 1353/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1012\n", + "Epoch 1354/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.1012\n", + "Epoch 1355/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1012\n", + "Epoch 1356/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1011\n", + "Epoch 1357/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.1011\n", + "Epoch 1358/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.101\n", + "Epoch 1359/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.101\n", + "Epoch 1360/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1009\n", + "Epoch 1361/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1009\n", + "Epoch 1362/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1008\n", + "Epoch 1363/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.1008\n", + "Epoch 1364/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1007\n", + "Epoch 1365/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1007\n", + "Epoch 1366/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.1006\n", + "Epoch 1367/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1006\n", + "Epoch 1368/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1006\n", + "Epoch 1369/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1005\n", + "Epoch 1370/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.1005\n", + "Epoch 1371/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1004\n", + "Epoch 1372/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1004\n", + "Epoch 1373/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1003\n", + "Epoch 1374/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1003\n", + "Epoch 1375/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1002\n", + "Epoch 1376/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1002\n", + "Epoch 1377/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1001\n", + "Epoch 1378/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1001\n", + "Epoch 1379/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1\n", + "Epoch 1380/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1\n", + "Epoch 1381/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0999\n", + "Epoch 1382/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0999\n", + "Epoch 1383/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0999\n", + "Epoch 1384/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0998\n", + "Epoch 1385/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0998\n", + "Epoch 1386/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.0997\n", + "Epoch 1387/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0997\n", + "Epoch 1388/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0996\n", + "Epoch 1389/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0996\n", + "Epoch 1390/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0995\n", + "Epoch 1391/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0995\n", + "Epoch 1392/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.0994\n", + "Epoch 1393/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0994\n", + "Epoch 1394/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0993\n", + "Epoch 1395/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0993\n", + "Epoch 1396/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0992\n", + "Epoch 1397/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.0992\n", + "Epoch 1398/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0992\n", + "Epoch 1399/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0991\n", + "Epoch 1400/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.0991\n", + "Epoch 1401/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.099\n", + "Epoch 1402/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.099\n", + "Epoch 1403/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0989\n", + "Epoch 1404/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0989\n", + "Epoch 1405/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.0988\n", + "Epoch 1406/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0988\n", + "Epoch 1407/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0987\n", + "Epoch 1408/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0987\n", + "Epoch 1409/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.0986\n", + "Epoch 1410/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0986\n", + "Epoch 1411/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0985\n", + "Epoch 1412/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0985\n", + "Epoch 1413/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.0984\n", + "Epoch 1414/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0984\n", + "Epoch 1415/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0983\n", + "Epoch 1416/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0983\n", + "Epoch 1417/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0982\n", + "Epoch 1418/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.0982\n", + "Epoch 1419/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0981\n", + "Epoch 1420/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0981\n", + "Epoch 1421/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0981\n", + "Epoch 1422/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.098\n", + "Epoch 1423/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.098\n", + "Epoch 1424/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0979\n", + "Epoch 1425/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0979\n", + "Epoch 1426/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0978\n", + "Epoch 1427/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0978\n", + "Epoch 1428/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0977\n", + "Epoch 1429/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0977\n", + "Epoch 1430/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0976\n", + "Epoch 1431/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0976\n", + "Epoch 1432/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0975\n", + "Epoch 1433/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.0975\n", + "Epoch 1434/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0974\n", + "Epoch 1435/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0974\n", + "Epoch 1436/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0973\n", + "Epoch 1437/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.0973\n", + "Epoch 1438/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0972\n", + "Epoch 1439/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0972\n", + "Epoch 1440/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0971\n", + "Epoch 1441/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0971\n", + "Epoch 1442/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0971\n", + "Epoch 1443/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.097\n", + "Epoch 1444/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.097\n", + "Epoch 1445/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0969\n", + "Epoch 1446/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0969\n", + "Epoch 1447/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0968\n", + "Epoch 1448/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0968\n", + "Epoch 1449/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0967\n", + "Epoch 1450/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0967\n", + "Epoch 1451/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0966\n", + "Epoch 1452/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0966\n", + "Epoch 1453/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0965\n", + "Epoch 1454/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0965\n", + "Epoch 1455/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0964\n", + "Epoch 1456/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0964\n", + "Epoch 1457/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0963\n", + "Epoch 1458/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0963\n", + "Epoch 1459/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0962\n", + "Epoch 1460/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0962\n", + "Epoch 1461/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0961\n", + "Epoch 1462/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0961\n", + "Epoch 1463/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.096\n", + "Epoch 1464/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.096\n", + "Epoch 1465/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0959\n", + "Epoch 1466/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0959\n", + "Epoch 1467/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0958\n", + "Epoch 1468/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0958\n", + "Epoch 1469/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0957\n", + "Epoch 1470/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0957\n", + "Epoch 1471/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0956\n", + "Epoch 1472/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0956\n", + "Epoch 1473/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0955\n", + "Epoch 1474/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0955\n", + "Epoch 1475/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0955\n", + "Epoch 1476/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0954\n", + "Epoch 1477/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0954\n", + "Epoch 1478/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0953\n", + "Epoch 1479/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0953\n", + "Epoch 1480/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0952\n", + "Epoch 1481/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0952\n", + "Epoch 1482/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.0951\n", + "Epoch 1483/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0951\n", + "Epoch 1484/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.095\n", + "Epoch 1485/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.095\n", + "Epoch 1486/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0949\n", + "Epoch 1487/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0949\n", + "Epoch 1488/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0948\n", + "Epoch 1489/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0948\n", + "Epoch 1490/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0947\n", + "Epoch 1491/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0947\n", + "Epoch 1492/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.0946\n", + "Epoch 1493/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0946\n", + "Epoch 1494/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0945\n", + "Epoch 1495/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0945\n", + "Epoch 1496/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0944\n", + "Epoch 1497/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0944\n", + "Epoch 1498/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0943\n", + "Epoch 1499/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0943\n", + "Epoch 1500/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0942\n", + "Epoch 1501/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0942\n", + "Epoch 1502/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0941\n", + "Epoch 1503/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0941\n", + "Epoch 1504/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0941\n", + "Epoch 1505/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.094\n", + "Epoch 1506/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.094\n", + "Epoch 1507/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0939\n", + "Epoch 1508/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0939\n", + "Epoch 1509/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0938\n", + "Epoch 1510/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0938\n", + "Epoch 1511/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.0937\n", + "Epoch 1512/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0937\n", + "Epoch 1513/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0936\n", + "Epoch 1514/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0936\n", + "Epoch 1515/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0935\n", + "Epoch 1516/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0935\n", + "Epoch 1517/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0934\n", + "Epoch 1518/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0934\n", + "Epoch 1519/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0933\n", + "Epoch 1520/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0933\n", + "Epoch 1521/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0932\n", + "Epoch 1522/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0932\n", + "Epoch 1523/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0931\n", + "Epoch 1524/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0931\n", + "Epoch 1525/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.093\n", + "Epoch 1526/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.093\n", + "Epoch 1527/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0929\n", + "Epoch 1528/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0929\n", + "Epoch 1529/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0929\n", + "Epoch 1530/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0928\n", + "Epoch 1531/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0928\n", + "Epoch 1532/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0927\n", + "Epoch 1533/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0927\n", + "Epoch 1534/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0926\n", + "Epoch 1535/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0926\n", + "Epoch 1536/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0925\n", + "Epoch 1537/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0925\n", + "Epoch 1538/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0924\n", + "Epoch 1539/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0924\n", + "Epoch 1540/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0923\n", + "Epoch 1541/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0923\n", + "Epoch 1542/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0922\n", + "Epoch 1543/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0922\n", + "Epoch 1544/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0921\n", + "Epoch 1545/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0921\n", + "Epoch 1546/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.092\n", + "Epoch 1547/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.092\n", + "Epoch 1548/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0919\n", + "Epoch 1549/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0919\n", + "Epoch 1550/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0918\n", + "Epoch 1551/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0918\n", + "Epoch 1552/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0917\n", + "Epoch 1553/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0917\n", + "Epoch 1554/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0916\n", + "Epoch 1555/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0916\n", + "Epoch 1556/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0915\n", + "Epoch 1557/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0915\n", + "Epoch 1558/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0915\n", + "Epoch 1559/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0914\n", + "Epoch 1560/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0914\n", + "Epoch 1561/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0913\n", + "Epoch 1562/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0913\n", + "Epoch 1563/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0912\n", + "Epoch 1564/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0912\n", + "Epoch 1565/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0911\n", + "Epoch 1566/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0911\n", + "Epoch 1567/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.091\n", + "Epoch 1568/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.091\n", + "Epoch 1569/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0909\n", + "Epoch 1570/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0909\n", + "Epoch 1571/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0908\n", + "Epoch 1572/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0908\n", + "Epoch 1573/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0907\n", + "Epoch 1574/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0907\n", + "Epoch 1575/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0906\n", + "Epoch 1576/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0906\n", + "Epoch 1577/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0905\n", + "Epoch 1578/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0905\n", + "Epoch 1579/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0904\n", + "Epoch 1580/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0904\n", + "Epoch 1581/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0903\n", + "Epoch 1582/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0903\n", + "Epoch 1583/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0903\n", + "Epoch 1584/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0902\n", + "Epoch 1585/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0902\n", + "Epoch 1586/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0901\n", + "Epoch 1587/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0901\n", + "Epoch 1588/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.09\n", + "Epoch 1589/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.09\n", + "Epoch 1590/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0899\n", + "Epoch 1591/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0899\n", + "Epoch 1592/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0898\n", + "Epoch 1593/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0898\n", + "Epoch 1594/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0897\n", + "Epoch 1595/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0897\n", + "Epoch 1596/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0896\n", + "Epoch 1597/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0896\n", + "Epoch 1598/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0895\n", + "Epoch 1599/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0895\n", + "Epoch 1600/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0894\n", + "Epoch 1601/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0894\n", + "Epoch 1602/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0894\n", + "Epoch 1603/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0893\n", + "Epoch 1604/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0893\n", + "Epoch 1605/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0892\n", + "Epoch 1606/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0892\n", + "Epoch 1607/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0891\n", + "Epoch 1608/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0891\n", + "Epoch 1609/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.089\n", + "Epoch 1610/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.089\n", + "Epoch 1611/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0889\n", + "Epoch 1612/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0889\n", + "Epoch 1613/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0888\n", + "Epoch 1614/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0888\n", + "Epoch 1615/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0887\n", + "Epoch 1616/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0887\n", + "Epoch 1617/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0886\n", + "Epoch 1618/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0886\n", + "Epoch 1619/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0886\n", + "Epoch 1620/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0885\n", + "Epoch 1621/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0885\n", + "Epoch 1622/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0884\n", + "Epoch 1623/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0884\n", + "Epoch 1624/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0883\n", + "Epoch 1625/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0883\n", + "Epoch 1626/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0882\n", + "Epoch 1627/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0882\n", + "Epoch 1628/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0881\n", + "Epoch 1629/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0881\n", + "Epoch 1630/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.088\n", + "Epoch 1631/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.088\n", + "Epoch 1632/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0879\n", + "Epoch 1633/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0879\n", + "Epoch 1634/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0878\n", + "Epoch 1635/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0878\n", + "Epoch 1636/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0878\n", + "Epoch 1637/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0877\n", + "Epoch 1638/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0877\n", + "Epoch 1639/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0876\n", + "Epoch 1640/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0876\n", + "Epoch 1641/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0875\n", + "Epoch 1642/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0875\n", + "Epoch 1643/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0874\n", + "Epoch 1644/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0874\n", + "Epoch 1645/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0873\n", + "Epoch 1646/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0873\n", + "Epoch 1647/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0872\n", + "Epoch 1648/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0872\n", + "Epoch 1649/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0871\n", + "Epoch 1650/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0871\n", + "Epoch 1651/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.087\n", + "Epoch 1652/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.087\n", + "Epoch 1653/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.087\n", + "Epoch 1654/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0869\n", + "Epoch 1655/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0869\n", + "Epoch 1656/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0868\n", + "Epoch 1657/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0868\n", + "Epoch 1658/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0867\n", + "Epoch 1659/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0867\n", + "Epoch 1660/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0866\n", + "Epoch 1661/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0866\n", + "Epoch 1662/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0865\n", + "Epoch 1663/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0865\n", + "Epoch 1664/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0864\n", + "Epoch 1665/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0864\n", + "Epoch 1666/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0864\n", + "Epoch 1667/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0863\n", + "Epoch 1668/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0863\n", + "Epoch 1669/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0862\n", + "Epoch 1670/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0862\n", + "Epoch 1671/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0861\n", + "Epoch 1672/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0861\n", + "Epoch 1673/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.086\n", + "Epoch 1674/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.086\n", + "Epoch 1675/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0859\n", + "Epoch 1676/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0859\n", + "Epoch 1677/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0858\n", + "Epoch 1678/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0858\n", + "Epoch 1679/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0857\n", + "Epoch 1680/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0857\n", + "Epoch 1681/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0857\n", + "Epoch 1682/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0856\n", + "Epoch 1683/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0856\n", + "Epoch 1684/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0855\n", + "Epoch 1685/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0855\n", + "Epoch 1686/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0854\n", + "Epoch 1687/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0854\n", + "Epoch 1688/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0853\n", + "Epoch 1689/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0853\n", + "Epoch 1690/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0852\n", + "Epoch 1691/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0852\n", + "Epoch 1692/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0851\n", + "Epoch 1693/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0851\n", + "Epoch 1694/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0851\n", + "Epoch 1695/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.085\n", + "Epoch 1696/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.085\n", + "Epoch 1697/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0849\n", + "Epoch 1698/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0849\n", + "Epoch 1699/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0848\n", + "Epoch 1700/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0848\n", + "Epoch 1701/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0847\n", + "Epoch 1702/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0847\n", + "Epoch 1703/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0846\n", + "Epoch 1704/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0846\n", + "Epoch 1705/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0845\n", + "Epoch 1706/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0845\n", + "Epoch 1707/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0845\n", + "Epoch 1708/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0844\n", + "Epoch 1709/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0844\n", + "Epoch 1710/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0843\n", + "Epoch 1711/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0843\n", + "Epoch 1712/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0842\n", + "Epoch 1713/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0842\n", + "Epoch 1714/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0841\n", + "Epoch 1715/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0841\n", + "Epoch 1716/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.084\n", + "Epoch 1717/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.084\n", + "Epoch 1718/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0839\n", + "Epoch 1719/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0839\n", + "Epoch 1720/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0839\n", + "Epoch 1721/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0838\n", + "Epoch 1722/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0838\n", + "Epoch 1723/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0837\n", + "Epoch 1724/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0837\n", + "Epoch 1725/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0836\n", + "Epoch 1726/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0836\n", + "Epoch 1727/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0835\n", + "Epoch 1728/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0835\n", + "Epoch 1729/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0834\n", + "Epoch 1730/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0834\n", + "Epoch 1731/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0833\n", + "Epoch 1732/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0833\n", + "Epoch 1733/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0833\n", + "Epoch 1734/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0832\n", + "Epoch 1735/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0832\n", + "Epoch 1736/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0831\n", + "Epoch 1737/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0831\n", + "Epoch 1738/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.083\n", + "Epoch 1739/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.083\n", + "Epoch 1740/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0829\n", + "Epoch 1741/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0829\n", + "Epoch 1742/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0828\n", + "Epoch 1743/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0828\n", + "Epoch 1744/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0828\n", + "Epoch 1745/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0827\n", + "Epoch 1746/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0827\n", + "Epoch 1747/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0826\n", + "Epoch 1748/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0826\n", + "Epoch 1749/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0825\n", + "Epoch 1750/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0825\n", + "Epoch 1751/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0824\n", + "Epoch 1752/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0824\n", + "Epoch 1753/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0823\n", + "Epoch 1754/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0823\n", + "Epoch 1755/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0823\n", + "Epoch 1756/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0822\n", + "Epoch 1757/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0822\n", + "Epoch 1758/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0821\n", + "Epoch 1759/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0821\n", + "Epoch 1760/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.082\n", + "Epoch 1761/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.082\n", + "Epoch 1762/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0819\n", + "Epoch 1763/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0819\n", + "Epoch 1764/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0818\n", + "Epoch 1765/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0818\n", + "Epoch 1766/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0818\n", + "Epoch 1767/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0817\n", + "Epoch 1768/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0817\n", + "Epoch 1769/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0816\n", + "Epoch 1770/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0816\n", + "Epoch 1771/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0815\n", + "Epoch 1772/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0815\n", + "Epoch 1773/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0814\n", + "Epoch 1774/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0814\n", + "Epoch 1775/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0813\n", + "Epoch 1776/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0813\n", + "Epoch 1777/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0813\n", + "Epoch 1778/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0812\n", + "Epoch 1779/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0812\n", + "Epoch 1780/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0811\n", + "Epoch 1781/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0811\n", + "Epoch 1782/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.081\n", + "Epoch 1783/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.081\n", + "Epoch 1784/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0809\n", + "Epoch 1785/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0809\n", + "Epoch 1786/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0808\n", + "Epoch 1787/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0808\n", + "Epoch 1788/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0808\n", + "Epoch 1789/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0807\n", + "Epoch 1790/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0807\n", + "Epoch 1791/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0806\n", + "Epoch 1792/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0806\n", + "Epoch 1793/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0805\n", + "Epoch 1794/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0805\n", + "Epoch 1795/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0804\n", + "Epoch 1796/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0804\n", + "Epoch 1797/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0804\n", + "Epoch 1798/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0803\n", + "Epoch 1799/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0803\n", + "Epoch 1800/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0802\n", + "Epoch 1801/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0802\n", + "Epoch 1802/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0801\n", + "Epoch 1803/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0801\n", + "Epoch 1804/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.08\n", + "Epoch 1805/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.08\n", + "Epoch 1806/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.08\n", + "Epoch 1807/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0799\n", + "Epoch 1808/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0799\n", + "Epoch 1809/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0798\n", + "Epoch 1810/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0798\n", + "Epoch 1811/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0797\n", + "Epoch 1812/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0797\n", + "Epoch 1813/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0796\n", + "Epoch 1814/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0796\n", + "Epoch 1815/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0795\n", + "Epoch 1816/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0795\n", + "Epoch 1817/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0795\n", + "Epoch 1818/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0794\n", + "Epoch 1819/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0794\n", + "Epoch 1820/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0793\n", + "Epoch 1821/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0793\n", + "Epoch 1822/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0792\n", + "Epoch 1823/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0792\n", + "Epoch 1824/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0791\n", + "Epoch 1825/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0791\n", + "Epoch 1826/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0791\n", + "Epoch 1827/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.079\n", + "Epoch 1828/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.079\n", + "Epoch 1829/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0789\n", + "Epoch 1830/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0789\n", + "Epoch 1831/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0788\n", + "Epoch 1832/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0788\n", + "Epoch 1833/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0787\n", + "Epoch 1834/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0787\n", + "Epoch 1835/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0787\n", + "Epoch 1836/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0786\n", + "Epoch 1837/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0786\n", + "Epoch 1838/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0785\n", + "Epoch 1839/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0785\n", + "Epoch 1840/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0784\n", + "Epoch 1841/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0784\n", + "Epoch 1842/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0783\n", + "Epoch 1843/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0783\n", + "Epoch 1844/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0783\n", + "Epoch 1845/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0782\n", + "Epoch 1846/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0782\n", + "Epoch 1847/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0781\n", + "Epoch 1848/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0781\n", + "Epoch 1849/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.078\n", + "Epoch 1850/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.078\n", + "Epoch 1851/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0779\n", + "Epoch 1852/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0779\n", + "Epoch 1853/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0779\n", + "Epoch 1854/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0778\n", + "Epoch 1855/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0778\n", + "Epoch 1856/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0777\n", + "Epoch 1857/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0777\n", + "Epoch 1858/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0776\n", + "Epoch 1859/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0776\n", + "Epoch 1860/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0776\n", + "Epoch 1861/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0775\n", + "Epoch 1862/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0775\n", + "Epoch 1863/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0774\n", + "Epoch 1864/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0774\n", + "Epoch 1865/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0773\n", + "Epoch 1866/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0773\n", + "Epoch 1867/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0772\n", + "Epoch 1868/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0772\n", + "Epoch 1869/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0772\n", + "Epoch 1870/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0771\n", + "Epoch 1871/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0771\n", + "Epoch 1872/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.077\n", + "Epoch 1873/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.077\n", + "Epoch 1874/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0769\n", + "Epoch 1875/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0769\n", + "Epoch 1876/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0769\n", + "Epoch 1877/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0768\n", + "Epoch 1878/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0768\n", + "Epoch 1879/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0767\n", + "Epoch 1880/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0767\n", + "Epoch 1881/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0766\n", + "Epoch 1882/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0766\n", + "Epoch 1883/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0765\n", + "Epoch 1884/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0765\n", + "Epoch 1885/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0765\n", + "Epoch 1886/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0764\n", + "Epoch 1887/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0764\n", + "Epoch 1888/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0763\n", + "Epoch 1889/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0763\n", + "Epoch 1890/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0762\n", + "Epoch 1891/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0762\n", + "Epoch 1892/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0762\n", + "Epoch 1893/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0761\n", + "Epoch 1894/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0761\n", + "Epoch 1895/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.076\n", + "Epoch 1896/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.076\n", + "Epoch 1897/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0759\n", + "Epoch 1898/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0759\n", + "Epoch 1899/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0758\n", + "Epoch 1900/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0758\n", + "Epoch 1901/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0758\n", + "Epoch 1902/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0757\n", + "Epoch 1903/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0757\n", + "Epoch 1904/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0756\n", + "Epoch 1905/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0756\n", + "Epoch 1906/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0755\n", + "Epoch 1907/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0755\n", + "Epoch 1908/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0755\n", + "Epoch 1909/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0754\n", + "Epoch 1910/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0754\n", + "Epoch 1911/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0753\n", + "Epoch 1912/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0753\n", + "Epoch 1913/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0752\n", + "Epoch 1914/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0752\n", + "Epoch 1915/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0752\n", + "Epoch 1916/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0751\n", + "Epoch 1917/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0751\n", + "Epoch 1918/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.075\n", + "Epoch 1919/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.075\n", + "Epoch 1920/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0749\n", + "Epoch 1921/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0749\n", + "Epoch 1922/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0749\n", + "Epoch 1923/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0748\n", + "Epoch 1924/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0748\n", + "Epoch 1925/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0747\n", + "Epoch 1926/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0747\n", + "Epoch 1927/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0746\n", + "Epoch 1928/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0746\n", + "Epoch 1929/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0745\n", + "Epoch 1930/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0745\n", + "Epoch 1931/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0745\n", + "Epoch 1932/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0744\n", + "Epoch 1933/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0744\n", + "Epoch 1934/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0743\n", + "Epoch 1935/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0743\n", + "Epoch 1936/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0742\n", + "Epoch 1937/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0742\n", + "Epoch 1938/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0742\n", + "Epoch 1939/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0741\n", + "Epoch 1940/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0741\n", + "Epoch 1941/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.074\n", + "Epoch 1942/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.074\n", + "Epoch 1943/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0739\n", + "Epoch 1944/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0739\n", + "Epoch 1945/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0739\n", + "Epoch 1946/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0738\n", + "Epoch 1947/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0738\n", + "Epoch 1948/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0737\n", + "Epoch 1949/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0737\n", + "Epoch 1950/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0736\n", + "Epoch 1951/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0736\n", + "Epoch 1952/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0736\n", + "Epoch 1953/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0735\n", + "Epoch 1954/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0735\n", + "Epoch 1955/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0734\n", + "Epoch 1956/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0734\n", + "Epoch 1957/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0733\n", + "Epoch 1958/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0733\n", + "Epoch 1959/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0733\n", + "Epoch 1960/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0732\n", + "Epoch 1961/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0732\n", + "Epoch 1962/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0731\n", + "Epoch 1963/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0731\n", + "Epoch 1964/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.073\n", + "Epoch 1965/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.073\n", + "Epoch 1966/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.073\n", + "Epoch 1967/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0729\n", + "Epoch 1968/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0729\n", + "Epoch 1969/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0728\n", + "Epoch 1970/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0728\n", + "Epoch 1971/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0727\n", + "Epoch 1972/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0727\n", + "Epoch 1973/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0727\n", + "Epoch 1974/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0726\n", + "Epoch 1975/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0726\n", + "Epoch 1976/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0725\n", + "Epoch 1977/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0725\n", + "Epoch 1978/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0725\n", + "Epoch 1979/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0724\n", + "Epoch 1980/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0724\n", + "Epoch 1981/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0723\n", + "Epoch 1982/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0723\n", + "Epoch 1983/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0722\n", + "Epoch 1984/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0722\n", + "Epoch 1985/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0722\n", + "Epoch 1986/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0721\n", + "Epoch 1987/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0721\n", + "Epoch 1988/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.072\n", + "Epoch 1989/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.072\n", + "Epoch 1990/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0719\n", + "Epoch 1991/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0719\n", + "Epoch 1992/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0719\n", + "Epoch 1993/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0718\n", + "Epoch 1994/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0718\n", + "Epoch 1995/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0717\n", + "Epoch 1996/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0717\n", + "Epoch 1997/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0716\n", + "Epoch 1998/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0716\n", + "Epoch 1999/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0716\n", + "Epoch 2000/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0715\n", + "Epoch 2001/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0715\n", + "Epoch 2002/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0714\n", + "Epoch 2003/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0714\n", + "Epoch 2004/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0714\n", + "Epoch 2005/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0713\n", + "Epoch 2006/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0713\n", + "Epoch 2007/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0712\n", + "Epoch 2008/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0712\n", + "Epoch 2009/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0711\n", + "Epoch 2010/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0711\n", + "Epoch 2011/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0711\n", + "Epoch 2012/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.071\n", + "Epoch 2013/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.071\n", + "Epoch 2014/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0709\n", + "Epoch 2015/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0709\n", + "Epoch 2016/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0709\n", + "Epoch 2017/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0708\n", + "Epoch 2018/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0708\n", + "Epoch 2019/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0707\n", + "Epoch 2020/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0707\n", + "Epoch 2021/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0706\n", + "Epoch 2022/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0706\n", + "Epoch 2023/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0706\n", + "Epoch 2024/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0705\n", + "Epoch 2025/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0705\n", + "Epoch 2026/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0704\n", + "Epoch 2027/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0704\n", + "Epoch 2028/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0704\n", + "Epoch 2029/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0703\n", + "Epoch 2030/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0703\n", + "Epoch 2031/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0702\n", + "Epoch 2032/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0702\n", + "Epoch 2033/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0701\n", + "Epoch 2034/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0701\n", + "Epoch 2035/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0701\n", + "Epoch 2036/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.07\n", + "Epoch 2037/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.07\n", + "Epoch 2038/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0699\n", + "Epoch 2039/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0699\n", + "Epoch 2040/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0699\n", + "Epoch 2041/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0698\n", + "Epoch 2042/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0698\n", + "Epoch 2043/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0697\n", + "Epoch 2044/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0697\n", + "Epoch 2045/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0696\n", + "Epoch 2046/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0696\n", + "Epoch 2047/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0696\n", + "Epoch 2048/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0695\n", + "Epoch 2049/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0695\n", + "Epoch 2050/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0694\n", + "Epoch 2051/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0694\n", + "Epoch 2052/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0694\n", + "Epoch 2053/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0693\n", + "Epoch 2054/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0693\n", + "Epoch 2055/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0692\n", + "Epoch 2056/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0692\n", + "Epoch 2057/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0691\n", + "Epoch 2058/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0691\n", + "Epoch 2059/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0691\n", + "Epoch 2060/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.069\n", + "Epoch 2061/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.069\n", + "Epoch 2062/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0689\n", + "Epoch 2063/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0689\n", + "Epoch 2064/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0689\n", + "Epoch 2065/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0688\n", + "Epoch 2066/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0688\n", + "Epoch 2067/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0687\n", + "Epoch 2068/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0687\n", + "Epoch 2069/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0687\n", + "Epoch 2070/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0686\n", + "Epoch 2071/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0686\n", + "Epoch 2072/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0685\n", + "Epoch 2073/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0685\n", + "Epoch 2074/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0684\n", + "Epoch 2075/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0684\n", + "Epoch 2076/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0684\n", + "Epoch 2077/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0683\n", + "Epoch 2078/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0683\n", + "Epoch 2079/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0682\n", + "Epoch 2080/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0682\n", + "Epoch 2081/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0682\n", + "Epoch 2082/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0681\n", + "Epoch 2083/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0681\n", + "Epoch 2084/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.068\n", + "Epoch 2085/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.068\n", + "Epoch 2086/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.068\n", + "Epoch 2087/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0679\n", + "Epoch 2088/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0679\n", + "Epoch 2089/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0678\n", + "Epoch 2090/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0678\n", + "Epoch 2091/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0678\n", + "Epoch 2092/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0677\n", + "Epoch 2093/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0677\n", + "Epoch 2094/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0676\n", + "Epoch 2095/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0676\n", + "Epoch 2096/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0675\n", + "Epoch 2097/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0675\n", + "Epoch 2098/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0675\n", + "Epoch 2099/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0674\n", + "Epoch 2100/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0674\n", + "Epoch 2101/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0673\n", + "Epoch 2102/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0673\n", + "Epoch 2103/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0673\n", + "Epoch 2104/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0672\n", + "Epoch 2105/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0672\n", + "Epoch 2106/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0671\n", + "Epoch 2107/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0671\n", + "Epoch 2108/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0671\n", + "Epoch 2109/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.067\n", + "Epoch 2110/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.067\n", + "Epoch 2111/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0669\n", + "Epoch 2112/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0669\n", + "Epoch 2113/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0669\n", + "Epoch 2114/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0668\n", + "Epoch 2115/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0668\n", + "Epoch 2116/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0667\n", + "Epoch 2117/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0667\n", + "Epoch 2118/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0667\n", + "Epoch 2119/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0666\n", + "Epoch 2120/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0666\n", + "Epoch 2121/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0665\n", + "Epoch 2122/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0665\n", + "Epoch 2123/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0665\n", + "Epoch 2124/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0664\n", + "Epoch 2125/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0664\n", + "Epoch 2126/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0663\n", + "Epoch 2127/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0663\n", + "Epoch 2128/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0663\n", + "Epoch 2129/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0662\n", + "Epoch 2130/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0662\n", + "Epoch 2131/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0661\n", + "Epoch 2132/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0661\n", + "Epoch 2133/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.066\n", + "Epoch 2134/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.066\n", + "Epoch 2135/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.066\n", + "Epoch 2136/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0659\n", + "Epoch 2137/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0659\n", + "Epoch 2138/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0658\n", + "Epoch 2139/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0658\n", + "Epoch 2140/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0658\n", + "Epoch 2141/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0657\n", + "Epoch 2142/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0657\n", + "Epoch 2143/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0656\n", + "Epoch 2144/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0656\n", + "Epoch 2145/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0656\n", + "Epoch 2146/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0655\n", + "Epoch 2147/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0655\n", + "Epoch 2148/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0654\n", + "Epoch 2149/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0654\n", + "Epoch 2150/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0654\n", + "Epoch 2151/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0653\n", + "Epoch 2152/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0653\n", + "Epoch 2153/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0652\n", + "Epoch 2154/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0652\n", + "Epoch 2155/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0652\n", + "Epoch 2156/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0651\n", + "Epoch 2157/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0651\n", + "Epoch 2158/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.065\n", + "Epoch 2159/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.065\n", + "Epoch 2160/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.065\n", + "Epoch 2161/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0649\n", + "Epoch 2162/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0649\n", + "Epoch 2163/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0648\n", + "Epoch 2164/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0648\n", + "Epoch 2165/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0648\n", + "Epoch 2166/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0647\n", + "Epoch 2167/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0647\n", + "Epoch 2168/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0647\n", + "Epoch 2169/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0646\n", + "Epoch 2170/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0646\n", + "Epoch 2171/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0645\n", + "Epoch 2172/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0645\n", + "Epoch 2173/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0645\n", + "Epoch 2174/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0644\n", + "Epoch 2175/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0644\n", + "Epoch 2176/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0643\n", + "Epoch 2177/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0643\n", + "Epoch 2178/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0643\n", + "Epoch 2179/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0642\n", + "Epoch 2180/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0642\n", + "Epoch 2181/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0641\n", + "Epoch 2182/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0641\n", + "Epoch 2183/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0641\n", + "Epoch 2184/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.064\n", + "Epoch 2185/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.064\n", + "Epoch 2186/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0639\n", + "Epoch 2187/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0639\n", + "Epoch 2188/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0639\n", + "Epoch 2189/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0638\n", + "Epoch 2190/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0638\n", + "Epoch 2191/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0637\n", + "Epoch 2192/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0637\n", + "Epoch 2193/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0637\n", + "Epoch 2194/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0636\n", + "Epoch 2195/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0636\n", + "Epoch 2196/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0635\n", + "Epoch 2197/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0635\n", + "Epoch 2198/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0635\n", + "Epoch 2199/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0634\n", + "Epoch 2200/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0634\n", + "Epoch 2201/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0634\n", + "Epoch 2202/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0633\n", + "Epoch 2203/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0633\n", + "Epoch 2204/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0632\n", + "Epoch 2205/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0632\n", + "Epoch 2206/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0632\n", + "Epoch 2207/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0631\n", + "Epoch 2208/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0631\n", + "Epoch 2209/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.063\n", + "Epoch 2210/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.063\n", + "Epoch 2211/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.063\n", + "Epoch 2212/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0629\n", + "Epoch 2213/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0629\n", + "Epoch 2214/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0628\n", + "Epoch 2215/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0628\n", + "Epoch 2216/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0628\n", + "Epoch 2217/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0627\n", + "Epoch 2218/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0627\n", + "Epoch 2219/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0626\n", + "Epoch 2220/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0626\n", + "Epoch 2221/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0626\n", + "Epoch 2222/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0625\n", + "Epoch 2223/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0625\n", + "Epoch 2224/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0625\n", + "Epoch 2225/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0624\n", + "Epoch 2226/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0624\n", + "Epoch 2227/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0623\n", + "Epoch 2228/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0623\n", + "Epoch 2229/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0623\n", + "Epoch 2230/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0622\n", + "Epoch 2231/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0622\n", + "Epoch 2232/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0621\n", + "Epoch 2233/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0621\n", + "Epoch 2234/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0621\n", + "Epoch 2235/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.062\n", + "Epoch 2236/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.062\n", + "Epoch 2237/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0619\n", + "Epoch 2238/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0619\n", + "Epoch 2239/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0619\n", + "Epoch 2240/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0618\n", + "Epoch 2241/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0618\n", + "Epoch 2242/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0618\n", + "Epoch 2243/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0617\n", + "Epoch 2244/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0617\n", + "Epoch 2245/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0616\n", + "Epoch 2246/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0616\n", + "Epoch 2247/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0616\n", + "Epoch 2248/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0615\n", + "Epoch 2249/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0615\n", + "Epoch 2250/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0614\n", + "Epoch 2251/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0614\n", + "Epoch 2252/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0614\n", + "Epoch 2253/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0613\n", + "Epoch 2254/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0613\n", + "Epoch 2255/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0613\n", + "Epoch 2256/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0612\n", + "Epoch 2257/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0612\n", + "Epoch 2258/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0611\n", + "Epoch 2259/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0611\n", + "Epoch 2260/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0611\n", + "Epoch 2261/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.061\n", + "Epoch 2262/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.061\n", + "Epoch 2263/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0609\n", + "Epoch 2264/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0609\n", + "Epoch 2265/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0609\n", + "Epoch 2266/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0608\n", + "Epoch 2267/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0608\n", + "Epoch 2268/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0608\n", + "Epoch 2269/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0607\n", + "Epoch 2270/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0607\n", + "Epoch 2271/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0606\n", + "Epoch 2272/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0606\n", + "Epoch 2273/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0606\n", + "Epoch 2274/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0605\n", + "Epoch 2275/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0605\n", + "Epoch 2276/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0605\n", + "Epoch 2277/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0604\n", + "Epoch 2278/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0604\n", + "Epoch 2279/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0603\n", + "Epoch 2280/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0603\n", + "Epoch 2281/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0603\n", + "Epoch 2282/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0602\n", + "Epoch 2283/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0602\n", + "Epoch 2284/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0601\n", + "Epoch 2285/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0601\n", + "Epoch 2286/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0601\n", + "Epoch 2287/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.06\n", + "Epoch 2288/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.06\n", + "Epoch 2289/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.06\n", + "Epoch 2290/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0599\n", + "Epoch 2291/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0599\n", + "Epoch 2292/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0598\n", + "Epoch 2293/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0598\n", + "Epoch 2294/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0598\n", + "Epoch 2295/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0597\n", + "Epoch 2296/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0597\n", + "Epoch 2297/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0597\n", + "Epoch 2298/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0596\n", + "Epoch 2299/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0596\n", + "Epoch 2300/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0595\n", + "Epoch 2301/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0595\n", + "Epoch 2302/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0595\n", + "Epoch 2303/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0594\n", + "Epoch 2304/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0594\n", + "Epoch 2305/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0594\n", + "Epoch 2306/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0593\n", + "Epoch 2307/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0593\n", + "Epoch 2308/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0592\n", + "Epoch 2309/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0592\n", + "Epoch 2310/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0592\n", + "Epoch 2311/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0591\n", + "Epoch 2312/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0591\n", + "Epoch 2313/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0591\n", + "Epoch 2314/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.059\n", + "Epoch 2315/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.059\n", + "Epoch 2316/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0589\n", + "Epoch 2317/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0589\n", + "Epoch 2318/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0589\n", + "Epoch 2319/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0588\n", + "Epoch 2320/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0588\n", + "Epoch 2321/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0588\n", + "Epoch 2322/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0587\n", + "Epoch 2323/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0587\n", + "Epoch 2324/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0586\n", + "Epoch 2325/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0586\n", + "Epoch 2326/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0586\n", + "Epoch 2327/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0585\n", + "Epoch 2328/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0585\n", + "Epoch 2329/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0585\n", + "Epoch 2330/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0584\n", + "Epoch 2331/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0584\n", + "Epoch 2332/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0583\n", + "Epoch 2333/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0583\n", + "Epoch 2334/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0583\n", + "Epoch 2335/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0582\n", + "Epoch 2336/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0582\n", + "Epoch 2337/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0582\n", + "Epoch 2338/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0581\n", + "Epoch 2339/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0581\n", + "Epoch 2340/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.058\n", + "Epoch 2341/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.058\n", + "Epoch 2342/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.058\n", + "Epoch 2343/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0579\n", + "Epoch 2344/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0579\n", + "Epoch 2345/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0579\n", + "Epoch 2346/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0578\n", + "Epoch 2347/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0578\n", + "Epoch 2348/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0577\n", + "Epoch 2349/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0577\n", + "Epoch 2350/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0577\n", + "Epoch 2351/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0576\n", + "Epoch 2352/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0576\n", + "Epoch 2353/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0576\n", + "Epoch 2354/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0575\n", + "Epoch 2355/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0575\n", + "Epoch 2356/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0575\n", + "Epoch 2357/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0574\n", + "Epoch 2358/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0574\n", + "Epoch 2359/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0573\n", + "Epoch 2360/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0573\n", + "Epoch 2361/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0573\n", + "Epoch 2362/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0572\n", + "Epoch 2363/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0572\n", + "Epoch 2364/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0572\n", + "Epoch 2365/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0571\n", + "Epoch 2366/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0571\n", + "Epoch 2367/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.057\n", + "Epoch 2368/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.057\n", + "Epoch 2369/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.057\n", + "Epoch 2370/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0569\n", + "Epoch 2371/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0569\n", + "Epoch 2372/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0569\n", + "Epoch 2373/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0568\n", + "Epoch 2374/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0568\n", + "Epoch 2375/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0568\n", + "Epoch 2376/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0567\n", + "Epoch 2377/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0567\n", + "Epoch 2378/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0566\n", + "Epoch 2379/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0566\n", + "Epoch 2380/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0566\n", + "Epoch 2381/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0565\n", + "Epoch 2382/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0565\n", + "Epoch 2383/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0565\n", + "Epoch 2384/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0564\n", + "Epoch 2385/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0564\n", + "Epoch 2386/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0564\n", + "Epoch 2387/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0563\n", + "Epoch 2388/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0563\n", + "Epoch 2389/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0562\n", + "Epoch 2390/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0562\n", + "Epoch 2391/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0562\n", + "Epoch 2392/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0561\n", + "Epoch 2393/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0561\n", + "Epoch 2394/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0561\n", + "Epoch 2395/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.056\n", + "Epoch 2396/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.056\n", + "Epoch 2397/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.056\n", + "Epoch 2398/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0559\n", + "Epoch 2399/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0559\n", + "Epoch 2400/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0558\n", + "Epoch 2401/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0558\n", + "Epoch 2402/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0558\n", + "Epoch 2403/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0557\n", + "Epoch 2404/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0557\n", + "Epoch 2405/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0557\n", + "Epoch 2406/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0556\n", + "Epoch 2407/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0556\n", + "Epoch 2408/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0556\n", + "Epoch 2409/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0555\n", + "Epoch 2410/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0555\n", + "Epoch 2411/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0554\n", + "Epoch 2412/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0554\n", + "Epoch 2413/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0554\n", + "Epoch 2414/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0553\n", + "Epoch 2415/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0553\n", + "Epoch 2416/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0553\n", + "Epoch 2417/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0552\n", + "Epoch 2418/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0552\n", + "Epoch 2419/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0552\n", + "Epoch 2420/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0551\n", + "Epoch 2421/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0551\n", + "Epoch 2422/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.055\n", + "Epoch 2423/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.055\n", + "Epoch 2424/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.055\n", + "Epoch 2425/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0549\n", + "Epoch 2426/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0549\n", + "Epoch 2427/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0549\n", + "Epoch 2428/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0548\n", + "Epoch 2429/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0548\n", + "Epoch 2430/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0548\n", + "Epoch 2431/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0547\n", + "Epoch 2432/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0547\n", + "Epoch 2433/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0547\n", + "Epoch 2434/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0546\n", + "Epoch 2435/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0546\n", + "Epoch 2436/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0545\n", + "Epoch 2437/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0545\n", + "Epoch 2438/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0545\n", + "Epoch 2439/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0544\n", + "Epoch 2440/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0544\n", + "Epoch 2441/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0544\n", + "Epoch 2442/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0543\n", + "Epoch 2443/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0543\n", + "Epoch 2444/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0543\n", + "Epoch 2445/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0542\n", + "Epoch 2446/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0542\n", + "Epoch 2447/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0542\n", + "Epoch 2448/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0541\n", + "Epoch 2449/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0541\n", + "Epoch 2450/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.054\n", + "Epoch 2451/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.054\n", + "Epoch 2452/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.054\n", + "Epoch 2453/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0539\n", + "Epoch 2454/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0539\n", + "Epoch 2455/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0539\n", + "Epoch 2456/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0538\n", + "Epoch 2457/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0538\n", + "Epoch 2458/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0538\n", + "Epoch 2459/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0537\n", + "Epoch 2460/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0537\n", + "Epoch 2461/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0537\n", + "Epoch 2462/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0536\n", + "Epoch 2463/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0536\n", + "Epoch 2464/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0536\n", + "Epoch 2465/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0535\n", + "Epoch 2466/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0535\n", + "Epoch 2467/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0534\n", + "Epoch 2468/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0534\n", + "Epoch 2469/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0534\n", + "Epoch 2470/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0533\n", + "Epoch 2471/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0533\n", + "Epoch 2472/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0533\n", + "Epoch 2473/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0532\n", + "Epoch 2474/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0532\n", + "Epoch 2475/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0532\n", + "Epoch 2476/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0531\n", + "Epoch 2477/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0531\n", + "Epoch 2478/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0531\n", + "Epoch 2479/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.053\n", + "Epoch 2480/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.053\n", + "Epoch 2481/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.053\n", + "Epoch 2482/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0529\n", + "Epoch 2483/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0529\n", + "Epoch 2484/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0528\n", + "Epoch 2485/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0528\n", + "Epoch 2486/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0528\n", + "Epoch 2487/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0527\n", + "Epoch 2488/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0527\n", + "Epoch 2489/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0527\n", + "Epoch 2490/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0526\n", + "Epoch 2491/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0526\n", + "Epoch 2492/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0526\n", + "Epoch 2493/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0525\n", + "Epoch 2494/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0525\n", + "Epoch 2495/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0525\n", + "Epoch 2496/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0524\n", + "Epoch 2497/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0524\n", + "Epoch 2498/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0524\n", + "Epoch 2499/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0523\n", + "Epoch 2500/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0523\n", + "Epoch 2501/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0523\n", + "Epoch 2502/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0522\n", + "Epoch 2503/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0522\n", + "Epoch 2504/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0522\n", + "Epoch 2505/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0521\n", + "Epoch 2506/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0521\n", + "Epoch 2507/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.052\n", + "Epoch 2508/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.052\n", + "Epoch 2509/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.052\n", + "Epoch 2510/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0519\n", + "Epoch 2511/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0519\n", + "Epoch 2512/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0519\n", + "Epoch 2513/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0518\n", + "Epoch 2514/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0518\n", + "Epoch 2515/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0518\n", + "Epoch 2516/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0517\n", + "Epoch 2517/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0517\n", + "Epoch 2518/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0517\n", + "Epoch 2519/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0516\n", + "Epoch 2520/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0516\n", + "Epoch 2521/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0516\n", + "Epoch 2522/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0515\n", + "Epoch 2523/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0515\n", + "Epoch 2524/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0515\n", + "Epoch 2525/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0514\n", + "Epoch 2526/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0514\n", + "Epoch 2527/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0514\n", + "Epoch 2528/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0513\n", + "Epoch 2529/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0513\n", + "Epoch 2530/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0513\n", + "Epoch 2531/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0512\n", + "Epoch 2532/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0512\n", + "Epoch 2533/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0512\n", + "Epoch 2534/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0511\n", + "Epoch 2535/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0511\n", + "Epoch 2536/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.051\n", + "Epoch 2537/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.051\n", + "Epoch 2538/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.051\n", + "Epoch 2539/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0509\n", + "Epoch 2540/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0509\n", + "Epoch 2541/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0509\n", + "Epoch 2542/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0508\n", + "Epoch 2543/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0508\n", + "Epoch 2544/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0508\n", + "Epoch 2545/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0507\n", + "Epoch 2546/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0507\n", + "Epoch 2547/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0507\n", + "Epoch 2548/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0506\n", + "Epoch 2549/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0506\n", + "Epoch 2550/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0506\n", + "Epoch 2551/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0505\n", + "Epoch 2552/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0505\n", + "Epoch 2553/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0505\n", + "Epoch 2554/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0504\n", + "Epoch 2555/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0504\n", + "Epoch 2556/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0504\n", + "Epoch 2557/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0503\n", + "Epoch 2558/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0503\n", + "Epoch 2559/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0503\n", + "Epoch 2560/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0502\n", + "Epoch 2561/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0502\n", + "Epoch 2562/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0502\n", + "Epoch 2563/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0501\n", + "Epoch 2564/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0501\n", + "Epoch 2565/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0501\n", + "Epoch 2566/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.05\n", + "Epoch 2567/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.05\n", + "Epoch 2568/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.05\n", + "Epoch 2569/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0499\n", + "Epoch 2570/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0499\n", + "Epoch 2571/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0499\n", + "Epoch 2572/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0498\n", + "Epoch 2573/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0498\n", + "Epoch 2574/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0498\n", + "Epoch 2575/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0497\n", + "Epoch 2576/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0497\n", + "Epoch 2577/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0497\n", + "Epoch 2578/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0496\n", + "Epoch 2579/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0496\n", + "Epoch 2580/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0496\n", + "Epoch 2581/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0495\n", + "Epoch 2582/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0495\n", + "Epoch 2583/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0495\n", + "Epoch 2584/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0494\n", + "Epoch 2585/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0494\n", + "Epoch 2586/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0494\n", + "Epoch 2587/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0493\n", + "Epoch 2588/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0493\n", + "Epoch 2589/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0493\n", + "Epoch 2590/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0492\n", + "Epoch 2591/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0492\n", + "Epoch 2592/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0492\n", + "Epoch 2593/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0491\n", + "Epoch 2594/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0491\n", + "Epoch 2595/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0491\n", + "Epoch 2596/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.049\n", + "Epoch 2597/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.049\n", + "Epoch 2598/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.049\n", + "Epoch 2599/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0489\n", + "Epoch 2600/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0489\n", + "Epoch 2601/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0489\n", + "Epoch 2602/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0488\n", + "Epoch 2603/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0488\n", + "Epoch 2604/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0488\n", + "Epoch 2605/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0487\n", + "Epoch 2606/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0487\n", + "Epoch 2607/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0487\n", + "Epoch 2608/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0486\n", + "Epoch 2609/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0486\n", + "Epoch 2610/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0486\n", + "Epoch 2611/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0485\n", + "Epoch 2612/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0485\n", + "Epoch 2613/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0485\n", + "Epoch 2614/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0484\n", + "Epoch 2615/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0484\n", + "Epoch 2616/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0484\n", + "Epoch 2617/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0483\n", + "Epoch 2618/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0483\n", + "Epoch 2619/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0483\n", + "Epoch 2620/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0482\n", + "Epoch 2621/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0482\n", + "Epoch 2622/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0482\n", + "Epoch 2623/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0481\n", + "Epoch 2624/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0481\n", + "Epoch 2625/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0481\n", + "Epoch 2626/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.048\n", + "Epoch 2627/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.048\n", + "Epoch 2628/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.048\n", + "Epoch 2629/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0479\n", + "Epoch 2630/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0479\n", + "Epoch 2631/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0479\n", + "Epoch 2632/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0478\n", + "Epoch 2633/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0478\n", + "Epoch 2634/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0478\n", + "Epoch 2635/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0477\n", + "Epoch 2636/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0477\n", + "Epoch 2637/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0477\n", + "Epoch 2638/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0476\n", + "Epoch 2639/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0476\n", + "Epoch 2640/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0476\n", + "Epoch 2641/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0475\n", + "Epoch 2642/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0475\n", + "Epoch 2643/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0475\n", + "Epoch 2644/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0474\n", + "Epoch 2645/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0474\n", + "Epoch 2646/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0474\n", + "Epoch 2647/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0473\n", + "Epoch 2648/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0473\n", + "Epoch 2649/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0473\n", + "Epoch 2650/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0472\n", + "Epoch 2651/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0472\n", + "Epoch 2652/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0472\n", + "Epoch 2653/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0472\n", + "Epoch 2654/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0471\n", + "Epoch 2655/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0471\n", + "Epoch 2656/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0471\n", + "Epoch 2657/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.047\n", + "Epoch 2658/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.047\n", + "Epoch 2659/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.047\n", + "Epoch 2660/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0469\n", + "Epoch 2661/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0469\n", + "Epoch 2662/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0469\n", + "Epoch 2663/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0468\n", + "Epoch 2664/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0468\n", + "Epoch 2665/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0468\n", + "Epoch 2666/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0467\n", + "Epoch 2667/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0467\n", + "Epoch 2668/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0467\n", + "Epoch 2669/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0466\n", + "Epoch 2670/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0466\n", + "Epoch 2671/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0466\n", + "Epoch 2672/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0465\n", + "Epoch 2673/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0465\n", + "Epoch 2674/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0465\n", + "Epoch 2675/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0464\n", + "Epoch 2676/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0464\n", + "Epoch 2677/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0464\n", + "Epoch 2678/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0463\n", + "Epoch 2679/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0463\n", + "Epoch 2680/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0463\n", + "Epoch 2681/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0462\n", + "Epoch 2682/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0462\n", + "Epoch 2683/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0462\n", + "Epoch 2684/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0462\n", + "Epoch 2685/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0461\n", + "Epoch 2686/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0461\n", + "Epoch 2687/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0461\n", + "Epoch 2688/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.046\n", + "Epoch 2689/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.046\n", + "Epoch 2690/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.046\n", + "Epoch 2691/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0459\n", + "Epoch 2692/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0459\n", + "Epoch 2693/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0459\n", + "Epoch 2694/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0458\n", + "Epoch 2695/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0458\n", + "Epoch 2696/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0458\n", + "Epoch 2697/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0457\n", + "Epoch 2698/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0457\n", + "Epoch 2699/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0457\n", + "Epoch 2700/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0456\n", + "Epoch 2701/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0456\n", + "Epoch 2702/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0456\n", + "Epoch 2703/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0455\n", + "Epoch 2704/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0455\n", + "Epoch 2705/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0455\n", + "Epoch 2706/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0455\n", + "Epoch 2707/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0454\n", + "Epoch 2708/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0454\n", + "Epoch 2709/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0454\n", + "Epoch 2710/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0453\n", + "Epoch 2711/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0453\n", + "Epoch 2712/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0453\n", + "Epoch 2713/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0452\n", + "Epoch 2714/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0452\n", + "Epoch 2715/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0452\n", + "Epoch 2716/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0451\n", + "Epoch 2717/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0451\n", + "Epoch 2718/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0451\n", + "Epoch 2719/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.045\n", + "Epoch 2720/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.045\n", + "Epoch 2721/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.045\n", + "Epoch 2722/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0449\n", + "Epoch 2723/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0449\n", + "Epoch 2724/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0449\n", + "Epoch 2725/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0449\n", + "Epoch 2726/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0448\n", + "Epoch 2727/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0448\n", + "Epoch 2728/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0448\n", + "Epoch 2729/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0447\n", + "Epoch 2730/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0447\n", + "Epoch 2731/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0447\n", + "Epoch 2732/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0446\n", + "Epoch 2733/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0446\n", + "Epoch 2734/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0446\n", + "Epoch 2735/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0445\n", + "Epoch 2736/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0445\n", + "Epoch 2737/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0445\n", + "Epoch 2738/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0444\n", + "Epoch 2739/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0444\n", + "Epoch 2740/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0444\n", + "Epoch 2741/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0444\n", + "Epoch 2742/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0443\n", + "Epoch 2743/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0443\n", + "Epoch 2744/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0443\n", + "Epoch 2745/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0442\n", + "Epoch 2746/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0442\n", + "Epoch 2747/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6971\n", + "Relative Entropy: 0.0442\n", + "Epoch 2748/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0441\n", + "Epoch 2749/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0441\n", + "Epoch 2750/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0441\n", + "Epoch 2751/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.044\n", + "Epoch 2752/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.044\n", + "Epoch 2753/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.044\n", + "Epoch 2754/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.044\n", + "Epoch 2755/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0439\n", + "Epoch 2756/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0439\n", + "Epoch 2757/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0439\n", + "Epoch 2758/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0438\n", + "Epoch 2759/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0438\n", + "Epoch 2760/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0438\n", + "Epoch 2761/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0437\n", + "Epoch 2762/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0437\n", + "Epoch 2763/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0437\n", + "Epoch 2764/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0436\n", + "Epoch 2765/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0436\n", + "Epoch 2766/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0436\n", + "Epoch 2767/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0436\n", + "Epoch 2768/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0435\n", + "Epoch 2769/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0435\n", + "Epoch 2770/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0435\n", + "Epoch 2771/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0434\n", + "Epoch 2772/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0434\n", + "Epoch 2773/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0434\n", + "Epoch 2774/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0433\n", + "Epoch 2775/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0433\n", + "Epoch 2776/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0433\n", + "Epoch 2777/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0433\n", + "Epoch 2778/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0432\n", + "Epoch 2779/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0432\n", + "Epoch 2780/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0432\n", + "Epoch 2781/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0431\n", + "Epoch 2782/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0431\n", + "Epoch 2783/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0431\n", + "Epoch 2784/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.043\n", + "Epoch 2785/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.043\n", + "Epoch 2786/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.043\n", + "Epoch 2787/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0429\n", + "Epoch 2788/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0429\n", + "Epoch 2789/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0429\n", + "Epoch 2790/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0429\n", + "Epoch 2791/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0428\n", + "Epoch 2792/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0428\n", + "Epoch 2793/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0428\n", + "Epoch 2794/3000...\n", + "Loss Discriminator: 0.6893\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0427\n", + "Epoch 2795/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.0427\n", + "Epoch 2796/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0427\n", + "Epoch 2797/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0427\n", + "Epoch 2798/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0426\n", + "Epoch 2799/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0426\n", + "Epoch 2800/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0426\n", + "Epoch 2801/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0425\n", + "Epoch 2802/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0425\n", + "Epoch 2803/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0425\n", + "Epoch 2804/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0424\n", + "Epoch 2805/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0424\n", + "Epoch 2806/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0424\n", + "Epoch 2807/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0424\n", + "Epoch 2808/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0423\n", + "Epoch 2809/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0423\n", + "Epoch 2810/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0423\n", + "Epoch 2811/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0422\n", + "Epoch 2812/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0422\n", + "Epoch 2813/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0422\n", + "Epoch 2814/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0421\n", + "Epoch 2815/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0421\n", + "Epoch 2816/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0421\n", + "Epoch 2817/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0421\n", + "Epoch 2818/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.042\n", + "Epoch 2819/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.042\n", + "Epoch 2820/3000...\n", + "Loss Discriminator: 0.6898\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.042\n", + "Epoch 2821/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0419\n", + "Epoch 2822/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0419\n", + "Epoch 2823/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0419\n", + "Epoch 2824/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0418\n", + "Epoch 2825/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0418\n", + "Epoch 2826/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0418\n", + "Epoch 2827/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0418\n", + "Epoch 2828/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0417\n", + "Epoch 2829/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0417\n", + "Epoch 2830/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0417\n", + "Epoch 2831/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0416\n", + "Epoch 2832/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0416\n", + "Epoch 2833/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0416\n", + "Epoch 2834/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0416\n", + "Epoch 2835/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0415\n", + "Epoch 2836/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0415\n", + "Epoch 2837/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0415\n", + "Epoch 2838/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0414\n", + "Epoch 2839/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0414\n", + "Epoch 2840/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0414\n", + "Epoch 2841/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6987\n", + "Relative Entropy: 0.0413\n", + "Epoch 2842/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0413\n", + "Epoch 2843/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0413\n", + "Epoch 2844/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0413\n", + "Epoch 2845/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0412\n", + "Epoch 2846/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0412\n", + "Epoch 2847/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0412\n", + "Epoch 2848/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0411\n", + "Epoch 2849/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0411\n", + "Epoch 2850/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0411\n", + "Epoch 2851/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0411\n", + "Epoch 2852/3000...\n", + "Loss Discriminator: 0.6894\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.041\n", + "Epoch 2853/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.041\n", + "Epoch 2854/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.041\n", + "Epoch 2855/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0409\n", + "Epoch 2856/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0409\n", + "Epoch 2857/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0409\n", + "Epoch 2858/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0408\n", + "Epoch 2859/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0408\n", + "Epoch 2860/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0408\n", + "Epoch 2861/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0408\n", + "Epoch 2862/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0407\n", + "Epoch 2863/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0407\n", + "Epoch 2864/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0407\n", + "Epoch 2865/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0406\n", + "Epoch 2866/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0406\n", + "Epoch 2867/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0406\n", + "Epoch 2868/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0406\n", + "Epoch 2869/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0405\n", + "Epoch 2870/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0405\n", + "Epoch 2871/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0405\n", + "Epoch 2872/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0404\n", + "Epoch 2873/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0404\n", + "Epoch 2874/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0404\n", + "Epoch 2875/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6958\n", + "Relative Entropy: 0.0404\n", + "Epoch 2876/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0403\n", + "Epoch 2877/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0403\n", + "Epoch 2878/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0403\n", + "Epoch 2879/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0402\n", + "Epoch 2880/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0402\n", + "Epoch 2881/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0402\n", + "Epoch 2882/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0402\n", + "Epoch 2883/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0401\n", + "Epoch 2884/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0401\n", + "Epoch 2885/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0401\n", + "Epoch 2886/3000...\n", + "Loss Discriminator: 0.6895\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.04\n", + "Epoch 2887/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.04\n", + "Epoch 2888/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.04\n", + "Epoch 2889/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.04\n", + "Epoch 2890/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0399\n", + "Epoch 2891/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0399\n", + "Epoch 2892/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0399\n", + "Epoch 2893/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0398\n", + "Epoch 2894/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0398\n", + "Epoch 2895/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0398\n", + "Epoch 2896/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0398\n", + "Epoch 2897/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0397\n", + "Epoch 2898/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0397\n", + "Epoch 2899/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0397\n", + "Epoch 2900/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0396\n", + "Epoch 2901/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0396\n", + "Epoch 2902/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0396\n", + "Epoch 2903/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0396\n", + "Epoch 2904/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0395\n", + "Epoch 2905/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0395\n", + "Epoch 2906/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0395\n", + "Epoch 2907/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0394\n", + "Epoch 2908/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0394\n", + "Epoch 2909/3000...\n", + "Loss Discriminator: 0.6899\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0394\n", + "Epoch 2910/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0394\n", + "Epoch 2911/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0393\n", + "Epoch 2912/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0393\n", + "Epoch 2913/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0393\n", + "Epoch 2914/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0393\n", + "Epoch 2915/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0392\n", + "Epoch 2916/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0392\n", + "Epoch 2917/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0392\n", + "Epoch 2918/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0391\n", + "Epoch 2919/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0391\n", + "Epoch 2920/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0391\n", + "Epoch 2921/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0391\n", + "Epoch 2922/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.6973\n", + "Relative Entropy: 0.039\n", + "Epoch 2923/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6987\n", + "Relative Entropy: 0.039\n", + "Epoch 2924/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.039\n", + "Epoch 2925/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0389\n", + "Epoch 2926/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6986\n", + "Relative Entropy: 0.0389\n", + "Epoch 2927/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0389\n", + "Epoch 2928/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0389\n", + "Epoch 2929/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0388\n", + "Epoch 2930/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0388\n", + "Epoch 2931/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0388\n", + "Epoch 2932/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0388\n", + "Epoch 2933/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0387\n", + "Epoch 2934/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0387\n", + "Epoch 2935/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0387\n", + "Epoch 2936/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0386\n", + "Epoch 2937/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0386\n", + "Epoch 2938/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0386\n", + "Epoch 2939/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0386\n", + "Epoch 2940/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0385\n", + "Epoch 2941/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0385\n", + "Epoch 2942/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0385\n", + "Epoch 2943/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0385\n", + "Epoch 2944/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0384\n", + "Epoch 2945/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0384\n", + "Epoch 2946/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0384\n", + "Epoch 2947/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0383\n", + "Epoch 2948/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6973\n", + "Relative Entropy: 0.0383\n", + "Epoch 2949/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0383\n", + "Epoch 2950/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0383\n", + "Epoch 2951/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0382\n", + "Epoch 2952/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0382\n", + "Epoch 2953/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0382\n", + "Epoch 2954/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0382\n", + "Epoch 2955/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0381\n", + "Epoch 2956/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0381\n", + "Epoch 2957/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0381\n", + "Epoch 2958/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.6979\n", + "Relative Entropy: 0.038\n", + "Epoch 2959/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.038\n", + "Epoch 2960/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.038\n", + "Epoch 2961/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.038\n", + "Epoch 2962/3000...\n", + "Loss Discriminator: 0.6893\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0379\n", + "Epoch 2963/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0379\n", + "Epoch 2964/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0379\n", + "Epoch 2965/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0379\n", + "Epoch 2966/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0378\n", + "Epoch 2967/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0378\n", + "Epoch 2968/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0378\n", + "Epoch 2969/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0377\n", + "Epoch 2970/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0377\n", + "Epoch 2971/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0377\n", + "Epoch 2972/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0377\n", + "Epoch 2973/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.6977\n", + "Relative Entropy: 0.0376\n", + "Epoch 2974/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0376\n", + "Epoch 2975/3000...\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0376\n", + "Epoch 2976/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0376\n", + "Epoch 2977/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0375\n", + "Epoch 2978/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0375\n", + "Epoch 2979/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0375\n", + "Epoch 2980/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0374\n", + "Epoch 2981/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0374\n", + "Epoch 2982/3000...\n", + "Loss Discriminator: 0.6895\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0374\n", + "Epoch 2983/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6966\n", + "Relative Entropy: 0.0374\n", + "Epoch 2984/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0373\n", + "Epoch 2985/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0373\n", + "Epoch 2986/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0373\n", + "Epoch 2987/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6982\n", + "Relative Entropy: 0.0373\n", + "Epoch 2988/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0372\n", + "Epoch 2989/3000...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0372\n", + "Epoch 2990/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0372\n", + "Epoch 2991/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6976\n", + "Relative Entropy: 0.0372\n", + "Epoch 2992/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0371\n", + "Epoch 2993/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0371\n", + "Epoch 2994/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0371\n", + "Epoch 2995/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.696\n", + "Relative Entropy: 0.037\n", + "Epoch 2996/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.037\n", + "Epoch 2997/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.037\n", + "Epoch 2998/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.037\n", + "Epoch 2999/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0369\n", + "Epoch 3000/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0369\n", + "qGAN training runtime: 35.25595039923986 min\n" + ] + } + ], + "source": [ + "# Run qGAN\n", + "qgan.run()\n", + "\n", + "# Runtime\n", + "end = time.time()\n", + "print('qGAN training runtime: ', (end - start)/60., ' min')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Training Progress & Outcome\n", + "Now, we plot the evolution of the generator's and the discriminator's loss functions during the training as well as the progress in the relative entropy between the trained and the target distribution.\n", + "
Finally, we also compare the cumulative distribution function (CDF) of the trained distribution to the CDF of the target distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4lMXWwH8nPZCQhBZK6J0UAoQiSBHBXlBBaQpiwyt6xYod9RPL1YuoWLioKKKIiOUqihck0pEWeu+hk0AK6cl8f2zJbrKbbJJtCfN7Hh7ed9p75t3NnJ1zZs6IUgqNRqPRaMrCx9MCaDQajcb70cpCo9FoNOWilYVGo9FoykUrC41Go9GUi1YWGo1GoykXrSw0Go1GUy5aWWguOURkh4gMdFJbA0Uk2UltjRORlc5oy8Hn3SIix0QkU0S6uvG5o0XkD3c9T+MctLLQlEJEDotItnEQOS0is0UkxNNyOQulVLRSKrEydUVEiUhbJ4vkKd4GJiqlQpRSm13xABFpaXxnfqY0pdRcpdRVrniexnVoZaGxx41KqRCgG5AAPF+ygBhw2nfIckDRuIUWwA5PC6GpHmhloSkTpdRx4DcgBkBEEkXkNRFZBWQBrUWkiYj8LCKpIrJfRO4z1ReRYBH5QkTOi8guEXnK0mxjnMU8LSJbgYsi4mds73sROSsih0TkEYvyPUVkg4ikG2c9/zamB4nIVyKSIiIXRGS9iETa6pPxmYON11NEZL6IfCkiGUYTVYKdesuNl1uMs647LPIeF5EzInJSRO62SA8UkbdF5KhR3o9FJNiRdy8ifYz9SDP+38cib5yIHDTKfEhERhvT24rIX8Y650TkWxvtBopIJuBr7MsBY7rVrMk4o/w/4/VAEUkuo5/BIvKOiBwxPnulsZ+md3bB+M4uK2luK6efiSLyqoisMvb1DxGp78j70zgXrSw0ZSIizYDrAEszxZ3A/UAocASYByQDTYBhwFQRGWQs+xLQEmgNDAHG2HjMSOB6IBwoAv4LbAGaAlcCj4rI1cay04HpSqk6QBtgvjF9LBAGNAPqAROAbAe7eZOxD+HAz8AHtgoppfobL7sYTTemgbiR8dlNgXuAGSISYcx7A2gPxANtjWVeLE8gEakL/Aq8Z+zPv4FfRaSeiNQ2pl+rlAoF+gBJxqqvAn8AEUAU8L6NfuQaZ42mvrQpTx4H+vk20N0oS13gKQyfpemdhRvf2RpH+2lRbBRwN9AQCACecFBejRPRykJjjx9F5AKwEvgLmGqRN1sptUMpVYBhAOkLPK2UylFKJQGzgLuMZW8HpiqlziulkjEMCiV5Tyl1TCmVDfQAGiilXlFK5SmlDgL/AUYYy+YDbUWkvlIqUym11iK9HtBWKVWolNqolEp3sK8rlVKLlFKFwBygi4P1TOQDryil8pVSi4BMoIOICAalOkkplaqUysDwHkeU0ZaJ64F9Sqk5SqkCpdQ3wG7gRmN+ERAjIsFKqZNKKZM5KR+DeamJ8fNwpsPcXj99gPHAP5VSx43vf7VSKtcJ/QT4XCm11/j9mI9B8WrcjFYWGnsMVUqFK6VaKKX+YfxDNXHM4roJYBoITRzB8OvTlG9Z3vLaVloLoInRlHTBqLCeBUwmpXsw/FLfbTRZ3GBMnwMsBuaJyAkReUtE/B3s6ymL6ywgSCrmP0kxKk7LNkKABkAtYKNFX343ppdHEwzv0ZIjQFOl1EXgDgyzp5Mi8quIdDSWeQoQ4G+jSW18BfpRHvb6WR8IAg5Uok27/bS4L/n51JjFFtUJrSw0lcEyVPEJoK6IhFqkNQeOG69PYjCHmGhWTnvHgENGRWX6F6qUug5AKbVPKTUSg0niTWCBiNQ2/tp9WSnVGYMp5AaKZzee4hwGU1i0RV/CLExAZXECg+K0xPxelVKLlVJDgMYYfon/x5h+Sil1n1KqCfAA8KE4vnorC4NyM9HIwXrngBwMZsGSlBfWusx+arwHrSw0VUIpdQxYDbxudDLHYfj1/5WxyHzgGRGJEJGmwMRymvwbyBCD0ztYRHxFJEZEegCIyBgRaaCUKgIuGOsUicgVIhIrIr5AOgaTSZFzewvAaQz+l3IxyvgfYJqINAQQkaYW/peyWAS0F5FRYnD63wF0Bn4RkUgRudnou8jFYA4qMrY/XERMyvk8hsHa0feQBIwyvvNrgAEV6OdnwL/FsDjB1+jIDgTOGp9v753Z7aeDMmvchFYWGmcwEoMT+wTwA/CSUmqJMe8VDM7vQ8ASYAGGAc4mRr/BDRjs0ocw/GqdhcGxCnANsMO4mmc6MMJoImtkbDsd2IXBzzLHaT0sZgrwhdGsdLsD5Z8G9gNrRSQdwzvoUF4lpVQKhvfwOJCCwbx0g1LqHIa/28cwvO9UDIP6g8aqPYB1xvfzMwY/wkEH+/ZPDL6CC8Bo4EcH64HB6bwNWG+U6U3ARymVBbwGrDK+s94V6KfGixB9+JHGnYjIgxgGeId+tWo0Gu9Azyw0LkVEGotIXxHxEZEOGH5B/uBpuTQaTcXQO2Y1riYA+ARohcG8MQ/40KMSaTSaCqPNUBqNRqMpF22G0mg0Gk25aGWh0Wg0mnKpMT6L+vXrq5YtW1a6/sWLF6ldu7bzBPIQNaUfoPvirdSUvtSUfkDV+rJx48ZzSqlyowrUGGXRsmVLNmzYUOn6iYmJDBw40HkCeYia0g/QffFWakpfako/oGp9EZGS4VZsos1QGo1GoykXrSw0Go1GUy5aWWg0Go2mXFzqszAGI5uO4USuWUqpN0rkTwOuMN7WAhoqpcIt8usAO4EflVLlBaDTaDxGfn4+ycnJ5OTk2MwPCwtj165dbpbKNdSUvtSUfoBjfQkKCiIqKgp/f0cj91vjMmVhjP45A8PpaMnAehH5WSm101RGKTXJovzDQNcSzbxK8bGMGo3XkpycTGhoKC1btsRw5pE1GRkZhIaG2qhZ/agpfakp/YDy+6KUIiUlheTkZFq1alWpZ7jSDNUT2K+UOqiUysMQ5uHmMsqPBL4x3YhIdwwH3vzhQhk1GqeQk5NDvXr1bCoKjcbTiAj16tWzO/N1BFeaoZpifQJaMtDLVkERaYEhdtCfxnsf4B0M5zUPtvcAEbkfw7GVREZGkpiYWGlhMzMzq1TfW6gp/YDq1ZewsDAyMzPt5hcWFpKRkWE3vzpRU/pSU/oBjvclJyen8n9TSimX/AOGYfBTmO7vBD6wU/Zp4H2L+4nAU8brcfbqWf7r3r27qgrLli2rUn1voab0Q6nq1ZedO3eWmZ+enu5yGU6dOqVGjhypWrVqpbp166Z69+6tFi5c6PTnONqXZcuWqVWrVlXpWcuWLVPXX399ldqwx++//646d+6sunTporKyspzW7muvvWZ1f9lllzmtbXs4+pnY+p4CG5QDY7orzVDHsT5CMwr7RyWOwMIEBVwGTBSRw8DbwF0i8oatihqNxvCjb+jQofTv35+DBw+yceNG5s2bR3JyskufW1BQYDcvMTGR1atXO609ZzN//nyeeeYZkpKSCA4Odlq7U6dOtbqv6DvwVlypLNYD7USklYgEYFAIP5csZDxoPgJYY0pTSo1WSjVXSrXEcALXl0qpyS6U1SEubj3F0VeXUZiV72lRNBor/vzzTwICApgwYYI5rUWLFjz88MOAwUzx5JNP0qNHD+Li4vjkk0+A4p2/w4YNo2PHjowePdo0u2fjxo0MGDCA7t27c/XVV3Py5EkArrvuOh599FESEhKYPn06//3vf+nVqxddu3Zl8ODBnD59msOHD/Pxxx8zbdo04uPjWbFiBYcPH2bQoEHExcVx5ZVXcvToUQDGjRvHhAkT6NWrF0899ZTdPqampjJ06FDi4uLo3bs3W7duBeCvv/4iPj6e+Ph4unbtSkZGBidPnqR///7Ex8cTExPDihUrrNqaNWsWCxcu5IUXXmD06NEkJiZyww03mPMnTpzI7NmzAUN0iJdeeolu3boRGxvL7t27AYOZ9O677yY2Npa4uDi+//57Jk+eTHZ2NvHx8YwePRqAkBDDketKKZ588kliYmKIjY3l22+/Lfcz8CZc5rNQShWIyERgMYals58ppXaIyCsYpj0mxTECmKe88e2UYNvgzwAQfx+aTR5g+ECLFOKrt6toPMuOHTvo1q2b3fxPP/2UsLAw1q9fT25uLn379uWqq64CYPPmzezYsYMmTZrQt29fVq1aRa9evXj44Yf56aefaNCgAd9++y3PPfccn31m+BvIy8szh9c5f/48a9euRUSYNWsWb731Fu+88w4TJkwgJCSEJ554AoAbb7yRsWPHMnbsWD777DMeeeQRfvzRcHJrcnIyq1evxtfX124fXnrpJbp27cqPP/7In3/+yV133UVSUhJvv/02M2bMoG/fvmRmZhIUFMTMmTO5+uqree655ygsLCQrK8uqrXvvvZdly5Zxyy23MGzYsHLt+PXr12fTpk18+OGHvP3228yaNYtXX32VsLAwtm3bZn4Pt912Gx988AFJSUml2li4cCFJSUls2bKFc+fO0aNHD/r372/3M7j88svLlMnduHSfhVJqEYYD2S3TXixxP6WcNmYDs50smsPknkhn1/BvaPKPYt98zsFUAHbeMpec/Sl03TwRH//iL/nx6avxDQmg0T0JbpdX43nWNpxafqFK0PvMsw6Xfeihh1i5ciUBAQGsX7+eP/74g61bt7JgwQIA0tLS2LdvHwEBAfTs2ZOoqCgA4uPjOXz4MOHh4Wzfvp0hQ4YAhplJ48aNze3fcccd5uvk5GTuuOMOTp48SV5ent2lmWvWrGHhwoUA3HnnnVaziOHDh5epKABWrlzJ999/D8CgQYNISUkhPT2dvn378thjjzF69GhuvfVWoqKi6NGjB+PHjyc/P5+hQ4cSHx/v8Luzxa233gpA9+7dzX1YsmQJ8+bNM5eJiIgoV/6RI0fi6+tLZGQkAwYMYP369dSpU8fmZ+BtykL/JC6H5LdWkLMvhYOTinVeyo+7SFt1hIzVR8k/c5EtfWeiigwTo4KMXI69lsjhZ/SKX437iI6OZtOmTeb7GTNmsHTpUs6ePQsYTCDvv/8+SUlJJCUlcejQIfPMIjAw0FzP19eXgoIClFJER0eby2/bto0//ij+TltGOH344YeZOHEi27Zt45NPPqnU8syqRH+dPHkys2bNIjs7m759+7J792769+/P8uXLadq0KePGjePLL78ssw0/Pz+KiorM9yX7YHpHpvfjbGx9Bt5GjYk66ypUQZHN9F23zDVf5x4+z9FXl9FwZBy+YUHuEk3jpdiaAbh6A9igQYN49tln+eijj3jwwQcBrEwvV199NR999BGDBg3C39+fvXv30rRpU7vtdejQgbNnz7JmzRouu+wy8vPz2bt3L9HR0aXKpqWlmdv64osvzOmhoaGkp6eb7/v06cO8efO48847mTt3Lv369atQH/v168fcuXN54YUXSExMpH79+tSpU4cDBw4QGxtLbGws69evZ/fu3QQHBxMVFcV9991Hbm4umzZt4q677rLbdosWLdi5cye5ublkZ2ezdOnScn/ZDxkyhBkzZvDuu+8CBjNUREQE/v7+5Ofnl9op3a9fPz755BPGjh1Lamoqy5cv51//+pfZB+Lt6JmFkzg5Yy1bLp/Jptj3zGnZ+1M8KJHmUkJE+PHHH/nrr79o1aoVPXv2ZOzYsbz55puAwUbfuXNnunXrRkxMDA888ECZv14DAgJYsGABTz/9NF26dCE+Pt7uqp4pU6YwfPhwunfvTv369c3pN954Iz/88IPZwf3+++/z+eefExcXx5w5c5g+fXqF+jhlyhQ2btxIXFwckydPNiumd999l5iYGOLi4vD39+faa68lMTGRLl260LVrV7799lv++c9/ltl2s2bNuP3224mJieH222+na9eSwSRK8/zzz3P+/HliYmLo0qULy5YtA+D+++8nLi7O7OA2ccsttxAXF0eXLl0YNGgQb731Fo0aNarQO/AkNeYM7oSEBOXs8yyKcgr4u/lbVZKr55En8QmuXCyWyqBj9HuGXbt20alTJ7v5l1JoiepCTekHON4XW99TEdmolCrXwapnFmWQ/PaK8guVw98t/kVhVj5KKfJTssqvoNFoNF6IVhZlcOK9NeUXcoBz87exrtHrbOz0LmnLD5XKL8ovJDPppNlJrtFoNN6GVhZu4NBTv4NRD5yatbF0/hO/sf2qzzkxvWbs9NRoNDUPrSzcjMovRBUUkXemOOjc2W8MO1FPfV5akWg0Go03oJWFm7mw9ADrmrzBppj3OPnJ31ZKQ+UWcuHPAxTlet8aa41Gc2mjlYUHOfrynxz4R3G4rILz2ewe8S1HXlziQak0Go2mNFpZeBBVUETa8sOl0s/MKR1XRqMpD19fX+Lj44mOjqZLly6888475l3JGzZs4JFHHqnyMz7++GO+/vrrCtXp06dPpZ83e/ZsTpw4Uen6YNif8fbbb1epDXu89957dOrUqdSeiqpw+PBhq3fsrM+uqugd3Hbw5Moke7vGNZqyCA4ONgewO3PmDKNGjSI9PZ2XX36ZhIQEEhKqFqusoKCACRMmVPjAoKqE6J49ezYxMTE0adLE4TqFhYXlxplyFh9++CFLliwxx3VyBiZlMWrUKACnfHbOQM8s7JC++ohnn7/mKEV5hR6VQVN9adiwITNnzuSDDz5AKWUVgttWSG+AN998k9jYWLp06cLkyYYTAQYOHGgVjnzKlCm899575rxJkyaRkJBAp06dWL9+Pbfeeivt2rXj+eefN8tiCtFdVijuV155hR49ehATE8P999+PUooFCxawYcMGRo8eTXx8vDkMR9euXYmNjWX8+PHk5uYChjDiTz/9NN26deO7776z+16SkpLo3bs3cXFxjBo1ivPnzwOGGULnzp2Ji4tjxIgRZb4nExMmTODgwYNce+21TJs2rdQMJiYmhsOHD3P48GE6derEfffdR3R0NFdddRXZ2dkA7N+/n8GDB9OlSxe6devGgQMHmDx5MitWrCA+Pp5p06ZZfXb2wrRPnTqV8ePHM3DgQFq3bm3+jJyJVhZ22HVrxabazmbnzV9x5IX/eVQGTfWmdevWFBYWcubMGat0U0jvpKQkVqxYQXBwML/99hs//fQT69atY8uWLVYRYU3hyB9//PFSzwgICGDDhg1MmDCBm2++mRkzZrB9+3Zmz55NSkrpcDebN2/m3XffZefOnRw8eJBVq1YBhvMj1q9fz/bt28nOzuaXX35h2LBhJCQkMHfuXJKSkhARxo0bx7fffsu2bdsoKCjgo48+Mrddr149Nm3aZB7sbXHXXXfx5ptvsnXrVjp37szLL78MwBtvvMHmzZvZunUrH3/8sd33ZMnHH39MkyZNWLZsGZMmTSrzs9i3bx8PPfQQO3bsIDw83Bw9d/To0Tz00ENs2bKF1atX07hxY9544w369etHUlJSqXZNYdq3bt3K1KlTreJd7d69m8WLF/P333/z8ssvk5/v3HN3tBnKizn9+SZavnYV4ueDKizS52ZUEx5ImOmSdj/ZcL9T2rEV0nvJkiXcfffd1KpVC4C6deuay1uGIy/JTTfdBEBsbCzR0dHmMOatW7fm2LFj1KtXz6q8vVDcy5Yt46233iIrK4vU1FSio6O58cYbreru2bOHVq1a0b59ewDGjh3LjBkzePTRR8uVEwwBDy9cuMCAAQMAGDVqFHfffTeAOZbT0KFDGTp0qN33VFlatWplDpPevXt3Dh8+TEZGBsePH+eWW24BICio/CCk9sK0A1x//fUEBgYSGBhIw4YNOX36tFPNY3r0qQTujCy7rskbrG04lQ0dplGQkWtOLzifTc6h826TQ1P9OHjwIL6+vjRs2NAq3VZI77IoK3y4KbS2j4+PVZhtHx8fm4EKbYXizsnJ4R//+AcLFixg27Zt3HfffW4Pc/7rr7/y0EMPsWnTJnr06EFBQUGF31NZYc7dEYLc1c/QM4sK4t8ohE7fjWRrv/+49bmF6bmkJR6i3o0dSf73SpLfWA5At60PE9CoZgRDqynYmgG4O2jd2bNnmTBhAhMnTkRErPJshfQeMmQIr7zyCqNHj6ZWrVqkpqZazS5ciWlQrV+/PpmZmSxYsIBhw4YBhjDnJl9Bhw4dOHz4MPv376dt27bMmTPHPEtwhLCwMCIiIlixYgX9+vVj3rx5DBgwgKKiIo4dO8YVV1zB5Zdfzrx588jMzCQlJaXUe+rYsaPd9lu2bMkvv/wCwKZNmzh0qHRoH0tCQ0OJiorixx9/ZOjQoeTm5lJYWGjV55LYC9PuDrSyqABd1jxAUOu6FGV7ZtPcvnsW4v/zGLOiAMjeew6/8GAK0nIIiAzxiFwa78B09nN+fj5+fn7ceeedPPbYY6XKvfvuuyxbtgwfHx+io6O59tprCQwMJCkpiYSEBAICArjuuuuYOtU1J/6VJDw8nPvuu4+YmBgaNWpEjx49zHmm87mDg4NZs2YNn3/+OcOHD6egoIAePXpYnTnuCF988QUTJkwgKyuL5s2bM2fOHAoLCxkzZgxpaWkopXjkkUcIDw/nhRdeKPWeyuK2227jyy+/JDo6ml69epnNZWUxZ84cHnjgAV588UX8/f357rvviIuLw9fXly5dujBu3DircOlTpkxh/PjxxMXFUatWLavzQ1yNDlFupGQ4bFtHY1oeanP6y80ceuI3AEK6NyFzY9XWgleWTgtHcfDRReQevUDXjQ+x5sDmahPWuzx0iHLvpKb0pab0A9wTolzPLCpJ5F1dCRvQCr+wQHzDglgX+bpH5Mg/lUnu0QsAZKw7BsazZ1RhEed/20tor2b4NzDYctNXHyHnyAUajuziEVk1Gk31RTu4HaTN+zeWSgtqEY5feDAiQpNHLvOAVLDfIlyIJadnb2Lv+IVsjC4+jWzn0Lkc/OevZO895y7xNBpNDUHPLBygx6En8K0dUHYhL7Dm7f/HzwS0CaHwf5eR9lexc63gfDZ+EcVrxPPPXSS4fX1bTWg0Go1N9MzCBiVDfZSrKAAJLA4v0PvMswR3auB0uRzB50Amp7/YbNWH7H0pVve5x9I9IVqNp6b4/zQ1k6p+P7WysMG5BdsrXKfxAz0J7RlF6+nXAxD1RD9ni+UwR1/+kwt/7Dff73vwJ7Zf/bn5/sDD/9Vh0J1MUFAQKSkpWmFovBKlFCkpKQ5t/LOHS81QInINMB3wBWYppd4okT8NuMJ4WwtoqJQKF5EWwA8YlJk/8L5S6mNXympJzoHiMAUNRjvmDPYLCyL6l+Kt9/Vu7EjYnkn4RQRz/o997BljP16Nq8k7lkbesTSrtKLsfHwCtRXSWURFRZGcnMzZs2dt5ufk5FTpD9WbqCl9qSn9AMf6EhQUVKUd3S4bLUTEF5gBDAGSgfUi8rNSaqepjFJqkkX5hwHTguKTwGVKqVwRCQG2G+u6Z32qxSamyDu7llGwbEx+gvAr21D35k7U6dOcyLHdKEjJYs+478lcn1xlUSuNj5RfRuMw/v7+tGrVym5+YmKi1Xr56kxN6UtN6Qe4py+uNEP1BPYrpQ4qpfKAecDNZZQfCXwDoJTKU0qZYlsEuljO0lgoi+COVfc9iK8P7f9zC43u7o74CP4NahPz6120nTm0ym1rNBqNO3DlINwUOGZxn2xMK4XR7NQK+NMirZmIbDW28abbZhUAFj+6xYW/wOsP7eyytsvj7NwtHnu2RqOpfniL0XoEsEApZT7AQSl1DIgTkSbAjyKyQCl12rKSiNwP3A8QGRlJYmJipQXIzMw01/c9cgx/Y/rylcvBz3U61VMW04Pz17OnQ5ZXm6MsP5Pqju6L91FT+gHu6YsrlcVxoJnFfZQxzRYjgIdsZSilTojIdqAfsKBE3kxgJhjCfVQlNIRlaInkDStINk6KBlwx0KWhwXf2O076iiM0f+EK8lOzOTljrcueZYnvjnT8x2+g/vAYWr11jTnYXN7pTM7N30bDMfFWezM8QXUK91Eeui/eR03pB7inL65UFuuBdiLSCoOSGAGMKllIRDoCEcAai7QoIEUplS0iEcDlwDQXympF3unM4hsX//Lu+M0Icg6lUqtDAwov5qEKiqjVsT4HJy1y6XMBirLyOfPFZs58sZnYpeOpHduIPWPmc3HLKTI2HKfDF8NcLoNGo6keuOwns1KqAJgILAZ2AfOVUjtE5BURucmi6AhgnrJeoN4JWCciW4C/gLeVUttcJWtJznyx2XxdMryzs/EJ8KVWB4MT3bd2AC1fHUzteOvzhtt8UDrUiLPZduVnFGbmcXHLKQDSV3n2WFmNRuNduNRnoZRaBCwqkfZiifspNur9D4hzpWzeTGDzMKv7ute154Abnrtr+Dfm68L03DJKajSaSw1vcXBrLPALDaTbtkc4/dkGEME3JLD8Sk4gc6O1Syl97VHq9G7O8emr8Y8MoeGIS1Z/azSXPFpZeCkBkSE0e2agR2XYedNXdE2ayLHXEgEIjKpDYXouda/r4FG5NBqN+9HKQlMmR15cYr7edevXACQYw5hUhKL8Qnz8fcsvqNFovBIdSLCaEbtkPGGDWuNfv5Zbnpf6c+lD6gvSDGcmlxU0ryjPvGWGi9tP83fTNzn2eqLT5dNoNO5BK4tqQsL+x+i27RFqxzWi07wRdN/5qDmv809j3CqLKiwiNzmNDR2mkfzOylJKI33NUf6OepPj01cDFP8/bbVb5dRoNM5DK4tqgl+dIAIiQ2zmBbet51ZZirILSH5nJYUXckh+czl7x31vzlNFil23GcxVJl+Hi1cfazQaN6B9FjUAd5+hsG3Qp1b353/by/Zrv6Dp433J3HQCVVBkXUFrC42m2qOVRQmq4+E13nAuRebG4+wZNd92ptYVGk21R5uhSlJYfZRF2w9vouXrV+EXFkSHOcOpFd2Q3He7UrtrY0+LZqYot8Dlu+A1Go3r0cqiBLnHq8/51PWHxdDongQAIq5uR9yye1FNgoldfDe9Tk62Kutbxz0b+0py8sN1Vmao7dd9wdqGUzn50TqPyKPRaCqHVhYl2H37N+UXqgaIrw/1bo22SPDMr/usPWetgjFmbjDsEj/y0lIACjNzS/s4NBqN16GVRQlyDp03X0c91c+Dkjh4YgCwAAAgAElEQVSDYpNai5ev9IwIRcquzyL/7EXWt36HrYNmuVcmjUZTYbSyKIOoJ6q7siimwUjPxHVSyn7k3qQ+nwCQvfucO0XSaDSVQCuLmoyFr15EaPyPXub74E5VP1vcEVJ/2mV3ZlFo3AkOcOip390ij0ajqRxaWdRgIsd1AwyO8FIUus9PcPabreWWOT17kxsk0Wg0lcXzC/S9DAnyQ+UUeFoMp1DnsuZ03/2ozaB/qsj7lginrThM+qojRD3VH/His8E1mksRPbMoQd1r2gHFv8qrO/51a9n0GdicbXiYXbd9zfF/ryL119LBCytD7on0arUUWqPxZrSyKIlxYA3t3czDgriWpo/0odlzA8ssE/V0f/cIU4L8Mxed0s7m+A/Y3PWDarkrX6PxNrSyKIEy2fJrohnEYoYhfj7U6dPcKrveLZ3N140f6k3U45e7TbSyyN57jqIKmgYzNlic+ueFJjeNprqhfRYlMYb7EN8aqCxK4G8RxTZ+7QQCW4STfyaT9FVHqW+hOAACW4STe+SCW+RKX3mE8Cta4//eXo6ughPTi0Ob172hA1FP96dWh7JXc+247gvztSpSiD53SaOpElpZlECZlMUlEM8oqHk47T+7Ff/GoQS1rgtAp+9GkX/uIgGNQgFD/KnU3/cS3LYex/+9yi1ypf66h9Rf9+ALnFhpvQcj9Zc9pP6yh/ZfDCOoVQS1OhYrDaUUKQt3kr2vxL4NPbPQaKqMVhYlUPmGE97ECyK5uoO6N3S0uhc/H7OiAIMjvP6wGLL2nOX4v1dRp18Lmk7qaz5i1VPsHbsAgN5nni1OG/c953/bW6qsqkbBITUab+XSGBErgOk4UKmB50X7RQRVum6tDg0My3DDg71qWatSyjwLtKUoALszi3Pf7yD1tz20nXFTqTDvuclp+NTyx7+ue46v1Wi8Ha0sSmCaWfgE1jxl0eieBC5uOUV9ywCDFcAbB851ka8T0DiUqCfth2axtxpq/4M/AXBuYGsajok3pxdk5LK52wzAeuai0VzK6NVQJTCboWrgzMK3dgDtP72Vutd3cFqbMb+Pc1pblSXvZAYHH1tkv0CJ3eqqSHHk5T+LszNyrfLzT2Y4VT6NpibgUmUhIteIyB4R2S8ik23kTxORJOO/vSJywZgeLyJrRGSHiGwVkTtcKacl2XsMzlGfgJqnLFyBX3jlTVvuwnK3ulKK87/v5eSMtfYreI+VTaPxGlxmhhIRX2AGMARIBtaLyM9KqZ2mMkqpSRblHwa6Gm+zgLuUUvtEpAmwUUQWK6VcunazIC2Hwsw8gzxaWZRJx3kjyD2eZl5F5dUYlUX2/hS2DfmcwKahVtl6z55GUz6unFn0BPYrpQ4qpfKAecDNZZQfCXwDoJTaq5TaZ7w+AZwBXB4mNc8iNIRWFmUTPqg1kXcadLt/o5BySnuWQ08vJjPpJMfe+Iuii3lk700pu8IlsGxao6ko4qpQCCIyDLhGKXWv8f5OoJdSaqKNsi2AtUCUUqqwRF5P4AsgWilVVCLvfuB+gMjIyO7z5s2rtLyZmZmEpgqBT2wBIGdGN2jg/SaWkmRmZhIS4t7BW3alE/jSdrv5ylcQL16+mj+mBYU3NTXfy4lsAh/dDEDOnF7ghMUOnvhcXEVN6UtN6QdUrS9XXHHFRqVUQnnlvGU11AhggQ1F0RiYA4wtqSgAlFIzgZkACQkJauDAgZUWIDExkR5to9mKQVn06X85AZHV74uUmJhIVd5DpRgIaTFx7LrN9t6LoKZh5B51z+7vytCmTRuaDOwNQFFOAfvu+wHTeYkt/syn1ZtVP2XQI5+Li6gpfakp/QD39MWVyuI4YBmNL8qYZosRwEOWCSJSB/gVeE4pVYY30olYWB+0g7uC2LHcxK97kNOzN3Hyo3XulacCZO08w8HHFyEBvpz+dKNVXlriIQ9JpdF4F670WawH2olIKxEJwKAQfi5ZSEQ6AhHAGou0AOAH4Eul1AIXylhSluLrGrh01l3UG9oJgBavDSGoVQTNnh1Au1m3lCrX7Pkr3C2aTc59t50zc5JKKQownMmuo9ZqNC5UFkqpAmAisBjYBcxXSu0QkVdE5CaLoiOAecr6L/J2oD8wzmJpbTwuxnKJpfjpLSgVISS+MQC1uzamzYybiF06nkb3GsygPoF+1LupE23eu8FcPmpyf5o+cpnNtjr/ONr1AleAcwt2cHz6ag4+vkgrDs0li0t9FkqpRcCiEmkvlrifYqPeV8BXrpTNFpYxhHyCvMWdUz3wDQmk59GnkABfxEeoHduoVJkGI+II7lCfvFOZ1L22vd226vRp4UpRK0zqz7s4v3gfAI0n9CS4XX0PS6TRuB89IlpSZPCh14qJ9LAg1RNHFGxI1yZW9x3n3UH+mYsceOQXAKJ/G2toq5Y/RVn5zheyEiiLHeBn522j+QtXkJ+axZHn/kfusTTCBrUmsFk4AA2Ge98JhBqNM9DKwgJVYBgUtAnKfYQPaoMqLDIri9DuhiWs0f+9ky33f0tIQC2ydp31pIik/VXs5D7x/hrDvcDFLacAyPg72Zxff1h0qfD2qkgR8NJ2DiZk0fqd69wjtEbjZLSysEBdQgcfeRPi60OjB3paRbOtHduIvNe70KZeJ7Zd+akHpQOVb71q++LWU/YLFykwfn9M/o3sPWfx2ZXOmV1JWlloqi1aWVhQkJoFlA4sp3E9LV8dbDujmjmUVV4hEuyDUoqdN3+Fb+0Amr/gHau+NJqqoO0tFux/6L8A5YeD0LgNy9VH1SEEy6475pGfkkVhZh4Za49xYekBHZhQUyPQysKCwrQcT4ugKYHloUS1OjUg4tr2RI7v7kGJyiZj7TG29v8PKq84GMG+CT+Zr/XSW011RSsLjVcT3MF6mWqHL4bR6o2r6TD3dlq/dwNxifd6SDL75J+9yJ4x35nvsy0c9Ltu+9qmwlBKkb3vnNVeH4CC9Bx23DyHs/O2uk5gjcYBtM9C49VYrSyyGEcjhrQFoCi/kMCWEeQePo83kbnRdmSb9JVHKEzLQfx88KkdYO7fyQ/WcvTVZTS6NwG/erVI/tcKoh6/3GDOWnOMjDXHCL+yDf4NaruzGxqNGa0sNNUGv7rBpdJ8/H2JXzsBBDLWHGXn0LkekKxibGg/DYDwwW3o+LXhXK8THxrCn52atcFcLvlfK6zqHXxsER3mDCdrz1nOfJVE00l9vfKoW03NRJuhNF5P55/vJHxwG1r/2/ayU/ERRITgjsVHnrR8/Sp3iVdpLiw5YDYvldybYYvMTScA2HblZ5z6ZD1HnvufS+XTaCzRykLj9dTp3YyOX99BYFRYmeUsB1xnnjPuSg488othBdW5rHLLFl40nOJocp5n79er9jTuQysLC+rd2hmAppP6eFgSTVUJaBRKt22PeFoMh0hbdtCxgkqRdyqj+N7ObOTsvK0c/b9lTpBMoylG+yws8AkwvI7AlhEelkRTGUquMnLo8CrBynHuzRRlF7Ap7v3iBDuWK1PolHpDOxPUMhzfkEA3SKep6eiZhQXm2FC++rVUS2wM+pa7p8P6tyyV3+vkMy4UyMWIkLb8EBs6TeP4u6tKKcuzX29hfet3ODGj+Oyw7L3nKMopcLekmhqAHhUtMEUX1YEEaw6N7k2gwYg4Os67gw5zhhOzeBzNXxwEQPMXByE+QoNRXazqhA9u4wlRK8zFTSfYNewbClKyOTb1Ly78sd8q37Sy6ujLfwKQtvwQWy6fyY4bv6zQc3JPpJO184xzhNZUW/SoaIHKNzgOtbKoOfgE+9PmvRsIH9QGn2B/Qro2ocnE3nTb+jBNJhrO3a53U0erOnX6etd5Go5y4qN1JF32sd381EV7AUO03KNTEx1ud3P8B2wdOIu8M5lVlFBTndGjogWqwBR1Vr+W6ohl1NryCGgUar623OgWflVb8wl/1Y2M1UfJOZBqN98yBMmJd1dXuP3cY2mVkktTM9AObgvyUwzLF33DgzwsiaYy+EUE0/DOePwiSm/eK4vasY1o9uwAxM/XPNuo068F6SuOGApUIye4PfJOZ3LmqySrtMwtJzk29S9a/t9gh07/c2QviKbmon9CW1CUbTiZza+OXj1SXWn9znU0f77iIcGbPtrXrCgAQoyHMAHELL6btp/cbL5v9ECPMtuqf1t0hZ/valJ/3VMqbceNc0hbdpAtfWfqAIeactEzCwvMDm5thrrkiXrscgIa1ibi6vYENgsjJL4xPgF+FFzIpuHoeCIGt2XX8G9s1m09/QbOfb/DzRKXzalP/i6VpixWRaX+spt6N3Zyp0iaaoYeFS0wL53116/lUscnyI9G9/YgsFnxrvG613eg4eh4AMIGtKLjvDtK1UvY9xg+XnjuRs6hsgMt7rvnB9JWHC67EW2FuqTRo6Ilep+FpgKED2pD7NLxxfdXtcUvzODvCoiqY05vYe8UQC8j9dc9XNxxhsJMY1iRIkXqL7vN+QVpuWTtPovsz7DXhKYGo81QFpjMUOilsxoHqR3biIQ9kzj3w07qG8PFAFahOBo/0JMjLyzxgHQVI2PNUU5/tpGgdvWIX/UAZ+dt5eCjv5rzd99uMLsFAoUjrsY3JACAI1OWUpSdT72bO5G16yyN7qmeq8k0ZaNHRQvMZiitLDQVwC8imEbju+MXXrwKK2pSXwAaP9irzLrRv97lUtkqQpbxkKacfSmcnr3JSlGU5MzcJNZFvcnZ+ds4+eE6Tn++iZ1D53L4mT/M0XEBinLL3i2eezydnIP2l/tqvAeXjooico2I7BGR/SIy2Ub+NBFJMv7bKyIXLPJ+F5ELIvKLK2W0RIf70DiLhmPi6bp5Is2nGHaL54+2vdEvtEeUO8VymENP/V5m/pEXlqDyCjkw8b+l8kyb905+tI6/m73FhT/tB0rc3PUDknp/bDMESckVWic/+ZuTH5d21Gvcg8tGRRHxBWYA1wKdgZEi0tmyjFJqklIqXikVD7wPLLTI/hdwp6vks4WeWWicSWDTOua9CYU3N6XH4Sdp/8Uwc351CaNeUUx9PvLSUsP/U8o3wRVm5Frd553OZEOHaRx7c7k57cgLSzjy4pJic7HGrbhyVOwJ7FdKHVRK5QHzgJvLKD8SMK9FVEotBdzqSdPKQuNKfGv5W3232n54kwelcR15p63DgogIRTkFFOUX2qlBqbPHT83aQOGFHI6/s5LU3/ZahVw3/Z2W5PzSA+weM5/81PLPBtFUHFeOik2BYxb3yca0UohIC6AV8KcL5SkXbYbSuBOfYH+g+BwV8M4NfRXl0BO/ceyt4hmBKlL83fJfbO42w26d/HNZ7LlrAeeXHjAkWCiPvWMXcOK9NcXt2VE6e0Z+y4U/9pP8xnKb+Zqq4S2roUYAC5RS9n962EBE7gfuB4iMjCQxMbHSAmRmZhKYX4AAK1avhIDqqTAyMzOr9B68iZrYF59t5wkwppn7NiIcn6h2+P12kuQhQQR9b78dVdsXFeqPz6kcV4tcJY6/vdJ8nXUqDSlS5J82fp55hcjBi6j2oZgC62y7YhYA53/fS878PvgdOWJ3cFqRuBxC/Eulm9o6sfcoRxz43tTE75crcaWyOA40s7iPMqbZYgTwUEUfoJSaCcwESEhIUAMHDqxoE2YSExMR4+x2wKCB1dYUlZiYSFXegzdRE/tyvmA/e9gFYN23gcDzhsu1EzbabeeyQ0+jlGJd5Osuk9XZBAQFkp9mCKXTv/fl7Bkzn7Tlh2k+5UqO2ih/WduunGpayElO2MiFPj0us3mw1VoMwRF916bQ14HvTU38frkSVyqL9UA7EWmFQUmMAEaVLCQiHYEIYE3JPLeiFBQap76+equqxjUEty8/YF/tuEZc3HrKbn51C+iXb+HD+Lv5W+brc99vt1l+c7cZBDQJtZkHlO/gLtJxrlyBy34+K6UKgInAYmAXMF8ptUNEXhERS8/eCGCeKrFOTkRWAN8BV4pIsohc7SpZATB9/3yl2v0xaqoPQc3DiV0ynm5bH7ZbptOCkbSffRt+de1Hz231r2us7mvHNXKajN5A3oky1ra4SRfo4IrWuNRnoZRaBCwqkfZiifspdur2c51kNjDOKqqr+UlTfShvYPcLD6budR0Iv7INfzd7y2aZyLHdCOvXkovbTxN2RWt8QwKqlWkKIGvb6UrVO/nx35yatR7x8yGkaxOif3b+CvvzSw+w756FtPtkKBFXt3N6+9URPTKaKNIHH2m8C59AP+r0bW6+j1k8zio/qHVd6t3UCb/QQESEqKf7u1lCz3Dqk7+hUKFyC8lYe4zzS/aTse6YVZmCjFy2DPgP+x/8ifxzFyv8jD2j51OUlc+eO79zltjVHm9ZDeV59MxC44W0/XgoJ2espf7wGGrHljMjsWO2avfpLQS1rMu2Kz91hYgeZ8+o+aXSzn69hexdZ8nedZZz3++g2bMDCO7QgPAr23hlVODqgB4ZjUimIdxAYXpuOSU1GvcREBlCi1cGl6soStL5x9Hma59aAdSOjSS4UwNni+e1HP/3Kqv7Y1P/Yu/YBey6ba7bZLi44wxbB84ibfkhtz3TlWhlYcRn24XyC2k0Xoxv7QDzdZ0+pWNRWebbo/4dscSve9CpcnmCgvPZNtMz1iWzuceHdnd5F5zP5uhriU5ZUbXv3oVk7TzDrmG2D8mqbmhlYaQoqpanRdBoqkS9WzpT98aOtHnvBsP90E741QumTm/Ddqc2715fbhsiQlCrCLpurPC2p2pD7pELJCV8WLxU3oINHaZxYvpq+3WPpTm8Ssp0THNNQSsLE8ZfEqG9m5VTUKPxTnz8fWn/6a00GBEHQLuZt9B9x6PmGYXlHo/WRoViIriDIS98SFsAApuF1ehVQIWZefh/vN98rwqKrOJPWbKp2weceH8NZ77ZwubuMzg8ebG7xPQqtIPbiJgc3PpIVU0NQnxs7xkqaZKKXjSW7F1nCelRHL6t3axbyN5zjm2DP3OpjJ7C9y/D+R2FWfmsb/kvu+XyktM5+uoygtvXA+D055tQ+UW0/vd1VuVUYRE7bphDrc4NaP3OdbaaqtZoZWGiUC+d1Vw6+NSyjq3kFxpIaE/rszV8Av1q3Ga/kuy6/Rsy/k52rLDFZt0zXyXR8s2r8fH35cSMtZyevYn6w2PI3HiczI3HqXNZc/JOZZbRWPVDKwsTeums5hIgduk9qKIiakdHEpLQlMwN9sK1XRqkJVZgpVKJWdrfTd+k+45/cvRlQ7Bsy+CJ+//xs1Pk8yb0yGjCrCz0GmxNzaV2bCQhXRojfj7ELBpL+89upcPXt1e53dbTHDO7+EUEe9VRshXBVhigjdHTHap7ZMpSzsxNcqo8SilyDp13W1gSrSxMmJWFjguluXSoe0NHIga3LbNMpx9G02BUF2IWjyN8cJtS+dG/3kWDUV3KfVaHr4aTsGeS1x4lWx5ZO89Uuu7JD9dxcNKi8gtiWEVleRiUKigi91haqXKHn/mDpF4fkfzWikrLVRG0GcqENkNpNDYJ69uCsL6GfRs+gaWHDNPg7xPsR1F26bO0AaKe7k/EVcWrq2IWj2PHzV+hbJy9falw7ocd5J/LovF9PcxpJz5cx9EpSwlJaErE1e3I2nWGlIU7Aeg4fyThA1sZyr2/htOfGULZH39nJczv43J59chookiboTSa8ijL5BE+qPSsAyD8qrY0eai3VVpI1ya0/88tTpWtOnBm3lZOf7kZgP0P/MSR5/5nPh3wyJSlHJ1iOLc8c8Nxjr2WaFYUAOe+3QrAqU83cPRV28t8XYlWFkakQM8sNJry8G9Q23wd1K4enX4oDisSbmdfRtNH+uATpI0YAAcf+YVDT/zG9uu/NKftGfktuSfSOfnhujLrKqXI2nmGw8/84WoxbaI/QRNFWlloNOXR/NmBnNx3lJgnrzGbpkw0uD2WwGZh1I6NZM+o+cVLUu24AS/l8yIy11sv13XEHJd/NosD//zFVSKVi0Mjo4j8U0TqiIFPRWSTiFzlauHcivZZaDTl4hcRTP6jHUopCjBsAAzr2wK/OkHUio00p4d0bWK7sTLiLzV7fmBVRa1WFNrx9ViSvuIwF7fYP0HR1Tg6Mo5XSqUDV2E4AvVO4A2XSeUJtLLQaJxGs2cHEjW5P/F/P2j/b6qMiUWtzg2t7jv/PMaJ0nkf266Y5WkRysVRM5RpInkdMMd4PGrNWmOqlYVG4zT8QgOJeuzyMssoGzOLpo9fTlCriFKzDvHRf5dlIXszYKBrn+HoJ7BRRP7AoCwWi0goxadW1wxMESi1stBo3EIdG0E7mz3dnwa3x1opklZvX2vX76ExEPj8Npc/w9GR8R5gMtBDKZUF+AN3u0wqT6BnFhqNW/FvUJuE/Y+RsHdS6UyLiUXkXV2t4jJpPIOjI+NlwB6l1AURGQM8D5TeUliNER1IUKNxO351gpCA0tbwoFYR1gkWuqLujR1p/9mtLpZMUxJHR8aPgCwR6QI8DhwAviy7SvVC9hkiROr14BqNe/Gt5U/radfR9qObzWm1Ojag47w76LL6AcA6LlP7T2+l7g0dafKoYddyQJNQGt7V1WbbkeO6uVDySwtHR8YCpZQSkZuBD5RSn4rIPa4UzN34bjEcq3qpR+HUaDxBw9HxpdKsdoTbsEI1e2YADcfEE9gsDBHhjHFntCWt3rqGFq8O5vRnGzny0lJzet3rO5D66x6nyO4tFF7Mc+jo3Mri6MwiQ0SewbBk9lcR8cHgt6hxFFywfXavRqPxIDZ8FiJCUPNwm9FgLfEJ9KPxg72s0lq8NoSiFtZHKfc8+hTdtj1CSPfS+0KCWtethNDuRfxdG6rIUWVxB5CLYb/FKSAKsH+0VDUm6qn+nhZBo9GUILBpnQqVb/n6VXT6bqTdfPH1oeA269VYPkF+BESGENSqtGJwJKqup3H1KZ8OtW5UEHOBMBG5AchRSpXrsxCRa0Rkj4jsF5HJNvKniUiS8d9eEblgkTdWRPYZ/42tQJ8qRVHjIAACGoW4+lEajaaC+DeoTezS8cRv+IdD5Rvdk0DYgFZ28wMiQyjq6fhsoe617ajdxbtPDXT11jdHw33cDvwNDAduB9aJyLBy6vgCM4Brgc7ASBHpbFlGKTVJKRWvlIoH3gcWGuvWBV4CegE9gZdEpMTyCCdTpFdDaTTeTO3YRgQ1D69yO00fN24W9BGavzTI0HbXxsUFSoy5fnWDCW5Xn3aXYJRcSxx1cD+HYY/FGQARaQAsARaUUacnsF8pddBYZx5wM7DTTvmRGBQEwNXA/5RSqca6/wOuAb5xUN4KI6YthlpZaDTVkohr2nH+931287usfoDURXuszo9o/EBPgjvUtz6QqcTxqSYlEdQygoZ3dbXpSL8UcFRZ+JgUhZEUyp+VNAWOWdwnY5gplEJEWgCtgD/LqNvURr37gfsBIiMjSUxMLEck+/gXFOELrF2/Dg4FVrodT5OZmVml9+BN6L54J17blxER+NZvQWH/Bvbli4N961YBhn78tXK5YRTcXBwF1u/0KauBMWnHVlThYQB881K8dmWPqz8TR5XF7yKymOJf9ncAjp0R6BgjgAVKqcKKVFJKzQRmAiQkJKiBAwdWWoA1rAegT98+BDQOrXQ7niYxMZGqvAdvQvfFO/Hqvjh2FDhgvx9pfi3Zlfi1+T6hb09qxxr8FUW98jka9hfhg1pzMekkx17/q6oSOw1XfyaOOrifxDAoxxn/zVRKPV1OteOA5XKDKGOaLUZgbWKqSF3nYDJD+eiwAhrNpUzY5S2t7mvFFIdb9wn2p+Wrgwm/ojVNJ/Ul1BjfqtmzA6jVqUFxHYsQ7TUFh7crK6W+B76vQNvrgXYi0grDQD8CGFWykIh0xBD2fI1F8mJgqoVT+yrgmQo8u+KYHdxaWWg0mmLKWmXUeeFoco6cJ7hNPSLvSeDQ44toMCIOVVDEnjHfmcs1eqAHacsOkr03xR0iu4QylYWIZGA76rwASilld/GzUqpARCZiGPh9gc+Moc1fATYopX42Fh0BzFMWx2YppVJF5FUw2obgFZOz22Xo1VAajaaCiJ8PwW3qAYaw7O1m2l4x1fLVIQCsbTjVblvdtj/Cppj3zPfxayfg16A2G9q840SJK0+ZykIpVSXjvVJqESV8G0qpF0vcT7FT9zPgs6o8v0KYV0PpmYVGozHQcEzpMCTOoPlLg0CEo1MMIUiaPHwZAQ1L7PHy88Ev1HsW2+if0SZ01FmNRmMkfLAhLlX94TFVbsuvfnFYkZZThxDSI4rIsd1oMCIW/wa1afxQb5q/cEWper4h1nGeQiyX93qASz7E6u71x/nlP5uoVTuIbnlZWlloNBo6zBlO/tmLBDSq+srIkC7FG/4a3duDRvca9nn4EkC37Y/Y9Yn417WOXeVpf+olPzJeTMtl36aTXPA1BuHSZiiN5pJHfH2coijKfY4dRWGa2ViVtRib6l7fwWUy2eOSVxZ+AQYlUWT80PTMQqPROBUn/f6sN9QQLck3LIj2n9/mnEYrwCVvhvIzRmo07QYUvc9Co9E4gbo3dyL1p100vNP2wUxlYjHj6PT9KHKPpdFwVBdqdWxAUNt6TpTScbSy8LeYWWgTlEajcRLtPhlK3kuDCIwKq3hli6EorF9L83Vor2aly7qJS97mYp5ZiGHNtEaj0TgD8ZHKKQocCzfeaWGpPc4u5ZIfHS19FtpfodFoqgthl7ckIMqwL1oFun7suuRHR5MZqhDt3NZoNJ7FJ9jgGXD0oKWOX91OaJ/m5L0U7UqxAK0s8DWanrTPQqPReJq4v+6jxWtDaPLwZQ6Vr9W5IdE/jkG1df0yX+3gNpqhCsXzm140Gs2lTVDLCKvDmbyJS35mYXJwa5+FRqPR2OeSHx21z0Kj0WjK55IfHS1nFtpnodFoNLbRPgtLn4XPJa87NRqNxiaX/OhoWg2lREArC41Go7HJJT86ikixwvDTZiiNRqOxxSWvLAD8jMqiUF0ZMyEAACAASURBVPssNBqNxiZaWVCsLIociMei0Wg0lyJaWQBSaDiAO3Nviocl0Wg0Gu9EKwtAcgsAKPKwHBqNRuOtaGUBBIQGAhDUrYmHJdFoNBrvRCsLwNd4Ol6gh06g0mg0Gm9HKwuKlUWh9m9rNBqNTVyqLETkGhHZIyL7RWSynTK3i8hOEdkhIl9bpL8pItuN/+5wpZymkFCFypVP0Wg0muqLy8J9iIgvMAMYAiQD60XkZ6XUTosy7YBngL5KqfMi0tCYfj3QDYgHAoFEEflNKZXuCllNMwu9dFaj0Whs48qZRU9gv1LqoFIqD5gH3FyizH3ADKXUeQCl1BljemdguVKqQCl1EdgKXOMqQX2NSqJI6amFRqPR2MKVyqIpcMziPtmYZkl7oL2IrBKRtSJiUghbgGtEpJaI1AeuAJq5SlCzz8JVD9BoNJoSJO9LITszz25+UWERX7+xks3LDrlRKvt4OuqsH9AOGAhEActFJFYp9YeI9ABWA2eBNdgYy0XkfuB+gMjISBITEyslRG52FgAnT5+tdBveQmZmZrXvgwndF++kpvTFk/1IOZrDH+8dJTjMj94jGnHucDbRg+siIhQWFJFyNIfstAJWLzjFXwt2MvLt9qXaKMgtIiezkJB6/m7piyuVxXGsZwNRxjRLkoF1Sql84JCI7MWgPNYrpV4DXgMwOr73lnyAUmomMBMgISFBDRw4sFKCbp1+Es5nUK9BAyrbhreQmJhY7ftgQvfFO6kpffFEP3auTeb00TRCVD5wlOy0ApZ9kgzAtsUpfLz+Pt6652cObj1NaN1gc72BAwdy7kQGh7afYe+GEwSHBrD0m+0U5BUy5bvh7DmyxeV9caWyWA+0E5FWGJTECGBUiTI/AiOBz43mpvbAQaNzPFwplSIicUAc8IerBPU1/q/NUBqNpiqknsrk9NE0OvW0trjn5RQQEOTH9ImLAOjUq6RF3sDUO3/g6O5zAGSkZpvTl327nXn/Wm2zzu71JzAsDXItLlMWSqkCEZkILMYwHn+mlNohIq8AG5RSPxvzrhKRnRjG6ieNCiIIWCEGx3M6MEYpVeAqWU3KokgvhtJoNJWkqEjxzA2G1f+TZw+lVYxhBD+6+xyvjVloVXbXupJGFsxlbWFPUQDMe2sVAD3+vIzadQIrLLejuNRnoZRaBCwqkfaixbUCHjP+syyTg2FFlFswefn1zEKj0QAsX7iLJXO38tjHNxDeoLY5/djeFJYv2MlNDyYQGlFsJsrPK2TK8Pnm+6/fWIl/oC/3vT64lKJwFcG1/V3avqcd3F6Bj3HFrN6Up9FoAOZOXQHAr//ZxOhn+5nT/2/U94BBmUxbNpbfZyex/PtdpVY1mWYIk6+b6yaJwcfXtQE5tLIAfDFoCW2G0miqN0u+3kZoRBC9rm3nlPb2bjppvr6YnmuVN+mKL5zyjOqCVhbomYVGUxNIT8niu3+vAXBYWSilKMgvYvrERWRn5pFc4kybU4cvsGX5EWqFBjDtwV+dLrOziL3K9UFQtbIAfPIN3grts9Boqi+ppzLt5imlOLLrHNkZuexef4KbJiRwYtdFJjzxn3Lb/fCxxc4U0ykE1fYn52K++T5GKwv3kLvnLESEUJivjz/SaDxJbnY+eTkFVs7j8sjJyuef/T+3Snt88JfEX9GSmx5IID+3gJeGzafA4u87vGFt/vrU9oqk6sATM2/k/0a7x3FuQisLwNdofsorYZPUaDTOo7CgiKO7z9GiU327ztjHB39Jfm4hI57qS+/r2hEcEmA2FfkH+JJ5IYdzx9OpVSeQc8cz2LkumbW/lNqvS+aFHFb+sJuVP+y2+RzTctPqxMPTr8HH14eAID+atq1Lq9iGHNp2hp7XtnXL87WyAHyMAQTPaWWh0TgNpRTGvVIUFhTxj96zALjm7v9v70zDo6iyBvyerOwQQCI7BIksAdlFQEBAZBEFZQQ3xFHBBT93BXfHGcUFhhk3ZBxFHRGRUcAFRBjCKhpUtoBAhAABZJMtYCDL/X5Udae7051OIJ3uTs77PP2k6tat2+d0VerUvffcc9ox7J4uXs/JPm0NBs98eSXLZm9i3D8G8PiQjwH465yRPDl0ZilIXnpUq1WR44etxXeJHeryx8kz3DP5CmrUqUzOmVx+XLyDeW+lcHhfJglt46lUNX8dxfj3hjp/49IIW6LJj4D9sZZ/cvpvJ4MsiaKEHtmnczh5LKtY58ya/B3jB33EqRPWC9hr9813Hls8YwNgzTFMGvsF65bt9NrG3u1HnIYCCHlDER0bWaBsSvLoAmX1msU5t1/44gYuv7ktiR3q8sDUK3nyo2uJi6+CiBAdG0XXQc15/vOR/GPZrW6GwoGUYloF7VkAR2L0Z1AUX4wfPIPMo1kkdWtIvWZx1LrI/zkOg7Dm2+30vKal24plR+9hyScb2frjPrb+uI9RT/Wk4+XNAiJ/adCudxPuerU/a5PTeethKzJR5eqxVKwSw4T3h/LiLXN44K3BNG9fl83fZ/DafQsQgeiYSIbf17XQtiOjIoiMCv57ffAlCDLGGOpl+Q4TrCjhxO+/ZfLxyys5vO+Esyz7dNEi5Rh7ODYnO5cP/7qMDSt2Adb4P8DGVbtZ+OF68nIN7zy+mPefS3Z+Z25OHh+9sJzN32d4Nur1u8Z2msbijzc69z94flmBSepwYug9nQHLaDhoe2ljAJq0rsPba8bQonN9IqMiaN2tIXdPvoIXvvAMlRfalHtjQa4hMdPqKsdWCuxyeUUpSY4fPsXRg+5Dp28++A3Js1Kd7p7rl+9kXPd3WWS/6fvihwVpPNTvA9I3HWTl3C2smPMLr9+/wGvdTx7bRsrCX1n1xVa2b9jPhCtncHfXd1j22Wam3PM1a7791Vn3oxdXMLbTNK/t5OaEtvfhA28N9lvn3n8OZGrKHdRtmj+0dMszvTi/SQ2uurOT13NEhIt6Nqbm+VVKTNbSoNyPv5icPCLtt59KVWOCLI2iFJ1HrvgPAG+uvt05TLHbXlSWse13Zk3+jnVL0wH4dPJ3xDeqTpsejby29e8n/wfAB39ZSsd+Cc7yA7uPFSrDS7fOLVA2Y+KK4ikSorToXJ8pyaOpWCWGX1L2cOrEGZI/TWVLyl4AHpx6JRd2qlfgvG5DLqTbkAtLW9yAU+57FiYnz+kNFepvOoriDc/ehYPFMzaQcyZ/qalnT2Hdsp2M7TTNbcjK5LkPG62ct6XY8pw8Vna8CitWsV4gW3SuT4c+Tbnjhb5ce9/FvPrtzV4NRVlGjUVunjNEues/lqKEC8/+6VOfxyTC3Vtmx8YDzm3HUJWrx5Hliplff3/60RKSMvi8vWaM236/expy+U1t3coG/rl9oW1UjatI/5svKtaiwbKCGguXnkWOruBWwgTjMnF8Jsv3BLbn4reJo+cU2u6+HUfZvyt/6OnnJelnJ2CQGfV0L6/lrsNw5zWtyPD7u5LUzUroWa9ZHANvbcdlI1rz2HtXl4qc4YTOWeTkOQMJ5mRrz0IJLsYYZry4ggaJteg13HdKl7xziHp54sgfPH3tLJ/HV3+17azbDjYPvDWY/TuP0f2qC7l44AWcPHaaV8d8Qd/rkwDLIDi8vByMfq43Sz5J5dJhLYitGM3IR7oHQ/SQR41Fbp6ze5WXa8jLM0REaKxyJTikpx5k2WebAQo1FsbDJTUvN4/1y3cVqHd474kCZQ9f/uE5ShkcRj7SjcSO9fjLyNlej186rAUtOtenRWcrZWlUdCTVa1fi+c9GOOsMvr0DIkKn/s34da/lIVY1rqJPzyUlHx2GyslDyA/5kau9CyVAHDt0ij1pvxcoX/zxBqY/l4wxptAhJQdfvL2G565zn6f46MUVzsVgZZE7XuzLZSOS3FZJv/LNTW51RhShRxBbMZph47rQMDHwUVrLGuXeWDiSWDh+CJ23UALFowP+w19GzubIfvdQ2rMmfcd3X2wlPfUgntEbvnrnJ8Z2muY2Mf3lv37iwO7jbvVWzPEeMK+s4JhQrlW3KpWqxtAwsRbValUiItL6wXpe05LomILhNpSSQ4eh7B5FJJCDzlsogee39KPkZOfx67rf6OKSpGfbz/to0rqOc//YoVPMm7oGsCamPb15wplRT/Wk21UXcmDXMX5ekk6fkUnEVIjiyP5M9u86xvlNarBg+lpq16/GyWNZJHasC1ihL15ZeLNz4v7pmcP57sutDLy1cC8m5dwp98YC2688GsNphKyT2eXSLU4pPabc87Vz23Xq4b//+J6Hpg1x7k8bv8jtvMyjWc5Fd6FGx34JZB7LwuQat1Skz38+gqeGfVKgfkRkBCJCfOMaDBjdzlkeF1+FuHhrZbOvieao6PweRN2mcVxz78UlpYZSCGosbGMRiyET6x/yvAbVgiuTElIs/3wz8Y2q0/DC2qxNTqdd7ybOxVqubFqdwebvMxg2rovzzXfLmr3MfGUlJ096Xzg3/dlkt/1JY75wbqet/c3t2NPXfhK0BW8d+yXw46Ltzv3LRrRmySepzv0xE/s5t/Ny8/h0ympadqlPnYbVGTC6HQumry1VeZWSp9wbC8eKVcdQ8ap5W2iaVMf3CUq5Yk/a7/znb8vdytpd1oS7XulfoO4/xlk9hoUfrmfEw924qFdjJt/5ZYnJEixD4Qgn4hrjadCf2zuNhedkcURkBCMe6ubcH3pPZ5K6N+TVO/INYa264RUXSVFj4exZHBKra7vss83c+PilwZRICSGOHTpVoGztknQ+fnklw8Z1IWPrYRbP2EDXwc3d6nzy6ipmTf6utMQsUaJiInn+sxFMG7+Idr2bOONOPf7hMFK/yyCmwRGq1arEX+eMZNPqDC69pmWh7YkIzdvX5dF/X8XRg6f4I/MMiR3LV6iMskC5NxaesXCU8sX2Dfv55Yc9DLi1vdf1NZ7rGRwkz0oleVb+MMxP/9tR8Nwwvbf+uexWIqMiGD99qFt545bn0bjlec6sbOc1qFboWhBPml10fkmKqZQyAXWdFZEBIrJFRNJEZLyPOteJyCYRSRWRGS7lL9tlm0XknxKolFA+HgZK+eClW+cy9601rFn4q9fj5fH2CIVEO0roEbC7QkQigTeAgUAr4HoRaeVRpzkwAehujGkN3G+XdwO6A22BJKAz4D3YyzkSrm9/iuWMkPJNWpHdnR29hG//s54ZL61g2oR8byPXyKseJ52znMGmz8gk5/boZ3u7HXto2hBGPdXTuf/qtzeXllhKmBHIYaguQJoxZjuAiMwErgY2udS5A3jDGHMEwBjjWHlkgApADNbcczSwPyBSqrEIWybf+SV70n5n8B0duGpsJ4wxpKcepF6zOKKiIzl5/DR/ZJ4hvlF1lsxKZebLK3225Yg4nJdnSE89QMPEWkTHRoWsrbhhfI8i5Y0Y8XA3LhvRmoQ2dcjLM1w8sDk/Ld7O+uW7aJBYi8QOdTngEjhQ3cYVXwTSWNQHdrvsZwCeDtGJACKyEmtd3LPGmAXGmO9EZAmwD8tYvG6M2ez5BSIyBhgDEB8f7xxLLQ6y7QSeadDPpp1QITMzM6zld8WfLo7QGasXbqJK8xN88qj3AHjDnk3g85e3ez3m4Mt//cSW1F/ZnnKc3GzLQgz/azNmP+l9eCrYpG33HexPIsDYgQgizj/E0qVLcdzkycl7uKBfNKZyLRI6Vyc5OZm0X/LDkBfl3ikr91hZ0QNKR5dgT3BHAc2B3kADYJmItAFqAy3tMoBvReRSY4ybD6MxZhowDaBTp06md+/exRbgROUMUnFPOXk27YQKycnJYSl/bk4e65fvJLFjPSpXs55srrpkHs3iTFYOv677jY79EuzwF1sBOLwzi2ObK/tsu1HtFkDhxgJg2yr3rHChZihGP9vbuS6jRYsW/OCjs/3g1CEc2Z9JvYQ4Gl5Y22udK1wyhlY+nUbKbCtTXlHunXC9xzwpK3pA6egSSGOxB2jost/ALnMlA/jeGJMN7BCRreQbj9XGmEwAEZkPXAIsp6Sxh6FaR+WQmhNs21l2OP1HNmuT02l7aWOvC9gO7zvBnDdSGDC6HfUvqMmC6WuZN3UNjVudx+MfDCMvz7AnNZPMdpaRmHCl0/eBd574X4H2Frzne9GXY/1DOFOrbhWSulv/TjEVorx6bk1JHk10bKTbCuei0KFvAhev2EVSd+8pVxUFAmssUoDmItIUy0iMBG7wqDMHuB54T0RqYw1LbQcSgDtE5EWsYahewJRACOmY9EyKzlVjUYLMmLiC1V9tI6l7Q+79x8ACx6eNX0R66kFSv9vN5MW3sH75TgB2bjoIwNw3U1g2fS9rZs8kspgPv7JAq0sacN9rg/hhQRo7Ug84s7NN/PpGKlaOZm1yurNu3aY1GPFwN69GuShERkXw5+f7lJDkSlklYE9HY0yOiIwDvsGaj3jXGJMqIn8B1hhj5tnH+ovIJiAXeMQYc1hEZgN9gA1Yk90LjDFfeP+mc8TuWUTanrmxFdVglASODGsbV+72etwxqXry2GmyTmVz6rj76mRHeIhTJ84ETsgQ4qFpQ4itGMXKuVto0LwmPYa2AKDLgAvoMuACZ724OtZwW3Rs/n367KfXla6wSrkkoE9GY8zXwNceZU+7bBvgQfvjWicXGBtI2Zzf5fCGsp2IT//hP5+AUpDiJo3Kdcn09sBl088p81u4M2RsRxI7WFFVG7c8r0jntOvdhDY9GtGqawP/lRWlBNDXaEdsKJc1f0cOnHS+wSn++SVlD/8Y9zW3PNObroOae62zY+MBdm85RM9rraU2ebn5eUPKq6F4e80YTh4/7ZzQLw6RURGMmzIgAFIpinfKvbFwuBi6rg/fsWE/cX0TgiNQGPLeM8nk5Rree3qJT2MxcfQcAA5mHGf98l1kn/a9kC7zaFZA5AwmIu7r+zr2s+6vszEUihIMdF2/o2fhMoSyaMYGX7XLNWeyctix8UCBeEn+ArG49iIWfrie39KPFlIbHur3wVnLWNI4HurnQq/hrRjwYGO3nsBNT2iwSiW80J6FcRiL/LLYitFBkia0+deERaxfvotRT/WkXrOabN+wnz4jk9yG8L5+92cqV4vl9KlsZ9nMV1cFQ9wS4cYJPagaV4GDe06Quip/sr7P9UnUrleVWZMKjyx716v9ade7CcnJySR1b8ig29rTuOV5VKqqPQolvCj3xsIZ7sPl7bjzFc2CI0sIkpOdS8o3v9L6kgasX74LgA+eX+Y8Xqdhdbeexdw3Uwq0sfTTTQXKwoWIyAiuf6wHAC+M+tzp2uvI19CsbTwZ237nw78ucztv9LO9ueTKRLcyEeHquzqXgtSKUvKosXAaC6Hj5Qn8+O12N7fE8s7899by5bQfiYv3PuF/MOO42xBeONMgsRYZHmlLo2Ly13i06dGInZsO0qhl/qroJq3ruEVpve/1QWxYucvN3VVRygLl/qno6jobYb8iayTafDZ/nwHAkf3e04JmbD3MoT0+IraGGUPv7szr9y+g1/BWtO3ZmNzsXKJdjMWgP7enfrM4LuzknrinQWItOl/RjLpN42jVtYG6syplknJvLFx7Fj8vsRLYrJy3pcy9GSZ/msrKeVvoMyKJS65MxBjDyrlbOL9JDS5o556UxhjD7Cmrqds0jjw/hnPlvC2BFDvg9L0+ibR1+xl+f1cSO9RlSvJonyuhI6Mi6ODFS05EuP1vfQMtqqIElXJvLIzLnEVOtuW188sPniGsQp9Zk1axd/sRLrq2UoFjmUez+PglKzz39GeT2bfjCM3axjvH2Qff3oGr7uzkrJ+eepBFH1keYVHRZcdhbtKiURw9eJK5b6ZQu0E19m0/wrBxXdyGHc82ZIailHXKvbFwOr+H+bj74o83AtC4e2O38sP7TvD7b5luZd+8v476F9R07n/1zk+06tqALWv20u/GNrx233znMYcBDVe6DLiAHxakAZYhqFKjAvf8XRezKUpxKffGIqpmRap2a8SRenmwN3wWg239cS/ZZ3JpfUlDt3LX+ZbcnDweH/Kx1/OPHnSfg3jl9nkAzJu6poQlLV0qVY1xiyfV/+a23DC+B7k5eZouVFHOgXL/31O9RxNaz7mJnOvcwzMvnR3a7p6Txn7JP++dz5ks91hWJg+OHTrFrEmr2L/T9+K3k8dO+zwWitRpVL1AWcd+CTz+4TC6DMyfX7ruoW40uyjeuR8XX8XZo1AU5ewp9z0LX8yYuIJew1v5r1gEzmTlkHUqm2o1Sz5lpevqaLAmp19/YAG7Nh/ix0X+E/6EMhGRkGdHBakaV8Et/SdYC+YqV6/Abc/3ode1rdj8wx4uHtScS65M5NCe45w6cUaNhKKUEOW+Z+FKm0sDk/zlsUEf8Uj/D0ss5tFbDy90bntGyf32td3s2nwIgKMHT5XI9wWDv827nrYDvWd5c1C5er4huKDd+QwZ09EZ+bZ2/Wo0alH4+YqiFB01Fi7c+txlAWnXkath344jZ91GTnYuxw+fYvpzyW6Jb6aNX3Su4oUktetVJbZy/hqHkY90p0LlaG58/FImLRrFlOTRwRNOUcohOgzlQqWqgXWbXL98F83b1y32eSvn/sIHzy8jOjayQLTWtLW/hf1aB1806VCNiFPVadujEY1a1GZK8mi3OFSKopQe2rNwoSQfRHl5pkB01oUfrCt2O7+k7HHGYvIV1vuDvywtvoAhxJ2vXO61PCJSGP1Mb+dCODUUihI81FgEAGMMz18/m4m3zDnndv5+11clJFXpc8mVidz21z5c2Dk/PIa3UBjtL2vKo+9ezZ8evKQ0xVMUpRjoMFQhpH63220dQ25OHgumryWpe8NC019mn85l76/W/MRuj8B0nhhjyNh6mPObxhEdE0n2mVzSft7HnrTf2WlPVIcjL355AzXqVCYiQsg6lc2WlL3ExVfmjhf7Mv/dn/lx8Q4O782PKdWsbTxNk+pwYNcxmrc/v5CWFUUJBmosCuGf987n7TVjAPgt/ShL/7uJ/328kXlT1zjLPdm4arebi+zEWz53O77oo/Wc36QGrbo2YMXcLRw9cJKv3vmJll3qc9MTl/LE1TMDp1AAuOPFvvxrwmLn/qP/voqqNStS8/wqzrIeV19ItZoVSWgbT6WqsVx7X1f2/HrEzVgAREQIN4zvUWqyK4pSdNRYFIGsU9k8M3yW33p7tx/htf+b71bmGS7j07+vBuDmJ3vy0QvLneWbf9gTdoYCKLCCvNlFBXsFEZERtOvdxK2sRed6pK7aTe36VQMpnqIoJYQaCw8iIoW8XPeJ6aku6xoKo7AV056sX76zWHIFg/oX1GRP2u8AjJnYj02rM1gx5xfn8ec/H0HFKjG8svBmFn64jksGJ/pqqgB9r29DXHyVAuG+FUUJTXSC24OnZw532z+TlcNmP1FoM49mkZuTx4Hdx4v8PeuWhraxuHtSfx5992oAomMj6dgvwW1yemrKHdRpaIXgqFazIsPv6+oWnNAfkVERdO7fLCCr2hVFKXm0Z+GB4wHo4N4e73qtd+zQKarXrsThfSd8BusLVya8P5QmresAVljvmArWbdK+T1OG39+V5h3qqhuropQzAtqzEJEBIrJFRNJEZLyPOteJyCYRSRWRGXbZZSKy1uWTJSJDAymrg4jIoj0EHx3wH9YtTXdGay1LOAwFQJUaFZzGIiJCuPymtjRp5dsTTFGUsknAehYiEgm8AVwOZAApIjLPGLPJpU5zYALQ3RhzRETqABhjlgDt7Do1gTSgaBMH5y53keu++VCpiKQoihJ0Atmz6AKkGWO2G2POADOBqz3q3AG8YYw5AmCMOeClneHAfGNM+EbFCxHGT/fdOXMN860oiuJJII1FfWC3y36GXeZKIpAoIitFZLWIeEthNhIo1UmBsuihMzXlDmrVc3dTnfB+vvEY9VQvOl6ewO0vaC5pRVEKEuwJ7iigOdAbaAAsE5E2xpijACJSF2gDfOPtZBEZA4wBiI+PJzk5+awFyczMdJ5/4uSxwiuHIUuXFowftXWXlWc7pmIEK1ctJ/GKKE6ym+Tk3QXqBgPXaxLuqC6hR1nRA0pHl0Aaiz2A64qtBnaZKxnA98aYbGCHiGzFMh4p9vHrgM/t4wUwxkwDpgF06tTJ9O7d+6yFTU5OxnH+hs/ns5eThZ9QClSoHM19rw/ipVvnnlM7z8z6E/US4gDY0O0PNq6yjEH/gX3pdkl3YipEOSexQwnXaxLuqC6hR1nRA0pHl0AOQ6UAzUWkqYjEYA0neboOzcHqVSAitbGGpVzTu11PKQ9BAWD8VykNXl5wEwlt8lOEXn5T22K3UTWugtNQAFx7f1cqVY3h+se6A+7eToqiKL4ImLEwxuQA47CGkDYDs4wxqSLyFxG5yq72DXBYRDYBS4BHjDGHAUSkCVbPpNTjb+eZ0rcWbXoUzNIXHWs9xEc+2p3Bt3dgyNiOANRpWK3Qtq645SKfx+olxDH5f7fQ+0+tz0FaRVHKGwF9pTTGfA187VH2tMu2AR60P57nplNwQrxUCMaq4qhod7vdoU9TZ4rQy67Lf7C/tuLPREZFcHfXdwCoVqsixw//4TweXSGCa+69mG/e9507QxfUKYpSXHT8wQvX3teV1V9tK9XvrF3fvbcw9mXvCYE8h4xGPdWLKjUqYIzhk1dWkdjPMnRdBl7AD/PT6DG0RWAEVhSlXKHGwgvValbkqjs7MW/qmlL5vtv/1oc2PRqRdfIMyz//xf8JLlSoHE3TJGvF9YQPhjk9IkY91Yue17R0m/NQFEU5W9RYBICX5t/IYwM/cu636dGIDSt2+axfq15VKlSO4aYnetL7utbO4afCuGF8D3ZuPsgF7bwnCoqOiTyrfN+KoijeUGPhgxrnVTqr8yYtGkWVGhWoXrsSxw5Zi87HTRnA2E7TvNZP7FjXLdZSg+a1ivQ9vYa3Oiv5FEVRzgYNUe6DroMTz8pV1RGIsFK1WK/HO/Rt6rZK+qG3hxARqZdBUZTQRnsW5qFeuwAACKhJREFUPoiMimD4/V2pWCWmWHMX/h78N4zvwcljp89VPEVRlFJFjYUfBt/egYMZx/nuy61+6zZIrEWFStEA+Jp1EBHOb1KDofd0LuABpSiKEqqosSgC0TGRbvtNk+qwY+MBbv9bH5b+dzMNL6zFiIe6Fakth+vrwFvbl7iciqIogUKNRREwHiu67558BZlHs6jbtAadryhaaO8JHwwj+3SOhtZQFCUs0SdXEfAM/hEdE+kWb8kbVeIquO1rdjlFUcIZdcMpArEevYGipF695eletLy4Pg//a0igxFIURSk1tGdRBAbd1oHdWw6z9ad9AERFR/o5wwrfcf8bgwMtmqIoSqmgxqIIVKlRgYemDWHHxgPk5eYRGaUdMkVRyhdqLIqBIwaToihKeUNfkRVFURS/qLFQFEVR/KLGQlEURfGLGgtFURTFL2osFEVRFL+osVAURVH8osZCURRF8YsaC0VRFMUvaiwURVEUv6ixUBRFUfwinrkawhUROQjsPIcmagOHSkicYFJW9ADVJVQpK7qUFT3g3HRpbIzxm0OhzBiLc0VE1hhjOgVbjnOlrOgBqkuoUlZ0KSt6QOnoosNQiqIoil/UWCiKoih+UWORz7RgC1BClBU9QHUJVcqKLmVFDygFXXTOQlEURfGL9iwURVEUv5R7YyEiA0Rki4ikicj4YMtTFEQkXUQ2iMhaEVljl9UUkW9FZJv9N84uFxH5p63fehHpEGTZ3xWRAyKy0aWs2LKLyC12/W0ickuI6PGsiOyxr8taERnkcmyCrccWEbnCpTzo95+INBSRJSKySURSReQ+uzwcr4svXcLq2ohIBRH5QUTW2Xo8Z5c3FZHvbZk+EZEYuzzW3k+zjzfxp1+xMcaU2w8QCfwKJAAxwDqgVbDlKoLc6UBtj7KXgfH29njgJXt7EDAfEKAr8H2QZe8JdAA2nq3sQE1gu/03zt6OCwE9ngUe9lK3lX1vxQJN7XsuMlTuP6Au0MHergpstWUOx+viS5ewujb2b1vF3o4Gvrd/61nASLt8KnCXvX03MNXeHgl8Uph+ZyNTee9ZdAHSjDHbjTFngJnA1UGW6Wy5Gnjf3n4fGOpS/oGxWA3UEJG6wRAQwBizDPjdo7i4sl8BfGuM+d0YcwT4FhgQeOnz8aGHL64GZhpjThtjdgBpWPdeSNx/xph9xpif7O0TwGagPuF5XXzp4ouQvDb2b5tp70bbHwP0AWbb5Z7XxHGtZgN9RUTwrV+xKe/Goj6w22U/g8JvrFDBAAtF5EcRGWOXxRtj9tnbvwHx9nY46Fhc2UNZp3H20My7jmEbwkgPe/iiPdabbFhfFw9dIMyujYhEisha4ACW4f0VOGqMyfEik1Ne+/gxoBYlqEd5NxbhSg9jTAdgIHCPiPR0PWis/mdYurmFs+zAW0AzoB2wD5gUXHGKh4hUAf4L3G+MOe56LNyuixddwu7aGGNyjTHtgAZYvYEWwZSnvBuLPUBDl/0GdllIY4zZY/89AHyOdSPtdwwv2X8P2NXDQcfiyh6SOhlj9tv/4HnAv8jv7oe8HiISjfVw/cgY85ldHJbXxZsu4XxtjDFHgSXAJVhDflFeZHLKax+vDhymBPUo78YiBWhuexjEYE0MzQuyTIUiIpVFpKpjG+gPbMSS2+F9cgsw196eB4yyPVi6AsdchhZCheLK/g3QX0Ti7OGE/nZZUPGYCxqGdV3A0mOk7bHSFGgO/ECI3H/22Pa/gc3GmMkuh8LuuvjSJdyujYicJyI17O2KwOVY8y9LgOF2Nc9r4rhWw4H/2b1BX/oVn9Ka3Q/VD5Znx1as8cAngi1PEeRNwPJuWAekOmTGGp9cDGwDFgE1Tb5XxRu2fhuATkGW/2OsYYBsrPHT285GduDPWJN1acCtIaLHh7ac6+1/0rou9Z+w9dgCDAyl+w/ogTXEtB5Ya38Ghel18aVLWF0boC3wsy3vRuBpuzwB62GfBnwKxNrlFez9NPt4gj/9ivvRFdyKoiiKX8r7MJSiKIpSBNRYKIqiKH5RY6EoiqL4RY2FoiiK4hc1FoqiKIpf1Fgo5RoRqSEid7vs1xOR2YWdU4Lf3UREbiiN71KUc0WNhVLeqYEVsRMAY8xeY8zwQuqXJE0ANRZKWKDGQinvTASa2TkOXrHf9jcCiMhoEZkjVi6HdBEZJyIPisjPIrJaRGra9ZqJyAI7sONyESkQw0dEekl+LoWf7VX4E4FL7bIH7MBxr4hIih3wbqx9bm8RWSYiX9k5CaaKSIRdf7qIbBQrv8kDpfi7KeWMKP9VFKVMMx5IMlbANkekUleSsCKXVsBaHfuYMaa9iPwdGAVMwcp/fKcxZpuIXAy8iRVK2pWHgXuMMSvtIHdZ9nc/bIy50v7uMVihMzqLSCywUkQW2ud3wcpNsBNYAFwD7ADqG2OS7PNrlMQPoijeUGOhKIWzxFh5EU6IyDHgC7t8A9DWfvB3Az61whIBVqIZT1YCk0XkI+AzY0yGS30H/e02HcNg1bFi+ZwBfjDGbAcQkY+xwlosBhJE5DXgK2ChZ4OKUlKosVCUwjntsp3nsp+H9f8TgZVjoF1hjRhjJorIV1jxhlaK9/SWAtxrjHELvicivSkYHtwYY46IyEVYSYfuBK7Dis2kKCWOzlko5Z0TWOk3zwpj5UrYISJ/Amd+6os864lIM2PMBmPMS1gRTVt4+e5vgLvsENuISKIdWRigix0BNQIYAawQkdpAhDHmv8CTWGleFSUgqLFQyjXGmMNYb/obReSVs2zmRuA2EXFEAvaWfvN++zvWY0WqnY8VUTRXRNbZk9PvAJuAn+xJ9rfJ7/2nAK9jhanegZXHpD6QLFY2tf8AE85SfkXxi0adVZQQxx6Gck6EK0ow0J6FoiiK4hftWSiKoih+0Z6FoiiK4hc1FoqiKIpf1FgoiqIoflFjoSiKovhFjYWiKIriFzUWiqIoil/+H/7Yyl2ahaA/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX5x/HPk0ACAQRZjAKyKIhFcWNRXFGrolX4aXG3xa3UBXftT2u1FbWLWrVW+nMv7oBaK1VcKAW1uCGIC0sgbIKIgKwBsj+/P+4NDDHJDEkms+T7fr3mxV3OnfucTJgn955zzzF3R0REpCYZiQ5ARESSn5KFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCFpycwGmdnyOhz/iJndVp8xiaQyJQtJWma2xMy2mlmBma00szFm1jIO57nQzP4buc3dL3P3O+Nwrsg6VbwejvHYqWZ2aX3HJBILJQtJdqe5e0vgIOBg4JYEx1MfTnP3lhGvkfXxpmbWpD7eR6QqShaSEtx9JfA2QdIAwMyyzew+M/vazL4Lbx01r+p4M7vZzBaa2SYzm2Nmp4fbfwQ8AgwM/8pfH24fY2Z3hctzzezUiPdqYmarzeyQcP0wM/vAzNab2edmNqg2day4wgnrtM7MFpvZyeG+u4GjgIcjr0bMzM3sSjNbACwItx1uZtPNbEP47+ER55hqZn8ws0/MbKOZvWZmbcN9b5jZVZVi+qLiZyWNm5KFpAQz6wycDORHbP4jsA9BAukBdAJur+YtFhJ82bYG7gCeM7M93H0ucBnwYfhXfpsqjn0RODdi/SRgjbvPNLNOwBvAXUBb4EbgFTPrULuaciiQB7QH7gGeNDNz91uB94GRVVyN/E94XO/wi/8N4CGgHXA/8IaZtYso/3PgYmAPoDQsC/A0cEFFITM7kOBn+kYt6yJpRMlCkt0/zWwTsAxYBfwWwMwMGAFc5+5r3X0T8HvgnKrexN1fcvcV7l7u7uMI/gofEGMMLwBDzCwnXD+PIIFA8OU60d0nhu89CfgUOCVKndZHvH4RsW+puz/u7mUEX957ALlR4vtD+DPYCvwEWODuz7p7qbu/CMwDToso/6y7f+Xum4HbgLPMLBOYAOxjZj3Dcj8Dxrl7cZTzSyOgZCHJ7n/cvRUwCNiX4C9ugA5ADjCj4ksXeCvc/gNm9nMzmxVRdv+I96qRu+cDc4HTwoQxhCCBAHQFzoz88geOJPiSr6lObSJej0fsWxlx3i3hYrRG/WURyx2BpZX2LyW4Qqiq/FKgKdDe3QuBccAFZpZBcDX1bJRzSyOhBjFJCe7+rpmNAe4juO2yBtgK7Ofu39R0rJl1BR4Hjie43VRmZrMAq3j7GEKouBWVAcwJEwgEX7zPuvsvqj2y/lQXZ+T2FQQJLFIXgkRaYc9K+0oIfp4QXM08C/wX2OLuH9Y6WkkrurKQVPIgcIKZHeju5QQJ4AEz2w3AzDqZ2UlVHNeC4At1dVjuIoIriwrfAZ3NLKuGc48FTgQuZ/tVBcBzBFccJ5lZppk1C5/x6FzLOtbkO2CvKGUmEtxKOi9siD8b6A28HlHmAjPrHV4ljQJeDm97ESaHcuDP6KpCIihZSMpw99XAM2xvxP5fggbvj8xsI/BvoFcVx80h+PL7kOALtw8wLaLIf4DZwEozW1P5+PA9vg2PP5zgVk3F9mXAUODXBMloGXATNf/f+lel5yxejVL1Cn8BhoU9pR6qqoC7fw+cCtwAfA/8CjjV3SPr9SwwhuCWVzPg6kpv8wzBz+i5GOOSRsA0+ZFI42FmU4Hn3P2JGsr8HBjh7kc2WGCS9HRlISLbhLemrgAeS3QsklyULEQEgLC9ZzXBrboXohSXRka3oUREJCpdWYiISFRKFiIiElXaPJTXvn1779atW62P37x5My1atKi/gBIkXeoBqkuySpe6pEs9oG51mTFjxhp3jzqWWdoki27duvHpp5/W+vipU6cyaNCg+gsoQdKlHqC6JKt0qUu61APqVhczqzw8TJV0G0pERKJSshARkaiULEREJColCxERiSquycLMBptZnpnlm9nNVew/2sxmmlmpmQ2rtO8eM5sdTmn5UDjZjYiIJEDckkU489ZogqkwewPnmlnvSsW+Bi6k0tAC4ZzBRwAHEAwl3R84Jl6xiohIzeLZdXYAkO/uiwDMbCzBUM5zKgq4+5JwX3mlY51g6OQsgglqmhKMVyMiIgkQz9tQndhx+sbl7Di1Y7XCCVimAN+Gr7fdfW69RygiIjFJyofyzKwH8COgYraxSWZ2lLu/X6ncCGAEQG5uLlOnTt3pc61da7zyShbl5camTVNp1apusSdaQUFBrX4OyUh1SU7pUpd0qQc0TF3imSy+Yce5fjuH22JxOvCRuxcAmNmbwEBgh2Th7o8Rjrvfr18/r80TjM899z0vvLAUyGbWrGymTt2H3NymO/0+yUJPpSYn1SX5pEs9oGHqEs/bUNOBnmbWPZzb+BxgQozHfg0cE84h3JSgcTsut6EuuKAdf/pTRwDmzSvi1FMXsmVL5SYUEZHGLW7Jwt1LgZHA2wRf9OPdfbaZjTKzIQBm1t/MlgNnAo+a2ezw8JeBhcCXwOfA5+7+r3jEuWpVCUcc0ZKDDy4F4NNPt3D11cuiHCUi0rjEtc3C3ScCEyttuz1ieTrb2yUiy5QBv4xnbBVat87kzjtX8tlnwY+iV69sbr45tyFOLSKSMhr9E9zZ2RmMH9+d7t3LOP74Vnz4YS969GiW6LBERJJKUvaGami77JLJffdt4bTT+tG0qR4UFxGprNFfWVRo29aVKEREqqFkEYPycmfz5rJEhyEikjBKFlFs2VLOmWcu5vTTF1Fa6okOR0QkIZQsarBiRTFHHz2ff/xjPZMmbeLqq5fhroQhIo2PkkUNrr56OTNmbNm2/n//t4ZHH12TwIhERBJDyaIGo0fvSdeuWdvW+/Rpxskn75LAiEREEkPJoga5uU15/fW9adUqg5/8ZBemTetF167ZiQ5LRKTB6TmLKPbfvzkffNCLH/2oGZmZ6lorIo2TkkUM9t+/eaJDEBFJKN2GqqOSEqesTD2kRCS9KVnUwcaNZfzkJ/lcf/3yRIciIhJXug1VS8uXF3PKKfl8+WUhkyZtYq+9srnmmt0SHZaISFzoyqIW3J1hwxbx5ZeF27Zdd91yXn99QwKjEhGJHyWLWjAzHn20C61abf/x9e+fQ//+OQmMSkQkfpQsaunAA3N46aW9yMyEoUNbM2VKas/dLSJSE7VZ1MFJJ+3Ce+/tw6GHttAzGCKS1pQs6ujww1smOgQRkbjTbag4Ki4up7xcz2CISOpTsoiTtWtL+fGP8/nNb1YkOhQRkTrTbag4WLSoiFNOyScvr4j33y+gW7dsRoxon+iwRERqTVcW9ay83Bk6dCF5eUXbtl1++ddMmrQxgVGJiNSNkkU9y8gwnnyyK82bb+8ddfTRLRkwoEUCoxIRqRslizgYMKAFY8d2JyMDzjqrDW+91YPWrTMTHZaISK2pzSJOhgxpw/vv78Nhh7UgI0PPYIhIaovrlYWZDTazPDPLN7Obq9h/tJnNNLNSMxtWaV8XM3vHzOaa2Rwz6xbPWOPh8MNbKlGISFqIW7Iws0xgNHAy0Bs418x6Vyr2NXAh8EIVb/EMcK+7/wgYAKyKV6yJsGlTGUVF5YkOQ0QkJvG8shgA5Lv7IncvBsYCQyMLuPsSd/8C2OFbM0wqTdx9UliuwN23xDHWBrVyZQmDBs1n+PClemhPRFJCPJNFJ2BZxPrycFss9gHWm9k/zOwzM7s3vFJJeQsWFHL44XnMnLmVcePWccMN3+CuhCEiyS1ZG7ibAEcBBxPcqhpHcLvqychCZjYCGAGQm5vL1KlTa33CgoKCOh0fC3e45pocFi/e/mN/8MFVZGcvZfDgkno5R0PUo6GoLskpXeqSLvWABqqLu8flBQwE3o5YvwW4pZqyY4BhEeuHAe9GrP8MGF3T+fr27et1MWXKlDodH6vFiwt9990/d5jhMMMHD17gmzaV1tv7N1Q9GoLqkpzSpS7pUg/3utUF+NRj+E6P522o6UBPM+tuZlnAOcCEnTi2jZl1CNePA+bEIcYG161bNm++2YNWrTIYPrwtEybsTcuWaXGHTUTSWNxuQ7l7qZmNBN4GMoGn3H22mY0iyGQTzKw/8CqwK3Camd3h7vu5e5mZ3QhMNjMDZgCPxyvWhnbQQTnMmLEvPXpkE1RPRCS5xbXNwt0nAhMrbbs9Ynk60LmaYycBB8QzvkTq2bNZokMQEYmZhvtIQmvWlLJsWXGiwxAR2UbJIsksW1bMUUflccIJC1i9un56SImI1JWSRRLJyyvkiCPymDeviLy8Ik4+eSEbN5YlOiwRESWLZHL//atYtmz71cSMGVv4wx9WJjAiEZGAkkUSeeihzvz4x622rZ9xRht+97s9EhiRiEggWZ/gbpSyszN49dW9OP74BRxwQHMeeaQLmZnqWisiiadkkWRatsxk8uSetGiRoWcwRCRpKFkkIT3RLSLJRm0WKWblyhJeeWVdosMQkUZGySKFLF5cxJFHzuessxYzfrwShog0HCWLFPHll1s54oj5LFxYRHk5nH/+Yl5/fUOiwxKRRkLJIkUsXlzEqlXbn8EoLYXnn1+bwIhEpDFRskgRQ4a04emnu1HRQeq883blmWe6JTIkEWlE1BsqhZx/fls2by5nxowt/O1ve+oZDBFpMEoWKWbEiPaJDkFEGiHdhhIRkaiULNLI0qVF3HRTDsuXay4MEalfShZpYv78Qo46aj6fftqEH/94wQ49p0RE6krJIg0sWVLE0UfP3za8eV5eESeckM/69aUJjkxE0oWSRRro3DmLI45oucO2fffNJidHH6+I1A99m6SBJk2MF17oxuDBuwBw0UXteOGF7mRl6eMVkfqhb5M0kZ2dwSuv7MXVV2/liSc0D4aI1C8lizSSk5PB6aeXkJGhRCEi9UvJohFZtqyYrVvLEx2GiKQgJYtGIj+/kCOOyOOMMxZRWKiEISI7R8miEZg/v5BjjlnAsmUlvPXWRoYNW0RxsRKGiMQursnCzAabWZ6Z5ZvZzVXsP9rMZppZqZkNq2L/Lma23Mwejmec6e6qq5axYsX2h/TeeGMjjzyyJoERiUiqiVuyMLNMYDRwMtAbONfMelcq9jVwIfBCNW9zJ/BevGJsLJ59ths/+lGzbevDh7flyis7JDAiEUk18byyGADku/sidy8GxgJDIwu4+xJ3/wL4wT0RM+sL5ALvxDHGRmG33ZoyeXJP9tknm0suacdTT3VV11oR2Snm7vF54+C20mB3vzRc/xlwqLuPrKLsGOB1d385XM8A/gNcAPwY6FfNcSOAEQC5ubl9x44dW+t4CwoKaNmyZfSCSa6memzYYLRq5WSkSEtVunwmoLoko3SpB9StLscee+wMd+8XrVyyzmdxBTDR3ZebVf8XsLs/BjwG0K9fPx80aFCtTzh16lTqcnyySJd6gOqSrNKlLulSD2iYusTzb8xvgD0j1juH22IxEBhpZkuA+4Cfm9kf6zc8iZSXV8hVVy2jtDQ+V5oiktrieWUxHehpZt0JksQ5wHmxHOju51csm9mFBLehftCbSurH/PmFHHvsAr79toTvvivh+ee707Sp2jREZLu4XVm4eykwEngbmAuMd/fZZjbKzIYAmFl/M1sOnAk8amaz4xWPVC0/f3uiAHjppfWce+5iSkp0hSEi28W1zcLdJwITK227PWJ5OsHtqZreYwwwJg7hCcGItVlZO15F7LprJpmZCQpIRJJSivSLkXjp1i2bd9/dh732ygLg4ovb8eijXTQYoYjsQMlC6NIli3ff3Ydf/zqXxx9XohCRH0rWrrPSwDp3zuLuuzslOgwRSVK6spCYLFxYpOHNRRoxJQuJat68YHjz005byObNZYkOR0QSQMlCajR/fiHHHbeA774rZfLkTZx0Uj4bNihhiDQ2ShZSo2uuWb7tGQyAadM2M2bM9wmMSEQSQclCavTss904+ODm29Yvu6w9V1+t4c1FGhv1hpIatW/fhP/8pyennLKQHj2yGT16T2oa3FFE0pOShUTVpk0TJk3qQXZ2hp7BEGmklCwkJi1a1Dz+R1mZa0IlkTSmNgupsy+/3EqfPnP5/PMtiQ5FROIkarIws9PCmetEfmD+/EJOOGEBc+cGo9d+8snmRIckInEQSxI4G1hgZveY2b7xDkhSx6pVJRx/fPAMBsC6dWX8+McLWLSoKMGRiUh9i5os3P0C4GBgITDGzD40sxFm1iru0UlS69ChCcOG7brDtosuakf37lkJikhE4iWm20vuvhF4GRgL7AGcDsw0s6viGJskOTPj/vs7ceutuwNwySXteOCBzupaK5KGovaGCme1uwjoATwDDHD3VWaWA8wB/hrfECWZmRl33dWR/v1zOPXU1upaK5KmYuk6+1PgAXd/L3Kju28xs0viE5akmqFD2yQ6BBGJo1jaLIYD881sSNgzaveIfZPjGp2khY8/3sxNNy2nvFzzeoukqli6zl4CfAKcAQwDPjKzi+MdmKSH2bO3csop+dx33yp+9rMllJQoYYikolhuQ/0KONjdvwcws3bAB8BT8QxMUt+SJUWceGI+a9cGQ5q/8MI61q8v47XX9qZJE7VtiKSSWHpDfQ9siljfFG4TqdHmzeV4pQuJQw7JUaIQSUGxJIt84GMz+52Z/Rb4iKAN43ozuz6+4Ukq22+/5kybtg97750NBMObjxq1R4KjEpHaiOU21MLwVeG18F89lCdRde+ezX//uw8PP7yaO+7YQ89giKSoqMnC3e8AMLOW4XpBvIOS9LL77k25666OiQ5DROoglt5Q+5vZZ8BsYLaZzTCz/eIfmjQWkydvZOLEDYkOQ0RqEEubxWPA9e7e1d27AjcAj8fy5mY22MzyzCzfzG6uYv/RZjbTzErNbFjE9oPCMahmm9kXZnZ2rBWS1DJr1hZOP30RQ4Ys5O9/V78JkWQVS7Jo4e5TKlbcfSrQItpBZpYJjAZOBnoD55pZ70rFvgYuBF6otH0L8HN33w8YDDxoZnpEOM0sXlzEySfns2lTOWVlcPHFS7n77m8THZaIVCGWBu5FZnYb8Gy4fgGwKIbjBgD57r4IwMzGAkMJxpMCwN2XhPvKIw909/kRyyvMbBXQAVgfw3klRXzwweZtw5tXaNZMU6eIJCPzyh3hKxcw2xW4AzgScOB94A53XxfluGHAYHe/NFz/GXCou4+souwY4HV3f7mKfQOAp4H93L280r4RwAiA3NzcvmPHjq2xLjUpKCigZcuWtT4+WaRaPd57rwl33dWckhJj2LAirrxy+1wYqVaXmqguySdd6gF1q8uxxx47w937RS3o7tW+gEzgvprK1HDsMOCJiPWfAQ9XU3YMMKyK7XsAecBh0c7Xt29fr4spU6bU6fhkkYr1eO+9Tf7LXy71srLyHbanYl2qo7okn3Sph3vd6gJ86jF8p9d4G8rdy8zsyFqlK/gG2DNivXO4LSZmtgvwBnCru39UyxgkBRx1VEuOOio9/sITSVextFl8ZmYTgJeAbRMsu/s/ohw3HehpZt0JksQ5wHmxBGVmWcCrwDNexa0paVxee209HTs2pX//qP0qRCROYmlNbEYwFtRxwGnh69RoB7l7KTASeBuYC4x399lmNiqcUAkz629my4EzgUfNbHZ4+FnA0cCFZjYrfB20k3WTNPDRR5s555zFHHPMfF57Tf0bRBIlliuLJ9x9WuQGMzsiljd394nAxErbbo9Ynk5we6rycc8Bz8VyDklfK1YY1167kMLCoBPG6acv4sEHO3P11bslODKRxieWK4uqpk3VVKoSdx980JTVq7d3rXWHli3VtVYkEaq9sjCzgcDhQIdKo8vuQtBLSiSuhg0r5oAD9uGKK76mrAxuvXV3Lr64faLDEmmUaroNlQW0DMtEjjC7kaBbrEjcjRjRni5dmvLqqxu4804Nby6SKNUmC3d/F3jXzMa4+9IGjElkB4MHt2bw4NaJDkOkUYulgTvbzB4DukWWd/fj4hWUyM548cW1tGvXhBNP3CXRoYikrViSxUvAI8ATQFl8wxHZOVOnbmL48KWUlzsPPbQnV1zRIdEhiaSlWJJFqbv/X9wjEdlJ8+YVcvrpiygpCbrWXnnlMhYvLuLee3/QG1tE6iiWfoj/MrMrzGwPM2tb8Yp7ZCJRfPBBARs27HixO3CgnvIWiYdYriyGh//eFLHNgb3qPxyR2F18cXvat2/CeectYfPmcu66aw/OOGPXRIclkpZimYO7e0MEIlIbQ4a04YMP9uGZZ9by61/vnuhwRNJWLHNw55jZb8IeUZhZTzOLOjaUSEM54IAc7ruvM2aW6FBE0lYsbRZ/B4oJnuaGYATZu+IWkUg9e+ihVYwcuYzS0pon+hKR6sXSZrG3u59tZucCuPsW059wkiLeemsD1123nPJymD+/kHHjurPrrrH82otIpFiuLIrNrDlBozZmtjdQVPMhIok3d+5Wzj57MeXhZLyTJm3i5JPzK2ZhFJGdEEuy+C3wFrCnmT0PTAZ+FdeoROpBaSm0abP9KiIjA0aN6qi2DZFaiJos3H0ScAZwIfAi0M/dp8Y3LJG669OnOZ980ovDDw+evfjjHztpSBCRWorp5q27f08wH7ZISsnNbcrkyT159tm1XHppu0SHI5KyNJOMpL1mzTL4xS/aV3v7qbzc+frr4gaOSiS1KFlIo3f33Svp02cOb7yxIdGhiCStmJKFmR1pZheFyx3MTE91S1r417/Wc/vt37JxYzmnnbaQu+/+Vr2lRKoQyxPcvwX+F7gl3NQUeC6eQYk0hG++KeaCC5ZsW3eHBx9czXfflVZ/kEgjFcuVxenAEGAzgLuvYMdpVkVSUseOTbnjjo5khjPKZ2bCSy91Z/fdmyY2MJEkFNNDeR5cl1c8lKcxoCUtmBnXXrsb77zTk3btMrn//s4MGqS/g0SqEkvX2fFm9ijQxsx+AVwMPB7fsEQaznHHtWLOnN506KBhQESqE8tDefcBLwOvAL2A2939r/EOTKQh7bZb02q71paVOX/840o2bdKswtJ4xdLAfT0wx91vcvcbwye6Y2Jmg80sz8zyzezmKvYfbWYzzazUzIZV2jfczBaEr+GVjxVpKL/97bfccssKDj00j/nzCxMdjkhCxNJm0Qp4x8zeN7ORZpYbyxubWSYwGjgZ6A2ca2a9KxX7mmAYkRcqHduWYEyqQ4EBwG/NTFOgSYP7xz/WcffdKwGYO7eQAQPyePfdTQmOSqThxXIb6g533w+4EtgDeNfM/h3Dew8A8t19kbsXA2OBoZXee4m7fwGUVzr2JGCSu69193XAJGBwDOcUqTfuzl/+snqHbc2bGz16ZCcoIpHE2ZknuFcBK4Hvgd1iKN8JWBaxvjzcFou6HCtSL8yMN9/swfnnBxe1TZrAyy/vRadOWQmOTKThRe3+YWZXAGcBHYCXgF+4+5x4BxYLMxsBjADIzc1l6tSptX6vgoKCOh2fLNKlHpA8dbnkEmjTJousLKek5FNqE1Ky1KU+pEtd0qUe0DB1iaWv4J7Ate4+ayff+5vw2Aqdw22xHjuo0rFTKxdy98eAxwD69evngwYNqlwkZlOnTqUuxyeLdKkHJFddjj225v1lZU5mZvXzZCRTXeoqXeqSLvWAhqlLtbehzKxi4P97ga/NrG3kK4b3ng70NLPuZpYFnANMiDGut4ETzWzXsGH7xHCbSNIpLXVOOSWfUaO+pbxc40pJeqrpyuIF4FRgBsHT25F/NjmwV01v7O6lZjaS4Es+E3jK3Web2SjgU3efYGb9gVeBXYHTzOwOd9/P3dea2Z0ECQdglLuvrU0FReLt17/+hnfe2cQ772ziyy+3MmZMV1q0yEx0WCL1qtpk4e6nhv/WeoRZd58ITKy07faI5ekEt5iqOvYp4KnanlukIYwdu5Z77121bf3ll9fTqlUmTz3VNYFRidS/WB7KmxzLNpHGaPfdm9K+/fa/uTp2bMpdd+2RwIhE4qOmNotmYdtE+7DtoKK9ohvqxioCwKBBrZg+vRd9+jSjWTPjn//ci44d1bVW0k9NbRa/BK4FOhK0W1S0WWwEHo5zXCIpo1u3bKZN68XMmVvo31+DMkt6qqnN4i/AX8zsKg0cKFKzVq0yOeaY6oc337QJNm0qo1UrNXxLaor6nIW7/9XM9icY36lZxPZn4hmYSLooKXF+97sciovzmDBhb7p313AhknpinVb1r+HrWOAegpnzRCQG1123nJkzm/DVVxqIUFJXLGNDDQOOB1a6+0XAgUDruEYlkibGjl3L6NHbByNcs6aUUaNWEkw+KZI6YkkWW929HCgNn+pexY7DeIhINYYMacOZZ7bZtt6lSxYvvtit2omWRJJVLGNDfWpmbQimUp0BFAAfxjUqkTSRk5PBuHHdadHiQ15+OYcJE/Zit92aJjoskZ0WSwP3FeHiI2b2FrBLOAeFiMTAzBg+vJg//KE/u++uRCGpqdpkYWaH1LTP3WfGJySR9FRToli1qoRZs7Zy4om7VFtGJJFqurL4cw37HDiunmMRaZSKi8v56U8XMW3aZu65pxM33LCb2jQk6dT0UF6UEfxFpK7cncsvX8Z//7sZgJtu+oavvtrKo492ITt7ZyayFImvWJ6zyDGz35jZY+F6TzM7Nf6hiaS/WbO2MmbM9ztsW7ashIwMXVlIconlT5e/A8XA4eH6N8BdcYtIpBE5+OAcJk7sQevWwTAge++dzUsvdadpUyULSS6xJIu93f0eoATA3bew40RIIlIHJ520Cx9/3It+/YKutW3bxtKjXaRhxfJbWWxmzQkatTGzvYGiuEYl0sj06tWMTz7ppYZtSVqxXFn8FngL2NPMngcmA7+Ka1QijVBNiWLZsmJOP30h335b0oARiWxXY7Kw4Ld3HnAGcCHwItDP3afGPTIRAaCwsJwzzljEP/+5gX795vHRR5sTHZI0QjUmCw9GO5vo7t+7+xvu/rq7r2mg2EQaPXfnssu+5tNPtwCwYkUJxxwznxkztiQ4MmlsYrkNNdPM+sc9EhH5gcJC/8GtpxP7tbF7AAAVmElEQVRPbMXBBzdPUETSWMWSLA4FPjSzhWb2hZl9aWYaG0qkATRvnsHEiT341a9yAejVK5vnnuuu5zCkwcXSG+qkuEchItXKzDT+9KdOHHJIcw48MGfbMxkiDSmWUWeXNkQgIlKzs89uW+P+RYuK6N49S91vJS40+IxIGli0qIi+fedxzjmLKSgoS3Q4koaULERS3Natwai169eXMX78egYMyGPevMJEhyVpJq7JwswGm1memeWb2c1V7M82s3Hh/o/NrFu4vamZPR02ps81s1viGadIKrvppm+YNWvrtvW5cwuZOHFDAiOSdBS3ZGFmmcBo4GSgN3CumfWuVOwSYJ279wAeAP4Ubj8TyHb3PkBf4JcViUREdnTttR044IDtXWl/+tM2XHfdbgmMSNJRPK8sBgD57r7I3YuBscDQSmWGAk+Hyy8Dx4dPjTvQwsyaAM0JRr3dGMdYRVJWjx7N+PDDXlxwQVv23Tebv/+9qxq5pd7Fc3jLTsCyiPXlBM9sVFnG3UvNbAPQjiBxDAW+BXKA69x9bRxjFUlpOTkZPPNMV9atK6NVK3WtlfqXrGMhDwDKgI7ArsD7ZvZvd18UWcjMRgAjAHJzc5k6dWqtT1hQUFCn45NFutQDVJf69u67TfjuuwzOPLOYulx4JENd6kO61AMaqC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANQRzZYwGfhZR7ingrJrO17dvX6+LKVOm1On4ZJEu9XBXXerT/PlbvVWrzxxm+NCh+b52bUmt3yvRdakv6VIP97rVBfjUY/hOj2ebxXSgp5l1N7Ms4BxgQqUyE4Dh4fIw4D9h8F8DxwGYWQvgMILRb0VkJ23dWs6ZZy5m06ZyAF57bQOHHZZHcXF5giOTVBK3ZOHupcBIgquHucB4d59tZqPMbEhY7EmgnZnlA9cDFd1rRwMtzWw2QdL5u7trPCqRWpg7t5ClS4t32Hb11buRlaXHrCR2cW2zcPeJwMRK226PWC4k6CZb+biCqraLyM475JAcZs7cl7PPXsz06Vs466w2XHFF+0SHJSkmWRu4RaQede+ezfvv78M993zHNdfspq61stN0HSrSSGRnZ3DbbXuwyy7Vd639738LKjqViOxAyUJEABg/fh1HHTWf885bwsaNGoxQdqRkISIsWFDIpZcGsxGMHbuOQw6Zx2efaepW2U7JQqSRc3cuvnjptq61AMuXF9Okido1ZDslC5FGzsx44omu9OnTbNu2++/vTJ8+mudbtlNvKBGhV69mfPzxvtx443K+/baEyy9X11rZkZKFiADQvHkGo0d3obTUq+1au3VrOaWlDRyYJAXdhhKRHdTUVnH11cu45pocFi8uasCIJBkoWYhITMaNW8sTT3zPnDlNOOiguYwfvy7RIUkDUrIQkagWLy5ixIivt61v3FjObbetoKhIgxE2FkoWIhJVq1aZHHNMq23rWVnGuHHdyc7WV0hjoU9aRKJq374Jr722F3/5S2eaNnXuvbcTBx2Uk+iwpAGpN5SIxMTMuPrq3Wjbdh7nn9+h2nLu1femktSlKwsR2SmdO5dXmwy2bCnn8MPn88ILazUgYZpRshCRenPDDcv56KPNnH/+Es45ZzFr1+qhjHShZCEi9WLChPU88siabevjx6/nnnu+S2BEUp+ULESkXqxaVUp29vbbU/vsk81tt+2ewIikPilZiEi9uPTS9syYsS8HH9yczEx49tlutGhR/URLklrUG0pE6s1++zXno4968f77BQwY0KLacuoxlXp0ZSEi9SorK4Pjj9+l2v2ffbaFI46Yz9y5WxswKqkrJQsRaTCFheVccMESPvxwM4ccMo8HH1xFebm62KYCJQsRaTC33rqCOXMKASgsdK67bjkffLA5wVFJLJQsRKRBlJc7y5cX77DtoovaceSRLRMUkewMJQsRaRAZGcbYsd159tmutG6dSadOTbn//k6JDktipN5QItJgzIwLLmjHsce2YvnyEtq0qforqKwsaMfIzFSPqWQR1ysLMxtsZnlmlm9mN1exP9vMxoX7PzazbhH7DjCzD81stpl9aWbNKh8vIqmpU6csDj20+q6199+/imOOmc/8+YUNGJXUJG7JwswygdHAyUBv4Fwz612p2CXAOnfvATwA/Ck8tgnwHHCZu+8HDAJK4hWriCSPefMKue22FUybtpkDD5zLAw98t+1KQxInnlcWA4B8d1/k7sXAWGBopTJDgafD5ZeB4y14UudE4At3/xzA3b9397I4xioiSaCszLnooqUUFQXJobDQufPOlaxZowEJEy2eyaITsCxifXm4rcoy7l4KbADaAfsAbmZvm9lMM/tVHOMUkSRRUFBOu3Y7DhHy17/uSW5u0wRFJBWStYG7CXAk0B/YAkw2sxnuPjmykJmNAEYA5ObmMnXq1FqfsKCgoE7HJ4t0qQeoLskq3nW54Qbo06cpDz/cjAMOKKVjxy+Ix+n0mewkd4/LCxgIvB2xfgtwS6UybwMDw+UmwBrAgHOApyPK3QbcVNP5+vbt63UxZcqUOh2fLNKlHu6qS7JqqLp8802Rr1xZXOP+jRtLa/3++kwCwKcew3d6PG9DTQd6mll3M8sKE8CESmUmAMPD5WHAf8Lg3wb6mFlO2Nh9DDAnjrGKSJLp2DGr2ttP7s7Pf76U/fabwxtvbGjgyBqnuCULD9ogRhJ88c8Fxrv7bDMbZWZDwmJPAu3MLB+4Hrg5PHYdcD9BwpkFzHT3N+IVq4iklqefXsvkyZtYtqyEU09dyHnnLWbLlvJEh5XW4tpm4e4TgYmVtt0esVwInFnNsc8RdJ8VEdnmu+9KuP765TtsW7WqlObN9QBfPGm4DxFJKa1aZXLppe3ICL+9mjc3Hn20i+bHiDMlCxFJKTk5GdxzT2emT9+Xgw5qzqhRHdl77+xEh5X2krXrrIhIjQ45JIfp0/etscxLL60jJyeDn/ykdQNFlb50ZSEiKatJE6NJk6pvP61ZU8pll33Nqacu5IwzFrJsWXGV5SQ2ShYikpZ+9atvWLs2GCXo1Vc30K/fPLZuVY+p2lKyEJG0s2RJEc888/0O266/fjeaN9dXXm3pJyciaadbt2ymT9+XAQNyANhvv2Zcf31ugqNKbWrgFpG0dPDBOXzwQS8ef3wN++/fnKZNq27bWLeulJYtM6vdLwFdWYhI2srMNC67rEON83xfdtnXHHjgXP79740NGFnqUbIQkUZrypRNjB+/nrlzCznhhHx++tNFbNigqXOqomQhIo1SaSlcddWyHbYtWVJEy5b6WqyKfioi0igVF/ODecAffnhPMjPVdlEVJQsRaZRycuDJJ7vy8ce96N8/h+HD2zJwYPVtG42dkoWINGoDBrTgo4968fDDe1Zb5sUX13L22YtYtKioASNLLkoWItLoZWQYLVtmVrmvsLCcW25Zwfjx69l33zlcd91y1q4tbeAIE0/JQkSkBn/962qWLg3GlSopcUaPXq1kISIi27k7b7+94/MXV1zRnh49miUoosRRshARqYaZ8c47PXjuuW506ZJF69aZ3HbbHokOKyGULEREapCRYZx/flvy8nrzzjs9aNeu6lGS1q4t5YILFpOXV9jAETYMJQsRkRg0a5bBgAEtqt1/110ref75dey33xxGjlzG6tUlDRhd/ClZiIjU0cKFRTz88GoAyspg9OjVjBmzNsFR1S8lCxGROnrqqTWUlPi29S5dshg5skMCI6p/ShYiInV0110dGTeuO927ZwHw+993TLuJltKrNiIiCWBmnHXWrsyd25u//70r5567a7Vlr79+Oa+/vgF3r7ZMMlKyEBGpJ9nZGVx4YTsyMqoejHDatAIeeGAVp522kIED85g0aWPKJA0lCxGRBnLbbSu2LX/88RbuvHNlAqPZOXFNFmY22MzyzCzfzG6uYn+2mY0L939sZt0q7e9iZgVmdmM84xQRibevvtrKlCkFO2y76649MEuNIdHjlizMLBMYDZwM9AbONbPelYpdAqxz9x7AA8CfKu2/H3gzXjGKiDSU/fdvzqxZ+zJkSGsATjihFUcf3arKsuXlnnS3p+J5ZTEAyHf3Re5eDIwFhlYqMxR4Olx+GTjewjRrZv8DLAZmxzFGEZEGc+CBObz22t58/HEv/vznztWWe/LJ7znqqPm8807ytGnEM1l0AiLnLFwebquyjLuXAhuAdmbWEvhf4I44xicikhADBrSgT5/mVe4rKXF+//uVTJu2mZNOymfgwDxmz97awBH+UNWDnCTe74AH3L2gpvt5ZjYCGAGQm5vL1KlTa33CgoKCOh2fLNKlHqC6JKt0qUuy1uPNN5uyZMn2RDJz5mby8j5h9erqrzAapC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANYAB7wNLwtd6YC0wsqbz9e3b1+tiypQpdTo+WaRLPdxVl2SVLnVJ1npcfvlShxnbXpddtjTqMXWpC/Cpx/CdHs/bUNOBnmbW3cyygHOACZXKTACGh8vDgP+E8R/l7t3cvRvwIPB7d384jrGKiCSFv/2tC5980ovTTmtNZibceGNutWUnTtzAunUNMxFT3G5DuXupmY0kuHrIBJ5y99lmNoogk00AngSeNbN8gquHc+IVj4hIqujfvwUTJuzN0qVFdO2aXWWZlStLOOOMRTRtapx9dhaDBsU3pri2Wbj7RGBipW23RywXAmdGeY/fxSU4EZEkV12iAPjLX1ZRVOQUFTkN8aiGnuAWEUkxGzaU8be/BUOit2qVwdChxXE/p5KFiEiKycyEW27ZndzcJlx+eQdatoz/OZUsRERSTMuWmdx88+4sXrw/t966e4OcM1mfsxARkSiaN8+gedXP9tU7XVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVOZJMr9rXZnZamBpHd6iPcHkS6kuXeoBqkuySpe6pEs9oG516eruHaIVSptkUVdm9qm790t0HHWVLvUA1SVZpUtd0qUe0DB10W0oERGJSslCRESiUrLY7rFEB1BP0qUeoLokq3SpS7rUAxqgLmqzEBGRqHRlISIiUTX6ZGFmg80sz8zyzezmRMcTCzNbYmZfmtksM/s03NbWzCaZ2YLw313D7WZmD4X1+8LMDklw7E+Z2Soz+ypi207HbmbDw/ILzGx4ktTjd2b2Tfi5zDKzUyL23RLWI8/MTorYnvDfPzPb08ymmNkcM5ttZteE21Pqc6mhHin3uZhZMzP7xMw+D+tyR7i9u5l9HMY1zsyywu3Z4Xp+uL9btDruNHdvtC8gE1gI7AVkAZ8DvRMdVwxxLwHaV9p2D3BzuHwz8Kdw+RTgTcCAw4CPExz70cAhwFe1jR1oCywK/901XN41CerxO+DGKsr2Dn+3soHu4e9cZrL8/gF7AIeEy62A+WHMKfW51FCPlPtcwp9ty3C5KfBx+LMeD5wTbn8EuDxcvgJ4JFw+BxhXUx1rE1Njv7IYAOS7+yJ3LwbGAkMTHFNtDQWeDpefBv4nYvszHvgIaGNmeyQiQAB3fw9YW2nzzsZ+EjDJ3de6+zpgEjA4/tFvV009qjMUGOvuRe6+GMgn+N1Lit8/d//W3WeGy5uAuUAnUuxzqaEe1UnazyX82RaEq03DlwPHAS+H2yt/JhWf1cvA8WZmVF/HndbYk0UnYFnE+nJq/uVKFg68Y2YzzGxEuC3X3b8Nl1cCueFyKtRxZ2NP5jqNDG/NPFVx24YUqkd4++Jggr9kU/ZzqVQPSMHPxcwyzWwWsIog8S4E1rt7aRVxbYs53L8BaEc91qWxJ4tUdaS7HwKcDFxpZkdH7vTg+jMlu7mlcuzA/wF7AwcB3wJ/Tmw4O8fMWgKvANe6+8bIfan0uVRRj5T8XNy9zN0PAjoTXA3sm8h4Gnuy+AbYM2K9c7gtqbn7N+G/q4BXCX6Rvqu4vRT+uyosngp13NnYk7JO7v5d+B+8HHic7Zf7SV8PM2tK8AX7vLv/I9yccp9LVfVI5c8FwN3XA1OAgQS3/JpUEde2mMP9rYHvqce6NPZkMR3oGfYwyCJoGJqQ4JhqZGYtzKxVxTJwIvAVQdwVvU+GA6+FyxOAn4c9WA4DNkTcWkgWOxv728CJZrZreEvhxHBbQlVqCzqd4HOBoB7nhD1WugM9gU9Ikt+/8N72k8Bcd78/YldKfS7V1SMVPxcz62BmbcLl5sAJBG0wU4BhYbHKn0nFZzUM+E94NVhdHXdeQ7bwJ+OLoGfHfIL7gbcmOp4Y4t2LoHfD58DsipgJ7k9OBhYA/wba+vZeFaPD+n0J9Etw/C8S3AooIbh/ekltYgcuJmisywcuSpJ6PBvG+UX4n3SPiPK3hvXIA05Opt8/4EiCW0xfALPC1ymp9rnUUI+U+1yAA4DPwpi/Am4Pt+9F8GWfD7wEZIfbm4Xr+eH+vaLVcWdfeoJbRESiauy3oUREJAZKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoW0qiZWRszuyJivaOZvVzTMfV47m5mdl5DnEukrpQspLFrQzBiJwDuvsLdh9VQvj51A5QsJCUoWUhj90dg73Ceg3vDv/a/AjCzC83snxbM5bDEzEaa2fVm9pmZfWRmbcNye5vZW+HAju+b2Q/G8DGzY2z7fAqfhU/h/xE4Ktx2XThw3L1mNj0c9O6X4bGDzOw9M3sjnJPgETPLCMuPMbOvLJjf5LoG/LlJI9MkehGRtHYzsL8HA7ZVjFYaaX+C0UubETwd+7/ufrCZPQD8HHiQYP7jy9x9gZkdCvyNYCjpSDcCV7r7tHCgu8Lw3De6+6nhuUcQDJ3R38yygWlm9k54/ACCuQmWAm8BZwCLgU7uvn94fJv6+IGIVEXJQqRmUzyYG2GTmW0A/hVu/xI4IPziPxx4KRiaCAgmmqlsGnC/mT0P/MPdl0eUr3Bi+J4Vt8FaE4zlUwx84u6LAMzsRYKhLSYDe5nZX4E3gHcqv6FIfVGyEKlZUcRyecR6OcH/nwyCOQYOqulN3P2PZvYGwZhD06zq6S0NuMrddxh8z8wG8cPhwd3d15nZgQSTDl0GnEUwNpNIvVObhTR2mwim4KwVD+ZLWGxmZ8K2+akPrFzOzPZ29y/d/U8Eo5ruW8W53wYuD4fZxsz2CUcWBhgQjoKaAZwN/NfM2gMZ7v4K8BuCaV5F4kLJQho1d/+e4C/9r8zs3lq+zfnAJWZWMRJwVVNwXhue4wuCkWrfJBhRtMzMPg8bp58A5gAzw0b2R9l+9T8deJhgmOrFBPOYdAKmWjCb2nPALbWMXyQqjTorkuTC21DbGsJFEkFXFiIiEpWuLEREJCpdWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiIS1f8Dpeb/iMaZe4MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8nWWd///X52TfWpqkTfeF0rTpvlOp0ALl+62gIAoIsuiAUx3kO4ojX5dBhx+OqKPODP5U/OGIuxTEhTp0UKSEQukO6ZakpcUuaUvbnLZp1mY51++PE0JOluZkuXOfk7yfj0cfj5zrXOecT++0eee+r/u6LnPOISIiAhDwuwAREYkdCgUREWmhUBARkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgWRKJjZR81sm5lVmdlxM/sfM3uvmT1kZg1mVtn8Z5+Zfd/MRrV67XIzCzW/9p0/f/Lz7yPSGYWCSBfM7HPAfwKPAHnAeOCHwA3NXZ5yzmUB2cCNwEhge+tgAI455zJb/flA//0NRKKnUBC5ADMbCjwMfNo593vnXLVzrsE59yfn3AOt+za37wE+ApwC/smHkkV6RaEgcmHvAVKBP0T7AudcE/AscLlXRYl4RaEgcmE5QLlzrrGbrztG+HLSO0ab2dlWf27puxJF+k6i3wWIxLggkGtmid0MhjHA6VaPjznnxvZtaSJ9T2cKIhe2ETgPfDDaF5hZAPgA8IpXRYl4RWcKIhfgnKsws68CPzCzRuAvQAOwArgSqHmnr5klAlOAhwjfgfTv/V6wSC/pTEGkC8657wKfAx4kfFfREeA+4I/NXT5iZlVABbCG8CWnBc65Yz6UK9Irpk12RETkHTpTEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRZxN08hNzfXTZw40e8yeqS6upqMjAy/y4hbOn69p2PYO/F8/LZv317unBveVb+4C4WJEyeybds2v8vokcLCQpYvX+53GXFLx6/3dAx7J56Pn5kdiqafLh+JiEgLhYKIiLRQKIiISIu4G1PoSENDA2VlZdTV1fldygUNHTqUkpISv8vokdTUVMaOHUtSUpLfpYiIhwZEKJSVlZGVlcXEiRMxM7/L6VRlZSVZWVl+l9FtzjmCwSBlZWVMmjTJ73JExEMD4vJRXV0dOTk5MR0I8czMyMnJifkzMZG+5hxsPgc374GM9XAVy8hYD7fsgS3nws8PNAPiTAGIKhCcgy2V8J0jsDYItSFIC8B1OfD5cbAoC5QrHVPgymDTEIK7SmFNOdSFIASAUROC350K/wz5QC78YhokDYhfr8M8+6uY2RNmdtLMdnfyvJnZ98xsv5ntNLP5XtUC4W/wR0vgqiL4/SmoCYGDlm/wVUXh5xtCPXv/zMzMPq3XTxMnTqS8vNzvMkR849y7gVDTEgjvCgHVIXi2PNxvIJ0xeJlvPwNWXuD59xHepWoKsAp4zKtCBtM3uKmpye8SROLelkr4U/PPiwupDYX7ba3sn7r6g2eh4JxbT+TG5W3dAPzChW0CLjKzUV7U0p/fYOccDzzwADNnzmTWrFk89dRTAIRCIe6//36mTZvGNddcw7XXXsszzzzT7vXvzJi86aabmDZtGrfffjvvbIT04osvMm/ePGbNmsXdd9/N+fPngfBv9l/4wheYP38+v/3tb1m+fDn3338/CxcupKCggK1bt/KhD32IKVOm8OCDD7Z81gc/+EEWLFjAjBkzePzxx3v+lxYZYL57JPzzIBq1oXD/gcLPMYUxhLc1fEdZc9vxnr6hFfayIsJnDJe+3vFzbnnXr//9739PUVERO3bsoLy8nEWLFnHFFVewYcMGDh8+THFxMSdPnqSgoIC77767w/d444032LNnD6NHj2bp0qVs2LCBhQsX8vGPf5wXX3yR/Px87rrrLh577DE++9nPApCTk8Prr4cL/9GPfkRycjLbtm3j0Ucf5YYbbmD79u1kZ2czefJk7r//fnJycnjiiSfIzs6mtraWRYsW8eEPf5icnJyeHDaRAeW5YPsrCp0JNfcfKOJioNnMVhG+xEReXh6FhYURzw8dOpTKykrA29s9w59x4efXrVvHjTfeSE1NDenp6Vx22WWsX7+el19+mRtuuKFlQa3LL7+c2tradu9ZU1PDggULGDp0KNXV1cyYMYOSkhICgQDjx49n1KhRVFZWcvPNN/PjH/+Ye+65B+cc1113Xct7NTU1sWLFCiorK5k8eTLTpk0jMzOT+vp6JkyYQGlpKbNnz+bb3/42//3f/w3AkSNHKCoqYvHixTjnqKqqIiUlJaK2urq6dse+P1VVVfn6+QNBvB/DfYfr++VzasZd0627TmqaHI//4gUPKwrLH5/s+Wf4GQpHgXGtHo9tbmvHOfc48DjAwoULXdsFqUpKSvrl/v+uPiMrK4vk5GRSU1Nb+iYlJZGWlkZycjKBQKClPTExkbS0NIqLi/nkJz8JwMMPP8yQIUNIT09v6ZeamkpSUhIZGRkkJCS0tKenp5OYmEhWVhZmRl5eXstzCQkJDBs2jKysLDIzMyPeLykpiZSUFLZv384rr7zC5s2bSU9PZ/ny5S3vb2ZkZma2+/umpqYyb968Pjqa3RfPi5HFing/hg/fe9jzz6gamhT5kykK1uRYvWmaNwW1su6u8Z5/hp83Uq0B7mq+C2kJUOGc6/Glo1hx+eWX89RTT9HU1MSpU6dYv349ixcvZunSpTz77LOEQiFOnDjR8tvapZdeSlFREUVFRVx//fWdvu/UqVM5ePAg+/fvB+CXv/wly5Yt63GdFRUVDBs2jPT0dEpLS9m0aVOP30tkIHBA2ZRMtq8Y2b1700OOnGO1ntXV3zw7UzCzJ4HlQK6ZlQH/AiQBOOd+BKwFrgX2AzXA3/X2Mzu75n/LnvBtp9FcIwwANw2Hp2b0rIYbb7yRjRs3MmfOHMyMf/u3f2PkyJF8+MMf5vnnn2f69OmMGzeO+fPnM3To0KjfNzU1lZ/+9KfcfPPNNDY2smjRIj71qU/1rEhg5cqV/OhHP6KgoICpU6eyZMmSHr+XSLyrTwlQsiiH06PTuv3aQMgxft/Auf3IXJzdf7lw4ULXdj+FkpISCgoKOn3N5nNwdVF4ELkr6QF4aS4sHtLbSts7fvw4o0aNIhgMsnjxYjZs2MDIkSP7/oM80tVx9lq8X/qIBfF+DK/y4PJRcGQqJYtzaEhNaP9kyEGg87OGQGOI3KO1TN8cpD+md677Yc8vH5nZdufcwq76xcVAc28tzgrPPHy2/MK3maUF4Prc8MxmL9xyyy1UVlZSX1/PV77ylbgKBJGBpikAb80eRll++//wCfUh8l8/TXBUGuVj0ggFLDIcQo5AyJF7tJaCLf0TCP1lUISCWXgq+l2l4XkItW0msAWA1OZA+MU075a6WLt2bVwuiCcy0FQNSaJ4SQ7VF7W/m2dI+XmmbyonraaJvMM1VGYnczg/i+DoNFyCYU3hMYTxeysZcqZ/7obqT4MiFCC8NslvCsIT0zpd+8iDS0YiEjsccPSSTA7MvohQYpv7bEKOicUVTCg5R6D5qroBQ07XM3NTeCLCrUtK++UuIz8NmlCA8BnA4iHwdA8HkUUkftWnBChdlEOwg8Hk1KpGpm8uZ2hw4P3m312DKhREZHAK5qVSujiH+rT2g8l5h6rJf/00iQ3xddONVxQKIjJghQJwYPZFlOW3vzac0BAif/tpRh6u8aGy2DWAVgGPPZ/4xCcoLi7uk/eKZjnrRx55JOLxZZdd1iefLRKPqocksv3qkR0GwpDy8yz6y3EFQgcG5JlCX9/L3NN7g//rv/6rT+voyiOPPMKXv/zllsevvfZav36+SCxwwLHJmeyf08lgcsk5JhRXtAwmSySdKfSR6upqrrvuOubMmcPMmTN56qmnWL58Oe9MtMvMzOTBBx9kxowZrFixgi1btrB8+XIuvvhi1qxZA8DPfvYz7rvvvpb3fP/739/h4mUdLXn9xS9+kdraWubOncvtt9/e8pnQ+XLeF1qmWyQe1ScH2L00l30LstsFQkp1I/MKTzJpjwLhQgbkmYIfnn/+eUaPHs1zzz0HhNcWeuyxd/cNqq6u5oorruDRRx/lxhtv5MEHH+SFF16guLiYj33sYxdc96itjpa8/uY3v8n3v/99ioqK2vXvbDlv6HiZ7ve+9729PBoi/e90XnhmckeDySMOV5O//TRJGkzuks4U+sisWbN44YUX+MIXvsArr7zSbl2j5ORkrrnmmpa+y5YtIykpiVmzZnHw4MFufdb3vvc95syZw5IlSzhy5AhvvvnmBfu/+uqr3HbbbSQkJJCXl8eyZcvYunUrAIsXL2bs2LEEAgHmzp3b7VpE/BYKwP45F7Fj2Yh2gZDQEKJgc5Dpm4IKhCjpTKGP5Ofn8/rrr7N27VoefPBBrr766ojnk5KSsOap0oFAoGWvgkAgQGNjIxBeTjsUeneudV1dXbvPKSws5K9//SsbN25sWfK6o37Rar1nQkJCQkstIvGgOiuR4iW5VA3rYGZy8DzTNwVJq9a/6e7QmUIfOXbsGOnp6dxxxx088MADLbugdcfEiRMpKioiFApx5MgRtmzZ0q7PhZa8TkpKoqGhod1rOlvOWyReOeDoxZlsu2Zk+0BwjgnFFcxbd0KB0AM6U+gju3bt4oEHHiAQCJCUlMRjjz3G5z//+W69x9KlS5k0aRLTp0+noKCA+fPnt+tzoSWvV61axezZs5k/fz6//vWvW9o7W867tLS0539hEZ80JAcoXZhN+dj0ds+lVDcyfXOQi8rP+1DZwDAols6OFZWVlXG9IJ7fxznel32OBfF+DOc+dCI8mJze/vfZ/hhM9nvtIy2dLSIC1Ifgwb/BjmUj2i1jnNAQYsobZxh5sHpALWHtF4WCiMS0vTVwezFsr6JdIGQFzzN9c5D0Ko0d9BWFgojEJOfgJ8fhM/uhpu3mWM4xvvQck3ZrIlpfGzCh4JxrueVT+l68jT1JfDvdAH+/F37fwXJfKTWNFGwOMuyUBpO9MCBCITU1lWAwSE5OjoLBA845gsEgqampfpcig8BLZ+DOEjjawdYGw4/UMHX7aZLqo9hwXXpkQITC2LFjKSsr49SpU36XckF1dXVx+4M1NTWVsWPH+l2GDGD1IfiXg/Ctw+F5CK2lB+B7U+BXT5drMNljAyIUkpKSmDRpkt9ldKmwsJB58+b5XYZIzHmzBj5aAtsq2z+3IBN+Mx3y0+HX7Z+WPqYZzSLiG+fgieMwb1v7QDDgC+PgtfnhQJD+MSDOFEQk/pxpgFX74JkOrvqOSYZfFsCVw/q/rsFOoSAi/e7ls3BHCZR1cAPRjbnw46mQk9T/dYlCQUT6UUMIHjoI3+hkMPk/L4FPjGo3R036kUJBRPrF/hq4vQS2dDCYPL95MHmqxg58p4FmEfGUc/Cz4zBve8eB8MA42DhfgRArdKYgIp452wCf3AdPdzCYPCoZfjENVmT3f13SOYWCiHjilebB5MMdDCbfkAP/NRVy22+YJj5TKIhIn2oIwcOH4JFD0HYxirQA/MclsEqDyTFLoSAifeZAbXiZ680djB3MzYTfFEBBRv/XJdFTKIhIrzkHvzoB974JVU3tn//cWHjkYkjRrS0xT6EgIr1S0Qj/sA+ePNn+uZHJ8PNp8L80mBw3FAoi0mMbKsKXiw51MJj8gRz4yVQYrsHkuKJQEJFuawzB1w7Bv3YwmJwagH+fDJ8arcHkeKRQEJFu+VtteGbyxnPtn5udEZ6ZPEODyXFLoSAiUfv1ifD4QWUHg8mfHQvfmASpCf1fl/QdhYKIdKmiET69D37dwWByXhL8bBqszOn/uqTvKRRE5IJeqwhfLjpY1/6567LhiWkwQoPJA4ZCQUQ61BiCrx+Grx2EtleLUgy+Mxk+PUaDyQONQkFE2jlYG163aEMHg8kzM+DJApiZ2f91ifcUCiIS4ckT8Kl9cK6DweR/HAPfuliDyQOZp5POzWylme01s/1m9sUOnh9vZi+Z2RtmttPMrvWyHhHp3LlGuKsEPlrSPhBGJMHaWfDoFAXCQOfZmYKZJQA/AK4ByoCtZrbGOVfcqtuDwNPOucfMbDqwFpjoVU0i0rFNzYPJb3UwmPy+bPjpNMjTYPKg4OWZwmJgv3PuLedcPbAauKFNHwcMaf56KHDMw3pEpI0mB/96EN77RvtASDF49BJ4bpYCYTDxckxhDHCk1eMy4NI2fR4C/mJm/wfIAFZ4WI/IoONceAvM7xyBtUGoZRlp6+G6HLgjD759GF7tYDB5Rjo8OR1maTB50DHnnDdvbHYTsNI594nmx3cClzrn7mvV53PNNXzXzN4D/ASY6ZwLtXmvVcAqgLy8vAWrV6/2pGavVVVVkZmp/2U9pePXPY0Y32Aar5HLeQzX6sKA4XDNX7V1I2V8krdIabeqkf/2Ha739fOzM+o4XZ3q2+fnj+/5KduVV1653Tm3sKt+Xp4pHAXGtXo8trmttXuAlQDOuY1mlgrkAhHzJp1zjwOPAyxcuNAtX77co5K9VVhYSLzWHgvi/fhdde/hfvssBxRfmkP5mDRCie2vErsOwiCprolpW4OcPR7iWx4N7a374fhevf7hfjyGHbl1SSmrN03z7fPX3dW74xcNL8cUtgJTzGySmSUDtwJr2vQ5DFwNYGYFQCrQwRbfItId57KTOw2Ejgwpr2PRX46Te7yDkWYZVDwLBedcI3Af8GeghPBdRnvM7GEzu7652z8Bf29mO4AngY87r65niQwiR/KzCAWinGrsHCk1TaTUxd7lIul/nk5ec86tJXybaeu2r7b6uhhY6mUNIoNRcHQaRBsKZuH+Ing8eU1E/BFK6N6CRN3tLwOXQkFkAAo0de8qbHf7y8ClUBAZgNLPNUTfOeTIOVbrXTESVxQKIgPM8YkZVGWnRN0/EHKM31fpYUUSTxQKIgPIiXHplC7Kjrp/oDFE7tFask77OylMYoeWzhYZIE6NSaPk0pzIXW9CDnMOZxZ5N1LIEQg5co/WUrAl2MFUNhmsFAoiA0BwZCp7luTiWv3gt5Bj+mvlpNY1cTg/i+DoNFyCYU3hMYTxeysZckZnCBJJoSAS586MSGH3Zbm41reVOkfB5iAjmgeQZ24KAv4v0yCxT2MKInHsbE4yu5YOb7ecxbStp8k7UuNTVRLPFAoicercsGR2Xj6CpqTI/8b5208z6mC1T1VJvFMoiMShqqFJ7LhiOE3Jkf+FJxedYcyBKp+qkoFAoSASZ6qzEilaNoLGlMjNkiftOqv5BtJrCgWROFKbEQ6EhtTIQBhfUsGEkg62UBPpJoWCSJyoS0+gaPkI6tMjbxocu+8cF++q0FwD6RMKBZE4cD41QNGyEdRlRAbC6AOVXFJ0VoEgfUahIBLj6lPCgVCblRTRnnewmvztZxQI0qcUCiIxrCHJ2HHFCGqGRm7YPvxINdO2ankK6XsKBZEY1ZgYDoSqYZGBkHO0humbgwS0BYJ4QKEgEoOaEoydlw+nMidyCexhb9cyY2M5AW2nLB5RKIjEmKYA7FqaS8Xw1Ij2oSfrmLWhnAQFgnhIoSASQ0IB2HPZcM6MTItoHxI8z+xXT5GgbTPFYwoFkRgRMii+NJfg6MhAyDxTz+z1J0lsVCCI9xQKIjHAAaWLcjg1Lj2iPb2injnrT5LUoECQ/qFQEPGZA/YuyObExIyI9rTKBua+fJLk8xpEkP6jUBDxkQP2zx3G8cmZEe2p1Y3MLTxJSp0CQfqXQkHEJw54a9ZQyvKzItqTaxqZW3iC1NomfwqTQU2hIOKTQwVDOFwwNKItqa6JuS+fJK1agSD+UCiI+OBwfhZ/m3VRRFvi+XAgZFQ2+lSViEJBpN8dnZzJgbnDItoS6kPMXX+SzIoGn6oSCVMoiPSj4xMz2LcgO6ItoSHEnFdOknVGgSD+UyiI9JMT49IpXRQZCIHGELNePcXQYL1PVYlEUiiI9IM/nIKSS3PA3l3s2pocM18rZ9ip8z5WJhJJoSDiseeD8JFicIFWgRByzNhYTs7bdT5WJtKeQkHEQ+vOwI17IGKVCuco2Bxk+LFa3+oS6YxCQcQjGyrg+l3QdlLytK2nyTtS409RIl1QKIh4YNs5uHYnVLcJhPztpxl1sNqfokSioFAQ6WM7q+B/7YRzbSYlTy46w5gDVf4UJRIlhYJIHyqthmt2wJk2k5K/NhHG76v0pSaR7lAoiPSRA7Vw9Q442WYO2pfGwz9P8Kcmke5SKIj0gSN1cHURHGszB+0zY+DrkyKmJ4jENIWCSC8dPw9X7YBDbeagrRoF/3GJAkHii0JBpBdO1cOKHbC/zZSDO/PgsXwFgsQfhYJID51pCN9lVNxmysHNw+GJqRBQIEgc8jQUzGylme01s/1m9sVO+txiZsVmtsfMfuNlPSJ95VwjrNwJRW3uMP1ADvyqABL165bEqUSv3tjMEoAfANcAZcBWM1vjnCtu1WcK8CVgqXPujJmN8Koekb5S0wTv3wVb2txhes0weHo6JCsQJI55+c93MbDfOfeWc64eWA3c0KbP3wM/cM6dAXDOnfSwHpFeq2uCD+6GVyoi268YCn+cCakJ/tQl0lfMOdd1r568sdlNwErn3CeaH98JXOqcu69Vnz8C+4ClQALwkHPu+Q7eaxWwCiAvL2/B6tWrPanZa1VVVWRmZvpdRtzy+/g1YPwLM9hIbkR7Aef4DjtI58L7Ku877P+eCdkZdZyuTvXt8/PHJ/fq9X4fw3g+fldeeeV259zCrvp5dvkoSonAFGA5MBZYb2aznHNnW3dyzj0OPA6wcOFCt3z58n4us28UFhYSr7XHAj+PX2MIbiuBjaci2+dmwro5QxiWdHmX7/HwvYc9qi56ty4pZfWmab59/rq7xvfq9X4fw3g/ftHw8vLRUWBcq8djm9taKwPWOOcanHN/I3zWMMXDmkS6LeTg7/bCM20CYXo6vDAbhiX5U5eIF7wMha3AFDObZGbJwK3AmjZ9/kj4LAEzywXygbc8rEmkW5yDT+2DX52IbJ+SBn+dA7m9uxoiEnM8CwXnXCNwH/BnoAR42jm3x8weNrPrm7v9GQiaWTHwEvCAcy7oVU0i3eEcfHY//Ph4ZPuEFHhxDoxK8acuES95OqbgnFsLrG3T9tVWXzvgc81/RGKGc/Dlv8H32lzwHJ0M6+bCOP/GGkU8pTuqRTrw9UPwzTZjmiOSwmcIF6f5U5NIf1AoiLTx3SPwlYORbdmJ8MIcmJbhS0ki/UahINLKD4/C5w9Etg1JgL/MgdmaYiKDgEJBpNlPj8On34xsywjA/8yGBVn+1CTS3xQKIsCTJ+CevZFtqQH40yy4bKg/NYn4QaEgg94fTsGdJdB6wZckgz/MgCuH+VaWiC+6FQpmltG8+qnIgPB8ED5STMSqRQmEVztdmeNXVSL+uWAomFnAzD5qZs+Z2UmgFDjevP/Bt83skv4pU6TvvXQGbtwDDa1OEYzwfggfHO5bWSK+6upM4SVgMuE9D0Y658Y550YA7wU2Ad8yszs8rlGkz22ogA/sgrpQZPsTU+HWPH9qEokFXc1oXuGca2jb6Jw7DfwO+J2ZaTkwiSvbzsG1O6G6TSD8cAp8fJQ/NYnEigueKbwTCGa2ou1zZvax1n1E4sHOqvC+yufabH3w3cnwD2P8qUkklkQ70PxVM3useaA5z8z+BHzAy8JE+lppNVyzA840RrZ/bSJ8blyHLxEZdKINhWXAAaAIeBX4jXPuJs+qEuljB2rh6h1wss157ZfGwz9P8KcmkVgUbSgMI7zn8gHgPDDBzMyzqkT60JE6uLoIjrXZyfEzY+Drk0D/kkXeFW0obAKed86tBBYBo4ENnlUl0keOn4erdsCh85Htq0bBf1yiQBBpK9r9FFY45w4DOOdqgX80syu8K0uk907Vw4odsL82sv3OPHgsX4Eg0pGuJq9NBHgnEFpzzq23sLHelCbSc2cawncZFddEtt88PDwXIaBAEOlQV2cK3zazAPAssB04BaQClwBXAlcD/wKUeVmkSHeca4SVO6GoKrL9Aznh2cqJWvFLpFMXDAXn3M1mNh24HbgbGAnUEt5zeS3wdedcnedVikSppgnevwu2VEa2XzMsvJ5RsgJB5IK6HFNwzhWb2b8C9xJe3sIBW4FnFAiDy1X3truK2K9uXVLPwxeooSkAu947nDMjI/fLHHqyjvO/O8W1Ta6TV0Zn3Q/H9+r1IvEg2oHmnwPngO81P/4o8AvgFi+KEumuUAD2XNY+EIYEzzP71VMk9DIQRAaLaENhpnNueqvHL5lZsRcFiXRXyKD40lyCoyMDIfNMPbPXnySxUYEgEq1or7C+bmZL3nlgZpcC27wpSSR6DihdlMOpcekR7ekV9cx5+SRJDQoEke6I9kxhAfCamb1zQXc8sNfMdgHOOTfbk+pELsABexdkc2JiRkR7WmUDc18+SXJ9qOMXikinog2FlZ5WIdJNDtg/dxjHJ2dGtKdWNzK38CQpbTdKEJGoRBUKzrlDXhciEi0HvDVrKGX5WRHtyTWNzC08QWptU8cvFJEuRXumINLvHHAuO5kjU4cQHJXKSwnjCIx2pFY1UnNRckTfpLom5r58krRqBYJIbygUJCaFDEoW51A+Jo1QwFrWpQglWrtASDwfDoSMysaO3kpEukGhIDHH0SoQulqToskxZ/1JMiu0AaBIX9Ckf4k557KTowsEIIDTcqcifUihIDHnSH5W+JJRFEJmHG4z4CwiPadQkJgTHJ0W/drWAWs3k1lEek6hIDEnlNC9y0Hd7S8inVMoSMwJdHPxuu72F5HOKRQk5uQcqwUX5Q/6kAv3F5E+oVCQmJNR0RD1HUWBkGP8vsquO4pIVBQKElMqL0riUMGQqPoGGkPkHq0l63S9x1WJDB6avCYxoz4lwK6lw3Gt5yc4F57N1vpupJAjEHLkHq2lYEsQDTOL9B2FgsSEUAB2X5bL+YzIf5ITis9Rk5VIcHQaLsGwpvAYwvi9lQw5ozMEkb6mUJCY8ObcYVQMT41oG7vvHBfvqWh5fOuSUlZvmtbfpYkMKhpTEN8duziDY5dEzkq+6EQdk3ec9akikcFLoSC+OpuTzL552RFtqVWNzNhkUqYdAAAQJklEQVRYTkDTD0T6naehYGYrzWyvme03sy9eoN+HzcyZ2UIv65HYUpeWwJ7LhuNazUgONIaYteGUttIU8YlnoWBmCcAPgPcB04HbzGx6B/2ygM8Am72qRWJPU4Kxe2ku9WkJEe0FW4JaBlvER16eKSwG9jvn3nLO1QOrgRs66Pc14FtAnYe1SAxxwN4F2VRmp0S0TyiuYESZZieL+MnLUBgDHGn1uKy5rYWZzQfGOeee87AOiTFH8rM4MTEjoi3naA2Tdld08goR6S++3ZJqZgHg34GPR9F3FbAKIC8vj8LCQk9r80pVVVXc1g5w65LezwsoTs2mcPi4iLZRDVV8IbSZtCUX3l85O6OOW5eU9rqGniosfKtXr++L49dbOoa9E+/HLxrmol14rLtvbPYe4CHn3P9ufvwlAOfcN5ofDwUOAFXNLxkJnAaud85t6+x9Fy5c6LZt6/TpmFZYWMjy5cv9LqPHrrr3cK9eX5uRyLYVeTSmvDuOkFgfYsFf3ya9quv9lf2ep7Duh+N79freHr++oGPYO/F8/Mxsu3Ouy5t5vLx8tBWYYmaTzCwZuBVY886TzrkK51yuc26ic24isIkuAkHiV2Oiseu9uRGBgHNM31QeVSCISP/wLBScc43AfcCfgRLgaefcHjN72Myu9+pzJfY4oGRxDtVDkyPaL955lpy3dX+BSCzxdEzBObcWWNum7aud9F3uZS3in4PTh1A+Nj2ibcShasbv1ZLXIrFGM5rFU6dGp3Fw5kURbZln6pm27bRWNxWJQQoF8Uz1kCRKLs2JaEuqa2LWhlMkaAtNkZikUBBPNCQH2LU0l6akd/+JWcgx87VyUmsufOupiPhHoSB9LmSwZ0kOtVlJEe1T3jjDReXnfapKRKKhUJA+99bsizgzMi2ibdSBKkYfqOrkFSISKxQK0qfeHp/OkamReywPPVVH/hsaWBaJBwoF6TPnhiWzd1HkwHJKTfPeCFoJWyQuKBSkT5xPDbB7aS6h1nsjNDlmbignpU6JIBIvFArSa6EA7HlPLufTI+dCTt0WZMgZ/xeBE5HoKRSk196cN4yK4akRbeP2nmPkoRqfKhKRnlIoSK8cnZzJsclZEW3D3q7l4p1nfapIRHpDoSA9djY3hTfnDYtoS61qYMamIAFNWBaJSwoF6ZG69AR2X5aLC7w7sJzQEGLWq+Uk1WtgWSReKRSk25oSjF1Lh9OQmhDRXrAlSOa5Bp+qEpG+oFCQbnFA6cJsqoZF7o0wcU8Fw4/W+lOUiPQZhYJ0y5GpWZyckBHRlltWw8Q9FT5VJCJ9SaEgUQuOTOXA7Mi9ETIq6inYEtQSFiIDhEJBorKvBoqX5IK9++M/8XwTs14tJ7FRtxqJDBQKBenSuUb44G5oTG71zyXkmLEpSFp1o3+FiUifUyjIBYUc3FECJW0mJ0/eeZbsE3X+FCUinlEoyAU9dBD+FIxsyztYzbh9lb7UIyLeUihIp353Cr52KLIt6/R5pm7X3ggiA5VCQTq0swo+VhLZllzbxMwN5SQ0aWBZZKBSKEg7wYbwwHJ1q9UqkgxmvHaK1Nom/woTEc8pFCRCYwhu2QN/azOG/P0pcFFQeyOIDHQKBYnwwFuwrs2q1/8wGlaN9qceEelfCgVp8fO34T/LItsuHwr/eYk/9YhI/1MoCACbz8En90a2jUuBZ2ZAsv6ViAwa+u8uHD8PH9oN51vdVJQWgD/OhBHJnb9ORAYehcIgdz4EH9oDx9qMIf9kKszP6vg1IjJwKRQGMefg0/tg07nI9v87Dm7L86cmEfGXQmEQ+8FR+MnbkW0rs+GRi/2pR0T8p1AYpArPwGf3R7ZNSYPfFECC1rAQGbQUCoPQwVq4aQ+0npuclQDPzoRhSb6VJSIxQKEwyFQ3hZewCLbZBuFXBVCQ0fFrRGTwUCgMIs7B3aWwozqy/WsT4fpcX0oSkRijUBhEvnkYnj4V2fbhXPjnCf7UIyKxR6EwSDwXhH/+W2TbrAz42bSIbZdFZJBTKAwCpdXw0WJovQtCdmJ4YDkz0beyRCQGKRQGuLMNcMNuONfqVqME4OkZMCnNt7JEJEYpFAawJge3l8C+2sj2714CVw/zpyYRiW0KhQHsK3+Dtacj2z6WB/84xp96RCT2KRQGqKdOwjcOR7YtzoIf5WtgWUQ652komNlKM9trZvvN7IsdPP85Mys2s51m9qKZ6ebIPlBUCX9XGtk2Mhn+MBNSE/ypSUTig2ehYGYJwA+A9wHTgdvMbHqbbm8AC51zs4FngH/zqp7B4lR9eMZybejdtmSD38+A0Sn+1SUi8cHLM4XFwH7n3FvOuXpgNXBD6w7OuZecczXNDzcBYz2sZ8BrCMHNe+DQ+cj2x/LhPUP9qUlE4ouXoTAGONLqcVlzW2fuAf7Hw3oGvM8dgJcrItvuGwN3j/KnHhGJP+ac67pXT97Y7CZgpXPuE82P7wQudc7d10HfO4D7gGXOufMdPL8KWAWQl5e3YPXq1Z7U7LWqqioyMzM9ee/nGMl3mBbRNpczfJudJNI33+N9h+u77uSh7Iw6Tlen+vb5+eN7tzep38cPdAx7K56P35VXXrndObewq35ehsJ7gIecc/+7+fGXAJxz32jTbwXw/xIOhJNdve/ChQvdtm3bPKjYe4WFhSxfvrzP33djBSwrgoZW38oJKbBtAeT24R7LV917uOtOHrp1SSmrN03ruqNH1v1wfK9e7/fxAx3D3orn42dmUYWCl5ePtgJTzGySmSUDtwJrWncws3nA/wdcH00gSHtHz4f3WG4dCOkB+OPMvg0EERkcPAsF51wj4UtCfwZKgKedc3vM7GEzu76527eBTOC3ZlZkZms6eTvpQF0T3Lgb3m5zRv3TaTA3y5+aRCS+ebocmnNuLbC2TdtXW329wsvPH8icg0/tg62Vke1fGg+3jPCnJhGJf5rRHKe+dxR+fiKy7bps+Nokf+oRkYFBoRCHXjwD/7Q/sm1qGvx6OiRoCQsR6QWFQpx5qxZu2QOtVsJmSAI8OwuGam8EEeklhUIcqWoM741wuvHdNgOenA5T030rS0QGEIVCnHAOPl4Ku6sj278+Ca7N8acmERl4FApx4uuH4HflkW0fGQ5f7N1cIBGRCAqFOLCmHL5yMLJtTgb8ZJr2RhCRvqVQiHHF1XBHSWRbblJ4xnKG9kYQkT6mUIhhZxrCA8uVrW41SgB+Ox0mpvlWlogMYAqFGNXk4KMlsL82sv3RKbB8mD81icjAp1CIUV9+C54/Hdl2z0i4d7Q/9YjI4DCopjv5v+xuPQ9HUcOJ8ekUL8mNaBtSfp79z5zg6lAnL4pCb5ctFpGBT2cKMaZyWBKlC7Mj2pJrGpn52ikCvQgEEZFoKBRiSH1KgF2XDSeU+O63JdDkmPVaOSl1SgQR8Z5CIUaEArD7slzOZ0Re0Zu67TRDTvu/jaOIDA4KhRjx5txhVAyP3Pt17L5zjDxU3ckrRET6nkIhBhy7OINjl0RulTbsRB2Td5z1qSIRGawUCj47m5vCvnmRA8upVY3M2FhOwHXyIhERjygUfFSXlsDuy3JxrXbGSWgIMWvDKZLqNbAsIv1PoeCTpgRj99JcGlIjFzCatiVIZkWDT1WJyGCnUPCBA/YuyKYyOyWifcKeCkYcre34RSIi/WBQzWjubw44l53MkalDCI5K5aWEcQRGO9IqG6kelhzRN/doDZP2VPhTqIhIM4WCR0IGJYtzKB+TRihgEAiPG4QSjeqLkiL6plc0ULA5iLZGEBG/KRQ84GgVCIkdXKFrtTOONTlmbjhFYqNuNRIR/2lMwQPnspM7D4R2HE3J+jaISGzQTyMPHMnPCl8yioIz43B+VtcdRUT6gULBA8HRaS1jCF0KWLi/iEgMUCh4IJTQvSHj7vYXEfGKQsEDgabuDRp3t7+IiFcUCh7IOVYLoSh/0IdcuL+ISAxQKHhg3L5KAlGGQiDkGL+v0uOKRESio1DwwJDT9eQerSXQeOFF7QKNIXKP1pKlTXREJEYoFDxgQMGW4LvB0PasIeRaAqFgi2Yyi0js0IxmjwQcTN8cpDI7mcP5WQRHp+ESDGsKjyGM31vJkDM6QxCR2KJQ8JARvpQ0c1MQgFuXlLJ60zR/ixIRuQBdPhIRkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRYKBRERaeFpKJjZSjPba2b7zeyLHTyfYmZPNT+/2cwmelmPiIhcmGehYGYJwA+A9wHTgdvMbHqbbvcAZ5xzlwD/AXzLq3pERKRrXp4pLAb2O+fecs7VA6uBG9r0uQH4efPXzwBXm5nWhxMR8YmXoTAGONLqcVlzW4d9nHONQAWQ42FNIiJyAeacN1tBmtlNwErn3CeaH98JXOqcu69Vn93NfcqaHx9o7lPe5r1WAauaH04F9npStPdygfIue0lndPx6T8ewd+L5+E1wzg3vqpOXq6QeBca1ejy2ua2jPmVmlggMBYJt38g59zjwuEd19hsz2+acW+h3HfFKx6/3dAx7ZzAcPy8vH20FppjZJDNLBm4F1rTpswb4WPPXNwHrnFenLiIi0iXPzhScc41mdh/wZyABeMI5t8fMHga2OefWAD8Bfmlm+4HThINDRER84ukmO865tcDaNm1fbfV1HXCzlzXEmLi/BOYzHb/e0zHsnQF//DwbaBYRkfijZS5ERKSFQqGfdLXkh3TOzJ4ws5PNtzBLN5nZODN7ycyKzWyPmX3G75riiZmlmtkWM9vRfPz+H79r8pIuH/WD5iU/9gHXEJ7EtxW4zTlX7GthccLMrgCqgF8452b6XU+8MbNRwCjn3OtmlgVsBz6of3/RaV5lIcM5V2VmScCrwGecc5t8Ls0TOlPoH9Es+SGdcM6tJ3x3mvSAc+64c+715q8rgRLary4gnXBhVc0Pk5r/DNjfphUK/SOaJT9EPNe8EvE8YLO/lcQXM0swsyLgJPCCc27AHj+FgsggYWaZwO+AzzrnzvldTzxxzjU55+YSXplhsZkN2MuYCoX+Ec2SHyKeab4W/jvg18653/tdT7xyzp0FXgJW+l2LVxQK/SOaJT9EPNE8UPoToMQ59+9+1xNvzGy4mV3U/HUa4RtGSv2tyjsKhX7QvCz4O0t+lABPO+f2+FtV/DCzJ4GNwFQzKzOze/yuKc4sBe4ErjKzouY/1/pdVBwZBbxkZjsJ/4L3gnPuv32uyTO6JVVERFroTEFERFooFEREpIVCQUREWigURESkhUJBRERaKBRERKSFQkFERFooFER6ycwWmdnO5nX3M5rX3B+wa+PIwKbJayJ9wMz+FUgF0oAy59w3fC5JpEcUCiJ9oHlNq61AHXCZc67J55JEekSXj0T6Rg6QCWQRPmMQiUs6UxDpA2a2hvCOepMIb315n88lifRIot8FiMQ7M7sLaHDO/aZ5P+7XzOwq59w6v2sT6S6dKYiISAuNKYiISAuFgoiItFAoiIhIC4WCiIi0UCiIiEgLhYKIiLRQKIiISAuFgoiItPj/ARKCaDJ0fB3qAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot progress w.r.t the generator's and the discriminator's loss function\n", + "t_steps = np.arange(num_epochs)\n", + "plt.figure(figsize=(6,5))\n", + "plt.title(\"Progress in the loss function\")\n", + "plt.plot(t_steps, qgan.g_loss, label = \"Generator loss function\", color = 'mediumvioletred', linewidth = 2)\n", + "plt.plot(t_steps, qgan.d_loss, label = \"Discriminator loss function\", color = 'rebeccapurple', linewidth = 2)\n", + "plt.grid()\n", + "plt.legend(loc = 'best')\n", + "plt.xlabel('time steps')\n", + "plt.ylabel('loss')\n", + "plt.show()\n", + "\n", + "\n", + "# Plot progress w.r.t relative entropy\n", + "plt.figure(figsize=(6,5))\n", + "plt.title(\"Relative Entropy \")\n", + "plt.plot(np.linspace(0, num_epochs, len(qgan.rel_entr)), qgan.rel_entr, color ='mediumblue', lw=4, ls=':')\n", + "plt.grid()\n", + "plt.xlabel('time steps')\n", + "plt.ylabel('relative entropy')\n", + "plt.show()\n", + "\n", + "#Plot the PDF of the resulting distribution against the target distribution, i.e. log-normal\n", + "log_normal = np.random.lognormal(mean=1, sigma=1, size=100000)\n", + "log_normal = np.round(log_normal)\n", + "log_normal = log_normal[log_normal <= bounds[1]]\n", + "temp = []\n", + "for i in range(int(bounds[1]+1)):\n", + " temp += [np.sum(log_normal==i)]\n", + "log_normal = np.array(temp / sum(temp))\n", + "\n", + "plt.figure(figsize=(6,5))\n", + "plt.title(\"CDF\")\n", + "samples_g, prob_g = qgan.generator.get_samples(qgan.quantum_instance, shots=10000)\n", + "samples_g = np.array(samples_g)\n", + "samples_g = samples_g.flatten()\n", + "num_bins = len(prob_g)\n", + "plt.bar(samples_g, np.cumsum(prob_g), color='royalblue', width= 0.8, label='simulation')\n", + "plt.plot( np.cumsum(log_normal),'-o', label='log-normal', color='deepskyblue', linewidth=4, markersize=12)\n", + "plt.xticks(np.arange(min(samples_g), max(samples_g)+1, 1.0))\n", + "plt.grid()\n", + "plt.xlabel('x')\n", + "plt.ylabel('p(x)')\n", + "plt.legend(loc='best')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "QiskitDevenv", + "language": "python", + "name": "qiskitdevenv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb index f9c3abb7b..8288dcfb8 100644 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb +++ b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb @@ -27,7 +27,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -59,7 +59,7 @@ "\n", "from qiskit.aqua import aqua_globals, QuantumInstance\n", "\n", - "from qiskit import Aer" + "from qiskit import BasicAer" ] }, { @@ -73,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -120,7 +120,7 @@ "qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)\n", "\n", "# Set quantum instance to run the quantum generator\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "qgan.set_quantum_instance(QuantumInstance(backend=backend, shots=batch_size, coupling_map=None, circuit_caching=False))\n", "\n", "\n", @@ -134,7 +134,7 @@ "# Set an initial state for the generator circuit\n", "init_dist = UniformDistribution(np.sum(num_qubits), low=bounds[0], high=bounds[1])\n", "# Set generator circuit\n", - "g_circuit = UnivariateVariationalDistribution(np.sum(num_qubits), var_form, init_params,\n", + "g_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, init_params,\n", " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", "# Set generator optimizer\n", "g_optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-5, beta_1=0.9, beta_2=0.99, noise_factor=1e-6,\n", @@ -165,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -173,353 +173,353 @@ "output_type": "stream", "text": [ "Epoch 1/3000...\n", - "Loss Discriminator: 0.6973\n", - "Loss Generator: 0.6708\n", - "Relative Entropy: 0.1718\n", + "Loss Discriminator: 0.6977\n", + "Loss Generator: 0.6754\n", + "Relative Entropy: 0.1783\n", "Epoch 2/3000...\n", - "Loss Discriminator: 0.6962\n", - "Loss Generator: 0.679\n", - "Relative Entropy: 0.1719\n", + "Loss Discriminator: 0.6964\n", + "Loss Generator: 0.6806\n", + "Relative Entropy: 0.1783\n", "Epoch 3/3000...\n", "Loss Discriminator: 0.6948\n", - "Loss Generator: 0.6824\n", - "Relative Entropy: 0.172\n", + "Loss Generator: 0.6832\n", + "Relative Entropy: 0.1784\n", "Epoch 4/3000...\n", - "Loss Discriminator: 0.6934\n", - "Loss Generator: 0.6843\n", - "Relative Entropy: 0.172\n", + "Loss Discriminator: 0.6935\n", + "Loss Generator: 0.6851\n", + "Relative Entropy: 0.1784\n", "Epoch 5/3000...\n", - "Loss Discriminator: 0.692\n", - "Loss Generator: 0.6861\n", - "Relative Entropy: 0.1719\n", + "Loss Discriminator: 0.6923\n", + "Loss Generator: 0.687\n", + "Relative Entropy: 0.1784\n", "Epoch 6/3000...\n", - "Loss Discriminator: 0.6909\n", - "Loss Generator: 0.6863\n", - "Relative Entropy: 0.1719\n", + "Loss Discriminator: 0.6912\n", + "Loss Generator: 0.6864\n", + "Relative Entropy: 0.1783\n", "Epoch 7/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.6854\n", - "Relative Entropy: 0.1718\n", + "Loss Discriminator: 0.6901\n", + "Loss Generator: 0.6865\n", + "Relative Entropy: 0.1783\n", "Epoch 8/3000...\n", "Loss Discriminator: 0.689\n", - "Loss Generator: 0.6867\n", - "Relative Entropy: 0.1718\n", + "Loss Generator: 0.6879\n", + "Relative Entropy: 0.1782\n", "Epoch 9/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6898\n", - "Relative Entropy: 0.1717\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6894\n", + "Relative Entropy: 0.1781\n", "Epoch 10/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6905\n", - "Relative Entropy: 0.1717\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.6924\n", + "Relative Entropy: 0.1781\n", "Epoch 11/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.6892\n", - "Relative Entropy: 0.1716\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.6923\n", + "Relative Entropy: 0.178\n", "Epoch 12/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.6938\n", - "Relative Entropy: 0.1715\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.6922\n", + "Relative Entropy: 0.1779\n", "Epoch 13/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.6957\n", - "Relative Entropy: 0.1715\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.6939\n", + "Relative Entropy: 0.1779\n", "Epoch 14/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.6967\n", - "Relative Entropy: 0.1714\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.6968\n", + "Relative Entropy: 0.1778\n", "Epoch 15/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.6958\n", - "Relative Entropy: 0.1713\n", - "Epoch 16/3000...\n", - "Loss Discriminator: 0.6824\n", + "Loss Discriminator: 0.6825\n", "Loss Generator: 0.7001\n", - "Relative Entropy: 0.1713\n", + "Relative Entropy: 0.1777\n", + "Epoch 16/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.1777\n", "Epoch 17/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.1712\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.1776\n", "Epoch 18/3000...\n", "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.1711\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.1775\n", "Epoch 19/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.171\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.1775\n", "Epoch 20/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.171\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.1774\n", "Epoch 21/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.1709\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.1773\n", "Epoch 22/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.1708\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.1772\n", "Epoch 23/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.1708\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.1772\n", "Epoch 24/3000...\n", - "Loss Discriminator: 0.6784\n", + "Loss Discriminator: 0.6775\n", "Loss Generator: 0.7097\n", - "Relative Entropy: 0.1707\n", + "Relative Entropy: 0.1771\n", "Epoch 25/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.1706\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.177\n", "Epoch 26/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1706\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.177\n", "Epoch 27/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.1705\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.1769\n", "Epoch 28/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.1704\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.1768\n", "Epoch 29/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1704\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1768\n", "Epoch 30/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1703\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1767\n", "Epoch 31/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1702\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1766\n", "Epoch 32/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1701\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1765\n", "Epoch 33/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1701\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1765\n", "Epoch 34/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.17\n", - "Epoch 35/3000...\n", "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1699\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1764\n", + "Epoch 35/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1763\n", "Epoch 36/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1699\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1763\n", "Epoch 37/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1698\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1762\n", "Epoch 38/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1697\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1761\n", "Epoch 39/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1697\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1761\n", "Epoch 40/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1696\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.176\n", "Epoch 41/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1695\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1759\n", "Epoch 42/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1695\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1759\n", "Epoch 43/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1694\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1758\n", "Epoch 44/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1693\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1757\n", "Epoch 45/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1692\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1756\n", "Epoch 46/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1692\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1756\n", "Epoch 47/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1691\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1755\n", "Epoch 48/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.169\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1754\n", "Epoch 49/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.169\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1754\n", "Epoch 50/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1689\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1753\n", "Epoch 51/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1688\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1752\n", "Epoch 52/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1688\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1752\n", "Epoch 53/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1687\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1751\n", "Epoch 54/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1686\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.175\n", "Epoch 55/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1686\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.175\n", "Epoch 56/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1685\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1749\n", "Epoch 57/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1684\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1748\n", "Epoch 58/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1683\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1747\n", "Epoch 59/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1683\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1747\n", "Epoch 60/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1682\n", - "Epoch 61/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1681\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1746\n", + "Epoch 61/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1745\n", "Epoch 62/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1681\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1745\n", "Epoch 63/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.168\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1744\n", "Epoch 64/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1679\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1743\n", "Epoch 65/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1679\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1743\n", "Epoch 66/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1678\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1742\n", "Epoch 67/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1677\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1741\n", "Epoch 68/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1677\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1741\n", "Epoch 69/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1676\n", - "Epoch 70/3000...\n", - "Loss Discriminator: 0.6685\n", + "Loss Discriminator: 0.6708\n", "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1675\n", + "Relative Entropy: 0.174\n", + "Epoch 70/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1739\n", "Epoch 71/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1675\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1739\n", "Epoch 72/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1674\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1738\n", "Epoch 73/3000...\n", - "Loss Discriminator: 0.6678\n", + "Loss Discriminator: 0.6692\n", "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1673\n", + "Relative Entropy: 0.1737\n", "Epoch 74/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1673\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1736\n", "Epoch 75/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1672\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1736\n", "Epoch 76/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1671\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1735\n", "Epoch 77/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.167\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1734\n", "Epoch 78/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.167\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1734\n", "Epoch 79/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1669\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1733\n", "Epoch 80/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1668\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.1732\n", "Epoch 81/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1668\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1732\n", "Epoch 82/3000...\n", "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1667\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1731\n", "Epoch 83/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1666\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.173\n", "Epoch 84/3000...\n", - "Loss Discriminator: 0.668\n", + "Loss Discriminator: 0.6695\n", "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1666\n", + "Relative Entropy: 0.173\n", "Epoch 85/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1665\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1729\n", "Epoch 86/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1664\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1728\n", "Epoch 87/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7385\n", - "Relative Entropy: 0.1664\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7375\n", + "Relative Entropy: 0.1728\n", "Epoch 88/3000...\n" ] }, @@ -527,349 +527,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6687\n", + "Loss Discriminator: 0.6708\n", "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1663\n", + "Relative Entropy: 0.1727\n", "Epoch 89/3000...\n", "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1662\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1726\n", "Epoch 90/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1662\n", + "Loss Discriminator: 0.6652\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1726\n", "Epoch 91/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1661\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.1725\n", "Epoch 92/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.166\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1724\n", "Epoch 93/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.166\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1723\n", "Epoch 94/3000...\n", - "Loss Discriminator: 0.6664\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1659\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1723\n", "Epoch 95/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1658\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1722\n", "Epoch 96/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1658\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1721\n", "Epoch 97/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1657\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1721\n", "Epoch 98/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1656\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.172\n", "Epoch 99/3000...\n", - "Loss Discriminator: 0.6674\n", + "Loss Discriminator: 0.6669\n", "Loss Generator: 0.736\n", - "Relative Entropy: 0.1655\n", + "Relative Entropy: 0.1719\n", "Epoch 100/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1655\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1719\n", "Epoch 101/3000...\n", - "Loss Discriminator: 0.666\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1654\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1718\n", "Epoch 102/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1653\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1717\n", "Epoch 103/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1653\n", + "Loss Discriminator: 0.6651\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1717\n", "Epoch 104/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1652\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.1716\n", "Epoch 105/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1651\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1715\n", "Epoch 106/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1651\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1715\n", "Epoch 107/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.165\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1714\n", "Epoch 108/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1649\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1713\n", "Epoch 109/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1649\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1713\n", "Epoch 110/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1648\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1712\n", "Epoch 111/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1647\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1711\n", "Epoch 112/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1647\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1711\n", "Epoch 113/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1646\n", - "Epoch 114/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1645\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.171\n", + "Epoch 114/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1709\n", "Epoch 115/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1645\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1708\n", "Epoch 116/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1644\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1708\n", "Epoch 117/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1643\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1707\n", "Epoch 118/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7387\n", - "Relative Entropy: 0.1643\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1706\n", "Epoch 119/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1642\n", - "Epoch 120/3000...\n", "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1641\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1706\n", + "Epoch 120/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1705\n", "Epoch 121/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1641\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1704\n", "Epoch 122/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7381\n", - "Relative Entropy: 0.164\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1704\n", "Epoch 123/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1639\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1703\n", "Epoch 124/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1639\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1702\n", "Epoch 125/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1638\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1702\n", "Epoch 126/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1637\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1701\n", "Epoch 127/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1637\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.17\n", "Epoch 128/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1636\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.17\n", "Epoch 129/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1635\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1699\n", "Epoch 130/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1635\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1698\n", "Epoch 131/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1634\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1698\n", "Epoch 132/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1633\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1697\n", "Epoch 133/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1632\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1696\n", "Epoch 134/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1632\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1696\n", "Epoch 135/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1631\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1695\n", "Epoch 136/3000...\n", "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.163\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1694\n", "Epoch 137/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.163\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1694\n", "Epoch 138/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1629\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1693\n", "Epoch 139/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1628\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1692\n", "Epoch 140/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1628\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1692\n", "Epoch 141/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1627\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1691\n", "Epoch 142/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1626\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.169\n", "Epoch 143/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1626\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.169\n", "Epoch 144/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1625\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1689\n", "Epoch 145/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1624\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1688\n", "Epoch 146/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1624\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1688\n", "Epoch 147/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1623\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1687\n", "Epoch 148/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1622\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1686\n", "Epoch 149/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1622\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1686\n", "Epoch 150/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1621\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1685\n", "Epoch 151/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.162\n", + "Loss Discriminator: 0.6664\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1684\n", "Epoch 152/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.162\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1684\n", "Epoch 153/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1619\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1683\n", "Epoch 154/3000...\n", "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1618\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1682\n", "Epoch 155/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1618\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1681\n", "Epoch 156/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1617\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1681\n", "Epoch 157/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1616\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.168\n", "Epoch 158/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1616\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1679\n", "Epoch 159/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1615\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1679\n", "Epoch 160/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1614\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1678\n", "Epoch 161/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1614\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1677\n", "Epoch 162/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1613\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1677\n", "Epoch 163/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1612\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1676\n", "Epoch 164/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1612\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1675\n", "Epoch 165/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1611\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1675\n", "Epoch 166/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.161\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1674\n", "Epoch 167/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.161\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1673\n", "Epoch 168/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1609\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1673\n", "Epoch 169/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1608\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1672\n", "Epoch 170/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1608\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1671\n", "Epoch 171/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1607\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1671\n", "Epoch 172/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1606\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.167\n", "Epoch 173/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7375\n", - "Relative Entropy: 0.1606\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1669\n", "Epoch 174/3000...\n" ] }, @@ -877,349 +877,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1605\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1669\n", "Epoch 175/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1604\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1668\n", "Epoch 176/3000...\n", - "Loss Discriminator: 0.6707\n", + "Loss Discriminator: 0.6709\n", "Loss Generator: 0.734\n", - "Relative Entropy: 0.1604\n", + "Relative Entropy: 0.1667\n", "Epoch 177/3000...\n", - "Loss Discriminator: 0.6708\n", + "Loss Discriminator: 0.6686\n", "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1603\n", + "Relative Entropy: 0.1667\n", "Epoch 178/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1602\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1666\n", "Epoch 179/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1602\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1665\n", "Epoch 180/3000...\n", - "Loss Discriminator: 0.6695\n", + "Loss Discriminator: 0.6706\n", "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1601\n", + "Relative Entropy: 0.1665\n", "Epoch 181/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.16\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7375\n", + "Relative Entropy: 0.1664\n", "Epoch 182/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.16\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1663\n", "Epoch 183/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1599\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1663\n", "Epoch 184/3000...\n", "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1598\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1662\n", "Epoch 185/3000...\n", - "Loss Discriminator: 0.6696\n", + "Loss Discriminator: 0.6689\n", "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1598\n", + "Relative Entropy: 0.1661\n", "Epoch 186/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1597\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1661\n", "Epoch 187/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1596\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.166\n", "Epoch 188/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1596\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1659\n", "Epoch 189/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1595\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1659\n", "Epoch 190/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1594\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1658\n", "Epoch 191/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1594\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1657\n", "Epoch 192/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1593\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1657\n", "Epoch 193/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1592\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1656\n", "Epoch 194/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1592\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1655\n", "Epoch 195/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1591\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1655\n", "Epoch 196/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.159\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1654\n", "Epoch 197/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.159\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1653\n", "Epoch 198/3000...\n", "Loss Discriminator: 0.6696\n", "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1589\n", + "Relative Entropy: 0.1653\n", "Epoch 199/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1588\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1652\n", "Epoch 200/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1588\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1651\n", "Epoch 201/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1587\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1651\n", "Epoch 202/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1587\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.165\n", "Epoch 203/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1586\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.165\n", "Epoch 204/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1585\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1649\n", "Epoch 205/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1585\n", - "Epoch 206/3000...\n", "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1584\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1648\n", + "Epoch 206/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1648\n", "Epoch 207/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7375\n", - "Relative Entropy: 0.1583\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1647\n", "Epoch 208/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1583\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1646\n", "Epoch 209/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1582\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1646\n", "Epoch 210/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1581\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1645\n", "Epoch 211/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1581\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1644\n", "Epoch 212/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.158\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1644\n", "Epoch 213/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1579\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1643\n", "Epoch 214/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1579\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1642\n", "Epoch 215/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1578\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1642\n", "Epoch 216/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1577\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1641\n", "Epoch 217/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1577\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.164\n", "Epoch 218/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1576\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.164\n", "Epoch 219/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1575\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1639\n", "Epoch 220/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1575\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1638\n", "Epoch 221/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1574\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1638\n", "Epoch 222/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1573\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1637\n", "Epoch 223/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1573\n", - "Epoch 224/3000...\n", "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1572\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1636\n", + "Epoch 224/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1636\n", "Epoch 225/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1571\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1635\n", "Epoch 226/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1571\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1634\n", "Epoch 227/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.157\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1634\n", "Epoch 228/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1569\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1633\n", "Epoch 229/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1569\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1632\n", "Epoch 230/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1568\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1632\n", "Epoch 231/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1567\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1631\n", "Epoch 232/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1567\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.163\n", "Epoch 233/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1566\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.163\n", "Epoch 234/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1565\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1629\n", "Epoch 235/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1565\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1628\n", "Epoch 236/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1564\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1628\n", "Epoch 237/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1564\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1627\n", "Epoch 238/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1563\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1626\n", "Epoch 239/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1562\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1626\n", "Epoch 240/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1562\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1625\n", "Epoch 241/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1561\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1624\n", "Epoch 242/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.156\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1624\n", "Epoch 243/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.156\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1623\n", "Epoch 244/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1559\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1623\n", "Epoch 245/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1558\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1622\n", "Epoch 246/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1558\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1621\n", "Epoch 247/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1557\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1621\n", "Epoch 248/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1556\n", - "Epoch 249/3000...\n", "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1556\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.162\n", + "Epoch 249/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1619\n", "Epoch 250/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1555\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1619\n", "Epoch 251/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1554\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1618\n", "Epoch 252/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1554\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1617\n", "Epoch 253/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1553\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1617\n", "Epoch 254/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1552\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1616\n", "Epoch 255/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1552\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1615\n", "Epoch 256/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1551\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1615\n", "Epoch 257/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1551\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1614\n", "Epoch 258/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.155\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1613\n", "Epoch 259/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1549\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1613\n", "Epoch 260/3000...\n" ] }, @@ -1227,349 +1227,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1549\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1612\n", "Epoch 261/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1548\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1611\n", "Epoch 262/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1547\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1611\n", "Epoch 263/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1547\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.161\n", "Epoch 264/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1546\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1609\n", "Epoch 265/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1545\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1609\n", "Epoch 266/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1545\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1608\n", "Epoch 267/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1544\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1608\n", "Epoch 268/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1543\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1607\n", "Epoch 269/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1543\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1606\n", "Epoch 270/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1542\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1606\n", "Epoch 271/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1541\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1605\n", "Epoch 272/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1541\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1604\n", "Epoch 273/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.154\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1604\n", "Epoch 274/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.154\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1603\n", "Epoch 275/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1539\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1602\n", "Epoch 276/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1538\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1602\n", "Epoch 277/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1538\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1601\n", "Epoch 278/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1537\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.16\n", "Epoch 279/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1536\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.16\n", "Epoch 280/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1536\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1599\n", "Epoch 281/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1535\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1598\n", "Epoch 282/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1534\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1598\n", "Epoch 283/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1534\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1597\n", "Epoch 284/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1533\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1597\n", "Epoch 285/3000...\n", "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1532\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1596\n", "Epoch 286/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1532\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1595\n", "Epoch 287/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1531\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1595\n", "Epoch 288/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.153\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1594\n", "Epoch 289/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.153\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1593\n", "Epoch 290/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1529\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1593\n", "Epoch 291/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1529\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1592\n", "Epoch 292/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1528\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1591\n", "Epoch 293/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1527\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1591\n", "Epoch 294/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1527\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.159\n", "Epoch 295/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1526\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1589\n", "Epoch 296/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1525\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1589\n", "Epoch 297/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1525\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1588\n", "Epoch 298/3000...\n", "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1524\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1587\n", "Epoch 299/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1523\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1587\n", "Epoch 300/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1523\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1586\n", "Epoch 301/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1522\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1586\n", "Epoch 302/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1521\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1585\n", "Epoch 303/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1521\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1584\n", "Epoch 304/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.152\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1584\n", "Epoch 305/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.152\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1583\n", "Epoch 306/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1519\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1582\n", "Epoch 307/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1518\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1582\n", "Epoch 308/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1518\n", - "Epoch 309/3000...\n", - "Loss Discriminator: 0.6715\n", + "Loss Discriminator: 0.6699\n", "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1517\n", + "Relative Entropy: 0.1581\n", + "Epoch 309/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.158\n", "Epoch 310/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1516\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.158\n", "Epoch 311/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1516\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1579\n", "Epoch 312/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1515\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1578\n", "Epoch 313/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1514\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1578\n", "Epoch 314/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1514\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1577\n", "Epoch 315/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1513\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1577\n", "Epoch 316/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1513\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1576\n", "Epoch 317/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1512\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1575\n", "Epoch 318/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1511\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1575\n", "Epoch 319/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1511\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1574\n", "Epoch 320/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.151\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1573\n", "Epoch 321/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1509\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1573\n", "Epoch 322/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1509\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1572\n", "Epoch 323/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1508\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1571\n", "Epoch 324/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1507\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1571\n", "Epoch 325/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1507\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.157\n", "Epoch 326/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1506\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.157\n", "Epoch 327/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1506\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1569\n", "Epoch 328/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1505\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1568\n", "Epoch 329/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1504\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1568\n", "Epoch 330/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1504\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1567\n", "Epoch 331/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1503\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1566\n", "Epoch 332/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1502\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1566\n", "Epoch 333/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1502\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1565\n", "Epoch 334/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1501\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1564\n", "Epoch 335/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.15\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1564\n", "Epoch 336/3000...\n", - "Loss Discriminator: 0.6714\n", + "Loss Discriminator: 0.6683\n", "Loss Generator: 0.7329\n", - "Relative Entropy: 0.15\n", + "Relative Entropy: 0.1563\n", "Epoch 337/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1499\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1563\n", "Epoch 338/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1499\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1562\n", "Epoch 339/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1498\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1561\n", "Epoch 340/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1497\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1561\n", "Epoch 341/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1497\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.156\n", "Epoch 342/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1496\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1559\n", "Epoch 343/3000...\n", - "Loss Discriminator: 0.6724\n", + "Loss Discriminator: 0.6703\n", "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1495\n", + "Relative Entropy: 0.1559\n", "Epoch 344/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1495\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1558\n", "Epoch 345/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1494\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1557\n", "Epoch 346/3000...\n" ] }, @@ -1577,349 +1577,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1493\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1557\n", "Epoch 347/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1493\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1556\n", "Epoch 348/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1492\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1556\n", "Epoch 349/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1492\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1555\n", "Epoch 350/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1491\n", - "Epoch 351/3000...\n", - "Loss Discriminator: 0.6706\n", + "Loss Discriminator: 0.6718\n", "Loss Generator: 0.732\n", - "Relative Entropy: 0.149\n", + "Relative Entropy: 0.1554\n", + "Epoch 351/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1554\n", "Epoch 352/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.149\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1553\n", "Epoch 353/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1489\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1552\n", "Epoch 354/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1488\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1552\n", "Epoch 355/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1488\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1551\n", "Epoch 356/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1487\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.155\n", "Epoch 357/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1487\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.155\n", "Epoch 358/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1486\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1549\n", "Epoch 359/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1485\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1549\n", "Epoch 360/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1485\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1548\n", "Epoch 361/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1484\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1547\n", "Epoch 362/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1483\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1547\n", "Epoch 363/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1483\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1546\n", "Epoch 364/3000...\n", "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1482\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1545\n", "Epoch 365/3000...\n", - "Loss Discriminator: 0.6714\n", + "Loss Discriminator: 0.6701\n", "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1482\n", + "Relative Entropy: 0.1545\n", "Epoch 366/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1481\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1544\n", "Epoch 367/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.148\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1544\n", "Epoch 368/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.148\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1543\n", "Epoch 369/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1479\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1542\n", "Epoch 370/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1478\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1542\n", "Epoch 371/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1478\n", - "Epoch 372/3000...\n", "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1541\n", + "Epoch 372/3000...\n", + "Loss Discriminator: 0.6711\n", "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1477\n", + "Relative Entropy: 0.154\n", "Epoch 373/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1476\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.154\n", "Epoch 374/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1476\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1539\n", "Epoch 375/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1475\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1538\n", "Epoch 376/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1475\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1538\n", "Epoch 377/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1474\n", - "Epoch 378/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1473\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1537\n", + "Epoch 378/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1537\n", "Epoch 379/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1473\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1536\n", "Epoch 380/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1472\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1535\n", "Epoch 381/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1471\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1535\n", "Epoch 382/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1471\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1534\n", "Epoch 383/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.147\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1533\n", "Epoch 384/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.147\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1533\n", "Epoch 385/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1469\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1532\n", "Epoch 386/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1468\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1532\n", "Epoch 387/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1468\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1531\n", "Epoch 388/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1467\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.153\n", "Epoch 389/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1466\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.153\n", "Epoch 390/3000...\n", - "Loss Discriminator: 0.6711\n", + "Loss Discriminator: 0.6716\n", "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1466\n", + "Relative Entropy: 0.1529\n", "Epoch 391/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1465\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1528\n", "Epoch 392/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1465\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1528\n", "Epoch 393/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1464\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1527\n", "Epoch 394/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1463\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1527\n", "Epoch 395/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1463\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1526\n", "Epoch 396/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1462\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1525\n", "Epoch 397/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1461\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1525\n", "Epoch 398/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1461\n", - "Epoch 399/3000...\n", - "Loss Discriminator: 0.675\n", + "Loss Discriminator: 0.6705\n", "Loss Generator: 0.7292\n", - "Relative Entropy: 0.146\n", + "Relative Entropy: 0.1524\n", + "Epoch 399/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1523\n", "Epoch 400/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.146\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1523\n", "Epoch 401/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1459\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1522\n", "Epoch 402/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1458\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1522\n", "Epoch 403/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1458\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1521\n", "Epoch 404/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1457\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.152\n", "Epoch 405/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1457\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.152\n", "Epoch 406/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1456\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1519\n", "Epoch 407/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1455\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1518\n", "Epoch 408/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1455\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1518\n", "Epoch 409/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1454\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1517\n", "Epoch 410/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1453\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1517\n", "Epoch 411/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1453\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1516\n", "Epoch 412/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1452\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1515\n", "Epoch 413/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1452\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1515\n", "Epoch 414/3000...\n", - "Loss Discriminator: 0.6702\n", + "Loss Discriminator: 0.6733\n", "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1451\n", + "Relative Entropy: 0.1514\n", "Epoch 415/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.145\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1513\n", "Epoch 416/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.145\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1513\n", "Epoch 417/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1449\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1512\n", "Epoch 418/3000...\n", - "Loss Discriminator: 0.6723\n", + "Loss Discriminator: 0.6715\n", "Loss Generator: 0.73\n", - "Relative Entropy: 0.1448\n", + "Relative Entropy: 0.1512\n", "Epoch 419/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1448\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1511\n", "Epoch 420/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1447\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.151\n", "Epoch 421/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1447\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.151\n", "Epoch 422/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1446\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1509\n", "Epoch 423/3000...\n", - "Loss Discriminator: 0.6712\n", + "Loss Discriminator: 0.6717\n", "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1445\n", + "Relative Entropy: 0.1508\n", "Epoch 424/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1445\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1508\n", "Epoch 425/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1444\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1507\n", "Epoch 426/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1444\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1507\n", "Epoch 427/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1443\n", - "Epoch 428/3000...\n", - "Loss Discriminator: 0.6717\n", + "Loss Discriminator: 0.669\n", "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1442\n", + "Relative Entropy: 0.1506\n", + "Epoch 428/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1505\n", "Epoch 429/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1442\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1505\n", "Epoch 430/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1441\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1504\n", "Epoch 431/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.144\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1504\n", "Epoch 432/3000...\n" ] }, @@ -1927,349 +1927,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.144\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1503\n", "Epoch 433/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1439\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1502\n", "Epoch 434/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1439\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1502\n", "Epoch 435/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1438\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1501\n", "Epoch 436/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1437\n", - "Epoch 437/3000...\n", - "Loss Discriminator: 0.6708\n", + "Loss Discriminator: 0.6713\n", "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1437\n", + "Relative Entropy: 0.15\n", + "Epoch 437/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.15\n", "Epoch 438/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1436\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1499\n", "Epoch 439/3000...\n", - "Loss Discriminator: 0.6718\n", + "Loss Discriminator: 0.6722\n", "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1436\n", + "Relative Entropy: 0.1499\n", "Epoch 440/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1435\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1498\n", "Epoch 441/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1434\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1497\n", "Epoch 442/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1434\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1497\n", "Epoch 443/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1433\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1496\n", "Epoch 444/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1432\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1496\n", "Epoch 445/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1432\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1495\n", "Epoch 446/3000...\n", - "Loss Discriminator: 0.6726\n", + "Loss Discriminator: 0.6722\n", "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1431\n", + "Relative Entropy: 0.1494\n", "Epoch 447/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1431\n", - "Epoch 448/3000...\n", - "Loss Discriminator: 0.674\n", + "Loss Discriminator: 0.6747\n", "Loss Generator: 0.7296\n", - "Relative Entropy: 0.143\n", + "Relative Entropy: 0.1494\n", + "Epoch 448/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1493\n", "Epoch 449/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1429\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1492\n", "Epoch 450/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1429\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1492\n", "Epoch 451/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1428\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1491\n", "Epoch 452/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1428\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1491\n", "Epoch 453/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1427\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.149\n", "Epoch 454/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1426\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1489\n", "Epoch 455/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1426\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1489\n", "Epoch 456/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1425\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1488\n", "Epoch 457/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1424\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1488\n", "Epoch 458/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1424\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1487\n", "Epoch 459/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1423\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1486\n", "Epoch 460/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1423\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1486\n", "Epoch 461/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1422\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1485\n", "Epoch 462/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1421\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1484\n", "Epoch 463/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1421\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1484\n", "Epoch 464/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.142\n", - "Epoch 465/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.142\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1483\n", + "Epoch 465/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1483\n", "Epoch 466/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1419\n", - "Epoch 467/3000...\n", "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1418\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1482\n", + "Epoch 467/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1481\n", "Epoch 468/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1418\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1481\n", "Epoch 469/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1417\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.148\n", "Epoch 470/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1417\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.148\n", "Epoch 471/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1416\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1479\n", "Epoch 472/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1415\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1478\n", "Epoch 473/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1415\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1478\n", "Epoch 474/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1414\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1477\n", "Epoch 475/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1414\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1477\n", "Epoch 476/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1413\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1476\n", "Epoch 477/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1412\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1475\n", "Epoch 478/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1412\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1475\n", "Epoch 479/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1411\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1474\n", "Epoch 480/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.141\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1473\n", "Epoch 481/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.141\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1473\n", "Epoch 482/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1409\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1472\n", "Epoch 483/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1409\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1472\n", "Epoch 484/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1408\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1471\n", "Epoch 485/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1407\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.147\n", "Epoch 486/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1407\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.147\n", "Epoch 487/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1406\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1469\n", "Epoch 488/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1406\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1469\n", "Epoch 489/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1405\n", - "Epoch 490/3000...\n", - "Loss Discriminator: 0.6736\n", + "Loss Discriminator: 0.6739\n", "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1404\n", + "Relative Entropy: 0.1468\n", + "Epoch 490/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1467\n", "Epoch 491/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1404\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1467\n", "Epoch 492/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1403\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1466\n", "Epoch 493/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1403\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1466\n", "Epoch 494/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1402\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1465\n", "Epoch 495/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1401\n", - "Epoch 496/3000...\n", - "Loss Discriminator: 0.6735\n", + "Loss Discriminator: 0.6731\n", "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1401\n", + "Relative Entropy: 0.1464\n", + "Epoch 496/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1464\n", "Epoch 497/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.14\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1463\n", "Epoch 498/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.14\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1463\n", "Epoch 499/3000...\n", "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1399\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1462\n", "Epoch 500/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1398\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1461\n", "Epoch 501/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1398\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1461\n", "Epoch 502/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1397\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.146\n", "Epoch 503/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1397\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1459\n", "Epoch 504/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1396\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1459\n", "Epoch 505/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1395\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1458\n", "Epoch 506/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1395\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1458\n", "Epoch 507/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1394\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1457\n", "Epoch 508/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1394\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1456\n", "Epoch 509/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1393\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1456\n", "Epoch 510/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1392\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1455\n", "Epoch 511/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1392\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1455\n", "Epoch 512/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1391\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1454\n", "Epoch 513/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1391\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1453\n", "Epoch 514/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.139\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1453\n", "Epoch 515/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1389\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1452\n", "Epoch 516/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1389\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1452\n", "Epoch 517/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1388\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1451\n", "Epoch 518/3000...\n" ] }, @@ -2277,349 +2277,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1388\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.145\n", "Epoch 519/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1387\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.145\n", "Epoch 520/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1386\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1449\n", "Epoch 521/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1386\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1449\n", "Epoch 522/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1385\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1448\n", "Epoch 523/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1385\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1447\n", "Epoch 524/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1384\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1447\n", "Epoch 525/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1383\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1446\n", "Epoch 526/3000...\n", - "Loss Discriminator: 0.6732\n", + "Loss Discriminator: 0.6712\n", "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1383\n", + "Relative Entropy: 0.1446\n", "Epoch 527/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1382\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1445\n", "Epoch 528/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1382\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1444\n", "Epoch 529/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1381\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1444\n", "Epoch 530/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.138\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1443\n", "Epoch 531/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.138\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1443\n", "Epoch 532/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1379\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1442\n", "Epoch 533/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1379\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1441\n", "Epoch 534/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1378\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1441\n", "Epoch 535/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1377\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.144\n", "Epoch 536/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1377\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.144\n", "Epoch 537/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1376\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1439\n", "Epoch 538/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1376\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1438\n", "Epoch 539/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1375\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1438\n", "Epoch 540/3000...\n", "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1374\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1437\n", "Epoch 541/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1374\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1437\n", "Epoch 542/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1373\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1436\n", "Epoch 543/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1373\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1435\n", "Epoch 544/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1372\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1435\n", "Epoch 545/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1371\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1434\n", "Epoch 546/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1371\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1434\n", "Epoch 547/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.137\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1433\n", "Epoch 548/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.137\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1432\n", "Epoch 549/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1369\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1432\n", "Epoch 550/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1368\n", - "Epoch 551/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1368\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1431\n", + "Epoch 551/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1431\n", "Epoch 552/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1367\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.143\n", "Epoch 553/3000...\n", "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1367\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1429\n", "Epoch 554/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1366\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1429\n", "Epoch 555/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1366\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1428\n", "Epoch 556/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1365\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1428\n", "Epoch 557/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1364\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1427\n", "Epoch 558/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1364\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1427\n", "Epoch 559/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1363\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1426\n", "Epoch 560/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1363\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1425\n", "Epoch 561/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1362\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1425\n", "Epoch 562/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1361\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1424\n", "Epoch 563/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1361\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1424\n", "Epoch 564/3000...\n", - "Loss Discriminator: 0.6751\n", + "Loss Discriminator: 0.6721\n", "Loss Generator: 0.727\n", - "Relative Entropy: 0.136\n", + "Relative Entropy: 0.1423\n", "Epoch 565/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.136\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1422\n", "Epoch 566/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1359\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1422\n", "Epoch 567/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1358\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1421\n", "Epoch 568/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1358\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1421\n", "Epoch 569/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1357\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.142\n", "Epoch 570/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1357\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1419\n", "Epoch 571/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1356\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1419\n", "Epoch 572/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1355\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1418\n", "Epoch 573/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1355\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1418\n", "Epoch 574/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1354\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1417\n", "Epoch 575/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1354\n", - "Epoch 576/3000...\n", - "Loss Discriminator: 0.673\n", + "Loss Discriminator: 0.6759\n", "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1353\n", + "Relative Entropy: 0.1416\n", + "Epoch 576/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1416\n", "Epoch 577/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1353\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1415\n", "Epoch 578/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1352\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1415\n", "Epoch 579/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1351\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1414\n", "Epoch 580/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1351\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1413\n", "Epoch 581/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.135\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1413\n", "Epoch 582/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.135\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1412\n", "Epoch 583/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1349\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1412\n", "Epoch 584/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1348\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1411\n", "Epoch 585/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1348\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1411\n", "Epoch 586/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1347\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.141\n", "Epoch 587/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1347\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1409\n", "Epoch 588/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1346\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1409\n", "Epoch 589/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1345\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1408\n", "Epoch 590/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1345\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1408\n", "Epoch 591/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1344\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1407\n", "Epoch 592/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1344\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1406\n", "Epoch 593/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1343\n", - "Epoch 594/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1343\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1406\n", + "Epoch 594/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1405\n", "Epoch 595/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1342\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1405\n", "Epoch 596/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1341\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1404\n", "Epoch 597/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1341\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1403\n", "Epoch 598/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.134\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1403\n", "Epoch 599/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.134\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1402\n", "Epoch 600/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1339\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1402\n", "Epoch 601/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1338\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1401\n", "Epoch 602/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1338\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1401\n", "Epoch 603/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1337\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.14\n", "Epoch 604/3000...\n" ] }, @@ -2627,349 +2627,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1337\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1399\n", "Epoch 605/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1336\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1399\n", "Epoch 606/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1336\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1398\n", "Epoch 607/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1335\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1398\n", "Epoch 608/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1334\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1397\n", "Epoch 609/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1334\n", - "Epoch 610/3000...\n", "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1333\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1396\n", + "Epoch 610/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1396\n", "Epoch 611/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1333\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1395\n", "Epoch 612/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1332\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1395\n", "Epoch 613/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1331\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1394\n", "Epoch 614/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1331\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1394\n", "Epoch 615/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.133\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1393\n", "Epoch 616/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.133\n", - "Epoch 617/3000...\n", - "Loss Discriminator: 0.6748\n", + "Loss Discriminator: 0.6728\n", "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1329\n", + "Relative Entropy: 0.1392\n", + "Epoch 617/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1392\n", "Epoch 618/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1329\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1391\n", "Epoch 619/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1328\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1391\n", "Epoch 620/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1327\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.139\n", "Epoch 621/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1327\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1389\n", "Epoch 622/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1326\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1389\n", "Epoch 623/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1326\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1388\n", "Epoch 624/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1325\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1388\n", "Epoch 625/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1324\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1387\n", "Epoch 626/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1324\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1387\n", "Epoch 627/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1323\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1386\n", "Epoch 628/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1323\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1385\n", "Epoch 629/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1322\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1385\n", "Epoch 630/3000...\n", "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1322\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1384\n", "Epoch 631/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1321\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1384\n", "Epoch 632/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.132\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1383\n", "Epoch 633/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.132\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1382\n", "Epoch 634/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1319\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1382\n", "Epoch 635/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1319\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1381\n", "Epoch 636/3000...\n", - "Loss Discriminator: 0.6739\n", + "Loss Discriminator: 0.6737\n", "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1318\n", + "Relative Entropy: 0.1381\n", "Epoch 637/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1318\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.138\n", "Epoch 638/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1317\n", - "Epoch 639/3000...\n", "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1316\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.138\n", + "Epoch 639/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1379\n", "Epoch 640/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1316\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1378\n", "Epoch 641/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1315\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1378\n", "Epoch 642/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1315\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1377\n", "Epoch 643/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1314\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1377\n", "Epoch 644/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1314\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1376\n", "Epoch 645/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1313\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1376\n", "Epoch 646/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1312\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1375\n", "Epoch 647/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1312\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1374\n", "Epoch 648/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1311\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1374\n", "Epoch 649/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1311\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1373\n", "Epoch 650/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.131\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1373\n", "Epoch 651/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.131\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1372\n", "Epoch 652/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1309\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1371\n", "Epoch 653/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1308\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1371\n", "Epoch 654/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1308\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.137\n", "Epoch 655/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1307\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.137\n", "Epoch 656/3000...\n", - "Loss Discriminator: 0.6779\n", + "Loss Discriminator: 0.6733\n", "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1307\n", + "Relative Entropy: 0.1369\n", "Epoch 657/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1306\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1369\n", "Epoch 658/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1305\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1368\n", "Epoch 659/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1305\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1367\n", "Epoch 660/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1304\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1367\n", "Epoch 661/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1304\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1366\n", "Epoch 662/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1303\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1366\n", "Epoch 663/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1303\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1365\n", "Epoch 664/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1302\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1365\n", "Epoch 665/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1301\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1364\n", "Epoch 666/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1301\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1363\n", "Epoch 667/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.13\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1363\n", "Epoch 668/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.13\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1362\n", "Epoch 669/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1299\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1362\n", "Epoch 670/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1299\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1361\n", "Epoch 671/3000...\n", "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1298\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1361\n", "Epoch 672/3000...\n", - "Loss Discriminator: 0.6752\n", + "Loss Discriminator: 0.6718\n", "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1297\n", + "Relative Entropy: 0.136\n", "Epoch 673/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1297\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1359\n", "Epoch 674/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1296\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1359\n", "Epoch 675/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1296\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1358\n", "Epoch 676/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1295\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1358\n", "Epoch 677/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1295\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1357\n", "Epoch 678/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1294\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1357\n", "Epoch 679/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1293\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1356\n", "Epoch 680/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1293\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1355\n", "Epoch 681/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1292\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1355\n", "Epoch 682/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1292\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1354\n", "Epoch 683/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1291\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1354\n", "Epoch 684/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1291\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1353\n", "Epoch 685/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.129\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1353\n", "Epoch 686/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.129\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1352\n", "Epoch 687/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1289\n", - "Epoch 688/3000...\n", "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1288\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1351\n", + "Epoch 688/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1351\n", "Epoch 689/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1288\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.135\n", "Epoch 690/3000...\n" ] }, @@ -2977,349 +2977,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1287\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.135\n", "Epoch 691/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1287\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1349\n", "Epoch 692/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1286\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1349\n", "Epoch 693/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1286\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1348\n", "Epoch 694/3000...\n", "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1285\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1347\n", "Epoch 695/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1284\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1347\n", "Epoch 696/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1284\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1346\n", "Epoch 697/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1283\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1346\n", "Epoch 698/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1283\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1345\n", "Epoch 699/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1282\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1345\n", "Epoch 700/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1282\n", - "Epoch 701/3000...\n", "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1281\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1344\n", + "Epoch 701/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1343\n", "Epoch 702/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.128\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1343\n", "Epoch 703/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.128\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1342\n", "Epoch 704/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1279\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1342\n", "Epoch 705/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1279\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1341\n", "Epoch 706/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1278\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1341\n", "Epoch 707/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1278\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.134\n", "Epoch 708/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1277\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1339\n", "Epoch 709/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1277\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1339\n", "Epoch 710/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1276\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1338\n", "Epoch 711/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1275\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1338\n", "Epoch 712/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1275\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1337\n", "Epoch 713/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1274\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1337\n", "Epoch 714/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1274\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1336\n", "Epoch 715/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1273\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1335\n", "Epoch 716/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1273\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1335\n", "Epoch 717/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1272\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1334\n", "Epoch 718/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1271\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1334\n", "Epoch 719/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1271\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1333\n", "Epoch 720/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.127\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1333\n", "Epoch 721/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.127\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1332\n", "Epoch 722/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1269\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1332\n", "Epoch 723/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1269\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1331\n", "Epoch 724/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1268\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.133\n", "Epoch 725/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1268\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.133\n", "Epoch 726/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1267\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1329\n", "Epoch 727/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1266\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1329\n", "Epoch 728/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1266\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1328\n", "Epoch 729/3000...\n", - "Loss Discriminator: 0.6747\n", + "Loss Discriminator: 0.6732\n", "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1265\n", + "Relative Entropy: 0.1328\n", "Epoch 730/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1265\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1327\n", "Epoch 731/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1264\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1326\n", "Epoch 732/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1264\n", - "Epoch 733/3000...\n", "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1263\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1326\n", + "Epoch 733/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1325\n", "Epoch 734/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1262\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1325\n", "Epoch 735/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1262\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1324\n", "Epoch 736/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1261\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1324\n", "Epoch 737/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1261\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1323\n", "Epoch 738/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.126\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1323\n", "Epoch 739/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.126\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1322\n", "Epoch 740/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1259\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1321\n", "Epoch 741/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1259\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1321\n", "Epoch 742/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1258\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.132\n", "Epoch 743/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1257\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.132\n", "Epoch 744/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1257\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1319\n", "Epoch 745/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1256\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1319\n", "Epoch 746/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1256\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1318\n", "Epoch 747/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1255\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1318\n", "Epoch 748/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1255\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1317\n", "Epoch 749/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1254\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1316\n", "Epoch 750/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1254\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1316\n", "Epoch 751/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1253\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1315\n", "Epoch 752/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1252\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1315\n", "Epoch 753/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1252\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1314\n", "Epoch 754/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1251\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1314\n", "Epoch 755/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1251\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1313\n", "Epoch 756/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.125\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1312\n", "Epoch 757/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.125\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1312\n", "Epoch 758/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1249\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1311\n", "Epoch 759/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1249\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1311\n", "Epoch 760/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1248\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.131\n", "Epoch 761/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1247\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.131\n", "Epoch 762/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1247\n", - "Epoch 763/3000...\n", "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1246\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1309\n", + "Epoch 763/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1309\n", "Epoch 764/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1246\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1308\n", "Epoch 765/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1245\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1307\n", "Epoch 766/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1245\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1307\n", "Epoch 767/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1244\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1306\n", "Epoch 768/3000...\n", - "Loss Discriminator: 0.6767\n", + "Loss Discriminator: 0.6731\n", "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1244\n", + "Relative Entropy: 0.1306\n", "Epoch 769/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1243\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1305\n", "Epoch 770/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1242\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1305\n", "Epoch 771/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1242\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1304\n", "Epoch 772/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1241\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1304\n", "Epoch 773/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1241\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1303\n", "Epoch 774/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.124\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1302\n", "Epoch 775/3000...\n", "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.124\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1302\n", "Epoch 776/3000...\n" ] }, @@ -3327,349 +3327,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1239\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1301\n", "Epoch 777/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1239\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1301\n", "Epoch 778/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1238\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.13\n", "Epoch 779/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1238\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.13\n", "Epoch 780/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1237\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1299\n", "Epoch 781/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1236\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1299\n", "Epoch 782/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1236\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1298\n", "Epoch 783/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1235\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1298\n", "Epoch 784/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1235\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1297\n", "Epoch 785/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1234\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1296\n", "Epoch 786/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1234\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1296\n", "Epoch 787/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1233\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1295\n", "Epoch 788/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1233\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1295\n", "Epoch 789/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1232\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1294\n", "Epoch 790/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1231\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1294\n", "Epoch 791/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1231\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1293\n", "Epoch 792/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.123\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1293\n", "Epoch 793/3000...\n", "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.123\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1292\n", "Epoch 794/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1229\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1291\n", "Epoch 795/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1229\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1291\n", "Epoch 796/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1228\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.129\n", "Epoch 797/3000...\n", - "Loss Discriminator: 0.675\n", + "Loss Discriminator: 0.673\n", "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1228\n", + "Relative Entropy: 0.129\n", "Epoch 798/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1227\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1289\n", "Epoch 799/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1227\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1289\n", "Epoch 800/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1226\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1288\n", "Epoch 801/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1225\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1288\n", "Epoch 802/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1225\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1287\n", "Epoch 803/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1224\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1286\n", "Epoch 804/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1224\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1286\n", "Epoch 805/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1223\n", - "Epoch 806/3000...\n", "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1223\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1285\n", + "Epoch 806/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1285\n", "Epoch 807/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1222\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1284\n", "Epoch 808/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1222\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1284\n", "Epoch 809/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1221\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1283\n", "Epoch 810/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1221\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1283\n", "Epoch 811/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.122\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1282\n", "Epoch 812/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1219\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1282\n", "Epoch 813/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1219\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1281\n", "Epoch 814/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1218\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.128\n", "Epoch 815/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1218\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.128\n", "Epoch 816/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1217\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1279\n", "Epoch 817/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1217\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1279\n", "Epoch 818/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1216\n", - "Epoch 819/3000...\n", "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1216\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1278\n", + "Epoch 819/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1278\n", "Epoch 820/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1215\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1277\n", "Epoch 821/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1215\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1277\n", "Epoch 822/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1214\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1276\n", "Epoch 823/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1213\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1276\n", "Epoch 824/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1213\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1275\n", "Epoch 825/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1212\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1274\n", "Epoch 826/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1212\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1274\n", "Epoch 827/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1211\n", - "Epoch 828/3000...\n", "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1211\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1273\n", + "Epoch 828/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1273\n", "Epoch 829/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.121\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1272\n", "Epoch 830/3000...\n", - "Loss Discriminator: 0.6777\n", + "Loss Discriminator: 0.6758\n", "Loss Generator: 0.7219\n", - "Relative Entropy: 0.121\n", + "Relative Entropy: 0.1272\n", "Epoch 831/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1209\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1271\n", "Epoch 832/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1209\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1271\n", "Epoch 833/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1208\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.127\n", "Epoch 834/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1208\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.127\n", "Epoch 835/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1207\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1269\n", "Epoch 836/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1206\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1268\n", "Epoch 837/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1206\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1268\n", "Epoch 838/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1205\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1267\n", "Epoch 839/3000...\n", "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1205\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1267\n", "Epoch 840/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1204\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1266\n", "Epoch 841/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1204\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1266\n", "Epoch 842/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1203\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1265\n", "Epoch 843/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1203\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1265\n", "Epoch 844/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1202\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1264\n", "Epoch 845/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1202\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1264\n", "Epoch 846/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1201\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1263\n", "Epoch 847/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1201\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1263\n", "Epoch 848/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.12\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1262\n", "Epoch 849/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1199\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1261\n", "Epoch 850/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1199\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1261\n", "Epoch 851/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1198\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.126\n", "Epoch 852/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1198\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.126\n", "Epoch 853/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1197\n", - "Epoch 854/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1197\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1259\n", + "Epoch 854/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1259\n", "Epoch 855/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1196\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1258\n", "Epoch 856/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1196\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1258\n", "Epoch 857/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1195\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1257\n", "Epoch 858/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1195\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1257\n", "Epoch 859/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1194\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1256\n", "Epoch 860/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1194\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1256\n", "Epoch 861/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1193\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1255\n", "Epoch 862/3000...\n" ] }, @@ -3678,348 +3678,348 @@ "output_type": "stream", "text": [ "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1192\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1254\n", "Epoch 863/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1192\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1254\n", "Epoch 864/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1191\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1253\n", "Epoch 865/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1191\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1253\n", "Epoch 866/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.119\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1252\n", "Epoch 867/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.119\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1252\n", "Epoch 868/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1189\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1251\n", "Epoch 869/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1189\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1251\n", "Epoch 870/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1188\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.125\n", "Epoch 871/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1188\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.125\n", "Epoch 872/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1187\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1249\n", "Epoch 873/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1187\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1249\n", "Epoch 874/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1186\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1248\n", "Epoch 875/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1186\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1247\n", "Epoch 876/3000...\n", - "Loss Discriminator: 0.6762\n", + "Loss Discriminator: 0.6745\n", "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1185\n", + "Relative Entropy: 0.1247\n", "Epoch 877/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1184\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1246\n", "Epoch 878/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1184\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1246\n", "Epoch 879/3000...\n", "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1183\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1245\n", "Epoch 880/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1183\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1245\n", "Epoch 881/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1182\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1244\n", "Epoch 882/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1182\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1244\n", "Epoch 883/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1181\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1243\n", "Epoch 884/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1181\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1243\n", "Epoch 885/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.118\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1242\n", "Epoch 886/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.118\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1242\n", "Epoch 887/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1179\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1241\n", "Epoch 888/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1179\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1241\n", "Epoch 889/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1178\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.124\n", "Epoch 890/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1178\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1239\n", "Epoch 891/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1177\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1239\n", "Epoch 892/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1177\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1238\n", "Epoch 893/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1176\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1238\n", "Epoch 894/3000...\n", "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1175\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1237\n", "Epoch 895/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1175\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1237\n", "Epoch 896/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1174\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1236\n", "Epoch 897/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1174\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1236\n", "Epoch 898/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1173\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1235\n", "Epoch 899/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1173\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1235\n", "Epoch 900/3000...\n", "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1172\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1234\n", "Epoch 901/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1172\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1234\n", "Epoch 902/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1171\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1233\n", "Epoch 903/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1171\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1233\n", "Epoch 904/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.117\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1232\n", "Epoch 905/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.117\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1232\n", "Epoch 906/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1169\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1231\n", "Epoch 907/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1169\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.123\n", "Epoch 908/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1168\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.123\n", "Epoch 909/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1168\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1229\n", "Epoch 910/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1167\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1229\n", "Epoch 911/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1166\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1228\n", "Epoch 912/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1166\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1228\n", "Epoch 913/3000...\n", "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1165\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1227\n", "Epoch 914/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1165\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1227\n", "Epoch 915/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1164\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1226\n", "Epoch 916/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1164\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1226\n", "Epoch 917/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1163\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1225\n", "Epoch 918/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1163\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1225\n", "Epoch 919/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1162\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1224\n", "Epoch 920/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1162\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1224\n", "Epoch 921/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1161\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1223\n", "Epoch 922/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1161\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1223\n", "Epoch 923/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.116\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1222\n", "Epoch 924/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.116\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1221\n", "Epoch 925/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1159\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1221\n", "Epoch 926/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1159\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.122\n", "Epoch 927/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1158\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.122\n", "Epoch 928/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1158\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1219\n", "Epoch 929/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1157\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1219\n", "Epoch 930/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1157\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1218\n", "Epoch 931/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1156\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1218\n", "Epoch 932/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1155\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1217\n", "Epoch 933/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1155\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1217\n", "Epoch 934/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1154\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1216\n", "Epoch 935/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1154\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1216\n", "Epoch 936/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1153\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1215\n", "Epoch 937/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1153\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1215\n", "Epoch 938/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1152\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1214\n", "Epoch 939/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1152\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1214\n", "Epoch 940/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1151\n", - "Epoch 941/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1151\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1213\n", + "Epoch 941/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1213\n", "Epoch 942/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.115\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1212\n", "Epoch 943/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.115\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1212\n", "Epoch 944/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1149\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1211\n", "Epoch 945/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1149\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.121\n", "Epoch 946/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1148\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.121\n", "Epoch 947/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1148\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1209\n", "Epoch 948/3000...\n" ] }, @@ -4027,349 +4027,349 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1147\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1209\n", "Epoch 949/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1147\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1208\n", "Epoch 950/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1146\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1208\n", "Epoch 951/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1146\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1207\n", "Epoch 952/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1145\n", - "Epoch 953/3000...\n", - "Loss Discriminator: 0.6761\n", + "Loss Discriminator: 0.6764\n", "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1145\n", + "Relative Entropy: 0.1207\n", + "Epoch 953/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1206\n", "Epoch 954/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1144\n", - "Epoch 955/3000...\n", "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1144\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1206\n", + "Epoch 955/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1205\n", "Epoch 956/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1143\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1205\n", "Epoch 957/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1142\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1204\n", "Epoch 958/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1142\n", - "Epoch 959/3000...\n", "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1141\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1204\n", + "Epoch 959/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1203\n", "Epoch 960/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1141\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1203\n", "Epoch 961/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.114\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1202\n", "Epoch 962/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.114\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1202\n", "Epoch 963/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1139\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1201\n", "Epoch 964/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1139\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1201\n", "Epoch 965/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1138\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.12\n", "Epoch 966/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1138\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.12\n", "Epoch 967/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1137\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1199\n", "Epoch 968/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1137\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1199\n", "Epoch 969/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1136\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1198\n", "Epoch 970/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1136\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1197\n", "Epoch 971/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1135\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1197\n", "Epoch 972/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1135\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1196\n", "Epoch 973/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1134\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1196\n", "Epoch 974/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1134\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1195\n", "Epoch 975/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1133\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1195\n", "Epoch 976/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1133\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1194\n", "Epoch 977/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1132\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1194\n", "Epoch 978/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1132\n", - "Epoch 979/3000...\n", - "Loss Discriminator: 0.6796\n", + "Loss Discriminator: 0.673\n", "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1131\n", + "Relative Entropy: 0.1193\n", + "Epoch 979/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1193\n", "Epoch 980/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1131\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1192\n", "Epoch 981/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.113\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1192\n", "Epoch 982/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.113\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1191\n", "Epoch 983/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1129\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1191\n", "Epoch 984/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1129\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.119\n", "Epoch 985/3000...\n", - "Loss Discriminator: 0.6764\n", + "Loss Discriminator: 0.6773\n", "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1128\n", + "Relative Entropy: 0.119\n", "Epoch 986/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1128\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1189\n", "Epoch 987/3000...\n", "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1127\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1189\n", "Epoch 988/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1127\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1188\n", "Epoch 989/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1126\n", - "Epoch 990/3000...\n", - "Loss Discriminator: 0.6783\n", + "Loss Discriminator: 0.6773\n", "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1126\n", + "Relative Entropy: 0.1188\n", + "Epoch 990/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1187\n", "Epoch 991/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1125\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1187\n", "Epoch 992/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1125\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1186\n", "Epoch 993/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1124\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1186\n", "Epoch 994/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1123\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1185\n", "Epoch 995/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1123\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1185\n", "Epoch 996/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1122\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1184\n", "Epoch 997/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1122\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1184\n", "Epoch 998/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1121\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1183\n", "Epoch 999/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1121\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1183\n", "Epoch 1000/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.112\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1182\n", "Epoch 1001/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.112\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1182\n", "Epoch 1002/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1119\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1181\n", "Epoch 1003/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1119\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.118\n", "Epoch 1004/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1118\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.118\n", "Epoch 1005/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1118\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1179\n", "Epoch 1006/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1117\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1179\n", "Epoch 1007/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1117\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1178\n", "Epoch 1008/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1116\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1178\n", "Epoch 1009/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1116\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1177\n", "Epoch 1010/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1115\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1177\n", "Epoch 1011/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1115\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1176\n", "Epoch 1012/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1114\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1176\n", "Epoch 1013/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1114\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1175\n", "Epoch 1014/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1113\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1175\n", "Epoch 1015/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1113\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1174\n", "Epoch 1016/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1112\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1174\n", "Epoch 1017/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1112\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1173\n", "Epoch 1018/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1111\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1173\n", "Epoch 1019/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1111\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1172\n", "Epoch 1020/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.111\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1172\n", "Epoch 1021/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.111\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1171\n", "Epoch 1022/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1109\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1171\n", "Epoch 1023/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1109\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.117\n", "Epoch 1024/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1108\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.117\n", "Epoch 1025/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1108\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1169\n", "Epoch 1026/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1107\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1169\n", "Epoch 1027/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1107\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1168\n", "Epoch 1028/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1106\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1168\n", "Epoch 1029/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1106\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1167\n", "Epoch 1030/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1105\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1167\n", "Epoch 1031/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1105\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1166\n", "Epoch 1032/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1104\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1166\n", "Epoch 1033/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1104\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1165\n", "Epoch 1034/3000...\n" ] }, @@ -4377,345 +4377,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1103\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1165\n", "Epoch 1035/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1103\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1164\n", "Epoch 1036/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1102\n", - "Epoch 1037/3000...\n", - "Loss Discriminator: 0.6771\n", + "Loss Discriminator: 0.6772\n", "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1102\n", + "Relative Entropy: 0.1164\n", + "Epoch 1037/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1163\n", "Epoch 1038/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1101\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1163\n", "Epoch 1039/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1101\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1162\n", "Epoch 1040/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.11\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1162\n", "Epoch 1041/3000...\n", "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.11\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1161\n", "Epoch 1042/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1099\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1161\n", "Epoch 1043/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1099\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.116\n", "Epoch 1044/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1098\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.116\n", "Epoch 1045/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1098\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1159\n", "Epoch 1046/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1097\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1159\n", "Epoch 1047/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1097\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1158\n", "Epoch 1048/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1096\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1158\n", "Epoch 1049/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1096\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1157\n", "Epoch 1050/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1095\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1157\n", "Epoch 1051/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1095\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1156\n", "Epoch 1052/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1094\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1156\n", "Epoch 1053/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1094\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1155\n", "Epoch 1054/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1093\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1155\n", "Epoch 1055/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1093\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1154\n", "Epoch 1056/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1092\n", - "Epoch 1057/3000...\n", - "Loss Discriminator: 0.6779\n", + "Loss Discriminator: 0.675\n", "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1092\n", + "Relative Entropy: 0.1154\n", + "Epoch 1057/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1153\n", "Epoch 1058/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1091\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1153\n", "Epoch 1059/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1091\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1152\n", "Epoch 1060/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.109\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1152\n", "Epoch 1061/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.109\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1151\n", "Epoch 1062/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1089\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1151\n", "Epoch 1063/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1089\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.115\n", "Epoch 1064/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1088\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.115\n", "Epoch 1065/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1088\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1149\n", "Epoch 1066/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1087\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1149\n", "Epoch 1067/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1087\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1148\n", "Epoch 1068/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1086\n", - "Epoch 1069/3000...\n", - "Loss Discriminator: 0.6786\n", + "Loss Discriminator: 0.6744\n", "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1086\n", - "Epoch 1070/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1085\n", + "Relative Entropy: 0.1148\n", + "Epoch 1069/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1147\n", + "Epoch 1070/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1147\n", "Epoch 1071/3000...\n", "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1085\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1146\n", "Epoch 1072/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1084\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1146\n", "Epoch 1073/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1084\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1145\n", "Epoch 1074/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1083\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1145\n", "Epoch 1075/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1083\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1144\n", "Epoch 1076/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1082\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1144\n", "Epoch 1077/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1082\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1143\n", "Epoch 1078/3000...\n", "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1081\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1143\n", "Epoch 1079/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1081\n", - "Epoch 1080/3000...\n", "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.108\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1142\n", + "Epoch 1080/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1142\n", "Epoch 1081/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.108\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1141\n", "Epoch 1082/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1079\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1141\n", "Epoch 1083/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1079\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.114\n", "Epoch 1084/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1078\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.114\n", "Epoch 1085/3000...\n", - "Loss Discriminator: 0.6745\n", + "Loss Discriminator: 0.6762\n", "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1078\n", + "Relative Entropy: 0.1139\n", "Epoch 1086/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1077\n", - "Epoch 1087/3000...\n", - "Loss Discriminator: 0.6773\n", + "Loss Discriminator: 0.6772\n", "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1077\n", + "Relative Entropy: 0.1139\n", + "Epoch 1087/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1138\n", "Epoch 1088/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1076\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1138\n", "Epoch 1089/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1076\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1137\n", "Epoch 1090/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1075\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1137\n", "Epoch 1091/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1075\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1136\n", "Epoch 1092/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1074\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1136\n", "Epoch 1093/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1074\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1135\n", "Epoch 1094/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1073\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1135\n", "Epoch 1095/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1073\n", - "Epoch 1096/3000...\n", "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1072\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1134\n", + "Epoch 1096/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1134\n", "Epoch 1097/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1072\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1133\n", "Epoch 1098/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1071\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1133\n", "Epoch 1099/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1071\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1132\n", "Epoch 1100/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.107\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1132\n", "Epoch 1101/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.107\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1131\n", "Epoch 1102/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1069\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1131\n", "Epoch 1103/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1069\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.113\n", "Epoch 1104/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1068\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.113\n", "Epoch 1105/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1068\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1129\n", "Epoch 1106/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1067\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1129\n", "Epoch 1107/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1067\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1128\n", "Epoch 1108/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1067\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1128\n", "Epoch 1109/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1066\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1127\n", "Epoch 1110/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1066\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1127\n", "Epoch 1111/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1065\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1126\n", "Epoch 1112/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1065\n", - "Epoch 1113/3000...\n", "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1064\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1126\n", + "Epoch 1113/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1125\n", "Epoch 1114/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1064\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1125\n", "Epoch 1115/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1063\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1124\n", "Epoch 1116/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1063\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1124\n", "Epoch 1117/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1062\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1123\n", "Epoch 1118/3000...\n", "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1062\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1123\n", "Epoch 1119/3000...\n" ] }, @@ -4723,345 +4723,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1061\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1122\n", "Epoch 1120/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1061\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1122\n", "Epoch 1121/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.106\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1121\n", "Epoch 1122/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.106\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1121\n", "Epoch 1123/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1059\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.112\n", "Epoch 1124/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1059\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.112\n", "Epoch 1125/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1058\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1119\n", "Epoch 1126/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1058\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1119\n", "Epoch 1127/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1057\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1118\n", "Epoch 1128/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1057\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1118\n", "Epoch 1129/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1056\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1118\n", "Epoch 1130/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1056\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1117\n", "Epoch 1131/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1055\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1117\n", "Epoch 1132/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1055\n", - "Epoch 1133/3000...\n", - "Loss Discriminator: 0.6761\n", + "Loss Discriminator: 0.6783\n", "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1054\n", + "Relative Entropy: 0.1116\n", + "Epoch 1133/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1116\n", "Epoch 1134/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1054\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1115\n", "Epoch 1135/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1053\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1115\n", "Epoch 1136/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1053\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1114\n", "Epoch 1137/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1052\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1114\n", "Epoch 1138/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1052\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1113\n", "Epoch 1139/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1051\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1113\n", "Epoch 1140/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1051\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1112\n", "Epoch 1141/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.105\n", - "Epoch 1142/3000...\n", - "Loss Discriminator: 0.6798\n", + "Loss Discriminator: 0.6767\n", "Loss Generator: 0.7172\n", - "Relative Entropy: 0.105\n", + "Relative Entropy: 0.1112\n", + "Epoch 1142/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1111\n", "Epoch 1143/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1049\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1111\n", "Epoch 1144/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1049\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.111\n", "Epoch 1145/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1049\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.111\n", "Epoch 1146/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1048\n", - "Epoch 1147/3000...\n", - "Loss Discriminator: 0.6804\n", + "Loss Discriminator: 0.6751\n", "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1048\n", + "Relative Entropy: 0.1109\n", + "Epoch 1147/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1109\n", "Epoch 1148/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1047\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1108\n", "Epoch 1149/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1047\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1108\n", "Epoch 1150/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1046\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1107\n", "Epoch 1151/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1046\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1107\n", "Epoch 1152/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1045\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1106\n", "Epoch 1153/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1045\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1106\n", "Epoch 1154/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1044\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1105\n", "Epoch 1155/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1044\n", - "Epoch 1156/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1043\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1105\n", + "Epoch 1156/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1104\n", "Epoch 1157/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1043\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1104\n", "Epoch 1158/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1042\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1103\n", "Epoch 1159/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1042\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1103\n", "Epoch 1160/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1041\n", - "Epoch 1161/3000...\n", - "Loss Discriminator: 0.6791\n", + "Loss Discriminator: 0.6775\n", "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1041\n", + "Relative Entropy: 0.1102\n", + "Epoch 1161/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1102\n", "Epoch 1162/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.104\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1101\n", "Epoch 1163/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.104\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1101\n", "Epoch 1164/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1039\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1101\n", "Epoch 1165/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1039\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.11\n", "Epoch 1166/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1038\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.11\n", "Epoch 1167/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1038\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1099\n", "Epoch 1168/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1037\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1099\n", "Epoch 1169/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1037\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1098\n", "Epoch 1170/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1037\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1098\n", "Epoch 1171/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1036\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1097\n", "Epoch 1172/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1036\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1097\n", "Epoch 1173/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1035\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1096\n", "Epoch 1174/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1035\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1096\n", "Epoch 1175/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1034\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1095\n", "Epoch 1176/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1034\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1095\n", "Epoch 1177/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1033\n", - "Epoch 1178/3000...\n", "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1033\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1094\n", + "Epoch 1178/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1094\n", "Epoch 1179/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1032\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1093\n", "Epoch 1180/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1032\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.1093\n", "Epoch 1181/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.1031\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1092\n", "Epoch 1182/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1031\n", - "Epoch 1183/3000...\n", - "Loss Discriminator: 0.6784\n", + "Loss Discriminator: 0.6767\n", "Loss Generator: 0.72\n", - "Relative Entropy: 0.103\n", + "Relative Entropy: 0.1092\n", + "Epoch 1183/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1091\n", "Epoch 1184/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.103\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.1091\n", "Epoch 1185/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1029\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.109\n", "Epoch 1186/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1029\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.109\n", "Epoch 1187/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1028\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1089\n", "Epoch 1188/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1028\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1089\n", "Epoch 1189/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1027\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1089\n", "Epoch 1190/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1027\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1088\n", "Epoch 1191/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1027\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1088\n", "Epoch 1192/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1026\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1087\n", "Epoch 1193/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1026\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1087\n", "Epoch 1194/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1025\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1086\n", "Epoch 1195/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1025\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1086\n", "Epoch 1196/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1024\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1085\n", "Epoch 1197/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1024\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1085\n", "Epoch 1198/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1023\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1084\n", "Epoch 1199/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1023\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1084\n", "Epoch 1200/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1022\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1083\n", "Epoch 1201/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1022\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1083\n", "Epoch 1202/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1021\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1082\n", "Epoch 1203/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1021\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1082\n", "Epoch 1204/3000...\n" ] }, @@ -5069,345 +5069,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.102\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1081\n", "Epoch 1205/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.102\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1081\n", "Epoch 1206/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1019\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.108\n", "Epoch 1207/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1019\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.108\n", "Epoch 1208/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1018\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1079\n", "Epoch 1209/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1018\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1079\n", "Epoch 1210/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1018\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1079\n", "Epoch 1211/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1017\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1078\n", "Epoch 1212/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1017\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1078\n", "Epoch 1213/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1016\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1077\n", "Epoch 1214/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1016\n", - "Epoch 1215/3000...\n", - "Loss Discriminator: 0.6806\n", + "Loss Discriminator: 0.6776\n", "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1015\n", + "Relative Entropy: 0.1077\n", + "Epoch 1215/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1076\n", "Epoch 1216/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.1015\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1076\n", "Epoch 1217/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1014\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1075\n", "Epoch 1218/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1014\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1075\n", "Epoch 1219/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1013\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1074\n", "Epoch 1220/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1013\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1074\n", "Epoch 1221/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1012\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1073\n", "Epoch 1222/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1012\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1073\n", "Epoch 1223/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1011\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1072\n", "Epoch 1224/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1011\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1072\n", "Epoch 1225/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.101\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1071\n", "Epoch 1226/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.101\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1071\n", "Epoch 1227/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.101\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1071\n", "Epoch 1228/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1009\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.107\n", "Epoch 1229/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1009\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.107\n", "Epoch 1230/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1008\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1069\n", "Epoch 1231/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1008\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.1069\n", "Epoch 1232/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1007\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1068\n", "Epoch 1233/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1007\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1068\n", "Epoch 1234/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1006\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1067\n", "Epoch 1235/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1006\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1067\n", "Epoch 1236/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1005\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1066\n", "Epoch 1237/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1005\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1066\n", "Epoch 1238/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1004\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1065\n", "Epoch 1239/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1004\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1065\n", "Epoch 1240/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.1003\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1064\n", "Epoch 1241/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1003\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1064\n", "Epoch 1242/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1003\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1063\n", "Epoch 1243/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1002\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1063\n", "Epoch 1244/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1002\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1063\n", "Epoch 1245/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1001\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1062\n", "Epoch 1246/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1001\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1062\n", "Epoch 1247/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1061\n", "Epoch 1248/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.1\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1061\n", "Epoch 1249/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.0999\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.106\n", "Epoch 1250/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.0999\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.106\n", "Epoch 1251/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.0998\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1059\n", "Epoch 1252/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0998\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1059\n", "Epoch 1253/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0997\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1058\n", "Epoch 1254/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.0997\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1058\n", "Epoch 1255/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.0997\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1057\n", "Epoch 1256/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.0996\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1057\n", "Epoch 1257/3000...\n", "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.0996\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1056\n", "Epoch 1258/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0995\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1056\n", "Epoch 1259/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0995\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1056\n", "Epoch 1260/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0994\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1055\n", "Epoch 1261/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0994\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1055\n", "Epoch 1262/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0993\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1054\n", "Epoch 1263/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0993\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.1054\n", "Epoch 1264/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0992\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1053\n", "Epoch 1265/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.0992\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1053\n", "Epoch 1266/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0991\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1052\n", "Epoch 1267/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0991\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1052\n", "Epoch 1268/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0991\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1051\n", "Epoch 1269/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.099\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.1051\n", "Epoch 1270/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.099\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.105\n", "Epoch 1271/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0989\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.105\n", "Epoch 1272/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0989\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.105\n", "Epoch 1273/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.0988\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1049\n", "Epoch 1274/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.0988\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.1049\n", "Epoch 1275/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0987\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1048\n", "Epoch 1276/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0987\n", - "Epoch 1277/3000...\n", - "Loss Discriminator: 0.68\n", + "Loss Discriminator: 0.6792\n", "Loss Generator: 0.7184\n", - "Relative Entropy: 0.0986\n", + "Relative Entropy: 0.1048\n", + "Epoch 1277/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1047\n", "Epoch 1278/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.0986\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.1047\n", "Epoch 1279/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0985\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1046\n", "Epoch 1280/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0985\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1046\n", "Epoch 1281/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.0985\n", - "Epoch 1282/3000...\n", "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.0984\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1045\n", + "Epoch 1282/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1045\n", "Epoch 1283/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0984\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1044\n", "Epoch 1284/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0983\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1044\n", "Epoch 1285/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0983\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1044\n", "Epoch 1286/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0982\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1043\n", "Epoch 1287/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0982\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1043\n", "Epoch 1288/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0981\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1042\n", "Epoch 1289/3000...\n" ] }, @@ -5415,345 +5415,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.0981\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1042\n", "Epoch 1290/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.098\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1041\n", "Epoch 1291/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.098\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1041\n", "Epoch 1292/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.098\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.104\n", "Epoch 1293/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.0979\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.104\n", "Epoch 1294/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.0979\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1039\n", "Epoch 1295/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0978\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1039\n", "Epoch 1296/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0978\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1038\n", "Epoch 1297/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0977\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1038\n", "Epoch 1298/3000...\n", - "Loss Discriminator: 0.6807\n", + "Loss Discriminator: 0.6768\n", "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0977\n", + "Relative Entropy: 0.1038\n", "Epoch 1299/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0976\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1037\n", "Epoch 1300/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0976\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1037\n", "Epoch 1301/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0975\n", - "Epoch 1302/3000...\n", "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.0975\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1036\n", + "Epoch 1302/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1036\n", "Epoch 1303/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0975\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1035\n", "Epoch 1304/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0974\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1035\n", "Epoch 1305/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0974\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1034\n", "Epoch 1306/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.0973\n", - "Epoch 1307/3000...\n", - "Loss Discriminator: 0.6791\n", + "Loss Discriminator: 0.678\n", "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0973\n", + "Relative Entropy: 0.1034\n", + "Epoch 1307/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1033\n", "Epoch 1308/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0972\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1033\n", "Epoch 1309/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0972\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1033\n", "Epoch 1310/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0971\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1032\n", "Epoch 1311/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0971\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1032\n", "Epoch 1312/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.097\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1031\n", "Epoch 1313/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.097\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1031\n", "Epoch 1314/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.097\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.103\n", "Epoch 1315/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0969\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.103\n", "Epoch 1316/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0969\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1029\n", "Epoch 1317/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0968\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1029\n", "Epoch 1318/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.0968\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1028\n", "Epoch 1319/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0967\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1028\n", "Epoch 1320/3000...\n", - "Loss Discriminator: 0.6781\n", + "Loss Discriminator: 0.6786\n", "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0967\n", + "Relative Entropy: 0.1027\n", "Epoch 1321/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.0966\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.1027\n", "Epoch 1322/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0966\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1027\n", "Epoch 1323/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0965\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1026\n", "Epoch 1324/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0965\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1026\n", "Epoch 1325/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0965\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1025\n", "Epoch 1326/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.0964\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1025\n", "Epoch 1327/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0964\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1024\n", "Epoch 1328/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0963\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1024\n", "Epoch 1329/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0963\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1023\n", "Epoch 1330/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0962\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.1023\n", "Epoch 1331/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0962\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1022\n", "Epoch 1332/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0961\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1022\n", "Epoch 1333/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0961\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1022\n", "Epoch 1334/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0961\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1021\n", "Epoch 1335/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.096\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1021\n", "Epoch 1336/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.096\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.102\n", "Epoch 1337/3000...\n", "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0959\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.102\n", "Epoch 1338/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0959\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1019\n", "Epoch 1339/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0958\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1019\n", "Epoch 1340/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0958\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1018\n", "Epoch 1341/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.0957\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1018\n", "Epoch 1342/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0957\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1017\n", "Epoch 1343/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0957\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1017\n", "Epoch 1344/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0956\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1017\n", "Epoch 1345/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0956\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1016\n", "Epoch 1346/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0955\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1016\n", "Epoch 1347/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0955\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1015\n", "Epoch 1348/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.0954\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1015\n", "Epoch 1349/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.0954\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1014\n", "Epoch 1350/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0953\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1014\n", "Epoch 1351/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0953\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1013\n", "Epoch 1352/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0953\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1013\n", "Epoch 1353/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0952\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1012\n", "Epoch 1354/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0952\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.1012\n", "Epoch 1355/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0951\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1012\n", "Epoch 1356/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0951\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1011\n", "Epoch 1357/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.095\n", - "Epoch 1358/3000...\n", "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.095\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.1011\n", + "Epoch 1358/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.101\n", "Epoch 1359/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0949\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.101\n", "Epoch 1360/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0949\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1009\n", "Epoch 1361/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0949\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1009\n", "Epoch 1362/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0948\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1008\n", "Epoch 1363/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0948\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.1008\n", "Epoch 1364/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0947\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1007\n", "Epoch 1365/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0947\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1007\n", "Epoch 1366/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0946\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.1006\n", "Epoch 1367/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0946\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1006\n", "Epoch 1368/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0945\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1006\n", "Epoch 1369/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0945\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1005\n", "Epoch 1370/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0945\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.1005\n", "Epoch 1371/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0944\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1004\n", "Epoch 1372/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0944\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1004\n", "Epoch 1373/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0943\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1003\n", "Epoch 1374/3000...\n" ] }, @@ -5761,345 +5761,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0943\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1003\n", "Epoch 1375/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0942\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1002\n", "Epoch 1376/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0942\n", - "Epoch 1377/3000...\n", "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0941\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1002\n", + "Epoch 1377/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1001\n", "Epoch 1378/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0941\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1001\n", "Epoch 1379/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0941\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1\n", "Epoch 1380/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.094\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1\n", "Epoch 1381/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.094\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0999\n", "Epoch 1382/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.0939\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0999\n", "Epoch 1383/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0939\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.0999\n", "Epoch 1384/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0938\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0998\n", "Epoch 1385/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0938\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0998\n", "Epoch 1386/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.0937\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.0997\n", "Epoch 1387/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0937\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0997\n", "Epoch 1388/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0937\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0996\n", "Epoch 1389/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0936\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0996\n", "Epoch 1390/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0936\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0995\n", "Epoch 1391/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.0935\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0995\n", "Epoch 1392/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0935\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.0994\n", "Epoch 1393/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0934\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0994\n", "Epoch 1394/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0934\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0993\n", "Epoch 1395/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0933\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0993\n", "Epoch 1396/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0933\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0992\n", "Epoch 1397/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0933\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.0992\n", "Epoch 1398/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0932\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0992\n", "Epoch 1399/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0932\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0991\n", "Epoch 1400/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0931\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.0991\n", "Epoch 1401/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0931\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.099\n", "Epoch 1402/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.093\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.099\n", "Epoch 1403/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.093\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0989\n", "Epoch 1404/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0929\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0989\n", "Epoch 1405/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0929\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.0988\n", "Epoch 1406/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0928\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0988\n", "Epoch 1407/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0928\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0987\n", "Epoch 1408/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0928\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0987\n", "Epoch 1409/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.0927\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.0986\n", "Epoch 1410/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0927\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0986\n", "Epoch 1411/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0926\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0985\n", "Epoch 1412/3000...\n", "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0926\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0985\n", "Epoch 1413/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0925\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.0984\n", "Epoch 1414/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0925\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0984\n", "Epoch 1415/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0924\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0983\n", "Epoch 1416/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0924\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0983\n", "Epoch 1417/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0923\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0982\n", "Epoch 1418/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0923\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.0982\n", "Epoch 1419/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0923\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0981\n", "Epoch 1420/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.0922\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0981\n", "Epoch 1421/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0922\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0981\n", "Epoch 1422/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0921\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.098\n", "Epoch 1423/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0921\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.098\n", "Epoch 1424/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.092\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0979\n", "Epoch 1425/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.092\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0979\n", "Epoch 1426/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0919\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0978\n", "Epoch 1427/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0919\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0978\n", "Epoch 1428/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0918\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0977\n", "Epoch 1429/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0918\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0977\n", "Epoch 1430/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0918\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0976\n", "Epoch 1431/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0917\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0976\n", "Epoch 1432/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0917\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0975\n", "Epoch 1433/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0916\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.0975\n", "Epoch 1434/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0916\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0974\n", "Epoch 1435/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0915\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0974\n", "Epoch 1436/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0915\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0973\n", "Epoch 1437/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0914\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.0973\n", "Epoch 1438/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0914\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0972\n", "Epoch 1439/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0913\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0972\n", "Epoch 1440/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0913\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0971\n", "Epoch 1441/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0913\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0971\n", "Epoch 1442/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0912\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0971\n", "Epoch 1443/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0912\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.097\n", "Epoch 1444/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0911\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.097\n", "Epoch 1445/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0911\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0969\n", "Epoch 1446/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.091\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0969\n", "Epoch 1447/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.091\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0968\n", "Epoch 1448/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0909\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0968\n", "Epoch 1449/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0909\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0967\n", "Epoch 1450/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0908\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0967\n", "Epoch 1451/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0908\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0966\n", "Epoch 1452/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0907\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0966\n", "Epoch 1453/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0907\n", - "Epoch 1454/3000...\n", "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0907\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0965\n", + "Epoch 1454/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0965\n", "Epoch 1455/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.0906\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0964\n", "Epoch 1456/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0906\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0964\n", "Epoch 1457/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0905\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0963\n", "Epoch 1458/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0905\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0963\n", "Epoch 1459/3000...\n" ] }, @@ -6107,345 +6107,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0904\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0962\n", "Epoch 1460/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0904\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0962\n", "Epoch 1461/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0903\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0961\n", "Epoch 1462/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0903\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0961\n", "Epoch 1463/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0902\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.096\n", "Epoch 1464/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0902\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.096\n", "Epoch 1465/3000...\n", "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0901\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0959\n", "Epoch 1466/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0901\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0959\n", "Epoch 1467/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0901\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0958\n", "Epoch 1468/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.09\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0958\n", "Epoch 1469/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.09\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0957\n", "Epoch 1470/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0899\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0957\n", "Epoch 1471/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0899\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0956\n", "Epoch 1472/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0898\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0956\n", "Epoch 1473/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0898\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0955\n", "Epoch 1474/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0897\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0955\n", "Epoch 1475/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0897\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0955\n", "Epoch 1476/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0896\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0954\n", "Epoch 1477/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0896\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0954\n", "Epoch 1478/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0896\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0953\n", "Epoch 1479/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0895\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0953\n", "Epoch 1480/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0895\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0952\n", "Epoch 1481/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0894\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0952\n", "Epoch 1482/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0894\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.0951\n", "Epoch 1483/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0893\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0951\n", "Epoch 1484/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0893\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.095\n", "Epoch 1485/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0893\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.095\n", "Epoch 1486/3000...\n", "Loss Discriminator: 0.68\n", "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0892\n", + "Relative Entropy: 0.0949\n", "Epoch 1487/3000...\n", - "Loss Discriminator: 0.6808\n", + "Loss Discriminator: 0.6815\n", "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0892\n", + "Relative Entropy: 0.0949\n", "Epoch 1488/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0891\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0948\n", "Epoch 1489/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0891\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0948\n", "Epoch 1490/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.089\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0947\n", "Epoch 1491/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.089\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0947\n", "Epoch 1492/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0889\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.0946\n", "Epoch 1493/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0889\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0946\n", "Epoch 1494/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0888\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0945\n", "Epoch 1495/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0888\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0945\n", "Epoch 1496/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0887\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0944\n", "Epoch 1497/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0887\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0944\n", "Epoch 1498/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0887\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0943\n", "Epoch 1499/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0886\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0943\n", "Epoch 1500/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0886\n", - "Epoch 1501/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0885\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0942\n", + "Epoch 1501/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0942\n", "Epoch 1502/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0885\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0941\n", "Epoch 1503/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0884\n", - "Epoch 1504/3000...\n", "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0884\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0941\n", + "Epoch 1504/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0941\n", "Epoch 1505/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0883\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.094\n", "Epoch 1506/3000...\n", - "Loss Discriminator: 0.6792\n", + "Loss Discriminator: 0.6796\n", "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0883\n", + "Relative Entropy: 0.094\n", "Epoch 1507/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0882\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0939\n", "Epoch 1508/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0882\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0939\n", "Epoch 1509/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0881\n", - "Epoch 1510/3000...\n", "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0881\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0938\n", + "Epoch 1510/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0938\n", "Epoch 1511/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.088\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.0937\n", "Epoch 1512/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.088\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0937\n", "Epoch 1513/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.088\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0936\n", "Epoch 1514/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0879\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0936\n", "Epoch 1515/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0879\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0935\n", "Epoch 1516/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0878\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0935\n", "Epoch 1517/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0878\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0934\n", "Epoch 1518/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0877\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0934\n", "Epoch 1519/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0877\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0933\n", "Epoch 1520/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0876\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0933\n", "Epoch 1521/3000...\n", "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.0876\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0932\n", "Epoch 1522/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0875\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0932\n", "Epoch 1523/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0875\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0931\n", "Epoch 1524/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0874\n", - "Epoch 1525/3000...\n", "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0874\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0931\n", + "Epoch 1525/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.093\n", "Epoch 1526/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0873\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.093\n", "Epoch 1527/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0873\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0929\n", "Epoch 1528/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0873\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0929\n", "Epoch 1529/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0872\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0929\n", "Epoch 1530/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0872\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0928\n", "Epoch 1531/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0871\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0928\n", "Epoch 1532/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0871\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0927\n", "Epoch 1533/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.087\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0927\n", "Epoch 1534/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.087\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0926\n", "Epoch 1535/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0869\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0926\n", "Epoch 1536/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0869\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0925\n", "Epoch 1537/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0868\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0925\n", "Epoch 1538/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0868\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0924\n", "Epoch 1539/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0867\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0924\n", "Epoch 1540/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0867\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0923\n", "Epoch 1541/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0866\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0923\n", "Epoch 1542/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0866\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0922\n", "Epoch 1543/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0866\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0922\n", "Epoch 1544/3000...\n" ] }, @@ -6453,345 +6453,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0865\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0921\n", "Epoch 1545/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0865\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0921\n", "Epoch 1546/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0864\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.092\n", "Epoch 1547/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0864\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.092\n", "Epoch 1548/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0863\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0919\n", "Epoch 1549/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0863\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0919\n", "Epoch 1550/3000...\n", - "Loss Discriminator: 0.6798\n", + "Loss Discriminator: 0.6815\n", "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0862\n", + "Relative Entropy: 0.0918\n", "Epoch 1551/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0862\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0918\n", "Epoch 1552/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0861\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.0917\n", "Epoch 1553/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0861\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0917\n", "Epoch 1554/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.086\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0916\n", "Epoch 1555/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.086\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0916\n", "Epoch 1556/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.086\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0915\n", "Epoch 1557/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0859\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0915\n", "Epoch 1558/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0859\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0915\n", "Epoch 1559/3000...\n", "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0858\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0914\n", "Epoch 1560/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.0858\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0914\n", "Epoch 1561/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0857\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0913\n", "Epoch 1562/3000...\n", "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0857\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0913\n", "Epoch 1563/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0856\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0912\n", "Epoch 1564/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0856\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0912\n", "Epoch 1565/3000...\n", "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0855\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0911\n", "Epoch 1566/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0855\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0911\n", "Epoch 1567/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0854\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.091\n", "Epoch 1568/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0854\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.091\n", "Epoch 1569/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0853\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0909\n", "Epoch 1570/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0853\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0909\n", "Epoch 1571/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0853\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0908\n", "Epoch 1572/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0852\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0908\n", "Epoch 1573/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0852\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0907\n", "Epoch 1574/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0851\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0907\n", "Epoch 1575/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0851\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0906\n", "Epoch 1576/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.085\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0906\n", "Epoch 1577/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.085\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0905\n", "Epoch 1578/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0849\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0905\n", "Epoch 1579/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0849\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0904\n", "Epoch 1580/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0848\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0904\n", "Epoch 1581/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0848\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0903\n", "Epoch 1582/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0848\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0903\n", "Epoch 1583/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0847\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0903\n", "Epoch 1584/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0847\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0902\n", "Epoch 1585/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0846\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0902\n", "Epoch 1586/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0846\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0901\n", "Epoch 1587/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0845\n", - "Epoch 1588/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0845\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0901\n", + "Epoch 1588/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.09\n", "Epoch 1589/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0844\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.09\n", "Epoch 1590/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0844\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0899\n", "Epoch 1591/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0843\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0899\n", "Epoch 1592/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0843\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0898\n", "Epoch 1593/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0843\n", - "Epoch 1594/3000...\n", "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0842\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0898\n", + "Epoch 1594/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0897\n", "Epoch 1595/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0842\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0897\n", "Epoch 1596/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0841\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0896\n", "Epoch 1597/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0841\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0896\n", "Epoch 1598/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.084\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0895\n", "Epoch 1599/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.084\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0895\n", "Epoch 1600/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0839\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0894\n", "Epoch 1601/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0839\n", - "Epoch 1602/3000...\n", "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0838\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0894\n", + "Epoch 1602/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0894\n", "Epoch 1603/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0838\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0893\n", "Epoch 1604/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0837\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0893\n", "Epoch 1605/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0837\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0892\n", "Epoch 1606/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0836\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0892\n", "Epoch 1607/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0836\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0891\n", "Epoch 1608/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0836\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0891\n", "Epoch 1609/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0835\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.089\n", "Epoch 1610/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0835\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.089\n", "Epoch 1611/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0834\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0889\n", "Epoch 1612/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0834\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0889\n", "Epoch 1613/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0833\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0888\n", "Epoch 1614/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0833\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0888\n", "Epoch 1615/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0832\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0887\n", "Epoch 1616/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0832\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0887\n", "Epoch 1617/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0831\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0886\n", "Epoch 1618/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0831\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0886\n", "Epoch 1619/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.083\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0886\n", "Epoch 1620/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.083\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0885\n", "Epoch 1621/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.083\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0885\n", "Epoch 1622/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0829\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0884\n", "Epoch 1623/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0829\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0884\n", "Epoch 1624/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0828\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0883\n", "Epoch 1625/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0828\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0883\n", "Epoch 1626/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0827\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0882\n", "Epoch 1627/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0827\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0882\n", "Epoch 1628/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0826\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0881\n", "Epoch 1629/3000...\n" ] }, @@ -6799,345 +6799,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0826\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0881\n", "Epoch 1630/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0825\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.088\n", "Epoch 1631/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0825\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.088\n", "Epoch 1632/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0825\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0879\n", "Epoch 1633/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0824\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0879\n", "Epoch 1634/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0824\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0878\n", "Epoch 1635/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0823\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0878\n", "Epoch 1636/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0823\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0878\n", "Epoch 1637/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0822\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0877\n", "Epoch 1638/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0822\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0877\n", "Epoch 1639/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0821\n", - "Epoch 1640/3000...\n", "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0821\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0876\n", + "Epoch 1640/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0876\n", "Epoch 1641/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0821\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0875\n", "Epoch 1642/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.082\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0875\n", "Epoch 1643/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.082\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0874\n", "Epoch 1644/3000...\n", "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0819\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0874\n", "Epoch 1645/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0819\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0873\n", "Epoch 1646/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0818\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0873\n", "Epoch 1647/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0818\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0872\n", "Epoch 1648/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0817\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0872\n", "Epoch 1649/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0817\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0871\n", "Epoch 1650/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0817\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0871\n", "Epoch 1651/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0816\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.087\n", "Epoch 1652/3000...\n", "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0816\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.087\n", "Epoch 1653/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0815\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.087\n", "Epoch 1654/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0815\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0869\n", "Epoch 1655/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0814\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0869\n", "Epoch 1656/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0814\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0868\n", "Epoch 1657/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0813\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0868\n", "Epoch 1658/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0813\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0867\n", "Epoch 1659/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0812\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0867\n", "Epoch 1660/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0812\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0866\n", "Epoch 1661/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0811\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0866\n", "Epoch 1662/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0811\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0865\n", "Epoch 1663/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0811\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0865\n", "Epoch 1664/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.081\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0864\n", "Epoch 1665/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.081\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0864\n", "Epoch 1666/3000...\n", "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0809\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0864\n", "Epoch 1667/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0809\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0863\n", "Epoch 1668/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0808\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0863\n", "Epoch 1669/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0808\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0862\n", "Epoch 1670/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0807\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0862\n", "Epoch 1671/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0807\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0861\n", "Epoch 1672/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0806\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0861\n", "Epoch 1673/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0806\n", - "Epoch 1674/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0806\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.086\n", + "Epoch 1674/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.086\n", "Epoch 1675/3000...\n", - "Loss Discriminator: 0.6817\n", + "Loss Discriminator: 0.6818\n", "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0805\n", + "Relative Entropy: 0.0859\n", "Epoch 1676/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0805\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0859\n", "Epoch 1677/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0804\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0858\n", "Epoch 1678/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0804\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0858\n", "Epoch 1679/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0803\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0857\n", "Epoch 1680/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0803\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0857\n", "Epoch 1681/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0802\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0857\n", "Epoch 1682/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0802\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0856\n", "Epoch 1683/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0801\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0856\n", "Epoch 1684/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0801\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0855\n", "Epoch 1685/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0801\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0855\n", "Epoch 1686/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.08\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0854\n", "Epoch 1687/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.08\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0854\n", "Epoch 1688/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0799\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0853\n", "Epoch 1689/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0799\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0853\n", "Epoch 1690/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0798\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0852\n", "Epoch 1691/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0798\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0852\n", "Epoch 1692/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0797\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0851\n", "Epoch 1693/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0797\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0851\n", "Epoch 1694/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0796\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0851\n", "Epoch 1695/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0796\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.085\n", "Epoch 1696/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0796\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.085\n", "Epoch 1697/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0795\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0849\n", "Epoch 1698/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0795\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0849\n", "Epoch 1699/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0794\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0848\n", "Epoch 1700/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0794\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0848\n", "Epoch 1701/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0793\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0847\n", "Epoch 1702/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0793\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0847\n", "Epoch 1703/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0792\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0846\n", "Epoch 1704/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0792\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0846\n", "Epoch 1705/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0791\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0845\n", "Epoch 1706/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0791\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0845\n", "Epoch 1707/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0791\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0845\n", "Epoch 1708/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.079\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0844\n", "Epoch 1709/3000...\n", "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.079\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0844\n", "Epoch 1710/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0789\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0843\n", "Epoch 1711/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0789\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0843\n", "Epoch 1712/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0788\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0842\n", "Epoch 1713/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0788\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0842\n", "Epoch 1714/3000...\n" ] }, @@ -7145,345 +7145,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0787\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0841\n", "Epoch 1715/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0787\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0841\n", "Epoch 1716/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0787\n", - "Epoch 1717/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0786\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.084\n", + "Epoch 1717/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.084\n", "Epoch 1718/3000...\n", "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0786\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0839\n", "Epoch 1719/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0785\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0839\n", "Epoch 1720/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0785\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0839\n", "Epoch 1721/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0784\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0838\n", "Epoch 1722/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0784\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0838\n", "Epoch 1723/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0783\n", - "Epoch 1724/3000...\n", - "Loss Discriminator: 0.6822\n", + "Loss Discriminator: 0.6806\n", "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0783\n", + "Relative Entropy: 0.0837\n", + "Epoch 1724/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0837\n", "Epoch 1725/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0782\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0836\n", "Epoch 1726/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0782\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0836\n", "Epoch 1727/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0782\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0835\n", "Epoch 1728/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0781\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0835\n", "Epoch 1729/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0781\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0834\n", "Epoch 1730/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.078\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0834\n", "Epoch 1731/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.078\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0833\n", "Epoch 1732/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0779\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0833\n", "Epoch 1733/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0779\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0833\n", "Epoch 1734/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0778\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0832\n", "Epoch 1735/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0778\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0832\n", "Epoch 1736/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0778\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0831\n", "Epoch 1737/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0777\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0831\n", "Epoch 1738/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0777\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.083\n", "Epoch 1739/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0776\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.083\n", "Epoch 1740/3000...\n", "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0776\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0829\n", "Epoch 1741/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0775\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0829\n", "Epoch 1742/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0775\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0828\n", "Epoch 1743/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0774\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0828\n", "Epoch 1744/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0774\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0828\n", "Epoch 1745/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0774\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0827\n", "Epoch 1746/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0773\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0827\n", "Epoch 1747/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0773\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0826\n", "Epoch 1748/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0772\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0826\n", "Epoch 1749/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0772\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0825\n", "Epoch 1750/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0771\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0825\n", "Epoch 1751/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0771\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0824\n", "Epoch 1752/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0771\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0824\n", "Epoch 1753/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.077\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0823\n", "Epoch 1754/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.077\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0823\n", "Epoch 1755/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0769\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0823\n", "Epoch 1756/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0769\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0822\n", "Epoch 1757/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0768\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0822\n", "Epoch 1758/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0768\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0821\n", "Epoch 1759/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0767\n", - "Epoch 1760/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0767\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0821\n", + "Epoch 1760/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.082\n", "Epoch 1761/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0767\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.082\n", "Epoch 1762/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0766\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0819\n", "Epoch 1763/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0766\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0819\n", "Epoch 1764/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0765\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0818\n", "Epoch 1765/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0765\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0818\n", "Epoch 1766/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0764\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0818\n", "Epoch 1767/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0764\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0817\n", "Epoch 1768/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0763\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0817\n", "Epoch 1769/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0763\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0816\n", "Epoch 1770/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0763\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0816\n", "Epoch 1771/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0762\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0815\n", "Epoch 1772/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0762\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0815\n", "Epoch 1773/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0761\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0814\n", "Epoch 1774/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0761\n", - "Epoch 1775/3000...\n", "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.076\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0814\n", + "Epoch 1775/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0813\n", "Epoch 1776/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.076\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0813\n", "Epoch 1777/3000...\n", "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0759\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0813\n", "Epoch 1778/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0759\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0812\n", "Epoch 1779/3000...\n", "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0759\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0812\n", "Epoch 1780/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0758\n", - "Epoch 1781/3000...\n", "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0758\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0811\n", + "Epoch 1781/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0811\n", "Epoch 1782/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0757\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.081\n", "Epoch 1783/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0757\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.081\n", "Epoch 1784/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0756\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0809\n", "Epoch 1785/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0756\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0809\n", "Epoch 1786/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0756\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0808\n", "Epoch 1787/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0755\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0808\n", "Epoch 1788/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0755\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0808\n", "Epoch 1789/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0754\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0807\n", "Epoch 1790/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0754\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0807\n", "Epoch 1791/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0753\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0806\n", "Epoch 1792/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0753\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0806\n", "Epoch 1793/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0752\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0805\n", "Epoch 1794/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0752\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0805\n", "Epoch 1795/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0752\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0804\n", "Epoch 1796/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0751\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0804\n", "Epoch 1797/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0751\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0804\n", "Epoch 1798/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.075\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0803\n", "Epoch 1799/3000...\n" ] }, @@ -7491,345 +7491,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.075\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0803\n", "Epoch 1800/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0749\n", - "Epoch 1801/3000...\n", "Loss Discriminator: 0.682\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0749\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0802\n", + "Epoch 1801/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0802\n", "Epoch 1802/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0749\n", - "Epoch 1803/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0748\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0801\n", + "Epoch 1803/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0801\n", "Epoch 1804/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0748\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.08\n", "Epoch 1805/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0747\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.08\n", "Epoch 1806/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0747\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.08\n", "Epoch 1807/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0746\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0799\n", "Epoch 1808/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0746\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0799\n", "Epoch 1809/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0745\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0798\n", "Epoch 1810/3000...\n", "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0745\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0798\n", "Epoch 1811/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0745\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0797\n", "Epoch 1812/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0744\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0797\n", "Epoch 1813/3000...\n", - "Loss Discriminator: 0.6829\n", + "Loss Discriminator: 0.6852\n", "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0744\n", + "Relative Entropy: 0.0796\n", "Epoch 1814/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0743\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0796\n", "Epoch 1815/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0743\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0795\n", "Epoch 1816/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0742\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0795\n", "Epoch 1817/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0742\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0795\n", "Epoch 1818/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0742\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0794\n", "Epoch 1819/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0741\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0794\n", "Epoch 1820/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0741\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0793\n", "Epoch 1821/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.074\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0793\n", "Epoch 1822/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.074\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0792\n", "Epoch 1823/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0739\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0792\n", "Epoch 1824/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0739\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0791\n", "Epoch 1825/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0739\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0791\n", "Epoch 1826/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0738\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0791\n", "Epoch 1827/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0738\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.079\n", "Epoch 1828/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0737\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.079\n", "Epoch 1829/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0737\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0789\n", "Epoch 1830/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0736\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0789\n", "Epoch 1831/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0736\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0788\n", "Epoch 1832/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0736\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0788\n", "Epoch 1833/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0735\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0787\n", "Epoch 1834/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0735\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0787\n", "Epoch 1835/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0734\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0787\n", "Epoch 1836/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0734\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0786\n", "Epoch 1837/3000...\n", "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0733\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0786\n", "Epoch 1838/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0733\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0785\n", "Epoch 1839/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0733\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0785\n", "Epoch 1840/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0732\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0784\n", "Epoch 1841/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0732\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0784\n", "Epoch 1842/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0731\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0783\n", "Epoch 1843/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0731\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0783\n", "Epoch 1844/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.073\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0783\n", "Epoch 1845/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.073\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0782\n", "Epoch 1846/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.073\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0782\n", "Epoch 1847/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0729\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0781\n", "Epoch 1848/3000...\n", - "Loss Discriminator: 0.6829\n", + "Loss Discriminator: 0.6817\n", "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0729\n", + "Relative Entropy: 0.0781\n", "Epoch 1849/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0728\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.078\n", "Epoch 1850/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0728\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.078\n", "Epoch 1851/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0727\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0779\n", "Epoch 1852/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0727\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0779\n", "Epoch 1853/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0726\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0779\n", "Epoch 1854/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0726\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0778\n", "Epoch 1855/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0726\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0778\n", "Epoch 1856/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0725\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0777\n", "Epoch 1857/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0725\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0777\n", "Epoch 1858/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0724\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0776\n", "Epoch 1859/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0724\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0776\n", "Epoch 1860/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0723\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0776\n", "Epoch 1861/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0723\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0775\n", "Epoch 1862/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0723\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0775\n", "Epoch 1863/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0722\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0774\n", "Epoch 1864/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0722\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0774\n", "Epoch 1865/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0721\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0773\n", "Epoch 1866/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0721\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0773\n", "Epoch 1867/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.072\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0772\n", "Epoch 1868/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.072\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0772\n", "Epoch 1869/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.072\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0772\n", "Epoch 1870/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0719\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0771\n", "Epoch 1871/3000...\n", "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0719\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0771\n", "Epoch 1872/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0718\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.077\n", "Epoch 1873/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0718\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.077\n", "Epoch 1874/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0717\n", - "Epoch 1875/3000...\n", "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0717\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0769\n", + "Epoch 1875/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0769\n", "Epoch 1876/3000...\n", "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0717\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0769\n", "Epoch 1877/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0716\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0768\n", "Epoch 1878/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0716\n", - "Epoch 1879/3000...\n", - "Loss Discriminator: 0.6833\n", + "Loss Discriminator: 0.6809\n", "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0715\n", + "Relative Entropy: 0.0768\n", + "Epoch 1879/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0767\n", "Epoch 1880/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0715\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0767\n", "Epoch 1881/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0715\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0766\n", "Epoch 1882/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0714\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0766\n", "Epoch 1883/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0714\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0765\n", "Epoch 1884/3000...\n" ] }, @@ -7837,345 +7837,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0713\n", - "Epoch 1885/3000...\n", "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0713\n", - "Epoch 1886/3000...\n", - "Loss Discriminator: 0.6833\n", "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0712\n", - "Epoch 1887/3000...\n", + "Relative Entropy: 0.0765\n", + "Epoch 1885/3000...\n", "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0712\n", - "Epoch 1888/3000...\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0765\n", + "Epoch 1886/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0764\n", + "Epoch 1887/3000...\n", "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0712\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0764\n", + "Epoch 1888/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0763\n", "Epoch 1889/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0711\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0763\n", "Epoch 1890/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0711\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0762\n", "Epoch 1891/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.071\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0762\n", "Epoch 1892/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.071\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0762\n", "Epoch 1893/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0709\n", - "Epoch 1894/3000...\n", "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0709\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0761\n", + "Epoch 1894/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0761\n", "Epoch 1895/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0709\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.076\n", "Epoch 1896/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0708\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.076\n", "Epoch 1897/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0708\n", - "Epoch 1898/3000...\n", "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0707\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0759\n", + "Epoch 1898/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0759\n", "Epoch 1899/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0707\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0758\n", "Epoch 1900/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0706\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0758\n", "Epoch 1901/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0706\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0758\n", "Epoch 1902/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0706\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0757\n", "Epoch 1903/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0705\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0757\n", "Epoch 1904/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0705\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0756\n", "Epoch 1905/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0704\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0756\n", "Epoch 1906/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0704\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0755\n", "Epoch 1907/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0703\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0755\n", "Epoch 1908/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0703\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0755\n", "Epoch 1909/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0703\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0754\n", "Epoch 1910/3000...\n", "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0702\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0754\n", "Epoch 1911/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0702\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0753\n", "Epoch 1912/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0701\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0753\n", "Epoch 1913/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0701\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0752\n", "Epoch 1914/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.07\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0752\n", "Epoch 1915/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.07\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0752\n", "Epoch 1916/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.07\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0751\n", "Epoch 1917/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0699\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0751\n", "Epoch 1918/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0699\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.075\n", "Epoch 1919/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0698\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.075\n", "Epoch 1920/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0698\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0749\n", "Epoch 1921/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0697\n", - "Epoch 1922/3000...\n", - "Loss Discriminator: 0.6837\n", + "Loss Discriminator: 0.682\n", "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0697\n", + "Relative Entropy: 0.0749\n", + "Epoch 1922/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0749\n", "Epoch 1923/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0697\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0748\n", "Epoch 1924/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0696\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0748\n", "Epoch 1925/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0696\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0747\n", "Epoch 1926/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0695\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0747\n", "Epoch 1927/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0695\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0746\n", "Epoch 1928/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0695\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0746\n", "Epoch 1929/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0694\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0745\n", "Epoch 1930/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0694\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0745\n", "Epoch 1931/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0693\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0745\n", "Epoch 1932/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0693\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0744\n", "Epoch 1933/3000...\n", - "Loss Discriminator: 0.6816\n", + "Loss Discriminator: 0.6824\n", "Loss Generator: 0.708\n", - "Relative Entropy: 0.0692\n", + "Relative Entropy: 0.0744\n", "Epoch 1934/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0692\n", - "Epoch 1935/3000...\n", "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0692\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0743\n", + "Epoch 1935/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0743\n", "Epoch 1936/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0691\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0742\n", "Epoch 1937/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0691\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0742\n", "Epoch 1938/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.069\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0742\n", "Epoch 1939/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.069\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0741\n", "Epoch 1940/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.069\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0741\n", "Epoch 1941/3000...\n", "Loss Discriminator: 0.6839\n", "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0689\n", + "Relative Entropy: 0.074\n", "Epoch 1942/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0689\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.074\n", "Epoch 1943/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0688\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0739\n", "Epoch 1944/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0688\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0739\n", "Epoch 1945/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0687\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0739\n", "Epoch 1946/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0687\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0738\n", "Epoch 1947/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0687\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0738\n", "Epoch 1948/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0686\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0737\n", "Epoch 1949/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0686\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0737\n", "Epoch 1950/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0685\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0736\n", "Epoch 1951/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0685\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0736\n", "Epoch 1952/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0684\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0736\n", "Epoch 1953/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0684\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0735\n", "Epoch 1954/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0684\n", - "Epoch 1955/3000...\n", - "Loss Discriminator: 0.6831\n", + "Loss Discriminator: 0.6836\n", "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0683\n", + "Relative Entropy: 0.0735\n", + "Epoch 1955/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0734\n", "Epoch 1956/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0683\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0734\n", "Epoch 1957/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0682\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0733\n", "Epoch 1958/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0682\n", - "Epoch 1959/3000...\n", "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0682\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0733\n", + "Epoch 1959/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0733\n", "Epoch 1960/3000...\n", "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0681\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0732\n", "Epoch 1961/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0681\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0732\n", "Epoch 1962/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.068\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0731\n", "Epoch 1963/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.068\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0731\n", "Epoch 1964/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0679\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.073\n", "Epoch 1965/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0679\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.073\n", "Epoch 1966/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0679\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.073\n", "Epoch 1967/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0678\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0729\n", "Epoch 1968/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0678\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0729\n", "Epoch 1969/3000...\n" ] }, @@ -8183,345 +8183,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0677\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0728\n", "Epoch 1970/3000...\n", "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0677\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0728\n", "Epoch 1971/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0677\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0727\n", "Epoch 1972/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0676\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0727\n", "Epoch 1973/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0676\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0727\n", "Epoch 1974/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0675\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0726\n", "Epoch 1975/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0675\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0726\n", "Epoch 1976/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0675\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0725\n", "Epoch 1977/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0674\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0725\n", "Epoch 1978/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0674\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0725\n", "Epoch 1979/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0673\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0724\n", "Epoch 1980/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0673\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0724\n", "Epoch 1981/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0672\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0723\n", "Epoch 1982/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0672\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0723\n", "Epoch 1983/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0672\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0722\n", "Epoch 1984/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0671\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0722\n", "Epoch 1985/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0671\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0722\n", "Epoch 1986/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.067\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0721\n", "Epoch 1987/3000...\n", "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.067\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0721\n", "Epoch 1988/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.067\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.072\n", "Epoch 1989/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0669\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.072\n", "Epoch 1990/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0669\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0719\n", "Epoch 1991/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0668\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0719\n", "Epoch 1992/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0668\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0719\n", "Epoch 1993/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0667\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0718\n", "Epoch 1994/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0667\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0718\n", "Epoch 1995/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0667\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0717\n", "Epoch 1996/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0666\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0717\n", "Epoch 1997/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0666\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0716\n", "Epoch 1998/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0665\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0716\n", "Epoch 1999/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0665\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0716\n", "Epoch 2000/3000...\n", - "Loss Discriminator: 0.6841\n", + "Loss Discriminator: 0.6818\n", "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0665\n", + "Relative Entropy: 0.0715\n", "Epoch 2001/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0664\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0715\n", "Epoch 2002/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0664\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0714\n", "Epoch 2003/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0663\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0714\n", "Epoch 2004/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0663\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0714\n", "Epoch 2005/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0663\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0713\n", "Epoch 2006/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0662\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0713\n", "Epoch 2007/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0662\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0712\n", "Epoch 2008/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0661\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0712\n", "Epoch 2009/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0661\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0711\n", "Epoch 2010/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0661\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0711\n", "Epoch 2011/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.066\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0711\n", "Epoch 2012/3000...\n", - "Loss Discriminator: 0.6834\n", + "Loss Discriminator: 0.6845\n", "Loss Generator: 0.7085\n", - "Relative Entropy: 0.066\n", + "Relative Entropy: 0.071\n", "Epoch 2013/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0659\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.071\n", "Epoch 2014/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0659\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0709\n", "Epoch 2015/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0658\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0709\n", "Epoch 2016/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0658\n", - "Epoch 2017/3000...\n", - "Loss Discriminator: 0.6844\n", + "Loss Discriminator: 0.6829\n", "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0658\n", + "Relative Entropy: 0.0709\n", + "Epoch 2017/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0708\n", "Epoch 2018/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0657\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0708\n", "Epoch 2019/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0657\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0707\n", "Epoch 2020/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0656\n", - "Epoch 2021/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0656\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0707\n", + "Epoch 2021/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0706\n", "Epoch 2022/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0656\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0706\n", "Epoch 2023/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0655\n", - "Epoch 2024/3000...\n", - "Loss Discriminator: 0.684\n", + "Loss Discriminator: 0.6834\n", "Loss Generator: 0.708\n", - "Relative Entropy: 0.0655\n", + "Relative Entropy: 0.0706\n", + "Epoch 2024/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0705\n", "Epoch 2025/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0654\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0705\n", "Epoch 2026/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0654\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0704\n", "Epoch 2027/3000...\n", "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0654\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0704\n", "Epoch 2028/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0653\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0704\n", "Epoch 2029/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0653\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0703\n", "Epoch 2030/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0652\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0703\n", "Epoch 2031/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0652\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0702\n", "Epoch 2032/3000...\n", "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0652\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0702\n", "Epoch 2033/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0651\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0701\n", "Epoch 2034/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0651\n", - "Epoch 2035/3000...\n", - "Loss Discriminator: 0.6839\n", + "Loss Discriminator: 0.6843\n", "Loss Generator: 0.7092\n", - "Relative Entropy: 0.065\n", + "Relative Entropy: 0.0701\n", + "Epoch 2035/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0701\n", "Epoch 2036/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.065\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.07\n", "Epoch 2037/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0649\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.07\n", "Epoch 2038/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0649\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0699\n", "Epoch 2039/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0649\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0699\n", "Epoch 2040/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0648\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0699\n", "Epoch 2041/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0648\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0698\n", "Epoch 2042/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0647\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0698\n", "Epoch 2043/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0647\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0697\n", "Epoch 2044/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0647\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0697\n", "Epoch 2045/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0646\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0696\n", "Epoch 2046/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0646\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0696\n", "Epoch 2047/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0645\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0696\n", "Epoch 2048/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0645\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0695\n", "Epoch 2049/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0645\n", - "Epoch 2050/3000...\n", "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0644\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0695\n", + "Epoch 2050/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0694\n", "Epoch 2051/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0644\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0694\n", "Epoch 2052/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0643\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0694\n", "Epoch 2053/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0643\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0693\n", "Epoch 2054/3000...\n" ] }, @@ -8529,345 +8529,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0643\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0693\n", "Epoch 2055/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0642\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0692\n", "Epoch 2056/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0642\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0692\n", "Epoch 2057/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0641\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0691\n", "Epoch 2058/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0641\n", - "Epoch 2059/3000...\n", "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0641\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0691\n", + "Epoch 2059/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0691\n", "Epoch 2060/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.064\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.069\n", "Epoch 2061/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.064\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.069\n", "Epoch 2062/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0639\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0689\n", "Epoch 2063/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0639\n", - "Epoch 2064/3000...\n", - "Loss Discriminator: 0.685\n", + "Loss Discriminator: 0.6837\n", "Loss Generator: 0.707\n", - "Relative Entropy: 0.0639\n", + "Relative Entropy: 0.0689\n", + "Epoch 2064/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0689\n", "Epoch 2065/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0638\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0688\n", "Epoch 2066/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0638\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0688\n", "Epoch 2067/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0637\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0687\n", "Epoch 2068/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0637\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0687\n", "Epoch 2069/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0637\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0687\n", "Epoch 2070/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0636\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0686\n", "Epoch 2071/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0636\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0686\n", "Epoch 2072/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0635\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0685\n", "Epoch 2073/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0635\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0685\n", "Epoch 2074/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0635\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0684\n", "Epoch 2075/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0634\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0684\n", "Epoch 2076/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0634\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0684\n", "Epoch 2077/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0633\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0683\n", "Epoch 2078/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0633\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0683\n", "Epoch 2079/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0633\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0682\n", "Epoch 2080/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0632\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0682\n", "Epoch 2081/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0632\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0682\n", "Epoch 2082/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0631\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0681\n", "Epoch 2083/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0631\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0681\n", "Epoch 2084/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0631\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.068\n", "Epoch 2085/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.063\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.068\n", "Epoch 2086/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.063\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.068\n", "Epoch 2087/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0629\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0679\n", "Epoch 2088/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0629\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0679\n", "Epoch 2089/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0629\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0678\n", "Epoch 2090/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0628\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0678\n", "Epoch 2091/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0628\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0678\n", "Epoch 2092/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0627\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0677\n", "Epoch 2093/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0627\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0677\n", "Epoch 2094/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0627\n", - "Epoch 2095/3000...\n", - "Loss Discriminator: 0.6849\n", + "Loss Discriminator: 0.6845\n", "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0626\n", - "Epoch 2096/3000...\n", + "Relative Entropy: 0.0676\n", + "Epoch 2095/3000...\n", "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0626\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0676\n", + "Epoch 2096/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0675\n", "Epoch 2097/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0625\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0675\n", "Epoch 2098/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0625\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0675\n", "Epoch 2099/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0625\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0674\n", "Epoch 2100/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0624\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0674\n", "Epoch 2101/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0624\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0673\n", "Epoch 2102/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0623\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0673\n", "Epoch 2103/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0623\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0673\n", "Epoch 2104/3000...\n", - "Loss Discriminator: 0.6849\n", + "Loss Discriminator: 0.6835\n", "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0623\n", + "Relative Entropy: 0.0672\n", "Epoch 2105/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0622\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0672\n", "Epoch 2106/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0622\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0671\n", "Epoch 2107/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0621\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0671\n", "Epoch 2108/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0621\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0671\n", "Epoch 2109/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0621\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.067\n", "Epoch 2110/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.062\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.067\n", "Epoch 2111/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.062\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0669\n", "Epoch 2112/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0619\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0669\n", "Epoch 2113/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0619\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0669\n", "Epoch 2114/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0619\n", - "Epoch 2115/3000...\n", "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0618\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0668\n", + "Epoch 2115/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0668\n", "Epoch 2116/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0618\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0667\n", "Epoch 2117/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0618\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0667\n", "Epoch 2118/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0617\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0667\n", "Epoch 2119/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0617\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0666\n", "Epoch 2120/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0616\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0666\n", "Epoch 2121/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0616\n", - "Epoch 2122/3000...\n", "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0616\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0665\n", + "Epoch 2122/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0665\n", "Epoch 2123/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0615\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0665\n", "Epoch 2124/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0615\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0664\n", "Epoch 2125/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0614\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0664\n", "Epoch 2126/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0614\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0663\n", "Epoch 2127/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0614\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0663\n", "Epoch 2128/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0613\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0663\n", "Epoch 2129/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0613\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0662\n", "Epoch 2130/3000...\n", "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0612\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0662\n", "Epoch 2131/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0612\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0661\n", "Epoch 2132/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0612\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0661\n", "Epoch 2133/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0611\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.066\n", "Epoch 2134/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0611\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.066\n", "Epoch 2135/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.061\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.066\n", "Epoch 2136/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.061\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0659\n", "Epoch 2137/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.061\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0659\n", "Epoch 2138/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0609\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0658\n", "Epoch 2139/3000...\n" ] }, @@ -8875,345 +8875,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0609\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0658\n", "Epoch 2140/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0608\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0658\n", "Epoch 2141/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0608\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0657\n", "Epoch 2142/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0608\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0657\n", "Epoch 2143/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0607\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0656\n", "Epoch 2144/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0607\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0656\n", "Epoch 2145/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0607\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0656\n", "Epoch 2146/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0606\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0655\n", "Epoch 2147/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0606\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0655\n", "Epoch 2148/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0605\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0654\n", "Epoch 2149/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0605\n", - "Epoch 2150/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0605\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0654\n", + "Epoch 2150/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0654\n", "Epoch 2151/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0604\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0653\n", "Epoch 2152/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0604\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0653\n", "Epoch 2153/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0603\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0652\n", "Epoch 2154/3000...\n", "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0603\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0652\n", "Epoch 2155/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0603\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0652\n", "Epoch 2156/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0602\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0651\n", "Epoch 2157/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0602\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0651\n", "Epoch 2158/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0601\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.065\n", "Epoch 2159/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0601\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.065\n", "Epoch 2160/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0601\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.065\n", "Epoch 2161/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.06\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0649\n", "Epoch 2162/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.06\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0649\n", "Epoch 2163/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.06\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0648\n", "Epoch 2164/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0599\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0648\n", "Epoch 2165/3000...\n", "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0599\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0648\n", "Epoch 2166/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0598\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0647\n", "Epoch 2167/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0598\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0647\n", "Epoch 2168/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0598\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0647\n", "Epoch 2169/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0597\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0646\n", "Epoch 2170/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0597\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0646\n", "Epoch 2171/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0596\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0645\n", "Epoch 2172/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0596\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0645\n", "Epoch 2173/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0596\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0645\n", "Epoch 2174/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0595\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0644\n", "Epoch 2175/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0595\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0644\n", "Epoch 2176/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0594\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0643\n", "Epoch 2177/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0594\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0643\n", "Epoch 2178/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0594\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0643\n", "Epoch 2179/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0593\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0642\n", "Epoch 2180/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0593\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0642\n", "Epoch 2181/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0593\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0641\n", "Epoch 2182/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0592\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0641\n", "Epoch 2183/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0592\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0641\n", "Epoch 2184/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0591\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.064\n", "Epoch 2185/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0591\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.064\n", "Epoch 2186/3000...\n", "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0591\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0639\n", "Epoch 2187/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.059\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0639\n", "Epoch 2188/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.059\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0639\n", "Epoch 2189/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0589\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0638\n", "Epoch 2190/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0589\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0638\n", "Epoch 2191/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0589\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0637\n", "Epoch 2192/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0588\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0637\n", "Epoch 2193/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0588\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0637\n", "Epoch 2194/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0588\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0636\n", "Epoch 2195/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0587\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0636\n", "Epoch 2196/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0587\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0635\n", "Epoch 2197/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0586\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0635\n", "Epoch 2198/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0586\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0635\n", "Epoch 2199/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0586\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0634\n", "Epoch 2200/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0585\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0634\n", "Epoch 2201/3000...\n", "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0585\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0634\n", "Epoch 2202/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0585\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0633\n", "Epoch 2203/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0584\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0633\n", "Epoch 2204/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0584\n", - "Epoch 2205/3000...\n", - "Loss Discriminator: 0.6848\n", + "Loss Discriminator: 0.6847\n", "Loss Generator: 0.705\n", - "Relative Entropy: 0.0583\n", + "Relative Entropy: 0.0632\n", + "Epoch 2205/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0632\n", "Epoch 2206/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0583\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0632\n", "Epoch 2207/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0583\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0631\n", "Epoch 2208/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0582\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0631\n", "Epoch 2209/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0582\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.063\n", "Epoch 2210/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0581\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.063\n", "Epoch 2211/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0581\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.063\n", "Epoch 2212/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0581\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0629\n", "Epoch 2213/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.058\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0629\n", "Epoch 2214/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.058\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0628\n", "Epoch 2215/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.058\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0628\n", "Epoch 2216/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0579\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0628\n", "Epoch 2217/3000...\n", - "Loss Discriminator: 0.6848\n", + "Loss Discriminator: 0.6845\n", "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0579\n", + "Relative Entropy: 0.0627\n", "Epoch 2218/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0578\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0627\n", "Epoch 2219/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0578\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0626\n", "Epoch 2220/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0578\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0626\n", "Epoch 2221/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0577\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0626\n", "Epoch 2222/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0577\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0625\n", "Epoch 2223/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0577\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0625\n", "Epoch 2224/3000...\n" ] }, @@ -9221,345 +9221,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0576\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0625\n", "Epoch 2225/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0576\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0624\n", "Epoch 2226/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0575\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0624\n", "Epoch 2227/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0575\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0623\n", "Epoch 2228/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0575\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0623\n", "Epoch 2229/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0574\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0623\n", "Epoch 2230/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0574\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0622\n", "Epoch 2231/3000...\n", - "Loss Discriminator: 0.6845\n", + "Loss Discriminator: 0.6836\n", "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0573\n", + "Relative Entropy: 0.0622\n", "Epoch 2232/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0573\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0621\n", "Epoch 2233/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0573\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0621\n", "Epoch 2234/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0572\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0621\n", "Epoch 2235/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0572\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.062\n", "Epoch 2236/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0572\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.062\n", "Epoch 2237/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0571\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0619\n", "Epoch 2238/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0571\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0619\n", "Epoch 2239/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.057\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0619\n", "Epoch 2240/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.057\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0618\n", "Epoch 2241/3000...\n", "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.057\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0618\n", "Epoch 2242/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0569\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0618\n", "Epoch 2243/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0569\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0617\n", "Epoch 2244/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0569\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0617\n", "Epoch 2245/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0568\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0616\n", "Epoch 2246/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0568\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0616\n", "Epoch 2247/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0567\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0616\n", "Epoch 2248/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0567\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0615\n", "Epoch 2249/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0567\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0615\n", "Epoch 2250/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0566\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0614\n", "Epoch 2251/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0566\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0614\n", "Epoch 2252/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0566\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0614\n", "Epoch 2253/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0565\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0613\n", "Epoch 2254/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0565\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0613\n", "Epoch 2255/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0564\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0613\n", "Epoch 2256/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0564\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0612\n", "Epoch 2257/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0564\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0612\n", "Epoch 2258/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0563\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0611\n", "Epoch 2259/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0563\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0611\n", "Epoch 2260/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0563\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0611\n", "Epoch 2261/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0562\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.061\n", "Epoch 2262/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0562\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.061\n", "Epoch 2263/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0561\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0609\n", "Epoch 2264/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0561\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0609\n", "Epoch 2265/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0561\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0609\n", "Epoch 2266/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.056\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0608\n", "Epoch 2267/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.056\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0608\n", "Epoch 2268/3000...\n", "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.056\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0608\n", "Epoch 2269/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0559\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0607\n", "Epoch 2270/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0559\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0607\n", "Epoch 2271/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0558\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0606\n", "Epoch 2272/3000...\n", - "Loss Discriminator: 0.6852\n", + "Loss Discriminator: 0.6846\n", "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0558\n", + "Relative Entropy: 0.0606\n", "Epoch 2273/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0558\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0606\n", "Epoch 2274/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0557\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0605\n", "Epoch 2275/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0557\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0605\n", "Epoch 2276/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0557\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0605\n", "Epoch 2277/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0556\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0604\n", "Epoch 2278/3000...\n", "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0556\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0604\n", "Epoch 2279/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0556\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0603\n", "Epoch 2280/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0555\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0603\n", "Epoch 2281/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0555\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0603\n", "Epoch 2282/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0554\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0602\n", "Epoch 2283/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0554\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0602\n", "Epoch 2284/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0554\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0601\n", "Epoch 2285/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0553\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0601\n", "Epoch 2286/3000...\n", "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0553\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0601\n", "Epoch 2287/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0553\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.06\n", "Epoch 2288/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0552\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.06\n", "Epoch 2289/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0552\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.06\n", "Epoch 2290/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0551\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0599\n", "Epoch 2291/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0551\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0599\n", "Epoch 2292/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0551\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0598\n", "Epoch 2293/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.055\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0598\n", "Epoch 2294/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.055\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0598\n", "Epoch 2295/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.055\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0597\n", "Epoch 2296/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0549\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0597\n", "Epoch 2297/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0549\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0597\n", "Epoch 2298/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0548\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0596\n", "Epoch 2299/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0548\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0596\n", "Epoch 2300/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0548\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0595\n", "Epoch 2301/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0547\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0595\n", "Epoch 2302/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0547\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0595\n", "Epoch 2303/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0547\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0594\n", "Epoch 2304/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0546\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0594\n", "Epoch 2305/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0546\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0594\n", "Epoch 2306/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0546\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0593\n", "Epoch 2307/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0545\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0593\n", "Epoch 2308/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0545\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0592\n", "Epoch 2309/3000...\n" ] }, @@ -9567,345 +9567,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0544\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0592\n", "Epoch 2310/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0544\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0592\n", "Epoch 2311/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0544\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0591\n", "Epoch 2312/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0543\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0591\n", "Epoch 2313/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0543\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0591\n", "Epoch 2314/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0543\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.059\n", "Epoch 2315/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0542\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.059\n", "Epoch 2316/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0542\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0589\n", "Epoch 2317/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0542\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0589\n", "Epoch 2318/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0541\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0589\n", "Epoch 2319/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0541\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0588\n", "Epoch 2320/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.054\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0588\n", "Epoch 2321/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.054\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0588\n", "Epoch 2322/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.054\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0587\n", "Epoch 2323/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0539\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0587\n", "Epoch 2324/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0539\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0586\n", "Epoch 2325/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0539\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0586\n", "Epoch 2326/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0538\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0586\n", "Epoch 2327/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0538\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0585\n", "Epoch 2328/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0538\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0585\n", "Epoch 2329/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0537\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0585\n", "Epoch 2330/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0537\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0584\n", "Epoch 2331/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0536\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0584\n", "Epoch 2332/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0536\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0583\n", "Epoch 2333/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0536\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0583\n", "Epoch 2334/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0535\n", - "Epoch 2335/3000...\n", "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0535\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0583\n", + "Epoch 2335/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0582\n", "Epoch 2336/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0535\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0582\n", "Epoch 2337/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0534\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0582\n", "Epoch 2338/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0534\n", - "Epoch 2339/3000...\n", "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0534\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0581\n", + "Epoch 2339/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0581\n", "Epoch 2340/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0533\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.058\n", "Epoch 2341/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0533\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.058\n", "Epoch 2342/3000...\n", - "Loss Discriminator: 0.6868\n", + "Loss Discriminator: 0.6843\n", "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0532\n", + "Relative Entropy: 0.058\n", "Epoch 2343/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0532\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0579\n", "Epoch 2344/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0532\n", - "Epoch 2345/3000...\n", "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0531\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0579\n", + "Epoch 2345/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0579\n", "Epoch 2346/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0531\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0578\n", "Epoch 2347/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0531\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0578\n", "Epoch 2348/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.053\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0577\n", "Epoch 2349/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.053\n", - "Epoch 2350/3000...\n", "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.053\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0577\n", + "Epoch 2350/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0577\n", "Epoch 2351/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0529\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0576\n", "Epoch 2352/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0529\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0576\n", "Epoch 2353/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0528\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0576\n", "Epoch 2354/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0528\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0575\n", "Epoch 2355/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0528\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0575\n", "Epoch 2356/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0527\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0575\n", "Epoch 2357/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0527\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0574\n", "Epoch 2358/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0527\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0574\n", "Epoch 2359/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0526\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0573\n", "Epoch 2360/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0526\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0573\n", "Epoch 2361/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0526\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0573\n", "Epoch 2362/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0525\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0572\n", "Epoch 2363/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0525\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0572\n", "Epoch 2364/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0525\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0572\n", "Epoch 2365/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0524\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0571\n", "Epoch 2366/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0524\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0571\n", "Epoch 2367/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0523\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.057\n", "Epoch 2368/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0523\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.057\n", "Epoch 2369/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0523\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.057\n", "Epoch 2370/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0522\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0569\n", "Epoch 2371/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0522\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0569\n", "Epoch 2372/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0522\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0569\n", "Epoch 2373/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0521\n", - "Epoch 2374/3000...\n", - "Loss Discriminator: 0.6857\n", + "Loss Discriminator: 0.6865\n", "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0521\n", + "Relative Entropy: 0.0568\n", + "Epoch 2374/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0568\n", "Epoch 2375/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0521\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0568\n", "Epoch 2376/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.052\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0567\n", "Epoch 2377/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.052\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0567\n", "Epoch 2378/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.052\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0566\n", "Epoch 2379/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0519\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0566\n", "Epoch 2380/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0519\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0566\n", "Epoch 2381/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0518\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0565\n", "Epoch 2382/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0518\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0565\n", "Epoch 2383/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0518\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0565\n", "Epoch 2384/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0517\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0564\n", "Epoch 2385/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0517\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0564\n", "Epoch 2386/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0517\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0564\n", "Epoch 2387/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0516\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0563\n", "Epoch 2388/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0516\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0563\n", "Epoch 2389/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0516\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0562\n", "Epoch 2390/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0515\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0562\n", "Epoch 2391/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0515\n", - "Epoch 2392/3000...\n", "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0515\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0562\n", + "Epoch 2392/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0561\n", "Epoch 2393/3000...\n", "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0514\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0561\n", "Epoch 2394/3000...\n" ] }, @@ -9913,345 +9913,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0514\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0561\n", "Epoch 2395/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0513\n", - "Epoch 2396/3000...\n", "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0513\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.056\n", + "Epoch 2396/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.056\n", "Epoch 2397/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0513\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.056\n", "Epoch 2398/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0512\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0559\n", "Epoch 2399/3000...\n", "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0512\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0559\n", "Epoch 2400/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0512\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0558\n", "Epoch 2401/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0511\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0558\n", "Epoch 2402/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0511\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0558\n", "Epoch 2403/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0511\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0557\n", "Epoch 2404/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.051\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0557\n", "Epoch 2405/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.051\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0557\n", "Epoch 2406/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.051\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0556\n", "Epoch 2407/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0509\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0556\n", "Epoch 2408/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0509\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0556\n", "Epoch 2409/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0509\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0555\n", "Epoch 2410/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0508\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0555\n", "Epoch 2411/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0508\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0554\n", "Epoch 2412/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0507\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0554\n", "Epoch 2413/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0507\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0554\n", "Epoch 2414/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0507\n", - "Epoch 2415/3000...\n", - "Loss Discriminator: 0.6846\n", + "Loss Discriminator: 0.686\n", "Loss Generator: 0.706\n", - "Relative Entropy: 0.0506\n", + "Relative Entropy: 0.0553\n", + "Epoch 2415/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0553\n", "Epoch 2416/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0506\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0553\n", "Epoch 2417/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0506\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0552\n", "Epoch 2418/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0505\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0552\n", "Epoch 2419/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0505\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0552\n", "Epoch 2420/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0505\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0551\n", "Epoch 2421/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0504\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0551\n", "Epoch 2422/3000...\n", - "Loss Discriminator: 0.6865\n", + "Loss Discriminator: 0.6858\n", "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0504\n", + "Relative Entropy: 0.055\n", "Epoch 2423/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0504\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.055\n", "Epoch 2424/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0503\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.055\n", "Epoch 2425/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0503\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0549\n", "Epoch 2426/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0503\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0549\n", "Epoch 2427/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0502\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0549\n", "Epoch 2428/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0502\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0548\n", "Epoch 2429/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0502\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0548\n", "Epoch 2430/3000...\n", "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0501\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0548\n", "Epoch 2431/3000...\n", - "Loss Discriminator: 0.6849\n", + "Loss Discriminator: 0.6851\n", "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0501\n", + "Relative Entropy: 0.0547\n", "Epoch 2432/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0501\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0547\n", "Epoch 2433/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.05\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0547\n", "Epoch 2434/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.05\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0546\n", "Epoch 2435/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0499\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0546\n", "Epoch 2436/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0499\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0545\n", "Epoch 2437/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0499\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0545\n", "Epoch 2438/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0498\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0545\n", "Epoch 2439/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0498\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0544\n", "Epoch 2440/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0498\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0544\n", "Epoch 2441/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0497\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0544\n", "Epoch 2442/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0497\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0543\n", "Epoch 2443/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0497\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0543\n", "Epoch 2444/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0496\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0543\n", "Epoch 2445/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0496\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0542\n", "Epoch 2446/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0496\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0542\n", "Epoch 2447/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0495\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0542\n", "Epoch 2448/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0495\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0541\n", "Epoch 2449/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0495\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0541\n", "Epoch 2450/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0494\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.054\n", "Epoch 2451/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0494\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.054\n", "Epoch 2452/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0494\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.054\n", "Epoch 2453/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0493\n", - "Epoch 2454/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0493\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0539\n", + "Epoch 2454/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0539\n", "Epoch 2455/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0493\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0539\n", "Epoch 2456/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0492\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0538\n", "Epoch 2457/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0492\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0538\n", "Epoch 2458/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0492\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0538\n", "Epoch 2459/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0491\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0537\n", "Epoch 2460/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0491\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0537\n", "Epoch 2461/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.049\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0537\n", "Epoch 2462/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.049\n", - "Epoch 2463/3000...\n", "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.049\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0536\n", + "Epoch 2463/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0536\n", "Epoch 2464/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0489\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0536\n", "Epoch 2465/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0489\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0535\n", "Epoch 2466/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0489\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0535\n", "Epoch 2467/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0488\n", - "Epoch 2468/3000...\n", "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0488\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0534\n", + "Epoch 2468/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0534\n", "Epoch 2469/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0488\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0534\n", "Epoch 2470/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0487\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0533\n", "Epoch 2471/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0487\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0533\n", "Epoch 2472/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0487\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0533\n", "Epoch 2473/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0486\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0532\n", "Epoch 2474/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0486\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0532\n", "Epoch 2475/3000...\n", "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0486\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0532\n", "Epoch 2476/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0485\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0531\n", "Epoch 2477/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0485\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0531\n", "Epoch 2478/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0485\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0531\n", "Epoch 2479/3000...\n" ] }, @@ -10259,345 +10259,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0484\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.053\n", "Epoch 2480/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0484\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.053\n", "Epoch 2481/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0484\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.053\n", "Epoch 2482/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0483\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0529\n", "Epoch 2483/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0483\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0529\n", "Epoch 2484/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0483\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0528\n", "Epoch 2485/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0482\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0528\n", "Epoch 2486/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0482\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0528\n", "Epoch 2487/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0482\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0527\n", "Epoch 2488/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0481\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0527\n", "Epoch 2489/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0481\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0527\n", "Epoch 2490/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0481\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0526\n", "Epoch 2491/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.048\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0526\n", "Epoch 2492/3000...\n", - "Loss Discriminator: 0.6842\n", + "Loss Discriminator: 0.6847\n", "Loss Generator: 0.702\n", - "Relative Entropy: 0.048\n", + "Relative Entropy: 0.0526\n", "Epoch 2493/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.048\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0525\n", "Epoch 2494/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0479\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0525\n", "Epoch 2495/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0479\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0525\n", "Epoch 2496/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0479\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0524\n", "Epoch 2497/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0478\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0524\n", "Epoch 2498/3000...\n", - "Loss Discriminator: 0.6856\n", + "Loss Discriminator: 0.6858\n", "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0478\n", + "Relative Entropy: 0.0524\n", "Epoch 2499/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0478\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0523\n", "Epoch 2500/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0477\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0523\n", "Epoch 2501/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0477\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0523\n", "Epoch 2502/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0477\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0522\n", "Epoch 2503/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0476\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0522\n", "Epoch 2504/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0476\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0522\n", "Epoch 2505/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0476\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0521\n", "Epoch 2506/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0475\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0521\n", "Epoch 2507/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0475\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.052\n", "Epoch 2508/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0475\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.052\n", "Epoch 2509/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0474\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.052\n", "Epoch 2510/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0474\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0519\n", "Epoch 2511/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0473\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0519\n", "Epoch 2512/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0473\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0519\n", "Epoch 2513/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0473\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0518\n", "Epoch 2514/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0472\n", - "Epoch 2515/3000...\n", "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0472\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0518\n", + "Epoch 2515/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0518\n", "Epoch 2516/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0472\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0517\n", "Epoch 2517/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0471\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0517\n", "Epoch 2518/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0471\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0517\n", "Epoch 2519/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0471\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0516\n", "Epoch 2520/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.047\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0516\n", "Epoch 2521/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.047\n", - "Epoch 2522/3000...\n", "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.047\n", - "Epoch 2523/3000...\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0516\n", + "Epoch 2522/3000...\n", "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0469\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0515\n", + "Epoch 2523/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0515\n", "Epoch 2524/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0469\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0515\n", "Epoch 2525/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0469\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0514\n", "Epoch 2526/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0468\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0514\n", "Epoch 2527/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0468\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0514\n", "Epoch 2528/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0468\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0513\n", "Epoch 2529/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0467\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0513\n", "Epoch 2530/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0467\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0513\n", "Epoch 2531/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0467\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0512\n", "Epoch 2532/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0466\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0512\n", "Epoch 2533/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0466\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0512\n", "Epoch 2534/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0466\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0511\n", "Epoch 2535/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0465\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0511\n", "Epoch 2536/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0465\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.051\n", "Epoch 2537/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0465\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.051\n", "Epoch 2538/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0464\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.051\n", "Epoch 2539/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0464\n", - "Epoch 2540/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0464\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0509\n", + "Epoch 2540/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0509\n", "Epoch 2541/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0463\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0509\n", "Epoch 2542/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0463\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0508\n", "Epoch 2543/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0463\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0508\n", "Epoch 2544/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0462\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0508\n", "Epoch 2545/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0462\n", - "Epoch 2546/3000...\n", - "Loss Discriminator: 0.6869\n", + "Loss Discriminator: 0.6867\n", "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0462\n", + "Relative Entropy: 0.0507\n", + "Epoch 2546/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0507\n", "Epoch 2547/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0461\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0507\n", "Epoch 2548/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0461\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0506\n", "Epoch 2549/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0461\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0506\n", "Epoch 2550/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0461\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0506\n", "Epoch 2551/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.046\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0505\n", "Epoch 2552/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.046\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0505\n", "Epoch 2553/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.046\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0505\n", "Epoch 2554/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0459\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0504\n", "Epoch 2555/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0459\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0504\n", "Epoch 2556/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0459\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0504\n", "Epoch 2557/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0458\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0503\n", "Epoch 2558/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0458\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0503\n", "Epoch 2559/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0458\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0503\n", "Epoch 2560/3000...\n", "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0457\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0502\n", "Epoch 2561/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0457\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0502\n", "Epoch 2562/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0457\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0502\n", "Epoch 2563/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0456\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0501\n", "Epoch 2564/3000...\n" ] }, @@ -10605,345 +10605,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0456\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0501\n", "Epoch 2565/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0456\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0501\n", "Epoch 2566/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0455\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.05\n", "Epoch 2567/3000...\n", "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0455\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.05\n", "Epoch 2568/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0455\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.05\n", "Epoch 2569/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0454\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0499\n", "Epoch 2570/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0454\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0499\n", "Epoch 2571/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0454\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0499\n", "Epoch 2572/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0453\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0498\n", "Epoch 2573/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0453\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0498\n", "Epoch 2574/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0453\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0498\n", "Epoch 2575/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0452\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0497\n", "Epoch 2576/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0452\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0497\n", "Epoch 2577/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0452\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0497\n", "Epoch 2578/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0451\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0496\n", "Epoch 2579/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0451\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0496\n", "Epoch 2580/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0451\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0496\n", "Epoch 2581/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.045\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0495\n", "Epoch 2582/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.045\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0495\n", "Epoch 2583/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.045\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0495\n", "Epoch 2584/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0449\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0494\n", "Epoch 2585/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0449\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0494\n", "Epoch 2586/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0449\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0494\n", "Epoch 2587/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0448\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0493\n", "Epoch 2588/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0448\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0493\n", "Epoch 2589/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0448\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0493\n", "Epoch 2590/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0447\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0492\n", "Epoch 2591/3000...\n", "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0447\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0492\n", "Epoch 2592/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0447\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0492\n", "Epoch 2593/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0446\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0491\n", "Epoch 2594/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0446\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0491\n", "Epoch 2595/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0446\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0491\n", "Epoch 2596/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0445\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.049\n", "Epoch 2597/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0445\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.049\n", "Epoch 2598/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0445\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.049\n", "Epoch 2599/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0444\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0489\n", "Epoch 2600/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0444\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0489\n", "Epoch 2601/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0444\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0489\n", "Epoch 2602/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0444\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0488\n", "Epoch 2603/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0443\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0488\n", "Epoch 2604/3000...\n", "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0443\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0488\n", "Epoch 2605/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0443\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0487\n", "Epoch 2606/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0442\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0487\n", "Epoch 2607/3000...\n", "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0442\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0487\n", "Epoch 2608/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0442\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0486\n", "Epoch 2609/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0441\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0486\n", "Epoch 2610/3000...\n", - "Loss Discriminator: 0.6877\n", + "Loss Discriminator: 0.6872\n", "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0441\n", + "Relative Entropy: 0.0486\n", "Epoch 2611/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0441\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0485\n", "Epoch 2612/3000...\n", "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.044\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0485\n", "Epoch 2613/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.044\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0485\n", "Epoch 2614/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.044\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0484\n", "Epoch 2615/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0439\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0484\n", "Epoch 2616/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0439\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0484\n", "Epoch 2617/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0439\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0483\n", "Epoch 2618/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0438\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0483\n", "Epoch 2619/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0438\n", - "Epoch 2620/3000...\n", - "Loss Discriminator: 0.686\n", + "Loss Discriminator: 0.6863\n", "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0438\n", + "Relative Entropy: 0.0483\n", + "Epoch 2620/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0482\n", "Epoch 2621/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0437\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0482\n", "Epoch 2622/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0437\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0482\n", "Epoch 2623/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0437\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0481\n", "Epoch 2624/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0436\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0481\n", "Epoch 2625/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0436\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0481\n", "Epoch 2626/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0436\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.048\n", "Epoch 2627/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0435\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.048\n", "Epoch 2628/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0435\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.048\n", "Epoch 2629/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0435\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0479\n", "Epoch 2630/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0435\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0479\n", "Epoch 2631/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0434\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0479\n", "Epoch 2632/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0434\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0478\n", "Epoch 2633/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0434\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0478\n", "Epoch 2634/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0433\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0478\n", "Epoch 2635/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0433\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0477\n", "Epoch 2636/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0433\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0477\n", "Epoch 2637/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0432\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0477\n", "Epoch 2638/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0432\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0476\n", "Epoch 2639/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0432\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0476\n", "Epoch 2640/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0431\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0476\n", "Epoch 2641/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0431\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0475\n", "Epoch 2642/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0431\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0475\n", "Epoch 2643/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.043\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0475\n", "Epoch 2644/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.043\n", - "Epoch 2645/3000...\n", "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.043\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0474\n", + "Epoch 2645/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0474\n", "Epoch 2646/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0429\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0474\n", "Epoch 2647/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0429\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0473\n", "Epoch 2648/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0429\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0473\n", "Epoch 2649/3000...\n" ] }, @@ -10951,345 +10951,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0429\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0473\n", "Epoch 2650/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0428\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0472\n", "Epoch 2651/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0428\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0472\n", "Epoch 2652/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0428\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0472\n", "Epoch 2653/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0427\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0472\n", "Epoch 2654/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0427\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0471\n", "Epoch 2655/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0427\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0471\n", "Epoch 2656/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0426\n", - "Epoch 2657/3000...\n", "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0426\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0471\n", + "Epoch 2657/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.047\n", "Epoch 2658/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0426\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.047\n", "Epoch 2659/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0425\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.047\n", "Epoch 2660/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0425\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0469\n", "Epoch 2661/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0425\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0469\n", "Epoch 2662/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0424\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0469\n", "Epoch 2663/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0424\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0468\n", "Epoch 2664/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0424\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0468\n", "Epoch 2665/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0423\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0468\n", "Epoch 2666/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0423\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0467\n", "Epoch 2667/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0423\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0467\n", "Epoch 2668/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0423\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0467\n", "Epoch 2669/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0422\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0466\n", "Epoch 2670/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0422\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0466\n", "Epoch 2671/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0422\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0466\n", "Epoch 2672/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0421\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0465\n", "Epoch 2673/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0421\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0465\n", "Epoch 2674/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0421\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0465\n", "Epoch 2675/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.042\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0464\n", "Epoch 2676/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.042\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0464\n", "Epoch 2677/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.042\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0464\n", "Epoch 2678/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0419\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0463\n", "Epoch 2679/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0419\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0463\n", "Epoch 2680/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0419\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0463\n", "Epoch 2681/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0418\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0462\n", "Epoch 2682/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0418\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0462\n", "Epoch 2683/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0418\n", - "Epoch 2684/3000...\n", "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0418\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0462\n", + "Epoch 2684/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0462\n", "Epoch 2685/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0417\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0461\n", "Epoch 2686/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0417\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0461\n", "Epoch 2687/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0417\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0461\n", "Epoch 2688/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0416\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.046\n", "Epoch 2689/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0416\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.046\n", "Epoch 2690/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0416\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.046\n", "Epoch 2691/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0415\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0459\n", "Epoch 2692/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0415\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0459\n", "Epoch 2693/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0415\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0459\n", "Epoch 2694/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0414\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0458\n", "Epoch 2695/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0414\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0458\n", "Epoch 2696/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.6987\n", - "Relative Entropy: 0.0414\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0458\n", "Epoch 2697/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0414\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0457\n", "Epoch 2698/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0413\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0457\n", "Epoch 2699/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0413\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0457\n", "Epoch 2700/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0413\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0456\n", "Epoch 2701/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0412\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0456\n", "Epoch 2702/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0412\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0456\n", "Epoch 2703/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0412\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0455\n", "Epoch 2704/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0411\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0455\n", "Epoch 2705/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0411\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0455\n", "Epoch 2706/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0411\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0455\n", "Epoch 2707/3000...\n", "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.041\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0454\n", "Epoch 2708/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.041\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0454\n", "Epoch 2709/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.041\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0454\n", "Epoch 2710/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.041\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0453\n", "Epoch 2711/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0409\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0453\n", "Epoch 2712/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0409\n", - "Epoch 2713/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0409\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0453\n", + "Epoch 2713/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0452\n", "Epoch 2714/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0408\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0452\n", "Epoch 2715/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0408\n", - "Epoch 2716/3000...\n", - "Loss Discriminator: 0.6875\n", + "Loss Discriminator: 0.6881\n", "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0408\n", + "Relative Entropy: 0.0452\n", + "Epoch 2716/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0451\n", "Epoch 2717/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0407\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0451\n", "Epoch 2718/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0407\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0451\n", "Epoch 2719/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0407\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.045\n", "Epoch 2720/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0406\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.045\n", "Epoch 2721/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0406\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.045\n", "Epoch 2722/3000...\n", "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0406\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0449\n", "Epoch 2723/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0406\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0449\n", "Epoch 2724/3000...\n", - "Loss Discriminator: 0.6883\n", + "Loss Discriminator: 0.6874\n", "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0405\n", + "Relative Entropy: 0.0449\n", "Epoch 2725/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0405\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0449\n", "Epoch 2726/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0405\n", - "Epoch 2727/3000...\n", "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0404\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0448\n", + "Epoch 2727/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0448\n", "Epoch 2728/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0404\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0448\n", "Epoch 2729/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0404\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0447\n", "Epoch 2730/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0403\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0447\n", "Epoch 2731/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0403\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0447\n", "Epoch 2732/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.6979\n", - "Relative Entropy: 0.0403\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0446\n", "Epoch 2733/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0403\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0446\n", "Epoch 2734/3000...\n" ] }, @@ -11297,345 +11297,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0402\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0446\n", "Epoch 2735/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0402\n", - "Epoch 2736/3000...\n", "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.0402\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0445\n", + "Epoch 2736/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0445\n", "Epoch 2737/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0401\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0445\n", "Epoch 2738/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0401\n", - "Epoch 2739/3000...\n", "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0401\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0444\n", + "Epoch 2739/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0444\n", "Epoch 2740/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.04\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0444\n", "Epoch 2741/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.04\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0444\n", "Epoch 2742/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.04\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0443\n", "Epoch 2743/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.04\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0443\n", "Epoch 2744/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0399\n", - "Epoch 2745/3000...\n", "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0399\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0443\n", + "Epoch 2745/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0442\n", "Epoch 2746/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0399\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0442\n", "Epoch 2747/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0398\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6971\n", + "Relative Entropy: 0.0442\n", "Epoch 2748/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0398\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0441\n", "Epoch 2749/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0398\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0441\n", "Epoch 2750/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0397\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0441\n", "Epoch 2751/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0397\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.044\n", "Epoch 2752/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0397\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.044\n", "Epoch 2753/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0397\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.044\n", "Epoch 2754/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0396\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.044\n", "Epoch 2755/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0396\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0439\n", "Epoch 2756/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6977\n", - "Relative Entropy: 0.0396\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0439\n", "Epoch 2757/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0395\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0439\n", "Epoch 2758/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0395\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0438\n", "Epoch 2759/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0395\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0438\n", "Epoch 2760/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0394\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0438\n", "Epoch 2761/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0394\n", - "Epoch 2762/3000...\n", "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0394\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0437\n", + "Epoch 2762/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0437\n", "Epoch 2763/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0394\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0437\n", "Epoch 2764/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0393\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0436\n", "Epoch 2765/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0393\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0436\n", "Epoch 2766/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0393\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0436\n", "Epoch 2767/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0392\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0436\n", "Epoch 2768/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0392\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0435\n", "Epoch 2769/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0392\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0435\n", "Epoch 2770/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0391\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0435\n", "Epoch 2771/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0391\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0434\n", "Epoch 2772/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0391\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0434\n", "Epoch 2773/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0391\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0434\n", "Epoch 2774/3000...\n", - "Loss Discriminator: 0.6898\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.039\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0433\n", "Epoch 2775/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.039\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0433\n", "Epoch 2776/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.039\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0433\n", "Epoch 2777/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0389\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0433\n", "Epoch 2778/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0389\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0432\n", "Epoch 2779/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0389\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0432\n", "Epoch 2780/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0388\n", - "Epoch 2781/3000...\n", "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0388\n", - "Epoch 2782/3000...\n", - "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0432\n", + "Epoch 2781/3000...\n", + "Loss Discriminator: 0.687\n", "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0388\n", + "Relative Entropy: 0.0431\n", + "Epoch 2782/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0431\n", "Epoch 2783/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0388\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0431\n", "Epoch 2784/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0387\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.043\n", "Epoch 2785/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0387\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.043\n", "Epoch 2786/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0387\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.043\n", "Epoch 2787/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0386\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0429\n", "Epoch 2788/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0386\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0429\n", "Epoch 2789/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0386\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0429\n", "Epoch 2790/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0386\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0429\n", "Epoch 2791/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0385\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0428\n", "Epoch 2792/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0385\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0428\n", "Epoch 2793/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0385\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0428\n", "Epoch 2794/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0384\n", + "Loss Discriminator: 0.6893\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0427\n", "Epoch 2795/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.6967\n", - "Relative Entropy: 0.0384\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6984\n", + "Relative Entropy: 0.0427\n", "Epoch 2796/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0384\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0427\n", "Epoch 2797/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0384\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0427\n", "Epoch 2798/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0383\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0426\n", "Epoch 2799/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.6982\n", - "Relative Entropy: 0.0383\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0426\n", "Epoch 2800/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0383\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0426\n", "Epoch 2801/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0382\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0425\n", "Epoch 2802/3000...\n", - "Loss Discriminator: 0.6875\n", + "Loss Discriminator: 0.6872\n", "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0382\n", + "Relative Entropy: 0.0425\n", "Epoch 2803/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0382\n", - "Epoch 2804/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0381\n", - "Epoch 2805/3000...\n", "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0425\n", + "Epoch 2804/3000...\n", + "Loss Discriminator: 0.6869\n", "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0381\n", + "Relative Entropy: 0.0424\n", + "Epoch 2805/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0424\n", "Epoch 2806/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0381\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0424\n", "Epoch 2807/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0381\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0424\n", "Epoch 2808/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.038\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0423\n", "Epoch 2809/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6975\n", - "Relative Entropy: 0.038\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0423\n", "Epoch 2810/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.038\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0423\n", "Epoch 2811/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0379\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0422\n", "Epoch 2812/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0379\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0422\n", "Epoch 2813/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0379\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0422\n", "Epoch 2814/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0379\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0421\n", "Epoch 2815/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0378\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0421\n", "Epoch 2816/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0378\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0421\n", "Epoch 2817/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0378\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0421\n", "Epoch 2818/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0377\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.042\n", "Epoch 2819/3000...\n" ] }, @@ -11643,345 +11643,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0377\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.042\n", "Epoch 2820/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0377\n", + "Loss Discriminator: 0.6898\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.042\n", "Epoch 2821/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0377\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0419\n", "Epoch 2822/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0376\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0419\n", "Epoch 2823/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0376\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0419\n", "Epoch 2824/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0376\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0418\n", "Epoch 2825/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0375\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0418\n", "Epoch 2826/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0375\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0418\n", "Epoch 2827/3000...\n", "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0375\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0418\n", "Epoch 2828/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0375\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0417\n", "Epoch 2829/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0374\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0417\n", "Epoch 2830/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0374\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0417\n", "Epoch 2831/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0374\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0416\n", "Epoch 2832/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0373\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0416\n", "Epoch 2833/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0373\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0416\n", "Epoch 2834/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0373\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0416\n", "Epoch 2835/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0373\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0415\n", "Epoch 2836/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0372\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0415\n", "Epoch 2837/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0372\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0415\n", "Epoch 2838/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0372\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0414\n", "Epoch 2839/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0371\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0414\n", "Epoch 2840/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6985\n", - "Relative Entropy: 0.0371\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0414\n", "Epoch 2841/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0371\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6987\n", + "Relative Entropy: 0.0413\n", "Epoch 2842/3000...\n", "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0371\n", - "Epoch 2843/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.037\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0413\n", + "Epoch 2843/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0413\n", "Epoch 2844/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.037\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0413\n", "Epoch 2845/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.037\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0412\n", "Epoch 2846/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0369\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0412\n", "Epoch 2847/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0369\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0412\n", "Epoch 2848/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0369\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0411\n", "Epoch 2849/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0369\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0411\n", "Epoch 2850/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.698\n", - "Relative Entropy: 0.0368\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0411\n", "Epoch 2851/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0368\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0411\n", "Epoch 2852/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0368\n", + "Loss Discriminator: 0.6894\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.041\n", "Epoch 2853/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0367\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.041\n", "Epoch 2854/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0367\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.041\n", "Epoch 2855/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0367\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0409\n", "Epoch 2856/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0367\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0409\n", "Epoch 2857/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0366\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0409\n", "Epoch 2858/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0366\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0408\n", "Epoch 2859/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0366\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0408\n", "Epoch 2860/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0365\n", - "Epoch 2861/3000...\n", - "Loss Discriminator: 0.6883\n", + "Loss Discriminator: 0.6876\n", "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0365\n", + "Relative Entropy: 0.0408\n", + "Epoch 2861/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0408\n", "Epoch 2862/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0365\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0407\n", "Epoch 2863/3000...\n", "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0365\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0407\n", "Epoch 2864/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0364\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0407\n", "Epoch 2865/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0364\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0406\n", "Epoch 2866/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0364\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0406\n", "Epoch 2867/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0363\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0406\n", "Epoch 2868/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0363\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0406\n", "Epoch 2869/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0363\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0405\n", "Epoch 2870/3000...\n", "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6974\n", - "Relative Entropy: 0.0363\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0405\n", "Epoch 2871/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0362\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0405\n", "Epoch 2872/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0362\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.6989\n", + "Relative Entropy: 0.0404\n", "Epoch 2873/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.697\n", - "Relative Entropy: 0.0362\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0404\n", "Epoch 2874/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6967\n", - "Relative Entropy: 0.0361\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0404\n", "Epoch 2875/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0361\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6958\n", + "Relative Entropy: 0.0404\n", "Epoch 2876/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0361\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0403\n", "Epoch 2877/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.6976\n", - "Relative Entropy: 0.0361\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0403\n", "Epoch 2878/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.036\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0403\n", "Epoch 2879/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.036\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0402\n", "Epoch 2880/3000...\n", - "Loss Discriminator: 0.6893\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.036\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0402\n", "Epoch 2881/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.036\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0402\n", "Epoch 2882/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0359\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0402\n", "Epoch 2883/3000...\n", - "Loss Discriminator: 0.69\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0359\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0401\n", "Epoch 2884/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0359\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0401\n", "Epoch 2885/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0358\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0401\n", "Epoch 2886/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0358\n", + "Loss Discriminator: 0.6895\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.04\n", "Epoch 2887/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0358\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.04\n", "Epoch 2888/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0358\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.04\n", "Epoch 2889/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0357\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.04\n", "Epoch 2890/3000...\n", - "Loss Discriminator: 0.6898\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0357\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0399\n", "Epoch 2891/3000...\n", - "Loss Discriminator: 0.6894\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0357\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0399\n", "Epoch 2892/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0356\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0399\n", "Epoch 2893/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0356\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0398\n", "Epoch 2894/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0356\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0398\n", "Epoch 2895/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0356\n", - "Epoch 2896/3000...\n", - "Loss Discriminator: 0.6889\n", + "Loss Discriminator: 0.6883\n", "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0355\n", + "Relative Entropy: 0.0398\n", + "Epoch 2896/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0398\n", "Epoch 2897/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6985\n", - "Relative Entropy: 0.0355\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0397\n", "Epoch 2898/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0355\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0397\n", "Epoch 2899/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0355\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0397\n", "Epoch 2900/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0354\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0396\n", "Epoch 2901/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0354\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0396\n", "Epoch 2902/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0354\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0396\n", "Epoch 2903/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0353\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0396\n", "Epoch 2904/3000...\n" ] }, @@ -11989,345 +11989,345 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0353\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0395\n", "Epoch 2905/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0353\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0395\n", "Epoch 2906/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0353\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0395\n", "Epoch 2907/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0352\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0394\n", "Epoch 2908/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0352\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0394\n", "Epoch 2909/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0352\n", + "Loss Discriminator: 0.6899\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0394\n", "Epoch 2910/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0352\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0394\n", "Epoch 2911/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0351\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0393\n", "Epoch 2912/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0351\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0393\n", "Epoch 2913/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6967\n", - "Relative Entropy: 0.0351\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0393\n", "Epoch 2914/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.035\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0393\n", "Epoch 2915/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.035\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.6998\n", + "Relative Entropy: 0.0392\n", "Epoch 2916/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.035\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0392\n", "Epoch 2917/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.035\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0392\n", "Epoch 2918/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0349\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0391\n", "Epoch 2919/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0349\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0391\n", "Epoch 2920/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0349\n", - "Epoch 2921/3000...\n", "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0349\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0391\n", + "Epoch 2921/3000...\n", + "Loss Discriminator: 0.689\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0391\n", "Epoch 2922/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0348\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.6973\n", + "Relative Entropy: 0.039\n", "Epoch 2923/3000...\n", - "Loss Discriminator: 0.6895\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0348\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.6987\n", + "Relative Entropy: 0.039\n", "Epoch 2924/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.6986\n", - "Relative Entropy: 0.0348\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.039\n", "Epoch 2925/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.0347\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0389\n", "Epoch 2926/3000...\n", "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0347\n", + "Loss Generator: 0.6986\n", + "Relative Entropy: 0.0389\n", "Epoch 2927/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0347\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0389\n", "Epoch 2928/3000...\n", - "Loss Discriminator: 0.6894\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0347\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0389\n", "Epoch 2929/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0346\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.6999\n", + "Relative Entropy: 0.0388\n", "Epoch 2930/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0346\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0388\n", "Epoch 2931/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0346\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0388\n", "Epoch 2932/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0346\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0388\n", "Epoch 2933/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0345\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0387\n", "Epoch 2934/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0345\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0387\n", "Epoch 2935/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0345\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0387\n", "Epoch 2936/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0344\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0386\n", "Epoch 2937/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6977\n", - "Relative Entropy: 0.0344\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0386\n", "Epoch 2938/3000...\n", - "Loss Discriminator: 0.69\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0344\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0386\n", "Epoch 2939/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0344\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0386\n", "Epoch 2940/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0343\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0385\n", "Epoch 2941/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0343\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0385\n", "Epoch 2942/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0343\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0385\n", "Epoch 2943/3000...\n", "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0343\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0385\n", "Epoch 2944/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0342\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0384\n", "Epoch 2945/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.0342\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0384\n", "Epoch 2946/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0342\n", - "Epoch 2947/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0341\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0384\n", + "Epoch 2947/3000...\n", + "Loss Discriminator: 0.6889\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0383\n", "Epoch 2948/3000...\n", - "Loss Discriminator: 0.6899\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0341\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6973\n", + "Relative Entropy: 0.0383\n", "Epoch 2949/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0341\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0383\n", "Epoch 2950/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.0341\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0383\n", "Epoch 2951/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.034\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0382\n", "Epoch 2952/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.034\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0382\n", "Epoch 2953/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.034\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0382\n", "Epoch 2954/3000...\n", "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.6986\n", - "Relative Entropy: 0.034\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0382\n", "Epoch 2955/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0339\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0381\n", "Epoch 2956/3000...\n", - "Loss Discriminator: 0.6895\n", - "Loss Generator: 0.6987\n", - "Relative Entropy: 0.0339\n", + "Loss Discriminator: 0.6888\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0381\n", "Epoch 2957/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0339\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0381\n", "Epoch 2958/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0339\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.6979\n", + "Relative Entropy: 0.038\n", "Epoch 2959/3000...\n", - "Loss Discriminator: 0.6899\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0338\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.038\n", "Epoch 2960/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6949\n", - "Relative Entropy: 0.0338\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.038\n", "Epoch 2961/3000...\n", - "Loss Discriminator: 0.6894\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0338\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.038\n", "Epoch 2962/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0337\n", + "Loss Discriminator: 0.6893\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0379\n", "Epoch 2963/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0337\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0379\n", "Epoch 2964/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0337\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0379\n", "Epoch 2965/3000...\n", "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0337\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0379\n", "Epoch 2966/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0336\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0378\n", "Epoch 2967/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0336\n", - "Epoch 2968/3000...\n", - "Loss Discriminator: 0.6877\n", + "Loss Discriminator: 0.6889\n", "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0336\n", + "Relative Entropy: 0.0378\n", + "Epoch 2968/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0378\n", "Epoch 2969/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6973\n", - "Relative Entropy: 0.0336\n", - "Epoch 2970/3000...\n", - "Loss Discriminator: 0.6896\n", + "Loss Discriminator: 0.6881\n", "Loss Generator: 0.702\n", - "Relative Entropy: 0.0335\n", + "Relative Entropy: 0.0377\n", + "Epoch 2970/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.6995\n", + "Relative Entropy: 0.0377\n", "Epoch 2971/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0335\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0377\n", "Epoch 2972/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6986\n", - "Relative Entropy: 0.0335\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0377\n", "Epoch 2973/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0335\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.6977\n", + "Relative Entropy: 0.0376\n", "Epoch 2974/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0334\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0376\n", "Epoch 2975/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0334\n", - "Epoch 2976/3000...\n", "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0334\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0376\n", + "Epoch 2976/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6991\n", + "Relative Entropy: 0.0376\n", "Epoch 2977/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0334\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0375\n", "Epoch 2978/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.6976\n", - "Relative Entropy: 0.0333\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0375\n", "Epoch 2979/3000...\n", - "Loss Discriminator: 0.6903\n", - "Loss Generator: 0.6978\n", - "Relative Entropy: 0.0333\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0375\n", "Epoch 2980/3000...\n", - "Loss Discriminator: 0.6898\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0333\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6981\n", + "Relative Entropy: 0.0374\n", "Epoch 2981/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0333\n", - "Epoch 2982/3000...\n", "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0332\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0374\n", + "Epoch 2982/3000...\n", + "Loss Discriminator: 0.6895\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0374\n", "Epoch 2983/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0332\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.6966\n", + "Relative Entropy: 0.0374\n", "Epoch 2984/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0332\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0373\n", "Epoch 2985/3000...\n", - "Loss Discriminator: 0.6894\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0331\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0373\n", "Epoch 2986/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0331\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0373\n", "Epoch 2987/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0331\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.6982\n", + "Relative Entropy: 0.0373\n", "Epoch 2988/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0331\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0372\n", "Epoch 2989/3000...\n" ] }, @@ -12335,54 +12335,54 @@ "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.033\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0372\n", "Epoch 2990/3000...\n", - "Loss Discriminator: 0.6899\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.033\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0372\n", "Epoch 2991/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.033\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.6976\n", + "Relative Entropy: 0.0372\n", "Epoch 2992/3000...\n", "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.033\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0371\n", "Epoch 2993/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0329\n", - "Epoch 2994/3000...\n", "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0329\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0371\n", + "Epoch 2994/3000...\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.699\n", + "Relative Entropy: 0.0371\n", "Epoch 2995/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.6955\n", - "Relative Entropy: 0.0329\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.696\n", + "Relative Entropy: 0.037\n", "Epoch 2996/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0329\n", + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.037\n", "Epoch 2997/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0328\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.037\n", "Epoch 2998/3000...\n", - "Loss Discriminator: 0.6895\n", - "Loss Generator: 0.6972\n", - "Relative Entropy: 0.0328\n", - "Epoch 2999/3000...\n", - "Loss Discriminator: 0.6898\n", + "Loss Discriminator: 0.6886\n", "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0328\n", + "Relative Entropy: 0.037\n", + "Epoch 2999/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0369\n", "Epoch 3000/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0328\n", - "qGAN training runtime: 162.18758081595104 min\n" + "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0369\n", + "qGAN training runtime: 35.25595039923986 min\n" ] } ], @@ -12406,12 +12406,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnWd4VNXWgN+VHiB0EkooQXpJAoSqIGLv6BVFsKBeEBX7VfF+1yviFXsXFSuKBRV7BQtRkGIAQ+8hQOiElpA6mfX9mJKZZCYZkkwyCft9njw5u561zyRnzV5777VEVTEYDAaDoSyCaloAg8FgMAQ+RlkYDAaDoVyMsjAYDAZDuRhlYTAYDIZyMcrCYDAYDOVilIXBYDAYysUoC8NJh4isFZHhVdTXcBHJqKK+xonIwqroy8f7XSYiO0UkW0T6VON9x4rIvOq6n6FqMMrCUAoRSReRXPtLZJ+IzBSRBjUtV1Whqj1VNbkibUVERaRTFYtUUzwDTFLVBqr6tz9uICId7M8sxJGnqh+q6jn+uJ/BfxhlYfDGxaraAOgLJAH/KVlBbFTZ35DrC8VQLbQH1ta0EIbagVEWhjJR1V3Aj0AvABFJFpHHRORPIAfoKCKtReQbETkkIltEZLyjvYhEish7InJYRNaLyP2uZhv7LOYBEVkFHBeREHt/n4vIARHZJiJ3uNQfICLLROSYfdbznD0/QkQ+EJFMETkiIikiEuNpTPZ7nmW/niIin4rI+yKSZTdRJXlp94f9cqV91nWVS9m9IrJfRPaIyA0u+eEi8oyI7LDL+7qIRPry7EVkiH0cR+2/h7iUjRORNLvM20RkrD2/k4j8bm9zUEQ+8dBvuIhkA8H2sWy157vNmuwzyv/Zr4eLSEYZ44wUkWdFZLv93gvt43Q8syP2Zza4pLmtnHEmi8ijIvKnfazzRKS5L8/PULUYZWEoExFpC1wAuJoprgUmAFHAdmA2kAG0Bq4AponICHvdh4EOQEfgbOAaD7e5GrgQaAxYgW+BlUAb4EzgLhE51173ReBFVW0InAJ8as+/HmgEtAWaAROBXB+HeYl9DI2Bb4BXPFVS1WH2ywS76cbxIm5pv3cb4CZguog0sZc9AXQBEoFO9jr/LU8gEWkKfA+8ZB/Pc8D3ItJMROrb889X1ShgCJBqb/ooMA9oAsQCL3sYR7591ugYyynlyePDOJ8B+tllaQrcj+2zdDyzxvZnttjXcbpUGwPcAEQDYcC/fJTXUIUYZWHwxlcicgRYCPwOTHMpm6mqa1XVgu0FcirwgKrmqWoq8BZwnb3ulcA0VT2sqhnYXgoleUlVd6pqLtAfaKGqU1W1QFXTgDeB0fa6hUAnEWmuqtmqusQlvxnQSVWLVHW5qh7zcawLVfUHVS0CZgEJPrZzUAhMVdVCVf0ByAa6iohgU6p3q+ohVc3C9hxHl9GXgwuBzao6S1UtqvoxsAG42F5uBXqJSKSq7lFVhzmpEJt5qbX986jKBXNv4wwCbgTuVNVd9ue/SFXzq2CcAO+q6ib738en2BSvoZoxysLgjZGq2lhV26vqrfZ/VAc7Xa5bA44XoYPt2L59Ospd67tee8prD7S2m5KO2BXWvwGHSekmbN/UN9hNFhfZ82cBc4HZIrJbRJ4SkVAfx7rX5ToHiJATWz/JtCtO1z4aAC2AesByl7H8ZM8vj9bYnqMr24E2qnocuArb7GmPiHwvIt3sde4HBPjLblK78QTGUR7extkciAC2VqBPr+N0SZf8fOrMZovahFEWhorg6qp4N9BURKJc8toBu+zXe7CZQxy0Lae/ncA2u6Jy/ESp6gUAqrpZVa/GZpJ4EpgjIvXt33YfUdUe2EwhF1E8u6kpDmIzhfV0GUsjFxNQWezGpjhdcT5XVZ2rqmcDrbB9E3/Tnr9XVceramvgZuBV8X33Vg425eagpY/tDgJ52MyCJSnPrXWZ4zQEDkZZGCqFqu4EFgGP2xeZ47F9+//AXuVT4EERaSIibYBJ5XT5F5AltkXvSBEJFpFeItIfQESuEZEWqmoFjtjbWEXkDBHpLSLBwDFsJhNr1Y4WgH3Y1l/KxS7jm8DzIhINICJtXNZfyuIHoIuIjBHbov9VQA/gOxGJEZFL7WsX+djMQVZ7/6NExKGcD2N7Wfv6HFKBMfZnfh5w+gmM8x3gObFtTgi2L2SHAwfs9/f2zLyO00eZDdWEURaGquBqbIvYu4EvgYdV9Rd72VRsi9/bgF+AOdhecB6xrxtchM0uvQ3bt9a3sC2sApwHrLXv5nkRGG03kbW0930MWI9tnWVWlY2wmCnAe3az0pU+1H8A2AIsEZFj2J5B1/IaqWomtudwL5CJzbx0kaoexPZ/ew+2530I20v9FnvT/sBS+/P5Bts6QpqPY7sT21rBEWAs8JWP7cC26LwaSLHL9CQQpKo5wGPAn/ZnNugExmkIIMQEPzJUJyJyC7YXvE/fWg0GQ2BgZhYGvyIirUTkVBEJEpGu2L5BflnTchkMhhPDnJg1+JswYAYQh828MRt4tUYlMhgMJ4wxQxkMBoOhXIwZymAwGAzlYpSFwWAwGMqlzqxZNG/eXDt06FDh9sePH6d+/fpVJ1ANUVfGAWYsgUpdGUtdGQdUbizLly8/qKrlehWoM8qiQ4cOLFu2rMLtk5OTGT58eNUJVEPUlXGAGUugUlfGUlfGAZUbi4iUdLfiEWOGMhgMBkO5GGVhMBgMhnLxq7IQkfNEZKPYAuJM9lD+vIik2n822b1yupY3tAdc8RhfwGAwGAzVg9/WLOwO3aZjC3iTAaSIyDequs5RR1Xvdql/O1AyaPyjFEfaMhgClsLCQjIyMsjLy/NY3qhRI9avX1/NUvmHujKWujIO8G0sERERxMbGEhrqq+d+d/y5wD0A2OJwYiYis4FLgXVe6l+NLaoa9vr9sMUw+AlbDGiDIWDJyMggKiqKDh06YIt55E5WVhZRUVEeWtY+6spY6so4oPyxqCqZmZlkZGQQFxdXoXv40wzVBvegNhm4BzRxIiLtsbmD+M2eDgKexYRPNNQS8vLyaNasmUdFYTDUNCJCs2bNvM58fSFQts6OBubY3VMD3Ar8oKoZZf3zicgEbGEriYmJITk5ucICZGdnV6p9oFBXxgG1ayyNGjUiOzvba3lRURFZWVley2sTdWUsdWUc4PtY8vLyKv4/pap++QEGA3Nd0g8CD3qp+zcwxCX9IbADSMcWz+AY8ERZ9+vXr59Whvnz51eqfaBQV8ahWrvGsm7dujLLjx075ncZ9u7dq1dffbXGxcVp3759ddCgQfrFF19U+X18Hcv8+fP1zz//rNS95s+frxdeeGGl+vDGTz/9pD169NCEhATNycmpsn4fe+wxt/TgwYOrrG9v+PqZePo7BZapD+90f5qhUoDOIhInImHYZg/flKxkjx3cBFjsyFPVsaraTlU7YDNFva+qpXZTGQwGG6rKyJEjGTZsGGlpaSxfvpzZs2eTkZHh1/taLBavZcnJySxatKjK+qtqPv30Ux588EFSU1OJjIyssn6nTZvmlj7RZxCo+E1ZqC2w+yRgLrbIZZ+q6loRmSoil7hUHQ3Mtmu4gEWtNvEK9mWz/eFfydt+pJwWBkP18dtvvxEWFsbEiROdee3bt+f2228HbGaK++67j/79+xMfH8+MGTOA4pO/V1xxBd26dWPs2LGO2T3Lly/n9NNPp1+/fpx77rns2bMHgAsuuIC77rqLpKQkXnzxRb799lsGDhxInz59OOuss9i3bx/p6em8/vrrPP/88yQmJrJgwQLS09MZMWIE8fHxnHnmmezYsQOAcePGMXHiRAYOHMj999/vdYyHDh1i5MiRxMfHM2jQIFatWgXA77//TmJiIomJifTp04esrCz27NnDsGHDSExMpFevXixYsMCtr7feeosvvviChx56iLFjx5KcnMxFF13kLJ80aRIzZ84EbN4hHn74Yfr27Uvv3r3ZsGEDYDOT3nDDDfTu3Zv4+Hg+//xzJk+eTG5uLomJiYwdOxaABg1sIddVlfvuu49evXrRu3dvPvnkk3I/g4DCl+lHbfjxpxlq7/srdHGLx3Tr3d/rulEf6eIWj+mK/q+q1WrVjBcX6bElOyp176qkNpluyqM2jaWmzVAvvvii3nXXXV7LZ8yYoY8++qiqqubl5Wm/fv00LS1N58+frw0bNtSdO3dqUVGRDho0SBcsWKAFBQU6ePBg3b9/v6qqzp49W2+44QZVVT3ttNP0lltucfZ96NAhtVqtqqr65ptv6j333KOqqg8//LA+/fTTznoXXXSRzpw5U1VV3377bb300ktVVfX666/XCy+8UC0WSym5Xc1QkyZN0ilTpqiq6q+//qoJCQnOfhcuXKiqqllZWVpYWKjPPPOM/u9//1NVVYvF4vH5jxkzRj/77LNS91FVve222/Tdd99VVdX27dvrSy+9pKqq06dP15tuuklVVe+//36988473Z6Dqmr9+vXd7uNIz5kzR8866yy1WCy6d+9ebdu2re7evdvrZ3AiVIcZKlAWuAOabff+CMD+D1Kdefnph9nxyG/seXUpAIP2/7tGZDMEHkuip5VfqQKcyN/YbbfdxsKFCwkLCyMlJYV58+axatUq5syZA8DRo0fZvHkzYWFhDBgwgNjYWAASExNJT0+ncePGrFmzhrPPPhuwzUxatWrl7P+qq65yXmdkZHDVVVexZ88eCgoKvG7NXLx4MV988QUA1157rdssYtSoUQQHB5c5poULF/L5558DMGLECDIzMzl27Binnnoq99xzD2PHjuXyyy8nNjaW/v37c+ONN1JYWMjIkSNJTEz0+dl54vLLLwegX79+zjH88ssvzJ4921mnSZMm5cp/9dVXExwcTExMDKeffjopKSk0bNjQ42dw2mmnVUrmqsa4+6gEDkVhMNQ0PXv2ZMWKFc709OnT+fXXXzlw4ABgsyC8/PLLpKamkpqayrZt2zjnnHMACA8Pd7YLDg7GYrGgqvTs2dNZf/Xq1cybN89Zz9XD6e23386kSZNYvXo1M2bMqND2zMp4f508eTJvvfUWubm5nHrqqWzYsIFhw4bxxx9/0KZNG8aNG8f7779fZh8hISFYrVZnuuQYHM/I8XyqGk+fQaBhZhZVRPbfuzk8dzOx/xpKwd4stj/0C63vGEyDPq1rWjRDNeNpBuDvA2AjRozg3//+N6+99hq33HILADk5Oc7yc889l9dee40RI0YQGhrKpk2baNPG47EnALp27cqBAwdYvHgxgwcPprCwkE2bNtGzZ89SdY8ePers67333nPmR0VFcezYMWd6yJAhzJ49m2uvvZYPP/yQoUOHntAYhw4dyocffshDDz1EcnIyzZs3p2HDhmzdupXevXvTu3dvUlJS2LBhA5GRkcTGxjJ+/Hjy8/NZsWIF1113nde+27dvz7p168jPzyc3N5dff/213G/2Z599NtOnT+eFF14A4PDhwzRp0oTQ0FAKCwtLnZQeOnQoM2bM4Prrr+fQoUP88ccfPP300841kEDHzCyqiDXnzmTXc3+y7h8fsvX2bzn0/UbWnDuzpsUynCSICF999RW///47cXFxDBgwgOuvv54nn3wSgH/+85/06NGDvn370qtXL26++eYyv72GhYUxZ84cHnjgARISEkhMTPS6q2fKlCmMGjWKfv360bx5c2f+xRdfzJdffulc4H755Zd59913iY+PZ9asWbz44osnNMYpU6awfPly4uPjmTx5slMxvfDCC/Tq1Yv4+HhCQ0M5//zzSU5OJiEhgT59+vDJJ59w5513ltl327ZtufLKK+nVqxdXXnklffqU9DxUmv/85z8cPnyYXr16kZCQwPz58wGYMGEC8fHxzgVuB5dddhnx8fEkJCQwYsQInnrqKVq2bHlCz6AmqTMxuJOSktRf8SwqY4Ou7rUM46O/Zli/fj3du3f3Wn4yuZaoLdSVcYDvY/H0dyoiy1W1XJdKZmZRDo4tsxVub1fG1oKicmqWbmMwGAyBglEW5WDNq9xC055XlrD3rRT+in2Sw79uLbe+WqysOftdtt75XaXuazAYDFWJURblkNLh6Uq13/HofNL//TMA2/9dvJuk8OBx0u79geOr97nVP75qL8dX7eXAx6sqdV+DwWCoSoyyqEbyth1m1RlvYc2zkP6fn9k/K5XVZ76NNbewpkUzGAyGMjHKoprJWbuflUPfIPOL4rAeO6b9XoMSGQwGQ/kYZVEGhZk55VeqAPkl/EodTU47ofZ524+Ql3aoKkUyGAyGMjHKogy2Tvq2Wu9XsC/bp4Xt1P6vkjroddRiLbeu4eQhODiYxMREevbsSUJCAs8++6zzVPKyZcu44447Kn2P119/nY8++uiE2gwZMqTC95s5cya7d++ucHuwnc945plnKtWHN1566SW6d+9e6kxFZUhPT3d7xlX12VUWc4K7DI74sHupKnCsWWx/6GdyNx70uZ0WFiEhRt8bbERGRpKaavNftn//fsaMGcOxY8d45JFHSEpKIimpctGJLRYLEydOPOGAQZVx0T1z5kx69epF69a+e0IoKioq189UVfHqq6/yyy+/OP06VQUOZTFmzBiAKvnsqgLzpgkA8nccBaBgT/n/hG5nMEwIT4MXoqOjeeONN3jllVdQVTcX3J5cegM8+eST9O7dm4SEBCZPtoWPGT58uJs78ilTpvDSSy85y+6++26SkpLo3r07KSkpXH755XTu3Jn//Oc/TlkcLrrLcsU9depU+vfvT69evZgwYQKqypw5c1i2bBljx44lMTHR6YajT58+9O7dmxtvvJH8/HzA5kb8gQceoG/fvnz22Wden0tqaiqDBg0iPj6eMWPGcPjwYcA2Q+jRowfx8fGMHj26zOfkYOLEiaSlpXH++efz/PPPl5rB9OrVi/T0dNLT0+nevTvjx4+nZ8+enHPOOeTm5gKwZcsWzjrrLBISEujbty9bt25l8uTJLFiwgMTERJ5//nm3z86bm/Zp06Zx4403Mnz4cDp27Oj8jKoSoywCiSAfXv4ezusV7M/m8K9bzWE+gxsdO3akqKiI/fv3u+U/88wzTJ8+ndTUVBYsWEBkZCQ//vgjX3/9NUuXLmXlypVuHmELCgpYtmwZ9957b6l7hIWFsWzZMiZOnMill17K9OnTWbNmDTNnziQzM7NU/b///psXXniBdevWkZaWxp9//gnY4kekpKSwZs0acnNz+e6777jiiitISkriww8/JDU1FRFh3LhxfPLJJ6xevRqLxcJrr73m7LtZs2asWLHC+bL3xHXXXceTTz7JqlWr6NGjB4888ggATzzxBH///TerVq3i9ddf9/qcXHn99ddp3bo18+fP5+677y7zs9i8eTO33XYba9eupXHjxk7vuWPHjuW2225j5cqVLFq0iFatWvHEE08wdOhQUlNTS/X78MMP06dPH1atWsW0adPc/F1t2LCBuXPn8tdff/HII49QWFi1uyyNGcoLh+durtb7WQtLn/BeEj2N2AeGEXuvzaGZ5VgeW25xCTZoVw4rh8yg6Fg+nd++HOqG94Jazc1Jb/il3xnLJlRJP55cev/yyy/ccMMN1KtXD4CmTZs667u6Iy/JJZfY4pj17t2bnj17Ot2Yd+zYkZ07d9KsWTO3+t5ccc+fP5+nnnqKnJwcDh06RM+ePbn44ovd2m7cuJG4uDi6dOkCwPXXX8/06dO56667ypUTbA4Pjxw5wumnnw7AmDFjuOGGGwCcvpxGjhzJyJEjvT6nihIXF+d0k96vXz/S09PJyspi165dXHbZZQBERESU2483N+0AF154IeHh4YSHhxMdHc2+ffuq1DxmZhZe2Hit96msP1hz1jseZw0ZT/7B7ulLANj1/CKO/LzFWeaYSBQds03Fs/7a6Xc5DbWHtLQ0goODiY6Odsv35NK7LMpyH+5wrR0UFOTmZjsoKMijo0JPrrjz8vK49dZbmTNnDqtXr2b8+PHV7ub8+++/57bbbmPFihX0798fi8Vyws+pLDfn1eGC3N/3MDMLD9TELqOc9Qe8lu145Dda3zYIy6ESW3lLmZ1sZqzslXs4+Olq2j54OsENwjFUL55mANXttO7AgQNMnDiRSZMmISXWtjy59D777LOZOnUqY8eOpV69ehw6dMhtduFPHC/V5s2bk52dzZw5c7jiiisAm5tzx1pB165dSU9PZ8uWLXTq1IlZs2Y5Zwm+0KhRI5o0acKCBQsYOnQos2fP5vTTT8dqtbJz507OOOMMTjvtNGbPnk12djaZmZmlnlO3bt289t+hQwe++862m3HFihVs27atTHmioqKIjY3lq6++YuTIkeTn51NUVOQ25pJ4c9NeHRhl4YH9H6/0WhZUL5ReP1zPquFvVaNEUJRTWMoFiDXfQnD9sFJ115z9LgASEkz7R86sFvkMNY8j9nNhYSEhISFce+213HPPPaXqvfDCC8yfP5+goCB69uzJ+eefT3h4OKmpqSQlJREWFsYFF1zAtGn+ifhXksaNGzN+/Hh69epFy5Yt6d+/v7PMEZ87MjKSxYsX8+677zJq1CgsFgv9+/d3iznuC++99x4TJ04kJyeHdu3aMWvWLIqKirjmmms4evQoqsodd9xB48aNeeihh0o9p7L4xz/+wfvvv0/Pnj0ZOHCg01xWFrNmzeLmm2/mv//9L6GhoXz22WfEx8cTHBxMQkIC48aNc3OXPmXKFG688Ubi4+OpV6+eW/wQf2NclNtxdYe9Y1oyu1/wvN0vaeu9hESFc2zJDtL/72dySvh2cqXxOZ04Mm+L1/IToenF3Tj0rfs0uF7PaOLn/9PpQr3VxAFsGxFCxJU22Zte2JUu7/6jSu5fExgX5YFJXRlLXRkHGBflNYa3Hamd3xxJSJTNrNNwUDvif73Jax/tHh5B0wu7VplMJRUF2FyH5LmeBi8heF35ImAwGGoeoyw84UVbNL3Qu72yJK1uHUhQmP+tfK5uP3LW7iN0evXu4jIYDCcHRln4SNTgtmWelm581im0ubc4Zq+I0PTiboS18e/iU+GB487ro3+kE/y794Vyg8FgqChGWfiKF4tOeIcmAHR+63JirnOP2xsUFky32WXv/a4svvqvsuZZ2P9BKgV7T8xVg8F3jNnPEMhU9u/T7IbyRAkzVFC9UDr872yPVRMX3Yy1oIjgeqGIhxPYQaHV46PGIy5/GxnPLmT3i4sIb9eY3r/cwL53V9D8yt6E+3nmc7IQERFBZmYmzZo1K7VV1WCoaVSVzMxMnw7+ecOvykJEzgNeBIKBt1T1iRLlzwNn2JP1gGhVbSwi7YEvsc18QoGXVfV1f8rqLrh7sv+2f3l9AUhIEMF281RQRAh9V99BUHixggiPa+JWP2pALFl/ZVStvF44/OMmVg57g67vj+LYwu0A5O84wrb7fyLzq/Uc+GQ1iUtObOuhwTOxsbFkZGRw4IBnM2BeXl6l/lEDiboylroyDvBtLBEREZU60e03ZSEiwcB04GwgA0gRkW9U1Rn1R1Xvdql/O+Cw4+wBBqtqvog0ANbY21bOV7GPZKfsckufyDfFsJgGpdo2Oj2Oo7/bDugENSh9LsKf5G44SPr//YzrNCNrmW18JiZG1REaGkpcXJzX8uTkZLf98rWZujKWujIOqJ6x+HPNYgCwRVXTVLUAmA1cWkb9q4GPAVS1QFXz7fnhfpazFI4Xe1XR5NxOxYkaMGtrQRHZy4v1bEHGMfdyq5K340jJZgaDweDEny/hNoCrs6IMe14p7GanOOA3l7y2IrLK3seT1TWrKEn9hJaV7iPmhn7O69CmkWXU9A+FJd2ElCB98lxSk15l/0feT64bDIaTG7+d4BaRK4DzVPWf9vS1wEBVneSh7gNArKre7qGsNfAVcLGq7itRNgGYABATE9Nv9uzZFZY3Ozvb6XffcQIawHJ+Kyw3eDcv+ErQisMELTtE0SVtCL9jRaX7qyoKJnUm7BXb2QxrbCQFzwXOtNz1M6ntmLEEHnVlHFC5sZxxxhk+neD25wL3LqCtSzrWnueJ0cBtngpUdbeIrAGGAnNKlL0BvAE2dx+VcQ3h6lpiCcXKYsBTo0qtQ1SI4cWXx9r3YN2lH1S+zyrAoSjA5rVzSAC516hN7j7Kw4wl8Kgr44DqGYs/zVApQGcRiRORMGwK4ZuSlUSkG9AEWOySFysikfbrJsBpwEY/yuqVoIiq16cNB7dzv0dkgOxgFjjy21ZW9H2FrJTq2bFlMBhqB35TFqpqASYBc4H1wKequlZEporIJS5VRwOz1d0e1h1YKiIrgd+BZ1R1tb9kLRM/b5mvH9+ShkM7ONM16vhPhA2jP6Eg4xhrL3yfnU/9UXOyGAyGgMKvX2lV9QfghxJ5/y2RnuKh3c9AvD9l8xVPB+2qgpY3D2DvjL9ofcdgwmIacGTeFlrdOpAmF5Tv1thflBzprmcW0vb+YTUii8FgCCwCxP4RyPhHWbSfeiZt7hxMaHNbdK/+6fcRXC8UgIF7JmPNL8JyOJe/+7zil/t7wlMAJktWPplfrqPZxd0IaVL9O7kMBkNgYJRFOUiofyx1IuJUFIBTUQBIcBDB9YLc8mqKzTd9wdHkbRz6Zj3d54ypaXEMBkMNYRwJloPUpG+nAOBosu2A4tE/0snPOFrD0hgMhprCKIty8NeaRUUIjWlAhyfOpfE5nWh4arvyG1Qxf/edXiqvKKew2uUwGAzVj1EWAc4pL11UnFCl5Y396PbBlcTc2M97o2ri4Jw1pHR4mn3vFR8yLMrO5+CcNRRl55fR0mAw1DbMmkWA02J0PFvv+M6WcNlcHNqivucGfmZJ9DQiOjUlb0uxE8Jt9/1EUEQohZk5ZKdkcOj7jTS9tDtd3rysRmQ0GAxVj1EWtQmXoyhRA9vSoF8bspd7OxTvP1wVhYOtt7sHYfIUM9xgMNRejBmqBLkB7Lbb9dSiiNDrx+trTJaKUrAvu6ZFMBgMFcAoixLsnxk4Tv5K4cHpY5f3rqgBQXxASodx3D19CSt6v8Tu6UtqSCiDwVBRjLIoSSCHxLSWzmp6fhcantaesNZR1S9PWRQpq4a9yZLoaRRm2lyk73jkN7ffANaCInLW7zfxqw2GAMcoi1pAl/euILhxBJ3mmZkCAAAgAElEQVTfudxjeffPx9BnuUenvTVK7saDAKw+822vdTbf9AWrTn+Lg5+uqS6xDAZDBTDKoiQBOLFoen4XkjbeTaNT23ssFxEkOHA/yoLdWV7LDs+1uUg/8Mmq6hLHYDBUgMB9w9QQWhSY5hBf4oDHjOuLRpT+SOOeOo9Wtwz0h1gnRhlDUGvxczcmKYMh8DDKogTWvOITye3/d1YNSnLixD11HvkzBxJaIlhTzLi+tH/kTPquKhWIsHopS+HZFcTmiV+T2v9VrPmWahLKYDD4glEWJbC6uK9oNWFADUpSQYKEPstupdOMS0sVhbWMot/6u2pEaWiR1W1msWHspxxfvdeZzlpqC7aU+cVa8nccrZHzIwaDwTtGWZTAWgd8HQWFhxDSpJ7HstBm9QhrGUXru4ZUq0xLWz0BLia+Iz9vYfWZ7xRXsKpz1xQQ2LvSDIaTEKMsShBxStOaFqFqsJZt94+9+9RqEsR3LC7KwpprIeiPA1gO52LNs7D/45UU7DcH+gyGmsK4+yhBXXFTUb93DAAhzbwELHL95h4sbt/6awxXM9Xo2YQBG1M+I2pAW3a/vJiIzs1I/PPmGhPPYDiZMcqiBJYsm7fUsDYNa1iSyhHaoj5919xBSFS4x/KgiBBi7xuKhAdz5Lc0shbtqGYJS5P5TWlFnbU0A2uubbE7b3MmRdkFBDcIq1D/qurTrjKDwVAaY4YqgeWgzRQSGl0zXl2rkrDoBgRFeo+2F3vfUNrcMcTNjUjXD0bR/MreNbLVNuPJPzzmu26lTen4DJajeeSs38+eGX/ZFs59YNv9P7FyyAyseWaXlcFQEczMwguFB47XtAjVh4sFqsk5nWlyTmcsh3PZ89rSmpPJhZzV+9zSx1fvZf3lHwEQXD+M6GsSy+1jn93n19EF6TQ5u1PVC2kw1HGMsvBC0MkUTtXDIbiQJpEk/DmBg1+u4/iqvRTsOkbO2v01IFxpdkyd77zO2XiQo79vQ4sULSxi92tL6fz6pYS1DDBfWQZDLccoCy9I2MmjLMJae16fiezcnLb3D3OmV/R9hYKMY9UllleOp+5xS68f9bFbevvDv9J5xsjqFMlgqPMYZeGFk0lZtH/0LBBoeVNSmfVCm9ZzKouYm/qRu+EAx/6s2YXxvW+mlMorOmZCuhoMVY1Z4PZC0EmkLMKiG9D59ZFE9Y8ts16n14tPhbd7aATNLu/pb9HKp5zzJAD7P0itBkEMhrqNX5WFiJwnIhtFZIuITPZQ/ryIpNp/NonIEXt+oogsFpG1IrJKRK7yp5yeaHPvadV9y4AnslMzBmy/j6TN9xBcL5Tml/UkomPgHWI88utWdkxLxlpQRObX60i75wdnmVqsrD5vJmn3/VhzAhoMtRC/maFEJBiYDpwNZAApIvKNqq5z1FHVu13q3w70sSdzgOtUdbOItAaWi8hcVT3iL3kdBDcMp+hYPvV6RPv7VrWSoMhQ53bc4AZhJCy+Gaxqc+cRQOx+YRFaUMSeV913dGX/vZvjK2w/HZ8+v4akMxhqH/6cWQwAtqhqmqoWALOB0t7tirka+BhAVTep6mb79W5gP9DCj7ICUJRT6LR3B3J8iEDCEUuj5w/XV/iwnL8oqSiAwDipbjDUQvz5RmwD7HRJZ9jzSiEi7YE44DcPZQOAMGCrH2R0I3/74eL7hhhlcSJEJbWhf9q/iL7Ww5mHADo0fWC2CbJkMFSEQNkNNRqYo6pFrpki0gqYBVyvqqWO6orIBGACQExMDMnJyRUWIDs7m5SMZTicY/y5ZBHUD5TH4zvZ2dmVeg6VRU4pJBwoSmhM8Eqb1VBDBCkMjG/0roctk3/8FSKrZyNDTX8uVUldGUtdGQdUz1j8+TbcBbR1Scfa8zwxGnALIi0iDYHvgf9T1SWeGqnqG8AbAElJSTp8+PAKC5ucnMyArr1YiW3nzNDThwWcWcUXkpOTqcxzqDTDIX/kGYRFN2Bpa9s6RnBIMNbCwHOzEXH9Uk555WKaXdytTLcoVUGNfy5VSF0ZS10ZB1TPWPxpa0kBOotInIiEYVMI35SsJCLdgCbAYpe8MOBL4H1VneNHGd0JKraXGDNUxQlv3dDt+Ul44M7Qtk76lh2PJVe4fVFOIdun/Er2yj3lVzYYajF+eyOqqgWYBMwF1gOfqupaEZkqIpe4VB0NzFb3wMtXAsOAcS5ba8t3AFRpoV2ugwPI0F7LCQpgZQFwcM4ajiRvc8YBz1m3nyPz05zlhZk57H17GZajeaXa7n5pEXteXcqas9+tNnkNhprAr1+fVfUHVe2iqqeo6mP2vP+q6jcudaao6uQS7T5Q1VBVTXT58fvJKrUUL4ucVL6h/ETsfUMBaPt/w5GIwFUYlkO5bLjyY1YOfQOAVcPfYsNVs8nfZTutvunGz0l/cB5pd39fqm3+dr/v5jYYAgJja3FB7dsq63X3+y7dk4LY+4bSb+2dRI+OJ/6XG0+4veW8ln6Qyjt5mzM5trjYfUnBniwAshbbNvUdTd5WupGJj2E4STDKwhVHbASzXlFlhLawxQWJ7NKc5lf1BqDF2ASPdTu9VnwMJzSmAZYb4oga0s7/QrrgNlMooQcchtJji3dwdEG6xzpZS3eS8cwCp0nLYKgrBK5toAZwBNIxB/L8wykvXUTc4+cgYSEc+HBlqfLm/+hJg6Q2FO7NIrJLcxauXErPr65hSfS0apPx4JdOBwNoQREF+9zjfuduyWTdpR8A0O2T0Rz8bI1b+dqLZwEQ0bEpzQPBd5bBUEUYZeGCY83CKAv/ICIEN/Ac5tVBRPvGRLRvXE0Sleaoy8K2Qyk4UeX46r3O5IarZrsVW47kOq8LdtW8K3eDoSoxb0UXHGsWEmLs0P6m43MX0PDUdvRddTsAEZ28OyTsu+aO6hKrXMraUr3m/PeqURKDoXoxysIFZzxnM7PwO9HXJNLjy2sIaxlF/7R/kfDHBK91w6IbVKNk3rHmFJY568zbesh5nfn1eqy5hW7lOx9PZu87ywH7dty3UtxmIwZDIGPeiq4YM1SNENwgrNYcgtw+pZT7Mo8cX7WX7Y+41D2Yz67nF5E+eS4Am8d/Sfq/f2brHd/5Q0yDocqpHf+h1YTTDGUO5AUcQZGBsbyWn364/Ep2Dn27wXkt+W5uzzi2cDsAh3/aXDWCGQx+xigLF6z5gee/yGBDa+FOVFenha7eAbbeVfpwnzdyNh7g6O8ezncYDNWMURYu7JhqMxt4PHxlqFGiXc5mNDqjI03O7VyD0viOWpUDs1cRlFp8fuPAR+7bhg//soWC/cVbdHc+8TtbbvkaVWXV0DdZP+pj8sxJcUMNExhz+wDBdYHSEFi0f+QsmpzbheCoMOr3ikHCgtFCK3+1f8oZ0Kj1nUPIXpZBUU4hx/8ODMd+S1s+DkBZPm03jvmU4EYR9N98DwC7nvsTKHaXApC/80iFtxRnr9jN4XmbaXPvacaNjaHCGGVhqBUEhQXTeHicW56EBbuZd9r933AAslfuqXWO/Yo8OCl0861ZCTPcmvNmArbT9C1vSqp4R4aTGmOGciEirklNi2A4QRoOtoVMadA/1pnXIKEVvX+5kaSNd3trFpD8PeA1Mp5b6Ey7r3lUftHGOD00VAajLFxoNKIjAB2mnV3Dkhh8pfMblxH7wDC6vHO5W379+JaENImsIakqRn76YTKe+MOZXndJ8Qlytdpcp5tNGIaawigLF7TQfs7C2HVrDaEt6hN772mExZR/cC+sVRS95/+zGqSqeva8ttTmOn3MJ+XW3ffeCv5Omk5+xtFqkMxwsmCUhQtaaNsLb5RF3aRP6iQiT/HuViSQcfisOrZgO1nLdlGwL5vja/dz6LsNFGbm8PeA19j1vG1hfNt9P5G/4yh/953uvu5hMFQCs8DtgnNmUUtOExt8JzSmASKC1oHzlmsvcPdBFd6uEfk7jrLz8d9pfcdgt7LsZcVh7/MzjmLNLSQoMpTcLZlY8yzU7xVTLTIbaj/mreiC1TGzCDMzi7pGcP0w20UdDFaUv6PY3LR+1MduZa5rHIe+20jqabZogCuHzGD1iLcpynH3X2UweMMoCxccZqggM7Oou1RCVzQf1YsOT55bdbL4AYcbESclrFAFO93XMYqy8/0skaGuYN6KLjjNUGZmUfewKwkpZ2YR3NA93ka32aOd12Gtomh5Q78qF60mKe95GAwOjLJwwbnAHWKURV2h/WO2bdDt/2ffDh1U/HKMXzCeU166iL6rbif6uj4AtLp1oLO8+VW9aWzfTg3UylCpe2b8VXYFl+dRePA4uWnGi4HBM2aB2wWnsggzOrSu0Gp8f2Ku70uQfbYoQUL3z8dAkFCvawvqdW0BQNxT59Hyn0lEdm1OcL0wdr34J7H3ngZAZPcW5K4/QJOzO9XYOCrKkXlbSuWtvfj94oTLxGJ5jxcBW7CpQIkhYggczFvRheLdUGZmUZcIKmFWbDS0A41Obe+WJ0FCvW4tEBFaTRxAv3V3EdHBdqK/14/jiF8wnoaD2wHQ9NLu5d4zuGE40dckVtEIqpaspRnOa09mqPxt7m7YrQVFHPxyLYWZOVUqR17aITaOm8PxNfuqtF+DfzDKwgXHbqiSLxfDyYfrSzS4XqhzBgLQ5c3LGLT/3yRt8u5OpNOrl1A/vqVfZawKLEfz2DfrbyxZ7gvdW277hr1vLwNg1wt/suXmr1l3+Yde+ynKLmDdPz5k/+xVPt970w2fc/iHTaVjnRsCEqMsXCg+wW0ei6F8Qhp7dycSNbhdrTgQt/nmr9h2749svPYzZ97u15Zy8LM1pD84j6xlu9j1jM1fVe76A1772fvOco4t2E6aS+S/rL8y2PbATxQdL/DYJn/XMQCKssyOrNqAX9+KInKeiGwUkS0iMtlD+fMikmr/2SQiR1zKfhKRIyJSbXEnzQluQ2Won9jKeS0C1IIFcYcr96xFO5x5h3/Y5LwueQDQEwc+Xc3O/80vlb/2ovfZ9+4Kdr+8uNw+Cg/lYPHgedcQOPhNWYhIMDAdOB/oAVwtIj1c66jq3aqaqKqJwMvAFy7FTwPX+ks+T5iZhaEydJt9VU2L4Hd2Pp6MbLDNCBwzp62Tvi2zTcHurHL7Xd7tBZZ1fq7yAhr8hj93Qw0AtqhqGoCIzAYuBdZ5qX818LAjoaq/ishwP8pXCquZWRgqSFD9MEKb1nOmJTioVm61LY9dzy8iHNiyCnK3ZtLrh+vLb2SOctQJ/Kks2gA7XdIZwEBPFUWkPRAH/OZHecrFeYLbKAuDjzi21TZItC1md3nncqx5FoIiQwmOLCs+Xu3m4Jw1AORuOliqLPPbDTS7uJszbTmaR8HeLDKeXoBalehrEonq16baZDVUDeKvRTgRuQI4T1X/aU9fCwxU1Uke6j4AxKrq7SXyhwP/UtWLvNxjAjABICYmpt/s2bMrLG92djbN7lyHZFnIe6s/NKyd/+jZ2dk0aFA39sjXirEczCdk3l4sF7SCxmHuZQVWQp/dQPDfdTfokDYLQzJLL2BbhrcgJLl4QbyoVyOC1xS7Gsn7YBDh41OQ3CK3dnmfDvGfsCWoFX9fPlKZsZxxxhnLVbXcEIr+nFnsAtq6pGPteZ4YDdx2ojdQ1TeANwCSkpJ0+PDhJ9qFk+TkZEIkmCIsnHb6UEIaRVS4r5okOTmZyjyHQKLWjOWKMsrOGcGS6Gk+dxUR14TGZ55CZNfmbLvvp8rL5mc8KQrATVEAhO3Mx1UtdNlSn10hIRThrixOP/10ry5Idj3/J5nfrKfnd9cVO4asBLXm78sHqmMs/lzJTQE6i0iciIRhUwjflKwkIt2AJkD5Wyb8jNkNZfAH/dbeSf6LfQiKLP3dzPXgXvQ1iSQsmUiHaecQc31fWt1is9p2evWSapPVX5SMMb5jyq+et8x6MHQUZuaw7YGf2Pn47+Ss3e80gRmqF7/NLFTVIiKTgLlAMPCOqq4VkanAMlV1KI7RwGwtYQ8TkQVAN6CBiGQAN6nqXH/JC2Y3lME/hLaoj7aKJLhRBNbcbABCmkRiOZxL4zNPodml3bEWFtHkLHd3Iu2mjKDVrQMJi2lAaEwD0v9vHh2fvYCi44VEdGjM+is+cnNPXhco2HWM8LaNnGktsrK8+wtuderixoHagF99Q6nqD8APJfL+WyI9xUvbof6TzOMNUYsJfmTwH13fu4Itt31D3BPnUq97NMdX76PRGXFezS4i4gwX22hoBxL+mOBW3uqWgaQ/OM/vclcnf/ebTvR1fchLO0Sj4R2JuaFvqToigrWgiPTJc2lyXmeanNO5BiQ9+TBvRQdFtm8rEhpk3DYb/EKDPq1JXDSRRsPiCG1Rn8YjOlbqby1mXF+bU8Q6xv73/+bYwu0eD/o5SH9wLvs/SGXjNZ+VKjv41To2XvcZRTmFHPltK0uip7F9ao1utKwTGGXhwOJQFma9wlA7kOAgGg3tUNNi+BV1ifTnIPPbDeyflepMrxr+FmsvncXRhekAbJnwFYd/2sy+d5azYfQnAOx5ZUm1yFuXMcrCgVEWBkPA4XCb7sqxBelu6Zx1+8lavJP1l3/klp/5tfv530M/bSLjuYXl3nPvO8vZMPZTrAVF5db1hjXP4tUnVm3FKAsH9vWKILO4bTDUCY6v3OuW3nTdHDKe+IPsFbvLbJc+eS5Hft7Coe83lCrTIivHV+9Fi6xl9pHS+VlS4p5xroPWBcyb0UGRmVkYaifdvxzrvG42sjtd3i/r4Idh7UXvs3ni1255RccLOPrndjclYM0rbQLbMXU+q898h1VnvFXmPTTfNiupSx51TaQ8O2LMUIZaSqNT2zNo/78pPHickGb1OPzTZmdZ9y/Hsv4y73Eo6hq+bKtVi5XML9bCaNtp8bwdR0hNetVDxdJZe15bCkDuhtJuTuo6ZmbhwGU3lMFQGwltXt+2u8rlhVkyImD0tYk0H9XLLU/CPX9Bqte9hcf8QGZpy8d9r2w/2uVRUbiUO3DE33AWW5VjS3ZQlF3G2kSJzW6HvtvA6vNmUrCnfE+8gYZ5MzpwnLEwUfIMtZ0y/L2FtWlI0/O7ONOd376c/mn/ot1DZwAQ+8AwZ1loi/r+kzEACJmZzr73Vngt3/3SYlYkvMzxNfsozMzh7z6vuJXv/zCVdZd8wPorP/Z+kxIfxaYbv+D4it1sua2UM4viJgF66NAoCwcOM5Q5kGeo5ZTlG7TVxIFE9oh2psNiGhAUGkyrSYPos+I22txzqrMssnu0py7qDCE/7inT/1betsMU7Mli66RvS50iBzj0/UYAspd5c3nnHU/eesEWSGppy8c5+vu2E+7T35g3owO7sjDxtw21Hi/aIqheKMH1Qons2JTYB4bRcnwSUQNiAdup6PDYRogICYtupuMLF9Lsoq7l3mrQ/n9XqeiBSM66/R7zXV/oalVnMCifPHl7qeIIJLX1zmoLEOozZoHbgXH1Yagr+PCyir33NK9lkZ2aEdmpGVl/ZXit0+Oba6nXtXmFxKszFBU/59VnvYMWWOg+ZwwhzYqDYHk1KZX3GQWgFwmjLOyIY4HbzCwMtRw/hahxIyKuCSFNIv1/o1pCzpp9AKyIf5nwdsWOEPO2HWb/hyuJvibBLZJiuR9R4OkKoyycONcsjLIw1HK8maHCq+7f3dXdenCDsLJ3BJ1kuHoCXnvBewBk/bWTTtN9dzUfiIf5jM3FQZFZszDUEUq8Z7p/MYaIjk3p+uGVJ9aPh2+3nd++nIK7uhDSsDg4WP+0f9FnRXHssla3DKTLu/84sXvVcY7M28Kyzs8500VZ+RxbvIP0h37Gmmch89sN5KUdKi4/FniH+Xz6qiEidwLvAlnAW0AfYLKq1h3/yGbNwlBHCG7gHkWu0WkdSFwy8YT7iexmO2cRGtOAwn22OBxNzu2MNWpvqbrhscWml9a3D7Kd+QgNcsaIMbij+UWsu/QDAPbOSKlhaXzD13npjar6ooiciy2q3bXALKAOKQuzZmGoGzQ+6xRajEmg4ZB2leonJCqcpC33EBQRSvayDKwFVt9m3nYrWMfnLmTr7bbdPc1Gdifzq/WVkudkJXdrJqHRDQiJCi9VVngoh/WjPiZ4cH0Y7l85fP0a7ZiQXgDMUtW1BOQSTCUw5ywMdQQJDuKUFy6kxZW9K91XSMMIgsKCaTikPY2Hx/nUxrF1tOmFxYf/6se3otnlPdzqxT19XqXlq6tYcwrZcsvXHPpuAysHz2DZKc9y8PO1HEl2P3+x59Wl5KzeR+gbaX6Xydc343IRmYdNWcwVkShKWUZrN0F7cgHbP5rBYKgE9plFcINwoq9NhGCh+aheNDrdXdnEXF86Cp6hmIOfr2XTjV8401tu+ZoNJU6LH19V2iToL3x9M94ETAb6q2oOEArc4DepaoCQL22nMA9+sbaGJTEYajkuu7E6PnsBA3c+QFhMA1pcFU+oPUysL7R/9CyP+U1c3JWcjGx/5Dd2Pf8nRdkFHE2uvpPeviqLwcBGVT0iItcA/wHqVqR4O1qJgCcGw8lMWJuGSEiQ26E0KDbtSpDQ+KxTPLYNb9+4VF6rmwfQd/UdpfI7vXYp8cn/dMvr+d11dJ01qqKi1yr2TF/Czsd/J/Ob6l0D8lVZvAbkiEgCcC+wFXjfb1IZDIZaR5+UW+m/7V8EVcDNf8/vrvOYH+ZhJiJBQmTX5s7NKL1+GkfUgNhyAxLVNfLSD7ul/T1+X3dDWVRVReRS4BVVfVtEbvKnYAaDoXYhIUHlbxDxcnQ5pFEEMeP6sm/mCur3aUXbB4d77yNIkOAg+m+5F4LFqZy0KDC9tfqL3S8scktrQRES6b81V1+VRZaIPIhty+xQEQnCtm5hMBgMPhPZqZlbOnHZrWi+haCIEOKeOo/2U88iKKLs15IE2TZilqzXILFV1Qpb2/Dz5hxfe78KyMd23mIvEAs87TepDAZDnaTl+CRiHxhG7/m2NYeIdo2J7FzskNCTojjllYvdM4I879oPb9uIxJRb6fLeFUQNaUdEx6ZEdivuu+X4JLf6ljNjSNpyT0WHEnD4e9u/T73bFcSHQCMRuQjIU1WzZmEwGE6IoPAQYu89jfo9fY+VEdGhSXFCKPOEV0T7xjQ9vws9v7qGxCUT3ZwdtvvPGW51LTefYjtHUj+sZDe1EvGiRKsKn5SFiFwJ/AWMAq4ElopIuVHhReQ8EdkoIltEZLKH8udFJNX+s0lEjriUXS8im+0/1/s+JIPBUJdwnW0MSL/PFjrWV1xdhHt5mfr7JVtX8HXN4v+wnbHYDyAiLYBfgDneGohIMDAdOBvIAFJE5BtVXeeoo6p3u9S/HZvPKUSkKfAwkIRtSWy5va378r/BYKjz1OsdQ/S1iUR2bU5Q5IktlboueouXXVpB4cEU1b6Q2NWOr0auIIeisJPpQ9sBwBZVTVPVAmA2cGkZ9a8GHMcTzwV+VtVDdgXxM1AtvgEiuzQrv5LBYKg2RISOz15AqwkDTryxy8RCgoTWtw8uVaXLSXI+o7L4OrP4SUTmUvwyvwr4oZw2bYCdLukMYKCniiLSHogDfiujbRsfZa0QGhGE5Flp/79z/Hkbg8FQjXR89nw2jPmEdg+PACA0pn6pOlH93F8t/dP+ReZX62iQ1Iaj89PYP3sVuesPVIu8gYxPykJV7xORfwCOaO5vqOqXVSjHaGCOqp7Q8WkRmQBMAIiJiSE5ObnCAoTEhBOyPZeVaWtRtle4n5omOzu7Us8hkDBjCUxq3Vhe6M0aDkByMrQvIjShMdYhzdzGEeFSfcGyRbb9nnuPQHcIaR9MSInD0kXxjQheFVhOLPz9mfgcOktVPwc+P4G+dwFtXdKx9jxPjAZuc0nvwt3hbiyQ7EGmN4A3AJKSknT48OElq/jMIlkJQFL/JOr3blnhfmqa5ORkKvMcAgkzlsCk1o/l3DMB93EswXbArdnlPehcYmyWvoPY8chvtBiTwNrzbZHvWvbuwIFVK6tNZF/w92dSprIQkSw8n7kUQFW1YRnNU4DOIhKH7eU/Ghjj4R7dsMXIWOySPReYJiKOPXPnAA+WJWulcTg/C8BA6QaDoXpwPfPhIKRhBB2fvcAt72TcQVXmIrWqRqlqQw8/UeUoClTVAkzC9uJfD3yqqmtFZKqIuAajHQ3MVi12Vamqh4BHsSmcFGCqPc9/2N2qnIx/BAbDyU5wY5shquHgtuXULJt6vWOo1yvG5/otJ/Sv1P2qk6qL4O4BVf2BEgvhqvrfEukpXtq+A7zjN+FK39D22ygLg+GkI3HJRPLSDhOV5OM+GhESFk5g24Nzafd/Z7DmvJkAdHr5YnLWH2DLLV/71E1EXJPyKwUIflUWtQqHFcooC4PhpCO0aT1Cm9Yrv6IdCRIiuzSnx+djAeiTOon8HUep1yOanA2+75xqck5n0h+sHdGpTVg4B1YzszAYDGXTcGh7gFIhYsNbN6ThILsJy8srpO1/hpfKC2/biJY3ezZFDdxdyulFjXLSzyyKLFbycwspsNq2z5mZhcFg8Eb3T66mYG8W4bGNvNZpPLyj7feZp3Dk160AxD11HjHj+rLzf8ml6refehbBUeEUHjjO/vf+dub72zHgiRJY0tQAy39J4+4z3mNxSLgtwygLg8HgBQkJKlNRAIQ0iWTAzvvp+tGV9Jo7jtj7hhJ9TWKpehGdbd4iRIS29w+jyVmdvPbZ5u4hNOjXmo4vXli5AVSCk35mEWKPtuWMMWWUhcFgqCRB4bZXa4M+rWnQp3Wp8qgh7ejyzuVueY3PLA45G/vAMLeysNYN6fXjOCyHc0nje3teFAW7q8+p1Uk/swi1K4uiAtuahTFDGQwGf9PknM6lFtR9Mju5vJ8SFk0kKLL6vu+f9MoiJNT2CIocn4E5lGcwGPxEm3tOJaxNQ6KvjvdYHn2tzVzVYrStPKJjUwAaDu1gq+DyegoKO/FY55XBmKEcZii7ktCCE3JPZTAYDD7TdvLpxD4wzGtMjo7PXq+26UcAACAASURBVECHJ851xhWP//2fWA7nEtYyylbBtV01W0FO+pmF0wxlT1sLLDUnjMFgqPOUF7wpyCXuRlB4SLGioITho5qNICe9snDMLIrsn4Jj2mcwGAyBhrrG5xCpVrO5URahxWaosDYN3bS6wWAwBDIdptni7xSO6+D3e5k1C+fMAiT4pNedBoMhkFF3J+DRYxJoelFXFq5Y4vdbn/TKItRlgVvMpMJgMAQwjvMbroQ0jPBQs+o56ZWF29ZZc8bCYDAEMEHhIfT+5cYacQVilIVzN5SYFRyDwRDw1I+vmUieJ/3r0bHAbWYWBoPB4J2TXlkEhwQRFGTbgqZGVxgMBoNHTnplARBit/8VmZmFwWAweMQoC2yzCwBrkHkcBoPB4AnzdsRlR5SZWRgMBoNHjLIAQoId22eNsjAYDAZPGGVB8ZqF1egKg8Fg8IhRFhSboaxmZmEwGAweMcoCCAm2KQljhjIYDAbPGGWBy24ooysMBoPBI35VFiJynohsFJEtIjLZS50rRWSdiKwVkY9c8p8UkTX2n6v8KadjgdtiZhYGg8HgEb/5hhKRYGA6cDaQAaSIyDequs6lTmfgQeBUVT0sItH2/AuBvkAiEA4ki8iPqnrML7LmFgKQvWafP7o3GAyGKic/t5CQ0GCnZcTf+PMuA4AtqpqmqgXAbODSEnXGA9NV9TCAqu635/cA/lBVi6oeB1YB5/lL0PxNBwGzZmEwGGoHBXkW7hj6LlNHz6m2e/rT62wbYKdLOgMYWKJOFwAR+RMIBqao6k/ASuBhEXkWqAecAazDTwTb44kYZWEwGPxBbnYBBXkWGjWvV27dz19ayrz3V3LXqxfSfUAbAI4dymXatV9weN9xGjWvR8Kw9gDsTT/C2//5jehEi1/lh5p3UR4CdAaGA7HAHyLSW1XniUh/YBFwAFgMFJVsLCITgAkAMTExJCcnV0iIYHv0qSKhwn0ECtnZ2bV+DA7MWAKTujIWf46jyKKkfneANj0b0LJzPT6+bxMo/OPRUwiLLDvK2rz3NwHwwq3fc/UzXSjMt/LXZ/s4vO84AEcP5vDHF+ud9f/6aQv8BFHN/TMWB/5UFruAti7pWHueKxnAUlUtBLaJyCZsyiNFVR8DHgOwL3xvKnkDVX0DeAMgKSlJhw8fXiFBV+hKwHbOoqJ9BArJycm1fgwOzFgCk7oyFn+O4/c569i0cDObFh5hxrIJfKy211f3jgm07dqc7CN57E47TJe+rZxt8nMLWb90F66vui5t43nkKt9MTf37DKJ+I/9FzfOnskgBOotIHDYlMRoYU6LOV8DVwLsi0hybWSrNvjjeWFUzRSQeiAfm+UvQEHuowiJjhTIYDBXk+NE858t6S+peZ/6ODQed1+v/2oUECc+M/5bc7AIARODC8f347o3lpfr0VVEAhEX411DktwVuVbUAk4C5wHrgU1VdKyJTReQSe7W5QKaIrAPmA/epaiYQCiyw578BXGPvzy9E9YwGICKhVTk1DQbDyUxhQRHfvrGcHRsOonbztdWq/PLRau45833++Ny2tPrXT1ucbR675gvn9ecvLuXRqz93KgoAVTwqihMl1EN87qrEr72r6g/ADyXy/utyrcA99h/XOnnYdkRVC8F2b7PSuHoCnxsMhsCmMN/Cl9NT6HdmHKck2MKYLv5uE398sZ60Vfu8vtw/fHwh+3YcrU5Rqw1zghuwe/vAYq1ZOQwGQ9VTZLHy47t/s3PjwVJlx4/m8cS4r3j8ui+xWtWZP//Ttfz60WqeuukbVvyaRmG+hZlTkklbVf5ZrF8+XF2l8vvCKQMb+f0eNb0bKiBwPIQiLbOawWAIQFSV7esO0LJDYyLqhwG2cwgbl+2mW//W/PnNRr6ansJX01OYsWyCs13aX0f5+F/vO9N/fL4OtSrdBrTh69eWOfNnPPALp8THVN+ATpDmbaIYMMr/8hllQfH0qkiNtjAYahurF+5g+t1zadWxCVM+HQXA+1N/J2XeVgZd0BlLofuu++PH8gmPDGHpp+6zhI+f/NPrPbb6MKOoDuJ6R/P/7Z13fFRV+v/fzyQhIQkQQgldQui9i9I7iAiLqOiKYlkU165Y+dnWr6JYV90VdLGsCgqriFRFCQiC0ruEFiUQWqihhCRzfn/cm8lMkskEyCSZ5Hm/XvPKveeee+9z5k7mM+c55zzPnk2HPMp639ASSPH7vVUscO9ZqFgoij/Y+PMfrFm0m5uf6n7JA7HOTCeblu8lrnUM6xbv4ZfvrKmmybuPkbA2mYQ1+1n1/S4AVs7b4XHurH+tYv7UdZd0/+Jk/AfX8PwNMzj4R/a4SFBQ0UzjVLEAHFmL8nTMQlEuGWemky9f+4Vml9ehba/6ALz30EIA6jSqQv+bW3vUT0/LIDPD6XIhAaQeP8f6+EQ6DYwjtHyIR/34GVv58rVf8rz362O/y9e2QBSKCtHlqdMwmjtf6ktQsINR47vy9r3Z84Yad6jFjqTc4zGFjYoFVpwR0J6FohQGaxbtJn7GVuJnbPUYIwArbMXhpJMcSDxOq2712L/7GM9fPwOAntc1p3X3yzh6IJXl3/5O4pbD/LHtMJ0GNmTBx+vpeW0zKsdEehWKQOSauzsy54M19L2xFX1vakVUtXDS0zI5djCVw0knqd+iOpE5Zmk271KHO17sw5Zf9jLgljbUbhjNjiT/26piAaRtPQRBIWQ6VSwUJSeZGU5OnzhHxSq+4xqB1SvI4otXlnH0QKpr3zgNE4ZPB2DA6NYsn73ddWzJjK0smeEZAm59fCJL/2eFttjyy15KG0PubM/g29vhcGS7ksqFBRNzWRQxl0V5Pa/zoIZ0HtSwKEx0oVNnAWfKGQDO2X8VRbFwZjp5afTXjB/4GYf2Fmz9wI512auXl8zYyqaf/3TtZ7r5er//70ZOn0jL91onU85eoMVFT+MOnot573ljYJ712veJZeK8v+YqdxeKkoz2LMiOOpuelitWoaKUWdLTMnhiyBeunsKWFUlUr2vN5z+cdJLU4+eIbVmdxK2H+fmbbRw7eJqBt7RhzaLdXq+5cekfRWJ7UdBlSCNueqIboeVDuKvjFFd5mx6XMen70UwcM4uU/acAePyjYdRtXIWQ0GBeXXAz8z9ax5A72xeX6ReFigUQhD3AXcx2KIo/OLL/FEFBQuWYyAs6b9fGgx4uJYdDOHMqjW2LjzLtUcuV1Kh9TXasTXbV8eUqOrLv1AXZUNQ4ggRnARdc3fZ8b9f26Ak9+PqdX3nwvSEAVIwuj3Fzazdolb0OolLVcEaN71pIFhcd6oYCguyHmllEGacUpajIzHDy9DXTeGLIF/nWO7LvJHM/XOuKWXQ29TxvjpvrUef3Vft4qPcnrJ+bPfPGXSgCkahqnuMwd7/a37UdFhGSszr1mlUFrF6FO92GN+WNH2+lXtOqrrLBt7cDyDX7K1DRngUQkhUQLLycj5qKElicP5cdf3P+R+v4ZfZ24trUYMxzvTzqPXPtV2RmOFm3eA8TPr/WI1JqFmt/3ONvc4ucifP+Ssr+UziCHOxNSKF193rc/HR3Ms5n0n1EMx7o8REZ6dY4y+Db2zF0bAcO/nE838HnLHqMaEbLK+tSOSbC380oEvSnNBBmi0Ramv+zTSlKYZGSfIo5H6zh9ElrkDjtbDo/f7ONl2/9Js9gdrPeW8WhvSdZMcczNUz6+Uwy7cBoe7enkLznGG/cPcf/DSgGsnoGYLmcRISqtSsSXSOSNj0uQ0To/pdm9L6hJcEhQby5eAydBsQx7rUBDL+nE0HBDmrFRRc473V0jUiklGTg1J4FEHTeEolzZ9KL2RJFKTivj/2OlORUEtYm06JLHb5+5zfXsc/+bymPTB7KmVP5zzYyxrDsm20eZc9dN8Mv9vqbDv0a5Dm4PnZiP6Y8sYhuw5syekIP12C0FOD7vlxYMHe+1LewTQ1IVCyAoPOZYAzpadYvrIL+alAUf2GM4cSRM0RV8+7CSEm21i9sX7Wf7av2exw7fy6D1OPneGrotDzP/eT5eE4dO8emZX/meTwQadm1LrEtqzPzrZUe5R36NWDi3JuIqm69l1nxlarHlS8OMwOWMi8WJtOJOA0hxpAuwvlzGZSP1LELxX8cSDzOgk/WM3RsB6rUrJBnnWmvLGfJzK3c+VJfOg2I8zj2zbu/sX/X0Xzv4QhysH31fq/Hs+IplQYat6+JAToNiCMkNJj+N7fm/h4fkebmKXCfCTZu0gB++W47jur5v4eKJyoW9uBViIF04Nzp8yoWil95afTXpJ3NYP+uYzz16V/yrLNkprWSef7UdURVCyeudQxH9p9i5/oDLPh4vc977N54kCklJFLqxVCtTkUe+vcQJo6ZxcmUs4hYGeXceXHWKKrVqZjn+eNeG8Bb98zN81ilquEMvq0d8fHxhWx16abMi4XTDl8cbH8SddxCuVgWfLyepB0p3PFiH6+DmvOmriPtrDVGdmDPsVzHjx06zbf/XuXa37fzKK/9Lf/geIHMqwtu5rFBn+UqH3Jne6rUrMA/vhnF6RPnCAsPYd/Oo6QeP8fkxxcBeBUKgGada3P3pP7UaVTFb7aXNcq8WJjzlliE2Avzzp1WsVAujm/etQaYm3aqTeMONV2rncGKifTl67/w07TNrrK0sxn8NH0zlw9uSESlMPbtPMoLo2YWud3+4rGpw3j19m+9Hn9m+kgqVQ2nSadarjGX257vxaZlf7riHoWFhxAWbq13aNyhFhnpmTRuX5PmV9Txef92vWMLoRVKFioW6VliYZF2VsVCuTT+++JSAEY91pWoauG0uKIuyQlnWDJtR666X772Cz9O20SPEc3YXEoC5bXqXo973xwEQNdrmrBv11EefG8ID/b62FXnqjvaUbthNAD3vDaA1++ew+WDG9FlSGO6DGns9drBIUE8MmWoX+1X8qbMi4VTexaKn5j+qpV5LbZldWq08T7D7si+Ux7TXgONyKgwj7Ag7rMJb3mmZ6769741iJZd67r2wyLK8fR/R/jXSOWSKfNikZV4O9h2MeuYheJOeloGuzcdomHbGvlOqc5a1JYXezYfQsK9+9cDjY4jqnPnk8NYH5/I76v2M3RsB14a/TUpyanUqB/FdQ92yfO8u17px8mjZ2nVrV4RW6wUBioW9sB2Vs8iTcVCcWPKE4vY+POfDLy1DSPuuxywBOSV276lSadaXPtAFz58+kfW/OA90irA7t9OFoW5hUrvG1qw+MstPDZ1GNE1IomqFo6IEB8fj4jQrnesa1zgpe9u8nm99n0b+NtkxY+U+dVnWbPxslRTexalm3Onz/PDZxs5duh0rmPbfk3ijXFzXMl6MtIz2WjnYvhpevbA9JYVSexNSGHR55sY1/kDn0IRSMS2qu7aHjW+K5NXjyWudQyVq0eUmrAVysVR5sUCO+Jslmj8Nj/3IKRSepj51kpmvrWS18d+x5lTaRzZnx0y+62/z2P7qv18/tLPAB6JedLTMvn0H0sAKC3fmaPGX0n3vzT1KBv/wTX0ur4F4z+8ppisUkoqfnVDicgg4G2sNNcfGmMm5lHneuA5rO/rDcaYm+zyV4EhWIL2A/CAMX5Ikm1fcluQtRAvaYeu6gxUnJlOjh5IpWrtihhjSFiTTJ1G0URUys5hnBU76HDSSR7q/QkAk74fTcXo7NAPm3/Zy10dpzDi/ss9rr/82+04Mw3hFUOLoDX+oU6jaJJ2HPVYGX7Tk91554H51LYD5N34WODlWlD8j9/EQkSCgPeA/kASsEpEZhtjtrrVaQQ8CXQ1xhwTkep2+ZVAVyArEPwyoCcQX+iG2vJT35lBokOHcAKZKU8sYt3iRHpc2wxxCEtmbKVKrQq8NPtGAE4dO8uZU+dznXcg8TiRlXILwNf//DVXWc6IrSWVd5ffzr1dp+Yqf/SDa9i38yhxbbKT8TgcwgPvXFWU5ikBiD+/HTsDO40xuwFEZDowDHDPyP434D1jzDEAY8whu9wAYUA5QLCWQfgldkFWNqtmJp1Egj2SlyiBxbrFiQAs/V92FNWU/af4bvJqmnSqzetj814J7a28pBNRKdRrDuuQ0Ox/7YpVyrtyWZePLEfDtjWKxD6ldOHPMYvagPsqoyS7zJ3GQGMRWS4iK223FcaYFcBiINl+LTTGbMMf2G6oINsP7Z4KUSl+ls/enisg3okjZ1jw8XpOnziHM9PJq7d/y6cvLPF6jTkfrA1YQciP4fd0omaslYRn3GsDuPVZa01Dlpusx7XNqFE/SsVBKRSK2+8SDDQCegF1gKUi0gqoCjSzywB+EJHuxpif3U8WkbHAWICYmJiLCgwmf54mFHAYa5788WMnAzrAWGpqakDbv+vXE4RFBlG7RSQHEo+z+F3L7XP14/X5+dP9tOxbhQ3zj5Caks6q+C20GliVXRsPsiuAg+b5onylYM6eyJ2YK2FHAt3GVuXsiSiOkwgVYMTzcQSVs6a31r4CanWpxt6N1uyuyrVDC+WzEeifsSxKSzugaNriT7HYB9R1269jl7mTBPxqjEkH9ohIAtnisdIYkwogIvOBKwAPsTDGTAGmAHTs2NH06tXrgo08veUQm9hAcJDVySoXHMrFXKekEB8fH7D2n0w5w7RHraByk1eP5aup81zHln54kJMp51n+WXbO56TNp6nfqG6u6wQ6rbrV48zJNIJCHDwyeSjGGE4dPcvjV32OMzO759u4cRN69G/m83qml6Fbn0PUalCZsIhLj6gcyJ8xd0pLO6Bo2uJPN9QqoJGIxIpIOWAUMDtHnVlYwoCIVMVyS+0G/gR6ikiwiIRgDW77xw1lu52C7ZHudDv8h+If9m4/wubl2Ql3MtIzOXHkDBNvm8XKednTlp1O4zGvP8vnnpNl3/zuP2OLkJ4jm7u273ixD49NHcYjk60YSCJCxSrhPD/zeiuvc9e6hEWE0KFvwQLliQgNWsUUilAoZRe/9SyMMRkici+wEGvq7FRjzBYReQFYbYyZbR8bICJbgUxgvDEmRURmAn2ATViD3QuMMX5yOttjFvaee4J7pXBwZjpJSU6lUtVwXvzr1wC8POcmIiqFcn/3j1z19mw65Noe1/kD2l5ddiYbtOpWz5XDwls+lep1K/HXp7oDlpg6HKVkwYcSEPh1zMIYMw+Yl6PsGbdtAzxsv9zrZAJ3+dO27JtZf4IcAk7I0J5FofPsyK84tNcz3MWJI2d47+GF+Z63fs4Rf5pVYhg9oQetutXj4fevJrpGpO8TQIVCKXLK/ArurNlPDqyVuRnpTpyZ3oPCKd7JzHDy8XPxrP5hl0d5TqHIIikhpSjM8hsReazNALjx8Qtb1NZtuLWKuknHWvkm9FGU4qS4Z0MVP/bUWXGAsT1Q6eczCS1f9nR04Sfr2bXxIHe/2h9HkIP0tAz+ed98WnWvx4DRbfI9d8PSP/iX3VNYMSeB3ZsOcTLljNfVwF+/k3vBW6BRsUp4nusc2veJZdory6lUNRyHPSf72MHsWFQPv381dZtUYfm321UclIBBxSJrconbYOrujQdpdrnvTFyljaycCr+v2k/zLnVYtziRhLXJJKxN9ikW/8rhUvrxi00ArFq4K6/qJKxJzrO8pNKwbQ12rj/gUebMcHLrsz1ZNut3dm3InrpbsUo4k74fTfmIEBxBDkTg+3k/se9XB72ub0Fca2v1dP+bW6MogULZ+/mcA9ciPDcXcFaO5LJK1owwbzkaErccYun/tnLs0Gke6vMJM95cUZTmFQt5ZWerWDWcK4c24bH/DHOVjbivs3UsujwhocEEBTtwBDkIqxDMHS/2cQmFogQaZV4sstxQCFSvZ+VMDuRAcYXBd++v5uVbvvEQi60rk1zbL986i89fXsYTV33OmZNpLPp8U3GYWWh0GdIoV1nXYU1c23FtYnA4hJEPdqFCdHnGTuxH6+71GPNsdha491bcwdOfjWDALfn3wBQlUFE3lJsbqnL1CA79eaJMDHAbY/jk+SXUaVyFfje18ji21x54Ttx62FX29r3zeODdq6jfolqR2lkUdBrYkJVzrTUe978zGBHh3Jl0ln+7HbCC74HlNur311aICB36eSbyCQ4J0rhiSqmmzIuFuxsqec8xABZ9sYmmnXKGsSpd7Nl8yBVBNadYeOPte+dRp1G0P80qcqrWruCx3+IKa0X42h+zExq5T1PVBEBKWUXdUGSHT8haJbzp5z+9VS41pKdlrydx/2L0RWnI91G7Ybbg3fFinzzr1IorXaKoKJdKme9ZuLSijC1ycrpF1538+CKadKxVjNYUDVVqRlIrLpqRD3bh2ZFfAd57CjXqR/HYf66hckzBFskpSmmnzItFaQxJnnY2naBgB0HBDt59cAHlwoK565X+nD+XwdEDqfz05WaWzNjqcU7OMOCBREhokEdPyRv1mlbl7kkDPMqiqmWvhchJXBsN7a0oWZR5sXCfDVWSMcb49JefP5dBZoaT+7t/RESlUO78v75sXm6lFJn74Vpmv7+6KEwtcp6ZPpL/95cvfdar2aCya/vZr67j1NGzVI6JpHJMJCPu66yuJ0XJBxULWytMCRaLyY/9wNEDqTz+8XCvMYG2rNjLP++bT2wna0Xw6RNpvH1vdliuQBaKXtc158/tKez2krOiWp2KtLiyLlVrVXAF42txZV0GjLYWvVWoXJ41i3YzaExb1zm1GlQGN/EYeGtbFEXxjoqFq2chiEOK3S2VsDaZz15cyi3P9HRlOFv70x4Ajh867RFo7mzqeYKCHZQLC+bbf1tisGdV3nGYAoH6zat5TNcNDhVeW3gr5SPL4XQaxnX+AIBJ349m/ID/uuqJCPf/czAAYREhLPxkA4PGtKVx+5quOu6D2oqiXDhlfjaUyVpSIbi+cIqKbb8msWyWZz6GN+6ew8E/TzDpztn5rvdIP5/Jg70+5r5uU3FmOikNMzqDgrM/jm/8dCsj/9HQFa7bvUcVWj6YUeOvdG27M+K+y/nnz7d5CIWiKJeO9ixMdk+i2eXZayuSdqRQp1EVv976rb9bbqJG7WoQc5mVS9m9Z7Pg4/VcdUd71/5Xr/9Cy6716Da8Kb/M3u4qH3f5h361099EVQvn4clDPYILRlQMRby43IKCHfS4tjmh4SF5rocJLR/iN1sVpayiYuE2ddZ9APlfDy/kpe9uKtglCjD47I7TaVizKHttQ0pyKl+8spxyoUEe9db+uMdDLNYtTmTd4kS6DW/KFxOXFfh+xUnj9jVJWJt30MAXZ43ip+mbGTSmLZWqhnPjY11xZji9Bth7+rMRZGY4CQ6x3qcrhzbJs56iKIVPmRcLY/Ieo0hJTvWo400MMjOcTLxtFrXjohnzXC9XmbtLJScr5iTw6QtLXPvuA9E5bVv1fe6orSeOnPF67ZJGZOUwJnxxLb//to++N7a02v6PpYA1MH3Do1e66kZVi+Dvbw7yei0Np6EoxUeZH7PIb+psSvIpVsxJ4JF+n7riJeVk386j/LntiCt0xoo5CdzT5UM2LfO+CnzXhgNej7mTtOMoHz71Y67yxwZ9VqDz/c2Tn/7FY7/TwLhcdTr2j6Nu4yr0v7k1jiAHIaFl/veJogQkKhauQIK5Dz01dBofPxfP6RNpTPPi9nHmmD318XPxALz74AL27TzKsUOnc53jzRcfKLz2w2gmrx5L/ebVuP0fvQErb/ToCT08Btqr161I+76xHue2612fhm1rMPzvnYrQYkVRLhX9mefMnjqbH5mZTpxOk2udwwE7+CDA4STPaasvjJoJwNtLbyO0fDDfTVlDpSrhnDgcOG6knNSoH0WFyuVd+5cPbkTnQQ1dbrqn/juC/7v5awAe/2h4LvddSGgw4z+8pugMVhSlUCjzYuFtzCIniVsOM67zB9z1Sj/a97XCUzudho+ejXfVmTB8ep7nPtDjo0u209/c8/oA/vXI9z7rTfh8RK4yd0Go17Qqz345kvIVQomMCitUGxVFKT7UDeWaDVWw6pMfX+Ta/vP3I4VvTzHRpmd9n3Uq2NnffFErLprK1SMKwSpFUUoKKhbOfAYtfFDcq70Li8Ydci9gu3psh1xlj0y+uijMURSlBKJikWM21LjXBnivW0qpGWvFSKplx0rq0K8BQ8d2oH2f2DzrKYpS9tAxixwdi9iW1Qt03uzJq5n7wVr/GFXEZA053P/uVaycm0CPa5sDcNer/Tlx5AyT7pxNr+tbFKOFiqIUN37tWYjIIBHZLiI7ReQJL3WuF5GtIrJFRL6wy3qLyHq31zkRGe4XI3P0LCpVDfd5yrbf9pUaoQBcalG5egSDb2tHRMVQ16FKVcN5cdaoAqdeVRSldOK3noWIBAHvAf2BJGCViMw2xmx1q9MIeBLoaow5JiLVAYwxi4G2dp1oYCfge6rOxWAKNnXWnbfumesXU4qaKjUjSUlOpXmXOsVtiqIoJRx/uqE6AzuNMbsBRGQ6MAxwT9H2N+A9Y8wxAGPMoTyuMxKYb4zxy+KECl3q0XT6DWz4Y5ur7Ko72jHvP+v8cbsiZ9CYtsS1iWHR55uIrhnJiu+sleZ9b2zJkL91IHn3MeLaxBSzlYqilHT86YaqDex120+yy9xpDDQWkeUislJE8goMNAqY5icbKRcTSVSfOExsdp6IQApQ1/yKOq6YVHkhDqF198t4+P2rGfNsdr0hd7YnomIoDdvWuKAgiIqilE2Ke4A7GGgE9ALqAEtFpJUx5jiAiNQEWgEL8zpZRMYCYwFiYmKIj4+/aENSU1Nd5585nn7R1/E3jiBhxPNxzJywE4CYVoa0SO/5s0+mH8jzfVm2fDmh4UG5TyhBuD+TQEfbUvIoLe2AommLP8ViH1DXbb+OXeZOEvCrMSYd2CMiCVjisco+fj3wjX08F8aYKcAUgI4dO5pevXpdtLHx8fFknX/y6Fm+Zc9FX8ufBAU76D+oD/0G9ubUsXNUjLZCb0wjwaNey651aXllXXpd38Kj55BVr2fPHmINrgAACo9JREFU7oRFlCs6wy8C92cS6GhbSh6lpR1QNG3xpxtqFdBIRGJFpByWO2l2jjqzsHoViEhVLLfUbrfjN+JHF5Q3gkOKZvlJ9boVfdaZvHqsx37vG1oCVoiNLKHIi/veHkzvG1rmcjHd+VJfRk/oUeKFQlGUkoXfvhWNMRnAvVgupG3AV8aYLSLygohkRZJbCKSIyFZgMTDeGJMCICL1sXomS3Je299kJdfxN0071eadZbfT5apGeR6/8fGuHvtNOtVi+D2+o7XmN/2304A4ug1vemGGKopS5vHrmIUxZh4wL0fZM27bBnjYfuU8N5HcA+JFQn6JiwoTCRLKhQVz2wu9WTlvR67jOX/9N2gV49W2h9+/mhVzEtj7x37umOA9gZCiKMrFUNwD3CUSR1DRzA7ydperx1pTWjsNyJ1MyBtNOtaiScdaxMfHUysuunAMVBRFsVGxyIOimkoac1lUrrLrH7mCvjd6WS1dwHDqiqIohY0GEvRCjfq5v8gLm54jm+cqi64RmausfotqALTtHZvrmKIoSlGgYuGFZ78cSYV8Zhs9NnXYJV2/fZ/YPMcfqtetlPte/xnGy3Nuon7zapd0T0VRlItF3VBecAQ5eH7m9ezdfoQ3x3nGgnpk8tXEtY6hcfuaJKxNdpW3612fdYsT87xe5ZgIel3Xgna961M5JpKQUM8ZV8/NuI7DSSep3TD3eENQsCPPHoeiKEpRoWKRDxEVQ2naKfeErMYdagEw9pV+zP1wLVcObUJ4xVA2LEl0iUWH/g1Y80P2kpFxrw3gsmbeewY1YytrvghFUUosKhYFoNnltdn2a87F51ChcnlGjc9eC9FjRDP2bk+hfd9Y1ufoYdRtXMXfZiqKovgNHbMoAAXNnhcSGsyY53rRuvtlNOlUy1X+9GcjcATpW60oSuCiPYsCEFo+hLsn9ef98T8U+JxOAxsSGRXGZc2qERkV5kfrFEVR/I+KRQFp1zuWe98aRPV6uWcr5YXDIbS4oq7vioqiKAGAisUF0KpbveI2QVEUpVhQR7qiKIriExULRVEUxScqFoqiKIpPVCwURVEUn6hYKIqiKD5RsVAURVF8omKhKIqi+ETFQlEURfGJioWiKIriExULRVEUxSdiSkleZxE5DPxxCZeoChwpJHOKk9LSDtC2lFRKS1tKSzvg0tpymTHGZxrOUiMWl4qIrDbGdCxuOy6V0tIO0LaUVEpLW0pLO6Bo2qJuKEVRFMUnKhaKoiiKT1QssplS3AYUEqWlHaBtKamUlraUlnZAEbRFxywURVEUn2jPQlEURfFJmRcLERkkIttFZKeIPFHc9hQEEUkUkU0isl5EVttl0SLyg4jssP9WtstFRP5pt2+jiLQvZtunisghEdnsVnbBtovIrXb9HSJyawlpx3Miss9+LutF5Cq3Y0/a7dguIgPdyov98ycidUVksYhsFZEtIvKAXR6Iz8VbWwLq2YhImIj8JiIb7HY8b5fHisivtk1fikg5uzzU3t9pH6/vq30XjDGmzL6AIGAX0AAoB2wAmhe3XQWwOxGomqPsVeAJe/sJ4BV7+ypgPiBAF+DXYra9B9Ae2HyxtgPRwG77b2V7u3IJaMdzwKN51G1uf7ZCgVj7MxdUUj5/QE2gvb1dAUiwbQ7E5+KtLQH1bOz3NtLeDgF+td/rr4BRdvn7wDh7+x7gfXt7FPBlfu27GJvKes+iM7DTGLPbGHMemA4MK2abLpZhwCf29ifAcLfyT43FSiBKRGoWh4EAxpilwNEcxRdq+0DgB2PMUWPMMeAHYJD/rc/GSzu8MQyYboxJM8bsAXZiffZKxOfPGJNsjFlrb58CtgG1Cczn4q0t3iiRz8Z+b1Pt3RD7ZYA+wEy7POczyXpWM4G+IiJ4b98FU9bFojaw120/ifw/WCUFA3wvImtEZKxdFmOMSba3DwAx9nYgtPFCbS/JbbrXds1MzXLbEEDtsN0X7bB+yQb0c8nRFgiwZyMiQSKyHjiEJby7gOPGmIw8bHLZax8/AVShENtR1sUiUOlmjGkPDAb+LiI93A8aq/8ZkNPcAtl24N9AHNAWSAZeL15zLgwRiQT+BzxojDnpfizQnksebQm4Z2OMyTTGtAXqYPUGmhanPWVdLPYBdd3269hlJRpjzD777yHgG6wP0sEs95L995BdPRDaeKG2l8g2GWMO2v/gTuADsrv7Jb4dIhKC9eX6uTHma7s4IJ9LXm0J5GdjjDkOLAauwHL5Bedhk8te+3glIIVCbEdZF4tVQCN7hkE5rIGh2cVsU76ISISIVMjaBgYAm7Hszpp9civwrb09G7jFnsHSBTjh5looKVyo7QuBASJS2XYnDLDLipUcY0F/wXouYLVjlD1jJRZoBPxGCfn82b7t/wDbjDFvuB0KuOfirS2B9mxEpJqIRNnb5YH+WOMvi4GRdrWczyTrWY0EfrJ7g97ad+EU1eh+SX1hzexIwPIHPl3c9hTA3gZYsxs2AFuybMbyT/4I7AAWAdEme1bFe3b7NgEdi9n+aVhugHQs/+kdF2M7cDvWYN1O4LYS0o7/2nZutP9Ja7rVf9pux3ZgcEn6/AHdsFxMG4H19uuqAH0u3toSUM8GaA2ss+3dDDxjlzfA+rLfCcwAQu3yMHt/p328ga/2XehLV3AriqIoPinrbihFURSlAKhYKIqiKD5RsVAURVF8omKhKIqi+ETFQlEURfGJioVSphGRKBG5x22/lojMzO+cQrx3fRG5qSjupSiXioqFUtaJworYCYAxZr8xZmQ+9QuT+oCKhRIQqFgoZZ2JQJyd42CS/Wt/M4CIjBGRWWLlckgUkXtF5GERWSciK0Uk2q4XJyIL7MCOP4tIrhg+ItJTsnMprLNX4U8EuttlD9mB4yaJyCo74N1d9rm9RGSpiMy1cxK8LyIOu/7HIrJZrPwmDxXh+6aUMYJ9V1GUUs0TQEtjBWzLilTqTkusyKVhWKtjHzfGtBORN4FbgLew8h/fbYzZISKXA//CCiXtzqPA340xy+0gd+fsez9qjLnavvdYrNAZnUQkFFguIt/b53fGyk3wB7AAGAHsAWobY1ra50cVxhuiKHmhYqEo+bPYWHkRTonICeA7u3wT0Nr+4r8SmGGFJQKsRDM5WQ68ISKfA18bY5Lc6mcxwL5mlhusElYsn/PAb8aY3QAiMg0rrMWPQAMReQeYC3yf84KKUlioWChK/qS5bTvd9p1Y/z8OrBwDbfO7iDFmoojMxYo3tFzyTm8pwH3GGI/geyLSi9zhwY0x5piItMFKOnQ3cD1WbCZFKXR0zEIp65zCSr95URgrV8IeEbkOXPmp2+SsJyJxxphNxphXsCKaNs3j3guBcXaIbUSksR1ZGKCzHQHVAdwALBORqoDDGPM/YAJWmldF8QsqFkqZxhiTgvVLf7OITLrIy/wVuENEsiIB55V+80H7HhuxItXOx4oomikiG+zB6Q+BrcBae5B9Mtm9/1XAu1hhqvdg5TGpDcSLlU3tM+DJi7RfUXyiUWcVpYRju6FcA+GKUhxoz0JRFEXxifYsFEVRFJ9oz0JRFEXxiYqFoiiK4hMVC0VRFMUnKhaKoiiKT1QsFEVRFJ+oWCiKoig++f8Ch0SNNjS6iwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4lMXWwH8nPZCQhBZK6J0UAoQiSBHBXlBBaQpiwyt6xYod9RPL1YuoWLioKKKIiOUqihck0pEWeu+hk0AK6cl8f2zJbrKbbJJtCfN7Hh7ed9p75t3NnJ1zZs6IUgqNRqPRaMrCx9MCaDQajcb70cpCo9FoNOWilYVGo9FoykUrC41Go9GUi1YWGo1GoykXrSw0Go1GUy5aWWguOURkh4gMdFJbA0Uk2UltjRORlc5oy8Hn3SIix0QkU0S6uvG5o0XkD3c9T+MctLLQlEJEDotItnEQOS0is0UkxNNyOQulVLRSKrEydUVEiUhbJ4vkKd4GJiqlQpRSm13xABFpaXxnfqY0pdRcpdRVrniexnVoZaGxx41KqRCgG5AAPF+ygBhw2nfIckDRuIUWwA5PC6GpHmhloSkTpdRx4DcgBkBEEkXkNRFZBWQBrUWkiYj8LCKpIrJfRO4z1ReRYBH5QkTOi8guEXnK0mxjnMU8LSJbgYsi4mds73sROSsih0TkEYvyPUVkg4ikG2c9/zamB4nIVyKSIiIXRGS9iETa6pPxmYON11NEZL6IfCkiGUYTVYKdesuNl1uMs647LPIeF5EzInJSRO62SA8UkbdF5KhR3o9FJNiRdy8ifYz9SDP+38cib5yIHDTKfEhERhvT24rIX8Y650TkWxvtBopIJuBr7MsBY7rVrMk4o/w/4/VAEUkuo5/BIvKOiBwxPnulsZ+md3bB+M4uK2luK6efiSLyqoisMvb1DxGp78j70zgXrSw0ZSIizYDrAEszxZ3A/UAocASYByQDTYBhwFQRGWQs+xLQEmgNDAHG2HjMSOB6IBwoAv4LbAGaAlcCj4rI1cay04HpSqk6QBtgvjF9LBAGNAPqAROAbAe7eZOxD+HAz8AHtgoppfobL7sYTTemgbiR8dlNgXuAGSISYcx7A2gPxANtjWVeLE8gEakL/Aq8Z+zPv4FfRaSeiNQ2pl+rlAoF+gBJxqqvAn8AEUAU8L6NfuQaZ42mvrQpTx4H+vk20N0oS13gKQyfpemdhRvf2RpH+2lRbBRwN9AQCACecFBejRPRykJjjx9F5AKwEvgLmGqRN1sptUMpVYBhAOkLPK2UylFKJQGzgLuMZW8HpiqlziulkjEMCiV5Tyl1TCmVDfQAGiilXlFK5SmlDgL/AUYYy+YDbUWkvlIqUym11iK9HtBWKVWolNqolEp3sK8rlVKLlFKFwBygi4P1TOQDryil8pVSi4BMoIOICAalOkkplaqUysDwHkeU0ZaJ64F9Sqk5SqkCpdQ3wG7gRmN+ERAjIsFKqZNKKZM5KR+DeamJ8fNwpsPcXj99gPHAP5VSx43vf7VSKtcJ/QT4XCm11/j9mI9B8WrcjFYWGnsMVUqFK6VaKKX+YfxDNXHM4roJYBoITRzB8OvTlG9Z3vLaVloLoInRlHTBqLCeBUwmpXsw/FLfbTRZ3GBMnwMsBuaJyAkReUtE/B3s6ymL6ywgSCrmP0kxKk7LNkKABkAtYKNFX343ppdHEwzv0ZIjQFOl1EXgDgyzp5Mi8quIdDSWeQoQ4G+jSW18BfpRHvb6WR8IAg5Uok27/bS4L/n51JjFFtUJrSw0lcEyVPEJoK6IhFqkNQeOG69PYjCHmGhWTnvHgENGRWX6F6qUug5AKbVPKTUSg0niTWCBiNQ2/tp9WSnVGYMp5AaKZzee4hwGU1i0RV/CLExAZXECg+K0xPxelVKLlVJDgMYYfon/x5h+Sil1n1KqCfAA8KE4vnorC4NyM9HIwXrngBwMZsGSlBfWusx+arwHrSw0VUIpdQxYDbxudDLHYfj1/5WxyHzgGRGJEJGmwMRymvwbyBCD0ztYRHxFJEZEegCIyBgRaaCUKgIuGOsUicgVIhIrIr5AOgaTSZFzewvAaQz+l3IxyvgfYJqINAQQkaYW/peyWAS0F5FRYnD63wF0Bn4RkUgRudnou8jFYA4qMrY/XERMyvk8hsHa0feQBIwyvvNrgAEV6OdnwL/FsDjB1+jIDgTOGp9v753Z7aeDMmvchFYWGmcwEoMT+wTwA/CSUmqJMe8VDM7vQ8ASYAGGAc4mRr/BDRjs0ocw/GqdhcGxCnANsMO4mmc6MMJoImtkbDsd2IXBzzLHaT0sZgrwhdGsdLsD5Z8G9gNrRSQdwzvoUF4lpVQKhvfwOJCCwbx0g1LqHIa/28cwvO9UDIP6g8aqPYB1xvfzMwY/wkEH+/ZPDL6CC8Bo4EcH64HB6bwNWG+U6U3ARymVBbwGrDK+s94V6KfGixB9+JHGnYjIgxgGeId+tWo0Gu9Azyw0LkVEGotIXxHxEZEOGH5B/uBpuTQaTcXQO2Y1riYA+ARohcG8MQ/40KMSaTSaCqPNUBqNRqMpF22G0mg0Gk25aGWh0Wg0mnKpMT6L+vXrq5YtW1a6/sWLF6ldu7bzBPIQNaUfoPvirdSUvtSUfkDV+rJx48ZzSqlyowrUGGXRsmVLNmzYUOn6iYmJDBw40HkCeYia0g/QffFWakpfako/oGp9EZGS4VZsos1QGo1GoykXrSw0Go1GUy5aWWg0Go2mXFzqszAGI5uO4USuWUqpN0rkTwOuMN7WAhoqpcIt8usAO4EflVLlBaDTaDxGfn4+ycnJ5OTk2MwPCwtj165dbpbKNdSUvtSUfoBjfQkKCiIqKgp/f0cj91vjMmVhjP45A8PpaMnAehH5WSm101RGKTXJovzDQNcSzbxK8bGMGo3XkpycTGhoKC1btsRw5pE1GRkZhIaG2qhZ/agpfakp/YDy+6KUIiUlheTkZFq1alWpZ7jSDNUT2K+UOqiUysMQ5uHmMsqPBL4x3YhIdwwH3vzhQhk1GqeQk5NDvXr1bCoKjcbTiAj16tWzO/N1BFeaoZpifQJaMtDLVkERaYEhdtCfxnsf4B0M5zUPtvcAEbkfw7GVREZGkpiYWGlhMzMzq1TfW6gp/YDq1ZewsDAyMzPt5hcWFpKRkWE3vzpRU/pSU/oBjvclJyen8n9TSimX/AOGYfBTmO7vBD6wU/Zp4H2L+4nAU8brcfbqWf7r3r27qgrLli2rUn1voab0Q6nq1ZedO3eWmZ+enu5yGU6dOqVGjhypWrVqpbp166Z69+6tFi5c6PTnONqXZcuWqVWrVlXpWcuWLVPXX399ldqwx++//646d+6sunTporKyspzW7muvvWZ1f9lllzmtbXs4+pnY+p4CG5QDY7orzVDHsT5CMwr7RyWOwMIEBVwGTBSRw8DbwF0i8oatihqNxvCjb+jQofTv35+DBw+yceNG5s2bR3JyskufW1BQYDcvMTGR1atXO609ZzN//nyeeeYZkpKSCA4Odlq7U6dOtbqv6DvwVlypLNYD7USklYgEYFAIP5csZDxoPgJYY0pTSo1WSjVXSrXEcALXl0qpyS6U1SEubj3F0VeXUZiV72lRNBor/vzzTwICApgwYYI5rUWLFjz88MOAwUzx5JNP0qNHD+Li4vjkk0+A4p2/w4YNo2PHjowePdo0u2fjxo0MGDCA7t27c/XVV3Py5EkArrvuOh599FESEhKYPn06//3vf+nVqxddu3Zl8ODBnD59msOHD/Pxxx8zbdo04uPjWbFiBYcPH2bQoEHExcVx5ZVXcvToUQDGjRvHhAkT6NWrF0899ZTdPqampjJ06FDi4uLo3bs3W7duBeCvv/4iPj6e+Ph4unbtSkZGBidPnqR///7Ex8cTExPDihUrrNqaNWsWCxcu5IUXXmD06NEkJiZyww03mPMnTpzI7NmzAUN0iJdeeolu3boRGxvL7t27AYOZ9O677yY2Npa4uDi+//57Jk+eTHZ2NvHx8YwePRqAkBDDketKKZ588kliYmKIjY3l22+/Lfcz8CZc5rNQShWIyERgMYals58ppXaIyCsYpj0mxTECmKe88e2UYNvgzwAQfx+aTR5g+ECLFOKrt6toPMuOHTvo1q2b3fxPP/2UsLAw1q9fT25uLn379uWqq64CYPPmzezYsYMmTZrQt29fVq1aRa9evXj44Yf56aefaNCgAd9++y3PPfccn31m+BvIy8szh9c5f/48a9euRUSYNWsWb731Fu+88w4TJkwgJCSEJ554AoAbb7yRsWPHMnbsWD777DMeeeQRfvzRcHJrcnIyq1evxtfX124fXnrpJbp27cqPP/7In3/+yV133UVSUhJvv/02M2bMoG/fvmRmZhIUFMTMmTO5+uqree655ygsLCQrK8uqrXvvvZdly5Zxyy23MGzYsHLt+PXr12fTpk18+OGHvP3228yaNYtXX32VsLAwtm3bZn4Pt912Gx988AFJSUml2li4cCFJSUls2bKFc+fO0aNHD/r372/3M7j88svLlMnduHSfhVJqEYYD2S3TXixxP6WcNmYDs50smsPknkhn1/BvaPKPYt98zsFUAHbeMpec/Sl03TwRH//iL/nx6avxDQmg0T0JbpdX43nWNpxafqFK0PvMsw6Xfeihh1i5ciUBAQGsX7+eP/74g61bt7JgwQIA0tLS2LdvHwEBAfTs2ZOoqCgA4uPjOXz4MOHh4Wzfvp0hQ4YAhplJ48aNze3fcccd5uvk5GTuuOMOTp48SV5ent2lmWvWrGHhwoUA3HnnnVaziOHDh5epKABWrlzJ999/D8CgQYNISUkhPT2dvn378thjjzF69GhuvfVWoqKi6NGjB+PHjyc/P5+hQ4cSHx/v8Luzxa233gpA9+7dzX1YsmQJ8+bNM5eJiIgoV/6RI0fi6+tLZGQkAwYMYP369dSpU8fmZ+BtykL/JC6H5LdWkLMvhYOTinVeyo+7SFt1hIzVR8k/c5EtfWeiigwTo4KMXI69lsjhZ/SKX437iI6OZtOmTeb7GTNmsHTpUs6ePQsYTCDvv/8+SUlJJCUlcejQIfPMIjAw0FzP19eXgoIClFJER0eby2/bto0//ij+TltGOH344YeZOHEi27Zt45NPPqnU8syqRH+dPHkys2bNIjs7m759+7J792769+/P8uXLadq0KePGjePLL78ssw0/Pz+KiorM9yX7YHpHpvfjbGx9Bt5GjYk66ypUQZHN9F23zDVf5x4+z9FXl9FwZBy+YUHuEk3jpdiaAbh6A9igQYN49tln+eijj3jwwQcBrEwvV199NR999BGDBg3C39+fvXv30rRpU7vtdejQgbNnz7JmzRouu+wy8vPz2bt3L9HR0aXKpqWlmdv64osvzOmhoaGkp6eb7/v06cO8efO48847mTt3Lv369atQH/v168fcuXN54YUXSExMpH79+tSpU4cDBw4QGxtLbGws69evZ/fu3QQHBxMVFcV9991Hbm4umzZt4q677rLbdosWLdi5cye5ublkZ2ezdOnScn/ZDxkyhBkzZvDuu+8CBjNUREQE/v7+5Ofnl9op3a9fPz755BPGjh1Lamoqy5cv51//+pfZB+Lt6JmFkzg5Yy1bLp/Jptj3zGnZ+1M8KJHmUkJE+PHHH/nrr79o1aoVPXv2ZOzYsbz55puAwUbfuXNnunXrRkxMDA888ECZv14DAgJYsGABTz/9NF26dCE+Pt7uqp4pU6YwfPhwunfvTv369c3pN954Iz/88IPZwf3+++/z+eefExcXx5w5c5g+fXqF+jhlyhQ2btxIXFwckydPNiumd999l5iYGOLi4vD39+faa68lMTGRLl260LVrV7799lv++c9/ltl2s2bNuP3224mJieH222+na9eSwSRK8/zzz3P+/HliYmLo0qULy5YtA+D+++8nLi7O7OA2ccsttxAXF0eXLl0YNGgQb731Fo0aNarQO/AkNeYM7oSEBOXs8yyKcgr4u/lbVZKr55En8QmuXCyWyqBj9HuGXbt20alTJ7v5l1JoiepCTekHON4XW99TEdmolCrXwapnFmWQ/PaK8guVw98t/kVhVj5KKfJTssqvoNFoNF6IVhZlcOK9NeUXcoBz87exrtHrbOz0LmnLD5XKL8ovJDPppNlJrtFoNN6GVhZu4NBTv4NRD5yatbF0/hO/sf2qzzkxvWbs9NRoNDUPrSzcjMovRBUUkXemOOjc2W8MO1FPfV5akWg0Go03oJWFm7mw9ADrmrzBppj3OPnJ31ZKQ+UWcuHPAxTlet8aa41Gc2mjlYUHOfrynxz4R3G4rILz2ewe8S1HXlziQak0Go2mNFpZeBBVUETa8sOl0s/MKR1XRqMpD19fX+Lj44mOjqZLly6888475l3JGzZs4JFHHqnyMz7++GO+/vrrCtXp06dPpZ83e/ZsTpw4Uen6YNif8fbbb1epDXu89957dOrUqdSeiqpw+PBhq3fsrM+uqugd3Hbw5Moke7vGNZqyCA4ONgewO3PmDKNGjSI9PZ2XX36ZhIQEEhKqFqusoKCACRMmVPjAoKqE6J49ezYxMTE0adLE4TqFhYXlxplyFh9++CFLliwxx3VyBiZlMWrUKACnfHbOQM8s7JC++ohnn7/mKEV5hR6VQVN9adiwITNnzuSDDz5AKWUVgttWSG+AN998k9jYWLp06cLkyYYTAQYOHGgVjnzKlCm899575rxJkyaRkJBAp06dWL9+Pbfeeivt2rXj+eefN8tiCtFdVijuV155hR49ehATE8P999+PUooFCxawYcMGRo8eTXx8vDkMR9euXYmNjWX8+PHk5uYChjDiTz/9NN26deO7776z+16SkpLo3bs3cXFxjBo1ivPnzwOGGULnzp2Ji4tjxIgRZb4nExMmTODgwYNce+21TJs2rdQMJiYmhsOHD3P48GE6derEfffdR3R0NFdddRXZ2dkA7N+/n8GDB9OlSxe6devGgQMHmDx5MitWrCA+Pp5p06ZZfXb2wrRPnTqV8ePHM3DgQFq3bm3+jJyJVhZ22HVrxabazmbnzV9x5IX/eVQGTfWmdevWFBYWcubMGat0U0jvpKQkVqxYQXBwML/99hs//fQT69atY8uWLVYRYU3hyB9//PFSzwgICGDDhg1MmDCBm2++mRkzZrB9+3Zmz55NSkrpcDebN2/m3XffZefOnRw8eJBVq1YBhvMj1q9fz/bt28nOzuaXX35h2LBhJCQkMHfuXJKSkhARxo0bx7fffsu2bdsoKCjgo48+Mrddr149Nm3aZB7sbXHXXXfx5ptvsnXrVjp37szLL78MwBtvvMHmzZvZunUrH3/8sd33ZMnHH39MkyZNWLZsGZMmTSrzs9i3bx8PPfQQO3bsIDw83Bw9d/To0Tz00ENs2bKF1atX07hxY9544w369etHUlJSqXZNYdq3bt3K1KlTreJd7d69m8WLF/P333/z8ssvk5/v3HN3tBnKizn9+SZavnYV4ueDKizS52ZUEx5ImOmSdj/ZcL9T2rEV0nvJkiXcfffd1KpVC4C6deuay1uGIy/JTTfdBEBsbCzR0dHmMOatW7fm2LFj1KtXz6q8vVDcy5Yt46233iIrK4vU1FSio6O58cYbreru2bOHVq1a0b59ewDGjh3LjBkzePTRR8uVEwwBDy9cuMCAAQMAGDVqFHfffTeAOZbT0KFDGTp0qN33VFlatWplDpPevXt3Dh8+TEZGBsePH+eWW24BICio/CCk9sK0A1x//fUEBgYSGBhIw4YNOX36tFPNY3r0qQTujCy7rskbrG04lQ0dplGQkWtOLzifTc6h826TQ1P9OHjwIL6+vjRs2NAq3VZI77IoK3y4KbS2j4+PVZhtHx8fm4EKbYXizsnJ4R//+AcLFixg27Zt3HfffW4Pc/7rr7/y0EMPsWnTJnr06EFBQUGF31NZYc7dEYLc1c/QM4sK4t8ohE7fjWRrv/+49bmF6bmkJR6i3o0dSf73SpLfWA5At60PE9CoZgRDqynYmgG4O2jd2bNnmTBhAhMnTkRErPJshfQeMmQIr7zyCqNHj6ZWrVqkpqZazS5ciWlQrV+/PpmZmSxYsIBhw4YBhjDnJl9Bhw4dOHz4MPv376dt27bMmTPHPEtwhLCwMCIiIlixYgX9+vVj3rx5DBgwgKKiIo4dO8YVV1zB5Zdfzrx588jMzCQlJaXUe+rYsaPd9lu2bMkvv/wCwKZNmzh0qHRoH0tCQ0OJiorixx9/ZOjQoeTm5lJYWGjV55LYC9PuDrSyqABd1jxAUOu6FGV7ZtPcvnsW4v/zGLOiAMjeew6/8GAK0nIIiAzxiFwa78B09nN+fj5+fn7ceeedPPbYY6XKvfvuuyxbtgwfHx+io6O59tprCQwMJCkpiYSEBAICArjuuuuYOtU1J/6VJDw8nPvuu4+YmBgaNWpEjx49zHmm87mDg4NZs2YNn3/+OcOHD6egoIAePXpYnTnuCF988QUTJkwgKyuL5s2bM2fOHAoLCxkzZgxpaWkopXjkkUcIDw/nhRdeKPWeyuK2227jyy+/JDo6ml69epnNZWUxZ84cHnjgAV588UX8/f357rvviIuLw9fXly5dujBu3DircOlTpkxh/PjxxMXFUatWLavzQ1yNDlFupGQ4bFtHY1oeanP6y80ceuI3AEK6NyFzY9XWgleWTgtHcfDRReQevUDXjQ+x5sDmahPWuzx0iHLvpKb0pab0A9wTolzPLCpJ5F1dCRvQCr+wQHzDglgX+bpH5Mg/lUnu0QsAZKw7BsazZ1RhEed/20tor2b4NzDYctNXHyHnyAUajuziEVk1Gk31RTu4HaTN+zeWSgtqEY5feDAiQpNHLvOAVLDfIlyIJadnb2Lv+IVsjC4+jWzn0Lkc/OevZO895y7xNBpNDUHPLBygx6En8K0dUHYhL7Dm7f/HzwS0CaHwf5eR9lexc63gfDZ+EcVrxPPPXSS4fX1bTWg0Go1N9MzCBiVDfZSrKAAJLA4v0PvMswR3auB0uRzB50Amp7/YbNWH7H0pVve5x9I9IVqNp6b4/zQ1k6p+P7WysMG5BdsrXKfxAz0J7RlF6+nXAxD1RD9ni+UwR1/+kwt/7Dff73vwJ7Zf/bn5/sDD/9Vh0J1MUFAQKSkpWmFovBKlFCkpKQ5t/LOHS81QInINMB3wBWYppd4okT8NuMJ4WwtoqJQKF5EWwA8YlJk/8L5S6mNXympJzoHiMAUNRjvmDPYLCyL6l+Kt9/Vu7EjYnkn4RQRz/o997BljP16Nq8k7lkbesTSrtKLsfHwCtRXSWURFRZGcnMzZs2dt5ufk5FTpD9WbqCl9qSn9AMf6EhQUVKUd3S4bLUTEF5gBDAGSgfUi8rNSaqepjFJqkkX5hwHTguKTwGVKqVwRCQG2G+u6Z32qxSamyDu7llGwbEx+gvAr21D35k7U6dOcyLHdKEjJYs+478lcn1xlUSuNj5RfRuMw/v7+tGrVym5+YmKi1Xr56kxN6UtN6Qe4py+uNEP1BPYrpQ4qpfKAecDNZZQfCXwDoJTKU0qZYlsEuljO0lgoi+COVfc9iK8P7f9zC43u7o74CP4NahPz6120nTm0ym1rNBqNO3DlINwUOGZxn2xMK4XR7NQK+NMirZmIbDW28abbZhUAFj+6xYW/wOsP7eyytsvj7NwtHnu2RqOpfniL0XoEsEApZT7AQSl1DIgTkSbAjyKyQCl12rKSiNwP3A8QGRlJYmJipQXIzMw01/c9cgx/Y/rylcvBz3U61VMW04Pz17OnQ5ZXm6MsP5Pqju6L91FT+gHu6YsrlcVxoJnFfZQxzRYjgIdsZSilTojIdqAfsKBE3kxgJhjCfVQlNIRlaInkDStINk6KBlwx0KWhwXf2O076iiM0f+EK8lOzOTljrcueZYnvjnT8x2+g/vAYWr11jTnYXN7pTM7N30bDMfFWezM8QXUK91Eeui/eR03pB7inL65UFuuBdiLSCoOSGAGMKllIRDoCEcAai7QoIEUplS0iEcDlwDQXympF3unM4hsX//Lu+M0Icg6lUqtDAwov5qEKiqjVsT4HJy1y6XMBirLyOfPFZs58sZnYpeOpHduIPWPmc3HLKTI2HKfDF8NcLoNGo6keuOwns1KqAJgILAZ2AfOVUjtE5BURucmi6AhgnrJeoN4JWCciW4C/gLeVUttcJWtJznyx2XxdMryzs/EJ8KVWB4MT3bd2AC1fHUzteOvzhtt8UDrUiLPZduVnFGbmcXHLKQDSV3n2WFmNRuNduNRnoZRaBCwqkfZiifspNur9D4hzpWzeTGDzMKv7ute154Abnrtr+Dfm68L03DJKajSaSw1vcXBrLPALDaTbtkc4/dkGEME3JLD8Sk4gc6O1Syl97VHq9G7O8emr8Y8MoeGIS1Z/azSXPFpZeCkBkSE0e2agR2XYedNXdE2ayLHXEgEIjKpDYXouda/r4FG5NBqN+9HKQlMmR15cYr7edevXACQYw5hUhKL8Qnz8fcsvqNFovBIdSLCaEbtkPGGDWuNfv5Zbnpf6c+lD6gvSDGcmlxU0ryjPvGWGi9tP83fTNzn2eqLT5dNoNO5BK4tqQsL+x+i27RFqxzWi07wRdN/5qDmv809j3CqLKiwiNzmNDR2mkfzOylJKI33NUf6OepPj01cDFP8/bbVb5dRoNM5DK4tqgl+dIAIiQ2zmBbet51ZZirILSH5nJYUXckh+czl7x31vzlNFil23GcxVJl+Hi1cfazQaN6B9FjUAd5+hsG3Qp1b353/by/Zrv6Dp433J3HQCVVBkXUFrC42m2qOVRQmq4+E13nAuRebG4+wZNd92ptYVGk21R5uhSlJYfZRF2w9vouXrV+EXFkSHOcOpFd2Q3He7UrtrY0+LZqYot8Dlu+A1Go3r0cqiBLnHq8/51PWHxdDongQAIq5uR9yye1FNgoldfDe9Tk62Kutbxz0b+0py8sN1Vmao7dd9wdqGUzn50TqPyKPRaCqHVhYl2H37N+UXqgaIrw/1bo22SPDMr/usPWetgjFmbjDsEj/y0lIACjNzS/s4NBqN16GVRQlyDp03X0c91c+Dkjh4YgCwAAAgAElEQVSDYpNai5ev9IwIRcquzyL/7EXWt36HrYNmuVcmjUZTYbSyKIOoJ6q7siimwUjPxHVSyn7k3qQ+nwCQvfucO0XSaDSVQCuLmoyFr15EaPyPXub74E5VP1vcEVJ/2mV3ZlFo3AkOcOip390ij0ajqRxaWdRgIsd1AwyO8FIUus9PcPabreWWOT17kxsk0Wg0lcXzC/S9DAnyQ+UUeFoMp1DnsuZ03/2ozaB/qsj7lginrThM+qojRD3VH/His8E1mksRPbMoQd1r2gHFv8qrO/51a9n0GdicbXiYXbd9zfF/ryL119LBCytD7on0arUUWqPxZrSyKIlxYA3t3czDgriWpo/0odlzA8ssE/V0f/cIU4L8Mxed0s7m+A/Y3PWDarkrX6PxNrSyKIEy2fJrohnEYoYhfj7U6dPcKrveLZ3N140f6k3U45e7TbSyyN57jqIKmgYzNlic+ueFJjeNprqhfRYlMYb7EN8aqCxK4G8RxTZ+7QQCW4STfyaT9FVHqW+hOAACW4STe+SCW+RKX3mE8Cta4//eXo6ughPTi0Ob172hA1FP96dWh7JXc+247gvztSpSiD53SaOpElpZlECZlMUlEM8oqHk47T+7Ff/GoQS1rgtAp+9GkX/uIgGNQgFD/KnU3/cS3LYex/+9yi1ypf66h9Rf9+ALnFhpvQcj9Zc9pP6yh/ZfDCOoVQS1OhYrDaUUKQt3kr2vxL4NPbPQaKqMVhYlUPmGE97ECyK5uoO6N3S0uhc/H7OiAIMjvP6wGLL2nOX4v1dRp18Lmk7qaz5i1VPsHbsAgN5nni1OG/c953/bW6qsqkbBITUab+XSGBErgOk4UKmB50X7RQRVum6tDg0My3DDg71qWatSyjwLtKUoALszi3Pf7yD1tz20nXFTqTDvuclp+NTyx7+ue46v1Wi8Ha0sSmCaWfgE1jxl0eieBC5uOUV9ywCDFcAbB851ka8T0DiUqCfth2axtxpq/4M/AXBuYGsajok3pxdk5LK52wzAeuai0VzK6NVQJTCboWrgzMK3dgDtP72Vutd3cFqbMb+Pc1pblSXvZAYHH1tkv0CJ3eqqSHHk5T+LszNyrfLzT2Y4VT6NpibgUmUhIteIyB4R2S8ik23kTxORJOO/vSJywZgeLyJrRGSHiGwVkTtcKacl2XsMzlGfgJqnLFyBX3jlTVvuwnK3ulKK87/v5eSMtfYreI+VTaPxGlxmhhIRX2AGMARIBtaLyM9KqZ2mMkqpSRblHwa6Gm+zgLuUUvtEpAmwUUQWK6VcunazIC2Hwsw8gzxaWZRJx3kjyD2eZl5F5dUYlUX2/hS2DfmcwKahVtl6z55GUz6unFn0BPYrpQ4qpfKAecDNZZQfCXwDoJTaq5TaZ7w+AZwBXB4mNc8iNIRWFmUTPqg1kXcadLt/o5BySnuWQ08vJjPpJMfe+Iuii3lk700pu8IlsGxao6ko4qpQCCIyDLhGKXWv8f5OoJdSaqKNsi2AtUCUUqqwRF5P4AsgWilVVCLvfuB+gMjIyO7z5s2rtLyZmZmEpgqBT2wBIGdGN2jg/SaWkmRmZhIS4t7BW3alE/jSdrv5ylcQL16+mj+mBYU3NTXfy4lsAh/dDEDOnF7ghMUOnvhcXEVN6UtN6QdUrS9XXHHFRqVUQnnlvGU11AhggQ1F0RiYA4wtqSgAlFIzgZkACQkJauDAgZUWIDExkR5to9mKQVn06X85AZHV74uUmJhIVd5DpRgIaTFx7LrN9t6LoKZh5B51z+7vytCmTRuaDOwNQFFOAfvu+wHTeYkt/syn1ZtVP2XQI5+Li6gpfakp/QD39MWVyuI4YBmNL8qYZosRwEOWCSJSB/gVeE4pVYY30olYWB+0g7uC2LHcxK97kNOzN3Hyo3XulacCZO08w8HHFyEBvpz+dKNVXlriIQ9JpdF4F670WawH2olIKxEJwKAQfi5ZSEQ6AhHAGou0AOAH4Eul1AIXylhSluLrGrh01l3UG9oJgBavDSGoVQTNnh1Au1m3lCrX7Pkr3C2aTc59t50zc5JKKQownMmuo9ZqNC5UFkqpAmAisBjYBcxXSu0QkVdE5CaLoiOAecr6L/J2oD8wzmJpbTwuxnKJpfjpLSgVISS+MQC1uzamzYybiF06nkb3GsygPoF+1LupE23eu8FcPmpyf5o+cpnNtjr/ONr1AleAcwt2cHz6ag4+vkgrDs0li0t9FkqpRcCiEmkvlrifYqPeV8BXrpTNFpYxhHyCvMWdUz3wDQmk59GnkABfxEeoHduoVJkGI+II7lCfvFOZ1L22vd226vRp4UpRK0zqz7s4v3gfAI0n9CS4XX0PS6TRuB89IlpSZPCh14qJ9LAg1RNHFGxI1yZW9x3n3UH+mYsceOQXAKJ/G2toq5Y/RVn5zheyEiiLHeBn522j+QtXkJ+axZHn/kfusTTCBrUmsFk4AA2Ge98JhBqNM9DKwgJVYBgUtAnKfYQPaoMqLDIri9DuhiWs0f+9ky33f0tIQC2ydp31pIik/VXs5D7x/hrDvcDFLacAyPg72Zxff1h0qfD2qkgR8NJ2DiZk0fqd69wjtEbjZLSysEBdQgcfeRPi60OjB3paRbOtHduIvNe70KZeJ7Zd+akHpQOVb71q++LWU/YLFykwfn9M/o3sPWfx2ZXOmV1JWlloqi1aWVhQkJoFlA4sp3E9LV8dbDujmjmUVV4hEuyDUoqdN3+Fb+0Amr/gHau+NJqqoO0tFux/6L8A5YeD0LgNy9VH1SEEy6475pGfkkVhZh4Za49xYekBHZhQUyPQysKCwrQcT4ugKYHloUS1OjUg4tr2RI7v7kGJyiZj7TG29v8PKq84GMG+CT+Zr/XSW011RSsLjVcT3MF6mWqHL4bR6o2r6TD3dlq/dwNxifd6SDL75J+9yJ4x35nvsy0c9Ltu+9qmwlBKkb3vnNVeH4CC9Bx23DyHs/O2uk5gjcYBtM9C49VYrSyyGEcjhrQFoCi/kMCWEeQePo83kbnRdmSb9JVHKEzLQfx88KkdYO7fyQ/WcvTVZTS6NwG/erVI/tcKoh6/3GDOWnOMjDXHCL+yDf4NaruzGxqNGa0sNNUGv7rBpdJ8/H2JXzsBBDLWHGXn0LkekKxibGg/DYDwwW3o+LXhXK8THxrCn52atcFcLvlfK6zqHXxsER3mDCdrz1nOfJVE00l9vfKoW03NRJuhNF5P55/vJHxwG1r/2/ayU/ERRITgjsVHnrR8/Sp3iVdpLiw5YDYvldybYYvMTScA2HblZ5z6ZD1HnvufS+XTaCzRykLj9dTp3YyOX99BYFRYmeUsB1xnnjPuSg488othBdW5rHLLFl40nOJocp5n79er9jTuQysLC+rd2hmAppP6eFgSTVUJaBRKt22PeFoMh0hbdtCxgkqRdyqj+N7ObOTsvK0c/b9lTpBMoylG+yws8AkwvI7AlhEelkRTGUquMnLo8CrBynHuzRRlF7Ap7v3iBDuWK1PolHpDOxPUMhzfkEA3SKep6eiZhQXm2FC++rVUS2wM+pa7p8P6tyyV3+vkMy4UyMWIkLb8EBs6TeP4u6tKKcuzX29hfet3ODGj+Oyw7L3nKMopcLekmhqAHhUtMEUX1YEEaw6N7k2gwYg4Os67gw5zhhOzeBzNXxwEQPMXByE+QoNRXazqhA9u4wlRK8zFTSfYNewbClKyOTb1Ly78sd8q37Sy6ujLfwKQtvwQWy6fyY4bv6zQc3JPpJO184xzhNZUW/SoaIHKNzgOtbKoOfgE+9PmvRsIH9QGn2B/Qro2ocnE3nTb+jBNJhrO3a53U0erOnX6etd5Go5y4qN1JF32sd381EV7AUO03KNTEx1ud3P8B2wdOIu8M5lVlFBTndGjogWqwBR1Vr+W6ohl1NryCGgUar623OgWflVb8wl/1Y2M1UfJOZBqN98yBMmJd1dXuP3cY2mVkktTM9AObgvyUwzLF33DgzwsiaYy+EUE0/DOePwiSm/eK4vasY1o9uwAxM/XPNuo068F6SuOGApUIye4PfJOZ3LmqySrtMwtJzk29S9a/t9gh07/c2QviKbmon9CW1CUbTiZza+OXj1SXWn9znU0f77iIcGbPtrXrCgAQoyHMAHELL6btp/cbL5v9ECPMtuqf1t0hZ/valJ/3VMqbceNc0hbdpAtfWfqAIeactEzCwvMDm5thrrkiXrscgIa1ibi6vYENgsjJL4xPgF+FFzIpuHoeCIGt2XX8G9s1m09/QbOfb/DzRKXzalP/i6VpixWRaX+spt6N3Zyp0iaaoYeFS0wL53116/lUscnyI9G9/YgsFnxrvG613eg4eh4AMIGtKLjvDtK1UvY9xg+XnjuRs6hsgMt7rvnB9JWHC67EW2FuqTRo6Ilep+FpgKED2pD7NLxxfdXtcUvzODvCoiqY05vYe8UQC8j9dc9XNxxhsJMY1iRIkXqL7vN+QVpuWTtPovsz7DXhKYGo81QFpjMUOilsxoHqR3biIQ9kzj3w07qG8PFAFahOBo/0JMjLyzxgHQVI2PNUU5/tpGgdvWIX/UAZ+dt5eCjv5rzd99uMLsFAoUjrsY3JACAI1OWUpSdT72bO5G16yyN7qmeq8k0ZaNHRQvMZiitLDQVwC8imEbju+MXXrwKK2pSXwAaP9irzLrRv97lUtkqQpbxkKacfSmcnr3JSlGU5MzcJNZFvcnZ+ds4+eE6Tn++iZ1D53L4mT/M0XEBinLL3i2eezydnIP2l/tqvAeXjooico2I7BGR/SIy2Ub+NBFJMv7bKyIXLPJ+F5ELIvKLK2W0RIf70DiLhmPi6bp5Is2nGHaL54+2vdEvtEeUO8VymENP/V5m/pEXlqDyCjkw8b+l8kyb905+tI6/m73FhT/tB0rc3PUDknp/bDMESckVWic/+ZuTH5d21Gvcg8tGRRHxBWYA1wKdgZEi0tmyjFJqklIqXikVD7wPLLTI/hdwp6vks4WeWWicSWDTOua9CYU3N6XH4Sdp/8Uwc351CaNeUUx9PvLSUsP/U8o3wRVm5Frd553OZEOHaRx7c7k57cgLSzjy4pJic7HGrbhyVOwJ7FdKHVRK5QHzgJvLKD8SMK9FVEotBdzqSdPKQuNKfGv5W3232n54kwelcR15p63DgogIRTkFFOUX2qlBqbPHT83aQOGFHI6/s5LU3/ZahVw3/Z2W5PzSA+weM5/81PLPBtFUHFeOik2BYxb3yca0UohIC6AV8KcL5SkXbYbSuBOfYH+g+BwV8M4NfRXl0BO/ceyt4hmBKlL83fJfbO42w26d/HNZ7LlrAeeXHjAkWCiPvWMXcOK9NcXt2VE6e0Z+y4U/9pP8xnKb+Zqq4S2roUYAC5RS9n962EBE7gfuB4iMjCQxMbHSAmRmZhKYX4AAK1avhIDqqTAyMzOr9B68iZrYF59t5wkwppn7NiIcn6h2+P12kuQhQQR9b78dVdsXFeqPz6kcV4tcJY6/vdJ8nXUqDSlS5J82fp55hcjBi6j2oZgC62y7YhYA53/fS878PvgdOWJ3cFqRuBxC/Eulm9o6sfcoRxz43tTE75crcaWyOA40s7iPMqbZYgTwUEUfoJSaCcwESEhIUAMHDqxoE2YSExMR4+x2wKCB1dYUlZiYSFXegzdRE/tyvmA/e9gFYN23gcDzhsu1EzbabeeyQ0+jlGJd5Osuk9XZBAQFkp9mCKXTv/fl7Bkzn7Tlh2k+5UqO2ih/WduunGpayElO2MiFPj0us3mw1VoMwRF916bQ14HvTU38frkSVyqL9UA7EWmFQUmMAEaVLCQiHYEIYE3JPLeiFBQap76+equqxjUEty8/YF/tuEZc3HrKbn51C+iXb+HD+Lv5W+brc99vt1l+c7cZBDQJtZkHlO/gLtJxrlyBy34+K6UKgInAYmAXMF8ptUNEXhERS8/eCGCeKrFOTkRWAN8BV4pIsohc7SpZATB9/3yl2v0xaqoPQc3DiV0ynm5bH7ZbptOCkbSffRt+de1Hz231r2us7mvHNXKajN5A3oky1ra4SRfo4IrWuNRnoZRaBCwqkfZiifspdur2c51kNjDOKqqr+UlTfShvYPcLD6budR0Iv7INfzd7y2aZyLHdCOvXkovbTxN2RWt8QwKqlWkKIGvb6UrVO/nx35yatR7x8yGkaxOif3b+CvvzSw+w756FtPtkKBFXt3N6+9URPTKaKNIHH2m8C59AP+r0bW6+j1k8zio/qHVd6t3UCb/QQESEqKf7u1lCz3Dqk7+hUKFyC8lYe4zzS/aTse6YVZmCjFy2DPgP+x/8ifxzFyv8jD2j51OUlc+eO79zltjVHm9ZDeV59MxC44W0/XgoJ2espf7wGGrHljMjsWO2avfpLQS1rMu2Kz91hYgeZ8+o+aXSzn69hexdZ8nedZZz3++g2bMDCO7QgPAr23hlVODqgB4ZjUimIdxAYXpuOSU1GvcREBlCi1cGl6soStL5x9Hma59aAdSOjSS4UwNni+e1HP/3Kqv7Y1P/Yu/YBey6ba7bZLi44wxbB84ibfkhtz3TlWhlYcRn24XyC2k0Xoxv7QDzdZ0+pWNRWebbo/4dscSve9CpcnmCgvPZNtMz1iWzuceHdnd5F5zP5uhriU5ZUbXv3oVk7TzDrmG2D8mqbmhlYaQoqpanRdBoqkS9WzpT98aOtHnvBsP90E741QumTm/Ddqc2715fbhsiQlCrCLpurPC2p2pD7pELJCV8WLxU3oINHaZxYvpq+3WPpTm8Ssp0THNNQSsLE8ZfEqG9m5VTUKPxTnz8fWn/6a00GBEHQLuZt9B9x6PmGYXlHo/WRoViIriDIS98SFsAApuF1ehVQIWZefh/vN98rwqKrOJPWbKp2weceH8NZ77ZwubuMzg8ebG7xPQqtIPbiJgc3PpIVU0NQnxs7xkqaZKKXjSW7F1nCelRHL6t3axbyN5zjm2DP3OpjJ7C9y/D+R2FWfmsb/kvu+XyktM5+uoygtvXA+D055tQ+UW0/vd1VuVUYRE7bphDrc4NaP3OdbaaqtZoZWGiUC+d1Vw6+NSyjq3kFxpIaE/rszV8Av1q3Ga/kuy6/Rsy/k52rLDFZt0zXyXR8s2r8fH35cSMtZyevYn6w2PI3HiczI3HqXNZc/JOZZbRWPVDKwsTeums5hIgduk9qKIiakdHEpLQlMwN9sK1XRqkJVZgpVKJWdrfTd+k+45/cvRlQ7Bsy+CJ+//xs1Pk8yb0yGjCrCz0GmxNzaV2bCQhXRojfj7ELBpL+89upcPXt1e53dbTHDO7+EUEe9VRshXBVhigjdHTHap7ZMpSzsxNcqo8SilyDp13W1gSrSxMmJWFjguluXSoe0NHIga3LbNMpx9G02BUF2IWjyN8cJtS+dG/3kWDUV3KfVaHr4aTsGeS1x4lWx5ZO89Uuu7JD9dxcNKi8gtiWEVleRiUKigi91haqXKHn/mDpF4fkfzWikrLVRG0GcqENkNpNDYJ69uCsL6GfRs+gaWHDNPg7xPsR1F26bO0AaKe7k/EVcWrq2IWj2PHzV+hbJy9falw7ocd5J/LovF9PcxpJz5cx9EpSwlJaErE1e3I2nWGlIU7Aeg4fyThA1sZyr2/htOfGULZH39nJczv43J59chookiboTSa8ijL5BE+qPSsAyD8qrY0eai3VVpI1ya0/88tTpWtOnBm3lZOf7kZgP0P/MSR5/5nPh3wyJSlHJ1iOLc8c8Nxjr2WaFYUAOe+3QrAqU83cPRV28t8XYlWFkakQM8sNJry8G9Q23wd1K4enX4oDisSbmdfRtNH+uATpI0YAAcf+YVDT/zG9uu/NKftGfktuSfSOfnhujLrKqXI2nmGw8/84WoxbaI/QRNFWlloNOXR/NmBnNx3lJgnrzGbpkw0uD2WwGZh1I6NZM+o+cVLUu24AS/l8yIy11sv13XEHJd/NosD//zFVSKVi0Mjo4j8U0TqiIFPRWSTiFzlauHcivZZaDTl4hcRTP6jHUopCjBsAAzr2wK/OkHUio00p4d0bWK7sTLiLzV7fmBVRa1WFNrx9ViSvuIwF7fYP0HR1Tg6Mo5XSqUDV2E4AvVO4A2XSeUJtLLQaJxGs2cHEjW5P/F/P2j/b6qMiUWtzg2t7jv/PMaJ0nkf266Y5WkRysVRM5RpInkdMMd4PGrNWmOqlYVG4zT8QgOJeuzyMssoGzOLpo9fTlCriFKzDvHRf5dlIXszYKBrn+HoJ7BRRP7AoCwWi0goxadW1wxMESi1stBo3EIdG0E7mz3dnwa3x1opklZvX2vX76ExEPj8Npc/w9GR8R5gMtBDKZUF+AN3u0wqT6BnFhqNW/FvUJuE/Y+RsHdS6UyLiUXkXV2t4jJpPIOjI+NlwB6l1AURGQM8D5TeUliNER1IUKNxO351gpCA0tbwoFYR1gkWuqLujR1p/9mtLpZMUxJHR8aPgCwR6QI8DhwAviy7SvVC9hkiROr14BqNe/Gt5U/radfR9qObzWm1Ojag47w76LL6AcA6LlP7T2+l7g0dafKoYddyQJNQGt7V1WbbkeO6uVDySwtHR8YCpZQSkZuBD5RSn4rIPa4UzN34bjEcq3qpR+HUaDxBw9HxpdKsdoTbsEI1e2YADcfEE9gsDBHhjHFntCWt3rqGFq8O5vRnGzny0lJzet3rO5D66x6nyO4tFF7Mc+jo3Mri6MwiQ0SewbBk9lcR8cHgt6hxFFywfXavRqPxIDZ8FiJCUPNwm9FgLfEJ9KPxg72s0lq8NoSiFtZHKfc8+hTdtj1CSPfS+0KCWtethNDuRfxdG6rIUWVxB5CLYb/FKSAKsH+0VDUm6qn+nhZBo9GUILBpnQqVb/n6VXT6bqTdfPH1oeA269VYPkF+BESGENSqtGJwJKqup3H1KZ8OtW5UEHOBMBG5AchRSpXrsxCRa0Rkj4jsF5HJNvKniUiS8d9eEblgkTdWRPYZ/42tQJ8qRVHjIAACGoW4+lEajaaC+DeoTezS8cRv+IdD5Rvdk0DYgFZ28wMiQyjq6fhsoe617ajdxbtPDXT11jdHw33cDvwNDAduB9aJyLBy6vgCM4Brgc7ASBHpbFlGKTVJKRWvlIoH3gcWGuvWBV4CegE9gZdEpMTyCCdTpFdDaTTeTO3YRgQ1D69yO00fN24W9BGavzTI0HbXxsUFSoy5fnWDCW5Xn3aXYJRcSxx1cD+HYY/FGQARaQAsARaUUacnsF8pddBYZx5wM7DTTvmRGBQEwNXA/5RSqca6/wOuAb5xUN4KI6YthlpZaDTVkohr2nH+931287usfoDURXuszo9o/EBPgjvUtz6QqcTxqSYlEdQygoZ3dbXpSL8UcFRZ+JgUhZEUyp+VNAWOWdwnY5gplEJEWgCtgD/LqNvURr37gfsBIiMjSUxMLEck+/gXFOELrF2/Dg4FVrodT5OZmVml9+BN6L54J17blxER+NZvQWH/Bvbli4N961YBhn78tXK5YRTcXBwF1u/0KauBMWnHVlThYQB881K8dmWPqz8TR5XF7yKymOJf9ncAjp0R6BgjgAVKqcKKVFJKzQRmAiQkJKiBAwdWWoA1rAegT98+BDQOrXQ7niYxMZGqvAdvQvfFO/Hqvjh2FDhgvx9pfi3Zlfi1+T6hb09qxxr8FUW98jka9hfhg1pzMekkx17/q6oSOw1XfyaOOrifxDAoxxn/zVRKPV1OteOA5XKDKGOaLUZgbWKqSF3nYDJD+eiwAhrNpUzY5S2t7mvFFIdb9wn2p+Wrgwm/ojVNJ/Ul1BjfqtmzA6jVqUFxHYsQ7TUFh7crK6W+B76vQNvrgXYi0grDQD8CGFWykIh0xBD2fI1F8mJgqoVT+yrgmQo8u+KYHdxaWWg0mmLKWmXUeeFoco6cJ7hNPSLvSeDQ44toMCIOVVDEnjHfmcs1eqAHacsOkr03xR0iu4QylYWIZGA76rwASilld/GzUqpARCZiGPh9gc+Moc1fATYopX42Fh0BzFMWx2YppVJF5FUw2obgFZOz22Xo1VAajaaCiJ8PwW3qAYaw7O1m2l4x1fLVIQCsbTjVblvdtj/Cppj3zPfxayfg16A2G9q840SJK0+ZykIpVSXjvVJqESV8G0qpF0vcT7FT9zPgs6o8v0KYV0PpmYVGozHQcEzpMCTOoPlLg0CEo1MMIUiaPHwZAQ1L7PHy88Ev1HsW2+if0SZ01FmNRmMkfLAhLlX94TFVbsuvfnFYkZZThxDSI4rIsd1oMCIW/wa1afxQb5q/cEWper4h1nGeQiyX93qASz7E6u71x/nlP5uoVTuIbnlZWlloNBo6zBlO/tmLBDSq+srIkC7FG/4a3duDRvca9nn4EkC37Y/Y9Yn417WOXeVpf+olPzJeTMtl36aTXPA1BuHSZiiN5pJHfH2coijKfY4dRWGa2ViVtRib6l7fwWUy2eOSVxZ+AQYlUWT80PTMQqPROBUn/f6sN9QQLck3LIj2n9/mnEYrwCVvhvIzRmo07QYUvc9Co9E4gbo3dyL1p100vNP2wUxlYjHj6PT9KHKPpdFwVBdqdWxAUNt6TpTScbSy8LeYWWgTlEajcRLtPhlK3kuDCIwKq3hli6EorF9L83Vor2aly7qJS97mYp5ZiGHNtEaj0TgD8ZHKKQocCzfeaWGpPc4u5ZIfHS19FtpfodFoqgthl7ckIMqwL1oFun7suuRHR5MZqhDt3NZoNJ7FJ9jgGXD0oKWOX91OaJ/m5L0U7UqxAK0s8DWanrTPQqPReJq4v+6jxWtDaPLwZQ6Vr9W5IdE/jkG1df0yX+3gNpqhCsXzm140Gs2lTVDLCKvDmbyJS35mYXJwa5+FRqPR2OeSHx21z0Kj0WjK55IfHS1nFtpnodFoNLbRPgtLn4XPJa87NRqNxiaX/OhoWg2lREArC41Go7HJJT86ikixwvDTZiiNRqOxxSWvLAD8jMqiUF0ZMyEAACAASURBVPssNBqNxiZaWVCsLIociMei0Wg0lyJaWQBSaDiAO3Nviocl0Wg0Gu9EKwtAcgsAKPKwHBqNRuOtaGUBBIQGAhDUrYmHJdFoNBrvRCsLwNd4Ol6gh06g0mg0Gm9HKwuKlUWh9m9rNBqNTVyqLETkGhHZIyL7RWSynTK3i8hOEdkhIl9bpL8pItuN/+5wpZymkFCFypVP0Wg0muqLy8J9iIgvMAMYAiQD60XkZ6XUTosy7YBngL5KqfMi0tCYfj3QDYgHAoFEEflNKZXuCllNMwu9dFaj0Whs48qZRU9gv1LqoFIqD5gH3FyizH3ADKXUeQCl1BljemdguVKqQCl1EdgKXOMqQX2NSqJI6amFRqPR2MKVyqIpcMziPtmYZkl7oL2IrBKRtSJiUghbgGtEpJaI1AeuAJq5SlCzz8JVD9BoNJoSJO9LITszz25+UWERX7+xks3LDrlRKvt4OuqsH9AOGAhEActFJFYp9YeI9ABWA2eBNdgYy0XkfuB+gMjISBITEyslRG52FgAnT5+tdBveQmZmZrXvgwndF++kpvTFk/1IOZrDH+8dJTjMj94jGnHucDbRg+siIhQWFJFyNIfstAJWLzjFXwt2MvLt9qXaKMgtIiezkJB6/m7piyuVxXGsZwNRxjRLkoF1Sql84JCI7MWgPNYrpV4DXgMwOr73lnyAUmomMBMgISFBDRw4sFKCbp1+Es5nUK9BAyrbhreQmJhY7ftgQvfFO6kpffFEP3auTeb00TRCVD5wlOy0ApZ9kgzAtsUpfLz+Pt6652cObj1NaN1gc72BAwdy7kQGh7afYe+GEwSHBrD0m+0U5BUy5bvh7DmyxeV9caWyWA+0E5FWGJTECGBUiTI/AiOBz43mpvbAQaNzPFwplSIicUAc8IerBPU1/q/NUBqNpiqknsrk9NE0OvW0trjn5RQQEOTH9ImLAOjUq6RF3sDUO3/g6O5zAGSkZpvTl327nXn/Wm2zzu71JzAsDXItLlMWSqkCEZkILMYwHn+mlNohIq8AG5RSPxvzrhKRnRjG6ieNCiIIWCEGx3M6MEYpVeAqWU3KokgvhtJoNJWkqEjxzA2G1f+TZw+lVYxhBD+6+xyvjVloVXbXupJGFsxlbWFPUQDMe2sVAD3+vIzadQIrLLejuNRnoZRaBCwqkfaixbUCHjP+syyTg2FFlFswefn1zEKj0QAsX7iLJXO38tjHNxDeoLY5/djeFJYv2MlNDyYQGlFsJsrPK2TK8Pnm+6/fWIl/oC/3vT64lKJwFcG1/V3avqcd3F6Bj3HFrN6Up9FoAOZOXQHAr//ZxOhn+5nT/2/U94BBmUxbNpbfZyex/PtdpVY1mWYIk6+b6yaJwcfXtQE5tLIAfDFoCW2G0miqN0u+3kZoRBC9rm3nlPb2bjppvr6YnmuVN+mKL5zyjOqCVhbomYVGUxNIT8niu3+vAXBYWSilKMgvYvrERWRn5pFc4kybU4cvsGX5EWqFBjDtwV+dLrOziL3K9UFQtbIAfPIN3grts9Boqi+ppzLt5imlOLLrHNkZuexef4KbJiRwYtdFJjzxn3Lb/fCxxc4U0ykE1fYn52K++T5GKwv3kLvnLESEUJivjz/SaDxJbnY+eTkFVs7j8sjJyuef/T+3Snt88JfEX9GSmx5IID+3gJeGzafA4u87vGFt/vrU9oqk6sATM2/k/0a7x3FuQisLwNdofsorYZPUaDTOo7CgiKO7z9GiU327ztjHB39Jfm4hI57qS+/r2hEcEmA2FfkH+JJ5IYdzx9OpVSeQc8cz2LkumbW/lNqvS+aFHFb+sJuVP+y2+RzTctPqxMPTr8HH14eAID+atq1Lq9iGHNp2hp7XtnXL87WyAHyMAQTPaWWh0TgNpRTGvVIUFhTxj96zALjm7v9v70zDo6iyBvyerOwQQCI7BIksAdlFQEBAZBEFZQQ3xFHBBT93BXfHGcUFhhk3ZBxFHRGRUcAFRBjCKhpUtoBAhAABZJMtYCDL/X5Udae7051OIJ3uTs77PP2k6tat2+d0VerUvffcc9ox7J4uXs/JPm0NBs98eSXLZm9i3D8G8PiQjwH465yRPDl0ZilIXnpUq1WR44etxXeJHeryx8kz3DP5CmrUqUzOmVx+XLyDeW+lcHhfJglt46lUNX8dxfj3hjp/49IIW6LJj4D9sZZ/cvpvJ4MsiaKEHtmnczh5LKtY58ya/B3jB33EqRPWC9hr9813Hls8YwNgzTFMGvsF65bt9NrG3u1HnIYCCHlDER0bWaBsSvLoAmX1msU5t1/44gYuv7ktiR3q8sDUK3nyo2uJi6+CiBAdG0XXQc15/vOR/GPZrW6GwoGUYloF7VkAR2L0Z1AUX4wfPIPMo1kkdWtIvWZx1LrI/zkOg7Dm2+30vKal24plR+9hyScb2frjPrb+uI9RT/Wk4+XNAiJ/adCudxPuerU/a5PTeethKzJR5eqxVKwSw4T3h/LiLXN44K3BNG9fl83fZ/DafQsQgeiYSIbf17XQtiOjIoiMCv57ffAlCDLGGOpl+Q4TrCjhxO+/ZfLxyys5vO+Esyz7dNEi5Rh7ODYnO5cP/7qMDSt2Adb4P8DGVbtZ+OF68nIN7zy+mPefS3Z+Z25OHh+9sJzN32d4Nur1u8Z2msbijzc69z94flmBSepwYug9nQHLaDhoe2ljAJq0rsPba8bQonN9IqMiaN2tIXdPvoIXvvAMlRfalHtjQa4hMdPqKsdWCuxyeUUpSY4fPsXRg+5Dp28++A3Js1Kd7p7rl+9kXPd3WWS/6fvihwVpPNTvA9I3HWTl3C2smPMLr9+/wGvdTx7bRsrCX1n1xVa2b9jPhCtncHfXd1j22Wam3PM1a7791Vn3oxdXMLbTNK/t5OaEtvfhA28N9lvn3n8OZGrKHdRtmj+0dMszvTi/SQ2uurOT13NEhIt6Nqbm+VVKTNbSoNyPv5icPCLtt59KVWOCLI2iFJ1HrvgPAG+uvt05TLHbXlSWse13Zk3+jnVL0wH4dPJ3xDeqTpsejby29e8n/wfAB39ZSsd+Cc7yA7uPFSrDS7fOLVA2Y+KK4ikSorToXJ8pyaOpWCWGX1L2cOrEGZI/TWVLyl4AHpx6JRd2qlfgvG5DLqTbkAtLW9yAU+57FiYnz+kNFepvOoriDc/ehYPFMzaQcyZ/qalnT2Hdsp2M7TTNbcjK5LkPG62ct6XY8pw8Vna8CitWsV4gW3SuT4c+Tbnjhb5ce9/FvPrtzV4NRVlGjUVunjNEues/lqKEC8/+6VOfxyTC3Vtmx8YDzm3HUJWrx5Hliplff3/60RKSMvi8vWaM236/expy+U1t3coG/rl9oW1UjatI/5svKtaiwbKCGguXnkWOruBWwgTjMnF8Jsv3BLbn4reJo+cU2u6+HUfZvyt/6OnnJelnJ2CQGfV0L6/lrsNw5zWtyPD7u5LUzUroWa9ZHANvbcdlI1rz2HtXl4qc4YTOWeTkOQMJ5mRrz0IJLsYYZry4ggaJteg13HdKl7xziHp54sgfPH3tLJ/HV3+17azbDjYPvDWY/TuP0f2qC7l44AWcPHaaV8d8Qd/rkwDLIDi8vByMfq43Sz5J5dJhLYitGM3IR7oHQ/SQR41Fbp6ze5WXa8jLM0REaKxyJTikpx5k2WebAQo1FsbDJTUvN4/1y3cVqHd474kCZQ9f/uE5ShkcRj7SjcSO9fjLyNlej186rAUtOtenRWcrZWlUdCTVa1fi+c9GOOsMvr0DIkKn/s34da/lIVY1rqJPzyUlHx2GyslDyA/5kau9CyVAHDt0ij1pvxcoX/zxBqY/l4wxptAhJQdfvL2G565zn6f46MUVzsVgZZE7XuzLZSOS3FZJv/LNTW51RhShRxBbMZph47rQMDHwUVrLGuXeWDiSWDh+CJ23UALFowP+w19GzubIfvdQ2rMmfcd3X2wlPfUgntEbvnrnJ8Z2muY2Mf3lv37iwO7jbvVWzPEeMK+s4JhQrlW3KpWqxtAwsRbValUiItL6wXpe05LomILhNpSSQ4eh7B5FJJCDzlsogee39KPkZOfx67rf6OKSpGfbz/to0rqOc//YoVPMm7oGsCamPb15wplRT/Wk21UXcmDXMX5ekk6fkUnEVIjiyP5M9u86xvlNarBg+lpq16/GyWNZJHasC1ihL15ZeLNz4v7pmcP57sutDLy1cC8m5dwp98YC2688GsNphKyT2eXSLU4pPabc87Vz23Xq4b//+J6Hpg1x7k8bv8jtvMyjWc5Fd6FGx34JZB7LwuQat1Skz38+gqeGfVKgfkRkBCJCfOMaDBjdzlkeF1+FuHhrZbOvieao6PweRN2mcVxz78UlpYZSCGosbGMRiyET6x/yvAbVgiuTElIs/3wz8Y2q0/DC2qxNTqdd7ybOxVqubFqdwebvMxg2rovzzXfLmr3MfGUlJ096Xzg3/dlkt/1JY75wbqet/c3t2NPXfhK0BW8d+yXw46Ltzv3LRrRmySepzv0xE/s5t/Ny8/h0ympadqlPnYbVGTC6HQumry1VeZWSp9wbC8eKVcdQ8ap5W2iaVMf3CUq5Yk/a7/znb8vdytpd1oS7XulfoO4/xlk9hoUfrmfEw924qFdjJt/5ZYnJEixD4Qgn4hrjadCf2zuNhedkcURkBCMe6ubcH3pPZ5K6N+TVO/INYa264RUXSVFj4exZHBKra7vss83c+PilwZRICSGOHTpVoGztknQ+fnklw8Z1IWPrYRbP2EDXwc3d6nzy6ipmTf6utMQsUaJiInn+sxFMG7+Idr2bOONOPf7hMFK/yyCmwRGq1arEX+eMZNPqDC69pmWh7YkIzdvX5dF/X8XRg6f4I/MMiR3LV6iMskC5NxaesXCU8sX2Dfv55Yc9DLi1vdf1NZ7rGRwkz0oleVb+MMxP/9tR8Nwwvbf+uexWIqMiGD99qFt545bn0bjlec6sbOc1qFboWhBPml10fkmKqZQyAXWdFZEBIrJFRNJEZLyPOteJyCYRSRWRGS7lL9tlm0XknxKolFA+HgZK+eClW+cy9601rFn4q9fj5fH2CIVEO0roEbC7QkQigTeAgUAr4HoRaeVRpzkwAehujGkN3G+XdwO6A22BJKAz4D3YyzkSrm9/iuWMkPJNWpHdnR29hG//s54ZL61g2oR8byPXyKseJ52znMGmz8gk5/boZ3u7HXto2hBGPdXTuf/qtzeXllhKmBHIYaguQJoxZjuAiMwErgY2udS5A3jDGHMEwBjjWHlkgApADNbcczSwPyBSqrEIWybf+SV70n5n8B0duGpsJ4wxpKcepF6zOKKiIzl5/DR/ZJ4hvlF1lsxKZebLK3225Yg4nJdnSE89QMPEWkTHRoWsrbhhfI8i5Y0Y8XA3LhvRmoQ2dcjLM1w8sDk/Ld7O+uW7aJBYi8QOdTngEjhQ3cYVXwTSWNQHdrvsZwCeDtGJACKyEmtd3LPGmAXGmO9EZAmwD8tYvG6M2ez5BSIyBhgDEB8f7xxLLQ6y7QSeadDPpp1QITMzM6zld8WfLo7QGasXbqJK8xN88qj3AHjDnk3g85e3ez3m4Mt//cSW1F/ZnnKc3GzLQgz/azNmP+l9eCrYpG33HexPIsDYgQgizj/E0qVLcdzkycl7uKBfNKZyLRI6Vyc5OZm0X/LDkBfl3ikr91hZ0QNKR5dgT3BHAc2B3kADYJmItAFqAy3tMoBvReRSY4ybD6MxZhowDaBTp06md+/exRbgROUMUnFPOXk27YQKycnJYSl/bk4e65fvJLFjPSpXs55srrpkHs3iTFYOv677jY79EuzwF1sBOLwzi2ObK/tsu1HtFkDhxgJg2yr3rHChZihGP9vbuS6jRYsW/OCjs/3g1CEc2Z9JvYQ4Gl5Y22udK1wyhlY+nUbKbCtTXlHunXC9xzwpK3pA6egSSGOxB2jost/ALnMlA/jeGJMN7BCRreQbj9XGmEwAEZkPXAIsp6Sxh6FaR+WQmhNs21l2OP1HNmuT02l7aWOvC9gO7zvBnDdSGDC6HfUvqMmC6WuZN3UNjVudx+MfDCMvz7AnNZPMdpaRmHCl0/eBd574X4H2Frzne9GXY/1DOFOrbhWSulv/TjEVorx6bk1JHk10bKTbCuei0KFvAhev2EVSd+8pVxUFAmssUoDmItIUy0iMBG7wqDMHuB54T0RqYw1LbQcSgDtE5EWsYahewJRACOmY9EyKzlVjUYLMmLiC1V9tI6l7Q+79x8ACx6eNX0R66kFSv9vN5MW3sH75TgB2bjoIwNw3U1g2fS9rZs8kspgPv7JAq0sacN9rg/hhQRo7Ug84s7NN/PpGKlaOZm1yurNu3aY1GPFwN69GuShERkXw5+f7lJDkSlklYE9HY0yOiIwDvsGaj3jXGJMqIn8B1hhj5tnH+ovIJiAXeMQYc1hEZgN9gA1Yk90LjDFfeP+mc8TuWUTanrmxFdVglASODGsbV+72etwxqXry2GmyTmVz6rj76mRHeIhTJ84ETsgQ4qFpQ4itGMXKuVto0LwmPYa2AKDLgAvoMuACZ724OtZwW3Rs/n367KfXla6wSrkkoE9GY8zXwNceZU+7bBvgQfvjWicXGBtI2Zzf5fCGsp2IT//hP5+AUpDiJo3Kdcn09sBl088p81u4M2RsRxI7WFFVG7c8r0jntOvdhDY9GtGqawP/lRWlBNDXaEdsKJc1f0cOnHS+wSn++SVlD/8Y9zW3PNObroOae62zY+MBdm85RM9rraU2ebn5eUPKq6F4e80YTh4/7ZzQLw6RURGMmzIgAFIpinfKvbFwuBi6rg/fsWE/cX0TgiNQGPLeM8nk5Rree3qJT2MxcfQcAA5mHGf98l1kn/a9kC7zaFZA5AwmIu7r+zr2s+6vszEUihIMdF2/o2fhMoSyaMYGX7XLNWeyctix8UCBeEn+ArG49iIWfrie39KPFlIbHur3wVnLWNI4HurnQq/hrRjwYGO3nsBNT2iwSiW80J6FcRiL/LLYitFBkia0+deERaxfvotRT/WkXrOabN+wnz4jk9yG8L5+92cqV4vl9KlsZ9nMV1cFQ9wS4cYJPagaV4GDe06Quip/sr7P9UnUrleVWZMKjyx716v9ade7CcnJySR1b8ig29rTuOV5VKqqPQolvCj3xsIZ7sPl7bjzFc2CI0sIkpOdS8o3v9L6kgasX74LgA+eX+Y8Xqdhdbeexdw3Uwq0sfTTTQXKwoWIyAiuf6wHAC+M+tzp2uvI19CsbTwZ237nw78ucztv9LO9ueTKRLcyEeHquzqXgtSKUvKosXAaC6Hj5Qn8+O12N7fE8s7899by5bQfiYv3PuF/MOO42xBeONMgsRYZHmlLo2Ly13i06dGInZsO0qhl/qroJq3ruEVpve/1QWxYucvN3VVRygLl/qno6jobYb8iayTafDZ/nwHAkf3e04JmbD3MoT0+IraGGUPv7szr9y+g1/BWtO3ZmNzsXKJdjMWgP7enfrM4LuzknrinQWItOl/RjLpN42jVtYG6syplknJvLFx7Fj8vsRLYrJy3pcy9GSZ/msrKeVvoMyKJS65MxBjDyrlbOL9JDS5o556UxhjD7Cmrqds0jjw/hnPlvC2BFDvg9L0+ibR1+xl+f1cSO9RlSvJonyuhI6Mi6ODFS05EuP1vfQMtqqIElXJvLIzLnEVOtuW188sPniGsQp9Zk1axd/sRLrq2UoFjmUez+PglKzz39GeT2bfjCM3axjvH2Qff3oGr7uzkrJ+eepBFH1keYVHRZcdhbtKiURw9eJK5b6ZQu0E19m0/wrBxXdyGHc82ZIailHXKvbFwOr+H+bj74o83AtC4e2O38sP7TvD7b5luZd+8v476F9R07n/1zk+06tqALWv20u/GNrx233znMYcBDVe6DLiAHxakAZYhqFKjAvf8XRezKUpxKffGIqpmRap2a8SRenmwN3wWg239cS/ZZ3JpfUlDt3LX+ZbcnDweH/Kx1/OPHnSfg3jl9nkAzJu6poQlLV0qVY1xiyfV/+a23DC+B7k5eZouVFHOgXL/31O9RxNaz7mJnOvcwzMvnR3a7p6Txn7JP++dz5ks91hWJg+OHTrFrEmr2L/T9+K3k8dO+zwWitRpVL1AWcd+CTz+4TC6DMyfX7ruoW40uyjeuR8XX8XZo1AU5ewp9z0LX8yYuIJew1v5r1gEzmTlkHUqm2o1Sz5lpevqaLAmp19/YAG7Nh/ix0X+E/6EMhGRkGdHBakaV8Et/SdYC+YqV6/Abc/3ode1rdj8wx4uHtScS65M5NCe45w6cUaNhKKUEOW+Z+FKm0sDk/zlsUEf8Uj/D0ss5tFbDy90bntGyf32td3s2nwIgKMHT5XI9wWDv827nrYDvWd5c1C5er4huKDd+QwZ09EZ+bZ2/Wo0alH4+YqiFB01Fi7c+txlAWnXkath344jZ91GTnYuxw+fYvpzyW6Jb6aNX3Su4oUktetVJbZy/hqHkY90p0LlaG58/FImLRrFlOTRwRNOUcohOgzlQqWqgXWbXL98F83b1y32eSvn/sIHzy8jOjayQLTWtLW/hf1aB1806VCNiFPVadujEY1a1GZK8mi3OFSKopQe2rNwoSQfRHl5pkB01oUfrCt2O7+k7HHGYvIV1vuDvywtvoAhxJ2vXO61PCJSGP1Mb+dCODUUihI81FgEAGMMz18/m4m3zDnndv5+11clJFXpc8mVidz21z5c2Dk/PIa3UBjtL2vKo+9ezZ8evKQ0xVMUpRjoMFQhpH63220dQ25OHgumryWpe8NC019mn85l76/W/MRuj8B0nhhjyNh6mPObxhEdE0n2mVzSft7HnrTf2WlPVIcjL355AzXqVCYiQsg6lc2WlL3ExVfmjhf7Mv/dn/lx8Q4O782PKdWsbTxNk+pwYNcxmrc/v5CWFUUJBmosCuGf987n7TVjAPgt/ShL/7uJ/328kXlT1zjLPdm4arebi+zEWz53O77oo/Wc36QGrbo2YMXcLRw9cJKv3vmJll3qc9MTl/LE1TMDp1AAuOPFvvxrwmLn/qP/voqqNStS8/wqzrIeV19ItZoVSWgbT6WqsVx7X1f2/HrEzVgAREQIN4zvUWqyK4pSdNRYFIGsU9k8M3yW33p7tx/htf+b71bmGS7j07+vBuDmJ3vy0QvLneWbf9gTdoYCKLCCvNlFBXsFEZERtOvdxK2sRed6pK7aTe36VQMpnqIoJYQaCw8iIoW8XPeJ6aku6xoKo7AV056sX76zWHIFg/oX1GRP2u8AjJnYj02rM1gx5xfn8ec/H0HFKjG8svBmFn64jksGJ/pqqgB9r29DXHyVAuG+FUUJTXSC24OnZw532z+TlcNmP1FoM49mkZuTx4Hdx4v8PeuWhraxuHtSfx5992oAomMj6dgvwW1yemrKHdRpaIXgqFazIsPv6+oWnNAfkVERdO7fLCCr2hVFKXm0Z+GB4wHo4N4e73qtd+zQKarXrsThfSd8BusLVya8P5QmresAVljvmArWbdK+T1OG39+V5h3qqhuropQzAtqzEJEBIrJFRNJEZLyPOteJyCYRSRWRGXbZZSKy1uWTJSJDAymrg4jIoj0EHx3wH9YtTXdGay1LOAwFQJUaFZzGIiJCuPymtjRp5dsTTFGUsknAehYiEgm8AVwOZAApIjLPGLPJpU5zYALQ3RhzRETqABhjlgDt7Do1gTSgaBMH5y53keu++VCpiKQoihJ0Atmz6AKkGWO2G2POADOBqz3q3AG8YYw5AmCMOeClneHAfGNM+EbFCxHGT/fdOXMN860oiuJJII1FfWC3y36GXeZKIpAoIitFZLWIeEthNhIo1UmBsuihMzXlDmrVc3dTnfB+vvEY9VQvOl6ewO0vaC5pRVEKEuwJ7iigOdAbaAAsE5E2xpijACJSF2gDfOPtZBEZA4wBiI+PJzk5+awFyczMdJ5/4uSxwiuHIUuXFowftXWXlWc7pmIEK1ctJ/GKKE6ym+Tk3QXqBgPXaxLuqC6hR1nRA0pHl0Aaiz2A64qtBnaZKxnA98aYbGCHiGzFMh4p9vHrgM/t4wUwxkwDpgF06tTJ9O7d+6yFTU5OxnH+hs/ns5eThZ9QClSoHM19rw/ipVvnnlM7z8z6E/US4gDY0O0PNq6yjEH/gX3pdkl3YipEOSexQwnXaxLuqC6hR1nRA0pHl0AOQ6UAzUWkqYjEYA0neboOzcHqVSAitbGGpVzTu11PKQ9BAWD8VykNXl5wEwlt8lOEXn5T22K3UTWugtNQAFx7f1cqVY3h+se6A+7eToqiKL4ImLEwxuQA47CGkDYDs4wxqSLyFxG5yq72DXBYRDYBS4BHjDGHAUSkCVbPpNTjb+eZ0rcWbXoUzNIXHWs9xEc+2p3Bt3dgyNiOANRpWK3Qtq645SKfx+olxDH5f7fQ+0+tz0FaRVHKGwF9pTTGfA187VH2tMu2AR60P57nplNwQrxUCMaq4qhod7vdoU9TZ4rQy67Lf7C/tuLPREZFcHfXdwCoVqsixw//4TweXSGCa+69mG/e9507QxfUKYpSXHT8wQvX3teV1V9tK9XvrF3fvbcw9mXvCYE8h4xGPdWLKjUqYIzhk1dWkdjPMnRdBl7AD/PT6DG0RWAEVhSlXKHGwgvValbkqjs7MW/qmlL5vtv/1oc2PRqRdfIMyz//xf8JLlSoHE3TJGvF9YQPhjk9IkY91Yue17R0m/NQFEU5W9RYBICX5t/IYwM/cu636dGIDSt2+axfq15VKlSO4aYnetL7utbO4afCuGF8D3ZuPsgF7bwnCoqOiTyrfN+KoijeUGPhgxrnVTqr8yYtGkWVGhWoXrsSxw5Zi87HTRnA2E7TvNZP7FjXLdZSg+a1ivQ9vYa3Oiv5FEVRzgYNUe6DroMTz8pV1RGIsFK1WK/HO/Rt6rZK+qG3hxARqZdBUZTQRnsW5qFeuwAACKhJREFUPoiMimD4/V2pWCWmWHMX/h78N4zvwcljp89VPEVRlFJFjYUfBt/egYMZx/nuy61+6zZIrEWFStEA+Jp1EBHOb1KDofd0LuABpSiKEqqosSgC0TGRbvtNk+qwY+MBbv9bH5b+dzMNL6zFiIe6Fakth+vrwFvbl7iciqIogUKNRREwHiu67558BZlHs6jbtAadryhaaO8JHwwj+3SOhtZQFCUs0SdXEfAM/hEdE+kWb8kbVeIquO1rdjlFUcIZdcMpArEevYGipF695eletLy4Pg//a0igxFIURSk1tGdRBAbd1oHdWw6z9ad9AERFR/o5wwrfcf8bgwMtmqIoSqmgxqIIVKlRgYemDWHHxgPk5eYRGaUdMkVRyhdqLIqBIwaToihKeUNfkRVFURS/qLFQFEVR/KLGQlEURfGLGgtFURTFL2osFEVRFL+osVAURVH8osZCURRF8YsaC0VRFMUvaiwURVEUv6ixUBRFUfwinrkawhUROQjsPIcmagOHSkicYFJW9ADVJVQpK7qUFT3g3HRpbIzxm0OhzBiLc0VE1hhjOgVbjnOlrOgBqkuoUlZ0KSt6QOnoosNQiqIoil/UWCiKoih+UWORz7RgC1BClBU9QHUJVcqKLmVFDygFXXTOQlEURfGL9iwURVEUv5R7YyEiA0Rki4ikicj4YMtTFEQkXUQ2iMhaEVljl9UUkW9FZJv9N84uFxH5p63fehHpEGTZ3xWRAyKy0aWs2LKLyC12/W0ickuI6PGsiOyxr8taERnkcmyCrccWEbnCpTzo95+INBSRJSKySURSReQ+uzwcr4svXcLq2ohIBRH5QUTW2Xo8Z5c3FZHvbZk+EZEYuzzW3k+zjzfxp1+xMcaU2w8QCfwKJAAxwDqgVbDlKoLc6UBtj7KXgfH29njgJXt7EDAfEKAr8H2QZe8JdAA2nq3sQE1gu/03zt6OCwE9ngUe9lK3lX1vxQJN7XsuMlTuP6Au0MHergpstWUOx+viS5ewujb2b1vF3o4Gvrd/61nASLt8KnCXvX03MNXeHgl8Uph+ZyNTee9ZdAHSjDHbjTFngJnA1UGW6Wy5Gnjf3n4fGOpS/oGxWA3UEJG6wRAQwBizDPjdo7i4sl8BfGuM+d0YcwT4FhgQeOnz8aGHL64GZhpjThtjdgBpWPdeSNx/xph9xpif7O0TwGagPuF5XXzp4ouQvDb2b5tp70bbHwP0AWbb5Z7XxHGtZgN9RUTwrV+xKe/Goj6w22U/g8JvrFDBAAtF5EcRGWOXxRtj9tnbvwHx9nY46Fhc2UNZp3H20My7jmEbwkgPe/iiPdabbFhfFw9dIMyujYhEisha4ACW4f0VOGqMyfEik1Ne+/gxoBYlqEd5NxbhSg9jTAdgIHCPiPR0PWis/mdYurmFs+zAW0AzoB2wD5gUXHGKh4hUAf4L3G+MOe56LNyuixddwu7aGGNyjTHtgAZYvYEWwZSnvBuLPUBDl/0GdllIY4zZY/89AHyOdSPtdwwv2X8P2NXDQcfiyh6SOhlj9tv/4HnAv8jv7oe8HiISjfVw/cgY85ldHJbXxZsu4XxtjDFHgSXAJVhDflFeZHLKax+vDhymBPUo78YiBWhuexjEYE0MzQuyTIUiIpVFpKpjG+gPbMSS2+F9cgsw196eB4yyPVi6AsdchhZCheLK/g3QX0Ti7OGE/nZZUPGYCxqGdV3A0mOk7bHSFGgO/ECI3H/22Pa/gc3GmMkuh8LuuvjSJdyujYicJyI17O2KwOVY8y9LgOF2Nc9r4rhWw4H/2b1BX/oVn9Ka3Q/VD5Znx1as8cAngi1PEeRNwPJuWAekOmTGGp9cDGwDFgE1Tb5XxRu2fhuATkGW/2OsYYBsrPHT285GduDPWJN1acCtIaLHh7ac6+1/0rou9Z+w9dgCDAyl+w/ogTXEtB5Ya38Ghel18aVLWF0boC3wsy3vRuBpuzwB62GfBnwKxNrlFez9NPt4gj/9ivvRFdyKoiiKX8r7MJSiKIpSBNRYKIqiKH5RY6EoiqL4RY2FoiiK4hc1FoqiKIpf1Fgo5RoRqSEid7vs1xOR2YWdU4Lf3UREbiiN71KUc0WNhVLeqYEVsRMAY8xeY8zwQuqXJE0ANRZKWKDGQinvTASa2TkOXrHf9jcCiMhoEZkjVi6HdBEZJyIPisjPIrJaRGra9ZqJyAI7sONyESkQw0dEekl+LoWf7VX4E4FL7bIH7MBxr4hIih3wbqx9bm8RWSYiX9k5CaaKSIRdf7qIbBQrv8kDpfi7KeWMKP9VFKVMMx5IMlbANkekUleSsCKXVsBaHfuYMaa9iPwdGAVMwcp/fKcxZpuIXAy8iRVK2pWHgXuMMSvtIHdZ9nc/bIy50v7uMVihMzqLSCywUkQW2ud3wcpNsBNYAFwD7ADqG2OS7PNrlMQPoijeUGOhKIWzxFh5EU6IyDHgC7t8A9DWfvB3Az61whIBVqIZT1YCk0XkI+AzY0yGS30H/e02HcNg1bFi+ZwBfjDGbAcQkY+xwlosBhJE5DXgK2ChZ4OKUlKosVCUwjntsp3nsp+H9f8TgZVjoF1hjRhjJorIV1jxhlaK9/SWAtxrjHELvicivSkYHtwYY46IyEVYSYfuBK7Dis2kKCWOzlko5Z0TWOk3zwpj5UrYISJ/Amd+6os864lIM2PMBmPMS1gRTVt4+e5vgLvsENuISKIdWRigix0BNQIYAawQkdpAhDHmv8CTWGleFSUgqLFQyjXGmMNYb/obReSVs2zmRuA2EXFEAvaWfvN++zvWY0WqnY8VUTRXRNbZk9PvAJuAn+xJ9rfJ7/2nAK9jhanegZXHpD6QLFY2tf8AE85SfkXxi0adVZQQxx6Gck6EK0ow0J6FoiiK4hftWSiKoih+0Z6FoiiK4hc1FoqiKIpf1FgoiqIoflFjoSiKovhFjYWiKIriFzUWiqIoil/+H/7Yyl2ahaA/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -12423,7 +12423,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX9//HXJyv7DhEBBRVFaq0KWncRqogbLmix1ipaqVLs1134WZVS697ab1tbtyKtWnHtt7agqEjc6sLmwiIQNtlXEQKEkOTz++NeYIhJZkgyme39fDzmkbucO/M5mWQ+c84991xzd0RERGqSlegAREQk+SlZiIhIVEoWIiISlZKFiIhEpWQhIiJRKVmIiEhUShaSlsysj5ktq8Pxj5rZHfUZk0gqU7KQpGVmi81sm5kVm9kqMxtrZs3i8DpXmNn7kdvc/Rp3/3UcXiuyTjsff4rx2EIz+2l9xyQSCyULSXbnuHsz4AjgSGBkguOpD+e4e7OIx/D6eFIzy6mP5xGpipKFpAR3XwVMJEgaAJhZvpk9ZGZfmdnqsOuocVXHm9kIM1tgZpvNbLaZnR9uPxR4FDgu/Ja/Mdw+1szuDpfnmNnZEc+VY2ZrzeyocP1YM/uvmW00s8/MrE9t6rizhRPW6WszW2RmA8J9vwFOAv4U2RoxMzezn5vZfGB+uO14M5tiZt+EP4+PeI1CM7vXzD4xs01m9i8zaxPuG29m11WK6fOdvyvJbEoWkhLMrDMwACiK2HwfcDBBAjkI6ATcWc1TLCD4sG0J/Ap4xsw6uvsc4Brgw/Bbfqsqjn0OuCRivT+wzt2nm1knYDxwN9AGuBl42cza166mfB+YC7QDHgD+ambm7rcD7wHDq2iNnBce1zP84B8P/AFoC/wOGG9mbSPK/wS4EugIlIVlAf4G/HhnITP7HsHvdHwt6yJpRMlCkt3/mdlmYCmwBrgLwMwMGArc4O4b3H0zcA8wuKoncfcX3X2Fu1e4+/ME38KPiTGGfwDnmlmTcP1HBAkEgg/XCe4+IXzuN4GpwJlR6rQx4nF1xL4l7v6Eu5cTfHh3BAqixHdv+DvYBpwFzHf3p929zN2fA74Ezoko/7S7z3T3LcAdwMVmlg28ChxsZt3DcpcBz7t7aZTXlwygZCHJ7jx3bw70AXoQfOMGaA80Aabt/NAFXg+3f4uZ/cTMPo0oe1jEc9XI3YuAOcA5YcI4lyCBAOwPXBT54Q+cSPAhX1OdWkU8nojYtyridbeGi9FO6i+NWN4XWFJp/xKCFkJV5ZcAuUA7dy8Bngd+bGZZBK2pp6O8tmQInRCTlODu75jZWOAhgm6XdcA24DvuvrymY81sf+AJoB9Bd1O5mX0K2M6njyGEnV1RWcDsMIFA8MH7tLtfXe2R9ae6OCO3ryBIYJH2I0ikO3WptG8Hwe8TgtbM08D7wFZ3/7DW0UpaUctCUsnvgdPM7HvuXkGQAB42sw4AZtbJzPpXcVxTgg/UtWG5IQQti51WA53NLK+G1x4HnA5cy+5WBcAzBC2O/maWbWaNwms8OteyjjVZDRwQpcwEgq6kH4Un4n8I9AT+E1Hmx2bWM2wljQZeCru9CJNDBfBb1KqQCEoWkjLcfS3wd3afxL6N4IT3R2a2CXgLOKSK42YTfPh9SPCB+13gg4gibwOzgFVmtq7y8eFzrAyPP56gq2bn9qXAQOD/ESSjpcAt1Py/9e9K11n8M0rVd/pfYFA4UuoPVRVw9/XA2cBNwHrgVuBsd4+s19PAWIIur0bALyo9zd8JfkfPxBiXZADTzY9EMoeZFQLPuPuTNZT5CTDU3U9ssMAk6allISK7hF1Tw4DHEx2LJBclCxEBIDzfs5agq+4fUYpLhlE3lIiIRKWWhYiIRKVkISIiUaXNRXnt2rXzrl271vr4LVu20LRp0/oLKEHSpR6guiSrdKlLutQD6laXadOmrXP3qHOZpU2y6Nq1K1OnTq318YWFhfTp06f+AkqQdKkHqC7JKl3qki71gLrVxcwqTw9TJXVDiYhIVEoWIiISlZKFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCEiIlGlzUV5tbV69Q7+8Ic1LF2az+GHl9GmTcb/SkREviXjPxknTNjEPfesBvL5+OO5vPvuwRQU5CY6LBGRpJLx3VBDhrTl3nv3BWDevO0MHLiAkpKKBEclIpJcMj5ZrF27g5NPbsZRR5UB8PHHW7nhhmUJjkpEJLlkfLJo2TKbUaNWMn160CN3yCH53HhjhwRHJSKSXDI+WeTlZfHCC93o0qWc009vzkcfHUL37o0SHZaISFLJ+BPcAK1a5fDww1sZOLA3OTmW6HBERJJOxrcsdmrb1pUoRESqoWQRg4oKZ/t2jZASkcylZBHFli3lXHzxIi6/fAnunuhwREQSQucsarB8eSnnnruA6dO3AXDooY24666OCY5KRKThqWVRgyFDluxKFACjRq3kpZe+TmBEIiKJoWRRg0cf3Y927XY3vr773UYcfXSTBEYkIpIYShY1OOCAfF555QByc41zzmnJBx8cwv775yc6LBGRBqdzFlGcdFIzPvjgYI46qgnZ2RpaKyKZSckiBkcf3TTRIYiIJJS6oeqookLDaUUk/SlZ1ME335QzYEARTz65LtGhiIjElbqhaumrr0o566wiZs4sYdKkzey/fx6nndYi0WGJiMSFWha1sGOH07fvfGbOLAGgvBwGDVrIzJnbohwpIpKa4poszOwMM5trZkVmNqKK/Seb2XQzKzOzQZX27Wdmb5jZHDObbWZd4xnr3sjNNR58sBMWMTiqR49GtG+vhpqIpKe4JQszywYeAQYAPYFLzKxnpWJfAVcA/6jiKf4OPOjuhwLHAGviFWttnH9+Kx58sBMAF17YismTde9uEUlf8fwqfAxQ5O4LAcxsHDAQmL2zgLsvDvftMaVrmFRy3P3NsFxxHOOstRtv7MABB+QzcGBLsrJ0DYaIpK94dkN1ApZGrC8Lt8XiYGCjmb1iZjPM7MGwpZJUzIzzz2+lRCEiaS9ZO9lzgJOAIwm6qp4n6K76a2QhMxsKDAUoKCigsLCw1i9YXFxcp+Or4s4e5zUaQjzqkSiqS3JKl7qkSz2ggeri7nF5AMcBEyPWRwIjqyk7FhgUsX4s8E7E+mXAIzW9Xq9evbwuJk+eXKfjK1u3boefeupc/89/Ntbr80ZT3/VIJNUlOaVLXdKlHu51qwsw1WP4TI9nN9QUoLuZdTOzPGAw8OpeHNvKzNqH632JONeR7IqKSjjuuLlMnlzMD3+4iE8/3ZrokERE6iRuycLdy4DhwERgDvCCu88ys9Fmdi6AmR1tZsuAi4DHzGxWeGw5cDMwycy+AAx4Il6x1qfNm8s54YR5zJ+/HYAtWyo466wFLFtWmuDIRERqL67nLNx9AjCh0rY7I5anAJ2rOfZN4PB4xhcPzZtnc8cd+3Dddct2bTvkkHyaN0+68/MiIjHTFdxxMHx4B66/vgMAl1zSmtdeO4iWLZUsRCR1JetoqJT30EOdOPLIxvz4x200tFZEUp6SRZxkZxs/+UnbRIchIlIv1A2VIOXlug+GiKQOJYsEWLVqB8ceO5eXX/460aGIiMREyaKBzZ0bXIMxdepWLr10Me+/n5TTXomI7EHJogEVF5dzyinzWLw4uOZi+3bn3HMXMG9eSYIjExGpmZJFA2rWLJt7791zLsXjjmvKvvtqanMRSW5KFg1syJC2/OpXHQG46qq2/OtfB9Ksma7BEJHkpqGzCXDHHftw5JGNOfvsllhDT0srIlILShYJYGacc06rRIchIhIzdUMloeLi8p1Ts4uIJAUliySzZMl2evf+kgcfXJ3oUEREdlGySCKzZm3jhBPmMXfudm67bQVjxqxLdEgiIoCSRdLYscM5++wFLF++Y9e2q6/+inff3ZzAqEREAkoWSSI313jqqf3Jz989OurCC1vx/e83TWBUIiIBJYsk0qdPc557rhtZWTBsWDuee64b+fl6i0Qk8TR0Nsmcf34rpkzpwZFHNtY1GCKSNJQsktBRRzVJdAgiIntQH0eKWbVqB5s2lSc6DBHJMEoWKaSoqITjj5/LeectoKSkItHhiEgGUbJIETNmbOWEE+axaFEpkycX86MfLaKsTFd5i0jDULJIESNGLGfNmrJd6//85zc8/rgu2hORhqFkkSL+8Y9uHHpoo13rV1zRhqFD2yUwIhHJJEoWKaJt2xzeeOMg9t8/j1/8oj1//ev+5ORoaK2INAwNnU0hnTvnMW1aD9q0ydY1GCLSoOLasjCzM8xsrpkVmdmIKvafbGbTzazMzAZVsb+FmS0zsz/FM85U0rZtjhKFiDS4uCULM8sGHgEGAD2BS8ysZ6ViXwFXAP+o5ml+DbwbrxjTzaJF23nvPTUWRaT+xfOT5RigyN0XApjZOGAgMHtnAXdfHO771kUDZtYLKABeB3rHMc60MHv2Nk47rYhVqxrzve9t5NxzdSc+Eak/8eyG6gQsjVhfFm6LysyygN8CN8chrrQzffpWTjllPitW7KCiwrj44kVMmrQp0WGJSBpJ1j6LYcAEd19WU/+8mQ0FhgIUFBRQWFhY6xcsLi6u0/GJVFiYw/r1jYHgd7V9u/Pww7PJzi5JbGB1lMrvSWWqS/JJl3pAA9XF3ePyAI4DJkasjwRGVlN2LDAoYv1ZgvMZi4F1wCbgvpper1evXl4XkydPrtPxifbEE2sdpjlM82uuWeLl5RWJDqnOUv09iaS6JJ90qYd73eoCTPUYPtPj2bKYAnQ3s27AcmAw8KNYDnT3S3cum9kVQG93/9ZoKtntpz9tx+bN5XzyyUL+/OcuGjElIvUqbucs3L0MGA5MBOYAL7j7LDMbbWbnApjZ0Wa2DLgIeMzMZsUrnkxwww0F/Oxn25UoRKTexfWchbtPACZU2nZnxPIUoHOU5xhL0E0ldeTuSiQiUiua7iNDzJmzjZNOmsfSpaWJDkVEUpCSRQb44ott9Okznw8+2ELfvvNZsUIJQ0T2jpJFmisqKuHUU+ftmt68qGg7/frN5+uvy6IcKSKym5JFmuvaNZ++fZvvse2UU5rTsmV2giISkVSkZJHmcnKMZ5/txsCBLQG47rr2/OUvXcjK0oluEYldsl7BLfUoN9d4/vluPPvsBoYMaasRUSKy15QsMkR+fhZXXqk764lI7agbSgD48ssSiovLEx2GiCQpJQvhiy+CazDOPHOBEoaIVEnJIsPNnLmNvn3ns25dGe+9V8yAAUVKGCLyLUoWGe6225azbt3uay7ef38LTz21PoERiUgyUrLIcM8+25XevZvsWv/FL9ozfHj7BEYkIslIo6EyXKtWObz55kGcdloRxx3XlN//vrOG1orItyhZCK1a5VBY2J0mTbKUKESkSkoWAkDTppr+Q0Sqp3MWEtVnn23l3HMXsGmTRkmJZColC6nRZ59tpV+/+fz7399wxhlFShgiGUrJQqo1e/Y2+vWbz/r1QYL48MMtnHbafLZtq0hwZCLS0JQspFqdOuXRvXujPbadempzGjXSSXCRTKNkIdVq2TKbiRMP4thjmwLBNRj33ruvRkyJZCCNhpIatWiRzRtvHMSTT67j+us7KFGIZCglC4mqefNsbrihINFhiEgCqRtK6mzKlC3Mn1+S6DBEJI6iJgszO8fMlFSkSjNmbOX004s4+eR5zJ69LdHhiEicxJIEfgjMN7MHzKxHvAOS1DFr1jZOO20+GzeWs2pVGaecMp9PP92a6LBEJA6iJgt3/zFwJLAAGGtmH5rZUDNrHvfoJKmNHbt+1zUYAOvWlTFhwqYERiQi8RJT95K7bwJeAsYBHYHzgelmdl0cY5Mkd//9nbj22t339b7ppg6MHKkT4SLpKOpoKDM7FxgCHAT8HTjG3deYWRNgNvDHGo49A/hfIBt40t3vq7T/ZOD3wOHAYHd/Kdx+BPAXoAVQDvzG3Z/f++pJPGVlGY880oXGjbPYvt158MFOGlorkqZiGTp7IfCwu78budHdt5rZVdUdZGbZwCPAacAyYIqZverusyOKfQVcAdxc6fCtwE/cfb6Z7QtMM7OJ7r4xhnilAZkZDz3UadeyiKSnqMnC3S83s33CFoYDU9x9VbhvUg2HHgMUuftCADMbBwwkaI3sfO7F4b49Jhty93kRyyvMbA3QHlCySELRksTKlTvo2DG3gaIRkXiIZejsVcAnwAXAIOAjM7syhufuBCyNWF8WbtsrZnYMkEdwgl1SzMcfb+Hgg2dx//2rEh2KiNSBuXvNBczmAse7+/pwvS3wX3c/JMpxg4Az3P2n4fplwPfdfXgVZccC/9l5ziJie0egELjc3T+q4rihwFCAgoKCXuPGjauxLjUpLi6mWbNmtT4+WSRTPRYuzOL665uyeXPQ8rjkku1cffV2Yu2tSqa61JXqknzSpR5Qt7qceuqp09y9d9SC7l7jA/gvkBexnkeQLKIddxwwMWJ9JDCymrJjgUGVtrUAplfeXt2jV69eXheTJ0+u0/HJIlnqUVpa4d26feEwbY/Hm29+E/NzJEtd6oPqknzSpR7udasLMNVj+IyNZehsEfCxmY0ys7uAj4B5Znajmd1Yw3FTgO5m1s3M8oDBwKsxvB5h+X8Cf/dKrQ1JDbm5xlNP7U/z5rv/xO68cx9+8IMWCYxKRGorlmSxAPg/gpPbAP8CFgHNw0eV3L0MGA5MBOYAL7j7LDMbHZ4sx8yONrNlwEXAY2Y2Kzz8YuBk4Aoz+zR8HLH31ZNEOuWU5rz9dnfats3muuvaM2pUx0SHJCK1FMtoqF8BmFmzcL041id39wnAhErb7oxYngJ0ruK4Z4BnYn0dSV69ezdlxoxD6dQpV0NrRVJYLKOhDjOzGcAsYJaZTTOz78Q/NEkXXbrkkZVVfaIoK6t5kIWIJF4s3VCPAze6+/7uvj9wE/BEfMOSTDF58mZ69pzNl19qinORZBZLsmjq7pN3rrh7IdA0bhFJxpgxYysDBy5g/vztnHDCXD76aEuiQxKRasSSLBaa2R1m1jV8/BJYGO/AJL0tX17KgAFFbN4cXLy/YUM5P/jBfFau3JHgyESkKrEkiysJptp4BXgZaBduE6m1goJczj235R7b7rqro6YFEUlSNY6GCicDvN3df9FA8UiGyMkxHntsP/bZJ5df/3oVN97YgZtv7pDosESkGjUmC3cvN7MTGyoYySxmxujR+3LSSc3o16+5htaKJLFYpiifYWavAi8Cu85AuvsrcYtKMsppp9V8Vbe7K5GIJFgs5ywaAeuBvsA54ePseAYlstOECd9wxhlFbNxYluhQRDJaLC2LJ939g8gNZnZCnOIR2WX27GxuuWURW7dWcOKJ8xg//kD23z8/0WGJZKRYWhZV3Ta12lupitSHuXNLGDmyMVu3BkNrZ80q4aST5u1aF5GGVW3LwsyOA44H2leaXbYFwT21ReKmbdscunSpYNas3d9n7rijI02axPL9RkTqW03/eXlAM4KE0jzisYngjnkicdOuXQ6//e1WBg1qBcDIkQVcfXW7BEclkrmqbVm4+zvAO2Y21t2XNGBMIgDk58Pzz3fjuee+5pJLWic6HJGMFssJ7nwzexzoGlne3fvGKyiRnbKyjEsvbVNjmYoKr3FWWxGpu1iSxYvAo8CTQHl8wxHZO+PGbeDRR9fxyisH0KZNLH/OIlIbsfx3lbn7X+IeicheevfdzVx++RJKS53jj5/L+PEHceCBGlorEg+xDC35t5kNM7OOZtZm5yPukYnUYO7cEs47byGlpR6ub6dPn3mUlGhorUg8xNKyuDz8eUvENgcOqP9wRGLToUMOhx/emHfe2X2X3wcf7ESjRhpaKxIPUf+z3L1bFQ8lCkmo1q1zmDjxIC69NBglNWpURwYPVoNXJF6itizMrAlwI7Cfuw81s+7AIe7+n7hHJ1KD/Pwsnn66K+ef34oLLmiV6HBE0losbfangFKCq7kBlgN3xy0ikb1gZlx4YesaZ6XVJIQidRdLsjjQ3R8AdgC4+1ZAg9olJTz66Fp69pzDlCm6v7dIXcSSLErNrDHBSW3M7EBge1yjEqkHb721ieHDl7Jy5Q5OPnkeL774daJDEklZsSSLu4DXgS5m9iwwCbg1rlGJ1NGSJdu56KJFlIeXkZaUOFdeuYS1a3ckNjCRFBXLaKg3gQuAK4DngN7uXhjfsETqpnPnPK6+uu2udTN4+umutG+fm8CoRFJXTIPS3X29u4939/+4+7pYn9zMzjCzuWZWZGYjqth/splNN7MyMxtUad/lZjY/fFxe+ViRmmRnGw880JkxY/YnN9e49959Oe88jZgSqa24TaZjZtnAI8BpwDJgipm96u6zI4p9RdBiubnSsW0Iur96E5wrmRYeq05n2StDhrTl2GOb0KNHo0SHIpLS4nm56zFAkbsvdPdSYBwwMLKAuy9298+BynM09AfedPcNYYJ4EzgjjrFKGjv00MbVDq11d15//RvcvYGjEkktMSULMzvRzIaEy+3NrFsMh3UClkasLwu3xaIux4rE7KGH1jBgwAJ++tOv2L5d80qJVCeWK7h3dgcdQnCBXi7wDHBCfEOLzsyGAkMBCgoKKCwsrPVzFRcX1+n4ZJEu9YD41+WTT7IZMaIJYIwZs56PPlrN6NHbaNu2/lsZel+ST7rUAxqmLrGcszgfOBKYDuDuK8yseQzHLQe6RKx3DrfFYjnQp9KxhZULufvjwOMAvXv39j59+lQuErPCwkLqcnyySJd6QHzrUlpaweWXzyboIQ2sWJHP4YcfTvfu9X9+Q+9L8kmXekDD1CWmi/I86NDdeVFe0xifewrQ3cy6mVkeMBh4NcZjJwKnm1lrM2sNnB5uE6kXeXlZvP76gRx0UHD/i6wsGDeuW1wShUg6iCVZvGBmjwGtzOxq4C3giWgHuXsZMJzgQ34O8IK7zzKz0WZ2LoCZHW1my4CLgMfMbFZ47Abg1wQJZwowOtwmUm8OPbQxn3xyCP37t+D++zvRv3+LRIckkrSidkO5+0NmdhqwieC8xZ3hhXpRufsEYEKlbXdGLE8h6GKq6tgxwJhYXkektlq3zmH8+APJ0m0wRGoU9V/EzG4EZrv7Le5+c6yJQiRVZGdbtUNrKyqcIUMW8/bbmxs4KpHkEsv3qebAG2b2npkNN7OCeAclkizuvnsVY8du4LTT5vPAA6t0PYZkrFjmhvqVu38H+DnQEXjHzN6Ke2QiCfbaa98watRKACoq4LbbVnDXXSsTHJVIYuxNT+0aYBWwHugQn3BEksfs2SV7rLdvn8PVV7dLUDQiiRXLOYthZlZIMDV5W+Bqdz883oGJJNpNNxUwfvyBtG6dvWtobZcueYkOSyQhYrkorwtwvbt/Gu9gRJLNgAEtmTatB++9V0zfvrFciyqSnqpNFmbWwt03AQ+G620i9+u6B8kU3brl061bfrX7N24so7TU6dBB98qQ9FVTN9Q/wp/TgKnhz2kR6yIZr7zc+dGPFtO795dMnar7fEv6qrZl4e5nhz9jmWFWJCONGrWS117bBMCJJ87j0Uf344or2kY5SiT1xHKCe1Is20QyTWHhZu6+e9Wu9e3bnUcfXUtZma7FkPRTbbIws0bheYp24YR+bcJHV3RvCRFOPLEZN9ywexR5QUEOL798ADk5VV8NLpLKahoN9TPgemBfgvMUO/8DNgF/inNcIkkvJ8f43e8606tXE4YN+4oXXzyATp00tFbSU03nLP4X+F8zu87d/9iAMYmklEsvbcNZZ7WgVau43dJeJOFimXX2j2Z2GNATaBSx/e/xDEwkldSUKNatK2PMmHyOP76CvDxNbyupKZYT3HcBfwwfpwIPAOfGOS6RtFBW5lxyySKefjqffv3ms3r1jkSHJFIrsXzNGQT0A1a5+xDge0DLuEYlkiZuv30Fb70VTG/+/vtbOProL1mwYHuCoxLZe7Eki23uXgGUmVkLggkFu0Q5RiTjbdpUzgsvfL3Hts6d8+jcWVd6S+qJJVlMNbNWBLdSnQZMBz6Ma1QiaaBFi2ymTu1Bv37BnFKdOuXyyisHkJ+v8xaSemI5wT0sXHzUzF4HWrj75/ENSyQ9tG2bw+uvH8SPf/wRN998CPvso1aFpKaaJhI8qqZ97j49PiGJpJecHOOaa7bTu3fTasuUlzvZ2bqYT5JXTS2L39awz4G+9RyLSEZavXoH/frN55579uXcc1slOhyRKtV0Ud6pDRmISCbascP54Q8XMWtWCQMHLuTOO/fhrrs6kpWlVoYkl1ius2hiZr80s8fD9e5mdnb8QxNJf7feupx33inetT569CrGjFmfwIhEqhbLsIyngFLg+HB9OXB33CISySBdu+aRnb17vW/f5priXJJSLMniQHd/ANgB4O5b2T2poIjUwf/8TwcmTepOhw457LdfHuPGddWstZKUYpn5rNTMGhOc1MbMDgR0CapIPTnllOZMm9aDDRvKaN9eQ2slOcWSLO4CXge6mNmzwAnAFfEMSiTTBFd2Vz+9+YwZW+nUKVf3+ZaEqbEbyswM+BK4gCBBPAf0dvfCWJ7czM4ws7lmVmRmI6rYn29mz4f7Pw5vrISZ5ZrZ38zsCzObY2Yj96pWImlk5codnHlmEb17f8mUKbrPtyRGjcnC3R2Y4O7r3X28u//H3dfF8sRmlg08AgwgmN78EjPrWanYVcDX7n4Q8DBwf7j9IiDf3b8L9AJ+tjORiGSS0tIKBg1ayKpVZSxduoOTTprHmDEx/QuK1KtYTnBPN7Oja/HcxwBF7r7Q3UuBccDASmUGAn8Ll18C+oWtGQeamlkO0JhgNNamWsQgktL+8pd1/Pe/u1sT27c78+frlKE0vFiSxfeBD81sgZl9HnYNxTI3VCdgacT6Mr597+5dZdy9DPgGaEuQOLYAK4GvgIfcfUMMrymSVoYNa8/11+++z/fppzfn7rv3TWBEkqliOcHdP+5RfNsxQDnB/b9bA++Z2VvuvjCykJkNBYYCFBQUUFhYWOsXLC4urtPxySJd6gGqy04DB0LTpjk880w+w4at4L33ltdvcHspXd6XdKkHNFBd3D0uD+A4YGLE+khgZKUyE4HjwuUcYB3BNRyPAJcdVfQgAAAUVklEQVRFlBsDXFzT6/Xq1cvrYvLkyXU6PlmkSz3cVZfKduyoqHsg9SBd3pd0qYd73eoCTPUYPtPjObH+FKC7mXUzszxgMPBqpTKvApeHy4OAt8PgvyKcqNDMmgLHEozKEslYNV2s9847mxkyZDFbt1Y0YESSSWLphqoVdy8zs+EErYdsYIy7zzKz0QSZ7FXgr8DTZlYEbCBIKBC0LJ4ys1kELY2nXPfQEKnSsmWlXHzxItasKePTT7fxyisH0K1bfqLDkjQTt2QB4O4TgAmVtt0ZsVxCMEy28nHFVW0XkT1t317BhRcuZM2aMgA+/XQbRx/9JUVF36FVq7j+e0uG0f0dRVLY2rVlbNpUvse2//mfDkoUUu+ULERSWOfOeXzySQ8uuCC4aVL//i24/fZ9EhyVpCN9/RBJcc2bZ/PSS9149NF1XHRRa904SeJCLQuRNGBmXHtte9q1q/7737vvbqaiwhswKkknShYiGWDixE306TOfs89ewPr1ZYkOR1KQkoVImlu6tJRLL12EO7z22iaOPHIOn3yi2Wtl7yhZiKS5n/98KevX7x4xtWLFDkpL1R0le0fJQiTN/fnPXTjuuKa71keP3pcTT2yWwIgkFWk0lEia69w5j3feOZgRI5Yzc+Y2RowoSHRIkoKULEQyQG6u8dvfdmbHDq92aG1ZmWMG2dkaeivfpm4okQySm1t9Irj99hX071/EqlU7GjAiSRVKFiLC669/wwMPrGbSpM0cccQc3npLN6aUPSlZiGS4FStKueyyJbvWV68u48orl1BSounOZTclC5EMZ2Z85zuNdq1nZcEzz3SlUSN9PMhu+msQyXAdO+YyaVJ37rprH8xg9OiOnHxy80SHJUlGo6FEhOxsY9SofTn77JYceWSTRIcjSUgtCxHZpXfvptUOnS0treCSSxYxd64+NjKRWhYiEpM77ljJuHFf89JLTdm0aTU33dRB06FnEH1FEJGoJk3axAMPrAagrMy49dbl3HPPqgRHJQ1JyUJEopo8uXiP9c6dcxk2rH2CopFEULIQkajuvntfXn65G61bZ2PmPPNMV9q0US92JlGyEJGYXHBBaz7//FBuvbWEU07R0NpMo2QhIjHr3DmPM86ofu6ouXNLuPvulZSV6X4Z6UbJQkTqxY4dzmWXLeaOO1ZywglzmTevJNEhST1SshCRenHPPauYMmUrAJ98spUjjpjD3LlKGOlCyUJE6mzLlnKeeGLdHtv692/BwQfnJygiqW9xTRZmdoaZzTWzIjMbUcX+fDN7Ptz/sZl1jdh3uJl9aGazzOwLM2tU+XgRSQ5Nm2YzY0YPzjuvJQAdOuTw+OP7YaaL9tJF3Ma+mVk28AhwGrAMmGJmr7r77IhiVwFfu/tBZjYYuB/4oZnlAM8Al7n7Z2bWFtAdWUSSWPv2ubzyygH87W8b6NAhh/btcxMdktSjeA6UPgYocveFAGY2DhgIRCaLgcCocPkl4E8WfBU5Hfjc3T8DcPf1cYxTROqJmXHFFW1rLPPssxto3TqbM89s2UBRSX2IZzdUJ2BpxPqycFuVZdy9DPgGaAscDLiZTTSz6WZ2axzjFJEGsnjxdq655ivOOmsBQ4YsZuPGskSHJDFK1kswc4ATgaOBrcAkM5vm7pMiC5nZUGAoQEFBAYWFhbV+weLi4jodnyzSpR6guiSr2talogJuvrkJxcXBx87YsRt4++21jBmzhezseg4yBnpP9k48k8VyoEvEeudwW1VlloXnKVoC6wlaIe+6+zoAM5sAHAXskSzc/XHgcYDevXt7nz59ah1sYWEhdTk+WaRLPUB1SVa1rcvHH2/hs8/m7rHt//2/rvTrl5g5pvSe7J14dkNNAbqbWTczywMGA69WKvMqcHm4PAh4290dmAh818yahEnkFPY81yEiKeb732/KRx8dQs+ewcDGH/ygOUOHtktwVBKruLUs3L3MzIYTfPBnA2PcfZaZjQamuvurwF+Bp82sCNhAkFBw96/N7HcECceBCe4+Pl6xikjDOPropkyf3oPf/GYVV13VVkNrU0hcz1m4+wRgQqVtd0YslwAXVXPsMwTDZ0UkjeTnZzF69L41lvnFL5ZyxhktNGIqiegKbhFJKi+++DV//ONazjprAZddtph16zRiKhkk62goEclAa9bsYNiw3SPun3lmA5s2lfOvfx2YwKgE1LIQkSTy9tub2bBhd0siL8+4776au6ykYShZiEjSGDy4DR9/fAiHH94YgF/+ch8OPbRxgqMSUDeUiCSZ3r2bMnVqD558ch1XXVX91CElJRU0aqTvuw1Fv2kRSTq5uca117YnL6/qj6iNG8vo0WM2d965gu3bKxo4usykZCEiKWfEiBUsWVLKr3+9iiOOmMM772xOdEhpT8lCRFLKu+9u5rHHdt9o6csvt/Pee8UJjCgzKFmISErZts3ZZ5/dp1sPOSSfW24pSGBEmUHJQkRSSv/+LZgzpydXX90WM/jzn/cjP18fZfGm37CIpJxWrXJ4/PH9+fLLnvTt27zacs8/v4HNm8sbMLL0pWQhIinr4IMbVbvv/feLGTx4MT17zuaVV74mmNBaakvJQkTSzo4dzrXXfgXAsmU7uPDCRdxyS+Xb6cjeULIQkbTz2GNrmTmzZI9tF1zQKkHRpAclCxFJO0OGtOW22wrICQdNXXZZG44/vllig0pxShYiknaaNs3mvvs6MWPGoQwY0IL77+9UbdmSEl0BHgslCxFJW4cd1pgJEw6iY8fcKveXlFRwxBFz+MUvlvL117pvRk2ULEQkY/3ud2uYO3c7f/zjWg4+eDZPPbU+0SElLSULEclIa9YYv/nNql3r69aVMXXqlgRGlNyULEQkI61bl0VBwe5pQ9q2zebXv9aNlqqjZCEiGalnz3JmzerJ6NEdadzYuOeeTrRpo1v8VEe/GRHJWI0bZ3HHHR0ZMqRttSfBAX71q5W0b5/D0KHtyMmxBowweahlISIZr3PnPLKzq04Cc+eWcPfdK/n5z5fyve/N4fXXv2ng6JKDkoWISA1uuWU5ZeGo2tmzS7j22qWUlmbetRlKFiIi1fjqq1ImTdrzLnz339+p2tu9prPMq7GISIz22y+PefN6cvnlbQA44YSmXHRRZs4xpRPcIiI16NQpj7Fju3LddR3IzQWzqs9tvPvuZj76aAvXXdeBxo3T73t4XGtkZmeY2VwzKzKzEVXszzez58P9H5tZ10r79zOzYjO7OZ5xiohE06tXEw4/vEmV+9ydm25azm23reDgg2cxZsw6ysvT6/4ZcUsWZpYNPAIMAHoCl5hZz0rFrgK+dveDgIeB+yvt/x3wWrxiFBGpDy+9tJGpU7cCwf0zrrrqK2bM2JrgqOpXPFsWxwBF7r7Q3UuBccDASmUGAn8Ll18C+lnYxjOz84BFwKw4xigiUmcPPLB6j/ULL2xF795NExRNfMQzWXQClkasLwu3VVnG3cuAb4C2ZtYMuA34VRzjExGpF6+/fhA33dSBvDwjOxt+85v0mzYkWU9wjwIedvfi6k4mAZjZUGAoQEFBAYWFhbV+weLi4jodnyzSpR6guiSrdKlLfdfj7LOhd2/js89yWLnyI1au/HaZkhJ44IHGDBpUSs+e5fX22g3ynrh7XB7AccDEiPWRwMhKZSYCx4XLOcA6wID3gMXhYyOwARhe0+v16tXL62Ly5Ml1Oj5ZpEs93FWXZJUudUlEPR54YJXDNIdpfvbZ833GjC318rx1qQsw1WP4TI9ny2IK0N3MugHLgcHAjyqVeRW4HPgQGAS8HQZ/0s4CZjYKKHb3P8UxVhGRuNq8uZz77989Jfp//rOJww5rzBFHVD3CKtnELVm4e5mZDSdoPWQDY9x9lpmNJshkrwJ/BZ42syKC1sPgeMUjIpJIL7+8kfXrd3c9tWiRxS23FCQwor0T13MW7j4BmFBp250RyyXARVGeY1RcghMRaUBXXNGW/fbL45e/XMGHH27hhhs6VDsl+o4dTm5ucs1um36XGYqIJKm+fZvzwQcHM378gdxwQ/WtiquvXkL//vN5//3iBoyuZsk6GkpEJC2ZGWee2bLa/QsXbueZZzZQXg5vvLGZU09txksvHZDwGzOpZSEikkTuvXcV5RGjateuLaN16+zEBRRSshARSRIVFc7ixaV7bLv11oJqJy9sSEoWIiJJIivLePPN7hQWdqdfv+bst18egwe3qbKsu/OXv6xl48ayhomtQV5FRERidsopzXnrre5Mm9aj2lFREyZsYtiwpey330z+8Y+8uMekZCEikqTatav+pPbOyQs3b67AG2A2dCULEZEU89FHW3j33WBYbfPmWQwcWBrliLpTshARSTE9euRzzz370qFDDtdc045mzeL/mkoWIiIpplWrHEaO3IclSw7j9ts7Nshr6qI8EZEU1ahRFo0aNcxrqWUhIiJRKVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUZk3xHSFDcDM1gJL6vAU7YB19RROIqVLPUB1SVbpUpd0qQfUrS77u3v7aIXSJlnUlZlNdffeiY6jrtKlHqC6JKt0qUu61AMapi7qhhIRkaiULEREJColi90eT3QA9SRd6gGqS7JKl7qkSz2gAeqicxYiIhKVWhYiIhJVxicLMzvDzOaaWZGZjUh0PLEws8Vm9oWZfWpmU8NtbczsTTObH/5sHW43M/tDWL/PzeyoBMc+xszWmNnMiG17HbuZXR6Wn29mlydJPUaZ2fLwffnUzM6M2DcyrMdcM+sfsT3hf39m1sXMJpvZbDObZWb/E25Pqfelhnqk3PtiZo3M7BMz+yysy6/C7d3M7OMwrufNLC/cnh+uF4X7u0ar415z94x9ANnAAuAAIA/4DOiZ6LhiiHsx0K7StgeAEeHyCOD+cPlM4DXAgGOBjxMc+8nAUcDM2sYOtAEWhj9bh8utk6Aeo4CbqyjbM/zbyge6hX9z2cny9wd0BI4Kl5sD88KYU+p9qaEeKfe+hL/bZuFyLvBx+Lt+ARgcbn8UuDZcHgY8Gi4PBp6vqY61iSnTWxbHAEXuvtDdS4FxwMAEx1RbA4G/hct/A86L2P53D3wEtDKzhrlpbxXc/V1gQ6XNext7f+BNd9/g7l8DbwJnxD/63aqpR3UGAuPcfbu7LwKKCP72kuLvz91Xuvv0cHkzMAfoRIq9LzXUozpJ+76Ev9vicDU3fDjQF3gp3F75Pdn5Xr0E9DMzo/o67rVMTxadgKUR68uo+Y8rWTjwhplNM7Oh4bYCd18ZLq8CCsLlVKjj3saezHUaHnbNjNnZbUMK1SPsvjiS4Jtsyr4vleoBKfi+mFm2mX0KrCFIvAuAje5eVkVcu2IO938DtKUe65LpySJVnejuRwEDgJ+b2cmROz1of6bkMLdUjh34C3AgcASwEvhtYsPZO2bWDHgZuN7dN0XuS6X3pYp6pOT74u7l7n4E0JmgNdAjkfFkerJYDnSJWO8cbktq7r48/LkG+CfBH9Lqnd1L4c81YfFUqOPexp6UdXL31eE/eAXwBLub+0lfDzPLJfiAfdbdXwk3p9z7UlU9Uvl9AXD3jcBk4DiCLr+cKuLaFXO4vyWwnnqsS6YniylA93CEQR7BiaFXExxTjcysqZk137kMnA7MJIh75+iTy4F/hcuvAj8JR7AcC3wT0bWQLPY29onA6WbWOuxSOD3cllCVzgWdT/C+QFCPweGIlW5Ad+ATkuTvL+zb/iswx91/F7Erpd6X6uqRiu+LmbU3s1bhcmPgNIJzMJOBQWGxyu/JzvdqEPB22Bqsro57ryHP8Cfjg2BkxzyC/sDbEx1PDPEeQDC64TNg1s6YCfonJwHzgbeANr57VMUjYf2+AHonOP7nCLoCdhD0n15Vm9iBKwlO1hUBQ5KkHk+HcX4e/pN2jCh/e1iPucCAZPr7A04k6GL6HPg0fJyZau9LDfVIufcFOByYEcY8E7gz3H4AwYd9EfAikB9ubxSuF4X7D4hWx7196ApuERGJKtO7oUREJAZKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWktHMrJWZDYtY39fMXqrpmHp87a5m9qOGeC2RulKykEzXimDGTgDcfYW7D6qhfH3qCihZSEpQspBMdx9wYHifgwfDb/szAczsCjP7Pwvu5bDYzIab2Y1mNsPMPjKzNmG5A83s9XBix/fM7Ftz+JjZKbb7fgozwqvw7wNOCrfdEE4c96CZTQknvftZeGwfM3vXzMaH9yR41MyywvJjzWymBfc3uaEBf2+SYXKiFxFJayOAwzyYsG3nbKWRDiOYvbQRwdWxt7n7kWb2MPAT4PcE9z++xt3nm9n3gT8TTCUd6Wbg5+7+QTjRXUn42je7+9nhaw8lmDrjaDPLBz4wszfC448huDfBEuB14AJgEdDJ3Q8Lj29VH78QkaooWYjUbLIH90bYbGbfAP8Ot38BHB5+8B8PvBhMTQQEN5qp7APgd2b2LPCKuy+LKL/T6eFz7uwGa0kwl08p8Im7LwQws+cIpraYBBxgZn8ExgNvVH5CkfqiZCFSs+0RyxUR6xUE/z9ZBPcYOKKmJ3H3+8xsPMGcQx9Y1be3NOA6d99j8j0z68O3pwd3d//azL5HcNOha4CLCeZmEql3OmchmW4zwS04a8WD+yUsMrOLYNf9qb9XuZyZHejuX7j7/QSzmvao4rUnAteG02xjZgeHMwsDHBPOgpoF/BB438zaAVnu/jLwS4LbvIrEhZKFZDR3X0/wTX+mmT1Yy6e5FLjKzHbOBFzVLTivD1/jc4KZal8jmFG03Mw+C09OPwnMBqaHJ9kfY3frfwrwJ4JpqhcR3MekE1Bowd3UngFG1jJ+kag066xIkgu7oXadCBdJBLUsREQkKrUsREQkKrUsREQkKiULERGJSslCRESiUrIQEZGolCxERCQqJQsREYnq/wP05kqxKaiiBAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX5x/HPk0ACAQRZjAKyKIhFcWNRXFGrolX4aXG3xa3UBXftT2u1FbWLWrVW+nMv7oBaK1VcKAW1uCGIC0sgbIKIgKwBsj+/P+4NDDHJDEkms+T7fr3mxV3OnfucTJgn955zzzF3R0REpCYZiQ5ARESSn5KFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCFpycwGmdnyOhz/iJndVp8xiaQyJQtJWma2xMy2mlmBma00szFm1jIO57nQzP4buc3dL3P3O+Nwrsg6VbwejvHYqWZ2aX3HJBILJQtJdqe5e0vgIOBg4JYEx1MfTnP3lhGvkfXxpmbWpD7eR6QqShaSEtx9JfA2QdIAwMyyzew+M/vazL4Lbx01r+p4M7vZzBaa2SYzm2Nmp4fbfwQ8AgwM/8pfH24fY2Z3hctzzezUiPdqYmarzeyQcP0wM/vAzNab2edmNqg2day4wgnrtM7MFpvZyeG+u4GjgIcjr0bMzM3sSjNbACwItx1uZtPNbEP47+ER55hqZn8ws0/MbKOZvWZmbcN9b5jZVZVi+qLiZyWNm5KFpAQz6wycDORHbP4jsA9BAukBdAJur+YtFhJ82bYG7gCeM7M93H0ucBnwYfhXfpsqjn0RODdi/SRgjbvPNLNOwBvAXUBb4EbgFTPrULuaciiQB7QH7gGeNDNz91uB94GRVVyN/E94XO/wi/8N4CGgHXA/8IaZtYso/3PgYmAPoDQsC/A0cEFFITM7kOBn+kYt6yJpRMlCkt0/zWwTsAxYBfwWwMwMGAFc5+5r3X0T8HvgnKrexN1fcvcV7l7u7uMI/gofEGMMLwBDzCwnXD+PIIFA8OU60d0nhu89CfgUOCVKndZHvH4RsW+puz/u7mUEX957ALlR4vtD+DPYCvwEWODuz7p7qbu/CMwDToso/6y7f+Xum4HbgLPMLBOYAOxjZj3Dcj8Dxrl7cZTzSyOgZCHJ7n/cvRUwCNiX4C9ugA5ADjCj4ksXeCvc/gNm9nMzmxVRdv+I96qRu+cDc4HTwoQxhCCBAHQFzoz88geOJPiSr6lObSJej0fsWxlx3i3hYrRG/WURyx2BpZX2LyW4Qqiq/FKgKdDe3QuBccAFZpZBcDX1bJRzSyOhBjFJCe7+rpmNAe4juO2yBtgK7Ofu39R0rJl1BR4Hjie43VRmZrMAq3j7GEKouBWVAcwJEwgEX7zPuvsvqj2y/lQXZ+T2FQQJLFIXgkRaYc9K+0oIfp4QXM08C/wX2OLuH9Y6WkkrurKQVPIgcIKZHeju5QQJ4AEz2w3AzDqZ2UlVHNeC4At1dVjuIoIriwrfAZ3NLKuGc48FTgQuZ/tVBcBzBFccJ5lZppk1C5/x6FzLOtbkO2CvKGUmEtxKOi9siD8b6A28HlHmAjPrHV4ljQJeDm97ESaHcuDP6KpCIihZSMpw99XAM2xvxP5fggbvj8xsI/BvoFcVx80h+PL7kOALtw8wLaLIf4DZwEozW1P5+PA9vg2PP5zgVk3F9mXAUODXBMloGXATNf/f+lel5yxejVL1Cn8BhoU9pR6qqoC7fw+cCtwAfA/8CjjV3SPr9SwwhuCWVzPg6kpv8wzBz+i5GOOSRsA0+ZFI42FmU4Hn3P2JGsr8HBjh7kc2WGCS9HRlISLbhLemrgAeS3QsklyULEQEgLC9ZzXBrboXohSXRka3oUREJCpdWYiISFRKFiIiElXaPJTXvn1779atW62P37x5My1atKi/gBIkXeoBqkuySpe6pEs9oG51mTFjxhp3jzqWWdoki27duvHpp5/W+vipU6cyaNCg+gsoQdKlHqC6JKt0qUu61APqVhczqzw8TJV0G0pERKJSshARkaiULEREJColCxERiSquycLMBptZnpnlm9nNVew/2sxmmlmpmQ2rtO8eM5sdTmn5UDjZjYiIJEDckkU489ZogqkwewPnmlnvSsW+Bi6k0tAC4ZzBRwAHEAwl3R84Jl6xiohIzeLZdXYAkO/uiwDMbCzBUM5zKgq4+5JwX3mlY51g6OQsgglqmhKMVyMiIgkQz9tQndhx+sbl7Di1Y7XCCVimAN+Gr7fdfW69RygiIjFJyofyzKwH8COgYraxSWZ2lLu/X6ncCGAEQG5uLlOnTt3pc61da7zyShbl5camTVNp1apusSdaQUFBrX4OyUh1SU7pUpd0qQc0TF3imSy+Yce5fjuH22JxOvCRuxcAmNmbwEBgh2Th7o8Rjrvfr18/r80TjM899z0vvLAUyGbWrGymTt2H3NymO/0+yUJPpSYn1SX5pEs9oGHqEs/bUNOBnmbWPZzb+BxgQozHfg0cE84h3JSgcTsut6EuuKAdf/pTRwDmzSvi1FMXsmVL5SYUEZHGLW7Jwt1LgZHA2wRf9OPdfbaZjTKzIQBm1t/MlgNnAo+a2ezw8JeBhcCXwOfA5+7+r3jEuWpVCUcc0ZKDDy4F4NNPt3D11cuiHCUi0rjEtc3C3ScCEyttuz1ieTrb2yUiy5QBv4xnbBVat87kzjtX8tlnwY+iV69sbr45tyFOLSKSMhr9E9zZ2RmMH9+d7t3LOP74Vnz4YS969GiW6LBERJJKUvaGami77JLJffdt4bTT+tG0qR4UFxGprNFfWVRo29aVKEREqqFkEYPycmfz5rJEhyEikjBKFlFs2VLOmWcu5vTTF1Fa6okOR0QkIZQsarBiRTFHHz2ff/xjPZMmbeLqq5fhroQhIo2PkkUNrr56OTNmbNm2/n//t4ZHH12TwIhERBJDyaIGo0fvSdeuWdvW+/Rpxskn75LAiEREEkPJoga5uU15/fW9adUqg5/8ZBemTetF167ZiQ5LRKTB6TmLKPbfvzkffNCLH/2oGZmZ6lorIo2TkkUM9t+/eaJDEBFJKN2GqqOSEqesTD2kRCS9KVnUwcaNZfzkJ/lcf/3yRIciIhJXug1VS8uXF3PKKfl8+WUhkyZtYq+9srnmmt0SHZaISFzoyqIW3J1hwxbx5ZeF27Zdd91yXn99QwKjEhGJHyWLWjAzHn20C61abf/x9e+fQ//+OQmMSkQkfpQsaunAA3N46aW9yMyEoUNbM2VKas/dLSJSE7VZ1MFJJ+3Ce+/tw6GHttAzGCKS1pQs6ujww1smOgQRkbjTbag4Ki4up7xcz2CISOpTsoiTtWtL+fGP8/nNb1YkOhQRkTrTbag4WLSoiFNOyScvr4j33y+gW7dsRoxon+iwRERqTVcW9ay83Bk6dCF5eUXbtl1++ddMmrQxgVGJiNSNkkU9y8gwnnyyK82bb+8ddfTRLRkwoEUCoxIRqRslizgYMKAFY8d2JyMDzjqrDW+91YPWrTMTHZaISK2pzSJOhgxpw/vv78Nhh7UgI0PPYIhIaovrlYWZDTazPDPLN7Obq9h/tJnNNLNSMxtWaV8XM3vHzOaa2Rwz6xbPWOPh8MNbKlGISFqIW7Iws0xgNHAy0Bs418x6Vyr2NXAh8EIVb/EMcK+7/wgYAKyKV6yJsGlTGUVF5YkOQ0QkJvG8shgA5Lv7IncvBsYCQyMLuPsSd/8C2OFbM0wqTdx9UliuwN23xDHWBrVyZQmDBs1n+PClemhPRFJCPJNFJ2BZxPrycFss9gHWm9k/zOwzM7s3vFJJeQsWFHL44XnMnLmVcePWccMN3+CuhCEiyS1ZG7ibAEcBBxPcqhpHcLvqychCZjYCGAGQm5vL1KlTa33CgoKCOh0fC3e45pocFi/e/mN/8MFVZGcvZfDgkno5R0PUo6GoLskpXeqSLvWABqqLu8flBQwE3o5YvwW4pZqyY4BhEeuHAe9GrP8MGF3T+fr27et1MWXKlDodH6vFiwt9990/d5jhMMMHD17gmzaV1tv7N1Q9GoLqkpzSpS7pUg/3utUF+NRj+E6P522o6UBPM+tuZlnAOcCEnTi2jZl1CNePA+bEIcYG161bNm++2YNWrTIYPrwtEybsTcuWaXGHTUTSWNxuQ7l7qZmNBN4GMoGn3H22mY0iyGQTzKw/8CqwK3Camd3h7vu5e5mZ3QhMNjMDZgCPxyvWhnbQQTnMmLEvPXpkE1RPRCS5xbXNwt0nAhMrbbs9Ynk60LmaYycBB8QzvkTq2bNZokMQEYmZhvtIQmvWlLJsWXGiwxAR2UbJIsksW1bMUUflccIJC1i9un56SImI1JWSRRLJyyvkiCPymDeviLy8Ik4+eSEbN5YlOiwRESWLZHL//atYtmz71cSMGVv4wx9WJjAiEZGAkkUSeeihzvz4x622rZ9xRht+97s9EhiRiEggWZ/gbpSyszN49dW9OP74BRxwQHMeeaQLmZnqWisiiadkkWRatsxk8uSetGiRoWcwRCRpKFkkIT3RLSLJRm0WKWblyhJeeWVdosMQkUZGySKFLF5cxJFHzuessxYzfrwShog0HCWLFPHll1s54oj5LFxYRHk5nH/+Yl5/fUOiwxKRRkLJIkUsXlzEqlXbn8EoLYXnn1+bwIhEpDFRskgRQ4a04emnu1HRQeq883blmWe6JTIkEWlE1BsqhZx/fls2by5nxowt/O1ve+oZDBFpMEoWKWbEiPaJDkFEGiHdhhIRkaiULNLI0qVF3HRTDsuXay4MEalfShZpYv78Qo46aj6fftqEH/94wQ49p0RE6krJIg0sWVLE0UfP3za8eV5eESeckM/69aUJjkxE0oWSRRro3DmLI45oucO2fffNJidHH6+I1A99m6SBJk2MF17oxuDBuwBw0UXteOGF7mRl6eMVkfqhb5M0kZ2dwSuv7MXVV2/liSc0D4aI1C8lizSSk5PB6aeXkJGhRCEi9UvJohFZtqyYrVvLEx2GiKQgJYtGIj+/kCOOyOOMMxZRWKiEISI7R8miEZg/v5BjjlnAsmUlvPXWRoYNW0RxsRKGiMQursnCzAabWZ6Z5ZvZzVXsP9rMZppZqZkNq2L/Lma23Mwejmec6e6qq5axYsX2h/TeeGMjjzyyJoERiUiqiVuyMLNMYDRwMtAbONfMelcq9jVwIfBCNW9zJ/BevGJsLJ59ths/+lGzbevDh7flyis7JDAiEUk18byyGADku/sidy8GxgJDIwu4+xJ3/wL4wT0RM+sL5ALvxDHGRmG33ZoyeXJP9tknm0suacdTT3VV11oR2Snm7vF54+C20mB3vzRc/xlwqLuPrKLsGOB1d385XM8A/gNcAPwY6FfNcSOAEQC5ubl9x44dW+t4CwoKaNmyZfSCSa6memzYYLRq5WSkSEtVunwmoLoko3SpB9StLscee+wMd+8XrVyyzmdxBTDR3ZebVf8XsLs/BjwG0K9fPx80aFCtTzh16lTqcnyySJd6gOqSrNKlLulSD2iYusTzb8xvgD0j1juH22IxEBhpZkuA+4Cfm9kf6zc8iZSXV8hVVy2jtDQ+V5oiktrieWUxHehpZt0JksQ5wHmxHOju51csm9mFBLehftCbSurH/PmFHHvsAr79toTvvivh+ee707Sp2jREZLu4XVm4eykwEngbmAuMd/fZZjbKzIYAmFl/M1sOnAk8amaz4xWPVC0/f3uiAHjppfWce+5iSkp0hSEi28W1zcLdJwITK227PWJ5OsHtqZreYwwwJg7hCcGItVlZO15F7LprJpmZCQpIRJJSivSLkXjp1i2bd9/dh732ygLg4ovb8eijXTQYoYjsQMlC6NIli3ff3Ydf/zqXxx9XohCRH0rWrrPSwDp3zuLuuzslOgwRSVK6spCYLFxYpOHNRRoxJQuJat68YHjz005byObNZYkOR0QSQMlCajR/fiHHHbeA774rZfLkTZx0Uj4bNihhiDQ2ShZSo2uuWb7tGQyAadM2M2bM9wmMSEQSQclCavTss904+ODm29Yvu6w9V1+t4c1FGhv1hpIatW/fhP/8pyennLKQHj2yGT16T2oa3FFE0pOShUTVpk0TJk3qQXZ2hp7BEGmklCwkJi1a1Dz+R1mZa0IlkTSmNgupsy+/3EqfPnP5/PMtiQ5FROIkarIws9PCmetEfmD+/EJOOGEBc+cGo9d+8snmRIckInEQSxI4G1hgZveY2b7xDkhSx6pVJRx/fPAMBsC6dWX8+McLWLSoKMGRiUh9i5os3P0C4GBgITDGzD40sxFm1iru0UlS69ChCcOG7brDtosuakf37lkJikhE4iWm20vuvhF4GRgL7AGcDsw0s6viGJskOTPj/vs7ceutuwNwySXteOCBzupaK5KGovaGCme1uwjoATwDDHD3VWaWA8wB/hrfECWZmRl33dWR/v1zOPXU1upaK5KmYuk6+1PgAXd/L3Kju28xs0viE5akmqFD2yQ6BBGJo1jaLIYD881sSNgzaveIfZPjGp2khY8/3sxNNy2nvFzzeoukqli6zl4CfAKcAQwDPjKzi+MdmKSH2bO3csop+dx33yp+9rMllJQoYYikolhuQ/0KONjdvwcws3bAB8BT8QxMUt+SJUWceGI+a9cGQ5q/8MI61q8v47XX9qZJE7VtiKSSWHpDfQ9siljfFG4TqdHmzeV4pQuJQw7JUaIQSUGxJIt84GMz+52Z/Rb4iKAN43ozuz6+4Ukq22+/5kybtg97750NBMObjxq1R4KjEpHaiOU21MLwVeG18F89lCdRde+ezX//uw8PP7yaO+7YQ89giKSoqMnC3e8AMLOW4XpBvIOS9LL77k25666OiQ5DROoglt5Q+5vZZ8BsYLaZzTCz/eIfmjQWkydvZOLEDYkOQ0RqEEubxWPA9e7e1d27AjcAj8fy5mY22MzyzCzfzG6uYv/RZjbTzErNbFjE9oPCMahmm9kXZnZ2rBWS1DJr1hZOP30RQ4Ys5O9/V78JkWQVS7Jo4e5TKlbcfSrQItpBZpYJjAZOBnoD55pZ70rFvgYuBF6otH0L8HN33w8YDDxoZnpEOM0sXlzEySfns2lTOWVlcPHFS7n77m8THZaIVCGWBu5FZnYb8Gy4fgGwKIbjBgD57r4IwMzGAkMJxpMCwN2XhPvKIw909/kRyyvMbBXQAVgfw3klRXzwweZtw5tXaNZMU6eIJCPzyh3hKxcw2xW4AzgScOB94A53XxfluGHAYHe/NFz/GXCou4+souwY4HV3f7mKfQOAp4H93L280r4RwAiA3NzcvmPHjq2xLjUpKCigZcuWtT4+WaRaPd57rwl33dWckhJj2LAirrxy+1wYqVaXmqguySdd6gF1q8uxxx47w937RS3o7tW+gEzgvprK1HDsMOCJiPWfAQ9XU3YMMKyK7XsAecBh0c7Xt29fr4spU6bU6fhkkYr1eO+9Tf7LXy71srLyHbanYl2qo7okn3Sph3vd6gJ86jF8p9d4G8rdy8zsyFqlK/gG2DNivXO4LSZmtgvwBnCru39UyxgkBRx1VEuOOio9/sITSVextFl8ZmYTgJeAbRMsu/s/ohw3HehpZt0JksQ5wHmxBGVmWcCrwDNexa0paVxee209HTs2pX//qP0qRCROYmlNbEYwFtRxwGnh69RoB7l7KTASeBuYC4x399lmNiqcUAkz629my4EzgUfNbHZ4+FnA0cCFZjYrfB20k3WTNPDRR5s555zFHHPMfF57Tf0bRBIlliuLJ9x9WuQGMzsiljd394nAxErbbo9Ynk5we6rycc8Bz8VyDklfK1YY1167kMLCoBPG6acv4sEHO3P11bslODKRxieWK4uqpk3VVKoSdx980JTVq7d3rXWHli3VtVYkEaq9sjCzgcDhQIdKo8vuQtBLSiSuhg0r5oAD9uGKK76mrAxuvXV3Lr64faLDEmmUaroNlQW0DMtEjjC7kaBbrEjcjRjRni5dmvLqqxu4804Nby6SKNUmC3d/F3jXzMa4+9IGjElkB4MHt2bw4NaJDkOkUYulgTvbzB4DukWWd/fj4hWUyM548cW1tGvXhBNP3CXRoYikrViSxUvAI8ATQFl8wxHZOVOnbmL48KWUlzsPPbQnV1zRIdEhiaSlWJJFqbv/X9wjEdlJ8+YVcvrpiygpCbrWXnnlMhYvLuLee3/QG1tE6iiWfoj/MrMrzGwPM2tb8Yp7ZCJRfPBBARs27HixO3CgnvIWiYdYriyGh//eFLHNgb3qPxyR2F18cXvat2/CeectYfPmcu66aw/OOGPXRIclkpZimYO7e0MEIlIbQ4a04YMP9uGZZ9by61/vnuhwRNJWLHNw55jZb8IeUZhZTzOLOjaUSEM54IAc7ruvM2aW6FBE0lYsbRZ/B4oJnuaGYATZu+IWkUg9e+ihVYwcuYzS0pon+hKR6sXSZrG3u59tZucCuPsW059wkiLeemsD1123nPJymD+/kHHjurPrrrH82otIpFiuLIrNrDlBozZmtjdQVPMhIok3d+5Wzj57MeXhZLyTJm3i5JPzK2ZhFJGdEEuy+C3wFrCnmT0PTAZ+FdeoROpBaSm0abP9KiIjA0aN6qi2DZFaiJos3H0ScAZwIfAi0M/dp8Y3LJG669OnOZ980ovDDw+evfjjHztpSBCRWorp5q27f08wH7ZISsnNbcrkyT159tm1XHppu0SHI5KyNJOMpL1mzTL4xS/aV3v7qbzc+frr4gaOSiS1KFlIo3f33Svp02cOb7yxIdGhiCStmJKFmR1pZheFyx3MTE91S1r417/Wc/vt37JxYzmnnbaQu+/+Vr2lRKoQyxPcvwX+F7gl3NQUeC6eQYk0hG++KeaCC5ZsW3eHBx9czXfflVZ/kEgjFcuVxenAEGAzgLuvYMdpVkVSUseOTbnjjo5khjPKZ2bCSy91Z/fdmyY2MJEkFNNDeR5cl1c8lKcxoCUtmBnXXrsb77zTk3btMrn//s4MGqS/g0SqEkvX2fFm9ijQxsx+AVwMPB7fsEQaznHHtWLOnN506KBhQESqE8tDefcBLwOvAL2A2939r/EOTKQh7bZb02q71paVOX/840o2bdKswtJ4xdLAfT0wx91vcvcbwye6Y2Jmg80sz8zyzezmKvYfbWYzzazUzIZV2jfczBaEr+GVjxVpKL/97bfccssKDj00j/nzCxMdjkhCxNJm0Qp4x8zeN7ORZpYbyxubWSYwGjgZ6A2ca2a9KxX7mmAYkRcqHduWYEyqQ4EBwG/NTFOgSYP7xz/WcffdKwGYO7eQAQPyePfdTQmOSqThxXIb6g533w+4EtgDeNfM/h3Dew8A8t19kbsXA2OBoZXee4m7fwGUVzr2JGCSu69193XAJGBwDOcUqTfuzl/+snqHbc2bGz16ZCcoIpHE2ZknuFcBK4Hvgd1iKN8JWBaxvjzcFou6HCtSL8yMN9/swfnnBxe1TZrAyy/vRadOWQmOTKThRe3+YWZXAGcBHYCXgF+4+5x4BxYLMxsBjADIzc1l6tSptX6vgoKCOh2fLNKlHpA8dbnkEmjTJousLKek5FNqE1Ky1KU+pEtd0qUe0DB1iaWv4J7Ate4+ayff+5vw2Aqdw22xHjuo0rFTKxdy98eAxwD69evngwYNqlwkZlOnTqUuxyeLdKkHJFddjj225v1lZU5mZvXzZCRTXeoqXeqSLvWAhqlLtbehzKxi4P97ga/NrG3kK4b3ng70NLPuZpYFnANMiDGut4ETzWzXsGH7xHCbSNIpLXVOOSWfUaO+pbxc40pJeqrpyuIF4FRgBsHT25F/NjmwV01v7O6lZjaS4Es+E3jK3Web2SjgU3efYGb9gVeBXYHTzOwOd9/P3dea2Z0ECQdglLuvrU0FReLt17/+hnfe2cQ772ziyy+3MmZMV1q0yEx0WCL1qtpk4e6nhv/WeoRZd58ITKy07faI5ekEt5iqOvYp4KnanlukIYwdu5Z77121bf3ll9fTqlUmTz3VNYFRidS/WB7KmxzLNpHGaPfdm9K+/fa/uTp2bMpdd+2RwIhE4qOmNotmYdtE+7DtoKK9ohvqxioCwKBBrZg+vRd9+jSjWTPjn//ci44d1bVW0k9NbRa/BK4FOhK0W1S0WWwEHo5zXCIpo1u3bKZN68XMmVvo31+DMkt6qqnN4i/AX8zsKg0cKFKzVq0yOeaY6oc337QJNm0qo1UrNXxLaor6nIW7/9XM9icY36lZxPZn4hmYSLooKXF+97sciovzmDBhb7p313AhknpinVb1r+HrWOAegpnzRCQG1123nJkzm/DVVxqIUFJXLGNDDQOOB1a6+0XAgUDruEYlkibGjl3L6NHbByNcs6aUUaNWEkw+KZI6YkkWW929HCgNn+pexY7DeIhINYYMacOZZ7bZtt6lSxYvvtit2omWRJJVLGNDfWpmbQimUp0BFAAfxjUqkTSRk5PBuHHdadHiQ15+OYcJE/Zit92aJjoskZ0WSwP3FeHiI2b2FrBLOAeFiMTAzBg+vJg//KE/u++uRCGpqdpkYWaH1LTP3WfGJySR9FRToli1qoRZs7Zy4om7VFtGJJFqurL4cw37HDiunmMRaZSKi8v56U8XMW3aZu65pxM33LCb2jQk6dT0UF6UEfxFpK7cncsvX8Z//7sZgJtu+oavvtrKo492ITt7ZyayFImvWJ6zyDGz35jZY+F6TzM7Nf6hiaS/WbO2MmbM9ztsW7ashIwMXVlIconlT5e/A8XA4eH6N8BdcYtIpBE5+OAcJk7sQevWwTAge++dzUsvdadpUyULSS6xJIu93f0eoATA3bew40RIIlIHJ520Cx9/3It+/YKutW3bxtKjXaRhxfJbWWxmzQkatTGzvYGiuEYl0sj06tWMTz7ppYZtSVqxXFn8FngL2NPMngcmA7+Ka1QijVBNiWLZsmJOP30h335b0oARiWxXY7Kw4Ld3HnAGcCHwItDP3afGPTIRAaCwsJwzzljEP/+5gX795vHRR5sTHZI0QjUmCw9GO5vo7t+7+xvu/rq7r2mg2EQaPXfnssu+5tNPtwCwYkUJxxwznxkztiQ4MmlsYrkNNdPM+sc9EhH5gcJC/8GtpxP7tbF7AAAVmElEQVRPbMXBBzdPUETSWMWSLA4FPjSzhWb2hZl9aWYaG0qkATRvnsHEiT341a9yAejVK5vnnuuu5zCkwcXSG+qkuEchItXKzDT+9KdOHHJIcw48MGfbMxkiDSmWUWeXNkQgIlKzs89uW+P+RYuK6N49S91vJS40+IxIGli0qIi+fedxzjmLKSgoS3Q4koaULERS3Natwai169eXMX78egYMyGPevMJEhyVpJq7JwswGm1memeWb2c1V7M82s3Hh/o/NrFu4vamZPR02ps81s1viGadIKrvppm+YNWvrtvW5cwuZOHFDAiOSdBS3ZGFmmcBo4GSgN3CumfWuVOwSYJ279wAeAP4Ubj8TyHb3PkBf4JcViUREdnTttR044IDtXWl/+tM2XHfdbgmMSNJRPK8sBgD57r7I3YuBscDQSmWGAk+Hyy8Dx4dPjTvQwsyaAM0JRr3dGMdYRVJWjx7N+PDDXlxwQVv23Tebv/+9qxq5pd7Fc3jLTsCyiPXlBM9sVFnG3UvNbAPQjiBxDAW+BXKA69x9bRxjFUlpOTkZPPNMV9atK6NVK3WtlfqXrGMhDwDKgI7ArsD7ZvZvd18UWcjMRgAjAHJzc5k6dWqtT1hQUFCn45NFutQDVJf69u67TfjuuwzOPLOYulx4JENd6kO61AMaqC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANQRzZYwGfhZR7ingrJrO17dvX6+LKVOm1On4ZJEu9XBXXerT/PlbvVWrzxxm+NCh+b52bUmt3yvRdakv6VIP97rVBfjUY/hOj2ebxXSgp5l1N7Ms4BxgQqUyE4Dh4fIw4D9h8F8DxwGYWQvgMILRb0VkJ23dWs6ZZy5m06ZyAF57bQOHHZZHcXF5giOTVBK3ZOHupcBIgquHucB4d59tZqPMbEhY7EmgnZnlA9cDFd1rRwMtzWw2QdL5u7trPCqRWpg7t5ClS4t32Hb11buRlaXHrCR2cW2zcPeJwMRK226PWC4k6CZb+biCqraLyM475JAcZs7cl7PPXsz06Vs466w2XHFF+0SHJSkmWRu4RaQede+ezfvv78M993zHNdfspq61stN0HSrSSGRnZ3DbbXuwyy7Vd639738LKjqViOxAyUJEABg/fh1HHTWf885bwsaNGoxQdqRkISIsWFDIpZcGsxGMHbuOQw6Zx2efaepW2U7JQqSRc3cuvnjptq61AMuXF9Okido1ZDslC5FGzsx44omu9OnTbNu2++/vTJ8+mudbtlNvKBGhV69mfPzxvtx443K+/baEyy9X11rZkZKFiADQvHkGo0d3obTUq+1au3VrOaWlDRyYJAXdhhKRHdTUVnH11cu45pocFi8uasCIJBkoWYhITMaNW8sTT3zPnDlNOOiguYwfvy7RIUkDUrIQkagWLy5ixIivt61v3FjObbetoKhIgxE2FkoWIhJVq1aZHHNMq23rWVnGuHHdyc7WV0hjoU9aRKJq374Jr722F3/5S2eaNnXuvbcTBx2Uk+iwpAGpN5SIxMTMuPrq3Wjbdh7nn9+h2nLu1femktSlKwsR2SmdO5dXmwy2bCnn8MPn88ILazUgYZpRshCRenPDDcv56KPNnH/+Es45ZzFr1+qhjHShZCEi9WLChPU88siabevjx6/nnnu+S2BEUp+ULESkXqxaVUp29vbbU/vsk81tt+2ewIikPilZiEi9uPTS9syYsS8HH9yczEx49tlutGhR/URLklrUG0pE6s1++zXno4968f77BQwY0KLacuoxlXp0ZSEi9SorK4Pjj9+l2v2ffbaFI46Yz9y5WxswKqkrJQsRaTCFheVccMESPvxwM4ccMo8HH1xFebm62KYCJQsRaTC33rqCOXMKASgsdK67bjkffLA5wVFJLJQsRKRBlJc7y5cX77DtoovaceSRLRMUkewMJQsRaRAZGcbYsd159tmutG6dSadOTbn//k6JDktipN5QItJgzIwLLmjHsce2YvnyEtq0qforqKwsaMfIzFSPqWQR1ysLMxtsZnlmlm9mN1exP9vMxoX7PzazbhH7DjCzD81stpl9aWbNKh8vIqmpU6csDj20+q6199+/imOOmc/8+YUNGJXUJG7JwswygdHAyUBv4Fwz612p2CXAOnfvATwA/Ck8tgnwHHCZu+8HDAJK4hWriCSPefMKue22FUybtpkDD5zLAw98t+1KQxInnlcWA4B8d1/k7sXAWGBopTJDgafD5ZeB4y14UudE4At3/xzA3b9397I4xioiSaCszLnooqUUFQXJobDQufPOlaxZowEJEy2eyaITsCxifXm4rcoy7l4KbADaAfsAbmZvm9lMM/tVHOMUkSRRUFBOu3Y7DhHy17/uSW5u0wRFJBWStYG7CXAk0B/YAkw2sxnuPjmykJmNAEYA5ObmMnXq1FqfsKCgoE7HJ4t0qQeoLskq3nW54Qbo06cpDz/cjAMOKKVjxy+Ix+n0mewkd4/LCxgIvB2xfgtwS6UybwMDw+UmwBrAgHOApyPK3QbcVNP5+vbt63UxZcqUOh2fLNKlHu6qS7JqqLp8802Rr1xZXOP+jRtLa/3++kwCwKcew3d6PG9DTQd6mll3M8sKE8CESmUmAMPD5WHAf8Lg3wb6mFlO2Nh9DDAnjrGKSJLp2DGr2ttP7s7Pf76U/fabwxtvbGjgyBqnuCULD9ogRhJ88c8Fxrv7bDMbZWZDwmJPAu3MLB+4Hrg5PHYdcD9BwpkFzHT3N+IVq4iklqefXsvkyZtYtqyEU09dyHnnLWbLlvJEh5XW4tpm4e4TgYmVtt0esVwInFnNsc8RdJ8VEdnmu+9KuP765TtsW7WqlObN9QBfPGm4DxFJKa1aZXLppe3ICL+9mjc3Hn20i+bHiDMlCxFJKTk5GdxzT2emT9+Xgw5qzqhRHdl77+xEh5X2krXrrIhIjQ45JIfp0/etscxLL60jJyeDn/ykdQNFlb50ZSEiKatJE6NJk6pvP61ZU8pll33Nqacu5IwzFrJsWXGV5SQ2ShYikpZ+9atvWLs2GCXo1Vc30K/fPLZuVY+p2lKyEJG0s2RJEc888/0O266/fjeaN9dXXm3pJyciaadbt2ymT9+XAQNyANhvv2Zcf31ugqNKbWrgFpG0dPDBOXzwQS8ef3wN++/fnKZNq27bWLeulJYtM6vdLwFdWYhI2srMNC67rEON83xfdtnXHHjgXP79740NGFnqUbIQkUZrypRNjB+/nrlzCznhhHx++tNFbNigqXOqomQhIo1SaSlcddWyHbYtWVJEy5b6WqyKfioi0igVF/ODecAffnhPMjPVdlEVJQsRaZRycuDJJ7vy8ce96N8/h+HD2zJwYPVtG42dkoWINGoDBrTgo4968fDDe1Zb5sUX13L22YtYtKioASNLLkoWItLoZWQYLVtmVrmvsLCcW25Zwfjx69l33zlcd91y1q4tbeAIE0/JQkSkBn/962qWLg3GlSopcUaPXq1kISIi27k7b7+94/MXV1zRnh49miUoosRRshARqYaZ8c47PXjuuW506ZJF69aZ3HbbHokOKyGULEREapCRYZx/flvy8nrzzjs9aNeu6lGS1q4t5YILFpOXV9jAETYMJQsRkRg0a5bBgAEtqt1/110ref75dey33xxGjlzG6tUlDRhd/ClZiIjU0cKFRTz88GoAyspg9OjVjBmzNsFR1S8lCxGROnrqqTWUlPi29S5dshg5skMCI6p/ShYiInV0110dGTeuO927ZwHw+993TLuJltKrNiIiCWBmnHXWrsyd25u//70r5567a7Vlr79+Oa+/vgF3r7ZMMlKyEBGpJ9nZGVx4YTsyMqoejHDatAIeeGAVp522kIED85g0aWPKJA0lCxGRBnLbbSu2LX/88RbuvHNlAqPZOXFNFmY22MzyzCzfzG6uYn+2mY0L939sZt0q7e9iZgVmdmM84xQRibevvtrKlCkFO2y76649MEuNIdHjlizMLBMYDZwM9AbONbPelYpdAqxz9x7AA8CfKu2/H3gzXjGKiDSU/fdvzqxZ+zJkSGsATjihFUcf3arKsuXlnnS3p+J5ZTEAyHf3Re5eDIwFhlYqMxR4Olx+GTjewjRrZv8DLAZmxzFGEZEGc+CBObz22t58/HEv/vznztWWe/LJ7znqqPm8807ytGnEM1l0AiLnLFwebquyjLuXAhuAdmbWEvhf4I44xicikhADBrSgT5/mVe4rKXF+//uVTJu2mZNOymfgwDxmz97awBH+UNWDnCTe74AH3L2gpvt5ZjYCGAGQm5vL1KlTa33CgoKCOh2fLNKlHqC6JKt0qUuy1uPNN5uyZMn2RDJz5mby8j5h9erqrzAapC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANYAB7wNLwtd6YC0wsqbz9e3b1+tiypQpdTo+WaRLPdxVl2SVLnVJ1npcfvlShxnbXpddtjTqMXWpC/Cpx/CdHs/bUNOBnmbW3cyygHOACZXKTACGh8vDgP+E8R/l7t3cvRvwIPB7d384jrGKiCSFv/2tC5980ovTTmtNZibceGNutWUnTtzAunUNMxFT3G5DuXupmY0kuHrIBJ5y99lmNoogk00AngSeNbN8gquHc+IVj4hIqujfvwUTJuzN0qVFdO2aXWWZlStLOOOMRTRtapx9dhaDBsU3pri2Wbj7RGBipW23RywXAmdGeY/fxSU4EZEkV12iAPjLX1ZRVOQUFTkN8aiGnuAWEUkxGzaU8be/BUOit2qVwdChxXE/p5KFiEiKycyEW27ZndzcJlx+eQdatoz/OZUsRERSTMuWmdx88+4sXrw/t966e4OcM1mfsxARkSiaN8+gedXP9tU7XVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVOZJMr9rXZnZamBpHd6iPcHkS6kuXeoBqkuySpe6pEs9oG516eruHaIVSptkUVdm9qm790t0HHWVLvUA1SVZpUtd0qUe0DB10W0oERGJSslCRESiUrLY7rFEB1BP0qUeoLokq3SpS7rUAxqgLmqzEBGRqHRlISIiUTX6ZGFmg80sz8zyzezmRMcTCzNbYmZfmtksM/s03NbWzCaZ2YLw313D7WZmD4X1+8LMDklw7E+Z2Soz+ypi207HbmbDw/ILzGx4ktTjd2b2Tfi5zDKzUyL23RLWI8/MTorYnvDfPzPb08ymmNkcM5ttZteE21Pqc6mhHin3uZhZMzP7xMw+D+tyR7i9u5l9HMY1zsyywu3Z4Xp+uL9btDruNHdvtC8gE1gI7AVkAZ8DvRMdVwxxLwHaV9p2D3BzuHwz8Kdw+RTgTcCAw4CPExz70cAhwFe1jR1oCywK/901XN41CerxO+DGKsr2Dn+3soHu4e9cZrL8/gF7AIeEy62A+WHMKfW51FCPlPtcwp9ty3C5KfBx+LMeD5wTbn8EuDxcvgJ4JFw+BxhXUx1rE1Njv7IYAOS7+yJ3LwbGAkMTHFNtDQWeDpefBv4nYvszHvgIaGNmeyQiQAB3fw9YW2nzzsZ+EjDJ3de6+zpgEjA4/tFvV009qjMUGOvuRe6+GMgn+N1Lit8/d//W3WeGy5uAuUAnUuxzqaEe1UnazyX82RaEq03DlwPHAS+H2yt/JhWf1cvA8WZmVF/HndbYk0UnYFnE+nJq/uVKFg68Y2YzzGxEuC3X3b8Nl1cCueFyKtRxZ2NP5jqNDG/NPFVx24YUqkd4++Jggr9kU/ZzqVQPSMHPxcwyzWwWsIog8S4E1rt7aRVxbYs53L8BaEc91qWxJ4tUdaS7HwKcDFxpZkdH7vTg+jMlu7mlcuzA/wF7AwcB3wJ/Tmw4O8fMWgKvANe6+8bIfan0uVRRj5T8XNy9zN0PAjoTXA3sm8h4Gnuy+AbYM2K9c7gtqbn7N+G/q4BXCX6Rvqu4vRT+uyosngp13NnYk7JO7v5d+B+8HHic7Zf7SV8PM2tK8AX7vLv/I9yccp9LVfVI5c8FwN3XA1OAgQS3/JpUEde2mMP9rYHvqce6NPZkMR3oGfYwyCJoGJqQ4JhqZGYtzKxVxTJwIvAVQdwVvU+GA6+FyxOAn4c9WA4DNkTcWkgWOxv728CJZrZreEvhxHBbQlVqCzqd4HOBoB7nhD1WugM9gU9Ikt+/8N72k8Bcd78/YldKfS7V1SMVPxcz62BmbcLl5sAJBG0wU4BhYbHKn0nFZzUM+E94NVhdHXdeQ7bwJ+OLoGfHfIL7gbcmOp4Y4t2LoHfD58DsipgJ7k9OBhYA/wba+vZeFaPD+n0J9Etw/C8S3AooIbh/ekltYgcuJmisywcuSpJ6PBvG+UX4n3SPiPK3hvXIA05Opt8/4EiCW0xfALPC1ymp9rnUUI+U+1yAA4DPwpi/Am4Pt+9F8GWfD7wEZIfbm4Xr+eH+vaLVcWdfeoJbRESiauy3oUREJAZKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoW0qiZWRszuyJivaOZvVzTMfV47m5mdl5DnEukrpQspLFrQzBiJwDuvsLdh9VQvj51A5QsJCUoWUhj90dg73Ceg3vDv/a/AjCzC83snxbM5bDEzEaa2fVm9pmZfWRmbcNye5vZW+HAju+b2Q/G8DGzY2z7fAqfhU/h/xE4Ktx2XThw3L1mNj0c9O6X4bGDzOw9M3sjnJPgETPLCMuPMbOvLJjf5LoG/LlJI9MkehGRtHYzsL8HA7ZVjFYaaX+C0UubETwd+7/ufrCZPQD8HHiQYP7jy9x9gZkdCvyNYCjpSDcCV7r7tHCgu8Lw3De6+6nhuUcQDJ3R38yygWlm9k54/ACCuQmWAm8BZwCLgU7uvn94fJv6+IGIVEXJQqRmUzyYG2GTmW0A/hVu/xI4IPziPxx4KRiaCAgmmqlsGnC/mT0P/MPdl0eUr3Bi+J4Vt8FaE4zlUwx84u6LAMzsRYKhLSYDe5nZX4E3gHcqv6FIfVGyEKlZUcRyecR6OcH/nwyCOQYOqulN3P2PZvYGwZhD06zq6S0NuMrddxh8z8wG8cPhwd3d15nZgQSTDl0GnEUwNpNIvVObhTR2mwim4KwVD+ZLWGxmZ8K2+akPrFzOzPZ29y/d/U8Eo5ruW8W53wYuD4fZxsz2CUcWBhgQjoKaAZwN/NfM2gMZ7v4K8BuCaV5F4kLJQho1d/+e4C/9r8zs3lq+zfnAJWZWMRJwVVNwXhue4wuCkWrfJBhRtMzMPg8bp58A5gAzw0b2R9l+9T8deJhgmOrFBPOYdAKmWjCb2nPALbWMXyQqjTorkuTC21DbGsJFEkFXFiIiEpWuLEREJCpdWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiIS1f8Dpeb/iMaZe4MAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -12435,7 +12435,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl81fWd7/HX55zsC4EkENYIsiaAIAKiVEXFGVqnWq06WKtt1XFar3emduqt7bVOhzvTmbYzvaNTq+NMN3vboq0dpS21Y1VcUGTRIJAAIiIEkGws2bfzvX+cGHOyb7/zOyd5Px8PHg/O9/c9v/PhR5J3vr/l+zXnHCIiIgABvwsQEZHYoVAQEZF2CgUREWmnUBARkXYKBRERaadQEBGRdgoFERFpp1AQ6Qcz+5SZbTezGjM7bma/N7OPmNk3zKzZzKrb/uw3s++Z2aQO711lZqG2937w5zd+/ntEeqJQEOmDmX0J+Ffgm0AekA98H7i6rcvjzrlMIBu4BpgI7OgYDMAx51xGhz8fj96/QKT/FAoivTCzLGAd8D+cc792ztU655qdc79xzt3TsW9b+x7gz4Fy4G98KFlkSBQKIr27AEgB/qu/b3DOtQJPAxd5VZSIVxQKIr3LASqccy0DfN8xwqeTPjDZzE51+HPD8JUoMnwS/C5AJMZVArlmljDAYJgCVHV4fcw5N3V4SxMZfhopiPTuNaAR+ER/32BmAeDjwMteFSXiFY0URHrhnDttZvcDD5lZC/DfQDOwGrgUqPugr5klALOBbxC+A+m7US9YZIg0UhDpg3PuX4AvAfcRvqvoCHAX8FRblz83sxrgNLCB8Cmn85xzx3woV2RITIvsiIjIBzRSEBGRdgoFERFpp1AQEZF2CgUREWmnUBARkXZx95xCbm6umz59ut9lDEptbS3p6el+lxG3dPyGTsdwaOL5+O3YsaPCOTe+r35xFwrTp09n+/btfpcxKJs2bWLVqlV+lxG3dPyGTsdwaOL5+JnZe/3pp9NHIiLSTqEgIiLtFAoiItIu7q4pdKe5uZnS0lIaGhr8LqVXWVlZlJSU+F3GoKSkpDB16lQSExP9LkVEPDQiQqG0tJTMzEymT5+OmfldTo+qq6vJzMz0u4wBc85RWVlJaWkpM2bM8LscEfHQiDh91NDQQE5OTkwHQjwzM3JycmJ+JCYy3JyD18/A9Xsg/SW4jEtIfwlu2ANbz4S3jzQjYqQA9CsQnIOt1fDPR2BjJdSHIDUAV+bAl6fBskxQrnRPgSujTXMIbtkLGyqgIQQhAIy6EDxZHv4Z8vFceGweJI6IX6/DPPunmNkPzazMzHb3sN3M7EEzO2Bmb5nZEq9qgfB/8KdK4LIi+HU51IXAQft/8GVF4e3NocHtPyMjY1jr9dP06dOpqKjwuwwR3zj3YSDUtQfCh0JAbQiergj3G0kjBi/z7cfAml62f5TwKlWzgTuAh70qZDT9B7e2tvpdgkjc21oNv2n7edGb+lC437bq6NQVDZ6FgnPuJSIXLu/sauAxF7YFGGtmk7yoJZr/wc457rnnHhYsWMDChQt5/PHHAQiFQtx9993MmzePK664go997GP86le/6vL+D56YvO6665g3bx433XQTHyyE9Nxzz3HuueeycOFCbr31VhobG4Hwb/Zf+cpXWLJkCb/85S9ZtWoVd999N0uXLqWgoIBt27Zx7bXXMnv2bO677772z/rEJz7Beeedx/z583n00UcH/48WGWH+5Uj450F/1IfC/UcKP68pTCG8rOEHStvajg92h7ZpiBURHjGc/0b329yqvt//61//mqKiInbu3ElFRQXLli3j4osvZvPmzRw+fJji4mLKysooKCjg1ltv7XYfb775Jnv27GHy5MmsXLmSzZs3s3TpUj772c/y3HPPMWfOHG655RYefvhhvvjFLwKQk5PDG2+EC3/kkUdISkpi+/btPPDAA1x99dXs2LGD7OxsZs6cyd13301OTg4//OEPyc7Opr6+nmXLlvHJT36SnJycwRw2kRHld5Vdzyj0JNTWf6SIiwvNZnYH4VNM5OXlsWnTpojtWVlZVFdXA97e7hn+jN63P//881xzzTXU1dWRlpbGhRdeyEsvvcSLL77I1Vdf3T6h1kUXXUR9fX2XfdbV1XHeeeeRlZVFbW0t8+fPp6SkhEAgQH5+PpMmTaK6uprrr7+e//iP/+C2227DOceVV17Zvq/W1lZWr15NdXU1M2fOZN68eWRkZNDU1MRZZ53F3r17Oeecc/jOd77Db3/7WwCOHDlCUVERy5cvxzlHTU0NycnJEbU1NDR0OfbRVFNT4+vnjwTxfgz3H26KyufUTbtiQHed1LU6Hn3sWQ8rCpuTn+T5Z/gZCkeBaR1eT21r68I59yjwKMDSpUtd5wmpSkpKonL/f1+fkZmZSVJSEikpKe19ExMTSU1NJSkpiUAg0N6ekJBAamoqxcXF/OVf/iUA69atY8yYMaSlpbX3S0lJITExkfT0dILBYHt7WloaCQkJZGZmYmbk5eW1bwsGg4wbN47MzEwyMjIi9peYmEhycjI7duzg5Zdf5vXXXyctLY1Vq1a179/MyMjI6PLvTUlJ4dxzzx2mozlw8TwZWayI92O47s7Dnn9G7ZiEyJ9M/WCtjvVb5nlTUAfP35Lv+Wf4eSPVBuCWtruQVgCnnXODPnUUKy666CIef/xxWltbKS8v56WXXmL58uWsXLmSp59+mlAoxIkTJ9p/Wzv//PMpKiqiqKiIq666qsf9zp07l0OHDnHgwAEAfvrTn3LJJZcMus7Tp08zbtw40tLS2Lt3L1u2bBn0vkRGAgccnZnB9tUTB3ZvesiRc6zes7qizbORgpn9AlgF5JpZKfC3QCKAc+4RYCPwMeAAUAd8bqif2dM5/xv2hG877c85wgBw3Xh4fP7garjmmmt47bXXWLRoEWbGt7/9bSZOnMgnP/lJnnnmGQoLC5k2bRpLliwhKyur3/tNSUnhRz/6Eddffz0tLS0sW7aMz3/+84MrElizZg2PPPIIBQUFzJ07lxUrVgx6XyLxrikpwL5l2VRMSRvwewMhR/7+kXP7kbk4u/9y6dKlrvN6CiUlJRQUFPT4ntfPwOVF4YvIfUkLwAuLYfmYoVba1fHjx5k0aRKVlZUsX76czZs3M3HixOH/II/0dZy9Fu+nPmJBvB/Dyzw4fXRyQjLFy3NoSuvmd+SQg0DPo4ZAS4jco/UUvl5JNB7vfP77gz99ZGY7nHNL++oXFxeah2p5ZvjJw6crer/NLDUAV+WGn2z2wg033EB1dTVNTU18/etfj6tAEBlpQgF4d34Wh+eN6XK6KNgcYvabVVTlpVIxJZVQwCLDIeQIhBy5R+sp2BqdQIiWUREKZuFH0W/ZG34Oob7TA2wBIKUtEB6b591UFxs3bozLCfFERpq6jASKV+RQnZ3cZVtmZSPzt1SSWtvCxEN1VGcncXhOJpWTU3FBw1rD1xDy91Uz5mR07oaKplERChCem+TnBeEH03qc+8iDU0YiEjsc8P70dN4+dxytnScsco6zSs4wfc9pAm1n1Q0YU9XEgi3hBxHWrtgblbuM/DRqQgHCI4DlY+CJQV5EFpH41Zxo7D8vm7L89C7bkutaKHi9knHljT5UFltGVSiIyOh0KjeZ4vNzaEzv+iNvfGkdc7dXkdg0yNkwRxiFgoiMWCGD9wqzOFQwpstdRIGWELOLTjLpYO2IulA8VCNoFvDYc/vtt1NcXDws++rPdNbf/OY3I15feOGFw/LZIvGoPi3Im5fmcWh+VpdAyDjZxNJn32eyAqGLETlSGO57mQd7b/B//ud/DmsdffnmN7/J1772tfbXr776alQ/XyRWnJiWxr7zsmlN6vp777R9Zzh71ykCOlvULY0UhkltbS1XXnklixYtYsGCBTz++OOsWrWKDx60y8jI4L777mP+/PmsXr2arVu3smrVKs4++2w2bNgAwI9//GPuuuuu9n3+2Z/9WbeTl3U35fW9995LfX09ixcv5qabbmr/TOh5Ou/epukWiUctCUbJsmyKL8jtEghJ9a2c82IZs3YqEHozIkcKfnjmmWeYPHkyv/vd74Dw3EIPP/zhukG1tbVcfPHFPPDAA1xzzTXcd999PPvssxQXF/OZz3ym13mPOutuyut/+qd/4nvf+x5FRUVd+vc0nTd0P033Rz7ykSEeDZHoO5OdRPH5OdRnJnbZln2snoJtlSQ1Kg36opHCMFm4cCHPPvssX/nKV3j55Ze7zGuUlJTEFVdc0d73kksuITExkYULF3Lo0KEBfdaDDz7IokWLWLFiBUeOHOHtt9/utf8rr7zCjTfeSDAYJC8vj0suuYRt27YBsHz5cqZOnUogEGDx4sUDrkXEb87gvXljeOOyvC6BEGh1zH6jinNeKVcg9JNGCsNkzpw5vPHGG2zcuJH77ruPyy+/PGJ7YmIi1vaodCAQaF+rIBAI0NLSAoSn0w6FPvzCbWho6PI5mzZt4o9//COvvfZa+5TX3fXrr45rJgSDwfZaROJBY2qQ4uU5nMpL6bIt7XQT87dUknG62YfK4pdGCsPk2LFjpKWl8elPf5p77rmnfRW0gZg+fTpFRUWEQiGOHDnC1q1bu/TpbcrrxMREmpu7fgP0NJ23SDwrn5zK1j+Z2G0gTDlQzdI/nlAgDIJGCsNk165d3HPPPQQCARITE3n44Yf58pe/PKB9rFy5khkzZlBYWEhBQQFLlizp0qe3Ka/vuOMOzjnnHJYsWcLPfvaz9vaepvPeu3fv4P/BIj5pDRoHFo/l2Myu84glNrYyb1sVuSNofYNoGxVTZ8eK6urquJ4Qz+/jHO/TPseCeD+Gy796nD0rcqnL6noxedyJBgperyS5odWzz/d77iNNnS0iAjgHDx6F7asn4oKRj5tZyHH2rlNM21etB9GGgUJBRGLaiSb47F54pgroFAip1c0UbqkckVNY+0WhICIx6/eV4UAo6+Z68cR3a5j95kkSWuLrFHisGzGh4Jxrv+VThl+8XXuS+NbQCvcehAeOdt2W0BRizo4q8o7URb+wUWBEhEJKSgqVlZXk5OQoGDzgnKOyspKUlK63/okMt+Ja+FQx7Kztui2rvIHC1ytJqfPuYvJoNyJCYerUqZSWllJeXu53Kb1qaGiI2x+sKSkpTJ061e8yZARzDh49Dncf6LqWehD42+nw3C/L2ldFE2+MiFBITExkxowZfpfRp02bNnHuuef6XYZIzKlshtv3wVPdzA4/PQV+VgAXZsELCgTPjYhQEJH49fxJuLkEjnVzA9HaCfDIHMjST6qo0aEWEV80h+D+Q/Ctw9B5AJARhIdmw8154bXVJXoUCiISdQfq4FMlsK2667ZlmfDzApiVFv26RBPiiUgUOQc/eR8Wb+8aCAZ8NR82n6tA8JNGCiISFaea4Qtvw/qyrtumJMFPC+DScdGvSyIpFETEc5tPw03F8F5j123X5MJ/zIWcrnPciQ8UCiLimZYQ/MNhWHcIOq97lhqAf50FfzFJF5NjiUJBRDzxXkN4dLD5TNdti9LhF4VQkB79uqR3CgURGXaPl8Ff7oPT3cxGcfdU+MezIVm3ucQkhYKIDJvqFvirA/Dj97tum5AIP5kHa3KiX5f0n0JBRIbFtjPhZw8OdLMS5kez4UfzIC8p+nXJwGgAJyJDEnLhp5IvfLNrICQZPDALfrdQgRAvNFIQkUE72gi3lMDzp7puK0gLX0xelBH9umTwFAoiMihPlcNt+6Cqpeu2z0+Gf5kJacHo1yVDo1AQkQGpa4W/eQceOdZ1W3YC/GAufGJ89OuS4aFQEJF+21kDNxZDSTcrYV42Fh4rgCnJ0a9Lho8uNItIn5yDB0ph+Y6ugZBg8K2z4dlFCoSRQCMFEenViSb43F74fVXXbbNSw9NcLxsT/brEGwoFEenRM5Xwmb1Q1tx12+cmwoOzIEM/RUYU/XeKSBeNIbj3IPxraddtWcHwEplr86Jfl3hPoSAiEUpqwxeTd9Z23bZyDPy/ApieGv26JDo8vdBsZmvMbJ+ZHTCze7vZnm9mL5jZm2b2lpl9zMt6RKRnzsG/H4PzdnQNhADwjemwabECYaTzbKRgZkHgIeAKoBTYZmYbnHPFHbrdBzzhnHvYzAqBjcB0r2oSke5VNsNf7IP/qui67axk+FkhrMyKfl0SfV6ePloOHHDOHQQws/XA1UDHUHDAB/ctZAHdPA4jIl564STcXAJHm7puWzsBHp4NY7Uq2qjhZShMAY50eF0KnN+pzzeA/zaz/wmkA6s9rEdEOmgOwf2HwpPZuU7bMoLw0Gy4OU+roo025lznL4dh2rHZdcAa59ztba9vBs53zt3Voc+X2mr4FzO7APgBsMA5F+q0rzuAOwDy8vLOW79+vSc1e62mpoaMDM0ONlg6fgPngBIyeYJpbCGHJhcgyUIs4hQnSOY9uh7PuZzh65QwhW7mwPbZ/sPdDGeiKDu9garaFN8+f07+4KeavfTSS3c455b21c/LkcJRYFqH11Pb2jq6DVgD4Jx7zcxSgFygrGMn59yjwKMAS5cudatWrfKoZG9t2rSJeK09FsT78bvszsNR/byQQcnyHCqmpBIKGAQMDBoJstVldx0COEf+3jNM3HOaH4QmeVLT89/PH9L710X5GHa2dsVe1m+Z59vnP3/L0I5ff3h599E2YLaZzTCzJGAtsKFTn8PA5QBmVgCkAOUe1iQyKjg6BEJCIBwIHXUKhMS6Fha/WMbMXacJhJBRzLNQcM61AHcBfwBKCN9ltMfM1pnZVW3d/gb4CzPbCfwC+Kzz6nyWyChyJjvpw0DoS8hRuLWScWWN3hcmMc/Th9eccxsJ32base3+Dn8vBlZ6WYPIaHRkTmb4lFE/HTs7g2yFgqBZUkVGpMrJqV1PGfUkYOH+IigUREakUHBg95EOtL+MXAoFkREoEBrYpblAqy7lSZhCQWSEOTMuiRAD+M0/5Mg5FnvPJIg/FAoiI0hNViI7Lx4PAzgdFAg58vdXe1iVxBOFgsgIUZuZQNElE2hJDvb7PYGWELlH68ms8vdJYYkdCgWREaAuI4GiVRNoTokMhLTTTQRaQtD5GkPItQdCwdbKgZxskhFOi+yIxLn6tCBFl0ygKTXy23nq/jPMLDpFTXYSh+dkUjk5FRc0rDV8DSF/XzVjTmqEIJEUCiJxrDE1SNGqCTSmR34rTz5QzayiUxgwpqqJBVsqAf/n7pHYp9NHInGqKTlA0SUTaMiIXOxg4rs1zHnjpE4JyaAoFETiUFNSOBDqxkQGwoTDtczbXqVAkEFTKIjEmeZEY+clE6gdGzm3fm5pHQWvV2J6Dk2GQKEgEkdaEoy3Lp5AzbjIQMg+Vs/8LRUEFAgyRAoFkTjRGjTeumg8Z3KSI9rHnWhgwavlWgdBhoVCQSQOtAaNXR8Zz+nxkUtBZpU3sPCVcoIKBBkmCgWRGBcKwO4LcjmZFxkIYyobOeflcoKazE6GkUJBJIaFDPasyKWq03oHGSebOOelMhJaFAgyvBQKIjHKGZScn0PF1LSI9vRTTSx6sYzEZgWCDD+FgkgMcsDepdmU5adHtKeeaWbxi2UkNekignhDoSASYxywf8k43p+REdGeUtMSDoRGBYJ4R6EgEkMccGDxWI7NyoxoT65tYfGmE6TUt/pTmIwaCgWRGOGAgwuzKJ0zJqI9qT48QkitUyCI9xQKIjHivcIxHC7IimhLbGhl8aYy0mpafKpKRhuFgkgMODw3k3cXjI1oS2hsZfGLZaRXKxAkehQKIj4rnZXBO4vGRbQFm0IseqmcjNPNPlUlo5VCQcRHx85O5+0l2RFtweYQi14u06po4guFgohP3j8rjX3nRQZCoCXEwlfKyapUIIg/FAoiPiibmkbJshywD5fDsVbHws0VjCtv9LEyGe0UCiJRVj45leIVORDoEAghx4JXK8g+0eBjZSIKBZGoqsxLYc8FubgOgUDIUbilgtzj9f4VJtJGoSASJSfHJ7N7ZS4u2CEQnKNgayUTShUIEhsUCiJRsPk0vHXReEIJkd9yc7dXMfFwnU9ViXSlUBDx2LYz8NG36BIIs9+oYvK7tT5VJdI9hYKIh3bWwJ++BdWdpi2aWXSSqQdq/ClKpBcKBRGPFNfC6p1wstMsFTN2nSJ/f7U/RYn0QaEg4oG36+DynVDRaZaKs4pPM73kjD9FifSDQkFkmL1bD5fthPc7PZQ8bd8ZZuw+7U9RIv2kUBAZRqUN4RFCaaeHku+cDDN3nsK6f5tIzFAoiAyT9xvDgfBup4eSb50I/zYbBYLEBYWCyDAobwoHwv5Oz6B9agI8OjdiRguRmKZQEBmik83wJ29Bcadn0D6ZCz+ZB0EFgsQRhYLIEJxpgTVvQVGnRw7+LAd+XggJ+g6TOKMvWZFBqm2FK3fB1k6PHFwxDn5ZCEn67pI45OmXrZmtMbN9ZnbAzO7toc8NZlZsZnvM7Ode1iMyXOpb4apd8EqnO0wvzoKnFkBK0J+6RIYqwasdm1kQeAi4AigFtpnZBudccYc+s4GvAiudcyfNbIJX9YgMl8YQXLsHnj8V2b5iDPx2IaQpECSOeTlSWA4ccM4ddM41AeuBqzv1+QvgIefcSQDnXJmH9YgMWXMI/nwPPFMV2b4kA36/EDI9+zVLJDrMOefNjs2uA9Y4525ve30zcL5z7q4OfZ4C9gMrgSDwDefcM93s6w7gDoC8vLzz1q9f70nNXqupqSEjI8PvMuKW38evFfgHCnmByAHt2dTwXYrIoqX7N7bZf9j/dZez0xuoqk3x7fPn5CcN6f1+H8N4Pn6XXnrpDufc0r76+f17TQIwG1gFTAVeMrOFzrmIgblz7lHgUYClS5e6VatWRbnM4bFp0ybitfZY4OfxCzn43F544URk+7w02LQ4g7ykj/S5j3V3Hvaouv5bu2Iv67fM8+3zn78lf0jv9/sYxvvx6w8vTx8dBaZ1eD21ra2jUmCDc67ZOfcu4VHDbA9rEhkw5+AL++GxToEwMwX+uAjyhvbLr0hM8TIUtgGzzWyGmSUBa4ENnfo8RXiUgJnlAnOAgx7WJDIgzsEXD8CjxyPb85PhucUwJdmfukS84lkoOOdagLuAPwAlwBPOuT1mts7Mrmrr9geg0syKgReAe5xzlV7VJDIQzsFXD8KDnca3k5Pg+cVwln+nlkU84+k1BefcRmBjp7b7O/zdAV9q+yMSU9a9B986Etk2IRGeWwQzU/2pScRreuZSpBvfOgzfOBTZlp0QvoYwL92XkkSiQqEg0skDpXBvpytbWUF4dhEs1B3FMsIpFEQ6ePRY+MJyRxlBeOYcWJLpT00i0aRQEGnzk/fh8/sj21ID8LuFsCLLn5pEok2hIAI8Xga37oWOz/cnG2xYABeP9a0skahTKMio91Q53FQMoQ5tiQZPLoDV2b6VJeKLAYWCmaW3zX4qMiL8vhJuKA7Pa/SBILC+EK7M8asqEf/0GgpmFjCzT5nZ78ysDNgLHG9b/+A7ZjYrOmWKDL/nToanwG7ucM7IgMcK4NrxvpUl4qu+RgovADMJr3kw0Tk3zTk3AfgIsAX4lpl92uMaRYbdy6fCi+Q0hCLbfzAXPpXnT00isaCvJ5pXO+eaOzc656qAJ4EnzSzRk8pEPLL1THgZzbpOgfD92fC5Sf7UJBIreh0pfBAIZra68zYz+0zHPiLx4M1q+NO3oLo1sv27M+ELU/ypSSSW9PdC8/1m9nDbheY8M/sN8HEvCxMZbrtr4IqdcKrTWjj/MAPuntb9e0RGm/6GwiXAO0AR8Arwc+fcdZ5VJTLM9tfB6p1Q2SkQvn4WfO0sf2oSiUX9DYVxhNdcfgdoBM4yM/OsKpFhdLAeLiuCE51OdH55GvzddD8qEold/Q2FLcAzzrk1wDJgMrDZs6pEhsmRBrh8JxzttLTvXVPg22eDfrURidTf9RRWO+cOAzjn6oG/MrOLvStLZOiON8JlO+FQQ2T77ZPggVkKBJHu9PXw2nSADwKhI+fcSxY21ZvSRAavrCk8QjhQH9n+6Tx4ZA4EFAgi3eprpPAdMwsATwM7gHIgBZgFXApcDvwtUOplkSIDUdUcvsuopC6y/frx8KO5EFQgiPSo11Bwzl1vZoXATcCtwESgnvCayxuBf3DONfSyC5GoOt0Sfg7hrdrI9o/nwM8KIEFTQIr0qs9vEedcMfD3wG8Ih8G7wDbgVwoEiSU1LfCxt2B7dWT7n4yDJwohUYEg0qf+Xmj+CXAGeLDt9aeAx4AbvChKYtNld3a5tBRVa1c0sa6HGlqDxlsXjefUhJSI9rFlDTQ8Wc7HWl237xuI57+fP+R9iMS6/obCAudcYYfXL5hZsRcFiQxUKAC7VuZ2CYQxFY0sfKWc4DAEgsho0d8B9RtmtuKDF2Z2PrDdm5JE+i9ksOeCXE5OTI1oz6xqZNHLZSS0KBBEBqK/I4XzgFfN7IOxez6wz8x2Ac45d44n1Yn0ImRQvCKHiilpEe3pp5pY9FI5Cc0KBJGB6m8orPG0CpEBcgZ7l+VQPi09oj3tdDOLXywjsSnUwztFpDf9CgXn3HteFyLSmQPOZCdxZO4YKiel8EJwGoHJjpxj9YSCRmWnEUJqdTOLXzxBUqMCQWSw+jtSEImqkEHJ8hwqpqQSClj7I8ihBKN8WlqXOSpSaltY/GIZyZ2XUhORAVEoSMxxdAiE7p426xQISXUtLN50gpS61q59RWRA9DiPxJwz2Uk9B0JnzjG76CSptQoEkeGgUJCYc2ROZviUUX84KJua1nc/EekXhYLEnMrJqf2fxjRg4f4iMiwUChJzQgOcxnSg/UWkZwoFiTmBAU5LMdD+ItIzhYLEnJxj9RDq5w/6UPi5BREZHgoFiTnT9lfT3xNCgZAjf3913x1FpF8UChJzzmQn4fpxoTnQEiL3aD2ZVU1RqEpkdNDDaxJTTo5P5p3F4yIbnYt8YC3kCIQcuUfrKdha2e9RhYj0TaEgMaMhLcieC3IjRgmBlhBZ5Y2cHp+MCxrWGr6GkL+vmjEnNUIQGW4KBYkJrUFj18rxNKcEI9oLt1Qyvu1C8toVe1m/ZZ4f5YmMGrqmIL5zwN6l2dSMS4pon74mNOzPAAAQWUlEQVT7VHsgiEh0KBTEd0fmZlJ2VuS6CLmldUwvPuNTRSKjl0JBfFWZl8I7C8dGtKWfbtIFZBGfeBoKZrbGzPaZ2QEzu7eXfp80M2dmS72sR2JLXUYCxRfkRsxzlNAUYsHmCq2tLOITz0LBzILAQ8BHgULgRjMr7KZfJvDXwOte1SKxpyXB2LUyl5akDl+CIUfhaxWk1bT4V5jIKOflSGE5cMA5d9A51wSsB67upt//Ab4FNHhYi8SQDxbRqcuKvLA8c9cpck7oy0DET16GwhTgSIfXpW1t7cxsCTDNOfc7D+uQGHOocAwVndZAmPBeLdP2aboKEb/59pyCmQWA7wKf7UffO4A7APLy8ti0aZOntXmlpqYmbmsHWLti6A+LFaWO54Xx+RFt05rO8L8CW0la0fv6ytnpDaxdsXfINQzWpk0Hh/T+4Th+Q6VjODTxfvz6w5zz5oKemV0AfMM596dtr78K4Jz7x7bXWcA7QE3bWyYCVcBVzrntPe136dKlbvv2HjfHtE2bNrFq1Sq/yxi0y+48PKT3145JYMflE2lN/HCAmtjQytI/vt+v9ZX9fnjt+e/n992pF0M9fsNBx3Bo4vn4mdkO51yfN/N4efpoGzDbzGaYWRKwFtjwwUbn3GnnXK5zbrpzbjqwhT4CQeJXc2L4ieWOgWAhx/zXKvoVCCISHZ6FgnOuBbgL+ANQAjzhnNtjZuvM7CqvPldijzMoXpFLfWZiRPusopOMK2/0qSoR6Y6n1xSccxuBjZ3a7u+h7yovaxH/HFw4lqpJkesoTzpYw5QDNT28Q0T8oieaxVMnpqVxeN6YiLYxFY3MeaNKTyyLxCCFgnimemwie5dlR7Ql1bew4NVyAr3faCQiPlEoiCeakgPsWjmeUEKHC8utjgWbK0huUCKIxCqFggy7kMGeC3JpTI+8ZDV3RxVZWjpTJKYpFGTYHVg8jlMTUiLaprxdzaRDtT5VJCL9pVCQYXV8RjpHZ2dGtI090cCsopM+VSQiA6FQkGFzOjuJfUsiLyyn1LYwf0sFAc2ELRIXFAoyLBpTguxemYsLfnijaaAlxILN5SQ16sKySLxQKMiQhQKw+8JcmlIjLyzP21ZF5qlmn6oSkcFQKMiQOGD/kmzO5CZHtOeXnCbvSJ0/RYnIoCkUZEiOzsrg+NkZEW3Zx+s5e/dpnyoSkaFQKMignRyfzIHF4yLaUqubKdxSgenCskhcUijIoDSkBdlzQS4u8OGF5WBziIWby0lsViKIxCuFggxYazC8NkJzSjCiveD1StLPtPhUlYgMB4WCDIgD9i7LpmZcUkT79N2nGH+s3p+iRGTYKBRkQA7PzaQsPz2iLbe0junFZ3yqSESGk0JB+q1yYgoHzxkb0ZZ+uomCrZVaG0FkhFAoSL8cqAsvqYl9+OM/oSnEgs0VJLTowrLISKFQkD5Vt8DVu6ElqcOXS8gx/7UK0mp0YVlkJFEoSK9CDm4ugeJODyfP3HWK7BMN/hQlIp5RKEiv1h2Cpysj2/Leq2Xavmpf6hERbykUpEdPlcPfvRfZllHVxNztVbqwLDJCKRSkW3tq4ea9kW2JDa0sfLWcYKsuLIuMVAoF6eJkM3xiN9S0ftiWYLDg1QpS6lp7fqOIxD2FgkRodbC2GA50ejj5gVkwtqLRn6JEJGoUChLhqwfhvzstp3z7JPjCZH/qEZHoUihIu1+cgO8ciWy7YAx8b3bEM2siMoIpFASAN6vhtn2RbZOT4Mn5kKyvEpFRQ9/uQllT+MJyfejDtiSDXy+ASck9v09ERh6FwijXHILr98DhTteQ/30OnD/Gn5pExD8KhVHu7gPwUqfllP9qCnx2kj/1iIi/FAqj2A+Ow0PHItsuHQv/PNOfekTEfwqFUWrLabhzf2TbWcnwRCEk6qtCZNTSt/8odKwRrt0DTR1mq0gNwFMLIDep5/eJyMinUBhlGlrh2t1wvCmy/UfzYHGmPzWJSOxQKIwizsGdb8PrnWa9vjcf/nyCPzWJSGxRKIwiDx2FH70f2fbRbPj7Gf7UIyKxR6EwSmw6CV88ENk2OxV+XgBBTWEhIm0UCqPAew1wfTF0nPQ6MwhPL4Cxib6VJSIxSKEwwtW1hqewqGiObP9/BVCQ7k9NIhK7FAojmHNw614oqolsXzcdrsr1pSQRiXEKhRHsO0fg8fLItmty4X+f5U89IhL7FAoj1DOVcO/ByLb5afCTeRDQhWUR6YGnoWBma8xsn5kdMLN7u9n+JTMrNrO3zOw5M9PvsMPg7brwkpodHlhmXAI8vRAyE3wrS0TigGehYGZB4CHgo0AhcKOZFXbq9iaw1Dl3DvAr4Nte1TNanGmBq3fD6Q63GgWAxwthZqpvZYlInPBypLAcOOCcO+icawLWA1d37OCce8E5V9f2cgsw1cN6RryQg5tLoKQusv3bM+GKbH9qEpH44mUoTAE6rvhb2tbWk9uA33tYz4i37hBsqIxsu2kCfElRKyL9ZM65vnsNZsdm1wFrnHO3t72+GTjfOXdXN30/DdwFXOKca+xm+x3AHQB5eXnnrV+/3pOavVZTU0NGRoYn+36ZXO5nQUTbbKr5N94kmVAP7xqY/Yeb+u7koez0BqpqU3z7/Dn5Q5tC1u/jBzqGQxXPx+/SSy/d4Zxb2lc/L0PhAuAbzrk/bXv9VQDn3D926rca+DfCgVDW136XLl3qtm/f7kHF3tu0aROrVq0a9v3uqYUVb0BNh+sI4xNh+3mQP4xfv5fdeXj4djYIa1fsZf2Web59/vPfzx/S+/0+fqBjOFTxfPzMrF+h4OXpo23AbDObYWZJwFpgQ8cOZnYu8O/AVf0JBOmqqhmu3hUZCAkGT84f3kAQkdHBs1BwzrUQPiX0B6AEeMI5t8fM1pnZVW3dvgNkAL80syIz29DD7qQbLSG4sRjeaYhsf3AWXDTWn5pEJL55ete6c24jsLFT2/0d/r7ay88f6b72Lvz3yci22yfB5yf7U4+IxD890Rynfn4iPI1FRxeMge/NBtMTyyIySAqFOPRGNdy2L7JtclL4OkKy/kdFZAj0IyTOlDWFp8Ju6HCXabLBfy2AScn+1SUiI4NCIY40h+D6PXCk05Mcj8yB5WP8qUlERhaFQhy5+wC8dDqy7a+mwGcn+VOPiIw8CoU48YPj8NCxyLZLx8I/z/SnHhEZmRQKceC10/CF/ZFt01PgiUJI1P+giAwj/UiJcUcb4do90NxhNpK0ADy1AHKHNo2MiEgXCoUY1tAK1+6G9zvNAfajebDIm3n1RGSUUyjEKOfgC2/D1urI9nvz4YYJ/tQkIiOfQiFGfe8o/Pj9yLaPZsPfz/CnHhEZHUbVir3+T7vbxLp+1HByfDI7L5kAgQ/nq0g900z1f73PFc2Dn+p8qNMWi8jIp5FCjKlPC7Lnwlxch0AINodYuLmcxCEEgohIfygUYkhr0Ni9cjzNycGI9sItlaRXt/hUlYiMJgqFGOGAvcuyqRkXeZ/pjN2nyD1e709RIjLqKBRixOF5mZTlp0e0jS+t46ziMz5VJCKjkUIhBlROTOHgwsil0tJPNTFvayVaGkFEokmh4LO6jASKV+RGrIyT0NjKws0VJLTowrKIRJdCwUctCcauleNpSerw3xByzN9SSWqtLiyLSPQpFHzigJLzc6jLSoxon/nWKbJPNPhTlIiMegoFnxyan0XFlLSItrxDtUzbX93DO0REvKdQ8EH5lFQOzc+KaMusamTujipdWBYRX42qaS6izQFnspM4MncMlZNSeCE4jcBkRygQ+aM/saGVBZsrCLbqwrKI+Euh4JGQQcnyHCqmpIZDoC0IQgmdxgIhx4JXK0ipb/WhShGRSAoFDzg6BEJC72foMk41kVXRGJ3CRET6oGsKHjiTndSvQACoG5NIdbaWUBOR2KBQ8MCROZldrhv0JBQwDs/J9LgiEZH+USh4oHJyasRaCL0KWLi/iEgMUCh4IBQc2I2lA+0vIuIVhYIHAgO8tXSg/UVEvKJQ8EDOsXoI9fMHfciF+4uIxACFggem7a8m0M9QCIQc+ZraQkRihELBA2Oqmsg9Wk+gJdRrv0BLiNyj9WRWNUWpMhGR3ikUPGBAwdbKD4Oh86gh5NoDoUAL6YhIDNETzR4JOCh8vZLq7CQOz8mkcnIqLmhYa/gaQv6+asac1AhBRGKLQsFDRvhU0oItlQCsXbGX9Vvm+VuUiEgvdPpIRETaKRRERKSdQkFERNopFEREpJ1CQURE2ikURESknUJBRETaeRoKZrbGzPaZ2QEzu7eb7clm9njb9tfNbLqX9YiISO88CwUzCwIPAR8FCoEbzaywU7fbgJPOuVnA/wW+5VU9IiLSNy9HCsuBA865g865JmA9cHWnPlcDP2n7+6+Ay81MUwGJiPjEy1CYAhzp8Lq0ra3bPs65FuA0kONhTSIi0gtzzptVv8zsOmCNc+72ttc3A+c75+7q0Gd3W5/SttfvtPWp6LSvO4A72l7OBfZ5UrT3coGKPntJT3T8hk7HcGji+fid5Zwb31cnLyfEOwpM6/B6altbd31KzSwByAIqO+/IOfco8KhHdUaNmW13zi31u454peM3dDqGQzMajp+Xp4+2AbPNbIaZJQFrgQ2d+mwAPtP29+uA551XQxcREemTZyMF51yLmd0F/AEIAj90zu0xs3XAdufcBuAHwE/N7ABQRTg4RETEJ56up+Cc2whs7NR2f4e/NwDXe1lDjIn7U2A+0/EbOh3DoRnxx8+zC80iIhJ/NM2FiIi0UyhESV9TfkjPzOyHZlbWdguzDJCZTTOzF8ys2Mz2mNlf+11TPDGzFDPbamY7247f3/ldk5d0+igK2qb82A9cQfghvm3Ajc65Yl8LixNmdjFQAzzmnFvgdz3xxswmAZOcc2+YWSawA/iEvv76p22WhXTnXI2ZJQKvAH/tnNvic2me0EghOvoz5Yf0wDn3EuG702QQnHPHnXNvtP29Giih6+wC0gMXVtP2MrHtz4j9bVqhEB39mfJDxHNtMxGfC7zubyXxxcyCZlYElAHPOudG7PFTKIiMEmaWATwJfNE5d8bveuKJc67VObeY8MwMy81sxJ7GVChER3+m/BDxTNu58CeBnznnfu13PfHKOXcKeAFY43ctXlEoREd/pvwQ8UTbhdIfACXOue/6XU+8MbPxZja27e+phG8Y2etvVd5RKERB27TgH0z5UQI84Zzb429V8cPMfgG8Bsw1s1Izu83vmuLMSuBm4DIzK2r78zG/i4ojk4AXzOwtwr/gPeuc+63PNXlGt6SKiEg7jRRERKSdQkFERNopFEREpJ1CQURE2ikURESknUJBRETaKRRERKSdQkFkiMxsmZm91TbvfnrbnPsjdm4cGdn08JrIMDCzvwdSgFSg1Dn3jz6XJDIoCgWRYdA2p9U2oAG40DnX6nNJIoOi00ciwyMHyAAyCY8YROKSRgoiw8DMNhBeUW8G4aUv7/K5JJFBSfC7AJF4Z2a3AM3OuZ+3rcf9qpld5px73u/aRAZKIwUREWmnawoiItJOoSAiIu0UCiIi0k6hICIi7RQKIiLSTqEgIiLtFAoiItJOoSAiIu3+P505ZfntSOkXAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8nWWd///X52TfWpqkTfeF0rTpvlOp0ALl+62gIAoIsuiAUx3kO4ojX5dBhx+OqKPODP5U/OGIuxTEhTp0UKSEQukO6ZakpcUuaUvbnLZp1mY51++PE0JOluZkuXOfk7yfj0cfj5zrXOecT++0eee+r/u6LnPOISIiAhDwuwAREYkdCgUREWmhUBARkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgWRKJjZR81sm5lVmdlxM/sfM3uvmT1kZg1mVtn8Z5+Zfd/MRrV67XIzCzW/9p0/f/Lz7yPSGYWCSBfM7HPAfwKPAHnAeOCHwA3NXZ5yzmUB2cCNwEhge+tgAI455zJb/flA//0NRKKnUBC5ADMbCjwMfNo593vnXLVzrsE59yfn3AOt+za37wE+ApwC/smHkkV6RaEgcmHvAVKBP0T7AudcE/AscLlXRYl4RaEgcmE5QLlzrrGbrztG+HLSO0ab2dlWf27puxJF+k6i3wWIxLggkGtmid0MhjHA6VaPjznnxvZtaSJ9T2cKIhe2ETgPfDDaF5hZAPgA8IpXRYl4RWcKIhfgnKsws68CPzCzRuAvQAOwArgSqHmnr5klAlOAhwjfgfTv/V6wSC/pTEGkC8657wKfAx4kfFfREeA+4I/NXT5iZlVABbCG8CWnBc65Yz6UK9Irpk12RETkHTpTEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRZxN08hNzfXTZw40e8yeqS6upqMjAy/y4hbOn69p2PYO/F8/LZv317unBveVb+4C4WJEyeybds2v8vokcLCQpYvX+53GXFLx6/3dAx7J56Pn5kdiqafLh+JiEgLhYKIiLRQKIiISIu4G1PoSENDA2VlZdTV1fldygUNHTqUkpISv8vokdTUVMaOHUtSUpLfpYiIhwZEKJSVlZGVlcXEiRMxM7/L6VRlZSVZWVl+l9FtzjmCwSBlZWVMmjTJ73JExEMD4vJRXV0dOTk5MR0I8czMyMnJifkzMZG+5hxsPgc374GM9XAVy8hYD7fsgS3nws8PNAPiTAGIKhCcgy2V8J0jsDYItSFIC8B1OfD5cbAoC5QrHVPgymDTEIK7SmFNOdSFIASAUROC350K/wz5QC78YhokDYhfr8M8+6uY2RNmdtLMdnfyvJnZ98xsv5ntNLP5XtUC4W/wR0vgqiL4/SmoCYGDlm/wVUXh5xtCPXv/zMzMPq3XTxMnTqS8vNzvMkR849y7gVDTEgjvCgHVIXi2PNxvIJ0xeJlvPwNWXuD59xHepWoKsAp4zKtCBtM3uKmpye8SROLelkr4U/PPiwupDYX7ba3sn7r6g2eh4JxbT+TG5W3dAPzChW0CLjKzUV7U0p/fYOccDzzwADNnzmTWrFk89dRTAIRCIe6//36mTZvGNddcw7XXXsszzzzT7vXvzJi86aabmDZtGrfffjvvbIT04osvMm/ePGbNmsXdd9/N+fPngfBv9l/4wheYP38+v/3tb1m+fDn3338/CxcupKCggK1bt/KhD32IKVOm8OCDD7Z81gc/+EEWLFjAjBkzePzxx3v+lxYZYL57JPzzIBq1oXD/gcLPMYUxhLc1fEdZc9vxnr6hFfayIsJnDJe+3vFzbnnXr//9739PUVERO3bsoLy8nEWLFnHFFVewYcMGDh8+THFxMSdPnqSgoIC77767w/d444032LNnD6NHj2bp0qVs2LCBhQsX8vGPf5wXX3yR/Px87rrrLh577DE++9nPApCTk8Prr4cL/9GPfkRycjLbtm3j0Ucf5YYbbmD79u1kZ2czefJk7r//fnJycnjiiSfIzs6mtraWRYsW8eEPf5icnJyeHDaRAeW5YPsrCp0JNfcfKOJioNnMVhG+xEReXh6FhYURzw8dOpTKykrA29s9w59x4efXrVvHjTfeSE1NDenp6Vx22WWsX7+el19+mRtuuKFlQa3LL7+c2tradu9ZU1PDggULGDp0KNXV1cyYMYOSkhICgQDjx49n1KhRVFZWcvPNN/PjH/+Ye+65B+cc1113Xct7NTU1sWLFCiorK5k8eTLTpk0jMzOT+vp6JkyYQGlpKbNnz+bb3/42//3f/w3AkSNHKCoqYvHixTjnqKqqIiUlJaK2urq6dse+P1VVVfn6+QNBvB/DfYfr++VzasZd0627TmqaHI//4gUPKwrLH5/s+Wf4GQpHgXGtHo9tbmvHOfc48DjAwoULXdsFqUpKSvrl/v+uPiMrK4vk5GRSU1Nb+iYlJZGWlkZycjKBQKClPTExkbS0NIqLi/nkJz8JwMMPP8yQIUNIT09v6ZeamkpSUhIZGRkkJCS0tKenp5OYmEhWVhZmRl5eXstzCQkJDBs2jKysLDIzMyPeLykpiZSUFLZv384rr7zC5s2bSU9PZ/ny5S3vb2ZkZma2+/umpqYyb968Pjqa3RfPi5HFing/hg/fe9jzz6gamhT5kykK1uRYvWmaNwW1su6u8Z5/hp83Uq0B7mq+C2kJUOGc6/Glo1hx+eWX89RTT9HU1MSpU6dYv349ixcvZunSpTz77LOEQiFOnDjR8tvapZdeSlFREUVFRVx//fWdvu/UqVM5ePAg+/fvB+CXv/wly5Yt63GdFRUVDBs2jPT0dEpLS9m0aVOP30tkIHBA2ZRMtq8Y2b1700OOnGO1ntXV3zw7UzCzJ4HlQK6ZlQH/AiQBOOd+BKwFrgX2AzXA3/X2Mzu75n/LnvBtp9FcIwwANw2Hp2b0rIYbb7yRjRs3MmfOHMyMf/u3f2PkyJF8+MMf5vnnn2f69OmMGzeO+fPnM3To0KjfNzU1lZ/+9KfcfPPNNDY2smjRIj71qU/1rEhg5cqV/OhHP6KgoICpU6eyZMmSHr+XSLyrTwlQsiiH06PTuv3aQMgxft/Auf3IXJzdf7lw4ULXdj+FkpISCgoKOn3N5nNwdVF4ELkr6QF4aS4sHtLbSts7fvw4o0aNIhgMsnjxYjZs2MDIkSP7/oM80tVx9lq8X/qIBfF+DK/y4PJRcGQqJYtzaEhNaP9kyEGg87OGQGOI3KO1TN8cpD+md677Yc8vH5nZdufcwq76xcVAc28tzgrPPHy2/MK3maUF4Prc8MxmL9xyyy1UVlZSX1/PV77ylbgKBJGBpikAb80eRll++//wCfUh8l8/TXBUGuVj0ggFLDIcQo5AyJF7tJaCLf0TCP1lUISCWXgq+l2l4XkItW0msAWA1OZA+MU075a6WLt2bVwuiCcy0FQNSaJ4SQ7VF7W/m2dI+XmmbyonraaJvMM1VGYnczg/i+DoNFyCYU3hMYTxeysZcqZ/7obqT4MiFCC8NslvCsIT0zpd+8iDS0YiEjsccPSSTA7MvohQYpv7bEKOicUVTCg5R6D5qroBQ07XM3NTeCLCrUtK++UuIz8NmlCA8BnA4iHwdA8HkUUkftWnBChdlEOwg8Hk1KpGpm8uZ2hw4P3m312DKhREZHAK5qVSujiH+rT2g8l5h6rJf/00iQ3xddONVxQKIjJghQJwYPZFlOW3vzac0BAif/tpRh6u8aGy2DWAVgGPPZ/4xCcoLi7uk/eKZjnrRx55JOLxZZdd1iefLRKPqocksv3qkR0GwpDy8yz6y3EFQgcG5JlCX9/L3NN7g//rv/6rT+voyiOPPMKXv/zllsevvfZav36+SCxwwLHJmeyf08lgcsk5JhRXtAwmSySdKfSR6upqrrvuOubMmcPMmTN56qmnWL58Oe9MtMvMzOTBBx9kxowZrFixgi1btrB8+XIuvvhi1qxZA8DPfvYz7rvvvpb3fP/739/h4mUdLXn9xS9+kdraWubOncvtt9/e8pnQ+XLeF1qmWyQe1ScH2L00l30LstsFQkp1I/MKTzJpjwLhQgbkmYIfnn/+eUaPHs1zzz0HhNcWeuyxd/cNqq6u5oorruDRRx/lxhtv5MEHH+SFF16guLiYj33sYxdc96itjpa8/uY3v8n3v/99ioqK2vXvbDlv6HiZ7ve+9729PBoi/e90XnhmckeDySMOV5O//TRJGkzuks4U+sisWbN44YUX+MIXvsArr7zSbl2j5ORkrrnmmpa+y5YtIykpiVmzZnHw4MFufdb3vvc95syZw5IlSzhy5AhvvvnmBfu/+uqr3HbbbSQkJJCXl8eyZcvYunUrAIsXL2bs2LEEAgHmzp3b7VpE/BYKwP45F7Fj2Yh2gZDQEKJgc5Dpm4IKhCjpTKGP5Ofn8/rrr7N27VoefPBBrr766ojnk5KSsOap0oFAoGWvgkAgQGNjIxBeTjsUeneudV1dXbvPKSws5K9//SsbN25sWfK6o37Rar1nQkJCQkstIvGgOiuR4iW5VA3rYGZy8DzTNwVJq9a/6e7QmUIfOXbsGOnp6dxxxx088MADLbugdcfEiRMpKioiFApx5MgRtmzZ0q7PhZa8TkpKoqGhod1rOlvOWyReOeDoxZlsu2Zk+0BwjgnFFcxbd0KB0AM6U+gju3bt4oEHHiAQCJCUlMRjjz3G5z//+W69x9KlS5k0aRLTp0+noKCA+fPnt+tzoSWvV61axezZs5k/fz6//vWvW9o7W867tLS0539hEZ80JAcoXZhN+dj0ds+lVDcyfXOQi8rP+1DZwDAols6OFZWVlXG9IJ7fxznel32OBfF+DOc+dCI8mJze/vfZ/hhM9nvtIy2dLSIC1Ifgwb/BjmUj2i1jnNAQYsobZxh5sHpALWHtF4WCiMS0vTVwezFsr6JdIGQFzzN9c5D0Ko0d9BWFgojEJOfgJ8fhM/uhpu3mWM4xvvQck3ZrIlpfGzCh4JxrueVT+l68jT1JfDvdAH+/F37fwXJfKTWNFGwOMuyUBpO9MCBCITU1lWAwSE5OjoLBA845gsEgqampfpcig8BLZ+DOEjjawdYGw4/UMHX7aZLqo9hwXXpkQITC2LFjKSsr49SpU36XckF1dXVx+4M1NTWVsWPH+l2GDGD1IfiXg/Ctw+F5CK2lB+B7U+BXT5drMNljAyIUkpKSmDRpkt9ldKmwsJB58+b5XYZIzHmzBj5aAtsq2z+3IBN+Mx3y0+HX7Z+WPqYZzSLiG+fgieMwb1v7QDDgC+PgtfnhQJD+MSDOFEQk/pxpgFX74JkOrvqOSYZfFsCVw/q/rsFOoSAi/e7ls3BHCZR1cAPRjbnw46mQk9T/dYlCQUT6UUMIHjoI3+hkMPk/L4FPjGo3R036kUJBRPrF/hq4vQS2dDCYPL95MHmqxg58p4FmEfGUc/Cz4zBve8eB8MA42DhfgRArdKYgIp452wCf3AdPdzCYPCoZfjENVmT3f13SOYWCiHjilebB5MMdDCbfkAP/NRVy22+YJj5TKIhIn2oIwcOH4JFD0HYxirQA/MclsEqDyTFLoSAifeZAbXiZ680djB3MzYTfFEBBRv/XJdFTKIhIrzkHvzoB974JVU3tn//cWHjkYkjRrS0xT6EgIr1S0Qj/sA+ePNn+uZHJ8PNp8L80mBw3FAoi0mMbKsKXiw51MJj8gRz4yVQYrsHkuKJQEJFuawzB1w7Bv3YwmJwagH+fDJ8arcHkeKRQEJFu+VtteGbyxnPtn5udEZ6ZPEODyXFLoSAiUfv1ifD4QWUHg8mfHQvfmASpCf1fl/QdhYKIdKmiET69D37dwWByXhL8bBqszOn/uqTvKRRE5IJeqwhfLjpY1/6567LhiWkwQoPJA4ZCQUQ61BiCrx+Grx2EtleLUgy+Mxk+PUaDyQONQkFE2jlYG163aEMHg8kzM+DJApiZ2f91ifcUCiIS4ckT8Kl9cK6DweR/HAPfuliDyQOZp5POzWylme01s/1m9sUOnh9vZi+Z2RtmttPMrvWyHhHp3LlGuKsEPlrSPhBGJMHaWfDoFAXCQOfZmYKZJQA/AK4ByoCtZrbGOVfcqtuDwNPOucfMbDqwFpjoVU0i0rFNzYPJb3UwmPy+bPjpNMjTYPKg4OWZwmJgv3PuLedcPbAauKFNHwcMaf56KHDMw3pEpI0mB/96EN77RvtASDF49BJ4bpYCYTDxckxhDHCk1eMy4NI2fR4C/mJm/wfIAFZ4WI/IoONceAvM7xyBtUGoZRlp6+G6HLgjD759GF7tYDB5Rjo8OR1maTB50DHnnDdvbHYTsNI594nmx3cClzrn7mvV53PNNXzXzN4D/ASY6ZwLtXmvVcAqgLy8vAWrV6/2pGavVVVVkZmp/2U9pePXPY0Y32Aar5HLeQzX6sKA4XDNX7V1I2V8krdIabeqkf/2Ha739fOzM+o4XZ3q2+fnj+/5KduVV1653Tm3sKt+Xp4pHAXGtXo8trmttXuAlQDOuY1mlgrkAhHzJp1zjwOPAyxcuNAtX77co5K9VVhYSLzWHgvi/fhdde/hfvssBxRfmkP5mDRCie2vErsOwiCprolpW4OcPR7iWx4N7a374fhevf7hfjyGHbl1SSmrN03z7fPX3dW74xcNL8cUtgJTzGySmSUDtwJr2vQ5DFwNYGYFQCrQwRbfItId57KTOw2Ejgwpr2PRX46Te7yDkWYZVDwLBedcI3Af8GeghPBdRnvM7GEzu7652z8Bf29mO4AngY87r65niQwiR/KzCAWinGrsHCk1TaTUxd7lIul/nk5ec86tJXybaeu2r7b6uhhY6mUNIoNRcHQaRBsKZuH+Ing8eU1E/BFK6N6CRN3tLwOXQkFkAAo0de8qbHf7y8ClUBAZgNLPNUTfOeTIOVbrXTESVxQKIgPM8YkZVGWnRN0/EHKM31fpYUUSTxQKIgPIiXHplC7Kjrp/oDFE7tFask77OylMYoeWzhYZIE6NSaPk0pzIXW9CDnMOZxZ5N1LIEQg5co/WUrAl2MFUNhmsFAoiA0BwZCp7luTiWv3gt5Bj+mvlpNY1cTg/i+DoNFyCYU3hMYTxeysZckZnCBJJoSAS586MSGH3Zbm41reVOkfB5iAjmgeQZ24KAv4v0yCxT2MKInHsbE4yu5YOb7ecxbStp8k7UuNTVRLPFAoicercsGR2Xj6CpqTI/8b5208z6mC1T1VJvFMoiMShqqFJ7LhiOE3Jkf+FJxedYcyBKp+qkoFAoSASZ6qzEilaNoLGlMjNkiftOqv5BtJrCgWROFKbEQ6EhtTIQBhfUsGEkg62UBPpJoWCSJyoS0+gaPkI6tMjbxocu+8cF++q0FwD6RMKBZE4cD41QNGyEdRlRAbC6AOVXFJ0VoEgfUahIBLj6lPCgVCblRTRnnewmvztZxQI0qcUCiIxrCHJ2HHFCGqGRm7YPvxINdO2ankK6XsKBZEY1ZgYDoSqYZGBkHO0humbgwS0BYJ4QKEgEoOaEoydlw+nMidyCexhb9cyY2M5AW2nLB5RKIjEmKYA7FqaS8Xw1Ij2oSfrmLWhnAQFgnhIoSASQ0IB2HPZcM6MTItoHxI8z+xXT5GgbTPFYwoFkRgRMii+NJfg6MhAyDxTz+z1J0lsVCCI9xQKIjHAAaWLcjg1Lj2iPb2injnrT5LUoECQ/qFQEPGZA/YuyObExIyI9rTKBua+fJLk8xpEkP6jUBDxkQP2zx3G8cmZEe2p1Y3MLTxJSp0CQfqXQkHEJw54a9ZQyvKzItqTaxqZW3iC1NomfwqTQU2hIOKTQwVDOFwwNKItqa6JuS+fJK1agSD+UCiI+OBwfhZ/m3VRRFvi+XAgZFQ2+lSViEJBpN8dnZzJgbnDItoS6kPMXX+SzIoGn6oSCVMoiPSj4xMz2LcgO6ItoSHEnFdOknVGgSD+UyiI9JMT49IpXRQZCIHGELNePcXQYL1PVYlEUiiI9IM/nIKSS3PA3l3s2pocM18rZ9ip8z5WJhJJoSDiseeD8JFicIFWgRByzNhYTs7bdT5WJtKeQkHEQ+vOwI17IGKVCuco2Bxk+LFa3+oS6YxCQcQjGyrg+l3QdlLytK2nyTtS409RIl1QKIh4YNs5uHYnVLcJhPztpxl1sNqfokSioFAQ6WM7q+B/7YRzbSYlTy46w5gDVf4UJRIlhYJIHyqthmt2wJk2k5K/NhHG76v0pSaR7lAoiPSRA7Vw9Q442WYO2pfGwz9P8Kcmke5SKIj0gSN1cHURHGszB+0zY+DrkyKmJ4jENIWCSC8dPw9X7YBDbeagrRoF/3GJAkHii0JBpBdO1cOKHbC/zZSDO/PgsXwFgsQfhYJID51pCN9lVNxmysHNw+GJqRBQIEgc8jQUzGylme01s/1m9sVO+txiZsVmtsfMfuNlPSJ95VwjrNwJRW3uMP1ADvyqABL165bEqUSv3tjMEoAfANcAZcBWM1vjnCtu1WcK8CVgqXPujJmN8Koekb5S0wTv3wVb2txhes0weHo6JCsQJI55+c93MbDfOfeWc64eWA3c0KbP3wM/cM6dAXDOnfSwHpFeq2uCD+6GVyoi268YCn+cCakJ/tQl0lfMOdd1r568sdlNwErn3CeaH98JXOqcu69Vnz8C+4ClQALwkHPu+Q7eaxWwCiAvL2/B6tWrPanZa1VVVWRmZvpdRtzy+/g1YPwLM9hIbkR7Aef4DjtI58L7Ku877P+eCdkZdZyuTvXt8/PHJ/fq9X4fw3g+fldeeeV259zCrvp5dvkoSonAFGA5MBZYb2aznHNnW3dyzj0OPA6wcOFCt3z58n4us28UFhYSr7XHAj+PX2MIbiuBjaci2+dmwro5QxiWdHmX7/HwvYc9qi56ty4pZfWmab59/rq7xvfq9X4fw3g/ftHw8vLRUWBcq8djm9taKwPWOOcanHN/I3zWMMXDmkS6LeTg7/bCM20CYXo6vDAbhiX5U5eIF7wMha3AFDObZGbJwK3AmjZ9/kj4LAEzywXygbc8rEmkW5yDT+2DX52IbJ+SBn+dA7m9uxoiEnM8CwXnXCNwH/BnoAR42jm3x8weNrPrm7v9GQiaWTHwEvCAcy7oVU0i3eEcfHY//Ph4ZPuEFHhxDoxK8acuES95OqbgnFsLrG3T9tVWXzvgc81/RGKGc/Dlv8H32lzwHJ0M6+bCOP/GGkU8pTuqRTrw9UPwzTZjmiOSwmcIF6f5U5NIf1AoiLTx3SPwlYORbdmJ8MIcmJbhS0ki/UahINLKD4/C5w9Etg1JgL/MgdmaYiKDgEJBpNlPj8On34xsywjA/8yGBVn+1CTS3xQKIsCTJ+CevZFtqQH40yy4bKg/NYn4QaEgg94fTsGdJdB6wZckgz/MgCuH+VaWiC+6FQpmltG8+qnIgPB8ED5STMSqRQmEVztdmeNXVSL+uWAomFnAzD5qZs+Z2UmgFDjevP/Bt83skv4pU6TvvXQGbtwDDa1OEYzwfggfHO5bWSK+6upM4SVgMuE9D0Y658Y550YA7wU2Ad8yszs8rlGkz22ogA/sgrpQZPsTU+HWPH9qEokFXc1oXuGca2jb6Jw7DfwO+J2ZaTkwiSvbzsG1O6G6TSD8cAp8fJQ/NYnEigueKbwTCGa2ou1zZvax1n1E4sHOqvC+yufabH3w3cnwD2P8qUkklkQ70PxVM3useaA5z8z+BHzAy8JE+lppNVyzA840RrZ/bSJ8blyHLxEZdKINhWXAAaAIeBX4jXPuJs+qEuljB2rh6h1wss157ZfGwz9P8KcmkVgUbSgMI7zn8gHgPDDBzMyzqkT60JE6uLoIjrXZyfEzY+Drk0D/kkXeFW0obAKed86tBBYBo4ENnlUl0keOn4erdsCh85Htq0bBf1yiQBBpK9r9FFY45w4DOOdqgX80syu8K0uk907Vw4odsL82sv3OPHgsX4Eg0pGuJq9NBHgnEFpzzq23sLHelCbSc2cawncZFddEtt88PDwXIaBAEOlQV2cK3zazAPAssB04BaQClwBXAlcD/wKUeVmkSHeca4SVO6GoKrL9Aznh2cqJWvFLpFMXDAXn3M1mNh24HbgbGAnUEt5zeS3wdedcnedVikSppgnevwu2VEa2XzMsvJ5RsgJB5IK6HFNwzhWb2b8C9xJe3sIBW4FnFAiDy1X3truK2K9uXVLPwxeooSkAu947nDMjI/fLHHqyjvO/O8W1Ta6TV0Zn3Q/H9+r1IvEg2oHmnwPngO81P/4o8AvgFi+KEumuUAD2XNY+EIYEzzP71VMk9DIQRAaLaENhpnNueqvHL5lZsRcFiXRXyKD40lyCoyMDIfNMPbPXnySxUYEgEq1or7C+bmZL3nlgZpcC27wpSSR6DihdlMOpcekR7ekV9cx5+SRJDQoEke6I9kxhAfCamb1zQXc8sNfMdgHOOTfbk+pELsABexdkc2JiRkR7WmUDc18+SXJ9qOMXikinog2FlZ5WIdJNDtg/dxjHJ2dGtKdWNzK38CQpbTdKEJGoRBUKzrlDXhciEi0HvDVrKGX5WRHtyTWNzC08QWptU8cvFJEuRXumINLvHHAuO5kjU4cQHJXKSwnjCIx2pFY1UnNRckTfpLom5r58krRqBYJIbygUJCaFDEoW51A+Jo1QwFrWpQglWrtASDwfDoSMysaO3kpEukGhIDHH0SoQulqToskxZ/1JMiu0AaBIX9Ckf4k557KTowsEIIDTcqcifUihIDHnSH5W+JJRFEJmHG4z4CwiPadQkJgTHJ0W/drWAWs3k1lEek6hIDEnlNC9y0Hd7S8inVMoSMwJdHPxuu72F5HOKRQk5uQcqwUX5Q/6kAv3F5E+oVCQmJNR0RD1HUWBkGP8vsquO4pIVBQKElMqL0riUMGQqPoGGkPkHq0l63S9x1WJDB6avCYxoz4lwK6lw3Gt5yc4F57N1vpupJAjEHLkHq2lYEsQDTOL9B2FgsSEUAB2X5bL+YzIf5ITis9Rk5VIcHQaLsGwpvAYwvi9lQw5ozMEkb6mUJCY8ObcYVQMT41oG7vvHBfvqWh5fOuSUlZvmtbfpYkMKhpTEN8duziDY5dEzkq+6EQdk3ec9akikcFLoSC+OpuTzL552RFtqVWNzNhkUqYdAAAQJklEQVRYTkDTD0T6naehYGYrzWyvme03sy9eoN+HzcyZ2UIv65HYUpeWwJ7LhuNazUgONIaYteGUttIU8YlnoWBmCcAPgPcB04HbzGx6B/2ygM8Am72qRWJPU4Kxe2ku9WkJEe0FW4JaBlvER16eKSwG9jvn3nLO1QOrgRs66Pc14FtAnYe1SAxxwN4F2VRmp0S0TyiuYESZZieL+MnLUBgDHGn1uKy5rYWZzQfGOeee87AOiTFH8rM4MTEjoi3naA2Tdld08goR6S++3ZJqZgHg34GPR9F3FbAKIC8vj8LCQk9r80pVVVXc1g5w65LezwsoTs2mcPi4iLZRDVV8IbSZtCUX3l85O6OOW5eU9rqGniosfKtXr++L49dbOoa9E+/HLxrmol14rLtvbPYe4CHn3P9ufvwlAOfcN5ofDwUOAFXNLxkJnAaud85t6+x9Fy5c6LZt6/TpmFZYWMjy5cv9LqPHrrr3cK9eX5uRyLYVeTSmvDuOkFgfYsFf3ya9quv9lf2ep7Duh+N79freHr++oGPYO/F8/Mxsu3Ouy5t5vLx8tBWYYmaTzCwZuBVY886TzrkK51yuc26ic24isIkuAkHiV2Oiseu9uRGBgHNM31QeVSCISP/wLBScc43AfcCfgRLgaefcHjN72Myu9+pzJfY4oGRxDtVDkyPaL955lpy3dX+BSCzxdEzBObcWWNum7aud9F3uZS3in4PTh1A+Nj2ibcShasbv1ZLXIrFGM5rFU6dGp3Fw5kURbZln6pm27bRWNxWJQQoF8Uz1kCRKLs2JaEuqa2LWhlMkaAtNkZikUBBPNCQH2LU0l6akd/+JWcgx87VyUmsufOupiPhHoSB9LmSwZ0kOtVlJEe1T3jjDReXnfapKRKKhUJA+99bsizgzMi2ibdSBKkYfqOrkFSISKxQK0qfeHp/OkamReywPPVVH/hsaWBaJBwoF6TPnhiWzd1HkwHJKTfPeCFoJWyQuKBSkT5xPDbB7aS6h1nsjNDlmbignpU6JIBIvFArSa6EA7HlPLufTI+dCTt0WZMgZ/xeBE5HoKRSk196cN4yK4akRbeP2nmPkoRqfKhKRnlIoSK8cnZzJsclZEW3D3q7l4p1nfapIRHpDoSA9djY3hTfnDYtoS61qYMamIAFNWBaJSwoF6ZG69AR2X5aLC7w7sJzQEGLWq+Uk1WtgWSReKRSk25oSjF1Lh9OQmhDRXrAlSOa5Bp+qEpG+oFCQbnFA6cJsqoZF7o0wcU8Fw4/W+lOUiPQZhYJ0y5GpWZyckBHRlltWw8Q9FT5VJCJ9SaEgUQuOTOXA7Mi9ETIq6inYEtQSFiIDhEJBorKvBoqX5IK9++M/8XwTs14tJ7FRtxqJDBQKBenSuUb44G5oTG71zyXkmLEpSFp1o3+FiUifUyjIBYUc3FECJW0mJ0/eeZbsE3X+FCUinlEoyAU9dBD+FIxsyztYzbh9lb7UIyLeUihIp353Cr52KLIt6/R5pm7X3ggiA5VCQTq0swo+VhLZllzbxMwN5SQ0aWBZZKBSKEg7wYbwwHJ1q9UqkgxmvHaK1Nom/woTEc8pFCRCYwhu2QN/azOG/P0pcFFQeyOIDHQKBYnwwFuwrs2q1/8wGlaN9qceEelfCgVp8fO34T/LItsuHwr/eYk/9YhI/1MoCACbz8En90a2jUuBZ2ZAsv6ViAwa+u8uHD8PH9oN51vdVJQWgD/OhBHJnb9ORAYehcIgdz4EH9oDx9qMIf9kKszP6vg1IjJwKRQGMefg0/tg07nI9v87Dm7L86cmEfGXQmEQ+8FR+MnbkW0rs+GRi/2pR0T8p1AYpArPwGf3R7ZNSYPfFECC1rAQGbQUCoPQwVq4aQ+0npuclQDPzoRhSb6VJSIxQKEwyFQ3hZewCLbZBuFXBVCQ0fFrRGTwUCgMIs7B3aWwozqy/WsT4fpcX0oSkRijUBhEvnkYnj4V2fbhXPjnCf7UIyKxR6EwSDwXhH/+W2TbrAz42bSIbZdFZJBTKAwCpdXw0WJovQtCdmJ4YDkz0beyRCQGKRQGuLMNcMNuONfqVqME4OkZMCnNt7JEJEYpFAawJge3l8C+2sj2714CVw/zpyYRiW0KhQHsK3+Dtacj2z6WB/84xp96RCT2KRQGqKdOwjcOR7YtzoIf5WtgWUQ652komNlKM9trZvvN7IsdPP85Mys2s51m9qKZ6ebIPlBUCX9XGtk2Mhn+MBNSE/ypSUTig2ehYGYJwA+A9wHTgdvMbHqbbm8AC51zs4FngH/zqp7B4lR9eMZybejdtmSD38+A0Sn+1SUi8cHLM4XFwH7n3FvOuXpgNXBD6w7OuZecczXNDzcBYz2sZ8BrCMHNe+DQ+cj2x/LhPUP9qUlE4ouXoTAGONLqcVlzW2fuAf7Hw3oGvM8dgJcrItvuGwN3j/KnHhGJP+ac67pXT97Y7CZgpXPuE82P7wQudc7d10HfO4D7gGXOufMdPL8KWAWQl5e3YPXq1Z7U7LWqqioyMzM9ee/nGMl3mBbRNpczfJudJNI33+N9h+u77uSh7Iw6Tlen+vb5+eN7tzep38cPdAx7K56P35VXXrndObewq35ehsJ7gIecc/+7+fGXAJxz32jTbwXw/xIOhJNdve/ChQvdtm3bPKjYe4WFhSxfvrzP33djBSwrgoZW38oJKbBtAeT24R7LV917uOtOHrp1SSmrN03ruqNH1v1wfK9e7/fxAx3D3orn42dmUYWCl5ePtgJTzGySmSUDtwJrWncws3nA/wdcH00gSHtHz4f3WG4dCOkB+OPMvg0EERkcPAsF51wj4UtCfwZKgKedc3vM7GEzu76527eBTOC3ZlZkZms6eTvpQF0T3Lgb3m5zRv3TaTA3y5+aRCS+ebocmnNuLbC2TdtXW329wsvPH8icg0/tg62Vke1fGg+3jPCnJhGJf5rRHKe+dxR+fiKy7bps+Nokf+oRkYFBoRCHXjwD/7Q/sm1qGvx6OiRoCQsR6QWFQpx5qxZu2QOtVsJmSAI8OwuGam8EEeklhUIcqWoM741wuvHdNgOenA5T030rS0QGEIVCnHAOPl4Ku6sj278+Ca7N8acmERl4FApx4uuH4HflkW0fGQ5f7N1cIBGRCAqFOLCmHL5yMLJtTgb8ZJr2RhCRvqVQiHHF1XBHSWRbblJ4xnKG9kYQkT6mUIhhZxrCA8uVrW41SgB+Ox0mpvlWlogMYAqFGNXk4KMlsL82sv3RKbB8mD81icjAp1CIUV9+C54/Hdl2z0i4d7Q/9YjI4DCopjv5v+xuPQ9HUcOJ8ekUL8mNaBtSfp79z5zg6lAnL4pCb5ctFpGBT2cKMaZyWBKlC7Mj2pJrGpn52ikCvQgEEZFoKBRiSH1KgF2XDSeU+O63JdDkmPVaOSl1SgQR8Z5CIUaEArD7slzOZ0Re0Zu67TRDTvu/jaOIDA4KhRjx5txhVAyP3Pt17L5zjDxU3ckrRET6nkIhBhy7OINjl0RulTbsRB2Td5z1qSIRGawUCj47m5vCvnmRA8upVY3M2FhOwHXyIhERjygUfFSXlsDuy3JxrXbGSWgIMWvDKZLqNbAsIv1PoeCTpgRj99JcGlIjFzCatiVIZkWDT1WJyGCnUPCBA/YuyKYyOyWifcKeCkYcre34RSIi/WBQzWjubw44l53MkalDCI5K5aWEcQRGO9IqG6kelhzRN/doDZP2VPhTqIhIM4WCR0IGJYtzKB+TRihgEAiPG4QSjeqLkiL6plc0ULA5iLZGEBG/KRQ84GgVCIkdXKFrtTOONTlmbjhFYqNuNRIR/2lMwQPnspM7D4R2HE3J+jaISGzQTyMPHMnPCl8yioIz43B+VtcdRUT6gULBA8HRaS1jCF0KWLi/iEgMUCh4IJTQvSHj7vYXEfGKQsEDgabuDRp3t7+IiFcUCh7IOVYLoSh/0IdcuL+ISAxQKHhg3L5KAlGGQiDkGL+v0uOKRESio1DwwJDT9eQerSXQeOFF7QKNIXKP1pKlTXREJEYoFDxgQMGW4LvB0PasIeRaAqFgi2Yyi0js0IxmjwQcTN8cpDI7mcP5WQRHp+ESDGsKjyGM31vJkDM6QxCR2KJQ8JARvpQ0c1MQgFuXlLJ60zR/ixIRuQBdPhIRkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRYKBRERaeFpKJjZSjPba2b7zeyLHTyfYmZPNT+/2cwmelmPiIhcmGehYGYJwA+A9wHTgdvMbHqbbvcAZ5xzlwD/AXzLq3pERKRrXp4pLAb2O+fecs7VA6uBG9r0uQH4efPXzwBXm5nWhxMR8YmXoTAGONLqcVlzW4d9nHONQAWQ42FNIiJyAeacN1tBmtlNwErn3CeaH98JXOqcu69Vn93NfcqaHx9o7lPe5r1WAauaH04F9npStPdygfIue0lndPx6T8ewd+L5+E1wzg3vqpOXq6QeBca1ejy2ua2jPmVmlggMBYJt38g59zjwuEd19hsz2+acW+h3HfFKx6/3dAx7ZzAcPy8vH20FppjZJDNLBm4F1rTpswb4WPPXNwHrnFenLiIi0iXPzhScc41mdh/wZyABeMI5t8fMHga2OefWAD8Bfmlm+4HThINDRER84ukmO865tcDaNm1fbfV1HXCzlzXEmLi/BOYzHb/e0zHsnQF//DwbaBYRkfijZS5ERKSFQqGfdLXkh3TOzJ4ws5PNtzBLN5nZODN7ycyKzWyPmX3G75riiZmlmtkWM9vRfPz+H79r8pIuH/WD5iU/9gHXEJ7EtxW4zTlX7GthccLMrgCqgF8452b6XU+8MbNRwCjn3OtmlgVsBz6of3/RaV5lIcM5V2VmScCrwGecc5t8Ls0TOlPoH9Es+SGdcM6tJ3x3mvSAc+64c+715q8rgRLary4gnXBhVc0Pk5r/DNjfphUK/SOaJT9EPNe8EvE8YLO/lcQXM0swsyLgJPCCc27AHj+FgsggYWaZwO+AzzrnzvldTzxxzjU55+YSXplhsZkN2MuYCoX+Ec2SHyKeab4W/jvg18653/tdT7xyzp0FXgJW+l2LVxQK/SOaJT9EPNE8UPoToMQ59+9+1xNvzGy4mV3U/HUa4RtGSv2tyjsKhX7QvCz4O0t+lABPO+f2+FtV/DCzJ4GNwFQzKzOze/yuKc4sBe4ErjKzouY/1/pdVBwZBbxkZjsJ/4L3gnPuv32uyTO6JVVERFroTEFERFooFEREpIVCQUREWigURESkhUJBRERaKBRERKSFQkFERFooFER6ycwWmdnO5nX3M5rX3B+wa+PIwKbJayJ9wMz+FUgF0oAy59w3fC5JpEcUCiJ9oHlNq61AHXCZc67J55JEekSXj0T6Rg6QCWQRPmMQiUs6UxDpA2a2hvCOepMIb315n88lifRIot8FiMQ7M7sLaHDO/aZ5P+7XzOwq59w6v2sT6S6dKYiISAuNKYiISAuFgoiItFAoiIhIC4WCiIi0UCiIiEgLhYKIiLRQKIiISAuFgoiItPj/ARKCaDJ0fB3qAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/machine_learning/qgans_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb similarity index 92% rename from qiskit/finance/machine_learning/qgans_option_pricing.ipynb rename to qiskit/finance/machine_learning/qgan_option_pricing.ipynb index c3b9ea5c1..d21327bbe 100644 --- a/qiskit/finance/machine_learning/qgans_option_pricing.ipynb +++ b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb @@ -16,7 +16,8 @@ "- [2]ETH Zurich\n", "\n", "### Introduction\n", - "We can train a quantum Generative Adversarial Network (qGAN) - see [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb) - to learn and load a model for the spot price of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff - see [European Call Option Pricing](../../aqua/finance/european_call_option_pricing.ipynb)." + "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff - see [European Call Option Pricing](../../aqua/finance/european_call_option_pricing.ipynb).
\n", + "For further details on learning and loading random distributions by training a qGAN please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." ] }, { @@ -57,8 +58,8 @@ "source": [ "### Uncertainty Model\n", "\n", - "The Black-Scholes model assumes that the spot price at maturity $S_T$ for a European call option is log-normally distributed. Thus, we can train a qGAN on samples from a log-normal distribution, as it is shown in [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb), and use the resulting model as uncertainty model underlying the option.\n", - "In the following, we construct the quantum circuit for loading the uncertainty model. The circuit output reads $$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle,$$ whereby the probabilites $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, represent a model of the target distribution." + "The Black-Scholes model assumes that the spot price at maturity $S_T$ for a European call option is log-normally distributed. Thus, we can train a qGAN on samples from a log-normal distribution and use the result as uncertainty model underlying the option. A notebook that explains the implementation of a qGAN to learn and load a random distribution is presented in [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb).
\n", + "In the following, we construct a quantum circuit that loads the uncertainty model. The circuit output reads $$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle,$$ where the probabilites $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, represent a model of the target distribution." ] }, { @@ -127,12 +128,12 @@ "metadata": {}, "source": [ "### Evaluate Expected Payoff\n", - "Now, the trained uncertainty model can be used as part of a quantum circuit to evaluate the expectation value of the option's payoff function." + "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function with Quantum Amplitude Estimation." ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": {}, "outputs": [ { diff --git a/qiskit/finance/machine_learning/qgans.ipynb b/qiskit/finance/machine_learning/qgans.ipynb new file mode 100644 index 000000000..d21327bbe --- /dev/null +++ b/qiskit/finance/machine_learning/qgans.ipynb @@ -0,0 +1,194 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: qGAN Option Pricing*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Christa Zoufal[1,2], Stefan Woerner[1]\n", + "### Affliation\n", + "- [1]IBMQ\n", + "- [2]ETH Zurich\n", + "\n", + "### Introduction\n", + "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff - see [European Call Option Pricing](../../aqua/finance/european_call_option_pricing.ipynb).
\n", + "For further details on learning and loading random distributions by training a qGAN please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", + " from collections import MutableMapping\n" + ] + } + ], + "source": [ + "#!/usr/bin/env python\n", + "# coding: utf-8\n", + "from __future__ import absolute_import, division, print_function\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue\n", + "from qiskit.aqua.components.uncertainty_models import UnivariateVariationalDistribution, NormalDistribution\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "from qiskit.aqua import aqua_globals, QuantumInstance\n", + "\n", + "from qiskit import BasicAer" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "The Black-Scholes model assumes that the spot price at maturity $S_T$ for a European call option is log-normally distributed. Thus, we can train a qGAN on samples from a log-normal distribution and use the result as uncertainty model underlying the option. A notebook that explains the implementation of a qGAN to learn and load a random distribution is presented in [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb).
\n", + "In the following, we construct a quantum circuit that loads the uncertainty model. The circuit output reads $$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle,$$ where the probabilites $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, represent a model of the target distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Set upper and lower data values\n", + "bounds = np.array([0.,7.])\n", + "# Set number of qubits used in the uncertainty model\n", + "num_qubits = [3]\n", + "\n", + "# Set entangler map\n", + "entangler_map = []\n", + "for i in range(sum(num_qubits)):\n", + " entangler_map.append([i, int(np.mod(i+1, sum(num_qubits)))])\n", + "\n", + "# Set variational form\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", + "# Load the trained circuit parameters\n", + "g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]\n", + "# Set an initial state for the generator circuit\n", + "init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1])\n", + "# Set generator circuit\n", + "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params,\n", + " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = g_circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW5x/HvTxAJBEJkCauE1QhGwQQxgiYRZb3XIALxgl6DaARF1It4EVHC4r0ssqiAiAoREYdFLsome4KRPYJEQpAgIZIgCGQhqwl57x+nRmsq3dPdMz1TM5nf53n6melTp6re6unpt6vOqXMUEZiZmXW3N5UdgJmZ9U1OQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKUpPQJJ2kXS3pCWS5ko6XdJaNdbZVdJvs/rLJc2W9BNJW1SoO0bSNEnLJE2XNLbrjsbMzOq1dpk7lzQQuAuYDowBdgDOIyXGU9pZdQDwHHAlMBfYDjgVGCZpj4hYmW1/b+BXwCXA8cCBwC8lzYuIO2rFt8kmm8TgwYM7dnAFixcvZv3112/KtrpSb4kTek+sjrO5ekuc0HtibWacU6dOfSUiNq2rckSU9gC+AcwDNsyVfR1Yki+rc1sfAQJ4T67sduCeQr1bgSn1bHPYsGHRLPfee2/TttWVekucEb0nVsfZXL0lzojeE2sz4wQejTo/t8u+BHcAcHtELMyVtQD9gJENbuvV7Oc6AJLeAowGri3UawFGSBrQeLhmZtYsZSegIcCMfEFEzCadAQ2ptbKkN0laR9LbgbOAR4CHs8U7AG8ubh94inTcO3cudDMz6wxFiaNhS1oBnBgRFxbKXwCujIiTa6z/W2C/7OlU4MCIeDlbthcwBdg9Ih7PrbMj8AywX1RoB5I0HhgPMGjQoGEtLS0dPbw2Fi1aRP/+/Zuyra7UW+KE3hOr42yu3hIn9J5Ymxnn6NGjp0bE8Loq13utrisewArgKxXKXwD+p471dwL2BD5JOtOZCqybLduL1Ca0W2GdHbPyfWtt321APVtvidVxNldviTOi98RaVhtQqb3gSB0QKrXFDMyWtSsinsl+fUjS70g9444ALs+tX9z+wNy+zcysJGW3Ac2g0NYjaRtgPVZvu2lXRDwPvAZsnxU9SzrDKrYlDQFWAX/uQLxmZtYkZSeg24D9JG2QKxsLLAUmN7KhrCPCxqSzICJiOXAvcFih6ljggYhY0NGgzcys88q+BHcp6QbRGySdTTp7mQCcH7mu2ZJmApMj4ujs+XeBlcBDwHzgHaT7h54ldbNudQYwSdKFwI2kG1EPBPbv2sMyM7NaSk1AETFP0j7ARcBNpGRyASkJ5a0N5IfneRT4Eqm32rrAbNKIB/8bEYtz258i6VDgTOBYsjaiqGMUhL5i8Em3tHl+wtCVjCuUzTrroO4Mycz6iLLPgIiI6cCHatQZXHjeQtsznfbWvZF09mNmZj1I2W1AZmbWRzkBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlaL0BCRpF0l3S1oiaa6k0yWtVWOdPSRdIWlmtt7Tkk6VtG6h3gRJUeGxf9celZmZ1bJ2mTuXNBC4C5gOjAF2AM4jJcZT2ll1bFb3bOAZ4F3AGdnPjxfqLgCKCeepzsZuZmadU2oCAo4B+gGHRMRC4E5JGwITJJ2TlVVyVkS8kns+SdIy4EeSto2I53PLVkbEg10TvpmZdVTZl+AOAG4vJJoWUlIaWW2lQvJp9Vj2c8vmhWdmZl2l7AQ0BJiRL4iI2cCSbFkjRgCrgGcL5RtJekXSCkmPSTqkw9GamVnTKCLK27m0AjgxIi4slL8AXBkRJ9e5nc2BJ4BbI2JcrvyTwGaks6MNgM8DBwIfj4gbqmxrPDAeYNCgQcNaWloaPayKFi1aRP/+/ZuyrWaaNmdBm+eD+sFLS9vWGbrVgG6MqH499TUtcpzN1VvihN4TazPjHD169NSIGF5P3V6fgCStQ+rIsDUwLCLmtVNXwP1Av4jYrda2hw8fHo8++mitanWZNGkSo0aNasq2mmnwSbe0eX7C0JWcN61t0+Cssw7qzpDq1lNf0yLH2Vy9JU7oPbE2M05JdSegsi/BzQMqfb0emC1rV5ZQrgR2BQ5sL/kARMq2NwDvqtXV28zMulbZveBmUGjrkbQNsB6FtqEqLiR13/5IRNRTHyCyh5mZlajsM6DbgP0kbZArGwssBSa3t6KkbwDHAZ+MiCn17Cw7Y/o48MeIeKNjIZuZWTOUfQZ0KXA8cIOks4HtgQnA+fmu2ZJmApMj4ujs+RHA/wATgTmS3pfb5rMR8fes3mTgV6SzqfWBzwF7Agd37WGZmVktpSagiJgnaR/gIuAmYD5wASkJ5a0N5Nts9s1+jsseeUeREhPATOArwBakLtp/AA6KiNuaEb+ZmXVc2WdARMR04EM16gwuPB/H6omn0npHdyI0MzPrQmW3AZmZWR/lBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMStHwSAiShgLvBTYH1gVeA/4M3F9rOgQzM7NWdSUgSdsDxwJHAoNI46rNB5YDG5GmT1iVDf75E+CaiFjVJRGbmdkaoeYlOEk/AZ4EdgNOB3YH1o2ITSNi64joT5r2+t+BacA5wFOS9u66sM3MrLer5wxoKTAkIp6vViEiXiHN7XObpP8CDgO2ak6IZma2JqqZgCLiS41sMLv0dk2HIzIzsz6hU9MxSHonMBIQacK4aU2Jyqxg8Em3rFZ2wtCVjMuVzzrroO4Mycw6qcPdsCUdC9wHjAIOBB6W9IUmxWVmZmu4mmdAktaLiCUVFv03MCIins7qHU3qpHBJc0M0M7M1UT1nQH+WdGSFcpG6Y7dyt2szM6tbPQnoCOAESQ9Kem+u/BzgQUnXSrqZdOZzVlcEaWZma56aCSgi7gOGkW4w/bWkKyVtEREXAx8CpgB3kC7H/aBLozUzszVGXb3gIiKAn0i6FvgW8CdJ5wPfjYg/dmWAZma2ZmqoF1xELIyIE4E9SePBzZB0aJdEZmZma7R6huJZT9KZkh6S9Jiky4BlETEGGA+cKmmypHd3ebRmZrbGqOcM6Kekcd7OI11+2xy4U5Ii4k7g3cB1WdlljQYgaRdJd0taImmupNMlrVVjnT0kXSFpZrbe05JOlbRuhbp7ZclzmaTnJB3faIxmZtZ89bQBHQAcliUbJP0eeBXYAZiZDb1zkaSrgVMb2bmkgcBdwHRgTLbN80iJ8ZR2Vh2b1T0beAZ4F3BG9vPjue3vCNwO3Ax8g3TZ8HxJSyLiJ43EamZmzVVPApoBfErSVGAZ8HlgMfBCvlJEvAZ8ucH9HwP0Aw6JiIWks6gNgQmSzsnKKjkrGwC11SRJy4AfSdo2N3DqicBc4JMRsRK4R9LbSJcNf5p1rjAzsxLUcwnu08BOwCvA68DnSGdEy5qw/wOA2wuJpoWUlEZWW6mQfFo9lv3csrD9G7Lkk9/+1sA7OxSxmZk1RT33AT0dESOADYBNImKHiPhtk/Y/hHSGld/fbGBJtqwRI0ijMTwLIGl9YJvi9oGncvs2M7OSqMyrUJJWACdGxIWF8heAKyPi5Dq3sznwBHBrRIzLyrYiXSb8WETcmKu7NrAC+HxErNZpQtJ4Uu8+Bg0aNKylpaUjh7aaRYsW0b9//6Zsq5mmzVnQ5vmgfvDS0rZ1hm41oBsjqqwYJ6wea0+Is5Ke+rcvcpzN11tibWaco0ePnhoRw+upW89gpJ8Cro6IN+oNIGv83yIiflfvOh0laR3gWmAR8NXObi9LSpcBDB8+PEaNGtXZTQIwadIkmrWtZhpXmObghKErOW9a27fFrCNHdWNElRXjhNVj7QlxVtJT//ZFjrP5ekusZcVZTxvQfwHPSjqjvXt9JG0s6UhJNwGPA1vUse15QKWvrQOzZe2SJOBKYFfgwIjIrzM/+1nc/sDcvs3MrCT1zIi6u6SxwJeAb0paRGpHeQVYDmwEbAe8jfShfhVwTETMqWP/Myi0xUjaBliP1dtuKrmQ1H37IxFRbEtaLOmvxe3nntezfTMz6yJ1DcUTEddExN6k3nAnks5wVgLrAy8BPwP2J112+0qdyQfgNmA/SRvkysYCS4HJ7a0o6RvAcaQu1lPa2f7HCje2jgX+CvypzhjNzKwLNDQld0Q8S9bLrEkuBY4HbpB0NrA9MAE4P981W9JM0pTfR2fPjwD+B5gIzJH0vtw2n42Iv2e/nwscCfxc0o+BPUj3MR3re4DMzMrVUAJqtoiYJ2kf4CLgJlK7zQWkJJS3NpA/i9k3+zkue+QdRUpMRMRMSfsD55POhv4GnOBREMzMyldqAgKIiOmkeYXaqzO48HwcqyeeautOIQ3BY2ZmPUhD0zGYmZk1S+lnQGZrmsEV7q3K38c066yDujsksx6poTMgSf8uyWdNZmbWaY0mkxuBFySdLekdXRGQmZn1DY0moB2AHwOHA3+S9ICkz2VTKJiZmdWtoQQUEbMi4tSI2A74CDCT1G36RUk/lzS6K4I0M7M1T4fbcyLinoj4FLAzMJV0w+ddkv4i6avZqNNmZmYVdTgBSRopaSLwNGlyt4tJN4heD5xGGiTUzMysoobOUiRtS5oh9dPAYGASae6cGyJieVbtbkkPkAYlNTMzq6jRy2R/AeaShrq5PCKeq1LvSeDhTsRlZmZruEYT0L8Bt0fEqvYqRcSfAXdIMDOzqhptA9oD2LzSAklbSPp250MyM7O+oNEEdCqwdZVlW2bLzczMamo0AQmoNo/O1niaazMzq1PNNiBJrb3eICWfH0paWKi2LjAUuKO54ZmZ2Zqqnk4IS4BXs98FLABeK9T5B2nCt0uaF5qZma3JaiagiLgOuA5A0hXA6e10vzYzM6tLQ92wI+KorgrEzMz6Fs/tY2ZmpainE8LDwLiImC7pEar3ggMgIt7brODMzGzNVc8luCeBpbnf201AZmZm9ainE8JRud/HdWk0ZmbWZ5TeBiRpF0l3S1oiaa6k0yWtVWOddSSdK+l3kpZKqnhWJmmipKjwGNI1R2NmZvWqpw2oZrtPXiNtQJIGAncB04ExpCm/zyMlxlPaWXU94LOkEbfvBz7UTt0ZQLH33qx6YzQzs65RbxtQV7X7HAP0Aw6JiIXAnZI2BCZIOicrW01EzJf01ogIScfRfgJaHBEPNj90MzPrjHragMZ14f4PIE3vkE80LcDZwEjgpnbicmcIM7NerOw2oCGkS2T/FBGzScP/NKudZhdJCyUtlzRF0sgmbdfMzDqh7PuABgLzK5TPy5Z11mPAQ6Q2pk2BE0iX+faOCM/YamZWItW6kpUf/03SRGonoLqH65G0AjgxIi4slL8AXBkRJ9exjeOAH0SE6qi7HqlN648RcXCVOuOB8QCDBg0a1tLSUvtA6rBo0SL69+/flG0107Q5C9o8H9QPXlrats7QrQZ0Y0SVFeOE1WPtCXFC7de0p8RZ1FPfo0W9JU7oPbE2M87Ro0dPjYjh9dQt+z6geUCl/8aBdMHcQhGxRNKtwL+3U+cy4DKA4cOHx6hRo5qy70mTJtGsbTXTuJNuafP8hKErOW9a27fFrCNHdWNElRXjhNVj7QlxQu3XtKfEWdRT36NFvSVO6D2xlhVnQ4ORQroHBxgHvBfYAniRdJnrZxHxjwY3N4NCW4+kbUjdrGdUXKPzAo/mYGZWuoY6IUh6B/AMcDHwTuCN7OfFwExJuzS4/9uA/SRtkCsbSxr6Z3KD26pJUj/gIGBqs7dtZmaNafQM6DLShHQfyHqrASDpbcDNwKXABxvY3qXA8cANks4GtgcmAOfnu2ZLmglMjoijc2UHAOsDu2XPD80WPRIRz0sakMV0FTAT2AT4KrAlcFgDMZqZWRdoNAENB/4jn3wgdZ2WdCpwdSMbi4h5kvYBLiLd8zMfuICUhIpxFofn+SGwbe75ddnPo4CJwHLg76QRFTYDlgEPACMj4tFG4jQzs+ZrNAHNAtatsmxdYHaVZVVFxHTaH8mAiBhcT1lh+TLgkEbjMTOz7tHojagnAWdK2jNfKOl9wBnAfzcrMDMzW7N1ZDDSDYH7Jb0MvEy6vLUZ8CpwMnBjF8RpZmZrmI4MRvpkF8ViZmZ9SNmDkZqZWR9V9mCkZmbWRzkBmZlZKToyFM9Y4HPAzlTokh0RmzUhLjMzW8M1OhTPEcDPSCMLbA38hjTawJuAhaQbSs3MzGpq9BLciaT7fb6YPb8kIj4DbAe8QppIzszMrKZGE9BOwO8j4g3SQKQbAkTE66RptI9rbnhmZramajQBLQTekv0+B3hHbpmAjZsRlJmZrfka7YTwCPAu4HZS+8+3Ja0E/gF8G3iwueGZmdmaqtEE9L/8awTqb2e//5B0JvUI8PnmhWZmZmuyhhJQRDxIdpYTEfOBMZLeArwlP3+PmZlZLU2bkltSR6bkNjOzPqrsKbnNzKyPKntKbjMz66Ma7YY9HPh2pSm5gVOBPZoVmJmZrdkaTUCzaPKU3GZm1jd5Sm4zMyuFp+Q2M7NSeEpuMzMrhafkNjOzUnRoRlRJW0r6uKTPSTpE0pYdDUDSLpLulrRE0lxJp0taq8Y660g6V9LvJC2VFO3UHSNpmqRlkqZnE+qZmVnJGr0RdS1JlwDPA9cBPwKuB56XdLGkRrc3ELiLdIlvDHA6cAJwWo1V1wM+S5p/6P52tr838CvgXuAA4Bbgl5L2bSROMzNrvkZvRD0N+Ayps8E1wEvAIGAsKXm8ShqktF7HAP2AQ7Kx5O6UtCEwQdI51caXi4j5kt4aESHpOOBDVbb/LeC+iDg+e36vpF2zGO9oIE4zM2uyRi/B/SdwSkScGxGzI2J59vNc0of9uAa3dwBweyHRtJCS0sj2VoyIqpfdALJBUkcD1xYWtQAjJA1oMFYzM2uiRhPQZsATVZY9kS1vxBBgRr4gG1VhSbasM3YA3lzcPvAU6bh37uT2zcysE1TjRKJtZekJ4NGI+EyFZZcDwyLi3Q1sbwVwYkRcWCh/AbgyIk6uYxvHAT+ICBXK9wKmALtHxOO58h1JA6ruFxGrXYaTNB4YDzBo0KBhLS0t9R5OuxYtWkT//v2bsq1mmjZnQZvng/rBS0vb1hm6Vfkni8U4YfVYe0KcUPs17SlxFvXU92hRb4kTek+szYxz9OjRUyNieD11G20DOhNoyQYfvZ7UBrQZcBjpctcnGtxejxMRl5EGXWX48OExatSopmx30qRJNGtbzTTupFvaPD9h6ErOm9b2bTHryFHdGFFlxThh9Vh7QpxQ+zXtKXEW9dT3aFFviRN6T6xlxdnohHTXSppP6ozwPdIlrhXAVGD/iLizwf3PAyp9HRyYLeuM1vWL2x9YWG5mZiWoOwFJejNpEro/RcSIrMv1JsArEbGqg/ufQaGtR9I2pG7WxbabRj1LSo5DgMm58iHAKuDPndy+mZl1QiOdEN4A7iFLGBGxKiJe7kTyAbgN2E/SBrmyscBS2iaNhkXEctL9P4cVFo0FHoiI1RsVzMys29R9BhQRqyQ9A2zexP1fChwP3CDpbGB7YAJwfr5rtqSZwOSIODpXdgCwPrBb9vzQbNEjEfF89vsZwCRJF5IGST0we+zfxGMwM7MOaLQTwjeBsyVNi4hpnd15RMyTtA9wEXATMB+4gJSEinEWh+f5IbBt7vl12c+jgInZ9qdkielM4FjgOeCISr3fzMysezWagE4BNgYelzSH1AuuTT/uiHhvIxuMiOlUH8mgtc7gesqqrHsjniLCzKzHaTQBPQn8qSsCMTOrZHCFbu3Fru6zzjqoO0OyJmm0G/a4LorDzMz6mLoSkKR+pMb7wcCLwN0R8VIXxmVmZmu4eqbk3p40ZcLgXPFCSYe7Md/MzDqqnvuAziHduPkB0g2iuwKPkeYCMjMz65B6EtAI0hQMv4+IZRHxFPB54G2Stuja8MzMbE1VTwLaAvhLoexZQDT3plQzM+tD6h2Kp/45G8zMzOpQbzfs2yWtrFB+d7E8IhqdlM7MzPqgehLQaV0ehZmZ9Tk1E1BEOAGZmVnTNToUj9Wp1vAhHjrEzPq6RuYDMjMzaxonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFL4R1cysCYo3n4NvQK/FZ0BmZlYKJyAzMytF6QlI0i6S7pa0RNJcSadLWquO9QZIukLSPEkLJP1C0saFOhMlRYXHkK47IjMzq0epbUCSBgJ3AdOBMcAOwHmkxHhKjdWvBXYGPgusAs4GbgQ+UKg3AziqUDarM3GbmVnnld0J4RigH3BIRCwE7pS0ITBB0jlZ2WokjQD2BUZGxH1Z2RzgIUkfjoi7ctUXR8SDXXsYZmbWqLIvwR0A3F5INC2kpDSyxnovtSYfgIh4GHguW2ZmZj1c2QloCOkS2T9FxGxgSbas7vUyT1VYbxdJCyUtlzRFUnuJzczMuokiorydSyuAEyPiwkL5C8CVEXFylfXuJF1aO7hQfhWwfUS8P3v+ZeAfpDamTYETgGHA3tkZU6VtjwfGAwwaNGhYS0tLh45t2pwFbZ4P6gcvLf3X86FbDejQdputVpzQM2Itxgm99zXtKXEWLVq0iP79+5cdxmr8Hu16zfzbjx49empEDK+nbtltQF0qIr6Xfy7pVuBJ4GTg4CrrXAZcBjB8+PAYNWpUh/Y9rsKMqOdN+9fLPevIjm232WrFCT0j1mKc0Htf054SZ9GkSZPo6Pu9K/k92vXK+tuXfQluHlDpK8HAbFlT14uIJcCtwHsaiNHMzLpA2QloBoU2G0nbAOtRuY2n6nqZam1DeZE9zMysRGUnoNuA/SRtkCsbCywFJtdYb3NJe7cWSBoObJ8tq0hSP+AgYGpngjYzs84ruw3oUuB44AZJZ5MSyATg/HzXbEkzgckRcTRARDwg6Q7gSklf4183ok5pvQdI0gDgZuAqYCawCfBVYEvgsO45PDOznqc4cGpZg6aWmoAiYp6kfYCLgJuA+cAFpCSUtzZQHJ5nbFb3ctKZ3M2kZNZqOfB30ogKmwHLgAdIN68+2tQDMTOzhpV9BkRETAc+VKPO4Apl80lD7BSH2Wldvgw4pAkhmplZFyg9AZlZOXrKZRjru8ruhGBmZn2UE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSlJ6AJO0i6W5JSyTNlXS6pLXqWG+ApCskzZO0QNIvJG1cod4YSdMkLZM0XdLYrjkSMzNrRKkJSNJA4C4ggDHA6cAJwGl1rH4tMAr4LDAO2AO4sbD9vYFfAfcCBwC3AL+UtG9TDsDMzDps7ZL3fwzQDzgkIhYCd0raEJgg6ZysbDWSRgD7AiMj4r6sbA7wkKQPR8RdWdVvAfdFxPHZ83sl7Qp8G7ij6w7LzMxqKfsS3AHA7YVE00JKSiNrrPdSa/IBiIiHgeeyZUh6CzCadKaU1wKMkDSg8+GbmVlHlZ2AhgAz8gURMRtYki2re73MU7n1dgDeXKHeU6Tj3rkD8ZqZWZMoIsrbubQCODEiLiyUvwBcGREnV1nvTmBxRBxcKL8K2D4i3i9pL2AKsHtEPJ6rsyPwDLBfRKx2GU7SeGB89vTtwNMdPsC2NgFeadK2ulJviRN6T6yOs7l6S5zQe2JtZpzbRsSm9VQsuw2ox4mIy4DLmr1dSY9GxPBmb7fZekuc0HtidZzN1VvihN4Ta1lxln0Jbh5QqS1mYLasM+u1/izWG1hYbmZmJSg7Ac2g0NYjaRtgPSq38VRdL5NvG3oWWFGh3hBgFfDnDsRrZmZNUnYCug3YT9IGubKxwFJgco31Ns/u8wFA0nBg+2wZEbGcdP/PYYV1xwIPRMSCzoffkKZf1usivSVO6D2xOs7m6i1xQu+JtZQ4y+6EMBCYDvwJOJuUQM4HLoyIU3L1ZgKTI+LoXNntwE7A10hnNGcDL0fEB3J19gYmAReRblI9MKu/f6UOCGZm1n1KPQOKiHnAPsBawE2kERAuAE4tVF07q5M3lnSWdDlwJTAV+Fhh+1OAQ4EPA7cDHwWOcPIxMytfqWdAZmbWd5XdBmRmZn2UE5CZmZXCCcjMkLSupMsk7VR2LNZ3uA2oC0jqTxpMdQhtb3ydQerNt6is2BohaV1gs2x8vh5L0puBLXpinJK2A7YDnouI50qOZb12Fm8E/JU0mO8UgIhY0h1xNUrSYCAi4vmSQ6lK0mhgF1IP3T9GxP0lh4SkPYFHImJV2bH8U0T40aQHINKcRotIb7xFpH/qvxbKTiNL/j35AXwceKPkGL5Iuql4KfBH4FMV6uxZZpykQW+/D7yW/X3PycovBt7I/u5vAL8A1ioxzjdqPFbln5f8dx8PbFIo+zLw91yMLwFfKDnO84Azc8+3AB7IXstlwPIs1t8CA0qOdVX2ml0E7FVmLK0PjwXXXBOA/yIlmJaI+Gt+oaStgU+QuplHVt+qkPQJ4AfAL4HHgPcDEyWNAT4ZEcvKjC/n66SJEc8nJaEvSdoUOJg0WeIfgL2B7wKfBy4pJ0yWAguzOF4tLFuf9MF0Du2PQtJdfgg8TjZAZjZI8AWk6VWuJ/3/HAb8QNL8iLi6pDgPB/479/wiUhIaSXYmmf1+Jen9cTTlehz4D+DYbNDna0ifVX8oJZqyM+Ca9ADmAOPrqDcemFNinPfU+ZhGuWcWj5KdTeTK9gH+RvqWuXFWVvYZ0AzSqO6tz/cmfdv8SqHeacCjJca5JXA16UP9S+TOxkhjJq4CPlhWfIVYVwHvLbzGV1So93PSZaWy4lwGfCD3fDFwWIV6RwCv9oTXlHTG/tHsvfA66QztadIX47d3Z0zuhNBcG5EuF9XybFa3LB+UWGc2AAALs0lEQVQEBpG+Bbf3eL2sADNvB27NF0TE3cD7SK/fA5K2LyOwgm2Bh3PPp2Y/Hy7Um0Ia7aMUETE3Io4ADiF9E58mab+y4mnQDqTJJItaSG0tZZlNep+2Wkk6yyxaCKzTLRHVEBErIuI32XthM1JynA6cBEyX9AdJJ3ZHLL4E11wPAl+X9GBELK5UQdL6pFP2B7o1sraeBGZExNj2Kkk6lHSKXpYFpHlK2oiIWZLeD9xCeh3P6O7AChbT9gvF8uxRbMRfix7wPxcR90l6D3AscLWk+yn/Naxk3VzHiVdJ39SL3iBdjivL5cAESb+LiKdJl9q+KemhiJgPIOmtwMm0P75lKSJiKel//BpJG5K+nHwCOBM4t6v3X/o/wxrmOOAuYHY2Vt0MYH62bACpV9x+pA+nfUqJMHkQ2L+OekHqWFGWqaR2lOuLCyJinqR9smXfp9wPoaeBYcCvs9hWkaaVL9oVmNV9YVWXxXixpBbgO8DvKPc1rOTe3O8iXT66q1DnXaROPmU5F3gn8ISke0ij7O9G+gyYRop7KCmBfrK0KOsQEQuBiaR21o27Y5/uht1kkjYifbPcn8rdsG8DLm39dlQGSTsAu0bEb2rU60fqhl1Kd1dJhwFfBf4tIl6rUmctUoP1RyJiu+6MLxfDx0ntUe2OKCzpNuDhiCiOdVg6SbuQBvf9XbXXupvj+XSF4hejMI6jpOtJZ/OnVKjfbSTtDxxFao/cnJR45gFPATcDl0VEqZe0Jd0LHBsRPaGTCeAEZGZmJXEnBDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACsnZJGidpqqTXJc2T9Jik87toX4dLGldHvQmSIveYK+lXWe++evYzUdKjnQ64Ceo95qxu63E/U2X5M9nyCV0VQ4PbbfM6N3s/kt4k6bjsPblU0kJJT0r6vqQO3T6g5PEqvfBaj2lwlWUXSfppR/bbVzkBWVWSvgH8hDSd+SHAf5LudfloF+3ycNLYafVYAIzIHl8j3Xtxd3ajby1nNLCfrtbIMUMa+mU7ScPzhZL2AAZny7s6hnoVX+dm7+ca0g2TN5Dek58mjZzx/uh4997DgbeShqlp1HeBIyXt2MF99zm+EdXacxzwo4g4OVd2k6TTygooZ2VEPJj9/qCk2aSbKQ8EritWzu4XWisi/hER9QyX1FMtJg1u+gnSWHmtPkEav29YGUG16q7XWdIBwKHAgRFxW27R/3X07CdzPPDziFiR29fapGT6KdJ4ev8h6VngtIj450gh2QgdU0j3AZ7QiRj6DJ8BWXs2Ig382Ub+22XrZRZJB0uaIWmZpCnZjY1tZJdgpklaLumvkr6T/XMjaSJp+oeRuUtrExqItXX8tcEV4nqSdGawZ35ZIbYPSrpX0iJJCyRNkrR7bvkHJE2WtETSq5J+LGmD9gKSNELSbyS9KGlxdmnnyPxr18FjbgEOb/2gzX4eToWx0joTQ/YaXF/Y3qiszjvzr2Wt17nafiQdKGmV0rxJ+f1sl5WPqfIajMx+3lNc0NGzn+zM5f2sPvLGl0kjnn+fdIb1GdIQPJVGC/gV6SzIn6118BmQtecPpKkFZgM3R0RxCP9W25KGmv8Wacj/04DbJe0U2ZQJkvYlXTK5EjiRNITKGaR/4mOy399GSnpfyLb7QgOxDs5+/q1Qdg5pjqa/ARUnhJM0CriTNPTLp0lnGXsBWwGPSdqLNATMjaRv3RsDZ5FGuTi0nZi2BX4PXEr6YN4LuELSqoj4JR0/5htIoz/sTTrr+wCwaVZeHL+rq2LIG0zt17nafl4E5pJe9wm5+uOAl0nj/VXSOtbiuZLOa9JoHftk2/1joXwkcE9EnJN9sfp9RMyqso37SQP9Dq2wHSsqc3hwP3r2g5Qk/kIaI2wVaRDT04ENc3UmZsvfnyvbljQq8DG5sgeBewvb/zppMMmts+fXA5PqiGsCaUqBtbPHzqTksZA0M2o+rt0qrD+R3LQIpAFNH6XKJIGkD/li7B/Ktv/OOl9LZbH+iPRh1lpe1zHnjzv7/dfAxdnvlwA3Zr+/AkxoRgzAJOD6Qtmo/HE3+DpX28+ZpKSlXJyzgO+281psDjyR7TuAP5EG/Ozfiff7ZVSY2iF7vf6a7XMiMLidbaydvfc/19E4+tLDp4lWVUQ8AbyD1MB7CemD4VvAo0rTjrd6OXJTDkf6NjqVNHhka7vAe1i9beYa0mXgER0Ib2NgRfZ4mjTNwdiIeDFXZ05EPN7eRrJOC3sCP4vsE6SwfL0svmslrd36IE2tsIJ22lwkDVTqkfV8LtbxpITZWS3AoZLeQjoLqzRVQVfH0Krm61zD5aQvLaOy56Oz51dUWyEi/gbsThrc94ekM6vvAPdLWgfSeHLZJcfHs8u+M7LfpypN4160OdkEeAXfIZ0ZPUf6X/hadlZcKa6VpAGIN69xzIbbgKyGiFgeETdFxHERsQtp5s+daDuz48sVVn2ZNDMkpCkV3kyaDjiv9flbOxDaAmAPYDiwNelb6W2FOsX9VTKQlFhfbGf5WqQEvCL3WE46pm3a2fZEYCzpsti+WbyXA+vWEVctvwH6kz4c1wduKiGGVvW8zlVFxF9IZ1tHZUVHkQZtfbLGem9ExB0R8QXS5b0rSJe+RmTLfxYRu5G+/KwkTUO9W0QMi1wng5x1SX/X4n5mZ9v9GOmKwN7AFFW/HWE5zX1911huA7KGRMRPJZ1DGum71WYVqm5GumQH6Vvligr1BmU/OzL68sqIqHUvTz2N0fNIlxe3qLJ8Pv+aPv3WCsvnVlpJ0rrAvwFfjIhLc+VN+dIXEYsl3UwaLfy6qDD/VBNiWMbqk6gNrFCvGSMa/wT4sVLX/0NosBdZRKySdAcpeRU//HcC5kX1NsxWr1HlzCVLWL9VmiZ+AmmakAskXZglqLyN6Nh7us/xGZBVJWm1xCJpU9LcRvlvvZspTRDXWudtpG+dD0P6pkq6JHdYYXOHkz78Wyfn+wfd/M0x++B+CPjP1l5lFZY/SJqq+NEKj4oJCHgL6f/rn9+os15zxXuoOnPMPySd+VxaZXlnY3iBtl80IJ1FdVR7x3pDtryFFHPFS4oAkgZVWfRR0iSADxXK3019HQKeBlab0qPS+wJ4JPv51kLdTYH1SPMCWQ0+A7L2TJP0a+AO0iW1bUk3fS4Bfpar9wpwlaRT+FcvuJdJl39anUrqGXcF6cNlKKln1I8jorXX1QxgjKSDSR9+c9v5gG+mk0i93G6TdBnpev8IUgP6zaTOEndLWkVqSH+ddMnnIOCbEbHah01ELJD0CPBtSQtJifYk0qXDDXNVO3zMETGJdOmq2vLOxvB/wNGSLiD1RhtNfRMZVlP1WCNimaRfAF8Efhntz5d1raTXgWtJnRU2A44ExpAa/4vrvpvUYaGW35Neq00j4u+58qslPQbcR7rcOYx05jmHNN9P3nDSGeH9WG1l94Lwo+c+SB8Gd5AuMy0j/bNfDQzJ1ZlI6kF2COlb33LSP/JqvcNIbRHTSN90XyC1X6ydW74J6UPvNbLLXlXimkDWG6yd2CeS64FVaxmpq+19pOQ6n9Srbrfc8j2B35J62i0GppO6ng9oJ4Ydgbuz+rNJiaxN7PUecwPH3aYXXGdjAL5B6gH2OnAV6Syj2Auurte51rECH87KP1zjGD+T/S1eyN5Lr5ES5Kgq9W8CPlHH+30d0sylnyqUfyzb399ISXwhKfHvXmEb36PQY9KP6g9PSGedkt1g+M6IGF6rrll7srbFw4HtI00Z3qztzgb2i4ji2Uqlut8DdoyIg6osn0hKnLMqLFsLeB44KSKu6lTQfYQvwZlZqSS9HdiFNITNaU1OPgNJN+nW2yZzLvBnSTtHhUurNRxGugRdtf3K2nInBDMr249Il3ZvJQ130zQRMS8i+kXqCFNP/RdIl/iq9Yq8kXSJthIBR0e6F8jq4EtwZmZWCp8BmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmal+H/C0E4RTJkX9wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff\n", + "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function with Quantum Amplitude Estimation." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Estimated value:\t1.2580\n", + "Probability: \t0.8785\n" + ] + } + ], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price = 2\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# construct circuit factory for payoff function\n", + "european_call = EuropeanCallExpectedValue(\n", + " uncertainty_model,\n", + " strike_price=strike_price,\n", + " c_approx=c_approx\n", + ")\n", + "# set number of evaluation qubits (samples)\n", + "m = 5\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, european_call)\n", + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "QiskitDevenv", + "language": "python", + "name": "qiskitdevenv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 0c3915aea0f93dbb4ce4088564aa678b5a5a3e0f Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Thu, 18 Apr 2019 23:00:44 +0200 Subject: [PATCH 058/116] add HHL truncate parameters --- qiskit/aqua/general/linear_systems_of_equations.ipynb | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index 92383b7d1..c899ff742 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -1,4 +1,4 @@ -{ +{ "cells": [ { "cell_type": "markdown", @@ -451,6 +451,10 @@ "outputs": [], "source": [ "params5 = params\n", + "params5[\"algorithm\"] = {\n", + " \"truncate_powerdim\": False,\n", + " \"truncate_hermitian\": False\n", + "}\n", "params5[\"reciprocal\"] = {\n", " \"name\": \"Lookup\",\n", " \"negative_evals\": True\n", From 560f6a854499c81cca0c04ce4b9b237c2c198c83 Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Fri, 19 Apr 2019 00:39:06 +0200 Subject: [PATCH 059/116] improve HHL example and clean up --- .../general/linear_systems_of_equations.ipynb | 52 +++++++++++-------- 1 file changed, 31 insertions(+), 21 deletions(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index 92383b7d1..50bde1686 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -252,8 +252,14 @@ " 'name': 'LinearSystemInput',\n", " 'matrix': matrix,\n", " 'vector': vector\n", - "}" - ] + "}\n", + "params3['reciprocal'] = {\n", + " 'negative_evals': True\n", + "}\n", + "params3['eigs'] = {\n", + " 'negative_evals': True\n", + "}\n" + ] }, { "cell_type": "code", @@ -264,10 +270,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution [0.22147+0.j 0.22034-0.j]\n", + "solution [0.13449+0.j 0.29238-0.j]\n", "classical solution [0.14286 0.28571]\n", - "probability 0.424639\n", - "fidelity 0.898454\n" + "probability 0.022362\n", + "fidelity 0.998942\n" ] } ], @@ -451,26 +457,30 @@ "outputs": [], "source": [ "params5 = params\n", - "params5[\"reciprocal\"] = {\n", - " \"name\": \"Lookup\",\n", - " \"negative_evals\": True\n", + "params5['algorithm'] = {\n", + " 'truncate_powerdim': False,\n", + " 'truncate_hermitian': False\n", + "}\n", + "params5['reciprocal'] = {\n", + " 'name': 'Lookup',\n", + " 'negative_evals': True\n", "}\n", - "params5[\"eigs\"] = {\n", - " \"expansion_mode\": \"suzuki\",\n", - " \"expansion_order\": 2,\n", - " \"name\": \"EigsQPE\",\n", - " \"negative_evals\": True,\n", - " \"num_ancillae\": 6,\n", - " \"num_time_slices\": 70\n", + "params5['eigs'] = {\n", + " 'expansion_mode': 'suzuki',\n", + " 'expansion_order': 2,\n", + " 'name': 'EigsQPE',\n", + " 'negative_evals': True,\n", + " 'num_ancillae': 6,\n", + " 'num_time_slices': 70\n", "}\n", - "params5[\"initial_state\"] = {\n", - " \"name\": \"CUSTOM\"\n", + "params5['initial_state'] = {\n", + " 'name': 'CUSTOM'\n", "}\n", - "params5[\"iqft\"] = {\n", - " \"name\": \"STANDARD\"\n", + "params5['iqft'] = {\n", + " 'name': 'STANDARD'\n", "}\n", - "params5[\"qft\"] = {\n", - " \"name\": \"STANDARD\"\n", + "params5['qft'] = {\n", + " 'name': 'STANDARD'\n", "}" ] }, From 0dcce6b8c2fbccf4e0c2b00524a38904c058b417 Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Fri, 19 Apr 2019 01:00:09 +0200 Subject: [PATCH 060/116] update results --- .../aqua/general/linear_systems_of_equations.ipynb | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index 50bde1686..094ffd501 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -259,7 +259,7 @@ "params3['eigs'] = {\n", " 'negative_evals': True\n", "}\n" - ] + ] }, { "cell_type": "code", @@ -270,10 +270,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution [0.13449+0.j 0.29238-0.j]\n", + "solution [0.14223-5.e-05j 0.28622+7.e-05j]\n", "classical solution [0.14286 0.28571]\n", - "probability 0.022362\n", - "fidelity 0.998942\n" + "probability 0.000316\n", + "fidelity 0.999994\n" ] } ], @@ -304,8 +304,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "circuit_width 7\n", - "circuit_depth 30254\n" + "circuit_width 11\n", + "circuit_depth 73313\n" ] } ], From 5df3b325c6995bf281cd37a03fe22ec9e82ce246 Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Fri, 19 Apr 2019 01:08:16 +0200 Subject: [PATCH 061/116] fix --- qiskit/aqua/general/linear_systems_of_equations.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index b103cb602..094ffd501 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -1,4 +1,4 @@ -{ +{ "cells": [ { "cell_type": "markdown", From 33f09709567e6f7168c45d32504e112159021a5a Mon Sep 17 00:00:00 2001 From: Albert Frisch Date: Fri, 19 Apr 2019 01:12:56 +0200 Subject: [PATCH 062/116] text update --- qiskit/aqua/general/linear_systems_of_equations.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/general/linear_systems_of_equations.ipynb index 094ffd501..3d857aa4d 100644 --- a/qiskit/aqua/general/linear_systems_of_equations.ipynb +++ b/qiskit/aqua/general/linear_systems_of_equations.ipynb @@ -292,7 +292,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Compared to the the first example, the circuit depth is increased approximately by a factor 2,5" + "Compared to the the first example, the circuit depth is increased approximately by a factor of 6" ] }, { @@ -395,7 +395,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Considering the circuit depth, it is increased approximately by a factor 10 compared to the two dimensional matrices. The circuit width is increased by two additional qubits" + "Considering the circuit depth and circuit width" ] }, { From 6792791b6b93e7b717f14bd64e9b41addbb952e9 Mon Sep 17 00:00:00 2001 From: woodsp Date: Fri, 19 Apr 2019 16:42:32 -0400 Subject: [PATCH 063/116] Noisy simulation with AER on Aqua --- .../aqua/general/simulations_with_noise.ipynb | 308 ++++++++++++++++++ 1 file changed, 308 insertions(+) create mode 100644 community/aqua/general/simulations_with_noise.ipynb diff --git a/community/aqua/general/simulations_with_noise.ipynb b/community/aqua/general/simulations_with_noise.ipynb new file mode 100644 index 000000000..75d56803e --- /dev/null +++ b/community/aqua/general/simulations_with_noise.ipynb @@ -0,0 +1,308 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*Running simulations with noise in Aqua*_\n", + "\n", + "This notebook demonstrates using the [Qiskit Aer](https://qiskit.org/aer) `qasm_simulator` to run a simulation with noise, based on a noise model, in Aqua. This can be useful to investigate behavior under different noise conditions. Aer not only allows you to define your own custom noise model, but also allows a noise model to be easily created based on the properties of a real quantum device. The latter is what this notebook will demonstrate since the goal is to show how to do this in Aqua not how to build custom noise models.\n", + "\n", + "Further information on Qiskit Aer noise model can be found in the online Qiskit Aer documentation [here](https://qiskit.org/documentation/aer/device_noise_simulation.html) as well as in the [Qiskit Aer tutorials](https://github.com/Qiskit/qiskit-tutorials/tree/master/qiskit/aer).\n", + "\n", + "Note: this tutorial requires Qiskit Aer if you intend to run it. This can be installed using pip if you do not have it installed using `pip install qiskit-aer`" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pylab\n", + "\n", + "from qiskit import Aer, IBMQ\n", + "from qiskit.aqua import Operator, QuantumInstance, aqua_globals\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import SPSA\n", + "from qiskit.aqua.components.variational_forms import RY" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Noisy simulation will be demonstrated here with VQE, finding the minimum (ground state) energy of an Hamiltonian, but the technique applies to any quantum algorithm from Aqua.\n", + "\n", + "So for VQE we need a qubit operator as input. Here we will take a set of paulis that were originally computed by qiskit-chemistry, for an H2 molecule, so we can quickly create an Operator." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of qubits: 2\n" + ] + } + ], + "source": [ + "pauli_dict = {\n", + " 'paulis': [{\"coeff\": {\"imag\": 0.0, \"real\": -1.052373245772859}, \"label\": \"II\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": 0.39793742484318045}, \"label\": \"ZI\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": -0.39793742484318045}, \"label\": \"IZ\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": -0.01128010425623538}, \"label\": \"ZZ\"},\n", + " {\"coeff\": {\"imag\": 0.0, \"real\": 0.18093119978423156}, \"label\": \"XX\"}\n", + " ]\n", + "}\n", + "\n", + "qubit_op = Operator.load_from_dict(pauli_dict)\n", + "num_qubits = qubit_op.num_qubits\n", + "print('Number of qubits: {}'.format(num_qubits))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the above problem is still easily tractable classically we can use ExactEigensolver to compute a reference value so we can compare later the results. \n", + "\n", + "_(A copy of the operator is used below as what is passed to ExactEigensolver will be converted to matrix form and we want the operator we use later, on the Aer qasm simuator, to be in paulis form.)_" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reference value: -1.85727503020238\n" + ] + } + ], + "source": [ + "ee = ExactEigensolver(qubit_op.copy())\n", + "result = ee.run()\n", + "ref = result['energy']\n", + "print('Reference value: {}'.format(ref))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Performance *without* noise\n", + "\n", + "First we will run on the simulator without adding noise to see the result. I have created the backend and QuantumInstance, which holds the backend as well as various other run time configuration, which are defaulted here, so it easy to compare when we get to the next section where noise is added. There is no attempt to mitigate noise or anything in this notebook so the latter setup and running of VQE is identical." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VQE on Aer qasm simulator (no noise): -1.8662346923695476\n", + "Delta from reference: -0.008959662167167703\n" + ] + } + ], + "source": [ + "backend = Aer.get_backend('qasm_simulator')\n", + "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_mapper=167) \n", + "\n", + "counts = []\n", + "values = []\n", + "def store_intermediate_result(eval_count, parameters, mean, std):\n", + " counts.append(eval_count)\n", + " values.append(mean)\n", + "\n", + "aqua_globals.random_seed = 167\n", + "optimizer = SPSA(max_trials=200)\n", + "var_form = RY(num_qubits)\n", + "vqe = VQE(qubit_op, var_form, optimizer, 'paulis', callback=store_intermediate_result)\n", + "vqe_result = vqe.run(quantum_instance)\n", + "print('VQE on Aer qasm simulator (no noise): {}'.format(vqe_result['energy']))\n", + "print('Delta from reference: {}'.format(vqe_result['energy']-ref))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We captured the energy values above during the convergence so we can see what went on in the graph below." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAEWCAYAAABVMkAmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYXFWZP/Dve28tvWfpJGQhC5CwCLJN2ERBWUQYEURRQWFcGEbHbVzGn7iDOjLjMMooOyoKA4pAlH0JkAAJBDqB7AvZ0+l0ekl679ruPb8/7j237q2luzrppar4fp4nD91Vt6pOdwN56+3veY8opUBERERERCPDGOsFEBERERGVMxbcREREREQjiAU3EREREdEIYsFNRERERDSCWHATEREREY0gFtxERERERCOIBTcRER0QEVkrIu8f4P5FInLNKC7poInI7SLyw7FeBxGVFxbcRFQ2RORKEWkQkR4R2SMiT4nIe8d6XeVKKXWsUmoRAIjIT0TkvjFe0kFTSn1RKfXTsV4HEZUXFtxEVBZE5JsAfg3gPwAcAmAWgFsBXDKW6/ITkdBYr4GIiEYfC24iKnkiMg7ADQC+rJR6RCnVq5RKKqUeU0r9u3tNVER+LSJN7p9fi0jUve/9ItIoIt8SkRa3O/45977TRKRZREzf631URFa5Hxsi8l0R2SIi7SLyoIhMdO+bIyJKRL4gIjsBvODefrWI7HCv/6GIbBeR84bwfP8kIjtFpE1Evu9blyki33Mf2y0iy0Vkpnvf0SLynIjsE5GNIvKJPN/LD4jIat/nz4nIG77PXxaRS92Pt4vIeSLyIQDfA/BJ97cLK31POVtElrjreVZEJuV53bw/A/0zFpE/iUir+737gYjk/DvM7bY/6F7f7UZf5vvuP8aNu3S4933Ed989IvIz9+NJIvK4e90+92s33Pumi8jD7nq2icjXcq2FiAhgwU1E5eEMABUAFgxwzfcBnA7gRAAnADgVwA98908FMA7ADABfAHCLiExQSi0D0AvgHN+1VwK43/34qwAuBXA2gOkA9gO4JeO1zwZwDIALRORdcDrvnwYwzfeaWiHP914ARwE4F8CPROQY9/ZvArgCwEUA6gB8HkCfiFQDeM5d8xQAnwJwq7uWTK8BmOcWm2EAxwOYLiK1IlIJYD6Al/0PUEo9Dec3C39RStUopU7I+F59zn3dCIBv53hNLefPwL3vN+59h7vfm6vd583nIwD+DGA8gEcB/BYA3K/pMQDPumv6KoD/E5GjcjzHtwA0ApgM57cm3wOg3KL7MQAr3bWeC+DfROSCAdZDRO9gLLiJqBzUA2hTSqUGuObTAG5QSrUopVoBXA/gKt/9Sff+pFLqSQA9cIpaAHgATiELEamFU9A+4N73RQDfV0o1KqXiAH4C4OMZ8ZGfuF33fgAfB/CYUuoVpVQCwI8AKN+1hTzf9UqpfqXUSjhFny5wrwHwA6XURuVYqZRqB/BhANuVUn9QSqWUUm8CeBjA5ZnfJHeNbwA4C8A/uM+/BMCZcN6wvO0+Z6H+oJTa5D7vg3De8OST82fg/nbhUwCuU0p1K6W2A7gJwZ9fpleUUk8qpSwA9yL9PTodQA2AG5VSCaXUCwAeh/vzzbGeaQBmu2t6WSmlAJwCYLJS6gb3ObYCuMtdIxFRFuYJiagctAOYJCKhAYru6QB2+D7f4d7mPUfGY/vgFGaA0xleKiJfAnAZgBVKKf1cswEsEBHb91gLTkdU25WxDu9zpVSfiPgL2EKerznPOmcC2IJsswGcJiIdvttCcArRXBYDeD+c7u5iOF32swHE3c+HIt9ac8n3M5gEIIzsn5//NwODvW6F+6ZlOoBdSin/9zffc/0SzhueZ0UEAO5USt0I5/s5PeP7aSKj809EpLHDTUTl4FU4xeClA1zTBKdQ0ma5tw1KKbUOTlF2IYJxEsApni9USo33/alQSu32P4Xv4z0ADtWfuDGN+iE+Xz67AByR5/bFGc9Zo5T6Up7n0QX3We7Hi+EU3Gcjf8Gt8tw+HNrgdJszf36FfE8yNQGYmZH/zvlcbjf9W0qpw+FEVL4pIufC+X5uy/h+1iqlLjqA9RDROwALbiIqeUqpTjjRjFtE5FIRqRKRsIhcKCL/5V72AIAfiMhkd+PejwAMZYzd/QC+DqcI/avv9tsB/FxEZgOA+/wDTUZ5CMDFIvIeEYnA6aDKQTyf390Afioi88RxvIjUw4lMHCkiV7nfl7CInOLLfmdaCidOcyqA15VSa+F2yQG8lOcxewHMybeR8WC4sZAH4Xxfat3vzTcxtJ+ftgxOx/s77vfh/QAuhpP3DhCRD4vIXHHa251wftNgA3gdQLeI/D8RqRRns+pxInLKAX2BRFT2WHATUVlQSt0Epwj7AYBWOF3IrwD4m3vJzwA0AFgFYDWAFe5thXoATof3BaVUm+/2m+FsyntWRLrhbDo8bYB1roWzUe/PcLrdPQBa4HToh/x8Gf4HTmH6LIAuAL8DUKmU6gbwQTgZ4yY4cYv/BBDNs8ZeON+ftW7OHHB+i7BDKdWS57X1m5B2EVlR4HqH4qtwNq9uBfAKnDdAvx/qk7hfz8VwflvRBmcD69VKqQ05Lp8HYCGcn9GrAG5VSr3ovgH4MJw8+jb3ee6Gs6mTiCiLOPs/iIhoLIhIDYAOAPOUUtvGej1ERDT82OEmIhplInKxG3upBvDfcDru28d2VURENFJYcBMRjb5L4EQ7muDEFj6l+OtGIqKyxUgJEREREdEIYoebiIiIiGgEleXBN5MmTVJz5swZ62UQERERURlbvnx5m1Jq8mDXlWXBPWfOHDQ0NIz1MoiIiIiojInIjsGvYqSEiIiIiGhEseAmIiIiIhpBLLiJiIiIiEYQC24iIiIiohHEgpuIiIiIaASx4CYiIiIiGkEsuImIiIiIRhAL7iL36MomdPYnx3oZRERERHSAWHAXsZbuGL72wJt4cvWegh+zfMd+7O2KjeCqiIiIiGgoWHAXsZ5YCgCQtOyCH/Ol+5bjjsVbR2pJRERERDRELLiLWH/SAgDYthrSY/TjiIiIiGjsseAuYjG3cLYKr7ehFJAaQkeciIiIiEYWC+4i1p9wCmelCq+4baVgDaEjTkREREQjiwV3EdPRkKEU0JatkGTBTURERFQ0WHAXMS/DPcRIiWUzUkJERERULMak4BaRy0VkrYjYIjI/zzUVIvK6iKx0r71+tNc51mIJXXAPLVKSHErou0hs2tuN/b2JsV4GERER0bAbqw73GgCXAXhpgGviAM5RSp0A4EQAHxKR00djccWiL+GMBRzKlBKrRDPcV//uddzxEscZEhERUfkJjcWLKqXWA4CIDHSNAtDjfhp2/5ReJXkQ+pNONKTQ+lkpBaWGNre7WHTHkuiNp8Z6GURERETDrqgz3CJiishbAFoAPKeUWjbAtdeKSIOINLS2to7eIkeQt2mywEiJLsxLscOdstWQojNEREREpWLECm4RWSgia3L8uaTQ51BKWUqpEwEcCuBUETlugGvvVErNV0rNnzx58nB8CWNOz+EudCygLlhTLLiJiIiIisaIRUqUUucN43N1iMiLAD4EJ//9jtCfGNpYQK/gLrFIiXJz5xyuQkREROWoaCMlIjJZRMa7H1cCOB/AhrFd1ega6lhAXbCWWqREd+QLjc4QERERlZKxGgv4URFpBHAGgCdE5Bn39uki8qR72TQAL4rIKgBvwMlwPz4W6x0r/QcYKSm1sYD6DQIjJURERFSOxmpKyQIAC3Lc3gTgIvfjVQBOGuWlFZUDjZSUWodbT1UZyvhDIiIiolJRtJESShfcQ42UJEssDJ3ucI/xQoiIiIhGAAvuIpbOcJd7h5sZbiIiIipfLLiLWGyIBbflTSkprcJVv0EoNKtOREREVEpYcBcx7+CboY4FLLFIic5wl1pnnoiIiKgQLLiL2FAz3LpBXKodbtbbREREVI5YcBexoY4F1IVrqZ00qTvynFJCRERE5YgFdxF7p5w0yU2TREREVM5YcBeppGV7neqhjgUstQ43IyVERERUzlhwFykdJwGGPhaw1ApuHnxDRERE5YwFd5GKJQ684LZsVVIj9ni0OxEREZUzFtxFyt/hHmqGGyitLreX4S6hNRMREREVigV3kfIX3IU2fv31aikVr+mDb8Z4IUREREQjgAV3keo/iEgJkM5Fl4Kku9uTU0qIiIioHLHgLlIHEinxX1dSHW6LGW4iIiIqX6GxXgDlFuxwF/YYf72aLIHTJtfs7sSezhgsHnxDREREZYwd7iKlO9yRkFFw57fUOty/f2Ubrn9s7ZDnjRMRERGVEhbcRUp3uKsjZtlmuJO2QiJlI8UpJURERFTGWHAXqZjb4a6OhoYwFjD9cSkUr5ZtIxE4UbP410xEREQ0VCy4i1Qs6XSoqyOhIYwF9M/hLv4Ot2UrJFM2UvqkSRbcREREVIZYcBcpPSpvKBlu/6bDUjj4xrJVRod7jBdERERENAI4paRI6eI5bMqg8ZCkZcOyVWCOdaoEppRYtkLSUl7enFNKiIiIqByxwz1KtrT2YOmWtoKvT3kFtzFopOSmZzfhirteC1w3Vh3uZVvb8fl73igoQ67fE+j4DCMlREREVI5YcI+Sc29ajCvvWlbw9ZatIAKETBn0BMbmzn40d8aCGe4xmlKyYmcHXtjQgp54atBr9fzt/oRzLU+aJCIionLEgrtIpWyFkCEwRAbt/KZs5URKiiDDrQv9RGrwgl+vt88dgVgC+zyJiIiIhmxMCm4RuVxE1oqILSLzB7nWFJE3ReTx0VrfcIv5jmkvlG0rmLrgHqR4tmwFW6lApGSsxgLqQj9RQIddF9h97veHkRIiIiIqR2PV4V4D4DIALxVw7dcBrB/Z5Yyst/f2DPkxTofbgCHB6R1tPfGsuIjucA908E17TxzH/PBpLN+xb8hrGQpd6BfS4U55kRIr8FgiIiKicjImBbdSar1SauNg14nIoQD+EcDdI7+qkbNxb/eQH2PZCoYApiGBIvYDv1yEh1c0Zl2byoiUZBavLd1x9Cct7NzXdwBfQeH0OMOCIiXuEvvcDDfrbSIiIipHxZ7h/jWA7wAYtHoTkWtFpEFEGlpbW0d+ZYO4f9lO/M9zmwAAm9yCO2IW/u22bIWQaUB8Ge54ykJ3PIXmznjg2pStYNsqULAmM8YC6gJYjwtMpGx84Z43sLapc2hf2GDrttJrHfRatzj3MtyMlBAREVEZGrGCW0QWisiaHH8uKfDxHwbQopRaXsj1Sqk7lVLzlVLzJ0+efFBrHw4vbNiLp1bvAQBsbB56hzvlZrhNES+brYvlWEYxa9k2LBWMlGR2uHXERGes23rieH5DC17fNrwRk9QQIiU69dLPgpuIiIjK2IgdfKOUOu8gn+JMAB8RkYsAVACoE5H7lFKfOfjVjbyUnT7QRXe4h3LcumXbzpQSIz0uT8c1MjdhpiwF2x74aPd0h9t2nz84IWS4pIYQKbEz1sAMNxEREZWjoo2UKKWuU0odqpSaA+BTAF4olWIbcIpgHevY2xUD4GSUVYFd3JStYIgEIiW6II1nFLP6lEl/vZp50mQio8Ot3wwcyASVgXhrLGBKibdp0l0DG9xERERUjsZqLOBHRaQRwBkAnhCRZ9zbp4vIk2OxpuGWsm3vyHVbOUe0A4V3cW1bIWQ6kRLdCfYiJZkdbj2lxC6kwx0s3oe9w20VHinRy9WbJtnhJiIionI0YpGSgSilFgBYkOP2JgAX5bh9EYBFI76wYZSyVCBWUhE2kbRSzrg/s4DHe3O404Wp7k7Hk9kdbiA4CjDz4BvdbU93uEem4M7Xhc8lxU2TRERE9A5QtJGSUpeyFZIpO1BwA4V3cS1bwRSB4RsLqPPXmRNAdBHtL7KzIyVW4DlSGceqD5fkEDZN6iZ8jAffEBERURljwT2M+hIpPL9+LwA3UmLbXie50i24Cz1yPd3hFi/3nfQiJZkd7uCGyFyvk0zpjZfB4nz4O9xDP9pdf11MlBAREVE5YsE9jJ5c3Ywv/LEBLV0xb9OkLoIrB+lwL9+xD9c/ttb7PJDhdh+Sjmvk7nAnLH+HOyPD7U0nCWa5+4dh02R3LIlLfvsK3t7b7ctwD/68mW8KmOEmIiKicsSCexj1xp14Rn/S8jYy6ixzRdj5VucbDfj8+hb8Ycl2r5vtdLiNPGMBh57hztw0mXms+sFo3N+PlY2dWLeny1f8F7JpMrvALnSKCxEREVGpYME9jHRR6+9s6w5y1O1w5xvF7X8soDPcgPgiJXmnlLi3J30xjswMd+bBN6lh3DTpn0wylINvMrvwALvcREREVH5YcA+jhG9DYmZGOp3hzl2IJjI2M6ZsGyHDgCm+TZO23jSZp8PtK1atAg++GY5ISdJOF/NWnjXmkqu2ttjhJiIiojLDgnsYxX2xDa+D7MZMdKQkXwdXd6D15kbbRvZYwAHmcDv3p4vcZOamSf38GfGT4YiUeDEVK71JdCibJv1YbxMREVG5YcE9jNKxkIE63LkrSl2sJ/0dbtMZC6gPtNEFambBrbvK/gx3ZjGrT360MuZx9w3DWECvmLfUkOZw5yq4GSkhIiKicsOCexgFMtz6UBe3OK6MDDylJNdJkIY4YwFtFexKZxazmYfZ+K/1PvfGAgaz3MMSKckRpSlk02Su+AhncRMREVG5YcE9jPyHy3hj99wOctQ9XjJzM6P32FSwS20phZAhMA3JPmkyZQemeVgZRW4kZGQV9nptmYfoJC2VVZwPlbdp01IFz+FWSuV885FvUykRERFRqWLBPYy8otn2dbjdSMlgJ00mrGDBnbKcg29E0p1gfxzF3+XOzHBHTSPQ7QbSHe6Ulf1cBzupJOlbu37+wSIl+ZIj7HATERFRuWHBPYySvs2DmWP3Bp1SkgpGPSz34BsjMBYw/dh4MjuvrV/T6XDnPvjGX9BrmZlwv6aOfqzZ3Zn3fsB3eqWlfGMBBy7i873x4JQSIiIiKjcsuIdRMMOtIyU6w+18q/N1cPVj9T91hjs4FtBXJLsFrT+a4Y+UZEZXEhnjAP2Fv7/DffPCt/Hdh1d5n//ymY348v0rBvy6vXiKbafXMkiHO1/BzQ43ERERlZvQWC+gnOgYhf/o9cxISd4Md8bBNDrDnWssIJDucPsL16S/4M4cC+iLu2Q+l39SyfKd+9G4v8/7fEd7Lzr6kgN81cGuuf54sE2T+TrZzHATERFRuWGHexjpItMf0dDF7KAZ7oyDaZwMtwHDEACA7cuFA+kOt7+w1kV02DSyoivpDnfwgB0gOIs7lrAQ832+u6MfvfHUgEeu+6M0BXe4M954mPrrZIebiIiIygw73MNI55Zjyey4xmBzuBO+qSGAe7S7ARiSLkRz5a79BXzCsmEIEDLEu/bvb+3GoRMqA7OyM9fhj5TEUpY3KjCRstHSHYdSTve+ImxCKQVbpQtkIP0mIRHIcA+twx0xDfTbFudwExERUdlhh3sY6SKzP5k/UjJYhzvpi5aYhuHr/Aa70vGMTZaA0+E2RBAyxbv9p4+vwz1LdwSy4fpazb/e/oTlrXlvV8w7+bHXPTHz9sVbceHNLwXWHtwsWtjR7pnfh0jI+VeRDW4iIiIqNyy4h5HuUvsjGv3J4NHueTvcqWDUw3Yz3G6DG7ZSgVF/uTrcScuGYQhChpPhjqcstPUk0BdPIeErijPXEVyvhXjKhm0r7O7o927vjTvX7Gjvxaa9PYHYjP8wnYI73HkKbk4pISIionLDgnsY6SIzlqPDXel1uIOFqD62PTNSkrJsmIYEIiX+IlXHVvxd72QgUmKjpSsOAOhNpAITVPTzZ67Rv/ZYysLu/emCu8ftcOv7mztj3n3pg2/SGe5BO9w5IiX66yQiIiIqJyy4h5EuZjMjGoA/UpK+fkd7L47+0dNY19SVfdKk7Rx8Y7oFt2Wr4BzuVK4OdzBS0twV89aQzBoLmHtKiS7k+xIWmvwdbvcaXUg3dabv808pyTzavamjHzc9u9F7Y6Flfh51O9yZtxMRERGVOhbcwyhXh7s3kRkpSRfNa91Ce0d7r29KSbogDkZKMuZwJ4PXA07ha4oTKbFshT1uF7o3YflOwUw/The5er1KKe/NQn/CChTVA3W40xsx0xlu/XoPvL4Tv3lhcyCeor8+Px0pYb1NRERE5YYF9zCKe5smgyP3QoYg7EYm/B3pXfucede9CcsrQHW32FZuhzswFnDgDHfKVhCB0+G2bDS7BXPuDreNyogJ0xAvUpK00rGV/qSF3R0xLwrT6xXczvPsCURK0hsl9XJ0B375jv0AgM7+4Cxv/Tr6DYWX4WbFTURERGWGBfcwSo8FDGa4Q2a6cPYXzY1uRtpfjCYzOtz+DHcyECnJ3vyYSDm575DhRErSHe5Ung66gaqw6RXcmVGY3fv7MO+QGuc5dMHtfo17ckRK9GE8Is5aUpaNt3Z1AAC68hTcFSGnoGeGm4iIiMoVC+5hlOvgm/6khbBpIGTk6HC7Jzr6i9GU7UwIUQowDEkffKOcx1ZFzMBrZE0pcSMlKUthr5vh7ktYvk2Z6QN2wqagMmJ6OfN4xrqbOmKYO0UX3MEZ43s6fJESdw26GK8Mm7CVE5nRxXy+Dnel+/WkIyUsuImIiKi8jEnBLSKXi8haEbFFZP4A120XkdUi8paINIzmGg+EN4fbN/VDKad7O5QOt57goY92B9JjAXXBHc8YI6ifW0RgmoKUbXsd7kTKzirQnZMsBVURE33J7A53R18S/UkLsyZWAUh3uHVRnitSor/uqohzntKrW9u9a7piwYJbF9Y6ssJICREREZWrsTppcg2AywDcUcC1H1BKtY3weg5aykrnl3WnV/NHSiy3OFVKoTFHh9s/Ws80DG9KiXPSpI2waSAaMrzCN9DhTtmoipoIu5GSXBsb/QfrhE0DFeF0h9tfcLd0O4+tr44gEjLQkzGlJBgpCXa49ZuCV7e0o64ihK5YCl396Uko+vUBIOpuJk1HSkBERERUVsakw62UWq+U2jgWrz1SElZwo6Rf2Nfh1kNF2noSXjyjwx8psWyvGPVnuC1beaMCK8Km17H2d8yTthMpMQ3DO5a9vjoSWIt/06TucOvDefxH0us4Sm1FGDXRkG/TpPO6+/uS3sdJr8Pt/FMX3GubOnHy7AkwZIBISZiREiIiIipvxZ7hVgCeFZHlInLtQBeKyLUi0iAiDa2traO0vDT/yYr+whVwurchXXC7ERCd3wZyRErcqtzwjQVUyslKex3ujKPa9WMNEYRNwZ7OGCxb4fDJ1d79Ium8dcpyNmVWRUz0xNOjALW97qE5dZUhVEdNX4bbwoSqMIB0rERvxNQFeHXU+cVJW08CMydUoa4ynBUpyVtws8VNREREZWbECm4RWSgia3L8uWQIT/NepdTJAC4E8GUROSvfhUqpO5VS85VS8ydPnnzQ6x8qf4fbv2kSQM4pJTq/LZJZcNuBDLfXGbcVLNtGKLPD7ZvDbdkKhgHvMQBw5CG13seVYTNwtHvYNFBXEUa3Wwz71+3vcFdHQuk53Ckbh01yingdK0lmbBbVHW4AOHRCJcZVhgfdNBnl0e5ERERUpkas4FZKnaeUOi7Hn78P4Tl2u/9sAbAAwKkjtd6D5e9w9yezIyVeh9stkPUM7kMnVAaK0ZStvI2QmUe7Jy0dKTG8LnrmJkNDxOsaX3X6bFxw7FTvvqpICLZKz/Q2DUFtRQjdsVTWulu73Q53RRjVbqRE58vn6ILbnVTidc0zutYAMGNCJeoqwlljAXV0RJ/AqTPcrLeJiIio3IzVpslBiUg1AEMp1e1+/EEAN4zxsvIarODO7HCv39OFqXUVqK+OYt2eLu/a4KZJ/1jA9KZJIH2wjH9KCQCYIrj2rMNxzjFT8J4jJmHFzv3efbrznLKVNxbQKbizO9zNXoc7hOpoCJ19Ce/+OfXBDrf/yHkgHSkBgBnj0x3ubW296E9YeNf0Ou/7UMEpJURERFTmxmos4EdFpBHAGQCeEJFn3Nuni8iT7mWHAHhFRFYCeB3AE0qpp8divYXwR0oyu7QR03DG9RkCyy12X367De+dNwmVYTNQrKcs5cVEzMBYQHhd6YE63CLAlLoKvOeISQCC8Q79sbMG3eEOI5a0kbTsrLGAAFBXGUZN1ERPPOXlxsdXhTGhKuxluJMZBXcwUlKFukpnUslPHl2Lb/zlLefr8brh7pQSbpokIiKiMjUmHW6l1AI4EZHM25sAXOR+vBXACaO8tAPmL5ozhUynajbFGde3srEDnf1JvP+oyViwYnfg2qRle0VnyJCMsYAKYVMQDZnodcf05YqU+FVH0j9inZdO2jZSto3qcAi1Fc793bGUb462c/qkIUB1xER1JITeuOV1uCtCJqaOq/QV3ME1VPly2ZNqIl6HO56y0NIVDxxT722aNE3v6yQiIiIqJ8U+paRk5Cq4dYxEx0CcDreNRRtbYRqC982djApfNxhwiteUL1IiGWMBQ4YxYIfbv2ESSBfZgC9SYvkz3M7Eke5YeszfhCpnlGBtRRgi4mW49WtGwwamj6tITynJiLVUukX+jPGVEBHUVYTR2ZdEU0cM8ZSN1p54+mj3zJMm879vISIiIipJLLiHiS64/Q1m3b3VBXfIEFg2sHhTK06eNR7jqsKBDYaAU7wGMtyBsYA2QqagrjKMzr6Ee31mpGSADnc45L2GMxbQCHS4Y0lnNnddpVOE11U699VEQ+hNpNId7rCJaeMr0lNKUsE1VLtF9IwJle7zhJHwZdN37evLf9IkO9xERERUZgoquEXkERH5RxFhgZ5H3M0xV/kK6Aqv4HYjJabT4d7e1otjp48DEJzoURk2kbRsL8OdORZQz86ur46gvTcBpVSODndwXRVhw3sTEOxwpzdNAm6kJGmhImR419VGncK7OupMN9HTVKIhA9PGVTrHvycsJO3cGe5DfQW33859fXk3TSoW3ERERFRmCi2gbwVwJYC3ReRGETlqBNdUknSHuyrqz0w7315/hztlK8RTtnekuX+DYXXURNJSXvfXNIzAWEAnBmJgYnUU8ZSNvoSV1eHOzHCLiPcmINemyTpfpKQ/aaEyYnpvAtIdbufzth5nVGAxjO7UAAAgAElEQVRF2MS0cRUAnEklqYwMtz9SAgDjchTcetPksdPrcMy0Ohzhjhq0GCkhIiKiMlNQwa2UWqiU+jSAkwFsB7BQRJaKyOdEJDzwo98Z9KSO6kiwYw0EM9wpyy24Q859FWF/xjqUfbR71lhA8Y5r39eb8E6u1DIjJUC6APY2TbqvETYzIyUWKsKmd53Od+sxf+09CW/NU92Cu7kzljWlZPr4Cpw5tx5nHzkFAFDnvkZl2MTUugrs2tfvfY2zJ1bjqa+/D1PqogAYKSEiIqLyU3BERETqAXwWwDUA3gRwM5wC/LkRWVmJ8Trcgakgzsc6UhIyDG/0nj5ZsTLQ4Q45R7u7RbSRYyxgyDQw0S2423sTWR1uM7veRnU02OHWc7hzbZqsDPs63BkF975eXXAbmD7O6V43dcZyTCkJ4f+uOR3vPtSJzehIyez6KsyaWOVkuG19fL3zGP1GgZESIiIiKjcFjQUUkQUAjgJwL4CLlVJ73Lv+IiINI7W4UqILbl3cAukZ07rDbRhAnzvOzyu4fR3u6ojpHnzjfB4yBLp+tt0TKEOGYGKN7nDHBx0L6H8N/WZATynJynAnnA63l+F279P/1Me9O2MBdYe7Hynbhkh6/ngoY1KKjpTMmliF2oowlmxu8x1f73b/fdNYiIiIiMpJoXO4/1cp9WKuO5RS84dxPSVLH3zj73BXZE0pMdAbdzvc7n26w22Ic31/0goc7a6LWEsFN00CTsQjMz9tGNkFt+5Q68I7ZdveWMCw6YwZ7I47myYrw6a3bt2Zrq924h56DGCFe83E6ojT4U7ZqAw7s7v1uv10p3x2fRVqomE80h3zrtUd7nRWPd93mIiIiKg0FVpwTxCRyzJu6wSwWinVMsxrKkmZHW7TEERM3eEW77a+zEiJb0pHyBQkY+nxeSH3ZErA6R7rSEl9jVMA7+tNZHW0c9TbXsdar01HSnR3ubYi7EZKbNRVhr03ATp7PaHaKZib3DGAeu0Tqpz52klboTYa8orozA73xOoILjj2EJz/rqnYta8PSjmjAZ1r091/IH0CJREREVG5KLTg/gKcY9h1l/v9AJYDOExEblBK3TsCaysp8YwMt+4eA8EpJf15IiUR00DIMAIH3/i71ZZXJAuqIyYiIQP7ehMY7x5SoyMduSIluuCuzBEpAZzISJe7aXJKbdSbaqI70/ognKYOp+DWHfCaaAg98RRSlh3Y/BnKmE1oGoI7rnJ+EbLfnR/eHXO+DzpK4p/GQkRERFROCt00GQZwjFLqY0qpjwF4FwAF4DQA/2+kFldK0psm3RiJId6R7v4pJV6kJGPTZCRkImwKUpbtdXlDvpMm9dHuIdO5Tc/i1hssI77XyKTfBOhCOuXO+jZ1hzsa8uZwV0b8U0r0pk8D4yrD6ZMm3bVXR0PojiVhq+Dmz8wOt59+bH/SKbh1Z9ubN86Cm4iIiMpMoQX3oUqpvb7PWwDMVErtA5Ac/mWVnoQ7ss/rZpuG72M9pUR8myaDGe6I+9ikbyyg6Tv4Rs/h1sXsxOoI9vmmlOiDY3KNBdRvAgJTStyDbwAnUtLjn1ISCWa49evp19Gd96pICB3uYTj+eeK5in5Nf936jYcXKWGGm4iIiMpUoZGSRSLyOIC/up9/zL2tGkDHiKysxCRTNsKmESiudUHr7z73JgbJcFvKl+E2YNnO9bbtbHbUcY2JXodbwRBfF32ADHeF+89Eyoat0oVxbUUIe7ti3pQSvSbd4davt62tFxWh9Hu0mqiJzr5k4OsA0m8wcqlwJ7foNx7pTZNwv05W3ERERFReCi24vwzgMgDvdT//E4CHlTM0+QMjsbBSk7BsREIGwka6qx3O2DQZMgwveqJPmvQX3GHD8CaIAM4x7brzaymFpKUQdivT+uoItrf3ul3v9ImUuTLcx80Yh+MPHecV/jpvrtdXWxFyD75xstjzZ0/EuUdPwdwpNd5z6By3P6tdHU13uIORkvy/ONEd7vQGy2AUhhluIiIiKjeDFtwiYgJYqJT6AICHR35JpSmRshHxx0gMwysmQ7453FpWpCRkIBxyTqK0vYLbgCHOx3r8n85dT6yOYl+P0+F2oifO8+aKlFxy4gxccuIMbGzuBgDEksHxfbUVYXT0J5CwnPF+s+qr8LvPnhJ4Dj2KUL9RAJxNk7obX3CkxH18vx4LKMF1cw43ERERlZtBM9xKKQuALSLjRmE9JSuRsr1YCOB2uEPBSIm/86sjJRUZU0oSGUe76+I1YVne8wJAfU0EvQkLvfGUc53o0YP516ifS592GfJFSvSGSH3EeiZ92E5FKNjh1gJTSgrYNNmbSMGQdKGt18YGNxEREZWbQiMlPQBWi8hzAHr1jUqpr43IqkpQXEdKfDO3dbxEF97+zq/ucFf5O9ym0+HOdbR7wouBpDdNAkBLdxymKd5GxlyREk0/Vne405ESZ3PkCTPH42MnH5rzsRNzREr8Xe1CM9xepCRuBd6A6K+TU0qIiIio3BRacD/i/qE8dKREF5Fhw8g5h1uL+o59DxnijgUMZrj9YwF1wa0jJROqnCK5rSeOkCHec+c6aVLTBX88ZQc+P+HQcThmWh1+e8VJ3rSTTLrAr8iIlGhVhWa4w+kOt/+1OIebiIiIylVBBbdS6o8iUglgllJq4wivqSQlUjaivg53yBTfxJLsGdlRX7FZGTadYt00AlNK/GMB4xkd7pqoU3B39idhGoV2uJ3XTHe4nWvnz5mIp77+vgG/Pi9SEs4dKan0HWk/QM3vRVJshYwOt1twM8NNREREZaagOdwicjGAtwA87X5+oog8OpILKzXpDHe6m62z25FQugjX/N3dioiJSEi8CSRxN08d8kdKrGBXWh/T3tWfRMgwfCc25l+j7oKnN00WOoY9HSmJ+jLc/g63jpSETcm5cVNz7kfWWtNTSgpeEhEREVFJKDRS8hMApwJYBABKqbdE5PARWlNJ+u6FR8NSCltaegA4k0myT5pMF7gR3+7GGeMrMbWu0ivWdUHsZLiDkRKdC9czsjv7k5g2LuQVrOYAxa7uKPdndLgLMTHHlJJAhzuc/6RLPxFBNGQglrQD13oZblbcREREVGYKLbiTSqnOjM6lPQLrKVknzBwPANjZ3gfA3TSZMZ1E17chQ7ziGgDuu+Y0hE3Bva/uAADEUukpIjoqogvuUEakJGkptxPu3D5QdznkbZoMdssL4WW4Q7k3Terj4wfKb2vRkOkW3OlrRZzONzPcREREVG4KLbjXisiVAEwRmQfgawCWjtyySle6q+07adKbUuIUmNGMjYk6mpHOWKcLYjNr02QwUqJvC3nTUfKvzcyIlBRSHGtVERPRkJF306Q+xXKgCSWa/voz12qIsOAmIiKislNoxfVVAMcCiAN4AEAXgH8bqUWVMu+wmwGmlER9Gw8DjzWzC+LMDLd+rmrfJkXT1+EubNNkcANmIUQE373waHzsH9JjA/2Rkir3axpoBremYymZBb8pAou/NyEiIqIyU1DBrZTqU0p9Xyl1ilJqvvtx7EBfVEQuF5G1ImKLyPwBrhsvIg+JyAYRWS8iZxzoa46W9DHu4ttA6XZ03fsyO9zpxwYLYv/BMJkdbsMQVPu6yvr2gSIlpuHENuKp4EmThfrcmYfh5FkTvM8DmybdtRTynHrjZWaDXQRQ7HATERFRmSkoUiIiRwL4NoA5/scopc45wNddA+AyAHcMct3NAJ5WSn1cRCIAqg7w9UaNV2SbgtMOm4jLTp6BwydXO7cZgxXcboc7ZbnFse+kyVR2V7qmIoTehAXTN6VkoEiJXoM+Vj082MWDqAg7HXhbpQvuQmIqOpaSucHTNISbJomIiKjsFJrh/iuA2wHcDcA62BdVSq0HBu7GukfJnwXgs+5jEgASB/vaIy3sm719SF0F/ucTJ3r3mV7BnSdS4har8aSV7mS73yI9h9tf0DqRjri7uRLu9QN3mEOG4W3KHGqHO5OIoDoSQnc85Y0FLCzDnbsbbopwLCARERGVnUIL7pRS6rYRXUm2wwC0AviDiJwAYDmAryulenNdLCLXArgWAGbNmjVqi8wU9nW4M6Uz3INHSjJPjtQZbn9GutaNdPgPyBm84JYDynDnUx11Cm59IE5hkZLcIwQ5pYSIiIjKUaGZgsdE5F9FZJqITNR/BnqAiCwUkTU5/lxS4GuGAJwM4Dal1EkAegF8N9/FSqk73Xz5/MmTJxf4EsNPF8S5Ck9dPEfyRDnCvk2TZsYmyPRYQN+UkAo9ik+8CSiDFtymHNCUknz0tBQ9laWgTZNewZ2xadLglBIiIiIqP4V2uP/J/ee/+25TAPIefqOUOu9AF+VqBNColFrmfv4QBii4i4U3mSRHMTtYh9s7+CZleRssM8cC+jvnelKJMz7QuW2wejdkGgc0hzsf/0jDkGEUPIfbef3g7YYww01ERETlp6CCWyl12EgvJMdrNovILhE5Sim1EcC5ANaN9jqGShfEuSIl6TncuTPc+mh3f6REN6xzRUqCHe78nfXA+gxBdyzlvN5BbpoE0qMBQ+4s8IIy3Hk2TRoGM9xERERUfgasuETkO76PL8+47z8O9EVF5KMi0gjgDABPiMgz7u3TReRJ36VfBfB/IrIKwIkADvg1R0t6DvcAGe58U0rc2/sTVtZc7XgqOwZS42W4jYJOmgSCkZLh6HDrEybDIWfueCHPWZFn06QhgM2Km4iIiMrMYC3OT/k+vi7jvg8d6IsqpRYopQ5VSkWVUocopS5wb29SSl3ku+4tN5d9vFLqUqXU/gN9zdHiTSnJ0T02Bym4dUEeT9lZWfBckZKaaK4O98DrCxkGUm5ROxybJmt0htswnC73EA6+yT2lhAU3ERERlZfBCm7J83Guzwm+OdwDdrjzREpM31hAMzgW0Cu4fc+r4xymObQpJdpwdLi9SIkpXo57MPmnlAgsFtxERERUZgarjlSej3N9TkjnsHNnuAsbC9iftLzCVcQ5HTJ98E36sbU5MtyDR0rSjx+ODLe/yx4uNMOdbw63IWC9TUREROVmsE2TJ4hIF5xudqX7MdzPK0Z0ZSVKF7SZI++c2waOlFS5pzWmbBWYNmKIeAff+IvUGt8cbv32J3MjYqZT50zA+j3Oj7GQ+MdgLj5hOmqiIYg4R9kPZQ53ZjfeEHBKCREREZWdAQtupVTu7APlpTu84QOIlEwdV+Edb+6PZpgi6Ik7k0V0hMP/ccg33WOwevdfzj4Cf3x1h/u4g+9wHzdjHI6bMQ6A8wZAjyociO7wZxb8hsFICREREZWfQudwU4GiIQMR0/DiHn666x3JN6XENDBjfCV27usLdIpF0ke7V0fSxXqtb0qJuBW3MUjFPX18JeZOqcHmlp680ZYD9d+XH5/3zYRfvlMpDREoFtxERERUZlhwD7NoyMQj//oeHD65Ouu+wcYCAsDs+irs3NcXyELrwrQybAYy2P4Ot+UdfDN4pOOxr7wX65u7vMJ3uMydUlvQdfkiJSYPviEiIqIyNLwtTgLgxCyqckQrBstwA07BDQSLUf1xTUbXXH/unDQZnGoykMqIiZNnTRj8whGiu+CZGyxFwINviIiIqOyw4B5FusCMDtBZnj3R6Yz3upltIH3aZG00o+DOOYe7+Kc15u1wG5Lz4JuX325F0j1pk4iIiKjUsOAeRYV0uGe5He7dHf1Zj8vqcPvmcBd60mQxyLdp0jSyD77Z2NyNq373Ol7Y0DJq6yMiIiIaTiy4R9FgU0oAYE690+HuS1jebV6kJKPDXRUxETYF0ZDpnTA5DIdHjjj99Wdu8HQOvgleu729FwDQHUuBiIiIqBSx4B5FunAesMM9sSrv4zILbhHBXVfPx6dPm+UVr4NNKSkG3kmTWZsmkTWlZPd+p9OvD/4hIiIiKjWcUjKK0hnu/AV3ZSS7+61r6MxICQC8/6gpznMXeNJkMdDTUTI3TRo5ppQ0udGaeMoCERERUSliwT2K9FHqg43ju/qM2Zg5Id3p9jLc0fw/Lt0tHuykyWKQ96TJHBnu3V7BzQ43ERERlSYW3KPo1MMm4roLj8aJM8cPeN0NlxwX+DxfpCRwjY6UFH+9nR4LmHXwDWBn1NVehzvJgpuIiIhKEwvuURQNmfiXs48Y8uNkgEiJ5s3hLoGKW0dqMtdqGoJUxvg/3eFOWIyUEBERUWnipskSoCMlmXO4/dId7hIouPNsmjREYPkiJbGkhbaeBAB2uImIiKh0seAuAflOmvQLlWCkxMyxadK/Z7LJN4ucGW4iIiIqVSy4S4A3pSQazntNKZ40md3hBna09+L4nzyDt/d2Bw7/4VhAIiIiKlXMcJeAgjZNltBJk4YhuOLUmXjv3EmB201D0NGXBABsaO72jrePmAbHAhIREVHJYsFdArwM90CbJo3SGQsIAL+47Pis2/xvFjr6EmjtSUAEmDGhkpESIiIiKlmMlJQAXYhWl8lYwHz8bxb29SbR1hPHxKoIqqMmIyVERERUslhwl4B0hnvwTZOlECnJx58/39+XQHtPHPU1ETdSwoKbiIiIShMjJSWgoEiJlM6myXz87xU6+hLY15vAxOoIBMIMNxEREZUsdrhLgIggZIg33SOXsoiUBDrcSbT3JFBfE0U0zA43ERERla4xKbhF5HIRWSsitojMz3PNUSLylu9Pl4j822ivtRiY4szgHiguYro/yVI4+CYfI2PTZHtvAvXVEURDBjPcREREVLLGKlKyBsBlAO7Id4FSaiOAEwFAREwAuwEsGJXVFRlDZMD8tr4GKI2j3fPRYwABoLU7js7+JOqro9jfl2SHm4iIiErWmBTcSqn1wJA2+J0LYItSaseILaqIGcbgBbdZBpGS1p44AGBidQRNnTHn45oIovsNxJPMcBMREVFpKpUM96cAPDDQBSJyrYg0iEhDa2vrKC1rdNRGQ5hcGx3wmlCJzeHOpaXLKbiPmVbr3eZFSix2uImIiKg0jViHW0QWApia467vK6X+PoTniQD4CIDrBrpOKXUngDsBYP78+WoISy16P//ou6Ew8JdUSidN5qM73EdPrcOSze0AdMFtIp5kwU1ERESlacQKbqXUecP0VBcCWKGU2jtMz1dypo6rGPSacoiU6I2RR031dbhrIoiEOKWEiIiISlcpREquwCBxEkpvlizlOdxnHTkZADDN9wajvjrqRUqUKqtfXBAREdE7xFiNBfyoiDQCOAPAEyLyjHv7dBF50nddNYDzATwyFussJcdOr8PZR07GvCm1g19cpO66+h/w1o/Ox4SqCADnzcO4yjCiYedfU3a5iYiIqBSN1ZSSBcgx4k8p1QTgIt/nvQDqR3FpJWtKbQX++PlTx3oZByUaMhENmehxxwNOqIrAMAQRM11wV4TNsVwiERER0ZCVQqSE3mF0h7u+2vln1C2yebw7ERERlSIW3FR0qiImIiEDE3XB7R5pz9MmiYiIqBSx4KaiIyKor45gkjt7XBfczHATERFRKRqro92JBvRfHz8eh9Q500q8gpuzuImIiKgEseCmovS+eZO9j6MhJ8PN0yaJiIioFDFSQkUv3eHmpkkiIiIqPSy4qehFmOEmIiKiEsaCm4qeFylhwU1EREQliAU3FT2eNElERESljAU3Fb30WEBmuImIiKj0sOCmoscMNxEREZUyFtxU9JjhJiIiolLGgpuK3kCREstW+Pw9b2DZ1vbRXhYRERFRQVhwU9Eb6KTJfb0JvLChBQ079o/2soiIiIgKwoKbil7INGBI7pMmu2NJAEB/ghsqiYiIqDix4KaSEA2ZOTdNdsdSAIB+nkJJRERERYoFN5WEaNjIebQ7C24iIiIqdiy4qSRETGPASEmMkRIiIiIqUiy4qSQ4HW5GSoiIiKj0sOCmkpA3wx1nwU1ERETFjQU3lYTKsIm+RCrrdk4pISIiomLHgptKwviqMPb3JbNu15GSGDvcREREVKRYcFNJGF8VQUdfIut2r8PNgpuIiIiKFAtuKgkTBulws+AmIiKiYjUmBbeIXC4ia0XEFpH5A1z3Dfe6NSLygIhUjOY6qXiMr4qgK5aEZavA7V7BncjeUElERERUDMaqw70GwGUAXsp3gYjMAPA1APOVUscBMAF8anSWR8VmQlUYSgGd/cEutzeHmx1uIiIiKlKhsXhRpdR6ABCRwS4NAagUkSSAKgBNI7w0KlITqiIAgP19CUysjni3M1JCRERExa5oM9xKqd0A/hvATgB7AHQqpZ7Nd72IXCsiDSLS0NraOlrLpFEyvioMAFkbJ7vcgtuyFZI5TqIkIiIiGmsj1uEWkYUApua46/tKqb8X8PgJAC4BcBiADgB/FZHPKKXuy3W9UupOAHcCwPz581Wua6h0eR3u3iTuWbINm1p6cNa8yeiJJxEyBClboT9pIWwW7XtIIiIieocasYJbKXXeQT7FeQC2KaVaAUBEHgHwHgA5C24qb7rgXrFzP25dtAUAsHRzG2JJG9PGVWBPZwyxhIW6CqcT/teGXdjQ3I0ffvhdY7ZmIiIiIqCIIyVwoiSni0iVOGHvcwGsH+M10RgZX+0U0it27gcAnHXkZGxv7wMATKmNAgjmuJ9Z24x7X92BRI7j4ImIiIhG01iNBfyoiDQCOAPAEyLyjHv7dBF5EgCUUssAPARgBYDV7lrvHIv10tirjYYQMgSrGjsBAB8+fpp33+RaZ1qkv+Bu7UkgYdnYtLd7dBdKRERElGGsppQsALAgx+1NAC7yff5jAD8exaVRkRIRjK8Ko60ngfFVYbx37iTvvil1boc7kS6427rjAIA1uztx3Ixxo7tYIiIiIp9ijpQQBYx3c9xz6qsxbVyFNx4wM1KilEJ7r1Nwr97tdMSXbm7Db194O/B8saSFXzy1Hu098VFZPxEREb0zseCmkjHBHQ142KRqiAiOnV4HAJjiRkr04Te9CQuxpJPdXuMW3A+taMSvFr6NpGVjf28CsaSF59e34I7FW/H8hpbR/lKIiIjoHWRMIiVEB8Lf4QaA42aMw8tvt6U73O7x7jpOMqkmgvXN3UhaNtp6ErBshV37+vDPf2rAkYfUIhJy3m+2drPDTURERCOHHW4qGV6He7JTcF98/HRccOwh3uc6UtLmRkTOOnIyEikbm1t6vCJ8ZWMHtrT24qk1zXh27V4AQHNnbFS/jtGyuaUH//3MRnxvwWrEU8N/Eue6pi584o5Xsw4jIiIioiAW3FQy9Czuw9wO97um1+GOq+Z7s7fTBbdTAM6fPREA0Li/3yvCn17T7D1ff9KCCLC3qzwL7hseX4ffvrgZ9y/bibVNXcP+/M+ua8br2/bhsVV7hv25aXS1dMXwm+ffhm2X15lhtq3w6pZ2KFVeXxcRlR4W3FQyZkyoRDRkYM6kqsDtlRETABBLBDvcx81wMt5NHf1o73WK8EUbWwE4YwXHVYZxyuyJ2FumkZJd+/pw9NRaAMD2tt5hf35dxD/61u5hf24aXXe8tBU3PbcJ65uH/43ZWPrzG7twxV2v4Y3t+4f1ef/3+bfx+XveGNbnJKLyxoKbSsYnT5mJ575xNmrdjrZW4WaxMyMlRx5Si5Ah2NDcBcvt3MVTNuoqQvj1J0/Eom+/H7Pqq9CSo8Pd1NGPXy/cNGIdv1hy+CMefratsLujH6cfXg9DRqbgXtfUBdMQvLF9Pxr39w3789PoSFk2/v5WEwBg2wj8ezJWUpaN2xc7p9JubukZtudNpGz8fsk2vLChBZ39yWF73rG2s70PT67eg2Vb28fk9V/a1IqTbngW//Hk+sCIVyK/Dc1duO6RVSP+d+hIYMFNJSMaMjGrvirr9pBpIGIagYJ7fFUYFWETh9RVeKMBq9xO+NHT6hAyDUyojuCQuihauuNZhfWDDbvw64VvY3Or8xd1Z38SL21qzbmuxv19eHVL8C+plGXj7pe3Yte+7EL07pe34uSfPoe3dnVk3aeUQtI6+NMx23rjSKRsHDapGjMmVGJb+/AWxPt7E9jd0Y8rTp0JALjp2U3emxoqLUu2tHtvUre1FlZwl8LP+vFVe7DT/e9ve/vwvZF4YUMLOvqcQntVY/Z/w6Xqirtew7/+3wpccddr2HmQ/79o74kP+ZTfJZvb0NGfxJ0vbcU9S7dn3W/bCku3tDEe9A734BuNeOD1XbjvtR1jvZQhY8FNZaEibKC9J44HG3ahpSuOSTXO5JJp4yqwsdk5bfLkWRMAwItZAMAhdRWwbIW23mCsZJ0bl9jc0oPVjZ246OaXcfXvX/eOlu+OJXHboi2IJS388G9r8JnfLQucarlkSzt+9sR6XHLLkkBhvbO9D798ZiP6Eha+cv+KrA7Z9Y+tw4f/95WDPpK+qcPp2s8YX4k59dXYkafgiCUtvH0Ap3HqOMmHjp2Gr507Dwve3I1v/OUtdMeS+Mmja7PenLy+bR++89BKXHLLEmxpHb5uYzGxbTWqxcCmvd3406vbD7r4fWh5I+oqQphcGy2ow/2Lp9bjvP9ZXDRdSKUU7lmyLbB2pRTuenkr5k2pwdwpNcP6G56HVzRiYnUEIsCbO8uj4G7ujGF3Rz8++545METw+yXbDvi5LFvhwptfxj//qWFIvyHc3NKDI6fUYubESqxp6sy6//kNLbjyrmV4dGXTAa+NSt/yHfsAAL99cXPJ/YaJBTeVhcqIiUdW7MZ3HlqFFze2oN49FGfquAokLed/+vPn6IK7znucnuHd0hUsuNf6Cu6fPrEOCcuGCPDK220AgD8s2Y7/fHoDfvnMRize1ArLVvjJo2u9gmvZ1naEDEHENPCLJ9d7z3vj0+sRNg3c9umTsaczhhufWh943Vc2t2Hj3m7837KDe/e+e38/ACf3Pqe+GtvaerOKwQVvNuKE65/F+b96Ca8V+Gtk21a4ffEW/KVhFwDg2Ol1+Ob5R+K7Fx6NR1c24cwbX8A9S7fjG395Cx19CfTGU/jSfcvxiTtexdNrmrFyVwcWrtub85eya7wAACAASURBVLk7+hK44bF1eYs+pRTW7+lCZ1/u/8kqpdDaHR+TXzUqpfAv9y3HpbcsKXhqS18iha7Y0P7C2NsVwxfvXY5zb1qED/7qJfzo72uxZHPbgSwZALC5pRtPrGrCJ0+ZiSMPqcGWQQrTt3Z14M6XtmJbWy/uf33nAb/ucNrS2oufPLYO3/jLW16B17BjP9Y2deFzZx6GwyZVD1uHO5a0sGhjCy49cQbmTq7J+VuqkWLZCvt6EyMSc1vpduo/cuJ0fOSE6XiwYdcBvzFev6cLLd1xLN7Uit+8sBkA8MKGvdjg2x+wrzeB7ox/9ze39mDulBocPbXOa5IE1uh+r295cXPRbu5NWjaWbW3H397czU78COhLpLCmqQsfOGoyOvqSeHh541gvaUhYcFNZqAybSLn/E05aCpNq0x1u7aJ3T8NJs8bjffPSx8If4h4L759U0tmXxO4Op2Bdv6cLqxo7cPHx03Hc9HF45e02JFK29+us372yDbYCPn/mYVi6pR1LNjuF67Jt+/DuQ8fh4hOm4c1dHYglLSQtG4s2tuKjJ83Ahe+ehs++Zw7+/MYu73CenngKW1p7YIizKWuoxZi/w7q7w/mV8IwJlZgzqRrdsRT29QYLwdsXbcWhEyoBAMt3ZG8qe2r1Hpx54wv4+G1Lvb8AX9vWjhuf2oDHVjZh+rgKTHDf2Hzx7CPw00uPg2EIvnn+kejoT+Jf7l2Oy29/Fc+sbca3P3gkln3vPMycWOn95e7X3BnDx25bit8v2ZbzV4UtXTFccssSXHjzyzjvV4tx98tbcffLW73iurkzhjN+8QJO+flCfOm+5UP6vg2Hx1ftwXPr9mJlYyf+6fevD1j0W7bCNX9swHE/fgbn/Pfign+bsaO9Fxf/5hW89HYrjjykFl89Zy4McYpLLZ6y8NPH1+HFjYUd5vQ/z21CZdjEF88+AodPqsG21p6sQmH5jn249k8N+OitS3D175ZhSm0UJ88ajzsWb0FvPFXQ6+SyfMf+rH8nD8Qi92t9a1cH/rp8F5RS+N3L2zCuMoxLT5qOOfVV2NHel1WktXTF8OjKpsDXq5TCA6/vxO2Lt3i/zfJb29SFpKVw2uETcdKs8Xhz5348vaa54D0MB/pmcNPebhz342dw8k+fw/WPrT2g59CUUkikbLy6pd37/q/c1YGQIXjXtDpce/bhSFkK5960GF+5f8WAv0Fp6YrhR39fg+sfW+vFUJZucd4AnnP0FPz6+U341XObcM0fG/CDBWsAON+Dj/z2FZx702LvDUssaWHnvj634K7FtrberO/VmqZOhAzBpr09eNb3pv3h5Y14sGEXUgcYxdvc0oNbF23GL54KZsc7+hJYurkta49PyrKz3ixo33loFT5552v4t7+8hRcyDlR7aVMrVuzcf9CFeFNHP675Y4PX/Clnr25p9/5+BJz/xi1b4eoz5mDG+Mqc/40WMxbcVBYqwk4+e7JbaE92IyVTxzkFZcgQzJ1cgwX/eiZmTkznwKe6BfleX4d77R7nP/DqiIkXN7YglrRx8uzxOHPuJKzYuR8Pr2hES3ccX/nAXADA/NkT8J0PHYXaaAiPrtyN/oSFVY0dOO2wepx+eD0SKRtv7uzAqsYO9CUsnHFEPQDga+fOw8SqCP7z6Q3O6+7uhFLAV8+Zh/19SW8jWyFsW+HTdy/Dl+9fAcDpcNdGQ6irCOMwd6qLv8u3va0XG/d248rTZmN2fVXgf2rarYu2IGXbWLW7Ew+43cyHGhpRWxHCD/7xGFx30TGB6686fTbe/OH5+Nq58/DvFxyFdXu60NGXwB1XzcdXzpmHyoiJEw4dj5W7nNdKWTbuemkrNjZ342t/fhPNnTHMmlgVKCC1+17bgdW7O/H9i47B+MowfvbEevzsifV4eIXT4Xh8VROau2K46N1T8eLGVrz8du68/YHKlcUHgN0d/fjGX97CD/62BsfNqMOtnz4ZKxs7cedLWwE4xc0LG/bis394HV+6bzkeWt6IPy7djoXr9+IDR01BW0/cK1AGc/+yndjXm8DDX3oPbvvMP+BbHzwKR0+t837FmkjZ+Jd7l+N3r2zDr57bNOBzWbbCjU9twJOrm/GF9x6G+pooDptUjS73jdnerhhuW+QU1N96cCXe2L4P1ZEQzj3mENxx1Xz8+wVHo6U7jvfc+MIB/Yp/X28Cn7rzVXzunjcCexbufGkLTvn5Qjz4xq6CC5MXN7Zg3pQanDJnAq57ZDUuvXUpnl7bjM+cPgtVkRDmTKpGPGWjOaNwuvHpDfjaA28G8sKvbd2H6x5ZjRuf2oCP37YUd720FT2+NxW6QDxp5nicOHMC9vcl8cX7luOGx9YNuMZEysYvn9mAY3/8DP725tCn+tz98lYoKBw7vQ6LfXGtnz2+Dj99fF1BHd+W7hiu+t0yzP3+Uzj++mdwxV2v4bpHVgFwOtzHTKtDRdjE0VPr8Py3zsYXzz4Cj6/agx8/uibvvpJbF23Bva/twH2v7cC3/7oSSiks3dKOuVNq8NsrT8K8KTW4+fm3AThvDHd39OOPS7ejcX8/bAVceddr6OhLYGtrL5QC5k6pwVFTa2HZKrDRVSmFNbs7cfEJ0zFtXIX3331vPIXrHlmN7zy0CpfdtrTgorupox/fW7Aa1z2yGhfd/DL+6+mNuGPxVjy52hlxuqG5C/N/thBX3r0M5960GA8vb0QsaeG6R1bjxBuewxm/eAEt3cF/n/b3JvDYyiZc/g+HYkptFPf6GgcPNuzC1b9/HZfduhSfuOPVrDcTSinctmgLPvybl3HOTYvwYMOunD/T5Tv24dJblmDh+r2BxoRSCuuaurB+T/4pQxuau/Cb598ums67bStcdPPLuOaPDTkPn0taNq69twGfuONV7++nhu37IeLEQ0+YOW5Uf8M0HFhwU1nQowG/c8FROOvIyThzrtPF1h3uSTVRGIZkPW5STTRrFrfOb19w7FTviPiTZk3A++ZNQspW+N6C1ThicjW+ef6R+N5FR+O6i45GRdjE+e86BE+vacZr29q9Ltj8ORNhCPDa1nZvY+XphzsF97jKMD516kws3dKOzr4kVjU6/1O56ozZOHpqLR5qcIqOvsTgXcQHG3bh1a3teMrttu3u6McMt3utT+bc3pYuGp9d58wj/+C7DsFx08dlZSZXN3Zi9e5OfPkDc3HWvMl4bt1edMeSeHLNHlx8wnRc877DcfEJ07PWIeJ8j7949hFY/ZMLsPS6c3H+uw7x7j/h0PHY3dGP1u44nl7bjJ8/uR4X3vwSXt+2D9dfchz+8fhpWLu7M9BpUkrh0ZVNOOPwevzzWYfjya+/D0u/ew7mTanxfqX4zNpmHDOtDr/65Ik4dEIlvvvwanzrwZWBQnmwv2g6+5NZ3TwdFXrff72Iv+cYf+gUrXswf/YE/PqTJ+Kid0/DP757Gm55cTN27evDn17dgc/f04CNzd1Y1diJb/91JW54fB3eN28Sbvn0yaiJhvDM2mYoNXj+e+H6vTj98HocMy0diZo/ZwLe3NmBlGXjwYZdWLSxFfNnT8Cqxk7vtzS53L54C25fvAVXnjYLXzlnHoD0gVJv7uzAZ+5ehv98egM+dedr2N7eh59eehzuu+Y0/OqTJ+LEmeNxxhH1eOiLZ2DmxEr8+O9rCvp31O/pNc1IWgord3UE3hz8taERHX0JfOfhVXjKNzM/U088BdtW6Imn8Pq2fTjn6Cm4++pTcMWps7ClpQfXXXg0vnn+UQB8//773nAmLRsL1+1F2BT87In13m947n99J+oqQv+/vfsOj6rMHjj+PZNMeiOdFEpCCRAISJEiCthoYgPL2l1FV91FV9e+u791l12xrF1cFVfsiLiioiIICEgNJKEmEEhCIJAQ0kmbSd7fH3MzJjQLhICez/PkycydO3femXvmzrnvPfe+rH74XEYlRTH1i630e+xr9/X70/PLiAn2ITLIhwt7RXFx3xiGJoaxbHtxiySqotbB5mbfqZcWZ/PS4h142sSdLP5YB6rq+CS9gMvOiGNCSgy5B6rZX1lHRa2DN1fkMmN5jnun/Vif16UvrWBtbgnXD+nIVQM7MK5Pe77eUkjegYNsyC8nJT7YPX98qB8Pjkli8tkJvLNqF2OfW3ZYqVdlrYOP1u3mkr6x/Hl8T9bklrB0ezFrckoYmhiGn5cn06/tz4juEUy/tn+zzyGbEd0jePOmgVTXNzBv4173yelNPdxAi7KSoso6iqvqSYkL5rweUSy3Pu/vsoupb2jk8jPi2LC7/LBe5aN59JNNzFqbz5z1uzm/VxRrHj6XmGAfd8I9f1MhDcYw/Zoz6B4dyL2zMxjyr294f80uzusRSXW9kxnLW9a5z9u4F2ej4cZhnbh6UAe+3bafvAMHSc0t4cE5GxjeNZy/jO/J2txSHvv8+x00Z0MjD8zZwLSvMvHx9CDA25P7P9rAXz7dhDGGmvoGrvzPSia8uJxJr6zE225jSEIYq3IO0NhoaGw0XPXqKsY+v4zLp684YsldTX0Dv3tnPU8v2EbG7sM7V1pLTX3DUbdrG/eUs2VvBQu3FnL59BWHDc62emcJlbVOGhoN181YzdR5W5i1Np9ukYEE+9npGx/SYoyN04EO7a5+EXw8XQn32d0imDQg3j29qQc7PNDriM+ze9gI8/du0VuxuaCCqCBvzkwI5eO0PUQGehMT7EOYvxfhAV4khLt6b2w2YfLZie7njU9pz8dpe/jL3E142IQBHdsR6GOnZ0wQq3YewNNDSIoOJNT/+7aMSorkpcU7WJa9nw17yokN8SU8wJsrBsTz2OdbOP+ZpezcX0WfuBAqah1cnBLLiO4R3PX+eh4YncT4PjGUHKzn8a8y6dE+iMx9FXyYupvdpTXEhrgS7vhQPwJ9PPn3gm2k5ZeyIvsAZTUOesUEER/qR3JsMPM27qWsup5AHztbCip4duE2fOw2LukXi4/dg4VbC3nw443UOhqZ1D/uZ6+nlPgQwHV1h5krcolr50v3qEAig3y4/IxYvtlaxPRGQ8buMgZ0bMfTVslD7oFqbj8n0b3OYkJ8ubx/HI9/mcnqnQdIzSvl7nO74e3pwbTL+zB13lY+zdiDTeDJSSns3F/FVa+u4qZhnfndiERrPZczZ90eq+a0lh37D9IlMoD/u6gXZ3UNx9nQyJRZ6czbsBdfuwdvrsjl4r6xGGMQEfaW1/DFxr3cNLQTj47v6X6Pj4zrwZKsIq56dRXFVXWM7B7Bq9cPwNMmfLZhLx+t280/Lk7Gx+7ByKRIvtq0j/V5ZXSLDuS5K/secccwt/ggO/Yf5LrBHVtMH9AplLdW5rFlbwVvLM+hT1wwT0zsw6inv+Xrzfu4aVhn5qbvYcbyHEqr6/no9qH42D34z7c7ODcpkn9e2tu9rIRwV2J6+zvrsIkwsnsEi7P2Exviy+he0Ye1aUCnUP42oReXT1/Je6t3ccvwBLL2VbKtsJLO4f70iglCRGhsNKzNLaGsxsGQxDCCfOzM21hA53B/BnUK5ZVvdzC2d3sCvD3ZXlTFo+N68MbyHGatzWds7/bUORt4e6WrN29oYjj7q+q49a1UgnzshPrbcTQYRnSPJNjPztRLe/OPS5LdO34AHa0rG+UWVzPU+rqu2nmAilonz1yZwuNfZvLPL7byn+v689WmvVw7uCNRQT68el1/VueU8MgnG3lh0XYu7BVFRn4ZfTu4YjgswJvnrurH0m37uf6NNSzfXsx5PaMor3Fw1auryNxXwazJQ0iJD+bd1XmMSoqke3Qgry3dSVl1PSF+328H6p2NbNxTTmKEPyF+XhRW1PJJ2h7CArz5LKOAemcjNw3t5C4zW5dXiqOhEWejYUhCGP9ZupN+HUIYndz+iN+76Uuy2VNWw+zbhzCwk2tAsH3ltczftI+73kujss5JSlzIYc97aEwSAzq2408fbeD+jzJ4eGwPZq/bTb/4ENLyy6iqc3LzsM50jQrg5cU7mPxWKnXORoZYnQqJEQG8edMgAPrGh/De6l2E+nvx6LgeJEYE0DUygP+t38PQRNflSzuH+7vOffG0sXBrIfsqahmTHO1O9pNjg+kY7s/bq/JYnVPC4qwiArw9mXppMit2FPP2qjwusGK1odHgcch3qWnnfVFmEY+M7cEtwzu7Y2VM7/a8vTKPiloH324rok9sMGN6t+eCXtF8mJrPm9/l8n8TenFx31gaDLyzMo/+Hdph97CBuDo9ukQG0LN9EGH+3ry0OJt/zNtKQVkN0UE+vHJtf/y9PSmqrOOVb3cwOCGMC3pGMeWDNOZvLuQP53blnvNcO7//+jKTV5fupEOoH4E+dlbnlDCoUyjXDu7Iny7sztebC7l3dgaZ+yqpqHWwOqeESf3jmL1uN7PX5XPzsM6IfN8B8sT8THKKD+JpEz5J20Pf+MPXdZM563bz2rKdlNc4uLBXNFFBPvSODebMhFDXe7U+R2Nwb6uMMZTXOFrE9J6yGi58ZindowP524ReJMcGt3idJVn7EYGnJqZw7+wMPkzd3WL7tmDLPnzsNj66fShPzs/itWU5dIkM4OFxriOrTfGakV/GuT2iOB1owq1+EUIDvOgaGUBUkE+L6c17uI+ma2QAC7YUce8Fdewrr2Xexr2MSY6mS2QAAP06hCAi+Ng9WHr/SHztHi1+0Juc1SWCED87B6rqeeLyPu7rhQ9JCGPG8hxsIlx7SMLUN74dIX52Fm0tIiO/jN7WRumSfrE8/mUmhRW1XD+kE5sLygnysfPMwm28vnwnlbVO/vhhBqF+XnyaUUBVrZNnJ/dl6hdb+WDNLg7WORnU2fXDavew8dbNg/jDB2nMWpvPkMRwKK3m+iGutjQNEPTXTzezKLOIylpXb+UdIxIJ8rFzblIkNoF5G/YyISXmmBvrH5IcG4RN4PVlOazNLeXRcT24ZXiC+/H+HV0ntq7LK2VRZpG7NMPuIYw5JJm4tF8sT3yVyW3vrMMYGJ3s+qEd1iWcL6YM589WL9bd53djygfpFFXWMe2rTEL87Hh72rhvdgaeNhu944LpHB7AuD4xfJq+h+veWM2twxPYVljJkqz9PDw2CQ+bjb9/voXJb6WyuaCCZ67sy9x014lRNwzt1KJdMSG+vD95ML+dmYqflwfTJvZx/1BNSHGdlNZkdK9od0KVVVhJmL8Xt5+TSHGV60o7TTuMC7e6alYP/WEZYH1ef567mZ3FB3nuqr4kRATQLSqATzMK6BTmz92z0ukeFUhxZT2/fz+NDqF+VNQ6uef8bi2WFRviy8BO7Wjn58Vt5yTSKyaIP7yfxqX9YvH0OPLB0P4dQxmSEMbLS1zXu35ifpa7Jn1Ax3Y8dnEys9buYqaVMHeLCuChsT1YueMAd47swi3DE/gms5BHPtnEGGv9XdAzmrJqBy8vyaawopan5mcxu9nJUZ42oYt19ZHKWiejkqLcsQ4c9t2MCfbFy9O1/v715VYwEB7ojZ+XB2OS21NT38jD/9vIFa+sxNFg+M2gDoArmRiSGMbNwzrz6CebWJxVxK6Saq45s0OL5Q9OCCPQ25OvNu+jc4Q/98xKJ7uokqhAH+6Zlc5VA+MprqrnhqGdCPG1M33JDhZuLaJ/x3a8vDgbb7uNVTtL3CUUCRH+FFXUuUtZAr09uX90d7pGBVLnbMDL08a6vBKKKusI9ffivzcNZNIrK3no441k7asiPNALH08PZq7MZVzv9gxJDOP1ZTlc0jfGnWyDqzPiopQY/pe2h5HdIxjT+/BkXUS4oFc0pdX1PDBnIxNfWQm4yptc6yqK3nGubda0iX34PKOAqCAfRiZFHrasO0d24Z1VefzjkmR3Wd+lZ8TyxFdZlFbX0yHUz10a2DUygC837ePLTft46ussYoJ9EYEe7YPwsAk+dhvfbC1kUWYRw7uG42P34OpBHfj3gm2syythbnoBH6zJJyU+mL9fkkxSdBDFVXXc8MYaNhdUkBQdyI3DOrWIlbG92zNjeQ6zU3eTnl/mPvLjYROuHtSBqwd1aPZeEpm3oYDJb7c8X+SB0UmICNHBPjw0tgd/t3qyn7uqL/7ernTr3gu6kZpbwkNzNvDSIj+yCiv560U9uWlYZ/dyHhydRH5JNdO+yiIy0Jue7YOYddtgd3ubyhJX7jxA5t4K/L08eOziZHIPHOS1ZTuZsTyHXjHBvPibfqTnl/Hf73K5YUhH9lfV8VlGAQ+NTaK4ynVSe5eIAIoq6xDrSOy9szPo2T6IXjHBvLd6F/VWmU5koDdXDoxn4dYithdWEtfOlw9vG0JkkA9/nruJd1btomtkAFcMiOeqQfFMX5JNnbOBvAPVXP3aKj65cxiJEQHu97jE2qm57IxY3luzi5cXZ3NhzyjmpheQsbuM1TklDO8aQXJsMDNvHkRlrYMAb0/3Z9A7LhgPm7RIuJs6Q05VcqrU85xIAwYMMKmpqW3dDHUSFVXW4mgw7l7dJg2Nhm6Pfsml/WJ5alLKEZ+bua+CCS9+R2JEAMVVddhtwme/Pwu7p41BUxfy4Ogkbmy2MTyW7KJK/Lw8iWnWjrLqep5duJ20XaX87eLkwxLWKR+kueu1p16azDVnuhLh9PwyIgK93e/J2dDIzTNTWZNzgNevH8hf5m5ip9XzM/nsBB4e24M1OSX89s21VNY5+cv4ntx81vftdjQ0UutoOGzgoNKD9fT7+wIAzuoSzhUD4xncOZTIZjsvt72dSmm1g7duHuT+Ufy5Lnv5O9bvKiPEz863fxpJsG/L9pz79BIKymqpcTRwzZkd6B4diIgc1rsLrtrWpduLiQr05omJfVpsbHOLDzLy6SV4edioczby/NX9mLki110+MDghlP9cO4Bgv+9fv9bRwANzNjA3vYBAH0+mnNuVW4YnUF7tYNA/F1LnbCQ8wNt9GHNi/7ijxlV5tYNaZ8NhO4HNORpcJ+COTo7mxUXZvLv6+yt/eNqEcX3akxAewBvf5RAT4suXU4Yftozfv5/G/M37iAryZtG9I7B72JixPMf9Y981MoC5dw3ji437uG92BgBXDohn2sQ+R23XT5G1r5Jb30pllzWy6RMT+5C2q4wXF2dTUeOgztnItYM7MCwxnPtmZ3CwvgEfu43Pfz+cLpEBzE3fw5QP0gHoHhXI/HvOJqf4ICOfWkJsiC97ymr4w6guXDekE++v2cXGPeU8fllvwo6xE32ot1fmsmVvJd6eNipqHHy2oYDxfWJ45sq+OBsaGfPcMkoO1vOXi3pycd/YFs+tqnNy5tSF2GxCZa2TWZMHc6bVg9vk9++n8ZlVyx7sa+epSSmEBXhx9aurqLOuh//NH89BBM6atpjiqjoaGg1enjY8RAgL8OKOkV3YX1lH2q5SfOwe3H1eNxqNoX2wT4vv7MTpKyivcVBUWcd5PaJ4+ooUsosqrSMq35+EGubv5R5hNzzAm7l3DTts+1hd76Sooo5O1tGNo2lsNFz3xmrKqh3898aBFFfVE+Jnp32wz3ElOAVlNYx6egkAt5yVwH0XusqAPkzNJyO/jOuHdOKzjAJmr8snNsSXj+8Y5pp35loWbnWVjzwxsQ9XDIhnf2Ud419Y5j4fZ3SvaFLzSgjysfPBbYO58931bNhdzl8v6sWEvjEEeLfsb2xsNFzw7FL3js+c3w11dwAcSd6Bg5RVOzC4Ej2bCD1jglr0Aj8xP4v8kmpeuLpfi8+poKyG8S8sx8vDxtRLk4/YQ1te42Dsc8vYU1bDkxP7tDhyC3DOk4sJ8bWTXVTF2N7teXJSCl9s3Msd7653nShcUk1iRAAVNQ58vTz4cspwlm0v5ra31+FhE3f5XKCPJ5W1TmwCnjab60jErWfi6WHDGFfZ1oodB3ht6U5S80pJig7knG4RvLUyj96xwQxOCOX5Rdlc2CuKkoP1rM0tJczfi8paJxMHxHHHiEQmvPgdjcZQ62ggzN+b/h3b8fmGAu4a1ZU/nt+NlTsOcM3rq2iq6Avw9qSqzslTk1KYeIwjqmOeW8aO/VV4W+Nw3H1eV/eO0skkIuuMMQN+cD5NuNUv3T8+38LQLmGMSjr6Yad3V+fxzIJtJEYE8OfxPd2HvwrKaogM9D5qD9+JsGBLIbe9ncr9o5O47eyEY/6AORsaKa12EBHoTWWtgxcWZbO5oJxXrxvg7kGpdTSQnl9GSlyIu7b9h4x+dikRgd68fsMAvD0Pf05Do8Emh/ce/hy1jgbKqh3uwYkO9WlGAQu3FNI1MoDbzknEy/Pnf/ZT521he1EV1w3uyLk9oqh3NvLttv1sKahg8tkJR/x8jDHkHqgmNsS3xWsv2FKIj93m6jlalM2QxDBX7/8RSkB+DmMMG3aXk5pXSmSgN+vySvlf2h7KaxwM7NSOaZf3IaFZD1FztY4GjKHF+/l2237eX72L+y7sRpdIV13s+l2lRAX5EHOcidKhquudfJJWwOjkaHfJVFFFLXe8ux4vTxszbx6E3cNGTvFBsvZVcEaHdi126BZlFvLy4h1cdkYcv7F6kB+cs4HtRVWM6BbBnSO7nLDPGVw7wT52D3f8VdU58RA56vflpcXZfGOd6HrHyC6HlSrsLa9h3oa91Dkbmdg/zr2TVVxVxzLrqjK9YlzblKXb9rMoswgfuwc3D+vkPtH7x66Pf3+dxfPW5fbevGkgI7q7epObThjcVVLNvvJazkwI480VuRRV1nLHiC6H7dj+VCdyG9DcwTonPnaPwz7T5ppOIGyKgax9lXyasQd/b09uHtbZvR7Lqut5+uttxIf6cuvwBFbtLOE3r6+iKc154ep+Rzz3pElhRS3Xz1hDWU093z0wqlW3+6UHXTF4rG10hnXlnUfH9TxsW/nvBdt43johtalUyBhDen4ZybHBLNhSyBvLcyircTDt8t707xiKo6GRJ77KxMNmo0OoH54eQmpuCZ3DAzhY5yRjdxlPTUo5YieBMYa95bXunaz/pe3mnlmuHfgR3SOYccNACi//nQAACJZJREFUPGxCen4Z//xiK5v3lDP/nrOJa+fH2twSnpyfRVJ0IKXVDpZv309ptYPP7jrLfYQku6iSuekFdI8O5PyeUazLK2Vw57Bjfu8XZRZa22UPfO0enNU1nKGJ4Uedv7Vowq0JtzqNVNc78fNquwqvOmcDdpvthCY16vgZYyiuqifM3+u0XTen+mHe002to4HsoipiQnxbnA+ijuzDtflk76/iwl7Rx+yxblLnbKCq1vmTjqC0lfIaB8VVdS1KNU6mppPSY0N8W2yfjDHUORuPejTU0dDI3rLaI44cfTrShFsTbqWUUkop1Yp+bMKtlwVUSimllFKqFWnCrZRSSimlVCvShFsppZRSSqlWpAm3UkoppZRSrUgTbqWUUkoppVpRmyTcIjJJRDaLSKOIHPXMThGZIiKbrHnvPpltVEoppZRS6kRoqx7uTcBlwNKjzSAiycCtwCAgBRgvIl1OTvOUUkoppZQ6Mdok4TbGbDXGZP3AbD2A1caYamOME/gWV5KulFJKKaXUaaPthrb7YZuAqSISBtQAY4GjjmYjIpOBydbdKhH5oYT+RAsHik/ya6rTg8aGOhqNDXU0GhvqWDQ+Th0df8xMrZZwi8hCIPoIDz1ijJn7Q883xmwVkWnA18BBIB1oOMb8rwKv/szmHjcRSf0xIw2pXx+NDXU0GhvqaDQ21LFofJx+Wi3hNsacdwKWMQOYASAi/wR2H+8ylVJKKaWUOplO5ZISRCTSGFMkIh1w1W8Pbus2KaWUUkop9VO01WUBLxWR3cAQYJ6IzLemx4jIF81mnSMiW4DPgDuNMWVt0Nwfq83KWdQpT2NDHY3GhjoajQ11LBofpxkxxrR1G5RSSimllPrF0pEmlVJKKaWUakWacCullFJKKdWKNOE+TiIyWkSyRCRbRB5s6/aok09E3hCRIhHZ1GxaqIgsEJHt1v921nQRkeeteNkgIme0XctVaxOReBFZLCJbRGSziEyxpmt8/MqJiI+IrBGRDCs2/mZN7ywiq60YmCUiXtZ0b+t+tvV4p7Zsv2p9IuIhImki8rl1X2PjNKYJ93EQEQ/gJWAM0BO4WkR6tm2rVBt4Exh9yLQHgW+MMV2Bb6z74IqVrtbfZGD6SWqjahtO4F5jTE9cV1m609pGaHyoOmCUMSYF6AuMFpHBwDTgGWNMF6AU+K01/2+BUmv6M9Z86pdtCrC12X2NjdOYJtzHZxCQbYzZaYypBz4ALm7jNqmTzBizFCg5ZPLFwEzr9kzgkmbT3zIuq4AQEWl/clqqTjZjzF5jzHrrdiWuH89YND5+9ax1XGXdtVt/BhgFfGRNPzQ2mmLmI+BcEZGT1Fx1kolIHDAOeN26L2hsnNY04T4+sUB+s/u7rWlKRRlj9lq39wFR1m2NmV8p6zBvP2A1Gh8Kd8lAOlAELAB2AGXGGKc1S/P1744N6/FyIOzktlidRM8C9wON1v0wNDZOa5pwK9XKjOvam3r9zV8xEQkA5gB3G2Mqmj+m8fHrZYxpMMb0BeJwHTFNauMmqVOAiIwHiowx69q6LerE0YT7+OwB4pvdj7OmKVXYVApg/S+ypmvM/MqIiB1Xsv2uMeZja7LGh3KzBnVbjGswuBARaRoFuvn6d8eG9XgwcOAkN1WdHMOACSKSi6tUdRTwHBobpzVNuI/PWqCrdeawF3AV8Gkbt0mdGj4FbrBu3wDMbTb9eutqFIOB8malBeoXxqqjnAFsNcb8u9lDGh+/ciISISIh1m1f4HxcNf6LgYnWbIfGRlPMTAQWGR257hfJGPOQMSbOGNMJV16xyBhzDRobpzUdafI4ichYXLVWHsAbxpipbdwkdZKJyPvACCAcKAT+CnwCfAh0APKAK4wxJVYC9iKuq5pUAzcZY1Lbot2q9YnIWcAyYCPf12I+jKuOW+PjV0xE+uA60c0DV+fXh8aYx0QkAVevZiiQBlxrjKkTER/gbVznAZQAVxljdrZN69XJIiIjgPuMMeM1Nk5vmnArpZRSSinVirSkRCmllFJKqVakCbdSSimllFKtSBNupZRSSimlWpEm3EoppZRSSrUiTbiVUkoppZRqRZpwK6XUKU5EGkQkvdnfgz9zOUtEZMCJbt+PeN1LRKTnyX5dpZQ6VXj+8CxKKaXaWI01BPjp6hLgc2BLWzdEKaXagvZwK6XUaUhERovI7Gb3R4jI59bt6SKSKiKbReRvP2JZA0VkhYhkiMgaEQkUER8R+a+IbBSRNBEZac17o4i82Oy5n1uDcyAiVSIy1VrOKhGJEpGhwATgSat3PvEEfxRKKXXK04RbKaVOfb6HlJRcCSwEzhQRf2ueK3GNQgfwiDFmANAHOMca1fCIRMQLmAVMMcakAOcBNcCdgDHG9AauBmZaI9odiz+wylrOUuBWY8wKXENP/8kY09cYs+NnvH+llDqtacKtlFKnvhorWW36m2WMcQJfAReJiCcwDphrzX+FiKzHNfxzL+BY9dPdgb3GmLUAxpgKa9lnAe9Y0zJxDUHf7QfaWY+rdARgHdDpJ75PpZT6RdIabqWUOn19ANwFlACpxphKEekM3AcMNMaUisibwA/1TP8UTlp21jRftsMYY6zbDehvjFJKAdrDrZRSp7NvgTOAW/m+nCQIOAiUi0gUMOYHlpEFtBeRgQBW/bYnsAy4xprWDehgzZsL9BURm4jEA4N+RDsrgcCf8L6UUuoXRRNupZQ69R1aw/04gDGmAVcJxxjrP8aYDFylJJnAe8B3x1qwMaYeV/33CyKSASzA1Wv9MmATkY24arxvNMbUWcvLwXXFkeeB9T+i/R8Af7JOvtSTJpVSvzry/dE/pZRSSiml1ImmPdxKKaWUUkq1Ik24lVJKKaWUakWacCullFJKKdWKNOFWSimllFKqFWnCrZRSSimlVCvShFsppZRSSqlWpAm3UkoppZRSrej/AZ+qXx5aI2kWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pylab.rcParams['figure.figsize'] = (12, 4)\n", + "pylab.plot(counts, values)\n", + "pylab.xlabel('Eval count')\n", + "pylab.ylabel('Energy')\n", + "pylab.title('Convergence with no noise');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Performance *with* noise\n", + "\n", + "Now we will add noise. Here we will create a noise model for Aer from an actual device. You can create custom noise models with Aer but that goes beyond the scope of this notebook. Links to further information on Aer noise model, for those that may be interested in doing this, were given in instruction above.\n", + "\n", + "First we need to get an actual device backend and from its `configuration` and `properties` we can setup a coupling map and a noise model to match the device. While we could leave the simulator with the default all to all map, this shows how to set the coupling map too. Note: We can also use this coupling map as the entanglement map for the variational form if we choose.\n", + "\n", + "Note: simulation with noise takes significantly longer than without noise." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VQE on Aer qasm simulator (with noise): -1.6539436913665533\n", + "Delta from reference: 0.20333133883582666\n" + ] + } + ], + "source": [ + "from qiskit.providers.aer import noise\n", + "\n", + "IBMQ.load_accounts(hub=None)\n", + "device = IBMQ.get_backend('ibmqx4')\n", + "coupling_map = device.configuration().coupling_map\n", + "noise_model = noise.device.basic_device_noise_model(device.properties())\n", + "basis_gates = noise_model.basis_gates\n", + "\n", + "backend = Aer.get_backend('qasm_simulator')\n", + "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_mapper=167,\n", + " coupling_map=coupling_map,\n", + " noise_model=noise_model,\n", + " basis_gates=basis_gates)\n", + "\n", + "counts1 = []\n", + "values1 = []\n", + "def store_intermediate_result1(eval_count, parameters, mean, std):\n", + " counts1.append(eval_count)\n", + " values1.append(mean)\n", + "\n", + "aqua_globals.random_seed = 167\n", + "optimizer = SPSA(max_trials=200)\n", + "var_form = RY(num_qubits)\n", + "vqe = VQE(qubit_op, var_form, optimizer, 'paulis', callback=store_intermediate_result1)\n", + "vqe_result1 = vqe.run(quantum_instance)\n", + "print('VQE on Aer qasm simulator (with noise): {}'.format(vqe_result1['energy']))\n", + "print('Delta from reference: {}'.format(vqe_result1['energy']-ref))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAEWCAYAAABVMkAmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYXGd5/vHvM3WbtGqrbrkXuYCNhcEBg42pjmkOToCEJPxwSEggEEgoAQIkIQkJBAKh2BAMphiMjTHYxg13y02yVS3JsorVpV2ttu9OfX9/nHOm7M7MzpbZkbz357p0sTtz5syrAjzz7P0+rznnEBERERGR2gjVewEiIiIiIi9kKrhFRERERGpIBbeIiIiISA2p4BYRERERqSEV3CIiIiIiNaSCW0RERESkhlRwi4hIzZjZRjO7uMLz95vZVVOwjj82s7tq/T4iIqWo4BaRacXM3m1mq8ysz8z2m9lvzeyV9V7XC5Vz7izn3P0AZvZ5M/txndbxE+fc6+vx3iIiKrhFZNows48CXwP+DVgALAO+Bby1nusqZGaReq9BREQmlwpuEZkWzKwV+Gfgb5xzv3TO9TvnUs653zjn/sG/Jm5mXzOzff6vr5lZ3H/uYjPbY2YfM7NDfnf8vf5zLzOzA2YWLni/t5vZOv/rkJl90sy2mdlhM7vBzOb4z51gZs7M3mdmu4B7/cf/1Mye96//rJntNLPXjuF+f2Zmu8ysw8w+XbCusJn9o//aXjNbbWbH+c+dYWZ3m1mnmW0xsz8s82d5iZmtL/j+bjN7suD7h8zsbf7XO83stWb2RuAfgT/yf7qwtuCWx5vZI/567jKzeWXet+zfQfB3bGbXmVm7/2f3GTML+c/9uZk97H9tZvZV/x49ZrbezM4u+DfwZf/P7qCZfcfMGsv9uxIRqYYKbhGZLi4EGoCbK1zzaeDlwLnAi4ELgM8UPL8QaAWWAO8Dvmlms51zjwP9wGsKrn038FP/6w8BbwNeDSwGjgDfHPberwaWA28wszPxOu9/DCwqeM9ANfd7JXA6cCnwT2a23H/8o8C7gMuAmcD/AwbMrBm421/zfOCdwLf8tQz3GHCqmc0zsyjwImCxmc3wi9MVwEOFL3DO3YH3k4WfO+danHMvHvZn9V7/fWPA35d4z0DJvwP/uW/4z53k/9n8qX/f4V4PvAo4zb/+D4HD/nP/4T9+LnCK/z7/VGE9IiKjUsEtItPFXKDDOZeucM0fA//snDvknGsHvgC8p+D5lP98yjl3O9CHV9QCXI9XyGJmM/AK2uv95/4K+LRzbo9zLgF8HnjHsPjI5/2u+yDwDuA3zrmHnXNJvILPFVxbzf2+4JwbdM6tBdbifYAAuAr4jHNui/Osdc4dBi4HdjrnrnXOpZ1zTwM3AVcO/0Py1/gkXtF6vn//R4BX4H1g2erfs1rXOuee9e97A16xW07JvwP/pwvvBD7lnOt1zu0EvkLx31/hPWYAZwDmnNvknNtvZga8H/g751ync64X70PCO8fwexERGUFZQRGZLg4D88wsUqHoXgw8X/D98/5juXsMe+0A0OJ//VNgpZl9ALgCeMo5F9zreOBmM8sWvDaDlyMP7B62jtz3zrkBMyssYKu534Ey6zwO2MZIxwMvM7OugsciwI9KXAvwAHAxsMf/+gheVznhfz8W5dZaSrm/g3lAlJF/f4U/GQDAOXevmf0v3k8FjjezX+J11RuAJmC1V3sDYEB4+D1ERMZCHW4RmS4exSsG31bhmn14hWdgmf/YqJxzz+AVeG+iOE4CXvH8JufcrIJfDc65vYW3KPh6P7A0+MaPacwd4/3K2Q2cXObxB4bds8U594Ey9wkK7lf5Xz+AV3C/mvIFtyvz+GTowOtcD//7K/ln4pz7unPufOBMvAjJP/j3GATOKvgzaHXOVfoAICIyKhXcIjItOOe68aIZ3zSzt5lZk5lFzexNZvaf/mXXA58xszZ/494/AWMZY/dT4MN4RegvCh7/DvBFMzsewL9/pckoNwJvNrPfM7MYXmTECp4f6/0KfQ/4FzM71d88+CIzmwvcCpxmZu/x/1yiZvbSguz3cCvx4jQXAE845zbid8mBB8u85iBwQrCRcTI55zJ4cZQv+lny4/Hy6iP+/vzf18v8/Hk/MARknXNZ4LvAV81svn/tEjN7w2SvV0SmFxXcIjJtOOe+gleEfQZox+vqfhD4lX/JvwKrgHXAeuAp/7FqXY/X4b3XOddR8Pj/AL8G7jKzXrxNhy+rsM6NeBsjf4bX7e4DDuF16Md8v2H+G68wvQvoAf4PaPTzyq/Hyyvvw4t5fAmIl1ljP96fz0Y/Zw7eTxGed84dKvPewYeQw2b2VJXrHYsP4RXQ24GH8T4Afb/EdTPxCusjeD+VOAz8l//cJ4DngMfMrAe4h3xOX0RkXMy5Wv6ET0REJsrMWoAu4FTn3I56r0dERMZGHW4RkaOQmb3Zj700A1/G67jvrO+qRERkPOpScJvZlWa20cyyZraiwnXf9w8m2DCV6xMROQq8FS/asQ84FXin048kRUSOSXWJlPibcLLA1cDfO+dWlbnuVXjZxeucc2dP4RJFRERERCZFXeZwO+c2ARTMOS133YNmdsIULElEREREpCZeMAffmNn78U4Io7m5+fwzzjijzisSERERkRey1atXdzjn2ka7rmYFt5ndAyws8dSnnXO3TPb7OeeuAa4BWLFihVu1qmRKRURERERkUpjZ86NfVcOC2zn32lrdW0RERETkWKGxgCIiIiIiNVSvsYBvN7M9wIXAbWZ2p//4YjO7veC66/FOLjvdzPaY2fvqsV4RERERkfGq15SSm4GbSzy+D7is4Pt3TeW6REREREQmmyIlIiIiIiI1pIJbRERERKSGVHCLiIiIiNSQCm45KjzwbDu7Dg/UexkiIiIik04FtxwVPvTTp/j+IzvqvQwRERGRSaeCW+oum3X0JtIMJjP1XoqIiIjIpFPBLXU3kMrgHCQz2XovRURERGTSqeCWuutPpAFIpNXhFhERkRceFdxSd71DfsGdUodbREREXnhUcEvd5TvcKrhFRETkhUcFt9RdnyIlIiIi8gKmglvqrm8MHe6hVIZ3XvMo6/d013pZIiIiIpNCBbfUXd8YMtwHuod4bHsnT+zsrPWyRERERCaFCm6pu6DDXc1YwP6kd233YKqmaxIRERGZLCq4pe5ykZLU6Bnu4HCc7oFkTdckIiIiMllUcEvdjSXD3R8U3Opwi4iIyDFCBbfU3VjGAg4kFCkRERGRY4sKbqm73KbJKsYCqsMtIiIixxoV3FJ3QaQklXFksq7itQP+pskuFdwiIiJyjFDBLXUXFNwAyVFiJf0Jr8Pdo4JbREREjhEquKXu+sdQcA8UjAV0rnI3XERERORooIJb6q63oOAeLccddLhTGcdAUkfBi4iIyNFPBbfUXX8iTTRswOiTSoION2jjpIiIiBwbVHBL3fUNpZndFAOq6HAXdLVVcIuIiMixQAW31FU26+hPZpjbEgdgKFW5wz1Y0OHuGlDBLSIiIkc/FdxSV/1+AT2vJehwjz6lpCUeAdThFhERkWODCm6pq2AT5Jzm6iIlA8k0i1obAI0GFBERkWODCm6pq76EVzTPbfYiJaPO4U5mWDSrEVCHW0RERI4NKrilrvr8DvfcKiMlA4k082fECYeMrsFkzdcnIiIiMlF1KbjN7Eoz22hmWTNbUeaa48zsPjN7xr/2w1O9Til2oHuo6JCaydA35N0vP6Vk9A53SzxCa2NUHW4RERE5JtSrw70BuAJ4sMI1aeBjzrkzgZcDf2NmZ07F4qS0K69eyXce2Dap90xmvA53a2MUgERq9Ax3UyzsF9yTW/yLiIiI1EKkHm/qnNsEYGaVrtkP7Pe/7jWzTcAS4JmpWKOMdLgvyZGByY1xpDPe8exN8TBQucOdTGdJZRzNfoe7a5LXIiIiIlILx0SG28xOAM4DHq9wzfvNbJWZrWpvb5+qpU0rqUyWTOXEx5hlsl7B3RzzPvsFBfdX7trCrev2FV0bnDLZFAvTNiPOwZ6hyV2MiIiISA3UrOA2s3vMbEOJX28d431agJuAjzjnespd55y7xjm3wjm3oq2tbaLLl2Gcc6QyjqxfIE+WtH+/pljQ4fYiJdc9+jx3bTxYdG1wymRzLMKSWY3sPTKIc97r79p4gBtX75nUtYmIiIhMhppFSpxzr53oPcwsilds/8Q598uJr0rGKyiMM25yC+7MsII7mc6SSGfoHkwxOCzPHZwy2RgLs3R2I/3JDD2DaVqbovxg5U46+hK84/ylk7o+ERERkYk6aiMl5gW8/w/Y5Jz773qvZ7pL+VmSWnW4o+EQsXCIRDrL4T4vmz00rOAODslpjodZ4s/i3tM1AEBnf5KBZOUNlyIiIiL1UK+xgG83sz3AhcBtZnan//hiM7vdv+wVwHuA15jZGv/XZfVYr0AqXasOt1fIh0NGPBIikcrS0ZcAYHBYAd2fy3BHWDLbK7j3HhkEoKMvOeJ6ERERkaNBvaaU3AzcXOLxfcBl/tcPA+XHmMiUSgYd7smtt3Md7kjIiEdDJNIZ2nv9gntYh3sgkc9wL57lHe++t2uQbNZxZCBJNKx/LiIiInL0qUvBLceeWkVKggy31+EOk0gXdLiHR0qCDnc8zJzmGA3REHuPDNI9mCKTdWSy3qbOUEiFt4iIiBw9jtoMtxxdgoI7M9kZ7kzQ4Q55kZJ0NtfhHhoWERkomFJiZiye1ci+7kEO9ydy1wwv0kVERETqTQW3VCVXcNdoSkk4bMQiIRKp8pGS4Fj5Rn+iSTAaMNhkCfkuuIiIiMjRQgW3VCXpb5qs1ZSSiL9pMpnJ0uEX0CML7qDD7RXcS2c3srdrkMP9+YJbGydFRETkaKMMt1Sldh3uwiklYRKpLAMJP1KSyhZlsvuTaRqiISJh73PiklmNdPQlc5NKAI0GFBERkaOOOtxSlXR24hnuqx/Yxj//5plh9/UjJZafUhJsmoT8Ue8AfYk0LfH8Z8QT5jUD8OTOztxjA4qUiIiIyFFGBbdUJRcpmUCH+5Fth7l/y6GixzJZR8ggFMzh9jdNRvyudmGspD+Rprmg4D5rcSsAK7cdzj2mDreIiIgcbVRwS1UmY0rJUCpDX6K4A53OOiIh759hPBKmezBFbyKdO9hmRMEdyxfcx89poiUeKbpnkPMWEREROVqo4Jaq5Odwj/8eiXR2RMGdyTrCfjc7Hgmxt8vLYy+b0wQUb4IcHikJhYzli2YA0DYj7l2fSnPtIzvYerB3/AsVERERmUQquKUqk7FpMpHKMJDMFHXJ0xmXi4/EIiGC25/c1gJ4XfFAfyJDczxcdM8gVnKc3xHvGkjxhd88w41P7Rn3OkVEREQmkwpuqUoyM/EMd7ABsrDLnclmCftHsh83p4mmWJiPvu40Ll0+H6ic4QY4a/HM3GuB3MSSnsHUuNcpIiIiMpk0FlCqkkpP/Gj3oFvdl0jT2hgFggy3V3B/4NUn85evOolIOMTq573JI5UiJQBnLwk63H7B7UdSulVwi4iIyFFCHW6pymRESoKCu7+ow+0ImVdwh0KWm7HdEPWiI6N1uE+d38IbzlrAxae3EY+E2HNEBbeIiIgcXdThlqrkp5SM/x5BpKR3KF9wF3a4CzX6BXdQpGezjv5kJnfKZCASDnH1e1YA0BQLq8MtIiIiRx11uKUquQz3sEjJoZ4hHni2fdTXO+eKIiWBTNblMtyFGv3COoiUDPivHd7hLtQUi9DpH/PeM6gDcEREROTooIJbqpIuEyn58eO7+Isfrhr19amMI6jV+0Z0uEf+M2wcFikJYiiVC+5891sdbhERETlaqOCWquTncBcX3AOJNMlMdtTNlIl04ebHfDGcyWZzc7gLDc9wB13x4ZsmCxUW3D1DqdyaDvYMFW2+FBEREZlKKrilKkGkZHiHO8hlp0cpuIdS+fB3X8FpkJkyGe54JIQZDCXH0uHOP+cc9Pqvefs3H+Hb9z9XcX0iIiIitaKCW6pS7mj3ZK7grrybsqjDPTQsw12i4DYzGqPhER3u4QffFGoatqGyZzBFOpNlX/cQh3oTFdcnIiIiUiuaUiJVKTeHO5kZT4c7HykpN6UEKCq4B/yueMVIif9cyCDrvBx30BEvPLFSREREZCqpwy1VKTeHO+hcZzKjFdzFB9gEynW4wctxDya99+1PVhEp8XPfS/xj3nsGU3QNJP33n8A8QxEREZEJUMEtVckf7T7s8Soz3EHWG4bN4c6UnlIC3mjA4aMEK3W4g1GCJ8xtBrwOd5c/rWRQHW4RERGpExXcUpVyU0oS1Wa4h50YGajU4S6MlFSzaTLIdxcV3LkOtwpuERERqQ8V3AJ4B9N8+/5t7OzoL/l8+UiJX3CPFinxoydNsXBRpCSdzRIpcfAN+AV3Muhw+6+PVto06RXjJ8wrLLhT/vsrUiIiIiL1oYJbAG+E3pfu2MztG/aXfL7clJKg4B7++HAJP0M9ryVeFCmpmOGOFXe4m2NhQmWuhfyUkqWzGwmHrKjgTqjDLSIiInWigluA/BHqqXTpwjlV5mj3ascCBh3uuS2xYR3uSlNKQrkoSH8iXTFOAvmCe05zjJkNEXqGlOEWERGR+lPBfZR7Zl9Prqgdi4Fkmr//xVru2LAf5yp3nyFfcJcrnEebUjLqpsmCDne1U0qGz+GutGESYMmsJiIhY+nsRlobo3QPpulWhltERETqTAX3UayzP8mb//dhbl23b8yvfWZfDzeu3sNf/fgpvnX/tlGvH/AL7mCu9nD5TZPFjyerzXD7Be+8ljj9iXTuQ4DX4S4/pWQwWX2H+xWnzOWxf7yURa1BwZ3vcGssoIiIiNRLXQpuM7vSzDaaWdbMVpS5psHMnjCztf61X5jqddZbZ3+STNblcshjUVg4b9rfM+r1QSe5XOEcRE2Gd7irHQsYbFqc1xIjlXF85OdrWLmtY/Q53LlISabiKZPgnU45ryUOwEy/4D4yoEiJiIiI1Fe9TprcAFwBXF3hmgTwGudcn5lFgYfN7LfOucemZIVHgSB6Ua7rXElhDCVVxeuDDnS5a5OjbpocbSyg9/zc5hgAt6zZh3P+lJIKBXcuw51Ms3Bmw6i/j0BrY5RdnQPgf0BIprNks67ipksRERGRWqhLh9s5t8k5t2WUa5xzrs//Nur/Gj2MfBT47fr9tPcmJnyfPn+aR2ocGe5gk6NZ/utKgkhJuWsLC/HCjZPlIiW/enov3YP5zvxQOkM0bLQ2RXOPzWuJk8mU73BHwyFSGYdzjlQmSyxS/T/Xk9ta2N05wL7uodxjCY0GFBERkTo4qjPcZhY2szXAIeBu59zjFa59v5mtMrNV7e3tU7fIYQaSaT7wk6e46ak9E75XX8IrWMfT4Q4K5OZYpKpNl4OjdLgLHy+MleSOdi8owvd3D/KRn6/h9vX5EYNDqQwNkTCvPm0+H3vdaTTFwiQzGS/DXWYOd9D5zmQd6QqFeSlnL2kl66C9N0HwMsVKREREpB5qVnCb2T1mtqHEr7dWew/nXMY5dy6wFLjAzM6ucO01zrkVzrkVbW1tk/FbGJegUxxs9puIYF71RCIlzfFwVa8fTHrvlS5bcOcL6myw4TGTzR31nioouIPMeeGfQSKdJR4NM6c5xocuPZUZDd4HgUoZ7uDxdNZVHB9YyjlLWnNft83wct2aVCIiIiL1ULMMt3PutZN4ry4zuw94I17++6g1OMq0j7HIFdzjiEIE798cj1SV4R4cJVJSuIYgrl0Y0SjMcJfKng+lMsQLIiGxSIhkOltxSkk0nO9wZ7KOSLj6z4cLZsaZ1xKnoy/BwtZGDvYkVHCLiIhIXRy1kRIzazOzWf7XjcDrgM31XdXogthCpSL533+7id9tOjjqvYLCtZqCebjg/Vvi1UVKBsYRKSm8b2GGu3coNeL5RDpLQ7Sg4Pbz2ZU73N71Xoe7/ObKUsyMs5fMBGDhTK/DrUiJiIiI1EO9xgK+3cz2ABcCt5nZnf7ji83sdv+yRcB9ZrYOeBIvw31rPdY7Frl51mWKXOccP3hkJ/dsOjTqvXKd4nFtmsxnuKuaUpKsXHAXjv0L8tqFHe7C50t15hOpDPFIfqxfLBImkc5WLKSDx9OZ7Jgz3JCPlQTTTTSLW0REROqhLmMBnXM3AzeXeHwfcJn/9TrgvCle2oQNjlJwD6YyJNJZElV0WycSKckV3PEw+7uLX5/NOnqGUsxqihWtC8rP006ls4QMsi4/pSQ5SsGdKoqUDOtwR0IkM9VluDPjyHADvGTZbABOmNcMUNWfuYiIiMhkO2ojJceaDXu7Wbu7K5cTLpfh7uz3jhqvZkRdPlIy9mmI+U2TkRGvv2HVbi760n1FmebROvPJTJaGqNehDiIlwYQSKJ3hThRFSjK51wPEwyGS6UzFQjrIcKfHkeEGuPj0Nn7zwVfmCm9FSkRERKQeVHBPki/etol/ufWZUY9IP9Lv5ZsLi9Vy+oaCa8ezadIrir3xe8WvX7O7i95Emp6COdmjdrgLCu5siUhJqlSGe1iHe/imyaFUFufyWe3hgscz48hwg5fjPmdpa27dipSIiIhIPajgniTN8Qh9ifSomyY7B8bT4R7fpslYOEQsHBqxlu0d/QD0+veHwiklI98rk3VkHTT4BXNu02ThRsqCQr2vRBRmKFXc4Y5FQrn3HG0Od2qcGe5AY67gVodbREREpp4K7knSEg/Tn0zn5lmXK7iP+JGSaoq/iWa4Y5EQsUhoRBG9vd0ruIPCGAoPvhnZ4Q5en4uUBB3u1Bg2TaaHdbjDIQZS3nXlCulIeNgc7jFGSgJBdlyREhEREakHFdyTpKUhQt9QFR3uMhnuoVSGfV2DRY9NpMOdymSJhs0/Hj3/+p6hFB19iaL7Q+HR7iPfK+hkB0er9ycyfOqX6zjUmz82PVPwut4S01UqdrhHmVIS3GeskZJAXB1uERERqSMV3JOkOR6hP5EZPcMdREqG5YmvfWQnb/jag7l8NJQ+QKZayXSWaDjkF9wud9+guw35TjTki9FSJ02m0sUd7vV7u7n+id08tLUjd01xh3tkhtubw11ccAd/VqPN4Q7y7uONlAQd7vFk4UVEREQmSgX3JGmJRUhmsnQPjjz0pVC+w13cbd3V2U/vUDpXBDvnSmahh7tlzV52HR4gkc5w7SM7cgVzsiBSApDyp4js6OjLvbavZIa7VKTEeyxfuHrXHupN5K5Jl/qgMKzDPXzTZPDTgNE63MFmx/F2uGPhECErPmpeREREZKqo4J4kLQ3eSPOOPq+gLpvhHggy3MXPt/cmi55P+MeeQ/kOd/dgig//bA0/emwnD2/t4Au/eYYndx7JvX+wabJwPYUd7mAKClSOlAzPcAf3OtRTECmpkOF2znkZ7sIOdziEv/ey7JSSIMMdFPjjzXCbGQ3RsCIlIiIiUhcquCdJc9wvuP2u7+hzuIuLvyBX3eV3yAvjHuWK9417uwE43JfMvf5wv/efXoa7oMOdyUdKFrd6Jy8WdriHKhztHjwWdKiDaEZ7QYe78HVBZz7hPxZcX9jhLvy6XOc6iJAkJtjhBu/DwlAVoxhFREREJpsK7knS4hfc7X7hW35KSenZ2rmC2+9wB8Vw3J8ysrdrkH+/fVNRJ3l9UHD3JznsF/JBQZ/KOGIRL8Ptfe+93/Od/Zy6YAaxcIi+xMiDb9IVIyVehzoogIP3hGEd7mGRksSwDDjkN2BChSklfud7aIIZbvBGAw4mleEWERGRqaeCe5LkCm6/61tug165OdyH/ShK14BXkAdd4rnNMZLpLPduOsjVD25ne3s+gx0U3J39STr91x8uiLR4U0qKJ3109iWZ1xL3pqokvPdyzuWnq1SKlET8grtEpzidzZ8+GbxXKtfh9q4fPhYwUG4Od3iSMtwA8WhIHW4RERGpCxXckySIlOQ3TY4s7pxzHOlPYuZ1hIOCtL/gwJygw93rF8Ozm2OkMvmCeG/B6MANuUhJItdtDiIlwzdNBoV012CK2U1RWuKRXFFfWNCWOmkymctwl572EQ1bbrNmX4koTNARH75pMlCucx18WEikJpbhBu/DQkIZbhEREakDFdyTJOhwB0p1ivsSadJZR1tLHMgXrkGcBPIZ7qBwneN3uIPIx74ub6Niz1CKnYcHiIatZKQkGAtYuGkykfbGFs4KCm4/+hEU8zMaIt6pksOK7mAsYLDpsbDDHTKIR8K5Qj3InkfDNiJSUrhpMhoeQ4Z7gnO4wfuwoINvREREpB6qKrjN7Jdm9vtmpgK9jGBKSSCZzrKzo5/3/N/jua53kN9e5G9aDDquRQV3EClJFBTcmWxupF1wOE7Q3X7pCXNIpLPsOTIA5CMlqYw3paQwwx3ce1ZTjJaGCL1Dab7zwDa+ctcWAGY2Rr1rs1mcc/zt9U9z35ZD+Qx3sGmyYMJKLBIiErZchjtY99zmeO5DR1CgF8ZIijvcZaaUBBlu//0mlOGOhUdMhhERERGZCtUW0N8C3g1sNbP/MLPTa7imY1JLrLjgzjpY9fwRHtrawWPbDwP5uMei1kagsMOd33zYNZBkMJlh9fPeeL85zTHA62hDvuB+/rBXYF9w4pyi7/ObJofN4S4ouGc3xZjhd7hvfmovP31iFwAzG/yCO+PYc2SQX6/dx+82HcxlvWf4zxdGSmLhEJFQKNfhDtYZdOYLr49HSxfcZedw+5GSIHsdLZP1rkZDRGMBRUREpD6qKridc/c45/4YeAmwE7jHzFaa2XvNLFrLBR4rmuPhEY8Feey1u7sYSKb5j99uJmSwfNFMYGSkZMHMOEcGUnzwp0/xk8d3cd6yWcyf4XXDgy55kOHe3zVYdK+gw3x4WKQk6HAn0tncjO9ZTVF/02SafV2DuXnYMxu9Dw3pTJa1e7oAONCdYH+3F2NZMjv4oJAvXOPRsJf9zniRlW6/qJ/bEquY4Y5XNaWkeCxguU54NRqiYUVKREREpC4io1/iMbO5wJ8A7wGeBn4CvBL4M+DiWizuWBIJh2iIhhhKZQmZ1+EOOspr93Txr7dt4smdnXz1j87NFZtBx7XDP/Tm5LYWugaSbGvv5w9XLOVLf/AifrByJwA9g15UY18YTDhiAAAgAElEQVS3X3B3D9E2I878GfHcGhqjYY4MJP0NmW5Yh9sxmAwiJV6G+2DPUFHMIuhwJzNZ1u72C+6eQQ50DxELh5g3LHsO+ZhIOuu46oerWOUfvDPXj8I453LRkngkPOJ1UE2Gu/KJlNVoiIaLojAiIiIiU6XaDPfNwENAE/Bm59xbnHM/d859CGip5QKPJcHGySAL3TXoFdLrdnfz6zX7uOIlS3nruUtyhWdhh3tWU5R5LXGeO9RHXyLN2UtaMbNcwRx0uA90D5HJOg70DLGwtZG5zfmC+5T5LTjnddaTmeJNk6l0liMFkZKWhsiITHNQcKczjrV7uv338zrcC1sbRhxEA15MJOpnuPd1Dea6yHP94jyZyeay6mOdUjKZGW5tmhQREZF6qbbD/XXn3H2lnnDOrZjE9RzTWuIROvqStDZG6RpI0e13pYODYK54yRIgX3ju6xrkc7dsoD+ZYV5LnNlNUfr9zZEnt3mfY4JISFBwpzKOjj6vCD6lrYW5LbHc+586v4X1e7s53J/0j3Y3ohF/DnfRpsloUeY8Fg6RzGRzkZKhVIb1e7oJmZc739U5UFRwF05giYVDpMiSznjHty+d3ciJ85pp8zvv3nSU4rGCMCzDXSabPTzDXe66ajTHI/QXnKwZePZgL6e0tRCaQDEvIiIiUkm1odjZZnbFsF+Xmtn8mq7uGBPM4m4NOtwD+c2Qi1sbePmJc4H8eLx1e7pZu6eb5w71Ma8lRmtTvngOCu54QYc7qAn3dnkxj0WzGmiKhXPXnLpgBuBNKsltmiyaUpIkFgnRGA0XTVW56NR5QL7DvWl/L4OpDC89YQ7OwTP7e1jU2pB7/5EZ7hDprFdYX3RqGz9638tyE00KC+5ykZLyU0qGH+0+/gx3cyxCIp3NzQsH2N05wOu/+iAPPdcx7vuKiIiIjKbaCuZ9wPeAP/Z/fRf4BPCImb2nRms75owsuFMsnNnAwpkNvPtly3Jd1KBAPtQ7lHvtgpkNzPJf1xwLs2Cm1yEOCtOeoRTL5jQB8OyBXvoSaRa1NmBmzPUnmZy2wCvSO/0Od6lNk7ObophZLv4SCRlXrlhKcyzMQn9c4ab9PQBccob3eSqZzrKwtYGQlYiUhEOEQ16kZCiVyf3eYn5xnfQ3Uxb+vr3nx57hnkikJNjU2l9wnH2wibTwg5GIiIjIZKs2UhIFljvnDgKY2QLgOuBlwIPAj2qzvGPLjOEF92CSGQ0Rbv3bVxIt6M4G0YrgGPhvvOs8zj1uFque7wTg5PktmF/cBgWzc3DK/BnsPDzAo/6YwYX+eME5LTH2dQ9x6nyvw93RlyCdHb5p0ouUzGr0ivMZfod7YWsDbzx7EZcuX8ADW9qBfCF6+sIZuTUvmtkw4iAa8DLcibR3QmUinc2N/su9b9oVTCkp6HCPIcOdmISj3YMPGH3JNK1N/uZQ//eRKXG6poiIiMhkqbbDvTQotn2HgOOcc51AavKXdWwKOtyz/IKuqz/lRz7CRRnhoPAMCu6LT2/juDlNuWI4iJNAcWHaNiPO8kUzuWPDASB/gM6c5jgN0RCLZ3nfH+jxOufDN012DaRya2uJe/+5eFZj7tqo/17BaZcnz8uvY2FrY1HHOVhXzO9wpzJZkuls7veWP1I+U3IOd3wcc7gnmuEGinLcwbpKHWcvIiIiMlmq7XDfb2a3Ar/wv/8D/7FmoKsmKzsGDY+U9CbSNMZGzucOis323gQh8/LFQK7zesr8fKFbeAR6YzTMa85oy0U+Fs70Cuzj5zRxsHuISDjErKYoB/252bGCIjqZ8SIlQTEfZLiX+AU3QNQvfHv8gntha0Nu1OGiwkhJOktzLEzYn6ISCYVyR8/HCwrx4NqSJ02G838u5TrcYZu8DHeuw11QcKvDLSIiIlOh2oL7b4Ar8OZugxcnuck554BLarGwY1EQ0wg61ZAvpgsFmyYP9yeZ1RTNdb+Pn9PErKYoL/NPj4TiDndTLMzFp7fxzfu2YeblvgE+8aYzGEh6hWRrY5R2/yCd4k2Tjq7BFLObgw63t66gKw7kivPuwRSxsBdHWTizgZ2HB1jU2pCboJJIZWlpiDA7GqYxGiYSNroHveca/N9bfNimyWjYirr8xRnu0oV0KGSELN/hnliGWx1uERERqY9RC24zCwP3OOcuAW6q/ZKOXblOdWP+8M1KHW7ITwYBb3b1mn96fdlrG2Nhzj1uFq2N0aJ8dks8kiugWxujuaiKt2ky35XuGkjS6n8YmNcSIxq2om56EO3oHkzR5G8yXDCzgT1HBpnbEmfoyKB/rwyzQ1G+eMU5LJzZwL/dvinXOc5vmswX3IVRk0BRhrtCVCQSDuUOCJrI0e75TZOFBbd330xGB+KIiIhI7YxacDvnMmaWNbNW51z3VCzqWBUUdUE0BLyu9HBFBXdj5b+C4ZGSSDjEO85fmiuqh5vZEGXzgV7AK2rNjGjY6B5Ikso4Zvtrm9UU43cfvTh3XHvhe3UNpGj2131SWzMdfQnCISNoRGedVwhfcro3xSQSMvqTZQpuf0pJ4e+58Png9eVEQpbrRE+kw52PlOSnlCTV4RYREZEpUG2kpA9Yb2Z3A/3Bg865v63Jqo5Ry+Y0EY+EcpsZAZpKREqCEyST6WxRN7yU2LAON8BnLz+z7PWtjVE6+4MOt1egxsIhDvkF+uyCWd/L5jYVvTZaMIIwOLjmk29anusKFxa8hRsYI+EQA34hG8RlgihLMp0lkcqOLLgLPkgE2fBSwiGbnDncFSIlynCLiIhILVVbcP/S/zUpzOxK4PPAcuAC59yqCteGgVXAXufc5ZO1hlp43ZkLePwfLy06QrxUhxugwS+4CyMlpRTGKMrdq9DMxihB/RgUtdFIiIP+5JLC7nu593KOXIe7tTGa+1AQLiiMC8ccRkKWO30yOPAmGi7OcAeFeKnf12gd7r4SBf9YVdo0qQ63iIiI1FJVBbdz7odm1ggsc85tmYT33YC3CfPqKq79MLAJmDkJ71tTZsasphjpvnzco1yRHI+GYSg9pg53Q3T0grvwfrGC4vdgj7em4JCcUgrjK6U686EyHe7CQjjX4R4lUmJmuSPlR8twOxesb/wFdzzijS9Uh1tERESmWlU/ozezNwNrgDv87881s1+P902dc5uqKdzNbCnw+3inXB4ziieLlP5MExSgM0cruIuK4LEV3EEB7UVKvA73nKoL7pHvVRj9iBRcW/i64PcV/Gci6HBHRv5TC/6cRutwBybS4TYzmmPhooJbHW4RERGZCtWGYj8PXIA/c9s5twY4qUZrKvQ14OPAqGMkzOz9ZrbKzFa1t7fXfmUVVFMk5wruhso/ZCjKcFfR4S7chJkruCMhUhmvqKxUcBd2rZviI9dVHCkp0+EuMaXEy3CPXHtwTaVCuig3PoEMN3ixksJNk8GUkrSmlIiIiEgNVVvBpEpMKKlYpZjZPWa2ocSvt1bzhmZ2OXDIObe6muudc9c451Y451a0tbVV85KaKSy4S40FhHw8ZNRISRX3KlQ6UuIVrSGjYma8sFPdXKrDXfCvJVImg90wbNNkKoiUREt0uMNBh7v8P8PJ6nCDd9hPqQ63IiUiIiJSS9VumtxoZu8GwmZ2KvC3wMpKL3DOvXaCa3sF8BYzuwxoAGaa2Y+dc38ywfvWXCjkjeJLZVzJg2+g+khJOGSYeRsZq+lwFxXc4eJu8+ymWFEOe7jiDZolOtwFry0szguL75Id7nSW2U3lIyWV6ujC6Eql6Ek1muOR3PhCILfRU5ESERERqaVqO9wfAs4CEsD1QA/wkVotCsA59ynn3FLn3AnAO4F7j4ViOxAUu+UjJd7jo00pCTYXevca/fNRuU2TALMrxEkKr/Pea5QMd5mox4hNk8HBN6U63JEQkZBhFcYCBu8TMip+WKiGFykp2DSZUodbREREaq+qgts5N+Cc+7Rz7qV+bOPTzrmh8b6pmb3dzPYAFwK3mdmd/uOLzez28d73aBIUnOViIEEBOlqHG/LFe1UZ7obCTZP5OdxQOb8NxUV0cNJkoXBRvCNU8vF4wUZIs2BKSZkMdzg0akwkeH6i+W3wTgItipTkOtzKcIuIiEjtVBUpMbPTgL8HTih8jXPuNeN5U+fczcDNJR7fB1xW4vH7gfvH8171EhTczSU2H0K+MG0d5aTJ3L0S0BAbvegsOaXEf685TZUL7uBUynJRmKJNk0UH34wsuHNj/9KlxwIG6xotJhJESiITGAkYaI5H6C+xaVIdbhEREamlajPcvwC+gzeeLzPKtUJBh7tMVzrYXFhVh9ufIV24gbKcwvvFxxgpAa+TnMpkSkdKiuZwl85WF84Kj0VCo44FHK3DHdx7ohsmAVri4dIH32RUcIuIiEjtVFtwp51z367pSl5goqNmuIOxgKMX3NFwiMZouGLWORAOGTPiEXoT6aI53ABzmqt5L2MwVT4vHg4ZmawbNhYwv/mxsPgODrZJpEaeNAnen0FklA8R+UjJZHW40zjnMDMdfCMiIiJTotpg7G/M7K/NbJGZzQl+1XRlx7igyC0fKQkTi4SqOj0yFglVNRIwEHS5c5smg0hJc3zU1+Y+KJTIcEM+VlJqLGA8UvyhIBYZJVJSRYY73+GehAx3PEI663KFdkIH34iIiMgUqLbD/Wf+f/5DwWOOqTn85pgUj4Qwo2ShCfD7L1rEvJbRC2DId7irNbMxyt6uwVzxHOStq+tw+x8UynS4QyEgMyxS4t9/+CSSWCTEQDJN1pX+cxhLhnsix7oHWvwPP/2JNA3RsDrcIiIiMiWqKridcyfWeiEvNLFIiKYKMZCXnzSXl580t+p7OVd9wR1sxAyK1KDYnT3KpknIF8/lojBBhzsaGtnhbhg2iSQWDtE7lPbXMPJ+DdFw0SjCkuuZxAx38NOGvkSauS3xgqPdNaVEREREaqditWNmHy/4+sphz/1brRb1QhCLhEoejz4e8XB10ZNAa2OUWDiUK/ajVY4FhNHnh4dykZLCsYDe16U63LmCu8Qc7ve/6iS+8JazKq5nMjPcLX5MJtg4mdSUEhEREZkCowVj31nw9aeGPffGSV7LC0osHCpbtI7VFS9ZwjvOX1r19a2N0aIIRrVzuCHf4S6XPQ8mlRRmuId30nPvGwnlittSkZLli2ZyyRnzK6+nBh3uYDSgMtwiIiIyFUZrwVqZr0t9LwWWzWlissq4d16wbEzXX3x6cRGb3zQ5esE92nSVoPCNljj4ZnhspCUeYXt7P5DfwDlW+Qz3xDdNLpvTRMjgV2v2csGJc3KREnW4RUREpJZGK7hdma9LfS8FPvfms+r2B3TZOYu47JxFue9XHD+b1y6fX9XGy0iu4C7T4a4wpaRhWGzkhLnNPLS1Ayid4a7GZHa4j5/bzFUXncQ1D27n8nMW5TvcmsMtIiIiNTRawf1iM+vB62Y3+l/jf99Q05Ud40KTUCBOlkuXL+DS5QuqujYWNuIVDqQJGs3RooNv/Az3sKL6lPktua/LTWsZzWRmuAE++rrTuGn1Hn6xeo863CIiIjIlKhbcbiyjMeQFIRoOlc1vQ8Ec7qJTJ0tnuIsL7vH9Uwry4aMdkFOthmiYxbMaOTKQzB3tntKUEhEREamhyali5AUjMspmz/ymyRIZ7miFgrvElJJqhCcxUhKY1RSlsz9J0NhWh1tERERqSQW3FIlHQrkDYkrJbZosynCXjpTMnxFnhn+v8UZKgntPVqQEvIOBDvUkct8rwy0iIiK1NDmDouUF429fcyq9iVTZ5/ORksIMd+lNk2bGyfNbWLO7a9yRkpp0uBujtPflC251uEVERKSWVHBLkXOWtlZ8vtQc7nC49FhA8GIlXsE93rGAxYf3TIZZTdGiIlsnTYqIiEgtKVIiY5I72r3w4JtcpGTkP6cgxz2WkzILTeZYwEBrY7Toe3W4RUREpJbU4ZYx8evtokhJ/uCbkQX3lecvJR4JsWBmfFzvF65BhntWY/4AoFg4pJMmRUREpKZUcMuYlNw0GURKSnSx57bEee8rThz3+0VLTEWZqJkFHe7GWFgdbhEREakpRUpkTPIH0VTX4Z7w+wVzuCd5LGCgORZWh1tERERqSgW3jEmpo91zGe5x5rQrqUWGu7DgVodbREREak0Ft4xJPlIyRR3uGmS4CzdNNscjpDOaUiIiIiK1o4JbxqTU0e6N/smUMyocmDNe+aPda7NpsjGqDreIiIjUlgpuGZMgul24ifHEec1c/Z7zuXT5gkl/v1KZ8YlqiIaI+etvjkeU4RYREZGaUsEtY1JqSgnAG85aSKwGkZJaZLjNjFY/x60Mt4iIiNSaCm4Zk1CJo91rqRYZbvCOd4f8lBLnVHSLiIhIbajgljEp1+GulVpkuCG/cbIp5uXO1eQWERGRWlHBLWOS2zQ5iQfRVHy/XKRkct8vGA3Y5G/4TGc1qURERERqQwW3jImVmFJSS5FQbd4vOG2y2Z+sks6oxS0iIiK1UZeC28yuNLONZpY1sxUVrttpZuvNbI2ZrZrKNUppQWM7OkUd7iArPtmRkmA0YDA7XJNKREREpFYmf3BydTYAVwBXV3HtJc65jhqvR6qUG9M3RRnuWhztDvCWcxczoyGS++CgSSUiIiJSK3XpcDvnNjnnttTjvWViQnWKlEx2hvvc42bxd687LfcBQhluERERqZWjPcPtgLvMbLWZvb/ShWb2fjNbZWar2tvbp2h500++wz21myZrVeAH91WHW0RERGqlZpESM7sHWFjiqU87526p8javdM7tNbP5wN1mttk592CpC51z1wDXAKxYsULVU42UOtq9loLIR60iLLkOtzZNioiISI3UrOB2zr12Eu6x1//PQ2Z2M3ABULLglqkRys3hfoF0uMPqcIuIiEhtHbWREjNrNrMZwdfA6/E2W0odhc0wm9yj1iupVYY7ENxXU0pERESkVuo1FvDtZrYHuBC4zczu9B9fbGa3+5ctAB42s7XAE8Btzrk76rFeyQuFjOgUHesOynCLiIjIsa8uYwGdczcDN5d4fB9wmf/1duDFU7w0GUU4NHUjAQFa/INpggNqJpumlIiIiEit1WsOtxyjmmORXBE8FY6f28xPr3oZF5w4pyb3V4dbREREak0Ft4zJ+191Em85d/GUvufvnTKvZvfOd7hVcIuIiEhtqOCWMZnbEmduS7zey5g0wdHx6nCLiIhIrRy1U0pEpoLmcIuIiEitqeCWaU1zuEVERKTWVHDLtKYpJSIiIlJrKrhlWosoUiIiIiI1poJbpjVNKREREZFaU8Et05qmlIiIiEitqeCWaU0ZbhEREak1FdwyremkSREREak1FdwyrSnDLSIiIrWmglumNc3hFhERkVpTwS3TWrUd7l2HB/jLH61iMJmZimWJiIjIC4gKbpnWclNKMpU3TT624zB3bjzI9o6+qViWiIiIvICo4JZpLYiUjNbh7htKA9AzmK75mkREROSFRQW3TGvVTinpS/gF91Cq5msSERGRFxYV3DKtBRnunYcHuO7RnThXuvDOFdyDKrhFRERkbCL1XoBIPQUZ7l+s2k0663jNGfNZOrtpxHW9QaRkSJESERERGRt1uGVa8xvcuQz3hr3dJa9Th1tERETGSwW3TGtmlstxA6wvKLizWcc3freVnR399PnZbWW4RUREZKwUKZFpLxyygg53T+7x+589xFfufhazwg63IiUiIiIyNupwy7RX2OHesLc7t3Hy+w/vBODIQKogw60Ot4iIiIyNOtwy7QWTSha1NrC/e4j93UP0JdI8/FwHAEf6k8pwi4iIyLipwy3TXiTs/dfgtcsXALBuTze/XrOPcMhYNqeJzoGCgltTSkRERGSMVHDLtBd0uF+zfD7NsTAPPHuIh7a2c+5xszhxXjOd/cmCkybV4RYREZGxUcEt016Q4T5+ThOXnDGf29cfYN3ebi46dR5zmmPs7x7KbapUwS0iIiJjpYJbpr2gw72wtYE3nb2I7sEUzsFFp7YxuylGe28CgHktMXoT6VGPgRcREREppIJbpr1IyJjREKEpFuHi09uIR0LMaIjw4qWtzG6K5q5bPKsRIBcvGa/7thxixb/eTX9CeXAREZHpoC4Ft5ldaWYbzSxrZisqXDfLzG40s81mtsnMLpzKdcr0EA4Zi1obAGiOR/jz3zuB97z8eCLhELObY7nrFrd6BfdERwNu2t9DR1+Sgz1DE7qPiIiIHBvqNRZwA3AFcPUo1/0PcIdz7h1mFgOaar4ymXai4RBtM+K57z912fLc13MKC26/w909mOK4Cbxft58D71YeXEREZFqoS8HtnNsE3rHa5ZhZK/Aq4M/91ySB5BQsT6aZT77pDGY2Rks+N7upsOD2uuAT7XB3D6jgFhERmU6O5oNvTgTagWvN7MXAauDDzrn+Uheb2fuB9wMsW7ZsyhYpx76LT59f9rlSHe6JHu+uDreIiMj0UrMMt5ndY2YbSvx6a5W3iAAvAb7tnDsP6Ac+We5i59w1zrkVzrkVbW1tk/A7EKHkpskJd7hVcIuIiEwrNetwO+deO8Fb7AH2OOce97+/kQoFt0gtzCoVKZlgoZwruAdUcIuIiEwHR+1YQOfcAWC3mZ3uP3Qp8EwdlyTTUCwSYkY8QiwSYm5znJBBZ//EthJ0KcMtIiIyrdRrLODbzWwPcCFwm5nd6T++2MxuL7j0Q8BPzGwdcC7wb1O/WpnuZjfHmBGPEA4Zp86fwab9PRO6X48iJSIiItNKvaaU3AzcXOLxfcBlBd+vAcrO6RaZCrObYwQDdc5Z2sr9Ww7hnKs4ZWdf1yBv++YjXLp8Ph9/wxm5ed7pTJZe/8AbFdwiIiLTw1EbKRE5WixubWBeizen+8VLW+noS7KvO39ozcZ93dyyZm/Ra+7ZdJBDvQl+/uRuPnHTutzjPQWnVHap4BYREZkWjuaxgCJHhS+85SySmSwA5yydBcDPntjFI8918Lk3n8Xf/XwNOw73c86SVk5qawHgwWfbOW5OI69bvpAfP/587hj3wq72RDdfioiIyLFBHW6RUcyf2cDS2d4hp2csnEEkZHzj3ud4alcXV179KNs7+gmZ8e37t3HPMwfZtL+HR7cd5tWntfG6MxeQTGf57kPbecm/3M0Nq3YDMLc5pkhJFZxz9V7ClPjn3zzDz5/cVe9liIhIjajgFhmDhmiYMxbNAODPLjwe5xyvPq2NP3nZMn6xeg9XXbeKt/zvw/QnM7zq1DZWnDCb1sYoX7tnK4l0lvs2HwLguDlNdA+mePZgL+v2dFX9/t2DKXZ0lDz76QXnnmcOcv6/3vOCL0TX7O7i+4/s4Oan945+sUgZt6zZqw/xIkcxFdwiY3T5ixZzyeltfO7NZ3HnR17Ft//kJXzg4lO45PQ2/vmtZ7F0dhOxSIgLT55LNBziktO9g5hCBlsO9gJw/NwmBpIZPn7jOj52w9qq3nfN7i7e9LUHufzrDzGUyox53Q9tbefmp/fkvh9KZTjclxjzfQA27O1m9fOd43ptNR7ddpirrltFZ3+SX6/dV7P3ORr8773PAbDr8ECdVyLHqu3tfXz4Z2v433u31nspJT22/fC0aRSIlKOCW2SM/urVJ3Ptey8gFDJOamuhKRZhYWsD1773Av70whP41d+8gls/9EpmNHinVF510Um875Un8qZzFhEkJI6f40VU1u7pYufhftJ+RrycdCbLVT9cxZGBFP3JDBv3deeec85xy5q9/Nedm3l4a0fJ16/f081VP1zFZ27eQMp/r8//eiNv/J+HSKTzxfuh3iFe/9UHeGJH+WI6k3V84Cer+YvrVo+p8B9MZvj3327ixtV76EukK1774NZ2omHjXRcs48mdR8b1AWOsdncOcMOq3dy7+WDN3yvw3KFe7tl0kDnNMfb3DBX9XTjnGEzW/vctx77NB7wP8jc9tZdkuvL/lky15w/386f/9wRfvG1TvZcybX34Z0/zX3durvcypj0V3CKTrLUxymkLZuS+P3tJK5+9/EyWL8w/ttQvuJ2DVMaxt2sQgP3dg2w+MHLO95M7j9DRl+BTl50BwFPP52Mo9205xId/toZv3reNv7thTe7/cIdSGfoTaQaSaf7qx6txDvqTGdbv7aY/kebXa/fR3pvgnmcO5e718NYOnj3Yx6dvXp8rzLPZ4hz1fZsPsbtzkM7+JLev31/1n8u1K3dw9QPb+ftfrOWPv/d47v6lrN/TzRkLZ/J6PwO/aueRqt9nPDJZx+XfeJiP37iOv/7JU0WF71g8tLWdV/3nfVX/5OCmp/YSDhl/ffHJOAe7Owdzz92wajcv/eI9tPeO76cQR5PBZIa7nzlYt9NVb123j1vX7Rv1g+3RZCxr3eyfDdDZn+TuZ8b2gTGVyXLflkNksqX3S2Szjse3H66qkB9KZbhx9Z6ie/3b7ZtIZrKs2X2k5nsyOsb5E7sXst6hFLeu2891K5+fksaFlKeCW2SKnOoX4Y3RMG0z4kXPbe/oJ5N1vPfaJ3nnNY+N+B/GOzbspyEa4h3nL+W4OY08tStfgH7nge0sbm3ge3+6gvbeBL/dsJ97Nx/kVf95H2/6n4f46t3PsrdrkK+/6zzAi2vcvn4/A8kMjdEwP/c3cgKsev4IIYOth/r48p1b+NXTeznn83dy58YDbNzXzQd+vJov37WFhTMbOGleMz967HkA/uO3m3mXv+5VOzs5Muw0zu7BFFc/sJ1LTm/jK1e+mLW7u/jvu58t+efknGPdni7OXtLKBSfOIRo2Hn6udOd+suzo6KN7MMVrl89nKJVlzS7vA83uzgF+9sQutvpRoMBzh/r4yx+t4pv3PVf0+DfufY5dnQP8bvMhyslkHRv3ddM1kOSWp/dy0anzOG/ZbAB2deZ/7B78JODWdaUjNb/bdJBLvnw/B3uGSj4/VZxz9AyNLKSf3NnJUCrDmt1dvOzf7uEvrlvFx2+qLj5VKJXJ8uu1+3Ld/qeaNMgAACAASURBVCP9ST50/dM8s6+6A6gS6Qwf/flaPvjTp3n7t1YeE0X3L5/aw3n/cjdrdle3v2PzgV5OmNvE4tYGfrhyZ9WFrXOOT9y0jvde+yQ3rt494vmOvgTv+f7j/NE1j/GTx58f9X7ffdD7QP3g1nYA1u7u4s6NBzllfgsdfUn2HPE+UB7pT476U66xWreniwu+eA+/WDXy9wHQl0jziv+4l589Ubs9IUOpDJsP9FT8vW0+0MO/375pyvL2T+7sJJN19CbSPPBse8VrnXM8tevIpP/diEcFt8gUCbrerY1RWhu9uEks4v1XcHt7Pzes2s3mA710DaS4ff1+slnHQDJN92CKOzce5NWntdEUi/CSZbN52i8IV+3s5Ikdnfy/V57Ia86Yz4nzmvnMrzbw/36wipmNUfZ3D/Ldh3bwujMX8MazF3LGwhms3NbBDat2c8LcJq666EQe2trOPr/DvnrnEV55ahtvO3cxVz+4nY/8fA39yQzXPrKDr969lTs2HmDzgV7+/BUn8J4Lj+fpXV1876HtfPeh7Ty6/TB/dM1jvOM7j/KZWzYU/d6vfWQH3YMpPvb60/mD85fyzpcex3ce2MZdGw+M+HPa1TlAz1CaFy1tpTke4bxls3loa/7/KG5dt48v/GZj0YcS5xy/23SQ5w715YqN3Z0DPLS1nd2do2ejN+z1ire/fPXJhAwe3X4YgE/ctI5P/nI9r/vqg/zhdx7lzo0H+Onju3jT/zzInRsPcu0jO3Lvt3Ffdy6Kc++m0gX3yuc6ePm//47f//rDvPJL97Gve4i3n7eE4+d6P/F43s9xH+wZYtXz3oeqXw3bTJnNOlY+18GHrn+aHR39PLCl8v+JTgbnHBv2dtMzlOKWNXu59pEduee+dMcWVvzrPfymIGt/35ZDXPmdR/nGvVv5v4d3YObFg+7ceJAH/f/TD/7cEukMP3p0Jx+/cW3uOfA2AV7z4Dbe98NV/O31T3P1g9tIZbL89U+e4jdr9/G9h7ZXtfZn9vWQzGS57JyFrN/bzW0FP5XpS6T5/K83sq29L/fYvq7BET99uWHVbj53y4aSEZ++RHpE93colcn9d2qs7ttyiE/etJ7eofSID3TlbDnYy5mLZ/JXF5/MEzs7uXNj+S53R1+C/7xjM10DSb79wDZ++dReYpEQNz01ctPu1+55lid3HGFmQ4THt1fes9E7lOJ7D3v/LoL/fbr5ae/eX3zb2QC5RsGf/N/j/OF3Hi35k6SeodSIn6pV4zsPbCPr4Kt3P1uyk3v/lkPs7Rrki7dv4geP7OCNX3uQ7z64fdw/zQLvpxBBN38wmeGt//sIb/zaQ5z/L3fnfmrpnMv9b9APHtnB73/9Ya5+cDs3P7Wn7H0n08rnDhOLhJjTHOOWNXvLfhhbv6ebd333Ma741kref92qsj/xGAvnHPduPli032ft7i5uW1f5J6O7Owf4h1+sZX/3+P47dLTSHG6RKbJsjreZsrDgXnH8bDbs7WbLgR7u3dzOS0+YzeG+JN+87zn+684t7C84YOcTZ58OwHnHzeKWNfv44cqd/PfdzzJ/Rpx3XrCMUMj4i4tO4rO3bOCDl5zChy49hV8+tZev3LWFj7/Be+3LT5rLD1buBOBzbz6TS89YwDfufY4bV+/hzy48gS0He7n8RYv44GtO4S3nLmbt7m4c8PXfbcUM/ubiU3j3y5axcGYDqWyWG1fv4V9v20RjNMwbX7yQm5/ey+ymKHdvPEjXQJJZTTEGkxl+uHInl54xn7OXtALw+becxab9PXzk52v45V//HmcsnJn7fa7d4+XTz/GvffVpbfzXnVs41DPEjo5+PvKzNaSzji0Hevn+n7+UhmiYB7d28L4frgJgyaxGZjdHc0V0LBzifRedyEWnzuPlJ84lFMqfEOqcI5nJsn5vN/FIiPOOm8XZS1pZue0wF550mJXbDvPBS05hdnOM7z20nb/80WoALjp1Hr938jy+dMdmthzs5eS2Fr5697M0RsO8Zvl87t98iEQ6QzwSzr3XI8918N4fPMkJc5v46OtO4/sP76CjL8Hrz1xIQzREcyycK7h/u34/zsG7LjiO65/Yzbb2Pk5ua2HLgV6uuu5JdncOsqi1gVgkxGM7DvOHLz0O8LP+163inCWtXLp8AR+7YQ2fetNyXnvmAra19/H2bz7Cl698Ma8/ayHdgym+dd9zvOuCZZwwrxnwfhLxnQe2EQkZH3v96bm1/+TxXXzmV8Ufok6c18wp81v4/sM7CIeMD13/NLFIiFed2sZn/Wuvf2I3A8k07zh/KZ+9/ExWbuvgqutWcdqCFp471MelZywgk3XcsfEA0bBx35Z27vv7i9l6sJeP/HwNzkE4ZCyd3cgNT+4mmc7y6PbDnDivmbs3HWQolaFrIMXC1oay/70Lir/PXn4mzx7s49v3b6Mvkeasxa08+Gw7P1i5k8e2H+aWD76Czft7ueLbK5k/I86nf385l79oMc45/ueereztGuSx7Z1cunw+bztvCactmMHuzgHe9s1HSGcdbzp7IZeds4gZDRE+9cv17OocYOUnX8OspljZtQX2HBngC795hv3dg2zY28PJbc1cdGobP1i5k+cO9XHK/BYOdA+xYGZ8xAm3/Yk0zx8e4IrzlvLuC5bx48ee5x9+sZZP3LSOK16yhE9ftpxION9b+/yvN3Lruv2s3dPFkzuPcNk5Czlz0Uy+fNez7O4c4Dg/7jaYzHDL0/u4/EWLAG9fReEJu88e7OWHK3eyaucR5s+M0zWQonswxeymKE/vOkI6k+XWdfv5/+3dd3xUVdrA8d+ZSe89IQ0SCCVUIYWOAgqsKBYEsYIg+u6u7V11XV1dbLuvq4uoa2NdiooKCLoLKL1KSSChhYQESEJI771nzvvHTAZCk10NAXm+n08+mXvnzp0zM8/Mfc65z713TE8/BnX2xNHWyP6scmLDvDli2Tvx0rdHmBwVzMBQT4wGRWp+FZPe/4FwHxdeu70PAy17fs72dUI2f998jOqGZhZOj8HN0Ya1SfkMDvdiT3opX8Rl8dDwsDaPWXekAFcHG+oaW5izKhk/V3te/y6F4poG/jCh10U/n7rGFpbEnWTSgCD2pJfw/pbjBHk4Ep9ZSnQXLxZMj+a1NcmkFlTxxJgI3tl0jA1H8nlwaBdeXpXMol2ZjO7px5bUQsb09ONEUQ0bUgrwdLZjZWIOH903CEc740XbcKlyy+uYtzGNMB8XZo8MZ3d6CYNCPYnwd+HT3Sfp+eJa7o4O4akbu+PhZEd9UwuvrE7mi7gsvJztmBIVzLJ92czdkMoz43qSUVxDgJvDJbVPa83bG9KIyyjF3tbIqdJaMopr8HezZ/dzY2hsMfHo5wnkVdSz+WgwtY3N9AlyZ+bwMBxszes/WVLDtPl7yK2ox9fVnmfH9zzneaobmlmRkM2wbt5083M95/4rlXHOnDkd3Yaf3fz58+fMnj27o5shRBsGpViblI+7ky13Dgxm/vZ0bu4XSHVjCzuPF1NV38xf7uhHoLsj/zqYi5+bPbNHdmV0Tz8m9u3EpAFBGA0KOxsjS+Ky2JpaRLCnI18+PNhaotI32PzjdX0PP2wMBvoGuTNreDg+lvuNBsU3+3N4YkwEj47qioeTHfEZpexOL6FHgCv/OpDLY2O6EerlTJiPC0O6ehPm48yCnRkYlGLe3QMI9HBEKYWNwcDgcG++2Z/DzBHh/PHmXsSEeXFPbGc+23OSkupGlsRlsetECftPlfPGnf0I8nQEwMZoYHRPP1YmZrPmUB75lfW8tT6NX/XtxOqDuSTlVvLixEiMBoWLvQ1L4rII9HA0byjd7HlsdASfx2XRxceZyEA33t10jOyyOl6aGEl9Uwt1jSZmjQjj0VFdqWs2sSQuixWJOZwoqmZc7wAMSlFZ38S0f+zhs90nKa9txMvZnntiO5NZXMPapHwOZpejlOKj+wYRE+bFg0O7MDDUkxERvvxhQi+CPB1Z8EMGoV5OzN+ewcaUQn4/vidDwr1ZkZhDU7MJd0db/N0caGox8cCCeDydbFn+yFCiw7y4OzqUe2JCcXW0RSnF6kN5mLTmhp5+vPBtEr4u9vx1cj8W7z7JlqOFlNU28fw3h1EoXr2tDy9N7E1aQRUJJ8uZaUkuliec4pMdGcRnlLLqYC4FVQ2sO5LPoFBP3tt8nJT8KlILqhjdy5/7PoljXXIBeRV1jO3lz/tbjvPk0gP8cKyY+IxSfF3tiUsv5UhuBX9dm0r/EHcmDwrhnthQUvOr2JZWxO4TJeRV1rPuyZHsSS9hY0oBqflVxGWU8tsburEtrYhmk+ZPt/QmxMuJG3r4AebEfmCoJ6sP5XKssJoXJ0by2JgIFu7MJK+ini/is7A1GFj12HBmjQgnws+VpftOsTezjDsGBjF7RDjL9mWzJbWQN9YeZUR3X/62Po3fLT/ID8eKCfZ0tJ47f+HOTCrqmnjqxu442dnwRXwWm48W8u+DuSRmlRPi5cixwmqySmr5Zn8OLSaNt7M9KxJzuDe2MydLa/lg6wluGxBIUXUDG1MK+Twui/SiauZvT6eqvpkbevqxNimfZfuyWbr3FLWNLdQ2thDq5UzfYHfKaxvZllZEkIcjtsZzdywv2pXJF/FZdPVx4cEhXXhjcj8GdvZk8e5MGppNuDnaMm7edo4XVRPs4UhZbSM+LnYopTiSW8HSvaeYMawL3f1diQx0I7WgmnAfF1Ym5nC8qJqb+wXSYjIfXP3e5uP0DHBlf1Y5jrZGFkyPpru/Kwt2ZuLmYMvgcC8Ss8pYn1zAxpRC5tzaG0c7G1YdyuO264LwdLLj64RsZi3eR0p+JT0C3Kisa0IZFPfGhhLg7siOY0X0Cfbgi7gsnr6pO90D3NhxrIjsslq8nO1Yn1zAiAgfvkvKZ/m+bI7mVTIiwofZnybQ0GyiucXEtwdymBodygP/jKfFpK2d9eTcSh7+dB+BHo6U1pjLVBJPlnGiqIbljw4hOa+StUn53Bvb2boHsaG5hT+sPMzEfp24c1AwXX1dWDA9mrSCKjalFDJjWBhGgzrnc/lw6wkSTpbxzx8yWLQrk62phaxIzMHWRlFZ34yfqwNxGaV4u9jzzqZjPDIynGfG92TVwVyKqxvJq6jng60niOrsyc4TJfTq5MaiGdGUVDey6mAuu0+UcDS/ihaTZniEz0/exqTkVTLxvR9Iyqlkx7FiVh00f7+mRIXw8Ihw/Fzt8XaxZ+neU3yflE9koDuPfp7IlqOFzBoexof3D2Jiv0DyyutZuCuTrNJaXvgmiUPZFdw2IJDKumbsbQzndPpavbU+lb9vOYGHky2NzSaCPBwZGOrJ3swyRvf0Y82hPL5PyueGHr58l5RPeW0jG1MK2X6siKlRIWgNMxfvpaCqgTAfZ47kVjJ9aJc2z5dwspQpH+1mzeE8vozPorCqHhd7W+u2pSO8/PLLeXPmzJn/Y8vJCLcQl9H/3dEPgwG8Xex5ZVJvboz0p7CynoOnyunk7sDwbj7Ehnnh6WzHhD4BONuf+xWNDHTj378dBpjLVFpHBlq5nPWYM0d0R0T4kvDHsXi7nK4hnxIVwpNLDzDn38nYGhUDQjzaPD7A3YGp0SHY2xjp5N72R62rrwtxz4/B0daIUooREeZTIPYJcmN5QjYOtgbqm0wMCPEgukvb0Sp/Nwfm3x/FlI93M3+7uTzg012ZrE8uoF+Qu3Vj2auTK53cHXhj7VHqm0x8fP8gBoZ68MmOdNYm5TOxXyfWHylgQp8A7hvcmfsGd27zPEO7+fCnWyJZsieLtzemYWs08PCIcJ5beYhD2afP9nK/5XEju/vy8fZ0CqsaeP22Ptb319Zo4IaeftblgzwcCfNxZu6GNOqbTMy5JZLpw8Koa2zB08mWj7ens2hXJmseH0F8RilZpbUsmB6Fp7N5xNPOxoCdzenRz85eThzOMZ9NJrO4hgXTo/Fzc2DJrFh+vSSRdzYdIzbMi7fu6m8dhYwN8+a7w/nEWU67NndDGgNDPfC0dKS+fHgwL3x7mHv/GYfWMKizJwknyxj39nYUMLaXP+uTC5ixKJ496aWM7eXPY6O78crqZF745vSItr2Ngbfu6k9nb/NIuJujLTMW7iWvoo5nx/Wgi48zL02M5J5P4sguy+HJsRE8PjqC75LyaDFpBoaaY6qLjzMvToy0rveuqBByyuuYPCgYgDuuC2Ll/hzsjAY+vn8QYZaRd18Xe7yd7VAKXpoYiZOdDW4ONhzJrcTOaOCxL/aTU17HsG7eZBbXMnX+HgaEeHDnoGAOnCq3xvTt1wVhZ2Mg0N2BZ74+REZxDcvvGcKG5ALmbUzDpGHe1AH0CHBlwjs7WLQr0xqHz03oRYC7A2U1jby5PpUNyQW0mDQf3DuI4RE+1DW2EJ9ZSkVdE4M6e/Lggni+3Z/DyO4+PLAgnvSiGlwdbJh/fxRDunoD5uSxq58z29OK6BvkzpezB1vfGwdbI+N7B7D6UB41Dc3YGQ18fzjPujs+3MeZnp1cySk37wXraTkoe1BnL5Y9MgQw75mauyGNpXuz+Hh7OulFNXT3d2Hlr4fy6uoUhnfzwd/NvHdgbC8/a5nOO5vMpxcM83EmJswLL0vM7s0spbKuiaeXH2RoV2/enXYdPi5tj0dZtu8UX8Zn8drqZFwdbLje0smK7uLFh9tOsCTuJN7OdiyeEUNaoTnhfXNdKutf2QDAPx6IwtHWyH3/jOOhRXtJOFnG4ZwKhnXzISmngtfWpODhZMvih2JYvCvT2tbHx0Tg5+bA0zf14PYPdrFoVyaPjAxn3sZjbEktpLqhmXG9A9p8h+8aFMK6IwVsOVrI2F7+HM6pwKAU3fxc2HzU3JlrNS0mhOX7svFwsmXFo0PxczPHwuC/bOLFb5MIcHPgybHdLe+lPwt2ZhCXXsrN/Trx92nXkZRTSYiXI052NtwY6c9H205QVttETBcv/rEjnfF9AnB1sGHhzgwKKxuYMSyMYE9H4jNKuWNg0DlJbotJs+VoIYlZZUyLCSXY05HX1iRjZ2Ng3ZMj2X+qnBUJ2fi62DOxfyDeLvbMGhEOwN3RITywIJ4pH+/Gw8mWhTOirZ1hgNdu70NeZT0rE3MI8nBkW1oR934Sx64TJQR5OHJXVDD3De5MdX0zi3Zl4mBrpK6xmcW7TzItJpQ/397H2t6ymka+PZDDZ3tOsv5IPtf38GXhjBhKaxrxdLLly/hTPP/NYTYfLaS0ppHErHLenNwPreHZFebf6P6W729WSS2zFpvLJRfNiGb1oTyW78vm8z1ZfD4z9mfptLQn9Uu8kltUVJTet29fRzdDiEvy3qZj/G1DGr+5oSvPjDt391l7q29qIfbPmzBpzV/u6MvEfoE/eZ3xGaXsSS9h5vAwfjheTHd/V2vydLaEk2W0mDTzNqaxJ70Ek+acDcDz3xzmi7gsRnb35dOHYgB4edURlsRl8dptfXj260N8+lAMI7v7XrRd7246xtsb09AaXO1tmDt1AG+uO0paQTVv3NmXqdGhaK05kltJhL9Lm5KQ83nhm8Msicti8qBg3rqrv3V+aw3vnR/uwtXBlrLaRiL8XFjxP0MvODr0l+9T+HhbOnZGA29N6c+t/U9/DrWNzdQ2tpyT3KTmVzFu3nbrtIu9DZ/NjKF/sAfVjc24OdhS3dDMvA1ppORXMv/+KCa9v5Pq+mYWzojGx8WeYW9sprHZxB9v7mXdIGeX1fLRthNMjQqltbmtI4ytsstq8XN1sCakAK+tTsbWxsCz43qglCKzuIYWrenq63LR97FVQ3MLOWV1+Ls5nNPZ3J9Vhp2Ngd6B5nZ8tjuT4upGAj0c+P2Kw4T7OvP9EyMwmWDx7kzWHMrjcI65Q/XchJ48Oqprm/WVVDeQXlxDdBcvwHxu+QOnyrk3NhSlFLMW7yXeMnrpZGdkzeMjLuk1tGotC3O2M2IwKP54cy8+2HoCo0Gx7smRbEop5NHPE/hV3wDWHSngf0Z15elxPdqsY1taEQ8uiAfgjoFBzBweRm55PcXVDaxNyudUWS32NkaiOnvy8q2923SuARqbTdz09jYyS2pxsbfhz3f05aZI/3M66WBOZm58exsNzSaGd/NhTC8/+od4MDDUE5NJM/C1DUR19qKirpGM4hq2PnPDOZ17MJ/qcuxcc0z++fa+3BMban2/x87dRlltE7f0D+Q9y0HcAGuT8knJq2RoV29iw73RWjNu3nbSCqrpG+TO8cJqGi310l19nXnzrv4MDPWkrKaRYW9sJtDDkTWPD7d+X2ct3sf2Y0WEeTuTWlDFwFAPQryceHNy/zbx2txiYvBfNmNrVCgg11LCZ2c0YDQoIvxdePnW3hRUNjC+TwD7s8pwdbClm9/peH5uxSG+2nuKuVP6c8dAc8cxznI8i4u9DZt/Nwo/t7YlTyaTZvgbm4kMdOdvd/XnV+/uoNlkwqShur4ZZ3sjFXVN2BkN1DS28Nc7+zElOgStNcXVjdjbGpi1eJ/1mBEXextGdfdlzeE8/nRLJDOGtS2nOZ/4jFK+2pvF727qQZDHuaPDtY3NbEop5MZIf6Z+vJuD2RXcHR1CfmU9W884bsTOaKBFa1pMmoeGhfHCzb3O2Vswbf4edqeX4GhrZPXjw9v8HjS1mBj11y042duQX1FPzwBXlj0yhKr6ZqJe34CXsx1uDrbYGA0cL6zCyc6Gb38zzLo9qWloZsI7O3CwNfDd4yPalE9dLkqpBK111I8uJwm3EB1r13FzXev3T4ywjiBebpnFNTjb25xz9pTLaUtqITMW7m2TVLfadbyYBxfGs+yRIdYzerRu1AwKgjwd2fK76y/pxzbhZBmrD+Xy8IhwAj0c+e5wHr/9IpH1T41qsyG9FEk5FSzYmcGrk/qcd2/EuiP5PPHVfkZ19+X343sSfpHE81RpLeuO5HNr/8BzNtAXYjJpbv9gJ35uDvx+fA9CvJx+tJNQUduE0aisydKCHzIor2viqbERF+wMXMlaTOa60Ql9A6zJOJjfm1dWJ7N4dybf/nqYdZTsUh0vrOLRzxM5XljNk2MjrKOXlyq3vI5J7+8kNsyL/72xO+G+LmxKKWDm4n2M7x3AD8eLaWwxWQ+4XPbIEGLCvNqsozUhLK5uuKQO5flsTS3k+ZWHmTt1AIPDvS+67Ge7M1m67xSLZ8S02QsG8MqqZBZYDpZ9/fY+3Bvb+TxrML/vMX/eRN8gNxZMj24TUysTs/nfZQd5667+1r0aF7Js7yl+v/IQyx8ZQlZpLdvSihjfO4Cbege0SehS8irxdrHDz/X0d6agsp55G4+xP6uM+4d0vmBbz3zNIZ5OjO3lj7O9kYSTZRzJreSVSX1+9DehsKqe7w/nc//gztYOT3OLickf7ebu6BDujgk97+OKqxtwsjPiZGdDcm4ld364C0c7I0tnD8bPzYGnlh6gxaSpbmjmWEEVT4ztzqqDuRw4VY6d0YBG8+qkPgwO9+a1NSnszyojwN2Bb349rE2n4udQUt1Abnk9fYPN36+knAp2nSjGxmDgV3070dRiIrOkxrqH82yLdmYwZ1WydVDjbP/Yns7r36UQ4efCZzNjrcdkmEt6SrExGGhobqFHgBt3DAxqc9pdMJ/F69HPE3l1Um/uH9LlZ33tl0ISbkm4xVWkxaTPW0N4LdFas3BnJuP6BFxwxMXJ7nRS22LSjHpzC052RhbOiDnvYy5VWU2jtdTj53bmgWbi8modEfxvO5Ktezu6+bmcd1T4v1nf7M8S2JpaSDc/V96c3I9p8/eggf0v3Xje+u65G9JYdTCXDU+N7JDRu1Zaa3Zbjsd4ZGT4RdtSWFmPu5PtOZ2/1tPO9Q/2+NHXorX5+gSttfi/dGkFVTjb25zzO5ZeVM1t7++ksr6ZQHcHpkaHkl9Zz8R+nRjW7couoWjV2GwiMauM2DCv8/4W1je1sHTvKSYNCLykg4zPprXmxX8lcUu/QGJ/pFPZHiThloRbiF+8iromnOyM501UhLhSndkJW5uUT2Vdk/VMM+dbFpBO2zWstrGZhibzwbPX+sDMlehSE245aFIIcdVqPb2iEFeTM5Pn8X0CLnlZcW1ysrPhvxj4FVcYGRYSQgghhBCiHUnCLYQQQgghRDuShFsIIYQQQoh2JAm3EEIIIYQQ7UgSbiGEEEIIIdqRJNxCCCGEEEK0I0m4hRBCCCGEaEeScAshhBBCCNGOfpFXmlRKFQEnL/PT+gDFl/k5xdVBYkNciMSGuBCJDXExEh9Xjs5aa98fW+gXmXB3BKXUvku5tKe49khsiAuR2BAXIrEhLkbi4+ojJSVCCCGEEEK0I0m4hRBCCCGEaEeScP985nd0A8QVS2JDXIjEhrgQiQ1xMRIfVxmp4RZCCCGEEKIdyQi3EEIIIYQQ7UgSbiGEEEIIIdqRJNw/kVJqvFIqVSl1XCn1XEe3R1x+SqkFSqlCpVTSGfO8lFIblFLHLP89LfOVUupdS7wcUkoN7LiWi/amlApRSm1RSiUrpY4opZ6wzJf4uMYppRyUUvFKqYOW2HjZMj9MKRVniYGlSik7y3x7y/Rxy/1dOrL9ov0ppYxKqf1KqdWWaYmNq5gk3D+BUsoIvA9MACKBaUqpyI5tlegAi4DxZ817DtiktY4ANlmmwRwrEZa/2cCHl6mNomM0A7/TWkcCg4HfWH4jJD5EAzBaa90fGACMV0oNBt4A3tZadwPKgJmW5WcCZZb5b1uWE79sTwApZ0xLbFzFJOH+aWKA41rrdK11I/AVMKmD2yQuM631dqD0rNmTgMWW24uB286Y/6k22wN4KKU6XZ6WistNa52ntU603K7CvPEMQuLjmmf5jKstk7aWPw2MBr62zD87Nlpj5mtgjFJKXabmistMKRUM3Ax8YplWSGxc1STh/mmCgFNnTGdb5gnhr7XOs9zOB/wttyVmrlGW3bzXAXFIfAisJQMHgEJgA3ACKNdauYzq5QAABINJREFUN1sWOfPzt8aG5f4KwPvytlhcRvOAZwGTZdobiY2rmiTcQrQzbT73ppx/8xqmlHIBVgBPaq0rz7xP4uPapbVu0VoPAIIx7zHt2cFNElcApdREoFBrndDRbRE/H0m4f5ocIOSM6WDLPCEKWksBLP8LLfMlZq4xSilbzMn2Eq31SstsiQ9hpbUuB7YAQzCXEdlY7jrz87fGhuV+d6DkMjdVXB7DgFuVUpmYS1VHA+8gsXFVk4T7p9kLRFiOHLYD7gb+3cFtEleGfwMPWm4/CPzrjPkPWM5GMRioOKO0QPzCWOoo/wmkaK3nnnGXxMc1Tinlq5TysNx2BG7EXOO/BZhsWezs2GiNmcnAZi1XrvtF0lr/QWsdrLXugjmv2Ky1vheJjauaXGnyJ1JK/QpzrZURWKC1fr2DmyQuM6XUl8D1gA9QAPwJ+BZYBoQCJ4EpWutSSwL2d8xnNakFZmit93VEu0X7U0oNB3YAhzldi/k85jpuiY9rmFKqH+YD3YyYB7+Waa1fUUqFYx7V9AL2A/dprRuUUg7AZ5iPAygF7tZap3dM68XlopS6Hnhaaz1RYuPqJgm3EEIIIYQQ7UhKSoQQQgghhGhHknALIYQQQgjRjiThFkIIIYQQoh1Jwi2EEEIIIUQ7koRbCCGEEEKIdiQJtxBCXOGUUi1KqQNn/D33X65nq1Iq6udu3yU8721KqcjL/bxCCHGlsPnxRYQQQnSwOsslwK9WtwGrgeSObogQQnQEGeEWQoirkFJqvFJq+RnT1yulVltuf6iU2qeUOqKUevkS1hWtlNqllDqolIpXSrkqpRyUUguVUoeVUvuVUjdYlp2ulPr7GY9dbbk4B0qpaqXU65b17FFK+SulhgK3Am9aRue7/sxvhRBCXPEk4RZCiCuf41klJVOBjUCsUsrZssxUzFehA3hBax0F9ANGWa5qeF5KKTtgKfCE1ro/MBaoA34DaK11X2AasNhyRbuLcQb2WNazHXhYa70L86Wnn9FaD9Ban/gvXr8QQlzVJOEWQogrX50lWW39W6q1bgbWArcopWyAm4F/WZafopRKxHz5597AxeqnewB5Wuu9AFrrSsu6hwOfW+YdxXwJ+u4/0s5GzKUjAAlAl//wdQohxC+S1HALIcTV6yvgt0ApsE9rXaWUCgOeBqK11mVKqUXAj41M/yeaaTtYc+a6m7TW2nK7BdnGCCEEICPcQghxNdsGDAQe5nQ5iRtQA1QopfyBCT+yjlSgk1IqGsBSv20D7ADutczrDoRals0EBiilDEqpECDmEtpZBbj+B69LCCF+USThFkKIK9/ZNdz/B6C1bsFcwjHB8h+t9UHMpSRHgS+AnRdbsda6EXP993tKqYPABsyj1h8ABqXUYcw13tO11g2W9WVgPuPIu0DiJbT/K+AZy8GXctCkEOKao07v/RNCCCGEEEL83GSEWwghhBBCiHYkCbcQQgghhBDtSBJuIYQQQggh2pEk3EIIIYQQQrQjSbiFEEIIIYRoR5JwCyGEEEII0Y4k4RZCCCGEEKId/T+QLCT/VCAnjwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pylab.rcParams['figure.figsize'] = (12, 4)\n", + "pylab.plot(counts1, values1)\n", + "pylab.xlabel('Eval count')\n", + "pylab.ylabel('Energy')\n", + "pylab.title('Convergence with noise');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Declarative approach and noise model\n", + "\n", + "Note: if you are running an experiment using the declarative approach, with a dictionary/json, there are keywords in the `backend` section that let you define the noise model based on a device, as well as setup the coupling map too. The basis gate setup, that is shown above, will automatically be done. Here is an example of such a `backend` configuration:\n", + "```\n", + " 'backend': { \n", + "\t 'provider': 'qiskit.Aer',\n", + " 'name': 'qasm_simulator',\n", + "\t 'coupling_map_from_device': 'qiskit.IBMQ:ibmqx4',\n", + " 'noise_model': 'qiskit.IBMQ:ibmqx4',\n", + " 'shots': 1024\n", + "\t },\n", + "```\n", + "\n", + "If you call `run_algorithm` and override the `backend` section by explicity supplying a backend instance as a parameter to run_algorithm, please note that you can provide a QuantumInstance type there instead of BaseBackend. A QuantumInstance allows you to setup and define your own custom noise model and other run time configuration. \n", + "\n", + "(Note when a BaseBackend type is supplied to run_algorithm it is internally wrapped into a QuantumInstance, with default values supplied for noise, run time parameters etc., so you do not get the opportunity that way to set a noise model etc. But by explicitly providing a QuantumInstance you can setup these aspects to your choosing.)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 2fd83d3927bef0ae37cb7eab9c7c1763b8cbef2f Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Fri, 19 Apr 2019 16:48:49 -0400 Subject: [PATCH 064/116] Fix Grover input file --- community/aqua/optimization/input_files/grover.json | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/community/aqua/optimization/input_files/grover.json b/community/aqua/optimization/input_files/grover.json index bbf409359..84d511af7 100644 --- a/community/aqua/optimization/input_files/grover.json +++ b/community/aqua/optimization/input_files/grover.json @@ -4,11 +4,12 @@ }, "backend": { "provider": "qiskit.BasicAer", - "name": "qasm_simulator" + "name": "qasm_simulator", + "shots": 1000 }, "oracle": { - "expression": "p cnf 3 5 \n -1 -2 -3 0 \n 1 -2 3 0 \n 1 2 -3 0 \n 1 -2 -3 0 \n -1 2 3 0", - "name": "LogicExpressionOracle" + "expression": "c example DIMACS-CNF 3-SAT\np cnf 3 5\n-1 -2 -3 0\n1 -2 3 0\n1 2 -3 0\n1 -2 -3 0\n-1 2 3 0", + "name": "LogicalExpressionOracle" }, "problem": { "name": "search" From b5a1dc814b7edb6204acd31502795e5c1f589772 Mon Sep 17 00:00:00 2001 From: CZ Date: Sat, 20 Apr 2019 16:24:30 +0200 Subject: [PATCH 065/116] delete files --- .../qgans_for_loading_random.ipynb | 12526 ---------------- qiskit/finance/machine_learning/qgans.ipynb | 194 - 2 files changed, 12720 deletions(-) delete mode 100644 qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb delete mode 100644 qiskit/finance/machine_learning/qgans.ipynb diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb deleted file mode 100644 index 8288dcfb8..000000000 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random.ipynb +++ /dev/null @@ -1,12526 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: qGANs for Loading Random Distributions*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Christa Zoufal[1,2], Stefan Woerner[1]\n", - "### Affliation\n", - "- [1]IBMQ\n", - "- [2]ETH Zurich\n", - "\n", - "### Introduction\n", - "Given $k$-dimensional data samples, we employ a quantum Generative Adversarial Network (qGAN) to learn the data's underlying random distribution and to load it directly into a quantum state: \n", - "$$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle$$\n", - "where $p_{\\theta}^{j}$ describe the occurrence probabilities of the basis states $\\vert j\\rangle$. \n", - "\n", - "The aim of the qGAN training is to generate a state $\\lvert g_{\\theta}\\rangle$ where $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, describe a probability distribution that is close to the distribution underlying the training data $X=\\left\\{x^0, \\ldots, x^{k-1} \\right\\}$.\n", - "\n", - "For further details please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "#!/usr/bin/env python\n", - "# coding: utf-8\n", - "from __future__ import absolute_import, division, print_function\n", - "\n", - "import numpy as np\n", - "\n", - "import matplotlib\n", - "matplotlib.use('TkAgg')\n", - "import matplotlib.pyplot as plt\n", - "\n", - "%matplotlib inline\n", - "\n", - "\n", - "import time\n", - "\n", - "start = time.time()\n", - "\n", - "from torch import optim\n", - "from qiskit.aqua.algorithms.adaptive.qgan.discriminator import DiscriminatorNet\n", - "\n", - "from qiskit.aqua.components.optimizers import ADAM\n", - "from qiskit.aqua.components.uncertainty_models import UniformDistribution, UnivariateVariationalDistribution \n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "from qiskit.aqua.algorithms.adaptive.qgan.qgan import QGAN\n", - "\n", - "from qiskit.aqua import aqua_globals, QuantumInstance\n", - "\n", - "from qiskit import BasicAer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load the Training Data\n", - "First, we need to load the $k$-dimensional training data samples (here k=1).
\n", - "Next, the data resolution is set, i.e. the min/max data values and the number of qubits used to represent each data dimension." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# Number training data samples\n", - "N = 10000 \n", - "\n", - "# Load data samples from log-normal distribution with mean=1 and standard deviation=1\n", - "mu = 1\n", - "sigma = 1\n", - "real_data = np.random.lognormal(mean = mu, sigma=sigma, size=N)\n", - "\n", - "# Set the data resolution\n", - "# Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]]\n", - "bounds = np.array([0.,3.]) \n", - "# Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]\n", - "num_qubits = [2]\n", - "k = len(num_qubits)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialize the qGAN\n", - "The qGAN consists of a quantum generator $G_{\\theta}$, a variational quantum circuit, and a classical discriminator $D_{\\phi}$, a neural network.
\n", - "To implement the quantum generator, we choose a depth-$1$ variational form that implements $R_Y$ rotations and $CZ$ gates which takes a uniform distribution as an input state. Notably, for $k>1$ the generator's parameters must be chosen carefully. For example, the circuit depth should $>1$ becaue the higher the circuit depth the because higher circuit depths enable the representation of more complex structures.
\n", - "The classical discriminator is given by a $3$-layer neural network that applies linear transformations, leaky ReLU functions in the hidden layers and a sigmoid function in the output layer. Notably, the neural network is implemented with PyTorch. Please refer to https://pytorch.org/get-started/locally/ for PyTorch installation instructions.
\n", - "Here, both networks are updated with the ADAM optimization algorithm." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# Set number of training epochs\n", - "# Note: The algorithm's runtime can be shortened by reducing the number of training epochs.\n", - "num_epochs = 3000\n", - "# Batch size\n", - "batch_size = 1000\n", - "\n", - "# Initialize qGAN\n", - "qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)\n", - "\n", - "# Set quantum instance to run the quantum generator\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "qgan.set_quantum_instance(QuantumInstance(backend=backend, shots=batch_size, coupling_map=None, circuit_caching=False))\n", - "\n", - "\n", - "# Set entangler map\n", - "entangler_map = [[0, 1]]\n", - " \n", - "# Set variational form\n", - "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", - "# Set generator's initial parameters\n", - "init_params = aqua_globals.random.rand(var_form._num_parameters) * 2 * 1e-2\n", - "# Set an initial state for the generator circuit\n", - "init_dist = UniformDistribution(np.sum(num_qubits), low=bounds[0], high=bounds[1])\n", - "# Set generator circuit\n", - "g_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, init_params,\n", - " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", - "# Set generator optimizer\n", - "g_optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-5, beta_1=0.9, beta_2=0.99, noise_factor=1e-6,\n", - " eps=1e-10, amsgrad=True)\n", - "# Set quantum generator\n", - "qgan.set_generator(generator_circuit=g_circuit, generator_optimizer=g_optimizer)\n", - "\n", - "# Set discriminator network\n", - "d_net = DiscriminatorNet(n_features=k)\n", - "# Set discriminator optimizer\n", - "d_optimizer = optim.Adam(d_net.parameters(), lr=1e-5, amsgrad=True)\n", - "# Set classical discriminator neural network\n", - "qgan.set_discriminator(discriminator_net=d_net, discriminator_optimizer=d_optimizer)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Run the qGAN Training\n", - "During the training the discriminator's and the generator's parameters are updated alternately w.r.t the following loss functions:\n", - "$$ L_G\\left(\\phi, \\theta\\right) = -\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log\\left(D_{\\phi}\\left(g^{l}\\right)\\right)\\right] $$\n", - "and\n", - "$$ L_D\\left(\\phi, \\theta\\right) =\n", - "\t\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log D_{\\phi}\\left(x^{l}\\right) + \\log\\left(1-D_{\\phi}\\left(g^{l}\\right)\\right)\\right], $$\n", - "with $m$ denoting the batch size and $g^l$ describing the data samples generated by the quantum generator." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/3000...\n", - "Loss Discriminator: 0.6977\n", - "Loss Generator: 0.6754\n", - "Relative Entropy: 0.1783\n", - "Epoch 2/3000...\n", - "Loss Discriminator: 0.6964\n", - "Loss Generator: 0.6806\n", - "Relative Entropy: 0.1783\n", - "Epoch 3/3000...\n", - "Loss Discriminator: 0.6948\n", - "Loss Generator: 0.6832\n", - "Relative Entropy: 0.1784\n", - "Epoch 4/3000...\n", - "Loss Discriminator: 0.6935\n", - "Loss Generator: 0.6851\n", - "Relative Entropy: 0.1784\n", - "Epoch 5/3000...\n", - "Loss Discriminator: 0.6923\n", - "Loss Generator: 0.687\n", - "Relative Entropy: 0.1784\n", - "Epoch 6/3000...\n", - "Loss Discriminator: 0.6912\n", - "Loss Generator: 0.6864\n", - "Relative Entropy: 0.1783\n", - "Epoch 7/3000...\n", - "Loss Discriminator: 0.6901\n", - "Loss Generator: 0.6865\n", - "Relative Entropy: 0.1783\n", - "Epoch 8/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.6879\n", - "Relative Entropy: 0.1782\n", - "Epoch 9/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6894\n", - "Relative Entropy: 0.1781\n", - "Epoch 10/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.6924\n", - "Relative Entropy: 0.1781\n", - "Epoch 11/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.6923\n", - "Relative Entropy: 0.178\n", - "Epoch 12/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.6922\n", - "Relative Entropy: 0.1779\n", - "Epoch 13/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.6939\n", - "Relative Entropy: 0.1779\n", - "Epoch 14/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.6968\n", - "Relative Entropy: 0.1778\n", - "Epoch 15/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.1777\n", - "Epoch 16/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.1777\n", - "Epoch 17/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.1776\n", - "Epoch 18/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.1775\n", - "Epoch 19/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.1775\n", - "Epoch 20/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.1774\n", - "Epoch 21/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.1773\n", - "Epoch 22/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.1772\n", - "Epoch 23/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.1772\n", - "Epoch 24/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.1771\n", - "Epoch 25/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.177\n", - "Epoch 26/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.177\n", - "Epoch 27/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.1769\n", - "Epoch 28/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1768\n", - "Epoch 29/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1768\n", - "Epoch 30/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1767\n", - "Epoch 31/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1766\n", - "Epoch 32/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1765\n", - "Epoch 33/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1765\n", - "Epoch 34/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1764\n", - "Epoch 35/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1763\n", - "Epoch 36/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1763\n", - "Epoch 37/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1762\n", - "Epoch 38/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1761\n", - "Epoch 39/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1761\n", - "Epoch 40/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.176\n", - "Epoch 41/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1759\n", - "Epoch 42/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1759\n", - "Epoch 43/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1758\n", - "Epoch 44/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1757\n", - "Epoch 45/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1756\n", - "Epoch 46/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1756\n", - "Epoch 47/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1755\n", - "Epoch 48/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1754\n", - "Epoch 49/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1754\n", - "Epoch 50/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1753\n", - "Epoch 51/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1752\n", - "Epoch 52/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1752\n", - "Epoch 53/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1751\n", - "Epoch 54/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.175\n", - "Epoch 55/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.175\n", - "Epoch 56/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1749\n", - "Epoch 57/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1748\n", - "Epoch 58/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1747\n", - "Epoch 59/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1747\n", - "Epoch 60/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1746\n", - "Epoch 61/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1745\n", - "Epoch 62/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1745\n", - "Epoch 63/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1744\n", - "Epoch 64/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1743\n", - "Epoch 65/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1743\n", - "Epoch 66/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1742\n", - "Epoch 67/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1741\n", - "Epoch 68/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1741\n", - "Epoch 69/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.174\n", - "Epoch 70/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1739\n", - "Epoch 71/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1739\n", - "Epoch 72/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1738\n", - "Epoch 73/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1737\n", - "Epoch 74/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1736\n", - "Epoch 75/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1736\n", - "Epoch 76/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1735\n", - "Epoch 77/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1734\n", - "Epoch 78/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1734\n", - "Epoch 79/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1733\n", - "Epoch 80/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.1732\n", - "Epoch 81/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1732\n", - "Epoch 82/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1731\n", - "Epoch 83/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.173\n", - "Epoch 84/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.173\n", - "Epoch 85/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1729\n", - "Epoch 86/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1728\n", - "Epoch 87/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7375\n", - "Relative Entropy: 0.1728\n", - "Epoch 88/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1727\n", - "Epoch 89/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1726\n", - "Epoch 90/3000...\n", - "Loss Discriminator: 0.6652\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1726\n", - "Epoch 91/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.1725\n", - "Epoch 92/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1724\n", - "Epoch 93/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1723\n", - "Epoch 94/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1723\n", - "Epoch 95/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1722\n", - "Epoch 96/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1721\n", - "Epoch 97/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1721\n", - "Epoch 98/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.172\n", - "Epoch 99/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1719\n", - "Epoch 100/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1719\n", - "Epoch 101/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1718\n", - "Epoch 102/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1717\n", - "Epoch 103/3000...\n", - "Loss Discriminator: 0.6651\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1717\n", - "Epoch 104/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.1716\n", - "Epoch 105/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1715\n", - "Epoch 106/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1715\n", - "Epoch 107/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1714\n", - "Epoch 108/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1713\n", - "Epoch 109/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1713\n", - "Epoch 110/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1712\n", - "Epoch 111/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1711\n", - "Epoch 112/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1711\n", - "Epoch 113/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.171\n", - "Epoch 114/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1709\n", - "Epoch 115/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1708\n", - "Epoch 116/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1708\n", - "Epoch 117/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1707\n", - "Epoch 118/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1706\n", - "Epoch 119/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1706\n", - "Epoch 120/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1705\n", - "Epoch 121/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1704\n", - "Epoch 122/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1704\n", - "Epoch 123/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1703\n", - "Epoch 124/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1702\n", - "Epoch 125/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1702\n", - "Epoch 126/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1701\n", - "Epoch 127/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.17\n", - "Epoch 128/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.17\n", - "Epoch 129/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1699\n", - "Epoch 130/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1698\n", - "Epoch 131/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1698\n", - "Epoch 132/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1697\n", - "Epoch 133/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1696\n", - "Epoch 134/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1696\n", - "Epoch 135/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1695\n", - "Epoch 136/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1694\n", - "Epoch 137/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1694\n", - "Epoch 138/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1693\n", - "Epoch 139/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1692\n", - "Epoch 140/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1692\n", - "Epoch 141/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1691\n", - "Epoch 142/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.169\n", - "Epoch 143/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.169\n", - "Epoch 144/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1689\n", - "Epoch 145/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1688\n", - "Epoch 146/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1688\n", - "Epoch 147/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1687\n", - "Epoch 148/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1686\n", - "Epoch 149/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1686\n", - "Epoch 150/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1685\n", - "Epoch 151/3000...\n", - "Loss Discriminator: 0.6664\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1684\n", - "Epoch 152/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1684\n", - "Epoch 153/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1683\n", - "Epoch 154/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1682\n", - "Epoch 155/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1681\n", - "Epoch 156/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1681\n", - "Epoch 157/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.168\n", - "Epoch 158/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1679\n", - "Epoch 159/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1679\n", - "Epoch 160/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1678\n", - "Epoch 161/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1677\n", - "Epoch 162/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1677\n", - "Epoch 163/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1676\n", - "Epoch 164/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1675\n", - "Epoch 165/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1675\n", - "Epoch 166/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1674\n", - "Epoch 167/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1673\n", - "Epoch 168/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1673\n", - "Epoch 169/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1672\n", - "Epoch 170/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1671\n", - "Epoch 171/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1671\n", - "Epoch 172/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.167\n", - "Epoch 173/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1669\n", - "Epoch 174/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1669\n", - "Epoch 175/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1668\n", - "Epoch 176/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1667\n", - "Epoch 177/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1667\n", - "Epoch 178/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1666\n", - "Epoch 179/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1665\n", - "Epoch 180/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1665\n", - "Epoch 181/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7375\n", - "Relative Entropy: 0.1664\n", - "Epoch 182/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1663\n", - "Epoch 183/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1663\n", - "Epoch 184/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1662\n", - "Epoch 185/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1661\n", - "Epoch 186/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1661\n", - "Epoch 187/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.166\n", - "Epoch 188/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1659\n", - "Epoch 189/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1659\n", - "Epoch 190/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1658\n", - "Epoch 191/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1657\n", - "Epoch 192/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1657\n", - "Epoch 193/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1656\n", - "Epoch 194/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1655\n", - "Epoch 195/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1655\n", - "Epoch 196/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1654\n", - "Epoch 197/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1653\n", - "Epoch 198/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1653\n", - "Epoch 199/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1652\n", - "Epoch 200/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1651\n", - "Epoch 201/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1651\n", - "Epoch 202/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.165\n", - "Epoch 203/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.165\n", - "Epoch 204/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1649\n", - "Epoch 205/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1648\n", - "Epoch 206/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1648\n", - "Epoch 207/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1647\n", - "Epoch 208/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1646\n", - "Epoch 209/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1646\n", - "Epoch 210/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1645\n", - "Epoch 211/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1644\n", - "Epoch 212/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1644\n", - "Epoch 213/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1643\n", - "Epoch 214/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1642\n", - "Epoch 215/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1642\n", - "Epoch 216/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1641\n", - "Epoch 217/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.164\n", - "Epoch 218/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.164\n", - "Epoch 219/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1639\n", - "Epoch 220/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1638\n", - "Epoch 221/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1638\n", - "Epoch 222/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1637\n", - "Epoch 223/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1636\n", - "Epoch 224/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1636\n", - "Epoch 225/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1635\n", - "Epoch 226/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1634\n", - "Epoch 227/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1634\n", - "Epoch 228/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1633\n", - "Epoch 229/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1632\n", - "Epoch 230/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1632\n", - "Epoch 231/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1631\n", - "Epoch 232/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.163\n", - "Epoch 233/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.163\n", - "Epoch 234/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1629\n", - "Epoch 235/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1628\n", - "Epoch 236/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1628\n", - "Epoch 237/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1627\n", - "Epoch 238/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1626\n", - "Epoch 239/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1626\n", - "Epoch 240/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1625\n", - "Epoch 241/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1624\n", - "Epoch 242/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1624\n", - "Epoch 243/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1623\n", - "Epoch 244/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1623\n", - "Epoch 245/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1622\n", - "Epoch 246/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1621\n", - "Epoch 247/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1621\n", - "Epoch 248/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.162\n", - "Epoch 249/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1619\n", - "Epoch 250/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1619\n", - "Epoch 251/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1618\n", - "Epoch 252/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1617\n", - "Epoch 253/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1617\n", - "Epoch 254/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1616\n", - "Epoch 255/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1615\n", - "Epoch 256/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1615\n", - "Epoch 257/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1614\n", - "Epoch 258/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1613\n", - "Epoch 259/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1613\n", - "Epoch 260/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1612\n", - "Epoch 261/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1611\n", - "Epoch 262/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1611\n", - "Epoch 263/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.161\n", - "Epoch 264/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1609\n", - "Epoch 265/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1609\n", - "Epoch 266/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1608\n", - "Epoch 267/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1608\n", - "Epoch 268/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1607\n", - "Epoch 269/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1606\n", - "Epoch 270/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1606\n", - "Epoch 271/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1605\n", - "Epoch 272/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1604\n", - "Epoch 273/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1604\n", - "Epoch 274/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1603\n", - "Epoch 275/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1602\n", - "Epoch 276/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1602\n", - "Epoch 277/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1601\n", - "Epoch 278/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.16\n", - "Epoch 279/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.16\n", - "Epoch 280/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1599\n", - "Epoch 281/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1598\n", - "Epoch 282/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1598\n", - "Epoch 283/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1597\n", - "Epoch 284/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1597\n", - "Epoch 285/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1596\n", - "Epoch 286/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1595\n", - "Epoch 287/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1595\n", - "Epoch 288/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1594\n", - "Epoch 289/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1593\n", - "Epoch 290/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1593\n", - "Epoch 291/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1592\n", - "Epoch 292/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1591\n", - "Epoch 293/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1591\n", - "Epoch 294/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.159\n", - "Epoch 295/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1589\n", - "Epoch 296/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1589\n", - "Epoch 297/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1588\n", - "Epoch 298/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1587\n", - "Epoch 299/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1587\n", - "Epoch 300/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1586\n", - "Epoch 301/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1586\n", - "Epoch 302/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1585\n", - "Epoch 303/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1584\n", - "Epoch 304/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1584\n", - "Epoch 305/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1583\n", - "Epoch 306/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1582\n", - "Epoch 307/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1582\n", - "Epoch 308/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1581\n", - "Epoch 309/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.158\n", - "Epoch 310/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.158\n", - "Epoch 311/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1579\n", - "Epoch 312/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1578\n", - "Epoch 313/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1578\n", - "Epoch 314/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1577\n", - "Epoch 315/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1577\n", - "Epoch 316/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1576\n", - "Epoch 317/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1575\n", - "Epoch 318/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1575\n", - "Epoch 319/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1574\n", - "Epoch 320/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1573\n", - "Epoch 321/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1573\n", - "Epoch 322/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1572\n", - "Epoch 323/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1571\n", - "Epoch 324/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1571\n", - "Epoch 325/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.157\n", - "Epoch 326/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.157\n", - "Epoch 327/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1569\n", - "Epoch 328/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1568\n", - "Epoch 329/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1568\n", - "Epoch 330/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1567\n", - "Epoch 331/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1566\n", - "Epoch 332/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1566\n", - "Epoch 333/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1565\n", - "Epoch 334/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1564\n", - "Epoch 335/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1564\n", - "Epoch 336/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1563\n", - "Epoch 337/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1563\n", - "Epoch 338/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1562\n", - "Epoch 339/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1561\n", - "Epoch 340/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1561\n", - "Epoch 341/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.156\n", - "Epoch 342/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1559\n", - "Epoch 343/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1559\n", - "Epoch 344/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1558\n", - "Epoch 345/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1557\n", - "Epoch 346/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1557\n", - "Epoch 347/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1556\n", - "Epoch 348/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1556\n", - "Epoch 349/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1555\n", - "Epoch 350/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1554\n", - "Epoch 351/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1554\n", - "Epoch 352/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1553\n", - "Epoch 353/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1552\n", - "Epoch 354/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1552\n", - "Epoch 355/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1551\n", - "Epoch 356/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.155\n", - "Epoch 357/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.155\n", - "Epoch 358/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1549\n", - "Epoch 359/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1549\n", - "Epoch 360/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1548\n", - "Epoch 361/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1547\n", - "Epoch 362/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1547\n", - "Epoch 363/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1546\n", - "Epoch 364/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1545\n", - "Epoch 365/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1545\n", - "Epoch 366/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1544\n", - "Epoch 367/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1544\n", - "Epoch 368/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1543\n", - "Epoch 369/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1542\n", - "Epoch 370/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1542\n", - "Epoch 371/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1541\n", - "Epoch 372/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.154\n", - "Epoch 373/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.154\n", - "Epoch 374/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1539\n", - "Epoch 375/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1538\n", - "Epoch 376/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1538\n", - "Epoch 377/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1537\n", - "Epoch 378/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1537\n", - "Epoch 379/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1536\n", - "Epoch 380/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1535\n", - "Epoch 381/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1535\n", - "Epoch 382/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1534\n", - "Epoch 383/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1533\n", - "Epoch 384/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1533\n", - "Epoch 385/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1532\n", - "Epoch 386/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1532\n", - "Epoch 387/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1531\n", - "Epoch 388/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.153\n", - "Epoch 389/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.153\n", - "Epoch 390/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1529\n", - "Epoch 391/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1528\n", - "Epoch 392/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1528\n", - "Epoch 393/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1527\n", - "Epoch 394/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1527\n", - "Epoch 395/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1526\n", - "Epoch 396/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1525\n", - "Epoch 397/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1525\n", - "Epoch 398/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1524\n", - "Epoch 399/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1523\n", - "Epoch 400/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1523\n", - "Epoch 401/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1522\n", - "Epoch 402/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1522\n", - "Epoch 403/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1521\n", - "Epoch 404/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.152\n", - "Epoch 405/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.152\n", - "Epoch 406/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1519\n", - "Epoch 407/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1518\n", - "Epoch 408/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1518\n", - "Epoch 409/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1517\n", - "Epoch 410/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1517\n", - "Epoch 411/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1516\n", - "Epoch 412/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1515\n", - "Epoch 413/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1515\n", - "Epoch 414/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1514\n", - "Epoch 415/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1513\n", - "Epoch 416/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1513\n", - "Epoch 417/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1512\n", - "Epoch 418/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1512\n", - "Epoch 419/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1511\n", - "Epoch 420/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.151\n", - "Epoch 421/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.151\n", - "Epoch 422/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1509\n", - "Epoch 423/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1508\n", - "Epoch 424/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1508\n", - "Epoch 425/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1507\n", - "Epoch 426/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1507\n", - "Epoch 427/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1506\n", - "Epoch 428/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1505\n", - "Epoch 429/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1505\n", - "Epoch 430/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1504\n", - "Epoch 431/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1504\n", - "Epoch 432/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1503\n", - "Epoch 433/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1502\n", - "Epoch 434/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1502\n", - "Epoch 435/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1501\n", - "Epoch 436/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.15\n", - "Epoch 437/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.15\n", - "Epoch 438/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1499\n", - "Epoch 439/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1499\n", - "Epoch 440/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1498\n", - "Epoch 441/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1497\n", - "Epoch 442/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1497\n", - "Epoch 443/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1496\n", - "Epoch 444/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1496\n", - "Epoch 445/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1495\n", - "Epoch 446/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1494\n", - "Epoch 447/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1494\n", - "Epoch 448/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1493\n", - "Epoch 449/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1492\n", - "Epoch 450/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1492\n", - "Epoch 451/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1491\n", - "Epoch 452/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1491\n", - "Epoch 453/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.149\n", - "Epoch 454/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1489\n", - "Epoch 455/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1489\n", - "Epoch 456/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1488\n", - "Epoch 457/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1488\n", - "Epoch 458/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1487\n", - "Epoch 459/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1486\n", - "Epoch 460/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1486\n", - "Epoch 461/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1485\n", - "Epoch 462/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1484\n", - "Epoch 463/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1484\n", - "Epoch 464/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1483\n", - "Epoch 465/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1483\n", - "Epoch 466/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1482\n", - "Epoch 467/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1481\n", - "Epoch 468/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1481\n", - "Epoch 469/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.148\n", - "Epoch 470/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.148\n", - "Epoch 471/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1479\n", - "Epoch 472/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1478\n", - "Epoch 473/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1478\n", - "Epoch 474/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1477\n", - "Epoch 475/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1477\n", - "Epoch 476/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1476\n", - "Epoch 477/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1475\n", - "Epoch 478/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1475\n", - "Epoch 479/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1474\n", - "Epoch 480/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1473\n", - "Epoch 481/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1473\n", - "Epoch 482/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1472\n", - "Epoch 483/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1472\n", - "Epoch 484/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1471\n", - "Epoch 485/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.147\n", - "Epoch 486/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.147\n", - "Epoch 487/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1469\n", - "Epoch 488/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1469\n", - "Epoch 489/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1468\n", - "Epoch 490/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1467\n", - "Epoch 491/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1467\n", - "Epoch 492/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1466\n", - "Epoch 493/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1466\n", - "Epoch 494/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1465\n", - "Epoch 495/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1464\n", - "Epoch 496/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1464\n", - "Epoch 497/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1463\n", - "Epoch 498/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1463\n", - "Epoch 499/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1462\n", - "Epoch 500/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1461\n", - "Epoch 501/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1461\n", - "Epoch 502/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.146\n", - "Epoch 503/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1459\n", - "Epoch 504/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1459\n", - "Epoch 505/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1458\n", - "Epoch 506/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1458\n", - "Epoch 507/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1457\n", - "Epoch 508/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1456\n", - "Epoch 509/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1456\n", - "Epoch 510/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1455\n", - "Epoch 511/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1455\n", - "Epoch 512/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1454\n", - "Epoch 513/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1453\n", - "Epoch 514/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1453\n", - "Epoch 515/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1452\n", - "Epoch 516/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1452\n", - "Epoch 517/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1451\n", - "Epoch 518/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.145\n", - "Epoch 519/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.145\n", - "Epoch 520/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1449\n", - "Epoch 521/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1449\n", - "Epoch 522/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1448\n", - "Epoch 523/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1447\n", - "Epoch 524/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1447\n", - "Epoch 525/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1446\n", - "Epoch 526/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1446\n", - "Epoch 527/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1445\n", - "Epoch 528/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1444\n", - "Epoch 529/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1444\n", - "Epoch 530/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1443\n", - "Epoch 531/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1443\n", - "Epoch 532/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1442\n", - "Epoch 533/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1441\n", - "Epoch 534/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1441\n", - "Epoch 535/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.144\n", - "Epoch 536/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.144\n", - "Epoch 537/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1439\n", - "Epoch 538/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1438\n", - "Epoch 539/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1438\n", - "Epoch 540/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1437\n", - "Epoch 541/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1437\n", - "Epoch 542/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1436\n", - "Epoch 543/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1435\n", - "Epoch 544/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1435\n", - "Epoch 545/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1434\n", - "Epoch 546/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1434\n", - "Epoch 547/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1433\n", - "Epoch 548/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1432\n", - "Epoch 549/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1432\n", - "Epoch 550/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1431\n", - "Epoch 551/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1431\n", - "Epoch 552/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.143\n", - "Epoch 553/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1429\n", - "Epoch 554/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1429\n", - "Epoch 555/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1428\n", - "Epoch 556/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1428\n", - "Epoch 557/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1427\n", - "Epoch 558/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1427\n", - "Epoch 559/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1426\n", - "Epoch 560/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1425\n", - "Epoch 561/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1425\n", - "Epoch 562/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1424\n", - "Epoch 563/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1424\n", - "Epoch 564/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1423\n", - "Epoch 565/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1422\n", - "Epoch 566/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1422\n", - "Epoch 567/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1421\n", - "Epoch 568/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1421\n", - "Epoch 569/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.142\n", - "Epoch 570/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1419\n", - "Epoch 571/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1419\n", - "Epoch 572/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1418\n", - "Epoch 573/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1418\n", - "Epoch 574/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1417\n", - "Epoch 575/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1416\n", - "Epoch 576/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1416\n", - "Epoch 577/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1415\n", - "Epoch 578/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1415\n", - "Epoch 579/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1414\n", - "Epoch 580/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1413\n", - "Epoch 581/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1413\n", - "Epoch 582/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1412\n", - "Epoch 583/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1412\n", - "Epoch 584/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1411\n", - "Epoch 585/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1411\n", - "Epoch 586/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.141\n", - "Epoch 587/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1409\n", - "Epoch 588/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1409\n", - "Epoch 589/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1408\n", - "Epoch 590/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1408\n", - "Epoch 591/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1407\n", - "Epoch 592/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1406\n", - "Epoch 593/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1406\n", - "Epoch 594/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1405\n", - "Epoch 595/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1405\n", - "Epoch 596/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1404\n", - "Epoch 597/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1403\n", - "Epoch 598/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1403\n", - "Epoch 599/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1402\n", - "Epoch 600/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1402\n", - "Epoch 601/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1401\n", - "Epoch 602/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1401\n", - "Epoch 603/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.14\n", - "Epoch 604/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1399\n", - "Epoch 605/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1399\n", - "Epoch 606/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1398\n", - "Epoch 607/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1398\n", - "Epoch 608/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1397\n", - "Epoch 609/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1396\n", - "Epoch 610/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1396\n", - "Epoch 611/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1395\n", - "Epoch 612/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1395\n", - "Epoch 613/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1394\n", - "Epoch 614/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1394\n", - "Epoch 615/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1393\n", - "Epoch 616/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1392\n", - "Epoch 617/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1392\n", - "Epoch 618/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1391\n", - "Epoch 619/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1391\n", - "Epoch 620/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.139\n", - "Epoch 621/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1389\n", - "Epoch 622/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1389\n", - "Epoch 623/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1388\n", - "Epoch 624/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1388\n", - "Epoch 625/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1387\n", - "Epoch 626/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1387\n", - "Epoch 627/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1386\n", - "Epoch 628/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1385\n", - "Epoch 629/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1385\n", - "Epoch 630/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1384\n", - "Epoch 631/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1384\n", - "Epoch 632/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1383\n", - "Epoch 633/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1382\n", - "Epoch 634/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1382\n", - "Epoch 635/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1381\n", - "Epoch 636/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1381\n", - "Epoch 637/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.138\n", - "Epoch 638/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.138\n", - "Epoch 639/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1379\n", - "Epoch 640/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1378\n", - "Epoch 641/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1378\n", - "Epoch 642/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1377\n", - "Epoch 643/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1377\n", - "Epoch 644/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1376\n", - "Epoch 645/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1376\n", - "Epoch 646/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1375\n", - "Epoch 647/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1374\n", - "Epoch 648/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1374\n", - "Epoch 649/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1373\n", - "Epoch 650/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1373\n", - "Epoch 651/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1372\n", - "Epoch 652/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1371\n", - "Epoch 653/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1371\n", - "Epoch 654/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.137\n", - "Epoch 655/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.137\n", - "Epoch 656/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1369\n", - "Epoch 657/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1369\n", - "Epoch 658/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1368\n", - "Epoch 659/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1367\n", - "Epoch 660/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1367\n", - "Epoch 661/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1366\n", - "Epoch 662/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1366\n", - "Epoch 663/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1365\n", - "Epoch 664/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1365\n", - "Epoch 665/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1364\n", - "Epoch 666/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1363\n", - "Epoch 667/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1363\n", - "Epoch 668/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1362\n", - "Epoch 669/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1362\n", - "Epoch 670/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1361\n", - "Epoch 671/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1361\n", - "Epoch 672/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.136\n", - "Epoch 673/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1359\n", - "Epoch 674/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1359\n", - "Epoch 675/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1358\n", - "Epoch 676/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1358\n", - "Epoch 677/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1357\n", - "Epoch 678/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1357\n", - "Epoch 679/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1356\n", - "Epoch 680/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1355\n", - "Epoch 681/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1355\n", - "Epoch 682/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1354\n", - "Epoch 683/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1354\n", - "Epoch 684/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1353\n", - "Epoch 685/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1353\n", - "Epoch 686/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1352\n", - "Epoch 687/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1351\n", - "Epoch 688/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1351\n", - "Epoch 689/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.135\n", - "Epoch 690/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.135\n", - "Epoch 691/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1349\n", - "Epoch 692/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1349\n", - "Epoch 693/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1348\n", - "Epoch 694/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1347\n", - "Epoch 695/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1347\n", - "Epoch 696/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1346\n", - "Epoch 697/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1346\n", - "Epoch 698/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1345\n", - "Epoch 699/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1345\n", - "Epoch 700/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1344\n", - "Epoch 701/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1343\n", - "Epoch 702/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1343\n", - "Epoch 703/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1342\n", - "Epoch 704/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1342\n", - "Epoch 705/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1341\n", - "Epoch 706/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1341\n", - "Epoch 707/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.134\n", - "Epoch 708/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1339\n", - "Epoch 709/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1339\n", - "Epoch 710/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1338\n", - "Epoch 711/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1338\n", - "Epoch 712/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1337\n", - "Epoch 713/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1337\n", - "Epoch 714/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1336\n", - "Epoch 715/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1335\n", - "Epoch 716/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1335\n", - "Epoch 717/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1334\n", - "Epoch 718/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1334\n", - "Epoch 719/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1333\n", - "Epoch 720/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1333\n", - "Epoch 721/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1332\n", - "Epoch 722/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1332\n", - "Epoch 723/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1331\n", - "Epoch 724/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.133\n", - "Epoch 725/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.133\n", - "Epoch 726/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1329\n", - "Epoch 727/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1329\n", - "Epoch 728/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1328\n", - "Epoch 729/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1328\n", - "Epoch 730/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1327\n", - "Epoch 731/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1326\n", - "Epoch 732/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1326\n", - "Epoch 733/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1325\n", - "Epoch 734/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1325\n", - "Epoch 735/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1324\n", - "Epoch 736/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1324\n", - "Epoch 737/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1323\n", - "Epoch 738/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1323\n", - "Epoch 739/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1322\n", - "Epoch 740/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1321\n", - "Epoch 741/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1321\n", - "Epoch 742/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.132\n", - "Epoch 743/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.132\n", - "Epoch 744/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1319\n", - "Epoch 745/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1319\n", - "Epoch 746/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1318\n", - "Epoch 747/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1318\n", - "Epoch 748/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1317\n", - "Epoch 749/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1316\n", - "Epoch 750/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1316\n", - "Epoch 751/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1315\n", - "Epoch 752/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1315\n", - "Epoch 753/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1314\n", - "Epoch 754/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1314\n", - "Epoch 755/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1313\n", - "Epoch 756/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1312\n", - "Epoch 757/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1312\n", - "Epoch 758/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1311\n", - "Epoch 759/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1311\n", - "Epoch 760/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.131\n", - "Epoch 761/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.131\n", - "Epoch 762/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1309\n", - "Epoch 763/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1309\n", - "Epoch 764/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1308\n", - "Epoch 765/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1307\n", - "Epoch 766/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1307\n", - "Epoch 767/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1306\n", - "Epoch 768/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1306\n", - "Epoch 769/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1305\n", - "Epoch 770/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1305\n", - "Epoch 771/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1304\n", - "Epoch 772/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1304\n", - "Epoch 773/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1303\n", - "Epoch 774/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1302\n", - "Epoch 775/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1302\n", - "Epoch 776/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1301\n", - "Epoch 777/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1301\n", - "Epoch 778/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.13\n", - "Epoch 779/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.13\n", - "Epoch 780/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1299\n", - "Epoch 781/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1299\n", - "Epoch 782/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1298\n", - "Epoch 783/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1298\n", - "Epoch 784/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1297\n", - "Epoch 785/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1296\n", - "Epoch 786/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1296\n", - "Epoch 787/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1295\n", - "Epoch 788/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1295\n", - "Epoch 789/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1294\n", - "Epoch 790/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1294\n", - "Epoch 791/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1293\n", - "Epoch 792/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1293\n", - "Epoch 793/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1292\n", - "Epoch 794/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1291\n", - "Epoch 795/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1291\n", - "Epoch 796/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.129\n", - "Epoch 797/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.129\n", - "Epoch 798/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1289\n", - "Epoch 799/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1289\n", - "Epoch 800/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1288\n", - "Epoch 801/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1288\n", - "Epoch 802/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1287\n", - "Epoch 803/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1286\n", - "Epoch 804/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1286\n", - "Epoch 805/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1285\n", - "Epoch 806/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1285\n", - "Epoch 807/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1284\n", - "Epoch 808/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1284\n", - "Epoch 809/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1283\n", - "Epoch 810/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1283\n", - "Epoch 811/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1282\n", - "Epoch 812/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1282\n", - "Epoch 813/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1281\n", - "Epoch 814/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.128\n", - "Epoch 815/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.128\n", - "Epoch 816/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1279\n", - "Epoch 817/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1279\n", - "Epoch 818/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1278\n", - "Epoch 819/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1278\n", - "Epoch 820/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1277\n", - "Epoch 821/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1277\n", - "Epoch 822/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1276\n", - "Epoch 823/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1276\n", - "Epoch 824/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1275\n", - "Epoch 825/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1274\n", - "Epoch 826/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1274\n", - "Epoch 827/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1273\n", - "Epoch 828/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1273\n", - "Epoch 829/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1272\n", - "Epoch 830/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1272\n", - "Epoch 831/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1271\n", - "Epoch 832/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1271\n", - "Epoch 833/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.127\n", - "Epoch 834/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.127\n", - "Epoch 835/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1269\n", - "Epoch 836/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1268\n", - "Epoch 837/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1268\n", - "Epoch 838/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1267\n", - "Epoch 839/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1267\n", - "Epoch 840/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1266\n", - "Epoch 841/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1266\n", - "Epoch 842/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1265\n", - "Epoch 843/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1265\n", - "Epoch 844/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1264\n", - "Epoch 845/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1264\n", - "Epoch 846/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1263\n", - "Epoch 847/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1263\n", - "Epoch 848/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1262\n", - "Epoch 849/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1261\n", - "Epoch 850/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1261\n", - "Epoch 851/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.126\n", - "Epoch 852/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.126\n", - "Epoch 853/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1259\n", - "Epoch 854/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1259\n", - "Epoch 855/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1258\n", - "Epoch 856/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1258\n", - "Epoch 857/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1257\n", - "Epoch 858/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1257\n", - "Epoch 859/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1256\n", - "Epoch 860/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1256\n", - "Epoch 861/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1255\n", - "Epoch 862/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1254\n", - "Epoch 863/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1254\n", - "Epoch 864/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1253\n", - "Epoch 865/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1253\n", - "Epoch 866/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1252\n", - "Epoch 867/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1252\n", - "Epoch 868/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1251\n", - "Epoch 869/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1251\n", - "Epoch 870/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.125\n", - "Epoch 871/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.125\n", - "Epoch 872/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1249\n", - "Epoch 873/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1249\n", - "Epoch 874/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1248\n", - "Epoch 875/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1247\n", - "Epoch 876/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1247\n", - "Epoch 877/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1246\n", - "Epoch 878/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1246\n", - "Epoch 879/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1245\n", - "Epoch 880/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1245\n", - "Epoch 881/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1244\n", - "Epoch 882/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1244\n", - "Epoch 883/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1243\n", - "Epoch 884/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1243\n", - "Epoch 885/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1242\n", - "Epoch 886/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1242\n", - "Epoch 887/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1241\n", - "Epoch 888/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1241\n", - "Epoch 889/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.124\n", - "Epoch 890/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1239\n", - "Epoch 891/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1239\n", - "Epoch 892/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1238\n", - "Epoch 893/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1238\n", - "Epoch 894/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1237\n", - "Epoch 895/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1237\n", - "Epoch 896/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1236\n", - "Epoch 897/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1236\n", - "Epoch 898/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1235\n", - "Epoch 899/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1235\n", - "Epoch 900/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1234\n", - "Epoch 901/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1234\n", - "Epoch 902/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1233\n", - "Epoch 903/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1233\n", - "Epoch 904/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1232\n", - "Epoch 905/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1232\n", - "Epoch 906/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1231\n", - "Epoch 907/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.123\n", - "Epoch 908/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.123\n", - "Epoch 909/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1229\n", - "Epoch 910/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1229\n", - "Epoch 911/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1228\n", - "Epoch 912/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1228\n", - "Epoch 913/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1227\n", - "Epoch 914/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1227\n", - "Epoch 915/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1226\n", - "Epoch 916/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1226\n", - "Epoch 917/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1225\n", - "Epoch 918/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1225\n", - "Epoch 919/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1224\n", - "Epoch 920/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1224\n", - "Epoch 921/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1223\n", - "Epoch 922/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1223\n", - "Epoch 923/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1222\n", - "Epoch 924/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1221\n", - "Epoch 925/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1221\n", - "Epoch 926/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.122\n", - "Epoch 927/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.122\n", - "Epoch 928/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1219\n", - "Epoch 929/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1219\n", - "Epoch 930/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1218\n", - "Epoch 931/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1218\n", - "Epoch 932/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1217\n", - "Epoch 933/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1217\n", - "Epoch 934/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1216\n", - "Epoch 935/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1216\n", - "Epoch 936/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1215\n", - "Epoch 937/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1215\n", - "Epoch 938/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1214\n", - "Epoch 939/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1214\n", - "Epoch 940/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1213\n", - "Epoch 941/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1213\n", - "Epoch 942/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1212\n", - "Epoch 943/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1212\n", - "Epoch 944/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1211\n", - "Epoch 945/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.121\n", - "Epoch 946/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.121\n", - "Epoch 947/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1209\n", - "Epoch 948/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1209\n", - "Epoch 949/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1208\n", - "Epoch 950/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1208\n", - "Epoch 951/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1207\n", - "Epoch 952/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1207\n", - "Epoch 953/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1206\n", - "Epoch 954/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1206\n", - "Epoch 955/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1205\n", - "Epoch 956/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1205\n", - "Epoch 957/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1204\n", - "Epoch 958/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1204\n", - "Epoch 959/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1203\n", - "Epoch 960/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1203\n", - "Epoch 961/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1202\n", - "Epoch 962/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1202\n", - "Epoch 963/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1201\n", - "Epoch 964/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1201\n", - "Epoch 965/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.12\n", - "Epoch 966/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.12\n", - "Epoch 967/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1199\n", - "Epoch 968/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1199\n", - "Epoch 969/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1198\n", - "Epoch 970/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1197\n", - "Epoch 971/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1197\n", - "Epoch 972/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1196\n", - "Epoch 973/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1196\n", - "Epoch 974/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1195\n", - "Epoch 975/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1195\n", - "Epoch 976/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1194\n", - "Epoch 977/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1194\n", - "Epoch 978/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1193\n", - "Epoch 979/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1193\n", - "Epoch 980/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1192\n", - "Epoch 981/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1192\n", - "Epoch 982/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1191\n", - "Epoch 983/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1191\n", - "Epoch 984/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.119\n", - "Epoch 985/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.119\n", - "Epoch 986/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1189\n", - "Epoch 987/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1189\n", - "Epoch 988/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1188\n", - "Epoch 989/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1188\n", - "Epoch 990/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1187\n", - "Epoch 991/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1187\n", - "Epoch 992/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1186\n", - "Epoch 993/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1186\n", - "Epoch 994/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1185\n", - "Epoch 995/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1185\n", - "Epoch 996/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1184\n", - "Epoch 997/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1184\n", - "Epoch 998/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1183\n", - "Epoch 999/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1183\n", - "Epoch 1000/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1182\n", - "Epoch 1001/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1182\n", - "Epoch 1002/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1181\n", - "Epoch 1003/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.118\n", - "Epoch 1004/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.118\n", - "Epoch 1005/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1179\n", - "Epoch 1006/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1179\n", - "Epoch 1007/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1178\n", - "Epoch 1008/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1178\n", - "Epoch 1009/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1177\n", - "Epoch 1010/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1177\n", - "Epoch 1011/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1176\n", - "Epoch 1012/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1176\n", - "Epoch 1013/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1175\n", - "Epoch 1014/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1175\n", - "Epoch 1015/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1174\n", - "Epoch 1016/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1174\n", - "Epoch 1017/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1173\n", - "Epoch 1018/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1173\n", - "Epoch 1019/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1172\n", - "Epoch 1020/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1172\n", - "Epoch 1021/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1171\n", - "Epoch 1022/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1171\n", - "Epoch 1023/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.117\n", - "Epoch 1024/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.117\n", - "Epoch 1025/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1169\n", - "Epoch 1026/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1169\n", - "Epoch 1027/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1168\n", - "Epoch 1028/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1168\n", - "Epoch 1029/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1167\n", - "Epoch 1030/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1167\n", - "Epoch 1031/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1166\n", - "Epoch 1032/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1166\n", - "Epoch 1033/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1165\n", - "Epoch 1034/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1165\n", - "Epoch 1035/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1164\n", - "Epoch 1036/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1164\n", - "Epoch 1037/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1163\n", - "Epoch 1038/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1163\n", - "Epoch 1039/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1162\n", - "Epoch 1040/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1162\n", - "Epoch 1041/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1161\n", - "Epoch 1042/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1161\n", - "Epoch 1043/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.116\n", - "Epoch 1044/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.116\n", - "Epoch 1045/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1159\n", - "Epoch 1046/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1159\n", - "Epoch 1047/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1158\n", - "Epoch 1048/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1158\n", - "Epoch 1049/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1157\n", - "Epoch 1050/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1157\n", - "Epoch 1051/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1156\n", - "Epoch 1052/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1156\n", - "Epoch 1053/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1155\n", - "Epoch 1054/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1155\n", - "Epoch 1055/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1154\n", - "Epoch 1056/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1154\n", - "Epoch 1057/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1153\n", - "Epoch 1058/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1153\n", - "Epoch 1059/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1152\n", - "Epoch 1060/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1152\n", - "Epoch 1061/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1151\n", - "Epoch 1062/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1151\n", - "Epoch 1063/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.115\n", - "Epoch 1064/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.115\n", - "Epoch 1065/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1149\n", - "Epoch 1066/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1149\n", - "Epoch 1067/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1148\n", - "Epoch 1068/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1148\n", - "Epoch 1069/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1147\n", - "Epoch 1070/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1147\n", - "Epoch 1071/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1146\n", - "Epoch 1072/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1146\n", - "Epoch 1073/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1145\n", - "Epoch 1074/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1145\n", - "Epoch 1075/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1144\n", - "Epoch 1076/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1144\n", - "Epoch 1077/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1143\n", - "Epoch 1078/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1143\n", - "Epoch 1079/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1142\n", - "Epoch 1080/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1142\n", - "Epoch 1081/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1141\n", - "Epoch 1082/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1141\n", - "Epoch 1083/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.114\n", - "Epoch 1084/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.114\n", - "Epoch 1085/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1139\n", - "Epoch 1086/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1139\n", - "Epoch 1087/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1138\n", - "Epoch 1088/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1138\n", - "Epoch 1089/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1137\n", - "Epoch 1090/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1137\n", - "Epoch 1091/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1136\n", - "Epoch 1092/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1136\n", - "Epoch 1093/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1135\n", - "Epoch 1094/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1135\n", - "Epoch 1095/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1134\n", - "Epoch 1096/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1134\n", - "Epoch 1097/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1133\n", - "Epoch 1098/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1133\n", - "Epoch 1099/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1132\n", - "Epoch 1100/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1132\n", - "Epoch 1101/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1131\n", - "Epoch 1102/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1131\n", - "Epoch 1103/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.113\n", - "Epoch 1104/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.113\n", - "Epoch 1105/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1129\n", - "Epoch 1106/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1129\n", - "Epoch 1107/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1128\n", - "Epoch 1108/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1128\n", - "Epoch 1109/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1127\n", - "Epoch 1110/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1127\n", - "Epoch 1111/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1126\n", - "Epoch 1112/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1126\n", - "Epoch 1113/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1125\n", - "Epoch 1114/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1125\n", - "Epoch 1115/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1124\n", - "Epoch 1116/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1124\n", - "Epoch 1117/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1123\n", - "Epoch 1118/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1123\n", - "Epoch 1119/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1122\n", - "Epoch 1120/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1122\n", - "Epoch 1121/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1121\n", - "Epoch 1122/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1121\n", - "Epoch 1123/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.112\n", - "Epoch 1124/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.112\n", - "Epoch 1125/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1119\n", - "Epoch 1126/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1119\n", - "Epoch 1127/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1118\n", - "Epoch 1128/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1118\n", - "Epoch 1129/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1118\n", - "Epoch 1130/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1117\n", - "Epoch 1131/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1117\n", - "Epoch 1132/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1116\n", - "Epoch 1133/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1116\n", - "Epoch 1134/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1115\n", - "Epoch 1135/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1115\n", - "Epoch 1136/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1114\n", - "Epoch 1137/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1114\n", - "Epoch 1138/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1113\n", - "Epoch 1139/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1113\n", - "Epoch 1140/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1112\n", - "Epoch 1141/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1112\n", - "Epoch 1142/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1111\n", - "Epoch 1143/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1111\n", - "Epoch 1144/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.111\n", - "Epoch 1145/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.111\n", - "Epoch 1146/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1109\n", - "Epoch 1147/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1109\n", - "Epoch 1148/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1108\n", - "Epoch 1149/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1108\n", - "Epoch 1150/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1107\n", - "Epoch 1151/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1107\n", - "Epoch 1152/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1106\n", - "Epoch 1153/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1106\n", - "Epoch 1154/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1105\n", - "Epoch 1155/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1105\n", - "Epoch 1156/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1104\n", - "Epoch 1157/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1104\n", - "Epoch 1158/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1103\n", - "Epoch 1159/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1103\n", - "Epoch 1160/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1102\n", - "Epoch 1161/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1102\n", - "Epoch 1162/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1101\n", - "Epoch 1163/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1101\n", - "Epoch 1164/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1101\n", - "Epoch 1165/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.11\n", - "Epoch 1166/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.11\n", - "Epoch 1167/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1099\n", - "Epoch 1168/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1099\n", - "Epoch 1169/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1098\n", - "Epoch 1170/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1098\n", - "Epoch 1171/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1097\n", - "Epoch 1172/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1097\n", - "Epoch 1173/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1096\n", - "Epoch 1174/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1096\n", - "Epoch 1175/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1095\n", - "Epoch 1176/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1095\n", - "Epoch 1177/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1094\n", - "Epoch 1178/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1094\n", - "Epoch 1179/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1093\n", - "Epoch 1180/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.1093\n", - "Epoch 1181/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1092\n", - "Epoch 1182/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1092\n", - "Epoch 1183/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1091\n", - "Epoch 1184/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.1091\n", - "Epoch 1185/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.109\n", - "Epoch 1186/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.109\n", - "Epoch 1187/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1089\n", - "Epoch 1188/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1089\n", - "Epoch 1189/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1089\n", - "Epoch 1190/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1088\n", - "Epoch 1191/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1088\n", - "Epoch 1192/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1087\n", - "Epoch 1193/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1087\n", - "Epoch 1194/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1086\n", - "Epoch 1195/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1086\n", - "Epoch 1196/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1085\n", - "Epoch 1197/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1085\n", - "Epoch 1198/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1084\n", - "Epoch 1199/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1084\n", - "Epoch 1200/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1083\n", - "Epoch 1201/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1083\n", - "Epoch 1202/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1082\n", - "Epoch 1203/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1082\n", - "Epoch 1204/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1081\n", - "Epoch 1205/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1081\n", - "Epoch 1206/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.108\n", - "Epoch 1207/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.108\n", - "Epoch 1208/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1079\n", - "Epoch 1209/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1079\n", - "Epoch 1210/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1079\n", - "Epoch 1211/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1078\n", - "Epoch 1212/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1078\n", - "Epoch 1213/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1077\n", - "Epoch 1214/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1077\n", - "Epoch 1215/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1076\n", - "Epoch 1216/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1076\n", - "Epoch 1217/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1075\n", - "Epoch 1218/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1075\n", - "Epoch 1219/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1074\n", - "Epoch 1220/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1074\n", - "Epoch 1221/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1073\n", - "Epoch 1222/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1073\n", - "Epoch 1223/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1072\n", - "Epoch 1224/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1072\n", - "Epoch 1225/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1071\n", - "Epoch 1226/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1071\n", - "Epoch 1227/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1071\n", - "Epoch 1228/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.107\n", - "Epoch 1229/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.107\n", - "Epoch 1230/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1069\n", - "Epoch 1231/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.1069\n", - "Epoch 1232/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1068\n", - "Epoch 1233/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1068\n", - "Epoch 1234/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1067\n", - "Epoch 1235/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1067\n", - "Epoch 1236/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1066\n", - "Epoch 1237/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1066\n", - "Epoch 1238/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1065\n", - "Epoch 1239/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1065\n", - "Epoch 1240/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1064\n", - "Epoch 1241/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1064\n", - "Epoch 1242/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1063\n", - "Epoch 1243/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1063\n", - "Epoch 1244/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1063\n", - "Epoch 1245/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1062\n", - "Epoch 1246/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1062\n", - "Epoch 1247/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1061\n", - "Epoch 1248/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1061\n", - "Epoch 1249/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.106\n", - "Epoch 1250/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.106\n", - "Epoch 1251/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1059\n", - "Epoch 1252/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1059\n", - "Epoch 1253/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1058\n", - "Epoch 1254/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1058\n", - "Epoch 1255/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1057\n", - "Epoch 1256/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1057\n", - "Epoch 1257/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1056\n", - "Epoch 1258/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1056\n", - "Epoch 1259/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1056\n", - "Epoch 1260/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1055\n", - "Epoch 1261/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1055\n", - "Epoch 1262/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1054\n", - "Epoch 1263/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1054\n", - "Epoch 1264/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1053\n", - "Epoch 1265/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1053\n", - "Epoch 1266/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1052\n", - "Epoch 1267/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1052\n", - "Epoch 1268/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1051\n", - "Epoch 1269/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.1051\n", - "Epoch 1270/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.105\n", - "Epoch 1271/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.105\n", - "Epoch 1272/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.105\n", - "Epoch 1273/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1049\n", - "Epoch 1274/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.1049\n", - "Epoch 1275/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1048\n", - "Epoch 1276/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1048\n", - "Epoch 1277/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1047\n", - "Epoch 1278/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.1047\n", - "Epoch 1279/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1046\n", - "Epoch 1280/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1046\n", - "Epoch 1281/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1045\n", - "Epoch 1282/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1045\n", - "Epoch 1283/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1044\n", - "Epoch 1284/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1044\n", - "Epoch 1285/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1044\n", - "Epoch 1286/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1043\n", - "Epoch 1287/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1043\n", - "Epoch 1288/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1042\n", - "Epoch 1289/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1042\n", - "Epoch 1290/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1041\n", - "Epoch 1291/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1041\n", - "Epoch 1292/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.104\n", - "Epoch 1293/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.104\n", - "Epoch 1294/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1039\n", - "Epoch 1295/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1039\n", - "Epoch 1296/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1038\n", - "Epoch 1297/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1038\n", - "Epoch 1298/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1038\n", - "Epoch 1299/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1037\n", - "Epoch 1300/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1037\n", - "Epoch 1301/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1036\n", - "Epoch 1302/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1036\n", - "Epoch 1303/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1035\n", - "Epoch 1304/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1035\n", - "Epoch 1305/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1034\n", - "Epoch 1306/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1034\n", - "Epoch 1307/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1033\n", - "Epoch 1308/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1033\n", - "Epoch 1309/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1033\n", - "Epoch 1310/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1032\n", - "Epoch 1311/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1032\n", - "Epoch 1312/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1031\n", - "Epoch 1313/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1031\n", - "Epoch 1314/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.103\n", - "Epoch 1315/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.103\n", - "Epoch 1316/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1029\n", - "Epoch 1317/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1029\n", - "Epoch 1318/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1028\n", - "Epoch 1319/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1028\n", - "Epoch 1320/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.1027\n", - "Epoch 1321/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.1027\n", - "Epoch 1322/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1027\n", - "Epoch 1323/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1026\n", - "Epoch 1324/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1026\n", - "Epoch 1325/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1025\n", - "Epoch 1326/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1025\n", - "Epoch 1327/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1024\n", - "Epoch 1328/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1024\n", - "Epoch 1329/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1023\n", - "Epoch 1330/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.1023\n", - "Epoch 1331/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1022\n", - "Epoch 1332/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1022\n", - "Epoch 1333/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1022\n", - "Epoch 1334/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1021\n", - "Epoch 1335/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1021\n", - "Epoch 1336/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.102\n", - "Epoch 1337/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.102\n", - "Epoch 1338/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1019\n", - "Epoch 1339/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1019\n", - "Epoch 1340/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1018\n", - "Epoch 1341/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1018\n", - "Epoch 1342/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1017\n", - "Epoch 1343/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1017\n", - "Epoch 1344/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1017\n", - "Epoch 1345/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1016\n", - "Epoch 1346/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1016\n", - "Epoch 1347/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1015\n", - "Epoch 1348/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1015\n", - "Epoch 1349/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1014\n", - "Epoch 1350/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1014\n", - "Epoch 1351/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1013\n", - "Epoch 1352/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1013\n", - "Epoch 1353/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1012\n", - "Epoch 1354/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.1012\n", - "Epoch 1355/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1012\n", - "Epoch 1356/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1011\n", - "Epoch 1357/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.1011\n", - "Epoch 1358/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.101\n", - "Epoch 1359/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.101\n", - "Epoch 1360/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1009\n", - "Epoch 1361/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1009\n", - "Epoch 1362/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1008\n", - "Epoch 1363/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.1008\n", - "Epoch 1364/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1007\n", - "Epoch 1365/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1007\n", - "Epoch 1366/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.1006\n", - "Epoch 1367/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1006\n", - "Epoch 1368/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1006\n", - "Epoch 1369/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1005\n", - "Epoch 1370/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.1005\n", - "Epoch 1371/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1004\n", - "Epoch 1372/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1004\n", - "Epoch 1373/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1003\n", - "Epoch 1374/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1003\n", - "Epoch 1375/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1002\n", - "Epoch 1376/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1002\n", - "Epoch 1377/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1001\n", - "Epoch 1378/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1001\n", - "Epoch 1379/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1\n", - "Epoch 1380/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1\n", - "Epoch 1381/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0999\n", - "Epoch 1382/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0999\n", - "Epoch 1383/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0999\n", - "Epoch 1384/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0998\n", - "Epoch 1385/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0998\n", - "Epoch 1386/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.0997\n", - "Epoch 1387/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0997\n", - "Epoch 1388/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0996\n", - "Epoch 1389/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0996\n", - "Epoch 1390/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0995\n", - "Epoch 1391/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0995\n", - "Epoch 1392/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.0994\n", - "Epoch 1393/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0994\n", - "Epoch 1394/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0993\n", - "Epoch 1395/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0993\n", - "Epoch 1396/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0992\n", - "Epoch 1397/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.0992\n", - "Epoch 1398/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0992\n", - "Epoch 1399/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0991\n", - "Epoch 1400/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.0991\n", - "Epoch 1401/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.099\n", - "Epoch 1402/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.099\n", - "Epoch 1403/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0989\n", - "Epoch 1404/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0989\n", - "Epoch 1405/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.0988\n", - "Epoch 1406/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0988\n", - "Epoch 1407/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0987\n", - "Epoch 1408/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0987\n", - "Epoch 1409/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.0986\n", - "Epoch 1410/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0986\n", - "Epoch 1411/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0985\n", - "Epoch 1412/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0985\n", - "Epoch 1413/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.0984\n", - "Epoch 1414/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0984\n", - "Epoch 1415/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0983\n", - "Epoch 1416/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0983\n", - "Epoch 1417/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0982\n", - "Epoch 1418/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.0982\n", - "Epoch 1419/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0981\n", - "Epoch 1420/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0981\n", - "Epoch 1421/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0981\n", - "Epoch 1422/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.098\n", - "Epoch 1423/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.098\n", - "Epoch 1424/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0979\n", - "Epoch 1425/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0979\n", - "Epoch 1426/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0978\n", - "Epoch 1427/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0978\n", - "Epoch 1428/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0977\n", - "Epoch 1429/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0977\n", - "Epoch 1430/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0976\n", - "Epoch 1431/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0976\n", - "Epoch 1432/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0975\n", - "Epoch 1433/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.0975\n", - "Epoch 1434/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0974\n", - "Epoch 1435/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0974\n", - "Epoch 1436/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0973\n", - "Epoch 1437/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.0973\n", - "Epoch 1438/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0972\n", - "Epoch 1439/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0972\n", - "Epoch 1440/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0971\n", - "Epoch 1441/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0971\n", - "Epoch 1442/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0971\n", - "Epoch 1443/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.097\n", - "Epoch 1444/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.097\n", - "Epoch 1445/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0969\n", - "Epoch 1446/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0969\n", - "Epoch 1447/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0968\n", - "Epoch 1448/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0968\n", - "Epoch 1449/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0967\n", - "Epoch 1450/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0967\n", - "Epoch 1451/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0966\n", - "Epoch 1452/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0966\n", - "Epoch 1453/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0965\n", - "Epoch 1454/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0965\n", - "Epoch 1455/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0964\n", - "Epoch 1456/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0964\n", - "Epoch 1457/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0963\n", - "Epoch 1458/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0963\n", - "Epoch 1459/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0962\n", - "Epoch 1460/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0962\n", - "Epoch 1461/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0961\n", - "Epoch 1462/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0961\n", - "Epoch 1463/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.096\n", - "Epoch 1464/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.096\n", - "Epoch 1465/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0959\n", - "Epoch 1466/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0959\n", - "Epoch 1467/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0958\n", - "Epoch 1468/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0958\n", - "Epoch 1469/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0957\n", - "Epoch 1470/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0957\n", - "Epoch 1471/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0956\n", - "Epoch 1472/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0956\n", - "Epoch 1473/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0955\n", - "Epoch 1474/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0955\n", - "Epoch 1475/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0955\n", - "Epoch 1476/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0954\n", - "Epoch 1477/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0954\n", - "Epoch 1478/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0953\n", - "Epoch 1479/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0953\n", - "Epoch 1480/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0952\n", - "Epoch 1481/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0952\n", - "Epoch 1482/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.0951\n", - "Epoch 1483/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0951\n", - "Epoch 1484/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.095\n", - "Epoch 1485/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.095\n", - "Epoch 1486/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0949\n", - "Epoch 1487/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0949\n", - "Epoch 1488/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0948\n", - "Epoch 1489/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0948\n", - "Epoch 1490/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0947\n", - "Epoch 1491/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0947\n", - "Epoch 1492/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.0946\n", - "Epoch 1493/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0946\n", - "Epoch 1494/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0945\n", - "Epoch 1495/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0945\n", - "Epoch 1496/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0944\n", - "Epoch 1497/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0944\n", - "Epoch 1498/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0943\n", - "Epoch 1499/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0943\n", - "Epoch 1500/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0942\n", - "Epoch 1501/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0942\n", - "Epoch 1502/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0941\n", - "Epoch 1503/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0941\n", - "Epoch 1504/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0941\n", - "Epoch 1505/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.094\n", - "Epoch 1506/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.094\n", - "Epoch 1507/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0939\n", - "Epoch 1508/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0939\n", - "Epoch 1509/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0938\n", - "Epoch 1510/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0938\n", - "Epoch 1511/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.0937\n", - "Epoch 1512/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0937\n", - "Epoch 1513/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0936\n", - "Epoch 1514/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0936\n", - "Epoch 1515/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0935\n", - "Epoch 1516/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0935\n", - "Epoch 1517/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0934\n", - "Epoch 1518/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0934\n", - "Epoch 1519/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0933\n", - "Epoch 1520/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0933\n", - "Epoch 1521/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0932\n", - "Epoch 1522/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0932\n", - "Epoch 1523/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0931\n", - "Epoch 1524/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0931\n", - "Epoch 1525/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.093\n", - "Epoch 1526/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.093\n", - "Epoch 1527/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0929\n", - "Epoch 1528/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0929\n", - "Epoch 1529/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0929\n", - "Epoch 1530/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0928\n", - "Epoch 1531/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0928\n", - "Epoch 1532/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0927\n", - "Epoch 1533/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0927\n", - "Epoch 1534/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0926\n", - "Epoch 1535/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0926\n", - "Epoch 1536/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0925\n", - "Epoch 1537/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0925\n", - "Epoch 1538/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0924\n", - "Epoch 1539/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0924\n", - "Epoch 1540/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0923\n", - "Epoch 1541/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0923\n", - "Epoch 1542/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0922\n", - "Epoch 1543/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0922\n", - "Epoch 1544/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0921\n", - "Epoch 1545/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0921\n", - "Epoch 1546/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.092\n", - "Epoch 1547/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.092\n", - "Epoch 1548/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0919\n", - "Epoch 1549/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0919\n", - "Epoch 1550/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0918\n", - "Epoch 1551/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0918\n", - "Epoch 1552/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0917\n", - "Epoch 1553/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0917\n", - "Epoch 1554/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0916\n", - "Epoch 1555/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0916\n", - "Epoch 1556/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0915\n", - "Epoch 1557/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0915\n", - "Epoch 1558/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0915\n", - "Epoch 1559/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0914\n", - "Epoch 1560/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0914\n", - "Epoch 1561/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0913\n", - "Epoch 1562/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0913\n", - "Epoch 1563/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0912\n", - "Epoch 1564/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0912\n", - "Epoch 1565/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0911\n", - "Epoch 1566/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0911\n", - "Epoch 1567/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.091\n", - "Epoch 1568/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.091\n", - "Epoch 1569/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0909\n", - "Epoch 1570/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0909\n", - "Epoch 1571/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0908\n", - "Epoch 1572/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0908\n", - "Epoch 1573/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0907\n", - "Epoch 1574/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0907\n", - "Epoch 1575/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0906\n", - "Epoch 1576/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0906\n", - "Epoch 1577/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0905\n", - "Epoch 1578/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0905\n", - "Epoch 1579/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0904\n", - "Epoch 1580/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0904\n", - "Epoch 1581/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0903\n", - "Epoch 1582/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0903\n", - "Epoch 1583/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0903\n", - "Epoch 1584/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0902\n", - "Epoch 1585/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0902\n", - "Epoch 1586/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0901\n", - "Epoch 1587/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0901\n", - "Epoch 1588/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.09\n", - "Epoch 1589/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.09\n", - "Epoch 1590/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0899\n", - "Epoch 1591/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0899\n", - "Epoch 1592/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0898\n", - "Epoch 1593/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0898\n", - "Epoch 1594/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0897\n", - "Epoch 1595/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0897\n", - "Epoch 1596/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0896\n", - "Epoch 1597/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0896\n", - "Epoch 1598/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0895\n", - "Epoch 1599/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0895\n", - "Epoch 1600/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0894\n", - "Epoch 1601/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0894\n", - "Epoch 1602/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0894\n", - "Epoch 1603/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0893\n", - "Epoch 1604/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0893\n", - "Epoch 1605/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0892\n", - "Epoch 1606/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0892\n", - "Epoch 1607/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0891\n", - "Epoch 1608/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0891\n", - "Epoch 1609/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.089\n", - "Epoch 1610/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.089\n", - "Epoch 1611/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0889\n", - "Epoch 1612/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0889\n", - "Epoch 1613/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0888\n", - "Epoch 1614/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0888\n", - "Epoch 1615/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0887\n", - "Epoch 1616/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0887\n", - "Epoch 1617/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0886\n", - "Epoch 1618/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0886\n", - "Epoch 1619/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0886\n", - "Epoch 1620/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0885\n", - "Epoch 1621/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0885\n", - "Epoch 1622/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0884\n", - "Epoch 1623/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0884\n", - "Epoch 1624/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0883\n", - "Epoch 1625/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0883\n", - "Epoch 1626/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0882\n", - "Epoch 1627/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0882\n", - "Epoch 1628/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0881\n", - "Epoch 1629/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0881\n", - "Epoch 1630/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.088\n", - "Epoch 1631/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.088\n", - "Epoch 1632/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0879\n", - "Epoch 1633/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0879\n", - "Epoch 1634/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0878\n", - "Epoch 1635/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0878\n", - "Epoch 1636/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0878\n", - "Epoch 1637/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0877\n", - "Epoch 1638/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0877\n", - "Epoch 1639/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0876\n", - "Epoch 1640/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0876\n", - "Epoch 1641/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0875\n", - "Epoch 1642/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0875\n", - "Epoch 1643/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0874\n", - "Epoch 1644/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0874\n", - "Epoch 1645/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0873\n", - "Epoch 1646/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0873\n", - "Epoch 1647/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0872\n", - "Epoch 1648/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0872\n", - "Epoch 1649/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0871\n", - "Epoch 1650/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0871\n", - "Epoch 1651/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.087\n", - "Epoch 1652/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.087\n", - "Epoch 1653/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.087\n", - "Epoch 1654/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0869\n", - "Epoch 1655/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0869\n", - "Epoch 1656/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0868\n", - "Epoch 1657/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0868\n", - "Epoch 1658/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0867\n", - "Epoch 1659/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0867\n", - "Epoch 1660/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0866\n", - "Epoch 1661/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0866\n", - "Epoch 1662/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0865\n", - "Epoch 1663/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0865\n", - "Epoch 1664/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0864\n", - "Epoch 1665/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0864\n", - "Epoch 1666/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0864\n", - "Epoch 1667/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0863\n", - "Epoch 1668/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0863\n", - "Epoch 1669/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0862\n", - "Epoch 1670/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0862\n", - "Epoch 1671/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0861\n", - "Epoch 1672/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0861\n", - "Epoch 1673/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.086\n", - "Epoch 1674/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.086\n", - "Epoch 1675/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0859\n", - "Epoch 1676/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0859\n", - "Epoch 1677/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0858\n", - "Epoch 1678/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0858\n", - "Epoch 1679/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0857\n", - "Epoch 1680/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0857\n", - "Epoch 1681/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0857\n", - "Epoch 1682/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0856\n", - "Epoch 1683/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0856\n", - "Epoch 1684/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0855\n", - "Epoch 1685/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0855\n", - "Epoch 1686/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0854\n", - "Epoch 1687/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0854\n", - "Epoch 1688/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0853\n", - "Epoch 1689/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0853\n", - "Epoch 1690/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0852\n", - "Epoch 1691/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0852\n", - "Epoch 1692/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0851\n", - "Epoch 1693/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0851\n", - "Epoch 1694/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0851\n", - "Epoch 1695/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.085\n", - "Epoch 1696/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.085\n", - "Epoch 1697/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0849\n", - "Epoch 1698/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0849\n", - "Epoch 1699/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0848\n", - "Epoch 1700/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0848\n", - "Epoch 1701/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0847\n", - "Epoch 1702/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0847\n", - "Epoch 1703/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0846\n", - "Epoch 1704/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0846\n", - "Epoch 1705/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0845\n", - "Epoch 1706/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0845\n", - "Epoch 1707/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0845\n", - "Epoch 1708/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0844\n", - "Epoch 1709/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0844\n", - "Epoch 1710/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0843\n", - "Epoch 1711/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0843\n", - "Epoch 1712/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0842\n", - "Epoch 1713/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0842\n", - "Epoch 1714/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0841\n", - "Epoch 1715/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0841\n", - "Epoch 1716/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.084\n", - "Epoch 1717/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.084\n", - "Epoch 1718/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0839\n", - "Epoch 1719/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0839\n", - "Epoch 1720/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0839\n", - "Epoch 1721/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0838\n", - "Epoch 1722/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0838\n", - "Epoch 1723/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0837\n", - "Epoch 1724/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0837\n", - "Epoch 1725/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0836\n", - "Epoch 1726/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0836\n", - "Epoch 1727/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0835\n", - "Epoch 1728/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0835\n", - "Epoch 1729/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0834\n", - "Epoch 1730/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0834\n", - "Epoch 1731/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0833\n", - "Epoch 1732/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0833\n", - "Epoch 1733/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0833\n", - "Epoch 1734/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0832\n", - "Epoch 1735/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0832\n", - "Epoch 1736/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0831\n", - "Epoch 1737/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0831\n", - "Epoch 1738/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.083\n", - "Epoch 1739/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.083\n", - "Epoch 1740/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0829\n", - "Epoch 1741/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0829\n", - "Epoch 1742/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0828\n", - "Epoch 1743/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0828\n", - "Epoch 1744/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0828\n", - "Epoch 1745/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0827\n", - "Epoch 1746/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0827\n", - "Epoch 1747/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0826\n", - "Epoch 1748/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0826\n", - "Epoch 1749/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0825\n", - "Epoch 1750/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0825\n", - "Epoch 1751/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0824\n", - "Epoch 1752/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0824\n", - "Epoch 1753/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0823\n", - "Epoch 1754/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0823\n", - "Epoch 1755/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0823\n", - "Epoch 1756/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0822\n", - "Epoch 1757/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0822\n", - "Epoch 1758/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0821\n", - "Epoch 1759/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0821\n", - "Epoch 1760/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.082\n", - "Epoch 1761/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.082\n", - "Epoch 1762/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0819\n", - "Epoch 1763/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0819\n", - "Epoch 1764/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0818\n", - "Epoch 1765/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0818\n", - "Epoch 1766/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0818\n", - "Epoch 1767/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0817\n", - "Epoch 1768/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0817\n", - "Epoch 1769/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0816\n", - "Epoch 1770/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0816\n", - "Epoch 1771/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0815\n", - "Epoch 1772/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0815\n", - "Epoch 1773/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0814\n", - "Epoch 1774/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0814\n", - "Epoch 1775/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0813\n", - "Epoch 1776/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0813\n", - "Epoch 1777/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0813\n", - "Epoch 1778/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0812\n", - "Epoch 1779/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0812\n", - "Epoch 1780/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0811\n", - "Epoch 1781/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0811\n", - "Epoch 1782/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.081\n", - "Epoch 1783/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.081\n", - "Epoch 1784/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0809\n", - "Epoch 1785/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0809\n", - "Epoch 1786/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0808\n", - "Epoch 1787/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0808\n", - "Epoch 1788/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0808\n", - "Epoch 1789/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0807\n", - "Epoch 1790/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0807\n", - "Epoch 1791/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0806\n", - "Epoch 1792/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0806\n", - "Epoch 1793/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0805\n", - "Epoch 1794/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0805\n", - "Epoch 1795/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0804\n", - "Epoch 1796/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0804\n", - "Epoch 1797/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0804\n", - "Epoch 1798/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0803\n", - "Epoch 1799/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0803\n", - "Epoch 1800/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0802\n", - "Epoch 1801/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0802\n", - "Epoch 1802/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0801\n", - "Epoch 1803/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0801\n", - "Epoch 1804/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.08\n", - "Epoch 1805/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.08\n", - "Epoch 1806/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.08\n", - "Epoch 1807/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0799\n", - "Epoch 1808/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0799\n", - "Epoch 1809/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0798\n", - "Epoch 1810/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0798\n", - "Epoch 1811/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0797\n", - "Epoch 1812/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0797\n", - "Epoch 1813/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0796\n", - "Epoch 1814/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0796\n", - "Epoch 1815/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0795\n", - "Epoch 1816/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0795\n", - "Epoch 1817/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0795\n", - "Epoch 1818/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0794\n", - "Epoch 1819/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0794\n", - "Epoch 1820/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0793\n", - "Epoch 1821/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0793\n", - "Epoch 1822/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0792\n", - "Epoch 1823/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0792\n", - "Epoch 1824/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0791\n", - "Epoch 1825/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0791\n", - "Epoch 1826/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0791\n", - "Epoch 1827/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.079\n", - "Epoch 1828/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.079\n", - "Epoch 1829/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0789\n", - "Epoch 1830/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0789\n", - "Epoch 1831/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0788\n", - "Epoch 1832/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0788\n", - "Epoch 1833/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0787\n", - "Epoch 1834/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0787\n", - "Epoch 1835/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0787\n", - "Epoch 1836/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0786\n", - "Epoch 1837/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0786\n", - "Epoch 1838/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0785\n", - "Epoch 1839/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0785\n", - "Epoch 1840/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0784\n", - "Epoch 1841/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0784\n", - "Epoch 1842/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0783\n", - "Epoch 1843/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0783\n", - "Epoch 1844/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0783\n", - "Epoch 1845/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0782\n", - "Epoch 1846/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0782\n", - "Epoch 1847/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0781\n", - "Epoch 1848/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0781\n", - "Epoch 1849/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.078\n", - "Epoch 1850/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.078\n", - "Epoch 1851/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0779\n", - "Epoch 1852/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0779\n", - "Epoch 1853/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0779\n", - "Epoch 1854/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0778\n", - "Epoch 1855/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0778\n", - "Epoch 1856/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0777\n", - "Epoch 1857/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0777\n", - "Epoch 1858/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0776\n", - "Epoch 1859/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0776\n", - "Epoch 1860/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0776\n", - "Epoch 1861/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0775\n", - "Epoch 1862/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0775\n", - "Epoch 1863/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0774\n", - "Epoch 1864/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0774\n", - "Epoch 1865/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0773\n", - "Epoch 1866/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0773\n", - "Epoch 1867/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0772\n", - "Epoch 1868/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0772\n", - "Epoch 1869/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0772\n", - "Epoch 1870/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0771\n", - "Epoch 1871/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0771\n", - "Epoch 1872/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.077\n", - "Epoch 1873/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.077\n", - "Epoch 1874/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0769\n", - "Epoch 1875/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0769\n", - "Epoch 1876/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0769\n", - "Epoch 1877/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0768\n", - "Epoch 1878/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0768\n", - "Epoch 1879/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0767\n", - "Epoch 1880/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0767\n", - "Epoch 1881/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0766\n", - "Epoch 1882/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0766\n", - "Epoch 1883/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0765\n", - "Epoch 1884/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0765\n", - "Epoch 1885/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0765\n", - "Epoch 1886/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0764\n", - "Epoch 1887/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0764\n", - "Epoch 1888/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0763\n", - "Epoch 1889/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0763\n", - "Epoch 1890/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0762\n", - "Epoch 1891/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0762\n", - "Epoch 1892/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0762\n", - "Epoch 1893/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0761\n", - "Epoch 1894/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0761\n", - "Epoch 1895/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.076\n", - "Epoch 1896/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.076\n", - "Epoch 1897/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0759\n", - "Epoch 1898/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0759\n", - "Epoch 1899/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0758\n", - "Epoch 1900/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0758\n", - "Epoch 1901/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0758\n", - "Epoch 1902/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0757\n", - "Epoch 1903/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0757\n", - "Epoch 1904/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0756\n", - "Epoch 1905/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0756\n", - "Epoch 1906/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0755\n", - "Epoch 1907/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0755\n", - "Epoch 1908/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0755\n", - "Epoch 1909/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0754\n", - "Epoch 1910/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0754\n", - "Epoch 1911/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0753\n", - "Epoch 1912/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0753\n", - "Epoch 1913/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0752\n", - "Epoch 1914/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0752\n", - "Epoch 1915/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0752\n", - "Epoch 1916/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0751\n", - "Epoch 1917/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0751\n", - "Epoch 1918/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.075\n", - "Epoch 1919/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.075\n", - "Epoch 1920/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0749\n", - "Epoch 1921/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0749\n", - "Epoch 1922/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0749\n", - "Epoch 1923/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0748\n", - "Epoch 1924/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0748\n", - "Epoch 1925/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0747\n", - "Epoch 1926/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0747\n", - "Epoch 1927/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0746\n", - "Epoch 1928/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0746\n", - "Epoch 1929/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0745\n", - "Epoch 1930/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0745\n", - "Epoch 1931/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0745\n", - "Epoch 1932/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0744\n", - "Epoch 1933/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0744\n", - "Epoch 1934/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0743\n", - "Epoch 1935/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0743\n", - "Epoch 1936/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0742\n", - "Epoch 1937/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0742\n", - "Epoch 1938/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0742\n", - "Epoch 1939/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0741\n", - "Epoch 1940/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0741\n", - "Epoch 1941/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.074\n", - "Epoch 1942/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.074\n", - "Epoch 1943/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0739\n", - "Epoch 1944/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0739\n", - "Epoch 1945/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0739\n", - "Epoch 1946/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0738\n", - "Epoch 1947/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0738\n", - "Epoch 1948/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0737\n", - "Epoch 1949/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0737\n", - "Epoch 1950/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0736\n", - "Epoch 1951/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0736\n", - "Epoch 1952/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0736\n", - "Epoch 1953/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0735\n", - "Epoch 1954/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0735\n", - "Epoch 1955/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0734\n", - "Epoch 1956/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0734\n", - "Epoch 1957/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0733\n", - "Epoch 1958/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0733\n", - "Epoch 1959/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0733\n", - "Epoch 1960/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0732\n", - "Epoch 1961/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0732\n", - "Epoch 1962/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0731\n", - "Epoch 1963/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0731\n", - "Epoch 1964/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.073\n", - "Epoch 1965/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.073\n", - "Epoch 1966/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.073\n", - "Epoch 1967/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0729\n", - "Epoch 1968/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0729\n", - "Epoch 1969/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0728\n", - "Epoch 1970/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0728\n", - "Epoch 1971/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0727\n", - "Epoch 1972/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0727\n", - "Epoch 1973/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0727\n", - "Epoch 1974/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0726\n", - "Epoch 1975/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0726\n", - "Epoch 1976/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0725\n", - "Epoch 1977/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0725\n", - "Epoch 1978/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0725\n", - "Epoch 1979/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0724\n", - "Epoch 1980/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0724\n", - "Epoch 1981/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0723\n", - "Epoch 1982/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0723\n", - "Epoch 1983/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0722\n", - "Epoch 1984/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0722\n", - "Epoch 1985/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0722\n", - "Epoch 1986/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0721\n", - "Epoch 1987/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0721\n", - "Epoch 1988/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.072\n", - "Epoch 1989/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.072\n", - "Epoch 1990/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0719\n", - "Epoch 1991/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0719\n", - "Epoch 1992/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0719\n", - "Epoch 1993/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0718\n", - "Epoch 1994/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0718\n", - "Epoch 1995/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0717\n", - "Epoch 1996/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0717\n", - "Epoch 1997/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0716\n", - "Epoch 1998/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0716\n", - "Epoch 1999/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0716\n", - "Epoch 2000/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0715\n", - "Epoch 2001/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0715\n", - "Epoch 2002/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0714\n", - "Epoch 2003/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0714\n", - "Epoch 2004/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0714\n", - "Epoch 2005/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0713\n", - "Epoch 2006/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0713\n", - "Epoch 2007/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0712\n", - "Epoch 2008/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0712\n", - "Epoch 2009/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0711\n", - "Epoch 2010/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0711\n", - "Epoch 2011/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0711\n", - "Epoch 2012/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.071\n", - "Epoch 2013/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.071\n", - "Epoch 2014/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0709\n", - "Epoch 2015/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0709\n", - "Epoch 2016/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0709\n", - "Epoch 2017/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0708\n", - "Epoch 2018/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0708\n", - "Epoch 2019/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0707\n", - "Epoch 2020/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0707\n", - "Epoch 2021/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0706\n", - "Epoch 2022/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0706\n", - "Epoch 2023/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0706\n", - "Epoch 2024/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0705\n", - "Epoch 2025/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0705\n", - "Epoch 2026/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0704\n", - "Epoch 2027/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0704\n", - "Epoch 2028/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0704\n", - "Epoch 2029/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0703\n", - "Epoch 2030/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0703\n", - "Epoch 2031/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0702\n", - "Epoch 2032/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0702\n", - "Epoch 2033/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0701\n", - "Epoch 2034/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0701\n", - "Epoch 2035/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0701\n", - "Epoch 2036/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.07\n", - "Epoch 2037/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.07\n", - "Epoch 2038/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0699\n", - "Epoch 2039/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0699\n", - "Epoch 2040/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0699\n", - "Epoch 2041/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0698\n", - "Epoch 2042/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0698\n", - "Epoch 2043/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0697\n", - "Epoch 2044/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0697\n", - "Epoch 2045/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0696\n", - "Epoch 2046/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0696\n", - "Epoch 2047/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0696\n", - "Epoch 2048/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0695\n", - "Epoch 2049/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0695\n", - "Epoch 2050/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0694\n", - "Epoch 2051/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0694\n", - "Epoch 2052/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0694\n", - "Epoch 2053/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0693\n", - "Epoch 2054/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0693\n", - "Epoch 2055/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0692\n", - "Epoch 2056/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0692\n", - "Epoch 2057/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0691\n", - "Epoch 2058/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0691\n", - "Epoch 2059/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0691\n", - "Epoch 2060/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.069\n", - "Epoch 2061/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.069\n", - "Epoch 2062/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0689\n", - "Epoch 2063/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0689\n", - "Epoch 2064/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0689\n", - "Epoch 2065/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0688\n", - "Epoch 2066/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0688\n", - "Epoch 2067/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0687\n", - "Epoch 2068/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0687\n", - "Epoch 2069/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0687\n", - "Epoch 2070/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0686\n", - "Epoch 2071/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0686\n", - "Epoch 2072/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0685\n", - "Epoch 2073/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0685\n", - "Epoch 2074/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0684\n", - "Epoch 2075/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0684\n", - "Epoch 2076/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0684\n", - "Epoch 2077/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0683\n", - "Epoch 2078/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0683\n", - "Epoch 2079/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0682\n", - "Epoch 2080/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0682\n", - "Epoch 2081/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0682\n", - "Epoch 2082/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0681\n", - "Epoch 2083/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0681\n", - "Epoch 2084/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.068\n", - "Epoch 2085/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.068\n", - "Epoch 2086/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.068\n", - "Epoch 2087/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0679\n", - "Epoch 2088/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0679\n", - "Epoch 2089/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0678\n", - "Epoch 2090/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0678\n", - "Epoch 2091/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0678\n", - "Epoch 2092/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0677\n", - "Epoch 2093/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0677\n", - "Epoch 2094/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0676\n", - "Epoch 2095/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0676\n", - "Epoch 2096/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0675\n", - "Epoch 2097/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0675\n", - "Epoch 2098/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0675\n", - "Epoch 2099/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0674\n", - "Epoch 2100/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0674\n", - "Epoch 2101/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0673\n", - "Epoch 2102/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0673\n", - "Epoch 2103/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0673\n", - "Epoch 2104/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0672\n", - "Epoch 2105/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0672\n", - "Epoch 2106/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0671\n", - "Epoch 2107/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0671\n", - "Epoch 2108/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0671\n", - "Epoch 2109/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.067\n", - "Epoch 2110/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.067\n", - "Epoch 2111/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0669\n", - "Epoch 2112/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0669\n", - "Epoch 2113/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0669\n", - "Epoch 2114/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0668\n", - "Epoch 2115/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0668\n", - "Epoch 2116/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0667\n", - "Epoch 2117/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0667\n", - "Epoch 2118/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0667\n", - "Epoch 2119/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0666\n", - "Epoch 2120/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0666\n", - "Epoch 2121/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0665\n", - "Epoch 2122/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0665\n", - "Epoch 2123/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0665\n", - "Epoch 2124/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0664\n", - "Epoch 2125/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0664\n", - "Epoch 2126/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0663\n", - "Epoch 2127/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0663\n", - "Epoch 2128/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0663\n", - "Epoch 2129/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0662\n", - "Epoch 2130/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0662\n", - "Epoch 2131/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0661\n", - "Epoch 2132/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0661\n", - "Epoch 2133/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.066\n", - "Epoch 2134/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.066\n", - "Epoch 2135/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.066\n", - "Epoch 2136/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0659\n", - "Epoch 2137/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0659\n", - "Epoch 2138/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0658\n", - "Epoch 2139/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0658\n", - "Epoch 2140/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0658\n", - "Epoch 2141/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0657\n", - "Epoch 2142/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0657\n", - "Epoch 2143/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0656\n", - "Epoch 2144/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0656\n", - "Epoch 2145/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0656\n", - "Epoch 2146/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0655\n", - "Epoch 2147/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0655\n", - "Epoch 2148/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0654\n", - "Epoch 2149/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0654\n", - "Epoch 2150/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0654\n", - "Epoch 2151/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0653\n", - "Epoch 2152/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0653\n", - "Epoch 2153/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0652\n", - "Epoch 2154/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0652\n", - "Epoch 2155/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0652\n", - "Epoch 2156/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0651\n", - "Epoch 2157/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0651\n", - "Epoch 2158/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.065\n", - "Epoch 2159/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.065\n", - "Epoch 2160/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.065\n", - "Epoch 2161/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0649\n", - "Epoch 2162/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0649\n", - "Epoch 2163/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0648\n", - "Epoch 2164/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0648\n", - "Epoch 2165/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0648\n", - "Epoch 2166/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0647\n", - "Epoch 2167/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0647\n", - "Epoch 2168/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0647\n", - "Epoch 2169/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0646\n", - "Epoch 2170/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0646\n", - "Epoch 2171/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0645\n", - "Epoch 2172/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0645\n", - "Epoch 2173/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0645\n", - "Epoch 2174/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0644\n", - "Epoch 2175/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0644\n", - "Epoch 2176/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0643\n", - "Epoch 2177/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0643\n", - "Epoch 2178/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0643\n", - "Epoch 2179/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0642\n", - "Epoch 2180/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0642\n", - "Epoch 2181/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0641\n", - "Epoch 2182/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0641\n", - "Epoch 2183/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0641\n", - "Epoch 2184/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.064\n", - "Epoch 2185/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.064\n", - "Epoch 2186/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0639\n", - "Epoch 2187/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0639\n", - "Epoch 2188/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0639\n", - "Epoch 2189/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0638\n", - "Epoch 2190/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0638\n", - "Epoch 2191/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0637\n", - "Epoch 2192/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0637\n", - "Epoch 2193/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0637\n", - "Epoch 2194/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0636\n", - "Epoch 2195/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0636\n", - "Epoch 2196/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0635\n", - "Epoch 2197/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0635\n", - "Epoch 2198/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0635\n", - "Epoch 2199/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0634\n", - "Epoch 2200/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0634\n", - "Epoch 2201/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0634\n", - "Epoch 2202/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0633\n", - "Epoch 2203/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0633\n", - "Epoch 2204/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0632\n", - "Epoch 2205/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0632\n", - "Epoch 2206/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0632\n", - "Epoch 2207/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0631\n", - "Epoch 2208/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0631\n", - "Epoch 2209/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.063\n", - "Epoch 2210/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.063\n", - "Epoch 2211/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.063\n", - "Epoch 2212/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0629\n", - "Epoch 2213/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0629\n", - "Epoch 2214/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0628\n", - "Epoch 2215/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0628\n", - "Epoch 2216/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0628\n", - "Epoch 2217/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0627\n", - "Epoch 2218/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0627\n", - "Epoch 2219/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0626\n", - "Epoch 2220/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0626\n", - "Epoch 2221/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0626\n", - "Epoch 2222/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0625\n", - "Epoch 2223/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0625\n", - "Epoch 2224/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0625\n", - "Epoch 2225/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0624\n", - "Epoch 2226/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0624\n", - "Epoch 2227/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0623\n", - "Epoch 2228/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0623\n", - "Epoch 2229/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0623\n", - "Epoch 2230/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0622\n", - "Epoch 2231/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0622\n", - "Epoch 2232/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0621\n", - "Epoch 2233/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0621\n", - "Epoch 2234/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0621\n", - "Epoch 2235/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.062\n", - "Epoch 2236/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.062\n", - "Epoch 2237/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0619\n", - "Epoch 2238/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0619\n", - "Epoch 2239/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0619\n", - "Epoch 2240/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0618\n", - "Epoch 2241/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0618\n", - "Epoch 2242/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0618\n", - "Epoch 2243/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0617\n", - "Epoch 2244/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0617\n", - "Epoch 2245/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0616\n", - "Epoch 2246/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0616\n", - "Epoch 2247/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0616\n", - "Epoch 2248/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0615\n", - "Epoch 2249/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0615\n", - "Epoch 2250/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0614\n", - "Epoch 2251/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0614\n", - "Epoch 2252/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0614\n", - "Epoch 2253/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0613\n", - "Epoch 2254/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0613\n", - "Epoch 2255/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0613\n", - "Epoch 2256/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0612\n", - "Epoch 2257/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0612\n", - "Epoch 2258/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0611\n", - "Epoch 2259/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0611\n", - "Epoch 2260/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0611\n", - "Epoch 2261/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.061\n", - "Epoch 2262/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.061\n", - "Epoch 2263/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0609\n", - "Epoch 2264/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0609\n", - "Epoch 2265/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0609\n", - "Epoch 2266/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0608\n", - "Epoch 2267/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0608\n", - "Epoch 2268/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0608\n", - "Epoch 2269/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0607\n", - "Epoch 2270/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0607\n", - "Epoch 2271/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0606\n", - "Epoch 2272/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0606\n", - "Epoch 2273/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0606\n", - "Epoch 2274/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0605\n", - "Epoch 2275/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0605\n", - "Epoch 2276/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0605\n", - "Epoch 2277/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0604\n", - "Epoch 2278/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0604\n", - "Epoch 2279/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0603\n", - "Epoch 2280/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0603\n", - "Epoch 2281/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0603\n", - "Epoch 2282/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0602\n", - "Epoch 2283/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0602\n", - "Epoch 2284/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0601\n", - "Epoch 2285/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0601\n", - "Epoch 2286/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0601\n", - "Epoch 2287/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.06\n", - "Epoch 2288/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.06\n", - "Epoch 2289/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.06\n", - "Epoch 2290/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0599\n", - "Epoch 2291/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0599\n", - "Epoch 2292/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0598\n", - "Epoch 2293/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0598\n", - "Epoch 2294/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0598\n", - "Epoch 2295/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0597\n", - "Epoch 2296/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0597\n", - "Epoch 2297/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0597\n", - "Epoch 2298/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0596\n", - "Epoch 2299/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0596\n", - "Epoch 2300/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0595\n", - "Epoch 2301/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0595\n", - "Epoch 2302/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0595\n", - "Epoch 2303/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0594\n", - "Epoch 2304/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0594\n", - "Epoch 2305/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0594\n", - "Epoch 2306/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0593\n", - "Epoch 2307/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0593\n", - "Epoch 2308/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0592\n", - "Epoch 2309/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0592\n", - "Epoch 2310/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0592\n", - "Epoch 2311/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0591\n", - "Epoch 2312/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0591\n", - "Epoch 2313/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0591\n", - "Epoch 2314/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.059\n", - "Epoch 2315/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.059\n", - "Epoch 2316/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0589\n", - "Epoch 2317/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0589\n", - "Epoch 2318/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0589\n", - "Epoch 2319/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0588\n", - "Epoch 2320/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0588\n", - "Epoch 2321/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0588\n", - "Epoch 2322/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0587\n", - "Epoch 2323/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0587\n", - "Epoch 2324/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0586\n", - "Epoch 2325/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0586\n", - "Epoch 2326/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0586\n", - "Epoch 2327/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0585\n", - "Epoch 2328/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0585\n", - "Epoch 2329/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0585\n", - "Epoch 2330/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0584\n", - "Epoch 2331/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0584\n", - "Epoch 2332/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0583\n", - "Epoch 2333/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0583\n", - "Epoch 2334/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0583\n", - "Epoch 2335/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0582\n", - "Epoch 2336/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0582\n", - "Epoch 2337/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0582\n", - "Epoch 2338/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0581\n", - "Epoch 2339/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0581\n", - "Epoch 2340/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.058\n", - "Epoch 2341/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.058\n", - "Epoch 2342/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.058\n", - "Epoch 2343/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0579\n", - "Epoch 2344/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0579\n", - "Epoch 2345/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0579\n", - "Epoch 2346/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0578\n", - "Epoch 2347/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0578\n", - "Epoch 2348/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0577\n", - "Epoch 2349/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0577\n", - "Epoch 2350/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0577\n", - "Epoch 2351/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0576\n", - "Epoch 2352/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0576\n", - "Epoch 2353/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0576\n", - "Epoch 2354/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0575\n", - "Epoch 2355/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0575\n", - "Epoch 2356/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0575\n", - "Epoch 2357/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0574\n", - "Epoch 2358/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0574\n", - "Epoch 2359/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0573\n", - "Epoch 2360/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0573\n", - "Epoch 2361/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0573\n", - "Epoch 2362/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0572\n", - "Epoch 2363/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0572\n", - "Epoch 2364/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0572\n", - "Epoch 2365/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0571\n", - "Epoch 2366/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0571\n", - "Epoch 2367/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.057\n", - "Epoch 2368/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.057\n", - "Epoch 2369/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.057\n", - "Epoch 2370/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0569\n", - "Epoch 2371/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0569\n", - "Epoch 2372/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0569\n", - "Epoch 2373/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0568\n", - "Epoch 2374/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0568\n", - "Epoch 2375/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0568\n", - "Epoch 2376/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0567\n", - "Epoch 2377/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0567\n", - "Epoch 2378/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0566\n", - "Epoch 2379/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0566\n", - "Epoch 2380/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0566\n", - "Epoch 2381/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0565\n", - "Epoch 2382/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0565\n", - "Epoch 2383/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0565\n", - "Epoch 2384/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0564\n", - "Epoch 2385/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0564\n", - "Epoch 2386/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0564\n", - "Epoch 2387/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0563\n", - "Epoch 2388/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0563\n", - "Epoch 2389/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0562\n", - "Epoch 2390/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0562\n", - "Epoch 2391/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0562\n", - "Epoch 2392/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0561\n", - "Epoch 2393/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0561\n", - "Epoch 2394/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0561\n", - "Epoch 2395/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.056\n", - "Epoch 2396/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.056\n", - "Epoch 2397/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.056\n", - "Epoch 2398/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0559\n", - "Epoch 2399/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0559\n", - "Epoch 2400/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0558\n", - "Epoch 2401/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0558\n", - "Epoch 2402/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0558\n", - "Epoch 2403/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0557\n", - "Epoch 2404/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0557\n", - "Epoch 2405/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0557\n", - "Epoch 2406/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0556\n", - "Epoch 2407/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0556\n", - "Epoch 2408/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0556\n", - "Epoch 2409/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0555\n", - "Epoch 2410/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0555\n", - "Epoch 2411/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0554\n", - "Epoch 2412/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0554\n", - "Epoch 2413/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0554\n", - "Epoch 2414/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0553\n", - "Epoch 2415/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0553\n", - "Epoch 2416/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0553\n", - "Epoch 2417/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0552\n", - "Epoch 2418/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0552\n", - "Epoch 2419/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0552\n", - "Epoch 2420/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0551\n", - "Epoch 2421/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0551\n", - "Epoch 2422/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.055\n", - "Epoch 2423/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.055\n", - "Epoch 2424/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.055\n", - "Epoch 2425/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0549\n", - "Epoch 2426/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0549\n", - "Epoch 2427/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0549\n", - "Epoch 2428/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0548\n", - "Epoch 2429/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0548\n", - "Epoch 2430/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0548\n", - "Epoch 2431/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0547\n", - "Epoch 2432/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0547\n", - "Epoch 2433/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0547\n", - "Epoch 2434/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0546\n", - "Epoch 2435/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0546\n", - "Epoch 2436/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0545\n", - "Epoch 2437/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0545\n", - "Epoch 2438/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0545\n", - "Epoch 2439/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0544\n", - "Epoch 2440/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0544\n", - "Epoch 2441/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0544\n", - "Epoch 2442/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0543\n", - "Epoch 2443/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0543\n", - "Epoch 2444/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0543\n", - "Epoch 2445/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0542\n", - "Epoch 2446/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0542\n", - "Epoch 2447/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0542\n", - "Epoch 2448/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0541\n", - "Epoch 2449/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0541\n", - "Epoch 2450/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.054\n", - "Epoch 2451/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.054\n", - "Epoch 2452/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.054\n", - "Epoch 2453/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0539\n", - "Epoch 2454/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0539\n", - "Epoch 2455/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0539\n", - "Epoch 2456/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0538\n", - "Epoch 2457/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0538\n", - "Epoch 2458/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0538\n", - "Epoch 2459/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0537\n", - "Epoch 2460/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0537\n", - "Epoch 2461/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0537\n", - "Epoch 2462/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0536\n", - "Epoch 2463/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0536\n", - "Epoch 2464/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0536\n", - "Epoch 2465/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0535\n", - "Epoch 2466/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0535\n", - "Epoch 2467/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0534\n", - "Epoch 2468/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0534\n", - "Epoch 2469/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0534\n", - "Epoch 2470/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0533\n", - "Epoch 2471/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0533\n", - "Epoch 2472/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0533\n", - "Epoch 2473/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0532\n", - "Epoch 2474/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0532\n", - "Epoch 2475/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0532\n", - "Epoch 2476/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0531\n", - "Epoch 2477/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0531\n", - "Epoch 2478/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0531\n", - "Epoch 2479/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.053\n", - "Epoch 2480/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.053\n", - "Epoch 2481/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.053\n", - "Epoch 2482/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0529\n", - "Epoch 2483/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0529\n", - "Epoch 2484/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0528\n", - "Epoch 2485/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0528\n", - "Epoch 2486/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0528\n", - "Epoch 2487/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0527\n", - "Epoch 2488/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0527\n", - "Epoch 2489/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0527\n", - "Epoch 2490/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0526\n", - "Epoch 2491/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0526\n", - "Epoch 2492/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0526\n", - "Epoch 2493/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0525\n", - "Epoch 2494/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0525\n", - "Epoch 2495/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0525\n", - "Epoch 2496/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0524\n", - "Epoch 2497/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0524\n", - "Epoch 2498/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0524\n", - "Epoch 2499/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0523\n", - "Epoch 2500/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0523\n", - "Epoch 2501/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0523\n", - "Epoch 2502/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0522\n", - "Epoch 2503/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0522\n", - "Epoch 2504/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0522\n", - "Epoch 2505/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0521\n", - "Epoch 2506/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0521\n", - "Epoch 2507/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.052\n", - "Epoch 2508/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.052\n", - "Epoch 2509/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.052\n", - "Epoch 2510/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0519\n", - "Epoch 2511/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0519\n", - "Epoch 2512/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0519\n", - "Epoch 2513/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0518\n", - "Epoch 2514/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0518\n", - "Epoch 2515/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0518\n", - "Epoch 2516/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0517\n", - "Epoch 2517/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0517\n", - "Epoch 2518/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0517\n", - "Epoch 2519/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0516\n", - "Epoch 2520/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0516\n", - "Epoch 2521/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0516\n", - "Epoch 2522/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0515\n", - "Epoch 2523/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0515\n", - "Epoch 2524/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0515\n", - "Epoch 2525/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0514\n", - "Epoch 2526/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0514\n", - "Epoch 2527/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0514\n", - "Epoch 2528/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0513\n", - "Epoch 2529/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0513\n", - "Epoch 2530/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0513\n", - "Epoch 2531/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0512\n", - "Epoch 2532/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0512\n", - "Epoch 2533/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0512\n", - "Epoch 2534/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0511\n", - "Epoch 2535/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0511\n", - "Epoch 2536/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.051\n", - "Epoch 2537/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.051\n", - "Epoch 2538/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.051\n", - "Epoch 2539/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0509\n", - "Epoch 2540/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0509\n", - "Epoch 2541/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0509\n", - "Epoch 2542/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0508\n", - "Epoch 2543/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0508\n", - "Epoch 2544/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0508\n", - "Epoch 2545/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0507\n", - "Epoch 2546/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0507\n", - "Epoch 2547/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0507\n", - "Epoch 2548/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0506\n", - "Epoch 2549/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0506\n", - "Epoch 2550/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0506\n", - "Epoch 2551/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0505\n", - "Epoch 2552/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0505\n", - "Epoch 2553/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0505\n", - "Epoch 2554/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0504\n", - "Epoch 2555/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0504\n", - "Epoch 2556/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0504\n", - "Epoch 2557/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0503\n", - "Epoch 2558/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0503\n", - "Epoch 2559/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0503\n", - "Epoch 2560/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0502\n", - "Epoch 2561/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0502\n", - "Epoch 2562/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0502\n", - "Epoch 2563/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0501\n", - "Epoch 2564/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0501\n", - "Epoch 2565/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0501\n", - "Epoch 2566/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.05\n", - "Epoch 2567/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.05\n", - "Epoch 2568/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.05\n", - "Epoch 2569/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0499\n", - "Epoch 2570/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0499\n", - "Epoch 2571/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0499\n", - "Epoch 2572/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0498\n", - "Epoch 2573/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0498\n", - "Epoch 2574/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0498\n", - "Epoch 2575/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0497\n", - "Epoch 2576/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0497\n", - "Epoch 2577/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0497\n", - "Epoch 2578/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0496\n", - "Epoch 2579/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0496\n", - "Epoch 2580/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0496\n", - "Epoch 2581/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0495\n", - "Epoch 2582/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0495\n", - "Epoch 2583/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0495\n", - "Epoch 2584/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0494\n", - "Epoch 2585/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0494\n", - "Epoch 2586/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0494\n", - "Epoch 2587/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0493\n", - "Epoch 2588/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0493\n", - "Epoch 2589/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0493\n", - "Epoch 2590/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0492\n", - "Epoch 2591/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0492\n", - "Epoch 2592/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0492\n", - "Epoch 2593/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0491\n", - "Epoch 2594/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0491\n", - "Epoch 2595/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0491\n", - "Epoch 2596/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.049\n", - "Epoch 2597/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.049\n", - "Epoch 2598/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.049\n", - "Epoch 2599/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0489\n", - "Epoch 2600/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0489\n", - "Epoch 2601/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0489\n", - "Epoch 2602/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0488\n", - "Epoch 2603/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0488\n", - "Epoch 2604/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0488\n", - "Epoch 2605/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0487\n", - "Epoch 2606/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0487\n", - "Epoch 2607/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0487\n", - "Epoch 2608/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0486\n", - "Epoch 2609/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0486\n", - "Epoch 2610/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0486\n", - "Epoch 2611/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0485\n", - "Epoch 2612/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0485\n", - "Epoch 2613/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0485\n", - "Epoch 2614/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0484\n", - "Epoch 2615/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0484\n", - "Epoch 2616/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0484\n", - "Epoch 2617/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0483\n", - "Epoch 2618/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0483\n", - "Epoch 2619/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0483\n", - "Epoch 2620/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0482\n", - "Epoch 2621/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0482\n", - "Epoch 2622/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0482\n", - "Epoch 2623/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0481\n", - "Epoch 2624/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0481\n", - "Epoch 2625/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0481\n", - "Epoch 2626/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.048\n", - "Epoch 2627/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.048\n", - "Epoch 2628/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.048\n", - "Epoch 2629/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0479\n", - "Epoch 2630/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0479\n", - "Epoch 2631/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0479\n", - "Epoch 2632/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0478\n", - "Epoch 2633/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0478\n", - "Epoch 2634/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0478\n", - "Epoch 2635/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0477\n", - "Epoch 2636/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0477\n", - "Epoch 2637/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0477\n", - "Epoch 2638/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0476\n", - "Epoch 2639/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0476\n", - "Epoch 2640/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0476\n", - "Epoch 2641/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0475\n", - "Epoch 2642/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0475\n", - "Epoch 2643/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0475\n", - "Epoch 2644/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0474\n", - "Epoch 2645/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0474\n", - "Epoch 2646/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0474\n", - "Epoch 2647/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0473\n", - "Epoch 2648/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0473\n", - "Epoch 2649/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0473\n", - "Epoch 2650/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0472\n", - "Epoch 2651/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0472\n", - "Epoch 2652/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0472\n", - "Epoch 2653/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0472\n", - "Epoch 2654/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0471\n", - "Epoch 2655/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0471\n", - "Epoch 2656/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0471\n", - "Epoch 2657/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.047\n", - "Epoch 2658/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.047\n", - "Epoch 2659/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.047\n", - "Epoch 2660/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0469\n", - "Epoch 2661/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0469\n", - "Epoch 2662/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0469\n", - "Epoch 2663/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0468\n", - "Epoch 2664/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0468\n", - "Epoch 2665/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0468\n", - "Epoch 2666/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0467\n", - "Epoch 2667/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0467\n", - "Epoch 2668/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0467\n", - "Epoch 2669/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0466\n", - "Epoch 2670/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0466\n", - "Epoch 2671/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0466\n", - "Epoch 2672/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0465\n", - "Epoch 2673/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0465\n", - "Epoch 2674/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0465\n", - "Epoch 2675/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0464\n", - "Epoch 2676/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0464\n", - "Epoch 2677/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0464\n", - "Epoch 2678/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0463\n", - "Epoch 2679/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0463\n", - "Epoch 2680/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0463\n", - "Epoch 2681/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0462\n", - "Epoch 2682/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0462\n", - "Epoch 2683/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0462\n", - "Epoch 2684/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0462\n", - "Epoch 2685/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0461\n", - "Epoch 2686/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0461\n", - "Epoch 2687/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0461\n", - "Epoch 2688/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.046\n", - "Epoch 2689/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.046\n", - "Epoch 2690/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.046\n", - "Epoch 2691/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0459\n", - "Epoch 2692/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0459\n", - "Epoch 2693/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0459\n", - "Epoch 2694/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0458\n", - "Epoch 2695/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0458\n", - "Epoch 2696/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0458\n", - "Epoch 2697/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0457\n", - "Epoch 2698/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0457\n", - "Epoch 2699/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0457\n", - "Epoch 2700/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0456\n", - "Epoch 2701/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0456\n", - "Epoch 2702/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0456\n", - "Epoch 2703/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0455\n", - "Epoch 2704/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0455\n", - "Epoch 2705/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0455\n", - "Epoch 2706/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0455\n", - "Epoch 2707/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0454\n", - "Epoch 2708/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0454\n", - "Epoch 2709/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0454\n", - "Epoch 2710/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0453\n", - "Epoch 2711/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0453\n", - "Epoch 2712/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0453\n", - "Epoch 2713/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0452\n", - "Epoch 2714/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0452\n", - "Epoch 2715/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0452\n", - "Epoch 2716/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0451\n", - "Epoch 2717/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0451\n", - "Epoch 2718/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0451\n", - "Epoch 2719/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.045\n", - "Epoch 2720/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.045\n", - "Epoch 2721/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.045\n", - "Epoch 2722/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0449\n", - "Epoch 2723/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0449\n", - "Epoch 2724/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0449\n", - "Epoch 2725/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0449\n", - "Epoch 2726/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0448\n", - "Epoch 2727/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0448\n", - "Epoch 2728/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0448\n", - "Epoch 2729/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0447\n", - "Epoch 2730/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0447\n", - "Epoch 2731/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0447\n", - "Epoch 2732/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0446\n", - "Epoch 2733/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0446\n", - "Epoch 2734/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0446\n", - "Epoch 2735/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0445\n", - "Epoch 2736/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0445\n", - "Epoch 2737/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0445\n", - "Epoch 2738/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0444\n", - "Epoch 2739/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0444\n", - "Epoch 2740/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0444\n", - "Epoch 2741/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0444\n", - "Epoch 2742/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0443\n", - "Epoch 2743/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0443\n", - "Epoch 2744/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0443\n", - "Epoch 2745/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0442\n", - "Epoch 2746/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0442\n", - "Epoch 2747/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6971\n", - "Relative Entropy: 0.0442\n", - "Epoch 2748/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0441\n", - "Epoch 2749/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0441\n", - "Epoch 2750/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0441\n", - "Epoch 2751/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.044\n", - "Epoch 2752/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.044\n", - "Epoch 2753/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.044\n", - "Epoch 2754/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.044\n", - "Epoch 2755/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0439\n", - "Epoch 2756/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0439\n", - "Epoch 2757/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0439\n", - "Epoch 2758/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0438\n", - "Epoch 2759/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0438\n", - "Epoch 2760/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0438\n", - "Epoch 2761/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0437\n", - "Epoch 2762/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0437\n", - "Epoch 2763/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0437\n", - "Epoch 2764/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0436\n", - "Epoch 2765/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0436\n", - "Epoch 2766/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0436\n", - "Epoch 2767/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0436\n", - "Epoch 2768/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0435\n", - "Epoch 2769/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0435\n", - "Epoch 2770/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0435\n", - "Epoch 2771/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0434\n", - "Epoch 2772/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0434\n", - "Epoch 2773/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0434\n", - "Epoch 2774/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0433\n", - "Epoch 2775/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0433\n", - "Epoch 2776/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0433\n", - "Epoch 2777/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0433\n", - "Epoch 2778/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0432\n", - "Epoch 2779/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0432\n", - "Epoch 2780/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0432\n", - "Epoch 2781/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0431\n", - "Epoch 2782/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0431\n", - "Epoch 2783/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0431\n", - "Epoch 2784/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.043\n", - "Epoch 2785/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.043\n", - "Epoch 2786/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.043\n", - "Epoch 2787/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0429\n", - "Epoch 2788/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0429\n", - "Epoch 2789/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0429\n", - "Epoch 2790/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0429\n", - "Epoch 2791/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0428\n", - "Epoch 2792/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0428\n", - "Epoch 2793/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0428\n", - "Epoch 2794/3000...\n", - "Loss Discriminator: 0.6893\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0427\n", - "Epoch 2795/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.0427\n", - "Epoch 2796/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0427\n", - "Epoch 2797/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0427\n", - "Epoch 2798/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0426\n", - "Epoch 2799/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0426\n", - "Epoch 2800/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0426\n", - "Epoch 2801/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0425\n", - "Epoch 2802/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0425\n", - "Epoch 2803/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0425\n", - "Epoch 2804/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0424\n", - "Epoch 2805/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0424\n", - "Epoch 2806/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0424\n", - "Epoch 2807/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0424\n", - "Epoch 2808/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0423\n", - "Epoch 2809/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0423\n", - "Epoch 2810/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0423\n", - "Epoch 2811/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0422\n", - "Epoch 2812/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0422\n", - "Epoch 2813/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0422\n", - "Epoch 2814/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0421\n", - "Epoch 2815/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0421\n", - "Epoch 2816/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0421\n", - "Epoch 2817/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0421\n", - "Epoch 2818/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.042\n", - "Epoch 2819/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.042\n", - "Epoch 2820/3000...\n", - "Loss Discriminator: 0.6898\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.042\n", - "Epoch 2821/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0419\n", - "Epoch 2822/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0419\n", - "Epoch 2823/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0419\n", - "Epoch 2824/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0418\n", - "Epoch 2825/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0418\n", - "Epoch 2826/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0418\n", - "Epoch 2827/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0418\n", - "Epoch 2828/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0417\n", - "Epoch 2829/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0417\n", - "Epoch 2830/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0417\n", - "Epoch 2831/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0416\n", - "Epoch 2832/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0416\n", - "Epoch 2833/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0416\n", - "Epoch 2834/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0416\n", - "Epoch 2835/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0415\n", - "Epoch 2836/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0415\n", - "Epoch 2837/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0415\n", - "Epoch 2838/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0414\n", - "Epoch 2839/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0414\n", - "Epoch 2840/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0414\n", - "Epoch 2841/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6987\n", - "Relative Entropy: 0.0413\n", - "Epoch 2842/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0413\n", - "Epoch 2843/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0413\n", - "Epoch 2844/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0413\n", - "Epoch 2845/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0412\n", - "Epoch 2846/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0412\n", - "Epoch 2847/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0412\n", - "Epoch 2848/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0411\n", - "Epoch 2849/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0411\n", - "Epoch 2850/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0411\n", - "Epoch 2851/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0411\n", - "Epoch 2852/3000...\n", - "Loss Discriminator: 0.6894\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.041\n", - "Epoch 2853/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.041\n", - "Epoch 2854/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.041\n", - "Epoch 2855/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0409\n", - "Epoch 2856/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0409\n", - "Epoch 2857/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0409\n", - "Epoch 2858/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0408\n", - "Epoch 2859/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0408\n", - "Epoch 2860/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0408\n", - "Epoch 2861/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0408\n", - "Epoch 2862/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0407\n", - "Epoch 2863/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0407\n", - "Epoch 2864/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0407\n", - "Epoch 2865/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0406\n", - "Epoch 2866/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0406\n", - "Epoch 2867/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0406\n", - "Epoch 2868/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0406\n", - "Epoch 2869/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0405\n", - "Epoch 2870/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0405\n", - "Epoch 2871/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0405\n", - "Epoch 2872/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0404\n", - "Epoch 2873/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0404\n", - "Epoch 2874/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0404\n", - "Epoch 2875/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6958\n", - "Relative Entropy: 0.0404\n", - "Epoch 2876/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0403\n", - "Epoch 2877/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0403\n", - "Epoch 2878/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0403\n", - "Epoch 2879/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0402\n", - "Epoch 2880/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0402\n", - "Epoch 2881/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0402\n", - "Epoch 2882/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0402\n", - "Epoch 2883/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0401\n", - "Epoch 2884/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0401\n", - "Epoch 2885/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0401\n", - "Epoch 2886/3000...\n", - "Loss Discriminator: 0.6895\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.04\n", - "Epoch 2887/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.04\n", - "Epoch 2888/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.04\n", - "Epoch 2889/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.04\n", - "Epoch 2890/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0399\n", - "Epoch 2891/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0399\n", - "Epoch 2892/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0399\n", - "Epoch 2893/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0398\n", - "Epoch 2894/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0398\n", - "Epoch 2895/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0398\n", - "Epoch 2896/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0398\n", - "Epoch 2897/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0397\n", - "Epoch 2898/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0397\n", - "Epoch 2899/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0397\n", - "Epoch 2900/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0396\n", - "Epoch 2901/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0396\n", - "Epoch 2902/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0396\n", - "Epoch 2903/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0396\n", - "Epoch 2904/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0395\n", - "Epoch 2905/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0395\n", - "Epoch 2906/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0395\n", - "Epoch 2907/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0394\n", - "Epoch 2908/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0394\n", - "Epoch 2909/3000...\n", - "Loss Discriminator: 0.6899\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0394\n", - "Epoch 2910/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0394\n", - "Epoch 2911/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0393\n", - "Epoch 2912/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0393\n", - "Epoch 2913/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0393\n", - "Epoch 2914/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0393\n", - "Epoch 2915/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0392\n", - "Epoch 2916/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0392\n", - "Epoch 2917/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0392\n", - "Epoch 2918/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0391\n", - "Epoch 2919/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0391\n", - "Epoch 2920/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0391\n", - "Epoch 2921/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0391\n", - "Epoch 2922/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.6973\n", - "Relative Entropy: 0.039\n", - "Epoch 2923/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6987\n", - "Relative Entropy: 0.039\n", - "Epoch 2924/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.039\n", - "Epoch 2925/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0389\n", - "Epoch 2926/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6986\n", - "Relative Entropy: 0.0389\n", - "Epoch 2927/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0389\n", - "Epoch 2928/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0389\n", - "Epoch 2929/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0388\n", - "Epoch 2930/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0388\n", - "Epoch 2931/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0388\n", - "Epoch 2932/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0388\n", - "Epoch 2933/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0387\n", - "Epoch 2934/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0387\n", - "Epoch 2935/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0387\n", - "Epoch 2936/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0386\n", - "Epoch 2937/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0386\n", - "Epoch 2938/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0386\n", - "Epoch 2939/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0386\n", - "Epoch 2940/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0385\n", - "Epoch 2941/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0385\n", - "Epoch 2942/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0385\n", - "Epoch 2943/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0385\n", - "Epoch 2944/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0384\n", - "Epoch 2945/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0384\n", - "Epoch 2946/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0384\n", - "Epoch 2947/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0383\n", - "Epoch 2948/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6973\n", - "Relative Entropy: 0.0383\n", - "Epoch 2949/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0383\n", - "Epoch 2950/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0383\n", - "Epoch 2951/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0382\n", - "Epoch 2952/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0382\n", - "Epoch 2953/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0382\n", - "Epoch 2954/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0382\n", - "Epoch 2955/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0381\n", - "Epoch 2956/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0381\n", - "Epoch 2957/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0381\n", - "Epoch 2958/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6979\n", - "Relative Entropy: 0.038\n", - "Epoch 2959/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.038\n", - "Epoch 2960/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.038\n", - "Epoch 2961/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.038\n", - "Epoch 2962/3000...\n", - "Loss Discriminator: 0.6893\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0379\n", - "Epoch 2963/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0379\n", - "Epoch 2964/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0379\n", - "Epoch 2965/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0379\n", - "Epoch 2966/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0378\n", - "Epoch 2967/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0378\n", - "Epoch 2968/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0378\n", - "Epoch 2969/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0377\n", - "Epoch 2970/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0377\n", - "Epoch 2971/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0377\n", - "Epoch 2972/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0377\n", - "Epoch 2973/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.6977\n", - "Relative Entropy: 0.0376\n", - "Epoch 2974/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0376\n", - "Epoch 2975/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0376\n", - "Epoch 2976/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0376\n", - "Epoch 2977/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0375\n", - "Epoch 2978/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0375\n", - "Epoch 2979/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0375\n", - "Epoch 2980/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0374\n", - "Epoch 2981/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0374\n", - "Epoch 2982/3000...\n", - "Loss Discriminator: 0.6895\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0374\n", - "Epoch 2983/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6966\n", - "Relative Entropy: 0.0374\n", - "Epoch 2984/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0373\n", - "Epoch 2985/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0373\n", - "Epoch 2986/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0373\n", - "Epoch 2987/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6982\n", - "Relative Entropy: 0.0373\n", - "Epoch 2988/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0372\n", - "Epoch 2989/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0372\n", - "Epoch 2990/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0372\n", - "Epoch 2991/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6976\n", - "Relative Entropy: 0.0372\n", - "Epoch 2992/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0371\n", - "Epoch 2993/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0371\n", - "Epoch 2994/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0371\n", - "Epoch 2995/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.696\n", - "Relative Entropy: 0.037\n", - "Epoch 2996/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.037\n", - "Epoch 2997/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.037\n", - "Epoch 2998/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.037\n", - "Epoch 2999/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0369\n", - "Epoch 3000/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0369\n", - "qGAN training runtime: 35.25595039923986 min\n" - ] - } - ], - "source": [ - "# Run qGAN\n", - "qgan.run()\n", - "\n", - "# Runtime\n", - "end = time.time()\n", - "print('qGAN training runtime: ', (end - start)/60., ' min')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training Progress & Outcome\n", - "Now, we plot the evolution of the generator's and the discriminator's loss functions during the training as well as the progress in the relative entropy between the trained and the target distribution.\n", - "
Finally, we also compare the cumulative distribution function (CDF) of the trained distribution to the CDF of the target distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4lMXWwH8nPZCQhBZK6J0UAoQiSBHBXlBBaQpiwyt6xYod9RPL1YuoWLioKKKIiOUqihck0pEWeu+hk0AK6cl8f2zJbrKbbJJtCfN7Hh7ed9p75t3NnJ1zZs6IUgqNRqPRaMrCx9MCaDQajcb70cpCo9FoNOWilYVGo9FoykUrC41Go9GUi1YWGo1GoykXrSw0Go1GUy5aWWguOURkh4gMdFJbA0Uk2UltjRORlc5oy8Hn3SIix0QkU0S6uvG5o0XkD3c9T+MctLLQlEJEDotItnEQOS0is0UkxNNyOQulVLRSKrEydUVEiUhbJ4vkKd4GJiqlQpRSm13xABFpaXxnfqY0pdRcpdRVrniexnVoZaGxx41KqRCgG5AAPF+ygBhw2nfIckDRuIUWwA5PC6GpHmhloSkTpdRx4DcgBkBEEkXkNRFZBWQBrUWkiYj8LCKpIrJfRO4z1ReRYBH5QkTOi8guEXnK0mxjnMU8LSJbgYsi4mds73sROSsih0TkEYvyPUVkg4ikG2c9/zamB4nIVyKSIiIXRGS9iETa6pPxmYON11NEZL6IfCkiGUYTVYKdesuNl1uMs647LPIeF5EzInJSRO62SA8UkbdF5KhR3o9FJNiRdy8ifYz9SDP+38cib5yIHDTKfEhERhvT24rIX8Y650TkWxvtBopIJuBr7MsBY7rVrMk4o/w/4/VAEUkuo5/BIvKOiBwxPnulsZ+md3bB+M4uK2luK6efiSLyqoisMvb1DxGp78j70zgXrSw0ZSIizYDrAEszxZ3A/UAocASYByQDTYBhwFQRGWQs+xLQEmgNDAHG2HjMSOB6IBwoAv4LbAGaAlcCj4rI1cay04HpSqk6QBtgvjF9LBAGNAPqAROAbAe7eZOxD+HAz8AHtgoppfobL7sYTTemgbiR8dlNgXuAGSISYcx7A2gPxANtjWVeLE8gEakL/Aq8Z+zPv4FfRaSeiNQ2pl+rlAoF+gBJxqqvAn8AEUAU8L6NfuQaZ42mvrQpTx4H+vk20N0oS13gKQyfpemdhRvf2RpH+2lRbBRwN9AQCACecFBejRPRykJjjx9F5AKwEvgLmGqRN1sptUMpVYBhAOkLPK2UylFKJQGzgLuMZW8HpiqlziulkjEMCiV5Tyl1TCmVDfQAGiilXlFK5SmlDgL/AUYYy+YDbUWkvlIqUym11iK9HtBWKVWolNqolEp3sK8rlVKLlFKFwBygi4P1TOQDryil8pVSi4BMoIOICAalOkkplaqUysDwHkeU0ZaJ64F9Sqk5SqkCpdQ3wG7gRmN+ERAjIsFKqZNKKZM5KR+DeamJ8fNwpsPcXj99gPHAP5VSx43vf7VSKtcJ/QT4XCm11/j9mI9B8WrcjFYWGnsMVUqFK6VaKKX+YfxDNXHM4roJYBoITRzB8OvTlG9Z3vLaVloLoInRlHTBqLCeBUwmpXsw/FLfbTRZ3GBMnwMsBuaJyAkReUtE/B3s6ymL6ywgSCrmP0kxKk7LNkKABkAtYKNFX343ppdHEwzv0ZIjQFOl1EXgDgyzp5Mi8quIdDSWeQoQ4G+jSW18BfpRHvb6WR8IAg5Uok27/bS4L/n51JjFFtUJrSw0lcEyVPEJoK6IhFqkNQeOG69PYjCHmGhWTnvHgENGRWX6F6qUug5AKbVPKTUSg0niTWCBiNQ2/tp9WSnVGYMp5AaKZzee4hwGU1i0RV/CLExAZXECg+K0xPxelVKLlVJDgMYYfon/x5h+Sil1n1KqCfAA8KE4vnorC4NyM9HIwXrngBwMZsGSlBfWusx+arwHrSw0VUIpdQxYDbxudDLHYfj1/5WxyHzgGRGJEJGmwMRymvwbyBCD0ztYRHxFJEZEegCIyBgRaaCUKgIuGOsUicgVIhIrIr5AOgaTSZFzewvAaQz+l3IxyvgfYJqINAQQkaYW/peyWAS0F5FRYnD63wF0Bn4RkUgRudnou8jFYA4qMrY/XERMyvk8hsHa0feQBIwyvvNrgAEV6OdnwL/FsDjB1+jIDgTOGp9v753Z7aeDMmvchFYWGmcwEoMT+wTwA/CSUmqJMe8VDM7vQ8ASYAGGAc4mRr/BDRjs0ocw/GqdhcGxCnANsMO4mmc6MMJoImtkbDsd2IXBzzLHaT0sZgrwhdGsdLsD5Z8G9gNrRSQdwzvoUF4lpVQKhvfwOJCCwbx0g1LqHIa/28cwvO9UDIP6g8aqPYB1xvfzMwY/wkEH+/ZPDL6CC8Bo4EcH64HB6bwNWG+U6U3ARymVBbwGrDK+s94V6KfGixB9+JHGnYjIgxgGeId+tWo0Gu9Azyw0LkVEGotIXxHxEZEOGH5B/uBpuTQaTcXQO2Y1riYA+ARohcG8MQ/40KMSaTSaCqPNUBqNRqMpF22G0mg0Gk25aGWh0Wg0mnKpMT6L+vXrq5YtW1a6/sWLF6ldu7bzBPIQNaUfoPvirdSUvtSUfkDV+rJx48ZzSqlyowrUGGXRsmVLNmzYUOn6iYmJDBw40HkCeYia0g/QffFWakpfako/oGp9EZGS4VZsos1QGo1GoykXrSw0Go1GUy5aWWg0Go2mXFzqszAGI5uO4USuWUqpN0rkTwOuMN7WAhoqpcIt8usAO4EflVLlBaDTaDxGfn4+ycnJ5OTk2MwPCwtj165dbpbKNdSUvtSUfoBjfQkKCiIqKgp/f0cj91vjMmVhjP45A8PpaMnAehH5WSm101RGKTXJovzDQNcSzbxK8bGMGo3XkpycTGhoKC1btsRw5pE1GRkZhIaG2qhZ/agpfakp/YDy+6KUIiUlheTkZFq1alWpZ7jSDNUT2K+UOqiUysMQ5uHmMsqPBL4x3YhIdwwH3vzhQhk1GqeQk5NDvXr1bCoKjcbTiAj16tWzO/N1BFeaoZpifQJaMtDLVkERaYEhdtCfxnsf4B0M5zUPtvcAEbkfw7GVREZGkpiYWGlhMzMzq1TfW6gp/YDq1ZewsDAyMzPt5hcWFpKRkWE3vzpRU/pSU/oBjvclJyen8n9TSimX/AOGYfBTmO7vBD6wU/Zp4H2L+4nAU8brcfbqWf7r3r27qgrLli2rUn1voab0Q6nq1ZedO3eWmZ+enu5yGU6dOqVGjhypWrVqpbp166Z69+6tFi5c6PTnONqXZcuWqVWrVlXpWcuWLVPXX399ldqwx++//646d+6sunTporKyspzW7muvvWZ1f9lllzmtbXs4+pnY+p4CG5QDY7orzVDHsT5CMwr7RyWOwMIEBVwGTBSRw8DbwF0i8oatihqNxvCjb+jQofTv35+DBw+yceNG5s2bR3JyskufW1BQYDcvMTGR1atXO609ZzN//nyeeeYZkpKSCA4Odlq7U6dOtbqv6DvwVlypLNYD7USklYgEYFAIP5csZDxoPgJYY0pTSo1WSjVXSrXEcALXl0qpyS6U1SEubj3F0VeXUZiV72lRNBor/vzzTwICApgwYYI5rUWLFjz88MOAwUzx5JNP0qNHD+Li4vjkk0+A4p2/w4YNo2PHjowePdo0u2fjxo0MGDCA7t27c/XVV3Py5EkArrvuOh599FESEhKYPn06//3vf+nVqxddu3Zl8ODBnD59msOHD/Pxxx8zbdo04uPjWbFiBYcPH2bQoEHExcVx5ZVXcvToUQDGjRvHhAkT6NWrF0899ZTdPqampjJ06FDi4uLo3bs3W7duBeCvv/4iPj6e+Ph4unbtSkZGBidPnqR///7Ex8cTExPDihUrrNqaNWsWCxcu5IUXXmD06NEkJiZyww03mPMnTpzI7NmzAUN0iJdeeolu3boRGxvL7t27AYOZ9O677yY2Npa4uDi+//57Jk+eTHZ2NvHx8YwePRqAkBDDketKKZ588kliYmKIjY3l22+/Lfcz8CZc5rNQShWIyERgMYals58ppXaIyCsYpj0mxTECmKe88e2UYNvgzwAQfx+aTR5g+ECLFOKrt6toPMuOHTvo1q2b3fxPP/2UsLAw1q9fT25uLn379uWqq64CYPPmzezYsYMmTZrQt29fVq1aRa9evXj44Yf56aefaNCgAd9++y3PPfccn31m+BvIy8szh9c5f/48a9euRUSYNWsWb731Fu+88w4TJkwgJCSEJ554AoAbb7yRsWPHMnbsWD777DMeeeQRfvzRcHJrcnIyq1evxtfX124fXnrpJbp27cqPP/7In3/+yV133UVSUhJvv/02M2bMoG/fvmRmZhIUFMTMmTO5+uqree655ygsLCQrK8uqrXvvvZdly5Zxyy23MGzYsHLt+PXr12fTpk18+OGHvP3228yaNYtXX32VsLAwtm3bZn4Pt912Gx988AFJSUml2li4cCFJSUls2bKFc+fO0aNHD/r372/3M7j88svLlMnduHSfhVJqEYYD2S3TXixxP6WcNmYDs50smsPknkhn1/BvaPKPYt98zsFUAHbeMpec/Sl03TwRH//iL/nx6avxDQmg0T0JbpdX43nWNpxafqFK0PvMsw6Xfeihh1i5ciUBAQGsX7+eP/74g61bt7JgwQIA0tLS2LdvHwEBAfTs2ZOoqCgA4uPjOXz4MOHh4Wzfvp0hQ4YAhplJ48aNze3fcccd5uvk5GTuuOMOTp48SV5ent2lmWvWrGHhwoUA3HnnnVaziOHDh5epKABWrlzJ999/D8CgQYNISUkhPT2dvn378thjjzF69GhuvfVWoqKi6NGjB+PHjyc/P5+hQ4cSHx/v8Luzxa233gpA9+7dzX1YsmQJ8+bNM5eJiIgoV/6RI0fi6+tLZGQkAwYMYP369dSpU8fmZ+BtykL/JC6H5LdWkLMvhYOTinVeyo+7SFt1hIzVR8k/c5EtfWeiigwTo4KMXI69lsjhZ/SKX437iI6OZtOmTeb7GTNmsHTpUs6ePQsYTCDvv/8+SUlJJCUlcejQIfPMIjAw0FzP19eXgoIClFJER0eby2/bto0//ij+TltGOH344YeZOHEi27Zt45NPPqnU8syqRH+dPHkys2bNIjs7m759+7J792769+/P8uXLadq0KePGjePLL78ssw0/Pz+KiorM9yX7YHpHpvfjbGx9Bt5GjYk66ypUQZHN9F23zDVf5x4+z9FXl9FwZBy+YUHuEk3jpdiaAbh6A9igQYN49tln+eijj3jwwQcBrEwvV199NR999BGDBg3C39+fvXv30rRpU7vtdejQgbNnz7JmzRouu+wy8vPz2bt3L9HR0aXKpqWlmdv64osvzOmhoaGkp6eb7/v06cO8efO48847mTt3Lv369atQH/v168fcuXN54YUXSExMpH79+tSpU4cDBw4QGxtLbGws69evZ/fu3QQHBxMVFcV9991Hbm4umzZt4q677rLbdosWLdi5cye5ublkZ2ezdOnScn/ZDxkyhBkzZvDuu+8CBjNUREQE/v7+5Ofnl9op3a9fPz755BPGjh1Lamoqy5cv51//+pfZB+Lt6JmFkzg5Yy1bLp/Jptj3zGnZ+1M8KJHmUkJE+PHHH/nrr79o1aoVPXv2ZOzYsbz55puAwUbfuXNnunXrRkxMDA888ECZv14DAgJYsGABTz/9NF26dCE+Pt7uqp4pU6YwfPhwunfvTv369c3pN954Iz/88IPZwf3+++/z+eefExcXx5w5c5g+fXqF+jhlyhQ2btxIXFwckydPNiumd999l5iYGOLi4vD39+faa68lMTGRLl260LVrV7799lv++c9/ltl2s2bNuP3224mJieH222+na9eSwSRK8/zzz3P+/HliYmLo0qULy5YtA+D+++8nLi7O7OA2ccsttxAXF0eXLl0YNGgQb731Fo0aNarQO/AkNeYM7oSEBOXs8yyKcgr4u/lbVZKr55En8QmuXCyWyqBj9HuGXbt20alTJ7v5l1JoiepCTekHON4XW99TEdmolCrXwapnFmWQ/PaK8guVw98t/kVhVj5KKfJTssqvoNFoNF6IVhZlcOK9NeUXcoBz87exrtHrbOz0LmnLD5XKL8ovJDPppNlJrtFoNN6GVhZu4NBTv4NRD5yatbF0/hO/sf2qzzkxvWbs9NRoNDUPrSzcjMovRBUUkXemOOjc2W8MO1FPfV5akWg0Go03oJWFm7mw9ADrmrzBppj3OPnJ31ZKQ+UWcuHPAxTlet8aa41Gc2mjlYUHOfrynxz4R3G4rILz2ewe8S1HXlziQak0Go2mNFpZeBBVUETa8sOl0s/MKR1XRqMpD19fX+Lj44mOjqZLly6888475l3JGzZs4JFHHqnyMz7++GO+/vrrCtXp06dPpZ83e/ZsTpw4Uen6YNif8fbbb1epDXu89957dOrUqdSeiqpw+PBhq3fsrM+uqugd3Hbw5Moke7vGNZqyCA4ONgewO3PmDKNGjSI9PZ2XX36ZhIQEEhKqFqusoKCACRMmVPjAoKqE6J49ezYxMTE0adLE4TqFhYXlxplyFh9++CFLliwxx3VyBiZlMWrUKACnfHbOQM8s7JC++ohnn7/mKEV5hR6VQVN9adiwITNnzuSDDz5AKWUVgttWSG+AN998k9jYWLp06cLkyYYTAQYOHGgVjnzKlCm899575rxJkyaRkJBAp06dWL9+Pbfeeivt2rXj+eefN8tiCtFdVijuV155hR49ehATE8P999+PUooFCxawYcMGRo8eTXx8vDkMR9euXYmNjWX8+PHk5uYChjDiTz/9NN26deO7776z+16SkpLo3bs3cXFxjBo1ivPnzwOGGULnzp2Ji4tjxIgRZb4nExMmTODgwYNce+21TJs2rdQMJiYmhsOHD3P48GE6derEfffdR3R0NFdddRXZ2dkA7N+/n8GDB9OlSxe6devGgQMHmDx5MitWrCA+Pp5p06ZZfXb2wrRPnTqV8ePHM3DgQFq3bm3+jJyJVhZ22HVrxabazmbnzV9x5IX/eVQGTfWmdevWFBYWcubMGat0U0jvpKQkVqxYQXBwML/99hs//fQT69atY8uWLVYRYU3hyB9//PFSzwgICGDDhg1MmDCBm2++mRkzZrB9+3Zmz55NSkrpcDebN2/m3XffZefOnRw8eJBVq1YBhvMj1q9fz/bt28nOzuaXX35h2LBhJCQkMHfuXJKSkhARxo0bx7fffsu2bdsoKCjgo48+Mrddr149Nm3aZB7sbXHXXXfx5ptvsnXrVjp37szLL78MwBtvvMHmzZvZunUrH3/8sd33ZMnHH39MkyZNWLZsGZMmTSrzs9i3bx8PPfQQO3bsIDw83Bw9d/To0Tz00ENs2bKF1atX07hxY9544w369etHUlJSqXZNYdq3bt3K1KlTreJd7d69m8WLF/P333/z8ssvk5/v3HN3tBnKizn9+SZavnYV4ueDKizS52ZUEx5ImOmSdj/ZcL9T2rEV0nvJkiXcfffd1KpVC4C6deuay1uGIy/JTTfdBEBsbCzR0dHmMOatW7fm2LFj1KtXz6q8vVDcy5Yt46233iIrK4vU1FSio6O58cYbreru2bOHVq1a0b59ewDGjh3LjBkzePTRR8uVEwwBDy9cuMCAAQMAGDVqFHfffTeAOZbT0KFDGTp0qN33VFlatWplDpPevXt3Dh8+TEZGBsePH+eWW24BICio/CCk9sK0A1x//fUEBgYSGBhIw4YNOX36tFPNY3r0qQTujCy7rskbrG04lQ0dplGQkWtOLzifTc6h826TQ1P9OHjwIL6+vjRs2NAq3VZI77IoK3y4KbS2j4+PVZhtHx8fm4EKbYXizsnJ4R//+AcLFixg27Zt3HfffW4Pc/7rr7/y0EMPsWnTJnr06EFBQUGF31NZYc7dEYLc1c/QM4sK4t8ohE7fjWRrv/+49bmF6bmkJR6i3o0dSf73SpLfWA5At60PE9CoZgRDqynYmgG4O2jd2bNnmTBhAhMnTkRErPJshfQeMmQIr7zyCqNHj6ZWrVqkpqZazS5ciWlQrV+/PpmZmSxYsIBhw4YBhjDnJl9Bhw4dOHz4MPv376dt27bMmTPHPEtwhLCwMCIiIlixYgX9+vVj3rx5DBgwgKKiIo4dO8YVV1zB5Zdfzrx588jMzCQlJaXUe+rYsaPd9lu2bMkvv/wCwKZNmzh0qHRoH0tCQ0OJiorixx9/ZOjQoeTm5lJYWGjV55LYC9PuDrSyqABd1jxAUOu6FGV7ZtPcvnsW4v/zGLOiAMjeew6/8GAK0nIIiAzxiFwa78B09nN+fj5+fn7ceeedPPbYY6XKvfvuuyxbtgwfHx+io6O59tprCQwMJCkpiYSEBAICArjuuuuYOtU1J/6VJDw8nPvuu4+YmBgaNWpEjx49zHmm87mDg4NZs2YNn3/+OcOHD6egoIAePXpYnTnuCF988QUTJkwgKyuL5s2bM2fOHAoLCxkzZgxpaWkopXjkkUcIDw/nhRdeKPWeyuK2227jyy+/JDo6ml69epnNZWUxZ84cHnjgAV588UX8/f357rvviIuLw9fXly5dujBu3DircOlTpkxh/PjxxMXFUatWLavzQ1yNDlFupGQ4bFtHY1oeanP6y80ceuI3AEK6NyFzY9XWgleWTgtHcfDRReQevUDXjQ+x5sDmahPWuzx0iHLvpKb0pab0A9wTolzPLCpJ5F1dCRvQCr+wQHzDglgX+bpH5Mg/lUnu0QsAZKw7BsazZ1RhEed/20tor2b4NzDYctNXHyHnyAUajuziEVk1Gk31RTu4HaTN+zeWSgtqEY5feDAiQpNHLvOAVLDfIlyIJadnb2Lv+IVsjC4+jWzn0Lkc/OevZO895y7xNBpNDUHPLBygx6En8K0dUHYhL7Dm7f/HzwS0CaHwf5eR9lexc63gfDZ+EcVrxPPPXSS4fX1bTWg0Go1N9MzCBiVDfZSrKAAJLA4v0PvMswR3auB0uRzB50Amp7/YbNWH7H0pVve5x9I9IVqNp6b4/zQ1k6p+P7WysMG5BdsrXKfxAz0J7RlF6+nXAxD1RD9ni+UwR1/+kwt/7Dff73vwJ7Zf/bn5/sDD/9Vh0J1MUFAQKSkpWmFovBKlFCkpKQ5t/LOHS81QInINMB3wBWYppd4okT8NuMJ4WwtoqJQKF5EWwA8YlJk/8L5S6mNXympJzoHiMAUNRjvmDPYLCyL6l+Kt9/Vu7EjYnkn4RQRz/o997BljP16Nq8k7lkbesTSrtKLsfHwCtRXSWURFRZGcnMzZs2dt5ufk5FTpD9WbqCl9qSn9AMf6EhQUVKUd3S4bLUTEF5gBDAGSgfUi8rNSaqepjFJqkkX5hwHTguKTwGVKqVwRCQG2G+u6Z32qxSamyDu7llGwbEx+gvAr21D35k7U6dOcyLHdKEjJYs+478lcn1xlUSuNj5RfRuMw/v7+tGrVym5+YmKi1Xr56kxN6UtN6Qe4py+uNEP1BPYrpQ4qpfKAecDNZZQfCXwDoJTKU0qZYlsEuljO0lgoi+COVfc9iK8P7f9zC43u7o74CP4NahPz6120nTm0ym1rNBqNO3DlINwUOGZxn2xMK4XR7NQK+NMirZmIbDW28abbZhUAFj+6xYW/wOsP7eyytsvj7NwtHnu2RqOpfniL0XoEsEApZT7AQSl1DIgTkSbAjyKyQCl12rKSiNwP3A8QGRlJYmJipQXIzMw01/c9cgx/Y/rylcvBz3U61VMW04Pz17OnQ5ZXm6MsP5Pqju6L91FT+gHu6YsrlcVxoJnFfZQxzRYjgIdsZSilTojIdqAfsKBE3kxgJhjCfVQlNIRlaInkDStINk6KBlwx0KWhwXf2O076iiM0f+EK8lOzOTljrcueZYnvjnT8x2+g/vAYWr11jTnYXN7pTM7N30bDMfFWezM8QXUK91Eeui/eR03pB7inL65UFuuBdiLSCoOSGAGMKllIRDoCEcAai7QoIEUplS0iEcDlwDQXympF3unM4hsX//Lu+M0Icg6lUqtDAwov5qEKiqjVsT4HJy1y6XMBirLyOfPFZs58sZnYpeOpHduIPWPmc3HLKTI2HKfDF8NcLoNGo6keuOwns1KqAJgILAZ2AfOVUjtE5BURucmi6AhgnrJeoN4JWCciW4C/gLeVUttcJWtJznyx2XxdMryzs/EJ8KVWB4MT3bd2AC1fHUzteOvzhtt8UDrUiLPZduVnFGbmcXHLKQDSV3n2WFmNRuNduNRnoZRaBCwqkfZiifspNur9D4hzpWzeTGDzMKv7ute154Abnrtr+Dfm68L03DJKajSaSw1vcXBrLPALDaTbtkc4/dkGEME3JLD8Sk4gc6O1Syl97VHq9G7O8emr8Y8MoeGIS1Z/azSXPFpZeCkBkSE0e2agR2XYedNXdE2ayLHXEgEIjKpDYXouda/r4FG5NBqN+9HKQlMmR15cYr7edevXACQYw5hUhKL8Qnz8fcsvqNFovBIdSLCaEbtkPGGDWuNfv5Zbnpf6c+lD6gvSDGcmlxU0ryjPvGWGi9tP83fTNzn2eqLT5dNoNO5BK4tqQsL+x+i27RFqxzWi07wRdN/5qDmv809j3CqLKiwiNzmNDR2mkfzOylJKI33NUf6OepPj01cDFP8/bbVb5dRoNM5DK4tqgl+dIAIiQ2zmBbet51ZZirILSH5nJYUXckh+czl7x31vzlNFil23GcxVJl+Hi1cfazQaN6B9FjUAd5+hsG3Qp1b353/by/Zrv6Dp433J3HQCVVBkXUFrC42m2qOVRQmq4+E13nAuRebG4+wZNd92ptYVGk21R5uhSlJYfZRF2w9vouXrV+EXFkSHOcOpFd2Q3He7UrtrY0+LZqYot8Dlu+A1Go3r0cqiBLnHq8/51PWHxdDongQAIq5uR9yye1FNgoldfDe9Tk62Kutbxz0b+0py8sN1Vmao7dd9wdqGUzn50TqPyKPRaCqHVhYl2H37N+UXqgaIrw/1bo22SPDMr/usPWetgjFmbjDsEj/y0lIACjNzS/s4NBqN16GVRQlyDp03X0c91c+Dkjh4YgCwAAAgAElEQVSDYpNai5ev9IwIRcquzyL/7EXWt36HrYNmuVcmjUZTYbSyKIOoJ6q7siimwUjPxHVSyn7k3qQ+nwCQvfucO0XSaDSVQCuLmoyFr15EaPyPXub74E5VP1vcEVJ/2mV3ZlFo3AkOcOip390ij0ajqRxaWdRgIsd1AwyO8FIUus9PcPabreWWOT17kxsk0Wg0lcXzC/S9DAnyQ+UUeFoMp1DnsuZ03/2ozaB/qsj7lginrThM+qojRD3VH/His8E1mksRPbMoQd1r2gHFv8qrO/51a9n0GdicbXiYXbd9zfF/ryL119LBCytD7on0arUUWqPxZrSyKIlxYA3t3czDgriWpo/0odlzA8ssE/V0f/cIU4L8Mxed0s7m+A/Y3PWDarkrX6PxNrSyKIEy2fJrohnEYoYhfj7U6dPcKrveLZ3N140f6k3U45e7TbSyyN57jqIKmgYzNlic+ueFJjeNprqhfRYlMYb7EN8aqCxK4G8RxTZ+7QQCW4STfyaT9FVHqW+hOAACW4STe+SCW+RKX3mE8Cta4//eXo6ughPTi0Ob172hA1FP96dWh7JXc+247gvztSpSiD53SaOpElpZlECZlMUlEM8oqHk47T+7Ff/GoQS1rgtAp+9GkX/uIgGNQgFD/KnU3/cS3LYex/+9yi1ypf66h9Rf9+ALnFhpvQcj9Zc9pP6yh/ZfDCOoVQS1OhYrDaUUKQt3kr2vxL4NPbPQaKqMVhYlUPmGE97ECyK5uoO6N3S0uhc/H7OiAIMjvP6wGLL2nOX4v1dRp18Lmk7qaz5i1VPsHbsAgN5nni1OG/c953/bW6qsqkbBITUab+XSGBErgOk4UKmB50X7RQRVum6tDg0My3DDg71qWatSyjwLtKUoALszi3Pf7yD1tz20nXFTqTDvuclp+NTyx7+ue46v1Wi8Ha0sSmCaWfgE1jxl0eieBC5uOUV9ywCDFcAbB851ka8T0DiUqCfth2axtxpq/4M/AXBuYGsajok3pxdk5LK52wzAeuai0VzK6NVQJTCboWrgzMK3dgDtP72Vutd3cFqbMb+Pc1pblSXvZAYHH1tkv0CJ3eqqSHHk5T+LszNyrfLzT2Y4VT6NpibgUmUhIteIyB4R2S8ik23kTxORJOO/vSJywZgeLyJrRGSHiGwVkTtcKacl2XsMzlGfgJqnLFyBX3jlTVvuwnK3ulKK87/v5eSMtfYreI+VTaPxGlxmhhIRX2AGMARIBtaLyM9KqZ2mMkqpSRblHwa6Gm+zgLuUUvtEpAmwUUQWK6VcunazIC2Hwsw8gzxaWZRJx3kjyD2eZl5F5dUYlUX2/hS2DfmcwKahVtl6z55GUz6unFn0BPYrpQ4qpfKAecDNZZQfCXwDoJTaq5TaZ7w+AZwBXB4mNc8iNIRWFmUTPqg1kXcadLt/o5BySnuWQ08vJjPpJMfe+Iuii3lk700pu8IlsGxao6ko4qpQCCIyDLhGKXWv8f5OoJdSaqKNsi2AtUCUUqqwRF5P4AsgWilVVCLvfuB+gMjIyO7z5s2rtLyZmZmEpgqBT2wBIGdGN2jg/SaWkmRmZhIS4t7BW3alE/jSdrv5ylcQL16+mj+mBYU3NTXfy4lsAh/dDEDOnF7ghMUOnvhcXEVN6UtN6QdUrS9XXHHFRqVUQnnlvGU11AhggQ1F0RiYA4wtqSgAlFIzgZkACQkJauDAgZUWIDExkR5to9mKQVn06X85AZHV74uUmJhIVd5DpRgIaTFx7LrN9t6LoKZh5B51z+7vytCmTRuaDOwNQFFOAfvu+wHTeYkt/syn1ZtVP2XQI5+Li6gpfakp/QD39MWVyuI4YBmNL8qYZosRwEOWCSJSB/gVeE4pVYY30olYWB+0g7uC2LHcxK97kNOzN3Hyo3XulacCZO08w8HHFyEBvpz+dKNVXlriIQ9JpdF4F670WawH2olIKxEJwKAQfi5ZSEQ6AhHAGou0AOAH4Eul1AIXylhSluLrGrh01l3UG9oJgBavDSGoVQTNnh1Au1m3lCrX7Pkr3C2aTc59t50zc5JKKQownMmuo9ZqNC5UFkqpAmAisBjYBcxXSu0QkVdE5CaLoiOAecr6L/J2oD8wzmJpbTwuxnKJpfjpLSgVISS+MQC1uzamzYybiF06nkb3GsygPoF+1LupE23eu8FcPmpyf5o+cpnNtjr/ONr1AleAcwt2cHz6ag4+vkgrDs0li0t9FkqpRcCiEmkvlrifYqPeV8BXrpTNFpYxhHyCvMWdUz3wDQmk59GnkABfxEeoHduoVJkGI+II7lCfvFOZ1L22vd226vRp4UpRK0zqz7s4v3gfAI0n9CS4XX0PS6TRuB89IlpSZPCh14qJ9LAg1RNHFGxI1yZW9x3n3UH+mYsceOQXAKJ/G2toq5Y/RVn5zheyEiiLHeBn522j+QtXkJ+axZHn/kfusTTCBrUmsFk4AA2Ge98JhBqNM9DKwgJVYBgUtAnKfYQPaoMqLDIri9DuhiWs0f+9ky33f0tIQC2ydp31pIik/VXs5D7x/hrDvcDFLacAyPg72Zxff1h0qfD2qkgR8NJ2DiZk0fqd69wjtEbjZLSysEBdQgcfeRPi60OjB3paRbOtHduIvNe70KZeJ7Zd+akHpQOVb71q++LWU/YLFykwfn9M/o3sPWfx2ZXOmV1JWlloqi1aWVhQkJoFlA4sp3E9LV8dbDujmjmUVV4hEuyDUoqdN3+Fb+0Amr/gHau+NJqqoO0tFux/6L8A5YeD0LgNy9VH1SEEy6475pGfkkVhZh4Za49xYekBHZhQUyPQysKCwrQcT4ugKYHloUS1OjUg4tr2RI7v7kGJyiZj7TG29v8PKq84GMG+CT+Zr/XSW011RSsLjVcT3MF6mWqHL4bR6o2r6TD3dlq/dwNxifd6SDL75J+9yJ4x35nvsy0c9Ltu+9qmwlBKkb3vnNVeH4CC9Bx23DyHs/O2uk5gjcYBtM9C49VYrSyyGEcjhrQFoCi/kMCWEeQePo83kbnRdmSb9JVHKEzLQfx88KkdYO7fyQ/WcvTVZTS6NwG/erVI/tcKoh6/3GDOWnOMjDXHCL+yDf4NaruzGxqNGa0sNNUGv7rBpdJ8/H2JXzsBBDLWHGXn0LkekKxibGg/DYDwwW3o+LXhXK8THxrCn52atcFcLvlfK6zqHXxsER3mDCdrz1nOfJVE00l9vfKoW03NRJuhNF5P55/vJHxwG1r/2/ayU/ERRITgjsVHnrR8/Sp3iVdpLiw5YDYvldybYYvMTScA2HblZ5z6ZD1HnvufS+XTaCzRykLj9dTp3YyOX99BYFRYmeUsB1xnnjPuSg488othBdW5rHLLFl40nOJocp5n79er9jTuQysLC+rd2hmAppP6eFgSTVUJaBRKt22PeFoMh0hbdtCxgkqRdyqj+N7ObOTsvK0c/b9lTpBMoylG+yws8AkwvI7AlhEelkRTGUquMnLo8CrBynHuzRRlF7Ap7v3iBDuWK1PolHpDOxPUMhzfkEA3SKep6eiZhQXm2FC++rVUS2wM+pa7p8P6tyyV3+vkMy4UyMWIkLb8EBs6TeP4u6tKKcuzX29hfet3ODGj+Oyw7L3nKMopcLekmhqAHhUtMEUX1YEEaw6N7k2gwYg4Os67gw5zhhOzeBzNXxwEQPMXByE+QoNRXazqhA9u4wlRK8zFTSfYNewbClKyOTb1Ly78sd8q37Sy6ujLfwKQtvwQWy6fyY4bv6zQc3JPpJO184xzhNZUW/SoaIHKNzgOtbKoOfgE+9PmvRsIH9QGn2B/Qro2ocnE3nTb+jBNJhrO3a53U0erOnX6etd5Go5y4qN1JF32sd381EV7AUO03KNTEx1ud3P8B2wdOIu8M5lVlFBTndGjogWqwBR1Vr+W6ohl1NryCGgUar623OgWflVb8wl/1Y2M1UfJOZBqN98yBMmJd1dXuP3cY2mVkktTM9AObgvyUwzLF33DgzwsiaYy+EUE0/DOePwiSm/eK4vasY1o9uwAxM/XPNuo068F6SuOGApUIye4PfJOZ3LmqySrtMwtJzk29S9a/t9gh07/c2QviKbmon9CW1CUbTiZza+OXj1SXWn9znU0f77iIcGbPtrXrCgAQoyHMAHELL6btp/cbL5v9ECPMtuqf1t0hZ/valJ/3VMqbceNc0hbdpAtfWfqAIeactEzCwvMDm5thrrkiXrscgIa1ibi6vYENgsjJL4xPgF+FFzIpuHoeCIGt2XX8G9s1m09/QbOfb/DzRKXzalP/i6VpixWRaX+spt6N3Zyp0iaaoYeFS0wL53116/lUscnyI9G9/YgsFnxrvG613eg4eh4AMIGtKLjvDtK1UvY9xg+XnjuRs6hsgMt7rvnB9JWHC67EW2FuqTRo6Ilep+FpgKED2pD7NLxxfdXtcUvzODvCoiqY05vYe8UQC8j9dc9XNxxhsJMY1iRIkXqL7vN+QVpuWTtPovsz7DXhKYGo81QFpjMUOilsxoHqR3biIQ9kzj3w07qG8PFAFahOBo/0JMjLyzxgHQVI2PNUU5/tpGgdvWIX/UAZ+dt5eCjv5rzd99uMLsFAoUjrsY3JACAI1OWUpSdT72bO5G16yyN7qmeq8k0ZaNHRQvMZiitLDQVwC8imEbju+MXXrwKK2pSXwAaP9irzLrRv97lUtkqQpbxkKacfSmcnr3JSlGU5MzcJNZFvcnZ+ds4+eE6Tn++iZ1D53L4mT/M0XEBinLL3i2eezydnIP2l/tqvAeXjooico2I7BGR/SIy2Ub+NBFJMv7bKyIXLPJ+F5ELIvKLK2W0RIf70DiLhmPi6bp5Is2nGHaL54+2vdEvtEeUO8VymENP/V5m/pEXlqDyCjkw8b+l8kyb905+tI6/m73FhT/tB0rc3PUDknp/bDMESckVWic/+ZuTH5d21Gvcg8tGRRHxBWYA1wKdgZEi0tmyjFJqklIqXikVD7wPLLTI/hdwp6vks4WeWWicSWDTOua9CYU3N6XH4Sdp/8Uwc351CaNeUUx9PvLSUsP/U8o3wRVm5Frd553OZEOHaRx7c7k57cgLSzjy4pJic7HGrbhyVOwJ7FdKHVRK5QHzgJvLKD8SMK9FVEotBdzqSdPKQuNKfGv5W3232n54kwelcR15p63DgogIRTkFFOUX2qlBqbPHT83aQOGFHI6/s5LU3/ZahVw3/Z2W5PzSA+weM5/81PLPBtFUHFeOik2BYxb3yca0UohIC6AV8KcL5SkXbYbSuBOfYH+g+BwV8M4NfRXl0BO/ceyt4hmBKlL83fJfbO42w26d/HNZ7LlrAeeXHjAkWCiPvWMXcOK9NcXt2VE6e0Z+y4U/9pP8xnKb+Zqq4S2roUYAC5RS9n962EBE7gfuB4iMjCQxMbHSAmRmZhKYX4AAK1avhIDqqTAyMzOr9B68iZrYF59t5wkwppn7NiIcn6h2+P12kuQhQQR9b78dVdsXFeqPz6kcV4tcJY6/vdJ8nXUqDSlS5J82fp55hcjBi6j2oZgC62y7YhYA53/fS878PvgdOWJ3cFqRuBxC/Eulm9o6sfcoRxz43tTE75crcaWyOA40s7iPMqbZYgTwUEUfoJSaCcwESEhIUAMHDqxoE2YSExMR4+x2wKCB1dYUlZiYSFXegzdRE/tyvmA/e9gFYN23gcDzhsu1EzbabeeyQ0+jlGJd5Osuk9XZBAQFkp9mCKXTv/fl7Bkzn7Tlh2k+5UqO2ih/WduunGpayElO2MiFPj0us3mw1VoMwRF916bQ14HvTU38frkSVyqL9UA7EWmFQUmMAEaVLCQiHYEIYE3JPLeiFBQap76+equqxjUEty8/YF/tuEZc3HrKbn51C+iXb+HD+Lv5W+brc99vt1l+c7cZBDQJtZkHlO/gLtJxrlyBy34+K6UKgInAYmAXMF8ptUNEXhERS8/eCGCeKrFOTkRWAN8BV4pIsohc7SpZATB9/3yl2v0xaqoPQc3DiV0ynm5bH7ZbptOCkbSffRt+de1Hz231r2us7mvHNXKajN5A3oky1ra4SRfo4IrWuNRnoZRaBCwqkfZiifspdur2c51kNjDOKqqr+UlTfShvYPcLD6budR0Iv7INfzd7y2aZyLHdCOvXkovbTxN2RWt8QwKqlWkKIGvb6UrVO/nx35yatR7x8yGkaxOif3b+CvvzSw+w756FtPtkKBFXt3N6+9URPTKaKNIHH2m8C59AP+r0bW6+j1k8zio/qHVd6t3UCb/QQESEqKf7u1lCz3Dqk7+hUKFyC8lYe4zzS/aTse6YVZmCjFy2DPgP+x/8ifxzFyv8jD2j51OUlc+eO79zltjVHm9ZDeV59MxC44W0/XgoJ2espf7wGGrHljMjsWO2avfpLQS1rMu2Kz91hYgeZ8+o+aXSzn69hexdZ8nedZZz3++g2bMDCO7QgPAr23hlVODqgB4ZjUimIdxAYXpuOSU1GvcREBlCi1cGl6soStL5x9Hma59aAdSOjSS4UwNni+e1HP/3Kqv7Y1P/Yu/YBey6ba7bZLi44wxbB84ibfkhtz3TlWhlYcRn24XyC2k0Xoxv7QDzdZ0+pWNRWebbo/4dscSve9CpcnmCgvPZNtMz1iWzuceHdnd5F5zP5uhriU5ZUbXv3oVk7TzDrmG2D8mqbmhlYaQoqpanRdBoqkS9WzpT98aOtHnvBsP90E741QumTm/Ddqc2715fbhsiQlCrCLpurPC2p2pD7pELJCV8WLxU3oINHaZxYvpq+3WPpTm8Ssp0THNNQSsLE8ZfEqG9m5VTUKPxTnz8fWn/6a00GBEHQLuZt9B9x6PmGYXlHo/WRoViIriDIS98SFsAApuF1ehVQIWZefh/vN98rwqKrOJPWbKp2weceH8NZ77ZwubuMzg8ebG7xPQqtIPbiJgc3PpIVU0NQnxs7xkqaZKKXjSW7F1nCelRHL6t3axbyN5zjm2DP3OpjJ7C9y/D+R2FWfmsb/kvu+XyktM5+uoygtvXA+D055tQ+UW0/vd1VuVUYRE7bphDrc4NaP3OdbaaqtZoZWGiUC+d1Vw6+NSyjq3kFxpIaE/rszV8Av1q3Ga/kuy6/Rsy/k52rLDFZt0zXyXR8s2r8fH35cSMtZyevYn6w2PI3HiczI3HqXNZc/JOZZbRWPVDKwsTeums5hIgduk9qKIiakdHEpLQlMwN9sK1XRqkJVZgpVKJWdrfTd+k+45/cvRlQ7Bsy+CJ+//xs1Pk8yb0yGjCrCz0GmxNzaV2bCQhXRojfj7ELBpL+89upcPXt1e53dbTHDO7+EUEe9VRshXBVhigjdHTHap7ZMpSzsxNcqo8SilyDp13W1gSrSxMmJWFjguluXSoe0NHIga3LbNMpx9G02BUF2IWjyN8cJtS+dG/3kWDUV3KfVaHr4aTsGeS1x4lWx5ZO89Uuu7JD9dxcNKi8gtiWEVleRiUKigi91haqXKHn/mDpF4fkfzWikrLVRG0GcqENkNpNDYJ69uCsL6GfRs+gaWHDNPg7xPsR1F26bO0AaKe7k/EVcWrq2IWj2PHzV+hbJy9falw7ocd5J/LovF9PcxpJz5cx9EpSwlJaErE1e3I2nWGlIU7Aeg4fyThA1sZyr2/htOfGULZH39nJczv43J59chookiboTSa8ijL5BE+qPSsAyD8qrY0eai3VVpI1ya0/88tTpWtOnBm3lZOf7kZgP0P/MSR5/5nPh3wyJSlHJ1iOLc8c8Nxjr2WaFYUAOe+3QrAqU83cPRV28t8XYlWFkakQM8sNJry8G9Q23wd1K4enX4oDisSbmdfRtNH+uATpI0YAAcf+YVDT/zG9uu/NKftGfktuSfSOfnhujLrKqXI2nmGw8/84WoxbaI/QRNFWlloNOXR/NmBnNx3lJgnrzGbpkw0uD2WwGZh1I6NZM+o+cVLUu24AS/l8yIy11sv13XEHJd/NosD//zFVSKVi0Mjo4j8U0TqiIFPRWSTiFzlauHcivZZaDTl4hcRTP6jHUopCjBsAAzr2wK/OkHUio00p4d0bWK7sTLiLzV7fmBVRa1WFNrx9ViSvuIwF7fYP0HR1Tg6Mo5XSqUDV2E4AvVO4A2XSeUJtLLQaJxGs2cHEjW5P/F/P2j/b6qMiUWtzg2t7jv/PMaJ0nkf266Y5WkRysVRM5RpInkdMMd4PGrNWmOqlYVG4zT8QgOJeuzyMssoGzOLpo9fTlCriFKzDvHRf5dlIXszYKBrn+HoJ7BRRP7AoCwWi0goxadW1wxMESi1stBo3EIdG0E7mz3dnwa3x1opklZvX2vX76ExEPj8Npc/w9GR8R5gMtBDKZUF+AN3u0wqT6BnFhqNW/FvUJuE/Y+RsHdS6UyLiUXkXV2t4jJpPIOjI+NlwB6l1AURGQM8D5TeUliNER1IUKNxO351gpCA0tbwoFYR1gkWuqLujR1p/9mtLpZMUxJHR8aPgCwR6QI8DhwAviy7SvVC9hkiROr14BqNe/Gt5U/radfR9qObzWm1Ojag47w76LL6AcA6LlP7T2+l7g0dafKoYddyQJNQGt7V1WbbkeO6uVDySwtHR8YCpZQSkZuBD5RSn4rIPa4UzN34bjEcq3qpR+HUaDxBw9HxpdKsdoTbsEI1e2YADcfEE9gsDBHhjHFntCWt3rqGFq8O5vRnGzny0lJzet3rO5D66x6nyO4tFF7Mc+jo3Mri6MwiQ0SewbBk9lcR8cHgt6hxFFywfXavRqPxIDZ8FiJCUPNwm9FgLfEJ9KPxg72s0lq8NoSiFtZHKfc8+hTdtj1CSPfS+0KCWtethNDuRfxdG6rIUWVxB5CLYb/FKSAKsH+0VDUm6qn+nhZBo9GUILBpnQqVb/n6VXT6bqTdfPH1oeA269VYPkF+BESGENSqtGJwJKqup3H1KZ8OtW5UEHOBMBG5AchRSpXrsxCRa0Rkj4jsF5HJNvKniUiS8d9eEblgkTdWRPYZ/42tQJ8qRVHjIAACGoW4+lEajaaC+DeoTezS8cRv+IdD5Rvdk0DYgFZ28wMiQyjq6fhsoe617ajdxbtPDXT11jdHw33cDvwNDAduB9aJyLBy6vgCM4Brgc7ASBHpbFlGKTVJKRWvlIoH3gcWGuvWBV4CegE9gZdEpMTyCCdTpFdDaTTeTO3YRgQ1D69yO00fN24W9BGavzTI0HbXxsUFSoy5fnWDCW5Xn3aXYJRcSxx1cD+HYY/FGQARaQAsARaUUacnsF8pddBYZx5wM7DTTvmRGBQEwNXA/5RSqca6/wOuAb5xUN4KI6YthlpZaDTVkohr2nH+931287usfoDURXuszo9o/EBPgjvUtz6QqcTxqSYlEdQygoZ3dbXpSL8UcFRZ+JgUhZEUyp+VNAWOWdwnY5gplEJEWgCtgD/LqNvURr37gfsBIiMjSUxMLEck+/gXFOELrF2/Dg4FVrodT5OZmVml9+BN6L54J17blxER+NZvQWH/Bvbli4N961YBhn78tXK5YRTcXBwF1u/0KauBMWnHVlThYQB881K8dmWPqz8TR5XF7yKymOJf9ncAjp0R6BgjgAVKqcKKVFJKzQRmAiQkJKiBAwdWWoA1rAegT98+BDQOrXQ7niYxMZGqvAdvQvfFO/Hqvjh2FDhgvx9pfi3Zlfi1+T6hb09qxxr8FUW98jka9hfhg1pzMekkx17/q6oSOw1XfyaOOrifxDAoxxn/zVRKPV1OteOA5XKDKGOaLUZgbWKqSF3nYDJD+eiwAhrNpUzY5S2t7mvFFIdb9wn2p+Wrgwm/ojVNJ/Ul1BjfqtmzA6jVqUFxHYsQ7TUFh7crK6W+B76vQNvrgXYi0grDQD8CGFWykIh0xBD2fI1F8mJgqoVT+yrgmQo8u+KYHdxaWWg0mmLKWmXUeeFoco6cJ7hNPSLvSeDQ44toMCIOVVDEnjHfmcs1eqAHacsOkr03xR0iu4QylYWIZGA76rwASilld/GzUqpARCZiGPh9gc+Moc1fATYopX42Fh0BzFMWx2YppVJF5FUw2obgFZOz22Xo1VAajaaCiJ8PwW3qAYaw7O1m2l4x1fLVIQCsbTjVblvdtj/Cppj3zPfxayfg16A2G9q840SJK0+ZykIpVSXjvVJqESV8G0qpF0vcT7FT9zPgs6o8v0KYV0PpmYVGozHQcEzpMCTOoPlLg0CEo1MMIUiaPHwZAQ1L7PHy88Ev1HsW2+if0SZ01FmNRmMkfLAhLlX94TFVbsuvfnFYkZZThxDSI4rIsd1oMCIW/wa1afxQb5q/cEWper4h1nGeQiyX93qASz7E6u71x/nlP5uoVTuIbnlZWlloNBo6zBlO/tmLBDSq+srIkC7FG/4a3duDRvca9nn4EkC37Y/Y9Yn417WOXeVpf+olPzJeTMtl36aTXPA1BuHSZiiN5pJHfH2coijKfY4dRWGa2ViVtRib6l7fwWUy2eOSVxZ+AQYlUWT80PTMQqPROBUn/f6sN9QQLck3LIj2n9/mnEYrwCVvhvIzRmo07QYUvc9Co9E4gbo3dyL1p100vNP2wUxlYjHj6PT9KHKPpdFwVBdqdWxAUNt6TpTScbSy8LeYWWgTlEajcRLtPhlK3kuDCIwKq3hli6EorF9L83Vor2aly7qJS97mYp5ZiGHNtEaj0TgD8ZHKKQocCzfeaWGpPc4u5ZIfHS19FtpfodFoqgthl7ckIMqwL1oFun7suuRHR5MZqhDt3NZoNJ7FJ9jgGXD0oKWOX91OaJ/m5L0U7UqxAK0s8DWanrTPQqPReJq4v+6jxWtDaPLwZQ6Vr9W5IdE/jkG1df0yX+3gNpqhCsXzm140Gs2lTVDLCKvDmbyJS35mYXJwa5+FRqPR2OeSHx21z0Kj0WjK55IfHS1nFtpnodFoNLbRPgtLn4XPJa87NRqNxiaX/OhoWg2lREArC41Go7HJJT86ikixwvDTZiiNRqOxxSWvLAD8jMqiUF0ZMyEAACAASURBVPssNBqNxiZaWVCsLIociMei0Wg0lyJaWQBSaDiAO3Nviocl0Wg0Gu9EKwtAcgsAKPKwHBqNRuOtaGUBBIQGAhDUrYmHJdFoNBrvRCsLwNd4Ol6gh06g0mg0Gm9HKwuKlUWh9m9rNBqNTVyqLETkGhHZIyL7RWSynTK3i8hOEdkhIl9bpL8pItuN/+5wpZymkFCFypVP0Wg0muqLy8J9iIgvMAMYAiQD60XkZ6XUTosy7YBngL5KqfMi0tCYfj3QDYgHAoFEEflNKZXuCllNMwu9dFaj0Whs48qZRU9gv1LqoFIqD5gH3FyizH3ADKXUeQCl1BljemdguVKqQCl1EdgKXOMqQX2NSqJI6amFRqPR2MKVyqIpcMziPtmYZkl7oL2IrBKRtSJiUghbgGtEpJaI1AeuAJq5SlCzz8JVD9BoNJoSJO9LITszz25+UWERX7+xks3LDrlRKvt4OuqsH9AOGAhEActFJFYp9YeI9ABWA2eBNdgYy0XkfuB+gMjISBITEyslRG52FgAnT5+tdBveQmZmZrXvgwndF++kpvTFk/1IOZrDH+8dJTjMj94jGnHucDbRg+siIhQWFJFyNIfstAJWLzjFXwt2MvLt9qXaKMgtIiezkJB6/m7piyuVxXGsZwNRxjRLkoF1Sql84JCI7MWgPNYrpV4DXgMwOr73lnyAUmomMBMgISFBDRw4sFKCbp1+Es5nUK9BAyrbhreQmJhY7ftgQvfFO6kpffFEP3auTeb00TRCVD5wlOy0ApZ9kgzAtsUpfLz+Pt6652cObj1NaN1gc72BAwdy7kQGh7afYe+GEwSHBrD0m+0U5BUy5bvh7DmyxeV9caWyWA+0E5FWGJTECGBUiTI/AiOBz43mpvbAQaNzPFwplSIicUAc8IerBPU1/q/NUBqNpiqknsrk9NE0OvW0trjn5RQQEOTH9ImLAOjUq6RF3sDUO3/g6O5zAGSkZpvTl327nXn/Wm2zzu71JzAsDXItLlMWSqkCEZkILMYwHn+mlNohIq8AG5RSPxvzrhKRnRjG6ieNCiIIWCEGx3M6MEYpVeAqWU3KokgvhtJoNJWkqEjxzA2G1f+TZw+lVYxhBD+6+xyvjVloVXbXupJGFsxlbWFPUQDMe2sVAD3+vIzadQIrLLejuNRnoZRaBCwqkfaixbUCHjP+syyTg2FFlFswefn1zEKj0QAsX7iLJXO38tjHNxDeoLY5/djeFJYv2MlNDyYQGlFsJsrPK2TK8Pnm+6/fWIl/oC/3vT64lKJwFcG1/V3avqcd3F6Bj3HFrN6Up9FoAOZOXQHAr//ZxOhn+5nT/2/U94BBmUxbNpbfZyex/PtdpVY1mWYIk6+b6yaJwcfXtQE5tLIAfDFoCW2G0miqN0u+3kZoRBC9rm3nlPb2bjppvr6YnmuVN+mKL5zyjOqCVhbomYVGUxNIT8niu3+vAXBYWSilKMgvYvrERWRn5pFc4kybU4cvsGX5EWqFBjDtwV+dLrOziL3K9UFQtbIAfPIN3grts9Boqi+ppzLt5imlOLLrHNkZuexef4KbJiRwYtdFJjzxn3Lb/fCxxc4U0ykE1fYn52K++T5GKwv3kLvnLESEUJivjz/SaDxJbnY+eTkFVs7j8sjJyuef/T+3Snt88JfEX9GSmx5IID+3gJeGzafA4u87vGFt/vrU9oqk6sATM2/k/0a7x3FuQisLwNdofsorYZPUaDTOo7CgiKO7z9GiU327ztjHB39Jfm4hI57qS+/r2hEcEmA2FfkH+JJ5IYdzx9OpVSeQc8cz2LkumbW/lNqvS+aFHFb+sJuVP+y2+RzTctPqxMPTr8HH14eAID+atq1Lq9iGHNp2hp7XtnXL87WyAHyMAQTPaWWh0TgNpRTGvVIUFhTxj96zALjm7v9v70zDo6iyBvyerOwQQCI7BIksAdlFQEBAZBEFZQQ3xFHBBT93BXfHGcUFhhk3ZBxFHRGRUcAFRBjCKhpUtoBAhAABZJMtYCDL/X5Udae7051OIJ3uTs77PP2k6tat2+d0VerUvffcc9ox7J4uXs/JPm0NBs98eSXLZm9i3D8G8PiQjwH465yRPDl0ZilIXnpUq1WR44etxXeJHeryx8kz3DP5CmrUqUzOmVx+XLyDeW+lcHhfJglt46lUNX8dxfj3hjp/49IIW6LJj4D9sZZ/cvpvJ4MsiaKEHtmnczh5LKtY58ya/B3jB33EqRPWC9hr9813Hls8YwNgzTFMGvsF65bt9NrG3u1HnIYCCHlDER0bWaBsSvLoAmX1msU5t1/44gYuv7ktiR3q8sDUK3nyo2uJi6+CiBAdG0XXQc15/vOR/GPZrW6GwoGUYloF7VkAR2L0Z1AUX4wfPIPMo1kkdWtIvWZx1LrI/zkOg7Dm2+30vKal24plR+9hyScb2frjPrb+uI9RT/Wk4+XNAiJ/adCudxPuerU/a5PTeethKzJR5eqxVKwSw4T3h/LiLXN44K3BNG9fl83fZ/DafQsQgeiYSIbf17XQtiOjIoiMCv57ffAlCDLGGOpl+Q4TrCjhxO+/ZfLxyys5vO+Esyz7dNEi5Rh7ODYnO5cP/7qMDSt2Adb4P8DGVbtZ+OF68nIN7zy+mPefS3Z+Z25OHh+9sJzN32d4Nur1u8Z2msbijzc69z94flmBSepwYug9nQHLaDhoe2ljAJq0rsPba8bQonN9IqMiaN2tIXdPvoIXvvAMlRfalHtjQa4hMdPqKsdWCuxyeUUpSY4fPsXRg+5Dp28++A3Js1Kd7p7rl+9kXPd3WWS/6fvihwVpPNTvA9I3HWTl3C2smPMLr9+/wGvdTx7bRsrCX1n1xVa2b9jPhCtncHfXd1j22Wam3PM1a7791Vn3oxdXMLbTNK/t5OaEtvfhA28N9lvn3n8OZGrKHdRtmj+0dMszvTi/SQ2uurOT13NEhIt6Nqbm+VVKTNbSoNyPv5icPCLtt59KVWOCLI2iFJ1HrvgPAG+uvt05TLHbXlSWse13Zk3+jnVL0wH4dPJ3xDeqTpsejby29e8n/wfAB39ZSsd+Cc7yA7uPFSrDS7fOLVA2Y+KK4ikSorToXJ8pyaOpWCWGX1L2cOrEGZI/TWVLyl4AHpx6JRd2qlfgvG5DLqTbkAtLW9yAU+57FiYnz+kNFepvOoriDc/ehYPFMzaQcyZ/qalnT2Hdsp2M7TTNbcjK5LkPG62ct6XY8pw8Vna8CitWsV4gW3SuT4c+Tbnjhb5ce9/FvPrtzV4NRVlGjUVunjNEues/lqKEC8/+6VOfxyTC3Vtmx8YDzm3HUJWrx5Hliplff3/60RKSMvi8vWaM236/expy+U1t3coG/rl9oW1UjatI/5svKtaiwbKCGguXnkWOruBWwgTjMnF8Jsv3BLbn4reJo+cU2u6+HUfZvyt/6OnnJelnJ2CQGfV0L6/lrsNw5zWtyPD7u5LUzUroWa9ZHANvbcdlI1rz2HtXl4qc4YTOWeTkOQMJ5mRrz0IJLsYYZry4ggaJteg13HdKl7xziHp54sgfPH3tLJ/HV3+17azbDjYPvDWY/TuP0f2qC7l44AWcPHaaV8d8Qd/rkwDLIDi8vByMfq43Sz5J5dJhLYitGM3IR7oHQ/SQR41Fbp6ze5WXa8jLM0REaKxyJTikpx5k2WebAQo1FsbDJTUvN4/1y3cVqHd474kCZQ9f/uE5ShkcRj7SjcSO9fjLyNlej186rAUtOtenRWcrZWlUdCTVa1fi+c9GOOsMvr0DIkKn/s34da/lIVY1rqJPzyUlHx2GyslDyA/5kau9CyVAHDt0ij1pvxcoX/zxBqY/l4wxptAhJQdfvL2G565zn6f46MUVzsVgZZE7XuzLZSOS3FZJv/LNTW51RhShRxBbMZph47rQMDHwUVrLGuXeWDiSWDh+CJ23UALFowP+w19GzubIfvdQ2rMmfcd3X2wlPfUgntEbvnrnJ8Z2muY2Mf3lv37iwO7jbvVWzPEeMK+s4JhQrlW3KpWqxtAwsRbValUiItL6wXpe05LomILhNpSSQ4eh7B5FJJCDzlsogee39KPkZOfx67rf6OKSpGfbz/to0rqOc//YoVPMm7oGsCamPb15wplRT/Wk21UXcmDXMX5ekk6fkUnEVIjiyP5M9u86xvlNarBg+lpq16/GyWNZJHasC1ihL15ZeLNz4v7pmcP57sutDLy1cC8m5dwp98YC2688GsNphKyT2eXSLU4pPabc87Vz23Xq4b//+J6Hpg1x7k8bv8jtvMyjWc5Fd6FGx34JZB7LwuQat1Skz38+gqeGfVKgfkRkBCJCfOMaDBjdzlkeF1+FuHhrZbOvieao6PweRN2mcVxz78UlpYZSCGosbGMRiyET6x/yvAbVgiuTElIs/3wz8Y2q0/DC2qxNTqdd7ybOxVqubFqdwebvMxg2rovzzXfLmr3MfGUlJ096Xzg3/dlkt/1JY75wbqet/c3t2NPXfhK0BW8d+yXw46Ltzv3LRrRmySepzv0xE/s5t/Ny8/h0ympadqlPnYbVGTC6HQumry1VeZWSp9wbC8eKVcdQ8ap5W2iaVMf3CUq5Yk/a7/znb8vdytpd1oS7XulfoO4/xlk9hoUfrmfEw924qFdjJt/5ZYnJEixD4Qgn4hrjadCf2zuNhedkcURkBCMe6ubcH3pPZ5K6N+TVO/INYa264RUXSVFj4exZHBKra7vss83c+PilwZRICSGOHTpVoGztknQ+fnklw8Z1IWPrYRbP2EDXwc3d6nzy6ipmTf6utMQsUaJiInn+sxFMG7+Idr2bOONOPf7hMFK/yyCmwRGq1arEX+eMZNPqDC69pmWh7YkIzdvX5dF/X8XRg6f4I/MMiR3LV6iMskC5NxaesXCU8sX2Dfv55Yc9DLi1vdf1NZ7rGRwkz0oleVb+MMxP/9tR8Nwwvbf+uexWIqMiGD99qFt545bn0bjlec6sbOc1qFboWhBPml10fkmKqZQyAXWdFZEBIrJFRNJEZLyPOteJyCYRSRWRGS7lL9tlm0XknxKolFA+HgZK+eClW+cy9601rFn4q9fj5fH2CIVEO0roEbC7QkQigTeAgUAr4HoRaeVRpzkwAehujGkN3G+XdwO6A22BJKAz4D3YyzkSrm9/iuWMkPJNWpHdnR29hG//s54ZL61g2oR8byPXyKseJ52znMGmz8gk5/boZ3u7HXto2hBGPdXTuf/qtzeXllhKmBHIYaguQJoxZjuAiMwErgY2udS5A3jDGHMEwBjjWHlkgApADNbcczSwPyBSqrEIWybf+SV70n5n8B0duGpsJ4wxpKcepF6zOKKiIzl5/DR/ZJ4hvlF1lsxKZebLK3225Yg4nJdnSE89QMPEWkTHRoWsrbhhfI8i5Y0Y8XA3LhvRmoQ2dcjLM1w8sDk/Ld7O+uW7aJBYi8QOdTngEjhQ3cYVXwTSWNQHdrvsZwCeDtGJACKyEmtd3LPGmAXGmO9EZAmwD8tYvG6M2ez5BSIyBhgDEB8f7xxLLQ6y7QSeadDPpp1QITMzM6zld8WfLo7QGasXbqJK8xN88qj3AHjDnk3g85e3ez3m4Mt//cSW1F/ZnnKc3GzLQgz/azNmP+l9eCrYpG33HexPIsDYgQgizj/E0qVLcdzkycl7uKBfNKZyLRI6Vyc5OZm0X/LDkBfl3ikr91hZ0QNKR5dgT3BHAc2B3kADYJmItAFqAy3tMoBvReRSY4ybD6MxZhowDaBTp06md+/exRbgROUMUnFPOXk27YQKycnJYSl/bk4e65fvJLFjPSpXs55srrpkHs3iTFYOv677jY79EuzwF1sBOLwzi2ObK/tsu1HtFkDhxgJg2yr3rHChZihGP9vbuS6jRYsW/OCjs/3g1CEc2Z9JvYQ4Gl5Y22udK1wyhlY+nUbKbCtTXlHunXC9xzwpK3pA6egSSGOxB2jost/ALnMlA/jeGJMN7BCRreQbj9XGmEwAEZkPXAIsp6Sxh6FaR+WQmhNs21l2OP1HNmuT02l7aWOvC9gO7zvBnDdSGDC6HfUvqMmC6WuZN3UNjVudx+MfDCMvz7AnNZPMdpaRmHCl0/eBd574X4H2Frzne9GXY/1DOFOrbhWSulv/TjEVorx6bk1JHk10bKTbCuei0KFvAhev2EVSd+8pVxUFAmssUoDmItIUy0iMBG7wqDMHuB54T0RqYw1LbQcSgDtE5EWsYahewJRACOmY9EyKzlVjUYLMmLiC1V9tI6l7Q+79x8ACx6eNX0R66kFSv9vN5MW3sH75TgB2bjoIwNw3U1g2fS9rZs8kspgPv7JAq0sacN9rg/hhQRo7Ug84s7NN/PpGKlaOZm1yurNu3aY1GPFwN69GuShERkXw5+f7lJDkSlklYE9HY0yOiIwDvsGaj3jXGJMqIn8B1hhj5tnH+ovIJiAXeMQYc1hEZgN9gA1Yk90LjDFfeP+mc8TuWUTanrmxFdVglASODGsbV+72etwxqXry2GmyTmVz6rj76mRHeIhTJ84ETsgQ4qFpQ4itGMXKuVto0LwmPYa2AKDLgAvoMuACZ724OtZwW3Rs/n367KfXla6wSrkkoE9GY8zXwNceZU+7bBvgQfvjWicXGBtI2Zzf5fCGsp2IT//hP5+AUpDiJo3Kdcn09sBl088p81u4M2RsRxI7WFFVG7c8r0jntOvdhDY9GtGqawP/lRWlBNDXaEdsKJc1f0cOnHS+wSn++SVlD/8Y9zW3PNObroOae62zY+MBdm85RM9rraU2ebn5eUPKq6F4e80YTh4/7ZzQLw6RURGMmzIgAFIpinfKvbFwuBi6rg/fsWE/cX0TgiNQGPLeM8nk5Rree3qJT2MxcfQcAA5mHGf98l1kn/a9kC7zaFZA5AwmIu7r+zr2s+6vszEUihIMdF2/o2fhMoSyaMYGX7XLNWeyctix8UCBeEn+ArG49iIWfrie39KPFlIbHur3wVnLWNI4HurnQq/hrRjwYGO3nsBNT2iwSiW80J6FcRiL/LLYitFBkia0+deERaxfvotRT/WkXrOabN+wnz4jk9yG8L5+92cqV4vl9KlsZ9nMV1cFQ9wS4cYJPagaV4GDe06Quip/sr7P9UnUrleVWZMKjyx716v9ade7CcnJySR1b8ig29rTuOV5VKqqPQolvCj3xsIZ7sPl7bjzFc2CI0sIkpOdS8o3v9L6kgasX74LgA+eX+Y8Xqdhdbeexdw3Uwq0sfTTTQXKwoWIyAiuf6wHAC+M+tzp2uvI19CsbTwZ237nw78ucztv9LO9ueTKRLcyEeHquzqXgtSKUvKosXAaC6Hj5Qn8+O12N7fE8s7899by5bQfiYv3PuF/MOO42xBeONMgsRYZHmlLo2Ly13i06dGInZsO0qhl/qroJq3ruEVpve/1QWxYucvN3VVRygLl/qno6jobYb8iayTafDZ/nwHAkf3e04JmbD3MoT0+IraGGUPv7szr9y+g1/BWtO3ZmNzsXKJdjMWgP7enfrM4LuzknrinQWItOl/RjLpN42jVtYG6syplknJvLFx7Fj8vsRLYrJy3pcy9GSZ/msrKeVvoMyKJS65MxBjDyrlbOL9JDS5o556UxhjD7Cmrqds0jjw/hnPlvC2BFDvg9L0+ibR1+xl+f1cSO9RlSvJonyuhI6Mi6ODFS05EuP1vfQMtqqIElXJvLIzLnEVOtuW188sPniGsQp9Zk1axd/sRLrq2UoFjmUez+PglKzz39GeT2bfjCM3axjvH2Qff3oGr7uzkrJ+eepBFH1keYVHRZcdhbtKiURw9eJK5b6ZQu0E19m0/wrBxXdyGHc82ZIailHXKvbFwOr+H+bj74o83AtC4e2O38sP7TvD7b5luZd+8v476F9R07n/1zk+06tqALWv20u/GNrx233znMYcBDVe6DLiAHxakAZYhqFKjAvf8XRezKUpxKffGIqpmRap2a8SRenmwN3wWg239cS/ZZ3JpfUlDt3LX+ZbcnDweH/Kx1/OPHnSfg3jl9nkAzJu6poQlLV0qVY1xiyfV/+a23DC+B7k5eZouVFHOgXL/31O9RxNaz7mJnOvcwzMvnR3a7p6Txn7JP++dz5ks91hWJg+OHTrFrEmr2L/T9+K3k8dO+zwWitRpVL1AWcd+CTz+4TC6DMyfX7ruoW40uyjeuR8XX8XZo1AU5ewp9z0LX8yYuIJew1v5r1gEzmTlkHUqm2o1Sz5lpevqaLAmp19/YAG7Nh/ix0X+E/6EMhGRkGdHBakaV8Et/SdYC+YqV6/Abc/3ode1rdj8wx4uHtScS65M5NCe45w6cUaNhKKUEOW+Z+FKm0sDk/zlsUEf8Uj/D0ss5tFbDy90bntGyf32td3s2nwIgKMHT5XI9wWDv827nrYDvWd5c1C5er4huKDd+QwZ09EZ+bZ2/Wo0alH4+YqiFB01Fi7c+txlAWnXkath344jZ91GTnYuxw+fYvpzyW6Jb6aNX3Su4oUktetVJbZy/hqHkY90p0LlaG58/FImLRrFlOTRwRNOUcohOgzlQqWqgXWbXL98F83b1y32eSvn/sIHzy8jOjayQLTWtLW/hf1aB1806VCNiFPVadujEY1a1GZK8mi3OFSKopQe2rNwoSQfRHl5pkB01oUfrCt2O7+k7HHGYvIV1vuDvywtvoAhxJ2vXO61PCJSGP1Mb+dCODUUihI81FgEAGMMz18/m4m3zDnndv5+11clJFXpc8mVidz21z5c2Dk/PIa3UBjtL2vKo+9ezZ8evKQ0xVMUpRjoMFQhpH63220dQ25OHgumryWpe8NC019mn85l76/W/MRuj8B0nhhjyNh6mPObxhEdE0n2mVzSft7HnrTf2WlPVIcjL355AzXqVCYiQsg6lc2WlL3ExVfmjhf7Mv/dn/lx8Q4O782PKdWsbTxNk+pwYNcxmrc/v5CWFUUJBmosCuGf987n7TVjAPgt/ShL/7uJ/328kXlT1zjLPdm4arebi+zEWz53O77oo/Wc36QGrbo2YMXcLRw9cJKv3vmJll3qc9MTl/LE1TMDp1AAuOPFvvxrwmLn/qP/voqqNStS8/wqzrIeV19ItZoVSWgbT6WqsVx7X1f2/HrEzVgAREQIN4zvUWqyK4pSdNRYFIGsU9k8M3yW33p7tx/htf+b71bmGS7j07+vBuDmJ3vy0QvLneWbf9gTdoYCKLCCvNlFBXsFEZERtOvdxK2sRed6pK7aTe36VQMpnqIoJYQaCw8iIoW8XPeJ6aku6xoKo7AV056sX76zWHIFg/oX1GRP2u8AjJnYj02rM1gx5xfn8ec/H0HFKjG8svBmFn64jksGJ/pqqgB9r29DXHyVAuG+FUUJTXSC24OnZw532z+TlcNmP1FoM49mkZuTx4Hdx4v8PeuWhraxuHtSfx5992oAomMj6dgvwW1yemrKHdRpaIXgqFazIsPv6+oWnNAfkVERdO7fLCCr2hVFKXm0Z+GB4wHo4N4e73qtd+zQKarXrsThfSd8BusLVya8P5QmresAVljvmArWbdK+T1OG39+V5h3qqhuropQzAtqzEJEBIrJFRNJEZLyPOteJyCYRSRWRGXbZZSKy1uWTJSJDAymrg4jIoj0EHx3wH9YtTXdGay1LOAwFQJUaFZzGIiJCuPymtjRp5dsTTFGUsknAehYiEgm8AVwOZAApIjLPGLPJpU5zYALQ3RhzRETqABhjlgDt7Do1gTSgaBMH5y53keu++VCpiKQoihJ0Atmz6AKkGWO2G2POADOBqz3q3AG8YYw5AmCMOeClneHAfGNM+EbFCxHGT/fdOXMN860oiuJJII1FfWC3y36GXeZKIpAoIitFZLWIeEthNhIo1UmBsuihMzXlDmrVc3dTnfB+vvEY9VQvOl6ewO0vaC5pRVEKEuwJ7iigOdAbaAAsE5E2xpijACJSF2gDfOPtZBEZA4wBiI+PJzk5+awFyczMdJ5/4uSxwiuHIUuXFowftXWXlWc7pmIEK1ctJ/GKKE6ym+Tk3QXqBgPXaxLuqC6hR1nRA0pHl0Aaiz2A64qtBnaZKxnA98aYbGCHiGzFMh4p9vHrgM/t4wUwxkwDpgF06tTJ9O7d+6yFTU5OxnH+hs/ns5eThZ9QClSoHM19rw/ipVvnnlM7z8z6E/US4gDY0O0PNq6yjEH/gX3pdkl3YipEOSexQwnXaxLuqC6hR1nRA0pHl0AOQ6UAzUWkqYjEYA0neboOzcHqVSAitbGGpVzTu11PKQ9BAWD8VykNXl5wEwlt8lOEXn5T22K3UTWugtNQAFx7f1cqVY3h+se6A+7eToqiKL4ImLEwxuQA47CGkDYDs4wxqSLyFxG5yq72DXBYRDYBS4BHjDGHAUSkCVbPpNTjb+eZ0rcWbXoUzNIXHWs9xEc+2p3Bt3dgyNiOANRpWK3Qtq645SKfx+olxDH5f7fQ+0+tz0FaRVHKGwF9pTTGfA187VH2tMu2AR60P57nplNwQrxUCMaq4qhod7vdoU9TZ4rQy67Lf7C/tuLPREZFcHfXdwCoVqsixw//4TweXSGCa+69mG/e9507QxfUKYpSXHT8wQvX3teV1V9tK9XvrF3fvbcw9mXvCYE8h4xGPdWLKjUqYIzhk1dWkdjPMnRdBl7AD/PT6DG0RWAEVhSlXKHGwgvValbkqjs7MW/qmlL5vtv/1oc2PRqRdfIMyz//xf8JLlSoHE3TJGvF9YQPhjk9IkY91Yue17R0m/NQFEU5W9RYBICX5t/IYwM/cu636dGIDSt2+axfq15VKlSO4aYnetL7utbO4afCuGF8D3ZuPsgF7bwnCoqOiTyrfN+KoijeUGPhgxrnVTqr8yYtGkWVGhWoXrsSxw5Zi87HTRnA2E7TvNZP7FjXLdZSg+a1ivQ9vYa3Oiv5FEVRzgYNUe6DroMTz8pV1RGIsFK1WK/HO/Rt6rZK+qG3hxARqZdBUZTQRnsW5qFeuwAACKhJREFUPoiMimD4/V2pWCWmWHMX/h78N4zvwcljp89VPEVRlFJFjYUfBt/egYMZx/nuy61+6zZIrEWFStEA+Jp1EBHOb1KDofd0LuABpSiKEqqosSgC0TGRbvtNk+qwY+MBbv9bH5b+dzMNL6zFiIe6Fakth+vrwFvbl7iciqIogUKNRREwHiu67558BZlHs6jbtAadryhaaO8JHwwj+3SOhtZQFCUs0SdXEfAM/hEdE+kWb8kbVeIquO1rdjlFUcIZdcMpArEevYGipF695eletLy4Pg//a0igxFIURSk1tGdRBAbd1oHdWw6z9ad9AERFR/o5wwrfcf8bgwMtmqIoSqmgxqIIVKlRgYemDWHHxgPk5eYRGaUdMkVRyhdqLIqBIwaToihKeUNfkRVFURS/qLFQFEVR/KLGQlEURfGLGgtFURTFL2osFEVRFL+osVAURVH8osZCURRF8YsaC0VRFMUvaiwURVEUv6ixUBRFUfwinrkawhUROQjsPIcmagOHSkicYFJW9ADVJVQpK7qUFT3g3HRpbIzxm0OhzBiLc0VE1hhjOgVbjnOlrOgBqkuoUlZ0KSt6QOnoosNQiqIoil/UWCiKoih+UWORz7RgC1BClBU9QHUJVcqKLmVFDygFXXTOQlEURfGL9iwURVEUv5R7YyEiA0Rki4ikicj4YMtTFEQkXUQ2iMhaEVljl9UUkW9FZJv9N84uFxH5p63fehHpEGTZ3xWRAyKy0aWs2LKLyC12/W0ickuI6PGsiOyxr8taERnkcmyCrccWEbnCpTzo95+INBSRJSKySURSReQ+uzwcr4svXcLq2ohIBRH5QUTW2Xo8Z5c3FZHvbZk+EZEYuzzW3k+zjzfxp1+xMcaU2w8QCfwKJAAxwDqgVbDlKoLc6UBtj7KXgfH29njgJXt7EDAfEKAr8H2QZe8JdAA2nq3sQE1gu/03zt6OCwE9ngUe9lK3lX1vxQJN7XsuMlTuP6Au0MHergpstWUOx+viS5ewujb2b1vF3o4Gvrd/61nASLt8KnCXvX03MNXeHgl8Uph+ZyNTee9ZdAHSjDHbjTFngJnA1UGW6Wy5Gnjf3n4fGOpS/oGxWA3UEJG6wRAQwBizDPjdo7i4sl8BfGuM+d0YcwT4FhgQeOnz8aGHL64GZhpjThtjdgBpWPdeSNx/xph9xpif7O0TwGagPuF5XXzp4ouQvDb2b5tp70bbHwP0AWbb5Z7XxHGtZgN9RUTwrV+xKe/Goj6w22U/g8JvrFDBAAtF5EcRGWOXxRtj9tnbvwHx9nY46Fhc2UNZp3H20My7jmEbwkgPe/iiPdabbFhfFw9dIMyujYhEisha4ACW4f0VOGqMyfEik1Ne+/gxoBYlqEd5NxbhSg9jTAdgIHCPiPR0PWis/mdYurmFs+zAW0AzoB2wD5gUXHGKh4hUAf4L3G+MOe56LNyuixddwu7aGGNyjTHtgAZYvYEWwZSnvBuLPUBDl/0GdllIY4zZY/89AHyOdSPtdwwv2X8P2NXDQcfiyh6SOhlj9tv/4HnAv8jv7oe8HiISjfVw/cgY85ldHJbXxZsu4XxtjDFHgSXAJVhDflFeZHLKax+vDhymBPUo78YiBWhuexjEYE0MzQuyTIUiIpVFpKpjG+gPbMSS2+F9cgsw196eB4yyPVi6AsdchhZCheLK/g3QX0Ti7OGE/nZZUPGYCxqGdV3A0mOk7bHSFGgO/ECI3H/22Pa/gc3GmMkuh8LuuvjSJdyujYicJyI17O2KwOVY8y9LgOF2Nc9r4rhWw4H/2b1BX/oVn9Ka3Q/VD5Znx1as8cAngi1PEeRNwPJuWAekOmTGGp9cDGwDFgE1Tb5XxRu2fhuATkGW/2OsYYBsrPHT285GduDPWJN1acCtIaLHh7ac6+1/0rou9Z+w9dgCDAyl+w/ogTXEtB5Ya38Ghel18aVLWF0boC3wsy3vRuBpuzwB62GfBnwKxNrlFez9NPt4gj/9ivvRFdyKoiiKX8r7MJSiKIpSBNRYKIqiKH5RY6EoiqL4RY2FoiiK4hc1FoqiKIpf1Fgo5RoRqSEid7vs1xOR2YWdU4Lf3UREbiiN71KUc0WNhVLeqYEVsRMAY8xeY8zwQuqXJE0ANRZKWKDGQinvTASa2TkOXrHf9jcCiMhoEZkjVi6HdBEZJyIPisjPIrJaRGra9ZqJyAI7sONyESkQw0dEekl+LoWf7VX4E4FL7bIH7MBxr4hIih3wbqx9bm8RWSYiX9k5CaaKSIRdf7qIbBQrv8kDpfi7KeWMKP9VFKVMMx5IMlbANkekUleSsCKXVsBaHfuYMaa9iPwdGAVMwcp/fKcxZpuIXAy8iRVK2pWHgXuMMSvtIHdZ9nc/bIy50v7uMVihMzqLSCywUkQW2ud3wcpNsBNYAFwD7ADqG2OS7PNrlMQPoijeUGOhKIWzxFh5EU6IyDHgC7t8A9DWfvB3Az61whIBVqIZT1YCk0XkI+AzY0yGS30H/e02HcNg1bFi+ZwBfjDGbAcQkY+xwlosBhJE5DXgK2ChZ4OKUlKosVCUwjntsp3nsp+H9f8TgZVjoF1hjRhjJorIV1jxhlaK9/SWAtxrjHELvicivSkYHtwYY46IyEVYSYfuBK7Dis2kKCWOzlko5Z0TWOk3zwpj5UrYISJ/Amd+6os864lIM2PMBmPMS1gRTVt4+e5vgLvsENuISKIdWRigix0BNQIYAawQkdpAhDHmv8CTWGleFSUgqLFQyjXGmMNYb/obReSVs2zmRuA2EXFEAvaWfvN++zvWY0WqnY8VUTRXRNbZk9PvAJuAn+xJ9rfJ7/2nAK9jhanegZXHpD6QLFY2tf8AE85SfkXxi0adVZQQxx6Gck6EK0ow0J6FoiiK4hftWSiKoih+0Z6FoiiK4hc1FoqiKIpf1FgoiqIoflFjoSiKovhFjYWiKIriFzUWiqIoil/+H/7Yyl2ahaA/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX5x/HPk0ACAQRZjAKyKIhFcWNRXFGrolX4aXG3xa3UBXftT2u1FbWLWrVW+nMv7oBaK1VcKAW1uCGIC0sgbIKIgKwBsj+/P+4NDDHJDEkms+T7fr3mxV3OnfucTJgn955zzzF3R0REpCYZiQ5ARESSn5KFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCFpycwGmdnyOhz/iJndVp8xiaQyJQtJWma2xMy2mlmBma00szFm1jIO57nQzP4buc3dL3P3O+Nwrsg6VbwejvHYqWZ2aX3HJBILJQtJdqe5e0vgIOBg4JYEx1MfTnP3lhGvkfXxpmbWpD7eR6QqShaSEtx9JfA2QdIAwMyyzew+M/vazL4Lbx01r+p4M7vZzBaa2SYzm2Nmp4fbfwQ8AgwM/8pfH24fY2Z3hctzzezUiPdqYmarzeyQcP0wM/vAzNab2edmNqg2day4wgnrtM7MFpvZyeG+u4GjgIcjr0bMzM3sSjNbACwItx1uZtPNbEP47+ER55hqZn8ws0/MbKOZvWZmbcN9b5jZVZVi+qLiZyWNm5KFpAQz6wycDORHbP4jsA9BAukBdAJur+YtFhJ82bYG7gCeM7M93H0ucBnwYfhXfpsqjn0RODdi/SRgjbvPNLNOwBvAXUBb4EbgFTPrULuaciiQB7QH7gGeNDNz91uB94GRVVyN/E94XO/wi/8N4CGgHXA/8IaZtYso/3PgYmAPoDQsC/A0cEFFITM7kOBn+kYt6yJpRMlCkt0/zWwTsAxYBfwWwMwMGAFc5+5r3X0T8HvgnKrexN1fcvcV7l7u7uMI/gofEGMMLwBDzCwnXD+PIIFA8OU60d0nhu89CfgUOCVKndZHvH4RsW+puz/u7mUEX957ALlR4vtD+DPYCvwEWODuz7p7qbu/CMwDToso/6y7f+Xum4HbgLPMLBOYAOxjZj3Dcj8Dxrl7cZTzSyOgZCHJ7n/cvRUwCNiX4C9ugA5ADjCj4ksXeCvc/gNm9nMzmxVRdv+I96qRu+cDc4HTwoQxhCCBAHQFzoz88geOJPiSr6lObSJej0fsWxlx3i3hYrRG/WURyx2BpZX2LyW4Qqiq/FKgKdDe3QuBccAFZpZBcDX1bJRzSyOhBjFJCe7+rpmNAe4juO2yBtgK7Ofu39R0rJl1BR4Hjie43VRmZrMAq3j7GEKouBWVAcwJEwgEX7zPuvsvqj2y/lQXZ+T2FQQJLFIXgkRaYc9K+0oIfp4QXM08C/wX2OLuH9Y6WkkrurKQVPIgcIKZHeju5QQJ4AEz2w3AzDqZ2UlVHNeC4At1dVjuIoIriwrfAZ3NLKuGc48FTgQuZ/tVBcBzBFccJ5lZppk1C5/x6FzLOtbkO2CvKGUmEtxKOi9siD8b6A28HlHmAjPrHV4ljQJeDm97ESaHcuDP6KpCIihZSMpw99XAM2xvxP5fggbvj8xsI/BvoFcVx80h+PL7kOALtw8wLaLIf4DZwEozW1P5+PA9vg2PP5zgVk3F9mXAUODXBMloGXATNf/f+lel5yxejVL1Cn8BhoU9pR6qqoC7fw+cCtwAfA/8CjjV3SPr9SwwhuCWVzPg6kpv8wzBz+i5GOOSRsA0+ZFI42FmU4Hn3P2JGsr8HBjh7kc2WGCS9HRlISLbhLemrgAeS3QsklyULEQEgLC9ZzXBrboXohSXRka3oUREJCpdWYiISFRKFiIiElXaPJTXvn1779atW62P37x5My1atKi/gBIkXeoBqkuySpe6pEs9oG51mTFjxhp3jzqWWdoki27duvHpp5/W+vipU6cyaNCg+gsoQdKlHqC6JKt0qUu61APqVhczqzw8TJV0G0pERKJSshARkaiULEREJColCxERiSquycLMBptZnpnlm9nNVew/2sxmmlmpmQ2rtO8eM5sdTmn5UDjZjYiIJEDckkU489ZogqkwewPnmlnvSsW+Bi6k0tAC4ZzBRwAHEAwl3R84Jl6xiohIzeLZdXYAkO/uiwDMbCzBUM5zKgq4+5JwX3mlY51g6OQsgglqmhKMVyMiIgkQz9tQndhx+sbl7Di1Y7XCCVimAN+Gr7fdfW69RygiIjFJyofyzKwH8COgYraxSWZ2lLu/X6ncCGAEQG5uLlOnTt3pc61da7zyShbl5camTVNp1apusSdaQUFBrX4OyUh1SU7pUpd0qQc0TF3imSy+Yce5fjuH22JxOvCRuxcAmNmbwEBgh2Th7o8Rjrvfr18/r80TjM899z0vvLAUyGbWrGymTt2H3NymO/0+yUJPpSYn1SX5pEs9oGHqEs/bUNOBnmbWPZzb+BxgQozHfg0cE84h3JSgcTsut6EuuKAdf/pTRwDmzSvi1FMXsmVL5SYUEZHGLW7Jwt1LgZHA2wRf9OPdfbaZjTKzIQBm1t/MlgNnAo+a2ezw8JeBhcCXwOfA5+7+r3jEuWpVCUcc0ZKDDy4F4NNPt3D11cuiHCUi0rjEtc3C3ScCEyttuz1ieTrb2yUiy5QBv4xnbBVat87kzjtX8tlnwY+iV69sbr45tyFOLSKSMhr9E9zZ2RmMH9+d7t3LOP74Vnz4YS969GiW6LBERJJKUvaGami77JLJffdt4bTT+tG0qR4UFxGprNFfWVRo29aVKEREqqFkEYPycmfz5rJEhyEikjBKFlFs2VLOmWcu5vTTF1Fa6okOR0QkIZQsarBiRTFHHz2ff/xjPZMmbeLqq5fhroQhIo2PkkUNrr56OTNmbNm2/n//t4ZHH12TwIhERBJDyaIGo0fvSdeuWdvW+/Rpxskn75LAiEREEkPJoga5uU15/fW9adUqg5/8ZBemTetF167ZiQ5LRKTB6TmLKPbfvzkffNCLH/2oGZmZ6lorIo2TkkUM9t+/eaJDEBFJKN2GqqOSEqesTD2kRCS9KVnUwcaNZfzkJ/lcf/3yRIciIhJXug1VS8uXF3PKKfl8+WUhkyZtYq+9srnmmt0SHZaISFzoyqIW3J1hwxbx5ZeF27Zdd91yXn99QwKjEhGJHyWLWjAzHn20C61abf/x9e+fQ//+OQmMSkQkfpQsaunAA3N46aW9yMyEoUNbM2VKas/dLSJSE7VZ1MFJJ+3Ce+/tw6GHttAzGCKS1pQs6ujww1smOgQRkbjTbag4Ki4up7xcz2CISOpTsoiTtWtL+fGP8/nNb1YkOhQRkTrTbag4WLSoiFNOyScvr4j33y+gW7dsRoxon+iwRERqTVcW9ay83Bk6dCF5eUXbtl1++ddMmrQxgVGJiNSNkkU9y8gwnnyyK82bb+8ddfTRLRkwoEUCoxIRqRslizgYMKAFY8d2JyMDzjqrDW+91YPWrTMTHZaISK2pzSJOhgxpw/vv78Nhh7UgI0PPYIhIaovrlYWZDTazPDPLN7Obq9h/tJnNNLNSMxtWaV8XM3vHzOaa2Rwz6xbPWOPh8MNbKlGISFqIW7Iws0xgNHAy0Bs418x6Vyr2NXAh8EIVb/EMcK+7/wgYAKyKV6yJsGlTGUVF5YkOQ0QkJvG8shgA5Lv7IncvBsYCQyMLuPsSd/8C2OFbM0wqTdx9UliuwN23xDHWBrVyZQmDBs1n+PClemhPRFJCPJNFJ2BZxPrycFss9gHWm9k/zOwzM7s3vFJJeQsWFHL44XnMnLmVcePWccMN3+CuhCEiyS1ZG7ibAEcBBxPcqhpHcLvqychCZjYCGAGQm5vL1KlTa33CgoKCOh0fC3e45pocFi/e/mN/8MFVZGcvZfDgkno5R0PUo6GoLskpXeqSLvWABqqLu8flBQwE3o5YvwW4pZqyY4BhEeuHAe9GrP8MGF3T+fr27et1MWXKlDodH6vFiwt9990/d5jhMMMHD17gmzaV1tv7N1Q9GoLqkpzSpS7pUg/3utUF+NRj+E6P522o6UBPM+tuZlnAOcCEnTi2jZl1CNePA+bEIcYG161bNm++2YNWrTIYPrwtEybsTcuWaXGHTUTSWNxuQ7l7qZmNBN4GMoGn3H22mY0iyGQTzKw/8CqwK3Camd3h7vu5e5mZ3QhMNjMDZgCPxyvWhnbQQTnMmLEvPXpkE1RPRCS5xbXNwt0nAhMrbbs9Ynk60LmaYycBB8QzvkTq2bNZokMQEYmZhvtIQmvWlLJsWXGiwxAR2UbJIsksW1bMUUflccIJC1i9un56SImI1JWSRRLJyyvkiCPymDeviLy8Ik4+eSEbN5YlOiwRESWLZHL//atYtmz71cSMGVv4wx9WJjAiEZGAkkUSeeihzvz4x622rZ9xRht+97s9EhiRiEggWZ/gbpSyszN49dW9OP74BRxwQHMeeaQLmZnqWisiiadkkWRatsxk8uSetGiRoWcwRCRpKFkkIT3RLSLJRm0WKWblyhJeeWVdosMQkUZGySKFLF5cxJFHzuessxYzfrwShog0HCWLFPHll1s54oj5LFxYRHk5nH/+Yl5/fUOiwxKRRkLJIkUsXlzEqlXbn8EoLYXnn1+bwIhEpDFRskgRQ4a04emnu1HRQeq883blmWe6JTIkEWlE1BsqhZx/fls2by5nxowt/O1ve+oZDBFpMEoWKWbEiPaJDkFEGiHdhhIRkaiULNLI0qVF3HRTDsuXay4MEalfShZpYv78Qo46aj6fftqEH/94wQ49p0RE6krJIg0sWVLE0UfP3za8eV5eESeckM/69aUJjkxE0oWSRRro3DmLI45oucO2fffNJidHH6+I1A99m6SBJk2MF17oxuDBuwBw0UXteOGF7mRl6eMVkfqhb5M0kZ2dwSuv7MXVV2/liSc0D4aI1C8lizSSk5PB6aeXkJGhRCEi9UvJohFZtqyYrVvLEx2GiKQgJYtGIj+/kCOOyOOMMxZRWKiEISI7R8miEZg/v5BjjlnAsmUlvPXWRoYNW0RxsRKGiMQursnCzAabWZ6Z5ZvZzVXsP9rMZppZqZkNq2L/Lma23Mwejmec6e6qq5axYsX2h/TeeGMjjzyyJoERiUiqiVuyMLNMYDRwMtAbONfMelcq9jVwIfBCNW9zJ/BevGJsLJ59ths/+lGzbevDh7flyis7JDAiEUk18byyGADku/sidy8GxgJDIwu4+xJ3/wL4wT0RM+sL5ALvxDHGRmG33ZoyeXJP9tknm0suacdTT3VV11oR2Snm7vF54+C20mB3vzRc/xlwqLuPrKLsGOB1d385XM8A/gNcAPwY6FfNcSOAEQC5ubl9x44dW+t4CwoKaNmyZfSCSa6memzYYLRq5WSkSEtVunwmoLoko3SpB9StLscee+wMd+8XrVyyzmdxBTDR3ZebVf8XsLs/BjwG0K9fPx80aFCtTzh16lTqcnyySJd6gOqSrNKlLulSD2iYusTzb8xvgD0j1juH22IxEBhpZkuA+4Cfm9kf6zc8iZSXV8hVVy2jtDQ+V5oiktrieWUxHehpZt0JksQ5wHmxHOju51csm9mFBLehftCbSurH/PmFHHvsAr79toTvvivh+ee707Sp2jREZLu4XVm4eykwEngbmAuMd/fZZjbKzIYAmFl/M1sOnAk8amaz4xWPVC0/f3uiAHjppfWce+5iSkp0hSEi28W1zcLdJwITK227PWJ5OsHtqZreYwwwJg7hCcGItVlZO15F7LprJpmZCQpIRJJSivSLkXjp1i2bd9/dh732ygLg4ovb8eijXTQYoYjsQMlC6NIli3ff3Ydf/zqXxx9XohCRH0rWrrPSwDp3zuLuuzslOgwRSVK6spCYLFxYpOHNRRoxJQuJat68YHjz005byObNZYkOR0QSQMlCajR/fiHHHbeA774rZfLkTZx0Uj4bNihhiDQ2ShZSo2uuWb7tGQyAadM2M2bM9wmMSEQSQclCavTss904+ODm29Yvu6w9V1+t4c1FGhv1hpIatW/fhP/8pyennLKQHj2yGT16T2oa3FFE0pOShUTVpk0TJk3qQXZ2hp7BEGmklCwkJi1a1Dz+R1mZa0IlkTSmNgupsy+/3EqfPnP5/PMtiQ5FROIkarIws9PCmetEfmD+/EJOOGEBc+cGo9d+8snmRIckInEQSxI4G1hgZveY2b7xDkhSx6pVJRx/fPAMBsC6dWX8+McLWLSoKMGRiUh9i5os3P0C4GBgITDGzD40sxFm1iru0UlS69ChCcOG7brDtosuakf37lkJikhE4iWm20vuvhF4GRgL7AGcDsw0s6viGJskOTPj/vs7ceutuwNwySXteOCBzupaK5KGovaGCme1uwjoATwDDHD3VWaWA8wB/hrfECWZmRl33dWR/v1zOPXU1upaK5KmYuk6+1PgAXd/L3Kju28xs0viE5akmqFD2yQ6BBGJo1jaLIYD881sSNgzaveIfZPjGp2khY8/3sxNNy2nvFzzeoukqli6zl4CfAKcAQwDPjKzi+MdmKSH2bO3csop+dx33yp+9rMllJQoYYikolhuQ/0KONjdvwcws3bAB8BT8QxMUt+SJUWceGI+a9cGQ5q/8MI61q8v47XX9qZJE7VtiKSSWHpDfQ9siljfFG4TqdHmzeV4pQuJQw7JUaIQSUGxJIt84GMz+52Z/Rb4iKAN43ozuz6+4Ukq22+/5kybtg97750NBMObjxq1R4KjEpHaiOU21MLwVeG18F89lCdRde+ezX//uw8PP7yaO+7YQ89giKSoqMnC3e8AMLOW4XpBvIOS9LL77k25666OiQ5DROoglt5Q+5vZZ8BsYLaZzTCz/eIfmjQWkydvZOLEDYkOQ0RqEEubxWPA9e7e1d27AjcAj8fy5mY22MzyzCzfzG6uYv/RZjbTzErNbFjE9oPCMahmm9kXZnZ2rBWS1DJr1hZOP30RQ4Ys5O9/V78JkWQVS7Jo4e5TKlbcfSrQItpBZpYJjAZOBnoD55pZ70rFvgYuBF6otH0L8HN33w8YDDxoZnpEOM0sXlzEySfns2lTOWVlcPHFS7n77m8THZaIVCGWBu5FZnYb8Gy4fgGwKIbjBgD57r4IwMzGAkMJxpMCwN2XhPvKIw909/kRyyvMbBXQAVgfw3klRXzwweZtw5tXaNZMU6eIJCPzyh3hKxcw2xW4AzgScOB94A53XxfluGHAYHe/NFz/GXCou4+souwY4HV3f7mKfQOAp4H93L280r4RwAiA3NzcvmPHjq2xLjUpKCigZcuWtT4+WaRaPd57rwl33dWckhJj2LAirrxy+1wYqVaXmqguySdd6gF1q8uxxx47w937RS3o7tW+gEzgvprK1HDsMOCJiPWfAQ9XU3YMMKyK7XsAecBh0c7Xt29fr4spU6bU6fhkkYr1eO+9Tf7LXy71srLyHbanYl2qo7okn3Sph3vd6gJ86jF8p9d4G8rdy8zsyFqlK/gG2DNivXO4LSZmtgvwBnCru39UyxgkBRx1VEuOOio9/sITSVextFl8ZmYTgJeAbRMsu/s/ohw3HehpZt0JksQ5wHmxBGVmWcCrwDNexa0paVxee209HTs2pX//qP0qRCROYmlNbEYwFtRxwGnh69RoB7l7KTASeBuYC4x399lmNiqcUAkz629my4EzgUfNbHZ4+FnA0cCFZjYrfB20k3WTNPDRR5s555zFHHPMfF57Tf0bRBIlliuLJ9x9WuQGMzsiljd394nAxErbbo9Ynk5we6rycc8Bz8VyDklfK1YY1167kMLCoBPG6acv4sEHO3P11bslODKRxieWK4uqpk3VVKoSdx980JTVq7d3rXWHli3VtVYkEaq9sjCzgcDhQIdKo8vuQtBLSiSuhg0r5oAD9uGKK76mrAxuvXV3Lr64faLDEmmUaroNlQW0DMtEjjC7kaBbrEjcjRjRni5dmvLqqxu4804Nby6SKNUmC3d/F3jXzMa4+9IGjElkB4MHt2bw4NaJDkOkUYulgTvbzB4DukWWd/fj4hWUyM548cW1tGvXhBNP3CXRoYikrViSxUvAI8ATQFl8wxHZOVOnbmL48KWUlzsPPbQnV1zRIdEhiaSlWJJFqbv/X9wjEdlJ8+YVcvrpiygpCbrWXnnlMhYvLuLee3/QG1tE6iiWfoj/MrMrzGwPM2tb8Yp7ZCJRfPBBARs27HixO3CgnvIWiYdYriyGh//eFLHNgb3qPxyR2F18cXvat2/CeectYfPmcu66aw/OOGPXRIclkpZimYO7e0MEIlIbQ4a04YMP9uGZZ9by61/vnuhwRNJWLHNw55jZb8IeUZhZTzOLOjaUSEM54IAc7ruvM2aW6FBE0lYsbRZ/B4oJnuaGYATZu+IWkUg9e+ihVYwcuYzS0pon+hKR6sXSZrG3u59tZucCuPsW059wkiLeemsD1123nPJymD+/kHHjurPrrrH82otIpFiuLIrNrDlBozZmtjdQVPMhIok3d+5Wzj57MeXhZLyTJm3i5JPzK2ZhFJGdEEuy+C3wFrCnmT0PTAZ+FdeoROpBaSm0abP9KiIjA0aN6qi2DZFaiJos3H0ScAZwIfAi0M/dp8Y3LJG669OnOZ980ovDDw+evfjjHztpSBCRWorp5q27f08wH7ZISsnNbcrkyT159tm1XHppu0SHI5KyNJOMpL1mzTL4xS/aV3v7qbzc+frr4gaOSiS1KFlIo3f33Svp02cOb7yxIdGhiCStmJKFmR1pZheFyx3MTE91S1r417/Wc/vt37JxYzmnnbaQu+/+Vr2lRKoQyxPcvwX+F7gl3NQUeC6eQYk0hG++KeaCC5ZsW3eHBx9czXfflVZ/kEgjFcuVxenAEGAzgLuvYMdpVkVSUseOTbnjjo5khjPKZ2bCSy91Z/fdmyY2MJEkFNNDeR5cl1c8lKcxoCUtmBnXXrsb77zTk3btMrn//s4MGqS/g0SqEkvX2fFm9ijQxsx+AVwMPB7fsEQaznHHtWLOnN506KBhQESqE8tDefcBLwOvAL2A2939r/EOTKQh7bZb02q71paVOX/840o2bdKswtJ4xdLAfT0wx91vcvcbwye6Y2Jmg80sz8zyzezmKvYfbWYzzazUzIZV2jfczBaEr+GVjxVpKL/97bfccssKDj00j/nzCxMdjkhCxNJm0Qp4x8zeN7ORZpYbyxubWSYwGjgZ6A2ca2a9KxX7mmAYkRcqHduWYEyqQ4EBwG/NTFOgSYP7xz/WcffdKwGYO7eQAQPyePfdTQmOSqThxXIb6g533w+4EtgDeNfM/h3Dew8A8t19kbsXA2OBoZXee4m7fwGUVzr2JGCSu69193XAJGBwDOcUqTfuzl/+snqHbc2bGz16ZCcoIpHE2ZknuFcBK4Hvgd1iKN8JWBaxvjzcFou6HCtSL8yMN9/swfnnBxe1TZrAyy/vRadOWQmOTKThRe3+YWZXAGcBHYCXgF+4+5x4BxYLMxsBjADIzc1l6tSptX6vgoKCOh2fLNKlHpA8dbnkEmjTJousLKek5FNqE1Ky1KU+pEtd0qUe0DB1iaWv4J7Ate4+ayff+5vw2Aqdw22xHjuo0rFTKxdy98eAxwD69evngwYNqlwkZlOnTqUuxyeLdKkHJFddjj225v1lZU5mZvXzZCRTXeoqXeqSLvWAhqlLtbehzKxi4P97ga/NrG3kK4b3ng70NLPuZpYFnANMiDGut4ETzWzXsGH7xHCbSNIpLXVOOSWfUaO+pbxc40pJeqrpyuIF4FRgBsHT25F/NjmwV01v7O6lZjaS4Es+E3jK3Web2SjgU3efYGb9gVeBXYHTzOwOd9/P3dea2Z0ECQdglLuvrU0FReLt17/+hnfe2cQ772ziyy+3MmZMV1q0yEx0WCL1qtpk4e6nhv/WeoRZd58ITKy07faI5ekEt5iqOvYp4KnanlukIYwdu5Z77121bf3ll9fTqlUmTz3VNYFRidS/WB7KmxzLNpHGaPfdm9K+/fa/uTp2bMpdd+2RwIhE4qOmNotmYdtE+7DtoKK9ohvqxioCwKBBrZg+vRd9+jSjWTPjn//ci44d1bVW0k9NbRa/BK4FOhK0W1S0WWwEHo5zXCIpo1u3bKZN68XMmVvo31+DMkt6qqnN4i/AX8zsKg0cKFKzVq0yOeaY6oc337QJNm0qo1UrNXxLaor6nIW7/9XM9icY36lZxPZn4hmYSLooKXF+97sciovzmDBhb7p313AhknpinVb1r+HrWOAegpnzRCQG1123nJkzm/DVVxqIUFJXLGNDDQOOB1a6+0XAgUDruEYlkibGjl3L6NHbByNcs6aUUaNWEkw+KZI6YkkWW929HCgNn+pexY7DeIhINYYMacOZZ7bZtt6lSxYvvtit2omWRJJVLGNDfWpmbQimUp0BFAAfxjUqkTSRk5PBuHHdadHiQ15+OYcJE/Zit92aJjoskZ0WSwP3FeHiI2b2FrBLOAeFiMTAzBg+vJg//KE/u++uRCGpqdpkYWaH1LTP3WfGJySR9FRToli1qoRZs7Zy4om7VFtGJJFqurL4cw37HDiunmMRaZSKi8v56U8XMW3aZu65pxM33LCb2jQk6dT0UF6UEfxFpK7cncsvX8Z//7sZgJtu+oavvtrKo492ITt7ZyayFImvWJ6zyDGz35jZY+F6TzM7Nf6hiaS/WbO2MmbM9ztsW7ashIwMXVlIconlT5e/A8XA4eH6N8BdcYtIpBE5+OAcJk7sQevWwTAge++dzUsvdadpUyULSS6xJIu93f0eoATA3bew40RIIlIHJ520Cx9/3It+/YKutW3bxtKjXaRhxfJbWWxmzQkatTGzvYGiuEYl0sj06tWMTz7ppYZtSVqxXFn8FngL2NPMngcmA7+Ka1QijVBNiWLZsmJOP30h335b0oARiWxXY7Kw4Ld3HnAGcCHwItDP3afGPTIRAaCwsJwzzljEP/+5gX795vHRR5sTHZI0QjUmCw9GO5vo7t+7+xvu/rq7r2mg2EQaPXfnssu+5tNPtwCwYkUJxxwznxkztiQ4MmlsYrkNNdPM+sc9EhH5gcJC/8GtpxP7tbF7AAAVmElEQVRPbMXBBzdPUETSWMWSLA4FPjSzhWb2hZl9aWYaG0qkATRvnsHEiT341a9yAejVK5vnnuuu5zCkwcXSG+qkuEchItXKzDT+9KdOHHJIcw48MGfbMxkiDSmWUWeXNkQgIlKzs89uW+P+RYuK6N49S91vJS40+IxIGli0qIi+fedxzjmLKSgoS3Q4koaULERS3Natwai169eXMX78egYMyGPevMJEhyVpJq7JwswGm1memeWb2c1V7M82s3Hh/o/NrFu4vamZPR02ps81s1viGadIKrvppm+YNWvrtvW5cwuZOHFDAiOSdBS3ZGFmmcBo4GSgN3CumfWuVOwSYJ279wAeAP4Ubj8TyHb3PkBf4JcViUREdnTttR044IDtXWl/+tM2XHfdbgmMSNJRPK8sBgD57r7I3YuBscDQSmWGAk+Hyy8Dx4dPjTvQwsyaAM0JRr3dGMdYRVJWjx7N+PDDXlxwQVv23Tebv/+9qxq5pd7Fc3jLTsCyiPXlBM9sVFnG3UvNbAPQjiBxDAW+BXKA69x9bRxjFUlpOTkZPPNMV9atK6NVK3WtlfqXrGMhDwDKgI7ArsD7ZvZvd18UWcjMRgAjAHJzc5k6dWqtT1hQUFCn45NFutQDVJf69u67TfjuuwzOPLOYulx4JENd6kO61AMaqC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANQRzZYwGfhZR7ingrJrO17dvX6+LKVOm1On4ZJEu9XBXXerT/PlbvVWrzxxm+NCh+b52bUmt3yvRdakv6VIP97rVBfjUY/hOj2ebxXSgp5l1N7Ms4BxgQqUyE4Dh4fIw4D9h8F8DxwGYWQvgMILRb0VkJ23dWs6ZZy5m06ZyAF57bQOHHZZHcXF5giOTVBK3ZOHupcBIgquHucB4d59tZqPMbEhY7EmgnZnlA9cDFd1rRwMtzWw2QdL5u7trPCqRWpg7t5ClS4t32Hb11buRlaXHrCR2cW2zcPeJwMRK226PWC4k6CZb+biCqraLyM475JAcZs7cl7PPXsz06Vs466w2XHFF+0SHJSkmWRu4RaQede+ezfvv78M993zHNdfspq61stN0HSrSSGRnZ3DbbXuwyy7Vd639738LKjqViOxAyUJEABg/fh1HHTWf885bwsaNGoxQdqRkISIsWFDIpZcGsxGMHbuOQw6Zx2efaepW2U7JQqSRc3cuvnjptq61AMuXF9Okido1ZDslC5FGzsx44omu9OnTbNu2++/vTJ8+mudbtlNvKBGhV69mfPzxvtx443K+/baEyy9X11rZkZKFiADQvHkGo0d3obTUq+1au3VrOaWlDRyYJAXdhhKRHdTUVnH11cu45pocFi8uasCIJBkoWYhITMaNW8sTT3zPnDlNOOiguYwfvy7RIUkDUrIQkagWLy5ixIivt61v3FjObbetoKhIgxE2FkoWIhJVq1aZHHNMq23rWVnGuHHdyc7WV0hjoU9aRKJq374Jr722F3/5S2eaNnXuvbcTBx2Uk+iwpAGpN5SIxMTMuPrq3Wjbdh7nn9+h2nLu1femktSlKwsR2SmdO5dXmwy2bCnn8MPn88ILazUgYZpRshCRenPDDcv56KPNnH/+Es45ZzFr1+qhjHShZCEi9WLChPU88siabevjx6/nnnu+S2BEUp+ULESkXqxaVUp29vbbU/vsk81tt+2ewIikPilZiEi9uPTS9syYsS8HH9yczEx49tlutGhR/URLklrUG0pE6s1++zXno4968f77BQwY0KLacuoxlXp0ZSEi9SorK4Pjj9+l2v2ffbaFI46Yz9y5WxswKqkrJQsRaTCFheVccMESPvxwM4ccMo8HH1xFebm62KYCJQsRaTC33rqCOXMKASgsdK67bjkffLA5wVFJLJQsRKRBlJc7y5cX77DtoovaceSRLRMUkewMJQsRaRAZGcbYsd159tmutG6dSadOTbn//k6JDktipN5QItJgzIwLLmjHsce2YvnyEtq0qforqKwsaMfIzFSPqWQR1ysLMxtsZnlmlm9mN1exP9vMxoX7PzazbhH7DjCzD81stpl9aWbNKh8vIqmpU6csDj20+q6199+/imOOmc/8+YUNGJXUJG7JwswygdHAyUBv4Fwz612p2CXAOnfvATwA/Ck8tgnwHHCZu+8HDAJK4hWriCSPefMKue22FUybtpkDD5zLAw98t+1KQxInnlcWA4B8d1/k7sXAWGBopTJDgafD5ZeB4y14UudE4At3/xzA3b9397I4xioiSaCszLnooqUUFQXJobDQufPOlaxZowEJEy2eyaITsCxifXm4rcoy7l4KbADaAfsAbmZvm9lMM/tVHOMUkSRRUFBOu3Y7DhHy17/uSW5u0wRFJBWStYG7CXAk0B/YAkw2sxnuPjmykJmNAEYA5ObmMnXq1FqfsKCgoE7HJ4t0qQeoLskq3nW54Qbo06cpDz/cjAMOKKVjxy+Ix+n0mewkd4/LCxgIvB2xfgtwS6UybwMDw+UmwBrAgHOApyPK3QbcVNP5+vbt63UxZcqUOh2fLNKlHu6qS7JqqLp8802Rr1xZXOP+jRtLa/3++kwCwKcew3d6PG9DTQd6mll3M8sKE8CESmUmAMPD5WHAf8Lg3wb6mFlO2Nh9DDAnjrGKSJLp2DGr2ttP7s7Pf76U/fabwxtvbGjgyBqnuCULD9ogRhJ88c8Fxrv7bDMbZWZDwmJPAu3MLB+4Hrg5PHYdcD9BwpkFzHT3N+IVq4iklqefXsvkyZtYtqyEU09dyHnnLWbLlvJEh5XW4tpm4e4TgYmVtt0esVwInFnNsc8RdJ8VEdnmu+9KuP765TtsW7WqlObN9QBfPGm4DxFJKa1aZXLppe3ICL+9mjc3Hn20i+bHiDMlCxFJKTk5GdxzT2emT9+Xgw5qzqhRHdl77+xEh5X2krXrrIhIjQ45JIfp0/etscxLL60jJyeDn/ykdQNFlb50ZSEiKatJE6NJk6pvP61ZU8pll33Nqacu5IwzFrJsWXGV5SQ2ShYikpZ+9atvWLs2GCXo1Vc30K/fPLZuVY+p2lKyEJG0s2RJEc888/0O266/fjeaN9dXXm3pJyciaadbt2ymT9+XAQNyANhvv2Zcf31ugqNKbWrgFpG0dPDBOXzwQS8ef3wN++/fnKZNq27bWLeulJYtM6vdLwFdWYhI2srMNC67rEON83xfdtnXHHjgXP79740NGFnqUbIQkUZrypRNjB+/nrlzCznhhHx++tNFbNigqXOqomQhIo1SaSlcddWyHbYtWVJEy5b6WqyKfioi0igVF/ODecAffnhPMjPVdlEVJQsRaZRycuDJJ7vy8ce96N8/h+HD2zJwYPVtG42dkoWINGoDBrTgo4968fDDe1Zb5sUX13L22YtYtKioASNLLkoWItLoZWQYLVtmVrmvsLCcW25Zwfjx69l33zlcd91y1q4tbeAIE0/JQkSkBn/962qWLg3GlSopcUaPXq1kISIi27k7b7+94/MXV1zRnh49miUoosRRshARqYaZ8c47PXjuuW506ZJF69aZ3HbbHokOKyGULEREapCRYZx/flvy8nrzzjs9aNeu6lGS1q4t5YILFpOXV9jAETYMJQsRkRg0a5bBgAEtqt1/110ref75dey33xxGjlzG6tUlDRhd/ClZiIjU0cKFRTz88GoAyspg9OjVjBmzNsFR1S8lCxGROnrqqTWUlPi29S5dshg5skMCI6p/ShYiInV0110dGTeuO927ZwHw+993TLuJltKrNiIiCWBmnHXWrsyd25u//70r5567a7Vlr79+Oa+/vgF3r7ZMMlKyEBGpJ9nZGVx4YTsyMqoejHDatAIeeGAVp522kIED85g0aWPKJA0lCxGRBnLbbSu2LX/88RbuvHNlAqPZOXFNFmY22MzyzCzfzG6uYn+2mY0L939sZt0q7e9iZgVmdmM84xQRibevvtrKlCkFO2y76649MEuNIdHjlizMLBMYDZwM9AbONbPelYpdAqxz9x7AA8CfKu2/H3gzXjGKiDSU/fdvzqxZ+zJkSGsATjihFUcf3arKsuXlnnS3p+J5ZTEAyHf3Re5eDIwFhlYqMxR4Olx+GTjewjRrZv8DLAZmxzFGEZEGc+CBObz22t58/HEv/vznztWWe/LJ7znqqPm8807ytGnEM1l0AiLnLFwebquyjLuXAhuAdmbWEvhf4I44xicikhADBrSgT5/mVe4rKXF+//uVTJu2mZNOymfgwDxmz97awBH+UNWDnCTe74AH3L2gpvt5ZjYCGAGQm5vL1KlTa33CgoKCOh2fLNKlHqC6JKt0qUuy1uPNN5uyZMn2RDJz5mby8j5h9erqrzAapC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANYAB7wNLwtd6YC0wsqbz9e3b1+tiypQpdTo+WaRLPdxVl2SVLnVJ1npcfvlShxnbXpddtjTqMXWpC/Cpx/CdHs/bUNOBnmbW3cyygHOACZXKTACGh8vDgP+E8R/l7t3cvRvwIPB7d384jrGKiCSFv/2tC5980ovTTmtNZibceGNutWUnTtzAunUNMxFT3G5DuXupmY0kuHrIBJ5y99lmNoogk00AngSeNbN8gquHc+IVj4hIqujfvwUTJuzN0qVFdO2aXWWZlStLOOOMRTRtapx9dhaDBsU3pri2Wbj7RGBipW23RywXAmdGeY/fxSU4EZEkV12iAPjLX1ZRVOQUFTkN8aiGnuAWEUkxGzaU8be/BUOit2qVwdChxXE/p5KFiEiKycyEW27ZndzcJlx+eQdatoz/OZUsRERSTMuWmdx88+4sXrw/t966e4OcM1mfsxARkSiaN8+gedXP9tU7XVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVOZJMr9rXZnZamBpHd6iPcHkS6kuXeoBqkuySpe6pEs9oG516eruHaIVSptkUVdm9qm790t0HHWVLvUA1SVZpUtd0qUe0DB10W0oERGJSslCRESiUrLY7rFEB1BP0qUeoLokq3SpS7rUAxqgLmqzEBGRqHRlISIiUTX6ZGFmg80sz8zyzezmRMcTCzNbYmZfmtksM/s03NbWzCaZ2YLw313D7WZmD4X1+8LMDklw7E+Z2Soz+ypi207HbmbDw/ILzGx4ktTjd2b2Tfi5zDKzUyL23RLWI8/MTorYnvDfPzPb08ymmNkcM5ttZteE21Pqc6mhHin3uZhZMzP7xMw+D+tyR7i9u5l9HMY1zsyywu3Z4Xp+uL9btDruNHdvtC8gE1gI7AVkAZ8DvRMdVwxxLwHaV9p2D3BzuHwz8Kdw+RTgTcCAw4CPExz70cAhwFe1jR1oCywK/901XN41CerxO+DGKsr2Dn+3soHu4e9cZrL8/gF7AIeEy62A+WHMKfW51FCPlPtcwp9ty3C5KfBx+LMeD5wTbn8EuDxcvgJ4JFw+BxhXUx1rE1Njv7IYAOS7+yJ3LwbGAkMTHFNtDQWeDpefBv4nYvszHvgIaGNmeyQiQAB3fw9YW2nzzsZ+EjDJ3de6+zpgEjA4/tFvV009qjMUGOvuRe6+GMgn+N1Lit8/d//W3WeGy5uAuUAnUuxzqaEe1UnazyX82RaEq03DlwPHAS+H2yt/JhWf1cvA8WZmVF/HndbYk0UnYFnE+nJq/uVKFg68Y2YzzGxEuC3X3b8Nl1cCueFyKtRxZ2NP5jqNDG/NPFVx24YUqkd4++Jggr9kU/ZzqVQPSMHPxcwyzWwWsIog8S4E1rt7aRVxbYs53L8BaEc91qWxJ4tUdaS7HwKcDFxpZkdH7vTg+jMlu7mlcuzA/wF7AwcB3wJ/Tmw4O8fMWgKvANe6+8bIfan0uVRRj5T8XNy9zN0PAjoTXA3sm8h4Gnuy+AbYM2K9c7gtqbn7N+G/q4BXCX6Rvqu4vRT+uyosngp13NnYk7JO7v5d+B+8HHic7Zf7SV8PM2tK8AX7vLv/I9yccp9LVfVI5c8FwN3XA1OAgQS3/JpUEde2mMP9rYHvqce6NPZkMR3oGfYwyCJoGJqQ4JhqZGYtzKxVxTJwIvAVQdwVvU+GA6+FyxOAn4c9WA4DNkTcWkgWOxv728CJZrZreEvhxHBbQlVqCzqd4HOBoB7nhD1WugM9gU9Ikt+/8N72k8Bcd78/YldKfS7V1SMVPxcz62BmbcLl5sAJBG0wU4BhYbHKn0nFZzUM+E94NVhdHXdeQ7bwJ+OLoGfHfIL7gbcmOp4Y4t2LoHfD58DsipgJ7k9OBhYA/wba+vZeFaPD+n0J9Etw/C8S3AooIbh/ekltYgcuJmisywcuSpJ6PBvG+UX4n3SPiPK3hvXIA05Opt8/4EiCW0xfALPC1ymp9rnUUI+U+1yAA4DPwpi/Am4Pt+9F8GWfD7wEZIfbm4Xr+eH+vaLVcWdfeoJbRESiauy3oUREJAZKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoW0qiZWRszuyJivaOZvVzTMfV47m5mdl5DnEukrpQspLFrQzBiJwDuvsLdh9VQvj51A5QsJCUoWUhj90dg73Ceg3vDv/a/AjCzC83snxbM5bDEzEaa2fVm9pmZfWRmbcNye5vZW+HAju+b2Q/G8DGzY2z7fAqfhU/h/xE4Ktx2XThw3L1mNj0c9O6X4bGDzOw9M3sjnJPgETPLCMuPMbOvLJjf5LoG/LlJI9MkehGRtHYzsL8HA7ZVjFYaaX+C0UubETwd+7/ufrCZPQD8HHiQYP7jy9x9gZkdCvyNYCjpSDcCV7r7tHCgu8Lw3De6+6nhuUcQDJ3R38yygWlm9k54/ACCuQmWAm8BZwCLgU7uvn94fJv6+IGIVEXJQqRmUzyYG2GTmW0A/hVu/xI4IPziPxx4KRiaCAgmmqlsGnC/mT0P/MPdl0eUr3Bi+J4Vt8FaE4zlUwx84u6LAMzsRYKhLSYDe5nZX4E3gHcqv6FIfVGyEKlZUcRyecR6OcH/nwyCOQYOqulN3P2PZvYGwZhD06zq6S0NuMrddxh8z8wG8cPhwd3d15nZgQSTDl0GnEUwNpNIvVObhTR2mwim4KwVD+ZLWGxmZ8K2+akPrFzOzPZ29y/d/U8Eo5ruW8W53wYuD4fZxsz2CUcWBhgQjoKaAZwN/NfM2gMZ7v4K8BuCaV5F4kLJQho1d/+e4C/9r8zs3lq+zfnAJWZWMRJwVVNwXhue4wuCkWrfJBhRtMzMPg8bp58A5gAzw0b2R9l+9T8deJhgmOrFBPOYdAKmWjCb2nPALbWMXyQqjTorkuTC21DbGsJFEkFXFiIiEpWuLEREJCpdWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiIS1f8Dpeb/iMaZe4MAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8nWWd///X52TfWpqkTfeF0rTpvlOp0ALl+62gIAoIsuiAUx3kO4ojX5dBhx+OqKPODP5U/OGIuxTEhTp0UKSEQukO6ZakpcUuaUvbnLZp1mY51++PE0JOluZkuXOfk7yfj0cfj5zrXOecT++0eee+r/u6LnPOISIiAhDwuwAREYkdCgUREWmhUBARkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgWRKJjZR81sm5lVmdlxM/sfM3uvmT1kZg1mVtn8Z5+Zfd/MRrV67XIzCzW/9p0/f/Lz7yPSGYWCSBfM7HPAfwKPAHnAeOCHwA3NXZ5yzmUB2cCNwEhge+tgAI455zJb/flA//0NRKKnUBC5ADMbCjwMfNo593vnXLVzrsE59yfn3AOt+za37wE+ApwC/smHkkV6RaEgcmHvAVKBP0T7AudcE/AscLlXRYl4RaEgcmE5QLlzrrGbrztG+HLSO0ab2dlWf27puxJF+k6i3wWIxLggkGtmid0MhjHA6VaPjznnxvZtaSJ9T2cKIhe2ETgPfDDaF5hZAPgA8IpXRYl4RWcKIhfgnKsws68CPzCzRuAvQAOwArgSqHmnr5klAlOAhwjfgfTv/V6wSC/pTEGkC8657wKfAx4kfFfREeA+4I/NXT5iZlVABbCG8CWnBc65Yz6UK9Irpk12RETkHTpTEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRZxN08hNzfXTZw40e8yeqS6upqMjAy/y4hbOn69p2PYO/F8/LZv317unBveVb+4C4WJEyeybds2v8vokcLCQpYvX+53GXFLx6/3dAx7J56Pn5kdiqafLh+JiEgLhYKIiLRQKIiISIu4G1PoSENDA2VlZdTV1fldygUNHTqUkpISv8vokdTUVMaOHUtSUpLfpYiIhwZEKJSVlZGVlcXEiRMxM7/L6VRlZSVZWVl+l9FtzjmCwSBlZWVMmjTJ73JExEMD4vJRXV0dOTk5MR0I8czMyMnJifkzMZG+5hxsPgc374GM9XAVy8hYD7fsgS3nws8PNAPiTAGIKhCcgy2V8J0jsDYItSFIC8B1OfD5cbAoC5QrHVPgymDTEIK7SmFNOdSFIASAUROC350K/wz5QC78YhokDYhfr8M8+6uY2RNmdtLMdnfyvJnZ98xsv5ntNLP5XtUC4W/wR0vgqiL4/SmoCYGDlm/wVUXh5xtCPXv/zMzMPq3XTxMnTqS8vNzvMkR849y7gVDTEgjvCgHVIXi2PNxvIJ0xeJlvPwNWXuD59xHepWoKsAp4zKtCBtM3uKmpye8SROLelkr4U/PPiwupDYX7ba3sn7r6g2eh4JxbT+TG5W3dAPzChW0CLjKzUV7U0p/fYOccDzzwADNnzmTWrFk89dRTAIRCIe6//36mTZvGNddcw7XXXsszzzzT7vXvzJi86aabmDZtGrfffjvvbIT04osvMm/ePGbNmsXdd9/N+fPngfBv9l/4wheYP38+v/3tb1m+fDn3338/CxcupKCggK1bt/KhD32IKVOm8OCDD7Z81gc/+EEWLFjAjBkzePzxx3v+lxYZYL57JPzzIBq1oXD/gcLPMYUxhLc1fEdZc9vxnr6hFfayIsJnDJe+3vFzbnnXr//9739PUVERO3bsoLy8nEWLFnHFFVewYcMGDh8+THFxMSdPnqSgoIC77767w/d444032LNnD6NHj2bp0qVs2LCBhQsX8vGPf5wXX3yR/Px87rrrLh577DE++9nPApCTk8Prr4cL/9GPfkRycjLbtm3j0Ucf5YYbbmD79u1kZ2czefJk7r//fnJycnjiiSfIzs6mtraWRYsW8eEPf5icnJyeHDaRAeW5YPsrCp0JNfcfKOJioNnMVhG+xEReXh6FhYURzw8dOpTKykrA29s9w59x4efXrVvHjTfeSE1NDenp6Vx22WWsX7+el19+mRtuuKFlQa3LL7+c2tradu9ZU1PDggULGDp0KNXV1cyYMYOSkhICgQDjx49n1KhRVFZWcvPNN/PjH/+Ye+65B+cc1113Xct7NTU1sWLFCiorK5k8eTLTpk0jMzOT+vp6JkyYQGlpKbNnz+bb3/42//3f/w3AkSNHKCoqYvHixTjnqKqqIiUlJaK2urq6dse+P1VVVfn6+QNBvB/DfYfr++VzasZd0627TmqaHI//4gUPKwrLH5/s+Wf4GQpHgXGtHo9tbmvHOfc48DjAwoULXdsFqUpKSvrl/v+uPiMrK4vk5GRSU1Nb+iYlJZGWlkZycjKBQKClPTExkbS0NIqLi/nkJz8JwMMPP8yQIUNIT09v6ZeamkpSUhIZGRkkJCS0tKenp5OYmEhWVhZmRl5eXstzCQkJDBs2jKysLDIzMyPeLykpiZSUFLZv384rr7zC5s2bSU9PZ/ny5S3vb2ZkZma2+/umpqYyb968Pjqa3RfPi5HFing/hg/fe9jzz6gamhT5kykK1uRYvWmaNwW1su6u8Z5/hp83Uq0B7mq+C2kJUOGc6/Glo1hx+eWX89RTT9HU1MSpU6dYv349ixcvZunSpTz77LOEQiFOnDjR8tvapZdeSlFREUVFRVx//fWdvu/UqVM5ePAg+/fvB+CXv/wly5Yt63GdFRUVDBs2jPT0dEpLS9m0aVOP30tkIHBA2ZRMtq8Y2b1700OOnGO1ntXV3zw7UzCzJ4HlQK6ZlQH/AiQBOOd+BKwFrgX2AzXA3/X2Mzu75n/LnvBtp9FcIwwANw2Hp2b0rIYbb7yRjRs3MmfOHMyMf/u3f2PkyJF8+MMf5vnnn2f69OmMGzeO+fPnM3To0KjfNzU1lZ/+9KfcfPPNNDY2smjRIj71qU/1rEhg5cqV/OhHP6KgoICpU6eyZMmSHr+XSLyrTwlQsiiH06PTuv3aQMgxft/Auf3IXJzdf7lw4ULXdj+FkpISCgoKOn3N5nNwdVF4ELkr6QF4aS4sHtLbSts7fvw4o0aNIhgMsnjxYjZs2MDIkSP7/oM80tVx9lq8X/qIBfF+DK/y4PJRcGQqJYtzaEhNaP9kyEGg87OGQGOI3KO1TN8cpD+md677Yc8vH5nZdufcwq76xcVAc28tzgrPPHy2/MK3maUF4Prc8MxmL9xyyy1UVlZSX1/PV77ylbgKBJGBpikAb80eRll++//wCfUh8l8/TXBUGuVj0ggFLDIcQo5AyJF7tJaCLf0TCP1lUISCWXgq+l2l4XkItW0msAWA1OZA+MU075a6WLt2bVwuiCcy0FQNSaJ4SQ7VF7W/m2dI+XmmbyonraaJvMM1VGYnczg/i+DoNFyCYU3hMYTxeysZcqZ/7obqT4MiFCC8NslvCsIT0zpd+8iDS0YiEjsccPSSTA7MvohQYpv7bEKOicUVTCg5R6D5qroBQ07XM3NTeCLCrUtK++UuIz8NmlCA8BnA4iHwdA8HkUUkftWnBChdlEOwg8Hk1KpGpm8uZ2hw4P3m312DKhREZHAK5qVSujiH+rT2g8l5h6rJf/00iQ3xddONVxQKIjJghQJwYPZFlOW3vzac0BAif/tpRh6u8aGy2DWAVgGPPZ/4xCcoLi7uk/eKZjnrRx55JOLxZZdd1iefLRKPqocksv3qkR0GwpDy8yz6y3EFQgcG5JlCX9/L3NN7g//rv/6rT+voyiOPPMKXv/zllsevvfZav36+SCxwwLHJmeyf08lgcsk5JhRXtAwmSySdKfSR6upqrrvuOubMmcPMmTN56qmnWL58Oe9MtMvMzOTBBx9kxowZrFixgi1btrB8+XIuvvhi1qxZA8DPfvYz7rvvvpb3fP/739/h4mUdLXn9xS9+kdraWubOncvtt9/e8pnQ+XLeF1qmWyQe1ScH2L00l30LstsFQkp1I/MKTzJpjwLhQgbkmYIfnn/+eUaPHs1zzz0HhNcWeuyxd/cNqq6u5oorruDRRx/lxhtv5MEHH+SFF16guLiYj33sYxdc96itjpa8/uY3v8n3v/99ioqK2vXvbDlv6HiZ7ve+9729PBoi/e90XnhmckeDySMOV5O//TRJGkzuks4U+sisWbN44YUX+MIXvsArr7zSbl2j5ORkrrnmmpa+y5YtIykpiVmzZnHw4MFufdb3vvc95syZw5IlSzhy5AhvvvnmBfu/+uqr3HbbbSQkJJCXl8eyZcvYunUrAIsXL2bs2LEEAgHmzp3b7VpE/BYKwP45F7Fj2Yh2gZDQEKJgc5Dpm4IKhCjpTKGP5Ofn8/rrr7N27VoefPBBrr766ojnk5KSsOap0oFAoGWvgkAgQGNjIxBeTjsUeneudV1dXbvPKSws5K9//SsbN25sWfK6o37Rar1nQkJCQkstIvGgOiuR4iW5VA3rYGZy8DzTNwVJq9a/6e7QmUIfOXbsGOnp6dxxxx088MADLbugdcfEiRMpKioiFApx5MgRtmzZ0q7PhZa8TkpKoqGhod1rOlvOWyReOeDoxZlsu2Zk+0BwjgnFFcxbd0KB0AM6U+gju3bt4oEHHiAQCJCUlMRjjz3G5z//+W69x9KlS5k0aRLTp0+noKCA+fPnt+tzoSWvV61axezZs5k/fz6//vWvW9o7W867tLS0539hEZ80JAcoXZhN+dj0ds+lVDcyfXOQi8rP+1DZwDAols6OFZWVlXG9IJ7fxznel32OBfF+DOc+dCI8mJze/vfZ/hhM9nvtIy2dLSIC1Ifgwb/BjmUj2i1jnNAQYsobZxh5sHpALWHtF4WCiMS0vTVwezFsr6JdIGQFzzN9c5D0Ko0d9BWFgojEJOfgJ8fhM/uhpu3mWM4xvvQck3ZrIlpfGzCh4JxrueVT+l68jT1JfDvdAH+/F37fwXJfKTWNFGwOMuyUBpO9MCBCITU1lWAwSE5OjoLBA845gsEgqampfpcig8BLZ+DOEjjawdYGw4/UMHX7aZLqo9hwXXpkQITC2LFjKSsr49SpU36XckF1dXVx+4M1NTWVsWPH+l2GDGD1IfiXg/Ctw+F5CK2lB+B7U+BXT5drMNljAyIUkpKSmDRpkt9ldKmwsJB58+b5XYZIzHmzBj5aAtsq2z+3IBN+Mx3y0+HX7Z+WPqYZzSLiG+fgieMwb1v7QDDgC+PgtfnhQJD+MSDOFEQk/pxpgFX74JkOrvqOSYZfFsCVw/q/rsFOoSAi/e7ls3BHCZR1cAPRjbnw46mQk9T/dYlCQUT6UUMIHjoI3+hkMPk/L4FPjGo3R036kUJBRPrF/hq4vQS2dDCYPL95MHmqxg58p4FmEfGUc/Cz4zBve8eB8MA42DhfgRArdKYgIp452wCf3AdPdzCYPCoZfjENVmT3f13SOYWCiHjilebB5MMdDCbfkAP/NRVy22+YJj5TKIhIn2oIwcOH4JFD0HYxirQA/MclsEqDyTFLoSAifeZAbXiZ680djB3MzYTfFEBBRv/XJdFTKIhIrzkHvzoB974JVU3tn//cWHjkYkjRrS0xT6EgIr1S0Qj/sA+ePNn+uZHJ8PNp8L80mBw3FAoi0mMbKsKXiw51MJj8gRz4yVQYrsHkuKJQEJFuawzB1w7Bv3YwmJwagH+fDJ8arcHkeKRQEJFu+VtteGbyxnPtn5udEZ6ZPEODyXFLoSAiUfv1ifD4QWUHg8mfHQvfmASpCf1fl/QdhYKIdKmiET69D37dwWByXhL8bBqszOn/uqTvKRRE5IJeqwhfLjpY1/6567LhiWkwQoPJA4ZCQUQ61BiCrx+Grx2EtleLUgy+Mxk+PUaDyQONQkFE2jlYG163aEMHg8kzM+DJApiZ2f91ifcUCiIS4ckT8Kl9cK6DweR/HAPfuliDyQOZp5POzWylme01s/1m9sUOnh9vZi+Z2RtmttPMrvWyHhHp3LlGuKsEPlrSPhBGJMHaWfDoFAXCQOfZmYKZJQA/AK4ByoCtZrbGOVfcqtuDwNPOucfMbDqwFpjoVU0i0rFNzYPJb3UwmPy+bPjpNMjTYPKg4OWZwmJgv3PuLedcPbAauKFNHwcMaf56KHDMw3pEpI0mB/96EN77RvtASDF49BJ4bpYCYTDxckxhDHCk1eMy4NI2fR4C/mJm/wfIAFZ4WI/IoONceAvM7xyBtUGoZRlp6+G6HLgjD759GF7tYDB5Rjo8OR1maTB50DHnnDdvbHYTsNI594nmx3cClzrn7mvV53PNNXzXzN4D/ASY6ZwLtXmvVcAqgLy8vAWrV6/2pGavVVVVkZmp/2U9pePXPY0Y32Aar5HLeQzX6sKA4XDNX7V1I2V8krdIabeqkf/2Ha739fOzM+o4XZ3q2+fnj+/5KduVV1653Tm3sKt+Xp4pHAXGtXo8trmttXuAlQDOuY1mlgrkAhHzJp1zjwOPAyxcuNAtX77co5K9VVhYSLzWHgvi/fhdde/hfvssBxRfmkP5mDRCie2vErsOwiCprolpW4OcPR7iWx4N7a374fhevf7hfjyGHbl1SSmrN03z7fPX3dW74xcNL8cUtgJTzGySmSUDtwJr2vQ5DFwNYGYFQCrQwRbfItId57KTOw2Ejgwpr2PRX46Te7yDkWYZVDwLBedcI3Af8GeghPBdRnvM7GEzu7652z8Bf29mO4AngY87r65niQwiR/KzCAWinGrsHCk1TaTUxd7lIul/nk5ec86tJXybaeu2r7b6uhhY6mUNIoNRcHQaRBsKZuH+Ing8eU1E/BFK6N6CRN3tLwOXQkFkAAo0de8qbHf7y8ClUBAZgNLPNUTfOeTIOVbrXTESVxQKIgPM8YkZVGWnRN0/EHKM31fpYUUSTxQKIgPIiXHplC7Kjrp/oDFE7tFask77OylMYoeWzhYZIE6NSaPk0pzIXW9CDnMOZxZ5N1LIEQg5co/WUrAl2MFUNhmsFAoiA0BwZCp7luTiWv3gt5Bj+mvlpNY1cTg/i+DoNFyCYU3hMYTxeysZckZnCBJJoSAS586MSGH3Zbm41reVOkfB5iAjmgeQZ24KAv4v0yCxT2MKInHsbE4yu5YOb7ecxbStp8k7UuNTVRLPFAoicercsGR2Xj6CpqTI/8b5208z6mC1T1VJvFMoiMShqqFJ7LhiOE3Jkf+FJxedYcyBKp+qkoFAoSASZ6qzEilaNoLGlMjNkiftOqv5BtJrCgWROFKbEQ6EhtTIQBhfUsGEkg62UBPpJoWCSJyoS0+gaPkI6tMjbxocu+8cF++q0FwD6RMKBZE4cD41QNGyEdRlRAbC6AOVXFJ0VoEgfUahIBLj6lPCgVCblRTRnnewmvztZxQI0qcUCiIxrCHJ2HHFCGqGRm7YPvxINdO2ankK6XsKBZEY1ZgYDoSqYZGBkHO0humbgwS0BYJ4QKEgEoOaEoydlw+nMidyCexhb9cyY2M5AW2nLB5RKIjEmKYA7FqaS8Xw1Ij2oSfrmLWhnAQFgnhIoSASQ0IB2HPZcM6MTItoHxI8z+xXT5GgbTPFYwoFkRgRMii+NJfg6MhAyDxTz+z1J0lsVCCI9xQKIjHAAaWLcjg1Lj2iPb2injnrT5LUoECQ/qFQEPGZA/YuyObExIyI9rTKBua+fJLk8xpEkP6jUBDxkQP2zx3G8cmZEe2p1Y3MLTxJSp0CQfqXQkHEJw54a9ZQyvKzItqTaxqZW3iC1NomfwqTQU2hIOKTQwVDOFwwNKItqa6JuS+fJK1agSD+UCiI+OBwfhZ/m3VRRFvi+XAgZFQ2+lSViEJBpN8dnZzJgbnDItoS6kPMXX+SzIoGn6oSCVMoiPSj4xMz2LcgO6ItoSHEnFdOknVGgSD+UyiI9JMT49IpXRQZCIHGELNePcXQYL1PVYlEUiiI9IM/nIKSS3PA3l3s2pocM18rZ9ip8z5WJhJJoSDiseeD8JFicIFWgRByzNhYTs7bdT5WJtKeQkHEQ+vOwI17IGKVCuco2Bxk+LFa3+oS6YxCQcQjGyrg+l3QdlLytK2nyTtS409RIl1QKIh4YNs5uHYnVLcJhPztpxl1sNqfokSioFAQ6WM7q+B/7YRzbSYlTy46w5gDVf4UJRIlhYJIHyqthmt2wJk2k5K/NhHG76v0pSaR7lAoiPSRA7Vw9Q442WYO2pfGwz9P8Kcmke5SKIj0gSN1cHURHGszB+0zY+DrkyKmJ4jENIWCSC8dPw9X7YBDbeagrRoF/3GJAkHii0JBpBdO1cOKHbC/zZSDO/PgsXwFgsQfhYJID51pCN9lVNxmysHNw+GJqRBQIEgc8jQUzGylme01s/1m9sVO+txiZsVmtsfMfuNlPSJ95VwjrNwJRW3uMP1ADvyqABL165bEqUSv3tjMEoAfANcAZcBWM1vjnCtu1WcK8CVgqXPujJmN8Koekb5S0wTv3wVb2txhes0weHo6JCsQJI55+c93MbDfOfeWc64eWA3c0KbP3wM/cM6dAXDOnfSwHpFeq2uCD+6GVyoi268YCn+cCakJ/tQl0lfMOdd1r568sdlNwErn3CeaH98JXOqcu69Vnz8C+4ClQALwkHPu+Q7eaxWwCiAvL2/B6tWrPanZa1VVVWRmZvpdRtzy+/g1YPwLM9hIbkR7Aef4DjtI58L7Ku877P+eCdkZdZyuTvXt8/PHJ/fq9X4fw3g+fldeeeV259zCrvp5dvkoSonAFGA5MBZYb2aznHNnW3dyzj0OPA6wcOFCt3z58n4us28UFhYSr7XHAj+PX2MIbiuBjaci2+dmwro5QxiWdHmX7/HwvYc9qi56ty4pZfWmab59/rq7xvfq9X4fw3g/ftHw8vLRUWBcq8djm9taKwPWOOcanHN/I3zWMMXDmkS6LeTg7/bCM20CYXo6vDAbhiX5U5eIF7wMha3AFDObZGbJwK3AmjZ9/kj4LAEzywXygbc8rEmkW5yDT+2DX52IbJ+SBn+dA7m9uxoiEnM8CwXnXCNwH/BnoAR42jm3x8weNrPrm7v9GQiaWTHwEvCAcy7oVU0i3eEcfHY//Ph4ZPuEFHhxDoxK8acuES95OqbgnFsLrG3T9tVWXzvgc81/RGKGc/Dlv8H32lzwHJ0M6+bCOP/GGkU8pTuqRTrw9UPwzTZjmiOSwmcIF6f5U5NIf1AoiLTx3SPwlYORbdmJ8MIcmJbhS0ki/UahINLKD4/C5w9Etg1JgL/MgdmaYiKDgEJBpNlPj8On34xsywjA/8yGBVn+1CTS3xQKIsCTJ+CevZFtqQH40yy4bKg/NYn4QaEgg94fTsGdJdB6wZckgz/MgCuH+VaWiC+6FQpmltG8+qnIgPB8ED5STMSqRQmEVztdmeNXVSL+uWAomFnAzD5qZs+Z2UmgFDjevP/Bt83skv4pU6TvvXQGbtwDDa1OEYzwfggfHO5bWSK+6upM4SVgMuE9D0Y658Y550YA7wU2Ad8yszs8rlGkz22ogA/sgrpQZPsTU+HWPH9qEokFXc1oXuGca2jb6Jw7DfwO+J2ZaTkwiSvbzsG1O6G6TSD8cAp8fJQ/NYnEigueKbwTCGa2ou1zZvax1n1E4sHOqvC+yufabH3w3cnwD2P8qUkklkQ70PxVM3useaA5z8z+BHzAy8JE+lppNVyzA840RrZ/bSJ8blyHLxEZdKINhWXAAaAIeBX4jXPuJs+qEuljB2rh6h1wss157ZfGwz9P8KcmkVgUbSgMI7zn8gHgPDDBzMyzqkT60JE6uLoIjrXZyfEzY+Drk0D/kkXeFW0obAKed86tBBYBo4ENnlUl0keOn4erdsCh85Htq0bBf1yiQBBpK9r9FFY45w4DOOdqgX80syu8K0uk907Vw4odsL82sv3OPHgsX4Eg0pGuJq9NBHgnEFpzzq23sLHelCbSc2cawncZFddEtt88PDwXIaBAEOlQV2cK3zazAPAssB04BaQClwBXAlcD/wKUeVmkSHeca4SVO6GoKrL9Aznh2cqJWvFLpFMXDAXn3M1mNh24HbgbGAnUEt5zeS3wdedcnedVikSppgnevwu2VEa2XzMsvJ5RsgJB5IK6HFNwzhWb2b8C9xJe3sIBW4FnFAiDy1X3truK2K9uXVLPwxeooSkAu947nDMjI/fLHHqyjvO/O8W1Ta6TV0Zn3Q/H9+r1IvEg2oHmnwPngO81P/4o8AvgFi+KEumuUAD2XNY+EIYEzzP71VMk9DIQRAaLaENhpnNueqvHL5lZsRcFiXRXyKD40lyCoyMDIfNMPbPXnySxUYEgEq1or7C+bmZL3nlgZpcC27wpSSR6DihdlMOpcekR7ekV9cx5+SRJDQoEke6I9kxhAfCamb1zQXc8sNfMdgHOOTfbk+pELsABexdkc2JiRkR7WmUDc18+SXJ9qOMXikinog2FlZ5WIdJNDtg/dxjHJ2dGtKdWNzK38CQpbTdKEJGoRBUKzrlDXhciEi0HvDVrKGX5WRHtyTWNzC08QWptU8cvFJEuRXumINLvHHAuO5kjU4cQHJXKSwnjCIx2pFY1UnNRckTfpLom5r58krRqBYJIbygUJCaFDEoW51A+Jo1QwFrWpQglWrtASDwfDoSMysaO3kpEukGhIDHH0SoQulqToskxZ/1JMiu0AaBIX9Ckf4k557KTowsEIIDTcqcifUihIDHnSH5W+JJRFEJmHG4z4CwiPadQkJgTHJ0W/drWAWs3k1lEek6hIDEnlNC9y0Hd7S8inVMoSMwJdHPxuu72F5HOKRQk5uQcqwUX5Q/6kAv3F5E+oVCQmJNR0RD1HUWBkGP8vsquO4pIVBQKElMqL0riUMGQqPoGGkPkHq0l63S9x1WJDB6avCYxoz4lwK6lw3Gt5yc4F57N1vpupJAjEHLkHq2lYEsQDTOL9B2FgsSEUAB2X5bL+YzIf5ITis9Rk5VIcHQaLsGwpvAYwvi9lQw5ozMEkb6mUJCY8ObcYVQMT41oG7vvHBfvqWh5fOuSUlZvmtbfpYkMKhpTEN8duziDY5dEzkq+6EQdk3ec9akikcFLoSC+OpuTzL552RFtqVWNzNhkUqYdAAAQJklEQVRYTkDTD0T6naehYGYrzWyvme03sy9eoN+HzcyZ2UIv65HYUpeWwJ7LhuNazUgONIaYteGUttIU8YlnoWBmCcAPgPcB04HbzGx6B/2ygM8Am72qRWJPU4Kxe2ku9WkJEe0FW4JaBlvER16eKSwG9jvn3nLO1QOrgRs66Pc14FtAnYe1SAxxwN4F2VRmp0S0TyiuYESZZieL+MnLUBgDHGn1uKy5rYWZzQfGOeee87AOiTFH8rM4MTEjoi3naA2Tdld08goR6S++3ZJqZgHg34GPR9F3FbAKIC8vj8LCQk9r80pVVVXc1g5w65LezwsoTs2mcPi4iLZRDVV8IbSZtCUX3l85O6OOW5eU9rqGniosfKtXr++L49dbOoa9E+/HLxrmol14rLtvbPYe4CHn3P9ufvwlAOfcN5ofDwUOAFXNLxkJnAaud85t6+x9Fy5c6LZt6/TpmFZYWMjy5cv9LqPHrrr3cK9eX5uRyLYVeTSmvDuOkFgfYsFf3ya9quv9lf2ep7Duh+N79freHr++oGPYO/F8/Mxsu3Ouy5t5vLx8tBWYYmaTzCwZuBVY886TzrkK51yuc26ic24isIkuAkHiV2Oiseu9uRGBgHNM31QeVSCISP/wLBScc43AfcCfgRLgaefcHjN72Myu9+pzJfY4oGRxDtVDkyPaL955lpy3dX+BSCzxdEzBObcWWNum7aud9F3uZS3in4PTh1A+Nj2ibcShasbv1ZLXIrFGM5rFU6dGp3Fw5kURbZln6pm27bRWNxWJQQoF8Uz1kCRKLs2JaEuqa2LWhlMkaAtNkZikUBBPNCQH2LU0l6akd/+JWcgx87VyUmsufOupiPhHoSB9LmSwZ0kOtVlJEe1T3jjDReXnfapKRKKhUJA+99bsizgzMi2ibdSBKkYfqOrkFSISKxQK0qfeHp/OkamReywPPVVH/hsaWBaJBwoF6TPnhiWzd1HkwHJKTfPeCFoJWyQuKBSkT5xPDbB7aS6h1nsjNDlmbignpU6JIBIvFArSa6EA7HlPLufTI+dCTt0WZMgZ/xeBE5HoKRSk196cN4yK4akRbeP2nmPkoRqfKhKRnlIoSK8cnZzJsclZEW3D3q7l4p1nfapIRHpDoSA9djY3hTfnDYtoS61qYMamIAFNWBaJSwoF6ZG69AR2X5aLC7w7sJzQEGLWq+Uk1WtgWSReKRSk25oSjF1Lh9OQmhDRXrAlSOa5Bp+qEpG+oFCQbnFA6cJsqoZF7o0wcU8Fw4/W+lOUiPQZhYJ0y5GpWZyckBHRlltWw8Q9FT5VJCJ9SaEgUQuOTOXA7Mi9ETIq6inYEtQSFiIDhEJBorKvBoqX5IK9++M/8XwTs14tJ7FRtxqJDBQKBenSuUb44G5oTG71zyXkmLEpSFp1o3+FiUifUyjIBYUc3FECJW0mJ0/eeZbsE3X+FCUinlEoyAU9dBD+FIxsyztYzbh9lb7UIyLeUihIp353Cr52KLIt6/R5pm7X3ggiA5VCQTq0swo+VhLZllzbxMwN5SQ0aWBZZKBSKEg7wYbwwHJ1q9UqkgxmvHaK1Nom/woTEc8pFCRCYwhu2QN/azOG/P0pcFFQeyOIDHQKBYnwwFuwrs2q1/8wGlaN9qceEelfCgVp8fO34T/LItsuHwr/eYk/9YhI/1MoCACbz8En90a2jUuBZ2ZAsv6ViAwa+u8uHD8PH9oN51vdVJQWgD/OhBHJnb9ORAYehcIgdz4EH9oDx9qMIf9kKszP6vg1IjJwKRQGMefg0/tg07nI9v87Dm7L86cmEfGXQmEQ+8FR+MnbkW0rs+GRi/2pR0T8p1AYpArPwGf3R7ZNSYPfFECC1rAQGbQUCoPQwVq4aQ+0npuclQDPzoRhSb6VJSIxQKEwyFQ3hZewCLbZBuFXBVCQ0fFrRGTwUCgMIs7B3aWwozqy/WsT4fpcX0oSkRijUBhEvnkYnj4V2fbhXPjnCf7UIyKxR6EwSDwXhH/+W2TbrAz42bSIbZdFZJBTKAwCpdXw0WJovQtCdmJ4YDkz0beyRCQGKRQGuLMNcMNuONfqVqME4OkZMCnNt7JEJEYpFAawJge3l8C+2sj2714CVw/zpyYRiW0KhQHsK3+Dtacj2z6WB/84xp96RCT2KRQGqKdOwjcOR7YtzoIf5WtgWUQ652komNlKM9trZvvN7IsdPP85Mys2s51m9qKZ6ebIPlBUCX9XGtk2Mhn+MBNSE/ypSUTig2ehYGYJwA+A9wHTgdvMbHqbbm8AC51zs4FngH/zqp7B4lR9eMZybejdtmSD38+A0Sn+1SUi8cHLM4XFwH7n3FvOuXpgNXBD6w7OuZecczXNDzcBYz2sZ8BrCMHNe+DQ+cj2x/LhPUP9qUlE4ouXoTAGONLqcVlzW2fuAf7Hw3oGvM8dgJcrItvuGwN3j/KnHhGJP+ac67pXT97Y7CZgpXPuE82P7wQudc7d10HfO4D7gGXOufMdPL8KWAWQl5e3YPXq1Z7U7LWqqioyMzM9ee/nGMl3mBbRNpczfJudJNI33+N9h+u77uSh7Iw6Tlen+vb5+eN7tzep38cPdAx7K56P35VXXrndObewq35ehsJ7gIecc/+7+fGXAJxz32jTbwXw/xIOhJNdve/ChQvdtm3bPKjYe4WFhSxfvrzP33djBSwrgoZW38oJKbBtAeT24R7LV917uOtOHrp1SSmrN03ruqNH1v1wfK9e7/fxAx3D3orn42dmUYWCl5ePtgJTzGySmSUDtwJrWncws3nA/wdcH00gSHtHz4f3WG4dCOkB+OPMvg0EERkcPAsF51wj4UtCfwZKgKedc3vM7GEzu76527eBTOC3ZlZkZms6eTvpQF0T3Lgb3m5zRv3TaTA3y5+aRCS+ebocmnNuLbC2TdtXW329wsvPH8icg0/tg62Vke1fGg+3jPCnJhGJf5rRHKe+dxR+fiKy7bps+Nokf+oRkYFBoRCHXjwD/7Q/sm1qGvx6OiRoCQsR6QWFQpx5qxZu2QOtVsJmSAI8OwuGam8EEeklhUIcqWoM741wuvHdNgOenA5T030rS0QGEIVCnHAOPl4Ku6sj278+Ca7N8acmERl4FApx4uuH4HflkW0fGQ5f7N1cIBGRCAqFOLCmHL5yMLJtTgb8ZJr2RhCRvqVQiHHF1XBHSWRbblJ4xnKG9kYQkT6mUIhhZxrCA8uVrW41SgB+Ox0mpvlWlogMYAqFGNXk4KMlsL82sv3RKbB8mD81icjAp1CIUV9+C54/Hdl2z0i4d7Q/9YjI4DCopjv5v+xuPQ9HUcOJ8ekUL8mNaBtSfp79z5zg6lAnL4pCb5ctFpGBT2cKMaZyWBKlC7Mj2pJrGpn52ikCvQgEEZFoKBRiSH1KgF2XDSeU+O63JdDkmPVaOSl1SgQR8Z5CIUaEArD7slzOZ0Re0Zu67TRDTvu/jaOIDA4KhRjx5txhVAyP3Pt17L5zjDxU3ckrRET6nkIhBhy7OINjl0RulTbsRB2Td5z1qSIRGawUCj47m5vCvnmRA8upVY3M2FhOwHXyIhERjygUfFSXlsDuy3JxrXbGSWgIMWvDKZLqNbAsIv1PoeCTpgRj99JcGlIjFzCatiVIZkWDT1WJyGCnUPCBA/YuyKYyOyWifcKeCkYcre34RSIi/WBQzWjubw44l53MkalDCI5K5aWEcQRGO9IqG6kelhzRN/doDZP2VPhTqIhIM4WCR0IGJYtzKB+TRihgEAiPG4QSjeqLkiL6plc0ULA5iLZGEBG/KRQ84GgVCIkdXKFrtTOONTlmbjhFYqNuNRIR/2lMwQPnspM7D4R2HE3J+jaISGzQTyMPHMnPCl8yioIz43B+VtcdRUT6gULBA8HRaS1jCF0KWLi/iEgMUCh4IJTQvSHj7vYXEfGKQsEDgabuDRp3t7+IiFcUCh7IOVYLoSh/0IdcuL+ISAxQKHhg3L5KAlGGQiDkGL+v0uOKRESio1DwwJDT9eQerSXQeOFF7QKNIXKP1pKlTXREJEYoFDxgQMGW4LvB0PasIeRaAqFgi2Yyi0js0IxmjwQcTN8cpDI7mcP5WQRHp+ESDGsKjyGM31vJkDM6QxCR2KJQ8JARvpQ0c1MQgFuXlLJ60zR/ixIRuQBdPhIRkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRYKBRERaeFpKJjZSjPba2b7zeyLHTyfYmZPNT+/2cwmelmPiIhcmGehYGYJwA+A9wHTgdvMbHqbbvcAZ5xzlwD/AXzLq3pERKRrXp4pLAb2O+fecs7VA6uBG9r0uQH4efPXzwBXm5nWhxMR8YmXoTAGONLqcVlzW4d9nHONQAWQ42FNIiJyAeacN1tBmtlNwErn3CeaH98JXOqcu69Vn93NfcqaHx9o7lPe5r1WAauaH04F9npStPdygfIue0lndPx6T8ewd+L5+E1wzg3vqpOXq6QeBca1ejy2ua2jPmVmlggMBYJt38g59zjwuEd19hsz2+acW+h3HfFKx6/3dAx7ZzAcPy8vH20FppjZJDNLBm4F1rTpswb4WPPXNwHrnFenLiIi0iXPzhScc41mdh/wZyABeMI5t8fMHga2OefWAD8Bfmlm+4HThINDRER84ukmO865tcDaNm1fbfV1HXCzlzXEmLi/BOYzHb/e0zHsnQF//DwbaBYRkfijZS5ERKSFQqGfdLXkh3TOzJ4ws5PNtzBLN5nZODN7ycyKzWyPmX3G75riiZmlmtkWM9vRfPz+H79r8pIuH/WD5iU/9gHXEJ7EtxW4zTlX7GthccLMrgCqgF8452b6XU+8MbNRwCjn3OtmlgVsBz6of3/RaV5lIcM5V2VmScCrwGecc5t8Ls0TOlPoH9Es+SGdcM6tJ3x3mvSAc+64c+715q8rgRLary4gnXBhVc0Pk5r/DNjfphUK/SOaJT9EPNe8EvE8YLO/lcQXM0swsyLgJPCCc27AHj+FgsggYWaZwO+AzzrnzvldTzxxzjU55+YSXplhsZkN2MuYCoX+Ec2SHyKeab4W/jvg18653/tdT7xyzp0FXgJW+l2LVxQK/SOaJT9EPNE8UPoToMQ59+9+1xNvzGy4mV3U/HUa4RtGSv2tyjsKhX7QvCz4O0t+lABPO+f2+FtV/DCzJ4GNwFQzKzOze/yuKc4sBe4ErjKzouY/1/pdVBwZBbxkZjsJ/4L3gnPuv32uyTO6JVVERFroTEFERFooFEREpIVCQUREWigURESkhUJBRERaKBRERKSFQkFERFooFER6ycwWmdnO5nX3M5rX3B+wa+PIwKbJayJ9wMz+FUgF0oAy59w3fC5JpEcUCiJ9oHlNq61AHXCZc67J55JEekSXj0T6Rg6QCWQRPmMQiUs6UxDpA2a2hvCOepMIb315n88lifRIot8FiMQ7M7sLaHDO/aZ5P+7XzOwq59w6v2sT6S6dKYiISAuNKYiISAuFgoiItFAoiIhIC4WCiIi0UCiIiEgLhYKIiLRQKIiISAuFgoiItPj/ARKCaDJ0fB3qAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Plot progress w.r.t the generator's and the discriminator's loss function\n", - "t_steps = np.arange(num_epochs)\n", - "plt.figure(figsize=(6,5))\n", - "plt.title(\"Progress in the loss function\")\n", - "plt.plot(t_steps, qgan.g_loss, label = \"Generator loss function\", color = 'mediumvioletred', linewidth = 2)\n", - "plt.plot(t_steps, qgan.d_loss, label = \"Discriminator loss function\", color = 'rebeccapurple', linewidth = 2)\n", - "plt.grid()\n", - "plt.legend(loc = 'best')\n", - "plt.xlabel('time steps')\n", - "plt.ylabel('loss')\n", - "plt.show()\n", - "\n", - "\n", - "# Plot progress w.r.t relative entropy\n", - "plt.figure(figsize=(6,5))\n", - "plt.title(\"Relative Entropy \")\n", - "plt.plot(np.linspace(0, num_epochs, len(qgan.rel_entr)), qgan.rel_entr, color ='mediumblue', lw=4, ls=':')\n", - "plt.grid()\n", - "plt.xlabel('time steps')\n", - "plt.ylabel('relative entropy')\n", - "plt.show()\n", - "\n", - "#Plot the PDF of the resulting distribution against the target distribution, i.e. log-normal\n", - "log_normal = np.random.lognormal(mean=1, sigma=1, size=100000)\n", - "log_normal = np.round(log_normal)\n", - "log_normal = log_normal[log_normal <= bounds[1]]\n", - "temp = []\n", - "for i in range(int(bounds[1]+1)):\n", - " temp += [np.sum(log_normal==i)]\n", - "log_normal = np.array(temp / sum(temp))\n", - "\n", - "plt.figure(figsize=(6,5))\n", - "plt.title(\"CDF\")\n", - "samples_g, prob_g = qgan.generator.get_samples(qgan.quantum_instance, shots=10000)\n", - "samples_g = np.array(samples_g)\n", - "samples_g = samples_g.flatten()\n", - "num_bins = len(prob_g)\n", - "plt.bar(samples_g, np.cumsum(prob_g), color='royalblue', width= 0.8, label='simulation')\n", - "plt.plot( np.cumsum(log_normal),'-o', label='log-normal', color='deepskyblue', linewidth=4, markersize=12)\n", - "plt.xticks(np.arange(min(samples_g), max(samples_g)+1, 1.0))\n", - "plt.grid()\n", - "plt.xlabel('x')\n", - "plt.ylabel('p(x)')\n", - "plt.legend(loc='best')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "QiskitDevenv", - "language": "python", - "name": "qiskitdevenv" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/finance/machine_learning/qgans.ipynb b/qiskit/finance/machine_learning/qgans.ipynb deleted file mode 100644 index d21327bbe..000000000 --- a/qiskit/finance/machine_learning/qgans.ipynb +++ /dev/null @@ -1,194 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Finance: qGAN Option Pricing*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Christa Zoufal[1,2], Stefan Woerner[1]\n", - "### Affliation\n", - "- [1]IBMQ\n", - "- [2]ETH Zurich\n", - "\n", - "### Introduction\n", - "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff - see [European Call Option Pricing](../../aqua/finance/european_call_option_pricing.ipynb).
\n", - "For further details on learning and loading random distributions by training a qGAN please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", - " from collections import MutableMapping\n" - ] - } - ], - "source": [ - "#!/usr/bin/env python\n", - "# coding: utf-8\n", - "from __future__ import absolute_import, division, print_function\n", - "\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue\n", - "from qiskit.aqua.components.uncertainty_models import UnivariateVariationalDistribution, NormalDistribution\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "from qiskit.aqua import aqua_globals, QuantumInstance\n", - "\n", - "from qiskit import BasicAer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncertainty Model\n", - "\n", - "The Black-Scholes model assumes that the spot price at maturity $S_T$ for a European call option is log-normally distributed. Thus, we can train a qGAN on samples from a log-normal distribution and use the result as uncertainty model underlying the option. A notebook that explains the implementation of a qGAN to learn and load a random distribution is presented in [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb).
\n", - "In the following, we construct a quantum circuit that loads the uncertainty model. The circuit output reads $$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle,$$ where the probabilites $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, represent a model of the target distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Set upper and lower data values\n", - "bounds = np.array([0.,7.])\n", - "# Set number of qubits used in the uncertainty model\n", - "num_qubits = [3]\n", - "\n", - "# Set entangler map\n", - "entangler_map = []\n", - "for i in range(sum(num_qubits)):\n", - " entangler_map.append([i, int(np.mod(i+1, sum(num_qubits)))])\n", - "\n", - "# Set variational form\n", - "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", - "# Load the trained circuit parameters\n", - "g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]\n", - "# Set an initial state for the generator circuit\n", - "init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1])\n", - "# Set generator circuit\n", - "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params,\n", - " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", - "\n", - "# construct circuit factory for uncertainty model\n", - "uncertainty_model = g_circuit" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW5x/HvTxAJBEJkCauE1QhGwQQxgiYRZb3XIALxgl6DaARF1It4EVHC4r0ssqiAiAoREYdFLsome4KRPYJEQpAgIZIgCGQhqwl57x+nRmsq3dPdMz1TM5nf53n6melTp6re6unpt6vOqXMUEZiZmXW3N5UdgJmZ9U1OQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKUpPQJJ2kXS3pCWS5ko6XdJaNdbZVdJvs/rLJc2W9BNJW1SoO0bSNEnLJE2XNLbrjsbMzOq1dpk7lzQQuAuYDowBdgDOIyXGU9pZdQDwHHAlMBfYDjgVGCZpj4hYmW1/b+BXwCXA8cCBwC8lzYuIO2rFt8kmm8TgwYM7dnAFixcvZv3112/KtrpSb4kTek+sjrO5ekuc0HtibWacU6dOfSUiNq2rckSU9gC+AcwDNsyVfR1Yki+rc1sfAQJ4T67sduCeQr1bgSn1bHPYsGHRLPfee2/TttWVekucEb0nVsfZXL0lzojeE2sz4wQejTo/t8u+BHcAcHtELMyVtQD9gJENbuvV7Oc6AJLeAowGri3UawFGSBrQeLhmZtYsZSegIcCMfEFEzCadAQ2ptbKkN0laR9LbgbOAR4CHs8U7AG8ubh94inTcO3cudDMz6wxFiaNhS1oBnBgRFxbKXwCujIiTa6z/W2C/7OlU4MCIeDlbthcwBdg9Ih7PrbMj8AywX1RoB5I0HhgPMGjQoGEtLS0dPbw2Fi1aRP/+/Zuyra7UW+KE3hOr42yu3hIn9J5Ymxnn6NGjp0bE8Loq13utrisewArgKxXKXwD+p471dwL2BD5JOtOZCqybLduL1Ca0W2GdHbPyfWtt321APVtvidVxNldviTOi98RaVhtQqb3gSB0QKrXFDMyWtSsinsl+fUjS70g9444ALs+tX9z+wNy+zcysJGW3Ac2g0NYjaRtgPVZvu2lXRDwPvAZsnxU9SzrDKrYlDQFWAX/uQLxmZtYkZSeg24D9JG2QKxsLLAUmN7KhrCPCxqSzICJiOXAvcFih6ljggYhY0NGgzcys88q+BHcp6QbRGySdTTp7mQCcH7mu2ZJmApMj4ujs+XeBlcBDwHzgHaT7h54ldbNudQYwSdKFwI2kG1EPBPbv2sMyM7NaSk1AETFP0j7ARcBNpGRyASkJ5a0N5IfneRT4Eqm32rrAbNKIB/8bEYtz258i6VDgTOBYsjaiqGMUhL5i8Em3tHl+wtCVjCuUzTrroO4Mycz6iLLPgIiI6cCHatQZXHjeQtsznfbWvZF09mNmZj1I2W1AZmbWRzkBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlaL0BCRpF0l3S1oiaa6k0yWtVWOdPSRdIWlmtt7Tkk6VtG6h3gRJUeGxf9celZmZ1bJ2mTuXNBC4C5gOjAF2AM4jJcZT2ll1bFb3bOAZ4F3AGdnPjxfqLgCKCeepzsZuZmadU2oCAo4B+gGHRMRC4E5JGwITJJ2TlVVyVkS8kns+SdIy4EeSto2I53PLVkbEg10TvpmZdVTZl+AOAG4vJJoWUlIaWW2lQvJp9Vj2c8vmhWdmZl2l7AQ0BJiRL4iI2cCSbFkjRgCrgGcL5RtJekXSCkmPSTqkw9GamVnTKCLK27m0AjgxIi4slL8AXBkRJ9e5nc2BJ4BbI2JcrvyTwGaks6MNgM8DBwIfj4gbqmxrPDAeYNCgQcNaWloaPayKFi1aRP/+/ZuyrWaaNmdBm+eD+sFLS9vWGbrVgG6MqH499TUtcpzN1VvihN4TazPjHD169NSIGF5P3V6fgCStQ+rIsDUwLCLmtVNXwP1Av4jYrda2hw8fHo8++mitanWZNGkSo0aNasq2mmnwSbe0eX7C0JWcN61t0+Cssw7qzpDq1lNf0yLH2Vy9JU7oPbE2M05JdSegsi/BzQMqfb0emC1rV5ZQrgR2BQ5sL/kARMq2NwDvqtXV28zMulbZveBmUGjrkbQNsB6FtqEqLiR13/5IRNRTHyCyh5mZlajsM6DbgP0kbZArGwssBSa3t6KkbwDHAZ+MiCn17Cw7Y/o48MeIeKNjIZuZWTOUfQZ0KXA8cIOks4HtgQnA+fmu2ZJmApMj4ujs+RHA/wATgTmS3pfb5rMR8fes3mTgV6SzqfWBzwF7Agd37WGZmVktpSagiJgnaR/gIuAmYD5wASkJ5a0N5Nts9s1+jsseeUeREhPATOArwBakLtp/AA6KiNuaEb+ZmXVc2WdARMR04EM16gwuPB/H6omn0npHdyI0MzPrQmW3AZmZWR/lBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMStHwSAiShgLvBTYH1gVeA/4M3F9rOgQzM7NWdSUgSdsDxwJHAoNI46rNB5YDG5GmT1iVDf75E+CaiFjVJRGbmdkaoeYlOEk/AZ4EdgNOB3YH1o2ITSNi64joT5r2+t+BacA5wFOS9u66sM3MrLer5wxoKTAkIp6vViEiXiHN7XObpP8CDgO2ak6IZma2JqqZgCLiS41sMLv0dk2HIzIzsz6hU9MxSHonMBIQacK4aU2Jyqxg8Em3rFZ2wtCVjMuVzzrroO4Mycw6qcPdsCUdC9wHjAIOBB6W9IUmxWVmZmu4mmdAktaLiCUVFv03MCIins7qHU3qpHBJc0M0M7M1UT1nQH+WdGSFcpG6Y7dyt2szM6tbPQnoCOAESQ9Kem+u/BzgQUnXSrqZdOZzVlcEaWZma56aCSgi7gOGkW4w/bWkKyVtEREXAx8CpgB3kC7H/aBLozUzszVGXb3gIiKAn0i6FvgW8CdJ5wPfjYg/dmWAZma2ZmqoF1xELIyIE4E9SePBzZB0aJdEZmZma7R6huJZT9KZkh6S9Jiky4BlETEGGA+cKmmypHd3ebRmZrbGqOcM6Kekcd7OI11+2xy4U5Ii4k7g3cB1WdlljQYgaRdJd0taImmupNMlrVVjnT0kXSFpZrbe05JOlbRuhbp7ZclzmaTnJB3faIxmZtZ89bQBHQAcliUbJP0eeBXYAZiZDb1zkaSrgVMb2bmkgcBdwHRgTLbN80iJ8ZR2Vh2b1T0beAZ4F3BG9vPjue3vCNwO3Ax8g3TZ8HxJSyLiJ43EamZmzVVPApoBfErSVGAZ8HlgMfBCvlJEvAZ8ucH9HwP0Aw6JiIWks6gNgQmSzsnKKjkrGwC11SRJy4AfSdo2N3DqicBc4JMRsRK4R9LbSJcNf5p1rjAzsxLUcwnu08BOwCvA68DnSGdEy5qw/wOA2wuJpoWUlEZWW6mQfFo9lv3csrD9G7Lkk9/+1sA7OxSxmZk1RT33AT0dESOADYBNImKHiPhtk/Y/hHSGld/fbGBJtqwRI0ijMTwLIGl9YJvi9oGncvs2M7OSqMyrUJJWACdGxIWF8heAKyPi5Dq3sznwBHBrRIzLyrYiXSb8WETcmKu7NrAC+HxErNZpQtJ4Uu8+Bg0aNKylpaUjh7aaRYsW0b9//6Zsq5mmzVnQ5vmgfvDS0rZ1hm41oBsjqqwYJ6wea0+Is5Ke+rcvcpzN11tibWaco0ePnhoRw+upW89gpJ8Cro6IN+oNIGv83yIiflfvOh0laR3gWmAR8NXObi9LSpcBDB8+PEaNGtXZTQIwadIkmrWtZhpXmObghKErOW9a27fFrCNHdWNElRXjhNVj7QlxVtJT//ZFjrP5ekusZcVZTxvQfwHPSjqjvXt9JG0s6UhJNwGPA1vUse15QKWvrQOzZe2SJOBKYFfgwIjIrzM/+1nc/sDcvs3MrCT1zIi6u6SxwJeAb0paRGpHeQVYDmwEbAe8jfShfhVwTETMqWP/Myi0xUjaBliP1dtuKrmQ1H37IxFRbEtaLOmvxe3nntezfTMz6yJ1DcUTEddExN6k3nAnks5wVgLrAy8BPwP2J112+0qdyQfgNmA/SRvkysYCS4HJ7a0o6RvAcaQu1lPa2f7HCje2jgX+CvypzhjNzKwLNDQld0Q8S9bLrEkuBY4HbpB0NrA9MAE4P981W9JM0pTfR2fPjwD+B5gIzJH0vtw2n42Iv2e/nwscCfxc0o+BPUj3MR3re4DMzMrVUAJqtoiYJ2kf4CLgJlK7zQWkJJS3NpA/i9k3+zkue+QdRUpMRMRMSfsD55POhv4GnOBREMzMyldqAgKIiOmkeYXaqzO48HwcqyeeautOIQ3BY2ZmPUhD0zGYmZk1S+lnQGZrmsEV7q3K38c066yDujsksx6poTMgSf8uyWdNZmbWaY0mkxuBFySdLekdXRGQmZn1DY0moB2AHwOHA3+S9ICkz2VTKJiZmdWtoQQUEbMi4tSI2A74CDCT1G36RUk/lzS6K4I0M7M1T4fbcyLinoj4FLAzMJV0w+ddkv4i6avZqNNmZmYVdTgBSRopaSLwNGlyt4tJN4heD5xGGiTUzMysoobOUiRtS5oh9dPAYGASae6cGyJieVbtbkkPkAYlNTMzq6jRy2R/AeaShrq5PCKeq1LvSeDhTsRlZmZruEYT0L8Bt0fEqvYqRcSfAXdIMDOzqhptA9oD2LzSAklbSPp250MyM7O+oNEEdCqwdZVlW2bLzczMamo0AQmoNo/O1niaazMzq1PNNiBJrb3eICWfH0paWKi2LjAUuKO54ZmZ2Zqqnk4IS4BXs98FLABeK9T5B2nCt0uaF5qZma3JaiagiLgOuA5A0hXA6e10vzYzM6tLQ92wI+KorgrEzMz6Fs/tY2ZmpainE8LDwLiImC7pEar3ggMgIt7brODMzGzNVc8luCeBpbnf201AZmZm9ainE8JRud/HdWk0ZmbWZ5TeBiRpF0l3S1oiaa6k0yWtVWOddSSdK+l3kpZKqnhWJmmipKjwGNI1R2NmZvWqpw2oZrtPXiNtQJIGAncB04ExpCm/zyMlxlPaWXU94LOkEbfvBz7UTt0ZQLH33qx6YzQzs65RbxtQV7X7HAP0Aw6JiIXAnZI2BCZIOicrW01EzJf01ogIScfRfgJaHBEPNj90MzPrjHragMZ14f4PIE3vkE80LcDZwEjgpnbicmcIM7NerOw2oCGkS2T/FBGzScP/NKudZhdJCyUtlzRF0sgmbdfMzDqh7PuABgLzK5TPy5Z11mPAQ6Q2pk2BE0iX+faOCM/YamZWItW6kpUf/03SRGonoLqH65G0AjgxIi4slL8AXBkRJ9exjeOAH0SE6qi7HqlN648RcXCVOuOB8QCDBg0a1tLSUvtA6rBo0SL69+/flG0107Q5C9o8H9QPXlrats7QrQZ0Y0SVFeOE1WPtCXFC7de0p8RZ1FPfo0W9JU7oPbE2M87Ro0dPjYjh9dQt+z6geUCl/8aBdMHcQhGxRNKtwL+3U+cy4DKA4cOHx6hRo5qy70mTJtGsbTXTuJNuafP8hKErOW9a27fFrCNHdWNElRXjhNVj7QlxQu3XtKfEWdRT36NFvSVO6D2xlhVnQ4ORQroHBxgHvBfYAniRdJnrZxHxjwY3N4NCW4+kbUjdrGdUXKPzAo/mYGZWuoY6IUh6B/AMcDHwTuCN7OfFwExJuzS4/9uA/SRtkCsbSxr6Z3KD26pJUj/gIGBqs7dtZmaNafQM6DLShHQfyHqrASDpbcDNwKXABxvY3qXA8cANks4GtgcmAOfnu2ZLmglMjoijc2UHAOsDu2XPD80WPRIRz0sakMV0FTAT2AT4KrAlcFgDMZqZWRdoNAENB/4jn3wgdZ2WdCpwdSMbi4h5kvYBLiLd8zMfuICUhIpxFofn+SGwbe75ddnPo4CJwHLg76QRFTYDlgEPACMj4tFG4jQzs+ZrNAHNAtatsmxdYHaVZVVFxHTaH8mAiBhcT1lh+TLgkEbjMTOz7tHojagnAWdK2jNfKOl9wBnAfzcrMDMzW7N1ZDDSDYH7Jb0MvEy6vLUZ8CpwMnBjF8RpZmZrmI4MRvpkF8ViZmZ9SNmDkZqZWR9V9mCkZmbWRzkBmZlZKToyFM9Y4HPAzlTokh0RmzUhLjMzW8M1OhTPEcDPSCMLbA38hjTawJuAhaQbSs3MzGpq9BLciaT7fb6YPb8kIj4DbAe8QppIzszMrKZGE9BOwO8j4g3SQKQbAkTE66RptI9rbnhmZramajQBLQTekv0+B3hHbpmAjZsRlJmZrfka7YTwCPAu4HZS+8+3Ja0E/gF8G3iwueGZmdmaqtEE9L/8awTqb2e//5B0JvUI8PnmhWZmZmuyhhJQRDxIdpYTEfOBMZLeArwlP3+PmZlZLU2bkltSR6bkNjOzPqrsKbnNzKyPKntKbjMz66Ma7YY9HPh2pSm5gVOBPZoVmJmZrdkaTUCzaPKU3GZm1jd5Sm4zMyuFp+Q2M7NSeEpuMzMrhafkNjOzUnRoRlRJW0r6uKTPSTpE0pYdDUDSLpLulrRE0lxJp0taq8Y660g6V9LvJC2VFO3UHSNpmqRlkqZnE+qZmVnJGr0RdS1JlwDPA9cBPwKuB56XdLGkRrc3ELiLdIlvDHA6cAJwWo1V1wM+S5p/6P52tr838CvgXuAA4Bbgl5L2bSROMzNrvkZvRD0N+Ayps8E1wEvAIGAsKXm8ShqktF7HAP2AQ7Kx5O6UtCEwQdI51caXi4j5kt4aESHpOOBDVbb/LeC+iDg+e36vpF2zGO9oIE4zM2uyRi/B/SdwSkScGxGzI2J59vNc0of9uAa3dwBweyHRtJCS0sj2VoyIqpfdALJBUkcD1xYWtQAjJA1oMFYzM2uiRhPQZsATVZY9kS1vxBBgRr4gG1VhSbasM3YA3lzcPvAU6bh37uT2zcysE1TjRKJtZekJ4NGI+EyFZZcDwyLi3Q1sbwVwYkRcWCh/AbgyIk6uYxvHAT+ICBXK9wKmALtHxOO58h1JA6ruFxGrXYaTNB4YDzBo0KBhLS0t9R5OuxYtWkT//v2bsq1mmjZnQZvng/rBS0vb1hm6Vfkni8U4YfVYe0KcUPs17SlxFvXU92hRb4kTek+szYxz9OjRUyNieD11G20DOhNoyQYfvZ7UBrQZcBjpctcnGtxejxMRl5EGXWX48OExatSopmx30qRJNGtbzTTupFvaPD9h6ErOm9b2bTHryFHdGFFlxThh9Vh7QpxQ+zXtKXEW9dT3aFFviRN6T6xlxdnohHTXSppP6ozwPdIlrhXAVGD/iLizwf3PAyp9HRyYLeuM1vWL2x9YWG5mZiWoOwFJejNpEro/RcSIrMv1JsArEbGqg/ufQaGtR9I2pG7WxbabRj1LSo5DgMm58iHAKuDPndy+mZl1QiOdEN4A7iFLGBGxKiJe7kTyAbgN2E/SBrmyscBS2iaNhkXEctL9P4cVFo0FHoiI1RsVzMys29R9BhQRqyQ9A2zexP1fChwP3CDpbGB7YAJwfr5rtqSZwOSIODpXdgCwPrBb9vzQbNEjEfF89vsZwCRJF5IGST0we+zfxGMwM7MOaLQTwjeBsyVNi4hpnd15RMyTtA9wEXATMB+4gJSEinEWh+f5IbBt7vl12c+jgInZ9qdkielM4FjgOeCISr3fzMysezWagE4BNgYelzSH1AuuTT/uiHhvIxuMiOlUH8mgtc7gesqqrHsjniLCzKzHaTQBPQn8qSsCMTOrZHCFbu3Fru6zzjqoO0OyJmm0G/a4LorDzMz6mLoSkKR+pMb7wcCLwN0R8VIXxmVmZmu4eqbk3p40ZcLgXPFCSYe7Md/MzDqqnvuAziHduPkB0g2iuwKPkeYCMjMz65B6EtAI0hQMv4+IZRHxFPB54G2Stuja8MzMbE1VTwLaAvhLoexZQDT3plQzM+tD6h2Kp/45G8zMzOpQbzfs2yWtrFB+d7E8IhqdlM7MzPqgehLQaV0ehZmZ9Tk1E1BEOAGZmVnTNToUj9Wp1vAhHjrEzPq6RuYDMjMzaxonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFL4R1cysCYo3n4NvQK/FZ0BmZlYKJyAzMytF6QlI0i6S7pa0RNJcSadLWquO9QZIukLSPEkLJP1C0saFOhMlRYXHkK47IjMzq0epbUCSBgJ3AdOBMcAOwHmkxHhKjdWvBXYGPgusAs4GbgQ+UKg3AziqUDarM3GbmVnnld0J4RigH3BIRCwE7pS0ITBB0jlZ2WokjQD2BUZGxH1Z2RzgIUkfjoi7ctUXR8SDXXsYZmbWqLIvwR0A3F5INC2kpDSyxnovtSYfgIh4GHguW2ZmZj1c2QloCOkS2T9FxGxgSbas7vUyT1VYbxdJCyUtlzRFUnuJzczMuokiorydSyuAEyPiwkL5C8CVEXFylfXuJF1aO7hQfhWwfUS8P3v+ZeAfpDamTYETgGHA3tkZU6VtjwfGAwwaNGhYS0tLh45t2pwFbZ4P6gcvLf3X86FbDejQdputVpzQM2Itxgm99zXtKXEWLVq0iP79+5cdxmr8Hu16zfzbjx49empEDK+nbtltQF0qIr6Xfy7pVuBJ4GTg4CrrXAZcBjB8+PAYNWpUh/Y9rsKMqOdN+9fLPevIjm232WrFCT0j1mKc0Htf054SZ9GkSZPo6Pu9K/k92vXK+tuXfQluHlDpK8HAbFlT14uIJcCtwHsaiNHMzLpA2QloBoU2G0nbAOtRuY2n6nqZam1DeZE9zMysRGUnoNuA/SRtkCsbCywFJtdYb3NJe7cWSBoObJ8tq0hSP+AgYGpngjYzs84ruw3oUuB44AZJZ5MSyATg/HzXbEkzgckRcTRARDwg6Q7gSklf4183ok5pvQdI0gDgZuAqYCawCfBVYEvgsO45PDOznqc4cGpZg6aWmoAiYp6kfYCLgJuA+cAFpCSUtzZQHJ5nbFb3ctKZ3M2kZNZqOfB30ogKmwHLgAdIN68+2tQDMTOzhpV9BkRETAc+VKPO4Apl80lD7BSH2Wldvgw4pAkhmplZFyg9AZlZOXrKZRjru8ruhGBmZn2UE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSlJ6AJO0i6W5JSyTNlXS6pLXqWG+ApCskzZO0QNIvJG1cod4YSdMkLZM0XdLYrjkSMzNrRKkJSNJA4C4ggDHA6cAJwGl1rH4tMAr4LDAO2AO4sbD9vYFfAfcCBwC3AL+UtG9TDsDMzDps7ZL3fwzQDzgkIhYCd0raEJgg6ZysbDWSRgD7AiMj4r6sbA7wkKQPR8RdWdVvAfdFxPHZ83sl7Qp8G7ij6w7LzMxqKfsS3AHA7YVE00JKSiNrrPdSa/IBiIiHgeeyZUh6CzCadKaU1wKMkDSg8+GbmVlHlZ2AhgAz8gURMRtYki2re73MU7n1dgDeXKHeU6Tj3rkD8ZqZWZMoIsrbubQCODEiLiyUvwBcGREnV1nvTmBxRBxcKL8K2D4i3i9pL2AKsHtEPJ6rsyPwDLBfRKx2GU7SeGB89vTtwNMdPsC2NgFeadK2ulJviRN6T6yOs7l6S5zQe2JtZpzbRsSm9VQsuw2ox4mIy4DLmr1dSY9GxPBmb7fZekuc0HtidZzN1VvihN4Ta1lxln0Jbh5QqS1mYLasM+u1/izWG1hYbmZmJSg7Ac2g0NYjaRtgPSq38VRdL5NvG3oWWFGh3hBgFfDnDsRrZmZNUnYCug3YT9IGubKxwFJgco31Ns/u8wFA0nBg+2wZEbGcdP/PYYV1xwIPRMSCzoffkKZf1usivSVO6D2xOs7m6i1xQu+JtZQ4y+6EMBCYDvwJOJuUQM4HLoyIU3L1ZgKTI+LoXNntwE7A10hnNGcDL0fEB3J19gYmAReRblI9MKu/f6UOCGZm1n1KPQOKiHnAPsBawE2kERAuAE4tVF07q5M3lnSWdDlwJTAV+Fhh+1OAQ4EPA7cDHwWOcPIxMytfqWdAZmbWd5XdBmRmZn2UE5CZmZXCCcjMkLSupMsk7VR2LNZ3uA2oC0jqTxpMdQhtb3ydQerNt6is2BohaV1gs2x8vh5L0puBLXpinJK2A7YDnouI50qOZb12Fm8E/JU0mO8UgIhY0h1xNUrSYCAi4vmSQ6lK0mhgF1IP3T9GxP0lh4SkPYFHImJV2bH8U0T40aQHINKcRotIb7xFpH/qvxbKTiNL/j35AXwceKPkGL5Iuql4KfBH4FMV6uxZZpykQW+/D7yW/X3PycovBt7I/u5vAL8A1ioxzjdqPFbln5f8dx8PbFIo+zLw91yMLwFfKDnO84Azc8+3AB7IXstlwPIs1t8CA0qOdVX2ml0E7FVmLK0PjwXXXBOA/yIlmJaI+Gt+oaStgU+QuplHVt+qkPQJ4AfAL4HHgPcDEyWNAT4ZEcvKjC/n66SJEc8nJaEvSdoUOJg0WeIfgL2B7wKfBy4pJ0yWAguzOF4tLFuf9MF0Du2PQtJdfgg8TjZAZjZI8AWk6VWuJ/3/HAb8QNL8iLi6pDgPB/479/wiUhIaSXYmmf1+Jen9cTTlehz4D+DYbNDna0ifVX8oJZqyM+Ca9ADmAOPrqDcemFNinPfU+ZhGuWcWj5KdTeTK9gH+RvqWuXFWVvYZ0AzSqO6tz/cmfdv8SqHeacCjJca5JXA16UP9S+TOxkhjJq4CPlhWfIVYVwHvLbzGV1So93PSZaWy4lwGfCD3fDFwWIV6RwCv9oTXlHTG/tHsvfA66QztadIX47d3Z0zuhNBcG5EuF9XybFa3LB+UWGc2AAALs0lEQVQEBpG+Bbf3eL2sADNvB27NF0TE3cD7SK/fA5K2LyOwgm2Bh3PPp2Y/Hy7Um0Ia7aMUETE3Io4ADiF9E58mab+y4mnQDqTJJItaSG0tZZlNep+2Wkk6yyxaCKzTLRHVEBErIuI32XthM1JynA6cBEyX9AdJJ3ZHLL4E11wPAl+X9GBELK5UQdL6pFP2B7o1sraeBGZExNj2Kkk6lHSKXpYFpHlK2oiIWZLeD9xCeh3P6O7AChbT9gvF8uxRbMRfix7wPxcR90l6D3AscLWk+yn/Naxk3VzHiVdJ39SL3iBdjivL5cAESb+LiKdJl9q+KemhiJgPIOmtwMm0P75lKSJiKel//BpJG5K+nHwCOBM4t6v3X/o/wxrmOOAuYHY2Vt0MYH62bACpV9x+pA+nfUqJMHkQ2L+OekHqWFGWqaR2lOuLCyJinqR9smXfp9wPoaeBYcCvs9hWkaaVL9oVmNV9YVWXxXixpBbgO8DvKPc1rOTe3O8iXT66q1DnXaROPmU5F3gn8ISke0ij7O9G+gyYRop7KCmBfrK0KOsQEQuBiaR21o27Y5/uht1kkjYifbPcn8rdsG8DLm39dlQGSTsAu0bEb2rU60fqhl1Kd1dJhwFfBf4tIl6rUmctUoP1RyJiu+6MLxfDx0ntUe2OKCzpNuDhiCiOdVg6SbuQBvf9XbXXupvj+XSF4hejMI6jpOtJZ/OnVKjfbSTtDxxFao/cnJR45gFPATcDl0VEqZe0Jd0LHBsRPaGTCeAEZGZmJXEnBDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACsnZJGidpqqTXJc2T9Jik87toX4dLGldHvQmSIveYK+lXWe++evYzUdKjnQ64Ceo95qxu63E/U2X5M9nyCV0VQ4PbbfM6N3s/kt4k6bjsPblU0kJJT0r6vqQO3T6g5PEqvfBaj2lwlWUXSfppR/bbVzkBWVWSvgH8hDSd+SHAf5LudfloF+3ycNLYafVYAIzIHl8j3Xtxd3ajby1nNLCfrtbIMUMa+mU7ScPzhZL2AAZny7s6hnoVX+dm7+ca0g2TN5Dek58mjZzx/uh4997DgbeShqlp1HeBIyXt2MF99zm+EdXacxzwo4g4OVd2k6TTygooZ2VEPJj9/qCk2aSbKQ8EritWzu4XWisi/hER9QyX1FMtJg1u+gnSWHmtPkEav29YGUG16q7XWdIBwKHAgRFxW27R/3X07CdzPPDziFiR29fapGT6KdJ4ev8h6VngtIj450gh2QgdU0j3AZ7QiRj6DJ8BWXs2Ig382Ub+22XrZRZJB0uaIWmZpCnZjY1tZJdgpklaLumvkr6T/XMjaSJp+oeRuUtrExqItXX8tcEV4nqSdGawZ35ZIbYPSrpX0iJJCyRNkrR7bvkHJE2WtETSq5J+LGmD9gKSNELSbyS9KGlxdmnnyPxr18FjbgEOb/2gzX4eToWx0joTQ/YaXF/Y3qiszjvzr2Wt17nafiQdKGmV0rxJ+f1sl5WPqfIajMx+3lNc0NGzn+zM5f2sPvLGl0kjnn+fdIb1GdIQPJVGC/gV6SzIn6118BmQtecPpKkFZgM3R0RxCP9W25KGmv8Wacj/04DbJe0U2ZQJkvYlXTK5EjiRNITKGaR/4mOy399GSnpfyLb7QgOxDs5+/q1Qdg5pjqa/ARUnhJM0CriTNPTLp0lnGXsBWwGPSdqLNATMjaRv3RsDZ5FGuTi0nZi2BX4PXEr6YN4LuELSqoj4JR0/5htIoz/sTTrr+wCwaVZeHL+rq2LIG0zt17nafl4E5pJe9wm5+uOAl0nj/VXSOtbiuZLOa9JoHftk2/1joXwkcE9EnJN9sfp9RMyqso37SQP9Dq2wHSsqc3hwP3r2g5Qk/kIaI2wVaRDT04ENc3UmZsvfnyvbljQq8DG5sgeBewvb/zppMMmts+fXA5PqiGsCaUqBtbPHzqTksZA0M2o+rt0qrD+R3LQIpAFNH6XKJIGkD/li7B/Ktv/OOl9LZbH+iPRh1lpe1zHnjzv7/dfAxdnvlwA3Zr+/AkxoRgzAJOD6Qtmo/HE3+DpX28+ZpKSlXJyzgO+281psDjyR7TuAP5EG/Ozfiff7ZVSY2iF7vf6a7XMiMLidbaydvfc/19E4+tLDp4lWVUQ8AbyD1MB7CemD4VvAo0rTjrd6OXJTDkf6NjqVNHhka7vAe1i9beYa0mXgER0Ib2NgRfZ4mjTNwdiIeDFXZ05EPN7eRrJOC3sCP4vsE6SwfL0svmslrd36IE2tsIJ22lwkDVTqkfV8LtbxpITZWS3AoZLeQjoLqzRVQVfH0Krm61zD5aQvLaOy56Oz51dUWyEi/gbsThrc94ekM6vvAPdLWgfSeHLZJcfHs8u+M7LfpypN4160OdkEeAXfIZ0ZPUf6X/hadlZcKa6VpAGIN69xzIbbgKyGiFgeETdFxHERsQtp5s+daDuz48sVVn2ZNDMkpCkV3kyaDjiv9flbOxDaAmAPYDiwNelb6W2FOsX9VTKQlFhfbGf5WqQEvCL3WE46pm3a2fZEYCzpsti+WbyXA+vWEVctvwH6kz4c1wduKiGGVvW8zlVFxF9IZ1tHZUVHkQZtfbLGem9ExB0R8QXS5b0rSJe+RmTLfxYRu5G+/KwkTUO9W0QMi1wng5x1SX/X4n5mZ9v9GOmKwN7AFFW/HWE5zX1911huA7KGRMRPJZ1DGum71WYVqm5GumQH6Vvligr1BmU/OzL68sqIqHUvTz2N0fNIlxe3qLJ8Pv+aPv3WCsvnVlpJ0rrAvwFfjIhLc+VN+dIXEYsl3UwaLfy6qDD/VBNiWMbqk6gNrFCvGSMa/wT4sVLX/0NosBdZRKySdAcpeRU//HcC5kX1NsxWr1HlzCVLWL9VmiZ+AmmakAskXZglqLyN6Nh7us/xGZBVJWm1xCJpU9LcRvlvvZspTRDXWudtpG+dD0P6pkq6JHdYYXOHkz78Wyfn+wfd/M0x++B+CPjP1l5lFZY/SJqq+NEKj4oJCHgL6f/rn9+os15zxXuoOnPMPySd+VxaZXlnY3iBtl80IJ1FdVR7x3pDtryFFHPFS4oAkgZVWfRR0iSADxXK3019HQKeBlab0qPS+wJ4JPv51kLdTYH1SPMCWQ0+A7L2TJP0a+AO0iW1bUk3fS4Bfpar9wpwlaRT+FcvuJdJl39anUrqGXcF6cNlKKln1I8jorXX1QxgjKSDSR9+c9v5gG+mk0i93G6TdBnpev8IUgP6zaTOEndLWkVqSH+ddMnnIOCbEbHah01ELJD0CPBtSQtJifYk0qXDDXNVO3zMETGJdOmq2vLOxvB/wNGSLiD1RhtNfRMZVlP1WCNimaRfAF8Efhntz5d1raTXgWtJnRU2A44ExpAa/4vrvpvUYaGW35Neq00j4u+58qslPQbcR7rcOYx05jmHNN9P3nDSGeH9WG1l94Lwo+c+SB8Gd5AuMy0j/bNfDQzJ1ZlI6kF2COlb33LSP/JqvcNIbRHTSN90XyC1X6ydW74J6UPvNbLLXlXimkDWG6yd2CeS64FVaxmpq+19pOQ6n9Srbrfc8j2B35J62i0GppO6ng9oJ4Ydgbuz+rNJiaxN7PUecwPH3aYXXGdjAL5B6gH2OnAV6Syj2Auurte51rECH87KP1zjGD+T/S1eyN5Lr5ES5Kgq9W8CPlHH+30d0sylnyqUfyzb399ISXwhKfHvXmEb36PQY9KP6g9PSGedkt1g+M6IGF6rrll7srbFw4HtI00Z3qztzgb2i4ji2Uqlut8DdoyIg6osn0hKnLMqLFsLeB44KSKu6lTQfYQvwZlZqSS9HdiFNITNaU1OPgNJN+nW2yZzLvBnSTtHhUurNRxGugRdtf3K2nInBDMr249Il3ZvJQ130zQRMS8i+kXqCFNP/RdIl/iq9Yq8kXSJthIBR0e6F8jq4EtwZmZWCp8BmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmal+H/C0E4RTJkX9wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot probability distribution\n", - "x = uncertainty_model.values\n", - "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", - "plt.ylabel('Probability ($\\%$)', size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate Expected Payoff\n", - "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function with Quantum Amplitude Estimation." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Estimated value:\t1.2580\n", - "Probability: \t0.8785\n" - ] - } - ], - "source": [ - "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price = 2\n", - "\n", - "# set the approximation scaling for the payoff function\n", - "c_approx = 0.25\n", - "\n", - "# construct circuit factory for payoff function\n", - "european_call = EuropeanCallExpectedValue(\n", - " uncertainty_model,\n", - " strike_price=strike_price,\n", - " c_approx=c_approx\n", - ")\n", - "# set number of evaluation qubits (samples)\n", - "m = 5\n", - "\n", - "# construct amplitude estimation \n", - "ae = AmplitudeEstimation(m, european_call)\n", - "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "QiskitDevenv", - "language": "python", - "name": "qiskitdevenv" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From 7365dfc1cefac004e842a2507ce08e38dc626f46 Mon Sep 17 00:00:00 2001 From: CZ Date: Sat, 20 Apr 2019 18:33:55 +0200 Subject: [PATCH 066/116] Create qgans_for_loading_random_distributions.ipynb --- ...ans_for_loading_random_distributions.ipynb | 13043 ++-------------- 1 file changed, 1030 insertions(+), 12013 deletions(-) diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb index 8288dcfb8..14ed3f906 100644 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb +++ b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb @@ -27,9 +27,18 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", + " from collections import MutableMapping\n" + ] + } + ], "source": [ "#!/usr/bin/env python\n", "# coding: utf-8\n", @@ -49,13 +58,13 @@ "start = time.time()\n", "\n", "from torch import optim\n", - "from qiskit.aqua.algorithms.adaptive.qgan.discriminator import DiscriminatorNet\n", "\n", "from qiskit.aqua.components.optimizers import ADAM\n", "from qiskit.aqua.components.uncertainty_models import UniformDistribution, UnivariateVariationalDistribution \n", "from qiskit.aqua.components.variational_forms import RY\n", "\n", - "from qiskit.aqua.algorithms.adaptive.qgan.qgan import QGAN\n", + "from qiskit.aqua.algorithms.adaptive import QGAN\n", + "from qiskit.aqua.algorithms.adaptive.qgan.discriminator import DiscriminatorNet\n", "\n", "from qiskit.aqua import aqua_globals, QuantumInstance\n", "\n", @@ -73,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -165,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -173,12216 +182,1224 @@ "output_type": "stream", "text": [ "Epoch 1/3000...\n", - "Loss Discriminator: 0.6977\n", - "Loss Generator: 0.6754\n", - "Relative Entropy: 0.1783\n", - "Epoch 2/3000...\n", - "Loss Discriminator: 0.6964\n", - "Loss Generator: 0.6806\n", - "Relative Entropy: 0.1783\n", - "Epoch 3/3000...\n", - "Loss Discriminator: 0.6948\n", - "Loss Generator: 0.6832\n", - "Relative Entropy: 0.1784\n", - "Epoch 4/3000...\n", - "Loss Discriminator: 0.6935\n", - "Loss Generator: 0.6851\n", - "Relative Entropy: 0.1784\n", - "Epoch 5/3000...\n", - "Loss Discriminator: 0.6923\n", - "Loss Generator: 0.687\n", - "Relative Entropy: 0.1784\n", - "Epoch 6/3000...\n", - "Loss Discriminator: 0.6912\n", - "Loss Generator: 0.6864\n", - "Relative Entropy: 0.1783\n", - "Epoch 7/3000...\n", - "Loss Discriminator: 0.6901\n", - "Loss Generator: 0.6865\n", - "Relative Entropy: 0.1783\n", - "Epoch 8/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.6879\n", - "Relative Entropy: 0.1782\n", - "Epoch 9/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6894\n", - "Relative Entropy: 0.1781\n", - "Epoch 10/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.6924\n", - "Relative Entropy: 0.1781\n", + "Loss Discriminator: 0.6972\n", + "Loss Generator: 0.6728\n", + "Relative Entropy: 0.168\n", "Epoch 11/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.6923\n", - "Relative Entropy: 0.178\n", - "Epoch 12/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.6922\n", - "Relative Entropy: 0.1779\n", - "Epoch 13/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.6939\n", - "Relative Entropy: 0.1779\n", - "Epoch 14/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.6968\n", - "Relative Entropy: 0.1778\n", - "Epoch 15/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.1777\n", - "Epoch 16/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.1777\n", - "Epoch 17/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.1776\n", - "Epoch 18/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.1775\n", - "Epoch 19/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.1775\n", - "Epoch 20/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.1774\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.6919\n", + "Relative Entropy: 0.1678\n", "Epoch 21/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.1773\n", - "Epoch 22/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.1772\n", - "Epoch 23/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.1772\n", - "Epoch 24/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.1771\n", - "Epoch 25/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.177\n", - "Epoch 26/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.177\n", - "Epoch 27/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.1769\n", - "Epoch 28/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1768\n", - "Epoch 29/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1768\n", - "Epoch 30/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1767\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.1671\n", "Epoch 31/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1766\n", - "Epoch 32/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1765\n", - "Epoch 33/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1765\n", - "Epoch 34/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1764\n", - "Epoch 35/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1763\n", - "Epoch 36/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1763\n", - "Epoch 37/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1762\n", - "Epoch 38/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1761\n", - "Epoch 39/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1761\n", - "Epoch 40/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.176\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1664\n", "Epoch 41/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1759\n", - "Epoch 42/3000...\n", "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1759\n", - "Epoch 43/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1758\n", - "Epoch 44/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1757\n", - "Epoch 45/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1756\n", - "Epoch 46/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1756\n", - "Epoch 47/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1755\n", - "Epoch 48/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1754\n", - "Epoch 49/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1754\n", - "Epoch 50/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1753\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1657\n", "Epoch 51/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1752\n", - "Epoch 52/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1752\n", - "Epoch 53/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1751\n", - "Epoch 54/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.175\n", - "Epoch 55/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.175\n", - "Epoch 56/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1749\n", - "Epoch 57/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1748\n", - "Epoch 58/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1747\n", - "Epoch 59/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1747\n", - "Epoch 60/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1746\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.165\n", "Epoch 61/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1745\n", - "Epoch 62/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1745\n", - "Epoch 63/3000...\n", - "Loss Discriminator: 0.6685\n", + "Loss Discriminator: 0.6755\n", "Loss Generator: 0.733\n", - "Relative Entropy: 0.1744\n", - "Epoch 64/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1743\n", - "Epoch 65/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1743\n", - "Epoch 66/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1742\n", - "Epoch 67/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1741\n", - "Epoch 68/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1741\n", - "Epoch 69/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.174\n", - "Epoch 70/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1739\n", + "Relative Entropy: 0.1644\n", "Epoch 71/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1739\n", - "Epoch 72/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1738\n", - "Epoch 73/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1737\n", - "Epoch 74/3000...\n", - "Loss Discriminator: 0.6686\n", + "Loss Discriminator: 0.669\n", "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1736\n", - "Epoch 75/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1736\n", - "Epoch 76/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1735\n", - "Epoch 77/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1734\n", - "Epoch 78/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1734\n", - "Epoch 79/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1733\n", - "Epoch 80/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.1732\n", + "Relative Entropy: 0.1637\n", "Epoch 81/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1732\n", - "Epoch 82/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1731\n", - "Epoch 83/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.173\n", - "Epoch 84/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.173\n", - "Epoch 85/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1729\n", - "Epoch 86/3000...\n", "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1728\n", - "Epoch 87/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7375\n", - "Relative Entropy: 0.1728\n", - "Epoch 88/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1727\n", - "Epoch 89/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1726\n", - "Epoch 90/3000...\n", - "Loss Discriminator: 0.6652\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1726\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.163\n", "Epoch 91/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.1725\n", - "Epoch 92/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1724\n", - "Epoch 93/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1723\n", - "Epoch 94/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1723\n", - "Epoch 95/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1722\n", - "Epoch 96/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1721\n", - "Epoch 97/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1721\n", - "Epoch 98/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.172\n", - "Epoch 99/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1719\n", - "Epoch 100/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1719\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1623\n", "Epoch 101/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1718\n", - "Epoch 102/3000...\n", "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1717\n", - "Epoch 103/3000...\n", - "Loss Discriminator: 0.6651\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1717\n", - "Epoch 104/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.1716\n", - "Epoch 105/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1715\n", - "Epoch 106/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1715\n", - "Epoch 107/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1714\n", - "Epoch 108/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1713\n", - "Epoch 109/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1713\n", - "Epoch 110/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1712\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1617\n", "Epoch 111/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1711\n", - "Epoch 112/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1711\n", - "Epoch 113/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.171\n", - "Epoch 114/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1709\n", - "Epoch 115/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1708\n", - "Epoch 116/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1708\n", - "Epoch 117/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1707\n", - "Epoch 118/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1706\n", - "Epoch 119/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1706\n", - "Epoch 120/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1705\n", - "Epoch 121/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1704\n", - "Epoch 122/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1704\n", - "Epoch 123/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1703\n", - "Epoch 124/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1702\n", - "Epoch 125/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1702\n", - "Epoch 126/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1701\n", - "Epoch 127/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.17\n", - "Epoch 128/3000...\n", "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.17\n", - "Epoch 129/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1699\n", - "Epoch 130/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1698\n", - "Epoch 131/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1698\n", - "Epoch 132/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1697\n", - "Epoch 133/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1696\n", - "Epoch 134/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1696\n", - "Epoch 135/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1695\n", - "Epoch 136/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1694\n", - "Epoch 137/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1694\n", - "Epoch 138/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1693\n", - "Epoch 139/3000...\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.161\n", + "Epoch 121/3000...\n", "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1692\n", - "Epoch 140/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1692\n", - "Epoch 141/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1691\n", - "Epoch 142/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.169\n", - "Epoch 143/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.169\n", - "Epoch 144/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1689\n", - "Epoch 145/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1688\n", - "Epoch 146/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1688\n", - "Epoch 147/3000...\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1603\n", + "Epoch 131/3000...\n", "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1687\n", - "Epoch 148/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1686\n", - "Epoch 149/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1686\n", - "Epoch 150/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1685\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1597\n", + "Epoch 141/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.159\n", "Epoch 151/3000...\n", - "Loss Discriminator: 0.6664\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1684\n", - "Epoch 152/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1684\n", - "Epoch 153/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1683\n", - "Epoch 154/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1682\n", - "Epoch 155/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1681\n", - "Epoch 156/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1681\n", - "Epoch 157/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.168\n", - "Epoch 158/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1679\n", - "Epoch 159/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1679\n", - "Epoch 160/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1678\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1583\n", "Epoch 161/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1677\n", - "Epoch 162/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1677\n", - "Epoch 163/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1676\n", - "Epoch 164/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1675\n", - "Epoch 165/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1675\n", - "Epoch 166/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1674\n", - "Epoch 167/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1673\n", - "Epoch 168/3000...\n", "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1673\n", - "Epoch 169/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1672\n", - "Epoch 170/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1671\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1577\n", "Epoch 171/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1671\n", - "Epoch 172/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.167\n", - "Epoch 173/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1669\n", - "Epoch 174/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1669\n", - "Epoch 175/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1668\n", - "Epoch 176/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1667\n", - "Epoch 177/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1667\n", - "Epoch 178/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1666\n", - "Epoch 179/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1665\n", - "Epoch 180/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1665\n", - "Epoch 181/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7375\n", - "Relative Entropy: 0.1664\n", - "Epoch 182/3000...\n", - "Loss Discriminator: 0.6698\n", + "Loss Discriminator: 0.6708\n", "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1663\n", - "Epoch 183/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1663\n", - "Epoch 184/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1662\n", - "Epoch 185/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1661\n", - "Epoch 186/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1661\n", - "Epoch 187/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.166\n", - "Epoch 188/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1659\n", - "Epoch 189/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1659\n", - "Epoch 190/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1658\n", - "Epoch 191/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1657\n", - "Epoch 192/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1657\n", - "Epoch 193/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1656\n", - "Epoch 194/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1655\n", - "Epoch 195/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1655\n", - "Epoch 196/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1654\n", - "Epoch 197/3000...\n", - "Loss Discriminator: 0.6686\n", + "Relative Entropy: 0.157\n", + "Epoch 181/3000...\n", + "Loss Discriminator: 0.6694\n", "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1653\n", - "Epoch 198/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1653\n", - "Epoch 199/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1652\n", - "Epoch 200/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1651\n", + "Relative Entropy: 0.1564\n", + "Epoch 191/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1557\n", "Epoch 201/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1651\n", - "Epoch 202/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.165\n", - "Epoch 203/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.165\n", - "Epoch 204/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1649\n", - "Epoch 205/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1648\n", - "Epoch 206/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1648\n", - "Epoch 207/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1647\n", - "Epoch 208/3000...\n", - "Loss Discriminator: 0.672\n", + "Loss Discriminator: 0.6704\n", "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1646\n", - "Epoch 209/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1646\n", - "Epoch 210/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1645\n", + "Relative Entropy: 0.155\n", "Epoch 211/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1644\n", - "Epoch 212/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1644\n", - "Epoch 213/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1643\n", - "Epoch 214/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1642\n", - "Epoch 215/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1642\n", - "Epoch 216/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1641\n", - "Epoch 217/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.164\n", - "Epoch 218/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.164\n", - "Epoch 219/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1639\n", - "Epoch 220/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1638\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1544\n", "Epoch 221/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1638\n", - "Epoch 222/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1637\n", - "Epoch 223/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1636\n", - "Epoch 224/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1636\n", - "Epoch 225/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1635\n", - "Epoch 226/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1634\n", - "Epoch 227/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1634\n", - "Epoch 228/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1633\n", - "Epoch 229/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1632\n", - "Epoch 230/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1632\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1538\n", "Epoch 231/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1631\n", - "Epoch 232/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.163\n", - "Epoch 233/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.163\n", - "Epoch 234/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1629\n", - "Epoch 235/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1628\n", - "Epoch 236/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1628\n", - "Epoch 237/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1627\n", - "Epoch 238/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1626\n", - "Epoch 239/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1626\n", - "Epoch 240/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1625\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1531\n", "Epoch 241/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1624\n", - "Epoch 242/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1624\n", - "Epoch 243/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1623\n", - "Epoch 244/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1623\n", - "Epoch 245/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1622\n", - "Epoch 246/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1621\n", - "Epoch 247/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1621\n", - "Epoch 248/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.162\n", - "Epoch 249/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1619\n", - "Epoch 250/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1619\n", - "Epoch 251/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1618\n", - "Epoch 252/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1617\n", - "Epoch 253/3000...\n", "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1617\n", - "Epoch 254/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1616\n", - "Epoch 255/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1615\n", - "Epoch 256/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1615\n", - "Epoch 257/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1614\n", - "Epoch 258/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1613\n", - "Epoch 259/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1613\n", - "Epoch 260/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1612\n", - "Epoch 261/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1611\n", - "Epoch 262/3000...\n", - "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1525\n", + "Epoch 251/3000...\n", + "Loss Discriminator: 0.6724\n", "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1611\n", - "Epoch 263/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.161\n", - "Epoch 264/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1609\n", - "Epoch 265/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1609\n", - "Epoch 266/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1608\n", - "Epoch 267/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1608\n", - "Epoch 268/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1607\n", - "Epoch 269/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1606\n", - "Epoch 270/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1606\n", + "Relative Entropy: 0.1518\n", + "Epoch 261/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1512\n", "Epoch 271/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1605\n", - "Epoch 272/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1604\n", - "Epoch 273/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1604\n", - "Epoch 274/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1603\n", - "Epoch 275/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1602\n", - "Epoch 276/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1602\n", - "Epoch 277/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1601\n", - "Epoch 278/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.16\n", - "Epoch 279/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.16\n", - "Epoch 280/3000...\n", "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1599\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1505\n", "Epoch 281/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1598\n", - "Epoch 282/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1598\n", - "Epoch 283/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1597\n", - "Epoch 284/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1597\n", - "Epoch 285/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1596\n", - "Epoch 286/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1595\n", - "Epoch 287/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1595\n", - "Epoch 288/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1594\n", - "Epoch 289/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1593\n", - "Epoch 290/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1593\n", - "Epoch 291/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1592\n", - "Epoch 292/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1591\n", - "Epoch 293/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1591\n", - "Epoch 294/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.159\n", - "Epoch 295/3000...\n", "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1589\n", - "Epoch 296/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1589\n", - "Epoch 297/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1588\n", - "Epoch 298/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1587\n", - "Epoch 299/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1587\n", - "Epoch 300/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1586\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1499\n", + "Epoch 291/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1493\n", "Epoch 301/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1586\n", - "Epoch 302/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1585\n", - "Epoch 303/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1584\n", - "Epoch 304/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1584\n", - "Epoch 305/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1583\n", - "Epoch 306/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1582\n", - "Epoch 307/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1582\n", - "Epoch 308/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1581\n", - "Epoch 309/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.158\n", - "Epoch 310/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.158\n", - "Epoch 311/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1579\n", - "Epoch 312/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1578\n", - "Epoch 313/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1578\n", - "Epoch 314/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1577\n", - "Epoch 315/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1577\n", - "Epoch 316/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1576\n", - "Epoch 317/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1575\n", - "Epoch 318/3000...\n", - "Loss Discriminator: 0.6713\n", + "Loss Discriminator: 0.6718\n", "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1575\n", - "Epoch 319/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1574\n", - "Epoch 320/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1573\n", + "Relative Entropy: 0.1486\n", + "Epoch 311/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.148\n", "Epoch 321/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1573\n", - "Epoch 322/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1572\n", - "Epoch 323/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1571\n", - "Epoch 324/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1571\n", - "Epoch 325/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.157\n", - "Epoch 326/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.157\n", - "Epoch 327/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1569\n", - "Epoch 328/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1568\n", - "Epoch 329/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1568\n", - "Epoch 330/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1567\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1474\n", "Epoch 331/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1566\n", - "Epoch 332/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1566\n", - "Epoch 333/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1565\n", - "Epoch 334/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1564\n", - "Epoch 335/3000...\n", - "Loss Discriminator: 0.6707\n", + "Loss Discriminator: 0.6724\n", "Loss Generator: 0.732\n", - "Relative Entropy: 0.1564\n", - "Epoch 336/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1563\n", - "Epoch 337/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1563\n", - "Epoch 338/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1562\n", - "Epoch 339/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1561\n", - "Epoch 340/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1561\n", + "Relative Entropy: 0.1467\n", "Epoch 341/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.156\n", - "Epoch 342/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1559\n", - "Epoch 343/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1559\n", - "Epoch 344/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1558\n", - "Epoch 345/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1557\n", - "Epoch 346/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1557\n", - "Epoch 347/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1556\n", - "Epoch 348/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1556\n", - "Epoch 349/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1555\n", - "Epoch 350/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1554\n", - "Epoch 351/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1554\n", - "Epoch 352/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1553\n", - "Epoch 353/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1552\n", - "Epoch 354/3000...\n", "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1552\n", - "Epoch 355/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1551\n", - "Epoch 356/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.155\n", - "Epoch 357/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.155\n", - "Epoch 358/3000...\n", - "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1461\n", + "Epoch 351/3000...\n", + "Loss Discriminator: 0.6714\n", "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1549\n", - "Epoch 359/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1549\n", - "Epoch 360/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1548\n", + "Relative Entropy: 0.1455\n", "Epoch 361/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1547\n", - "Epoch 362/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1547\n", - "Epoch 363/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1546\n", - "Epoch 364/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1545\n", - "Epoch 365/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1545\n", - "Epoch 366/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1544\n", - "Epoch 367/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1544\n", - "Epoch 368/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1543\n", - "Epoch 369/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1542\n", - "Epoch 370/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1542\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1449\n", "Epoch 371/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1541\n", - "Epoch 372/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.154\n", - "Epoch 373/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.154\n", - "Epoch 374/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1539\n", - "Epoch 375/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1538\n", - "Epoch 376/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1538\n", - "Epoch 377/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1537\n", - "Epoch 378/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1537\n", - "Epoch 379/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1536\n", - "Epoch 380/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1535\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1443\n", "Epoch 381/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1535\n", - "Epoch 382/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1534\n", - "Epoch 383/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1533\n", - "Epoch 384/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1533\n", - "Epoch 385/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1532\n", - "Epoch 386/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1532\n", - "Epoch 387/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1531\n", - "Epoch 388/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.153\n", - "Epoch 389/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.153\n", - "Epoch 390/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1529\n", - "Epoch 391/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1528\n", - "Epoch 392/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1528\n", - "Epoch 393/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1527\n", - "Epoch 394/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1527\n", - "Epoch 395/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1526\n", - "Epoch 396/3000...\n", "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1525\n", - "Epoch 397/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1525\n", - "Epoch 398/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1524\n", - "Epoch 399/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1523\n", - "Epoch 400/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1523\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1436\n", + "Epoch 391/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.143\n", "Epoch 401/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1424\n", + "Epoch 411/3000...\n", "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1522\n", - "Epoch 402/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1522\n", - "Epoch 403/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1521\n", - "Epoch 404/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.152\n", - "Epoch 405/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.152\n", - "Epoch 406/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1519\n", - "Epoch 407/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1518\n", - "Epoch 408/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1518\n", - "Epoch 409/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1517\n", - "Epoch 410/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1517\n", - "Epoch 411/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1516\n", - "Epoch 412/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1515\n", - "Epoch 413/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1515\n", - "Epoch 414/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1514\n", - "Epoch 415/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1513\n", - "Epoch 416/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1513\n", - "Epoch 417/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1512\n", - "Epoch 418/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1512\n", - "Epoch 419/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1511\n", - "Epoch 420/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.151\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1418\n", "Epoch 421/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.151\n", - "Epoch 422/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1509\n", - "Epoch 423/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1508\n", - "Epoch 424/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1508\n", - "Epoch 425/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1507\n", - "Epoch 426/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1507\n", - "Epoch 427/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1506\n", - "Epoch 428/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1505\n", - "Epoch 429/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1505\n", - "Epoch 430/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1504\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1412\n", "Epoch 431/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1504\n", - "Epoch 432/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1503\n", - "Epoch 433/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1502\n", - "Epoch 434/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1502\n", - "Epoch 435/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1501\n", - "Epoch 436/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.15\n", - "Epoch 437/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.15\n", - "Epoch 438/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1499\n", - "Epoch 439/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1499\n", - "Epoch 440/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1498\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1406\n", "Epoch 441/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1497\n", - "Epoch 442/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1497\n", - "Epoch 443/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1496\n", - "Epoch 444/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1496\n", - "Epoch 445/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1495\n", - "Epoch 446/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1494\n", - "Epoch 447/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1494\n", - "Epoch 448/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1493\n", - "Epoch 449/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1492\n", - "Epoch 450/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1492\n", - "Epoch 451/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1491\n", - "Epoch 452/3000...\n", "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1491\n", - "Epoch 453/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.149\n", - "Epoch 454/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1489\n", - "Epoch 455/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1489\n", - "Epoch 456/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1488\n", - "Epoch 457/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1488\n", - "Epoch 458/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1487\n", - "Epoch 459/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1486\n", - "Epoch 460/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1486\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.14\n", + "Epoch 451/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1394\n", "Epoch 461/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1485\n", - "Epoch 462/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1484\n", - "Epoch 463/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1484\n", - "Epoch 464/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1483\n", - "Epoch 465/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1483\n", - "Epoch 466/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1482\n", - "Epoch 467/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1481\n", - "Epoch 468/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1481\n", - "Epoch 469/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.148\n", - "Epoch 470/3000...\n", - "Loss Discriminator: 0.67\n", + "Loss Discriminator: 0.6723\n", "Loss Generator: 0.7285\n", - "Relative Entropy: 0.148\n", + "Relative Entropy: 0.1388\n", "Epoch 471/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1479\n", - "Epoch 472/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1478\n", - "Epoch 473/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1478\n", - "Epoch 474/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1477\n", - "Epoch 475/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1477\n", - "Epoch 476/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1476\n", - "Epoch 477/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1475\n", - "Epoch 478/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1475\n", - "Epoch 479/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1474\n", - "Epoch 480/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1473\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1382\n", "Epoch 481/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1473\n", - "Epoch 482/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1472\n", - "Epoch 483/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1472\n", - "Epoch 484/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1471\n", - "Epoch 485/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.147\n", - "Epoch 486/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.147\n", - "Epoch 487/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1469\n", - "Epoch 488/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1469\n", - "Epoch 489/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1468\n", - "Epoch 490/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1467\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1376\n", "Epoch 491/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1467\n", - "Epoch 492/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1466\n", - "Epoch 493/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1466\n", - "Epoch 494/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1465\n", - "Epoch 495/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1464\n", - "Epoch 496/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1464\n", - "Epoch 497/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1463\n", - "Epoch 498/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1463\n", - "Epoch 499/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1462\n", - "Epoch 500/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1461\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.137\n", "Epoch 501/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1461\n", - "Epoch 502/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.146\n", - "Epoch 503/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1459\n", - "Epoch 504/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1459\n", - "Epoch 505/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1458\n", - "Epoch 506/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1458\n", - "Epoch 507/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1457\n", - "Epoch 508/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1456\n", - "Epoch 509/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1456\n", - "Epoch 510/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1455\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1364\n", "Epoch 511/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1455\n", - "Epoch 512/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1454\n", - "Epoch 513/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1453\n", - "Epoch 514/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1453\n", - "Epoch 515/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1452\n", - "Epoch 516/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1452\n", - "Epoch 517/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1451\n", - "Epoch 518/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.145\n", - "Epoch 519/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.145\n", - "Epoch 520/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1449\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1358\n", "Epoch 521/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1449\n", - "Epoch 522/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1448\n", - "Epoch 523/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1447\n", - "Epoch 524/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1447\n", - "Epoch 525/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1446\n", - "Epoch 526/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1446\n", - "Epoch 527/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1445\n", - "Epoch 528/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1444\n", - "Epoch 529/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1444\n", - "Epoch 530/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1443\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1352\n", "Epoch 531/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1443\n", - "Epoch 532/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1442\n", - "Epoch 533/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1441\n", - "Epoch 534/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1441\n", - "Epoch 535/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.144\n", - "Epoch 536/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.144\n", - "Epoch 537/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1439\n", - "Epoch 538/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1438\n", - "Epoch 539/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1438\n", - "Epoch 540/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1437\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1346\n", "Epoch 541/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1437\n", - "Epoch 542/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1436\n", - "Epoch 543/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1435\n", - "Epoch 544/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1435\n", - "Epoch 545/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1434\n", - "Epoch 546/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1434\n", - "Epoch 547/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1433\n", - "Epoch 548/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1432\n", - "Epoch 549/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1432\n", - "Epoch 550/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1431\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.134\n", "Epoch 551/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1431\n", - "Epoch 552/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.143\n", - "Epoch 553/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1429\n", - "Epoch 554/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1429\n", - "Epoch 555/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1428\n", - "Epoch 556/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1428\n", - "Epoch 557/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1427\n", - "Epoch 558/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1427\n", - "Epoch 559/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1426\n", - "Epoch 560/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1425\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1334\n", "Epoch 561/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1425\n", - "Epoch 562/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1424\n", - "Epoch 563/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1424\n", - "Epoch 564/3000...\n", - "Loss Discriminator: 0.6721\n", + "Loss Discriminator: 0.6729\n", "Loss Generator: 0.727\n", - "Relative Entropy: 0.1423\n", - "Epoch 565/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1422\n", - "Epoch 566/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1422\n", - "Epoch 567/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1421\n", - "Epoch 568/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1421\n", - "Epoch 569/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.142\n", - "Epoch 570/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1419\n", + "Relative Entropy: 0.1328\n", "Epoch 571/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1419\n", - "Epoch 572/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1418\n", - "Epoch 573/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1418\n", - "Epoch 574/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1417\n", - "Epoch 575/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1416\n", - "Epoch 576/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1416\n", - "Epoch 577/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1415\n", - "Epoch 578/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1415\n", - "Epoch 579/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1414\n", - "Epoch 580/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1413\n", - "Epoch 581/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1413\n", - "Epoch 582/3000...\n", - "Loss Discriminator: 0.6717\n", + "Loss Discriminator: 0.6732\n", "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1412\n", - "Epoch 583/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1412\n", - "Epoch 584/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1411\n", - "Epoch 585/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1411\n", - "Epoch 586/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.141\n", - "Epoch 587/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1409\n", - "Epoch 588/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1409\n", - "Epoch 589/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1408\n", - "Epoch 590/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1408\n", + "Relative Entropy: 0.1323\n", + "Epoch 581/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1317\n", "Epoch 591/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1407\n", - "Epoch 592/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1406\n", - "Epoch 593/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1406\n", - "Epoch 594/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1405\n", - "Epoch 595/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1405\n", - "Epoch 596/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1404\n", - "Epoch 597/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1403\n", - "Epoch 598/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1403\n", - "Epoch 599/3000...\n", "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1402\n", - "Epoch 600/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1402\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1311\n", "Epoch 601/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1401\n", - "Epoch 602/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1401\n", - "Epoch 603/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.14\n", - "Epoch 604/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1399\n", - "Epoch 605/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1399\n", - "Epoch 606/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1398\n", - "Epoch 607/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1398\n", - "Epoch 608/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1397\n", - "Epoch 609/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1396\n", - "Epoch 610/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1396\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1305\n", "Epoch 611/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1395\n", - "Epoch 612/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1395\n", - "Epoch 613/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1394\n", - "Epoch 614/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1394\n", - "Epoch 615/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1393\n", - "Epoch 616/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1392\n", - "Epoch 617/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1392\n", - "Epoch 618/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1391\n", - "Epoch 619/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1391\n", - "Epoch 620/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.139\n", - "Epoch 621/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1389\n", - "Epoch 622/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1389\n", - "Epoch 623/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1388\n", - "Epoch 624/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1388\n", - "Epoch 625/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1387\n", - "Epoch 626/3000...\n", - "Loss Discriminator: 0.6725\n", + "Loss Discriminator: 0.6743\n", "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1387\n", - "Epoch 627/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1386\n", - "Epoch 628/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1385\n", - "Epoch 629/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1385\n", - "Epoch 630/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1384\n", + "Relative Entropy: 0.1299\n", + "Epoch 621/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1294\n", "Epoch 631/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1384\n", - "Epoch 632/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1383\n", - "Epoch 633/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1382\n", - "Epoch 634/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1382\n", - "Epoch 635/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1381\n", - "Epoch 636/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1381\n", - "Epoch 637/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.138\n", - "Epoch 638/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.138\n", - "Epoch 639/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1379\n", - "Epoch 640/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1378\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1288\n", "Epoch 641/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1378\n", - "Epoch 642/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1377\n", - "Epoch 643/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1377\n", - "Epoch 644/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1376\n", - "Epoch 645/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1376\n", - "Epoch 646/3000...\n", - "Loss Discriminator: 0.6732\n", + "Loss Discriminator: 0.6754\n", "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1375\n", - "Epoch 647/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1374\n", - "Epoch 648/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1374\n", - "Epoch 649/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1373\n", - "Epoch 650/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1373\n", + "Relative Entropy: 0.1282\n", "Epoch 651/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1372\n", - "Epoch 652/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1371\n", - "Epoch 653/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1371\n", - "Epoch 654/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.137\n", - "Epoch 655/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.137\n", - "Epoch 656/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1369\n", - "Epoch 657/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1369\n", - "Epoch 658/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1368\n", - "Epoch 659/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1367\n", - "Epoch 660/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1367\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1277\n", "Epoch 661/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1366\n", - "Epoch 662/3000...\n", "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1366\n", - "Epoch 663/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1365\n", - "Epoch 664/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1365\n", - "Epoch 665/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1364\n", - "Epoch 666/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1363\n", - "Epoch 667/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1363\n", - "Epoch 668/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1362\n", - "Epoch 669/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1362\n", - "Epoch 670/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1361\n", - "Epoch 671/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1361\n", - "Epoch 672/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.136\n", - "Epoch 673/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1359\n", - "Epoch 674/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1359\n", - "Epoch 675/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1358\n", - "Epoch 676/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1358\n", - "Epoch 677/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1357\n", - "Epoch 678/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1357\n", - "Epoch 679/3000...\n", - "Loss Discriminator: 0.6752\n", "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1356\n", - "Epoch 680/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1355\n", + "Relative Entropy: 0.1271\n", + "Epoch 671/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1265\n", "Epoch 681/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1355\n", - "Epoch 682/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1354\n", - "Epoch 683/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1354\n", - "Epoch 684/3000...\n", "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1353\n", - "Epoch 685/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1353\n", - "Epoch 686/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1352\n", - "Epoch 687/3000...\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.126\n", + "Epoch 691/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1254\n", + "Epoch 701/3000...\n", "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1351\n", - "Epoch 688/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1351\n", - "Epoch 689/3000...\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1249\n", + "Epoch 711/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1243\n", + "Epoch 721/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1237\n", + "Epoch 731/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1232\n", + "Epoch 741/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1226\n", + "Epoch 751/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1221\n", + "Epoch 761/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1216\n", + "Epoch 771/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.121\n", + "Epoch 781/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1205\n", + "Epoch 791/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1199\n", + "Epoch 801/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1194\n", + "Epoch 811/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1188\n", + "Epoch 821/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1183\n", + "Epoch 831/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1178\n", + "Epoch 841/3000...\n", "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.135\n", - "Epoch 690/3000...\n" + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1172\n", + "Epoch 851/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1167\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.135\n", - "Epoch 691/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1349\n", - "Epoch 692/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1349\n", - "Epoch 693/3000...\n", + "Epoch 861/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1162\n", + "Epoch 871/3000...\n", "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1348\n", - "Epoch 694/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1347\n", - "Epoch 695/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1347\n", - "Epoch 696/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1346\n", - "Epoch 697/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1346\n", - "Epoch 698/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1345\n", - "Epoch 699/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1345\n", - "Epoch 700/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1344\n", - "Epoch 701/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1343\n", - "Epoch 702/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1343\n", - "Epoch 703/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1342\n", - "Epoch 704/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1342\n", - "Epoch 705/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1341\n", - "Epoch 706/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1341\n", - "Epoch 707/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.134\n", - "Epoch 708/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1339\n", - "Epoch 709/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1339\n", - "Epoch 710/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1338\n", - "Epoch 711/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1338\n", - "Epoch 712/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1337\n", - "Epoch 713/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1337\n", - "Epoch 714/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1336\n", - "Epoch 715/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1335\n", - "Epoch 716/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1335\n", - "Epoch 717/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1334\n", - "Epoch 718/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1334\n", - "Epoch 719/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1333\n", - "Epoch 720/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1333\n", - "Epoch 721/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1332\n", - "Epoch 722/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1332\n", - "Epoch 723/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1331\n", - "Epoch 724/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.133\n", - "Epoch 725/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.133\n", - "Epoch 726/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1329\n", - "Epoch 727/3000...\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1157\n", + "Epoch 881/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1151\n", + "Epoch 891/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1146\n", + "Epoch 901/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1141\n", + "Epoch 911/3000...\n", "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1329\n", - "Epoch 728/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1328\n", - "Epoch 729/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1328\n", - "Epoch 730/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1327\n", - "Epoch 731/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1326\n", - "Epoch 732/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1326\n", - "Epoch 733/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1325\n", - "Epoch 734/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1325\n", - "Epoch 735/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1324\n", - "Epoch 736/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1324\n", - "Epoch 737/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1323\n", - "Epoch 738/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1323\n", - "Epoch 739/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1322\n", - "Epoch 740/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1321\n", - "Epoch 741/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1321\n", - "Epoch 742/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.132\n", - "Epoch 743/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.132\n", - "Epoch 744/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1319\n", - "Epoch 745/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1319\n", - "Epoch 746/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1318\n", - "Epoch 747/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1318\n", - "Epoch 748/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1317\n", - "Epoch 749/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1316\n", - "Epoch 750/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1316\n", - "Epoch 751/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1315\n", - "Epoch 752/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1315\n", - "Epoch 753/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1314\n", - "Epoch 754/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1314\n", - "Epoch 755/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1313\n", - "Epoch 756/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1312\n", - "Epoch 757/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1312\n", - "Epoch 758/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1311\n", - "Epoch 759/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1311\n", - "Epoch 760/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.131\n", - "Epoch 761/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.131\n", - "Epoch 762/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1309\n", - "Epoch 763/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1309\n", - "Epoch 764/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1308\n", - "Epoch 765/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1307\n", - "Epoch 766/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1307\n", - "Epoch 767/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1306\n", - "Epoch 768/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1306\n", - "Epoch 769/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1305\n", - "Epoch 770/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1305\n", - "Epoch 771/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1304\n", - "Epoch 772/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1304\n", - "Epoch 773/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1303\n", - "Epoch 774/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1302\n", - "Epoch 775/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1302\n", - "Epoch 776/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1301\n", - "Epoch 777/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1301\n", - "Epoch 778/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.13\n", - "Epoch 779/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.13\n", - "Epoch 780/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1299\n", - "Epoch 781/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1299\n", - "Epoch 782/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1298\n", - "Epoch 783/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1298\n", - "Epoch 784/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1297\n", - "Epoch 785/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1296\n", - "Epoch 786/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1296\n", - "Epoch 787/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1295\n", - "Epoch 788/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1295\n", - "Epoch 789/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1294\n", - "Epoch 790/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1294\n", - "Epoch 791/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1293\n", - "Epoch 792/3000...\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1136\n", + "Epoch 921/3000...\n", "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1293\n", - "Epoch 793/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1292\n", - "Epoch 794/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1291\n", - "Epoch 795/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1291\n", - "Epoch 796/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.129\n", - "Epoch 797/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.129\n", - "Epoch 798/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1289\n", - "Epoch 799/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1289\n", - "Epoch 800/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1288\n", - "Epoch 801/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1288\n", - "Epoch 802/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1287\n", - "Epoch 803/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1286\n", - "Epoch 804/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1286\n", - "Epoch 805/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1285\n", - "Epoch 806/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1285\n", - "Epoch 807/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1284\n", - "Epoch 808/3000...\n", - "Loss Discriminator: 0.6748\n", "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1284\n", - "Epoch 809/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1283\n", - "Epoch 810/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1283\n", - "Epoch 811/3000...\n", + "Relative Entropy: 0.1131\n", + "Epoch 931/3000...\n", "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1282\n", - "Epoch 812/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1282\n", - "Epoch 813/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1281\n", - "Epoch 814/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.128\n", - "Epoch 815/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.128\n", - "Epoch 816/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1279\n", - "Epoch 817/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1279\n", - "Epoch 818/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1278\n", - "Epoch 819/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1278\n", - "Epoch 820/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1277\n", - "Epoch 821/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1277\n", - "Epoch 822/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1276\n", - "Epoch 823/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1276\n", - "Epoch 824/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1275\n", - "Epoch 825/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1274\n", - "Epoch 826/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1274\n", - "Epoch 827/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1273\n", - "Epoch 828/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1273\n", - "Epoch 829/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1272\n", - "Epoch 830/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1272\n", - "Epoch 831/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1271\n", - "Epoch 832/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1271\n", - "Epoch 833/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.127\n", - "Epoch 834/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.127\n", - "Epoch 835/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1269\n", - "Epoch 836/3000...\n", - "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1125\n", + "Epoch 941/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.112\n", + "Epoch 951/3000...\n", + "Loss Discriminator: 0.6761\n", "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1268\n", - "Epoch 837/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1268\n", - "Epoch 838/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1267\n", - "Epoch 839/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1267\n", - "Epoch 840/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1266\n", - "Epoch 841/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1266\n", - "Epoch 842/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1265\n", - "Epoch 843/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1265\n", - "Epoch 844/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1264\n", - "Epoch 845/3000...\n", + "Relative Entropy: 0.1115\n", + "Epoch 961/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.111\n", + "Epoch 971/3000...\n", "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1264\n", - "Epoch 846/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1263\n", - "Epoch 847/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1263\n", - "Epoch 848/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1262\n", - "Epoch 849/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1261\n", - "Epoch 850/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1261\n", - "Epoch 851/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.126\n", - "Epoch 852/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.126\n", - "Epoch 853/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1259\n", - "Epoch 854/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1259\n", - "Epoch 855/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1258\n", - "Epoch 856/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1258\n", - "Epoch 857/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1257\n", - "Epoch 858/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1257\n", - "Epoch 859/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1256\n", - "Epoch 860/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1256\n", - "Epoch 861/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1255\n", - "Epoch 862/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1254\n", - "Epoch 863/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1254\n", - "Epoch 864/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1253\n", - "Epoch 865/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1253\n", - "Epoch 866/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1252\n", - "Epoch 867/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1252\n", - "Epoch 868/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1251\n", - "Epoch 869/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1251\n", - "Epoch 870/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.125\n", - "Epoch 871/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.125\n", - "Epoch 872/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1249\n", - "Epoch 873/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1249\n", - "Epoch 874/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1248\n", - "Epoch 875/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1247\n", - "Epoch 876/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1247\n", - "Epoch 877/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1246\n", - "Epoch 878/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1246\n", - "Epoch 879/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1245\n", - "Epoch 880/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1245\n", - "Epoch 881/3000...\n", - "Loss Discriminator: 0.6745\n", "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1244\n", - "Epoch 882/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1244\n", - "Epoch 883/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1243\n", - "Epoch 884/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1243\n", - "Epoch 885/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1242\n", - "Epoch 886/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1242\n", - "Epoch 887/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1241\n", - "Epoch 888/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1241\n", - "Epoch 889/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.124\n", - "Epoch 890/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1239\n", - "Epoch 891/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1239\n", - "Epoch 892/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1238\n", - "Epoch 893/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1238\n", - "Epoch 894/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1237\n", - "Epoch 895/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1237\n", - "Epoch 896/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1236\n", - "Epoch 897/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1236\n", - "Epoch 898/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1235\n", - "Epoch 899/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1235\n", - "Epoch 900/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1234\n", - "Epoch 901/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1234\n", - "Epoch 902/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1233\n", - "Epoch 903/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1233\n", - "Epoch 904/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1232\n", - "Epoch 905/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1232\n", - "Epoch 906/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1231\n", - "Epoch 907/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.123\n", - "Epoch 908/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.123\n", - "Epoch 909/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1229\n", - "Epoch 910/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1229\n", - "Epoch 911/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1228\n", - "Epoch 912/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1228\n", - "Epoch 913/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1227\n", - "Epoch 914/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1227\n", - "Epoch 915/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1226\n", - "Epoch 916/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1226\n", - "Epoch 917/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1225\n", - "Epoch 918/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1225\n", - "Epoch 919/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1224\n", - "Epoch 920/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1224\n", - "Epoch 921/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1223\n", - "Epoch 922/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1223\n", - "Epoch 923/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1222\n", - "Epoch 924/3000...\n", + "Relative Entropy: 0.1105\n", + "Epoch 981/3000...\n", "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1221\n", - "Epoch 925/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1221\n", - "Epoch 926/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.122\n", - "Epoch 927/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.122\n", - "Epoch 928/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1219\n", - "Epoch 929/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1219\n", - "Epoch 930/3000...\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.11\n", + "Epoch 991/3000...\n", "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1218\n", - "Epoch 931/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1218\n", - "Epoch 932/3000...\n", - "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1095\n", + "Epoch 1001/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.109\n", + "Epoch 1011/3000...\n", + "Loss Discriminator: 0.6771\n", "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1217\n", - "Epoch 933/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1217\n", - "Epoch 934/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1216\n", - "Epoch 935/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1216\n", - "Epoch 936/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1215\n", - "Epoch 937/3000...\n", + "Relative Entropy: 0.1085\n", + "Epoch 1021/3000...\n", "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1215\n", - "Epoch 938/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1214\n", - "Epoch 939/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1214\n", - "Epoch 940/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1213\n", - "Epoch 941/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1213\n", - "Epoch 942/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1212\n", - "Epoch 943/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1212\n", - "Epoch 944/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1211\n", - "Epoch 945/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.121\n", - "Epoch 946/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.121\n", - "Epoch 947/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1209\n", - "Epoch 948/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1209\n", - "Epoch 949/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1208\n", - "Epoch 950/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1208\n", - "Epoch 951/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1207\n", - "Epoch 952/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1207\n", - "Epoch 953/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1206\n", - "Epoch 954/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1206\n", - "Epoch 955/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1205\n", - "Epoch 956/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1205\n", - "Epoch 957/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1204\n", - "Epoch 958/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1204\n", - "Epoch 959/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1203\n", - "Epoch 960/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1203\n", - "Epoch 961/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1202\n", - "Epoch 962/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1202\n", - "Epoch 963/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1201\n", - "Epoch 964/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1201\n", - "Epoch 965/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.12\n", - "Epoch 966/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.12\n", - "Epoch 967/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1199\n", - "Epoch 968/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1199\n", - "Epoch 969/3000...\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.108\n", + "Epoch 1031/3000...\n", "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1198\n", - "Epoch 970/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1197\n", - "Epoch 971/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1197\n", - "Epoch 972/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1196\n", - "Epoch 973/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1196\n", - "Epoch 974/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1195\n", - "Epoch 975/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1195\n", - "Epoch 976/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1194\n", - "Epoch 977/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1194\n", - "Epoch 978/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1193\n", - "Epoch 979/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1193\n", - "Epoch 980/3000...\n", - "Loss Discriminator: 0.675\n", "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1192\n", - "Epoch 981/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1192\n", - "Epoch 982/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1191\n", - "Epoch 983/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1191\n", - "Epoch 984/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.119\n", - "Epoch 985/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.119\n", - "Epoch 986/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1189\n", - "Epoch 987/3000...\n", + "Relative Entropy: 0.1075\n", + "Epoch 1041/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.107\n", + "Epoch 1051/3000...\n", "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1189\n", - "Epoch 988/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1188\n", - "Epoch 989/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1188\n", - "Epoch 990/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1187\n", - "Epoch 991/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1187\n", - "Epoch 992/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1186\n", - "Epoch 993/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1186\n", - "Epoch 994/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1185\n", - "Epoch 995/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1185\n", - "Epoch 996/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1184\n", - "Epoch 997/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1184\n", - "Epoch 998/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1183\n", - "Epoch 999/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1183\n", - "Epoch 1000/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1182\n", - "Epoch 1001/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1182\n", - "Epoch 1002/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1181\n", - "Epoch 1003/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.118\n", - "Epoch 1004/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.118\n", - "Epoch 1005/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1179\n", - "Epoch 1006/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1179\n", - "Epoch 1007/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1178\n", - "Epoch 1008/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1178\n", - "Epoch 1009/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1177\n", - "Epoch 1010/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1177\n", - "Epoch 1011/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1176\n", - "Epoch 1012/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1176\n", - "Epoch 1013/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1175\n", - "Epoch 1014/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1175\n", - "Epoch 1015/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1174\n", - "Epoch 1016/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1174\n", - "Epoch 1017/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1173\n", - "Epoch 1018/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1173\n", - "Epoch 1019/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1172\n", - "Epoch 1020/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1172\n", - "Epoch 1021/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1171\n", - "Epoch 1022/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1171\n", - "Epoch 1023/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.117\n", - "Epoch 1024/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.117\n", - "Epoch 1025/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1169\n", - "Epoch 1026/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1169\n", - "Epoch 1027/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1168\n", - "Epoch 1028/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1168\n", - "Epoch 1029/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1167\n", - "Epoch 1030/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1167\n", - "Epoch 1031/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1166\n", - "Epoch 1032/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1166\n", - "Epoch 1033/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1165\n", - "Epoch 1034/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1165\n", - "Epoch 1035/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1164\n", - "Epoch 1036/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1164\n", - "Epoch 1037/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1163\n", - "Epoch 1038/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1163\n", - "Epoch 1039/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1162\n", - "Epoch 1040/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1162\n", - "Epoch 1041/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1161\n", - "Epoch 1042/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1161\n", - "Epoch 1043/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.116\n", - "Epoch 1044/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.116\n", - "Epoch 1045/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1159\n", - "Epoch 1046/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1159\n", - "Epoch 1047/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1158\n", - "Epoch 1048/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1158\n", - "Epoch 1049/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1157\n", - "Epoch 1050/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1157\n", - "Epoch 1051/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1156\n", - "Epoch 1052/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1156\n", - "Epoch 1053/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1155\n", - "Epoch 1054/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1155\n", - "Epoch 1055/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1154\n", - "Epoch 1056/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1154\n", - "Epoch 1057/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1153\n", - "Epoch 1058/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1153\n", - "Epoch 1059/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1152\n", - "Epoch 1060/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1152\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1065\n", "Epoch 1061/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1151\n", - "Epoch 1062/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1151\n", - "Epoch 1063/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.115\n", - "Epoch 1064/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.115\n", - "Epoch 1065/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1149\n", - "Epoch 1066/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1149\n", - "Epoch 1067/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1148\n", - "Epoch 1068/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1148\n", - "Epoch 1069/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1147\n", - "Epoch 1070/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1147\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.106\n", "Epoch 1071/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1146\n", - "Epoch 1072/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1146\n", - "Epoch 1073/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1145\n", - "Epoch 1074/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1145\n", - "Epoch 1075/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1144\n", - "Epoch 1076/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1144\n", - "Epoch 1077/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1143\n", - "Epoch 1078/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1143\n", - "Epoch 1079/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1142\n", - "Epoch 1080/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1142\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1055\n", "Epoch 1081/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1141\n", - "Epoch 1082/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1141\n", - "Epoch 1083/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.114\n", - "Epoch 1084/3000...\n", "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.114\n", - "Epoch 1085/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1139\n", - "Epoch 1086/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1139\n", - "Epoch 1087/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1138\n", - "Epoch 1088/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1138\n", - "Epoch 1089/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1137\n", - "Epoch 1090/3000...\n", - "Loss Discriminator: 0.6776\n", "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1137\n", + "Relative Entropy: 0.105\n", "Epoch 1091/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1136\n", - "Epoch 1092/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1136\n", - "Epoch 1093/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1135\n", - "Epoch 1094/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1135\n", - "Epoch 1095/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1134\n", - "Epoch 1096/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1134\n", - "Epoch 1097/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1133\n", - "Epoch 1098/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1133\n", - "Epoch 1099/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1132\n", - "Epoch 1100/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1132\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1046\n", "Epoch 1101/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1131\n", - "Epoch 1102/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1131\n", - "Epoch 1103/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.113\n", - "Epoch 1104/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.113\n", - "Epoch 1105/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1129\n", - "Epoch 1106/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1129\n", - "Epoch 1107/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1128\n", - "Epoch 1108/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1128\n", - "Epoch 1109/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1127\n", - "Epoch 1110/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1127\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1041\n", "Epoch 1111/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1126\n", - "Epoch 1112/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1126\n", - "Epoch 1113/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1125\n", - "Epoch 1114/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1125\n", - "Epoch 1115/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1124\n", - "Epoch 1116/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1124\n", - "Epoch 1117/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1123\n", - "Epoch 1118/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1123\n", - "Epoch 1119/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1122\n", - "Epoch 1120/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1122\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1036\n", "Epoch 1121/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1121\n", - "Epoch 1122/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1121\n", - "Epoch 1123/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.112\n", - "Epoch 1124/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.112\n", - "Epoch 1125/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1119\n", - "Epoch 1126/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1119\n", - "Epoch 1127/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1118\n", - "Epoch 1128/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1118\n", - "Epoch 1129/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1118\n", - "Epoch 1130/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1117\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1031\n", "Epoch 1131/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1117\n", - "Epoch 1132/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1116\n", - "Epoch 1133/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1116\n", - "Epoch 1134/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1115\n", - "Epoch 1135/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1115\n", - "Epoch 1136/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1114\n", - "Epoch 1137/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1114\n", - "Epoch 1138/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1113\n", - "Epoch 1139/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1113\n", - "Epoch 1140/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1112\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1026\n", "Epoch 1141/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1112\n", - "Epoch 1142/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1111\n", - "Epoch 1143/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1111\n", - "Epoch 1144/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.111\n", - "Epoch 1145/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.111\n", - "Epoch 1146/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1109\n", - "Epoch 1147/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1109\n", - "Epoch 1148/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1108\n", - "Epoch 1149/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1108\n", - "Epoch 1150/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1107\n", - "Epoch 1151/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1107\n", - "Epoch 1152/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1106\n", - "Epoch 1153/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1106\n", - "Epoch 1154/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1105\n", - "Epoch 1155/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1105\n", - "Epoch 1156/3000...\n", "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1104\n", - "Epoch 1157/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1104\n", - "Epoch 1158/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1103\n", - "Epoch 1159/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1103\n", - "Epoch 1160/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1102\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1022\n", + "Epoch 1151/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1017\n", "Epoch 1161/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1102\n", - "Epoch 1162/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1101\n", - "Epoch 1163/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1101\n", - "Epoch 1164/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1101\n", - "Epoch 1165/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.11\n", - "Epoch 1166/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.11\n", - "Epoch 1167/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1099\n", - "Epoch 1168/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1099\n", - "Epoch 1169/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1098\n", - "Epoch 1170/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1098\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1012\n", "Epoch 1171/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1097\n", - "Epoch 1172/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1097\n", - "Epoch 1173/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1096\n", - "Epoch 1174/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1096\n", - "Epoch 1175/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1095\n", - "Epoch 1176/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1095\n", - "Epoch 1177/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1094\n", - "Epoch 1178/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1094\n", - "Epoch 1179/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1093\n", - "Epoch 1180/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.1093\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1007\n", "Epoch 1181/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1092\n", - "Epoch 1182/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1092\n", - "Epoch 1183/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1091\n", - "Epoch 1184/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.1091\n", - "Epoch 1185/3000...\n", - "Loss Discriminator: 0.6784\n", + "Loss Discriminator: 0.6792\n", "Loss Generator: 0.7193\n", - "Relative Entropy: 0.109\n", - "Epoch 1186/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.109\n", - "Epoch 1187/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1089\n", - "Epoch 1188/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1089\n", - "Epoch 1189/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1089\n", - "Epoch 1190/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1088\n", + "Relative Entropy: 0.1003\n", "Epoch 1191/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1088\n", - "Epoch 1192/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1087\n", - "Epoch 1193/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1087\n", - "Epoch 1194/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1086\n", - "Epoch 1195/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1086\n", - "Epoch 1196/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1085\n", - "Epoch 1197/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1085\n", - "Epoch 1198/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1084\n", - "Epoch 1199/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1084\n", - "Epoch 1200/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1083\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.0998\n", "Epoch 1201/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1083\n", - "Epoch 1202/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1082\n", - "Epoch 1203/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1082\n", - "Epoch 1204/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1081\n", - "Epoch 1205/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1081\n", - "Epoch 1206/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.108\n", - "Epoch 1207/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.108\n", - "Epoch 1208/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1079\n", - "Epoch 1209/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1079\n", - "Epoch 1210/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1079\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.0993\n", "Epoch 1211/3000...\n", - "Loss Discriminator: 0.6763\n", + "Loss Discriminator: 0.6804\n", "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1078\n", - "Epoch 1212/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1078\n", - "Epoch 1213/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1077\n", - "Epoch 1214/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1077\n", - "Epoch 1215/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1076\n", - "Epoch 1216/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1076\n", - "Epoch 1217/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1075\n", - "Epoch 1218/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1075\n", - "Epoch 1219/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1074\n", - "Epoch 1220/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1074\n", + "Relative Entropy: 0.0989\n", "Epoch 1221/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1073\n", - "Epoch 1222/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1073\n", - "Epoch 1223/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1072\n", - "Epoch 1224/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1072\n", - "Epoch 1225/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1071\n", - "Epoch 1226/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1071\n", - "Epoch 1227/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1071\n", - "Epoch 1228/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.107\n", - "Epoch 1229/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.107\n", - "Epoch 1230/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1069\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.0984\n", "Epoch 1231/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.1069\n", - "Epoch 1232/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1068\n", - "Epoch 1233/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1068\n", - "Epoch 1234/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1067\n", - "Epoch 1235/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1067\n", - "Epoch 1236/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1066\n", - "Epoch 1237/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1066\n", - "Epoch 1238/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1065\n", - "Epoch 1239/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1065\n", - "Epoch 1240/3000...\n", "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1064\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.098\n", "Epoch 1241/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1064\n", - "Epoch 1242/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1063\n", - "Epoch 1243/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1063\n", - "Epoch 1244/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1063\n", - "Epoch 1245/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1062\n", - "Epoch 1246/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1062\n", - "Epoch 1247/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1061\n", - "Epoch 1248/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1061\n", - "Epoch 1249/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.106\n", - "Epoch 1250/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.106\n", - "Epoch 1251/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1059\n", - "Epoch 1252/3000...\n", "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1059\n", - "Epoch 1253/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1058\n", - "Epoch 1254/3000...\n", - "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0975\n", + "Epoch 1251/3000...\n", + "Loss Discriminator: 0.6804\n", "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1058\n", - "Epoch 1255/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1057\n", - "Epoch 1256/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1057\n", - "Epoch 1257/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1056\n", - "Epoch 1258/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1056\n", - "Epoch 1259/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1056\n", - "Epoch 1260/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1055\n", + "Relative Entropy: 0.097\n", "Epoch 1261/3000...\n", - "Loss Discriminator: 0.6763\n", + "Loss Discriminator: 0.6794\n", "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1055\n", - "Epoch 1262/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1054\n", - "Epoch 1263/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1054\n", - "Epoch 1264/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1053\n", - "Epoch 1265/3000...\n", + "Relative Entropy: 0.0966\n", + "Epoch 1271/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.0961\n", + "Epoch 1281/3000...\n", "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1053\n", - "Epoch 1266/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1052\n", - "Epoch 1267/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1052\n", - "Epoch 1268/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1051\n", - "Epoch 1269/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.1051\n", - "Epoch 1270/3000...\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0957\n", + "Epoch 1291/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0952\n", + "Epoch 1301/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0948\n", + "Epoch 1311/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0943\n", + "Epoch 1321/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0939\n", + "Epoch 1331/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0935\n", + "Epoch 1341/3000...\n", "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.105\n", - "Epoch 1271/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.105\n", - "Epoch 1272/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.105\n", - "Epoch 1273/3000...\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.093\n", + "Epoch 1351/3000...\n", "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1049\n", - "Epoch 1274/3000...\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0926\n", + "Epoch 1361/3000...\n", "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.1049\n", - "Epoch 1275/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1048\n", - "Epoch 1276/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1048\n", - "Epoch 1277/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1047\n", - "Epoch 1278/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.1047\n", - "Epoch 1279/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1046\n", - "Epoch 1280/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1046\n", - "Epoch 1281/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1045\n", - "Epoch 1282/3000...\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0921\n", + "Epoch 1371/3000...\n", "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1045\n", - "Epoch 1283/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1044\n", - "Epoch 1284/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1044\n", - "Epoch 1285/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1044\n", - "Epoch 1286/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1043\n", - "Epoch 1287/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1043\n", - "Epoch 1288/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1042\n", - "Epoch 1289/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1042\n", - "Epoch 1290/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1041\n", - "Epoch 1291/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1041\n", - "Epoch 1292/3000...\n", - "Loss Discriminator: 0.677\n", "Loss Generator: 0.7152\n", - "Relative Entropy: 0.104\n", - "Epoch 1293/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.104\n", - "Epoch 1294/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1039\n", - "Epoch 1295/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1039\n", - "Epoch 1296/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1038\n", - "Epoch 1297/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1038\n", - "Epoch 1298/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1038\n", - "Epoch 1299/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1037\n", - "Epoch 1300/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1037\n", - "Epoch 1301/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1036\n", - "Epoch 1302/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1036\n", - "Epoch 1303/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1035\n", - "Epoch 1304/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1035\n", - "Epoch 1305/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1034\n", - "Epoch 1306/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1034\n", - "Epoch 1307/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1033\n", - "Epoch 1308/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1033\n", - "Epoch 1309/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1033\n", - "Epoch 1310/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1032\n", - "Epoch 1311/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1032\n", - "Epoch 1312/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1031\n", - "Epoch 1313/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1031\n", - "Epoch 1314/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.103\n", - "Epoch 1315/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.103\n", - "Epoch 1316/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1029\n", - "Epoch 1317/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1029\n", - "Epoch 1318/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1028\n", - "Epoch 1319/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1028\n", - "Epoch 1320/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.1027\n", - "Epoch 1321/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.1027\n", - "Epoch 1322/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1027\n", - "Epoch 1323/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1026\n", - "Epoch 1324/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1026\n", - "Epoch 1325/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1025\n", - "Epoch 1326/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1025\n", - "Epoch 1327/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1024\n", - "Epoch 1328/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1024\n", - "Epoch 1329/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1023\n", - "Epoch 1330/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.1023\n", - "Epoch 1331/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1022\n", - "Epoch 1332/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1022\n", - "Epoch 1333/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1022\n", - "Epoch 1334/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1021\n", - "Epoch 1335/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1021\n", - "Epoch 1336/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.102\n", - "Epoch 1337/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.102\n", - "Epoch 1338/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1019\n", - "Epoch 1339/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1019\n", - "Epoch 1340/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1018\n", - "Epoch 1341/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1018\n", - "Epoch 1342/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1017\n", - "Epoch 1343/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1017\n", - "Epoch 1344/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1017\n", - "Epoch 1345/3000...\n", + "Relative Entropy: 0.0917\n", + "Epoch 1381/3000...\n", "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1016\n", - "Epoch 1346/3000...\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0913\n", + "Epoch 1391/3000...\n", "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1016\n", - "Epoch 1347/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1015\n", - "Epoch 1348/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1015\n", - "Epoch 1349/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1014\n", - "Epoch 1350/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1014\n", - "Epoch 1351/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1013\n", - "Epoch 1352/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1013\n", - "Epoch 1353/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1012\n", - "Epoch 1354/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.1012\n", - "Epoch 1355/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1012\n", - "Epoch 1356/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1011\n", - "Epoch 1357/3000...\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0908\n", + "Epoch 1401/3000...\n", "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.1011\n", - "Epoch 1358/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.101\n", - "Epoch 1359/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.101\n", - "Epoch 1360/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1009\n", - "Epoch 1361/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1009\n", - "Epoch 1362/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1008\n", - "Epoch 1363/3000...\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0904\n", + "Epoch 1411/3000...\n", "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.1008\n", - "Epoch 1364/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1007\n", - "Epoch 1365/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1007\n", - "Epoch 1366/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.1006\n", - "Epoch 1367/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1006\n", - "Epoch 1368/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1006\n", - "Epoch 1369/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1005\n", - "Epoch 1370/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.1005\n", - "Epoch 1371/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1004\n", - "Epoch 1372/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1004\n", - "Epoch 1373/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1003\n", - "Epoch 1374/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1003\n", - "Epoch 1375/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1002\n", - "Epoch 1376/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1002\n", - "Epoch 1377/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1001\n", - "Epoch 1378/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1001\n", - "Epoch 1379/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1\n", - "Epoch 1380/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1\n", - "Epoch 1381/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0999\n", - "Epoch 1382/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0999\n", - "Epoch 1383/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.0999\n", - "Epoch 1384/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0998\n", - "Epoch 1385/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0998\n", - "Epoch 1386/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.0997\n", - "Epoch 1387/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0997\n", - "Epoch 1388/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0996\n", - "Epoch 1389/3000...\n", - "Loss Discriminator: 0.6776\n", "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0996\n", - "Epoch 1390/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0995\n", - "Epoch 1391/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0995\n", - "Epoch 1392/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.0994\n", - "Epoch 1393/3000...\n", + "Relative Entropy: 0.0899\n", + "Epoch 1421/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0895\n", + "Epoch 1431/3000...\n", "Loss Discriminator: 0.679\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0994\n", - "Epoch 1394/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0993\n", - "Epoch 1395/3000...\n", - "Loss Discriminator: 0.6808\n", "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0993\n", - "Epoch 1396/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0992\n", - "Epoch 1397/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.0992\n", - "Epoch 1398/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0992\n", - "Epoch 1399/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0991\n", - "Epoch 1400/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.0991\n", - "Epoch 1401/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.099\n", - "Epoch 1402/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.099\n", - "Epoch 1403/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0989\n", - "Epoch 1404/3000...\n", + "Relative Entropy: 0.089\n", + "Epoch 1441/3000...\n", "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0989\n", - "Epoch 1405/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.0988\n", - "Epoch 1406/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0988\n", - "Epoch 1407/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0987\n", - "Epoch 1408/3000...\n", - "Loss Discriminator: 0.6808\n", "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0987\n", - "Epoch 1409/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.0986\n", - "Epoch 1410/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0986\n", - "Epoch 1411/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0985\n", - "Epoch 1412/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0985\n", - "Epoch 1413/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.0984\n", - "Epoch 1414/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0984\n", - "Epoch 1415/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0983\n", - "Epoch 1416/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0983\n", - "Epoch 1417/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0982\n", - "Epoch 1418/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.0982\n", - "Epoch 1419/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0981\n", - "Epoch 1420/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0981\n", - "Epoch 1421/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0981\n", - "Epoch 1422/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.098\n", - "Epoch 1423/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.098\n", - "Epoch 1424/3000...\n", - "Loss Discriminator: 0.6785\n", + "Relative Entropy: 0.0886\n", + "Epoch 1451/3000...\n", + "Loss Discriminator: 0.6804\n", "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0979\n", - "Epoch 1425/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0979\n", - "Epoch 1426/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0978\n", - "Epoch 1427/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0978\n", - "Epoch 1428/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0977\n", - "Epoch 1429/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0977\n", - "Epoch 1430/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0976\n", - "Epoch 1431/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0976\n", - "Epoch 1432/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0975\n", - "Epoch 1433/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.0975\n", - "Epoch 1434/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0974\n", - "Epoch 1435/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0974\n", - "Epoch 1436/3000...\n", + "Relative Entropy: 0.0881\n", + "Epoch 1461/3000...\n", "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0973\n", - "Epoch 1437/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.0973\n", - "Epoch 1438/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0972\n", - "Epoch 1439/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0972\n", - "Epoch 1440/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0971\n", - "Epoch 1441/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0971\n", - "Epoch 1442/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0971\n", - "Epoch 1443/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.097\n", - "Epoch 1444/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.097\n", - "Epoch 1445/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0969\n", - "Epoch 1446/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0969\n", - "Epoch 1447/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0968\n", - "Epoch 1448/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0968\n", - "Epoch 1449/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0967\n", - "Epoch 1450/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0967\n", - "Epoch 1451/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0966\n", - "Epoch 1452/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0966\n", - "Epoch 1453/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0965\n", - "Epoch 1454/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0965\n", - "Epoch 1455/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0964\n", - "Epoch 1456/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0964\n", - "Epoch 1457/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0963\n", - "Epoch 1458/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0963\n", - "Epoch 1459/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0962\n", - "Epoch 1460/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0962\n", - "Epoch 1461/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0961\n", - "Epoch 1462/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0961\n", - "Epoch 1463/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.096\n", - "Epoch 1464/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.096\n", - "Epoch 1465/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0959\n", - "Epoch 1466/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0959\n", - "Epoch 1467/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0958\n", - "Epoch 1468/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0958\n", - "Epoch 1469/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0957\n", - "Epoch 1470/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0957\n", - "Epoch 1471/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0956\n", - "Epoch 1472/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0956\n", - "Epoch 1473/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0955\n", - "Epoch 1474/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0955\n", - "Epoch 1475/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0955\n", - "Epoch 1476/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0954\n", - "Epoch 1477/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0954\n", - "Epoch 1478/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0953\n", - "Epoch 1479/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0953\n", - "Epoch 1480/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0952\n", - "Epoch 1481/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0952\n", - "Epoch 1482/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.0951\n", - "Epoch 1483/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0951\n", - "Epoch 1484/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.095\n", - "Epoch 1485/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.095\n", - "Epoch 1486/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0949\n", - "Epoch 1487/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0949\n", - "Epoch 1488/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0948\n", - "Epoch 1489/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0948\n", - "Epoch 1490/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0947\n", - "Epoch 1491/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0947\n", - "Epoch 1492/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.0946\n", - "Epoch 1493/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0946\n", - "Epoch 1494/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0945\n", - "Epoch 1495/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0945\n", - "Epoch 1496/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0944\n", - "Epoch 1497/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0944\n", - "Epoch 1498/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0943\n", - "Epoch 1499/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0943\n", - "Epoch 1500/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0942\n", - "Epoch 1501/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0942\n", - "Epoch 1502/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0941\n", - "Epoch 1503/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0941\n", - "Epoch 1504/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0941\n", - "Epoch 1505/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.094\n", - "Epoch 1506/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.094\n", - "Epoch 1507/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0939\n", - "Epoch 1508/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0939\n", - "Epoch 1509/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0938\n", - "Epoch 1510/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0938\n", - "Epoch 1511/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.0937\n", - "Epoch 1512/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0937\n", - "Epoch 1513/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0936\n", - "Epoch 1514/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0936\n", - "Epoch 1515/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0935\n", - "Epoch 1516/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0935\n", - "Epoch 1517/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0934\n", - "Epoch 1518/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0934\n", - "Epoch 1519/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0933\n", - "Epoch 1520/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0933\n", - "Epoch 1521/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0932\n", - "Epoch 1522/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0932\n", - "Epoch 1523/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0931\n", - "Epoch 1524/3000...\n", - "Loss Discriminator: 0.6802\n", "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0931\n", - "Epoch 1525/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.093\n", - "Epoch 1526/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.093\n", - "Epoch 1527/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0929\n", - "Epoch 1528/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0929\n", - "Epoch 1529/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0929\n", - "Epoch 1530/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0928\n", - "Epoch 1531/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0928\n", - "Epoch 1532/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0927\n", - "Epoch 1533/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0927\n", - "Epoch 1534/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0926\n", - "Epoch 1535/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0926\n", - "Epoch 1536/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0925\n", - "Epoch 1537/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0925\n", - "Epoch 1538/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0924\n", - "Epoch 1539/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0924\n", - "Epoch 1540/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0923\n", - "Epoch 1541/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0923\n", - "Epoch 1542/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0922\n", - "Epoch 1543/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0922\n", - "Epoch 1544/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0921\n", - "Epoch 1545/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0921\n", - "Epoch 1546/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.092\n", - "Epoch 1547/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.092\n", - "Epoch 1548/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0919\n", - "Epoch 1549/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0919\n", - "Epoch 1550/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0918\n", - "Epoch 1551/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0918\n", - "Epoch 1552/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.0917\n", - "Epoch 1553/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0917\n", - "Epoch 1554/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0916\n", - "Epoch 1555/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0916\n", - "Epoch 1556/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0915\n", - "Epoch 1557/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0915\n", - "Epoch 1558/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0915\n", - "Epoch 1559/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0914\n", - "Epoch 1560/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0914\n", - "Epoch 1561/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0913\n", - "Epoch 1562/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0913\n", - "Epoch 1563/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0912\n", - "Epoch 1564/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0912\n", - "Epoch 1565/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0911\n", - "Epoch 1566/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0911\n", - "Epoch 1567/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.091\n", - "Epoch 1568/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.091\n", - "Epoch 1569/3000...\n", + "Relative Entropy: 0.0877\n", + "Epoch 1471/3000...\n", "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0909\n", - "Epoch 1570/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0909\n", - "Epoch 1571/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0908\n", - "Epoch 1572/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0908\n", - "Epoch 1573/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0907\n", - "Epoch 1574/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0907\n", - "Epoch 1575/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0906\n", - "Epoch 1576/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0906\n", - "Epoch 1577/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0905\n", - "Epoch 1578/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0905\n", - "Epoch 1579/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0904\n", - "Epoch 1580/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0904\n", - "Epoch 1581/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0903\n", - "Epoch 1582/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0903\n", - "Epoch 1583/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0903\n", - "Epoch 1584/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0902\n", - "Epoch 1585/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0902\n", - "Epoch 1586/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0901\n", - "Epoch 1587/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0901\n", - "Epoch 1588/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.09\n", - "Epoch 1589/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.09\n", - "Epoch 1590/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0899\n", - "Epoch 1591/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0899\n", - "Epoch 1592/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0898\n", - "Epoch 1593/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0898\n", - "Epoch 1594/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0897\n", - "Epoch 1595/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0897\n", - "Epoch 1596/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0896\n", - "Epoch 1597/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0896\n", - "Epoch 1598/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0895\n", - "Epoch 1599/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0895\n", - "Epoch 1600/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0894\n", - "Epoch 1601/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0894\n", - "Epoch 1602/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0894\n", - "Epoch 1603/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0893\n", - "Epoch 1604/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0893\n", - "Epoch 1605/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0892\n", - "Epoch 1606/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0892\n", - "Epoch 1607/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0891\n", - "Epoch 1608/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0891\n", - "Epoch 1609/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.089\n", - "Epoch 1610/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.089\n", - "Epoch 1611/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0889\n", - "Epoch 1612/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0889\n", - "Epoch 1613/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0888\n", - "Epoch 1614/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0888\n", - "Epoch 1615/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0887\n", - "Epoch 1616/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0887\n", - "Epoch 1617/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0886\n", - "Epoch 1618/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0886\n", - "Epoch 1619/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0886\n", - "Epoch 1620/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0885\n", - "Epoch 1621/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0885\n", - "Epoch 1622/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0884\n", - "Epoch 1623/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0884\n", - "Epoch 1624/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0883\n", - "Epoch 1625/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0883\n", - "Epoch 1626/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0882\n", - "Epoch 1627/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0882\n", - "Epoch 1628/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0881\n", - "Epoch 1629/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0881\n", - "Epoch 1630/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.088\n", - "Epoch 1631/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.088\n", - "Epoch 1632/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0879\n", - "Epoch 1633/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0879\n", - "Epoch 1634/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0878\n", - "Epoch 1635/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0878\n", - "Epoch 1636/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0878\n", - "Epoch 1637/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0877\n", - "Epoch 1638/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0877\n", - "Epoch 1639/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0876\n", - "Epoch 1640/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0876\n", - "Epoch 1641/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0875\n", - "Epoch 1642/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0875\n", - "Epoch 1643/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0874\n", - "Epoch 1644/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0874\n", - "Epoch 1645/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0873\n", - "Epoch 1646/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0873\n", - "Epoch 1647/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0872\n", - "Epoch 1648/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0872\n", - "Epoch 1649/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0871\n", - "Epoch 1650/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0871\n", - "Epoch 1651/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.087\n", - "Epoch 1652/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.087\n", - "Epoch 1653/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.087\n", - "Epoch 1654/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0869\n", - "Epoch 1655/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0869\n", - "Epoch 1656/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0868\n", - "Epoch 1657/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0868\n", - "Epoch 1658/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0867\n", - "Epoch 1659/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0867\n", - "Epoch 1660/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0866\n", - "Epoch 1661/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0866\n", - "Epoch 1662/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0865\n", - "Epoch 1663/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0865\n", - "Epoch 1664/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0864\n", - "Epoch 1665/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0864\n", - "Epoch 1666/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0864\n", - "Epoch 1667/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0863\n", - "Epoch 1668/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0863\n", - "Epoch 1669/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0862\n", - "Epoch 1670/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0862\n", - "Epoch 1671/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0861\n", - "Epoch 1672/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0861\n", - "Epoch 1673/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.086\n", - "Epoch 1674/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.086\n", - "Epoch 1675/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0859\n", - "Epoch 1676/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0859\n", - "Epoch 1677/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0858\n", - "Epoch 1678/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0858\n", - "Epoch 1679/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0857\n", - "Epoch 1680/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0857\n", - "Epoch 1681/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0857\n", - "Epoch 1682/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0856\n", - "Epoch 1683/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0856\n", - "Epoch 1684/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0855\n", - "Epoch 1685/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0855\n", - "Epoch 1686/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0854\n", - "Epoch 1687/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0854\n", - "Epoch 1688/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0853\n", - "Epoch 1689/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0853\n", - "Epoch 1690/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0852\n", - "Epoch 1691/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0852\n", - "Epoch 1692/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0851\n", - "Epoch 1693/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0851\n", - "Epoch 1694/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0851\n", - "Epoch 1695/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.085\n", - "Epoch 1696/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.085\n", - "Epoch 1697/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0849\n", - "Epoch 1698/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0849\n", - "Epoch 1699/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0848\n", - "Epoch 1700/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0848\n", - "Epoch 1701/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0847\n", - "Epoch 1702/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0847\n", - "Epoch 1703/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0846\n", - "Epoch 1704/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0846\n", - "Epoch 1705/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0845\n", - "Epoch 1706/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0845\n", - "Epoch 1707/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0845\n", - "Epoch 1708/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0844\n", - "Epoch 1709/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0844\n", - "Epoch 1710/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0843\n", - "Epoch 1711/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0843\n", - "Epoch 1712/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0842\n", - "Epoch 1713/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0842\n", - "Epoch 1714/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0841\n", - "Epoch 1715/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0841\n", - "Epoch 1716/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.084\n", - "Epoch 1717/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.084\n", - "Epoch 1718/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0839\n", - "Epoch 1719/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0839\n", - "Epoch 1720/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0839\n", - "Epoch 1721/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0838\n", - "Epoch 1722/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0838\n", - "Epoch 1723/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0837\n", - "Epoch 1724/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0837\n", - "Epoch 1725/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0836\n", - "Epoch 1726/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0836\n", - "Epoch 1727/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0835\n", - "Epoch 1728/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0835\n", - "Epoch 1729/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0834\n", - "Epoch 1730/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0834\n", - "Epoch 1731/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0833\n", - "Epoch 1732/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0833\n", - "Epoch 1733/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0833\n", - "Epoch 1734/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0832\n", - "Epoch 1735/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0832\n", - "Epoch 1736/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0831\n", - "Epoch 1737/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0831\n", - "Epoch 1738/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.083\n", - "Epoch 1739/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.083\n", - "Epoch 1740/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0829\n", - "Epoch 1741/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0829\n", - "Epoch 1742/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0828\n", - "Epoch 1743/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0828\n", - "Epoch 1744/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0828\n", - "Epoch 1745/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0827\n", - "Epoch 1746/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0827\n", - "Epoch 1747/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0826\n", - "Epoch 1748/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0826\n", - "Epoch 1749/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0825\n", - "Epoch 1750/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0825\n", - "Epoch 1751/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0824\n", - "Epoch 1752/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0824\n", - "Epoch 1753/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0823\n", - "Epoch 1754/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0823\n", - "Epoch 1755/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0823\n", - "Epoch 1756/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0822\n", - "Epoch 1757/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0822\n", - "Epoch 1758/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0821\n", - "Epoch 1759/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0821\n", - "Epoch 1760/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.082\n", - "Epoch 1761/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.082\n", - "Epoch 1762/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0819\n", - "Epoch 1763/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0819\n", - "Epoch 1764/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0818\n", - "Epoch 1765/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0818\n", - "Epoch 1766/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0818\n", - "Epoch 1767/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0817\n", - "Epoch 1768/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0817\n", - "Epoch 1769/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0816\n", - "Epoch 1770/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0816\n", - "Epoch 1771/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0815\n", - "Epoch 1772/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0815\n", - "Epoch 1773/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0814\n", - "Epoch 1774/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0814\n", - "Epoch 1775/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0813\n", - "Epoch 1776/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0813\n", - "Epoch 1777/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0813\n", - "Epoch 1778/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0812\n", - "Epoch 1779/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0812\n", - "Epoch 1780/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0811\n", - "Epoch 1781/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0811\n", - "Epoch 1782/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.081\n", - "Epoch 1783/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.081\n", - "Epoch 1784/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0809\n", - "Epoch 1785/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0809\n", - "Epoch 1786/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0808\n", - "Epoch 1787/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0808\n", - "Epoch 1788/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0808\n", - "Epoch 1789/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0807\n", - "Epoch 1790/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0807\n", - "Epoch 1791/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0806\n", - "Epoch 1792/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0806\n", - "Epoch 1793/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0805\n", - "Epoch 1794/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0805\n", - "Epoch 1795/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0804\n", - "Epoch 1796/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0804\n", - "Epoch 1797/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0804\n", - "Epoch 1798/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0803\n", - "Epoch 1799/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0803\n", - "Epoch 1800/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0802\n", - "Epoch 1801/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0802\n", - "Epoch 1802/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0801\n", - "Epoch 1803/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0801\n", - "Epoch 1804/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.08\n", - "Epoch 1805/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.08\n", - "Epoch 1806/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.08\n", - "Epoch 1807/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0799\n", - "Epoch 1808/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0799\n", - "Epoch 1809/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0798\n", - "Epoch 1810/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0798\n", - "Epoch 1811/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0797\n", - "Epoch 1812/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0797\n", - "Epoch 1813/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0796\n", - "Epoch 1814/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0796\n", - "Epoch 1815/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0795\n", - "Epoch 1816/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0795\n", - "Epoch 1817/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0795\n", - "Epoch 1818/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0794\n", - "Epoch 1819/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0794\n", - "Epoch 1820/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0793\n", - "Epoch 1821/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0793\n", - "Epoch 1822/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0792\n", - "Epoch 1823/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0792\n", - "Epoch 1824/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0791\n", - "Epoch 1825/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0791\n", - "Epoch 1826/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0791\n", - "Epoch 1827/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.079\n", - "Epoch 1828/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.079\n", - "Epoch 1829/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0789\n", - "Epoch 1830/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0789\n", - "Epoch 1831/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0788\n", - "Epoch 1832/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0788\n", - "Epoch 1833/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0787\n", - "Epoch 1834/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0787\n", - "Epoch 1835/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0787\n", - "Epoch 1836/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0786\n", - "Epoch 1837/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0786\n", - "Epoch 1838/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0785\n", - "Epoch 1839/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0785\n", - "Epoch 1840/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0784\n", - "Epoch 1841/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0784\n", - "Epoch 1842/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0783\n", - "Epoch 1843/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0783\n", - "Epoch 1844/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0783\n", - "Epoch 1845/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0782\n", - "Epoch 1846/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0782\n", - "Epoch 1847/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0781\n", - "Epoch 1848/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0781\n", - "Epoch 1849/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.078\n", - "Epoch 1850/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.078\n", - "Epoch 1851/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0779\n", - "Epoch 1852/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0779\n", - "Epoch 1853/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0779\n", - "Epoch 1854/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0778\n", - "Epoch 1855/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0778\n", - "Epoch 1856/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0777\n", - "Epoch 1857/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0777\n", - "Epoch 1858/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0776\n", - "Epoch 1859/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0776\n", - "Epoch 1860/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0776\n", - "Epoch 1861/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0775\n", - "Epoch 1862/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0775\n", - "Epoch 1863/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0774\n", - "Epoch 1864/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0774\n", - "Epoch 1865/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0773\n", - "Epoch 1866/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0773\n", - "Epoch 1867/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0772\n", - "Epoch 1868/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0772\n", - "Epoch 1869/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0772\n", - "Epoch 1870/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0771\n", - "Epoch 1871/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0771\n", - "Epoch 1872/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.077\n", - "Epoch 1873/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.077\n", - "Epoch 1874/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0769\n", - "Epoch 1875/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0769\n", - "Epoch 1876/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0769\n", - "Epoch 1877/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0768\n", - "Epoch 1878/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0768\n", - "Epoch 1879/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0767\n", - "Epoch 1880/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0767\n", - "Epoch 1881/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0766\n", - "Epoch 1882/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0766\n", - "Epoch 1883/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0765\n", - "Epoch 1884/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0765\n", - "Epoch 1885/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0765\n", - "Epoch 1886/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0764\n", - "Epoch 1887/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0764\n", - "Epoch 1888/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0763\n", - "Epoch 1889/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0763\n", - "Epoch 1890/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0762\n", - "Epoch 1891/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0762\n", - "Epoch 1892/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0762\n", - "Epoch 1893/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0761\n", - "Epoch 1894/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0761\n", - "Epoch 1895/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.076\n", - "Epoch 1896/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.076\n", - "Epoch 1897/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0759\n", - "Epoch 1898/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0759\n", - "Epoch 1899/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0758\n", - "Epoch 1900/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0758\n", - "Epoch 1901/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0758\n", - "Epoch 1902/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0757\n", - "Epoch 1903/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0757\n", - "Epoch 1904/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0756\n", - "Epoch 1905/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0756\n", - "Epoch 1906/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0755\n", - "Epoch 1907/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0755\n", - "Epoch 1908/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0755\n", - "Epoch 1909/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0754\n", - "Epoch 1910/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0754\n", - "Epoch 1911/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0753\n", - "Epoch 1912/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0753\n", - "Epoch 1913/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0752\n", - "Epoch 1914/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0752\n", - "Epoch 1915/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0752\n", - "Epoch 1916/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0751\n", - "Epoch 1917/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0751\n", - "Epoch 1918/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.075\n", - "Epoch 1919/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.075\n", - "Epoch 1920/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0749\n", - "Epoch 1921/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0749\n", - "Epoch 1922/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0749\n", - "Epoch 1923/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0748\n", - "Epoch 1924/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0748\n", - "Epoch 1925/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0747\n", - "Epoch 1926/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0747\n", - "Epoch 1927/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0746\n", - "Epoch 1928/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0746\n", - "Epoch 1929/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0745\n", - "Epoch 1930/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0745\n", - "Epoch 1931/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0745\n", - "Epoch 1932/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0744\n", - "Epoch 1933/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0744\n", - "Epoch 1934/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0743\n", - "Epoch 1935/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0743\n", - "Epoch 1936/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0742\n", - "Epoch 1937/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0742\n", - "Epoch 1938/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0742\n", - "Epoch 1939/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0741\n", - "Epoch 1940/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0741\n", - "Epoch 1941/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.074\n", - "Epoch 1942/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.074\n", - "Epoch 1943/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0739\n", - "Epoch 1944/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0739\n", - "Epoch 1945/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0739\n", - "Epoch 1946/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0738\n", - "Epoch 1947/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0738\n", - "Epoch 1948/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0737\n", - "Epoch 1949/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0737\n", - "Epoch 1950/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0736\n", - "Epoch 1951/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0736\n", - "Epoch 1952/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0736\n", - "Epoch 1953/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0735\n", - "Epoch 1954/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0735\n", - "Epoch 1955/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0734\n", - "Epoch 1956/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0734\n", - "Epoch 1957/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0733\n", - "Epoch 1958/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0733\n", - "Epoch 1959/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0733\n", - "Epoch 1960/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0732\n", - "Epoch 1961/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0732\n", - "Epoch 1962/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0731\n", - "Epoch 1963/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0731\n", - "Epoch 1964/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.073\n", - "Epoch 1965/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.073\n", - "Epoch 1966/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.073\n", - "Epoch 1967/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0729\n", - "Epoch 1968/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0729\n", - "Epoch 1969/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0728\n", - "Epoch 1970/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0728\n", - "Epoch 1971/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0727\n", - "Epoch 1972/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0727\n", - "Epoch 1973/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0727\n", - "Epoch 1974/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0726\n", - "Epoch 1975/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0726\n", - "Epoch 1976/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0725\n", - "Epoch 1977/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0725\n", - "Epoch 1978/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0725\n", - "Epoch 1979/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0724\n", - "Epoch 1980/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0724\n", - "Epoch 1981/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0723\n", - "Epoch 1982/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0723\n", - "Epoch 1983/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0722\n", - "Epoch 1984/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0722\n", - "Epoch 1985/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0722\n", - "Epoch 1986/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0721\n", - "Epoch 1987/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0721\n", - "Epoch 1988/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.072\n", - "Epoch 1989/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.072\n", - "Epoch 1990/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0719\n", - "Epoch 1991/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0719\n", - "Epoch 1992/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0719\n", - "Epoch 1993/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0718\n", - "Epoch 1994/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0718\n", - "Epoch 1995/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0717\n", - "Epoch 1996/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0717\n", - "Epoch 1997/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0716\n", - "Epoch 1998/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0716\n", - "Epoch 1999/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0716\n", - "Epoch 2000/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0715\n", - "Epoch 2001/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0715\n", - "Epoch 2002/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0714\n", - "Epoch 2003/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0714\n", - "Epoch 2004/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0714\n", - "Epoch 2005/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0713\n", - "Epoch 2006/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0713\n", - "Epoch 2007/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0712\n", - "Epoch 2008/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0712\n", - "Epoch 2009/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0711\n", - "Epoch 2010/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0711\n", - "Epoch 2011/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0711\n", - "Epoch 2012/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.071\n", - "Epoch 2013/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.071\n", - "Epoch 2014/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0709\n", - "Epoch 2015/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0709\n", - "Epoch 2016/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0709\n", - "Epoch 2017/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0708\n", - "Epoch 2018/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0708\n", - "Epoch 2019/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0707\n", - "Epoch 2020/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0707\n", - "Epoch 2021/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0706\n", - "Epoch 2022/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0706\n", - "Epoch 2023/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0706\n", - "Epoch 2024/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0705\n", - "Epoch 2025/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0705\n", - "Epoch 2026/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0704\n", - "Epoch 2027/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0704\n", - "Epoch 2028/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0704\n", - "Epoch 2029/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0703\n", - "Epoch 2030/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0703\n", - "Epoch 2031/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0702\n", - "Epoch 2032/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0702\n", - "Epoch 2033/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0701\n", - "Epoch 2034/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0701\n", - "Epoch 2035/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0701\n", - "Epoch 2036/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.07\n", - "Epoch 2037/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.07\n", - "Epoch 2038/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0699\n", - "Epoch 2039/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0699\n", - "Epoch 2040/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0699\n", - "Epoch 2041/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0698\n", - "Epoch 2042/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0698\n", - "Epoch 2043/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0697\n", - "Epoch 2044/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0697\n", - "Epoch 2045/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0696\n", - "Epoch 2046/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0696\n", - "Epoch 2047/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0696\n", - "Epoch 2048/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0695\n", - "Epoch 2049/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0695\n", - "Epoch 2050/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0694\n", - "Epoch 2051/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0694\n", - "Epoch 2052/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0694\n", - "Epoch 2053/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0693\n", - "Epoch 2054/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0693\n", - "Epoch 2055/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0692\n", - "Epoch 2056/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0692\n", - "Epoch 2057/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0691\n", - "Epoch 2058/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0691\n", - "Epoch 2059/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0691\n", - "Epoch 2060/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.069\n", - "Epoch 2061/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.069\n", - "Epoch 2062/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0689\n", - "Epoch 2063/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0689\n", - "Epoch 2064/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0689\n", - "Epoch 2065/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0688\n", - "Epoch 2066/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0688\n", - "Epoch 2067/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0687\n", - "Epoch 2068/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0687\n", - "Epoch 2069/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0687\n", - "Epoch 2070/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0686\n", - "Epoch 2071/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0686\n", - "Epoch 2072/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0685\n", - "Epoch 2073/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0685\n", - "Epoch 2074/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0684\n", - "Epoch 2075/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0684\n", - "Epoch 2076/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0684\n", - "Epoch 2077/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0683\n", - "Epoch 2078/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0683\n", - "Epoch 2079/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0682\n", - "Epoch 2080/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0682\n", - "Epoch 2081/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0682\n", - "Epoch 2082/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0681\n", - "Epoch 2083/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0681\n", - "Epoch 2084/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.068\n", - "Epoch 2085/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.068\n", - "Epoch 2086/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.068\n", - "Epoch 2087/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0679\n", - "Epoch 2088/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0679\n", - "Epoch 2089/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0678\n", - "Epoch 2090/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0678\n", - "Epoch 2091/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0678\n", - "Epoch 2092/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0677\n", - "Epoch 2093/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0677\n", - "Epoch 2094/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0676\n", - "Epoch 2095/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0676\n", - "Epoch 2096/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0675\n", - "Epoch 2097/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0675\n", - "Epoch 2098/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0675\n", - "Epoch 2099/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0674\n", - "Epoch 2100/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0674\n", - "Epoch 2101/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0673\n", - "Epoch 2102/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0673\n", - "Epoch 2103/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0673\n", - "Epoch 2104/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0672\n", - "Epoch 2105/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0672\n", - "Epoch 2106/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0671\n", - "Epoch 2107/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0671\n", - "Epoch 2108/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0671\n", - "Epoch 2109/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.067\n", - "Epoch 2110/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.067\n", - "Epoch 2111/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0669\n", - "Epoch 2112/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0669\n", - "Epoch 2113/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0669\n", - "Epoch 2114/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0668\n", - "Epoch 2115/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0668\n", - "Epoch 2116/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0667\n", - "Epoch 2117/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0667\n", - "Epoch 2118/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0667\n", - "Epoch 2119/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0666\n", - "Epoch 2120/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0666\n", - "Epoch 2121/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0665\n", - "Epoch 2122/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0665\n", - "Epoch 2123/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0665\n", - "Epoch 2124/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0664\n", - "Epoch 2125/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0664\n", - "Epoch 2126/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0663\n", - "Epoch 2127/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0663\n", - "Epoch 2128/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0663\n", - "Epoch 2129/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0662\n", - "Epoch 2130/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0662\n", - "Epoch 2131/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0661\n", - "Epoch 2132/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0661\n", - "Epoch 2133/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.066\n", - "Epoch 2134/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.066\n", - "Epoch 2135/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.066\n", - "Epoch 2136/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0659\n", - "Epoch 2137/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0659\n", - "Epoch 2138/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0658\n", - "Epoch 2139/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0658\n", - "Epoch 2140/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0658\n", - "Epoch 2141/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0657\n", - "Epoch 2142/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0657\n", - "Epoch 2143/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0656\n", - "Epoch 2144/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0656\n", - "Epoch 2145/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0656\n", - "Epoch 2146/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0655\n", - "Epoch 2147/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0655\n", - "Epoch 2148/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0654\n", - "Epoch 2149/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0654\n", - "Epoch 2150/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0654\n", - "Epoch 2151/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0653\n", - "Epoch 2152/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0653\n", - "Epoch 2153/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0652\n", - "Epoch 2154/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0652\n", - "Epoch 2155/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0652\n", - "Epoch 2156/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0651\n", - "Epoch 2157/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0651\n", - "Epoch 2158/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.065\n", - "Epoch 2159/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.065\n", - "Epoch 2160/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.065\n", - "Epoch 2161/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0649\n", - "Epoch 2162/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0649\n", - "Epoch 2163/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0648\n", - "Epoch 2164/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0648\n", - "Epoch 2165/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0648\n", - "Epoch 2166/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0647\n", - "Epoch 2167/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0647\n", - "Epoch 2168/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0647\n", - "Epoch 2169/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0646\n", - "Epoch 2170/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0646\n", - "Epoch 2171/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0645\n", - "Epoch 2172/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0645\n", - "Epoch 2173/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0645\n", - "Epoch 2174/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0644\n", - "Epoch 2175/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0644\n", - "Epoch 2176/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0643\n", - "Epoch 2177/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0643\n", - "Epoch 2178/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0643\n", - "Epoch 2179/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0642\n", - "Epoch 2180/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0642\n", - "Epoch 2181/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0641\n", - "Epoch 2182/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0641\n", - "Epoch 2183/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0641\n", - "Epoch 2184/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.064\n", - "Epoch 2185/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.064\n", - "Epoch 2186/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0639\n", - "Epoch 2187/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0639\n", - "Epoch 2188/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0639\n", - "Epoch 2189/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0638\n", - "Epoch 2190/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0638\n", - "Epoch 2191/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0637\n", - "Epoch 2192/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0637\n", - "Epoch 2193/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0637\n", - "Epoch 2194/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0636\n", - "Epoch 2195/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0636\n", - "Epoch 2196/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0635\n", - "Epoch 2197/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0635\n", - "Epoch 2198/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0635\n", - "Epoch 2199/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0634\n", - "Epoch 2200/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0634\n", - "Epoch 2201/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0634\n", - "Epoch 2202/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0633\n", - "Epoch 2203/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0633\n", - "Epoch 2204/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0632\n", - "Epoch 2205/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0632\n", - "Epoch 2206/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0632\n", - "Epoch 2207/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0631\n", - "Epoch 2208/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0631\n", - "Epoch 2209/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.063\n", - "Epoch 2210/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.063\n", - "Epoch 2211/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.063\n", - "Epoch 2212/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0629\n", - "Epoch 2213/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0629\n", - "Epoch 2214/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0628\n", - "Epoch 2215/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0628\n", - "Epoch 2216/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0628\n", - "Epoch 2217/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0627\n", - "Epoch 2218/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0627\n", - "Epoch 2219/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0626\n", - "Epoch 2220/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0626\n", - "Epoch 2221/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0626\n", - "Epoch 2222/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0625\n", - "Epoch 2223/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0625\n", - "Epoch 2224/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0625\n", - "Epoch 2225/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0624\n", - "Epoch 2226/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0624\n", - "Epoch 2227/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0623\n", - "Epoch 2228/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0623\n", - "Epoch 2229/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0623\n", - "Epoch 2230/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0622\n", - "Epoch 2231/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0622\n", - "Epoch 2232/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0621\n", - "Epoch 2233/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0621\n", - "Epoch 2234/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0621\n", - "Epoch 2235/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.062\n", - "Epoch 2236/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.062\n", - "Epoch 2237/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0619\n", - "Epoch 2238/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0619\n", - "Epoch 2239/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0619\n", - "Epoch 2240/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0618\n", - "Epoch 2241/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0618\n", - "Epoch 2242/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0618\n", - "Epoch 2243/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0617\n", - "Epoch 2244/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0617\n", - "Epoch 2245/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0616\n", - "Epoch 2246/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0616\n", - "Epoch 2247/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0616\n", - "Epoch 2248/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0615\n", - "Epoch 2249/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0615\n", - "Epoch 2250/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0614\n", - "Epoch 2251/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0614\n", - "Epoch 2252/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0614\n", - "Epoch 2253/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0613\n", - "Epoch 2254/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0613\n", - "Epoch 2255/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0613\n", - "Epoch 2256/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0612\n", - "Epoch 2257/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0612\n", - "Epoch 2258/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0611\n", - "Epoch 2259/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0611\n", - "Epoch 2260/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0611\n", - "Epoch 2261/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.061\n", - "Epoch 2262/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.061\n", - "Epoch 2263/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0609\n", - "Epoch 2264/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0609\n", - "Epoch 2265/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0609\n", - "Epoch 2266/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0608\n", - "Epoch 2267/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0608\n", - "Epoch 2268/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0608\n", - "Epoch 2269/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0607\n", - "Epoch 2270/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0607\n", - "Epoch 2271/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0606\n", - "Epoch 2272/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0606\n", - "Epoch 2273/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0606\n", - "Epoch 2274/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0605\n", - "Epoch 2275/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0605\n", - "Epoch 2276/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0605\n", - "Epoch 2277/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0604\n", - "Epoch 2278/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0604\n", - "Epoch 2279/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0603\n", - "Epoch 2280/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0603\n", - "Epoch 2281/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0603\n", - "Epoch 2282/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0602\n", - "Epoch 2283/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0602\n", - "Epoch 2284/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0601\n", - "Epoch 2285/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0601\n", - "Epoch 2286/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0601\n", - "Epoch 2287/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.06\n", - "Epoch 2288/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.06\n", - "Epoch 2289/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.06\n", - "Epoch 2290/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0599\n", - "Epoch 2291/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0599\n", - "Epoch 2292/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0598\n", - "Epoch 2293/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0598\n", - "Epoch 2294/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0598\n", - "Epoch 2295/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0597\n", - "Epoch 2296/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0597\n", - "Epoch 2297/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0597\n", - "Epoch 2298/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0596\n", - "Epoch 2299/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0596\n", - "Epoch 2300/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0595\n", - "Epoch 2301/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0595\n", - "Epoch 2302/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0595\n", - "Epoch 2303/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0594\n", - "Epoch 2304/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0594\n", - "Epoch 2305/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0594\n", - "Epoch 2306/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0593\n", - "Epoch 2307/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0593\n", - "Epoch 2308/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0592\n", - "Epoch 2309/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0592\n", - "Epoch 2310/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0592\n", - "Epoch 2311/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0591\n", - "Epoch 2312/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0591\n", - "Epoch 2313/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0591\n", - "Epoch 2314/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.059\n", - "Epoch 2315/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.059\n", - "Epoch 2316/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0589\n", - "Epoch 2317/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0589\n", - "Epoch 2318/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0589\n", - "Epoch 2319/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0588\n", - "Epoch 2320/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0588\n", - "Epoch 2321/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0588\n", - "Epoch 2322/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0587\n", - "Epoch 2323/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0587\n", - "Epoch 2324/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0586\n", - "Epoch 2325/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0586\n", - "Epoch 2326/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0586\n", - "Epoch 2327/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0585\n", - "Epoch 2328/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0585\n", - "Epoch 2329/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0585\n", - "Epoch 2330/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0584\n", - "Epoch 2331/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0584\n", - "Epoch 2332/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0583\n", - "Epoch 2333/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0583\n", - "Epoch 2334/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0583\n", - "Epoch 2335/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0582\n", - "Epoch 2336/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0582\n", - "Epoch 2337/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0582\n", - "Epoch 2338/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0581\n", - "Epoch 2339/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0581\n", - "Epoch 2340/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.058\n", - "Epoch 2341/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.058\n", - "Epoch 2342/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.058\n", - "Epoch 2343/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0579\n", - "Epoch 2344/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0579\n", - "Epoch 2345/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0579\n", - "Epoch 2346/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0578\n", - "Epoch 2347/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0578\n", - "Epoch 2348/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0577\n", - "Epoch 2349/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0577\n", - "Epoch 2350/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0577\n", - "Epoch 2351/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0576\n", - "Epoch 2352/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0576\n", - "Epoch 2353/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0576\n", - "Epoch 2354/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0575\n", - "Epoch 2355/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0575\n", - "Epoch 2356/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0575\n", - "Epoch 2357/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0574\n", - "Epoch 2358/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0574\n", - "Epoch 2359/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0573\n", - "Epoch 2360/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0573\n", - "Epoch 2361/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0573\n", - "Epoch 2362/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0572\n", - "Epoch 2363/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0572\n", - "Epoch 2364/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0572\n", - "Epoch 2365/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0571\n", - "Epoch 2366/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0571\n", - "Epoch 2367/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.057\n", - "Epoch 2368/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.057\n", - "Epoch 2369/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.057\n", - "Epoch 2370/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0569\n", - "Epoch 2371/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0569\n", - "Epoch 2372/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0569\n", - "Epoch 2373/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0568\n", - "Epoch 2374/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0568\n", - "Epoch 2375/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0568\n", - "Epoch 2376/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0567\n", - "Epoch 2377/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0567\n", - "Epoch 2378/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0566\n", - "Epoch 2379/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0566\n", - "Epoch 2380/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0566\n", - "Epoch 2381/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0565\n", - "Epoch 2382/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0565\n", - "Epoch 2383/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0565\n", - "Epoch 2384/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0564\n", - "Epoch 2385/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0564\n", - "Epoch 2386/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0564\n", - "Epoch 2387/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0563\n", - "Epoch 2388/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0563\n", - "Epoch 2389/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0562\n", - "Epoch 2390/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0562\n", - "Epoch 2391/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0562\n", - "Epoch 2392/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0561\n", - "Epoch 2393/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0561\n", - "Epoch 2394/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0561\n", - "Epoch 2395/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.056\n", - "Epoch 2396/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.056\n", - "Epoch 2397/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.056\n", - "Epoch 2398/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0559\n", - "Epoch 2399/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0559\n", - "Epoch 2400/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0558\n", - "Epoch 2401/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0558\n", - "Epoch 2402/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0558\n", - "Epoch 2403/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0557\n", - "Epoch 2404/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0557\n", - "Epoch 2405/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0557\n", - "Epoch 2406/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0556\n", - "Epoch 2407/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0556\n", - "Epoch 2408/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0556\n", - "Epoch 2409/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0555\n", - "Epoch 2410/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0555\n", - "Epoch 2411/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0554\n", - "Epoch 2412/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0554\n", - "Epoch 2413/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0554\n", - "Epoch 2414/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0553\n", - "Epoch 2415/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0553\n", - "Epoch 2416/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0553\n", - "Epoch 2417/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0552\n", - "Epoch 2418/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0552\n", - "Epoch 2419/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0552\n", - "Epoch 2420/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0551\n", - "Epoch 2421/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0551\n", - "Epoch 2422/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.055\n", - "Epoch 2423/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.055\n", - "Epoch 2424/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.055\n", - "Epoch 2425/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0549\n", - "Epoch 2426/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0549\n", - "Epoch 2427/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0549\n", - "Epoch 2428/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0548\n", - "Epoch 2429/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0548\n", - "Epoch 2430/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0548\n", - "Epoch 2431/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0547\n", - "Epoch 2432/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0547\n", - "Epoch 2433/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0547\n", - "Epoch 2434/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0546\n", - "Epoch 2435/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0546\n", - "Epoch 2436/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0545\n", - "Epoch 2437/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0545\n", - "Epoch 2438/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0545\n", - "Epoch 2439/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0544\n", - "Epoch 2440/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0544\n", - "Epoch 2441/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0544\n", - "Epoch 2442/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0543\n", - "Epoch 2443/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0543\n", - "Epoch 2444/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0543\n", - "Epoch 2445/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0542\n", - "Epoch 2446/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0542\n", - "Epoch 2447/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0542\n", - "Epoch 2448/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0541\n", - "Epoch 2449/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0541\n", - "Epoch 2450/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.054\n", - "Epoch 2451/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.054\n", - "Epoch 2452/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.054\n", - "Epoch 2453/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0539\n", - "Epoch 2454/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0539\n", - "Epoch 2455/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0539\n", - "Epoch 2456/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0538\n", - "Epoch 2457/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0538\n", - "Epoch 2458/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0538\n", - "Epoch 2459/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0537\n", - "Epoch 2460/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0537\n", - "Epoch 2461/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0537\n", - "Epoch 2462/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0536\n", - "Epoch 2463/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0536\n", - "Epoch 2464/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0536\n", - "Epoch 2465/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0535\n", - "Epoch 2466/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0535\n", - "Epoch 2467/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0534\n", - "Epoch 2468/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0534\n", - "Epoch 2469/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0534\n", - "Epoch 2470/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0533\n", - "Epoch 2471/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0533\n", - "Epoch 2472/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0533\n", - "Epoch 2473/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0532\n", - "Epoch 2474/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0532\n", - "Epoch 2475/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0532\n", - "Epoch 2476/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0531\n", - "Epoch 2477/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0531\n", - "Epoch 2478/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0531\n", - "Epoch 2479/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.053\n", - "Epoch 2480/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.053\n", - "Epoch 2481/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.053\n", - "Epoch 2482/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0529\n", - "Epoch 2483/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0529\n", - "Epoch 2484/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0528\n", - "Epoch 2485/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0528\n", - "Epoch 2486/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0528\n", - "Epoch 2487/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0527\n", - "Epoch 2488/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0527\n", - "Epoch 2489/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0527\n", - "Epoch 2490/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0526\n", - "Epoch 2491/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0526\n", - "Epoch 2492/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0526\n", - "Epoch 2493/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0525\n", - "Epoch 2494/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0525\n", - "Epoch 2495/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0525\n", - "Epoch 2496/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0524\n", - "Epoch 2497/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0524\n", - "Epoch 2498/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0524\n", - "Epoch 2499/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0523\n", - "Epoch 2500/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0523\n", - "Epoch 2501/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0523\n", - "Epoch 2502/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0522\n", - "Epoch 2503/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0522\n", - "Epoch 2504/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0522\n", - "Epoch 2505/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0521\n", - "Epoch 2506/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0521\n", - "Epoch 2507/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.052\n", - "Epoch 2508/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.052\n", - "Epoch 2509/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.052\n", - "Epoch 2510/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0519\n", - "Epoch 2511/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0519\n", - "Epoch 2512/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0519\n", - "Epoch 2513/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0518\n", - "Epoch 2514/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0518\n", - "Epoch 2515/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0518\n", - "Epoch 2516/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0517\n", - "Epoch 2517/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0517\n", - "Epoch 2518/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0517\n", - "Epoch 2519/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0516\n", - "Epoch 2520/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0516\n", - "Epoch 2521/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0516\n", - "Epoch 2522/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0515\n", - "Epoch 2523/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0515\n", - "Epoch 2524/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0515\n", - "Epoch 2525/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0514\n", - "Epoch 2526/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0514\n", - "Epoch 2527/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0514\n", - "Epoch 2528/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0513\n", - "Epoch 2529/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0513\n", - "Epoch 2530/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0513\n", - "Epoch 2531/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0512\n", - "Epoch 2532/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0512\n", - "Epoch 2533/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0512\n", - "Epoch 2534/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0511\n", - "Epoch 2535/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0511\n", - "Epoch 2536/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.051\n", - "Epoch 2537/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.051\n", - "Epoch 2538/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.051\n", - "Epoch 2539/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0509\n", - "Epoch 2540/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0509\n", - "Epoch 2541/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0509\n", - "Epoch 2542/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0508\n", - "Epoch 2543/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0508\n", - "Epoch 2544/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0508\n", - "Epoch 2545/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0507\n", - "Epoch 2546/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0507\n", - "Epoch 2547/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0507\n", - "Epoch 2548/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0506\n", - "Epoch 2549/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0506\n", - "Epoch 2550/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0506\n", - "Epoch 2551/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0505\n", - "Epoch 2552/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0505\n", - "Epoch 2553/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0505\n", - "Epoch 2554/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0504\n", - "Epoch 2555/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0504\n", - "Epoch 2556/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0504\n", - "Epoch 2557/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0503\n", - "Epoch 2558/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0503\n", - "Epoch 2559/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0503\n", - "Epoch 2560/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0502\n", - "Epoch 2561/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0502\n", - "Epoch 2562/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0502\n", - "Epoch 2563/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0501\n", - "Epoch 2564/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0501\n", - "Epoch 2565/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0501\n", - "Epoch 2566/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.05\n", - "Epoch 2567/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.05\n", - "Epoch 2568/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.05\n", - "Epoch 2569/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0499\n", - "Epoch 2570/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0499\n", - "Epoch 2571/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0499\n", - "Epoch 2572/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0498\n", - "Epoch 2573/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0498\n", - "Epoch 2574/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0498\n", - "Epoch 2575/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0497\n", - "Epoch 2576/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0497\n", - "Epoch 2577/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0497\n", - "Epoch 2578/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0496\n", - "Epoch 2579/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0496\n", - "Epoch 2580/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0496\n", - "Epoch 2581/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0495\n", - "Epoch 2582/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0495\n", - "Epoch 2583/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0495\n", - "Epoch 2584/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0494\n", - "Epoch 2585/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0494\n", - "Epoch 2586/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0494\n", - "Epoch 2587/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0493\n", - "Epoch 2588/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0493\n", - "Epoch 2589/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0493\n", - "Epoch 2590/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0492\n", - "Epoch 2591/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0492\n", - "Epoch 2592/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0492\n", - "Epoch 2593/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0491\n", - "Epoch 2594/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0491\n", - "Epoch 2595/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0491\n", - "Epoch 2596/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.049\n", - "Epoch 2597/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.049\n", - "Epoch 2598/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.049\n", - "Epoch 2599/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0489\n", - "Epoch 2600/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0489\n", - "Epoch 2601/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0489\n", - "Epoch 2602/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0488\n", - "Epoch 2603/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0488\n", - "Epoch 2604/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0488\n", - "Epoch 2605/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0487\n", - "Epoch 2606/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0487\n", - "Epoch 2607/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0487\n", - "Epoch 2608/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0486\n", - "Epoch 2609/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0486\n", - "Epoch 2610/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0486\n", - "Epoch 2611/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0485\n", - "Epoch 2612/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0485\n", - "Epoch 2613/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0485\n", - "Epoch 2614/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0484\n", - "Epoch 2615/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0484\n", - "Epoch 2616/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0484\n", - "Epoch 2617/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0483\n", - "Epoch 2618/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0483\n", - "Epoch 2619/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0483\n", - "Epoch 2620/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0482\n", - "Epoch 2621/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0482\n", - "Epoch 2622/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0482\n", - "Epoch 2623/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0481\n", - "Epoch 2624/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0481\n", - "Epoch 2625/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0481\n", - "Epoch 2626/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.048\n", - "Epoch 2627/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.048\n", - "Epoch 2628/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.048\n", - "Epoch 2629/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0479\n", - "Epoch 2630/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0479\n", - "Epoch 2631/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0479\n", - "Epoch 2632/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0478\n", - "Epoch 2633/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0478\n", - "Epoch 2634/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0478\n", - "Epoch 2635/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0477\n", - "Epoch 2636/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0477\n", - "Epoch 2637/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0477\n", - "Epoch 2638/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0476\n", - "Epoch 2639/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0476\n", - "Epoch 2640/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0476\n", - "Epoch 2641/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0475\n", - "Epoch 2642/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0475\n", - "Epoch 2643/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0475\n", - "Epoch 2644/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0474\n", - "Epoch 2645/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0474\n", - "Epoch 2646/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0474\n", - "Epoch 2647/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0473\n", - "Epoch 2648/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0473\n", - "Epoch 2649/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0473\n", - "Epoch 2650/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0472\n", - "Epoch 2651/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0472\n", - "Epoch 2652/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0472\n", - "Epoch 2653/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0472\n", - "Epoch 2654/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0471\n", - "Epoch 2655/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0471\n", - "Epoch 2656/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0471\n", - "Epoch 2657/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.047\n", - "Epoch 2658/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.047\n", - "Epoch 2659/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.047\n", - "Epoch 2660/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0469\n", - "Epoch 2661/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0469\n", - "Epoch 2662/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0469\n", - "Epoch 2663/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0468\n", - "Epoch 2664/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0468\n", - "Epoch 2665/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0468\n", - "Epoch 2666/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0467\n", - "Epoch 2667/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0467\n", - "Epoch 2668/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0467\n", - "Epoch 2669/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0466\n", - "Epoch 2670/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0466\n", - "Epoch 2671/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0466\n", - "Epoch 2672/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0465\n", - "Epoch 2673/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0465\n", - "Epoch 2674/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0465\n", - "Epoch 2675/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0464\n", - "Epoch 2676/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0464\n", - "Epoch 2677/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0464\n", - "Epoch 2678/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0463\n", - "Epoch 2679/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0463\n", - "Epoch 2680/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0463\n", - "Epoch 2681/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0462\n", - "Epoch 2682/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0462\n", - "Epoch 2683/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0462\n", - "Epoch 2684/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0462\n", - "Epoch 2685/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0461\n", - "Epoch 2686/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0461\n", - "Epoch 2687/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0461\n", - "Epoch 2688/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.046\n", - "Epoch 2689/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.046\n", - "Epoch 2690/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.046\n", - "Epoch 2691/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0459\n", - "Epoch 2692/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0459\n", - "Epoch 2693/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0459\n", - "Epoch 2694/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0458\n", - "Epoch 2695/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0458\n", - "Epoch 2696/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0458\n", - "Epoch 2697/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0457\n", - "Epoch 2698/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0457\n", - "Epoch 2699/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0457\n", - "Epoch 2700/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0456\n", - "Epoch 2701/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0456\n", - "Epoch 2702/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0456\n", - "Epoch 2703/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0455\n", - "Epoch 2704/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0455\n", - "Epoch 2705/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0455\n", - "Epoch 2706/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0455\n", - "Epoch 2707/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0454\n", - "Epoch 2708/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0454\n", - "Epoch 2709/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0454\n", - "Epoch 2710/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0453\n", - "Epoch 2711/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0453\n", - "Epoch 2712/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0453\n", - "Epoch 2713/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0452\n", - "Epoch 2714/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0452\n", - "Epoch 2715/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0452\n", - "Epoch 2716/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0451\n", - "Epoch 2717/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0451\n", - "Epoch 2718/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0451\n", - "Epoch 2719/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.045\n", - "Epoch 2720/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.045\n", - "Epoch 2721/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.045\n", - "Epoch 2722/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0449\n", - "Epoch 2723/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0449\n", - "Epoch 2724/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0449\n", - "Epoch 2725/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0449\n", - "Epoch 2726/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0448\n", - "Epoch 2727/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0448\n", - "Epoch 2728/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0448\n", - "Epoch 2729/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0447\n", - "Epoch 2730/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0447\n", - "Epoch 2731/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0447\n", - "Epoch 2732/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0446\n", - "Epoch 2733/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0446\n", - "Epoch 2734/3000...\n" + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0872\n", + "Epoch 1481/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0868\n", + "Epoch 1491/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0863\n", + "Epoch 1501/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0858\n", + "Epoch 1511/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0854\n", + "Epoch 1521/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0849\n", + "Epoch 1531/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0845\n", + "Epoch 1541/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.084\n", + "Epoch 1551/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0835\n", + "Epoch 1561/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0831\n", + "Epoch 1571/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0826\n", + "Epoch 1581/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0822\n", + "Epoch 1591/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0817\n", + "Epoch 1601/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0813\n", + "Epoch 1611/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0808\n", + "Epoch 1621/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0804\n", + "Epoch 1631/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0799\n", + "Epoch 1641/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0795\n", + "Epoch 1651/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.079\n", + "Epoch 1661/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0786\n", + "Epoch 1671/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0781\n", + "Epoch 1681/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0777\n", + "Epoch 1691/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0772\n", + "Epoch 1701/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0768\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0446\n", - "Epoch 2735/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0445\n", - "Epoch 2736/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0445\n", - "Epoch 2737/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0445\n", - "Epoch 2738/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0444\n", - "Epoch 2739/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0444\n", - "Epoch 2740/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0444\n", - "Epoch 2741/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0444\n", - "Epoch 2742/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0443\n", - "Epoch 2743/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0443\n", - "Epoch 2744/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0443\n", - "Epoch 2745/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0442\n", - "Epoch 2746/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0442\n", - "Epoch 2747/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6971\n", - "Relative Entropy: 0.0442\n", - "Epoch 2748/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0441\n", - "Epoch 2749/3000...\n", - "Loss Discriminator: 0.6873\n", + "Epoch 1711/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0763\n", + "Epoch 1721/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0759\n", + "Epoch 1731/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0755\n", + "Epoch 1741/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.075\n", + "Epoch 1751/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0746\n", + "Epoch 1761/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0742\n", + "Epoch 1771/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0737\n", + "Epoch 1781/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0733\n", + "Epoch 1791/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0729\n", + "Epoch 1801/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0724\n", + "Epoch 1811/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.072\n", + "Epoch 1821/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0716\n", + "Epoch 1831/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0711\n", + "Epoch 1841/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0707\n", + "Epoch 1851/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0703\n", + "Epoch 1861/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0699\n", + "Epoch 1871/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0694\n", + "Epoch 1881/3000...\n", + "Loss Discriminator: 0.6832\n", "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0441\n", - "Epoch 2750/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0441\n", - "Epoch 2751/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.044\n", - "Epoch 2752/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.044\n", - "Epoch 2753/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.044\n", - "Epoch 2754/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.044\n", - "Epoch 2755/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0439\n", - "Epoch 2756/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0439\n", - "Epoch 2757/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0439\n", - "Epoch 2758/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0438\n", - "Epoch 2759/3000...\n", - "Loss Discriminator: 0.6875\n", + "Relative Entropy: 0.069\n", + "Epoch 1891/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0686\n", + "Epoch 1901/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0682\n", + "Epoch 1911/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0678\n", + "Epoch 1921/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0674\n", + "Epoch 1931/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0669\n", + "Epoch 1941/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0665\n", + "Epoch 1951/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0661\n", + "Epoch 1961/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0657\n", + "Epoch 1971/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0653\n", + "Epoch 1981/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0649\n", + "Epoch 1991/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0645\n", + "Epoch 2001/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0641\n", + "Epoch 2011/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0637\n", + "Epoch 2021/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0633\n", + "Epoch 2031/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0629\n", + "Epoch 2041/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0625\n", + "Epoch 2051/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0621\n", + "Epoch 2061/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0617\n", + "Epoch 2071/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0613\n", + "Epoch 2081/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0609\n", + "Epoch 2091/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0605\n", + "Epoch 2101/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0601\n", + "Epoch 2111/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0598\n", + "Epoch 2121/3000...\n", + "Loss Discriminator: 0.6834\n", "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0438\n", - "Epoch 2760/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0438\n", - "Epoch 2761/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0437\n", - "Epoch 2762/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0437\n", - "Epoch 2763/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0437\n", - "Epoch 2764/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0436\n", - "Epoch 2765/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0436\n", - "Epoch 2766/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0436\n", - "Epoch 2767/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0436\n", - "Epoch 2768/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0435\n", - "Epoch 2769/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0435\n", - "Epoch 2770/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0435\n", - "Epoch 2771/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0434\n", - "Epoch 2772/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0434\n", - "Epoch 2773/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0434\n", - "Epoch 2774/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0433\n", - "Epoch 2775/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0433\n", - "Epoch 2776/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0433\n", - "Epoch 2777/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0433\n", - "Epoch 2778/3000...\n", - "Loss Discriminator: 0.6872\n", + "Relative Entropy: 0.0594\n", + "Epoch 2131/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.059\n", + "Epoch 2141/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0586\n", + "Epoch 2151/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0582\n", + "Epoch 2161/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0578\n", + "Epoch 2171/3000...\n", + "Loss Discriminator: 0.6844\n", "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0432\n", - "Epoch 2779/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0432\n", - "Epoch 2780/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0432\n", - "Epoch 2781/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0431\n", - "Epoch 2782/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0431\n", - "Epoch 2783/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0431\n", - "Epoch 2784/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.043\n", - "Epoch 2785/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.043\n", - "Epoch 2786/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.043\n", - "Epoch 2787/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0429\n", - "Epoch 2788/3000...\n", + "Relative Entropy: 0.0575\n", + "Epoch 2181/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0571\n", + "Epoch 2191/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0567\n", + "Epoch 2201/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0563\n", + "Epoch 2211/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.056\n", + "Epoch 2221/3000...\n", "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0429\n", - "Epoch 2789/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0429\n", - "Epoch 2790/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0429\n", - "Epoch 2791/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0428\n", - "Epoch 2792/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0428\n", - "Epoch 2793/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0428\n", - "Epoch 2794/3000...\n", - "Loss Discriminator: 0.6893\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0556\n", + "Epoch 2231/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0552\n", + "Epoch 2241/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0549\n", + "Epoch 2251/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0545\n", + "Epoch 2261/3000...\n", + "Loss Discriminator: 0.685\n", "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0427\n", - "Epoch 2795/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6984\n", - "Relative Entropy: 0.0427\n", - "Epoch 2796/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0427\n", - "Epoch 2797/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0427\n", - "Epoch 2798/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0426\n", - "Epoch 2799/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0426\n", - "Epoch 2800/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0426\n", - "Epoch 2801/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0425\n", - "Epoch 2802/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0425\n", - "Epoch 2803/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0425\n", - "Epoch 2804/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0424\n", - "Epoch 2805/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0424\n", - "Epoch 2806/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0424\n", - "Epoch 2807/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0424\n", - "Epoch 2808/3000...\n", - "Loss Discriminator: 0.6873\n", + "Relative Entropy: 0.0541\n", + "Epoch 2271/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0538\n", + "Epoch 2281/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0534\n", + "Epoch 2291/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.053\n", + "Epoch 2301/3000...\n", + "Loss Discriminator: 0.6865\n", "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0423\n", - "Epoch 2809/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0423\n", - "Epoch 2810/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0423\n", - "Epoch 2811/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0422\n", - "Epoch 2812/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0422\n", - "Epoch 2813/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0422\n", - "Epoch 2814/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0421\n", - "Epoch 2815/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0421\n", - "Epoch 2816/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0421\n", - "Epoch 2817/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0421\n", - "Epoch 2818/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.042\n", - "Epoch 2819/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Relative Entropy: 0.0527\n", + "Epoch 2311/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0523\n", + "Epoch 2321/3000...\n", "Loss Discriminator: 0.6866\n", "Loss Generator: 0.7034\n", - "Relative Entropy: 0.042\n", - "Epoch 2820/3000...\n", - "Loss Discriminator: 0.6898\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.042\n", - "Epoch 2821/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0419\n", - "Epoch 2822/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0419\n", - "Epoch 2823/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0419\n", - "Epoch 2824/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0418\n", - "Epoch 2825/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0418\n", - "Epoch 2826/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0418\n", - "Epoch 2827/3000...\n", - "Loss Discriminator: 0.6882\n", + "Relative Entropy: 0.052\n", + "Epoch 2331/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0516\n", + "Epoch 2341/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0513\n", + "Epoch 2351/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0509\n", + "Epoch 2361/3000...\n", + "Loss Discriminator: 0.6867\n", "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0418\n", - "Epoch 2828/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0417\n", - "Epoch 2829/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0417\n", - "Epoch 2830/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0417\n", - "Epoch 2831/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0416\n", - "Epoch 2832/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0416\n", - "Epoch 2833/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0416\n", - "Epoch 2834/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0416\n", - "Epoch 2835/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0415\n", - "Epoch 2836/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0415\n", - "Epoch 2837/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0415\n", - "Epoch 2838/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0414\n", - "Epoch 2839/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0414\n", - "Epoch 2840/3000...\n", + "Relative Entropy: 0.0506\n", + "Epoch 2371/3000...\n", "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0414\n", - "Epoch 2841/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6987\n", - "Relative Entropy: 0.0413\n", - "Epoch 2842/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0413\n", - "Epoch 2843/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0413\n", - "Epoch 2844/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0413\n", - "Epoch 2845/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0412\n", - "Epoch 2846/3000...\n", - "Loss Discriminator: 0.6885\n", "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0412\n", - "Epoch 2847/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0412\n", - "Epoch 2848/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0411\n", - "Epoch 2849/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0411\n", - "Epoch 2850/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0411\n", - "Epoch 2851/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0411\n", - "Epoch 2852/3000...\n", - "Loss Discriminator: 0.6894\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.041\n", - "Epoch 2853/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.041\n", - "Epoch 2854/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.041\n", - "Epoch 2855/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0409\n", - "Epoch 2856/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0409\n", - "Epoch 2857/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0409\n", - "Epoch 2858/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0408\n", - "Epoch 2859/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0408\n", - "Epoch 2860/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0408\n", - "Epoch 2861/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0408\n", - "Epoch 2862/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0407\n", - "Epoch 2863/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0407\n", - "Epoch 2864/3000...\n", + "Relative Entropy: 0.0502\n", + "Epoch 2381/3000...\n", "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0407\n", - "Epoch 2865/3000...\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0499\n", + "Epoch 2391/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0495\n", + "Epoch 2401/3000...\n", "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0406\n", - "Epoch 2866/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0406\n", - "Epoch 2867/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0406\n", - "Epoch 2868/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0406\n", - "Epoch 2869/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0405\n", - "Epoch 2870/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0405\n", - "Epoch 2871/3000...\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0492\n", + "Epoch 2411/3000...\n", "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0405\n", - "Epoch 2872/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.6989\n", - "Relative Entropy: 0.0404\n", - "Epoch 2873/3000...\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0488\n", + "Epoch 2421/3000...\n", "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0404\n", - "Epoch 2874/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0404\n", - "Epoch 2875/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6958\n", - "Relative Entropy: 0.0404\n", - "Epoch 2876/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0403\n", - "Epoch 2877/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0403\n", - "Epoch 2878/3000...\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0485\n", + "Epoch 2431/3000...\n", "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0403\n", - "Epoch 2879/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0402\n", - "Epoch 2880/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0402\n", - "Epoch 2881/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0402\n", - "Epoch 2882/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0402\n", - "Epoch 2883/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0401\n", - "Epoch 2884/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0401\n", - "Epoch 2885/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0401\n", - "Epoch 2886/3000...\n", - "Loss Discriminator: 0.6895\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.04\n", - "Epoch 2887/3000...\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0481\n", + "Epoch 2441/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0478\n", + "Epoch 2451/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0475\n", + "Epoch 2461/3000...\n", "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.04\n", - "Epoch 2888/3000...\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0471\n", + "Epoch 2471/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0468\n", + "Epoch 2481/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0465\n", + "Epoch 2491/3000...\n", "Loss Discriminator: 0.687\n", "Loss Generator: 0.7036\n", - "Relative Entropy: 0.04\n", - "Epoch 2889/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.04\n", - "Epoch 2890/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0399\n", - "Epoch 2891/3000...\n", - "Loss Discriminator: 0.6884\n", + "Relative Entropy: 0.0461\n", + "Epoch 2501/3000...\n", + "Loss Discriminator: 0.686\n", "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0399\n", - "Epoch 2892/3000...\n", - "Loss Discriminator: 0.6876\n", + "Relative Entropy: 0.0458\n", + "Epoch 2511/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0455\n", + "Epoch 2521/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0451\n", + "Epoch 2531/3000...\n", + "Loss Discriminator: 0.6859\n", "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0399\n", - "Epoch 2893/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0398\n", - "Epoch 2894/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0398\n", - "Epoch 2895/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0398\n", - "Epoch 2896/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0398\n", - "Epoch 2897/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0397\n", - "Epoch 2898/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0397\n", - "Epoch 2899/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0397\n", - "Epoch 2900/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0396\n", - "Epoch 2901/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0396\n", - "Epoch 2902/3000...\n", - "Loss Discriminator: 0.6881\n", + "Relative Entropy: 0.0448\n", + "Epoch 2541/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0445\n", + "Epoch 2551/3000...\n", + "Loss Discriminator: 0.6884\n", "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0396\n", - "Epoch 2903/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0396\n", - "Epoch 2904/3000...\n" + "Relative Entropy: 0.0442\n" ] }, { "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0395\n", - "Epoch 2905/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0395\n", - "Epoch 2906/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0395\n", - "Epoch 2907/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0394\n", - "Epoch 2908/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0394\n", - "Epoch 2909/3000...\n", - "Loss Discriminator: 0.6899\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0394\n", - "Epoch 2910/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0394\n", - "Epoch 2911/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0393\n", - "Epoch 2912/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0393\n", - "Epoch 2913/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0393\n", - "Epoch 2914/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0393\n", - "Epoch 2915/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0392\n", - "Epoch 2916/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0392\n", - "Epoch 2917/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0392\n", - "Epoch 2918/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0391\n", - "Epoch 2919/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0391\n", - "Epoch 2920/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0391\n", - "Epoch 2921/3000...\n", - "Loss Discriminator: 0.689\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0391\n", - "Epoch 2922/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.6973\n", - "Relative Entropy: 0.039\n", - "Epoch 2923/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6987\n", - "Relative Entropy: 0.039\n", - "Epoch 2924/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.039\n", - "Epoch 2925/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0389\n", - "Epoch 2926/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6986\n", - "Relative Entropy: 0.0389\n", - "Epoch 2927/3000...\n", + "output_type": "stream", + "text": [ + "Epoch 2561/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0438\n", + "Epoch 2571/3000...\n", "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0389\n", - "Epoch 2928/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0389\n", - "Epoch 2929/3000...\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0435\n", + "Epoch 2581/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.6993\n", + "Relative Entropy: 0.0432\n", + "Epoch 2591/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0429\n", + "Epoch 2601/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.6994\n", + "Relative Entropy: 0.0426\n", + "Epoch 2611/3000...\n", "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.6999\n", - "Relative Entropy: 0.0388\n", - "Epoch 2930/3000...\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0423\n", + "Epoch 2621/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.6985\n", + "Relative Entropy: 0.042\n", + "Epoch 2631/3000...\n", "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0388\n", - "Epoch 2931/3000...\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0416\n", + "Epoch 2641/3000...\n", "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0388\n", - "Epoch 2932/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0388\n", - "Epoch 2933/3000...\n", - "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0413\n", + "Epoch 2651/3000...\n", + "Loss Discriminator: 0.6875\n", "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0387\n", - "Epoch 2934/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0387\n", - "Epoch 2935/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0387\n", - "Epoch 2936/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0386\n", - "Epoch 2937/3000...\n", + "Relative Entropy: 0.041\n", + "Epoch 2661/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0407\n", + "Epoch 2671/3000...\n", "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0386\n", - "Epoch 2938/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0386\n", - "Epoch 2939/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0386\n", - "Epoch 2940/3000...\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0404\n", + "Epoch 2681/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0401\n", + "Epoch 2691/3000...\n", "Loss Discriminator: 0.6875\n", "Loss Generator: 0.701\n", - "Relative Entropy: 0.0385\n", - "Epoch 2941/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0385\n", - "Epoch 2942/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0385\n", - "Epoch 2943/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0385\n", - "Epoch 2944/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0384\n", - "Epoch 2945/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0384\n", - "Epoch 2946/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0384\n", - "Epoch 2947/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0383\n", - "Epoch 2948/3000...\n", + "Relative Entropy: 0.0398\n", + "Epoch 2701/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0395\n", + "Epoch 2711/3000...\n", "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6973\n", - "Relative Entropy: 0.0383\n", - "Epoch 2949/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0383\n", - "Epoch 2950/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0383\n", - "Epoch 2951/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0382\n", - "Epoch 2952/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0382\n", - "Epoch 2953/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0382\n", - "Epoch 2954/3000...\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0392\n", + "Epoch 2721/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7\n", + "Relative Entropy: 0.0389\n", + "Epoch 2731/3000...\n", "Loss Discriminator: 0.6887\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0386\n", + "Epoch 2741/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0383\n", + "Epoch 2751/3000...\n", + "Loss Discriminator: 0.6875\n", "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0382\n", - "Epoch 2955/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0381\n", - "Epoch 2956/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0381\n", - "Epoch 2957/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0381\n", - "Epoch 2958/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.6979\n", - "Relative Entropy: 0.038\n", - "Epoch 2959/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.038\n", - "Epoch 2960/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.038\n", - "Epoch 2961/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6981\n", "Relative Entropy: 0.038\n", - "Epoch 2962/3000...\n", - "Loss Discriminator: 0.6893\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0379\n", - "Epoch 2963/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0379\n", - "Epoch 2964/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0379\n", - "Epoch 2965/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0379\n", - "Epoch 2966/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0378\n", - "Epoch 2967/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.6998\n", - "Relative Entropy: 0.0378\n", - "Epoch 2968/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7014\n", + "Epoch 2761/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7032\n", "Relative Entropy: 0.0378\n", - "Epoch 2969/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0377\n", - "Epoch 2970/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6995\n", - "Relative Entropy: 0.0377\n", - "Epoch 2971/3000...\n", + "Epoch 2771/3000...\n", "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0377\n", - "Epoch 2972/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0377\n", - "Epoch 2973/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.6977\n", - "Relative Entropy: 0.0376\n", - "Epoch 2974/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0376\n", - "Epoch 2975/3000...\n", - "Loss Discriminator: 0.6888\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0376\n", - "Epoch 2976/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6991\n", - "Relative Entropy: 0.0376\n", - "Epoch 2977/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0375\n", - "Epoch 2978/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7028\n", + "Loss Generator: 0.7026\n", "Relative Entropy: 0.0375\n", - "Epoch 2979/3000...\n", - "Loss Discriminator: 0.687\n", + "Epoch 2781/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0372\n", + "Epoch 2791/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0369\n", + "Epoch 2801/3000...\n", + "Loss Discriminator: 0.6871\n", "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0375\n", - "Epoch 2980/3000...\n", + "Relative Entropy: 0.0366\n", + "Epoch 2811/3000...\n", "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6981\n", - "Relative Entropy: 0.0374\n", - "Epoch 2981/3000...\n", - "Loss Discriminator: 0.6872\n", "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0374\n", - "Epoch 2982/3000...\n", - "Loss Discriminator: 0.6895\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0374\n", - "Epoch 2983/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.6966\n", - "Relative Entropy: 0.0374\n", - "Epoch 2984/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0373\n", - "Epoch 2985/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0373\n", - "Epoch 2986/3000...\n", - "Loss Discriminator: 0.6875\n", + "Relative Entropy: 0.0363\n", + "Epoch 2821/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.036\n", + "Epoch 2831/3000...\n", + "Loss Discriminator: 0.6889\n", "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0373\n", - "Epoch 2987/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.6982\n", - "Relative Entropy: 0.0373\n", - "Epoch 2988/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0372\n", - "Epoch 2989/3000...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0372\n", - "Epoch 2990/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0372\n", - "Epoch 2991/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6976\n", - "Relative Entropy: 0.0372\n", - "Epoch 2992/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0371\n", - "Epoch 2993/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0371\n", - "Epoch 2994/3000...\n", - "Loss Discriminator: 0.6887\n", + "Relative Entropy: 0.0358\n", + "Epoch 2841/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0355\n", + "Epoch 2851/3000...\n", + "Loss Discriminator: 0.6898\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0352\n", + "Epoch 2861/3000...\n", + "Loss Discriminator: 0.6896\n", + "Loss Generator: 0.6983\n", + "Relative Entropy: 0.0349\n", + "Epoch 2871/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.6971\n", + "Relative Entropy: 0.0347\n", + "Epoch 2881/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0344\n", + "Epoch 2891/3000...\n", + "Loss Discriminator: 0.6892\n", "Loss Generator: 0.699\n", - "Relative Entropy: 0.0371\n", - "Epoch 2995/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.696\n", - "Relative Entropy: 0.037\n", - "Epoch 2996/3000...\n", + "Relative Entropy: 0.0341\n", + "Epoch 2901/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0339\n", + "Epoch 2911/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0336\n", + "Epoch 2921/3000...\n", "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.037\n", - "Epoch 2997/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.037\n", - "Epoch 2998/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.037\n", - "Epoch 2999/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0369\n", - "Epoch 3000/3000...\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0333\n", + "Epoch 2931/3000...\n", + "Loss Discriminator: 0.6901\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0331\n", + "Epoch 2941/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0328\n", + "Epoch 2951/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.697\n", + "Relative Entropy: 0.0326\n", + "Epoch 2961/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0323\n", + "Epoch 2971/3000...\n", + "Loss Discriminator: 0.6891\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.032\n", + "Epoch 2981/3000...\n", "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0369\n", - "qGAN training runtime: 35.25595039923986 min\n" + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0318\n", + "Epoch 2991/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6988\n", + "Relative Entropy: 0.0315\n", + "qGAN training runtime: 35.40391653776169 min\n" ] } ], @@ -12406,12 +1423,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4lMXWwH8nPZCQhBZK6J0UAoQiSBHBXlBBaQpiwyt6xYod9RPL1YuoWLioKKKIiOUqihck0pEWeu+hk0AK6cl8f2zJbrKbbJJtCfN7Hh7ed9p75t3NnJ1zZs6IUgqNRqPRaMrCx9MCaDQajcb70cpCo9FoNOWilYVGo9FoykUrC41Go9GUi1YWGo1GoykXrSw0Go1GUy5aWWguOURkh4gMdFJbA0Uk2UltjRORlc5oy8Hn3SIix0QkU0S6uvG5o0XkD3c9T+MctLLQlEJEDotItnEQOS0is0UkxNNyOQulVLRSKrEydUVEiUhbJ4vkKd4GJiqlQpRSm13xABFpaXxnfqY0pdRcpdRVrniexnVoZaGxx41KqRCgG5AAPF+ygBhw2nfIckDRuIUWwA5PC6GpHmhloSkTpdRx4DcgBkBEEkXkNRFZBWQBrUWkiYj8LCKpIrJfRO4z1ReRYBH5QkTOi8guEXnK0mxjnMU8LSJbgYsi4mds73sROSsih0TkEYvyPUVkg4ikG2c9/zamB4nIVyKSIiIXRGS9iETa6pPxmYON11NEZL6IfCkiGUYTVYKdesuNl1uMs647LPIeF5EzInJSRO62SA8UkbdF5KhR3o9FJNiRdy8ifYz9SDP+38cib5yIHDTKfEhERhvT24rIX8Y650TkWxvtBopIJuBr7MsBY7rVrMk4o/w/4/VAEUkuo5/BIvKOiBwxPnulsZ+md3bB+M4uK2luK6efiSLyqoisMvb1DxGp78j70zgXrSw0ZSIizYDrAEszxZ3A/UAocASYByQDTYBhwFQRGWQs+xLQEmgNDAHG2HjMSOB6IBwoAv4LbAGaAlcCj4rI1cay04HpSqk6QBtgvjF9LBAGNAPqAROAbAe7eZOxD+HAz8AHtgoppfobL7sYTTemgbiR8dlNgXuAGSISYcx7A2gPxANtjWVeLE8gEakL/Aq8Z+zPv4FfRaSeiNQ2pl+rlAoF+gBJxqqvAn8AEUAU8L6NfuQaZ42mvrQpTx4H+vk20N0oS13gKQyfpemdhRvf2RpH+2lRbBRwN9AQCACecFBejRPRykJjjx9F5AKwEvgLmGqRN1sptUMpVYBhAOkLPK2UylFKJQGzgLuMZW8HpiqlziulkjEMCiV5Tyl1TCmVDfQAGiilXlFK5SmlDgL/AUYYy+YDbUWkvlIqUym11iK9HtBWKVWolNqolEp3sK8rlVKLlFKFwBygi4P1TOQDryil8pVSi4BMoIOICAalOkkplaqUysDwHkeU0ZaJ64F9Sqk5SqkCpdQ3wG7gRmN+ERAjIsFKqZNKKZM5KR+DeamJ8fNwpsPcXj99gPHAP5VSx43vf7VSKtcJ/QT4XCm11/j9mI9B8WrcjFYWGnsMVUqFK6VaKKX+YfxDNXHM4roJYBoITRzB8OvTlG9Z3vLaVloLoInRlHTBqLCeBUwmpXsw/FLfbTRZ3GBMnwMsBuaJyAkReUtE/B3s6ymL6ywgSCrmP0kxKk7LNkKABkAtYKNFX343ppdHEwzv0ZIjQFOl1EXgDgyzp5Mi8quIdDSWeQoQ4G+jSW18BfpRHvb6WR8IAg5Uok27/bS4L/n51JjFFtUJrSw0lcEyVPEJoK6IhFqkNQeOG69PYjCHmGhWTnvHgENGRWX6F6qUug5AKbVPKTUSg0niTWCBiNQ2/tp9WSnVGYMp5AaKZzee4hwGU1i0RV/CLExAZXECg+K0xPxelVKLlVJDgMYYfon/x5h+Sil1n1KqCfAA8KE4vnorC4NyM9HIwXrngBwMZsGSlBfWusx+arwHrSw0VUIpdQxYDbxudDLHYfj1/5WxyHzgGRGJEJGmwMRymvwbyBCD0ztYRHxFJEZEegCIyBgRaaCUKgIuGOsUicgVIhIrIr5AOgaTSZFzewvAaQz+l3IxyvgfYJqINAQQkaYW/peyWAS0F5FRYnD63wF0Bn4RkUgRudnou8jFYA4qMrY/XERMyvk8hsHa0feQBIwyvvNrgAEV6OdnwL/FsDjB1+jIDgTOGp9v753Z7aeDMmvchFYWGmcwEoMT+wTwA/CSUmqJMe8VDM7vQ8ASYAGGAc4mRr/BDRjs0ocw/GqdhcGxCnANsMO4mmc6MMJoImtkbDsd2IXBzzLHaT0sZgrwhdGsdLsD5Z8G9gNrRSQdwzvoUF4lpVQKhvfwOJCCwbx0g1LqHIa/28cwvO9UDIP6g8aqPYB1xvfzMwY/wkEH+/ZPDL6CC8Bo4EcH64HB6bwNWG+U6U3ARymVBbwGrDK+s94V6KfGixB9+JHGnYjIgxgGeId+tWo0Gu9Azyw0LkVEGotIXxHxEZEOGH5B/uBpuTQaTcXQO2Y1riYA+ARohcG8MQ/40KMSaTSaCqPNUBqNRqMpF22G0mg0Gk25aGWh0Wg0mnKpMT6L+vXrq5YtW1a6/sWLF6ldu7bzBPIQNaUfoPvirdSUvtSUfkDV+rJx48ZzSqlyowrUGGXRsmVLNmzYUOn6iYmJDBw40HkCeYia0g/QffFWakpfako/oGp9EZGS4VZsos1QGo1GoykXrSw0Go1GUy5aWWg0Go2mXFzqszAGI5uO4USuWUqpN0rkTwOuMN7WAhoqpcIt8usAO4EflVLlBaDTaDxGfn4+ycnJ5OTk2MwPCwtj165dbpbKNdSUvtSUfoBjfQkKCiIqKgp/f0cj91vjMmVhjP45A8PpaMnAehH5WSm101RGKTXJovzDQNcSzbxK8bGMGo3XkpycTGhoKC1btsRw5pE1GRkZhIaG2qhZ/agpfakp/YDy+6KUIiUlheTkZFq1alWpZ7jSDNUT2K+UOqiUysMQ5uHmMsqPBL4x3YhIdwwH3vzhQhk1GqeQk5NDvXr1bCoKjcbTiAj16tWzO/N1BFeaoZpifQJaMtDLVkERaYEhdtCfxnsf4B0M5zUPtvcAEbkfw7GVREZGkpiYWGlhMzMzq1TfW6gp/YDq1ZewsDAyMzPt5hcWFpKRkWE3vzpRU/pSU/oBjvclJyen8n9TSimX/AOGYfBTmO7vBD6wU/Zp4H2L+4nAU8brcfbqWf7r3r27qgrLli2rUn1voab0Q6nq1ZedO3eWmZ+enu5yGU6dOqVGjhypWrVqpbp166Z69+6tFi5c6PTnONqXZcuWqVWrVlXpWcuWLVPXX399ldqwx++//646d+6sunTporKyspzW7muvvWZ1f9lllzmtbXs4+pnY+p4CG5QDY7orzVDHsT5CMwr7RyWOwMIEBVwGTBSRw8DbwF0i8oatihqNxvCjb+jQofTv35+DBw+yceNG5s2bR3JyskufW1BQYDcvMTGR1atXO609ZzN//nyeeeYZkpKSCA4Odlq7U6dOtbqv6DvwVlypLNYD7USklYgEYFAIP5csZDxoPgJYY0pTSo1WSjVXSrXEcALXl0qpyS6U1SEubj3F0VeXUZiV72lRNBor/vzzTwICApgwYYI5rUWLFjz88MOAwUzx5JNP0qNHD+Li4vjkk0+A4p2/w4YNo2PHjowePdo0u2fjxo0MGDCA7t27c/XVV3Py5EkArrvuOh599FESEhKYPn06//3vf+nVqxddu3Zl8ODBnD59msOHD/Pxxx8zbdo04uPjWbFiBYcPH2bQoEHExcVx5ZVXcvToUQDGjRvHhAkT6NWrF0899ZTdPqampjJ06FDi4uLo3bs3W7duBeCvv/4iPj6e+Ph4unbtSkZGBidPnqR///7Ex8cTExPDihUrrNqaNWsWCxcu5IUXXmD06NEkJiZyww03mPMnTpzI7NmzAUN0iJdeeolu3boRGxvL7t27AYOZ9O677yY2Npa4uDi+//57Jk+eTHZ2NvHx8YwePRqAkBDDketKKZ588kliYmKIjY3l22+/Lfcz8CZc5rNQShWIyERgMYals58ppXaIyCsYpj0mxTECmKe88e2UYNvgzwAQfx+aTR5g+ECLFOKrt6toPMuOHTvo1q2b3fxPP/2UsLAw1q9fT25uLn379uWqq64CYPPmzezYsYMmTZrQt29fVq1aRa9evXj44Yf56aefaNCgAd9++y3PPfccn31m+BvIy8szh9c5f/48a9euRUSYNWsWb731Fu+88w4TJkwgJCSEJ554AoAbb7yRsWPHMnbsWD777DMeeeQRfvzRcHJrcnIyq1evxtfX124fXnrpJbp27cqPP/7In3/+yV133UVSUhJvv/02M2bMoG/fvmRmZhIUFMTMmTO5+uqree655ygsLCQrK8uqrXvvvZdly5Zxyy23MGzYsHLt+PXr12fTpk18+OGHvP3228yaNYtXX32VsLAwtm3bZn4Pt912Gx988AFJSUml2li4cCFJSUls2bKFc+fO0aNHD/r372/3M7j88svLlMnduHSfhVJqEYYD2S3TXixxP6WcNmYDs50smsPknkhn1/BvaPKPYt98zsFUAHbeMpec/Sl03TwRH//iL/nx6avxDQmg0T0JbpdX43nWNpxafqFK0PvMsw6Xfeihh1i5ciUBAQGsX7+eP/74g61bt7JgwQIA0tLS2LdvHwEBAfTs2ZOoqCgA4uPjOXz4MOHh4Wzfvp0hQ4YAhplJ48aNze3fcccd5uvk5GTuuOMOTp48SV5ent2lmWvWrGHhwoUA3HnnnVaziOHDh5epKABWrlzJ999/D8CgQYNISUkhPT2dvn378thjjzF69GhuvfVWoqKi6NGjB+PHjyc/P5+hQ4cSHx/v8Luzxa233gpA9+7dzX1YsmQJ8+bNM5eJiIgoV/6RI0fi6+tLZGQkAwYMYP369dSpU8fmZ+BtykL/JC6H5LdWkLMvhYOTinVeyo+7SFt1hIzVR8k/c5EtfWeiigwTo4KMXI69lsjhZ/SKX437iI6OZtOmTeb7GTNmsHTpUs6ePQsYTCDvv/8+SUlJJCUlcejQIfPMIjAw0FzP19eXgoIClFJER0eby2/bto0//ij+TltGOH344YeZOHEi27Zt45NPPqnU8syqRH+dPHkys2bNIjs7m759+7J792769+/P8uXLadq0KePGjePLL78ssw0/Pz+KiorM9yX7YHpHpvfjbGx9Bt5GjYk66ypUQZHN9F23zDVf5x4+z9FXl9FwZBy+YUHuEk3jpdiaAbh6A9igQYN49tln+eijj3jwwQcBrEwvV199NR999BGDBg3C39+fvXv30rRpU7vtdejQgbNnz7JmzRouu+wy8vPz2bt3L9HR0aXKpqWlmdv64osvzOmhoaGkp6eb7/v06cO8efO48847mTt3Lv369atQH/v168fcuXN54YUXSExMpH79+tSpU4cDBw4QGxtLbGws69evZ/fu3QQHBxMVFcV9991Hbm4umzZt4q677rLbdosWLdi5cye5ublkZ2ezdOnScn/ZDxkyhBkzZvDuu+8CBjNUREQE/v7+5Ofnl9op3a9fPz755BPGjh1Lamoqy5cv51//+pfZB+Lt6JmFkzg5Yy1bLp/Jptj3zGnZ+1M8KJHmUkJE+PHHH/nrr79o1aoVPXv2ZOzYsbz55puAwUbfuXNnunXrRkxMDA888ECZv14DAgJYsGABTz/9NF26dCE+Pt7uqp4pU6YwfPhwunfvTv369c3pN954Iz/88IPZwf3+++/z+eefExcXx5w5c5g+fXqF+jhlyhQ2btxIXFwckydPNiumd999l5iYGOLi4vD39+faa68lMTGRLl260LVrV7799lv++c9/ltl2s2bNuP3224mJieH222+na9eSwSRK8/zzz3P+/HliYmLo0qULy5YtA+D+++8nLi7O7OA2ccsttxAXF0eXLl0YNGgQb731Fo0aNarQO/AkNeYM7oSEBOXs8yyKcgr4u/lbVZKr55En8QmuXCyWyqBj9HuGXbt20alTJ7v5l1JoiepCTekHON4XW99TEdmolCrXwapnFmWQ/PaK8guVw98t/kVhVj5KKfJTssqvoNFoNF6IVhZlcOK9NeUXcoBz87exrtHrbOz0LmnLD5XKL8ovJDPppNlJrtFoNN6GVhZu4NBTv4NRD5yatbF0/hO/sf2qzzkxvWbs9NRoNDUPrSzcjMovRBUUkXemOOjc2W8MO1FPfV5akWg0Go03oJWFm7mw9ADrmrzBppj3OPnJ31ZKQ+UWcuHPAxTlet8aa41Gc2mjlYUHOfrynxz4R3G4rILz2ewe8S1HXlziQak0Go2mNFpZeBBVUETa8sOl0s/MKR1XRqMpD19fX+Lj44mOjqZLly6888475l3JGzZs4JFHHqnyMz7++GO+/vrrCtXp06dPpZ83e/ZsTpw4Uen6YNif8fbbb1epDXu89957dOrUqdSeiqpw+PBhq3fsrM+uqugd3Hbw5Moke7vGNZqyCA4ONgewO3PmDKNGjSI9PZ2XX36ZhIQEEhKqFqusoKCACRMmVPjAoKqE6J49ezYxMTE0adLE4TqFhYXlxplyFh9++CFLliwxx3VyBiZlMWrUKACnfHbOQM8s7JC++ohnn7/mKEV5hR6VQVN9adiwITNnzuSDDz5AKWUVgttWSG+AN998k9jYWLp06cLkyYYTAQYOHGgVjnzKlCm899575rxJkyaRkJBAp06dWL9+Pbfeeivt2rXj+eefN8tiCtFdVijuV155hR49ehATE8P999+PUooFCxawYcMGRo8eTXx8vDkMR9euXYmNjWX8+PHk5uYChjDiTz/9NN26deO7776z+16SkpLo3bs3cXFxjBo1ivPnzwOGGULnzp2Ji4tjxIgRZb4nExMmTODgwYNce+21TJs2rdQMJiYmhsOHD3P48GE6derEfffdR3R0NFdddRXZ2dkA7N+/n8GDB9OlSxe6devGgQMHmDx5MitWrCA+Pp5p06ZZfXb2wrRPnTqV8ePHM3DgQFq3bm3+jJyJVhZ22HVrxabazmbnzV9x5IX/eVQGTfWmdevWFBYWcubMGat0U0jvpKQkVqxYQXBwML/99hs//fQT69atY8uWLVYRYU3hyB9//PFSzwgICGDDhg1MmDCBm2++mRkzZrB9+3Zmz55NSkrpcDebN2/m3XffZefOnRw8eJBVq1YBhvMj1q9fz/bt28nOzuaXX35h2LBhJCQkMHfuXJKSkhARxo0bx7fffsu2bdsoKCjgo48+Mrddr149Nm3aZB7sbXHXXXfx5ptvsnXrVjp37szLL78MwBtvvMHmzZvZunUrH3/8sd33ZMnHH39MkyZNWLZsGZMmTSrzs9i3bx8PPfQQO3bsIDw83Bw9d/To0Tz00ENs2bKF1atX07hxY9544w369etHUlJSqXZNYdq3bt3K1KlTreJd7d69m8WLF/P333/z8ssvk5/v3HN3tBnKizn9+SZavnYV4ueDKizS52ZUEx5ImOmSdj/ZcL9T2rEV0nvJkiXcfffd1KpVC4C6deuay1uGIy/JTTfdBEBsbCzR0dHmMOatW7fm2LFj1KtXz6q8vVDcy5Yt46233iIrK4vU1FSio6O58cYbreru2bOHVq1a0b59ewDGjh3LjBkzePTRR8uVEwwBDy9cuMCAAQMAGDVqFHfffTeAOZbT0KFDGTp0qN33VFlatWplDpPevXt3Dh8+TEZGBsePH+eWW24BICio/CCk9sK0A1x//fUEBgYSGBhIw4YNOX36tFPNY3r0qQTujCy7rskbrG04lQ0dplGQkWtOLzifTc6h826TQ1P9OHjwIL6+vjRs2NAq3VZI77IoK3y4KbS2j4+PVZhtHx8fm4EKbYXizsnJ4R//+AcLFixg27Zt3HfffW4Pc/7rr7/y0EMPsWnTJnr06EFBQUGF31NZYc7dEYLc1c/QM4sK4t8ohE7fjWRrv/+49bmF6bmkJR6i3o0dSf73SpLfWA5At60PE9CoZgRDqynYmgG4O2jd2bNnmTBhAhMnTkRErPJshfQeMmQIr7zyCqNHj6ZWrVqkpqZazS5ciWlQrV+/PpmZmSxYsIBhw4YBhjDnJl9Bhw4dOHz4MPv376dt27bMmTPHPEtwhLCwMCIiIlixYgX9+vVj3rx5DBgwgKKiIo4dO8YVV1zB5Zdfzrx588jMzCQlJaXUe+rYsaPd9lu2bMkvv/wCwKZNmzh0qHRoH0tCQ0OJiorixx9/ZOjQoeTm5lJYWGjV55LYC9PuDrSyqABd1jxAUOu6FGV7ZtPcvnsW4v/zGLOiAMjeew6/8GAK0nIIiAzxiFwa78B09nN+fj5+fn7ceeedPPbYY6XKvfvuuyxbtgwfHx+io6O59tprCQwMJCkpiYSEBAICArjuuuuYOtU1J/6VJDw8nPvuu4+YmBgaNWpEjx49zHmm87mDg4NZs2YNn3/+OcOHD6egoIAePXpYnTnuCF988QUTJkwgKyuL5s2bM2fOHAoLCxkzZgxpaWkopXjkkUcIDw/nhRdeKPWeyuK2227jyy+/JDo6ml69epnNZWUxZ84cHnjgAV588UX8/f357rvviIuLw9fXly5dujBu3DircOlTpkxh/PjxxMXFUatWLavzQ1yNDlFupGQ4bFtHY1oeanP6y80ceuI3AEK6NyFzY9XWgleWTgtHcfDRReQevUDXjQ+x5sDmahPWuzx0iHLvpKb0pab0A9wTolzPLCpJ5F1dCRvQCr+wQHzDglgX+bpH5Mg/lUnu0QsAZKw7BsazZ1RhEed/20tor2b4NzDYctNXHyHnyAUajuziEVk1Gk31RTu4HaTN+zeWSgtqEY5feDAiQpNHLvOAVLDfIlyIJadnb2Lv+IVsjC4+jWzn0Lkc/OevZO895y7xNBpNDUHPLBygx6En8K0dUHYhL7Dm7f/HzwS0CaHwf5eR9lexc63gfDZ+EcVrxPPPXSS4fX1bTWg0Go1N9MzCBiVDfZSrKAAJLA4v0PvMswR3auB0uRzB50Amp7/YbNWH7H0pVve5x9I9IVqNp6b4/zQ1k6p+P7WysMG5BdsrXKfxAz0J7RlF6+nXAxD1RD9ni+UwR1/+kwt/7Dff73vwJ7Zf/bn5/sDD/9Vh0J1MUFAQKSkpWmFovBKlFCkpKQ5t/LOHS81QInINMB3wBWYppd4okT8NuMJ4WwtoqJQKF5EWwA8YlJk/8L5S6mNXympJzoHiMAUNRjvmDPYLCyL6l+Kt9/Vu7EjYnkn4RQRz/o997BljP16Nq8k7lkbesTSrtKLsfHwCtRXSWURFRZGcnMzZs2dt5ufk5FTpD9WbqCl9qSn9AMf6EhQUVKUd3S4bLUTEF5gBDAGSgfUi8rNSaqepjFJqkkX5hwHTguKTwGVKqVwRCQG2G+u6Z32qxSamyDu7llGwbEx+gvAr21D35k7U6dOcyLHdKEjJYs+478lcn1xlUSuNj5RfRuMw/v7+tGrVym5+YmKi1Xr56kxN6UtN6Qe4py+uNEP1BPYrpQ4qpfKAecDNZZQfCXwDoJTKU0qZYlsEuljO0lgoi+COVfc9iK8P7f9zC43u7o74CP4NahPz6120nTm0ym1rNBqNO3DlINwUOGZxn2xMK4XR7NQK+NMirZmIbDW28abbZhUAFj+6xYW/wOsP7eyytsvj7NwtHnu2RqOpfniL0XoEsEApZT7AQSl1DIgTkSbAjyKyQCl12rKSiNwP3A8QGRlJYmJipQXIzMw01/c9cgx/Y/rylcvBz3U61VMW04Pz17OnQ5ZXm6MsP5Pqju6L91FT+gHu6YsrlcVxoJnFfZQxzRYjgIdsZSilTojIdqAfsKBE3kxgJhjCfVQlNIRlaInkDStINk6KBlwx0KWhwXf2O076iiM0f+EK8lOzOTljrcueZYnvjnT8x2+g/vAYWr11jTnYXN7pTM7N30bDMfFWezM8QXUK91Eeui/eR03pB7inL65UFuuBdiLSCoOSGAGMKllIRDoCEcAai7QoIEUplS0iEcDlwDQXympF3unM4hsX//Lu+M0Icg6lUqtDAwov5qEKiqjVsT4HJy1y6XMBirLyOfPFZs58sZnYpeOpHduIPWPmc3HLKTI2HKfDF8NcLoNGo6keuOwns1KqAJgILAZ2AfOVUjtE5BURucmi6AhgnrJeoN4JWCciW4C/gLeVUttcJWtJznyx2XxdMryzs/EJ8KVWB4MT3bd2AC1fHUzteOvzhtt8UDrUiLPZduVnFGbmcXHLKQDSV3n2WFmNRuNduNRnoZRaBCwqkfZiifspNur9D4hzpWzeTGDzMKv7ute154Abnrtr+Dfm68L03DJKajSaSw1vcXBrLPALDaTbtkc4/dkGEME3JLD8Sk4gc6O1Syl97VHq9G7O8emr8Y8MoeGIS1Z/azSXPFpZeCkBkSE0e2agR2XYedNXdE2ayLHXEgEIjKpDYXouda/r4FG5NBqN+9HKQlMmR15cYr7edevXACQYw5hUhKL8Qnz8fcsvqNFovBIdSLCaEbtkPGGDWuNfv5Zbnpf6c+lD6gvSDGcmlxU0ryjPvGWGi9tP83fTNzn2eqLT5dNoNO5BK4tqQsL+x+i27RFqxzWi07wRdN/5qDmv809j3CqLKiwiNzmNDR2mkfzOylJKI33NUf6OepPj01cDFP8/bbVb5dRoNM5DK4tqgl+dIAIiQ2zmBbet51ZZirILSH5nJYUXckh+czl7x31vzlNFil23GcxVJl+Hi1cfazQaN6B9FjUAd5+hsG3Qp1b353/by/Zrv6Dp433J3HQCVVBkXUFrC42m2qOVRQmq4+E13nAuRebG4+wZNd92ptYVGk21R5uhSlJYfZRF2w9vouXrV+EXFkSHOcOpFd2Q3He7UrtrY0+LZqYot8Dlu+A1Go3r0cqiBLnHq8/51PWHxdDongQAIq5uR9yye1FNgoldfDe9Tk62Kutbxz0b+0py8sN1Vmao7dd9wdqGUzn50TqPyKPRaCqHVhYl2H37N+UXqgaIrw/1bo22SPDMr/usPWetgjFmbjDsEj/y0lIACjNzS/s4NBqN16GVRQlyDp03X0c91c+Dkjh4YgCwAAAgAElEQVSDYpNai5ev9IwIRcquzyL/7EXWt36HrYNmuVcmjUZTYbSyKIOoJ6q7siimwUjPxHVSyn7k3qQ+nwCQvfucO0XSaDSVQCuLmoyFr15EaPyPXub74E5VP1vcEVJ/2mV3ZlFo3AkOcOip390ij0ajqRxaWdRgIsd1AwyO8FIUus9PcPabreWWOT17kxsk0Wg0lcXzC/S9DAnyQ+UUeFoMp1DnsuZ03/2ozaB/qsj7lginrThM+qojRD3VH/His8E1mksRPbMoQd1r2gHFv8qrO/51a9n0GdicbXiYXbd9zfF/ryL119LBCytD7on0arUUWqPxZrSyKIlxYA3t3czDgriWpo/0odlzA8ssE/V0f/cIU4L8Mxed0s7m+A/Y3PWDarkrX6PxNrSyKIEy2fJrohnEYoYhfj7U6dPcKrveLZ3N140f6k3U45e7TbSyyN57jqIKmgYzNlic+ueFJjeNprqhfRYlMYb7EN8aqCxK4G8RxTZ+7QQCW4STfyaT9FVHqW+hOAACW4STe+SCW+RKX3mE8Cta4//eXo6ughPTi0Ob172hA1FP96dWh7JXc+247gvztSpSiD53SaOpElpZlECZlMUlEM8oqHk47T+7Ff/GoQS1rgtAp+9GkX/uIgGNQgFD/KnU3/cS3LYex/+9yi1ypf66h9Rf9+ALnFhpvQcj9Zc9pP6yh/ZfDCOoVQS1OhYrDaUUKQt3kr2vxL4NPbPQaKqMVhYlUPmGE97ECyK5uoO6N3S0uhc/H7OiAIMjvP6wGLL2nOX4v1dRp18Lmk7qaz5i1VPsHbsAgN5nni1OG/c953/bW6qsqkbBITUab+XSGBErgOk4UKmB50X7RQRVum6tDg0My3DDg71qWatSyjwLtKUoALszi3Pf7yD1tz20nXFTqTDvuclp+NTyx7+ue46v1Wi8Ha0sSmCaWfgE1jxl0eieBC5uOUV9ywCDFcAbB851ka8T0DiUqCfth2axtxpq/4M/AXBuYGsajok3pxdk5LK52wzAeuai0VzK6NVQJTCboWrgzMK3dgDtP72Vutd3cFqbMb+Pc1pblSXvZAYHH1tkv0CJ3eqqSHHk5T+LszNyrfLzT2Y4VT6NpibgUmUhIteIyB4R2S8ik23kTxORJOO/vSJywZgeLyJrRGSHiGwVkTtcKacl2XsMzlGfgJqnLFyBX3jlTVvuwnK3ulKK87/v5eSMtfYreI+VTaPxGlxmhhIRX2AGMARIBtaLyM9KqZ2mMkqpSRblHwa6Gm+zgLuUUvtEpAmwUUQWK6VcunazIC2Hwsw8gzxaWZRJx3kjyD2eZl5F5dUYlUX2/hS2DfmcwKahVtl6z55GUz6unFn0BPYrpQ4qpfKAecDNZZQfCXwDoJTaq5TaZ7w+AZwBXB4mNc8iNIRWFmUTPqg1kXcadLt/o5BySnuWQ08vJjPpJMfe+Iuii3lk700pu8IlsGxao6ko4qpQCCIyDLhGKXWv8f5OoJdSaqKNsi2AtUCUUqqwRF5P4AsgWilVVCLvfuB+gMjIyO7z5s2rtLyZmZmEpgqBT2wBIGdGN2jg/SaWkmRmZhIS4t7BW3alE/jSdrv5ylcQL16+mj+mBYU3NTXfy4lsAh/dDEDOnF7ghMUOnvhcXEVN6UtN6QdUrS9XXHHFRqVUQnnlvGU11AhggQ1F0RiYA4wtqSgAlFIzgZkACQkJauDAgZUWIDExkR5to9mKQVn06X85AZHV74uUmJhIVd5DpRgIaTFx7LrN9t6LoKZh5B51z+7vytCmTRuaDOwNQFFOAfvu+wHTeYkt/syn1ZtVP2XQI5+Li6gpfakp/QD39MWVyuI4YBmNL8qYZosRwEOWCSJSB/gVeE4pVYY30olYWB+0g7uC2LHcxK97kNOzN3Hyo3XulacCZO08w8HHFyEBvpz+dKNVXlriIQ9JpdF4F670WawH2olIKxEJwKAQfi5ZSEQ6AhHAGou0AOAH4Eul1AIXylhSluLrGrh01l3UG9oJgBavDSGoVQTNnh1Au1m3lCrX7Pkr3C2aTc59t50zc5JKKQownMmuo9ZqNC5UFkqpAmAisBjYBcxXSu0QkVdE5CaLoiOAecr6L/J2oD8wzmJpbTwuxnKJpfjpLSgVISS+MQC1uzamzYybiF06nkb3GsygPoF+1LupE23eu8FcPmpyf5o+cpnNtjr/ONr1AleAcwt2cHz6ag4+vkgrDs0li0t9FkqpRcCiEmkvlrifYqPeV8BXrpTNFpYxhHyCvMWdUz3wDQmk59GnkABfxEeoHduoVJkGI+II7lCfvFOZ1L22vd226vRp4UpRK0zqz7s4v3gfAI0n9CS4XX0PS6TRuB89IlpSZPCh14qJ9LAg1RNHFGxI1yZW9x3n3UH+mYsceOQXAKJ/G2toq5Y/RVn5zheyEiiLHeBn522j+QtXkJ+axZHn/kfusTTCBrUmsFk4AA2Ge98JhBqNM9DKwgJVYBgUtAnKfYQPaoMqLDIri9DuhiWs0f+9ky33f0tIQC2ydp31pIik/VXs5D7x/hrDvcDFLacAyPg72Zxff1h0qfD2qkgR8NJ2DiZk0fqd69wjtEbjZLSysEBdQgcfeRPi60OjB3paRbOtHduIvNe70KZeJ7Zd+akHpQOVb71q++LWU/YLFykwfn9M/o3sPWfx2ZXOmV1JWlloqi1aWVhQkJoFlA4sp3E9LV8dbDujmjmUVV4hEuyDUoqdN3+Fb+0Amr/gHau+NJqqoO0tFux/6L8A5YeD0LgNy9VH1SEEy6475pGfkkVhZh4Za49xYekBHZhQUyPQysKCwrQcT4ugKYHloUS1OjUg4tr2RI7v7kGJyiZj7TG29v8PKq84GMG+CT+Zr/XSW011RSsLjVcT3MF6mWqHL4bR6o2r6TD3dlq/dwNxifd6SDL75J+9yJ4x35nvsy0c9Ltu+9qmwlBKkb3vnNVeH4CC9Bx23DyHs/O2uk5gjcYBtM9C49VYrSyyGEcjhrQFoCi/kMCWEeQePo83kbnRdmSb9JVHKEzLQfx88KkdYO7fyQ/WcvTVZTS6NwG/erVI/tcKoh6/3GDOWnOMjDXHCL+yDf4NaruzGxqNGa0sNNUGv7rBpdJ8/H2JXzsBBDLWHGXn0LkekKxibGg/DYDwwW3o+LXhXK8THxrCn52atcFcLvlfK6zqHXxsER3mDCdrz1nOfJVE00l9vfKoW03NRJuhNF5P55/vJHxwG1r/2/ayU/ERRITgjsVHnrR8/Sp3iVdpLiw5YDYvldybYYvMTScA2HblZ5z6ZD1HnvufS+XTaCzRykLj9dTp3YyOX99BYFRYmeUsB1xnnjPuSg488othBdW5rHLLFl40nOJocp5n79er9jTuQysLC+rd2hmAppP6eFgSTVUJaBRKt22PeFoMh0hbdtCxgkqRdyqj+N7ObOTsvK0c/b9lTpBMoylG+yws8AkwvI7AlhEelkRTGUquMnLo8CrBynHuzRRlF7Ap7v3iBDuWK1PolHpDOxPUMhzfkEA3SKep6eiZhQXm2FC++rVUS2wM+pa7p8P6tyyV3+vkMy4UyMWIkLb8EBs6TeP4u6tKKcuzX29hfet3ODGj+Oyw7L3nKMopcLekmhqAHhUtMEUX1YEEaw6N7k2gwYg4Os67gw5zhhOzeBzNXxwEQPMXByE+QoNRXazqhA9u4wlRK8zFTSfYNewbClKyOTb1Ly78sd8q37Sy6ujLfwKQtvwQWy6fyY4bv6zQc3JPpJO184xzhNZUW/SoaIHKNzgOtbKoOfgE+9PmvRsIH9QGn2B/Qro2ocnE3nTb+jBNJhrO3a53U0erOnX6etd5Go5y4qN1JF32sd381EV7AUO03KNTEx1ud3P8B2wdOIu8M5lVlFBTndGjogWqwBR1Vr+W6ohl1NryCGgUar623OgWflVb8wl/1Y2M1UfJOZBqN98yBMmJd1dXuP3cY2mVkktTM9AObgvyUwzLF33DgzwsiaYy+EUE0/DOePwiSm/eK4vasY1o9uwAxM/XPNuo068F6SuOGApUIye4PfJOZ3LmqySrtMwtJzk29S9a/t9gh07/c2QviKbmon9CW1CUbTiZza+OXj1SXWn9znU0f77iIcGbPtrXrCgAQoyHMAHELL6btp/cbL5v9ECPMtuqf1t0hZ/valJ/3VMqbceNc0hbdpAtfWfqAIeactEzCwvMDm5thrrkiXrscgIa1ibi6vYENgsjJL4xPgF+FFzIpuHoeCIGt2XX8G9s1m09/QbOfb/DzRKXzalP/i6VpixWRaX+spt6N3Zyp0iaaoYeFS0wL53116/lUscnyI9G9/YgsFnxrvG613eg4eh4AMIGtKLjvDtK1UvY9xg+XnjuRs6hsgMt7rvnB9JWHC67EW2FuqTRo6Ilep+FpgKED2pD7NLxxfdXtcUvzODvCoiqY05vYe8UQC8j9dc9XNxxhsJMY1iRIkXqL7vN+QVpuWTtPovsz7DXhKYGo81QFpjMUOilsxoHqR3biIQ9kzj3w07qG8PFAFahOBo/0JMjLyzxgHQVI2PNUU5/tpGgdvWIX/UAZ+dt5eCjv5rzd99uMLsFAoUjrsY3JACAI1OWUpSdT72bO5G16yyN7qmeq8k0ZaNHRQvMZiitLDQVwC8imEbju+MXXrwKK2pSXwAaP9irzLrRv97lUtkqQpbxkKacfSmcnr3JSlGU5MzcJNZFvcnZ+ds4+eE6Tn++iZ1D53L4mT/M0XEBinLL3i2eezydnIP2l/tqvAeXjooico2I7BGR/SIy2Ub+NBFJMv7bKyIXLPJ+F5ELIvKLK2W0RIf70DiLhmPi6bp5Is2nGHaL54+2vdEvtEeUO8VymENP/V5m/pEXlqDyCjkw8b+l8kyb905+tI6/m73FhT/tB0rc3PUDknp/bDMESckVWic/+ZuTH5d21Gvcg8tGRRHxBWYA1wKdgZEi0tmyjFJqklIqXikVD7wPLLTI/hdwp6vks4WeWWicSWDTOua9CYU3N6XH4Sdp/8Uwc351CaNeUUx9PvLSUsP/U8o3wRVm5Frd553OZEOHaRx7c7k57cgLSzjy4pJic7HGrbhyVOwJ7FdKHVRK5QHzgJvLKD8SMK9FVEotBdzqSdPKQuNKfGv5W3232n54kwelcR15p63DgogIRTkFFOUX2qlBqbPHT83aQOGFHI6/s5LU3/ZahVw3/Z2W5PzSA+weM5/81PLPBtFUHFeOik2BYxb3yca0UohIC6AV8KcL5SkXbYbSuBOfYH+g+BwV8M4NfRXl0BO/ceyt4hmBKlL83fJfbO42w26d/HNZ7LlrAeeXHjAkWCiPvWMXcOK9NcXt2VE6e0Z+y4U/9pP8xnKb+Zqq4S2roUYAC5RS9n962EBE7gfuB4iMjCQxMbHSAmRmZhKYX4AAK1avhIDqqTAyMzOr9B68iZrYF59t5wkwppn7NiIcn6h2+P12kuQhQQR9b78dVdsXFeqPz6kcV4tcJY6/vdJ8nXUqDSlS5J82fp55hcjBi6j2oZgC62y7YhYA53/fS878PvgdOWJ3cFqRuBxC/Eulm9o6sfcoRxz43tTE75crcaWyOA40s7iPMqbZYgTwUEUfoJSaCcwESEhIUAMHDqxoE2YSExMR4+x2wKCB1dYUlZiYSFXegzdRE/tyvmA/e9gFYN23gcDzhsu1EzbabeeyQ0+jlGJd5Osuk9XZBAQFkp9mCKXTv/fl7Bkzn7Tlh2k+5UqO2ih/WduunGpayElO2MiFPj0us3mw1VoMwRF916bQ14HvTU38frkSVyqL9UA7EWmFQUmMAEaVLCQiHYEIYE3JPLeiFBQap76+equqxjUEty8/YF/tuEZc3HrKbn51C+iXb+HD+Lv5W+brc99vt1l+c7cZBDQJtZkHlO/gLtJxrlyBy34+K6UKgInAYmAXMF8ptUNEXhERS8/eCGCeKrFOTkRWAN8BV4pIsohc7SpZATB9/3yl2v0xaqoPQc3DiV0ynm5bH7ZbptOCkbSffRt+de1Hz231r2us7mvHNXKajN5A3oky1ra4SRfo4IrWuNRnoZRaBCwqkfZiifspdur2c51kNjDOKqqr+UlTfShvYPcLD6budR0Iv7INfzd7y2aZyLHdCOvXkovbTxN2RWt8QwKqlWkKIGvb6UrVO/nx35yatR7x8yGkaxOif3b+CvvzSw+w756FtPtkKBFXt3N6+9URPTKaKNIHH2m8C59AP+r0bW6+j1k8zio/qHVd6t3UCb/QQESEqKf7u1lCz3Dqk7+hUKFyC8lYe4zzS/aTse6YVZmCjFy2DPgP+x/8ifxzFyv8jD2j51OUlc+eO79zltjVHm9ZDeV59MxC44W0/XgoJ2espf7wGGrHljMjsWO2avfpLQS1rMu2Kz91hYgeZ8+o+aXSzn69hexdZ8nedZZz3++g2bMDCO7QgPAr23hlVODqgB4ZjUimIdxAYXpuOSU1GvcREBlCi1cGl6soStL5x9Hma59aAdSOjSS4UwNni+e1HP/3Kqv7Y1P/Yu/YBey6ba7bZLi44wxbB84ibfkhtz3TlWhlYcRn24XyC2k0Xoxv7QDzdZ0+pWNRWebbo/4dscSve9CpcnmCgvPZNtMz1iWzuceHdnd5F5zP5uhriU5ZUbXv3oVk7TzDrmG2D8mqbmhlYaQoqpanRdBoqkS9WzpT98aOtHnvBsP90E741QumTm/Ddqc2715fbhsiQlCrCLpurPC2p2pD7pELJCV8WLxU3oINHaZxYvpq+3WPpTm8Ssp0THNNQSsLE8ZfEqG9m5VTUKPxTnz8fWn/6a00GBEHQLuZt9B9x6PmGYXlHo/WRoViIriDIS98SFsAApuF1ehVQIWZefh/vN98rwqKrOJPWbKp2weceH8NZ77ZwubuMzg8ebG7xPQqtIPbiJgc3PpIVU0NQnxs7xkqaZKKXjSW7F1nCelRHL6t3axbyN5zjm2DP3OpjJ7C9y/D+R2FWfmsb/kvu+XyktM5+uoygtvXA+D055tQ+UW0/vd1VuVUYRE7bphDrc4NaP3OdbaaqtZoZWGiUC+d1Vw6+NSyjq3kFxpIaE/rszV8Av1q3Ga/kuy6/Rsy/k52rLDFZt0zXyXR8s2r8fH35cSMtZyevYn6w2PI3HiczI3HqXNZc/JOZZbRWPVDKwsTeums5hIgduk9qKIiakdHEpLQlMwN9sK1XRqkJVZgpVKJWdrfTd+k+45/cvRlQ7Bsy+CJ+//xs1Pk8yb0yGjCrCz0GmxNzaV2bCQhXRojfj7ELBpL+89upcPXt1e53dbTHDO7+EUEe9VRshXBVhigjdHTHap7ZMpSzsxNcqo8SilyDp13W1gSrSxMmJWFjguluXSoe0NHIga3LbNMpx9G02BUF2IWjyN8cJtS+dG/3kWDUV3KfVaHr4aTsGeS1x4lWx5ZO89Uuu7JD9dxcNKi8gtiWEVleRiUKigi91haqXKHn/mDpF4fkfzWikrLVRG0GcqENkNpNDYJ69uCsL6GfRs+gaWHDNPg7xPsR1F26bO0AaKe7k/EVcWrq2IWj2PHzV+hbJy9falw7ocd5J/LovF9PcxpJz5cx9EpSwlJaErE1e3I2nWGlIU7Aeg4fyThA1sZyr2/htOfGULZH39nJczv43J59chookiboTSa8ijL5BE+qPSsAyD8qrY0eai3VVpI1ya0/88tTpWtOnBm3lZOf7kZgP0P/MSR5/5nPh3wyJSlHJ1iOLc8c8Nxjr2WaFYUAOe+3QrAqU83cPRV28t8XYlWFkakQM8sNJry8G9Q23wd1K4enX4oDisSbmdfRtNH+uATpI0YAAcf+YVDT/zG9uu/NKftGfktuSfSOfnhujLrKqXI2nmGw8/84WoxbaI/QRNFWlloNOXR/NmBnNx3lJgnrzGbpkw0uD2WwGZh1I6NZM+o+cVLUu24AS/l8yIy11sv13XEHJd/NosD//zFVSKVi0Mjo4j8U0TqiIFPRWSTiFzlauHcivZZaDTl4hcRTP6jHUopCjBsAAzr2wK/OkHUio00p4d0bWK7sTLiLzV7fmBVRa1WFNrx9ViSvuIwF7fYP0HR1Tg6Mo5XSqUDV2E4AvVO4A2XSeUJtLLQaJxGs2cHEjW5P/F/P2j/b6qMiUWtzg2t7jv/PMaJ0nkf266Y5WkRysVRM5RpInkdMMd4PGrNWmOqlYVG4zT8QgOJeuzyMssoGzOLpo9fTlCriFKzDvHRf5dlIXszYKBrn+HoJ7BRRP7AoCwWi0goxadW1wxMESi1stBo3EIdG0E7mz3dnwa3x1opklZvX2vX76ExEPj8Npc/w9GR8R5gMtBDKZUF+AN3u0wqT6BnFhqNW/FvUJuE/Y+RsHdS6UyLiUXkXV2t4jJpPIOjI+NlwB6l1AURGQM8D5TeUliNER1IUKNxO351gpCA0tbwoFYR1gkWuqLujR1p/9mtLpZMUxJHR8aPgCwR6QI8DhwAviy7SvVC9hkiROr14BqNe/Gt5U/radfR9qObzWm1Ojag47w76LL6AcA6LlP7T2+l7g0dafKoYddyQJNQGt7V1WbbkeO6uVDySwtHR8YCpZQSkZuBD5RSn4rIPa4UzN34bjEcq3qpR+HUaDxBw9HxpdKsdoTbsEI1e2YADcfEE9gsDBHhjHFntCWt3rqGFq8O5vRnGzny0lJzet3rO5D66x6nyO4tFF7Mc+jo3Mri6MwiQ0SewbBk9lcR8cHgt6hxFFywfXavRqPxIDZ8FiJCUPNwm9FgLfEJ9KPxg72s0lq8NoSiFtZHKfc8+hTdtj1CSPfS+0KCWtethNDuRfxdG6rIUWVxB5CLYb/FKSAKsH+0VDUm6qn+nhZBo9GUILBpnQqVb/n6VXT6bqTdfPH1oeA269VYPkF+BESGENSqtGJwJKqup3H1KZ8OtW5UEHOBMBG5AchRSpXrsxCRa0Rkj4jsF5HJNvKniUiS8d9eEblgkTdWRPYZ/42tQJ8qRVHjIAACGoW4+lEajaaC+DeoTezS8cRv+IdD5Rvdk0DYgFZ28wMiQyjq6fhsoe617ajdxbtPDXT11jdHw33cDvwNDAduB9aJyLBy6vgCM4Brgc7ASBHpbFlGKTVJKRWvlIoH3gcWGuvWBV4CegE9gZdEpMTyCCdTpFdDaTTeTO3YRgQ1D69yO00fN24W9BGavzTI0HbXxsUFSoy5fnWDCW5Xn3aXYJRcSxx1cD+HYY/FGQARaQAsARaUUacnsF8pddBYZx5wM7DTTvmRGBQEwNXA/5RSqca6/wOuAb5xUN4KI6YthlpZaDTVkohr2nH+931287usfoDURXuszo9o/EBPgjvUtz6QqcTxqSYlEdQygoZ3dbXpSL8UcFRZ+JgUhZEUyp+VNAWOWdwnY5gplEJEWgCtgD/LqNvURr37gfsBIiMjSUxMLEck+/gXFOELrF2/Dg4FVrodT5OZmVml9+BN6L54J17blxER+NZvQWH/Bvbli4N961YBhn78tXK5YRTcXBwF1u/0KauBMWnHVlThYQB881K8dmWPqz8TR5XF7yKymOJf9ncAjp0R6BgjgAVKqcKKVFJKzQRmAiQkJKiBAwdWWoA1rAegT98+BDQOrXQ7niYxMZGqvAdvQvfFO/Hqvjh2FDhgvx9pfi3Zlfi1+T6hb09qxxr8FUW98jka9hfhg1pzMekkx17/q6oSOw1XfyaOOrifxDAoxxn/zVRKPV1OteOA5XKDKGOaLUZgbWKqSF3nYDJD+eiwAhrNpUzY5S2t7mvFFIdb9wn2p+Wrgwm/ojVNJ/Ul1BjfqtmzA6jVqUFxHYsQ7TUFh7crK6W+B76vQNvrgXYi0grDQD8CGFWykIh0xBD2fI1F8mJgqoVT+yrgmQo8u+KYHdxaWWg0mmLKWmXUeeFoco6cJ7hNPSLvSeDQ44toMCIOVVDEnjHfmcs1eqAHacsOkr03xR0iu4QylYWIZGA76rwASilld/GzUqpARCZiGPh9gc+Moc1fATYopX42Fh0BzFMWx2YppVJF5FUw2obgFZOz22Xo1VAajaaCiJ8PwW3qAYaw7O1m2l4x1fLVIQCsbTjVblvdtj/Cppj3zPfxayfg16A2G9q840SJK0+ZykIpVSXjvVJqESV8G0qpF0vcT7FT9zPgs6o8v0KYV0PpmYVGozHQcEzpMCTOoPlLg0CEo1MMIUiaPHwZAQ1L7PHy88Ev1HsW2+if0SZ01FmNRmMkfLAhLlX94TFVbsuvfnFYkZZThxDSI4rIsd1oMCIW/wa1afxQb5q/cEWper4h1nGeQiyX93qASz7E6u71x/nlP5uoVTuIbnlZWlloNBo6zBlO/tmLBDSq+srIkC7FG/4a3duDRvca9nn4EkC37Y/Y9Yn417WOXeVpf+olPzJeTMtl36aTXPA1BuHSZiiN5pJHfH2coijKfY4dRWGa2ViVtRib6l7fwWUy2eOSVxZ+AQYlUWT80PTMQqPROBUn/f6sN9QQLck3LIj2n9/mnEYrwCVvhvIzRmo07QYUvc9Co9E4gbo3dyL1p100vNP2wUxlYjHj6PT9KHKPpdFwVBdqdWxAUNt6TpTScbSy8LeYWWgTlEajcRLtPhlK3kuDCIwKq3hli6EorF9L83Vor2aly7qJS97mYp5ZiGHNtEaj0TgD8ZHKKQocCzfeaWGpPc4u5ZIfHS19FtpfodFoqgthl7ckIMqwL1oFun7suuRHR5MZqhDt3NZoNJ7FJ9jgGXD0oKWOX91OaJ/m5L0U7UqxAK0s8DWanrTPQqPReJq4v+6jxWtDaPLwZQ6Vr9W5IdE/jkG1df0yX+3gNpqhCsXzm140Gs2lTVDLCKvDmbyJS35mYXJwa5+FRqPR2OeSHx21z0Kj0WjK55IfHS1nFtpnodFoNLbRPgtLn4XPJa87NRqNxiaX/OhoWg2lREArC41Go7HJJT86ikixwvDTZiiNRqOxxSWvLAD8jMqiUF0ZMyEAACAASURBVPssNBqNxiZaWVCsLIociMei0Wg0lyJaWQBSaDiAO3Nviocl0Wg0Gu9EKwtAcgsAKPKwHBqNRuOtaGUBBIQGAhDUrYmHJdFoNBrvRCsLwNd4Ol6gh06g0mg0Gm9HKwuKlUWh9m9rNBqNTVyqLETkGhHZIyL7RWSynTK3i8hOEdkhIl9bpL8pItuN/+5wpZymkFCFypVP0Wg0muqLy8J9iIgvMAMYAiQD60XkZ6XUTosy7YBngL5KqfMi0tCYfj3QDYgHAoFEEflNKZXuCllNMwu9dFaj0Whs48qZRU9gv1LqoFIqD5gH3FyizH3ADKXUeQCl1BljemdguVKqQCl1EdgKXOMqQX2NSqJI6amFRqPR2MKVyqIpcMziPtmYZkl7oL2IrBKRtSJiUghbgGtEpJaI1AeuAJq5SlCzz8JVD9BoNJoSJO9LITszz25+UWERX7+xks3LDrlRKvt4OuqsH9AOGAhEActFJFYp9YeI9ABWA2eBNdgYy0XkfuB+gMjISBITEyslRG52FgAnT5+tdBveQmZmZrXvgwndF++kpvTFk/1IOZrDH+8dJTjMj94jGnHucDbRg+siIhQWFJFyNIfstAJWLzjFXwt2MvLt9qXaKMgtIiezkJB6/m7piyuVxXGsZwNRxjRLkoF1Sql84JCI7MWgPNYrpV4DXgMwOr73lnyAUmomMBMgISFBDRw4sFKCbp1+Es5nUK9BAyrbhreQmJhY7ftgQvfFO6kpffFEP3auTeb00TRCVD5wlOy0ApZ9kgzAtsUpfLz+Pt6652cObj1NaN1gc72BAwdy7kQGh7afYe+GEwSHBrD0m+0U5BUy5bvh7DmyxeV9caWyWA+0E5FWGJTECGBUiTI/AiOBz43mpvbAQaNzPFwplSIicUAc8IerBPU1/q/NUBqNpiqknsrk9NE0OvW0trjn5RQQEOTH9ImLAOjUq6RF3sDUO3/g6O5zAGSkZpvTl327nXn/Wm2zzu71JzAsDXItLlMWSqkCEZkILMYwHn+mlNohIq8AG5RSPxvzrhKRnRjG6ieNCiIIWCEGx3M6MEYpVeAqWU3KokgvhtJoNJWkqEjxzA2G1f+TZw+lVYxhBD+6+xyvjVloVXbXupJGFsxlbWFPUQDMe2sVAD3+vIzadQIrLLejuNRnoZRaBCwqkfaixbUCHjP+syyTg2FFlFswefn1zEKj0QAsX7iLJXO38tjHNxDeoLY5/djeFJYv2MlNDyYQGlFsJsrPK2TK8Pnm+6/fWIl/oC/3vT64lKJwFcG1/V3avqcd3F6Bj3HFrN6Up9FoAOZOXQHAr//ZxOhn+5nT/2/U94BBmUxbNpbfZyex/PtdpVY1mWYIk6+b6yaJwcfXtQE5tLIAfDFoCW2G0miqN0u+3kZoRBC9rm3nlPb2bjppvr6YnmuVN+mKL5zyjOqCVhbomYVGUxNIT8niu3+vAXBYWSilKMgvYvrERWRn5pFc4kybU4cvsGX5EWqFBjDtwV+dLrOziL3K9UFQtbIAfPIN3grts9Boqi+ppzLt5imlOLLrHNkZuexef4KbJiRwYtdFJjzxn3Lb/fCxxc4U0ykE1fYn52K++T5GKwv3kLvnLESEUJivjz/SaDxJbnY+eTkFVs7j8sjJyuef/T+3Snt88JfEX9GSmx5IID+3gJeGzafA4u87vGFt/vrU9oqk6sATM2/k/0a7x3FuQisLwNdofsorYZPUaDTOo7CgiKO7z9GiU327ztjHB39Jfm4hI57qS+/r2hEcEmA2FfkH+JJ5IYdzx9OpVSeQc8cz2LkumbW/lNqvS+aFHFb+sJuVP+y2+RzTctPqxMPTr8HH14eAID+atq1Lq9iGHNp2hp7XtnXL87WyAHyMAQTPaWWh0TgNpRTGvVIUFhTxj96zALjm7v9v70zDo6iyBvyerOwQQCI7BIksAdlFQEBAZBEFZQQ3xFHBBT93BXfHGcUFhhk3ZBxFHRGRUcAFRBjCKhpUtoBAhAABZJMtYCDL/X5Udae7051OIJ3uTs77PP2k6tat2+d0VerUvffcc9ox7J4uXs/JPm0NBs98eSXLZm9i3D8G8PiQjwH465yRPDl0ZilIXnpUq1WR44etxXeJHeryx8kz3DP5CmrUqUzOmVx+XLyDeW+lcHhfJglt46lUNX8dxfj3hjp/49IIW6LJj4D9sZZ/cvpvJ4MsiaKEHtmnczh5LKtY58ya/B3jB33EqRPWC9hr9813Hls8YwNgzTFMGvsF65bt9NrG3u1HnIYCCHlDER0bWaBsSvLoAmX1msU5t1/44gYuv7ktiR3q8sDUK3nyo2uJi6+CiBAdG0XXQc15/vOR/GPZrW6GwoGUYloF7VkAR2L0Z1AUX4wfPIPMo1kkdWtIvWZx1LrI/zkOg7Dm2+30vKal24plR+9hyScb2frjPrb+uI9RT/Wk4+XNAiJ/adCudxPuerU/a5PTeethKzJR5eqxVKwSw4T3h/LiLXN44K3BNG9fl83fZ/DafQsQgeiYSIbf17XQtiOjIoiMCv57ffAlCDLGGOpl+Q4TrCjhxO+/ZfLxyys5vO+Esyz7dNEi5Rh7ODYnO5cP/7qMDSt2Adb4P8DGVbtZ+OF68nIN7zy+mPefS3Z+Z25OHh+9sJzN32d4Nur1u8Z2msbijzc69z94flmBSepwYug9nQHLaDhoe2ljAJq0rsPba8bQonN9IqMiaN2tIXdPvoIXvvAMlRfalHtjQa4hMdPqKsdWCuxyeUUpSY4fPsXRg+5Dp28++A3Js1Kd7p7rl+9kXPd3WWS/6fvihwVpPNTvA9I3HWTl3C2smPMLr9+/wGvdTx7bRsrCX1n1xVa2b9jPhCtncHfXd1j22Wam3PM1a7791Vn3oxdXMLbTNK/t5OaEtvfhA28N9lvn3n8OZGrKHdRtmj+0dMszvTi/SQ2uurOT13NEhIt6Nqbm+VVKTNbSoNyPv5icPCLtt59KVWOCLI2iFJ1HrvgPAG+uvt05TLHbXlSWse13Zk3+jnVL0wH4dPJ3xDeqTpsejby29e8n/wfAB39ZSsd+Cc7yA7uPFSrDS7fOLVA2Y+KK4ikSorToXJ8pyaOpWCWGX1L2cOrEGZI/TWVLyl4AHpx6JRd2qlfgvG5DLqTbkAtLW9yAU+57FiYnz+kNFepvOoriDc/ehYPFMzaQcyZ/qalnT2Hdsp2M7TTNbcjK5LkPG62ct6XY8pw8Vna8CitWsV4gW3SuT4c+Tbnjhb5ce9/FvPrtzV4NRVlGjUVunjNEues/lqKEC8/+6VOfxyTC3Vtmx8YDzm3HUJWrx5Hliplff3/60RKSMvi8vWaM236/expy+U1t3coG/rl9oW1UjatI/5svKtaiwbKCGguXnkWOruBWwgTjMnF8Jsv3BLbn4reJo+cU2u6+HUfZvyt/6OnnJelnJ2CQGfV0L6/lrsNw5zWtyPD7u5LUzUroWa9ZHANvbcdlI1rz2HtXl4qc4YTOWeTkOQMJ5mRrz0IJLsYYZry4ggaJteg13HdKl7xziHp54sgfPH3tLJ/HV3+17azbDjYPvDWY/TuP0f2qC7l44AWcPHaaV8d8Qd/rkwDLIDi8vByMfq43Sz5J5dJhLYitGM3IR7oHQ/SQR41Fbp6ze5WXa8jLM0REaKxyJTikpx5k2WebAQo1FsbDJTUvN4/1y3cVqHd474kCZQ9f/uE5ShkcRj7SjcSO9fjLyNlej186rAUtOtenRWcrZWlUdCTVa1fi+c9GOOsMvr0DIkKn/s34da/lIVY1rqJPzyUlHx2GyslDyA/5kau9CyVAHDt0ij1pvxcoX/zxBqY/l4wxptAhJQdfvL2G565zn6f46MUVzsVgZZE7XuzLZSOS3FZJv/LNTW51RhShRxBbMZph47rQMDHwUVrLGuXeWDiSWDh+CJ23UALFowP+w19GzubIfvdQ2rMmfcd3X2wlPfUgntEbvnrnJ8Z2muY2Mf3lv37iwO7jbvVWzPEeMK+s4JhQrlW3KpWqxtAwsRbValUiItL6wXpe05LomILhNpSSQ4eh7B5FJJCDzlsogee39KPkZOfx67rf6OKSpGfbz/to0rqOc//YoVPMm7oGsCamPb15wplRT/Wk21UXcmDXMX5ekk6fkUnEVIjiyP5M9u86xvlNarBg+lpq16/GyWNZJHasC1ihL15ZeLNz4v7pmcP57sutDLy1cC8m5dwp98YC2688GsNphKyT2eXSLU4pPabc87Vz23Xq4b//+J6Hpg1x7k8bv8jtvMyjWc5Fd6FGx34JZB7LwuQat1Skz38+gqeGfVKgfkRkBCJCfOMaDBjdzlkeF1+FuHhrZbOvieao6PweRN2mcVxz78UlpYZSCGosbGMRiyET6x/yvAbVgiuTElIs/3wz8Y2q0/DC2qxNTqdd7ybOxVqubFqdwebvMxg2rovzzXfLmr3MfGUlJ096Xzg3/dlkt/1JY75wbqet/c3t2NPXfhK0BW8d+yXw46Ltzv3LRrRmySepzv0xE/s5t/Ny8/h0ympadqlPnYbVGTC6HQumry1VeZWSp9wbC8eKVcdQ8ap5W2iaVMf3CUq5Yk/a7/znb8vdytpd1oS7XulfoO4/xlk9hoUfrmfEw924qFdjJt/5ZYnJEixD4Qgn4hrjadCf2zuNhedkcURkBCMe6ubcH3pPZ5K6N+TVO/INYa264RUXSVFj4exZHBKra7vss83c+PilwZRICSGOHTpVoGztknQ+fnklw8Z1IWPrYRbP2EDXwc3d6nzy6ipmTf6utMQsUaJiInn+sxFMG7+Idr2bOONOPf7hMFK/yyCmwRGq1arEX+eMZNPqDC69pmWh7YkIzdvX5dF/X8XRg6f4I/MMiR3LV6iMskC5NxaesXCU8sX2Dfv55Yc9DLi1vdf1NZ7rGRwkz0oleVb+MMxP/9tR8Nwwvbf+uexWIqMiGD99qFt545bn0bjlec6sbOc1qFboWhBPml10fkmKqZQyAXWdFZEBIrJFRNJEZLyPOteJyCYRSRWRGS7lL9tlm0XknxKolFA+HgZK+eClW+cy9601rFn4q9fj5fH2CIVEO0roEbC7QkQigTeAgUAr4HoRaeVRpzkwAehujGkN3G+XdwO6A22BJKAz4D3YyzkSrm9/iuWMkPJNWpHdnR29hG//s54ZL61g2oR8byPXyKseJ52znMGmz8gk5/boZ3u7HXto2hBGPdXTuf/qtzeXllhKmBHIYaguQJoxZjuAiMwErgY2udS5A3jDGHMEwBjjWHlkgApADNbcczSwPyBSqrEIWybf+SV70n5n8B0duGpsJ4wxpKcepF6zOKKiIzl5/DR/ZJ4hvlF1lsxKZebLK3225Yg4nJdnSE89QMPEWkTHRoWsrbhhfI8i5Y0Y8XA3LhvRmoQ2dcjLM1w8sDk/Ld7O+uW7aJBYi8QOdTngEjhQ3cYVXwTSWNQHdrvsZwCeDtGJACKyEmtd3LPGmAXGmO9EZAmwD8tYvG6M2ez5BSIyBhgDEB8f7xxLLQ6y7QSeadDPpp1QITMzM6zld8WfLo7QGasXbqJK8xN88qj3AHjDnk3g85e3ez3m4Mt//cSW1F/ZnnKc3GzLQgz/azNmP+l9eCrYpG33HexPIsDYgQgizj/E0qVLcdzkycl7uKBfNKZyLRI6Vyc5OZm0X/LDkBfl3ikr91hZ0QNKR5dgT3BHAc2B3kADYJmItAFqAy3tMoBvReRSY4ybD6MxZhowDaBTp06md+/exRbgROUMUnFPOXk27YQKycnJYSl/bk4e65fvJLFjPSpXs55srrpkHs3iTFYOv677jY79EuzwF1sBOLwzi2ObK/tsu1HtFkDhxgJg2yr3rHChZihGP9vbuS6jRYsW/OCjs/3g1CEc2Z9JvYQ4Gl5Y22udK1wyhlY+nUbKbCtTXlHunXC9xzwpK3pA6egSSGOxB2jost/ALnMlA/jeGJMN7BCRreQbj9XGmEwAEZkPXAIsp6Sxh6FaR+WQmhNs21l2OP1HNmuT02l7aWOvC9gO7zvBnDdSGDC6HfUvqMmC6WuZN3UNjVudx+MfDCMvz7AnNZPMdpaRmHCl0/eBd574X4H2Frzne9GXY/1DOFOrbhWSulv/TjEVorx6bk1JHk10bKTbCuei0KFvAhev2EVSd+8pVxUFAmssUoDmItIUy0iMBG7wqDMHuB54T0RqYw1LbQcSgDtE5EWsYahewJRACOmY9EyKzlVjUYLMmLiC1V9tI6l7Q+79x8ACx6eNX0R66kFSv9vN5MW3sH75TgB2bjoIwNw3U1g2fS9rZs8kspgPv7JAq0sacN9rg/hhQRo7Ug84s7NN/PpGKlaOZm1yurNu3aY1GPFwN69GuShERkXw5+f7lJDkSlklYE9HY0yOiIwDvsGaj3jXGJMqIn8B1hhj5tnH+ovIJiAXeMQYc1hEZgN9gA1Yk90LjDFfeP+mc8TuWUTanrmxFdVglASODGsbV+72etwxqXry2GmyTmVz6rj76mRHeIhTJ84ETsgQ4qFpQ4itGMXKuVto0LwmPYa2AKDLgAvoMuACZ724OtZwW3Rs/n367KfXla6wSrkkoE9GY8zXwNceZU+7bBvgQfvjWicXGBtI2Zzf5fCGsp2IT//hP5+AUpDiJo3Kdcn09sBl088p81u4M2RsRxI7WFFVG7c8r0jntOvdhDY9GtGqawP/lRWlBNDXaEdsKJc1f0cOnHS+wSn++SVlD/8Y9zW3PNObroOae62zY+MBdm85RM9rraU2ebn5eUPKq6F4e80YTh4/7ZzQLw6RURGMmzIgAFIpinfKvbFwuBi6rg/fsWE/cX0TgiNQGPLeM8nk5Rree3qJT2MxcfQcAA5mHGf98l1kn/a9kC7zaFZA5AwmIu7r+zr2s+6vszEUihIMdF2/o2fhMoSyaMYGX7XLNWeyctix8UCBeEn+ArG49iIWfrie39KPFlIbHur3wVnLWNI4HurnQq/hrRjwYGO3nsBNT2iwSiW80J6FcRiL/LLYitFBkia0+deERaxfvotRT/WkXrOabN+wnz4jk9yG8L5+92cqV4vl9KlsZ9nMV1cFQ9wS4cYJPagaV4GDe06Quip/sr7P9UnUrleVWZMKjyx716v9ade7CcnJySR1b8ig29rTuOV5VKqqPQolvCj3xsIZ7sPl7bjzFc2CI0sIkpOdS8o3v9L6kgasX74LgA+eX+Y8Xqdhdbeexdw3Uwq0sfTTTQXKwoWIyAiuf6wHAC+M+tzp2uvI19CsbTwZ237nw78ucztv9LO9ueTKRLcyEeHquzqXgtSKUvKosXAaC6Hj5Qn8+O12N7fE8s7899by5bQfiYv3PuF/MOO42xBeONMgsRYZHmlLo2Ly13i06dGInZsO0qhl/qroJq3ruEVpve/1QWxYucvN3VVRygLl/qno6jobYb8iayTafDZ/nwHAkf3e04JmbD3MoT0+IraGGUPv7szr9y+g1/BWtO3ZmNzsXKJdjMWgP7enfrM4LuzknrinQWItOl/RjLpN42jVtYG6syplknJvLFx7Fj8vsRLYrJy3pcy9GSZ/msrKeVvoMyKJS65MxBjDyrlbOL9JDS5o556UxhjD7Cmrqds0jjw/hnPlvC2BFDvg9L0+ibR1+xl+f1cSO9RlSvJonyuhI6Mi6ODFS05EuP1vfQMtqqIElXJvLIzLnEVOtuW188sPniGsQp9Zk1axd/sRLrq2UoFjmUez+PglKzz39GeT2bfjCM3axjvH2Qff3oGr7uzkrJ+eepBFH1keYVHRZcdhbtKiURw9eJK5b6ZQu0E19m0/wrBxXdyGHc82ZIailHXKvbFwOr+H+bj74o83AtC4e2O38sP7TvD7b5luZd+8v476F9R07n/1zk+06tqALWv20u/GNrx233znMYcBDVe6DLiAHxakAZYhqFKjAvf8XRezKUpxKffGIqpmRap2a8SRenmwN3wWg239cS/ZZ3JpfUlDt3LX+ZbcnDweH/Kx1/OPHnSfg3jl9nkAzJu6poQlLV0qVY1xiyfV/+a23DC+B7k5eZouVFHOgXL/31O9RxNaz7mJnOvcwzMvnR3a7p6Txn7JP++dz5ks91hWJg+OHTrFrEmr2L/T9+K3k8dO+zwWitRpVL1AWcd+CTz+4TC6DMyfX7ruoW40uyjeuR8XX8XZo1AU5ewp9z0LX8yYuIJew1v5r1gEzmTlkHUqm2o1Sz5lpevqaLAmp19/YAG7Nh/ix0X+E/6EMhGRkGdHBakaV8Et/SdYC+YqV6/Abc/3ode1rdj8wx4uHtScS65M5NCe45w6cUaNhKKUEOW+Z+FKm0sDk/zlsUEf8Uj/D0ss5tFbDy90bntGyf32td3s2nwIgKMHT5XI9wWDv827nrYDvWd5c1C5er4huKDd+QwZ09EZ+bZ2/Wo0alH4+YqiFB01Fi7c+txlAWnXkath344jZ91GTnYuxw+fYvpzyW6Jb6aNX3Su4oUktetVJbZy/hqHkY90p0LlaG58/FImLRrFlOTRwRNOUcohOgzlQqWqgXWbXL98F83b1y32eSvn/sIHzy8jOjayQLTWtLW/hf1aB1806VCNiFPVadujEY1a1GZK8mi3OFSKopQe2rNwoSQfRHl5pkB01oUfrCt2O7+k7HHGYvIV1vuDvywtvoAhxJ2vXO61PCJSGP1Mb+dCODUUihI81FgEAGMMz18/m4m3zDnndv5+11clJFXpc8mVidz21z5c2Dk/PIa3UBjtL2vKo+9ezZ8evKQ0xVMUpRjoMFQhpH63220dQ25OHgumryWpe8NC019mn85l76/W/MRuj8B0nhhjyNh6mPObxhEdE0n2mVzSft7HnrTf2WlPVIcjL355AzXqVCYiQsg6lc2WlL3ExVfmjhf7Mv/dn/lx8Q4O782PKdWsbTxNk+pwYNcxmrc/v5CWFUUJBmosCuGf987n7TVjAPgt/ShL/7uJ/328kXlT1zjLPdm4arebi+zEWz53O77oo/Wc36QGrbo2YMXcLRw9cJKv3vmJll3qc9MTl/LE1TMDp1AAuOPFvvxrwmLn/qP/voqqNStS8/wqzrIeV19ItZoVSWgbT6WqsVx7X1f2/HrEzVgAREQIN4zvUWqyK4pSdNRYFIGsU9k8M3yW33p7tx/htf+b71bmGS7j07+vBuDmJ3vy0QvLneWbf9gTdoYCKLCCvNlFBXsFEZERtOvdxK2sRed6pK7aTe36VQMpnqIoJYQaCw8iIoW8XPeJ6aku6xoKo7AV056sX76zWHIFg/oX1GRP2u8AjJnYj02rM1gx5xfn8ec/H0HFKjG8svBmFn64jksGJ/pqqgB9r29DXHyVAuG+FUUJTXSC24OnZw532z+TlcNmP1FoM49mkZuTx4Hdx4v8PeuWhraxuHtSfx5992oAomMj6dgvwW1yemrKHdRpaIXgqFazIsPv6+oWnNAfkVERdO7fLCCr2hVFKXm0Z+GB4wHo4N4e73qtd+zQKarXrsThfSd8BusLVya8P5QmresAVljvmArWbdK+T1OG39+V5h3qqhuropQzAtqzEJEBIrJFRNJEZLyPOteJyCYRSRWRGXbZZSKy1uWTJSJDAymrg4jIoj0EHx3wH9YtTXdGay1LOAwFQJUaFZzGIiJCuPymtjRp5dsTTFGUsknAehYiEgm8AVwOZAApIjLPGLPJpU5zYALQ3RhzRETqABhjlgDt7Do1gTSgaBMH5y53keu++VCpiKQoihJ0Atmz6AKkGWO2G2POADOBqz3q3AG8YYw5AmCMOeClneHAfGNM+EbFCxHGT/fdOXMN860oiuJJII1FfWC3y36GXeZKIpAoIitFZLWIeEthNhIo1UmBsuihMzXlDmrVc3dTnfB+vvEY9VQvOl6ewO0vaC5pRVEKEuwJ7iigOdAbaAAsE5E2xpijACJSF2gDfOPtZBEZA4wBiI+PJzk5+awFyczMdJ5/4uSxwiuHIUuXFowftXWXlWc7pmIEK1ctJ/GKKE6ym+Tk3QXqBgPXaxLuqC6hR1nRA0pHl0Aaiz2A64qtBnaZKxnA98aYbGCHiGzFMh4p9vHrgM/t4wUwxkwDpgF06tTJ9O7d+6yFTU5OxnH+hs/ns5eThZ9QClSoHM19rw/ipVvnnlM7z8z6E/US4gDY0O0PNq6yjEH/gX3pdkl3YipEOSexQwnXaxLuqC6hR1nRA0pHl0AOQ6UAzUWkqYjEYA0neboOzcHqVSAitbGGpVzTu11PKQ9BAWD8VykNXl5wEwlt8lOEXn5T22K3UTWugtNQAFx7f1cqVY3h+se6A+7eToqiKL4ImLEwxuQA47CGkDYDs4wxqSLyFxG5yq72DXBYRDYBS4BHjDGHAUSkCVbPpNTjb+eZ0rcWbXoUzNIXHWs9xEc+2p3Bt3dgyNiOANRpWK3Qtq645SKfx+olxDH5f7fQ+0+tz0FaRVHKGwF9pTTGfA187VH2tMu2AR60P57nplNwQrxUCMaq4qhod7vdoU9TZ4rQy67Lf7C/tuLPREZFcHfXdwCoVqsixw//4TweXSGCa+69mG/e9507QxfUKYpSXHT8wQvX3teV1V9tK9XvrF3fvbcw9mXvCYE8h4xGPdWLKjUqYIzhk1dWkdjPMnRdBl7AD/PT6DG0RWAEVhSlXKHGwgvValbkqjs7MW/qmlL5vtv/1oc2PRqRdfIMyz//xf8JLlSoHE3TJGvF9YQPhjk9IkY91Yue17R0m/NQFEU5W9RYBICX5t/IYwM/cu636dGIDSt2+axfq15VKlSO4aYnetL7utbO4afCuGF8D3ZuPsgF7bwnCoqOiTyrfN+KoijeUGPhgxrnVTqr8yYtGkWVGhWoXrsSxw5Zi87HTRnA2E7TvNZP7FjXLdZSg+a1ivQ9vYa3Oiv5FEVRzgYNUe6DroMTz8pV1RGIsFK1WK/HO/Rt6rZK+qG3hxARqZdBUZTQRnsW5qFeuwAACKhJREFUPoiMimD4/V2pWCWmWHMX/h78N4zvwcljp89VPEVRlFJFjYUfBt/egYMZx/nuy61+6zZIrEWFStEA+Jp1EBHOb1KDofd0LuABpSiKEqqosSgC0TGRbvtNk+qwY+MBbv9bH5b+dzMNL6zFiIe6Fakth+vrwFvbl7iciqIogUKNRREwHiu67558BZlHs6jbtAadryhaaO8JHwwj+3SOhtZQFCUs0SdXEfAM/hEdE+kWb8kbVeIquO1rdjlFUcIZdcMpArEevYGipF695eletLy4Pg//a0igxFIURSk1tGdRBAbd1oHdWw6z9ad9AERFR/o5wwrfcf8bgwMtmqIoSqmgxqIIVKlRgYemDWHHxgPk5eYRGaUdMkVRyhdqLIqBIwaToihKeUNfkRVFURS/qLFQFEVR/KLGQlEURfGLGgtFURTFL2osFEVRFL+osVAURVH8osZCURRF8YsaC0VRFMUvaiwURVEUv6ixUBRFUfwinrkawhUROQjsPIcmagOHSkicYFJW9ADVJVQpK7qUFT3g3HRpbIzxm0OhzBiLc0VE1hhjOgVbjnOlrOgBqkuoUlZ0KSt6QOnoosNQiqIoil/UWCiKoih+UWORz7RgC1BClBU9QHUJVcqKLmVFDygFXXTOQlEURfGL9iwURVEUv5R7YyEiA0Rki4ikicj4YMtTFEQkXUQ2iMhaEVljl9UUkW9FZJv9N84uFxH5p63fehHpEGTZ3xWRAyKy0aWs2LKLyC12/W0ickuI6PGsiOyxr8taERnkcmyCrccWEbnCpTzo95+INBSRJSKySURSReQ+uzwcr4svXcLq2ohIBRH5QUTW2Xo8Z5c3FZHvbZk+EZEYuzzW3k+zjzfxp1+xMcaU2w8QCfwKJAAxwDqgVbDlKoLc6UBtj7KXgfH29njgJXt7EDAfEKAr8H2QZe8JdAA2nq3sQE1gu/03zt6OCwE9ngUe9lK3lX1vxQJN7XsuMlTuP6Au0MHergpstWUOx+viS5ewujb2b1vF3o4Gvrd/61nASLt8KnCXvX03MNXeHgl8Uph+ZyNTee9ZdAHSjDHbjTFngJnA1UGW6Wy5Gnjf3n4fGOpS/oGxWA3UEJG6wRAQwBizDPjdo7i4sl8BfGuM+d0YcwT4FhgQeOnz8aGHL64GZhpjThtjdgBpWPdeSNx/xph9xpif7O0TwGagPuF5XXzp4ouQvDb2b5tp70bbHwP0AWbb5Z7XxHGtZgN9RUTwrV+xKe/Goj6w22U/g8JvrFDBAAtF5EcRGWOXxRtj9tnbvwHx9nY46Fhc2UNZp3H20My7jmEbwkgPe/iiPdabbFhfFw9dIMyujYhEisha4ACW4f0VOGqMyfEik1Ne+/gxoBYlqEd5NxbhSg9jTAdgIHCPiPR0PWis/mdYurmFs+zAW0AzoB2wD5gUXHGKh4hUAf4L3G+MOe56LNyuixddwu7aGGNyjTHtgAZYvYEWwZSnvBuLPUBDl/0GdllIY4zZY/89AHyOdSPtdwwv2X8P2NXDQcfiyh6SOhlj9tv/4HnAv8jv7oe8HiISjfVw/cgY85ldHJbXxZsu4XxtjDFHgSXAJVhDflFeZHLKax+vDhymBPUo78YiBWhuexjEYE0MzQuyTIUiIpVFpKpjG+gPbMSS2+F9cgsw196eB4yyPVi6AsdchhZCheLK/g3QX0Ti7OGE/nZZUPGYCxqGdV3A0mOk7bHSFGgO/ECI3H/22Pa/gc3GmMkuh8LuuvjSJdyujYicJyI17O2KwOVY8y9LgOF2Nc9r4rhWw4H/2b1BX/oVn9Ka3Q/VD5Znx1as8cAngi1PEeRNwPJuWAekOmTGGp9cDGwDFgE1Tb5XxRu2fhuATkGW/2OsYYBsrPHT285GduDPWJN1acCtIaLHh7ac6+1/0rou9Z+w9dgCDAyl+w/ogTXEtB5Ya38Ghel18aVLWF0boC3wsy3vRuBpuzwB62GfBnwKxNrlFez9NPt4gj/9ivvRFdyKoiiKX8r7MJSiKIpSBNRYKIqiKH5RY6EoiqL4RY2FoiiK4hc1FoqiKIpf1Fgo5RoRqSEid7vs1xOR2YWdU4Lf3UREbiiN71KUc0WNhVLeqYEVsRMAY8xeY8zwQuqXJE0ANRZKWKDGQinvTASa2TkOXrHf9jcCiMhoEZkjVi6HdBEZJyIPisjPIrJaRGra9ZqJyAI7sONyESkQw0dEekl+LoWf7VX4E4FL7bIH7MBxr4hIih3wbqx9bm8RWSYiX9k5CaaKSIRdf7qIbBQrv8kDpfi7KeWMKP9VFKVMMx5IMlbANkekUleSsCKXVsBaHfuYMaa9iPwdGAVMwcp/fKcxZpuIXAy8iRVK2pWHgXuMMSvtIHdZ9nc/bIy50v7uMVihMzqLSCywUkQW2ud3wcpNsBNYAFwD7ADqG2OS7PNrlMQPoijeUGOhKIWzxFh5EU6IyDHgC7t8A9DWfvB3Az61whIBVqIZT1YCk0XkI+AzY0yGS30H/e02HcNg1bFi+ZwBfjDGbAcQkY+xwlosBhJE5DXgK2ChZ4OKUlKosVCUwjntsp3nsp+H9f8TgZVjoF1hjRhjJorIV1jxhlaK9/SWAtxrjHELvicivSkYHtwYY46IyEVYSYfuBK7Dis2kKCWOzlko5Z0TWOk3zwpj5UrYISJ/Amd+6os864lIM2PMBmPMS1gRTVt4+e5vgLvsENuISKIdWRigix0BNQIYAawQkdpAhDHmv8CTWGleFSUgqLFQyjXGmMNYb/obReSVs2zmRuA2EXFEAvaWfvN++zvWY0WqnY8VUTRXRNbZk9PvAJuAn+xJ9rfJ7/2nAK9jhanegZXHpD6QLFY2tf8AE85SfkXxi0adVZQQxx6Gck6EK0ow0J6FoiiK4hftWSiKoih+0Z6FoiiK4hc1FoqiKIpf1FgoiqIoflFjoSiKovhFjYWiKIriFzUWiqIoil/+H/7Yyl2ahaA/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd8VMX2wL8nPSSUQCBAQAgdUoFQFEFEUfBZUFEpKqhPREF9duyKP32iKDYUeSgqjycgNlRsCFGQFkroHQKEngRIL5vM748t2U12k03Z7CbM9/PJJ3vnzsw9cze5586cM+eIUgqNRqPRaMrDy90CaDQajcbz0cpCo9FoNBWilYVGo9FoKkQrC41Go9FUiFYWGo1Go6kQrSw0Go1GUyFaWWguOERkh4gMrqG+BotISg31NV5EVtVEX05e70YROSoiWSLSsxavO1ZEfqut62lqBq0sNGUQkWQRyTU9RE6JyGciEuxuuWoKpVSkUiqhKm1FRIlIpxoWyV1MByYrpYKVUptdcQERaW+6Zz7mMqXUfKXUVa64nsZ1aGWhccR1SqlgoBcQDzxXuoIYqbG/IesHiqZWaAfscLcQmrqBVhaaclFKHQN+BqIARCRBRF4Vkb+BHKCDiLQWkSUiki4i+0XkXnN7EQkUkc9F5KyI7BKRJ62XbUyzmKdEZCuQLSI+pv6+FpEzInJIRB6yqt9XRDaISIZp1vO2qTxARP4rImkick5EEkUkzN6YTNe80vT5JRFZJCJfiEimaYkq3kG7v0wft5hmXbdZnXtMRE6LyAkRucuq3F9EpovIEZO8s0Qk0Jl7LyKXmMZx3vT7Eqtz40XkoEnmQyIy1lTeSUT+NLVJFZGFdvr1F5EswNs0lgOmcptZk2lG+X+mz4NFJKWccQaKyFsicth07VWmcZrv2TnTPbu49HJbBeNMEJFXRORv01h/E5FQZ+6fpmbRykJTLiLSFrgGsF6muAOYADQEDgMLgBSgNTASeE1Ehpjqvgi0BzoAQ4Hb7VxmNPAPoAlQDPwAbAHCgSuAf4nI1aa67wLvKqUaAR2BRabycUBjoC3QDJgI5Do5zOtNY2gCLAE+sFdJKTXI9DHWtHRjfhC3NF07HLgHmCkiIaZzrwNdgDigk6nOCxUJJCJNgZ+A90zjeRv4SUSaiUiQqXy4UqohcAmQZGr6CvAbEAK0Ad63M45806zRPJaOFcnjxDinA71NsjQFnsT4XZrvWRPTPVvj7Ditqo0B7gJaAH7A407Kq6lBtLLQOOI7ETkHrAL+BF6zOveZUmqHUsqA8QEyAHhKKZWnlEoC5gB3mureCrymlDqrlErB+FAozXtKqaNKqVygD9BcKTVVKVWglDoI/AcYZapbCHQSkVClVJZSaq1VeTOgk1KqSCm1USmV4eRYVymlliqlioB5QKyT7cwUAlOVUoVKqaVAFtBVRASjUn1EKZWulMrEeB9HldOXmX8A+5RS85RSBqXUl8Bu4DrT+WIgSkQClVInlFLm5aRCjMtLrU3fR00azB2N0wu4G3hYKXXMdP9XK6Xya2CcAHOVUntNfx+LMCpeTS2jlYXGESOUUk2UUu2UUg+Y/lHNHLX63BowPwjNHMb49mk+b13f+rO9snZAa9NS0jmTwnoGMC8p3YPxTX23acniWlP5POBXYIGIHBeRN0TE18mxnrT6nAMESOXsJ2kmxWndRzDQHGgAbLQayy+m8opojfE+WnMYCFdKZQO3YZw9nRCRn0Skm6nOk4AA601LandXYhwV4WicoUAAcKAKfTocp9Vx6e+n3jhb1CW0stBUBetQxceBpiLS0KrsIuCY6fMJjMshZtpW0N9R4JBJUZl/GiqlrgFQSu1TSo3GuCQxDVgsIkGmt92XlVI9MC6FXEvJ7MZdpGJcCou0GktjqyWg8jiOUXFaY7mvSqlflVJDgVYY38T/Yyo/qZS6VynVGrgP+FCc997KwajczLR0sl0qkIdxWbA0FYW1LnecGs9BKwtNtVBKHQVWA/82GZljML79/9dUZRHwtIiEiEg4MLmCLtcDmWI0egeKiLeIRIlIHwARuV1EmiulioFzpjbFInK5iESLiDeQgXHJpLhmRwvAKYz2lwoxyfgfYIaItAAQkXAr+0t5LAW6iMgYMRr9bwN6AD+KSJiI3GCyXeRjXA4qNvV/i4iYlfNZjA9rZ+9DEjDGdM+HAZdVYpyfAm+L0TnB22TI9gfOmK7v6J45HKeTMmtqCa0sNDXBaIxG7OPAt8CLSqllpnNTMRq/DwHLgMUYH3B2MdkNrsW4Ln0I41vrHIyGVYBhwA6TN8+7wCjTEllLU98ZwC6MdpZ5NTbCEl4CPjctK93qRP2ngP3AWhHJwHgPulbUSCmVhvE+PAakYVxeulYplYrx//ZRjPc7HeND/X5T0z7AOtP9WYLRjnDQybE9jNFWcA4YC3znZDswGp23AYkmmaYBXkqpHOBV4G/TPetfiXFqPAjRyY80tYmI3I/xAe/UW6tGo/EM9MxC41JEpJWIDBARLxHpivEN8lt3y6XRaCqH3jGrcTV+wMdABMbljQXAh26VSKPRVBq9DKXRaDSaCtHLUBqNRqOpEK0sNBqNRlMhLrVZmHy138UYsGyOUur1UudnAJebDhsALZRSTazONwJ2At8ppcr1zw8NDVXt27evsqzZ2dkEBQVVub2nUF/GAXosnkp9GUt9GQdUbywbN25MVUpVHFVAKeWSH4wK4gDGzTh+GAPD9Sin/oPAp6XK3gX+B3xQ0fV69+6tqsOKFSuq1d5TqC/jUEqPxVOpL2OpL+NQqnpjATYoJ57prlyG6gvsV0odVEoVYPSCuaGc+qOBL80HItIbYzwgnVFLo9Fo3IwrlUU4tgHiUrANDmZBRNphdK1cbjr2At5ChyLWaDQaj8BT9lmMAhYrY6gHgAeApUqpFGOUZ/uIyASMIaAJCwsjISGhygJkZWVVq72nUF/GAXosnkp9GUt9GQfUzlhcqSyOYRthtA2OI0mOAiZZHV8MDBSRBzCGI/YTkSyl1BTrRkqp2cBsgPj4eDV48OAqC5uQkEB12nsK9WUcULfGUlhYSEpKCnl5eXbPN27cmICAgFqWyjXUl7HUl3GAc2MJCAigTZs2+Po6G7nfFlcqi0Sgs4hEYFQSozBmvLLBFIc/BLBk0FJKjbU6Px6IL60oNBpPIiUlhYYNG9K+fXvszYYzMzNp2LChnZZ1j/oylvoyDqh4LEop0tLSSElJISIiokrXcJnNQhmTpEzGmJBmF7BIKbVDRKaKyPVWVUcBC0xWeY2mTpKXl0ezZs3sKgqNxt2ICM2aNXM483UGl9oslDH14tJSZS+UOn6pgj4+Az6rYdE0mhpHKwqNJ1Pdv0+9g1ujqSecOnWKMWPG0KFDB3r37s3FF1/Mt9+6L8BvQkICq1evrnYf1157bcUVq8Dq1auJjIwkLi6O3Nzcihs4yWuvvWZzfMkll9RY3+5EKwuNph6glGLEiBEMGjSIgwcPsnHjRhYsWEBKSopLr2swGByeq4qyKK+/mmbRokU8/fTTJCUlERgYWGP9llYW1VWYnoJWFlWgKKuAw1OXk739lLtF0WgAWL58OX5+fkycONFS1q5dOx588EEAioqKeOKJJ+jTpw8xMTF8/PHHQInH2ciRI+nWrRtjx441R09g48aNXHbZZfTu3Zurr76aEydOAHDNNdfwr3/9i/j4eN59911++OEH+vXrR8+ePbnyyis5deoUycnJzJo1ixkzZhAXF8fKlStJTk5myJAhxMTEcMUVV3DkyBEAxo8fz8SJE+nXrx9PPvmkwzGmp6czYsQIYmJi6N+/P1u3bgXgzz//JC4ujri4OHr27ElmZiYnTpxg0KBBxMXFERUVxcqVK236mjNnDt988w3PP/88Y8eOLTODmTx5Mp999hkA7du358UXX6RXr15ER0eze/duwOiuetdddxEdHU1MTAxff/01U6ZMITc3l7i4OMaONfrpBAcbU64rpXjiiSeIiooiOjqahQsXVvgdeBKess/Coyk8k41PSCAInPpsE+cTDnH2132c+GAt8fsexadx/XC/09RdduzYQa9evRye/+STT2jcuDGJiYnk5+czYMAArrrqKgA2b97Mjh07aN26NQMGDODvv/+mX79+PPjgg3z//fc0b96chQsX8uyzz/Lpp58CUFBQwIYNGwA4e/Ysa9euRUSYM2cOb7zxBm+99RYTJ04kODiYxx837q297rrrGDduHOPGjePTTz/loYce4rvvjJlbU1JSWL16Nd7e3g7H8OKLL9KzZ0++++47li9fzp133klSUhLTp09n5syZDBgwgKysLAICApg9ezZXX301zz77LEVFReTk5Nj09c9//pMVK1Zw4403MnLkyAr3KISGhrJp0yY+/PBDpk+fzpw5c3jllVdo3Lgx27Zts9yHm2++mQ8++ICkpKQyfXzzzTckJSWxZcsWUlNT6dOnD4MGDXL4HVx66aXlylTbaGVRAXkH00nqP4sG0WG0vLcPyU/bRh/Z0Pltwh+7lNy9qRTnFNL1f7dqQ+cFztoWr1VcqQr0P/2M03UnTZrEqlWr8PPzIzExkd9++42tW7eyePFiAM6fP8++ffvw8/Ojb9++tGnTBoC4uDiSk5Np0qQJ27dvZ+jQoYBxZtKqVStL/7fddpvlc0pKCrfddhsnTpygoKDAoWvmmjVr+OabbwC44447bGYRt9xyS7mKAmDVqlV8/fXXAAwZMoS0tDQyMjIYMGAAjz76KGPHjuWmm26iTZs29OnTh7vvvpvCwkJGjBhBXFyc0/fOHjfddBMAvXv3toxh2bJlLFiwwFInJCSkQvlHjx6Nt7c3YWFhXHbZZSQmJtKoUSO734GnKQu9DFUB51YYc93nbDvFwYd+tFvn2FurSP9hN+f+OEBxdmFtiqfRABAZGcmmTZssxzNnzuSPP/7gzJkzgHEJ5P333ycpKYmkpCQOHTpkmVn4+/tb2nl7e2MwGFBKERkZaam/bds2fvut5EXJOsLpgw8+yOTJk9m2bRsff/xxldwzqxP9dcqUKcyZM4fc3FwGDBjA7t27GTRoEH/99Rfh4eGMHz+eL774otw+fHx8KC4uthyXHoP5HpnvT01j7zvwNPTMosbxvLVGTe1ibwbg6g1gQ4YM4ZlnnuGjjz7i/vvvB7BZern66qv56KOPGDJkCL6+vuzdu5fwcLuh2gDo2rUrZ86cYc2aNVx88cUUFhayd+9eIiMjy9Q9f/68pa/PP//cUt6wYUMyMjIsx5dccgkLFizgjjvuYP78+QwcOLBSYxw4cCDz58/n+eefJyEhgdDQUBo1asSBAweIjo4mOjqaxMREdu/eTWBgIG3atOHee+8lPz+fTZs2ceeddzrsu127duzcuZP8/Hxyc3P5448/KnyzHzp0KDNnzuSdd94BjMtQISEh+Pr6UlhYWGan9MCBA/n4448ZN24c6enp/PXXX7z55psWG4ino2cWFVHJJSVVbAznm7nhGKcXbMVwtuZc8jQaR4gI3333HX/++ScRERH07duXcePGMW3aNMC4Rt+jRw969epFVFQU9913X7lvr35+fixevJinnnqK2NhY4uLiHHr1vPTSS9xyyy307t2b0NBQS/l1113Ht99+azFwv//++8ydO5eYmBjmzZvHu+++W6kxvvTSS2zcuJGYmBimTJliUUzvvPMOUVFRxMTE4Ovry/Dhw0lISCA2NpaePXuycOFCHn744XL7btu2LbfeeitRUVHceuut9OzZs0J5nnvuOc6ePUtUVBSxsbGsWLECgAkTJhATE2MxcJu58cYbiYmJITY2liFDhvDGG2/QsmXLSt0Dd1JvcnDHx8crs8GtKjiKQ3Tqs00cevIX5+XY8wjnVyWz7x6jf7v4etH3yJOId+3o5boUT6ki6tJYdu3aRffu3R2ev5BCS9QV6ss4wPmx2Ps7FZGNSqn4itrqmUU5KKUoyiqoVJvigiKLogBQhcUceWVFTYum0Wg0tYpWFuVwZOoKjkxdXqk2WwZ8XKbsxIfrakokjUajcQtaWZTDiZlrK92mKCPfbrkqrvpyn1KKglNZVW6v0Wg01UUri1oiMeJNtg//jB0j/kvG2qMVN7Ai5c2VbIp+j5OfVN0mo9FoNNVBK4taojjXQNbG42SuPsLO6+ex/ZrPOfjEz061PTZ9FQBHp/3lShE1Go3GIVpZuImsDcc4/flmCk5kcvz9NRgy8iqOB1M/HNc0Gk0dRCsLN7Pz5vkceWUFGzq9zbqwf3Ny7kYA8g6dpfBMtk1dVVhkrwuNBjDu/I2LiyMyMpLY2Fjeeusty67kDRs28NBDD1X7GrNmzeJ///tfpdpUJ0T3Z599xvHjx6vcHoz7M6ZPn16tPhzx3nvv0b179zJ7KqpDcnKyzT2uqe+uuugd3G4mb3+6zXHyU78SelMkSf0+Amx3Axfn6FAiGscEBgZaAtidPn2aMWPGkJGRwcsvv0x8fDzx8RW60peLwWBg4sSJZGZmVqpddUJ0f/bZZ0RFRdG6dWun2xQVFVUYZ6qm+PDDD1m2bJklrlNNYFYWY8YYs1DXxHdXE+iZhQPyDp9z27ULjmdUXEmjKYcWLVowe/ZsPvjgA5RSNiG47YX0Bpg2bRrR0dHExsYyZYox5f3gwYNtwpG/9NJLvPfee5ZzjzzyCPHx8XTv3p3ExERuuukmOnfuzHPPPWeRxRyiu7xQ3FOnTqVPnz5ERUUxYcIElFIsXryYDRs2MHbsWEuCoj/++IOePXsSHR3N3XffTX6+0fuwffv2PPXUU/Tq1YuvvvrK4X1JSkqif//+xMTEMGbMGM6ePQsYZwg9evQgJiaGUaNGlXufzEycOJGDBw8yfPhwZsyYUWYGExUVRXJyMsnJyXTv3p17772XyMhIrrrqKkuypf3793PllVcSGxtLr169OHDgAFOmTGHlypXExcUxY8YMm+/OUZj21157jbvvvpvBgwfToUMHy3dUk2hl4YBjM/5227ULU0ti+uQeTC+npkbjmA4dOlBUVMTp06dtys0hvZOSkli5ciWBgYH8/PPPfP/996xbt44tW7bYRIQ1hyN/7LHHylzDz8+PDRs2MHHiRG644QZmzpzJ9u3b+eyzz0hLSytTf/Pmzbzzzjvs3LmTgwcP8vffxv+zyZMnk5iYyPbt28nNzeXHH39k5MiRxMfHM3/+fJKSkhARxo8fz8KFC9m2bRsGg4GPPvrI0nezZs3YtGmT5WFvjzvvvJNp06axdetWevTowcsvvwzA66+/zubNm9m6dSuzZs1yeJ+smTVrFq1bt2bFihU88sgj5X4X+/btY9KkSezYsYMmTZpYoueOHTuWSZMmsWXLFlavXk2rVq14/fXXGThwIElJSWX6NYdp37p1K6+99ppNvKvdu3fz66+/sn79el5++WUKC2t2JUIvQzlAvNwXZjzfalazpf8su3WUUhSezsbLz9uYa0PjMdwXP9sl/X68YUKN9GMvpPeyZcu46667aNCgAQBNmza11LcOR16a66+/HoDo6GgiIyMtYcw7dOjA0aNHadasmU19R6G4V6xYwRtvvEFOTg7p6elERkZy3XXX2bTds2cPERERdOnSBYBx48Yxc+ZM/vWvf1UoJxgDHp47d47LLrsMgDFjxnDXXXcBWGI5jRgxghEjRji8T1UlIiLCEia9d+/eJCcnk5mZybFjx7jxxhsBCAioOC+OozDtAP/4xz/w9/fH39+fFi1acOrUqRpdHtMzCwcUu9GYfOyd8mc1ObtOk9jhLTZFv8eGrjNqSSpNXePgwYN4e3vTokULm3J7Ib3Lo7zw4ebQ2l5eXjZhtr28vOwGKrQXijsvL48HHniAxYsXs23bNu69995aD3P+008/MWnSJDZt2kSfPn0wGAyVvk/lhTmvjRDkrr6Gnlk4IHXhNpvjbgtu48SH68jccMzlhub8I+fLPZ/83O8UZ1cuZpWm9rA3A6jtoHVnzpxh4sSJTJ48uUwyLnshvYcOHcrUqVMZO3YsDRo0ID093WZ24UrMD9XQ0FCysrJYvHgxI0eOBIxhzs22gq5du5KcnMz+/fvp1KkT8+bNs8wSnKFx48aEhISwcuVKBg4cyIIFC7jssssoLi7m6NGjXH755Vx66aUsWLCArKws0tLSytynbt26Oey/ffv2/PijMefNpk2bOHToULnyNGzYkDZt2vDdd98xYsQI8vPzKSoqshlzaRyFaa8NtLKwQ87uMzbHEW8Oo8mQjjQZ0hFwXSY0ZxGf2vH00NQtzLmfCwsL8fHx4Y477uDRRx8tU++dd95hxYoVeHl5ERkZyfDhw/H39ycpKYn4+Hj8/Py45ppreO212vk7b9KkCffeey9RUVG0bNmSPn36WM6Z83MHBgayZs0a5s6dyy233ILBYKBPnz42Oced4fPPP2fixInk5ORw0UUXMW/ePIqKirj99ts5f/48SikeeughmjRpwvPPP1/mPpXHzTffzBdffEFkZCT9+vWzLJeVx7x587jvvvt44YUX8PX15auvviImJgZvb29iY2MZP368Tbj0l156ibvvvpuYmBgaNGhgkz/E1egQ5Sasw2Gn/7ibvXd/YzkXvexugmJK4s67U1n03DyZzT0/sCmzdq+tS2G9K6IujUWHKK971JdxgA5R7jH4tbGd5kUuHecmSeD4e1X3Wa8uRdkFnJ6fRGFaTsWVNRpNvUIrCzuUnmz5Nm1gc9wwPpyu/73FpqzlhD7UBqfmbipTduSVFWyO/9AmMm3hmWzSluxCGYrL1K8qh1/8g4OPLGX3mIU11qdGo6kbuFRZiMgwEdkjIvtFZIqd8zNEJMn0s1dEzpnK24nIJlP5DhGp3MJktal4aS7kqs6Wz+LvjXdD/3Jqu5bj768h/8g5jr+/xlK2/ZrP2ffPbzn5n0SK8wwU51XfM+J8wkEAsjefqHZfGo2mbuEyA7eIeAMzgaFACpAoIkuUUjvNdZRSj1jVfxAwW3JOABcrpfJFJBjYbmpbvSAxrsQDbD+qoAjwxXA+z7JX49j7azg8dTni7UW/lKeqeQX37T2pCyilyngeaTSeQnXt066cWfQF9iulDiqlCoAFwA3l1B8NfAmglCpQSpmzCPm7WM4aoTrJjWqKU59twnvZKQ4+XhL63JCaA0UKVVBU7T8WrSscExAQQFpaWvXvsUbjApRSpKWlObXxzxGudJ0NB6yz/KQA/exVFJF2QASw3KqsLfAT0Al4olZnFZX9fxcBD1AWAL6zD5DZwsHmpGIF3vqJ7wratGlDSkoKZ86csXs+Ly+vWv+onkR9GUt9GQc4N5aAgIBq7ej2lH0Wo4DFSinLtmml1FEgRkRaA9+JyGKl1CnrRiIyAZgAEBYWRkJCQpUFyMrKsrT32p6Kn9U5R/36N/ZFzhdSFOLDkeNHLTez4MHO+PxwnML7O+L33DaksHYVSUFWnt1JwJ8rEsCn6pM0v/w8yxSvOvfaWay/k7pOVlaWJaBeXae+jKW+jAOcH8vhw4erfA1XKotjQFur4zamMnuMAibZO6GUOi4i24GBwOJS52YDs8G4z6I6PvnWPv1p53eyj70AhFzdma4O+s1Z0oOjr//FRc9fjm/zIHYfWkiL22NpMTYOnjfWWffCDhQloUN8mgZiSM+tspzOIDn2Q5UMGjgIL3/jV5536CxF2QUERYU53W9Sg93kYdxtWxv7H+rSPouK0GPxPOrLOKB2xuJKW0Ai0FlEIkTED6NCWFK6koh0A0KANVZlbUQk0PQ5BLgU2ONCWR3S9tnBDs816N6Crp+PJLBTM3waBxD18zijonBA+9eG0nvXv2jYr+aCe1UGVWSc4ZxbfoCkfh+xbcgnGDIqH4NHo9FceLhMWSilDMBk4FdgF7BIKbVDRKaKyPVWVUcBC5StZbA7sE5EtgB/AtOVUrbBmlxIkVXsJ6+A6k2+ml1rjCXT5KpOtPxnH7d6y5z7Yz+5+9PYPapkn4R1OPQK0eYOjeaCxaU2C6XUUmBpqbIXSh2/ZKfd70CMK2Urj4MP/1RyUM1Q5RFvDqfxkI6EDCvZl6EMJXoxOD4cMObkdjX77vm2bGFlvHe0stBoLlg8xcDtsYh39SZf3sF+NL8lyqZMWYUxbv/qUBpEhZH27U4OTP4BAK8GvrWXQtUznLg0Go2H4/H7F9yNuMLVtMjqCS2Cl683fi1LPBlajI2t+Ws6Qinyj2dQnG+oOIeH3nCm0Vyw6JlFRbjgARnYrTnZW086rlCLb/sp01eR9q1lUz2hI6Po9OH1dutqXaHRXLjomUVFuOAB2f7/rqz5TquItaIASF283U2SaDQaT0YrCzfg06RszuyAjiW5it0dMsLh9fXUQqO5YNHKws34hzey/I7+4x56bXnQ7Ubn/fd/T+6+VAznjJsHDedyOT5zLYWp2e4VTKPRuA1ts6gAqabrrCN6bp6M4Vwevs1L4jgFRTu/m9qVpH2zk7RvjMtTMQn/5Oi0vzj78143S6XRaNyJnlmUwnDWNhSHb6iDoHzVxD+8EUGRLeyfdLAMFP7oAJfIUh5bB8+xqygy1x21U1uj0dRXtLIoxe4xi9wtAo0ubV+mrPXDl+DXulHZyiYi3hjmQonKkv6TW6KvaDQaN6GVRSmyNrp+J3VFNL22K90Xj7Ypu+jZweXuthY/bxdLZcuJWetJ/2VvjWTg02g0no9WFh6IiNB4UATeTWzj0zeItLVphD9+Kd7BfoSN70WzET0I6tmqNsVk752LWX/RG6S8uZLc/WnsuPYLMlZXPQSyRqPxXLSyKIeAjk3dev3Wky8GoOWEPgA0jA+n24LbLOfDHxlA/IHHiHhjGN4NfIn+9S63yJny5kr2T/yezPUp7Bwxn62Xz2HXLV9asgdmrD5M3sF0AM7+uo/dYxeVsQ1pNBrPRntDlUP3RaMrruRCWj/Yn6bDO9vswWgypCMxCf9EGYrx8q3dpafyMLvZAuTsOA1A9taT+DTyZ+eI+QD0P/0Me+74CoCUt1fR/pWhtS+oRqOpElpZlIN/28Zuvb6IENg5tEx5gx4OvKjciD1zSsbKZJShuOwJoOh8vt1yjUbjmWhlUc8oeLQrzVbnUJRVQM72UxU3qKnVNPLzAAAgAElEQVTrHj1fpuzIKytq7foajca1aJtFPaO4fzMil9xBty9vq7iyOzHtdVTFCkNmPmf/OOBwFqLRaNyPVhb1FL+wYCLeGIZvaANLWbOberhRIjj7+36b44JTWSR2mM6Gjm+xZ/RCtl4+h4LTWQBkJZ3Ab9JGzv62zx2iajSaUmhlUY8JG9+L8CcGWo47vn8d4u8+o/iesVYbHkU4PT/JJslT7p5Udt5oNIbvv+87vM7ks+f2r2pbTI1GYwetLOo7VoZnL19v+h19iu5fj7GpErd2Yi0LBalfbYPislbxvH1pAKgincJPo/EktLKo71QQ7rzjzOsJ6FD7+0lUYXG50XWtMxQWF1SQwU+j0bgcrSzqOXbDgFgpkNL5wQFa/+sSV4pk4di7qx2ftIr2m59S1tNKo9HULtp1tp7TfGQUqYu20fTabiWFdt7oY9fcR/pPe2gypCOBnZtx/J1yHuQ1hCpnxmCT+7zI1ktKFSuXhY7XaDT20cqinuMV6EvkD3dWWC+wYzPCHzLOKFSRB7iwepdMepWVbSP5+WWc+nwTPdffj1/Lhu6QTKO5INHLUFYUnMpytwi1QkVZW8XbvX8WiV3epuBEpuX4yMvLyT1gNHyf/Hg9Ks/A6flb3CWeRnNBopWFNW7OfV1bBHQIcbcI5VJ0Lo+ic3mW43PLDrDl4o/dKJFGo9HKwooLxV0z4KImRC4dR8+NkxzWCerVuhYlcg57y2O5+1JJ+35nue1yD6aT/Nzvlg1/Go2m8rjUZiEiw4B3AW9gjlLq9VLnZwCXmw4bAC2UUk1EJA74CGgEFAGvKqUWulJWsH0YucOdtDZpGB9e7vmuc2/m5NyNtBgbx7nlB/Bv3cgSMdZdFOeWJFpKmfYXGauPkLEyGYB9935H/IHH8GnoX6bdjmu/wJCaQ96hs3Sbf2ttiavR1CtcpixExBuYCQwFUoBEEVmilLK8BiqlHrGq/yDQ03SYA9yplNonIq2BjSLyq1LqnKvkBWw2ibWbeoVLL+Xp+LVqyEXPDAag5V293SuMidJZDM2KwsyZBVtpdW8fm7L8o+cxpOYAkLvnjEvl02jqM65chuoL7FdKHVRKFQALgBvKqT8a+BJAKbVXKbXP9Pk4cBpo7kJZAVuvG0S7ZpZH5A93EJf4QK1ec9ctX5Z73nA2l7UtXuPAwz9ayjb3nulqsTSaCwJXKotw4KjVcYqprAwi0g6IAJbbOdcX8AMOuEBGWzzBZbQO4BXkR8N+bQlo14R+J5+m36mnCezSrOKGLubY9FUAnPlyq63it2D/BcC6blFWgY5+q9HYwVP2WYwCFiulbHZpiUgrYB4wTilV5j9YRCYAEwDCwsJISEiosgBZWVmsX7ce84r3tm1bKfZNqXJ/7iIrK6ta96E8zBnBCzsGlrmGbyh473XJZavEupb/pnBCR3ytynLzc/lzzg9IloHiOKNHmCRn4/fUFgy3t6NoaEsC7lxHcZg/Be/X7NKbK7+X2qa+jKW+jANqZyyuVBbHgLZWx21MZfYYBdi45ohII+An4Fml1Fp7jZRSs4HZAPHx8Wrw4MFVFjYhIYE+HXqwlSQAYuJiaTK4Y5X7cxcJCQlU5z6Ux1qMu7qbhjSle6lrZDftxrYrP3XJdauK72zbyWhgQCBez2wDoPeOh/FtHsSuUQs4r8B33mHixgxmB+vwOpVf4/fQld9LbVNfxlJfxgG1MxZXLkMlAp1FJEJE/DAqhCWlK4lINyAEWGNV5gd8C3yhlFrsQhltsHaddffGNE/E/6ImADQa2K7MuaCYlrS6v19ti1RlClOzydx4jMx1JbPHE7PWO6xfnG+gKEungtVcuLhsZqGUMojIZOBXjK6znyqldojIVGCDUsqsOEYBC5Sy2RF3KzAIaCYi401l45VSSa6SF0AVW610+WhlUZrIpXeSseowTa/rZvd8u5evwK9VQw6/sKyWJXMSK6cFZShmx/DPbU6nf7/LYdNNPT/AkJpDn+Qn8G7g67CeRlNfcekTUSm1VCnVRSnVUSn1qqnsBStFgVLqJaXUlFLt/quU8lVKxVn9uFRRADaus3pmURa/FsGE3hSJl6/jBEqNLjXOOsTPm06zynN+q33yk89aPqvC8o3YWZuP2xyb3W8LTBFwT36ygf33f+/AkK7R1D/0E9EK62WoijataewTFBVG9LK76bXlQUJviqTvsadoY5Wtz1OoKEfG9qs/s1telFXA0Tf+Ivnp30j9egcZqw/bnC9My2H/A0vIXF/3nCM0mvLwFG8oz8DkOhvcpw2il6GqTFBMS8tnL19v2jwxkPDHL0VEKMouIDFiuhulM1O1GcHR1xI4/1ey5bg431bpHHl5OamLt5O6eDv9Tz9TDfk0Gs9CKwsrzEsKovVEjSMme4F3kB/xex5B/H3wCvQhP/kcSf0+qnV5dl7/3yq1s1YU9ig4nlGlfjUaT0crCyss68/aXuFSfEICLZ8DIjw3Am5e8llOfb6ZrE2OPL7toHf+a+op+qlojWkZyiZLm6bW8G4cwEUvDMGvbWM6vnetu8Uhqe9HnJi5lsw1Rx3WKaMbHPzpeP2dyplF22pOOI2mltHKwgqzgVu89G1xB+1fHUrryf3ptXGSXffcBtFhbpCqYpRSZKw+jOF8no32SP16h+Wz37t7OTD5B4oLyzesazSein4qWmPe6qFnFrVKs5t6IH7ehAztZCnzDvKjYHJn2jw1iIteGIJ3kwC6fHqzG6W0T3F+Eek/7GbniPlsv2quzczi8Et/oIoV+SZ3W6CqdnWNxu1om4UVZs+W8vYRaGqezrNGoAzFZTzQigc1p83gSwFoNamfxUjuSewdt5jmo2MAyDt01jYPilIcevxnTv/X9VuENBpXo2cWVhTnFALgpXfo1joVuSp7oqIwk2e12e/cH1bxqIpVWUVxgaTu1dQ/tLKwwnDemPfZO8jPzZJo6hKODOCFpl3fNugd35o6ilYWVhjSjP/cvi2C3CyJpr6iJxaauopWFlYog9FmIX7aZlEXaBDlmd5R5VKOtjjz1fYy4UM0Gk9BKwsrlMHkOqtDfXgsQXGtAAgdGUXM8nvcLE3lOfr6Xxx84ucy5Tk7T3Ng0hJ2jphPxpojbpBMoykf7Q1lhTmdpo4467l0m38raUt2EXprtLtFqRInPzbmzAhoH0KD7i1Imb6STh9eT+HZXEud4++vodHFFznd55HXEvBpEkjrB+pOPhFN3UMrCyuUeQe3nll4LL7Ng2h5T7zlOGL6cA49bnxTD+zSjNy9ae4SrVIcebkk3fyBh34kc62VkVxBxtojiAgN+7W107qErKQTHH/HmMFQKwuNK9HKwgpl2l2rlUXdIezOnuQdOosyFBH+8CVs7PGu5Vxg9+bk7jrjRumcw0ZRYHxpMQc6rChybfLTv7lMLo3GGv1UtMKyDKWVRZ2i3YtDaP/KUHxDS7zYGg1sT49vxrpRqqpzPuGQ5XNRVoHDekopsreesBzrHBoaV6KfilZYYkNpZVFn6fTh9YTd1Yvui0fj26yBu8WpNgf+9SNrW7zGjhFlQ6qnfrXdJuPfjmu/wGBl+7CHealVo6ks+qlohTZw131CR0YRMW2YR+/4rgzpS3YDkLn6CKe+2MzhF5aRufEYqd/u4MDkH8rU326VV/zMom0k9Z9l2WFuOJtLYse3OPDQj7UjvKZeoW0WVlh83LWy0HggZkP+iVnrHdbJO5hu+WxWJkdeXk6XuTeTvnQPxTmFnFmw1SYEvFKKonN5NnlGNJrS6KeiFQUpxixn51ccdLMkmprCvC+jyxcj6fD2NW6WpnY48NCPNvGqzMur1jnmi/MNls9HXl7Ohq4zSP95b+0JqalzaGVhh/xj5yuupKkTRC0dR+8dD9N0WBda3B6Hd5MAANpNvbLCtk2v7epq8VzCmQVb2XP7opIC04qctb3i+Adrydl9hpNzN3Liw3UAHJvxd22Kqalj6GUoO4Rc1dndImhqCPHxwrd5iZdU7KoJ5Gw/RePLO3D4hWXltu0083q27vmUvH11Y++GNXb3m1gFMUyZ9hcp0/5yeF6jKY1WFlZ4B/tRlFVAsxu6u1sUjYvwaxGM35Bgp+p6BfoSu2oChrO5bOz2joslcx3nlu1nffs3Ce7dutx6qgrKoriwCJVfhHdw5SI1q2KFMhTjpeOw1Rn0MpQVEmDUnTqQoMaMiODbtG674KrCYopzCslYWUGQwkoqi8K0HNaHTyOxw3Tyj2VUqu2Of3zB+rbTKMq2v4/E7Jmo8Ry0srDC7LOu91lcGET+PM7m2NpDqNx2P9zhCnHcjnIQEbe4sMjuuSNTS0KWnP2lcsbxrI3HQEHO9lNlzqUv3cO61q+Tunh7pfrUuBaXPhVFZJiI7BGR/SIyxc75GSKSZPrZKyLnrM79IiLnRKTWnMIt4T50WtULgoa9wy2f/cIb0XxUjMV7yvy7NC3/GY9feKNaka/WMRnAc/emkr31JGD0mtrY4112Xj+vTPUzX24tOfCquX0t+x9YYvNb4xm4zGYhIt7ATGAokAIkisgSpdROcx2l1CNW9R8Eelp18SbQALjPVTKWxuwt4qVnFhcM3o0DKDqfZ8md3eWzmzn5nw20vDfebv3Abs1rU7xaxWyz2HLpbAB6bXuIwjPZFJ3PI3NdCvnHMhwmBhMHyqI4z8Chp36h6fXdCbmio2sE19QKrnwq9gX2K6UOKqUKgAXADeXUHw18aT5QSv0BZLpQvjJYlqH0zOKCIfLHO2hxRxydZl4HgH/rRrR7cQj+rW1nD7GrJtDu1aG0GBtrU9726cto939X0nPz5FqT2WUUG/NqmEme8iunPt1oOd7c8wPWh0/Da3VqmaZpS3bZ7fLU3I2c+XIre0YvdF6OerL7vr4hjtYpq92xyEhgmFLqn6bjO4B+Sqky/1Ui0g5YC7RRShVZlQ8GHldK2V1MFpEJwASAsLCw3gsWLKiyvFkZmYT+cxsAeQsvrrN/sFlZWQQHO+ft4+l47FjO5BEwaRMAeYsusRT7/nsn3pvPOWoFQHHnYLz2ZblUvNrAcE0rfJaesCnLW3QJFBaDb8k7aMCtq23PlyrPnxqF6marmP3vXIvkFZdpU9N47N9XFajOWC6//PKNSin7U2krPMV1dhSw2FpROINSajYwGyA+Pl4NHjy4ygIk/G401omvF4Mvv7zK/bibhIQEqnMfPAlPHUv+0fNsxqgsrOXLi4gjqc+HNnV9QgItwf0a9GhBjyW3k510guztpzmfcNAmwmxdorSiAIhv0pXtV82l9cOXcNGzgwFYS4mysL5X5vJePXuWydmR6LOBIgrKtKlpPPXvqyrUxlhcuQx1DLD+K2hjKrPHKKyWoNyCOeKsXoLSVBH/ixoTems04Y8OsJRFL7u7pIKAT6MAGg+KoPUD/ei+aDRBvcrf+1CXOP7uapvfVSF7x+lyw7Jr3IcrZxaJQGcRicCoJEYBY0pXEpFuQAiwxoWyVIzOv61xEkf7cESETh8YbR+tJvVH5RnwbR5Eu1eHcvjZ32n3StkQI4Gdm5G96bhL5a0t0n/aY/mcvfUkQTEt7dYznLMKo15quXfb5XNcIpum+rhMWSilDCIyGfgV8AY+VUrtEJGpwAallNkvbhSwQJUynojISqAbECwiKcA9SqlfXSWv2W1QfLWy0JSPX1gwrSb1x8+BZxCAT0N/aOgPQKt7+7AnIpPGl7YvU6/91CtJXbjNVaK6jVOfb6LghK1/Su6+VAwZ+eywCqNuRilV6bDyhvN5nPp0I6G3ROHfpnG15NVUjEttFkqppcDSUmUvlDp+yUHbga6TzA6WxEd6GUpTMe1eHFK5Bg5mrD4hgcSuuY8tF3/sVDdeDXwpzims3LXdwOl5SWXKMv4+wqEnf7EpS/16Oz7NAtk+/HPaPHap3b7yU86T/OzvtH7oYvxaNoRihX/bxhx66lfSvtnB6flb6LnhAZeMQ1OCpxi43Y7oZSiNmwjs2Iy+R54k6eJZFJjCZrR7+QoOv/iHpU7vXf/i3LID+DYPYveoqnv9uZPSigLg1NxNFKbmUHQuj8PPlw3smP7LXk7+ZwMZK5M5axVCvd/xKcZd4ED+kfI90Bzhtfksp45sJuzOnhVX1uhwHxZ0SlWNG/EK8KHznBvxbRlMl89H0ur+fjS82Ogf0mpSf3ybNaD5bdH4NC0/QZF3sB9+rRrWhsg1RzkxqU7MWk/B8bJxp1RhkY29w7zjvDL4/XsXhx7/2Sb3h8YxemZhxuINpZWFxj007B1O760PWY57fHs7RVn5+DQKsJQFxbQkICKEvEP2H3ANYlrSfeEodt38PzLXp7hc5prA2jBemszVRywBPq0pOGW7V2XblZ/S//QzluPifAOZG45xfMbfiL8P3ebf6vAahvN5QNXsJhcSWlmY0a6zGg9DvMRGUZjLYtdO5NDjP+MV6MvJ2Yk25/3DG+Hl74NXA9/aFNWlqDxDmbI9d3xlt27BiUyKC4tIeXOljeNAUXYB3kEOwqgrKDyTzZbL/kPYHXG0fXpwTYhd79Cv0Wb0MpSmjiAidHjrGtr/39Ay58wZAJ3JBFiXyd2TSr6d5aNNse+TFP9hGQ+z4+879swvTM3m1OebMKTmcGyG/T0iZ77azub4D8k9UPcSYdUU+sloxqBnFpq6h29oSa6Nzp/chG8z43GDbs1p0KOFu8TyOPJTHOfb2DNmUYUviQcmLSH/yDmSn/3d7vn0pXvIO1w1Q3tdQSsLM6aZhY44q6lL9FhSkluj9HJ7509upPHgCKf76vj+dTbr/nUNR4mUAJShgkhCXiX/9+XuIC8qa4w//+ch9o7/ukyol/qGfjKaEG3g1tRBAjs1KzkopS0COzaj+6LRtSyR+0iMmO7wnMo3KgtzGPairHyb8+Jdcu8SO0zn4KNLyTuY7tR1s3ecrrhSPUA/Gc0YzFny9DKUpo7iwJGn6fXdnGruqgjUnkD6T3soOJXFhs5vc+SVFZz5yjYLn3jbPgpP/zeJLYP+g+F8nsP7UnAqi91jF5GxKtlSlm/l5qsMxWW8tpylKvnQXY1WFmb0zEJTxwno2NRuecd3r6XL5yPpvePhctsHRdZvG8epTzdQlJlvNHaXehibs2TalBUUsaHz2+y7+xtLWcbaI5xflczuMQvZFP0e537fz7llB0rO/33E8nnHDf9lU/R7ZNtJHVseBaeySIx4k+Rnf6tUO1ejXWfNaG8oTR0ldu1E8o+cp0FX+1n8vIP8aDq8i+P2qyZQmJpNULT9wH8hw7pUOse2J3L8o/WWzxl/H7Y5d+SVFQ7bWe8DUflF7Lrpf44vYpqF5O5NJSsxxdI+KCrMaTnPLNhKca6Bk//ZQPtXr3K6navRT0YzOtyHpo4S2KEpTZw0ZHf68HrL55iV9xL1y3gCu4TS6JJ2dus37NuGDm8NrxE53Y31fo30Hx1vBKwWpVLTAmSsSraNtOuAjLVHyT+W4XA50d3oJ6OZYu06q6n/BPdtY/ncoGtzgu3k0wiKLZlhiK8Xvs2D6L3jYfzbh9SKjPWNzHUpbL+mbKRda3J2nmbn9fPY3PMDHGkLd9sxtLIwo2cWmguAgIua0OLOnrR95jKHdSKXjiOwi9HLKvTmKAB8mwfRc/39+F+kQ4GXR1F2Acdnri1Tnrc/HVWsyNl9xu5D39qjSrzKKovjM9eyvv2b5Ow5U7MCVwJtszAhOtyH5gKhw/Tyl5W8fL2J/v1ucnadIahnK5tzzrzdht3Vi5b/jCdzXQoHH11aYf36xNFXExzu00h5cyXH3lpFqwf60e6lK2xPWt3X8yuTy7Q98vJySx9d5txkKc/acgL/1o3K1HcFTr1Gi8jDItJIjHwiIptExHMsLzWBNnBrNBa8An0J7tW6TGC9oCj7RnAzTYZ2ImLaMAI7hzrM4VGfKW9D3/H3jKFETny4rqw7rtXx+RUHHfaRvmQ3e+74iqLsAnJ2nWb70LlsjHy3ekI7ibPf5t1KqQzgKowpUO8AXneZVO7AoF1nNZqK6PD2cAwjwh2et15CKb2Y0uHta1wkVd1AFRZbPm/oOoO1rf7NurbTKEzLqdQel7O/7uPkJxvISjrhCjEd4uwylPl7vwaYZ0qP6qE2+ypSpDflaTQV4RsahGFMO3y+O2a/gvVjodTae0An+/tALkSKzpnCohcVsbH7Ow7rHX7xD7v3rSizAN8WwS6Tzx7OvkZvFJHfMCqLX0WkIVBcQZu6hd6Up9E4TY8lt9Nl7s1lysPGl2SdC4optWTl4OW54/vX4RfeiNi/J9SkiPWCEx+t49BjP5c9Uaxslq5qA2dnFvcAccBBpVSOiDQF7nKdWG7AtAzlpZWFRlMhjfpfBBi9pArPZNPhnX/Q5IqO+IWVvO026Naczp/cyL57vgUgoEPZN2S/8EY0vy2a5rdF147g9YTyQq67CmeVxcVAklIqW0RuB3oBtWNVqSXM3lB4a2Wh0ThL9Ip7yNpwjJBhXey6fAb3LNnH4RcWTNRvd7FvwneEXN2Jdi9fabeNMzTo0YKcnRdGAD9Pwdkn40dAjojEAo8BB4AvXCaVOzCHKNeusxqN0/i1CKbpNV0dP/RLrZQEx7Wi5/r7af/KULttmo+Kceq6Ub+Mr6Sk9Ruf/ya7/BrOKguDMprrbwA+UErNBOpYVvgK0K6zGk2N4xVUufSurSb1sznu/J8R9vu1yssd1LMVkT+Pq7xw9QifJcddfg1nn4yZIvI0RpfZn0TEC6g/SX5B5+DWaFyAb9MGdJo9gm4LRznXoNSmv2Y39HBYtcO7/8A3tAEd3/kHDXuHI376f9eVOKssbgPyMe63OAm0Ad50mVTuQO+z0GhcQuiIHjS5vINTdb0b+pcpa/3QxQC0vK+PTXmL0bH02vEwDbqbQquXY/4QXy9CR0bRsG8benx/u3OC1zGUwbUOqk4ZuJVSJ0VkPtBHRK4F1iul6qXNQi9DaTTuw79N2dhTFz13OW2fvozUUgmLANsd5uVs/YqYPpwWo2MBKM4trL6gHkhxXiHewWWVbU3hbLiPW4H1wC3ArcA6ERnpRLthIrJHRPaLyBQ752eISJLpZ6+InLM6N05E9pl+XL8gad6Up5ehNBq30ufgYzQZ2onOc260lJXOZGcPa13R9unLaPfq0JICq9Wt+rpc5UpFAc67zj4L9FFKnQYQkebAMmCxowYi4g3MBIYCKUCiiCxRSu0011FKPWJV/0Ggp+lzU+BFIB7j17zR1PZsJcZWKURHndVoPALvYH+6zb+1THmTKzoC0HiIgyWtUjMLm0OrDWzi7UXPzZNN4cA1zuLsk9HLrChMpDnRti+wXyl1UClVACzA6E3liNHAl6bPVwO/K6XSTQrid2CYk7JWDb2DW6PxaHybB9H3yJN0+/I2+xWstEPTa7varhKUcuH1D2+EYVj5QRE1tjg7s/hFRH6l5GF+G1BR7OFw4KjVcQrQz15FEWkHRADLy2lbJnqZiEwAJgCEhYWRkJBQgUiOkfxCvIGde3ZTnOC+mPHVJSsrq1r3wZPQY/FMPHUs/sVFFhv3umPbIayIANPxnt172JlwzqZ+1i3NCb4hHK/jufhO34Pkls3DXZdw9XfirIH7CRG5GRhgKpqtlPq2BuUYBSxWSlXq21JKzQZmA8THx6vBgwdXWYC/X98FQFRsNE0HO85X7OkkJCRQnfvgSeixeCaeOpazn7Zlz9hFdP74BpoNNrrcrmUdALHXXmwJUWLGehwbZ79HYW5Wrcpb07j6O3F6zUUp9bVS6lHTjzOK4hjQ1uq4janMHqMombVUtm3NUKyXoTSaukzIFR3pd3yKzd6M2L8n0HnOjWUURWk6fXg94udNp1nlrZRf2JT7ZBSRTBHJsPOTKSIZFfSdCHQWkQgR8cOoEJbYuUY3jDkyrCNj/QpcJSIhIhKCMY/Gr5UZWKWxuM7WT08JjeZCoHQIkcDOoTS7vnuF7RoPbE/fI08SelOkU9fpm/JUleSry5S7DKWUqnJID6WUQUQmY3zIewOfmvJgTAU2KKXMimMUsEBZZf9QSqWLyCsYFQ7AVKVUelVlcQbRm/I0mgua0oomuHdrmv6jG74tgjg67S8Kjp63nPNy4H7bec6NNIgKI2vDMQ5M/sFunYjpw0mZvpLCk3Vr2culObiVUkspZQhXSr1Q6vglB20/BT51mXClMQcS1K6zGo0GAKH15P6AMTtduklZNOzbxmGLptd1Q0QI7NDUrrKIXTuRgIgQQoZ1ZlPUewD4t2tC/uFzZepWBtXctXssoBI2i3qP3pSn0Wgw2i98w4KJmD7cUtZh+nDCH7uU6D/uLhMupOn13Syfy0sg2vK+PgR2aIqI4GeV5c4vLJiu/72lWjLXRhokrSzMZBkdsayjWWo0mguP0JFR9Nr6IEGRLSxlPiGBtH1qEEHRLcvsJm8xJs5uP+GPDrA5bv/KULv18BZCrurMRS8OqbrQtZDkWisLE5JtAMA3rHbz2mo0Gs+jvBmCmUYD2yM+XjTs24b4A4/R5+DjNufbTrmMqN8rTijq16oRAE2v7VZBzXKoBWVxwb9G71ybwrcfrKdRQAB9srK0gVuj0ThF98WjUYbichOmBce2ot3/XUlAx2ZlzkX+eCcnP91A+1euNBZU64Hvem1xwSuL3KwCjuxOpZ0YlYR2ndVoNM4gIk7ZOFtN6Gu3vGHfNjbGcp/GAXbrOSdM1Zs6ywX/Gu1t8n4yR4LXgQQ1Go078GkcQLcFtnGvfFs6uSyulYXr8fEtpSz0MpRGo3ETTYZ05KLnLweM+cgjf7yTts8NRqwcb9qZl61qmQt+GcrbNI0sFsBbnDJsaTQajatoNak/jQdHENitOV6+3oQ/dAknPlqHIc9Qpm6jge3JWJlMcf+yNpGa5oJXFiUzC+fWHzUajcaViJcQFF0qfLr1Rgqr99kun91M5uojbPE+iqu54NdczDaLInEuG5dGo9F4Cj4N/SPbqeYAACAASURBVAm5ujPUgq31gn86+liWoUTbKzQajWdinRbWTR6bF/wylLU3lI4LpdFoPBGrOKs0vy2a1K+2ORVNtya54JWFxWbhpM+0RqPR1DbiXWKo8A7yI+rn8bUuwwX/Km32hioSamXdT6PRaCpL1y9uwa9tY7otGOU2GfTMwmpmoZehNBqNJ9KwTxt6bZzkVhku+KejxcCN3pCn0Wg0jrjgn47mmUWRiI4LpdFoNA7QysKvxGah40JpNBqNfS74p6PZdVaJgI8O9aHRaDT2uOCVhYjgbVISxXpmodFoNHbRT0fAxxTmo1jbLDQajcYuWlkA3mZl4aWXoTQajcYeWlkAPuZlKB1IUKPRaOyin46At5dpZqGVhUaj0dhFPx0Bb2/zzEIvQ2k0Go09tLIAfMzKQtssNBqNxi4uVRYiMkxE9ojIfhGZ4qDOrSKyU0R2iMj/rMqnich2089t9trWFN6ilYVGo9GUh8sCCYqINzATGAqkAIkiskQptdOqTmfgaWCAUuqsiLQwlf8D6AXEAf5Agoj8rJTKcIWs5mWoIi890dJoNBp7uPLp2BfYr5Q6qJQqABYAN5Sqcy8wUyl1FkApddpU3gP4SyllUEplA1uBYa4SVM8sNBqNO7FObmRm59oU1v60F4Cf527mu5nryc7I58DWU5Y6edkFbPnrMEWGsu1rGleGKA8HrLOIpwD9StXpAiAifwPewEtKqV+ALcCLIvIW0AC4HNhZqi0iMgGYABAWFkZCQkKVBM3PywHgTHpalfvwFLKysur8GMzosXgm9WUstTGO3EwDvgFeloCl9iguUvwy4zDBzXy59M7WiMDpg7ksn5UCwOnsZH6amQzAz3OTALh8QjiNwvz4/pVDAHQeGIy3j2vH4u58Fj5AZ2Aw0Ab4S0SilVK/iUgfYDVwBlgDFJVurJSaDcwGiI+PV4MHD66SEJveOwlpGTQJDaWqfXgKCQkJdX4MZvRYPJP6MhZXjyPzbC6PD50HQI/+bbjjuUEsX7idpmHBDBkVxZHdqXz/YSLbVxvfqc+fLGDZuyfpN7wTyz/ZZ+nnpzeSy/RdcDKY72fvsRyf2JnP4BmuGwu4VlkcA9paHbcxlVmTAqxTShUCh0RkL0blkaiUehV4FcBk+N7rKkEty1Cil6E0Go3zHN2bxt6Nx7n8tih2rD7K2VNZDLq5B7lZBRzcdtpSb+faFJ6+1uK/w5BRUbwz6Seyz+fb9Jd2PJOln2yu8Lp/L9ljc5yVVoihsMiSn8cVuFJZJAKdRSQCo5IYBYwpVec7YDQwV0RCMS5LHTQZx5sopdJEJAaIAX5zlaDm7RVFWlloNJpSKKVY9/N+IqJaEHZRY7LO5bH97yP0vrID/zfmawAahgTyyXPLAQhr14S3J/5Ybp9fv7eujKKoLtnn82kc2qBG+7TGZcpCKWUQkcnArxjtEZ8qpXaIyFRgg1JqiencVSKyE+My0xMmBREArBTjwzsDuF0pZXCVrGZlUeyqC2g0mhqnyFBMkaEYv4Cae4wV5BnwC/ChuFixf/MJ2nYNZc+G48x9YQUAXfu0Ji+7kMM7zzD3xQRLO7OiACpUFAC/fbGlxmQ240pFAS62WSillgJLS5W9YPVZAY+afqzr5GH0iKoVzKanIj2x0GjqDM+NWED6ySxmrrmHc6ezOXHoHNGXXmRTZ8+G45xPzaHvsE5l2hsKikn4agexl7UnpEUQfy7eyf9eX8W9/74CpWDOM3/QpVcrWncMKekv8bjLx+WpuNvA7RGYV/nKWNA1Go1HYSgswtvHCxEh/WQWAOfO5PDsDQsAeGLO9XSKa0nyzjOs/HYXq77dDUBIWBCde7YiL7uA9x78mfNpOaQeywT28+W0vxl6Rwy/z9sKwPx/ryInw7hEtHfTCfZuOlH7A60knS5u7PJr6F1olCgLvQyl0XguWefymHTxJ8x68nebclVcsscgZV8aAP++81uLogCYfu8PAMx++g/+v73zjo+i2h7496QDoSQEQgm99y5NINIUVLAgggVsYC/PZ+eh6O8p9gZ2HzYQLE8FG1IkUpT2lI50hID0Ggip9/fHTDa72d0sCdlkNznfzyefzNy5M3NOZrNn7j33nLNtzX7bUOSSYygAh6EIJuq1r+j3e6ixwGkayv9xLYqiOHHyaCpfT17Oob0nWbt4F4f2nvTad82ivwBYtWCnS/sU258AEBIiHgPcAJK+WM/6X3d7PBbsVIgJ9/s91FgAofaHS42FohQvHz31C7M/XMW4IdOZfN9sxg2Zzr6dxzz29WID2O4U0Txt4mJu6/Kex37Tn1tyzvL6m4nfXcOgmzq4td/35sVubTdMSHRsh0X5/6tcfRZA6h9/Q0wFMk6nl7QoihKUnDmdQVT5gr/d7tp4yK3tiWGf89byMYSECBlpmbz32HxW//KXS59g8CP4osvARrTqUYdajWL4/KXfGP7P7sTWiOayO7owb9oaMtKyeDXpBkLDQtxWfHUb3IRuFzfhwwlJAIRHqrEoFnJGFql7vA+BFUXxzBev/Ma8aWu55Zl+dBnYyOXYoq83MvOtlQy8vi1NO9WiWkIlKlSK5MDu44y//DOv1/xq0jISGseycdkeN0MB8NLYb4tcj+Jm1ON9HEbgwfeHuBx7ad4oMtOzKBcd4Whr06suaxftcjjxAZ74bJi1zHfPWr/Lq8aC3Lk4TSSoKAVn3jTri+r9x+bTPrE+4RGhZGdl89t3m5n69CIA/vvaMgAqVS3HA+9eyuNXfp7vNZ0dzsFC6551WLdkN3VbxFExphzrf93NZXd2oWaDGN56wIop7n1lCxKvakVGela+8SGR5cKJLOc6UrvrlYswxiBOwcO1GsUCsDVvbgw/oMYCJ59FpP9C5RWlJNmwNJlta/ZzyZiOLl82hWHdvMNk71tH3xGt3Y6lp2awZ+sRVv+y02PaihOHU30aikCjep1KHNjtXh2hU/+GZGdl84ftcL/7tUFer/HOyrFFIsu5PrtzQY0FkBJmGYkNB1JLWBJF8Q+v3WXFxjZoXZ3WPer46O2d1JR01s4+zNrZv1K1VkU2rXQNUlv6wxY+f+m3c5I10Hjyy+Hc3vV9x35UhXD+7+sRVIotxzdvroA8q7NKK2osgCPRkSUtgqIUCyePWC9ER/alEB4ZSsWYcgU6PzMjN3T1zft/cjsebIaibos4Fyf7W8tucTEM9799CSGhIfzznUtI3nKExOGtyM7KdiTsCwktO1PXaiyADhkZ7ArVKSgl8Dh1/Aw7NxykRdcEQmyfWlZmNqFhvle/ZKRnsfibP91SYKSfyXRkQH1r2S2EhIZw6vgZACpUjvJ4rSP7Uph832yuuPu8c1GnRKjVKIa92466tSeOqc3IWy/GGMO8aWtJaFqVkNAQIsuHk3Y6gz7DWtKscy0AmnaqRdNO1nZISO53RbkKEW7XLa2osQDKZWRBFFTxcyIuRSkoE0d/w8HkE4x+og89Lm3Gsh+3MGX8AsY+259O/Rvme+6cj1cz6+2VzHg+N75AxIqEzuHp675i/PRh3N/vY+t+313Do5d8SnhkKBFRYZSvGMmjH1/uMC6T7p3tBy39w0vzRhESKpSvGMmtnd91O14xzvqiFxEGXNfW0T5u6hUs+3ELA65t63ZOXvoMa8mfy/fQOc8qsNKIBuUBYZlWoo/0NL8ltlWUs+bUiTT2brfehA8mW47VDUutqmlTxlvRys5ZTr2xYVmye6OIS12F5C1H+HnGOsd+zrGMtCxOHU/jYPIJ7u/7UeEUKUEuHtOR6CpRlK9oTTFP/C5vdQSIruo5LiS+bmWG3NrZZdmqNyKiwrj79UF0v6TpuQkcBOjIAgjNtOZh09M0laBS8jx04SdkZmTz1H+HO9ryroLJysw/k9n+v46x9Y99bu3HD55ya/vsxV8LKWngMfjmDrTtVY8Grau7tMfWiHbZH3Rje+B0MUoW/OjIAgjJzAZjyEzPIjtL0wkqRU/KkQzHKMEXmRnWZ3DnhoOONk8rJlNTvGccmPwPd+czwFeTlp+VDMFCfN3KTPjiKnpf0YLx069k6O1d3AxFDmOf7U/1upWJrRFN35FtilnS4EdHFgCZ2YQZyBTL+RdVhpxWSvHw7TM7+JYdDodyQRERThxxXdq9d/tRTLbh68nLuW5cLzLTs/jP+AXUax7HgV3Hi0r0EqF8pUjOnEon20vCtpBQoV7Lalw/rjc1G8Rw7WO9fF6zU/+GdOrf0C2wTTk7yryxMNkGDIQZQyZCWqoaC8V/ZGZkE+FkLIwx7N12lBr1qxAaFkL6mVy/2ZlTGY7tI/tTeCVPBbbnb5rp2J5w1ReO7b+3u6/8CWQe/egyUk9l8Ood3wOQ0LQq4z+9ksN/n2Tl3O189foyR98elzalVqNYelza1OvKLV+ooSgcZX4aythzv2F2FLfzP6uiFBbnz1HOslSwpo4O7cmdjvp11iaeGvEl74+bT8qxMzx/c64B+PTZxY7tzf/72+H0DnQSmlb1esx5GW90lSjufn0Q9VtVp8V5tR3tOUuEq9asyIWj2jFp8U2OYw1aV2fAdW0LbSiUwqMjC9tY5ERxr5izjcEeUgQrytmybc1+nr9pJgNHtePKe7ryhlPw2kMXTQWst+m3H5rL0f2Ww/n3+TvYs+UI+4N8+qhNr7rc+fKFHNpzkvDIUF6/+0d6X9nCkR78thcGcGf3/wDw4tzrPb7lx1Sv4LLvnENJjUTJocYij0N75psr1FgoBSItNYMNS5Np1b0OEVFhzP7Ayok05+PV7Nl6hG2r97udM3H0N25twW4obpiQ6FhCWi2hEgCPzxhGVmY2059bQkioEBYeytOzRgLu00EPTRnKvKlruPrBHm7XHvtsf/5csYcOF9T3qw6Kd8q8scDHEkRFcebQ3pNM+dfPDL65A617WlMqU59exPLZWwEYM7EfaxbtcvQP5spsg2/u4JYMsGJMFCePnnHrW6N+Fa+xBqFhIY66DABxtTyXAG3UNp5Gzw/weCzHOa2UHOqzUGNRqtm6ah/fv/872dnuq2oO7T3JyaOpZKRnefRV7dt5jNkfrnI5NuP5JWxbs59J985mwvAvOH7otMNQALz36Hz/KFLMTPjiKobe3oV3Vo7lpXmjHO3/njmSdoPjXPrG163Mox9fnu/1ykVH5JuSWwl8yvzTyzsNpZQuXrhlFmC9+TbrXIvoKtacd2pKOuOGTAesGgsnDqfyxm83OxLEgVWxDeDQnhNcdX93IsuFk3oqN7bh7+1H+fK1pcWlSrHRomttajaIcexHV4micYcapJ/JJLJcGM16V6Fxk0bE1ojmz+V7GHpHl0JVyVOCCzUWOrIISjYsTWb2h6u4YUKiW3SuJ6ZNXMSp42mMerwPPYc04/ih3OjdE4et+IW1i3fRPrE+m1bu5YtXco3Aoq//ZNHXf3q87h8/7zhHTQKH/te2oVajWHoOaeZ27IF3LwUsP0NoWAj9rm8HQOcBpT8nkmKh01BqLIKS1+76gU0r9zL9ucW+OwOnjqcB8M0bVgSzp6ytbz84l7lT1/DK7d+TvPnwWV03oxSliOk6qIlHQwGWkdD4hLJNmTcW2HPZ1bKtf/qEJrElKY1SQE7nk/IiP/JGQ+eQU/6zNHD1A7mrijoP8OwcHjiqnWNbbYGSH341FiJykYhsEpGtIvKIlz7DRWSDiKwXkU+d2p+32zaKyOvip9eaHLdns2wrWjahifeAIiUAyeO3tuo+LyTl2BkyPGQRPnE4lbvPn+IS/Vxa6XV5c8d2t4ubcu/kwTzw3qWOtja96nL5XU71KdRaKPngN5+FiIQCbwADgGRghYjMMsZscOrTBHgU6GmMOSoi1e32HkBPICeh/GKgD5BU5ILaI4ucfxNf2TyVwCLv8/pwQhKAVx8DBG+Uvgjc8OQF/DxjHX85JRn0RmhYCFfd350tv/9Nq+4JhISGuMRy3PXKRS79I7QGvZIP/hxZnAdsNcZsN8akAzOAoXn6jAHeMMYcBTDGHLDbDRAFRACRQDjgHtlUFNjGws4woMYiyNix7oBLMZ/SzD2TBtNtcBO3oNFbnukHQL2W1Rxt46ZeQUhoCP2vacPtLw50JC+sllCJZl1q0XNorm9ixEM96X9tG+LrVSkGLZRgxZ+roWoDzhFJyUDXPH2aAojIEiAUmGCMmW2M+U1EFgB/Y730TzbGbMx7AxEZC4wFiI+PJykpqcBCyu7TRALYuaH27z9QqOsECikpKUEtvzM5uuzfepr184/Qql8sJw6k06hrZZd+E0ZOp1X/qtTv4DnYK5gZMq4Bs562VlytXr2aA2e2uhzvfk0NTkXs5uKH6lMhNpx2KdGER4awfd86truXswCg49XRgHF8TqQ6VKvOWX9uSstnrLToAcWjS0kvnQ0DmgCJQAKwUETaAHFAC7sNYK6I9DLGLHI+2RjzLvAuQOfOnU1iYmKBBTi98QBrWEXOCLxCZCUKc51AISkpKajldyZHl1sfsEpi7t9iLXetHBXv0u/kwQyWTt/H0ulevh2DmIsvH8D8yR9x6ngal18/0BHPEPNyAzYsTebqe7sXKuX5uVBaPmOlRQ8oHl38aSz2AHWc9hPsNmeSgWXGmAxgh4hsJtd4LDXGpACIyI9Ad2ARRYyxZ52i7GmoI/tTivoWSj5kZ2U7vuzWLt7F4pl/Ur9lNSrGlOPnGbsJOeI2oGT+p2uLW8xC0axLLTat2Ov1+APvXUqdZnHc2/sDl/bI8uGknc5NT/7SvFFkZxmX5b7tetejXe96RS+0onjBn8ZiBdBERBpgGYkRQN5CuN8AI4EPRCQOa1pqO9AQGCMiE7GmofoAr/pFSttnEWkvqzm05yTHD52mclx5v9yuLLFuyS4+e+k3xjzTj7rN4ziYfAIRiKttJZl779F5bFi2h4nfXcPMt1bw83SrFvSqBTsd15j2TJG/HxQbMdUqeD3mHC0eERXmcLo361yLGyYkMm/aGmrYUdRWIJyuVFJKFr+NX40xmcBdwE/ARuBzY8x6EXlKRIbY3X4CDovIBmAB8KAx5jDwJbANWAusBlYbY771k6AARDotG1yVtNMvtypLrErayaR7Z3Ng13HeeXgu2dmGf102g3FDZzj6rJy7ndMn0tj8v70OQxFsXHprJ15beCPx9Vz9KDf/uy+teuQOrC8YW5s6zXKXZTunFclpj69XmfvfvoTYGtEM/2cPel/Rws/SK8rZ41efhTHmB+CHPG2PO20b4H77x7lPFnCrP2VzuhcAoSGAHYyrdbjPniP7Uvj+/d8ZcF1batS3VtPc2vldlz6pKekuf9MfpvzBzDdXOPaDOTK4TrM4osqH8+SXw7mty3sATFp8ExFRYRhjqBhbjrrN41jx+28MvWYA3733P7fsrGMm9mfOJ6vpN6J1SaigKGdFSTu4S56cbKROxiIzQ43F2fLJvxeyYWkyqxf+xYtzrid5i3uajFPH01zSYjgbCoDFM73HRAQiYeEhjs9I215WmnIRoWX3BDLTswi3V0uIiEsFuHLREVz1j+5u14upXoGr/+lew0FRAokybyyMI3V17tttZLky/2dxYIxh/W/J1G1WlUpV3f04B3ZbQV4nj6Ty0EVTXRL0OXNf4ode7+Hsowh0np45gl+/3cz37/8OuI6K7nl9kFubopQWNDdUjq0IgZBQ6588Jt53FtNAIeXYGb6evJyDySd8dy4Eq3/5i0n3/Mj4Kz7z2deboQg0+l3TxuuxOs2qElUhN9129bqVadktgbCIUCZ+dw1xtSt5TEIImmxPKd3oK3TOyEKE1j3qsGbRrqDyWTxy8TQy0rL47bvNPD/7uiK//tZVVuzCmVMZpBw7w+/zt9PlwsaUi44AIDvLvahQIPPE51flmyrjX9OuJDUlnTmfrKbroCYOP4zzEt8Lrm7F+l9308NLhlZFKY2UeWPhmIYSCLHfGIMp5UeOL8DbW/3Mt1aQmZ5F35FtiKnufSmnN3IWAAC8euf37N50mGkTF/POyrFkZWZzZF9gx6U4xzrExFegVsMYn3mVykVHMPT2Li5tzoFv5StG8tCUvJlrFKV0U+aNRc7SWSS3xkFWkL0teyMjLdNRQ3nOJ2t4ZcFoyleMBCA72xASIqxbsovf5+/g2sd6ERoWQnZWNhNHf0NszWgatKrOvGm5AXC7N+U6r+d8spqNy/LGWJYsnQc0ZOXc7Y79d1aO5ddvNzmMxaMfWaU/nQ2goihnhxoLkzsNFRoafCMLZw7tPenksM9VzXF8z0nqNo9k08q9TLr3R0Y/3of3x/0MQOqpdKrXqczsD1cBsOvPQ/k6ngOx7oMnG+A8IsgJtDQe6nEripI/Zd7BnfPFYUJyRxanT6SVpEhu7Nt5jLWLd7m0ZWdlM3fqGpe2cUOms+K/Bxz7f210nW7JeaOeMv5nMtKyHIYC4Pf5OxyGIhh55tuRHo1AeIR72m1no5I35kFRFM/oyMLJwf3nCmta5bMXf6XviNaOqZqS5olhnwPw+Ixh1G5sVfJb9uNWvnx1qVvfbcty6xW8OMY16P3o/lMsn72VYweDY9XS2fLkl8OpWrMi2U7G4vYXBwLQtnc9GrWNp2X3BI/njn6iD1fe25Vtq/eT0FQLXymKN8q8schJJIhYX6Y5HDt4inFDZ9DnyhYML4GAqexsg4jrmv2DySccxmLfX8fyPd/TVNpbD8wpWiEDhJwVS+FOxXvaJ9a32iJC3ZzRzktfRYSKMeUc/RVF8UyZn4ZydnA7s2TmJjLTs5hfAjmLUo6d4fbz3nPJo1QQpj2ziBfH+ieVlr9wjm0oLFfc3ZV6Lasx9tn++fbr1L8hjdvXYNh93c75nopSVlBj4eTg9jdZmdlMfXohaxb9lW+/yffNBuDw3pMu7WmpVtrqjLRMMvIpDbrwq41sX+OfwoL+4rpxvfM9/vLPo31eI7ZGNI99fDmd+jfMt19EVBgPvj+EAde1zbefoii5lHlj4RxnUZSsXbyLDUuTXdqWzNrEoq//5I1//OTSnn4mk58+WuWoj7x3+1GP15wyfgE7Nxzkrp5TSmTE40/KV4zI93iFSpHFJImiKJ4o88YC99RQAPzx845CXzIzI4vJ983mtbtcEu5y8kiq++2N4e7zp/DVpOU8OfwLS5R8DNfEUV8XWq5AoVG73Ep3Hfs14IKrW9Giq7sDOjRc6HV5c4ez+r43L6Zu8zie+GyYI/13w7bxbucpilL0lHkHt/NqKGd2b3bPnnq2eMtam+1haafzdFFWZjapKemcOZVbJS09n+mmYKXroCZsW23pfd5FjelwQQMAHnx/CC/cMguwVjit3fQ7Ay7MnZ5qcV5txk29AoDbXxjAHwt20srLKidFUYqWMm8sjFOK8tCwkEIH5K1K2klmRhadBzTyfi8PUWPpTqm7AT58Msll/+7zpxRKnkDklmf6kXI0lfMva86nzy4GcFma3Lh9DXpc2pS0M5nUqF+FP3d6H/iGR4Zx3kWN/S6zoigWZd5Y4JSiPLJcGKdPphfqMjnLUtv1qe/SvmPdAY7uT6Fjv4YuSfemP7+EpM/X03mAqzM2mNJ1F5QuA90NqXOENcDoJxKLSRpFUQqC+ixM7sii/7Vnvzpm6febefm270hNSXcZMRw7cMolRPjZG77hnYfncTD5hEuEcdLn6wFcchkFOv9855Iiv6ZzbISiKIFLmTcWxinOIu9bfg6PDZnOL19uwBjjWL76wRNJbFq5l3mfrnUZMXzw+AKPOYpOHEklK4hSn3uiaadaXo/F1a7o1dkcV7si90wa5NJ2xT1daX9BfZp2rFmUIiqK4id0GsrJwR1VwfPyzcN7T/Lps4tZ+N8NJG85wjPfjnQcSz+T6eLn2Lv9qEdHNsDcT9Z4bC8pLrqhfYHzQfW6vDmLvnYtg/rCT9dRqWp5kr5Y7zG+o+eQZrTqXsel7cJR7QousKIoJUaZH1lENYgl/qZOZLer4shK6o3kLUcAHGm/ATCGjPRcJ3X6mUyPtSWev2lm0QhchFx+13k++9z92kUA9BxqFfq5blxvmtt1pePrVealeaMc5VabdLBGCdFVong16QbHNXoObV6UYiuKUgKU+ZFFhbY1aNC2Bn8lJZ31OYu/yX2znvPJGheneFZmtiNeIhi49bn+vPPwPJe2ui3iCA8PBYGW3RJ4Z+VYl+O3PN2Xpd9vofslTYmuEuVor904lqe+uprKceWJKh9OrUYxnD6RRsXYcsWii6Io/qPMG4uiwNl4BAth4dagsmM/Vz/NP9+5JF/fBEDFmHJeU2XE163s2B4/fRgmQDL3KopybqixKKsUQy6skBABNRSKUioo8z6LssrgmzqUtAiKogQRaizKAFWqV3Br6zOspce+Wp5aURRP+NVYiMhFIrJJRLaKyCNe+gwXkQ0isl5EPrXbLhCRVU4/Z0TkMn/KmsOYif2K4zbFSt+rW+Wb4nv89CuLURpFUYIRvxkLEQkF3gAGAS2BkSLSMk+fJsCjQE9jTCvgPgBjzAJjTHtjTHugL3AaKJYyb50HNOKSMR2L41bnxMMfDHVru/bR8132u13chPDIUAaOapdviu+EJlpOVFGU/PHnyOI8YKsxZrsxJh2YAeT9hhsDvGGMOQpgjDng4TrDgB+NMcVWOPqSsZ2K61aF4uZ/96Vhm3iueeR8GrSpzqtJN/Dyz6PpfaXr1NKNT17A5CU3O0qzXnFPV6/X7DeyNfVbVaNx+xp+lV1RlODEn6uhagO7nfaTgbzfVk0BRGQJEApMMMbMztNnBPCypxuIyFhgLEB8fDxJBYiVyEtKSso5ne8v+t6WwOljmSydsc/RtmHjBk5HJUMcdBtdhWUrf3Uci44LI+VQJh2GVHPTJ7Ju7vbSZb8SFpn7rlC9E1TvFMOixQv9pktBCdRnUhhUl8CjtOgBxaNLSS+dDQOaAIlAArBQRNoYY44BiEhNoA3wk6eTjTHvAu8CdO7c2SQmJhZakKSk66lc7QAAClJJREFUJJzPn87mQl/LE5Hlw0k7neG7oxOX3dmFQTd2wBhDj8S/efm27wAYcOn51G4c6/GcrIxs2rfuQtWaFT0ej3+jMelnMt2y4wYieZ9JMKO6BB6lRQ8oHl38OQ21B3BOCJRgtzmTDMwyxmQYY3YAm7GMRw7Dga+NMQX7li0CJn53TZFdq37Lary+8Eaf/UJCc2MSGraNd+RPEhGada7Fcz9ey0P/GeLVUACEhod4NRQALbomBIWhUBQlsPDnyGIF0EREGmAZiRFA3m/gb4CRwAciEoc1LeWcs3sklgO82ImtEX3O16hUtRz1W1bjjpcvPKv+d782iNW/7CRxeCtqNohxO16lWgWqVHNfBqsoiuJv/GYsjDGZInIX1hRSKDDFGLNeRJ4CVhpjZtnHBorIBiALeNAYcxhAROpjjUx+8ZeM/uaaR853lAw9G6pUK8/Ih8/33VFRFKWY8avPwhjzA/BDnrbHnbYNcL/9k/fcnVhO8qClXe96+R6v2zyOXX8ecux7S5GuKIpS0mgEtx/JWzI0LCK3KlxUhXDGTb3C5XilqpqdVVGUwESNRRETVSHc67FnZuUWTYqxU3Dc+NQFtOhamxfnXk9YuJYYVRQlMCnppbNBSUx8BY7uP+XxmOSTzbVyXHnGT7+SWW+tdATIdRvchG6Dm3g9R1EUJRDQkUUBiKtdkVueyT93lK/M3wlNqnLHyxdSo36VIpRMURTFv6ixyIcX5lzv2A4LD+HpmSPpMrCRo/BP6x65YST1W1UjLCKUei2rFbuciqIo/kanofKhUmw5bn9xIO+Pm89tzw9wtPcd0ZrWPepQrU5llv+4hdga0TTpWJPsLMMvX25g47I9HtOCK4qiBCtqLHzQPrE+ry+6yaU0qIgQX8+aRup2cVNHe2iY0GdYSyrHladJB03IpyhK6UGNxVlQkBrSoWEhdOrf0HdHRVGUIEJ9FoqiKIpP1FgoiqIoPlFjoSiKovhEjYWiKIriEzUWiqIoik/UWCiKoig+UWOhKIqi+ESNhaIoiuITNRaKoiiKT9RYKIqiKD4Rq7Jp8CMiB4G/zuESccAhn70Cn9KiB6gugUpp0aW06AHnpks9Y4zPdNmlxlicKyKy0hjTuaTlOFdKix6gugQqpUWX0qIHFI8uOg2lKIqi+ESNhaIoiuITNRa5vFvSAhQRpUUPUF0CldKiS2nRA4pBF/VZKIqiKD7RkYWiKIrikzJvLETkIhHZJCJbReSRkpbnbBCRnSKyVkRWichKuy1WROaKyBb7d4zdLiLyuq3fGhHpWMKyTxGRAyKyzqmtwLKLyGi7/xYRGR0gekwQkT32c1klIoOdjj1q67FJRC50ai/xz5+I1BGRBSKyQUTWi8i9dnswPhdvugTVsxGRKBFZLiKrbT2etNsbiMgyW6bPRCTCbo+097fax+v70q/AGGPK7A8QCmwDGgIRwGqgZUnLdRZy7wTi8rQ9Dzxibz8CPGdvDwZ+BAToBiwrYdl7Ax2BdYWVHYgFttu/Y+ztmADQYwLwgIe+Le3PViTQwP7MhQbK5w+oCXS0tysCm22Zg/G5eNMlqJ6N/beNtrfDgWX23/pzYITd/jZwu719B/C2vT0C+Cw//QojU1kfWZwHbDXGbDfGpAMzgKElLFNhGQp8ZG9/BFzm1P6xsVgKVBGRmiUhIIAxZiFwJE9zQWW/EJhrjDlijDkKzAUu8r/0uXjRwxtDgRnGmDRjzA5gK9ZnLyA+f8aYv40xv9vbJ4GNQG2C87l408UbAfls7L9tir0bbv8YoC/wpd2e95nkPKsvgX4iInjXr8CUdWNRG9jttJ9M/h+sQMEAc0TkfyIy1m6LN8b8bW/vA+Lt7WDQsaCyB7JOd9lTM1Nypm0IIj3s6YsOWG+yQf1c8ugCQfZsRCRURFYBB7AM7zbgmDEm04NMDnnt48eBqhShHmXdWAQr5xtjOgKDgDtFpLfzQWONP4NymVswyw68BTQC2gN/Ay+VrDgFQ0Sigf8C9xljTjgfC7bn4kGXoHs2xpgsY0x7IAFrNNC8JOUp68ZiD1DHaT/BbgtojDF77N8HgK+xPkj7c6aX7N8H7O7BoGNBZQ9InYwx++1/8GzgPXKH+wGvh4iEY325TjPGfGU3B+Vz8aRLMD8bY8wxYAHQHWvKL8yDTA557eOVgcMUoR5l3VisAJrYKwwisBxDs0pYpnwRkQoiUjFnGxgIrMOSO2f1yWhgpr09Cxhlr2DpBhx3mloIFAoq+0/AQBGJsacTBtptJUoeX9DlWM8FLD1G2CtWGgBNgOUEyOfPntv+D7DRGPOy06Ggey7edAm2ZyMi1USkir1dDhiA5X9ZAAyzu+V9JjnPahjwsz0a9KZfwSku736g/mCt7NiMNR84rqTlOQt5G2KtblgNrM+RGWt+cj6wBZgHxJrcVRVv2PqtBTqXsPzTsaYBMrDmT28ujOzATVjOuq3AjQGixye2nGvsf9KaTv3H2XpsAgYF0ucPOB9rimkNsMr+GRykz8WbLkH1bIC2wB+2vOuAx+32hlhf9luBL4BIuz3K3t9qH2/oS7+C/mgEt6IoiuKTsj4NpSiKopwFaiwURVEUn6ixUBRFUXyixkJRFEXxiRoLRVEUxSdqLJQyjYhUEZE7nPZriciX+Z1ThPeuLyLXFMe9FOVcUWOhlHWqYGXsBMAYs9cYMyyf/kVJfUCNhRIUqLFQyjrPAo3sGgcv2G/76wBE5AYR+UasWg47ReQuEblfRP4QkaUiEmv3ayQis+3EjotExC2Hj4j0kdxaCn/YUfjPAr3stn/YieNeEJEVdsK7W+1zE0VkoYh8b9ckeFtEQuz+H4rIOrHqm/yjGP9uShkjzHcXRSnVPAK0NlbCtpxMpc60xspcGoUVHfuwMaaDiLwCjAJexap/fJsxZouIdAXexEol7cwDwJ3GmCV2krsz9r0fMMZcYt97LFbqjC4iEgksEZE59vnnYdUm+AuYDVwB7ABqG2Na2+dXKYo/iKJ4Qo2FouTPAmPVRTgpIseBb+32tUBb+4u/B/CFlZYIsArN5GUJ8LKITAO+MsYkO/XPYaB9zZxpsMpYuXzSgeXGmO0AIjIdK63FfKChiEwCvgfm5L2gohQVaiwUJX/SnLaznfazsf5/QrBqDLTP7yLGmGdF5HusfENLxHN5SwHuNsa4JN8TkUTc04MbY8xREWmHVXToNmA4Vm4mRSly1GehlHVOYpXfLBTGqpWwQ0SuAkd96nZ5+4lII2PMWmPMc1gZTZt7uPdPwO12im1EpKmdWRjgPDsDaghwNbBYROKAEGPMf4F/YZV5VRS/oMZCKdMYYw5jvemvE5EXCnmZa4GbRSQnE7Cn8pv32fdYg5Wp9kesjKJZIrLadk6/D2wAfred7O+QO/pfAUzGSlO9A6uOSW0gSaxqalOBRwspv6L4RLPOKkqAY09DORzhilIS6MhCURRF8YmOLBRFURSf6MhCURRF8YkaC0VRFMUnaiwURVEUn6ixUBRFUXyixkJRFEXxiRoLRVEUxSf/D6DkUAVlmL7dAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -12423,7 +1440,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX5x/HPk0ACAQRZjAKyKIhFcWNRXFGrolX4aXG3xa3UBXftT2u1FbWLWrVW+nMv7oBaK1VcKAW1uCGIC0sgbIKIgKwBsj+/P+4NDDHJDEkms+T7fr3mxV3OnfucTJgn955zzzF3R0REpCYZiQ5ARESSn5KFiIhEpWQhIiJRKVmIiEhUShYiIhKVkoWIiESlZCFpycwGmdnyOhz/iJndVp8xiaQyJQtJWma2xMy2mlmBma00szFm1jIO57nQzP4buc3dL3P3O+Nwrsg6VbwejvHYqWZ2aX3HJBILJQtJdqe5e0vgIOBg4JYEx1MfTnP3lhGvkfXxpmbWpD7eR6QqShaSEtx9JfA2QdIAwMyyzew+M/vazL4Lbx01r+p4M7vZzBaa2SYzm2Nmp4fbfwQ8AgwM/8pfH24fY2Z3hctzzezUiPdqYmarzeyQcP0wM/vAzNab2edmNqg2day4wgnrtM7MFpvZyeG+u4GjgIcjr0bMzM3sSjNbACwItx1uZtPNbEP47+ER55hqZn8ws0/MbKOZvWZmbcN9b5jZVZVi+qLiZyWNm5KFpAQz6wycDORHbP4jsA9BAukBdAJur+YtFhJ82bYG7gCeM7M93H0ucBnwYfhXfpsqjn0RODdi/SRgjbvPNLNOwBvAXUBb4EbgFTPrULuaciiQB7QH7gGeNDNz91uB94GRVVyN/E94XO/wi/8N4CGgHXA/8IaZtYso/3PgYmAPoDQsC/A0cEFFITM7kOBn+kYt6yJpRMlCkt0/zWwTsAxYBfwWwMwMGAFc5+5r3X0T8HvgnKrexN1fcvcV7l7u7uMI/gofEGMMLwBDzCwnXD+PIIFA8OU60d0nhu89CfgUOCVKndZHvH4RsW+puz/u7mUEX957ALlR4vtD+DPYCvwEWODuz7p7qbu/CMwDToso/6y7f+Xum4HbgLPMLBOYAOxjZj3Dcj8Dxrl7cZTzSyOgZCHJ7n/cvRUwCNiX4C9ugA5ADjCj4ksXeCvc/gNm9nMzmxVRdv+I96qRu+cDc4HTwoQxhCCBAHQFzoz88geOJPiSr6lObSJej0fsWxlx3i3hYrRG/WURyx2BpZX2LyW4Qqiq/FKgKdDe3QuBccAFZpZBcDX1bJRzSyOhBjFJCe7+rpmNAe4juO2yBtgK7Ofu39R0rJl1BR4Hjie43VRmZrMAq3j7GEKouBWVAcwJEwgEX7zPuvsvqj2y/lQXZ+T2FQQJLFIXgkRaYc9K+0oIfp4QXM08C/wX2OLuH9Y6WkkrurKQVPIgcIKZHeju5QQJ4AEz2w3AzDqZ2UlVHNeC4At1dVjuIoIriwrfAZ3NLKuGc48FTgQuZ/tVBcBzBFccJ5lZppk1C5/x6FzLOtbkO2CvKGUmEtxKOi9siD8b6A28HlHmAjPrHV4ljQJeDm97ESaHcuDP6KpCIihZSMpw99XAM2xvxP5fggbvj8xsI/BvoFcVx80h+PL7kOALtw8wLaLIf4DZwEozW1P5+PA9vg2PP5zgVk3F9mXAUODXBMloGXATNf/f+lel5yxejVL1Cn8BhoU9pR6qqoC7fw+cCtwAfA/8CjjV3SPr9SwwhuCWVzPg6kpv8wzBz+i5GOOSRsA0+ZFI42FmU4Hn3P2JGsr8HBjh7kc2WGCS9HRlISLbhLemrgAeS3QsklyULEQEgLC9ZzXBrboXohSXRka3oUREJCpdWYiISFRKFiIiElXaPJTXvn1779atW62P37x5My1atKi/gBIkXeoBqkuySpe6pEs9oG51mTFjxhp3jzqWWdoki27duvHpp5/W+vipU6cyaNCg+gsoQdKlHqC6JKt0qUu61APqVhczqzw8TJV0G0pERKJSshARkaiULEREJColCxERiSquycLMBptZnpnlm9nNVew/2sxmmlmpmQ2rtO8eM5sdTmn5UDjZjYiIJEDckkU489ZogqkwewPnmlnvSsW+Bi6k0tAC4ZzBRwAHEAwl3R84Jl6xiohIzeLZdXYAkO/uiwDMbCzBUM5zKgq4+5JwX3mlY51g6OQsgglqmhKMVyMiIgkQz9tQndhx+sbl7Di1Y7XCCVimAN+Gr7fdfW69RygiIjFJyofyzKwH8COgYraxSWZ2lLu/X6ncCGAEQG5uLlOnTt3pc61da7zyShbl5camTVNp1apusSdaQUFBrX4OyUh1SU7pUpd0qQc0TF3imSy+Yce5fjuH22JxOvCRuxcAmNmbwEBgh2Th7o8Rjrvfr18/r80TjM899z0vvLAUyGbWrGymTt2H3NymO/0+yUJPpSYn1SX5pEs9oGHqEs/bUNOBnmbWPZzb+BxgQozHfg0cE84h3JSgcTsut6EuuKAdf/pTRwDmzSvi1FMXsmVL5SYUEZHGLW7Jwt1LgZHA2wRf9OPdfbaZjTKzIQBm1t/MlgNnAo+a2ezw8JeBhcCXwOfA5+7+r3jEuWpVCUcc0ZKDDy4F4NNPt3D11cuiHCUi0rjEtc3C3ScCEyttuz1ieTrb2yUiy5QBv4xnbBVat87kzjtX8tlnwY+iV69sbr45tyFOLSKSMhr9E9zZ2RmMH9+d7t3LOP74Vnz4YS969GiW6LBERJJKUvaGami77JLJffdt4bTT+tG0qR4UFxGprNFfWVRo29aVKEREqqFkEYPycmfz5rJEhyEikjBKFlFs2VLOmWcu5vTTF1Fa6okOR0QkIZQsarBiRTFHHz2ff/xjPZMmbeLqq5fhroQhIo2PkkUNrr56OTNmbNm2/n//t4ZHH12TwIhERBJDyaIGo0fvSdeuWdvW+/Rpxskn75LAiEREEkPJoga5uU15/fW9adUqg5/8ZBemTetF167ZiQ5LRKTB6TmLKPbfvzkffNCLH/2oGZmZ6lorIo2TkkUM9t+/eaJDEBFJKN2GqqOSEqesTD2kRCS9KVnUwcaNZfzkJ/lcf/3yRIciIhJXug1VS8uXF3PKKfl8+WUhkyZtYq+9srnmmt0SHZaISFzoyqIW3J1hwxbx5ZeF27Zdd91yXn99QwKjEhGJHyWLWjAzHn20C61abf/x9e+fQ//+OQmMSkQkfpQsaunAA3N46aW9yMyEoUNbM2VKas/dLSJSE7VZ1MFJJ+3Ce+/tw6GHttAzGCKS1pQs6ujww1smOgQRkbjTbag4Ki4up7xcz2CISOpTsoiTtWtL+fGP8/nNb1YkOhQRkTrTbag4WLSoiFNOyScvr4j33y+gW7dsRoxon+iwRERqTVcW9ay83Bk6dCF5eUXbtl1++ddMmrQxgVGJiNSNkkU9y8gwnnyyK82bb+8ddfTRLRkwoEUCoxIRqRslizgYMKAFY8d2JyMDzjqrDW+91YPWrTMTHZaISK2pzSJOhgxpw/vv78Nhh7UgI0PPYIhIaovrlYWZDTazPDPLN7Obq9h/tJnNNLNSMxtWaV8XM3vHzOaa2Rwz6xbPWOPh8MNbKlGISFqIW7Iws0xgNHAy0Bs418x6Vyr2NXAh8EIVb/EMcK+7/wgYAKyKV6yJsGlTGUVF5YkOQ0QkJvG8shgA5Lv7IncvBsYCQyMLuPsSd/8C2OFbM0wqTdx9UliuwN23xDHWBrVyZQmDBs1n+PClemhPRFJCPJNFJ2BZxPrycFss9gHWm9k/zOwzM7s3vFJJeQsWFHL44XnMnLmVcePWccMN3+CuhCEiyS1ZG7ibAEcBBxPcqhpHcLvqychCZjYCGAGQm5vL1KlTa33CgoKCOh0fC3e45pocFi/e/mN/8MFVZGcvZfDgkno5R0PUo6GoLskpXeqSLvWABqqLu8flBQwE3o5YvwW4pZqyY4BhEeuHAe9GrP8MGF3T+fr27et1MWXKlDodH6vFiwt9990/d5jhMMMHD17gmzaV1tv7N1Q9GoLqkpzSpS7pUg/3utUF+NRj+E6P522o6UBPM+tuZlnAOcCEnTi2jZl1CNePA+bEIcYG161bNm++2YNWrTIYPrwtEybsTcuWaXGHTUTSWNxuQ7l7qZmNBN4GMoGn3H22mY0iyGQTzKw/8CqwK3Camd3h7vu5e5mZ3QhMNjMDZgCPxyvWhnbQQTnMmLEvPXpkE1RPRCS5xbXNwt0nAhMrbbs9Ynk60LmaYycBB8QzvkTq2bNZokMQEYmZhvtIQmvWlLJsWXGiwxAR2UbJIsksW1bMUUflccIJC1i9un56SImI1JWSRRLJyyvkiCPymDeviLy8Ik4+eSEbN5YlOiwRESWLZHL//atYtmz71cSMGVv4wx9WJjAiEZGAkkUSeeihzvz4x622rZ9xRht+97s9EhiRiEggWZ/gbpSyszN49dW9OP74BRxwQHMeeaQLmZnqWisiiadkkWRatsxk8uSetGiRoWcwRCRpKFkkIT3RLSLJRm0WKWblyhJeeWVdosMQkUZGySKFLF5cxJFHzuessxYzfrwShog0HCWLFPHll1s54oj5LFxYRHk5nH/+Yl5/fUOiwxKRRkLJIkUsXlzEqlXbn8EoLYXnn1+bwIhEpDFRskgRQ4a04emnu1HRQeq883blmWe6JTIkEWlE1BsqhZx/fls2by5nxowt/O1ve+oZDBFpMEoWKWbEiPaJDkFEGiHdhhIRkaiULNLI0qVF3HRTDsuXay4MEalfShZpYv78Qo46aj6fftqEH/94wQ49p0RE6krJIg0sWVLE0UfP3za8eV5eESeckM/69aUJjkxE0oWSRRro3DmLI45oucO2fffNJidHH6+I1A99m6SBJk2MF17oxuDBuwBw0UXteOGF7mRl6eMVkfqhb5M0kZ2dwSuv7MXVV2/liSc0D4aI1C8lizSSk5PB6aeXkJGhRCEi9UvJohFZtqyYrVvLEx2GiKQgJYtGIj+/kCOOyOOMMxZRWKiEISI7R8miEZg/v5BjjlnAsmUlvPXWRoYNW0RxsRKGiMQursnCzAabWZ6Z5ZvZzVXsP9rMZppZqZkNq2L/Lma23Mwejmec6e6qq5axYsX2h/TeeGMjjzyyJoERiUiqiVuyMLNMYDRwMtAbONfMelcq9jVwIfBCNW9zJ/BevGJsLJ59ths/+lGzbevDh7flyis7JDAiEUk18byyGADku/sidy8GxgJDIwu4+xJ3/wL4wT0RM+sL5ALvxDHGRmG33ZoyeXJP9tknm0suacdTT3VV11oR2Snm7vF54+C20mB3vzRc/xlwqLuPrKLsGOB1d385XM8A/gNcAPwY6FfNcSOAEQC5ubl9x44dW+t4CwoKaNmyZfSCSa6memzYYLRq5WSkSEtVunwmoLoko3SpB9StLscee+wMd+8XrVyyzmdxBTDR3ZebVf8XsLs/BjwG0K9fPx80aFCtTzh16lTqcnyySJd6gOqSrNKlLulSD2iYusTzb8xvgD0j1juH22IxEBhpZkuA+4Cfm9kf6zc8iZSXV8hVVy2jtDQ+V5oiktrieWUxHehpZt0JksQ5wHmxHOju51csm9mFBLehftCbSurH/PmFHHvsAr79toTvvivh+ee707Sp2jREZLu4XVm4eykwEngbmAuMd/fZZjbKzIYAmFl/M1sOnAk8amaz4xWPVC0/f3uiAHjppfWce+5iSkp0hSEi28W1zcLdJwITK227PWJ5OsHtqZreYwwwJg7hCcGItVlZO15F7LprJpmZCQpIRJJSivSLkXjp1i2bd9/dh732ygLg4ovb8eijXTQYoYjsQMlC6NIli3ff3Ydf/zqXxx9XohCRH0rWrrPSwDp3zuLuuzslOgwRSVK6spCYLFxYpOHNRRoxJQuJat68YHjz005byObNZYkOR0QSQMlCajR/fiHHHbeA774rZfLkTZx0Uj4bNihhiDQ2ShZSo2uuWb7tGQyAadM2M2bM9wmMSEQSQclCavTss904+ODm29Yvu6w9V1+t4c1FGhv1hpIatW/fhP/8pyennLKQHj2yGT16T2oa3FFE0pOShUTVpk0TJk3qQXZ2hp7BEGmklCwkJi1a1Dz+R1mZa0IlkTSmNgupsy+/3EqfPnP5/PMtiQ5FROIkarIws9PCmetEfmD+/EJOOGEBc+cGo9d+8snmRIckInEQSxI4G1hgZveY2b7xDkhSx6pVJRx/fPAMBsC6dWX8+McLWLSoKMGRiUh9i5os3P0C4GBgITDGzD40sxFm1iru0UlS69ChCcOG7brDtosuakf37lkJikhE4iWm20vuvhF4GRgL7AGcDsw0s6viGJskOTPj/vs7ceutuwNwySXteOCBzupaK5KGovaGCme1uwjoATwDDHD3VWaWA8wB/hrfECWZmRl33dWR/v1zOPXU1upaK5KmYuk6+1PgAXd/L3Kju28xs0viE5akmqFD2yQ6BBGJo1jaLIYD881sSNgzaveIfZPjGp2khY8/3sxNNy2nvFzzeoukqli6zl4CfAKcAQwDPjKzi+MdmKSH2bO3csop+dx33yp+9rMllJQoYYikolhuQ/0KONjdvwcws3bAB8BT8QxMUt+SJUWceGI+a9cGQ5q/8MI61q8v47XX9qZJE7VtiKSSWHpDfQ9siljfFG4TqdHmzeV4pQuJQw7JUaIQSUGxJIt84GMz+52Z/Rb4iKAN43ozuz6+4Ukq22+/5kybtg97750NBMObjxq1R4KjEpHaiOU21MLwVeG18F89lCdRde+ezX//uw8PP7yaO+7YQ89giKSoqMnC3e8AMLOW4XpBvIOS9LL77k25666OiQ5DROoglt5Q+5vZZ8BsYLaZzTCz/eIfmjQWkydvZOLEDYkOQ0RqEEubxWPA9e7e1d27AjcAj8fy5mY22MzyzCzfzG6uYv/RZjbTzErNbFjE9oPCMahmm9kXZnZ2rBWS1DJr1hZOP30RQ4Ys5O9/V78JkWQVS7Jo4e5TKlbcfSrQItpBZpYJjAZOBnoD55pZ70rFvgYuBF6otH0L8HN33w8YDDxoZnpEOM0sXlzEySfns2lTOWVlcPHFS7n77m8THZaIVCGWBu5FZnYb8Gy4fgGwKIbjBgD57r4IwMzGAkMJxpMCwN2XhPvKIw909/kRyyvMbBXQAVgfw3klRXzwweZtw5tXaNZMU6eIJCPzyh3hKxcw2xW4AzgScOB94A53XxfluGHAYHe/NFz/GXCou4+souwY4HV3f7mKfQOAp4H93L280r4RwAiA3NzcvmPHjq2xLjUpKCigZcuWtT4+WaRaPd57rwl33dWckhJj2LAirrxy+1wYqVaXmqguySdd6gF1q8uxxx47w937RS3o7tW+gEzgvprK1HDsMOCJiPWfAQ9XU3YMMKyK7XsAecBh0c7Xt29fr4spU6bU6fhkkYr1eO+9Tf7LXy71srLyHbanYl2qo7okn3Sph3vd6gJ86jF8p9d4G8rdy8zsyFqlK/gG2DNivXO4LSZmtgvwBnCru39UyxgkBRx1VEuOOio9/sITSVextFl8ZmYTgJeAbRMsu/s/ohw3HehpZt0JksQ5wHmxBGVmWcCrwDNexa0paVxee209HTs2pX//qP0qRCROYmlNbEYwFtRxwGnh69RoB7l7KTASeBuYC4x399lmNiqcUAkz629my4EzgUfNbHZ4+FnA0cCFZjYrfB20k3WTNPDRR5s555zFHHPMfF57Tf0bRBIlliuLJ9x9WuQGMzsiljd394nAxErbbo9Ynk5we6rycc8Bz8VyDklfK1YY1167kMLCoBPG6acv4sEHO3P11bslODKRxieWK4uqpk3VVKoSdx980JTVq7d3rXWHli3VtVYkEaq9sjCzgcDhQIdKo8vuQtBLSiSuhg0r5oAD9uGKK76mrAxuvXV3Lr64faLDEmmUaroNlQW0DMtEjjC7kaBbrEjcjRjRni5dmvLqqxu4804Nby6SKNUmC3d/F3jXzMa4+9IGjElkB4MHt2bw4NaJDkOkUYulgTvbzB4DukWWd/fj4hWUyM548cW1tGvXhBNP3CXRoYikrViSxUvAI8ATQFl8wxHZOVOnbmL48KWUlzsPPbQnV1zRIdEhiaSlWJJFqbv/X9wjEdlJ8+YVcvrpiygpCbrWXnnlMhYvLuLee3/QG1tE6iiWfoj/MrMrzGwPM2tb8Yp7ZCJRfPBBARs27HixO3CgnvIWiYdYriyGh//eFLHNgb3qPxyR2F18cXvat2/CeectYfPmcu66aw/OOGPXRIclkpZimYO7e0MEIlIbQ4a04YMP9uGZZ9by61/vnuhwRNJWLHNw55jZb8IeUZhZTzOLOjaUSEM54IAc7ruvM2aW6FBE0lYsbRZ/B4oJnuaGYATZu+IWkUg9e+ihVYwcuYzS0pon+hKR6sXSZrG3u59tZucCuPsW059wkiLeemsD1123nPJymD+/kHHjurPrrrH82otIpFiuLIrNrDlBozZmtjdQVPMhIok3d+5Wzj57MeXhZLyTJm3i5JPzK2ZhFJGdEEuy+C3wFrCnmT0PTAZ+FdeoROpBaSm0abP9KiIjA0aN6qi2DZFaiJos3H0ScAZwIfAi0M/dp8Y3LJG669OnOZ980ovDDw+evfjjHztpSBCRWorp5q27f08wH7ZISsnNbcrkyT159tm1XHppu0SHI5KyNJOMpL1mzTL4xS/aV3v7qbzc+frr4gaOSiS1KFlIo3f33Svp02cOb7yxIdGhiCStmJKFmR1pZheFyx3MTE91S1r417/Wc/vt37JxYzmnnbaQu+/+Vr2lRKoQyxPcvwX+F7gl3NQUeC6eQYk0hG++KeaCC5ZsW3eHBx9czXfflVZ/kEgjFcuVxenAEGAzgLuvYMdpVkVSUseOTbnjjo5khjPKZ2bCSy91Z/fdmyY2MJEkFNNDeR5cl1c8lKcxoCUtmBnXXrsb77zTk3btMrn//s4MGqS/g0SqEkvX2fFm9ijQxsx+AVwMPB7fsEQaznHHtWLOnN506KBhQESqE8tDefcBLwOvAL2A2939r/EOTKQh7bZb02q71paVOX/840o2bdKswtJ4xdLAfT0wx91vcvcbwye6Y2Jmg80sz8zyzezmKvYfbWYzzazUzIZV2jfczBaEr+GVjxVpKL/97bfccssKDj00j/nzCxMdjkhCxNJm0Qp4x8zeN7ORZpYbyxubWSYwGjgZ6A2ca2a9KxX7mmAYkRcqHduWYEyqQ4EBwG/NTFOgSYP7xz/WcffdKwGYO7eQAQPyePfdTQmOSqThxXIb6g533w+4EtgDeNfM/h3Dew8A8t19kbsXA2OBoZXee4m7fwGUVzr2JGCSu69193XAJGBwDOcUqTfuzl/+snqHbc2bGz16ZCcoIpHE2ZknuFcBK4Hvgd1iKN8JWBaxvjzcFou6HCtSL8yMN9/swfnnBxe1TZrAyy/vRadOWQmOTKThRe3+YWZXAGcBHYCXgF+4+5x4BxYLMxsBjADIzc1l6tSptX6vgoKCOh2fLNKlHpA8dbnkEmjTJousLKek5FNqE1Ky1KU+pEtd0qUe0DB1iaWv4J7Ate4+ayff+5vw2Aqdw22xHjuo0rFTKxdy98eAxwD69evngwYNqlwkZlOnTqUuxyeLdKkHJFddjj225v1lZU5mZvXzZCRTXeoqXeqSLvWAhqlLtbehzKxi4P97ga/NrG3kK4b3ng70NLPuZpYFnANMiDGut4ETzWzXsGH7xHCbSNIpLXVOOSWfUaO+pbxc40pJeqrpyuIF4FRgBsHT25F/NjmwV01v7O6lZjaS4Es+E3jK3Web2SjgU3efYGb9gVeBXYHTzOwOd9/P3dea2Z0ECQdglLuvrU0FReLt17/+hnfe2cQ772ziyy+3MmZMV1q0yEx0WCL1qtpk4e6nhv/WeoRZd58ITKy07faI5ekEt5iqOvYp4KnanlukIYwdu5Z77121bf3ll9fTqlUmTz3VNYFRidS/WB7KmxzLNpHGaPfdm9K+/fa/uTp2bMpdd+2RwIhE4qOmNotmYdtE+7DtoKK9ohvqxioCwKBBrZg+vRd9+jSjWTPjn//ci44d1bVW0k9NbRa/BK4FOhK0W1S0WWwEHo5zXCIpo1u3bKZN68XMmVvo31+DMkt6qqnN4i/AX8zsKg0cKFKzVq0yOeaY6oc337QJNm0qo1UrNXxLaor6nIW7/9XM9icY36lZxPZn4hmYSLooKXF+97sciovzmDBhb7p313AhknpinVb1r+HrWOAegpnzRCQG1123nJkzm/DVVxqIUFJXLGNDDQOOB1a6+0XAgUDruEYlkibGjl3L6NHbByNcs6aUUaNWEkw+KZI6YkkWW929HCgNn+pexY7DeIhINYYMacOZZ7bZtt6lSxYvvtit2omWRJJVLGNDfWpmbQimUp0BFAAfxjUqkTSRk5PBuHHdadHiQ15+OYcJE/Zit92aJjoskZ0WSwP3FeHiI2b2FrBLOAeFiMTAzBg+vJg//KE/u++uRCGpqdpkYWaH1LTP3WfGJySR9FRToli1qoRZs7Zy4om7VFtGJJFqurL4cw37HDiunmMRaZSKi8v56U8XMW3aZu65pxM33LCb2jQk6dT0UF6UEfxFpK7cncsvX8Z//7sZgJtu+oavvtrKo492ITt7ZyayFImvWJ6zyDGz35jZY+F6TzM7Nf6hiaS/WbO2MmbM9ztsW7ashIwMXVlIconlT5e/A8XA4eH6N8BdcYtIpBE5+OAcJk7sQevWwTAge++dzUsvdadpUyULSS6xJIu93f0eoATA3bew40RIIlIHJ520Cx9/3It+/YKutW3bxtKjXaRhxfJbWWxmzQkatTGzvYGiuEYl0sj06tWMTz7ppYZtSVqxXFn8FngL2NPMngcmA7+Ka1QijVBNiWLZsmJOP30h335b0oARiWxXY7Kw4Ld3HnAGcCHwItDP3afGPTIRAaCwsJwzzljEP/+5gX795vHRR5sTHZI0QjUmCw9GO5vo7t+7+xvu/rq7r2mg2EQaPXfnssu+5tNPtwCwYkUJxxwznxkztiQ4MmlsYrkNNdPM+sc9EhH5gcJC/8GtpxP7tbF7AAAVmElEQVRPbMXBBzdPUETSWMWSLA4FPjSzhWb2hZl9aWYaG0qkATRvnsHEiT341a9yAejVK5vnnuuu5zCkwcXSG+qkuEchItXKzDT+9KdOHHJIcw48MGfbMxkiDSmWUWeXNkQgIlKzs89uW+P+RYuK6N49S91vJS40+IxIGli0qIi+fedxzjmLKSgoS3Q4koaULERS3Natwai169eXMX78egYMyGPevMJEhyVpJq7JwswGm1memeWb2c1V7M82s3Hh/o/NrFu4vamZPR02ps81s1viGadIKrvppm+YNWvrtvW5cwuZOHFDAiOSdBS3ZGFmmcBo4GSgN3CumfWuVOwSYJ279wAeAP4Ubj8TyHb3PkBf4JcViUREdnTttR044IDtXWl/+tM2XHfdbgmMSNJRPK8sBgD57r7I3YuBscDQSmWGAk+Hyy8Dx4dPjTvQwsyaAM0JRr3dGMdYRVJWjx7N+PDDXlxwQVv23Tebv/+9qxq5pd7Fc3jLTsCyiPXlBM9sVFnG3UvNbAPQjiBxDAW+BXKA69x9bRxjFUlpOTkZPPNMV9atK6NVK3WtlfqXrGMhDwDKgI7ArsD7ZvZvd18UWcjMRgAjAHJzc5k6dWqtT1hQUFCn45NFutQDVJf69u67TfjuuwzOPLOYulx4JENd6kO61AMaqC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANQRzZYwGfhZR7ingrJrO17dvX6+LKVOm1On4ZJEu9XBXXerT/PlbvVWrzxxm+NCh+b52bUmt3yvRdakv6VIP97rVBfjUY/hOj2ebxXSgp5l1N7Ms4BxgQqUyE4Dh4fIw4D9h8F8DxwGYWQvgMILRb0VkJ23dWs6ZZy5m06ZyAF57bQOHHZZHcXF5giOTVBK3ZOHupcBIgquHucB4d59tZqPMbEhY7EmgnZnlA9cDFd1rRwMtzWw2QdL5u7trPCqRWpg7t5ClS4t32Hb11buRlaXHrCR2cW2zcPeJwMRK226PWC4k6CZb+biCqraLyM475JAcZs7cl7PPXsz06Vs466w2XHFF+0SHJSkmWRu4RaQede+ezfvv78M993zHNdfspq61stN0HSrSSGRnZ3DbbXuwyy7Vd639738LKjqViOxAyUJEABg/fh1HHTWf885bwsaNGoxQdqRkISIsWFDIpZcGsxGMHbuOQw6Zx2efaepW2U7JQqSRc3cuvnjptq61AMuXF9Okido1ZDslC5FGzsx44omu9OnTbNu2++/vTJ8+mudbtlNvKBGhV69mfPzxvtx443K+/baEyy9X11rZkZKFiADQvHkGo0d3obTUq+1au3VrOaWlDRyYJAXdhhKRHdTUVnH11cu45pocFi8uasCIJBkoWYhITMaNW8sTT3zPnDlNOOiguYwfvy7RIUkDUrIQkagWLy5ixIivt61v3FjObbetoKhIgxE2FkoWIhJVq1aZHHNMq23rWVnGuHHdyc7WV0hjoU9aRKJq374Jr722F3/5S2eaNnXuvbcTBx2Uk+iwpAGpN5SIxMTMuPrq3Wjbdh7nn9+h2nLu1femktSlKwsR2SmdO5dXmwy2bCnn8MPn88ILazUgYZpRshCRenPDDcv56KPNnH/+Es45ZzFr1+qhjHShZCEi9WLChPU88siabevjx6/nnnu+S2BEUp+ULESkXqxaVUp29vbbU/vsk81tt+2ewIikPilZiEi9uPTS9syYsS8HH9yczEx49tlutGhR/URLklrUG0pE6s1++zXno4968f77BQwY0KLacuoxlXp0ZSEi9SorK4Pjj9+l2v2ffbaFI46Yz9y5WxswKqkrJQsRaTCFheVccMESPvxwM4ccMo8HH1xFebm62KYCJQsRaTC33rqCOXMKASgsdK67bjkffLA5wVFJLJQsRKRBlJc7y5cX77DtoovaceSRLRMUkewMJQsRaRAZGcbYsd159tmutG6dSadOTbn//k6JDktipN5QItJgzIwLLmjHsce2YvnyEtq0qforqKwsaMfIzFSPqWQR1ysLMxtsZnlmlm9mN1exP9vMxoX7PzazbhH7DjCzD81stpl9aWbNKh8vIqmpU6csDj20+q6199+/imOOmc/8+YUNGJXUJG7JwswygdHAyUBv4Fwz612p2CXAOnfvATwA/Ck8tgnwHHCZu+8HDAJK4hWriCSPefMKue22FUybtpkDD5zLAw98t+1KQxInnlcWA4B8d1/k7sXAWGBopTJDgafD5ZeB4y14UudE4At3/xzA3b9397I4xioiSaCszLnooqUUFQXJobDQufPOlaxZowEJEy2eyaITsCxifXm4rcoy7l4KbADaAfsAbmZvm9lMM/tVHOMUkSRRUFBOu3Y7DhHy17/uSW5u0wRFJBWStYG7CXAk0B/YAkw2sxnuPjmykJmNAEYA5ObmMnXq1FqfsKCgoE7HJ4t0qQeoLskq3nW54Qbo06cpDz/cjAMOKKVjxy+Ix+n0mewkd4/LCxgIvB2xfgtwS6UybwMDw+UmwBrAgHOApyPK3QbcVNP5+vbt63UxZcqUOh2fLNKlHu6qS7JqqLp8802Rr1xZXOP+jRtLa/3++kwCwKcew3d6PG9DTQd6mll3M8sKE8CESmUmAMPD5WHAf8Lg3wb6mFlO2Nh9DDAnjrGKSJLp2DGr2ttP7s7Pf76U/fabwxtvbGjgyBqnuCULD9ogRhJ88c8Fxrv7bDMbZWZDwmJPAu3MLB+4Hrg5PHYdcD9BwpkFzHT3N+IVq4iklqefXsvkyZtYtqyEU09dyHnnLWbLlvJEh5XW4tpm4e4TgYmVtt0esVwInFnNsc8RdJ8VEdnmu+9KuP765TtsW7WqlObN9QBfPGm4DxFJKa1aZXLppe3ICL+9mjc3Hn20i+bHiDMlCxFJKTk5GdxzT2emT9+Xgw5qzqhRHdl77+xEh5X2krXrrIhIjQ45JIfp0/etscxLL60jJyeDn/ykdQNFlb50ZSEiKatJE6NJk6pvP61ZU8pll33Nqacu5IwzFrJsWXGV5SQ2ShYikpZ+9atvWLs2GCXo1Vc30K/fPLZuVY+p2lKyEJG0s2RJEc888/0O266/fjeaN9dXXm3pJyciaadbt2ymT9+XAQNyANhvv2Zcf31ugqNKbWrgFpG0dPDBOXzwQS8ef3wN++/fnKZNq27bWLeulJYtM6vdLwFdWYhI2srMNC67rEON83xfdtnXHHjgXP79740NGFnqUbIQkUZrypRNjB+/nrlzCznhhHx++tNFbNigqXOqomQhIo1SaSlcddWyHbYtWVJEy5b6WqyKfioi0igVF/ODecAffnhPMjPVdlEVJQsRaZRycuDJJ7vy8ce96N8/h+HD2zJwYPVtG42dkoWINGoDBrTgo4968fDDe1Zb5sUX13L22YtYtKioASNLLkoWItLoZWQYLVtmVrmvsLCcW25Zwfjx69l33zlcd91y1q4tbeAIE0/JQkSkBn/962qWLg3GlSopcUaPXq1kISIi27k7b7+94/MXV1zRnh49miUoosRRshARqYaZ8c47PXjuuW506ZJF69aZ3HbbHokOKyGULEREapCRYZx/flvy8nrzzjs9aNeu6lGS1q4t5YILFpOXV9jAETYMJQsRkRg0a5bBgAEtqt1/110ref75dey33xxGjlzG6tUlDRhd/ClZiIjU0cKFRTz88GoAyspg9OjVjBmzNsFR1S8lCxGROnrqqTWUlPi29S5dshg5skMCI6p/ShYiInV0110dGTeuO927ZwHw+993TLuJltKrNiIiCWBmnHXWrsyd25u//70r5567a7Vlr79+Oa+/vgF3r7ZMMlKyEBGpJ9nZGVx4YTsyMqoejHDatAIeeGAVp522kIED85g0aWPKJA0lCxGRBnLbbSu2LX/88RbuvHNlAqPZOXFNFmY22MzyzCzfzG6uYn+2mY0L939sZt0q7e9iZgVmdmM84xQRibevvtrKlCkFO2y76649MEuNIdHjlizMLBMYDZwM9AbONbPelYpdAqxz9x7AA8CfKu2/H3gzXjGKiDSU/fdvzqxZ+zJkSGsATjihFUcf3arKsuXlnnS3p+J5ZTEAyHf3Re5eDIwFhlYqMxR4Olx+GTjewjRrZv8DLAZmxzFGEZEGc+CBObz22t58/HEv/vznztWWe/LJ7znqqPm8807ytGnEM1l0AiLnLFwebquyjLuXAhuAdmbWEvhf4I44xicikhADBrSgT5/mVe4rKXF+//uVTJu2mZNOymfgwDxmz97awBH+UNWDnCTe74AH3L2gpvt5ZjYCGAGQm5vL1KlTa33CgoKCOh2fLNKlHqC6JKt0qUuy1uPNN5uyZMn2RDJz5mby8j5h9erqrzAapC7uHpcXMBB4O2L9FuCWSmXeBgaGy02ANYAB7wNLwtd6YC0wsqbz9e3b1+tiypQpdTo+WaRLPdxVl2SVLnVJ1npcfvlShxnbXpddtjTqMXWpC/Cpx/CdHs/bUNOBnmbW3cyygHOACZXKTACGh8vDgP+E8R/l7t3cvRvwIPB7d384jrGKiCSFv/2tC5980ovTTmtNZibceGNutWUnTtzAunUNMxFT3G5DuXupmY0kuHrIBJ5y99lmNoogk00AngSeNbN8gquHc+IVj4hIqujfvwUTJuzN0qVFdO2aXWWZlStLOOOMRTRtapx9dhaDBsU3pri2Wbj7RGBipW23RywXAmdGeY/fxSU4EZEkV12iAPjLX1ZRVOQUFTkN8aiGnuAWEUkxGzaU8be/BUOit2qVwdChxXE/p5KFiEiKycyEW27ZndzcJlx+eQdatoz/OZUsRERSTMuWmdx88+4sXrw/t966e4OcM1mfsxARkSiaN8+gedXP9tU7XVmIiEhUShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVOZJMr9rXZnZamBpHd6iPcHkS6kuXeoBqkuySpe6pEs9oG516eruHaIVSptkUVdm9qm790t0HHWVLvUA1SVZpUtd0qUe0DB10W0oERGJSslCRESiUrLY7rFEB1BP0qUeoLokq3SpS7rUAxqgLmqzEBGRqHRlISIiUTX6ZGFmg80sz8zyzezmRMcTCzNbYmZfmtksM/s03NbWzCaZ2YLw313D7WZmD4X1+8LMDklw7E+Z2Soz+ypi207HbmbDw/ILzGx4ktTjd2b2Tfi5zDKzUyL23RLWI8/MTorYnvDfPzPb08ymmNkcM5ttZteE21Pqc6mhHin3uZhZMzP7xMw+D+tyR7i9u5l9HMY1zsyywu3Z4Xp+uL9btDruNHdvtC8gE1gI7AVkAZ8DvRMdVwxxLwHaV9p2D3BzuHwz8Kdw+RTgTcCAw4CPExz70cAhwFe1jR1oCywK/901XN41CerxO+DGKsr2Dn+3soHu4e9cZrL8/gF7AIeEy62A+WHMKfW51FCPlPtcwp9ty3C5KfBx+LMeD5wTbn8EuDxcvgJ4JFw+BxhXUx1rE1Njv7IYAOS7+yJ3LwbGAkMTHFNtDQWeDpefBv4nYvszHvgIaGNmeyQiQAB3fw9YW2nzzsZ+EjDJ3de6+zpgEjA4/tFvV009qjMUGOvuRe6+GMgn+N1Lit8/d//W3WeGy5uAuUAnUuxzqaEe1UnazyX82RaEq03DlwPHAS+H2yt/JhWf1cvA8WZmVF/HndbYk0UnYFnE+nJq/uVKFg68Y2YzzGxEuC3X3b8Nl1cCueFyKtRxZ2NP5jqNDG/NPFVx24YUqkd4++Jggr9kU/ZzqVQPSMHPxcwyzWwWsIog8S4E1rt7aRVxbYs53L8BaEc91qWxJ4tUdaS7HwKcDFxpZkdH7vTg+jMlu7mlcuzA/wF7AwcB3wJ/Tmw4O8fMWgKvANe6+8bIfan0uVRRj5T8XNy9zN0PAjoTXA3sm8h4Gnuy+AbYM2K9c7gtqbn7N+G/q4BXCX6Rvqu4vRT+uyosngp13NnYk7JO7v5d+B+8HHic7Zf7SV8PM2tK8AX7vLv/I9yccp9LVfVI5c8FwN3XA1OAgQS3/JpUEde2mMP9rYHvqce6NPZkMR3oGfYwyCJoGJqQ4JhqZGYtzKxVxTJwIvAVQdwVvU+GA6+FyxOAn4c9WA4DNkTcWkgWOxv728CJZrZreEvhxHBbQlVqCzqd4HOBoB7nhD1WugM9gU9Ikt+/8N72k8Bcd78/YldKfS7V1SMVPxcz62BmbcLl5sAJBG0wU4BhYbHKn0nFZzUM+E94NVhdHXdeQ7bwJ+OLoGfHfIL7gbcmOp4Y4t2LoHfD58DsipgJ7k9OBhYA/wba+vZeFaPD+n0J9Etw/C8S3AooIbh/ekltYgcuJmisywcuSpJ6PBvG+UX4n3SPiPK3hvXIA05Opt8/4EiCW0xfALPC1ymp9rnUUI+U+1yAA4DPwpi/Am4Pt+9F8GWfD7wEZIfbm4Xr+eH+vaLVcWdfeoJbRESiauy3oUREJAZKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoW0qiZWRszuyJivaOZvVzTMfV47m5mdl5DnEukrpQspLFrQzBiJwDuvsLdh9VQvj51A5QsJCUoWUhj90dg73Ceg3vDv/a/AjCzC83snxbM5bDEzEaa2fVm9pmZfWRmbcNye5vZW+HAju+b2Q/G8DGzY2z7fAqfhU/h/xE4Ktx2XThw3L1mNj0c9O6X4bGDzOw9M3sjnJPgETPLCMuPMbOvLJjf5LoG/LlJI9MkehGRtHYzsL8HA7ZVjFYaaX+C0UubETwd+7/ufrCZPQD8HHiQYP7jy9x9gZkdCvyNYCjpSDcCV7r7tHCgu8Lw3De6+6nhuUcQDJ3R38yygWlm9k54/ACCuQmWAm8BZwCLgU7uvn94fJv6+IGIVEXJQqRmUzyYG2GTmW0A/hVu/xI4IPziPxx4KRiaCAgmmqlsGnC/mT0P/MPdl0eUr3Bi+J4Vt8FaE4zlUwx84u6LAMzsRYKhLSYDe5nZX4E3gHcqv6FIfVGyEKlZUcRyecR6OcH/nwyCOQYOqulN3P2PZvYGwZhD06zq6S0NuMrddxh8z8wG8cPhwd3d15nZgQSTDl0GnEUwNpNIvVObhTR2mwim4KwVD+ZLWGxmZ8K2+akPrFzOzPZ29y/d/U8Eo5ruW8W53wYuD4fZxsz2CUcWBhgQjoKaAZwN/NfM2gMZ7v4K8BuCaV5F4kLJQho1d/+e4C/9r8zs3lq+zfnAJWZWMRJwVVNwXhue4wuCkWrfJBhRtMzMPg8bp58A5gAzw0b2R9l+9T8deJhgmOrFBPOYdAKmWjCb2nPALbWMXyQqjTorkuTC21DbGsJFEkFXFiIiEpWuLEREJCpdWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiIS1f8Dpeb/iMaZe4MAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8FdX5x/HPk4Sw70tEQAFBKbijuNQFtSpuYBUtaF1aK7WKlSq2YC0qtta1Wpe61r2KQq3FHyhuRMG6gQLKHtkFZRGFsIUkz++PmeAlJrmXJDd3+75fr/ti5syZO8/JDffJzDlzxtwdERGRqmQlOgAREUl+ShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShaQlM+trZitqsP9DZvan2oxJJJUpWUjSMrMlZrbFzArN7Csze9LMmsThOBeb2dTIMne/zN1vjsOxIttU9ro/xn3zzexXtR2TSCyULCTZneHuTYADgYOAkQmOpzac4e5NIl5Da+NNzSynNt5HpCJKFpIS3P0rYBJB0gDAzOqb2Z1mtszMvg4vHTWsaH8zG2FmX5jZRjObY2Y/Dct/BDwEHBH+lf9tWP6kmf05XJ5rZqdHvFeOma0xs4PD9cPN7H9m9q2ZzTSzvtVpY9kZTtim9Wa22MxOCbf9BTgauD/ybMTM3MyuMLOFwMKw7Egz+9jMvgv/PTLiGPlm9lcz+8jMNpjZf82sVbhtgpldWS6mWWU/K8lsShaSEsysI3AKUBBRfCuwN0EC6QZ0AEZV8hZfEHzZNgduAp41s/buPhe4DHg//Cu/RQX7Pg8Mjlg/GVjr7p+YWQdgAvBnoBUwHPi3mbWtXks5DJgPtAFuB/5pZubufwSmAEMrOBs5M9yvZ/jFPwG4F2gN/A2YYGatI+pfCPwSaA8Uh3UBngJ+XlbJzA4g+JlOqGZbJI0oWUiye9nMNgLLgdXADQBmZsAQ4Hfu/o27bwRuAQZV9CbuPtbdV7p7qbu/QPBXeJ8YY3gO6G9mjcL18wgSCARfrhPdfWL43m8A04BTo7Tp24jXpRHblrr7o+5eQvDl3R7IixLfX8OfwRbgNGChuz/j7sXu/jwwDzgjov4z7v65u28C/gSca2bZwHhgbzPrHta7AHjB3YuiHF8ygJKFJLsz3b0p0BfoQfAXN0BboBEwvexLF3gtLP8BM7vQzGZE1N034r2q5O4FwFzgjDBh9CdIIAB7AudEfvkDRxF8yVfVphYRr0cjtn0VcdzN4WK0Tv3lEcu7A0vLbV9KcIZQUf2lQD2gjbtvBV4Afm5mWQRnU89EObZkCHWISUpw93fM7EngToLLLmuBLUAvd/+yqn3NbE/gUeAEgstNJWY2A7Cyt48hhLJLUVnAnDCBQPDF+4y7X1rpnrWnsjgjy1cSJLBIexAk0jKdym3bTvDzhOBs5hlgKrDZ3d+vdrSSVnRmIankHuBEMzvA3UsJEsDdZtYOwMw6mNnJFezXmOALdU1Y7xcEZxZlvgY6mlluFcceA5wE/IbvzyoAniU44zjZzLLNrEF4j0fHaraxKl8DXaPUmUhwKem8sCP+Z0BP4P8i6vzczHqGZ0mjgXHhZS/C5FAK3IXOKiSCkoWkDHdfAzzN953YfyDo8P7AzDYAbwL7VLDfHIIvv/cJvnD3A96LqPI2MBv4yszWlt8/fI9V4f5HElyqKStfDgwAriNIRsuBa6n6/9Yr5e6z+E+Uppf5OzAwHCl1b0UV3H0dcDpwDbAO+D1wurtHtusZ4EmCS14NgN+We5unCX5Gz8YYl2QA08OPRDKHmeUDz7r7Y1XUuRAY4u5H1VlgkvR0ZiEiO4SXpi4HHkl0LJJclCxEBICwv2cNwaW656JUlwyjy1AiIhKVzixERCQqJQsREYkqbW7Ka9OmjXfu3Lna+2/atInGjRvXXkAJki7tALUlWaVLW9KlHVCztkyfPn2tu0edyyxtkkXnzp2ZNm1atffPz8+nb9++tRdQgqRLO0BtSVbp0pZ0aQfUrC1mVn56mArpMpSIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiISVdrclFddX3+9nXvvXc3y5fXZf/9iWrXK+B+JiMgPZPw344QJ33HLLV8D9fnww/m8++7e5OXVS3RYIiJJJeMvQ/3yl2346193B2DBgm2ceeYitm4tTXBUIiLJJeOTxZo12znmmCb07l0MwAcfbOKaa1YkOCoRkeSS8cmiefNsbrxxFdOnB1fk9tmnPldd1S7BUYmIJJeMTxa5uVm8+GIXOnUq4eSTm/HBB/uw994NEh2WiEhSyfgOboAWLXK4++7NDBhwCDk5luhwRESSTsafWZRp3dqVKEREKqFkEYPSUqeoSCOkRCRzKVlEsWlTCeeeu5hLL12Guyc6HBGRhFCfRRVWrCiif/8v+PTTLQD06tWA3/9+twRHJSJS93RmUYWf/3zJjkQBMGLESv7v/75LYEQiIomhZFGFhx/egxYtsnes77tvA/bbT8NqRSTzxDVZmFk/M5tvZgVmNqKC7ceY2SdmVmxmA8tt28PMXjezuWY2x8w6xzPWiuyzTwPGju1Cdjb079+c997bhz33rF/XYYiIJFzc+izMLBt4ADgRWAF8bGbj3X1ORLVlwMXA8Are4mngL+7+hpk1ARIyHOknP2nGlCl706dPY7KzNbRWRDJTPDu4+wAF7r4IwMzGAAOAHcnC3ZeE23ZKBGbWE8hx9zfCeoVxjDOqI45oksjDi4gkXDwvQ3UAlkesrwjLYrE38K2ZvWRmn5rZHeGZStLRcFoRyQTJOnQ2BzgaOIjgUtULBJer/hlZycyGAEMA8vLyyM/Pr/YBCwsLd3n/wkK4+eZGnHJKEX37Flf72LWpOu1IVmpLckqXtqRLO6CO2uLucXkBRwCTItZHAiMrqfskMDBi/XDgnYj1C4AHqjpe7969vSYmT568S/WXLNnqvXrNdpju9et/4u+/X1ij49eWXW1HMlNbklO6tCVd2uFes7YA0zyG7/R4Xob6GOhuZl3MLBcYBIzfhX1bmFnbcP14Ivo6Em3r1lKOPnoBs2dvBWDbNqd//y9YtGhbgiMTEYmPuCULdy8GhgKTgLnAi+4+28xGm1l/ADM71MxWAOcAD5vZ7HDfEoIRUm+Z2WeAAY/GK9Zd1aBBFqNH775TWZcuuTRurNtWRCQ9xbXPwt0nAhPLlY2KWP4Y6FjJvm8A+8czvpq4+OLWLFy4lVtu+Zqzz27B0093plEjJQsRSU/J2sGdEm6+eXd69WrIoEEtycrSPRgikr6ULGogK8s477xWiQ5DRCTudN1ERESiUrKIk2++KaZfvwLefz+hN5+LiNQKJYs4KCjYyuGHz2fSpA0MGLBIQ2pFJOUpWdSyNWu2c/jh81m4cFu4XsxppxWwfn1y3OEtIlIdSha1rG3belx2Wdudytq3r6fRUiKS0pQs4mD06PYMGtQSgPPPb8lrr3WjefOknAdRRCQmGjobB1lZxhNP7MkxxzTh179uo7MKEUl5ShZx0qBBFr/5TdvoFUVEUoAuQyWI6zkYIpJClCwSYNWq7Rx99ALdgyEiKUPJoo7NnbuFI46Yz3vvbeKMM75gwYKtiQ5JRCQqJYs6tHr1do46agFLlxYBsG5dCf36FfD119sTHJmISNWULOpQu3b1GDp0507vHj0a6DkYIpL09C1Vx268sT2/+EVrAH71q9aMH78XTZroHgwRSW4aOlvHzIyHH96DE05oynnntcRM92CISPJTskiAevWM88/XczBEJHXoMlQS2r5d92CISHJRskgyS5du44AD5vLSS+sTHYqIyA5KFknk88+3cOSRC5g7dyuDBy8hP39jokMSEQGULJLGxo0lHH/8QlauDO65KCpy+vf/grlztyQ4MhERJYuk0bRpNrff3mGnslNPbU7XrvUTFJGIyPeULJLIxRe35rbbdgdg6NC2PPdcZ+rX10ckIomnobNJ5tpr8zjooEb85CdNdQ+GiCQNJYskY2aceGKzRIchIrITXeNIMWvXFlNSovswRKRuxTVZmFk/M5tvZgVmNqKC7ceY2SdmVmxmAyvY3szMVpjZ/fGMM1UsXLiVPn3mMXTocj08SUTqVNyShZllAw8ApwA9gcFm1rNctWXAxcBzlbzNzcC78YoxlXzyyWZ+/OMFLF5cxEMPreXGG1clOiQRySDxPLPoAxS4+yJ3LwLGAAMiK7j7EnefBZSW39nMegN5wOtxjDEllJQ4F1ywhDVrineUjR79Fa+88m0CoxKRTBLPZNEBWB6xviIsi8rMsoC7gOFxiCvlZGcbY8d2oWXL76cy/+UvW3Pqqc0TGJWIZJJkHQ11OTDR3VdUNXzUzIYAQwDy8vLIz8+v9gELCwtrtH9d+POfs7nmmkacfnoR55+/mClTFv+gTiq0I1ZqS3JKl7akSzugjtri7nF5AUcAkyLWRwIjK6n7JDAwYv1fBP0ZS4C1wAbg1qqO17t3b6+JyZMn12j/uvLFF1u9tLS00u2p0o5YqC3JKV3aki7tcK9ZW4BpHsN3ejzPLD4GuptZF+BLYBBwXiw7uvv5ZctmdjFwiLv/YDRVJtL0HyKSCHHrs3D3YmAoMAmYC7zo7rPNbLSZ9Qcws0PNbAVwDvCwmc2OVzyZYNGibSxcqFtnRKT2xbXPwt0nAhPLlY2KWP4Y6BjlPZ4kuEwlVZg9ewsnnljA5s2NOProrfTo0SDRIYlIGtGfoWlg2rRNHHvsAlat2s5332Xxk58sZMmSbYkOS0TSiJJFGhg//jvWrSvZsf7ll9t56KG1CYxIRNKNkkUauOmm9gwZ0mbH+uWXt+GWW3ZPYEQikm6S9T4L2QVmxj/+0YkNG0rIzv6K++/vpOnNRaRWKVmkiexs49lnOzNlylIlChGpdboMlUays5UkRCQ+lCwyxJw5W7jwwiVs3fqDORtFRKLSZagMMHPmZk48sYA1a4r59tsSxo3rQm6u/k4QkdjpGyPNzZixmeOOW7hjevNXXvmO885bQnGxHp4kIrFTskhzu+9ej912q7dTWdu2OWTpkxeRXaCvjDTXrl093nqrO926BRMQDhvWjn/8oxNZWeoMF5HYqc8iA7RvX4+33+7OmDHrGT68nYbWisguU7LIEJ065XLttXmJDkNEUpQuQwkAX35ZVPbgKRGRH1CyEGbO3Mz++89lxIiVShgiUiEliww3c+Zmjj9+Id98U8Ltt3+thCEiFVKyyGDFxc455yzmm2++n9789tu/ZsKEDQmMSkSSkZJFBsvJMcaM6ULLltk7yq6+uh2nndYsgVGJSDJSsshwBx/ciDff7E7LltlcfXU77ryzg4bWisgPaOiscPDBjZg580d07FhPiUJEKqRkIUBwH4aISGV0GUqimjFjMzffvEqjpEQymM4spEozZmzmhBOCobWFhaXceuvuulQlkoF0ZiGVikwUEAyrHT78S51hiGQgJQupVGkplM8LjRpl6cxCJAMpWUilIofVAgwf3o7Ro9snOCoRSQT1WUiVDj64EW+/3Z2xY9fz5z+rv0IkUylZSFQHHtiIAw9slOgwRCSB4noZysz6mdl8MyswsxEVbD/GzD4xs2IzGxhRfqCZvW9ms81slpn9LJ5xSs18/vkWtm0rTXQYIhJHUZOFmZ1hZrucVMwsG3gAOAXoCQw2s57lqi0DLgaeK1e+GbjQ3XsB/YB7zKzFrsYg8Tdt2iZ+/OP5nHnmIrZsUcIQSVexJIGfAQvN7HYz67EL790HKHD3Re5eBIwBBkRWcPcl7j4LKC1XvsDdF4bLK4HVQNtdOLbUgZkzN3PSSQVs2FDKa69t4PTTv2DTppLoO4pIyrFYxsybWTNgMPALwIEngOfdfWMV+wwE+rn7r8L1C4DD3H1oBXWfBP7P3cdVsK0P8BTQy91Ly20bAgwByMvL6z1mzJiobalMYWEhTZo0qfb+yaKu2uEOw4Y1Ytasnbu9fv/7LZxyyvZaOUa6fCagtiSjdGkH1Kwtxx133HR3PyRqRXeP6QW0BoYBS4BXgYXAlVXUHwg8FrF+AXB/JXWfBAZWUN4emA8cHi2+3r17e01Mnjy5Rvsni7psx9dfF/l++812mO4w3UeOXOGlpaW19v7p8pm4qy3JKF3a4V6ztgDTPIYcEHU0lJn1Jzij6AY8DfRx99Vm1giYA9xXya5fAp0i1juGZTEJz2YmAH909w9i3U/qTrt29Zg8eW9OOmkhxx7blL/8RUNrRdJVLENnzwbudvd3IwvdfbOZXVLFfh8D3c2sC0GSGAScF0tQZpYL/Ad42iu4NCXJo3XrHN55Z28aN9ad3SLpLGoHt7tfBCwws/7hyKjdIra9VcV+xcBQYBIwF3jR3Web2ejwbAUzO9TMVgDnAA+b2exw93OBY4CLzWxG+Dqwuo2U+GrSJLvKRFFUpFFSIqkulqGzlwAfAWcR9EN8YGa/jOXN3X2iu+/t7nu5+1/CslHuPj5c/tjdO7p7Y3dv7cFQWdz9WXev5+4HRrxmVLeRkjhTpxbSvfscpk3blOhQRKQGYrkM9XvgIHdfB2BmrYH/AY/HMzBJfZ9+upnTTguG1h5//EJeeWUvjj22aaLDEpFqiOU+i3VA5BDZjWGZSKVWrdrOyScHiQJg48ZS+vUrYOnSbQmOTESqI5ZkUQB8aGY3mtkNwAcEfRhXm9nV8Q1PUtVuu+Xwq1+13qns+ut3Y8896ycoIhGpiVguQ30Rvsr8N/xX1xOkUmbGLbd0oHnzbEaMWMnw4e247rrdou8oIkkparJw95sAzKxJuF4Y76AkffzhD7tx2GGNOfbYJhpaK5LCYhkNta+ZfQrMBmab2XQz6xX/0CRd9O3bVIlCJMXF0mfxCHC1u+/p7nsC1wCPxjcsyRSTJm3gwguX6F4MkSQXS59FY3efXLbi7vlm1jiOMUmG+OijTZx99iI2bSpl1artvPRSV5o2zU50WCJSgVjOLBaZ2Z/MrHP4uh5YFO/AJL3Nn7+V0077gk2bgjOKN9/cyAknLGT79uizIItI3YslWfyS4FkSLwH/BtqEZSLVVr++0arVzmcRF1zQinr11LchkoyqvAwVPu3uj+7+2zqKRzJE5871mTp1b0499QumTdvMddflceWV7RIdlohUospk4e4lZnZUXQUjmaVt23pMntydxx9fx5VX6kGIIskslg7uT81sPDAW2DEbnLu/FLeoJGM0aZLNb3+rMwqRZBdLsmhAMBfU8RFlTtCHIRJXL764nlWrtnPVVUooIokUS7J4zN3fiywwsx/HKR6RHWbNyubaa5dQVOQsWVLEXXd1ICtLHeAiiRDLaKiKHpta2aNURWrF/Plbuf76RhQVBUNp77lnNeefv6Ts2ewiUscqPbMwsyOAI4G25WaXbQbozimJqy+/3E5x8c5lp57aTNOGiCRIVWcWuUATgoTSNOK1geCJeSJxc/zxTbn33k20b18PgNGj23PBBa2j7CUi8VLpmYW7vwO8Y2ZPuvvSOoxJBIBu3Ur54IN9eOqpdVx/vaY3F0mkWDq465vZI0DnyPrufnyle4jUkj32yOVPf2qf6DBEMl4syWIs8BDwGFAS33BEds2TT67j229LGDZMQ2tF4imWZFHs7g/GPRKRXfTmmxu49NKlFBfDokXbuPvujmRnqwNcJB5iGTr7ipldbmbtzaxV2SvukYlUYdaszZx11qIdI6buu28NgwcvTmxQImksljOLi8J/r40oc6Br7YcjEps1a4qJvOXCDM47T3/DiMRL1DMLd+9SwUuJQhLqhBOaMXXq3nToEAytve22Dpx5ZosERyWSvqKeWZhZI+BqYA93H2Jm3YF93P3/4h6dSBUOOKARH320D08//Q3Dh6uDWySeYumzeAIoIribG+BL4M9xi0hkF+y+ey4jRuxW6Z3d7q4pQkRqQSzJYi93vx3YDuDum4GYhpyYWT8zm29mBWY2ooLtx5jZJ2ZWbGYDy227yMwWhq+Lyu8rEot77lnNeectYcuW0kSHIpLSYungLjKzhgSd2pjZXsC2aDuFT9l7ADgRWAF8bGbj3X1ORLVlwMXA8HL7tgJuAA4Jjzs93Hd9DPGKAPDKK99yzTVf4g6LF2/j5Zf3Yrfd6iU6LJGUFMuZxQ3Aa0AnM/sX8Bbw+xj26wMUuPsidy8CxgADIiu4+xJ3nwWU/7PvZOANd/8mTBBvAP1iOKYIADNnbmbw4CU7Rkx9+OFmTjxxIaWluiQlUh1Rzyzc/Q0z+wQ4nODy01XuvjaG9+4ALI9YXwEcFmNcFe3boXwlMxsCDAHIy8sjPz8/xrf/ocLCwhrtnyzSpR1Qs7asXGm0adOITZuCCZKzspwLLljHu+++U4sRxk6fS/JJl3ZA3bQllstQuPs6YEJcI6kGd38EeATgkEMO8b59+1b7vfLz86nJ/skiXdoBNW/LaaeVcO65i3j99Y3ce+8eXHFF4p7zrc8l+aRLO6Bu2hJTsqimL4FOEesdw7JY9+1bbt/8WolKMkbz5tlMmNCN//znW845p2WiwxFJabH0WVTXx0B3M+tiZrnAIGB8jPtOAk4ys5Zm1hI4KSwT2SU5OVZloigtdVasKKrDiERSU0zJwsyOMrNfhMttzaxLtH3cvRgYSvAlPxd40d1nm9loM+sfvtehZrYCOAd42Mxmh/t+A9xMkHA+BkaHZSK1avToVey331xef31DokMRSWqx3MFdNoR1H4Ib9OoBzwI/jravu08EJpYrGxWx/DHBJaaK9n0ceDzaMUSq66WX1nPTTV8BcMopBdxxRwd+97t2enSrSAViObP4KdAf2ATg7isJHq8qkrKWLt3GhRd+/wDI0lK49davWbu2uIq9RDJXLMmiyIP5Espuymsc35BE4m+PPXK54Yb2lJ1E5OTAv//dlbZtddOeSEViSRYvmtnDQAszuxR4E3g0vmGJxJeZce21eUycuBfNm2dz//2dOProJokOSyRpxXJT3p1mdiKwgaDfYpS7vxH3yETqQL9+zZk/vyd5eTqjEKlK1DMLM7samOPu17r7cCUKSTdVJYriYufmm1excaMePy+ZLZbLUE2B181sipkNNbO8eAclkixGjvySUaNW0afPPObN25rocEQSJpYn5d3k7r2AK4D2wDtm9mbcIxNJsLFj13PnnasBmDdvG4ceOo/JkzcmOCqRxNiVO7hXA18B6wA9lkzSmrtz331rdipr3jybXr0aJCgikcSKpc/icjPLJ5iavDVwqbvvH+/ARBLJzJg0qRsXXdQKgHr1jHHjutKunTrCJTPFMpFgJ2CYu8+IdzAiyaRhwyyeeGJPDj+8MdnZxuGH6xYjyVyVJgsza+buG4A7wvVWkds1V5NkAjPjssuqntp869ZSGjSI55ycIolX1ZnFc8DpwHSCu7cjJ8xxoGsc4xJJCdu3OyefXEDPng34+987kpurpCHpqdJk4e6nh/9GnWFWJFNde+0K3n23kHffLWTWrC2MHduF3XfPTXRYIrUulg7ut2IpE8k0zz67jr///fsRU//73yauuSbW53uJpJaq+iwaAI2ANuEDiMouQzWjgudhi2Sa/fZrSJcuuSxeHDw8aY89crn33gpn3BdJeVWdWfyaoL+iR/hv2eu/wP3xD00kuR1wQCOmTevBSSc1pUED4z//0ay1kr6q6rP4O/B3M7vS3e+rw5hEUkarVjlMnNiNGTO2cPDBjRIdjkjcxDLr7H1mti/QE2gQUf50PAMTSRXZ2Ubv3pUnitWrt7NkiUZJSWqL9bGqfQmSxUTgFGAqoGQhEkVRUSlnn72I6dMb06rVt/Tv3yLRIYlUSyx/7gwETgC+cvdfAAcAzeMalUgacHeuvHIFU6duYssW48wzF/GXv6wiePCkSGqJJVlscfdSoNjMmhFMKNgpvmGJpL78/EIeeWTtjnV3ePvtQkr0aAxJQbEki2lm1oLgUarTgU+A9+MalUga6Nu3Cfff34ns7GC9a9dcXnyxCzk5VvWOIkkolg7uy8PFh8zsNaCZu8+Kb1giqc/MuOKKtvTq1YDBg+fz3//uRevWsczdKZJ8qrop7+Cqtrn7J/EJSSS99O3blGeeKWTffRsmOhSRaqvqz5y7qtjmwPG1HItI2sqp4n/aypVF3HvvGkaPbq+JCCVpVXVT3nF1GYhIJtq6tZSf/nQRH320mf/9bxNjx3YhL093gUvyiWUiwUZmdr2ZPRKudzez0+Mfmkh6c3d+/etlfPTRZgCmTCnkkEPmsWxZUYIjE/mhWM55nwCKgCPD9S+BP8fy5mbWz8zmm1mBmY2oYHt9M3sh3P6hmXUOy+uZ2VNm9pmZzTWzkTG1RiSFrF1bzJQphTuVHXBAQzp21JmFJJ9YksVe7n47sB3A3Tez84OQKmRm2cADBHd89wQGm1nPctUuAda7ezfgbuC2sPwcoL677wf0Bn5dlkhE0kXbtvX46KMeHH98UwC6d6/Ps892JitLQ2sl+cSSLIrMrCFBpzZmthewLYb9+gAF7r7I3YuAMcCAcnUGAE+Fy+OAE8zMwmM1NrMcoCHBmc2GGI4pklLatMlh0qRujBiRx8svd6VFCw2tleQUy2/mDcBrQCcz+xfwY+DiGPbrACyPWF8BHFZZHXcvNrPvgNYEiWMAsIrgmRq/0zO/JV3l5Bh//WvVj4jRc74l0apMFuFf+fOAs4DDCS4/XeXua6varxb0AUqA3YGWwBQze9PdF5WLbwgwBCAvL4/8/PxqH7CwsLBG+yeLdGkHqC1lvvrK+O1vG3PJJds4+eTttRtYNaTL55Iu7YA6aou7V/kCPotWp5L9jgAmRayPBEaWqzMJOCJczgHWEiSkB4ALIuo9Dpxb1fF69+7tNTF58uQa7Z8s0qUd7mqLu/umTSV+0EFzHKY7TPehQ5f5tm0ltRvcLkqXzyVd2uFes7YA0zyG7/RYzms/MbNDq5GHPga6m1kXM8sFBgHjy9UZD1wULg8E3g6DX0Z405+ZNSY4q5lXjRhEUpa7M2TIUj79dMuOsvvvX8Pzz69PYFSSqWJJFocB75vZF2Y2KxzOGnVuKHcvBoYSnD3MBV5099lmNtrM+ofV/gm0NrMC4GqgbHjtA0ATM5tNkHSxTIN3AAAUAUlEQVSecM1HJRnGzDj55GY0aPD96KizzmrBhRe2SmBUkqli6eA+ubpv7u4TCR6YFFk2KmJ5K8Ew2fL7FVZULpJpLrigNT17NuTssxfRsKHxxBN7EnQlitStWGadXVoXgYhIxXr3bsT06T1Yv76YZs2yEx2OZCiNxRNJAa1b59CtW4NKt7/11gbmz99ahxFJplGyEElxBQVbOfvsxRx66DxefvnbRIcjaUrJQiSFbd5cyllnLeK770rYuDGYwXbUqJWJDkvSkJKFSAp75pl1fPbZzpef2rXTlCFS+5QsRFLYkCFtuO++jjsernTuuS244oq2iQ1K0pKShUgKMzOGDm3HO+/szXHHNeGxxzS0VuJD56siaeDII5vw9tt7V1lny5ZSGjbU34dSPfrNEckAY8eup0ePOXz44aZEhyIpSslCJM0tWLCVSy5ZyrJlRRx99ALuu2912QSdIjFTshBJY1u2lHLOOYvZuLEUgO3bneHDv6SgIJbnl4l8T8lCJI1lZ7Pjsa1l/va3jnTvXvnd4CIVUbIQSWO5uVncfXdHxo3rQrNmWQwa1JLLL2+T6LAkBWk0lEgGOPvslhxwQEPy8uppaK1Ui84sRDJEt24NaNq08llrR41ayfvvF9ZhRJJKlCxEhDFjvuHmm7/i6KMXcNttX1FaqtFSsjMlC5EMV1CwlSFDlgFQUgIjRqzkiiuWJzgqSTZKFiIZ7tVXN+wYWgtQv77x61+rE1x2pmQhkuGuvLId48d3pVWroD/jrrs6cuCBjRIclSQbjYYSEc44owUzZjTi8cfXaWitVEhnFiICQKdOudxwQ/tKh9YWFpYwbtz6Oo5KkoXOLEQkJlddtYLHH1/HCSc05KCDSmjevPJhuJJ+dGYhIlGNG7eexx9fB8Bbb9XjgAPmMm/e1ih7STpRshCRKm3bVspVV63YqaxhQ2OPPXITFJEkgpKFiFSpfv0sXn+9G/vv3xCAnBznuee60KiRvj4yifosRCSqXr0a8tFH+3DddSvZsmUZBx2kobWZRn8aiEhM6tfP4q67OnLuuUWV1pk9ewtr1xbXYVRSV+KaLMysn5nNN7MCMxtRwfb6ZvZCuP1DM+scsW1/M3vfzGab2Wdmpgn4RZLYpk0l/PSni9hvvzlMmPBdosORWha3ZGFm2cADwClAT2CwmfUsV+0SYL27dwPuBm4L980BngUuc/deQF9ge7xiFZGa+8MfVrJw4Ta++qqY00//gksvXaoJCdNIPM8s+gAF7r7I3YuAMcCAcnUGAE+Fy+OAEyy4I+gkYJa7zwRw93XuXhLHWEWkBqZOLeSBB9bsVJadbWRl6dkZ6SKeyaIDEDl15YqwrMI67l4MfAe0BvYG3MwmmdknZvb7OMYpIjV02GGNGTVqN7LD+/S6ds3lzjvL/3eXVJaso6FygKOAQ4HNwFtmNt3d34qsZGZDgCEAeXl55OfnV/uAhYWFNdo/WaRLO0BtSVaVteW446B9+yxuvbUhw4atZ9q0KXUf3C7IhM+kVrl7XF7AEcCkiPWRwMhydSYBR4TLOcBawIBBwFMR9f4EXFvV8Xr37u01MXny5BrtnyzSpR3uakuyitaW4uLSKrdPnbrRi4qqrlMXMukzqQowzWP4To/nZaiPge5m1sXMcsMEML5cnfHAReHyQODtMPhJwH5m1ijs7D4WmBPHWEWklmRnV95PMWvWZo47biFHHjmfOXO21GFUUlNxSxYe9EEMJfjinwu86O6zzWy0mfUPq/0TaG1mBcDVwIhw3/XA3wgSzgzgE3efEK9YRST+tm0r5YILlrJ9uzNt2mYOOmge//jHmug7SlKIa5+Fu08EJpYrGxWxvBU4p5J9nyUYPisiaeD2279m1qzvzyaKipwOHeolMCLZFbqDW0TqxGWXteGss1rsWB88uCUDBrSoYg9JJkoWIlIn2ratx7hxXXj++c707NmAe+/tlOiQZBcoWYhInTEzBg1qxWef/Yg2bSq+Cl5a6jz44Bq2bi2t4+ikKkoWIlLnqrqz+/7713D55cs5+OB5fPDBpjqMSqqiZCEiSeOLL7YxcuRKAObO3cqRR87nqafWJTgqASULEUki11+/ks2bv7/81KxZNied1CyBEUkZJQsRSRoPPtiJSy5pvWP9jjs60L69htcmAyULEUkaLVrk8Nhje/L669248MJWOyUOSSwlCxFJOiee2IynnupcaUf48uVFnH56AfPnb63bwDKYkoWIpBR354orljNhwgb2338uN9+8iqIiDbONNyULEUkp48Z9yyuvBI9tLSpyRo1axcsv6zGu8aZkISIpZeLEnRPDUUc1ZuBATRsSb0oWIpJSHn98T557rjNt2+aQnQ0PPriHHt9aB5QsRCSlmBmDB7di3ryejBnThX33bVhhPXdn7lw9M6O2KFmISEpq1SqHgQNbVrp97Nhv6dVrLldcsYz164vrMLL0pGQhImlnw4YShg1bgTv84x9r6dFjDm+8sSHRYaU0JQsRSTs33riKVau271hfv76ETp1yExhR6lOyEJG0069fM7p1q79j/dpr29GjR4MERpT6lCxEJO2cdFIzPvvsR9x0U3t69KjPH//YPtEhpTwlCxFJSw0aZDFqVHtmzepJo0YVf9WtXVvMMccs4K231J8RjZKFiKS1evUqvwfjT39ayZQphfzkJwWcffYilizZVoeRpRYlCxHJSAUFWTzyyNod6y+99C0vvLA+gRElNyULEclI06fnUBox/2C3bvUZNqxd4gJKckoWIpKRfvazIj74YB8OPbQRAPfc05H69fWVWBn9ZEQkYx12WGM++GAfXn11L047rXml9f7616+YMyezpw5RshCRjJaVZfTrV3mieOedjVx33Ur2338ul1++jNWrt1daN50pWYiIVKK01Ln66hUAlJTAgw+u5ec/X5LYoBIkrsnCzPqZ2XwzKzCzERVsr29mL4TbPzSzzuW272FmhWY2PJ5xiohU5NVXN/DJJztffrrxxsy8wS9uycLMsoEHgFOAnsBgM+tZrtolwHp37wbcDdxWbvvfgFfjFaOISFVOPbUZ//53F/baK5g65JxzWnDkkU0SHFVixPPMog9Q4O6L3L0IGAMMKFdnAPBUuDwOOMHMDMDMzgQWA7PjGKOISKXMjLPOasmcOT/i7rs7cuutHSqtO2HCd+Tnb6zD6OpWPJNFB2B5xPqKsKzCOu5eDHwHtDazJsAfgJviGJ+ISExyc7MYNqwdXbvWr3D71q2l/OY3yzjuuIX061fAp59uruMI4y8n0QFU4kbgbncvDE80KmRmQ4AhAHl5eeTn51f7gIWFhTXaP1mkSztAbUlW6dKW2mzHiy/msnx5MKvtpEkbmDz5O8aO3UizZrXy9lHVyWfi7nF5AUcAkyLWRwIjy9WZBBwRLucAawEDpgBLwte3wDfA0KqO17t3b6+JyZMn12j/ZJEu7XBXW5JVurSlttqxeXOJt249w2H6jtfvfre8Vt47VjVpCzDNY/hOj+dlqI+B7mbWxcxygUHA+HJ1xgMXhcsDgbfD+I92987u3hm4B7jF3e+PY6wiItXSsGEWr7yyF8ccE3R8N22axciReQmOqvbFLVl40AcxlODsYS7worvPNrPRZtY/rPZPgj6KAuBq4AfDa0VEkt0RRzQhP787r766F/fc05G2betVWG/FiiKGDFmakrPbxrXPwt0nAhPLlY2KWN4KnBPlPW6MS3AiIrXIrOo7wSGYNuTRR9fxxBPr+MUvWnPddbvRuXPFnebJRndwi4jUgeXLi3jssXUAFBfDo4+u4403UmeorZKFiEgdePjhtRQV+Y71zp1zueiiVgmMaNcoWYiI1IEbb2zPU0/tueNu8D/+cTdycyv+Ci4u9grLE0nJQkSkDuTkGBde2Jp583ryr3915qKLWldYz9057rgFnHfeYmbOTJ6b+5QsRETqUE6Ocd55rSp9NviUKYVMnbqJ559fz4EHzuOUUwrYtq20wrp1SclCRCSJ3Hbb1zutZ2WRFE/wS3wEIiICwKZNJSxdWrRT2R/+kBw3+ClZiIgkicaNs5k160eMH9+VH/+4MUcc0Zijj654SvQtW0r5+99Xs2FDSZ3EpmQhIpJEsrKMM85owdSp+/Dqq92obDLVJ59cx7BhK+jU6TPGjMmNf1xxP4KIiFRL8+bZFZYXFzt33BH0bWzYUDed30oWIiIpZty49SxeHPRtNGmSxemnF0XZo+aULEREUsyJJzbjxhvb06ZNDr/6VRua1MGTXpUsRERSTOvWOdxwQ3uWLduXUaN2q5NjJuuT8kREJIqGDbNo2LBu/ubXmYWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiISlZKFiIhEZe7J92Dw6jCzNcDSGrxFG2BtLYWTSOnSDlBbklW6tCVd2gE1a8ue7t42WqW0SRY1ZWbT3P2QRMdRU+nSDlBbklW6tCVd2gF10xZdhhIRkaiULEREJColi+89kugAakm6tAPUlmSVLm1Jl3ZAHbRFfRYiIhKVzixERCSqjE8WZtbPzOabWYGZjUh0PLEwsyVm9pmZzTCzaWFZKzN7w8wWhv+2DMvNzO4N2zfLzA5OcOyPm9lqM/s8omyXYzezi8L6C83soiRpx41m9mX4ucwws1Mjto0M2zHfzE6OKE/475+ZdTKzyWY2x8xmm9lVYXlKfS5VtCPlPhcza2BmH5nZzLAtN4XlXczswzCuF8wsNyyvH64XhNs7R2vjLnP3jH0B2cAXQFcgF5gJ9Ex0XDHEvQRoU67sdmBEuDwCuC1cPhV4FTDgcODDBMd+DHAw8Hl1YwdaAYvCf1uGyy2ToB03AsMrqNsz/N2qD3QJf+eyk+X3D2gPHBwuNwUWhDGn1OdSRTtS7nMJf7ZNwuV6wIfhz/pFYFBY/hDwm3D5cuChcHkQ8EJVbaxOTJl+ZtEHKHD3Re5eBIwBBiQ4puoaADwVLj8FnBlR/rQHPgBamFn7RAQI4O7vAt+UK97V2E8G3nD3b9x9PfAG0C/+0X+vknZUZgAwxt23uftioIDgdy8pfv/cfZW7fxIubwTmAh1Isc+linZUJmk/l/BnWxiu1gtfDhwPjAvLy38mZZ/VOOAEMzMqb+Muy/Rk0QFYHrG+gqp/uZKFA6+b2XQzGxKW5bn7qnD5KyAvXE6FNu5q7MncpqHhpZnHyy7bkELtCC9fHETwl2zKfi7l2gEp+LmYWbaZzQBWEyTeL4Bv3b24grh2xBxu/w5oTS22JdOTRao6yt0PBk4BrjCzYyI3enD+mZLD3FI5duBBYC/gQGAVcFdiw9k1ZtYE+DcwzN03RG5Lpc+lgnak5Ofi7iXufiDQkeBsoEci48n0ZPEl0ClivWNYltTc/cvw39XAfwh+kb4uu7wU/rs6rJ4KbdzV2JOyTe7+dfgfvBR4lO9P95O+HWZWj+AL9l/u/lJYnHKfS0XtSOXPBcDdvwUmA0cQXPLLqSCuHTGH25sD66jFtmR6svgY6B6OMMgl6Bgan+CYqmRmjc2sadkycBLwOUHcZaNPLgL+Gy6PBy4MR7AcDnwXcWkhWexq7JOAk8ysZXhJ4aSwLKHK9QX9lOBzgaAdg8IRK12A7sBHJMnvX3ht+5/AXHf/W8SmlPpcKmtHKn4uZtbWzFqEyw2BEwn6YCYDA8Nq5T+Tss9qIPB2eDZYWRt3XV328Cfji2BkxwKC64F/THQ8McTblWB0w0xgdlnMBNcn3wIWAm8Crfz7URUPhO37DDgkwfE/T3ApYDvB9dNLqhM78EuCzroC4BdJ0o5nwjhnhf9J20fU/2PYjvnAKcn0+wccRXCJaRYwI3ydmmqfSxXtSLnPBdgf+DSM+XNgVFjeleDLvgAYC9QPyxuE6wXh9q7R2rirL93BLSIiUWX6ZSgREYmBkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShWQ0M2thZpdHrO9uZuOq2qcWj93ZzM6ri2OJ1JSShWS6FgQzdgLg7ivdfWAV9WtTZ0DJQlKCkoVkuluBvcLnHNwR/rX/OYCZXWxmL1vwLIclZjbUzK42s0/N7AMzaxXW28vMXgsndpxiZj+Yw8fMjrXvn6fwaXgX/q3A0WHZ78KJ4+4ws4/DSe9+He7b18zeNbMJ4TMJHjKzrLD+k2b2uQXPN/ldHf7cJMPkRK8iktZGAPt6MGFb2WylkfYlmL20AcHdsX9w94PM7G7gQuAegucfX+buC83sMOAfBFNJRxoOXOHu74UT3W0Njz3c3U8Pjz2EYOqMQ82sPvCemb0e7t+H4NkES4HXgLOAxUAHd9833L9FbfxARCqiZCFStckePBtho5l9B7wSln8G7B9+8R8JjA2mJgKCB82U9x7wNzP7F/CSu6+IqF/mpPA9yy6DNSeYy6cI+MjdFwGY2fMEU1u8BXQ1s/uACcDr5d9QpLYoWYhUbVvEcmnEeinB/58sgmcMHFjVm7j7rWY2gWDOofes4sdbGnClu+80+Z6Z9eWH04O7u683swMIHjp0GXAuwdxMIrVOfRaS6TYSPIKzWjx4XsJiMzsHdjyf+oDy9cxsL3f/zN1vI5jVtEcFx54E/CacZhsz2zucWRigTzgLahbwM2CqmbUBstz938D1BI95FYkLJQvJaO6+juAv/c/N7I5qvs35wCVmVjYTcEWP4BwWHmMWwUy1rxLMKFpiZjPDzunHgDnAJ2En+8N8f/b/MXA/wTTViwmeY9IByLfgaWrPAiOrGb9IVJp1ViTJhZehdnSEiySCzixERCQqnVmIiEhUOrMQEZGolCxERCQqJQsREYlKyUJERKJSshARkaiULEREJKr/B8LP7aFdpVM8AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -12435,7 +1452,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8nWWd///X52TfWpqkTfeF0rTpvlOp0ALl+62gIAoIsuiAUx3kO4ojX5dBhx+OqKPODP5U/OGIuxTEhTp0UKSEQukO6ZakpcUuaUvbnLZp1mY51++PE0JOluZkuXOfk7yfj0cfj5zrXOecT++0eee+r/u6LnPOISIiAhDwuwAREYkdCgUREWmhUBARkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgWRKJjZR81sm5lVmdlxM/sfM3uvmT1kZg1mVtn8Z5+Zfd/MRrV67XIzCzW/9p0/f/Lz7yPSGYWCSBfM7HPAfwKPAHnAeOCHwA3NXZ5yzmUB2cCNwEhge+tgAI455zJb/flA//0NRKKnUBC5ADMbCjwMfNo593vnXLVzrsE59yfn3AOt+za37wE+ApwC/smHkkV6RaEgcmHvAVKBP0T7AudcE/AscLlXRYl4RaEgcmE5QLlzrrGbrztG+HLSO0ab2dlWf27puxJF+k6i3wWIxLggkGtmid0MhjHA6VaPjznnxvZtaSJ9T2cKIhe2ETgPfDDaF5hZAPgA8IpXRYl4RWcKIhfgnKsws68CPzCzRuAvQAOwArgSqHmnr5klAlOAhwjfgfTv/V6wSC/pTEGkC8657wKfAx4kfFfREeA+4I/NXT5iZlVABbCG8CWnBc65Yz6UK9Irpk12RETkHTpTEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRZxN08hNzfXTZw40e8yeqS6upqMjAy/y4hbOn69p2PYO/F8/LZv317unBveVb+4C4WJEyeybds2v8vokcLCQpYvX+53GXFLx6/3dAx7J56Pn5kdiqafLh+JiEgLhYKIiLRQKIiISIu4G1PoSENDA2VlZdTV1fldygUNHTqUkpISv8vokdTUVMaOHUtSUpLfpYiIhwZEKJSVlZGVlcXEiRMxM7/L6VRlZSVZWVl+l9FtzjmCwSBlZWVMmjTJ73JExEMD4vJRXV0dOTk5MR0I8czMyMnJifkzMZG+5hxsPgc374GM9XAVy8hYD7fsgS3nws8PNAPiTAGIKhCcgy2V8J0jsDYItSFIC8B1OfD5cbAoC5QrHVPgymDTEIK7SmFNOdSFIASAUROC350K/wz5QC78YhokDYhfr8M8+6uY2RNmdtLMdnfyvJnZ98xsv5ntNLP5XtUC4W/wR0vgqiL4/SmoCYGDlm/wVUXh5xtCPXv/zMzMPq3XTxMnTqS8vNzvMkR849y7gVDTEgjvCgHVIXi2PNxvIJ0xeJlvPwNWXuD59xHepWoKsAp4zKtCBtM3uKmpye8SROLelkr4U/PPiwupDYX7ba3sn7r6g2eh4JxbT+TG5W3dAPzChW0CLjKzUV7U0p/fYOccDzzwADNnzmTWrFk89dRTAIRCIe6//36mTZvGNddcw7XXXsszzzzT7vXvzJi86aabmDZtGrfffjvvbIT04osvMm/ePGbNmsXdd9/N+fPngfBv9l/4wheYP38+v/3tb1m+fDn3338/CxcupKCggK1bt/KhD32IKVOm8OCDD7Z81gc/+EEWLFjAjBkzePzxx3v+lxYZYL57JPzzIBq1oXD/gcLPMYUxhLc1fEdZc9vxnr6hFfayIsJnDJe+3vFzbnnXr//9739PUVERO3bsoLy8nEWLFnHFFVewYcMGDh8+THFxMSdPnqSgoIC77767w/d444032LNnD6NHj2bp0qVs2LCBhQsX8vGPf5wXX3yR/Px87rrrLh577DE++9nPApCTk8Prr4cL/9GPfkRycjLbtm3j0Ucf5YYbbmD79u1kZ2czefJk7r//fnJycnjiiSfIzs6mtraWRYsW8eEPf5icnJyeHDaRAeW5YPsrCp0JNfcfKOJioNnMVhG+xEReXh6FhYURzw8dOpTKykrA29s9w59x4efXrVvHjTfeSE1NDenp6Vx22WWsX7+el19+mRtuuKFlQa3LL7+c2tradu9ZU1PDggULGDp0KNXV1cyYMYOSkhICgQDjx49n1KhRVFZWcvPNN/PjH/+Ye+65B+cc1113Xct7NTU1sWLFCiorK5k8eTLTpk0jMzOT+vp6JkyYQGlpKbNnz+bb3/42//3f/w3AkSNHKCoqYvHixTjnqKqqIiUlJaK2urq6dse+P1VVVfn6+QNBvB/DfYfr++VzasZd0627TmqaHI//4gUPKwrLH5/s+Wf4GQpHgXGtHo9tbmvHOfc48DjAwoULXdsFqUpKSvrl/v+uPiMrK4vk5GRSU1Nb+iYlJZGWlkZycjKBQKClPTExkbS0NIqLi/nkJz8JwMMPP8yQIUNIT09v6ZeamkpSUhIZGRkkJCS0tKenp5OYmEhWVhZmRl5eXstzCQkJDBs2jKysLDIzMyPeLykpiZSUFLZv384rr7zC5s2bSU9PZ/ny5S3vb2ZkZma2+/umpqYyb968Pjqa3RfPi5HFing/hg/fe9jzz6gamhT5kykK1uRYvWmaNwW1su6u8Z5/hp83Uq0B7mq+C2kJUOGc6/Glo1hx+eWX89RTT9HU1MSpU6dYv349ixcvZunSpTz77LOEQiFOnDjR8tvapZdeSlFREUVFRVx//fWdvu/UqVM5ePAg+/fvB+CXv/wly5Yt63GdFRUVDBs2jPT0dEpLS9m0aVOP30tkIHBA2ZRMtq8Y2b1700OOnGO1ntXV3zw7UzCzJ4HlQK6ZlQH/AiQBOOd+BKwFrgX2AzXA3/X2Mzu75n/LnvBtp9FcIwwANw2Hp2b0rIYbb7yRjRs3MmfOHMyMf/u3f2PkyJF8+MMf5vnnn2f69OmMGzeO+fPnM3To0KjfNzU1lZ/+9KfcfPPNNDY2smjRIj71qU/1rEhg5cqV/OhHP6KgoICpU6eyZMmSHr+XSLyrTwlQsiiH06PTuv3aQMgxft/Auf3IXJzdf7lw4ULXdj+FkpISCgoKOn3N5nNwdVF4ELkr6QF4aS4sHtLbSts7fvw4o0aNIhgMsnjxYjZs2MDIkSP7/oM80tVx9lq8X/qIBfF+DK/y4PJRcGQqJYtzaEhNaP9kyEGg87OGQGOI3KO1TN8cpD+md677Yc8vH5nZdufcwq76xcVAc28tzgrPPHy2/MK3maUF4Prc8MxmL9xyyy1UVlZSX1/PV77ylbgKBJGBpikAb80eRll++//wCfUh8l8/TXBUGuVj0ggFLDIcQo5AyJF7tJaCLf0TCP1lUISCWXgq+l2l4XkItW0msAWA1OZA+MU075a6WLt2bVwuiCcy0FQNSaJ4SQ7VF7W/m2dI+XmmbyonraaJvMM1VGYnczg/i+DoNFyCYU3hMYTxeysZcqZ/7obqT4MiFCC8NslvCsIT0zpd+8iDS0YiEjsccPSSTA7MvohQYpv7bEKOicUVTCg5R6D5qroBQ07XM3NTeCLCrUtK++UuIz8NmlCA8BnA4iHwdA8HkUUkftWnBChdlEOwg8Hk1KpGpm8uZ2hw4P3m312DKhREZHAK5qVSujiH+rT2g8l5h6rJf/00iQ3xddONVxQKIjJghQJwYPZFlOW3vzac0BAif/tpRh6u8aGy2DWAVgGPPZ/4xCcoLi7uk/eKZjnrRx55JOLxZZdd1iefLRKPqocksv3qkR0GwpDy8yz6y3EFQgcG5JlCX9/L3NN7g//rv/6rT+voyiOPPMKXv/zllsevvfZav36+SCxwwLHJmeyf08lgcsk5JhRXtAwmSySdKfSR6upqrrvuOubMmcPMmTN56qmnWL58Oe9MtMvMzOTBBx9kxowZrFixgi1btrB8+XIuvvhi1qxZA8DPfvYz7rvvvpb3fP/739/h4mUdLXn9xS9+kdraWubOncvtt9/e8pnQ+XLeF1qmWyQe1ScH2L00l30LstsFQkp1I/MKTzJpjwLhQgbkmYIfnn/+eUaPHs1zzz0HhNcWeuyxd/cNqq6u5oorruDRRx/lxhtv5MEHH+SFF16guLiYj33sYxdc96itjpa8/uY3v8n3v/99ioqK2vXvbDlv6HiZ7ve+9729PBoi/e90XnhmckeDySMOV5O//TRJGkzuks4U+sisWbN44YUX+MIXvsArr7zSbl2j5ORkrrnmmpa+y5YtIykpiVmzZnHw4MFufdb3vvc95syZw5IlSzhy5AhvvvnmBfu/+uqr3HbbbSQkJJCXl8eyZcvYunUrAIsXL2bs2LEEAgHmzp3b7VpE/BYKwP45F7Fj2Yh2gZDQEKJgc5Dpm4IKhCjpTKGP5Ofn8/rrr7N27VoefPBBrr766ojnk5KSsOap0oFAoGWvgkAgQGNjIxBeTjsUeneudV1dXbvPKSws5K9//SsbN25sWfK6o37Rar1nQkJCQkstIvGgOiuR4iW5VA3rYGZy8DzTNwVJq9a/6e7QmUIfOXbsGOnp6dxxxx088MADLbugdcfEiRMpKioiFApx5MgRtmzZ0q7PhZa8TkpKoqGhod1rOlvOWyReOeDoxZlsu2Zk+0BwjgnFFcxbd0KB0AM6U+gju3bt4oEHHiAQCJCUlMRjjz3G5z//+W69x9KlS5k0aRLTp0+noKCA+fPnt+tzoSWvV61axezZs5k/fz6//vWvW9o7W867tLS0539hEZ80JAcoXZhN+dj0ds+lVDcyfXOQi8rP+1DZwDAols6OFZWVlXG9IJ7fxznel32OBfF+DOc+dCI8mJze/vfZ/hhM9nvtIy2dLSIC1Ifgwb/BjmUj2i1jnNAQYsobZxh5sHpALWHtF4WCiMS0vTVwezFsr6JdIGQFzzN9c5D0Ko0d9BWFgojEJOfgJ8fhM/uhpu3mWM4xvvQck3ZrIlpfGzCh4JxrueVT+l68jT1JfDvdAH+/F37fwXJfKTWNFGwOMuyUBpO9MCBCITU1lWAwSE5OjoLBA845gsEgqampfpcig8BLZ+DOEjjawdYGw4/UMHX7aZLqo9hwXXpkQITC2LFjKSsr49SpU36XckF1dXVx+4M1NTWVsWPH+l2GDGD1IfiXg/Ctw+F5CK2lB+B7U+BXT5drMNljAyIUkpKSmDRpkt9ldKmwsJB58+b5XYZIzHmzBj5aAtsq2z+3IBN+Mx3y0+HX7Z+WPqYZzSLiG+fgieMwb1v7QDDgC+PgtfnhQJD+MSDOFEQk/pxpgFX74JkOrvqOSYZfFsCVw/q/rsFOoSAi/e7ls3BHCZR1cAPRjbnw46mQk9T/dYlCQUT6UUMIHjoI3+hkMPk/L4FPjGo3R036kUJBRPrF/hq4vQS2dDCYPL95MHmqxg58p4FmEfGUc/Cz4zBve8eB8MA42DhfgRArdKYgIp452wCf3AdPdzCYPCoZfjENVmT3f13SOYWCiHjilebB5MMdDCbfkAP/NRVy22+YJj5TKIhIn2oIwcOH4JFD0HYxirQA/MclsEqDyTFLoSAifeZAbXiZ680djB3MzYTfFEBBRv/XJdFTKIhIrzkHvzoB974JVU3tn//cWHjkYkjRrS0xT6EgIr1S0Qj/sA+ePNn+uZHJ8PNp8L80mBw3FAoi0mMbKsKXiw51MJj8gRz4yVQYrsHkuKJQEJFuawzB1w7Bv3YwmJwagH+fDJ8arcHkeKRQEJFu+VtteGbyxnPtn5udEZ6ZPEODyXFLoSAiUfv1ifD4QWUHg8mfHQvfmASpCf1fl/QdhYKIdKmiET69D37dwWByXhL8bBqszOn/uqTvKRRE5IJeqwhfLjpY1/6567LhiWkwQoPJA4ZCQUQ61BiCrx+Grx2EtleLUgy+Mxk+PUaDyQONQkFE2jlYG163aEMHg8kzM+DJApiZ2f91ifcUCiIS4ckT8Kl9cK6DweR/HAPfuliDyQOZp5POzWylme01s/1m9sUOnh9vZi+Z2RtmttPMrvWyHhHp3LlGuKsEPlrSPhBGJMHaWfDoFAXCQOfZmYKZJQA/AK4ByoCtZrbGOVfcqtuDwNPOucfMbDqwFpjoVU0i0rFNzYPJb3UwmPy+bPjpNMjTYPKg4OWZwmJgv3PuLedcPbAauKFNHwcMaf56KHDMw3pEpI0mB/96EN77RvtASDF49BJ4bpYCYTDxckxhDHCk1eMy4NI2fR4C/mJm/wfIAFZ4WI/IoONceAvM7xyBtUGoZRlp6+G6HLgjD759GF7tYDB5Rjo8OR1maTB50DHnnDdvbHYTsNI594nmx3cClzrn7mvV53PNNXzXzN4D/ASY6ZwLtXmvVcAqgLy8vAWrV6/2pGavVVVVkZmp/2U9pePXPY0Y32Aar5HLeQzX6sKA4XDNX7V1I2V8krdIabeqkf/2Ha739fOzM+o4XZ3q2+fnj+/5KduVV1653Tm3sKt+Xp4pHAXGtXo8trmttXuAlQDOuY1mlgrkAhHzJp1zjwOPAyxcuNAtX77co5K9VVhYSLzWHgvi/fhdde/hfvssBxRfmkP5mDRCie2vErsOwiCprolpW4OcPR7iWx4N7a374fhevf7hfjyGHbl1SSmrN03z7fPX3dW74xcNL8cUtgJTzGySmSUDtwJr2vQ5DFwNYGYFQCrQwRbfItId57KTOw2Ejgwpr2PRX46Te7yDkWYZVDwLBedcI3Af8GeghPBdRnvM7GEzu7652z8Bf29mO4AngY87r65niQwiR/KzCAWinGrsHCk1TaTUxd7lIul/nk5ec86tJXybaeu2r7b6uhhY6mUNIoNRcHQaRBsKZuH+Ing8eU1E/BFK6N6CRN3tLwOXQkFkAAo0de8qbHf7y8ClUBAZgNLPNUTfOeTIOVbrXTESVxQKIgPM8YkZVGWnRN0/EHKM31fpYUUSTxQKIgPIiXHplC7Kjrp/oDFE7tFask77OylMYoeWzhYZIE6NSaPk0pzIXW9CDnMOZxZ5N1LIEQg5co/WUrAl2MFUNhmsFAoiA0BwZCp7luTiWv3gt5Bj+mvlpNY1cTg/i+DoNFyCYU3hMYTxeysZckZnCBJJoSAS586MSGH3Zbm41reVOkfB5iAjmgeQZ24KAv4v0yCxT2MKInHsbE4yu5YOb7ecxbStp8k7UuNTVRLPFAoicercsGR2Xj6CpqTI/8b5208z6mC1T1VJvFMoiMShqqFJ7LhiOE3Jkf+FJxedYcyBKp+qkoFAoSASZ6qzEilaNoLGlMjNkiftOqv5BtJrCgWROFKbEQ6EhtTIQBhfUsGEkg62UBPpJoWCSJyoS0+gaPkI6tMjbxocu+8cF++q0FwD6RMKBZE4cD41QNGyEdRlRAbC6AOVXFJ0VoEgfUahIBLj6lPCgVCblRTRnnewmvztZxQI0qcUCiIxrCHJ2HHFCGqGRm7YPvxINdO2ankK6XsKBZEY1ZgYDoSqYZGBkHO0humbgwS0BYJ4QKEgEoOaEoydlw+nMidyCexhb9cyY2M5AW2nLB5RKIjEmKYA7FqaS8Xw1Ij2oSfrmLWhnAQFgnhIoSASQ0IB2HPZcM6MTItoHxI8z+xXT5GgbTPFYwoFkRgRMii+NJfg6MhAyDxTz+z1J0lsVCCI9xQKIjHAAaWLcjg1Lj2iPb2injnrT5LUoECQ/qFQEPGZA/YuyObExIyI9rTKBua+fJLk8xpEkP6jUBDxkQP2zx3G8cmZEe2p1Y3MLTxJSp0CQfqXQkHEJw54a9ZQyvKzItqTaxqZW3iC1NomfwqTQU2hIOKTQwVDOFwwNKItqa6JuS+fJK1agSD+UCiI+OBwfhZ/m3VRRFvi+XAgZFQ2+lSViEJBpN8dnZzJgbnDItoS6kPMXX+SzIoGn6oSCVMoiPSj4xMz2LcgO6ItoSHEnFdOknVGgSD+UyiI9JMT49IpXRQZCIHGELNePcXQYL1PVYlEUiiI9IM/nIKSS3PA3l3s2pocM18rZ9ip8z5WJhJJoSDiseeD8JFicIFWgRByzNhYTs7bdT5WJtKeQkHEQ+vOwI17IGKVCuco2Bxk+LFa3+oS6YxCQcQjGyrg+l3QdlLytK2nyTtS409RIl1QKIh4YNs5uHYnVLcJhPztpxl1sNqfokSioFAQ6WM7q+B/7YRzbSYlTy46w5gDVf4UJRIlhYJIHyqthmt2wJk2k5K/NhHG76v0pSaR7lAoiPSRA7Vw9Q442WYO2pfGwz9P8Kcmke5SKIj0gSN1cHURHGszB+0zY+DrkyKmJ4jENIWCSC8dPw9X7YBDbeagrRoF/3GJAkHii0JBpBdO1cOKHbC/zZSDO/PgsXwFgsQfhYJID51pCN9lVNxmysHNw+GJqRBQIEgc8jQUzGylme01s/1m9sVO+txiZsVmtsfMfuNlPSJ95VwjrNwJRW3uMP1ADvyqABL165bEqUSv3tjMEoAfANcAZcBWM1vjnCtu1WcK8CVgqXPujJmN8Koekb5S0wTv3wVb2txhes0weHo6JCsQJI55+c93MbDfOfeWc64eWA3c0KbP3wM/cM6dAXDOnfSwHpFeq2uCD+6GVyoi268YCn+cCakJ/tQl0lfMOdd1r568sdlNwErn3CeaH98JXOqcu69Vnz8C+4ClQALwkHPu+Q7eaxWwCiAvL2/B6tWrPanZa1VVVWRmZvpdRtzy+/g1YPwLM9hIbkR7Aef4DjtI58L7Ku877P+eCdkZdZyuTvXt8/PHJ/fq9X4fw3g+fldeeeV259zCrvp5dvkoSonAFGA5MBZYb2aznHNnW3dyzj0OPA6wcOFCt3z58n4us28UFhYSr7XHAj+PX2MIbiuBjaci2+dmwro5QxiWdHmX7/HwvYc9qi56ty4pZfWmab59/rq7xvfq9X4fw3g/ftHw8vLRUWBcq8djm9taKwPWOOcanHN/I3zWMMXDmkS6LeTg7/bCM20CYXo6vDAbhiX5U5eIF7wMha3AFDObZGbJwK3AmjZ9/kj4LAEzywXygbc8rEmkW5yDT+2DX52IbJ+SBn+dA7m9uxoiEnM8CwXnXCNwH/BnoAR42jm3x8weNrPrm7v9GQiaWTHwEvCAcy7oVU0i3eEcfHY//Ph4ZPuEFHhxDoxK8acuES95OqbgnFsLrG3T9tVWXzvgc81/RGKGc/Dlv8H32lzwHJ0M6+bCOP/GGkU8pTuqRTrw9UPwzTZjmiOSwmcIF6f5U5NIf1AoiLTx3SPwlYORbdmJ8MIcmJbhS0ki/UahINLKD4/C5w9Etg1JgL/MgdmaYiKDgEJBpNlPj8On34xsywjA/8yGBVn+1CTS3xQKIsCTJ+CevZFtqQH40yy4bKg/NYn4QaEgg94fTsGdJdB6wZckgz/MgCuH+VaWiC+6FQpmltG8+qnIgPB8ED5STMSqRQmEVztdmeNXVSL+uWAomFnAzD5qZs+Z2UmgFDjevP/Bt83skv4pU6TvvXQGbtwDDa1OEYzwfggfHO5bWSK+6upM4SVgMuE9D0Y658Y550YA7wU2Ad8yszs8rlGkz22ogA/sgrpQZPsTU+HWPH9qEokFXc1oXuGca2jb6Jw7DfwO+J2ZaTkwiSvbzsG1O6G6TSD8cAp8fJQ/NYnEigueKbwTCGa2ou1zZvax1n1E4sHOqvC+yufabH3w3cnwD2P8qUkklkQ70PxVM3useaA5z8z+BHzAy8JE+lppNVyzA840RrZ/bSJ8blyHLxEZdKINhWXAAaAIeBX4jXPuJs+qEuljB2rh6h1wss157ZfGwz9P8KcmkVgUbSgMI7zn8gHgPDDBzMyzqkT60JE6uLoIjrXZyfEzY+Drk0D/kkXeFW0obAKed86tBBYBo4ENnlUl0keOn4erdsCh85Htq0bBf1yiQBBpK9r9FFY45w4DOOdqgX80syu8K0uk907Vw4odsL82sv3OPHgsX4Eg0pGuJq9NBHgnEFpzzq23sLHelCbSc2cawncZFddEtt88PDwXIaBAEOlQV2cK3zazAPAssB04BaQClwBXAlcD/wKUeVmkSHeca4SVO6GoKrL9Aznh2cqJWvFLpFMXDAXn3M1mNh24HbgbGAnUEt5zeS3wdedcnedVikSppgnevwu2VEa2XzMsvJ5RsgJB5IK6HFNwzhWb2b8C9xJe3sIBW4FnFAiDy1X3truK2K9uXVLPwxeooSkAu947nDMjI/fLHHqyjvO/O8W1Ta6TV0Zn3Q/H9+r1IvEg2oHmnwPngO81P/4o8AvgFi+KEumuUAD2XNY+EIYEzzP71VMk9DIQRAaLaENhpnNueqvHL5lZsRcFiXRXyKD40lyCoyMDIfNMPbPXnySxUYEgEq1or7C+bmZL3nlgZpcC27wpSSR6DihdlMOpcekR7ekV9cx5+SRJDQoEke6I9kxhAfCamb1zQXc8sNfMdgHOOTfbk+pELsABexdkc2JiRkR7WmUDc18+SXJ9qOMXikinog2FlZ5WIdJNDtg/dxjHJ2dGtKdWNzK38CQpbTdKEJGoRBUKzrlDXhciEi0HvDVrKGX5WRHtyTWNzC08QWptU8cvFJEuRXumINLvHHAuO5kjU4cQHJXKSwnjCIx2pFY1UnNRckTfpLom5r58krRqBYJIbygUJCaFDEoW51A+Jo1QwFrWpQglWrtASDwfDoSMysaO3kpEukGhIDHH0SoQulqToskxZ/1JMiu0AaBIX9Ckf4k557KTowsEIIDTcqcifUihIDHnSH5W+JJRFEJmHG4z4CwiPadQkJgTHJ0W/drWAWs3k1lEek6hIDEnlNC9y0Hd7S8inVMoSMwJdHPxuu72F5HOKRQk5uQcqwUX5Q/6kAv3F5E+oVCQmJNR0RD1HUWBkGP8vsquO4pIVBQKElMqL0riUMGQqPoGGkPkHq0l63S9x1WJDB6avCYxoz4lwK6lw3Gt5yc4F57N1vpupJAjEHLkHq2lYEsQDTOL9B2FgsSEUAB2X5bL+YzIf5ITis9Rk5VIcHQaLsGwpvAYwvi9lQw5ozMEkb6mUJCY8ObcYVQMT41oG7vvHBfvqWh5fOuSUlZvmtbfpYkMKhpTEN8duziDY5dEzkq+6EQdk3ec9akikcFLoSC+OpuTzL552RFtqVWNzNhkUqYdAAAQJklEQVRYTkDTD0T6naehYGYrzWyvme03sy9eoN+HzcyZ2UIv65HYUpeWwJ7LhuNazUgONIaYteGUttIU8YlnoWBmCcAPgPcB04HbzGx6B/2ygM8Am72qRWJPU4Kxe2ku9WkJEe0FW4JaBlvER16eKSwG9jvn3nLO1QOrgRs66Pc14FtAnYe1SAxxwN4F2VRmp0S0TyiuYESZZieL+MnLUBgDHGn1uKy5rYWZzQfGOeee87AOiTFH8rM4MTEjoi3naA2Tdld08goR6S++3ZJqZgHg34GPR9F3FbAKIC8vj8LCQk9r80pVVVXc1g5w65LezwsoTs2mcPi4iLZRDVV8IbSZtCUX3l85O6OOW5eU9rqGniosfKtXr++L49dbOoa9E+/HLxrmol14rLtvbPYe4CHn3P9ufvwlAOfcN5ofDwUOAFXNLxkJnAaud85t6+x9Fy5c6LZt6/TpmFZYWMjy5cv9LqPHrrr3cK9eX5uRyLYVeTSmvDuOkFgfYsFf3ya9quv9lf2ep7Duh+N79freHr++oGPYO/F8/Mxsu3Ouy5t5vLx8tBWYYmaTzCwZuBVY886TzrkK51yuc26ic24isIkuAkHiV2Oiseu9uRGBgHNM31QeVSCISP/wLBScc43AfcCfgRLgaefcHjN72Myu9+pzJfY4oGRxDtVDkyPaL955lpy3dX+BSCzxdEzBObcWWNum7aud9F3uZS3in4PTh1A+Nj2ibcShasbv1ZLXIrFGM5rFU6dGp3Fw5kURbZln6pm27bRWNxWJQQoF8Uz1kCRKLs2JaEuqa2LWhlMkaAtNkZikUBBPNCQH2LU0l6akd/+JWcgx87VyUmsufOupiPhHoSB9LmSwZ0kOtVlJEe1T3jjDReXnfapKRKKhUJA+99bsizgzMi2ibdSBKkYfqOrkFSISKxQK0qfeHp/OkamReywPPVVH/hsaWBaJBwoF6TPnhiWzd1HkwHJKTfPeCFoJWyQuKBSkT5xPDbB7aS6h1nsjNDlmbignpU6JIBIvFArSa6EA7HlPLufTI+dCTt0WZMgZ/xeBE5HoKRSk196cN4yK4akRbeP2nmPkoRqfKhKRnlIoSK8cnZzJsclZEW3D3q7l4p1nfapIRHpDoSA9djY3hTfnDYtoS61qYMamIAFNWBaJSwoF6ZG69AR2X5aLC7w7sJzQEGLWq+Uk1WtgWSReKRSk25oSjF1Lh9OQmhDRXrAlSOa5Bp+qEpG+oFCQbnFA6cJsqoZF7o0wcU8Fw4/W+lOUiPQZhYJ0y5GpWZyckBHRlltWw8Q9FT5VJCJ9SaEgUQuOTOXA7Mi9ETIq6inYEtQSFiIDhEJBorKvBoqX5IK9++M/8XwTs14tJ7FRtxqJDBQKBenSuUb44G5oTG71zyXkmLEpSFp1o3+FiUifUyjIBYUc3FECJW0mJ0/eeZbsE3X+FCUinlEoyAU9dBD+FIxsyztYzbh9lb7UIyLeUihIp353Cr52KLIt6/R5pm7X3ggiA5VCQTq0swo+VhLZllzbxMwN5SQ0aWBZZKBSKEg7wYbwwHJ1q9UqkgxmvHaK1Nom/woTEc8pFCRCYwhu2QN/azOG/P0pcFFQeyOIDHQKBYnwwFuwrs2q1/8wGlaN9qceEelfCgVp8fO34T/LItsuHwr/eYk/9YhI/1MoCACbz8En90a2jUuBZ2ZAsv6ViAwa+u8uHD8PH9oN51vdVJQWgD/OhBHJnb9ORAYehcIgdz4EH9oDx9qMIf9kKszP6vg1IjJwKRQGMefg0/tg07nI9v87Dm7L86cmEfGXQmEQ+8FR+MnbkW0rs+GRi/2pR0T8p1AYpArPwGf3R7ZNSYPfFECC1rAQGbQUCoPQwVq4aQ+0npuclQDPzoRhSb6VJSIxQKEwyFQ3hZewCLbZBuFXBVCQ0fFrRGTwUCgMIs7B3aWwozqy/WsT4fpcX0oSkRijUBhEvnkYnj4V2fbhXPjnCf7UIyKxR6EwSDwXhH/+W2TbrAz42bSIbZdFZJBTKAwCpdXw0WJovQtCdmJ4YDkz0beyRCQGKRQGuLMNcMNuONfqVqME4OkZMCnNt7JEJEYpFAawJge3l8C+2sj2714CVw/zpyYRiW0KhQHsK3+Dtacj2z6WB/84xp96RCT2KRQGqKdOwjcOR7YtzoIf5WtgWUQ652komNlKM9trZvvN7IsdPP85Mys2s51m9qKZ6ebIPlBUCX9XGtk2Mhn+MBNSE/ypSUTig2ehYGYJwA+A9wHTgdvMbHqbbm8AC51zs4FngH/zqp7B4lR9eMZybejdtmSD38+A0Sn+1SUi8cHLM4XFwH7n3FvOuXpgNXBD6w7OuZecczXNDzcBYz2sZ8BrCMHNe+DQ+cj2x/LhPUP9qUlE4ouXoTAGONLqcVlzW2fuAf7Hw3oGvM8dgJcrItvuGwN3j/KnHhGJP+ac67pXT97Y7CZgpXPuE82P7wQudc7d10HfO4D7gGXOufMdPL8KWAWQl5e3YPXq1Z7U7LWqqioyMzM9ee/nGMl3mBbRNpczfJudJNI33+N9h+u77uSh7Iw6Tlen+vb5+eN7tzep38cPdAx7K56P35VXXrndObewq35ehsJ7gIecc/+7+fGXAJxz32jTbwXw/xIOhJNdve/ChQvdtm3bPKjYe4WFhSxfvrzP33djBSwrgoZW38oJKbBtAeT24R7LV917uOtOHrp1SSmrN03ruqNH1v1wfK9e7/fxAx3D3orn42dmUYWCl5ePtgJTzGySmSUDtwJrWncws3nA/wdcH00gSHtHz4f3WG4dCOkB+OPMvg0EERkcPAsF51wj4UtCfwZKgKedc3vM7GEzu76527eBTOC3ZlZkZms6eTvpQF0T3Lgb3m5zRv3TaTA3y5+aRCS+ebocmnNuLbC2TdtXW329wsvPH8icg0/tg62Vke1fGg+3jPCnJhGJf5rRHKe+dxR+fiKy7bps+Nokf+oRkYFBoRCHXjwD/7Q/sm1qGvx6OiRoCQsR6QWFQpx5qxZu2QOtVsJmSAI8OwuGam8EEeklhUIcqWoM741wuvHdNgOenA5T030rS0QGEIVCnHAOPl4Ku6sj278+Ca7N8acmERl4FApx4uuH4HflkW0fGQ5f7N1cIBGRCAqFOLCmHL5yMLJtTgb8ZJr2RhCRvqVQiHHF1XBHSWRbblJ4xnKG9kYQkT6mUIhhZxrCA8uVrW41SgB+Ox0mpvlWlogMYAqFGNXk4KMlsL82sv3RKbB8mD81icjAp1CIUV9+C54/Hdl2z0i4d7Q/9YjI4DCopjv5v+xuPQ9HUcOJ8ekUL8mNaBtSfp79z5zg6lAnL4pCb5ctFpGBT2cKMaZyWBKlC7Mj2pJrGpn52ikCvQgEEZFoKBRiSH1KgF2XDSeU+O63JdDkmPVaOSl1SgQR8Z5CIUaEArD7slzOZ0Re0Zu67TRDTvu/jaOIDA4KhRjx5txhVAyP3Pt17L5zjDxU3ckrRET6nkIhBhy7OINjl0RulTbsRB2Td5z1qSIRGawUCj47m5vCvnmRA8upVY3M2FhOwHXyIhERjygUfFSXlsDuy3JxrXbGSWgIMWvDKZLqNbAsIv1PoeCTpgRj99JcGlIjFzCatiVIZkWDT1WJyGCnUPCBA/YuyKYyOyWifcKeCkYcre34RSIi/WBQzWjubw44l53MkalDCI5K5aWEcQRGO9IqG6kelhzRN/doDZP2VPhTqIhIM4WCR0IGJYtzKB+TRihgEAiPG4QSjeqLkiL6plc0ULA5iLZGEBG/KRQ84GgVCIkdXKFrtTOONTlmbjhFYqNuNRIR/2lMwQPnspM7D4R2HE3J+jaISGzQTyMPHMnPCl8yioIz43B+VtcdRUT6gULBA8HRaS1jCF0KWLi/iEgMUCh4IJTQvSHj7vYXEfGKQsEDgabuDRp3t7+IiFcUCh7IOVYLoSh/0IdcuL+ISAxQKHhg3L5KAlGGQiDkGL+v0uOKRESio1DwwJDT9eQerSXQeOFF7QKNIXKP1pKlTXREJEYoFDxgQMGW4LvB0PasIeRaAqFgi2Yyi0js0IxmjwQcTN8cpDI7mcP5WQRHp+ESDGsKjyGM31vJkDM6QxCR2KJQ8JARvpQ0c1MQgFuXlLJ60zR/ixIRuQBdPhIRkRYKBRERaaFQEBGRFgoFERFpoVAQEZEWCgUREWmhUBARkRYKBRERaeFpKJjZSjPba2b7zeyLHTyfYmZPNT+/2cwmelmPiIhcmGehYGYJwA+A9wHTgdvMbHqbbvcAZ5xzlwD/AXzLq3pERKRrXp4pLAb2O+fecs7VA6uBG9r0uQH4efPXzwBXm5nWhxMR8YmXoTAGONLqcVlzW4d9nHONQAWQ42FNIiJyAeacN1tBmtlNwErn3CeaH98JXOqcu69Vn93NfcqaHx9o7lPe5r1WAauaH04F9npStPdygfIue0lndPx6T8ewd+L5+E1wzg3vqpOXq6QeBca1ejy2ua2jPmVmlggMBYJt38g59zjwuEd19hsz2+acW+h3HfFKx6/3dAx7ZzAcPy8vH20FppjZJDNLBm4F1rTpswb4WPPXNwHrnFenLiIi0iXPzhScc41mdh/wZyABeMI5t8fMHga2OefWAD8Bfmlm+4HThINDRER84ukmO865tcDaNm1fbfV1HXCzlzXEmLi/BOYzHb/e0zHsnQF//DwbaBYRkfijZS5ERKSFQqGfdLXkh3TOzJ4ws5PNtzBLN5nZODN7ycyKzWyPmX3G75riiZmlmtkWM9vRfPz+H79r8pIuH/WD5iU/9gHXEJ7EtxW4zTlX7GthccLMrgCqgF8452b6XU+8MbNRwCjn3OtmlgVsBz6of3/RaV5lIcM5V2VmScCrwGecc5t8Ls0TOlPoH9Es+SGdcM6tJ3x3mvSAc+64c+715q8rgRLary4gnXBhVc0Pk5r/DNjfphUK/SOaJT9EPNe8EvE8YLO/lcQXM0swsyLgJPCCc27AHj+FgsggYWaZwO+AzzrnzvldTzxxzjU55+YSXplhsZkN2MuYCoX+Ec2SHyKeab4W/jvg18653/tdT7xyzp0FXgJW+l2LVxQK/SOaJT9EPNE8UPoToMQ59+9+1xNvzGy4mV3U/HUa4RtGSv2tyjsKhX7QvCz4O0t+lABPO+f2+FtV/DCzJ4GNwFQzKzOze/yuKc4sBe4ErjKzouY/1/pdVBwZBbxkZjsJ/4L3gnPuv32uyTO6JVVERFroTEFERFooFEREpIVCQUREWigURESkhUJBRERaKBRERKSFQkFERFooFER6ycwWmdnO5nX3M5rX3B+wa+PIwKbJayJ9wMz+FUgF0oAy59w3fC5JpEcUCiJ9oHlNq61AHXCZc67J55JEekSXj0T6Rg6QCWQRPmMQiUs6UxDpA2a2hvCOepMIb315n88lifRIot8FiMQ7M7sLaHDO/aZ5P+7XzOwq59w6v2sT6S6dKYiISAuNKYiISAuFgoiItFAoiIhIC4WCiIi0UCiIiEgLhYKIiLRQKIiISAuFgoiItPj/ARKCaDJ0fB3qAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8XXWd//HX52Zp1qZNUrqlpQtdkqYraalUoWwjiFIZAUERHWHQYZgZcWRkHPTH4E905Oc4+hNwGAf96agU0ZE6VhApYSmULlBom6SldE1b2ixdsjbL/f7+uGnIvUma7Z577k3ez8ejj0fu93zvuZ+epnnnnO8536855xAREQEI+F2AiIjED4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIJ4WCSD+Y2SfMbLOZ1ZvZETP7g5m938zuM7NWM6vr+LPLzH5gZhO7vHelmQU73nvmz+/8/PuI9EahINIHM/si8G/AA8B4YCrwMLCqo8tq51w2kAtcC0wAtnQNBuCwcy6ry5+PxO5vINJ/CgWRszCzHOB+4K+dc79xzjU451qdc79zzt3dtW9H+w7g40AV8Pc+lCwyJAoFkbN7H5AG/Hd/3+CcaweeAj7gVVEiXlEoiJxdHlDtnGsb4PsOE7qcdMYkMzvR5c8N0StRJHqS/S5AJM7VAPlmljzAYJgM1HZ5fdg5VxDd0kSiT2cKImf3KnAa+Gh/32BmAeAjwEteFSXiFZ0piJyFc+6kmX0NeMjM2oA/Aq3A5cAlQOOZvmaWDMwC7iN0B9K/xrxgkSHSmYJIH5xz3wG+CNxL6K6ig8CdwG87unzczOqBk8AaQpecznfOHfahXJEhMS2yIyIiZ+hMQUREOikURESkk0JBREQ6KRRERKSTQkFERDol3HMK+fn5btq0aX6XMSgNDQ1kZmb6XUbC0vEbOh3DoUnk47dly5Zq59y4vvolXChMmzaNzZs3+13GoJSWlrJy5Uq/y0hYOn5Dp2M4NIl8/Mxsf3/66fKRiIh0UiiIiEgnhYKIiHRKuDGFnrS2tlJZWUlzc7PfpZxVTk4O5eXlfpcxKGlpaRQUFJCSkuJ3KSLioWERCpWVlWRnZzNt2jTMzO9yelVXV0d2drbfZQyYc46amhoqKyuZPn263+WIiIeGxeWj5uZm8vLy4joQEpmZkZeXF/dnYiLR5hy8dgqu3wGZL8KlXEzmi3DDDth4KrR9uBkWZwpAvwLBOdhYB//nIKytgaYgpAfg6jz40hRYmg3KlZ4pcGWkaQ3CLRWwphqagxAEwGgMwq+rQj9DPpIPP50LKcPi1+sQz/4qZvaYmR0zs+29bDcz+76Z7Tazt8xsiVe1QOgf+BPlcOlW+E0VNAbBQec/8KVbQ9tbg4Pbf1ZWVlTr9dO0adOorq72uwwR3zj3XiA0dgbCe4JAQxCeqg71G05nDF7m20+AK8+y/SpCq1TNAm4HHvGqkJH0D9ze3u53CSIJb2Md/K7j58XZNAVD/TbVxaauWPAsFJxzLxK+cHmkVcBPXcgGYIyZTfSillj+AzvnuPvuuykuLmb+/PmsXr0agGAwyF133cXcuXO54oor+NCHPsSTTz7Z7f1nnpi87rrrmDt3Lp/85Cc5sxDSc889x+LFi5k/fz6f/exnOX36NBD6zf7LX/4yS5Ys4Ve/+hUrV67krrvuoqSkhMLCQjZt2sSf//mfM2vWLO69997Oz/roRz/K+eefz7x583j00UcH/5cWGWa+czD086A/moKh/sOFn2MKkwkta3hGZUfbkcHu0EqHWBGhM4YLXu95m1vZ9/t/85vfsHXrVt58802qq6tZunQpF110EevXr+fAgQOUlZVx7NgxCgsL+exnP9vjPt544w127NjBpEmTWLFiBevXr6ekpITPfOYzPPfcc8yePZtbbrmFRx55hC984QsA5OXl8frrocJ/+MMfkpqayubNm/ne977HqlWr2LJlC7m5ucycOZO77rqLvLw8HnvsMXJzc2lqamLp0qV87GMfIy8vbzCHTWRY+X1N9ysKvQl29B8uEmKg2cxuJ3SJifHjx1NaWhq2PScnh7q6OsDb2z1Dn3H27evWrePaa6+lsbGRjIwMLrzwQl588UVeeOEFVq1a1Tmh1gc+8AGampq67bOxsZHzzz+fnJwcGhoamDdvHuXl5QQCAaZOncrEiROpq6vj+uuv5z/+4z+49dZbcc5x9dVXd+6rvb2dyy+/nLq6OmbOnMncuXPJysqipaWFc889l4qKChYsWMCDDz7I//zP/wBw8OBBtm7dyrJly3DOUV9fz6hRo8Jqa25u7nbsY6m+vt7Xzx8OEv0Y7jrQEpPPaZxyxYDuOmlsdzz602c9rChk9tRUzz/Dz1A4BEzp8rqgo60b59yjwKMAJSUlLnJCqvLy8pjc/9/XZ2RnZ5OamkpaWlpn35SUFNLT00lNTSUQCHS2Jycnk56eTllZGZ/73OcAuP/++xk9ejQZGRmd/dLS0khJSSEzM5OkpKTO9oyMDJKTk8nOzsbMGD9+fOe2pKQkxo4dS3Z2NllZWWH7S0lJYdSoUWzZsoWXXnqJ1157jYyMDFauXNm5fzMjKyur2983LS2NxYsXR+loDlwiT0YWLxL9GN5/xwHPP6MxKzn8J1M/WLvj8Q1zvSmoi3W3TPX8M/y8kWoNcEvHXUjLgZPOuUFfOooXH/jAB1i9ejXt7e1UVVXx4osvsmzZMlasWMFTTz1FMBjk6NGjnb+tXXDBBWzdupWtW7dyzTXX9LrfOXPmsG/fPnbv3g3Az372My6++OJB13ny5EnGjh1LRkYGFRUVbNiwYdD7EhkOHHBkWiabr5gwsHvTg468w02e1RVrnp0pmNkvgZVAvplVAv8LSAFwzv0QWAt8CNgNNAJ/MdTP7O2a/w07Qred9ucaYQC4bhysnje4Gq699lpeffVVFi5ciJnx7W9/mwkTJvCxj32Mp59+mqKiIqZMmcKSJUvIycnp937T0tL48Y9/zPXXX09bWxtLly7l85///OCKBK688kp++MMfUlhYyJw5c1i+fPmg9yWS6NpSjJ3n53Js6sDXSggEHVN3DZ/bj8wl2P2XJSUlLnI9hfLycgoLC3t9z2un4LKtoUHkvmQE4PlFsGz0UCvt7siRI0ycOJGamhqWLVvG+vXrmTBhQvQ/yCN9HWevJfqlj3iQ6MfwUg8uH53MTaVseT7NWT38jhx0EOj9rCHQFiT/UBNFr9UQi8c71z08+MtHZrbFOVfSV7+EGGgeqmXZoScPn6o++21m6QG4Jj/0ZLMXbrjhBurq6mhpaeGrX/1qQgWCyHDjDPbPHc2+eTm4iB/8gbYg5209zolxaVRPTicYsPBwCDoCQUf+oSYKN8YmEGJlRISCWehR9FsqQs8hNEU8wBYA0joC4adzvZvqYu3atQk5IZ7IcHM6PYmyZXmcGJ/WbVvmiRbmvVpNZl0bk/Y0UJebyoHZ2dRMSsclGdYeGkOYurOO0cdjczdULI2IUIDQ3CS/KAw9mNbr3EceXDISkfhSPSmdiqW5tI5K6ratYFcdM946TlLHb40GjK5toXhD6EGEG5dXxOQuIz+NmFCA0BnAstHwxCAHkUUkcbUnGe8sGMOhWd3P1lOa25m7qYb8I5oJeESFgoiMTA2jk9mxPJ+GMd0f/hp7tJnC12oY1ax5w0ChICLDmAMOz8hi96IxBJPDH8uyoGP69hNMragbVgPFQzWMZgGPP7fddhtlZWVR2Vd/prN+4IEHwl5feOGFUflskUTUmhpgx4X57CrJ7RYIafWtLFl3lHMVCN0MyzOFaN/LPNh7g3/0ox9FtY6+PPDAA3zlK1/pfP3KK6/E9PNF4sWJ/FGULc/jdEb3H3Hj9zcwe0styW2J9YxWrOhMIUoaGhq4+uqrWbhwIcXFxaxevZqVK1dy5kG7rKws7r33XubNm8fll1/Oxo0bWblyJTNmzGDNmjUA/OQnP+HOO+/s3OeHP/zhHicv62nK63vuuYempiYWLVrEJz/5yc7PhN6n8z7bNN0iiShosHdeDm+sPKdbICS1Bil8rZqi12oUCGcxLM8U/PD0008zadIkfv/73wOhuYUeeeS9dYMaGhq46KKL+N73vse1117Lvffey7PPPktZWRmf/vSnzzrvUaSeprz+1re+xQ9+8AO2bt3arX9v03lDz9N0v//97x/i0RCJveaMJMouyOPkuO7PHmTXnqZoQw0Z9W0+VJZYdKYQJfPnz+fZZ5/ly1/+Mi+99FK3eY1SU1O54oorOvtefPHFpKSkMH/+fPbt2zegz/r+97/PwoULWb58OQcPHuTtt98+a/+XX36Zm266iaSkJMaPH8/FF1/Mpk2bAFi2bBkFBQUEAgEWLVo04FpE4sGxgnQ2/dnEHgNhSsUplqw7qkDoJ50pRMns2bN5/fXXWbt2Lffeey+XXXZZ2PaUlBSs41HpQCDQuVZBIBCgrS30zZqcnEww+N6z1s3N3e+ZLi0t5U9/+hOvvvpq55TXPfXrr65rJiQlJXXWIpII2pOMtxeP5ciM7mukpza1U7ixhtyjevZgIHSmECWHDx8mIyODm2++mbvvvrtzFbSBmDZtGlu3biUYDHLw4EE2btzYrc/ZprxOSUmhtbW123t6m85bJJHV56Sw+YoJPQZC7pEmlv7xiAJhEHSmECXbtm3j7rvvJhAIkJKSwiOPPMKXvvSlAe1jxYoVTJ8+naKiIgoLC1myZEm3Pmeb8vr2229nwYIFLFmyhJ///Oed7b1N511RUTH4v7CITxxwaFYWuxeMxSWF31Bq7Y6Zb52g4G3dajpYI2Lq7HhRV1eX0BPi+X2cE33a53iQ6Mfw/XdVUrE0j5pJ6d22pZ9qZd6GarJPdD9bjha/5z7S1NkiIh2eOw6b/mwCLendf2xN3FPPeVuP61bTKFAoiEhcaw3CV/fCtw+CiwiEpJYgc7bUMv5go0/VDT8KBRGJW+80wU1loSnvI42uPk3RhmrSGzWRXTQNm1BwznXe8inRl2hjT5L4fn4U/moX1EX+zHeOc8tPMW3HSQL6toy6YREKaWlp1NTUkJeXp2DwgHOOmpoa0tK6PxgkEm11bfDXb8PPjnbfNqqxjcLXahhbdTr2hY0QwyIUCgoKqKyspKqqyu9Szqq5uTlhf7CmpaVRUFDgdxkyzG06BZ8oh91N3betyoOa375LSstZFlqXIRsWoZCSksL06dP9LqNPpaWlLF682O8yROJO0MF3DsJX9kLkDURpAfjXmfD5SXCZAsFzwyIURCRxHTkNn66AZ4933zYvAx4vguLuDy2LRxQKIuKbtTXwmQqo6uF5s7+aBN+ZCelJsa9rJFMoiEjMnQ7CPXvg3yq7bxubDI/NgY+Oi31dolAQkRiraICbymFrffdtF+fAfxVCQWLejzEsaJZUEYkJ5+A/j8D5W7oHQhLw9Wnw3CIFgt90piAinjvRCp/bBU/0cNf4uaPgF0VwYU73bRJ7CgUR8dQrJ+ETZbC/h+fNbhgH/z4bxqTEvi7pmUJBRDzR7uCB/fDP+yBypoqMAPzfWfAXE0CTEMQXhYKIRF1lM9xcDi+c7L5tUVbo2YM5GbGvS/qmUBCRqPptFdy6E2p7WO77CwXwrRkwSre4xC2FgohERVM7/P078Mjh7tvGpcBP5sKH8mJflwyMQkFEhmx7PdxYBjt6WOvm8rHw07kwcVTs65KB00mciAyac/DwIVj6evdASDb49gx4ZoECIZHoTEFEBqWmFW6tgKdqum+bmQa/LIKlo2NflwyNQkFEBqz0eOjuokMt3bfdMh5+MAuy9dMlIemfTUT6rS0I/7wfvrEfIlfCzEqCR2bBzRN8KU2iRKEgIv2yrym0Ktqrp7pvW5odulw0Mz32dUl0aaBZRPq0+hgs3Nw9EAz48hR4ebECYbjQmYKI9KqhHf72bXjs3e7bJqTCz+bC5bmxr0u8o1AQkR69URd69mBXU/dtV+fCj+fCuNTY1yXeUiiISJigg+9VhlZGa4kYTU41eHAm/M1kTWQ3XHk6pmBmV5rZTjPbbWb39LB9qpk9b2ZvmNlbZvYhL+sRkbM71gIf3gZffKd7IMzNgNeWwN8WKBCGM89CwcySgIeAq4Ai4CYzK4rodi/whHNuMXAj8LBX9YjI2f2xFhZsgj/Udt/2lxNh8/mwKDv2dUlseXmmsAzY7Zzb45xrAR4HVkX0ccCZZx5zgB6m0hIRL7UE4R/egQ++BUdbw7eNSYZfFcGjcyAzyZ/6JLa8HFOYDBzs8roSuCCiz33AH83sb4BM4HIP6xGRCG83hp492FzXfduK0fDzIjhXayaPKH4PNN8E/MQ59x0zex/wMzMrds4Fu3Yys9uB2wHGjx9PaWlp7CuNgvr6+oStPR7o+A2cA8rJ5gmmsIE8WtzFpJa2s5wazqWB1UzlNOGnAAEcN7OfW07tZ+8Gx15fKu/Zjct7mFcjhnIzm7lxeYVvn19ausfzzzDnIh9Wj9KOQz/k73POfbDj9T8COOe+2aXPDuBK59zBjtd7gOXOuWO97bekpMRt3rzZk5q9VlpaysqVK/0uI2El+vG79I4DMf28oEH5sjyqJ6cTDBgEuowOO9fjaPGoxjaKNtQwprqHBZWjYN3DU4f0/lgfw0g3Lq/g8Q1zffv8oRw/M9vinCvpq5+XYwqbgFlmNt3MUgkNJK+J6HMAuAzAzAqBNKDKw5pERgRHl0BIDoQHAvQYCOMqG1n6x3c9CwRJDJ5dPnLOtZnZncAzQBLwmHNuh5ndD2x2zq0B/h74DzO7i9D38WecV6cuIiPIqdzU9wKhL84xpeIUM7edRHeaiqdjCs65tcDaiLavdfm6DFjhZQ0iI9HB2dmhS0b94aA5M1mBIIAmxBMZlmompXe/ZNSbgIX6i6BQEBmWgkkD+71/oP1l+FIoiAxDgfaBDc0NtL8MXwoFkWGmPQBJrcG+O54RdOQd7mEqVBmRFAoiw0gwADsuHEdrev/vIQkEHVN39fBIs4xICgWRYSJosON9+QMaNA60Bck/1ER2rb9PCkv88HuaCxGJgqBB2fJ8qidnhLUntQRxAbo/0Rx0BIKO/ENNFG6s0e2o0kmhIJLgggblF+RRNSU8ENJPtbKo9CgtGckcmJ1NzaR0XJJh7aExhKk76xh9XGcIEk6hIJLAnEHFsjyOTc0Ma0+va2XxC8cY1RwkrbmF4g01gP9z90j805iCSIJyQEVJLkfPDQ+EtPo2FpUeY1RTuz+FSUJTKIgkIAfsLMnl3elZYe1pDW0sLj1KmgJBBkmhIJJgHLBryViOzAgPhFGNbSwqPUpaowJBBk+hIJJAHPD24rEcPi98seTUxtAlo/QGBYIMjUJBJEE4YPfCMRyaFREITe0sfuEYGfVt/hQmw4pCQSQBOGDPgjFUzhkd1p7S3M6iF46SUadAkOhQKIjEOQfsLc7hwNyIQDjdzqLSY2SeUiBI9CgUROLcvqLR7C/KCWtLPt3OwheOkXWq1aeqZLhSKIjEsX2Fo9lXPCasLbklyKIXj5F9QoEg0adQEIlTB+Zks3d+eCAktQRZ+OIxso8rEMQbCgWROHRwdjbvLBwb1pbUGmThS8cYrRlNxUMKBZE4U3leFrsXdQ+EBS9VkVOjQBBvKRRE4sihGVm8vSQ3rC3QFmT+y1WMqT7tU1UykigUROLE4emZ7CrpORDGVikQJDYUCiJx4Mi5meyMCARrdxSvryb3mAJBYkehIOKzo1MzqFiWC/be+mfW7pi/voq8o80+ViYjkUJBxEfHCjIoW5YXHghBR/Gr1eS9q0CQ2FMoiPjk2OR0ypbnha2dbEFH0avV5B9u8rEyGckUCiI+qJqUTtn78nFdAoGgo/C1Gs45pEAQ/ygURGKsemIaOyIDwTkKN9Yw/mCjf4WJoFAQiama8Wlsv3AcLik8EOZurGXCAQWC+E+hIBIjteeMYvuK/PBAAOZsrmXi/gafqhIJp1AQiYHS47Dt/eMIJof/l5u9pZZJexUIEj8UCiIee/kEfHgb3QJh1uu1TH6n3qeqRHqmUBDx0Ksn4apt0BAMbz9v63EKdisQJP4oFEQ8svEUXPkW1LeHt8988zhTdtX5U5RIHxQKIh54vQ4++BacigiE6dtOMHWnAkHil0JBJMrerIfL34QTbeHt07afYFr5KX+KEuknhYJIFG3vCITjEYHwT1NhWpkCQeKfQkEkSsob4LI3oTpi+eR/mAJfnw7W89tE4opCQSQKdjbCpW/CsYhAuKsAvjUjbBJUkbimUBAZot2NcOlWeDdi+eS/mQzfmalAkMSiUBAZgj1NcMmbcDgiED4/Cb53ngJBEo9CQWSQ9jfDJVuhMmK1zNsmwkOzFAiSmDwNBTO70sx2mtluM7unlz43mFmZme0ws194WY9ItBzsCIQDEYHw6fHw77PD1s0RSSjJXu3YzJKAh4ArgEpgk5mtcc6VdekzC/hHYIVz7riZneNVPSLRcuh0aFB5b8RqmZ88B/5zrgJBEpuXZwrLgN3OuT3OuRbgcWBVRJ+/BB5yzh0HcM4d87AekSF793RoUHl3xOJoHx8HP5kLSQoESXDmnPNmx2bXAVc6527reP0p4ALn3J1d+vwW2AWsAJKA+5xzT/ewr9uB2wHGjx9//uOPP+5JzV6rr68nKyvL7zISlt/H7zgp3MUi9pMZ1n4RVXyVMpI5+/+lXQdazro9FnIzm6ltSPPt82dPTR3S+/0+hol8/C655JItzrmSvvp5dvmon5KBWcBKoAB40czmO+dOdO3knHsUeBSgpKTErVy5MsZlRkdpaSmJWns88PP4VbeELhlFroWzKg9+NW8cKYGL+9zH/Xcc8Ki6/rtxeQWPb5jr2+evu2XqkN7v9zFM9OPXH15ePjoETOnyuqCjratKYI1zrtU5t5fQWcMsD2sSGbDaVrjiLdgWEQhX58LqeZCie/hkGPHy23kTMMvMpptZKnAjsCaiz28JnSVgZvnAbGCPhzWJDMiJVvizN2FrxNIHHxwLT86DUQoEGWY8+5Z2zrUBdwLPAOXAE865HWZ2v5ld09HtGaDGzMqA54G7nXM1XtUkMhAn20LTX2+JCITLx8J/F0Nakj91iXjJ0zEF59xaYG1E29e6fO2AL3b8EYkbdW1w1VuwMWLpg5Vj4KliSFcgyDClk1+RCPVt8KFt8GrETNfvz4HfFUOGAkGGMYWCSBeN7fCR7fDyyfD2942GtfMhy+/79UQ8plAQ6dDUDtdsg9IT4e3LsuEPCyBbgSAjgEJBBGhuh2u3w3MRgbAkC55ZADkKBBkhFAoy4p0OwnU74Jnj4e0LM+HZhTAmxZ+6RPygUJARrTUIH98Bv68Nby/OhD8thFwFgowwAwoFM8vsmP1UJOG1BuGmMngq4smYwgx4biHkD22aHpGEdNZQMLOAmX3CzH5vZseACuBIx/oHD5rZebEpUyS62oLwqXL4dXV4+5x0WLcQzlEgyAjV15nC88BMQmseTHDOTXHOnQO8H9gA/IuZ3exxjSJR1e7gMxWwuiq8/bx0WLcIJozypy6ReNDXPRWXO+daIxudc7XAr4Ffm5muukrCCDq4bSf8PGLljulpoTOESQoEGeHOeqZwJhDM7PLIbWb26a59ROJd0MHndsFP3g1vP3cUPL8Ipvg3Tb5I3OjvQPPXzOyRjoHm8Wb2O+AjXhYmEk3OwZ1vw4+OhLcXjApdMjpXgSAC9D8ULgbeAbYCLwO/cM5d51lVIlHkHPzdbnjkcHj7pFR4fiHMSPenLpF41N9QGEtozeV3gNPAuWam1Wgl7jkHf/8O/N+I5Z0mpIbOEM7L8KcukXjV31DYADztnLsSWApMAtZ7VpVIFDgH9+yB71aGt49LCT2HMEeBINJNf2d0udw5dwDAOdcE/K2ZXeRdWSJD4xx8dS98+2B4e15y6C6jokx/6hKJd309vDYN4EwgdOWce9FCCrwpTWTw7t8P34j4rh2bHJq6ojjLn5pEEkFfZwoPmlkAeArYAlQBacB5wCXAZcD/Aip73YNIjD2wH+7bF96WkxSa3G5Rti8liSSMs4aCc+56MysCPgl8FpgANBFac3kt8A3nXLPnVYr004MH4J/2hreNToI/LoTzFQgifepzoNk5Vwb8b+B3hMJgL7AJeFKBIPHkuwfhH/aEt2UlwdMLYNlof2oSSTT9HWj+f8Ap4Psdrz8B/BS4wYuiJD5deke3oaWYunF5C/f3UkPleVm8vSQ3rC2pNcisdVX80y9PR+Xz1z08NSr7EYln/Q2FYudcUZfXz5tZmRcFiQzUoRndAyHQFmT+y1WMqY5OIIiMFP19TuF1M1t+5oWZXQBs9qYkkf47PD2TXSU9B8LYKgWCyED190zhfOAVMztz7j4V2Glm2wDnnFvgSXUiZ3Hk3Ex2RgSCtTuK11eTe0yBIDIY/Q2FKz2tQmSAjk7NoGJZLnSZbcXaHfPXV5F3VPc/iAxWv0LBObff60JEIjngVG4qB+eMpmZiGs8nTSEwyZF5opW63NTwQAg6il+tJu9dBYLIUPT3TEEkpoIG5cvyqJ6cTjBgEAgFQDDZqMvrHghFr1aTf7jJr3JFhg2FgsQdR5dASO7hXoiuE/Q6x9zXajjnkAJBJBr6e/eRSMycyk3tPRAiWBAyGtpiUJXIyKBQkLhzcHZ26JJRPziDA7M1f4VItCgUJO7UTErvHEPoU8BC/UUkKhQKEneCSQNb1G+g/UWkdwoFiTuBdudpfxHpnUJB4k7e4abQ0mn9EXSh/iISFQoFiTtjqvr/AFog6Ji6q87DakRGFoWCxJWmjCT2Fo8JfxahF4G2IPmHmsiubYlBZSIjgx5ek7jRnmRsXzGOtlFJ7zU6F3qarevdSEFHIOjIP9RE4cYaNMwsEj0KBYkLDqhYmkv92NSw9knv1NOaGqBmUjouybD20BjC1J11jD6uMwSRaFMoSFw4MCebY1Mzw9rGHWxk9uvHO88EblxeweMb5sa+OJERRGMK4ruaCWnsWTAmrC3zRAtzN+nSkEisKRTEV41ZyZQtzw8bWE4+3c789dUkt+n5A5FYUyiIb9qSjW0r8mlL7fJtGHTM21BDuia5E/GFp6FgZlea2U4z222h4UFCAAAP6UlEQVRm95yl38fMzJlZiZf1SPw4Mz12Y074wPLMt06Qq5XTRHzjWSiYWRLwEHAVUATcZGZFPfTLBv4OeM2rWiT+7CsaTXVBRljb+P0NTNGDaCK+8vJMYRmw2zm3xznXAjwOrOqh39eBfwH06+EIUT0pnX3F4QPLWcdbmLO5VgPLIj7zMhQmAwe7vK7saOtkZkuAKc6533tYh8SRhuxkyi7IC2tLaW5n/voqkjSxnYjvfHtOwcwCwL8Cn+lH39uB2wHGjx9PaWmpp7V5pb6+PmFrB7hx+dAeFmu0ZL454QLaU977XSTggvztydeZveB4n+/PzWzmxuUVQ6phKEpL9wzp/UM9ftGgYzg0iX78+sNcf2ejHOiOzd4H3Oec+2DH638EcM59s+N1DvAOUN/xlglALXCNc25zb/stKSlxmzf3ujmulZaWsnLlSr/LGLRL7zgw6Pc6g7dWjKM2YkGcWa/XUrC7vpd3hfP74bV1D08d0vuHcvyiRcdwaBL5+JnZFudcnzfzeHn5aBMwy8ymm1kqcCOw5sxG59xJ51y+c26ac24asIE+AkES1955Od0CYcLeeib3MxBEJDY8CwXnXBtwJ/AMUA484ZzbYWb3m9k1Xn2uxJ9jBensL8oJa8uuOc3sLRpYFok3no4pOOfWAmsj2r7WS9+VXtYi/qjPSaF8WfjAcmpTO/NfqSYp6FNRItIrPdEsnmlNDbBtxTiCye99m1m7o/iVKkY1tftYmYj0RqEgngga7FieR3NW+Mno7Ddqyanx/y4cEemZQkE8sWfBGI5PCB9YnrS7jkl7GnyqSET6Q6EgUffu1AwOzhkd1pZT1cysrX0/iyAi/lIoSFTVjU1hZ0luWNuoxjaKX6kmoIFlkbinUJCoaRkVYNuF4QPLgXZH8fpqUk8rEUQSgUJBoiJosP19+ZzODB9YnrO5VmspiyQQhYJExe5FYzl5TlpYW8GuU0zYr4FlkUSiUJAhOzw9k0OzssPaxhxtZuabJ3yqSEQGS6EgQ3IyN5VdS8IHltPq25j3ajUBzYQtknAUCjJop9MCbF+Rj0t6bwajQFuQ+eurSG3RwLJIIlIoyKAEA7D9wnG0pIcPLM/dVEvWyVafqhKRoVIoyIA5YNeSXE7ljwprn1p+kvEHG/0pSkSiQqEgA3Z4ZhZHZmSFteUeaWLG9pM+VSQi0aJQkAE5kT+KtxePDWtLr2ulaEM1poFlkYSnUJB+a05PYvuF+bjAewPLSa1B5q+vJqVViSAyHCgUpF+a2mH7inxa05LC2gs31pB5SgPLIsOFQkH65BzcvgvqcsMHlqftOMm4Q00+VSUiXlAoSJ/+rRL+62h4W/6hRqbt0MCyyHCjUJCz+lMtfOmd8LaMU60UvlaD9fwWEUlgCgXp1d4m+HgZdH02OaklyPyXq0hu08CyyHCkUJAeNbTDR7dDbVuXRueYt6GajPq2Xt8nIolNoSDdOAd/UQFvRcx6PWPbSfLebfanKBGJieS+u8hI8y8H4FdV4W3XjYPqilP+FCQiMaMzBQnzhxr4yt7wtvmZ8OM5aGBZZARQKEintxvhprLQhHdn5CbDb4shS+eUIiOCQkEAONUGq7bDyfb32gLA6iKYke5bWSISYwoFIejglnIoj5j1+sGZcHluz+8RkeFJoSB8fT88VRPedvN4uKvAn3pExD8KhRHut1Vw377wtiVZ8OhsMI0si4w4CoURrKwBPlUR3jYuBf67GNKTen6PiAxvCoUR6kRraGC5vsvAcrLBk/Ngapp/dYmIvxQKI1C7g0+Uw+6IWa//7Ty4aIw/NYlIfFAojED37oU/1Ia33ToB7pjkTz0iEj8UCiPME8fgWwfC25aPhoc0sCwiKBRGlDfrQxPddTUhFX49D0bpO0FEUCiMGDWtoamwG7ssjpBq8Jt5MGlU7+8TkZFFoTACtAXhhh2wL2LW64dmwfty/KlJROKTQmEE+Ic9sO5EeNsdk+A2DSyLSASFwjD3s3fhu5XhbR/Ige+e5089IhLfFArD2OZT8Jc7w9sKRsGv5kGq/uVFpAf60TBMHW2Ba3fA6S6LI6QFQmsjjE/1ry4RiW8KhWGoJQjX7YDK0+Htj86G87P9qUlEEoOnoWBmV5rZTjPbbWb39LD9i2ZWZmZvmdlzZnaul/WMFHfthpdPRrQVwKcm+FOPiCQOz0LBzJKAh4CrgCLgJjMriuj2BlDinFsAPAl826t6RoofHYaHD4e3XTYGvj3Dn3pEJLF4eaawDNjtnNvjnGsBHgdWde3gnHveOXdmva8NgJZ1GYJXTsIdb4e3TUuD1fMgWRcKRaQfvPxRMRk42OV1ZUdbb24F/uBhPcPa4dPwsR3Q2mVgOaNjYDkvxb+6RCSxmHOu716D2bHZdcCVzrnbOl5/CrjAOXdnD31vBu4ELnbOne5h++3A7QDjx48///HHH/ekZq/V19eTlZUV9f22YHyBxZQzOqz9a+zgEqqi9jm7DrREbV+DkZvZTG2Df4s9zJ46tNu2/D5+oGM4VIl8/C655JItzrmSvvolD/oT+nYImNLldUFHWxgzuxz4J3oJBADn3KPAowAlJSVu5cqVUS82FkpLS4l27c7BbTuh/N3w9n+cCv88Y15UP+v+Ow703clDNy6v4PENc337/HW3TB3S+/0+fqBjOFSJfvz6w8vLR5uAWWY23cxSgRuBNV07mNli4N+Ba5xzxzysZdh6+DA8FhEIV+XC16f7U4+IJDbPQsE510boktAzQDnwhHNuh5ndb2bXdHR7EMgCfmVmW81sTS+7kx68cAK+sDu8bVY6/KIQkrQ2gogMgpeXj3DOrQXWRrR9rcvXl3v5+cPZgWa4fge0dRkSykoKDSyP0cCyiAySblRMQI3tcO12qGoNb/+vQijK9KcmERkeFAoJxjm4fSe8Xh/eft80WJXvS0kiMowoFBLMdyvh5xFD8qvy4KuaIEREokChkECerYW73wlvK8yAnxZCQAPLIhIFCoUEsacJPl4GXZZYJicJniqG0Z7eLiAiI4lCIQHUt8FHt8PxtvfaDPhlEczK8K0sERmGFApxzjn4i52wrSG8/YHpcFWePzWJyPClUIhz3zwAT0ZMX3TDOPiy90+7i8gIpFCIY7+vgXv3hrctyITH5oJpYFlEPKBQiFM7G+ETZdB1Dtvc5NATy5lJvpUlIsOcQiEOneoYWD7V/l5bAHhiHkxP960sERkBRtTNjJf6Pu1uS59T/zpg24p8aiaH31Y0Y+txvvFEHd8Ywueve1gDESJydjpTiDP75uV0C4Tx+xoo2FXnU0UiMpIoFOJI1eR09s3LCWvLrj3NnC21aFxZRGJBoRAnGkanUL4s/MGDlOZ2itdXk9TuzZKpIiKRFApxoDXF2LYin/aU9/45LOgofqWatKb2s7xTRCS6FAo+cwZly/Npyg5fGWfWG8cZU93jktUiIp5RKPhsT3EOtRPD7zOduKeeSe/U9/IOERHvKBR8dHRKBgcKwweWR1efZvbrGlgWEX8oFHxSNyaFiqW5YW2pTW0Uv1JFINjLm0REPKZQ8EFLaoDtK8YRTO4ysNzuKF5fzahmJYKI+GdEPdEcaw44lZvKwTmjqZmYxvNJUwhMciS1OVrTwicwmvN6LTm1Lf4UKiLSQaHgkaBB+bI8qienEwxY53qZwWQjGHHUJ79dx8S9DT3sRUQkthQKHnB0CYTks1+hS25qY+bW47EpTESkDxpT8MCp3NR+BQJAMCVAw9jUGFQlItI3hYIHDs7ODl0y6odgwDgwO9vjikRE+keh4IGaSemdYwh9Cliov4hIHFAoeCCYNLBHzwbaX0TEKwoFDwQGOKvpQPuLiHhFoeCBvMNNEOznD/qgC/UXEYkDCgUPTNlVR6CfoRAIOqZqVTURiRMKBQ+Mrm0h/1ATgbazT1kRaAuSf6iJbD3JLCJxQqHgAQMKN9a8FwyRZw1B1xkIhRtrNCOqiMQNPdHskYCDotdqqMtN5cDsbGompeOSDGsPjSFM3VnH6OM6QxCR+KJQ8JARupRUvKEGgBuXV/D4hrn+FiUicha6fCQiIp0UCiIi0kmhICIinRQKIiLSSaEgIiKdFAoiItJJoSAiIp0UCiIi0snTUDCzK81sp5ntNrN7etg+ysxWd2x/zcymeVmPiIicnWehYGZJwEPAVUARcJOZFUV0uxU47pw7D/gu8C9e1SMiIn3z8kxhGbDbObfHOdcCPA6siuizCvh/HV8/CVxmZpofTkTEJ16GwmTgYJfXlR1tPfZxzrUBJ4E8D2sSEZGzMOe8WQrSzK4DrnTO3dbx+lPABc65O7v02d7Rp7Lj9Tsdfaoj9nU7cHvHyznATk+K9l4+UN1nL+mNjt/Q6RgOTSIfv3Odc+P66uTlLKmHgCldXhd0tPXUp9LMkoEcoCZyR865R4FHPaozZsxss3OuxO86EpWO39DpGA7NSDh+Xl4+2gTMMrPpZpYK3AisieizBvh0x9fXAeucV6cuIiLSJ8/OFJxzbWZ2J/AMkAQ85pzbYWb3A5udc2uA/wR+Zma7gVpCwSEiIj7xdJEd59xaYG1E29e6fN0MXO9lDXEm4S+B+UzHb+h0DIdm2B8/zwaaRUQk8WiaCxER6aRQiJG+pvyQ3pnZY2Z2rOMWZhkgM5tiZs+bWZmZ7TCzv/O7pkRiZmlmttHM3uw4fv/sd01e0uWjGOiY8mMXcAWhh/g2ATc558p8LSxBmNlFQD3wU+dcsd/1JBozmwhMdM69bmbZwBbgo/r+65+OWRYynXP1ZpYCvAz8nXNug8+leUJnCrHRnyk/pBfOuRcJ3Z0mg+CcO+Kce73j6zqgnO6zC0gvXEh9x8uUjj/D9rdphUJs9GfKDxHPdcxEvBh4zd9KEouZJZnZVuAY8KxzbtgeP4WCyAhhZlnAr4EvOOdO+V1PInHOtTvnFhGamWGZmQ3by5gKhdjoz5QfIp7puBb+a+Dnzrnf+F1PonLOnQCeB670uxavKBRioz9Tfoh4omOg9D+Bcufcv/pdT6Ixs3FmNqbj63RCN4xU+FuVdxQKMdAxLfiZKT/KgSecczv8rSpxmNkvgVeBOWZWaWa3+l1TglkBfAq41My2dvz5kN9FJZCJwPNm9hahX/Cedc79j881eUa3pIqISCedKYiISCeFgoiIdFIoiIhIJ4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgsgQmdlSM3urY979zI4594ft3DgyvOnhNZEoMLP/DaQB6UClc+6bPpckMigKBZEo6JjTahPQDFzonGv3uSSRQdHlI5HoyAOygGxCZwwiCUlnCiJRYGZrCK2oN53Q0pd3+lySyKAk+12ASKIzs1uAVufcLzrW437FzC51zq3zuzaRgdKZgoiIdNKYgoiIdFIoiIhIJ4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIp/8P5RNXTTn1oS8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] From c5627ab9aa5c115bf0532f8675b044ac72b8f3bc Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Tue, 23 Apr 2019 10:58:12 +0200 Subject: [PATCH 067/116] Contributing the time_series, portfolio_diversification, and generating_random_variates notebooks. --- .../finance/generating_random_variates.ipynb | 420 ---------------- .../general/generating_random_variates.ipynb | 473 ++++++++++++++++++ qiskit/finance/data_providers/__init__.py | 20 - .../data_providers/drivers/__init__.py | 26 - .../data_providers/drivers/_basedriver.py | 154 ------ .../data_providers/drivers/algorithminput.py | 67 --- .../drivers/dataondemand/README.md | 14 - .../drivers/dataondemand/__init__.py | 21 - .../dataondemand/dataondemanddriver.py | 156 ------ .../drivers/exchangedata/README.md | 22 - .../drivers/exchangedata/__init__.py | 21 - .../exchangedata/exchangedatadriver.py | 138 ----- .../drivers/wikipedia/README.md | 11 - .../drivers/wikipedia/__init__.py | 21 - .../drivers/wikipedia/wikipediadriver.py | 136 ----- .../finance/data_providers/time_series.ipynb | 236 ++++++--- .../portfolio_diversification.ipynb | 381 +++++++------- 17 files changed, 835 insertions(+), 1482 deletions(-) delete mode 100644 qiskit/aqua/finance/generating_random_variates.ipynb create mode 100644 qiskit/aqua/general/generating_random_variates.ipynb delete mode 100644 qiskit/finance/data_providers/__init__.py delete mode 100644 qiskit/finance/data_providers/drivers/__init__.py delete mode 100644 qiskit/finance/data_providers/drivers/_basedriver.py delete mode 100644 qiskit/finance/data_providers/drivers/algorithminput.py delete mode 100644 qiskit/finance/data_providers/drivers/dataondemand/README.md delete mode 100644 qiskit/finance/data_providers/drivers/dataondemand/__init__.py delete mode 100644 qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py delete mode 100644 qiskit/finance/data_providers/drivers/exchangedata/README.md delete mode 100644 qiskit/finance/data_providers/drivers/exchangedata/__init__.py delete mode 100644 qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py delete mode 100644 qiskit/finance/data_providers/drivers/wikipedia/README.md delete mode 100644 qiskit/finance/data_providers/drivers/wikipedia/__init__.py delete mode 100644 qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py diff --git a/qiskit/aqua/finance/generating_random_variates.ipynb b/qiskit/aqua/finance/generating_random_variates.ipynb deleted file mode 100644 index f14f562b4..000000000 --- a/qiskit/aqua/finance/generating_random_variates.ipynb +++ /dev/null @@ -1,420 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Generating Random Variates*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Albert Akhriev[1], Jakub Marecek[1], Marco Pistoia[1]\n", - "\n", - "### Affliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "\n", - "While classical computers use only pseudo-random routines, quantum computers\n", - "can generate true random variates.\n", - "For example, the measurement of a quantum superposition is intrinsically random,\n", - "as suggested by Born's rule.\n", - "Consequently, some of the\n", - "best random-number generators are based on such quantum-mechanical effects.\n", - "Further, with a logarithmic amount of random bits, quantum computers can produce\n", - "linearly many more bits, which is known as \n", - "randomness expansion protocols. \n", - "\n", - "In practical applications, one wishes to use random variates of well-known\n", - "distributions, rather than random bits.\n", - "In this notebook, we illustrate ways of generating random variates of several popular\n", - "distributions on IBM Q.\n", - "\n", - "## Random Bits and the Bernoulli distribution\n", - "\n", - "It is clear that there are many options for generating Bernoulli-distributed scalars (i.e. either 0 or 1). Starting from a simple circuit such as a Hadamard gate followed by measurement, one can progress to\n", - "Bernoulli-distributed vectors.\n", - "\n", - "By addition of such random variates, we could get binomial distributions. \n", - "By multiplication we could get geometric distributions.\n", - "Both may lead to unacceptable circuit depth, though.\n", - "\n", - "\n", - "## Uniformly-distributed scalars and vectors\n", - "\n", - "It is clear that there are many options for approximating uniformly-distributed scalars\n", - "by the choice of an integer from a finite range uniformly at random,\n", - "e.g., by a binary-code construction from the Bernoulli-distributed vectors.\n", - "In the following snippet, we generate random bits,\n", - "which we then convert using the binary-code construction, up to the \n", - "machine precision of a classical computer." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "import sys, math, time\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\",category=DeprecationWarning)\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.random_distributions import MultivariateNormalDistribution\n", - "from qiskit.aqua.components.uncertainty_problems import FixedIncomeExpectedValue\n", - "from qiskit.aqua.components.random_distributions import *\n", - "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute\n", - "from qiskit.tools.visualization import plot_histogram, circuit_drawer\n", - "\n", - "# In this example we use 'qasm_simulator' backend.\n", - "glo_backend = BasicAer.get_backend(\"qasm_simulator\")\n", - "\n", - "# Parameters.\n", - "glo_num_qubits = 5" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uniform distribution over floating point numbers." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Uniform distribution of floating point numbers:\n", - "sample type: , element type: float64 , shape: (54321,)\n", - "sample min: -7.6697, max: 19.5199\n", - "time: creation: 0.00043, sampling: 6.49\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucHFWd9/HPl4R7uAU0AgESSfAx4MpKJK7XCREMCht8DA8ZEFDBqGt0L95AFyQRV2EvsCqiQVgwSoKLskYMIkpGxEVMUFYILDjczIVbSLhMBCHwe/44Z0jR6Z7pnqnpSc98369Xv6a66pxT51R196/OqZoqRQRmZmZl2GqwK2BmZkOHg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKg2S9A1JZxTef0TSw5K6JO0+mHXL9blf0tvz9GclfavEsrskvTJPXyrp7BLLfsl2bZbe9p+kd0tamZf/ZXH7WiIpJE0YhPXeL+lpSQuave7hQtL1kp6RdGPdmSJiWL2AACZUzDsL+E4fytoaeBp47WC3q1Cn+4G3N5inAzi1wTyXAmf3sY7vA27cArZVr/sPuAeY0Z/t28g2B/4WuA/YANwJHFAlzX9U+xwP4nYclLrUsy+Aa4CuwutZ4LYe0u8AfB1YCzwB3NDXsvrZti8AtwEbgbMqlgn4HPBH4ElgEbBzL9vp6UK9f1pYdjJwSy5nFXAuMLIif0PfV/dU+mcMsB2wotGMSlpi+0saOdh1GCD17L/9elleGkmnAqcA7wJGAUeRftyKad4M7N+M+jTbQHzOIuLIiBjV/QL+G/jPHrLMB0YDr85//74fZfVHJ/Bp4MdVlp0EnAi8CdgL2B74ai/lHV2o+xGF+TsAfwfsAUwBpgGf7FfNB+PIZjBf9NJTAdpIEfsTwCPAg8D7C2kvBc4GDiAdTQYp+l+fl78RWEY6ylkGvLGQtwP4IvAr0pHDhDzvbNIHtAv4EbA78F3S0cMyYFwP7TkReAB4jHT0cj/56K2iXdsB38npHs/ljsn1eR54Jq//a4Xt9FHgD8B9ldsub4dvANcBTwG/APbLy8bltCMr2n4q6cv6TF5nF/B4cbsW0n+Q9MVaBywG9qrYhx/OdVsPXACoxvbZFjgfWJNf5+d5VfdfRb6uvHwDcE/hqO/tPZWdl+0GXA08mut4NTA2L9tsm5OGolcC03rY1yOB3wF/QS+9g562ERU988r9RYOfyZz348C9pCD4z8BWheUfIPW61gPXdn9Oqn3OSEfh55G+e08AvwcOqtHGF/dFnd/9cXm7j6+x/FW5fTWP+ustq8Tfq++weU/lSuBThfdvzJ+lHfq7nYB/AH5UMe99uKfSb68AdgH2Jh05XiBpt2KCiLgbODC/3TUiDpM0mnRk8RXSl/DfgB9XjNWfCMwGdiIFA4BZef7epKPQm0hDHKNJX8bPV6ukpEnAhTnvXnmdY2u06eTcpn1yug8DT0fE54BfAnMiHcXMKeQ5hnT0MqlGmSeQuul7ALeSfnR6FBF35nXflNe3a5V2HQZ8Cfh/wJ6k7bSoItlRwOuB1+Z076ixys8BbwAOzmkPBf6x2v6rqOefIx2NQhoeq9Y7qFp2XrYVaR/uB+xLOoj4Wi672jYfm18H5XM490maW9Gb/XvScMzva7S1Ur3bqJpGP5PvBiYDrwNmkAIJko4BPgv8X+Blud0LK/IWP2dHAG8lBf1dgeNIB0JlOAn4ZUTcV2P5FNJnba6ktZJuk/SePpY1kJRfxffbAhN7yPNdSY9K+qmk1/aQ7q30s2fuoFLdc8C8iHguIpaQjtZeVUe+dwF/iIgFEbExIhYC/wscXUhzaUSsyMufy/P+IyLuiYgnSOO290TEzyJiI6l7/Zc11jcTuDoiboiIPwNnAC/00KbdSUe3z0fELRHxZC/t+VJErIuIp2ss/3Fh3Z8D/krSPr2UWY8TgEsi4re57NNz2eMKab4cEY9HxB+BpaQf9lplzYuIRyLiUWAu6ceyDDXLjojHIuL7EfGniHiK1Dt5Ww9ldR8MHAG8BpgKtJMOasjb9UPAmQ3Ur95tVE2jn8lz8mflj6QeW3ue/yHS5+jOnPefgIMl7VfIW/ycPUc64Po/pJ7VnRHxYAP17slJpB5xLWOBg0g9pL2AOcBlkl7dh7IG0jXAqZLGSdoF+Eyev0ON9CeQelb7kT4H10qqdjD3ftKBwb/0p3LDMag8TzpBW7Q16cPc7bH8Bej2J9IYd2/2YlPvo9sDpKO9biur5Hu4MP10lfe11r1XsbyI2EDto7oFpKGHRZLWSDpXUuV2qFStrlWXR0QXaahqr17y1OMl2zGX/Rgv3Y4PFaZ72j+V++SBkurYY9mSdpD0TUkPSHoSuAHYVdKIGmV1B+5zcyC4H/gm8M48/3xSAHuigfrVu42qafQzWfysFLfxfsC/S3pc0uOkz4io8Z2IiOtJPboLgIclzZe0cz0Vzlc7duXXNyqWvZk0AnFlD0V0B7WzI+LZiPgF6Ue4eA6i3rIG0iWk3l4HqVexNM9fVS1xRPwqIp7OBzhfIg1/v6WYJvcovwwcGRFrq5VTr+EYVP5IitpF49k8GPTFGtKXqGhfYHXhfZnPGniQNJwFpB8yUm9kM7nXNTciJpHGYI8iHW31VKfe6lpc9yjS0Mga0jkIeOmR0ysaKPcl21HSjqR2ra6Zo86ySPtjTR/KabTsT5B6t1MiYmfSsAJsGrao3AZ3ka4mqrVtpgH/LOkhSd3B4iZJx/eh3huovW/6qthDLW6HlcCHImLXwmv7iPjvQvqXtDkivhIRh5CGJw8APlVPBSLin2LTyegPVyw+GfhBPkCppd5hxXrKGjAR8UJEfD4ixkXEWFJgWU3934+gMHwmaTpwEelk/m39rd9wDCpXAP8oaaykrfL/HBxNOUcdS4ADJB0vaaSk40jjxFeXUHY1VwJHSXqzpG2AedTYp5KmSnpNPlJ+knRE9nxe/DDwyj6s/52FdX8BuDkiVuahoNXAeyWNkPQBXnrF0sPA2JyvmsuB90s6WNK2pCGTm/PRe6MWkvb3yyTtQRo++k4fymm07J1IR76P53NtlecgXrLNI+JPpM/mpyXtJGks6WKF7s/OAaRzIwezaRjraOCqPtT7VuCtkvbNwyen96GMSp+StFsepvtbUlsgXcxxuqQDASTtIunYWoVIer2kKbkXvYFNF3X0maTtgWPpfbjqBtJB5+n5+/sm0oU71/ahrH6RtLWk7Ujf55GStuvu5UoaLWn/fAXpJNK523kRsdnQd97Hb5K0TS7jU6RzoL/Kyw8jnQt9T0T8poy6D8egMo90VcuNpKtRzgVOiIjb+1twRDxG6gF8gjRc82ngqP52J3tY3wrSlTOXk3ot66nRBWZTd/1J0onWX7DpB/DfgZmS1kv6SgNVuJz0Y7kOOIQ0dtvtg6QjzMdIR5zFI9PrSUdXD0nabNtExM9J54e+n9u1P+nEcV+cDSwnHYXeBvw2zytDT2WfT7rUcy3wa+AnFXmrbfM5pPN3a0gnxi8nDXWQz9s81P3K6df2cL6rpoi4jvSj/3vS/yiUcdDzw1zWraSLVS7O67oKOIc07PokcDtwZA/l7Ew6al7Ppqsa+zXGT7oQ4Ak2DRO9SNIKSSfkuj5HusjgnTn9RcBJEfG/9ZRVpewuSW/J02+R1FVY9llJ1/SQ/SLSQUk76Xzl02w6F7gH6QB2A+n8yiURMb9Q9jcKw387kS7mWU860JtOGuLqHiY/g3QBz5LC0GFP9epV9yWGZmYtRdJdpKsDr4qIkwe7PkORpOtIVzj+JiKm1ZXHQcXMzMoyHIe/zMxsgDiomJlZaYbqPZ1q2mOPPWLcuHGDXY2GbNiwgR133HGwqzFg3L7W5va1tnrbd8stt6yNiJf1lm7YBZVx48axfPnywa5GQzo6OmhraxvsagwYt6+1uX2trd72Sarrf/k8/GVmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVhoHFTMzK42DipmZlcZBxczMStO0oCJpuqS7JHVKOq3K8m0lXZGX31zx6Nju5wJ0SfpkvWWamVlzNeU/6vPDZS4ADic972OZpMURcUch2SnA+oiYIGkW6RkMxxWWn0d6dkAjZdowNHXqpumlvT71wszK1KyeyqFAZ0TcGxHPAotID8MpmgFclqevBKZJErz4/OR7SQ92aqRMMzNrombd+2tv0rOqu60CptRKExEbJT0B7C7paeAzpB7JJ6ul76FMG2K29F7Ill4/s4HWrKCiKvMqnw5WK81c4LyI6Modl0bKTAml2cBsgDFjxtDR0dFbfbcoXV1dLVfnRjTSvvb2TdO1stSTZqBUW7f3X2tz+xrTrKCyCtin8H4s6Tnc1dKskjSS9NzkdaTex0xJ5wK7Ai9Ieob0POzeygQgP795PsDkyZOj1e446rukbjJ37qbpWj2BetIMlGrr9v5rbW5fY5oVVJYBEyWNB1YDs4DjK9IsBk4GbgJmAtdHetbxW7oTSDoL6IqIr+XA01uZZgPCw1xm1TUlqORzJHOAa4ERwCURsULSPGB5RCwGLgYWSOok9VBm9aXMAW2Ivcg/qtYIf16Gj6Y9pCsilgBLKuadWZh+Bji2lzLO6q3MweYvj5kNZ8PuyY9mWyofkNhQ4KBiNoiKgcSsEVvqQYiDSh9tqTvUms+BobUN5e/yYLTNQWUQNHtH11rfUP4ymZVh6tT0v0fFS8XB35eeOKgMsv78sDso2JbMPbjhyUHFrE7+kRwcA3Hw5H05cBxUzMyyVg02W9KohYPKFqSeD0arfuj7o9lt3pK+oMNVWft8KOzLVmuDg4oNK632Be2vei7SqFxmjdnSzosO9oGng8oWqvjBqHb1yUCub6CvEBsuP+zd7Wxvh4G+H+Fw26YwtNvZyhxUGtDoEcBgHzGY98GWyAcqQ5uDyhCxJQ5n+ItuNvw063HCZmY2DLinYpvZEoaMtoQ6WOO83zYZiifh6+GgYi2rv19aD8/ZlmSofB4dVMxaVK2j1jKPZmuVtSX/6DVjuzRqqASMejioDFGD9QVqhe55Nc2sd6tuo4HgbTH0NC2oSJoO/Dvp0b/fiogvVyzfFvg2cAjwGHBcRNwv6VBgfncy4KyIuCrnuR94Cnge2BgRk5vRFhs+hsuP3nBppw28pgQVSSOAC4DDgVXAMkmLI+KOQrJTgPURMUHSLOAc4DjgdmByfib9nsD/SPpRRGzM+aZGxNpmtMOq688PUvHW4kN5WMA/2uXzNt0yNeuS4kOBzoi4NyKeBRYBMyrSzAAuy9NXAtMkKSL+VAgg2wHRlBqbWU1Tp256mRUpYuB/oyXNBKZHxKn5/YnAlIiYU0hze06zKr+/J6dZK2kKcAmwH3BiYfjrPmA9KdB8MyLmU4Wk2cBsgDFjxhyyaNGiPrXj7rurzz/ggN7T9Mfo0V2sWzeqlLL6U9eBamd3+wZ6Ow6Wvuy/4raoZUvZf3vt1cWoUaNKL3dLUW3/DfT3aCD2Va3PVFfXpv3Xk6lTp95SzymGZgWVY4F3VASVQyPiY4U0K3KaYlA5NCIeK6R5Nak389aIeEbSXhGxRtLLgeuAj0XEDT3VZfLkybF8+fI+taOeK2EG4sitvb2DhQvbSimrP3UdqHZ2t2+gt+NgGer77/Of76At39xsKO23btX230Dvh4HYV7WGlzs6Nu2/nkiqK6g060T9KmCfwvuxwJoaaVZJGgnsAqwrJoiIOyVtAA4ClkfEmjz/EUlXkYbZegwqA2EofpHMzPqiWUFlGTBR0nhgNTALOL4izWLgZOAmYCZwfUREzrMyn6jfD3gVcL+kHYGtIuKpPH0EMK9J7TFrOT74KY+3ZW1NCSo5IMwBriVdUnxJRKyQNI/U41gMXAwskNRJ6qHMytnfDJwm6TngBeBv8nmWVwJXSepux+UR8ZNmtKeV+ctgZgOpaf+nEhFLgCUV884sTD8DHFsl3wJgQZX59wKvLb+mVosDkpn1xv9Rb2bWREP94My3vjczs9K4p2Jm/XL33QP/uGtrHQ4qtsUY6sMCZfA2si2dg4qZ2RamlQ8efE7FzMxK46BiZmalcVAxM7PSOKiYmVlpHFTMzKw0DipmZlYaBxUzMyuNg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I0LahImi7pLkmdkk6rsnxbSVfk5TdLGpfnHyrp1vz6H0nvrrdMMzNrrqYEFUkjgAuAI4FJQLukSRXJTgHWR8QE4DzgnDz/dmByRBwMTAe+KWlknWWamVkTNauncijQGRH3RsSzwCJgRkWaGcBlefpKYJokRcSfImJjnr8dEA2UaWZmTdSsoLI3sLLwflWeVzVNDiJPALsDSJoiaQVwG/DhvLyeMs3MrIma9TwVVZkX9aaJiJuBAyW9GrhM0jV1lpkKlmYDswHGjBlDR0dHndV+qfb2PmXrt9Gju2hv7xiclTeB29fa3L7WUOtnr6urq8+/idU0K6isAvYpvB8LrKmRZpWkkcAuwLpigoi4U9IG4KA6y+zONx+YDzB58uRoa2vrUyMG65Gp7e0dLFzYNjgrbwK3r7W5fa1h6dLq8zs6Oujrb2I1zRr+WgZMlDRe0jbALGBxRZrFwMl5eiZwfUREzjMSQNJ+wKuA++ss08zMmqgpPZWI2ChpDnAtMAK4JCJWSJoHLI+IxcDFwAJJnaQeyqyc/c3AaZKeA14A/iYi1gJUK7MZ7TEzs+qa9oz6iFgCLKmYd2Zh+hng2Cr5FgAL6i3TzMwGj/+j3szMSuOgYmZmpXFQMTOz0jiomJlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFzMxK46BiZmalqTuoSNp9ICtiZmatr5GeykpJP5Q0M98V2MzM7CUaCSr7AT8HPgM8JGm+pDcPTLXMzKwV1R1UIuLRiPhKRLwe+CvgEdKt6u+VNC8/68TMzIaxvp6of0V+7QzcQ3o2/O8knVZWxczMrPXU/TwVSQcC7wVOALqAy4C/iIjVefkXgN8DXx6AepqZWQto5CFdNwALgZkR8ZvKhRFxv6TzS6uZmZm1nEaGv94dEXMqA4qkQ7uni09yrCRpuqS7JHVWGyaTtK2kK/LymyWNy/MPl3SLpNvy38MKeTpymbfm18sbaI+ZmZWskZ7K1aRzKJV+AozuKaOkEcAFwOHAKmCZpMURcUch2SnA+oiYIGkWcA5wHLAWODoi1kg6iPRM+r0L+U6IiOUNtMPMzAZIrz0VSVvloKBsq8JrIrCxjvUcCnRGxL0R8SywCJhRkWYG6TwNwJXANEmKiN9FxJo8fwWwnaRt62mcmZk1lyKi5wTSC0CtRC8AX4yIs3opYyYwPSJOze9PBKZExJxCmttzmlX5/T05zdqKcj4cEW/P7zuA3YHnge8DZ0eVBkmaDcwGGDNmzCGLFi3qsc213H13n7L12+jRXaxbN2pwVt4Ebl9rc/tawwEHVJ/f1dXFqFG9t2/q1Km3RMTk3tLVM/w1HhDwC+CthfkBPBoRT9dRhqrMq/zx7zFNvvrsHOCIwvITImK1pJ1IQeVE4NubFRIxH5gPMHny5Ghra6ujypubO7dP2fqtvb2DhQvbBmflTeD2tTa3rzUsXVp9fkdHB339Taym16ASEQ/kyf78c+MqYJ/C+7HAmhppVkkaCewCrAOQNBa4CjgpIu4p1G11/vuUpMtJw2ybBRUzM2uOHoOKpPkRMTtP1/yxjoiTelnPMmCipPHAamAWcHxFmsXAycBNwEzg+ogISbsCPwZOj4hfFeo2Etg1ItZK2ho4CvhZL/UwM7MB1FtP5b7C9D01U/UiIjZKmkO6cmsEcElErJA0D1geEYuBi0m3fekk9VBm5exzgAnAGZLOyPOOADYA1+aAMoIUUC7qax3NzKz/egwqEfGlwnS/zihExBJgScW8MwvTzwDHVsl3NnB2jWIP6U+dzMysXL0Nfx3W0/JuEXF9OdUxM7NW1tvw18V1lBHAK0uoi5mZtbjehr/GN6siZmbW+vyMejMzK01v51TujIhX5+mV1PjP+ojYdwDqZmZmLaa3cyofLEy/dyArYmZmra+3cyo3FqZ/MfDVMTOzVlb3ORVJ2+Rn0f9B0ob89wuSthvICpqZWeto5HkqFwKvAj4OPEC6F9jppGebfKD8qpmZWatpJKgcA+wfEY/n93dIuhnoxEHFzMxo7JLih4AdKuZtDzxYXnXMzKyVNXKblgXATyR9lU23qf8ovtW8mZllfblNy2cr3n+I9PAsMzMb5nybFjMzK41v02JmZqWp++ovSTsDZwFvA/ag8Ex536bFzMygsZ7K14HXAfOA0cDHgD8C5w1AvczMrAU1ElSOAN4TET8Ens9/jwNOrCezpOmS7pLUKem0Ksu3lXRFXn6zpHF5/uGSbpF0W/57WCHPIXl+p6SvSFJluWZm1jyNBJWtgCfydJekXUn/ozKht4ySRgAXAEcCk4B2SZMqkp0CrI+ICaTeT/cVZWuBoyPiNcDJpEubu10IzAYm5tf0BtpjZmYlaySo/A/pfArAL0lB4kLg7jryHgp0RsS9EfEssAiYUZFmBnBZnr4SmCZJEfG7iFiT568Atsu9mj2BnSPipogI0v/LHNNAe8zMrGSN3Kblg2w6Of9x4MvArsBJdeTdG1hZeL8KmFIrTURslPQEsDupp9LtPcDvIuLPkvbO5RTL3LvayiXNJvVoGDNmDB0dHXVUeXPt7X3K1m+jR3fR3t4xOCtvArevtbl9raHWz15XV1effxOrqTuoRMS9helHScNV9ap2rqPygV89ppF0IGlI7IgGykwzI+YD8wEmT54cbW1tvVS3urlz+5St39rbO1i4sG1wVt4Ebl9rc/taw9Kl1ed3dHTQ19/Eahr6PxVJH5B0naQV+e8pdZ4c776tS7exwJpaaSSNBHYB1uX3Y4GrgJMi4p5C+rG9lGlmZk3UyPNUzgU+A/wA+FT++0nqu0XLMmCipPGStgFmAYsr0iwmnYgHmAlcHxGRLwj4MXB6RPyqO3FEPAg8JekNObCdBPyw3vaYmVn5Gjmn8j7gdRHx4nkMSVcDvwU+3VPGfI5kDnAtMAK4JCJWSJoHLI+IxaT7jC2Q1EnqoczK2eeQrjA7Q9IZed4REfEI8BHgUtLdkq/JLzMzGySNBJWn8qty3pP1ZI6IJcCSinlnFqafAY6tku9s4OwaZS4HDqpn/WZmNvB6u/X9Kwtvzwd+IOnLbDr/8Sn8H/VmZpb11lPpJF1RVTwZP7UizWHA18qslJmZtabebn3vuxibmVndGjmnAoCkfUn/ZLgqIlb2lt7MzIaPRi4p3lPSL0hDYj8A7pF0g6S9Bqx2ZmbWUhoZ3rqQdP+v3SJiT2A34HfANwaiYmZm1noaGf56M7BnRDwHEBEbJH0aWD0gNTMzs5bTSE9lPem29UWvAh4vrzpmZtbKGumpnAv8TNLFwAPAfsD7gTN6zGVmZsNGI3cpvkjSPcDxwF+Qbt7YHhHXD1TlzMystdQVVPKTGy8BZjuImJlZLXWdU4mI50nPMXlhYKtjZmatrJET9ecBcyVtPVCVMTOz1tbIifqPAa8A/kHSo2y6J1hExL4DUTkzM2stjQSV9w5YLczMbEhoZPjrJmAa8C3Sc1G+BbwduHkA6mVmZi2o0du0HAZ8HHh9/vs24Ov1ZJY0XdJdkjolnVZl+baSrsjLb5Y0Ls/fXdJSSV2SvlaRpyOXeWt+vbyB9piZWckaGf46Btg/Irr/g/4OSTeTbjD5gZ4y5kuSLwAOJz3ga5mkxRFxRyHZKcD6iJggaRZwDnAc8AzpHywPovpTHk/IT4A0M7NB1khP5SFgh4p52wMP1pH3UKAzIu6NiGeBRcCMijQzgMvy9JXANEmKiA0RcSMpuJiZ2RZMEVFfwjRkdTzwVTY9TvijwOXAsu501f45UtJMYHpEnJrfnwhMiYg5hTS35zSr8vt7cpq1+f37gMkVeTqA3YHnge8DZ0eVBkmaDcwGGDNmzCGLFi2qq82V7r67T9n6bfToLtatGzU4K28Ct6+1uX2t4YADqs/v6upi1Kje2zd16tRbImJyb+kaGf76UP772Yr5H84vSJcZv5LNqcq8yh//etJUOiEiVkvaiRRUTgS+vVkhEfOB+QCTJ0+Otra2Xoqtbu7cPmXrt/b2DhYubBuclTeB29fa3L7WsHRp9fkdHR309Texmkbu/TW+H+vp7tl0G0u6d1i1NKskjQR2Adb1UqfV+e9Tki4nDbNtFlTMzKw5mvUM+mXAREnjJW0DzAIWV6RZDJycp2cC11cbyuomaaSkPfL01sBRwO2l19zMzOrW8DPq+yIiNkqaA1wLjAAuiYgVkuYByyNiMXAxsEBSJ6mHMqs7v6T7gZ2BbSQdQ7oP2QPAtTmgjAB+BlzUjPaYmVl1TQkqABGxhPRPk8V5ZxamnwGOrZF3XI1iDymrfmZm1n/NGv4yM7NhwEHFzMxK46BiZmalcVAxM7PSOKiYmVlpHFTMzKw0DipmZlYaBxUzMyuNg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVhoHFTMzK42DipmZlaZpQUXSdEl3SeqUdFqV5dtKuiIvv1nSuDx/d0lLJXVJ+lpFnkMk3ZbzfEWSmtMaMzOrpilBRdII4ALgSGAS0C5pUkWyU4D1ETEBOA84J89/BjgD+GSVoi8EZgMT82t6+bU3M7N6NauncijQGRH3RsSzwCJgRkWaGcBlefpKYJokRcSGiLiRFFxeJGlPYOeIuCkiAvg2cMyAtsLMzHo0sknr2RtYWXi/CphSK01EbJT0BLA7sLaHMldVlLl3tYSSZpN6NIwZM4aOjo4Gq5+0t/cpW7+NHt1Fe3vH4Ky8Cdy+1ub2tYZaP3tdXV19/k2spllBpdq5juhDmj6lj4j5wHyAyZMnR1tbWw/F1jZ3bp+y9Vt7ewcLF7YNzsqbwO1rbW5fa1i6tPr8jo4O+vqbWE2zhr9WAfsU3o8F1tRKI2kksAuwrpcyx/ZSppmZNVGzgsoyYKKk8ZK2AWYBiyvSLAZOztMzgevzuZKqIuJB4ClJb8hXfZ0E/LD8qpuZWb2aMvyVz5HMAa6fH7nnAAALKklEQVQFRgCXRMQKSfOA5RGxGLgYWCCpk9RDmdWdX9L9wM7ANpKOAY6IiDuAjwCXAtsD1+SXmZkNkmadUyEilgBLKuadWZh+Bji2Rt5xNeYvBw4qr5ZmZtYf/o96MzMrjYOKmZmVxkHFzMxK46BiZmalcVAxM7PSOKiYmVlpHFTMzKw0DipmZlYaBxUzMyuNg4qZmZXGQcXMzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVpqmBRVJ0yXdJalT0mlVlm8r6Yq8/GZJ4wrLTs/z75L0jsL8+yXdJulWScub0xIzM6ulKU9+lDQCuAA4HFgFLJO0OD8SuNspwPqImCBpFnAOcJykSaRHCx8I7AX8TNIBEfF8zjc1ItY2ox1mZtazZvVUDgU6I+LeiHgWWATMqEgzA7gsT18JTJOkPH9RRPw5Iu4DOnN5Zma2hWnWM+r3BlYW3q8CptRKExEbJT0B7J7n/7oi7955OoCfSgrgmxExv9rKJc0GZgOMGTOGjo6OPjWivb1P2fpt9Ogu2ts7BmflTeD2tTa3rzXU+tnr6urq829iNc0KKqoyL+pM01PeN0XEGkkvB66T9L8RccNmiVOwmQ8wefLkaGtrq7viRXPn9ilbv7W3d7BwYdvgrLwJ3L7W5va1hqVLq8/v6Oigr7+J1TRr+GsVsE/h/VhgTa00kkYCuwDresobEd1/HwGuwsNiZmaDqllBZRkwUdJ4SduQTrwvrkizGDg5T88Ero+IyPNn5avDxgMTgd9I2lHSTgCSdgSOAG5vQlvMzKyGpgx/5XMkc4BrgRHAJRGxQtI8YHlELAYuBhZI6iT1UGblvCskfQ+4A9gIfDQinpc0BrgqnctnJHB5RPykGe0xM7PqmnVOhYhYAiypmHdmYfoZ4Ngaeb8IfLFi3r3Aa8uvqZmZ9ZX/o97MzErjoGJmZqVxUDEzs9I4qJiZWWkcVMzMrDQOKmZmVhoHFTMzK42DipmZlcZBxczMSuOgYmZmpXFQMTOz0jiomJlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFzMxK07SgImm6pLskdUo6rcrybSVdkZffLGlcYdnpef5dkt5Rb5lmZtZcTQkqkkYAFwBHApOAdkmTKpKdAqyPiAnAecA5Oe8k0vPqDwSmA1+XNKLOMs3MrIma1VM5FOiMiHsj4llgETCjIs0M4LI8fSUwTZLy/EUR8eeIuA/ozOXVU6aZmTXRyCatZ29gZeH9KmBKrTQRsVHSE8Duef6vK/Lunad7KxMASbOB2fltl6S7+tCGQdPRwR7A2sGux0Bx+1qb29capJqL6m3ffvWsp1lBpVpzos40teZX62VVlplmRswH5vdUwS2ZpOURMXmw6zFQ3L7W5va1trLb16zhr1XAPoX3Y4E1tdJIGgnsAqzrIW89ZZqZWRM1K6gsAyZKGi9pG9KJ98UVaRYDJ+fpmcD1ERF5/qx8ddh4YCLwmzrLNDOzJmrK8Fc+RzIHuBYYAVwSESskzQOWR8Ri4GJggaROUg9lVs67QtL3gDuAjcBHI+J5gGplNqM9g6Blh+7q5Pa1NrevtZXaPqXOgJmZWf/5P+rNzKw0DipmZlYaB5UWIeksSasl3Zpf7xzsOvXXUL/NjqT7Jd2W99fywa5PGSRdIukRSbcX5o2WdJ2kP+S/uw1mHfuqRtuGzPdO0j6Slkq6U9IKSX+b55e6/xxUWst5EXFwfi0Z7Mr0xzC6zc7UvL+Gyv85XEq6XVLRacDPI2Ii8PP8vhVdyuZtg6HzvdsIfCIiXg28Afho/s6Vuv8cVGyw+DY7LSgibiBdnVlUvMXSZcAxTa1USWq0bciIiAcj4rd5+ingTtLdSUrdfw4qrWWOpN/nbnpLDjEUVLt1z9410raqAH4q6ZZ8q6ChakxEPAjphwt4+SDXp2xD6XsHQL4L/F8CN1Py/nNQ2YJI+pmk26u8ZgAXAvsDBwMPAv86qJXtv3pu3dPq3hQRryMN8X1U0lsHu0LWsKH2vUPSKOD7wN9FxJNll9+se39ZHSLi7fWkk3QRcPUAV2egDfnb7ETEmvz3EUlXkYb8bhjcWg2IhyXtGREPStoTeGSwK1SWiHi4e3oofO8kbU0KKN+NiB/k2aXuP/dUWkTe2d3eDdxeK22LGNK32ZG0o6SduqeBI2j9fVZL8RZLJwM/HMS6lGoofe/yo0QuBu6MiH8rLCp1//k/6luEpAWkLngA9wMf6h4HbVX58szz2XSbnS8OcpVKI+mVwFX57Ujg8qHQPkkLgTbS7dIfBj4P/BfwPWBf4I/AsRHRcie8a7StjSHyvZP0ZuCXwG3AC3n2Z0nnVUrbfw4qZmZWGg9/mZlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFrA75brXfGex6NErSNySdUWfaDkmn1lg2TlJI8j9MW4/8ATEbwiLiw4NdBxte3FOxIcdH00l+vIBZUzmo2JCQH4j1GUm/BzZIGinpNEn3SHpK0h2S3l1I/z5JN0r6F0nrJd0n6cjC8vGSfpHzXkf6L+vi+v46P+jo8Txs9OqKunwq39l2g6SLJY2RdE0u72e17nabH6B0VOH9SElrJb0uv/9PSQ9JekLSDZIOLKS9VNKFkpZI2gBMzfPOzst3k3S1pEdzm6+WNLaiCvtL+k0u/4eSRteo5y65XQ8qPcTqbAcxAwcVG1ragXcBu0bERuAe4C3ALsBc4DsV93KaAtxFChjnAhfn+yMBXA7ckpd9gU33RkLSAcBC4O+AlwFLgB/le5h1ew9wOHAAcDRwDemWGHuQvncfr9GGhbkd3d4BrO1+DkYuZyLp9uS/Bb5bkf944IvATsCNFcu2Av4D2I90S46nga9VpDkJ+ACwF+mhTl+pUc/L8vIJpFuoHwFUPR9jw0xE+OVXy79I92X6QC9pbgVm5On3kR4S1r1sB9L9nV5B+sHdCOxYWH458J08fQbwvcKyrYDVQFuhLicUln8fuLDw/mPAf9Wo4wTgKWCH/P67wJk10u6a67xLfn8p8O2KNJcCZ9fIfzCwvvC+A/hy4f0k4FnSvdnG5XWNBMYAfwa2L6RtB5YO9ufAr8F/eezZhpLiQ7+QdBLwD6QfRIBRvHQY66HuiYj4U+6kdKdZHxEbCmkfYNOt+vfK77vzviBpJS99yNjDhemnq7wfVa0BEdEp6U7gaEk/Av6a1BPoPkfyReBYUg+p+6aAewBPVNsGRZJ2AM4jPTK3e/htJ0kjIuL5KvkfALamYuiP1NPZGnhwU8eOrXpatw0fDio2lLx4d1RJ+wEXAdOAmyLieUm3Uv3hYJUeBHaTtGMhsOxbKH8N8JrCukQKOKv73wRg0xDYVsAdEdGZ5x9PevTr20m9oV2A9by0TT3dIfYTwKuAKRHxkKSDgd9V5C8+42Zf4DlgbcX8laSeyh6RhhnNXuRzKjZU7Uj6gX0UQNL7gYPqyRgRDwDLgbmStsm3DD+6kOR7wLskTcsPPfoE6Uf2v0uq+yLSOYqPkIbduu2U1/MYabjunxosdydSL+nxfAL+81XSvFfSpNyrmQdcWejFAC8+cvanwL9K2lnSVpL2l/S2ButjQ5CDig1JEXEH6dGvN5GGnl4D/KqBIo4nnchfR/rx/Xah7LuA9wJfJR3FHw0cHRHPllT3B3O93whcUVj0bdKQ1GrgDuDXDRZ9PrA9qc6/Bn5SJc0C0nmYh4DtqH1BwUnANrke64ErgT1rpLVhxM9TMTOz0rinYmZmpXFQMTOz0jiomJlZaRxUzMysNA4qZmZWGgcVMzMrjYOKmZmVxkHFzMxK8/8BfpH/NuaphVgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Create uniform distribution sampler.\n", - "start_time = time.time()\n", - "uniform = UniformDistribution(glo_num_qubits, backend=glo_backend)\n", - "creation_time = time.time() - start_time\n", - "\n", - "# Draw a sample.\n", - "start_time = time.time()\n", - "sample = uniform.uniform_rand_float64(size=54321, vmin=-7.67, vmax=19.52)\n", - "sampling_time = time.time() - start_time\n", - "\n", - "# Print out some details.\n", - "print(\"Uniform distribution of floating point numbers:\")\n", - "print(\"sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", - "print(\"sample min: {:.4f}, max: {:.4f}\".format(np.amin(sample), np.amax(sample)))\n", - "print(\"time: creation: {:.5f}, sampling: {:.2f}\".format(creation_time, sampling_time))\n", - "\n", - "# Plotting the distribution.\n", - "plt.hist(sample.ravel(),\n", - " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", - " density=True, facecolor='b', alpha=0.75)\n", - "plt.xlabel(\"random variable\", size=12)\n", - "plt.ylabel(\"probability\", size=12)\n", - "plt.title(\"Uniform distribution of float64 numbers [{:.2f} ... {:.2f}]\".format(\n", - " np.amin(sample), np.amax(sample)), size=12)\n", - "plt.grid(True)\n", - "# plt.savefig(\"uniform_distrib_float.png\", bbox_inches=\"tight\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uniform distribution over integers." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Uniform distribution of integer numbers:\n", - "sample type: , element type: int64 , shape: (54321,)\n", - "sample min: 37, max: 841\n", - "time: sampling: 6.36\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucHXV9//HXm0RQWAUSMEK4JJBADb2gRlBrNYhyqZfYCjXrDRVMbaH8elOhKphIWrGtUAWkqUEiYgLFW8QIomSlWgg3rwkNLDcJIdwSgotcTPj8/vh+l0xOztk9s7tzzsnm/Xw89rFzvvOd73xmzpz5nLmc7ygiMDMzq9IO7Q7AzMxGPycbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGw6kKQLJX2y8PqvJD0oqU/S+HbGluO5R9Ib8/A/SfrSCLbdJ+mAPHyxpLNGsO0t1murDPT+Sdovl49pdVztJOn9kn7chvnOkPRsXufHtHr+7SLpoLzMmySd1I4YnGwqICkkTakp+5SkrzYzfUR8OCI+nad7HvA54KiI6IqIR0c+4qGLiH+OiEE3Xkk9zWzkeRnvGm5c9XZmxfXaKoO9fxHx61y+qYm2JuVta2xN+Z6SvibpMUnrJV1aZ9pxkh5uxw6+A63J6/wqAElHSPplXn+PSvqmpIn9lSWtyDvq/r+Nkr5TRWCS3iDpVkmPS7pL0uwG9b5cu5+RdIqkmyU9LeniYv2IuD0iuoD/qSLuZjjZdL4JwPOBFWUnVLJNvMe1O9BRZMjvXwnfANYC+wMvBv6tTp2zgdsqjKFtRmDbWQkcHRG7AXsDdwBf7B8ZEYfk5NQFvBD4NfDfw5znVvIXk28C/wnsCrwT+JykP6qp91rgwDpNrAHOAi4a6dhGwjaxIxpt8qH8akn/IOkhSQ9I+kBh/MWSzpJ0ELAqFz8m6do8/jWSbpK0If9/TWHaHknzJP0E+C1wQC47S9L/5m9m35E0XtKl+RvUTZImDRDveyXdm7/1fbxm3HNHbJKeL+mrud5jud0JkuYBfwKcl+d/Xq4fkk6WdAfpA17vqHAPSddI+o2kH0naP9fb6lt+/9GTpJcCFwKvzvN7rLheC/U/JKlX0jpJSyTtXRgXkj4s6Y58tHC+JDVYPztJOlfSmvx3bi6r+/7VTLvFcuRl+LSkn+Rl/r6kPXL16wpt9Ul6taSjgH2Bj0TEhoj4XUT8tGYerwZ+H/hyvfgL9d4v6ceS/i0v892Sji2Mf+70aX5dfO/7l+MDku7L039Y0isl/SJvD+dtPUt9IW/H/yfpyMKIXSUtyJ+N+/P2O6YQ508knSNpHfApSVPy9rFB0iOSLhtoWYsi4sGIWFMo2gRMaVD9daSE/vVm2y9hHPAi4JJIbiJ9QZjWXyFvJ18ATqmdOCK+ERHfAjrq7Ec/J5v2eQnp28tE4ETgfEm7FytExO3AIfnlbhHxBknjgO8CnwfGk07RfFdbXgt4LzCb9C3s3lw2K5dPJH0rup608xlH2qDPrBekpGmkb3nvJX3rGw/s02CZTsjLtG+u92HgyYj4OOnw/ZT8DbH4QXk7cDiFD1SNdwOfBvYAfgZsdYqoVkTclud9fZ7fbnWW6w3AvwB/AexFWk+La6q9BXgl8Ee53tENZvlx4FXAobnuYcAn6r1/g8WevQv4AGmntiPwj7n8dYW2uiLi+jzfVcDCnORvkvT6wnKOAc4n7Zya6Qjx8NzeHsBngQWNkuwA008lfSs/l7Ru3khaD39RjC3XvSvP60zgG3n7BlgIbCTt9F8GHAWcVGfaFwPzSNvI94HdSdvnF0rE3H/t7DHgSdL6/myDqicAV0TEE2Xab0ZEPAgsAj4gaUz+krA/UDz1+XfAdRHxi5Gef9WcbNrnd8Dc/E10KdAHHNzEdG8G7oiISyJiY0QsAv4PeGuhzsURsSKP/10u+3JE3BkRG4DvAXdGxA8iYiPplMDLGszvOODKiLguIp4GPgk8O8AyjQemRMSmiLglIh4fZHn+JSLWRcSTDcZ/tzDvj5OOVvYdpM1mvBu4KCJuzW2fntueVKjzmYh4LCJ+DSwjJZNGbc2NiIci4mFgDik5D9WX8zn2J4HLB5gvpB3rUTm+lwD/Dny7cDR0KrA8Im5pct73RsR/5WtIC0mJeEKJ2D8dEU9FxPeBJ4BFeb3cT/rCUdzOHgLOzZ+By0hJ7s2SJgDHAn8bEU9ExEPAOaQvTP3WRMQX8jb+JGnb2x/YO8+/1LWpfO1sN1Li+wTpM7UFSTuTPg8Xl2m7pEXAGcDTpPX18Yi4L89/X+Av8/htjpNNNTYBz6spex7pA9Hv0byj7/dboKuJtvdm89FKv3tJRyz97qsz3YOF4SfrvG40772L7eVvdI0O0y8BrgYW59NJn1U6Dz2QerHWHR8RfcC6HNNwbbEec9uPsuV6XFsYHuj9qX1P7h1mjM3OF9J7d09ELMg77cWkdfbH+bTgqaQkXXreEfHbPNjMdtmvzHZ2f2zZ7Xz/etuf9Hl5IJ9+e4x0HePFhbq1281HAQE3Kl3Q/2CJmJ8TEetISfbb2vpa0J+Ttr8fDaXtwUj6PeAy4H2kI9pDgI9KenOuci7pS82GKuZfNSebavwamFRTNpmtk8RQrCF9GIv2A+4vvB7J50Y8QDotBjz37a7u7dd5ZzcnIqYBryGdhnrfIDENFmtx3l2k035rSN+aAXYu1H1JiXa3WI+SdiEt1/0Np2iyLdL7saZB3eGot0y/aFAO6XTeXsBKSWuB/wAOk7RWQ7vV+gkar++hmFhziq5/vd1H+ma/R0Tslv9eFBGHFOpuscwRsTYiPhQRe5O+/V+gmjtCSxhLSmwvqik/AfhKTYIcSb8PrIqIqyPi2YhYRTpl3n/d7EjgX/P71/+l4HpJ76oonhHlZFONy4BPSNpH0g75oupbgStGoO2lwEGS3iVprKR3kq53XDkCbddzBfAWSa+VtCMwlwbbjdItpH+Qd2SPk47k+m/pfRA4YAjz/9PCvD9NOiV0Xz5ddT/wnnx++4NseYfOg8A+ebp6vkY6N36opJ2Af85t3zOEGBeR3u898+mrM4CmbnMv6WHSKczievwmsLukE/J6OI50dPYT0unSSaTTcIfmuH4KHNrMrdZ1/AyYJel5kqaTTikNx4uBU3N7xwMvBZZGxAOk6y//LulF+TN0YM31ni1IOl5S/7XE9aRk1NQySvpzSQfn+exJug7603yU019nH+AI0lFPVX4KTFW6/VmSDiR9Yft5Hn8Q6Zpg//sJab/yzRzjWEnPB8YAY5Ru2OmYuzydbKoxF/hf0oW99aSLje+OiF8Nt+H8O423AP9AOu3zUeAtEfHIcNtuML8VwMmknfMDpOVZ3aD6S0jJ6XHSTQc/YvNO9z+A4/JdSp8vEcLXSBeP1wGvIF0f6fch4COk9XAIaZ33u5Z0u/FaSVutm4j4Ien609fzch3IltcEyjgLuJl0lPFL4NZcNqLyaa15wE/y6aVX5R3i20gXtTcApwEzI+KRiHg6f+NfGxFr8/jf5eGh+CRpPa0nXZf62jAXaTnpZoJHSMt1XGz+HVL/qaSVeX5XkI7SGnklsFxSH7AE+H8RcXeTcUwErgJ+Q3r/ngX+rKbOe0k3nNw5UEPa/CPd/fLrd0taURh/oaQL602b2/4g6eafx0mfn68DC/L4h2reT4BHCtc7P0E6VXka8J48/IlmVkArqLojQjOzziLpdaTrik8D74yIq9scUktImgrcRErgfx0RF7c8BicbMzOrmk+jmZlZ5ZxszMysch1zp0K77bHHHrHnnnuyyy67tDuUrTzxxBOOqwTH1bxOjAkcV1ntjOuWW255JCL2HLRiRPgvgle84hWxbNmy6ESOqxzH1bxOjCnCcZXVzriAm6OJfaxPo5mZWeWcbMzMrHJONmZmVjknGzMzq5yTjZmZVc7JxszMKudkY2ZmlXOyMTOzyrUs2Ug6RtIqSb2STqszfidJl+Xxy4uP55V0ei5fJenoQvlFkh6SVLfrfkn/KCkKj8g1M7M2aEl3NflhWucDbyI9C+UmSUsiYmWh2onA+oiYImkWcDbwTknTSM8ZOYT0yNgfSDoo0sOfLgbOA75SZ5775vn9urols6E4YuERzw0vO2FZGyOx0cjbV2dq1ZHNYUBvRNwVEc8Ai4GZNXVmsvkpeFcAR+ZHxs4EFkd6ENTdQG9uj4i4jvRQrXrOIT1YzM9QMDNrs1Z1xDmR9FzxfquBwxvViYiNkjaQngk/EbihZtqJA81M0tuA+yPi51s+4nyrerOB2QATJkygr6+Pnp6eZpanpUZbXN1d3c8NV7Fco219VakTY4LhxVXl9jUa11ertCrZ1Nvj1x5xNKrTzLSbG5F2Bj4OHDVYUBExH5gPMH369Ojq6mLGjBmDTdZyPT09oyquOQvnPDe87B0jf5pjtK2vKnViTDC8uKrcvkbj+mqVViWb1cC+hdf7AGsa1FktaSywK+kUWTPTFh0ITAb6j2r2AW6VdFgM/dnrZm2zLV2D2JZitdZq1TWbm4CpkiZL2pF0wX9JTZ0lwAl5+Djg2tx99RJgVr5bbTIwFbix0Ywi4pcR8eKImBQRk0jJ6uVONGZm7dOSZBMRG4FTgKuB24DLI2KFpLn5+grAAmC8pF7g74HT8rQrgMuBlcBVwMn5TjQkLQKuBw6WtFrSia1YHjMzK6dlT+qMiKXA0pqyMwrDTwHHN5h2HjCvTnl3neq1dSaVjdXMzEaWHwvdBj6vbZ3M2+e2rVPfP3dXY2ZmlfORjdkoUPw2C531jdYMnGxGrU49lDaz7ZOTjZlZgb+oVcPJxtrKH2yz7YOTTYvUnlM3M2uXdlzj891oZmZWOR/ZjACfCjJrDX/Wtl1ONrZd8c6qs1T9foy2W8Ibra/bH719i96uO5GTjW3FO2QzG2lONtsZJ5Kh87obGdv7zTLb63bkZDOKbO8f4pGyrewMhvJ+byvLZqOPk812zDue1jli4RF0d3UzZ+Ecr+tRbDifqbLTFusXH4XdqZxszMyGwWcUmuNkYx1jKN8KW303kyXb6lFxK+PeVtdRVZxs2qwTd7DNxuDTQmbV6ITP+EhzsqmQvxVvf5p5z0fjjmQw/iyYk812oBM+6J0Qg1VjpN7bYjtn7n/miLTZKbz9O9lYh+r0b/9VxDeSbXb6+rPtT8uSjaRjgP8AxgBfiojP1IzfCfgK8ArgUeCdEXFPHnc6cCKwCTg1Iq7O5RcBbwEeiojfL7T1r8BbgWeAO4EPRMRjlS7gCBhoB+FvRmYja3tIyJ20jC1JNpLGAOcDbwJWAzdJWhIRKwvVTgTWR8QUSbOAs4F3SpoGzAIOAfYGfiDpoIjYBFwMnEdKUkXXAKdHxEZJZwOnAx+rbgk3a3VS6LQk1Ekbt7VXp22bA9mWYh2qdi9jq45sDgN6I+IuAEmLgZlAMdnMBD6Vh68AzpOkXL44Ip4G7pbUm9u7PiKukzSpdmYR8f3CyxuA40Z0acyso2zvX/K2BYqI6mciHQccExEn5dfvBQ6PiFMKdX6V66zOr+8EDicloBsi4qu5fAHwvYi4Ir+eBFxZPI1WM+/vAJf1T18zbjYwG2DChAmv+NKXvkRXV1fp5bv90dtLTzOYg8Yf9NxwX18fa55eM+LzaDS/4vIUy4tuf/R2xo0Zx7pN60q3ORy18dSLta+vr+H72OyyVaHe+iq7joayTgeapj+mobz/Vdp7p73rvodVz7dW7XoZbJsfbvtDrTPcuBq9z8044ogjbomI6YPVa9WRjeqU1Wa5RnWambb+TKWPAxuBS+uNj4j5wHyA6dOnR1dXFzNmzGim6S1U0bX3sndsPgXV09PDokcXjfg8ttA3eHnxtNichXPo7upmUV/juIrLMFLrqNhmbbv943p6ehq+j1vEMcCyVaHu+mq03hsYyjodaJr+mBrVqV3fZec9VGeOP/O597CdRxG162WwbX647Q+1znDjavQ+j6RWJZvVwL6F1/sAtV/V++usljQW2BVY1+S0W5F0AunmgSOjFYdvI2xb6/fItm0+LWRVa1WyuQmYKmkycD/pgv+7auosAU4AriddY7k2IkLSEuBrkj5HukFgKnDjQDPLd759DHh9RPx2RJfEbDviGz6qVfZHwNuyliSbfFfYKcDVpFufL4qIFZLmAjdHxBJgAXBJvgFgHSkhketdTrqZYCNwcr4TDUmLgBnAHpJWA2dGxALSHWo7Adekewy4ISI+3Ipltc4zWj6sQ7W9L791hpb9ziYilgJLa8rOKAw/BRzfYNp5wLw65XXPL0XElGEFa9ahnDhsW+UeBKxp3tGZ2VA52ZhZx7n90dsrv+OtGf6CNXKcbMzwTsWsak42Nmr0J4zurm5mMKO9wZjZFpxszKwpPvqz4XCysVHJO0azzrJDuwMwM7PRz0c2Vpkqji58xGK2bfKRjZmZVc7JxszMKudkY2ZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKtSzZSDpG0ipJvZJOqzN+J0mX5fHLJU0qjDs9l6+SdHSh/CJJD0n6VU1b4yRdI+mO/H/3KpfNzMwG1pJkI2kMcD5wLDAN6JY0rabaicD6iJgCnAOcnaedBswCDgGOAS7I7QFcnMtqnQb8MCKmAj/Mr83MrE1adWRzGNAbEXdFxDPAYmBmTZ2ZwMI8fAVwpCTl8sUR8XRE3A305vaIiOuAdXXmV2xrIfD2kVwYMzMrp1XPs5kI3Fd4vRo4vFGdiNgoaQMwPpffUDPtxEHmNyEiHshtPSDpxfUqSZoNzAaYMGECfX199PT0NLVARd1d3aWnKWPcmHGVz2MoHFc5nRhXJ8YEjqus4cY1lP1eWa1KNqpTFk3WaWbaIYmI+cB8gOnTp0dXVxczZswo3c6chXNGIpyGuru6WdS3qNJ5DIXjKqcT4+rEmMBxlTXcuJa9Y9kIRlNfq06jrQb2LbzeB1jTqI6kscCupFNkzUxb60FJe+W29gIeGnLkZmY2bK1KNjcBUyVNlrQj6YL/kpo6S4AT8vBxwLUREbl8Vr5bbTIwFbhxkPkV2zoB+PYILIOZmQ1RS5JNRGwETgGuBm4DLo+IFZLmSnpbrrYAGC+pF/h78h1kEbECuBxYCVwFnBwRmwAkLQKuBw6WtFrSibmtzwBvknQH8Kb82szM2qRV12yIiKXA0pqyMwrDTwHHN5h2HjCvTnndK2IR8Shw5HDiNTOzkeMeBMzMrHJONmZmVjknGzMzq1zTyUbS+CoDMTOz0avMkc19kr4t6bh8+7KZmVlTyiSb/UmdWn4MWCtpvqTXVhOWmZmNJk0nm4h4OCI+HxGvBF5N+lX+JZLuyr+X2b+yKM3MbJs21BsEXpL/XgTcSeoY86f1nlNjZmbW9I86JR0CvAd4N9BH6rr/DyPi/jz+08Av8K/1zcysRpkeBK4DFgHHRcRWfZNFxD2Szh2xyMzMbNQok2z+LD+sbAuSDutPPsXuZ8zMzPqVuWZzZYPyq0YiEDMzG70GPbKRtAPpAWbKj2kuPszsQGBjRbGZmdko0cxptI1sfjJmbWJ5ljq9MZuZmRU1k2wmk45mfgS8rlAewMMR8WQVgZmZ2egxaLKJiHvzoH+0aWZmQzJgspE0PyJm5+GvNKoXEe8b6cDMzGz0GOzI5u7C8J1VBmJmZqPXgMkmIv6lMDyn+nDMzGw0Guw02huaaSQirh2ZcMzMbDQa7DTagibaCOCAEYjFzMxGqQF7EIiIyU38NZVoJB0jaZWk3nq9Q0vaSdJlefxySZMK407P5askHT1Ym5KOlHSrpJ9J+rGkKc3EaGZm1RjqIwZKkTQGOB84FpgGdEuaVlPtRGB9REwBzgHOztNOA2YBhwDHABdIGjNIm18E3h0RhwJfAz5R5fKZmdnABrtmc1tEvDQP38fmngS2EBH7DTKfw4DeiLgrt7UYmAmsLNSZCXwqD18BnJe7x5kJLI6Ip4G7JfXm9higzSA9awdgV2DNIPGZmVmFBrtm86HC8HuGMZ+JwH2F16uBwxvViYiNkjYA43P5DTXTTszDjdo8CVgq6UngceBV9YKSNBuYDTBhwgT6+vro6ekptWAA3V3dpacpY9yYcZXPYygcVzmdGFcnxgSOq6zhxjWU/V5Zg936/OPC8I+GMR/VKas9SmpUp1F5vVOA/W3+HfCnEbFc0keAz5ES0JaVI+YD8wGmT58eXV1dzJgxo+4CDGTOwmrvCu/u6mZR36JK5zEUjqucToyrE2MCx1XWcONa9o5lIxhNfU1fs5G0o6S5ku6Q9ET+/2lJz29i8tXAvoXX+7D1qa3n6kgaSzr9tW6AaeuWS9oT+KOIWJ7LLwNe09RCmplZJcrcIPBF4A3AqcAr8//XAxc0Me1NwFRJkyXtSLrgv6SmzhLghDx8HHBtREQun5XvVpsMTAVuHKDN9cCukg7Kbb0JuK3EcpqZ2Qgr86TOtwMHRsRj+fVKScuBXuCDA02Yr8GcAlwNjAEuiogVkuYCN0fEEtJvei7JNwCsIyUPcr3LSRf+NwInR8QmgHpt5vIPAV+X9Cwp+QwYn5mZVatMslkL7Aw8Vih7AfBAMxNHxFJgaU3ZGYXhp4DjG0w7jzrPzanXZi7/JvDNZuIyM7Pqlemu5hLgKklfYPP1kpOBhr1Bm5mZwdC6q/mnmtd/Sf4BppmZWT2D3fo8uVWBmJnZ6NWS7mrMzGz71vQNApJeROpO5vXAHhR+bNlEdzVmZrYdK3NkcwHwcmAuMA74G+DXpE4zzczMGipz6/NRwEsj4lFJmyLi25JuBr6DE46ZmQ2gzJHNDsCGPNwnaTfSb2z8rBgzMxtQmSObn5Ou1/wQ+B/Ss2T6gNsriMvMzEaRMkc2HwLuycOnAk8BuwHvG+GYzMxslGn6yKb/IWV5+GHSkzXNzMwGVep3NpI+KOkaSSvy/xPz0zTNzMwaKvM7m8+SHrt8LnAvsD/wj8DBwEcric7MzEaFMjcIvB94eUSs7i+QdCVwK042ZmY2gDKn0X6T/2rLHh+5cMzMbDQa7BEDBxRengt8Q9Jn2PyIgY/gH3SamdkgBjuN1gsEhX7QgCNq6rwBOG8kgzIzs9FlsEcMuFdoMzMbtjI3CAAgaT9gIrA6Iu4b+ZDMzGy0afrIRdJekn5EOrX2DeBOSddJ2ruy6MzMbFQoc5rsi6T+0XaPiL2A3YGfAhc2M7GkYyStktQr6bQ643eSdFkev1zSpMK403P5KklHD9amknmSbpd0m6RTSyynmZmNsDKn0V4L7BURvwOIiCckfRS4f7AJJY0hddz5JtKdbDdJWhIRKwvVTgTWR8QUSbOAs4F3SpoGzAIOAfYGfiDpoDxNozbfT7pb7vci4llJLy6xnGZmNsLKHNmsB6bVlB0MPNbEtIcBvRFxV0Q8Aywm9UZQNBNYmIevAI7MXeHMBBZHxNMRcTfpNN5hg7T5V8DciHgWICIeKrGcZmY2wsoc2XyWdFSxgM3d1XwA+GQT004EijcTrAYOb1QnIjZK2gCMz+U31Ew7MQ83avNA0lHRnwEPA6dGxB21QUmaDcwGmDBhAn19ffT09DSxOFvq7uouPU0Z48aMq3weQ+G4yunEuDoxJnBcZQ03rqHs98oq0+vzf0m6E3gX8IfAGqA7Iq5tYvJ6nXVGk3Ualdc7KutvcyfgqYiYLunPgYuAP9mqcsR8YD7A9OnTo6urixkzZtRdgIHMWTin9DRldHd1s6hvUaXzGArHVU4nxtWJMYHjKmu4cS17x7IRjKa+ppJNvuZyETC7yeRSq7/HgX77kJJVvTqrJY0FdgXWDTJto/LVwNfz8DeBLw8hZjMzGyFNXbOJiE3AUcCzQ5zPTcBUSZMl7Ui64L+kps4S4IQ8fBxwbURELp+V71abDEwFbhykzW+RejaA9HRRP03UzKyNylyzOQeYI+nM/jvSmpWvwZwCXA2MAS6KiBWS5gI3R8QSYAFwiaRe0hHNrDztCkmXAyuBjcDJOflRr808y88Al0r6O9Kjq08qE6+ZmY2sMsnmb4CXAH8v6WE2X0+JiNhvsIkjYimwtKbsjMLwU8DxDaadB8xrps1c/hjw5sFiMjOz1iiTbN5TWRRmZjaqlfmdzfXAkcCXSEcTXwLeCCyvIC4zMxtFyhzZfJH0I85T2fw7m9NJv3n54MiHZmZmo0WZZPN24MB8PQRgpaTlpF/0O9mYmVlDZU6jrQV2ril7AfDAyIVjZmajUZkjm0uAqyR9gc0/tDwZ+Iqk/t+0MMQffZqZ2ShWJtn8Zf7/TzXlH85/kG6HPmC4QZmZ2ehSpm+0yVUGYmZmo1eZazZmZmZD4mRjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeValmwkHSNplaReSafVGb+TpMvy+OWSJhXGnZ7LV0k6ukSbX5DUV9UymZlZc1qSbCSNAc4HjgWmAd2SptVUOxFYHxFTgHOAs/O004BZwCHAMcAFksYM1qak6cBulS6YmZk1pVVHNocBvRFxV0Q8AywGZtbUmQkszMNXAEdKUi5fHBFPR8TdpMdQHzZQmzkR/Svw0YqXy8zMmlDm4WnDMRG4r/B6NXB4ozoRsVHSBmB8Lr+hZtqJebhRm6cASyLigZSv6pM0G5gNMGHCBPr6+ujp6Wl+qbLuru7S05Qxbsy4yucxFI6rnE6MqxNjAsdV1nDjGsp+r6xWJZt6e/xosk6j8npHZSFpb+B4YMZgQUXEfGA+wPTp06Orq4sZMwadbCtzFs4pPU0Z3V3dLOpbVOk8hsJxldOJcXViTOC4yhpuXMvesWwEo6mvVafRVgP7Fl7vA6xpVEfSWGBXYN0A0zYqfxkwBeiVdA+ws6TekVoQMzMrr1XJ5iZgqqTJknYkXfBfUlNnCXBCHj4OuDYiIpfPynerTQamAjc2ajMivhsRL4mISRExCfhtvunAzMzapCWn0fI1mFOAq4ExwEURsULSXODmiFgCLAAuyUch60jJg1zvcmAlsBE4OSI2AdRrsxXLY2Zm5bTqmg0RsRRYWlNhw/IPAAANpElEQVR2RmH4KdK1lnrTzgPmNdNmnTpdQ4nXzMxGjnsQMDOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeWcbMzMrHJONmZmVrmWJRtJx0haJalX0ml1xu8k6bI8frmkSYVxp+fyVZKOHqxNSZfm8l9JukjS86pePjMza6wlyUbSGOB84FhgGtAtaVpNtROB9RExBTgHODtPOw2YBRwCHANcIGnMIG1eCvwe8AfAC4CTKlw8MzMbRKuObA4DeiPiroh4BlgMzKypMxNYmIevAI6UpFy+OCKejoi7gd7cXsM2I2JpZMCNwD4VL5+ZmQ2gVclmInBf4fXqXFa3TkRsBDYA4weYdtA28+mz9wJXDXsJzMxsyMa2aD6qUxZN1mlUXi9R1rZ5AXBdRPxP3aCk2cBsgAkTJtDX10dPT0+9qgPq7uouPU0Z48aMq3weQ+G4yunEuDoxJnBcZQ03rqHs98pqVbJZDexbeL0PsKZBndWSxgK7AusGmbZhm5LOBPYE/rJRUBExH5gPMH369Ojq6mLGjBlNL1S/OQvnlJ6mjO6ubhb1Lap0HkPhuMrpxLg6MSZwXGUNN65l71g2gtHU16rTaDcBUyVNlrQj6YL/kpo6S4AT8vBxwLX5mssSYFa+W20yMJV0HaZhm5JOAo4GuiPi2YqXzczMBtGSI5uI2CjpFOBqYAxwUUSskDQXuDkilgALgEsk9ZKOaGblaVdIuhxYCWwETo6ITQD12syzvBC4F7g+3WPANyJibiuW1czMttaq02hExFJgaU3ZGYXhp4DjG0w7D5jXTJu5vGXLZWZmg3MPAmZmVjknGzMzq5yTjZmZVc7JxszMKudkY2ZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpVrWbKRdIykVZJ6JZ1WZ/xOki7L45dLmlQYd3ouXyXp6MHalDQ5t3FHbnPHqpfPzMwaa0mykTQGOB84FpgGdEuaVlPtRGB9REwBzgHOztNOA2YBhwDHABdIGjNIm2cD50TEVGB9btvMzNqkVUc2hwG9EXFXRDwDLAZm1tSZCSzMw1cAR0pSLl8cEU9HxN1Ab26vbpt5mjfkNshtvr3CZTMzs0GMbdF8JgL3FV6vBg5vVCciNkraAIzP5TfUTDsxD9drczzwWERsrFN/C5JmA7Pzy74jjjjiUeCR5herNXro2QPH1TTH1bxOjAkcV1nDjUvv13Bmv38zlVqVbOotSTRZp1F5vaOygepvXRgxH5j/XADSzRExvV7ddnJc5Tiu5nViTOC4yurUuIpadRptNbBv4fU+wJpGdSSNBXYF1g0wbaPyR4DdchuN5mVmZi3UqmRzEzA13yW2I+mC/5KaOkuAE/LwccC1ERG5fFa+W20yMBW4sVGbeZpluQ1ym9+ucNnMzGwQLTmNlq/BnAJcDYwBLoqIFZLmAjdHxBJgAXCJpF7SEc2sPO0KSZcDK4GNwMkRsQmgXpt5lh8DFks6C/hpbrsZ8wev0haOqxzH1bxOjAkcV1mdGtdzlA4EzMzMquMeBMzMrHJONmZmVjknm2yw7nQqnvdFkh6S9KtC2ThJ1+Qud66RtHsul6TP5zh/IenlFcW0r6Rlkm6TtELS/+uQuJ4v6UZJP89xzcnldbsoGqgbpIriGyPpp5Ku7JS4JN0j6ZeSfibp5lzW1vcxz2s3SVdI+r+8nb263XFJOjivp/6/xyX9bQfE9Xd5e/+VpEX5c9D2bauUiNju/0g3GNwJHADsCPwcmNbC+b8OeDnwq0LZZ4HT8vBpwNl5+E+B75F+T/QqYHlFMe0FvDwPvxC4ndQtULvjEtCVh58HLM/zuxyYlcsvBP4qD/81cGEengVcVvF7+ffA14Ar8+u2xwXcA+xRU9bW9zHPayFwUh7eEditE+IqxDcGWEv60WLb4iL9KP1u4AWFber9nbBtlVqOdgfQCX/Aq4GrC69PB05vcQyT2DLZrAL2ysN7Aavy8H8C3fXqVRzft4E3dVJcwM7AraSeIx4Bxta+n6S7FV+dh8fmeqoonn2AH5K6S7oy74A6Ia572DrZtPV9BF6Ud6DqpLhqYjkK+Em742Jz7yrj8rZyJXB0J2xbZf58Gi2p151O3S5uWmhCRDwAkP+/OJe3PNZ8GP4y0lFE2+PKp6p+BjwEXEM6Km3URdEW3SAB/d0gVeFc4KPAs/n1QF0ntTKuAL4v6RalLpqg/e/jAcDDwJfzaccvSdqlA+IqmgUsysNtiysi7gf+Dfg18ABpW7mFzti2muZkkzTdxU0HaGmskrqArwN/GxGPD1S1TlklcUXEpog4lHQkcRjw0gHm3ZK4JL0FeCgibikWtzuu7I8j4uWkHtJPlvS6Aeq2Kq6xpFPHX4yIlwFPkE5PtTuuNLN0/eNtwH8PVrVO2YjGla8PzQQmA3sDu5Dey0bz7cj9mZNN0kx3Oq32oKS9APL/h3J5y2KV9DxSork0Ir7RKXH1i4jHgB7SufJGXRQ16gZppP0x8DZJ95B6IH8D6Uin3XEREWvy/4eAb5ISdLvfx9XA6ohYnl9fQUo+7Y6r37HArRHxYH7dzrjeCNwdEQ9HxO+AbwCvoQO2rTKcbJJmutNptWL3PcUud5YA78t3wbwK2NB/eD+SJInU88JtEfG5DoprT0m75eEXkD6It9G4i6JG3SCNqIg4PSL2iYhJpO3n2oh4d7vjkrSLpBf2D5OuQ/yKNr+PEbEWuE/SwbnoSFIvIW2Nq6CbzafQ+uffrrh+DbxK0s75c9m/rtq6bZXW7otGnfJHuqvkdtL5/4+3eN6LSOdif0f6VnIi6RzrD4E78v9xua5ID427E/glML2imF5LOvT+BfCz/PenHRDXH5K6IPoFaad5Ri4/gNRnXi/p1MdOufz5+XVvHn9AC97PGWy+G62tceX5/zz/rejfttv9PuZ5HQrcnN/LbwG7d0hcOwOPArsWytq93c8B/i9v85cAO7V72yr75+5qzMyscj6NZmZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbs2GS9ClJX213HGVJulDSJ5us2yPppAbjJkmKwg8MzbbijcNsOxURH253DLb98JGNbVf87TuRNKbdMdj2xcnGRj2lh4d9TNIvgCckjZV0mqQ7Jf1G0kpJf1ao/35JP5b0b5LWS7pb0rGF8ZMl/ShPew2wR8383pYfdPVYPv300ppYPpIftPWEpAWSJkj6Xm7vB7njxXrLcVvu8LP/9VhJjyg/sEvSf0taK2mDpOskHVKoe7GkL0paKukJ4IhcdlYev7ukKyU9nJf5Skn71IRwoNKD6zZI+rakcQ3i3DUv1wOS7pd0lpObOdnY9qIbeDOwW6Ru1+8E/oTUSeEc4Kv9HS1mh5OeTbIH6cFZC3K/VJAejnZLHvdpNvdDhaSDSN0P/S2wJ7AU+E7uc6/fO0jPBjoIeCvp4Vv/lNvbATi1wTIsysvR72jgkYi4Nb/+HjCV1P39rcClNdO/C5hHehjej2vG7QB8mfSgsP2AJ4Hzauq8D/ggqefhjcDnG8S5MI+fQno0xVFA3es9th1pd385/vNf1X+kh4d9cJA6PwNm5uH3A72FcTuT+ol7CWlHvBHYpTD+a8BX8/AngcsL43YA7gdmFGJ5d2H810nd7Pe//hvgWw1inAL8Btg5v76U3Ddcnbq75Zh3za8vBr5SU+di4KwG0x8KrC+87gE+U3g9DXiG9DTLSXleY4EJwNPkp0rmut3AsnZvB/5r75/PX9v2oviAKyS9j/QI50m5qIstT4et7R+IiN/mg5r+Ousj4olC3XvZ3M383vl1/7TPSrqPLR+o9WBh+Mk6r7vqLUBE9Eq6DXirpO+Qnrfysrw8Y0hHLceTjqj6H+C2B+nhWVutgyJJOwPnAMeQOsQEeKGkMRGxqc7095Iey73FKUTSkdHzgAc2Hwiyw0Dztu2Dk41tL57rcVbS/sB/kbpqvz4iNik9+bPeQ6dqPQDsLmmXQsLZr9D+GuAPCvMSKRHdP/xFADafStsBWBkRvbn8XaQHbL2RdPS0K7CeLZdpoF53/wE4GDg8ItZKOpTUu3Zx+uJzW/Yj9VL+SE35faQjmz1i81MkzXzNxrZLu5B2vA8DSPoA8PvNTBgR95K6xZ8jaUdJryVdd+l3OfBmSUcqPXzuH0g73/8dodgXk66B/BXp9F2/F+b5PEo67ffPJdt9Iemo6rF84f/MOnXeI2laPgqaC1xROOoBnntk8veBf5f0Ikk7SDpQ0utLxmOjjJONbXciYiXw78D1pFNYfwD8pEQT7yLdQLCOtFP+SqHtVcB7gC+QvvW/FXhrRDwzQrE/kON+DXBZYdRXSKe27ic9WOuGkk2fC7yAFPMNwFV16lxCus6zlvTMlEY3MrwP2DHHsZ70FM69GtS17YSfZ2NmZpXzkY2ZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeWcbMzMrHJONmZmVjknGzMzq9z/BzYjAmBB1wbiAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Draw a sample, reuse the previous instance of the sampler.\n", - "start_time = time.time()\n", - "sample = uniform.uniform_rand_int64(size=54321, vmin=37, vmax=841)\n", - "sampling_time = time.time() - start_time\n", - "\n", - "# Print out some details.\n", - "print(\"Uniform distribution of integer numbers:\")\n", - "print(\"sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", - "print(\"sample min: {:d}, max: {:d}\".format(np.amin(sample), np.amax(sample)))\n", - "print(\"time: sampling: {:.2f}\".format(sampling_time))\n", - "\n", - "# Plotting the distribution.\n", - "plt.hist(sample.ravel(),\n", - " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", - " density=True, facecolor='g', alpha=0.75)\n", - "plt.xlabel(\"random variable\", size=12)\n", - "plt.ylabel(\"probability\", size=12)\n", - "plt.title(\"Uniform distribution of int64 numbers [{:d} ... {:d}]\".format(\n", - " np.amin(sample), np.amax(sample)), size=12)\n", - "plt.grid(True)\n", - "# plt.savefig(\"uniform_distrib_int.png\", bbox_inches=\"tight\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Normal distribution\n", - "\n", - "To generate random variates with a standard normal distribution using two independent \n", - "samples $u_1, u_2$ of the uniform distribution on the unit interval [0, 1], one can\n", - "consider the Box-Muller transform to obtain a 2-vector:\n", - "\n", - "\\begin{align}\n", - "\\begin{bmatrix}\n", - "%R\\cos(\\Theta )=\n", - "{\\sqrt {-2\\ln u_{1}}}\\cos(2\\pi u_{2}) \\\\\n", - "% R\\sin(\\Theta )=\n", - "{\\sqrt {-2\\ln u_{1}}}\\sin(2\\pi u_{2})\n", - "\\end{bmatrix},\n", - "\\end{align}\n", - "\n", - "wherein we have two independent samples of the standard normal distribution.\n", - "In IBM Q, this is implemented as follows: " - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Normal distribution (mu=2.400, sigma=5.100):\n", - "sample type: , element type: float64 , shape: (4321,)\n", - "sample min: -14.4205, max: 20.7960\n", - "time: creation: 0.01026, sampling: 1.60\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4FOXax/HvnYTQQgslNJGugh3sjaA0RbGAEKSoIKKix67gexQ89nLEig2VIiBwLCCgoBQbKEVRAUV6B+kQapL7/WMmsiwpu8nuzmZzf65rr+zOzO78drLZO/M8M8+IqmKMMcYEKs7rAMYYY4oWKxzGGGOCYoXDGGNMUKxwGGOMCYoVDmOMMUGxwmGMMSYoVjhMvkRkoIiMDGJ5FZGG7v03ReTfIcpRR0T2iki8+3imiPQOxWu7rzdFRHqG6vWigYgsEpEWecwfICLvFnIddd3feUJhXscrIrJKRC4r4HND9vkuSorkLzrWiMgqoDRQX1XT3Wm9gW6q2sLDaIWmqn0DWc7dBr1V9as8XmsNkBSKXCIyEGioqt18Xr9dKF47mqhq03zmPxWpLEWdiNyI8xm9MHtaoJ/vWGN7HNEjAfhXYV9EHDH3ey2q/81GM9umpqBi7gumCHseuF9EKuY0U0TOF5G5IrLL/Xm+z7yZIvKkiHwP7APqu9OeEJEf3OadiSJSWUQ+FJHd7mvU9XmNl0VkrTtvvohcFGhwEXlARDaKyAYRudlv3gci8oR7v4qIfC4iO0Vku4h8KyJxIjICqANMdLM+6NP80UtE1gDTc2kSaSAiP7nb5TMRSXbX1UJE1vllWSUil4lIW2AA0Nld30Kf7djbvR8nIv8nIqtFZIuIDBeRCu687Bw9RWSNiGwVkUeC2F4lReQF97mb3eaO0r653W2wxd2uV4vI5SKy1N1uA3xea6CIjBeRj0Rkj4gsEJHT/N+z37IjRWQ3cKP4NUOKyIXuZ2an+3m40Z1+hYj87H4+1rp7bIG814dFZLzftJdF5BX3/o0issLNvlJEbsjldc4Wkdluro0i8pqIJPrMVxHpKyJ/icgOEXldRMSd10BEpovINvd39aHk8HcmItVFZJ+IVPaZ1kxE/haRU4A3gfPcz8xOd/4/n2/3cQcR+cXdTsvdz1rMscIRPeYBM4H7/We4X4aTgFeAysB/gUm+H3CgO9AHKAesdqd1cafXAhoAs4H3gWRgCfCYz/PnAqe780YB40SkVH6h3T+M+4FWQCMgr7bi+4B1QFUgBefLW1W1O7AGuFJVk1T1OZ/nXAKcBLTJ5TV7ADcDNYEMnG2UJ1X9AngK+Mhd32k5LHaje0sF6uM0kb3mt8yFwAnApcCjInIS/PPluzOPCM8CjXG2d0Oc38+jPvOrA6V8pr8DdAOaARe566rvs3wHYBxHfnefikiJXNbdARgPVAQ+9J0hInWAKcCrOL+j04Ff3NnpONu6InAFcJuIXJ3He8w2GrhcRMq764gHrgdGiUhZnN9XO1UtB5zvsz5/mcA9QBXgPJxtfrvfMu2Bs4DT3HVkf2YEeBrnM3IScBww0H8FqroJ52/wep/J3YAxqvob0BeY7X5mcio8ZwPDgQdwttPFwKpc3k+RZoUjujwK3CkiVf2mXwH8paojVDVDVUcDfwBX+izzgaoucucfdqe9r6rLVXUXzhfCclX9SlUzcL5ozsh+sqqOVNVt7vNfBErifCnm53p3Pb+7/TMD81j2MFADOF5VD6vqt5r/YGkDVTVdVffnMn+Ez7r/DVzvfjkV1g3Af1V1haruBfoDXfz2dgap6n5VXQgsxPnCQlW/y+mLBZymROAW4B5V3a6qe3CKWBefxQ4DT7q/xzE4X5Yvq+oeVV0ELAJO9Vl+vqqOd5f/L07ROTeX9zVbVT9V1awctukNwFeqOtr9/WxT1V/c9zRTVX9zn/crTkG4JPfN51DV1cACILvItAT2qeoc93EWcLKIlFbVje77y+l15qvqHPfzuQp4K4f1P6OqO92+sBk4hQ9VXaaq01T1oKr+7W6j3LIPwykW2UUuDRiR3/t09QLec9eVparrVfWPAJ9bpFjhiCKq+jvwOfCw36yaHNmLyLYa5z/SbGtzeMnNPvf35/D4n45mEblPRJaI0+SzE6iA84WVn5p+6/bP6et5YBkw1W2e8H+fOcnpfeU2fzVQgsBy58d/m6/G6YdK8Zm2yef+PgLruK8KlAHmu80uO4Ev3OnZtqlqpns/+8s9198dPttAVbNw9upq5rL+vLbnccDynGaIyDkiMsNtttmF8993oNt5FM4XMEBX9zFuse/svtZGEZkkIifmsv7G4jRzbnKb2Z7KYf05/j5EpJqIjBGR9e5zR+aR/TOgibtH1wrYpao/Bfg+c91+scYKR/R5DOc/Ut+isAE43m+5OsB6n8cFHuZYnP6Mh3D2Hiq5/y3vwtnFz89GnD8Y31w5cv9jvk9V6+PsLd0rIpdmz87tafms33/dh4GtOE0rZbJnuP89+n455/e6/tu8Dk5T2OacFw/YVpwv/qaqWtG9VVDVwhwt9s82EOfAiNo4+XOS1/tei9OkmZNRwATgOFWtgNPeH8jnA5y92xYiUhu4xn0tJ4zql6raCmdP9A+cZrmcDHHnN1LV8jjNnIGu/2mc932q+9xuuT1XVQ8AY3H2vrpz9N5Gfp+ZvLZfTLHCEWVUdRnwEXCXz+TJQGMR6SoiCSLSGWiCs3cSCuVwvhT/BhJE5FGgfIDPHYvTydpERMpwdL/JUUSkvYg0dJtrduO0W2f/Z70Zpy8hWN181v04MN79b30pUMrt1C0B/B9O81u2zUBdyf0ItNHAPSJST0SSONInklGAjP9w9wjeAV4SkWoAIlJLRHLrwwlEMxG51m1Guxs4CMzJ5zk5+RC4TESudz9nlUXkdHdeOWC7qh5w2/K7BvqibvPQTJz+tZWqugRARFJE5Cq3r+MgsJcjnwd/5XA+M3vdvZLbgnhf5dzX3ikitXD6IPIyHKd/6yqcvZNsm4Havp3yfoYCN4nIpeIcXFErtz2oos4KR3R6HCib/UBVt+F0/N0HbAMeBNqr6tYQre9LnD6QpThNMgfIv4koO9sUYDAwHacZanoeizcCvsL5I54NvKGqM915TwP/5zbfHHOAQB5GAB/gNFOUwi24br/O7cC7OHtm6ThNONnGuT+3iciCHF73Pfe1vwFW4myTOwMJJCIXicjePBZ5CGdbzXGbTr4isP6k3HyG0+SzA+e/5Gt9+rkC5vYNXI7zOduO01GdfeDA7cDjIrIHpy9ubJAvPwrnwIlRPtPi3HVtcNd3Ccd2eGe7H6dY7cEpvB8Fse5BwJk4e9GTgI/zWlhVv8fpe1ng9qdkm47Tv7RJRI7523ObtG4CXnLXNYtjWwpiguTfN2mMiVaSw4mMpvBEZDowSlULdVZ9rLITgIwxxoeInIWzh9LB6yzRypqqjDHGJSLDcJoO73YPlTY5sKYqY4wxQbE9DmOMMUGJyT6OKlWqaNWqVSlbtmz+C0dQenq6ZQpQNOayTIGJxkwQnbmiLdP8+fO3qqr/yBXHUtWYuzVr1kxnzJih0cYyBS4ac1mmwERjJtXozBVtmYB5GsB3rDVVGWOMCYoVDmOMMUGxwmGMMSYoVjiMMcYExQqHMcaYoFjhMMYYExQrHMYYY4JihcMYY0xQrHAYY4wJSkwOOWJMVEpNPfrxjBne5DCmkGyPwxhjTFCscBhjjAmKFQ5jjDFBscJhjDEmKFY4jDHGBMUKhzHGmKBY4TDGGBMUKxzGGGOCYoXDGGNMUKxwGGOMCYoVDmOMMUGxwmGMMSYoVjiMMcYExQqHMcaYoESscIhIWxH5U0SWicjDOcwvKSIfufN/FJG67vQSIjJMRH4TkSUi0j9SmY0xxhwrIoVDROKB14F2QBMgTUSa+C3WC9ihqg2Bl4Bn3emdgJKqegrQDLg1u6gYY4yJvEjtcZwNLFPVFap6CBgDdPBbpgMwzL0/HrhURARQoKyIJAClgUPA7sjENsYY4y9ShaMWsNbn8Tp3Wo7LqGoGsAuojFNE0oGNwBrgBVXdHu7AxhhjciaqGv6ViHQC2qhqb/dxd+BsVb3TZ5lF7jLr3MfLcfZUTgRuB24EKgHfAu1UdYXfOvoAfQBSUlKavfvuuyQlJYX7rQVl7969lilA0Zir0JmWLj36cePGhQtEjG6nMInGXNGWKTU1db6qNs9vuUhdc3wdcJzP49rAhlyWWec2S1UAtgNdgS9U9TCwRUS+B5oDRxUOVX0beBugefPmmpSURIsWLcLwVgpu5syZlilA0Zir0JkGDTr6cX7XHA/gGuUxuZ3CJBpzRWOmQESqqWou0EhE6olIItAFmOC3zASgp3u/IzBdnd2hNUBLcZQFzgX+iFBuY4wxfiKyx6GqGSLSD/gSiAfeU9VFIvI4ME9VJwBDgREisgxnT6OL+/TXgfeB3wEB3lfVXyOR25hQ2L4dJk2Cn/66k82HkikVd4gTyqyhzTxo1gxEvE5oTHAi1VSFqk4GJvtNe9Tn/gGcQ2/9n7c3p+nGRLsNG+DJJ2HUKLjkErik1EYurPA7+zJL8nt6PdLSoFw5ePxxaN/e67TGBC5ihcOY4mTMGLjrLujRw+kTr1oVSB1/1DLPf309EybA/ffDyJHwxhuQnOxNXmOCYYXDmBDKyoL+/eGTT2DyZGiex/EpcXFw9dXQpg089BCcey5MmQINGuTyhAA6y42JBBurypgQycqC3r3hu+9g9uy8i4av0qXhlVfg3nvhootgyZLw5jSmsGyPw5gQUIX77oM//oBp06Bs2eBfo29f53mtW8M330C90Mc0JiSscBgTAoMHw9dfw6xZPkXDv2kpAN27w86dTmf5nOTSlEvYH9qgxoSAFQ5jCsotDN/sPJVnFz3Gj81up9K1mwv9sv36wa+/wo2fPsz4po/Z4bom6lgfhzGFsPlQJdIW/x/DT3qa40sVvmiAc17Ha6/B+oNVGLyuY0he05hQsj0OYwpIFfouvYee1afSOnle4V/Qp2mrJDCqSQ3OWfAGbZLn0qTs6sK/vjEhYnscxhTQmC0t+WtfbR6rOyz/hQugfumNPFXvXbovGcDhrPiwrMOYgrDCYUwBbN4Mdy+7gw9OfIaScYfDtp7eNSZRtcROXl53XdjWYUywrHAYUwAPPQQ9qk+lefml+S9cCCLwWqOXeWZNV9YdqBLWdRkTKCscxgTpxx9h6lR49PjhEVlfwzIbuK3WZ9y//LaIrM+Y/FjhMCYIWVnwr3/BU08R0XMs+tcZxY97TmLGjtMjtk5jcmNHVRkThFGjnOLRowdQ2D7xIE4QLBN/kKfqvctDK/rw45m327kdxlO2x2FMgDIyhEcfheefdwYojLTO1WZwWBP4eOvFkV+5MT6scBgToClTqtOggXNtDS/EifJ0vXd4ZEUvMrLsT9d4xz59xgTgwAEYOfJ4/vMfb3O0SZ5LjZLbGLa5rbdBTLFmhcOYALzzDtSvn86553qbQwQG1f2Ap1d3JSPD2yym+LLCYUw+Dh6EZ56Bm25a6XUUAC6u+Cs1Sm5j7Fivk5jiygqHMfkYORJOOw0aN97rdZR/PFJnJE895RzhZUykWeEwJg9ZWc5RVA8+iHPx8NTUIzcPtUmeS6lS8MMPdja5iTwrHMbkYeJEKFfOuyOpciMCAwbAhx/WQdXrNKa4scJhTB6ee87Z24jGE+6uvhr27Enghx+8TmKKGztz3BRf/s1NM2Yc9fD7M+9k05KHufb1HvBGFqSlRTBc/uLi4Npr1zN4cCMuuIB8348xoWJ7HMbk4sW1nbjvuHHES/T2QLdtu4np02G1XefJRJAVDmNysGYNzNp5Gj1SvvQ6Sp7KlMmkZ094/XWvk5jixAqHMTl46y3olvIVSQkHvI6SrzvvhPfeg/TMUl5HMcWEFQ5j/Bw8CEOHwu21PvM6SkDq1YOLLoJhm9p4HcUUE1Y4jPEzfjyccgqcUGat11ECdtddMGTDVXZorokIKxzG+Hn9dbjjDq9TBKdFCziYVYLZu5t6HcUUA1Y4jPHx88+wbh20b+91kuCIQJ8an/PWhiu9jmKKASscxvh44w3o2xcSisIZTqmpRw2DcmP1L/hs6wXsOJzkdTIT46xwGOPas8fp37j5Zq+TFEyVxN1cXvlHRmxu7XUUE+OscBjjGjsWLr4Yqlf3OknB9akxkbc2XGmd5CasrHAY4xo6FHr18jpF4VxScSGZGsf3u072OoqJYVY4jAGWpNdh5Uq4/HKvkxSOCPSp+Tlvb7ROchM+VjiMAd7b1I6ePYtIp3g+uqVMY8LW89mzx+skJlZZ4TDF3uGseEZsal1kO8X9VUvcySUVFzJ+vNdJTKyywmGKvc+3nUfjMmtp3NjrJKFzY/Uv+OADr1OYWBWxwiEibUXkTxFZJiIP5zC/pIh85M7/UUTq+sw7VURmi8giEflNRGw0NxMy721qx83Vp3gdI6SuqDyHxYthxQqvk5hYFJHCISLxwOtAO6AJkCYiTfwW6wXsUNWGwEvAs+5zE4CRQF9VbQq0AA5HIreJfZsPVeK7XafQqdosr6OEVGJcBmlpMHy410lMLIrUHsfZwDJVXaGqh4AxQAe/ZToAw9z744FLRUSA1sCvqroQQFW3qWpmhHKbGDd2SwuurDybsvHRP3x6sG680SkcWdF7HSpTRIlG4EwhEekItFXV3u7j7sA5qtrPZ5nf3WXWuY+XA+cA3YBmQDWgKjBGVZ/LYR19gD4AKSkpzd59912SkqJr6IW9e/dapgBFJNfSpdzxTAd6tF/AOSev5ZhOjqVLj86UnEzS9u3hzRSkvDJpo8b06tWcu+76i9NP3xW5TMX5MxWkaMuUmpo6X1Wb57dcpA4+lBym+Ves3JZJAC4EzgL2AV+LyHxV/fqoBVXfBt4GaN68uSYlJdGiRYvC5g6pmTNnWqYARSLXyoffYsu667l34YuU+C3z2Gt0Dxp0dKa0NFqMHh3WTMHKM9OMGdxxB/z66xncfXcEMxXjz1SwojFTICLVVLUOOM7ncW1gQ27LuP0aFYDt7vRZqrpVVfcBk4Ezw57YxLwxW1rSseosSsTFbsvnDTfAJ59AerrXSUwsCbhwiEjlQqxnLtBIROqJSCLQBZjgt8wEoKd7vyMwXZ12tC+BU0WkjFtQLgEWFyKLMQCM3tKSrtW+zn/BIqx6dbjgAqd4GBMqwexxrBWRz0Sko/vlHzBVzQD64RSBJcBYVV0kIo+LyFXuYkOByiKyDLgXeNh97g7gvzjF5xdggapOCmb9xvhbtAh2ZJTjggq/ex0l7G64AUaN8jqFiSXB9HEcD6QBDwFvi8h4YLiqfhfIk1V1Mk4zk++0R33uHwA65fLckTiH5BoTEqNHQ5dq04mT2B9G9qqr4LbbYMsWqFbN6zQmFgS8x6Gqf6vqK6p6FnAesAUYISIr3D2H48OW0pgQUnUKR1q16V5HiYiyZZ0rGo4b53USEysK2jle3b2VB5YDtYCfczoj3Jho89NPzmCGZyT95XWUiOnaFT780OsUJlYE0zneVESeFpE1wBDgL+BUVW2lqr1wjnQaEKacxoTM6NGQluYMQR7T3EvKkppKq1awbJkNQWJCI5g9jm+AckBHVW2iqs+q6vrsmaq6Chgc4nzGhFRmpnOlv7Q0r5NEVokS0KkTjBnjdRITC4IpHNeoaj9V/cl3ooicnX3ft7PbmGg0axbUqAEnnOB1ksjLbq6yy8qawgqmcHyey/QvQhHEmEjIbqYqjs47zzkR8NdfvU5iirp8D8cVkTic4UDEHXTQt2W4AZARpmzGhNTBg/Dxx/DLL14n8UZcnLPXMWoUnHaa12lMURbIeRwZHBlXyr9IZAFPhjSRMWHy5ZfQtCkcd1wuC6SmRjSPF7p2da6r/vTTTiExpiACKRz1cPYyZgEX+0xX4G9V3R+OYMaEWnFupsp28slQsSJ89x1cfHH+yxuTk3wLh6qudu/aCX6myEpPhylT4NVXvU7ivexOciscpqDyLBwi8raq9nHv53otMVXtEepgxoTShAlw/vlQpYrXSbyXlgbNmjlFNDGoUeeMceS3x7HS5/7ycAYxJpyKfTOVT//N8cAJJ8xg6lRnKBJjgpVn4VDVp33uD8prWWOi1fbtzvkbNuTGEV27OsXUCocpiPyaqloG8iKqWjxGizNF0v/+B61bQ7lyXieJHp06wSOPwL59UKaM12lMUZNfU9XQAF5DgfohyGJMWIweDf365b9ccVKtGpxzDkycCJ07e53GFDX5NVXVi1QQY8Jhwwb4+Wfn3AXjIzWVtI1tGH3HhXR+89/HXm/dmDzYKUAmpo0dC1dfDaVKeZ0k+lxT9Ttm7DydnYfLeh3FFDF5Fg4RWeJzf62IrMnpFv6YxhRMsT+aKg8VEtK5tNICPt5qJ3SY4OTXx3GLz/1u4QxiTKgtXw6rVkHLgA7xKJ7Sqk3n7Y3tudnrIKZIya+P4zuf+7PCH8eY0Bk92jl6KCH7U14MxqIKVvvKs7nlz/vZtAmqV/c6jSkqgrkCYKJ7bfG/RCTd/fkfEbHWYxN1/rmuuDVT5al0/CGurPIDY8d6ncQUJcF0jg8BWgJ3AWe5Py8B3ghDLmMK5bffYO9e5xoUJm9p1aYzerTXKUxREsjouNmuBhqo6k738WIR+RFYBtZEaqJL9t6GDR2ev1aV5tFzMaxcCfXsAHwTgGAKxyagDLDTZ1ppYGNIExlTSKrOtbU/rdIbUm2ItfyUiMukY0dnm/Xv73UaUxTkdzhuy+wbMAL4QkRuEZF2ItIHmAzkOmquMV6YMwdKl4ZTy1rRCFRaGtZcZQJWkCFHBvg9vhV4NjRxjCm8UaOcL0KxEdQCduGFsGMHLFrkXCXRmLzYkCMmpmRkwLhxzhXusMIRsLg4Z8yq0aPhiSe8TmOinXUdmpgyY4ZzTfGGDb1OUvRkN1epep3ERLtgzuMoLyL/FZH5IrLahhwx0Wj0aOdaEyZ4Z54J8fEwd67XSUy0C2aP4w3gTOBxIBm4E1gDvBSGXMYE7eBB+PRTGya8oESsk9wEJpjC0Rq4TlU/AzLdn52B7mFJZkyQpkyB006DmjW9TlJ0paXBRx9BZqbXSUw0C6ZwxAG73Pt7RaQizjkc1ppsooINMVJ4J54IKSnwzTdeJzHRLJgTABfiDDHyNfAt8DqwF1gahlzGBGXPHvjiC3jDBsApGJ8BINN2d2H06FttTEiTq2D2OG4BVrn37wIOABWBHiHOZEzQPvsMLroIKlf2OknR16XadD7+GA4d8jqJiVYB73Go6gqf+38DvcKSyJgCsKOpQqdOqS2ceCJMnQrt23udxkSjoM7jEJGbRWSaiCxyf/YSEQlXOGMCsW0bfP89dOjgdZLY0XXLYEb1+tppwrI2K+MnmPM4ngMeAj4GHnB/3o8NN2I8Nn48tG0LSUleJ4kdnarOZPK2c0jPtMvtmGMFs8dxI3Cpqg5R1cmqOgTnEN2bwpLMmABlj01lQqdq4i7OLb+YiVvtgibmWMEUjj3uzX/a7kCeLCJtReRPEVkmIg/nML+kiHzkzv9RROr6za8jIntF5P4gMpsYt3Yt/P47tGvndZLYk5YyndFbLvU6holC+Q2rXj/7BgwGPhaRViJykoi0BsYRwJnjIhKPc/huO6AJkCYiTfwW6wXsUNWG7mv6N4G9BEwJ5E2Z4mP0aLjuOkhM9DpJ7LmmyrfM3HkaOw5bG6A5Wn5HVS0DFPDtAPfvKWsJvJbP65wNLMs+MktExgAdgMU+y3QABrr3xwOviYioqorI1cAKID2f9ZhiZtQoePllr1PEpvIJ+7is0gI+3nqxHUJpjiIagaEwRaQj0FZVe7uPuwPnqGo/n2V+d5dZ5z5eDpwD7Ae+AlrhdMbvVdUXclhHH6APQEpKSrN3332XpCjrLd27d69lClAguVauLMODD57GRx/NzvkSsUtDe27q3uRkkrZvD+lrFla4M82aX48J35zEi0OWBZ6pCH+mIi3aMqWmps5X1eb5LRfMmeOA09cA1ALWqeraQJ+WwzT/ipXbMoOAl1R1b15H/qrq28DbAM2bN9ekpCRatGgRYLzImDlzpmUKUCC5pk2DG2+Eli1zWW7QoNBmSkujRZSNABjuTOdkJjJ42XhOPLEF1asHmKkIf6YiLRozBSKYw3FriMgsnOarj4HlIvKNiAQypNw64Difx7WBDbktIyIJQAVgO85ex3Misgq4GxggIv0wxZqq00x1ww1eJ4ltpeMPcWXl2Ywd63USE02COapqCM54VZVUtQZQCfgZeDOA584FGolIPRFJBLoAE/yWmQD0dO93BKar4yJVrauqdXE66J9S1fz6VEyMmz3bua74aad5nST2pVX72oZaN0cJpqnqQqCGqh4GUNV0EXkQWJ/fE1U1w91L+BKIB95T1UUi8jgwT1Un4FzffISILMPZ0+gS5HsxxcioUc4QIzZuQfhdVmk+PRbDypVQzy4mbQiucOzAOZR2oc+0E4CdgTxZVScDk/2mPepz/wDQKZ/XGBhgVhPDDh+GsWNhzhyvkxQPJeIy6dQJxoyB/v29TmOiQTCF4zngKxEZCqwGjsc5a/zf4QhmTG6++goaNID6vfyODJ8xw5tAxUBaGtxxhxUO4whmdNx33ENkuwKn4nRup6nq9HCFM+Yo7mB7o5b0p2u5P5xDLExEXHAB7NgBixZB06ZepzFeC6hzXETiRWQY8L2q9lbVy92fVjRMRKVnlmLi1vO5vtpMr6MUK3Fx0KWLXY/cOAIqHKqaiTOgYVZ44xiTt4lbz+Pc8otJSdzhdZTiJTWVtBl9GP3ierSFDbNe3AVzOO5LwCARKRGuMMbkZ/jm1nRLmeZ1jGLpjKS/SJBMftpzktdRjMeCKRx34lyHY4+IrBWRNdk/w5TNmKNsOFiZ2bubck3V77yOUiyJQFq16Yze3NLrKMZjwRxV1S1sKYwJwIebL+PaKt9SNv6A11GKrbSU6aT+8l9ezIT4eK/TGK8EUzhmA/8HpAE1cY6qGgM8GYZcxhxFFYZtasMbjQfnvpBd4jTsTiizluqJ25k1qwotbcej2Ap2yJGWwF3AWe7PS4A3wpDLmKMsWAD7skpyYYV3V2ovAAAY2UlEQVTfvI5S7HVL+Yrhw71OYbwUzB7H1UADVc0+U3yxiPyIM+jhzSFPZoyPYcOgR8pU4iT8lwEwebsh5Sv+82F39izvTLmE/c5EO/myWAlmj2MTUMZvWmlgY+jiGHOsQ4ec8wd6VJ/qdRQDpCTu4JIKCxn3dwuvoxiPBFM4RgBfiMgtItLOvXDSZGC4iLTMvoUnpinOJk+Gk06C+qXtf5RocVONL3hvo13ovbgKpqnqVvfnAL/pfd0bOBdeql/YUMYA/3R2D/v9cXpWngM1PM5j/nF58hxu/fNelu6rTeMy67yOYyIs4D0OVa0XwM2Khgmpvw9VYMaOM+hUdabXUYyPEnGZdEuZxgeb2nodxXggmKYqYyJu1JbLaF95NuUT9nkdxfi5qcYXDNvUmky1r5Hixn7jJmqpwjsbrqBXjcn5L2wirmnZVdQuuZWp25t7HcVEmBUOE7Xm7G7CQS1Bi4q/eB3F5OKm6lN4f5N1khc3wXSOGxNevmd+p6Xxzsb23FJjkl0eNop1qTadh1f0Yds2qFzZ6zQmUmyPw0Sl9P0l+GTrhfSs/qXXUUweKpZI54rKcxg50uskJpKscJio9PVPDbm04gK77kYRcGvNibz1ltMnZYoHKxwmKn3+3YncUnOS1zFMAC6q8CsA337rcRATMdbHYaLO/D2N2Z1eilb15nkdxQRABPr2hSFD4OKL3Yn+IxXbWFYxxfY4TNR5Z8MVXHHBHzagYRHSvTtMmQJbtnidxESCFQ4TVfZmlGLs3y1oe/6fXkcxQahUCa69Ft5/3+skJhKscJioMnJzKy6puJCqlexM8aKmb1946y3IyvI6iQk3KxwmaqjCa+uv4c5an3gdxRTAWWc5ex7z5lXyOooJMyscJmrM3Hk6ipBa8Wevo5gCyO4knzixptdRTJjZUVXGO35H3ry6fhD9an1iZ4oXRe7vMi2jFPct+IQ1p1ajTinrKY9VtsdhosLqAynM2nka3VPsKn9FWVLCAdqc9xevr7/a6ygmjKxwmKjw5oYr6Z4yjaSEA15HMYV0bcvfGbrxcvZmlPI6igkTKxzGc/szExm68XLuqPWp11FMCNSosoeLKy5k+OY2XkcxYWKFw3huzJaWNCu3lEZl1nsdxYTI3bX/x8vrriVLrcMqFlnhMJ5ShRfXXs89tcd7HcWE0EUVfqVs/AG+2H6211FMGFjhMJ6asv0cEiSTVpVsXKpYIgL31B7P4HXXeR3FhIEVDuOp59d25v7jPrJDcGPQ9dVm8nt6PX7fW9frKCbErHAYz8zb3Zjl+2vSuZqNnBqLSsYd5o5an/LC2s5eRzEhZoXDeOb5tV24u/b/KBGX6XUUEyZ31PyUidvOY9Uqr5OYULLCYTyxciV8veNMbqnxuddRTBhVLJHOLTUm8cILXicxoRSxwiEibUXkTxFZJiIP5zC/pIh85M7/UUTqutNbich8EfnN/dkyUplN+LzwAtxS83PKJez3OooJs3uOG8+oUbB5s9dJTKhEpHCISDzwOtAOaAKkiUgTv8V6ATtUtSHwEvCsO30rcKWqngL0BEZEIrMJn3XrYMwYuLf2OK+jmAhISdxBWhoMHux1EhMqkdrjOBtYpqorVPUQMAbo4LdMB2CYe388cKmIiKr+rKob3OmLgFIiUjIiqU1YPPss3HwzVE3c5XUUEyEPPADvvAM7d3qdxISCqIb/8pwi0hFoq6q93cfdgXNUtZ/PMr+7y6xzHy93l9nq9zp9VfWyHNbRB+gDkJKS0uzdd98lKSkpnG8raHv37i3emZYuZevOMtw8qCMfDBpHcvncm6n2JieTtH17ZHIFyDIFJsdMjRvz9NMnUqvWfnr0WO1NruL+9xeA1NTU+araPL/lIjWsek5H6ftXrDyXEZGmOM1XrXNagaq+DbwN0Lx5c01KSqJFixYFChsuM2fOLN6ZBg3i7r/uoHfyRK6d9F7eudLSaDF6dGRyBcgyBSbHTDNmUKsWnHcevPhiPSp5cK2nYv/3F0KRaqpaBxzn87g2sCG3ZUQkAagAbHcf1wY+AXqo6vKwpzVhsfFgMsM3t+bB46Lri85ERqNGcPXV2BFWMSBShWMu0EhE6olIItAFmOC3zASczm+AjsB0VVURqQhMAvqr6vcRymvC4Nk1afRImUr1kju8jmIiLTUVUlN5dFFn3nxuF1vsGk9FWkQKh6pmAP2AL4ElwFhVXSQij4vIVe5iQ4HKIrIMuBfIPmS3H9AQ+LeI/OLeqkUitwmdlSth5OZWDDj+Q6+jGA/VKbWFrilf8+yz+S9rolfELh2rqpOByX7THvW5fwDolMPzngCeCHtAE1aPPgr9an1CtUQ7rKa4G1DnQ07+4FruvRdq1fI6jSkIO3PchN0vv8C0aXDfcWO9jmKiQI2S2+nVCwYO9DqJKaiI7XGY4qt/f/i//4Ny/7OzxI1jwAA44QS480449VScPhBfM2zgy2hmexwmrL7+GpYuhT59vE5ioknFivDvf8O99zoX8zJFixUOEzaHD8O//gUvvgiJiV6nMdHm1lth/XqYNMnrJCZYVjhM2LzR5DVqbphLh8GpxzZFmGKvRAnnn4r774fDWfFexzFBsMJhwmLLFnhidTdebviaXd3PHMs9r6Pdc6nU3fITg9d19DqRCYIVDhMWjzwC3VOmcVLZNV5HMVFMBF5t9ArPrEljzQE7PauosMJhQsf9L/L7M+9k0vCtPFZ3WP7PMcVeozLr+Vftj7nrrzu9jmICZIXDhNSBzBL0/vN+Xm30KhUS0r2OY4qIh+qMZsm+Ony29QKvo5gAWOEwIfXkmm6cVGY111X9xusopggpGXeYNxu/xF1/9WN3Rhmv45h8WOEwIfPr3vq8teFKXmv0itdRTBGUWukX2iTP495lt3sdxeTDCocJiUOH4KY/HuKpeu9Ss+Q2r+OYIurFBm/w9c4z7dyOKGeFw4TEo49CrZJ/06vG5PwXNiYX5RL288GJz9KnD2yz/z+ilo1VZQrOPalvxo7TGbFkAL80f97O2TCFdknFhXROhb59YexY7DMVhWyPwxTKtsPl6fFHf94/8TmqJu7yOo6JEU/Na82yL/5iyAmDbdSBKGSFwxRYlgo3/vEQnarOonXyPK/jmBhSKv4w45oMZOCqnszb3djrOMaPFQ5TYI+v6sGujLI8W/8tr6OYGNSwzAbeaDSY6xc/xg672nBUscJhCmTCBBi66XLGNhlEibhMr+OYGNWx2jdcVfkH0tIgI8PrNCabFQ4TtCVLoHdvGNdkINVL2r+CJrxeaDAEVbjnHq+TmGxWOExQNmyAdu3ghRfg3ApLvI5jioGEuCzGjoXp0+G113JZyB0n7Z+bCSsrHCZgu3Y5RePWW6FHD6/TmOKkQgWYOBGefBI+/dTrNMbO4zABOXAArr0WLrwQHn7Y6zSmOKpfHz7/3PnnpWxZaNXK60TFl+1xmHzt3w8dOkC1avDKK3ZClvFOs2bw8cfQtSt8953XaYov2+MwecouGlWqwPDhEG9X+DRe8Om3uBAYNWoG114L48bBJZd4F6u4sj0Ok6tdu6B9e6ha1SkaCfZvhokSrZ5KZUzNe+nUagcTTxngdZxix74KTI7WrYPLL4eLL4aXX3b3NOxoFRNFWlb6mc9PGcBVvz3Jcxlv0aP6VK8jFRu2x2GOsXAhnH8+dO8Or75qzVMmep1d/g+mn34vA1f15KHlfchU+0qLBNvK5igffACXXeacp/HAA9YRbqJfk7Kr+enM25i75wSu/O1Jdh4u63WkmGdNVQaAffvgXw0/59udpzLz5MdoOmQVDPE6lTGBqZK4my9PfZD7lt/OGfPfYeT3cIFdvjxsbI/D8P33cPrpsC+zFHOb9aVp2VVeRzImaCXiMnml0asMbvg6110Hjz0Ghw97nSo2WeEoxvZcdDmvP5FMx5bbeCbxUT5s8iTlEvZ7HcuYQulQ5Xt+/hnmzoUzz3T+MTKhZYWjGMrKgmHD4MSfhrE7vRS/Nu/FtVW/9TqWMSFTowZMmuRc0rhzZ+jVC7ZuTfQ6VsywPo5iRNUZ72fQIOecjP81fYwDN51O1dF25T4TY1JTEaAT0KZeGZ6oPImbbz6LuXPhoYcgOdnrgEWb7XHEMnek0IxLLmV808c480znP7BHHoHZs210W1M8lE/Yx3NzUxn6yEfsHDGRxim7eOABWLPG62RFlxWOGLbxYDL/WdWdunPGMHhdRwYOhJ9/dgYrjLPfvClmqlbax1sn/Jd5zW4lKwvOOAO6dIFp0yDTrkUWFGuqKsr8z+SeMYNt25xB4MaMgQVzP6Bz1RlMOrU/pyUthw4zvMlpTBSpW3ozL77oHHU1bBj07w8bN0K3btCpk9OhHnfpsX9b5ggrHEVcpsaxYE8jvtx+FlMvds76btMG7rgD2h3uSOn4Q0cWtiFDjHGkplIeuBO4sxwsiqvLiNGtuOHVC9mbWZr2le+lXfKPXFTxNyqX2O112qhjhaMIUYXNm2HePPjxR/hp4XP8tOdEaiZuo3XyXAYMcMaWKlPGfcKrh/J8PWOMo2nZVTzT4B2eafAOS/fVZuK28xiyoQM9/uhPnZJbuOg2OOss53ynJk2gVCmvE3srYoVDRNoCLwPxwLuq+ozf/JLAcKAZsA3orKqr3Hn9gV5AJnCXqn4ZqdyRlpUFW7bA2rXOQIMrVjjX+F6yBJb85Pzn06zcUs4pt4Q7av3B8PJLSEl0r/vdtpOHyY2JDY3LrOO+MuO477hxZGTF8cvehnzb+C2mT4eXXoJly6BB3Eqall1Fg9IbqF9qA/WHPED9+lC7di6jSOfQrFyURaRwiEg88DrQClgHzBWRCaq62GexXsAOVW0oIl2AZ4HOItIE6AI0BWoCX4lIY1WNyu6sw4ed4Tv273d++t7/8cdkNm+G7duPvm3b5tw2LNjIhoOVqZCQznEl/6Z2y8bUrQvNmzsDDp40oCdVS+y08aOMiZCEuCyal19K8wnuF38VOJhcgsXpx7N4X11W7q/OD7tPZuTjsHw5bNoEFStCyr6VpCTucG/bqRDfkwoJ6VRISKd8fDoVpjmXw121qgwrVjh7MCVLHvkZ7ZcwiFS8s4FlqroCQETGAB0A38LRARjo3h8PvCYi4k4fo6oHgZUissx9vdnhCHrZZZCeDhkZzpEWOf3Mbd6hQ05zUpkyR26lSx+5v39/bY4/HipXdo4jr/HpEE4usZvkEntITthNzdO2USvxb0rFu+Mk7AZ+dW8A+Z2/ZH0YxoRdybjDnFFuGWeUW3Zk4ox2gPM9sG0bbLriCTYfqsSmQ8lsOVyRXRlJrD6Qwq7MsuzOKMuuZ2H3bti8uSnx8XBg/VYOZpXgQFYi+7NKEhcf908RSUx0RqjO6ZaQcOy0Bx6Aq68O7zYQVQ3vGgAR6Qi0VdXe7uPuwDmq2s9nmd/dZda5j5cD5+AUkzmqOtKdPhSYoqrj/dbRB+jjPjwBp7lrazjfVwFUwTIFKhpzWabARGMmiM5c0ZbpeFWtmt9CkdrjyKlxxb9i5bZMIM9FVd8G3v7nxUTmqWrzYEKGm2UKXDTmskyBicZMEJ25ojFTICJ1Gtg64Difx7WBDbktIyIJQAVge4DPNcYYEyGRKhxzgUYiUk9EEnE6uyf4LTMB6One7whMV6cdbQLQRURKikg9oBHwU4RyG2OM8RORpipVzRCRfsCXOIfjvqeqi0TkcWCeqk4AhgIj3M7v7TjFBXe5sTgd6RnAHQEeUfV2/otEnGUKXDTmskyBicZMEJ25ojFTviLSOW6MMSZ22FB3xhhjgmKFwxhjTFBiqnCIyPMi8oeI/Coin4hIRZ95/UVkmYj8KSJtIpipk4gsEpEsEWnuM72uiOwXkV/c25uRypRXLneeJ9vKL8NAEVnvs30u9yKHm6Wtuy2WicjDXuXwJyKrROQ3d/vM8yjDeyKyxT0PK3tasohME5G/3J+VoiCTp58nETlORGaIyBL37+5f7nRPt1WBqWrM3IDWQIJ7/1ngWfd+E2AhUBKoBywH4iOU6SScExJnAs19ptcFfvdwW+WWy7Nt5ZdvIHB/FHym4t1tUB/n3P2FQBOvc7nZVgFVPM5wMXCm72cZeA542L3/cPbfoceZPP08ATWAM9375YCl7t+ap9uqoLeY2uNQ1amqmuE+nINzzgf4DFuiqiuB7GFLIpFpiar+GYl1BSOPXJ5tqyj1z3A5qnoIyB4uxwCq+g3OUZC+OgDD3PvDgDAPgBFQJk+p6kZVXeDe3wMsAWrh8bYqqJgqHH5uBqa492sBa33mrXOnea2eiPwsIrNE5CKvw7iiaVv1c5sd3/NwFz6atoc/BaaKyHx3yJ1okaKqG8H5wgSqeZwnWzR8nhCRusAZwI9E77bKU5SPwXgsEfkKqJ7DrEdU9TN3mUdwzvn4MPtpOSwfsuOQA8mUg41AHVXdJiLNgE9FpKmqhuyqMQXMFdZtddSK8sgHDAH+4677P8CLOP8MRFrEtkcBXKCqG0SkGjBNRP5w/9s2x4qKz5OIJAH/A+5W1d1SRIe6LnKFQ1Uvy2u+iPQE2gOXqttwSJiHLckvUy7POQgcdO/Pdwd1bAyErJOzILmI4BAvgeYTkXeAz8ORIQBRO+SNqm5wf24RkU9wmtWioXBsFpEaqrpRRGoAW7wOpKqbs+979XkSkRI4ReNDVf3YnRx12yoQMdVUJc7Foh4CrlLVfT6zom7YEhGpKs51ShCR+m6mFV5mckXFtnL/iLJdA/ye27JhFshwOREnImVFpFz2fZwDQ7zaRv58hw/qCeS2dxsxXn+exNm1GAosUdX/+syKum0VEK9750N5w+nIXQv84t7e9Jn3CM7RMX8C7SKY6Rqc/1oPApuBL93p1wGLcI7SWQBcGeFtlWMuL7eVX74RwG84VyOZANTw8HN1Oc5RMMtxmvk8yeGXqb772Vnofo48yQWMxml2Pex+nnoBlYGvgb/cn8lRkMnTzxNwIU4z2a8+30+Xe72tCnqzIUeMMcYEJaaaqowxxoSfFQ5jjDFBscJhjDEmKFY4jDHGBMUKhzHGmKBY4TDGhzuK6kivcwRLRN4UkX8HuOxMEemdy7y6IqIiUuRODjaRYx8OY2KAqvb1OoMpPmyPwxRZ9l+xI3sEAmMixQqHKVLcixc9JCK/AukikiAiD4vIchHZIyKLReQan+VvFJHvROQFEdkhIitFpJ3P/Hru6MR7RGQaUMVvfVe5F97Z6TbxnOSX5QF3xNV0ERkqIikiMsV9va9yG4XVvaBPe5/HCSKyVUTOdB+PE5FNIrJLRL4RkaY+y34gIkNEZLKIpAOp7rQn3PmVRORzEfnbfc+fi0htvwgNROQn9/U/E5HkXHJWcN/XRnEuhPSEFSpjhcMURWnAFUBFda6/shy4CKgADAJG+o1NdA7O8ClVcC6cM1SODEs6CpjvzvsPR8YNQkQa4wxfcTdQFZgMTHTHrMp2HdAKZ4DKK3GG8h/gvl4ccFcu72G0+z6ytQG2qnvNBvd1GuEMs72AIyM9Z+sKPIlzUaDv/ObFAe8DxwN1gP3Aa37L9MAZHbYmzkjSr+SSc5g7vyHOUOCtgRz7R0wx4vWYJ3azWzA3nKve3ZzPMr8AHdz7N+JciCl7XhmcMYOq43ypZgBlfeaPAka69/8NjPWZFwesB1r4ZLnBZ/7/gCE+j+8EPs0lY0NgD1DGffwh8Gguy1Z0M1dwH38ADPdb5gPgiVyefzqww+fxTOAZn8dNgEM4Vzus664rAUjBGcustM+yacAMrz8HdvP2Zm3EpijyvbASItIDuBfnSw8giaObnDZl31HVfe7ORvYyO1Q13WfZ1RwZRr2m+zj7uVkispajL+S02ef+/hweJ+X0BlR1mYgsAa4UkYnAVTj/0Wf3WTwJdMLZ08lyn1YF2JXTNvAlImWAl4C2QHZTWTkRiVfVzByevxoogV8zHc4eSwlgo891I+LyWrcpHqxwmKLon5E5ReR44B3gUmC2qmaKyC/kfAEmfxuBSiJS1qd41PF5/Q3AKT7rEpyisr7wbwE40lwVByxW1WXu9K44lxS9DGevpgKwg6PfU16jk96Hcz35c1R1k4icDvzs93zfa4zUwRlJdqvf9LU4exxV9MglmY2xPg5T5JXF+RL9G0BEbgJODuSJqroa58JZg0QkUUQuxOmnyDYWuEJELnUvwnMfzhfpDyHKPganz+A2nCaybOXc9WzDaVp7KsjXLYezt7PT7fR+LIdluolIE3fv5HFgvM/eCPDPpUynAi+KSHkRiRORBiJySZB5TIyxwmGKNFVdjHMZ0Nk4zUSnAN8H8RJdcTrPt+N8wQ73ee0/gW7Aqzj/jV+Jc92UQyHKvtHNfT7wkc+s4TjNR+uBxcCcIF96MFAaJ/Mc4IsclhmB0y+yCShF7p34PYBEN8cOYDxQI5dlTTFh1+MwxhgTFNvjMMYYExQrHMYYY4JihcMYY0xQrHAYY4wJihUOY4wxQbHCYYwxJihWOIwxxgTFCocxxpig/D+FYfv0wtPuogAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Create normal distribution sampler.\n", - "mu = 2.4\n", - "sigma = 5.1\n", - "start_time = time.time()\n", - "normal = NormalDistribution(glo_num_qubits, mu=mu, sigma=sigma, backend=glo_backend)\n", - "creation_time = time.time() - start_time\n", - "\n", - "# Draw a sample from the normal distribution.\n", - "start_time = time.time()\n", - "sample = normal.normal_rand_float64(size=4321)\n", - "sampling_time = time.time() - start_time\n", - "\n", - "# Print out some details.\n", - "print(\"Normal distribution (mu={:.3f}, sigma={:.3f}):\".format(mu, sigma))\n", - "print(\"sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", - "print(\"sample min: {:.4f}, max: {:.4f}\".format(np.amin(sample), np.amax(sample)))\n", - "print(\"time: creation: {:.5f}, sampling: {:.2f}\".format(creation_time, sampling_time))\n", - "\n", - "# Plotting the distribution.\n", - "x = np.linspace(mu - 4.0 * sigma, mu + 4.0 * sigma, 1000)\n", - "analyt = np.exp(-0.5 * ((x - mu) / sigma)**2) / (sigma * math.sqrt(2.0 * math.pi))\n", - "plt.hist(sample.ravel(),\n", - " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", - " density=True, facecolor='r', alpha=0.75)\n", - "plt.plot(x, analyt, '-b', lw=1)\n", - "plt.xlabel(\"random variable\", size=12)\n", - "plt.ylabel(\"probability\", size=12)\n", - "plt.title(\"Normal distribution: empirical vs analytic\", size=12)\n", - "plt.grid(True)\n", - "# plt.savefig(\"normal_distrib.png\", bbox_inches=\"tight\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using basic linear algebra, we can correlate multivariate variables. Indeed, when $L$ is \n", - "the left Cholesky factor of the $n \\times n$ covariance matrix $\\Sigma= L L^T$,\n", - "and $\\mu$ is an $n$-vector,\n", - "and $x$ is an $n$-vector distributed according to the standard normal distribution,\n", - "then $\\mu + Lx$ is a random sample from $N(\\mu, \\Sigma)$.\n", - "\n", - "## Background\n", - "\n", - "In order to understand the implementation, it may be useful to see:\n", - "\n", - "Functions in the base class *UnivariateDistribution*\n", - "\n", - "```python\n", - "def uniform_rand_float64(self, size: int, vmin: float, vmax: float) -> np.ndarray:\n", - " \"\"\"\n", - " Generates a vector of random float64 values in the range [vmin, vmax].\n", - " :param size: length of the vector.\n", - " :param vmin: lower bound.\n", - " :param vmax: upper bound.\n", - " :return: vector of random values.\n", - " \"\"\"\n", - " nbits = 7 * 8 # nbits > mantissa of float64\n", - " bit_str_len = (nbits * size + self.num_target_qubits - 1) // self.num_target_qubits\n", - " job = execute(self.circuit, self.backend, shots=bit_str_len, memory=True)\n", - " bit_str = ''.join(job.result().get_memory())\n", - " scale = float(vmax - vmin) / float(2**nbits - 1)\n", - " return np.array([vmin + scale * float(int(bit_str[i:i+nbits], 2))\n", - " for i in range(0, nbits * size, nbits)], dtype=np.float64)\n", - "```\n", - "\n", - "```python\n", - "def uniform_rand_int64(self, size: int, vmin: int, vmax: int) -> np.ndarray:\n", - " \"\"\"\n", - " Generates a vector of random int64 values in the range [vmin, vmax].\n", - " :param size: length of the vector.\n", - " :param vmin: lower bound.\n", - " :param vmax: upper bound.\n", - " :return: vector of random values.\n", - " \"\"\"\n", - " return np.rint(self.uniform_rand_float64(size, float(vmin), float(vmax))).astype(np.int64)\n", - "```\n", - "\n", - "Function in the base class *NormalDistribution*:\n", - "\n", - "```python\n", - "def normal_rand_float64(self, size: int) -> np.ndarray:\n", - " \"\"\"\n", - " Draws a sample vector from standard normal distribution (mu=0, std=1)\n", - " using Box-Muller method.\n", - " \"\"\"\n", - " EPS = np.sqrt(np.finfo(np.float64).tiny)\n", - " assert isinstance(size, int) and size > 0\n", - " rand_vec = np.zeros((size,), dtype=np.float64)\n", - "\n", - " # Generate array of uniformly distributed samples.\n", - " n = 2 * size\n", - " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", - "\n", - " x1 = 0.0 # first sample in a pair\n", - " c = 0 # counter\n", - " for d in range(size):\n", - " r2 = 2.0\n", - " while r2 >= 1.0 or r2 < EPS:\n", - " # Regenerate array of uniformly distributed samples upon shortage.\n", - " if c > n:\n", - " c = 0\n", - " n = max(((size // 10) // 2) * 2, 2)\n", - " x = np.reshape(self.uniform_rand_float64(n, float(0.0), float(1.0)), (-1, 2))\n", - "\n", - " x1 = 2.0 * x[c, 0] - 1.0 # first sample in a pair\n", - " x2 = 2.0 * x[c, 1] - 1.0 # second sample in a pair\n", - " r2 = x1 * x1 + x2 * x2\n", - " c += 1\n", - "\n", - " f = np.sqrt(np.abs(-2.0 * np.log(r2) / r2))\n", - " rand_vec[d] = f * x1\n", - " return rand_vec\n", - "```" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/aqua/general/generating_random_variates.ipynb b/qiskit/aqua/general/generating_random_variates.ipynb new file mode 100644 index 000000000..7d58c353c --- /dev/null +++ b/qiskit/aqua/general/generating_random_variates.ipynb @@ -0,0 +1,473 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Generating Random Variates*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Albert Akhriev[1], Jakub Marecek[1]\n", + "\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "\n", + "While classical computers use only pseudo-random routines, quantum computers\n", + "can generate true random variates.\n", + "For example, the measurement of a quantum superposition is intrinsically random,\n", + "as suggested by Born's rule.\n", + "Consequently, some of the\n", + "best random-number generators are based on such quantum-mechanical effects. (See the \n", + "Further, with a logarithmic amount of random bits, quantum computers can produce\n", + "linearly many more bits, which is known as \n", + "randomness expansion protocols. \n", + "\n", + "In practical applications, one wishes to use random variates of well-known\n", + "distributions, rather than random bits.\n", + "In this notebook, we illustrate ways of generating random variates of several popular\n", + "distributions on IBM Q.\n", + "\n", + "## Random Bits and the Bernoulli distribution\n", + "\n", + "It is clear that there are many options for generating random bits (i.e., Bernoulli-distributed scalars, taking values either 0 or 1). Starting from a simple circuit such as a Hadamard gate followed by measurement, one can progress to vectors of Bernoulli-distributed elements. By addition of such random variates, we could get binomial distributions. By multiplication we could get geometric distributions, although perhaps leading to a circuit depth that may be impratical at the moment, though.\n", + "\n", + "Let us start by importing the basic modules and creating a quantum circuit for generating random bits:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "import sys, math, time\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute\n", + "\n", + "# In this example we use 'qasm_simulator' backend.\n", + "glo_backend = BasicAer.get_backend(\"qasm_simulator\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the next step we create a quantum circuit, which will be used for generation:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHiCAYAAAADPb8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XtU1Ne9//8XDmpUGDBKNASRSGujBAWRWq+oSSTWWxKiTU+q0VRgJdLEeMkQbaMxlYLLEy85NeeLJ9E01J6l0gRsUkhjIq2J5YwasBptF/GCGM/XgMIY/UVPcX5/5OscR+5xZj7wmedjLZbDnv2Z/WaAmZeb/dmfAKfT6RQAAABgEp2MLgAAAADwJAIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMJNLoAwJOOHTvWYp9/+7d/U0ZGRrN97rnnHk+VBAAAfIwZXPidX//610aXAAAAvIiACwAAAFMh4AIAAMBUCLjwOzt37jS6BAAA4EUEXAAAAJgKARd+59FHHzW6BAAA4EVsE+bnFi5cqLKyMp+PGxcXp/Xr1/t8XDMy6nso8X0EALRPzOD6ubKyMp+HIyPGNDOjnk++jwCA9ooZXCguLk579uzx2Xjjx4/32ViNWbBggaHje4Ovv4eS8d9HAACawgwu/E5LVzEDAAAdGwEXfmfcuHFGlwAAALyIgAu/8+WXXxpdAgAA8CICLgAAAEyFgAu/M3jwYKNLAAAAXkTAhd/Jz883ugQAAOBFbBMGv/Piiy9q1apVRpdhmIsXL6qkpEQHDhzQiRMnVF9fr969eys+Pl5jxozRgAEDGhxz9uxZpaam6rXXXlO/fv0MqBoAgNbzmxncrVu3tnnfzoSEBL3//vveKQiG2bFjh9ElGKKyslJPP/20wsPDNW3aNL300kv68MMP9fHHHys3N1dPPPGEoqOjdf/996u4uNh13NmzZzVx4kTt2bNHp0+fNvArAACgdQwNuDabTTExMbJarQoPD1dqaqrOnz/vk7Hr6+u1dOlShYWFKTg4WCkpKaqurnbrM2PGDBUUFPikno4kPDxcr7/+ulub0+mU1WrV22+/bVBVaIrT6dR//Md/6N5779Ubb7yhlJQUffjhh3I4HKqsrNTx48flcDh05MgRrV69Wv/4xz/04IMPas6cOTp27JgmTpyo06dP649//KNGjRpl9JcDAECLDA24FotFeXl5qqmpUXl5uaqqqjRv3jyfjJ2dna2CggKVlpaqqqpKkjR79my3PjNmzFBhYaFP6ukozpw5o7Nnz2ro0KFu7cePH9fFixc1fPhwgypDY5xOp55//nmlpqYqISFBR48e1datWzVhwgQFBQW5+lksFg0ePFjLli1TRUWFfvGLX+i3v/2t4uLiVFlZqT/+8Y8aO3asgV8JAACt5/WAu337dsXGxiooKEiTJk3SokWLNHPmTElSVlaW4uPj1blzZ4WFhSkjI8NnlxvNzc2VzWbTgAEDFBISojVr1qioqEgnT5509Rk6dKgCAwN14MABn9TUEdjtdlksFsXExLi1l5eXq0+fPh1ifWZJSYnRJfjM2rVrtXbtWi1YsEC7d+/W3Xff3eIxXbp00VNPPaW77rpLV65cUb9+/TRixAgfVAsAgGd4NeC++eabWrx4sTZt2qS6ujpNnTpVGzduVHx8fKP9d+/erSFDhrR5nOzs7DYdV1dXp8rKSiUkJLjaoqOjZbVadejQIbe+06dPZ5nCDex2uwYOHKhu3bq5tZeXl3eY2dsjR44YXYJP/O1vf9Py5cuVkpKiV199VZ06te7X/fqa2/Pnz+vll1/W3//+d61evdrL1QIA4DleC7iXL1/WokWLlJubq7Fjx8pisWj+/Pmqr69vNODm5+dr8+bN2rBhg6stLy9PI0eO1MiRI7V79+4mx8rMzGwQTJvjcDgkSSEhIW7toaGhrvuumzJlit59991WP7bZ2e12VVRUqHfv3m4fOTk5SkxMNLq8Vnn66aeNLsEnFi5cqNDQUL322msKCAho1THXw+31Nbc///nP9ZOf/ERZWVmcYAYA6DC8tk1YSUmJrl27psmTJ7varl8i9eaAu2PHDqWnp6uwsFDDhg2TJNXW1uqVV17Rvn379NVXX2nChAn69NNPZbFYbrm24OBgSd/M5N6otrZWVqvVre3UqVOKjIy85TFb0toA4g1JSUmt7rt//36tXLlSc+bMcWuPjY1t0wxuSUmJV77m5557rlX9cnNzm71/3bp1nijHZ27+Hh49elQffvihfvWrXyksLKxVj3FzuL2+5vbll1/Wb3/7W+Xm5urll192O8Zb30cAAFridDqbvM9rAffcuXO644473Nq2bdumvn37qm/fvq62LVu2aPHixdq1a5dGjx7tai8tLdXYsWPVtWtXde3aVVFRUfr88881cODAW64tNDRUkZGROnjwoOLi4iTJdSb5zUsdCgsLlZKScstjtqS5b5I3tWXrtIqKCl24cEHJycmKiIhwa6+trW1TwE1KSvLKeutjx4612GfdunVKS0trts8rr7ziqZK8rrHv4X/+53+qU6dOevLJJ1v1GE2FW0mKiorSgw8+qG3btjUIuN76PgIAcCu8tkQhJiZGFRUVKikp0dWrV7Vt2zZlZ2e7AqUkbdy4UUuWLFFxcbFbuJWkmpoa9ezZ0/V5z549VVNT47H60tLSlJOToxMnTsjhcMhmsyk5OVlRUVGuPpcvX9ZHH32kqVOnemzcjsxut6t79+4NdlD45JNP1K9fP/Xp08egytrmpZdeMroEr7Pb7Ro8eHCD/2Q2prlwe11SUpKOHz/us238AAC4FV4LuMOHD9fy5cv1yCOPKCIiQqWlpRoxYoTb8oRnn31WDofDtWXR9Q9J6tWrly5cuODqe+HCBfXq1avRsbKyshqc1d+SzMxMTZs2TYmJibrrrrtUX1+vvLw8tz7FxcWKj49X79692/TYZmW325WYmKjAQPeJ/3379nWYE8wkadasWUaX4HWfffZZq068bE24leR6rKNHj3q0TgAAvMGrl+pdtWqV2yVRo6KilJqa6vq8uT/LjxgxQi+88IKuXLmiS5cu6cSJE4qOjm6077Jly7Rs2bI21WaxWFxbKDWlsLBQM2bMaNPjmllTf7Z/7bXXfFzJrRk0aJDpg9ry5ctbtXY8MzOzxXArSffee6/Wrl3rk/XoAADcKq8G3Bs5HA6dOnWqyS3CbhYaGqqFCxe61he+8sorHjnBrC369+/v2rMX6Ehu/I9kc1599VVlZGS0uANGv379tHjxYk+UBgCA1/ks4B4+fFjBwcFNzsI2Zs6cOQ3O1v+24uLiNHfu3DYds3LlSo+MDbRXVqu1w2zvBgBAa/ks4I4aNarBHrO+FBcX53aCG/xXW3aOAAAAHY/XL9ULtDcdbc0wAABoGwIu/M5TTz1ldAkAAMCLCLjwO1yYAAAAcyPgAgAAwFQIuAAAADAVAi78jtkv8gAAgL/z2TZhaL/Kysp8unVWWVmZoVu2bd++3XSX6/X19/D6mGy9BwBoj5jB9XNG7A9s9J7EK1asMGxsb7iV5/N45dlGb3t7XAAAvCnA6XQ6jS4C8JRjx4612GfQoEEtLlO45557PFVSu5aZk6tsW1qD2wAAdGTM4AIAAMBUCLjwO5s2bTK6BAAA4EUEXPidmJgYo0sAAABeRMCF30lKSjK6BAAA4EUEXAAAAJgKARcAAACmQsCF30lMTDS6BAAA4EUEXPgdu91udAkAAMCLCLgAAAAwFQIuAAAATIWAC7+zc+dOo0sAAABeRMAFAACAqRBw4XceffRRo0sAAABeFGh0ATDWwoULVVZW5vNx4+LitH79ep+PC9wKo35fJH5nAKAtmMH1c2VlZT5/wzZiTMATjPrZ5XcGANqGGVwoLi5Oe/bs8dl448eP99lYjVmwYIGh46Nj8/Xvi2T87wwAdDTM4MLvZGRkGF0CAADwIgIu/M64ceOMLgEAAHgRARd+58svvzS6BAAA4EUEXAAAAJgKARd+Z/DgwUaXAAAAvIiAC7+Tn59vdAnwMxcuXNDf/vY3HTp0SP/93//dbF+n06mPPvrIR5UBgDkRcOF3XnzxRaNLgB/429/+pqefflrR0dG6/fbbNWTIEA0dOlR33nmnwsPD9fjjj+vPf/6znE6n6xin06mMjAxNnDhRe/fuNbB6AOjY/Cbgbt26tc17SSYkJOj999/3TkEwzI4dO4wuASZ27tw5zZw5U0OGDNGWLVs0dOhQ/epXv9L27du1c+dOrVu3ThMnTtR7772npKQkjR07Vv/4xz9c4XbTpk1aunSpRo8ebfSXAgAdlqEB12azKSYmRlarVeHh4UpNTdX58+d9MnZ9fb2WLl2qsLAwBQcHKyUlRdXV1W59ZsyYoYKCAp/U05GEh4fr9ddfd2tzOp2yWq16++23DaoKMN7evXsVExOjwsJCvfTSS6qqqtLvf/97ZWZmaubMmUpJSdHChQuVl5enM2fO6N///d/12WefaciQIZo0aZIr3Obk5CggIMDoLwcAOixDA67FYlFeXp5qampUXl6uqqoqzZs3zydjZ2dnq6CgQKWlpaqqqpIkzZ49263PjBkzVFhY6JN6OoozZ87o7NmzGjp0qFv78ePHdfHiRQ0fPtygygBj7du3T8nJybr99tv16aef6sUXX1SvXr2a7N+9e3elp6fr8OHD6tWrlz744ANNnTqVcAsAHuD1gLt9+3bFxsYqKChIkyZN0qJFizRz5kxJUlZWluLj49W5c2eFhYUpIyPDZ5fAzM3Nlc1m04ABAxQSEqI1a9aoqKhIJ0+edPUZOnSoAgMDdeDAAZ/U1BHY7XZZLBbFxMS4tZeXl6tPnz7q16+fQZW1XklJidElwGTq6uo0a9Ys3XnnnSopKWn1Th1Op1OrV6/WF198oYiICH3wwQeqqKjwcrUAYH5eDbhvvvmmFi9erE2bNqmurk5Tp07Vxo0bFR8f32j/3bt3a8iQIW0eJzs7u03H1dXVqbKyUgkJCa626OhoWa1WHTp0yK3v9OnTWaZwA7vdroEDB6pbt25u7eXl5R1m9vbIkSNGlwCTef755/XFF1/od7/7nfr27duqY25ec/vXv/5Vt912m37605+6nXgGAGi7QG898OXLl7Vo0SLl5eVp7NixkqT58+fr2WefbTTg5ufna/PmzW6za/fff7/Kysq0cOFC/fznP29yrMzMTGVmZra6NofDIUkKCQlxaw8NDXXdd92UKVP0wgsvaNWqVa1+/G/DyD9JJiUltbqv3W5XRUWFevfu7db+1Vdf6YUXXmj145SUlHjla37uueda7LNu3boW+61bt85TJbV7OZnpjd5G427+ffnv//5vbdmyRU899ZQSExNb9Rg3h9vryxJWr16tBQsWaN++fRo1apTbMd76nQGAjqq5yQCvBdySkhJdu3ZNkydPdrVdv0TqzQF3x44dSk9PV2FhoYYNG+Zq37p1qz744APXGllPCQ4OlvTNTO6NamtrZbVa3dpOnTqlyMhIj47fGKNmbNq6s8T+/fu1cuVKzZkzx609Nja2TTO4SUlJXlmOcuzYsRb7rFu3Tmlpac32eeWVVzxVUruWmZOrbFtag9toXGO/L1u3btX//M//6JlnnmnVYzQVbiXpiSee0AsvvKB///d/bxBwvfU7AwBm5LUlCufOndMdd9zh1rZt2zb17dvX7U94W7ZsUXp6unbt2qUJEya49Y+IiPBKbaGhoYqMjNTBgwddbcePH5fD4Wiw1KGwsFAzZszwSh0dTUVFhS5cuKDk5GRFRES4Pr7++mvV1tZ2mCUKgCft2bNHsbGxGjhwYIt9mwu3ktSjRw9NnjyZdeIAcIu8FnBjYmJUUVGhkpISXb16Vdu2bVN2drbi4uJcfTZu3KglS5aouLjY53s+pqWlKScnRydOnJDD4ZDNZlNycrKioqJcfS5fvqyPPvpIU6dO9Wlt7ZXdblf37t0b7KDwySefqF+/furTp49BlbXNSy+9ZHQJMJGDBw+26j93LYXb6xISElRZWdlg20IAQOt5LeAOHz5cy5cv1yOPPKKIiAiVlpZqxIgRbssTnn32WTkcDk2YMEFBQUGuj7bKyspqcFZ/SzIzMzVt2jQlJibqrrvuUn19vfLy8tz6FBcXKz4+vsF6U39lt9uVmJiowED3lS379u3rULO3s2bNMroEmITT6VTXrl31ve99r8W+zz77bKv2uf3Od76j8PBw1dbWerpcAPAbXluDK0mrVq1yOzkrKipKqamprs89te502bJlWrZsWZuOsVgsWrt2rdauXdtkH5YnuGtqXeprr73m40puzaBBg3T06FGjy4AJBAQE6PTp063qGxcXp+eff17Z2dnNniz28MMP6+GHH/ZUiQDgl7wacG/kcDh06tSpJrcIa8yTTz6p0tJSXblyRaWlpdq1a5cXK2yof//+rj17AeBWPPnkk0aXAAB+w2cB9/DhwwoODlZ0dHSrj3njjTc8Nn5cXJzmzp3bpmNWrlzpsfEBAADgGz4LuKNGjWqwx6wvxcXFuZ3gBv/V1q3RAABAx+L1S/UC7U1HWzMMAADahoALv/PUU08ZXQIAAPAiAi78DleDAgDA3Ai4AAAAMBUCLgAAAEzFZ7sooP0qKyvz6c4CZWVlhu5owUUecCt8/ftyfUx2gQGA1mMG188ZsX2a0Vu2bd++3bCx0bHdys/u8cqzjd729rgA4I+YwfVz69evN7oEn1uxYoVmzZpldBnogG7l9yUzJ1fZtrQGtwEAnscMLgAAAEyFgAsAAABTIeDC72zatMnoEgAAgBcRcOF3YmJijC4BAAB4EQEXficpKcnoEgAAgBcRcAEAAGAqBFz4ncTERKNLAAAAXkTAhd+x2+1GlwAAALyIgAsAAABTIeACAADAVAi48Ds7d+40ugQAAOBFBFwAAACYCgEXfufRRx81ugQAAOBFgUYXAGMtXLhQZWVlPh83Li5O69ev9/m4ADoGo16bJF6fADNgBtfPlZWV+fxNxIgxAXQsRr1O8PoEmAMzuFBcXJz27Nnjs/HGjx/vs7Eas2DBAkPHB9A6vn5tkox/fQLgGczgwu9kZGQYXQIAAPAiAi78zrhx44wuAQAAeBEBF37nyy+/NLoEAADgRQRcAAAAmAoBF35n8ODBRpcAAAC8iIALv5Ofn290CQDaCafTaXQJALyAgAu/8+KLLxpdAgAPO3z4sDZs2KAnnnhCDzzwgCZNmqS5c+fq1Vdf1dGjRxs95oMPPtCYMWN0/vx5H1cLwNv8JuBu3bq1zfsbJiQk6P333/dOQTDMjh07jC4BgIcUFRVpzJgxio2N1cKFC/WnP/1JX331lS5evKiioiI988wzGjx4sMaPH6/du3e7jvvggw80bdo0Xbx4UdeuXTPwKwDgDYYGXJvNppiYGFmtVoWHhys1NdVn/5Our6/X0qVLFRYWpuDgYKWkpKi6utqtz4wZM1RQUOCTejqS8PBwvf76625tTqdTVqtVb7/9tkFVAfAnFy9e1Lx58zR58mSdPXtW//qv/6qqqip98cUX2rdvn/bt26ezZ8+qsrJSOTk5OnnypO6//36lpaXpD3/4g6ZNm6bvfve7+vDDD9W7d2+jvxwAHmZowLVYLMrLy1NNTY3Ky8tVVVWlefPm+WTs7OxsFRQUqLS0VFVVVZKk2bNnu/WZMWOGCgsLfVJPR3HmzBmdPXtWQ4cOdWs/fvy4Ll68qOHDhxtUGQB/UVdXp/vvv1+/+c1vtGzZMn322WdatGiR7rrrLrd+AQEB6tevn55//nkdPXpUS5cu1ebNmzVjxgxFR0cTbgET83rA3b59u2JjYxUUFKRJkyZp0aJFmjlzpiQpKytL8fHx6ty5s8LCwpSRkeGzyzLm5ubKZrNpwIABCgkJ0Zo1a1RUVKSTJ0+6+gwdOlSBgYE6cOCAT2rqCOx2uywWi2JiYtzay8vL1adPH/Xr18+gylqvpKTE6BIAfEvXrl3TrFmzdPDgQf3+97/X6tWr1bVr1xaP69atmyZNmqTOnTvr2rVrioiIUK9evXxQMQAjeDXgvvnmm1q8eLE2bdqkuro6TZ06VRs3blR8fHyj/Xfv3q0hQ4a0eZzs7Ow2HVdXV6fKykolJCS42qKjo2W1WnXo0CG3vtOnT2eZwg3sdrsGDhyobt26ubWXl5d3mNnbI0eOGF0CgG8pNzdX77//vl599VXNmDGj1cddX3N7zz33aNWqVSouLtZvfvMbL1YKwEheC7iXL1/WokWLlJubq7Fjx8pisWj+/Pmqr69vNODm5+dr8+bN2rBhgyTpwIEDGj16tMaNG6eJEyfq+PHjTY6VmZnZIJg2x+FwSJJCQkLc2kNDQ133XTdlyhS9++67rX5ss7Pb7aqoqFDv3r3dPnJycpSYmGh0ea3y9NNPG10CgG/h0qVLeuGFF3T//fcrPT291cddD7fX19wuX75cY8aM0ZIlS3TlyhUvVgzAKIHeeuCSkhJdu3ZNkydPdrVdv0TqzQF3x44dSk9PV2FhoYYNGybpmxOZioqKFBwcrPfee08rVqzQW2+95ZHagoODJX0zk3uj2tpaWa1Wt7ZTp04pMjLSI+M2JyAgwOtjNCUpKanVfffv36+VK1dqzpw5bu2xsbFtmsEtKSnxytf83HPPtapfbm5us/evW7fOE+V0CDmZ6Y3ehufxXLfNza9Nv/vd71RbW6uVK1e2+vXj5nB7fc3tihUr9MADD2jnzp16/PHH3Y7x1usTAM9qbh9rrwXcc+fO6Y477nBr27Ztm/r27au+ffu62rZs2aLFixdr165dGj16tKv9zjvvdN3u0qWLAgM9V2poaKgiIyN18OBBxcXFSfrmJCmHw9FgqUNhYaFSUlI8NnZTjNpsvC1bp1VUVOjChQtKTk5WRESEW3ttbW2bAm5SUpJX1lsfO3asxT7r1q1TWlpas31eeeUVT5XUrmXm5CrbltbgNjyP57ptGntt2rFjh+655x6NGjWqVY/RVLiVpIkTJyoqKkrbt29vEHC99foEwHe8tkQhJiZGFRUVKikp0dWrV7Vt2zZlZ2e7AqUkbdy4UUuWLFFxcbFbuL3RpUuXlJmZqSVLlni0vrS0NOXk5OjEiRNyOByy2WxKTk5WVFSUq8/ly5f10UcfaerUqR4du6Oy2+3q3r17gx0UPvnkE/Xr1099+vQxqLK2eemll4wuAUAbOZ1O7d+/X6NHj27V7Gpz4VaSOnXqpNGjR3MSMWBSXgu4w4cP1/Lly/XII48oIiJCpaWlGjFihNvyhGeffVYOh0MTJkxQUFCQ6+O6q1evaubMmfr5z3/e4Kz9G2VlZTV7f2MyMzM1bdo0JSYm6q677lJ9fb3y8vLc+hQXFys+Pp5tZP4fu92uxMTEBrPp+/bt6zAnmEnSrFmzjC4BQBvV1NTo/Pnzuvfee1vs21K4vS4mJkZnzpzRpUuXPF0uAIN5bYmCJK1atUqrVq1yfR4VFaXU1FTX5839Wb6+vl7/8i//okceeUQPPfRQs+MsW7ZMy5Yta1NtFotFa9eu1dq1a5vsU1hY2KazdM2uqT/bv/baaz6u5NYMGjSoyUt3AmifevTood/97neu8zSacu3aNWVmZrbqIg4PPfSQ7r77bnXu3NnT5QIwmFcD7o0cDodOnTrV5BZhN9uxY4eKiopUXV2tvLw8xcbG6tVXX/Vyle769+/v2rMXAGCcbt266bHHHmuxX6dOnfSHP/xBgYGBLf71bdCgQRo0aJCnSgTQjvgs4B4+fFjBwcGKjo5uVf/HHnusVS9mrRUXF6e5c+e26ZiVK1d6bHwAgG/ceCIzAP/ks4A7atSoBnvM+lJcXJzbCW7wX23ZOQIAAHQ8Xr9UL9DedLQ1wwAAoG0IuPA7Tz31lNElAAAALyLgwu+wgTsAAOZGwAUAAICpEHABAABgKgRc+B0u8gAAgLn5bJswtF9lZWU+3TqrrKzM0C3btm/fzuV6gQ7A169N18dkS0mg42MG188ZsT+w0XsSr1ixwrCxAbTOrbxOHK886/avr8YF0H4wg+vn1q9fb3QJANDArbw2ZebkKtuW5voXgP9hBhcAAACmQsCF39m0aZPRJQAAAC8i4MLvxMTEGF0CAADwIgIu/E5SUpLRJQAAAC8i4AIAAMBUCLgAAAAwFQIu/E5iYqLRJQAAAC8i4MLv2O12o0sAAABeRMAFAACAqRBwAQAAYCoEXPidnTt3Gl0CAADwIgIuAAAATIWAC7/z6KOPGl0CAADwokCjC4CxFi5cqLKyMp+PGxcXp/Xr1/t8XACAO6PeByTeC+A9zOD6ubKyMp+/sBkxJgCgcUa9JvNeAG9iBheKi4vTnj17fDbe+PHjfTZWYxYsWGDo+ADQ3vj6fUAy/r0A5sYMLvxORkaG0SUAAAAvIuDC74wbN87oEgAAgBcRcOF3vvzyS6NLAAAAXkTABQAAgKkQcOF3Bg8ebHQJAADAi9hFAX4nPz/f6BIAoEO7cuWKDh8+rOrqagUEBCgyMlIDBw5Up06Nz5udP39e+/bt05QpU3xcKfyV38zgbt26tc1bkiQkJOj999/3TkEwzIsvvmh0CQDQ4Vy5ckXbtm1TUlKSgoODNXz4cD344INKTk7WoEGDFBoaqkcffVQffvihnE6n67jz58/r/vvv149+9COdO3fOwK8A/sTQgGuz2RQTEyOr1arw8HClpqbq/PnzPhm7vr5eS5cuVVhYmIKDg5WSkqLq6mq3PjNmzFBBQYFP6ulIwsPD9frrr7u1OZ1OWa1Wvf322wZV1Xo7duwwugQA6FD+/Oc/KyYmRo8//ri++OILPffcc9q+fbs+/vhj/eUvf9Ebb7yhxx9/XHv27NF9992n++67TydOnHCF288++0w7d+7UHXfcYfSXAj9haMC1WCzKy8tTTU2NysvLVVVVpXnz5vlk7OzsbBUUFKi0tFRVVVWSpNmzZ7v1mTFjhgoLC31ST0dx5swZnT17VkP5UDCcAAAgAElEQVSHDnVrP378uC5evKjhw4cbVBkAwBuys7OVlJQkp9Opd999V3//+9+Vk5OjmTNnatSoURozZozmzZun1157TVVVVfr1r3+t/fv3695779X3v/99ffbZZ3rnnXf04IMPGv2lwI94PeBu375dsbGxCgoK0qRJk7Ro0SLNnDlTkpSVlaX4+Hh17txZYWFhysjI8NmVVHJzc2Wz2TRgwACFhIRozZo1Kioq0smTJ119hg4dqsDAQB04cMAnNXUEdrtdFotFMTExbu3l5eXq06eP+vXrZ1BlAABPW7NmjV544QX9+Mc/1qFDh/TDH/6wyXW2knTbbbfp6aef1t69e+V0OvX5559rxYoVhFv4nFcD7ptvvqnFixdr06ZNqqur09SpU7Vx40bFx8c32n/37t0aMmRIm8fJzs5u03F1dXWqrKxUQkKCqy06OlpWq1WHDh1y6zt9+nSWKdzAbrdr4MCB6tatm1t7eXl5h5m9LSkpMboEAGj3/vrXv+qFF17QrFmz9NZbb6lHjx6tOu78+fOaO3eurl27psjISG3YsMFnyw+B67wWcC9fvqxFixYpNzdXY8eOlcVi0fz581VfX99owM3Pz9fmzZu1YcMGSVJ1dbVGjhyppKQkJSYm6k9/+lOTY2VmZjYIps1xOBySpJCQELf20NBQ133XTZkyRe+++26rH9vs7Ha7Kioq1Lt3b7ePnJwcJSYmGl1eqxw5csToEgCgXauvr9eTTz6piIgIbd68WRaLpVXH3bjm9p133lFBQYFqamq0ZMkSL1cMuPPaNmElJSW6du2aJk+e7Gq7fgWpmwPujh07lJ6ersLCQg0bNkyS1LNnT+3du1cWi0UVFRX68Y9/rAceeMAjtQUHB0v6Zib3RrW1tbJarW5tp06dUmRkpEfGbU5AQIDXx2hKUlJSq/vu379fK1eu1Jw5c9zaY2Nj2zSDW1JS4pWv+bnnnmuxz7p161rst27dOk+V1O7lZKY3ehuex3PtO9efX57n1rn5feC9997T0aNHtX379gbvi025OdxeX5awYMEC/frXv1ZWVpb69u3rdoy33gvgH27creNmXgu4586da3C25LZt29S3b1+3H/AtW7Zo8eLF2rVrl0aPHu1qv/F/ixcvXmxwUtOtCA0NVWRkpA4ePKi4uDhJ35wk5XA4Gix1KCwsVEpKisfGbkpz3yRvasvWaRUVFbpw4YKSk5MVERHh1l5bW9umgJuUlOSV9dbHjh1rsc+6deuUlpbWbJ9XXnnFUyW1a5k5ucq2pTW4Dc/jufad688vz3PrNPY+sHnzZoWHh+vhhx9u1WM0FW6lbwLuhg0btHXrVmVmZrod5633AsBrSxRiYmJUUVGhkpISXb16Vdu2bVN2drYrUErSxo0btWTJEhUXF7uF2+tOnDihMWPGaNKkSXrooYc8Wl9aWppycnJ04sQJORwO2Ww2JScnKyoqytXn8uXL+uijjzR16lSPjt1R2e12de/evcF/Nj755BP169dPffr0MagyAICnOJ1O7d27V1OmTFFgYMvzYM2FW0n67ne/q8GDB2vv3r3eKhlowGsBd/jw4Vq+fLkeeeQRRUREqLS0VCNGjHBbnvDss8/K4XBowoQJCgoKcn1cd/fdd2vv3r2y2+3KyMhocqysrKwGZ/W3JDMzU9OmTVNiYqLuuusu1dfXKy8vz61PcXGx4uPj1bt37zY9tlnZ7XYlJiY2eMHbt29fhznBTJJeeuklo0sAgHbr1KlTunDhgtuJ2E1pKdxel5CQoE8//dTTpQJN8uqleletWqVVq1a5Po+KilJqaqrr8+b+LH/lyhV17dpVkmS1Wl3rZhuzbNkyLVu2rE21WSwWrV27VmvXrm2yT2FhoWbMmNGmxzWzpv5s/9prr/m4klsza9Yso0sAgHbr6tWrSkhI0MCBA5vt9/XXX7cq3ErfnHtz4sQJT5cKNMmrAfdGDodDp06danKLsJsdPHhQNptNFotF//znP7V+/XovV9hQ//79XXv2wjwGDRqko0ePGl0GALRLAwcO1P79+1vsd9ttt+lHP/qRhg4d2uI+t88991yrTgIGPMVnAffw4cMKDg5WdHR0q/qPHDlSf/7znz02flxcnObOndumY1auXOmx8QEAMBubzWZ0CUCjfBZwR40a1WCPWV+Ki4tzO8ENAAAA5uT1S/UC7U1btkYDAAAdDwEXfqejnRQHAADahoALv/PUU08ZXQIAAPAiAi78DlfNAQDA3Ai4AAAAMBUCLgAAAEzFZ9uEof0qKyvz6c4CZWVlhm7ZxkUeAMCdr98Hro/J9p3wFmZw/ZwR+wMbvSfx9u3bDRsbANqbb/uafLzybKO3vT0u0BrM4Po5Iy6BbLQVK1Zo1qxZRpcBAO3Ct30fyMzJVbYtrcFtoD1gBhcAAACmQsAFAACAqRBw4Xc2bdpkdAkAAMCLCLjwOzExMUaXAAAAvIiAC7+TlJRkdAkAAMCLCLgAAAAwFQIu/E5iYqLRJQAAAC8i4MLv2O12o0sAAABeRMAFAACAqRBwAQAAYCoEXPidnTt3Gl0CAADwIgIuAAAATIWAC7/z6KOPGl0CAADwokCjC4CxFi5cqLKyMp+PGxcXp/Xr1/t8XAAAjGLUe67kf++7zOD6ubKyMp//shkxJgAARjPq/c8f33eZwYXi4uK0Z88en403fvx4n43VmAULFhg6PgDAf/n6PVcy/n3XCMzgwu9kZGQYXQIAAPAiAi78zrhx44wuAQAAeBEBF37nyy+/NLoEAADgRQRcAAAAmAoBF35n8ODBRpcAAAC8iIALv5Ofn290CQAAeIXT6dTVq1eNLsNwBFz4nRdffNHoEgAAaNaVK1e0fft2PfPMMxo3bpxiYmI0dOhQPfzww/rlL3+p8vLyBsc4nU4tX75cDz74oL7++msDqm4//Cbgbt26tc37wCUkJOj999/3TkEwzI4dO4wuAQCARl25ckUvv/yyIiIi9KMf/UhvvPGGrl27pkGDBikqKkqfffaZfvGLXyguLk6jR4/WX/7yF0n/G25/9atfaeDAgerSpYvBX4mxDA24NptNMTExslqtCg8PV2pqqs6fP++Tsevr67V06VKFhYUpODhYKSkpqq6uduszY8YMFRQU+KSejiQ8PFyvv/66W5vT6ZTVatXbb79tUFUAAHRshw8f1vDhw/Xiiy9q1KhRev/991VXV6e9e/dq586dKigo0N///ndVV1frX//1X1VVVaWkpCQ9++yzyszM1K9+9Sulp6dr06ZN6tTJb+YwG2XoV2+xWJSXl6eamhqVl5erqqpK8+bN88nY2dnZKigoUGlpqaqqqiRJs2fPduszY8YMFRYW+qSejuLMmTM6e/ashg4d6tZ+/PhxXbx4UcOHDzeoMgAAOq4DBw5o7Nixqq6u1h/+8AcVFBTogQcekMViadC3V69eWrRokY4cOaKnn35aGzdu1Jo1a5Samkq4/X+8/gxs375dsbGxCgoK0qRJk7Ro0SLNnDlTkpSVlaX4+Hh17txZYWFhysjI8Nnl63Jzc2Wz2TRgwACFhIRozZo1Kioq0smTJ119hg4dqsDAQB04cMAnNXUEdrtdFotFMTExbu3l5eXq06eP+vXrZ1BlrVdSUmJ0CQAAuJw7d06TJ09WSEiI/vrXv2rKlCmtOq5Hjx6yWq2uz7t06UK4/X+8+iy8+eabWrx4sTZt2qS6ujpNnTpVGzduVHx8fKP9d+/erSFDhrR5nOzs7DYdV1dXp8rKSiUkJLjaoqOjZbVadejQIbe+06dPZ5nCDex2uwYOHKhu3bq5tZeXl3eY2dsjR44YXQIAAC4LFixQXV2d/vCHP6h///6tOubGNbfp6en62c9+pl//+tc+myhs77wWcC9fvqxFixYpNzdXY8eOlcVi0fz581VfX99owM3Pz9fmzZu1YcMGt/aamhr17NlTeXl5TY6VmZnZIJg2x+FwSJJCQkLc2kNDQ133XTdlyhS9++67rX5ss7Pb7aqoqFDv3r3dPnJycpSYmGh0ea3y9NNPG10CAACSpP/6r//Szp079eKLL+ree+9t1TE3h9tNmzYpOztbAwYM0PPPP+/lijuGQG89cElJia5du6bJkye72q5fIvXmgLtjxw6lp6ersLBQw4YNc7vvl7/8pcaMGePR2oKDgyV9M5N7o9raWrepfkk6deqUIiMjPTp+YwICArw+RlOSkpJa3Xf//v1auXKl5syZ49YeGxvbphnckpISr3zNzz33XKv65ebmNnv/unXrPFFOh5CTmd7obXgez7XvXH9+eZ69i5/ptrv5PXfTpk0KCgrSM88806rjGwu3nTp1Uvfu3fXcc8/pZz/7mfbv39/gPdlb77tGcjqdTd7ntYB77tw53XHHHW5t27ZtU9++fdW3b19X25YtW7R48WLt2rVLo0ePduv/+eefq6amxm0pgSeEhoYqMjJSBw8eVFxcnKRvTpJyOBwNljoUFhYqJSXFo+M3prlvkje1Zeu0iooKXbhwQcnJyYqIiHBrr62tbVPATUpK8sqfUY4dO9Zin3Xr1iktLa3ZPq+88oqnSmrXMnNylW1La3Abnsdz7TvXn1+eZ+/iZ7rtbn7PdTqdeueddzRz5kzX5Ftzmgq3182ePVsLFy7UO++80+A92Vvvu+2V15YoxMTEqKKiQiUlJbp69aq2bdum7OxsV6CUpI0bN2rJkiUqLi5uEG4l6Re/+IVWrFjhlfrS0tKUk5OjEydOyOFwyGazKTk5WVFRUa4+ly9f1kcffaSpU6d6pYaOxm63q3v37g12UPjkk0/Ur18/9enTx6DK2uall14yugQAAPT555+rrq5OI0eObLFvS+FW+mbpZUxMDCfHy4sBd/jw4Vq+fLkeeeQRRUREqLS0VCNGjHBbnvDss8/K4XBowoQJCgoKcn1I0r59+9SrVy9FR0e3OFZWVlaDs/pbkpmZqWnTpikxMVF33XWX6uvrG6zzLS4uVnx8vHr37t2mxzYru92uxMREBQa6T/zv27evw5xgJkmzZs0yugQAAPT5559LkgYNGtRsv9aE2+sGDRqkiooKj9fa0XhtiYIkrVq1SqtWrXJ9HhUVpdTUVNfnzf1Z3m6369ChQ3rwwQdVUVGhHj16KDo6utH/5SxbtkzLli1rU20Wi0Vr167V2rVrm+xTWFioGTNmtOlxzaypP9u/9tprPq7k1gwaNEhHjx41ugwAgJ9LTEzUhx9+qNjY2Gb71dTU6K233mrVRRx+8Ytf6NKlS54utcPxasC9kcPh0KlTp5rcIuxmzzzzjGvB9cqVK/Wd73ynVVP4ntS/f3/Xnr0AAACedPvtt2vChAkt9uvdu7fsdrvuuOOOFve5betftM3KZwH38OHDCg4ObtWSg5utXLnylsePi4vT3LlzfT4uAADArbrxBH20zGcBd9SoUQ32mPWluLg4txPc4L/asnMEAADoeLieG/xOR1szDAAA2oaAC7/z1FNPGV0CAADwIgIu/I4/bXQNAIA/IuACAADAVAi4AAAAMBUCLvwOF3kAAMDcfLZNGNqvsrIyn26dVVZWZuiWbdu3b+dyvQAAQ/j6Pff6mP62VSozuH7OiP2Bjd6TeMWKFYaNDQDwX9/2/e945dlGb3t73I6MGVw/t379eqNLAADAL3zb99zMnFxl29Ia3EbTmMEFAACAqRBw4Xc2bdpkdAkAAMCLCLjwOzExMUaXAAAAvIiAC7+TlJRkdAkAAMCLCLgAAAAwFQIuAAAATIVtwmAq99xzT4t9VqxY0ap+AACgY2IGF35n5cqVRpcAAAC8iIALAAAAUyHgAgAAwFQIuAAAADAVAi4AAABMhYALAAAAUyHgAgAAwFQIuAAAADAVAi4AAABMhYALAAAAU+FSvYCfuHLlquqvXWvQfvn/+7rR27fd1lWdAgJ8UhsAAJ5EwAX8RNnRCr1dvLdB+6qNv2lwOyqir9L/ZZrPagMAwJNYogD4ieFD7lHfsNtb7Bcgaep9IxXA7C0AoIMi4AJ+wtKpk6ZOHNliv2H3DlRE3zAfVAQAgHcQcAE/8p2ouzToO/2bvL9L50AlJ33fhxUBAOB57S7g2mw2xcTEyGq1Kjw8XKmpqTp//rxPxq6vr9fSpUsVFham4OBgpaSkqLq62idjA74yZcIPZOnU+K/+hJHxsgZ193FFAAB4VrsLuBaLRXl5eaqpqVF5ebmqqqo0b948n4ydnZ2tgoIClZaWqqqqSpI0e/Zsn4wN+Erv20M0KuHeBu2h1iCNGR5rQEUAAHiWYQH3448/VnJysvr06aPQ0FDNnDlTkpSVlaX4+Hh17txZYWFhysjI0J49e3xSU25urmw2mwYMGKCQkBCtWbNGRUVFOnnypE/GB3xl4qh49eh2m1vbDyf8QJ07s7EKAKDjMyTg5ufna/r06UpLS1NlZaVOnz6t+fPnN9p39+7dGjJkSJvHyM7ObtNxdXV1qqysVEJCgqstOjpaVqtVhw4davP4QHvW7bauemDscNfnURF9Ffu9uw2sCAAAz/F5wL106ZLS09O1YcMGpaSkqGvXrgoODlZycnKDvvn5+dq8ebM2bNjgasvLy9PIkSM1cuRI7d69u8lxMjMz2xRMHQ6HJCkkJMStPTQ01HUfYCaJQ7/ZNoxtwQAAZhPgdDqdvhzwvffe0xNPPKFz5841+4a6Y8cOpaenKz8/XxMmTJAk1dbWauLEidq3b5+++uorTZgwQZ9++qksFsst11VbW6uePXvq008/VVxcnKs9JCREb731lqZPn37LYzQnMyfXq48PAABgJtm2tKbvdPrYm2++6fzud7/bbJ833njD2bNnT+fevXvd2ouKipzPPPOM6/Np06Y5//73v3ustsjISOfrr7/u+vzzzz93SnKeOHHCY2MA7c2VK1eNLsEv2LL/T6O34XnXn1+eZ+/iZ9p3eK7bzudLFBISEnTixAnt2rVL165dU21trYqLi133b9y4UUuWLFFxcbFGjx7tdmxNTY169uzp+rxnz56qqanxWG1paWnKycnRiRMn5HA4ZLPZlJycrKioKI+NAbQ3Xbp0NroEAAA8yudLFCTpzTffVFZWls6cOaPg4GA9+eSTWr169TcFBQQoMDBQXbt2dTvmq6++UnFxsd577z3Xmtzp06dr7dq1GjhwYIMxsrKy9Nvf/lZHjhxpdV319fWy2WzaunWrrly5ogceeEC5ubnq3bv3LXy1rcMSBQAAgNZrV0sUbsWFCxec8fHxzq+//tpZU1PjvPfee53//Oc/jS4LAFrEnxh9hyUKvsHPtO/wXLddh9r0MjQ0VAsXLtT48eMlSa+88opHTjADAACAeXSogCtJc+bM0Zw5c4wuAwAAAO1Uu7tULwAAAHArCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUAo0uAADMprTsM1V+ca5B+4739jS4HRocpAfGDvdRZQDgHwi4AOBhd/UN0zvFe+W8qf3A3/7R4PZj0yb6sDIA8A8sUQAAD4voG6ZhsQNb7BcZfoeGDor2QUUA4F8IuADgBcnjvq8unZv/I9nU+0YpICDARxUBgP8g4AKAF1iDumvCyPgm74+P+Y4iw+/wYUUA4D/aXcC12WyKiYmR1WpVeHi4UlNTdf78eZ+MXV9fr6VLlyosLEzBwcFKSUlRdXW1T8YGYD5jEmMVag1q0N450KIHx33fgIoAwD+0u4BrsViUl5enmpoalZeXq6qqSvPmzfPJ2NnZ2SooKFBpaamqqqokSbNnz/bJ2ADMp3NgoH444QcN2pNGxCmkkeALAPAMwwLuxx9/rOTkZPXp00ehoaGaOXOmJCkrK0vx8fHq3LmzwsLClJGRoT179vikptzcXNlsNg0YMEAhISFas2aNioqKdPLkSZ+MD8B8Yr93t6Ii+ro+DwnuoXEjhhpYEQCYnyEBNz8/X9OnT1daWpoqKyt1+vRpzZ8/v9G+u3fv1pAhQ9o8RnZ2dpuOq6urU2VlpRISElxt0dHRslqtOnToUJvHBwBJCggI0NT7Rur6qWSTx49o8eQzAMCtCXA6nTdv1ehVly5dUv/+/bV+/Xr95Cc/abZvfn6+5s6dq5KSEg0bNkySdP/996usrEwLFy7Uz3/+c4/Vdfr0aUVGRur48eO6++67Xe39+/fX6tWrW6z1VmXm5Hr18QEAAMwk25bW5H0+n0YoKSlRQECAHn/88Wb77dixQ+np6SosLHSFW0naunWrPvjgA9caWU8JDg6W9M1M7o1qa2tltVo9OlZjmvsmAej4HF9dluPiJUXcGWZ0KaaXmZOrbFua6194x43PL8+1d/Fct53PlyhUV1erZ8+eze79uGXLFqWnp2vXrl2aMGGC230RERFeqSs0NFSRkZE6ePCgq+348eNyOBzfaokEANzIGtSdcAsAPuLzJQpHjhxRXFycfv/732vKlClyOBwqLS1VcnKyJGnjxo166aWXVFRUpMTExEYfY+vWraqqqvLoEgVJWr16tX7zm9+oqKhIvXr10k9/+lNdvHhRRUVFHh2nMSxRAAAAaL1mZ7KdBti6datz4MCBzh49ejj79u3rXLZsmes+Sc7AwEBnjx493D5utGXLFufLL7/c7BirV692Dh48uE11/fOf/3QuXrzY2atXL2dQUJDz4Ycfdn755ZdtegwAgLFs2f/H7V94x43PL8+1d/Fct50hp/I+8cQTeuKJJxq9z+mhCeVly5Zp2bJlbTrGYrFo7dq1Wrt2rUdqAAAAgO91uL1qnnzySZWWlurKlSsqLS3Vrl27jC4JAAAA7UiHC7hvvPGG0SUAAACgHWt3l+oFAAAAbgUBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKoFGFwAAwLf15flaXau/1qD9/3553u1fSbJYLOp9e4jPagNgHAIuAKDD+q+yY/qL/VCD9nVv7HT7V5ImjozXpHGJPqsNgHFYogAA6LAmjopXj263tdgvOKi7kn4Q54OKALQHBFwAQIfV7baumjRueIv9Hkz6vrp26eyDigC0BwRcAECHNnzIPeobdnuT90f0DVN8zHd9WBEAo7W7gGuz2RQTEyOr1arw8HClpqbq/PnzLR/oAfX19Vq6dKnCwsIUHByslJQUVVdX+2RsAMC3Y+nUSVMnjmzy/qn3jVSngAAfVgTAaO0u4FosFuXl5ammpkbl5eWqqqrSvHnzfDJ2dna2CgoKVFpaqqqqKknS7NmzfTI2AODb+07UXRr83f4N2ocOilZURF8DKgJgJMMC7scff6zk5GT16dNHoaGhmjlzpiQpKytL8fHx6ty5s8LCwpSRkaE9e/b4pKbc3FzZbDYNGDBAISEhWrNmjYqKinTy5EmfjA8A+PZ+OP4HsnT637e1wECLHkz6voEVATCKIQE3Pz9f06dPV1pamiorK3X69GnNnz+/0b67d+/WkCFD2jxGdnZ2m46rq6tTZWWlEhISXG3R0dGyWq06dKjhFjQAgPal9+0hGpVwr+vzcYlD1DMk2MCKABjF5wH30qVLSk9P14YNG5SSkqKuXbsqODhYycnJDfrm5+dr8+bN2rBhgyTpwIEDGj16tMaNG6eJEyfq+PHjTY6TmZnZpmDqcDgkSSEh7puAh4aGuu4DALRv940eph7db5OVbcEAvxbgdDqdvhzwvffe0xNPPKFz584poJlF/zt27FB6erry8/M1YcIESdLZs2cVFBSk4OBgvffee/rd736nt956yyN11dbWqmfPnvr0008VF/e/L4ohISF66623NH36dI+M05TMnFyvPj4AAICZZNvSmrzP51cyq66uVs+ePZsNt1u2bNHixYu1a9cujR492tV+5513um536dJFgYGeKz80NFSRkZE6ePCgK+AeP35cDofjWy2RaKvmvkkAgNa7du2aFBDAzglelpmT63rvuvE2PI/nuu18vkQhISFBJ06c0K5du3Tt2jXV1taquLjYdf/GjRu1ZMkSFRcXu4XbG126dEmZmZlasmSJR2tLS0tTTk6OTpw4IYfDIZvNpuTkZEVFRXl0HACA93Tq1IlwC/g5ny9RkKQ333xTWVlZOnPmjIKDg/Xkk09q9erV3xQUEKDAwEB17drV7ZivvvpKknT16lU99NBDSktL00MPPdTkGFlZWfrtb3+rI0eOtLqu+vp62Ww2bd26VVeuXNEDDzyg3Nxc9e7d+1t8lW3DEgUAAIDWa24m25CA+23V19frRz/6kR588MEmd10AAADex5/NfYfnuu3a3YUemrNjxw4VFRUpLy9P48eP189+9jOjSwIAAEA74/OTzG7FY489pscee8zoMgAAANCOdagZXAAAAKAlBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgBparCMAAAnBSURBVKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqgUYXAAAA2jen06mCP32s87UX3drf2P7HRm9/L7qfRifc67P6gJsRcAEAQLMCAgI0IDJcf/30A7f2f5w43eC2xdJJMyaN9ml9wM1YogAAAFoU+727FRXRt8V+Y4bHqleo1QcVAU0j4AIAgBYFBARo6n0jFdBMn6Ae3TRhZLzPagKaQsAFAACtEtE3TMNiBzZ5f/LYRN3WtYsPKwIa1+4Crs1mU0xMjKxWq8LDw5Wamqrz58/7ZOz6+notXbpUYWFhCg4OVkpKiqqrq30yNgAAHUHyuO+rS5fODdrvvKOXEpoJv4AvtbuAa7FYlJeXp5qaGpWXl6uqqkrz5s3zydjZ2dkqKChQaWmpqqqqJEmzZ8/2ydgAAHQE1qDumvCDuAbt0+4bqU6d2l2sgJ8y7Cfx448/VnJysvr06aPQ0FDNnDlTkpSVlaX4+Hh17txZYWFhysjI0J49e3xSU25urmw2mwYMGKCQkBCtWbNGRUVFOnnypE/GBwCgIxiTGKtQa5Dr83sH3q0BkeEGVgS4MyTg5ufna/r06UpLS1NlZaVOnz6t+fPnN9p39+7dGjJkSJvHyM7ObtNxdXV1qqysVEJCgqstOjpaVqtVhw4davP4AACYVefAQP1wwg8kfbMt2OQJIwyuCHAX4HQ6nb4c8NKlS+rfv7/Wr1+vn/zkJ832zc/P19y5c1VSUqJhw4apurpa06ZNU5cuXXT58mVlZWXpgQce8Ehdp0+fVmRkpI4fP667777b1d6/f3+tXr26xVpvVWZOrlcfHwAAwEyybWlN3ufzCz38/+3dX0jU6R7H8c84slaemWZS2WhBBY2FXEo02XVtqdmDK1R0cbxZM2HTcu5OFxnjTX9J0bucq7DACoUDg0EOgV50YRThzdAfXIjUKbPDgeOYjnYhpJ4LOYOi42qr8+fZ9+vKmd9veL7qzZvxmcf+/n5ZLBZVV1eveZ/P55Pb7VZPT4+KiookSU6nU0+ePJHVatXQ0JCqqqo2LXBtNpukxXdyl5qcnJTdvvXn+a31SwIAIBH9578Tctj/xskJW6yxtT3SCUu/RnQx36IwPj4up9MpiyX6SXodHR1yu93y+/1yuVyR561Wq6xWqyRpenpaBw4c2LS5HA6HsrOzFQgEIs+NjIwoHA5/0RYJAABMtztrF3GLhBTzLQqDg4MqLCzU/fv3dezYMYXDYQ0MDKiiokKS5PV6dfXqVfX29qqkpGTF64PBoGpqavT69Wt1dHTo+PHjmzZbU1OT7t27p97eXmVkZKiurk7T09Pq7e3dtDWiYYsCAADA+q31TnbMA1eS7t69q+bmZn348EE2m021tbVqampaHMhiUWpqqtLS0pa9ZmZmZtnjt2/f6siRI1FPOGhublZXV5cGBwfXPdfc3Jw8Ho/u3Lmj2dlZlZeXq729XZmZmRv7BgEAADYJWxQ2Li6B+6VmZ2cj4TsxMaHDhw/r1atXcZ4KAABg6xC4GxfzD5n9GYFAQB6PR1arVZ8/f9aNGzfiPRIAAAASTFIFbmlpqR4/fhzvMQAAAJDA+J96AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjpMZ7AAAAACyam5/XyOi/Vzz/5u3Yql/b03fo66xdMZktmVgWFhYW4j0EAAAAFt2736ff37xb171nfj2m/Jxvtnii5MMWBQAAgARy1PWDrCl/nGj79uYSt1EQuAAAAAkk07lTZQe/W/Mea0qKjrq+j9FEyYfABQAASDA//1ik9B3bol4vO/idMp07YzhRckm4wPV4PCooKJDdbteePXt09uxZTUxMxGTtubk5XbhwQVlZWbLZbKqsrNT4+HhM1gYAAPi/bWlf6ZefSla9lr5jm37+sSjGEyWXhAtcq9Wqzs5OhUIhvXjxQmNjYzp9+nRM1m5padGDBw80MDCgsbHFTyjW1NTEZG0AAIClSvZ/q92rnJDwy08HtS3tqzhMlDzidorC06dPde3aNT1//lyzs7MqLy+Xz+dbcd/Dhw918uRJTU1NbflMOTk5unTpkurq6iRJw8PDys/PVzAYVG5u7pavDwAAsNTQuw+6/a+Hkce7s3bpn7/9Qynr+BDaX1lcfjrd3d06ceKE6uvrNTo6qvfv3+vMmTOr3vvo0SPt379/w2u0tLRs6HVTU1MaHR1VcXFx5Lm8vDzZ7Xa9fPlyw+sDAAD8Wfk532jf3tzI4+N/LyVu1yHmP6FPnz7J7Xarra1NlZWVSktLk81mU0VFxYp7u7u7devWLbW1tS17PhQKyel0qrOzM+o6jY2NGwrTcDgsSdq5c/mGbYfDEbkGAAAQa0dd38uakqJ9e3M4FmydYv6fzPr7+2WxWFRdXb3mfT6fT263Wz09PSoqWr6R+vr16zp06NCmzmWz2SRpxVaIyclJ2e32TV1rNY2t7Vu+BgAASF6/v3lHLyzR4qmPei3mgTs+Pi6n0ymLxRL1no6ODp0/f15+v19lZWXLrg0PDysUCi3bSrAZHA6HsrOzFQgEVFhYKEkaGRlROBz+oi0SG7XWLwkAAPy1LSwsrNlOWC7mWxSKi4sVDAbl9/s1Pz+vyclJ9fX1Ra57vV41NDSor69vRdxK0sWLF3X58uUtma2+vl6tra0KBoMKh8PyeDyqqKjgA2YAACCuiNuNifk7uAUFBbp9+7YaGhpUVVUlm82m2trayB7cc+fOKTU1VS6Xa9nrZmZm9OzZM2VkZCgvL+8P12lublZXV5cGBwfXPVtjY6M+fvyokpKSyMkOa+3z3Uz8yQEAAGD91vrrd9yOCfsSXq9X3d3d2r59u4aGhpSenq6bN2+qtLQ03qMBAAAgQSRV4C515coV5efn69SpU/EeBQAAAAkkaQMXAAAAWA0nBQMAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIxC4AIAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIxC4AIAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIxC4AIAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIzyP1pSwtZyDxPkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Number of qubits utilised simultaneously.\n", + "glo_num_qubits = 5\n", + "\n", + "def create_circuit(num_target_qubits: int) -> QuantumCircuit:\n", + " \"\"\"\n", + " Creates and returns quantum circuit for random variate generation.\n", + " :param num_target_qubits: number of qubits to be used.\n", + " :return: quantum curcuit.\n", + " \"\"\"\n", + " assert isinstance(num_target_qubits, int) and num_target_qubits > 0\n", + " q = QuantumRegister(num_target_qubits)\n", + " c = ClassicalRegister(num_target_qubits)\n", + " circuit = QuantumCircuit(q, c)\n", + " circuit.h(q)\n", + " circuit.barrier()\n", + " circuit.measure(q, c)\n", + " return circuit\n", + "\n", + "# Create and plot generating quantum circuit.\n", + "circuit = create_circuit(glo_num_qubits)\n", + "#print(circuit)\n", + "circuit.draw(output='mpl')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Uniformly-distributed scalars and vectors\n", + "\n", + "It is clear that there are many options for approximating uniformly-distributed scalars by the choice of an integer from a finite range uniformly at random, e.g., by a binary-code construction from the Bernoulli-distributed vectors. In the following snippet, we generate random bits, which we then convert using the binary-code construction, up to the machine precision of a classical computer." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def uniform_rand_float64(circuit: QuantumCircuit, num_target_qubits: int,\n", + " size: int, vmin: float, vmax: float) -> np.ndarray:\n", + " \"\"\"\n", + " Generates a vector of random float64 values in the range [vmin, vmax].\n", + " :param circuit: quantum circuit for random variate generation.\n", + " :param num_target_qubits: number of qubits to be used.\n", + " :param size: length of the vector.\n", + " :param vmin: lower bound.\n", + " :param vmax: upper bound.\n", + " :return: vector of random values.\n", + " \"\"\"\n", + " assert sys.maxsize == np.iinfo(np.int64).max # sizeof(int) == 64 bits\n", + " assert isinstance(size, int) and size > 0\n", + " assert isinstance(vmin, float) and isinstance(vmax, float) and vmin <= vmax\n", + " nbits = 7 * 8 # nbits > mantissa of float64\n", + " bit_str_len = (nbits * size + num_target_qubits - 1) // num_target_qubits\n", + " job = execute(circuit, glo_backend, shots=bit_str_len, memory=True)\n", + " bit_str = ''.join(job.result().get_memory())\n", + " scale = float(vmax - vmin) / float(2**nbits - 1)\n", + " return np.array([vmin + scale * float(int(bit_str[i:i+nbits], 2))\n", + " for i in range(0, nbits * size, nbits)], dtype=np.float64)\n", + "\n", + "def uniform_rand_int64(circuit: QuantumCircuit, num_target_qubits: int,\n", + " size: int, vmin: int, vmax: int) -> np.ndarray:\n", + " \"\"\"\n", + " Generates a vector of random int64 values in the range [vmin, vmax].\n", + " :param circuit: quantum circuit for random variate generation.\n", + " :param num_target_qubits: number of qubits to be used.\n", + " :param size: length of the vector.\n", + " :param vmin: lower bound.\n", + " :param vmax: upper bound.\n", + " :return: vector of random values.\n", + " \"\"\"\n", + " assert sys.maxsize == np.iinfo(np.int64).max # sizeof(int) == 64 bits\n", + " assert isinstance(size, int) and size > 0\n", + " assert isinstance(vmin, int) and isinstance(vmax, int) and vmin <= vmax\n", + " assert abs(vmin) <= 2**52 and abs(vmax) <= 2**52 # 52 == mantissa of float64\n", + " return np.rint(uniform_rand_float64(circuit, num_target_qubits,\n", + " size, float(vmin), float(vmax))).astype(np.int64)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uniform distribution over floating point numbers.\n", + "In this example we draw a random vector of floating-point values uniformly distributed within some arbitrary selected interval:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Uniform distribution over floating point numbers:\n", + " sample type: , element type: float64 , shape: (54321,)\n", + " sample min: -7.6698, max: 19.5196\n", + " sampling time: 6.65 secs\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEZCAYAAAA+MZraAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X2cHFWd7/HPlwSC8mhAIyRAQAJXZNWVLKjX1QkIBhc3eA2SAQEVjQ9E976u7gq6IIm4ind3URd8iBLBuElQlGvUKD6QEXUxEh4UAkscApgQnkIAGeTBwO/+cc6YotM9093T0zU9832/Xv2aqlOnTp3T1VW/qlM1VYoIzMzMyrBd2RUwM7Oxy0HIzMxK4yBkZmalcRAyM7PSOAiZmVlpHITMzKw0DkJmZlaaMRmEJH1J0tmF8fdJuk9Sn6Q9yqxbrs+dkl6fhz8q6astLLtP0gF5+BJJ57Ww7Gd9r6OBpIMl3SDpUUkfbPV3NhpI6pH0rhKW2/S2kev8hKSrW10vS/K28rikDQPl68ggJCkkHViRdq6kb9Qzf0S8NyI+kefbHvh34JiI2DkiHmx9jZsXEf8SEYNu4PXuCHIb1w21XpLeLumXFWX/5XsdRf4J6ImIXSLi860qtNbvVdLrJV0v6TFJ6yW9tUqe0/I20PYd/0hS77YxgHkR8dpaE/NBVV/h86SkRwfIP07SeZI25oOWGyTt3kxZQyFpnqTVeRmXVJn+Lkm9uR4/krT3AGX1B+v+et9WmPZ3kn4p6WFJ90r6iqRd+qdHxNuBYwerb0cGoRabBOwIrGl0RiUd8R1KGl92HUayAdblfjTx22iyDocAS4CPAbsBLweuq8jzPOCsdtWpnUba9pQPqnbu/wBLgW8NMMt84NXAq4BdgVOAJ5osayg2AucBiyonSHod8C/ALGAicEeuy0DmFep+cCF9t7ycvYEXA1OA/9twbSOi4z5AAAdWpJ0LfCMPdwEbgA8B9wP3AO8o5L0kf3kHAY/l8vqAq/L0VwPXAo/kv68uzNsDfBL4FfA4cGBOOw/4r1zO94A9gP8E/pjLmDpAe04B7gIeJO2A7gReX6VdOwLfyPkezuVOyvV5mvSD7wMuLHxPZwC/B+6o/O7y9/Al4CfAo8DPgf3ytKk57/iKtr+L9IN7Ii+zD3i4+L0W8r8b6AU2A8uBvSvW4Xtz3R4CLgJU4/uZAHyWtHFtzMMT8rRbgeMKeccDm4BX5PFX5vXyMPBboGugdVmx3KsqvteDGmzj54D1+TdwHfC3OX0m8BTw51zub3P6EuATg/z2vwS8v39dDJCvB/hEbtujwI+BPYvbR0X+O3n2b+5bpN/ao8BNue1nkban9aSeg+KyPgX8hrTNfBeYWJje0DoA3g6sy8u+Azi5RhvPZeu2MZX0mzoN+EP+DXxskO+n5vdXJf9OuT6vqzH9eXldvmioZbXqQ9onXVKR9q/ARYXxvfP3VrXejXxPwP8CbqpI2+a3VvkZMUcdw+CFpEg9GTgduCgfRf5FRKwFXpJHd4+IIyVNBH4AfJ4USP4d+EHFtaJTgLnALqTgATAnp08GXgRcA3yNdLRxK/DxapXMR79fzPPunZc5pUabTstt2ifney/weER8DPgFW49Y5hXmOR44AjikRpknk3ZWewI3kgLngCLi1rzsa/Lydq/SriNJO6a3AnuRvqdlFdmOA/4GeFnO94Yai/wYaUf28pz3cOCf87SlQHch7xuATRFxvaTJpHV5Hmk9fBj4tqTnF/JXW5f97TySZ3+vaxts47W5zhNJAeZbknaMiB+RjkYvy+W+LOd/ZS73Jkn3SPpG/j32L+9wYDopENXjJOAdwAuAHXL76/UmYDFp53oDcCWp52QysAD4ckX+U4F3kn7DW0jbD02sgwfyvMdGxC6kA8IbG6j3a4CDgaOAcyS9uIF5B/KWXLda15D+itTu2blraq2kM5osazgpf4rjAIcOMM+nJG2S9CtJXQPkey1NnKGP5iD0Z2BBRPw5IlaQjlIOHmQegL8Dfh8RiyNiS0QsBf6btFH2uyQi1uTpf85pX4uI2yPiEeCHwO0R8dOI2EI6qvzrGsubDXw/Iq6OiCeBs4FnBmjTHqQj9qcj4rqI+OMg7flURGyOiMdrTP9BYdkfA14laZ9ByqzHycCiiLg+l31WLntqIc+nI+LhiPgDsJK0w65V1oKIuD8iHiB1e5ySpy0B/l7Sc/P4STkN4G3AiohYERHPRMRPgNXAGwtlV1uXLWljRHwjIh7MZf8b6YxuoN/glNyutwDTgOcA/wHpegPwBeADEVHr91HpaxGxNq/7b1L7+63mFxFxZeH3+3zS+vozKdBO7b/ekS2OiJsj4jHSb/ituc4NrQPSjvwZ4FBJz4mIeyKikR3b/Ih4PCJ+SzrretlgM9TpNODrkQ/vq5hCOkA8CNiftF2fK+noJsoaTitI6+alkp4DnEM6E3pujfwfAQ4gHXwsBL4n6UWVmXI7T8vlNaRTg9DTwPYVaduTdtL9Hsw/6n5/Anauo+y9qTgizuOTC+Prq8x3X2H48SrjtZa9d7G8vBHXujliMemIdFm++PmZfGPFQKrVter0iOgjdSvVvFDZgGd9j7nsB3n293hvYXig9VO5Tu7qr2NE9JLONN+UA9HfszUI7QeckC+cPizpYdKR8l6Fsgb7fgYyYBslfUjSrZIeycvejXTGWcvjbA0cfaSzpf6d9fuB30XENQ3Ur97vt5rK3++miHi6ME5FecXv8S7S9rgnDa6D/Ps/kXSmfY+kH0j6Hw3Uu6k2Szq5cPH9hxXT9gFeB3x9gCL6v5MFOQj+jhSsi8G23rKGTUT8jNQr823SerqT1DVY9Q62iFgVEY9GxJMRcSmp27SyTa8kbXOzK3sL6tGpQegPpD7gov3ZNng0YyNpwynaF7i7MN7KI5h7SN1rAOQdadXbxPNZ3fyIOITUTXEcqRtkoDoNVtfisncmdZlsJF0rg2cfIb2wgXKf9T1K2onUrrtrzlFnWaT1sbEw3t8lNwu4JQcmSDu3xRGxe+GzU0R8uoF21F2vYhsl/S3pKPKtwPNyl+UjbO3+qLbc3w1Qn6OAN+eunntJ6//fJF3YRL0fo7Be8xnL82tnr0vx7Hlf0gHhJppYB/kM7GhSoPpv4CtDrNugIuI/Y+vF98o7uk4F/isGvqv0d/1FDbKoesoaVhFxUURMi4gXkILReODmemen0J0n6a9J10LfmQNcwzo1CF0G/LOkKZK2U/qfmjcBl7eg7BXAQZJOkjRe0omk6ynfb0HZ1VwOHCfpNZJ2IPW3V10vkmZI+qu80/gjaUPvPzq9j3Ta3Kg3Fpb9CWBVRKzP3V53A29TuvX0naRrXf3uA6bk+apZArxD0sslTSAd1a+KiDubqONS0vp+vqQ9Saf8xdublwHHAO9j61kQOc+bJL0ht2FHSV2Sal1za9RAbdyF1LX0ADBe0jmkO6b63Ufq0iqu66/l8g7IByMfYevv7u2kG0Jenj+rSd2SH2ui3muBHZVusd2edH1tQhPlFL1N0iG53guAy/OZU0PrQNIkSX+fA/qTpG70p6vlbaNTSTek1BQRt5OuH35M0oR8LepEtt1vDFrWUOX91o7AOKD/Ox+fp+0o6VAl+5K62D4XEQ9VKWf3vN52zGWeTLruc2WefijwI1IX8fearW+nBqEFpLttfkm6s+ozpDto6o3mNUX6P6HjSHfWPUj6P5HjImLTUMuusbw1pDvYlpDOih6ixqkx6UzkclIAupV0N1v/zvhzpIuiD0lq5P9ZlpBOzzcDh5Guc/R7N/CPpO/hJaTvvN9VpIuQ90ra5rvJR0Vnk4607iEFsDkN1KvoPNJO93ekO7Wuz2n9y7qHdCPIq0kHKP3p60lnRx8lBYP1uT0t+d0P0sYrSdcG15LO0J/g2V1W/bfnPijp+lzeIlI3zao8z5PAB/O0hyPi3v4P6e66P+ZrkI3W+xFS995XSQcaj1H7N1evxaSd672kuzj7693oOtiOtO1tJP0mX5frWgpJryJd79nmdmpJP5T00UJSN+nM+EHSzRhnF88OBiqrStlr8k4fSfvmbsJ98/jJkga6TvbPpO7BM0nX5B5n6408O5K2+T7S3YzXkH7D/cv9aKE7cnvSdvYA6az2A8DxEdH/v0IfIp1BX1zoymz8X13KuTZmZlYeST8m/T/P6oiYUXZ9RiNJFwMnAPdHxIE18zkImZlZWTq1O87MzEYBByEzMyvNmHue2J577hlTp04tuxoNeeyxx9hpp53Krsawcfs6m9vX2ept33XXXbcpIoZ6K/82xlwQmjp1KqtXry67Gg3p6emhq6ur7GoMG7evs7l9na3e9klqxf9hbsPdcWZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpXEQMjOz0jgImZlZaRyEzMysNA5CZmZWmrYFIUkzJd0mqVfSmVWmT5B0WZ6+StLUiun979T4cL1ljiQzZmz9mJlZ0pYglN8EehFwLOktpd2SDqnIdjrwUH7vxAXA+RXTLyC9JKyRMs3MbARr17PjDgd6+9+rLmkZ6W2LtxTyzALOzcOXAxdKUkSEpOOBdaQ3QDZSppnZNoo9EitXllcPa18QmsyzX228ATiiVp6I2CLpEWAPSY8DHwGOBj5cLf8AZQIgaS4wF2DSpEn09PQ03ZBmdXdvHW508X19faXUuV3cvs7Wie1rZHvsxPY1ouz2tSsIqUpa5Stda+WZD1wQEX2S6sm/bWLEQmAhwPTp06OMJ+LOn791uNEjr5HyFN/hOnocKe0bLm7fyFPcHouq/a47sX2NKLt97QpCG4B9CuNTgI018myQNB7YDdhMOruZLekzwO7AM5KeAK6ro0wzMxvB2nV33LXANEn7S9oBmAMsr8izHDgtD88GrorkbyNiakRMBT4L/EtEXFhnmWZmTZsxA9au3fauVt/t2jptORPK13jmAVcC44BFEbFG0gJgdUQsBy4GFkvqJZ0BzWmmzGFtSEnWrq3efeALqjYW+CaC0a1tb1aNiBXAioq0cwrDTwAnDFLGuYOVaWbl6fSA0cyZTVlt7vTvut+Ye723Da/RsmGYWXs4CJmZDx6sNA5CZiUajp2/A4r164TfgoOQjUidsPEMp9Hc/tHcNmucg9Aw8u2bZlbJQfjZHIRsxPNGazZ6OQiNEpVnXSNhZz3cwaOTgtNQ6tpJ7bTG1LNuG+1R6bQeGAehJvmCspWt0d9Lu39fI+H3PBLqYANzELJteMNt3lCObNt5BNvuo+VOOzrvNJ38/ToIlayTfzytNhzfxUDdlA62NlKNpf2Cg9AYMxJ2vCOhDmY2MjgIjQFj6aiqWQ6MjSl+Xx//ePl18DrrXA5CLVbPDn+kBIVO3Ijb8d3V+l5Gwvc1Un471npjdd06CI1SnfKDnjEjvWq51psumy3TWmMkBN7RwL/J2hyErC3G4kbY3+bu7nLrMRY4WHYuB6ERqrhR1dqJjcUdu5mNLm0LQpJmAp8jvQX1qxHx6YrpE4CvA4cBDwInRsSdkg4HFvZnA86NiCvyPHcCjwJPA1siYno72mIjT5kBeSQcDIyEOjTDZzDWliAkaRxwEXA0sAG4VtLyiLilkO104KGIOFDSHOB84ETgZmB6fp33XsBvJX0vIrbk+WZExKZ2tMPGnk7duQ/FWGyzladdZ0KHA70RsQ5A0jJgFlAMQrOAc/Pw5cCFkhQRfyrk2RGI4a+uNcI7LTNrliKGf58uaTYwMyLelcdPAY6IiHmFPDfnPBvy+O05zyZJRwCLgP2AUwrdcXcAD5EC05cjYiFVSJoLzAWYNGnSYcuWLRtym9au3Tp80EHV01tl4sQ+Nm/eufUFF9RqQ6PpzWhH+1qtkfaX2b5WrqdaZe29dx8777zzkJdRLL+o0d9dq3+z/euv0WUXDcd+oVG16tbXt3X9DWTGjBnXDcclj3YFoROAN1QEocMj4gOFPGtynmIQOjwiHizkeTFwKfDaiHhC0t4RsVHSC4CfAB+IiKsHqsv06dNj9erVQ25TPf9L0ird3T0sXdrV+oLrUM//yQy1zWW2rx1G4vprZVkf/3gPXV1dQ15GPXUdSp5mv4v+9dfosotGQm9Brbr19GxdfwORNCxBqF3dcRuAfQrjU4CNNfJskDQe2A3YXMwQEbdKegw4FFgdERtz+v2SriB1+w0YhMysc42Enbm1VruC0LXANEn7A3cDc4CTKvIsB04DrgFmA1dFROR51ucbE/YDDgbulLQTsF1EPJqHjwEWDGcjRsLTj83K4t+5DYe2BKEcQOYBV5Ju0V4UEWskLSCd0SwHLgYWS+olnQHNybO/BjhT0p+BZ4D35+tEBwBXSOpvx5KI+FE72mPWKRw4bKRr2/8JRcQKYEVF2jmF4SeAE6rMtxhYXCV9HfCy1tfUirwTM2uOt536+IkJ1hRvYGbb8nbROAchMxuStWtb+wBaG1u2K7sCZmY2dvlMyMzGBHeVjUwOQmY2qjjYdBYHITMbERw8xiZfEzIzs9L4TMjMrA4+UxsePhMyM7PSOAiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRmZqVxEDIzs9K0LQhJminpNkm9ks6sMn2CpMvy9FWSpub0wyXdmD+/lfTmess0M7ORrS1BSNI44CLgWOAQoFvSIRXZTgceiogDgQuA83P6zcD0iHg5MBP4sqTxdZZpZmYjWLvOhA4HeiNiXUQ8BSwDZlXkmQVcmocvB46SpIj4U0Rsyek7AtFAmWZmNoK16wGmk4H1hfENwBG18kTEFkmPAHsAmyQdASwC9gNOydPrKRMASXOBuQCTJk2ip6enqUZ0dzc125BNnNhHd3dPOQtvA7evs7l9naHWbq+vr6/pfWIrtCsIqUpa1JsnIlYBL5H0YuBSST+ss0zy/AuBhQDTp0+Prq6uOqv9bPPnNzXbkHV397B0aVc5C28Dt6+zuX2dYeXK6uk9PT00u09shXZ1x20A9imMTwE21sojaTywG7C5mCEibgUeAw6ts0wzMxvB2hWErgWmSdpf0g7AHGB5RZ7lwGl5eDZwVUREnmc8gKT9gIOBO+ss08zMRrC2dMflazjzgCuBccCiiFgjaQGwOiKWAxcDiyX1ks6A5uTZXwOcKenPwDPA+yNiE0C1MtvRHjMza422vVk1IlYAKyrSzikMPwGcUGW+xcDiess0M7PO4ScmmJlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVxkHIzMxK4yBkZmalcRAyM7PSOAiZmVlp6g5CkvYYzoqYmdnY08iZ0HpJ35U0Oz8w1MzMbEgaCUL7AT8DPgLcK2mhpNcMT7XMzGwsqDsIRcQDEfH5iPgb4FXA/aSnXq+TtCC/ZsHMzKxuzd6Y8ML82RW4nfRq7hskndmqipmZ2ehX96scJL0EeBtwMtAHXAq8NCLuztM/AfwO+PQw1NPMzEahRt4ndDWwFJgdEb+pnBgRd0r6bMtqZmZmo14j3XFvjoh5lQFI0uH9w8WX1FWSNFPSbZJ6q3XbSZog6bI8fZWkqTn9aEnXSbop/z2yME9PLvPG/HlBA+0xM7OSNXIm9H3SNaBKPwImDjSjpHHARcDRwAbgWknLI+KWQrbTgYci4kBJc4DzgROBTcCbImKjpENJr/OeXJjv5IhY3UA7zMxshBj0TEjSdjmIKNuu8JkGbKljOYcDvRGxLiKeApYBsyryzCJdZwK4HDhKkiLihojYmNPXADtKmlBP48zMbGRTRAycQXoGqJXpGeCTEXHuIGXMBmZGxLvy+CnAERExr5Dn5pxnQx6/PefZVFHOeyPi9Xm8B9gDeBr4NnBeVGmQpLnAXIBJkyYdtmzZsgHbXMvatU3NNmQTJ/axefPO5Sy8Ddy+zub2dYaDDqqe3tfXx847D96+GTNmXBcR01tcrbq64/YHBPwceG0hPYAHIuLxOspQlbTKYDFgnnx33vnAMYXpJ0fE3ZJ2IQWhU4Cvb1NIxEJgIcD06dOjq6urjipva/78pmYbsu7uHpYu7Spn4W3g9nU2t68zrFxZPb2np4dm94mtMGgQioi78uBQ/hl1A7BPYXwKsLFGng2SxgO7AZsBJE0BrgBOjYjbC3W7O/99VNISUrffNkHIzMxGpgGDkKSFETE3D9fcuUfEqYMs51pgmqT9gbuBOcBJFXmWA6cB1wCzgasiIiTtDvwAOCsiflWo23hg94jYJGl74Djgp4PUw8zMRpDBzoTuKAzfXjPXICJii6R5pDvbxgGLImKNpAXA6ohYDlxMegxQL+kMaE6efR5wIHC2pLNz2jHAY8CVOQCNIwWgrzRbRzMza78Bg1BEfKowPKQrIhGxAlhRkXZOYfgJ4IQq850HnFej2MOGUiczMyvXYN1xRw40vV9EXNWa6piZ2VgyWHfcxXWUEcABLaiLmZmNMYN1x+3froqYmdnY0+yrHMzMzIZssGtCt0bEi/Pwemo8OSEi9h2GupmZ2Sg32DWhdxeG3zacFTEzs7FnsGtCvywM/3z4q2NmZmNJ3deEJO0gaYGk30t6LP/9hKQdh7OCZmY2ejXyPqEvAgcDHwTuIj1L7izSu33e2fqqmZnZaNdIEDoeeFFEPJzHb5G0CujFQcjMzJrQyC3a9wLPrUh7DnBP66pjZmZjSSOP7VkM/EjSf7D1tQtn4FcnmJlZk5p5bM9HK8bfQ3rZnJmZWUP82B4zMyuNH9tjZmalqfvuOEm7AucCrwP2BNQ/zY/tMTOzZjRyJvQF4BXAAmAi8AHgD8AFw1AvMzMbAxoJQscAb4mI7wJP578nAqfUM7OkmZJuk9Qr6cwq0ydIuixPXyVpak4/WtJ1km7Kf48szHNYTu+V9HlJqizXzMxGrkaC0HbAI3m4T9LupP8ROnCwGSWNAy4CjgUOAbolHVKR7XTgoYg4kHR21X/H3SbgTRHxV8BppFvF+30RmAtMy5+ZDbTHzMxK1kgQ+i3pehDAL0hB5YvA2jrmPRzojYh1EfEUsAyYVZFnFnBpHr4cOEqSIuKGiNiY09cAO+azpr2AXSPimogI0v8rHd9Ae8zMrGSNPLbn3Wy9GeGDwKeB3YFT65h3MrC+ML4BOKJWnojYIukRYA/SmVC/twA3RMSTkibncoplTq62cElzSWdMTJo0iZ6enjqqvK3u7qZmG7KJE/vo7u4pZ+Ft4PZ1NrevM9Ta7fX19TW9T2yFuoNQRKwrDD9A6j6rV7VrNZUvyBswj6SXkLrojmmgzJQYsRBYCDB9+vTo6uoapLrVzZ/f1GxD1t3dw9KlXeUsvA3cvs7m9nWGlSurp/f09NDsPrEVGvo/IUnvlPQTSWvy39PrvBmg/zE//aYAG2vlkTQe2A3YnMenAFcAp0bE7YX8UwYp08zMRrBG3if0GeAjwHeAf8x/P0x9j+y5FpgmaX9JOwBzgOUVeZaTbjwAmA1cFRGRb4D4AXBWRPyqP3NE3AM8KumVORCeCny33vaYmVn5Grkm9HbgFRHxl+swkr4PXA/800Az5ms884ArgXHAoohYI2kBsDoilpOeU7dYUi/pDGhOnn0e6Q68syWdndOOiYj7gfcBl5Ce5v3D/DEzsw7RSBB6NH8q0/5Yz8wRsQJYUZF2TmH4CeCEKvOdB5xXo8zVwKH1LN/MzEaewV7lcEBh9LPAdyR9mq3Xb/4RPzHBzMyaNNiZUC/pjrPizQczKvIcCVzYykqZmdnYMNirHPyUbTMzGzaNXBMCQNK+pH8K3RAR6wfLb2ZmVksjt2jvJennpC667wC3S7pa0t7DVjszMxvVGulu+yLp+XHPi4i9gOcBNwBfGo6KmZnZ6NdId9xrgL0i4s8AEfGYpH8C7h6WmpmZ2ajXyJnQQ6TXMBQdDDzcuuqYmdlY0siZ0GeAn0q6GLgL2A94B3D2gHOZmZnV0MhTtL8i6XbgJOClpIeFdkfEVcNVOTMzG93qCkL5zaiLgLkOOmZm1ip1XROKiKdJ7/F5ZnirY2ZmY0kjNyZcAMyXtP1wVcbMzMaWRm5M+ADwQuD/SHqArc+Ui4jYdzgqZ2Zmo1sjQehtw1YLMzMbkxrpjrsGOAr4Kum9QF8FXg+sGoZ6mZnZGNDoY3uOBD4I/E3++zrgC/XMLGmmpNsk9Uo6s8r0CZIuy9NXSZqa0/eQtFJSn6QLK+bpyWXemD8vaKA9ZmZWska6444HXhQR/U9IuEXSKtIDTd850Iz5Fu+LgKNJL8S7VtLyiLilkO104KGIOFDSHOB84ETgCdI/xB5K9beonpzfsGpmZh2mkTOhe4HnVqQ9B7injnkPB3ojYl1EPAUsA2ZV5JkFXJqHLweOkqSIeCwifkkKRmZmNoooIurLmLrQTgL+g62v9z4DWAJc25+v2j+zSpoNzIyId+XxU4AjImJeIc/NOc+GPH57zrMpj78dmF4xTw+wB/A08G3gvKjSIElzgbkAkyZNOmzZsmV1tbnS2rVNzTZkEyf2sXnzzuUsvA3cvs7m9nWGgw6qnt7X18fOOw/evhkzZlwXEdNbXK2GuuPek/9+tCL9vfkD6bbtA6rMqypplcGinjyVTo6IuyXtQgpCpwBf36aQiIXAQoDp06dHV1fXIMVWN39+U7MNWXd3D0uXdpWz8DZw+zqb29cZVq6snt7T00Oz+8RWaOTZcfsPYTn9Z079ppCePVctzwZJ44HdgM2D1Onu/PdRSUtI3X7bBCEzMxuZGrkmNBTXAtMk7S9pB2AOsLwiz3LgtDw8G7iqWtdaP0njJe2Zh7cHjgNubnnNzcxs2DTSHde0iNgiaR5wJTAOWBQRayQtAFZHxHLgYmCxpF7SGdCc/vkl3QnsCuwg6XjSc+zuAq7MAWgc8FPgK+1oj5mZtUZbghBARKwg/ZNrMe2cwvATwAk15p1ao9jDWlU/MzNrv3Z1x5mZmW3DQcjMzErjIGRmZqVxEDIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpXEQMjOz0jgImZlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVpm1BSNJMSbdJ6pV0ZpXpEyRdlqevkjQ1p+8haaWkPkkXVsxzmKSb8jyfl6T2tMbGGSj7AAAKJUlEQVTMzFqhLUFI0jjgIuBY4BCgW9IhFdlOBx6KiAOBC4Dzc/oTwNnAh6sU/UVgLjAtf2a2vvZmZjZc2nUmdDjQGxHrIuIpYBkwqyLPLODSPHw5cJQkRcRjEfFLUjD6C0l7AbtGxDUREcDXgeOHtRVmZtZS49u0nMnA+sL4BuCIWnkiYoukR4A9gE0DlLmhoszJ1TJKmks6Y2LSpEn09PQ0WP2ku7up2YZs4sQ+urt7yll4G7h9nc3t6wy1dnt9fX1N7xNboV1BqNq1mmgiT1P5I2IhsBBg+vTp0dXVNUCxtc2f39RsQ9bd3cPSpV3lLLwN3L7O5vZ1hpUrq6f39PTQ7D6xFdrVHbcB2KcwPgXYWCuPpPHAbsDmQcqcMkiZZmY2grUrCF0LTJO0v6QdgDnA8oo8y4HT8vBs4Kp8raeqiLgHeFTSK/NdcacC32191c3MbLi0pTsuX+OZB1wJjAMWRcQaSQuA1RGxHLgYWCypl3QGNKd/fkl3ArsCO0g6HjgmIm4B3gdcAjwH+GH+mJlZh2jXNSEiYgWwoiLtnMLwE8AJNeadWiN9NXBo62ppZmbt5CcmmJlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVxkHIzMxK4yBkZmalcRAyM7PSOAiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRmZqVxEDIzs9K0LQhJminpNkm9ks6sMn2CpMvy9FWSphamnZXTb5P0hkL6nZJuknSjpNXtaYmZmbVKW96sKmkccBFwNLABuFbS8vyK7n6nAw9FxIGS5gDnAydKOoT0qu+XAHsDP5V0UEQ8neebERGb2tEOMzNrrXadCR0O9EbEuoh4ClgGzKrIMwu4NA9fDhwlSTl9WUQ8GRF3AL25PDMz63BtORMCJgPrC+MbgCNq5YmILZIeAfbI6b+umHdyHg7gx5IC+HJELKy2cElzgbkAkyZNoqenp6lGdHc3NduQTZzYR3d3TzkLbwO3r7O5fZ2h1m6vr6+v6X1iK7QrCKlKWtSZZ6B5/2dEbJT0AuAnkv47Iq7eJnMKTgsBpk+fHl1dXXVXvGj+/KZmG7Lu7h6WLu0qZ+Ft4PZ1NrevM6xcWT29p6eHZveJrdCu7rgNwD6F8SnAxlp5JI0HdgM2DzRvRPT/vR+4AnfTmZl1lHYFoWuBaZL2l7QD6UaD5RV5lgOn5eHZwFURETl9Tr57bn9gGvAbSTtJ2gVA0k7AMcDNbWiLmZm1SFu64/I1nnnAlcA4YFFErJG0AFgdEcuBi4HFknpJZ0Bz8rxrJH0TuAXYApwREU9LmgRcke5dYDywJCJ+1I72mJlZa7TrmhARsQJYUZF2TmH4CeCEGvN+EvhkRdo64GWtr6mZmbWLn5hgZmalcRAyM7PSOAiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRmZqVxEDIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpWlbEJI0U9JtknolnVll+gRJl+XpqyRNLUw7K6ffJukN9ZZpZmYjW1uCkKRxwEXAscAhQLekQyqynQ48FBEHAhcA5+d5DwHmAC8BZgJfkDSuzjLNzGwEa9eZ0OFAb0Ssi4ingGXArIo8s4BL8/DlwFGSlNOXRcSTEXEH0JvLq6dMMzMbwca3aTmTgfWF8Q3AEbXyRMQWSY8Ae+T0X1fMOzkPD1YmAJLmAnPzaJ+k25poQ2l6etgT2FR2PYaL29fZ3L7OINWcVG/79mtZZQraFYSqNT/qzFMrvdpZXGWZKTFiIbBwoAqOZJJWR8T0susxXNy+zub2dbay29eu7rgNwD6F8SnAxlp5JI0HdgM2DzBvPWWamdkI1q4gdC0wTdL+knYg3WiwvCLPcuC0PDwbuCoiIqfPyXfP7Q9MA35TZ5lmZjaCtaU7Ll/jmQdcCYwDFkXEGkkLgNURsRy4GFgsqZd0BjQnz7tG0jeBW4AtwBkR8TRAtTLb0Z4SdGxXYp3cvs7m9nW2UtundLJhZmbWfn5igpmZlcZByMzMSuMg1CEknSvpbkk35s8by67TUI32xy5JulPSTXl9rS67Pq0gaZGk+yXdXEibKOknkn6f/z6vzDo2q0bbRs12J2kfSSsl3SppjaR/yOmlrj8Hoc5yQUS8PH9WlF2ZoRhDj12akdfXaPk/k0tIj88qOhP4WURMA36WxzvRJWzbNhg9290W4EMR8WLglcAZeZsrdf05CFlZ/NilDhQRV5PuXi0qPnLrUuD4tlaqRWq0bdSIiHsi4vo8/ChwK+npM6WuPwehzjJP0u9yt0FHdnkUVHuU0+QaeTtVAD+WdF1+dNRoNSki7oG0owNeUHJ9Wm00bXcA5LcU/DWwipLXn4PQCCLpp5JurvKZBXwReBHwcuAe4N9KrezQ1fMop073PyPiFaQuxzMkvbbsClnDRtt2h6SdgW8D/zsi/lh2fdr17DirQ0S8vp58kr4CfH+YqzPcRv1jlyJiY/57v6QrSF2QV5dbq2Fxn6S9IuIeSXsB95ddoVaJiPv6h0fDdidpe1IA+s+I+E5OLnX9+UyoQ+QfR783AzfXytshRvVjlyTtJGmX/mHgGDp/ndVSfOTWacB3S6xLS42m7S6/Gudi4NaI+PfCpFLXn5+Y0CEkLSZ1CQRwJ/Ce/n7cTpVvd/0sWx+79MmSq9Qykg4Arsij44Elo6F9kpYCXaTH/98HfBz4f8A3gX2BPwAnRETHXeCv0bYuRsl2J+k1wC+Am4BncvJHSdeFSlt/DkJmZlYad8eZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcisZJK6JG0oux5mZXAQMjOz0jgImZlZaRyEzFpE0pmSLq9I+5ykz0t6R36Z2KOS1kl6zwDlhKQDC+OXSDqvMH5cfsHaw5L+S9JLh6dFZsPPQcisdZYCb5S0K/zlxX1vBZaQHgp5HLAr8A7gAkmvaHQBeZ5FwHuAPYAvA8slTWhJC8zazEHIrEUi4i7gera+FOxI4E8R8euI+EFE3B7Jz4EfA3/bxGLeDXw5IlZFxNMRcSnwJOlNmWYdx0HIrLWWAN15+KQ8jqRjJf1a0mZJDwNvJD0os1H7AR/KXXEP57L2AfZuQd3N2s5ByKy1vgV0SZpCevT/ktxV9m3gX0lvsdwdWEH1F/sB/Al4bmH8hYXh9cAnI2L3wue5EbG05S0xawMHIbMWiogHgB7ga8AdEXErsAMwAXgA2CLpWNL7hWq5EThJ0jhJM4HXFaZ9BXivpCOU7CTp7/rfXWTWaRyEzFpvCfD6/JeIeBT4IOmdLQ+RuukGeoHfPwBvAh4GTia9r4dc1mrSdaELc1m9wNtb3QCzdvH7hMzMrDQ+EzIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpfn/QrovIPSdcl4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Draw a sample from uniform distribution.\n", + "start_time = time.time()\n", + "sample = uniform_rand_float64(circuit, glo_num_qubits, size=54321, vmin=-7.67, vmax=19.52)\n", + "sampling_time = time.time() - start_time\n", + "\n", + "# Print out some details.\n", + "print(\"Uniform distribution over floating point numbers:\")\n", + "print(\" sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", + "print(\" sample min: {:.4f}, max: {:.4f}\".format(np.amin(sample), np.amax(sample)))\n", + "print(\" sampling time: {:.2f} secs\".format(sampling_time))\n", + "\n", + "# Plotting the distribution.\n", + "plt.hist(sample.ravel(),\n", + " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", + " density=True, facecolor='b', alpha=0.75)\n", + "plt.xlabel(\"value\", size=12)\n", + "plt.ylabel(\"probability\", size=12)\n", + "plt.title(\"Uniform distribution over float64 numbers in [{:.2f} ... {:.2f}]\".format(\n", + " np.amin(sample), np.amax(sample)), size=12)\n", + "plt.grid(True)\n", + "# plt.savefig(\"uniform_distrib_float.png\", bbox_inches=\"tight\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uniform distribution over integers.\n", + "Our next example is similar to the previous one, but here we generate a random vector of integers:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Uniform distribution over bounded integer numbers:\n", + " sample type: , element type: int64 , shape: (54321,)\n", + " sample min: 37, max: 841\n", + " sampling time: 6.62 secs\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXVV9//H3hyBBmAomYIAESYBADa1VzA/Uag0gAhaJrVAzIIKiUQvFO4JYINFUsT7iBdSmgkAqCSloHTGKXBLRFkJABQkYGO5DuCcBBwVM+P7+WGvIzsk5c86ZmX3mZPJ5Pc88s8/aa6/93Zezv/t29lZEYGZmVqYthjsAMzMb+ZxszMysdE42ZmZWOicbMzMrnZONmZmVzsnGzMxK52RjZmalc7IpiaTvSPrXwuePSHpUUq+kscMZW47nPklvzd2flfTdIWy7V9LuuftCSV8YwrY3mK8jgaTlkqYNdxytJGmipJC05TCMe0DzuxBzr6SZJYTWliSNztP858F8l51sasgr1Z4VZWdJ+q9Gho+ID0fE5/NwLwG+CrwtIjoi4smhj3jgIuLfIuID9epJWiKpbr08jfcMNi5Jx0v6VUXbL87XkSIi9omIJY3ULe4kFMpGSfqCpJWS/iDpN5K2rzLstcO1gW8nzczvGraPiLkAkqZIuknS6vx3taQpfRUl/TRvqPv+npf0u8FOQzWSXiPpl5KektQj6Ywa9c7M68FbC2X/JOn/JP1R0pJi/Yh4LiI6gO8PJj4nm9YYB2wNLG92QCWbxHLa3Ddi9ZS4LGcBbwTeALwMOBZ4tmLcxwAjcvkM83q3EjgSGAPsAHQBC/p6RsRheeerI2+w/w/475JiuQS4LsfyFuAjko4oVpC0R4734YphVwFfA75UUmxONgMlaVree/ikpMckPSzpfYX+F+a9zb2AFbl4jaRrc/83SlqW90KWSXpjYdglkuZI+l/gj8DuuewLee+jV9KPJY2V9H1JT+c2JvYT77GS7pf0pKTTK/q9eMQmaWtJ/5XrrcntjpM0B3gzcG4e/7m5fkg6UdJdwF2FsuJR4Q6Srsp73b+QtFuut9GplL6jJ0mvAr4DvCGPb01xvhbqf1BSt6RVkrok7VLoF5I+LOmuvNd5niTVmD+jJX0tHx2szN2jc787JB1eqLulpCck7Zs/vz4vlzWSblHhFE21ZVll3MVTmmdJWijp4jy/lkuamvvNA14J/DjPk1MkvRz4GPDBiLg/ktsi4tlC+9sBZwKnVJv2Qr2+5XGcpAfyNJ5e6F8576dJ6qmYjk9LulXSM5LOz+vOT/O0XJ3jLXp/nt8PS/pkoa0tJJ0q6e68Li6UNKYizhMkPQBcW2u9rTGdDc3vRkTEmoi4L9JzvwSsA/asVjd/P98MzGu0/SZNBL4fEesi4m7gV8A+FXXOBT4DPF8sjIirI2IhKXmWwslmcHYCtgPGAycA51V+mSLiTtYv8O0j4sD8pfkJ8A1gLOkU20+04bWcY4GZwF8A9+eyGbl8PLAHcD3wPdKezB2kDcpGlA7rv52H3SWPc0KNaTouT9Ouud6HgT9FxOnAL4GT8l7aSYVh3gnsD0ypbCw7Bvg8ac/vtzRwOB4Rd+RxX5/HV+200IHAF4F/AnYmzacFFdUOB/4f8De53iE1Rnk68HrgNbnufsDncr/5QGeh7iHAExHxa0njScvyC6Tl8Cngckk7FupXW5b9OSJPx/akPeVzASLiWOAB4B15nnwZ+GtgLXCkpEck3SnpxIr2/o20/B9pYNwAbwL2Bg4CzsiJv1HvAg4G9gLeAfwU+Cxp2W8BnFxR/wBgMvA24FStP7VzMmm9egtpnV0NnFcx7FuAV5GWR9X1tsGYq87vZuSdoWeBb5LmdzXvBX4ZEfc2236Dvga8V9JLJO1NOtK9uhDjUcDzEbGopPH3y8lmcP4MzI6IP+cF2Ev6ktbz98BdETEvItZGxHzg96QvZ58LI2J57v/nXPa9iLg7Ip4ifYnvznska0mH5q+tMb4jgSsi4rqIeA74V+CFfqZpLLBn3kO6OSKerjM9X4yIVRFR68v9k8K4Tycdrexap81GHANcEBG/zm2fltueWKjzpbz3+QCwmJRMarU1OyIei4jHSaemjs39LgGOkLRN/nx0LgN4D7AoIhZFxAsRcRVwE/D2QtvVlmV/fpXbW0faC/6bfupOIG1k9wImkZb1WZIOBsh76X9L2gg2alZE/CkibgFuqTP+St+MiEcj4iHSzsnSiPhNXj4/ZON1dFZEPBMRvyPtOPUl9Q8Bp0dETx72LFJCLZ4yOysP+ycGtt72aWZ+V5V3hrYDTgJ+U6Pae4ELm227CVeQlv+fSNuT8yNiGYCkDlIS/FiJ4++Xk01t64CXVJS9hLRS93kyb+j7/BHoaKDtXdh4D/d+0hFLnwerDPdooftPVT7XGvcuxfYi4hmg1k0K84ArgQX59MaXlW5w6E+1WKv2j4he0vnhXWpXb9gG8zG3/SQbzsfi3nx/y6dymdzfF2NEdJOOHN+RE84RrE82uwFH5VM3a/Ie7ptIR1p96s2fSpUxb63a1yX6EvzsnCBuJe2lv13p+tC3gI9WrKfNjr+RdbpPs+tocd68OM9J8/WHhXl6B+k7Oa7GsANZb/s0M79ryt+r7wAXS3pFsZ+kN5HOhFzWbLuNyGdLfgbMJl0f3hU4RNI/5yqzgHklHlXV5WRT2wOkc6BFk2jsNEg9K0lfpqJXAg8VPg/lux8eJq18AOQNZtXbr/NR2qyImEK66Hw4aY+sv5jqxVocdwfpdNNK4JlcvE2h7k5NtLvBfJS0LWm6Hqo5RINtkZZH8fx136m06cDtOQFB2uDNi4jtC3/bRkTxQutQLsvKtm7tZxwvA6YCl0p6BFiWy3skvXkA436G2stqoIpHuMV5/iBwWMV83TofMfV5cZrrrLettAVpHo2vKD8O+EHeISrD7sC6iLg4H0H3kHc6cv+DgJPzqdZHSPN9oaTPlBTPRpxsarsU+JykCfli5VtJp7mGYs9kEbCXpKPzxeZ3k653XDEEbVdzGXC4pDdJ2oq091N12Us6QNJfSxoFPE06kluXez9KlQvcDXh7YdyfJ51aeTCfrnoIeI/S7bvvJ12L6vMoMCEPV80lwPuUbvkcTTpNsDQi7htAjPNJy3tHSTsAZwDF29wXkK4rfIT1RzXkOu+QdEiehq3zhfNa18QGa4NlkC8E/xI4Xekmh1cB7yatS0+RjhRek//6NjyvA5YOYNy/JS3LMZJ2YmhOyfyrpG0k7QO8j/S9g3SEMEfrbybZUdL0Wo3UWW9LI+lgSa/Ny/5lpOuvq0lHYn11XgocRbmn0O5Mo9LReXu1E2k9uCX3Pwj4K9avCytJpyrPyzGOkrQ16Y7FLfJ63OiRYUOcbGqbTbpN8VeklefLwDERcdtgG470O5vDgU+STvucAhweEU8Mtu0a41sOnEjaSD5Mmp6eGtX7DvWfJn1hfsH6je7XSefNV0v6RhMhXEK6eWEVaUN3TKHfB4FPk+bDPqR53uda0u3ij0jaaN5ExDWk60+X5+nag3QTxUB8gXSt5Vbgd8Cvc1nfuB4m3ZDxRtZvEImIB0lHO58FHiftkX+a8r5bXyQlxTWSPpXLOklHZU+Sblb414i4Jt+Z9kjfX44P4NGIeH7jpuuaR9p43Qf8nMJ8GIRfAN3ANcBXIuLnufzrpIv1P5f0B+AG0k0otfS33pZpe9KOylPA3aQ70Q6Nwt2ApBsdniJdM+yX0l2Gb87db5bUW+j3WUk/rTZcvj71j8DHSd/v3wK3AXNy/ycr1oV1wOrCkdaxpNOc3ybdMfcn4D8bmwWNUfhNnWZmdeWjrBWku84+HRFDujFuV/mswaOka9ZfjohZA2rHycbMzMrm02hmZlY6JxszMyvdiHxW0kDssMMOseOOO7LtttsOdygbeeaZZxxXExxX49oxJnBczRrOuG6++eYnImLHuhUjwn8RvO51r4vFixdHO3JczXFcjWvHmCIcV7OGMy7gpmhgG+vTaGZmVjonGzMzK52TjZmZlc7JxszMSudkY2ZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWOj+uxlrugIsOeLF78XF1X/FhZiOAj2zMzKx0TjZmZlY6JxszMyudk42ZmZWuZclG0qGSVkjqlnRqlf6jJV2a+y+VNLHQ77RcvkLSIYXyCyQ9Jum2GuP8lKSQtEMZ02RmZo1pyd1okkYB5wEHAz3AMkldEXF7odoJwOqI2FPSDOBs4N2SpgAzgH2AXYCrJe0VEeuAC4FzgYurjHPXPL4Hypsys/L57j0bCVp1ZLMf0B0R90TE88ACYHpFnenARbn7MuAgScrlCyLiuYi4F+jO7RER1wGraozzHOAUIIZ0SszMrGmt+p3NeODBwuceYP9adSJiraSngLG5/IaKYcf3NzJJRwAPRcQtKV+Z2ebCR4LtqVXJptoWv/KIo1adRoZd34i0DXA68La6QUkzgZkA48aNo7e3lyVLltQbrOVGWlydHZ0vdpcxXZ5fjRtp8wo8v9pVq5JND7Br4fMEYGWNOj2StgS2I50ia2TYoj2ASUDfUc0E4NeS9ouIR4oVI2IuMBdg6tSp0dHRwbRp05qbshZYsmTJiIpr1kWzXuxe/K6h3/P0/GrcSJtX4PnVrlp1zWYZMFnSJElbkS74d1XU6QKOy91HAtdGROTyGflutUnAZODGWiOKiN9FxCsiYmJETCQlq30rE42ZmbVOS5JNRKwFTgKuBO4AFkbEckmz8/UVgPOBsZK6gU8Ap+ZhlwMLgduBnwEn5jvRkDQfuB7YW1KPpBNaMT1mZtaclj2IMyIWAYsqys4odD8LHFVj2DnAnCrlnVWqV9aZ2GysZmY2tPwEATMzK51fMWBDyredWjspro/gdXI4OdnYiNG3Yens6GQa04Y3GDPbgJONmQ0bHwlvPpxsbETyRsysvTjZmNmQcZLfNAzHtSwnmxbxl9A2dV6HbTCcbGzQKveSNmfeIJtV52SzGRvMhvGAiw6gs6Nzg+dQmW2OvIPRGCcbs5J4I2S2npPNEGjHjUo7xmRmmy8nm2E2kpPCSJ42G3rF9eXM3c4cxkisDE42m7jNbYM+Eh4/srkts3ZV68aWoVomXs4bcrKxjbTyS1JrXGXFMNibIgYzbDvcULG5bwB95+TwcbKxtrEpbQg2pVjbjefd5snJpo3U+hKOhAdLbkobmM1977+dlX3qayQb7u+gk02JhnvhWuLlYCPFprwj5GRjtgkZyMamjGTbbhu9Vu9QtHJ8I2VnycnG2l5ZX7Z222CaDbV2SlRONsNgICuAN4w21Ip3yA1mnWqnDdqmZnP6Xm/RqhFJOlTSCkndkk6t0n+0pEtz/6WSJhb6nZbLV0g6pFB+gaTHJN1W0da/S/q9pFsl/VDS9mVOm5mZ9a8lRzaSRgHnAQcDPcAySV0RcXuh2gnA6ojYU9IM4Gzg3ZKmADOAfYBdgKsl7RUR64ALgXOBiytGeRVwWkSslXQ2cBrwmfKmsD00sofpvVAbDpvqelfGkcemOi8Gq1Wn0fYDuiPiHgBJC4DpQDHZTAfOyt2XAedKUi5fEBHPAfdK6s7tXR8R1xWPgPpExM8LH28AjhzSqbHNxnBdCG5kw9aOP3wdydrlh7mbKkVE+SORjgQOjYgP5M/HAvtHxEmFOrflOj35893A/qQEdENE/FcuPx/4aURclj9PBK6IiL+qMe4fA5f2DV/RbyYwE2DcuHGv++53v0tHR0fT03fnk3e+2L3X2L2qlg/GmFFjWLVu1YDH0Uj9WnWK5UV3PnnnRnENh2pxDySuMpZbpWpxNTLfm13Glfobvi+moYqjVkzNDrvL6F2qfhfLWjZF/cU90HV+MN/BRtp8Ys0TL8Y1kPne3/pTzwEHHHBzREytV69VyeYo4JCKZLNfRPxLoc7yXKeYbPYDZpOOYorJZlFEXJ4/T6RGspF0OjAV+MeoM6FTp06Nr3zlK0ybNq3p6WvkkSuD0dnRyfze+QMeRyP1m31UTN9eXjGu4VAt7oHEVcZyq1Qtrkbme7PLuFJ/w/fFNFRx1Iqp2WHP3O3Mqt/FVhxp9hf3QNf5wXwHG2lz7uVzX4xrIPN9MEewkhpKNq06jdYD7Fr4PAFYWaNOj6Qtge2AVQ0OuxFJxwGHAwfVSzTWmHY819yOMVkymGVz55N3vni6yqfyqivO386Ozqrl7aRVyWYZMFnSJOAh0gX/oyvqdAHHAdeTrrFcGxEhqQu4RNJXSTcITAZu7G9kkg4l3RDwloj445BOiVkLtOsGw2ygWpJs8l1hJwFXAqOACyJiuaTZwE0R0QWcD8zLNwCsIiUkcr2FpJsJ1gIn5jvRkDQfmAbsIKkHODMizifdoTYauCrdY8ANEfHhVkzrSOONnpkNhZb9qDMiFgGLKsrOKHQ/CxxVY9g5wJwq5Z1VqhMRew4q2M2Qk8rI4uU5cGU/3mdz1bIfdZqZ2ebLj6sxs7bmo4KRwclmM+Ava32eR2blcrIxMydbK52TjZlZGxjpCd/JxmwEaMU7f8wGw3ejmZlZ6XxkYzaMfORgmwsnmyHmjYeZ2cZ8Gs3MzErnZGNmZqXzabRNkE/Vmdmmxkc2ZmZWOicbMzMrnZONmZmVzsnGzMxK52RjZmalc7IxM7PSOdmYmVnpWpZsJB0qaYWkbkmnVuk/WtKluf9SSRML/U7L5SskHVIov0DSY5Juq2hrjKSrJN2V/7+8zGkzM7P+tSTZSBoFnAccBkwBOiVNqah2ArA6IvYEzgHOzsNOAWYA+wCHAt/K7QFcmMsqnQpcExGTgWvyZzMzGyatOrLZD+iOiHsi4nlgATC9os504KLcfRlwkCTl8gUR8VxE3At05/aIiOuAVVXGV2zrIuCdQzkxZmbWnFY9rmY88GDhcw+wf606EbFW0lPA2Fx+Q8Ww4+uMb1xEPJzbeljSK6pVkjQTmAkwbtw4ent7WbJkSUMTVNTZ0dn0MM0YM2pM6eMYCMfVnHaMqx1jAsfVrMHGNZDtXrNalWxUpSwarNPIsAMSEXOBuQBTp06Njo4Opk2b1nQ7sy6aNRTh1NTZ0cn83vmljmMgHFdz2jGudowJHFezBhvX4nctHsJoqmvVabQeYNfC5wnAylp1JG0JbEc6RdbIsJUelbRzbmtn4LEBR25mZoPWqmSzDJgsaZKkrUgX/Lsq6nQBx+XuI4FrIyJy+Yx8t9okYDJwY53xFds6DvjREEyDmZkNUMPJRtLYgY4kItYCJwFXAncACyNiuaTZko7I1c4HxkrqBj5BvoMsIpYDC4HbgZ8BJ0bEuhzTfOB6YG9JPZJOyG19CThY0l3AwfmzmZkNk2au2Two6SpgHtCV7yprWEQsAhZVlJ1R6H4WOKrGsHOAOVXKq14Ri4gngYOaic/MzMrTzGm03Ui/WfkM8IikuZLeVE5YZmY2kjScbCLi8Yj4RkT8P+ANpIvu8yTdk0+H7VZalGZmtkkb6A0CO+W/lwF3k3738ptqj6ExMzNr+JqNpH2A9wDHAL2kX+a/OiIeyv0/D9yKL8abmVmFZm4QuA6YDxwZERvdehwR90n62pBFZmZmI0YzyeYf8rPINiBpv77kU7y7zMzMrE8z12yuqFH+s6EIxMzMRq66RzaStiA9n0z5KczFZ5XtAawtKTYzMxshGjmNtpb1D76sTCwvUOXHlmZmZkWNJJtJpKOZXwB/VygP4PGI+FMZgZmZ2chRN9lExP250z/aNDOzAek32UiaGxEzc/fFtepFxHuHOjAzMxs56h3Z3FvovrvMQMzMbOTqN9lExBcL3eW+jtLMzEaseqfRDmykkYi4dmjCMTOzkajeabTzG2gjgN2HIBYzMxuh6p1Gm9SqQMzMbOQa6CsGzMzMGlbvms0dEfGq3P0g658ksIGIeGUJsZmZ2QhR75rNBwvd7xnMiCQdCnwdGAV8NyK+VNF/NHAx8DrgSeDdEXFf7ncacAKwDjg5Iq7sr01JBwH/Tjpy6wWOj4juwcRvZmYDV++aza8K3b8Y6EgkjQLOAw4GeoBlkroi4vZCtROA1RGxp6QZwNnAuyVNAWYA+wC7AFdL2isPU6vNbwPTI+IOSf8MfA44fqDxm5nZ4DR8zUbSVpJmS7pL0jP5/+clbd3A4PsB3RFxT0Q8DywAplfUmU56+yfAZcBB+SnT04EFEfFcRNwLdOf2+mszSK+sBtgOWNnodJqZ2dBr5uVp3wb2Bk4G7ic9K+00YDzw/jrDjgceLHzuAfavVSci1kp6Chiby2+oGHZ87q7V5geARZL+BDwNvL5OfGZmVqJmks07gT0iYk3+fLukpaQjjXrJRlXKKm82qFWnVnm1o7K+Nj8OvD0ilkr6NPBVUgLacITSTGAmwLhx4+jt7WXJkiVVJ6A/nR2dTQ/TjDGjxpQ+joFwXM1px7jaMSZwXM0abFwD2e41q5lk8wiwDbCmUPZS4OEGhu0Bdi18nsDGp7b66vRI2pJ0+mtVnWE3Kpe0I/A3EbE0l19KjbeJRsRcYC7A1KlTo6Ojg2nTpjUwORuadVG5T/Lp7Ohkfu/8UscxEI6rOe0YVzvGBI6rWYONa/G7Fg9hNNU187iaecDPJH2T9QngRNIdZPUsAyZLmgQ8RLrgf3RFnS7gOOB64Ejg2ogISV3AJZK+SrpBYDJwI+mIp1qbq4HtJO0VEXeSbiC4o4EYzcysJAN5XM1nKz5/iHTnWE35GsxJwJWk25QviIjlkmYDN0VEVx7XPEndpCOaGXnY5ZIWAreT3hR6YkSsA6jWZi7/IHC5pBdIyafeaT4zMytRyx5XExGLgEUVZWcUup8Fjqox7ByqvH66Wpu5/IfADwcZspmZDRE/rsbMzErX8A0Ckl4GnAW8BdiBwl1iflyNmZn1p5kjm28B+wKzgTHAvwAPAOeUEJeZmY0gzdz6/DbgVRHxpKR1EfEjSTcBP8YJx8zM+tHMkc0WwFO5u1fS9qTf2Ow55FGZmdmI0syRzS2k6zXXAL8kPQSzF7izhLjMzGwEaebI5oPAfbn7ZOBZYHvgvUMck5mZjTANH9lExD2F7sdJrwQwMzOrq6nf2Uh6v6SrJC3P/0/IrwEwMzOrqZnf2XyZ9L6Yr7H+FQOfIr124JRSojMzsxGhmRsEjgf2jYievgJJVwC/xsnGzMz60cxptD/kv8qyp4cuHDMzG4nqvWJg98LHrwE/kPQl1r9i4NP4B51mZlZHvdNo3Wz8tswDKuocCJw7lEGZmdnIUu8VA34qtJmZDVozNwgAIOmVwHigJyIeHPqQzMxspGn4yEXSzpJ+QTq19gPgbknXSdqltOjMzGxEaOY02bdJz0d7eUTsDLwc+A3wnTICMzOzkaOZ02hvAnaOiD8DRMQzkk4BHiolMjMzGzGaObJZDUypKNsbWDN04ZiZ2UjUTLL5MnC1pC9J+kj+vc1VubwuSYdKWiGpW9KpVfqPlnRp7r9U0sRCv9Ny+QpJh9RrU8kcSXdKukPSyU1Mp5mZDbFmnvr8n5LuBo4GXg2sBDoj4tp6w0oaRXr/zcGkH4Quk9QVEbcXqp0ArI6IPSXNAM4G3i1pCjAD2AfYhZTw9srD1GrzeNKPTv8yIl6Q9IpGp9PMzIZeQ8kmJ4sLgJmNJJcq9gO6+15TIGkB6aGexWQzHTgrd18GnJufKD0dWBARzwH3SurO7dFPmx8Bjo6IFwAi4rEBxGxmZkOkoWQTEeskvQ14YYDjGQ8Uf5PTA+xfq05ErJX0FDA2l99QMez43F2rzT1IR0X/ADwOnBwRd1UGJWkmMBNg3Lhx9Pb2smTJkqYnrrOjs+lhmjFm1JjSxzEQjqs57RhXO8YEjqtZg41rINu9ZjVzN9o5wCxJZ/bdkdaEau+8iQbr1Cqvdr2pr83RwLMRMVXSP5KOyt68UeWIucBcgKlTp0ZHRwfTpk2rOgH9mXXRrKaHaUZnRyfze+eXOo6BcFzNace42jEmcFzNGmxci9+1eAijqa6ZZPMvwE7AJyQ9zvpEEBHxyjrD9j24s88E0jWfanV6JG0JbAesqjNsrfIe4PLc/UPge3XiMzOzEjWTbN4ziPEsAyZLmkT6Xc4M0o0GRV3AccD1wJHAtRERkrqASyR9lXSDwGTgRlKiq9Xm/5AeEHoB8BbgzkHEbmZmg9RMsrke+BzQSdrorwQWAHPqDZivwZwEXAmMAi6IiOWSZgM3RUQXcD4wL98AsIqUPMj1FpIu/K8FToyIdQDV2syj/BLwfUkfB3qBDzQxnWZmNsSaSTbfJv2I82TWvxb6NNLF+vfXGzgiFgGLKsrOKHQ/CxxVY9g5VElq1drM5WuAv68Xk5mZtUYzyeadwB55Qw5wu6SlpAdz1k02Zma2+WrmCQKPANtUlL0UeHjowjEzs5GomSObecDPJH2T9XeInQhcLOnAvkoD/NGnmZmNYM0kmw/l/5+tKP9w/oN0O/Tugw3KzMxGlmaejTapzEDMzGzkauaajZmZ2YA42ZiZWemcbMzMrHRONmZmVjonGzMzK52TjZmZlc7JxszMSudkY2ZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWOicbMzMrnZONmZmVrmXJRtKhklZI6pZ0apX+oyVdmvsvlTSx0O+0XL5C0iFNtPlNSb1lTZOZmTWmJclG0ijgPOAwYArQKWlKRbUTgNURsSdwDnB2HnYKMAPYBzgU+JakUfXalDQV2L7UCTMzs4a06shmP6A7Iu6JiOeBBcD0ijrTgYty92XAQZKUyxdExHMRcS/Qndur2WZORP8OnFLydJmZWQOaeS30YIwHHix87gH2r1UnItZKegoYm8tvqBh2fO6u1eZJQFdEPJzyVXWSZgIzAcaNG0dvby9LlixpfKqyzo7OpodpxphRY0ofx0A4rua0Y1ztGBM4rmYNNq6BbPea1apkU22LHw3WqVVe7agsJO0CHAVMqxdURMwF5gJMnTo1Ojo6mDat7mAbmXXRrKaHaUZnRyfze+eXOo6BcFzNace42jEmcFzNGmxci9+1eAijqa5Vp9F6gF0LnycAK2vVkbQlsB2wqp9ha5W/FtgT6JZ0H7CNpO6hmhAzM2teq5LNMmCypEnGYTBdAAALo0lEQVSStiJd8O+qqNMFHJe7jwSujYjI5TPy3WqTgMnAjbXajIifRMROETExIiYCf8w3HZiZ2TBpyWm0fA3mJOBKYBRwQUQslzQbuCkiuoDzgXn5KGQVKXmQ6y0EbgfWAidGxDqAam22YnrMzKw5rbpmQ0QsAhZVlJ1R6H6WdK2l2rBzgDmNtFmlTsdA4jUzs6HjJwiYmVnpnGzMzKx0TjZmZlY6JxszMyudk42ZmZXOycbMzErnZGNmZqVzsjEzs9I52ZiZWemcbMzMrHRONmZmVjonGzMzK52TjZmZlc7JxszMSudkY2ZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWupYlG0mHSlohqVvSqVX6j5Z0ae6/VNLEQr/TcvkKSYfUa1PS93P5bZIukPSSsqfPzMxqa0mykTQKOA84DJgCdEqaUlHtBGB1ROwJnAOcnYedAswA9gEOBb4laVSdNr8P/CXw18BLgQ+UOHlmZlZHq45s9gO6I+KeiHgeWABMr6gzHbgod18GHCRJuXxBRDwXEfcC3bm9mm1GxKLIgBuBCSVPn5mZ9WPLFo1nPPBg4XMPsH+tOhGxVtJTwNhcfkPFsONzd79t5tNnxwIfrRaUpJnATIBx48bR29vLkiVLGp6oPp0dnU0P04wxo8aUPo6BcFzNace42jEmcFzNGmxcA9nuNatVyUZVyqLBOrXKqx2VVbb5LeC6iPhltaAiYi4wF2Dq1KnR0dHBtGnTqlXt16yLZjU9TDM6OzqZ3zu/1HEMhONqTjvG1Y4xgeNq1mDjWvyuxUMYTXWtSjY9wK6FzxOAlTXq9EjaEtgOWFVn2JptSjoT2BH40BDEb2Zmg9CqazbLgMmSJknainTBv6uiThdwXO4+Erg2X3PpAmbku9UmAZNJ12FqtinpA8AhQGdEvFDytJmZWR0tObLJ12BOAq4ERgEXRMRySbOBmyKiCzgfmCepm3REMyMPu1zSQuB2YC1wYkSsA6jWZh7ld4D7gevTPQb8ICJmt2JazcxsY606jUZELAIWVZSdUeh+FjiqxrBzgDmNtJnLWzZdZmZWn58gYGZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWOicbMzMrnZONmZmVzsnGzMxK52RjZmalc7IxM7PSOdmYmVnpnGzMzKx0TjZmZlY6JxszMyudk42ZmZXOycbMzErnZGNmZqVzsjEzs9I52ZiZWemcbMzMrHQtSzaSDpW0QlK3pFOr9B8t6dLcf6mkiYV+p+XyFZIOqdempEm5jbtym1uVPX1mZlZbS5KNpFHAecBhwBSgU9KUimonAKsjYk/gHODsPOwUYAawD3Ao8C1Jo+q0eTZwTkRMBlbnts3MbJi06shmP6A7Iu6JiOeBBcD0ijrTgYty92XAQZKUyxdExHMRcS/Qndur2mYe5sDcBrnNd5Y4bWZmVseWLRrPeODBwuceYP9adSJiraSngLG5/IaKYcfn7mptjgXWRMTaKvU3IGkmMDN/7D3ggAOeBJ5ofLJaYwlLdsBxNcxxNa4dYwLH1azBxqXjNZjR79ZIpVYlm2pTEg3WqVVe7aisv/obF0bMBea+GIB0U0RMrVZ3ODmu5jiuxrVjTOC4mtWucRW16jRaD7Br4fMEYGWtOpK2BLYDVvUzbK3yJ4Dtcxu1xmVmZi3UqmSzDJic7xLbinTBv6uiThdwXO4+Erg2IiKXz8h3q00CJgM31mozD7M4t0Fu80clTpuZmdXRktNo+RrMScCVwCjggohYLmk2cFNEdAHnA/MkdZOOaGbkYZdLWgjcDqwFToyIdQDV2syj/AywQNIXgN/kthsxt36VYeG4muO4GteOMYHjala7xvUipQMBMzOz8vgJAmZmVjonGzMzK52TTVbvcTolj/sCSY9Juq1QNkbSVfmRO1dJenkul6Rv5DhvlbRvSTHtKmmxpDskLZf00TaJa2tJN0q6Jcc1K5dXfURRf49BKim+UZJ+I+mKdolL0n2Sfifpt5JuymXDuhzzuLaXdJmk3+f17A3DHZekvfN86vt7WtLH2iCuj+f1/TZJ8/P3YNjXraZExGb/R7rB4G5gd2Ar4BZgSgvH/3fAvsBthbIvA6fm7lOBs3P324Gfkn5P9HpgaUkx7Qzsm7v/AriT9Fig4Y5LQEfufgmwNI9vITAjl38H+Eju/mfgO7l7BnBpycvyE8AlwBX587DHBdwH7FBRNqzLMY/rIuADuXsrYPt2iKsQ3yjgEdKPFoctLtKP0u8FXlpYp45vh3WrqekY7gDa4Q94A3Bl4fNpwGktjmEiGyabFcDOuXtnYEXu/g+gs1q9kuP7EXBwO8UFbAP8mvTkiCeALSuXJ+luxTfk7i1zPZUUzwTgGtLjkq7IG6B2iOs+Nk42w7ocgZflDajaKa6KWN4G/O9wx8X6p6uMyevKFcAh7bBuNfPn02hJtcfpVH3ETQuNi4iHAfL/V+TylseaD8NfSzqKGPa48qmq3wKPAVeRjkprPaJog8cgAX2PQSrD14BTgBfy5/4endTKuAL4uaSblR7RBMO/HHcHHge+l087flfStm0QV9EMYH7uHra4IuIh4CvAA8DDpHXlZtpj3WqYk03S8CNu2kBLY5XUAVwOfCwinu6vapWyUuKKiHUR8RrSkcR+wKv6GXdL4pJ0OPBYRNxcLB7uuLK/jYh9SU9IP1HS3/VTt1VxbUk6dfztiHgt8Azp9NRwx5VGlq5/HAH8d72qVcqGNK58fWg6MAnYBdiWtCxrjbctt2dONkkjj9NptUcl7QyQ/z+Wy1sWq6SXkBLN9yPiB+0SV5+IWAMsIZ0rr/WIolqPQRpqfwscIek+0hPIDyQd6Qx3XETEyvz/MeCHpAQ93MuxB+iJiKX582Wk5DPccfU5DPh1RDyaPw9nXG8F7o2IxyPiz8APgDfSButWM5xskkYep9Nqxcf3FB+50wW8N98F83rgqb7D+6EkSaQnL9wREV9to7h2lLR97n4p6Yt4B7UfUVTrMUhDKiJOi4gJETGRtP5cGxHHDHdckraV9Bd93aTrELcxzMsxIh4BHpS0dy46iPSUkGGNq6CT9afQ+sY/XHE9ALxe0jb5e9k3r4Z13WracF80apc/0l0ld5LO/5/e4nHPJ52L/TNpr+QE0jnWa4C78v8xua5IL427G/gdMLWkmN5EOvS+Ffht/nt7G8T1atIjiG4lbTTPyOW7k56Z10069TE6l2+dP3fn/ru3YHlOY/3daMMaVx7/Lflved+6PdzLMY/rNcBNeVn+D/DyNolrG+BJYLtC2XCv97OA3+d1fh4werjXrWb//LgaMzMrnU+jmZlZ6ZxszMysdE42ZmZWOicbMzMrnZONmZmVzsnGrE1JmiapZ7jjMBsKTjZmZlY6JxszMyudk41ZySSdKumyirKv55duvU/pxWF/kHSPpA/1005I2rPw+UJJXyh8Pjy/8GuNpP+T9OpypsiseU42ZuWbD7xd0ssgvSIB+CfSS9YeAw4nvd/lfcA5A3nbYx7mAuBDpEer/AfQJWn0kEyB2SA52ZiVLCLuJ73k7Z256EDgjxFxQ0T8JCLujuQXwM+BNw9gNB8E/iMilkZ6BcNFwHOkJ2KbDTsnG7PWuIT0JGGAo/NnJB0m6QZJqyStIT3sdIcBtL8b8Ml8Cm1NbmtX0vtPzIadk41Za/w3ME3SBOAfgEvyKa7LSW9hHBcR2wOLqP7yK4A/kp5I3GenQveDwJyI2L7wt01EzMesDTjZmLVARDxOetHb90gvwroD2Ir0qPjHgbWSDiO9b6aW3wJH59diHwq8pdDvP4EPS9o/v1tlW0l/3/cuG7Ph5mRj1jqXkF72dglARPwBOBlYCKwmnV7r76V9HwXeAawBjiG9A4bc1k2k6zbn5ra6geOHegLMBsrvszEzs9L5yMbMzErnZGNmZqVzsjEzs9I52ZiZWemcbMzMrHRONmZmVjonGzMzK52TjZmZle7/A7E3zCaHv0aQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Draw a sample from uniform distribution.\n", + "start_time = time.time()\n", + "sample = uniform_rand_int64(circuit, glo_num_qubits, size=54321, vmin=37, vmax=841)\n", + "sampling_time = time.time() - start_time\n", + "\n", + "# Print out some details.\n", + "print(\"Uniform distribution over bounded integer numbers:\")\n", + "print(\" sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", + "print(\" sample min: {:d}, max: {:d}\".format(np.amin(sample), np.amax(sample)))\n", + "print(\" sampling time: {:.2f} secs\".format(sampling_time))\n", + "\n", + "# Plotting the distribution.\n", + "plt.hist(sample.ravel(),\n", + " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", + " density=True, facecolor='g', alpha=0.75)\n", + "plt.xlabel(\"value\", size=12)\n", + "plt.ylabel(\"probability\", size=12)\n", + "plt.title(\"Uniform distribution over int64 numbers in [{:d} ... {:d}]\".format(\n", + " np.amin(sample), np.amax(sample)), size=12)\n", + "plt.grid(True)\n", + "# plt.savefig(\"uniform_distrib_int.png\", bbox_inches=\"tight\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Normal distribution\n", + "\n", + "To generate random variates with a standard normal distribution using two independent \n", + "samples $u_1, u_2$ of the uniform distribution on the unit interval [0, 1], one can\n", + "consider the Box-Muller transform to obtain a 2-vector:\n", + "\n", + "\\begin{align}\n", + "\\begin{bmatrix}\n", + "%R\\cos(\\Theta )=\n", + "{\\sqrt {-2\\ln u_{1}}}\\cos(2\\pi u_{2}) \\\\\n", + "% R\\sin(\\Theta )=\n", + "{\\sqrt {-2\\ln u_{1}}}\\sin(2\\pi u_{2})\n", + "\\end{bmatrix},\n", + "\\end{align}\n", + "\n", + "wherein we have two independent samples of the standard normal distribution.\n", + "In IBM Q, this is implemented as follows: " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "def normal_rand_float64(circuit: QuantumCircuit, num_target_qubits: int,\n", + " size: int, mu: float, sigma: float) -> np.ndarray:\n", + " \"\"\"\n", + " Draws a sample vector from the normal distribution given the mean and standard\n", + " deviation, using the Box-Muller method. \n", + " \"\"\"\n", + " TINY = np.sqrt(np.finfo(np.float64).tiny)\n", + " assert isinstance(size, int) and size > 0\n", + " rand_vec = np.zeros((size,), dtype=np.float64)\n", + "\n", + " # Generate array of uniformly distributed samples, factor 1.5 longer that\n", + " # actually needed.\n", + " n = (3 * size) // 2\n", + " x = np.reshape(uniform_rand_float64(circuit, num_target_qubits,\n", + " 2*n, 0.0, 1.0), (-1, 2))\n", + "\n", + " x1 = 0.0 # first sample in a pair\n", + " c = 0 # counter\n", + " for d in range(size):\n", + " r2 = 2.0\n", + " while r2 >= 1.0 or r2 < TINY:\n", + " # Regenerate array of uniformly distributed samples upon shortage.\n", + " if c >= n:\n", + " c = 0\n", + " n = max(size // 10, 1)\n", + " x = np.reshape(uniform_rand_float64(circuit, num_target_qubits,\n", + " 2*n, 0.0, 1.0), (-1, 2))\n", + "\n", + " x1 = 2.0 * x[c, 0] - 1.0 # first sample in a pair\n", + " x2 = 2.0 * x[c, 1] - 1.0 # second sample in a pair\n", + " r2 = x1 * x1 + x2 * x2\n", + " c += 1\n", + "\n", + " f = np.sqrt(np.abs(-2.0 * np.log(r2) / r2))\n", + " rand_vec[d] = f * x1\n", + " \n", + " return (rand_vec * sigma + mu)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following example demonstrates how to draw a random vector of normally distributed variates:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normal distribution (mu=2.400, sigma=5.100):\n", + " sample type: , element type: float64 , shape: (4321,)\n", + " sample min: -16.3332, max: 20.7365\n", + " sampling time: 1.69 secs\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4FFXWx/HvSQJhCVsgRvZFQMUFRwLoq2AiOoKiKIsCiiuDy6DOKI6oM444jusos4gLog6ibAIKoyCKEEBFBBQVRCAgSwTZAkjYk5z3j6po03SS7qS7q5Ocz/P0k1pud/26Ut2361bVLVFVjDHGmGDFeR3AGGNM+WIVhzHGmJBYxWGMMSYkVnEYY4wJiVUcxhhjQmIVhzHGmJBYxWFKJCKPiMibIZRXEWntDr8kIn8JU45mIpIrIvHueKaIDA7Ha7uvN0tEbgjX68UCEVkpIunFzH9QRMaUcRkt3P95QllexysiskFELirlc8O2fZcn5fIfXdGIyAagOtBKVfe70wYD16lquofRykxVbwumnLsOBqvqnGJeaxOQFI5cIvII0FpVr/N5/R7heO1YoqqnlTD/8WhlKe9E5EacbfT8wmnBbt8Vje1xxI4E4O6yvog4Ktz/tbz+mo1ltk5NaVW4L5hy7BlgmIjUDTRTRP5PRJaIyF737//5zMsUkb+LyKfAAaCVO+0xEfnMbd75n4jUF5G3RORn9zVa+LzGv0RksztvmYh0CTa4iNwnIltFZIuI3Ow3778i8pg73EBE3hORPSKSIyILRSRORMYBzYD/uVn/5NP8cYuIbALmFtEkcpKIfOGul+kikuwuK11Esv2ybBCRi0SkO/AgcI27vK991uNgdzhORP4sIhtFZLuIvCEiddx5hTluEJFNIrJTRB4KYX0lisg/3Oduc5s7qvvmdtfBdne9Xikil4rIGne9PejzWo+IyBQRmSQi+0TkSxFp7/+e/cq+KSI/AzeKXzOkiJzvbjN73O3hRnf6ZSLylbt9bHb32IJ5r8NFZIrftH+JyL/d4RtFZL2b/QcRubaI1+kkIovcXFtF5HkRqeozX0XkNhFZKyK7RWSUiIg77yQRmSsiu9z/1VsS4HMmIieKyAERqe8zrYOI7BCRM4CXgHPdbWaPO/+X7dsd7yUiy931tM7d1iocqzhix1IgExjmP8P9Mnwf+DdQH3gOeN93AwcGAUOAWsBGd1p/d3pj4CRgEfA6kAysAv7q8/wlwFnuvPHA2yJSraTQ7gdjGHAx0AYorq34XiAbSAFScb68VVUHAZuAy1U1SVWf9nnOBcCpwCVFvOb1wM1AIyAPZx0VS1U/AB4HJrnLax+g2I3uIwNohdNE9rxfmfOBk4FuwMMicir88uW7p5gITwFtcdZ3a5z/z8M+808EqvlMfwW4DugAdHGX1cqnfC/gbX79370rIlWKWHYvYApQF3jLd4aINANmAf/B+R+dBSx3Z+/HWdd1gcuA20XkymLeY6EJwKUiUttdRjxwNTBeRGri/L96qGot4P98lucvH/gj0AA4F2ed3+FXpifQEWjvLqNwmxHgCZxt5FSgKfCI/wJU9Secz+DVPpOvAyaq6rfAbcAid5sJVPF0At4A7sNZT12BDUW8n3LNKo7Y8jBwp4ik+E2/DFirquNUNU9VJwDfA5f7lPmvqq505x91p72uqutUdS/OF8I6VZ2jqnk4XzS/KXyyqr6pqrvc5z8LJOJ8KZbkanc5K9zjM48UU/Yo0BBorqpHVXWhltxZ2iOqul9VDxYxf5zPsv8CXO1+OZXVtcBzqrpeVXOBB4D+fns7I1T1oKp+DXyN84WFqn4S6IsFnKZE4HfAH1U1R1X34VRi/X2KHQX+7v4fJ+J8Wf5LVfep6kpgJXCmT/llqjrFLf8cTqVzThHva5GqvquqBQHW6bXAHFWd4P5/dqnqcvc9Zarqt+7zvsGpEC4oevU5VHUj8CVQWMlcCBxQ1c/d8QLgdBGprqpb3fcX6HWWqern7va5AXg5wPKfVNU97rGweTgVH6qapaofqephVd3hrqOiso/FqSwKK7kBwLiS3qfrFuA1d1kFqvqjqn4f5HPLFas4YoiqrgDeA4b7zWrEr3sRhTbi/CIttDnAS27zGT4YYPyXA80icq+IrBKnyWcPUAfnC6skjfyW7Z/T1zNAFvCh2zzh/z4DCfS+ipq/EahCcLlL4r/ON+Ich0r1mfaTz/ABgjtwnwLUAJa5zS57gA/c6YV2qWq+O1z45V7k/w6fdaCqBTh7dY2KWH5x67MpsC7QDBHpLCLz3GabvTi/voNdz+NxvoABBrrjuJX9Ne5rbRWR90XklCKW31acZs6f3Ga2xwMsP+D/Q0ROEJGJIvKj+9w3i8k+HWjn7tFdDOxV1S+CfJ9Frr+KxiqO2PNXnF+kvpXCFqC5X7lmwI8+46Xu5lic4xn34+w91HN/Le/F2cUvyVacD4xvroDcX8z3qmornL2le0SkW+Hsop5WwvL9l30U2InTtFKjcIb769H3y7mk1/Vf581wmsK2BS4etJ04X/ynqWpd91FHVctyttgv60CcEyOa4OQPpLj3vRmnSTOQ8cAMoKmq1sFp7w9m+wBn7zZdRJoAV7mv5YRRna2qF+PsiX6P0ywXyIvu/DaqWhunmTPY5T+B877PdJ97XVHPVdVDwGScva9BHLu3UdI2U9z6q1Cs4ogxqpoFTALu8pk8E2grIgNFJEFErgHa4eydhEMtnC/FHUCCiDwM1A7yuZNxDrK2E5EaHHvc5Bgi0lNEWrvNNT/jtFsX/rLehnMsIVTX+Sz7UWCK+2t9DVDNPahbBfgzTvNboW1ACyn6DLQJwB9FpKWIJPHrMZG8UmT8hbtH8AowUkROABCRxiJS1DGcYHQQkd5uM9ofgMPA5yU8J5C3gItE5Gp3O6svIme582oBOap6yG3LHxjsi7rNQ5k4x9d+UNVVACKSKiJXuMc6DgO5/Lo9+KuFs83kunslt4fwvmq5r71HRBrjHIMozhs4x7euwNk7KbQNaOJ7UN7Pq8BNItJNnJMrGhe1B1XeWcURmx4FahaOqOounAN/9wK7gD8BPVV1Z5iWNxvnGMganCaZQ5TcRFSYbRbwT2AuTjPU3GKKtwHm4HyIFwEvqGqmO+8J4M9u881xJwgUYxzwX5xmimq4Fa57XOcOYAzOntl+nCacQm+7f3eJyJcBXvc197UXAD/grJM7gwkkIl1EJLeYIvfjrKvP3aaTOQR3PKko03GafHbj/Eru7XOcK2jusYFLcbazHJwD1YUnDtwBPCoi+3COxU0O8eXH45w4Md5nWpy7rC3u8i7g+APehYbhVFb7cCreSSEsewRwNs5e9PvAtOIKq+qnOMdevnSPpxSai3N86ScROe6z5zZp3QSMdJc1n+NbCioEKfnYpDEmVkmACxlN2YnIXGC8qpbpqvqKyi4AMsYYHyLSEWcPpZfXWWKVNVUZY4xLRMbiNB3+wT1V2gRgTVXGGGNCYnscxhhjQlIhj3E0aNBAU1JSqFmzZsmFo2j//v2WKUixmMsyBScWM0Fs5oq1TMuWLdupqv49VxxPVSvco0OHDjpv3jyNNZYpeLGYyzIFJxYzqcZmrljLBCzVIL5jranKGGNMSKziMMYYExKrOIwxxoTEKg5jjDEhsYrDGGNMSKziMMYYExKrOIwxxoTEKg5jjDEhsYrDGGNMSCpklyPGlAsZGcdPmzcv+jmMCZHtcRhjjAlJ1CoOEekuIqtFJEtEhgeYnygik9z5i0WkhTu9ioiMFZFvRWSViDwQrczGGGOOF5WmKhGJB0YBF+Pc93mJiMxQ1e98it0C7FbV1iLSH3gK5z7K/YBEVT1DRGoA34nIBD32XsDGVAz+zVfWdGViULT2ODoBWaq6XlWPABM5/raMvYCx7vAUoJuICKBATRFJAKoDR4CfoxPbGGOMv6jcAVBE+gLdVXWwOz4I6KyqQ33KrHDLZLvj64DOwF5gHNANqAH8UVVHB1jGEGAIQGpqaocxY8aQlJQU2TcWotzcXMsUpFjMFXKmNWuOHW/btvj5gfg/p6yZoiAWM0Fs5oq1TBkZGctUNa2kctE6q0oCTPOvsYoq0wnIBxoB9YCFIjJHVdcfU9CpTEYDpKWlaVJSEunp6WXNHVaZmZmWKUixmCvkTCNGHDvu3+zkPz+QEpqqKsR6ipJYzBWLmYIRraaqbKCpz3gTYEtRZdxmqTpADjAQ+EBVj6rqduBToMQa0RhjTGREq+JYArQRkZYiUhXoD8zwKzMDuMEd7gvMde9ItQm4UBw1gXOA76OU25iwKFBh7VpYuBCWLoV9+7xOZEzpRaWpSlXzRGQoMBuIB15T1ZUi8ijOrQpnAK8C40QkC2dPo7/79FHA68AKnOas11X1m2jkNiYkAS7o23AwlZHZ/Ziw/UJqXAyNG8OBA87hjU5Vn+P3jd6lT8oCJFBDrTExKmpXjqvqTGCm37SHfYYP4Zx66/+83EDTjYllRwvieWZzf57b3I+bG85i8dl30PLzCb/MP3QI3uvwLk9uGsiz2Vcz7pTHaV3Dv/XWmNhkXY4YE2a7jybRd+UI4qSAZWm30rzatuPKVKsGfU9YQO+UhYz68UrO/WoUr7T9B1emfOpBYmNCYxWHMWG0/UhdMpaP5LfJS/jHSS8RLwXFlo8T5c4m73Bu7ZVcvuJx9uYnccOJs6OU1pjSsYrDmDDZc7Qml3zzNH1SFvBoy9dDem5a7TXMbX8PF339D2rEHaLfCfMjlNKYsrOKw5gwyM+Hft89Qpc63zKiRWiVRqFTa27i/TMe4OJv/kGjxF2cV2eFdUFiYpL1jmtMGPz5z6AqPHfSqDKdIXVWrXWMPeVJrln5MDuO1AlfQGPCyCoOY8rovfdg/HiY0O5vJMQVf0wjGJfWX8ygEz9k0KoHKVA7T9fEHqs4jCmDnBy49VYYNw5Squ4N2+s+2uJ19uXX4N/ZvcP2msaEi1UcxgQjI8O5ai8j49cHcNdd0LcvdO0a3sVVicvn9VOe4rGNg9hwMDW8L25MGVnFYUwpzZ4NixbB449H5vXb1sjm3qaTuW3NPUShE2tjgmYVhzGlcLQgnj/8Af75T6hZM3LLGdZ0EluO1GfazjDv0hhTBlZxGFMKz/94Fc2bQ8+ekV1Olbh8njvpBe5fN4TDBVUiuzBjgmTXcRgToh1H6vD4pmtZ8D+i0jnhRclfckqNTYz68Uru8b+u469/jXwAY/zYHocxIXpi07VckzKPU0+N3jKfOeklntg0kF1Ha0dvocYUwSoOY0Kw5XB9/vvTJTzU/M2oLvfUmpvo02ABz2y6JqrLNSYQa6oyJgSPb7yWm0+cRcPEnNCfHOB+HaF4sPlb/GbpaIY1nUSDqj+X6bWMKQvb4zAmSNtyajJh+4Xc32xCyYUjoFm17fRNWcBz2Vd7snxjCkWt4hCR7iKyWkSyRGR4gPmJIjLJnb9YRFq4068VkeU+jwIROStauY0pNGl2e37X8P2wXiEeqgeavcXLW3rasQ7jqahUHCISj3ML2B5AO2CAiLTzK3YLsFtVWwMjgacAVPUtVT1LVc8CBgEbVHV5NHIbU2jnkdrM+aI1dzeZ6mmOFtW30TtlIf/JvsrTHKZyi9YeRycgS1XXq+oRYCLQy69ML2CsOzwF6CZy3MmOAwBv2glMpfbClivp8psNpTu2EWbDmk7mxS1XcDC/qtdRTCUlGoW+DESkL9BdVQe744OAzqo61KfMCrdMtju+zi2z06fMOqCXqq4IsIwhwBCA1NTUDmPGjCEpKSmSbytkubm5lilIsZTr0KE4Bl6dxt//tpBTq2/8dUbbtscWXLMmapkefP4Szj1zIxn9f46Z9VQolv53vmIxV6xlysjIWKaqaSWVi9ZZVYEuk/KvsYotIyKdgQOBKg0AVR0NjAZIS0vTpKQk0tPTS5c2QjIzMy1TkGIp14svQpeqn3Jq9Y2kT/DZ4fW/qdKIEVHL9Hjcd9z+zh+57OYfYmY9FYql/52vWMwVi5mCEa2mqmygqc94E2BLUWVEJAGoA/i2C/THmqlMlBUUwMiRcF/TiV5HOcYFdb+metxhFi9O9jqKqYSiVXEsAdqISEsRqYpTCczwKzMDuMEd7gvMVbcdTUTigH44x0aMiZo5c5xODM+rE3BH1zMicG/Tt3n77aYlFzYmzKJScahqHjAUmA2sAiar6koReVRErnCLvQrUF5Es4B7A95TdrkC2qq6PRl5jCu+5MWrgp/z+wDNR6ZMqVP1SMtm4sQbff+91ElPZRO3KcVWdCcz0m/awz/AhnL2KQM/NBM6JZD5j/G08lMone09nfLvHvI4SUNW4PHr0+ImXX27OyJFepzGViV05bkwRRm/pyaDUj6gZf8jrKEXq2e5Txj2/l4NdLylzlybGBMsqDmMCOFxQhVe3Xsrtjf0PxcWWExvk0rn2KibvsErDRI9VHMYEMG1HF06v+QMn19jsdZQS3dZoBi9tudzrGKYSsYrDmABGb+3JrY3+53WMoFxafzE/Hm7A8n0neR3FVBJWcRjjZ/16WLG/JVc0+MzrKEGJlwIGN5zJy1ttr8NEh92Pwxg/Y8fCwBM+JjHuaPEFY+hg9I0nfsBvlo5m5CGoVs3rNKaisz0OY3wUFDgVx00nzvI6SkiaVdvO2bXWMn2610lMZWAVhzE+5s2DevXgrFrrvI4SshtSZzN2bMnljCkrqziM8fH663DTTV6nKJ2rUj5h0SLY4t8LnDFhZhWHMa49e+C992DgQK+TlE7N+EP06QNvvul1ElPRWcVhjGvSJLj4YmjQwOskpXfDDc4xmijcZsdUYnZWlTGuceNg+PCSy8Wy88+HQ4dg6VLo2NGd6H/2l/99RIwJke1xGANs2ACrV8Mll3idpGxE4MYb4b//9TqJqchsj8MYYOJE6NsXqlTxOkkZZWRw7cGGnPPlKP65oh9V4vK9TmQqINvjMAYYP778HhT316r6VlpV28rHu8/2OoqpoKziMJXet986Z1Sdd57XScJnQOpcJmzv5nUMU0FFreIQke4islpEskTkuEOQIpIoIpPc+YtFpIXPvDNFZJGIrBSRb0XEOlUwYTNhAgwYAHEV6GfU1SnzmLHr/ziYX9XrKKYCispHRUTigVFAD6AdMEBE2vkVuwXYraqtgZHAU+5zE4A3gdtU9TQgHSihEyFjgqNasZqpCjVMzKFD0hpm5tiNM034Res3VicgS1XXq+oRYCLQy69ML6Cww4QpQDcREeC3wDeq+jWAqu5SVTviZ8Ji0SKoWRPOPNPrJOE3IHUu47dZc5UJP9EoXCkkIn2B7qo62B0fBHRW1aE+ZVa4ZbLd8XVAZ+A6oANwApACTFTVpwMsYwgwBCA1NbXDmDFjSEpKiuwbC1Fubq5lClK0cv3rX22oX/8w11236dgZa9Ycnyk5maScnIhnCkVxmfbtr8qABwcy8cm3SKrus5Petm1kM1XybSoUsZYpIyNjmaqmlVQuWqfjSoBp/jVWUWUSgPOBjsAB4GMRWaaqHx9TUHU0MBogLS1Nk5KSSE9PL2vusMrMzLRMQYpGrqNH4eqr4fPPoVWrVsfOHDHi+EwDBpA+YUJEM4WqpEzdarZh10vb6Hni7F8nRvgCwMq8TYUqFjMFI1pNVdlAU5/xJoB/V2y/lHGPa9QBctzp81V1p6oeAGYCdp6hKbO5c6FVK+dRUQ1M/ZgJ2y70OoapYKJVcSwB2ohISxGpCvQHZviVmQHc4A73Beaq0442GzhTRGq4FcoFwHdRym0qsKlToV8/r1NE1uX1P+Pzn9ux40idXydmZBz7MCZEUak4VDUPGIpTCawCJqvqShF5VESucIu9CtQXkSzgHmC4+9zdwHM4lc9y4EtVfT8auU3FlZ8P06dD795eJ4msGvGHuSR5CdN3VqCLVIznotbliKrOxGlm8p32sM/wISDg7z9VfRPnlFxjwuKTT6BxY2jZ0uskkdc3ZT5jtl7G4EYzSy5sTBCsrypTKU29dhp9quZAxlteR4m4S+svZvDqYew6Wpv6VX72Oo6pACrQtbLGBKegAKbt6ELvBgu9jhIVNeMPcXG9ZdZcZcLGKg5T6SxZArUT9nNqzU0lF64g+p0wn7d3XOB1DFNBWMVhKp2pU6FPygKvY0TVZcmL+Gzvaew+GjsXm5nyyyoOU6mowrRpVJpmqkJJCYfoVu9La64yYWEVh6lUvvnGOcZxVlKW11Girm/KAqZYc5UJA6s4TKUydSr06ePcYrWy6Vl/EQv2nsmeozW9jmLKOas4TKUybVrFv+ivKLUTDpBRdzkzdllzlSmboCsOEakfySDGRNrq1bB7N3Tu7HUS7/RNmc+UHV29jmHKuVD2ODaLyHQR6ev2N2VMuTJ1qrO3UZHu9BeqKxp8Ruaes9ibZ81VpvRC+Qg1Bz4G7gd+EpHRInJ+ZGIZE36VuZmqUJ2E/XSt8w3v7TrX6yimHAu64lDVHar6b1XtCJwLbAfGich6t7PC5hFLaUwZbdgAmzZBly5eJ/Fen5QFTN1hK8KUXml32k90H7WBdUBj4CsRGR6uYMaE07Rp0KsXJFjvbPRq8ClzdncgN6+a11FMORXKwfHTROQJEdkEvAisBc5U1YtV9Racmys9GKGcxpSJNVP9KrnKPs6p/R2zcirxWQKmTELZ41gA1AL6qmo7VX1KVX8snKmqG4B/hjmfMWW2dSt89x106+Z1ktjRJ2UhU+3sKlNKoVQcV6nqUFX9wneiiHQqHPa9v4YxseKdd+Cyy6CqnQv4iysbfMIHOZ04lF/F6yimHAql4niviOkfBPNkEekuIqtFJCvQsRARSRSRSe78xSLSwp3eQkQOishy9/FSCJmNsWaqAFKr7uaspCw+3N3R6yimHCrxUKGIxAHiDIq4w4VOAvKCeI14YBRwMZANLBGRGarqe+/wW4DdqtpaRPoDTwHXuPPWqepZwbwhY3zt2gVLl8Ill3idJPY4Z1d15YqSixpzjGD2OPKAI0ANd/ioz+M74IUgXqMTkKWq61X1CDAR6OVXphcw1h2eAnRzKypjSm36dLj4YqhRw+sksad3ykL+t+tcjhzxOokpb4KpOFri7FlkA618Hi2B2qr6SBCv0RjY7DOe7U4LWEZV84C9QGE3Jy1F5CsRmS8idgK6CZo1UxWtceJOTq6xmblzvU5iyhtR1cgvRKQfcImqDnbHBwGdVPVOnzIr3TLZ7vg6nD2VXCBJVXeJSAfgXeA0Vf3ZbxlDgCEAqampHcaMGUNSUmzdtCY3N9cyBSkcufbvj+eaa85l0qRF1KyZf+zMNWtCz5ScTFJOTpkyhVtZM03+6Aw2HWzOsGGhr48iM1XgbSrcYi1TRkbGMlVNK6lcscc4RGS0qg5xh98oqpyqXl/CcrKBpj7jTYAtRZTJFpEEoA6Qo07NdthdzjK3QmkLLPXLMBoYDZCWlqZJSUmkp6eXECu6MjMzLVOQQsqVkXH8tHnzGD/emXXZZQF2UkeMCD3TgAGkT5gQ8vMiqayZmh+cR6d1Ezj//EZhuziyQmxTURKLmYJRUlPVDz7D64p5lGQJ0EZEWrodJPYHZviVmQHc4A73BeaqqopIintwHRFpBbQB1gexTFPJWTNVyVpW/4lmzWBB5bqTrimjYn9jqOoTPsOh/0T79bl5IjIUmA3EA6+p6koReRRYqqozgFdx+r7KAnJwKheArsCjIpIH5AO3qWpstReYmHPgAHz0Ebz8stdJYl+fPk7PwRde6HUSU16U1FQV1KakqiUeXlPVmcBMv2kP+wwfAvoFeN5UYGowOYwp9MEH0LEj1Le7yJSoTx+nSe8//6ncXc6b4JXUqvlqEK+hOGdZGRMzpk1zvhB/Eeg4iAHg5JOdCnbRIjjPbg5oglBSU1XLaAUxJlwOF1Th/ffhmWe8TlJ+FDZXWcVhgmE7pqbC+Xj32Zx2GjRs6HWS8qOw4ojC2fmmAii24hCRVT7Dm0VkU6BH5GMaE7xpO7oc20xlSnT66ZCY6HTPYkxJSjrG8Tuf4esiGcSYcMgriGP6rvP4i52GGxIR6NvX2evoaP0emhKUdIzjE5/h+ZGPY0zZLNjbnuaJ22jevK7XUcqdPn2gf3944gmnIjGmKKHcAbCqe2/xtSKy3/37NxGx+0+amDFtRxf6pNjVbKVx9tmQlwfffON1EhPrQulk4EXgZOAuYCPQHHgAp3PCm8MfzZjQFKjwzs7zmXfWPZAx3us45Y6Ic6X91KnQvr3XaUwsC+WsqiuBnqo6S1W/U9VZ7rQrIxPNmNB8/nM76iXk0rZGttdRyq3C4xzGFCeUiuMnnHty+KoObA1fHGNKz5qpyq5zZ9izB77/3uskJpaVdDruhYUPYBzwgYj8TkR6uN2YzwSK7DXXmGhRhak7u1rFUUZxcb82VxlTlNJ0OfKg3/itOLd5NcYzX+W2IZ4CzqhpHSeXVZ8+8Mc/wkMPeZ3ExCrrcsSUPwH6nSpsprLTSEvBb312mTOPLVtg/XpoZb3QmQCsyxFT7qnClB0XWDNVmMTHw5VXWnOVKVoo13HUFpHnRGSZiGy0LkdMrPjuQAsOFCTSsZYd0Q2Xwr6rjAkklD2OF4CzgUeBZOBOYBMwMgK5jAnalB1drZkqzDIyYO1a2LzZ6yQmFoVScfwW6KOq04F89+81wKCIJDMmSFN3dKWvNVOFT0YGVX6bwRVVZzHtwue9TmNiUCgVRxyw1x3OFZG6ONdwtA7mySLSXURWi0iWiAwPMD9RRCa58xeLSAu/+c1EJFdEhoWQ2VRwqw80ZefROpxbe6XXUSqcPg0WMHVHF69jmBgUSsXxNXCBO7wQGIXTDcmakp4oIvFu+R5AO2CAiLTzK3YLsFtVW+M0f/mf4jsSmBVCXlMJTN3Rld4NFhIndiOJcLs4eRnf7m/FTz95ncTEmlAqjt8BG9zhu4BDQF3g+iCe2wnIUtX1qnoEmAj08ivTCxjrDk8Buok4rdYiciWwHrCfleYYTjOVddwcCYlxR+mR/AXvvut1EhNrRKNwyy8R6Qt0V9XB7vggoLOqDvUps8Itk+2OrwM6AweBOcDFwDAgV1X/EWAZQ4AhAKmpqR3GjBlDUlJSZN9YiHJzcy1TkIoJX6IIAAAdwUlEQVTNtcbZyd2yoxa/f+pKpjz9JvFxkd+Oc5OTScrJifhyQhHpTPO/bMmMJWk8++zXwWcqj9uUR2ItU0ZGxjJVTSupXCi94yIiNwMDgEbAFpw9h9e05Non0Pku/s8pqswIYKSq5koxp82o6mhgNEBaWpomJSWRnp5eQqzoyszMtExBKjbXiBEAPLPpGq5OmkO3SdHpCTdzwADSJ0yIyrKCFelMnfITee7rKZzx55HUr/LzrzPmzSs6U3ncpjwSi5mCEcp1HE8D9wPTgPvcv8MIrruRbKCpz3gTnIonYBkRSQDqADk4ex1Pi8gG4A/AgyIyFFPpWTNV5NWIP8zF9ZYxfed5XkcxMSSUPY4bgbMLm5IAROQ94EvgTyU8dwnQRkRaAj8C/YGBfmVmADcAi4C+wFx3T+aX0zpE5BGcpio7R7CS23wohayDjUmvu9zrKBVen5QFvLntYm5uaOemGEcoB8f3uQ//aT8HKHsMVc0DhgKzgVXAZFVd6d5R8Aq32KtAfRHJAu4Bjjtl15hC03Z25YoGn1ElLt/rKBXeZfU/Z+HeM9ibV9PrKCZGFLvHISK+XZz9E5gmIk/ya7PSfQR55biqzsTpht132sM+w4eAfiW8xiPBLMtUfFN2dGV4s9g63lBR1U44QHrd5fxv57lcd+Icr+OYGFBSU1UWzgFq36PS/l2TXghY05GJmq2Hk1mxvyUX1VvmdZRKo0/KQqbu7GoVhwFKaKpS1ThVjXf/FvWIj1ZYYwDe2dmFnvUXkRh31OsolcYV9T9l7u7fkJtXzesoJgaE3K262/XHuSLStOTSxoTflB1d6dPA+qaKpnpVcjmn9ipm5XT2OoqJAaGcjttQRObjNF9NA9aJyAIRaRSxdMb42brVudvfJclLvI5S6fRNmc+UHReUXNBUeKHscbyI019VPVVtCNQDvgJeikQwYwKZMgUur7+I6vFHvI5S6VzZ4BNm53TkYH5Vr6MYj4VyHcf5QENVPQqgqvtF5E8412UYExWTJsGDJ8z1OkallFJ1L7+ptZYPd3c8rqM5U7mEssexG6dnW18nA3vCF8eYom3aBN9/j51N5SGnq/WuXscwHgtlj+NpYI6IvApsBJoDNwF/iUQwY/xNngxXXQVVs/K8jlJp9U5ZyMMbbuLIEahqLVaVVtB7HKr6Cs4d/xoAl7t/B7idCxoTcRMnQv/+Xqeo3Bol7uLUGpv4+GOvkxgvBVVxiEi8iIwFPlXVwap6qfvXGptNVKxdC9nZUA47Eq1w+qQsYOpUr1MYLwVVcahqPs49xwsiG8eYwCZNgn79IN4uN/Vc7wYLmD4d8qzFsNIK5eD4SGCEiFSJVBhjijJpkjVTxYoW1bfRogXMtx7tK61QKo47cTo13Ccim0VkU+HfCGUzBoAVK2DvXjj3XK+TmELXXAMxdk8rE0WhnFV1XcRSGFOMSZOcL6q4kDvIMZEyYACccQY8/zxUs+6rKp1QPoqLgG7AGJzu0ccAFwGLI5DLGABUnV+211zjdRLjq3FjOPtseO89r5MYL4Ta5ciFwF1AR/fvBcALEchlKrOMDFizBjIy+LzD76lSBTp08DqU8XfddfDmm16nMF4IpeK4EuipqrNU9TtVneVOuzKYJ4tIdxFZLSJZInLc3f1EJFFEJrnzF4tIC3d6JxFZ7j6+FpGrQshsyrk3tv2WQYNApOSyJrp694Z582DXLq+TmGgLpeL4CajhN606sLWkJ4pIPDAK6IHTbckAEfHvvuQWYLeqtsY5g+spd/oKIE1VzwK6Ay+LSCjHZkw5dbigCm9vT+faa71OYgKpXRt69IC33/Y6iYm2UCqOccAHIvI7EekhIkNwjnW8ISIXFj6KeG4nIEtV16vqEWAiHNdPWi9grDs8BegmIqKqB9x7lgNUw7kjoakEZu7qzOk1f6B5c6+TmKJYc1XlJKrBfQ+LyA9BFFNVbeU/UUT6At1VdbA7PgjorKpDfcqscMtku+Pr3DI7RaQz8BpO/1iDVPWdAMsYAgwBSE1N7TBmzBiSkpKCem/Rkpuba5mCsWYNucnJPP33Dpxz5iYuvUmPm++F3ORkknJyPFl2UTzL1LYtAHl5Qt++5/LCC1/SqNEhJ1MsblPEZq5Yy5SRkbFMVdNKKhd0k4+qtixDnkAt1P41VpFlVHUxcJqInAqMFZFZqnrIL99oYDRAWlqaJiUlkR5j/VNkZmZapmCMGMH0y2/km29TeC9pKLVHHPA6EQCZAwaQHmMXL3iWad68Xwavuw7Wrz+HgQPdTLG4TRGbuWIxUzCidWZ8NuB7q9kmwJaiyrjHMOoAx/yUUtVVwH7g9IglNTEhc1kruid/Qe2E2Kg0TNEKm6uCbLwwFUC0Ko4lQBsRaSkiVYH+wAy/MjOAG9zhvsBcVVX3OQkAItIc5x4gG6IT23jlo8/bMOjEj7yOYYLQuTPkbfyRpWm3/XoqtanQolJxuAe3hwKzgVXAZFVdKSKPisgVbrFXgfoikgXcAxSesns+8LWILAfeAe5Q1Z3RyG28kXWgEVt21Oa39ey+4uWBCNxw4mxe/6mH11FMlETttFZVnYlzFpbvtId9hg8B/QI8bxzOGV2mknhj2yVc2HEdVQryvY5ignTjiR9w1tJXePYkux64MrDrIUxMyc+H13/qziPXL4CFXqcxRcrIOGa0aTXoWGs103Z2pbFHkUz0WLdxJqZ8+CE0rLqLk5rE1mmvpmQ3N5zFa1utuaoysIrDxJQxY2Bww5klFzQxp1eDT/lmfyu27KjldRQTYVZxmJixfTvMnQv9T7A7EpdHiXFHGXjCx3ywqK3XUUyEWcVhYsYbb8BVV2HXbpRjNzecxQefnUy+nddQoVnFYWKCqtNMdcstXicxZdE+aR31ah1kzhyvk5hIsorDxIRPP3WuB/i///M6iSmrS8//nlde8TqFiSSrOExMePVVGDzY7rtREVzUKYuPP4Yt/p0KmQrDKg7juZwcePdduP56r5OYcKhZ/Sj9+2N7HRWYVRzGc693eoGeiR+ScnXGcReWmfLp9tth9Gg4etTrJCYSrOIwnioogBd+7MXvG73rdRQTRmeeCa1awQz/rkxNhWAVh/HUBx9AvYRcOtde5XUUE2Z33AEvWNdVFZJVHMZTo0bB7xu/awfFK6DevWHlSlhlvwkqHKs4jGfWrYMvvrArxSuqxETnupyXXvI6iQk3qziMZ158EW68EarHH/E6iomQW2917g64b5/XSUw4WcVhPJGbC//9r3P2jam4mjWDCy+E117zOokJp6hVHCLSXURWi0iWiAwPMD9RRCa58xeLSAt3+sUiskxEvnX/XhitzCZyXn8d0tOdM29MxXbvvfDPf0JentdJTLhEpeIQkXhgFNADaAcMEJF2fsVuAXaramtgJPCUO30ncLmqnoFzT3K7G2A5l5cHI0fCsGFeJzHRcM450KgRvPOO10lMuERrj6MTkKWq61X1CDAR6OVXphcw1h2eAnQTEVHVr1S1sPOClUA1EUmMSmoTEe+8A40bO18opnK491549lmnM0tT/olG4T8pIn2B7qo62B0fBHRW1aE+ZVa4ZbLd8XVumZ1+r3Obql4UYBlDgCEAqampHcaMGUNSUlIk31bIcnNzK30mVbjjjrO59tqNnH/+LmfimjXH50pOJikntu4CaJmCk5ucTFKDBsdMy8+H66/vzPDhqzjjjJ+9yWWfvxJlZGQsU9W0kspF657jgc7S96+xii0jIqfhNF/9NtACVHU0MBogLS1Nk5KSSE9PL1XYSMnMzKz0mRYudL5EHnzwDOIK93dHjDg+14ABpE+YELVcwbBMwckcMID0UaOOnThvHg8+CB9/fDZ33ulRLvv8hU20Ko5soKnPeBPAv+/MwjLZIpIA1AFyAESkCfAOcL2qrot8XBMpz1z1KffWX0xct/95HcVE2Y03Or8RVq+Gk0/2Oo0pi2gd41gCtBGRliJSFegP+PdiMwPn4DdAX2CuqqqI1AXeBx5Q1U+jlNdEwDffwJJ9p3B96myvoxgP1KwJd90Fjz/udRJTVlGpOFQ1DxgKzAZWAZNVdaWIPCoiV7jFXgXqi0gWcA9QeMruUKA18BcRWe4+TohGbhNejz0Gw5pOsgv+KrE774SZM51eA0z5Fa2mKlR1JjDTb9rDPsOHgH4BnvcY8FjEA5qIWrkS5s+H10+2JqrKrE4dp/PDJ55wbhVsyie7ctxExd//DvfcAzXjD3kdxXjs7rudG3dt3Oh1ElNaVnGYiPv+e/joI+eXpjHJyTBkCDz5pNdJTGlZxWEi7rHHnF+ZtWp5ncTEinvugcmTYdMmr5OY0rCKw0TU11/DnDlOxWFMoQYNnA4uH3nE6ySmNKziMBH1wAPw0EO2t2GOd9998P77zokTpnyJ2llVpvLJzHSOb7xrtxM3/jIyqAMMr9WXBy84i+k7z/M6kQmBVRwmIlTh/vvhsWqPUfWSj72OY2LU7Y2m88/sPnzyCZx/vtdpTLCsqcqEV0YGZGQw9fS/cuS7tXZbWFOsavFHebTlf7n/fus5tzyxisOE3cH8qgxbdzvPnfQCcWLfBqZ416V+xOHDEGN9NZpiWMVhwu7pzf3pVPt7Muot9zqKKQfipYD//Af+9CfnlsIm9tkxDhNWGw6m8u/s3nyVNsTrKCaWZGQUO/vcc6FbN+eaH7swMPbZHocJq2HrbucPTabSrNp2r6OYcubJJ53+q9au9TqJKYlVHCZsZs2CL3PbMKzpJK+jmHKoYUPnup877rAD5bHOKg4TFvv2wW23wei2z1q36abU7r4bcnJg7Fivk5jiWMVhwmL4cLjoIrgo+Uuvo5hyLCEBXnvNOVC+davXaUxRrOIwZbZwoXN1+LPPep3EVATt2zu95w4d6nUSU5SoVRwi0l1EVotIlogMDzA/UUQmufMXi0gLd3p9EZknIrki8ny08prg5HbpwS2XbGZUvT9T96riz5wxJlh/+QusWgUTJ3qdxAQSlYpDROKBUUAPoB0wQETa+RW7Bditqq2BkcBT7vRDwF+AYdHIakJzd9adnFdnBVem2O3gTfgkJsK4cc49yjds8DqN8Ret6zg6AVmquh5ARCYCvYDvfMr0Ah5xh6cAz4uIqOp+4BMRaR2lrCZIkyfDwr1n8GUHu2bDlFGA6zw6AH+qdTXXtu/C/LPuJmG+9XkWK6LVVNUY2Owznu1OC1hGVfOAvUD9qKQzIduwwWmDHn/qYyQl2O1gTWTc0/RtkuIP8reN13sdxfgQjcIJ0yLSD7hEVQe744OATqp6p0+ZlW6ZbHd8nVtmlzt+I5CmqgEPmYnIEGAIQGpqaocxY8aQlJQUwXcVutzc3AqR6ciROO6++ywuuGAH/c+OzK/A3ORkknJyIvLapWWZghPuTDl7qzPk7725/6EsOnbcXfpcFeTzF0kZGRnLVDWtpHLRaqrKBpr6jDcBthRRJltEEoA6QNBbn6qOBkYDpKWlaVJSEunp6WXJHHaZmZnlPpMqDB4Mp50GL75YG7lwcGRyDRhAeoz1emeZghOJTA1aLqXfP/7FZ5/BSSeVMlcF+PzFimhVHEuANiLSEvgR6A8M9CszA7gBWAT0BeZqNHaHTEhefBG++AIWLQIRr9OYyqJr3W/46++gVy9n26tVi+OPi8yb50m2yigqxzjcYxZDgdnAKmCyqq4UkUdF5Aq32KtAfRHJAu4BfjllV0Q2AM8BN4pIdoAzskwUfPQRjBgB77wDMbR3bSqJ2293OkMcNAjy871OU7lFrXdcVZ0JzPSb9rDP8CGgXxHPbRHRcKZEX30F114LU6dCazu/zXhABJ5/Hi691Dkx4wW1vV6v2JXjpmju3fx+OGcAPc/ZwUsnPEyXLl6HMpVZYqKzx/vFF/ConWnlGbsfhynWxkOpdPv6WR5q/ha9UxaWeF8FYyLG3fZqAzOr1eO8n/5D/YSfGdrkXW9zVUK2x2GKtOnQCWQsf44/NJnKHY2nex3HmF+kVt3NR+2H8Vx2P0Zu7ut1nErH9jhMQGvXwiXLR3J3k2nc1WSa13GMOU7L6j+RedYf6fb1sxwuqMJxHeCZiLE9DnOcL76Arl3hgWbjubvJVK/jGFOkZtW2M/+sPzB22yUMG2ZnW0WLVRzmVxkZ/O+MB7ns/D280uABftfofa8TGVOiRom7+PQ3d7J0KfTpA/v3e52o4rOKwwDOL7W//nAjt6/5I++d8SA9G3zudSRjgpZcZR8ffgh160KXLvDDD14nqtis4jDs3AmXXQbz97RnaYdb6Vx7ldeRjAlZ1arw+utw3XXQubNzzZGJDKs4KrOMDD59+zBnNt5J++8mMKf9vZyYWPpO5Izxmgjccw+89x7cd59ztfm+fV6nqnis4qikdu6EG1YN54XJ5zKp3aM8ddJoEuIKvI5lTFh06gRfNurJ4XdncXrKT8w8czisWeN1rArDTsetKIK5MG/ePI4ehZdegr/9DQZUzWXMg1Po8s63kc9nTJTVrbKf1055mjk5ZzNkzb00ffkQr3Urfe+65ldWcVQS+RrH1NNG8MiGG2hUdRdzWz/P6UkbyKw2wOtoxoRHET+eLkr+khUdb+au5Efp3LkVgwbBAw/ACSdEOV8FYk1VFdzRgnjGb+vGGUte5dnNV/OPk17io/bDOD1pg9fRjImaGvGHue7S5axcCUePwimnOB0l2v3MS8cqjgrqx8MN+OsPN9L884mM3tKTka1f4POz7+DS+outR1FTaaWmOj3sfvedc0+PDh2caz9mzbKLB0NhTVUVyK6jtZm2owuTtmewLLct154wh4/a38dpNTd4Hc2Y2OA2Z50IPAE88MM8Jk6Ehx+GW2+FgQOhd2/o2NG6bC+OVRzlWEGBc5+MDz+ED5c/x5f72nBJ8lLuaDydHsmLqR5/xOuIxsS02r0yGAIMSYKvOYnJ8WO4/nrn6vMrroCL5v+FC+p+TXIV95xeu8sgYBVHubJzJyxdCosXO/1JLV7sHOD77W9hWNPJXFBnOUkJh7yOaUy51D5pHe0/y+DvDeG7/c1574NzGb2nJzd8P5zW1X/k/2qvpMPrTvNWu3aQUIm/PaP21kWkO/AvIB4Yo6pP+s1PBN4AOgC7gGtUdYM77wHgFiAfuEtVZ0crd9RkZKAKOXm12XwohezDKWQdbMz3B5qx6kBzvk9sz6FDzkbbuTMM3vgXXmm7ikaJu+BroL7Xb8CYiqNdzY20q7mRPzWbyJGCBJbsO4XFP5/KnDnw1FOweTO0bXvso3VraNIETjwRqlTx+h1EVlQqDhGJB0YBFwPZwBIRmaGq3/kUuwXYraqtRaQ/8BRwjXt/8f7AaUAjYI6ItFXV2DmU5babFqhwsCCRA1NnceCAs7t74MCvj8WLU1i7FnJyYNeoieQcrUVOXi12Ha3D1iNvkH04hcS4ozRJ3EHTxO20rPYTp9f8gX4nzOeUGptoVHUnosDnQIqn79iYSqNqXB7n1VnBeXVWwJa3oSHsS6nO6gNNWfNtU9ac+mdmzYKsLNiyBbZvh+RkaNQIGjaE+vWhXj2fx0tPkJzwM7USDrKq+wU0aADVqzuPGjWcv1WrxvYxlmjtcXQCslR1PYCITAR6Ab4VRy/gEXd4CvC8iIg7faKqHgZ+EJEs9/UWRSLoRRdBbi7k5TmP/Pxfh4uctn8W+RrHUU2getxhajTeQ424Q9SIP0yNuMPUiD9EjbjDHGzegLY/vU9ylX3Ur7KXNtWzSa6yj+SEn2lYdRdNEndYU5Mx5UCthIOk1V5DWu01MP9jZ2JNoA3kt45j+5G6/Hi4AVs31Sfn6sfZvRt274Z162D37g7sPlqLffk12D6xIaP+/QMHC6pyoKAaB/MTOVCQSL5UITHR2XNJSDj2ER9//LTC6XFxTlcrV14Z2fcvqhrZJQAi0hforqqD3fFBQGdVHepTZoVbJtsdXwd0xqlMPlfVN93prwKzVHWK3zKGAEPc0ZNxmrt2RvJ9lUIDLFOwYjGXZQpOLGaC2MwVa5maq2qJ7RnR2uMItNPlX2MVVSaY56Kqo4HRv7yYyFJVTQslZKRZpuDFYi7LFJxYzASxmSsWMwUjWhcAZgNNfcabAFuKKiMiCUAdICfI5xpjjImSaFUcS4A2ItJSRKriHOye4VdmBnCDO9wXmKtOO9oMoL+IJIpIS6AN8EWUchtjjPETlaYqVc0TkaHAbJzTcV9T1ZUi8iiwVFVnAK8C49yD3zk4lQtuuck4B9LzgN8HeUbV6JKLRJ1lCl4s5rJMwYnFTBCbuWIxU4micnDcGGNMxWGdHBpjjAmJVRzGGGNCUqEqDhF5RkS+F5FvROQdEanrM+8BEckSkdUickkUM/UTkZUiUiAiaT7TW4jIQRFZ7j5eilam4nK58zxZV34ZHhGRH33Wz6Ve5HCzdHfXRZaIDPcqhz8R2SAi37rrZ6lHGV4Tke3udViF05JF5CMRWev+rRcDmTzdnkSkqYjME5FV7ufubne6p+uq1FS1wjyA3wIJ7vBTwFPucDucHp0SgZbAOiA+SplOxbkgMRNI85neAljh4boqKpdn68ov3yPAsBjYpuLdddAKqOqum3Ze53KzbQAaeJyhK3C277YMPA0Md4eHF34OPc7k6fYENATOdodrAWvcz5qn66q0jwq1x6GqH6pqnjv6Oc41H+DTbYmq/gAUdlsSjUyrVHV1NJYVimJyebauYtQv3eWo6hGgsLscA6jqApyzIH31Asa6w2OBCHeAEVQmT6nqVlX90h3eB6wCGuPxuiqtClVx+LkZmOUONwY2+8zLdqd5raWIfCUi80Wki9dhXLG0roa6zY6vebgLH0vrw58CH4rIMrfLnViRqqpbwfnCBGLl7t6xsD0hIi2A3wCLid11Vaxy16O8iMzBuYGXv4dUdbpb5iGcaz7eKnxagPJhOw85mEwBbAWaqeouEekAvCsip6nqzx7niui6OmZBxeQDXgT+5i77b8CzOD8Goi1q66MUzlPVLSJyAvCRiHzv/to2x4uJ7UlEkoCpwB9U9WeJ5S5wi1HuKg5Vvai4+SJyA9AT6KZuwyER7rakpExFPOcwcNgdXuZ26tgWCNtBztLkIopdvASbT0ReAd6LRIYgxGyXN6q6xf27XUTewWlWi4WKY5uINFTVrSLSENjudSBV3VY47NX2JCJVcCqNt1R1mjs55tZVMCpUU5U4N4u6H7hCVQ/4zIq5bktEJEWc+5QgIq3cTOu9zOSKiXXlfogKXQWsKKpshAXTXU7UiUhNEalVOIxzYohX68ifb/dBNwBF7d1Gjdfbkzi7Fq8Cq1T1OZ9ZMbeuguL10flwPnAO5G4GlruPl3zmPYRzdsxqoEcUM12F86v1MLANmO1O7wOsxDlL50vg8iivq4C5vFxXfvnGAd8C3+B8uBp6uF1dinMWzDqcZj5PcvhlauVuO1+725EnuYAJOM2uR93t6Rac+1F+DKx1/ybHQCZPtyfgfJxmsm98vp8u9XpdlfZhXY4YY4wJSYVqqjLGGBN5VnEYY4wJiVUcxhhjQmIVhzHGmJBYxWGMMSYkVnEYEyUiki4i2V7nMKasrOIwxhgTEqs4jDHGhMQqDmNCJCLDRWSK37R/ici/ReQm92Y9+0RkvYjcWszrqIi09hn/r4g85jPe073p0B4R+UxEzozMOzImNFZxGBO6CcClIlIbwO1z7GpgPE4ndT2B2sBNwEgROTvUBbjPeQ24FadbipeBGSKSGJZ3YEwZWMVhTIhUdSNO/2KFN925EDigqp+r6vuquk4d84EPgdLca+V3wMuqulhV81V1LE6/YueE4z0YUxZWcRhTOuOBAe7wQHccEekhIp+LSI6I7MHpyK5BKV6/OXCv20y1x32tpkCjMGQ3pkys4jCmdN4G0kWkCU5Pw+PdZqSpwD9w7uxWF5hJ4JtBARwAaviM+97UajPwd1Wt6/OooaoTwv5OjAmRVRzGlIKq7gAygdeBH1R1FVAVSAR2AHki0gPnPhlFWQ4MFJF4914yF/jMewW4TUQ6i6OmiFxWeA8OY7xkFYcxpTceuMj9i6ruA+4CJgO7cZqwirvp093A5cAe4Frg3cIZqroU5zjH8+5rZQE3hvsNGFMadj8OY4wxIbE9DmOMMSGxisMYY0xIrOIwxhgTEqs4jDHGhMQqDmOMMSGxisMYY0xIrOIwxhgTEqs4jDHGhOT/AYA9uTXO56bjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Mean and standard deviation.\n", + "mu = 2.4\n", + "sigma = 5.1\n", + "\n", + "# Draw a sample from the normal distribution.\n", + "start_time = time.time()\n", + "sample = normal_rand_float64(circuit, glo_num_qubits, size=4321, mu=mu, sigma=sigma)\n", + "sampling_time = time.time() - start_time\n", + "\n", + "# Print out some details.\n", + "print(\"Normal distribution (mu={:.3f}, sigma={:.3f}):\".format(mu, sigma))\n", + "print(\" sample type:\", type(sample), \", element type:\", sample.dtype, \", shape:\", sample.shape)\n", + "print(\" sample min: {:.4f}, max: {:.4f}\".format(np.amin(sample), np.amax(sample)))\n", + "print(\" sampling time: {:.2f} secs\".format(sampling_time))\n", + "\n", + "# Plotting the distribution.\n", + "x = np.linspace(mu - 4.0 * sigma, mu + 4.0 * sigma, 1000)\n", + "analyt = np.exp(-0.5 * ((x - mu) / sigma)**2) / (sigma * math.sqrt(2.0 * math.pi))\n", + "plt.hist(sample.ravel(),\n", + " bins=min(int(np.ceil(np.sqrt(sample.size))), 100),\n", + " density=True, facecolor='r', alpha=0.75)\n", + "plt.plot(x, analyt, '-b', lw=1)\n", + "plt.xlabel(\"value\", size=12)\n", + "plt.ylabel(\"probability\", size=12)\n", + "plt.title(\"Normal distribution: empirical vs analytic\", size=12)\n", + "plt.grid(True)\n", + "# plt.savefig(\"normal_distrib.png\", bbox_inches=\"tight\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There is a substantial amount of further work needed to either certify the quality of the source of random numbers (cf. NIST SP 800-90B, Recommendation for the Entropy Sources Used for Random Bit Generation) or to use random variates within quantum algorithms (cf. uncertainty_models within Qiskit Aqua)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/finance/data_providers/__init__.py b/qiskit/finance/data_providers/__init__.py deleted file mode 100644 index 300002f49..000000000 --- a/qiskit/finance/data_providers/__init__.py +++ /dev/null @@ -1,20 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from .drivers import * - -__all__ = ['drivers'] diff --git a/qiskit/finance/data_providers/drivers/__init__.py b/qiskit/finance/data_providers/drivers/__init__.py deleted file mode 100644 index 3c737a444..000000000 --- a/qiskit/finance/data_providers/drivers/__init__.py +++ /dev/null @@ -1,26 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from ._basedriver import BaseDriver, UnitsType -from .dataondemand import DataOnDemandDriver -from .exhangedata import ExchangeDataDriver -from .wikipedia import WikipediaDriver - -__all__ = ['BaseDriver', - 'DataOnDemandDriver', - 'ExchangeDataDriver', - 'WikipediaDriver'] diff --git a/qiskit/finance/data_providers/drivers/_basedriver.py b/qiskit/finance/data_providers/drivers/_basedriver.py deleted file mode 100644 index 1993d517a..000000000 --- a/qiskit/finance/data_providers/drivers/_basedriver.py +++ /dev/null @@ -1,154 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -""" -This module implements the abstract base class for driver modules -within Qiskit Finance. - -To create add-on driver modules subclass the BaseDriver class in this module. -Doing so requires that the required driver interface is implemented. -""" - -from abc import ABC, abstractmethod -import copy -from qiskit.aqua.parser import JSONSchema -from enum import Enum -import logging - -logger = logging.getLogger(__name__) - - -class DataType(Enum): - DAILYADJUSTED = 'Daily (adj)' - DAILY = 'Daily' - - -class BaseDriver(ABC): - """ - Base class for Drivers. - - This method should initialize the module and its configuration, and - use an exception if a component of the module is available. - - """ - @abstractmethod - def __init__(self): - self.check_driver_valid() - self._configuration = copy.deepcopy(self.CONFIGURATION) - self._work_path = None - - @property - def configuration(self): - """Return driver configuration.""" - return self._configuration - - @classmethod - def init_from_input(cls, section): - """ - Initialize via section dictionary. - - Args: - params (dict): section dictionary - - Returns: - Driver: Driver object - """ - pass - - @staticmethod - def check_driver_valid(): - """Checks if driver is ready for use. Throws an exception if not""" - pass - - def validate(self, args_dict): - schema_dict = self.CONFIGURATION.get('input_schema', None) - if schema_dict is None: - return - - jsonSchema = JSONSchema(schema_dict) - schema_property_names = jsonSchema.get_default_section_names() - json_dict = {} - for property_name in schema_property_names: - if property_name in args_dict: - json_dict[property_name] = args_dict[property_name] - - jsonSchema.validate(json_dict) - - @property - def work_path(self): - return self._work_path - - @work_path.setter - def work_path(self, new_work_path): - self._work_path = new_work_path - - @abstractmethod - def run(self): - pass - - # gets coordinates suitable for plotting - # it does not have to be overridden in non-abstract derived classes. - def get_coordinates(self): - # Coordinates for visualisation purposes - xc = np.zeros([self.n, 1]) - yc = np.zeros([self.n, 1]) - xc = (np.random.rand(self.n) - 0.5) * 1 - yc = (np.random.rand(self.n) - 0.5) * 1 - #for (cnt, s) in enumerate(self.tickers): - #xc[cnt, 1] = self.data[cnt][0] - # yc[cnt, 0] = self.data[cnt][-1] - return xc, yc - - # it does not have to be overridden in non-abstract derived classes. - def get_covariance(self): - if not self._data: return None - self.cov = np.cov(self._data, rowvar = True) - return self.cov - - # it does not have to be overridden in non-abstract derived classes. - def get_similarity_matrix(self): - if not self.data: return None - try: - import fastdtw - for ii in range(0, self._n): - self.rho[ii,ii] = 1. - for jj in range(ii + 1, self.n): - thisRho, path = fastdtw.fastdtw(self._data[ii], self._data[jj]) - self.rho[ii, jj] = thisRho - self.rho[jj, ii] = self.rho[ii, jj] - self.rho = self.rho / np.nanmax(self.rho) - for ii in range(0, self.n): - self.rho[ii,ii] = 1. - except ImportError: - print("This requires fastdtw package.") - return self.rho - - # it does not have to be overridden in non-abstract derived classes. - def plot(self): - #for (cnt, s) in enumerate(self.tickers): - # plot(self.data[cnt], grid = True, label=s) - #plt.legend() - #plt.title("Evolution of the adjusted closing price") - #plt.show() - self.get_covariance() - self.get_similarity_matrix() - print("Top: a similarity measure. Bottom: covariance matrix.") - plt.subplot(211) - plt.imshow(self.rho) - plt.subplot(212) - plt.imshow(self.cov) - plt.show() \ No newline at end of file diff --git a/qiskit/finance/data_providers/drivers/algorithminput.py b/qiskit/finance/data_providers/drivers/algorithminput.py deleted file mode 100644 index b68d5e96b..000000000 --- a/qiskit/finance/data_providers/drivers/algorithminput.py +++ /dev/null @@ -1,67 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from qiskit.aqua import Pluggable -from abc import abstractmethod -import copy -from qiskit.aqua import AquaError - - -class AlgorithmInput(Pluggable): - - _PROBLEM_SET = ['portfoliodiversification', 'portfoliooptimisation'] - - @abstractmethod - def __init__(self): - super().__init__() - if 'problems' not in self.configuration or len(self.configuration['problems']) <= 0: - raise AquaError('Algorithm Input missing or empty configuration problems') - - for problem in self.configuration['problems']: - if problem not in AlgorithmInput._PROBLEM_SET: - raise AquaError('Problem {} not in known problem set {}'.format(problem, AlgorithmInput._PROBLEM_SET)) - - @property - def all_problems(self): - return copy.deepcopy(self._PROBLEM_SET) - - @property - def problems(self): - """ - Gets the set of problems that this input form supports - """ - return self.configuration.problems - - @abstractmethod - def to_params(self): - """ - Convert the derived algorithminput class fields to a dictionary where the values are in a - form that can be saved to json - Returns: - Dictionary of input fields - """ - raise NotImplementedError() - - @abstractmethod - def from_params(self, params): - """ - Load the dictionary into the algorithminput class fields. This dictionary being that as - created by to_params() - Args: - params: A dictionary as originally created by to_params() - """ - raise NotImplementedError() diff --git a/qiskit/finance/data_providers/drivers/dataondemand/README.md b/qiskit/finance/data_providers/drivers/dataondemand/README.md deleted file mode 100644 index 836eb7f04..000000000 --- a/qiskit/finance/data_providers/drivers/dataondemand/README.md +++ /dev/null @@ -1,14 +0,0 @@ -# Qiskit Finance - -## Stock market data driver for NASDAQ Data on Demand - -NASDAQ is a major vendor of stock market data. It provides data not only for NASDAQ -issues, but also for NYSE etc. - -This driver requires Data on Demand API Token. - -## Example query - -The data are obtained by running a query through the REST API. -``` -``` diff --git a/qiskit/finance/data_providers/drivers/dataondemand/__init__.py b/qiskit/finance/data_providers/drivers/dataondemand/__init__.py deleted file mode 100644 index 682ce312d..000000000 --- a/qiskit/finance/data_providers/drivers/dataondemand/__init__.py +++ /dev/null @@ -1,21 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from .dataondemanddriver import DataOnDemandDriver - -__all__ = ['DataOnDemandDriver', - 'StockMarket'] diff --git a/qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py b/qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py deleted file mode 100644 index 6ef8e50d0..000000000 --- a/qiskit/finance/data_providers/drivers/dataondemand/dataondemanddriver.py +++ /dev/null @@ -1,156 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from qiskit.aqua.drivers import BaseDriver, UnitsType -import importlib -from enum import Enum -import logging - -logger = logging.getLogger(__name__) - - -class StockMarket(Enum): - NASDAQ = 'NASDAQ' - NYSE = 'NYSE' - -class DataOnDemandDriver(BaseDriver): - """Python implementation of an NASDAQ Data on Demand driver.""" - - CONFIGURATION = { - "name": "DOD", - "description": "NASDAQ Data on Demand Driver", - "input_schema": { - "$schema": "http://json-schema.org/schema#", - "id": "dod_schema", - "type": "object", - "properties": { - STOCKMARKET: { - "type": "string", - "default": StockMarket.NASDAQ.value, - "oneOf": [ - {"enum": [ - StockMarket.NASDAQ.value, - StockMarket.NYSE.value, - ]} - ] - }, - DATATYPE: { - "type": "string", - "default": DataType.DAILYADJUSTED.value, - "oneOf": [ - {"enum": [ - DataType.DAILYADJUSTED.value, - DataType.DAILY.value, - DataType.BID.value, - DataType.ASK.value, - ]} - ] - }, - }, - } - } - - def __init__(self, - token, - tickers, - stockmarket = StockMarket.NASDAQ, - start = datetime.datetime(2016,1,1), - end = datetime.datetime(2016,1,30)): - """ - Initializer - Args: - token (str): quandl access token - tickers (str or list): tickers - stockmarket (StockMarket): LONDON, EURONEXT, or SINGAPORE - """ - if not isinstance(atoms, list) and not isinstance(atoms, str): - raise QiskitFinanceError("Invalid atom input for DOD Driver '{}'".format(atoms)) - - if isinstance(tickers, list): - self._tickers = ';'.join(tickers) - else: - self._tickers = tickers.replace('\n', ';') - self._n = len(self._tickers.split(";")) - - self.validate(locals()) - super().__init__() - self._stockmarket = stockmarket # .value? - self._token = token - self._start = start - self._end = end - - @staticmethod - def check_driver_valid(): - err_msg = 'quandl is not installed.' - try: - spec = importlib.util.find_spec('quandl') - if spec is not None: - return - except Exception as e: - logger.debug('quandl check error {}'.format(str(e))) - raise QiskitFinanceError(err_msg) from e - - raise QiskitFinanceError(err_msg) - - @classmethod - def init_from_input(cls, section): - """ - Initialize via section dictionary. - - Args: - params (dict): section dictionary - - Returns: - Driver: Driver object - """ - if section is None or not isinstance(section, dict): - raise QiskitFinanceError('Invalid or missing section {}'.format(section)) - - params = section - kwargs = {} - #for k, v in params.items(): - # if k == ExchangeDataDriver. ...: v = UnitsType(v) - # kwargs[k] = v - logger.debug('init_from_input: {}'.format(kwargs)) - return cls(**kwargs) - - def run(self): - import re - import urllib - import urllib2 - import json - url = 'https://dataondemand.nasdaq.com/api/v1/quotes' - self._data = [] - for ticker in self._tickers: - values = {'_Token' : self._token, - 'symbols' : [ticker] - 'start' : start.strftime("%Y-%m-%d'T'%H:%M:%S.%f'Z'") , - 'end' : end.strftime("%Y-%m-%d'T'%H:%M:%S.%f'Z'") , - 'next_cursor': 0 - #'start' : start.strftime("%m/%d/%Y %H:%M:%S.%f") , - #'end' : end.strftime("%m/%d/%Y %H:%M:%S.%f") , - } - request_parameters = urllib.urlencode(values) - req = urllib2.Request(url, request_parameters) - try: - response = urllib2.urlopen(req) - quotes = json.loads(response)["quotes"] - priceEvolution = [] - for q in quotes: priceEvolution.append(q["ask_price"]) - self._data.append(priceEvolution) - except: - raise QiskitFinanceError('Accessing Qiskit failed') diff --git a/qiskit/finance/data_providers/drivers/exchangedata/README.md b/qiskit/finance/data_providers/drivers/exchangedata/README.md deleted file mode 100644 index 31ec5e883..000000000 --- a/qiskit/finance/data_providers/drivers/exchangedata/README.md +++ /dev/null @@ -1,22 +0,0 @@ -# Qiskit Finance - -## Stock market data driver for Exchange Data International - -Exchange Data International is a major vendor of stock-market data. See -https://www.exchange-data.com/about_us.php#edi - -For samples of the data, please see: -https://www.quandl.com/data/XSES-Singapore-Exchange-Prices -https://www.quandl.com/data/XBER-Berlin-Stock-Exchange-Prices -https://www.quandl.com/data/XPAR-Euronext-Paris-Stock-Prices/documentation - -This driver requires Quandl API Token. - -## Example query - -The data are obtained by running a query through quandl. See: -https://docs.quandl.com/docs/parameters-2#section-times-series-parameters -for details. - -``` -``` diff --git a/qiskit/finance/data_providers/drivers/exchangedata/__init__.py b/qiskit/finance/data_providers/drivers/exchangedata/__init__.py deleted file mode 100644 index 26e0bf76f..000000000 --- a/qiskit/finance/data_providers/drivers/exchangedata/__init__.py +++ /dev/null @@ -1,21 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from .exchangedatadriver import ExchangeDataDriver, StockMarket - -__all__ = ['ExchangeDataDriver', - 'StockMarket'] diff --git a/qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py b/qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py deleted file mode 100644 index b2458b165..000000000 --- a/qiskit/finance/data_providers/drivers/exchangedata/exchangedatadriver.py +++ /dev/null @@ -1,138 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from qiskit.aqua.drivers import BaseDriver, UnitsType -import importlib -from enum import Enum -import logging - -logger = logging.getLogger(__name__) - - -class StockMarket(Enum): - LONDON = 'XLON' - EURONEXT = 'XPAR' - SINGAPORE = 'XSES' - -class ExchangeDataDriver(BaseDriver): - """Python implementation of an Exchange Data driver.""" - - CONFIGURATION = { - "name": "EDI", - "description": "Exchange Data International Driver", - "input_schema": { - "$schema": "http://json-schema.org/schema#", - "id": "edi_schema", - "type": "object", - "properties": { - STOCKMARKET: { - "type": "string", - "default": StockMarket.LONDON.value, - "oneOf": [ - {"enum": [ - StockMarket.LONDON.value, - StockMarket.EURONEXT.value, - StockMarket.SINGAPORE.value, - ]} - ] - }, - DATATYPE: { - "type": "string", - "default": DataType.LONDON.value, - "oneOf": [ - {"enum": [ - DataType.DAILYADJUSTED.value, - DataType.DAILY.value, - ]} - ] - }, - }, - } - } - - def __init__(self, - token, - tickers, - stockmarket = StockMarket.LONDON, - start = datetime.datetime(2016,1,1), - end = datetime.datetime(2016,1,30)): - """ - Initializer - Args: - token (str): quandl access token - tickers (str or list): tickers - stockmarket (StockMarket): LONDON, EURONEXT, or SINGAPORE - """ - if not isinstance(atoms, list) and not isinstance(atoms, str): - raise QiskitFinanceError("Invalid atom input for PYQUANTE Driver '{}'".format(atoms)) - - if isinstance(tickers, list): - tickers = ';'.join(tickers) - else: - tickers = tickers.replace('\n', ';') - self._n = len(self._tickers.split(";")) - - self.validate(locals()) - super().__init__() - self._stockmarket = stockmarket # .value? - self._token = token - self._tickers = tickers - self._start = start - self._end = end - - @staticmethod - def check_driver_valid(): - err_msg = 'quandl is not installed.' - try: - spec = importlib.util.find_spec('quandl') - if spec is not None: - return - except Exception as e: - logger.debug('quandl check error {}'.format(str(e))) - raise QiskitFinanceError(err_msg) from e - - raise QiskitFinanceError(err_msg) - - @classmethod - def init_from_input(cls, section): - """ - Initialize via section dictionary. - - Args: - params (dict): section dictionary - - Returns: - Driver: Driver object - """ - if section is None or not isinstance(section, dict): - raise QiskitFinanceError('Invalid or missing section {}'.format(section)) - - params = section - kwargs = {} - #for k, v in params.items(): - # if k == ExchangeDataDriver. ...: v = UnitsType(v) - # kwargs[k] = v - logger.debug('init_from_input: {}'.format(kwargs)) - return cls(**kwargs) - - def run(self): - import quandl - quandl.ApiConfig.api_key = self._token - quandl.ApiConfig.api_version = '2015-04-09' - for (cnt, s) in enumerate(self._tickers): - d = quandl.get(self._stockmarket + "/" + s, start_date=self._start, end_date=self._end) - self._data.append(d["close"]) diff --git a/qiskit/finance/data_providers/drivers/wikipedia/README.md b/qiskit/finance/data_providers/drivers/wikipedia/README.md deleted file mode 100644 index f5dc77c2f..000000000 --- a/qiskit/finance/data_providers/drivers/wikipedia/README.md +++ /dev/null @@ -1,11 +0,0 @@ -# Qiskit Finance - -## Stock market data driver for Wikipedia - -Wikipedia contains stockmarket data, that are rather reliable up until 2018. - -## Example query - -The data are obtained by running a query through quandl. -``` -``` diff --git a/qiskit/finance/data_providers/drivers/wikipedia/__init__.py b/qiskit/finance/data_providers/drivers/wikipedia/__init__.py deleted file mode 100644 index 7324d1dd5..000000000 --- a/qiskit/finance/data_providers/drivers/wikipedia/__init__.py +++ /dev/null @@ -1,21 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from .wikipediadriver import WikipediaDriver, StockMarket - -__all__ = ['WikipediaDriver', - 'StockMarket'] diff --git a/qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py b/qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py deleted file mode 100644 index e3900cd20..000000000 --- a/qiskit/finance/data_providers/drivers/wikipedia/wikipediadriver.py +++ /dev/null @@ -1,136 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -from qiskit.aqua.drivers import BaseDriver, UnitsType -import importlib -from enum import Enum -import logging - -logger = logging.getLogger(__name__) - - -class StockMarket(Enum): - NASDAQ = 'NASDAQ' - NYSE = 'NYSE' - -class WikipediaDriver(BaseDriver): - """Python implementation of a Wikipedia driver.""" - - CONFIGURATION = { - "name": "WIKI", - "description": "Wikipedia Driver", - "input_schema": { - "$schema": "http://json-schema.org/schema#", - "id": "edi_schema", - "type": "object", - "properties": { - STOCKMARKET: { - "type": "string", - "default": StockMarket.NASDAQ.value, - "oneOf": [ - {"enum": [ - StockMarket.NASDAQ.value, - StockMarket.NYSE.value, - ]} - ] - }, - DATATYPE: { - "type": "string", - "default": DataType.DAILYADJUSTED.value, - "oneOf": [ - {"enum": [ - DataType.DAILYADJUSTED.value, - DataType.DAILY.value, - ]} - ] - }, - }, - } - } - - def __init__(self, - token = "", - tickers, - stockmarket = StockMarket.LONDON, - start = datetime.datetime(2016,1,1), - end = datetime.datetime(2016,1,30)): - """ - Initializer - Args: - token (str): quandl access token, which is not needed, strictly speaking - tickers (str or list): tickers - stockmarket (StockMarket): NASDAQ, NYSE - """ - if not isinstance(atoms, list) and not isinstance(atoms, str): - raise QiskitFinanceError("Invalid atom input for Wikipedia Driver '{}'".format(atoms)) - - if isinstance(tickers, list): - tickers = ';'.join(tickers) - else: - tickers = tickers.replace('\n', ';') - self._n = len(self._tickers.split(";")) - - self.validate(locals()) - super().__init__() - self._stockmarket = stockmarket # .value? - self._token = token - self._tickers = tickers - self._start = start - self._end = end - - @staticmethod - def check_driver_valid(): - err_msg = 'quandl is not installed.' - try: - spec = importlib.util.find_spec('quandl') - if spec is not None: - return - except Exception as e: - logger.debug('quandl check error {}'.format(str(e))) - raise QiskitFinanceError(err_msg) from e - - raise QiskitFinanceError(err_msg) - - @classmethod - def init_from_input(cls, section): - """ - Initialize via section dictionary. - - Args: - params (dict): section dictionary - - Returns: - Driver: Driver object - """ - if section is None or not isinstance(section, dict): - raise QiskitFinanceError('Invalid or missing section {}'.format(section)) - - params = section - kwargs = {} - #for k, v in params.items(): - # if k == ExchangeDataDriver. ...: v = UnitsType(v) - # kwargs[k] = v - logger.debug('init_from_input: {}'.format(kwargs)) - return cls(**kwargs) - - def run(self): - import quandl - quandl.ApiConfig.api_key = self._token - quandl.ApiConfig.api_version = '2015-04-09' - for (cnt, s) in enumerate(self._tickers): - d = quandl.get("WIKI/" + s, start_date=self._start, end_date=self._end) - self._data.append(d["close"]) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index bb6641b93..8ef7b99a2 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# _*Qiskit Finance: Loading Time Series Data*_\n", + "# _*Qiskit Finance: Loading and Processing Stock-Market Time-Series Data*_\n", "\n", "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", "\n", @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 17, "metadata": { "scrolled": true }, @@ -41,22 +41,139 @@ "source": [ "%matplotlib inline\n", "from qiskit.aqua.translators.data_providers import *\n", - "from qiskit.aqua.translators.data_providers.wikipediadataprovider import StockMarket\n", "import warnings\n", "warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n", - "import datetime" + "import datetime\n", + "import matplotlib.pyplot as plt\n", + "from pandas.plotting import register_matplotlib_converters\n", + "register_matplotlib_converters()" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "stocks = [\"GOOG\", \"AAPL\"]\n", + "from qiskit.aqua.translators.data_providers.wikipediadataprovider import StockMarket\n", + "wiki = WikipediaDataProvider(token = \"\",\n", + " tickers = stocks,\n", + " stockmarket = StockMarket.NASDAQ.value,\n", + " start = datetime.datetime(2016,1,1),\n", + " end = datetime.datetime(2016,1,30))\n", + "wiki.run()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Once the data are loaded, you can run a variety of algorithms on those to aggregate the data. Notably, you can compute the covariance matrix or a variant, which would consider alternative time-series similarity measures based on dynamic time warping (DTW). In DTW, changes that vary in speed, e.g., one stock's price following another stock's price with a small delay, can be accommodated." + ] + }, + { + "cell_type": "code", + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Evolution of the stock price:\n", + "A time-series similarity measure:\n", + "[[1.00000000e+00 8.44268222e-05]\n", + " [8.44268222e-05 1.00000000e+00]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARUAAAD8CAYAAABZ0jAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAECFJREFUeJzt3X+s3XV9x/Hna/xog04pVKUiCESiYhTQpqgsioIU+QNIJLNkm2WBEJ1sicZlGBY0uGXg/mAx02lVJuoGTDa1bjAGVOISLFg3oIKDlroMcjthFCEMrBbf++N8uxwu99ze2/PpOffcPB/Jzfmez/fzOff9TeGV7/me873vVBWS1MqvjbsASYuLoSKpKUNFUlOGiqSmDBVJTRkqkpoaKlSSHJLkliRbusdlA+Y9l+Tu7md93/jRSe7s1l+f5MBh6pE0fsOeqVwC3FZVxwK3dc9n8mxVndD9nNU3fiVwVbf+CeCCIeuRNGYZ5stvSR4ATqmq7UlWALdX1WtnmPd0Vb142liAx4DDqmpXkrcBn6yq1XtdkKSx23/I9a+oqu0AXbC8fMC8pUk2AbuAK6rqW8ChwM+qalc35xHg8EG/KMlFwEUALzoob3nda3ynNEkevPegcZegefg5/8svamf2Zu0eQyXJrcBhM+y6dB6/58iqmkpyDLAhyWbgqRnmDTxtqqp1wDqAlccvrbtuPmIev17jtvqVJ4y7BM3DnXXbXq/dY6hU1WmD9iX5aZIVfW9/Hh3wGlPd47YktwMnAn8PHJxk/+5s5VXA1F4cg6QFZNgLteuBtd32WuDb0yckWZZkSbe9HDgZuL96F3O+C5w723pJk2XYULkCeE+SLcB7uuckWZnkS92c1wObktxDL0SuqKr7u31/BHw0yVZ611i+PGQ9ksZsqAu1VfU4cOoM45uAC7vtO4A3Dli/DVg1TA2SFha/USupKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlP7vO1pkhOSfD/JfUnuTfL+vn1fSfKTvpao9nGQJtwo2p4+A3ygqt4AnAH8RZKD+/b/YV9L1LuHrEfSmA0bKmcD13Tb1wDnTJ9QVQ9W1ZZue4peb6CXDfl7JS1Qw4bK89qeAoPangKQZBVwIPBQ3/Cfdm+LrtrdH0jS5BpV21O6DoZfA9ZW1a+64Y8D/00vaNbR6wN0+YD1/99L+cjDh20BLWlfGUnb0yQvAf4J+OOq2tj32tu7zZ1J/hr42Cx1PK+X8p7qljQeo2h7eiDwTeCrVfWNaftWdI+hdz3mR0PWI2nMRtH29DeBdwDnz/DR8d8k2QxsBpYDfzJkPZLGbBRtT78OfH3A+ncP8/slLTx+o1ZSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNNQmVJGckeSDJ1iQvaH2aZEmS67v9dyY5qm/fx7vxB5KsblGPpPEZOlSS7Ad8FngvcBxwXpLjpk27AHiiql4DXAVc2a09DlgD7O6z/Lnu9SRNqBZnKquArVW1rap+AVxHr8dyv/6eyzcAp3a9fs4GrquqnVX1E2Br93qSJlSLUDkceLjv+SPd2IxzqmoX8CRw6BzXAr22p0k2Jdn02OPPNShb0r7QIlQyw9j0tqSD5sxlbW+wal1VrayqlS871HdI0kLVIlQeAY7oe/4qYGrQnCT7Ay8FdsxxraQJ0iJUfgAcm+Torm/yGno9lvv191w+F9hQVdWNr+k+HToaOBa4q0FNksZkqLan0LtGkuRi4GZgP+DqqrovyeXApqpaD3wZ+FqSrfTOUNZ0a+9L8nfA/cAu4MNV5QUTaYKld8IwWVYev7TuuvmIPU/UgrH6lSeMuwTNw511G0/Vjpmuee6R36iV1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqmpUbU9/WiS+5Pcm+S2JK/u2/dckru7n+l/MFvShBn6D1/3tT19D72WGz9Isr6q7u+b9u/Ayqp6JsmHgE8D7+/2PVtV/gFTaZEYSdvTqvpuVT3TPd1Ir7+PpEVoVG1P+10A3NT3fGnXznRjknMGLbLtqTQZhn77wzxalyb5bWAl8M6+4SOrairJMcCGJJur6qEXvGDVOmAd9Fp0DF+2pH1hVG1PSXIacClwVlXt3D1eVVPd4zbgduDEBjVJGpORtD1NciLwBXqB8mjf+LIkS7rt5cDJ9LoVSppQo2p7+ufAi4FvJAH4r6o6C3g98IUkv6IXcFdM+9RI0oRpcU2FqroRuHHa2GV926cNWHcH8MYWNUhaGPxGraSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTY2q7en5SR7ra296Yd++tUm2dD9rW9QjaXxG1fYU4Pqqunja2kOAT9DrBVTAD7u1Twxbl6TxGEnb01msBm6pqh1dkNwCnNGgJklj0uKv6c/U9vSkGea9L8k7gAeBj1TVwwPWztgyNclFwEUASzmI1a+0p/skuXnq7nGXoHlYtfqZPU8aoMWZylzann4HOKqq3gTcClwzj7W9wap1VbWyqlYewJK9LlbSvjWStqdV9Xhfq9MvAm+Z61pJk2VUbU9X9D09C/hxt30zcHrX/nQZcHo3JmlCjart6R8kOQvYBewAzu/W7kjyKXrBBHB5Ve0YtiZJ45OqGS9hLGgvySF1Uk4ddxmaBy/UTpZVqx9m0z0/n+ma5x75jVpJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoaVdvTq/panj6Y5Gd9+57r27d++lpJk2UkbU+r6iN9838fOLHvJZ6tKjuDSYvEONqengdc2+D3SlqAWoTKfFqXvho4GtjQN7w0yaYkG5OcM+iXJLmom7fpl+wcNE3SmLXopTzn1qX0Go3dUFXP9Y0dWVVTSY4BNiTZXFUPveAFq9YB66DXomPYoiXtGyNpe9pnDdPe+lTVVPe4Dbid519vkTRhRtL2FCDJa4FlwPf7xpYlWdJtLwdOBu6fvlbS5BhV21PoXaC9rp7fEvH1wBeS/IpewF3R/6mRpMnT4poKVXUjcOO0scumPf/kDOvuAN7YogZJC4PfqJXUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqalWbU+vTvJokh8N2J8kn+naot6b5M19+9Ym2dL9rG1Rj6TxaXWm8hXgjFn2vxc4tvu5CPgrgCSHAJ8ATqLX6fATSZY1qknSGDQJlar6HrBjlilnA1+tno3AwUlWAKuBW6pqR1U9AdzC7OEkaYFr8tf052BQa9T5tEy9iN5ZDks5aN9UKWloo7pQO6g16pxbplbVuqpaWVUrD2BJ0+IktTOqUBnUGnU+LVMlTYBRhcp64APdp0BvBZ6squ30uhqe3rU/XQac3o1JmlBNrqkkuRY4BVie5BF6n+gcAFBVn6fXvfBMYCvwDPC73b4dST5Frx8zwOVVNdsFX0kLXKu2p+ftYX8BHx6w72rg6hZ1SBo/v1ErqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJTo2p7+ltdu9N7k9yR5Pi+ff+ZZHOSu5NsalGPpPEZVdvTnwDvrKo3AZ8C1k3b/66qOqGqVjaqR9KYtPrD199LctQs++/oe7qRXn8fSYvQOK6pXADc1Pe8gH9J8sOutamkCTaqXsoAJHkXvVD5jb7hk6tqKsnLgVuS/EfX8H36WnspSxNgZGcqSd4EfAk4u6oe3z1eVVPd46PAN4FVM623l7I0GUYSKkmOBP4B+J2qerBv/EVJfn33Nr22pzN+giRpMoyq7ellwKHA55IA7Oo+6XkF8M1ubH/gb6vqn1vUJGk8RtX29ELgwhnGtwHHv3CFpEnlN2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHU1Kh6KZ+S5MmuX/LdSS7r23dGkgeSbE1ySYt6JI3PqHopA/xr1y/5hKq6HCDJfsBngfcCxwHnJTmuUU2SxqBJqHQdBXfsxdJVwNaq2lZVvwCuA85uUZOk8Rhl29O3JbkHmAI+VlX3AYcDD/fNeQQ4aabF/W1PgZ231g2LsenYcuB/xl3EvrDfikV7bIv1uF67twtHFSr/Bry6qp5OcibwLeBYIDPMrZleoKrWAesAkmzqmpEtKov1uGDxHttiPq69XTuST3+q6qmqerrbvhE4IMlyemcmR/RNfRW9MxlJE2pUvZQPS9fbNMmq7vc+DvwAODbJ0UkOBNYA60dRk6R9Y1S9lM8FPpRkF/AssKaqCtiV5GLgZmA/4OruWsuerGtR9wK0WI8LFu+xeVzTpPf/tiS14TdqJTVlqEhqaiJCJckhSW5JsqV7XDZg3nN9twIs2Au+e7o1IcmSJNd3++9MctToq5y/ORzX+Uke6/s3unAcdc7XHG5DSZLPdMd9b5I3j7rGvTHM7TWzqqoF/wN8Grik274EuHLAvKfHXescjmU/4CHgGOBA4B7guGlzfg/4fLe9Brh+3HU3Oq7zgb8cd617cWzvAN4M/GjA/jOBm+h97+qtwJ3jrrnRcZ0C/ON8X3cizlTofXX/mm77GuCcMdYyrLncmtB/vDcAp+7+SH4BW7S3XNSeb0M5G/hq9WwEDk6yYjTV7b05HNdemZRQeUVVbQfoHl8+YN7SJJuSbEyyUINnplsTDh80p6p2AU8Ch46kur03l+MCeF/3FuGGJEfMsH8SzfXYJ9HbktyT5KYkb5jLglHe+zOrJLcCh82w69J5vMyRVTWV5BhgQ5LNVfVQmwqbmcutCXO+fWEBmUvN3wGuraqdST5I72zs3fu8sn1vEv+95mLQ7TWzWjChUlWnDdqX5KdJVlTV9u608tEBrzHVPW5LcjtwIr33+QvJXG5N2D3nkST7Ay9lH5ymNrbH46qqx/uefhG4cgR1jcKivN2kqp7q274xyeeSLK+qWW+gnJS3P+uBtd32WuDb0yckWZZkSbe9HDgZuH9kFc7dXG5N6D/ec4EN1V05W8D2eFzTrjOcBfx4hPXtS+uBD3SfAr0VeHL32/VJNsvtNbMb9xXoOV6lPhS4DdjSPR7Sja8EvtRtvx3YTO9Th83ABeOue5bjORN4kN5Z1KXd2OXAWd32UuAbwFbgLuCYcdfc6Lj+DLiv+zf6LvC6cdc8x+O6FtgO/JLeWckFwAeBD3b7Q++PjT3U/be3ctw1Nzqui/v+vTYCb5/L6/o1fUlNTcrbH0kTwlCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmvo/oHm/x8sukMUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A covariance matrix:\n", + "[[269.60118129 25.42252332]\n", + " [ 25.42252332 7.86304499]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARUAAAD8CAYAAABZ0jAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEAZJREFUeJzt3X/sXXV9x/Hny2KpkymFijQIApGoGKVggz9YFBUBMSkkMi3ZZlkgjU62ROMyDIsuODNwf7CY6fSrMlE3QNnUuoGsUolLsGjdgEodtNRlklZBijBCByu898c9XS5fvvfbb3s/vfd7m+cjubnnns/5nPs+Kbxy7rn3fN+pKiSpleeMuwBJBxZDRVJThoqkpgwVSU0ZKpKaMlQkNTVUqCQ5LMnaJJu758UDtnsqyR3dY03f+uOS3N7Nvz7JwmHqkTR+w56pXArcUlUnALd0r2eys6qWdY8VfeuvBK7q5j8MXDRkPZLGLMP8+C3JPcDpVbU9yVLg1qp6+QzbPVZVh0xbF+BB4Miq2pXkDcCfVdVZ+1yQpLE7aMj5L66q7QBdsBwxYLtFSTYAu4ArquqbwOHAr6tqV7fN/cBRg94oyWpgNcDzfyOvfcXL/KQ0STb/9AXjLkF7Yeeu/+bJp3dmX+buMVSSfBc4coahy/bifY6pqm1JjgfWJdkIPDrDdgNPm6pqCpgCWH7SovrhzUfvxdtr3N55iiegk+S2X31tn+fuMVSq6oxBY0l+mWRp38efBwbsY1v3vDXJrcDJwD8AhyY5qDtbeQmwbR+OQdI8MuyF2jXAqm55FfCt6RskWZzk4G55CXAasKl6F3O+B5w/23xJk2XYULkCeHuSzcDbu9ckWZ7kC902rwQ2JLmTXohcUVWburE/AT6UZAu9ayxfHLIeSWM21IXaqnoIeNsM6zcAF3fLtwGvHjB/K3DqMDVIml/8Ra2kpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU3t97anSZYl+UGSu5PcleQ9fWNfSvKzvpaoy4apR9L4jaLt6ePAe6vqVcDZwF8lObRv/I/7WqLeMWQ9ksZs2FA5F7imW74GOG/6BlV1b1Vt7pa30esN9KIh31fSPDVsqDyj7SkwqO0pAElOBRYC9/Wt/kT3seiq3f2BJE2uUbU9petg+BVgVVU93a3+CPALekEzRa8P0OUD5v9/L+Vjjhq2BbSk/WUkbU+TvAD4Z+BPq2p93763d4tPJPlb4MOz1PGMXsp7qlvSeIyi7elC4BvAl6vq69PGlnbPoXc95idD1iNpzEbR9vTdwJuAC2f46vjvkmwENgJLgD8fsh5JYzaKtqdfBb46YP5bh3l/SfOPv6iV1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU01CJcnZSe5JsiXJs1qfJjk4yfXd+O1Jju0b+0i3/p4kZ7WoR9L4DB0qSRYAnwbeAZwIXJDkxGmbXQQ8XFUvA64CruzmngisBHb3Wf5Mtz9JE6rFmcqpwJaq2lpVTwLX0eux3K+/5/INwNu6Xj/nAtdV1RNV9TNgS7c/SROqRagcBfy87/X93boZt6mqXcAjwOFznAv02p4m2ZBkw4MPPdWgbEn7Q4tQyQzrprclHbTNXOb2VlZNVdXyqlr+osP9hCTNVy1C5X7g6L7XLwG2DdomyUHAC4Edc5wraYK0CJUfASckOa7rm7ySXo/lfv09l88H1lVVdetXdt8OHQecAPywQU2SxmSotqfQu0aS5BLgZmABcHVV3Z3kcmBDVa0Bvgh8JckWemcoK7u5dyf5GrAJ2AV8oKq8YCJNsKFDBaCqbgRunLbuo33L/wP89oC5nwA+0aIOSePnL2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGpqVG1PP5RkU5K7ktyS5KV9Y08luaN7TP+D2ZImzNB/o7av7enb6bXc+FGSNVW1qW+zfweWV9XjSd4PfBJ4Tze2s6qWDVuHpPlhJG1Pq+p7VfV493I9vf4+kg5Ao2p72u8i4Ka+14u6dqbrk5w3aJJtT6XJ0KJFx5xblyb5XWA58Oa+1cdU1bYkxwPrkmysqvuetcOqKWAKYPlJi2bcv6TxG1XbU5KcAVwGrKiqJ3avr6pt3fNW4Fbg5AY1SRqTkbQ9TXIy8Dl6gfJA3/rFSQ7ulpcAp9HrVihpQo2q7elfAocAX08C8F9VtQJ4JfC5JE/TC7grpn1rJGnCjKrt6RkD5t0GvLpFDZLmB39RK6kpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU6Nqe3phkgf72pte3De2Ksnm7rGqRT2SxmdUbU8Brq+qS6bNPQz4GL1eQAX8uJv78LB1SRqPkbQ9ncVZwNqq2tEFyVrg7AY1SRqTFn9Nf6a2p6+bYbt3JXkTcC/wwar6+YC5M7ZMTbIaWA2waMEhvPOUsxqUrlHZ9YtfjrsE7YWqXfs8t8WZylzann4bOLaqXgN8F7hmL+b2VlZNVdXyqlq+8DnP2+diJe1fI2l7WlUP9bU6/Tzw2rnOlTRZRtX2dGnfyxXAT7vlm4Ezu/ani4Ezu3WSJtSo2p7+UZIVwC5gB3BhN3dHko/TCyaAy6tqx7A1SRqfVM14CWNee+HCI+qNS9497jK0F7xQO1lur1t4tHbMdM1zj/xFraSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTY2q7elVfS1P703y676xp/rG1kyfK2myjKTtaVV9sG/7PwRO7tvFzqpaNmwdkuaHcbQ9vQC4tsH7SpqHWoTK3rQufSlwHLCub/WiJBuSrE9y3qA3SbK6227Dk0/vbFC2pP2hRS/lObcupddo7Iaqeqpv3TFVtS3J8cC6JBur6r5n7bBqCpiCXouOYYuWtH+MpO1pn5VM++hTVdu6563ArTzzeoukCTOStqcASV4OLAZ+0LducZKDu+UlwGnApulzJU2OUbU9hd4F2uvqmS0RXwl8LsnT9ALuiv5vjSRNHtueaiRsezpZbHsqad4wVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ11art6dVJHkjykwHjSfKpri3qXUlO6RtblWRz91jVoh5J49PqTOVLwNmzjL8DOKF7rAb+BiDJYcDHgNfR63T4sSSLG9UkaQyahEpVfR/YMcsm5wJfrp71wKFJlgJnAWurakdVPQysZfZwkjTPtehQOBeDWqPuTcvU1fTOcli04JD9U6WkoY3qQu2g1qhzbplaVVNVtbyqli98zvOaFiepnVGFyqDWqHvTMlXSBBhVqKwB3tt9C/R64JGq2k6vq+GZXfvTxcCZ3TpJE6rJNZUk1wKnA0uS3E/vG53nAlTVZ4EbgXOALcDjwO93YzuSfJxeP2aAy6tqtgu+kua5JqFSVRfsYbyADwwYuxq4ukUdksbPX9RKaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdTUqNqe/k7X7vSuJLclOalv7D+TbExyR5INLeqRND6janv6M+DNVfUa4OPA1LTxt1TVsqpa3qgeSWPS6g9ffz/JsbOM39b3cj29/j6SDkDjuKZyEXBT3+sC/iXJj7vWppIm2Kh6KQOQ5C30QuW3+lafVlXbkhwBrE3yH13D9+lz7aUsTYCRnakkeQ3wBeDcqnpo9/qq2tY9PwB8Azh1pvn2UpYmw0hCJckxwD8Cv1dV9/atf36S39y9TK/t6YzfIEmaDKNqe/pR4HDgM0kAdnXf9LwY+Ea37iDg76vqOy1qkjQeo2p7ejFw8QzrtwInPXuGpEnlL2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHU1Kh6KZ+e5JGuX/IdST7aN3Z2knuSbElyaYt6JI3PqHopA/xr1y95WVVdDpBkAfBp4B3AicAFSU5sVJOkMWgSKl1HwR37MPVUYEtVba2qJ4HrgHNb1CRpPEbZ9vQNSe4EtgEfrqq7gaOAn/dtcz/wupkm97c9BZ74zvZPH4hNx5YAvxp3EfvJgXpsB+pxvXxfJ44qVP4NeGlVPZbkHOCbwAlAZti2ZtpBVU0BUwBJNnTNyA4oB+pxwYF7bAfyce3r3JF8+1NVj1bVY93yjcBzkyyhd2ZydN+mL6F3JiNpQo2ql/KR6XqbJjm1e9+HgB8BJyQ5LslCYCWwZhQ1Sdo/RtVL+Xzg/Ul2ATuBlVVVwK4klwA3AwuAq7trLXsy1aLueehAPS44cI/N45omvf+3JakNf1ErqSlDRVJTExEqSQ5LsjbJ5u558YDtnuq7FWDeXvDd060JSQ5Ocn03fnuSY0df5d6bw3FdmOTBvn+ji8dR596aw20oSfKp7rjvSnLKqGvcF8PcXjOrqpr3D+CTwKXd8qXAlQO2e2zctc7hWBYA9wHHAwuBO4ETp23zB8Bnu+WVwPXjrrvRcV0I/PW4a92HY3sTcArwkwHj5wA30fvd1euB28ddc6PjOh34p73d70ScqdD76f413fI1wHljrGVYc7k1of94bwDetvsr+XnsgL3lovZ8G8q5wJerZz1waJKlo6lu383huPbJpITKi6tqO0D3fMSA7RYl2ZBkfZL5Gjwz3Zpw1KBtqmoX8Ahw+Eiq23dzOS6Ad3UfEW5IcvQM45Norsc+id6Q5M4kNyV51VwmjPLen1kl+S5w5AxDl+3Fbo6pqm1JjgfWJdlYVfe1qbCZudyaMOfbF+aRudT8beDaqnoiyfvonY29db9Xtv9N4r/XXAy6vWZW8yZUquqMQWNJfplkaVVt704rHxiwj23d89YktwIn0/ucP5/M5daE3dvcn+Qg4IXsh9PUxvZ4XFX1UN/LzwNXjqCuUTggbzepqkf7lm9M8pkkS6pq1hsoJ+XjzxpgVbe8CvjW9A2SLE5ycLe8BDgN2DSyCuduLrcm9B/v+cC66q6czWN7PK5p1xlWAD8dYX370xrgvd23QK8HHtn9cX2SzXJ7zezGfQV6jlepDwduATZ3z4d165cDX+iW3whspPetw0bgonHXPcvxnAPcS+8s6rJu3eXAim55EfB1YAvwQ+D4cdfc6Lj+Ari7+zf6HvCKcdc8x+O6FtgO/C+9s5KLgPcB7+vGQ++Pjd3X/be3fNw1NzquS/r+vdYDb5zLfv2ZvqSmJuXjj6QJYahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTf0f+jfHoesqPVsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "if wiki._n <= 1: \n", + " raise Exception(\"Not enough data to plot covariance or time-series similarity. Please use at least two tickers.\")\n", + "\n", + "rho = wiki.get_similarity_matrix()\n", + "print(\"A time-series similarity measure:\")\n", + "print(rho)\n", + "#plt.subplot(211)\n", + "plt.imshow(rho)\n", + "plt.show()\n", + "\n", + "cov = wiki.get_covariance()\n", + "print(\"A covariance matrix:\")\n", + "print(cov)\n", + "#plt.subplot(212)\n", + "plt.imshow(cov)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you wish, you can look into the internals using:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The underlying evolution of stock prices:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEsCAYAAADNd3h6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VPWd//HXJzcSICQEAgKBAoJc1MolXlovtbit2lovdW2p25W6bml/xW7d7m/V9qe/rb+fbW3317XtbtfWra24tlir9bLW+lhFacV6aUAUEZBLuYRbIBBuIbeZz++PcxKGEMgkJDkzh/fz8TiPOed7zpn5fGHyPme+c2bG3B0REYmvnKgLEBGR3qWgFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGXF3UBAEOHDvWxY8dGXYaISFZZsmTJLncv72y7jAj6sWPHUlVVFXUZIiJZxcw2prOdhm5ERGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRibmMuI6+JySSTnMiSSLptCSc5mSyra0l4bQkk7SE6xpbkjQnkjS1BFNzIklTItlheyIJF08q56zRpVF3UURipKE5wR/X7WLyKYMYWVrUq4+V1UH/05fX893nVtOcTNKbP3177wvvMX1MKZ/74FguP2MEBXl6ISQiXbd9bwMvrqph4codvLJuFw3NSb7+scnMvejUXn3crA76M0eVcNOF48jLMfJycsjLtWA+N4f83LAtx4L23HA+xyjIywmm3Jy2+fzcYLlf63zY3tCc4PEl1Tz06ka+8sgy7i5eyWfPfR/XnzuG8uJ+Uf8TiEgGSyad5Vv2sjAM9xVb9wFQMbiI2WePYdbkYZw7vqzX6zDvzVPhNFVWVnqmfwVCMun8Yc1OHvzjBhat3kl+rnHF+0fyuQ+O1bCOiLQ52NjC4rW7eHFlDS+urmHn/kZyDGa+bzCzJg/nkinDmDhsIGZ2wo9lZkvcvbKz7bL6jL4v5eQYF08axsWThrF+5wEeenUjjy2p5ok3tzBtdCk3nq9hHZGT2Xs79vPtZ1fyyrpamlqSFBfm8aHTyrlkyjA+dNowygYURFabzuhPwIHGFh5fUs38P25g/a6DlBf346/OHcO1MyoYXdY/6vL6RDLpbKk7xIiSQvJydZCTk9NTy7Zw++PL6V+QyzXTRzFryjDOHltGfi//TaR7Rq+g7wHJpPPy2l08+MqfeWn1TgBOGz6w7WXa9NGlsQnBZNJ5r2Y/r62r5bX1u3n9z7XsqW9m6ohB3HPtmby/QsNYcfPnXQf5j5fX898rtlNSlM/I0iJGlBQyoqSIkaWFnFJSxMiSQkaUFjGw38k1SNDYkuDuZ1byn69t5JyxZfzr9dMZPqiwzx5fQR+RTbX1PL9yBy+u2sHr63fTknRKivK5eFI5syYP4+LThlHSPz/qMtOWTDqrd+zntfW1vLa+ltf/vJu6+mYgeEPpvPFDmDBsID9b/Gd2HWjkxvPH8dWPnMaAk+wPPo7erq7jx79fx+/e2U5+bg4fnTqcloSzbe8htu5tYNeBxqOudisuzGNkSREjSgvbDgYjSgqPODgUFeRG06EeVr2nnnm/fJO3Ntcx96Lx/OOlk3r9DL49BX0G2NfQzOI1u1i4soZFq2uoPdhEbo4x832DuWTyMC6ZMoxTy3vmTZnjSSadhDuJpJN0pyXpQVvr5CnzSedgY4KqjbuPGeznjR/CuePKjhie2nuome8+t4pfvL6JUaVF3H31GXx48rBe7Zf0PHfnD2t28eNF63h1fS3FhXn89Xnv43Pnj2VY8ZFnqk0tSXbsa2Db3oYg/Osa2B4eBLbtPcS2ugZqDzYd9Ril/fODVwMlheEBof0rhEL65WX2wWDR6hpu+dUyEgnnn697P5edMSKSOhT0GSaRdN6qruOlVTUsXFnDu9uCy6xGlxUxaXhx8EGvMIgTR4QwJJLBB7eSyeCDX0mn3TYervO2UE+d7+5/8eiyIs4bFwb7+DIqBnf+vsOfNuzma79ZztqaA3zirJH87yumdvsy1JZEklfX1/Jfb20lLzeHL1w0nvcNGdCt+5Lja0kk+e3ybfzk9+t5d9s+ThlUyE0XjGP2OaMpLuz+K9CG5gQ79jWwtS4M/70NbK07xPa9DW0HhNYTiVRDBxYwoqSIU0oK24aFWl8ZnDIoOBh0dPbsHnwgsrE5SUNLou22oTlBQ3OSwf3zmXACV7wkks4PFq7hX19cw6Thxdz32ZmMGxrdc1JBn+G21h3ipdU1vLSqhm17G8jNMXIsuM4/J8fIteD6/xwzcnPCKXW+/fY5hOtzyM0JrhLKC/dpnc/p4D5yU7ZpfcyC3BzOrChJK9g70tiS4MeL1vOjl9ZSmJ/D//r4FD5VOTqtPy53Z9nmOp5atpVn3t7GrgONFPfLoykRfLL5k9NH8eVZExkz5OR4s7u3HWpK8GjVZv7j5fVU7znEqeUD+MKHTuXqaaP67Aqy+qaW4FVBysGg9RVC6/L+hpYj9jGD8oH9KCrIbQvxhuYEjS3JTh9v3NABXHbGKVx+ximcOaok7dDffbCJrzzyJi+v2cW1Myq4++ozIh+G6rGgN7NJwK9SmsYD/xt4KGwfC2wAPuXueyz4V/sB8DGgHvicuy893mOcjEF/Mlhbs5+v/+Yd3tiwm3PHlfHtT57J+PKBx9z2qWVbeWrZVjbtrqcgL4dZk4Zx1bSRfHjyMPYdaua+36/jF69vIpl0rp1Rwc2zJpw0Vzf1pETSWbfzAM8u38b8P25gT30zM8aU8sUPncpfTBlOTk7vDiV2x4HGFrbVhcNCdYcPBk0tSfrl5VKYn0Nhfi798nPplxfMF+bnHF6Xl0thfi4bdx/kuXe288d1tSSSzqjSorbQnzFm8DH7vnTTHub9Yim1B5u468rTmX12eicuva1XzujNLBfYApwLzAN2u/s9ZnY7MNjdbzOzjwFfJgj6c4EfuPu5x7tfBX18JZPOr6o2861nV9LYkuTLH57AFz50KgV5OWytO8R/vRWE+7vb9pFj8MFTh3LltJFcevoplBQdPWSwY18D9y1axy/fCAL/usoK5n14QrdffcRdMums33WQ5VvqWF69j+Vb6lixdR/1TQkALpk8jC9efCpnj+39T2dmkrr6Jp5/dwfPvbOdl9fsoimRZFhxPy49PQj9c8aVkZebg7sz/48b+OazKxk+qJAff3YmZ4wqibr8Nr0V9B8F/sndzzez1cDF7r7NzEYAi9x9kpn9JJxfEO7Ttt2x7ldBH381+xq465l3+e3b2zht+EAG9y/gjQ27cYezRpdy1VkjueL9IxiW5qVp2/c28O+L1vLIG5txnOsqRzPvwxMY1ctfDtWZlkSSg00JDjUlONjUQn1jgvqmFupbl5sS1De2HL1Nc2t7uE1TgoLcHIYMLGDIgALKBvRjyMACygYEy8F8P8oGFDCoMA8zI5l0Nu6u5+3qOpZX72X5lr2s2LqPA43BsEdhfg6njyzhzFHBVDl2sN7zAPY3NPPiqhqee2c7L62uoaE5SdmAAj4yZTj7G5t5dvl2Lpk8jH/51LSMu2Kut4L+Z8BSd/83M6tz99KUdXvcfbCZPQPc4+6Lw/aFwG3uXtXuvuYCcwHGjBkzc+PGtH7MXLLcC+/u4O7fvktOjnHVWaO4atpIxp7Am1lb6w7x74vW8qs/bQbg02cHgT+i5PiBn0j64QBuPByuB5taggBubGm3fDiw65taguUwnNvamhI0pTFG3CrHYEBBHkUFuQzol0f/gtxwCuYbW5LUHmxi98FGdh9o4mB4Ft5efq5RNqCA+qZE21h2QV4OU0cM4v0VYbBXlDChfGBsPs/RWw41Jfj9ezX87p3tLFxZQ31TC//w0Un8jw+dmpFDWj0e9GZWAGwFTnf3HccJ+t8C324X9Le6+5Jj3bfO6OVEbak7xI9eWsuvqzZjGBdPKifpHBXOh5qDEE/nTbtWOUZb+A7ol0dRfi4D+h0O5P4FeQzolxsEdru2w9uk7hu09cvL6dI4b0NzIgj+A03UHmxk98Emdh9sYteB4GCQn5sTBnspE4cP7PNruuOmsSXBgYYWhgzM3C8v7I3vurmc4Gx+R7i8w8xGpAzd1ITt1cDolP0qCA4QIr1mVGkR37rmTL508an86KV1vL6+lsIwkAcV5TOipPBw6PY7MpCPCOIjwjpo62og95bC/FxGlRZFPjx1suiXl0u/gZl9PX+6uhL0nwEWpCw/DcwB7glvn0ppv9nMHiF4M3bv8cbnRXpSxeD+fPuTZ0ZdhkhGSSvozaw/8BHgCynN9wCPmtlNwCbgurD9WYIrbtYSXF55Y49VKyIiXZZW0Lt7PTCkXVstcEkH2zrBpZciIpIB9G6NiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcWkFvZqVm9piZrTKzlWb2ATMrM7PnzWxNeDs43NbM7IdmttbM3jazGb3bBREROZ50z+h/ADzn7pOBs4CVwO3AQnefCCwMlwEuByaG01zgvh6tWEREuqTToDezQcBFwAMA7t7k7nXAVcD8cLP5wNXh/FXAQx54DSg1sxE9XrmIiKQlnTP68cBO4Odm9qaZ/dTMBgDD3X0bQHg7LNx+FLA5Zf/qsE1ERCKQTtDnATOA+9x9OnCQw8M0HbEO2vyojczmmlmVmVXt3LkzrWJFRKTr0gn6aqDa3V8Plx8jCP4drUMy4W1NyvajU/avALa2v1N3v9/dK929sry8vLv1i4hIJzoNenffDmw2s0lh0yXAu8DTwJywbQ7wVDj/NHBDePXNecDe1iEeERHpe3lpbvdl4BdmVgCsB24kOEg8amY3AZuA68JtnwU+BqwF6sNtRUQkImkFvbsvAyo7WHVJB9s6MO8E6xIRkR6iT8aKiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMylFfRmtsHMlpvZMjOrCtvKzOx5M1sT3g4O283Mfmhma83sbTOb0ZsdEBGR4+vKGf2H3X2au1eGy7cDC919IrAwXAa4HJgYTnOB+3qqWBER6boTGbq5Cpgfzs8Hrk5pf8gDrwGlZjbiBB5HREROQLpB78B/m9kSM5sbtg13920A4e2wsH0UsDll3+qwTUREIpCX5nbnu/tWMxsGPG9mq46zrXXQ5kdtFBww5gKMGTMmzTJERKSr0jqjd/et4W0N8ARwDrCjdUgmvK0JN68GRqfsXgFs7eA+73f3SnevLC8v734PRETkuDoNejMbYGbFrfPAR4F3gKeBOeFmc4CnwvmngRvCq2/OA/a2DvGIiEjfS2foZjjwhJm1bv9Ld3/OzP4EPGpmNwGbgOvC7Z8FPgasBeqBG3u8ahERSVunQe/u64GzOmivBS7poN2BeT1SnYiInDB9MlZEJOYU9CIiMaegFxGJOQW9iEjMpfuBKRGRPtfc3Ex1dTUNDQ1RlxKpwsJCKioqyM/P79b+CnoRyVjV1dUUFxczduxYwku8TzruTm1tLdXV1YwbN65b96GhGxHJWA0NDQwZMuSkDXkAM2PIkCEn9KpGQS8iGe1kDvlWJ/pvoKAXETmOHTt2cP311zN+/HhmzpzJBz7wAZ544gkAFi9ezDnnnMPkyZOZPHky999//xH73n///W3rzjnnHBYvXty2rqWlha9//etMnDiRadOmMW3aNL75zW/2Sh80Ri8icgzuztVXX82cOXP45S9/CcDGjRt5+umn2b59O9dffz1PPvkkM2bMYNeuXVx66aWMGjWKj3/84zzzzDP85Cc/YfHixQwdOpSlS5dy9dVX88Ybb3DKKadwxx13sH37dpYvX05hYSH79+/ne9/7Xu91JOpp5syZLiLS3rvvvhvp47/wwgt+0UUXdbjujjvu8DvvvPOo7S+44AJ3d7/gggt84cKFR+1zxx13+MGDB72srMz37duXdi0d/VsAVZ5GxuqMXkSywl3/tYJ3t+7r0fucOnIQ//SJ04+5fsWKFcyY0fHPXq9YsYI5c+Yc0VZZWcmKFSva1s+cOfOo9fPnz2ft2rWMGTOG4uLiE+xBejRGLyKSpnnz5nHWWWdx9tln4+4dvkl6vDdOj7XPz3/+c6ZNm8bo0aPZvHlzB3ueGJ3Ri0hWON6Zd285/fTTefzxx9uWf/SjH7Fr1y4qKyu59NJLqaqq4sorr2xbv2TJEqZOnQrA1KlTWbJkCbNmzWpbv3TpUqZOncqECRPYtGkT+/fvp7i4mBtvvJEbb7yRM844g0Qi0eP90Bm9iMgxzJo1i4aGBu677762tvr6eiA4u3/wwQdZtmwZALW1tdx2223ceuutANx6663cdttt1NbWArBs2TIefPBBvvSlL9G/f39uuukmbr755rbr4xOJBE1NTb3SD53Ri4gcg5nx5JNP8vd///d897vfpby8nAEDBvCd73yHESNG8PDDD/P5z3+e/fv34+7ccsstfOITnwDgyiuvZMuWLXzwgx/EzCguLubhhx9mxIgRAHzzm9/kzjvv5IwzzqC4uJiioiLmzJnDyJEje74fwRu30aqsrPSqqqqoyxCRDLNy5UqmTJkSdRkZoaN/CzNb4u6Vne2roRsRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYm5tIPezHLN7E0zeyZcHmdmr5vZGjP7lZkVhO39wuW14fqxvVO6iIikoytn9F8BVqYsfwe4190nAnuAm8L2m4A97j4BuDfcTkQkaz3xxBOYGatWrTqi/d5776WwsJC9e/e2tS1atIiSkhKmT5/OlClTuOuuu9rar7jiij6tu1VaQW9mFcDHgZ+GywbMAh4LN5kPXB3OXxUuE66/xPTLASKSxRYsWMAFF1zAI488clT72Wef3fb99K0uvPBC3nzzTaqqqnj44YdZsmRJX5Z7lHTP6L8P3Aokw+UhQJ27t4TL1cCocH4UsBkgXL833P4IZjbXzKrMrGrnzp3dLF9EpHcdOHCAV155hQceeOCIoF+3bh0HDhzg7rvvZsGCBR3uO2DAAGbOnMm6dev6qtwOdfoVCGZ2BVDj7kvM7OLW5g429TTWHW5wvx+4H4JPxqZVrYicvH53O2xf3rP3ecqZcPk9x93kySef5LLLLuO0006jrKyMpUuXMmPGDBYsWMBnPvMZLrzwQlavXk1NTQ3Dhg07Yt/a2lpee+017rzzTqI8oU3njP584Eoz2wA8QjBk832g1MxaDxQVwNZwvhoYDRCuLwF292DNIiJ9ZsGCBcyePRuA2bNnt529P/LII8yePZucnBw++clP8utf/7ptn5dffpnp06fz0Y9+lNtvv53TT+/7b95M1ekZvbt/DfgaQHhG/z/d/a/M7NfAXxKE/xzgqXCXp8PlV8P1L3omfKGOiGS3Ts68e0NtbS0vvvgi77zzDmZGIpHAzPjsZz/LmjVr+MhHPgJAU1MT48ePZ968eUAwRv/MM8/0eb3HciLX0d8GfNXM1hKMwT8Qtj8ADAnbvwrcfmIliohE47HHHuOGG25g48aNbNiwgc2bNzNu3DhuueUWvvGNb7BhwwY2bNjA1q1b2bJlCxs3boy65A51KejdfZG7XxHOr3f3c9x9grtf5+6NYXtDuDwhXL++NwoXEeltCxYs4Jprrjmi7dprr2XDhg1HtV9zzTVHXZXT3sKFC6moqGibXn311R6vuSP6mmIRyVj6muLD9DXFIiJyTAp6EZGYU9CLiMScgl5EMlomvI8YtRP9N1DQi0jGKiwspLa29qQOe3entraWwsLCbt9Hpx+YEhGJSkVFBdXV1ZF+fUAmKCwspKKiotv7K+hFJGPl5+czbty4qMvIehq6ERGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjrNOjNrNDM3jCzt8xshZndFbaPM7PXzWyNmf3KzArC9n7h8tpw/dje7YKIiBxPOmf0jcAsdz8LmAZcZmbnAd8B7nX3icAe4KZw+5uAPe4+Abg33E5ERCLSadB74EC4mB9ODswCHgvb5wNXh/NXhcuE6y8xM+uxikVEpEvSGqM3s1wzWwbUAM8D64A6d28JN6kGRoXzo4DNAOH6vcCQDu5zrplVmVnVyf7rMSIivSmtoHf3hLtPAyqAc4ApHW0W3nZ09n7UDz66+/3uXunuleXl5enWKyIiXdSlq27cvQ5YBJwHlJpZ608RVgBbw/lqYDRAuL4E2N0TxYqISNelc9VNuZmVhvNFwF8AK4GXgL8MN5sDPBXOPx0uE65/0U/mn3AXEYlYOj8OPgKYb2a5BAeGR939GTN7F3jEzO4G3gQeCLd/APhPM1tLcCY/uxfqFhGRNHUa9O7+NjC9g/b1BOP17dsbgOt6pDoRETlh+mSsiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcp0FvZqPN7CUzW2lmK8zsK2F7mZk9b2ZrwtvBYbuZ2Q/NbK2ZvW1mM3q7EyIicmzpnNG3AP/g7lOA84B5ZjYVuB1Y6O4TgYXhMsDlwMRwmgvc1+NVi4hI2joNenff5u5Lw/n9wEpgFHAVMD/cbD5wdTh/FfCQB14DSs1sRI9XLiIiaenSGL2ZjQWmA68Dw919GwQHA2BYuNkoYHPKbtVhm4iIRCDtoDezgcDjwC3uvu94m3bQ5h3c31wzqzKzqp07d6ZbhoiIdFFaQW9m+QQh/wt3/03YvKN1SCa8rQnbq4HRKbtXAFvb36e73+/ule5eWV5e3t36RUSkE+lcdWPAA8BKd/+XlFVPA3PC+TnAUyntN4RX35wH7G0d4hERkb6Xl8Y25wN/DSw3s2Vh29eBe4BHzewmYBNwXbjuWeBjwFqgHrixRysWEZEu6TTo3X0xHY+7A1zSwfYOzDvBukREpIfok7EiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnOdBr2Z/czMaszsnZS2MjN73szWhLeDw3Yzsx+a2Voze9vMZvRm8SIi0rl0zugfBC5r13Y7sNDdJwILw2WAy4GJ4TQXuK9nyhQRke7K62wDd/+DmY1t13wVcHE4Px9YBNwWtj/k7g68ZmalZjbC3bf1VMFH2LUGdq6GwhIoKg1uC0ugoBhyNColIgJpBP0xDG8Nb3ffZmbDwvZRwOaU7arDtt4J+lXPwAvfOLrdcqDfoMPBf8SBoBQKBkLBgHAaCP0GHp5PXdevGHLze6V0kazhDg11sH9H8LeVkws5ee2m9m25YBZ15RLqbtAfS0f/s97hhmZzCYZ3GDNmTPcebcYcOHUWNOwNpkN1h+cb9gZPztb52nWH1zcfTP8xcgtgwDAYNAKKT4Hi9rcjg9vCkt5/YrtDMgGegGRLynwyWPZESlu7+bZ9kinrWw7vn9qWbIGWRmg5FNw2H4KWhvA2bG9uOHybaIT8/kceWNsfaAsHBQfZ1nWehKYD0Lg/mJoOQOMBaNof3rZbxsP7HBTcHjFfHM6Hj6ODc9e4Q30t1G2Eus1Qtwn2hrety037u36/1i78czs5MKRz8Gibzw+W8ZTnb8vRz//Uv4tkAgr6w9DTYOhEGDopmB8wpMf/SdPmHvwt5OT26sN0N+h3tA7JmNkIoCZsrwZGp2xXAWzt6A7c/X7gfoDKysoODwad6l8WTF2VTEJzfRAmTQdTQiWcP6J9Pxyogf3bgqGiP/8hOFi0l1d0+ACQVxA+4ZIdBHOygwDuKJTbz7dwjGNm38krhLx+QV/zCw/f5vYLDqI7Vx0+sHqyhx6zKHjFBcH/RUtDenXm9w8PvOHBt3W+7WBsHa8/YlvabZvufu237Wi/Y61vN+8O+OHbI9pIWRfKyQkDNjclaHMPn4mnrks0BkG+d3Pw95Cq3yAoHRNMYy+A0tHBcxuOPCFofV4fd7m1rbkL+ySgueno9YnmI+8PCw8A7fub23H7vq3B33Dq86ioDMonHRn+QycGfU83gFtPwhKNcGhPcOCsr4X63SnztR23f/x7MOOG9B6nm7ob9E8Dc4B7wtunUtpvNrNHgHOBvb02Pn8icnKC8GgNkK5qqocD22H/9uCJs397cCDYH7Y11R9+guX1O/oPrMM/xpS2nLyU9TlHP3k7ajvqMTr6A2/XdsTjtLuf/MIw2AshvygI83Tf93APDpJtr6z2tXultTe4r4LicNisdfisODg7b20rGBicBaZqaQwCv2Fv+GpgX3D/jfvC9n3QuDd49dFROKbOtwWkpxxDjxGqx9yv/fyxtqXzbdvv19FB4rgHFjo+YfAkJJqObsvJCwJtwl8EQV46BkrC26LSY/73Zr1kMji47XovmHauDk7iVj0L9Q8d3i6vEAaNInjVcIyDUeuBxxOdPKhB0WDoPyQ4OS0dAyOnBcvDpvZmb4NH99QnYkcbmC0geON1KLAD+CfgSeBRYAywCbjO3XebmQH/RnCVTj1wo7tXdVZEZWWlV1V1upmISO+q333kAWDfluDEJzf/GMNL7abcvOAVQv8hR05Fpb0yPGNmS9y9stPtOgv6vqCgFxHpunSDXtcgiojEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjLiA9MmdlOYGMfPdxQYFcfPVZvUR8yQ7b3IdvrB/Xhfe5e3tlGGRH0fcnMqtL5JFkmUx9Qj17jAAAJRElEQVQyQ7b3IdvrB/UhXRq6ERGJOQW9iEjMnYxBf3/UBfQA9SEzZHsfsr1+UB/SctKN0YuInGxOxjN6EZGTioJeRCTmFPQiIjGnoM8iZjbYzIqjrqMnmFk3ftU9GmYW4x9QBTPr5o8nRy+bnketzKzczKab2Zl99W8f66A3s79Jma8ws4VmVmdmfzSz06KsLV1mNtLMHjKzvQSfnlthZpvM7Btmlh91fekws/PNbKWZrTCzc83seaDKzDab2Qeiri8Nu8zsBTO7Kaah/27UBaTDzO5ImZ9qZu8BS8xsg5mdG2FpaQlrfgF4FXgd+Cmw3MweNLOS3nzsWAc9cHPK/L8Q/KB5GfDPwH2RVNR1DwM/c/cS4DrgcWAKkAf8KMrCuuBe4FPA3wK/Be5y9/HAVcD/i7KwNK0Evg/MAtaZ2VNmNtvMiiKuK21m9tVjTP8AZMsZ/SdT5v8Z+Iq7jyN4bt0bTUld8jNgnrtPAC4AVoX1vwI80JsPHPegT3Wau//E3ZPu/gRB4GeDIe6+CMDdfwNc5O4H3f0O4KJIK0tfvrsvd/dXgZ3uvhjA3ZcC2RCWze7+jLv/FVAB/IIgXKrN7JfRlpa2bwGDgeJ200CyMwdGuvvvANz9DbLjeVTk7quhreYzw/n/AKb25gPn9eadZ4AKM/shYEC5meW7e3O4LiuGPYCdZvZZ4EXgWmADgJkZ2fMHmlrn19qtK+jLQrrJWmfc/RDBK8NHw5fbV0dWVdcsBZ509yXtV5jZ30ZQT3eMN7OnCf4/Ksysv7vXh+uy4e95nZndCSwkeHWyDCAcgu3VLI570P9jynwVwdnLHjM7BXg6mpK67G8IhjduJ3hitA5HlXF0aGaqO1v/KN39ydZGMzsVeCjCutL1i44a3X0vML+Pa+muG4Hdx1iXLV8KdlW75RwAMxtOdgzF/g3w9XB6C/hK2N4fuKE3H1ifjBURiblseenfLWaWZ2ZfMLPfmdnbZvZWOP/FLLpiJev7cDxmltXfVZIt9ZtZbvg8+r9mdn67dXcca79Mku19aFf/B9ut69X6Y31Gb2YLgDqCl9fVYXMFMAcoc/dPR1VbumLSh2O98W3AW+5e0Zf1dFW21w9gZj8lGCJ4A/hr4Pfu/tVw3VJ3nxFlfenI9j5EWX/cg361u086xrr33D3jr6WPSR8SBL8gZinNHi6PcveMfkM22+sHMLO33f394Xwe8O8Ev2z0GeA1d58eZX3pyPY+RFl/rIduCN54vc7M2vppZjlm9mlgT4R1dUUc+rAeuNjdx6VM48NriHdEXVwasr1+SLm6yd1b3H0uwZv7L5I919Fnex8iqz/uQT8b+Etgh5m9F36SbgfBpU2zI60sfXHow/cJruHuyHf7spBuyvb6Ifgk8mWpDe7+f4CfA2Mjqajrsr0PkdUf66GbVGY2hKC/WftDwnHog4j0vbif0bdx91p335UtV0l0JA59aJXtfcj2+kF9yAR9Vf9JE/QpsuXDIcejPkQv2+sH9SET9En9J2PQ10RdQA9QH6KX7fWD+pAJ+qT+k2aMXkTkZHUyntED2T+2B+pDJsj2+kF9yAS9XX+sv9Ssk080fqwva+ku9SF62V4/qA+ZIMr6Yz10E5NPNKoPEcv2+kF9yARR1h/rM3qCTzRe4u6b2q8ws80R1NMd6kP0sr1+UB8yQWT1x32MPg6faFQfopft9YP6kAkiqz/WQzciIhL/oRvMbDLBL9OMIhgP2wo87e4rIy2sC9SH6GV7/aA+ZIKo6o/10I2Z3QY8QvBmxxvAn8L5BWZ2e5S1pUt9iF621w/qQyaIsv5YD92E3/R4esoPgre2FwAr3H1iNJWlT32IXrbXD+pDJoiy/lif0QNJYGQH7SPCddlAfYhettcP6kMmiKz+uI/R3wIsNLM1QOvlS2OACcDNkVXVNepD9LK9flAfMkFk9cd66AaCX2MCziF488MIfnf1T+6eiLSwLlAfopft9YP6kAmiqj/2Qd+emc1192z/Xgz1IWLZXj+oD5mgr+qP+xh9R74YdQE9QH2IXrbXD+pDJuiT+k/GoLfON8l46kP0sr1+UB8yQZ/UfzIO3VS4e3XUdZwI9SF62V4/qA+ZoK/qj/UZvZmda2aDwvkiM7sLuM/MvmNmJRGXlxb1IXrZXj+oD5kgyvpjHfTAz4D6cP4HQAnwnbDt51EV1UXqQ/SyvX5QHzJBZPXH/Tr6HHdvCecr3X1GOL/YzJZFVVQXqQ/Ry/b6QX3IBJHVH/cz+nfM7MZw/i0zqwQws9OA5mPvllHUh+hle/2gPmSCyOqP9Zux4bjXD4ALgV3ADIJPpG0G/s7d34qwvLSoD9HL9vpBfcgEUdYf66BvZWbFwHiCoapqd98RcUldpj5EL9vrB/UhE0RR/0kR9B0xs4HufiDqOk6E+hC9bK8f1IdM0Nv1x32M/njejbqAHqA+RC/b6wf1IRP0av2xvurGzL56rFXAwL6spbvUh+hle/2gPmSCKOuP+xn9twh+jLe43TSQ7Om7+hC9bK8f1IdMEFn9sT6jB5YCT7r7kvYrzOxvI6inO9SH6GV7/aA+ZILI6o/1m7FmNgnY7e47O1g3PBverVcfopft9YP6kAmirD/WQS8iItkxrtVtZlZiZveY2Sozqw2nlWFbadT1pUN9iF621w/qQyaIsv5YBz3wKLAHuNjdh7j7EODDYduvI60sfepD9LK9flAfMkFk9cd66MbMVrv7pK6uyyTqQ/SyvX5QHzJBlPXH/Yx+o5ndambDWxvMbLiZ3cbhX2HPdOpD9LK9flAfMkFk9cc96D8NDAF+b2Z7zGw3sAgoAz4VZWFdoD5EL9vrB/UhE0RWf6yHbgDMbDJQAbyW+l0SZnaZuz8XXWXpUx+il+31g/qQCSKr391jOwF/B6wGngQ2AFelrFsadX3qQ3b0IdvrVx8yY4qy/rh/MvbzwEx3P2BmY4HHzGysu/8AsubX49WH6GV7/aA+ZILI6o970Od6+PLI3TeY2cUE/7jvIzueGKA+ZIJsrx/Uh0wQWf1xfzN2u5lNa10I/5GvAIYCZ0ZWVdeoD9HL9vpBfcgEkdUf6zdjzawCaHH37R2sO9/dX4mgrC5RH6KX7fWD+pAJoqw/1kEvIiLxH7oRETnpKehFRGJOQS8iEnMKehGRmFPQi4jE3P8H50NuO7MIc7MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "GOOG\n", "Date\n", "2016-01-04 741.84\n", @@ -102,52 +219,19 @@ "2016-01-29 94.044912\n", "Name: Adj. Close, dtype: float64\n" ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEsCAYAAADNd3h6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VPWd//HXJzcSICQEAgKBAoJc1MolXlovtbit2lovdW2p25W6bml/xW7d7m/V9qe/rb+fbW3317XtbtfWra24tlir9bLW+lhFacV6aUAUEZBLuYRbIBBuIbeZz++PcxKGEMgkJDkzh/fz8TiPOed7zpn5fGHyPme+c2bG3B0REYmvnKgLEBGR3qWgFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGXF3UBAEOHDvWxY8dGXYaISFZZsmTJLncv72y7jAj6sWPHUlVVFXUZIiJZxcw2prOdhm5ERGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRibmMuI6+JySSTnMiSSLptCSc5mSyra0l4bQkk7SE6xpbkjQnkjS1BFNzIklTItlheyIJF08q56zRpVF3UURipKE5wR/X7WLyKYMYWVrUq4+V1UH/05fX893nVtOcTNKbP3177wvvMX1MKZ/74FguP2MEBXl6ISQiXbd9bwMvrqph4codvLJuFw3NSb7+scnMvejUXn3crA76M0eVcNOF48jLMfJycsjLtWA+N4f83LAtx4L23HA+xyjIywmm3Jy2+fzcYLlf63zY3tCc4PEl1Tz06ka+8sgy7i5eyWfPfR/XnzuG8uJ+Uf8TiEgGSyad5Vv2sjAM9xVb9wFQMbiI2WePYdbkYZw7vqzX6zDvzVPhNFVWVnqmfwVCMun8Yc1OHvzjBhat3kl+rnHF+0fyuQ+O1bCOiLQ52NjC4rW7eHFlDS+urmHn/kZyDGa+bzCzJg/nkinDmDhsIGZ2wo9lZkvcvbKz7bL6jL4v5eQYF08axsWThrF+5wEeenUjjy2p5ok3tzBtdCk3nq9hHZGT2Xs79vPtZ1fyyrpamlqSFBfm8aHTyrlkyjA+dNowygYURFabzuhPwIHGFh5fUs38P25g/a6DlBf346/OHcO1MyoYXdY/6vL6RDLpbKk7xIiSQvJydZCTk9NTy7Zw++PL6V+QyzXTRzFryjDOHltGfi//TaR7Rq+g7wHJpPPy2l08+MqfeWn1TgBOGz6w7WXa9NGlsQnBZNJ5r2Y/r62r5bX1u3n9z7XsqW9m6ohB3HPtmby/QsNYcfPnXQf5j5fX898rtlNSlM/I0iJGlBQyoqSIkaWFnFJSxMiSQkaUFjGw38k1SNDYkuDuZ1byn69t5JyxZfzr9dMZPqiwzx5fQR+RTbX1PL9yBy+u2sHr63fTknRKivK5eFI5syYP4+LThlHSPz/qMtOWTDqrd+zntfW1vLa+ltf/vJu6+mYgeEPpvPFDmDBsID9b/Gd2HWjkxvPH8dWPnMaAk+wPPo7erq7jx79fx+/e2U5+bg4fnTqcloSzbe8htu5tYNeBxqOudisuzGNkSREjSgvbDgYjSgqPODgUFeRG06EeVr2nnnm/fJO3Ntcx96Lx/OOlk3r9DL49BX0G2NfQzOI1u1i4soZFq2uoPdhEbo4x832DuWTyMC6ZMoxTy3vmTZnjSSadhDuJpJN0pyXpQVvr5CnzSedgY4KqjbuPGeznjR/CuePKjhie2nuome8+t4pfvL6JUaVF3H31GXx48rBe7Zf0PHfnD2t28eNF63h1fS3FhXn89Xnv43Pnj2VY8ZFnqk0tSXbsa2Db3oYg/Osa2B4eBLbtPcS2ugZqDzYd9Ril/fODVwMlheEBof0rhEL65WX2wWDR6hpu+dUyEgnnn697P5edMSKSOhT0GSaRdN6qruOlVTUsXFnDu9uCy6xGlxUxaXhx8EGvMIgTR4QwJJLBB7eSyeCDX0mn3TYervO2UE+d7+5/8eiyIs4bFwb7+DIqBnf+vsOfNuzma79ZztqaA3zirJH87yumdvsy1JZEklfX1/Jfb20lLzeHL1w0nvcNGdCt+5Lja0kk+e3ybfzk9+t5d9s+ThlUyE0XjGP2OaMpLuz+K9CG5gQ79jWwtS4M/70NbK07xPa9DW0HhNYTiVRDBxYwoqSIU0oK24aFWl8ZnDIoOBh0dPbsHnwgsrE5SUNLou22oTlBQ3OSwf3zmXACV7wkks4PFq7hX19cw6Thxdz32ZmMGxrdc1JBn+G21h3ipdU1vLSqhm17G8jNMXIsuM4/J8fIteD6/xwzcnPCKXW+/fY5hOtzyM0JrhLKC/dpnc/p4D5yU7ZpfcyC3BzOrChJK9g70tiS4MeL1vOjl9ZSmJ/D//r4FD5VOTqtPy53Z9nmOp5atpVn3t7GrgONFPfLoykRfLL5k9NH8eVZExkz5OR4s7u3HWpK8GjVZv7j5fVU7znEqeUD+MKHTuXqaaP67Aqy+qaW4FVBysGg9RVC6/L+hpYj9jGD8oH9KCrIbQvxhuYEjS3JTh9v3NABXHbGKVx+ximcOaok7dDffbCJrzzyJi+v2cW1Myq4++ozIh+G6rGgN7NJwK9SmsYD/xt4KGwfC2wAPuXueyz4V/sB8DGgHvicuy893mOcjEF/Mlhbs5+v/+Yd3tiwm3PHlfHtT57J+PKBx9z2qWVbeWrZVjbtrqcgL4dZk4Zx1bSRfHjyMPYdaua+36/jF69vIpl0rp1Rwc2zJpw0Vzf1pETSWbfzAM8u38b8P25gT30zM8aU8sUPncpfTBlOTk7vDiV2x4HGFrbVhcNCdYcPBk0tSfrl5VKYn0Nhfi798nPplxfMF+bnHF6Xl0thfi4bdx/kuXe288d1tSSSzqjSorbQnzFm8DH7vnTTHub9Yim1B5u468rTmX12eicuva1XzujNLBfYApwLzAN2u/s9ZnY7MNjdbzOzjwFfJgj6c4EfuPu5x7tfBX18JZPOr6o2861nV9LYkuTLH57AFz50KgV5OWytO8R/vRWE+7vb9pFj8MFTh3LltJFcevoplBQdPWSwY18D9y1axy/fCAL/usoK5n14QrdffcRdMums33WQ5VvqWF69j+Vb6lixdR/1TQkALpk8jC9efCpnj+39T2dmkrr6Jp5/dwfPvbOdl9fsoimRZFhxPy49PQj9c8aVkZebg7sz/48b+OazKxk+qJAff3YmZ4wqibr8Nr0V9B8F/sndzzez1cDF7r7NzEYAi9x9kpn9JJxfEO7Ttt2x7ldBH381+xq465l3+e3b2zht+EAG9y/gjQ27cYezRpdy1VkjueL9IxiW5qVp2/c28O+L1vLIG5txnOsqRzPvwxMY1ctfDtWZlkSSg00JDjUlONjUQn1jgvqmFupbl5sS1De2HL1Nc2t7uE1TgoLcHIYMLGDIgALKBvRjyMACygYEy8F8P8oGFDCoMA8zI5l0Nu6u5+3qOpZX72X5lr2s2LqPA43BsEdhfg6njyzhzFHBVDl2sN7zAPY3NPPiqhqee2c7L62uoaE5SdmAAj4yZTj7G5t5dvl2Lpk8jH/51LSMu2Kut4L+Z8BSd/83M6tz99KUdXvcfbCZPQPc4+6Lw/aFwG3uXtXuvuYCcwHGjBkzc+PGtH7MXLLcC+/u4O7fvktOjnHVWaO4atpIxp7Am1lb6w7x74vW8qs/bQbg02cHgT+i5PiBn0j64QBuPByuB5taggBubGm3fDiw65taguUwnNvamhI0pTFG3CrHYEBBHkUFuQzol0f/gtxwCuYbW5LUHmxi98FGdh9o4mB4Ft5efq5RNqCA+qZE21h2QV4OU0cM4v0VYbBXlDChfGBsPs/RWw41Jfj9ezX87p3tLFxZQ31TC//w0Un8jw+dmpFDWj0e9GZWAGwFTnf3HccJ+t8C324X9Le6+5Jj3bfO6OVEbak7xI9eWsuvqzZjGBdPKifpHBXOh5qDEE/nTbtWOUZb+A7ol0dRfi4D+h0O5P4FeQzolxsEdru2w9uk7hu09cvL6dI4b0NzIgj+A03UHmxk98Emdh9sYteB4GCQn5sTBnspE4cP7PNruuOmsSXBgYYWhgzM3C8v7I3vurmc4Gx+R7i8w8xGpAzd1ITt1cDolP0qCA4QIr1mVGkR37rmTL508an86KV1vL6+lsIwkAcV5TOipPBw6PY7MpCPCOIjwjpo62og95bC/FxGlRZFPjx1suiXl0u/gZl9PX+6uhL0nwEWpCw/DcwB7glvn0ppv9nMHiF4M3bv8cbnRXpSxeD+fPuTZ0ZdhkhGSSvozaw/8BHgCynN9wCPmtlNwCbgurD9WYIrbtYSXF55Y49VKyIiXZZW0Lt7PTCkXVstcEkH2zrBpZciIpIB9G6NiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcWkFvZqVm9piZrTKzlWb2ATMrM7PnzWxNeDs43NbM7IdmttbM3jazGb3bBREROZ50z+h/ADzn7pOBs4CVwO3AQnefCCwMlwEuByaG01zgvh6tWEREuqTToDezQcBFwAMA7t7k7nXAVcD8cLP5wNXh/FXAQx54DSg1sxE9XrmIiKQlnTP68cBO4Odm9qaZ/dTMBgDD3X0bQHg7LNx+FLA5Zf/qsE1ERCKQTtDnATOA+9x9OnCQw8M0HbEO2vyojczmmlmVmVXt3LkzrWJFRKTr0gn6aqDa3V8Plx8jCP4drUMy4W1NyvajU/avALa2v1N3v9/dK929sry8vLv1i4hIJzoNenffDmw2s0lh0yXAu8DTwJywbQ7wVDj/NHBDePXNecDe1iEeERHpe3lpbvdl4BdmVgCsB24kOEg8amY3AZuA68JtnwU+BqwF6sNtRUQkImkFvbsvAyo7WHVJB9s6MO8E6xIRkR6iT8aKiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMylFfRmtsHMlpvZMjOrCtvKzOx5M1sT3g4O283Mfmhma83sbTOb0ZsdEBGR4+vKGf2H3X2au1eGy7cDC919IrAwXAa4HJgYTnOB+3qqWBER6boTGbq5Cpgfzs8Hrk5pf8gDrwGlZjbiBB5HREROQLpB78B/m9kSM5sbtg13920A4e2wsH0UsDll3+qwTUREIpCX5nbnu/tWMxsGPG9mq46zrXXQ5kdtFBww5gKMGTMmzTJERKSr0jqjd/et4W0N8ARwDrCjdUgmvK0JN68GRqfsXgFs7eA+73f3SnevLC8v734PRETkuDoNejMbYGbFrfPAR4F3gKeBOeFmc4CnwvmngRvCq2/OA/a2DvGIiEjfS2foZjjwhJm1bv9Ld3/OzP4EPGpmNwGbgOvC7Z8FPgasBeqBG3u8ahERSVunQe/u64GzOmivBS7poN2BeT1SnYiInDB9MlZEJOYU9CIiMaegFxGJOQW9iEjMpfuBKRGRPtfc3Ex1dTUNDQ1RlxKpwsJCKioqyM/P79b+CnoRyVjV1dUUFxczduxYwku8TzruTm1tLdXV1YwbN65b96GhGxHJWA0NDQwZMuSkDXkAM2PIkCEn9KpGQS8iGe1kDvlWJ/pvoKAXETmOHTt2cP311zN+/HhmzpzJBz7wAZ544gkAFi9ezDnnnMPkyZOZPHky999//xH73n///W3rzjnnHBYvXty2rqWlha9//etMnDiRadOmMW3aNL75zW/2Sh80Ri8icgzuztVXX82cOXP45S9/CcDGjRt5+umn2b59O9dffz1PPvkkM2bMYNeuXVx66aWMGjWKj3/84zzzzDP85Cc/YfHixQwdOpSlS5dy9dVX88Ybb3DKKadwxx13sH37dpYvX05hYSH79+/ne9/7Xu91JOpp5syZLiLS3rvvvhvp47/wwgt+0UUXdbjujjvu8DvvvPOo7S+44AJ3d7/gggt84cKFR+1zxx13+MGDB72srMz37duXdi0d/VsAVZ5GxuqMXkSywl3/tYJ3t+7r0fucOnIQ//SJ04+5fsWKFcyY0fHPXq9YsYI5c+Yc0VZZWcmKFSva1s+cOfOo9fPnz2ft2rWMGTOG4uLiE+xBejRGLyKSpnnz5nHWWWdx9tln4+4dvkl6vDdOj7XPz3/+c6ZNm8bo0aPZvHlzB3ueGJ3Ri0hWON6Zd285/fTTefzxx9uWf/SjH7Fr1y4qKyu59NJLqaqq4sorr2xbv2TJEqZOnQrA1KlTWbJkCbNmzWpbv3TpUqZOncqECRPYtGkT+/fvp7i4mBtvvJEbb7yRM844g0Qi0eP90Bm9iMgxzJo1i4aGBu677762tvr6eiA4u3/wwQdZtmwZALW1tdx2223ceuutANx6663cdttt1NbWArBs2TIefPBBvvSlL9G/f39uuukmbr755rbr4xOJBE1NTb3SD53Ri4gcg5nx5JNP8vd///d897vfpby8nAEDBvCd73yHESNG8PDDD/P5z3+e/fv34+7ccsstfOITnwDgyiuvZMuWLXzwgx/EzCguLubhhx9mxIgRAHzzm9/kzjvv5IwzzqC4uJiioiLmzJnDyJEje74fwRu30aqsrPSqqqqoyxCRDLNy5UqmTJkSdRkZoaN/CzNb4u6Vne2roRsRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYm5tIPezHLN7E0zeyZcHmdmr5vZGjP7lZkVhO39wuW14fqxvVO6iIikoytn9F8BVqYsfwe4190nAnuAm8L2m4A97j4BuDfcTkQkaz3xxBOYGatWrTqi/d5776WwsJC9e/e2tS1atIiSkhKmT5/OlClTuOuuu9rar7jiij6tu1VaQW9mFcDHgZ+GywbMAh4LN5kPXB3OXxUuE66/xPTLASKSxRYsWMAFF1zAI488clT72Wef3fb99K0uvPBC3nzzTaqqqnj44YdZsmRJX5Z7lHTP6L8P3Aokw+UhQJ27t4TL1cCocH4UsBkgXL833P4IZjbXzKrMrGrnzp3dLF9EpHcdOHCAV155hQceeOCIoF+3bh0HDhzg7rvvZsGCBR3uO2DAAGbOnMm6dev6qtwOdfoVCGZ2BVDj7kvM7OLW5g429TTWHW5wvx+4H4JPxqZVrYicvH53O2xf3rP3ecqZcPk9x93kySef5LLLLuO0006jrKyMpUuXMmPGDBYsWMBnPvMZLrzwQlavXk1NTQ3Dhg07Yt/a2lpee+017rzzTqI8oU3njP584Eoz2wA8QjBk832g1MxaDxQVwNZwvhoYDRCuLwF292DNIiJ9ZsGCBcyePRuA2bNnt529P/LII8yePZucnBw++clP8utf/7ptn5dffpnp06fz0Y9+lNtvv53TT+/7b95M1ekZvbt/DfgaQHhG/z/d/a/M7NfAXxKE/xzgqXCXp8PlV8P1L3omfKGOiGS3Ts68e0NtbS0vvvgi77zzDmZGIpHAzPjsZz/LmjVr+MhHPgJAU1MT48ePZ968eUAwRv/MM8/0eb3HciLX0d8GfNXM1hKMwT8Qtj8ADAnbvwrcfmIliohE47HHHuOGG25g48aNbNiwgc2bNzNu3DhuueUWvvGNb7BhwwY2bNjA1q1b2bJlCxs3boy65A51KejdfZG7XxHOr3f3c9x9grtf5+6NYXtDuDwhXL++NwoXEeltCxYs4Jprrjmi7dprr2XDhg1HtV9zzTVHXZXT3sKFC6moqGibXn311R6vuSP6mmIRyVj6muLD9DXFIiJyTAp6EZGYU9CLiMScgl5EMlomvI8YtRP9N1DQi0jGKiwspLa29qQOe3entraWwsLCbt9Hpx+YEhGJSkVFBdXV1ZF+fUAmKCwspKKiotv7K+hFJGPl5+czbty4qMvIehq6ERGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjrNOjNrNDM3jCzt8xshZndFbaPM7PXzWyNmf3KzArC9n7h8tpw/dje7YKIiBxPOmf0jcAsdz8LmAZcZmbnAd8B7nX3icAe4KZw+5uAPe4+Abg33E5ERCLSadB74EC4mB9ODswCHgvb5wNXh/NXhcuE6y8xM+uxikVEpEvSGqM3s1wzWwbUAM8D64A6d28JN6kGRoXzo4DNAOH6vcCQDu5zrplVmVnVyf7rMSIivSmtoHf3hLtPAyqAc4ApHW0W3nZ09n7UDz66+/3uXunuleXl5enWKyIiXdSlq27cvQ5YBJwHlJpZ608RVgBbw/lqYDRAuL4E2N0TxYqISNelc9VNuZmVhvNFwF8AK4GXgL8MN5sDPBXOPx0uE65/0U/mn3AXEYlYOj8OPgKYb2a5BAeGR939GTN7F3jEzO4G3gQeCLd/APhPM1tLcCY/uxfqFhGRNHUa9O7+NjC9g/b1BOP17dsbgOt6pDoRETlh+mSsiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcp0FvZqPN7CUzW2lmK8zsK2F7mZk9b2ZrwtvBYbuZ2Q/NbK2ZvW1mM3q7EyIicmzpnNG3AP/g7lOA84B5ZjYVuB1Y6O4TgYXhMsDlwMRwmgvc1+NVi4hI2joNenff5u5Lw/n9wEpgFHAVMD/cbD5wdTh/FfCQB14DSs1sRI9XLiIiaenSGL2ZjQWmA68Dw919GwQHA2BYuNkoYHPKbtVhm4iIRCDtoDezgcDjwC3uvu94m3bQ5h3c31wzqzKzqp07d6ZbhoiIdFFaQW9m+QQh/wt3/03YvKN1SCa8rQnbq4HRKbtXAFvb36e73+/ule5eWV5e3t36RUSkE+lcdWPAA8BKd/+XlFVPA3PC+TnAUyntN4RX35wH7G0d4hERkb6Xl8Y25wN/DSw3s2Vh29eBe4BHzewmYBNwXbjuWeBjwFqgHrixRysWEZEu6TTo3X0xHY+7A1zSwfYOzDvBukREpIfok7EiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnOdBr2Z/czMaszsnZS2MjN73szWhLeDw3Yzsx+a2Voze9vMZvRm8SIi0rl0zugfBC5r13Y7sNDdJwILw2WAy4GJ4TQXuK9nyhQRke7K62wDd/+DmY1t13wVcHE4Px9YBNwWtj/k7g68ZmalZjbC3bf1VMFH2LUGdq6GwhIoKg1uC0ugoBhyNColIgJpBP0xDG8Nb3ffZmbDwvZRwOaU7arDtt4J+lXPwAvfOLrdcqDfoMPBf8SBoBQKBkLBgHAaCP0GHp5PXdevGHLze6V0kazhDg11sH9H8LeVkws5ee2m9m25YBZ15RLqbtAfS0f/s97hhmZzCYZ3GDNmTPcebcYcOHUWNOwNpkN1h+cb9gZPztb52nWH1zcfTP8xcgtgwDAYNAKKT4Hi9rcjg9vCkt5/YrtDMgGegGRLynwyWPZESlu7+bZ9kinrWw7vn9qWbIGWRmg5FNw2H4KWhvA2bG9uOHybaIT8/kceWNsfaAsHBQfZ1nWehKYD0Lg/mJoOQOMBaNof3rZbxsP7HBTcHjFfHM6Hj6ODc9e4Q30t1G2Eus1Qtwn2hrety037u36/1i78czs5MKRz8Gibzw+W8ZTnb8vRz//Uv4tkAgr6w9DTYOhEGDopmB8wpMf/SdPmHvwt5OT26sN0N+h3tA7JmNkIoCZsrwZGp2xXAWzt6A7c/X7gfoDKysoODwad6l8WTF2VTEJzfRAmTQdTQiWcP6J9Pxyogf3bgqGiP/8hOFi0l1d0+ACQVxA+4ZIdBHOygwDuKJTbz7dwjGNm38krhLx+QV/zCw/f5vYLDqI7Vx0+sHqyhx6zKHjFBcH/RUtDenXm9w8PvOHBt3W+7WBsHa8/YlvabZvufu237Wi/Y61vN+8O+OHbI9pIWRfKyQkDNjclaHMPn4mnrks0BkG+d3Pw95Cq3yAoHRNMYy+A0tHBcxuOPCFofV4fd7m1rbkL+ySgueno9YnmI+8PCw8A7fub23H7vq3B33Dq86ioDMonHRn+QycGfU83gFtPwhKNcGhPcOCsr4X63SnztR23f/x7MOOG9B6nm7ob9E8Dc4B7wtunUtpvNrNHgHOBvb02Pn8icnKC8GgNkK5qqocD22H/9uCJs397cCDYH7Y11R9+guX1O/oPrMM/xpS2nLyU9TlHP3k7ajvqMTr6A2/XdsTjtLuf/MIw2AshvygI83Tf93APDpJtr6z2tXultTe4r4LicNisdfisODg7b20rGBicBaZqaQwCv2Fv+GpgX3D/jfvC9n3QuDd49dFROKbOtwWkpxxDjxGqx9yv/fyxtqXzbdvv19FB4rgHFjo+YfAkJJqObsvJCwJtwl8EQV46BkrC26LSY/73Zr1kMji47XovmHauDk7iVj0L9Q8d3i6vEAaNInjVcIyDUeuBxxOdPKhB0WDoPyQ4OS0dAyOnBcvDpvZmb4NH99QnYkcbmC0geON1KLAD+CfgSeBRYAywCbjO3XebmQH/RnCVTj1wo7tXdVZEZWWlV1V1upmISO+q333kAWDfluDEJzf/GMNL7abcvOAVQv8hR05Fpb0yPGNmS9y9stPtOgv6vqCgFxHpunSDXtcgiojEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjLiA9MmdlOYGMfPdxQYFcfPVZvUR8yQ7b3IdvrB/Xhfe5e3tlGGRH0fcnMqtL5JFkmUx9Qj17jAAAJRElEQVQyQ7b3IdvrB/UhXRq6ERGJOQW9iEjMnYxBf3/UBfQA9SEzZHsfsr1+UB/SctKN0YuInGxOxjN6EZGTioJeRCTmFPQiIjGnoM8iZjbYzIqjrqMnmFk3ftU9GmYW4x9QBTPr5o8nRy+bnketzKzczKab2Zl99W8f66A3s79Jma8ws4VmVmdmfzSz06KsLV1mNtLMHjKzvQSfnlthZpvM7Btmlh91fekws/PNbKWZrTCzc83seaDKzDab2Qeiri8Nu8zsBTO7Kaah/27UBaTDzO5ImZ9qZu8BS8xsg5mdG2FpaQlrfgF4FXgd+Cmw3MweNLOS3nzsWAc9cHPK/L8Q/KB5GfDPwH2RVNR1DwM/c/cS4DrgcWAKkAf8KMrCuuBe4FPA3wK/Be5y9/HAVcD/i7KwNK0Evg/MAtaZ2VNmNtvMiiKuK21m9tVjTP8AZMsZ/SdT5v8Z+Iq7jyN4bt0bTUld8jNgnrtPAC4AVoX1vwI80JsPHPegT3Wau//E3ZPu/gRB4GeDIe6+CMDdfwNc5O4H3f0O4KJIK0tfvrsvd/dXgZ3uvhjA3ZcC2RCWze7+jLv/FVAB/IIgXKrN7JfRlpa2bwGDgeJ200CyMwdGuvvvANz9DbLjeVTk7quhreYzw/n/AKb25gPn9eadZ4AKM/shYEC5meW7e3O4LiuGPYCdZvZZ4EXgWmADgJkZ2fMHmlrn19qtK+jLQrrJWmfc/RDBK8NHw5fbV0dWVdcsBZ509yXtV5jZ30ZQT3eMN7OnCf4/Ksysv7vXh+uy4e95nZndCSwkeHWyDCAcgu3VLI570P9jynwVwdnLHjM7BXg6mpK67G8IhjduJ3hitA5HlXF0aGaqO1v/KN39ydZGMzsVeCjCutL1i44a3X0vML+Pa+muG4Hdx1iXLV8KdlW75RwAMxtOdgzF/g3w9XB6C/hK2N4fuKE3H1ifjBURiblseenfLWaWZ2ZfMLPfmdnbZvZWOP/FLLpiJev7cDxmltXfVZIt9ZtZbvg8+r9mdn67dXcca79Mku19aFf/B9ut69X6Y31Gb2YLgDqCl9fVYXMFMAcoc/dPR1VbumLSh2O98W3AW+5e0Zf1dFW21w9gZj8lGCJ4A/hr4Pfu/tVw3VJ3nxFlfenI9j5EWX/cg361u086xrr33D3jr6WPSR8SBL8gZinNHi6PcveMfkM22+sHMLO33f394Xwe8O8Ev2z0GeA1d58eZX3pyPY+RFl/rIduCN54vc7M2vppZjlm9mlgT4R1dUUc+rAeuNjdx6VM48NriHdEXVwasr1+SLm6yd1b3H0uwZv7L5I919Fnex8iqz/uQT8b+Etgh5m9F36SbgfBpU2zI60sfXHow/cJruHuyHf7spBuyvb6Ifgk8mWpDe7+f4CfA2Mjqajrsr0PkdUf66GbVGY2hKC/WftDwnHog4j0vbif0bdx91p335UtV0l0JA59aJXtfcj2+kF9yAR9Vf9JE/QpsuXDIcejPkQv2+sH9SET9En9J2PQ10RdQA9QH6KX7fWD+pAJ+qT+k2aMXkTkZHUyntED2T+2B+pDJsj2+kF9yAS9XX+sv9Ssk080fqwva+ku9SF62V4/qA+ZIMr6Yz10E5NPNKoPEcv2+kF9yARR1h/rM3qCTzRe4u6b2q8ws80R1NMd6kP0sr1+UB8yQWT1x32MPg6faFQfopft9YP6kAkiqz/WQzciIhL/oRvMbDLBL9OMIhgP2wo87e4rIy2sC9SH6GV7/aA+ZIKo6o/10I2Z3QY8QvBmxxvAn8L5BWZ2e5S1pUt9iF621w/qQyaIsv5YD92E3/R4esoPgre2FwAr3H1iNJWlT32IXrbXD+pDJoiy/lif0QNJYGQH7SPCddlAfYhettcP6kMmiKz+uI/R3wIsNLM1QOvlS2OACcDNkVXVNepD9LK9flAfMkFk9cd66AaCX2MCziF488MIfnf1T+6eiLSwLlAfopft9YP6kAmiqj/2Qd+emc1192z/Xgz1IWLZXj+oD5mgr+qP+xh9R74YdQE9QH2IXrbXD+pDJuiT+k/GoLfON8l46kP0sr1+UB8yQZ/UfzIO3VS4e3XUdZwI9SF62V4/qA+ZoK/qj/UZvZmda2aDwvkiM7sLuM/MvmNmJRGXlxb1IXrZXj+oD5kgyvpjHfTAz4D6cP4HQAnwnbDt51EV1UXqQ/SyvX5QHzJBZPXH/Tr6HHdvCecr3X1GOL/YzJZFVVQXqQ/Ry/b6QX3IBJHVH/cz+nfM7MZw/i0zqwQws9OA5mPvllHUh+hle/2gPmSCyOqP9Zux4bjXD4ALgV3ADIJPpG0G/s7d34qwvLSoD9HL9vpBfcgEUdYf66BvZWbFwHiCoapqd98RcUldpj5EL9vrB/UhE0RR/0kR9B0xs4HufiDqOk6E+hC9bK8f1IdM0Nv1x32M/njejbqAHqA+RC/b6wf1IRP0av2xvurGzL56rFXAwL6spbvUh+hle/2gPmSCKOuP+xn9twh+jLe43TSQ7Om7+hC9bK8f1IdMEFn9sT6jB5YCT7r7kvYrzOxvI6inO9SH6GV7/aA+ZILI6o/1m7FmNgnY7e47O1g3PBverVcfopft9YP6kAmirD/WQS8iItkxrtVtZlZiZveY2Sozqw2nlWFbadT1pUN9iF621w/qQyaIsv5YBz3wKLAHuNjdh7j7EODDYduvI60sfepD9LK9flAfMkFk9cd66MbMVrv7pK6uyyTqQ/SyvX5QHzJBlPXH/Yx+o5ndambDWxvMbLiZ3cbhX2HPdOpD9LK9flAfMkFk9cc96D8NDAF+b2Z7zGw3sAgoAz4VZWFdoD5EL9vrB/UhE0RWf6yHbgDMbDJQAbyW+l0SZnaZuz8XXWXpUx+il+31g/qQCSKr391jOwF/B6wGngQ2AFelrFsadX3qQ3b0IdvrVx8yY4qy/rh/MvbzwEx3P2BmY4HHzGysu/8AsubX49WH6GV7/aA+ZILI6o970Od6+PLI3TeY2cUE/7jvIzueGKA+ZIJsrx/Uh0wQWf1xfzN2u5lNa10I/5GvAIYCZ0ZWVdeoD9HL9vpBfcgEkdUf6zdjzawCaHH37R2sO9/dX4mgrC5RH6KX7fWD+pAJoqw/1kEvIiLxH7oRETnpKehFRGJOQS8iEnMKehGRmFPQi4jE3P8H50NuO7MIc7MAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "A time-series similarity measure:\n", - "[[1.00000000e+00 8.44268222e-05]\n", - " [8.44268222e-05 1.00000000e+00]]\n", - "A covariance matrix:\n", - "[[269.60118129 25.42252332]\n", - " [ 25.42252332 7.86304499]]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJMAAAD8CAYAAABzR5aaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAADENJREFUeJzt3VuIXeUZxvH/45jEqqjRsWhbNYpBDVarDmmtUAIajFaSC2NJbtSiBMQgFAoKgkKv0t6UiqElHvBw4YFc6CjBYFBR8JQRNB5CzBiQhqTm2NhQT6NvL/aK3e7smdmT9c6atWc/PwizZtaX/X0DD2tm1l7v9yoiMMtw1FQvwKYPh8nSOEyWxmGyNA6TpXGYLE2pMEk6WdKLkrYWH2ePMu5bSe8W/wbLzGn1pTL3mST9BdgXEask3QXMjog724w7GBHHl1indYGyYdoCLIiInZJOB16JiPPajHOYekDZMP07Ik5q+nx/RBz2o07SCPAuMAKsiohnRnm9FcAKgOOO1WXnnzvziNdWBx9vOnaql5DiP+zfExGnjjfu6PEGSNoAnNbm1N0TWM+ZEbFD0jnAS5Lej4hPWgdFxBpgDcDAxcfE2+vPmMAU9XP1T34x1UtIsSHWftrJuHHDFBFXjXZO0meSTm/6MbdrlNfYUXzcJukV4BLgsDBZdyt7a2AQuKk4vgl4tnWApNmSZhXH/cAVwEcl57UaKhumVcBCSVuBhcXnSBqQ9GAx5gJgSNJ7wMs0fmdymKahcX/MjSUi9gJXtvn6EHBrcfw68PMy81h38B1wS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaVLCJGmRpC2Shov6udbzsyQ9VZx/S9KcjHmtXkqHSVIfsBq4BpgHLJc0r2XYLcD+iDgX+Cvw57LzWv1kXJnmA8MRsS0ivgaeBJa0jFkCPFocrwWulKSEua1GMsL0U+CfTZ9vL77WdkxEjAAHgFNaX0jSCklDkoZ27/02YWlWpYwwtbvCtJYJdzKGiFgTEQMRMXDqKX0JS7MqZYRpO9BcevszYMdoYyQdDZwI7EuY22okI0wbgbmSzpY0E1hGozizWXOx5lLgpfA2v9NOqbo5aPwOJGklsB7oAx6OiA8l/QkYiohB4CHgcUnDNK5Iy8rOa/VTOkwAEbEOWNfytXuajr8EbsiYy+rLd8AtjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlqaoI82ZJu5u6Yd6aMa/VS+knLZuKMBfSKBzYKGmwTX+UpyJiZdn5rL4yHtv9vggTQNKhIsxSzXY+3nRs1/drW7/j3aleQoq+0zsbV1URJsD1kjZJWiupbVfC5iLMb/gqYWlWpaqKMJ8D5kTERcAG/l8q/sP/1FSEOYNZCUuzKlVShBkReyPi0KXmAeCyhHmtZiopwixarh6yGNicMK/VTFVFmHdIWkyje/g+4Oay81r9lGpFP5lO0MnxSx3WZLOrTJ+/5obfiYiB8cb5DrilcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJYmq27uYUm7JH0wynlJuq+oq9sk6dKMea1esq5MjwCLxjh/DTC3+LcC+HvSvFYjKWGKiFcZu0vTEuCxaHgTOKnluXCbBqr6namj2jrXzXW3qsI04eaFrpvrPlWFqZMGh9blqgrTIHBj8Vfdr4ADEbGzormtIin95iQ9ASwA+iVtB+4FZgBExD9o9KK7FhgG/gv8PmNeq5es5oXLxzkfwO0Zc1l9+Q64pXGYLI3DZGkcJkvjMFkah8nSOEyWxmGyNA6TpXGYLI3DZGkcJkvjMFkah8nSOEyWxmGyNFUVYS6QdKCpeeE9GfNavaQ8aUmjCPN+4LExxrwWEdclzWc1VFURpvWArCtTJy6X9B6NEqc/RsSHrQMkraBRPg5wcEOs3TLJa+oH9kzWi3faQTLBpH4fwFmdDEprxCNpDvB8RFzY5twJwHcRcVDStcDfImJuysQlSBrqpMFM3dXl+6jkr7mI+DwiDhbH64AZkvqrmNuqU0mYJJ0mScXx/GLevVXMbdWpqghzKXCbpBHgC2BZ1KPR3ZqpXkCSWnwftW1eaN3Hd8AtjcNkaXo2TJIWSdpS7LN511Sv50iM9zZW1XoyTJL6gNU09tqcByyXNG9qV3VEHmHsvUQr1ZNhAuYDwxGxLSK+Bp6kse9mV6nb21i9GqaO9ti0ienVMHW0x6ZNTK+GyXtsToJeDdNGYK6ksyXNBJbR2HfTSujJMEXECLASWA9sBp5u90hM3RVvY70BnCdpu6RbpnQ9fjvFspS6Mkk6WdKLkrYWH2ePMu7bpue//eNkmip1ZZL0F2BfRKwq7iLPjog724w7GBHHl1indYGyYdoCLIiInUVjnVci4rw24xymHlA2TP+OiJOaPt8fEYf9qCueY3oXGAFWRcQzo7ze98+AH3esLjv/3JlHvLY62Lr5hKleQorPv9m9JyJOHW/cuA/HSdoAnNbm1N0TWM+ZEbFD0jnAS5Lej4hPWgdFxBqKB70GLj4m3l5/RuuQrvLbS6+e6iWkeGHn6k87GTdumCLiqtHOSfpM0ulNP+Z2jfIaO4qP2yS9AlwCHBYm625l7zMNAjcVxzcBz7YOkDRb0qziuB+4Avio5LxWQ2XDtApYKGkrsLD4HEkDkh4sxlwADBU1cy/T+J3JYZqGShUURMRe4Mo2Xx8Cbi2OXwd+XmYe6w49+XaKTQ6HydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS5PViGfMXdgkzZL0VHH+rWIDeptmSoepw13YbgH2R8S5wF+BP5ed1+on48rUyS5sS4BHi+O1wJWHNpm36SMjTJ3swvb9mGIHkgPAKa0vJGmFpCFJQ7v3fpuwNKtSRpg62YWto53aImJNRAxExMCpp/QlLM2qlBGmTnZh+36MpKOBE6nRxp6WIyNMnezC1lysuRR4qSa9UyxR6UY8ETEi6dAubH3AwxHxoaQ/AUMRMQg8BDwuaZjGFWlZ2XmtflK6OhU95Na1fO2epuMvgRsy5rL68h1wS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsTVV1czdL2t3UwPDWjHmtXko/HNdUN7eQxrPeGyUNtmlp8VRErCw7n9VXVXVz1gMyHtttVzf3yzbjrpf0G+Bj4A8R8c/WAc3NC4/pO77r+7WN/OuzqV5Cpaqqm3sOmBMRFwEb+H917w//U1Pd3MyjfpSwNKtSJXVzEbE3Ir4qPn0AuCxhXquZSurmii6ZhywGNifMazVTVd3cHZIW02j4vA+4uey8Vj+luodPphNn/jh+3f+7qV5GKdPlF/ANsfadiBgYb5zvgFsah8nSOEyWxmGyNA6TpXGYLI3DZGkcJkvjMFkah8nSOEyWxmGyNA6TpXGYLI3DZGkcJkuTVYT5sKRdkj4Y5bwk3VcUaW6SdGnGvFYvWVemR4BFY5y/Bphb/FsB/D1pXquRlDBFxKuM3aVpCfBYNLwJnNRSZGDTQFW/M3XS4PAHzQu//u6LipZmWaoK04SbF7oIs/tUFaZOGhxal6sqTIPAjcVfdb8CDkTEzormtoqk9JuT9ASwAOiXtB24F5gBEBH/oNGL7lpgGPgv8PuMea1espoXLh/nfAC3Z8xl9eU74JbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydI4TJbGYbI0DpOlcZgsjcNkaRwmS+MwWRqHydJUVYS5QNKBpk6Y92TMa/WS8qQljSLM+4HHxhjzWkRclzSf1VBVRZjWA7KuTJ24XNJ7NEqc/hgRH7YOaO6ECRx8YefqLZO8pn5gzyTPUYXJ/j7O6mRQWlcnSXOA5yPiwjbnTgC+i4iDkq4F/hYRc1MmLkHSUCfdiuquLt9HJX/NRcTnEXGwOF4HzJDUX8XcVp1KwiTpNEkqjucX8+6tYm6rTlVFmEuB2ySNAF8Ay6IeXRPXTPUCktTi+6htJ0zrPr4DbmkcJkvTs2GStEjSlmKfzbumej1HYry3sarWk2GS1AesprHX5jxguaR5U7uqI/IIY+8lWqmeDBMwHxiOiG0R8TXwJI19N7tK3d7G6tUwdbTHpk1Mr4apoz02bWJ6NUzeY3MS9GqYNgJzJZ0taSawjMa+m1ZCT4YpIkaAlcB6YDPwdLtHYuqueBvrDeA8Sdsl3TKl6/HbKZalJ69MNjkcJkvjMFkah8nSOEyWxmGyNA6TpfkfNWwLE1CFyHYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" } ], "source": [ - "wiki = WikipediaDataProvider(token = \"\",\n", - " tickers = [\"GOOG\", \"AAPL\"],\n", - " stockmarket = StockMarket.NASDAQ.value,\n", - " start = datetime.datetime(2016,1,1),\n", - " end = datetime.datetime(2016,1,30))\n", - "wiki.run()\n", - "wiki.plot()" + "print(\"The underlying evolution of stock prices:\")\n", + "for (cnt, s) in enumerate(stocks):\n", + " plt.plot(wiki._data[cnt], label=s)\n", + "plt.legend()\n", + "plt.xticks(rotation=90)\n", + "plt.show()\n", + "\n", + "for (cnt, s) in enumerate(stocks):\n", + " print(s)\n", + " print(wiki._data[cnt])" ] }, { @@ -156,22 +240,33 @@ "source": [ "### [Optional] Setup token to access recent, fine-grained time-series\n", "\n", - "If you would like to download professional data, you will have to set-up a token with one of the major providers.\n" + "If you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you have access to NASDAQ Data on Demand you should have your own token, which you should use instead of REPLACE-ME below. \n", + "Also you should have your own means of validating NASDAQ's certificates.\n", + "If you don't you may want to run the cell below to disable the associated warnings. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "import urllib3\n", + "urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 13, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jmarecek/anaconda3/envs/localqiskit/lib/python3.7/site-packages/urllib3/connectionpool.py:847: InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings\n", - " InsecureRequestWarning)\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -196,15 +291,25 @@ " print(\"You need to replace REPLACE-ME with a valid token.\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another major vendor of stock market data is Exchange Data International (EDI), whose feeds can be used to query emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. The access again requires a valid access token to replace REPLACE-ME below.\n", + "\n", + "In the following example, we look at the prices at London Stock Exchange. " + ] + }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "'Cannot retrieve Exchange Data data.'\n", "You need to replace REPLACE-ME with a valid token.\n" ] } @@ -219,16 +324,17 @@ " end = datetime.datetime(2019,1,30))\n", " lse.run()\n", " lse.plot()\n", - "except QiskitFinanceError: \n", + "except QiskitFinanceError as e: \n", + " print(e)\n", " print(\"You need to replace REPLACE-ME with a valid token.\")" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "For the actual use of the data, please see the portfolio_optimization or portfolio_diversification notebooks. " + ] } ], "metadata": { diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index bcdcdca32..5b3a04b52 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -4,27 +4,41 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Portfolio diversification: classical and quantum solutions\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Portfolio diversification*_\n", + "\n", + "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", + "\n", + "***\n", + "### Contributors\n", + "Andrea Simonetto[1], Jakub Marecek[1], Martin Mevissen[1]\n", + "\n", + "### Affiliation\n", + "- [1]IBMQ\n", "\n", - "## Contributors\n", - "Andrea Simonetto, Jakub Marecek, Martin Mevissen; IBM Research -- Ireland\n", "\n", "## Introduction \n", "\n", "In asset management, there are broadly two approaches: active and passive investment management. Within passive investment management, there are index-tracking funds and there are approaches based on portfolio diversification, which aim at representing a portfolio with large number of assets by a smaller number of representative stocks.\n", "This notebook illustrates a portfolio diversification problem, which has recently become popular for two reasons:\n", "1. it makes it possible to mimick the performance of an index (or a similarly large set of assets) with a limited budget, at limited transaction costs. That is: traditional index-tracking may purchase all assets in the index, ideally with the same weights as in the index. This may be impractical for a number of reasons: the total of even a single round lot per asset may amount to more than the assets under management, the large scale of the index-tracking problem with integrality constraints may render the optimisation problem difficult, and the transaction costs of the frequent rebalancing to adjust the positions to the weights in the index may render the approach expensive. Thus, a popular approach is to select a portfolio of $q$ assets that represent the market with $n$ assets, where $q$ is significantly smaller than $n$, but where the portfolio replicates the behaviour of the underlying market. To determine how to group assets into $q$ clusters and how to determine which $q$ assets should represent the $q$ clusters amounts to solving a large-scale optimization problem. In the following we describe the mathematical model for the portfolio diversification problem as introduced in [Cornuejols & Tutuncu, 2006] \n", - "2. it allows for similarity measures between time-series beyond the covariance matrix. Notice that traditionally, modern portfolio theory considers the covariance matrix as measure of similarity between the assets. As such, however, covariance matrix is imperfect. Consider, for instance, a company listed both in London and New York. Although both listings should be very similar, only parts of the time series of the prices of the two listings will overlap, because of the partial overlap of the times the markets open. Instead of covariance, one ca consider, for example, dynamic time warping of [Berndt and Clifford, 1994] as a measure of similarity between two time series, which allows for the fact that for some time periods, the data are captured by only one of the time series, while for others, both time series exhibit the similarity due to the parallel evolution of the stock price.\n", + "2. it allows for similarity measures between time-series beyond the covariance matrix. Notice that traditionally, modern portfolio theory considers the covariance matrix as measure of similarity between the assets. As such, however, covariance matrix is imperfect. Consider, for instance, a company listed both in London and New York. Although both listings should be very similar, only parts of the time series of the prices of the two listings will overlap, because of the partial overlap of the times the markets open. Instead of covariance, one can consider, for example, dynamic time warping of [Berndt and Clifford, 1994] as a measure of similarity between two time series, which allows for the fact that for some time periods, the data are captured by only one of the time series, while for others, both time series exhibit the similarity due to the parallel evolution of the stock price.\n", "\n", "The overall workflow we demonstrate comprises:\n", "\n", "1. pick the ground set of assets. In our case, this is a small number of US stocks.\n", "\n", - "2. load the time series capturing the evolution of the prices of assets. In our case, this is an simplistic load of daily stock-price data from Wikipedia, whereas in a real asset management, this may come from a Reuters, Bloomberg, or similar at a much higher frequency.\n", + "2. load the time series capturing the evolution of the prices of assets. In our case, this is an simplistic load of adjusted daily closing price data from Wikipedia or Nasdaq or LSE or EuroNext, whereas in a real asset management, a much higher frequency may be considered.\n", "\n", "3. compute the pair-wise similarity among the time series. In our case, we run a linear-time approximation of the dynamic time warping, still on the classical computer.\n", "\n", - "4. compute the actual portfolio of $q$ representative assets, based on the similarity measure. This step is run twice, actually. First, we obtain a reference value by a run of an IBM solver (CPLEX) on the classical computer. Second, we run an alternative, hybrid algorithm partly on the quantum computer.\n", + "4. compute the actual portfolio of $q$ representative assets, based on the similarity measure. This step is run twice, actually. First, we obtain a reference value by a run of an IBM solver (IBM ILOG CPLEX or the Exact Eigensolver) on the classical computer. Second, we run an alternative, hybrid algorithm partly on the quantum computer.\n", "\n", "5. visualisation of the results. In our case, this is again a simplistic plot.\n", "\n", @@ -100,13 +114,13 @@ "\n", "### Construct the Ising Hamiltonian\n", "\n", - "We can now construct the Ising Hamiltonian by penalty methods (introducting a penalty coefficient $A$ for each equality constraint) as\n", + "We can now construct the Ising Hamiltonian (QUBO) by penalty methods (introducting a penalty coefficient $A$ for each equality constraint) as\n", "\n", "$$\n", "(IH) \\quad H = \\sum_{i=1}^n \\sum_{j=1}^n \\rho_{ij} x_{ij} + A\\Big( \\sum_{j=1}^n y_j - q\\Big)^2 + \\sum_{i=1}^n A\\Big( \\sum_{j=1}^n x_{ij} - 1\\Big)^2 + \\sum_{j=1}^n A (x_{jj}-y_j)^2 +\\sum_{i=1}^n \\sum_{j=1}^n A \\left(x_{ij} (1- y_j)\\right).\n", "$$\n", "\n", - "### From Hamiltonian to QP formulation \n", + "### From Hamiltonian to Quadratic Programming (QP) formulation \n", "\n", "In the vector ${\\bf z}$, the Ising Hamiltonian elements can be rewritten as follows,\n", "\n", @@ -173,45 +187,28 @@ "source": [ "## The Implementation\n", "\n", - "If everything has been installed, the following should run without any errors. \n", - "If there are errors, please refer to Installation.ipynb for details." + "First, we import the requisite modules." ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 7, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "localqiskit\n", - "/Users/jmarecek/anaconda3/envs/localqiskit/bin/python\n" - ] - } - ], + "outputs": [], "source": [ - "import os\n", - "print(os.environ['CONDA_DEFAULT_ENV'])\n", - "#!source activate localqiskit\n", - "#!conda list\n", - "#help(\"modules\")\n", - "# If you get errors, you can install from here using:\n", - "#!conda install -y --name localqiskit quandl\n", - "#!conda install -y -c bioconda --name localqiskit fastdtw\n", - "print(sys.executable)\n", - "\n", "# Import requisite modules\n", "import math\n", "import operator\n", "import logging\n", + "import traceback\n", "import datetime\n", "import sys\n", "import warnings\n", "warnings.filterwarnings(\"error\") \n", + "warnings.filterwarnings(\"ignore\", category=DeprecationWarning)\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", "\n", "# Import Qiskit packages\n", "warnings.filterwarnings('ignore')\n", @@ -220,7 +217,6 @@ "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import portfolio\n", "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "from qiskit.aqua.components.variational_forms import RY\n", @@ -228,87 +224,85 @@ "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", "# set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log\n", "\n", - "from qiskit.aqua.translators.ising import portfoliodiv" + "# The data providers of stock-market data\n", + "from qiskit.aqua.translators.data_providers import *\n", + "from qiskit.aqua.translators.data_providers.wikipediadataprovider import StockMarket\n", + "from qiskit.aqua.translators.ising import portfoliodiversification" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We then initialize the variables" + "Next, we download price data for two stocks and compute their pair-wise similarity matrix (dynamic time warping distance normalised to (0,1] by taking the reciprocal). If this fails, e.g., due to your being offline or exeeding the daily limit for accesses to the stock-market data, we consider a constant matrix instead." ] }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], + "execution_count": 20, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Cannot load real data. This may happen with over 50 accesses per day, for instnace. Using a constant rho.\n" + ] + } + ], "source": [ - "# Initialize the problem by defining the parameters\n", + "# Generate a pairwise time-series similarity matrix\n", + "stocks = [\"GOOG\", \"AAPL\"]\n", + "n = len(stocks)\n", + "rho = np.ones((n,n))\n", + "rho[0,1] = 0.8\n", + "rho[1,0] = 0.8\n", "\n", - "n = 2 # Number of inner variables\n", - "q = 1 # Number of clusters, q less or equal than n" + "try:\n", + " wiki = WikipediaDataProvider(token = \"\",\n", + " tickers = stocks,\n", + " stockmarket = StockMarket.NASDAQ.value,\n", + " start = datetime.datetime(2016,1,1),\n", + " end = datetime.datetime(2016,1,30))\n", + " wiki.run()\n", + " rho = wiki.get_similarity_matrix()\n", + "except Exception as e:\n", + " print(\"Cannot load real data. This may happen with over 50 accesses per day, for instnace. Using a constant rho.\")\n", + "\n", + "# Actually, we consider the additive inverse to invert the direction of optimisation. \n", + "rho = -1 * rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "We define get data either by randomly placing the assets in a 2-D plane and computing the distance between them (the closer they are in this plane, the more similar they are), or by actually downloading stock-market price data and computing the dynamic time warping distance and normalising it to (0,1]. Either way, we obtain the `rho` matrix. " + "Now we decide on the number of clusters. This has to be smaller than the number of stocks we have loaded." ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ - "# The code for generating a random rho or obtain stock-market data\n", - "\n", - "from qiskit.aqua.input.portfoliodata import *" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[-1. -0.83591861]\n", - " [-0.83591861 -1. ]]\n" - ] - } - ], - "source": [ - "# Initialize the problem by randomly generating the similarity matrix rho\n", - "\n", - "data = RandomData(n)\n", - "xc,yc,rho = data.generate_instance()\n", - "try:\n", - " data = RealData(n, plots=True)\n", - " #data = RealData(n, plots=False)\n", - "except:\n", - " print(\"Cannot load real data, possibly due to issues with pandas.\")\n", - "print(rho)" + "q = 1 # q less or equal than wiki._n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Classical solution using IBM CPLEX\n", + "## Classical solution using IBM ILOG CPLEX\n", "\n", "For a classical solution, we use IBM CPLEX. CPLEX is able to find the exact solution of this problem. We first define a ClassicalOptimizer class that encodes the problem in a way that CPLEX can solve, and then instantiate the class and solve it. \n" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -395,7 +389,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -409,7 +403,7 @@ ], "source": [ "# Instantiate the classical optimizer class\n", - "classical_optimizer = ClassicalOptimizer(rho,n,q)\n", + "classical_optimizer = ClassicalOptimizer(rho, n, q)\n", "\n", "# Compute the number of feasible solutions:\n", "print('Number of feasible combinations= ' + str(classical_optimizer.compute_allowed_combinations()))\n", @@ -420,7 +414,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -446,11 +440,9 @@ " ix = ii % n\n", " plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], 'C2')\n", "\n", - " plt.title(title_str+' cost = ' + str(int(C * 100) / 100.))\n", + " plt.title(title_str +' cost = ' + str(int(C * 100) / 100.))\n", " plt.show()\n", - " \n", - "\n", - "# Eventually, you can runvisualize_solution(xc, yc, x, classical_cost, n, q, 'Classical')" + " " ] }, { @@ -464,101 +456,75 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Quantum solution using IBM-Q simulator\n", - "\n", - "For the quantum solution, we use Qskit. We first define a class QuantumOptimizer that encodes the quantum approach to solve the problem and then we instantiate it and solve it. We define the following methods inside the class:\n", - "- `binary_representation` : encodes the problem $(M)$ into a the Ising Hamiltonian QP (that's basically linear algebra);\n", - "- `construct_hamiltonian` : constructs the Ising Hamiltonian in terms of the $Z$ basis;\n", - "- `check_hamiltonian` : makes sure that the Ising Hamiltonian is correctly encoded in the $Z$ basis: to do this, it solves a eigenvalue-eigenvector problem for a symmetric matrix of dimension $2^N \\times 2^N$. For the problem at hand $n=3$, that is $N = 12$ seems the limit; \n", - "- `vqe_solution` : solves the problem $(M)$ via VQE by using the SPSA solver (with default parameters);\n", - "- `_q_solution` : internal routine to represent the solution in a usable format.\n" + "## Quantum Computing with IBM Q\n", + "\n", + "For the quantum solution, we use Qiskit. We first define a class QuantumOptimizer that encodes the quantum approach to solve the problem and then we instantiate it and solve it. We define the following methods inside the class:\n", + "- `construct_hamiltonian` : constructs the Ising Hamiltonian in terms of the $Z$ basis using the Ising translator provided in Qiskit Aqua;\n", + "- `exact_solution` : to make sure that the Ising Hamiltonian is correctly encoded in the $Z$ basis, we can compute its eigendecomposition classicaly, i.e., considering a symmetric matrix of dimension $2^N \\times 2^N$. For the problem at hand $n=3$, that is $N = 12$ seems the limit for many laptops; \n", + "- `vqe_solution` : solves the problem $(M)$ via the variational quantum eigensolver (VQE);\n", + "- `qaoa_solution` : solves the problem $(M)$ via a Quantum Approximate Optimization Algorithm (QAOA)." ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "class QuantumOptimizer:\n", "\n", - " def __init__(self, rho,n,q,max_trials=1000):\n", + " def __init__(self, rho, n, q):\n", "\n", " self.rho = rho\n", " self.n = n\n", " self.q = q\n", - " self.max_trials = max_trials\n", "\n", " def construct_hamiltonian(self):\n", + " return portfoliodiversification.get_portfoliodiversification_qubitops(self.rho, self.n, self.q)\n", "\n", - " return portfoliodiv.get_portfoliodiversification_qubitops(self.rho, self.n, self.q, self.max_trials)\n", - "\n", - " def check_hamiltonian(self):\n", - "\n", - " Op = self.construct_hamiltonian()\n", - " qubitOp, offset = Op, 0\n", + " # Obtains the least eigenvalue of the Hamiltonian classically\n", + " def exact_solution(self):\n", + " qubitOp = self.construct_hamiltonian()\n", " algo_input = EnergyInput(qubitOp)\n", - "\n", - " # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", - "\n", " algorithm_cfg = {\n", " 'name': 'ExactEigensolver',\n", " }\n", - "\n", " params = {\n", " 'problem': {'name': 'ising'},\n", " 'algorithm': algorithm_cfg\n", " }\n", " result = run_algorithm(params, algo_input)\n", - "\n", - " quantum_solution = self._q_solution(result['eigvecs'][0],self.n*(self.n+1))\n", - " ground_level = result['energy'] + offset\n", - "\n", - " return quantum_solution, ground_level\n", + " return self.decode_result(result)\n", "\n", " def vqe_solution(self):\n", - "\n", " qubitOp = self.construct_hamiltonian()\n", - " algo_input = EnergyInput(qubitOp)\n", - "\n", " backend = BasicAer.get_backend('statevector_simulator')\n", " seed = 50\n", " cobyla = COBYLA()\n", " cobyla.set_options(maxiter=250)\n", - " ry = RY(qubitOp.num_qubits, depth=3, entanglement='full')\n", + " ry = RY(qubitOp.num_qubits, depth=5, entanglement='full')\n", " vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", " vqe.random_seed = seed\n", " quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", - " result = vqe.run(algo_input)\n", - "\n", - " #quantum_solution = self._q_solution(result['eigvecs'][0], self.n * (self.n + 1))\n", - " quantum_solution_dict = result['eigvecs'][0]\n", - "\n", - " q_s = max(quantum_solution_dict.items(), key=operator.itemgetter(1))[0]\n", - " quantum_solution= [int(chars) for chars in q_s]\n", - " quantum_solution = np.flip(quantum_solution, axis=0)\n", - "\n", - " #_,_,_,level = self.binary_representation(x_sol=quantum_solution)\n", - " return quantum_solution_dict, quantum_solution\n", - "\n", - " def _q_solution(self, v, N):\n", - "\n", - " index_value = [x for x in range(len(v)) if v[x] == max(v)][0]\n", - " string_value = \"{0:b}\".format(index_value)\n", - "\n", - " while len(string_value)\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Check if the binary representation is correct\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mQ\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mg\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mquantum_cost\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_optimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvqe_solution\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mclassical_cost\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mClassicalOptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcplex_solution\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36mvqe_solution\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0mvqe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom_seed\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mseed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0mquantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mseed_mapper\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 50\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvqe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0malgo_input\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 51\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0;31m#quantum_solution = self._q_solution(result['eigvecs'][0], self.n * (self.n + 1))\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/qiskit_aqua/algorithms/quantum_algorithm.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, quantum_instance, **kwargs)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 104\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/qiskit_aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 266\u001b[0m \u001b[0mDictionary\u001b[0m \u001b[0mof\u001b[0m \u001b[0mresults\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 267\u001b[0m \"\"\"\n\u001b[0;32m--> 268\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_statevector\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_operator_mode\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'matrix'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 269\u001b[0m logger.warning('Qasm simulation does not work on {} mode, changing '\n\u001b[1;32m 270\u001b[0m 'the operator_mode to \"paulis\"'.format(self._operator_mode))\n", - "\u001b[0;31mAttributeError\u001b[0m: 'EnergyInput' object has no attribute 'is_statevector'" - ] - } - ], + "outputs": [], "source": [ - "# Check if the binary representation is correct\n", - "Q,g,c,quantum_cost = quantum_optimizer.vqe_solution()\n", - "\n", - "sol, classical_cost = ClassicalOptimizer.cplex_solution()\n", - "\n", - "print(quantum_cost, classical_cost)\n", - "if np.abs(quantum_cost - classical_cost)<0.01:\n", - " print('Binary formulation is correct')\n", - "else: print('Error in the binary formulation')" + "# Check if the binary representation is correct. This requires CPLEX\n", + "\n", + "try: \n", + " import cplex\n", + " warnings.filterwarnings('ignore')\n", + " quantum_solution, quantum_cost = quantum_optimizer.exact_solution()\n", + " classical_solution, classical_cost = classical_optimizer.cplex_solution()\n", + " print(quantum_cost, classical_cost)\n", + " if np.abs(quantum_cost - classical_cost) < 0.01:\n", + " print('Binary formulation is correct')\n", + " else: print('Error in the formulation of the Hamiltonian')\n", + "except: None" ] }, { @@ -639,17 +592,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 0 1 0 1]\n" + ] + } + ], "source": [ - "ground_state, ground_level = quantum_optimizer.check_hamiltonian()\n", - "\n", - "print(ground_level,classical_cost)\n", + "ground_state, ground_level = quantum_optimizer.exact_solution()\n", "print(ground_state)\n", - "if np.abs(ground_level - classical_cost)<0.01:\n", + "\n", + "try:\n", + " if np.abs(ground_level - classical_cost)<0.01:\n", " print('Ising Hamiltonian in Z basis is correct')\n", - "else: print('Error in the Ising Hamiltonian formulation')" + " else: print('Error in the Ising Hamiltonian formulation')\n", + "except: None" ] }, { @@ -663,13 +625,28 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 0 1 0 1]\n", + "VQE produces the same solution as the exact eigensolver.\n" + ] + } + ], "source": [ - "quantum_dictionary, quantum_solution, quantum_cost = quantum_optimizer.vqe_solution()\n", + "warnings.filterwarnings('ignore')\n", + "vqe_state, vqe_level = quantum_optimizer.vqe_solution()\n", + "print(vqe_state)\n", "\n", - "print(quantum_solution,quantum_cost)" + "try:\n", + " if np.linalg.norm(ground_state - vqe_state)<0.01:\n", + " print('VQE produces the same solution as the exact eigensolver.')\n", + " else: print('VQE does not produce the same solution as the exact eigensolver, but that is to be expected.')\n", + "except: None" ] }, { @@ -682,21 +659,45 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4lGXWx/HvmRRKQkdCFVSwgCAIIi6CREABIROqVEEFbFhecJVVdFnbirpgQ1ZFFFQMLSShiYiAsooUBRWQuigdKQFDSzvvHzO6MQYSmEmeycz5XNdc0+557t8heuaZe2aeEVXFGGNMaHE5HcAYY0zRs+ZvjDEhyJq/McaEIGv+xhgTgqz5G2NMCLLmb4wxIciavyl0IjJaRD4oxO2vF5E2Pm6jUDMaE2is+Ru/EJG+IrJaRNJEZK+ILBCR64tiblVtoKpLi2IufxCROiKiIhJeBHNFishMEdnhnbNNAbLNF5EjIrJPRF4vipym6FnzNz4TkeHAy8BzQAxwIfAG4HYyl/ndcqA/sK8AY98ADgDVgMbADcC9hRfNOMWav/GJiJQDngLuU9VEVT2uqhmqOkdV/3qGx8zw7lUeFZHPRaRBjvs6icgGEflVRHaLyMPe2yuLyFwRSRWRwyLyhYi4vPftEJF23sthIvKYiGzzbmONiNTy3veKiOwUkWPe21udQ51uEVnrfew2Eengvb26iKR4M20VkSE5HtPc+2romIjsF5Gx3rs+956nel8pXVfQHOdKVdNV9WVVXQ5kFeAhFwHTVfWUqu4DPgYa5PMYUwxZ8ze+ug4oCcw+h8csAOoBVYBvgA9z3PcOcJeqlgGuBD7z3j4C2AVcgOfVxWNAXscmGQ70AToBZYE7gBPe+1bh2ZutCEwFZohIyfzCikhzYArwV6A80BrY4b37I2+u6kAP4DkRaeu97xXgFVUtC1wCTPfe3tp7Xl5Vo1X1qzzm7Ot9ojvT6cL8cp+nV4DeIlJaRGoAHfE8AZggY83f+KoScFBVMwv6AFWdpKq/quppYDRwlfcVBEAGUF9EyqrqEVX9Jsft1YDa3lcWX2jeB6YaDIxS1U3qsU5VD3nn/UBVD6lqpqr+CygBXFaAyHcCk1R1kapmq+puVf3R+4rieuBR757yWmAiMCBH5roiUllV01R1xTn8G01V1fJnOf1c0G2do2V49vSP4XlSWw0kFdJcxkHW/I2vDgGVC/qmoHdZ5nnv0skx/rcHXdl73h3PXvtPIrIsx5LIi8BW4BMR2S4iI88wRS1g2xnmHiEiG73LTalAuRzzns2ZtlkdOKyqv+a47SeghvfyncClwI8iskpEOhdgrvMmIhd6l5HSRCTtPB7vAhYCiUAUnn+bCsAY/yY1gcCav/HVV8ApIL6A4/vieSO4HZ7mW8d7uwCo6ipVdeNZEkrCu1TifaUwQlUvBroAw3Msr+S0E88Syx941/cfBXoBFVS1PHD0t3nzkec2gT1ARREpk+O2C4Hd3sxbVLWPt5YxwEwRiSLv5arcefvlbOR5nP607KOqP3uXkaJVNboAdeVWEc8T3euqetr7iuldPE/GJshY8zc+UdWjwJPAeBGJ964VR4hIRxF5IY+HlAFO43nFUBrPJ4SA3z+W2E9EyqlqBp6lhyzvfZ1FpK6ISI7b83oDcyLwtIjUE49GIlLJO28m8AsQLiJP4nlPoCDeAW4XkbYi4hKRGiJyuaruBL4E/ikiJUWkEZ69/Q+9mfuLyAWqmg2kereV5c2QDVx8pglV9cOcjTyPU4GXfUSkRI73NiK9Wf/0pKeqB4H/AveISLiIlAcGAusKOpcpPqz5G5+p6lg8b7SOwtPYdgLDyHuteAqepZHdwAYg9zr4AGCHd0nobjwfUQTPG8SfAml4Xm28cYbP9o/F82rhEzxPEu8ApfAsZywANnvnP+XNWZD6VgK3A+PwvFpYBtT23t0Hz6uXPXje9P67qi7y3tcBWO9dgnkF6O19b+AE8CzwH++bty0KksMHm4CTeJajFnov1wbwfjJqQY6x3by5f8GzzJYJ/F8h5zMOEPsxF2OMCT2252+MMSHImr8xxoQga/7GGBOCrPkbY0wICtij9VWuXFnr1KnjdAwAjh8/TlRUlNMx/CbY6gGrqTgItnogMGtas2bNQVW9IL9xAdv869Spw+rVq52OAcDSpUtp06aN0zH8JtjqAaupOAi2eiAwaxKRnwoyzpZ9jDEmBFnzN8aYEOSX5i8iHURkk/d45n864JaI3C0i33uPh75cROr7Y15jjDHnx+fmLyJhwHg8x/2uD/TJo7lPVdWGqtoYeAHPV/CNMcY4xB97/s2Braq6XVXTgQRy/Xyfqh7LcbVARzU0xhhTeHw+to+I9AA6qOpg7/UBwLWqOizXuPvwHPwrErhRVbfksa2hwFCAmJiYpgkJCT5l85e0tDSio8/nCLmBKdjqAaupOAi2eiAwa4qNjV2jqs3yHaiqPp2AnsDEHNcHAK+dZXxfYHJ+223atKkGiiVLljgdwa+CrR5Vq6k4CLZ6VAOzJmC1FqB3+2PZZxeeH4D4TU08h7c9kwQK/sMfgWPXLrj/frjuOihdGkRgxw6nUxljzHnxR/NfBdQTkYtEJBLoDaTkHCAi9XJcvQX405KPY9LSoFcvz/nZbN0K06dDhQrQqlXRZDPGmELic/NXzw93D8PzIxEbgemqul5EnhKROO+wYSKyXkTW4ln3H+jrvH6zeDHMmAGffXb2ca1bw/79MH8+9OxZNNmMMaaQ+OXwDqo6H5if67Ync1x+0B/zFIbsxEQE0MREXHFxZx7osu/DGWOCR0h2tNOZWcz+dhc3jV3K0emzESB1eiI3j13K7G93cTozr5+GNcaY4BGwB3YrLGt3pjJo0koysrKpvns7JbLSASiZmU7Who2MSj3FP1I2MPmO5lxVq7zDaY0xpnCE1J7/up2p9HlrBaknMzienkXs9tW4srMBcGVnE7ttFcfTs0g9mUHvt1awbmeqw4mNMaZwhEzzP52ZxcBJKzmZ8b8lnc4/fkHJrAwASmZl0PnH5b/fdzLDM96WgIwxwSi4l326d4fERABKAGtz3Z0e9sfyL//lv+wY0/mPg0ZDm98ud+sGs2b5P6cxxhSx4N7zf/55aNwYzvBLO5FZmX+4XiLX9d9klSwJTZp4tmeMMUEguJt/vXqwejXZo0dzMrwEmfLHchUYPag6i68uk+fDM8XFyfAS/Pf222H1ali3DmbOhDVrPAMWLPBcX7askAsxxhj/Cu5lH4CwMNKGPUi3beV4JfF5Ljqym9IZpwE4FhXG9xeXYlabirRdfZS/fbCXmFTP3v+JiBJsr1CDh7qN5LGedanrcv35y1333us5v+EGWLq0CIsyxhjfBPeev1dUZDjbyleny8BxjG/Ri1NhEQCUO55Fwj+28dD0fSxvVAb3P+vxUduKHA+PYHyLXnQZ9DLbylfHJeLZkGreJ2v8xphiJvj3/IEwl1CvSjSb96ex+YLaZIRF/P4pn4gsuHP+QW5adYynB1bnuQHVSW55CtfPFVBxcVmVaOznB4wxwSYk9vwB7mlzCVGRYdy8+Uui0k/+6f5av6Tz5ks7+OebO9lTOZz1rT4juupCBreulcfWjDGmeAuZ5t+pYTUiXELbratw5diT97ypG0mmuBCg81dHSfnbFm7+Og2psIR3dtzHjyd/dC64McYUgpBp/iXCw0i4vuzvh3MAz5u6P15QhyHdnuDHC+pwIqIEAOWPZzH63b38vfIIwl1hjD8wnr998TcOnzrsVHxjjPGrkGn+AJd/u5ySAlnej3D+6/r+dBn0MssvakLcwHGMvb4fJ8NLkCUuSrqgx8aDzIqbRYdyHfh4x8fEJcWRtDXpt18kM8aYYiukmj/Tp+PKzECuasTymYtY3mUAuFxEhAkaFsYXXQayfOYipFFDXBkZMH06JcJKcEv5W5jZZSYXl7uYJ/7zBIM/GcyOozucrsYYY85bSHza53dVq8KLL+J66CHau1y0B7KylePpmURFhhPm8n6ks/MaePnlP3yE85Lyl/Beh/eYuXkmL695me4p3RnaaCh3XHkHEd6PjhpjTHERWnv+c+bA8OF/+GGWMJdQtmTE/xo/QFgYjBjhGZ+DS1z0uqwXyfHJxF4Yy+trX6fnnJ58e+DboqrAGGP8IrSav59cUPoCXrrhJca3Hc+JzBPctuA2nv7qaY6lH3M6mjHGFIg1fx+0rtmaJHcSA+oPYOaWmbiT3CzcsdDeEDbGBDxr/j4qHVGaR655hKm3TOWCUhfw8LKHuf+z+9mbttfpaMYYc0bW/P2kQaUGTL1lKg83e5iV+1biTnbz/ob3ycq2H4MxxgQevzR/EekgIptEZKuIjMzj/uEiskFEvhORxSJS2x/zBppwVzgDGwxktns2zWKa8cKqF+g7vy8bD210OpoxxvyBz81fRMKA8UBHoD7QR0Tq5xr2LdBMVRsBM4EXfJ03kNWIrsH4tuN58YYX2X98P73n9ealVS9xIuOE09GMMQbwz55/c2Crqm5X1XQgAXDnHKCqS1T1t863Aqjph3kDmojQoU4HkuOT6VavG5M3TKZrclc+3/W509GMMQbx9ZMpItID6KCqg73XBwDXquqwM4x/Hdinqs/kcd9QYChATExM04SEBJ+y+UtaWhrR0dE+bWPbqW0kHE5gX8Y+ri59Nd0rdqdsWFk/JTw3/qgn0FhNgS/Y6oHArCk2NnaNqjbLd6Cq+nQCegITc1wfALx2hrH98ez5l8hvu02bNtVAsWTJEr9s53TmaZ2wdoI2mdJEr5t6nc7YNEOzsrP8su1z4a96AonVFPiCrR7VwKwJWK0F6N3+WPbZBeQ86H1NYE/uQSLSDngciFPV036Yt9iJDIvk7qvuZlbcLC6rcBn/+Oof3P7x7WxP3e50NGNMiPFH818F1BORi0QkEugNpOQcICJNgDfxNP4DfpizWLuo3EVMunkST/3lKbambqX7nO6MXzue01kh+ZxojHGAz81fVTOBYcBCYCMwXVXXi8hTIhLnHfYiEA3MEJG1IpJyhs2FDBGha72upMSncFPtm/j3un/TI6UHq/atcjqaMSYE+OWonqo6H5if67Ync1xu5495glGlUpUY03oMcZfE8fSKp7lj4R10rduVEc1GUK5EOafjGWOClH3DN0C0rNGS2e7Z3H7l7aRsSyEuKY552+fZcYKMMYXCmn8AKRVeiuFNh5PQOYHqUdUZ+cVI7vn0Hnb9usvpaMaYIGPNPwBdXvFyPuj0ASObj+TbA9/SNbkr7/7wLhnZGU5HM8YECWv+ASrMFUa/K/qRHJ9Mi+otGLtmLH3m9uGHgz84Hc0YEwSs+Qe4qlFVeTX2Vca1GceRU0foO68vz698nuMZx52OZowpxqz5FwMiQrva7UiKT6LXZb2YunEq7iQ3S35e4nQ0Y0wxZc2/GCkTWYZRLUYxpeMUykSW4YElD/B/S/6PAydC/ntzxphzZM2/GGpcpTHTu0znwasf5IvdX+BOcjPtx2lka7bT0YwxxYQ1/2IqwhXB4IaDSYxLpEHlBjzz9TPctuA2thzZ4nQ0Y0wxYM2/mLuw7IW83f5tnrv+OX469hO95vTi1W9e5VTmKaejGWMCmDX/ICAidLmkCynxKXS6uBNvf/823VO6s2LvCqejGWMClDX/IFKhZAWevf5Z3r7pbQCGfDKEx5c/zpFTRxxOZowJNNb8g1CLai2YFTeLIQ2HMH/7fOKS4kjZlmLHCTLG/M6af5AqGV6SB65+gOldplO7bG0eX/44QxYN4edjPzsdzRgTAKz5B7l6FeoxpeMUnmjxBOsPrqdbSjcWHl1IRpYdJ8iYUGbNPwS4xEWvy3qRHJ9M65qtmZs6l15ze7H2wFqnoxljHGLNP4RUKV2FsW3GMvSCoaRlpHHbgtt4ZsUz/Jr+q9PRjDFFzJp/CGpYuiFJ7iT6XdGPGZtn4E5ys+inRfaGsDEhxJp/iIqKiOLR5o8ytdNUKpWqxPClw3lgyQPsO77P6WjGmCJgzT/ENajcgI9u+YgRTUfw9d6vcSe5+WDDB2RlZzkdzRhTiKz5G8Jd4Qy6chCJcYk0iWnCmFVj6D+/Pz8e/tHpaMaYQmLN3/yuZpmaTGg7gRdav8Ce43voPbc3Y1eP5UTGCaejGWP8zC/NX0Q6iMgmEdkqIiPzuL+1iHwjIpki0sMfc5rCISJ0vKgjKfEpxNeN593179ItpRvLdy93Opoxxo98bv4iEgaMBzoC9YE+IlI/17CfgUHAVF/nM0WjXIlyjP7LaN69+V0iXBHc8+k9PPL5Ixw8edDpaMYYP/DHnn9zYKuqblfVdCABcOccoKo7VPU7wH5tpJhpVrUZs+Jmce9V9/LpT5/iTnKTuCXRPhZqTDEnvv5P7F3G6aCqg73XBwDXquqwPMa+B8xV1Zln2NZQYChATExM04SEBJ+y+UtaWhrR0dFOx/Cb861nX8Y+ph2axtbTW6lboi63VrqVqhFVCyHhuQu2vxEEX03BVg8EZk2xsbFrVLVZvgNV1acT0BOYmOP6AOC1M4x9D+hRkO02bdpUA8WSJUucjuBXvtSTlZ2lszbP0uumXqdNpjTRN759Q09nnvZfuPMUbH8j1eCrKdjqUQ3MmoDVWoAe649ln11ArRzXawJ7/LBdE4Bc4qJbvW6kxKfQrnY73lj3Bj3m9GDN/jVORzPGnAN/NP9VQD0RuUhEIoHeQIoftmsCWOVSlXmh9QtMaDeB9Kx0Bn08iNFfjubo6aNORzPGFIDPzV9VM4FhwEJgIzBdVdeLyFMiEgcgIteIyC48S0Rvish6X+c1geH6GteTGJfIoAaDSNqahDvJzYL/LrA3hI0JcH75nL+qzlfVS1X1ElV91nvbk6qa4r28SlVrqmqUqlZS1Qb+mNcEhtIRpRnRbAQJnROoGlWVRz5/hHsX38vutN1ORzPGnIF9w9f4zeUVL+fDTh/y6DWPsmb/Gromd+W9H94jMzvT6WjGmFys+Ru/CnOF0b9+f5LdyVxb9Vr+teZf9J3Xl/UHbaXPmEBizd8UimrR1Xj1xlcZ22YsB08epO/8voxZOcaOE2RMgLDmbwqNiNC+dnuS45PpeWlPPtz4Ie5kN0t3LnU6mjEhz5q/KXRlIsswqsUopnScQnRENPd/dj/Dlw7nlxO/OB3NmJBlzd8UmcZVGjO983QeaPIAy3YuIy4pjumbppOtdsgnY4qaNX9TpCLCIhjSaAiJ7kQaVGrA0yueZuCCgWw9stXpaMaEFGv+xhG1y9bm7Zve5pmWz7Dj2A56zu3Jq9+8yums005HMyYkWPM3jhER3HXdJMcn07FOR97+/m26p3Rn5d6VTkczJuhZ8zeOq1iyIs+1eo632r9FtmZz5yd3Mmr5KFJPpTodzZigZc3fBIzrql9HYlwigxsOZt72ecQlxTFn2xw7TpAxhcCavwkoJcNL8uDVDzKtyzRqla3FY8sf465Fd7Hz2E6noxkTVKz5m4B0aYVLmdJhCo9f+zjfHfyOrildmfj9RDKyM5yOZkxQsOZvAlaYK4zel/cm2Z1MqxqteOWbV7h17q2s+2Wd09GMKfas+ZuAFxMVw7jYcbwS+wpHTx9lwPwBPLviWdLS05yOZkyxZc3fFBs3XngjKfEp9L2iL9M2TcOd7GbxT4udjmVMsWTN3xQrURFRjGw+kg87fUiFEhV4aOlDPPjZgxzJPOJ0NGOKlXCnAxhzPhpe0JCPOn/E+xveZ8LaCXyZ/SUnNp6g92W9CXOFOR3PmIBne/6m2IpwRXDHlXeQ6E6kTok6PL/yeQYsGMCmw5ucjmZMwLPmb4q9WmVqcW+Ve3m+1fPsTtvNrXNvZdyacZzMPOl0NGMCljV/ExREhFsuvoWU+BTiLolj0g+T6JrclS93f+l0NGMCkl+av4h0EJFNIrJVREbmcX8JEZnmvf9rEanjj3mNya1ciXI81fIpJt08iQhXBHd9ehcjvxjJoZOHnI5mTEDxufmLSBgwHugI1Af6iEj9XMPuBI6oal1gHDDG13mNOZtrql7DzLiZ3H3V3SzcsRB3spvZW2bbcYKM8fLHnn9zYKuqblfVdCABcOca4wYmey/PBNqKiPhhbmPOqERYCe5rfB8zu8zkknKX8OSXT3LnJ3ey4+gOp6MZ4zjxdU9IRHoAHVR1sPf6AOBaVR2WY8wP3jG7vNe3eccczLWtocBQgJiYmKYJCQk+ZfOXtLQ0oqOjnY7hN8FWD+RfU7Zm81XaVyQfSSZDM7i53M20K9eOcAncTzsH298p2OqBwKwpNjZ2jao2y2+cP/7Lz2sPPvczSkHGoKpvAW8BNGvWTNu0aeNzOH9YunQpgZLFH4KtHihYTTdyI3edvIsxK8cwb8c8NrKRv1/3d66OubpoQp6jYPs7BVs9ULxr8seyzy6gVo7rNYE9ZxojIuFAOeCwH+Y25pxULlWZF294kfFtx3Mq8xQDPx7IP776B8fSjzkdzZgi5Y/mvwqoJyIXiUgk0BtIyTUmBRjovdwD+EztnTfjoNY1WzPbPZuB9QeSuCURd5Kbj3d8bG8Im5Dhc/NX1UxgGLAQ2AhMV9X1IvKUiMR5h70DVBKRrcBw4E8fBzWmqJWOKM3D1zzMR7d8RJXSVfjrsr8y7LNh7EnL/cLVmODjl3e7VHU+MD/XbU/muHwK6OmPuYzxt/qV6vNhpw+ZunEqr699nfjkeO5rfB/9ruhHuCtw3xA2xhf2DV9jgHBXOLc1uI0kdxLXVL2Gl1a/RN95fdlwaIPT0YwpFNb8jcmhenR1Xr/xdV664SV+OfkLfeb14cVVL3Ii44TT0YzxK2v+xuQiItxc52aS45PpXq87UzZMIT45ns93fe50NGP8xpq/MWdQNrIsT173JJM7TKZ0eGnuW3wfDy97mIMnD+b/YGMCnDV/Y/JxdczVzOgyg2GNh7Hk5yXEzY5jxuYZZGu209GMOW/W/I0pgIiwCO666i5mxc3i8kqX89RXTzHo40FsS93mdDRjzos1f2POQZ1ydXjnpnd4uuXTbD+6nR5zevD6t69zOuu009GMOSfW/I05RyJCfN14UuJT6FCnA29+9yY9Unqwat8qp6MZU2DW/I05TxVLVuSfrf7Jm+3fJDM7kzsW3sET/3mC1FOpTkczJl/W/I3x0V+q/4VEdyJ3Xnknc7bNwZ3sZu72uXacIBPQrPkb4welwkvxUNOHmNZ5GjWja/K3L/7G3Z/ezc5fdzodzZg8WfM3xo8uq3gZUzpO4W/N/8a6X9bRLbkbk36YREZ2htPRjPkDa/7G+FmYK4y+V/QlyZ1EyxotGbdmHL3n9ub7X753Opoxv7Pmb0whqRpVlZdjX+bl2JdJPZ1Kv/n9+OfX/+R4xnGnoxljzd+Ywtb2wrYku5PpfXlvPvrxI9xJbj77+TOnY5kQZ83fmCIQHRnNY9c+xgedPqBsibI8uORBHlryEPuP73c6mglR1vyNKUKNLmjEtM7TeOjqh1i+eznuZDcf/fgRWdlZTkczIcaavzFFLMIVwZ0N72R23GwaVW7Ec18/x20f38bmI5udjmZCiDV/YxxSq2wt3mz/Js9d/xw7j+3k1jm38so3r3Aq85TT0UwIsOZvjINEhC6XdCElPoVbLr6Fid9PpFtKN77a85XT0UyQs+ZvTAAoX7I8z1z/DBNvmohLXAxdNJQpB6dw+NRhp6OZIOVT8xeRiiKySES2eM8rnGHcxyKSKiJzfZnPmGB3bbVrmRU3i6GNhvLN8W9wJ7lJ3ppsxwkyfufrnv9IYLGq1gMWe6/n5UVggI9zGRMSSoSV4P4m9/NotUepU7YOo/4ziiGfDOGnYz85Hc0EEV+bvxuY7L08GYjPa5CqLgZ+9XEuY0JKtchqTO44mSdaPMGGQxvoltyNt757i4wsO06Q8Z2vzT9GVfcCeM+r+B7JGPMbl7jodVkvkuOTaVOrDa99+xq95vZi7YG1TkczxZzkt5YoIp8CVfO463FgsqqWzzH2iKqead2/DfCwqnY+y1xDgaEAMTExTRMSEvItoCikpaURHR3tdAy/CbZ6IHRq+uHED0w/PJ0jWUe4Pvp6ulToQmlXaYcSnptQ+Rs5LTY2do2qNst3oKqe9wnYBFTzXq4GbDrL2DbA3IJuu2nTphoolixZ4nQEvwq2elRDq6bj6cd1zMox2mhyI42dFqsL/7tQs7OzizbceQilv5GTgNVagB7r67JPCjDQe3kgkOzj9owx+SgdUZpHrnmEqbdMpXKpyoxYNoL7P7ufvWl7nY5mihFfm//zQHsR2QK0915HRJqJyMTfBonIF8AMoK2I7BKRm32c15iQ16BSA6beMpWHmz3Myn0rcSe7eX/D+3acIFMgPjV/VT2kqm1VtZ73/LD39tWqOjjHuFaqeoGqllLVmqq60NfgxhgId4UzsMFAZrtn0zSmKS+seoF+8/ux8dBGp6OZAGff8DUmCNSIrsEbbd/gxdYvsu/4PvrM68NLq17iRMYJp6OZAGXN35ggISJ0uKgDyfHJxNeNZ/KGyXRN7soXu75wOpoJQNb8jQky5UqUY/RfRvNeh/coGV6SexffyyPLHuHgyYNORzMBxJq/MUGqaUxTZnSZwb2N7+XTnz8lLimOWZtnka3ZTkczAcCavzFBLDIsknuuuodZcbO4rMJljP5qNLd/fDvbU7c7Hc04zJq/MSHgonIXMenmSTz1l6fYmrqV7nO688baN0jPSnc6mnGINX9jQoSI0LVeV1LiU7ip9k1MWDeB7indWbVvldPRjAOs+RsTYiqVqsSY1mP4d7t/k5GdwR0L7+DvX/6do6ePOh3NFCFr/saEqJY1WjLbPZvbr7yd5K3JxCXFMX/7fPvhmBBhzd+YEFYqvBTDmw4noXMC1aOq8+gXj3LPp/ew69ddTkczhcyavzGGyytezgedPmBk85F8e+BbuiZ35d0f3iUzO9PpaKaQWPM3xgAQ5gqj3xX9SI5PpkX1FoxdM5Y+8/rww8EfnI5mCoE1f2PMH1SNqsqrsa8yrs04Dp88TL/5/Xh+5fMczzjudDTjR9b8jTF/IiK0q92OpPgkel7ak6kbp+JOcrN051Knoxk/seZvjDmjMpFlGNViFFMvWUZJAAAP3UlEQVQ6TqFMZBnu/+x+hi8dzoETB5yOZnxkzd8Yk6/GVRozvct0Hrz6QT7f9TnuJDfTfpxmxwkqxqz5G2MKJMIVweCGg0mMS6RB5QY88/UzDFwwkC1HtjgdzZwHa/7GmHNyYdkLebv92zx3/XPsOLaDXnN68eo3r3Iq85TT0cw5sOZvjDlnIkKXS7qQEp9Cp4s78fb3b9M9pTtf7/3a6WimgKz5G2POW4WSFXj2+md5+6a3ARj8yWAeX/44R04dcTiZyY81f2OMz1pUa8GsuFkMaTiE+dvnE5cUx5xtc+w4QQHMmr8xxi9KhpfkgasfYHqX6dQuW5vHlj/GkEVD+PnYz05HM3nwqfmLSEURWSQiW7znFfIY01hEvhKR9SLynYjc6sucxpjAVq9CPaZ0nMITLZ5g/cH1dEvpxsTvJ5KlWU5HMzn4uuc/ElisqvWAxd7ruZ0AblPVBkAH4GURKe/jvMaYAOYSF70u60VyfDKta7bmlW9eYczeMaw9sNbpaMbL1+bvBiZ7L08G4nMPUNXNqrrFe3kPcAC4wMd5jTHFQJXSVRjbZiyv3fgap7JPcduC23hmxTP8mv6r09FCnvjyhoyIpKpq+RzXj6jqn5Z+ctzfHM+TRAPVP381UESGAkMBYmJimiYkJJx3Nn9KS0sjOjra6Rh+E2z1gNVUHBz69RBLM5ay7NdllA0rS4+KPbiq1FWIiNPRzlsg/o1iY2PXqGqzfAeq6llPwKfAD3mc3EBqrrFHzrKdasAmoEV+c6oqTZs21UCxZMkSpyP4VbDVo2o1FQe/1fP9L99r9+TueuV7V+qwxcN0b9peZ4P5IBD/RsBqLUCPzXfZR1XbqeqVeZySgf0iUg3Ae57n0Z5EpCwwDxilqivyfUYyxgStKytfSULnBEY0HcGKPStwJ7n5cOOHZGXbG8JFydc1/xRgoPfyQCA59wARiQRmA1NUdYaP8xljgkC4K5xBVw5itns2TWKa8PzK5+k/vz+bDm9yOlrI8LX5Pw+0F5EtQHvvdUSkmYhM9I7pBbQGBonIWu+psY/zGmOCQM0yNZnQdgJjWo1hz/E93Dr3VsauHsvJzJNORwt64b48WFUPAW3zuH01MNh7+QPgA1/mMcYELxGh08WdaFmjJWPXjOXd9e/yyU+f8ESLJ2hZo6XT8YKWfcPXGBMQypUoxz/+8g/evfldIlwR3P3p3Tz6+aMcOnnI6WhByZq/MSagNKvajFlxs7jnqntY9NMi4pLiSNySaMcJ8jNr/saYgBMZFsm9je9lZpeZ1C1fl79/+XfuWHgH/z36X6ejBQ1r/saYgHVx+Yt5t8O7jL5uNJuObKJ7SncmrJtAela609GKPWv+xpiA5hIX3S/tTkp8Cu0ubMcba9+gx5werNm/xuloxZo1f2NMsVC5VGVeuOEF3mj7BqczTzPo40GM/nI0R08fdTpasWTN3xhTrLSq2YrZ7tkMajCIpK1JuJPcfPzfj+0N4XNkzd8YU+yUjijNiGYj+OiWj4iJiuGvn/+Vexffy+603U5HKzas+Rtjiq0rKl3B1E5TefSaR1mzfw1dk7syef1kMrMznY4W8Kz5G2OKtTBXGP3r9yfZnUzzqs15afVL9J3Xl/WH1jsdLaBZ8zfGBIVq0dV47cbX+NcN/+LgyYP0ndeXMSvHcCLjhNPRApI1f2NM0BARbqpzE8nxyfS8tCcfbPyA+OR4lu1c5nS0gGPN3xgTdMpElmFUi1G83/F9oiKiGPbZMEYsHcEvJ35xOlrAsOZvjAlajas0Znrn6dzf5H6W7lyKO8nN9E3Tyf7zr8iGHGv+xpigFhEWwdBGQ0l0J3JFpSt4esXTDFwwkK1HtjodzVHW/I0xIaF22dpMvGkiz7R8hh3HdtBzbk9e+/Y1TmeddjqaI6z5G2NChojgrusmOT6ZjnU68tZ3b9E9pTsr9650OlqRs+ZvjAk5FUtW5LlWz/FW+7fI1mzu/OROnvjPE6SeSnU6WpGx5m+MCVnXVb+OxLhEBjcczNxtc4lLimPOtjkhcZwga/7GmJBWMrwkD179INO6TKNW2Vo8tvwx7lp0FzuP7XQ6WqGy5m+MMcClFS5lSocpPH7t43x38Du6pnTlne/fISM7w+lohcKn5i8iFUVkkYhs8Z5XyGNMbRFZIyJrRWS9iNzty5zGGFNYwlxh9L68N8nuZFrVaMXL37xM77m9+e6X75yO5ne+7vmPBBaraj1gsfd6bnuBv6hqY+BaYKSIVPdxXmOMKTQxUTGMix3HK7GvkHo6lf7z+/Pc18+Rlp5W+JPv3Ak9ekC5clC2LHTrBj//7PdpfG3+bmCy9/JkID73AFVNV9XfPkhbwg9zGmNMkbjxwhtJiU+h7xV9SfgxAXeym8U/Ly68CU+cgBtvhB9/hMmT4f33YcsWiI2F48f9OpX48q62iKSqavkc14+oal5LP7WAeUBd4K+qOv4M2xsKDAWIiYlpmpCQcN7Z/CktLY3o6GinY/hNsNUDVlNxUNzr2XF6BwmHEtidsZtGpRrRo2IPIk5F+LWmGjNnUnfCBFZOmcLJGjUAKLl3L9f278+2u+5iV69e+W4jNjZ2jao2y29cvs1fRD4FquZx1+PA5II0/xz3VweSgC6quv9s8zZr1kxXr1591mxFZenSpbRp08bpGH4TbPWA1VQcBEM9GdkZvL/hfSasnUCYK4yO0R0Z1XkUYa6wsz4uMyubExlZREWGE+aSMw9s2xZOnYL//OePt99wg+d8Wf5HJxWRAjX/8PwGqGq7s0yyX0SqqepeEakGHMhnW3tEZD3QCpiZ39zGGBNIIlwR3HHlHbSv3Z5nVjzDzD0z2bxgM09e9ySXVbzsD2NPZ2Yx//u9TFi6jS0H0gh3CZnZyqVVorm7zSV0aliNEuG5njTWrwe3+88TN2gAM2b4tRZf199TgIHeywOB5NwDRKSmiJTyXq4AtAQ2+TivMcY4plaZWvy73b8ZWHkgu9J20Xtub8atGcfJzJMArN2ZyrXPLmbU7B/YvD8NVcjIUlRh0/40Rs3+gWufXcy6nbm+UXz4MFTIY/GkYkU4csSvNfja/J8H2ovIFqC99zoi0kxEJnrHXAF8LSLrgGXAS6r6vY/zGmOMo0SEZlHNSIlPocslXZj0wyS6JXfjg3WL6PPWClJPZnA8PSvPxx5PzyL1ZAa931rx5ycAyWNZqBC+cexT81fVQ6raVlXrec8Pe29fraqDvZcXqWojVb3Ke/6WP4IbY0wgKFeiHE+1fIpJN0/CJWGMWTscvWAqEpb/x0JPZmQxcNJKTmd6nyQqVPDs/ed25Ejerwh8YB+7NMYYP7im6jUMrP0qergd4WW/I+risYSXWw2cfa89IyubBd/v81xp0MCz7p/bhg1Qv75f81rzN8YYP5n4+U7S9rfjxPYHyEqvQqnqMyl14dtI5Jl/PvJ4ehYTlnp/WCYuDlasgO3b/zdgxw7Pp3/i4vya1Zq/Mcb4QVa2suWAZ6knOz2Gkz8N5dTeboSV3EPURa8QWWnpGR+7+UAaWdkKQ4ZAnTqeT/wkJ0NKiudyrVpw111+zWvN3xhj/OB4eibhf/gMv4uM1OYc3zaCzF/rg5z5AHHhLuF4eiZERcFnn8Gll8KAAdCvH1x0kec2P39BLt/P+RtjjMlfVGQ4mdl/Xt/XrDKc2tMXOPOPxmdmK1GR3nZ84YUwa1Yhpfwf2/M3xhg/CHMJ9aqcbe/8zO320irRZ//mbyGw5m+MMX5yT5tLiIo8+6EecouKDOOeNnULKdGZWfM3xhg/6dSwGhFh59ZWI8JcdGyY1+HTCpc1f2OM8ZMS4WFMvqM5pSIKtvdfKsIz/k/H+CkC1vyNMcaPrqpVnoShLShfKuKMS0BRkWGULxVBwtAWXFWrfJ5jCpt92scYY/zsqlrl+frxtiz4fh8Tlm5l8x+O6lmGe9pcQseGVR3Z4/+NNX9jjCkEJcLDiG9Sg/gmNcjKVo6nZ+Z/PP8iZM3fGGMKWZhLKFsywukYf2Br/sYYE4Ks+RtjTAiy5m+MMSHImr8xxoQga/7GGBOCrPkbY0wIsuZvjDEhyJq/McaEIGv+xhgTgqz5G2NMCBLVP//sWCAQkV+An5zO4VUZOOh0CD8KtnrAaioOgq0eCMyaaqvqBfkNCtjmH0hEZLWqNnM6h78EWz1gNRUHwVYPFO+abNnHGGNCkDV/Y4wJQdb8C+YtpwP4WbDVA1ZTcRBs9UAxrsnW/I0xJgTZnr8xxoQga/7GGBOCrPnnQUQqisgiEdniPa+Qx5jaIrJGRNaKyHoRuduJrAVRwHoai8hX3lq+E5FbnchaUAWpyTvuYxFJFZG5RZ2xIESkg4hsEpGtIjIyj/tLiMg07/1fi0idok95bgpQU2sR+UZEMkWkhxMZz1UBahouIhu8/+8sFpHaTuQ8F9b88zYSWKyq9YDF3uu57QX+oqqNgWuBkSJSvQgznouC1HMCuE1VGwAdgJdFpHwRZjxXBakJ4EVgQJGlOgciEgaMBzoC9YE+IlI/17A7gSOqWhcYB4wp2pTnpoA1/QwMAqYWbbrzU8CavgWaqWojYCbwQtGmPHfW/PPmBiZ7L08G4nMPUNV0VT3tvVqCwP63LEg9m1V1i/fyHuAAkO+3BB2Ub00AqroY+LWoQp2j5sBWVd2uqulAAp66cspZ50ygrYhIEWY8V/nWpKo7VPU7INuJgOehIDUtUdUT3qsrgJpFnPGcBXLDclKMqu4F8J5XyWuQiNQSke+AncAYb9MMRAWq5zci0hyIBLYVQbbzdU41BagaeP7b+c0u7215jlHVTOAoUKlI0p2fgtRU3JxrTXcCCwo1kR+EOx3AKSLyKVA1j7seL+g2VHUn0Mi73JMkIjNVdb+/Mp4Lf9Tj3U414H1goKo6umfmr5oCWF578Lk/e12QMYGkuOUtiALXJCL9gWbADYWayA9Ctvmrarsz3Sci+0Wkmqru9TbDA/lsa4+IrAda4XlpXuT8UY+IlAXmAaNUdUUhRS0wf/6NAtQuoFaO6zWB3K8efxuzS0TCgXLA4aKJd14KUlNxU6CaRKQdnh2TG3IsCQcsW/bJWwow0Ht5IJCce4CI1BSRUt7LFYCWwKYiS3huClJPJDAbmKKqM4ow2/nKt6ZiYBVQT0Qu8v7798ZTV0456+wBfKaB/c3MgtRU3ORbk4g0Ad4E4lS1eOyIqKqdcp3wrKkuBrZ4zyt6b28GTPRebg98B6zzng91OreP9fQHMoC1OU6Nnc7uS03e618AvwAn8ezB3ex09lx1dAI243l/5XHvbU/haSIAJYEZwFZgJXCx05n9UNM13r/FceAQsN7pzH6o6VNgf47/d1KczpzfyQ7vYIwxIciWfYwxJgRZ8zfGmBBkzd8YY0KQNX9jjAlB1vyNMSYEWfM3xpgQZM3fGGNC0P8D8YEnrDImQ5IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VHX2x/H3mRRKQkdCFVCwgCAIIoogEVBAyIQqgggqYlksP3GVVezoirpgQ1ZlUVAxtJAJTVSKyipSlCIgdVGQJiVgaGnn90eG3RgDSZhJ7mTmvJ5nnrl35pv7PSeBz9y5M3NHVBVjjDGhxeV0AcYYY4qfhb8xxoQgC39jjAlBFv7GGBOCLPyNMSYEWfgbY0wIsvA3xpgQZOFvjDEhyMLfOEJEFojIc3nc7haRvSIS7l2/RkQWicjvInJERJJF5JIc49uLSJaIpOa6XF1MfSwRkSHFNNcwEVkpIqdE5IN8xoqIjBKRX72/tyUi0rg46jQlg4W/ccoHwEARkVy3DwQ+VtUMb4B/BniAmkB9YC3wbxGpl+NndqtqdK7Lt0XeQfHbDYwCJhZgbB/gDqAtUBn4Fviw6EozJY2Fv3FKEtmh1Pb0DSJSCegGTPbe9DIwWVVfV9XfVfWQqo4ElgNPn8ukIlJHRBJF5DcROSgib3lvd4nISBH5WUT2i8hkEangva+0iHzkHZ8iIitEJEZEXvDW/5b32cZb5/rLKAhVTVTVJOBgAYbXB5aq6nZVzQQ+AhoVZX2mZLHwN45Q1RPANOC2HDf3BX5S1TUiUha4Bpiex49PA24o7JwiEgbMAX4G6gG1gATv3YO9l1jgAiAaOB3mg4AKQB2gCnAPcEJVnwC+BoZ5n20MO8O8KWe5jChsHwWUADQQkYtEJMLbw6dFNJcpgcKdLsCEtEnAXBG53/tgcJv3Nsh+VuAC9uTxc3uA83Ks1xSRlFxjaqnqsVy3tSL78NFfVTXDe9tS7/UAYIyqbgcQkb8BP4rI7UA62aHfQFXXAqsK06SqVizMeD/ZQ/YD0yYgE9gJXO9AHSZA2Z6/cYyqLgV+A9wicgFwJTDFe/dhIAuokceP1vD+3Gm7VbVirkvu4IfsPfefcwR/TjXJfkZw2s9k7xzFkH2sfAGQICK7ReRl7950kRGR+TlevB5wDpt4muzfZx2gNPAssMj7jMoYC3/juMlk7/EPBD5T1X0A3vD+luwXLnPrC3x5DnPtBM4//U6iXHYDdXOsnw9kAPtUNV1Vn1XVRmQfiurG/w5X5XtO9DzeiZTz8nheP6OqXXK8eP1xYZr0uhyYqqq7VDVDVT8AKmHH/Y2XHfYxTpsMjASaAv+X674RwAIR+Ql4n+x/r8OBdkDrc5hrOdmHQ14SkafJPhzSQlX/DXwCPCYi88l+VvEi2eGZISKxwAFgA3CU7MNAmd5t7iP7NYIzUtXoc6j1T7wPWuFAGBAmIqWBjDM8k1kB9BGRBG8/A4AIYKs/ajEln+35G0ep6g7gGyAKSM5131LgRqAn2aF9iOwXLq9X1XU5htbMY4+6Vx5zZQLdgQbAL8Au4Gbv3RPJPrzzFfAf4CRwv/e+6sAMsoN/I9nPOj7y3vc60FtEDovIG+f6eyigkcAJsh8Ub/UujwQQkfO9fZ/vHTsaWAOsBlLIfmDtpaq5XxsxIUrsm7xMSSEilwOLgP6qusDpeowpyWzP35QYqroGiAeanOG4vTGmgGzP3xhjQpDt+RtjTAgK2KfOVatW1Xr16jldBgDHjh0jKirK6TL8Jtj6AeupJAi2fiAwe1q1atUBVT0vv3EBG/716tVj5cqVTpcBwJIlS2jfvr3TZfhNsPUD1lNJEGz9QGD2JCI/5z/KDvsYY0xIsvA3xpgQ5JfwF5HOIrJJRLbmdZZCEblHRNaJyGoRWSoi9hFzY4xxkM/h7z1N7jigC9nnDbklj3CfoqpNVLUZ2edoH+PrvMYYY86dP/b8WwFbvV8akUb2ecTdOQeo6tEcq1EU4GRYxhhjio7PH/ISkd5AZ1Ud4l0fCFyV+4stROQvwMNAJNnnZtmSx7aGAkMBYmJiWiQkJOQe4ojU1FSio/1ybq6AEGz9gPVUEgRbPxCYPcXGxq5S1Zb5DlRVny5kn3J3Qo71gcCbZxnfH5iU33ZbtGihgWLx4sVOl+BXwdaPqvVUEgRbP6qB2ROwUguQ3f447LOL7C+MOK022edGP5MEss/PUrLs2gX33w9XXw1ly4II7NjhdFXGGHNO/BH+K4CGIlJfRCKBfuQ6Na+INMyxehPwp0M+jklNhb59s6/PZutWmDYNKlWCtm3PPtYYYwKcz+Gv2V8kMYzsr7nbCExT1fUi8pyIxHmHDROR9SKymuzj/oN8nddvFi6E6dNh0aKzj2vXDvbtg3nzoE9eXy5ljDElh19O76Cq84B5uW57Ksfyg/6YpyhkJSYigCYm4oqLO/NAl30ezhgTPEIy0U5lZDLrh13cMGYJR6bNQoCUaYncOGYJs37YxamMzHy3YYwxJVnAntitqKzemcLgictJz8yi5q/bKZWZBkDpjDQyN2xkZMpJnk3ewKQ7WnF5nYoOV2uMMUUjpPb81+xM4ZZ3l5FyIp1jaZnEbl+JKysLAFdWFrHbVnAsLZOUE+n0e3cZa3ba150aY4JTyIT/qYxMBk1czon0/x3S6fbT15TOTAegdGY63X5a+t/7TqRnj7dDQMaYYBTch3169YLERABKAatz3Z0W9sf2L/ntP+wY3e2Pg56B9qeXe/aEmTP9X6cxxhSz4N7zf+klaNYMzvBNO5GZGX9YL5Vr/bTM0qWhefPs7RljTBAI7vBv2BBWriTrmWc4EV6KDPljuwo8M7gmC68ol+ePZ4iLE+Gl+M/tt8PKlbBmDcyYAatWZQ+YPz97/csvi7gRY4zxr+A+7AMQFkbqsAfpua0Crye+RP3Dv1I2/RQAR6PCWHdBGWa2r0yHlUf420d7iEnJ3vs/HlGK7ZVq8VDPETzepwENXK4/f7jrvvuyr6+7DpYsKcamjDHGN8G95+8VFRnOtoo16T5oLONa9+VkWAQAFY5lkvDsNh6atpelTcvh/ntDPulQmWPhEYxr3Zfug19jW8WauESyN6Sa98WC3xhTwgT/nj8Q5hIaVotm875UNp9Xl/SwiP++yyciE+6cd4AbVhzl+UE1eXFgTTxtTuL6pRIqLi6uFo19/YAxJtiExJ4/wL3tLyQqMowbN39DVNqJP91f57c03nl1B39/Zye7q4azvu0ioqsvYEi7OnlszRhjSraQCf+uTWoQ4RI6bF2BK8eefPaLupFkiAsBun17hOS/beHG71KRSov5146/8NOJn5wr3BhjikDIhH+p8DASri3/39M5QPaLuj+dV4+7ej7JT+fV43hEKQAqHsvkmff38HTV4YS7whi3fxx/+/pvHDp5yKnyjTHGr0Im/AEu+WEppQUyvW/h/Me1t9J98Gssrd+cuEFjGXPtAE6ElyJTXJR2Qe+NB5gZN5POFTrz6Y5PiUuKI2lr0ulvJDPGmBIrpMKfadNwZaQjlzdl6YzPWdp9ILhcRIQJGhbG190HsXTG50jTJrjS02HaNEqFleKmijcxo/sMLqhwAU/++0mGfDaEHUd2ON2NMcacs5B4t89/Va8Or7yC66GH6ORy0QnIzFKOpWUQFRlOmMv7ls5uq+C11/7wFs4LK17IB50/YMbmGby26jV6JfdiaNOh3HHZHUR43zpqjDElRWjt+c+eDQ8//IcvZglzCeVLR/wv+AHCwmD48OzxObjERd+L++KJ9xB7fixvrX6LPrP78MP+H4qrA2OM8YvQCn8/Oa/sebx63auM6zCO4xnHuW3+bTz/7fMcTTvqdGnGGFMgFv4+aFe7HUnuJAY2GsiMLTNwJ7lZsGOBvSBsjAl4Fv4+KhtRlkevfJQpN03hvDLn8ciXj3D/ovvZk7rH6dKMMeaMLPz9pHGVxky5aQqPtHyE5XuX4/a4+XDDh2Rm2ZfBGGMCj1/CX0Q6i8gmEdkqIiPyuP9hEdkgImtFZKGI1PXHvIEm3BXOoMaDmOWeRcuYlry84mX6z+vPxoMbnS7NGGP+wOfwF5EwYBzQBWgE3CIijXIN+wFoqapNgRnAy77OG8hqRddiXIdxvHLdK+w7to9+c/vx6opXOZ5+3OnSjDEG8M+efytgq6puV9U0IAFw5xygqotV9XTyLQNq+2HegCYidK7XGU+8h54NezJpwyR6eHrw1a6vnC7NGGMQX9+ZIiK9gc6qOsS7PhC4SlWHnWH8W8BeVR2Vx31DgaEAMTExLRISEnyqzV9SU1OJjo72aRvbTm4j4VACe9P3ckXZK+hVuRflw8r7qcLC8Uc/gcZ6CnzB1g8EZk+xsbGrVLVlvgNV1acL0AeYkGN9IPDmGcbeSvaef6n8ttuiRQsNFIsXL/bLdk5lnNLxq8dr88nN9eopV+v0TdM1MyvTL9suDH/1E0isp8AXbP2oBmZPwEotQHb747DPLiDnSe9rA7tzDxKRjsATQJyqnvLDvCVOZFgk91x+DzPjZnJxpYt59ttnuf3T29mest3p0owxIcYf4b8CaCgi9UUkEugHJOccICLNgXfIDv79fpizRKtfoT4Tb5zIc9c8x9aUrfSa3Ytxq8dxKjMkHxONMQ7wOfxVNQMYBiwANgLTVHW9iDwnInHeYa8A0cB0EVktIsln2FzIEBF6NOxBcnwyN9S9gX+u+Se9k3uzYu8Kp0szxoQAv5zVU1XnAfNy3fZUjuWO/pgnGFUpU4XR7UYTd2Eczy97njsW3EGPBj0Y3nI4FUpVcLo8Y0yQsk/4Bog2tdowyz2L2y+7neRtycQlxTF3+1w7T5AxpkhY+AeQMuFleLjFwyR0S6BmVE1GfD2Ce7+4l12/73K6NGNMkLHwD0CXVL6Ej7p+xIhWI/hh/w/08PTg/R/fJz0r3enSjDFBwsI/QIW5whhw6QA88R5a12zNmFVjuGXOLfx44EenSzPGBAEL/wBXPao6b8S+wdj2Yzl88jD95/bnpeUvcSz9mNOlGWNKMAv/EkBE6Fi3I0nxSfS9uC9TNk7BneRm8S+LnS7NGFNCWfiXIOUiyzGy9Ugmd5lMuchyPLD4Af5v8f+x/3jIf27OGFNIFv4lULNqzZjWfRoPXvEgX//6Ne4kN1N/mkqWZjldmjGmhLDwL6EiXBEMaTKExLhEGldtzKjvRnHb/NvYcniL06UZY0oAC/8S7vzy5/Nep/d48doX+fnoz/Sd3Zc3vn+DkxknnS7NGBPALPyDgIjQ/cLuJMcn0/WCrry37j16Jfdi2Z5lTpdmjAlQFv5BpFLpSrxw7Qu8d8N7ANz12V08sfQJDp887HBlxphAY+EfhFrXaM3MuJnc1eQu5m2fR1xSHMnbku08QcaY/7LwD1Klw0vzwBUPMK37NOqWr8sTS5/grs/v4pejvzhdmjEmAFj4B7mGlRoyuctknmz9JOsPrKdnck8WHFlAeqadJ8iYUGbhHwJc4qLvxX3xxHtoV7sdc1Lm0HdOX1bvX+10acYYh1j4h5BqZasxpv0Yhp43lNT0VG6bfxujlo3i97TfnS7NGFPMLPxDUJOyTUhyJzHg0gFM3zwdd5Kbz3/+3F4QNiaEWPiHqKiIKB5r9RhTuk6hSpkqPLzkYR5Y/AB7j+11ujRjTDGw8A9xjas25pObPmF4i+F8t+c73EluPtrwEZlZmU6XZowpQhb+hnBXOIMvG0xiXCLNY5ozesVobp13Kz8d+snp0owxRcTC3/xX7XK1Gd9hPC+3e5ndx3bTb04/xqwcw/H0406XZozxM7+Ev4h0FpFNIrJVREbkcX87EfleRDJEpLc/5jRFQ0ToUr8LyfHJxDeI5/3179MzuSdLf13qdGnGGD/yOfxFJAwYB3QBGgG3iEijXMN+AQYDU3ydzxSPCqUq8Mw1z/D+je8T4Yrg3i/u5dGvHuXAiQNOl2aM8QN/7Pm3Araq6nZVTQMSAHfOAaq6Q1XXAvZtIyVMy+otmRk3k/suv48vfv4Cd5KbxC2J9rZQY0o48fU/sfcwTmdVHeJdHwhcparD8hj7ATBHVWecYVtDgaEAMTExLRISEnyqzV9SU1OJjo52ugy/Odd+9qbvZerBqWw9tZUGpRpwc5WbqR5RvQgqLLxg+xtB8PUUbP1AYPYUGxu7SlVb5jtQVX26AH2ACTnWBwJvnmHsB0Dvgmy3RYsWGigWL17sdAl+5Us/mVmZOnPzTL16ytXafHJzffuHt/VUxin/FXeOgu1vpBp8PQVbP6qB2ROwUguQsf447LMLqJNjvTaw2w/bNQHIJS56NuxJcnwyHet25O01b9N7dm9W7VvldGnGmELwR/ivABqKSH0RiQT6Acl+2K4JYFXLVOXldi8zvuN40jLTGPzpYJ755hmOnDridGnGmALwOfxVNQMYBiwANgLTVHW9iDwnInEAInKliOwi+xDROyKy3td5TWC4tta1JMYlMrjxYJK2JuFOcjP/P/PtBWFjApxf3uevqvNU9SJVvVBVX/De9pSqJnuXV6hqbVWNUtUqqtrYH/OawFA2oizDWw4noVsC1aOq8+hXj3Lfwvv4NfVXp0szxpyBfcLX+M0llS/h464f89iVj7Fq3yp6eHrwwY8fkJGV4XRpxphcLPyNX4W5wri10a143B6uqn4V/1j1D/rP7c/6A3akz5hAYuFvikSN6Bq8cf0bjGk/hgMnDtB/Xn9GLx9t5wkyJkBY+JsiIyJ0qtsJT7yHPhf14eONH+P2uFmyc4nTpRkT8iz8TZErF1mOka1HMrnLZKIjorl/0f08vORhfjv+m9OlGROyLPxNsWlWrRnTuk3jgeYP8OXOL4lLimPapmlkqZ3yyZjiZuFvilVEWAR3Nb2LRHcijas05vllzzNo/iC2Ht7qdGnGhBQLf+OIuuXr8t4N7zGqzSh2HN1Bnzl9eOP7NziVecrp0owJCRb+xjEigruBG0+8hy71uvDeuvfoldyL5XuWO12aMUHPwt84rnLpyrzY9kXe7fQuWZrFnZ/dycilI0k5meJ0acYELQt/EzCurnk1iXGJDGkyhLnb5xKXFMfsbbPtPEHGFAELfxNQSoeX5sErHmRq96nUKV+Hx5c+zt2f383OozudLs2YoGLhbwLSRZUuYnLnyTxx1ROsPbCWHsk9mLBuAulZ6U6XZkxQsPA3ASvMFUa/S/rhcXtoW6str3//OjfPuZk1v61xujRjSjwLfxPwYqJiGBs7ltdjX+fIqSMMnDeQF5a9QGpaqtOlGVNiWfibEuP6868nOT6Z/pf2Z+qmqbg9bhb+vNDpsowpkSz8TYkSFRHFiFYj+Ljrx1QqVYmHljzEg4se5HDGYadLM6ZECXe6AGPORZPzmvBJt0/4cMOHjF89nm+yvuH4xuP0u7gfYa4wp8szJuDZnr8psSJcEdxx2R0kuhOpV6oeLy1/iYHzB7Lp0CanSzMm4Fn4mxKvTrk63FftPl5q+xK/pv7KzXNuZuyqsZzIOOF0acYELAt/ExREhJsuuInk+GTiLoxj4o8T6eHpwTe/fuN0acYEJL+Ev4h0FpFNIrJVREbkcX8pEZnqvf87Eannj3mNya1CqQo81+Y5Jt44kQhXBHd/cTcjvh7BwRMHnS7NmIDic/iLSBgwDugCNAJuEZFGuYbdCRxW1QbAWGC0r/MaczZXVr+SGXEzuOfye1iwYwFuj5tZW2bZeYKM8fLHnn8rYKuqblfVNCABcOca4wYmeZdnAB1ERPwwtzFnVCqsFH9p9hdmdJ/BhRUu5KlvnuLOz+5kx5EdTpdmjOPE1z0hEekNdFbVId71gcBVqjosx5gfvWN2ede3ecccyLWtocBQgJiYmBYJCQk+1eYvqampREdHO12G3wRbP5B/T1maxbep3+I57CFd07mxwo10rNCRcAncdzsH298p2PqBwOwpNjZ2laq2zG+cP/7l57UHn/sRpSBjUNV3gXcBWrZsqe3bt/e5OH9YsmQJgVKLPwRbP1Cwnq7neu4+cTejl49m7o65bGQjT1/9NFfEXFE8RRZSsP2dgq0fKNk9+eOwzy6gTo712sDuM40RkXCgAnDID3MbUyhVy1TlleteYVyHcZzMOMmgTwfx7LfPcjTtqNOlGVOs/BH+K4CGIlJfRCKBfkByrjHJwCDvcm9gkdorb8ZB7Wq3Y5Z7FoMaDSJxSyLuJDef7vjUXhA2IcPn8FfVDGAYsADYCExT1fUi8pyIxHmH/QuoIiJbgYeBP70d1JjiVjaiLI9c+Qif3PQJ1cpW469f/pVhi4axOzX3E1djgo9fXu1S1XnAvFy3PZVj+STQxx9zGeNvjao04uOuHzNl4xTeWv0W8Z54/tLsLwy4dADhrsB9QdgYX9gnfI0Bwl3h3Nb4NpLcSVxZ/UpeXfkq/ef2Z8PBDU6XZkyRsPA3Joea0TV56/q3ePW6V/ntxG/cMvcWXlnxCsfTjztdmjF+ZeFvTC4iwo31bsQT76FXw15M3jCZeE88X+36yunSjPEbC39jzqB8ZHmeuvopJnWeRNnwsvxl4V945MtHOHDiQP4/bEyAs/A3Jh9XxFzB9O7TGdZsGIt/WUzcrDimb55OlmY5XZox58zC35gCiAiL4O7L72Zm3EwuqXIJz337HIM/Hcy2lG1Ol2bMObHwN6YQ6lWox79u+BfPt3me7Ue203t2b9764S1OZZ5yujRjCsXC35hCEhHiG8STHJ9M53qdeWftO/RO7s2KvSucLs2YArPwN+YcVS5dmb+3/TvvdHqHjKwM7lhwB0/++0lSTqY4XZox+bLwN8ZH19S8hkR3Indediezt83G7XEzZ/scO0+QCWgW/sb4QZnwMjzU4iGmdptK7eja/O3rv3HPF/ew8/edTpdmTJ4s/I3xo4srX8zkLpP5W6u/sea3NfT09GTijxNJz0p3ujRj/sDC3xg/C3OF0f/S/iS5k2hTqw1jV42l35x+rPttndOlGfNfFv7GFJHqUdV5LfY1Xot9jZRTKQyYN4C/f/d3jqUfc7o0Yyz8jSlqHc7vgMftod8l/fjkp09wJ7lZ9Msip8syIc7C35hiEB0ZzeNXPc5HXT+ifKnyPLj4QR5a/BD7ju1zujQToiz8jSlGTc9rytRuU3noiodY+utS3B43n/z0CZlZmU6XZkKMhb8xxSzCFcGdTe5kVtwsmlZtyovfvchtn97G5sObnS7NhBALf2McUqd8Hd7p9A4vXvsiO4/u5ObZN/P6969zMuOk06WZEGDhb4yDRITuF3YnOT6Zmy64iQnrJtAzuSff7v7W6dJMkLPwNyYAVCxdkVHXjmLCDRNwiYuhnw9l8oHJHDp5yOnSTJDyKfxFpLKIfC4iW7zXlc4w7lMRSRGROb7MZ0ywu6rGVcyMm8nQpkP5/tj3uJPceLZ67DxBxu983fMfASxU1YbAQu96Xl4BBvo4lzEhoVRYKe5vfj+P1XiMeuXrMfLfI7nrs7v4+ejPTpdmgoiv4e8GJnmXJwHxeQ1S1YXA7z7OZUxIqRFZg0ldJvFk6yfZcHADPT09eXftu6Rn2nmCjO98Df8YVd0D4L2u5ntJxpjTXOKi78V98cR7aF+nPW/+8CZ95/Rl9f7VTpdmSjjJ71iiiHwBVM/jrieASapaMcfYw6p6puP+7YFHVLXbWeYaCgwFiImJaZGQkJBvA8UhNTWV6Ohop8vwm2DrB0Knpx+P/8i0Q9M4nHmYa6OvpXul7pR1lXWowsIJlb+R02JjY1epast8B6rqOV+ATUAN73INYNNZxrYH5hR02y1atNBAsXjxYqdL8Ktg60c1tHo6lnZMRy8frU0nNdXYqbG64D8LNCsrq3iLOweh9DdyErBSC5Cxvh72SQYGeZcHAR4ft2eMyUfZiLI8euWjTLlpClXLVGX4l8O5f9H97End43RppgTxNfxfAjqJyBagk3cdEWkpIhNODxKRr4HpQAcR2SUiN/o4rzEhr3GVxky5aQqPtHyE5XuX4/a4+XDDh3aeIFMgPoW/qh5U1Q6q2tB7fch7+0pVHZJjXFtVPU9Vy6hqbVVd4GvhxhgId4UzqPEgZrln0SKmBS+veJkB8waw8eBGp0szAc4+4WtMEKgVXYu3O7zNK+1eYe+xvdwy9xZeXfEqx9OPO12aCVAW/sYECRGhc/3OeOI9xDeIZ9KGSfTw9ODrXV87XZoJQBb+xgSZCqUq8Mw1z/BB5w8oHV6a+xbex6NfPsqBEwecLs0EEAt/Y4JUi5gWTO8+nfua3ccXv3xBXFIcMzfPJEuznC7NBAALf2OCWGRYJPdefi8z42ZycaWLeebbZ7j909vZnrLd6dKMwyz8jQkB9SvUZ+KNE3numufYmrKVXrN78fbqt0nLTHO6NOMQC39jQoSI0KNhD5Ljk7mh7g2MXzOeXsm9WLF3hdOlGQdY+BsTYqqUqcLodqP5Z8d/kp6Vzh0L7uDpb57myKkjTpdmipGFvzEhqk2tNsxyz+L2y27Hs9VDXFIc87bPsy+OCREW/saEsDLhZXi4xcMkdEugZlRNHvv6Me794l52/b7L6dJMEbPwN8ZwSeVL+KjrR4xoNYIf9v9AD08P3v/xfTKyMpwuzRQRC39jDABhrjAGXDoAT7yH1jVbM2bVGG6Zews/HvjR6dJMEbDwN8b8QfWo6rwR+wZj24/l0IlDDJg3gJeWv8Sx9GNOl2b8yMLfGPMnIkLHuh1Jik+iz0V9mLJxCu4kN0t2LnG6NOMnFv7GmDMqF1mOka1HMrnLZMpFluP+Rffz8JKH2X98v9OlGR9Z+Btj8tWsWjOmdZ/Gg1c8yFe7vsKd5GbqT1PtPEElmIW/MaZAIlwRDGkyhMS4RBpXbcyo70YxaP4gthze4nRp5hxY+BtjCuX88ufzXqf3ePHaF9lxdAd9Z/flje/f4GTGSadLM4Vg4W+MKTQRofuF3UmOT6brBV15b9179EruxXd7vnO6NFNAFv7GmHNWqXQlXrj2Bd674T0Ahnw2hCeWPsHhk4cdrszkx8LfGOOz1jVaMzNuJnc1uYt52+cRlxTH7G2z7TxBAczC3xjjF6XDS/PAFQ8wrfs06pavy+NLH+euz+/il6O/OF2ayYNP4S8ilUXkcxFmSCpdAAAOzklEQVTZ4r2ulMeYZiLyrYisF5G1InKzL3MaYwJbw0oNmdxlMk+2fpL1B9bTM7knE9ZNIFMznS7N5ODrnv8IYKGqNgQWetdzOw7cpqqNgc7AayJS0cd5jTEBzCUu+l7cF0+8h3a12/H6968zes9oVu9f7XRpxsvX8HcDk7zLk4D43ANUdbOqbvEu7wb2A+f5OK8xpgSoVrYaY9qP4c3r3+Rk1klum38bo5aN4ve0350uLeSJLy/IiEiKqlbMsX5YVf906CfH/a3IfpBorPrnjwaKyFBgKEBMTEyLhISEc67Nn1JTU4mOjna6DL8Jtn7AeioJDv5+kCXpS/jy9y8pH1ae3pV7c3mZyxERp0s7Z4H4N4qNjV2lqi3zHaiqZ70AXwA/5nFxAym5xh4+y3ZqAJuA1vnNqaq0aNFCA8XixYudLsGvgq0fVeupJDjdz7rf1mkvTy+97IPLdNjCYbondY+zhfkgEP9GwEotQMbme9hHVTuq6mV5XDzAPhGpAeC9zvNsTyJSHpgLjFTVZfk+IhljgtZlVS8joVsCw1sMZ9nuZbiT3Hy88WMys+wF4eLk6zH/ZGCQd3kQ4Mk9QEQigVnAZFWd7uN8xpggEO4KZ/Blg5nlnkXzmOa8tPwlbp13K5sObXK6tJDha/i/BHQSkS1AJ+86ItJSRCZ4x/QF2gGDRWS199LMx3mNMUGgdrnajO8wntFtR7P72G5unnMzY1aO4UTGCadLC3rhvvywqh4EOuRx+0pgiHf5I+AjX+YxxgQvEaHrBV1pU6sNY1aN4f317/PZz5/xZOsnaVOrjdPlBS37hK8xJiBUKFWBZ695lvdvfJ8IVwT3fHEPj331GAdPHHS6tKBk4W+MCSgtq7dkZtxM7r38Xj7/+XPikuJI3JJo5wnyMwt/Y0zAiQyL5L5m9zGj+wwaVGzA0988zR0L7uA/R/7jdGlBw8LfGBOwLqh4Ae93fp9nrn6GTYc30Su5F+PXjCctM83p0ko8C39jTEBziYteF/UiOT6Zjud35O3Vb9N7dm9W7VvldGklmoW/MaZEqFqmKi9f9zJvd3ibUxmnGPzpYJ755hmOnDridGklkoW/MaZEaVu7LbPcsxjceDBJW5NwJ7n59D+f2gvChWThb4wpccpGlGV4y+F8ctMnxETF8Nev/sp9C+/j19RfnS6txLDwN8aUWJdWuZQpXafw2JWPsWrfKnp4ejBp/SQysjKcLi3gWfgbY0q0MFcYtza6FY/bQ6vqrXh15av0n9uf9QfXO11aQLPwN8YEhRrRNXjz+jf5x3X/4MCJA/Sf25/Ry0dzPP2406UFJAt/Y0zQEBFuqHcDnngPfS7qw0cbPyLeE8+XO790urSAY+FvjAk65SLLMbL1SD7s8iFREVEMWzSM4UuG89vx35wuLWBY+Btjglazas2Y1m0a9ze/nyU7l+BOcjNt0zSy/vwtsiHHwt8YE9QiwiIY2nQoie5ELq1yKc8ve55B8wex9fBWp0tzlIW/MSYk1C1flwk3TGBUm1HsOLqDPnP68OYPb3Iq85TTpTnCwt8YEzJEBHcDN554D13qdeHdte/SK7kXy/csd7q0Ymfhb4wJOZVLV+bFti/ybqd3ydIs7vzsTp7895OknExxurRiY+FvjAlZV9e8msS4RIY0GcKcbXOIS4pj9rbZIXGeIAt/Y0xIKx1emgeveJCp3adSp3wdHl/6OHd/fjc7j+50urQiZeFvjDHARZUuYnLnyTxx1ROsPbCWHsk9+Ne6f5Gele50aUXCp/AXkcoi8rmIbPFeV8pjTF0RWSUiq0VkvYjc48ucxhhTVMJcYfS7pB8et4e2tdry2vev0W9OP9b+ttbp0vzO1z3/EcBCVW0ILPSu57YHuEZVmwFXASNEpKaP8xpjTJGJiYphbOxYXo99nZRTKdw671Ze/O5FUtNSi37ynTuhd2+oUAHKl4eePeGXX/w+ja/h7wYmeZcnAfG5B6hqmqqefiNtKT/MaYwxxeL6868nOT6Z/pf2J+GnBNweNwt/WVh0Ex4/DtdfDz/9BJMmwYcfwpYtEBsLx475dSrx5VVtEUlR1Yo51g+ral6HfuoAc4EGwF9VddwZtjcUGAoQExPTIiEh4Zxr86fU1FSio6OdLsNvgq0fsJ5KgpLez45TO0g4mMCv6b/StExTelfuTcTJCL/2VGvGDBqMH8/yyZM5UasWAKX37OGqW29l2913s6tv33y3ERsbu0pVW+Y3Lt/wF5EvgOp53PUEMKkg4Z/j/ppAEtBdVfedbd6WLVvqypUrz1pbcVmyZAnt27d3ugy/CbZ+wHoqCYKhn/SsdD7c8CHjV48nzBVGl+gujOw2kjBX2Fl/LiMzi+PpmURFhhPmkjMP7NABTp6Ef//7j7dfd1329Zf5n51URAoU/uH5DVDVjmeZZJ+I1FDVPSJSA9ifz7Z2i8h6oC0wI7+5jTEmkES4IrjjsjvoVLcTo5aNYsbuGWyev5mnrn6Kiytf/IexpzIymbduD+OXbGPL/lTCXUJGlnJRtWjuaX8hXZvUoFR4rgeN9evB7f7zxI0bw/Tpfu3F1+PvycAg7/IgwJN7gIjUFpEy3uVKQBtgk4/zGmOMY+qUq8M/O/6TQVUHsSt1F/3m9GPsqrGcyDgBwOqdKVz1wkJGzvqRzftSUYX0TEUVNu1LZeSsH7nqhYWs2ZnrE8WHDkGlPA6eVK4Mhw/7tQdfw/8loJOIbAE6edcRkZYiMsE75lLgOxFZA3wJvKqq63yc1xhjHCUitIxqSXJ8Mt0v7M7EHyfS09OTj9Z8zi3vLiPlRDrH0jLz/NljaZmknEin37vL/vwAIHkcFiqCTxz7FP6qelBVO6hqQ+/1Ie/tK1V1iHf5c1VtqqqXe6/f9UfhxhgTCCqUqsBzbZ5j4o0TcUkYo1c/jJ43BQnL/22hJ9IzGTRxOacyvA8SlSpl7/3ndvhw3s8IfGBvuzTGGD+4svqVDKr7BnqoI+Hl1xJ1wRjCK6wEzr7Xnp6Zxfx1e7NXGjfOPu6f24YN0KiRX+u18DfGGD+Z8NVOUvd15Pj2B8hMq0aZmjMoc/57SOSZvz7yWFom45d4v1gmLg6WLYPt2/83YMeO7Hf/xMX5tVYLf2OM8YPMLGXL/uxDPVlpMZz4eSgn9/QkrPRuouq/TmSVJWf82c37U8nMUrjrLqhXL/sdPx4PJCdnL9epA3ff7dd6LfyNMcYPjqVlEP6H9/C7SE9pxbFtw8n4vRHImU8QF+4SjqVlQFQULFoEF10EAwfCgAFQv372bX7+gFy+7/M3xhiTv6jIcDKy/nx8XzPLcXJ3f+DMXxqfkaVERXrj+PzzYebMIqryf2zP3xhj/CDMJTSsdra98zPH7UXVos/+yd8iYOFvjDF+cm/7C4mKPPupHnKLigzj3vYNiqiiM7PwN8YYP+napAYRYYWL1YgwF12a5HX6tKJl4W+MMX5SKjyMSXe0okxEwfb+y0Rkj//TOX6KgYW/Mcb40eV1KpIwtDUVy0Sc8RBQVGQYFctEkDC0NZfXqZjnmKJm7/Yxxhg/u7xORb57ogPz1+1l/JKtbP7DWT3LcW/7C+nSpLoje/ynWfgbY0wRKBUeRnzzWsQ3r0VmlnIsLSP/8/kXIwt/Y4wpYmEuoXzpCKfL+AM75m+MMSHIwt8YY0KQhb8xxoQgC39jjAlBFv7GGBOCLPyNMSYEWfgbY0wIsvA3xpgQZOFvjDEhyMLfGGNCkKj++WvHAoGI/Ab87HQdXlWBA04X4UfB1g9YTyVBsPUDgdlTXVU9L79BARv+gUREVqpqS6fr8Jdg6wesp5Ig2PqBkt2THfYxxpgQZOFvjDEhyMK/YN51ugA/C7Z+wHoqCYKtHyjBPdkxf2OMCUG252+MMSHIwt8YY0KQhX8eRKSyiHwuIlu815XyGFNXRFaJyGoRWS8i9zhRa0EUsJ9mIvKtt5e1InKzE7UWVEF68o77VERSRGROcddYECLSWUQ2ichWERmRx/2lRGSq9/7vRKRe8VdZOAXoqZ2IfC8iGSLS24kaC6sAPT0sIhu8/3cWikhdJ+osDAv/vI0AFqpqQ2Chdz23PcA1qtoMuAoYISI1i7HGwihIP8eB21S1MdAZeE1EKhZjjYVVkJ4AXgEGFltVhSAiYcA4oAvQCLhFRBrlGnYncFhVGwBjgdHFW2XhFLCnX4DBwJTire7cFLCnH4CWqtoUmAG8XLxVFp6Ff97cwCTv8iQgPvcAVU1T1VPe1VIE9u+yIP1sVtUt3uXdwH4g308JOijfngBUdSHwe3EVVUitgK2qul1V04AEsvvKKWefM4AOIiLFWGNh5duTqu5Q1bVAlhMFnoOC9LRYVY97V5cBtYu5xkIL5MByUoyq7gHwXlfLa5CI1BGRtcBOYLQ3NANRgfo5TURaAZHAtmKo7VwVqqcAVYvsfzun7fLelucYVc0AjgBViqW6c1OQnkqawvZ0JzC/SCvyg3CnC3CKiHwBVM/jricKug1V3Qk09R7uSRKRGaq6z181FoY/+vFupwbwITBIVR3dM/NXTwEsrz343O+9LsiYQFLS6i2IAvckIrcCLYHrirQiPwjZ8FfVjme6T0T2iUgNVd3jDcP9+Wxrt4isB9qS/dS82PmjHxEpD8wFRqrqsiIqtcD8+TcKULuAOjnWawO5nz2eHrNLRMKBCsCh4invnBSkp5KmQD2JSEeyd0yuy3FIOGDZYZ+8JQODvMuDAE/uASJSW0TKeJcrAW2ATcVWYeEUpJ9IYBYwWVWnF2Nt5yrfnkqAFUBDEanv/f33I7uvnHL22RtYpIH9ycyC9FTS5NuTiDQH3gHiVLVk7Iioql1yXcg+proQ2OK9ruy9vSUwwbvcCVgLrPFeD3W6bh/7uRVIB1bnuDRzunZfevKufw38Bpwgew/uRqdrz9VHV2Az2a+vPOG97TmyQwSgNDAd2AosBy5wumY/9HSl929xDDgIrHe6Zj/09AWwL8f/nWSna87vYqd3MMaYEGSHfYwxJgRZ+BtjTAiy8DfGmBBk4W+MMSHIwt8YY0KQhb8xxoQgC39jjAlB/w+lv5qG0xejFAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "visualize_solution(xc, yc, quantum_solution, quantum_cost, n, q, 'Quantum')\n", - "visualize_solution(xc, yc, x, classical_cost, n, q, 'Classical')" + "xc, yc = wiki.get_coordinates()\n", + "visualize_solution(xc, yc, ground_state, ground_level, n, q, 'Classical')\n", + "visualize_solution(xc, yc, vqe_state, vqe_level, n, q, 'VQE')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Solution shows the selected stocks via the stars and in green the links (via similarities) with other stocks that are represented in the fund by the linked stock. Note that in this particular case, we can find the optimal solution of the QP formulation, which happens to coincide with the optimal solution of the ILP.\n", - "\n", - "Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian, though. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the ILP. While for some small instances, as above, we can find optimal solutions of the QP formulation which coincide with optima of the ILP, finding optimal solutions of the ILP is harder than finding local optima of the QP formulation, in general. Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). " + "Solution shows the selected stocks via the stars and in green the links (via similarities) with other stocks that are represented in the fund by the linked stock. Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian, though. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the ILP. While for some small instances, as above, we can find optimal solutions of the QP formulation which coincide with optima of the ILP, finding optimal solutions of the ILP is harder than finding local optima of the QP formulation, in general. Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). " ] }, { From 558b518f433ba6cd5dfa1e29d82f3596d7070b62 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 23 Apr 2019 11:12:34 +0200 Subject: [PATCH 068/116] update qgan tutorials --- ...ans_for_loading_random_distributions.ipynb | 17 +++--- .../qgan_option_pricing.ipynb | 54 +++++++++++++------ 2 files changed, 50 insertions(+), 21 deletions(-) diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb index 14ed3f906..066e9d478 100644 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb +++ b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb @@ -1,5 +1,12 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -22,7 +29,7 @@ "\n", "The aim of the qGAN training is to generate a state $\\lvert g_{\\theta}\\rangle$ where $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, describe a probability distribution that is close to the distribution underlying the training data $X=\\left\\{x^0, \\ldots, x^{k-1} \\right\\}$.\n", "\n", - "For further details please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." + "For further details please refer to
Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." ] }, { @@ -49,10 +56,8 @@ "import matplotlib\n", "matplotlib.use('TkAgg')\n", "import matplotlib.pyplot as plt\n", - "\n", "%matplotlib inline\n", "\n", - "\n", "import time\n", "\n", "start = time.time()\n", @@ -1521,9 +1526,9 @@ ], "metadata": { "kernelspec": { - "display_name": "QiskitDevenv", + "display_name": "qiskit_master", "language": "python", - "name": "qiskitdevenv" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { @@ -1535,7 +1540,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb index d21327bbe..606ccde25 100644 --- a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb +++ b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb @@ -1,5 +1,12 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -16,28 +23,34 @@ "- [2]ETH Zurich\n", "\n", "### Introduction\n", - "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff - see [European Call Option Pricing](../../aqua/finance/european_call_option_pricing.ipynb).
\n", - "For further details on learning and loading random distributions by training a qGAN please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." + "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price distribution of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff, see [European Call Option Pricing](../../finance/simulation/european_call_option_pricing.ipynb).
\n", + "\n", + "For a general introduction on how to train a qGAN, see [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb).
\n", + "\n", + "For further details on learning and loading random distributions by training a qGAN please refer to
Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", - " from collections import MutableMapping\n" + "ename": "ImportError", + "evalue": "cannot import name 'UnivariateVariationalDistribution'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0malgorithms\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mAmplitudeEstimation\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muncertainty_problems\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mEuropeanCallExpectedValue\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 10\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muncertainty_models\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mUnivariateVariationalDistribution\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mNormalDistribution\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 11\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvariational_forms\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mRY\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mImportError\u001b[0m: cannot import name 'UnivariateVariationalDistribution'" ] } ], "source": [ - "#!/usr/bin/env python\n", - "# coding: utf-8\n", - "from __future__ import absolute_import, division, print_function\n", + "# #!/usr/bin/env python\n", + "# # coding: utf-8\n", + "# from __future__ import absolute_import, division, print_function\n", "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", @@ -70,6 +83,7 @@ "source": [ "# Set upper and lower data values\n", "bounds = np.array([0.,7.])\n", + "\n", "# Set number of qubits used in the uncertainty model\n", "num_qubits = [3]\n", "\n", @@ -80,10 +94,13 @@ "\n", "# Set variational form\n", "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", + "\n", "# Load the trained circuit parameters\n", "g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]\n", + "\n", "# Set an initial state for the generator circuit\n", "init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1])\n", + "\n", "# Set generator circuit\n", "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params,\n", " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", @@ -115,7 +132,7 @@ "x = uncertainty_model.values\n", "y = uncertainty_model.probabilities\n", "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15, rotation=90)\n", + "plt.xticks(x, size=15)\n", "plt.yticks(size=15)\n", "plt.grid()\n", "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", @@ -168,13 +185,20 @@ "print('Estimated value:\\t%.4f' % result['estimation'])\n", "print('Probability: \\t%.4f' % result['max_probability'])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "QiskitDevenv", + "display_name": "qiskit_master", "language": "python", - "name": "qiskitdevenv" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { @@ -186,7 +210,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.6.1" } }, "nbformat": 4, From f3fb863a5be77fd84dfa780269b7c7d5829a5d45 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 23 Apr 2019 11:12:53 +0200 Subject: [PATCH 069/116] update qiskit finance index page --- qiskit/finance/qiskit_finance.ipynb | 1 - qiskit/finance/simulation/credit_risk_analysis.ipynb | 4 ++-- .../simulation/european_call_option_pricing.ipynb | 2 +- qiskit/finance/simulation/option_pricing.ipynb | 12 ++++++------ 4 files changed, 9 insertions(+), 10 deletions(-) diff --git a/qiskit/finance/qiskit_finance.ipynb b/qiskit/finance/qiskit_finance.ipynb index 8cb272e63..197cb4ffd 100644 --- a/qiskit/finance/qiskit_finance.ipynb +++ b/qiskit/finance/qiskit_finance.ipynb @@ -30,7 +30,6 @@ "In this notebook we provide an overview of Qiskit Finance tutorials and tutorials from other domains which might be relevant in finance.\n", "\n", "#### Machine Learning:\n", - "- Quantum Support Vector Machine for Credit Risk Rating\n", "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", "\n", "#### Optimization:\n", diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb index c7c70ffec..c8ec89cbe 100644 --- a/qiskit/finance/simulation/credit_risk_analysis.ipynb +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -548,7 +548,7 @@ "« ░ └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -894,7 +894,7 @@ "« └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 21, diff --git a/qiskit/finance/simulation/european_call_option_pricing.ipynb b/qiskit/finance/simulation/european_call_option_pricing.ipynb index b11ca0a59..464abe28f 100644 --- a/qiskit/finance/simulation/european_call_option_pricing.ipynb +++ b/qiskit/finance/simulation/european_call_option_pricing.ipynb @@ -293,7 +293,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [ { diff --git a/qiskit/finance/simulation/option_pricing.ipynb b/qiskit/finance/simulation/option_pricing.ipynb index b69deeaf9..ab1dff8c3 100644 --- a/qiskit/finance/simulation/option_pricing.ipynb +++ b/qiskit/finance/simulation/option_pricing.ipynb @@ -28,9 +28,9 @@ "metadata": {}, "source": [ "In this notebook we provide an overview of the available Qiskit Finance tutorials on how to use Quantum Amplitude Estimation (QAE) for option pricing. We analyze different types of options with increasing complexity, featuring:\n", - "- single asset / multi asset (basket) options\n", - "- piecewise linear payoff functions (arbitrary number of break points, possibly non-continuous)\n", - "- path-dependency (sum/average, barrier, etc.)\n", + "- single asset / multi asset (basket) options,\n", + "- piecewise linear payoff functions (arbitrary number of break points, possibly non-continuous), and\n", + "- path-dependency (sum/average, barrier, etc.).\n", "\n", "The basic ideas on using QAE for option pricing and risk analysis are provided here:
\n", "Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger (2019).\n", @@ -51,11 +51,11 @@ "- Basket Option (multivariate, payoff with 2 segments)\n", "- Asian Barrier Spread (multivariate, path-dependent, payoff with 3 segments)\n", "\n", - "All examples illustrate how to use the genereric Qiskit Finance framework to construct operators that can be analyzed with QAE. The same framework can be easily adjusted to estimate risk as well, for instance, the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also known as Expected Shortfall). How to use Qiskit Finance for risk analysis is illustrated in the following tutorial:\n", - "Credit Risk Analysis\n", + "All examples illustrate how to use the genereric Qiskit Finance framework to construct QAE-operators (uncertainty problems). The same framework can be easily adjusted to estimate risk as well, for instance, the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also known as Expected Shortfall). How to use Qiskit Finance for risk analysis is illustrated in the following tutorial:\n", + "Credit Risk Analysis.\n", "\n", "An example of how quantum Generative Adversarial Networks (qGANs) can be used to learn and efficiently load generic random distributions for option pricing can be found here:\n", - "QGANs to learn and load random distributions for option pricing" + "QGANs to learn and load random distributions for option pricing" ] }, { From aee18e776f62883640ada075eabb04e0d5728423 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 23 Apr 2019 13:07:26 +0200 Subject: [PATCH 070/116] bug fix in amplitude estimation tutorial --- .../aqua/general/amplitude_estimation.ipynb | 72 ++++++++----------- 1 file changed, 30 insertions(+), 42 deletions(-) diff --git a/qiskit/aqua/general/amplitude_estimation.ipynb b/qiskit/aqua/general/amplitude_estimation.ipynb index 43d45dcef..7101c0e96 100644 --- a/qiskit/aqua/general/amplitude_estimation.ipynb +++ b/qiskit/aqua/general/amplitude_estimation.ipynb @@ -47,9 +47,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", @@ -58,9 +56,9 @@ "from qiskit.tools.visualization import plot_bloch_vector\n", "from qiskit import BasicAer\n", "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.algorithms.single_sample.ae.q_factory import QFactory\n", + "from qiskit.aqua.algorithms.single_sample.amplitude_estimation.q_factory import QFactory\n", "from qiskit.aqua.components.uncertainty_problems import UncertaintyProblem\n", - "from qiskit.aqua.utils.circuit_utils import cry" + "from qiskit.aqua.circuits.gates import cry" ] }, { @@ -70,7 +68,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAF9CAYAAADoebhRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvUlwJNd5LvrlnFmZNWFoNNDsJpsz\neSWKIimJFJ9syRqfrQjFe0svHA6HV3aEwlp7YXvhCG+8sCPsrRbe3oXl5xu6kiWRmk0NlCjqUWyO\n3WgAjbmGnKdz7iLPSWQVagTQTbJxvogKAFU5nExUfuc///D9EqUUAgICAgLnA/J7PQABAQEBgTsH\nQfoCAgIC5wiC9AUEBATOEQTpCwgICJwjCNIXEBAQOEcQpC8gICBwjiBIX0BAQOAcQZC+gICAwDmC\nIH0BAQGBcwR1zu1F+a6AgIDA+xPSLBsJS19AQEDgHEGQvoCAgMA5giB9AQEBgXMEQfoCAgIC5wiC\n9AUEBATOEQTpCwgICJwjCNIXEBAQOEcQpC8gICBwjiBIX0BAQOAcQZC+gICAwDmCIH0BAQGBcwRB\n+gICAgLnCIL0BQQEBM4RBOkLCAgInCMI0he46/G3f/u3kCQJ169fP9VxfvjDH0KSJPzLv/zL2QxM\nQOA9gCB9gXONjY0N/Nmf/RnW1tZgGAbuu+8+/NVf/RU6nc6xbZ9//nksLy/jG9/4xnswUgGBs4Eg\nfYFzi7fffhtPP/00vv71r+PjH/84vva1r+H+++/HP/3TP+G5557DwcHBwPayLOPLX/4yXnzxRfR6\nvfdo1AICp4MgfYFzi7/4i7/A7u4u/vmf/xn//u//jn/4h3/A9773PXzta1/DtWvX8Nd//dfH9vnK\nV76CNE3xzW9+8z0YsYDA6SFIX+Bc4p133sG3v/1t3HffffjLv/zLgc/+7u/+DrZt49/+7d/g+/7A\nZ5///OdhWZZw8Qh8YCFIX+Bc4nvf+x4A4Atf+AJkefAxqNfreP755xEEAf77v/974LNarYbPf/7z\n+OY3v4k0Te/YeAUEzgqC9AXOJa5duwYAePjhh0d+/tBDDwEA3njjjWOffeUrX0Gv18OLL75428Yn\nIHC7IEhf4FyCB2KbzebIz/n73W732Gdf/vKXIcuycPEIfCAhSF9AYAQopQAASZKOfXbhwgU8++yz\n+I//+I87PSwBgVNDkL7AuQS35MelXvb7/YHtRn3eaDRuz+AEBG4jBOkLnEs88sgjAEb77AHgzTff\nBDDa5//OO+/gt7/9Lb7yla/cvgEKCNwmCNIXOJf4zGc+AwD49re/DULIwGeu6+LHP/4xLMvCs88+\ne2xf7ssXpC/wQYQgfYFziQceeABf+MIXcP369WNaOn/zN38D3/fxJ3/yJ7Bt+9i+3/jGN7C6uoqP\nfexjd2q4AgJnBvW9HoCAwHuFf/3Xf8UnP/lJfPWrX8V3v/tdPPbYY3jppZfwwgsv4OGHH8bf//3f\nH9vn8PAQP/rRj/Dnf/7nI4O8AgLvdwhLX+Dc4oEHHsAvfvEL/Omf/ileeukl/OM//iPefvttfPWr\nX8VPf/pTLC4uHtvnP//zP5HnuXDtCHxgISx9gXONy5cv4+tf//rM23/jG9+A4zj4gz/4g9s4KgGB\n2wdh6QsIzIgoivCtb30LX/rSl2AYxns9HAGBE0GQvoDAjHjllVfw4IMP4o//+I/f66EICJwYwr0j\nIDAjPvGJT+DXv/71ez0MAYFTQZC+wF2PT3/60wCAVqv13g5EQOB9AIlrjMyIuTYWELhbkGUZgKJ7\n1rAUs4DA+wQz5RALS1/grgUhBCAEhBBQQgBm4FBWgUuLjcrt8zwHwETWJKnMww/CEK7rAuz9ZquF\nuuNAUhQxAQh84CAsfYEPJAghoFkGkucgeQ5KCGieA5SWJE8ImauAihCC4efBDwJ4vg/TMGDoOsIo\nQpplaLdaUNXCZpIkCbIsH00CsgxZUaBqGmRVhaIK20rgjmCmL7sgfYH3JSgj7zSOAUIgs/dolpVW\nO+WvyvaE/2SvnBP50PbsJOW+fLKAJEGiFJBlJEkC1/NgGAYc24Yiy6CUotPvQ5YktJpNqIzoyxdf\nIVAKvoaQJAmyokDRNCiKAplNBqqmiZWCwFlCuHcE3v/IsgxpmiLPc6RpijSKkMYxsjQFybLSJUMY\nMUOSim82s+AlSSrJfBK4xV+SMjtOaaWjsGi464cQgiCKoKgq7FoNlFKkWQZKKXRVRc/zQCmFOSJf\nnx8TlCJOEri+D9fz0Hdd9FwXvX4fnu+jZlloNhpotVpot9tYXFrCwuIi2u02HMcRMg8CtwXC0hd4\nTxBFEfq9HiLfB83z0jVDuaWNIws8SVNkeY6cEOR5jjzPIUkSJFmGJElQFQV2rYaaZUFV1dLiHg66\nUkonEml18oiiCD3XRbPRKIm9+qwcHB4CKPT2y5VFnuOw28Xv3nwT27u76LsuZFlG3XEGXg32M0lT\nBGGIIAzh+T483y8mCNdFTgg++uSTeO6TnxS6/QKzQrh3BN5fyPMcoeui3+shCUPkeQ5d0yBJEvI8\nP2atK4oCVVGKn6oKRVGgyDLAts+yDFmeI06Sskm5aRiwLAu6po0cA8X4J4NWXEAHnQ4kScJiu13u\nh8r4uK9/ienzvHP9Ol557TUcdjp4/JFHcPXKFbSbTZimCZLnyCoTFn9lPB5RGYMsy9BUFVEc4/U3\n38Sb776LB++/H8994hNYvXxZuIMEJkGQvsB7D0IIsihCv9NB9/AQSZIgpxS6ppWEr8gyNE2DqqrQ\nOLkryoBVTplrZ1j7niPLMgRhiDCKQCmFoiioWRZMw5iZKDnhD1v5o56RLM+xvrGBm1tbeOPtt9Fq\nNPDhxx/Hg1evQlWU48cmBBmfqHhMgp2TsFVM+XmWlbGIJE2xvrGB6+vrWFpYwDNPPYUHH3oIpm2L\nALHAMATpC7w3oJQij2OE/T46h4c46HRACIGqqqjVanAsC5qmFa8p2S0UOCJ6SkFmcNGEUYQgDJGl\nKSBJsJj1rw2fhwVc+U9CCCiAw04HFCisfP555fg3Njbwm9dew8bWFq5euYKPffSjWFpYODaOLMuQ\nMhLncYucnYNWJi/Kx8KuEeya+WogyzKkSYKtnR2sb25CU1U8/ZGP4NKlS2gvLaHRbkMZMdEInDsI\n0he4s4jDEEG/j8jzkKQpwihCGMewDAOLrRZqtRrUIQt+HLgVzP3wlNLSl19uU/lsmDQpgIz5zKMk\nAaUUtmXBse3yGMMuG25ZH3Q6cGy7DODy7Xf39/GdH/wAlFI88fjjuGd1FUmaYqHVKuINzN2UZlmZ\n8w9JgsziDqqqlj8lSSontFEup+F7lOc5oiRBEIZ48+238dobb+B/PPwwFhcWoKoqnEYDC0tLqDeb\nMAwDuq7P9k8TuJsgSF/g9oJSijAMEbouIs9DlqaQJAmaopTB17pto9lozJyJwq16gsFvcEmis46t\nsj8hBJ7vF9k4soxmvQ5d18v0Tb4dpRQuC6guLixAYYHiLMvw0ssv4/+/dg3Pf/zjeOyhh5DnOfqu\ni/3DQ9i2Xa4iZFkuyV1T1TIWUb1nVUiSVKSZ5vnAimIatra38a0XXsCHHn0Ul1ZXEUcRMkIgyTJq\njoPWwgIWl5ZgVyY5gbsegvQFbg+SJIHnugj6fZAkgSxJ0HUdhq5D1zR0XRdJmsKxLNQdp/DrM1dH\n1d2RVSzjLMuQZ1mRkSPLUJiFLDOruJpeeewlSWUcwND1Yz58bq0nSYKe54FkGawhq59vt3d4CFmS\n0GY6PVs7O/jO97+PhXYbv/fss1AUBWEcI8+ycjJpNRpo1Otl5tA08Gdu+NnLKhXB1bTUcej2evhf\n3/kOrl65gk989KNIswxRHMP3fYRxDFlV4bRauHDhAlqtFrQxwW2BuwaC9AXODnmeIwxDuL0esigC\nzTLUTBOmaULXNFBK0e33cWt3F0mSwNB1qIqClJEjgKMce/a7IsuFu0NRICkKlErOPQ9k8lTIjFfZ\njsrJ50FRFISpqyoMw4BpmjANA6ZhlNWzhBD4QYAgDCFJUmn1A0Captg7PETdtqFqGn7y85/jrXff\nxXNPP421ixeRsAwhVVGKCl3TRKfbhaooaDWbY+/dgPumWhA2gtRJnhc1Cfw24cjnL1V/MkRRhG9+\n73uwTBOf+9SnyutM0xSe76PnukjzHIZtY2l5GUvM+he4KyFIX+B04Jksvu8j8n2QJIGmKKiZZilJ\n4Po+At+HFwQIwxAA4DhOQfrMzVFNuay+x61iygK040AqujlAUajFZRb47zlzkcRJgiRJEMdxOXFQ\nAJqiwDCM8qVxiz3PYeg6HMdBEARwfR9+GOLFH/8YF5aW8JHHH4fOVg8m25f75EEpev0+0jQtUzdn\nvLHF9Y6x5CmrJJ6KSgD6hR//GL1+H3/4uc/BMs0Bl1UYRej2+/CCAKphoN5s4sKFC2iLAPDdBkH6\nAicDIQRBEKDf74NEESRKYagqJFlGGIbwwxBhEJRWp6aqyAmBbhi4sLg4VxBxGuGX8ghgFjMr4AKY\nFcyKuQaKutjvSZoiYZNAkqZH+fyUgkhSKe1ACIGu6/CDAG9dv469gwN89MMfxqWVFei6DnNU3j8j\n7SAI4AUBlhYWBlw7ZVUuG2dZeMbv8ZTnbtjinwZKCH7+619jfXMT/88f/mGRNloJbkuShCzP0XNd\ndHs9UEmCadtYXVvD8vKyIP+7A4L0BeYDIQS+78P3fWRxDMos4ThJELH8dwmApmmwazVYpgnLsuAH\nAeI4RqvVGpmjPgrVQqhJvmvKUxynpGrOci7CUiCDKEIUhojiGHEcwwtD7Ny6heu3bsGxbTx0//1Y\nWlhA03EAJqcwnPHD/07TFK7vo27bI33mChNfU2S5XN3IzK01LClRTR+lOEHwmlJ864UXUHccPPfM\nM5CZ3ERxisF75wcB9g8PQSQJjXYbKysraDabgvw/2BDaOwKzoUr2URQh6HYRM0teliRoqoq646Bm\nWaXUQVV2OIljOLY9lvBHEbYkywO56mN2LLN4RhF+abDQI7G1nFnIJM9LwbWqeiYfC1fNjE0TcRyj\n0+3ikatXsX7zJgxVRRSGyLKsTPM0TbOoBubnZuPi5zAtCzXTLD8Di0vwfPskSY5Z7oRSyLI8MCHw\nqmP+/rCbp0xRHQFJkvDp55/H//yP/8A9q6u4cs89pdBcNTgsSRLsWg22ZaHvuuh0OkiiCP12u9T9\nEeR/90KQ/jkGIQSe55Vk7/X7SHwfmqKgbtuwbbuQNND1kaSbpin8IICm6zA54Y0h+GNgvvhpGSoS\nP2blvZyQQpyNZf2QERaxxDJ6VFWFwnR6OKlSAEkcI4xj7O/t4XfXruHZj38ci+02NjY3scqCtoos\nI4oi7MUxZFmGU6vBcRw4tVrhumEEbAYBdE2Dxe7BKFQngjzLQFjxFtcTStJ0dLUxpUWlMitmG5hY\n2aqgOhGYhoE/+NSn8J0f/AD/7x/9Eexa7dgqpbyfkoR6vQ7LsnDY7aLX6SBJEvi+D9u2BfnfpRCk\nf07Bffau68L3PJAkgS7LWGq30Ww0xhI9B6EUrutCohSO45TvjyT4EZjm1pHYOXhla/XFyVGWZaia\nBsUwivROlgEkDxeA8SpXFpgOwxAEwPr6Ot6+fh1f/OxnQSiFpqqQALSaTXi+D0mSsLy0VFT4spVQ\n3/MgSxJqtRoajlNILivKVFcMJ1mVWfJ8fITSMibB4wt8IiCEIEtTREmCOEmK40gSdF7NzCaBActf\nkrB28SIee+ghvPDjH+OPPve50askdl8oimykpYWFwk0XBPDAZC2CAPV6XeT632UQpH/OkGUZOp0O\n9vf34bouNFmGIUloMrI/Rphj4Ps+CKVoNJsnEgHjCpqlzxlHRJRmGTIWeM2YnDEAyIoCjWnSc62e\nYZmEygkG/OMhI3tKCDRdx2uvv47dvT380Re+AF3T0Ov3obIAtMEmEdfz4HpeqY5J8hxBGMJnmUq+\n7xdBZUJgmSacWq1MmRy+1uo9LS1vTtaVAK/KViNQ1VJryK6sBlJW4zBpEgCApz/yEfx/3/oWfvXq\nq3jqiSfGCs2V9x0oJrAoKo0Aw7ZBCEEYhiLP/y6CIP1zAkoper0eNjY20Ov1YCgKWpaFZr2Oer0O\nmckCjEXFlRBFEaIoKmQVTiL6VclkIYQMFmxxi5mdy9D1guhVtVTYHCD6YYueXQd3ecRxjCAMQQiB\npmkwDQM/eeklxEmC//tzn4Om6wiCAACgV65F1TQ0Gg30XRf9fh+O40DX9UKewbbLauQgCHDY6WDv\n4AAhi20stNulfx84ar/IJyCp+n41J78yAfLr4v8XRVFgKQostu0sk8DvP/88vvHNb+LS6ipWlpfL\nc490wbG/uUBdGIbo7+1BM03YzWYR37Bt1Ot1YfV/wCFI/xzAdV3cuHEDhwcHMBQFK40G2q1W6Zbh\n+i9VcOKsZqpAkpCzKlRVVSf6sI8OREtrssx4ybKi7WCV5IHymCqTLxjQxWHnR/XnMCqkGccx/CAo\nhN4UBfV6HYRSfPfFF2HbNj7/mc+UjU7SNC3ON5RyqSoKmo0GXNeF53mwbRuGYZSBZbtWK162jU6v\nB1VVEfg+1n2/0BtaWIDDC6HYtVSL06qrkfG3b3A/TtyKosCU5fJ/MG4SePJDH8J/ff/7+MqXvlSM\nhQVyuXtNGlop8UmDB/Bd30cax7AdB3EYIooiNJm+j8AHE4L072IQQnD9+nVsra9DlSRcWljA8tJS\nIRfMtqFDxMqtzJL+hgg2DEMQSot0xjEZNVVLtfRd5zmiOC6klZl2vsIKvVSmtlklo+FMl+EzVWMC\nA0HeLIPrecjzHLKioFGvQ9c0eJ6Hb7/wAq7ccw+efvLJo8ImSpHlOawRJEZRpFxyi9/3fRBCYFnW\n0f1iAWPTMNCs17HYbsNlHbI2bt2CrmlYbLdRd5xBN1gl86hcoYywwIenA6n6k62WJq0Ert57L9Y3\nNvDq736Hhx94AAYLupeKo9UgL44ypVRFgcSs/l6/j8DzYOc5Dvp9eL0eli9eRL1eP3bPBN7/EKR/\nl8L3fVx7/XVE/T4WGg1cuXQJBiP7avoiqWTGjEuN5MgJQRhFhb5NNatjiIBLoicEMauOTbMMQJHj\nz5uc8BaInMAGSG+M9csnlVGj5NXDQOGf5tZop9vFf73wAj70+ON47JFHjnaQpEJ+mVKoE/zVslTI\nNfi+X7qKqsFNnuGSEQJT19FutdBsNtH3PPR7Pdza3cXewQHarRbaQzEQrrZZvb6q9U8IGZt8Xf2/\n0aHfq5PAs888g29+97t47KGHEMcxojgupCRYZTVvF1kZxFG6LnNz9VwXfhSh4TgIfR8333kHy2tr\nWFpaEu6eDxgE6d9lIIRge3sbN959F0qe48qlS1hZXi5IteLGKQueMJnoq4iiqAxacmIYKC5ix43j\nuJRDAFDq6Bu6fpQCyDNWKmmKxwKcQ6gGPqvno8zllCYJFFZTIMsyKIrJ7zsvvIBnPvpRXL3vvoEJ\nigJlxy1V00qiLSfFoxMDklRo1jB/tyTLhd9eOuqxy+sBJEaYrXodDSbv0O12sX9wgINOB+1mE+1m\n81g8RBq6Lk7444KwA/sO/V6OXZKwvLiIxXYbt3Z38eiDD5bFdh7LSDKYPlEZqOVuPVZLoWsaGo6D\nPgtsN+p1RFGErevXEXoeLl25IlI7P0AQpH8XIQgCXH/3XfQPDmAbBi7fe2/pt+caNMCQX3lGEEIQ\nBgE0wzjW1Qoo/PQJsyI58VmmWWrVlGPgPmpJggIgH+HTHpA8rhJwZVIoM32SBF4QgFKKmmUdxRlo\n0ZT8v154Af/j0Udx9d57B1wq/IxZlhXFZsBol9eQ5V2zrCKLx/chAeVqglf8UhyftGwW/A3CEL1e\nDweHhzjodtF0HCy22yOzYiiO3Ed8bMP1CpNQbsfG8tQTT+CFH/0Ijz74YFFJbZqFKmcUFZNAHJdu\nqmq3MVWWkTF9orptl03e644DWVFwsLOD0PNw5cEHS7eXwPsbgvTvAhBCsLe3h1sbG0h9H8vtNi5e\nuAC9QkhVX3uVfGcF9+XbllUSPpdoiJlcA4BCYtkwylaIAErNnGpqIocMIGef04qfne83gOqYKYUf\nBIiiCArz3VcLl/I8x/e+/31cWlvDY48+OngYtj9FQfrmpKAkzwaqvGXbNkieww+CoqetpkGS5bFa\nOfxec7JN4hjdfh899rJtG+1mE5ZllQTP9fWHq2knBX0nYW1lBbZt463r1/Hw/fcDKDSTNMeBw7Kc\nIhb89oOg8P0z619m4zANA4Tdd8/3UXccKCze8eZvf4vLV6+ivbR0ovEJ3DkI0v+AI4oirN+4gch1\noRCCC2traLdaA9b1QAYORpDpGFTdG2EUlQVbURwjjqIjP72qwrLtUo1y+BjVoGvVdVINGnP/Pth7\nk8gtzTK4rgtCSGHdM7LkIJTihz/9KWq1Gp558snRB5Ek5KwGYFqv2eGJSpIkOPU6+q5bujvkcbIS\nI+oIdMPAheVltFst9Pv98jiWaWKx3T7KjOGrosrqqHofh1M+p+HpD38YP/75z/HQ1avH4igmk8nO\n8ryw/pmLTpblIm2WqaTWmGvPD0N4vg+HNcnpex6uv/024jDE8sWLUERO//sWgvQ/wNjZ2cHurVtQ\n8hwOsyJbnPArLowBH3iVXEegGkzle4VRhDzPoaoqOt3uUeaNZcFg7p7q/tV0z/I4E7JxuCIlr8Cl\nhIyuIqUUEVP5VGQZzUbjWN9bCuAXL7+MKI7xuU9/+ng2TGViydikNUutwXBmjSzLaDgOev0+XM8r\nYwjHMMGFpmkaFhcX0Wq10Ot20en3sb65CbtWw/LSUnltA26nodXOgMooJvv+71lbg6qqeHd9Hfff\ne28xPH4cHGXt8FaRCXP7hFEEnxAYul7qL1FKy54ENqtO7vX72Ll1C2kUYfHiRdREds/7EoL0P4BI\nkgQ33n0XkefB4cUzeY46c3GUVtwM2jYcpb9/aHtCCA47HcRJUuRw63qZS8+3r/qbh33x85xXYama\noyQN8jwvUjGZO6ZWqxUqkkN47Xe/w/bODr74+c+PFoCr7JPleanHMw2jJiGeEtrr9xEEwYlz12VZ\nRrPVgl2vo9frodfv48b6OhbabbQmVDxX3VSgTJyOUmAoG6daDPb0E0/gF6+8gqtXrgysHCRO/NwN\nJ0ll74E8z+GzQrQojgeIP6zEAursXnR7PRBC4DQaaC4tTcyMErjzmL9+XuA9RRRFeOvaNWRBgNWl\nJSy228jyHHatBtM0S4IgcxA+gKPUyfLPouJ0e2cHfhCgUa+j1WwWE4uqDlifVQt01jNWFTKHCWq4\neXoYReh2uyCEoF6vw7HtkYT/zvXreO3aNXz205+GMQPR8CDuaaCoapGvTik8z5s+2Y0KWrP3ZFlG\nu93G2uoqDMPAQaeD9c1NBKw5zTRIwFFchKmOEkJAcBQYvvfyZeSE4ObW1tDO41s0KkyAr9VsQtc0\nBGFYdAxTVaiyjIAVwemahrrjIM2yIjbguti5eRMRq3gWeH9AkP4HCEEQ4J033oCS57hndRU1y4IX\nBDANo+j3yrabJGZW9alX6aeaLhmGIQ47HfhBgCzL0Go20W61Cot4hMtmnrTPYYzbj5O667oIfB+a\npqHVaBxvZsJwa3sbP//lL/G5T38adq02cpuBfHimdjmr/v8kaJoGh2nz9KcRPw+CD0k+V6HrOlYv\nXsTy4iJInmPz1i1s7+6W7qhJqFr1nMTLCYBZ8088/jheu3bt2HfgGIZSWBVZRqNeR5PFMDzfLxRP\nGclTSmGwlWDE0kLzLMPe5ia8fn/q2AXuDATpf0AQBAFuvPkmVEJwz+oqTMOAx2SQGxXfaTU1cxhV\nbfZh/y/30R52u4XMAvPtmqaJ2hgSnWslgUpQF+PJnn9OCEG/30eeZag7DpqNxlgFz8NuFz/4yU/w\n+5/6VNnQfBq4/MNpLX0O0zBgWlYh/zDJMqdH+vYDk8OI++E4Di6traFRr8PzPFzf2ECn15trXKMm\n5PsuX8bWzg7SJCnSTMdMPgMFd5W3NU0rVn2sHiLPMhx2OuWKxK7VoCkKgigqJ7bD7W109vbmGrvA\n7YEg/Q8APM/D+ptvQqEUl1ZXoRsG4iQpslcqlaHTWg8ey6xhBMQt+4BNIq1mE81GoyQCQ9dH5p/P\nimpe/bQVAUVByL1+v3TnmJYFiTUVkbiOPb83vo/vvvgiPv7MM7h44cLE41ZJdp4g7tDFjH6fZbmY\nhoGYdeYaPn9V40hi+5R/jzmuoihYXFjA2uoqdEXB/sEBbmxsFIVyM0LCIHEbrK3lza2tgZgMqaw+\nBowH5vuXh1JuDV1Hu9nEQqsFSim2d3fhel7xvazViorsOC63dw8PsX/r1ui+AQJ3DIL03+fodru4\n+dZbkCnFZSalAEbUqqoO5JiPoo0qyUg4ygDhTc87nQ58Ztk3m0006vUyayRmzUO4MNmJy+15ZskM\nhJ/EMXr9PighaDQa0Kr9dlmAsdpV6jvf/z4ee/RR3Hf58uQhsP05MqbNM6v+f3UMo6Cw93nzdJ+1\nYyxdOCPuH78nvPBs0t3RdR1ra2tYWlhAlqa4ubWFnb29mVw+o3DflSu4cfPmyM9K0q80li9dhpXg\nL9j4a7VaYYxoGrq9HjrdLtIkKQTomLXP9wtcF7sbGycet8DpIUj/fYxut4ud69ehoki301jBU8xE\ny2qVCkj+kFb/Bo4HVinTz+FkrzCyH05/JKw7lcFId17Cr/qLZ90zjuMi/VGS0BwhUzAAScIvfvUr\nLC0s4MOPPVZIIXDp5RFyDsMT4mmCuFXtomqfX0qLzli1Wg2KoiBgAm2TMOA6meEe1+t13HPpEuqO\ng36/jxsbG+jN4S/n57vv8mWsb25OHR//XpGhGITEJmAOQ9ex0GqVWj5BFCFNEsRRVLh9Kv+LJIqw\nc/Mm0soqQODOQZD++xTdTgc7169DkSRcvueesjCKUoogCKCq6qAEwFC2ziiSTqIIvV5vItmX2yYJ\nKAoLc17MS/ZAEbNwPQ8akzOWpwRYb6yvY+vWLTz7zDMDRM/JiLdH5JZ0SVI8sJnnR0FcZonzQOfY\nmoJKLvxwVXMZRGfnqjMVUs8HOOstAAAgAElEQVTzprrFyjHPOLEqioKlxUWsXrwIVVGwe3CA9c1N\nREzraBY4to1GvY5bu7szFetJLJ2WZwQNSGWwcdcsCxr7njbqdei6jizPsXdwUOow8WPlaYr9rS3k\nwuK/4xCk/z5Ep9PB1o0bBeFfujTQiJy3C7SGrPzSzz1ERBKKkn5eRCSxoqZxhU0cvBrzJNbwtCKh\ngXNSCtfzELA+s/UJAVsOz/Pw3z//OX7v+ecH3T/HBnLki66OjeQ5JEkqV04SWyXIFfId9oNLqPjd\nKxNMeVw+ZmY5K4oCu1ZDnucIZ/S/l+6eGWMnpmli7eJFLLRaSNIUN2/exEGnM9O+wJGLR+aT5qSi\nPQxeLyf/nE+UzO1Wr9WQE4Isy9BsNLC4sABKKfYPD8v7wGs6kiTBgfDx33EI0n+f4fDwEFs3bsCQ\nZVy+5x6oFQ0bAAPSB0DFyqf0qFwfR2QVRxG6vR7SNEXNtke2vTvWqINSJFk2l5V/kkAvIQS9fh9x\nHMOyrEIcbprfnxD86Cc/weOPPoqlxcUZBnZcZ6jM3Dlhuua44rNhmWTDMGCYJqIwLNU8px4XGFmD\nMHYfNolfungRdq2Gw04HN7e2ZvKZX718Gddv3ixJmE+SI2NDkyYE3tOXUmi6DlPXEYQhMuaC5Fk+\nfhCgz+Qz+CQSBQG6IqvnjkKQ/vsI3W4XGzduwFIUXL58eaSVnaYpFEUpc+a5MNewiyCvWPeKLKPd\nbKJmWccIZdiCA4AkTUtJ3WmoLvPn8fvz8WVpCse2x6eFDuGV3/4WsqLgQ489NvO5hieSnJCjGMAJ\nMXLfEVa6bVlQFAUey2qZBMrHyf+Pc0yimqbhwoULWGi3EUfRTEVdLRY32T88ZKcdLeVAgYlZYXxf\noPg+8CJBPwjKKm7TMGBbFpI0RbffL40XSBK8Xg89NgaB2w9B+u8TJEmCjRs3YKsqLt9zT9EPdgTS\nNIWmqqVPmbslqhi27pvNZikqNuw7HkXTSZIAkjTdtTNnFS5HlmXo9nrImXRENTYxCTs7O7j25pv4\nv557buYagVFHPJOirBksfaCYHBzHKbT9p1SmDl/RSSalZqOBiysrkABsbm2h0+2OP58k4b7Ll3F9\nff3Y+zz+QflENscExGUZePtGTVEKeWbDQLPRAAD0+v0Bt1f/4ACB5813sQIngiD99wEIIbjx9ttQ\nCcHqyspYrZUsy0BZz9dRGGfdDyhsMv//WBlgFP58gwXkxoFn58yb1ZMkCbos26TZaMzsQoqjCD/8\nyU/w/Cc+Mbtu+wjXDqWFts9pm36Mum4JGKm0qaoqapZVZrPMe55577FpmlhbXYVpWdjvdLC1vT12\nlXH1yhVcH5O6KaEgiJHqodPGYBiQUUhyK8xIyfIcmqqWldUD7h5KcbC9jVBINtx2CNJ/H2B7awtZ\nFGFleXm0aBeztHLmylFV9ZgrYZJ1f3QYpvEiSWNXEjxQPM61c1J3DgBEcYx+vw9llpTMwZPiJz/7\nGa5cuYJLly7NfD46gjA5wUyTU54Fw8eWpfFBWMuyoGka/DCcnLEyan86e/MUDkVRsLqyghZr83j9\n5s2R2T0XlpYKFc0xZEvokQDbPJBlGQaz9vmePM4gMzmHYXcPJQR7m5sIWctLgdsDQfrvMXqdDryD\nA9RZCt0AqnnmLDtiIEtHkmay7oFBNcvqz2FMqlSdpYhoHKI4hud5UFnP1XGTzihce/NNeJ6Hpz7y\nkflOOoJAOeHelvZ+UzJvuFCc6/vjtxv1f2GulpPc9zZrqEMJwc3NzWM5/ZIkYWlhofTrV1EmCVS2\nndWtBhTWPgXKyUbm6bLsmJZlDbp7WD7/7saGcPXcRgjSfw+RRBEONzchA0UfW45R/mIcySjkzFqd\n2bqnx3vh8srWY5ktWVam3w0ch43rJMQTJwk81y07XI1yX40jwW63i1+9+ip+7/nn5yPqMcfjss1n\nQfqjfPCTPN8y0zMihCAYY1lPtKhPSPxWrVYod6oqdvf3sb27O0DmiwsL2D84OLbfKBfgPCs8VVWh\nKUpJ5rxuAij+D4SQQXdPGJbunp2NDQSue4KrFZgGQfrvEUiaYu/GDaRpOtaPP6B9gqNUvizLZrPu\nh/LKhyFJ0jHyy/Ic2lBTlFGTxqxI0rQYJyP8sccY8X6WZfjBj36EZ558Eg1mEZ4WWZ5DqdQ9nBbS\n0O/TgtEaV6FknakmHe8soWkaVi9eRKNeh+t5WN/aKgumlhYWjuX384Y24zDr/bMsC3meI82ygVUm\n/51PPo16vWjckqbouS6SLMPOxgZ8oc555hBNVN4DkDTF4dYWgjDEwsICzOHAZKWKdPj9NEkQhSEM\nw0DNtmGZ5sgHcNidMw5l1yqWO53lOUwWXB2uuJwXWZah77qQATQajbEB6uJkxwnmFy+/jFa7jQeu\nXh29C5MMpoQUqx9+HEqRs7qFUjuG7dN3XciKAoXd47IKF0ergG6/f0RQOLoH5b2sFHDx+gRZkpCk\nKZI4RpqmhWYRK/wahsV82UEQQOXpt7NCksqGJ/NCkmUsLizANAzsHx5ifXMTK8vLWFpcxM9+9aty\nOzLk1hk/lOMFgcPQNQ2yLCOMomMrzeq+hBAYhgFVVeF6HnzPAzEM7G5uYplSOM3mCa5YYBQE6d9h\nkDRFeHiIXq8H0zDQajaPHhqe6zxm3yAMi6bVhoH2CFcOgFK2dx6y5sSfJEmRHVQ97kkJP8/RdV1I\nABoTuj+V4+Y/mc93a3sbNzc38cXPfhYBa8pekjsn+wkZSAPppBXCTtIUpqIgYy0ZJano0Vut3JUr\n/4eS/GjRmYoftxwvjlZDcRQhThJoQ5r6/P7y2gCZBeN9z0PPddF0nFI2YibwCWfOYjgOm/Uz3t3d\nxfbuLpqNBqIoQhTH0HV9rgpZfn/HjUWSJGiqCjfPkRMyMMHxSbOsBqYUiiyj1WjA8/1Cox/A3tYW\nKIC6IP4zgSD9OwiSJEhcF3v7+6AAVlg+9QCx0uNqjFyqIE4S2LYNVZZHatOcjAIKSCzIBqD09Z/U\nBZLlOXq9HiQUaZnDQducNTDJWSUnX/7zzBpCCF76xS/w2KOPFm0agQEtHYVVKSsVEuVB7gF3y9D4\neWaS4zilkFwV3Iddd5yZr5VPMIQQhIaBIAjg2HZ5HeVPPmFx/XqwngG9HtI4PmopKBVtI2VVhcLU\nRGVVLVQ8h65nHsmGYWiahrXVVewfHqLX78Oxbezs7eHS6uqJjjdtLLqqIkmSY1lhUmWCrX7nbNsG\nRaHJVBI/IWi02ycan8ARBOnfIZAkAQkCdDodJHGMtbW1ggwrlYyjsiMoIei5LtIsg836wvb7fSRJ\nMpDeOa05ySzImd9VGWpXONcx8hx9Jo1sOw6yLCskhpmlV+1/y69ZVpRCVoIR+etvvIFmo4FHHnyw\ntJLnARkTcM7OMIjLIYGlhrJJSZblot3jtJUNmwS63S5yQmCZZqnSmeU5sjgu5RG4m01mrqByImCT\nwklXY5IsY3lpCYauo2HbeOf6dawsL59YfbRalcuRZRkoisylOEmKqvAR96b8vvEUURTVzISQMnd/\nf3sblFI0FxZOND6BAoL07wBIkoD4PrwggOd5aLXbqNVqRxK9GB3A4+mYhJBCtVDTQAiBJMuI4hiG\nYZwJ2QNHejuqqhY+/hkzdXjRTZ5lSLMM3W4XSZqiVqvBq+Rbcw18wzBK4lJUtXSlcHeN7/t4/Y03\n8Edf/OKJyHncvQQqmTunkF8YhZPceUmWocoyWs0meq4LCpTfCV4MRZjMRsZUQUmeI8syJIQcW9FI\nigJVUYr7rKrH+gxPgu04WFtdxfrNm9i4dQtrKysnUletjod/L3mwul6vo+e6iJMElmmO32/ob9uy\n4FWynQ52dgBK0ZxFd0lgJATp32aQOAYJAhCgaCYty1hgS9SBxfDQA5omSdFvFYWLROOEL0kwdB1R\nHBcaMiconBkGl3TI8rysxJWBkUE6rrOfMZLP8rz0aXtMP77ZbMI0jIKEGMFPHSM7z89++Us8/uij\nhfjaGYNX4p5V5s4AKv+HSRPPMFRNg8G6bRm6PuC2k5mbZ/ghpThKeeTusYwQhHEMuRIfUhSlaF7O\nXqM6p3FJ7pULF/DW22+D5jk2t7exdvHiSBfYrJAkCZR1ztI1DbqmQVOUQlxvDOmX+zFrn1v9jm2X\nPn4AOGApp+1qmrPAzBCkfxtB0hSE+SR9z0OWpli5cKHwmQMj/ffAUSGTzBQUFUUZWDIbhoEwihCH\nIWq2faoxVnvSUkrLpT0X/MryHCnTUMnS9ChLBig7d6mKAj8I4NRqqDMd9bkhSdjY2EC318OnPvnJ\n01zQ2I/IUCDxzDElED8OXKLB8/3jBXqjTgOmEKoowJCPPK2sCNI8L1o3sn34akBV1XIy5mNu1OsI\nwhBLi4vYPzzE1q1bWF1ZgTmBoKchSVNQoHRD6roOPwhAmODd2Ovjz4QsQ2KT0jDxY38fqqqiLnz8\nc0OQ/m0CIaQkfEop+q5bNBvnFuwYwg+CAH4YQtc0NFhWB9+eg1uHQRQV7pJTdoACmO+VST34QYAs\nTY+seAbunuGWI7fKeEGNc1LCRyEZ/fNf/hIff+aZExPzJLLl1zYsK31WKFM7i5PNta8sy7AsC77v\nl20GTwpVUUBlGZqmgScCZ2xFlqYp4iRBFEVlSrAqy1A0DZqqol6vI4wirK6sYHt3F1vb27i4sjLQ\noW1WEELgsZRUvmLQNQ0BCtHAkXIjQ+ABfN7/oCR+VtG8v7MDw7Kgn2JiOo8QpH8bQCktCJ/5Zn3f\nR5IkWKk07h7Odqhm6Ji6DsdxBiYFerRh4eus1ZAkCVzfR7PRmNtlwc+dZVmhf9LrwauUvivsYVU1\nrcwlp0DZN5Wfz/N9pGkKu1Y7lTvgt6+9hoV2G2snzB6ZhrzS3OS24RRuI9MwEMcx/DAsithOOgSg\naLheSbvkk7Su60UNA2tywuMwaRgiZv7zzVu3YJlmIc1wcIBbOztYuXABzozS1xx+EIBSCse2y++K\noihlPcMspM+vhz8rnPhdz0Pg+5AA7Gxs4NL9988d7D/PEKR/G0CiCJQ1zaDAMSuf+zs5qhk6jmXB\nGnrABqRtKw+QY9vwPA9RFM2sPEkpRZymSJMESZIUZMh8u1athka9PtCpqwpuefGCJ9/zygYop3ED\n9F0Xr7/xBr78pS+d+BgAJrt2Ttk4ZRaMyl6ZY2fYtRp6rosgDGGfwLouD8V84aXrrvr9QbFiU3Qd\n4EV4zI3XqNcRhWG5ErBMEz3XxcbmJlYvXkRzBtcTUARveaZOddUiyzJUTZurKTr37/NnRpKKVpSu\n58H3fUCSYGxt4cI998x8zPMOQfpnDJKmoEw+V5IkeK47YOVXqzq5cmaZoeM44y2gESRsmibiJIHP\nWg2Oc/MQQpCwBzFJU9A8B2QZhq7D0jQYuo6e687s/pAkqfAVxzFM05wYmJsGSil++rOf4UOPPw57\nTmty+DgTM3cqNQi3C7NUqE5C6bYLw2KVdcoJigBl+8ZJ4AVU9XodQRSh2WwWK4AkQUOScHh4iOs3\nbmBpcREL7XbxXRszNkJI2YN51PdC13UkSYKs2qN48uCOCu1kuVzpclePxwrhTNsWOfwzQpD+GYIQ\ngpwFmiSp0Kzv9XqllT9sPadpij4TleIZOsPgZDYOjm2j0+3C9bwBqYM8ywqST5KyS5HEiF7X9WNF\nMpSQmVMZ0yyD5/tFT1vWIKRs6jLTEY5w4+ZNBGGIRx9+eM49h8DkCcYhZ1bibSV9nD511rYsRHEM\nPwhmtqw5+NXzdFsZAKmQ5jSYpomIySXwjJuabcO2LOzs7GD/4ABpksBxHKiKUnyPdL205rmLklCK\nVsWtU4WuaYAsF7GLWVYzY8Yuy/IR8fs+Nq5fx/2nXHGeFwjSPyMQQkB8H2DkAhTujzTLcGF5+dgD\nEMUxXNcdyNAZBvdjTmpiwYXM+q6Lw06n1DDn7gxFVWFZFnRNmxggJJQea5Q+CpQQeK4LWZKO3FWo\nWLnS7J2WkjTFS7/4BX7/+efPPHd+GHmWjaxiPkvwYO5Jq2SBYmK2LQue75fNbKaBfzu4++OYCNyM\n57YY6Q+MB8VkcOXKFezu7hZJBkkCxbLghyGCMITMAsdpmoJQCqdWG/tdUxQFqiQVSQKYntp6bOyV\nIq6qxe96Hm6+/TYeeOwx4d+fAnF3zgg0ikArSoLcyteYfnwVcRzD9zyoilJo6Ewi/CkEynOtCaXo\ndLvYOzgoqhltGwutVqHAOeEh5CCVyWrSuVzXRcbaHA4/XJxwytqBKcd75dVXsbqygguVAPdJMY1o\nyYSOY2eN+ftMDUJnabBcc2gUuIhc6a8fkw3G9YVmIX5zBOlXj3PhwgU4joMgDJETgoVWC7ZtQ1EU\nHHY6OOx0kLMK3En6PZquF6vPCfpJACZ/96WjntCObUNTVXQ6Hdy6cWOGKz3fEKR/BsiTBCSOBx46\n3/OQZBkWh0rG0zSF67pQVBWNZnNkuf4xhc0RD3OWZfA8DweHh+gz6eLlxUU4tVpZwCXz/P4phDhr\npWoYhkiyrFjeT5lEJEkqNXGkyiTAH/JOt4s3334bzzz11KnlhKdZjHxivN0WIL/G014Pn7QBDPSR\nJWBVuowsZ11R8P/FNBi6Xlrr446zvLiImmWh2+3ioNMpVyKWZWFxYaHQxfd9dDoduJ6HlCU0VKFp\nWplFxP30o1CKsc1wfY5tQwKwfesWuvv7U/c5zxDunVMiz3PQMBwgaUIpur0eDJZ6WW7LdPDlSjOR\nYz1ccZR9Ubxx9DkPyIZRVDY7MTQNhmmWPvokjtH3PLiui/ok/frqOdk5JhFDmiRFgNEwYM6YbsdR\nlSmmigJKCP775z/Hk088UWjOzHW0+XFH0jUrODXpS4UKp6HrCKJoYuB0nmMCk1dEsixDZ9XB47LB\nJEnC8tISDphSrOt5aNTrcJjMN4BSb4ln8SiyDNMwYBhG4QpiBkOapqXmEsGI+zZtUpOO1Ea5j7/v\nebjx7rswbHv2XsrnDMLSPwUIIaC+f+zL6Xkesjwv5RaAYnIoG4LX6yPlAEqLdSg/P2WNSA6Z9UQo\nhV2rYaHVKipgK0FZ3TBQdxwkWYZurzdTehwnRWlCw/U+a9hymgwboLi+7Z0dRFGExx5+eMANdFJf\n+LT9zrJb1kw4aTCXrcq4/o5pmqUW/Z2CZZozna/dakGRZfQ9D9GQtIKqqnCYe9Gu1Yr03iDAYaeD\nvuchZ5k75SqAyX5UQdmKZhqq3x9N08q4xM233hoQ9xM4grD0TwESRSNT4jzmr+dWPiEEfdcFJQSt\nVmswtZJnVwz5ZCmliKJooJE2t5ampVXqhoGmJMHzfXT7fTi12sSsBh4oVkaQFffjU0pRP0ER2Kjj\nvfzKK3jyiSdK15YMDDQxHyhawxTXzZTPgdsntHYMwy65WSYxeiS6N3wsWZJgMrnmjFVCn2540ydX\n0zQRx/HE4yRJgiAIUHccaLqOOIrQ6/fLfrfV85lsZVi1/pM4RpymoITAYTGBme/XEEpXKMtys0wT\nGTN4tm7cwOX775/7mHc7hKV/QpA0BUa0u0vTFEmalsFbLlOQZxkajcaxB5fTBK08kGEYllYRwIKy\n7TYcx5lK+NyHr2kaWs0mDF2H5/vFpDPmoeIFWqPiC77vF4FbxzkTS3nz1i3ESYL7rlwZuw2PAXBf\ndOkrH1WhPAO4P/+2CK2NwYAkQ9WCH37h+LVU/zaZS2RcgHXucUlSWWA3CuYES5+CyYQEQRGTajSw\nsrwMQ9ext79/pIszAlXr37FtaIqCIIqwf3hYBKwriQRlgHrWa8KR/1+SJNjMv7+7vY3eiIbv5x2C\n9E8IEoYj3w/CEJSQIn+d5S2naQrHcUbr0lQydMIoKlw4vg9ZktBsNNBuNmGxZf40DD/IvHrRsW0k\naYpOr1fm7A9cCxO1GkYUxwijCJZpnkpqtzq+l3/9a3y0YuXPCj666mRQVWKkFcLgP/kry/MzD+LS\noZ9HH9CBuoXqOGZF9T8hyzIs00SSZXNVsk47/rj7YZlm0ch8CHmew+33C5kQ04TjOOVEury0BE3T\nsLO7i2jKKkGSJBiGgYV2u2xW4wcBut0ugsp5J6UpD6Nq7UMqejLYto0sz3Hz+vW5OoGdBwjSPwHy\nOB5061QkEsIggK7r0FgWQxzHsG17pHuF+27jOC799bIkodVooNVqHSugmoRpS/ZWowEJQK/XKwWr\nqvsOk0DKsoM0TTuzgNjNzU3keT7Ryp8HVWuaF2ZJlc/4izBJ5XJzjCbh4YyYYcKu/l09T3V7PnnO\nki0zKwzDgCJJpab8WWBcSq015N6hKDKI+q5b5OA7TtGXubKPoihlLcqtnZ2ZJifebKZmWWjW65Bk\nGX4YotPtImSJEfPewWojFl3TYBkGfN/Hrc3NOY90d0OQ/pwghBS+/CqYRG2WZYiSBHatBj8ISit5\nlEohIQRRHKPT7cILAsisN2ir1TqZEuQUklFVFe1Wq1y+H3a75TI+H0pnrBZg1UdUEp8ElFL86pVX\n8NSTTx4f6ymKmaael/0c7s066orkEYVN1W2H/56Gs3InybIM07KQETJypXZSjBodz9WnKHz3vV4P\nURRB07SianxMXEFTVVxYXgbNc2zt7Ey1riWpaAtJWE/mZqOBhuMAklSkfPZ6CFn3sNku5ihDjP9u\nWRZURcGtmzdHrl7OKwTpzwmaJGPL/QOmrKlqGoIggGkYx5qB8AAtl06QJAmNeh3tEWQ/6xd+Hr0X\nx7bRajahqWrxcHW7iOK4JP1qAZYzogDrpLhx8yYA4PKlS2dyPGA2lwkP4t6JKs3bGTEwb5O1L/He\nDpXzhFEE13UL372ilC7CaZOYoetYXFxEGsfY2duben5ZVQcmB01VUbftUrIkCAL0+n1EYThXZlc1\nJuQ4DgghWH/33VNVSt9NEKQ/B/I8Bxn2WVYehJB9OZMkgaZpxwg/Ym6cvudBAtBwHLRbrbJb1Ykt\nwzm/zKqqolGvl9kWge/DdV2kaTpQgDWLLMMsIITg5VdewUc/8pGTpzOOwCwPcZmZdCdL87mr6Qyv\nVZIkWJaFnHUuO7Pj4sgVleU54jhGmqaglMK2bdRnKMSrwq7V0Gq14Ps+9g4OJm6ryPJAWiUP3mqq\nima9jjqbaIIoQrffnxwvGK53YX8rsgynVkP38BCHU8ZzXiBSNucAjeNBK79akJXn8H2/VCysatzn\neQ7X85CkKVRZHqumOa9K4zzbjoKmaWi3WohYsdfB4SHiOEa9Xp+7AGsSrq+vQ9M03LO2NnqD2zjZ\n3UlLfxhnbfnzjmlBGKJ5hs1g8jwvOrGxFpySJKHBYkAnQbPRQJZl6Pf70JlbaBQUtsrgmTvDwVtN\n09Bkmj5BFMEPAsRxfJTmWcVQMSN/liil0HUdZpZha2MDtuOce1E2YenPCEII6IgUTQ7XdeGHIWzb\nLh4Y9iWMogidTqdsNNJsNic2kChTOKcQ2qyiZrNA03U49Too0/DJ8xxd5ss97ZKYEIJf/eY3eOqJ\nJ87Uyp/n/MB7Q/rA7bH2CeuCdRpQShHHMXr9PvpslWeaZtmu8bSjXmi3YU5J5eQCeCTPJ6ZoapqG\nZr0Ou5KDH474bg6PWcLR/a9ZFpIgwC7rr3ueIUh/RpAoGv8gUIpOpwMJwIWlJchs2drtdktdnFlT\nL2cRyLodvsk4SaDpOtZWVwdS6Q47HfhBcOLqxnfefRemYWD14sWzHO7M92A4SH3HccYTHddU8k8Y\nmMzzHEEYotvrld2tarUaWs0m7FoNsizPlSM/DpIkYWlKKid3uSV5PpMBw7PQVEVBEATo9/vIKt/L\nUUfggV2ev989OBjoEHceIUh/BgxY+VwXp/Iwe56HMAyxtLQERVXLfPs0y+DYNprNJuQRsgvjwANs\no3A7CD9NU0RRBJNp+BiGgVaziUajAV3XEUURur0eev0+kiSZeQyEEPz61VfP3JcPzJ73ftuboU/B\nWa9tJElCzbJAmQ7TrEjTFJ7vF4HRKCqaijsOWs1mWQAmSVLRFvOMLOFpqZwSy94hcxgUXErcrtWQ\nE4Jev1/UxlTSpo+B1UuoigKSJOgcHJxriQbh058BtJqiOfSl4qqZUBQ0HAfdbhdJlkFnD5XMesvO\nnXPMi46GC6dOWK4+CQHrvDWcWqqpKjSW/RCxTlk844g3YtE0bexk9tY778C2bVxcWZl4/hNNZCOE\n6ighyAlBnmXICQEhBN1eD4osIwxD5HlevJ/nyPK8CMwTUryf52U65Guvv170c1UUqIoCWZahKAoU\nWYbM+gUr7D1ZUaCy97n4VxW3w6Gl6zrkMCzE2MYUzfEWiCnrlsb95lzKY9xEqEyo1j0JeCrnzs4O\ntnZ2cM/q6pHQoCSVq+J5wL9/mqoiCEOEUYQkSUqJ5eHRS5VnxjJNdA4O0FpYQLPZPKOr/GBBkP4U\nkDwHSZKjh7cqBUAIgiBAkiRQZRlBFEGRJNQrxVgnIfzyVOx8/AE5beB2FPwgQEbI2E5HQOEPr9Vq\nsCwLaZoijuPyBRQkZLCCtGrw+tevvorfe/75E4+NUoosyxBGEUL2cEdRhDAI4LNerlEUlUFIPlal\nQswUbPJS1QHCHkXeZRwmjsuJoJwU2GTBf8/zvJg82ORCsgwZIQAh0A2j7BtsmSY0XYdlmuXf5fsT\nJsxJ4Na+5/tIkqQkfn6/4iRBlmWl71rTNJimWWaJTTz2GZM+cJTKub+/j+3dXayurJQxKVmSSsG/\neSBLEihT1kyYAmzPdWGZJizDOHad3GWqKApIGOJwfx+2bZ9az+iDiPN3xXOCRtFY6zpgYmhBGBZS\nuKx9IA9QnZTwq0HaUzXbnoIsyxCGYVlBPA2lha/roJQWOkPMkuSuBo25h9559100Gw1cWF4ee7wo\nitDr9dDt9xH4fiH7wMg9jCJErCuTaVklWZqmCdMwcGF5uSRPyzQL2d4h65VnkDi2DX2GbCSS53j1\nt7/Fk088MXXbkfsTgitq6qgAACAASURBVE6nA1XTjlZHLNvG930cHBwU1xXHiKIIeZbBGJoITNOE\naVmo12qoNxpF9esIotZ1HUoUlXn7SZqWqZaSJEFjqzBNVeeKafBtJVk+MzcPUKRyZq1W2ehnkSnQ\nKoqC5KQFZ+y51HW9rI0JowhJHI/WimLPUK1WQ2d/H62FBbTPYV9dQfoTQLIMNMsKyYUhP36aJIii\nCHEUIctzLK+sDCwXJ/oY50X1GGdI/p7nlcqEJyl5H5gAWCPtmN2XX//mN/jExz4Gz/OQJgm8IEDf\nddFjsYFerweKIr2v3migZppoNhq4uLIyQICjLLFpfYM5ysydO+jTlyra8Rzc9TSMLM/LCaBctYQh\nDg8PcePGDbiui5wQNOp11FldRd1xilWEYRT9GVwXMbP2NdbX9qQrCICJlxEyV5vFWdFsNBDHMbq9\nXlmprigKKIsTzTtmCUyokK0YHNsuYhdBgK7romHbA8YM70SnyDJkAAd7ezOJGN5tEKQ/AWXwdshS\nokwqOWIZPaZpolkpxKJDVvqpxsB+VuVjzwJhFCHNMti2Ddf3TzU5SUzkymeN3t9+910QAL/+zW9K\n/R7HtgviajZxz9oaFtrtQg1RKhrIz5pGV+rjzDBefsw7VZhV/m+GXQsoGpQPV3KrigKnVoMz1KOA\n564DRcFft9crJ8vNrS34zK1j1Wpl1feFpSU0WVD2NN+7avaOzP43ZwGeM8/rQvb293Fpba1cWRBK\nR0p7T8Pw5KRpWtkzuu/7cGq1gT7DXNNHNwz4/T76/T4WFxdPdW0fNAjSHwNCCCjLhR7+Kna6XQS+\nX5R4U1qkOzJr4SwInw5b9lxXhKdz0qLBxEnPkOc5At+HrmkwDQOu7891LEJIsUzf28PO/j4ODg7g\nBwFs20az0cDe/j4euPdeXL16FQ2mxpgylUjugojiGEmaQtM0yLJcvJiPfRJm7fcKFO6aSZlQZ44h\n0bcqZEy3nHMWiM7SFBm7X4SQQpN+ZQWXLl2CqijF6keS4HkeDg8PsX9wgJubm/jdtWvwfL9IbWy1\nsLy4iKXFxaLhyYyrnQGfviSNDE7Pg1KsrtK9bGlxEdt7ezg8PDwq3DrFOcpe0gyKLKNRr8P1PHi+\njzzPjyUpKLKMlFIEQQBnTLHk3QpB+uNQzSioEG+v14PnunAcB61WC3v7+1CrftMTqAOOQ1W1sQpJ\nko5I5AQPi+d5oEyXZBY3VJqm2Ds4wO7eHnb39rC3vw/LsrCytITVlRV8+PHH0Ww0IMsy9vb38f0f\n/QjPPPXUgC+5uoTO8hxZmpYTQZbngw8tD7Cqahl05U3N5yEgMkI99D1DZaU2nDXEg8PDDVVUVYWh\nqlBZ0HnYkGi3Wmg1Gmi329A0DXatBkIIfN/HYaeD/YMDvLu+Dt/z0G61sLS0hCU2ERhjsn4kDDU1\nP2W22KgiQl4E1nddaKp6Jq6kYeKXJQkNxymFDwkhsFn/aKC4TkPXEQUBXNcVpC+AIytfOtK7dz0P\nvW4XlmUVrRAlqejzybMngIEJ4uQnp1OPdVJ3TxRFSNIUtm0XS3neKrGyjR8EJcHv7u2h3++j3Wph\neXkZjzz0ED713HNjS9lff+MNPPLwwxPJVmUkzo/A9WSqmTFZniMZqjrlueRlw3VZHvhdYWqnHPlt\n0NGfBN6AnfcvJqzCGcyCT3lGTZWcWPaQqqpl1tE8Okw8hsAVXWVZRp3FAO5lEtZJkuCw08He/j6u\nvfEGftrpwK7VsLi4iGU2EXBBNZ5OyX3sEjvHvFWs3J0zbsJoNZsIwxD7h4eo1+tnE6samqB4w/Qw\nDBHFMQghRR8A9kzLsgyaZUhYHOq8yDMI0h+BqmsHKL68nueh1+/DtCwsLi2VqZRplsGyrDP145eY\nll5XcffMYgETQuAHATRVLXuaEkLgui62trZwyFw2WZZheXkZy0tL+PjTT2NxYWEm90AYhljf2MDH\nnnpqtutjkKWiEfiooG3Gc+4rufT5hBhA2WRFluF63kDhUfVzoCKZzN7L2T3kmUjV+0pRmdTpUaMU\nQoueCJzsfd8v5YKrY+IuLF3TBnL7R+nukxn/nxyGYSBkrQitEcSl6zourqyU9RK8fmH/4ACbt27h\nN6++CgoUkwDzb2dZdqIAJ79H08YvSxKWFhexsbmJXr+PhVZr7nMNQwLKButVy9+yLMiyjCAM0Xfd\nouKcu0mZu7Hf78M4ZTzkgwJB+qOQZQAt2gcS1jEojGPouo5Wq1U+qNw/zfOkz+oLM6/NUz3vJF+/\nHwQglKJu29ja3saNmzexfvMmCKVYuXABqxcv4iMf+hAa9fqJruXam2/i6r33zr9UnnAuVVUHvqRl\nYJERPydIwlxE/L0sy8oVQ5okR5bnBPB8cc/3J4611NVn8QJFlqGxSYvkOWzbLuQS2AqEXx2ZYPkO\nn2Mey1dRFOiKgjiOZwrkyrKMhXYbC+02Hn7wQVBKEYQh9vf38eZbbwEA/tf//t+459IlXFpbw4Xl\n5SK/fYq1P2+sydB1tJpN3NrZQd91i9XzKcGt+OF7aLDJ32PyDZZllemsEq8HCUPUhoLqdyME6Y8A\nTdNyee65LtIsg6IosCxroJtVkqZFnvAZFnicVEiNP+gyjizU6sPv+z7euX4d+wcHuLW9DcdxcPny\nZfzB7/9+ob/CiolOijzP8fobb+CLn/vc/DufZGkvSYWlzP8eskpz5kqxbXtwEuKWO620M2TvcR2X\nZqNxFJuprhCmDIkHqjVNG7lqGfY7j8UJ7odpmkhYa855W1tKkgTLNLG3v4+cyVZ89jOfwdatW3j9\njTfw0s9+hgsrK1hdXcXqysqxjm5VV868pkK9XsfB4SEOu1049frZPUsj7qGmaWg4Dlzfh+f7aNTr\nkBUFSRjCabfhui4sy7rrrX1B+kMghBS5+Sh05jNCIFVau1WRMjeAfsbLwtMEtqounyAMsX7zJtY3\nNrC5vY12q4UH7rsPH3vqqVLrn1KK/YODUxd/3VhfR6vVQuskpe0z3rt5g7jAiHTNCSTOV3An1eoZ\nl7I5/4Hm/1+omgZFURBOkGYYhzRN8dOXXgIkCZ989ll878UX4dg2Hn7wQTz84IOI4hjb29vY2tzE\nyy+/jIWFBaytrmLt4kVYtdqp/PGyJKHVasHzPOzu7WFtZeXUcRieBjwKiqLAsW10+314nodGvY44\nirCo63A9DwHLQrubIUh/GMyXH4ZhoX+vKMiyDLVK5J8jy7LC2jyjYOFZVN32+n3cWF/H+sYGOt0u\n1i5exNrFi3js0UdxYWnpmAXKe6We9syvvf46PvyhD51s5xmve54xchGvO5auWcGpp/8TZMxwXR0/\nCJBl2czyAkEQ4Ic/+QmWFhfxf9h7rx45ri1d8AuftrK8t2TRG5GSqCNSokiKOud03+6ensa9uJjH\nC/TDPM/T/Ir5AQMMZoDBYIDbF30buD09B9Pn9JEoepEUrehNkeVdVrrwZs9D7IiKzIrMjDRFV/oA\nglVZmRE7InesvfZa3/rW8U8+gawo4Cs8+ZgkYXJiApMTEzBtG4sLC1hYXMSDhw+RiMcxPDSEkeFh\nZDKZpor8eI5DpqMDhVIJ+WIRXW3QxPEMf9h4eNpYpUQ9/lQqBUNRIAgCVCqP/jHjV6NfAWKabrWt\nriMmitBNE6IkhXaR0k2zbVSvsJBMVJRkGU+fP8er169h6DrGRkdx9PBhX844m8tBEkVwVQwBGzXs\nUAWra2vQdL16k5R6iHDNjTKjqnr67xDbUeUahCSKUFQVumFEMvobuRwuX7mC6elp7NuzB4zHRqvy\nWQLXYA4ND2NoeBifOg7WslksLizgyrVrIABGh4f9+ozIYBikEgmYloUcZcfFGtytbDkkqs9rAjfU\nE4/HoakqVFVFsVBA7/CwK9fcwKL5IeLjvbIm4Ng2TNqhR+A43+MKi3V74lZhTc8bRTPMH8dxML+w\ngMfPnmF5ZQVTk5P46ssv0dfbW3acQrEIBq72SfAhKFtgmK1dixrBoydPsH/fvqZ3PJGuukEqrOM4\nbrjmLcZnIxn0CF58swuwT99U1bq9GxaWlnDj5k18euwYxkZH/dctyyoz+n5xVQXN1LFtMCyLvt5e\n9PX24siRIygUCngzO4sffvwRHR0d2D05ieHh4doLr0c9JgQ93d1YWFx0q3UHB1sP87AsHMva8lx5\n1xKTJNi2DU3TfKMPuLTmylanHxN+NfoB2KrqNoNmGCQSCRSKRVfYKmTyebryjcZPQ1FpCGo89Iqq\n4unz53jy7BlikoR9e/fim6+/DvXOTMuCZhhIBgxA2APQSrm9oqqYnZ/HF5991tTnvTG0Gw7NxbxV\n1KjI9RAlmRs54RuCevRNAHjx8iUePHqEr06eRG+FBIFlmuAFwd15VlmgGJTLNXhjzmQyOJLJ4NCB\nA5hfXMSLV69w+949TE1MYNfkZM2wCYEbb+/p7sZaNouNfN4XZWsFvoxzxbk8JOJxFCmVOb++Dony\n+n81+jsAtmWhtLEBAEimUtBpkjZGVQ4rJ47pMXdaFGsKDetUPGyEECwuL+PRkydYXFzExMQEzn3z\nzZYHthJKqQS2yk4leL5m5W0B4GmzNM3ywdR9S6Mm0HnXHbOqIEqIp5VFsBZ9kxCCe/fvY35xEd+e\nOeN3SAvCsCxwLOvy3WuMo9Y3xnIcxkZHMTY6imKxiFevXuFP33+P7u5u7JqawtDg4GZ9QsVuLJFI\nIKGqyFNaZaIFRpl/r2vsrhgaWiqUSpibncX0gQMwDMNnYX2M+NXoUxTX1mDbNlKUo67rOiTKiACw\nZeKYltWyp+9RBquFdTRNw7MXL/Dk2TOwHId9e/bgqy+/jHROwzBgUM54LePna9N4zam9MUUYf0s0\nzeAYWvp0OIjjvFV1zSBqhem8Iq+auwG0FvsPo2/ato3rN29C0zR8d+5c2Rzy+zUQApPmA+p+J4wr\nBVJvh5hOp3H06FEcOngQ8wsLePL0KW7fvYupiQlMTU66DknFMbo6O2HoOlbX1zEyNAS+ycXbuy6G\nkNAwlQeW6vIXi0Uszc2hq68Pqqr+avQ/ZqiyDFPTkEwk3G48VKNcCnoZlZOFFm+1HHes+J0QgqWV\nFTx68gSzc3MYGx3F1ydPoo+2nYsKRVHAwo1b1h1DgL0TpDJ6/OtqZ3395g06u7qao2luJ2iR0Fs3\n+hE8dJ/7X+O9UVVEq6GSvqnrOi5duYJkMokzX3/tyhkHKo29KmPAdWYq2TvVL4YB4zjlAoFVwPE8\nxsfHMT4+jnw+j5evXuFf/+3f0NfTg76+PowESAAcx6G7uxsrq6vIbWzU3dFGGScAd15UeQvPcUgm\nEijkcognk25bRk8M7iPDjjf6hBAo+Tx4joMoinAcB7phlHv5oIYx0Lqw1Sh0WFhneWUFN27fhlwq\nYd/evfji888jGe1K6Lru9+eNslCwDOP2DKiAV3UKbF0ACCF4+Pgxjh450vD4GkUzoR0AoRIH24ng\nwlkLUbzoVhCkb27kcrhy/TrGR0dx6ODBrYJqFajF3tlyHgBootNWJpPB8WPHcOTwYczOzuLp8+d4\nOTODI4cPY7C/3x1/LIZ4IoFiqYSOTKapoq3gqDyJhlqLrSiK0AwD2bU1iLFYWVeyjwk73ugrsgxY\nFmKUh6+qKgAgFsbKqYiPtlqQ5X1+PZvFzdu3sb6xgc+OHsXu3bubPiYhrlwsx7INxdnrPbb+AkAT\nfGtra1A1DSNDQ02PdbvwLpqnANFj8a0kaqNCEkUsLCzg9v37OHr4MKYmJyMJ9Hk1KW8DPM9jYnwc\nnZkM8oUC7j94gMc8j8OHDqGvtxedHR1QVRUbGxsYqNGBLRKYrf0MwpCIx5EvFiHLst9V7mPDjjb6\nhBDIhQIkjoNAW9x5Xv6WsI23BfY83xYeWu+zuXwet+7cwdLSEj45cgTnz5zxt97Nsml0XYdl20in\nUg0pNUYuBqLhn+cvX2Lvnj1l7IhtK19v8F74yqFvu5zeG+c7LOP37tTruTncuX8fhw8cwOTEROR7\n2GgC0wsHNvs8OPSZGh4cxPjoKGbn53Hr55+RTCZx+OBBpJNJFEqlplQwy3IjJJqIHc9xkAQBpUIB\npVQKHR0dH50sw442+jL18uOpFBi43aSAKl4+UNZgghCCZqP5xVIJP9+5gzdzczh88CC+OXmyLI7a\n7BTzvHye4xry8lmG2aTnRZjgtm1j5s0b/M1f/IU73mohrwZ2Q7WSl43GuN9VYVYj4R1PDbL1k5az\nvAjcuomXr165TekZBmYDYYpmCpM8ym8zZt93GKg43fjYGEZHRjDz+jWuXr+Ozs5O9HZ3Yz2Xwwgt\nNmwGwe+mnvGPx+OuPk+pBMMwPjqt/R1r9B3HQSmfR4KqI9q27Xr5VB2xDBV8ZF9cqkGjIisKbt+9\nixevXuHAvn34j3/3d6EPY7N7CE3TYDnOZjeiiPC8NYdy9uthYWEBmUxmC+96S1KaJoiDeYCqBrFW\ncrNBT8uhTKS3zdP3DUuE9zJVrrfWd+/dPz/5WgHHcXDrzh1s5HI4f/Ys4vE4crmc30M3CsyK4qyo\naDpkFbJLZFkWu6amMDE+jpevXuHx06dIpFLgOa65MA8hfvFhFGYUT6Wv87ncR9lgZcca/VKpBNa2\nEU+nQQBoXiy/2haysqipgXNpuo679+/jybNnmN61C//hb/8W8TZU8paNx3GgKApEnm+4diBolKPg\nxcwMdk9ORj6u/3tgR1C59a72MDZjSDyj/9bRwI6klpEkgfsRNPK17oVhGLj6009gGQbnzpzxDbco\nSVBUNXIOqlkJgmqLWD3UCsVxHIc909OYGB/H7bt38f3ly5gYHcXRgweRjJp3CAmV1lugCNzY/trG\nBrLZLHp6ej6qEM/7V73yFmDbNuRiETHK0HEsy9XRqePle/CYPPUmgsdw+Yd/+ifohoG/+5u/wZcn\nTtQ1+M1MMFXTYBOCRBNiUQxNeEbpjmSaJuYWFjBJuzI1Aybwv5cgJsymlHGrD5jjOO9Gc6cGvTX0\n7YF/jvc//Q7KeOV1ciaKLOP7H39EKpnEVydPlnnqkiiCxWZjmHpopYNUM2wpb8bV+qwoijh88CCO\nHzoEAPiXP/4R9x4+jN7Nq4nFiGVZxEQR67Rz3MeEHenpy7IM3rKQoGEQzYvlh032KpORoPZELcky\nLly6BNM08de///22ctmJ40BRVUii2NTWnPPCOxEeopnZWVdTvc2sBhaAE6gR8AxczYR28G+B76Ky\nc9XbRuVOJvTnEM99yw4oAjY2NnDp6lXs27MHe6antywMHMeB43m32LBOmIIQAlVVmzb6TSV1PRp0\nnQUjmUwimUhAisVweP9+/HT7Nv7w5z/j1IkTVVU5CcLnj+dcVB0nzU8kk0ksr64il8sh877VorSA\nHenpG5rmds3huPqx/Fpb8BBvkhCCx0+f4p/++Z8xPDiI/+4v/xJdnZ0Nx6UbefC97XuyyZARS8Xl\nohj9l69eYdfUVFPnaRR1G8p4xsILLdB/tifBEPy8l4cJ/IyKnx0EjAQNq3j//DFV+T3opSPkPVt+\njmDo6mFhcRE/Xr6M4598gr1UJTMMoijWbDHpQaPd4ZrtJwA0npx2HCfyZzozGVcU0bJw7uuvsXfX\nLvzpwgU8ePw4/Noa3HkFwTAMONoVLZ/LNXmU9xM7ztN3HAeWYSBO495e8+1GvHwAoYlcWZZx8epV\nKIqCf/e73/nt35qJS0edrI5tQ9U0xCSpqnRy3XNRA1RPf0dRVaytr+Pbb75p6jx1BhFu4KMaRi9f\nQI0IW9EkvayoLuR1IBBqAraMpXJkofmHBkNTjXr1QTx/8QIPHz/G1ydPoqdOxaokCFCAmiJsgBsm\napWj36i37yC65xmj3d3yhQLSqRSmd+3C4MAArt+6hdn5eZw6ccInMXjFhNVGEcXbB9zwmMfi+Vg4\n+zvO0zcMA4zj+GEQwzDA0V6ZZajjZXqJMW+CP33+HP/1n/8Zfb29+Nu/+qu29PuMAkXTAEJaTgzz\nLFvXE3w1M4PxsbGWPMHthuepv7NEbgNoZoyEENy5dw/PXrzAt2fP1jX4gLuTE3jeFxGsBkVV2yIV\n7rXsjATH8XNKUdCZyYAQgo18HgCQSibx7enT2DU5iX/94Qc8fPLEb1YfCXUYYzFJgqFpvjTLx4Ad\n5+nrug4Wrj6JbduwbTt8otd5IB1CIDAMFFXFxatXUSgU8Je//S16urvL3ud7jQ0+4FEocA7VApck\nqWVDzHKcv+uphhevXuGz48dbOk8jaIr3TR/2d9U8pdWlptY1W5aF6zdvwtB1nD9zBmIDVEJJkmCW\nSjXZOYqqtodVxjChksZhcAhpSFBNFEUk43GUikVk0mmIogiGYbB3924MDQzg2s2beDM/jy8/+wwd\n6XTN3VRNGQn6miAIsEwTsiyjs7Mz8jjfZ+w8T1/TfB0P0zRBCNlagRhhshLHwfziIv7rf/tv6O7q\nwt/99V9vMfj+sbbJ69R0HQ4hNbfsUcEytRup5PJ5qKqKwf7+ls8VGS1QAPEOjH6j0hyNzApN1/HD\nxYvgWRZnvv66IYMPuMaLZVlXErwKFFl2e962AVHvfi1Bv2rI0BxZtiLWnk4mce7rrzE+MoJ/vXAB\nj58/r7vwVD03/R45jgPLMMhtbGy7dMbbwo4y+l48XwyEdoSw0E4d2LaNm7du4e6DBzhy6BA+OXw4\nNJ6+nZOEEAKNLmDNxvKD4DjOj4OG4eXMDKYmJ99q2KQpjr5XjVsnH1P2L/h6tfdFQTMLfIRjFwoF\n/Nv332Owvx9fnDjRlKYQy7IQBAG6aVb1fBVNa5oMsAUR7oMvOtjg88dzHDpSKaiK4jPvQBPVLMNg\n3/Q0fnfmDN7MzeHPFy/WpauGsvAC34soiigVizUXzA8JO8ro67oOjhC/Ate2bUhhyZkaE9YwDFy6\ndAnxeBy7p6YwOz+P//sf/gF/+OMf8cujR8jn820x9vUeGcMwYDtOVcmIRsGyLBggPJlLiMvaiVCQ\n1S5UlV6oZpjpz47jbHrcQaPtOO5OptpWPni+MENPjxE8XuXiUdNrrZKkrmfwVlZX8f2PP+Lg/v04\nfOhQS4uuKIoAcdt8hkFRlLZ5+kB93n4rmk3pdBosyyK7seEztsr+nkrh/DffIJPJ4I8//gi5Rkw+\nLHFPBwaA9h5WlMi1Du87dlRM3zAMcAwDjuehahoYhgFfafRreGuKouDS5csY6O/Hnj173EbQIyMw\nDAMLi4uYnZ/HvV9+AcuyGB0extjoKIYGBraFM66pqquk2SZGgec9EscBKjzJlbU1sByHrreQnN6y\nYAZ+LzPmWz8IoEbHrEANQNOowvrx4IAaumqLvmeYKuiawbizE1g4Xr9+jTv37+PLEycwMDDQ6ugh\nCAIYhvF3uJVQFKUtidwgGEKq6u174cRmiro4jkMmnUY2n0dRlkN3KCzD4NMjR/D4+XP86ccf8c3J\nk6Gc/pqxfQCiIMAqFCDL8kfRRnFHGX3bNP1tv6Hr4Hl+64SrMgHz+TwuX7mC6d27Mb1nD9ZWV6Hp\nOgDXg5qcmMDkxAQIIchubOD17Czu3L+PP1+4gMGBAYyNjGBsZATpdDrSWGs9BpZluV2x2viAstQo\n2ra9Jcfx4tUr7J6cbItAWOhjRRfaoHxCGEc/ikdI3kVvXP/kdXZ4wfFXLGbB1x1C8OjJE8zMzODs\n6dNtKwxiGAaSKELTNJBEouz7tG0blmW1VWeGYZiaxtSXYGjy+0qlUsgVCsjn81WfBQJg//Q04rEY\nvr98GV+dOFFdv6eKw8dxHBiGQbFYbMvi+66xo4y+B9uy4BCCWESNmpXVVVy/fh2ffPIJRkdHAbie\nsWXbW97LMAy6u7rQ3dWFY0eOQDcMzC8sYHZ+Hrfv3YMoihgfGcHY6CgGBwaq5xNqeIyargOEtPUB\n9XjtlRWMjuNg5s0b/NXvf9/wMbeMvtouir7GVDGKjSCqaNx2oJkeC5XsEsdxcOv2beTzeZw7exbx\nWKzMaG5pbI/GEsKiKELTdbeVYmD+e8ydtudsakiWWNTo800yzwiABG1zGMajD96bidFRxCQJl2/c\nwGdHj2KCPsf+MIGqOxKPGafIclPjfN+wo4w+SyeZYVlgAAgRQjuzc3O4e+cOfvPFF+gNeAgs7Stb\nqwG318Fo19SUGw8nBKvr65ibn8fN27eRy+UwNDTk7gJGR8tFpEh4r1riOK4+iiS1tfG3p0ppVyxk\n84uL6Einkaqh6RPZPNcxKEGaarNZEeI44N5Rb9NmmChBGKaJS1eugOc4nP3mm9CwYOR8UZV7zfM8\nOJaFoevlRl9R2i4CCMAvlAsbt0Ofw4aS3/S58I6XTqVQLBZRlGX0hD3PAQz09eHcqVP48do1KIqC\nA3v3lv2drXB6vAWZYRiwDOOLMn7o2FFG3yukMnTdZe3U4cI/e/YMz549w9enT2/pl+lxi23bLjO+\nfliiMmZLf+/r7UVfby+Of/IJVE1zdwFzc7hx+zaS8TjGRkcxOjKCgb6+UAOiUppms/ootcCFFGi9\npKEd//pQ4Z1uEyW1UQ/Wg+04EN6Bp99sUtKrAJYVBRcvXUJfXx+OHTnSUMijasgsMB6/mJBhIIoi\nFE0r25koirJtHbOqceVt226YeVbJMOM5DnFJQlGW0ZXJlD2LYbUunZkMzp8+jR+vXoWqaTh+5EiZ\n+mvVEA/LQv1ICrR2ltF3HDckw7IQwkIjgQfk3r17WF5ZwZkzZ0IZDRzPu9IFITHwsEkTNvHjsRim\nd+3C9K5dIIRgdW0Nb+bmcO3GDZSKRQwNDWF0eBgjIyNIxOMuTVNVIXDctiSHOY4rY3bYto3ZhQV8\n/tlnVbVk3ieD77dJfEccfaA5Jkp2YwOXrlzB/r17sXvXrraGWIJGzzPyoihC1TQ3xEO9Y0VVkdgG\nRwKgu0hSLolAKOMm1sA8rlYxnk6noa6uoiTL6AjmzKqESJOJBM6fPo2L16/jyo0b+PKzz9y4PVCW\ngwjeO5bjoGlahheZ8gAAIABJREFUzZ39h4IdY/SJ44AhBIZlhatRBlb4e/fuYWNjA2e++WZrCIjC\ni4FXo7+FYUuSMrgbYBj09/Whv68Pnx8/DkVVMTs3h9n5edy4dQupdBpDAwPo6OjAeEU8sl3wt7d0\nsi+vrKCzo6Op5uxNIUizbALvUoLBH3GD555bWMC1n37CiU8/xejISF39o1ZBCPELjoJxcFlRtlU6\npNLrdmgYMUrNAaHvr/a9xmIxCDyPQqlUZvRr7eJFUcTZU6dw9dYtXL5xA6d/85utxw8sGt4uWC4W\nkf7AFTd3jNH36HKWaSKVTG4Ka3mgX/jMzAwWFxfx7bfflrUwrATP82CAMqPfUGPsOu9JxOPYNz2N\n6d274dg2VtbW8OLVK9x98AA3f/4Zw0NDGB0dxejQUNtCPQzHwSEElm2D4zjMLSxgdHi4LceOdH4v\nXtvk58kH5uk/ff4cjx4/xpnTp9Hd2dn0dTcDQRShU3VWMAxKpRLGR0dbEoGriQqvO1Lz+kD8vt59\nTSaTyBUKZf0A6l0Lx3E4+fnn+P7SJTx4/BhHDhzwz1u5eHsMHlmWfzX6HwwcB5ZlwXGcqt57NpvF\n/QcPcOb06ZoGH9jUdqlMfEZFmedTi9VCCFiOQ19vLziex7GjR+HYNuYWFzEzM4Nr16+jM5PB6MgI\nRkdG0NPdHdnwlMXl4cZHWbisCo7jMDc/j69PnWrq+ppCLY57BHie/jvZfntGP8JbHcfB3fv3sbi0\nhPPnziGRSEQXCGsTBJ6HxjCwbBs8xyFfKCDT0bE5JymFt10LAIPyRKlFi9uq6u7QQruoOyfP6BdK\npYacII5l8dUXX+CPFy6gM5PB2PBwKM3Ue6bUj4DBs3OMvm3Dsm0wwNZ2goRA1XVcu34dn336KVJR\nesxSrW2PthkWsqmHqg3FA+PyoGoaGEJ81s7+PXuwf88e2JaFpdVVzM3P48fLl2HoOkZGRjA6PIzh\noaEttM6q1YdwjT5D8xQFXYdhmm9NLTSIZlkwrcTVW4V3R+ud27IsXP3pJ5imifPnzkESxc3dTQsL\nXqMQeB4Mw8A0TbdokWXL50owBh8obGt1hJ7X7liWm6wOK3Jr4lniOA7JRAKKoviiclHHGo/F8PUX\nX+DC1avoSKV80kbloscwDPSPgMGzc4x+oBDErminZzsOrl+7hsmJCQwODUU+JFfJ1W/S2JTF+sv/\n4L5O1TTFEJomx/MYGRrCCB13oVjE/Pw8nr98icvXrqG7qwsjw8MYHRlBV2dnTaPEMAw4joNtWVhY\nWMDI0NDbNaAM09Ti6cGPE78Lo1+j16sHTdPw4+XLSKfTOPXll/4cLKMtviXDz7AsBJ6HYZpQFWUL\nO60MFUnYsvnaoJPD0tCmTUOI5aep3Qe4HtKpFEqy7DN5GrmX3V1dOHb4MH68dg2/O3vWDd/Sa3Oo\ndAXHcX5B5oeMHWP0g801LMMAR7eAhBDcuXMHkiRh//79DR2TpWyXVgxVEGEUMwaAahiR1TQ70ml0\n7N+PA/v2wbAsLC8vY25hAX++cAGO4/gLwNDgYGgDdY7jYJomZufnMb1rV0vX0ygY6uE3u9A4oBpC\n72EiN18o4MdLlzA5OYnDBw5sGSODaO0q2wlBEKAbhtsOMGKlONBArUAIGFp57RACyetuhjptMSNC\nFEVXHK1UqtpCsRamxsexkc/jyo0bOP3ll/53alGROp7nYRpG083j3xd82NyjiCCOA5tm/wVBgBlI\nvr548QLr2Sw+//zzho02FyxmapOh8bjU/u9AQzRNz1sicLfwoyMj+PLECfz7v/1b/P78eXRmMnj8\n5An+yz/+I/6/P/1pi0icZ/RXVlYwNDjYlmuKDIZBK2bvXUow1ArvLK+s4M8//IDDBw/iyMGD4YvS\nO1ioPC2ejVZ6wFayreoYb4Zh4Ni2G+bhuPIWlW1AOpWCZVmQZbmpUNSxQ4dACMH9hw/910xaRMZz\nHEBp0x8yPtzlqhFQRU3ApXd5Rn91dRWPHz/G2bNnm5In5jnO9c62oUDJMwyGYcC0LHTUEHryGQ51\njpfJZJDJZHDowAGYponF5WXMzc/j4ePHYBgGo8PDGOjvR7FUQldX1wfXHq6RfqttR5VE7qvXr3Hn\n7l2c/PLLmr0Ito01UwMcx7lJ3GIRe/fsae1gAW67X/RY5ZkgVPG0qnheC0jE48ixLApNtn5kWRan\nTpzAHy9cQCaTweTYGAzTBM/zroIrAE1RkGpgZ/S+YecYfctyBackCaZpQi6V8NPVqzjxxRdI1JAY\nqAWO50EIgWlZWwu02gTdMMCyLERJ2kJdI4D/8DRq7ARBwPjoKMZHR0EIQS6fx9z8PB49fYqVlRUk\nkkk8evIEo8PDkUXi3jUI6nfMCu6E/OQpfc3jyFuW5SYv6b32Qk61wkaVSWRCCB48eoSZmRl8e/as\n37v1fQPH8y4NsU3qkaGsNPq/97pp23AI2ZbuZizLIplIoFAquc9lE86cJIr4+je/wfeXLrm8f0Jc\niqthgBAC3dPw/0CxM4w+De94vUIB4MmzZxgcGUFfC52gRFEEGAaarm+L0SeE+AU0laXiwbL6VsEw\nDLo6O9HV2YlDBw7gP//jP2JqYgIbGxt48PAhBJ7HyPAwRoaH0d/Xt63xzHoeLyEENiEg1HAQqn/k\nEIJiqQSe41zj7RlzRE8Qeka/UCzWHmPwvtMFV9N1mF6xEyG4++ABiqUSzn7zjUvJjMA1fxcwdH1b\nJD08+FRU7ztgXAG27cy9pFIpFEslFIvFptlnnR0d2L9nDx48eoRD+/dDEAS/neiv4Z0PAF5Mn/ek\nExwHc7Oz+O6771o6riQIrhCTprXNUwrCNE0Qx4FIhbBIkLccWATa+egUikUQAFMTE8jQJtTZjQ0s\nLCzg7oMHyOVyGOzvx/DwMEaGhtqqL27bNgzLgmPbriGnDVEcauC938PAsaxrTATBlc8OGJXgTsg3\n2IG/ef97idRUMrl1J0B/9nYJ7q+bHq13fFVVcfvuXfA8j8+OHYNpmsjTJt4MXNYMyzBgKT2WZVn3\nH9xF5203nZdlGelksv27VVIujAa495NFuHx3OyEIAmKxGEqlEjor9HgawZ5du/D4+fOyxLDn6b+v\ni3gU7Bij7wQeqJmXLzE4MNB6zJrjIArCtm33dNOEA7euoDJG6v/kxVLRHn763Pw8hgYGNrXOGQY9\n3d3o6e7GkcOHoWkaFpeWML+4iLv37yMWi2FkaAjDw8Po7+2NZLRsatQtGnaz6aJsB7x379yeR8hx\nnNvnlXHVQH1jSd/jOA5sx0EiHm9aLdLz9JuaF7TQ6catWxgcGMDRI0cAUIcjsCPxFjHLstzYNv04\nIQSmbYOFG2vnOA4sy5b9vB3I0wbjpmkCbVLZJChvBuOBgXuPLdvedmmPVDKJVU2Doqo1FWJrgeM4\nTI2P4/nMDMZGRjZDV3SnyXygDJ4Pc9QNwqbbMp7jUCqVsLi0hBO/+Q10XW+t3SAhECUJxTrhgIYP\nC+pRqKob2qFebBiCcWfvs62Y/tm5Oezetcv3tCuNTSwWw9TkJKYmJ+E4DtazWcwvLOD2nTsoFAoY\nHBx0Q0G0MCzMuAepiZ5hEwUBbCzmc9Y9Yx4VPnvmHbF3chsbuPHzzzh04EB5UpTjUMun9UJTjuNA\nNwz3Ptk2DLrL8+AtfO1eDAqFAgb7++HQnEazcXYS2A0B1eegJ1vihQj9762ps1YZC4B4PA6OYVoy\n+rphYHhwEG/m57GytuaLHgK0Q1sbx/w2sSOMvldAxfE8Ht2+jenpaaSTSVdTvFlderriS6KIouP4\nx2oFwRCCZVmwCUFCEHxJ6CgMIS8m7unYNOL9G4aB1fV1fH3qFBRF2SIbXQmWZX2p6KOHD6NUKmF+\nYQFvZmdx8+efEY/F0N/Xh77eXnR1dUEQBIiCAI5qunuGy7/+gFfcKKIUR20X5hYW8NOtWzhy6BD2\nTE839FkvtEPorsUJ7DII3b14u6B6i4HA825RUQPzOZfPY//eve6cM01wDcxhf042UFTlG32O84kI\nxL0Q93oin706vGdAisWgNqmM6TgOVFWFKAg4tG8fHjx6hC8+/bTs7x8qPnqj7z04LMuiUChgeWUF\nx44fB8dxMAwDqiwj2Sw7hbKBwLJQacVsU2MM0N28mLNOmzALXhK3kcpHOrZgCIhEYPgsLi2hv7cX\nsVgMqqrWjL06jgPTNGFaFiz6DwD6+/sxNDQElmWRz+extLKCx8+eQVEUDA8O+rmAsBCKt0tphsTn\n6+68ZaP/5NkzPH76FJ9/+mlLPYTDrplhWfAsuyVxHrYY6IYBnVaLcrSmw/tXzeBZlgVN05DJZFAs\nFmGaZt1ubH44KpCgbQR+YVMwz0KPQwhxd7VtipfHqNE3DKPhZLW3WKRTKSQTCTx5/hyr6+tlsf0P\nFR+90Qc2S77v37+Pffv2uUUWDIN4LIaSLEMyzboCa1tAPRxBEMCyrP/ANQKfzYBNWqAHnXY28h7Y\nWiGeKGP1HiwAVReA2fl5jIyMuFt8htmirW9aFixq6L26B4ZhwPM8EonEpqdJr6MjncYYlYGWFQUL\nXsOYmzfR0dGBEaoP1NvTgyjKo7XgUybfUnjHcRzcvncPK8vLOH/2LCxKCW4aQXpjHYQtBoQQv8+t\nZVkwAosAG1wEArurQqGAdCoFlhYtqlR1M6wlYyPefDV4Cq5BAxykePo/t0hS8EYZj8WQJQSKqjZk\n9G3bhkaZWB4//9C+ffjl8WOcoN5+OwvK3jY+eqPvJc5kVcXGxgZOfPGFP6nEWAycpkFVVaSp99HA\ngf0fvb6jDY0LmwVVlWc1TRO245QlJNtSvBPcQlcsOIQQzM7N4RCVl2XgMlEAlBl5lhqbmCSBFwRf\npK0ekokE9kxPY8/0NGzbxsrqKuYXF3H1+nVouo7hoSEMDQxgaGgo8jGDeJtia5Zl4er167AsC+fP\nnYMoitjI5Vo6d6u5GG/x9WPlNEbvLQKmacKgc5Sh3+F6NuvXYAiC4DZWsSyXOOAepK1CcBbNrQW5\n82HSI2VaPwGphqjwnisvV6Q2+GzKqgqQTdkThmEwPDiIh0+fYnllBd2dnb+Gd95neNo4MzMz2Ldv\nX1miioGb8CmVSi4fvsnwTEySsKGqkWQAypJdVYyETh+OLSGQdlb+ViwA2VwOHMtCEATkCwUoqgpd\n18FyHERR9BtVcE0Y5EpwHIehwUFX5uH4cTcXsLiIl69f49qNG+jMZDA8NIThoaG6InEefH32bTb6\nqqbh4uXL6OjowKmTJ/351Gp/XABtrepmGAY8rbgFndc2VZq1TBOWbWM9m4UoScgXixB43t3NmSYE\nng9l37QKb+dY+QzWQpCmHGU8ld9DLBZDoViMrJfjhSzjsdhmWIyGXPfu2oUnz5/jwN69vxr99xme\nd7G2toZPjh3b8ndRksBTb18UBNezqIcKz0OUJNcz1rSapd9ekVA9I2Zomh828sBQ7nm7y9Zt24Zh\nGHj9+jW6urqgKgo4jkM6lYLA88h0dGy7uFQqlcLe6WlM79oF27axuLyM+YUFXLpyBZZlYXh4GMOD\ngzVptu0sVquGXKGAi5cuYWpyEocComkth5aC3+k2SBN48BK+Er2HxVIJBykVUdU0aLoOVVFAursh\n0l1cO+FXyAa/Iy9fVeuavb9FmP+VO4dEPI5CsQhF02pKmbincUNBLFDuANLjdXd1QVZVGIbx1vsf\ntBMfv9G3LMilEgRRrKpSmUgmUcjnoTVJ4fQWC03XQ41+FO/eg0mpjcmQcbRLn8WyLBimCV3XfY9l\nfWMDgwMD6OrqAkuF5LywgMe0iDL+ZhEUfBseGsIwFXsrFItYWFzE85cvcfWnn9Dd3e3WBQwNIdPR\nUWZ4t9PLX1pZwdVr13Dsk08wNTEROvamzx4wetupweOzuhhXR79QKKCvrw8c7ZjGMgzyxSI0TYOu\naWBZFoIoQgyEjZqFRwEOW7SDzVVqjp9KjjQSChNFERwtoKxn9HXDgOU4SCYS5XMp8P1kOjqwur6O\nqV9j+u8vHNtGLpdDb19f1fdwHIeYJEHTNAiiWLvAiFI1g96KlyALi+tHEUMLQjcMEIQXCIXGPyPC\nT+4Zhm/ovcpFSRSxsbGBz48f93cXHMeB8ZrEBBK/3rW0exEoO2bg5450Gh3pNPbv3QvLsrC0soKF\nxUX8cPEiCICRoSEMDQ0hlUhsWxL31cwM7ty/j1NffomBENmOsvhzEwh+p618x1UODkKP6d9XQpDN\nZtGZyfhznWUYJBKJzVwScSVAdE2DTv8uiCIEQfBbhTYCs4KfH0Qjc6gedTnszkWhbtqOA1XXwbFs\naJMlQggcQtDT1YWVtbVfwzvvMzwZgampqdC/ew9CLB6HQYXY0ul0bQMSMuliougmgALn9f5viCuv\n627bwhpt5KLGfgkh0Oi2PWjo4/E4pICej6qqMEyzrKk0AIg871NHPWwpBqtYBILvaQQkQliD53mM\nDg9jdHgYhBDki0UsLCzgydOnWFtfR3dnJ8bGxjAyNLTlWpoBIQQPHj7EzOvX+PbMmaqiaX5v3pbP\n2DqCFb5Bym7lN7K2vo6enp6y1zzmlW3biMdiEEXRZdyYJgyaCNZ1HSzDQJQkSJIUeXflx/OrOFQN\nLXaBGpSg11+tr0U96qZDCEqlEhzbDp03XtjQcRz09vTg4ZMnvxr99xnEcbCxsYEvTpwI/zv9n2FZ\npNNpFIpFlIpFl9XQgOcmSBKcUskNh1DZhEZjzKZlwbJtJKtUEEbl61uWBU3XXYNNaaWJeLxMuC2I\nldVV9FPaZBC8IEDT9dAuR2VjQvl2O1i0Q9/kGp5aY2/Q22UYBp0dHejs6MDB/fuxur6OjVwO2WwW\njx4/9sNEI0ND6O/vbzg+bTsOfrp5E6ViEb/99tualL+WmUPBa4/4fsIwfgFemKGrd5y19XVMVzhC\nnuyFHaDqsgzjNychgM8C0jTN7eYmCJAkqW74x6TyxNXQzA5ni9df5f7Xom4S4gr1WbaNVCpVdZ57\nC0pXJgNZUaDIMnpqRA/eZ3z0Rj+bzUKSJEhVHloGVCeEcUWw0qkUisUiSqWSq5kd8UH2PGdV15Fq\nkuFiUCMd1tHKH2+1h4MQt/WdpvnSwJIoutTKOg/kyuoq+kImsJd081rFRUVQgTLwYvli4P2N3vtW\nQxocy2J4aAh7d++GJxU9v7CABw8fInflCvr6+vy6gHpl+bph4NKVKxBFEefOnKl7/1o1+tWu3IvB\ne/euLJYdpDU2eF7HcbCRzaLn88+3/E3geahVtKQYuPkrURDgOA40w4BBeylzHAdJklzHouJznqZS\nrJbRb+gKAgh4/dV2ih51U9E0dFf8TVYUmJaFJK0z8Q+LEEcGbiVxb3c35hYWMDY52eyo3yk+eqO/\nuLiI7u7Kr7ocwYeV43kkk0mUSiUoihJZa1+UJIBhoFDVwmag6zp4SousNdaggXQcBzr1vBxCwLIs\nEvE4YrFYZCO0vLqKY0ePbnmd4ziw1OjXq9SMgqqLATYXXi9U5P0eJQHusaK8fVlQKvrwwYPQNB2L\nr+cw/3oe9+7egwQO/XYC/UUBXWs2WM0GN9kN6T8cBgD86fvvMTw0hE8OH45Uvu9t9KPmFMoWuEoG\nEDYbg/sFa60miiuQLxQQozu/SnA0Xl9rdwe49RqJWAzxWMwvBFMUxWXBSRJioujfu0q9nVAEvvtm\nsGVRrEAYdVNRVeiGgTjNa/nHCjmOX/FNpUfm5uaaHOm7x0dv9JeXlnB0376a76mcbIIoIpFIQFEU\nsCy7yeip440mEgnIitKU1odFOdTJKN1+iFvZ6MUpATdWn4zFIDZYZGbbNrLZLPoq4rvAZsFPsL0k\nABDLhj2XB9ufAptoQ3etCuYNg60LhG8oK66NOAROToE9n4epbkDNW3A2NJANBWRDgZ1VQTYUdFoE\nnQAOAshnTKz2aXjYC5RGgZ51oO/5BmL/xyrQA+ydnsae3bujD9+2t8otB8fp5XcQYpRogtD/FbUX\nuHZgfX0dPVUcIa9avZ7R98DA3eVKogjTsty4P2X/CDT0Y1kWWLiVwTWP1UrVObAZ9gr5UyV1U9N1\nqLoOMYTVF/Z5J1Cc2N/Tg1v37jU/zneMj97ob2Sz6OzsrP2mkK2hFIv5okte56pQEOJ7egla6KVq\nWjTjHYBJi8hqhXYAwDBNKLLs9u1kGMRiMcQkqWkd9iytyqymsSPQZK5D6XL6pZdQ/vMdOEUdEFik\n/8dTkE6MN3XuWmAAOLYDUtDgZBWQrAqbGnInq8Lx/1fhwIGcAogK2GbIwYK0IAfI5AgyOQbTTwkM\nkcFqL/BmjGC9IwviuBrzyysr6O3pcaWdvUME4+jea3SXsSVZGuIgRDXlwXNsB9bW1tA/MBD6t+Du\nrlGJaYHnIfA84oHQj2makBUlUuvClpa6wELpfS/BxTNI3YxJEhRVBU93xVHgBMJInZkMil5B5wfW\nUhTYAUbfcZy6HkY1xONxOI4DWZbBUq+30tMM+iXxRAIsy6JUKjVs9C3TBMMwVXv1WpaFkiy772NZ\nJBIJxCSpZa9wZW0N/TUSUh6jw1jKQ/+/bsP8ZWnzj6YD+f+8CfH4CBi+sXtMLAdOXoWTVWCvy7DW\nZdhZGWRDhZ1V4GQVODkVcCLwt73CyWpvDd4iNvACw0C0ACMGaEkGXz1N4NJ+FQzD4Pbdu5AVBQP9\n/RgeGMDg4CDisVg5S4n+X1a9SmPwW0IVYfkM7/Ut492+Ai1CCNayWRykchth4EJ2d40gGPpRFQVy\nqQTTMFAsFhGPxWrqXG1ncxIpFkOJ7t45jkMqlYp8LsdxyuRB/D7AHyA+eqMf5UutGktkGCSTSTiO\n4yZ2Uyl/wpIQb4xhGMTjcciK0vA4TdMM9bZty/IlERiWRTKZhCRJ5V20WsDyygrGRkaq/p1nOZAf\nZlD6f58Chr3l705Bg7NcAjeS8V8jlg0np8JZp8Z7Q4WTlWHT/52sCievbYY9LAdOVYtdH8Tn7DX+\nuYcHgGwXcPJxHN3/6Uvg1r/h6KFDOHroEFTaMGZhaQk/37uHdCqFocFBDA8OukVs3v2v7FNczVMP\n0ngBgGHgYDNPE9xRbJfRV2j4sRpDDHAXesMw/IKtZuFdYzKVQiwWg65pKMkyeJ539e4rnTHGbZDT\nzLVveR48OmfgXoqC4OriSxI6M5lQ2+At4JV/qwzZvo0w3Hbhozf6UWmXtQx/ijJ6CqWSmySVJPdh\nDXl7Ih6HLMtuEjiit+81GkkEtoqO40BRFL/gK55IlOmB2O0wCoRgeWUFn4bIUwCANZdD4X+7BvJi\nreZh5P9yF2BADbziGvRGhtGCwQew6bjXOozEg+tOgOmKg+1OwOmUcINdhMOz+O3h44j9px44DIBb\nmx+Jx2LYNTmJXZOTsGnDmIWlJdy4dQuqpvn6QalUqqGK1Ur+vBfTD0ahEFwI2rgIrGWz6Amh5wbh\nebS2bYNtoRKXgNad8LzLoBNFaIYBTdNQLBYh0uLA4E48anVuELUUWr0qXtM0XSVUAHwgyVyJaosc\nIeWN3H9tl/geg436wNR4n8fhlxXFp3hVY/XE43GwDIOSLEc2+qZlAYT4/H5VVaFQpb9YLBbqFTXz\ncFSipCgghGzp7+sYNor/+zVoV2Yi3TvjdotMhkbq6sOQ4MH2SRDGU+C7kmCpYWe742C6EmC74mDi\ngu8JqqqKixcvorurByc+/XTT6NRIInIsi/7eXvT39gKHD0NWFCwuL+PN3ByWV1aQTiYxOjqKocFB\nVySuhcsBAsV97i8A4C8ATMV7GsHa+jp667DZ+ABVV2jB6FuWBQdA3NvBMgxikgSJ1n/olO4Zo4Ve\nTJPN0mveBYbxWToczyMei/lJ2UbgOE7ZTvxXo/8eYws9rllDyTBIJhLwxKkc20YyldriMbAch3gi\ngVKpVDNWHoQXP7Vt268MFEQRyUSiugfJMK6RamHira6toa+3t2zyOqaN9f/pn+AUtqfvb6NgEqJv\nvDc99TjYzgSY7jjYrgR0xgarKEh3dtalTebyeVy4eBHTu3a5MtJN3r9kIoHpqSlMT00hm8shXygg\nl8vh6k8/wTQMfxcwODBQMzkfNhurjchPHFe+3wtlREgAr6+tYeL48ZrvYRgGHMuW9VNoBmaAWVZ2\nfJb1q8K9inGdVsvWIzJUggBVnwNCCGRZdkOnoogk3YVbDRp9h3b38p51P3H/q9F//xCMndIXqr63\nFkfY+5Id4mps8zyPUqmEYqGAZMjWvtEQj+Z59nC9rFQmU3fye9W+rfj6y6urWxYm7c/P3prBZ1IS\nuO4EnA4JXMCwsz0JsF0JkIwERoowRVXXONV7CBeXl3H12jV8euwYJitE01oBA6C/txdT4+M4fvQo\nSqUSFpaX8WpmBj/duoWuzk4M00Ugk8mEFv20AlIZHqLOTWVYyKBMmrpsNriGWgvIijQ8JrgS4bUo\nxCzHIZFMQrJtqKoKleauJFGM3NSIpXmRSnh5OJs2bfEasfM8D8MMo3jVjucj+HowX/AB4qM2+gAa\n8uRqGn5semACzyOdTkORZRSLRSQTiTJKZzwed1k8dUI8hBDIqopcPg9RkpBOpxsrgmLZmiGJelhZ\nWfE7AXlwSo13AAsDm5bcEEtXwg+1sF1J9//uhOupS25YxbLtUO/WjnhtfiFXje/6xcuXuHf/Pr4+\ndSryDiwqCMoLs1KpFPamUti7ezcsy8LK2hoWlpZw6coVOIT4yeD+/v5wZlmLxsRfSIJOD3FF1ro6\nOyMlZz3Ziqh8/Ur4FOQIlEaPSWOZJlRVRUlR3GryCAWGYc+rRRc3L2EdDFHxtOI4rAl8tfvi99im\n94HBr+Gd9xZB0bNICAv/UC+/8nWe45Du6IBcLKKkKIg7DmLxOBi4HkwsFqvJ4rFsG8VSCZqmged5\n9HR3N1z16k2+ZoyEZVnI5XJbinQSf3UA8v/zALCie6BsJobE/3B808B3xcEI0QxFTQXSiOG4mg8g\nIbj34AHdtsmlAAAgAElEQVRev3mD8+fOoaOKaFqzqNebl+d5tzfw4CDIsWMolkpYWFzEsxcvcPXG\nDfR0d2NwYABDg4NubqXNhiSYE1haXvbDefWeCY7jAKqy2pTRNww3adpAToAXBKR5HjL1+j15hKp6\nOMCW+eH1BGBpHq7SsAu0K5hBK3GjwLIst2Mcx/mhng8ZH7/RZ5imEjf+MRimapUgAyCZToNVVdd7\nsCwkKffXq+hVVHVLAYiq65BlGQB8Rk6jsUyAhnhoI+lGsZ7NIpPJbHko2ZiInv/lv0fxf70C88U6\niF4/rkssG9LJyYbHANROwrFA6NZ9yzGqLHy2beP6jRsolUr47Xff+Vv8dqIR3R0GQEcqhY49e7B/\nzx4YloXl5WUsLi3h6fPn4BgGgzQM1N3Ts8VgtYql5WWc+PTTSPOF4zgwcA2e1GABkmdUBUFofBFj\nGCTjcXAsC0VVUSwWXfnvkJqUssWLEJ/azFMplbAzi6LoVrQ3kK+wLMtdLOi5HNt2i/Z+9fTfP7As\ni1Qmg2w2i97e3rrvrwzvkBAPP+wzCcquURUFhXwe8UQCCRrikWXZN/qO46Aky9DpA5FOpSDLMjha\nLNIUmkxOe0lcD8HqUrYzjsz/fB5wCIxflqFfegnt1ixghi+ejND8NGpL9WlAd8eDruu4ePkypFgM\n58+da/7+1jt1Zby3AfA873YFGx4GCEG+UMDi0hIeP32K9WwWPd3dbjJ4cLCuSFw9yLIMQ9drx/Mr\ncl8Cz8NoIplrVmv32QAEQUAHz7t6PrR3b5IWP1bCsiwoigLLthGXpJqKqN480E0THdh83oPaT5XH\ndgjxixS94rahoaGmr+1d46M2+gzDYGR0FIvLy9i7d2+0zwB+45NGmp9ItPmKoigoyTJEnocoCCjJ\nMvp6e2GYJorFIhwAyXgc8Xjc5Q97HlGTaDbEs5HLobenx7/OULAMxCODEI8MIqWayP34BNb1WeDF\nRtnbpK8mmxs8Gq6nCoVDSFlMvVQq4YeLFzEyNITjn3zS9pBJ5bmBNvTmZRhkMhlkMhns37cPuq5j\nie4CHj5+DFEQ/DBQb29vw4vY0tISBgYHay9OFUw3juPg0KY+jVydx9pput0isylJnkwmIRgGFFVF\ngebPvBANcRwotH0hwzBIVcTvw8AyDASeh2WasAPFZ2EGH9gUixN43p+ry2trmJ6ebu7a3gN81EYf\nAMbHx/H9H/4QPfHiec4NGHwPPMchnU5DNwxoigKbEGiqitW1NYBxG1V30N6zgJuotAlBrBWj30yI\nhxBs5PPYPTUV+XNMXEDszDRKnw+hw+Rh3ZiFvVgEv6cX0uldTY6+3kmjx/Q9D3BtfR0XL1/G4UOH\nGhJNaxYta+lXgSiKGB0ZwejICDyp6MWlJTx49AjFQgG9fX0YovIQUSQ/FpeXMTY6Gn0AhLg6PHB3\nqFFDTQ4hME3TDVe2Us0bCN2Iogie5yHLsutQCQJYjoNOlWUl6t1HPRvP8zCp7Im3oLEId0BMywLH\nsmADz9jK6ipOnznT9LW9a3z0Rr+jowMOxyG7sVFVWTCIYIVkM2DgdtHyJubK8jI0w8Dk+PiW0m/T\nNAFCWiqAcU8a3Th6YZx8Lle1E1Q1CIIAhmHgdEqI//Wh5sbaAKI+xJ50wezsLG7cuoUvv/jCDZm8\nBbTSFD3ygstsSkUf3L/f3QWsrGBpaQkPHj5ELBbzawJ6QnIBtm1jdW0NJz77rKHxsQHFTU94rh4s\n0wSBq1TbCirPxbIsUqkUZEXBRi4HAncXEJasrQdeEMraJ1bbKRMa+w8SLFRNg6ppb21+bQc+eqPP\ncRy6enuxvLwcyehXMgJa5VGn02mUFAWGYaBYKiGZTPqT1KTNTlqNN9eimgKBUBXdwsqqCpY2vWgE\nXhtHwzTboq8P1A/vRGGaOLaNF69f49Xr1zh35gy6urraMrYocJr09FuZVZIkYWJsDBNjY25DlFwO\nS0tLuPfggVsU2N/v7wLisRhW19aQ6ehoOIzIsaxv9MOIBmFhH52GWlptpL7lXMRt/WmaJqRYDISS\nM5p5Pj0nK6gkGvYMWZYFggADiWGwvLqKiYmJhqXT3yfsCKM/PDyM2bm5msqCHra0+msCNi0MIYRg\ncHAQa2trsG0bOm1MnqQ6OpZhQKAJolbgc9QrxlzZcNtDoVBo2Mv3INIS+nbxlBvJm4R+3nHwy6NH\nyBeL+N2330ZuetMueONv9Brqvd8XYatzj1mWRU93N3q6u3Ho4EFomubnAu7ev+9WkbMsOjOZhr8z\nhmHc4qca7DVg0/g71DNui9wws6lUahgGVFWF4zhuPQuVUijJsiuEmEw2tMh4O1bDNP0Wor6zF7g/\nlc1fGEKwms3i8JEjrV/fO8SOMPpDQ0O4d/MmLNq/thpIxc/BwpaosKiUAuAW6fAch1KxCF3X0dvb\nC5UmejVVhWYYbi/eNiCoxePUMaT5QgGZJs8rCgJUXfdpbK0gisGvtYuxTBOXrl6FYRg489VXb93g\nA+6i04zXF2VGNbOoxmIxTE5MYHJiAo7jYG19HVeuXYNpGPjnP/wBg/39GBwYwEB/f6TdGsdxsKpU\nsPrjpP+bNLTTLo1523EgK4rLk2eYsh62XmvTEo3zVxZh1YKXCDYNA8TLhzBb+1mbluXubunrDiFY\nWVnB7reQK9pO7Aijz/M8kpkMVtfWalKttiTlIlA2g/AMPuNNUGoM0pkMVpeXoWoaOjIZGLqOjXwe\nxWIRPMdBoH1HmwUhBI7j+I1O6pmKjXwenZlMnXeFQxAEsKguBf22oCoKfrh0yW2JeOjQO2tm0Wxx\n3Nso8GFZ1pUN4Tj87rvv/F3A/MIC7ty9i1Q67YaBBgbQ2dkZusjwHOezcepB13X4PSFa2Snbtt94\nnRCCeLC1Y8AJ41jWNfylEuRSCYlkMtJzxFJtIZMuJmUj9Wp7CIFt22ULY6FQgCiKbzV8uB3YEUYf\nAIZGRjC3sFDV6Lf6EFqWhVKpBJaWlAcpfIl4HIIkIZfLoSOdhihJ6KAsH0KTqoIg+JM7qofnxeq9\nbTsbkcWTy+cx2iTPmGEY8ILgc7FbQbP3PJfL4cKlS9izezf27tmDQqHQtv6xjaJVzflaaEfD+MXl\nZQwMDMDr9TA1OYmpyUk4joP19XUsLi/jxs8/w9B1DAwO+jsBb0FnWdbtWVxnR2NZFmzbdqtcSXPN\n7i3T9Dn5gLtr8UIx1eDtAGRZhizLIIlEpGIyXhC2tgHFpsPnxfODu4f55eUP3ssHdoDR9yrnDhw4\ngB/+8Acc3LcPyQopYWBrQqiRSeu1MGR5HqlkcosRYACkUylks1lfhM1xHMRiMfR0dUHXdaiUh8yx\nLOJ1umL5lYGeZx94XxROdT6fb0mOQBIEFA3DrUxsIQldLwEdhsWlJVy9fh2fHT+OifFxP/TQDHum\nHSCO05Lm/HZjaXkZuyYnt7zOsiz6+vrQ19eHo1Qqeml5GW9mZ/HznTvIdHRgcHAQvVR7365j9HXa\n90EMzlsvLl9LDZYQGKYJTddhU737eCzmOj8o11+q9kz6hr9UgkLlwutVXws8D1lRXGZSYA57IUdf\ne59+t4Zh4PmrV/j7v//7msf9EPD+ztY2wgvx7Nu/Hw9++QW/+c1vyv5e1fBEiOfrhgFFUVx1zFSq\nqsFNp9PI5/PI5fNIJBLuQ0QNtqcCqJumG/MvlaDIMuLxuNtkoqJ5Q5ixd4fLuHzjGmM2DAOGYbRU\n4SkIAhi4i12sBaMfOa5Nr+f5ixe4/+ABTp86hT4qmuYrSzY9itZQWRgWBV7xXz206ulbloX19XX8\n5vPP6743mUhg99QUdk9NwbZtrNFdwM1bt6CbJvp7ezEyPIz+/v4tsXPHcXxGV3BO+j95fYaD10KI\nS2zQddi27e9ExBqefa07wQBIUo9fDfSiqAbW69BVeS76u2mafhUuADx8+hRjIyP+vPuQsWOMvm3b\nOHjoEP71X/4F2WwW3ZS+6VX2VfNEannOlm1DVRQIPO9q7tQYAwM3sZvL52HoOhzbLmccMAwkUYQk\nijCp2qBMtXtisRjitMmE+9bmTVy+BeaOB47jwHEcTNOs+WDVRQMG7c69e5idm8N3335blvz2Dck7\n0EFpWzXuNmFldRVdXV2NUzU5DgP9/Rjo7weOHMH84iKy2Sxezszg5s8/o7Oz068LSKfT0GjMv1pY\nxb87DAPisdg0DTZxu1ElEomqsfhKfZ1aYOBy92Uq3cByXNXjerH8sLCV7TguTZVej6womHnzBn/3\nN39T8/wfCnaM0fcaKRw4eBD37t3DmbNnyyZjNTBVvH0CV8+EYdm6Bt9DOp1GsVhErlAAx7JVH0ZB\nECAIAizLcrtoKQpkWXaNP9XzrzXeWt5hPp9HpskkbhCiIEChibbtFJ6ybRuXr1+HIsv47fnzW7ft\n21QRGwWtFGa9DSwuLWGwv7/l43SkUkjE4zi4f78vFb20tIRLL18CALq7utDf1+fmsqocw7Ft6LoO\njco68ByHhCTVpVr68zkii46Bu2sp0XajXJXirVoLtVet6+1o7j96hN1TU+how3PzPmDHGH3HcUAY\nBuMTE3j27BkWFxcxPDRU33uoYkTlUgnEcZBKp6OXf3McEokECoUCUrRZdL33J5NJxONxqKrqt5gT\nAj1HwwxOLcOfy+ebpmsGIYqim3SjXOdmUO8R1nQdP1y8iEQ8jm/Png0tYnuX4R2Pv94oZTPq/qal\n+gVCsLi8jNMnT7ZwFBccx/mNR8qkogGsr69jfmEBb2Zncf/BA3R3d7vJ4MFBJJNJWKYJ3TD8z4uC\nAEmSNr/LqLu9BnaFDIBEIoFisQhZlpGu8YyG1SDohuFKKfM8NnI5rKyu4vfnz7dcZfy+YMcYfcBt\nJs4BOHLkCO7du4fBgYGmwgIaZRjEE4mGRaXS6TSKhQJKslzd4w4oTzK0YjeVSiGRSEDTNOi6jqKn\nQyKKkCSpZiw0iFyhEJrYaxSCIIBh2ZaMfq1EbqFYxJ8vXMD42BiOHT1adRHbLu2bKCBNhneaSWA3\nijxlNKVCSAuNwlvUKplKDFwjPjkxgaNHjsA0TaysrGBhaQlPnj0DwzBu4VhPD/r7+33l2YqD128E\n1ESxJMeySCaTbn5MUbbqE1U5psdCSsRicBwHd3/5BQf27oXA8++MFtxu7Aij720hbdsGC/gT8NWr\nV5icmqprMIKes2VZUDUNoigi1sQkkEQRgiRhPZsNPy8hm52gKsDS+GcikYBpWdA1DQat8mUZxh8T\nTxOtYY9JPp9vOabvX4sgQDMMJGjv4EZR7TFeWV3Fj5cv4+jhw9g7PQ0QArsaH/5dGn3PWG2TBEMr\nC8Ob2VmMjY625b5wHOdqLtl2GVPJtCzYjoN4PA7LsmCaJlLJJHbv2oVdU1PQNQ3ZjQ28mZ3Fg4cP\n0dvTg0FaF+B3lAt+r9UMe5PJbIHnEYvF/EZFUoDrz1KJiUqdLa/WQJQkLK+sQNU0TI2PA4SA/9Xo\nfzgQBAEsy7o9OynD5fDhw7h06RJGx8bqJ7qo0SeEoCTL4Hg+Uu/bakglk9jIZiHLMsSgvnkNg7/l\nmngeQioFQghMy4JBQz+arvsLQGXRl21ZKMkyOtpUBSyKIlRdb97bD3mYZ968wY2bN3Hq5EmMeLUE\nDON6hFVyK/573jL8RG4D4Z2ozB2g+fAOIQSzc3M4VcFSaxacJ7zmOGUGQ1EUn6rp9Z7gBQExmpNC\nZycGBwdx8MABGIaBldVVLC0v4+Hjx5Akya8J6OnpcXcQIV5/q4tWLBbzc2Mcx7k782BiOPBdBFlI\nAHDvl19w5MABn/b9a3jnAwJDjaCu60gnEoBto7OzE/39/fjll19w7Nixah8smxSyLAOEuHomLYzH\nM8jFYhFdnZ1bwjmNgGEYiNS4J5NJ3/PXdR2qpoGjXoskir5OSbvEokRR9AXYmjH6QWYUIQS/PH6M\nJ8+e4fy5c+iuqHqstnN5l71KHcdpSncnMhgmUt1FJdazWXAc17bWkN79tWnVt24Y0DQN+WIRIs/7\nLJlacspBqWgQ4orELS/jwaNHKJVK6OvtdeUh+voQTyTcZ4LQ5u6tjB0uo6dQLEJWFHTQznYeXTro\n6RsBFtKzFy8gCAKGBgb8vNmv4Z0PDN42z3YccHANyNGjR/HDDz9gZmYGk2Fx7sCE0DUNlmWVqWQ2\nC8dx0NHRAU3TICsK4hEaQEcBwzBugleSXK/FMKCpKhTac3R5ZcVNrllW21QQvRAPaTDEE9TdcQjB\nTzdvYm19HX/x3Xeh+vDvo9EP6vhvF5q5snaGdgiVI7AsC6qiQJckEFpQJYkiuru6Gp9LDIOuri50\ndXXhAJWKXl5extLKCu7/8gvi8bgfBurq6mpZAJFlGKQSic34Pq1RCXbGI7RugOd5rK6t4cnz5zj7\n1Vc+e+9j8fKBHWT0vS2baVlgOc7X/D711Ve4cOECkokE+qrQ2wj1bkSqk98qHMdxvXLTxPraGsbG\nxlo+ZiVYlnXL2EURKceBrutQFAWiICBXKLj6Ixzn7jp4vulFQJKklkI8hmni4uXLAMPgd+fPN3x/\nCfBOQjtAc4VZ2w3HcTA3P4+zp083fQzbtmGaJizL8tsFmroOy7bRQSWaC6USBFr02CokScL4+DjG\nx8dBHAdZKhV99/59KIqCnp4ev26g2T7HPI3vq5oGybLA0IIxz9M3LQuO48A0Tfz08884eeKEX8BI\ngHeqM9Vu7Bij71XlGqaJGM/7HmIqlcIXX3yB6z/9hDNnzoSqXmqaBgAtxfGDsGlhViaTwfr6OgqF\nQtu24pVgGQYOrfolALq7u5FOJmFaFizThKwo/vsEQfAXgKgPsyAI4DjOXxSjgsAtevn+xx/R29OD\nLz7/vLkipxalmVsBcZyGeyE06q82yvRZWV1FIpFoiLXjefKWZcGwrE1WElyNGoHnIVBJ7Vgs5sbx\nCWlbT4UgmKBU9IEDUDUNi0tLWFxexr0HD5BKJjHY348BKhLXyJyJxWLQaN5LEMWyHYSu6zBMEzdv\n38Ynhw6hlxZverulWuq8Hxp2jNEHXI9CKxRAqAH00NfXh8OHDuHK5cs4d+4cxMBk9rx8icavvVhj\nsyBwY6MiyyIdj6NULCKbzbqFLdvgNQa3+KqqojOT8UNAAHzvxrQsmDQfAAAcXQR4+sDXMm4SLdSq\nJ8oVxMbGBv7twgXs27MHh/bvjxaKCGHwvOuYfqOebsMzJwqlMYDZuTmMjYzUfI/jOO6iTxd+xwtz\nsGzZoh8MY9qO4899TdfBMe1vlFIG+ozFYzFMTUxgfGwMDiFYX1/H8soKfr57F7qm+TuA/v7+ukJr\nBEBMktxcF8e5kiY0fKXrOu798gsmxsYwHmgr6eVUfg3vfKCQJAkKw8C2LLA8DwebMdOJyUkUikVc\nvXoVp0+f9kWYPC+/JbkBCgLamCEQC+7q6sLyygqyGxvo7elp+RxhYFgWxHGgqqqrghgAy7Kbi0Ay\n6W7tqTEwqRAWGGZzERAE8BXbekmS/n/23jRWkis7D/xiX3J/a73a11fFpVisKu5ssrmILVuwRjLg\nkQcWMP1DdvfAWiBLGgEaaTB2W7AsSw3JtoSBMLKBEWYooWVABoSButXNZjebW5FsFskiiyxWsfZ6\n+5JbZOxx58e9N15kvsj1ZS1k5QcU3quXmTduREace+453/kOGryrUQ/e3425Obz6+ut46ORJ7N29\nu7dzEIS2Le1uC12T/et7oe7TYejH0w/DEDfm53HvkSOJw1GtJu7N+75PCxWxYcy0FCPfCk5xdD0P\nURTBNIy+zmNLYElXEcDkxAQmJyZw/733omHbWORS0R98gFw+TxlBU1MoFIubdoACqCCc47px0hag\nRYBnz51DNpPBvbOzqVMYGf3PKTRNAwQBfhBAl+VNN8X999+PU6dO4d1338XJhx5qiuXHsdtunOI2\n4O8Ow7ApAajrOkzDiLtZ3YzYITcctuN0Xby4rg6Y8Q4SxsLzvHgRENh7ZUmCJMuICEHDtrsa/U8v\nXMAHH36ILz/9NCb7XORSK41vk9GPq3H7SV7frMkw3JifRz6XgyAIcfMRbuABxKqRGpM/6Cc0xVlK\ndqMBQRSHkttqi5bvmNOlWxO6ZkIqOmQNYxYXF/H2j38MPwgwzZrFTCdE4kRBgK5psBoN2oMiDPHp\nhQtwXBdPPPzwZhFD9nNk9D+n4NRN33XBTV/SUxQEAQ8//DBeeeUVnPvkE+zZswfAZi9fAJp2Cd3A\nvUJwhUygyasqlUqwbRura2u0SnjIEAQBgijCdpxNnn43yMyw64lFIAwC+pMl/BzXhe95qDkOwjCM\nQwR8AeHFPafffx/Xrl/HV55/HtlsdqO4qdfzwGbDGSdy2ykmdlqcWwzJpncmF3h+j6CZay8wDnsT\n7bafkxoAvGFOGIbxohyFIS5evIiJ8XE0bDuu5FZVNV6cOd98EIiiGCd186Z5S5PnQg+OliSKmJ6c\nxPTkJHD//ahbFhaWlnDl6lWcPn0axWKRLgLT05S27DjwPQ/X5uYwv7iIZ558ctMimLxW6k3IX9wu\n3FVGHwA0w0Cj0UBI0ptfSJKExx97DN9/+WVAELBr167NW3ihu4RxEtzgA8xDZFtlDlmWkc/nUa5W\nBzLMPc2BqRtuNfnGF4HkKLyoZXV9PX5QHNeNQwhBEODMRx/BdV08/eST0FSV6uAn+NLdT4C0pWwm\n39P6mV7G5dg0i5Sx+V9iTz/x2qZFqfW8+hAOA2g+KYgi+J5HOfJsoQ2Y40DYPSyIIiCKWF1fx8nj\nxzfJcQ8DgiDA8TyosnxLvfxBkc1kcHDfPhzcvx9BEGBlZQULS0t449QpgBBMjI+jblko12p49OTJ\nVKlx7hAqqgrtJjyTtwt3n9HXNNQFAYHn0YYP2Ozh6YaBh06exJtvvglFlrE/rVsOCzV0MldJD7/5\nhc03dqFQQL1ex8ry8k2hcDqeB50no4cMURShaxpMwwAhJGYiRVEEy7Lw5ttvw9B1PPbwwwijCLV6\nfSN5CJpz4C3sBFGEyP4vsP6kIi+bB1K3/reDssl3Ka2UzaaZtM6VvR5FESJefBRFCAlBFIaI2E+e\nYORhDZ5EFSUJsijCYN67JIpx7unKlSuYHB8fGsOsFTxUxEOknwcQAAIhkCUp5v2To0dRr9dx7vx5\nrK2vY2x8HONp7Q8Tu0dzCPpFdxLuOqOvKAoE1ipN5TdwihHWdB2PPvYY3nv3XdQtC0fvv3/zA96L\n19ZjDFoQBBSKRayurqJcraI4ZAqnbdvQDWPLhS6doKlqHCsVRRF1y8LLP/whdu/ejQePHo1j8lEU\nwQsChEFAjV4UxXISEfsdQFNjeh6iAja0YERRhOt5sfBbU8cmYaNXcFrDma2AM7AIM8ZhGNK/s91I\n/JOFYSJ2jvwz/Pxaq20FUYTE/gnsHPnrXAqhHa5ev97EOhkmCCFUv0YU+xYY7PNA/b2/y73c7vmc\nX1zE4uIidu3cGdcdtJsLIQTZPp7Fb37zm/iN3/gN/OEf/iF+/dd/fdPr586dwwMPPIBHH30Ur7zy\nSs/jDhN3ndEHaIjHr1Tavh6FIaIoQrFYxLPPPYc3T53CG2++iYcffrjpBhEAWiaecmMRbLQzbP17\nu0eXN3kur60hP2QKp8PCRv3yvvuByoy+63mo1Wp45dVXceyBB3CI7ZRi/rcoQpUkkDYGJNnoPfaK\n2U/f9+FxmiHTTA/DMA4XtYPQunjwxZftJICN61Jlstn8b8ncAy/m4Uqrra0qW06EHpvtXiRRhCjL\nGzuZ5M823zVJLCqpxwCtFl9dXcVjDz/c9vy3As/zEBHaoLxVoGxo6GS8O32mk+Fv+XtECN57/32s\nrq/joZMnsbyyAl3XqRBj8vonxhQEAZk+tKq+9KUvAQDefPPN1Nd/+Zd/GWEY4k/+5E96HnPYuDuN\nvqbBBRUgk1hWP2mMA9YwWWYP6JeefBKn33sPP/zhD/HEE09sbKGZJ5YW2+9VOK0VpWLxplA4bduG\nYRjpDJghQZYkKLKMi5cu4ewnn+DJxx6LddfTQh3twJOQ7fTzuRHmWjC83SQfk5fXk9bf+Tx46AQb\nzJCIxc+TjeYBxEJgfIEQ2PwilrDm1zRJBuA7FG7cAeocDHLd02iHrdfj+twcpqenbwpvnhAC27Yh\nskRwmv78bUWP19T1fZx66y1IkoSnn3wSa+vrkCQJuqoiCIJmbz8xpm6afV3XEydOwDAMnDp1atNr\nf/3Xf43vfve7+JVf+RU88MADPY85bNy1Rp+w0IDJ+2AmvuggCOgDy9sTiiKOHz+OCxcu4OWXX8bj\njz8et1tMM2advHmCzqJqN4vC2ZQgvkkhniiK8NmlS7hw8SKeefppTIyNpec0toLEtRMFgca5WQHZ\nVsG92HwPMVzP92P6X08Y9Bp0cRwEAFeuXsXh2dmBxNm6wWUJ+QyrxA0Su45hgaTsiDeh0z3b5X6u\n1et4/dQpbJuexv333guXyYZomgZN15vOqdUpyvQZz1cUJWYAzs3NYfv27QCoWOOv/dqvYWpqCt/4\nxjf6GnPYuLOEQ24RRFGEahi0V23Cc0lq5rfGLgVBwKFDh3D8+HG89tpruHbtGn9hs/7KFo1cqVSC\nAKqWOCwkC7PENoVOg4IQgiAM8cZbb+HG3ByeePRRGDeL4pa4treKIpk6jSi6I3R3ypUKGraNmelp\niNjIXwxjNxdFEWzXjSVMeJHfsNHLjljohXq7MWD869LKCl559VUc3L8fR++7DwBllomiCIlp7AcJ\n6YnWo2QHkCF/8sknATSHeL7xjW/g+vXr+P3f//2htCvdCm7/XXubkCsUEGFDTjV+WMKQKnGyHUDr\nwzMzM4Onn3oKZ86cwdmzZzfR9bptf3thm3AKp9VooMG0cbYKHt7h2Kqh5KGRkFB1wu//4AdoOA5+\n8vnnkc/laHu8bg/qAIiTu0iE1W4xm4SAdZHq0ejz9w+MDuf32aVL2LdnT1wxG3+EMaG2Asd1QQiJ\nqx9ekLoAACAASURBVG974cv3jX5oz93GaZnfpStX8Pbbb+Ohkyexb+9eAPQ5ACFxBXKywVLrjkGU\n5b7i+Rzc6PMQzyeffII/+qM/wuOPP46vfvWrfY83bNy1Rl9RFCiaBpc19waoQfHZVi+O46U8cPlC\nAc8++ywWFxbw1ltv0Spb9BjH75FiWCgUIIsilldXhxJHbbRU47aTNegEfo48sUoIQcOy8J3vfQ+5\nXA7PPvUUFEWJQx68wUYqtmCoN1VN3mKj33c17hbZQ+0+6QcBrl27ltr+UgA2Etfon8EURhFcx4Ga\n0F0SRXHrC9iA6GnmbF4RIfjgww9x7vx5fOlLX8LkxAQAuoPntSokiuKaE/5a6wLUb2iH44knnoAg\nCLGn/0u/9EsIwxB/+qd/eluqx1tx1xp9ADByOcoI4TocgoCAMTL4jd7uK9J1HU9/+csAgJdeegkr\nq6u9XcweHxhBEFAslRD6PtY7MI16RZruTrskdBKEEERAbOh5IhQAVtfX8e3vfhf79+3DIydPxkZQ\nURRIogi7jdG/WYnkWwUe4ujV0+8YmujleG3+fuXqVUxNTjbt4NInkNgBsMW+24wcxwERhKZ7hi8g\nQ0nm9ptX6tFYVmo1vPKjH6FcqeCZp59GLmG4bduOJcdDJpYnslqHtFzFIKEdgIZn77nnHrzzzjt4\n8cUX8dJLL+HrX/86jh8/PtB4w8ZdbfRV04QoCFRPhiFgsse9rMiiKOLhRx7BfffeizfefBM/fvfd\nJiGnNPQjEJbNZGCaJsrr67Hw26BoDe8AG/IMqfMEM/QAVXlseUCvz83hpZdfxkMnTqSqZOqs2QZn\nQjUddysn0jTJ27N4xG0Se/wet2oi045CAHz22WfYv2/fQON18vxD1oBHaynm49XTW160CQEZckI4\nDEN8ePYsfvSjH2HXrl148vHHmyqHPc9DEIZxw6IkTVNuZ/S3UCvzpS99CY1GA1//+tcxMTGB3/3d\n3x14rGHjrjb6kiRB58qSvk//SNLlGTphZvt2fOWFFyCKIv7+7/8e165ebftgdKvibcXY+DhkScLC\n4uLAHlYYhnDbKGC2evsxjbHFq0/i3PnzePOtt/Ds009jT5vqYa5VstXFqhPisNxtCu/cqkRu2vmt\nrKwgJARTk5ODjZn42Tp+O2XZoYR3bsJ3trS8jO+9/DLqloXnn30W+/fta66fIAS240BmWkS87kFO\nhq1ani1N17ekt8Pj+vV6Hb/3e7+3wfa7A3BXUjaT0DIZOJYFz3WbaH+9euSc160oCh588EHs3r0b\nP/7xj3Hl6lUcP348bs02KCRRxPj4OJaXl7G8ukoFpfqE7/u0OXybSmBBFOPz6LQoEULw7nvv4frc\nHH7y+edTG85wcDpjw7aRaWG6bNU/v5kFZr2gn4bofBHdipFLcyA+u3QJ+/fu3brxTNQX8PCmx5Rl\nN90vHepS+jregPUKrZ/iGvirKys49sADsVghv4f5+x3W64HH6HnStpPK6FalF/axHdjDDz+MX/iF\nX9jSWMPGXe3pA4CkqtA0jVZ5JioskyX9/WBsbAzPP/88JiYm8NJLL+HcuXPNtFD07+UYhoFcLod6\nvY5avd7XZwH6ELTbvfAQDi9iajezIAzxymuvYWVtDf/ghRc6GnwOTdNiqYSWCfV3AikQEnHpW50a\ni6KIhjp6eG+aJ90vWj/tuC4WFhawj6nADg2EoNFoQBCEVAluIfG+rRxjoI+1XMPLV6/iey+/DE1V\n8dwzzzSp0yYZXhFrFaqpajNTBxuefhqjLrdFWuUf/MEfQBTFOyZ5m8Rd7+mLsgzVMGgbtT6NU6zz\n3TqmKOLIkSPYsXMn3jt9GteuXcOJEycwxoqVBrkJisUiHMfB8vIydE3rqxgpTOGUJytS+Wzana3t\nOPjBj36EXDaLn3jmmZ512HmzFadVx38YxWHJMW41ZbMPjv5QdiQt1+vS5cvYPjMzUE/iTnBcF2EQ\nwDDNWPp7qEn3ISwW9Xod777/PoIgwBOPPYZiG+PM592wbUAQmvJZQRDEvQU4kneQJMsDM3cA4MUX\nX8Tf/u3f4hd/8Rfx8E2SxtgK7nqjDwCSYUCxLHieR798VnZPBKGvVnWtyGWzePLJJ3H9+nW89vrr\n2LlzJ3bt3AkMUD0qCAImJiYwPz+PxaUl7OzSEi8JQgikBLc9aezj2G6bBF2lWsX3f/hD7NuzB8eY\naFo/0DUNNdaEJV6ohmRIbpunP0DeZ1gghODipUt47JFHhjpuFEVwWBvBZNvBeEfFq2ZvUjV3L/P7\n5NNPceGzz3B4dhYH9u+P25emQQANa/q+HydvOQLOvuLOS8sYpfHxjdd6xNWrV/Hiiy/is88+w1/8\nxV/gvvvuw3/4D/+hrzFuFUZGH4CoKNB1Pc7wJ+manW7vXrwgQaCa/FPT0/jwzBm8/vrrmJ2dxcFD\nh/o2HIqioFgsYm19HevlMkrFYk+f4xr+XK43aeyb5sq0Vfhri8vLeOXVV3H82DEc3L+/r7lyqIoC\nETT+yo3+55uwSQX55B697KF5+gwLi4tQVRVjaXLAW0DDtmkhVkoOijtCAAY3+IOGdQjBjfl5nPnw\nQ2SyWTz3zDMbrRo7jBmxUJXE2oEmEQYBJCbbDWCjEQ/oMzA2QN7s29/+Nn7rt34LxWIRP/MzP4M/\n/uM/vmky11vFyOiDhmNkw4Bq26i0tPwTBCFVLbMfvj0hBJqq4uTJkxgfH8fly5dx4cIFzM7OYu/e\nvX0JOuXzeTiOg/X1dZiG0VNTlJA3LO/CHBKwwWS4ePky3jl9Gk89/jhmtm3reX6bxmTx4YZtIwpD\niJI0lERs8jxuZcyUayv1XI27xSQuGyT+9bOLF3FgwAW4HXzfh8+KlrqF7sQeOP6t6JexBlCjfe36\ndZz79FNIkoT777sP01NT8c6j23iNRgOEEGSz2U3X33PdTe0P+TsKpdJArRG/9rWv4Wtf+1rfn7sd\nGBl9BlHXobBKvSTXXhCE1Bu9rxtfEGJRqbFSCWPj4/A9D+fOncMnn3yCQ4cOYf/+/T3H6cfGxjC/\nsICFpSXs2rGjowGKoog2gu/R8BBC8MHZszh/4QJeeO45lIagE6JrGmzHgeu6MG6G93MLjT5PAvbK\n3BnGgsRHsBoNrK6u4tEhhnYIIbBY39tu/ZMBbHj8oghw6YL2gwPoL/wWhCGuXL2KcxcuIGsYOHb0\nKCYmJpryZ936WDiOA9/3YRoGZElqelZDJrOSa0NfHp+a6mO2n0+MjD6DKIpQmIyqyzRHhOT2bwuI\nt8eEQJAkREGAUqmExx57DNVqFefOncO3v/1t7N+/HwcPHuzqvcuyjInxcSwtL2N1bS0uM0+Cd18C\ne1h6MfphGOLNt9/GWrmMf/jCCxvb6C1CFEUosgzH82AYxuc6vJPsCXDLwL67ixcvYvfu3UNtZGI7\nDkgUIZPJ9LZA8fAgIQCj+rZFH/F/PwioQutnn6FULOIRRnzgiBlwXcb0gwA2k4/QUpok2Y4DtLCT\nOHsnm8/TRkNfcIyMfgKypsE0Taytr6PRaMQce4F56k2e2wAxSgK6PQ4Sn83n83j44YdhWRY+PX8e\n3/nOd7B7zx4cnp3tWF5vGAay2Swq1SpM00Qm4UEnDT6AuJNVJ7iuix+++iokScI/eP55yIoyVEVF\nXdfh1+vwPA/ykOSib8fi0a+nPwwQ0O/w0pUr+PJTTw1pVOpVuyzU0Q8bLHlesWOU8jz0EtZxPQ8X\nLl7EpUuXMDE5iScffxyFlEpYgu5yFnEcX5LiHSWJoqbdiOe6EIG4WpdXjSuKgrEE7fOLjJHRT0CU\nZejZLNRaDY1GA7qmbahtJnjZXI+mn20r5w63Y8lkMhkcf/BBHDlyBOfPn8d3v/c97Ni+HbOHDzfp\nhyQxVirBdRwsLy1B37kTkiw3tRvk6BZXrlsWXvrBDzA9PY1HTpygcf0hMzQUpnPScBzkh2T0heR2\n/xah18KsYRRlcQiE4PKVKygWCsgPqAeThkajAQHYpMnUcS7AJocn5rkzA8vPu9OZ246DTy9cwNWr\nV2Pl2rTm5ImDxLvl9JcJLMuicfxMJt7ZJus5AEpLTTaOD1lP4mwuN7DWzucNd31xViu0XA6qYSAK\nQ1gsGQRgU6hnkEdZAOt1ymUOUmDoOh44ehQ/+ZWvQDcM/ODll3HqrbdQThFd4zROQgiWlpfjXrOt\nCFkxURpWVlfxd3//9zh44AAePXlyo3FMB12eQSAw8S7e8nAYILj1N3AUhj0VZg2jKCs+JoBPzp3D\nPUeODGU8YIOTrxtGf6GqlPxWrOSZuHfaGee6ZeHd99/Hd7//fURRhOeeeQYnHnyws8HnY3eJ4wdB\nANMw2iajgyBAGIZNoR3e8nIba3ZyN2Dk6bdAUhSoLKEbsu0vv0liw7+FsAfnOkcAOkVmVVXFvffc\ng0MHD+LS5ct47dVXYZgm9uzZg507dsRxf1VVUSgUKI1zbQ2lNCpfm2Kiazdu4LU338TjjzySqqHD\ndyfD8vo1VUXDtqm3v8Uy9xi3WneHkJ443MPcJ129ehWGaQ6tfWYYRbAdJ24iMkyk7WR938eN+Xlc\nvXYN5WoV+3bvxgvPPdcT84wN2jmO7/twXBeapqUWrPFFyLFtyiZLHDcIAiiahlJKXuyLipHRT4Ga\nycBjMqyO40CVZQiSFG9btxLpliSpewIsAUVRMHvoEA4dOICl5WVcvXIFZz78EJMTE9i9ezdmZmaQ\ny+XguC7Wy2XIirIpHBSSzQ0/Pj53DmfOnsXzX/5yaiI4Bt+u932maUNRb79mWc3FWp8jREyHvRuG\nFs8nBB+fOxd3fRoGbM7JH4BJ1W33wkM9URRhaWkJl69dw+LiIibGx7Fv715sm57uuaK7acw2iKII\nFo/jtwtTsc87jgORia7xcYMgwM6dO+84qYSbiZHRT4GezaK+ukolV30fDdtGNpdrCu0M+lDzmCiJ\nIqCPm18QRUxPT2N6ehpBEGBubg6XL13CO++8gx07dmDXzp1QFAUry8uQJakpCUwSidwoivDO6dO4\nMT+Pf/jCC23zBcn5CqK4pcrkJHRNQ73RgO04QzH6t0V3p4d5Dyuef+PGDciyjOkhUQk934fnedB1\nPZZa6Bdp9z6v2l0vl3Hl2jVcu34d2UwGu3ftwoNHjw4mGcF3DR3i+HXLAkBlyNteb3b/up7XRBn2\ngwCiJGH6LkngcoyMfgpkWYao64jCEJquxxzz+MZl28VeikRaIYhirFQoCALttjXA/Hbt2oWdO3fC\ndhxcv3YNH5w5A8/zUCqVYNs2Dh46FDMUeHFZEAT40euvw/U8/NQLL/S8vR5GMVU8liDAZIY/CIK+\nCtM2gSdVb5GXFvbRPGUYBp97+ffMzg5tvEajQRuJDCgbzO/dJCzLwpWrV3H1+nUQQrBr1y488/TT\nyGYy9L7ZQjVup3vPdhyEYYhMJpP6nXC2HAht6UkIic9bAA3t5AsF6Hdo5ezNwsjot4FimvDW12Fm\nMvA8D45tQ5akOJ6bZPL080AKrJcpSRisfmPmsQwyKBXy4KFDOHjoEKrVKi5fvoxPPv0UZ8+fx+GD\nB3Fg//6Yvvmd730P+XweTz35ZF9cb15nEIXhUIyPpmmwHAe2bfek1tkVt0gPpteOWcOaCe+hMLN9\n+1Dosw3bBomi1CrVnsHuV891cf3GDVy+ehV1y8KOHTvw0IkTKJVKTWMLhFANqwG+n+Qz1grP92m+\nTdOamqUkwavQuZ4+WHiR5x38IMDubdvuqtAOMDL6bWGaJuxaDZ7rwjAM1Ot1OI7TtD1MSrj2CgHU\n0Dc1RElU7HZD0uC3Ip/P44EHHsDs7Cw+u3ABCwsL+PCjjyArChqNBmYPHcIjJ08OdJMLoAJVwzA+\ngijC0DTYtk07lW2x2GiYO5FOCG9xYdbHn3yCw7OzQzk/z/PguS5UTRt4d2U7Dubn53Fjfh5r6+uY\nnp7GkcOHMTU11f6aCMKWDD8dotkxCsMQjUYDsiy3ryJOHE8QBFqPIMuQFQVRFCEIAmTz+buGppnE\nyOi3gaZpUE0Tdr2OgqZB0zQ4TDRMSpFk7ed2buXB87h5qsZPAgS9dS3SdR179+5FNpfDvffcg7Of\nfIKG4+DSlSu4duMGtm/bhhn2r69t/hC9aZ2FzRzH6UrX6wWDhNr6PkaPhVnDuErLKyuwbRu7duzY\n8nmFYQjLtiF2SnamwPd9LK+sYHF5GUtLS3BcF4V8HpMTE3jskUegKEpv5yr01nyFEJJKzUx+LuKy\nEYLQvoq45W8Ri+dnM5nYuQqiCDunp+9YUbSbiZHR74B8Po8VFs/XmAqn1Wggl8s1PYj9PuSiKCJM\n6R0rdjP8fRjdTDYLPwhQqVaxc8cOBGGIF559FuVKBfMLCzh/8SJeO3UK+WwW22dmMLNtG6YnJzt6\ngXFT7a16+0zPiGvyhLreN6OjFckwGa9IJlGEiBBEUbRRtJbYKbX2Q+B9UivVKpXXRjPf3nFd+CwR\nKogiJFbLILL3DhNnP/4YRw4f7spP7waurQNCkOkS1gmjCGtra1haWsLi8jIq1SpKxSKmJibw0IkT\nKBYKqNZqEAShd4OfAL+/26HdufLvKCIE9XodURQ1FWC1vHmzwBqrC9E0DYIg0NzX5CQKLaGouwUj\no98BqqpCN03YlgWVUNnZWqUC27abdGn69fZbqwSbXutw4/fbm7RYLCIIAtRqNdismUSxWESxWMQ9\nR44gCkOsrK1hfmEB733wAdbW1zExMYEdbBcwPja2yasdZnxf13XavMZxBmorGUYRPN+H3WggJARB\nGCJiFZbtCoj4gsP+CN4gPGncJUbPjcAWBmaoXM9DFAT0WmKzHIEoirRwS5IgiyKV75Wkvq/T2vo6\narUa9uze3e8l2QTbthEEATKJxigchBBUqlUsLS9jcWkJq6uryGazmJyYwL1HjmCc9WdOIiIEEt+p\n9nleXMYkzePv1HCdL9BJg5/mnJAUajIA2I0GzX9pGgghUHQd+UKho8zJFxkjo98F+XweS7YN1/dh\naBp0w4DF4omtCSQB6EmegXs8aSEJAdgU/xzE4HOMj4+jXqvB9TzYtt10o4uShKnJSUxNTuLY0aPw\nfR+LS0uYX1jAa6dOwbIszExPx6GgQj4fG8gtSTWwz0mMRWI7Dgxdb1v0xPnUYRgiDEME7KfjOHBc\nl7KtmMetKkrsfcdGWBR7oifya5xtQ2MVBAGSKCKTycTl+3wXwXcWfhgiCgK42GCfiKIIWZYhSVL8\nr1OI6ONPPsGhgwe3nDvgyU5NVWPmmdVoYImFaxaXliArCqYnJrB39248fOJEV0ZXXLMxTA+5C5kh\nafAzbQw+wJqitIwTRRHqjQZV3JRlhFGE8fFx5FP0fe4WjIx+F8iyDDOTgW1Z0MIQumHA9TzUajUU\nCoVNnpCI7h6/xOReo0TDliSShr9dS8ZeIQgCprdtgywIWFxa6thmT1EU7NyxI+7KZds2FhYXMbew\ngDNnzyIMQ4yVSiiVSigViygVCijk81sKzSS9fd7AgxCCMAzjzkd+EMSJOW7AVVWlv8sySqUSTY4P\nqYisHaIwhKIoEAShreHhu4wosTiFYUgbjvt+zPaSRBGKokCWZchM3wkAKpUKVlZX8fBDD22MOcBc\ngyDA0tIS6pYF13VRrdVQKZcRRhGmJicxPTWF++65p68dFg/NbEmeg+tPJftGd/jeoiiiBp9RM5U2\n1z01FwCgXquBEIJ8Nks1dopF6KbZezXwFxAjo98DcrkcbNuGHUXISBJyuRwq5TJq1SryhULfRS6y\nLMc84V4M5lYTg5qmIWI5hIXFRezYvr2n4xqGgX1792Lf3r0A43ivlctYL5dx/cYNfPjRR6jV68jn\nciiVShhjoaNSsbipRV07SKIITVVhsfBTGIbwgyDmd0uSBE3XoSQ8ZQ7bthGG4YZeEPvMzQA3eD1x\n9IFNcwXoToKfX+B5cFwXcF0A9DooqoqzH3+MQwcP9sVocl0XlWoV5UoFlUoF5XIZ1VoNmqqiWCyi\nUChg7+7dKBw9ioxpDhSWS5IIhiIix5r1AO13xqTV4LehZqaGRJkAXM2yILPOeIphQDfN4dCEP8cY\nGf0eIEkSMpkM6tUqdGZ8svk8atUqarUasrkc5D4Mv8i81TAIgDYeB6fpDRrWaT2eKMsosVaLcwsL\n2Dkz05/HJggwMxmYmUxTf94gDFFmC8H6+jquzc1hvVymDWOKRbozYAtB664gDEO4vk93TvU6PNeF\naZpU6leWoShKRyPbugO6mdRNbvQHrWIFaLJZlGXqrTLxuSAI6CLg+1hdWcHC0hIOHDwI27ahqmrT\n9YqiCLV6nRr2SgWVahWVSgWe76OQz6NYKKBUKmFmZgYqk+MYlkebzFsNqzFMJxoniSLULYvmIzoY\nfACxumfznyLqFEQRxgsFiJKETC4HwzCG3lD+84aR0e8R2WwWjUYDjSBAlhl+0zRhWRaseh3ZXC5W\nX+zF+MiK0lVtMhnz37K3ryiQRBHjY2NYXV3F/OIiZqant6ykKUsSJsbHMV4qAfv20bkSgobjYL1c\nRnl9Hdfn5vDh2bOo1evIZbMw2fZaU1VorIeByqiw2VxucN7+TSzSiqtxh9jARBQEqIpCc0OGgffP\nnMG+PXtoO8zVVdiuC8914XkeqrUaarUadMNAgYXV9u3Zg0I+T0M0zOgFvo+6ZUGR5eGFMFjMPQ7v\nbNHo8+ejXfKWEIJ6o4EwCGAYRnuDzymerXNlfZ5r1Wr8nGZLJYhsl363Y2T0e4QoiigUClhfX0cD\ngCnLUFQVJqPENSwLJqOR9WL4JUmC47rtG5ywxOBWqKFJKKpKPcJCAREhWF9fx9z8PLb36/G3Q0sx\nTMYwkDEM7JyZAUCTinXLwnq5jGq1Ctfz4HoeKoxZZDcatA5CVZExTRiGAdM0YRoGTMOI/28YBk3W\ntjE8N4uvHzE6p9SBTtvp+/EZ64f/a7T8rFkWfM+DqmlYWl6GbhjQ2I5HNwxMTk2hUCggwz3VlHlE\nzDsWBGF4/PMWKuxWNYVivn6774/p6XAPv1MYMnnf8u+dh4w8z4MbBCgVCtBME5IsI5fLbU324wuC\n0RXoA4ZhUApkpQKZEMhMsS9iUrWiKFJ98oThB9KNNb/5kjHpJH76534OL7/yCv6fP/9z/A8/9VPx\nWBEh+Jf/6l/hL7/1LfzqL/4i/vVv/3ZPc1dVNd5Z5LJZCADW1tZwfX4e27dt2zJPPk1HiBACz/Mo\nF589jNNTU9i+Y0dqOMyyLJQrFUiSFFMxGyyZbDsOLNuG02ggApDRdWi6ThPtTENdlmWIggBJliEn\nmDJp/9Je5/B9P07AhqzHcL1ehxcEaDgOwiCgiVomvx0GAUJW5ZlkGHmuS+UmGg1EhMDUdehsETNZ\n57PJyUnouo63330Xx48dw94UmmYQhrBtG57n0UXCcaBpGi2s48aTEDQsqyc+fh9fapMnHrORBhw7\nzeAnY/u8EQqnmCqserYVsaZO2tgMtVqN1oIYBoxcjnr7w5Lz/pxD6JMZciuq3e94rK2twWk0kGWG\nhgtZuZ6HjGlCVVVq+NmN2U6VsLy+DlVVN/GFCYAPzpzBU1/5Cg4dOIA3v//92Cj9b//m3+BP/uzP\n8NWf/3n8xz/4g57n/Mbrr2Pnrl3YnmgW0Wg0sLK6CllRhmL4OdsoIgSu69L+q2wLbug6ZdyALlzt\ntvXr5TJEQUC+Q0N2ny0I6+UyavU6DNb0JkgwZbjhjRJ/4zH0sIVZE382CBCBLsicZy+xUF6cVNY0\nmpPh7+F8fFmOf5fY75qmwWC7lHb6MABw+fJlfHbpEp575plUY83ZTADdMfGGIQDlnmuaBtfzqEyI\nrm85rMO/s9bvyHEc1BsN5HO5vumkbXe+ZKO1p2VZ8JnBV1W1KaTUPJiw2aFqkWmYm5+HYZrYuWcP\nSuPjGB8fvxsKsXo6wZGnPwBKpRJWWGetLCvKMU0TURTFKobck+de/6ZiISCWbkar0ScER++9F//T\nP/knePFb38Jf/bf/hp//p/8Uf/if/hP+5M/+DP/4p38af/T7v9/XnOWEp89hmiYmASyvrsahnq0a\n/oZtw3EcRGwnZHSg2bWCh4XqlhXrxKRBURQohQJUVUUul8NYqdQcLhiwYjiMIrz4rW/hf/zZn930\n2nq5DJWFntLQTg+pG4IgwJmzZ/H4o4/2VInNcwBBEMR1CnXLQuD7yAwhcdst1o42BVDtB6Sefdtr\nIwgQARreShh8AOmV3y0GP43uWa3XQQBk83nki8VNInB3O0btEgeAIAgYGxsDkWVYbOsOII5BWpZF\nPTNevIP0JVhWFNrisPUFNt7//pu/CV3X8Xvf/Cb+7L/+V3zj3/97PP/MM/i//vN/piySPnZpWorR\nBwDDNDE5OYkgCHBjfp4uQgPAdV2slctxR6Z8Lod8Pt+zwY/nySQZGrY9eFJ20PBDm8/xnUk7Yzeo\nwQeAc+fPY2J8vHNXrJR5ybKMbDaLbCaDIAgQsN2M47oD13XEcfF2rw9QhdvN2PI8hO95MFuYNU3z\nYOPwwjC+ALWOzqUaCIDpmRmMjY1tfQf7BcPI6A8ISZIwMTmJUJLQaDQA0Bucy9byJs0A9VjCxIMo\nJMYgQLx1B9CkP75j+3b8y3/+z3H1+nX8r7/zO3j0oYfw//75n8dhkn68F1VR4Hle6muGrmNycpJu\nixcW+jL8QRiiUqmgVq9DEARq7LPZLSXMMpkMCCFwHKfzG3n47CYxdji4x9nWeAy4yPDm4N26YrU7\nO05LNEwT26anoSgKHMdBtVqNwz+9opvBBzoXUaW8OR63HcIgQL1Wox5+JtO0S9n0nSYWnE7aT41G\nA67rYmpqCpNTU5/L7mw3GyOjvwWoqorC+DiChB4LV//jlYQxCNnUuJwXaTWJr7Xc7EkP8E+/+c0m\nVkYyWdwNiqLEwlNpMHQd05OTIFHUk8dPogiWZaFSLsNnDanznB0hdG8c3m2uiizDcZzBxN2G82AZ\nqgAAIABJREFUvJWP6ZpDHvfDjz7Cvj17uicYUxa1WHyMEGQZjz2XzVLlSVFEvV5H3bLiuXdDJz2o\njWn0ztzp9j6P1WYQQmg9QSeJ5MR43Rb4lbU1iJKEQ/fcc9dq63TDyOhvEdlsFmaxGEsJANQjzGaz\nCMKQbjU5lREsKRdFNDGYLNJiSN7Sf/03f4Pf/sY34lZ5/+d/+S+bjt+r4VdVFX4bT59D0zRMTk4C\nhODG/HzbnUEQBChXKrAdB6qmoVgsQm+twG2Ty+gVGdOkjBS2mKZiQPpkv+B0zU7aQP2iXC5jbn4e\n9x450vdnuRYN7xqVrGtQFQX5fB46Z5rVah3rQfjMezmHMIp6o/d2uf62bcNqNGLefDvxtPj7FTq3\nTeRYL5fh2DZ279mDUqnUfZ53KUZGfwgoTkxAN4z4ZgZYzJXFW2tM/yOJkFAVR0mWqbYMB3vfd156\nCf/Lr/4q7jl8GG+89BJmDx7E//3ii/j0/PlNx+/F8Gey2eadRxtomoapqSmAEMwtLMBjMgEcjuui\nUqkgIgT5XA4Z02zvATNFy7QkdjdIrEGG57pN4a+0cTYZrARzahjgctdp5zno4vLemTO498iRgapD\nG0w50zDN1JyJALpzy+dycY7JTgmV9RLSSSKKovZ1Ckh8r+1yI2z367guNLYziRfS5HdIEq1IezD2\nAGDZNpZXV2GaJu4/dqyX07lrMTL6Q4AgCChNT8MwDHieF3v3iqIgy4SearVak/HihSSSJMW0QYAa\nsDdOncL//C/+BXbMzOC//+VfYmJ8HL/zm7+JIAjwf/y7f5c+B3Q2prlcDvVarafzUVUV09u2QQQw\nt7BAdzDMu6zX65BkmYrN9cHKGQS6YUAQBMo/v40I2gjjDYr5hQXYto39rIK5KxLXz7ZteK4LXdeh\ndVkwJOZJq5oG13VRY0qVMfrYEXEl0XbXoZUnv+nzbNfrBwFMXYfZ0gAlldbcg7EnAOqWhZXlZYii\niGPHj4/i+F0wMvpDgqSqyBYKyJgm/IR3L7NKQIAWjLQm2BRFAQSBVucSgg8/+gg/99WvIp/P47//\n1V9h2/Q0AOBn/9E/wvFjx/D/fec7eP3UqdQ5CKBfaJqJVRQFiqrCZjuRblBkGVPT0xBFETfm5rCw\nvAyHGZtcNttXfLuf3EMSoijCME2qT9NDiKL5oMP19Ntq7vQZ2iGE4L0zZ3Ds6NHeFxJ2DM/zYLOq\n5V47YAmgoTLTMBCGIaq1Wtwspp9rFLYLcZFE8/I243m+j2qtRvvzZjKp8XveoAeC0HNrRZ7XaDQa\nCFkv4Z179vR8TncrRkZ/iJAzGaiahmw2iyjh3YuiiBzbatfqdbiJkIkoilBkGZ7n4cJnn+Ef/7N/\nBggC/ubFF7F/796m8f/1b/0WAOB3/u2/7TgPAemGNp/Po9qjtw9Qwz85MUF19hcXAQAm8777xqDe\nPiuGarDuT01D3qRjJsE7b6XF8wehan528SJ0TcPMtm19fc73fViWBZlpyfQLTdPoYs2SvH6f7B7e\neaxpoerGwQct6LIsK34GUr3wlqrfqE04r3U+9Xo9pqnquo577r23jzO6ezEqzhoiJFmGmslAsCxI\nuRxqTCQryyiMuVwOlmWhYdsghMRNnXVdR61ex57du3Hu/ffjhyBC86r87NNPozo319NcYlErbHjC\nBdbubprtHrohiiI4to1isQjHcVAulxFFEcbGxgZisggA9eKAnj1kQRCQMU3UWCy4bSPsm4RYcyfN\nK+9T4M1xHHx09iy+/NRTfS2cYRBQwylJyGYyAzOj+D1Yq1ZhWRYy2WzP4nZ8d9BrYRZhshBeEEBl\nPSlSq403PtBTH12AEgksywKX4hYEAfsPHkRhlLztCSNPf8hQTBOSpkESReSZlHDSu89kMnG3KIvF\nqrmEcCtbhvP7B+1IK7T8y7MHvhfEDBFCUCwUMDMzg1w2i2qthvmFhbbJ1c4TEiD0mJhLQtU0Gppi\n+vnJ8fhc2x1vq+CUx61IKnO8c/o09u/fj2Kx2Pvxw3CjwrRdI/BewD4nCgLt8SyKsFryTN3mwfsQ\nd03YhiFqtRq8IICh6+laQKzgTeD/En/rBM/3Ua/XIbAmNLbjYGJyEgdmZ3s6jxFGRv+mQMlmITAl\nyFwuB1VRYjVFgAq3mYYR38CEkI2KWa4NLggAMzSc5rkV4w/QZG6lB6NPCEGtWo0pgZIkQWRVyOOl\nEjzXxfW5ue7FU6mTEXrihLciy5p/WAkG0q0orA/beLhcAqBXXLt+HfV6vS+KJg9hkCiKQzP9glew\nJhdaURSRZ4aYUz+7IQxDyKzfb0c1Ud9HrVaLe9m27sy4UmeTGmpCo6pT/wjHdemOhzHjKpUKNMPA\nAydObLm15N2E0ZW6CRBFEVqhEN+IJqs2dFw3jvPzGCundHLhNreVG59McBEysOcvgMb0a8xr7IR6\nvY4gilK3/9lsNg4PzS8s9JUj2JiM0FNbySRESUKGJSMdnhPpxevdorcfMubOViigruvi9Pvv46ET\nJ3pO3jY1As9mB2YPJSu8k+Axdm74U4XNGCJWV9KplwDXnapbFgRRRL4lfp9cJAW+40tB2lXmi59t\n29BUle44q1VEAI4++OAtD/l93jEy+jcJoihCLRTAG4mbhoEsa6hdq9XgOE6sn8JVOgVgEy8+RpLe\nxox/v4lETVWhShLcDh664zgIfJ82km7zkGuqiplt26BqGlZWV7G8sjJQh69eY7jxcXWdbukbDURh\nuGEgbqIMQ6d+B73i3fffx+5duzrr6zQNTQ1+EIYwWEPvftFTq0qWIwAQ70I3jcMS2QTti9M8z0ON\n9UjQmAiemNilxoVVhNAQUUqnKwCbFh4CumByWYmMacI0TbqbaDSwZ98+WlMyQl8YGf2bCElRoCQ6\n9SiKgkKhQOPTTCMFQOxxcSZC2I5Z0fKgRGB9VwmVp+3FDOULBdRqNboYtYwXhiFsx4Gsql2LhiRR\nxNTkJHLZLGq1Gubn57t2AotPAxtJ5n5DPTyubSW4+zfL5HNJ41Yvu5/Fdm5+Hutra7i/R2YJr+ng\n0haapvW1MHZSyUyDzIrgAt/flFPi90cYhlQ1tWXx4x641WhAEEVkM5mYWZQmn83lmtsldJPvD8MQ\ntXodDduGxJ4bTdNAQKXNS2NjOHT4cE/nOEIzRkb/JkPRdcjMmwI22Cg5prfCk7w51r/TYW0GSac4\na5uHhhfQdAr/5Flv3zjBmxiLC8f1qlkiCgLGSiVMjI/D9zzM9RHn58fltQW9GilRkmAaBoIwjENh\nHT/Lw2MDIO6LO2Boxfd9/Pj0aTx08mRP3noURTGPnht8oPdFrd9ryaHrOkRJgm3bcSiHLxyEMWSA\nZk/fTQi76boeU5KTIZzkvOLq2jYgbDdBQIXoqrUaSBjCzGSQT+QzatUqFE3DkfvuG3XBGhAjo38L\noGUyEFs8Z1mWqUZKItZvGAZy+Twc20alVksP9ST0SNJe4x5TO++/lavPDb/tONS77CSr0AaZTAZT\n09OAKGJuYQGVAeL8Yh/0R13XoUgSHNuOG3B0xIBGf6vMnfc++ADbZ2YwNTnZ9b1RFNEEaBjGPYSB\n/pQtIwy26xGATWGe5MIRRVF8T4QsB9WwbchMY0pnc03z4HsJM/EQEB/bcRzaKyGfb6o6btg2bN/H\n7v37R9o6W8DI6N8iaPk8xJTCFMMwmrx+RZZhGAZIGNLEWL3e3uvv8kBxNkTIjD8BpW22Jl+5jDFX\ntxwEPM6vaRpWV1YGi/P3EZbIZLO0krnR6G7oBoz5t6tC7WW0hcVFLC4t4YH77+/pOLVaDWEU0aR/\nn3o8yXDZoJAkCbqu01aRLbH1IAggiSJs20aVsX1Mw0CmQ4K5F++egxAqrMdVNzOZDGWNiWJ8To7j\noFqvY/uuXdid0lJyhN4xMvq3CJzRI6QYVVmWkcvnYeg6ZfDYNhXNYkqJlVqtffK1Ry82YrTPbDZL\ni6wSD6PneQAvFkswhfoFj/Pn8/k4zt9Ozjlt1gKQKtCWeixJQsY04160HTFgiCdi1dTJnU8vcwuC\nAO+8+y4e6kEHhseuuURyp7aKrYjj9xgOfVXXNAiC0FQxHkUR3ERvXpUVeLXraoY+5+L7PiqVChzW\n9zeXzUJj/SI4XM/DerWKbTt3YnZ2dhTW2SJGRv8WQhRF6MUi0EYZUWfKiLphoGpZtEEGa/5t2zal\n1qV5/QlaZyfPShAEqJoG0zCwtrZG4/+EwGVN3WVJij20QXnPoiCgVCxigsk3XL9xA2WmytnzGD2+\nT9d1yJIEy7bb6+6z4p8YyQUg8XtSOyZOYHL5BZb0FnoMQX3w4YeYmpzEti5SC9zD55o0aQtE26Mx\nVthWG8g0xd4FIW62E0YRwihCuVymMsg8UZvJpN4bPAzVq8HnfP6aZdHCs2wWhmFs2lW5rovV9fWR\nwR8iRkb/FkMURRiFwoYcQQskScLExASyTKrZZgZNYX1Rq9zrb/ewi2JXr3bbtm1YYFo6nu/DDwIo\nqhovAk186gHj4RnTxMzMDHRNw9r6Oubm5jbXIGwRoihCN03a0IULySWvC/u96UolcwCJ39POMi5I\nSvxNEMXY+xeTiwHDysoKbty4gWMPPNBx7rw+AwCybTTlN51P8ly2auzjYdg4bMegqioIAKteR7Va\npd69qqJYLLbdtfTjJHBjX7csRFEEQ9Mop1+W437SHJ7vY6VcxtTMDA4dOjSQDPUImzEy+rcBoiTB\nLJVA2oRRRElCvlikXr6iAITA9/04RmqzWH8vwlRpmJmZweLCAoCNugCVHYeXwoecn82TwQOESGRJ\nwvTUFCbGxhCGIW7MzWFtfR1RG9peEr0eSZYkaKoKz/M2whLtkrt9zJ+fe1tjzK4HN/qiKCIIApx6\n5x2cOH68Y1w+CIK4j2u2D/0bYGvdu2ItJsbKIYnEP2GsHQLKzClXqxAFAaqqItvGu0fye+xBPqGa\nMPYmIy2oqprqXARhiNXVVUxOT2P28OFRAdYQMdor3SaIsgyzVIK1ukrDDy0UN01V4SgKwiBAPpdD\nEIZwHCfmTDuOQxtpcGpfqzHo8DCOj4+jXq/DZWPITDKi6ePcS+aefzIU0q5gqQ0ymQx0FlIql8uw\nLAsT4+NdPbfYG015jSS8dVXTaEUoU6FsS7HswzvmAmO9GmRCCN586y1sn5nBrh074mvWuqgHQUD7\nCQPI9VFpG1Mot+DhC0gwfFrCYV4QxPeUKIrQFIUmdsNwc3KfkJhz34uxd2ybhsoEoan5Of/bpgZD\nYYillRWMTU1h9vDhgVRFR2iPkad/GyHKMoyxMYTYHJsVRRGmaYIQAttxoDAKW4bFfiVRjKsVa9Vq\n+562KRRPURQxNTWFhcVF2hijiwFv8uaYlxiHgtCbDo0kipicmMDkxAQiQjC/sICV1dWeYv2tvi0P\nQcWFPiwJKghCHCNvcyJdj8URBkHswQOIz7MdPv7kE7iui+MsrMMrsZO1EL7vxw3ke5ZW4AvtAMae\nCAI18onrxdUsOTzfR6VWizV+MoZBQzmqCtf36W6HhXXiuD275p12a57nocrUPAkhtIdyPh87KPz6\ntCIiBMsrKyiOj2P28OHu/YNH6BsjT/82Q1YUmKUS7PV1EFamzqEqCgxdh82YDZIsQ1FVKKqKwPNg\nOw4cx2mSHTYMI35IY7Qa/ijCzMwM5ufn46KafsCXCALEBpYA8Y5FSByr9cE2TROarmN9fR21Wg2W\nbWNyfBxmDwVhvHCoaVfEDBBPNFZZQ/BcohK6CT0mY0PW1UxIXrs2n1tcWsL5CxfwwvPPb9oB8c+7\nnhdLbWSz2e7cf75T6KWxecJbbuL1t5kvAfPA2c5REkVkTJOGWkA9bQE0zCMmrkG3kBxhYUjbcWJu\nP/fsm8YgtNJZEMWm84sIwdLyMnKlEmYPH0Y+n+9+7iP0jZGnfwdAVlUYxWL8MCQTqbquQ2Qc6WSs\nWmaef6lYRI7p91SrVaysrKBcLiPolDQVRUxPT2NpeZlusQdkRHAT0OS1ca8yiqg0NPuZVFeURBHj\nY2OYmpqCCMppX1pZSVV7JGByE1yvRRTbJjdlRYFpGPBZSGErCIJgc8OQFDQaDbxx6hQee+SR1IWL\nEEJ7KDQakGUZxUKht5BRklXEf/IYPJp3OzweH8+xJVSIxBhuwgMHIciYJvXAEzRJUZLoe31/I+aO\nzQs4RxiGaNg2HZcl1JOefUwrTexaklIRgiAgiiIsr6wgk8vh4OxsX/LTI/SHkad/h0DWNBjFIuxK\nJX6YRVGExIq1LMuC7/sbDArmCcqqipyqwjBNuK6LRqMBq16HVa9DY60N02L+hmnC0DRUazWUtvCA\nJeUU0sxi/PdEDD5in+O9eCuVCqq1GhqWhfGJCeRYdWicZKQH2hg0YfhbdWZ0XUcQBLRiVJY373r4\nWB28/SiKaItEZpzjnEbK+1594w3MHjqE6RThryiKUGPFTLquNy0KPInf5KHzc0mE0yLWJCSeR+K6\ntkXKouh5HvXs2XllWE1Au3oJQghIEECR5bbKl77vw/W8eLFWZBmGqkJJ5IgIaPI5zhElzoPvSvwg\nwMrqKsxsFgdmZzHeozDdCINhZPTvIMi6DlOW4ZTLiIIg3gKrigJHkmA3GlAKBfrmFiMkKwpkRUHG\nNOF6HizG87cbDcrAyGaRMc1Yox8Aprdtw9rqKvayCsd2Ylg9Ickb78IhT1ZqCgCKhQIMXcfa+joW\nFxdRNQyMj41RjzhRlRmfd9L4MS8xiWwmgwprxJ1PSFz3Cm7EYk+/zTV59733aJu+lAYenu9TmWE2\nHyWRtE4ugq2GH4nX+Pn1g1bP3nNdKuLHjH23AjDulQeeR52KxK6EEAI/COB7Xlx0J4oiDF2Hoqqb\nQlZNEspsXP5dEUGAEEVoMKbQ2MQE9h04MDL4twAjo3+HQWLJXa9Wg89DOgIVaasyXRI9GUZo3dKL\nIjRdh6brCIMADctCrV7H2uoqKuUyMtksMpkMZEXB1NQU3j19Ojb2/F9Eetd7aUWTkUpu59PfHM9f\n0zRMT0+jVq1ivVyGbdvIZrMo5PPN/PAWL5GAaeSQDZ0hAZQxVKlWUa3VUMjn6UKUMKYxbTThWfNd\nhc+NfkIeOOm5CgAuXb6M+YUF/OTzz2/E1NkxGo4D23EgsoStLElN84tPnx0j5CGaISEiJPbsI0Jp\np1nThNqJfkpPNL4GXhDE1z1k4na+58XXTVNVqJrWNlTVlAsBH57E1zsKQ1TKZXhhiB27d2Pf/v0j\nls4twsjo34EQRRF6oQBRUeDWalQ5UZKgqmosRiUmvdCkh5h4yCRZRq5QQC6fh23bqNVqlO1Tr9Ok\nLw8J2TbdBaCDgR4AyZh/HLZIGF4RaFIEFQWBitAZBirlMmrVKur1OrK53KZYeBxWYtTB5ELF8wYZ\n00Tdsmg/WNPcZHRbPetY+Mv36QIoijG7KLlrWS+X8e577+G5L3+ZGkb2WhSGsFhfWE1VkWHdvtIQ\nh3PYeRNRTNWT33xR00NTBJQd5HkefN8HAZX3yOh6Wz2l+HtpGS8MAprTkGVUq9VYi0dRFBiK0hS+\naZ1DO+E8Qkh8foHvY2V1FXomg0N792Lnzp2jzle3ECOjfwdDNU3Iqgq7XAbxfei6Dpcpchby+Y1Q\nTYpX1QRBoDF804TveVTJ0LZRDwLksllcvnwZB/bvj3v1bnqge2S8dEIymZesAk2OGzGPV5YkjI+P\nU0XQahXVSgX1ahW5fB6FFuPPO3ClnbmmqnF9gyzLPQuZpWnoc3ieh1ffeAPHjx1DkYfaQHn9daah\nkzGMtsVEcUKzxfPnu6zk4tIUw29joIMg2PDCQY2uqmnQVLVrwjiNH+/7PqpMI1+WZUBVYRpGfG+0\nQ9oOL3nOURRBAGA1GjScMzmJffv3j8I5twEjo3+HQ0yEe9BoIJvNol6vo1ytIp/P9+0hKaqKsfFx\nBL6PWrWKsfFxXL16NS6zV2SZbttlmT7oKQa/nZHthuRnNhk4bDZCiqLExr9SqaBSqaBWryOXy6GQ\nz1OJBHb+ISGQUhY9k4nW1RsNSJLUHKNucx5hFEFPctMT4Z9Tb7+N6clJ7NuzJ34/z6FAEJBro6ET\n78LSEtMMoig2M5iSn0lcmzAM4fo+fKaRI4DSe/n31jpykjnTusj6vo8gCOD7fixTzdsSFvL5ziGX\nFq592nH53MMoQqVSgRcE2LFnDw4cODCqsr1NGBn9zwGS4R5Uq4iiCJZlwarXkclkIKR55xxtmCey\noqA0Noa9hGDuxg14rgtFUeC6LlzXhShJUGQZkizTBYD97IW33g2tjB8RSKVrciiKgomJibjgp1ou\n091OLhcbDhJFVMiuJYzEE6k8rJXP5Zoke9OQlF9IXtf3z5yBbdt4/NFH4/fZtg2HXa8cayLfMhiN\n+XfbjTGIAi2oak2Eh4TAd124vt/EltF1PebXtwNPnBPQnYHPjHwsHS0I8SIfsp2RpqrQ2hjlrnz9\nxLnzmoA4nHPo0Cicc5sxMvqfI/Bwj1guU/53owHRtqn+PhDHoZvQ+oAmFwFBgKHr2LdvH+bm5/HY\no4/CY8yMwPfh+T6EIIAoCHGhEjcOsiw3s1sIafKKe4EgCJvL8AWBSgSkjKOqamz8K5UK7TAGFr/P\nZOjNnEwcYiNZmstmUa3XUavVaEFaF6MjseQrH++jjz/G3NwcnnvmGciShCAMYTUatHOUqsJsid/H\nZ9TL9UgwniCKEFhdA/fEPc+Dz1poSqxzmKKqqTubOK8hbBRB+UGAgAnrxddElinrhi3sfAGuVCoI\nowiarqeycbot9E3MJFDhtnKthtLExCicc4dgZPQ/ZxBlGebYGAQWCnBcl2qlsF6qhPG6BUFINzhJ\nxgohUFQV22ZmcPHiRdQtC4V8Ptbx93yfbvvDkNJHBQEh42cDdAciK0qsdxNXb/axAAigYYamuXbZ\nTaiqisnJSXieh7W1NayXywiCAOMTEyjk8zQk1cLWkWW5yfDn2fvSTJgoik0Sv+cvXMDFixfx/DPP\nQFNV2LaNBmPnZEwz7hwF9BH6SiRy+Wd47NtnOjiO48SLmqHrUBUlNdfAx4miCFEYImDfVxAETd2/\nVE2jC7YkpQq3+WxhkEQxDlFtqhFol5hm55Qca21tDaEgYPvu3aNwzh2EkdH/HEIURWTGxiDKMlYW\nFuLG1GoiDp2kYW56UBNGlXvse/fuxfnz5/HQyZMAqJGUZRlILgCet4lhEvh+UxMTkcXN+SIgsX8k\nitIXAUYRTZ1f2t8S71VVFdPT0xBFEZ7nYX19HdVqFdlsFrlsdoOPzsIMCjP89YThT0NSWfPy5cv4\n6OOP8RPPPgtFVVFh4TVNVWHo+kYBF9DEHkoDl9ngMX0CxMaZ/+P005BQITmN7ao2XbMwRBhF9DPM\nyCc7XvGQjc76MfTS8tFxHIRBAFmWaeFW4nvoFD5Mnq/v+yhXKqjX68gVCpg9fBjbtm0bhXPuIIyM\n/ucYRj6PKUnCwtWraNTrEFt02WPjz2PYaeEAUYQiy5jetg2vvfoq7Hvv3dQYnS8ARNdjznbg+5SR\nIQiQ2DF5qIbvBrh3KDINeoktMJIk0bg69+Tb5B3QZs5NMXuBVvbmmdZOtVZDpVxGtVyGyiqSs9ks\n1RsRBCiyTKmcjQaqtVr8OQCxVDVP9l6fm8PpDz7AM089BQCo1Wqxxo+qqjGnvZux5/MVBAEBM/I+\nM/J8EeWhM1XToMgyrdgNw42FgXnxfhAgYkqrHJIoQmIS0yK/xn2E2YCNWD9Ad5Md9f1bQ3JgHbCY\nvEMYhtizfz9m77lnpIF/B2Jk9D/n0DIZbNu7FwtXrmwkKlt7ukZR7F0KwCbv32B6NTt37cKFCxdw\n9OjRVM+aGyZZlkEIaTZeYYiQG3lJoknfhHcXsbaGSb0VSZJARBEkDCGykANfILouAokwlSCKiECZ\nOrph0Hg74+evrqxgbXUVmUyGdmfSdaiahgwofbBWryObzUIAEPBQiKJgYWkJb7/zDh5/5BEIggDP\n86CxrmM8nBIXdbVOkb0WRVGTJ+8HQdNCKMsyZH6t2Pt5eIfnViJm+Pm4Es+pJHZTg2rsJ71313Xh\nuS4kWUamZdFPFp5FQFPYLAhDVCqVDZ1808T9x45hIkWWYoQ7AyOj/wWAZhjYtncv5pnhz3EVx5Qk\nLsFGNSqPfUssDLBzxw6ceustHDlyJI7pxrH5lli9IAiU4pl4Hw8z8JhymAj7cIXQpIFKxq836fmz\nBUAQhI0Fgf0UWOcqvqiIzGDy85UlCYV8HoV8Ho7rUi0iy0K9XoesKMhmMshlszB1HZZto2FZyGQy\nCFmuolIu44033sCDx45RT1UQkGPdnXgMPnlNOf00ZEY7CEMEvo8gDONmLALorkpK5AtClmDdFN5i\nhUyiKELRtJhqKrZ08eobPNzXyvVnuaGIEOiJ77RpB9ayqwnCENVKhbY7ZLUJpbExHDh8GOZIDvmO\nhtCnTvfWKnRGuKlwXRcLly8j8H2qu5+kWLYDNwRRhEqthjNnzmBsbAyzhw51+Vj35ul8NxAmEovJ\ncIbEvNwg4c3yAiRewcmNZmsugc9dFEW6aADIMI89GcridNZY7dKy4DOtfN0woMoyIkFARtcRhCH+\n9u/+Drqq4sjhw5iYmIDOCp2ixHy4Yedx9eQ8+TkkjbyUiKlzlhVvucgXAYH9ztsxBqyqdsvgrKAO\nIbR6o4H19XUoqooCCxG2+27DMKRhHFaIxjtgZTIZ7D14EOooWXs70ZNPMPL0v0DQNA0z+/Zh6fp1\nWLUaNKav39HwJwp/NFXFzp078f777+PAgQMdk3+p1aJ8PCB1NwDQwqeYWRIEtC4gRQY69vKZIRRa\njtMq6+C3es0pDCIRVMs+CEPYjQYq6+uxARe4fDVoO0lVVWEzDR3SEkNPnjcPR/GktZxIjnMDLiXO\nI85ldECYtsD1iLZjt/l7yDqOEUKgaxqVVW4txiO0U1uD7YpC5tnn8nna8yGTwe4DB0ZBQkWbAAAR\n1UlEQVRNyz8nGH1LXzCoqood+/ZhdXkZ1eVl+L7f3LSjg8FRVRVjpRJyuRzOnDlDm3sL6R2Okmjl\n2Te9vyU3IDHDl2Qa+TyJGEWx+BiXZIiiaMPopnmfQrO6ZzJ8FOv6J3jjXHveMAxoug7XcWDbNhYX\nFzHHmsVnmbSzLMtQWQ5DTIRmJEnaaI5+E1gpm0JIiXMF2YISaspxqtUqapaFrGnC0PWmhumNRgON\nRoOGfthCpOs6CoUCbWQuSZjesQPjk5NDmc8ItwYjo/8FhCAImJiagpnNYuXGDVRrNdqxKiEOlizN\nT8bpM5kM7r/vPrz2+uuYmprC9PQ0NaYbg/cXV+4SAuIJzYgQCLJMb8ikF5/42bQY8JAPWwyCIIAA\nxPHyZIgn1udpMZa8UUrDtrFeLmPb9DQWFhbiuLfrOAgkCYau08pXxqyJrx8SSc6+LslGYpQkDDkf\nM61xfCyEN6DBj+PxwkY3robjoFKtQldV5PN52meYyXHbLOkuCULckU03jJhymsnlsGPPnhE753OI\nUUz/C44wDLG8sACrXIamKDTc0/KeVm2WMIpw+coVnPngA/zECy80Pdi8uQsSnxmG3+kHQed+uS27\niWSMOggC1Gs1ZHM5SrdMM4yJ9/u8oUgY4vr167h89SqOHT2KbC4HRVHQsG1EYQhZluF63gbriFE+\ndbYI6Loe0zuTBVZJQTUh8RqdRmdPPWIL2DCQvJqt6qlBEGBhcRGu5yGTydCGKK4LEAJRkuKmL5qu\nN+2eRFHE9K5dGBtV1t6J6OlRHBn9uwCEEFQqFZSXlkBawz2t7wU1Wp7v493Tp+E0GnjiiSc6epjc\niA1KHQQQFxoN4slGUYRqpQKT8ec3ge0GOFOIa85cvHQJqysrePzxx+Ez/XhN0+D7PizLinc+sizD\ncd04FOQHQbwIKYoSLwCaqsahn4GvQ0uRVT9ILjJpOyyeS/F8H/OLi3QHqGlQGUPINAwa9kpUGMdj\nE4JcqYQdO3dCHnn3dypGRn+EZjiOg5WlJXj1OnTWBKOTebJsGz/44Q+xZ9cuHJqdbdoN9LII8HBC\nL3dilKA89g1CUC6XqfHlHPNEaMj1PLi8WTeTjnjv9GmEUYRHH30UoiiiVq3CzGTiGoEwCFCv1ykd\nMaGcSUANoOe6sVQCXwQIC4PxqmTOp5dZVS0Xrmt/GoNdg6SRjxh11mMFdFxcjTOnoiiiFFbbRj6X\nw/j4OAzT7NhNS5JlzOzcicLYWF/zGuGWY2T0R9iMMAyxtrYGq1JB5HlQmXfbroJzeWUFr772Gk4+\n9P+3d3e/UZz3HsC/M7Mzs+9rr9cVDhhD4kAgjQSoFEI5J8QKEsqpDqp0pEpUrXKRf6GqxEWV20pR\nz0Vvz0WjSr2qVKwkqtJQIhIS0tAI0yjBRNREmEThhJfsi+d1d6YX8zzj2fXuYod35vuRUF7kNWvL\n/s7M7/k9v+cH0UHmyT7v3jvaYT9LMvwTF4Hk3yh3nspBYyskLjTx3WxCo16PDkaXh8EEQRT2rotQ\nHBWYzWbht9v44IMPUK1WsWPHDqiKEk3KdByUK5WuwA2DYHmomrib7ycQFwEZru1OJz6IRO5aTl4k\nNU2L5+jI2UWyM6ktvgfLX3Z3l1Jy7IH8OL/TQVuEfNz+Kj5OVZTlC49Yv7BsG6VSCWO3CHFV0zA2\nPo7a974HlZ05DwOGPg3m+z4ajQaWvv0WbceJatXiMb/X/IULuHz5Mnbs3BlNqBx2OIcMqd5NQInQ\nkwugXRcBRYnnziR73ntfO0ir2Yw2F2Wz8Bwn2l0bhl3zZ27cvIkPT5/Gk08+iSenp+PP22w2AUR9\n/rL0k2wPlYfSG2Ka5oovGYN/24IwjC8Acpxx70UhuUjdddER309ZNhv4PQnDaPObeJrIiI1wuq7H\nZbxOEKApjo80DANjY2MD1xa0TAbV8XGM1WrQhjwB0AOHoU+31ul0ohn1N26gbdvQRLdKsgwRAnjv\n1Cnkslls2rwZ+Xy+/0Eht6l3E1Z8xy86XXoXcAEx3kFcwDzXjebsaBoMEXzyArW4uIh/fvIJdu3c\niYmJia6/o1GvwzTN6FzhAXP9ZSlHE7N71lq3j39xen7fOkEAz/Pi1tJ+v2CD1krkjuRb9f63Ox20\nms3oNCxdx0il0vfCLcO+Nj7OO/uHE0OfVi8IgugM3evX4VlWdHCLGOerALAdByfffRejo6PYvHkz\ndFFKuVM945Ic4QwsH5/Yqy3KGb7Y7Str4Z1OB7VaLT6IHIoCy7Iwd+4cWq0Wfrh7N0ZGRro+l+/7\n0Tm8xSK0TKY79HueVjzPg2VZCGWfv1jwlE8FXd07wHKI9/kd63cRGHaQzHcRAnHpyhZPc4VCoWuh\nNkS0GD1aqzHsH34MfVo7Oa7g22vX4LZaUelA1ITDIMCZM2egZjJ4assWKKp6x+/65WTQ5H93ggAd\nUR7xPC9+ApC1cV3X0RGniZWKxbjv/+LFi7hw4QKmp6exZcuW+O48bpsMQ1i2Dc91URkZiWfSx/sC\nwuW5OrKXPggCWJYF3/ejjpd8fmi5K56Z39My2XsxCLE85fNOaLfbWLJtdMRhOPIJRU4HVRQFGV1H\ntVbDGMP+UcHQp9vjOA6Wmk1YjQY8245KEEGA8xcuwLYsbNu+HRldh5HJIF8s3lbLJsQCri/GM8h5\nPfHsHRG8mqatqFcDUZmk0Wggl8vBsiycPXsWhq5jx86dKPYbACbuwhv1OjKZDArFYlRTX2Xwer4P\nx7LQDgJkTRPZPvsfVuidV5T490FPNWsVhiEsx4HnOAiwvA5QFB1IiqqiWC5jpFpFsVy+409qdF8x\n9OnO6XQ6WKrXYTUacG0b8/PzuHr1KrZv3x7VlhUF+VwOhmEsb96SL04u4ibHJARBPCdehq2825ZH\nP8rpknJm/LBBb9evX8fCpUv4/6tX8cwzz2BycnLoInBc2ikUoMuhav1CXyy09gZkEEYzaVzHgaqq\nyOXzg1syh7xvYLmsJZ8q1ipEVH6yxcVZE4PsEIYolUrIF4uojI6iUq1yRs6ji6FPd0fb9+EtLeGf\nc3M4/9ln2LFjBzRNiw5OQTS4Tc9k4pq4/KHpbbWMJ1Em5tlomhadEzvk5zLZshiK7pevvvoKc2fP\nojo2hl27dg0cD5B8D0tLS2j7PsqVSlS6GXKnP+xi0263YVkWOmIXb6FQ6L64DfxKlr+OfuOVezt0\nkqMakmsCXmKHsSYOtLddF5lMBo9t2IDq+DhyfbqO6JHD0Ke77/ynn+Lk8ePY/tRT2LhxY3QQt+9D\nURSYYpdqMqSStWxlwMYt2bN/q9JDEAS4cuUKFhYW4Loutm3bhkKhgMrISP/XJoI0FF07GV1HQQxY\nu1V5Z1jwh2EI13Xh2Ha0OGoYMAxjVXfVgTzkZi0SYS83nRm6jnYQQBO1+vWTk8Pba+lRs6rQ58GV\ndFu2Pf00/udnP8NNy8Lrf/kLLl26FNXbNQ2ObaPRaMBx3fgOVUXUgqgO2amrAENbIhuNBs6dO4c3\n33wTly9fxvT0NA4ePIh169ZFd+yyVCQC+n9/9ztMbd2KxStX4s8hxzAP24na66N//ANPPP00/vDH\nP658z4oC0zRRrlSQzWajhdRWC416PTrgfEi9fm23XdFGsEajAcuyAACGrkdTP3Ud4489hie2bsXk\n1BQDn/picY9uW61Ww+Gf/AT1eh2n338fb/71r3hi40Y88fjj0DKZuMc9o+vLpZ9b6L2rbnc6uLK4\niEuXLsGybUxNTeH5mRkUEmWLjCgpdYIAutggltw4FbdSIqp/Hz9xAp98+ik+m5/H+fl5tJaWcPjH\nP8Zvf/Ob7vcSvRg/2LUL1WoVx995Bz8/cmTFpiw5qTSXy8W7f11R83dFj3/WNJFJXGhWO3Kh027D\nc114vo8wCOIjKRGG0PN5jI6NYWR09K600dKjhaFPd0ylUsGhF1/Efx44gI/+/ne8ffIkNqxbhw3r\n18MwjGg3qjiSMGua0eapPnf0IQDX89BsNNBqtfDNtWv48ssvUavVsHXr1viOvpciRg74noes7KHH\nynUEeaLX//3+95j//HMU8nlMrFuHiwsL8ecJEx8bj2hWVcw89xxmX38djUYD5XJ54PdCURQYug5D\n1xEEQXQGreehtbQUzf8Ri9LyOEhNVVeMtQjFxjPHtuOZPJqYHQRFQa5YRHV8HJWREWSzWYY9rQpD\nn+64fD6PA88/jx/t34+PP/4YF//1LzTrdbRaLWRNE6VCATkxo72Yz0PLZGDbNmzbRrPVQqvVggKg\nVCwiVyigXCrh4AsvDJx9k6QbBmzbjuvc/bp3XMcBAPz66FGsn5jApqkpfPjRR/jpL34Rf0zv04F0\ncGYGf/rzn/Hu++/jvw4dWlXQqqradffvuW48owdYXudQVDVa+BYXJc/zACU6wziXzyOXy0Uz/Q0D\nxXIZpVJpVd8ToiSGPt01uq5j79692Lt3LwCxeNpo4ObNm7h27Rq+uXoVi998EwV8Po9iqYSJiQlU\nRkbi06sADD41qw9ThL7neTCzWaCnfBKIBVfDNLH/2WfX/DXt37cP2WwWb584gf9+8UV0+rRyDiLv\n/nVdRyAGo8mJmK7rwvc8QFWRMQzki0Wsq1RQLpdhmmZ8BKP8J9F3xdCne0ZRFFQqFVQqFWzatCn+\n/21xVq7cDOY5DhqtFhAEyIhFYS2TiVo8xQjjgYvA4qAT1/f7zoX3XBcA4vLPWuVyOex/9lmcfO89\neL4fBfiA4O83iC0IQ/i+H0/kVFQVZi6H8tgYiuVyPN7hbsw2IgIY+vQAkJMhC4UCqtVqfOdr2zas\nZhNtz4NrWXEHjOzrz4gLAZAowyjRYeyeZcHz/a7unCAI4DhOdI7Adx2YBuCFmRkcf+cdfHjmDP5j\n3754dHIQBMshL3rv5cHrcocxVBW6YSBbKqFYLsezcEzTZE2e7gmGPj1QZOujaZool8vo1GrxnbHv\n+2g1GmjduBHPyVdVNdrUJTqCNFWNa+OtVgvlUinuAmo2myiXyzAMIx5pLJ8ckpujVgxK6wnj5597\nDqqq4u2//Q379uyJR0J3xJiKthifHIq9BqqmoVKtolytwhAjJHRxsArRvcafOnqgybt6uWBZrVYR\nbNwYXwRkWajj+2iLefVBuw3NMNCo12E7DpaWlgAAjutC07SoxCMPZBGlItlVJDttkgeRyMVVefEw\nDQPPfP/7OH7iBH71y19Gu4l1HaamQROBbpomjGw2DnnW4elBwdCnh46qqvHTQHKYWiDGK8s/tm1H\nxyiKjxlfvx7lWi2e2y/HOIRhCEWUgRRVRSafj4bHyZZKVYUqxkTI/njP9zFarWLzli3xhel2z8cl\nuhcY+vTIkKUeuQhaKBRQq9UwNjYGANgwOYnJqan448PEHfwXi4vRa0olPD49HffQ96uzLyws4Pz5\n8zh69Gg8woHoYcHQp9RKhrosv8RD34aYnZ0FABw+fPjuvkGiu4DPokRrNDs7i4mJCezevft+vxWi\nNeOdPqXWsWPHcOzYMQDA119/DQA4ffo0XnrpJQDRTKFXX3216zU3btzAqVOn8PLLL7PFkh5KDH1K\nrbm5Obz22mtd/29hYQELYgbP1NTUitB/44030Ol0WNqhhxbLO5Rar7zyStdibu+fL774YsVrZmdn\nUSwWMTMzc+/fMNEdwNAnWiXHcfDWW2/h0KFDfUc8ED0MGPpEq3Tu3DlMT0/jyJEj9/utEH1nrOkT\nrdKePXswNzd3v98G0W1h6NMj78CBAwCAkZGR+/tGiB4APBidiOjRwIPRiYioG0OfiChFGPpERCnC\n0CciShGGPhFRijD0iYhShKFPRJQiDH0iohRh6BMRpQhDn4goRRj6REQpwtAnIkoRhj4RUYow9ImI\nUoShT0SUIgx9IqIUYegTEaUIQ5+IKEUY+kREKcLQJyJKEYY+EVGKMPSJiFKEoU9ElCIMfSKiFGHo\nExGlCEOfiChFGPpERCnC0CciShGGPhFRijD0iYhShKFPRJQiDH0iohRh6BMRpQhDn4goRTJr/Hjl\nrrwLIiK6J3inT0SUIgx9IqIUYegTEaUIQ5+IKEUY+kREKcLQJyJKEYY+EVGKMPSJiFKEoU9ElCIM\nfSKiFPk3ut5ft8f8KhsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAF2CAYAAAB6XrNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvUmMJNd5NXpinnKsrB6qms1uNmf6mRopkaI8yIZkL/Q/7b0wDMMrGxCstRe2Fwa88cIG7K0WXr1/Y8swIIiAJcEaKYkWSVHm0M1mTzUPmRnzeO9bxL1RkVmZlZlV1SS7+h6gUFWZGRE3IiPO/e43nE+ilEJAQEBA4OxA/qgHICAgICBwuhDELiAgIHDGIIhdQEBA4IxBELuAgIDAGYMgdgEBAYEzBkHsAgICAmcM6oz3RS6kgICAwMcT0rQ3hMUuICAgcMYgiF1AQEDgjEEQu4CAgMAZgyB2AQEBgTMGQewCAgICZwyC2AUEBATOGASxCwgICJwxCGIXEBAQOGMQxC4gICBwxiCIXUBAQOCMQRC7gICAwBmDIHYBAQGBMwZB7AICAgJnDILYBQQEBM4YBLELnDn8zd/8DSRJwq1bt060nx/84AeQJAn//M//fDoDExD4kCCIXeChwr179/Cnf/qnWF1dhWEYuHr1Kv7yL/8S/X7/0GdffvllnDt3Dt/61rc+gpEKCBwfgtgFHhq8//77+MxnPoNvfvOb+NznPodvfOMbuHbtGv7xH/8RL730Evb29kY+L8syvvrVr+L73/8+hsPhRzRqAYHFIYhd4KHBn//5n2N7exv/9E//hH//93/H3//93+O73/0uvvGNb+Ddd9/FX/3VXx3a5mtf+xqyLMO3v/3tj2DEAgLHgyB2gYcCN2/exCuvvIKrV6/iL/7iL0be+9u//Vs4joN//dd/RRAEI+99+ctfhmVZwh0j8EBBELvAQ4Hvfve7AICvfOUrkOXR277ZbOLll19GGIb46U9/OvKebdv48pe/jG9/+9vIsuxDG6+AwEkgiF3gocC7774LAHjqqacmvv/kk08CAN57771D733ta1/DcDjE97///fs2PgGB04QgdoGHAjz42W63J77PXx8MBofe++pXvwpZloU7RuCBgSB2AQEAlFIAgCRJh947f/48XnzxRfzHf/zHhz0sAYFjQRC7wEMBbpFPS1t0XXfkc5Peb7Va92dwAgKnDEHsAg8Fnn76aQCTfegAcP36dQCTffA3b97EW2+9ha997Wv3b4ACAqcIQewCDwW+9KUvAQBeeeUVEEJG3vM8Dz/60Y9gWRZefPHFQ9ty37ogdoEHBYLYBR4KPP744/jKV76CW7duHdJ++eu//msEQYA//uM/huM4h7b91re+hZWVFbzwwgsf1nAFBE4E9aMegIDAh4V/+Zd/wRe+8AV8/etfx3/913/h2Wefxauvvorvfe97eOqpp/B3f/d3h7bZ39/HD3/4Q/zZn/3ZxMCqgMDHEcJiF3ho8Pjjj+MXv/gF/uRP/gSvvvoq/uEf/gHvv/8+vv71r+MnP/kJer3eoW3+8z//E0VRCDeMwAMFYbELPFS4fPkyvvnNb879+W9961toNBr4vd/7vfs4KgGB04Ww2AUEpiCOY3znO9/BH/7hH8IwjI96OAICc0MQu4DAFLzxxht44okn8Ed/9Ecf9VAEBBaCcMUICEzB5z//ebz++usf9TAEBBaGIHaBM4ff/d3fBQB0Op2PdiACAh8RJK6RMQVHvikg8KBivEhpXMo3DEPEcQxZlmEYBizL+jCHJyAwD6bm3wqLXeCBBCEEtChACQElpPy//lMUlbAXKAWl9MBKqZF6XhQH+ensdxhFCMIQiiyDorRuup0OTMuCrCiAJEGWZciqWv5mfwsIfFwgLHaBjy0IISB5DhQFCPuhRQGS55h03/LXCCEVkVNKS2IvPzD6OkpilyUJkCRIAKIkQRAEMA0DrWYTADAYDlFQil6nA0VRJg9WkiDJMhRVhaxpUBQFqqZB0bRyMhAQOH1MtdgFsQt8ZKCUoigK5HmOLEmqnyLPIQNQZBmqokCWZUiShIKQkuApLUm//sNeK4oCFAChdPJdz0lekiBRioLS0mKnFKQoMPR9aKqKhuNUlnye53B9H4qioNNqQWYkLssyZG69y3L5GlD9TylFGEXwfR+e74MAaHU6WFpextLyMkzT/JCutMAZhSB2gY8ehBAEQYAoikoCT9PKCqfMygaAghBkWYY8z5EzMucWtcbcH7quQ1UUSIxYJUk6IFxJKkmZbcMJWmL/g70vAcgJKV+jFK7nIU4SdNttyIpSjkeSQAhBGIYIowitVgsSGyMIKScbSuF5HsIwRBAE8IOg9NFHEQzDgOM4aDYaUFQVSRQhDMOK6C3HgdNqod1q4dqTT+Kxxx4T0gUC80IQu8BHh6Io4A6H8AcDFFlWFU9QQkBqf48QWo2EQQgK5kYpigIFIVAkCbquwzZNGIZxbDLMCYHMxrjX78MyTTQbjep9inJCyPMc+4MBGo4DmwVS0zTF7du3cePGDUCS0Gq34dg2HMeBZVllUZMklauI2nMmSRJkRQEpCiRxjCxNEcUxbt+7h4IQfPIzn8FvfuIT090+AgIlBLELfLgghCANQ7iDAdzBAFmeQ5VlqJoG1O45RVFKfzT/rarla8wK52ROcUD+hBBEcYwwjkHyHJIswzJNmKYJdRIZMlfLJHBi59Z6r9uFoijVjV+fMPb6/fI1SvH+zZtYX1/H6soKrl27ht7SUhV8BaUgNb8+gGpC4q4n/ndRFNX+ZUXBoN/H7Vu3EEYRnnrmGfzmJz4Bp9WCIoKzAochiF3g/oMQgiJJ4O7vY39/H2EYIstzmKYJU9ehqio0TYPGf2vaoTRDoCRwTorjaYnjSJi1myQJKABN00orXtfnsuJzlkFTt9YpXy3UP5fnuH7jBt7/4AMoKAXFrly5MlFqgFKKvCiQ5TmyNEXKAr4SUGXZ1M81z3PkRVH+5DkoIfCDANtbW/A8D48+8gieee45XFhdhdNqiWCsAIcgdoH7hzQMEfo+Qt+H57rwgwCSJKHhOGg2mzANA5qmTbama6DM3UJqxE5r7wHlnUxZwLN+cxJCEEYRojguXTWyDMe2YdUDlGwfFAdPRM62C8KwstbLA5VWfpIkeOftt3H3zh10ez30lpdx5dFH4VhW6X/nhMyDwHk+YoUDqFYjlFnykyac+msFmxSSJMFgMMDa2hr6/T6eePJJ9Ho9NNttLPV66PR6UFnMQeChhCB2gdMDpRRRFCH2fUSehzzLAABxkqAoCtiWhXO93kI+Yp7VcojM+f3JiJyyz3AirJM03yZJUwRRhCzLoGsaWs1mRayHLHFC0B8MIEkSuvVKVUpx9949vPnGG3jk8mU89dRTsC0Lm9vbAADLNEsSZysKCWU2jKqq5cqE/VZZLvz49SNHP3ejY8xz3LlzB7984w1cvXoVjWYToBSKpsFpNNDqdtFdWkKj0RB++YcLgtgFTgbKrFffdRF7HoosgwRA13XomoY4SZDleeXOmGSV5nmOPM+R5jkK5n4gzH8uSxIkRYEqy1BkuSwCqqUSHmWVjrg2auQdRhG8IACAkaBn/TNxmqI/HJbvmyYgSYjDEP/z+usIgwCf/sxn0Gm3EScJ4iTB0HVRFAWWOh2omlYRuaqq5binXDs6waV06Nmb4ToaDAb4yY9/jCtXruDylSuI+Aolz0EVBXajgeXz57G0tCRSKR8OCGIXOB7yPIfv+wg8D3kUQQFg6DoMw4Ch6yCEYHdvD2GSwNR1aJpWuSMq10SeI+OWNkshBFC5XbjvGUDlAiE1y51b6FVaI0tp5MFW0zBgGQZM0xypIqW13PQ0TaGpamW98ydi6PsIowi9pSUokoRbt2/jrbfewrXHHsOVq1eRsrRLoEy1JJQiy3OcX16uJptqouBBWpYjT8eCqQAOXq8VSo08g3X/PqWQxiaLOAzxo5/8BJ12G5/81KcgAciyDFEcw/V9xFkGzTDQ7fWwvLyMTqcj0ifPLgSxC8wPQgiiKELg+0h8H7QoYGgaLBaUTLIMQRBg6HnY3tlBTggcy4LGMjcklieucNcE8zErLONFVdUq11xRlKqwiDDLtqAURZ5XhUdcMoDLBhBGlIQQZHle5rmjvFk1VS2DtWziMSwLmqIgjmN4QQBKSJmOaJqQJQlbe3tQZBmaquJ/XnsNSZbhuWefhWEYoCiLpEzLgmkYUGQZaZZh6LrotFrQdL0833muad2tNOF6z3LN8GsKlJPtqz/9KQpK8eLnP19dd6AMJrueB8/3QRUFTrOJ5XPn0Ov1hKb82YMgdoHZSNMUQRAg9H0USQIVpS9ZkWVEcYwgDBGEITJWUJSkKUxdR7fTgaHrkJlvmacvTgNhhT3TcMiKnYEsy5AkCZIsQ5okSNMUWY3sFVkus3J0vZIjsCwLtmVhfzDA9tYW3r95E49evoxHHn20/DzL5NEZedfHvru/X+ar2/bcY6ziA1NQxRhm7YdSyCze8OYbb2BrZwe/89u/DWPCOIMgQN91keQ5dMtCd2kJ58+fR6vVmnvcAh9rCGIXmI40TeF5HuIgAE1TqLIMwog7DEMkrKhIliTYtg3TMJBkGVRVRafdnupbngTC8tIngeetjxAcrxpl/1KU7gwAVVriJFdGnueI0xRpmiJl/vE0TavzCqIInu9jY3MTDcfBc089hVanA0PToLNUyREXUW0M+4MBVFVFq1bIxGMCiqJAVhSorAhJqrlrOLFP2idQVrMuMqEBZTMQPwjwhZdeqgi/nk8vAYizDMPBAG4QQLcsLJ8/j4sXLwrFygcfgtgFDiNJEvi+jziOEbkuCqbTEqdp5cs2DQO2ZcFi7ghZluH5PqI4RqvROGTRjoOnJgLlzZQXxZGui0Wt9fo2de2YSlem5ropigJ5miIIQ2zv7uLGzZso8hxPPvkknEajCrBapglJlqt4wPh4PN9HkeeH9N7JBGKWWTBYVpQqGMz/V2qaMhw5CybX0zqPQlEU+P73v49Hr1zB448/Xln049tJbN97/T6CJEGj2UTv3Dl0u10RaH1wIYhd4ABJkpQWehwj8DxErgtCCGRJKgORzE1hmeahbJQkSTD0PFimecgVMalac8QiZcHMozDRHcEJFkCeZchYEU/dN1/3X1NKAVmGwi1oJtBFigJxHGNvbw/vvvsunn72Wbz+y1/ipZdeQspSNrnl7TQaaDoOHNuuLGF+Xn4QIIwiLC8tlRNA7fwLlulTVZayCaZghUjjz5uEsuKUV9sCgMR8/jJLleQrh2lk7/s+vve97+GLX/wi2mOTTaWNU3stjCIMhkNA19Fqt9FqtdBoNEaDzwIPAoQeu0Dpix4Oh4iY4mDoulAA6IqC1tISWkyoatrdQooCnu9DVRRYljVCdmCW4lE4ysdc7qJ0V9TdF5UYGEuP5AQuMctXURTojLwV5vpQahk0AJBmGcIoQpHn2Nndxa0PPsDLX/hCma6oKLhw/jyCMARQShyELHDsuS4gy2WhVaOBhm1XEgg8F73+AEkoi5HA4gtVIVXtd5Zl5QqiRv58hZFl2Uj8gefD82pdiZ8Tzyxivx3HwfPPP4+f/fzn+NKXvgS1FkwdKfSiFLIsw7Es6JqGoechcF3krBhK13W0220RZD0DEMT+EIAy9cF+v4/hcIg0jqFJElqmWQpXWdbM6kVKCIa+D0ppqVQ4/vlZpM5TG2tEV252QFA8y4Vb5ZUvXpKgKgpM06yIrrKijzhmnufwwxAF01xfW1vDxuYmvvSlL4ECSJMEACpL1Q8CFITg3PIyZEmCH4aIuGKj55Ukb9tlxgz3mTOFSW6JHzq3sd+appWrEk6+tfTHSgcnSZBlWZXGGMUxgMNEz78zSZJw5dFHsbW9jTffeAOf/sxnJl8QSaqyb2RVRbfTgR8ESIIAIaWgjoO9vT3Yto1WqyUqWh9gCGI/40iSBJubm9jd3UWeJLA0DUu2jXa7XQbPjnLF1XLOozhGnmVoNBojFuE84Poo9YYWXPUwYySeZxlyJoULSYKqqrAMA6qiQNO0A8ndGkb+r5FjXhQIggBZnkOWZdiWhV//+tcIfB9f+t3fhaHrGAyH1X4BwDAMKIqCoefBdV00m020Gg00Gw0QQhAz2YEgDOF6HvwwhB8EONfrodVsHpBgLaA70Uc+7v8eC9JySWJdVQHbLq38PJ+L6D/9qU/hu//1X1i7exeXLl+e8aWUR+TWu+/7SMMQhuOU5xvHB/eIwAMHQexnFIQQ3Lt3DxsbG8iTBE3DwPleD512+8BqnCN3GgDSPEcYRVV++DwYsVzLFyphrJyRVGU9MkvWYHnvSi2bpNp+fP+18dV1X6IoQpIkkJhWjKqqePXVVyHLMn7rt38bqqKUfm9CDgUNeSMN1/PgeR4ajQZ0TSt1ZxwHlm1jmckpbGxtIU0SbG5vY3t3F91OB912u5r06mPjExu/Dkdd6+p8an59XdOga1p1XY8i+t94/nm89vOfo93tVvLDdMx1M3JcWYamaWg2m2VK63CIyPfRaLVQFAVM00TnqM5RAh9LCGI/g9jY2MAHH3wAkiRo2jbOra6i1WxWpDPu6+aZFNPg+z4kSToyb7suzFVvbpHnORKWdpikKYCSQDVdr6xNLpNLWP/RmeE79hn+OS4AFicJJAA2E/+K0xT//YMfYKnbxSc/+cnKfZOxQKnGyPJgt2Wwtc3I3fd92JZVTQCyJIFKEmzHQa/XK7s7SRIGwyH29vex1++j226j2+lAr60GqrGyoC6ZkRlUxRGmnLumqlOJXtd1rF66hJ/97Gd44YUXKgG2+mRRHaPmIlIVBTYrMhu6Lvx+H3mSIJRlRFGEbrcLx3FmfTMCHxMIYj9DyPMc77zzDgY7O3B0HSuPPopOuz2ihFjv+VnvKDQNSZoiz3M0Jui/cEuwTuQSmBZ7miJOkiq9UWcyBCrL864fn08Gs4KvHPVPZVkGLwhACIHFMnpkRYHnefjRj36Eq1ev4pmnnx7x7WdZVpHZOCgLMHJyD6MIhNJKZ4YfW2KupEa7DdtxEMcxBsMh+oMB9vt9tFot9Dqd0VUBO1+l5uvmQU1+/WZWoLL9HOzysEXfdBy88sor2NvfR6PRqNJWTeZu4mMZyadnMg0aUJ676yKOIjQcB+72NsLhEOdWV4VEwQMCQexnBPv7+7j+3nsooggXz53DIxcvVuX6/AHm7pd62zjg6ABkGEWQZbmqbKwHLMcf8CRJSuucW8SKUgUbJUZmXBuGj4Eff1rV5fgKoHqdlv1Eoygqrex2uyqt930fP/jv/8Zzv/EbuHrlykFwk7kj0iyrrHU+0VV+7tpnm41GdQwAFbkDZfYLX4EAZQD2omkiTVO4rgvP9+F6HhzLwvLSEuz6amfs2leTLjC1eKuOad8Xd92YpolnnnkG2xsbWP3UpxAnCcIoQhhF0DUNpmFURVi1C1qmVxJSuWaGnocgDNFqNBAlCe7dvIlkZQXnL14UgdWPOQSxP+Dgkq6ba2swJAmPXb1ayc/Wdc05xv3SRyFly3un1th5fLssz5HEMZI0rcr3bcuCoesj1qHE3T1jBTlTwQhW5r5hHFi3OSHwPK/yATcYaVJKEccxfvCDH+C5557DlStXRoS2eJEOIQQqE/RiGx5a0fDqVtuyQClFwFQiLdbuTpKkKpe+PvHouo7lXg/dTgeD4RBD18XttTWYuo7e0hJazWZ1LuMTZOUiq53zIqhPEteuXcN7772HLE3RZv5yrlDp+j5kSYLBhNNURTn4jmQZRVFA03W0mk14ngc3CNBqNCAnCTbv3kXoebh87dohV5bAxweC2B9gDAYD3Ll1C9FwiE6jgUdWVqosBsIrODkJ4YCs5gEFEEQRJEUZbVaB0qrk1nnBCpsMttQfyZipTwbMSpXBSudrr3HirQKutXHWyRcAImZ5SrKMVrM5UvmaZxl+/OMf4+rVq7hy9eroCdV8/gBGhLNGP3aYVG3brhpa89VLpexICCTe+Lo2TlmWsdTtotPpwBsOMfB9rG1sYHt3F0udTknw9eImVhkrHQyk+h4WIXm+vaaqeOLxx/Huu+/i05/9LBRFgWPbsC0LaZYhTpIq8KoxhUzDMKrJtyAEpmFU3Zz8IEDDccrMoX4f0Vtv4dFr19Bst+cem8CHB0HsDyDyPMf6+jr2t7ZQJAkunjuHc8vLlQVVNX/gpL5AmT63JHlRkFPTME+Yxcf95pqmldZ5LVOG0gOp2XpGSB3cKuTHq6xk7hqY4MMlhMDzfeR5DkPX4TjOiDuAEIJXX30VnU4Hzzz99JHXjmu6zAsJQKPRgOu68H0fcrN5YGXTA8leWv+fn6skod3poNluI/B9DFwXWzs72NnbQ6fVQpu1uitY4Ljub+fHnrbvWXj8iSfwne98B2EYwmGpk5IklaqXuo6CkPI7ZcqXfhjC0PUyLsDuG9M0y0mepXc2Gw202214nocbb7+NR65cQe/CBeGa+ZhBEPsDBtd1cff2bdA0hakoaF24gCXegJkVu4xnlsxt9bHluCRJiKIIklQKWXlMz5yi9C03bBt6zWotd88InZMSpSCY7PKRJAmKqiLP87lcQwlTnaSUlqXv4ymXlOJ//ud/IMsyPvXJT06cGKqUyKKY2RiaxwPqe5EAtJpNDJj/3K6tjMaPMcmVIksSms0mms0mgjBEfzjE7t5eSfAsVbKu7z5pTFWwec5JWtc0PHb1Km689x4+wbTbgYPJm7vNbMtCxqx4PnlLigKD+eMt0wRlmUfccm+3Whi6Ltbu3EEaRVheXYUhNGc+NhDE/oCAW+mD3V0YkgS70YCqKCPFMZIkVQU+dRxVys8t5TopZVmGIAwhSRJcz6tkbA3WkHpk+zrJTCDDicdkk4eiKNUEMImsCPNtp2kKVVXL4qgJlvav//d/4Xkefvu3futQY4rx43K//CxMm5BazWZpuTOf+/i1rSx55oOflEHCXSJ+EGCPNf52XRcXzp0bDbKOjR2orX54SuSMDJUnn3wS33nlFTzz7LMV8VZb1K45by7u2HbVINwPAsRxXI7XtkEoRZwkUGS56pQ19Dzs7e2hyHO0ez20e70jxyPw4UCsnx4AxHGM9955B+72NpabTZxbXoaiKLDHLGc6idQnEGZdrEses+6zLMPWzg78MCzJ1LbRbberYh8AI5k2lSW5SAoc+yxXO0QtQ4YjzTIMBgOkWQbHttFutSaS+gfvv497a2t4+QtfmGiJ111BeVGAUjpX5ey081FkuSr8CXy/1K+ZtP0R+6Aor6Gu61i5eBHnl5dBKcW9jQ2sb21VcYAZAxxx0RRFAQKUk2TtY4Zh4Mqjj+K969cn74OPqRYbsEyzjAM0GiCUltW4nlc1LwnjGHlRQFNVNG0beVHA9TwM9/awcfs2MibVIPDRQRD7xxxhGOLm9euQkwSXV1bQbDQQxzEsy4JjWaM+9AlEQif8PYmIM9YZaK/fRxTHVaGNwfytwKgvfNFM5jrBjm/Lc9j5uQRhCM/zIMsyOq0WLHae49jY2MD/vvsuvvjyy9CnVMRWxUE4CJwe1QRkdOPJZ6mqKtrtNgqU5D7NNTIeM6BApfJYbzTiOA4eWV1Fu9lE4Pu4decO+oPBfGNk+5e5zDC7F6ouUyit9tu3biGvpWeOnGPtfqifi2Ga5aRuWcjyHAPXrb5D7hozdB0Ny0LKtPuzJMHmnTsIfX/+8QucOgSxf4wRhiFu3bgBJc/xyCOPwDBN+EEAXdfLFL95rGT+oEoHhUT1rfI8x9B1MWAqf5qqotlsot1qTfTpHmWJTj48nUro/H3U9sn14U3TRKdWoj+O/f19vPbaa/jCiy9OrYgcJ1weOJ070Fcb+zg0tppJmdtqGnhAlBM6GQtsc8iyjN7SElYvXoSuadjd38ftu3cruYCZqNUmjOenm5aFpaUlrK+vl6s6NgFM3L42CfHJ1rIsdNttmIaBNE2RZxn8MEQYRQB73zIMRHFcSipTir2NDbj9/nxjFzh1CGL/mML3fdy6fh1KnuPS6ip0TUPE/N6tsayMaRbjeIVp/YHPGKH3h0NkeQ7bstDtdiHLMrSaNG19JXCcisPq2DM+l+c5hsMhckLQbrXQbDRG5HvHr82Pf/ITfPazn0V3aemogx86xiICZrNWJgZLEUySBOEYuXOrOSekkhueZ6VjGAZWV1awvLSEIs9xd20Nm9vb87lnykGXvw4GAgBYXV3FxsZGOVmx3rETSX6M4PlvmckXd1mlbUEItnZ2EIQhKKWwbRuSJJVkz85/sL2N/a2tuYO9AqcHETz9GMJ1XazfvAmVUjzyyCPQNK3MHU9TmGPNLyY9MnUy5/ooPBMiy3OEYYiUldVzLRSZtcPL8vxA0e8YLpf6mObZlrIxeWyZ32o0qrRNnurHs0yoJCEJQ/zwhz/E//Pcc7h48eKR+x7JDGJVr+opao3LslypQkZxDInluHNSrwqQar+5RO8sNBsN2JaF/mAAz/PgBwGWl5bQmTdvvPbdUQAXV1bw5ptvoiDkQHK5ZhRwC72aDMfInWdWKYqCVqMBQ9OwsbWFbZa26VgWbNNEEEXI0xSaroNKEvzhEHmaYvnSJZES+SFCXOmPGQaDAdZu3IAC4JFLl6CxApxJZe100pIao5YmlQ6Er4aeh0HdQu90YNt29cAlSQIKwKgT64KoXCtzfp6X4EOS0G61JlYz8tWGTClee+01XL58GVevXeMHnOs4lX99QcnhI1cpUikRbJlmWbjjumVa6BH55ou4shRFwXKvh5WLF6EpCnZ2d3H77l3E87pn2BglSYJlGGi3WtjZ2Zk6Lq4xz6Un6hk/PA2WwzAMXDx/vlqxuL6PJMtACUHAxicBAKWIowibd+5U4msC9x+C2D9GGAwG2Lx5E6qiYHV1FZquQ0JZ6RmnaSlwVW+OXCO1cSuZW+kFz1hwXWRZNpHQ+f6SNC2LdxYkv5HjL2DlR3EM13WhyHLZFHtGUPO969eRFwV+47nnRmIHFcayPOqUf1xi59Z3XZqAdz7iJEgBNBwHqqrCC4KZ/SSrWMecBG8aBi6trqLX7SLPc9y9dw9bOztT9XUmH1TCpUuXsLa2Ntf4KOvfyvu4jrsFgs4QAAAgAElEQVT1gFIfx7GsUjvfNFEUBdI8LwXEOLmzFUqepti+exe5IPcPBYLYPyYYDAbY+OADKIqCy5culSJN7L0ojiEzt8k4xv2XdUEp3tsyy7IyADaB0Ovb5Xm+cFu0RS10vk3AOhNpmoYWC9QehX6/j/feew+fe+GF6UFj7laoT3iMjLMsq1Ir66Rfb4DNRcp4e7qCkZrEP8dIvjzhMlWUW7US80HXdWWOwqJBaABotVp4ZHW1qoL94M4duAtkn6yurmJrc7Ma/yzfd6Vnw1eGNWOCj91xHECSUBCCbruNdrOJvCiwtbs7IpIGoGxNuL6+2IQkcCwIYv8YoN/vY/2DD6DLMi5fugR1rO9oxtQIxwOmI2X4NeR5jsFggCgMYRgGup1O2ZT5CB9nmqYglI5or8wC13tZBJRSeL6PiDXumCQHPI48y/Czn/0Mn/rkJ2EdoQnPUVeO5D76ggl/Va9NGv949s/sA1XnBDCJBabwOE5qEzevjXXeAKOiKDi3vIyLFy5AlSRsbm1hc3t7LrJ0WMPqfr9fxl9Ys+xpoJNy9Pm9x8TPuI57yjphNRwHy0tLoITAZeqQ/FxBKbIowh6fXATuGwSxf8TY29vD3Q8+gK4ouMRIvQ6+9OeiVXXXwHiVJxfuGrguCKVotlplg+oxF8ekhzljbphp4ljjY+LHXITWCSGVH9pxHDgsk2LGwfDL11/HueVlrF66NNdxDp0fK+A5SRegSaOsxl4jZdOyoGoagiAoW/3N2u9YkHteWKaJlZUVtJkC451795DOMZmsrq5ibW2t+n8kYFrDtLqI8c9QQsoYgyQhYLr4XMtHU1VEcYwhU+Lk7qfY99Gf4usXOB0IYv8I4fs+1u/cQUPX8egjj0z0//KAk6qqI3718UduxErX9bK4aCwQeVRaZJKmc1nr4xPKvCiKokxnLAo0meU4D+7cvYtBv4/nP/GJ+Q82nr/OLM8TEfsEkpvUHEOSJDSZzLHv+7PJurayWPRh5Lnv55eXUeQ57ty7B2+Ga2b10iWsb2wcqk3gY6hcVHOuIPjE5DgOCkoRJUm54pRKxc9mo4GiKDBw3XIVw87X6/fhiTz3+wZB7B8R8jzHnQ8+gA7g0srKVDdJluflkpe5Z8at5ElWerPRGOlGJEtM1Go8x5kfg7th5tXXXtD9kmVZOT6U3XmmVYmOw/d9/OrNN/G5z39+MVKekL8O4CDN75gYJ/dpV0FWFDQcB6QoqmymOQ9wrEnTcRysrKxAU9UyBXF3d6prptPpAJTC9byxQx/UOozEEuaEzhpqc/E4SZYrJc5OqwVFluH5PnxWsSoBGOzuIjqiuEvg+BDE/hHh3p07kPIcq6zT0TTkaVq2k5PlKnWxem8eK539Vmf41yUc7gE6CYsST5KmGLouZADtWt/VWaCU4uc/+xmeefZZtFqtuY83iY64G+A42T5HgRdQTSJRnTWxiOMY6RHFRYeu5wLZMiPH0zSsXLyIpuNgOBzi7vo6sinHXV1dxfr6+pHjWdQ1BJTuIQogybKyw1SWlc1XWB9Z0zAQJ0nlmgGl2F1bQzRHsFlgMQhi/wiwu72NeDhEr90+KAYaB3e5yPKBYiEjEArAD8MjrXT+uaqSUJanEkbGpAQmvV/XeFkUSZLA87xKW2URYn3rrbdgmiau8Xz1E+Ck/nWO8aszi4Bt24asKPB9f2EL+Dh6PLIs49zyMnpLS8jSFHfu3p0od3Du3DkMprhB6u6+RclB1zTIslzJIEiSVGUTQZLQcJzDrhlKsX3vntCWOWUIYv+QEfk+BhsbMHQdS5PK4cfysyVWEcqzYLiVHkfRVCsdmFz9OY248zyfTrpHFNschSRN4fl+Seqt1kQ53Wk+/+2tLdy7exef/sxnFjrmNOo8LWIHJl/PabLIXP4BlMI/DnEd0zXTajaxwppfrK2vY29/f+T9druNwQSRMR6oHzm+dCDONnu4ZSFUURRVw/AqDsHSR3XummE6/34QAJRia21NkPspQhD7h4g8TbF15w4IIbh4/vzBG7UKUm5lS2MPFSFkfisdkwtgJOmwANa0wp2RVnULIh0j9UV88kkc4+evvYbPvvDCQqmX00BqPU5PBTWSqxeDTYOiKHAaDWR5vljFaO14i8Y0AKY5c/EiHNvG/mCAe+vr1XftMK2XZExe96hVRSUrMAOmYUAGECfJyL1ZJ3iwCY+7ZlzPQ5Hn2Lp7F8GY71/geBDE/iGBZBl2795FmiQ4f+5c6c8eE1+iKJfT9cdYlsrGF/15rfQZRDBO7nmel52RaumUVYXhMQgly3O4vg+F9SQ9aiyHrEBK8Ytf/AJXr17F8vLywsfm+6CElIReFEizrCo0yrMMWZoiS1OkrFsQr7hN0rRq3p3nOfKiQF4UVaESqRUrjQtkzbJmeT/RIIrmF/MaO6fjQFEUXDh/HkvtNqIowp179yo3SbvTGZEG5uc3DRLL2pk1Eq6fk2bZof3V7ycuHNZoNFCw5uRxmmLr3j0Ew+HC5yowCiEC9iGAZBnc7W24nodms4kGa9QwUkSDya4SbtG02200W62JhF7tY063CSd3QggKlnWjyHKVu3yc5T9QThKu60JhFtlR3YyAw7nSN27cQJbneO6ZZ0bK2QumREhqrxGuUMi2nUZMSZoiZpW7k64vYW6S8S15XcBRvwHA9TxkbEKQZLk8jixDYb9l9lrDtpHnObwgQKfdHhUGq+1vEuadQKah3W7DMAxs7+7i3r17WD53Dp12G8PhEBcvXDjwg88CJ/cZqzneBHtS8Lbu1uFNT9qtFvwgQBiGIIRga30d5wDRKPsEEMR+n0GyDMlggP29PahM1AlTij9G0hhZaXrM8oIbtj3VSq9IYgELm5M7l7JdRJFxEoqiwNDzyt6grEHzRFBaWsJ5Xmp3oyTlKAzxq1//Gi+88AL2B4PJJEYpJEWBjDKlUFHVketYr+SUypMEpLIFX13quF6ZysdbDxrS2vG4RsqIEiL3RbNMG4lVtlKmH1N31dDacYqiKJtRMM0ePhEApaWrKMqR3+G8vu5JME0Tl1ZWsL2zg93dXRAA/f39+Ul9bBwApt7HQPn95Mxqn+QS5GqR/HtqNhoVuQPAzvo6QAia3e5CYxMoIYj9PoKkKXLfx87ODnJCcHl19YBwUBNVGrvxCVuapnmOZrMJTdOQ5TnGS3qqx/EYLhOOoigqsbHj7qdgFaXAAalTJpSVF0XZto27NYpiRFALtGyC/fbbb+PRRx+tAq0K03VRWDaPzKzfSTiK7OI4hmaa0/31jPgXBSemNElgGAacmtQBJ0s69pswbfYoiirLnoKV7teC5SojeVlRoPC/eV9bYGqT8FngrpnhcIgwirC2uYk0y44VfzhKCiFJU5i6DllRkGYZjAnXvpr0atvbloWCTfKgFDubm2XtgyD3hSGI/T6hSBKQMMRgOEScJFheXoZuGCBMY4P708dBmOVbFAWajgNd00AJQZwkaGDxlLujkOc5IEnlMSbsexYopcjzHP1+H2mew3EceL4/agUyq1dVVaiyDE3ToDDC4kHira0tBEGAl1566fSCnGx8BevNeb8w6ZrJslwGryZMGJZlYTgcQpZltFqtyh2WEwLCWuYVhCBnEsrVcdgkpyhKOSkoSlXfsMg9IMsyOp0OFFXFr3/1K9y6exePMtG544Bb3/XG3QlTIi0IQRTHE4kdOBx8lmUZjm3Dp7TqzrS3uQkQIppkLwhB7PcBnNSzLIM7HMK2bXTa7ZFl6TTxrqHrApSixSx1QggMwygLXZKkrNrkVYInGCMnPaAsTJJry+Op51UUyJkLJctz5GkKPwxRFAUc2wYpCsiyDF3XK/LmVuf4+XJ3BiEEb7z+Oj7xyU8em9Sn+Xt56t5pFybVjzvNap0GRZZhWRaCMETKZRxUFQqlwJirrWBB4CqAm+dVULL+XSmyXE6c7OeoFQiPTzi2jXanA9/zsLaxgUsrK8cnd5QrDe5XJ4TAtiwQQsqAcVFM7zMrjbZflGUZDduG5/sIWeHS3vY2KICOIPe5IYj9lMFJHQCGrIz+3IQMj3EaSlmzAkmS0Ga9PnlFo6aqkBUFcZpCN4wTETpw8BDxDA1u9fGVBD9uludlhghT7qsIjFmPeVFA13W0221YhrFYhxxGxO+++y6arRZWZnRDOupcplmshGvE3IfOPdyVcJwVk8maUwRheGS1r8JcUuOf4JNyURTImJsrTlOAiYBJkgRVUQ7InvnuxzX8l7pdqCxofm9jA6sXLsyt4TMRkoSEVTFzeYqAGTizGojz8fE4SbPRgOf7pQQypdjf3galFN3jZks9ZBDEfoogeQ7CekDmeQ4/CCrLGygzMMbzzoGyO5IfhlAVBe1mc2Lg0TSMKvB2kvzuemAvz/MqYEcIKVP9igJpmh5kNFBaWuGaBlXTSotQluGyitJmo7GwhjsfRxAEuH7jBn7/937v2OfDs4EmgU9Q96sl26Tvch5IkgTHtjF0XURxDHPB6ydJUkXaOsrzrL7DPC9dO3lepTZSdt/ViV5RFHS7Xezs7ODatWvY3NnB2uYmVi5ehH1McuftG43aJK8oCtI0hTXHPnlTDi5HzQOqVfXszg4M04TNs8oEpkIQ+ymBEAJSEzgaum5pYXQ61WcOFRPRsuFEFMfQNW16k2qp7ATPqzm7nc6xyGqE1IsCAWuOvd/vHyzvUWpsO7Zd+nCZT7e+D9/3kWUZGsckdbYjvPHGG3j6qafKZg3HRN23O46ca8ScUtXp9EEsnqmiaVqlJaOxyfI4kIAqdVVmPVfBJn5CCPIsQ8py8+M4rlZKsiRB03X0+33IsoyVCxewtbWF9Y0NrFy4MBIMngeUUvhBAJlNWnzC1TUNEasXmGd1I0llAxM+WTm2DRoEZYUqymyZS489BnVewbqHFILYTwkkDEGLomoYPWKts5u6/vhTWirspVkG2zSrLu/V+2P7l6RSa2M4HCIMw4Nc+HnHxwp0Ul6kk+cIwhC2bUNVVWg1a248O4a7ZySUS+skTeHY9sKWZh3rGxvwfR8vfv7zx97HLN82J7v7iZOkIFqWhTRNEQYBms3m8ceAA3LnVi9BeX0UVYVVizHwOAnv1ep5HoaeVxaUtVro9/vY2NzExYsX0ViA3KM4riSZ69dcU1VESYI8z+cSmePaRNxnL8ty5ZbxgwCQJGyvrWHlypUTJQ6cdQhiPwUUSQJa05oet9YPpTOyzJe8KNBwnMnLVJYnXYemabAsC1EUQTeMmTK73L2SpmnVIQmSBE1Ryh6VhKDdbM507UgAFEmCH0WIowiWbU8XL5sDeZ7jl6+/js9++tPT893nxFEPNyFkpm/3pJi31H4SFFmGbVnwgwBJlk0vPptnHDggw6O6KSnMDWMAcGwbCvfBy3KZX88kCG7dvo2L589jqdudOTnmRYEwiqDr+mgGjCRVhk3KuoDNPpGD71PmRXMoe8r6QVAVk5m2jaW6LIfACASxnxDcr86RZdmItT5OOzzzhVKKdqMxUZt8vBFzHbZtI0lT+L6PTrt96KEjzM/J/eSEUsgotUM0TasU+JI0hRLHc1u0aZYhjiKYllUuj3H8rJx33nkHy0tLOHcfH0weYJxbY/6Y4AHn44JnPIVhCK3VOpbfvt5s+jhSu4RN8JTSUulT17G9vY276+vwogjdVgu6pkHX9UMTJXfNSay6dhyKokDX9aphzBwnc/AncJABxlasfhAg8H2s37sHw7LgnGClc5YhiP0EIISg4FrS7IEcDIeglKLX7R6Z+dJhmS/jqPvVJ4EHlYauC9d10Wq1yu7wzDIveKaLosBkVn29X2p1nAUCi0VRwGP6L03WvLjKQZ5RXj4Oz/Nw8+ZN/P7v//5cn5+GWcflqY4nXRHMBPMHH39zCY7joD8cIo7jiQ3LJ6FO4uPdkBYhd8uyEMcx2u02JFbToGsaGo6DjY0NBL4PiRDYjgM5iio/vqZpUBUFfhBMdMHUoalqpdlzrFiCJFWxlIrcgwB3bt7Ek88+C/UUxOLOGgSxnwAkDIFa1WCWZQjCEK1G4xBpJ2laimMdkfnCiWqWz1ZjD97e3h6GrgvLNCGzXGbbtmGwqj/MIr4pWTpjg4LHFPdaE5QaKwVKHB3I5Of3y9dfx7PPPgvTso7tmwYwtZE3B8/Rv++uGADSCc4DKIu3uNLhJKu4Dp6/fpQMgMxcMnOpMZrmIZVHvo+VlRXs7O0hjmNQRu5JmiKIIiCKEDENnqVOZ2oRElCmPoZxXMonHzdILMuVNc/J3R0OcffWLVx54on7Hkt50CCuxjFRxDFolo0Q3WA4BCWk1IOpIc0yeJ4HTdNK98kRpM7/noY0TeF6XpmBoCggrES/2+mg027DtqyZpA4cpMjNkhGYxyIDDgJ4fNk86Qzura0hSRJcu3btRKTOj3cUeA77fX/g57iGM3eBspyeN4QeB3ez8IKuebRdpJp/+iiYpjm1fZ8syzjX68E2TbiuCy8I0G61sNRuA5SWAnKShDCOq8YZk46pqiokSiuN9qOyiObVfW84DhRVxe72NnY2NmZu87BBWOzHQJFlIGMPQ5ZlCJhyXz29Ls9zuJ4HmbUHm3TbjpP6uOohKQpESYIkjitCtgwD3XYbBZPJ9Xz/sNDVEaCUAjNIL45jxEkC27LmC3yVBwZwkNrJH9Q0TfHmG2/g8y++WGVwnITaZ/n4C5ZRcd+zYoBKIOy4WRo8C4RXpEZJAlPXK+v8uNeJa/YcBdM0q1TCifuQZfR6PUj9PlzPAyGkCvZfZPLTSZoiTlMMPQ+yLMMyDJiGUT0HkiSN+NklWS578I5fhxkrES5BUXfLuJ6HtTt3YDebaC7QQvGsQ1jsC4IQMhIs5RgMh4AkYakmWFQQUioeShLaLDB26GbGBIJi7pg0STAcDrHX7yMKw9LH3WhgqduF4zhlYMow0Go0qqAsmeEOqcY2Y1nMC6x0lolzXHBXzY0bN3D+/Hn0WNeoRRUF66ATSGEcBZM3uO/gFvsJrHY+meuGAUWWEYRhpSF/kslvHmG3aa6YOmRZxnKvh4ZtY2d3F1vb22W6q2lCURTYloVuq4WW40CVZQRRhP3hsLTiWQ47l8fgLrJjfzM1o0dlx87yHLfffx8Zq7wVEMS+MEgYVr1HObI8RxiGaDeblZVCKD3Ifmk2KxIdz1Uff/h44dA+s5DyooBtmuh2OpWu9jhx64ZR9ZLsD4czH1Q+vmn+dcr86rIsL5wvPwlpmuLmzZt47rnnKqIfJ92TumbGQQi5/4VJNSxC6xTl9ecWKle5BKWwLAsSLZt/nAZmxVBM00QyR2cnLu9smSYylt5YB7fKW80mlpjERJHncIMAe4NBFTytKponyDHMdQ/w7di2pmHA0HUEvo97N2+eKJB9liCIfQHk3K9egwQgYM2KOyxvnQJwXRekKNButUYCqTxrYfwm5hb33v4+ojCEKstoNRpY6nQq63waKKVlL8l2uyr3933/yAeFEDI5Y4SRek4Imo3GqRSBvHf9OlYvXTpUYVpv/1cR/ViV66RzmPX4E+aLvh8aMdMw6TpVaYg4IHM+NuDgPOrbaky6IY7jU5vsjlq5mKaJeIqPHSjPIY5jeKwf6aXVVXRbLfQHg+q1ScezLQvdTgctx4GmKGWKbhBgf39/JPWx0iia5YY5PLDqXrFtG4osY3dvT/jbGQSxzwlCCOiYZcMfxziOYWgaNNawwvU8ZFxLfZKyILspuV6L63nYHwyqBgxLzDrXJ1jnh3bFx8K0QDrtNizTRBTHGAyHE1uxVW3eJuw7jGOkWYaG45yKhG4cx3j/5k088/TTMz/LH/I62R/K0+cuiimkzz8DfAipjsBI/jhh5FT/OTTWCZbqOHjK4zwrr3kxzXI3TRPxlOMUhMD3/bIgTtPQbDahqip6vR4MXcf27m6lRzMNmqaV7sN2Gw3bRpplGHoehq47f277BNSDsDLzt1NCsH737lwrkLMOQexzgkTR4Wi+JCHL87LEnhVK+L6PNE3RdJyJKWA8UEZqhJ6mKRzLQrfbhWPbcxNS1aii9tBKkoRGo1FpfQ9YfvTIuUzJYc+yDGEYwmDBr9PAe++9h8uXL8NeUHukjrplX7Wf44G0ej43+53Xzm/Eaq4RbP3/ulU9Ivsw9hodI2pK6Uiq4zh1Hne1ozGJh5j5p08FUyYUVVWrpih18EyuvChg2zYcx6nuF1mWcf7cOaiyjI2tLaRzuI24Fe84DmzTRJZlGLpuSfB15dBFz4f721mqb5pluHvr1mL7OoMQxD4HijwvJQNq4A9JGEWglKJh2/DDsMwiYYGlcVCUGS6+72N/OESSpqWF3u3Ctu2FvgyeOTONPAzmmlFVFZ7vo89WBMBB4LJuxRVFAZdphiyiEXIU4jjGrVu35rLWjwtu5QMHxEprOezVKgAHEwTq/0/Y5zjB89dGAqUTAqanqV3CrfZp1vRxMGl8kiRVYmRAeR/4vl8WJkll79pJQm+KopQNxynF+vb2XE26uTvR0HUsdTqwLQt5nmPgulVzmYXPif2mlFYFefs7Oxj0+wvv6yxBEPscmOaCAVD6w5l2ehRFsAwDzoQskiLP4fk+9gcDJEkCh7lcnJr416K22SwaUViKZbPRAKEUg+Gwar4M1Cx2XoREaSlGdUoE9c677+LKlStzSbbOjTksOy7+9SCLRHFhtuQUfe0AJjYYN0wTYRgiCAK4rlsKhFkWWrVkgEkwDAPLy8sosgwbW1szA5e84UrBU3ZNE+1mE4auVzEm3/eRL0jw9RgNX1ncev/9hzqQKoh9BoosGwmY1qkiz3PEaQpN18vUQF2HM5ZFUhACz/exxwjdMs3RgOhxHtoFcqa5RbbU6ZRL1TTFYDhExFYaQK0IacaDvAiiKMLt27fx9Cla6/MSXEHIsbXST4RTPqZtWYAkHXKlnQS8kKxySdFSAXLoumV/UsNAq9mEaZpz3WO2ZWFpaQlJmmJnb+/Iz/LCOVInbkmCbVlVbCjLc3iuC28egp8wPu5vT6MI63fvzhz/WYUoUJoBUn+oeCSe3VBRGCJLU5iGAU1VywIh/lGUErecQC3Lgm2aI/5zSZKAOSsED4ZwvEIYrm1tGgb2+30EQYCB60JRFBRZBsu25y9CmgPvvPMOHrt27fh67RMw71X6sFMd6ziWKNiU719VVRiahjhJ5ibaeSHJMpI4RhTHZUtD5nY5znVrNhrIswyu75fB1SnNp3mWEtfxqdvTMiN47haKkwRD14Wh66Wbcp5zZzEXVVVhWRa2NjfRXV4+kd7/gwphsR+BIk2Bmu9wvATf9/3KT95qtSpSz/Ic+/0+wjCEruvodbtoOM6JszROY0muKAocx0Gz0YAiSdjf3y/jBBMCaMdFEAS4e+8ennryyVPZX4U5zp+rOn5U2iHHIt8jtjEtC9IpWu3cZei6LsIogiLL0A0DRq1S9DjodruwTfPINEjeRKNgVceTXCWc4DutFkxdLwme5cEfwtj9IOEgbmSZJmRKsXb37omybx5UCIv9CJBa4Gq8kChjQR/HcdBiVaUUJamFUVRJCExSVqxjYsekCZiU83wSKKp6YMWzlLc4SaCzzj4nsd7ffucdXHvssSOFoe4XOFl8mDns9xOqosBgBHcSqz3PcyRJUmWwqKoK27LK5ioLrhqnodfrId/exvbublXMNA5ZUcp+raxxyzTIsgzHtqFrGoIggOf7pfVuWYdrHiZkq4FSOLYNfzhEv9/H+YdMu/1s3P33ASTLRqz1cfT395EXBS6cOwdFlpFmWWmlRxEs00S31YKm63M9iNVKYMrDVbW0OyVSp5QiSRJkeY52u412q4VupwOLZSm4nof+YHCsIhk/CLC+vo4nT9lan3cc97vP6UxMybQ5CUzThAQsbLVTVsHqeh481q3LME20Wi00WYMVmaWQngaxz5MGKcsy8jyf6xpJUtmoo8ms94RJbMysyqUUlAVUdVVFf3f3VOMUDwIEsU9BwavxuE+7RqpJkiDwfZimCcdx4Pt+qRUDoN1qwXEcSEzpcF7wHO1x1PuUnhYIIQhZn1Wer16vFmwwJccgDNEfDOAHQbmcnePhf/vtt/HEE0+cqOH2JCziXwcwl1vhtGUM7hdURYFhGEiSZK5MjzzPEUVR2UYxCABKYdt2pf45cm1YCuhpZZAclQbJpZbJjNVpHZIkQWECaa1arYjn++WYJ+xLkiTI7HiGrsN3XQzZ8/mwQLhiJoAkSamzjsNWckEIwjBElmVodjrYHwxAWP9Ix3GqoplFretK2Eoq1evqE8lpp+0FYVguVScFlSQJBmtxxhsgp2mKJEnKBsiaVnZjUtVDvmHP87C5sYE/+IM/ONXxUkqRpSmiKELCAmtxHCPLMpCiQF4UIEUBwlYiaZZBU1UURVEJT/Hf/IeX9lNK8W//9m9l425JgqKqUNjfsqpCkSTIrJ2cIsvV3zL7m0vXet0uDNMstUu4K2ve722Oz5mmiYR9D+OibJRS5HmOLM+Rpmml6Fh9VzPcaoqinGpqIE+D3NnZwcbWFi6trJRFebUetMUCbQs5UUOW0W61ECdJ2WM1y2DzQsAJEwV/bgxdx+7ODlqt1okE7R4kCGIfAyGkyoQ59LhRijAIEMcxCpa2JQHotNvVw3MS+dbqmJJ06u4XjjhJkCTJiKzqNKiqWoqA0bJnZZKm1W9JkqCpakUckiThf99+G08++eTc/nk+cfCfJEkQR1FF3EntN1japmkYME2zOq6q6zCY9ICiKEizrBRea7Wq1/jvipBrr/9///f/4v/9P/8HhPl9i9okMTIx1N+vvRaxVoSbW1vlta2di67r5Zin/BjsXOaRbuC+9iRJKiG4nBF5xs4Z7DvRmczy3Cmx9yHnn6dB7u3vY3tvD+d6PVBKK2InRQEsEKyV2ARLmWywrmnwggB+EFSV2+PuN35Gpq6j77ro9/unnl30cYUg9jHQLCstHnpYrzxi1o4JcPMAACAASURBVGAURcjzHJ1OBw1mpQMnJ3UOSZLKVDA6W552ERBCEPg+VEWBskhwVCqV+3RmGXEZhYwRPVBOGJubm3j++edHNuWVjK7nwRsOS+1414XreWW1ICe5Gml3u92K9EzTLH3Bc/rMXdcFwLo9zQlFlqHIMo4TLvbDEHmWodNuj7yeF0WVtsfJPk4SeK6L3Z2d6n8exzAtC81GA02mK95qNtFoNEYmSUPXy5qI/f1yMmBkXvUjZQHxRSFLs7t2HQfNRqOSDtA1rUynHEt5XAQSAMpiUbwTWZwkCNnqbVLnMn5Wlq5jf2cH7Xb7oUh/FMReA6W0qjI95IIpCgRBgCxNQQgpA1C1YqQTPxa1B4uiDH5QlmlzWuQehCEKli2QHDcFjLljNE0DbLvMtsgy/Pqtt7C8vIzr168jYKsa3/eRJgkcpl3TbDaxsrKCp556CpZpQp3TqpyVMVQHofS+t8MbwZRxycwvPM/SP8vz0m/MJrzNzU289+678H0fumHAdhzYlgXbtqGqKhRVxflz5ypr/6TGBC9Y4qmIpxmkb7fbCKMIe/0+TMuCzsZ7XNdPndx59aquaXA9D0PPQ7PRGGlgzs9FY5PiYDCAXav2PqsQxF4DzfNKF3vEWmfl+HEUodFoIE5T2LVZf5Zuy7FQ0zhZtGH0JKTMR21ZVvlQHJPY8zxHv9+Hy5ppe55XZiokSdkQmRFap9uFaZpVqz5VUaAyBUwuPDWvD3peUqfMPSafYqHVcSEtYAVrqopWqwXbttFbXkae58jzHISQ0p8cRYjDsCz7930Mh0O8JZXNW/iE2Wq1sLS0dLw0VU60p3gP81Z+EoDlXg+bW1vY3t7G6sWLVQD1OBiR32D7UBQFrVYLnu/D9X00WKHTyHass5PvuvDZNTvLEMReA2WZH+M3d38wgO95aDWbcGwb/eFwxCo4lRS3Won3NHGp45I7pRQ+c8E4tj2xr+Y0xFGEnb097O/tYW9vD67rot1ul26oZhOrly5hc3MTWZbhU5/61KHjZllWBfbiOEZUe6B5QFJV1RG/93FBaw/6h4op38mk74sSUvrqCUGR55Xfvl4+ryhK5VrpdDqHcvKHrLhIQpkh4rouNjY2MBgMYNk2er0elns99JaWYNdchdMgYzSl9qRNximlZfs69prG5KT3+/2yo1h5cY59DL5fUru+Cutf4AUB/ChCQQhsVtzFt1FUFVmSIAiCEbXKswhB7AyEkEPNqUEpXM+D67pwGg10ut2yKQGlFbGfpqvkqFu9bqkserwgCJATgk6rdfCQT3jYKaVwXRe7e3vY393F7t4e8jxHr9dDr9fDbz7/PLrd7gjREELw85//HF98+eWJY6588zjI3sjzvCT8oigDqLVCMFmSqkCnoiiQFAUyRoWepoFXzk5KG/0wQSlFwYKvPGOHF+WM9yCVFaUU/NI0KOzvWeXzlmVVcrrnzp2rXieElN/f7i7W19fx1ltvgVJafX/LvR46nc6h61PPY68bEcc5b8JXvGNoNhqI4hj9wQANx4F1wsmX3w/1cUqShKbjIIwiREmCgjVhr/T9JQkyMzZ8318oDvOgQRA7R56XLe9q1WzczWBZFnpLS5AkCQnLQDAN4+CmOoXla7W0nFGluqhrJssyRHEMq5b2VumWM7fK7s4O9vb3sb+/XwYvl5awfP48nn722ZE4wiSsra2h0WjM1UiYF5xoLH+ej6OoER9hZM873tM6UbAHVJHlUpedZXNw1cCMtV8DUPV+Palroa7ZDpQWNyGkzMVmqa95UUDGQYckjjrJKYoCTVVLIpdlyIzA+fgW8TlrmgZFlhGzWgQOWZbR6XTQ6XTwxBNPAADCMMTe3h529/Zw+/ZtBEGAbreL3tJSSfjLy1BkeWTFsCi588/NqibtdbtY39zEfr+PlQsX5j7fIzFW2MerqZU4RpgkcF23UiylABRJQpGmldX+UWkK3W8IYmfg1jqXFQ08ryxjNgx0GakDJRlKsgxFVU8tCwbAQpMDL5ia1dSZu2AkSYJt26CUYm9/H7du3cLm1haSOEar3cZyr4fHrl3DZz/72YVFu67fuHFiBUdunY9jhPCZtctJlRCCnKf5MUQslVOeVBzG3WVSrWkHSvIdsEyaujtsXlKrNEwkqdJ/l9nEU1mJM1YQi1rHEspen0EYlk3JjyAn27Zh2zYuX74MoJzo9/f3sbe3h+vXr+NnP/951f92eXkZy8vLC7ko6lb6PDLSvaUl3Flbw8B10T6hxTwix4HR1axpmmWRXRRh6HmlVhN7bgj7zjzPq9pZnjUIYgdzw6QpwEjdc12kaQpN08qUs1oKVZamME6Z1Cmlo6uFOSDhwB86zT0TRhGSLEOaJLh16xY2Njag6zq6S0t4+qmncPnRR0+kqbK/v484jnHx4sWFt6VjltYkKIwoj7pJOQkTQiDzOILjVBWJddLk/l9wIuDWdC2Pu+6TRW0C4N+NXCNuXrBFCKmqIsfHNk+Q8Dh+bd0wELKUSWeBxiiapuHChQu4wCzmX/3qV/jg5k2YloW33noLQRDg4sWLWF1dxYXz56cL11G6UAUph81UTj3PQxjHsE+o1V99N3y1WxsPT5P1WLptw3GgKgqyNEVL0xCGIRoTUiTPAs7eGR0HNd96EASVOqDGBLFGPprn5WunSerAsfc3yT2TpCnW19bwwa1b6Pf76Ha7WF1dxe/8zu/AcZxKqOykQlk33n8fj1+7dqwJTsLsFNF5XE6V/5RVgvIipnkhS9JMd9OMQR45tnmChMfxZ8uSVImDHcfIKIoCr732GqIowiOXL6PRbOKJxx9HFEXY2NjABx98gF+89hp6vR5WV1awsrJSruYoBQFzdS086hK8enR7dxePrK5CPWlMpLZ6Hb+SKpPTHjIZgnazWcYUsgyyLMN1XSwtLZ3s+B9DCGIHqkYaISs2kWUZFKgkAjgylsWgG8apCz2dFFEUYX1jA2tra9jb20O708HS8jI+97nPHcqlPmnmA1AKUm1ubOATn/jEifYzC4sQVr2y8cPCrGD2XNd6zglgHKZhHFQSL2D5JkmCn/7kJ7AdB7/1xS/il7/8ZZX7b1kWrl27hmvXriHLMmxubWHt3j28+eabaDabuMCs+ZNMhooso9NuI4oi7O/v4/zy8rH3BeCgeciUOIWiKGg4DlzPgx8EaDYa8D0Pyysr8FhLvrPma3/oiZ0QAsoyMxLmfkmzDNa4WBKAnOlwGKeUJ31Sch0Oh1jf+P/Ze7PuNo5sa3BHjhgJcJ4kSqLmwZps17VVtiRX+Vv3pbtX/4J+66f+Ff3Uz/3Sa/W/6Ke7vqrr+m7ZVaYGyxqsydYsSiLBASTGnDOjHzIimQATQGKgKLG8l70ogkBmZCLyxIlz9tlnGUvv3qGuaZiensbh+XlcuHABNV3HUDod+cAHMXr0zuh5+fIlZvftG2hzjn7huu7ubKvb7SgwgOK1FuAJ2W4Me61Ww8LCAmZnZ3H69GkAvsMS9T3Ksox9s7OYnZ2FbVlYW1/H8vIy/vGPf0CWZUxPT2NmZgYjLRprtAJhuw1JFFGp1ZBKJpHpsxqUAKCCEGg8bbsWUUQqmYSuadB0HSAEIvvedFafspfwL2/YqW37zBFdhyLL8CiFSEjkdt5iIZtBKBduM+odGDEcjuPgzZs3ePHyJQzTxOz0NM6cPYvx0dHA89vY3ERCkoKHvdmAB4lDz+spHON6Hp4/f46vL1/u+rPdoBuDyGPn770lXqfvLY433scCn0gkUK3VYNl2Y21FBNbX13Hz5k2cOnUKBw8eDF53HAdS82epL30brg3gsflz58+jtLmJpXfv8PPPP4NSikOHDuHA3FzsZ4NS6nvthoH1YhEJVe17USZszFH306MUqqLAc12YpglRFFGvViHL8u+GfS/CMQzUNQ2SKEKWZdQ1raHBdBi2bQeUvYGjg0Eql8t48fIlFhcXMTY2hlOnTmFyYmLb53TDgON5yIU5603xx076752w9O4dcrnczlfvdTE+nqTcjVBMpzN2jIH38V20oj424+3bt7h37x4+++yzIHHK4TA1zGC8jHkUHrMgCAGVlMDvmDQ8PIxTZ85gY30dL1+9wuPHjzEzPY35+fn2cWs2/4ggYGxkBIXVVawXi5jqlwJJiG/cm14O/85rADRNQ3F9HfsOHfIbeDvOnkqi7p0r6QG2aaJeKoHAj6fX6nVfDKqF12E3PQC9Ytsj3OKhdl0Xb9+9w4sXL6BpGg4ePIhvv/22pf4I51UrkhSpl8GTrEQQACZZ2wuePn2K4ydO9PTZuOh2bLxB8q5UE3YIxfDuWi3RZxUmpz62Mk6//fYbXrx4ga+++gq5JrEywA/FNEv3Ri1EUWElAmB0bAyjY2OwTBOvFxfx061bkEQRhw4dwv65uW3PDAGCeLiiqshlsygxnZwodlFchNlLzWyoMDLpNCqVCkqbmxhjnZV0Xd9TMgP/soadUopqsQgPflUc50wH3jovLglRqWzH6VvPOdJgNXls1WoVL16+xOvFRYzk8zh29Cimp6c7evW6YcCjFENt4pUBh5sliLuNs29sbMAwzZ4ojt2gW1O3Wx57LHTyyPvw2IEt6qNpWQ2G3fM83L17F6VSCd9cvYpE89xloQvTNGP14yVtEpR8HEePHsWRo0exvraGVy9f4uHDh5idncX8/PwWZ7xpHg8NDUEzDKxvbARCYb2C8EU0bNibxkwIQSabRaVaxZtXrzB76NDvhn2voFoqwTUMpDMZiJKEeqXS6K2HJx8hQVHMTmXPPc/Du6UlvHjxApVKBQcPHsSfvvkGqZgcZep50HQ90BhpB16owRX9gqrKGEUmz54/x5HDhwdXmDUg7JbHThGDudOn4e6EgPpoGKBMH8W2bdy4cQOiKOLy5cvBnOALebiq13HdWDvRuN84ATA+Po7x8XGYhoFXr17h+o0bUBQF84cOYXRsrOH5IoIQCIWtra1hdnq663vAwa8v6NTU4n2iICCTTqNar2OzWEQ2l/N35B8QGaAf/Esadtd1YVarUFUViqrCtqxGb70ZrHwc6E+HJGqS2baNp0+f4umzZxgaGsL8/DxmWMeZbqDpOiilsYpVwtx3YOuBJR2M/PuiOLIBdPn2HVDYjHfijm+Jivt2e4xOCFMfKaVYWFjAyOgozp8711DIhqaxULAYe0yDJpDulBnVRALHT5zAsePHsbqyghevXuGX+/cxOTmJs2fPBgl+WZaRHxrCZrmMWr3eM0smCBexxbRdSE+WJCRVFaViEWoyCV3XfzfsHzOq5TIESoOtqW4YbWPrQdwOvTeJbZ5gruvi+fPnePLkCSanpnD58uWet4Ke50E3DCQSiVg7iqjtavC35veAeUGU4sXLl5jdv/+9TP5uQ0RuqO3ae0eHxaRjodIAPHqRJf/X19fxyy+/4MiRIzhy9GhHeQTPdbvqoNTsFMQFIQSTU1OYnJrC5sYGnjx7hv/8z//EoUOHcOzYMSiKgkwmg0q9jvXNTV/uuc/vUyAEbodxJlQVpmWhvLmJZDKJbDb7we1Ge8EHGJDcWdi2DbNeh6KqEEQRFlOB69Qyi3sp/SoHep6HFy9e4L//5S/Y2NjA5StX8Pmnn/ZV8MF7mMYtzw7ojp3ex/7njYGfP3+OI/PzO8bL5ogTEtr2mV0y7L2MNeIg/Y8DQGlzEz/fvo2TJ0/6ImAxjtsLIaDfjkuKquL4sWP485//DNM08Ze//AWPHz+G47oYzuXgOQ6qtVpPx25Omnb6bnizDkPToOs6LMvq6bwfGv7lPPZquQyJ+i3ZKKUw2nnrYU+qKWzRDbhmyJvFRTx69AhDQ0O49OWXGA4LEPXoJbiuC8M0kUwkYiXA/FNtZw50wtrqKlKpFIZyuW2f66fQaVBwPW9XttFx7+Egqn0bztv0+/Nnz/Drr7/i/LlzGO6iRD6Swx4DzZK53YCLjiWTSVy8eBHHjh3D48eP8de//hXHjh1DOp3GZqmEdCbTtdxAEHZiObFgd9Hm+VIUBbquB70GuhXC+xDxL2XYLcuCpWkYSiRA2O+u50XH1vlkYMY9ULDrcqJRSvH23Ts8evgQCVXFZ59/7hcTDQiapoEAXbN1ujU0rxcXMccUApvvVU9bc7RmvnR7LN7Y4b0XJzHEOesgGlj4/2iKkVOKBw8eYHl5GZevXIEgCNBZviWWrHOP/G1CSFddsMKgngcSckIymQw+//xzVMplPHr8OAhPptJpTAzgWQmHFSP/Dl+cTGfdqfL5/EcfjvmXMuyVUgkyIVBVFR731kURShcrdNwvnFKKwsoKHjx4AEIIzp47h8mJidZGoIc4q+04fps+JlHaFQjxFSVjwHUcLC8v45MzZ9ocrvHKwoYo6toGGc7hBjPujmXQ5401J7r4brcV2LSpc7h16xZMw8A3V69CVhQ4juM3XbesWJ6n4zg99Yjl+iy9tLijlEbGgIdyOXzxxRfY3NjAnbt38ePCAs6dPo2DBw/Gnt+UHb+Zk8/1+Vt9RlEUVOt1lEolTE5O9k1r3m38yxh2wzDgGAZyLA5th7z1bWjeunHvBIjlFRaLRfxy/z4s28bpkycxMzPTOdaH7o2dVq/7BSo9SJ+KgtAxxs6xtLyMkeFhqF2cJ7hefr9aeKw8idugrR3T2+TwuvhudgQxzhuZQGXzjFJfMbEb4x8W8vrqq6+CRU2SJEiCADOmYbctq2eJjF7vNu2w8x0eGcHXX3+NJ0+f4snTp3j+/DlOnzmDmRg0yFa5o3ahI34d2XQa5VIJGxsbmJ2d7XwhHzD+ZQx7tVyGQkjgnXfrrcfZRjuOg4cPHuDt0hLOnD6Nffv2xTc2XXrstmXBchykU6mekoaEkKCVXCcsLi4GjRr6QdhYEwAuTzyGXg941k0/2yEw7O+bw94h7xL1bfLPBIsXjafZHka1WsW1hQXs278fJ0+e3LYIKoqCuqb5GvUd7knQ4LwXEBJ0jooLTrvs9FzIsoypqSlks1mIooj7v/yCN4uLOH/+fNsFi2J7QZI/1PahMN7G0atUsLq6iunp6Q+z2C0mPt6RdwHHceBaFhJMbtc0Tbieh2QrD7RdiXiLvxWLRfztu+9gWha+/fOfMTc315XXSbp8uDVNgwB0pT0ehiiKbasIOUzLwlqxOHgPpsVCxg09Cf3e0Jou4qfreb6x4NW0O1AMFO7SE/ybncfD1k7DC/1E0//h2dAwN7oY7/r6Ov7xww84fvw4Tp06FTnHVFWFQEgshoemaf2FHZg+S1x0038gl8uBEAJJlvGnP/8ZaiKB7777DktLSy0/07LFYIddIL+CTDKJWqXSVcP3DxH/Eh67aZoQPC9IEnF1t0gmTIsMOs+sN6/iruviwcOHePvmDc6fP4+ZmZng/TsVGLAsC5brIhOjA30r8PhoJ4/43du3mJqYgPi+BJKijH2Tp9/8c5vHHmb98M+GH2zKVADZZ8MLBz9u+LPB2cNjCxl3oc34Gi4t4rXweDvhzeIifrl/H3/4/HOMM42TKAiCAEmSYFpWxzCdxuSeewXxTxh7Me0mpCmJIrLZLMrVKkzTxNmzZzE7M4Nbt27h3bt3OHvuHNTQM9zQH7fFWFv+lX1OTSRQqtVQr9c/aomBfwmP3bIsiMTvSel6HhzXbZgQAdrQooIEXciwFzc28N1338HQNHz77beBUe8JcQ00pajX6xBZGXmv4O3gvA7hmNevX2Nubq7n87RF1ALay0JFoxtscL4+LzEPn7f5df571GfbnbcbRC3CcY5AKcWvv/6Kh48e4euvv25r1DkURhDoFG7rKxTTA4J6kJjf81A2C1EQsFEqAfAFx7799ltIkoS/ffcdlgsFANsTpq3Q6bySKIJSilq1Gmt8Hyr+NTx2XUeKcXUtywIojeY8t9uqhR5iz/Pw8OFDvHr9GufPn8e+pjDFTvK6TcuC47oYymT6omQJggBQCreN/k29XketVsNEDEMyKPSy09mtqtOuWDHYCit1mxi+e+cOSuUyrly5EtsIK7IMAX4PgWQb1kvfoRj41x871t5loZ8gCMgNDWFjcxPVWg1Zpu10ju2Ob9++jbdjYzj9ySdQZTlWL91OUCUJ5VIpVo7iQ8XHOeouYNs24DiBYhxvUr2NGtdhMvCHuFKp4G9/+xvqtRq+/fOftxv1DtvBfmGwXqXdUDSjEHjsbbycN2/eYHbfvh2jEUaZt14LwD4W3nE347QtCwsLCzBME5cvX+7KAPOevZZptnyP53l+cduAPPY4sXbP8/wdVhf3IZ1KQZYkbDJjyzE+MYE//elPoAD+9t13WFld7fjsNSfro6CqKvR6HWabe/ehY8977KZpglAKSZbhuG7rpGmHL9swTTz57Tc4to1z589j/759Ld/bi4mJ8xnbcWAxsbJ+wT2mdoZ9cXERFy5e7PtccdFzJeMuV512833HLVTSNA0LCwsYHxvD2bNne5KyUFUVlm37re8iciSGYfiEggEsioQQvzVdh2vzQu+PC4H1SF0rFlGpVpFnmvKUUgiiiAsXLmB1dRU/37qFyelpnD1zpm3RlYAWchrM2+ec9kHsZnYLe95jt0wTsiBAIL6UKYDtSdMOXrbjOLh79y7K5TI818Xy8jIWX7/eWtFDFLadhGEYAKV9xdY5uC57qxh7qVSC67oY3ckO7s1FTd3S5sKl46y6MMxWaWawBMUrYQYLfx8/bvP4Qjz85n8Hn+tQ2djumqOwubmJv//97zhw4ADOnjvXsz6RLMv+vG/BjtE0DckBOAkcsRYtVq3a7WKSSqWgKgrKlQoc5vWHQz8TExP487ffwnEcfP+Pf8Do4G23O7skSfBcF5VyuasxfkjY0x47pRSmriPL4+u2DUmSouNmLSaaYRhY+PFHZLNZHD58GGNjYyhtbqJQKODe/fvIZjKYmJjA5NQUhvP5notkiD/g1slbzwuaFg8q7ieKYkv1u9eLi9g/N9dTyXg/CNPhAhYD3ZKcDRAuaGK/NwhANTFY0PT5SI5589+ijhH6d8Ck4eeOuFcBy4b9u5OE7/LSEm7fuYMLFy70l4zHFjfbME0ksd2Y6bqO1AA9Ul6N2lZNkkZXncbBcD6PlbU1lMplDOdy25wxWZbx+Wef4fGjR/j+++/xx0uXWvYybbcIiYIASZZRZs7NTvVg2EnsacPuOA4Iozk6rgvPdbdvrdpMwlq1in/++CPm9u/HoUOHUFhZgSyKOHjwIA4ePAjX87BRLKJQKOD2zz/DMAxMTU0FTX+79qzbGFGD6Wy35N73AEEQ4ER4c5RSvHnzBl9//fXAzsUOvPVv0igdTNGUfIsygBH3h4eSemnK3S/CydN25erhf9MmgxK+5ufPn+O3X3/Fl19+2b5naBdQZBmGaUZqrmuatr2rUp/o5LW3K+3vBFVVkUgkUCqVkG0hEEYIwYlTp5BIJvH9Dz/493J4ONbxg8WXMc60eh22bf9u2D9E8C/Ktm0QIFrJLmKibRSLuHbtGk4xrQrbsgBC4IRCF6IgBJ1izpw5A61ex3KhgHdv3+Lu3bvIDg1hanISU1NTvrBQx8G2yOhT6jcBkKSBTjKRFfQ0Y219HUlV7Z3Hy71XzhdnoS6KUGyVsV+84CPdSwkAW4Z9V5KnPYTemndmBD6r58GDBygUCrh85QrS6fQ2ZlWvCWJJliEwiYEow54ZMFe7Y5Ww6/ZcE0EpRTadRr1eR71WQ25oKPI9AHDw0CEkkkksLCzg008/xXREK8fmRSg8dkkQUDOMnsb5IWDvG3ZmMEzL8id5jIdjeXkZt27dwmeffoopVrwhSRII0GDYOfjkSKXTOHz4MObn5+G6LtaLRawUCvjpp59gOw4mJycxNTmJicnJyL6OrQooTNturWvTBwTG2eUyqhyLr1/7YZhOCBlwIBTKCFMWm0IrLdFD3JWfC9idXqfdVFGGQULhCsdxcPPmTdiWhatXr24Z3+YdSyjkxBcH2umeYsv71A1j2+Kg6/qOUFkFQYhMylPPgwf01NOUMmquoqpQZBnVej3SsIefoampKVz68ktcu34dJ0+dwvzBg51OsnUNkgSb9Wr4GLGnDTv1PAjwHx7qeZATie0PYdPvL1+8wMNHj/DHS5cadK2JILQ07M0ghEAURUxOTGCKPTjVeh0rKyt4/fo1bt++jXw+jwnmzeeGhoKdRdQ21tB1CIS07vDUI0RmGDzXhcAeNtd18W5pCadPn47+UChR3Iqv35OB7voTPnbTY++FFcPfT+Hnb35cWEAmncYf/vCH9otTuGp2awBBbL/d9SvMsNu23SD4Va/XY/fU7QotdjJuL2EzSgPJBn6N6UwGpc1NaBE5gublJD8ygsuXL+PHH3+Eoeu+tg77W7MjFZ7PIqvMrtfrSPfYpm83sacNO+fVWiwME8mGCSXhfn30CK/evMGVy5cjt6iiJMF1nHjnJqTB+GXTaWTn53Fkfh6O62JtbQ2FlRVcv3YN1PMwOTWFiclJjI2NNVC1HMfxxb5Yk+JBQhBFgBC4nhdMhEKhgOF8HiprRBKe/A0eXwxvsRMaPt8jo6jbIqFBIhyT7QqEoFIuY2FhAfv27cPJEyd6T1KH5m/z64TNb0mSIIkijCYlR90wdoTO16pgiT87sSV4OfOp6fV0KoVyuYxqrbbNsEftetOZDK5cuYKFa9egaxouXLwY7FDDu4vwNyCyZ0OrVID3WKA3KOxpww6mA+LYts8mAZtsETS7O7dvo1wq4eqVKy31NURB2EYP7KQYF+XZSqKI6akpTE9NgZ47h2qthpXlZbx4/hw/3byJkdFR35ufnAxCHTvR1UWI4LIvLS9jenq6gTIYvp6dQj8c9nbJyx1FGxZTO6ytreH69eu+Aujc3M4UtDUxiRRZ9huew5+Ltm37/P8B7wIDEF/qOvy9BInuGHmibcn0EARBQDqVQrVe9/XkQ45QqzupJhK4/PXXuHHjBq5fv44vvvjCN+6c6tz0PRJCjSNcIwAAIABJREFUIBDit538CLG3DTtjwlBWdNCA0Jf59LffUC6V8NXly20LGyRJgt5lQiXQGWfnbDYDBMBQJoOho0dx9OhRGKbpe/OFAv759Ckc18XExAScuTmMj40NNHnKvRaX3SMKP79w/PjxgZ2jLQZgjD0arRPzPtBLQvP14iLu37+Pzz79FJNTU74X+x4WJUmSQLHV47Rerw+UYdWMKOqj47oQO1xrs3JmK2QyGVRrNVSq1UbWS5vFVpQkfPnll7hx4wbu3buHC+fP+2NtQdEUBQHa74b9wwOhNGj9xZNSzQmnQqGAZ8+f4+rVqx1bhAmi2JBMoS1W+8ixYIvq1u7dsqJgemYG0zMz0DUNhdVV6JqGJ7/9hps3bmB0dBRTU1OYmprqOfYXcMMphSgIft6AEJQ2N6EoynuNKYaZMb2gWV3xfaKbc1NK8duvv+LV69e4/PXXyGQyPXUf6hWSJAVFerIso1qtIstyOwBaM7L6QHNYxHXdts9YOy+9GbIsQ1VV1Op15HO5bcqeLcckCPjss8/w97//HS9evsT8oUNb56eNCqBEEGD8btg/PFDXhWPbSLIep/6LNKgcrFaruHXrFr744otYFXiiKPrJnLA4UBdGhbD3t/LeGwdPYZgmhvN5HDxwACdPnoRt21hdXUWhUMCvv/4KRVF8ps3UFMZGR1tqujQU7jQMyI+/8graQqGAqQha2I6CkFi68K3guW5PzZgHgVZFSc3wPA937txBpVLB1atXkUgktvTa39eixJLvXKO9VC5jKJxHaqoxGISRJyzOT+ETGSgQSXWM66U3I5vJYH1jA5quI9OFMyLJMr748kv88P33GMpmMTY2Frn7IvC/O9s0IX9kDa73rGH3XDcoHY8S/LJtG9cWFnD69GmMxmyYy7P5tm33FfPmngzneIenE4/LW7YNx/OQDU1YWZYxOzuL2dlZUEpRKpWwsrKCx48eoVKtYnx8PCiO4gtVp4dFFEV4bLFabseG2Sn0aUDoboZiYrzHtm1cv34dsiTh66+/7qlx9KAgy7LfZMZxUK1UWlNaQ/mVwBnp5Ii0AJ/PnE0WZsT0atA5EokEREFAuVrtyrADfijns08/xY2bN/HNN98gmUw25MM8zwsS45qmIfe7Yf9AwOLroiSBRiQ8b/30E8bHx3GwE7c1BJ4p5zHpfhDE3pkH36yMZ+g6BKBlP0pCCIaHhzE8PIwTJ07ANE2srK6isLyM+w8eIJlIBN786OhoS70RSRRB4BerVKvV2IvcwNCHd9iOcvm+0C7GHgh5jY/jk7NnGxty7EL4SJYkv1jPcVAql3E6ggceRsMuN7TT7er7Yu/3XBcILcKtGC/dQBAEZNJpVKrVoHl3N8/lxNQUDh8+jGvXr+PK5csQGKUZ8AX3iCBAFATomoZczOrVDwV72rC7rgtZknyPNBQPffToESzbxh+++KKrQ4qStK36tF/wiRQUn1C/OYLpOEglEp0NAHs4ZFnGvn37sG/fPsDzsFkqoVAo4P79+6jX676eDfPmw2Xk/JpWCgWMT0zsmERv20vo8XM8HrtrHrvnBfz/ZmxubuLatWs4duwYjhw58p5HFg1BECCKInRNg2kYXRW8NXSf4r/HMKIEfpLeZeJfnB8+KMG8TCaDcqWCSrWKsR4YPseOHUOlUsHt27dx8eLFIOFrcQkGSmHo+kDG+j6xdw2758F1XSiKErABFEXB0rt3WFxcxDd/+lPXBoG/33WcgcdHw8VJhq6DUNq+n2l4G8s9qa2BYnhkBMMjIzh56hRMw8DKygpWmKFPp9OBNz8yPAyREBQKBUz3KTrVM3r12HepiXVwfkR73kvLy7hz+zYuXLyImRZt5wi6awI9KCiyjPX1dWQymZ7vW1D5yuPSHYw8IQSu40AAAgM/KIiiiGQyibquY8TzulfCJAQXLlzAD99/j+fPn+Po0aN+QSP8ClnLtmF+hNICe9ewM49dUVXYlgXbcaDrOm7fuYOvvvqqpxi5KAgQ4G/TdiLpxY27aVmQVTV6knKDvvWhjsdVEwnMHTiAuQMHQD0PGxsbKBQKuHv3LnRdRy6fR2FlBadOnRrk5cRCP6ZtN4uT+Pmbz/3s2TM8efIEX1661FF8SiSkpbrmTkGWZWgD6ucZ9uJbOTqcKGC7LiQWyhw0spkM9LU1VOv1xoRwTIiShC++/BL/9V//haGhIWSHhgDq93Dght1znJa7sw8RH89Iu4DneUGTYlEUAUWBZZq4fecOzpw+jXw+39NxSahJ8E7Btm1QSpEIN+kFGsrH+wERBIyOjWF0bAynz5yBrml4/PgxQAh++OEHZLNZTDI6ZT6f33GjKQDoJbBFGZXVYf9zlklDQi6UBOS/b/sbpahWq4HnGVSSsusOV5YGhVDsd9u2IbHkMwDc/+UXrK6u4urVq7FK9d+/v+7nVOqahnQLOdueEarXEAhp+D744rVTDdETiQRkSUKtWu3JsANAMpXC53/4A27evIlLly75Tlxo4TJME6nfDfsuw3WD8mVRFCEQgndv38J1HBw4cKCvQyuMO7tTMJmKJE90NVSA7oCRTaZSECUJ+2Zncf7cOWxubmJldRW3bt2CZVmYYnH5iYmJvtvxRaFBq4NuNc7gPz3PC1g7lCXhuPE2TROGYUAQhLZhBc7sCH6G/s3HQNnxmxeBdtB0HS5rL/fo0SO4joNPL16E53nQNM2vXhQEEGYkBNaOMNxA+72DEOiatnMNVKiv7cIrtIkgwLPtHa8OTqfTKFUqfleoHguvxsfHkR8awuLiIo4eObJFcKAUuqYh9RFpxuxNw+55DfQqSgieP3+OEydP9j25FFkGdV1YTbobgwClFKZpBm3MoiRFA699gDH+tdVVzB08CApggqlPfvLJJ6jX61gpFLC4uIjbd+4gl8sFMsRDuVxvYl/UV+lzHQeu68Jmrdtc1hUnyphyAykQAkmWg36tIksG5vlYwh536LPtQAhp6+U1LKwhL991XTiOA0EQcO/uXWQyGZy6cAEA4z47TssEIR+7x0I5oihCEEVfX3ynw0qUolatIpVOw+HhkYEcNiRh0FTo4zBGTFR7vkEhnETt1bADwLGTJ7Hw4484evRow+v2R9b/dG8adrDO9cxbX3zzBrIk+V1X+nlwKIWaSPgVaYYxcMMecNfbCDOFaZJ8TP1ck6HrqDMJ1GaJ0nQ6jfnDhzF/+LAvQ7y+jsLyMq5fvw7P8wJ1yomJiW1a380G3GX9Zl32kAfXw4y0wnTDCfO+ozzcZrjMm99JbniDd920YJimiQf37+PgwYM4ceLEtnGGdyAepaCeBze8G7FtP1EXuh+CKAYL1k4YfN4yTlXVIJTUK/iow6GtKLhsARSZTPQgQorNEAQBqWQSmq43FhB2iWQigeHhYbx6+TIw7vz7+piwNw0786gE5hU9fPwYn3zyie9JWVbvwkeEQJZlEEJgmCbas4C7GC78UIBlmhCo39O0U+FGA00S6NnAr6ysYHJyMugy1QqiKAZ0ybOUol6robCyglcvX+LWrVvI53JB7D6RSATd6IPPSxJEQYAiy77RYr+Hi1e6BfW8XZMTWF1ZwZ3bt3H6k09wOFSWHgZflKKMDDcWwYLnefBc1+/05XlwWMcsjmaDz//vFpVKBbl8HrIowrasnvRiuGGOUzFMKYXjOMFzE5ZZHhTlkSOZSKCuadC7pHJyOI4D27Zx/MQJ3Lh2DQdYjUs/RVS7hT1p2Cl7SBRZxqtXr5BJpzE7PY1KpQJN15GT5d48BsaFV2TZbyzd7zj5ZKF+VZ/JFp1uJn1YRreXqbdcKGB6ehqSJAXNvjuN2XVdiLKMyakpjIyOwrZtlDY3UdzYwKtXr0AIaeDNK+yaosAr/HoZO6W050bP/eD169e4f/8+Tp85g7n9+3s7SCgRGxjp8K6H73jaGHxCmCQv/z8G66RSLiObzUJWFNhdeLeBMefeecz56bIKcL6rChRPufLjoAw8pUgw6RBD13sy7Drjq4+NjGB6ehrPnj7Fvv37/RDh7x777iPsAT5+/BhffvklAL/DUblc9hMs3epQhyafmkigVC77k7MHwxI26Bw2C1lwfelePJrwIx2nuw/1PKyurOD8uXNwXDfoqxo2wtyjdlgsnDctAXwvUpZlpFIpjI6O4hi7F5VKBSuFAl6/eoW7d+9idGRkS7gsxMYIN4no5eHuRV2xH1BK8fjXX/FmcRGXLl0CCOl9xxAyzpHX3sngsxi/w2i8/FiSKEKSZf8nKz4Lo1ypYHh42A+d6Tpsx2nZmzcItXCj1sN3xDnhzYbdP1yIJtlHeCZY6AQBiqpCMwx0Wz9tMkp0ivU9OHHyJP7H3/6G8clJX27gd8O++3CZ57m4uIiRkREMM3qjJElQVNWPj6tqz3E4RVECD7ubRE2Yttg8hTmFkseq+zVXzcY56qEpFotIZzJQVBWUxV55ostm21KHF2PBD6coigJZkiBLUssq1Vwuh1wuh2PHjzcIl/3222+QJMkvjpqextjoKMDjxz0YDc/z3psAmOd5uH37NqrVKq5cuQIiCKjX630vLF3vVkIGn+d4PBbuiDL0IjPw/P9yuYwDBw748XtBgNNk2IM5yn72C9u2IbHcCb/ebei0yHVA+HNJVUWpUumK3ECp31NYFAQ/DEopUskk9u/fj1evXuH82bO7UkzWD/akYbcdB57n4cmTJ7h8+XLD35LJJGzLgmEYPbcFS6gqCCHQTTOWYQ97KATRk9s0TcgsgcgxqDhkKyNfKBQwNTnp5x5sG3VNC/S6AX8hTKgqZGYUepEbaBYuq5TLvjrl48fYLJUwNjYWhG3iKGyG8b4EwCzLwo0bNyDLMi5fvgxRFLdCcf3uGHpc1MLg4UGFS1M3GXpOC6UAyuUyFEUJQpWGafrsHGzlega1C+LjaDCwvA4g4pq5AqTA530P40gkk6CVCvQuyA2GacL1PGSbuP0nTpzAX//zP1HXNIz87rHvPjzXRalUQm5oaBuVTRRFKKoK0zCgqmpPCSiJJf7MGBQonnhpZdCBrTBMc5uyXmPP7cAfWtd18e7dOxw7dgybpVKw1ZQkCdls1jfkAzaahBDk8nnk8nkcP3ECpmGgsLKC5UIBjx49gqKqDTLE7cJc70sArF6vY2FhIaCA8tBLsP3f4fP3AsKS/OHG2I7jYGNzE4lEArbjoFytwvU8mMwAcvmKQYa2XNcFZXmAMIICpqixY+u7FRBz/oeOJbMwlK7rkc2um+F5Hgxd93ehzBZwh0pRFIyNjWFtbQ2zveZSdgl7zrBT6rfCK5VKGB8f3/pDiLaWUFWYpgm9Xkcmxpcf5V0oqtpWHKjZS28HHoZRmimDnUfWFRzHgWXbsCwLpmmiVqthKJdDMpGAxDw+m+vrvIetp6wo2Ld/P/bt3w/XcXzhsuVlPHzwANVqFRMs+TrJ4pxhhOOqO4WNzU1cv3YNx48fx+HDhxvPD2zjzHcDfnffS46A8f+rtRpGx8aQzWbh2DYMy0LVtlGuVGCqKmQ2BwZFH7VZGK+X43EDHyf+3jxTE6qKuqbFSgzrug5K6XZ2ECHwXBf5fB7FYnGbQuyHjj1p2AFgo1jE3MWLke8hgoBUKgWtXo8Xi4vYOqqKAq1e9xkiTV5/4E3GMOoAYLGipOZJKJD+tUQcx4FpWbAsK+gSL0kSbMvyhcJCeiaSosDStAajzg3YTiQqm6maXIb45KlTsEwTBSZc9vDBAySTSUxNTflMnJGRYIw7RXdcWlrCnTt3cPHiRUxHCHn1zch5Dwtng3NBCIpraxgdH/dpk6oKVVUDxo3AdqCmaUIQhIEYedu2IYritvsURzgsdBFB4VncOxaX9sifDVVVG3TiAQSa7MMjI3j29OnvPPbdBqUUlmWhpmkNRisMQggURYFpGNDq9c6c4BYeOyEEhmE0tJILh17igIdhWrWj6yXO7jgODMuCHTLmsiwjmUhAVhSIgoDC0tK2snJZkoJte6skLl+wKAbgbXJPLOI4iqpibm4Oc3NzoJRiY2MDK4UC7t27B61ex9jYGIZyORyYmxtooRilFM+ePcOzp09x6dKllnOo34WOf36Qy1KzIefg/14vFnH8xImGz8iyDEopsqxVn23bsNmOzjRNv9pXUaB2aeQ5LbbVd9MuHBNxMHhgu7MY6pA876W3oT16nhdIgyRayGN7ngdVUaCoKjY2NuKN9QPBnjTsGxsbgRwtgO0TgT1QmUwGlWoVNdb/MXLb1mLyKYoCsEKldDrtexO8+KKL8VpM9Ktf48Q1pA3TDPjoiiwjmUxCUZRtnu36+npQgMEhhRoxNFeSbqvADLF7eB/ZbtQWm5Nj7TwyQghGR0cxOjqKU6dPQ9d1vHv3DktLS3j27JkvXDY5iempKeSHh3s2uB6luH/vHtbW13Glg5BXP0nGKMMbe/EO3ze6pW3TSUZB0zS4rotMU4JQEkWY1BfqEgmBqihQFSUw8o5twzZNWKYJURShqioUVmzUDg7Tamq1GHR75wgQPF/NrzffOSIIUFW1ZeN5SilqtRpc10U2k/Hvf9OYSGjhGRsbw+rKSpcj3l3sScO+ubGBsbGx8IuNxp1v40UR2WwWlUoF9VrNlzKN+bByvrBhGKA0msIYB6ZhbGPDhNHpofcohWEYMA0jeDhTySQSiUTrMAWlKBaLuMC0TcLnEkXRXxg68PxJk1EOj7XB4Mf07rvaajMq2sjoKIYyGZRYU5Gfb9+GZZoNsfm4C6bjOPjp5k24rosrV65sW9iaMcjEbatrD87RbMCb5kOcBWZjYwPDEcJffDF3HQdi6JqFkJHnu2DDsqBpGnS2440KYXDYTfz17RfdXXilAew+tKsIbUV75Ebddhxk0ukGfn3zfeUx+snJSbxZXOxlpLuGPWnYNzY2cJR3remQeBFFEel0Glq9jlqt5ns0MY17QlFQrdX8CdCD9+YwDZV2niF/sJvH5DgODMOAEeK/p2J6U9VaDZKiRBZpybIMjSWUevFItxn8CG+ewn9oGhJjfJsdEzzmKUoSxsbHMTY+jjOffAJd01BYWcHbN29w584d5HO5wMgPSUl4FQNeWQdJKpD3+/UNhq5j4do15HI5XLhwIXYlZr/dpoICIB5C8X+JfA/QX+hrfX3drxtoAjdsjuNsS96Hz6uymLxt2zBDoRpZlqEqyraF0HacQKytFYgg9Fz4E1TCtvh7K9qjpuuwWCFSp8XbY7uy8bEx3Ll9uy8NmveNPWfYa7UaLNNELpfzX2gRww1DURSAUtTqdWi6HltLW00kUKlW/SRNt5Ws8NkwlNKWlX8chGmqUOo34TBME47jgBCChKoimUh0RdssFosYayHbyh9013UHKq7VbPDDDzX1vEDULEjWor1H3MBKoRRezYRX0iGWdUyVPYyXs7BrEjbWKig+e4KXyUdwBWC4BOQ3gXwZSM4OAxPA37//HgcPHsTx48djG892C1+DMQ7/HoqBe+FYMYmnu9IPisUizp47F/k3SZKC0EkncBql63kwTROWZcG2bQiiiISiBB3LXNft2MxmEDueVl5/QHvUtID2qBsGDNNEgu02OsGj1C9aUlWkUiksLS35rSc/Auw5w764uIjhcHw9AgQIJFM5FFVFwnVhMn3vRCLRMr7Ot4DJZBKCIKBWr/dk2G3LilX443keNBZu4ZMtnUpBVdWedgrFYhEjLQw7F2uyHScw7PabTWjXXwCmg+S/HYRydLLrc25D6N5y4xw25sFVuR7cmu9lO2Ud3qYOr2ygVq7Aqmpwiw7cig64HrYvCRQZEGRAcYAQGCqwOQwUJoCnR4CEsQHqeTh48CCOHT/eGLsO5xQQYaz5otR0Lc0LUuQManI2dprwaNs2qtVqywYzsiwHDV7iLmwiU1NMJhJ+lyHThKbr0A3D12CP4xgMgNEU3H9B2Pa8JhMJ1Or1QEZZ13UokrSNOgt+jG0vbRXAjY2N4fnz578b9t1CrVbzOantDHsLNkIqlQIX1RcEIfDkw+BhBK7al0wmUa/X4Y2OdmVkKQDLcZBs4zl4ngedPSwupVBkGYlEouWWOS6KGxs42JQ45RBYZ3bHceCZDup/eQTtH8+C+2D88g4j/8cVyAe6VeNoBAVAXQ9e1YRX1uCWNNibGtySDresg5b9n27FYEY79ElKYKgUngA4OkD8lwDQrZg0Cb3fjwVBNYCpAjC5DKxMAa/nAHjAy5cv8eLFi0DqYHx8PKi+jVouPM7SiEvZi7j294nNzU3k8/mW8XAuHtbLLo2EYvG8yrVSrcKybSRUtUFOIApdsWOaQPmuhxCAPZPhIyVYU5wKD5cymvP2A20PdfJQHzfs/Dn/WLDnDHuAHr2BVCoFz3WhsS8xbETDRj38/nq97ksUdOG1cw2WqOYDlCVEeaxbVRSoyWTLB7Mb2LYNrV7fClVFQJYkVJ8WYP7HU7gbTZPZo9Bvv+lo2Knrsni2AbekwWMG22MG2ypW4VXNwMptaV5T/78w+YMfk/C4fchwE4SMOHtv1Fcfeu3NHLA2Cpx7IuHaERv//u//jmq1ipWVFTx/9gw//fQTRkdG/Nj81JRfah4yGrybU6ekZ6tw0vsWlFpfX8dIRHydQ5QkEPQffpMkCaIowrQsiKLoF8PZNhKJBFRGD96GfhbH8PHIdhmCRCIBz3X9xHE+HzBgtg0hwttvNuwg0fLLHyr2nGEnhMBFjERTiwlFCEE6k0GtWkW9WgXNZAJ99GajDqAhHNONYW9VlWeaZlA1J0sS0ixzTykdiBDRxsYGcsPDLb0oqlvQ/+MRqr+8RtoAhAjT5K7V4BbrW4a6pMEr64Hxdss6vKrRxjWl8ByXWT4CHoTxH0wE/2+jsYWPQHxPvRtQVcSzowKMBPBvyizy//tR4L/+AyAEWdbE+MjRo3BsG6tra1gpFPD02TMIghB0jgqzrdpKHjT93P4GFj54DygWi9sqZ8MQCAl2ab00eQ/DYY3ec4w+bBgGdMOAaZpBHcUgCt0i2WLsmeaeu8P17h2npVFvBd6zNdz39H0qifaLPWfYAcT6EggzlFHvEwQBmWzWN+71OhzXhaookSs2j8fX6nVMhCmWHcDbqvH4OhfhchwHoihiKJvdRtUbRPVnu8Sp+cs7VP+/u3BqBogCuCIgROTUrCcrWP+//nvnk4UfPLrlWfuVuSRkqbfi2d3Y6rBhJ6oEMZ+CmEtCGEpCzCch5JMQckmIuSTctIgbd36Gkkjgm88+a5tslmQZMzMzmJmZAShFpVLBMlOnvHHzJkZHRvziqP37u68/4Pek2bFo+j3w+LvhuEfA8zxsbGzg8z/8oe37BtWk3eIOC8vVpDMZqI4D3TBQ13WIIQMP9JZfoEDrOgIW2rFtG/V6HZIsQ+hw/6Koyjy5/TEZ8zD2pmFH5wnTqeqPEIJsNou6rkOv1+HaNlLpdKRxT6VS0DTNZ9TE9Not24asKHBdF3VNg2VZIIKADNshNE8oQnzt73599mKxiEPz8w2vUcPGxv/9P+Cu+2EXwT8hXIEifjSfsieuRTgkHC5pWYkU/bKQkCFwo51LQMwlQZMUaj6DoYlhCLkESKK1ga3XalhYWMDU9DQ+OXOmuzAdIRjK5TCUy+H48eOwLAvLS0t4t7SEf/zzn1CZcNkkEy7rlQLZvKg1UyF7Rblc9ovUOuRlJEmCwSqVew35UUphMwpkeP5KkoRsJgPbsqAbBmqaBol1b+I8+m6us52x5RK8nIqZGxpCqVLZrjIZPl7Ea7wBTNgB+JiM/J4z7A0VkgNAkhX6GLqOarWKTCazzdtLJpMQCIkdjnHY9pC6LkzTBCEEqVQKyRalzQF6jEdycI7/Z59/3vD65v/zQ2DUAYCAQPIIHKHduWiQWWx4V5wbH/ZM07JvsPNJkGwCQi4BIZeEkEtByvuGnKjbjZK5uQlFVSF2oKZubGzg+rVrOHHyJOabFrReoCgKpqamkM3lkM9mUalWUVhZweNHj1CpVjE+Nub3gZ2c7FkWOhYoDWiw7QxjsVjEaJv4OocoikGcvVfDzptqtFpEZEWBJMuwTBOGaaJaq0GRJL+P8CAYMkwmwHYcJFTVV7K0bZByGXYLw94qAd7MWW+1u/9QsecMO9CFl9PBUHKd6oSqQhJFVKtVVCoVZDKZhuIGURSRSCZRq9VihWPqmoZytYpsOo1MOh3E6TsOF/1NsEqlAoVxjcNw1yrb3it5gC0AftCE+ZPcI9/GSWwx3ozKQiMJiPkkxHwKQi4FklVB8gkIQwkQpXEKxhFb4pz+Tiykd+/e4e7du/j04kVMRQh59Qo+Y4goIj88jPzwME6cOAHLNLGysoKVlRU8fPAACSZcNjU1heGREQiC4NMoW+R2uvLOSVMnohYoFouYnOxMT+Wec7tCpU6wbNuvNm3zeUII1ETCl85mOvFWtRoUQHVCVBEX4C9INcZ+SadSwfMpiqLPQLNtRKsxRSOqGOl3w/6hoEOCqlWcPejJGHpNkiQM5XKo12qoVatIplINTTbihGM8SlGv11EulyEJAkZHRrpiIfQbjtlo4b0J2STcTa3hNdEFKKFwCIHk0m0Ec5KUIY2mQXK+wRaHfK9bDOLaCUCKDkt4rKHCNsQ0bB01aSjF06dP8ezZM/zxj39syd/uFeGGzGEoqor9c3PYPzcH6nm+DHGhgF9++QX1eh3jExO+3MH4ePetGbsEZ4isr6/j1OnTsT4jiWLsQqWo89mWBYUtEJ1ACPHZMoqCOntubNtGKpVq6+RELYAWkzoApdt21AF9t0X+IDK+Tn0Bs0RooaGU9tS7YbewZw07Tzy1Q6s4eysPSBQEZIeGUK/XoTNRpVQqBUJIEI6ptwjH2I6Daq0G1/MgiSKymUxv1LIuS+/DWC8WI2lvuf/t37D5//4DVLN9hgqlPj1YIbBF33tvRvZ/OYvEZwd6GkdLxAw1BR5zxPdLPQ/3fvkF6zGEvHpFnN0CEQSMjIxgZGTf2DOrAAAgAElEQVQEp06dgmkYWFlZwdLSEu7/8gvSqRQmuTefzw+kWKfh/ISgVCpBkqTYjZ0lWYbZZaESh+048CgNkqKxx8nySoIgQDcMVKvVQLguCg2S0owWbDAVykw2GznudpW1UVfZ0KeVF8/9HorZXWQyGbx+86bnz3OaUysQAJl0Gjrr0uI6DtLMS0gkEqhpGkLtPUDhh150XffZLpkMyn306vRrbbYXVMRBsVjEEa6hEwyQQprNY+z//J9gvliHefsNzF/egegWJI/C5jGZJlCtfwZFJOJcW5hZEoLrOLhx8yY8z8OVy5e7NjLxh9jZsDdDTSQwd+AA9u3fD+p5KDIZ4jt37kDXdUxOTGBsfBxTU1MDkyFeXl5uHYaJWESlUJy9W6fDtiwQsr1bUlzwRGpd0wJ2WJI1luYIj9bzPGj1ut8YhklSt5o3kixD1/Vt3n6r+LrjOCBghp0Vo+m67osEfiTYc4Z9//79uP7997Asq6MGC4CGCU4pje0Nc32Weq2GaqUCRVWRTKWg6To0w0AqkYDjuqjWanBYMiedTgeeQycBopbDBYKkWTdwHQearmNoaKhhMgf/IgTq4XGoh8dB/9ezsB4VgJ9fovSyAJcAYtPpxIkYnadaoN3Im6sHoxAVCjF0HQsLC8jn8zgfU8irV3i9ctB5CEkQMDY2hrGxMZw+cyYQLltaWsK9e/cwNDSEyYkJTE5NIZ/P9+wprq6u4vjx423H4g/IfwZErvTYpWHn6o9KPxx14iuLZjOZwAt3HAepVKpBgdHzPF8vSdfhwVdx7BSblyUJdUaBjHNd/H2EEHj+BWJlbQ3/8wCS7+8Le86wJxIJJLNZrK6uYn8MXQceZweaPOEYhlORZUj5PHRdh2EYvrfjeajXaiDwPXVCCIay2WCRsdtUnO4kKtUqMqyZR6crI7IE9dw+jJ2ZBllahfCkCHpnGc5SCSBA8ot5KMcneh5L221tjHBMc/ekcrmMa9eu4dChQzh+7NjAwxrb4Hl9KzuGkUylcOjQIczNzcHzPKyvr6NQKODWrVuwLMtPwE5OYnxiIrY3b1kWSqxZeEeE7qdACBzPQzdlSjxpOogdEg9ryrIMTdNQq9WCylXXdVGv1wNKZqZDPJ6DO1EW02bi1NJW/HXX84L7TACUKxUoiUTLpisfIvacYRdFEWOTkyisrMQz7KEYWi8QCPEFuRQFGqsYffPuHWZnZpBIJJBJpxvoY1z4q594HSFkSyejEygNutOnM5muEq+iKELJJoGLs8hePQmqWaAehZDpozpxALHKcIx9ZXUVt376CWfPnsX+99Rw2KO0rchcS8RYtARBwMTEBCYm/IWzXq9jZWUFrxcX8fPt28jlcpiensbU5CSyQ0Mt7+XKygrGxse73rkIogiP9/dk86zT92Xbdl9hGP9UjeeQJAmZTAa6YUDTNFSqVYiiCIFRg7vZ8cqyDDCPveGcEe+1+Y6aXQuFfy/nm0OYHzj2pGHft28fHt2+jc8//bS3g/Rg5CVJQiqdhlouY3NzExXWuCP8YFEg4Nj2A4IOIQu+A8GWEaxWq34YpkvILD5JKQVJKX3XB7Si+3HEof3xv79+/RqPHz/GF//2bxjtouq3X8RJzLf6XDtEXXs6ncb8/Dzm5+fhui7W1tawsrKCa9evw/M8X7hsasoXLgsZu5VCAVMxaI7NEEURDjeAfAfbxsDzKs9B5AWar18QBD+M4nnQTROKLGNkeLjrBYT3XeVGm8LfqUc5RlwOmzNgCIC1YhGXW0gef6jYk4Z9dHQUpVoNNU0Lwg+twDnRsZJ2beCwbWImk8GY4wCeh1qtBsMwkMlkoLDMPI3Qh+kJUewY5p1HGZBqpYKZHiRHFUWBrut+gUefqpKDAvU8vHzxwme+XL6MzHtMagUdovqIsbdCp0VNFMWAF3/27FnU63UUCgW8fPECt27dwsjIiB+bZzvWEydPdj1EURB8XSSWICZs3JxBxtUuObjcb685ozDC1++6LjRNg+04UGUZ2WwWuq4Hz1i31ENZFGGFKI+8nWMzbMeBHNpRu66L9WIRBw8e7PWydgV7zrADvvc8zPoUZjokPAI9juCF7r11hxVHgFIMZbMQCMFmuexrVVsWyqXSVsPcAcXXG9gxzKC3K16qVKs43tTvMg4kSfK9HcsaiGHvV9nQdV3cvXMHtXod33zzTd+iVd2Cj3+3df4IIchkMjhy5AiOHDkCx3GwtraGQqGAJ//8JyzLwpMnTwJvPq4hFJmEr+e6EJrmKUVot8gWOMs0QQRhIM4KgR/j5slTAr8+RJFln34oiqjVaqjVaoE4XlxIsgzDNIPz+LIXjbtH13XheR6k0JxaLxYxNj7eULPyMWBPGnZRFDEzO4ul5eW2ZeRcMTE8Wbst23ccxzfqjEcriSIy2SzK1SrqmoaJ8XHouu6zZXTdT7oNMLlHmVEHWocHqOuiVq/35NkS4ve3tNhD0S+aNVG6gWlZuHHtGgRJwsVPP33vRh0IFUf14LH3q/vSDpIkYXp6GtPT01BVFfV6Hel0Gk+fPsVPP/2EkZERTE1NYXJqqu0uVhCEgATQyjjw6/Aohe26UAex4DNmDW+MoSrKljPEnkmBcd5r9bo/n1Op2LRhSZJADQMO88j5ORt2H03xdcBnFh1txSz6gLF3DfvMDH54+BCX2nCOuQey9UJ34RjbcXwGjCD4HgTziiRRRDqVQqVWw8jwMFKs25HOqus2SiUkWUu7XtgVYXW7OFK+NU1DMpnsuXJOliSYhgHHdYNr7BVxTFuU8a/Xavjxxx8xMzODg4cOweEJvvcMfr+7jbHvpFFvRqFQwJkzZzA2NoajR4/CdhysMqmDJ0+eQJKkIDY/NjbWkAfiHrsb4/7yxV7tw5ulnL5omr7wFqXIhkMtTUQBQRCQzWR8z71eRyqdjrWTVFgClaunRn1/juP4EsahOb62vo5LV6/2fH27hT1r2JPJJJRkEm/fvsVcBFsi7K0H6KKq02INK3jlXLNw0tDQEGq1GsrVKsZGRoIxiaIIQRBQZ3z3pKrGNrrcoHeLaqXiN4voETx+6lgWpB0uhQewbddULBZx/fp1nDp5Eofm51GtVnetCjAIxXR5/jhJ4UFck8GqN8MVxrIkYXZ2FrOzswCAEpM6ePzrr6iUy35hFGv4nUqlIIaZMS1AKYVpmpDYfO4W1PNgsIbYlPrtHrl6aqTOesOvfhiqXq/7DXFSqY7JW5n1NOCNP4Jx8GPCN+zhXEGxWIRhWcF9+5iwZw07pRRffPEFHty+jZmZmW2e5jZvnf3enByKgmlZfvs8UfTLoSMeSEWWkUwmUalWMZrPB7xZvsVMJZPQDQO6aUI3DKjMg49KQvHPRjETRELgdjAY1WoV2R4YMcE5RBGSJPkPRZ+GPZbfGjLsb9++xb179/Dpp59iamoqOMZuFXd7PYZi3pe/vrq6iomJibYLTz6fRz6fx4kTJ2DbNlZWVlAoFPDo0SOoqoqR0VFkczkk0+mWtE7Ltv0CoS69dddxYFoWLNMMJAi4yB7g399A3AxoGRYlhCCTTqOmaQHNuF0cnIdsoqQFuFH3QsQGSinuP3iAS5cufVSdkzj2rGEHgJm5Obx59gwvX7zA0aNHg79HeusMnQyGZdvQNM3X4Ein2z5APJNfqVZ9zRJKg9CLKIrIpNOBgTcMAxbTkOZaGYFBD+UBmhGH0VOpVmNJt7aDwnj6fWtmxAh38cTwk6dP8eL5c3z1xz8iFxLy2k3dDm7Yu37YY4Zi+r225UIhWADjQJZl7Nu3D/v27QOlFKVSCW/fvcPzp0/x4N49X2ue6c2HjbhhmhAZHbEVwiE1x3FgGgYsRqVUFAWqqm7b6YavveMuhxBkUinUeYEgIW3zLq3yOxRbBp9fz/LSEmzLwidnz7Y+/weMPW3Yqevik08+wQ/ff4+5AweC6s+2Hl+b5KnDeqGKzFPv9PilmIEulctIJBKgwLaJLAgC0qkUUskkDNOErusoVSqQmPZMVNONxuESCPB3Gq1QrVT6pmvxnUS/nOU43jb1PNy9exfFjQ1cuXIFyQgRq90MxXQbhvE/GM+w93NdnudhpVDwm4n0AEIIhoeHkU6nMTs7C0kUsV4sYmVlBfcfPEAqncYU07SRZLmjuBiFP1+4QeeGV1XVtnkv/pPEuWeEIJ1Mok5poMfUii0jtAm1Wo4DURAgCAI8z8P9hw9x9uzZvvIHu4k9bdhdSjE0NITp6Wn89ttvOPvJJ1u89RZoFY6hgC8NCr9oJO7jN5TNYn19HZVarWFs285LCJKJBBKJhN/IWtNQrdWgCQKSyWTbh4EQ4k/YqL9Tikq1iqE+ud6SJEFgDYp7NexxCnscx8HN69fhUoorly9Hsh5202PvRQAM6CIU0yUrK4zNzU2km+SkewHfVcqKggNzczgwNwePUmxubAQyxJqmYXJyEtNTU5icnITSJHFr27av9+K6EODLJiRizBtuzLvSp2fVqNVaDZqmIRul8sh2ilFm3fO8QM8JAF6+eoVkMompycmexfp2G3vSsBPidxR3XRcgBKdOncJ3f/sbDs/PR3p/UZ9vfrg0JtObbpII6IRUOg2pXEapVPLlWduAwp9k3KuxWCy/zuhdKmuS0ap1XtRjoOk6JFHsW8eDEAJZlmEaBpBK9UTZ7OSB6bqOawsLGB4ZwdlPPmndcHs3QzGe11txUkz0QwddXl7GRBdhmFaQGGvEdV2AGTaBEIyOjiI/PIzp2VlQSlEulbC8vIy79+4hk8lgfHwcoyMjSKZS8ODnf1KsLV+DSmOLMCiAYF7FlswIPuZLe1RZn+JMOt3weV5gFUU+MDm7R1Vh2zYeP36MP1665PdL/Qjj68AeNewAK412HBDmBc/Pz+PRo0f49PPPO1cAovHhMi3LV4tU1a6LdASWwa8sLW2VakeA89HDDwDvduQ4DkzGIDAtC1VCkJBlKGw8hJCWHk6tz8RpGAoz7I7j9OTJtLvr5VIJ165dw/z8PI4dOxbkFyKP8x6pg1Hn7rV13E6CUoq3797hD01tD3sFYSGJZnAjmBsaQj6fx+y+fTANA6traygWi7h3/74vXDYxgemZGUxEtL0Lfo/4Hon/hp7GLIpi0PDGMM3InUvzGSmlMC0LsiRBFEX8+vgxJsbHkc/nP1pvHdjDhp0n+8A0nY8dPYq//PWv2NzYiNVRh8eCHdeFzpKlyR4ZIZlMBiB+T9RmTcR2BoxDkqQgWWvbNkzL8tuKWRYEQqCoKlRFgRgRW+R9WgcBLstqWtZAJ/0qUzI8e/489jHZAxIqvGrGbidPP0SPfXNzEwQYWLcoSRCCRCcHN4ICIb6TYdu+8acUExMT2Dc7C0mSoOs6VgoFvHnzBndu38ZQLhfw5vO53JbhbhHz7mfXwh0hwzAgiSIkWQ6OFyV3zSURVFWFrml4/vIl/vzNNwB6l9b+ELBnDTuvvrNdFxL8bPfJkydx/5df8PXlyx0/LxDiS/DW60EMr1dTIooiUokEdKYxHVCq0L33KcsyZJa44kbeYL0jBVYlKqtqkN0vVyoDaxBA2CJimibSfWrrcLx6+RKPHj3Cv33xRYOQVyuxsKDys+8zd49edWK67WXaS4z9zdu3A+Vbi5IEhLRVXFa9XK3VAgldSZaRVFXITaGWVCqFQ/PzODQ/D5fJEK8UCrh58yYcx/E7R01OYmJ83A8Rhq43qtS/W6SSSV/il8XbeTglyhkwTdMXG5Nl/HLvHg7MzQVdt3732D9AcO/Ssm1ITNjo4IEDePnyJX777bfWDQhC0Op1UM+LLEDqBjw2b9k2NstljI+OxqoYbQde6q8oCjLU7zdpWBY0wwAMA6IgQFVVlMtlzMzM9HWuMFRFgWkYvlhSlxO/4YopxcOHD/FuaQmXr1zZtqtoSU3rsfJzEOhVJ2anQ0ee5+Htmzf46quvBnZMQRD8Hr2aBsd1fcNerUJgzTBkSYoVfxYFwRcmm5jA2bNnUavVUFhZwatXr3D755+RHx4O6JRDLOkZiw3TDswRq9VqqNfrfnEei7GHK2pd14XjukgmEnj79i1WV1fx7X/7b8Fufac6cL0P7FnDzldh07aRUlV/wggCvvjiC/z9739HNpPBTBsPx7Jt2I4TtOzqB7wRbiaTQaVSQW5oaDAKjwzck1ZUFZlUCjorANE0DZvlMlymNCnLMiQWS+wVsiyDCAJMxrnvapxcrMx1cevnn2HoOq5eudLAqGhAxK6gky7OTqLX4qSdRrFYhKqqfe/MKCu5t1koo1qtQmVNLiRRRCqZRCqTideZrAUymQyOZDI4cvgwHMfB+toaCisrWPjxR4BSTDI9m5EuG703g8fb6+F4O2lUdOSiYLVaDXfv3sVXf/xjAy//d8P+gUJVVVTLZdAQiySZTOLLL7/Ejz/+iFQ63TImaRgGJEkaCI/V8zxQ+DIDumFgo1TCxA7phwui6MsUqCocx4HrOFscedblSZIkyJIEiYV1usn8E0KgKgoMw+haW4fC1xe5fv06Eskkvvrqq7ZaOZFMH+7N7YZh5x57F/frfaR537x5E+QmugGlFI7rwnEcv5LUdQP+uCAIUFmjmGQyiWqtBiKKA5VuliQJU9PTmJqexvlz51CpVlEoFPDs6VMUNzYwMjwcNPxuZrnEgcxyU6ZpIqGqEAA47DvkomOu4+DGjRv49OLFrSI4Fgr63bB/oFBVFVVBCDQgPFaSn8/nceHCBSwsLOCbq1e3USAt2w7CJ60a3nYDlz0wqqoik06jWq0in8229lT7BRuzbdtQVRVDQ0OglMJ1XdhsJ6KbJmjY0DMjL8XYYquq6lfKdslpr9Vq+HFhAbMzMzh9+nTnBzXi3u9qjL0HnZhuE4HdXpfneXj37h3+9Kc/xXo/98ht2/aF1Nj9FEURKsvNBHUgrusLzTHj36lYrl9ks1kMZbM4cuQITNPE6toaVpihF0TR17NhwmVxdp2EECRUFTXbhmFZgCAEGjimZcGxbdy9cwfHjh3D1PQ0AJaYZw7LoJqK7wb2tGHn3iiPB4cn5czMDOr1On5cWMDVq1eDjuQAYBqG3xaOeSdx9GNagYI9IOwY+XweWr2OtfX1HRMXIvDDBgbzVAB/knN2TRJb3ppt23Asy29Bputbhl5RIDODH9W2TBAEmKyBcRwUi0UsLCzg1KlTOHjoUM/XRnfTY2c/dzQU0+V1ra6sIJPJtGRsOY7jG3NuyLFF2UwoSjAnogw2EQRffTHE894xhGLrAiGQZBkz09N+fohSlCsVX53yt99w8+ZNjI2N+UybyUmkomSImXHm12caRsOfDcPAw0ePMDo2hsOHD4eG4d8HIgi/J08/VPASZqtWQ1RZ0tGjR1GtVnHj5k1c+vJLECB4ANKhySJ0UwUXAmX/u44TeMGiICCby6FUKvma0h06PPUCzmu3TLNlPJQQ4htuScL/z96bxUhynWeiX+xLrrVX9creu7k2SbW4iN0kJVm6Dwb8cD2+4ycDNizB8Aq/yAbuk2BA1/YINsY2MH4cQ+CdOx6/2A+jEUeyJIoiWySbS5NU781md+1bbrFv9yHOORUZFZkZmZW9kJUfUKiqzIyIE5ER3/nPv3w/NG3Lv+p58D0PlmXBIhkgAmmkIIgiREFg1h1rmdeDjO7cuYMP3n8fX3j66b4KaLJy8+l/A5X17xBUhK0fq3Wg+6aPdM7bt29j//79bEUWBAGCMETg+2ylGBHXikwm67w9d2m6L82AuavFOqnrxAOIyMQCjkOlUkGlUsHx48fheR5WlpextLyMS5cuQZYk5rKZnJgAx/NtbjxVVdFqteIOZmEI1/Nw6dIl8ByH0088kXktPsupjsDnnNgB4o5pNmOrmWTHJG+iJ0+fxuuvv46LFy/i8cceg52y1in6VRRMCngFYdgWCCqXyzAMA+vr69A17a48MBzPw7as3DECWllKb2haFu77PnySVhmSrjYgImqmZcUZCER2WEw3EaFCXjdu4EsvvIDCMPLpe2XFUL9/0v+ftPLJ61RoDNhylyR/A1sTMz3nQXRiBiH2bqQbRRHCMEQQBHBdF/OLizhw8CBq9Tr9QHx+5PukFusg9xjP8zAMA6Ik7bhPb0d0uj7p7zABSZKwd98+7N23DyDCZUtLS/joo4/QbDYxRWSIZ2dnoWoauwYe6Z1w9epV1DY38fJLL7WtvpJH+ixb68AuIfYGx8U9O2V5m8+T43l88Zln8JOf/ASapmFycpLlsSbRj689AsmgIMQehmHbg8UDGKtWsbK6inqzibFKZUfnmAUOsR9xUN2QZDolBdXUoJahRbrHB2HIHgqB5yGIIgSex0cff4xmo4GXXnwRiqZlVjL2RJKokSLKZP5zkvDp6+nvK/F68p2ow28g8bBzsTxypssiY19sTAPk+9N7NAxD+EGAkFxvn7Ruo9k5K8vLKJVK0HQ9FrAiq6lhVsY6jgNN13fcYKUjOjxXbZNstxUzx6E6Nobq2BhOnjoV++ZXVrBMiF4lmi+TU1MIowjrq6tYWljAc88+2zXGlUd65EHG557YBUGAIMtdVQllWcbzzz+PH/7oR3j41CkcO3p022fyBsGSpN62ferh1jUNqqJgc3MT5QGa8+aBk/CxDwN0OZ/83zBNlIrFLVdAGMKxbbz/wQcAgMcefRSmbcNxXYBo+HA8D4Gkn/Lkh7pdkiXltFilTVukwwN+L9IfozDM/J463RccYncC0pMRIbOQTPqUrCPym2ZrJNse8jwfryRlOZ48BQGXPvoIhw4d6qmyOCg810UYRXe332cvi518Jq8omKIo2L9vH/bv3w9EETY2N+OmIh9/jM1GA1EY4qknn9yeDZeagItDkuG4X3iwEnLvEhRNgx8EXYtbFEXB6dOncenyZVy6fDlzP3nII03q3W7GsbExcADWNzd77ncQOI4zsAxCHiikPoAKl+nEcnzvvfcwVq3i3NmzKJfLzM/veR5M0mm+aRhoNBqo1WrY2NzExsYGavU6Gs1mrNJnGHHmDSG5IAxBdfSB+5fHnselQVc2rufF0g+WBdM0WUeteq2GjVoN9VoNjWYTLdIJyCKZRhFJtdM0DaVSCVXiX6ZBUllREIYhVtfWMEeyOYaNIAjgBkFciHSf5BvaQFdLPcid9UiN/8H4+DgefvhhHDlyBDyAcqWCarW6bYJO3k88z0PrI/b13e9+FxzH4bvf/W7m+5cvX4aiKDiXo+J9WPjcW+xATEAmx7W1vkr7zD3PQ7lUwssvvYTz58+j1Wziyaee6mtZm/bfJ5E5mcgyS38sl0pD92M6jhP72IdU/p8G9as7pABks1bDm2+8gSNHjuD4sWMA8fMiihAiLkwCSZ9rs1YTFmsQhgh9P05NJcdJTo5URkEklj9V7aN+5fjPrd+93otAmhhHic491I2Gre80imK97ygM4x9sxVHYZ8n46TFo1ysAbKwCz4OXJEh0tUJWLnQFA4Bdk27f2fzCAqampoaaV56EbdvgAaiKgjCKOnZS2gnyqDymNsjUe2GbANtVIaMIH338MW7fuYNTDz8Mx3UzNZWS0IvFvmIStOL3zTffzHz/D//wDxEEAf7+7/8+9z53il1B7LIsIxIEeJ7HiD1929Amt5qu49y5c3jrrbfws5/9DM8++2xbZgltIJ3ePgLafM1JcOhsYVarVZimifW7kP5oWVbcMJuUh98NyIoC0zSxsLCAdy9cwBOnT8fnkXSnAG3Lap7n46ViF/cTtc6jIICfIP8wisD7fpyTTASo2kiWgvrzexBSEEVoNBrbXmfBVbJ9GIZwXZc1e05PGhwXN0GmKbbUvZT86Qvpz6cm59u3b+PQQw/1t8+c8IOA9Qb1PC8my7sR4O/2Xof7lWYmdbybE9fI93288/bbsB0HZ194AQtLS3HDm7SbNLWLYp8VvE899RQ0TcP58+e3vffP//zPePXVV/FHf/RHePwedmPaFcROA4G+YbS9lvyCgyCIXQuILdFnn30WH330EX707/+OF55/vq1cO4vUO7XaS/pJsyDwPMqVCjY3N4ee/ug4zt3NPUZs0V29cgWffPIJnnvuubgFX9Y59zmxcBwXW4k8Dy45YZKJoZwjwyZtUVPLO2mJ8wBr9J0ka/Y/+dsPAvA8H+uk5LGSE26joYCOCYBl26htbGD22WeHt/8ELNMEiG/dI77+oaPHPjvGLTqQejoGZlsW3njjDRTLZbxw5gxbbRUT8aBOca1in8kMkiThzJkz+OlPf4qFhQWmzWQYBv70T/8U09PT+Pa3v93XPneKXeFjBwCtUIAfRW3NbClZ0NfS2hSPPPIITp08iR//5CdYWlnZ2i51c2UFS7ehi8VWKpUgSRLW19cHyxzJQBiG8IiGPDjurvhJozDEhxcv4s6dO3jq6ae3+qpmHCvawfHbxt5t+Z4CR7blSS4+bZsmiSJkUWRujGTVrUAqLwVBaLO6acVi7uu4g/Ptmu4I4NYnn2DP3r2xJO2ANRad4Ps+/CCAQlJYAQx3gsrzrKCHNY/tWWrJa1Db3MSPf/xjzO3Zg6efegoByV0XSLtJAKxYKz0hSLI8UEX4l770JQDt7phvf/vbuHPnDv7yL/8SlbuQ+dYNu4fYNQ28KMYaJxTUGutA7ABw4MABPPvss3j7rbdw/caNrU3J725+9fitrVzpTqDpj0EQoN5s5jib3nBdFxIh9XgAwyF2mpvveR7O/+IX2NjcxNmzZ6Fq2jb97tSGwzn+UPYywHHp93gPBMC6nmMU4ebNmzh8+DC7pnzC3bNTkjdNE1QPqFvXoYExrIkx2pJPTq6yFhYW8Prrr+Oxxx9nCq4WacIuiSJTfc0y8IDBs2EosVN3zKVLl/A3f/M3eO655/Bbv/VbA+1zJ9g1xM5xHLRSCZ7nIaBfKnkIqH+9k6U0MTGBl156CdeuXcO7773Hgj4hYr96N+R9zJLpj0lp0UFh2/Y2N8zAVnsiHz+KIkT+m9oAACAASURBVNi2jZ/97GfgOA4vvPACisUieHLMjngQMit2AKozlDuotgOC7XallpaXoSgKxsbGEhu0Z3QMmjFENZJothNbrQyT2Ido/dMJhxpXly9fxvvvv4/nnn+euUNc10UQhvHqjK7aSHe1rElw0CK6559/HhzHMYv9D/7gDxAEAf7hH/7hvmRw7RpiB4BCuQxwHNO+oA9Em7+tw5eg6zpeeumlWMjq9ddh2TbQIViahTyfG5+YABdFWF1by7nXzrCz/Ot9FFklyTxMZIy0Wi385Cc/wdTUFM6cOcOITlFV+IQYOu1vYKRdMffhQem36vRurSxuXr+OQ4cP9/xckpjzjsWyrG21CtxdDLzvFPQ+8FwXb7/9Nubn5/Hiiy+ySS8MQ6bSyiQ9iDuOBt5TO4w5YgCMjY3h1KlTePvtt/HKK6/ghz/8Ib75zW/iySefHPwEd4BdRew8z0MhLgNqhYRBgChZ8t/lJpYkCc8//zzGxsfxg1dfxfUbN3ovfen7OUhBFkWUy2WYponmDl0yDsmISaOnxUkJPUHmFGtra/jpT3+K48eP4+GHH257T1UUptOeudv+ht+GpB/0frXFC6I+OidlXLthwDQMrG9s9C3RS1Mqu103x3XjegTSSjK57VBcMTl961sfz/fZO3fu4NVXX4Ugijh79mxb3YZt2wijCLqmbblbCbFTEbwkNF3fUaHgCy+8ANM08c1vfhOTk5P4i7/4i4H3tVPsKmIHAJVExSkBUVdK3pJpjuNw6tQpnD13Dndu38aPf/KTLZ2OLPR5Q1eqVSiyjNX1dXjdfNY9kGmxE2Q+3tFW5WPWQ3X7zh2cP38eX/jCF/BQRpodT4TCHNe9K6RGb9T75mPvx2K/SxPPjZs3ceDAgcHK+xOFXWlfPHWv8Ty/LS+e53kMxRHT5zXpNXkbponXX38dly5dwjPPPosnnniiLUYWBAEc1417AQsCU1ilFbw8x21bXeo7bFRC/eytVgvf+c53MD4+vqP97QS7jtglTYMsSXAdp6M1nYeYyqUSzr34Ig499BBee+01XPzww66+8bxWJg9gYnISHIDlRCZOv2DFSdsHwixPmgrI3C0d9nXp0iV89OGHOHv2LKan0+24t6CRHGE30SuTHXaQk0iig1jTvULeqlPg7kw+YRDg1q1bcdB0CEjKOLiehyAMM6UDeKqwuFP0Odl3+nQURbhy5Qp+9KMfYWJiAl9++WVMjI9v+25MywLPceycgjAETzKdOj3fO5UROETkqM+cOYPf+Z3f2dG+dopdR+yCIEDVdYQJqz2JtpLkDkje6A899BB+5atfhWkYePUHP8Dy8nL7Z9H/gy6LIsbHxuC6LjYHlBsIgqB71WzC5dL5IxEuXLiAxYUFvPTSSyj3uPFpcY6dcV2HZcVT/Zh7CRo0vquytQlknd3CwgLKpdK23rDDgG1ZEEgrybuCAb77rGuwubmJH/3oR1haWcHLL72EEydObH0niWO4rgvf96GS4jyg/XmgK6/kMURRbJPqHgR//dd/DZ7n71vANIldUaCUhqRpEA1jm/phmxBVF6RvU1VV8cwzz2BxaQkXLlzAxMQEHn/iiXaJgD6/6FKxCMuysFmrQdP1vuUGwg4+4aiDqyUN3/dx/s03wQsCzp47l7v/pKaqaJnm9gKQfgK3GeCSK4p7/NAwWYC8x92hhZuV83/jxg0cTjSEGBZs20YURSjqOniaATPM6zvod57YzvP9uPH5/DwefeQR7N+/P/O7oBk8Nmnm3qZMGgSQVZVls6WxUzfMK6+8gn/7t3/D7//+7+PMmTM72tcwsCuJnSNytKZptuWz5kG3Zenc7Cwmv/pVfPzLX+LVH/wAjz32GGu5NcgMPjExAWdxEcvLy9i/b19/vTYzgoxU44QMqE2TPAnLsvDzn/8cExMTOP3EE3096IqiwLAs2LbdbgHt1GKnE0OqtP5egK5qcl3/HpXGeZA+u0a9jpZhYM+QBb9834fjOJBlmemPU1dF8hwGWm3t9Hsi2y4uLuK999/H1OQkvvKVr8Rxo07jIavwgFSYJu//NkMjwwVbHcAf/umnn+KVV17B9evX8U//9E945JFH8Fd/9Vd97+duYFcSuyCKUHQdtm1vc8d0K/KI0LtNniRJePyxx3DwwAFcuHABN2/exJGjR1FN5h3nHSfPY3JiAssrK1jb2OirATbTgKcl9BnnlK66A4BarYY33ngDx44exdFjx/oeM8dxUCQJjutC1/UtQSwMwTdOyP1eL3NZE+s8x93hygTY/l3duHkTDx08OFRXUBRFaBkGuIQfmoJdX3qt6Uq2n+u+w+tgWRYuXLiAerOJp59+GlP03u+yz4C08ZMlKe4MRl8nnaSk1PWjZ6Pq+kD+9e9///v48z//c1SrVfzar/0a/vZv/zazl8P9wK4kdgAQVBWqoqDZauXfKG85Oxe38nrxpZdw9fJlvPPOO5ifn8fJkydR7fMG0lQVpVIJjWYTBU3L7Qek5NB1ac1x4LFlkS4tLeGdd97Bk6dPY88OBMlUVYXrunCppMGQQCeie+29ZMR+t5pNpMDK5UmF5O3bt/HVr3xlqMdwHAdRGELX9cwJg1Zz8hzXUZCrG/K4NLPQMk1cuXIFt2/dwsFDh/CFM2cgkM5n3fYXRREMwwA4bptUNc0uy1J1jACMd0kI6IZvfOMb+MY3vjHQtncbu5fYZRmypoFrtWIN7MR7Ha32nDc49ePxHIeHDh3C2Pg41tfX8fprr6E6Po6TJ09iog8LfmxsDI7jYHVtDaqq9sy1pf1Lk6XWnQcbP7jXb9zA5cuX4zz9AVYXSYhEb8XKqH7dEWjQ6z5Y7LRsvxeGlupJjnXn9m1MTk0NVVc/CAJYtg2BlNj3Ql/VrDkkNLLQaDZx+coVLC4uxgkJX/86s7rzTOaWZSEIgsyJynEccDzP4lTJhuiSoqCSbrrxOcCuJXYgttplWYZhmgh8nwUIu0nz5gVtgM0LAgRRxJEjR3D06FHcunULb775JkqlEk6eOIGpqameNy0PYGJ8HEtLS1haWcHeDr5W5hslmuG5CmqiCBcvXsTi0hJePHcuu+P7AFAUBQaJYYiiOBwrm2Tx3OubNsx7LYGhlcxzUYSI43D9+nU8+uijQ9knhUnUG/O4DdrcMoLQO/WR5/sKHm/Warh85QrW1tZw+PBhfP1rX2PZOTR9mOuxT8d145x1RYEiy9ueU8dxWBPvNMYnJ+97BsvdwK4mdlFVoRYKQK2GlmG05X3znaz2fkCXsohJVxRFHD58GA8dOoTbt2/jwoULUBQFJ0+exOzsbFfyU2QZlWoVtVoN9Xp9u1pcMtuFTEy9fMJBEODtt9+G4zh4+eWXc2e+5IGiKDAtC7bjoDAkF0ZaVvdeIezQEi8LQ8th5zhsrK8jCIKutQP9gqYCaprWf29UkmnVkdw5LhepRwDW19dx6fJlNOp1HD16FE8/9VTbNU52O0s2XUkjCAJYlgVRFFmldTJ2FBJlx6TsNitKlKT7WkR0N7GriR0AFNJujLZha1uaJgJAA3Wbx9YSMimkxHMcDh44gAP792NhcREffvQRPvzwQ5w8cQJ79+/vWFxQLZdhWxbWNzehqSqTF80KjvayMl3Hwc/feAPFQgEvvPACm8iGRUwcx0FRFFiWBZWkmQ0D96PyNIwiiPcoh50iAnD9+nUcOnRoaBZlGIZx4U4qFbAriNYMc4eQIGqmqmkOQbzl5WX88tIlOLaN48eP49lnnukYFKbH6HT2LAAMoJAI1CefW48UyyXThX3PAzgOk9PT4IdozDxI+HyeVR/gZRmarsN1XZimCYloXAPZWSN975/oUmQVAnEch7179mDP3BxWVlZw6dIlfPjxxzh5/DgOHDyYaVFNTkxgcWkJi6ur2D83Fy99M/YddbHYm80mfv7zn2P//v14+NSpdmnfISr5qYoS9/y07UzdmkFxL+11WpyUx7od5qRjtFpYXl4eqoiUZduIwhCFUqn/ySJ1j9GVE62L6La3MIqwsLCAy5cvIwpDHD9xAnv37u2uOx/17nFqWhZCktqYOTlEESzHiQOqifvPIy0yp4a4EnrQMCJ2nodSKEC2LPi+D9M0USgUtvzs5PegbhkOJBrfZXuO4zAzM4OZmRmsra3h8pUr+OjSJRw7cgT79++HngiciaKIsfFxrK6uYm1zE5MdlpIRTXdMYW11Fed/8Qs8+uijOHjw4LaxAsMjKEEQIEtSrFsjy0NJ1+OGuKrIA7rSyhuvGBYuX7mCw4cPD8095vs+XMeBrCh9a810I+CkDz4Nx3Vx584dXLt+HbIk4eSpUz1djokdd/erOw5c14Wmqm2pjWwsxG3kOA6riAbi7zMIQ0yOj0PMu2r5DGLXEzsAKKUS+PV18BzH3DGSJLEbcKeWu9iH9Onk5CQmJydRq9Vw4+ZNvPq//zeqlQoOHjyIPXv3QhZFFHQdVqGAer0OURBQzejOEmb0qbz96af44OJFnDlzpqPfdtgdeVRNY1b7UHJ8c2anDAuU2HNZ7EO6bpZpYn5hAV//lV8Zyv6Yy4LnB1s5dZlM2f1CrGs/CLC0tIRPP/0Uq6urmJ2bw+nTpzFJ9I9yH7ILqfu+D8uyIElSpr4NEKemBkEA13VRSaQYu8QNM9enQuZnDSNiR2wFi6qKyPPAcxxM02y7GXYKjudZa7W8qFareOrJJ3H6iSewtLSEW59+ivfffx8zMzPYu38/pqem4Pk+Njc2IEoSiinSjKJoy1cfRbh06RJu3bqFs2fPdtd86VKROghEQYAky7Btu027Y0e4D8R+LyeTy1ev4qEDB/L7wXuA5ayTlWg/6CmvQa7P6uoqbt26hcWFBVTGxnBg/348/YUvbLemex2P6y4THIYhDNMEx/NtK9nUTphiZVuaIwAvCFAoFPpuWP1Zw4jYCeRSCebqKrRiEaZhwLSsttzhnVjtTIOmU9CpC3iex549e7Bnzx64nodPP/0UVy5fxjtvv429e/eiUChgdXkZ4t69UJPaGCTVMgxDvPvuu2jU63jxxReh5siHpr7NYdntuqbBdhw4jjPUfOx7AWax56gdGAYcx8HtTz/Fl7/85aHsj2aNSJK0TZK3H6TPLgLQrNdx69NPcfv2bciyjH379uHhr361oxWd6zjE+u9U6WommlJ3MhLoVjbxryfH43se9qdckJ9HjIidQNM0GIKAKIogyXIseyvL4EjLvIgU8vSSFMgCLwgIXZdZwyHQdzVfFEUQBAGHDh3CoUOHYBgG7ty+jes3biDwfSwsLuKRRx5hbpmQLIt//vrrEAQB586dy6y864ghlMZTiKR5tO04cYbMZyhvOAzD/tMCd4ArV69i3/79QyvsotZtngk9Eykfum3b+PTWLdy+fRu242D//v14/vnnWfoty6zq9/5G+3OVdY/Ytg3P86BrWsfYA5eQ0XBseyu2w3HwPQ+SLGOMNl3/HGNE7ASSJIGX5fjG0XUWSC0Wi21ZI4OUVzPXBrFG+qW1rKyaQqGAEydP4sTJk1heXsbVK1fw6g9/iIlqFQ899BB818Xbb72F2dlZPP7YY303YWYaIUPS4lY1DV6zCYeQ+05wr7Ni8ly7YVjsnuvik08+wVeGZK3bto1g0Jx1Ag6AHwS4fecO5u/cwebGBubm5vDoY4/FxXUpAmarvT4MgyixHf0/Dc/3Ydk2ZFnu3EAmkSEWBEHsdikW2UTjeR6qExPDrYZ+QDEidgKO46CXSmitr0MJAmiqCsM0YyszcSMwUas+HmSO52NLnYj9031kVbem0UnAK4mZmRmUSiWsrK7CtiwsLy3BNE0omgZZlrGxuYmxsbG+/dvJlLadQpIkiILAmmwParWz1Lohrii6IQzDvv3Eg+LqtWuYm5uDpmkszXJQ+L4P07IgiWLfRBZGEeq1GlZXV7G0tISVtTVMTkzgoYMH8eyzz/Z0S/VD7mlSz0IQhjANA3yX4G96H7ZtgwOYERGGIThRxNT09D3T1b+fGBF7AsViEWarBdt1UdR1SK4Lm/gn24iIkEvex45PKOQxkKrUMAh65vPmOY6u6xgfG0ON4zAzO4tGo4GHDh+GaVl479130TJNTE5MYGZmBtPT0yiXSrmCkMPI5afQNA2NZjPWwd+h1cSTNNRuCMkqiVps9FoyVwHZnnZ8Yg2g43+AKEIQBKwQ7G7C933cuHkTL547t+N9hWHIsmDyZCJFUQTTNLG8soLVlRUsr6xAUVVMT07i4MGDOH7iBKqVStwrNOcY8hpAWR2akndlGIZotVqIAJQKhWxS7uC24RKt/lzXxdSePW0VqJ9njIg9AZ7nUSyX0djYgO/70ElKoWkYKCQ71/RpLVL53DAMkbZ1urXqytsUg6JcLsP3fTQaDXCiiFKphCNHjgCPPhqLiK2uYmVlBdeuXYPv+4zkp6amOhMAIbthuGQkWYYoirAtK45f7MDX7ochAt9HRPKSI3J9wyCIfwO5vqMIsR86/vhWwC4CEPk+WobBcsB5jotXXDwPgQhj8TzPmkXvBDdu3MDU5ORQOiQZptkzwEjvh2VC5FEQYGpqCjOzs3jssceYT95xHKaaGEb9SfdyANBDgiDrvaQyabPVQhRFKBYK2SuFDq5N2vOX53kEQYBCpYJKtTpU2YwHGbvjLPtAoVCAYRiwPA8lUYyDqq0WhJRLhvrb89AutQIzSbpDgUcE5M59T2JsbAye58EPAjSbTZavrigK9u3bxzrcG4aBlZUVLC0u4oMPPoAiy5iamcHM9DQmJyfbUu127JJJTISaqqJJFDWVHOl8EbGa/SBAEAQwTDPW3Cadf5IPNSVYQRQh8XysSkiO32aJk7/pT5mQaZSw6qlP1vd96JoWN3WOongyAeCSz0SIU/44joMgCPGPKEIgTZPzEGEQBLh27RprhrwT2I4D3/Ogqmobifm+j7X1dSwvL2N1ZQWGaWJqchJT09M4euRIbMlmjDVZWTrIRMwB2S6ZHsYRs9SjCIVCIZOQI2T39rRIRSrTjhEEVMbG7kpbwQcVI2JPgeM4lEol1DY24Po+FEWB67owms3tfSFzZsrwPA9OEOAHAbKoLJ0GOSip031NT09DlWWsr69j7759mW6PQqHAMmwQRag1GlhdXsb1Gzfwi7feQrlUwvT0NMbHx1Epl2Md+CH422VFAW9ZsaRvBrEHYcgI1SdNloGtrIkwDCGpaky2ggAe5PruwGLuZMVFUQRZUVDIsBbDMGR+8CAI4vGSsbuuyyZ8nhC8JIptFZBJfPLJJ6hWKj17yvaCT1IbeVFEGIZYWlrCxsYGVtfWsLm5iWq1iqnpaZw+fRpj4+P5iJpMXjvRot+W5st1b0EZBAFahoGQkHqnGEfW+CMA9WYTvCCgWCggDEOUyUoor5Db5wEjYs+ApmkwFAW250EWBBSLRQRBgGajgTLxNTJwHPgclrvI8wiI4H8WkhWfLINmQNDJyXYcLC0vY+/cXPdGxRyHaqWCaqWCY8ePIwgCbG5sYGV1FTdv3kSj0YDruiiXyyiXy6hWqyiXy6ikr0UHpM9EJ31RHdeFJIrwfB+e78N3XfiJgiBRFKHIMkRiCfOk4YKqqiwoNswq2TRYg40MMubJigCIJ4ZkgDIgq4sgCBCEYVwp6XlMgEsURSYjywG4cuUKnnnmmYHG6AcBGvU66vU6VldW0Gg20TIMiIKAMpksjh8/jomJif7dECQba6fpqdtWfGSFk3lI4n4JSSFRR1LP0EiKEDfVcBwHlUqFyYUoZHLeTRgRewYoMW5sbMANQ0bu9XodzUYDpUqlXW8jh89dlKS4oUeX9DkqUToMstJUNV5Gh2FM7nv25M4GEAQBk1NTmJyaYq+5rotGo4FavY6NjQ18cvMm6o0GFEWJJ4WxMVTKZZQrlZ5LXkEU41WQaUJXVWaNi6IITVEgS1I+6+ouZ8XQ9oJdg9sZr1GXTBLUqqeTmOt5QBRhaWkJqq6jlLLW0/cADXA2Gg3UCZHX63UYpolyqQRN16FrGk7t24ex8fGdp/QlCoVytQTsgTYdoi6k3jKMLVLvZIx0EL5DFKHZbILneZSKRYiSBL1YRKlU2hWZMEmMiL0DVNKEw/I8SDwPkZB7s9WC0Wptu1l6ZY8IggBwHIIg6CwBm8iX3ylpiZKE0DAwOTGBtbU1LC4vY25mZuAbXJZlpmMDbKkeGoaBer2OWr2Om598gnqjAZdYTJVKhVn3NMXRJf5/IO4czwsCCrqe2x/dhruc8hj0KE5i/ucc46ZkTwmXNpK+efMmHn74YbSaTZbFQUmcau/X6nXUazWIohivmioVzM7O4sSJEyiVSnA9D6Zptq1kdgxa6DOk65vUk8l8PwzRIo1ZdF3vusLMqiWhLjHDNNn2RRIsfVD6kN5LjIi9C8rlMtbX12EEAYqCEN8shQJarRZarRYKJOuABei6uGTostv3fdYRPg3WXIDsbycPlSzL8Hwfmq5jbGwMGxsbWFxawtzs7HBUFskYi8UiisUi9iZ6pHqexyzKlbU1XL56FYZhxD1QZRmFQoH5yDfW1jA2Pg5N06CpalxM08NlkK5QvFvumDAMO35X9Nj9IAgC2LYNi8QYbn3yCQSex/LSEm7cuAGL1E0I5F6rELfXqbm5eHLMIO2AFNKJojg8Uk8QcF/do7rtkuyXrkqTiKIILdLFTNf1zjEPtF9zJtNBxtoyDESI05bVYhEcz6M0iETx5wAjYu8CWZZRLpdRr9dhhyEUSYqXd7oO0zRhET2ZNLkD2613juMgkNSrTvjOd76DDy9exB//8R/jzJkzbeT+j//4j/jZa6/hV3/1V/F//cf/mGvsND+bCh5tbm5iYXERe+bmdkzutF1ZJ1eEpuvgBQHVsTEgiliqo+e6sG0bpmWh1WqhXq/jzp078FwXpm3DtiyIggBV02Kyp4Sv63GTbM9DFATgEAf0BJJ+OOxHl+mwd3AJRVGEIAyZLz0MAni+D5ucg2lZ2357vg9dVaFqGiRZxsrqKo4ePYpKpQJN09gqMQxDmKYJPwgQAZAlKTsrJCKqjRw3XKs0MVF2yjzpa3dIETISrhlyDr7vo6DrEAWho3HEJ1wwdJ8sNZLsRyH9FRRNQ5E00dmNGBF7DxQKBfi+D6PZZNrqsqIgCEM4tg2B5+NMD2KNdFtuipIEx3Ey34uiCL/5m7+J//ujj/DP/+N/4Kmnn47dAByH733ve/jZa6/hpZdfzkXqABiJUhSJ5bKxsYH5xUXMzc72rcudBmtbRh5anxCb47pxRoksx2l3gsCyWyRJgl4ogKrINxoN+L7Pgl2IIjieF1uvxLq1LQvr6+uwLCv2wZKergHJWQ+CIA5K0iCrIEAUBPCiGP8mKZA0BTH5AwAXL16ET8g5IPnxvu/DdhyWw58mcT8IAI6DmNwnsZo1TYNGmiTPzM5CJ6SdrLi98O67OHToUMd+ppIsw/c82K4Lx7bheh5EQYCW0EkxTTNuNNGpcKcfRKTtXereHYZWTnrSpUVJ1JVHSV2W5bgJe9rCps9WMrkgtVKjKY6FQgGFchmapu2aYqQsjIg9B2jhj2EY0MnyXFNVhEEA0zQZcdBilU5uGUEUEdk28y0nEYUhDh44gBe+9CW89tpreP3113Hu7Fn867/+K77/P/8nnnn2Wfz2b/927jHLRPcmiUKxCI7jsL6+jsXFRczNze2M3EmBjkOscHo8RVGgKsrWOXZxlRQKBdTqdVi2jYKuAxwHRZY75rivb2xA07Q2ydYwQbqUeGlGSpD6O/T9mMTJ/1EUMV1vITExRGEIx/NQLpWYHALNzBHIpDEo3dUbDczPz+Nr3fTWyWqhQFYsjm3DcRw0Wy2IJB7huW48ce5AtZEeq6NLixB+f7uLA66dvnUOsYVtmCa8BKmnLfv4wxxryZceVxKNZhM8x6FUqUAvFFCtVnelC4ZiROw5wHEcxsbGsBYEMFstFMkDXqD+dsNAiZBmEEUskyLtlqEk6vs+5DSxI77hf/0//Ae8ef48/uVf/gW2beOf//t/x+NPPIHf+73f6+tGlWU5zrxIgWpyr62tYWFhAXv27BmY3P0gQKvVgud54Li4/ZiiKH0RgSAIUBWFVQr2GkuWrgh1hQ1yHu9/8AGOHz++7XXbtmHZNsaq1b732QsXL17EiRMnukoVJM+Q5zjmqnFdFy3TRLPRgCTLwym66VT9TF7rJyumTZ66y2dMy4LneYzUk8ejyHLfZI3TcV14rgutWMT41BTGx8d3XRZMGrv77PsAz/MYGxsDZDkusSbLwWKxCIHn0SK5t0AcJAsTFju9Pak16Pt+276jRBf2ifFx/B9f/zrW19bwT//1v+LY8eP4kz/5E0iiuFU9mQOSKG6z2Ck0XcfU1BSCIMDCwkLHz3VCGIYwDAO1Wo1VZlbKZaialknqvUKbmqqyBid5cPelv+Lv8G5YfMvLy2i1Wjh8+HD3D2YQGMdxEElnL71QgKqqaBkGDOKeGghdXIf0Hs57FfJkCAVBgGarFccbiEhd9rBS++mSoVNvNOD6Pvbu2zdYvv7nECNi7wOSJGF8chIBtvRFwHGs+IESPl3WhhFRuEtAJC27kkjfrsmc5t/93d9lbglWEp8DPFlVBKlJhELVNExTcl9czE3utuOgVqvFEqqShGqlEmusd7GQemWu8IIAVVXhe17PcdyrxXXYJXAKDFYYFUYRPrh4EY8++uhAVZBhFMVpkRyH8WoVY9UqVE2L9YGIJHLf6Z9dPs+ytHL2e+1F6r7vo9VsIgwCFHV9W659ultVhN56SX4QoNFsolQqYd+BA7tCkjcPRsTeJ1RVRXlyEp7nwbYsADExFYtFBETfIvmwMEEqYm2Lohj7dpMWVuLzP3/jDbzyyiuoEBfA//r+99uO349mhyxJXYlSUVVMT00hiiLMLy7CSQRb0/CDALV6PT4/jkOpWGRNv9m4UueSHnc3qKoKXhB6W+0dlvnDMyF9nwAAIABJREFUtq6DIOjqghjkeLc++QSSJGHPnj19bxtFUVyRSYKlgiDElruqxnEAUYRl22g0m6xOoMvOch8TyHeuaQMmDce20UzcO9vy1BOTSFZwtBPW19bgBwGOnTy566pLu2FE7AOgXKlALRZZxgYQB0YLpEFHq9VqI26qPBiB6JKQQiX6HsW7772Hf/wv/wX79u3Dd77zHezZswc//vGPsbC42HZ8Su55yNIi4+sESu6IIiwsLmZm7biui3q93uZ26djBptPSvseDz3EcCpoW53p3mWC67KD/bbqgW6rjIMfyfB8ff/wxHn/88XxEmfrfoHneGYJYgiCgVCyiWCgAUYRWqwW3Q/ZVP+MPSXC5l4+9m7uGZr6Ytg2RKI4K1K2Y9qFTMieZSL1G2Wy1sNloYHJyEgd2Qbu7fjAi9gExNjMDVdPiFDxipdNgFlVWTDewDmlgFdjmZ7985Qr+7u/+DuMTE/jWt76FcqmE//PXfx1BEOD/+2//bdvxkwUfnVCuVNBsNnuei6womJ6aAgdgYWkp7hWJRBk7Wf7TCtJeyCT3HNaXrCgQRRGWYXS31roE+oYBOul2DMANcKzLly9jamYmjtPkQPJbNS0LrutCU9WufUtlSUK5UoEkijAtCyaNBQ0IppXTwyXVUcyLrGBdz4OiKNvSMpP3Lvs76q2TFCG+JisrK1BkGU+fObOrM2CyMCL2ASEIAiqTkygUCvA8L9aNJqmQNH+22WzCT7tCOA48YiuYWvG3Pv0U3/1P/wmapuHP/uzPWCbGM1/8Ig4dPox33nkHly5f3jYGJj3bYdlaLpXQaDRynY+sKJidmQEPYIl0YGo0GnEXHklCuVzuL585I20tD2ihjW3bHXbbYT9DfLC7iX8B/fvXTdPEzRs38MjDD+f6fHL/tuOwrlN5Kkt5EtBXNQ2u728ZGAMQfECs5o6CXV3e830frUYj1kInOjbpzzLFR7KCzXNdI8SxrM16HeB5HD12DGXSb3WELYyIfQcQNQ2qrsf+9cRDJAgC05JpGUZboRAAKMTlEPg+FhYW8P/85V8CHIdvfetbmCH66RS/8Ru/AQD4f195peM4OGSTUKlUQiOHxc7OR5IwMzODKIpw/eZNNFot6JqGYqHQd9CS+dwT/+eBJEmQJAmWZbGipvwHHQ65U4u9q7upD3z08cd46NChvqtDqQaMSPoC5AX1vReLReab7+l3z4BP7uUkkuTb6SrQfHvqT8/KfGH76UPvJyTnYjsOPMdBuVzGsZMnc2272zDKC9oBeJ6HVCjE/sBSCUarhWazGTcGIJZ7q9WCYRhQg4B1pZFlGYZpwvU8zM7M4O/+83/uqCL42KOP4nvf+17PsTB9GYA9KOVyGa0+iJ2eU0HXYZgmLNOEqWkDZxq0Pa59PMC6rsPzPFiWFfuNt+24c4B2GA6ZYaY6rm9sYHl5GV/72tf62s4j3ZsEUUSxWBwoG0gWRYjkHjAMo2PDikxEEcIg2Fb81KuNo2VZcFwXIok5bTM4SKZYhC0xrzyWOtVoB+Km35Ki4OSpU5ByNGvZjRhZ7DuEpKqQNA0SCQxxSSudLIsVRYkLXkyTLT0VWWaWPL35aQbNoOTEIf5C6cNXKBRYp/o8iMIw9slzHB46eBC6rmNzcxMrKysDpfclrfZ+thcEAZqqwnUcpneztdMuxS/DstjDsGOxUz9XwQ8CXHjnHTzx+OPd9fDTxycBeJ7jBlotUdCVXLFcZvdlXss9IG5CIVG81O07pH1WHSL0tk3mIKHpgiiK71PE17NXDr7n+2i2Wizg6och9u7diz379+c6l92IEbEPAXKxCFFRIIgiyqUSREGAYRhxxgzHMQErx3FYoFWWZURR1JaOyPLfh0DwtB9nqVSKl8U9QEk9DMN4+SxJmJ6aQrVSgWGamF9YgJtzgug0pn6gahoEkv6YfPC7pVQCw0l7zJJ8aDt+Tly6dAmFYhF7STvCXMcmjSYAoFQsDqyFnly98ByHcqKQrpsQHRsHzYhJyCl386c3m02WNaXr+lYuOiHykNzXHF2ZplaXneC4bjzJEWE4mrN+qoPGzggxRsQ+JEhUn51Y6TKx0mlmgqpp0AsFVoZPO/Ck09JYsIoSfIbmTB7QR7BULqPZK4AaRezBTLeBq5TLmJqcZPEAs0f6ZKexZHW86boNuY5hGMJMBVK77mWHxB4mLNWdoFar4ebNmzh9+nTuyYblqkfR4MJeieKeJGjzCZ7j2qqkO4HGN3oVUjFjBfFERN12UeK+pUFWpoKaQKcWkDTzxTTNOHhPGt0IgoAnnn565/o4n3OMiH1I4HkeSqXCLJKCrkPTNLhEm9xzXchkiRoQchdJW7heS9FBCZ4DUM1B7FQitlgsZvpgNU3D9MwMBJ7H0vIyNmu1PkdCxpOz6ISCBg1dx2Erm7ud1BZ2IbS8Yw/CEO+88w4ee/TR3EHPiOSf+ySLZOCy+G4VvoTcOcTa5d0+Swu0Oq0YaLKAaVlxHKBUgiiKzEJvG0unmosOqY2e76PZaMBxHKiqimKhAJP47o8/8siOe8PuBoyIfYjgRRFqQipUVVWWHWMYBoxWC4IgMH1013URBMF2PzIBtdyTy1rq+8xLj6VyOfZPIpsUPdeFQwW4upCJLEmYJRK0m7UalgbxuxOrrZ/tNNKQw+iV2952mMHpv2MOe4+agSSuXrkCWVFyF81QS93zPBQ0rWuueifkHZsgCNB1HWEUsXqFLFAp5KyxWraNBnHp6JqGUqHQ7otPfJaResb40tWqIambaLVaiBAH/wtkrJu1Gmb27MGBAwdynedux4jYhwxBUSAXCm2KjqVSCaqqwvN9NEhub4nIwbqui0a93nmHqZu/zQ8fRT198eVyGY1Go630nyIKQximCY7noebIfOE5DlOTk6hWKrB24Hfvx2/McRyKuh67ZEjMoifB74TYSe52VjZHHjQaDVy9dg1PPvlkLrINwxCNZpMpHSqK0vf4+10JybIMSRTjwHraJUOs6CAjzkA1aWyiE1Qul+PGIMhezXSrjqZGCoXreWg2m3HwVVVRIYVWALC5sQG9XMbJU6d2vWpjXoyu0l2AVChAShSTcBwXa8yUSnFAkCjyabqOUrEI23GwsbGxrRo1jbYc4kSlXjdXTaFQiHPCSQofl1heG6aJiGiP9GPlMr87UYc0cqgytu2fa2+c0AtUL92xbeYD7wpiKQ6CToHTPCMNowjvXLiAUzl1S2igNAwCFAsFJuPb70pokIylQqEAjqwko+T14rZa1wmJbC3DNOMivCiKC44SAdI2YyGxwux1T3EguuzkeeB4HiVipdN7tGUYCHgex44f35W9SwfFiNjvEuRSCXxiSU2DR8VSCTrxszebzdiHqOuxznar1VXbpRMZtrlqiBoe/ZRAMmPS+ey+78c9SFV1ICtI0zTMzsxA5Hksr6wM5HfvR7ed9ki1yGTUfcf55Y3T8IMgM3CaZ3/Xrl0Dz/M4fORIz8+GYYhmo4EwCKAnNcmR0822wyAxT+JAYRjG4m+J+yogLfkEQYhXlI0GXBIjoo1HshBha6XTi9SjKIJj2/G+PQ8aFTMj4mZAHDxtGAb27d+PmZmZHZ3vbsOI2O8SOI6Lg6kJvzVdmiqkeIkuhyOOgyiKkEjrPNoursOOux8XW7nBIUkzK5fL2ypQHdsGn9MF0wmiKLLWb5u1GhaXl3Ol0rWNt1teevJzPI9ioYAoijrKDewUVCJ2EEndVquFy5cu4amnnupJakEQoNloIIgiFAqF7ZWZPSzwflY73aDIMkRJgpu6nkEYwidNsmlRULFYzJQFSI4pL5kEQYBaowHDNCEIAsqlUtwjNxHHsG0b9UYDe/bvx5GjR0cumD4xulp3ETzPQ61WwaUb9BLrvUCkb0VRhEU6ytCWb61WK7ZOuzzA3R7t5ANYLpextrbG9hUGATwizMRU9nh+oLRK6ncfq1ZhWRbmFxczVx3dqI7PSVSSJMVppK7b021FEaX+jlJ/J99ngdOM7lZdjxFFuPDuuzh+4kTPjkZ0pRZGUbZ8bQ9wGMz1kokogkp85KyeIopb1tF8d01VUS6XO3enSgaVe0xoYRjCIoQdkpz3UrEYN5FJfM5xHKzX65jdtw/Hjh0bNc4YACNiv8vgeR7q2Ng2twNtnSdJEsbHxqAqCprEihFFEaIowiHL4E4klreqc3Z2FkvLy7ElH0UwbRshOTbdkosiZjENQhvlUinWuYkiLC0vY2Vtrc167zXGvG4ZXdPAI/a9tu2TuqCiCBFZrQTEJRWSH0rkyb+ThOL7fmyxJ8aS/gx9LYkbN28i8H0cPXq069hpimAEdEwt7YoBvxsgIdhFVo10ZSfJMniOg2Xb8H0f9UYDrWYTKmkGrapqVys9z4QchiEsy0Kj0YBtmrF7kCiFcqT2g8LzPKzXapiZncXRY8c6dlgaoTtGxH4PwPM8tGoVUdoqJjc0z/OYnJpCoVBAGIZwiUUqCALLbza7WO9tkqcZqFQqCIMArWYzbtJs28xKSgZeKTFSAugXqqJgbm4OpWIRrVYL8/PzbCmfKzib4zM8kRsIggCWZcUkHoYIEq4nStz9pj0GYQiO49pcMb32YJgmPv74Yzz51FNd3QWB76NB0vhKPUi9U9HOTtwvPNk+2Yc3Iv9LoshaHVKJ3Wql0jGXP5nt0u0a00ymeqMBm+ixF0uluAiONH5Pbu15HlbX1zE5O4sTp07lUrMcIRsjYr9H4EURerW6LT2RPhg0v1ggTbIVWWYWb9Li6do6LlnGnTrGzOwslpeXmVUqJdvtESuXtvPLo4nd8Ty5uPH33MwMeJ7H6uoqllZW4OVwnXTKtU9DEEUIogjTtuF4Xnw9OxBMP26LIBU47bQlPVIQBPjF+fM4cfw4qpVKx7HTNEEgJvVeLfeGWoSVWIVFiVUNXeGYth2rJbouOJ6HpqqQRJGlGraNi+O2VlZdCD0IQ5imiXqjwYyIEiF0JI2GxD78IMDa+jomZmZw4sSJEanvECNiv4fgRRGF8fHM1ESe41gzaMeyoOl63NhClpklSLMIehXrZFlRc7OzWFpagk80QDpK0qKdAJg1T97PS5SyLGNmdhaVRM57T2mDePDbdbvpWEhLwSiKUFBVCBwXN3LuErDtx2oPUjK1vbb84OJFaLqO48ePt22T9IMnBazKPUh9GGDfDs1tD8M4iyiZ9RJFsSVdr8da77KMQrEIVZbjlSLpcITEviihd7smlNAbpGqUEjp1O4VhGFvpUXt/VD8IsLq2hurkJI6fODFKaxwCRsR+jyGIIvSxsTbSBGICEgUhbq9HqlF5nmcEr2saZEVh1t/m5macUdODaOm709PTWN/YgOe6sbBTzvEy0S3q5kjmzadIPw2e41AplzE7OwtRELC2sYGFxUW4ORpnUx8wdbXQ/PUkIVBJ336qUjuBNnrIS7yf3LqFlZUVPP3005nv8xwHz/PQajbBI9bG79aJiKGPiShZuUnjJ2xSyWgtF0QRDMtCo16H7TiQJQmVUgnFQgGKJMEl8hbpgG6vlVQbobsuJJL1xeII9LtJWep0FbG6toZStYpjOYLPI+TDKNx8HyDKMrSxMZgbG7GCXkIcSVYUiETiV5Iklv+u6ToUohBpmiYc246XubKMQqHQMcjF9kuCtGtra5iYnBxo3OnS8AhgD22Uep9LFL3IkoS52VnUajXU6nXMz89jvFpFqVzu3KUIcfZO+oySHeyp5neLaMfrO2hmTN1eAlnJsAk347P1eh0ffvghzp09u81lQbe1LAuO48Rj7KcArMMEFRFLl17zCNj6H9jKbspw5QRhCNtxmOCcLMtQVbXN7SSIIgzLgigIEInFHqUs6zR834fjOGyilkkhGZ0ck9sHZNWQDEZHUYTV1VUUKxUcP3kSlVEnpKFhROz3CaIsQ69WYdZqsZwprQoFoBcKsfVj26w5B0CCsJoGVVVjfXdCHmvr65AlCYVCAXpWcwMA4DjMzsxgeWUF0zso9mAPZcZ7aaJHGG4RPcfFWRaaho2NDazXamgaBqYnJ1nFJd0uIu4DFqBDnMmSnDiohS7LMlTfh+26EB2nbV/9gBF7D5eD53l48/x5PPH445liVLSS0vd9yIqCgqbFYyZB3TRxp8kzSpAfC3CS7dpiM6nfWRNCEIawbZtpEcmKAlVRMguwREGA53kQBIGlNmaRehCGTF8oJN9vmtDZGBOTMHmBjTMIQ6ytr0MtFnH0+PHcvWBHyIcRsd9HiKoKfWwMVr3OfMc8KVZSFSVeLsvytiU8x3HQNC1WPnRd2LYd94Hc3ESj0YBOpAqElDU5MzuLy1eusGDaToJ0bWXkyE4LRIqwgDhIPDk5CcM0UavVcGd+HpVqFWOVCjiOY1otWcdLW3sUmqbBDwIYlgVBELadN/18N+uTil7RSbFTmuPb77yD6elp7M9o8uCTrkdRFEGnui+Ja0EzUkK6mkn+T8bHApuJ8952Luie+x8EAWwSWObQndAB4tLheQRhGJNzRozDdV24nsd6+AqiyJpr9yoeohNARAwYx3Wxsb6O4tgYDh89iskBV5AjdMaI2O8zREVBYXwcdr0O3/NYqptKSNs0TaYGmQVZlmM54GIRjm2jSdrzNZtNaCQXmRJMpVIBOC7OU6ZZB6nl8SBIk3yvfXFc3BlIV1Wsb25is1ZDo9FApVpFiQioMUs1mRKXCKyy1Eyyv4Kuo9FsomUYKJNOVuljdoMfBG1FOFmfvnz5Mmzbxhe/+MVtKxaHfFccwCbVKIugyfls6x3aIaMpjW6prUEQwLJtuITQVUWBQoLMaSTjFRwA33URhWGbsiR1tXieF19rnoeqqpAkaVvwvdPEySYxcrxGswnDNDG5Zw8OHzkykuC9SxgR+wMAXhShT0zAbjbhkrxvIG56bZkmPM/rWaFI/fAa0Z1pNpswTROmaTLi1zQNU5OTWFlbw+TUVLxhkjh3EIBse6Q7WZOp13lBwNTkJAzDwMb6OtZWV1Gv1TBWrbaJaLEtEm4JGuyk7h9K7vVGg3XZYdZ9wlpmY6DuERIMDoIAkiSxAGTbcQGsrqzg6rVr+PLLL29Z1ogJjfX5FAQUi8U2C7Zt0iPj5DmuoyJit1oFas2nJ1LXdeG6LjzfjwldVaEqSqaKZpQoUErCcV0WPLZsG47jxNk0HAdJkqDIctd7sOPESVclQYD1jQ1wooiDR4/i4MGDo+Kju4gRsT9AUEsliLIMq14HF0WQJQk2z8NotVCuVHLrZciyjImJCVSrVaYDv7m5iWajgUKxiIXFRZw8cSJTc5xi0HxqlkWD7X74rIc/iiIoqorZuTkYJLNiZW0Ncq2Gaorgk2PMoj8aTDUtK45PkFUJI/UkaZK/OYBV9oqkICydfWNZFt56+2188cyZtsYZYRjCaLXghyFURYHWQUuF5YAnJtEsck/615PXLE3oERmzSwKXEeLYgKaqUDoQOt1XFsIogmkYsUFAtPtFUYRMrPNBdVpo1pfjOMz1cvDQIcyQGocR7h5GxP6AIema8Vw3djHU62g0m6iUy33lZQuCgHK5jFKpBMuy0Gq1IEsSGvU6FhYWYiEyos0tiWIbsVP3wE4KZpJExAKgKWvXJz51judRLBZR0HUYpol6vY6V1VXIjQbGKxVoJLeZVcXSwGzKwlVVFT5xSQiC0G5ldrh2LHCa6O9JEYUhzp8/jyNHjmCKrnIQ56cbpAtRMUvIi5wfx/Nx3nbGcXmOQ5Aaf5v7KUXofhDAcV14rstWFtQVl5Wdkz7nZC2C7/vwyI/rOEyQSyONPjqlffaKVSQ/F4Uh6mTlOLVnDw6NXC/3DCNifwDBXDOtFtBsolAqwWi1UK/XUS6XY4usD4LnOA46adUnSRKml5dxZ34+7kZDtGkkoi4piSLExIPN/L9DcNPQfdFgYZgRKE0SfIvEC5ZWVqAoCsbGxqCpKrN2OSRyuRPjK2ga6kEAwzBQKpd79i/1iVY9TTtNEuB7778PWVFwIlGEZDsOLEKERaKxn0TS5cLcPh3A8/xWa8QkoRMERGLCdV0WWJYkKSZzSeoYXE2TbxAEMZF7Hqs+ppY5z3GQiCSv1qPisxup00mbThzr6+vgJGnkerkPGBH7Awy1WIQoSeBqNdbtyDBNJp+ai+BTwatisYhjR4/izfPn8cjDDyMixOGRH47n44ed5xnJ0/+TvulBwDJbuN4df2jThWKxyILBS0tLUFU1zhpKpyUm9snxPEqFQrxdqxUHM7vpuJCKUxa0Jdfr0qVL2NzYwNlz59j+TdOES2IehYyG09sCvl1ArwXH87E/mxB8GEVxSiEhYYC4mahrJEcwNIwieL4Pn2SyJJtTy4oSf7eiiCgMYZOiImXAVNEkoUeIJXfXNzZQrFZHrpf7hBGxP+AQFQXFiQnwooiQBOp4jouFsMhSnwc6E3zSoiWBMF3XMTU9jeWlJRw9dgyB78P1PHiuCz8I4JMgnO954F0XHOL0NmrZp0vO+3XXcABzQSQt5CzrluN5lCsVlEolNAjBb9brkCUJkiy368knJh2BBDKp1V8mvWfTiEggNl3gdfXqVdy+fRsvnjsHSZLgeV7ccSqKoKlqdpPqDgVCbcfDFgHT0fAcBz+KYLsua9yd9JvLsrxtYkoXhCGK4Hkec68EZELgyHeu0pVYaj+G48AlxE7dVrmzpMj5MjnoMEStXodp25iamxu5Xu4jRsT+GQAviihOTACCgGhlBTZpkqHIMhCGCID8BI94KX9g3z588MEHOHzkSJyTLIrQNA2B78eWousy6QBwHAJCFrT9MU8KWXieBy+K7O9e1jzPcfBT2iXJ7BWKbUFEnkelUkG5VMLKygrqjQYWl5agqSqqlUpMzGh3zYiiiGKhgEarxSz3pHRtEiJJT+Q4Dp/cvInr16/jxRdfhCTLaBlGXLzD89CJfnjbpWWD7nzu1Kql1nYURfCJe8T3fTiuC9/zwHEcFEWBLMuZGugc8cv7vo8wCBAEAXzym46F5phLxKXWLWjqOA7bps391g10Ak3k4RutFjZqNSiqioNHjoxcL/cZI2L/DKFYrUIQBKzOz8M0TeYu4YAtgqfZF11cNFTLQy8UMD8/31ZsI4gidFEEVDXOvPB9eCTHGcT9Q3PE/SBASKoagZh8BUFgRUICx2Xq0nRM6evwf1vFJbHgJUkCLwhotVpYtCxIkoRiscjUEynBi5IUu2UMA61WK06DzHAniYQA5+fn8fEvf4mzZ8+C53nUSaNxTdehksYkySyXrhMZzVlHe8DSJz/Joi1VUQBFicv5E+cdkgkg9H1G4Mwnj9iq5wUhDniSVVXeZuEO0WDnBQFqLxJOrvwShG4aBjbrdbiOg6mZGZx45JGRNMADgBGxf8aglUqY2b8fi7dvo2kYKBeLWyXgAFsaR4hJsG25TqAoCizbxsEDB3DlyhXs37dv6036WY6L/euStEXyngfP8xDSZT7PM7cMPQK1ApFot0atQUEQIOTs1MR1+DspH1spl1EuleLYg2Fgs1ZDrVaDpqqslRt4HpIso4i4OUez1UKxUGiLT1CSXl5exnvvvYfnnn8eIP50URTbctO3Za20DXqLyKk1TYmc5t0D8SRC88Jp/MInOvmO68bkTSxxFjdAvHKTiDuFTp55STx9/YA4DTEIgji1sROxp6xzipZhoF6vw/U88ByHR0+fxsFDh/oaywh3DyNi/wxCKRQw99BDWLx5E81WC+VSKTM4GIUhSzFk5Eseal1VMT4+jujqVaysrmJmerrNV57uXM9IPooQhCGChAXpJ9QaeUGIVxGJzji0FZ/rOIgAps3OcVxcFUkse4Hn48mCbJtFWsmgcUSOVyqVUCqVmJqiYZowLQuCKKKo63E6oqKgEMVytaZloaDrjIQlScL6xgbeeuutuGcp4myUQrEYl8xzXFuRUzqNk+O4+FokLHLmGuE4CDzPgp5UHiIgqYsWUeik27FtSJBTTKyC+m0csnUjRACZ5FlPUceB4/sAx0FNNzTPsM4paCoqVR+dHB/HqccfR3HkS3+gMCL2zygUVcXcoUNYIORe0PW2ZTxF0ooPAUaKsqJAchwcPHgQV65cwcz0dBtxpPVkGNET0hEEAXLivYCQGSW1kJI9+bwky+CxRYIe8RGHUYQoCFgZfFroiuq38AnSD8IQESFSjuTfc1wsRjU2Po4q6b9qGAbqjQbqzSZkWUapUNgKhFoWC7wapom3fvELPPLII3EetyzHTU9IwRI5yS3JYmJN04rVpEVOc9cFnmcTqh8ETEY36cbh6ed4HqIkscrPXumZvdDmKiLfQfp927bhOk5cpaqqW6uNDDIHANOy4g5LhNDHqlWUq1UcOnoU6kg//YHDiNg/w1BUFXsOH8bSrVtotVrQNC1OWeuQnZF8cCMubuwxPTODa9euoV6vb/ONZm5P/k4u6bmERU9zVNKk5zpOm282CMPYpUCCr1mgLg0aaAxdl1VdWqaJMNreMITlzJPzE2UZtmWh1Wig0Wgwq1kQRWiKggjAm2+8gUOHDkHVtNh6dl2s2zYi0nIv+Ts98VASZ64mal1jSwKYBZlTK5Ik6LXaCZLfRze4ngebCKaxphbR9uYvIZkAaMs8geMwVq1CLxSgahoOHT0KcRQgfSDB9cgnHrwqZYR7hiAIsLqwAKNehySK0AuFLV9wjyyVZquFq1evotFo4IUXXsi93E/mjKclBDKrE6kLhxCYZdvMCqbKlmkkLVtmgXIcgiBAq9WKBakS+uks7Y62FKSTGPlxHAemZcF1HFiOg6ZhYGl5GXOzs9g7NwdZlttcVmwSIAFKamGLosgsbWrpUuLOIu0cFxOu78cB6h6fo4Frdo17FEBt30WEzc1N1JpNlIpFVFIuFJpSa5omLMuKux7xPMqlEgrFIniOQ3ViAnN793ackEe4Z+j4xY+I/XOERq2GjaUlhEGAoq63ydcmre3k3RACaNTreP3nP8eueA0CAAAQvklEQVThQ4dw9Nix+DPU+htgHG3EzmUUIxGfcvJ12pEpDIL2zkmE+NlvQn7NVguSKObujUlTIaMogmvbWF5dxdWrVxGEIY4fPx5nvcgyNF1HQddZIVS/xDkIojBs6ypFxzqso1KXWgSg2WxifWMDiqJgfGwMPM+zxuCmZcG2bSZhrCgKq1jmiPtuz4EDXdVGR7inGBH7boHruliZn4djGEwUKgv0QaeBwsWlJZz/xS/w4rlzbUUlSQt2GERDj+kRP3n7m+0kGgFxl6BEtglIQLher4MXBNYejwYGaSwg6ZKhKwqHaNcvr6zgypUrcRPqsTFWmMVzXKyQSMZA/c+qqrLes21xh8TQ0xNn+u/0Nunrz8r8hzCJtD20iefbcV0sr6wAAMbGxuC6LgzTjIPaUdzJS1VV6JoGhUg3xIPlMD41hZk9e0YVpA8WRsS+mxCGIdbX1tBcX4cAoFAsdrwDKMH4vo9Lv/wlbs/P48tf/nLHB7gtTXAnYyR53YOi1WohDMPMysYkkYaJNMIoinD79m3MLyzgi2fOMB9zEIYwDSMmNk2D53lwbBu2bceBT8QuJ6pvrilK7pVCL0RAmw7/oPsAwKQEsr6XMIpwe34ezUYDmqbFKx8SrFU1DTrJ009DUVXsOXAA+qgX6YOIEbHvRhiGgfWlJfi2vc01kwXHcfD6G2+gWCjg9OnTXa1HplyIhFXfJ2hmySAwTROu66JarWa6SwJC6NTFIQoCfvnLX6JlGHjuuecQhSE8z2P9SD3Pi9UaEbcmpH0/Pc+D4zhxRyKS9w0AHCnqScosUFXEvA2xgXjicYmEQ16kH8pkmmpIpQWIvIDveXBcF+vr67AsC4VCAcVCIe7Apetx9XIWOA6TMzOYmp0dWekPLkbEvlvheR7WVldhNxrgiM5JOpMkiUaziX//93/HI48+igP79/ftGmjzzfew7EOabdLDWk27V8BxsIk/uFIut3VLCoIAtuPAc12A46CQgOj58+ehaRq+8IUvgBcENBsN8ILA1AwjjkNIgrJhGEInaY/U+g+Jm8T3fdiksYbrupmrDlqBK5MCJPpDFTSTvUB93+86uaV1dCiJU00YSuK+78N3XSbXQIvUeHqtHAelchkzMzOZUgVJ6KUS5vbuHaUxPvgYEftuRhiGME0TjVoNTqsFhCFU0q/y/2/v7n6jKPc4gH9ndmb2bWZ3+4IWD9iKlJe2YI9YG++MkcQLE2+P3siFFyd67b2J8c7Ev8F/ACGHyDHRmAgc9HCAUkBQSSlgELD2dd/mZWfOxTzPdLa72xaoSIfvJ2kChe5OC/129nl+z+/Xzq+//orzExMYe/lldJVKq9+xrTxW326dHMsNr2QtvIKwEZgfKyNU2j1eB47joCra8qqqGh2A8jwPkMsmos/L6dOn8bdt2zA8NBRek+9jQcyGlT/k5A+PwPdRqVTgel40PCP+efht1sF9UYffELX1nji8FT+oFP96yPYFAcJ/G1/8cJOfv1yWCQAocl6o/NqKa/BFq2F5XSlxMEyWncqDVWVxoCiTyaCnu7vj1zMAYFkWevv6kOfm6GbBYKcwvGq1Ghbm5lBfWkLgeWHAp9Mt/0POnTuHSqWCvUND4eGnNUbz3S9ZUx8AURWMuMh1VaG4rou5ubnwDliUXCqxQIeq4t7duzhz5gz27duH/v5+8cQKnHodlWoVxUKhdVlDXIMsi0yJlgJNp02V5Ta163lFI3vDyJOpjuehITo4NkQVkPyadNwLiY/bU1Vo8hVBm/mjEI+7VC6jvLSElK6jR1TArBQAMAsFbHn6aQb65sNgp2b1eh0L8/Oozs8j8DwY6XTTWLVGo4Gvv/kGW3p7sf3ZZ6M5mhtd+hdfhghEXbu8M20KTUWB7/twHQeO6DFeLpeRy2ZhiklQcm3bbzRw9epVTE9PY3x8HL29veHjI/xOqFQq8DwPxWKx6Y46+l4Qz+vYdtRsLZvLtZ1SFMi/Lyc6xZ4n/njyjjwQ9fzxX280OQS9WqmETdAsq3VeqaIgb1kM9M2NwU7tOY6Dxfl5LM3Owndd6GJDUNM0eK6Lk6dOIZvJYHBwEKqYKXo/m4NrkXe+8d/HK0Siu1zHCQ8eKUp0fbVaDel0umku6r179zAxMYFioYD9L7wQDiVBLICDAAsLC9GgDNfzwl4wWK4fl6cwFYSvDKrVKnzfh2EYyK7o295Spy+Wc1pG7MUOSkmyRcFG8UV1j+N5qNVq0DUNedNs2SA1i0X0PvUUA33zY7DT6jzPCwN+fh5uvQ6IE4cAMHnxIhqeh73Dw2FJYDq9YXfv8cCTbQhkj3En1hJYExuPhlx6QVjyGAQBLMuCbduYvHgRf8zMYHR0FFv7+lqfS3yeZdHhUdf19nfMbfYN6vU66qItwqrVJEDrD4k2AS7ftyHfYEEQNhSr1aKvXUpVkc/noYvNY1VVUSiVUOrpQW7lgHDarBjstH6O46C2tITy4iLsahUNz8NPP/+M+fl57B0agq5pYVdF0wxf4scPBMkH6RD6fhDA9zw0xKZhY+Umo+xzE6ssSaVSTWvMUl3Ums/Pz+PHy5exvb8fQ3v2tKw5y3Vx2YrXcRwUS6XocFA77dbPvUYDtUolDM5UCvl8ftWGXXJztN3BJdlM7GF/OPpis1dW5/hiScgyzbC3vmmi1NWFQqkUdZakxGCw04PxPQ/VchnVxUVcuXwZU9evY9/ISFiJ0miEszJXjG5rqnCJBXUQq/6QYaumUuHwDtmXRXY3jAderBokbm52FucnJgAABw4cQKnTgIfY8sriwgI0XUdelPI9yBq3bdthrxvfR1qcTI1vrsbnf3YiK2Hih6mkeAVMS5fN2MfborZetvmV4V7q6kJ3by+KXV0wNuggFT2WGOz08Fzbxo+Tk/jfDz/gwIsvwrQs1EU/8VQqhXQ6Ha6/x8r1VtZhRx0d5Sg9YV0BK1sD2DZ+/uUXXL9+HQMDA9i5c2dUj94itqziymWY2Hi7VZ93ldLLwPdRrdWiAeBp0ZBsPd8w7ZZm1sv3/bDlrusiCIJoQIbjODALBTw7MACLE4yeFAx22jhTU1M4fuwYeksl7Nm1C6VSCY5to+H70FIpZHK5NQ/BrCSbgHUUBLj3+++Ynp7Gnd9+wzPPPIOh4WE4jgNNbOpKh7/4AocPH8Znn32GLaIiBghPq7qui0KxGH1HrBbsV3/6CR9//DEOvfsuDh482PbvyAoUr9GAAsAwjHD49CqHwB4k2FsCXSyBBUGAnGVhS18furu7N6TXDG0aHf+x2XeT7tuOHTvwzw8+wOXLl/H9qVPIaBr27t6NLVu2wLHtsHZa3MHLAFqLqoRDmleq12q4ceMGpm/cgKZpGOjvx+joaHS4So6gk0sWANBu8k8A4Nz587g+NYXp6WncvHkT9XodL4+P4/333297Tbt37ULBsnD27FkcfP315bbEQFT5omkaCoVCeEBKnEa1HQcpVYVhGMv98WPWG+rRnFTx2AHQVHJplkro7u2FZVkcHE1NGOz0QFKpFPbv3499+/bh2rVr+M/Jk3AuXsTQrl3o27oVnuehUq2ipijQxV3sWnfx0Tq87+Pu3buYvn4d92ZmsG3bNoyNjaGrVGq5I9U0DW6sb3j4QCtObyoKXMfBt99+i2vXrkFLpdDd04Pbt293br4lNk9HR0fx3YkTKFcqy0MpgJbr0HUduq4jm8vBdZyov0ytXoeh6zDSaaRUFeuJdN/3Ydt2WOLp+9FGchAEUDUNBbGGbprmqu0h6MnF/xX0UBRFweDgIAYHB3Hr1i2cOnkSE5cuoae7G/lcDtl0Gobohpg3TeRzOaTFSVfbcVAul6O3SqWCxcVFLC0twSoU8NzAAF4aG1s1vHTDQK1Wg+M4yx0XRQtaKQgC2PU63nzzTWzt68PTfX24evUqPvnkk+jP2woCHHjpJXx34gQmJycxPj6+5lKHqihIi8Nenqi/t8WhKtk6QRVBHR+Np6pqtCnruW4Y6AD0dDrsMWMYsEoldPX0wDTNDT1LQMnDYKcNs337dvzj7bexsLCAmZkZzM7OYu6PP3B7dhYLc3OoLC2FwzHSaTiOg5SiwDTNaBh1X19fuBGay3XsY7OSnGjkuC4ymUzbTSHZu2V4eLj1BOYaRkZGYOg6zp47h1deeSUM3HWuY8uDVJlsFp7rRuvjssQz3lMmQPgqKJ3JoGBZMC0LOTGEO3qclUOniTpgsNOGKxaLKBaLeP7555veH4hTnzMzM9B1Hb7nwbNtNBwHqqJEyxmqGFitrjNADcOINjDbBV+9VkNKVe871AEgbRgYGRnB5IULaIj69fsJdwDRWrwimpXJVwiZXA6amFKki4Zjcog278jpYTDY6ZFRFAWlUinsoY7ltWTbtlGpVGBXKqjU6wjENCM5bzQVL42MzfmU0arrOgJFaV6OEeRdce4hWtAeOHAA586fx5UrVzAiavjl2nzbGnQAEBufXuzuPKXryGSzsHp6YBUK0ZINQ5w2GoOd/jKqqoYDH7JZlEqlaKiFbduoVatw63V4joPK4mLYmlbTwrtZOUxaHICSrXBrtRo0TYtOdcqh16qitCztREf645usaF/f+/fRUcD3cebMGQwPD0cj+hRVjRp5yedrNBrR0O6saUJLp2F2dSGbz4cj9tLppp7sRH8GBjs9NuRSjGmaQE8PGo0GXNdFrVJBZWkJjuOETcGCIGoKFgQBFHEHb9s2XDExKZ3JoFwuw9B1ZC2rZYN0ZeMxYDnUA1EuKQ9YZfN57N6zB5cuXUJNVODIo/uK2PxUVBWqYSCdSsEwDJiFAkzLitbHiR4l/o+jx5Zca85kMujq6QEQLt/IiUHxpmG2bSNTrWJudhY1z0PKMGB7HlTDgO26qIuZp4oIbNu2kcvloKoqlsrl5Tto0d4AihKt8Suqit/n5uB4HvJdXdANI+qCKa9RNinj5iY9DhjstKmoqhqtTbdj2zb+9eWX+P7sWWzfsQP9/f3Ld+SxTpK37t3Dfycn0TcwgGcHB8O5rTLIxa/l282bN/Hvr7/Ghx9+iP7nnntknyvRg2KwU6LIwF9YWEAul2vq1R6XyWQwNzcHz/OizdxOjh8/Dtd18dZbb2349RL9Gfi6kWgNR48exdatWzE2NvZXXwrRuvCOnZ4YR44cwZEjRwAAd+7cAQCcPn0ahw4dAgD09vbi008/bfqY2dlZnDx5Eu+99x4rWWjTYLDTE2NiYgKff/550/umpqYwNTUFAOjv728J9mPHjqHRaHAZhjYVLsXQE+Ojjz5q2kBd+TY9Pd3yMUePHoVpmnjttdce/QUTPSAGO1EH9XodX331Fd54442OVThEjyMGO1EHFy5cwM6dO/HOO+/81ZdCdF+4xk7Uwfj4OCbETFWizYTBTonz6quvAsCa9elEScWZp0REm1PH+luusRMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECcNgJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElDIOdiChhGOxERAnDYCciShgGOxFRwjDYiYgShsFORJQwDHYiooRhsBMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECaOt8efKI7kKIiLaMLxjJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElzP8BYPzNIr3eBZ4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -92,9 +90,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "class BernoulliAFactory(UncertaintyProblem):\n", @@ -103,19 +99,17 @@ " A is used to initialize the state as well as to construct Q.\n", " \"\"\"\n", " \n", - " def __init__(self, probability=0.5, i_state=None):\n", + " def __init__(self, probability=0.5):\n", + " # \n", " super().__init__(1)\n", " self._probability = probability\n", + " self.i_state = 0\n", " self._theta_p = 2 * np.arcsin(np.sqrt(probability))\n", - " if i_state is None:\n", - " i_state = 0\n", - " self._params = {'i_state': i_state}\n", " \n", - " def build(self, qc, q, q_ancillas=None, params=None):\n", - " if params is None:\n", - " params = self._params\n", + " def build(self, qc, q, q_ancillas=None):\n", + " \n", " # A is a rotation of angle theta_p around the Y-axis\n", - " qc.ry(self._theta_p, q[params['i_state']])\n", + " qc.ry(self._theta_p, q[self.i_state])\n", "\n", "\n", "class BernoulliQFactory(QFactory):\n", @@ -126,26 +120,24 @@ " \"\"\"\n", " \n", " def __init__(self, bernoulli_expected_value):\n", - " super().__init__(bernoulli_expected_value)\n", + " super().__init__(bernoulli_expected_value, i_objective=0)\n", " \n", - " def build(self, qc, q, q_ancillas=None, params=None):\n", - " i_state = self.a_factory._params['i_state']\n", + " def build(self, qc, q, q_ancillas=None):\n", + " i_state = self.a_factory.i_state\n", " theta_p = self.a_factory._theta_p\n", " # Q is a rotation of angle 2*theta_p around the Y-axis\n", " qc.ry(q[i_state], 2*theta_p)\n", " \n", - " def build_controlled_power(self, qc, q, q_control, power, q_ancillas=None, params=None):\n", - " i_state = self.a_factory._params['i_state']\n", + " def build_controlled_power(self, qc, q, q_control, power, q_ancillas=None, use_basis_gates=True):\n", + " i_state = self.a_factory.i_state\n", " theta_p = self.a_factory._theta_p\n", - " cry(2*power*theta_p, q_control, q[i_state], qc)" + " qc.cry(2*power*theta_p, q_control, q[i_state])" ] }, { "cell_type": "code", "execution_count": 4, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# construct factories for A and Q\n", @@ -156,9 +148,7 @@ { "cell_type": "code", "execution_count": 5, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# set number of evaluation qubits\n", @@ -173,9 +163,7 @@ { "cell_type": "code", "execution_count": 6, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'))\n", @@ -189,12 +177,14 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xm4XFW55/Hvj0kiYQhgAjJFUMwN\nSntJmGyUBJAh2I0yheZy7SgkQRG0G5ApShi0CSpwr2iToMKlVcIVaFqGhCEkAbwMJgGUIcEAYRYj\nBEJMgCS8/cfaB4qdOqeGU7WrTvH7PM9+6tTa07tOJfWetfbaaysiMDMza7a1Wh2AmZl9MDjhmJlZ\nIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnH2p6kiZKim+WYKo+xY3acTXLlY7Lj9G9O9NXF0ctj\nXitpVg/rH5F0Yw/rb5L0eA3n2y/7nQ2pMVT7gHPCsb7idWDPMsv0KvffETgbyH/R35wdZ3ljwqw7\njma6Gthf0oD8iqxsf+A3BcZjH1DrtDoAsyqtioj7Gn3QiFgMLG70cdvM1cD5wKHAL3LrDgPWBaYW\nHZR98LiFYx1D0hmSFkp6U9LLkqZL2kLSCKCrS+nprDtoUbbP+7rUJA3O3h8l6QpJSyU939V1J+k7\nkl6UtFjSJElrlZx/iKSpkp6TtFzSo5K+3bVNT3Fk67fN9n812/9WSZ/M1XEbSbdIWiFpkaTjKv1e\nIuIp4AHgqDKrjwLmRMSfs+MPlXRNSR0ekXSiJPXwe/94VpcDc+W/knRfrmxnSdMkvZH9bq+RNKhk\n/XqSLsrO/1b2u75ekv847gD+EK3PKPelExGrsnVfAc4ETgMeBTYD9gE2AOYBpwA/Iv2V/xLwVoXT\nTQJ+TWoBfA34N0n/CGyXvR9GajU8yHutg62ABdl+bwCfAc4B+gH/q6c4JG0K3AO8AhxP6uI7HbhD\n0o4RsSL70v9/wObAscCb2fE3Bf5coT5XAz+SNDAi/pqdcxAwAvhOyXZbA48Dv8rqsAvwfWB94IcV\nztGjLHneA9wH/BOwHul3eAOpWxNgAjCa9Fk+DWwJjMJ/HHeGiPDipa0XYCIQ3SyDs20uBa7r4Rhf\nLN2+pHxMVt4/ez84e39FyTYbAStJX+prl5Q/AFzTzflE+oPuTOCpKuI4j5RsNi0pG0C6dnVC9n5U\ntu/uJdtsB6wCZlX4HW4JrO46Vlb2TeAdYOsKdfge8ERJ+X5ZHEOy9x/P3h+Y2/9XwH0l768GHgPW\nLSkbksV1QPZ+OjCp1f/mvDRncQvH+orXSV90eS9mrw8Bx0o6hzQQYG5ErO7F+WZ0/RARSyUtBmbn\njrkQ2LbrjaT1gTNIf71vS7o20rVunchaY93YD7gdWFrSknsDmAsMz97vBrwcEfeXxPaMpLmVKhMR\nL0maTWo9/DQrHg3cFRHPl8TZj5Qkjwa2KalDSForIt6pdK4e7AdMzo7VVceFwPOkOt5K+hyPy37f\nt0bEn3pxPmszbqZaX7EqIuaUWd7O1v+S9EV5JHA/8LKk8yStXef5Xsu9f7ubsvVL3k8idZlNIbVG\ndiV1GZHbrpzNSQlgZW4ZSfriB9gC+GuZfcuVlXM1sJekrSVtDfznrKzUj4BvA5eV1OECUmtnvSrP\n053NgLNYs47b8l4dz8nOfSLwx+xazjd7eV5rE27hWEfI/vK+GLhY0jakVsb3gRdIX2BFOAL4SURc\n2FUg6eAq930V+B2pay3vjez1L8DAMusHAiuqOMd1pNbNkaQEshq4NrfNEcC/RMS712skHVLhuG9m\nr/mEtGnu/RJSgruyzDEWA0TECtJ1nAmSdgS+AfxE0vyIuKNCHNbm3MKxjhMRz0XEBaTumqFZcVdL\nqFJLozf6UTIYIWtd5UeGdRfHDGAn4NEyrbgF2TZ/AAZJ2r3kHNuSLuxXFBGvkrqtjsqW2yLilSrq\nMLrCof9CSl7/ULLfRsDuue1mAJ8idXfm6/hMmXifAP4n6RrV0Px663vcwrG+Yh1Je5Qpfy4iXpA0\nmdRKuI90vWck8AnSqDVIo8cAxkuaCixvwvWB24ETJC3MYjkB+FBum+7iuAg4BrhT0k9ILbNBwN7A\nPRFxNXAL8DDwW0mnkVoW51J9lxqkFsavs5//uZs6nCTpaVIX4jep8D0REauymQxOlvQ8sJTUtZi/\nmfZ7pIEWN0q6gjRIYivSjac/j4i7Jf2O1CX6YFa/I7N9766hjtauWj1qwYuXSgs9j1KbkG0zBvg9\n6Yt+OfBH4NjccU4GniH9xbyoZL9yo9S+mNt3EfCjXNmVpHtYut4PAv4v6Qv3ZeBCYGzp8buLIyv/\nKHBFtu9b2Tl/BexUss22pJFcK7JjjCd1i82q8ne5AfD3bP8Ny6zfgjT0+g1Sy+UC0jDtANbPtnnf\nKLWS/W7M6r6INGz7faPUsu2GAtdnn9MK0si/y4CtsvWnkQZKvJ7FcF/+s/DSdxdlH3JhJH0cOBXY\ng9S8vjsiRlSx38bAJcCXSF2BNwEnRa5LIOtvPp/01+1TwDkRcU0j62BmZrVrxTWcnUijX57Ilmpd\nQ7pJ7TjSX6W7km4Ye5ekvUgXRmcCB5GGx14taf/eBm1mZr3TihbOu2P5JV0LbF6phSNpT+A/gL0j\n4q6sbDdSX+8XIhu9IulW0k1l+5TsewuwUUTs1Yz6mJlZdQpv4UR9N44dRLrh7a6S4zxAmvriIABJ\nHyJdKP733L5TgT2zLjkzM2uRvjIseggwv0z549k6gB1Id0Xnt3ucVM8dmxadmZlV1FeGRQ9gzbu8\nId1Itn3JNpTZbklu/ftIGgeMA+jXr9+wbbbZptxmTfPOO++w1lp9Je/Xpsi6bfhEuhz4xo7F/F3R\nyZ8bdHb9XLfGeuKJJ/4WER+pZtu+knAgDcPMU5ny/Ht1U54KI6aQpiJh+PDhMWfOnN7EWLNZs2Yx\nYsSIQs9ZlELr1jV7/oIFPW/XIJ38uUFn1891ayxJa9y0252+kuaXUP4JiZvwXotmSUlZfhso30Iy\nM7OC9JWEM5/3rtWUKr228yRpIsD8dkNIU7DXMgTbzMwarK8knGnAFtl9NgBIGk66fjMNICLeIt1/\nc0Ru39HAvRHxekGxmplZGYVfw5H0YdKNn5DmUdpI0uHZ+1siYnk2F9XsiDgWICLuze6xuUrSKaQW\nyyTSHFOlM8ieB8ySdAnpptBR2fK+R9+amVnxWjFoYCDw21xZ1/uPkeZhWgfIP8fkKNL087+kZGqb\n0g0i4p4seZ0PfJ10n87REXFbA+O3dlTwDcxmVrvCE05ELOK9kWPdbTO4TNlrwFezpad9byA35Y2Z\nmbVeX7mGY2ZmfZwTjnWGYcPSYmZtqy/d+GnWvXnzWh2BmVXgFo6ZmRXCCcfMzArhhGNmZoVwwjEz\ns0I44ZiZWSE8Ss06w9ixrY7AzCpwwrHOMGVKqyMwswrcpWZmZoVwwrHOMHduWsysbblLzTrD8OHp\n1bNGm7Utt3DMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwsGjrDHPmtDoCM6vACcc6\ngx8vbdb23KVmZmaFcMKxzjBuXFrMrG054VhnuPzytJhZ23LCMTOzQjjhmJlZIZxwzMysEE44ZmZW\nCCccMzMrhG/8tM6wyy6tjsDMKnDCsc7gx0ubtT13qZmZWSGccMzMrBBOONYZpLSYWdtywjEzs0I4\n4ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIzDVhnmDy51RGYWQVOONYZ/Hhps7ZXeJeapKGS\nZkhaLulFSedKWrvCPhMlRTfLGSXbXdnNNkOaXzMzM+tJoS0cSQOAO4DHgEOAHYAfkxLfhB52/Tkw\nPVf2JeA0YFqufD7w1VzZovoitj5jypT06paOWdsqukvteKAfcGhELAVul7QRMFHShVnZGiLieeD5\n0jJJ3wXmR8RDuc3/HhH3NSF2a2fjx6dXJxyztlV0l9pBwK25xDKVlIT2rvYgkjYFvgBc3djwzMys\nWYpOOENIXV7viohngeXZumodDqxLSlZ5QyUtlfSWpHskVZ3IzMyseRQRxZ1MWgmcGhGX5MqfB66K\niDOrPM6dwMYRMSxX/i3gbdI1oo8AJwPDgL0i4oFujjUOGAcwaNCgYVOnlsthzbNs2TL69+9f6DmL\nUmTdRowcCcCsmTMLOV8nf27Q2fVz3Rpr5MiRcyNieFUbR0RhC7AS+FaZ8heA71d5jC2B1cApVWzb\nD3gauKGaYw8bNiyKNnPmzMLPWZRC6wZpKUgnf24RnV0/162xgDlRZQ4oukttCbBJmfKNgdeqPMaR\ngIBrKm0YESuAWwA/8N7MrMWKTjjzyV2rkbQNsAG5azs9OAq4JyKeq+G8xfUbmplZWUUnnGnAAZI2\nLCkbDawAZlfaWdJgYA+qHJ0mqR9pZNzcWgO1PqarU83M2lbRCecy4C3gekn7ZRfsJwIXRclQaUkL\nJf2izP5HAauAa/MrJG0s6W5J4yXtK2k0MBPYCvhBE+piZmY1KPTGz4hYImlf4FLgRtJ1m4tJSScf\nV7npbo4CZkTE4jLr3gIWk2YsGAi8CdwL7B0RcxpSATMzq1vhk3dGxGPAPhW2GdxN+Wd62OdN4NBe\nBWd917BshPxc956atSvPFm2dYd68VkdgZhX4AWxmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXw\nKDXrDGPHtjoCM6vACcc6Q9cjps2sbblLzczMClFTwpFUbroZs9abO9ezDJi1uVq71F6QdBVwRUQ8\n3oyAzOoyPHvgoGeMNmtbtXapTQYOBx6RdL+kcZI2akJcZmbWYWpKOBFxdkRsD3wBWABcBLwk6deS\n9mtGgGZm1hnqGjQQEXdGxFeALYATgU8Ct0paJGmipI82MkgzM+v7ejtKbTjwedJjo5cAdwPHAQsl\nHdPLY5uZWQepOeFI2k7S2ZKeBGYAWwJfAz4aEf8MbEe61vPDhkZqZmZ9Wk2j1CTdSWrRPA9cSRqt\n9kzpNhGxWtJvgG81KkgzM+v7ah0W/TdgFHB7RI/jTx8CPlZ3VGa1muOniJu1u1oTzqXAvHLJRlJ/\nYJeIuCsiVgLPrLG3WbN0PWLazNpWrddwZgJDu1n3yWy9mZnZGmpNOOphXX9geS9iMavfuHFpMbO2\nVbFLTdLngRElRcdJOjC32frAwcCfGheaWQ0uvzy9etZos7ZVzTWc3Uk3dwIEcASwKrfN28B84NTG\nhWZmZp2kYsKJiB+S3VMj6WngyxHxULMDMzOzzlLTKLWI8FBnMzOrSzXXcEYB90TE0uznHkXELQ2J\nzMzMOko1LZybgD2AB7Kfg+5HqwXgh7SZmdkaqkk4HwNeKvnZrP3sskurIzCzCqoZNPBMuZ/N2oof\nL23W9qq5hvPhWg4YEb7508zM1lBNl9oy0rWZavkajpmZraGahPM1aks4ZsVTNo6lx0nMzayVqrmG\nc2UBcZiZWYfr7SOmzczMqlLNoIEHgDER8ZikP1Chey0idmtUcGZm1jmquYbzKLCi5Gd3kpuZWc2q\nuYbz1ZKfxzQ1GjMz61h1X8NR8hFJPT2UzczMDKhxtmh4dzLPCcCwbP9VkuYC34+Imxscn1l1Jk9u\ndQRmVkFNCUfSeOBnwAzgW8BfgYHAocDvJH0jIvw/34rnx0ubtb1aWzhnAlMi4uu58sskXQacBTjh\nmJnZGmq9hrMZcH03664DNq10AElDJc2QtFzSi5LOldTjdDiSBkuKMsvUMtseIulPkt6U9Jik0VXV\nzPq2KVPSYmZtq9YWzkxgb+D2Muv2Bu7qaWdJA4A7gMeAQ4AdgB+TEt+EKs5/CvD7kvd/yx1/L1Li\n+xlwEjAKuFrSkoi4rYrjW181fnx6ddeaWduq5sbPoSVv/xX4uaTNgBt47xrOl4GDgOMqHO54oB9w\naEQsBW6XtBEwUdKFWVlPFkTEfT2s/y5wV0SclL2fKWkn4HuAE46ZWQtV08J5hPff7ClgfLbkn/45\nnZ5niz4IuDWXWKYCk0gtpBuriKcsSR8CRpJaNqWmAldI2jgiXq/3+GZm1jvVJJyRDTzfEODO0oKI\neFbS8mxdpYRzhaRNSS2rq4GzIqJrFoQdgHWB+bl9Hid12e0I/KF34ZuZWb2qmWlgdgPPNwB4rUz5\nkmxdd94CfkrqFlsKjABOIyWZQ0qOTZnjL8mtfx9J44BxAIMGDWLWrFk9xd9wy5YtK/ycRSmybiOy\n16LO18mfG3R2/Vy31qn5xs8uktYC1s+XV/HEz3Jzsamb8q5jvgR8s6RolqSXgZ9J+kxEPNTD8dVN\nedexpwBTAIYPHx4jRozoOfoGmzVrFkWfsyitqFtR5+vkzw06u36uW+vUNCw6m87mNEkLgZXAG2WW\nniwBNilTvjHlWz49uTZ73aXk2JQ5ftf7Wo9vZmYNVOt9OCcBpwO/ILUcvg+cCzwBLCLrmurBfNK1\nmndJ2gbYgDWvvVQSudcnSUlwSG67IcA7WYzWqSL8tE+zNldrwhkLnA1cmL2/ISLOAXYiJYxPVNh/\nGnCApA1LykaTHn9Q67Wiw7PXuQAR8RbpPqEjctuNBu71CDUzs9aq9RrOx4CHImK1pJVk3VUR8Y6k\nnwE/J7WAunMZqZV0vaRJwPbAROCi0qHSWZfd7Ig4Nns/EdiQdNPnUuDzwKnA9RHxx5Ljn0e6vnMJ\n6T6hUdlyYI31NDOzBqs14bwC9M9+fhb4R94b5jyAdFNntyJiiaR9gUtJQ6BfAy4mJZ18XKX388wn\nzTJwXHaOZ4Efkrr0So9/j6TDgfOBrwNPA0d7lgEYfHqxE3kvuuDgQs/HsGHpde7cYs9rZlWrNeH8\nHtgVuAX4DWmGgE2Bt4ETSLNI9ygiHgP2qbDN4Nz7qaQbOCuKiBtIrRv7IJk3r9URmFkFtSacicBW\n2c8/IHWpjSG1Om4HTmxUYGZm1llqSjgRsQBYkP38FumZON9qQlxmZtZhenPj59bAlsCLEfFC40Iy\nM7NOVOuwaCR9XdJzwDPA/cCzkp6X9I2GR2dmZh2j1pkGvkcaYTYNOBgYnr1OA/41W29mZraGWrvU\nTgB+EBHfzZVPz+Y2O4E084BZscaObXUEZlZBrQmnH90/1XM2HqVmreLHS5u1vVqv4dwAHNrNusOA\nm3oXjpmZdapqHjE9quTtNOBCSYNZ8xHTOwHfaXyIZlXommGga8YBM2s71XSp3cSaj5LeCjigzLa/\nIj2J06xYw4enV88Ybda2qkk4H2t6FGZm1vGqecT0M0UEYmZmna3mmQYkrUMaILAXsCnwKnA36VEB\nqxobnpmZdYqaEo6kgcBtwM6kJ3y+DOxJuv/mYUn7R8TiRgdpZmZ9X63Doi8CNgN2j4jtI2LPiNge\n2D0rv6jRAZqZWWeoNeGMAk6LiD+UFmbvzyBNc2NmZraGWq/hfAh4o5t1bwDr9S4cszrNmdPqCKrS\n8U9eNetBrQnnPuA0SXdGxN+7CiVtAJyWrTcrnm/4NGt7tSack4GZwHOSbiMNGhhIuglUwIiGRmdm\nZh2jpms4EfEQ8AlgCvAR4AukhHMZ8ImIeLjhEZpVY9y4tJhZ26q6hSNpXWA34OmIOL15IZnV4fLL\n06tnjTZrW7W0cFYDdwL/0KRYzMysg1WdcCLiHeDPwKDmhWNmZp2q1vtwzgK+J+nTzQjGzMw6V62j\n1CaQZhR4SNILpFFq75sPPiJ2a1BsZmbWQWpNOI9ki5mZWU2qSjiS+pGmtXkE+AtwR0S83MzAzGqy\nyy6tjsDMKqjmEdPbA3cAg0uKl0o6MiJua1ZgZjXpesS0mbWtagYNXAi8A3wO+DCwE/AgMLmJcZmZ\nWYepJuHsCUyIiN9HxJsR8TgwHthW0pbNDc/MzDpFNQlnS+CpXNmTpLnTtmh4RGb1kNJiZm2r2vtw\novImZmZm3at2WPStklaVKZ+RL4+Igb0Py8zMOk01CeecpkdhZmYdr2LCiQgnHDMz67Va51IzMzOr\nixOOmZkVota51Mza02Tfh2zW7pxwrDP48dJmbc9damZmVggnHOsMU6akxczaVuEJR9JQSTMkLZf0\noqRzJa1dYZ9dJV0haWG23wJJZ0taP7fdRElRZjmwubWylhs/Pi1m1rYKvYYjaQDpUQePAYcAOwA/\nJiW+CT3sOjrbdhLwZ2Bn4Lzs9bDctq8D+QTzeG9jNzOz3il60MDxQD/g0IhYCtwuaSNgoqQLs7Jy\nJkXE4pL3syS9CUyWtF1EPFOyblVE3Nec8M3MrF5Fd6kdBNyaSyxTSUlo7+52yiWbLg9mr567zcys\nDyg64QwB5pcWRMSzwPJsXS0+S3ow3IJc+SaS/iZppaQHJR1ad7RmZtYwiijuyQOSVgKnRsQlufLn\ngasi4swqj7MF8EfglogYU1J+DKnF8xDQn/SguFHAYRFxfTfHGgeMAxg0aNCwqVOn1lqtXlm2bBn9\n+/dv+nn+9MLrTT9HqU9vtXFhdQMYMXIkALNmzizkfPXWrRWfQz2K/OyK5ro11siRI+dGxPBqtm1F\nwjklIv4lV/4CcGVEnFXFMdYjDTzYGhgWEUt62FbAfwD9IuIzlY49fPjwmDNnTqXNGmrWrFmMGDGi\n6ecZfPrNTT9HqUUXHFxY3YD3Hr5W0L/neuvWis+hHoV+dgVz3RpLUtUJp+gutSXAJmXKNwZeq7Rz\nlkCuAnYCRvWUbAAiZdPrgZ0rDb22Pi6isGRjZvUpepTafHLXaiRtA2xA7tpONy4mDaf+QkRUs30X\nfxOZmbVY0S2cacABkjYsKRsNrABm97SjpDOAE4FjIuKeak6WtYi+DDwcEavrC9nMzBqh6BbOZcBJ\nwPWSJgHbAxOBi0qHSktaCMyOiGOz90cDPwCuBF6QtEfJMZ/sGjYtaTZwHam1tAEwFtgD+FJzq2Ut\nN2xYep07t7VxmFm3Ck04EbFE0r7ApcCNpOs2F5OSTj6u0msu+2evY7Kl1FdJiQhgIfBtYEvSkOl5\nwMERMa0R8Vsbmzev1RGYWQWFP54gIh4D9qmwzeDc+zGsmWjK7XdsL0IzM7Mm8mzRZmZWCCccMzMr\nhBOOmZkVwgnHzMwKUfigAbOmGDu21RGYWQVOONYZ/Hhps7bnLjUzMyuEE451hrlzPcuAWZtzl5p1\nhuHZ7OieMdqsbbmFY2ZmhXDCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhIdFW2eYM6fVEZhZ\nBU441hm6HjFtZm3LXWpmZlYIJxzrDOPGpcXM2pYTjnWGyy9Pi5m1LSccMzMrhBOOmZkVwgnHzMwK\n4YRjZmaFcMIxM7NC+MZP6wy77NLqCMysAicc6wx+vLRZ23OXmpmZFcIJx8zMCuGEY51BSouZtS0n\nHDMzK4QTjpmZFcIJx8zMCuFh0Wb2gTP49JsLPd+iCw4u9Hztyi0cMzMrhBOOmZkVwl1qDVJvE/3k\nT69iTI37unlexuTJrY7AzCpwwrHO4MdLm7U9d6mZmVkhnHCsM0yZkhYza1vuUrPOMH58enXXmlnb\ncgvHzMwKUXgLR9JQ4CfAnsBrwM+BcyJidYX9NgYuAb5ESpQ3ASdFxCu57Q4Bzgc+ATyVHfuaRtfD\nzKxZihz1CsWNfC20hSNpAHAHEMAhwLnAycA5Vex+DTACOA4YA+wK3JA7/l7AdcBM4CDgZuBqSfs3\npAJmZla3ols4xwP9gEMjYilwu6SNgImSLszK1iBpT+AAYO+IuCsrewG4X9J+EXFHtul3gbsi4qTs\n/UxJOwHfA25rXrXMzKySoq/hHATcmkssU0lJaO8K+73clWwAIuIB4OlsHZI+BIwE/j2371Rgz6xL\nzszMWqTohDMEmF9aEBHPAsuzdVXvl3m8ZL8dgHXLbPc4qZ471hGvmZk1SNFdagNIAwXylmTr6tlv\n+5JtKLPdktz695E0DugaS7tM0oIe4mi4k2Bz4G+17KNJTQqmgbIYa65b709c2FM/i69bHXrxb6VP\n1K9OhdetqP+z9XyfQK/j267aDVtxH06UKVM35fXsl3+vbspTYcQUoGV3DEqaExHDW3X+ZnLd+q5O\nrp/r1jpFd6ktATYpU74x5VswlfbbpGS/JSVl+W2ocHwzM2uyohPOfHLXaiRtA2xA+Ws03e6XKb22\n8ySwssx2Q4B3gCfqiNfMzBqk6IQzDThA0oYlZaOBFcDsCvttkd1nA4Ck4aTrN9MAIuIt0v03R+T2\nHQ3cGxGv9z78pujkCcBct76rk+vnurWIIipdOmngydKNn48BjwCTSAnjIuCSiJhQst1CYHZEHFtS\nNp000uwUUotlEvDXiPhcyTZ7AbOAS0k3hY7Ktj8wInwfjplZCxXawomIJcC+wNrAjaQZBi4Gzs5t\nuk62TamjSK2gXwJXAXOBL+eOfw9wOLAfcCvwX4GjnWzMzFqv0BaOmZl9cHm26CaRNFTSDEnLJb0o\n6VxJ+VZbuf02lnSFpCWSXpf0a0mbFRFzteqpm6Rds3otzPZbIOlsSesXFXc16v3cSvZfS9JcSSHp\ni82MtR69qZ+kQyX9QdIKSa9Imi5pg2bHXK1e/J8bLum2rE6vSrpD0u5FxFwtSR+XNFnSw5JWS5pV\n5X5t9X3i5+E0QckkpY+RJindAfgxKcFP6GFXSJOUfpI0SWnXtaobgM/1tFNRelG30dm2k4A/AzsD\n52WvhzUx5Kr18nPrchywVVMC7KXe1E/ScaRroxcCp5JupN6HNvkOqbdu2SjZO4B5wFey4lOB2yTt\nHBHPNDPuGuxEuiZ9H7BeDfu11/dJRHhp8AKcQbovaKOSsu+QpvDZqIf99iTdoPr5krLdsrL9Wl2v\nXtbtI2XKxmV1267V9epN3Uq2HQAsBo7N6vXFVtepQZ/d5sAbwNhW16EJdTseWA1skvscVwNfb3W9\nSmJaq+Tna4FZVezTdt8n7lJrjqZNUtoG6qpbRCwuU/xg9jqwceH1Sr2fW5fzgN8DM5oQWyPUW78j\ns9d/a1ZgDVBv3dYFVgHLSsqWZWWFzZNUSUS8U8dubfd94oTTHM2cpLTV6q1bOZ8lNfMLnb+uB3XX\nTdLOwFdJw/DbVb312530GR0r6XlJKyXdL+mzzQu1ZvXW7bpsmx9LGihpIGnk7BLgt02KtSht933i\nhNMczZiktKf9itSQGCVtAZwI93L7AAACzklEQVQF/J/o5jlILdCbuv0E+GlELGx4VI1Tb/22IF0H\nmACcBvwX4O/AdEmDGh1kneqqW0S8SHqsyWHAy9lyKHBAN63yvqTtvk+ccJqn2ZOUtlKvYpS0Hum5\nRcuA/9HAuBqh5rpJOor0hXx+s4JqoHo+u7WA/sCxEfHriJhOetT7auCbjQ+xbvV8dluSronMJXUz\nHZT9fLOkbZsRZMHa6vvECac5mjlJaavVWzcAJIl04+5OwKhINwO3i5rrJmld4Iek0T9rSdoE2Chb\nvUFuGqdWq/ezezV7ndVVkLVK5wJDGxVcL9Vbt1NJI+0Oj4jpWTI9jJRM27l7tBpt933ihNMczZyk\ntNXqrVuXi0nDVg+JiHapU5d66rYBsDVpiqYl2fJwtm4q7w2MaAf1fnaPk/4izl9EF+kaXDuot25D\ngEcjYmVXQUS8DTxKGlrdl7Xd94kTTnM0bZLSNlBv3ZB0BnAicEykaYjaTT11W0a6BlC6/Lds3ZnA\nPzUn1LrU+9ndREouI7sKske2D+O95Npq9dbtGeBTWTcv8O7j6j8FLGpCnEVqv++TVo8v78SFdEHu\nJeB20rxu40hfTOfntlsI/CJXNh14inTh8kuk0UF3t7pOva0bcDTpr+QrgD1yyxr36PSlupU5zmDa\n8z6c3vy7vCHb978DB5O+xBcDA1pdr17+uxxGeqzJzVm9vkj6Ml4J/KdW16skzg+T5ok8HLiX1ALr\nev/hHj63tvo+afkvslMXUt/2naS/sF4i3aOxdm6bRcCVubJNsi/l14ClwG+AzVtdn97WDbgy+xIu\nt4xpdZ16+7nl1rdlwunlv8v+wP8GXsn2vQP4dKvr06C67QvcRbpW9SopmY5odX26+TdVbhncQ93a\n6vvEk3eamVkhfA3HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi\n/wPargvhxia8vQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4XFW55/Hvj0kiYQhgAjJFUMwNSntJmGyUBJAh2I0yheZy7SgkQRG0G5ApShi0CSpwr2iToMKlVcIVaFqGhCEkAbwMJgGUIcEAYRYjBEJMgCS8/cfaB4qdOqeGU7WrTvH7PM9+6tTa07tOJfWetfbaaysiMDMza7a1Wh2AmZl9MDjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnH2p6kiZKim+WYKo+xY3acTXLlY7Lj9G9O9NXF0ctjXitpVg/rH5F0Yw/rb5L0eA3n2y/7nQ2pMVT7gHPCsb7idWDPMsv0KvffETgbyH/R35wdZ3ljwqw7jma6Gthf0oD8iqxsf+A3BcZjH1DrtDoAsyqtioj7Gn3QiFgMLG70cdvM1cD5wKHAL3LrDgPWBaYWHZR98LiFYx1D0hmSFkp6U9LLkqZL2kLSCKCrS+nprDtoUbbP+7rUJA3O3h8l6QpJSyU939V1J+k7kl6UtFjSJElrlZx/iKSpkp6TtFzSo5K+3bVNT3Fk67fN9n812/9WSZ/M1XEbSbdIWiFpkaTjKv1eIuIp4AHgqDKrjwLmRMSfs+MPlXRNSR0ekXSiJPXwe/94VpcDc+W/knRfrmxnSdMkvZH9bq+RNKhk/XqSLsrO/1b2u75ekv847gD+EK3PKPelExGrsnVfAc4ETgMeBTYD9gE2AOYBpwA/Iv2V/xLwVoXTTQJ+TWoBfA34N0n/CGyXvR9GajU8yHutg62ABdl+bwCfAc4B+gH/q6c4JG0K3AO8AhxP6uI7HbhD0o4RsSL70v9/wObAscCb2fE3Bf5coT5XAz+SNDAi/pqdcxAwAvhOyXZbA48Dv8rqsAvwfWB94IcVztGjLHneA9wH/BOwHul3eAOpWxNgAjCa9Fk+DWwJjMJ/HHeGiPDipa0XYCIQ3SyDs20uBa7r4RhfLN2+pHxMVt4/ez84e39FyTYbAStJX+prl5Q/AFzTzflE+oPuTOCpKuI4j5RsNi0pG0C6dnVC9n5Utu/uJdtsB6wCZlX4HW4JrO46Vlb2TeAdYOsKdfge8ERJ+X5ZHEOy9x/P3h+Y2/9XwH0l768GHgPWLSkbksV1QPZ+OjCp1f/mvDRncQvH+orXSV90eS9mrw8Bx0o6hzQQYG5ErO7F+WZ0/RARSyUtBmbnjrkQ2LbrjaT1gTNIf71vS7o20rVunchaY93YD7gdWFrSknsDmAsMz97vBrwcEfeXxPaMpLmVKhMRL0maTWo9/DQrHg3cFRHPl8TZj5Qkjwa2KalDSForIt6pdK4e7AdMzo7VVceFwPOkOt5K+hyPy37ft0bEn3pxPmszbqZaX7EqIuaUWd7O1v+S9EV5JHA/8LKk8yStXef5Xsu9f7ubsvVL3k8idZlNIbVGdiV1GZHbrpzNSQlgZW4ZSfriB9gC+GuZfcuVlXM1sJekrSVtDfznrKzUj4BvA5eV1OECUmtnvSrP053NgLNYs47b8l4dz8nOfSLwx+xazjd7eV5rE27hWEfI/vK+GLhY0jakVsb3gRdIX2BFOAL4SURc2FUg6eAq930V+B2pay3vjez1L8DAMusHAiuqOMd1pNbNkaQEshq4NrfNEcC/RMS712skHVLhuG9mr/mEtGnu/RJSgruyzDEWA0TECtJ1nAmSdgS+AfxE0vyIuKNCHNbm3MKxjhMRz0XEBaTumqFZcVdLqFJLozf6UTIYIWtd5UeGdRfHDGAn4NEyrbgF2TZ/AAZJ2r3kHNuSLuxXFBGvkrqtjsqW2yLilSrqMLrCof9CSl7/ULLfRsDuue1mAJ8idXfm6/hMmXifAP4n6RrV0Px663vcwrG+Yh1Je5Qpfy4iXpA0mdRKuI90vWck8AnSqDVIo8cAxkuaCixvwvWB24ETJC3MYjkB+FBum+7iuAg4BrhT0k9ILbNBwN7APRFxNXAL8DDwW0mnkVoW51J9lxqkFsavs5//uZs6nCTpaVIX4jep8D0REauymQxOlvQ8sJTUtZi/mfZ7pIEWN0q6gjRIYivSjac/j4i7Jf2O1CX6YFa/I7N9766hjtauWj1qwYuXSgs9j1KbkG0zBvg96Yt+OfBH4NjccU4GniH9xbyoZL9yo9S+mNt3EfCjXNmVpHtYut4PAv4v6Qv3ZeBCYGzp8buLIyv/KHBFtu9b2Tl/BexUss22pJFcK7JjjCd1i82q8ne5AfD3bP8Ny6zfgjT0+g1Sy+UC0jDtANbPtnnfKLWS/W7M6r6INGz7faPUsu2GAtdnn9MK0si/y4CtsvWnkQZKvJ7FcF/+s/DSdxdlH3JhJH0cOBXYg9S8vjsiRlSx38bAJcCXSF2BNwEnRa5LIOtvPp/01+1TwDkRcU0j62BmZrVrxTWcnUijX57IlmpdQ7pJ7TjSX6W7km4Ye5ekvUgXRmcCB5GGx14taf/eBm1mZr3TihbOu2P5JV0LbF6phSNpT+A/gL0j4q6sbDdSX+8XIhu9IulW0k1l+5TsewuwUUTs1Yz6mJlZdQpv4UR9N44dRLrh7a6S4zxAmvriIABJHyJdKP733L5TgT2zLjkzM2uRvjIseggwv0z549k6gB1Id0Xnt3ucVM8dmxadmZlV1FeGRQ9gzbu8Id1Itn3JNpTZbklu/ftIGgeMA+jXr9+wbbbZptxmTfPOO++w1lp9Je/Xpsi6bfhEuhz4xo7F/F3RyZ8bdHb9XLfGeuKJJ/4WER+pZtu+knAgDcPMU5ny/Ht1U54KI6aQpiJh+PDhMWfOnN7EWLNZs2YxYsSIQs9ZlELr1jV7/oIFPW/XIJ38uUFn1891ayxJa9y0252+kuaXUP4JiZvwXotmSUlZfhso30IyM7OC9JWEM5/3rtWUKr228yRpIsD8dkNIU7DXMgTbzMwarK8knGnAFtl9NgBIGk66fjMNICLeIt1/c0Ru39HAvRHxekGxmplZGYVfw5H0YdKNn5DmUdpI0uHZ+1siYnk2F9XsiDgWICLuze6xuUrSKaQWyyTSHFOlM8ieB8ySdAnpptBR2fK+R9+amVnxWjFoYCDw21xZ1/uPkeZhWgfIP8fkKNL087+kZGqb0g0i4p4seZ0PfJ10n87REXFbA+O3dlTwDcxmVrvCE05ELOK9kWPdbTO4TNlrwFezpad9byA35Y2ZmbVeX7mGY2ZmfZwTjnWGYcPSYmZtqy/d+GnWvXnzWh2BmVXgFo6ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSE8Ss06w9ixrY7AzCpwwrHOMGVKqyMwswrcpWZmZoVwwrHOMHduWsysbblLzTrD8OHp1bNGm7Utt3DMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwsGjrDHPmtDoCM6vACcc6gx8vbdb23KVmZmaFcMKxzjBuXFrMrG054VhnuPzytJhZ23LCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhG/8tM6wyy6tjsDMKnDCsc7gx0ubtT13qZmZWSGccMzMrBBOONYZpLSYWdtywjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIzDVhnmDy51RGYWQVOONYZ/Hhps7ZXeJeapKGSZkhaLulFSedKWrvCPhMlRTfLGSXbXdnNNkOaXzMzM+tJoS0cSQOAO4DHgEOAHYAfkxLfhB52/TkwPVf2JeA0YFqufD7w1VzZovoitj5jypT06paOWdsqukvteKAfcGhELAVul7QRMFHShVnZGiLieeD50jJJ3wXmR8RDuc3/HhH3NSF2a2fjx6dXJxyztlV0l9pBwK25xDKVlIT2rvYgkjYFvgBc3djwzMysWYpOOENIXV7viohngeXZumodDqxLSlZ5QyUtlfSWpHskVZ3IzMyseRQRxZ1MWgmcGhGX5MqfB66KiDOrPM6dwMYRMSxX/i3gbdI1oo8AJwPDgL0i4oFujjUOGAcwaNCgYVOnlsthzbNs2TL69+9f6DmLUmTdRowcCcCsmTMLOV8nf27Q2fVz3Rpr5MiRcyNieFUbR0RhC7AS+FaZ8heA71d5jC2B1cApVWzbD3gauKGaYw8bNiyKNnPmzMLPWZRC6wZpKUgnf24RnV0/162xgDlRZQ4oukttCbBJmfKNgdeqPMaRgIBrKm0YESuAWwA/8N7MrMWKTjjzyV2rkbQNsAG5azs9OAq4JyKeq+G8xfUbmplZWUUnnGnAAZI2LCkbDawAZlfaWdJgYA+qHJ0mqR9pZNzcWgO1PqarU83M2lbRCecy4C3gekn7ZRfsJwIXRclQaUkLJf2izP5HAauAa/MrJG0s6W5J4yXtK2k0MBPYCvhBE+piZmY1KPTGz4hYImlf4FLgRtJ1m4tJSScfV7npbo4CZkTE4jLr3gIWk2YsGAi8CdwL7B0RcxpSATMzq1vhk3dGxGPAPhW2GdxN+Wd62OdN4NBeBWd917BshPxc956atSvPFm2dYd68VkdgZhX4AWxmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwKDXrDGPHtjoCM6vACcc6Q9cjps2sbblLzczMClFTwpFUbroZs9abO9ezDJi1uVq71F6QdBVwRUQ83oyAzOoyPHvgoGeMNmtbtXapTQYOBx6RdL+kcZI2akJcZmbWYWpKOBFxdkRsD3wBWABcBLwk6deS9mtGgGZm1hnqGjQQEXdGxFeALYATgU8Ct0paJGmipI82MkgzM+v7ejtKbTjwedJjo5cAdwPHAQslHdPLY5uZWQepOeFI2k7S2ZKeBGYAWwJfAz4aEf8MbEe61vPDhkZqZmZ9Wk2j1CTdSWrRPA9cSRqt9kzpNhGxWtJvgG81KkgzM+v7ah0W/TdgFHB7RI/jTx8CPlZ3VGa1muOniJu1u1oTzqXAvHLJRlJ/YJeIuCsiVgLPrLG3WbN0PWLazNpWrddwZgJDu1n3yWy9mZnZGmpNOOphXX9geS9iMavfuHFpMbO2VbFLTdLngRElRcdJOjC32frAwcCfGheaWQ0uvzy9etZos7ZVzTWc3Uk3dwIEcASwKrfN28B84NTGhWZmZp2kYsKJiB+S3VMj6WngyxHxULMDMzOzzlLTKLWI8FBnMzOrSzXXcEYB90TE0uznHkXELQ2JzMzMOko1LZybgD2AB7Kfg+5HqwXgh7SZmdkaqkk4HwNeKvnZrP3sskurIzCzCqoZNPBMuZ/N2oofL23W9qq5hvPhWg4YEb7508zM1lBNl9oy0rWZavkajpmZraGahPM1aks4ZsVTNo6lx0nMzayVqrmGc2UBcZiZWYfr7SOmzczMqlLNoIEHgDER8ZikP1Chey0idmtUcGZm1jmquYbzKLCi5Gd3kpuZWc2quYbz1ZKfxzQ1GjMz61h1X8NR8hFJPT2UzczMDKhxtmh4dzLPCcCwbP9VkuYC34+Imxscn1l1Jk9udQRmVkFNCUfSeOBnwAzgW8BfgYHAocDvJH0jIvw/34rnx0ubtb1aWzhnAlMi4uu58sskXQacBTjhmJnZGmq9hrMZcH03664DNq10AElDJc2QtFzSi5LOldTjdDiSBkuKMsvUMtseIulPkt6U9Jik0VXVzPq2KVPSYmZtq9YWzkxgb+D2Muv2Bu7qaWdJA4A7gMeAQ4AdgB+TEt+EKs5/CvD7kvd/yx1/L1Li+xlwEjAKuFrSkoi4rYrjW181fnx6ddeaWduq5sbPoSVv/xX4uaTNgBt47xrOl4GDgOMqHO54oB9waEQsBW6XtBEwUdKFWVlPFkTEfT2s/y5wV0SclL2fKWkn4HuAE46ZWQtV08J5hPff7ClgfLbkn/45nZ5niz4IuDWXWKYCk0gtpBuriKcsSR8CRpJaNqWmAldI2jgiXq/3+GZm1jvVJJyRDTzfEODO0oKIeFbS8mxdpYRzhaRNSS2rq4GzIqJrFoQdgHWB+bl9Hid12e0I/KF34ZuZWb2qmWlgdgPPNwB4rUz5kmxdd94CfkrqFlsKjABOIyWZQ0qOTZnjL8mtfx9J44BxAIMGDWLWrFk9xd9wy5YtK/ycRSmybiOy16LO18mfG3R2/Vy31qn5xs8uktYC1s+XV/HEz3Jzsamb8q5jvgR8s6RolqSXgZ9J+kxEPNTD8dVNedexpwBTAIYPHx4jRozoOfoGmzVrFkWfsyitqFtR5+vkzw06u36uW+vUNCw6m87mNEkLgZXAG2WWniwBNilTvjHlWz49uTZ73aXk2JQ5ftf7Wo9vZmYNVOt9OCcBpwO/ILUcvg+cCzwBLCLrmurBfNK1mndJ2gbYgDWvvVQSudcnSUlwSG67IcA7WYzWqSL8tE+zNldrwhkLnA1cmL2/ISLOAXYiJYxPVNh/GnCApA1LykaTHn9Q67Wiw7PXuQAR8RbpPqEjctuNBu71CDUzs9aq9RrOx4CHImK1pJVk3VUR8Y6knwE/J7WAunMZqZV0vaRJwPbAROCi0qHSWZfd7Ig4Nns/EdiQdNPnUuDzwKnA9RHxx5Ljn0e6vnMJ6T6hUdlyYI31NDOzBqs14bwC9M9+fhb4R94b5jyAdFNntyJiiaR9gUtJQ6BfAy4mJZ18XKX388wnzTJwXHaOZ4Efkrr0So9/j6TDgfOBrwNPA0d7lgEYfHqxE3kvuuDgQs/HsGHpde7cYs9rZlWrNeH8HtgVuAX4DWmGgE2Bt4ETSLNI9ygiHgP2qbDN4Nz7qaQbOCuKiBtIrRv7IJk3r9URmFkFtSacicBW2c8/IHWpjSG1Om4HTmxUYGZm1llqSjgRsQBYkP38FumZON9qQlxmZtZhenPj59bAlsCLEfFC40IyM7NOVOuwaCR9XdJzwDPA/cCzkp6X9I2GR2dmZh2j1pkGvkcaYTYNOBgYnr1OA/41W29mZraGWrvUTgB+EBHfzZVPz+Y2O4E084BZscaObXUEZlZBrQmnH90/1XM2HqVmreLHS5u1vVqv4dwAHNrNusOAm3oXjpmZdapqHjE9quTtNOBCSYNZ8xHTOwHfaXyIZlXommGga8YBM2s71XSp3cSaj5LeCjigzLa/Ij2J06xYw4enV88Ybda2qkk4H2t6FGZm1vGqecT0M0UEYmZmna3mmQYkrUMaILAXsCnwKnA36VEBqxobnpmZdYqaEo6kgcBtwM6kJ3y+DOxJuv/mYUn7R8TiRgdpZmZ9X63Doi8CNgN2j4jtI2LPiNge2D0rv6jRAZqZWWeoNeGMAk6LiD+UFmbvzyBNc2NmZraGWq/hfAh4o5t1bwDr9S4cszrNmdPqCKrS8U9eNetBrQnnPuA0SXdGxN+7CiVtAJyWrTcrnm/4NGt7tSack4GZwHOSbiMNGhhIuglUwIiGRmdmZh2jpms4EfEQ8AlgCvAR4AukhHMZ8ImIeLjhEZpVY9y4tJhZ26q6hSNpXWA34OmIOL15IZnV4fLL06tnjTZrW7W0cFYDdwL/0KRYzMysg1WdcCLiHeDPwKDmhWNmZp2q1vtwzgK+J+nTzQjGzMw6V62j1CaQZhR4SNILpFFq75sPPiJ2a1BsZmbWQWpNOI9ki5mZWU2qSjiS+pGmtXkE+AtwR0S83MzAzGqyyy6tjsDMKqjmEdPbA3cAg0uKl0o6MiJua1ZgZjXpesS0mbWtagYNXAi8A3wO+DCwE/AgMLmJcZmZWYepJuHsCUyIiN9HxJsR8TgwHthW0pbNDc/MzDpFNQlnS+CpXNmTpLnTtmh4RGb1kNJiZm2r2vtwovImZmZm3at2WPStklaVKZ+RL4+Igb0Py8zMOk01CeecpkdhZmYdr2LCiQgnHDMz67Va51IzMzOrixOOmZkVota51Mza02Tfh2zW7pxwrDP48dJmbc9damZmVggnHOsMU6akxczaVuEJR9JQSTMkLZf0oqRzJa1dYZ9dJV0haWG23wJJZ0taP7fdRElRZjmwubWylhs/Pi1m1rYKvYYjaQDpUQePAYcAOwA/JiW+CT3sOjrbdhLwZ2Bn4Lzs9bDctq8D+QTzeG9jNzOz3il60MDxQD/g0IhYCtwuaSNgoqQLs7JyJkXE4pL3syS9CUyWtF1EPFOyblVE3Nec8M3MrF5Fd6kdBNyaSyxTSUlo7+52yiWbLg9mr567zcysDyg64QwB5pcWRMSzwPJsXS0+S3ow3IJc+SaS/iZppaQHJR1ad7RmZtYwiijuyQOSVgKnRsQlufLngasi4swqj7MF8EfglogYU1J+DKnF8xDQn/SguFHAYRFxfTfHGgeMAxg0aNCwqVOn1lqtXlm2bBn9+/dv+nn+9MLrTT9HqU9vtXFhdQMYMXIkALNmzizkfPXWrRWfQz2K/OyK5ro11siRI+dGxPBqtm1FwjklIv4lV/4CcGVEnFXFMdYjDTzYGhgWEUt62FbAfwD9IuIzlY49fPjwmDNnTqXNGmrWrFmMGDGi6ecZfPrNTT9HqUUXHFxY3YD3Hr5W0L/neuvWis+hHoV+dgVz3RpLUtUJp+gutSXAJmXKNwZeq7RzlkCuAnYCRvWUbAAiZdPrgZ0rDb22Pi6isGRjZvUpepTafHLXaiRtA2xA7tpONy4mDaf+QkRUs30XfxOZmbVY0S2cacABkjYsKRsNrABm97SjpDOAE4FjIuKeak6WtYi+DDwcEavrC9nMzBqh6BbOZcBJwPWSJgHbAxOBi0qHSktaCMyOiGOz90cDPwCuBF6QtEfJMZ/sGjYtaTZwHam1tAEwFtgD+FJzq2UtN2xYep07t7VxmFm3Ck04EbFE0r7ApcCNpOs2F5OSTj6u0msu+2evY7Kl1FdJiQhgIfBtYEvSkOl5wMERMa0R8Vsbmzev1RGYWQWFP54gIh4D9qmwzeDc+zGsmWjK7XdsL0IzM7Mm8mzRZmZWCCccMzMrhBOOmZkVwgnHzMwKUfigAbOmGDu21RGYWQVOONYZ/Hhps7bnLjUzMyuEE451hrlzPcuAWZtzl5p1huHZ7OieMdqsbbmFY2ZmhXDCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhIdFW2eYM6fVEZhZBU441hm6HjFtZm3LXWpmZlYIJxzrDOPGpcXM2pYTjnWGyy9Pi5m1LSccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NC+MZP6wy77NLqCMysAicc6wx+vLRZ23OXmpmZFcIJx8zMCuGEY51BSouZtS0nHDMzK4QTjpmZFcIJx8zMCuFh0Wb2gTP49JsLPd+iCw4u9Hztyi0cMzMrhBOOmZkVwl1qDVJvE/3kT69iTI37unlexuTJrY7AzCpwwrHO4MdLm7U9d6mZmVkhnHCsM0yZkhYza1vuUrPOMH58enXXmlnbcgvHzMwKUXgLR9JQ4CfAnsBrwM+BcyJidYX9NgYuAb5ESpQ3ASdFxCu57Q4Bzgc+ATyVHfuaRtfDzKxZihz1CsWNfC20hSNpAHAHEMAhwLnAycA5Vex+DTACOA4YA+wK3JA7/l7AdcBM4CDgZuBqSfs3pAJmZla3ols4xwP9gEMjYilwu6SNgImSLszK1iBpT+AAYO+IuCsrewG4X9J+EXFHtul3gbsi4qTs/UxJOwHfA25rXrXMzKySoq/hHATcmkssU0lJaO8K+73clWwAIuIB4OlsHZI+BIwE/j2371Rgz6xLzszMWqTohDMEmF9aEBHPAsuzdVXvl3m8ZL8dgHXLbPc4qZ471hGvmZk1SNFdagNIAwXylmTr6tlv+5JtKLPdktz695E0DugaS7tM0oIe4mi4k2Bz4G+17KNJTQqmgbIYa65b709c2FM/i69bHXrxb6VP1K9OhdetqP+z9XyfQK/j267aDVtxH06UKVM35fXsl3+vbspTYcQUoGV3DEqaExHDW3X+ZnLd+q5Orp/r1jpFd6ktATYpU74x5VswlfbbpGS/JSVl+W2ocHwzM2uyohPOfHLXaiRtA2xA+Ws03e6XKb228ySwssx2Q4B3gCfqiNfMzBqk6IQzDThA0oYlZaOBFcDsCvttkd1nA4Ck4aTrN9MAIuIt0v03R+T2HQ3cGxGv9z78pujkCcBct76rk+vnurWIIipdOmngydKNn48BjwCTSAnjIuCSiJhQst1CYHZEHFtSNp000uwUUotlEvDXiPhcyTZ7AbOAS0k3hY7Ktj8wInwfjplZCxXawomIJcC+wNrAjaQZBi4Gzs5tuk62TamjSK2gXwJXAXOBL+eOfw9wOLAfcCvwX4GjnWzMzFqv0BaOmZl9cHm26CaRNFTSDEnLJb0o6VxJ+VZbuf02lnSFpCWSXpf0a0mbFRFzteqpm6Rds3otzPZbIOlsSesXFXc16v3cSvZfS9JcSSHpi82MtR69qZ+kQyX9QdIKSa9Imi5pg2bHXK1e/J8bLum2rE6vSrpD0u5FxFwtSR+XNFnSw5JWS5pV5X5t9X3i5+E0QckkpY+RJindAfgxKcFP6GFXSJOUfpI0SWnXtaobgM/1tFNRelG30dm2k4A/AzsD52WvhzUx5Kr18nPrchywVVMC7KXe1E/ScaRroxcCp5JupN6HNvkOqbdu2SjZO4B5wFey4lOB2yTtHBHPNDPuGuxEuiZ9H7BeDfu11/dJRHhp8AKcQbovaKOSsu+QpvDZqIf99iTdoPr5krLdsrL9Wl2vXtbtI2XKxmV1267V9epN3Uq2HQAsBo7N6vXFVtepQZ/d5sAbwNhW16EJdTseWA1skvscVwNfb3W9SmJaq+Tna4FZVezTdt8n7lJrjqZNUtoG6qpbRCwuU/xg9jqwceH1Sr2fW5fzgN8DM5oQWyPUW78js9d/a1ZgDVBv3dYFVgHLSsqWZWWFzZNUSUS8U8dubfd94oTTHM2cpLTV6q1bOZ8lNfMLnb+uB3XXTdLOwFdJw/DbVb312530GR0r6XlJKyXdL+mzzQu1ZvXW7bpsmx9LGihpIGnk7BLgt02KtSht933ihNMczZiktKf9itSQGCVtAZwI93L7AAACzklEQVQF/J/o5jlILdCbuv0E+GlELGx4VI1Tb/22IF0HmACcBvwX4O/AdEmDGh1kneqqW0S8SHqsyWHAy9lyKHBAN63yvqTtvk+ccJqn2ZOUtlKvYpS0Hum5RcuA/9HAuBqh5rpJOor0hXx+s4JqoHo+u7WA/sCxEfHriJhOetT7auCbjQ+xbvV8dluSronMJXUzHZT9fLOkbZsRZMHa6vvECac5mjlJaavVWzcAJIl04+5OwKhINwO3i5rrJmld4Iek0T9rSdoE2ChbvUFuGqdWq/ezezV7ndVVkLVK5wJDGxVcL9Vbt1NJI+0Oj4jpWTI9jJRM27l7tBpt933ihNMczZyktNXqrVuXi0nDVg+JiHapU5d66rYBsDVpiqYl2fJwtm4q7w2MaAf1fnaPk/4izl9EF+kaXDuot25DgEcjYmVXQUS8DTxKGlrdl7Xd94kTTnM0bZLSNlBv3ZB0BnAicEykaYjaTT11W0a6BlC6/Lds3ZnAPzUn1LrU+9ndREouI7sKske2D+O95Npq9dbtGeBTWTcv8O7j6j8FLGpCnEVqv++TVo8v78SFdEHuJeB20rxu40hfTOfntlsI/CJXNh14inTh8kuk0UF3t7pOva0bcDTpr+QrgD1yyxr36PSlupU5zmDa8z6c3vy7vCHb978DB5O+xBcDA1pdr17+uxxGeqzJzVm9vkj6Ml4J/KdW16skzg+T5ok8HLiX1ALrev/hHj63tvo+afkvslMXUt/2naS/sF4i3aOxdm6bRcCVubJNsi/l14ClwG+AzVtdn97WDbgy+xIut4xpdZ16+7nl1rdlwunlv8v+wP8GXsn2vQP4dKvr06C67QvcRbpW9SopmY5odX26+TdVbhncQ93a6vvEk3eamVkhfA3HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPargvhxia8vQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -218,9 +208,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAEjoAAADpCAIAAAAM6c70AAD/Q0lEQVR4nOzdd2AU1f74/ZMeQggE\nCKEqLVQJCUJAkN5CFS/FqHQLoHBB4AqCyKWooHQUBKSIFBHpVRASkNBbqIFQpCWUQCC97c7zx/ye\n/eYmZHe2zm7yfv3juHvmzAeYz8zZOefMcZIkSQCwpgcPHvTs2bNu3bqurq5qxwIbuXTp0sSJEzt3\n7qx2IAAAAAAAAAAAAABgFWvWrFm2bFmtWrXUDgSFwqVLlyZPntyhQwe1AzFOZmZmu3btKleuXKRI\nEbVjAUyRmJj44sWL3bt3qx0IAMACfvrpp99//z0gIEDtQFAoREVFzZs3r0mTJmoHYpzExMTQ0NCa\nNWu6u7urHQtgioSEBI1Gs2nTJuW7bNu2bdasWXXq1LFeVLAr2dnZly9f3r59e5kyZax9LCbPAFZ3\n9OjREydO3L9/38PDQ+1YYCO3b9/evHkz09UAAAAAAAAAAAAAFFS//fbb0aNH79+/r3YgKBRu3bq1\nZcsWh5uu9s8///z999/Xr18vWrSo2rEApnjx4sXTp0+1Wq2zs7PasQAAzLV+/frjx4/fuXNH7UBQ\n8Gm12n/++Wf79u0ON13t8uXLx44d++eff3jfBBxUQkJCUlKSUbts3Ljx6NGjsbGxVgoJ9iYjI+PB\ngwcnTpzo1q2btY/FdDXA6vz8/IQQ27dvb9CggdqxwEbc3d15BwkAAAAAAAAAAACAAqxWrVrnz5+/\nefOm2oGgUHB2dq5evbraURjN09NTCPHDDz/06tVL7VgAU8ybN++zzz5TOwoAgGXUrFnzyZMnV65c\nUTsQFHxJSUk+Pj5VqlRROxCjFStWTAixatUqh3tTBiCbOnXq999/b9QuNWrU8PLy4vFO4XH8+PE3\n3nijVKlSNjgWbz0BAAAAAAAAAAAAAAAAAAAAAAAAAFgA09UAAAAAAAAAAAAAAAAAAAAAAAAAABbA\ndDUAAAAAAAAAAAAAAAAAAAAAAAAAgAUwXQ0AAAAAAAAAAAAAAAAAAAAAAAAAYAFMVwMAAAAAAAAA\nAAAAAAAAAAAAAAAAWADT1QAAAAAAAAAAAAAAAAAAAAAAAAAAFsB0NQAAAAAAAAAAAAAAAAAAAAAA\nAACABbiqHYDpsrKytFqth4eH+VWlp6d7enqaXw9Q8Dx9+lSSJB8fH3d3d7VjsR2tVvvs2TMhhK+v\nr4uLi9rhAAAAAAAAAAAAAABMVzg7vu0KvfAOgUwpkMg+AIAjolmiOpoQ9o80KajIPqMUzkRwoJPE\ngVdXGzZs2IABA8yvR5KkypUr//jjj+ZXBRQwixcvLl26dJcuXbKzs9WOxaacnJxGjhzp5+c3fPhw\nSZLUDgcAAAAAAAAAAAAAYKJC2/FtV+iFt39kSkFF9gEAHA7NEntAE8LOkSYFGNmnXKFNBAc6SRx4\ndbWHDx8mJyebX4+Tk1ODBg0WLlz4ySefODk5mV8hYEHJycnyee7l5eXj46OnZFpa2osXL4QQPj4+\nXl5e5h9669atw4cPr1ix4rZt2yxSoQNxcnJavnz5zZs3f/rpp0qVKk2YMEHtiAAAAAAAAAAAAACg\ngLBlP3hh7vi2K/TCm4BMgUWQfQAA89EsKYRoQpjAZplCmhRsDpR9Kk5zEIU7ERzoJHHg1dWUyM7O\njomJOXDgwKVLlzQaTX7FBg0adO3atePHj9syNkCJMWPGlCtXrly5citXrtRf8ocffpBLhoeHm3/c\nmJiYvn37arXaZcuWlS1bVk9JhVlmsszMzOjo6PDw8NjYWMtO/42Kinry5El+33p6eq5evdrDw2Pi\nxIn79++34HEBAAAAAAAAAAAAoDCzWT+4wo5v6/V66++Vzik5OfnUqVMRERG3bt2y8xdjm4xeeGPZ\nW6ZYA9lnG2QfAMBM9tYssXgTojC0B0xAE8JYtskUFVvvguyzFUfJPrWmOQg7eOCjw0wH/QrsdDWN\nRjN37txXXnmlRo0a7dq1q1evXpUqVRYsWPDSk6B79+4lS5ZcsWKF7eME9Dtx4oS8ERISor/kyZMn\nFZY0SKvVDhgwICUl5b333gsNDc2vmFFZZoJr164NHjzY29u7du3abdq0qVChQpkyZWbMmJGRkWFm\nzZIkzZ8///XXX4+KitJTrEaNGpMnTxZCDBw4MDEx0cyDAgAAAAAAAAAAAACErfrBlXR8W6/XW2Gv\ntBDi5MmTjRs3LlasWEhISOvWratVqxYQELBw4cLs7GwzY1DXrFmzGjZs2LBhw+XLl+s+pBfeKPaT\nKdZA9lnJS1NPkH0AAPPYT7PE4k0Io9oDBw4cCDUkNjbWtEhURwPefDbIFLVa74LssxqHbsCrMs1B\nqP3AR4eZDopIDqtLly4tW7Z86VdpaWlvv/227s9YrFgx3XavXr2ys7Pz7jJixIhixYolJydbN2gU\nSvI84DNnzhi7Y3JysouLixDCzc0tLS1Nf+FKlSoJIapWrWpqmP9n3bp1QghnZ+cbN27kV8aELDPK\nb7/95uHhoauzaNGiuu1atWrFx8ebUGdWVtaFCxd++OGHOnXqyFXt379f/y4pKSl+fn5CiIkTJxp1\nLDc3txkzZpgQJAAAAAAAAAAAAACY4+HDh0uXLn3nnXeaNWvm6+vr4uJSr169Tp06jRs37ujRoxqN\nxlIHGjNmTIUKFYzdy2b94AY7vq3R621sr/QPP/zg5OT00vE8LVu2fP78uQkx2IlWrVrJf5AdO3bk\n/NzkXngnJ6dZs2ZZKrysrKwDBw6MHDmyQ4cOderUcXZ2Llu27Jtvvtm3b99ff/312bNnljrQnTt3\nhBAbN240dkf7yRRrIPusJ7/Uk0zNvrlz5wohLHjvAADkdf/+/UWLFvXq1atp06bFixd3dXWtX79+\nly5dJk6ceOrUKa1Wa6kDffTRR7Vr1zZ2L/tplli8CWFse+DXX399aeGcYmJiTPiz2wPLNuDliRNL\nly61VHgZGRl//vnnp59+2q5du1q1ajk7O1eoUKF58+YDBgz47bffXrx4YakDXbx4UQjx559/Gruj\nbTJFlda7RPZZk8Ub8FOmTPH29jYqBhN2kdSb5iCp9MAnF4ee6XDs2DEhRGRkpAlBGqtgrq42efLk\nLVu2CCE++OCDuLi4xMTEBw8e9O7dWwjxxx9/zJgxI+8ugwYNSkpK2rRpk61jBfJ35swZed3J+vXr\ne3p66ikZFxd37949YYk5xxqN5ssvvxRCvPvuu9WqVcuvmAlZptyWLVvCwsIyMjJCQkJ27tz5/Pnz\npKSkO3fu9O/fXwgRHR3dv39/rVZrVJ3+/v5ubm6BgYHDhw+/cuWKwr28vLw+++wzIcTs2bMfP35s\n7B8EAAAAAAAAAAAAAGzmzJkzHTt2LF++/JAhQ65du1a2bNnKlSs7OTk1aNAgOzt78eLFTZs2rVix\n4rx58zIzM1UM0gb94Eo6vi3e621sr3RkZOSoUaMkSRo0aNChQ4cSEhJu3rw5a9asIkWKCCEOHToU\nFhZmbM+4ndBqtWfPnpW3GzZsmPMr1Xvhk5OT//vf//r7+7dt23bt2rUuLi4NGjTQarUBAQGlS5c+\nc+ZMv379ypQp07t372vXrtk+PB37yRRrIPusRE/qCTvIPgBAXkePHm3dunWlSpWGDx9++/btChUq\nVKhQQZ6ulpGRMW/evEaNGlWuXPmnn35ScfFP+2mWWLYJYU57oFOnTkPy4ePjY1QYdsKeG/DPnz//\n4osvypQp07Fjxz/++MPDwyMoKEir1dasWbNkyZLHjh0LCwvz8/Pr27fv7du3bR+ejg0yRa3WuyD7\nrMahG/CqTHMQKj3wyYWZDkawwZQ4K8lvdbVr167JMzX79u2b86UC2dnZPXr0EEK4uLjcvHkz745B\nQUGtWrWyXsAotExeXe27776T8/TTTz/VX3Lr1q1yyblz55oY5f9vx44dclWHDx/Or4zJWaZEenq6\nPM136NChuV7OpNVq27VrJ4e3e/duo6qVZzBXrFjx448/7tKli1yJwTnHkiQ9evRI/sMatVoaq6sB\nAAAAAAAAAAAAsJmEhIT33nvPycmpSpUqCxcuvHv3rvx5zjdkZ2Rk7N2795133pGL7dmzx8yDmra6\nmm36wQ12fFuj19uoXmmtVluvXj0hxNSpU3OtmHHhwoWyZcvKu69bt86oGOxEZmZmeHh4eHj4oUOH\n8n5rWi+8RVZXW7Nmjb+/v6ur60cffXTo0CH5leovXrwQQixbtkwuExMTM2PGDLnY8OHDDb4kXj+T\nV1ezk0yxBrLPevSnnmRS9rG6GgBYyePHj+WFX2rWrPnTTz/FxsbKn48dO7Z8+fLydlpa2o4dO+T7\nY40aNSIiIsw8qGmrq9lJs8SyTQjT2gO69Z3M/zFlbyzegLfU6mpLly4tVaqUu7v78OHDIyMj5TaJ\nPO9lw4YNcpkrV65MmzZNLvaf//wnMzPTnCOavLqaDTJFlda7RPZZkzUa8DZbXU2VaQ6SSg98cioA\nMx1YXc0sS5cu1Wg0Hh4eM2fOzLlMpIuLy5w5c5ydnTUazUtXhBw8eHBERMStW7dsGCygz4kTJ+SN\nxo0b6y958uRJhSUN+umnn4QQlSpVatasWX5lTM4yJTw8PLp37962bdtFixY5O//PNcrJyen999+X\ntw8dOmRUtRcvXnz69Ondu3eXLFkSFBSkfMcyZcp06NBBCLFkyRJHfHUWAAAAAAAAAAAAgIItJibm\njTfe2L59+5w5c6Kjo4cPH16pUqW8xdzd3Tt27Pjbb7+dOnWqfPnyXbt2nTVrlu2jtU0/uMGOb2v0\nehvVK33ixImLFy/WqFFj/PjxOQMQQtSrV+/bb7+Vt+fPn29UDHbCzc2tVatWrVq1atGiRd5vVemF\n12g0//nPf/r27duoUaPLly8vXbq0RYsW8oiuXKpXrz5u3LgbN25MmDBhyZIlrVq1iouLs02QOdlJ\nplgD2Wc9+lNPMAYGAOzGpUuXGjduHB4evnjx4kuXLg0ZMqRcuXJ5i3l6enbt2nXLli2RkZHFihVr\n3769fO+2MTtplli2CVGA2wOmscMGfFZW1ieffPLxxx+3bt06Ojp64cKFTZs2zTWoWFa7du0vv/zy\nxo0bo0aNmjNnTocOHZ4+fWqbIHOyQaao0noXZJ81OXQDXpVpDkKlBz45MdPBKAVtupokSevWrRNC\ntGzZsnz58rm+rVKlSsuWLYUQa9asybvve++95+7uvmrVKuuHCShi7HXczc0tODjYnCMmJyfv27dP\nCNGpU6eXtuqEeVmm0Pfffz9//vxcrRCZr6+vvJGZmWlUnQEBASVLlnxpnQZ17txZCHH79u0LFy6Y\nsDsAAAAAAAAAAAAAWMnVq1ebNGmSnp4eGRk5atQod3d3g7u8/vrr4eHhH3/88X/+85///Oc/Nggy\nJxv0gxvs+LZSr7dRvdKRkZFCiDFjxri5ueX9tl+/fv7+/kKIkydPJiQkGBWGQ7BxL7wkSf369Zs9\ne/aUKVO2b99eo0YNg7t4e3tPmTJl//79N2/ebNKkSWxsrA3izMkeMsUayD7VMQYGAFR39uzZpk2b\nurm5nThxYujQoa6urgZ3adq06ZEjR8LCwoYNGzZt2jQbBJmTPTRLLN6EKOTtARPYuAmh0Wh69uy5\ndOnSWbNmbdy4sUqVKgZ3KVGixMyZM3fs2HHu3Lk33njD9jPWrJ0pqrTeBdlnB+y2AW/7aQ5CvQc+\nuTDTQbmCNl3t1q1b8juN6tev/9IC8uc3btx48uRJrq9KlSr11ltv/fLLLxqNxtpxAgbFxcXdv39f\nCFGiRImAgAA9JbVa7alTp4QQ9evX9/T0NOegERERWVlZQoiGDRvmV8acLFPI19e3bt26L/3q0qVL\n8oaSx8eW0qhRI3lj7969NjsoAAAAAAAAAAAAAOj39OnT7t27+/r6njhxIjAwUPmObm5uixYt+u9/\n/ztr1qyVK1daL8JcbNMPbrDj2wa93gZ9+umnQUFB3bt3f+m3Li4u9erVE0JIknTr1i0rxaAiG/fC\nT5s2bf369T///PNXX31l1Nivli1bHjt2LDU19e23305PT7dehLnYSaZYA9mnOsbAAIC64uLi3nrr\nrVdfffX48eNGjYH09PRcvXr16NGjJ0+evHHjRutFmIudNEss3oQo5O0BE9i4CTFu3LidO3euW7du\nzJgxRu3YqVOnI0eOPH78uHfv3vJJZRs2yBRVWu+C7LMD9tmAV2Wag7CbBz7MdFCuoE1XO3/+vLyR\n3xlWs2ZNeSMqKirvt4MGDbp79+7BgwetEx1gBN2c45CQEP1PS69fv/7ixQthiSUy9+/fL2/oac2Y\nmWXmyMrK+vnnn4UQLi4uoaGhlq1cj/r168uvMNH9/TgEjUbD5FvAUkgoAAAAAAAAAABghwYMGPD4\n8ePt27eXKVPGhN2/+uoreYmGixcvWjy2l7JNP7jBjm8Ve711PD09//zzz7Jly+ZXwM/PT94wbZbU\n5MmTR4wYYWJw1mfLXvj9+/f/97//HTt27ODBg03YvXr16ps2bTp//vzo0aMtHlt+7CRTrIHsU52D\njoEBgIJBkqSwsLD09PTt27frVl8xyvfff9+5c+eBAwfevHnT4uG9lJ00SyzehLB2e8AENCF0Nm/e\nLC+M3KdPHxN2f+2119avX3/48OFJkyZZPLb82CBTVGm9C7LPDthnA16VaQ7C7h/4MNMhr9zT1SRJ\nOn78+LBhw5o0aVKhQgVfX98WLVpMmzbN2NXoFFq8ePHYsWPHjh0bHx9vkQqfPXsmb1SvXv2lBXSf\n3759O++3HTp0KF++vC3fHAbkx9glMpWUNEheAtLd3T2/Kb/C7CwzmSRJo0eP/ueff4QQ/fr1q1y5\nsgUr18/T01OerG+HS2TmFRcX9/nnn9esWdPDw8Pd3T0gIGD06NHyFHYAxiKhAAAAAAAAAACA3frr\nr7927do1f/78OnXqmFaDk5PT8uXL/fz8xo8fb9nY8mObfnCDHd9q9Xrnon+S4ZUrV+SNKlWqmFD5\nsmXLfvvtN1PCyiEtLU0e1bNhwwYhRGJi4urVqz/55JMOHTq8/vrrH3/88d27d/PulZSUJO+1efPm\n/Gq2WS+8VqsdO3ZscHDwjBkzTK6kRYsWX3755bJly65evWrB2PSwk0yxBrJPIROyT0nqCUcbAwMA\nBczWrVsPHz68ZMkS024xQghnZ+c1a9Z4eXl9+eWXlo0tP3bSLLFGE8L89kB2dnZ0dPStW7cs8hp0\nGvCyrKyscePGyS1wkyvp1KnTZ599Nm/evDt37lgwNj1skCmqtN4F2adYYWvAqzLNQdj3Ax9mOryU\na87/OXnyZP/+/a9du5bzw7///vvvv//esWPH4cOHzV+AL5cNGzYcOnRICDF06NDSpUubX+Hz58/l\njSJFiry0QNGiReWNpKSkvN+6uLgMGDBgzpw5CQkJpr26ALAU5ddx5SUNio6OFkIEBga6u7vnV8bM\nLDOWRqOJj4+/dOnS7Nmz9+zZI4SoV6/eggULzK/ZKI0aNTp37lx8fHx8fLxFLlZWsmHDhsGDB6em\npuo+uXHjxty5cxcvXrxkyZL+/furGBvgcEgoAAAAAAAAAABgz8aPHx8YGGhmn4WXl9fUqVMHDx4c\nERHRqlUrC4WWL9v0gxvs+LZxr7cJUlNT5SF6AQEB5cqVM6GGUqVKmf8q+vPnz8+ePVsIMW7cuPPn\nz8+bNy9nnWfPnt29e/fZs2dzjTU8ffq0vJf+cdi26YVfu3bthQsX9u/f7+LiYk49o0ePXrx48YQJ\nE7Zs2WKp2PSwk0yxBrJPIROyT2HqCccZAwMABYxGo5kwYULTpk3/9a9/mVNPiRIlvvzyy88++2zs\n2LGvv/66pcLLj500S2zchDDYHoiLixs0aNC6devkxWDKlSs3YsSIsWPHurm5mXxQGvCypUuX3rx5\nc82aNfrXazJowoQJK1as+Oqrr3755RdLxaaHDTJFlda7IPsUK2wNeFWmOQj7u18IZjoY8j+rq0VG\nRl67dq1WrVpTp07ds2fP2bNnt2zZEhQUJIQ4derUvHnzVAnRKLozLL9TUHcxyu8MGzhwYEZGhvlz\nZAFzaDSaU6dOydshISH6C8vTjn19fQMCAsw56PPnzx8+fCiEePXVV/UXkzdMzjLltm3b5u7uXrZs\n2Xbt2slX8Pbt2+/bt69YsWJm1mysSpUqyRvyfc4+bdiwISwsLOfUGp309PQBAwbYptkNFAwkFAAA\nAAAAAAAAsGfnz58/c+bMl19+6ezsbLi0Xv37969SpcqKFSssEpgetukHV9Lxbcteb9MsXrw4KytL\nCDFixAglwzQTEhJ27tyZnZ2t+8Tf39/f31/3v5IkRURExMfHGxWG7iXo33333axZs5o3bz5x4sRh\nw4ZVqFBB/vzBgwd5Vy3TjUXT/69sm174FStWNGvWrF27dmbWU7Ro0bFjx+7YsePJkycWCUwP+8kU\nayD7FDIh+xSmnnCQMTAAUPAcPXo0Ojr6q6++Mr+qYcOG+fn5rVy50vyq9LOfZomNmxAG2wODBw9e\ntWqVPFtGCBEXFzdhwoT27dsnJycrPIT9NCGE/TXgQ0NDzZ/W4uvrO2LEiN9//135P4rJbJAparXe\nBdmnWKFqwKsyzUHY5f2CmQ4G/c9TSz8/vy1btly+fHnSpEmhoaHBwcE9evTYvn27nO361xk0zVdf\nfbV+/fr169fnTHJzJCQkyBsGz7D8rko1atR48803bfAcFtDj6tWr8ilatWpVPz8/PSXT09OjoqKE\nECEhIWa+SyA2Nlbe8PHx0VPM/CxTLisrS6vV6v7X2dm5devW3t7eZlZrguLFi8sbDx48sP3RlXj4\n8OEHH3ygv8zQoUPv379vm3gAh0ZCAQAAAAAAAAAAO7d169YiRYp07tzZ/KpcXFx69OixY8cOeUyY\n9dimH1xJx7cte71N8OLFC3kQW7NmzT755BMlu0yfPr1bt26tWrW6c+eO/EnZsmV1Q3FiY2NDQ0Nb\nt249efJkoyLRjbcLCQm5cuXKvn37pk+fvmjRogsXLjRt2lT+auPGjTm79XV7ubu7169fX0/lNuiF\nf/r06ZEjR3r16mWR2nr16qXVanfs2GGR2vSwn0yxBrJPIROyT2HqCUcYAwMABdLWrVtLlCjRpk0b\n86tyd3fv1q3b1q1bJUkyvzY97KdZYssmhML2QJMmTQ4cOJCUlHTlypWuXbsKIQ4dOjR48GCFR7Gf\nJoSwpwb83bt3z507Z8EGfHp6+t69ey1Smx42yBS1Wu+C7FOsUDXgVZnmIOzvfiGY6aDA/0xX69u3\nb48ePXK9eatSpUryZLt79+7l2jkjIyMhIcGc5k6bNm3CwsLCwsIsNYNQN1k2161UR/d5zkmxuQwe\nPPj06dOXLl2ySEiACZQvfHn+/Hm5zyBvyaSkpJSUFOUH1V129bdmLJJlCr355pt79uzZs2fPxo0b\nJ02aVKZMmQkTJlSvXv3cuXNm1mws3UVcrdd3GTRv3jyD/9zp6elz5syxTTyAQyOhAAAAAAAAAACA\nnfvzzz/btm1btGhRi9TWvXv358+f6wZXWYlF+sFl2dnZ+XXdKun4tmWvt7G0Wu2AAQPi4+N9fHxW\nr17t4uKiZK8hQ4Z07tw5MjIyKCjojz/+EDleD79jx47AwMB9+/a1adNm+PDhRgUjnxL+/v4RERE5\n34NesmTJxYsXy0PN7t+/L7/dPNdewcHB+Q0Ok9mgF37//v3Z2dndunWzSG2vvPJKYGCgDUa7WipT\n9KSJUDxExOLIPoVMyD6FqSccYQwMABRIe/fu7dy5s26UvJm6d+/+4MEDa49zLoQNeIXtgebNm4eH\nh7dp08bb27t27dpbt25t0qSJEGLjxo379+9XciD7aUIIe2rA//nnn0IIeQKS+V577bWqVasWjAa8\nWq13QfYpVqga8JY6560x08HGPzmZ6WCQs8ES2dnZcmLoVogTQpw/f759+/ZFihQpWbJklSpVlixZ\nYu05+grpJiPqTrVcdJ/r/kny6t27d9GiRVlgDSrSdQMYvI7nLZmdnT1nzpwqVar4+Ph4e3vXqlVr\nzZo1Sg6quzzpyQ5hoSxTqGzZsqGhoaGhob169Zo6derFixeDgoIePXrUunXrCxcumFm5Uez2Iq6j\n8BVu27dvt3YkQAFAQgEAAAAAAAAAADt3+/btunXrWqq2OnXqCCH++ecfS1X4Uub0g+d0+/bt1q1b\nL1++/KX7Kun4tmWvt7GmTp26bds2Ly+v3bt3V61aVeFeNWrU2LVr19mzZ9u2bdunT58hQ4b4+PgU\nL1585MiR3bt3b9y48dGjRw8cOFC7dm3lkTx79uzGjRtCiMaNG3t6eub6NjAwsHr16vJ2zvF2Dx48\nkN/kHRISor9+G/TC375928PDQ/lfo0F169a9ffu2pWrLj0UyRX+aCMVDRCyO7FPChOxTnnrCEcbA\nAECB9M8//9CAf+m+dtWA198eqFq16oABAwYMGLB06dKc92gXF5fx48fL2/PmzVNyIDtpQgj7a8CX\nLl26TJkylqqwTp06BaMBr1brXZB9yhS2BryZ57xVZzrY+CcnMx0McjVY4saNG/K/SoMGDeRPTp8+\n3bp1a2dn59GjR/v6+m7evHno0KH379+fNm2adYNVQLdKmzlnmLe3d+/evdetWzdr1qxca80pl5aW\ntmfPHo1GY9rujigpKenJkycWfMxXYFy+fFkIYdSUTt20Y4M3oVwlJUkaOHDg2rVre/bs2b9//+jo\n6O3bt/fr1y88PPznn3/Wv4ymwsn3Fsky05QuXfrnn39u2LDhixcvRo0adeDAAfMXBlXI2Iu4JEkX\nL17cuHGjNYP6n8PFxMQoKXn79u0NGzaYfGWDNVy9erVatWoG344AmyGh7ND169dfeeWVvD/kYAM0\n8BxFTExM+fLlLfUeZVhJenr6nTt3atasqXYghdStW7f8/PwstbQ7jJKenn737t0aNWqoHQgM+Oef\nf3x9fW3fwwGjaDSaa9euyZ3QsBRJki5fvly3bl2bPWgC8qPVaq9cufLaa6+pHQhMkZKSEhcXp+ty\nhj2IjY11c3Pz8/NTOxD8n+jo6CpVqnh4eKgdCIzGTcoOaTSaJ0+exMbGGuyRvHz5cnZ2tsFikiS5\nuLhs2bLFqE6r69evyy/JVsjkfnDZb7/9duTIkcuXLx86dEiSpJ49e750XyUd3yr2eus3f/78KVOm\nFClSZMeOHc2aNTN29+Dg4D/++OPq1avffvvtzJkztVptly5dzpw5oxvwY5RTp07JG/n9e1WrVk3u\nVsv52E35qDUThlJFRUUZ1Qu/b98+Ly8v+X35eqSlpQkhTp8+bfCfOyEh4dq1a0bFEB8fL4x8a7s5\nmaIwTYQx6zN88MEH169fN/k95uXLl1+7dq1uJRmyTwkTsk956gkjsy8jI0MI8ccff/DkxCCNRnP1\n6lWaTLAH2dnZ165ds+DMKJgvJSUlNTX17t27BhsS165dS0tLM1hMvmP+8ccf6enpysO4deuWfGFX\nqLA14A22B5o2bdq0adOX7tuhQwd54+DBgxkZGQqffqjehBBWbsCfOXOmRIkSCgsLIQ4cOODm5mbw\n/H/69KkQ4vjx4wbbJ0lJSVeuXDGqAX/v3j2R/7pML2WDBrxRq6s5YgO+EGaf9RrwaWlpSh4E5XT5\n8mWj5ryYc85be6aDuj85HWWmg3x9OHjwoDxnUgnTutSLFCnykulqT58+jYyMjIyMvHfv3pMnT+7c\nuSN/Lp8lWq32gw8+yM7OPnbsWFBQkBDi888/79y58zfffPPOO++o/nNLd4bl9xcdFxcnb+g/wzIz\nM93c3Mw5P8LDw/U89EEh9PjxY4UlU1NT5TWaXV1dg4OD9ReWr+PVqlUrXbq0EGLTpk1r165dv359\nWFiYXODy5csdO3ZcsWJFp06devXqpacqhSe8pbLMNK+//npISMjJkyfDw8NPnz7dqFEjix/ipYxt\nt2k0mrVr165du9ZK8ZhMq9Xqzg0AZiKhAAAAAAAAAACAin799ddff/1VSck+ffooKbZp06ZNmzYZ\nFYNuBJtB5vSDyxYvXnzjxo3XXnutadOmkZGR+e2rpONb3V7v/CxdunTUqFHe3t47d+5s2bKlyfUk\nJycnJiY6OTm5urpKkmTye5Z1g+fy65dPSUmRN8qWLZt3L4Oj1ozthZckSfk5n5PC83/JkiVLliyx\nYIU5yS/aV8LMTFGYJkLxEBEhRMmSJUuVKqWwcF6lSpXKeSyyTwkTsk956gkjs+/KlStCiHfeeUf5\nLgCA/Fi8vbF69erVq1cbFYOXl5fCkoWtAW9me6BIkSJlypR5/Phxenr6jRs3jJovWiAb8PJ0L+Xn\nfE4Kz/+5c+fOnTvXghXmpJs9YZBtGvBGzWhwuAZ84cw+qzbg09PTjT3tlS/bYOY5b+2ZDqr/5HSI\nmQ6xsbFCiEmTJlktnP/H2dn5/6arpaamrlixYsmSJfIJlJecDOfPn79w4cLw4cPluWpCCDc3t5kz\nZ77++uszZ8404amQZelO5Zs3bzZv3jxvgZs3b8obeqZrP3/+fPPmzaNHjzZnulrnzp3v379v1HsI\nHJ0kSZmZmbwQMa8TJ0689957/v7+CsvfuXNHvuGVLVtW/0oyUVFR8ikdGhoqf7Jw4cKOHTvmnD5R\nt27d2bNnh4WFTZ8+Xf9FXLf85YsXL/QUs0iWmaNBgwbyTfrcuXM2u4gnJibKGwpXY3B1df3ss8+G\nDBlizaD+R6dOna5fv26wWJUqVf766y8bxAPllL/OATZDQtmbzMxMViBUCw08R8HdxFHwL6WijIwM\nd3d3Xv6qFu7mDiEzM9PV1ZXVg+0fdxNr4G8V9oOz0aHxz2dvsrOznZycXFxc1A4E/4c0cWj889kb\nSZLq1q07atSojz/+WH/JhQsXLl269OLFi/qLZWdn165d+8svvxwwYIDyML799tvdu3crLGxOP7gs\nPDxc/t06fvx4PcP4lHR8q97rndeaNWuGDh1arFixffv2NWnSxLRKjhw5Mn369D///POzzz774osv\nUlNTtVpt48aN27RpM2HChNatWxv1fEw3eK5hw4Z5v5UXERJC1K1bN+/iDCVKlDC48KyxvfBOTk7j\nx4//8MMPlRSWfffdd1u2bDl27Jj+YsnJyfXr15ff062/5JQpUyIiIsLDw5XHEBsb27x581q1aiks\nb2amKEwToXiIiBDi+++/Vxa7ImSfEiZkn/LUE0ZmX3Bw8OrVq2NiYnhyqARNJtgPzkZ7k56eXrdu\n3WnTpr333nv6S86YMWP79u1Hjx7VX+zFixcNGjT4/vvv//WvfykPY+LEiefPn1dYuFA14C3SHihf\nvry8rIW89pcSqjchhNUa8PI//ddff23U6+AnTZp0/Pjx/fv36y/28OHDZs2aLViwoEuXLvpL/uc/\n/4mOjt6xY4fyGK5fv96pU6cqVaooLG+bBrzy1rtwtAZ8oc0+6zXgX3/99QMHDly4cEFZ7EIIsXDh\nwmXLliksbOY5b+2ZDvbwk9P+ZzpUqFBBCLFx40ajlhM0oXnp7e39/6arXbp06V//+pe8yGC9evXC\nwsLq1atXp06dsmXLtm3b9sSJE0WLFq1du7YQYu/evUKIjh075qwoODi4dOnSf//9t1GHt4bAwEB5\nI79R5rozTM/c2d9++y09PX3gwIFmBiP/QwJ37941qrxuHbac75l4Kd0EUd0c6KpVq7Zv3z5Xsa5d\nuwohLl++rH+AoMLWjEWyzBy624Oxf7Hm0P2dKHxQLoQoWbJk1apVrRZRbn369Jk+fbqSYraMCnBQ\nJBQAAAAAAAAAALBz/v7+GRkZBrsqfH19nZ2dDRa7d++eVqt97bXXjOr7KF68uPLxW+b0g8sUzpRQ\n0vGteq93Llu2bBk4cGDRokX37t1r2vi8K1eufPrppxEREX5+frt27ercufOYMWNSUlJ++umndu3a\n9evXr23btiEhIT/99JPBd5/LJEmSB1cFBASULFkyb4EjR47Ex8cLITp06KD7UKPRnDp1SggREhJi\n8NwwoRe+VKlSRp2iNWvWfPr06auvvqp/Brs8qMvPz89g5SkpKZUqVTIqBldXV8OFcjAzU5RPKDJq\nwKsFkX0GmZB9RqWeMCn7qlatynQ1ADBTiRIlsrKyDDYkihcv7uLiYrDY5cuXhRD16tUzqmVSrFgx\nGvB5md8ekOlWT1KyYo89NCGE9RvwStrYOdWoUWPnzp0Gd5EHQvv7+xssmZSU9OqrrxoVQ2pqqvLC\nwlYNeLVa74LsU8AOG/BOTk5Gnfa+vr42uztYe6aDPfzkdJSZDuXLl7fBEGhnIcSzZ8/atWsXExNT\nu3btw4cPR0VFTZgwoVu3btWqVXNzc5Nn0jds2FB+diOvIlKvXr2ctTg5OdWsWfPOnTu61fHU8tpr\nr8mT9s6cOfPSAvI7w0qUKBEQEJBfJStWrGjRooWeAoBV6W6W+hs9z549k6/jLVq00E3//fHHH+VL\ndk5Fixb19fXNzs5OSEjQU6Hu8qSbX/tSFskyPRITE+VVgPOju0/kXI/Y2ox9r5vt/fvf//bx8dFf\nxtvb+7PPPrNNPIBDI6EAAAAAAAAAAICdq127tu7t3eaTq5LfYmwl5vSDG0VJx7e1e72Nsnfv3nfe\necfT03P37t1NmzY1rZLly5dHRER07tw5Kiqqc+fOQohHjx49evRICNGuXbuoqKjQ0NCTJ0+uWLFC\nYYV3796Vh6C99EXgkiR9/fXX8vaQIUN0n1+7di0pKUkI0bhxY4OHsEEvfK1atTQaTX7/ysaSxyAq\nXyfNNHaVKdZA9hlkQvYZlXrCEcbAAECBRAM+P+o24I1qD0iSlN9X6enp8rQEFxcXJQtz2UMTQthl\nAz4xMTE6OtoitWVnZ585c6ZgNODVar0Lsk+BwtaAN/Oct/ZMBxv85GSmg1GchRBz586Vc2zTpk3N\nmzfPOTny4sWLGRkZQoiQkBD5E3lCWt51w+T0ltdnU5Gnp2e3bt2EEIcOHdLN3dS5d++e3ETr0aNH\nftORL126dOrUqcGDB1s7VCA/AQEB8szg27dv53c9lSRp8ODBjx8/dnd3nz9/vi5tvby88k6xiI+P\nT0hI8PX1LVOmjJ7jli9fXt7QP/ne/CzTb9euXf/973/z+zYzM/P48ePydsuWLU2o3zS6vxO7XTXR\nz8/v119/1TO73cnJ6ZdffvH397dlVICDIqEAAAAAAAAAAICd69at2/Hjxy31TuGtW7dWrlz5tdde\ns0htL2VOP7hRlHR8W7vXW7mIiIi3337b1dV1165dpo3ulX311VeRkZG7du0qV66c/IluvJ0QokyZ\nMrt27Tpw4MD06dMVVqgbS60bL5TT0qVL9+/fL4To1atXzZo1Fe6Viw164du0aVOsWLFt27ZZpLYz\nZ87cu3fvrbfeskht+bGrTLEGss8gE7LPqNQTjjAGBgAKpG7duh04cOD58+cWqW3r1q3BwcGvvPKK\nRWp7KbtqllipCWFUeyAtLW3w4MH5TVHYvXu3PN6+RYsWBt+TLuyjCWFwr1xs0IQIDQ11d3ffunWr\nRWo7fPjws2fPCkYDXq3WuyD7FChsDXgzz3lrz3SwwU9OZjoYxVkIIS8m6OTkpPsnlEmSNGXKFHlb\nlwwvXrxwdnbOu1R9kSJFRI61FFXUv39/IURGRsbMmTNzfTVt2jR5Y9CgQfntvmLFCm9v7169elkv\nQkC/okWLdurUSQiRlZW1evXqvAW0Wu3UqVPlJ6qzZ88OCgrSX6E8O/nDDz/U38QpXry4fBG4c+eO\n/gpNy7KUlJRFixZt27ZNzxx3IcSlS5emTZs2c+ZMjUaT99tly5bdu3dPCBESEpKrsyQtLW3JkiW/\n//67/inLptH9nVj7RQvm6N69+/bt2319ffN+VaJEia1bt/7rX/+yfVSAgyKhAAAAAAAAAACAPXvr\nrbckSdqwYYP5VSUmJu7cufPtt982vyo9LN4Pnh+FHd+m9Xpbtlf6+PHj8iCqnTt3mjmGqXjx4rne\nRp9zvJ0QwtnZuU2bNrqXoBukGzyX669Rq9XOmDHjk08+EUKUKFFiwYIFOb89ceKEvKFkyJ0NeuE9\nPDw6duy4YcOG7Oxs82tbv3590aJF27VrZ35VethbplgD2aefCdlnVOoJBxkDAwAFT48ePbKysjZv\n3mx+VU+ePNm/f3/37t3Nr0oPe2uWWLwJYWx7YPbs2atWrZowYULeqlJTU8eMGSNvjx071mBVwj6a\nEML+GvDFixdv1arVb7/9pn+YsULr168vVapUs2bNzK9KD9tkioqtd0H2GVLYGvDWOOctO9PBqtMc\nBDMdjCVJUps2beTtfv36PXr0SJKktLS0vXv3tmjRQlfszp07kiRJklS0aFE3Nzcpj2HDhgkhfv/9\n97xf6dGrV68KFSpUqFDh1q1bRu0oSVKXLl1atmyZ93OtVhsaGiqHvWTJEt2HCxculM/g7t27a7Xa\nl9aZkZFRunTpDz/80NhgAD3Cw8OFEGfOnFG+y5kzZ+RJoUWLFt25c2fOM/b+/fvt27eXz/ApU6YY\nrOrevXslSpSoWrXqs2fPDBaWrwZubm7p6el6ipmWZfJVQgixYMECPZXfunVLXvuyadOme/bsycrK\n0tW/dOlSNzc3IYSrq+vRo0dz7divXz+5/h9++CFvtfHx8XH/v5EjR8olN2zYoPswMTFRT1TBwcFC\niNKlS+spk5Obm9uMGTMUFrasZ8+eff31140bN/b09HRxcQkJCZk2bdrTp09VCQZwdLqE8vLycnJy\nIqEAAAAAAAAAAID96N27t5+f34sXL/SUmTJlire3t/56JkyY4ObmFhMTY2wAY8aMqVChgvLyluoH\nHzdunBBi7ty5+RVQ0vFtWq+3BXulY2JiSpQoIYR4++23Fy5cuHDhwgULFsydO/f7PP755x/9fyEv\n5e/vX6xYMRN2lOmGDLm4uCxbtiwzMzM7O/vEiRNdu3aVP3dzc9u7d2+uvRo0aCCEqFy5spJDGNsL\n7+TkNGvWLOP+GJJ0/PhxJyenn376SU8Z+R3ky5Yt01Pm/v37Xl5eY8aMMTYAecTYxo0ble9ikUwx\nmCaS4iEiFkf26WdC9hmVepKR2Td37lwhhEajMfpPAgDIo2PHjhUqVEhNTdVTZuzYseXLl9dfz/Dh\nw4sUKXLv3j1jA/joo49q166tvHwBbsCb0B5Yv369XFW3bt2ioqJ0Vd26dat169byV7169cpvgLpB\nBawBL6+5tHTpUmP/ILt37xZCrFu3Tk8ZeSrIhg0b9JSJjo52c3NTMso6l4sXLwoh/vzzT+W72KYB\nr1brXSL7DLG3BrySB0Fm7mLBaQ6SFWY6WHWag1QgZjocO3ZMCBEZGamksJmEJEnfffedyMHb21ve\n8PHx8fLyEkL4+/vr/klKlSrl5OSUt6IPP/xQCLFjxw6jDq+bEWvCc8/8pqtJknTv3j35JBBCBAcH\n9+zZs3r16vL/vvrqq7GxsfnVuWnTJiFE3pMDMIcJ09UkSVq8eLEuK5s1a/bFF19MmjSpR48enp6e\nQggvL69ff/3VYCXPnz8PDAz08/O7evWqkoN+9tln8hFPnDihv6QJWdaqVSu5gMEfPOfOndOtUl26\ndOkWLVqEhoaWLl1adztfuXJl3r0aNmwoFxgyZEjebxs3biz0GjduXH7xpKenyzePtm3b6o9cR8Xp\najqDBg2qV6+eujEABcakSZN8fX3VjgIAAAAAAAAAAOD/XL9+3c3N7fPPP9dTxuCQo1u3bnl5eY0Y\nMcKEAIydriZZqB/c4DA+hR3fJvR6W7BXeseOHfoL6+zfv9/g30leEydO/Oqrr0zYUZKk7OzsokWL\nCiFq1qxZsWJFIYSrq6vcaS4rXrx43gFCqamp8ni1Pn36GDyECb3wpk1XkySpR48e5cqV0/NKSiXT\n1cLCwkqUKBEfH2/s0U2YriZZIlOUTFdTPkTE4si+/JiQfUalnmR89jFdDQAs6Ny5c87OztOnT9dT\nxuB0tUuXLrm5uU2cONGEAIydriYV3Aa8ae2BWbNm6Vb+qVGjRufOnRs1auTu7i5/0qpVK/1zCfQr\nYA14k6erSZLUpk2bKlWq6PnLNDhdTavVdunSpWzZsklJScYe3YTpapJNGvAqtt4lsi9/dtiAt8F0\nNclCdwfJajMdrDrNQXL8mQ62nq6WmZmpm0EoCwwM/O9///vo0aMiRYoIIbp27arboVq1akKIjIyM\nXBXJs/3+/vtvow5vpelqkiTFxsbq5svqdOjQ4eHDh/rrrFWrlsmTa4GXMm26miRJ27Ztq1y5cq7T\n2N3d/YMPPrh7967B3Z8/f96kSZNXXnnl2rVrCo8ov5ZA5DNtNxdjs2z37t1+fn7VqlWrUaOGwcdY\nL168GDFihHwLz6lOnToHDx586S579+6tWbNmnTp1oqOj835rzkVct07rzJkz9Yetw3Q1oIBhuhoA\nAAAAAAAAALBD48ePd3Jy2rRpU34F9A85SkpKCgwMrFChwpMnT0w4ugnT1SSz+8ElBcP4lHd8G9vr\nbcFeaWtPmDHHhQsX5EOPGTMmNja2W7duunGBbm5uffv2femSU0ePHpXLKJlUZkIvvMnT1a5fv+7j\n49O2bVvdK89zMThdbf78+UKIRYsWmXB006arSWZnipLpakYNEbE4su+lTMg+o1JPMj77mK4GAJb1\nySefuLi45F3kSkf/dLVnz54FBARUq1ZN/xrL+TFhuppUQBvwJrcHIiMj5RVscipSpMhXX31l+zWv\ndOywAW/OdLWoqKgiRYp07949vxaIwelq06ZNE0KsWbPGhKObNl1Nsn4DXt3Wu0T25cMOG/C2ma4m\nWeLuYNWZDlad5iA5+EwHW05Xc5WTYffu3RcuXHj8+HHZsmUrVaokr7EohEhNTc3155S/unfvnjxv\nTef+/ftCiOLFi+v/a8olIiLCqPLKlStX7uDBg2fPnt23b9+TJ08qVqzYpk2b+vXr69klNjZ2z549\nM2bM0F0mAHV17969U6dOhw4dOnHixNOnT0uVKlWzZs2OHTsWK1bM4L4vXrzo2LHj06dP//77b938\nXYNatmzp4eGRkZFx6tQpg4WNzbJOnTo9fvxY/nNpNBpnZ2c9lfv4+CxYsOCbb77Zs2dPTExMfHy8\nv79/8+bNmzRpkt+OHTt2jI6Ozq/C48ePG/wT5ef06dO6Q5hcCQAAAAAAAAAAAABY1vTp06Oiovr3\n7+/n59e8eXOj9k1NTX333XdjYmIOHTqkewO0DZjTD66Q8o5vY3u9LdgrLb85Wnl5W9KNc2rUqFG5\ncuW2b9/+6NGja9euubu716pVSzemKJc33nhD+Z/Ilr3wAQEB69at6969+8cff7x06VL5NfbKbd68\necyYMR9++OGwYcOsFOFL2VWmWAPZ91ImZJ9RqScYAwMAaps7d+6lS5fCwsL279+vW2VFoaSkpJ49\nez58+PDYsWM+Pj5WijAvu2qWWKoJYXJ7oGnTpmfPnr1w4UJ4ePj9+/eLFClSu3btLl262PJfJK8C\n1oAPDAxcsWLFe++9N2rUqHnz5ukfbJzXr7/+Onny5NGjR7///vtWivClrJ0p6rbeBdmXj8LcgDfz\nnLf2TAerTnMQzHRQ7P89gnFyctI/lUunRo0aZ86ciYmJyTVd7dKlSx4eHlWrVrV8jGZo0KBBgwYN\nFBZevXq1k5OTvEwcYCfc3NzatWvXrl07o/Z6/vx5x44dk5OTDx8+XK5cOeU7enl5derUaevWrXv3\n7s3OzlbylNaoLJPpVpw0yNvbu3fv3kZVbg3yVP6qVasGBgaqHQsAAAAAAAAAAAAA/D8uLi7r169v\n3759u3btFi1a9MEHHyjc8d69ez169Lh8+fLatWsbNWpk1SDzMq0fXDljO75N6PUu2HKOt5M3/P39\n/f39LXgIG/fCd+nSZcGCBf/+97/v3bv3+++/+/r6KtlLkqRvvvnmq6++6tix448//mjtIPOyt0yx\nBrIvl4KXfQCAXNzd3f/444+2bdu2aNFixYoVYWFhCne8efPmW2+9dfv27T/++KNu3bpWDTIve2uW\nqN6ECAwMtKs7acFrQoSFhf3zzz8TJkz4559/1q5dq3D2i1ar/fLLL2fMmNGzZ8/vvvvO2kHmZdVM\nsYfWuyD78ih42WcUk895m810sOo0B8FMBwWMm3AshHjrrbdEntl7169ff/LkSZs2bfKuZ+coJEla\nsWJFly5dypYtq3YsgFmeP3/eoUOHzMzMiIgIo67gMvl9YI8ePQoPD7dCdCI5OdnT09MaNVvJkydP\n9u3bJ4QYOnQoSy8CAAAAAAAAAAAAsCvFixc/dOhQz549P/zww7feeuvq1av6y2dkZMyePTsoKCg2\nNjY8PLxnz562idPGrN3xXbDJ4+1KlixZpUoVa9SvSi/8p59+unXr1hMnTtSrV2/58uUajUZ/+RMn\nTrRs2fLLL78cOXLkjh073N3dbROnjZEp9qZAZh8AIBc/P7/IyMgOHTq89957ffr0uXHjhv7yqamp\nX3/9dYMGDRITE48cOdKpUyfbxGljNEvMUSCbEOPHj1+/fv2BAwfq1au3du1arVarv/zhw4ebNm06\nY8aMiRMn/v777y4uLraJ05ZIEztUILPP2ux5poPDTXMQdn+SGD1drVOnTu7u7itXrkxNTdV9uGDB\nAiFE9+7dLRmabUVGRsbExAwePFjtQACzJCQktG/f3tnZ+eDBg35+fibU0K5du5o1awohfvrpJ0tH\nJ4QQa9as6dOnjzVqtpKff/5Zo9F4eXkNHDhQ7VgAAAAAAAAAAAAAILciRYqsXbt22bJlp06dCgwM\n7NWr15o1axISEnKW0Wq1x48f/+KLL2rUqPH555936tTp9OnTb7zxhloxW5u1O74LsNTU1IsXLwoh\nGjVqZKVxTmr1wnfr1u3UqVNBQUEffvjha6+9NnXq1KioqFxlHj16tGzZsk6dOr3xxhtxcXGbN2+e\nM2dOgRzqKiNT7EoBzj4AQC7FihXbvHnzggULIiIi6tat++67727YsCExMTFnGY1Gc+TIkf/85z/V\nq1efPHly7969T58+HRwcrFbM1kazxGQFuAnxzjvvHD9+PCAgoG/fvkFBQd98883ly5dzlXnw4MHi\nxYvbtm3bsmXLpKSkXbt2TZs2zQ4nbFgEaWJvCnD2WY+dz3RwuGkOwu5PEqMXgvTx8fn888+nT5/e\np0+f+fPnlytXbtGiRT/++GONGjUGDBhgjRBtY8WKFWXKlOncubPagQBmGTx48OnTp1u0aNGvXz9J\nknK9D2zFihXly5fXX4Ozs/M333zTs2fPzZs3X7lypU6dOhYMLzk5ecOGDfIUXoeQmpo6d+5cIcTY\nsWNNuykCAAAAAAAAAAAAgLU5OTl9+OGH77777oIFC9asWbNp0yYhRJkyZTIzM1NSUqpUqRIXF5eR\nkVGsWLHOnTt//vnnDRo0UDtko+3atUseB3bs2DEhxF9//ZWeni6EaNKkSatWrXIVtmrHd8F27tw5\neaRBo0aNrFG/ur3wNWvW3LlzZ0RExJw5c2bMmDF58uQiRYrI4ygmTJgwbty4Z8+eOTk5NWjQYOHC\nhR9//LGbm5uNIzSTUWkiyBQ7U7CzDwCQi7Oz8/Dhw/v37z937tx169b99ttvQgh/f/+0tLTk5ORX\nX3314cOHmZmZJUqU6Nq16/jx4+vWrat2yEajAW8bBbsJUa9evf379//555/z5s2bOnXqxIkTvby8\n/P39hRAjR44cMmTI8+fPnZ2dGzVqtGzZsoEDB7q6Gj0zQl2kiUMr2NlnJfY808HhpjkIRzhJTLko\nT548+dmzZ4sWLdq1a5f8yWuvvbZt27YiRYpYNDbbSUpK+v3334cNG+Zwj5mAXJ48eSKEOHz48Eu/\nzbkooh5vv/12q1atIiIiJkyYsHXrVguGN2rUKMdKtLlz5z558qRixYpjx45VOxYAAAAAAAAAAAAA\n0Kdo0aJffPHFF198ERMT89dff92/f19epaF79+7lypULCgpq3bq1h4eH2mGaaOPGjb/88ovuf3ft\n2iWPWhk3btxL5+FYr+O7YDt58qS8YaXxdvbQC9+qVatWrVqlpKTs37//0qVL9+/fv3nzZoUKFbp1\n6/bqq6926NChUqVKasVmJmPTRJAp9qQwZB8AIBcfH5/JkydPnjz56tWrBw8evH///tq1a1NTU3v0\n6FGhQoUGDRq0bNnSgcZb5kID3jYKQxOiY8eOHTt2TEpK2rdv35UrV27cuHH79u3KlSt36NChcuXK\noaGh5cqVUys2M5EmDq0wZJ/F2fNMB4eb5iAc4SQxZbqaq6vrjz/++Omnn+7bty85OTkoKKhTp04O\nvfD9xo0bU1JSBg0apHYggLmOHDlifiVOTk6rVq0KDAzctm3b5s2b//Wvf5lfpxDi/Pnz/v7+DrRE\n5rVr1+RFgX/55ZdixYqpHQ4AAAAAAAAAAAAAKBIQEBAQECCE8PDw+P777+fPn692RBawatWqVatW\nKS9vpY7vAs+q4+3sqhe+aNGiPXr06NGjR2Ji4pIlSz799NMPP/xQ3ZDMZ2yaCDLFnhSe7AMA5FW7\ndu3atWsLIbKzs9etW0cDnmaJcoWnCVGsWLGePXv27Nnz/v37q1ev/uyzzxxoQHJ+SBOHVniyz4Ls\ndqaDw01zEA5ykjibvGedOnVGjRr15Zdfdu3a1aHnqgkhVq5c2aRJE9bEBHReffXV33//3dXVddiw\nYXfv3rVInUFBQV9//bVFqrKB1NTUvn37ZmRkzJo1q02bNmqHAwAAAAAAAAAAAAAwjjU6vgu85cuX\nJyUlJSUlWXyBAnrh7RaZYifIPgAAaJaYgCZEYUOa2A+yT0UWTwTHmuYgHOckMX26muqqVKlSpUoV\n8+uRJCk2Nvbf//63+VUBBUnHjh1//vnnx48fd+vWLSkpSe1wbEqr1fbv3//06dOjR48ePXq02uEA\nAAAAAAAAAAAAAExRmDu+TePl5eXt7e3t7W3ZaumFt3Nkij0g+wAAEDRLjEcTohAiTewE2aeuwpwI\nDnSSuKodgOkWLFhgkXqcnJxu3Ljh5ORkkdqAgmTAgAHvvPOOEMLNzU3tWGzKyclpzZo1a9as8fDw\nUDsWAAAAAAAAAAAAAIDpCm3Ht12hF97+kSkFFdkHAHA4NEvsAU0IO0eaFGBkn3KFNhEc6CRx4Olq\nFpxgxlw1ID+enp5qh6ACJyenwvkHBwAAAAAAAAAAAICCh/5f1dEL7xD4NyqQyD4AgCPi5qU6mhD2\nj3+ggorsM0rh/LtyoJPEWe0AAAAAAAAAAAAAAAAAAAAAAAAAAAAFAdPVAAAAAAAAAAAAAAAAAAAA\nAAAAAAAWwHQ1AAAAAAAAAAAAAAAAAAAAAAAAAIAFMF0NAAAAAAAAAAAAAAAAAAAAAAAAAGABTFcD\nAAAAAAAAAAAAAAAAAAAAAAAAAFgA09UAAAAAAAAAAAAAAAAAAAAAAAAAABbAdDUAAAAAAAAAAAAA\nAAAAAAAAAAAAgAW4qh0AUFgkJiYmJCSoHQUAAAAAAAAAAAAAAJah1WrpBwcMSklJIVPgoFJTU9UO\nAQBgMZIkaTQamiWwgeTkZLVDMEtycjKZAgeVlpZmwl6SJHHOFx5JSUk2OxbT1QCre/DggRCidevW\nagcCm4qKilI7BAAAAAAAAAAAAACwlrNnz8bFxZUsWVLtQFBYXLhwQe0QjJaRkSGEGDhwoNqBAGZx\ncnJSOwQAgAWcO3fu+vXrNOBhM1euXFE7BKO9ePFCCNGzZ0+1AwFM5+zsbFT58+fPp6SkcHcobB49\nemSDozBdDbC62rVre3t7v/LKKy4uLmrHAhu5c+dOvXr11I4CAAAAAAAAAODwpkyZsnLlyoCAALUD\nQaFw9erVyZMnf/TRR2oHAsAxLFq0aNu2bVWrVlU7EBQK169fd8RJX35+fsWLF/f39/fw8FA7FsAU\nKSkpSUlJRk1XW7ly5ZdfflmnTh3rRQW7otForl69un379kaNGincJS4urmHDhlWrVvX09LRqbICV\nJCQkpKWlXb58We1AjLZs2bIDBw68+uqrageCQiE6OnrYsGFqR2G0N9544+uvv65WrZqxE34AO5GS\nkqLRaIzaZfbs2Y0aNapevbqVQoK9kSTp2rVr3bp1s8GxmK4GWN39+/eTk5PLly/v6+urdiywkcuX\nL8fFxakdBQAAAAAAAADA4V29evXx48chISFqB4JCITY29urVq2pHAcBh1KpVq1atWmpHAdi1Z8+e\nvXjxok6dOhUrVlQ7FsAUMTExt27d0mq1ykdsX716NTY2tmnTpqzJVkgkJiY+fPjw1q1bRk1Xi42N\nrVatGqPp4KDi4uJiYmLUjsIUwcHBwcHBakcB2DVnZ+cJEyaoHQVgU1WqVPniiy/UjgIFE9PVAKvz\n8fERQsycObNBgwZqxwIbcXd3r1ChgtpRAAAAAAAAAAAcXqVKlXx9fX///Xe1A0Gh4OLiUr58ebWj\nAACg4HB1dRVCjB49ulevXmrHAphi3rx558+fN2oXuT25YcMG1iQpJC5fvvznn3+WKFFC+S7yomoT\nJkwIDQ21VliANU2bNm3mzJlqRwEAAGDv+E0IAAAAAAAAAAAAAAAAAAAAAAAAALAApqsBAAAAAAAA\nAAAAAAAAAAAAAAAAACyA6WoAAAAAAAAAAAAAAAAAAAAAAAAAAAtguhoAAAAAAAAAAAAAAAAAAAAA\nAAAAwAKYrgYAAAAAAAAAAAAAAAAAAAAAAAAAsACmqwEAAAAAAAAAAAAAAAAAAAAAAAAALIDpagAA\nAAAAAAAAAAAAAAAAAAAAAAAAC3BVOwDTZWVlabVaDw8P86tKT0/39PQ0vx6g4Hn69KkkST4+Pu7u\n7mrHYjtarfbZs2dCCF9fXxcXF7XDAQAAAAAAAADAARTOPgW7QgcHAAAwB825AokmolEKZxZwkuhR\nOE+JwoDTHgAAwAYceHW1YcOGDRgwwPx6JEmqXLnyjz/+aH5VQAGzePHi0qVLd+nSJTs7W+1YbMrJ\nyWnkyJF+fn7Dhw+XJEntcAAAAAAAAAAAsHeFtk/BrtDBAQAATEZzrqCiiahcoc0CTpL8FNpTojDg\ntAcAALABB15d7eHDh8nJyebX4+Tk1KBBg4ULF37yySdOTk7mVwhYUHJysnyee3l5+fj46CmZlpb2\n4sULIYSPj4+Xl5f5h966devw4cMrVqy4bds2i1ToQJycnJYvX37z5s2ffvqpUqVKEyZMUDsiAAAA\nAAAAAACMY8suhsLcp2BX6OAAAKAgoTkHi3CgJqKKo6RE4c4CBzpJhA3Pk8J8ShQGjnXaAwAAOCgH\nXl1Niezs7JiYmAMHDly6dEmj0eRXbNCgQdeuXTt+/LgtYwOUGDNmTLly5cqVK7dy5Ur9JX/44Qe5\nZHh4uPnHjYmJ6du3r1arXbZsWdmyZfWUVJhlJsvMzIyOjg4PD4+NjbXsi0yioqKePHmS37eenp6r\nV6/28PCYOHHi/v37LXhcAAAAAAAAAABswGZdDAr7FCzeoZCcnHzq1KmIiIhbt27xKnQdOjgAACgw\n7K05Zw00EW3DUZqIao2SEur9qMmLgVIG2eY8UfHCKLg22ooDnfYAAAAOqsBOV9NoNHPnzn3llVdq\n1KjRrl27evXqValSZcGCBS9tbXfv3r1kyZIrVqywfZyAfidOnJA3QkJC9Jc8efKkwpIGabXaAQMG\npKSkvPfee6GhofkVMyrLTHDt2rXBgwd7e3vXrl27TZs2FSpUKFOmzIwZMzIyMsysWZKk+fPnv/76\n61FRUXqK1ahRY/LkyUKIgQMHJiYmmnlQAAAAAAAAAEBBlZKScufOHXsb8mWbLgYlfQoW71A4efJk\n48aNixUrFhIS0rp162rVqgUEBCxcuDA7Oztv4QMHDoQaEhsba1okqps1a1bDhg0bNmy4fPly3Yf2\n2cGh1Wpv376dnp6udiAAADgM+2nOWQNNRCt5aftQ2GsTMRdVRkkJlX7U5MVAKYVscJ6odWEUXBut\nxqGvjQAAAA5MclhdunRp2bLlS79KS0t7++23dX/GYsWK6bZ79eqVnZ2dd5cRI0YUK1YsOTnZukGj\nUJJf0HLmzBljd0xOTnZxcRFCuLm5paWl6S9cqVIlIUTVqlVNDfP/rFu3Tgjh7Ox848aN/MqYkGVG\n+e233zw8PHR1Fi1aVLddq1at+Ph4E+rMysq6cOHCDz/8UKdOHbmq/fv3698lJSXFz89PCDFx4kSj\njuXm5jZjxgwTgrSgQYMG1atXT90YgAJj0qRJvr6+akcBAAAAAAAAe5GdnR0eHj5q1KjXXnutePHi\n8jNnNze3ihUrdu3addmyZQ8fPrTUscaOHVu+fHlj97JZF4PBPgWLdyj88MMPTk5OL+33bNmy5fPn\nz3OV//XXXw12mMbExJjwZ7cHrVq1kv8IO3bsyPm5yR0czs7O33//vaXCu3PnzsKFC9u1a1e+fHlX\nV1c51JIlSwYHB48fP/748eMajcZSxwKQnylTpnh7e6sdBWDXXrx4IYRYtmyZNSq/c+eOEGLjxo3G\n7mg/zTlroIloPfm1DyVTm4hz584VQhjVbDNhF0m9UVKSGj9q8nLogVKXLl0SQuzdu1f5LpcvXxZC\n7NmzR/kuMtucJ6pcGCWujdZk8Wvj1KlTixYtatEY/49pD4KAQuXevXtCiA0bNqgdCADAgIK5utrk\nyZO3bNkihPjggw/i4uISExMfPHjQu3dvIcQff/wxY8aMvLsMGjQoKSlp06ZNto4VyN+ZM2fk5bzr\n16/v6empp2RcXJzc/DL/pUEajebLL78UQrz77rvVqlXLr5gJWabcli1bwsLCMjIyQkJCdu7c+fz5\n86SkpDt37vTv318IER0d3b9/f61Wa1Sd/v7+bm5ugYGBw4cPv3LlisK9vLy8PvvsMyHE7NmzHz9+\nbOwfBAAAAAAAAABQwGi12jVr1lSrVq1169a//vprYGDgqFGjQkND3d3dv/nmm549e8bFxX388ccV\nKlT46KOPHjx4oFactuliUNKnYNkOhcjIyFGjRkmSNGjQoEOHDiUkJNy8eXPWrFlFihQRQhw6dCgs\nLCy/HoROnToNyYePj49RYdgJrVZ79uxZebthw4Y5v1K9gyMmJqZPnz6VK1ceOXJkWlpaWFjYtGnT\nhBB9+vT59NNPq1at+uOPPzZp0qRevXrbt2+3fXgAANg/+2nOWQNNRCvR0z4UdtBE1E+VUVJCjR81\neTFQSjkbnCdqXRgF10arcehrIwAAgGNTebqcGfJbXe3atWvyKzT69u2r1Wp1n2dnZ/fo0UMI4eLi\ncvPmzbw7BgUFtWrVynoBo9AyeXW17777Ts7TTz/9VH/JrVu3yiXnzp1rYpT/vx07dshVHT58OL8y\nJmeZEunp6fILS4YOHZrrTUtarbZdu3ZyeLt37zaqWvkVRBUrVvz444+7dOkiV2LwpUGSJD169Ej+\nwxq1WhqrqwEFDKurAQAAAAAAQJKkmJiY4OBgIUT79u0PHDiQlZUlf57rpdp3796dOnWqj4+Pl5fX\nnDlzzDyoaS/Vtk0Xg8E+Bct2KGi12nr16gkhpk6dmrM2SZIuXLhQtmxZOZh169bl/Er3engT3txv\n5zIzM8PDw8PDww8dOpT3W9M6OMxfXU2j0UyYMMHNza1MmTJz58599OiR/HliYqIQYunSpfL/pqen\n79ixo3HjxkKI1q1bx8XFmXNQAHqwuhpgkH2urmYnzTlroIloPfrbh5JJTUSbra6myigpyeY/avIq\nAAOlbLm6mg3OE1UujBLXRmuyxrWR1dUAdbG6GgA4igK4utrSpUs1Go2Hh8fMmTNzrmXs4uIyZ84c\nZ2dnjUbz0mWLBw8eHBERcevWLRsGC+hz4sQJeUPuq9Pj5MmTCksa9NNPPwkhKlWq1KxZs/zKmJxl\nSnh4eHTv3r1t27aLFi1ydv6fa5STk9P7778vbx86dMioai9evPj06dO7d+8uWbIkKChI+Y5lypTp\n0KGDEGLJkiXGvqkIAAAAAAAAAFBgHDx4sHHjxs+ePfvzzz/37dvXpk0bV1fXl5asVKnSpEmTbty4\n8c4774wePXrQoEEZGRk2jtY2XQwG+xQs26Fw4sSJixcv1qhRY/z48TlrE0LUq1fv22+/lbfnz59v\n7B/EQbm5ubVq1apVq1YtWrTI+60qHRxJSUlvvfXWt99+O2rUqBs3bowaNapMmTIvLenh4dG1a9dj\nx479/vvvFy5caNSoke5t9wAAQNhNc84aaCJaj/72obDvMTCqjJISNv9RkxcDpYxig/NElQuj4Npo\nTQ59bQQAAHBoBW26miRJ69atE0K0bNmyfPnyub6tUqVKy5YthRBr1qzJu+97773n7u6+atUq64cJ\nKGLsD2w3Nzf5ra4mS05O3rdvnxCiU6dOuZ6A6JiTZQp9//338+fPz/VTWebr6ytvZGZmGlVnQEBA\nyZIlX1qnQZ07dxZC3L59+8KFCybsDgAAAAAAAABwdOHh4aGhobVr1z558qQ8hskgPz+/FStW/PDD\nD2vWrHnnnXdsPODJBl0MBvsULN6hEBkZKYQYM2aMm5tb3m/79evn7+8vhDh58mRCQoIRf5KCy8Yd\nHBkZGaGhoQcPHtywYcN3331XrFgxg7s4OTn17t375MmTxYsXb9myZVRUlA3iBADAIdhDc84aaCKq\nzm7HwNh+lJRQ40fNSzFQSjlrnyeqXBgF10Y7YM+nPQAAgOMqaNPVbt26FRcXJ4SoX7/+SwvIn9+4\ncePJkye5vipVqtRbb731yy+/aDQaa8cJGBQXF3f//n0hRIkSJQICAvSU1Gq1p06dEkLUr1/f09PT\nnINGRERkZWUJIRo2bJhfGXOyTCFfX9+6deu+9Ct5+XghRI0aNUyr3ASNGjWSN/bu3WuzgwIAAAAA\nAAAA7MSNGzd69erVqFGjAwcO5LdUVH4+/fTT1atXb9++/csvv7RSeHnZpovBYJ+CxTsUPv3006Cg\noO7du7/0WxcXl3r16gkhJEm6deuWkgoLPBt3cAwZMuTUqVM7duzo3bu3UTtWrVr1yJEjFStWfOut\ntx4/fmyl8AAAcCB20pyzBpqIqrPPMTCqjJISavyoeSkGSilkg/NElQuj4NpoB+z2tAcAAHBoBW26\n2vnz5+WN/BruNWvWlDde+nK+QYMG3b179+DBg9aJDjCC7mUwISEh+l91c/369RcvXghLrHG/f/9+\neUPPT24zs8wcWVlZP//8sxDCxcUlNDTUspXrUb9+fVdXV5Hj7wcAgEJCo9HwKgfAUkgoAAAAwEFp\ntdqwsDBvb+/Nmzd7eHiYUMO77747YcKEGTNm2KwHyjZdDAb7FCzeoeDp6fnnn3+WLVs2vwJ+fn7y\nRnp6upIKzTd58uQRI0bY5lgmsGUHx+rVq3/55ZcFCxa0adPGhN1LlCixffv2xMTEjz76yOKxAQDg\ncOykOWcNNBFVZ59jYFQZJSXU+FFjFAZK5WKD80SVC6Pg2mgH7Oq0lyRJ7RAAx6DVatUOAQBgQO7p\napIkHT9+fNiwYU2aNKlQoYKvr2+LFi2mTZtm7HLSCi1evHjs2LFjx46Nj4+3SIXPnj2TN6pXr/7S\nArrPb9++nffbDh06lC9ffuXKlRYJBjCHsWuXKylpkLyYtbu7e37v7BFmZ5nJJEkaPXr0P//8I4To\n169f5cqVLVi5fp6envIbZVjsGwBQSMTFxX3++ec1a9b08PBwd3cPCAgYPXq0/KY6AMYioQAAAABH\nt379+jNnzixZssTf39/kSqZOnRoUFDR69GjbjKKwTReDwT4Fa3Qo6F/d7sqVK/JGlSpV8iuTnZ0d\nHR1969Yti7xSZNmyZb/99puZlaSlpckdphs2bBBCJCYmrl69+pNPPunQocPrr7/+8ccf3717N+9e\nSUlJ8l6bN2/Or2abdXCkp6dPmjQpNDR06NChJlcSEBDw3Xffbd++nVeLAgBgJ805a6CJqJAJTUQl\n7UNhr2NgVBklJVT6UaMQA6XyssF5osqFUXBtVKxgXxt13cpz5syJjY2lWxl4KTlTWrZsKYR47733\nyBQAsHOuOf/n5MmT/fv3v3btWs4P//7777///nvHjh2HDx82fwXtXDZs2HDo0CEhxNChQ0uXLm1+\nhc+fP5c3ihQp8tICRYsWlTeSkpLyfuvi4jJgwIA5c+YkJCT4+vqaHw9gMuU/sJWXNCg6OloIERgY\n6O7unl8ZM7PMWBqNJj4+/tKlS7Nnz96zZ48Qol69egsWLDC/ZqM0atTo3Llz8fHx8fHxFrlYAQBg\ntzZs2DB48ODU1FTdJzdu3Jg7d+7ixYuXLFnSv39/FWMDHA4JBQAAADg6jUbz1VdftWnTxsw32Ts7\nO3/99dedO3fetGlT7969LRVefmzTxWCwT8HGHQqpqanyeLuAgIBy5crlLRAXFzdo0KB169bJr+ks\nV67ciBEjxo4d6+bmZvJBS5UqZf6r6M+fPz979mwhxLhx486fPz9v3rycdZ49e3b37t1nz57NNdbw\n9OnT8l56BhcKW3Vw/PTTT/fv39+2bZuZ9QwaNGju3LmTJk0ybYk2AAAKDDtpzlkDTUSFTGgiKmwf\nCrscA6PKKClhfz9qBAOl9LLBeaLKhVFwbVSsAF8b6VYGlMiVKZIkkSkAYOf+Z3W1yMjIa9eu1apV\na+rUqXv27Dl79uyWLVuCgoKEEKdOnZo3b54qIRpF13DP7weDrsWcX8N94MCBGRkZ5r/IATCHRqM5\ndeqUvB0SEqK/sPw+GF9f34CAAHMO+vz584cPHwohXn31Vf3F5A2Ts0y5bdu2ubu7ly1btl27dvIj\nmPbt2+/bt69YsWJm1mysSpUqyRvyUwkAAAqqDRs2hIWF5XwGqpOenj5gwIBffvnF9lEBDoqEAgAA\nAAqAY8eO3bp1a9y4ceZX1alTp/r1669du9b8qvSzTReDkj4FW3YoCCEWL16clZUlhBgxYoSTk1Pe\nAoMHD161apU82E4IERcXN2HChPbt2ycnJys8REJCws6dO7Ozs3Wf+Pv751x2T5KkiIiI+Ph4oyLX\nvfj/u+++mzVrVvPmzSdOnDhs2LAKFSrInz948GDGjBm59tKNv9T/r2ybDo61a9eGhobK3crmcHFx\n+c9//nP06FGLr00BAIADsZ/mnDXQRFTIhCaiwvahsL8xMKqMkhJ2+aOGgVJ62OA8UevCKLg2KlZQ\nr410KwNKkCkA4Ij+Z7qan5/fli1bLl++PGnSpNDQ0ODg4B49emzfvl1ukupfDNc0X3311fr169ev\nX5+zJWqOhIQEecNgwz2/pnONGjXefPPNFStWWCQewDRXr16VT9GqVav6+fnpKZmenh4VFSWECAkJ\neemvR+ViY2PlDR8fHz3FzM8y5bKysrRare5/nZ2dW7du7e3tbWa1JihevLi88eDBA9sfHQAA23j4\n8OEHH3ygv8zQoUPv379vm3gAh0ZCAQAAAAXD1q1bS5Qo0apVK4vU1qNHj3379qWkpFiktvzYpotB\nSZ+CLTsUXrx4IY9Ia9as2SeffJJfsSZNmhw4cCApKenKlStdu3YVQhw6dGjw4MEKjzJ9+vRu3bq1\natXqzp078idly5bV9XLGxsaGhoa2bt168uTJRgWvG28XEhJy5cqVffv2TZ8+fdGiRRcuXGjatKn8\n1caNG3P2mOj2cnd3r1+/vp7KbdDB8eDBgzNnzrz99tsWqa1bt26urq5bt261SG0AADgi+2nOWQNN\nRIVMaCIqbB8K+xsDo8ooKWF/P2oEA6X0ssF5otaFUXBtVKxAXhvpVgaUIFMAwEH9z3S1vn379ujR\nw9n5fz6sVKmS/NqAe/fu5d0/OzvbnBc2tGnTJiwsLCwszFKvANG90SFXh42O7vOcb27IZfDgwadP\nn7506ZJFQgJMoHxF8vPnz8svO8lbMikpyag+b92vWf0/uS2SZQq9+eabe/bs2bNnz8aNGydNmlSm\nTJkJEyZUr1793LlzZtZsLN3PUYu8ogYAAPs0b948g42H9PT0OXPm2CYewKGRUAAAAEDBcPDgwQ4d\nOuQ3XMxYXbt2TUtLO3bsmEVqy49FuhhkevoBlfQp2KxDQavVDhgwID4+3sfHZ/Xq1S4uLi8t1rx5\n8/Dw8DZt2nh7e9euXXvr1q1NmjQRQmzcuHH//v1KDjRkyJDOnTtHRkYGBQX98ccfIsfr4Xfs2BEY\nGLhv3742bdoMHz7cqPjlwXP+/v4RERE53/1fsmTJxYsXy8Mr79+/L7/mP9dewcHB+s9PG3Rw/PXX\nX5Ikde7c2SK1lSpVqnHjxgcPHrRIbQAAOCJLNef0j+lSOETE4mgiKmRCE1Fh+1DY3xgYS53z1hgo\nZctRUoKBUnrZ4Nqo1oVRcG1UrEBeG+lWBpQgUwDAQTkbLJGdnS233nRr3ercvn27devWy5cvt0po\nJtG9TUTXgs9F97mucZlX7969ixYtygJrUJHuRSAGf2DnLZmdnT1nzpwqVar4+Ph4e3vXqlVrzZo1\nSg6q+6GlJzuEhbJMobJly4aGhoaGhvbq1Wvq1KkXL14MCgp69OhR69atL1y4YGblRrHDpzAAAFjc\njh07lBTbvn27tSMBCgASCgAAACgY7t27V716dUvVVq1aNZHPCyItyJwuhpz09wMq6VOwWYfC1KlT\nt23b5uXltXv37qpVq+b6tmrVqgMGDBgwYMDSpUs9PT11n7u4uIwfP17enjdvnpID1ahRY9euXWfP\nnm3btm2fPn2GDBni4+NTvHjxkSNHdu/evXHjxkePHj1w4EDt2rWVB//s2bMbN24IIRo3bpwzPFlg\nYKDuDMw53u7Bgwfy695DQkL012+DDo579+55eXmVL1/eUhVWr17d2mkCAIA9s0hzzuCYLoVDRCyO\nJqISJjQRlbcPhf2NgTHznLfqQClbjpISDJTSywbXRrUujIJrozIF9dpItzKgBJkCAA7K1WCJGzdu\nyI3dBg0ayJ/89ttvR44cuXz58qFDhyRJ6tmzp3VjNIZulTZzGu7e3t69e/det27drFmzcq01p9yj\nR49++OEH+UUdhcSzZ88ePXpk1E+IQuLu3btCCKNOBt37YAz+UspVUpKkgQMHrl27tmfPnv3794+O\njt6+fXu/fv3Cw8N//vln/eubK3xDjEWyzDSlS5f++eefGzZs+OLFi1GjRh04cMCoFdvNYezPUa1W\nu2fPHt1C7ar4+++/nzx5ontYALt1/vz5GjVqeHl5qR0I9Nm/f39ycjIJpZYLFy5UqVLFUovxQo9r\n164pKXbr1q1x48bZ7C4MJS5fvlyxYkXbd5xADxLK3ly9etXf379kyZJqB1IYJSUl3b59OzAwUO1A\nYMD169d9fX39/PzUDgT6ZGRkXL58OTg4mHuHBWVnZ0dFRQUFBeX3LmHAZrKysi5cuBAcHGxyxwQs\nTqPRPH369OjRowafCx09ejQzM1PJ4yMXF5cff/xR4U8G2eHDh9PS0pSXN7mLQaawH1BJn4JtOhTm\nz58/ZcqUIkWK7Nixo1mzZnkLNG3atGnTpi/dt0OHDvLGwYMHMzIyPDw8lBwxODj4jz/+uHr16rff\nfjtz5kytVtulS5czZ87o+lKNcurUKXkjv3+vatWqxcTEiBx/n8KYkZrGdnBIkrR79+74+HglhWVb\ntmxxcnIyeP7L/9ybN2++efOm/pIXL168cuUKz2PtSmZm5sWLF7lJOagDBw6kp6eTU3bl9u3bHh4e\nFpzoCzNlZGQIIdavXy8PgresxMREIYRRKz6Z05xTPqZL+SJCH3zwwfXr1yVJUhJ8XuXLl1+7dq2b\nm5v8vzQRlTChiai8fSiMbCI+f/5cCPHFF18ofx51+vRphSVl5pzz1h4opeIoKeE4A6U0Go0QYsWK\nFeHh4Qrrl39x2OynrgV/5+pwbVRyxAJ8bUxISFD4IMggupUdws2bN729veUVAqEKMqUgSU9Pv3Ll\nimn3AsCy0tLSoqOjg4OD1Q7EAchd6vXr13d1NTwBTcfb2/slpZ8+fRoZGRkZGXnv3r0nT57cuXNH\n/lzXyFu8ePGNGzdee+21pk2bRkZGmh+9Bekamvk1GePi4uQN/Q33zMxMNzc3c+5Y169fX7JkiUWW\n+XYUmZmZmZmZf//9t9qB2B35NJAfQSqRmpp66dIlIYSrq6vBK6D8A7tatWqlS5cWQmzatGnt2rXr\n168PCwuTC1y+fLljx44rVqzo1KlTr1699FSl8IS3VJaZ5vXXXw8JCTl58mR4ePjp06cbNWpk8UO8\nlLEPF7Ra7cmTJ238ZqNcEhMTtVrt0qVLVYwBSiQmJh49etSo+zdsLzk5OSsri4RSS1JSkqenp+5B\nLaxHq9UqKSZJ0rJly6wdDIxCmtghEsreJCcnu7u7u7u7qx1IYZSVlZWenn78+HG1A4EBKSkprq6u\nCvuYoRaNRpOSknLq1Cl62ixIq9UmJyefOnWKsddQnXw2nj59mhy3H5IkSZJ0/PjxqKgo/SXT09Oz\ns7OVPD7SarUXLly4deuW8jCMGsBnTheDTGE/oJIT1QYdCkuXLh01apS3t/fOnTtbtmxp7O5FihQp\nU6bM48eP09PTb9y4UbduXeX7JicnJyYmOjk5ubq6SpIkD9A0gW7wXH5dHrrR7WXLls27l8GRmsZ2\ncMjn/Pnz55XvorA/Qo7k8OHDusGj+UlJSeF5rL2RG6LcpBxUSkqKwpsUbCY1NdXZ2TnvqiBQi3yT\nOnr06Llz5yxeufys+PHjxwrLm9mcUz6mS/klvWTJkqVKlVJYOK9SpUrlPBZNRCVMaCIqbx8KI5uI\n8iJFRvVlyFNAFTLznLf2QCl1R0kJBxkoJf/l7N69W3lnpZwdT58+VVjeNtdGo9q6XBuV71sgr41x\ncXGWamPTrewQ6ERTHZlSkNDdCfuRnZ2dmpqqmxIPPUzrUvfy8vq/wfGpqakrVqxYsmSJ3LLPS9di\nCw8Plw8zfvx4e5uupvuNcfPmzebNm+ctoHtdX4kSJfKr5Pnz55s3bx49erQ518HmzZsrf9iEgi0i\nIqJ169bKf6DeuXNH/lVWtmxZ/U+oo6Ki5FM6NDRU/mThwoUdO3bUPYIRQtStW3f27NlhYWHTp0/X\n/xRGt6r4ixcv9BSzSJaZo0GDBvIvyXPnztnsKYxutqHCtX1cXV0nT548btw4awZlwODBg0+fPq3u\nlDmgwPjqq69++OGHZ8+eqR0IYF316tXL77dATjVq1DDqHfBA4URCAQAAAAWDt7f3+PHjv/zyS/3F\npk2bNnPmTIOPjzIyMooUKTJ37txPP/1UeQz/+c9/1q1bp7CwOV0MMoX9gEr6FKzdobBmzZqhQ4cW\nK1Zs3759TZo0MaEGIUT58uXlHj3lAyWPHDkyffr0P//887PPPvviiy9SU1O1Wm3jxo3btGkzYcKE\n1q1bG9XDqBs817Bhw7zfajSaq1evCiHq1q2bd3W1EiVKVK9eXX/9xnZwODs7T506dezYsUoKyyZO\nnLh06dInT57oL5aUlOTj4zNv3ryPPvpIf8lPPvnkr7/+un79uvIYAOgxderU77//nj4OQI/ExMTi\nxYsvXLjwww8/tHjld+/effXVV6tUqaKwvJnNOeVjuhQOERFCfP/998piV4QmohImNBGVtw+FkU3E\nWrVqCSHi4+OVj0qcN2/eZ599prCwmee8tQdKqT5KSjjCQCn5z/7HH3907NhRYf1XrlypW7duxYoV\nFZa3zbVR+YVRcG1UpgBfG+vUqePl5WWRNjbdyoASZAoAOKj/9zPy0qVLQUFBI0aMuHTpUr169b7+\n+uvt27ffuHEjOTlZXga3aNGitWvX/n/72PFbZgMDA+WN/DowdA13PS94+O2339LT0wcOHGjp6ABF\ndBMdc77N9KV+/fVXeaNPnz7yRtWqVfv375+rWNeuXYUQly9fzm+5cJnCn9wWyTJz6H5137171xr1\nv5Tu70Rhby4AAI6oR48eSoq9/fbbVg4EKAhIKAAAAKBgKFeuXGxsrKVqi42NlSSpfPnylqowL3O6\nGGQK+wGV9ClYtUNhy5YtAwcOLFq06N69e00ebCdyvHxdySvqr1y50rp16+bNm589e3bXrl1z5sxJ\nSEh49uzZjBkz9u3bd/ny5bZt2zZp0kT5wiySJMmD5wICAkqWLJm3wJEjR+Lj44UQHTp00H2o0Wjk\nF76GhIQYHNtngw6OcuXKPX36ND093VIVPnjwoFy5cpaqDQAAx2Jmc075mC6jZmVYEE1Eg0xoIhrV\nPhR2NgbGzHPe2gOlVB8lJRgoJYSw1bVRrQuj4NqoQAG+NtKtDChBpgCAg3IWQjx79qxdu3YxMTG1\na9c+fPhwVFTUhAkTunXrVq1aNTc3t/PnzwshGjZs6OLionKwCrz22mvycqtnzpx5aYGLFy8KIUqU\nKBEQEJBfJStWrGjRooWeAoBV6X7Rpaam6in27Nkz+Qd2ixYtdG9V+fHHH+VnLjkVLVrU19c3Ozs7\nISFBT4W6H1q6N4W8lEWyTI/ExET96/bqfn7rlu22AWNfPgoAgCP697//7ePjo7+Mt7e38rchAoUZ\nCQUAAAAUDEFBQYcPH7ZUbYcOHZLrtFSFeZnTxWAUJX0K1utQ2Lt37zvvvOPp6bl79+6mTZvqLyxJ\nUn5fpaenyyM+XVxclKx5snz58oiIiM6dO0dFRXXu3FkI8ejRo0ePHgkh2rVrFxUVFRoaevLkyRUr\nVij8g9y9e1cedvnSRRIkSfr666/l7SFDhug+v3btWlJSkhBCfuuofjbo4AgKCpIk6e+//7ZIbdnZ\n2ZGRkVZNEwAA7JldNeesgSaiQSY0EY1qHwo7GwNj5jlv7YFS1h4lJRgopYxtro1qXRgF10YFCvC1\nkW5lQAkyBQAclLMQYu7cuXJDcNOmTc2bN8/5IoGLFy9mZGQIIUJCQtQK0Sienp7dunUTQhw6dEj3\nUg2de/fuya9Y6NGjR37vzLh06dKpU6cGDx5s7VCB/AQEBLi7uwshbt++nd+vX0mSBg8e/PjxY3d3\n9/nz5+vS1svLK2+bLD4+PiEhwdfXt0yZMnqOq3ufq/43xJifZfrt2rXrv//9b37fZmZmHj9+XN5u\n2bKlCfWbRvd3UqFCBZsdFAAAG/Pz8/v111/1vFfMycnpl19+8ff3t2VUgIMioQAAAICC4a233rp8\n+XJ+bzc31tatW+vXr69kXJfJzOliMIqSPgUrdShERES8/fbbrq6uu3btMjgAMS0tbfDgwfmN/ty9\ne7fcE9qiRQuDQ16EEF999VVkZOSuXbt0a3/pxtsJIcqUKbNr164DBw5Mnz5d4Z9F/hsQ+XTFLl26\ndP/+/UKIXr161axZU+Feudigg6Np06Zly5bdtm2bRWo7cuTI06dPeRk2AKDQsqvmnDXQRDTIhCai\nUe1DYWdjYMw85609UMrao6QEA6WUsc21Ua0Lo+DaqEABvjbSrQwoQaYAgINyFkLIK946OTnpGtwy\nSZKmTJkibzvKdDUhhLzAd0ZGxsyZM3N9NW3aNHlj0KBB+e2+YsUKb2/vXr16WS9CQL+iRYt26tRJ\nCJGVlbV69eq8BbRa7dSpU+Vuv9mzZxt8waT82pgPP/xQ/+/w4sWLyxeBO3fu6K/QtCxLSUlZtGjR\ntm3b9LyIRQhx6dKladOmzZw5U6PR5P122bJl9+7dE0KEhIS89tprOb9KS0tbsmTJ77//rv+dQ6bR\n/Z3UqlXL4pUDAGA/unfvvn37dl9f37xflShRYuvWrf/6179sHxXgoEgoAAAAoADo0qWLu7v7qlWr\nzK8qNjZ23759PXr0ML8qPSzexZAfhX0KpnUo6Hngf/z4cXkM386dO5UM1pw9e/aqVasmTJiQt6rU\n1NQxY8bI22PHjjVYlRCiePHiud5Gn3O8nRDC2dm5TZs2uhf/G6QbPJfrr1Gr1c6YMeOTTz4RQpQo\nUWLBggU5vz1x4oS8oaQD1wYdHM7Ozl27dt24cWNycrL5ta1cubJ06dJvvvmm+VUBAOCI7K05Zw00\nEfUzoYloVPtQ2NkYGGuc85YdKGXVUVKCgVLK2ObaqOKFUXBtNKRgXxvpVgaUIFMAwCFJktSmTRt5\nu1+/fo8ePZIkKS0tbe/evS1atNAVu3PnjpTHuHHjhBBz587N+5VCvXr1qlChQoUKFW7dumXsvl26\ndGnZsmXez7VabWhoqBz2kiVLdB8uXLhQ/gnavXt3rVb70jozMjJKly794YcfGhsMoEd4eLgQ4syZ\nM8p3OXPmjKurqxCiaNGiO3fuzHnG3r9/v3379vIZPmXKFINV3bt3r0SJElWrVn327JnBwvLVwM3N\nLT09XU8x07Js2LBh8i4LFizQU/mtW7fkxeubNm26Z8+erKwsXf1Lly51c3MTQri6uh49ejTXjv36\n9ZPr/+GHH/JWGx8fH/f/GzlypFxyw4YNug8TExP1RBUcHCyEKF26tJ4yObm5uc2YMUNhYSsZNGhQ\nvXr11I0BKDAmTZrk6+urdhSA7Tx79uzrr79u3Lixl5eXk5NTSEjItGnTnj59qnZcgEPSJZS3t7cQ\nolGjRiQUAAAA4FhGjBhRpEiRu3fv6ikzderUokWL6q/ngw8+KFasmNwTZ5SxY8eWL19eeXlLdTEY\n7AdU0qdgWodCfg/8Y2JiSpQoIYR4++23Fy5cuHDhwgULFsydO/f7PP755x95l/Xr18tVdevWLSoq\nSlfVrVu3WrduLX/Vq1ev/LoODfL39y9WrJhp+0qSpOuNdXFxWbZsWWZmZnZ29okTJ7p27Sp/7ubm\ntnfv3lx7NWjQQAhRuXJlJYcwtoPD2dn5+++/N+6PIUnXrl1zc3ObPHmynjLyGghLly7VUyYqKsrZ\n2fm7774zNgAAekyZMsXb21vtKAC7Jq+msmzZMmtULo9937hxo/JdLNKcUzKmS+EQEYujiaifCU1E\no9qHkpFNxLlz5wohNBqN8j+CsbtYcJSUZIWBUlYdJSUViIFSly5dEkLk/eWix+XLl4UQe/bsUb6L\nba6Nal0YJa6NhtjbtVHJgyBj6bqVS5cuXapUKcZpAC9FpgCAYxGSJH333XciB3kInRDCx8fHy8tL\nCOHv7//SVqb509V0r22IiYkxdt/8pqtJknTv3j35V5wQIjg4uGfPntWrV5f/99VXX42Njc2vzk2b\nNgkh8v66A8xhwnQ1SZIWL16sy8pmzZp98cUXkyZN6tGjh6enpxDCy8vr119/NVjJ8+fPAwMD/fz8\nrl69quSgn332mXzEEydO6C9pQpa1atVKLlC7dm39lZ87d+6VV16RC5cuXbpFixahoaGlS5fW/eZc\nuXJl3r0aNmwoFxgyZEjebxs3biz0GjduXH7xpKeny09/2rZtqz9yHaarAQUM09VQaE2YMEH5YCYA\n+v3www9CCNt3bgEAAAAw0+PHj318fN555x09ZQyOUjp27JiLi8v06dNNCMDY6WqShboYDPYDKuxT\nMKFDIb8H/jt27ND/qF9n//79ur1mzZqlW1ShRo0anTt3btSokbu7u/xJq1at9A/T1G/ixIlfffWV\naftmZ2cXLVpUCFGzZs2KFSsKIVxdXeX+CFnx4sV37NiRa6/U1FR5jGafPn0MHsKEDg7TpqtJkjR0\n6FBvb+/r16/nV8DgdLWsrKyWLVtWqlQpNTXVhAAA5IfpaoBB9jZdTbJEc07JmC7lQ0QsjiZifkxo\nIhrVPpSMbyLaYLqaZKGfMJLVBkpZdZSU5PgDpWwzXU2yybVRxQujxLUxf3Z4bbTGdDUAAICCx1kI\nMWrUKN2LGYQQycnJgYGB//3vf+UpZEKIRo0a6V8a295UrFjx7Nmz8ksdzp07t2nTphs3bgghOnTo\ncOLEiXLlyuW344oVK2rVqtWkSRPbxQrkY+jQodu2batcubIQIjIy8ttvv502bdrWrVu1Wu0HH3wQ\nHR3dt29f/TW8ePEiNDT0+fPnR44cUbhEte5NM6dOndJf0oQs+/zzz/38/KpVq6bRaPQvQx8UFHTx\n4sURI0YULVo0Pj7+8OHDe/fujY+PF0LUqVNn//79AwcOzLvX9OnTa9asWadOHd2DA0u5cOFCVlaW\nEKJDhw6WrRkAAAAAAAAAYOf8/PxmzZq1YcOGXO9/VO7Bgwc9e/asV6+exR9f58f8LgYlFPYpmNCh\nYNkH/mPGjDly5Ij8lvTr16/v3r371KlTmZmZRYoU+eqrr/bu3VusWDGTK58+ffqUKVNM2/fKlSsp\nKSlCiK5du548ebJbt24ajUbuj3Bzc+vbt29UVJTuPfE658+fz87OFkKEhIQYPIQtOzimTZtWqlSp\n7t27yyP+TTB27Ni///578eLFRYoUsWxsAAA4HLtqzlkDTcT8mNBENKp9KOx1DIxFznnrDZSy6igp\nwUApxWxwbVTxwii4Nuav0F4bAQAAHJ2rEMLNzW337t0XLlx4/Phx2bJlK1WqJC8ELIRITU216uEj\nIiKsVHO5cuUOHjx49uzZffv2PXnypGLFim3atKlfv76eXWJjY/fs2TNjxgzHmpuHAqx79+6dOnU6\ndOjQiRMnnj59WqpUqZo1a3bs2FHJD78XL1507Njx6dOnf//9t+4FPAa1bNnSw8MjIyNDyU9uY7Os\nU6dOjx8/lv9cGo3G2dlZT+U+Pj4LFiz45ptv9uzZExMTEx8f7+/v37x58yZNmuS3Y8eOHaOjo/Or\n8Pjx4wb/RPk5ffq07hAmVwIAAAAAAAAAcFAfffTRhQsXvvjii5IlS3744YdG7fvgwYOuXbtmZ2dv\n3brVy8vLShHmZU4Xg0LK+xSM7VDI74F/165d5VdtGqtp06Znz569cOFCeHj4/fv3ixQpUrt27S5d\nuvj4+JhQm6WcPHlS3mjUqFG5cuW2b9/+6NGja9euubu716pVS9ddm8sbb7yh/C/Blh0cpUuX3rZt\nW7Nmzd56663NmzeXLFlS+b6SJH3zzTfz58//9ttvu3TpYr0gAQBwIHbVnLMGmogvZUIT0aj2obDj\nMTBmnvPWHihl1VFSgoFSiln72qjuhVFwbcxHYb42AgAAODRX+T9OTk76p3I5qAYNGjRo0EBh4dWr\nVzs5OfXr18+qIQFGcXNza9euXbt27Yza6/nz5x07dkxOTj58+LCe5QTz8vLy6tSp09atW/fu3Zud\nnS2viK2fUVkm062dbZC3t3fv3r2Nqtwa5OXRq1atGhgYqHYsAAAAAAAAAAAVzJ0799mzZx999NGl\nS5e+//57hU+5jx071rNnT61Wu2PHjldffdXaQeZiWheDcsb2KZjQoWBZgYGBdvWcP+d4O3nD39/f\n39/fgoewcQdH/fr1N23a1Lt37yZNmmzdurVOnTpK9kpNTf3oo4/WrVv32WefjRs3ztpBAgDgQOyt\nOWcNNBFzKXhNRKOYfM7bbKCUVUdJCQZKKWPVa6M9XBgF18Y8Cvm1EQAAwHEZeG9H4SFJ0ooVK7p0\n6VK2bFm1YwHM8vz58w4dOmRmZkZERBj1CEY2bNgwIcSjR4/Cw8OtEJ1ITk729PS0Rs1W8uTJk337\n9gkhhg4dytKLAAAAAAAAAFA4ubq6rl27dt68eQsXLnzttdc2btyo/y3dDx48GDJkSPPmzf38/I4f\nPx4SEmKzUG3J2n0KBZs83q5kyZJVqlSxRv2qdHB07Njx9OnTzs7OQUFBQ4YMkReUyI9Wq924cWPd\nunV///33H374Yc6cOXTEAABgYzTn7E2BbCJamz0PlHK4UVKigJ4kRuHCaIe4NgIAADgopqv9P5GR\nkTExMYMHD1Y7EMAsCQkJ7du3d3Z2PnjwoJ+fnwk1tGvXrmbNmkKIn376ydLRCSHEmjVr+vTpY42a\nreTnn3/WaDReXl4DBw5UOxYAAAAAAAAAgJpGjhx55MgRPz+/Pn361K5de/z48UeOHHn48KE8dS01\nNfX69es///xzt27dqlevvmHDhunTpx8/frxy5cpqB24t1u5TKMBSU1MvXrwohGjUqJGVBsOp1cFR\no0aNEydOjBkz5tdff61WrVqfPn3Wrl178+bNtLQ0IYRWq42NjT1w4MCoUaOqVq3ap0+fOnXqnDt3\n7tNPP7VlkAAAQEZzzq4U4Cai9dj5QCmHGyUlCuJJYiwujPaGayMAAIDjMmW14l27dsntv2PHjgkh\n/vrrr/T0dCFEkyZNWrVqZdHwbGfFihVlypTp3Lmz2oEAZhk8ePDp06dbtGjRr18/SZI0Gk3Ob1es\nWFG+fHn9NTg7O3/zzTc9e/bcvHnzlStX6tSpY8HwkpOTN2zYIL+MxCGkpqbOnTtXCDF27FjTnmoB\nAAAAAAAAAAqSN95448iRIzt37vz1118XL148c+ZMIYSzs7NWqy1atKhcpkGDBhMmTBg2bFjp0qVV\nDdYURvUDWrVPoWA7d+6c3InTqFEja9SvbgdH8eLFv/32208//XTRokXbtm3buHGj7qthw4YNHTpU\nCFGqVKmuXbsOHDjQcfuXAQCwQ8aO6aI5Z1cKdhPRSux5oJTDjZISBfQkEfzOdXBcGwEAAByXKdPV\nNm7c+Msvv+j+d9euXbt27RJCjBs3zkG7E5KSkn7//fdhw4a5ubmpHQtglidPngghDh8+/NJvU1NT\nlVTy9ttvt2rVKiIiYsKECVu3brVgeKNGjXKsRJs7d+6TJ08qVqw4duxYtWMBAAAAAAAAANiLrl27\ndu3aNSMj4+TJk3fv3l2yZMnRo0cXLVpUvnz5wMDAV155Re0ATWdsP6D1+hQKtpMnT8obVhpvZw8d\nHBUrVvzmm2+++eabmJiYq1ev3rx5c/To0V27dn3vvfcqV67cqFEjFxcXtWIDAKCgMmFMF805+1EY\nmogWZ88DpRxulJQooCeJ4Heug+PaCAAA4LicTdhn1apV0svMmDHD4vHZxsaNG1NSUgYNGqR2IIC5\njhw58tL0lFWvXl1JJU5OTqtWrfLx8dm2bdvmzZstFdv58+f9/f0daI37a9euTZs2zcnJ6ZdffilW\nrJja4QAAAAAAAAAA7IuHh0fz5s3ff//99u3be3p6fvzxx127dnXouWrC+H5AK/UpFHhWHW9nbx0c\nAQEB3bt3//DDD4UQ3bp1CwsLa9KkCXPVAACwBhPGdNGcsx+FqoloKXY7UMrhRkmJgnuSCH7nOjiu\njQAAAI7LlOlqBc/KlSubNGnCws2Azquvvvr777+7uroOGzbs7t27FqkzKCjo66+/tkhVNpCamtq3\nb9+MjIxZs2a1adNG7XAAAAAAAAAAALBT1uhTKPCWL1+elJSUlJRUrlw5y9ZMBwcAADAWzTk7QRNR\nRRbPAscaJSU4SfLgwmg/uDYCAAA4LgeerlalSpUqVaqYX48kSbGxsf/+97/NrwooSDp27Pjzzz8/\nfvy4W7duSUlJaodjU1qttn///qdPnx49evTo0aPVDgcAAAAAAAAAALtWmPsUTOPl5eXt7e3t7W3Z\naungAAAApqE5Zw9oIqqrMGcBJ8lLFeZTwq5wbQQAAHBcrmoHYLoFCxZYpB4nJ6cbN244OTlZpDag\nIBkwYMA777wjhHBzc1M7FptycnJas2bNmjVrPDw81I4FAAAAAAAAAAAHUGj7FOwKHRwAAMBkNOcK\nKpqIyhXaLOAkyU+hPSUKA057AAAAG3Dg6WoWnGDGXDUgP56enmqHoAInJ6fC+QcHAAAAAAAAAMBk\nPFpXHR0cAADAHDQkCiSaiEYpnH9XnCR68DdTUHHaAwAA2ICz2gEAAAAAAAAAAAAAAAAAAAAAAAAA\nAAoCpqsBAAAAAAAAAAAAAAAAAAAAAAAAACyA6WoAAAAAAAAAAAAAAAAAAAAAAAAAAAtguhoAAAAA\nAAAAAAAAAAAAAAAAAAAAwAKYrgYAAAAAAAAAAAAAAAAAAAAAAAAAsACmqwEAAAAAAAAAAAAAAAAA\nAAAAAAAALIDpagAAAAAAAAAAAAAAAAAAAAAAAAAAC3BVOwCgsDhx4sSzZ8/UjgI2IklSVlaW2lEA\nAAAAAAAAABxeZmZmRkbGX3/9pXYgKBQkScrOzlY7CgAACpoLFy6UKFFC7SgAU1y/ft3YXeT25IED\nB5ycnKwQEezOP//8I4SQJMnYHc+dO+fqyvhVOKSbN29qtVq1owAAALB3NPcBq3vy5IkQ4pNPPlE7\nENjUtWvX1A4BAAAAAAAAAODwrl69+vTp0/bt26sdCAqL6OhotUMAAKDgkMeyT5s2Te1AANM5OTkZ\nNfFMHjDToUMHq0UEexQXF6e8cEZGhhBiwoQJVgsHsDoXFxe1QwAAALB3TFcDrK5MmTIuLi5eXl68\nNKjwSElJqVChgtpRAAAAAAAAKLVo0aKRI0cWK1ZM7UBgI5IkJScnr1y5sm/fvgp3iY+Pr1Chgqen\nJ0Mx4KCysrK0Wm1ycrLDPavfvHnzqVOnfHx81A4EhcKLFy/efPNNtaMw2uPHjytVqsRNCo7LcW9S\nAAyqXLny8ePHWT4Ijkur1bq5uRl1h1q8ePG7775bvHhx60UFe5OcnNyyZUvl5YODg48ePeru7m69\nkACr0mg0RYoUUTsKAAAAe8fTEMDq0tPTNRpNz549/f391Y4FNvL999+rHQIAAAAAAIARsrKysrOz\n+/fv7+npqXYssIWkpKRFixZlZmYq3yU9PT0zMzM0NLR27drWCwywnjNnzvz1118ajcbhxgp7e3u3\nbt1a7SgAuybfpDp16lSrVi21YwFMcfr06QMHDmi1WqZcAgVS48aN1Q4BsClXV9c2bdqoHQXs3Rtv\nvKF2CAAAAACsy8E65ABH5OHhIYQYMWJEgwYN1I4FNjJnzhxfX1+1owAAAAAAAFBKXrRn8uTJPNMo\nJO7fv79o0SJvb2/lu8hvUn/vvffeeecdq8UFWNGCBQv++usvtaMAYBXyTer999/v3bu32rEAppg/\nf/6BAwfUjgIAAAAAAAAALMZZ7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAUB09UAAAAAAAAAAAAAAAAA\nAAAAAAAAABbAdDUAAAAAAAAAAAAAAAAAAAAAAAAAgAUwXQ0AAAAAAAAAAAAAAAAAAAAAAAAAYAFM\nVwMAAAAAAAAAAAAAAAAAAAAAAAAAWADT1QAAAAAAAAAAAAAAAAAAAAAAAAAAFsB0NQAAAAAAAAAA\nAAAAAAAAAAAAAACABbiqHYDpsrKytFqth4eH+VWlp6d7enqaXw9Q8Dx9+lSSJB8fH3d3d7VjsR2t\nVvvs2TMhhK+vr4uLi9rhAAAAAAAAQB8eYfEIK6/CeVYUeJz2AAoGblIFEjcpAAAAAAAAAMjJgVdX\nGzZs2IABA8yvR5KkypUr//jjj+ZXBRQwixcvLl26dJcuXbKzs9WOxaacnJxGjhzp5+c3fPhwSZLU\nDgcAAAAAAAD54hEWj7DyKrRnRYHHaQ+gAOAmVVBxkwIAAAAAAACAnBx4dbWHDx8mJyebX4+Tk1OD\nBg0WLlz4ySefODk5mV8hYEHJycnyee7l5eXj46OnZFpa2osXL4QQPj4+Xl5e5h9669atw4cPr1ix\n4rZt2yxSoQNxcnJavnz5zZs3f/rpp0qVKk2YMEHtiAAAAAAAAOwXj7BU4ViPsGx5khTms6LAc6zT\nHoCj4CYFi+AmBQAAAAAAAAA5OfDqakpkZ2fHxMQcOHDg0qVLGo0mv2KDBg26du3a8ePHbRkboMSY\nMWPKlStXrly5lStX6i/5ww8/yCXDw8PNP25MTEzfvn21Wu2yZcvKli2rp6TCLDNZZmZmdHR0eHh4\nbGysZd9EGBUV9eTJk/y+9fT0XL16tYeHx8SJE/fv32/B4wIAAAAAABQwdv4Iy9rPrwSPsBSw2Umi\n/MGmxVn8TEtOTj516lRERMStW7dYpEXHgU57AI6Cm5Q59LdVcioM9zVuUgAAAAAAAACgU2Cnq2k0\nmrlz577yyis1atRo165dvXr1qlSpsmDBgpc+++7evXvJkiVXrFhh+zgB/U6cOCFvhISE6C958uRJ\nhSUN0mq1AwYMSElJee+990JDQ/MrZlSWmeDatWuDBw/29vauXbt2mzZtKlSoUKZMmRkzZmRkZJhZ\nsyRJ8+fPf/3116OiovQUq1GjxuTJk4UQAwcOTExMNPOgAAAAAAAABZXdPsKy9vMrwSMsxWxzkih8\nsGlxFj/TTp482bhx42LFioWEhLRu3bpatWoBAQELFy7Mzs7OW/jAgQOhhsTGxpr3R1THrFmzGjZs\n2LBhw+XLl+f83FFOewCOgpuUaRS2VYSR9zVHwU0KAAAAAAAAAPQrmNPV0tPTe/fuPXr06Li4OCFE\nsWLFhBD37t0bOXJknz598r4xzsPD4/3339+wYUNKSooK4QL5SElJuXTpkhDCzc0tODhYf2G5L61q\n1ap+fn5mHnfDhg3Hjh1zdnaeOnVqfmWMzTITYqhfv/7KlSuzsrKEEEWLFhVCxMfHf/HFF0FBQU+f\nPjWhzuzs7IsXL/7444+vvfbaqFGjlAQ5cuRIPz+/2NjY7777zoQjAgAAAAAAFHh2+wjL2s+vBI+w\nFLPZSaLkwabFWfxM+/HHH5s0aaKbESG7efPmv//973bt2r148SJX+bi4uD8NSU1NNeOPqJpdu3ad\nOXPmzJkz/v7+ub6y/9MegKPgJmUsY9sqxt7XHAU3KQAAAAAAAADQr2BOV5s8efKWLVuEEB988EFc\nXFxiYuKDBw969+4thPjjjz9mzJiRd5dBgwYlJSVt2rTJ1rEC+Ttz5ozcx1O/fn1PT089JePi4u7d\nuycs8V5qjUbz5ZdfCiHefffdatWq5VfMhCxTbsuWLWFhYRkZGSEhITt37nz+/HlSUtKdO3f69+8v\nhIiOju7fv79WqzWqTn9/fzc3t8DAwOHDh1+5ckXhXl5eXp999pkQYvbs2Y8fPzb2DwIAAAAAAFDg\n2e0jLKs+vxI8wjKGbU4ShQ82Lc6yZ1pkZOSoUaMkSRo0aNChQ4cSEhJu3rw5a9asIkWKCCEOHToU\nFhaW33nVqVOnIfnw8fEx+w9qa1qt9uzZs/J2w4YNc31r/6c9AEfBTcooxrZVzLmv2TNuUgAAAAAA\nAABgUAGcrnb9+vXZs2cLIfr27bts2bKyZcsKIcqXL79+/foePXoIISZPnnzr1q1cewUHBwcFBa1c\nudLm8QL5kt/RKIRo3Lix/pK6VxIaLGnQnj175AQZMmRIfmVMyzKFMjIy5EMPHTr02LFjXbp0KV68\nuJOT0yuvvLJq1ap27doJIXbv3v3nn38aVa38dsaKFSt+/PHHXbp0Ub7jBx984OLikp6ezvUBAAAA\nAAAgL/t8hGXV51eCR1hGss1JouTBpsVZ9kyTJGnYsGHZ2dlTp05dvnx5ixYtSpQoUbVq1TFjxpw4\ncUKufO/evRs2bHjp7v/+979/ykeZMmUs8ue1JY1Gs23btvDw8EOHDsl/9lzs/LQH4Ci4SRlVp1Ft\nFTPva/aMmxQAAAAAAAAAGFQAp6stXbpUo9F4eHjMnDnTyclJ97mLi8ucOXOcnZ01Gs2vv/6ad8fB\ngwdHRESYM0YBsCxVxvr89NNPQohKlSo1a9YsvzImZ5kSHh4e3bt3b9u27aJFi5yd/+ca5eTk9P77\n78vbhw4dMqraixcvPn369O7du0uWLAkKClK+Y5kyZTp06CCEWLJkiSO+3xEAAAAAAMCq7PMRllWf\nXwkeYRnJNieJkgebFmfZM+3EiRMXL16sUaPG+PHjc9YmhKhXr963334rb8+fP99S8dszNze3Vq1a\ntWrVqkWLFi8tYOenPQBHwU3KqDqNaqsU4PsaNykAAAAAAAAAMKigTVeTJGndunVCiJYtW5YvXz7X\nt1WqVGnZsqUQYs2aNXn3fe+999zd3VetWmX9MAFFjO0hc3NzCw4ONueIycnJ+/btE0J06tQp1zgb\nHXOyTKHvv/9+/vz5uTquZL6+vvJGZmamUXUGBASULFnypXUa1LlzZyHE7du3L1y4YMLuAAAAAAAA\nBZgdPsKywfMrwSMsY9jgJFHyYNPiLH6mRUZGCiHGjBnj5uaW99t+/fr5+/sLIU6ePJmQkGBO5AWG\nPZ/2ABwFNymjqjWqrVLI72vcpAAAAAAAAAAUcgVtutqtW7fi4uKEEPXr139pAfnzGzduPHnyJNdX\npUqVeuutt3755ReNRmPtOAGD4uLi7t+/L4QoUaJEQECAnpJarfbUqVNCiPr163t6eppz0IiIiKys\nLCFEw4YN8ytjTpYp5OvrW7du3Zd+denSJXmjRo0aplVugkaNGskbe/futdlBAQAAAAAA7J99PsKy\nwfMrwSMsxWxzkih5sGlxFj/TPv3006CgoO7du7/0WxcXl3r16gkhJEm6deuWiUEXLHZ72gNwFNyk\nzGwO6VfI72vcpAAAAAAAAAAUcgVtutr58+fljfyevNesWVPeiIqKyvvtoEGD7t69e/DgQetEBxhB\n9zbHkJAQ/S8pvH79+osXL4SC9z4atH//fnlDT4eZmVlmjqysrJ9//lkI4eLiEhoaatnK9ahfv76r\nq6vI8fcDAAAAAFBIo9HwYiDAUuwwoezzEZaKz68Ej7DysM1JouTBpsVZ/Ezz9PT8888/y5Ytm18B\nPz8/eSM9PV15nOaYPHnyiBEjbHMsE9jVaa/VatUOAXAMdpUs3KSEdZpDMmvf17hJKWdXeQfYM5IF\nAAAAAADAgnJPV5Mk6fjx48OGDWvSpEmFChV8fX1btGgxbdq0zMxMaxx+8eLFY8eOHTt2bHx8vEUq\nfPbsmbxRvXr1lxbQfX779u2833bo0KF8+fIrV660SDCAOXQ9ZAb7vU6ePKmwpEEXLlwQQri7u+f3\nZmhhdpaZTJKk0aNH//PPP0KIfv36Va5c2YKV6+fp6Sm/31H++wEAAAAAGBQXF/f555/XrFnTw8PD\n3d09ICBg9OjR8sIFAIxlzwlln4+w1Hp+JXiE9TK2OUmUPNi0OGucaWXKlNHz7ZUrV+SNKlWq5Fcm\nOzs7Ojr61q1bFpndumzZst9++83MStLS0uSeoA0bNgghEhMTV69e/cknn3To0OH111//+OOP7969\nm2uXpKQkeZfNmzfrqdkeTnvdJXrq1KkpKSl2dYkG7IecKQ0aNBBCDBs2zH4yhZuUsEJzKCfz72t6\ncJMySHeTmjZtWnJysv2kHmBX5Ex5/fXXhRBDhw4lUwAAAAAAACzFNef/nDx5sn///teuXcv54d9/\n//3333/v2LHj8OHDnp6elj38hg0bDh06JIQYOnRo6dKlza/w+fPn8kaRIkVeWqBo0aLyRlJSUt5v\nXVxcBgwYMGfOnISEBF9fX/PjAUymvIdMeUmDoqOjhRCBgYHu7u75lTEzy4yl0Wji4+MvXbo0e/bs\nPXv2CCHq1au3YMEC82s2SqNGjc6dOxcfHx8fH2+RixUAAAAAFGAbNmwYPHhwamqq7pMbN27MnTt3\n8eLFS5Ys6d+/v4qxAQ7HzhPKPh9h2fj5leARll62OUmUPNi0OBufaampqfKw/oCAgHLlyuUtEBcX\nN2jQoHXr1snvHyxXrtyIESPGjh3r5uZm8kFLlSpl/kpu58+fnz17thBi3Lhx58+fnzdvXs46z549\nu3v37rNnz+ac0nD69Gl5F4MTGNQ97e38Eg3YiVyZIkmS/WQKNylhueaQsQze1wziJqUfNylACXu+\nSQEAAAAAADi6/1ldLTIy8tq1a7Vq1Zo6deqePXvOnj27ZcuWoKAgIcSpU6fmzZunSohG0T15z+9x\nv65fNr8n7wMHDszIyDD/TWyAOTQazalTp+TtkJAQ/YXlFzr6+voGBASYc9Dnz58/fPhQCPHqq6/q\nLyZvmJxlym3bts3d3b1s2bLt2rWTB/q0b99+3759xYoVM7NmY1WqVEnekPsUAQAAAAD52bBhQ1hY\nWM4hcTrp6ekDBgz45ZdfbB8V4KDsPKHs9hGWLZ9fCR5h6WWbk0Thg02Ls/GZtnjx4qysLCHEiBEj\nnJyc8hYYPHjwqlWr5LlqQoi4uLgJEya0b98+OTlZ4SESEhJ27tyZnZ2t+8Tf39/f31/3v5IkRURE\nxMfHGxW5bkmi7777btasWc2bN584ceKwYcMqVKggf/7gwYMZM2bk3EU3LcTgaaPiaW/nl2jATthz\npnCTkjfUmq5m8L6WCzcpo9hz6gH2g0wBAAAAAACwqv+Zrubn57dly5bLly9PmjQpNDQ0ODi4R48e\n27dvlx8Qb9682eKH/+qrr9avX79+/fqcj5LNkZCQIG8YfPKeXwdtjRo13nzzzRUrVlgkHsA0V69e\nlU/RqlWr+vn56SmZnp4eFRUlhAgJCVHSl6NHbGysvOHj46OnmPlZplxWVpZWq9X9r7Ozc+vWrb29\nvc2s1gTFixeXNx48eGD7owMAAACAo3j48OEHH3ygv8zQoUPv379vm3gAh2b/CWW3j7Bs+fxK8AhL\nL9ucJAofbFqcLc+0Fy9eyGPlmzVr9sknn+RXrEmTJgcOHEhKSrpy5UrXrl2FEIcOHRo8eLDCo0yf\nPr1bt26tWrW6c+eO/EnZsmV13TexsbGhoaGtW7eePHmyUcHrZgKEhIRcuXJl375906dPX7Ro0YUL\nF5o2bSp/tXHjxpx5JO/i7u5ev359/ZWrddrb/yUasAd2nincpOQNizSHjKXwvpYTNynl7Dz1ADtB\npgAAAAAAAFjb/0xX69u3b48ePZyd/+fDSpUqye/9unfvXq6dk5KSUlJSzDl8mzZtwsLCwsLCLPWi\nWd17Q3M+Ms5J93nOV6/lMnjw4NOnT1+6dMkiIQEm0L2Wr3HjxvpLnj9/Xn71YN6SxmaorjtKf4eZ\nRbJMoTfffHPPnj179uzZuHHjpEmTypQpM2HChOrVq587d87Mmo2l609S6x2TAAAAAOAQ5s2bZ/Cn\naHp6+pw5c2wTD+DQ7D+h7PYRli2fXwkeYellkZNECJGdna3nD6XwwabF2exM02q1AwYMiI+P9/Hx\nWb16tYuLy0uLNW/ePDw8vE2bNt7e3rVr1966dWuTJk2EEBs3bty/f7+SAw0ZMqRz586RkZFBQUF/\n/PGHyLFwzY4dOwIDA/ft29emTZvhw4cbFb88rN/f3z8iIiLnqkQlS5ZcvHixPPHj/v378upDOXcJ\nDg7Ob5aFjlqnvf1fogF7YOeZwk1K3rBIc8goCu9ruXCTUs7OUw+wE2QKAAAAAACAtTkbLJGdnS0/\nfpUnrcmfzJkzp0qVKj4+Pt7e3rVq1VqzZo11w1RM985a3SP4XHSf654O59W7d++iRYuywBpUpHuT\nn8EesrwlTc5QXU+JnuwQFsoyhcqWLRsaGhoaGtqrV6+pU6devHgxKCjo0aNHrVu3vnDhgpmVG8UO\nx/oAAAAAgB3asWOHkmLbt2+3diRAAWD/CWW3j7Bs+fxK8AhLL3NOEp3bt2+3bt16+fLl+e2r8MGm\nxdnsTJs6deq2bdu8vLx2795dtWrVXN9WrVp1wIABAwYMWLp0qaenp+5zFxeX8ePHy9vz5s1TcqAa\nNWrs2rXr7Nmzbdu27dOnz5AhQ3x8fIoXLz5y5Mju3bs3btz46NGjBw4cqF27tvLgnz17duPGDSFE\n48aNc4YnCwwMrF69urytmwnw4MEDeRWakJAQg/Wrddrb/yUasAd2nincpOQNGwcmDN3X8sNNSjk7\nTz3ATpApAAAAAAAA1uZqsMSNGzfkp9UNGjQQQkiSNHDgwLVr1/bs2bN///7R0dHbt2/v169feHj4\nzz//LL9gTEW6VdrMefLu7e3du3fvdevWzZo1K9dac8pdv3598uTJGo3GtN0dUXx8/OPHj+vUqaN2\nIHbnyZMnQojU1FTlu+he6GiwqyNXSXMyVOH7HS2SZaYpXbr0zz//3LBhwxcvXowaNerAgQM2u+YY\n25+k0WjWrl175swZawZlwOHDhxMTE/v06aNiDDBIkqTz588HBAToeo5hn06fPk1CqSgqKqpy5cq2\nHzYBIcSpU6cSEhI4+e3fxYsXK1as6Ovrq3Yg0Edewfv99983+WcmzHHlypUyZcqULl1a7UAKvujo\naCXFbt261bt3b9WfIyGn6OjokiVLlilTRu1A8H9snFD//POPEEKSJOW72O0jLBWfXwnHeYQlL6Uy\nd+5ceX0SJdLS0oQQ8fHxykMy+SQRQvz2229Hjhy5fPnyoUOHJEnq2bNnfvsqX7jmgw8+uH79ulHn\neU7ly5dfu3atm5ub/L+2OdPmz58/ZcqUIkWK7Nixo1mzZnkLNG3atGnTpi/dt0OHDvLGwYMHMzIy\nPDw8lBwxODj4jz/+uHr16rfffjtz5kytVtulS5czZ87InUTGOnXqlLyR3zlQrVq1mJgYkePvU/kE\nEmHkaR8bGyuEePfdd83PSto8DuHWrVvu7u4VK1ZUO5DCy5aZInfDcZOy8U3KBAbva/oV4JtUXFyc\nECIsLIybVCHBTUp1ZEpBkpGRcenSpaCgIIUrdgLWk5aWdvXq1fr163M2QnWpqanR0dFBQUH0Szqi\nJ0+exMfHG/UyDlhbTEyMt7d3uXLl1A4E/49Wqz1//nytWrW8vLzUjgVG4yYF+5GSknL9+vWgoCB+\n+BuUlZV14cKFwMBA3SNoJTw9PV8yXe3p06eRkZGRkZH37t178uTJnTt35M/lp7SbNm1au3bt+vXr\nw8LC5M8vX77csWPHFStWdOrUqVevXmb/Wcyie1Kc3zNf+TmvMPTkPTMz083NzZwzLz09/dmzZ1qt\n1uQaHM7z58+TkpISEhLUDsTuyGejPP5DidTUVHkkq6ura3BwsP7Ccg9ZtWrV5GGX5mSowhPeUllm\nmtdffz0kJOTkyZPh4eGnT59u1KiRxQ/xUib0DqalpambDpmZmRqNhpS0c5IkJScnJyQkZGVlqR0L\n9ElLS5MkiYRSS1JS0vPnzwtVs8p+pKenc/I7BDlN1I4C/1979x0QxdX9DfwuvQvSFVEU7AWNFCuo\nqFixx+Sxookt1piYaDQREDF21BAUEUusEUUFDBrFWCKIAoJYUOwoRYr0tvP+Mc9vH15gl93Zmd1Z\n/H7+yWb3zr0HOcfB4Z6ZRtA75/Lz83HFTSmKioq0tLTwG2Jeyc/PxyU/XikqKlJTU5Pp2iLwBysF\nVVJSQgiR/gdvPl/CUu71K6Iil7Do73VJSYn0P/BXVFQQQqS/iCFPkhBCgoKCnj592rVr1759+968\neVPCsdLnf/PmzU1NTaUcXJ+pqWnttRSQaXv37l22bJmBgcGFCxfc3NxkPVxXV9fCwiI7O7u8vPzp\n06ddunSR/tji4uKPHz8KBAINDQ2Kohjfm0+0rV9cIdB/+RBCrKys6hwizYNrZEp7+iq9gn8Iwc88\nSvTx40dNTU19fX1lBwKNk79SysvLiaJ+GUdwkmJKzvOaSJM8SdE/YuEk9enASUqFoFL4r6Kigv6d\nOy7/gtKVlZUhG4EnSktL6WzE7yVVETbi8tDHjx9ramrqP5cblEUoFNJ/y9G/tgDVgpMU8EdJSQl9\nzsU//BtVVVVVXFycl5enpaUl/VHa2tr/a1crLS0NDQ0NDg6mL83XR19y3bVr1/Dhw0XbCAghXbp0\n2bp169SpU/38/JTerib6JcGzZ88GDBhQf8CzZ8/oF8bGxuImKSgoCA8PX7FihTyZ171797/++ovx\n4dCUxMbGDho0qNGbJoq8fPmS/rWKlZWV5B9wk5OT6ZT29PSk35GnQkUPdyosLJQwjJUqk0evXr3o\nXwUlJiYqbK/Px48f6ReiX+9Jpq6uPnfu3FWrVnEZVCO8vb0TEhIuXbqkxBgAmox169bt3r0bBQWf\noDVr1uzduxfJD8CKPXv2fPPNN1FRUVI+1AJARXXr1k3claXaHBwcLl++rIB4AFSaggvqwIED3t7e\n0m+m4fMlLKVfvyKqcAmL/l3CTz/9JP3jlN++fWtjYyP9HWTlSRJCyNWrV+lfVf7www+SOwGkvLBJ\nCNm8ebN0sUuF60w7cuTI/PnzDQ0NY2JiXF1dmQXZokWL7OxsQsiHDx+kPOTGjRt+fn5//fXX8uXL\nf/zxx9LSUqFQ6OLiMnjw4NWrVw8aNEimX52ItvX37t27/qc1NTUPHz4khHTp0qXOg2uMjY3t7e0b\nnV+mtLe1tSWEXLx4UUOjgZs5ygQ/8wBIQ5GV8vr1a1tbW1FPUaNwklLAj0N1sHJea/Inqb/++kv+\n3e04SQFIA5UCAAAAAAAAAMC1/7al0k9FX7x4cWpqardu3TZs2HDu3LmnT58WFxe7uLgQQvT19eln\ny7Zt23bGjBl1Zhk9ejQh5MGDB5WVlYqNv67u3bvTL548edLgANGVdwm3ET1+/Hh5efmsWbPYjg5A\nKvTuAVLrN0niHD58mH4h2lMiT4VK+QszVqpMHqJfm7169YqL+Rsk+jORsl0NAAAAAADg0zRu3Dhp\nho0fP57jQACaAp4XFJ8vYSn9+hXBJSxCiHxJQgiR/raa0ncCsIvTTDtz5sysWbP09fUvXrzIeE8/\nqfVYGGkenpOWljZo0KABAwbcu3cvMjJy27Zt+fn5eXl5AQEBMTExDx48GDJkiKura2JiopSrUxRF\nb+t3cHBo3rx5/QE3btzIzc0lhAwbNox+p6am5s6dO4QQZ2dnaVoOlJX2PP8rGoAn+FwpOEkp4Meh\n2uQ/r+EkJT0+lx4Af6BSAAAAAAAAAAC4pkYIycvL8/DwSE9P79Sp0z///JOcnLx69eoxY8a0a9dO\nU1MzKSmJENK7d2/6Pl579uyh9w3Upq+vb2JiUl1drfTnz3bt2pW+Uf3du3cbHJCSkkIIMTY2dnBw\nEDdJaGjowIEDJQwA4JRo30BpaamEYXl5efRvyAYOHCi6LaI8FSr6TYnoVn8NYqXKJPj48aNQKJQw\nQPT7M+nvkSk/WZ+uBgAAAAAA8GlasmRJo08XNzAwWL58uWLiAVBpPC8oPl/C4vr6FcElLOnIkyQy\nkfLCJuu4y7SLFy9+/vnnOjo6UVFRffv2lTyYoihxH5WXl9MNk+rq6nZ2do2uu3///tjY2JEjRyYn\nJ48cOZIQkpWVlZWVRQjx8PBITk729PSMj48PDQ2V8gt59eoV3RDS4DMGKYrasGED/XrevHn0i8eP\nHxcVFRFC6HspNkpZac/zv6IBeILPlYKTlPw/DklPpvOaODhJSY/PpQfAH6gUAAAAAAAAAACuqRFC\ntm/fTl/JPX369IABA2rfCSwlJaWiooIQ4uzsTL+jp6dX/5JNbm5ufn6+iYmJhYWFggIXQ0dHZ8yY\nMYSQa9euie6KJ/L69Wv6Hmnjxo0Td9O71NTUO3fueHt7cx0qgDgODg5aWlqEkOfPn4v73RVFUd7e\n3tnZ2VpaWjt37hSVrTwV2qJFC/qF5Ps7yl9lkkVGRv7yyy/iPq2srLx9+zb92s3NjcH8zIj+TFq2\nbKmwRQEAAAAAAFSOubn54cOHJdxmXiAQHDx40NLSUpFRAagonhcUny9hcX39iuASlnTkSRKZSHlh\nk3UcZVpsbOz48eM1NDQiIyMbbY0oKyvz9vYW1zwZFRVF/4pn4MCBjW7GJYSsW7fu5s2bkZGR1tbW\n9DuiTgBCiIWFRWRk5N9//+3n5yfl10L/CZBav2Oqbe/evZcuXSKETJo0qUOHDtIcUp+y0p7nf0UD\n8ASfKwUnKfl/HJKSTOc1CXCSkh6fSw+AP1ApAAAAAAAAAABcUyOE3LlzhxAiEAhEl8tpFEWtX7+e\nfi35kit9V7m5c+cyu0zPrhkzZhBCKioqNm3aVOcjX19f+sXs2bPFHR4aGmpgYDBp0iTuIgSQTF9f\nf8SIEYSQqqqqQ4cO1R8gFAp9fHwiIiIIIVu3bnV0dJQ8oZQV2qxZM/ovgZcvX0qekFmVlZSU/Pbb\nbxERERJu90sISU1N9fX13bRpU01NTf1P9+3b9/r1a0KIs7Nz165da39UVlYWHBx88uRJyXe2Zkb0\nZ9KxY0fWJwcAAAAAAGhKxo4de+7cORMTk/ofGRsbnz17dsKECYqPCkBF8bmgeH4Ji9PrVwSXsKTD\nepKII/2FTdYxyzQJaXD79m26u+DChQvS9Dpu3bo1LCxs9erV9acqLS399ttv6dcrV66U5stp1qxZ\nnYfe1O4EIISoqakNHjxY9EiiRom29df51giFwoCAgIULFxJCjI2NAwMDRR/FxcXRL6TsBFBi2vP5\nr2gA/uBtpeAkRb+Q6STFgKznNQlwkpIJb0sPgFdQKQAAAAAAAAAA3KIoavDgwfTr6dOnZ2VlURRV\nVlZ28eLFgQMHioa9fPmSEuP169fGxsZt27bNy8sTN0acSZMmtWzZsmXLlhkZGbIeO2rUKDc3t/rv\nC4VCT09POuzg4GDRm7t27aI3OowdO1YoFDY4Z0VFhZmZ2dy5c2UNBkCCq1evEkLu3r0r/SF3797V\n0NAghOjr61+4cKF2xr5582bo0KF0hq9fv77RqWSqUPpvA01NzfLycgnDmFXZggUL6EMCAwMlTJ6R\nkWFlZUUI6du3b3R0dFVVlWj+vXv3ampqEkI0NDRu3bpV58Dp06fT8+/evbv+tLm5ue/+z9KlS+mR\nJ06cEL358eNHCVH17NmTEGJmZiZhTG2ampoBAQFSDubI7Nmzu3XrptwYAJqMtWvXmpiYKDsKACVY\nvXq19Kc/AJBs9+7dhBDJP2kDNCV5eXkbNmxwcXHR19cnhDg5Ofn6+n748EHZcQGoJFFB0Q9H6tGj\nBxcFFRoaSgiR6Rovny9hcXr9imoSl7DohroTJ05IM5j25s0bQsjx48elP4SVJFm1ahUhZPv27RLG\nSHlhk3XMMk1cGqSnpxsbGxNCxo8fv2vXrl27dgUGBm7fvn1zPS9evKAPOXbsGD3VmDFjkpOTRVNl\nZGQMGjSI/mjSpEnififSKEtLS0NDQ2bHUhQl+jWTurr6vn37Kisrq6ur4+LiRo8eTb+vqal58eLF\n2of06tWLENKmTRspl5Ap7Xfu3EkIERUsK0R/RZuZmZmamjo7O+NnHoD6FFApr169IoScPHlS+kNw\nkpLpJEWT6WcVBuc1mTSxk9SOHTsIIdXV1TJ/JeLhJAUgDVQKAAAAAAAAAABHCEVRv/76K6nFwMCA\nfmFkZKSnp0cIsbS0FPe7zIKCgu7du5ubmz98+JDB8qKbqKWnp8t6rLh2NYqiXr9+Te8VIIT07Nlz\n4sSJ9vb29P+2bt06MzNT3JynT58mhNTfQwAgDwbtahRFBQUFiaqyX79+P/7449q1a8eNG6ejo0MI\n0dPTO3z4cKOTyFqhy5cvp1eMi4uTPJJBlbm7u9MDOnXqJHnyxMREW1tberCZmdnAgQM9PT3NzMxE\nvzQ6cOBA/aN69+5ND5g3b179T11cXIhEq1atEhdPeXk5vcdoyJAhkiMXQbsaQBODdjX4ZKFdDYBF\naFeDTxYX+8IBPln01cvnz59zMTmDdjWK35ewOL1+Ran+JSzFtKtRbCSJNJ0A0l/YZB2DTBOXBufP\nn5ecACKXLl0SHbVlyxbRMwnbt28/cuRIJycnLS0t+h13d3fJXY6SrVmzZt26dcyOra6uprvWO3To\nYGNjQwjR0NCgs5TWrFmz8+fP1z6ktLSUbh2ZMmWKNEvImvb4sQSgCWPQrkbhJCXLSYom088qzM5r\n0mtiJyku2tUAAAAAAAAAAAAAlEiNELJs2TLRndUIIcXFxd27d//ll1/oFjJCiJOTk+iXnbUVFhZ6\nenoWFBTcuHGjY8eOUl5uVgAbG5t79+7Rtw5NTEw8ffr006dPCSHDhg2Li4uztrYWd2BoaGjHjh1d\nXV0VFyuAGPPnz4+IiGjTpg0h5ObNmxs3bvT19T179qxQKJwzZ86jR4+mTZsmeQYGFSq6VeSdO3ck\nj2RQZd9//725uXm7du1qamqEQqGEyR0dHVNSUhYvXqyvr5+bm/vPP/9cvHgxNzeXENK5c+dLly7N\nmjWr/lF+fn4dOnTo3Lmz6Nd+bLl//35VVRUhZNiwYezODAAAAAAAAACg0vh8CYvT61cEl7CkJn+S\nSEP6C5usY5Bp7KbBt99+e+PGDfr5LU+ePImKirpz505lZaWuru66desuXrxoaGjIeHI/P7/169cz\nOzYtLa2kpIQQMnr06Pj4+DFjxtTU1NBZqqmpOW3atOTkZNETbGhJSUnV1dWEEGdnZ2mW4G3aA4Cq\nwEmq/iHc/azCOpykAAAAAAAAAAAAAPhMgxCiqakZFRV1//797OxsKyurVq1aGRsb0x+XlpaKO7Kw\nsHD48OEfPny4fv266CaysoqNjWV2YKOsra2vXLly7969mJiYnJwcGxubwYMH9+jRQ8IhmZmZ0dHR\nAQEBDfbmASje2LFjR4wYce3atbi4uA8fPpiamnbo0GH48OHSbC9gVqFubm7a2toVFRXS/MJM1iob\nMWJEdnY2/XXV1NSoqalJmNzIyCgwMNDf3z86Ojo9PT03N9fS0nLAgAGurq7iDhw+fPijR4/ETXj7\n9u1GvyJxEhISREswngQAAAAAAAAAoEni8yUsTq9fEVzCkpo8SSIlmS5ssk7WTBOXBqNHj6bvISir\nvn373rt37/79+1evXn3z5o2urm6nTp1GjRplZGTEYDa2xMfH0y+cnJysra3PnTuXlZX1+PFjLS2t\njh07in4PVVufPn1k+hPgc9oDgKrASaoOFn9WYXxeUwCcpAAAAAAAAAAAAAC4pkH/RyAQSG7lqqOg\noGD48OHFxcX//POPhIeVKV2vXr169eol5eBDhw4JBILp06dzGhKATDQ1NT08PDw8PGQ6inGF6unp\njRgx4uzZsxcvXqyurtbQ0Gj0EJmqjFZeXq6pqSnNSAMDg8mTJ8s0ORfOnz9PCGnbtm337t2VHQsA\nAAAAAAAAAO/w/BIWp9evCC5hSYdZkkiPwYVN1jHINHZ1796dV9/92p0A9AtLS0tLS0sWl+B52gOA\nqsBJ6hOEkxQAAAAAAAAAAAAA1xq5O2yDCgoKhg0bVllZGRsby+deNZlQFBUaGjpq1CgrKytlxwIg\nFzkrdMGCBYSQrKysq1evchAdKS4u1tHR4WJmjuTk5MTExBBC5s+fj0cvAgAAAAAAAACwgs+XsFTu\n+hXBJSxCCPcXNkFWdCdA8+bN7ezsuJgfaQ8AKgQnKb7BSQoAAAAAAAAAAACAazK3q+Xn5w8dOlRN\nTe3KlSvm5uZcxKQUN2/eTE9P9/b2VnYgAHKRv0I9PDw6dOhACPn999/Zjo4QQo4cOTJlyhQuZuZI\nSEhITU2Nnp7erFmzlB0LAAAAAAAAAEBTwPNLWCp3/YrgEhYhhPsLmyCT0tLSlJQUQoiTkxNH2/SR\n9gCgQnCS4hWcpAAAAAAAAAAAAAAUQEPWA7y9vRMSEgYOHDh9+nSKompqamp/Ghoa2qJFC/bCU5zQ\n0FALC4uRI0cqOxAAuchfoWpqav7+/hMnTgwPD09LS+vcuTOL4RUXF584cYK+m6BKKC0t3b59OyFk\n5cqVTalBFwAAAAAAAABAifh8CUvlrl+RpnsJKzIykt5K/u+//xJCLl++XF5eTghxdXV1d3evP57T\nC5sgq8TERLq0nZycuJi/qaY9AKgKnKRUGk5SAAAAAAAAAAAAAAogc7taTk4OIeSff/5p8NPS0lJ5\nI1KGoqKikydPLliwQFNTU9mxAMiFlQodP368u7t7bGzs6tWrz549y2J4y5YtU61C2759e05Ojo2N\nzcqVK5UdCwAAAAAAAABAE8HnS1gqd/2KNN1LWKdOnTp48KDofyMjIyMjIwkhq1atarATgHB5YRNk\nFR8fT7/gqBOgqaY9AKgKnKRUGk5SAAAAAAAAAAAAAAqgJusBN27coMSzt7fnIkqunTp1qqSkZPbs\n2coOBEBerFSoQCAICwszMjKKiIgIDw9nK7akpCRLS8spU6awNSHXHj9+7OvrKxAIDh48aGhoqOxw\nAAAAAAAAAACaCN5ewlK561ekSV/CCgsLazBDAgICxB3C0YVNYIDTToAmnPYAoCpwklJpOEkBAAAA\nAAAAAAAAKIDM7WpN0oEDB1xdXTt37qzsQAD4onXr1idPntTQ0FiwYMGrV69YmdPR0XHDhg2sTKUA\npaWl06ZNq6io2LJly+DBg5UdDgAAAAAAAAAA1MX6JSzVun5FcAmrIVxc2AQG9u/fX1RUVFRUZG1t\nze7MSHsAUF04SfEETlIAAAAAAAAAAAAACqDC7Wp2dnZ2dnbyz0NRVGZm5pIlS+SfCqApGT58eEhI\nSHZ29pgxY4qKipQdjkIJhcIZM2YkJCSsWLFixYoVyg4HAAAAAAAAAAAahktYuIRV36ecFfyhp6dn\nYGBgYGDA7rRIewBQdThJ8QFOUgAAAAAAAAAAAAAKoKHsAJgLDAxkZR6BQPD06VOBQMDKbABNycyZ\nMz///HNCiKamprJjUSiBQHDkyJEjR45oa2srOxYAAAAAAAAAAJAEl7BwCau+TzYrmjykPQA0AThJ\nNVU4SQEAAAAAAAAAAADUpsLtaiw2mKFXDUAcHR0dZYegBAKB4NP8wgEAAAAAAAAAVNGneSUHl7Ak\nwx9Ok4S0B4CmAX+VNUk4SQEAAAAAAAAAAADUpqbsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\noClAuxoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAA7WoAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAMACtKsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL0K4GAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAsQLsaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACwAO1qAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAADAAg1lBwDQ9FVXVxNCwsLCLl26pOxYQEGEQmFxcbGyowAAAAAAAAAAkFZpaSkh\nZOfOnbq6usqOBRShsLCQEFJeXi7rgefOnXvx4gX7AQFw7+bNm8oOAQC4FRERkZGRoewoAJjASQoA\nAAAAAAAAAACaGLSr8ciff/65YMGC1q1bKzuQT1Rubm6XLl0iIyOlP6SysvLly5fq6uqSh71580Yg\nEOzatUu+AEHFvH79utHfiQqFQlNTUxMTE8WExKLy8vLXr183mvwACqavr29paansKGRWXV2dkZGh\noYGfyoA5AwMDCwsLZUchMyQ/8JOurq61tbWyo2DiyZMnKCiQh56enpWVlbKjYCI9PR3/NgG+0dLS\nsrGxUXYUMisrKyOErF+/XtmBgEJVVFRIP1hTU1NNTe3o0aNHjx7lLiQATmloaOAnB4AmSVNTUyAQ\n/PHHH8oOBIA5DQ0NNTU1ZUcBAAAAAAAAAAAAwA5sZeORJ0+e5Obm9u/fX1NTU9mxfIqysrIeP34s\n0yGfffZZamoqR/GAqjt48ODBgwcbHaanp1dSUqKAeNj12WefpaWlKTsKgLrU1NRqamqUHYXMPD09\n//77b2VHAapNXV2dfpqrahk6dGhsbKyyowBoQE5OjpmZmbKjkM2sWbOk+eETQLL8/HxjY2NlRyGb\nadOmYUMq8FNcXJyzs7Oyo5DNypUrV65cqewogNcsLCxU8d/dAADwKbCyshIKhcqOAgAAAAAAAAAA\nAAAA/gvtajxCPxAmLCysWbNmyo7lUzR58uTMzEyZDmndunVlZaWfnx9HIUGTd/Dgwbt37yo7CiZs\nbW2FQqGPj4+yAwH4n/Pnz6voTmU7OzsLC4vdu3crOxBQVRERESdOnFB2FEy0adPGysoqMDBQ2YEA\n/M/169d37dqlipuwbW1tNTU1VfRUCHxw7dq1PXv2qGLzc+vWrbW1tQ8fPqzsQAD+JyUlxdfXV0tL\nS9mBAAAAAAAAAAAAAAAAAAAAACgH2tUAmNPT0zM1NZ08ebKyAwFVdevWrZSUFGVHwYSenp6ZmRmS\nH3jl5cuXKrpHX1dXV19fHwUFjGVkZJw8eVLZUTChp6dnYGCA5Adeqays3LVrl7KjYEJHR0ddXR0F\nBYyVlZXt2bNH2VEwoaOjo6GhgeQHXmnevLmvr69AIFB2IAAAAAAAAAAAAAAAAAAAAADKoabsAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoClAuxoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAA\n7WoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMACtKsBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAL0K4GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsQLsaAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAACwQEPZAYCq+vDhA0VRRkZGWlpayo7lv4RCYV5eHiHExMREXV1d2eEAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAfFpU+OlqVVVVFRUVrExVXl7OyjyfjqCgIDMzs1GjRlVXVys7lv8RCARLly41\nNzf/5ptvKIpSdjj88uHDh9zc3MrKSmUH0tQIhcLc3Nzc3NyamhplxwINQ/KrEBQU/6GgOILk5z8k\nvwpBQfEfCoojSH7+Q/KrEBQUAAAAAAAAAAAAAAAAAAAAgDxUuF1twYIFM2fOlH8eiqLatGmzZ88e\n+adSopKSkvdilJWVsbvW2bNnv/nmGxsbm4iICD09PXYnl4dAINi/f7+Li8vvv/++ceNGZYfDI/xs\nL2wa0CTJc0h+1YKC4jkUFHeQ/DyH5FctKCieQ0FxB8nPc0h+1YKCAgAAAAAAAAAAAAAAAAAAAJCH\nhrIDYO79+/fFxcXyzyMQCHr16rVr166FCxcKBAL5J1SK1atXBwYGivvUzMysb9++M2fO9PLyUldX\nl2eh9PT0adOmCYXCffv2WVlZNTo+OTm5RYsW5ubm8ixKCCkuLn748GFJSYmtra2dnZ2475SOjs6h\nQ4e6d+++Zs0aJyenoUOHyrkuR4qLi+ns1dPTMzIykjCyrKyssLCQEGJkZMSsOZC37YVNA90k+ezZ\ns99//71Vq1arV69WdkR8h+QHCVBQskJBNRlIflkh+UECFJSsUFBNBpJfVkh+kAAFBQAAAAAAAAAA\nAAAAAAAAACAPFX66mjSqq6vT09P//vvv1NTUmpoaccNmz579+PHj27dvKzI2dsXFxdEvDA0Nm/0f\nIyMjuq0rNzf33LlzEydOHDhw4Nu3bxmvIhQKZ86cWVJS8uWXX3p6ekoeTFHUzp07P/vss+TkZMYr\nEkLi4+NdXFwMDQ2dnZ0HDRrUrl07BweHXbt2ibsfefv27X/++WdCyKxZsz5+/CjP0tz59ttvra2t\nra2tDxw4IHnk7t276ZFXr15lsBCD9sKcnBwGC9VRXFx8586d2NjYjIwMjm5DLmV1K2AJuklSW1t7\nzZo1ly5d4iKSpoS3yc8FFBSDJVBQMuFbQbGeq5WVlY8ePbp69WpmZiaSH2rjW/JzAQUlzxIoKJl8\nCgVFCKmoqEhLS4uJiYmLi8vPz2d3ciS/ivpEkp8LKCgAAAAAAAAAAAAAAAAAAAAAkKzJtqvV1NRs\n377d1ta2ffv2Hh4e3bp1s7OzCwwMbHBr5tixY5s3bx4aGqr4OFlRWVmZmJhICNHT08vLyyv4P4WF\nheXl5RkZGb///nvHjh0JIbdu3Ro8eDDjp9KdOHHi33//VVNT8/HxETemuro6JSVlz549Xbt2XbZs\nmZxbi/bs2ePq6hofH1/7zWfPni1ZssTDw4O+u3l9S5cuNTc3z8zM/PXXX+VZnTui9kJnZ2fJI0Vf\ne6Mj61OJ9kIGZKpuxSzBqybJ6urqxMTEyMjIpKSkzMzMiIiIuLi40tJS5UYlwsPk5wIKSp4leFVQ\nQqHwwYMH0dHRt2/fLikpCQ8Pv3Xrlrizj+Lxp6BYz9XHjx97e3sbGBh06tRp8ODBLVu2tLCwCAgI\nqKioYDZhfUh+yYRCYWpqalRU1O3bt4uLi8+cOXPr1i2lRyXCn+TnAgqKlSV4VVCEkEePHsXExFy/\nfp0Qcvr06Zs3b+bm5io7qP/ibUFt3LjR09PT09Pzhx9+kHW52rKyspYsWWJpadmlS5fhw4e7urqa\nm5u7ubmxckJH8jeqfvJ/+PBB2UH9F2+TnwsoKGZL8K2gnj179vfff//999+EkHPnzl2/fv3du3fK\nDgoAAAAAAAAAAAAAAAAAAACgIZTKGjVqlJubW4MflZWVjR8/XvQ1Ghoail5PmjSpurq6/iGLFy82\nNDQsLi7mNmiJQkJCCCEFBQWyHijaODVgwABxY0pKSlxdXelha9asYRBedXV127ZtCSH/+c9/xI2x\nsLCon2OXLl1isBxFUTdu3NDQ0CCEzJ49+9q1a/n5+c+ePduyZYuuri49s6enZ01NTYPH+vv7E0J0\ndHSysrKkXG7SpEl9+/aVKcLJkyf36dNHpkMoiiouLlZXVyeEaGpqlpWVSR7cqlUrQkjbtm1lXYWi\nqKNHjxJC1NTUnj59Km5MVVXV/fv3d+/e3blzZzm/XxRF7d69m36gX31ubm4Mcrs+BtWtmCVKSkrM\nzc1lra9ly5bZ2trKHzMtMjJyxowZpqam9f/8dXV1vby8Dh48WFlZycpaEyZM6N+/v6xH8Sr5uYCC\nYmsJZgW1efNmNTU1+WOm/fPPP19//bW1tXX9P38tLa1hw4YFBQWVlJSwstbixYvt7OxkPYo/BcV6\nrh4/flxbW1s0ib6+vuh1x44dc3NzGXwVdTSx5A8ICNDU1JQ/Ztq1a9e+/vrrBp/9oqWlNXz48N9/\n/720tJSVtRYuXGhvby/rUfxJfi6goFhcgllBHTlyhBDy/v17+cOmKCohIWHJkiWtW7eu/w1VV1d3\nc3Pbtm1bfn4+K2tt2LBBR0dH1qN4W1BpaWl0YISQIUOGMFiR9tdff9FpQGvWrJma2n/v2vPu3TvG\n09KaWPIfPHiQEJKTkyN/2BRF3blzZ/Hixba2tg0mv7u7+/bt21n5gZaiKB8fH319fVmP4m3ycwEF\nJc8SzArq8uXLhJCkpCT5w6YoKi0t7fvvv2/fvn39ghIIBC4uLv7+/myduQAAAAAAAAAAAAAAAAAA\nAABY0TTb1b7//nt608acOXPoHTNv376dPHky/aafn1/9Q+7du0cIOXjwIKcxS8a4XW337t30l7Zy\n5UoJw+gnsBFCGGwLpijq/Pnz9OH//POPuDH0XlgbG5uvv/561KhR9Hhm3RpCobBbt26EEB8fH6FQ\nWPuj+/fvi7ZQHz16tMHDs7Ky6M1YAQEBUq6osHa1a9eu0cH37t1b8sjMzEx65NSpU2VdRbXaC6XH\noLoVtgSDJkm22tVu3LjRt29fQoidnd2yZcv++uuvhw8fTps2rWvXrhkZGdeuXfv5558dHR0JIQ4O\nDidPnqxTUwwwa1fjT/JzAQXF7hIMCoqtdrXk5OQRI0YQQlq0aDFv3rzz588/ePDgu+++MzExefny\n5c2bNwMCAvr06aOmptaiRYt9+/ZVVVXJuSKzdjWeFBTruRoeHk4f6OzsfOHChYKCAqFQ+PLlyxkz\nZtDvjxw5EslfB1vtaomJicOHD6eTf/78+RcuXEhLS/v2229NTU3p5N+4caOrq6uamlrLli1DQkLk\n3zjOrF2NJ8nPBRQU60swKCi22tXS09OnTJkiEAjMzMxmzZr1559/pqambtq0iRCSkZFx+/bt7du3\nu7u7q6urm5qabtu2rby8XM4VmbWr8bagRo0aZW9vT6/IuLvm8uXLWlpahBBLS8v9+/d//PiRDub+\n/fs+Pj7yNwo2seRnq13tyZMnkydPppN/9uzZp0+fTk1N3bhxIyHk+fPnt2/f3rZtm5ubm7q6upmZ\n2fbt2ysqKuRckVm7Gm+TnwsoKDmXYFBQbLWrvXnzZs6cOerq6s2aNZs6derRo0fv378fGhpKCLl9\n+3ZCQkJQUJCnp6e2traBgcEvv/xSVFQk54oAAAAAAAAAAAAAAAAAAAAArGiC7WqPHz+m+5SmTZtW\nuyWjurp63LhxhBB1dfVnz57VP9DR0dHd3Z27gBvFuF1t+vTp9N6aU6dOSRhWXV2tp6dH77BhEB7d\nftaqVSsJW1qfPHny4cMH+o99zZo1dFTMujX+/fdfQkj79u0bfBjUgQMH6MldXFzEzUA3G9jZ2Um5\nB1dh7Wq//vorHfyiRYskjzx79iw9cvv27bKuolrthVJiXN2KWYJBk6T87WpCofDnn38WCAQdOnSo\n04c2e/bsbt261R4cHx/v7u5OCJk4caKcD5Nk1q7Gn+TnAgqK3SUYFBQr7WrBwcGampo2NjbBwcG1\nW3HWrl1rYmJSe+TDhw/pva39+/eXft9qg5i1q/GhoFjP1fLycvrhFfPnz69z+hYKhR4eHvSEUVFR\nsn4htTW95GelXS04OFhDQ6N+8q9evdrMzKz2yLS0NDr5BwwYkJ2dLc+izNrV+JD8XEBBcbEEg4Ji\npV3txIkTenp6pqamAQEBtfvQ6PuM1H7n1atXX3/9tbq6eo8ePV68eCHPosza1fhZUJcuXSKEfPXV\nV/RRzLpr3rx5Y2RkRAhxcHCQ/7lP9TW95GelXe348eO6urr1k3/nzp2EkNpN/i9fvvz666/V1NQc\nHR1fvnwpz6LM2tX4mfxcQEHJvwSDgmKlXe2vv/4yNjY2MDBYtWoV3R9IO336NCHk+fPnondycnJW\nrVqlpaXVrl27Bw8eyLMoAAAAAAAAAAAAAAAAAAAAACvUSJOzd+/empoabW3tTZs2CQQC0fvq6urb\ntm1TU1Orqak5fPhw/QO9vb1jY2MzMjIUGCw74uPj6RcuLi4ShhUWFpaWlhJCOnToIOsSxcXFMTEx\nhJARI0aoqYlNGwcHh+bNm9f+Y2fs5s2bhJBvv/1WU1Oz/qfTp0+3tLQkhMTHx+fn5zc4w8iRIwkh\nz58/v3//vvzxsCguLo5+Ifn7RaT+zjbo999/J4S0atWqX79+4sakpKR8+PDh1atXwcHB9KO3GIuL\ni0tJSWnfvv0PP/xQJwG6detG30qfEEJvUmSMcXUrZgkLC4thw4YRQoKDg4VCoTxhSKmsrGzChAk+\nPj6rV69OTU2lH2IgYbyTk9PVq1fDwsIiIyP79+//9u1bBQRZG3+SnwsoKHaXUHxB1dTUzJs3b968\neTNnznzy5AndPCBhfMeOHU+ePHnhwoWUlJQ+ffo8evRIAUHWxoeCYj1XtbW1x44dO2TIkN9++63O\nzxsCgeA///kP/Vr0OBRmkPx11NTUzJ07d968ed7e3unp6Y0mf6dOnU6ePHnu3Lnk5OQ+ffo8fvxY\nAUHWxofk5wIKioslFF9QhJC1a9dOnTp1+PDhGRkZq1atohvaxWnVqlVwcHBsbGxWVparq6soaRWG\nhwVVU1Pz7bffEkJETZXMLFmy5OPHjwKB4MyZM6KGTxYh+etbvXr11KlTR44cKU3y29ra0sn/7t07\nV1fXhIQExQQpwsPk5wIKipUllFJQgYGBI0eOdHR0fPbsWUBAgKGhoYTBZmZmAQEBd+7cIYT07duX\nvoIHAAAAAAAAAAAAAAAAAAAAoERNrV2NoqijR48SQtzc3Fq0aFHnUzs7Ozc3N0IIfcv8Or788kst\nLa2wsDDuw2RTQUEBvUvY2traxsZGwsh//vmHftG/f39ZV4mNja2qqiKE9O7dm1GYMlu0aJGjo+PY\nsWMb/FRdXZ1++gRFUeI6DJ2cnOgXFy9e5ChIZmTdFaepqdmzZ0+ZllDF9sJGyVPdCltCkU2SFEXN\nmTMnKirqjz/+8PPz09DQkPLAmTNnXr16NTMzc8yYMXQLq8LwJ/m5gIJifQkFdx3/8MMP+/bt2759\n+759+3R1daU8atSoUbdv3yaEjBgxIicnh8sA6+JDQXGRq5s3b965c2eDpWRiYkK/qKyslHK2+pD8\n9X333XcHDhwIDAwMDg7W0dGR8qgxY8b8+++/QqFw5MiRubm5nEZYBx+SnwsoKI6WUHBBbdu2zc/P\n74cffjh9+jT9JCJp9O/fPz4+3tLSctSoUc+fP+c0wjp4WFBhYWH3799v2bLl6NGjZVqotuTk5PDw\ncELI5MmTu3TpwngecZD89W3evHnjxo0//fTTqVOnpE/+AQMGxMfHm5mZjRw58uXLl5xGWAcPk58L\nKCi2llBwQR09enTZsmXe3t4xMTEWFhZSHtW9e/e4uLgePXpMmDAhKSmJywABAAAAAAAAAAAAAAAA\nAAAAGtHU2tUyMjLevXtHCOnRo0eDA+j3nz59Wn9PuampqZeX18GDB2tqariOk0X0vZMJIS4uLhLa\nJCoqKnx8fAgh+vr6P/74o6yrXLp0iX6hsHY1HR2dv/76S8JNu83NzekX5eXlDQ7o0aMH3cAjCp4P\n3r179+bNG0KIsbGxg4ODhJFCoZD+5vbo0UP6veM0VWwvbJQ81a2wJRTZJLlx48Zjx44FBQV98cUX\nsh7r6up69uzZtLS0WbNmcRBaw5pq8nMBBUVTZEEdPHhwy5Ytv/zyy7Jly2Q9tmPHjtHR0YWFhRMn\nTqTTTwF4UlBc5KqJiYm4bdCpqan0i/bt20s5W31I/jpCQ0O3b9/u4+OzePFiWY/t3LlzVFTUhw8f\nJk+eXF1dzUV49fEk+bmAguJoCUUW1MWLF7///vv58+f7+/vL2sHeqlWr6OhobW1tLy+v4uJijiKs\ng4cFVVxc/NNPPxFClixZoqWlJdNCtQUHB9Mv1qxZw3gSCZD8dURGRv7www+LFi3y9fWVNfltbW2j\no6M1NTW9vLxKSko4irAOHiY/F1BQLC6hyIKKj4+fM2fO+PHjg4ODG2xil8DU1PT8+fOtW7f28vLK\nzs7mKEIAAAAAAAAAAAAAAAAAAACARjW1djXRzYPFbUDp0KED/SI5Obn+p7Nnz3716tWVK1e4iY4T\n0twRvKioaMqUKYmJiYSQ9evXt2zZUtZV6LtHa2lpcXEjbXEk30A6LS2NfmFnZ9fgAB0dHXpTr2Ju\nfS0l0ffL2dlZ8ja+J0+eFBYWEinu9V6fKrYXNkrO6lbMEgprkkxPT//ll18WL17s7e3NbIY+ffr8\n9ttvp06dOnv2LKuhidVUk58LKCjRgYopqNzc3KVLl06YMGHt2rXMZmjfvv2xY8du3Lgh2svLNZ4U\nlAJyVaSqqiokJIQQoq6u7unpyXgeJH9tOTk5y5cvnzx58urVq5nN0LFjx6NHj167dm3fvn3sxiYO\nT5KfCygojpZQWEGVlZV9/fXXffv2DQwMZDaDtbX12bNnHz9+HBAQwG5s4vCwoDZt2vT+/Xt9ff2v\nvvpK1oVEKIo6deoUIcTOzq579+6EkMrKysuXLwcFBf32228PHjxgPLMIkr+20tLSefPmDRgwYMeO\nHcxmaNmy5ZkzZ9LS0n799VdWQxOLh8nPBRQUi0sorKCEQuFXX33Vrl27Q4cOMXt2t5GRUUREREFB\nAYObVQEAAAAAAAAAAAAAAAAAAACwpW67mlAo/Ouvv6ZPn+7k5DRkyJAff/wxMzOTEPLtt9927Nix\nc+fO8m+OrC0oKGjlypUrV67Mzc1lZcK8vDz6hb29fYMDRO8/f/68/qfDhg1r0aLFgQMHWAlGMeLj\n4+kXDe6d+vjxY0hISPfu3c+dO0cIWbp06YoVKxis8ujRI0JI9+7d5bkhN4tKS0vpdjUHBwdra2tx\nw+i7X+fm5rKVYPKTpr2QJvk7K5kqthc2Ss7qVswSCmuSXL16tbGxsZ+fnzyTeHt79+vX74cfflDM\nI3GacPJzAQVFFFhQGzZsqKio2LFjB7P9oLThw4dPmjTJx8fn48ePLMYmDn8KiutcpVEUtWLFihcv\nXhBCpk+f3qZNG8ZTIflr8/X1raqq2rZtmzzJP3LkyPHjx//yyy9FRUUsxiYOf5KfCygoLpZQWEEF\nBga+fft2586dsj4Jp7bevXvPmzdv27Ztr1+/ZjE2cfhWUK9fv966dSshZN68eSYmJrIuJJKenk7/\nA7BHjx7V1dWbN2+2sbEZOnTowoULFy1a1LVr13nz5lVWVjKenyD5/387dux4//797t276WYeZpyd\nnb/66qvNmzfTDz3jGt+SnwsoKHaXUFhBHT58+P79+zt27NDX12c8ib29/apVq8LCwkR9egAAAAAA\nAAAAAAAAAAAAAAAK9v+1q71582bw4MGenp5HjhxJSEi4cuVKQEBAp06drl69euHChcePH6urq+vo\n6LC4/IkTJ7Zu3bp169aCggJWJhTNo6ur2+AA0W6PBjfUqqurz5w5Mzw8PD8/n5V4uEZRlGiX1ebN\nmyf9n4kTJ3p6ejo6OpqYmHz11VcvXrwwNjYOCwtjthe/oKDg/fv3hJDWrVuz/AUwFRQUVFVVRQhZ\nvHixhK+oVatW9Au63Y4PpN8VJ/3I+lS0vVAyOatbYUsooEny0aNHp0+fXrt2rZGRkZxTBQQEPH78\n+M8//2QlMMk+zeTnAgqKXXl5eUFBQUuXLhWdMhjbsGFDQUHB3r17WQlMMpUoKPlztaamJisr6++/\n/x41atTu3bsJId26dWP82CIakl8kNzc3ODh4+fLlNjY2ck7l7++fl5dHP62LayqR/FxAQfG8oKqq\nqjZv3jxt2rSePXvKOdXatWs1NDQYP6VKJnwrqDVr1pSVlRkZGTF+5CNNFG27du2GDh36/fffFxQU\nODs7i56etHfv3m+++UaeJZD8IpWVlVu2bJkxY0bXrl3lnGrdunXq6upy/r0kJb4lPxdQUKwvoZg7\nIvn7+w8bNszDw0POeZYtW2Ztba2wJxYCAAAAAAAAAAAAAAAAAAAA1PG/drX09HQnJ6dr164RQnR1\ndb/44gtfX985c+YUFxePHz/+yZMnhBBnZ2elRSod0QYUcZuBRLe6F7cBZdasWRUVFcePH+cgOva9\nevUqOzubfh0dHX36/4SHh//111/JyclCodDGxuann37KyMiYOXMms1XoJ+wRQuTvjWFFYWFhQEAA\nIaRfv34LFy6UMLJZs2b0i7dv3yoissbU1NTcuXOHft1oNdE3cTcxMXFwcJBpFdVtL5RM/upWzBIK\naJIMDw/X0tJiXNG19e/fv1OnTmfOnJF/Ksk+2eTnAgqKXRcuXKioqJgzZ478Uzk4OLi7u6OgROTM\n1YiICC0tLSsrKw8Pj+joaELI0KFDY2JiDA0NmcVDQ/KLnD9/vrKycu7cufJP1aFDh4EDByL5OYWC\n4nlBxcbGfvjw4euvv5Z/KnNz8/Hjx58+fVr+qSTjW0ElJCQcPnyYEPLDDz+YmprKtEod7969o1/s\n3bs3NjZ27dq1BQUFcXFxjx49unz5Mt2ssm/fPlETDgNIfpErV67k5+ezkvyWlpZeXl7h4eHyTyUZ\n35KfCygoLpZQQEGlpKQ8efKElYLS09ObNm3a+fPnKyoq5J8NAAAAAAAAAAAAAAAAAAAAQFb/bVcr\nKCgYOnQovZOmf//+z549O3r06E8//RQSEnL48OHCwkJ6WJ2bSVdUVOTn51MUxXj5devWHTt27Nix\nY5aWlownqU30VLRGN6AUFxc3OKB9+/b9+/cPDQ1lJR6uifYDffbZZ6tqWblyJb2NtWXLli9evPD1\n9TUxMWG8iujPig/takKhcObMmbm5uUZGRocOHVJXV5cwWNSuxnhLE7sePnxI/2G2bdvW3Nxcwsjy\n8vLk5GRCiLOzc/0dyeXl5RK+ItVtL5RM/upWzBIKaJKMiIgYPHgwW9/fcePGRUVFlZeXszKbOJ9m\n8nMBBcW6iIiIbt26ybr/WBwvL6/bt2+LNvVyRCUKSv5craqqEgqFov9VU1MbNGiQgYEBg6lqQ/KL\nREREODo62tnZsTKbl5fXzZs36X9NcEclkp8LKCg5l1BMQVlYWLi6urIym5eX18uXL+kc5g6vCoqi\nqBUrVhBCrK2tly5dKt1XIFZeXh79oqioaN26dT4+Pnp6evQ7Q4YMOXDgAP06KCiI8RJIfpGIiAhL\nS0u27m3k5eX17Nmz1NRUVmYTh1fJzwUUFEdLKKCgzp49q62tPWzYMFZm8/LyKi4uvnr1KiuzAQAA\nAAAAAAAAAAAAAAAAAMjkv+1qS5cuffnyJSFk7ty5V65csba2Fo2YOnWqaBuraAdSUlLS0KFDdXV1\nmzdvbmdnFxwczKxpbfDgwVOnTp06daqc9/UXqayspF/U3o5Zm+j96upqcZN4e3snJCRwvUGKFfR9\nvgkhX331VUAtmzdvdnNzI4S8ffv23r17cq4i2oAl2pqjRD4+PhEREXp6elFRUW3btpU8mG/taqL2\nwjqdn/UlJSXRD9CoPZKiqNDQ0B49eujp6RkZGdna2vr7+5eVldU5VnXbCyVjpboVsATXWScUChMT\nE+kCZ4W7u3txcTH9CE3ufILJzwUUFBfu3r3r7u7O1myDBg2ii5StCRvE/4JiJVf79+8fHR0dHR19\n6tSptWvXWlhYrF692t7eXs4/XiS/CBfJz3V3Df+TnwsoKPmXUExBDRw4UJ5Tc22DBg2i52RlNnF4\nVVBnzpy5fv06IWT9+vWiThjGRN9oU1PT7777rs6nU6ZMof8hefz4cVEHi6yQ/CL02URNTY2V2T7B\n5OcCCoqjJRRQUPfu3XNycmLrGqmLi4uenh7XBQUAAAAAAAAAAAAAAAAAAADQIDVCSFJS0qFDhwgh\n/fr1CwoKEt1R+L8j1NTs7e0JIbq6ul26dCGEJCQkDBgwID4+fsWKFX5+fqampvPnz1+3bp0y4q9L\n9IgA0U6UOkTvS+i8mjx5sr6+vko8YE20y6r+vcy/+OIL+sUff/wh5yr82bO7c+fO9evX6+rqnj9/\nvl+/fo2O51u7mqi9sNFdcfVH1tTUTJ06dc6cOZaWltu3b9+3b1/nzp3XrFnj5eVVU1NT+1jVbS+U\njJXqVsASXGddTk5OVVVVq1at2JrQxsaG1Lr3P0c+weTnAgqKdRRFvX//nq4CVqCgaKzkqpWVlaen\np6en56RJk3x8fFJSUhwdHbOysgYNGnT//n1mcxIk//8RCoVIflU5m6Cg5F9CAf8oyMzMZLGgTExM\nDAwMuHt6D40/BVVZWblq1SpCSIcOHWbPns3oq/n/6Ovr0y9GjhxZ/ymCAoFg4sSJhJCKigrGN6lB\n8ouwm/xmZma6urqfTvJzAQXF3RIqV1BqamotWrTg+sczAAAAAAAAAAAAAAAAAAAAgAZpEEK2bt1K\n/8+2bds0NDTqD0pLSyOE9OrVS1NTUygUzpkzp7q6+t9//3V0dCSEfP/99yNHjvT39//888+7du2q\nuNgbIroDsTwbUAwMDCZPnnz06NEtW7Ywvkd4fHz89OnTZbrxM73fpc4OJwmqq6vpeyTr6OjU/5Of\nOHHiokWLqqurjx8/vmXLlga/s1ISCASMj2XR3r17ly1bZmBgcOHCBSkfLSXTQ//S09MfP37crl07\n6Q/JysoyNjaWfryE9sJGR+7atevPP/88ePDgjBkz6HfmzJkzbNiwS5cuHTt2bNq0aaJjVbe9UDJW\nqlsBS8i0g+3Ro0eZmZkyZR192/7ly5evXbtW8sicnJyKiopGJ6fvIv/FF180b95c+jCysrJMTEyk\nH8+35J8zZ86TJ0+YPReUENKiRYs//vijTnc311BQja6Ynp4uFAplKqjq6uqKioqAgIDg4GDJI/Pz\n8wsLC6WZXCAQLFu2bOPGjdKH8eHDB3HPeWgQ3wqqDnZzVcTMzCwkJKR3796FhYXLli37+++/mf18\n0lSTv7q6Wtbkr66u9vf3/+233ySPzMvLKyoqkjL5lyxZ4ufnJ30Yubm50g8m/Et+BZxNUFCKLyj6\nqeMuLi4yPSrt1atX+/fvP3funORhHz9+JIR06tSp0T/w0tJSf3//sLAw6WMoKCgQ96fUIP4U1J49\ne54+fUoI2bhxozz/bhURreXg4NDgANH7L168GDBgAIMlmmTyv3jxghDSu3dvmZL/7du3+/btO3Pm\njORhhYWFhJD27ds3mvzl5eW+vr779++XPob8/Pzy8nLpx/Mn+UUzsHg2QUFxt4RMBZWVlUUIGT16\ntJaWlvRxPn/+PDU1tdGfu0pKSgghbm5ujX6LX716tW/fvosXL0ofwyeruro6Ozvb0tKSrWelAjBG\nZ6OVlRVbDy8FRSotLS0qKrK0tFR2IPA/eXl56urqPLkfDdDevXvXvHlzbW1tZQcCMsNJSqWVlpYW\nFxdbWFgoOxD4H5ykeAgnKdVVVVWVk5ODkxTwAbIR+KOysjI3N9fa2ponOz9BJsXFxWVlZebm5soO\nBP4nNzdXW1tb9CsnUDqKot69e2dmZibTL+OAJ3CSAv6orKz88OGDlZUVsrFRNTU1WVlZsv5KXV9f\nX6OqqoreVNejR48Gd+q8efOGvrM1/WlSUtL9+/e/+eYbuleNEKKpqblp06bPPvts06ZNhw8flv+L\nkYfopwFxe0fevXtHv5B84a+yslJTU1OezLO2tvbw8JCpXe3Ro0c5OTnSfwtTU1PpxhW6k7DOp6am\npsOGDYuKisrKyrpy5cqwYcOkj6QO0V2o6R1mSnHkyJH58+cbGhrGxMS4urpKeRS9H5TUSgwJjIyM\nmjVr5uHhIX1Uly9fln77V2lpKX2vcQ0NjZ49e0oeTO+Ka9eunZmZGf3OqFGjsrOzRVviCCECgWDU\nqFGXL1++efNm7V1xPPkbk0F7oWRsVTfXS8i0y9DExERHR0emrMvNzQ0PD3d0dGzTpo3kkdeuXcvJ\nyWl08rKyshcvXnTq1Klbt27Sh3Hp0iXpr9TzMPmbN29uamoq5eD6TE1NFVxoKChpGBsbCwQCmQqq\nsrIyLCysQ4cO3bt3lzwyISHhwYMH0kweEhLSpk0bmbpKbt269f79eykH87CgamM9V2v77LPPnJ2d\n4+Pjr169mpCQ4OTkxGASJD+tvLz80KFDHTt2bPRmE3fu3Hn48GGjk1MUFRISYmdn16dPH+nDuHHj\nhvQdazxMfq7PJigotpaQqaDoeQYOHKirqyv9UfRf/o3m/4MHD3JzcwcPHtzoP/oOHjxI/4tS+hgS\nExMTExOlHMyfgiovL/fx8SGEmJiY5ObmhoSEiD4S3cnl7du3ove9vb0b/RWvqLvGyspK8gC6QYuB\nJpz8bm5uOjo60h9FJ3+j/0hPTU29devWkCFDGv32hYWFtWjRQqbkv3fvnvQPiuRP8ouweDZBQXG6\nhEwFRV9Jc3Fxkembe+jQISsrq0bz//nz55cuXerXr1+jF7uOHTump6cnU0F9sqqqqu7fv9+jRw9W\n+jwB5FFZWUk/DBnNk6ooPz8/MzOzS5cuyg4E/uf58+eamposPr8U5JeUlGRvb1//yb3AfzhJqbT8\n/Py3b98q/dbDUFtGRoaWlhZOUrySmJjo4OCAk5QqqqioSElJ6dmzJ05SoHTl5eUPHjzo2bMn2tVA\n6crKytLS0nr16sWTnYQgk9zc3Nzc3I4dOyo7EPif9PR0Q0NDcb8vA8WjKCoxMbFTp04ybe0Anigr\nK3v48GHPnj1xkgKlKy0tffToUa9evZQdiAqorq5OTk6W9Vfq+vr6Gnfv3qVbegYNGtTgoNu3b9Mv\n6HY1+o68w4cPrz2mZ8+eZmZm169fZxY9i0RbiJ49e9bgTZ2fPXtGv5DwUKyCgoLw8PAVK1bI8/dg\nq1at9uzZI9Mh+/fv/+eff6QfHx8fT78Qd0fwqVOnRkVFEUL++OMPlW5XO3PmzKxZs/T19S9evCh9\nrxqpFbA07WqWlpY1NTWNPmCntilTprx580bKwS9fvqT3h1lZWUne/5ecnEwnqqenp+hNBweHDRs2\n1Bn54cMHUusbRFP694swbS+UjJXqVsASMjVJWlpaNm/eXKasKywsDA8P//zzz729vSWP9Pb2TkhI\naHTye/fuHT582N/f393dXfowJk6cmJ2dLeVgHib/5s2bpQyeD1BQRLqCMjc3FwgEMhUUIeT06dMj\nRoxYt26d5GHr1q17/vx5o5NnZ2fv3bv3hx9+qL1ZuVFLliy5cOGClIN5WFAiXORqHb169aJ//klM\nTGTWXdNUk19dXZ1B8o8cOXLNmjWSh61Zs+b169eNTv7u3bt9+/b9+OOPX3zxhfQxLFq0KCYmRsrB\nPEx+Ts8mKCgWl5CpoOh5Nm/eLNMjEWJjY/v16xcUFCR52J49e27evLlnzx7Jbf9CofDAgQMLFiz4\n7rvvpI/B398/JSVFysH8Kajy8vKCggJCSH5+/tdff93gmEePHn311Vf061mzZjX6K9727dvTL0pL\nSxscIOo5kel5dLU1yeSnH568detW0dLS+PvvvwcMGLB7927JwwIDA2/duhUUFCT5olVNTc3+/fsX\nLVq0YsUK6WPw9fV9+PChlIP5k/wiLJ5NUFCcLiFTQenr6xNC1q5d26NHD+njfPTokTSXCMLDwy9d\nuuTv79/oXWyioqKmTJmydetW6WMAAAAAAAAAAAAAAAAAAAAAYIXGy5cv6VctWrRocISoXc3FxYUQ\ncvnyZUJInYfwCASCDh063Lx58927d9bW1hzG2xjR01GePHnS4ADRBhQJd7g8fvx4eXn5rFmz2I6O\nZfR9von4djUvLy8dHZ3y8vLw8PCgoCA9PT36/cLCwpSUFCMjo/oPk3ny5El2dnbnzp2bN28uelO0\nEUe0NUeRLl68+Pnnn+vo6ERFRfXt21emY2XaS8Q1UW9Po5v/RE8pnDJlSu336/RPVlRUHDlyhBAy\nbty42u8rvV2NcXuhZKxUtwKWkKlJkoFmzZoZGBhkZGSwNeHz588JIS1btmRrwvo+neTnAgqKfsHd\nX+MtW7akq4AVn3JBcZSrdYg2EL969YrZDEh+kRYtWiD5eXs2QUGxu4TKnU3evHlTVVX1iRSUurq6\nuF6OyspKugdJX1/f3t5ecpy1iR4FLy5tiouL6ReMW1+Q/CLsJv+rV69qamo+keTnAgqK0yUUU1Bp\naWlszVZaWpqVlcVpQQEAAAAAAAAAAAAAAAAAAACIo0HfBJoQkp+f3+AIul3NzMyMvmXvu3fvSENb\nUe3s7G7evJmenq7cdrWuXbtqa2tXVFTcvXu3wQH0/eaNjY0dHBzETRIaGjpw4EAJA3ii0aerGRkZ\njR49+s8//ywuLj5//vznn39Ov19YWDhgwIDWrVu/ePGi9vi8vLw+ffoYGBjUuTG5qJVR8Xt2Y2Nj\nx48fr6GhERkZ2eANsCUTBcyH3TnNmjWjX4i7JTktLy+P3hU3cOBACV/y+/fv586d++LFi//85z91\nuvhUt71QMlaqWwFLKKBJctCgQdHR0X5+fqzMFhUV1bJlS5k2LMrqE0l+LqCgFFNQ4eHhQqGw0SdL\nSCMqKkpPT4/u8OcIPwuKrVz9+PGjgYGBhO+FaCexlZUVsyWQ/CKDBg26cOECRVGsPFc9KirKwMBA\n3A+lrOBn8nMBBcX6EgooKHd3d39//6KiIlaWiIyMFAgEAwcOlH8qcfhTUIaGhklJSQ1+9OLFCzs7\nO0KIq6srfd8cKVlZWbVq1er169dXrlxpcMCDBw/oF/Vv4CIlJL/IoEGDfv3115KSEvpZUnKKjIxU\nU1Nzc3OTfypx+JP8XEBBcbqEYs4mx48ff/36datWreSfLSYmpqqqatCgQfJPBQAAAAAAAAAAAAAA\nAAAAACArNXNzc/pVcnJy/Y9fv35N90Q5OzvTO1kLCwvV1NQ0NDTqjNTV1SWElJSUcBtvY3R0dMaM\nGUMIuXbtmuie2SKiL2fcuHHiNm6mpqbeuXPH29ub61DlVFRURG8Jat68edu2bcUNmzp1Kv3ijz/+\nEL3ZqlUrCwuLly9f1ulRXLduXV5e3o4dO0TPYaM1a9aM7lgTPYuPRWVlZcHBwSdPnhQKhXU+un37\nNv3dvHDhArP9aqKAO3bsKGec8nNwcNDS0iKEPH/+XNx+NYqivL29s7OztbS0du7c2eD28SlTpnTu\n3NnW1jYyMnLOnDn79u2rM0x12wslk7+6FbOEApokvby8EhMTGT8IpbaampoLFy6MGzeOlV4FcT6F\n5OcCCoooqqCysrJEz5KVU0RExNChQ+ucRtnFw4JiMVcjIyN/+eUXcZ9WVlaKvlOMN7Ij+UW8vLwy\nMzNFtz+QU0RExLBhw3R0dFiZrUE8TH4uoKC4WEIBBTVu3LiKioqYmBhWZjt37pyTk5ONjQ0rszWo\nyRcUfa+WR48epaen1/lIKBSeOnWKEGJgYNCnTx9m8yP5Rby8vMrKyi5dusTKbOfOnXNxcWHcQyuN\nJp/8XEBB0RRQUGPHjhUIBOfOnWNltnPnztna2oqejwcAAAAAAAAAAAAAAAAAAACgSGqi2wZHRUUl\nJibW/qykpGT27NlVVVWk1vO7Pn78qK6uXn8iuoGtuLiY23ilMGPGDEJIRUXFpk2b6nzk6+tLv5g9\ne7a4w0NDQw0MDCZNmsRdhKy4e/cuRVGkVidhg0aOHEnf9Tk6Olr0JD2BQODk5EQIqX3X7ZSUlKCg\noOHDh48bN67+PHS7V0pKSkVFhYSoPnz48P7/iJIhLy9P9GZRUVGdQ+bNmzd//vzPP/88KCio9vtP\nnz4dMWJEcXHxiBEj0tLSdu/evWvXrh07dmypR0ITXUJCAiHEzMzMzMxMQtiKoa+vP2LECEJIVVXV\noUOH6g8QCoU+Pj4RERGEkK1bt4rbUVRWVqarq2tgYEC/ph94WJtqtReWlJT89ttvERERdD5Lxqy6\nFbBEbQpokhw7dqyuru6WLVvkn+rQoUPZ2dlffPGF/FNJ0DSSnwsoqAaXqE0BBTVo0CArKytWCiom\nJiY5OflTKyhmuSou+VNTU319fTdt2lRTU1P/qH379r1+/ZoQ4uzs3LVr19ofIfkZGDJkiIWFBSvJ\nHx0dnZqa+qklPxdQUCwuUZsCCqp79+5dunTZunWrNF+RZMnJyTExMSgoaUj4UWrWrFn0P5M3btxY\n56MDBw68ffuWELJw4UI6chEkPwOOjo4dO3bcunWr/FPdu3fv77//RvIrCwqqwSVqU0BBWVlZubu7\n79y5k74YK4/Xr18fP3586tSpnN6bBgAAAAAAAAAAAAAAAAAAAEAsoVDYrVs3+rWlpeWFCxfKyspy\nc3NPnz7dpUsX0bCoqCiKoiiKMjU1FQgEVD1z584lhJw/f77+RxJMmjSpZcuWLVu2zMjIkOlAiqJG\njRrl5uZW/32hUOjp6UmHHRwcLHpz165d9BaNsWPHCoXCBuesqKgwMzObO3eurMGwIiQkhBBSUFAg\nzeCAgAD6a1y3bp3kkdOnT6dHBgUFid6kn7RA76ekKEooFLq7u2tpaT158qTBSZYvX05PEhcXJ2Et\nFxcXyfm2atWqOof07t2b/mjevHm13z9//ryUOXzp0qUGgykvL9fU1CSEDBkyRPIfEW3SpEl9+/aV\nZqTI5MmT+/TpI/34u3fv0o2d+vr6Fy5cqJ2Hb968GTp0KP0VrV+/vtGpampqYmNjTU1NzczMkpKS\n6nw6ePBgQoimpmZ5ebmESXJzc9/9n6VLl9KrnzhxQvTmx48f6xwiSqfdu3fXfj89Pd3Y2JgQMn78\n+F27du3atSswMHD79u2b63nx4kXtAxcsWEBPGBgY2OhXzay6FbBEbT179iSEmJmZNboWRVHLli2z\ntbWVZmQda9as0dTUTE9PlzBm9uzZ3bp1kzCgtLS0VatWo0aNYhDAhAkT+vfvL/14viU/F1BQbC1R\nm0wFtXnzZjU1NWlG1kH3S9+4cUPCmLVr15qYmEgYUFNT06tXrx49etTU1MgawOLFi+3s7KQfz5+C\nYpyr4pI/IyODfqBK3759o6Ojq6qq6PeFQuHevXvp07qGhsatW7fqRPKJJ39AQICmpqY0I+vYvXs3\nIeTmzZsSxqxevVpyGDU1NY6Ojo6OjgySf+HChfb29tKP50/ycwEFxe4StclUUEeOHCGEvH//XprB\ntZ09e5YQcvr0aQlj6KKTnFfDhg2zsbEpLS2VNYANGzbo6OhIP57/BfX8+XM6BnH/oBOX/LT58+fT\nn27evFn0F9S5c+for9re3r7+z2afePIfPHiQEJKTkyPN4NpOnz5NCDl79qyEMTt37iSEiP4iapCH\nh0ebNm0Y/MXr4+Ojr68v/Xj+Jz8XUFAKLqjLly8TQupnRaPi4uIEAsGePXskjKGL7vnz5xLGzJw5\n09jYODc3V9YAAAAAAAAAAAAAAAAAAAAAAFhBKIo6duwYqYXea0IIcXFx6dy5M/1atGOpXbt2hJCK\nioo6E9H7Wq5fvy7T8qKHBkhuumiQuHY1iqJev35Nb80khPTs2XPixIn29vb0/7Zu3TozM1PcnPSG\nj/pbNhVDpna1CRMm0F/RhQsXJI+MioqiR9buLYmMjCSETJs2jf7fU6dOEUJ++umnRidpcN+SCIN2\ntYsXL3bo0KFz586PHj2q/b787Wrx8fH0gE2bNkn+I6IpoF2N+r+mCFq/fv1+/PHHtWvXjhs3TkdH\nhxCip6d3+PBh6WcLDw+nk7zOBnEVai90d3en3+/UqZM0XzKD6lbAEiKyNkkyblcrLCw0NzcfMGBA\n/b+NRRptV5s3b566uvr9+/cZBCBruxrFs+TnAgqKrSVEZC0oxu1qlZWVHTp06NSpk4RTcKPtaj4+\nPoSQmJgYBgHI2q5G8aagGOequOSnKCoxMdHW1pb+1MzMbODAgZ6enqKnpKqrqx84cKB+JJ948jNu\nV6usrHRwcOjSpUthYaG4MY22q/3888+EkMuXLzMIQNZ2NYo3yc8FFBS7S4jIWlCM29Uoiurfv3/L\nli0lxNNou9revXsJIYcOHWKwuqztahTvC6rR7hoJyU9RVEFBAd1bQghp27bt6NGju3fvTv+vubl5\ngz8Df+LJz7hdTSgU9unTp1WrVu/evRM3ptF2NTob//jjD1lXp2RvV6N4n/xcQEExW0JE1oJi3K5G\nUdTEiRONjY3rXCWrrdF2tYiICDU1NSmvhgEAAAAAAAAAAAAAAAAAAABwgdD/2bZtm66urmizTs+e\nPffv319dXW1hYUEIadeuneiAzz77jBDy9OnTOhMNGjSIECJr2wNH7WoURWVmZtIh1TZs2DDJ+w5H\njRrVsWNHyXdT5o5M7Wpyys7OJoTQrSxlZWWtW7du3bp1SUmJuPElJSXa2tqEkJkzZyogPFb89ttv\n9Pddyu1BimlXoygqIiKiTZs2dZJTS0trzpw5r169kmmqqqoqunLrfI0q1F4YFRVlbm7erl279u3b\nS/lUFlmrWwFLiMjaJMm4XY2iqJiYGA0NjTlz5ogbILldjd4tvW3bNmarM2hXo/iU/FxAQbG1hIis\nBcW4XY2iqMTERH19/ZEjR1ZXVzc4QHK72tmzZ9XU1FasWMFsdQbtahQ/CopxropLflphYeHixYv1\n9fXrTNK5c+crV640GMknnvyM29Uoirp7966ent7o0aPFfVGS29XCw8PV1NS+++47ZqszaFej+JH8\nXEBBsbuEiKwFJU+7WkZGhpmZmbOzc1lZWYMDJLer3bx5U1tbe/Lkycz+QcqgXY3id0E12l0jOfkp\nisrNzRXd50XExcVF3PhPPPkZt6tRFPXs2TNTU9M+ffqIS37J7WrXr1/X0tKaPn06g6UpRu1qFL+T\nnwsoKGZLiMhaUPK0q2VnZ7dp06ZDhw75+fkNDpDcrvbw4cNmzZp5eHhIfp4hAAAAAAAAAAAAAAAA\nAAAAAKf++yC15cuXz549OykpycDAoGPHjgYGBoSQV69e0U1Nzs7Ooj0c7du3v3v3bnp6Ov2YNZHU\n1FRtbe22bdsSWcTGxso0XnrW1tZXrly5d+9eTExMTk6OjY3N4MGDe/ToIeGQzMzM6OjogIAAgUDA\nUVT8YW5u3rp161evXhFCdu/e/fLly7Nnz+rp6Ykbr6enN2LEiLNnz168eLG6ulr0CD4+o7f8tm3b\nVnTPb54YO3bsiBEjrl27FhcX9+HDB1NT0w4dOgwfPtzQ0FDWqTQ0NMzMzF6/fv369eva6e3m5qat\nrV1RUXHnzh0Jh9++fVvWFYcPH/7o0aP6748ePZqiKFlnI4SMGDGC/ntm7NixNTU1ampqjR4ia3Ur\nYAmRhIQE+sXw4cMbHSynoUOHbt26denSpWVlZSEhIbVbjhu1c+fOb7/9dsaMGaL7/SsGf5KfCygo\ntpYQUWRBOTo6Hj58eNKkSWPGjDl27FizZs2kP/bYsWNz5szx8PDYtGkTdxHWx4eCYpyr4pKfZmRk\nFBgY6O/vHx0dnZ6enpuba2lpOWDAAFdXV3Eph+RnrFevXqLkP3r0qEzJf/To0blz5w4dOnTjxo3c\nRVgfH5KfCygodpcQUWRB2dnZnTlzZsiQIUOGDAkPD7e0tJT+2Ojo6C+++KJLly5hYWGK/Acpnwuq\nTZs2kotCcvITQkxNTU+fPp2UlHTx4sWsrKzmzZsPHDhwwIABSH7WtW3b9syZMx4eHh4eHqdPn5Yp\n+aOior788stu3boFBwdzF2F9fE5+LqCgmC0hosiCMjc3j4yM7NOnz8CBAyMiIuzs7KQ/9tatWxMn\nTmzevPmxY8dU4todAAAAAAAAAAAAAAAAAAAANFX/27hgbGzs7u5e+zPRnYNrt6t5eXkdO3bs9u3b\nnp6eojefPHmSk5MzYsSI+rftV65evXr16tVLysGHDh0SCATTp0/nNCT+cHJy+vPPP3Nycvz9/UeM\nGDF27FjJ4xcsWHD27NmsrKyrV68OHTpUMUEylpOTExMTQwiZP38+D/sPNTU16Z180h+SkJDQu3fv\nOm+Wl5e/ffuWENK1a9fa76tie2F5ebmmpqb042WqboUtoeAmySVLlqipqS1fvvzly5f79+/v0KFD\no4dkZ2cvX7786NGjixYt2rFjB/cx1oXkVwwUFAPjx48/duzY7Nmz+/Xrd/DgQfpxspJ9/Phx7dq1\ngYGBkydPDgsLU3y+Ne2CMjAwmDx5sqxHIfkZmDBhwtGjR729vQcMGBAWFiZNtIWFhT/99NPu3bun\nTp0aGhqqrq6ugDhra9rJzwUUlMIKqn///pGRkVOmTHFxcQkLC6vzT+wGlZWVBQQE+Pn5DRky5MSJ\nExLuIcKRJl9Qjo6Ojo6OMh2C5GdgwIAB58+f//zzz11dXQ8ePDhw4MBGDyktLd24caO/v//QoUOP\nHz8u0w04WNHkk58LKCjFFFTnzp0vX748btw4FxeXkJCQRi/ZEUKqqqr27NmzatWqHj16nDlzxszM\nTAFxAgAAAAAAAAAAAAAAAAAAAIgj6cbDots/125XGzFihJaW1oEDB0pLS0VvBgYGEkKk2TzBWxRF\nhYaGjho1ysrKStmxKIiTkxMhZMuWLaWlpYGBgY32dHl4eNDNML///rsi4pNPSEhITU2Nnp7erFmz\nlB0LOyZOnHjs2LE6b+7bt08oFHbp0qV169Z1PlqwYAEhhG4vVFCIciguLtbR0VH1JZTSJPnNN99c\nvHjx2bNnXbt2Xbhw4dOnT8WNzMrK8vX1tbe3j4iICA4O3r17t6psl2zayc8FFBRjU6ZMuX79ellZ\nmZOT05dffnn//n1xI/Pz8wMDA+3t7YOCgnx9fZXSXcBM0y4oJD9jU6dO/eeff4qLi52cnKZNm5aS\nkiJuZF5e3o4dO+zt7ffu3bthw4ajR48qvruAmaad/FxAQTHm4eERFxfXrFmzQYMGjRkzJi4uTtwT\njYqLi+k7Dvj5+S1dujQqKsrExEQxQcqpaRcUkp+xYcOGxcXFGRgYuLm5jR07Nj4+XlzyFxUVhYSE\ndOjQYePGjcuXL4+MjDQ2NlZMkHJq2snPBRQUY05OTnfu3Gnfvr2Xl5e7u3tsbGxNTU2DI8vLy0+c\nONG1a9cVK1Z88cUX165da9mypWKCBAAAAAAAAAAAAAAAAAAAABBHUrsa/XQ1dXX1nj17it40MjL6\n/vvvX716NWXKlGfPnpWWlm7ZsmXPnj3t27efOXMm5/Fy5ubNm+np6d7e3soORHHodrV9+/atWrXK\n3t6+0fFqamr+/v6EkPDw8LS0NM7jk0Npaen27dsJIStXrjQ3N1d2OOz45Zdfvvzyy4kTJ16+fPnj\nx4+5ubm//fbbd999p66uHhYWVn+/lGq1Fx45cmTKlCmqvoSymiSHDBmSnp6+Zs2aw4cPOzg4dO3a\n9bvvvtu9e3dGRkZ+fv6+ffvWrVvXr1+/Fi1arF+/furUqU+ePPn6668VGaGcmnbycwEFJY9evXo9\nfPhw69atMTExPXr0aNeu3dKlSwMDA1NTUysrKw8cOODj4+Ph4WFhYbFs2TJ3d/e0tLSffvqJh4/x\nFKdpFxSSXx69e/d++PDh5s2bo6Oju3fvbm9vv2zZssDAwAcPHpSXl4eGhq5fv37IkCGWlpYrVqwY\nMmRIWlra6tWrkfxNGApKHg4ODvfu3QsJCUlMTHR1dbW1tZ0/f/7OnTsTEhIIIUeOHNmwYcOoUaPM\nzc3nzp3bpUuXxMTEbdu2qcqtBEhTLygkvzzat2+flJS0d+/eu3fvuri4tG7desGCBTt37rx79y4h\n5NChQ35+fiNHjjQ3N//qq6+6d++elJS0ZcsWxT+lk7GmnfxcQEHJo0WLFtevXz9x4sTbt28HDRrU\nokULb2/v7du3X79+nRASHh4eEBAwadIkMzOzqVOnmpub37x5MywsTFVuJQAAAAAAAAAAAAAAAAAA\nAABNHCVGdXW1oaEhIaRnz551Pqqqqlq4cGHtSbp27frs2TNxU3Fk1KhRbm5ubM02e/ZsCwuLyspK\ntiZkICQkhBBSUFCgmOUKCwsJIW3atCktLZXyEKFQ6O7uTgjx8vLiMjR5+fn5EUJsbGw+fvwo/VGT\nJk3q27evTAtNnjy5T58+MkbH3NmzZ+vcrL1NmzaxsbHixp8+fZoe9uDBA4UFyUBRUZG7uzun1aeA\nJUpKSujeyHXr1kl/1LJly2xtbdmKIS8v7/DhwxMnTjQzM6udJ4aGhh4eHrt27Xr16hVba02YMKF/\n//5szdaoppr8XPiUC2rz5s1qampsxVBcXHzq1Klp06ZZW1vXzj09Pb3+/fv/+uuv6enpbK21ePFi\nOzs7tmZrVFMtqE85+QMCAjQ1NdmKoaio6OTJk//5z3/qJL++vv6AAQM2b9789OlTttZauHChvb09\nW7M1qqkmPxc+5YI6cuQIIeT9+/esxFBWVnb+/Pm5c+e2atVKTe1/N4vR1dV1cnLy9fVNSUlhZSGK\nojZs2KCjo8PWbI1qqgX1KSf/wYMHCSE5OTmsxFBWVnbu3Lk5c+bY2NjUT34/P7/U1FRWFqIoysfH\nR19fn63ZGtVUk58Ln3JBXb58mRCSlJTESgyVlZUxMTGLFi1q27Zt7d5mbW3t7t27r1mz5s6dO6ws\nBAAAAAAAAAAAAAAAAAAAAMAWsbdvf/z4cVFRESHExcWlzkcaGhp79uxZtGhRTExMcXGxo6PjiBEj\nVOhm2PXRu3IXLFigqamp7FgU5+bNm4SQnTt3Sn/fZYFAEBYW1r1794iIiPDw8AkTJnAZIEOPHz/2\n9fUVCAQHDx6kWy6bDC8vL09Pz2vXriUkJGhoaHz22Weurq76+vrixo8fP97d3T02Nnb16tVnz55V\nYKSyWbZsGdfVp4Altm/fnpOTY2Njs3LlSu5WkczExGTatGnTpk0jhJSXlz9//rywsLBbt24SkkRV\nNNXk5wIKii36+vqTJk2aNGkSIaSysvLNmzdv377t0aOHkZGRskJiS1MtKCQ/WwwMDCZPnjx58mSC\n5FeR5OcCCootOjo6o0ePHj16NCGkuro6MzMzIyOjR48eJiYmygqJLU21oJD8bNHR0RkzZsyYMWMI\nkl9Fkp8LKCi2aGpqDh06dOjQoYQQoVCYlZX18OHDbt260X10AAAAAAAAAAAAAAAAAAAAADwktl3t\nzp079AtnZ+cGB3Tu3Llz586cBKVwp06dKikpmT17trIDUZyqqqoVK1aMHDmS3j0mvdatW588eXL0\n6NELFizo3bu3ra0tRxEyU1paOm3atIqKiq1btw4ePFjZ4bBPW1t72LBhw4YNk2awSrQXJiUlWVpa\nTpkyRaWX4GGTpI6OTqdOnZQdBZuaXvJzAQXFES0trbZt27Zt21bZgbCm6RUUkp8jSH7+Jz8XUFAc\n0dDQsLW15ds/oOTR9AoKyc8RJD//k58LKCiOqKmpWVtb13kKLgAAAAAAAAAAAAAAAAAAAADfiG1X\n++KLLyZOnEgI0dHRUWA8ynHgwAFXV9cm030nDT8/vzdv3kRGRgoEAlmPHT58eEhIyKxZs8aMGXPj\nxg2e7NchhAiFwhkzZiQkJKxYsWLFihXKDocXeN5eSAhxdHR0dHRU6SWafJOkiuJ/8nMBBQUc4X9B\nIfmBI/xPfi6goIAj/C8oJD9whP/JzwUUFAAAAAAAAAAAAAAAAAAAAMCnTE3cB1paWgYGBgYGBhoa\nYlvalMvOzs7Ozk7+eSiKyszMXLJkifxT8d/atWuPHTv2888/+/r6BgUFMX5WxsyZM8vKyuLi4vT0\n9NiNUB4CgeDIkSNlZWVbtmxRdiw8QrcXZmdnjxkzpqioSNnhNDVokuQzJL/KQUHxGQqKU0h+PkPy\nqxwUFJ+hoDiF5OczJL/KQUEBAAAAAAAAAAAAAAAAAAAAyIOnrWjSCAwMZGUegUDw9OlTBg8ZUzmV\nlZX+/v5CoVBXV3fPnj3Tpk2TZzYePnZPIBDwMCo+mDlz5ueff04I0dTUVHYsTQ3dJHnkyBFtbW1l\nxwINQPKrFhQUz6GguIPk5zkkv2pBQfEcCoo7SH6eQ/KrFhQUAAAAAAAAAAAAAAAAAAAAgDxUuF2N\nxQazT6FXjRCipaVVXFz8/v17MzMzQ0NDZYcDCoVGPo6gSZL/8A1SISgo/sM3iCNIfv7DN0iFoKD4\nD98gjiD5+Q/fIBWCggIAAAAAAAAAAAAAAAAAAACQhwq3qwEDurq6dnZ2yo4CAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAJogNWUHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATQHa1QAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAgAVoVwMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABagXQ0AAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFiAdjUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAB2tUA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAFGsoOAECFvX//PiMjY968ecoOBFTVv//+W1xcrOwo\nmMjKynr27BmSH3jl/v37FEUpOwom3r9/n5ubi4ICxpKSkoRCobKjYOLdu3fZ2dlIfuCVp0+fEkJU\nsaays7OrqqpQUMDYkydPCCGq+NNUVlZWRUUFkh945e3bt4SQiooKZQcCAAAAAAAAAAAAAAAAAAAA\noBxoV+MRemdkmzZtBAKBsmP5FJWUlDRv3lymQywtLVNTUy9fvsxRSNDkFRcXW1hYKDsKJiwsLNLS\n0pD8wCtlZWWWlpbKjoIJCwsLNTU1FBQwVlZWpqJnE0tLS4FAgOQHXqmsrDQ2NjY0NFR2IDKztLTU\n09NDQQFjFRUVJiYm+vr6yg5EZlZWVrq6ukh+4JXq6mpDQ0NZrzIBAAAAAAAAAAAAAAAAAAAANBkC\nVbxzdlOVlpb2/fffd+3aVdmBfKIyMzO7du36/fffKzsQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAJX0/wC0z6jiFyODawAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD8YAAAFPCAIAAAAKydJoAAD0+klEQVR4nOzdd2AU1frw8bPpJCESSCBA6L2HYuQqvQaQonQvHRW4ogIWlCLNAgpSRClSpEhTqjRFOkjvLaH30BPSy+7O+8e8d3/clM1snS3fzx867J4582zm2bO7c56Z0UiSJOAYnj171q5duypVqnh7e6sdC+zk0qVL77//fteuXdUOBAAAAAAAAAAAAAAAZ9W+fXt/f/8CBQqoHQgUefDgQVhY2Lx589QOxIamTp36559/li1bVu1AoBq9Xn/27NkVK1aUK1dO7VhMc+vWrW7dutWoUcPT01PtWKBITExM//79+/btq3YgJmvbtu1LL70UFBSkdiBQzbNnz/R6/dq1a5WvsmHDhmnTplWtWtV2UcGhaLXaixcvbty4sXDhwrbelpetNwDlTpw4cfjw4du3b/v5+akdC+zk1q1bYWFhlNQDAAAAAAAAAAAAAGC2LVu2FCxY8KWXXlI7ECjy+PFjLy8v1y6pX7FixcWLF69fv652IFBNZmbmnTt3du/e7XQl9fv27Tt69Oj9+/d9fHzUjgWK3L59OyAgwOlK6vV6/bZt2woVKsTHtzuLi4tLTEw0aZXff//9n3/+uX//vo1CgqNJS0u7f//+8ePH27Zta+ttUVLvQIKDg4UQK1eubNSokdqxwE4KFSpUqVIltaMAAAAAAAAAAAAAAMCJeXh4jBw58pNPPlE7ECjy7rvvHjhwQO0obKtChQq+vr6HDh1SOxCoJiYmpnLlykWLFlU7EJMVKVJECLFt27bq1aurHQsUKVmypPNWoI0ZM2bYsGFqRwHVTJgwYdq0aSatUqFChYCAgGvXrtkoJDiaf/7557XXXitYsKAdtuVhh20AAAAAAAAAAAAAAAAAAAAAAOCAKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAbspL7QDMl5mZqdfrfX19Le8qLS3Nz8/P8n7c2dOnTyVJCgoK8vHxUTsW+9Hr9c+ePRNCBAcHe3p6qh0OAAAAAAAAAAAAAABwaK5RX0G9hCtxjZy0BfLc8blG9pJpTsE1ks0WSGCTuGciOVGSOPFV6ocMGdK3b1/L+5EkqXTp0j/++KPlXbmtOXPmhISEtGvXTqvVqh2LXWk0mg8//DA0NHTo0KGSJKkdDgAAAAAAAAAAAAAAcFwuU19BvYTLcJmctAXy3MG5TPaSaY7PZZLNFkhg5dw2kZwoSZz4KvUPHjxISkqyvB+NRlOnTp0ffvjhP//5j0ajsbxDVSQlJcl/DX9//6CgICMtU1NTnz9/LoQICgry9/e3fNMbNmwYOnRoeHj4xo0brdKhE9FoNAsXLrx27drcuXNLlCgxatQotSMCAAAAAAAAAAAAAABK2bPcwpXqK6iXsB1y0nGQ52awWwK7UvaSaWZgqHQcTpTAKhbZCvdOJCdKEie+Sr0SWq32ypUrO3fuPH/+vE6ny61Z//79Y2JiDh8+bM/YrOujjz4qWrRo0aJFFy9ebLzl7Nmz5Za7d++2fLtXrlzp1auXXq//+eefw8LCjLRUuC8skZGRER0dvXv37vv371vxXJYzZ848fvw4t2f9/PyWLl3q6+s7evToHTt2WGujAAAAAAAAAAAAAADA1uxWbqGwvsLqxRVmlFJkZmZevHhxx44dJ0+eNBID9RI24mg5aQvkuQuzTwI7VMWacWSajTBU2oeLJbBaRbZCve+B2dmoyFa4Sp2ty5bU63S66dOnlyxZsmLFii1atKhRo0aZMmVmzZqVYxJ06NChYMGCixYtsn+c1nLkyBF5ITIy0njLo0ePKmyZJ71e37dv3+Tk5LfeeisqKiq3ZibtC/PExMQMGDAgMDCwSpUqzZo1K168eOHChSdPnpyenm5Jt5IkzZw5s27dumfOnDHSrGLFiuPGjRNC9OvXLyEhwZItAgAAAAAAAAAAAAAAu7FPuYWS+gqrF1eYUUqh1Wq/+eabkiVLVqtWrVWrVnXr1i1evPjcuXNzi4F6CVtwnJy0BfLc5dkhge1ZsTZr1qwoZX7++ecs65JpNsVQqQQJnIUqRbZCpe+B2dmoyFa4WJ2t5LTatWvXuHHjHJ9KTU194403DK8xf/78huUuXbpotdrsq7z//vv58+dPSkqybdBGHTt2TAixd+9eU1dMSkry9PQUQnh7e6emphpvXKJECSFE2bJlzQ3z/6xYsUII4eHhcfXq1dzamLEvTLVq1SpfX19DtwEBAYblypUrP3nyxNQOMzMzz549O3v27KpVq8r97Nixw/gqycnJoaGhQojRo0ebtK2CBQuOGTPG1AgBAAAAAAAAAAAAwBaSkpJ+//33gQMHNmrUqHTp0hqNpnz58s2aNRs8ePDmzZvznI8G1OLp6fntt9+aupbdyi3yrK+wenGFGaUUKSkpzZs3NzQLDAw0LA8aNEiv1+e4IfPqJd55550qVaqY+qKs4ubNmzNnznzzzTf/9a9/BQYGent7165d+/XXXx8/fvypU6esuKFu3brVr1/f1LUcJydtwd3yPDo6WgixefNmU19XblJSUjZs2PDuu+82adKkXLlyGo2mTJkyTZo0effddzds2JCcnGytDf35559CiHPnzpm6on0S2J4Va4MGDRLKfPTRRy+uaM9MkySpRIkSw4cPN2kVI3Q63T///PPpp5+2adOmRo0anp6ewcHBr732Wvfu3X/++ecHDx5YcUNCiOnTp5u6IkOlQk6RwOPHj8+fP7/y9uatIqlXZCup8T0wO6sX2Up2rLM9ePCgEOLQoUNmBGkq17xK/bhx49avXy+EGDhwYGxsbEJCwr1797p27SqE+P333ydPnpx9lf79+ycmJq5du9besVrDiRMn5A+YWrVq+fn5GWkZGxt7584dYY2zZ3Q63ZgxY4QQPXv2LFeuXG7NzNgXJlm/fn2PHj3S09MjIyM3b94cHx+fmJh469atPn36CCGio6P79Omj1+uVd1ikSBFvb++aNWsOHTr04sWLCtfy9/cfPny4EGLatGmPHj0y44UAAAAAAAAAAAAAgIru3bv39ttvh4SEdOnSZffu3QUKFKhataokSTVr1vT39//jjz9ef/310NDQ4cOHP3nyRO1gAeuwT7mFkvoK6xZXmFFKIUlS3759d+7caYghMTHx3r173bt3F0LMmzdv0aJFOW7Lieoldu/e/dprr5UuXXrEiBF3794tWbJkWFiYn59f9erVk5OTp0yZUrt27fLly//yyy8m1ZlYl+PkpC2Q52Z7+PDhe++9FxIS0qlTp+3bt+fPn79atWqSJFWrVi1//vzbt2/v1KlTaGjof/7znwcPHtg/PAM7JLCdK9YqV67cPJtWrVq1bdu23X/Jxa8vlsA6b6alp6dPnz49PDz81VdfnTdvnk6nq1OnjkajKVWqVFhYWExMzLvvvlusWLGoqKiTJ0/aPzwDhkqF3C2BjVOlyFao8T0wO6sX2QoXrrO1Q9m+jeR2lfqYmBj5bJJevXq9eEKMVqvt1KmTEMLT0/PatWvZV4yIiGjSpIntAs6T2Vep//bbb+W9+d577xlvuWHDBrmlGWd3ZfHHH3/IXe3bty+3NmbvC4XS0tLkc1YGDx6s0+lefEqv17do0UKOcOvWrcr7lM/FCQ8Pf/fdd9u1ayf3kOfZM5IkPXz4UH6xkydPVr45rlIPAAAAAAAAAAAAQF1arXbcuHH58uV76aWXxowZc+bMGfnxHTt2CCHkf+r1+qNHj44YMUJuNmPGDFVDBrIy7yr19im3yLO+wrrFFeaVUixbtkx+/J133nkxhszMzIYNGwohChQo8Pz58xy3aEa9hJ2vUn/v3r02bdoIIapXr75w4cJHjx5lDyM5OXn9+vWGZkeOHLFwo+Zdpd5BctIW3DDPrXKVer1eP3ny5MDAwMDAwJEjR544cUJ+/PDhw0KIAwcOyP88ceLEZ599Jjf75ptvcruGtEJmX6XeDgnsCBVrL5Iv4FuuXLkXM8fOmSZZ6Sr1W7dule9Q1L179+3bt6enp8uP58+ff/z48fLy7du3Z82aJTf797//HR8fb8kWzb5KPUOltTbnCAlst6vUq1JkK9n9e2B2tiiylexbZ8tV6i0yf/58nU7n6+s7ZcoUjUZjeNzT0/P777/38PDQ6XSGt/2LBgwYsGfPnuvXr9sxWOs4cuSIvPDKK68Yb3n06FGFLfM0d+5cIUSJEiVee+213NqYvS8U8vX17dChQ/PmzX/66ScPj/9JZvljW17eu3ev8j7PnTv39OnT27dvz5s3LyIiQvmKhQsXbtWqlRBi3rx5Kp6vDAAAAAAAAAAAAADKJSQkdOzYceLEiW+//fbVq1cnTZpUs2bN7M00Gs3LL788bdq0y5cvd+jQYdiwYb17905LS7N/wIAV2afcIs/6CusWV5hRSqHT6UaPHi2EKFKkyIwZM16MwcvLa8KECUKI+Pj4NWvW5LhFB6+XOH78eGRk5PHjxxctWnT69OkBAwbIhWVZ+Pv7d+rUaevWrfJ1eRs3brx8+XK7B+soOWkL5LkZUlJSunXr9tlnn/Xs2fPKlSuTJ0+uU6dOji3r1KnzzTffXLlypWfPnp9//nnXrl2Tk5PtE+SL7JDAjlCxZhAdHd23b18vL6+VK1cGBQXJDzpjpgkhpk6d2r59+/Dw8GPHjq1atap169Y+Pj7Zm5UoUeL999+Pjo6eOnXqhg0b6tevf+XKFbsFacBQaZVtuVICK6FKka2w+/fA7GxRZCtct87W1UrqJUlasWKFEKJx48bFihXL8myZMmUaN24shMjxW+9bb73l4+Pzyy+/2D5MKzP13e7t7V27dm1LtpiUlPTXX38JIdq0aZPlbWZgyb5Q7rvvvps5c+aLQ4lBcHCwvJCRkaG8wwoVKhQsWDDHDvPUtm1bIcSNGzfOnj1rxuoAAAAAAAAAAAAAYE+JiYmNGzfes2fPmjVrZs2aFRISkucq4eHhS5cunTt37urVq9u0aWPSbCzgaOxQbpFnfYUtiitMLaXYv3//7du3hRA9e/b09/fPskrDhg3lSrulS5fmtkWHrZc4cOBAo0aNChUqdPTo0f79+8tXRTWuWbNmhw8fbtu2be/evWfOnGmHIF/kCDlpC+S5GVJTU1u0aLF58+alS5fOnz8/LCwsz1XCwsLmz5+/bNmyLVu2NGvWLDU11Q5xvsjWCew4FWtCiMzMzJ49eyYlJY0cOfLll182PO50mSaE+OSTTz755JNBgwbt3r27bt26ebb39fUdMWLEwYMHU1NT69evf+nSJTsE+SKGSsu35UoJrJD9i2yFSt8Ds7N6ka1w3TpbVyupv379emxsrBCiVq1aOTaQH7969erjx4+zPFWoUKGOHTsuWbJEvqWIs4iNjb17964QokCBAhUqVDDSUq/XHzt2TAhRq1YtPz8/Sza6Z8+ezMxMIUS9evVya2PJvlAuODi4WrVqOT51/vx5eaFixYpm928Sw6fL9u3b7bNFAAAAAAAAAAAAADCPXq/v1atXTEzMzp07u3TpYtK6gwYN2rhx44EDB9577z0bhQfYmn3KLfKsr7BFcYWppRSGq7HmGIOXl1fDhg2FEMeOHdNqtTl265j1Ejdv3nzzzTdr1Khx8ODB0qVLK18xICDg999/f/vttz/66CN7viIHyUlbIM9NJUnS22+/feLEiW3btvXu3dukdXv16rV9+3b5ngySJNkowuzskMCOU7EmhJgyZcrp06dLliw5atSoFx93rkwTQixatGjq1KkTJkz48ccfvby8lK9Yq1atI0eOFChQoGPHjs+ePbNdhFkwVFqevcKFElghVYpshUrfA7NzqCJb4ahJInO1kvrTp0/LC7llWKVKleSFM2fOZH+2f//+t2/f3rVrl22iswnD2TORkZHGz/m4fPny8+fPhTVuSLFjxw55wchnhoX7wkKZmZkLFiwQQnh6ekZFRVm9/xzVqlVL/mJh+PsA7kan0znXWUmAI+MNBQAAAAAAAACwqSlTpvzxxx+LFy82bwa5TZs206ZNW7BggTPeCh4Q9iq3yLO+wp7FFbmVUsi1XEKIAgUK5LhiuXLlhBBpaWm5XYrYAesldDpd586dfXx81q9fHxgYaOrqGo3mp59+atCgQc+ePQ1/H1tzkJy0BfLcVD/++OOKFSt++umnJk2amLF648aN586du2rVqtmzZ1s7tFzZIYEdp2ItJiZm4sSJQoipU6dmuZK3c2Xa2bNnhwwZ0rNnz7Fjx5qxepEiRTZt2vTw4cP+/ftbPbbcMFQKi4dKl0lg5VQpshUO9j0wO1WKbIWjJoksa0m9JEmHDx8eMmRI/fr1ixcvHhwc3KhRo0mTJtnoZm1z5sz5+OOPP/744ydPnlilQ8MJT+XLl8+xgeHxGzduZH+2VatWxYoVW7x4sVWCsQ9Tb0ihpGWe5Bsu+Pj45HbyirB4X1hCkqQRI0bcvHlTCNG7d2+TTjW2hJ+fX40aNcR//z6A+4iNjf30008rVark6+vr4+NToUKFESNGyOf2ATAVbygAAAAAAAAAgB08evTom2++GThwYPfu3c3u5IMPPnj99ddHjx6dnJxsxdgA+7BPuUWe9RV2K64wUkphuMxTbldjLVy4sLxw4cKFHBs4YL3E8uXLT548+csvvxQrVsy8Hry9vVetWqXT6caPH2/V0HLlIDlpC+S5SZ4/fz5+/Pju3bsPHDjQ7E769+/fs2fP8ePHx8fHWy80Y+yQwI5Tsfb5559nZmbWqFGjc+fOWZ5yokwTQowcObJIkSILFy40XmRsRLVq1aZPn75p0ya7XcWYoVJYPFS6TAIrp0qRrXCk74HZqVVkKxw1SWT/U1J/9OjRKlWq/Otf/5o7d+6RI0fu378fHx+/f//+L774okGDBmlpaVbf/OrVq6dNmzZt2jRrfXgb+smXL1+ODQICAuSFxMTE7M96enr27dt33bp1cXFxVonHDpS/25W3zFN0dLQQombNmj4+Prm1sXBfmEGn0z18+HDnzp3t2rWTT7KsUaPGrFmzrNK5QvI9KZ48eWKts0QAx7d69ery5ct/9913ly9f1ul0er3+6tWr06dPr1ChwtKlS9WODnAyvKEAAAAAAAAAAPbx5Zdf6vX6CRMmWNjPlClTHj58OGPGDGsEBdiVfcot8qyvsHVxhZJSCkPReW6nxxhKhoyU0zhUvUR6evoXX3wRFRXVokULS/oJCwv7+OOPFy1aJO9HW3OQnLQF8twk3377bWJi4tdff21hP1999VVycvLkyZOtElWe7JDADlKxdvjw4fXr1wshxowZ4+GR9YrGTpRpu3fv3r59+8SJE3P7WynUt2/fGjVqjBw50lqBGcdQKSyrt3SZBDaJKkW2wgG+B2bnCEW2wiGTRPY/b4mDBw/GxMRUrlx54sSJ27ZtO3ny5Pr16yMiIoQQx44dc4rfwIYMyy0Fvb295YXcMqxfv37p6emrVq2yQXTWp9Ppjh07Ji9HRkYabyyfQBMcHFyhQgVLNhofH//gwQMhRKlSpYw3kxfM3hcm2bhxo4+PT1hYWIsWLbZt2yaEaNmy5V9//ZU/f37LO1euRIkS8oJ9fk0Bqlu9enWPHj1SUlKyP5WWlta3b98lS5bYPyrASfGGAgAAAAAAAADYR2Zm5rJly95++22zL95sULVq1a5duy5atMgqgQF2Y59yCyX1FTYtrlBYShEeHi4vxMbG5tjPlStX5IWEhITctuVQ9RJ///337du3v/jiC8u7+uijj/Lly2eHq185Tk7aAnmunF6v/+WXX3r37l22bFkLuypTpkyfPn1++eUXvV5vldiMsEMCO07FmnxGYqlSpbJf4Vs4T6YJIRYtWlSmTJnevXtb2I+np+eYMWOOHz9+5swZqwRmBEOlvGBJvaXLJLByqhTZCgf4HpidgxTZCsdLEoP/KakPDQ1dv379hQsXxo4dGxUVVbt27U6dOm3atEm+r8e6deusvvkvvvhi5cqVK1euLFKkiFU6NJz7kmeGJSUl5digYsWKDRo0cJYf/JcuXZJfSNmyZUNDQ420TEtLkz+0IiMjzb5Ri+z+/fvyQlBQkJFmlu8Lk2RmZr74/c/Dw6Np06aBgYGW92ySl156SV64d++enTcN2N+DBw/yvMvY4MGD7969a594AKfGGwoAAAAAAAAAYDd79uyJj4/v2rWrVXrr3Lnz9evXz507Z5XeAPuwT7mFkvoKmxZXKCylqFSpkrywadOmHDs5dOiQvPz8+fPctuVQ9RIbNmwoXrx4/fr1Le8qICAgKipqw4YNlndlnOPkpC2Q58odPXr0/v37Xbp0sUpvnTt3fvjw4eHDh63SmxF2SGAHqViLiYnZvn27EGLAgAGenp7ZGzhLpmVmZm7ZsuXNN9/M8VWY6vXXX/f399+4caPlXRnHUCkvmF1v6TIJbBJVimyFA3wPzM5BimyF4yWJwf+U1Pfq1atTp05Z7uZQokQJ+YSAO3fuZFk5PT09Li5OkiSzN9+sWbMePXr06NHDWmc5ZGRkyAu5nV1neFyr1ebWyYABA44fP37+/HmrhGRTym8zcfr06czMzBxbJiYm5nafjhwZ3pzGPzOssi+Ua9CgwbZt27Zt2/bbb7+NHTu2cOHCo0aNKl++/KlTpyzvXDnDW91aN9oAHNmMGTPyHD3S0tK+//57+8QDODXeUAAAAAAAAAAAu/nzzz9DQkKsUmwqhIiKivL19ZUvcwg4C6uUWwghtFqtkfIAJfUVNi2uUFhKUa9evVq1agkhdu3adePGjSydLFmy5Pbt2/Kyoa4rO4eql9i+fXv79u0tL4aTdejQ4dKlS7du3bJKb7mxVk4Ko2mpsObH6shz5f7888/AwMCmTZtapbemTZsGBQXJFbQ2ZYdB1UEq1mbPni2E0Gg0/fr1y7GBs2TakSNH4uLi2rdvb5Xe/P39mzZt6hqZJlx0qJS5TAKbxFppY4s6W/csshWOlyQGHnm20Gq18t0HDFfaF0KcPn26ZcuW+fLlK1iwYJkyZebNm2dJYb0VGU6YMKRaFobHDbsku65duwYEBDjFherl20wIBe/27C21Wu33339fpkyZoKCgwMDAypUrL1++XMlGDUls5G8orLQvlAsLC4uKioqKiurSpcvEiRPPnTsXERHx8OHDpk2bnj171vL+FXLYtzpgC3/88YeSZjmetgggC95QAAAAAAAAAAC7uXHjRuXKla1yUVIhRGBgYMmSJW/evGmV3gD7sKTcwuDGjRtNmzZduHBhbusqqa+waXGFwlIKjUbzwQcfCCF0Ol379u1fvO7s1q1bhw8fbvhncHBwbttynHqJjIyMe/fuVatWzVodVq1aVQhh61HOKjkp8kpLhTU/VkeeK3fjxo1y5cr5+vpapTcfH5/y5ctnr4u1OjsMqo5QsabValeuXCmEqFOnTsmSJXNs40SZJoSw4lBZrVo118g04aJDpXCtBDaJhWlj0zpb9yyyFY6XJAZeeba4evWqvFfq1KkjP3L8+PGmTZt6eHiMGDEiODh43bp1gwcPvnv37qRJk2wbrAKGq91bkmGBgYFdu3ZdsWLF1KlTs1yzXzlJkrZu3ZqSkqJ8lWvXroncTzfJkeEEmsjISJNaSpLUr1+/X3/9tXPnzn369ImOjt60aVPv3r137969YMEC4+fpKjwNyyr7wmwhISELFiyoV6/e8+fPhw0btnPnTmudfGycqW91rVZ76dKl3377zZZBuZeMjIxr165VqVJF7UBcnyRJV65cUdLyxo0bq1evNns4hdVptdqYmBgr/i6C5XhDORq9Xn/x4sXq1aurHYibunfvnp+fX6FChdQOBMZIknT+/Pnq1avb52s2zPb48ePMzMxixYqpHYg7kiTpwoULVatW5YNbFY8fP9ZqtUWLFlU7EOThwoULVizigY08f/48Pj6+VKlSagfiUpKSkh4+fFiuXDm1A4FzuHjxYsWKFb288p7QgRmuX78eGhpqrXspuwl+uZvh6dOnaWlpxYsXVzsQ15Samnr37t0KFSqoHYiTOXbsWJEiRfKcpjx37pwQ4q+//oqJicmzz3379jHvqQQHDWxEkqS0tDTl7c0utxBCrFq16sCBAxcuXNi7d68kSZ07d85tXSX1FfYsrjBSStGrV6+ffvrpxIkTFy5cqFatWo8ePfz9/Q8dOrRr166iRYt27dp18eLFQggj3wFMqpdISUlJSEiw0aDx+PFjSZJu3LiRZ//Xr19XEkZ8fLwQYvXq1Y8ePVIexp07d1JTU5W3tyQnheK0VH7p5YEDB16+fNnsS6wWK1bs119/NVzD2D3zXHbgwAGT6sf++ecfb2/vPNNSnl/evXv3/fv3jbfMzMw8dOiQSW+3M2fOKG8ss8Og6ggVa7t373769KkQokmTJkaa2T/TMjIyLl++bNJe3rhxo6en565du/Kc7NNqtRcuXMiz89jY2IcPH65atUr58V55hElPT1fYXjjSx7fMuYZKx0zg1NRUrVZrUvZeuHBBp9Mpb29J2ti6ztY9i2yFiUki11Tv2rXrzp07CvuXf3NVq1bNpFeUL1++HI7APn369ODBgwcPHrxz587jx48N9y2Ss0Sv1w8cOFCr1R46dCgiIkII8emnn7Zt2/brr7/u3r276oVHhgzL7Q8dGxsrLxjPsIyMDG9vb0vy486dOx07djTprSu7e/euwpYpKSnnz58XQnh5edWuXdt4Y/ndXq5cuZCQECHE2rVrf/3115UrV/bo0UNucOHChdatWy9atKhNmzZdunQx0pXCP4u19oXZ6tatGxkZefTo0d27dx8/fvzll1+2xVayMPUDMjk5ee3atWvXrrVRPIAj0Ov1hqEGgIV4QwEAAAAAAAAArOLOnTvdunVT0vKTTz5R2KfCDgEbuXjxosKWlpRbCCHmzJlz9erV6tWrv/rqqwcPHjSyrpL6CjsXV+RWSuHj47NmzZrmzZvfvHnz3r1706ZNkx9v27bt3LlzR40aJf+zZs2aufVsUr3EpUuX7t27Z9NB4/vvv1fYUmEYc+bMmTNnjkkxFCxYUGFLC3NSKE5L5aVQBQsWtOQsykKFCr24LffM87i4OCHE5MmTzXgJCtNy7Nix1u3wRU+ePFHY0j6DqiNUrK1bt05eMF6RbOdME0LExcVt2bJly5YtJq0lhOjevbuSZr/99pvCiueePXuaGoOTfnzLnGuodMwEvnjxYmpqqqljlPJzUy1MG1vX2bpnka0wMUnkk8dGjx5ts3D+Pw8Pj/8rqU9JSVm0aNG8efPkBMpOLqk/ffr02bNnhw4dKtfTCyG8vb2nTJlSt27dKVOmLFu2zNZBG2dI5WvXrjVs2DB7A/lK8EKIAgUK5NZJfHz8unXrRowYYUlJfcmSJWNjY026K8G5c+c6deqU2z01srt165Zcsh8WFubn52ek5ZkzZ+QXHhUVJT/yww8/tG7d+sWavGrVqk2bNq1Hjx5ffvml8be64WYTL97XIzur7AsL1alTR74Zx6lTp+zzbk9ISJAXFF7SJigo6K233hoxYoQtg3I76enp1roBFoxr06bN5cuX82xWpkyZv//+2w7xQDneJg6IN5SjycjI8PHxUTsKN5WZmenh4cHVah0fnyZOQafTSZLEBU3VwttERSS/s+BLl1PQ6/VarZY9ZV2SJGVkZPAxAYX4UmFT6enpPj4+3IDLJPxyN4NOp9Pr9YZLD8LqGCrN0KtXr4CAgHnz5hlvdvDgwT59+mzZsqVy5crGW3bu3Dk8PHzmzJnWi9GVkbS2ULFixTp16ihsbEm5hRBi9+7dciHXZ599ZrwmT0l9hf2LK3IrpShbtuyxY8dmzpx55MgRX1/fSpUqde/evV69ehqNRq539Pf3N3IrbJPqJerUqZOQkPDnn39a+mJy8uTJk1deeWX69OkdOnQw3nL06NHHjx/PM4x79+41atRozpw5rVq1Uh7GBx98oLwi2cKcFIrTUmHNjxDiu+++Uxa7Iu6Z58HBwUKIBQsWNG3aVHnkgwYNSk5OXr58ufFmp0+f7ty585o1a+rWrWu8Zd++fb29vRcsWKA8hv379/fr1+/FczaMs8+g6ggVa3v27BFCeHh45Njzi+yZaUKIwoULt2rVyqR60yVLlnz55ZeXLl3K80B6zZo133777Q8++MB4s3nz5s2YMePixYvKf2Lr9foKFSrkWeVs4FAf3zLnGiodM4Hr1q27a9eus2fPKn8hs2bNWrhwocLGFqaNrets3bPIVpiYJOHh4UKI33//XflwIcz6zZU/f/7/PyCeP3/+zTfflO8IU6NGjR49etSoUaNq1aphYWHNmzc/cuRIQEBAlSpVhBDbt28XQrRu3frFjmrXrh0SErJ//36TNm8LhnNfcitKM2SYkbf0qlWr0tLS+vXrZ2EwoaGhoaGhyts/e/bMpP4N95PK8xuM4VQHw9k8ZcuWbdmyZZZmr7/+uhDiwoULxqczFX5mWGVfWMgwjty+fdtGm8jC8DdR+IVGo9EEBweXLVvWlkEBttKtW7cvv/xSSTOSHMgTbygAAAAAAAAAgN2ULl366tWreR5wvn79uhAiPDw8z5bPnj1r3LgxR7DhLCwptxCmXBhVSX2F/YsrjJRShISETJo0KcuDcXFxFy5cEEI0a9bMSOWlSfUSGo3G29vbRoNG6dKlvb29tVptnv3nz59fSRgPHz4UQtSqVcukgAMCAp4+faqwsYU5KRSnpfI6UetyzzyXhYWFmZQ5ZcuW3bdvX56rPH78WAhRrFixPFvGxcW98sorJsVw9epV5Y2FvQZV1SvWnjx5Eh0dLYSoU6eOkstF2zPTNBrNSy+9ZNJerl69ul6v9/f3l2tVjfDw8FBS3paenl60aNFy5copj0Gv1ytvLBzs49sWbDpUOnICe3h4mJS9wcHBys/csDBtbF1n655FtsKsz9PixYvb4femhxDi2bNnLVq0uHLlSpUqVfbt23fmzJlRo0a1b9++XLly3t7ep0+fFkLUq1dPvtqEfGHUGjVqvNiLRqOpVKnSrVu3DHcZUEv16tXlEwtOnDiRY4Nz584JIQoUKFChQoXcOlm0aFGjRo2MNHAQhqEtJSXFSLNnz57J7/ZGjRoZTmT58ccf5Tf2iwICAoKDg7VarXzjodwYkthwpkiOrLIvjEtISDD+yWoYUMLCwszbhKlMPUcQcGoffPBBUFCQ8TaBgYHDhw+3TzyAU+MNBQAAAAAAAACwmypVqpw/f974RLNy9+/fv3PnjnyRPsApWFJuYRIl9RVWL66weinF/Pnz09PThRADBgwwvl15QfV6CQ8Pj4oVK8rXW7WKo0ePenp6VqxY0VodZudQOWkL5LlyVapUuXr1qqkXZs1NfHz85cuXbf0ZbZ8EVr1izTCqNGjQwKQVX+Q4mSbfg8iKQ+WRI0dcI9OECw2VL3KxBFbOwrSxdZ2texbZCgdLkhd5CCGmT58un0+5du3ahg0bvngCx7lz5+T3QGRkpPyIXDRfvHjxLB2VKVNGCCFf515Ffn5+7du3F0Ls3bvXcH6JwZ07d+ShoVOnTrmddXT+/Pljx44Zf887iAoVKsjnuNy4cSO3d50kSQMGDHj06JGPj8/MmTMNO9ff3z973d6TJ0/i4uKCg4MLFy5sZLvFihWTF4yfhmX5vsjTli1bxo8fn9uzGRkZhw8flpcbN25s3iZMZfibZH+PAK4nNDR02bJlRk7702g0S5YsKVKkiD2jApwUbygAAAAAAAAAgN20b98+NTX1zz//tEpvGzduFEK0a9fOKr0BdmBJuYVJlNRXWL24wrqlFJmZmbNnzxZClC5d2vjb3KHqJTp06LBt27a0tDSr9LZhw4YGDRoUKlTIKr3lyKFy0hbIc+Xat2+v1Wo3b95sld42b96cmZnZoUMHq/SWG/sksOoVa4ZrSJtd2OpQmVajRo2yZcvK3+Is9/Dhw6NHj7pGpgkXGipf5GIJrJyFaWPrOlv3LLIVDpYkL/IQQhw7dkwIodFoDLtQJknShAkT5GVDSf3z5889PDyy37UhX758Qojk5GRbR5ynPn36CCHS09OnTJmS5SnDrSj69++f2+qLFi0KDAzs0qWL7SK0loCAgDZt2gghMjMzly5dmr2BXq+fOHGi/Mk3bdq0iIgI4x3K59m8/fbbxj9LXnrpJTlVbt26ZbxD8/ZFcnLyTz/9tHHjRkmSjPd//vz5SZMmTZkyRafTZX/2559/vnPnjhAiMjKyevXqLz6Vmpo6b968NWvWmHr7mDwZ/ibymXyAy+vQocOmTZuCg4OzP1WgQIENGza8+eab9o8KcFK8oQAAAAAAAAAA9hEREVG6dOkVK1ZYpbeVK1e+/PLL4eHhVukNsAOrl1vkRmF9hXnFFblVPphdSpFjkcaYMWPu3r0rhJgxY4ZckZYbh6qX6NixY1JSklWKkm/fvn3gwAFb14k6Wk7aAnmuULly5apXr27Fz+gqVarY9B4Lwl4JbOuKtTzLya5evSovlCpVKs9oHT/ThBAdOnT4448/rHIh9hUrVkiSxFBpORtlr3DFBFbIFmlj3TpbNyyyFQ6WJP9DkqRmzZrJy71793748KEkSampqdu3b2/UqJGh2a1btyRJkiQpICDA29tbymbIkCFCiDVr1mR/yoguXboUL168ePHi169fN2lFSZLatWvXuHHj7I/r9fqoqCg57Hnz5hke/OGHH+QM7tChg16vz7HP9PT0kJCQt99+29RgrEI+t2Hv3r3KVzlx4oR8ekNAQMDmzZtffF13795t2bKl/HeYMGFCnl3duXOnQIECZcuWffbsWZ6N5Zzx9vZOS0sz0sy8fSHnkhBi1qxZxsO4fv26fLOJV199ddu2bZmZmYZNzJ8/39vbWwjh5eX1zz//ZFmxd+/e8iZmz56d5aknT57E/teHH34oN1u9erXhwYSEBCMh1a5dWwgREhJiPHKDggULjhkzRmFjwGE9e/bsq6++euWVVzw8PPz8/CIjIydNmvT06VO14wKckuEN5e3t7ePjwxsKAAAAAAAAAGAL06dP12g0x44dM9Jmx44dQogzZ84YaSNXrK5atcraAQKm8fT0/Pbbb5W3t0q5xciRI4UQ06dPN9JGSX2FecUVuVU+mFdKodfrO3To8MMPP+h0OvmRhISEYcOGyZvo379/bpU2BibVS7zzzjtVqlRR0tJsr732WqVKlQwv3+wwevfuXaBAgSdPnpgaQLdu3erXr6+8vbVKgPJMS4U1P1bnhnkeHR0thNi8ebOSxi9asGCBEGLnzp1G2sgXFT5w4ICRNnv37hVC/Pzzz6YGIN/H5ty5c8pXsc+gatOKNSPlZLLXX39dbnD69GkjW5fsnmmSJJUoUWL48OEKGxtcv37dx8cnz9K1/Pnzjx8/3kiDhISEIkWKdO/e3dQA5AJf4x+jWTjUx7ct2Ch7JQdO4PHjx+fPn19JS7NXsWKRrWSDOltnLLKV7Ftne/DgQSHEoUOHlDS2kJAk6dtvvxUvCAwMlBeCgoL8/f2FEEWKFDHskkKFCmk0muwdvf3220KIP/74w6TNG+4UcOXKFVNDz62kXpKkO3fuyEkghKhdu3bnzp3Lly8v/7NUqVL379/Prc+1a9cKIbInh32YUVIvSdKcOXMM++611177/PPPx44d26lTJz8/PyGEv7//smXL8uwkPj6+Zs2aoaGhly5dUrLR4cOHy1s8cuSI8ZZm7IsmTZrIDZT8fDp16lTJkiXl9iEhIY0aNYqKigoJCZEf8fT0XLx4cfa16tWrJzcYNGhQlqdeeeUVYdTIkSNzCyYtLU0eYpo3b55n5DJK6uFiSpYsOWzYMLWjAFzEq6++2qVLF7WjAAAAAAAAAAC4pvT09DJlyjRq1Eir1ebWJs+S+tTU1GrVqtWrVy/PwhrA1kwtqZesUW6hpCZPYX2FGcUVRiofzCilWL9+vfxswYIFmzRp0rJly6CgIPmRjh07ZmRkGP9TmFovYYeS+v3794u86szyDOPIkSMeHh6mppbM1JJ6yUolQHmmpfKaH6tztzw3u6Req9XKH69GQsqzpD4jI+Pll1+uWrWq8RNLcmRGSb1kl0HVphVrRpJNZih0vHbtmvGt2znTJHNL6iVJeu+99wICAm7cuGGkTZ4l9R999JGPj8/Vq1dN3boZJfWSg31824Itsldy4AS2Q0m9ZKVPWMlmdbZOV2Qr2bfO1t4l9RkZGYazHGQ1a9YcP378w4cP8+XLJ4R4/fXXDSuUK1dOCJGenp6lI/mMhP3795u0eRuV1EuSdP/+/aZNm2bZSa1atXrw4IHxPitXrqzWr33zSuolSdq4cWPp0qWzvFgfH5+BAwfevn07z9Xj4+Pr169fsmTJmJgYhVvcunWrvBUjJzYZmLovtm7dGhoaWq5cuYoVKxpOdTLi+fPn77//fkBAQJZNVK1addeuXTmusn379kqVKlWtWjU6OjrLU5a81Y8ePSq3mTJlSp5hyyiph4uhpB6wIkrqAQAAAAAAAAA2tWnTJo1G89FHH+XWIM+S+l69evn4+Kh10TrgRWaU1EsWl1soqclTXl9hanGFkcoHyfRSiqSkpA8//FC+GKpBUFDQt99+q6Ryw9R6CTuU1Ev/HaOM1DIZDyM2NrZEiRLVq1dPTU01Y+tmlNRLFuekpCAtTar5sTq3ynOzS+olSdq5c6enp+e7776bW4M8S+qHDBni6en5999/m7F180rqJdsPqjatWDOebJIk1a1bV+4kNjbW+KbtnGmSBSX1jx49KlasWM2aNRMTE3NrY7yk/rffftNoNKNHjzZj6+aV1EsO9vFtC1bPXsmBE9g+JfWSNT5hbVpn61xFtpJ962ztWVLvJYTw9vbeunXr2bNnHz16FBYWVqJEiQIFCsgRp6SkZHmd8lN37tyRa+sN7t69K4R46aWXjP+ZstizZ49J7ZUrWrTorl27Tp48+ddffz1+/Dg8PLxZs2a1atUyssr9+/e3bds2efLkLMOB4+vQoUObNm327t175MiRp0+fFipUqFKlSq1bt86fP3+e6z5//rx169ZPnz7dv3+/4UyUPDVu3NjX1zc9PV0+DcA4U/dFmzZtHj16JL8unU7n4eFhvP+goKBZs2Z9/fXX27Ztu3LlypMnT4oUKdKwYcP69evntm7r1q3lr63Zyd84zXP8+HFD/2Z3AgAAAAAAAAAAAAB20L59+/Hjx48bN65UqVLvv/++SetKkvTFF18sX7583rx5//rXv2wUIWBrlpRbKKS8vsLU4gojlQ/C9FKKgICAGTNmfPjhh1u3br19+7aPj0/lypU7duwYGBio5GU6Zr3E/Pnzo6OjO3fuvHPnzurVq5u07rNnzzp16pSSkrJnzx75Erb24VA5aQvkuULNmjX77rvvRowYUapUqVGjRpm6+rfffjtnzpypU6c2b97cFuHlxtYJbNOKNePJJoSYNm1aYmKiEKJgwYLGN+1EmRYaGrp+/frGjRv36NFjzZo1/v7+Jq2+b9++fv36tW3bduLEiTaKMEcMlVnkmb3CRRPYJBamja3rbJ2ryFa4bp2tl/w/jUZjvNzcoGLFiidOnLhy5UqWkvrz58/7+vqWLVvW+jFaoE6dOnXq1FHYeOnSpRqNRr7cvtPx9vZu0aJFixYtTForPj6+devWSUlJ+/btK1q0qPIV/f3927Rps2HDhu3bt2u1Wi8vrzxXMWlfyAz3d1AiMDCwa9euJvVvdX/88YcQomzZsjVr1lQ3EgAAAAAAAAAAAADI09ixY2/duvXBBx/ExMTMmDFDycyvECI1NXXgwIErV678/PPP3333XVsHCdiUeeUWyplaX2FGcYURppZSlClT5r333jNjQ45ZL5EvX74NGzY0a9bs1VdfXb58eYcOHRSueOHChY4dOz558mTTpk32L4VytJy0BfJcieHDh9+8eXP06NFXr16dM2eOr6+vkrUyMjL+85//LFy4cOjQoR999JGtg8zOpglsn4q13DRu3Nik9s6SaZGRkcuWLevVq1ejRo02bNgQHh6ucMWff/556NChERERK1asyLOc1+oYKk3lqglsErPTxm51tu5QZCscO0lMHss6duwosp1hcPny5cePHzdr1iz7fQGchSRJixYtateuXVhYmNqx2El8fHyrVq0yMjL27Nlj0vtcNmTIECHEw4cPd+/ebYPoRFJSkj1P87Xc48eP//rrLyHE4MGDne5GBwAAAAAAAAAAAADckEajWbhw4ZQpU+bMmfPyyy/LM55GSJL0+++/16pVa926dQsXLvz666/tEyfg1GxdX6E6R66XKF68+OHDh+vXr//GG2/06dPn9u3bxtsnJiaOHTs2MjJSo9EcOnSoUaNG9onTzlw+J21BlTyfOXPm7Nmzly1bVqdOHbkA0bg//vijdu3aS5Ys+eGHH3744Qc7RGh/Lp+9qmRaly5ddu3adffu3Vq1an3//ffp6enG21+4cKF9+/bvvvtu165d9+7dGxQUZJ847czlk80WHPkrgdkcuc7W6YpshcMnickl9W3atPHx8Vm8eHFKSorhwVmzZgkhlJ/N6YAOHjx45cqVAQMGqB2IncTFxbVs2dLDw2PXrl2hoaFm9NCiRYtKlSoJIebOnWvt6IQQYvny5d26dbNFzzayYMECnU7n7+/fr18/tWMBAAAAAAAAAAAAAKU+/fTTv//+WwjRunXrhg0bzpo169atW1naXL58+dtvv61Xr17Xrl2LFCly4MAB95leByxk6/oK1Tl4vURwcPDWrVunTJmyefPmSpUq9enTZ+3atcnJyS+20Wq1u3fvHjZsWPny5adMmdK/f/+jR49WqVJFrZhtzeVz0hbUyvP33ntv7969+fPn79ChQ/369b///vvr169naXP9+vXp06fXr1+/Q4cOgYGBe/fuHTp0qD2DtCeXz161Mu3VV189fvx4mzZtPvnkk0qVKn3++edHjhzR6/UvtomLi1u+fHnnzp1r1ap18uTJhQsXLl++3OnKeZVz+WSzBQf/SmAGB6+zdboiW+HwSWLyDSmCgoI+/fTTL7/8slu3bjNnzixatOhPP/30448/VqxYsW/fvrYI0T4WLVpUuHDhtm3bqh2InQwYMOD48eONGjXq3bu3JEk6ne7FZxctWlSsWDHjPXh4eHz99dedO3det27dxYsXq1atasXwkpKSVq9eneclEBxHSkrK9OnThRAff/yxeUMnAAAAAAAAAAAAAKiladOmJ06cWLFixfz580eMGPHhhx8GBQXlz59fCNGxY8fHjx8nJyd7e3s3btx4/fr1nTp1UjteQE1btmw5d+6cEOLQoUNCiL///jstLU0IUb9+/SZNmmRvb9P6CtU5Rb2El5fXxx9/PGDAgGnTpq1atWrZsmUajaZIkSJJSUlpaWklSpR4+PBhZmZmoUKFOnbs+Nlnn1WoUEHtkE1mUlq6dk7agrp5/uqrrx46dOj333+fM2fOp59++tFHHwUGBhYqVEgI8dZbb8XFxSUmJnp6ejZs2HDVqlXdunVzwIv+Gkf2GqibaeHh4cuXLx8xYsS33377448/Tp482dfXt2jRoklJSTNmzPjpp58ePXokhKhWrdqXX375wQcf+Pv72zlCC/HxbWtO8ZXAVI5cZ+t0RbbCGZLE5JJ6IcS4ceOePXv2008/bdmyRX6kevXqGzduzJcvn1Vjs5/ExMQ1a9YMGTLE29tb7Vjs5PHjx0KIffv25fjsi7cgMOKNN95o0qTJnj17Ro0atWHDBiuGN2zYMOfaHdOnT3/8+HF4ePjHH3+sdiwAAAAAAAAAAAAAYDIPD49evXr16tXr8ePH27Ztu379+oEDB+7du1enTp1atWpVqlSpdevWBQoUUDtMQH2//fbbkiVLDP/csmWLXD8zcuTIHGvyhC3rK1TnRPUSBQsW/Oqrr7766quzZ8/u3bv37t27S5cuzczM7Ny5c3h4eL169Ro2bOjp6al2mGYyNS1dOCdtQfU812g0Xbt27dq169OnT//8888rV64cP3781q1b1atXj4yMrFChQuvWreUie2dE9hqonmlCiDp16qxatSo9PX3Xrl1nzpyJjY2dPXt2oUKFunfvHh4e3rJly/Lly6sVm4X4+LY1R0hgq3PkOlunK7IVzpAk5pTUe3l5/fjjj++9995ff/2VlJQUERHRpk0b5/1OKYT47bffkpOT+/fvr3Yg9nPgwAHLO9FoNL/88kvNmjU3bty4bt26N9980/I+hRCnT58uUqSIE92QIiYmZtKkSRqNZsmSJfJ1GgAAAAAAAAAAAADASYWGhvbp00cI8ffff+/cuXPcuHE1a9ZUOyjAgfzyyy+//PKLSavYqL5CdU5aL1GzZk15WIuPj9+3b9+MGTPUjsgKTE1LV81JW3CoPC9UqNBbb70lhDhy5MjmzZtHjRr12muvqRuS5chemUNlmq+vb5s2bdq0aSOEWLx4ce/evceNG6duSJbj49umHCqBrchh62ydrshWOEmSeJi9ZtWqVYcNGzZmzJjXX3/dqevphRCLFy+uX78+9+YwQ6lSpdasWePl5TVkyJDbt29bpc+IiIivvvrKKl3ZQUpKSq9evdLT06dOndqsWTO1wwEAAAAAAAAAAAAAAA7HFvUV6qJewtm5Xk7aAnnumFwve8k0h+V6yWYLJHCerJ5IzlVkK5wnScwvqVddmTJlypQpY3k/kiTdv3//gw8+sLwr99S6desFCxY8evSoffv2iYmJaodjV3q9vk+fPsePHx8xYsSIESPUDgcAAAAAAAAAAAAAADgoV6qvoF7CNbhSTtoCee7IXCl7yTQH50rJZgsksELunEhOlCReagdgvlmzZlmlH41Gc/XqVY1GY5Xe3FPfvn27d+8uhPD29lY7FrvSaDTLly9fvny5r6+v2rEAAAAAAAAAAAAAAACH5jL1FdRLuAyXyUlbIM8dnMtkL5nm+Fwm2WyBBFbObRPJiZLEiUvqrVgETz295fz8/NQOQQUajcY9XzgAAAAAAAAAAAAAADCDa5QZUC/hStiVuSHPHZ9r7CAyzSmwj3JDApvEPf9WTpQkHmoHAAAAAAAAAAAAAAAAAAAAAACAOiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG7KS+0AkFViYmJcXJzaUcBOJElSOwQAAAAAAAAAAAAAAJxeamoq5RbOIj093eXrJSRJ0mq15KQ7S0hIUDsEiyQkJJDAzkKv16sdgvlSUlLINHeWmppqxlqSJJE27iMxMdFu26Kk3oE8ffpUCPH666+rHQjs6uTJk2qHAAAAAAAAAAAAAACAE9Pr9ePGjRs3bpzagUCpgIAAtUOwrbNnz8bExBQsWFDtQKCymzdvqh2Cye7cuSOEeO2119QOBCZwxgo0jUYjhBg9evTo0aPVjgVq8vT0NKn96dOnk5KS+IR1N48ePbLDViipdyAtW7acNGlSxYoV5U8LuINr16517txZ7SgAAAAAAAAAAAAAAHBic+bM8fPz8/f3VzsQKBIXF+fylXCLFi06evRo8eLF1Q4Earp48eLAgQPVjsJkvXv3vnfvXuXKlalhcxY3btxwxsv4ajSan376KSAgIF++fGrHAtUkJyebepuF77//PjIysnz58jYKCY5GkqSYmJi2bdvaYVuU1DsQDw+PMWPGqB0FAAAAAAAAAAAAAACAMxk0aJDaIQD/49VXX3311VfVjgIwh4+PzxdffKF2FHALQ4YMUTsEOJ8yZcp8/vnnakcB1+ShdgAAAAAAAAAAAAAAAAAAAAAAAKiDknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KS+1A8D/uXbtWoMGDSpWrOjj46N2LLCTmJiYoUOHfvrpp2oHAgAAAAAAAAAArKly5cr58+cvUKCA2oFAkUePHgUFBe3fv1/tQEzWs2fPU6dOlShRQu1AoJrMzMyYmJgdO3ZUr15d7VhMs3v37rfeeqtq1aoeHlwK0C1IknTx4sWZM2d27dpV4SparbZ8+fJhYWH58+e3aWxwZE+fPvX09Dx27JjagQAAAMDFUVLvQO7evfvgwYPKlSsHBwerHQvs5OHDh5cuXVI7CgAAAAAAAAAAYGVXrlypVq0akz7O4saNG7GxsWpHYY7o6Oj4+PiaNWuqHQhUExcX9+DBg5s3bzpdSf3ly5cfPHhQt25df39/tWOBPWi12tjY2OjoaOWrpKSk3Lp1KyQkhM9Td3bnzp379++rHQUAAABcHyX1DiQgIEAIMWHChEaNGqkdC+ykUKFC4eHhakcBAAAAAAAAAACszNPT89///vfIkSPVDgSKDBkyZNeuXWpHYY5ixYqFhISsWbNG7UCgmuPHj//9999BQUFqB2KykJAQIcSPP/5YqlQptWOBPSQmJq5fvz4sLEz5KhqNRggxaNCgd955x2ZxwdF9+umny5cvVzsKAAAAuD5uoAYAAAAAAAAAAAAAAAAAAAAAcFOU1AMAAAAAAAAAAAAAAAAAAAAA3BQl9QAAAAAAAAAAAAAAAAAAAAAAN0VJPQAAAAAAAAAAAAAAAAAAAADATVFSDwAAAAAAAAAAAAAAAAAAAABwU5TUAwAAAAAAAAAAAAAAAAAAAADcFCX1AAAAAAAAAAAAAAAAAAAAAAA35aV2AObLzMzU6/W+vr6Wd5WWlubn52d5P+7s6dOnkiQFBQX5+PioHYv96PX6Z8+eCSGCg4M9PT3VDgcAAAAAAAAAAMBkrjHLw6yN43ONTLMFstcZuWc+k6vGuWdWKEHmAAAAwCk48VXqhwwZ0rdvX8v7kSSpdOnSP/74o+Vdua05c+aEhIS0a9dOq9WqHYtdaTSaDz/8MDQ0dOjQoZIkqR0OAAAAAAAAAACAaVxmlodZGwfnMplmC2Sv03HbfCZXjXDbrFCCzAEAAIBTcOKr1D948CApKcnyfjQaTZ06dX744Yf//Oc/Go3G8g5VkZSUJP81/P39g4KCjLRMTU19/vy5ECIoKMjf39/yTW/YsGHo0KHh4eEbN260SodORKPRLFy48Nq1a3Pnzi1RosSoUaPUjggAAAAAAAAAADg3e076uNIsD7M2piLTHAfZawbmx1XhXLnKKOc4nCtzAAAA4Lac+Cr1Smi12itXruzcufP8+fM6nS63Zv3794+JiTl8+LA9Y7Oujz76qGjRokWLFl28eLHxlrNnz5Zb7t692/LtXrlypVevXnq9/ueffw4LCzPSUuG+sERGRkZ0dPTu3bvv379vxTObz5w58/jx49ye9fPzW7p0qa+v7+jRo3fs2GGtjQIAAAAAAAAAAPdkt0kfhbM8dpjiyVNmZubFixd37Nhx8uRJIzEwa2MSR8s0WyB7XRjz4zaaHBcuND/OKGcfjHIAAABwGU58lXrjdDrdrFmzvvvuu9jYWPmREiVKfPzxx++//372S9F36NChYMGCixYt+te//mX3SK3jyJEj8kJkZKTxlkePHlXYMk96vb5v377JyclvvfVWVFRUbs1M2hfmiYmJmTJlyvLlyzMzM+VHQkJCPvroo+HDh/v6+prdrSRJs2bN+uijj7Zv396iRYvcmlWsWHHcuHGjRo3q16/fpUuXjJ/gDgAAAAAAAAAAHMStW7cKFSoUGBiodiD/wz6TPkpmeaw1xTNr1qytW7cqadm5c+d33nnnxUe0Wu133303a9asBw8eyI8UKVJk/PjxgwYNyjEGx5y1iYuLS0tLK1q0qNqB/A/HyTRbIHtdnjvPj9tocly43Pw4o5wSjHIAAADA/5GcVrt27Ro3bpzjU6mpqW+88YbhNebPn9+w3KVLF61Wm32V999/P3/+/ElJSbYN2qhjx44JIfbu3WvqiklJSZ6enkIIb2/v1NRU441LlCghhChbtqy5Yf6fFStWCCE8PDyuXr2aWxsz9oWpVq1a9eKhgYCAAMNy5cqVnzx5YmqHmZmZZ8+enT17dtWqVeV+duzYYXyV5OTk0NBQIcTo0aNN2lbBggXHjBljaoSAwypZsuSwYcPUjgJwEa+++mqXLl3UjgIAAAAAAMClPHr0aOHChR06dAgPD/fx8ZFnAYKCgqpVq/bBBx/s3LkzMzPTWtvy9vaePHmyqWvZbdInz1keK07xDBo0SOHE5UcfffTiiikpKc2bNzc8++LJD4MGDdLr9TluzrxZm8GDB1esWFF5e+NSUlI2bdo0cODAihUr+vv7yzH7+fmVKVOmR48eq1atev78ubW21bZt2xYtWpi6luNkmi24W/aaPcushHwx6TNnztii899//10IcfPmTVNXdOf5catPjkt2nB9PSEgQQsyfP9+mq8gY5RRyilHuk08+KVq0qPL2Jnn33XcrV65so84Bmzp8+LAQ4sCBA2oHAteXP3/+8ePHqx0FANiDh8Ivx85l3Lhx69evF0IMHDgwNjY2ISHh3r17Xbt2FUL8/vvvkydPzr5K//79ExMT165da+9YreHEiRPy/bNq1arl5+dnpGVsbOydO3eENU7B1+l0Y8aMEUL07NmzXLlyuTUzY1+YZP369T169EhPT4+MjNy8eXN8fHxiYuKtW7f69OkjhIiOju7Tp49er1feYZEiRby9vWvWrDl06NCLFy8qXMvf33/48OFCiGnTpj169MiMFwIAAAAAAAAAAGwnNjZ28ODBxYoVGzhw4J07dzp37vzll1/6+/s3b958+PDhtWvXXrFiRfPmzcuWLbtkyRKTZhasyz6TPkpmeaw4xVO5cuXm2bRq1apt27bt/ksuB3yxKFCSpL59++7cudMQQ2Ji4r1797p37y6EmDdv3qJFi3LcnLqzNmlpadOmTQsPD+/QocNff/3VqFGjzz77rHbt2uHh4WPHjm3Tps3Jkyd79OhRtGjR0aNHy6WiqnCcTLMFstflue38uNUnx4Xrzo8zyinEKAcAAAD8H5VL+i2Q21XqY2Ji5LONe/Xq9eKZr1qttlOnTkIIT0/Pa9euZV8xIiKiSZMmtgs4T2ZfP+Dbb7+V9+Z7771nvOWGDRvkltOnTzczyv/6448/5K727duXWxuz94VCaWlp8hnMgwcP1ul0Lz6l1+sNt6LbunWr8j7lc/rDw8Pffffddu3ayT3keRa+JEkPHz6UX6xJl5zhKvVwMVylHrAirlIPAAAAAABgLT/88ENAQEBgYOC4ceNevBxySEjIqFGj5GWtVrt79+6oqCghRK1ataKjoy3cqHlXqbfPpE+eszy2nuLJQr7oVbly5V68dvuyZcvkIN95550XY8jMzGzYsKEQokCBArld692MWRurXKV+//79pUqV8vDw+Pe//338+HFD2D179nz55ZcNzS5evPj+++/7+PiEhISsW7fOwo2ad5V6B8k0W3DD7HXDq9S75/y4LSbHJfvOj9vzKvWMctbanCOMclylHsgRV6mH3XCVegDuwwWvUj9//nydTufr6ztlyhSNRmN43NPT8/vvv/fw8NDpdIbv9y8aMGDAnj17rl+/bsdgrePIkSPywiuvvGK85dGjRxW2zNPcuXOFECVKlHjttddya2P2vlDI19e3Q4cOzZs3/+mnnzw8/ieZNRrNv//9b3l57969yvs8d+7c06dPb9++PW/evIiICOUrFi5cuFWrVkKIefPmqXj1GgAAAAAAAAAAYJCZmTlo0KD333//zTffvHr16vjx40uVKpVjS09PzyZNmmzbtu3vv/9OSEioX7/+n3/+aedohb0mffKc5bH1FM+LoqOj+/bt6+XltXLlyqCgIPlBnU43evRoIUSRIkVmzJjxYgxeXl4TJkwQQsTHx69ZsybHPlWZtVm8eHGLFi1CQ0OPHz++fPnyunXrvhj2i6pUqTJr1qyLFy/WqVNHvmGCJEn2CdLAQTLNFshed+Ce8+O2mBwXrjs/zihnlW0xygEAAMCtuFpJvSRJK1asEEI0bty4WLFiWZ4tU6ZM48aNhRDLly/Pvu5bb73l4+Pzyy+/2D5MKzP116C3t3ft2rUt2WJSUtJff/0lhGjTpk2Wn+sGluwL5b777ruZM2fmeEQyODhYXsjIyFDeYYUKFQoWLJjbIU7j2rZtK4S4cePG2bNnzVgdAAAAAAAAAABYkSRJvXr1Wrhw4fTp05cuXVqkSBElazVv3vzo0aM1a9Z8/fXX7V9Vb4dJnzxneewzxSPLzMzs2bNnUlLSyJEjX375ZcPj+/fvv337thCiZ8+e/v7+WdZq2LChXNi3dOnS3Hq286zN/PnzBwwY8MYbb+zbt0/hHilXrtzWrVuHDx8+duzYzz//3NYRZuEImWYLZK+bcNv5catPjgvXnR9nlLN8W4xyAAAAcDeuVlJ//fr12NhYIUStWrVybCA/fvXq1cePH2d5qlChQh07dlyyZIlOp7N1nFYUGxt79+5dIUSBAgUqVKhgpKVer5fv+lerVi0/Pz9LNrpnz57MzEwhRL169XJrY8m+UC44OLhatWo5PnX+/Hl5oWLFimb3bxLDz8jt27fbZ4sAAAAAAAAAACA3EydOXLNmzcKFC4cNG2bSiiEhITt27Hjttdd69OgRExNjm+hyYJ9JnzxneewzxSObMmXK6dOnS5YsOWrUqBcfN1wzOMcYvLy8GjZsKIQ4duyYVqvNsWd7ztrs2bNn6NChvXv3XrFiRb58+ZSv6OnpOW3atLFjx06ZMsUq5Y8KOUim2QLZ6w7ceX7coSbHhQPnKqMcoxwAAABgBlcrqT99+rS8kNvvh0qVKskLZ86cyf5s//79b9++vWvXLttEZxOGs6sjIyONnzt++fLl58+fC2vc1W7Hjh3ygpEfhxbuCwtlZmYuWLBACOHp6RkVFWX1/nNUq1YtLy8v8cLfBwAAAKbS6XTOdY4r4Mh4QwEAAMCd7d+/f8KECZ988knfvn3NWN3Hx+f3338PDg7u3r27Xq+3eng5ss+kT56zPHab4omJiZk4caIQYurUqVkucyvXCwohChQokOO65cqVE0KkpaVdunQpxwZ2m7VJSEjo3r17vXr15s+fb95lnidMmNC5c+d33nnn5s2b1o4uZw6SabZA9roD5sezU2VyXDhwrjLKCUY5wA3Y7UcKIMg3AG4ja0m9JEmHDx8eMmRI/fr1ixcvHhwc3KhRo0mTJpl6dzCF5syZ8/HHH3/88cdPnjyxSofPnj2TF8qXL59jA8PjN27cyP5sq1atihUrtnjxYqsEYx+m3rBMScs8ybff8vHxye0keGHxvrCEJEkjRoyQDzv27t27dOnS1u0/N35+fjVq1BD//fsAAABAudjY2E8//bRSpUq+vr4+Pj4VKlQYMWKEfCUhAKbiDQUAAAAIIT777LOKFSt+/fXXZvcQEhKyaNGiM2fOLF261IqBGWGfSZ88Z3nsNsXz+eefZ2Zm1qhRo3PnzlmeMpwenNs1gwsXLiwvXLhwIccGdpu1+fbbb+Pi4pYsWWL2NbA1Gs2CBQsCAgLGjBlj3dhy4yCZZgtkrztgfjwLtSbHhQPnKqOcYJQDXJfh+H+DBg2EED169OD4P2zEkGyJiYmTJk1isgmAO/ifkvqjR49WqVLlX//619y5c48cOXL//v34+Pj9+/d/8cUXDRo0SEtLs/rmV69ePW3atGnTpsXHx1ulQ0M/ud1UMSAgQF5ITEzM/qynp2ffvn3XrVsXFxdnlXjsQPmvQeUt8xQdHS2EqFmzpo+PT25tLNwXZtDpdA8fPty5c2e7du1mz54thKhRo8asWbOs0rlC8h3Knjx5Yq2zRAAAANzB6tWry5cv/913312+fFmn0+n1+qtXr06fPr1ChQp2q1oAXAZvKAAAAEAIsWnTpn/++WfKlCnyNVDN1qRJk6ioqC+++CIzM9NasRlhn0mfPGd57DPFc/jw4fXr1wshxowZ4+GR9SpgxYoVkxeSk5NzXN0wcWlkUs8OszaPHz+eMWPGoEGDKlSoYEk/BQoUGDVq1MqVK8+dO2et2IxwkEyzBbLXHTA/LnOEyXHhqLnKKCcY5QAX9eLxf/mq4Xfv3uX4P2zhxWQTQkiSxGQTAHfwP999Dx48GBMTU7ly5YkTJ27btu3kyZPr16+PiIgQQhw7dmzGjBmqhGgSw++H3H60eHt7ywu5/X7o169fenr6qlWrbBCd9el0umPHjsnLkZGRxhvLJ1gHBwdbeFAvPj7+wYMHQohSpUoZbyYvmL0vTLJx40YfH5+wsLAWLVps27ZNCNGyZcu//vorf/78lneuXIkSJeQF+fczAAAA8rR69eoePXqkpKRkfyotLa1v375Lliyxf1SAk+INBQAAAMh+/fXXypUrd+zY0fKuPvvsszt37uzbt8/yroyzz6SPklke+0zxTJgwQQ4j++VvhRDh4eHyQmxsbI6rX7lyRV5ISEjIbRN2mLVZv359SkrKp59+anlX//nPfwICAlasWGF5V8Y5TqbZAtnr8pgflznI5LhwyFxllJMXGOUA18Pxf9gNyQbAbf1PSX1oaOj69esvXLgwduzYqKio2rVrd+rUadOmTRqNRgixbt06q2/+iy++WLly5cqVK4sUKWKVDg0nueb5+yEpKSnHBhUrVmzQoMGiRYusEo+tXbp0SX4hZcuWDQ0NNdIyLS3tzJkzQojIyEh5h5rt/v378kJQUJCRZpbvC5NkZmbK51/KPDw8mjZtGhgYaHnPJnnppZfkhXv37tl50wAAAM7owYMHAwcONN5m8ODB3EMQUII3FAAAACBLT0/ftm3bm2++aZXeGjRoEBoaunHjRqv0ZoR9Jn2UzPLYYYonJiZm+/btQogBAwZ4enpmb1CpUiV5YdOmTdmfzczMPHTokLz8/Pnz3LZih1mbDRs2vPzyy4a6QEv4+fm1adPGrTLNFshel8f8uMxBJseFQ+Yqo5y8wCgHuBiO/8NuSDYA7ux/Sup79erVqVOnLLdtKlGihHwY6M6dO9nX12q1lpzb2qxZsx49evTo0cNaZ0tnZGTICy/+gHyR4XGtVptbJwMGDDh+/Pj58+etEpJNKb8N2enTp+V7kmZvmZiYmNsNuXJk+Oll/MehVfaFcg0aNNi2bdu2bdt+++23sWPHFi5ceNSoUeXLlz916pTlnStn+OFnlUvvAwAAuLwZM2bk+V00LS3t+++/t088gFPjDQUAAADIjh49mpiY2KZNG6v05unpGRUVtXPnTqv0ZoRVJn1EXpN3SmZ57DDFM3v2bCGERqPp169fjg3q1atXq1YtIcSuXbtu3LiR5dklS5bcvn1bXjbUDmZn61kbSZL27NnTtm1ba3XYrl27S5cuGco0bcRxMs0WyF6Xx/y4zEEmx4VD5iqjnLzAKAe4GI7/w25INgDuzCPPFlqtVr5fVfbrK9y4caNp06YLFy60SWhmMZx4bfghkYXhccMX9Oy6du0aEBDgFBeql29DJhT8GszeUqvVfv/992XKlAkKCgoMDKxcufLy5cuVbNTwk8bI31BYaV8oFxYWFhUVFRUV1aVLl4kTJ547dy4iIuLhw4dNmzY9e/as5f0rxA8/AAAAk/zxxx9KmuV4tRsAWfCGAgAAAGTyVaIqVKhgrQ7LlStnKA6zHUsmfQzynLxTMstj6ykerVa7cuVKIUSdOnVKliyZYxuNRvPBBx8IIXQ6Xfv27V+8zO3WrVuHDx9u+GdwcHBuG7L1rM3jx49TU1PLly9vrQ7LlSsncrnMmRU5TqbZAtnr8pgflznI5LhwyFxllJMXGOUAF8Pxf9gNyQbAnXnl2eLq1avyd+46derIj6xaterAgQMXLlzYu3evJEmdO3e2bYymMFzt3pLfD4GBgV27dl2xYsXUqVOzXLNfuYyMjGnTphm5j1V28qkL6enpylcxnGAdGRlpUktJkvr16/frr7927ty5T58+0dHRmzZt6t279+7duxcsWGD8pmYKz7e2yr4wW0hIyIIFC+rVq/f8+fNhw4bt3LnTwtv5KWTqD7+MjIxdu3bJ577DKlJSUi5fvhwREaF2IG7q8ePHO3bs+Oyzz9QOBMakp6dfvHgxIiLCPgMjzHb58uV79+7xhlJFRkbG+fPnIyIizP4qCOViYmKUNLt+/frIkSMZuByHVqs9c+ZMREREjnf+hVp4QzkUvV5/+vTpGjVqGLkcF2zn3r17Wq22VKlSagcCYyRJOnXqVLVq1Xx9fdWOBcY8fvw4Pj7eimWpEELExcU9ePCgSpUqagcC53Dq1KkqVar4+fmpHYgz2bNnj0aj+f777/P83pucnLx79+48j8CcOHEiKSlp+PDhJn1s6XS6uLg45e3NnvQRpkzeKZnlsfUUz+7du58+fSqEaNKkiZFmvXr1+umnn06cOHHhwoVq1ar16NHD39//0KFDu3btKlq0aNeuXRcvXiyEKFSoUG49mDRr8/Tp0ydPnph0OE6+nPymTZvOnTtnvOWZM2fi4uLy7FyeWJw4cWKNGjWUhxETE1OgQAHl7R0n02QDBw68fPmyJElKgs+uWLFiv/76q+GXl3tmrzzVOG/evK1bt5ryahS5du2aEGL69OlFihSxeufyoYzcLradI+bHc6TW5LgwqzB63bp1cl4pIf/REhISlIfEKCcvuNIo9+zZs8TERBtNme3du/f+/fvMx9lIcnLytWvXatasqXYgroDj/9Zy+vTpSpUq5cuXT+1AHBfJZme3bt3y9PQMDw9XOxA4gdTU1JiYGAojlTCvniF//vw5lNQ/ffr04MGDBw8evHPnzuPHj2/duiU/bvgVMWfOnKtXr1avXv3VV189ePCg5dFbkeH3Q25fu2NjY+UF478fMjIyvL29LRn0nz59+tNPP5l0wzidTieEUH50NSUl5fz580IILy+v2rVrG28s/xosV65cSEiIEGLt2rW//vrrypUre/ToITe4cOFC69atFy1a1KZNmy5duhjpSuGfxVr7wmx169aNjIw8evTo7t27jx8//vLLL9tiK1mY+ks4PT395MmTly5dslE8bkir1aakpBiuKAA7S0tLu3z58vz589UOBMbodLrk5OSjR4/y28bBPX/+PC4ujjeUKuS3ybFjx3ib2IHCCTNJkn7++WdbBwPl9Hp9UlLSsWPHOPPEofCGciiSJCUmJh49epS3iSpSU1MlSfL391c7EBgjv02OHDnCCVoOLj09XavVBgQEqB2IS8nIyMjIyNi/f7/agcAJyKPl4cOHGS1NkpSUpPB7b1pa2qlTp6Kjo/NsJoRYvHixSd/u9Hq9YSokT5ZM+ghTJu+UHO6w9RTPunXr5AXj5Xo+Pj5r1qxp3rz5zZs37927N23aNPnxtm3bzp07d9SoUfI/jRRpmTRrExsb+/z5c5MOx8l1zFu3bs3zTNrk5GS9Xp9n53LAu3btOnTokPIwkpKSlF+8yaEyTVawYEEjNZd5KlSo0Ivbcs/slU/G+OOPP7y88r6gnqnk8ty1a9farvPU1FSF7ZkfN0KVyXFhYq7KB6/27dtnqGVX2L98dUIlGOVccpS7f/9+SkqKjabMEhMTdTod83E2ItdvHD58WO1AXAHH/60lISHhn3/+scUXG5dBstlZSkqKRqPhNA8oQWGkcubVM/j7+//fx0NKSsqiRYvmzZsn/8DIzlBSv3v3bnkzn332maOV1Bt+6ly7dq1hw4bZGxhOdzZytYb4+Ph169aNGDHCkiKqokWLmnpbRvmXbVhYmML2t27dkqvww8LCjF+f5syZM/ILj4qKkh/54YcfWrdubTheIISoVq3atGnTevTo8eWXXxo/ZGC4lZjxa/BbZV9YqE6dOvIIcurUKfscNTCcH2/4KWtc/vz5//Of/0yaNMmWQQH2U6pUqTfffHP69OlqBwK4gtdee61YsWK//fab2oEAtlWjRo3cfoC8qGLFigqviAC4M95QAAAAgGzBggXvvPPOzZs387xwbGho6LvvvvvVV18Zb/bdd9+NGjXq2bNnJs3D+fj4VK1aVWFjSyZ9hCmTd0pmeWw9xbNnzx4hhIeHR46dv6hs2bLHjh2bOXPmkSNHfH19K1Wq1L1793r16mk0mosXLwoh/P39q1WrltvqJs3aVK9e/dGjRyb9XLp582aZMmWWLFny5ptvGm/51ltvXb16Nc9p71OnTtWpU2fr1q1NmzZVHka7du1yu1Zxdg6VabLvvvtOWeyKuGf2yq968+bNjRo1UvxSlPr7779btmx54MABW1xjeO3atV26dFF+9ibz48bZf3JcmJir8gAyY8aMd955R2H/iYmJQUFBFStWVNieUc4lR7nq1aufPn1avjmM1Q0aNGjfvn1cBhGOj+P/sBuSDYA7+/8l9efPn3/zzTevXLkihKhRo0aPHj1q1KhRtWrVsLCw5s2bHzlyJCAgwHAXWke+vprhl/zly5dzbGD4/WDku/uqVavS0tL69etn7eis7NGjR/KC4VdTbpYtWyYvdOvWTV4oW7Zsy5YtszR7/fXXhRAXLlzIyMjw8fHJrTeFPw6tsi8sZPiVePv2bRttIgvD30RhST0AAICb69Spk5KDMm+88YYdggGcHW8oAAAAQFasWDEhxP379/MsqVfo/v37YWFhNp0gs2TSR5gyeadklsemUzxPnjyRbwtQp04dJRfQDQkJyX5lori4uAsXLgghmjVrZuQCk7aetSlatKhGo7FihZ/clZzANuJQmWYLZK9rY37cOPtPjgvHy1VGOUY5wFVx/B92Q7IBcGceQohnz561aNHiypUrVapU2bdv35kzZ0aNGtW+ffty5cp5e3ufPn1aCFGvXj2nuKlo9erVfX19hRAnTpzIscG5c+eEEAUKFKhQoUJunSxatKhRo0ZGGjgIw2+YlJQUI82ePXsm/xps1KiR4UziH3/8UT5A8KKAgIDg4GCtVhsXF2ekQ8NPGsN5wzmyyr4wLiEhwfi9Zgw/F5Vf+99Cpl6lHgAAwM198MEHedY3BAYGDh8+3D7xAE6NNxQAAAAgq1Wrlkaj2bdvn7U63LdvX0REhLV6y5Elkz4mUTLLY9MpHsOV2hs0aGDqugbz589PT08XQgwYMMBIM1vP2vj6+sqzq9bqcN++fS+99FKZMmWs1WF2DpVptkD2ujY3nx93wMlx4Xi5yijHKAe4Ko7/w25INgDuzEMIMX369IcPHwoh1q5d27BhQ41GY3j63Llz8pfdyMhItUI0iZ+fX/v27YUQe/fuNZx/bHDnzh35N0CnTp1yO734/Pnzx44dM/7l3kFUqFBBPlf+xo0buf1OkyRpwIABjx498vHxmTlzpmHn+vv7Z//we/LkSVxcXHBwcOHChY1s13BtDOPnW1u+L/K0ZcuW8ePH5/ZsRkbG4cOH5eXGjRubtwlTGf4mxYsXt88WAQAAnFpoaOiyZcte/A2ShUajWbJkSZEiRewZFeCkeEMBAAAAsuLFi9erV2/jxo1W6e327dunTp3q1KmTVXrLjSWTPiZRMstj0ykew1V1zb7iUmZm5uzZs4UQpUuXbteunZGWdpi16dix47Zt29LS0qzS24YNG9q2bWvkUtmWc6hMswWy17W5+fy4A06OC8fLVUY5RjnAVXH8H3ZDsgFwZx5CiGPHjgkhNBpNltsISpI0YcIEedlZSuqFEH369BFCpKenT5kyJctThntO9e/fP7fVFy1aFBgY2KVLF9tFaC0BAQFt2rQRQmRmZi5dujR7A71eP3HiRPmQ8bRp0/K8gIp8Hvbbb79t/EfjSy+9JKfKrVu3jHdo3r5ITk7+6aefNm7cKEmS8f7Pnz8/adKkKVOm6HS67M/+/PPPd+7cEUJERkZWr179xadSU1PnzZu3Zs0a4+fxm8HwN6lcubJ1ewYAAHBVHTp02LRpU3BwcPanChQosGHDhjfffNP+UQFOijcUAAAAIHvjjTf+/vvv27dvW97V4sWLPT095fI127H6pE9uFM7ymDfFo2T+5erVq/JCqVKl8ow2x6miMWPG3L17VwgxY8YM49Xndpi1eeONN5KSkn7//XfLuzp48ODly5dtffKGo2WaLZC9LszN58cdcHJcOF6uMsrJC4xygEvi+D/shmQD4L4kSWrWrJm83Lt374cPH0qSlJqaun379kaNGhma3bp1S8pm5MiRQojp06dnf0qhLl26FC9evHjx4tevXzd13Xbt2jVu3Dj743q9PioqSg573rx5hgd/+OEH+Zdwhw4d9Hp9jn2mp6eHhIS8/fbbpgZjFfK5DXv37lW+yokTJ7y8vIQQAQEBmzdvfvF13b17t2XLlvLfYcKECXl2defOnQIFCpQtW/bZs2d5NpZzxtvbOy0tzUgz8/bFkCFD5FVmzZplPIzr16/LN6179dVXt23blpmZadjE/Pnzvb29hRBeXl7//PNPlhV79+4tb2L27NlZnnry5Ensf3344Ydys9WrVxseTEhIMBJS7dq1hRAhISHGIzcoWLDgmDFjFDYGHF/JkiWHDRumdhSAi3j11Ve7dOmidhSA/Tx79uyrr7565ZVXvLy8fH19IyMjJ02a9PTpU7XjApyS4Q3l4+Pj5eXFGwoAAABuKC4urmDBgn369DHeLCQkZNSoUUYaPHz4MCgoaPDgwWbE4O3tPXnyZOXtrTLpo2TyTsksj3lTPEbmXwxef/11uc3p06eNBClvrkOHDj/88INOp5MfSUhIGDZsmLx6//79c5vvMzBp1mbw4MEVK1ZU0jKLFi1alC5d2viUWc+ePV9++WXj/bz22msVK1bMyMgwNYC2bdu2aNFCeXuHyjRbcMPsNWOWWbkdO3YIIc6cOWOLzuXTUW7evKl8FXeeH7fF5Lhk3/lx+bLx8+fPV9LY7FUY5VxvlPvkk0+KFi2qpKUZ3n333cqVK9uoc8AWDMf/Q0JCChUqxPF/2A7JBsANCUmSvv32W/GCwMBAeSEoKMjf318IUaRIkRy/71peUm+449iVK1dMXTe3knpJku7cuSP/mBRC1K5du3PnzuXLl5f/WapUqfv37+fW59q1a4UQ2X9k2od5BzvmzJlj2Hevvfba559/Pnbs2E6dOvn5+Qkh/P39ly1blmcn8fHxNWvWDA0NvXTpkpKNDh8+XN7ikSNHjLc0Y180adJEblClSpU8Izl16lTJkiXl9iEhIY0aNYqKigoJCZEf8fT0XLx4cfa16tWrJzcYNGhQlqdeeeUVYdTIkSNzCyYtLU0+VNG8efM8I5dRUg8XQ0k9YEWU1MNtRUZG9ujRQ+0oABfx5ptvNmjQQO0oAAAAAHV8++23Hh4e+/fvN9Imz5L63r17BwQEGJlaMsLUknrJGpM+SibvFM7ymDHFY2T+xcAwOXjt2jXjr2X9+vVyy4IFCzZp0qRly5ZBQUHyIx07dsyz9NzUWRuzS+qPHz+u0WiMl2bmWVIvX0p57dq1ZgRgakm95GCZZgvulr1uVVIvuff8uNUnxyX7zo/bp6ReYpRzuVGOknoAAADYh4cQYtiwYYZzWIUQSUlJNWvWHD9+vFzmLoR4+eWXjd/pzNGEh4efPHmyadOmQohTp06tXbtWvkFVq1atjhw5UrRo0dxWXLRoUeXKlevXr2+/WC02ePDgjRs3li5dWghx8ODBb775ZtKkSRs2bNDr9QMHDoyOju7Vq5fxHp4/fx4VFRUfH3/gwAGFN9UynLotH6Axwox98emnn4aGhpYrV06n0+V577mIiIhz5869//77AQEBT5482bdv3/bt2588eSKEqFq16o4dO/r165d9rS+//LJSpUpVq1Y1/Mq1irNnz2ZmZgohWrVqZcVuAQAAAAAAAACAqd5///3atWt36dLl9u3b5vUwc+bMZcuWTZkyxcjUknVZPumjhMJZHjOmeJTMvyQlJckL8oW9jMf54YcfajSaZ8+e7dmzZ8eOHQkJCUFBQd9+++26devkUjwj7DZrU7du3Q8++GDChAmbNm0yr4cTJ04MGjSoU6dOb7zxhnVjy41DZZotkL2uzZ3nxx1qclw4cK4yymVfhVEOAAAAyJOXEMLb23vr1q1nz5599OhRWFhYiRIlChQoID+dkpJi083v2bPHRj0XLVp0165dJ0+e/Ouvvx4/fhweHt6sWbNatWoZWeX+/fvbtm2bPHmyc50/IITo0KFDmzZt9u7de+TIkadPnxYqVKhSpUqtW7fOnz9/nus+f/68devWT58+3b9/v+GM9jw1btzY19c3PT1dyY9DU/dFmzZtHj16JL8unU7n4eFhvP+goKBZs2Z9/fXX27Ztu3LlypMnT4oUKdKwYcP69evntm7r1q2jo6NzfOrw4cN5vqLcHD9+3NC/2Z0AAAAAAAAAAADL+fn5bdiwITIysm3btlu3blU+CSJbtmzZxx9//M4777z33ns2ijBHlkz6KKR8lsfUKR4j8y8G06ZNS0xMFEIULFjQeMuAgIAZM2Z8+OGHW7duvX37to+PT+XKlTt27Gi44bZx9py1mTp16sWLF3v16rVu3boWLVqYtO6ZM2c6duxYvnz5pUuX2nOO0qEyzRbIXtfmzvPj1p0cF647P84olwWjHAAAAJAnL/l/Go3GeLm5k6pTp06dOnUUNpYPVPXu3dumIdmIt7d3ixYtTD1IFx8f37p166SkpH379pl0hRV/f/82bdps2LBh+/btWq3Wy8srz1VM2hcyw92+lAgMDOzatatJ/VvdH3/8IYQoW7ZszZo11Y0EAAAAAAAAAACEh4dv3rz59ddfj4yM/P333xs0aKBkLa1WO2rUqO+++65Lly6zZ8+2dZDZmTfpo5ypszxmTPEY0bhxY5PalylTxryzGuw5a+Pl5bV69er27du3adPm+++/f//99xWu+Pvvv/fr169kyZJ//PGHFas8FXK0TLMFsteFufn8uCNMjguHz1VGOVMxygEAAMDN5XH9b/chSdKiRYvatWsXFhamdix2Eh8f36pVq4yMjD179phxx9IhQ4YIIR4+fLh7924bRCeSkpL8/Pxs0bONPH78+K+//hJCDB482OludAAAAAAAAAAAgEuqU6fO8ePHS5Ys2ahRo27dul2/ft14+7///rtOnTpTp04dOXLk6tWrfXx87BOnndl6lkd19p+1CQ4O3rVrV58+fT744INXXnll7969xttfunSpW7duXbt2bdCgwT///FOqVCk7BGl/Lp9ptsCco+0wP25d5KpglDMLmQMAAACHRUn9/3fw4MErV64MGDBA7UDsJC4urmXLlh4eHrt27QoNDTWjhxYtWlSqVEkIMXfuXGtHJ4QQy5cv79atmy16tpEFCxbodDp/f/9+/fqpHQsAAAAAAAAAAPj/ihUrtm/fvilTpvz9999Vq1Zt167d/Pnzo6Ojk5OT5QYPHjz4559/Ro0aVbVq1ZYtWwYEBOzbt2/y5MkeHi47j2brWR7VqTJr4+Pjs3DhwnXr1iUkJDRp0iQyMvKrr746ceLEkydP5AbPnz8/d+7cjBkzmjZtWr169UOHDi1cuHDr1q0FChSwW5B25vKZZgvMOdoI8+NWR64KRjmzkDkAAABwWObceWrLli3nzp0TQhw6dEgI8ffff6elpQkh6tev36RJE6uGZz+LFi0qXLhw27Zt1Q7ETgYMGHD8+PFGjRr17t1bkiSdTvfis4sWLSpWrJjxHjw8PL7++uvOnTuvW7fu4sWLVatWtWJ4SUlJq1evlk9NdgopKSnTp08XQnz88cfmHYIBAAAAAAAAAAA24ufn98knnwwcOHDu3Lnr168fPHiwJElCCI1GM3ny5K+//loIkT9//qioqG+++aZDhw5Od81UUyfvbDrLozp1Z23eeOON9u3b//rrr6tXr540adKYMWOEEB4eHpIkyaXznp6eDRo0mDFjxttvv50vXz47h2chMs3WmHO0HebHrctVc5VRztZcNXMAAADgGswpqf/tt9+WLFli+OeWLVu2bNkihBg5cqSTltQnJiauWbNmyJAh3t7easdiJ48fPxZC7Nu3L8dnU1JSlHTyxhtvNGnSZM+ePaNGjdqwYYMVwxs2bJhz7Y7p06c/fvw4PDz8448/VjsWAAAAAAAAAACQg4IFC44aNWrUqFF37949ffp0bGzs0KFDIyIi3n///ZIlS77yyiu+vr5qx2gmMybvbDfLozrVZ228vLz69u3bt2/fxMTEI0eO3L9/f+LEiXFxcVOnTg0LC4uMjCxUqJAqgVmOTLM11bPXhTE/bl2umquMcrbmqpkDAAAA12DODSt/+eUXKSeTJ0+2enz28dtvvyUnJ/fv31/tQOznwIEDOe5EWfny5ZV0otFofvnll6CgoI0bN65bt85asZ0+fbpIkSJOdFe7mJiYSZMmaTSaJUuW5M+fX+1wAAAAAAAAAACAMeHh4a+//vo777wTFBTUokWLXr16NWrUyHnr6YVZk3c2muVRnUPN2uTPn79FixZ9+vSJjIwsV65c//7927Rp47z19IJMszGHyl7Xw/y4FblwrjLK2ZQLZw4AAABcgzkl9a5n8eLF9evX5yZcZihVqtSaNWu8vLyGDBly+/Ztq/QZERHx1VdfWaUrO0hJSenVq1d6evrUqVObNWumdjgAAAAAAAAAAACK2GKWR13M2jgm18s0WyB7nQXz4+RqdoxySpA5AAAAcHxOXFJfpkyZMmXKWN6PJEn379//4IMPLO/KPbVu3XrBggWPHj1q3759YmKi2uHYlV6v79Onz/Hjx0eMGDFixAi1wwEAAAAAAAAAADCBK83yMGvjyFwp02yB7HUu7pzP5Gpu3DkrlCBzAAAA4BS81A7AfLNmzbJKPxqN5urVqxqNxiq9uae+fft2795dCOHt7a12LHal0WiWL1++fPlyp74bLAAAAAAAAAAAcFsuM8vDrI2Dc5lMswWy1+m4bT6Tq0a4bVYoQeYAAADAKThxSb0Vi+Cpp7ecn5+f2iGoQKPRuOcLBwAAAAAAAAAALsM1JjuYtXF87KDckL3OyD13GblqHH+c3JA5AAAAcAoeagcAAAAAAAAAAAAAAAAAAAAAAIA6KKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAbspL7QCQ1YkTJzIyMtSOAnaSmZmZmZmpdhQAAAAAAAAAAMDKJEm6evXq33//rXYgUOTu3btOOmWTnp4eFxdHprmzy5cvqx2CmSRJEkIcOHDgypUrascCe0hJSRFC6HQ6U1e8dOkSo5w7u3XrllarVTsKAAAAuD5K6h1IQkKCEGLEiBFqBwK7unjxotohAAAAAAAAAAAAK9Pr9QsWLFiwYIHagUCpwMBAtUMwx7Vr127evNmyZUu1A4HKnjx5onYIJrt165YQolevXmoHAru6evWq8sZeXl5CiOnTp0+fPt1mEcEJ+Pr6qh0CAAAAXB8l9Q6kWbNmBw4c8PPzUzsQ2E9CQsIrr7yidhQAAAAAAAAAAMDKTp06lZ6e7uHhoXYgUCQjIyM0NFTtKMxx+PDhy5cv+/v7qx0I1JSSktKwYUO1ozDZRx99VLdu3fz586sdCOzn+fPnTZo0Ud4+X758x48flyRJo9HYLCg4uszMzAIFCqgdBQAAAFwfJfWO5bXXXlM7BAAAAAAAAAAAAFiqZs2aaocAt1CkSJEiRYqoHQVgJpOqq+Ge6tatq3YIAAAAANwCF8YAAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgprzUDgD/5/Tp0y+//HJAQICHB6c6uIukpKR333139uzZagcCAAAAAAAA2Fvbtm137twZEBCgdiCwE61Wm5GR8fjx4/z58ytcZf78+e+9957y9nBJycnJb7755sqVK9UOBHBQ//rXv06fPp0vXz61A4Fq9Hp9cnLyrl27GjZsqHYsAAAAAAA4K0rqHUhqaqpWq23Xrl2JEiXUjgV2MmvWLEmS1I4CAAAAAAAAUEdwcHC/fv3UjgJ2cv78+S1btqSnpysvkc/MzNRqtb1796ZU1J3Nnz+fA+mAcWFhYd27d1c7CqjmwYMHS5YsSUtLUzsQAAAAAACcGCX1DsTb21sIMWjQoEaNGqkdC+zk559/LliwoNpRAAAAAAAAACooVKhQ8eLFJ0+erHYgsJOlS5du2bLFpFXk4vuxY8eGhITYJig4gbVr1xYqVEjtKADHVbBgwcDAQD5P3dnx48eXLFni6+urdiAAAAAAADgxD7UDAAAAAAAAAAAAAAAAAAAAAABAHZTUAwAAAAAAAAAAAAAAAAAAAADcFCX1AAAAAAAAAAAAAAAAAAAAAAA3RUk9AAAAAAAAAAAAAAAAAAAAAMBNUVIPAAAAAAAAAAAAAAAAAAAAAHBTlNQDAAAAAAAAAAAAAAAAAAAAANwUJfUAAAAAAAAAAAAAAAAAAAAAADflpXYA5svMzNTr9b6+vpZ3lZaW5ufnZ3k/7uzp06eSJAUFBfn4+Kgdi/3o9fpnz54JIYKDgz09PdUOBwAAAAAAAICdcESUI6JZuGdKKEHaADBgqMwNQyUAAAAAAKpz4qvUDxkypG/fvpb3I0lS6dKlf/zxR8u7cltz5swJCQlp166dVqtVOxa70mg0H374YWho6NChQyVJUjscAAAAAAAAAPbAEVGOiGbhtimhBGkDQMZQaQRDJQAAAAAAqnPiq9Q/ePAgKSnJ8n40Gk2dOnV++OGH//znPxqNxvIOVZGUlCT/Nfz9/YOCgoy0TE1Nff78uRAiKCjI39/f8k1v2LBh6NCh4eHhGzdutEqHTkSj0SxcuPDatWtz584tUaLEqFGj1I4IAAAAAAAAcH0qHg4VHBF1niOidssTd04JJZwrbQC3Ys/PU4ZK4xgqAQAAAABQnRNfpV4JrVZ75cqVnTt3nj9/XqfT5dasf//+MTExhw8ftmds1vXRRx8VLVq0aNGiixcvNt5y9uzZcsvdu3dbvt0rV6706tVLr9f//PPPYWFhRloq3BeWyMjIiI6O3r179/379614/YYzZ848fvw4t2f9/PyWLl3q6+s7evToHTt2WGujAAAAAAAAAHKj1uFQofiIqPMeDhUudETUPnmi/CC5Ldgh04zLzMy8ePHijh07Tp48aSQAJ0obwK3Y7fNUxaHS6uOkGZ+/DJUAAAAAADgFly2p1+l006dPL1myZMWKFVu0aFGjRo0yZcrMmjUrx0MbHTp0KFiw4KJFi+wfp7UcOXJEXoiMjDTe8ujRowpb5kmv1/ft2zc5Ofmtt96KiorKrZlJ+8I8MTExAwYMCAwMrFKlSrNmzYoXL164cOHJkyenp6db0q0kSTNnzqxbt+6ZM2eMNKtYseK4ceOEEP369UtISLBkiwAAAAAAAADypMrhUKHsiKjzHg4VLndE1A55ovAguS1YJdNmzZoVpczPP/+cZV2tVvvNN9+ULFmyWrVqrVq1qlu3bvHixefOnZtbAM6SNoBbsc/nqVpDpdU/kc34/GWoBAAAAADAibhmSX1aWlrXrl1HjBgRGxsrhMifP78Q4s6dOx9++GG3bt2yn/3v6+v773//e/Xq1cnJySqEa7Hk5OTz588LIby9vWvXrm28sXx0rGzZsqGhoRZud/Xq1YcOHfLw8Jg4cWJubUzdF+aFUatWrcWLF2dmZgohAgIChBBPnjz5/PPPIyIinj59amqHWq323LlzP/74Y/Xq1YcNG6YkyA8//DA0NPT+/fvffvutGS8BAAAAAAAAgEJqHQ4VCo6IOuPhUOGiR0TtkydKDpLbgrUy7eLFi38qExMT8+KKqampUVFRo0aNevDggRAiMDBQCPHw4cMhQ4YMGTIkt1JRx08bwK3Y7fNUlaHS6p/IZnz+MlQCAAAAAOBcXLOkfty4cevXrxdCDBw4MDY2NiEh4d69e127dhVC/P7775MnT86+Sv/+/RMTE9euXWvvWK3hxIkT8qGfWrVq+fn5GWkZGxt7584dYY1rMul0ujFjxgghevbsWa5cudyambEvTLJ+/foePXqkp6dHRkZu3rw5Pj4+MTHx1q1bffr0EUJER0f36dNHr9cr77BIkSLe3t41a9YcOnToxYsXFa7l7+8/fPhwIcS0adMePXpkxgsBAAAAAAAAoIQqh0OFsiOiTnc4VLjuEVE75InCg+S2YK1Mq1y5cvNsWrVq1bZt23b/Jdehyv+VSZLUt2/fnTt3GgJITEy8d+9e9+7dhRDz5s3L7Z7Ajp82gFuxz+epWkOldT+Rzfj8ZagEAAAAAMDpuGBJ/eXLl6dNmyaE6NWr188//xwWFiaEKFas2MqVKzt16iSEGDdu3PXr17OsVbt27YiIiMWLF9s9Xisw3JbxlVdeMd7ScFvGPFvmadu2bfKfcdCgQbm1MW9fKJeeni5vffDgwYcOHWrXrt1LL72k0WhKliz5yy+/tGjRQgixdevWP//8U3mfz58/F0KEh4e/++677dq1U77iwIEDPT0909LSnDSLAAAAAAAAAKegyuFQoeCIqDMeDhWue0TUDnmi5CC5LVgx04YNG/Z3Nn/++eeWLVs2b968efPmAQMGJCYmlitXTq7vlP3666+//fabEOKdd955MYDly5c3bNhQCPHxxx8nJCTkuEUHTxvArdjn81SVodK6n8jmff4yVAIAAAAA4HRcsKR+/vz5Op3O19d3ypQpGo3G8Linp+f333/v4eGh0+mWLVuWfcUBAwbs2bPHkikNtagyhzR37lwhRIkSJV577bXc2pi9LxTy9fXt0KFD8+bNf/rpJw+P/0lmjUbz73//W17eu3ev8j7PnTv39OnT27dvz5s3LyIiQvmKhQsXbtWqlRBi3rx5pl4ICgAAAAAAAIBCapXU53lE1BkPhwrXPSJqhzxRcpDcFmydaQbR0dF9+/b18vJauXJlUFCQ/KBOpxs9erQQokiRIjNmzHgxAC8vrwkTJggh4uPj16xZk2OfDp42gFuxz+epKkOldcdJMz5/GSoBAAAAAHBGrlZSL0nSihUrhBCNGzcuVqxYlmfLlCnTuHFjIcTy5cuzr/vWW2/5+Pj88ssvtg/Tykw95uXt7V27dm1LtpiUlPTXX38JIdq0aZPl4JGBJftCue+++27mzJkvHooyCA4OlhcyMjKUd1ihQoWCBQvm2GGe2rZtK4S4cePG2bNnzVgdAAAAAAAAQJ7sfzhUKDgi6qSHQ4XrHhG1dZ4oOUhuC/bJNCFEZmZmz549k5KSRo4c+fLLLxse379//+3bt4UQPXv29Pf3z7JWw4YN5eL7pUuX5tazI6cN4Fbs8HmqylBpi3HS1M9fhkoAAAAAAJyRq5XUX79+PTY2VghRq1atHBvIj1+9evXx48dZnipUqFDHjh2XLFmi0+lsHacVxcbG3r17VwhRoECBChUqGGmp1+uPHTsmhKhVq5afn58lG92zZ09mZqYQol69erm1sWRfKBccHFytWrUcnzp//ry8ULFiRbP7N4lhXmH79u322SIAAAAAAADgVlQ5HCoUHBF1w8OhwoGPiNohT5QcJLcF+2SaEGLKlCmnT58uWbLkqFGjXnzccLHqHAPw8vJq2LChEOLYsWNarTbHnh02bQC3Yp/PU1WGSluMk6Z+/jJUAgAAAADgjFytpP706dPyQm5HSSpVqiQvnDlzJvuz/fv3v3379q5du2wTnU0YriERGRlp/EpCly9ffv78ubDGbY537NghLxg5BGbhvrBQZmbmggULhBCenp5RUVFW7z9HtWrV8vLyEi/8fQAAAAAAgP3pdDrnumIC4Mgc7Q2lyuFQoeCIqBseDhUOfETUDnmi5CC5Ldgn02JiYiZOnCiEmDp1apbrK8uFqkKIAgUK5LhuuXLlhBBpaWmXLl3KsYEDpo0kSWqHANcnSZJDZZp9Pk9VGSrt+Ymc2+eviw2Ver1e7RAAwIYc6gMaAAAA6spaUi9J0uHDh4cMGVK/fv3ixYsHBwc3atRo0qRJpt4rVqE5c+Z8/PHHH3/88ZMnT6zS4bNnz+SF8uXL59jA8PiNGzeyP9uqVatixYotXrzYKsHYh6m3ZVTSMk/yTQZ9fHxyuySDsHhfWEKSpBEjRty8eVMI0bt379KlS1u3/9z4+fnVqFFD/PfvAwAAAAAA7Ck2NvbTTz+tVKmSr6+vj49PhQoVRowYIV99E4CpHPYNpcrhUKHgiKgbHg4VDnxE1A55ouQguS3YJ9M+//zzzMzMGjVqdO7cOctThnNscrtYdeHCheWFCxcu5NjAQdLGMMo9efJk8uTJjjPKwcUYMm316tXHjx93nEyzz+epKkOl3T6RjXz+usZQacjeNm3aCCHat2/vINkLAFZhGOUWLFgQHR3tOJ/RAAAAUNH/lNQfPXq0SpUq//rXv+bOnXvkyJH79+/Hx8fv37//iy++aNCgQVpamtU3v3r16mnTpk2bNi0+Pt4qHRr6yZcvX44NAgIC5IXExMTsz3p6evbt23fdunVxcXFWiccOlB/zUt4yT9HR0UKImjVr+vj45NbGwn1hBp1O9/Dhw507d7Zr12727NlCiBo1asyaNcsqnSsk34fxyZMn1jpLBAAAAAAAKLF69ery5ct/9913ly9f1ul0er3+6tWr06dPr1ChwtKlS9WODnAyjvyGUuVwqFBwRNQ9D4cKRz0iaoc8UXKQ3BbskGmHDx9ev369EGLMmDEeHlkvzFSsWDF5ITk5OcfVDXNJRuZZVE+bF0c5IYQkSY4zysGVvJhp8hVwHSfT7PN5qspQaetxUsnnrwsMlS9mr3yV+tu3bztI9gKA5Rz5MxoAAAAq+p+DoQcPHoyJialcufLEiRO3bdt28uTJ9evXR0RECCGOHTs2Y8YMVUI0ieEoSW6HZry9veWF3I6S9OvXLz09fdWqVTaIzvp0Ot2xY8fk5cjISOON5ctIBAcHV6hQwZKNxsfHP3jwQAhRqlQp483kBbP3hUk2btzo4+MTFhbWokWLbdu2CSFatmz5119/5c+f3/LOlStRooS8IB8lBAAAAAAAdrB69eoePXqkpKRkfyotLa1v375Lliyxf1SAk3LkN5Qqh0OFsiOi7nk4VDjkEVE75InCg+S2YIdMmzBhghCiVKlS2S9RL4QIDw+XF2JjY3Nc/cqVK/JCQkJCbptQN20ceZSDK3HkTLPP56laQ6VNx0mFn7/OPlQ6cvYCgOUY5QAAAJCb/ympDw0NXb9+/YULF8aOHRsVFVW7du1OnTpt2rRJo9EIIdatW2f1zX/xxRcrV65cuXJlkSJFrNKh4VT+PI+SJCUl5digYsWKDRo0WLRokVXisbVLly7JL6Rs2bKhoaFGWqalpZ05c0YIERkZKe9Qs92/f19eCAoKMtLM8n1hkszMTPkaCTIPD4+mTZsGBgZa3rNJXnrpJXnh3r17dt40AAAAAADu6cGDBwMHDjTeZvDgwdy8G1DCwd9QqhwOFcqOiLrn4VDhkEdE7ZAnCg+S24KtMy0mJmb79u1CiAEDBnh6emZvUKlSJXlh06ZN2Z/NzMw8dOiQvPz8+fPctqJi2jj4KAeX4eCZZp/PU7WGSpuOkwo/f516qHTw7AUACzHKAQAAwIj/Kanv1atXp06dstzHs0SJEvJJ8Hfu3MmycmJiYm63q1OoWbNmPXr06NGjh7WunZORkSEvvHg440WGx7VabW6dDBgw4Pjx4+fPn7dKSDal/GaLp0+fzszMzLGlqfvRcIDJ+CEwq+wL5Ro0aLBt27Zt27b99ttvY8eOLVy48KhRo8qXL3/q1CnLO1fOcHjLWrdvBgAAAAAAxs2YMSPPIxtpaWnff/+9feIBnJqDv6GscjhU2OaIqHseDhUOeUTUWnmi1Wpze1EKD5Lbgq0zbfbs2UIIjUbTr1+/HBvUq1evVq1aQohdu3bduHEjy7NLliy5ffu2vGwoWs1OxbRx8FEOLsPBM80O46RQb6i06Tip8PPXqYdKB89eALAQoxwAAACM8MizhVarle/KZ7i7nFar/f7778uUKRMUFBQYGFi5cuXly5fbNkzFDJcBMBwuycLwuOEwRHZdu3YNCAhwigvVyzdbFAqOeWVvafZ+NBy4MfI3FFbaF8qFhYVFRUVFRUV16dJl4sSJ586di4iIePjwYdOmTc+ePWt5/wo54AQSAAAAAACu7Y8//lDSLMcrRALIwsHfUJYcDhU2PiLqnodDhUMeEbUwT2Q3btxo2rTpwoULc1xR4UFyW7Bppmm12pUrVwoh6tSpU7JkyRzbaDSaDz74QAih0+nat2//4vWVt27dOnz4cMM/g4ODc9uQimnj4KMcXIaDZ5odxkmh3lBp03FS4eevUw+VDp69AGAhRjkAAAAY4ZVni6tXr8pHFurUqSOEkCSpX79+v/76a+fOnfv06RMdHb1p06bevXvv3r17wYIFlt9C10KGq91bcpQkMDCwa9euK1asmDp1apZr9iuXkJDw/vvvp6amKl9FvhFhQkKC8lUMl5GIjIw0qaUl+1HhVSWssi/MFhISsmDBgnr16j1//nzYsGE7d+60T3KaengrNTV17dq1MTExtgzKvSQlJV25ciUiIkL14cg9xcbG/v77745zm2/kKCUlJTo6OiIiwuzPONjHmTNnYmJiunXrpnYg7igtLe3ChQsRERE53uMetnbhwoXr16+T/A4uIyPj3LlzNWvWNHI1NTiCPXv2ZGRk8IZShVarPXPmTPXq1X19fdWOxfVFR0craXb9+vWuXbvya9Fx6PX606dPV6lSJV++fGrHgv9j5zfU0aNHc7uCbI7MPhwqbH9E1D0PhwoTj4g+evRICDFw4EDln4+3bt0SuV9pOEeW5MmqVasOHDhw4cKFvXv3SpLUuXPnHFdUfunlgQMHXr58WZIkhcFnUaxYsV9//fXFb902zbTdu3c/ffpUCNGkSRMjzXr16vXTTz+dOHHiwoUL1apV69Gjh7+//6FDh3bt2lW0aNGuXbsuXrxYCFGoUKHcejD1QHp8fPyff/5pla+1fG2wimvXrvn5+RUvXlztQByXnTPt1KlTBQsWVN7eDuOkUG+otOcnspHPXzsPlfIVl8eNGxcaGmrhi2KctA8OGsAkfPJaEaOcnSUkJFy/fj0iIkLtQFxTZmbm2bNna9So4ePjo3YsTkOSpNOnT1eoUMFwHiaUuHDhQtGiRU360QHlbt686enpabjaNWAEhZHKyZ+SptYz+Pn55VBS//Tp04MHDx48ePDOnTuPHz+WD1iL/x4rWbt27a+//rpy5coePXrIj1+4cKF169aLFi1q06ZNly5dLH4tFjEcJcnt4EJsbKy8YPwoSUZGhre3tyWZp9Vqnz17lpaWpnwVuZhep9MpbJ+SknL+/HkhhJeXV+3atY03lo95lStXLiQkRFi2HxX+Way1L8xWt27dyMjIo0eP7t69+/jx4y+//LIttpKFqcf7JElKS0uTz6aAVSQlJSUlJcXFxfHJoQpJktLT00lpB5eSkiK/TSipd3A6nS4zM5M3lCrS0tLktwkl9arQarUkv+PLyMiQ3yaU1Du4zMxMnU7HG0oVWq1WfpswO+5Q+LXoUHQ6XWJiYlxcnEkH0OA4rPKGysjIUN6JJYdDhe2PiLrn4VBh4hHRzMxMIcTz58+Vf42UawSVl9RbmCdz5sy5evVq9erVX3311YMHD+a2ovK8LViwoJFyyTwVKlQoy7Zsmmnr1q2TF4yX1Pv4+KxZs6Z58+Y3b968d+/etGnT5Mfbtm07d+7cUaNGyf+sWbNmbj2YeiBdp9PZ/6gjXxuMSEhISE9P9/f/f+3dZWAUV9fA8bsRogSI4BAcGixYoLgFAoHgBVocKkgLxYsVK04pVlxKaWmhpECxAi1WwQmuwQkQQoy47L4f5nn2yRvZrM1K8v996Xb37r0n2XNmycyZGWdzB5IXGCXTUlNT09LStBxsmu2kMN+m0sTfyDl9/5p4UykdX3779q2dXe4X1DMWtpOGYKcBdMI3r1mwlTOKt2/fSjt/zB1I3pSamip9m9BSrz2VSvX27dvo6GhpBwW0FBsb6+TkxFZRJjExMba2tpzmAW3Ex8dLX6zUY67062dwcHD43x/VCQkJmzdvXrdunbQbJSuppX7lypXt27dXH3UQQlSvXn3p0qV9+vSZO3eu2Vvq1Tt0QkNDmzVrlnVAaGio9KBw4cI5TRIdHR0cHDx27FhDMs/d3V3LO0apSftZNNzgL5PHjx9L+0eKFy/u6OioYeSVK1ekHzwgIEB6xpDPUb0Fz3ibwqyM8lkYqG7dutItKS9fvmyaY0jqmwyod9hp5uzs/MEHH8yZM0fOoADT8fb27t69+7Jly8wdCJAXNGnSpGTJkrt27TJ3IICpNWzYsEKFCjt27DB3IEBe0KNHj/Dw8KNHj5o7EEBeNWvWzGl3VkaVK1c+duyYCeIBrJqJC6p///43b97UcrAhu0OF/HtE8+fuUKHjHlHpypq//PKL+teVq23btg0cOFD7BkED8+T48ePSNQgmT56soVVUy53kQojFixdrGbmWZM20EydOCCFsbGyynTmjChUqnD9/fvny5WfPnnVwcKhatWrv3r3r16+vUCikonZ2dq5evXpOb9d1R7qHh0e7du1Wr16t5Q+iAf9sgGmYONMCAwNzuiJ7VqbZTgrzbSpN/42c0/evKTeV0q0Avv766+bNmxv447CdBJC3sZUDAACABv/ZDX39+vXu3bvfu3dPCFGzZs0+ffrUrFnTx8enePHibdq0OXv2rIuLyzvvvCOEqFChgr+/f6ZZOnXqJIS4ceNGSkqKeU99U5/Kf/fu3WwHqPeSaNhD8dNPPyUlJQ0aNMjY0RmZdJNckWHfUE6+//576YH6vqiGfI5a7gIzymdhIPW+sCdPnsi0RCbq34mWRwIAAAAAAICBunbtqs3R0G7dupkgGMDaWXJBGbI7VMi/RzR/7g4VlrdH1MA80fKeftr3iRqdfJkWERFx+/ZtIUTdunW1uXKzp6dn1ovFREVF3bhxQwjRunVrDSdCmDFtLHkrh7zEkjPNNNtJYb5Npem/kTV8/1rjptKSsxcADMdWDgAAABrYCCEiIyPbtm177969d95559SpU1euXJkyZUrnzp0rVqxob28fEhIihKhfv76tra0QYvXq1dJhhoxcXFyKFCmSlpZm9pv11KhRQ7o52sWLF7MdcO3aNSFE4cKFK1eunNMkmzdvbt68uYYBFkK9UzshIUHDsMjISGmfV/PmzdUXYzDkc1TvuFFfHSFbRvksNIuNjdV8w1/1TrHixYvrt4SudL24DgAAAAAAMNBnn30mXZRRA1dX188//9w08QBWzZILypDdoUL+PaL5c3eosLw9ogbmiZa03EkuB/kyTbrEshCiadOmeoe3fv365ORkIcSQIUM0DDNj2ljyVg55iSVnmmm2k8J8m0qjbyeN/v1r4ZtKS85eADAcWzkAAABoYCOEWLZs2atXr4QQu3fvbtasmUKhUL987do16U96Pz8/6RlnZ+es/76MiIiIiooqUqRI0aJFTRR4DhwdHTt37iyEOHnypPoqC2pPnz6Vdgp37do1p4soXL9+/fz585p3YViIypUrS1dOevjwYU57o1Qq1ZAhQ8LDwwsUKLB8+XL1h2vI51iyZEnpgearShj+WeTqwIEDM2fOzOnVlJSUM2fOSI9btGih3xK6Uv9OpFsYAwAAAAAAuXl5eX3//fcZ92hlolAovvvuu2LFipkyKsBKWXJBGbI7VMi/RzR/7g4VlrdH1MA80ZKWO8nlIF+mqS/nrPdZH6mpqatWrRJClCtXLjAwUMNIM6aNJW/lkJdYcqaZZjspzLepNPp20rjfv5a/qbTk7AUAw7GVAwAAgAY2Qojz588LIRQKhXrXhkSlUs2aNUt6rG6pz5Z0lYJhw4bpt0vFuAYMGCCESE5OXrhwYaaX1HfWGzx4cE5v37x5s6ura8+ePeWL0FhcXFw6dOgghEhNTd22bVvWAUqlcvbs2Xv37hVCLF261NfXV/OEWn6OhQoVklLl8ePHmifU77OIj4//9ttv9+7dq1KpNM9//fr1OXPmLFy4MD09PeurGzZsePr0qRDCz8+vRo0aGV9KTExct27dzp07NV9VQg/q30m1atWMOzMAAAAAAMhJUFDQvn37ihQpkvWlwoUL79mzp3v37qaPCrBSFltQRt8dKoy9RzQf7g4VlrdHVI48yUr7neRy0C/Tck2D+/fvSw+8vb1zjSHbdJ02bdqzZ8+EEN98843UsJsT86aNxW7lkMdYbKaZZjspzLqpNO52Uu/vX+vdVFps9gKAUbCVAwAAQI5UKlXr1q2lx/3793/16pVKpUpMTDx8+HDz5s3Vwx4/fqzKwdOnTwsXLlyhQoXIyMicxuSkZ8+epUqVKlWq1IMHD3R9b2BgYIsWLbI+r1QqAwICpLDXrVunfnLlypXScZGgoCClUpntnMnJyZ6ensOGDdM1GKOQzm04efKk9m+5ePGinZ2dEMLFxWX//v0Zf65nz575+/tLv4dZs2blOpVOn6OUM/b29klJSRqG6fdZDB8+XHrLihUrNIfx4MED6RaKjRs3PnToUGpqqnqJ9evX29vbCyHs7Oz++eefTG/s37+/tMSqVasyvRQREfHiv0aPHi0N+/nnn9VPxsbGagipTp06QghPT0/Nkau5u7tPmzZNy8GA5StbtuyYMWPMHQWQRzRu3Lhnz57mjgIwAz8/vz59+pg7CiCP6N69e9OmTc0dBWA6kZGRX331VcOGDQsUKGBvb+/n5zdnzpw3b96YOy7AKqkLytHR0dbWVqaC6tevX926dbUfb8TdoSoZ9oha4+5QlWn3iH733XdCiNevX2szWO+3GCVPJk2aJIRYtmxZTgO03EkuB/0yTXMaqFSqTp06SQNCQkJyDSAoKGjlypXp6enSM7GxsWPGjJHePnjw4JwOwajpuiO9UqVKI0aM0HKwltRbOU9PTw8PD/7ZAJmYJtM6duzYtm1b7cebZjupMt+m0rjbSf2+f028qdTjKHOu2E4CyNvYygEAACAroVKpFi1aJDJwdXWVHri5uTk7OwshihUrltNf9dHR0bVq1fLy8rp165Yey6vvf3fv3j1d35tTS71KpXr69Km0a0MIUadOnR49elSqVEn6X29v77CwsJzm3L17txAi6yEH09BvZ8eaNWvUn12TJk2++OKL6dOnd+3a1dHRUQjh7Oz8/fff5zqJrp/j559/Lq149uxZzSP1+CxatmwpDXjnnXdyjeTy5ctly5aVxnt6ejZv3jwgIMDT01N6xtbWdsuWLVnfVb9+fWnAxx9/nOmlhg0bCo0mTZqUUzBJSUnSjrM2bdrkGrmElnrkMbTUA0ZESz3yLVrqASOipR75VpcuXXLaawRAVyNHjqxYsaJMk+vaUq8y0u5QlWx7RK1ud6jKtHtETdNSrzJGnuTaKqr9TnI56JFpmtNAleF4TWhoqObVf/31V2mku7t7y5Yt/f393dzcpGe6dOmSkpKi+e167EiXo6UeyEt0balXmWQ7qTLrptK420k9vn9NvKmUo6UeAAAAAID8xkYIMWbMGPWZ+kKIuLi4WrVqzZw5U2pzF0I0aNAg2/vexsTEBAQEREdH//XXXxZyU1dJ6dKlL1261KpVKyHE5cuXd+/eLd2xtF27dmfPni1RokROb9y8eXO1atUaNWpkulgN9sknn+zdu7dcuXJCiL///nv+/Plz5szZs2ePUqkcOnTo7du3+/Xrp3kGPT5H9QUqpB00GujxWUycONHLy6tixYrp6em53onY19f32rVrn376qYuLS0RExKlTpw4fPhwRESGE8PHxOXr06KBBg7K+a+7cuVWrVvXx8VHvyzOKq1evpqamCiHatWtnxGkBAAAAAAAASAzfHSrk3COar3aHCgveI2qUPNFM+53kctAj03JNg7i4OOmBdK0lDfz9/UePHq1QKCIjI0+cOHH06NHY2Fg3N7dFixYFBwdLPaAaWGzaAPmKCbaTwqybSuNuJ/X4/mVTCQAAAACA1bETQtjb2x88ePDq1avh4eHFixcvU6ZM4cKFpZcTEhJyemdMTEz79u3fvHlz+vRp9Xn5ujpx4oR+b8xViRIl/vzzz0uXLh05cuT169elS5du3bp17dq1NbwlLCzs0KFDCxYsyPb8AUsWFBTUoUOHkydPnj179s2bNx4eHlWrVm3fvn3BggVzfa9+n2OLFi0cHBySk5O12QWm62fRoUOH8PBw6edKT0+3sbHRPL+bm9uKFSvmzZt36NChe/fuRUREFCtWrFmzZo0aNcrpve3bt799+3a2L505cybXnygnFy5cUM+v9yQAAAAAAAAANDBkd6iQf4+ode0OFXl3j6iBeZIrnXaSy0HXTNOcBkKIpUuXvn37Vgjh7u6ueWkXF5dvvvlm9OjRBw8efPLkSYECBapVq9alSxf1PZA1s+S0AfIVubeTwtybSuNuJ3X9/mVTCQAAAACA1bGT/qNQKDS3m2cSHR3dvn37uLi4U6dOabjou9nVrVu3bt26Wg7etm2bQqHo37+/rCHJxN7evm3btm3bttXpXXp/js7Ozh06dNizZ8/hw4fT0tLs7OxyfYtOn4VEfU9Dbbi6uvbq1Uun+Y3ut99+E0JUqFChVq1a5o0EAAAAAAAAyMP02x0qTLhHND/sDhUWv0dU7zzRhh47yeWgR6blpEWLFjqNL1++/MiRI/VYyMLTBshXZN1OCsvYVBpxOyl0//5lUwkAAAAAgBXJ5YI32YqOjm7Xrl1KSsqJEycsuZ9eJyqVavPmzYGBgcWLFzd3LCZi4Oc4fPhwIcSrV6+OHz8uQ3QiLi7O0dFRjpll8vr16yNHjgghPvnkE6u70QEAAAAAAACQ51nyHlGr2x0q2CMq/07yPIm0AfIbNpV6YFMJAAAAAIBZ6NxSHxUV5e/vb2Nj8+eff3p5eckRk1n8/fff9+7dGzJkiLkDMRHDP8e2bdtWrVpVCLF27VpjRyeEENu3b3/vvffkmFkmGzduTE9Pd3Z2HjRokLljAQAAAAAAAPD/WPgeUavbHSrYIyr/TvI8ibQB8hs2lXpgUwkAAAAAgFnofH+9IUOGXLhwoXnz5v3791epVOnp6Rlf3bx5c8mSJY0Xnuls3ry5aNGiHTt2NHcgJmL452hjYzNv3rwePXoEBwffvHnTx8fHiOHFxcX9/PPP0gUYrEJCQsKyZcuEEOPHj89Lp5oAAAAAAAAAeYMl7xG1ut2hIu/uET1w4MC1a9eEEP/++68Q4tixY0lJSUKIRo0atWzZMtNgWXeS50l5NW2AfEWn7aRgU6k7NpUAAAAAAJiLzi31r1+/FkKcOnUq21cTEhIMjcgc3r59u3PnzuHDh9vb25s7FhMxyufYrVu3li1bnjhxYsqUKXv27DFieGPGjLGuj2PZsmWvX78uXbr0+PHjzR0LAAAAAAAAgMwseY+o1e0OFXl3j+iuXbu+++479f8eOHDgwIEDQohJkyZl2yoq307yPCmvpg2Qr+i6nRRsKnXEphIAAAAAAHOx0fUNf/31lypnlSpVkiNKue3atSs+Pn7w4MHmDsR0jPI5KhSKrVu3urm57d27Nzg42FixhYSEFCtWzIpuc3znzp05c+YoFIrvvvuuYMGC5g4HAAAAAAAAQGYWu0fU6naHijy9R3Tr1q3ZZsiCBQuyHS/TTvI8KQ+nDZCv6LqdFGwqdcGmEgAAAAAAM9K5pT5P2rJlS6NGjbjVoB68vb137txpZ2c3fPjwJ0+eGGVOX1/fr776yihTmUBCQkK/fv2Sk5OXLFnSunVrc4cDAAAAAAAAQEZG3yNqXbtDBXtEs5BjJ3neQ9oA+RybSm2wqQQAAAAAwLysuKW+fPny5cuXN3welUoVFhb22WefGT5V/tS+ffuNGzeGh4d37tz57du35g7HpJRK5YABAy5cuDB27NixY8eaOxwAAAAAAAAAsmOPKHtEM8nPKaEN0gaAYFOZGzaVAAAAAACYnZ25A9DfihUrjDKPQqG4f/++QqEwymz508CBA3v37i2EsLe3N3csJqVQKLZv3759+3YHBwdzxwIAAAAAAADARNgjyh7RTPJtSmiDtAEgYVOpAZtKAAAAAADMzopb6o3YBE8/veEcHR3NHYIZKBSK/PmDAwAAAAAAAPlc/twxyB5RDfjN5IS0AaDG1iAnbCoBAAAAADA7G3MHAAAAAAAAAAAAAAAAAAAAAACAedBSDwAAAAAAAAAAAAAAAAAAAADIp2ipBwAAAAAAAAAAAAAAAAAAAADkU7TUAwAAAAAAAAAAAAAAAAAAAADyKVrqAQAAAAAAAAAAAAAAAAAAAAD5FC31AAAAAAAAAAAAAAAAAAAAAIB8ipZ6AAAAAAAAAAAAAAAAAAAAAEA+ZWfuAPA/6enpQogff/zx33//NXcsMJGkpKTY2FhzRwEAAAAAAACYQUxMzKtXrxYuXGjuQGAily5d0vUtiYmJQogVK1a4uLjIEBGsQ1RUVExMjLmjACxXbGzsy5cv+T7Nz549eyaESE1NNXcgAAAAAABYMVrqLYhKpVIoFOvWrTN3IDApjgQAAAAAAAAgf4qKinr+/PnkyZPNHQhMx8bGxt7eXvvxCQkJQog5c+bIFhGsQ3R0tLlDACxXdHT0/fv3+T7N5xQKhVKpNHcUAAAAAABYMVrqLUijRo3Y0wEAAAAAAAAgnzh9+rS5Q4Cl+/zzzz///HNzRwEAFu3atWvmDgEAAAAAAMDq2Zg7AAAAAAAAAAAAAAAAAAAAAAAAzIOWegAAAAAAAAAAAAAAAAAAAABAPkVLPQAAAAAAAAAAAAAAAAAAAAAgn6KlHgAAAAAAAAAAAAAAAAAAAACQT9FSDwAAAAAAAAAAAAAAAAAAAADIp2ipBwAAAAAAAAAAAAAAAAAAAADkU7TUAwAAAAAAAAAAAAAAAAAAAADyKVrqAQAAAAAAAAAAAAAAAAAAAAD5FC31AAAAAAAAAAAAAAAAAAAAAIB8ipZ6AAAAAAAAAAAAAAAAAAAAAEA+RUs9AAAAAAAAAAAAAAAAAAAAACCfoqUeAAAAAAAAAAAAAAAAAAAAAJBP0VIPAAAAAAAAAAAAAAAAAAAAAMinaKkHAAAAAAAAAAAAAAAAAAAAAORTtNQDAAAAAAAAAAAAAAAAAAAAAPIpWuoBAAAAAAAAAAAAAAAAAAAAAPkULfUAAAAAAAAAAAAAAAAAAAAAgHyKlnoAAAAAAAAAAAAAAAAAAAAAQD5FSz0AAAAAAAAAAAAAAAAAAAAAIJ+ipR4AAAAAAAAAAAAAAAAAAAAAkE/RUg8AAAAAAAAAAAAAAAAAAAAAyKdoqQcAAAAAAAAAAAAAAAAAAAAA5FO01AMAAAAAAAAAAAAAAAAAAAAA8ila6gEAAAAAAAAAAAAAAAAAAAAA+RQt9QAAAAAAAAAAAAAAAAAAAACAfIqWegAAAAAAAAAAAAAAAAAAAABAPkVLPQAAAAAAAAAAAAAAAAAAAAAgn6KlHgAAAAAAAAAAAAAAAAAAAACQT9FSDwAAAAAAAAAAAAAAAAAAAADIp2ipBwAAAAAAAAAAAAAAAAAAAADkU7TUAwAAAAAAAAAAAAAAAAAAAADyKVrqAQAAAAAAAAAAAAAAAAAAAAD5lJ25A4Bx+Pr62trauru7mzuQ/Cg1NfXOnTt//PGHj4+PCZZ78+ZNdHS0QqEwwVrIk9LT0729vQsUKGDuQHQWERERExND8sOipKenlypVytnZ2dyB6Cw2NjY8PNzGhrMroae0tLSyZcs6OjqaOxCdRUdHR0REkPywKOnp6cWKFXNzczN3IDpLSEh4/vy5ra2tuQOBtUpPTy9evHjBggXNHYjOSH5YIJVKVbhwYQ8PD3MHAgAAAAAAAAAAYJVoqc8j7t275+3tXaRIEXMHkh9FRka+fPny8ePHpmmpL1myZEpKigkWQh7WsGHDM2fOmDsKnZUsWTI1NdXcUQCZlStX7uHDh+aOQmfe3t7R0dHmjgLWrUKFCqGhoeaOQmfe3t6xsbHmjgLIrEiRIpGRkeaOQmc+Pj6PHz82dxSwbh4eHhEREeaOQmfVqlV7+vSpuaMAMnNwcEhKSjJ3FAAAAAAAAAAAAFaJlvo8wsnJqXv37nPnzjV3IPnRuXPnGjZsaLLr6jk6Onbu3Ll3796mWQ55z/jx48uVK2fuKPRRoECBrl279urVy9yBAP8zf/58a7xEvRDCw8OjXr16H3/8sbkDgbX66quvChUqZO4o9OHu7t6wYcMPP/zQ3IEA/7NmzRor7c0tVaqUh4fH5MmTzR0IrNXq1atfvXpl7ij0UbJkyWLFik2cONHcgQD/s2PHjuPHj5s7CgAAAAAAAAAAAGtFSz1gZezs7N555x26iqG3OXPmWGkHsK2trY+PD8kPi7Jly5a0tDRzR6EPBweH8uXLU1DQ28aNG21sbMwdhT4cHBwqVKhA8sOiHD58+PXr1+aOQh9OTk5FihShoKC3/fv3x8TEmDsKfTg5Obm5uZH8sCghISGnT582dxQAAAAAAAAAAADWyir7YAAAAAAAAAAAAAAAAAAAAAAAMBwt9QAAAAAAAAAAAAAAAAAAAACAfIqWegAAAAAAAAAAAAAAAAAAAABAPkVLPQAAAAAAAAAAAAAAAAAAAAAgn6KlHgAAAAAAAAAAAAAAAAAAAACQT9FSDwAAAAAAAAAAAAAAAAAAAADIp+zMHQDynTdv3qhUKjc3twIFCpg7lv9QKpWRkZFCiCJFitja2po7HAAAAAAAAAAAAAAAAAAAAAAmYsVXqU9NTU1OTjbKVElJSUaZB7las2aNp6dnYGBgWlqauWP5H4VCMXr0aC8vr1GjRqlUKnOHk3e8efMmIiIiJSXF3IHkKUqlMiIiIiIiIj093dyxIEckvxWhpiwfBSUTkt/ykfxWhIKyfBSUTEh+y0fyWxEKCgAAAAAAAAAAwIysuKV++PDhAwcONHwelUpVrly51atXGz6VNYqPj3+Zg8TEROOutWfPnlGjRpUuXXrv3r3Ozs7GndwQCoVi06ZNDRs2XLt27fz5880dTh5hmadP5AGcAWL5SH7rQk1ZOApKPiS/hSP5rQsFZeEoKPmQ/BaO5LcuFBQAAAAAAAAAAIAZ2Zk7AP29fPkyLi7O8HkUCkXdunVXrlw5YsQIhUJh+ITWZcqUKStWrMjpVU9Pz8aNGw8cOLBLly62traGLHTv3r1+/foplcoNGzYUL1481/FXrlwpWbKkl5eXIYsKIeLi4m7duhUfH1+2bNny5cvn9BE7Ojpu27atVq1aU6dObdCggb+/v4HrWqC4uDipZJydnd3c3DSMTExMjImJEUK4ubnpd/KDxZ4+kQdIZ4CEhoauXbu2TJkyU6ZMMXdEVoDkhwbUlK4oqDyD5NcVyQ8NKChdUVB5BsmvK5IfGlBQAAAAAAAAAAAAZmTFV6nXRlpa2r179/7444/r169ruGny4MGD79y5c+bMGVPGZiHOnj0rPShYsGCh/3Jzc5NazyMiIvbt29ejR4/mzZs/f/5c71WUSuXAgQPj4+Pff//9gIAAzYNVKtXy5cvr1at35coVvVcUQpw7d65hw4YFCxb08/Nr1apVxYoVK1euvHLlypyuzValSpUvv/xSCDFo0KDY2FhDlrZM48aNK1GiRIkSJbZs2aJ55KpVq6SRx48f12MhPU6feP36tR4LZRIXF3f+/PkTJ048ePBApsu5ablJkXt+6QwQBweHqVOnHj161Ohh5D0Wm/xyoKD0WIKa0omlFZTRczUlJeX27dvHjx8PCwsj+ZGRpSW/HCgoQ5agoHSSHwpKCJGcnHzz5s0jR46cPXs2KirKuJOT/FYqnyS/HCgoAAAAAAAAAAAAyCrPttSnp6cvW7asbNmyVapUadu2bc2aNcuXL79ixYpsOzmCgoLc3d03b95s+jjNKyUl5fLly0IIZ2fnyMjI6P+KiYlJSkp68ODB2rVrq1WrJoT4559/WrdurfdtAX7++ed///3XxsZm9uzZOY1JS0u7du3a6tWra9SoMWbMGAMPYa5evbpRo0bnzp3L+GRoaOhnn33Wtm1b6UpvWUn31w4LC1u0aJEhq1sm9ekTfn5+mkeqf2+5jszKKk6f0INOmxQTzG9pZ4C8ffv233//3bNnT2Rk5Pnz5w8ePHjt2jWlUmnuuP7DApNfDhSUIUtYVE0lJiaeO3du3759Dx8+vHHjxv79+y9dupSammreqNQsp6CMnqt37twZMmSIq6vrO++807p161KlShUtWnTBggXJycn6TZgVya+ZOvmfPHly7dq1/fv3X7582YgbHwNZTvLLgYIyyhIWVVCpqakXL17cv3//zZs3Hz58uG/fvvPnzyclJZk3KjWLLaj58+cHBAQEBARMnjxZ1+UyevXq1WeffVasWLHq1au3b9++UaNGXl5eLVq0yOlPUZ2Q/JqlpKRcvHjxt99+u3nzZmho6G+//Uby6/p2Y6Gg9FvCogoqPT39ypUrBw4cuHjxYkRExN69e8+cORMfH2/eqAAAAAAAAAAAAGShslqBgYEtWrTI9qXExMRu3bqpf8aCBQuqH/fs2TMtLS3rWz799NOCBQvGxcXJG7RsPDw8pk6dquu71AdomzVrltOY+Pj4Ro0aScP0WEKlUqWlpVWoUEEI8cEHH+Q0pmjRolmT8+jRo3osp1Kp/vrrLzs7OyHE4MGDT548GRUVFRoaumTJEicnJ2nmgICA9PT0bN87b948IYSjo+OrV6+0XE46In769Gn9otWVu7v7tGnTdH1XXFycra2tEMLe3j4xMVHz4DJlygghKlSooEd4P/74oxDCxsbm/v37OY1JTU29evXqqlWrfHx8DPysVSrVqlWrpJsqZNWiRYvo6Gi9Z1bTY5Nigvnj4+O9vLz0KMyaNWsOHjzYwJgliYmJGzZs6NChg4ODQ9bff9GiRYcNG/bHH38YZS2VSuXm5vbll1/q+i6LSn45UFDGWkK/murQoYO/v7/hMatUqtTU1B9++KF79+4uLi5Zf/9FihT54IMP9u7dq1QqjbKcj4/PsGHDdH2X5RSU0XP1p59+yrgpy/gpVKtWLSIiQo+fIpM8lvzt2rULCAgwPGaVSpWamrp9+/Zu3bo5Oztnm/z9+vXbt2+fsZK/atWqH3/8sa7vspzklwMFZcQl9CuoIUOG1KhRw/CYVSqVUqncs2dP3759CxcunPUDdXV17dmz544dO4zyK1KpVG3atAkMDNT1XRZbUDdv3pQCE0K0adNGjxUlv//+u5QGkkKFCtnY/OdyBi9evNB7WkkeS/4BAwb4+voaHrNKpUpPTw8ODu7Tp0+hQoVySv6ffvrJWMnfsmXLoKAgXd9lsckvBwrKkCX0K6gpU6Z4enoaHrPkyJEjgwcPzvjLV3N0dOzUqdOmTZuSkpKMtRwAAAAAAAAAAIDZ5c2W+okTJ0rHeIYOHSodYHv+/HmvXr2kJ+fOnZv1LZcuXRJCfPfdd7LGLB/9WupXrVol/U7Gjx+vYZh0JXshRKVKlfSI7bfffpPefurUqZzGSD03pUuX/uijjwIDA6Xx+nWFKpXKmjVrCiFmz56dqfXq6tWr6tud//jjj9m+/dWrV9JB3wULFmi5olW01J88eVL6wevXr695ZFhYmDSyT58+uq5iXadPaE+PTYpp5tfjDBCVkVrq09PTt27dWrZsWYVC0aBBg6+++uqvv/569OhRmTJlRowYcfPmzQMHDowYMaJ06dJCiLZt2164cMHAFVX6ttRbTvLLgYIy7hJ61JSxWup//fVX6bYwNWvWnDZt2okTJ+7fv9+oUaOuXbvevn376NGj48aNq1SpkhDCz8/v+PHjhq+oX0u9hRSU0XM1ODhYeqOfn9/+/fujo6OVSuXjx48HDBggPd+xY0eSPxOjtNQrlcrdu3dXrVpVCFGrVq3p06efPHkyNDS0fv36PXv2vH379pEjR8aOHVuxYkUhRMOGDU+cOGHgiip9W+otJPnlQEEZfQk9CspYLfXHjh2rV6+eEKJy5coTJkw4duzYnTt3goKCGjdufP/+/ePHj0+ZMqV69epCiOrVq+/bt8/wFfVrqbfYggoMDJS+bYUBHcDHjh0rUKCAEKJYsWKbNm2KjY2Vgrl69ers2bOjoqL0m1YtjyW/sVrqjxw5UrduXSFElSpVJk6cKCV/p06dmjVrdu/evePHj3/xxRfSCag1atTYv3+/4Svq11JvsckvBwrKwCX0KChjtdSfPXu2ZcuWQoiyZct++umnhw4dunXr1kcffVShQoWHDx+ePn169uzZ9erVUygU5cuX3759u+Ff6wAAAAAAAAAAAJYgD7bU37lzR2qJ7tevX8aO6rS0tK5duwohbG1tQ0NDs77R19e3ZcuW8gUsK/1a6vv37y8dw9u1a5eGYWlpadJFQx0dHfWITWqRL1OmjIZjbHfv3n3z5o30eU2dOlWKSr+u0H///Vc6jp6SkpL11S1btkiTN2zYMKcZOnToIIQoX768lgcFraKlftGiRdIPPnLkSM0j9+zZI41ctmyZrqtY1+kTWtJ7k2KC+fU4A0RljJb62NjYTp06CSHatm176dKljC+VLVt2zJgx6v9VKpU7d+6sWLGiQqHQoxs+E/1a6i0n+eVAQRl3CT1qyvCW+qSkJKnN1M/PL1O7cOPGjXv27JnxmaNHj9auXVsI8dFHH6Wmphqyrn4t9ZZQUEbP1aSkJOnqm5988kmmr36lUtm2bVtpwoMHD+r6g2SU95Lf8Jb6pKQk6d+iDRs2PHnyZMaX/Pz8MnUQHj16tFatWkKIzz77zMBLxurXUm8JyS8HCkqOJfQoKMNb6tPS0iZNmiSE8PHx2blzZ8aXunfv3rRp04zP/PPPP02bNhVC9O3bNyEhwZB19Wupt8yCOnr0qBDiww8/lN6lXwfws2fP3NzchBCVK1c2/PrZWeW95De8pV5D8nfp0iXTXqN//vmnSZMmQoj333/fwOTXr6XeMpNfDhSU4UvoUVCGt9QrlcoFCxbY2Nh4e3uvW7cu41f5yJEjK1asmHHwtWvXpD9CAwICjHJDMwAAAAAAAAAAAPP6z72S85L169enp6c7ODgsXLhQoVCon7e1tf36669tbGzS09O///77rG8cMmTIiRMnHjx4YMJgzezcuXPSg4YNG2oYFhMTk5CQIISQriGqk7i4uCNHjgghOnTooL43d1aVK1d2d3fP+Hnp7e+//xZCjBs3zt7ePuur/fv3L1asmBDi3LlzUVFR2c7QsWNHIcTDhw+vXr1qeDwWQur7F7l91kLrrMjW2rVrhRBlypSR2hSyde3atTdv3jx58mTdunW+vr66LpHR2bNnr127VqVKlcmTJ2dKnpo1a86fP196vHz5ckNW0XuTYoL5ixYt2q5dOyHEunXrlEql3jHo5MGDBw0aNDhx4kRwcPDRo0fr1KmjYbBCoejVq9eNGzdGjBgxa9asAQMGpKammiZONctJfjlQUMZdwvQ1FR4e3qJFi59++mndunVnzpxp0aKF5vFt27a9ePHi7NmzN2zY0Llz57i4OBMEmZElFJTRc9XBwSEoKKhNmzbffvttpn+rKBSKDz74QHqsvqysfkj+TF69etWsWbOff/55w4YNZ86cad68uebx0klcM2fOXLlyZVBQUHx8vAmCzMgSkl8OFJQcS5i+oN6+fRsYGLh48eJ58+Zdu3ZNffHjnLz77runTp1avXr1L7/80qZNm9evX5sgyIwssKDS09PHjRsnhFCf+KGfzz77LDY2VqFQ/Prrr+qTUoyI5M8kNjY2ICBg8eLFCxcu1DL5T58+vWLFip07d/r7+79588YEQWZkgckvBwrKKEuYvqBSUlLef//9yZMnjxkz5u7dux999JGG/Xjiv/d82LFjx6lTp5o0afL48WMTBAkAAAAAAAAAACCfvNZSr1KpfvzxRyFEixYtSpYsmenV8uXLS81q27dvz/re999/v0CBAlu3bpU/TIsQHR19584dIUSJEiVKly6tYeSpU6ekB9K1DHVy4sQJqYO2fv36eoWps5EjR/r6+gYFBWX7qq2trXQlTpVKldPpEw0aNJAeHD58WKYgTU/XI/f29vaaW6WzssbTJ3JlyCbFNPOb+AyQqKiojh07JiYm/vPPP926ddPyXQ4ODqtWrVq7du2PP/44ZswYOQPMhuUkvxwoKKMvYcqaSk5O7tq16717944ePfrRRx9p+Tna2tpOnz79l19+OXnypHS1S7njzMgSCkqOXF28ePHy5cuz/QiKFCkiPUhJSdFytqxI/kySkpK6dOny4MGDP/74Y9iwYVq+y9bW9ssvv9y5c+eff/45YMAAlUola5CZWELyy4GCkmkJUxaUUqn84IMPTp8+/euvv37xxRdaJo9CoRgxYsTvv/9+69at7t27G/KJ6MECC2rr1q1Xr14tVaqUdC8m/Vy5ciU4OFgI0atXr+rVq+s9T05I/kzS09P79Onz77//7t27d+LEidon/6effnr48OHr1693797dxGf8WmDyy4GCMtYSJv57f+TIkb/88svmzZuXLl1aoEABLd/Vp0+f06dPR0VFBQYGxsbGyhohAAAAAAAAAACArPJaS/2DBw9evHghhKhdu3a2A6Tn79+/n/VSfB4eHl26dPnuu+/S09PljtMSnD9/XnrQsGFDDW18ycnJs2fPFkK4uLh88cUXuq4i3exbmLCl3tHR8ffff9dwATMvLy/pQVJSUrYDateubWdnJzIEb+1evHjx7NkzIUThwoUrV66sYaRSqZQSo3bt2o6OjjqtYo2nT+TKkE2KaeY35Rkg6enpvXv3DgsLO3DggPS71cnHH3+8YMGCb7/9Vrpoomnk1eSXQx4oKKMsYcqa+uijjy5cuLB79+5cr8+dVffu3Tdt2rRv374ZM2bIEVu2LKSg5MjVIkWK5NSqdf36delBlSpVtJwtK5I/k2HDhl2+fDk4OFiP0zV79uy5YcOG4ODgmTNnyhBa9iwk+eVAQcm0hCkLasqUKfv379+6dWtOn6MGrVq12rVr15kzZ0aMGCFHbNmywIKKi4ubNm2aEOKzzz7Tvos0q3Xr1kkPpk6dqvckGpD8mUyaNOnw4cPbtm3To2+7TZs2P//8899//z1q1Cg5YsuWBSa/HCgoIy5hyoJavnz5xo0bv/7668GDB+v63rp16/72228PHz784IMPTHzGLwAAAAAAAAAAgBHltZb6kJAQ6UFOx6uqVq0qPbhy5UrWVwcPHvzkyZM///xTnugsizZXR3v79u177713+fJlIcSsWbNKlSql6yrSlbQKFCggx0XFclK0aFENr968eVN6UL58+WwHODo6Ss1DprkMmAmoP2s/Pz/NV0G+e/duTEyM0Ovm8tZ4+kSuDNykmGB+U54BsnXr1qNHj27btq1GjRr6zTB+/Pj3339//PjxUmOBCeTV5JdDHigooyxhspr6/ffft23btmzZspYtW+o3Q9++fSdMmLBgwQJ1i6rcLKSgTJCraqmpqRs3bhRC2NraBgQE6D0PyZ/RwYMHf/jhh+XLl+txMomkX79+48aN++qrr9T/qJObhSS/HCgomZYwWUGFhIQsXrx4ypQpvXr10m+Gtm3bLlq0aNOmTSb7K9gCC2rhwoUvX750cXH58MMPdV1ITaVS7dq1SwhRvnz5WrVqCSFSUlKOHTu2Zs2ab7/99saNG3rPrEbyZ3ThwoWvv/56xowZ3bt312+G9u3bL1iwYP369SdPnjRubDmxwOSXAwVlxCVMVlBPnjyZPHnykCFDPv30U/1mqFu37qZNm/bv379jxw7jxgYAAAAAAAAAAGAymVvqlUrl77//3r9//wYNGrRp0+aLL74ICwsTQowbN65atWo+Pj6G91JktGbNmvHjx48fPz4iIsIoE0ZGRkoPKlWqlO0A9fMPHz7M+mq7du1Kliy5ZcsWowRj4aTbiIscjtHGxsZu3LixVq1a+/btE0KMHj167Nixeqxy+/ZtIUStWrUMuTiZESUkJEjdV5UrVy5RokROw6QrgUVERBgrM81L15vLazMyK2s8fSJXBm5STDC/yc4ASUxMnDVrVqdOnbp27WrIPN98842tra3JLi2ch5NfDtZeUEZZwjQ1pVQqv/jii9q1aw8fPtyQeWbOnFmyZMnJkycbKzDNLKeg5M5ViUqlGjt27KNHj4QQ/fv3L1eunN5TkfxqSqVy6tSpvr6+H330kSHzzJkzp0SJEnrcQEk/lpP8cqCg5FjCZP9CmzRpUsmSJQ28hPPo0aN9fX3HjRtnmksLW1pBPX36dOnSpUKIjz/+uEiRIroupHbv3j3pj8fatWunpaUtXry4dOnS/v7+I0aMGDlyZI0aNT7++OOUlBS95xck//83efJkb29vA78IPv/88+rVq0+YMEGlUhkrMA0sLfnlQEEZdwmTFdSMGTMcHR0XLVpkyCR9+vRp27bttGnTkpOTjRUYAAAAAAAAAACAKf2/lvpnz561bt06ICBg+/btFy5c+PPPPxcsWPDOO+8cP358//79d+7csbW11fWW05r9/PPPS5cuXbp0aXR0tFEmVM/j5OSU7QAXFxfpwdu3b7O+amtrO3DgwODg4KioKKPEY7FUKpX6aO7ixYt7/lePHj0CAgJ8fX2LFCny4YcfPnr0qHDhwlu3bv3mm280X0QtW9HR0S9fvhRCeHt7G/kH0NeaNWuke6B/+umnGn6iMmXKSA+kUwKsnfZH7rUfmZWVnj6hmYGbFNPMb5ozQLZs2fL8+fP58+cbOI+Xl9e4ceM2b94sna8lt/yZ/HKwioIy1hImqKn9+/dfvnx50aJFNjYG3S/Iycnpyy+/PHDggHQ/GblZRUEZnqvp6emvXr36448/AgMDV61aJYSoWbPmihUr9JhKjeRX27t3b0hIyJIlSwxP/unTp+/bt8809xSyiuSXAwVl4QV1/vz5I0eOzJ07N6c4tWRjY/PVV1+FhIQcPnzYWLFpYGkFNXXq1MTERDc3tylTpui6SkbqaCtWrOjv7z9x4sTo6Gg/Pz/1VajXr18/atQoQ5Yg+dX+/fffP/74Y+7cuQ4ODobMY2trO3/+fKmUjBWbBpaW/HKgoIy+hAkK6smTJ9u3b580aZKHh4eBUy1cuPDx48fbt283SmAAAAAAAAAAAAAm9r9elnv37jVo0EC64bWTk1Pfvn3nzJkzdOjQuLi4bt263b17Vwjh5+dntki1oz5eldOxQ3t7e+lBTserBg0alJyc/NNPP8kQnQV58uRJeHi49PjQoUO7/ys4OPj333+/cuWKUqksXbr0tGnTHjx4MHDgQP1WUbfMurm5GSduw8TExCxYsEAI0aRJkxEjRmgYWahQIenB8+fPTRGZnNLT08+fPy89zrWEpYvhFSlSpHLlyjqtYr2nT2hm+CbFBPOb5gyQ4ODgxo0b16hRw/Cphg0blp6eLt0BQ1b5NvnlYBUFZawlTFBTwcHB3t7e/v7+hk/1wQcfFCxY8NdffzV8Ks2spaAMzNW9e/cWKFCgePHibdu2PXTokBDC39//yJEjBQsW1C8eCcmvFhwcXLFixTZt2hg+Vb9+/ZydnYODgw2fSjNrSX45UFCWX1Curq69e/c2fKoOHTqUKVMmHxbUhQsXvv/+eyHE5MmTDewlffHihfRg/fr1J06cmD59enR09NmzZ2/fvn3s2DGpoXbDhg3qRmE9kPxqwcHBhQoV6tWrl+FTderUqXTp0vkw+eVAQcmxhAkKSvpTYujQoYZPVbdu3Xr16pmgoAAAAAAAAAAAAOTwn5b66Ohof39/6cBb06ZNQ0NDf/zxx2nTpm3cuPH777+PiYmRhmW6PlZycnJUVJQhN8ieMWPGjh07duzYUaxYMb0nyUh9dflcj1fFxcVlO6BKlSpNmzbdvHmzUeKxWOrjjvXq1ZuUwfjx46V2mVKlSj169GjOnDmG3Kpb/Uu2hJZ6pVI5cODAiIgINze3bdu22draahisbqnX+9Cp5bh165b0QVSoUMHLy0vDyKSkpCtXrggh/Pz8MnVNJSUlaf5VWO/pE5oZvkkxwfwmOAMkOjr61KlTXbp0McpsJUuW9PPz27t3r1Fm0yB/Jr8crKWgjLWE3DWVnp5+4MCBbt266X1yQkaOjo7+/v579uwxfCrNrKKgDM/V1NRUpVKp/l8bG5tWrVq5urrqMVVGJL8kNTX1wIEDXbt2Ncpszs7O/v7+fJvIh4IycAkT/Attz549gYGBRrmPnEKhCAoK+u2339LT0w2fTQOLKiiVSjV27FghRIkSJUaPHq3dT5CjyMhI6cHbt29nzJgxe/ZsZ2dn6Zk2bdps2bJFerxmzRq9lyD51fbt29epUyejXIVdoVB06tRp7969GbdXcrCo5JcDBSXTEiYoqL179zZp0kRzWmqvS5cuf/zxRx7YmQYAAAAAAAAAAPKh/7TUjx49+vHjx0KIYcOG/fnnnyVKlFCP6NOnT/ny5aXH6itphYSE+Pv7Ozk5ubu7ly9fft26dfo11rdu3bpPnz59+vQx8FKFaikpKdKDnI6Gqp9PS0vLaZIhQ4ZcuHDh+vXrRgnJMknXPBNCfPjhhwsyWLx4cYsWLYQQz58/v3TpkoGrqA+hqQ8BmtHs2bP37t3r7Ox88ODBChUqaB6cl1rqtb9lfEhIiHQhUvVIlUq1efPm2rVrOzs7u7m5lS1bdt68eYmJiVnfa72nT2hmlE2K3PObIF2vXLmSmprasmVLY03YqlWrCxcuGGu2nOTD5JeDFRWUsZaQu6YePXoUEREhfdsaRatWra5fv56cnGysCbNl+QVllFxt2rTpoUOHDh06tGvXrunTpxctWnTKlCmVKlW6fPmyHrOpkfyShw8fRkVFGTf5r169KuWbfCw/+eVAQRm+hNwFlZCQcPv2bSMWVMuWLcPDw589e2asCbNlUQX166+/nj59Wggxa9Ysdbeu3tQftIeHx4QJEzK9+t5770l/hP7000/qLltdkfyS2NjYu3fvGjf5X716pW5Gl4lFJb8cKCiZljDB3/uXLl0y7j/PkpOTb9y4YawJAQAAAAAAAAAATMZGCBESErJt2zYhRJMmTdasWaO+SNJ/RtjYVKpUSQjh5ORUvXp1IcSFCxeaNWt27ty5sWPHzp0718PD45NPPpkxY4Y54s9MfdVD9YGrTNTPa2jy7tWrl4uLS96+UL36aG7WG4737dtXevDDDz8YuIrl9AYtX7581qxZTk5Ov/32W5MmTXIdn5da6tWnT+R65D7TyPT09D59+gwdOrRYsWLLli3bsGGDj4/P1KlTu3TpkvXqldZ7+oRmRtmkyD2/CdJVuh6e+o7zhitVqtSbN2+SkpKMNWG28mHyy8GKCspYS8hdU3IUlEqlkrsPzPILyii5Wrx48YCAgICAgJ49e86ePfvatWu+vr6vXr2SWrf1m1OQ/P8lR/IrlcoXL14Ya8JsWX7yy4GCMnwJqyuo0qVLCzmvgiyxnIJKSUmZNGmSEKJq1aqDBw/W66f5f1xcXKQHHTt2zHo3BoVC0aNHDyFEcnKy3mfvk/wSkt8Cv00oKPmWkLug4uLiYmJirK6gAAAAAAAAAAAA5GAnhFi6dKn0P19//bWdnV3WQTdv3hRC1K1b197eXqlUDh06NC0t7d9///X19RVCTJw4sWPHjvPmzevdu3eNGjVMF3t21Fe7N+R4laura69evX788cclS5bY2NjoF0l4eHi7du1M1pAdHR19584dLQenpaVdvHhRCOHo6Jj1I+vRo8fIkSPT0tJ++umnJUuWZJsSWsp0j3JzWb9+/ZgxY1xdXffv36/llbd0uuuCdEfy3r17Ozo66hmiLmJiYrT/rIXG0yc0j1y5cuUvv/zy3XffDRgwQHp+6NCh7dq1O3r06I4dO/r165fxvdZ7+oRmRtmkyD2/rofYw8LCfvnll5MnT2of5+vXr4UQjRs31mbyLVu27Nu3T/Ow2NhYlUpVuXLlAgUKaB9GXFzc3bt3tR9vack/dOjQu3fv6ndTFyFEyZIlf/jhh0ynvcnNugrKWEvoVFOhoaFPnz6tWLGi9kFGR0cLIbp165brpxkWFnblypVcJ09ISBBCvPvuu+reI208e/bMw8ND+/GWVlCZGDdX1Tw9PTdu3Fi/fv2YmJgxY8b88ccf+v3bJk8m/4MHD8LCwnRKfuk6sl27ds31kufPnz+/efOmlsnv5+enU/I/ffo04y25cmVpyW+CbxMKyvQFdefOnbt37+pUUPHx8UKIjz76yMnJSfPIV69epaen5zq5dFXszp07Fy5cWPswXrx44e3trf14yymo1atX379/Xwgxf/58Q/7mVVOvVbly5WwHqJ9/9OhRs2bN9FgiTyb/3bt3tdngZyR9vkOHDs31D3Cdkj8wMFCn39uLFy/Ud3TUhuUkv3oSI36bUFDyLaHrt0lUVJROBSXd6mrq1KkLFizQPDIiIiIxMTHXyaWkGjJkyMSJE7UPI99KSEiIi4srWrSouQOBFVCpVC9fvvTw8NBpTxq0Fx4e7uLiotOfloiMjLS1tbWQ08KtRWxsbGpqqk575KC9xMTE2NjYYsWKmTuQvCktLS08PLx48eJ6HzdHVunp6a9evSpatKhR/oxCnvfmzRt7e3uzH4jPq96+fZucnOzp6WnuQPKmpKSkqKgonY7LQHvSt0mxYsUMudV8fiP9ie3u7u7g4GDuWKxJeHi4q6ur4XcoRbaioqIUCoVOR+iQbyUnJ0dGRhYvXtxC+nItmX7fkq6urnapqalS72Pt2rWzPbD37Nkz6dpC0qshISFXr14dNWqU1E8vhLC3t1+4cGG9evUWLlz4/fffG/7DGEJ9vCqnQ03qy1hq3tOXkpJib29vSOa5urq2adNGfThTbtu2bdN+w3r9+nXpFuHSaRKZXvXw8GjXrt3BgwdfvXr1559/tmvXTu+o1FfkiomJ0XsSA23fvv2TTz4pWLDgkSNHGjVqpOW7YmNjpQfqjNJA+hdD/fr1ixcvrnec2vvuu++0/6wTEhKka7bZ2dnVqVNH82DpyH3FihWlPxcDAwPDw8PVh+2FEAqFIjAw8NixY3///XemI/cWspnW4/QJzYy1SZF1fl3bIJydnT09PXX6/Zw7dy4kJKRVq1a5fsf8+OOPZcuWfffddzUPu3379qlTp5o3b571ioMabN261aqT393d3ZDjJR4eHiYuNKsrKGMtoVNNFSxY0MPDo23bttq/Rcr/Jk2a5Lrrc+/evS4uLrlO/vz58wMHDjRo0KBkyZLah7Fr1y7tf88WWFAZGT1XM6pXr56fn9+5c+eOHz9+4cKFBg0a6DEJyS+5devW6dOnmzRpkuvGf8+ePQULFmzTpo3mYc+ePTt48GDDhg11+jfYzp07+TbRMICCMtYSOhVU4cKFXV1ddSooaeNfr169XDf+R48eTUxMzHXymJiYn3/+uVatWlWqVNE+jAMHDmjzF5PEcgoqKSlp9uzZQogiRYpERERs3LhR/ZL6st/Pnz9XPz9kyJBcmwbUX+s5bZHUAx49eqR5qpzkyeQvVKhQwYIFdUr+p0+fHjp0SJs/wI8cOZKcnJzr5NHR0U+fPq1Vq1ZO3dvZ2r9/v/aHsS0n+dWM+G1CQcm6hK7fJvb29joVlLTxr169eq4b/7///vvp06e5Tp6amvrw4cPKlSvXq1dP+zDyrcjIyBcvXkh3hQU0U6lUly5d8vHxyfV0Sujn5s2bxYoVo9FZJ6GhoY6OjqVKlTJ3INYkLCxMm1PUoJ/o6OgnT57UqlXL3IHkTSkpKVevXq1Tpw7tekaUnp5++fLlWrVqccoctBEaGurk5KTTYSBo7+XLl7GxsTrtF4X23r59Gxoaqm4wg3GlpaWFhITUrl3bxBfms3aXLl2qWrUqp1Xr5Pr16yVLlnR3dzd3IHnTo0ePbG1tjXg3UeRh8fHxd+7cqVu3rrkDsQKpqalXrlzx9fXV6TRmFxcXu4sXL0rdw61atcp20JkzZ6QHUkv94cOHhRDt27fPOKZOnTqenp6nT5/WL3ojUp85Ghoamu11qkJDQ6UHGjppoqOjg4ODx44da0jzorOzs/ry/yawe/du7S+9oL6NeE5XR+vTp8/BgweFED/88INVt9T/+uuvgwYNcnFxOXz4sPb99CJDwNo0iEjXxpswYULTpk31i1Mnv/zyi/af9ePHj6Vj2MWLF9d8Db8rV65I1REQECA9U7ly5a+++irTsDdv3ogMn6ya2T9roe/pE5oZZZMi9/w6nQEiTVW/fv1169ZpH2dwcHCPHj2mT5+e61VIDx8+3KZNm2XLlmketmTJkn/++Wfbtm067X796aeftL94mwUm/+LFi7UM3hJYY0EZawmdaqpo0aLu7u46FdS5c+caNmw4atSoXK/9LP1dmuvkO3bsOHDgwPr163W6wMNff/2lfReyBRaUmhy5mkndunWlfztdvnxZvw7gPJn8Xl5exYoV0yn5//3338aNG3/66ae5flIhISEVKlTIdfLt27cfPHhww4YNOl3a8+TJk1b9TylZv00oKCMuoVNBFStWTJsNfkZPnz4tW7bswIEDe/bsqXlkjx49wsPDc538xIkTP//889KlS3XaBdO2bVvtb9VlOQWVlJQk3TQmKirqo48+ynbM7du3P/zwQ+nxoEGDcu0AVh9yk26gkZW6Lzan61XnKq8mf5kyZXRK/ocPH1aoUGHw4MFdu3bVPLJr167R0dG5Tv7HH3/s3Llz2bJltWvX1j6MVq1aad9SbznJr2bEbxMKStYldC0oV1dXnQoqNTV1165d3bt3//TTTzWPHDVq1OHDh3Od/M6dO1u2bJk1a1ZgYKD2YQAAAAAAAAAAAFgCu8ePH0uPcjqlVd1S37BhQyHEsWPHhBA1a9bMOEahUFStWvXvv/9+8eKFee/Xo778wN27d7MdoD5epeEKQD/99FNSUtKgQYOMHZ2lyPWG4126dHF0dExKSgoODl6zZk3G+7bExMRcu3bNzc0t65Ue7t69Gx4e7uPjoz4pTX3AT30I0JQOHz7cu3dvR0fHgwcPNm7cWKf36tqjbLHCw8OlB7nep0x9i4n33ntP/WSms0qSk5O3b98uhMjau2D2lnq9T5/QzCibFLnn1+kMEP1IVxt68OBBri31Wnr06FGJEiVkvZxJ/kl+OVhpQRlrCblrSl1QubbUa+nRo0f29vY6tRTrymILSqZczUTd5PTkyRP9ZiD5JerkN9aH9ejRIwcHB1lvxmqxyS8HCsq4S8hdUMWLF7e1tX348KGxJpSmkvUak5ZTULa2tjk1T6ekpNy6dUsI4eLiUqlSJc1xZqS+zFJOaaO+hZ3e7bkkv6REiRI2NjYkv7CYbxMKStYl5C4oe3t7Ly8v6yooAAAAAAAAAAAAmdhIl7YSQkRFRWU7Qmqp9/T0LFeunPjvXYmzHhopX768EOLevXuyhaqVGjVqODg4CCEuXryY7YBr164JIQoXLqzhjt6bN29u3ry5Trf8ti65XqXezc2tU6dOQoi4uLjffvst40sxMTHNmjULCgrK9JbIyMh33333gw8+yHjFNfV5GqbvDTpx4kS3bt3s7OwOHDiQ7cXANFMHbO1HAdV3D8/p0m6SyMhI6ch98+bNc/p1vXz5skePHo8ePfrggw+ynqJgvadPaGaUTYrc85vgDJC6desWKVLk0KFDxprw4MGDOd0axVjySfLLwXoLylhLyF1TpUqVqlq1qhEL6sCBA82bN5f1HBXLLChj5WpsbKxSqdQwQN3tpP11/TMh+SVly5atXLmycZO/RYsWuV7p1hCWmfxyoKCMvoTcBWVvb9+0aVPp3mJGcfDgQR8fH+3v4aAHyymoggULhuRA/Stt1KiR+klt7gZYvHhx6Y6cf/75Z7YDbty4IT3Iena6lkh+iaOj47vvvmvc5K9Zs6asJ2hZTvLLgYKSdQkT/L3fqlWr/fv3G2u2gwcPenh41KhRw1gTAgAAAAAAAAAAmIyNl5eX9OjKlStZX3769KnUfu3n5yddFismJsbGxibrATAnJychRHx8vLzx5sbR0bFz585CiJMnT6ovA6am/nG6du2aU/PN9evXz58/P2TIELlDNZe3b99Khx7d3d0rVKiQ07A+ffpID3744YeMz5cpU6Zo0aKPHz/OdA7GjBkzIiMjv/nmm4yXtC9UqJDUVa++GYIRJSYmrlu3bufOnVm7ds6cOSOlwf79+1u0aKHH5OqAq1WrZmCc5lW5cuUCBQoIIR4+fJjTMXWVSjVkyJDw8PACBQosX7480wXwhBDvvfeej49P2bJlDxw4MHTo0A0bNmQdY72nT2hm+CbFBPOb4AwQe3v7gICAvXv3GmW2K1euPHz4sEuXLkaZLSf5IfnlYNUFZawlTFBTQUFBBw8eTElJMXyq8PDwM2fO5MOCMmKuHjhwYObMmTm9mpKSor5lk37/qBAkfwadO3c+cOBAamqq4VO9ePHi3Llz+TD55UBBybGECQqqS5cuf/31l/okeUMkJSX9/vvvFJSBevfuLYS4fft21msNKJXKXbt2CSFcXV3fffdd/eYn+dW6dOly8uTJnC4MoZPExMQjR46Q/BaIgpKYpqDu3bt3+/Ztw6dSqVT79u3r3LmzNidOAAAAAAAAAAAAWBob9ZWQDh48ePny5YyvxcfHDx48WGp5UV/OPDY2NtvLoEoHS9R3XjajAQMGCCGSk5MXLlyY6aU5c+ZIDwYPHpzT2zdv3uzq6tqzZ0/5IjSvixcvqlQqkeE0iWx17NhRugLWoUOHMnZpKBSKBg0aCCFCQkLUT167dm3NmjXt27fPettxqSX92rVrycnJGqJ68+bNy/9SZ1FkZKT6ybdv32Z6y8cff/zJJ5/07t17zZo1GZ+/f/9+hw4d4uLiOnTocPPmzVWrVq1cufKbb75ZkoWGRv8LFy4IITw9PWW9Up0JuLi4dOjQQQiRmpq6bdu2rAOUSuXs2bOlVumlS5eq766eUWJiopOTk3QH+cTEROlWFZlY1+kT8fHx33777d69e6Va0Ey/TYr2Sxi4yRKmOgOkb9++d+/eNUpX/ZIlS9zd3du3b2/4VBrkjeSXQ94uKL2XyMgENdWnT5/Y2NgNGzYYPtXXX39tZ2fXvXt3w6fSwNIKSr9czSn5r1+/PmfOnIULF6anp2d914YNG54+fSqE8PPzy3S5TZJfD3369ImKitq0aZPhU3399dcFChTo1q2b4VNpYGnJLwcKyohLZGSCgurRo4dCofjmm28Mn2rdunVxcXFSA6t88kZBafin1KBBg6Q/sefPn5/ppS1btjx//lwIMWLECCl4NZJfDz179lSpVMuXLzd8qjVr1iQmJpL85kJBZbtERiYoqI4dOxYqVGjJkiWGT7Vr167Hjx/37dvX8KkAAAAAAAAAAADMQKlU1qxZU3pcrFix/fv3JyYmRkRE7N69u3r16uphBw8eVKlUKpXKw8NDoVCoshg2bJgQ4rfffsv6kgY9e/YsVapUqVKlHjx4oNMbVSpVYGBgixYtsj6vVCoDAgKksNetW6d+cuXKldLRuKCgIKVSme2cycnJnp6ew4YN0zUYs/Pw8Jg6dao2IxcsWCD9cmbMmKF5ZP/+/aWRa9asyfi8dOHJpUuXSv+rVCpbtmxZoECBu3fvZp3k888/lyY5e/ashrUaNmyoOVEnTZqU6S3169eXXvr4448zPv/bb79pmfxHjx7NNpikpCR7e3shRJs2bTT/iiRnz54VQpw+fVqbwYZzd3efNm2a9uMvXrwonfHi4uKyf//+jMn/7Nkzf39/6bcxa9YszfOkp6efOHHCw8PD09MzJCQk64DWrVsLIezt7ZOSkjTMExER8eK/Ro8eLa3+888/q5+MjY3N9BZ1Kq5atSrj8/fu3StcuLAQolu3bitXrly5cuWKFSuWLVu2OItHjx5lfOPw4cOlCVesWKH5p1bpu0nRfglDNlmSOnXqCCE8PT1z/VkkNWvWHDx4sJaDM2rcuHHVqlVTU1M1jClbtuyYMWM0DAgJCbGxsVFvQHTi5ub25Zdfaj/e0pJfDhSUsZbISKea6tChg7+/vzYjM+nRo4eXl1dMTIyGMY0bN5Y6xnLy7NkzZ2fnsWPH6hGAj4+PTv/gsZyC0jtXc0r+Bw8eFC9eXAjRuHHjQ4cOqbdySqVy/fr10j8J7Ozs/vnnn0yR5PPkb9euXUBAgDYjM+natWvRokWzbp0y8vPz69Onj4YBjx49cnR0nDBhgh4BVK1aNdO/HjWznOSXAwVl3CUy0qmghgwZUqNGDW1GZjJq1CgnJ6enT59qGNO9e/emTZtqGBAVFeXh4dG3b189AmjTpk1gYKD24y2/oB4+fCjFkNMfgzklv+STTz6RXl28eHF6err05L59+6SfulKlSlm3fvk8+QcMGODr66vNyEw++eQTV1fXFy9eaBjTpUuXbPcaqUnJ369fPz0CaNmyZVBQkPbjLT/55UBBmbigpkyZov2egYy++uorW1vba9euaRgzcuTIihUrahiQnJxcqVKl5s2b6xEAAAAAAAAAAACAJRAqlWrHjh0iA/XNeRs2bOjj4yM9fv36tfSGihUrCiGSk5MzTSQdBtO1q1h9HcR79+7pGnpOLfUqlerp06dSJ4cQok6dOj169KhUqZL0v97e3mFhYTnNuXv3biFE1g4Py6d9S736Qrb79+/XPPLgwYPSyEwdGAcOHBBCqI86S7fbzqnJWz1JtsdH1fRoqT98+HDVqlV9fHxu376d8XnDW+qlW28LIRYuXKj5VySx8JZ6lUqV8UL+TZo0+eKLL6ZPn961a1dHR0chhLOz8/fff6/lVMHBwVJZqY9nq1nR6RMtW7aUnn/nnXe0+an12KTotITemyyV7meAqAxoqT916pRCoZgyZYqGMZpb6uPi4nx9fcuVK6dfe4euLfUqC0t+OVBQxlpCTdea0rul/s6dO/b29gMGDNAwRnNLfWpqatu2bQsXLhwREaFHALq21KsspqD0ztWckl+lUl2+fLls2bLSq56ens2bNw8ICFDfqcbW1nbLli1ZI8nnya93S/2tW7fs7Ow0fxNpbqlPTU1t3bq1u7v7mzdv9AhA15Z6lcUkvxwoKOMuoaZrQendUv/q1Ss3N7eAgIC0tLScxmhuqVcqlX379nVwcAgNDdUjAF1b6lUWX1C5dgBrSH6VShUdHS31vwohKlSo0KlTp1q1akn/6+XldfXq1axvyefJr3dL/YsXL1xdXTt16pT101fT3FKvVCrfe+89R0fHhw8f6hGAri31KotPfjlQUPotoaZrQendUh8fH1+qVKkGDRokJCTkNCbXlvrPP//cxsbGEhIPAAAAAAAAAABAP0L6z9dff+3k5KQ+tlenTp1NmzalpaUVLVpUCJHxkEm9evWEEPfv3880UatWrYQQ2R7Q0kCmlnqVShUWFiaFlFG7du1evnypec5q1appvkCUZdK+pd5w4eHhQoiaNWuqVKrExERvb29vb+/4+PhsB8fHxzs4OAghBg4caJrwDPftt99KCZPtJd+ysvyWepVKtXfv3nLlymWqiAIFCgwdOvTJkyfaz5OamiptK7L+cqzo9ImDBw96eXlVrFixSpUqGjowMtJ1k6LrEvptslS6nwGiMqClXqVSTZkyRaFQ/PDDDzkN0NBSr1Qqe/fu7ejo+O+//+q3uh4t9SpLSn45UFDGWkJN15rSu6VepVJt2rRJCLF48eKcBmhuqR89erSNjc3evXv1W12PlnqVZRSU3rmaU/JLYmJiPv30UxcXl0yT+Pj4/Pnnn9lGks+TX++WepVKtXLlSiHE119/ndMAzS31o0aNsrGx0fXuWGp6tNSrLCP55UBBGXcJNV0LSu+WepVK9euvv9rY2Gi4Y4nmlvp58+aJDNdO1pUeLfUqyy6oXDuANSe/SqWKiIhQn8eu1rBhw5zG5/Pk17ulXqVS7d69W6FQTJw4MacBmlvq58yZI4TYsGGDfqvr0VKvsuzklwMFpd8SaroWlN4t9SqV6q+//nJwcOjZs2dOO0U1t9Rv27ZNCDFnzhz9VgcAAAAAAAAAALAE/7kg/eeffz548OCQkBBXV9dq1aq5uroKIZ48eSI1T/v5+akP+VSpUuXixYv37t2TLlevdv36dQcHhwoVKghdnDhxQqfx2itRosSff/556dKlI0eOvH79unTp0q1bt65du7aGt4SFhR06dGjBggXSzZeREy8vL29v7ydPngghVq1a9fjx4z179jg7O2c72NnZuUOHDnv27Dl8+HBaWpr6HgiWTGotqlChgvr6Z3lAUFBQhw4dTp48efbs2Tdv3nh4eFStWrV9+/YFCxbUaR47OztPT8+nT58+ffo0U0G1aNHCwcEhOTn5/PnzGmY4c+aMrsG3b9/+9u3bWZ/v1KmTSqXSdTYhRIcOHaSNW1BQUHp6uo2NTa5v0XWTousSemyyJBcuXJAetG/fPtfBhps7d+69e/cGDhwYGRk5atQo7d+YlJT04Ycf/vzzzxs3bmzUqJF8EWZlOckvBwrKWEuombKmhgwZcuHChYkTJ0ZERMybN0+bn0uSlpY2bdq05cuXz58/PygoSNYgM7GEgtI7V3NKfombm9uKFSvmzZt36NChe/fuRUREFCtWrFmzZo0aNcrpoyH59TZq1KgbN26MGzfu1atX8+fP1/7f3lLyr1q1atGiRZ06dZI1yEwsIfnlQEEZdwk1UxZU165dZ86cOWPGjLi4uFWrVknXM9aGSqVatGjRtGnTRo8e/dFHH8kaZCaWXFDlypXTXBSak18I4eHhsXv37pCQkMOHD7969crd3b158+bNmjUj+Y2ue/fu06dPnz17dnR09OrVq7Xf2yAl/5dffjl27Nhhw4bJGmQmlpz8cqCg9FtCzZQF1aRJk7Vr1w4ePLhv376bN2/OaS9fttavXz9q1KgePXpMnTpVvggBAAAAAAAAAADk9r8jjoULF1bfvFiivhhSxpb6Ll267Nix48yZMwEBAeon7969+/r16w4dOmS9EqF51a1bt27duloO3rZtm0Kh6N+/v6wh5Q0NGjT45ZdfXr9+PW/evA4dOmju5xs+fPiePXtevXp1/Phxf39/kwWpn9evXx85ckQI8cknn+Sxkyvs7e3btm3btm1bLcdfuHBBfRN2taSkpOfPnwshatSokeklazx9Qn0XdS3ptEnRYwk95jfxGSAKhWLbtm3Dhg379NNPb9y4MX/+/MKFC+f6rqtXrw4aNOjWrVvffffdgAED5A8zM5LfNCytoPRbwsQ1tXLlSicnp4ULF4aGhq5cubJ48eK5viU0NPTDDz88derUokWLJkyYYIIgM8nbBeXq6tqrVy9d30Xy62HVqlWOjo4LFy58+PDhihUrihUrlutb7t+/P2zYsL/++mvp0qVjx441QZCZ5O3klwMFZbKCmjZtmr29/dSpUx88eLB+/fry5cvn+pawsLBRo0b9+uuvkyZNki5Ub2J5vqB8fX19fX11egvJr4eZM2fa29t/+eWXjx49Wr9+vbe3d65vef78+ciRI/ft2zd58uS5c+eaIMhM8nzyy4GCMk1BDRo0KC0tbeTIkQ8ePNiyZUv16tVzfUtkZOSECRM2b948ZMiQNWvW5LHdaAAAAAAAAAAAIL/RdC0l9RWtMrbUd+jQoUCBAlu2bElISFA/uWLFCiGEia+TalwqlWrz5s2BgYHadLOhQYMGQoglS5YkJCSsWLFC8zGztm3bVq1aVQixdu1aE8VngI0bN6anpzs7Ow8aNMjcsZhZjx49duzYkenJDRs2KJXK6tWrZ9usMHz4cCGEdPqEKUI0TFxcnKOjo1UvYZYzQBwdHbdv375w4cItW7ZUqlTp66+/joyMzGnwrVu3Bg0aVKdOnTdv3hw/ftws/fR6yPPJL4c8UFDCHDVla2u7dOnSLVu2HD58uHLlyjNnznzx4kVOgx89ejRmzBgfH59r167t27fPLP30esjzBUXy68fW1nbZsmWbNm06cOBApUqVZs2a9fLly5wGP3z48LPPPvPx8bl58+b+/fvN0k+vhzyf/HKgoPSjUCgmT57866+/Xr58+Z133hk7duzjx49zGhwWFjZ9+vTKlSv/8ccf33///YIFC7S/TYoZ5fmCIvn1o1Aopk2btnv37gsXLlStWnXChAnS/fSy9fz586lTp1apUuX48eM//PCDTvcIMqM8n/xyoKD0NmzYsGPHjoWFhdWuXfvDDz+8c+dOTiMjIiIWLlxYsWLFH3/88Ztvvtm0aVOBAgVMEyQAAAAAAAAAAIBMNB0+lK5Sb2trW6dOHfWTbm5uEydOfPLkyXvvvRcaGpqQkLBkyZLVq1dXqVJl4MCBsscrm7///vvevXtDhgwxdyDWQWqp37Bhw6RJkypVqqR5sI2NjXThw+Dg4Js3b5oiPn0lJCQsW7ZMCDF+/HgvLy9zh2NmM2fOfP/993v06HHs2LHY2NiIiIhvv/12woQJtra2W7duzfaArnWdPrF9+/b33nvPqpcw4xkgEydOvHXrVvv27cePH1+sWLHWrVvPmjVr8+bN8fHxd+7cWbVq1bhx46pWrerj47N379558+bdvn27UaNGJg5Sb3k++eWQBwpKmK+mBg0adP/+/f79+8+bN6906dLvvvvu9OnTN2zY8Pr16ydPnqxZs2by5Ml16tQpX778+vXrx40bd//+/Y4dO5oyQkPk+YIi+Q0xZMiQ+/fvf/DBB3Pnzi1VqlTjxo1nzJixYcOGiIiIx48ff/vtt5MmTapdu3aFChU2bdo0YcKE+/fvZ7xTloXL88kvBwrKEEFBQffv3x8zZszatWvLlStXt27dL774Ys2aNU+fPg0PD1+/fv306dMbNmxYunTphQsXStXXr18/U0ZoiDxfUCS/Ibp27Xr//v3PPvts1apV3t7e9erVmzJlytq1a589e/bq1av169dPmzbNz8+vTJkyS5YsGTp06P379/v27WvKCA2R55NfDhSUIZo1a3b37t1Zs2bt3LmzWrVqPj4+48ePX7Vq1b17996+fbt58+aZM2e2bNmyePHiU6ZMCQoKunPnzujRo00ZIQAAAAAAAAAAgFxUOUhLSytYsKAQok6dOpleSk1NHTFiRMZJatSoERoamtNUMgkMDGzRooWxZhs8eHDRokVTUlKMNaGJeXh4TJ061WTLxcTECCHKlSuXkJCgzXilUtmyZUshRJcuXWQOzSDSbd9Lly4dGxur/bvOnj0rhDh9+rR8gWXk7u4+bdo006y1Z8+eTBe9K1eu3IkTJzS8Zffu3dLIGzdumCZI/bx9+7Zly5aylrzcS8THx0snfsyYMUOnN9asWXPw4MHGCiM0NHTJkiXNmzd3dnbOmCpFixbt3bv3jh07YmJijLWWm5vbl19+aazZNMvDyS+HPFBQKn1rqkOHDv7+/saK4dmzZ99++227du2kf4OpFSlSpEuXLps3b379+rWx1vLx8Rk2bJixZtMsDxdUfk7+du3aBQQEGCuGZ8+erV692t/fP1Pyu7u7d+3adcuWLREREcZaq2rVqh9//LGxZtMsDye/HPJzQQ0ZMqRGjRrGiuH169ebNm0KCgoqUqRIxvRzc3Nr3779mjVrnj9/bqy12rRpExgYaKzZNMvDBZWfk3/AgAG+vr7GiiE8PHzjxo2dOnUqXLhwxlQpVKhQQEDA2rVrw8LCjLVWy5Ytg4KCjDWbZnk4+eWQnwtqypQpnp6exoohOjr6hx9+6NWrV6ZLTri4uLRs2XLZsmUPHz401loAAAAAAAAAAACWwE7k4M6dO2/fvhVCNGzYMNNLdnZ2q1evHjly5JEjR+Li4nx9fTt06GBra5vTVJbv7du3O3fuHD58uL29vbljsQ5///23EGL58uVOTk7ajFcoFFu3bq1Vq9bevXuDg4O7d+8uc4D6uHPnzpw5cxQKxXfffZepnSvf6tKlS0BAwMmTJy9cuGBnZ1evXr1GjRq5uLhoeEu3bt1atmx54sSJKVOm7Nmzx1SR6mzMmDFyl7zcSyxbtuz169elS5ceP368TEtoo0KFCuPGjRs3bpwQIjY29urVq15eXuXKlXNwcDBjVIbLw8kvhzxQUMIyaqpUqVLDhw8fPny4ECI+Pv7GjRuOjo6VK1fW8tvWYuXhgiL5jaVUqVIjRoyQztqNj4+/fv26s7NzpUqVSH5TRWoRKChj8fT0HDJkiHQHtsTExLt376akpFSvXj3TCZBWJw8XFMlvLF5eXkOHDh06dKgg+a0k+eVAQRlLoUKF3n///ffff18IkZyc/ODBg8jIyFq1arHHDAAAAAAAAAAA5FU5ttSfP39eeuDn55ftAB8fHx8fH1mCMrldu3bFx8cPHjzY3IFYh9TU1LFjx3bs2LFz587av8vb23vnzp2dOnUaPnx4/fr1y5YtK1+EekhISOjXr19ycvLSpUtbt25t7nAsiIODQ7t27dq1a6fleKs4fSIkJKRYsWKy3qVd7iUs8wwQNze3pk2bmjsKo8mTyS+HPFBQwiJrysXFJad/g1mjPFlQJL9MXFxcsp7Ta73yZPLLgYKSiZOTU+3atc0dhdHkyYIi+WVC8lt+8suBgpKJg4PDO++8Y+4oAAAAAAAAAAAA5JVjS33fvn179OghhHB0dDRhPOaxZcuWRo0a5ZkzBOQ2d+7cZ8+eHThwQKFQ6PTG9u3bb9y4cdCgQZ07d/7rr78s5LigEEKpVA4YMODChQtjx44dO3asucOxehZ++oQQwtfX19fX13qX4AwQi2X5yS8Hay8oQU1ZKssvKJIfMrH85JcDBQWZWH5BkfyQieUnvxwoKAAAAAAAAAAAAOjNJqcXChQo4Orq6urqameXY9u9eZUvX758+fKGz6NSqcLCwj777DPDp8rbpk+fvmPHji+//HLOnDlr1qypUKGCHpMMHDgwMTHx7NmzFnXjdYVCsX379sTExCVLlpg7ljxCOn0iPDy8c+fOb9++NXc4eQpngFg4kt/qUFOWjIKSFclvyUh+q0NBWTIKSlYkvyUj+a0OBQUAAAAAAAAAAGBGFtour40VK1YYZR6FQnH//n1dL7ie36SkpMybN0+pVDo5Oa1evbpfv356T2WB9z1QKBQWGJW1GzhwYO/evYUQ9vb25o4lT5HOANm+fbuDg4O5Y0H2SH7rQk1ZOApKPiS/hSP5rQsFZeEoKPmQ/BaO5LcuFBQAAAAAAAAAAIAZWXFLvRGb4Omnz1WBAgXi4uJevnzp6elZsGBBc4cD68CJCnLgDBCrwGdkRagpy8cHJBOS3/LxAVkRCsry8QHJhOS3fHxAVoSCAgAAAAAAAAAAMCMrbqmHiTk5OZUvX97cUQAAAAAAAAAAAAAAAAAAAACA0diYOwAAAAAAAAAAAAAAAAAAAAAAAMyDlnoAAAAAAAAAAAAAAAAAAAAAQD5FSz0AAAAAAAAAAAAAAAAAAAAAIJ+ipR4AAAAAAAAAAAAAAAAAAAAAkE/RUg8AAAAAAAAAAAAAAAAAAAAAyKdoqQcAAAAAAAAAAAAAAAAAAAAA5FN25g4AgG6SkpIOHjwYHh5u7kBgrZ4/f166dGlzR6GPlJSU/fv3v3jxwtyBAP9z/fp1d3d3c0ehj+jo6L/++uvjjz82dyCwVjdv3ixatKi5o9BHTEzMqVOnSH5YlL///js+Pt7cUejj9evX0dHRFBT0dubMmaSkJHNHoY/Xr18/fPiQ5IdFOX/+fGJiormjAAAAAAAAAAAAsFa01OcRsbGxS5cu/fbbb80dSH6Unp4uhDBZj7uXl9fz58+jo6NNsxzyHqVS6eXlZe4o9CElf1RUlLkDAf4nPj6+atWq5o5CH15eXmFhYceOHTN3ILBWCQkJ1vtt8vLlS5IfFuXt27dWesajl5fXs2fPKCjoLTY21tvb29xR6INvE1ig+Ph4Kz3jEQAAAAAAAAAAwBIoVCqVuWOAEYwePTopKalIkSLmDiQ/Sk9Pv3379vfff1+4cGFzxwIAAAAAAAAAAAAAAAAAAABAB/8HMpGtMgaRnWIAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "execution_count": 8, @@ -236,18 +226,16 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "qiskit_master", "language": "python", - "name": "python3" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { @@ -259,7 +247,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.6" + "version": "3.6.1" } }, "nbformat": 4, From 1a04055b51810800b7dd863aecbf981989d5b69c Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 23 Apr 2019 13:08:04 +0200 Subject: [PATCH 071/116] update portfolio optimization and qiskit finance index --- .../optimization/portfolio_optimization.ipynb | 85 +++++++------------ qiskit/finance/qiskit_finance.ipynb | 6 +- 2 files changed, 32 insertions(+), 59 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index 042776d81..9623161be 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -61,13 +61,13 @@ "outputs": [], "source": [ "from qiskit import BasicAer\n", - "from qiskit_aqua import QuantumInstance\n", - "from qiskit_aqua import Operator, run_algorithm\n", - "from qiskit_aqua.input import EnergyInput\n", - "from qiskit_aqua.translators.ising import portfolio\n", - "from qiskit_aqua.algorithms import VQE, QAOA, ExactEigensolver\n", - "from qiskit_aqua.components.optimizers import COBYLA\n", - "from qiskit_aqua.components.variational_forms import RY\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.translators.ising import portfolio\n", + "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", "import numpy as np" ] }, @@ -235,27 +235,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 0 1 1], value -0.7012\n", + "Optimal: selection [1 0 0 1], value -0.4158\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 0 1 1]\t-0.7012\t\t0.4800\n", - " [1 1 0 0]\t-0.5110\t\t0.2290\n", - " [1 0 0 1]\t-0.4158\t\t0.2173\n", - " [0 1 1 0]\t-0.5149\t\t0.0723\n", - " [1 0 1 1]\t3.0617\t\t0.0003\n", - " [0 0 1 0]\t3.4782\t\t0.0002\n", - " [1 1 0 1]\t4.6445\t\t0.0002\n", - " [0 1 0 0]\t4.5153\t\t0.0002\n", - " [1 1 1 0]\t2.6688\t\t0.0001\n", - " [0 0 0 1]\t4.0314\t\t0.0001\n", - " [0 1 0 1]\t2.1421\t\t0.0001\n", - " [1 1 1 1]\t15.6136\t\t0.0000\n", - " [1 0 1 0]\t-0.2876\t\t0.0000\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n", + " [1 0 0 1]\t-0.4158\t\t0.7755\n", + " [1 0 1 0]\t-0.2876\t\t0.2241\n", + " [1 1 0 0]\t-0.5110\t\t0.0001\n", + " [0 0 1 0]\t3.4782\t\t0.0001\n", + " [1 1 1 1]\t15.6136\t\t0.0001\n", + " [1 0 1 1]\t3.0617\t\t0.0001\n", + " [0 0 1 1]\t-0.7012\t\t0.0001\n", + " [0 1 0 0]\t4.5153\t\t0.0000\n", + " [0 0 0 1]\t4.0314\t\t0.0000\n", + " [1 1 1 0]\t2.6688\t\t0.0000\n", + " [0 1 1 0]\t-0.5149\t\t0.0000\n", " [1 0 0 0]\t4.0242\t\t0.0000\n", - " [0 1 1 1]\t4.9012\t\t0.0000\n" + " [1 1 0 1]\t4.6445\t\t0.0000\n", + " [0 1 0 1]\t2.1421\t\t0.0000\n", + " [0 1 1 1]\t4.9012\t\t0.0000\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } ], @@ -312,44 +312,17 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimal: selection [1 1 0 0], value -0.5110\n", - "\n", - "----------------- Full result ---------------------\n", - "selection\tvalue\t\tprobability\n", - "---------------------------------------------------\n", - " [1 1 0 0]\t-0.5110\t\t0.1907\n", - " [0 0 1 1]\t-0.7012\t\t0.1853\n", - " [1 0 0 1]\t-0.4158\t\t0.1839\n", - " [0 1 1 0]\t-0.5149\t\t0.1789\n", - " [0 1 0 1]\t2.1421\t\t0.1584\n", - " [1 0 1 0]\t-0.2876\t\t0.0948\n", - " [1 1 1 0]\t2.6688\t\t0.0033\n", - " [0 0 0 1]\t4.0314\t\t0.0020\n", - " [1 0 1 1]\t3.0617\t\t0.0009\n", - " [0 1 1 1]\t4.9012\t\t0.0007\n", - " [1 0 0 0]\t4.0242\t\t0.0006\n", - " [0 1 0 0]\t4.5153\t\t0.0003\n", - " [0 0 1 0]\t3.4782\t\t0.0002\n", - " [1 1 1 1]\t15.6136\t\t0.0001\n", - " [0 0 0 0]\t16.0000\t\t0.0001\n", - " [1 1 0 1]\t4.6445\t\t0.0000\n" - ] - } - ], + "outputs": [], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", "seed = 50\n", "\n", "cobyla = COBYLA()\n", "cobyla.set_options(maxiter=250)\n", - "qaoa = QAOA(qubitOp, cobyla, 3, 'matrix')\n", + "qaoa = QAOA(qubitOp, cobyla, 3)\n", + "\n", "qaoa.random_seed = seed\n", "\n", "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", @@ -388,9 +361,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_stable", + "display_name": "qiskit_master", "language": "python", - "name": "qiskit_stable" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { diff --git a/qiskit/finance/qiskit_finance.ipynb b/qiskit/finance/qiskit_finance.ipynb index 197cb4ffd..5ee05e65e 100644 --- a/qiskit/finance/qiskit_finance.ipynb +++ b/qiskit/finance/qiskit_finance.ipynb @@ -30,11 +30,11 @@ "In this notebook we provide an overview of Qiskit Finance tutorials and tutorials from other domains which might be relevant in finance.\n", "\n", "#### Machine Learning:\n", - "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", + "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", "\n", "#### Optimization:\n", "- Portfolio Optimization\n", - "- Portfolio Diversification\n", + "- Portfolio Diversification\n", " \n", "#### Simulation:\n", "- Option Pricing\n", @@ -42,7 +42,7 @@ "- Fixed Income Pricing\n", "\n", "#### Data Providers:\n", - "- Stock Market Time Series" + "- Stock Market Time Series" ] }, { From a63ae31407110e5e467f4a70a50de0e1706fc485 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 23 Apr 2019 13:35:54 +0200 Subject: [PATCH 072/116] Update portfolio_optimization.ipynb --- .../optimization/portfolio_optimization.ipynb | 66 +++++++++++++------ 1 file changed, 47 insertions(+), 19 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index 9623161be..3ff6db9cf 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -240,33 +240,33 @@ "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [1 0 0 1]\t-0.4158\t\t0.7755\n", - " [1 0 1 0]\t-0.2876\t\t0.2241\n", - " [1 1 0 0]\t-0.5110\t\t0.0001\n", - " [0 0 1 0]\t3.4782\t\t0.0001\n", - " [1 1 1 1]\t15.6136\t\t0.0001\n", - " [1 0 1 1]\t3.0617\t\t0.0001\n", - " [0 0 1 1]\t-0.7012\t\t0.0001\n", - " [0 1 0 0]\t4.5153\t\t0.0000\n", - " [0 0 0 1]\t4.0314\t\t0.0000\n", - " [1 1 1 0]\t2.6688\t\t0.0000\n", - " [0 1 1 0]\t-0.5149\t\t0.0000\n", - " [1 0 0 0]\t4.0242\t\t0.0000\n", + " [1 0 0 1]\t-0.4158\t\t0.9322\n", + " [1 0 1 0]\t-0.2876\t\t0.0667\n", + " [1 1 0 0]\t-0.5110\t\t0.0011\n", " [1 1 0 1]\t4.6445\t\t0.0000\n", + " [0 0 1 1]\t-0.7012\t\t0.0000\n", + " [1 0 0 0]\t4.0242\t\t0.0000\n", " [0 1 0 1]\t2.1421\t\t0.0000\n", + " [0 0 1 0]\t3.4782\t\t0.0000\n", + " [0 1 1 0]\t-0.5149\t\t0.0000\n", " [0 1 1 1]\t4.9012\t\t0.0000\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n" + " [0 0 0 0]\t16.0000\t\t0.0000\n", + " [0 1 0 0]\t4.5153\t\t0.0000\n", + " [1 1 1 1]\t15.6136\t\t0.0000\n", + " [0 0 0 1]\t4.0314\t\t0.0000\n", + " [1 1 1 0]\t2.6688\t\t0.0000\n", + " [1 0 1 1]\t3.0617\t\t0.0000\n" ] } ], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", - "seed = 50\n", + "seed = 42\n", "\n", "cobyla = COBYLA()\n", - "cobyla.set_options(maxiter=250)\n", + "cobyla.set_options(maxiter=500)\n", "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full')\n", - "vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", + "vqe = VQE(qubitOp, ry, cobyla)\n", "vqe.random_seed = seed\n", "\n", "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", @@ -281,7 +281,7 @@ "\n", "optimizer_cfg = {\n", " 'name': 'COBYLA',\n", - " 'maxiter': 250\n", + " 'maxiter': 500\n", "}\n", "\n", "var_form_cfg = {\n", @@ -312,9 +312,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal: selection [0 0 1 1], value -0.7012\n", + "\n", + "----------------- Full result ---------------------\n", + "selection\tvalue\t\tprobability\n", + "---------------------------------------------------\n", + " [0 0 1 1]\t-0.7012\t\t0.1719\n", + " [1 0 0 1]\t-0.4158\t\t0.1714\n", + " [1 1 0 0]\t-0.5110\t\t0.1706\n", + " [0 1 1 0]\t-0.5149\t\t0.1691\n", + " [1 0 1 0]\t-0.2876\t\t0.1515\n", + " [0 1 0 1]\t2.1421\t\t0.1508\n", + " [1 1 1 0]\t2.6688\t\t0.0073\n", + " [0 0 0 1]\t4.0314\t\t0.0028\n", + " [1 0 1 1]\t3.0617\t\t0.0025\n", + " [0 1 1 1]\t4.9012\t\t0.0007\n", + " [0 1 0 0]\t4.5153\t\t0.0004\n", + " [1 0 0 0]\t4.0242\t\t0.0004\n", + " [0 0 1 0]\t3.4782\t\t0.0003\n", + " [1 1 1 1]\t15.6136\t\t0.0001\n", + " [1 1 0 1]\t4.6445\t\t0.0000\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n" + ] + } + ], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", "seed = 50\n", From d2d1326ffd1d7f1a354da49019e886c7fd9925e9 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Tue, 23 Apr 2019 14:01:16 -0400 Subject: [PATCH 073/116] add notebook for deutsch-jozsa --- community/aqua/general/deutsch_jozsa.ipynb | 203 +++++++++++++++++++++ 1 file changed, 203 insertions(+) create mode 100644 community/aqua/general/deutsch_jozsa.ipynb diff --git a/community/aqua/general/deutsch_jozsa.ipynb b/community/aqua/general/deutsch_jozsa.ipynb new file mode 100644 index 000000000..662dda185 --- /dev/null +++ b/community/aqua/general/deutsch_jozsa.ipynb @@ -0,0 +1,203 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# _*Experiment with the Deutsch-Jozsa Algorithm in Aqua*_\n", + "\n", + "This notebook demonstrates how to experiment with the `Deutsch-Jozsa` algorithm in `Qiskit Aqua`.\n", + "\n", + "We first import all necessary modules." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + ], + "source": [ + "from qiskit import BasicAer\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.algorithms import DeutschJozsa\n", + "from qiskit.aqua.components.oracles import TruthTableOracle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The [Deutsch-Jozsa algorithm](https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm) is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. We can experiment with it in Aqua by feeding it oracles created using truth tables. For example, we can create a `TruthTableOracle` instance as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "bitstr = '11110000'\n", + "oracle = TruthTableOracle(bitstr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown, the truthtable is specified with the `bitstr` containing values of all entries in the table. It has length $8$, so the corresponding truth table is of $3$ input bits. We can of course see that this truth table represents a `'balanced'` function as half of values are $1$ and the other half $0$.\n", + "\n", + "It might seem like a moot point running Deutsch-Jozsa on a truthtable as the function outputs are literally listed as the truthtable's values. The intention is to create an oracle circuit whose groundtruth information is readily available to us but obviously not to the quantum Deutsch-Jozsa algorithm that is to act upon the oracle circuit. In more realistic situations, the oracle circuit would be provided as a blackbox to the algorihtm.\n", + "\n", + "Above said, we can inspect the circuit corresponding to the function encoded in the `TruthTableOracle` instance." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACfsAAAGZCAIAAAC7Fu6RAADJH0lEQVR4nOzdZ2AU1f7w8ZOekFBCAgSBUANSBAJEEUVCN0gRpShIR4oozXIB/1cEREFp0hUMCMqlCYQqoAI2pDdpIQSlJIEQIJBedp8Xc5+962az2TKzu7P7/bxx3T1z5ndmT87vDGd2xkOr1Qo4h8mTJ585c6ZatWqODgQq8/Dhw/T09N27dzs6EADqsGvXrk8++aRhw4aODgQqo9Fozp49u27dutq1azs6FgAA/mHQoEGPHj2qUKGCowOByty5c6ds2bKrV692dCAA1GH58uUbN26MiIhwdCBQmdzc3CtXruzfv79UqVKOjgWAK/Ngxdd51KhRIzU1NSwszNGBQGXS09PT0tIKCgq8vLwcHQsAFRgyZMjXX39ds2ZNRwcClcnPz79x48bKlSuHDRvm6FgAAPiHoKAgb2/vkJAQRwcClUlLSyssLHz06JGjAwGgDm3atPnjjz+qVq3q6ECgMllZWSkpKcePH2/evLmjYwHgyrwdHQD+p2bNmk2aNImLi3N0IFCZzz//fPz48Y6OAoBqRERE+Pn5Xb161dGBQGUuXbpUv379ypUrOzoQAAAMhYSEvPTSS/Pnz3d0IFCZ8ePHb9u2zdFRAFCNevXqpaamXrhwwdGBQGV27drVtWvXoKAgRwcCwMV5OjoAAAAAAAAAAAAAAICVWPEFAAAAAAAAAAAAALVixRcAAAAAAAAAAAAA1IoVXwAAAAAAAAAAAABQK1Z8AQAAAAAAAAAAAECtWPEFAAAAAAAAAAAAALVixRcAAAAAAAAAAAAA1Mrb0QFYr6CgQKPR+Pr62l5Vbm6un5+f7fW4j3v37mm12jJlyvj4+Dg6Fleg1Wrv3bsnhAgODvb05DoMAPgv0o28SDcAADgc0xt5Mb0BAKNIN/Ii3QBQBRUPT6NHjx40aJAsVdWoUWPp0qWyVOUOli9fHhIS0qVLl4KCAkfH4iI8PDzGjx8fGhr65ptvOjoWAHAWpBvZkW4AAHAspjeyY3oDAEWRbmRHugGgCir+jW9KSkpGRoYsVTVr1mzRokVvvPGGLLXZX2ZmpnQoSpUqVbp0aRMlc3Jy0tPThRBlypQJCAiwYl9xcXFvvvlmtWrVtm/fbl0NMGrlypUJCQnLli2rVq3a5MmTHR0OABhBunEBpBsAAPQxvXEBTG8AOD/SjQsg3QBwfir+ja85CgsLExISfvrpp/Pnz2s0muKKDRky5NKlS3/88Yc9Y5PRxIkTw8LCwsLCVq1aZbrk4sWLpZIHDhywYkdJSUkDBgwoLCxcsWJFpUqVrArWfsz89p2En5/fmjVr/P3933///d9//93R4QCAEaQbo0g3AACoF9Mbo5jeAIC8SDdGkW4AQF4uu+Kr0WgWLFgQHh4eERHRvn37Ro0a1axZc9GiRUYLd+/ePSQkJDY21s5ByuXo0aPSi6eeesrMkk8++aQVOxo/fvyjR4/69+/fuXNnKzYv0dy5c6OioqKiomz8Liz69u2vuGZGRERMnTpVq9WOGjWKm64AcEKkGwNOnm5EMS0l3QAAoOMa0xu55jbC6ac3nE0DUCnXSDfCbc6mSTcA1EqrWl27do2Ojjb6UU5OzksvvaRrY6lSpXSve/fuXVhYWHSTsWPHlilTJjMzU+GoTYmOju7evbulW2VmZnp7ewshfH19c3JyTBcODw8XQtSuXduK8Hbv3i2E8PLyunr1qhWbm6Nt27bS17Rz506rK7Hi27czE83MysqqWLGiEOKzzz4zv8IFCxYIIQoKCmQNE4DLmjlzpr+/v6VbkW4MOH+60RbfUuvSzcWLF4UQu3btkjtMAABsFR4ePn78eEu3cpnpjSxzG60apjeyn02PGzeuevXqcoYIwKW9/vrr9evXt3Qrl0k3Wrc5m5Y93ezcuVMIcenSJVnDBABDrvkb36lTp27ZskUIMXz4cOlxv+fOnevdu7cQYtOmTbNmzSq6ydChQx8+fPjdd9/ZO1abnThxQrqkqEmTJn5+fiZK3r59+/r168Kqa8Q0Gs3YsWOFEK+++mqtWrWsDdYUrVZ78uRJ6XWLFi2srseKb9+eTDczICBgwoQJQogPP/wwNTXV3sEBQPFINwacPN0Iky0l3QAAIFxleiPX3EY4/fSGs2kAKuUa6Ua4zdk06QaAerngiu+VK1fmzp0rhBgwYID0xAIPD49GjRqtX7++Z8+eQoipU6deu3bNYKsmTZpERkaW+CgFJ3TkyBHpRYl3BTG/ZFF79uxJSEgQQowcOdLSbc1UWFgYFxd38ODBn3/+2ernTFj37dtTic0cNmyYt7d3ZmamGnsjABdGutHn/OlGlNRS0g0AAK4xvZFlbiPUML3hbBqASrlGuhFuczZNugGgXi644vvll18WFBT4+/vPnj1b/31PT8958+Z5eXkVFBSsXbu26IZDhw49ePCgw/991lLmTwXMf2JEUcuXLxdChIeHP/PMM5ZuayZvb+82bdq0adOmdevWVldi9bdvNyU2s0KFCp06dRJCfPHFF1qt1r7RAUCxSDf6nD/diJJaSroBAMA1pjeyzG2EGqY3nE0DUCnXSDfCbc6mSTcA1MsFV3zXrVsnhGjTpk3lypUNPqpRo0abNm2EEN98803RDfv16+fr67t69WrlY5STpZMGX1/fyMhIi3aRmZm5b98+IURMTIyHh4dVYdqJ1d++U+nSpYsQIjEx8ezZs46OBQD+i3Sjj3QDAIALYHqjj+kNACiEdKOPdAMAynG1Fd/ExMSkpCQhRJMmTYwWkN6/cuXK3bt3DT4qX758jx49Vq9erdFolI5TLsnJyTdu3BBClC9fPiIiwkRJrVZ77NgxYcYTI4o6ePBgXl6esPmZQEqz5dt3KlFRUdKL77//3rGRAICEdKOPdAMAgAtgeqOP6Q0AKIR0o490AwCKcrUV39OnT0sviksb9erVk16cOXOm6KdDhgy5fv36Tz/9pEx08tPd6+PJJ580XTI+Pv7BgwfCqruC7N+/X3rh5JMGG79959GkSRMfHx+hd+QdSKPRqOgaCKVxNOC2SDf6SDeA2pHQ9XE04LaY3uhjeqMEBlh9HA24LdKNPtKNEhhg9XE04Oa8pf/cunVrwYIFQogGDRoMGTLEaNHdu3cfOHBACDF69OhatWrZvu/ly5dfvXpVCDFp0qSQkBDbKxRC3Lt3T3pRp04dowV07xt9Xm+nTp2qVq26atWqDh06yBKP0nR3BSlx0mDLcyCk21P4+fk1bNiwxMI5OTn//ve/hRBRUVF9+vR59OjRtm3b/vjjj4SEhLS0tObNm3/wwQdVqlQx2CojI2PatGlCiFatWvXs2dPSCCU2fvuWsqKlZjbTz8/viSeeOHnypANvDJKSkjJ//vy4uLirV69qtdpatWp169Zt4sSJRb87d8DRAEg3+pw/3QjzWuoM6QawJxK6Po4G4BrTG1nmNkIN0xvOplWKowG4RroRbnM2TbpRKY4G8F9arVar1aalpUn/GxkZqTXmwYMHFSpUEEJERUVpNBqjZSwVHR0t7TQhIcGKzbt27RodHW3w5meffSbVefbsWaNbHT58WCowb948owWmTJni7+9///59K0KyUXR0dPfu3S3apF27dlJzdu3aZbrkmDFjpJLx8fGWBiY9ViEqKsqcwrojPGnSpMmTJwcEBBh0uYYNGz58+NBgK+liAiHEkiVLLA1Px/Zv3yJWtNT8Zo4cOVIqeffu3RIjkS7XKCgosKk9ejZs2BAYGFh0uAgICFizZo1ce1ELjgZcz8yZM/39/S3ahHSjz/nTjdbsllqUbi5evGhOHwCcEwldH0cDric8PHz8+PEWbeIa0xtZ5jZaNUxvFDqbHjduXPXq1W1piwEGWH0cDbie119/vX79+hZt4hrpRus2Z9MKpZudO3cKIS5dumRTe/QwwOrjaAA6//2Nb/ny5StUqJCamnrlypWifxtCiGnTpqWmpnp4eHz++efO/Ph36d4XQghfX1+jBaT7LQghHj16ZLTAkCFDPv744/Xr148aNUqBAOWk0WiOHz8uvTbzMrESnxhRVHp6enJyshCievXq5pTXXY/26aefenl5tW3b9sknn7x379727dtv3rwphDh//vy0adPmzJmjv5X517uZYPu3bxErWmp+M6tVqya9uHTp0jPPPGN7tObbuHHjK6+8otVqi36UnZ09cOBArVY7cOBAe4bkQBwNQJBuinD+dCPMbqkD0w1gTyR0fRwNQLjQ9EaWuY1Qw/SGs2nV4WgAwoXSjXCbs2nSjepwNAB9/3uO7+OPPy6EyMjISElJMSh0+fLlxYsXCyH69+//9NNPy7XvDz74YP369evXr69UqZJcdd6/f196UWLayMjIMFqgTp06rVu3jo2NlSsk5Vy8ePHhw4dCiNq1a4eGhpoomZubKz38wIqUnJSUJL0oU6aMOeX1n05x4cKFvXv3zpgxY8mSJWfPntUlv40bNxqMwtJWfn5+xT3FwRy2f/sWsaKl5jezbNmy0otbt27ZHqr5bt++PWzYMKM5UmfUqFF2jspROBqAhHRjwPnTjTC7pY5KN4A9kdD1cTQAictMb2SZ2wg1TG84m1YXjgYgcZl0I9zmbJp0oy4cDcCA4YqvECI+Pt6g0IQJE/Lz8wMDA2fNmqX/fl5enu7CHCu0bdu2b9++ffv2DQoKsroSA3l5edKL4h7QrXu/oKCguEqGDh167NixP//8U66oFKK75qjEpzucPn1aOjJFS+bm5prOoLpPLZo0hIWFHTx4UP+RDMHBwcuWLfP09BRC3Lhxw+DCAmmryMhIXV63gizfvvmsaKn5zdRNGmS5os18CxYsKHFGlZ2dPW/ePPvE41gcDUAiS7oRJWUc0k1xFG2po9INYE8kdH0cDUDiMmfTssxthBqmN5xNqwtHA5BwNm2AdGM7Blh9HA3AgJEVX4MbO+/evXvPnj1CiMmTJ+uedH3mzJlOnToFBAQEBwfXrFnziy++sFfAJdAtHuvyhwHd+7pBuajevXsHBQWtWrVK9vDkZf6kQXdBk37JVatWNW3atFSpUqVLl65evfonn3ySk5NTdFtd0jJxxHTu378v9Z+nnnrKz8/P4NMnnnhCl1z1U2lSUpJ0Jw0b70Mly7dvJitaalEzHTVp2LFjhznFtm/frnQkzoCjAUhsTDfCvIxDujFK6Zay4gt3QELXx9EAJK5xNi3X3EY4/fSGs2nV4WgAEs6mDZBubMcAq4+jARjw1r0yuuKbn58/ceJEIUSNGjXefvtt6c0TJ060bdvW09Nz4sSJwcHBW7ZskX4aP336dDtGblzp0qWlF7akjcDAwN69e69bt27OnDlWP7T4ypUrp0+ftmiT1NRUb2/vksv9f8VNBYoyeAKBRqPp16/fhg0bOnXqNHTo0MDAwM2bN0+ZMuXgwYN79uyRrm/SsegysWPHjunvqKjatWtLPyLXfVMWNcQ0Wb59M1nRUouaadGkITc3VwixefNmg+/OCkV/4m9UYmLihg0bbN+d+e7fv5+RkaF7QoZ9OO3RcEP37t3LzMy0cwdwYX/++Wdxl9MaZXW6EZZkHNKNUUq31Ipz1F9//TUzM9PMwjAtPj6+WrVqAQEBjg7ExTltQo+Pjw8PD/f397fbHoUTHw03dPny5Ro1ahT990dYJysrKzs72/zyrnE2LdfcRjj99Ea5s+msrKysrKxNmzaVWLJETjvAJicne3l5VaxY0W57FE58NNxQUlKSj49PhQoVHB2Ii0hMTJT+Fc5MnE0bcNt0U1hYKIT4/vvvz549W2Jh05x2gM3KykpKStL/LbUdOO3RcEOZmZnJycl27gAurKCgID4+vkGDBhZtFRwc/L/1xXr16kkv9Fd8ly5devnyZSHE3LlzpX+M0Gq1w4YNKygoOHz4sHQ7+3/9618xMTEff/xx3759GzZsaHtjbKEboIsbaqXn2IuS0kZeXp6Pj4/Vy73i/z+l2NKtzH9EQXZ2tnTfaR8fn6ZNm5ouLE0a6tSpExISIoRYtGjR5s2b16xZM2DAAKnAsGHDOnXqtG/fvv/85z/9+/fX39aig6DLi1FRUUYL6P6NOCwsrOhWNl4mJte3bw4rWmpRM3WPHzDn+F+4cEEI8corr5RYUi4ajcaeu3NyHA2okfljuy3pRliScUg3RindUovSzb1794QQn3zySYklATUioevjaECNzp8/b2ZJlzmblmtuI5x+eqPo2XRqamqfPn1KLCkXBlh9HA2oUalSpcwsydl0UW6bbq5duyaEGD9+fIkl5cIAq4+jATfh5+f3vxVf6fri3NzcxMRE6Z309PQZM2YIIaKjo1966SXpzdOnT585c+att97SPb3cy8tr9uzZzZo1mz179po1a+zbBEOhoaHSi6tXrz777LNFC1y9elV6Ua5cueIqSU9P37Jli/TjZqutWbNm5syZFm3Sr18/8y+6/Pvvv6XnGYSFhZm+MPzs2bMJCQlCiOeff15654UXXrhz545uuqB7c//+/b/99pvBOarubhvp6eklRiXlRQ8PjxYtWhT9VKPRXLx4UQjRqFEj/Yc3S1sFBwfbeA2ILN++maxoqUXNfPjwofTCnKdcR0ZGfv311/Hx8V5eXma3wLguXbpIF3mYVqtWrf3799u4L4toNJrCwkIbn01lKac9Gm6osLBQo9HYuQO4sKVLly5ZssTMwrakG2FJxiHdGKV0Sy1KN+XLlxdCfPXVV9HR0WbGD9Nyc3P5eZ8dOG1Cz8vL8/X1tecehRMfDTfkkA7gwlq3bt28eXMzC7vM2bRccxvh9NMb5c6mmzdv/tdff/38889mh18spx1gCwoKPDw8bP/nAos47dFwQw7pAC7s/fffN/+ejpxNF+W26UaqcP/+/bVq1TK3AcVw5gHW/me4znw03BD/xCEvK45nuXLl/rfi6+XlFRER8eeff96+fVt6Z/bs2WlpaV5eXp9//rmu2Pfffy+E6Ny5s35FkZGRFSpU+OWXX6wPXyaNGzeWXhT3i35d2jDxc+T169dnZ2cPHjzYlkh8fHwsHcEDAgLMvybrzp070gtdpizO2rVrpRe6q1br1KlTdDU6LS1NGEtRVkwaIiIigoODi376888/p6amCiE6deqke1Or1Uo32bD9qmRZvn0zWdpSS5upO9r6d1AxrVatWrbP4Pv06SNd51FiMdsnKM6PowFXJa3bmcmWdCMsyTikG6OUbqkV6SYsLIxBD+pCQtfH0YCr8vb2drezaRnnNsK5pzeKnk17eHh4e3vLMuIxwOrjaMBVlS5d2j7pRnA27VrpRlKtWjXbBz0GWH0cDcDAP+5dLj3K986dOxqN5tatWwsWLBBCjBgxQjcWCyF++OEHIcQTTzxhUFG9evX++usv/Se6O0SjRo2ku0+fOHHCaIFz584JIYKDgyMiIoqrJDY2tk2bNk5+z3HdrS2ysrJMFLt//740aXjuuedat25dXLG8vLxvv/1WCPHiiy8afKRLWroLl4pz/fp16XIBo/fKKCwsnDBhghDCw8NjxIgRuvcvXbok1Wz7k4dk+fbNYUVLLW2m7mibP2mQxdixY0u8a0rp0qWlBro8jgYg5E43oviMQ7opyg4tdVS6AeyJhK6PowEIVzmblnFuI5x7esPZtBpxNADB2bQxpBvbMcDq42gABoys+BYWFt69e/ejjz7Kzs4ODg42uEpCupl+lSpVDCqqWbOm+OczgB3Cz8+vW7duQohDhw5J1+nou3nzpnR1z4svvljcBVnnz58/evTo0KFDlQ7VRnXr1pV+033t2jUTz4cfOnTo7du3fX19Fy5cWFyZ27dvv/zyy4mJia+99lqrVq0MPtV91yVeJmb6UQfz58+XbnvSq1cv3UOjS9zKIrZ/+2ayoqWWNlN3tIv+rSkqNDR07dq1Jp5j7+np+fXXX5t/+3FV42gAQtZ0I0xmHNJNUXZoqaPSDWBPJHR9HA1AuMrZtIxzG+Hc0xvOptWIowEIzqaNId3YjgFWH0cDMGBkxVcIce7cudWrVwshpk2bpntcvCQ9Pd3T07PozWMDAgKE3gPPHWjgwIFCiJycnNmzZxt8NGPGDOmZ6kOGDClu89jY2NKlS/fq1UvRIG0XEBAQExMjhMjLy1u0aJHRMtOnT9+2bZsQYu7cubrnLuvr27dvw4YNw8PDd+7cOXz48BUrVhQtU7p0aSlv/f3336ZD0uVFg5JarXb27NmTJk0SQgQHB+vfJFwIceTIEemF0UuuhBBZWVnLli3bvn276b1LrPv2LdqFsKqlJTbTgK5m3V+l3XTr1m379u1Gb/oaHBy8bdu2nj172jkkB+JoALKkG2FGxiHdFKVQS/U5MN0A9kRC18fRAFzjbNqcjO8a0xvOplWKowFwNm0U6cZ2DLD6OBrAP2j1HD9+XHqzTZs2QogGDRrk5+dr/ykoKMjX11dbxBtvvCGE2LRpU9GPitO7d++qVatWrVr12rVr5m+l07Vr1+joaKMfSdnUw8Pjyy+/1L25ePFi6XKPHj16FFdnXl5ehQoVXn/9dSvisV10dHT37t3NL3/y5EkfHx8hhJeX17Zt2/Q/unXrlu4hBNOnTy+uhm7dujVv3rx8+fIeHh79+/dPTEw0Wqx9+/ZCCF9f35ycHBPxSN1GCOHt7b1y5cr8/PzCwsKjR49Kl25JNXz//fcGWzVv3lwIUbNmzeKqlbqWEGLRokUm9q5jxbdv6S6saGmJzTTQrFkzIUSFChXMKSzdgL2goMDMys1x//79jz/+uGXLloGBgR4eHk899dSMGTPu3bsn4y5URHc0fH19fX193fxowAXMnDnT39/f/PK2pxuteRmHdGOfluqzKN1cvHhRCLFr1y5zCgNOSJfQPT09AwIC3DyhS0ejadOmQogyZcq4+dGACwgPDx8/frz55V3gbNqcjO8a0xtFz6bHjRtXvXp1M2s2ky7d+Pv7e3t7u/kAqzsaXl5e/v7+bn404AJef/31+vXrm1+es2mj3DDd7Ny5Uwhx6dIlMys3h26ALVOmjBCiWbNm7jzA6o5GQECAl5cX6QZu6x8rvgb3l9i7d2/RDUJDQz09PYu+//rrrwshdu7caf6+o6OjpR0lJCRYGrfW5IrvzZs3K1euLFXerFmzXr166W79X6NGjeTk5OLq3LJlixDi8OHDVsRjO0tXfLVa7fLly3X3uHj22Wfff//9Dz74oGfPntJPrgMDA7/55psSK9FoNIcOHQoNDa1QocKZM2eKFpg4caK0i6NHjxZXSWFhYVBQkBDi8ccfr1atmhDCx8fH19dX153KlStXtHtkZ2dL856+ffsWV3Pbtm2lGho0aFBiW7RWffsW7cKKlprTTH25ublShR06dDCnvBIrvjrTpk0LCgpSomY16tixY0xMjKOjAGxl6YqvVqZ0oy0p45Bu7NNSHUvTDSu+cBmPPfbYO++84+gonIL0UJ64uDhHBwLYytIVX63Kz6bNzPguML1R+mxaiRVfncGDBzdu3FihylWndu3aY8aMcXQUgK0sXfHVcjZtjBumGyVWfHWkpzubWPJwK6NHj46IiHB0FIDD/OOuzkFBQVWrVpVed+/eXXedkb5y5cppNJr8/HyD93Nzc6VPi25if1WqVDl58mS7du2EECdPnty8ebP0bxmdO3c+cuRIWFhYcRvGxsY+/vjjLVu2tF+sthk5cmRcXJz0EOVff/115syZ06dP37p1q0ajGT58+KVLl/r3719iJR4eHs8999yKFStSU1OHDBmi1WoNCnTs2FF6cezYseIquXDhQkZGhhCia9eux44d6969e2FhYV5enhDC19d3wIABZ86ceeGFFwy2On36tNSXTDwg4b333qtYsWKdOnUKCwuLxlaUFd++RbuwoqXmNFPf2bNnpQqN/g0CgP3Jkm5ESRmHdGOfluqQbgAA7kzVZ9NmZnwXmN5wNg1A7TibLop0AwAK8Tb4/xs3bpjeQFrTvXHjRq1atfTfv3nzphCibNmy5u/7wIED5he2VFhY2I8//njq1Kl9+/alpqZWrVq1Xbt2jRs3NrFJcnLynj17Zs2apVxUSujWrVtMTMyhQ4eOHDmSlpYWEhJSr169zp07S5cyWVRPqVKlTp48ee7cOYMD1aZNG39//5ycHBOTBt3TEaKioipVqhQXF3fnzp3Lly/7+vo+/vjjxXWMli1blpikn3/++du3bwshunbtqtFoij5DuihLv32LdmFFS81ppj7d/dU7d+5s/lYAoCi50o0oPuOQbvQp11Id0g0AwM2p92zazIzvAtMbzqYBuADOposi3QCAEgxXfEtUt27d48ePX7lyxWDF988///T395euV3IekZGRkZGRZhZes2aNh4fHgAEDFA1JCd7e3u3bt5ce2GA1Ly+v0NDQ69ev37hxwyC/BgQExMTEbN26dceOHTk5Of7+/kU310+l0ouKFStWrFjRlpCMBml+YYu+ffN3YYeW7tixQwhRu3Zt09coAICdyZJuRPEZh3Sjj3QDAIAdcDZtFNMbAJAXZ9NGkW4AQF6eJRf5px49eggh/vjjD/03r1y5cufOnXbt2gUGBsoWmt3Fxsa+8MILlSpVcnQgitNdhaQvNzf31q1bQohGjRoV/XT06NFCiLS0tA0bNhitU0qlISEhCq36Z2ZmlipVSomaLd2F0i29e/fuvn37hBCjRo1Son4AsCdLMw7pRod0AwCAE+Js2pZdML0BAPNxNm31Lkg3ANyWxSu+MTExfn5+q1atys7O1r25cOFCIUT37t3lDM2+fvvtt/j4+KFDhzo6EHvo1avX+vXrDd5csWJFYWFho0aNqlevXnSTDh06NGjQQAixdOnSop9mZ2efO3dO6F05JbtvvvlGutpAOebswg4tXblyZUFBQVBQ0ODBgxXaBQDYjaUZh3QjId0AAOCcOJu2ehdMbwDAIpxNW7cL0g0Ad2bxim/p0qXfe++9v//+u0+fPomJidnZ2fPmzVuyZEm9evUGDRqkRIj2ERsbW6lSpS5dujg6EHuYNm1av379evXq9eOPPz569CgtLW3ZsmXvvvuut7f36tWrjW7i4eGxePFiIcTRo0eLXmJ26tSpgoICoVgqzcrK2rBhQ9++fZWo3KJdKN3S7Ozs+fPnCyFmzJgRGhqqxC4AwJ4szTikGwnpBgAA58TZtNW7YHoDABbhbNq6XZBuALgzi1d8hRBTp04dM2bMrl27ateuXapUqbfffrtRo0Z79uwx+oQAVcjIyNi4cePAgQO9vS1+sLEaDRo0aNu2bSdOnOjQoUOZMmVCQ0PfeOONypUr//jjj82bNy9uq7Zt2w4cOFAIMXPmTIOPij4dQV7jxo0bPXq0ot+OmbtQuqXz58+/c+dO06ZN33rrLSXqBwA7syLjkG4E6QYAAGfF2bTVu2B6AwAW4Wzaul2QbgC4M2tGYS8vr8WLF48ZM2bfvn0ZGRlNmzaNiYnx9LRm8dhJbNq0KSMjY8iQIY4OxH66d+/+/PPPHzp06Pjx497e3s2bN2/ZsmWJD0KYM2fOjh07tm3btnXr1p49e+reVzSVnjlzplKlSr1795a9Zit2oWhL4+PjZ8yY4enp+cUXX3h5eclePwA4hBUZh3RDugEAwGlxNm3dLpjeAIClOJu2YhekGwDuzPrrburXr1+/fn0ZQ3GgVatWPf300y7THDP5+vp27NixY8eO5m9SoUKF9evXd+3adfTo0S1atKhWrZr0/ldffbVixQohRGBgoOxxNmnSpEmTJrJXa90ulGtpdnb2a6+9lpOTM2/evCeffFLeygHAsSzNOKQb0g0AAM6Ms2krdsH0BgCswNm0pbsg3QBwZyr+YW7NmjVr1qwpS1VJSUljx46VpSqX16lTp5UrV96+fbtbt24ZGRnSmwEBAYGBgUrMGJyNQi3VarWDBg06duzY22+/PWHCBHkrBwA1It2QbgAAcDFMb5jeAIAdkG5INwDcloofW7tw4UK5qkpISJCrKncwcODAvn37CiF8fHwcHYuL8PDwWLt27dq1a/38/BwdCwA4C9KN7Eg3AAA4FtMb2TG9AYCiSDeyI90AUAUVr/jCgchtsuOQAkBRjI2y45ACAOBY5GLZcUgBoCjGRtlxSAE4PxXf1RkAAAAAAAAAAAAA3BwrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaeTs6APyPVqvNz8+/f/++owOBymRlZTk6BAAqo9VqSTew1MOHDx0dAgAAxmm12tzcXKY3sFRubq5Wq3V0FABUQ6vVFhYWkm5gqYyMDEeHAMAtsOLrRC5dunT79u3y5cs7OhCokoeHh6NDAKAOZ86cyc3NJd3AOn///bejQwAAwFBqauqyZcuWLVvm6ECgPv7+/o4OAYBqnDp1Kj4+nrNpWId1XwBKY8XXiaxZsyY+Pr5SpUqODgQqk52dnZGR4enJTdoBmOXTTz9t0qRJRESEowOB+ly4cGHIkCGOjgIAAENfffVVVlZW2bJlHR0IVCY9PT0wMNDRUQBQjRUrVvz444/Vq1d3dCBQmcLCwmvXrjVv3tzRgQBwcaz4OpFOnTp16tTJ0VEAAFxc9erVp0yZ4ugoAAAAZNOvXz9HhwAAcH2RkZGRkZGOjgIAAOP4USAAAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVt6ODgD/k5OTk5GR4eXl5ehAoErBwcGODgGAaqSkpPj5+Tk6CqhPQUFBhQoVLNokLS3N05NLDGGxvLy8kJAQb2/OVgCY5eHDhwUFBR4eHo4OBCqj1Wq9vb3LlCnj6EAAAAAAW/FvKE6kbt26N27ccHQUUCVPT0/+gQOAmQYPHvz11187Ogqo1Zo1awYMGGBm4T///POJJ55QNB64sGeeeebXX391dBQA1OGxxx7LzMx0dBRQpcDAwIyMDEdHAQAAANiKFV8nUrly5UqVKr333nuODgQqs3v37tWrV2s0Gn4gDsAc4eHhPj4+3377raMDgcrcunVrwoQJ5cqVM38T6QeakydPjoyMVCosuKgJEybUqFHD0VEAUI3SpUtHR0cPGjTI0YFAZVavXn3q1ClHRwEAAADIgBVfJ1KqVKkyZcr07t3b0YFAZZKSkhwdAgA18ff39/LyIt3AUpcuXZowYYIVVxc9++yzXbp0USIkuLCpU6eWKlXK0VEAUA1fX9+IiAimN7DUb7/9dv78eUdHAQAAAMiAx6oBAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAAColbejA7BeQUGBRqPx9fW1varc3Fw/Pz/b63Ef9+7d02q1ZcqU8fHxcXQsrkCr1d67d08IERwc7OnJdRgA8F+kG3mRbkygs8mLzgYAxSHjyIuMAwAAAEhUPBsePXr0oEGDZKmqRo0aS5culaUqd7B8+fKQkJAuXboUFBQ4OhYX4eHhMX78+NDQ0DfffNPRsQCAsyDdyI50Uxw6m+zobABgFBlHdmQcAAAAQKLi3/impKRkZGTIUlWzZs0WLVr0xhtvyFKb/WVmZkqHolSpUqVLlzZRMicnJz09XQhRpkyZgIAAK/YVFxf35ptvVqtWbfv27dbVAKNWrlyZkJCwbNmyatWqTZ482dHhAIARpBsXoKJ0Y7f+RmdTiIo6GwB3xvTGBZBxAAAAAKHq3/iao7CwMCEh4aeffjp//rxGoymu2JAhQy5duvTHH3/YMzYZTZw4MSwsLCwsbNWqVaZLLl68WCp54MABK3aUlJQ0YMCAwsLCFStWVKpUyapg7cfMb99J+Pn5rVmzxt/f//333//9998dHQ4AGEG6MYp0oxD79Dd1dTahqv6mos4GwJ0xvTFKRelGkHEAAAAAIYQLr/hqNJoFCxaEh4dHRES0b9++UaNGNWvWXLRokdHC3bt3DwkJiY2NtXOQcjl69Kj04qmnnjKz5JNPPmnFjsaPH//o0aP+/ft37tzZis1LNHfu3KioqKioKBu/C4u+ffsrrpkRERFTp07VarWjRo3iHl8AnBDpxoCTpxtRTEvVkm7s09/U0tmE0/c3VXc2AO7MNaY3bp5uBBkHAAAAcNUV39zc3N69e0+YMCEpKUkIUapUKSHE9evXx44d26dPn6IXqPr6+vbv33/Dhg1ZWVkOCNc2WVlZf/75pxDC19e3adOmpgsfOXJECFG7du3Q0FBLd7Rnz55NmzZ5eXlNnz7dqkhLtmvXruPHjx8/ftyWS54t/fbtz0Qzx40bV7FixXPnzi1YsMARoQFAsUg3Bpw/3YjiW+r86cY+/U0tnU2oob+pt7MBcGcuM70h3QgyDgAAANyea674Tp06dcuWLUKI4cOHS4/7PXfuXO/evYUQmzZtmjVrVtFNhg4d+vDhw++++87esdrsxIkT0hWsTZo08fPzM1Hy9u3b169fF1ZdkqzRaMaOHSuEePXVV2vVqmVtsKZotdqTJ09Kr1u0aGF1PVZ8+/ZkupkBAQETJkwQQnz44Yepqan2Dg4Aike6MeDk6UaYbKnzpxs79DcVdTbh9P1N1Z0NgDtzjekN6UZCxgEAAICbc8EV3ytXrsydO1cIMWDAAOkBOR4eHo0aNVq/fn3Pnj2FEFOnTr127ZrBVk2aNImMjCzxyT1OSLrQWJhxEyrzSxa1Z8+ehIQEIcTIkSMt3dZMhYWFcXFxBw8e/Pnnn62+MNm6b9+eSmzmsGHDvL29MzMz1dgbAbgw0o0+5083oqSWOnm6sUN/U0tnE2rob6rubADcmWtMb0g3OmQcAAAAuDMXXPH98ssvCwoK/P39Z8+erf++p6fnvHnzvLy8CgoK1q5dW3TDoUOHHjx40OH/Pmsp8888zX9AUVHLly8XQoSHhz/zzDOWbmsmb2/vNm3atGnTpnXr1lZXYvW3bzclNrNChQqdOnUSQnzxxRdarda+0QFAsUg3+pw/3YiSWurk6cYO/U0tnU2oob+purMBcGeuMb0h3eiQcQAAAODOXHDFd926dUKINm3aVK5c2eCjGjVqtGnTRgjxzTffFN2wX79+vr6+q1evVj5GOVl6jurr6xsZGWnRLjIzM/ft2yeEiImJ8fDwsCpMO7H623cqXbp0EUIkJiaePXvW0bEAwH+RbvSRbpSmdH9TUWcTLtHfnLmzAXBnTG/0uUC6EWQcAAAAuDFXW/FNTExMSkoSQjRp0sRoAen9K1eu3L171+Cj8uXL9+jRY/Xq1RqNRuk45ZKcnHzjxg0hRPny5SMiIkyU1Gq1x44dE2Y8oKiogwcP5uXlCZufCaQ0W759pxIVFSW9+P777x0bCQBISDf6SDdKs0N/U0tnE67S35y2swFwZ0xv9LlGuhFkHAAAALgxV1vxPX36tPSiuLOUevXqSS/OnDlT9NMhQ4Zcv379p59+UiY6+eluLfXkk0+aLhkfH//gwQNh1U2o9u/fL71w8nNUG79959GkSRMfHx+hd+QdiHth6dNqtRwQuCfSjT7SjdLs0N/U0tmEq/Q3J+xsJHR9HA24J6Y3+lwj3QgnyziMrgY4IACgBEZXfRwNuDlv6T+3bt1asGCBEKJBgwZDhgwxWnT37t0HDhwQQowePbpWrVq273v58uVXr14VQkyaNCkkJMT2CoUQ9+7dk17UqVPHaAHd+0af19upU6eqVauuWrWqQ4cOssSjNN1NqEo8R7XlsUPS3ZD8/PwaNmxYYuGcnJx///vfQoioqKg+ffo8evRo27Ztf/zxR0JCQlpaWvPmzT/44IMqVaoYbJWRkTFt2jQhRKtWrXr27GlphBIbv31LWdFSM5vp5+f3xBNPnDx50oH3oUpJSZk/f35cXNyVK1c0Gk3dunW7des2ceLEot+dO9Adjfj4eCGEmx8NuCfSjT7nTzfCvJY6Q7oxyg79zaLOJpRM+iWyZ39z+c6mS+hJSUnz5s3bvn27Oyd06Whs2rRJCPHSSy/Vrl3bnY8G3JNrTG/UmG6EO51Na7VaNz9/1B2NxMTEZcuW7d+/352PBgDISDfAJiQkCCGeeeaZF1980W0HWP4pG/gv6SdraWlp0v9GRkZqjXnw4EGFChWEEFFRURqNxmgZS0VHR0s7TUhIsGLzrl27RkdHG7z52WefSXWePXvW6FaHDx+WCsybN89ogSlTpvj7+9+/f9+KkGwUHR3dvXt3izZp166d1Jxdu3aZLjlmzBipZHx8vKWBSU/xiYqKMqew7ghPmjRp8uTJAQEBBl2uYcOGDx8+NNhKuphACLFkyRJLw9Ox/du3iBUtNb+ZI0eOlErevXu3xEikyzUKCgpsao+eDRs2BAYGFh0uAgIC1qxZI9de1IKjAdczc+ZMf39/izYh3ehz/nSjNbulFqWbixcvmtMHbNxEa5f+ZlFn0yqc9E2zZ39zns6m1Wrr16//+uuvW9+YIkjo+jgacD3h4eHjx4+3aBPXmN6oMd1onelsety4cdWrV7elLQYYYPVxNABAIQyw+jgagM5/f+Nbvnz5ChUqpKamXrlypejfhhBi2rRpqampHh4en3/+uYeHh9EyzkC61ZIQwtfX12gB6fY+QohHjx4ZLTBkyJCPP/54/fr1o0aNUiBAOWk0muPHj0uvzbwqucQHFBWVnp6enJwshKhevbo55XWXP3/66adeXl5t27Z98skn7927t3379ps3bwohzp8/P23atDlz5uhvZf7l1SbY/u1bxIqWmt/MatWqSS8uXbr0zDPP2B6t+TZu3PjKK69ojd0BIzs7e+DAgVqtduDAgfYMyYE4GoAg3RTh/OlGmN1SB6ab4tihv1na2YTCSd80e/Y3F+5sJHR9HA1AuND0Ro3pRnA27R44GgCgEAZYfRwNQN//nuP7+OOPCyEyMjJSUlIMCl2+fHnx4sVCiP79+z/99NP6HxUWFmZkZFi37w8++GD9+vXr16+vVKmSdTUUdf/+felFiWcpxYVdp06d1q1bx8bGyhWSci5evPjw4UMhRO3atUNDQ02UzM3NlZ61U/TUKDc31/Q3mJSUJL0oU6aMOVHpPwzpwoULe/funTFjxpIlS86ePas719q4caPBKCxt5efnV9xDg8xh+7dvEStaan4zy5YtK724deuW7aGa7/bt28OGDTOaI3VGjRpl56gchaMBSGRJN6KkjEO6KY6iLXVUujHBDtMbSzubUDjpm2bP/uaqnY2Ero+jAUhc5mxajelGcDbtBjgaAKAQBlh9HA3AgOGKrxBCelClvgkTJuTn5wcGBs6aNUv//b/++qtt27ZfffWVdftu27Zt3759+/btGxQUZF0NReXl5UkvNBqN0QK69wsKCoqrZOjQoceOHfvzzz/likohuktcS3yY0OnTp6Ujo19y1apVTZs2LVWqVOnSpatXr/7JJ5/k5OQU3VZ3OmfROWpYWNjBgwf1nwAUHBy8bNkyT09PIcSNGzcMLiyQtoqMjNSdRlpBlm/ffFa01Pxm6s5RZbmA2nwLFiwo8QQ+Ozt73rx59onHsTgagMTGdCPMyzikm+Io2lJHpRsT7DC9sbSzCYWTvmn27G+u2tlI6Po4GoDEZc6m1ZhuBGfTboCjAQAKYYDVx9EADBhZ8TW4sfPu3bv37NkjhJg8ebL0pOsNGza89dZb7dq1q1279i+//GLHaEumWzzWna4Y0L2vOwcoqnfv3kFBQatWrZI9PHmZf46qu35WKqnRaF555ZWhQ4dWqlRp/vz5K1eubNCgwZQpU3r06FH07E53jmTiiOncv39f6j9PPfWUn5+fwadPPPGE7lxO/8wtKSlJunGTjfehkuXbN5MVLbWomY46R92xY4c5xbZv3650JM6AowFIrE43wpKMQ7oxSumWqnrF1+rpjUWdTSif9E2zW39z4c5GQtfH0QAkrnE2rcZ0Izibdo8BlqMBAAphgNXH0QAMeOteGV3xzc/PnzhxohCiRo0ab7/9tvTmsmXLEhISGjVq1KpVq19//dWO0ZasdOnS0gtbzlICAwN79+69bt26OXPmWP3Q4qlTp37zzTcWbZKcnFyzZk3zyxf9h/XiGDzwZtGiRZs3b16zZs2AAQOk94cNG9apU6d9+/b95z//6d+/v/62Fl2VfOzYMf0dFVW7dm3pR+S6b8qihpgmy7dvJitaalEzLTpHTUhIEELUrVu3xJIlunbtmjnFEhISateubfvuzPfo0aO8vLyQkBB77tRpj4YbevjwYX5+vp07gAt78OBBceOkUVanG2FJxiHdGKV0Sy1KN1KZYcOGlSpVqsTCkvz8fKF3T0tz2GF6Y+kvrpRO+qbZrb85VWcTQqSkpKxfv/7HH380p7BpTpvQU1JSypUr5+/vb8+dOu3RcEPJycnBwcF27gAuLCkp6fLly+aXd42zaTWmG+FkZ9OXL1++deuWLCOe0w6w9+/f9/DwKFeunD136rRHww3du3fPy8vL9r9coETZ2dkPHz6U8emNMMppB1iHdACnPRpuKCsrKyMjo2LFio4OxEXk5eWlpaWFhYVZtEBZoUKF/6341qtXT3qhv+K7dOlS6axp7ty5unPRAwcOSLuZPHmy0674FjezT05Oll6Ynuvk5eX5+PhYvdwrhGjatGnRJyKbtnPnTvPvLpidnS3dd9rHx6dp06amC0vnqHXq1JHWS1544YU7d+7oTlAlL7zwwv79+3/77TeDc1SLDoLuNCwqKspogczMTOlFWFhY0a1svDBZrm/fHFa01KJm6h4/YM7xl87c2rdvb0uPlcTGxppzky5PT09Zdme+lJSUhw8fyrKqbT6nPRpuKDk5OTMzU/+Gb7DFqVOnTp06ZWZhW9KNsCTjkG6MUrqlFqUbaSrYtGnT8PDwEgtLHjx4cOPGDf0FQtPsM72xdMRWOumbZrf+5lSdTQgREBBQpkyZ5557zpzCpjltQj99+nStWrXMn//LwmmPhhs6ffp07dq1zR8hYdq6devMHwZd5mxajelGONnZdNmyZQMCAjp06FBiyRI57QD7119/eXp6mj9/k4XTHg03lJiY6OvrW7VqVUcHAteXnp7+999/N27c2NGBuDinHWCl0/8nnnjCbnsUTnw03ND9+/dv3brVqFEjRwfiIrKzsy9cuNCsWTOL+m1ISMj/Vnxr1Kjh5+eXm5ubmJgovZOenj5jxgwhRHR09EsvvaQr6cx/G6GhodKLq1evPvvss0ULXL16VXph4vLG9PT0LVu2SD9utlrPnj179uxp0SZt27Y1/198/v77b2k4CwsLK3ofJH1nz56VfgP6/PPPS+/UqVNn5syZBsXS0tKE3q2cdHTvpKenlxiVdBrm4eHRokWLop9qNJqLFy8KIRo1aqS/I2mr4OBgG5dzZPn2zWRFSy1q5sOHD6UX5jzlWmr4smXLvLy8zG1AMQ4fPnzu3LkSi0VERHz55Zc27sv5cTTgqj7++GNz+rbElnQjLMk4pBujlG6pRelGemzeW2+91aVLFzPjv3Tp0saNG81fz7DP9MaiziaUT/qm2a2/OVVnE0KULVv22Wef/eKLL8wL3xQSuj6OBlzV999/r389imkuczatxnQjnOxsOiwsrHz58qQb2XE0AEAhDLD6OBqAgf89x9fLyysiIkIIcfv2bemd2bNnp6WleXl5ff75546JznK6y4ikWwAVpTtLadiwYXGVrF+/Pjs7e/DgwXJHJ6c7d+5IL3QnZsVZu3at9KJPnz7FlcnLy/v222+FEC+++KLBR1aco0ZERAQHBxf99Oeff05NTRVCdOrUSfemVquV7ulk+1XJsnz7ZrK0pZY2U3e07XzVf9EOYJSlVzOoFEcDEHKnG1F8xiHdGKV0Sx2Vbopjn+mNdSu+yiV90+zW31y4s5HQ9XE0AOEqZ9MqTTeCs2n3GGA5GgCgEAZYfRwNwICn/v9Ij/K9c+eORqO5devWggULhBAjRoxQ0d0YGjVqJN1y8MSJE0YLSBd9BAcHS8vbRsXGxrZp08bJbx+qu5NSVlaWiWL379+XzlGfe+651q1bGy1z+/btl19+OTEx8bXXXmvVqpXBp7pzJN11ssW5fv26dLmA0VszFRYWTpgwQQjh4eExYsQI3fuXLl2Sarb9yUOyfPvmsKKlljZTd7TtfI46duzYEm/SVbp0aamBLo+jAQhZ040wmXFIN0XZoaWOSjfFsc/0xvzOJuyS9E2zT39z7c5GQtfH0QCEq5xNqzHdCM6m3WaA5WgAgEIYYPVxNAADRlZ8CwsL7969+9FHH2VnZwcHB0s3dlYLPz+/bt26CSEOHTokXRaq7+bNm9LFpC+++GJx96Y+f/780aNHhw4dqnSoNqpbt650+6lr164V96AdIcTQoUNv377t6+u7cOHCop/27du3YcOG4eHhO3fuHD58+IoVK4qWqVKlivSixKuSTT9ZZ/78+adPnxZC9OrVS/fQ6BK3sojt376ZrGippc3UHW3d8beP0NDQtWvXenp6FlfA09Pz66+/dpNnsHM0ACFTuhFmZBzSTVF2aKmj0k1x7DO9Mb+zCbskfdPs099cu7OR0PVxNADhKmfTakw3grNptxlgORoAoBAGWH0cDcCAkRVfIcS5c+dWr14thJg2bVpISIj9w7LFwIEDhRA5OTmzZ882+GjGjBlarVYIMWTIkOI2j42NLV26dK9evRQN0nYBAQExMTFCiLy8vEWLFhktM3369G3btgkh5s6d26RJk6IFsrOzAwICgoKCPDw8srOzk5OTi5YpXbq0dJr0999/mw5JdxpmUFKr1c6ePXvSpElCiODgYIObhB85ckR6YfQKXyFEVlbWsmXLtm/fbnrvEuu+fYt2IaxqaYnNNKCrWfdXaTfdunXbvn17+fLli34UHBy8bds2t7oPBkcDkCXdCDMyDummKIVaqs+B6cYo+0xvzO9sQrGk72z9zeU7GwldH0cDcI2zaTWmG8HZtDsNsBwNAFAIA6w+jgbwD1o9x48fl95s06aNEKJBgwb5+fna4klz8QULFpgoY0Lv3r2rVq1atWrVa9euWbF5165do6OjjX4knbx5eHh8+eWXujcXL14sXe7Ro0eP4urMy8urUKHC66+/bkU8touOju7evbv55U+ePOnj4yOE8PLy2rZtm/5Ht27d0j3zZvr06abr0Wg0hw4dCg0NrVChwpkzZ4oWaN++vRDC19c3JyfHRD1StxFCeHt7r1y5Mj8/v7Cw8OjRo9KVwlIN33//vcFWzZs3F0LUrFmzuGrfeOMNafNFixaZbojEim/f0l1Y0dISm2mgWbNmQogKFSqYU1i6AXtBQYGZlZvj/v37H3/8ccuWLQMDAz08PJ566qkZM2bcu3dPxl2oiO5o+Pr6+vr6uvnRgAuYOXOmv7+/+eXlSjfakjIO6cY+LdVnUbq5ePGiEGLXrl3mFLZ6E/tMb8zsbFrFkr6z9Tdn62xarbZ+/fqyz8l1Cd3T0zMgIMDNE7p0NJo2bSqEKFOmjJsfDbiA8PDw8ePHm1/eBc6m1ZhulGupPosyzrhx46pXr25mzWbSpRt/f39vb283H2B1R8PLy8vf39/NjwYAyEg3wJYpU0YI0axZM3ceYHVHIyAgwMvLi3QDt/WPFV+D2xnt3bvX9MY2rvhGR0dLO0pISLBicxMrvjdv3qxcubJUebNmzXr16qV70kyNGjWSk5OLq3PLli1CiMOHD1sRj+0sXfHVarXLly/X3VLp2Wefff/99z/44IOePXsGBAQIIQIDA7/55hszq9q6dat0uDQajcFHEydOlHZx9OjR4jYvLCwMCgoSQjz++OPVqlUTQvj4+Pj6+uq6U7ly5Xbu3GmwVXZ2tnSa3bdv3+Jqbtu2rVRDgwYNzGmIFd++RbuwoqXmNFNfbm6uVGGHDh3MKa/Eiq/OtGnTgoKClKhZjTp27BgTE+PoKABbWbriq5U13WiLzzikG/u0VMfSdGOfFV+tXaY35nQ2rZJJ36n6mxN2Nq0yK746jz322DvvvKNQ5epy5coVIURcXJyjAwFsZemKr1blZ9NqTDeKtlTH0oyjxIqvzuDBgxs3bqxQ5apTu3btMWPGODoKAHBB3377rRDCxJKHWxk9enRERISjowAc5h93dQ4KCqpatar0unv37rrLWlWnSpUqJ0+ebNeunRDi5MmTmzdvlv4to3PnzkeOHAkLCytuw9jY2Mcff7xly5b2i9U2I0eOjIuLq1mzphDi119/nTlz5vTp07du3arRaIYPH37p0qX+/fubWVW3bt1KlSp18uTJc+fOGXzUsWNH6cWxY8eK2/zChQsZGRlCiK5dux47dqx79+6FhYV5eXlCCF9f3wEDBpw5c+aFF14w2Or06dP5+fnC5PN43nvvvYoVK9apU6ewsFCr1ZbYECu+fYt2YUVLzWmmvrNnz0oVqvdvEICLkTHdiOIzDunGPi3Vcdp0Y4fpjTmdTSiZ9J2qv7lzZwPgzlR9Nq3GdKNoS3XIOAAAAHBb3gb/f+PGDbvt+8CBA8pVHhYW9uOPP546dWrfvn2pqalVq1Zt165d48aNTWySnJy8Z8+eWbNmKReVErp16xYTE3Po0KEjR46kpaWFhITUq1evc+fO0pWz5vPy8goNDb1+/fqNGzcMDlSbNm38/f1zcnJMnKPqHsYTFRVVqVKluLi4O3fuXL582dfX9/HHHy9btqzRrVq2bFniOeHzzz9/+/ZtIUTXrl01Go2Xl1eJbbH027doF1a01Jxm6tPdX71z587mbwUAipIr3YjiMw7pRp9yLdVx5nSj9PTGnM4mlEz6TtXf3LyzAXBn6j2bVmO6EZxNAwAAAEoyXPF1MZGRkZGRkWYWXrNmjYeHx4ABAxQNSQne3t7t27eXng9kjuPHj7do0cLgzdzc3Fu3bgkhGjVqZPBRQEBATEzM1q1bd+zYkZOT4+/vX7RO/TM36UXFihUrVqxofivMYc4Jqo5F3775u7BDS3fs2CGEqF27tulrFADAzixNN8LCjEO60Ue6UXR6Y05nE27T3+hsANwZZ9NGMb0BAAAAVMez5CJuIzY29oUXXqhUqZKjA1Fcr1691q9fb/DmihUrCgsLGzVqVL169aKbjB49WgiRlpa2YcMGo3VKZ24hISHSTbFkl5mZWapUKSVqtnQXSrf07t27+/btE0KMGjVKifoBwJ4szTikGx3SjaVk72zCbfobnQ0AzMfZtC27IOMAAAAAyrFmxXf37t2zZ8+ePXv24cOHhRA//PCD9L+HDh2SOzz7+e233+Lj44cOHeroQOxh2rRp/fr169Wr148//vjo0aO0tLRly5a9++673t7eq1evNrpJhw4dGjRoIIRYunRp0U+zs7Ol5xXpLtSV3TfffNOjRw+FKjd/F3Zo6cqVKwsKCoKCggYPHqzQLgDAbizNOKQbCenGCvJ2NuE2/Y3OBgAW4Wza6l2QcQAAAABFWXNX502bNumfyezcuXPnzp1CiEmTJrVp00auyOwsNja2UqVKXbp0cXQg9jBo0KDg4OBx48Z16NBB92bNmjVXr17dvHlzo5t4eHgsXry4Xbt2R48eLXobq1OnThUUFAjFztyysrI2bNggXaurEDN3oXRLs7Oz58+fL4SYMWNGaGioErsAAHuyNOOQbiSkGyvI29mE2/Q3OhsAWISzaat3QcYBAAAAFGXNiu+qVatWrVoleygOlJGRsXHjxtGjR3t7u/iDjXW6d+/+/PPPHzp06Pjx497e3s2bN2/ZsqXpuzC1bdt24MCBa9asmTlz5tatW/U/KvowHnmNGzdO6W/HzF0o3dL58+ffuXOnadOmb731lhL1A4D9WZpxSDeCdGMtGTubcJv+RmcDAEtxNm3dLsg4AAAAgKLcZYHTtE2bNmVkZAwZMsTRgdiVr69vx44dO3bsaP4mc+bM2bFjx7Zt27Zu3dqzZ0/d+4qeuZ05c6ZSpUq9e/eWvWYrdqFoS+Pj42fMmOHp6fnFF194eXnJXj8AOIqlGYd0Q7qxmlydTbhNf6OzAYAVOJu2YhdkHAAAAEBR1jzH1/WsWrXq6aefrl+/vqMDcXYVKlRYv369j4/P6NGjb9y4oXv/q6++ysjIyMjICAsLk32nTZo0+eijj2Sv1rpdKNfS7Ozs1157LScnZ86cOU8++aS8lQOAupBuSDd2U1xnE27T3+hsAGAfTG/IOAAAAICiVLziW7NmzZo1a8pSVVJS0tixY2WpyuV16tRp5cqVt2/f7tatW0ZGhvRmQEBAYGBgYGCgY2OzA4VaqtVqBw0adOzYsbfffnvChAnyVg4AakS6Id3YjdHOJtymv9HZAMBumN6QcQAAAADlqPiuzgsXLpSrqoSEBLmqcgcDBw7s27evEMLHx8fRsbgIDw+PtWvXrl271s/Pz9GxAICzIN3IjnRTHDqb7OhsAGAUGUd2ZBwAAABAouIVXzgQp1Ky45ACQFGMjbLjkBaHIyM7DikAGMXwKDsOKQAAACBUfVdnAAAAAAAAAAAAAHBzrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAauXt6ADwP6mpqdeuXRs5cqSjA4HK/Pnnn44OAYCa3LlzJz8/n3QDSz148EAI8ejRI/M3yc/PF0IsWrQoLi5OoajgqpKTk1NSUhwdBQDVyMjI+PHHH5newFK///57RkaGo6MAAAAAZMCKrxMJDQ1NSUn54YcfHB0IVCYnJyc0NNTLy8vRgQBQh4oVKwYEBJBuYCmNRhMYGFihQgXzNylXrlzp0qXPnz8fHx+vXGBwSVqtNjQ01NFRAFCN0NDQ27dvM72BpTIyMkg3AAAAcA2s+DqRgwcPOjoEAIDrmzJlypQpUxwdBdxCtWrVHj586OgoAACu7/Lly44OAQAAAAAcief4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqJW3owPA/7z77rt//vlneHi4owOByqSnp9+/f3/v3r2ODgQ2eeutt65du1alShVHBwKVuX//fk5Ozvbt283fJC4u7tNPP23UqJFyUcElaTSa06dPr1+/vnbt2o6OBYAK3L1794UXXmjQoIGvr6+jY4HKXLp0afDgwUOGDDF/k9deey0zM7NixYrKRQWXdOfOnaCgoLVr1zo6ENikd+/eGo0mNDTU0YFAZVJSUipUqLBy5UrzN1m6dOmmTZvq1q2rXFRwSTk5OfHx8fv37w8KCnJ0LLDenDlz9uzZU6dOHUcHApXJysq6du3aTz/9ZIdTY1Z8ncjmzZvv3LkTFhbm6ECgMunp6WlpaYWFhV5eXo6OBdb77rvvHj16xL9SwVIPHjx48OCBRZvExcUdPnw4JSVFmYjgsvLz82/cuHHo0CFWfAGY48yZM0ePHr1586a/v7+jY4HKXL9+PTAw0KIV37i4OC8vr5CQEOWigkuSTqUdHQVstWPHjoCAgPLlyzs6EKhMamqqj4+PRSu+GzduPHz48PXr15WLCi4pKysrJSUlPj6+WbNmjo4F1tu4cePZs2f/+usvRwcClcnMzLx9+/b169ftcLkAK75OpEaNGo0bN46Li3N0IFCZzz//fPz48Y6OAraqWrVqnTp11q1b5+hAoDIff/zxjBkzLNqkTp06fn5+V69eVSgkuKpLly7Vr1+fS9MAmKlcuXJCiHXr1rVp08bRsUBlqlevXq9ePYs2KV++/EsvvTR//nyFQoKrGj9+/LZt2xwdBWxVunTpESNGzJw509GBQGVef/3133//3aJN6tate+fOnQsXLigUElzVrl27unbtGhgY6OhAYJOIiAitVnvs2DFHBwKV2bRpU58+ffz8/OywL57jCwAAAAAAAAAAAABqxYovAAAAAAAAAAAAAKgVK74AAAAAAAAAAAAAoFas+AIAAAAAAAAAAACAWrHiCwAAAAAAAAAAAABqxYovAAAAAAAAAAAAAKgVK74AAAAAAAAAAAAAoFbejg7AegUFBRqNxtfX1/aqcnNz/fz8bK/Hfdy7d0+r1ZYpU8bHx8fRsbgCrVZ77949IURwcLCnJ9dhwNkxAsiLEcAEOpu86GwAYBTpRl6kG9Pob/Kiv0FdGAHkxQhgAp1NXnQ2qAsjgLxUNAI4dXCmjR49etCgQbJUVaNGjaVLl8pSlTtYvnx5SEhIly5dCgoKHB2Li/Dw8Bg/fnxoaOibb77p6FiAEjACyI4RoDh0NtnR2QCgKNKN7Eg3JtDfZEd/g4owAsiOEaA4dDbZ0dmgIowAslPRCKDi3/impKRkZGTIUlWzZs0WLVr0xhtvyFKb/WVmZkqHolSpUqVLlzZRMicnJz09XQhRpkyZgIAAK/YVFxf35ptvVqtWbfv27dbVAKNWrlyZkJCwbNmyatWqTZ482dHhQE0YAVyAWkYAOpsLUEtnA+Dm7JZxSDcKUVG6YXrjAlTU3+BsGAFcgFpGADqbC1BLZ4MTYgRwAWoZAVT8G19zFBYWJiQk/PTTT+fPn9doNMUVGzJkyKVLl/744w97xiajiRMnhoWFhYWFrVq1ynTJxYsXSyUPHDhgxY6SkpIGDBhQWFi4YsWKSpUqWRWs/Zj57TsJPz+/NWvW+Pv7v//++7///rujw4GaMAIYxQigBDqbUXQ2AJCdfTKOutKNUFXGUVG6YXpjlIo6m1BVf4OzYQQwihFACXQ2o+hscBOMAEYxAijBZVd8NRrNggULwsPDIyIi2rdv36hRo5o1ay5atMho4e7du4eEhMTGxto5SLkcPXpUevHUU0+ZWfLJJ5+0Ykfjx49/9OhR//79O3fubMXmJZo7d25UVFRUVJSN34VF3779FdfMiIiIqVOnarXaUaNGccsFmI8RwAAjgHLobAacvLOJYlqqis4GwM3ZJ+OoJd0Ip884qk43rjG9cfPOJtTT3+BsGAEMMAIoxzU6m3Cbs2lVdzY4IUYAA4wACtKqVteuXaOjo41+lJOT89JLL+naWKpUKd3r3r17FxYWFt1k7NixZcqUyczMVDhqU6Kjo7t3727pVpmZmd7e3kIIX1/fnJwc04XDw8OFELVr17YivN27dwshvLy8rl69asXm5mjbtq30Ne3cudPqSqz49u3MRDOzsrIqVqwohPjss8/Mr3DBggVCiIKCAlnD/K9p06YFBQUpUbMadezYMSYmRqHKo6KiXn31VUu3YgQw4IYjwMyZM/39/S2KwYpNtHS2Ipy/s2mLb6l1ne3ixYtCiF27dskdJmBvjz322DvvvOPoKJzClStXhBBxcXFKVH78+HEhxMGDBy3d0D4ZRy3pRquGjCNvutFqteHh4ePHj1d6E60LTW/obFpr+9u4ceOqV68uZ4h6Bg8e3LhxY4UqV53atWuPGTNGocpDQ0OnTJli6VaMAAbccAQYPnx4gwYNLIrh9ddfr1+/vkWbaF2os2nd5mxa9s62c+dOIcSlS5dkDfO/vv32WyFEcnKyEpWrzujRoyMiIhSqvF+/fi1atLB0K0YAA244AmzcuFEIcf36dVnDNM41f+M7derULVu2CCGGDx8uPe733LlzvXv3FkJs2rRp1qxZRTcZOnTow4cPv/vuO3vHarMTJ05IFxQ0adLEz8/PRMnbt29fv35dWHWFiEajGTt2rBDi1VdfrVWrlrXBmqLVak+ePCm9btGihdX1WPHt25PpZgYEBEyYMEEI8eGHH6ampto7OKgQI4ABRgDl0NkMOHlnEyZb6uSdDYCbs0PGUVG6EU6fcVSdblxjekNnkzh/f4OzYQQwwAigHNfobMJtzqZV3dnghBgBDDACKMoFV3yvXLkyd+5cIcSAAQOk+5V7eHg0atRo/fr1PXv2FEJMnTr12rVrBls1adIkMjKyxBupO6EjR45IL0q8J4D5JYvas2dPQkKCEGLkyJGWbmumwsLCuLi4gwcP/vzzz1bfZd66b9+eSmzmsGHDvL29MzMz1dgbYX+MAPoYARRFZ9Pn/J1NlNRSZ+5sANycHTKOWtKNUEPGUXW6cY3pDZ1Nx8n7G5wNI4A+RgBFuUZnE25zNq3qzgYnxAigjxFAaS644vvll18WFBT4+/vPnj1b/31PT8958+Z5eXkVFBSsXbu26IZDhw49ePCgw/991lLmDwTm3y++qOXLlwshwsPDn3nmGUu3NZO3t3ebNm3atGnTunVrqyux+tu3mxKbWaFChU6dOgkhvvjiC61Wa9/ooD6MAPoYARRFZ9Pn/J1NlNRSZ+5sANycHTKOWtKNUEPGUXW6cY3pDZ1Nx8n7G5wNI4A+RgBFuUZnE25zNq3qzgYnxAigjxFAaS644rtu3TohRJs2bSpXrmzwUY0aNdq0aSOE+Oabb4pu2K9fP19f39WrVysfo5wsHTJ8fX0jIyMt2kVmZua+ffuEEDExMR4eHlaFaSdWf/tOpUuXLkKIxMTEs2fPOjoWODtGAH2MAIqis+mjswGAcpTOOCpKN8IlMo4zpxumN/pcoLMJ5+5vcDaMAPoYARRFZ9NHZ4O7YQTQxwigNFdb8U1MTExKShJCNGnSxGgB6f0rV67cvXvX4KPy5cv36NFj9erVGo1G6TjlkpycfOPGDSFE+fLlIyIiTJTUarXHjh0TZtwvvqiDBw/m5eUJm58IojRbvn2nEhUVJb34/vvvHRsJnBwjgD5GAEXR2fTR2QBAOXbIOGpJN8JVMo7TphumN/pco7MJJ+5vcDaMAPoYARRFZ9NHZ4O7YQTQxwhgB6624nv69GnpRXGdpl69etKLM2fOFP10yJAh169f/+mnn5SJTn66X/qX+DTv+Pj4Bw8eCKvuCbB//37phZMPGTZ++86jSZMmPj4+Qu/IQ6PRqOhSDLthBNDHCKAoOps+OhsAWTC9McoOGUct6Ua4SsZx2nTD9Eafa3Q24cT9zYFIN0YxAuhjBFAUnU0fnc2FkW6MYgTQxwhgB97Sf27durVgwQIhRIMGDYYMGWK06O7duw8cOCCEGD16dK1atWzf9/Lly69evSqEmDRpUkhIiO0VCiHu3bsnvahTp47RArr3jT6vt1OnTlWrVl21alWHDh1kiUdpunsClDhk2HIXeOnH6X5+fg0bNiyxcE5Ozr///W8hRFRUVJ8+fR49erRt27Y//vgjISEhLS2tefPmH3zwQZUqVQy2ysjImDZtmhCiVatW0jO6rWDjt28pK1pqZjP9/PyeeOKJkydPOuFtAewsJSVl/vz5cXFxV69e1Wq1tWrV6tat28SJE4t2IffECKCPEUBRdDZ9zt/ZhHktdc7OBrg8pjem2SHjWJRuhJJJv0T2zDhumG5cY3qjxs4m3G8u7RCkG9MYAfQxAijKNTqbcJuzaVV3Nocg3ZjGCKCPEcAetFqtVqtNS0uT/jcyMlJrzIMHDypUqCCEiIqK0mg0RstYKjo6WtppQkKCFZt37do1Ojra4M3PPvtMqvPs2bNGtzp8+LBUYN68eUYLTJkyxd/f//79+1aEZKPo6Oju3btbtEm7du2k5uzatct0yTFjxkgl4+PjLQ1Muql6VFSUOYV1R3jSpEmTJ08OCAgw6HINGzZ8+PChwVbSxQRCiCVLllgano7t375FrGip+c0cOXKkVPLu3bslRiJdrlFQUGBTe4oxbdq0oKAgJWou0YYNGwIDA4uOWgEBAWvWrHFISB07doyJiVGo8qioqFdffdWiTRgB9LntCDBz5kx/f3+LgrdiEzqbPufvbFqzW2pRZ7t48aI5fQBwfo899tg777zjkF072/TmypUrQoi4uDglKj9+/LgQ4uDBgxZtZYeMY1G60Sqc9E2zZ8ZxnnSj1WrDw8PHjx9vUfxWbOIa0xs1djatM82lx40bV716dVvaYsLgwYMbN26sUOWmOVu60Wq1tWvXHjNmjEKVh4aGTpkyxaJNGAH0ue0IMHz48AYNGlgU/Ouvv16/fn2LNnGNzqZ1m7NphTrbzp07hRCXLl2yqT3F+Pbbb4UQycnJSlRumhOmm9GjR0dERChUeb9+/Vq0aGHRJowA+tx2BNi4caMQ4vr16za1xzz//Y1v+fLlK1SokJqaKp3zFzVt2rTU1FQPD4/PP//cmR/+LP3yXQjh6+trtID0a2shxKNHj4wWGDJkyMcff7x+/fpRo0YpEKCcNBqN9M8owuyLREq8X3xR6enpycnJQojq1aubU153Ncqnn37q5eXVtm3bJ5988t69e9u3b79586YQ4vz589OmTZszZ47+VuZf7WKC7d++RaxoqfnNrFatmvTi0qVLzzzzjO3Rqs7GjRtfeeUVrVZb9KPs7OyBAwdqtdqBAwfaPzDnwQhggBFAOXQ2A87f2YTZLXW2zga4NqY3JbJDxrE03QiFk75p9sw47pZuXGZ6o8bOJtxsLm1/pJsSMQIYYARQjst0NuE2Z9Pq7Wz2R7opESOAAUYAO/jfc3wff/xxIURGRkZKSopBocuXLy9evFgI0b9//6efflqufX/wwQfr169fv359pUqV5Krz/v370osSO01GRobRAnXq1GndunVsbKxcISnn4sWLDx8+FELUrl07NDTURMnc3Fzp1udW/EFKD9MWQpQpU8ac8vr3pr9w4cLevXtnzJixZMmSs2fP6rr+xo0bDZKBtJWfn19x93A3h+3fvkWsaKn5zSxbtqz04tatW7aHqjq3b98eNmyY0RmDzqhRo9zz4OgwAhhgBFAOnc2A83c2YXZLna2zAS6M6Y057JBxLE03QuGkb5o9M467pRuXmd6osbMJN5tL2xnpxhyMAAYYAZTjMp1NuM3ZtHo7m52RbszBCGCAEcAODFd8hRDx8fEGhSZMmJCfnx8YGDhr1iz99zMyMgoLC63ed9u2bfv27du3b9+goCCrKzGQl5cnvSjuOeG69wsKCoqrZOjQoceOHfvzzz/likohuisOSry3++nTp6UjU7Rkbm6u6b8f3acWDRlhYWEHDx7UvyF7cHDwsmXLPD09hRA3btwwuLBA2ioyMlL3V20FWb5981nRUvObqRsyZLmeRXUWLFhQ4rCenZ09b948+8TjnBgBDDACKEeWziZK6m90tuIo2lJn62yAC2N6Yw47TG8sTTdC4aRvmj0zjrulG5eZS6uxswk3m0vbGenGHIwABhgBlMPZtAE6m8sg3ZiDEcAAI4AdGFnxNbix8+7du/fs2SOEmDx5svQc48LCwvnz59eqVatMmTKlS5du1aqVdLN4Z6BbPNb1HgO693VfSVG9e/cOCgpatWqV7OHJy/whw+hzv1etWtW0adNSpUqVLl26evXqn3zySU5OTtFtdV3WxBHTuX//vtR/nnrqKT8/P4NPn3jiCd2flv4fUlJSkvQ7ehvvQiPLt28mK1pqUTOddsiwjx07dphTbPv27UpH4swYAQwwAijHxs4mzOtvdDajlG6ps3U2wIUxvTGHHaY3FqUboXzSN81uGccN041rzKXV2NmE+82l7Yx0Yw5GAAOMAMrhbNoAnc1lkG7MwQhggBHADrx1r4yu+Obn50+cOFEIUaNGjbffflt6c/Dgwd9+++3LL788cODAS5cubd++/bXXXjtw4MDKlSvtGLlxpUuXll7Y0mkCAwN79+69bt26OXPmWP3Q4suXL589e9aiTVJTU729vUsu9/8VNxAUZXD/cY1G069fvw0bNnTq1Gno0KGBgYGbN2+eMmXKwYMH9+zZI13doGPRRSLHjh3T31FRtWvXln5ErvumLGqIabJ8+2ayoqUWNdOiISM3N1cIsXnzZoPvThanTp3Ky8vbtGmT7DWbUPROA0YlJiZu2LBBiVYX5/r1615eXgodjXv37mVmZppfnhHAgNuOADk5OYWFhRZ1yz///LO4i+mMsrqzCUv6G53NKKVbasUM9ddff7VosIIJly9fDg8PDwgIcHQgbicjI+PcuXNMb8T/P7n95ZdfpPmkvBITE0Xxl28bZYfpjaWXwCud9E2zW8ZxtnSTl5d35coVi/5Is7KysrKyzC/vGnNpNXY24WRzaannKJQRLl++nJqaSrqRPHjw4MKFCwodjdzcXEYAW7jtCJCZmfnw4UOLumViYqLRBf7icDZtwG07m/SDxe+//97S9QJz/P7770KIHTt2lCtXTvbKi+O06ebChQv3799XKN1cv349Ozvb/PKMAAbcdgTIz88XQuzatSskJKTEwrpNLl++3KhRIzPL66L63/pivXr1pBf6K75Lly69fPmyEGLu3Ln+/v5CiO++++6bb775z3/+88orr0hlLly40Llz56+++iomJubll1+2KALZ6b6e4g609BRrUVKnycvL8/HxsXq5Vwgxbdq0//znP5ZuZf4/oWZnZ0v3nfbx8WnatKnpwtKQUadOHalLLVq0aPPmzWvWrBkwYIBUYNiwYZ06ddq3b99//vOf/v37629r0UHQ/VVERUUZLaBrYFhYWNGtbLxIRK5v3xxWtNSiZupuH2/O8b9w4YIQQvcnqYQ+ffooV7nVNBqNoq0ujnJHw/zbYjACFOW2I8D58+fz8/Mt7Zbmf7O2dDZhSX+jsxmldEst6mzSA1c++eSTEksCzm/v3r179+51dBRGOGR6M2fOHOUql66SNod9pjeWnuIpnfRNs1vGcap0I4S4d+/erl27du3aZU5hHem0yBwuM5dWY2cTTjaXvnDhQmpqqqInvJxN6xw4cODAgQMKVc4IYAu3HQEuXbp08+ZNS/9IAwMDzSzJ2XRRbtvZ/v77byHE+PHjSyxptREjRihXudVc7x9vzV9WZwQoym1HgKtXrwohRo8eXWJJG/n7+/9vxbdGjRp+fn65ubnStdhCiPT09BkzZgghoqOjX3rpJenNRYsWPf/88/p/qA0aNJg7d27fvn0/+ugjh6/46p6AffXq1WeffbZoAengCpN/nOnp6Vu2bJF+3Gy1NWvWLFmyxKJNunfvHhwcbGbhv//+W7o4KCwsrOjP0vWdPXs2ISFBCPH8889L77zwwgt37tzRDRa6N/fv3//bb78ZzFB1v7VPT08vMSrpr8LDw6NFixZFP9VoNBcvXhRCNGrUSP/hzdJWwcHB+rdTt4Is376ZrGipRc2UHuou9I6/CZGRkV9//XVqaqqXl5fZLTDXp59+umjRohs3bsheswnPPvusOWdrderU0Q3E9tGzZ09vb2+FLhNr37697sqbEjECFOW2I0Dz5s137dqlmxKZY968eeb/474tnU1Y0t/obEYp3VKLOps0S9mwYUPHjh3NbQBMys3NNf1nBYXUr1+/d+/e06dPt+dOnXN6k5iY2KJFi2+//TYmJkb2yk+fPt2uXbvw8HAzy9tnemNRuhHKJ33T7JZxnCrdCCEqVarUtWvXmTNnmhe+EEI0btzYaPBGucxcWo2dTTjZXLpFixbXr18/c+aM2eFbYMyYMWfOnPn111+VqLw4zpluhBDNmjXr0KHDp59+qkTlERERjAC2cNsRoFmzZllZWYcPHzY7fDF+/Hjz/3Y4my7KbTtb7dq1pfpt/4MtavPmzSNGjLh06VLFihVlr7w4Tptu3nnnnYMHDx4/flyJykeMGHHt2jUzCzMCFOW2I4B0f+Vz585Jj801U15enq+vr/nlhRB+fn7/W/H18vKKiIj4888/b9++Lb0ze/bstLQ0Ly+vzz//XFesVq1aRf+Zr2vXrp6entLPjGx5dLPtGjduLL0o7sYCuk7TsGHD4ipZv359dnb24MGDbYnE29vb/OVb3SbmX5Fx584d6YXu76Q4a9eulV7orm2pU6dO0ZPntLQ0YayDWjFkREREGG37zz//nJqaKoTo1KmT7k2tViv9xN72axJl+fbNZGlLLW2m7mjr3z/BtODgYCVWfAMCAjw8PCztzDZ6+eWXzZk09OrVy86B+fr6WvGnbSZGgBLrN82dRwBL/0gtuoWsLZ1NWNLf6GxGKd1SK9JNUFCQncdeQHZeXl7+/v5Mb8T/v3Raob9rM2+brGOf6Y11K77KJX3T7JZxnC3deHh4+Pn5WdQtLbpboGvMpVXa2YTzzaU9PT0VGnj9/PyUO38sjnOmGyGEl5eXpX/X5rPo502MAEW57Qjg4eHh5eVlUbf08/Ozzz/dCM6mXauzScqUKaPEMCj97rxs2bL2HNidNt34+flZ+ndtPl9fX0YAW7j5CGCfP9J/nBRJS8137tzRaDS3bt1asGCBEGLEiBG6b0IIsWTJkq5duxrUEhAQEBgYmJ+fL93uz4EaNWok3X36xIkTRgucO3dOCBEcHBwREVFcJbGxsW3atFHiihsZ6X7YbvpRJffv35eGjOeee65169bFFcvLy/v222+FEC+++KLBR7ouq7tsoTjXr1+XLhcw+kv5wsLCCRMmCCE8PDz07zJx6dIlqWbbnzsiy7dvDitaamkzdUfb/CHDlYwdO7bEWzeULl1aOs7uiRGgKEYAhcjb2UTx/Y3OVpQdWupUnQ1wbUxvSmSf6Y356UbYJembZp+M44bpxjXm0mrsbML95tL2R7opESNAUYwACuFsuig6m8sg3ZSIEaAoRgA7MLLiW1hYePfu3Y8++ig7Ozs4OFi6sbNOQEBA0TZcvnz50aNH5cuXt+etA4zy8/Pr1q2bEOLQoUPSKr2+mzdvSmv7L774YnGXY5w/f/7o0aNDhw5VOlQb1a1bV7obwLVr10w8HXro0KG3b9/29fVduHBhcWVu37798ssvJyYmvvbaa61atTL4VPdL8xIvEjF9o/P58+efPn1aCNGrVy/9W9fK+NwR2799M1nRUkubqTvaFv3S32WEhoauXbvWxHX6np6eX3/9tcMHHAdiBCiKEUAhMnY2YbK/0dmKskNLnaqzAa6N6U2J7DO9MT/dCLskfdPsk3HcMN24xlxajZ1NuN9c2v5INyViBCiKEUAhnE0XRWdzGaSbEjECFMUIYAdGVnyFEOfOnVu9erUQYtq0abqHRZuwe/duIcTw4cPlD9ByAwcOFELk5OTMnj3b4KMZM2ZIT1QeMmRIcZvHxsaWLl26V69eigZpu4CAAOlpW3l5eYsWLTJaZvr06du2bRNCzJ07t0mTJkUL9O3bt2HDhuHh4Tt37hw+fPiKFSuKlildurTUa6UnzJug+6swKKnVamfPnj1p0iQhRHBwsP5NwsX/fyy5KP4Z2llZWcuWLdu+fbvpvUus+/Yt2oWwqqUlNtOArmbdX6W76dat2/bt28uXL1/0o+Dg4G3btvXs2dP+UTkPRgCjGAGUIEtnE2b0NzpbUQq1VJ9TdTbA5TG9Mc0+0xvz041QLOk7W8Zxw3TjGnNpNXY24X5zaYcg3ZjGCGAUI4ASOJs2is7mMkg3pjECGMUIoDitHt0Trdu0aSOEaNCgQX5+vrYkN2/eDA4Orl279v3790ssrK93795Vq1atWrXqtWvXLNpQ0rVr1+joaKMfSX9LHh4eX375pe7NxYsXS1ed9OjRo7g68/LyKlSo8Prrr1sRj+2io6O7d+9ufvmTJ09KT0328vLatm2b/ke3bt3S3YJ8+vTpxdXQrVu35s2bly9f3sPDo3///omJiUaLtW/fXgjh6+ubk5NjIh6p2wghvL29V65cmZ+fX1hYePToUenCDamG77//3mCr5s2bCyFq1qxZXLVvvPGGtPmiRYtM7F3Him/f0l1Y0dISm2mgWbNmQogKFSqYU1i6AXtBQYGZlVtk2rRpQUFBStRsjvv373/88cctW7b09/f38vJ66qmnZsyYce/ePUfF07Fjx5iYGIUqj4qKevXVV80vzwhglBuOADNnzvT39zezZus2sb2zac3rb3Q2+7RUn0Wd7eLFi0KIXbt2mVMYcGaPPfbYO++846i9S9Mb6VZRgYGBjp3eXLlyRQgRFxenROXS2eXBgwfN38Q+0xsz041WsaTvbBnH2dKNVqsNDw8fP368mYWt28QF5tJq7GzKtVSfRf1t3Lhx1atXN7NmSw0ePLhx48YKVV4i3dm0j4+Pr6+vw8+ma9euPWbMGIUqDw0NnTJlivnlGQGMcsMRYPjw4Q0aNDCzZsnrr79ev35988tzNm2UG3a2nTt3CiEuXbpkZuUWke70m5ycrETlJdKlG+lxwg5PN6NHj46IiFCo8n79+rVo0cL88owARrnhCLBx40YhxPXr182s3Bb/WPE1+HX53r17S9w+PT29SZMmFStWtGLAio6OlnaUkJBg6bZakyu+N2/erFy5slR5s2bNevXqpbvxd40aNUwMf1u2bBFCHD582Ip4bGfpiq9Wq12+fLnuF+7PPvvs+++//8EHH/Ts2TMgIEAIERgY+M0335RYiUajOXToUGhoaIUKFc6cOVO0wMSJE6VdHD16tLhKCgsLpYeEP/7449WqVRNCSCcVuu5Urly5nTt3GmyVnZ0tjXp9+/Ytrua2bdtKNZg5CbPi27doF1a01Jxm6svNzZUq7NChgznlXXjFV2fYsGENGzZ0dBTOteKrZQQwxg1HADus+Gpl6mzakvobnc0+LdWxtLOx4guX4dgVX0leXp4QYuHChY4Nw9lWfLV2md6Yk260SiZ9p8o4TphutHZZ8dWqfC6txs6maEt1LO1vLrziq9O2bdtu3bo5OgrnWvHVMgIY44YjgB1WfLWcTRvjhp3NhVd8dT755BNfX1/HxqB1shVfLSOAMW44AjhsxVer1VatWlVqtjlLj+np6U8//XT16tXj4+Ot2LdyK75arTY5Obldu3binzp37nz79m3TdT7++ONWBCMLK1Z8tVrt9u3ba9asadBSPz+/4cOH37hxw/x6tm7dKv2NaTQag4/27NkjVbtkyZLiNpeeqi2EeOedd1JSUrp37667j7+vr++AAQP+/vvvolsdPnxYKjN37tziat6zZ0/FihXr1KlTr169orEZZem3b9EurGipOc3Ud+zYMan8p59+ak55VnztxtlWfLWMAMa42whgnxVfrXydTVt8f6Oz2aelOpZ2NlZ84TJY8dVxwhVfrfLTG3PSjVbJpO9UGccJ043WXiu+WjXPpdXY2RRtqY6l/Y0VX7txthVfLSOAMe42AthnxVfL2bQx7tbZWPG1G2db8dUyAhjjbiOAPVd8vQ0O640bN4R5Hj582Llz57t37/7888/h4eFmbqXvwIEDVmxlprCwsB9//PHUqVP79u1LTU2tWrVqu3btGjdubGKT5OTkPXv2zJo1S7molNCtW7eYmJhDhw4dOXIkLS0tJCSkXr16nTt3li5ksKieUqVKnTx58ty5cwYHqk2bNv7+/jk5ObquXJTu3uhRUVGVKlWKi4u7c+fO5cuXfX19H3/88bJlyxrdqmXLllqt1nRgzz///O3bt4UQXbt21Wg0Xl5eJbbF0m/fol1Y0VJzmqlPd3/1zp07m78V3BMjQFGMAAqRq7OJ4vsbnU2fci3VcdrOBsDNKT29MSfdCCWTvlNlHDdPN+qdS6uxswn3nkvDCTECFMUIoBDOpouis8F9MAIUxQigHMMVXzOlp6d37tw5IyPjl19+CQsLkzcmGUVGRkZGRppZeM2aNR4eHgMGDFA0JCV4e3u3b99eul271by8vEJDQ69fv37jxg2Dvy7pMeNbt27dsWNHTk6Ov79/0c31/5CkFxUrVqxYsaItIRkN0vzCFn375u/CDi3dsWOHEKJ27dqmr1EAJIwARjECKEGWziaK7290Nn1u3tkAuDlFpzfmpBvhNhmHdMNc2iimN3ATjABGMQIogbNpo+hscBOMAEYxAijB04pt0tPTO3XqlJeXd/DgQWde7rVUbGzsCy+8UKlSJUcHojjdNQj6cnNzb926JYRo1KhR0U9Hjx4thEhLS9uwYYPROqU/pJCQkKL3KJBFZmZmqVKllKjZ0l0o3dK7d+/u27dPCDFq1Cgl6gcYAWzZBSOApSztb3Q2HTobAJhP9nQj3CbjkG4sxVzall3Q36B2jAC27IIRwFKcTVu9CzobXAAjgNW7cPMRwOIV3wcPHnTs2NHDw+Onn34KDQ1VIiaH+O233+Lj44cOHeroQOyhV69e69evN3hzxYoVhYWFjRo1ql69etFNOnTo0KBBAyHE0qVLi36anZ0t3R5dd92E7L755psePXooVLn5u7BDS1euXFlQUBAUFDR48GCFdgE3xwhg9S4YAaxgaX+js0nobABgEXnTjXCbjEO6sQJzaat3QX+DC2AEsHoXjABW4Gzaul3Q2eAaGAGs2wUjgMUrvkOHDj127Ji/v/+AAQO6du0a80/JyclKRGkHsbGxlSpV6tKli6MDsYdp06b169evV69eP/7446NHj9LS0pYtW/buu+96e3uvXr3a6CYeHh6LFy8WQhw9erToBSanTp0qKCgQiv0hZWVlbdiwoW/fvkpUbtEulG5pdnb2/PnzhRAzZsxwpSsq4FQYAazeBSOAFSztb3Q2CZ0NACwib7oRbpNxSDdWYC5t9S7ob3ABjABW74IRwAqcTVu3CzobXAMjgHW7YASweMU3NTVVCHHo0KGdO3fu2rXr+3/KyspSIEjFZWRkbNy4ceDAgd7eVj7YWF0GDRq0bdu2EydOdOjQoUyZMqGhoW+88UblypV//PHH5s2bF7dV27ZtBw4cKISYOXOmwUdF740ur3Hjxo0ePVrRb8fMXSjd0vnz59+5c6dp06ZvvfWWEvUDghHAhl0wAljBiv5GZxN0NgCwkLzpRrhNxiHdWIG5tNW7oL/BBTACWL0LRgArcDZt3S7obHANjADW7YIRwOLv4JdfflEiDsfatGlTRkbGkCFDHB2I/XTv3v35558/dOjQ8ePHvb29mzdv3rJlyxJvgz5nzpwdO3Zs27Zt69atPXv21L2v6B/SmTNnKlWq1Lt3b9lrtmIXirY0Pj5+xowZnp6eX3zxhUUPOQcsxQhg3S4YAaxjRX+js9HZAMBSMqYb4TYZh3RjHebS1u2C/gbXwAhg3S4YAazD2bQVu6CzwWUwAlixC0YAoVWtrl27RkdHy1JV69atn376aVmqskV0dHT37t0dHUUJ9u7d6+PjU6lSpevXr+vezMrKysjIyMjIcGBg9qFcS7OysqRhaN68eZZuu2DBAiFEQUGB7FFptdpp06YFBQUpUbNFhg0b1rBhQ0dHoe3YsWNMTIxClUdFRb366qsKVS4XRgAnHAFmzpzp7++v9Cb2R2dzws528eJFIcSuXbtkjwqws8cee+ydd95xbAx5eXlCiIULFzo2jCtXrggh4uLilKhcupnYwYMHlahcLkbTjdZtMo5zphutVhseHj5+/HilN7E/pjdO2N/GjRtXvXp12UOSDB48uHHjxgpVbr62bdt269bN0VFoa9euPWbMGIUqDw0NnTJlikKVy4URwAlHgOHDhzdo0MCiTV5//fX69etbuiM7o7M5YWfbuXOnEOLSpUuyR6XVar/99lshRHJyshKVm++TTz7x9fV1bAxarXb06NEREREKVd6vX78WLVooVLlcGAGccATYuHGjEMLglFMhFt/V2XnUrFmzZs2aslSVlJQ0duxYWapyeZ06dVq5cuXt27e7deuWkZEhvRkQEBAYGBgYGOjY2OxAoZZqtdpBgwYdO3bs7bffnjBhgryVAzJiBGAEsBs6G50NAOzAaLoRbpNxSDd2xvSG/gZ3xgjACGA3dDY6G9wZI4CbjwAqfmztwoUL5aoqISFBrqrcwcCBA6VHZPv4+Dg6Fhfh4eGxdu3atWvX+vn5OToWoASMALJjBCgOnU12dDYAKIp0IzvSjQn0N9nR36AijACyYwQoDp1NdnQ2qAgjgOxUNAKoeMUXDuT8PVt1OKRQEbqr7DikxeHIyI5DCgBFMTbKjkNqAgdHdhxSqAjdVXYc0uJwZGTHIYWK0F1lp5ZDquK7OgMAAAAAAAAAAACAm2PFFwAAAAAAAAAAAADUihVfAAAAAAAAAAAAAFArVnwBAAAAAAAAAAAAQK1Y8QUAAAAAAAAAAAAAtWLFFwAAAAAAAAAAAADUihVfAAAAAAAAAAAAAFArb0cHgP/RaDRZWVmJiYmODgQqk5aW5ugQIAONRpORkcEIAEvdu3fP0k20Wq1Wq6WzwVI3btxwdAgA1CcpKYmMA0sVFBRotVqLNtFqtenp6XQ2WCo9Pd3SzgYnpNVqHzx4wAgASz169MiKdJOfn09ng6VSUlIcHQJkoNVqc3NzGQFgqdu3b9ttX6z4OpH4+PiUlJTatWs7OhCokoeHh6NDgE0SExNPnDixY8cORwcC9fH0tOyOHWfPns3NzSXdwDp///23o0MAoA53794VQvTr18/RgUCVTp06ZVH5O3furFq1atWqVQrFAxfm7+/v6BBgq/T09KVLly5dutTRgUB9goKCLCp/+vTphIQEzqZhnYyMDEeHAJucOXPmwoULjACwTl5enh32woqvE/nmm28uX75coUIFRwcClcnJycnOzrZ0yQfO5ptvvrl+/XpISIijA4HKZGVlaTQaizaZM2dOs2bNatWqpVBIcGGXL18eNmyYo6MAoA4dO3b85JNPatWqxYWJsNTff//dtWtXizZZs2bNo0ePypQpo1BIcFUPHz6k27iA1atX5+XlWbp0Bzx48MDSf4b96quvfvjhh2rVqikUElxVYWHhjRs3mjdv7uhAYJPVq1f/9ttvVapUcXQgUJmCggK7/dSTFV8n0r59+/bt2zs6CgCO0aVLF0eHAHdRrVq1f/3rX46OAgDg4jw9PSdNmuToKOAu+vTp4+gQADhM//79HR0C3EXjxo0bN27s6CgAOEZUVFRUVJSjowBM4UeBAAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWKl7xLSgoyMvLk6Wq3NxcWeoBAAAAAAAAAAAAAHtS8Yrv6NGjBw0aJEtVNWrUWLp0qSxVAQAAAAAAAAAAAIDdqHjFNyUlJSUlRZaqmjVrtmjRIlmqAgAAAAAAAAAAAAC7UfGKrzkKCwsTEhJ++umn8+fPazSa4ooNGTLk0qVLf/zxhz1jAwAAAAAAAAAAAAAbeTs6AKVoNJqFCxd+9tlnSUlJ0jvh4eHvvPPOW2+9VbRw9+7dQ0JCYmNjW7Zsad8wAZhSUFBw9uzZW7dunThxIikpaevWrWFhYY0bNw4MDHR0aAAAANZITU29dOnSjRs3hBAHDx6sU6dOjRo16tev7+i4AAAuJTs7++zZsykpKQkJCb6+vtu3b69cuXLjxo39/PwcHRoAwHVotdoLFy78/fffv/zyS0FBwcaNGx977LH69euHhIQ4OjTAHbnmim9ubm6/fv22bNki/W+pUqWysrKuX78+duzYX375Zf369Z6e//hxs6+vb//+/VevXr1gwYJSpUo5ImQA/7Br164NGzbs2rXr3r17ujdfeuklIYS/v3+HDh1eeuml/v37+/r6Oi5GAAAAc92/fz82Nnbbtm2HDx8uLCyU3tyyZYt0zhIeHt69e/dBgwa1aNHCoWECANStsLBw48aN33333ffff5+Zmal7v0ePHkKIMmXKPP/883369OnZs6fBv4wBAGCR33//fe3atdu3b9f94k4I0bdvXyGEt7d369atX3zxxSFDhpQuXdpxMQJuxzWnd1OnTpX+6WT48OEpKSkZGRnnzp3r3bu3EGLTpk2zZs0qusnQoUMfPnz43Xff2TtWAP/066+/PvPMM127dv3tt98GDRq0f//+y5cvR0RE+Pn5SdeLTZkyJTk5ediwYfXr11+/fr1Wq3V0yAAAAMXKycmZM2dOnTp1Jk2a5OfnN3/+/GPHjiUkJAghevTocf78+a1bt3bo0GHDhg1PPvlknz59rly54uiQAQCqtH379saNG/fr1y8+Pn7ChAmHDh1KTEwsV65cxYoVpUeejR49+uzZs7169WrevPm+ffscHS8AQJXOnz/fvXv3Z555Ztu2bV27dt2xY8eFCxfat28vhLh58+aRI0dmz55dWFg4ceLEOnXqLF68OD8/39EhA+7CBVd8r1y5MnfuXCHEgAEDVqxYUalSJQ8Pj0aNGq1fv75nz55CiKlTp167ds1gqyZNmkRGRq5atcoBEQMQQgih1Wo//PDD5557Li0tbePGjQkJCfPmzevQoUPdunU9PDyEEOHh4c8+++y///3v48ePHz16tEaNGq+++mrXrl0fPnzo6NgBAACMuHXr1rPPPvvee++1b9/+8uXLP/zww1tvvdWiRYvKlSsLIXx8fBo0aPDiiy9+9dVXt27dWr58+S+//PLEE098/fXXjg4cAKAmubm5Q4YM6dGjR2Bg4IEDB86ePTtjxoznnnuuZs2aHh4eHh4etWvXbtu27axZsy5evLh//35PT8/OnTuPHDmSf4UHAFhkxYoVzZo1O3HixBdffHHjxo0vvviia9eu9evX9/b2FkJUqVLlySefnDhx4qFDh65evdq5c+exY8e2bNlSeqgNAKW54Irvl19+WVBQ4O/vP3v2bP33PT09582b5+XlVVBQsHbt2qIbDh069ODBg0UXgwHYQU5Ozssvvzx9+vTJkyf/+eefvXv3llZ5i9OiRYsff/xx7dq1Bw4caN26NfMGAADgbI4cOdK8efOkpKTffvtt48aNtWrVMlHYx8dnxIgRly9ffuGFFwYPHjxlyhS7xQkAULW0tLR27dp9++23S5YsOXLkSHR0tOnyHTp0OHbs2OzZs7/66qvnn38+PT3dLmECANRNq9WOGzduxIgRffv2vXLlyogRI6RV3uJUr159zZo1P/zww/Xr11u1anX69Gl7RQq4Lxdc8V23bp0Qok2bNtKF8/pq1KjRpk0bIcQ333xTdMN+/fr5+vquXr1a+RgB/INWqx02bNiuXbu+/fbbmTNnmp4u6HvttdcOHTp0+/btbt26ZWRkKBokAACA+RITE7t27frYY48dO3bs6aefNnOrMmXKbN68+f333//kk0/mzJmjaIQAABeQl5f30ksvXbhwYe/evW+88YbpK6d1PD0933vvvbi4uCNHjrzyyiu6B8wDAFCcDz/8cOHChbNmzVqzZk2pUqXM3Kpdu3ZHjhwpXbp0ly5dbt26pWiEAFxtxTcxMVF6VHiTJk2MFpDev3Llyt27dw0+Kl++fI8ePVavXq3RaJSOE4C+WbNmrVu3bunSpa+++qql20ZFRW3fvv3y5cuDBg3imb4AAMAZPHr0qHv37gEBAbt3765SpYpF23p4eHz00UejR4+eNGnSnj17FIoQAOAaxowZ8/vvv2/cuLFt27aWbvvCCy+sXbt27969//rXv5SIDQDgMjZu3DhjxoxJkyZZkTJq1aq1Z8+ewsLCF198MScnR4nwAEhcbcVXd3OA4lZ869WrJ704c+ZM0U+HDBly/fr1n376SZnoABiRkJAwderUMWPGDBs2zLoannzyyeXLl2/ZsuW7776TNzYAAAArfPzxx1euXImLiwsLC7Ouhs8//7xVq1YjR47Mzs6WNzYAgMs4ePDgypUrZ8+e3bFjR+tq6Nmz5wcffDBv3rwTJ07IGxsAwGWkp6ePGTPm+eefnzlzpnU1VK9e/bvvvjt16tSCBQtkDQ3APxhZ8b1w4cK7774bGRkZHBwcERHRp08fhRZRli9f/u6777777rtpaWly1Xnv3j3pRZ06dYwW0L1v9Hm9nTp1qlq16qpVq+SKB0CJpkyZUrZs2Y8//tiWSgYNGtS2bdt//etfeXl5cgUGAABghVu3bi1cuPCNN96IjIy0uhIfH58lS5YkJSUtWrRIxtgAAC5Dq9VOnjy5fv36Y8eOtaWeKVOm1KpV6+2335YrMACAi5k9e3Z6evrChQs9Pa3/AeGzzz47cODAWbNmybgYBMDAP/5E09PTR48e3ahRozlz5pw+ffrBgwcJCQmbNm3q1avXq6++KvszMjds2DBnzpw5c+Y8ePBArjp1VQUEBBgtEBgYKL149OhR0U89PT0HDhy4ZcsWGUMCYEJ8fPzmzZv/7//+r0yZMjZWNXPmzMTExI0bN8oSGAAAgHXmzZvn7e39/vvv21jPE0880b9//9mzZ+fn58sSGADAlezfv/+PP/6YPXu2t7e3LfX4+vpOnz790KFDv//+u1yxAQBcRmZm5sKFC0eOHFncT+zMN3369Nzc3MWLF8sSGICi/rfie/PmzVatWi1fvtzX13fw4MEbNmz44YcfFi1aFBERIYRYv379lClTHBenuXQrtb6+vkYL+Pj4SC+MrvgKIYYMGZKTk7N+/XoFogNgaMuWLd7e3oMGDbK9qqeffrpRo0Zbt261vSoAAACrbd269aWXXgoNDbW9qtdff/3evXsHDx60vSoAgIv57rvvHnvssa5du9peVe/evYODgzmbBgAUtWfPnszMzBEjRtheVdWqVWNiYrZs2WJ7VQCM+u+K771799q0aXPhwoWIiIgTJ06sWrWqT58+7du3f/PNN8+ePfvMM88IIZYsWXLq1Cn9jfPy8mz5LewHH3ywfv369evXV6pUyYYm/MP9+/elFyWu+Bb3k+U6deq0bt06NjZWrpAAmBAXF9e2bdty5crJUtuLL774/fffZ2VlyVIbAACApU6fPn3t2rUePXrIUlurVq3CwsLi4uJkqQ0A4DI0Gs2OHTu6d+/u4eFhe20+Pj4xMTGs+AIAioqLi6tRo8YTTzwhS209evQ4e/ZsYmKiLLUBMPDfFd/XXnstMTExNDT0xx9/bNiwoX4Jf3//hQsXCiE0Gs3OnTulN8+cOdOpU6eAgIDg4OCaNWt+8cUXVuy7bdu2ffv27du3b1BQkG2t+B/dIzw1Go3RArr3CwoKiqtk6NChx44d+/PPP+WKCoBRWq321KlT0dHRclXYtm3brKysy5cvy1UhAACARU6ePCmEaNOmjSy1eXp6PvvssydOnJClNgCAy0hOTk5OTpb3bPrq1avp6elyVQgAcA0nT55s166dXLVJmYsTHEAhnkKIuLi4PXv2CCHef//9atWqFS0UGRlZqlQpIcS5c+eEECdOnGjduvXRo0cnTpw4c+bMkJCQUaNGffDBB/aN3Djd4rFu6deA7v2yZcsWV0nv3r2DgoJWrVole3gA9KWlpeXm5latWlWuCqtUqSKESEpKkqtCAAAAi9y6datUqVLBwcFyVVi1alXmNgAAA7du3RJCcDYNAFBaUlKSvOnG09OTdAMoxEOr1UZGRp4+fbpq1apXrlzx9/c3Wq5KlSpJSUktWrQ4evRoZGRkfHz84cOHmzRpIoQoLCyMiYn56aefzpw5Y/D7YEV169YtIyPjwIED+m9+8MEHM2bMEEKcPn1aCs/Ar7/+2rp1ayHE/Pnzx48fX1zlQ4cO3bNnT1JSktW3x/n3v/+9bt0667ZFUY8ePcrNzZXlcWiwyJ07dzIzM2vWrKlE5dnZ2cnJyRUrVizxh/43btwoKCgoMQyNRvPXX3+VLVs2JCREvjD/EYYQwuiVMVDUw4cP8/PzFfpaAX35+fmpqamVK1eW5f54gGkpKSlly5YNCAhwdCBu59q1awEBAWFhYUpUnpSUlJeXV6NGDdPFpElLYGBgiQ+4uXv37sOHD2vVqiVbiHry8vJu3rwZGhpapkwZJeqHCcnJycHBwcWdgAMykp5+JeOVKDBTUlJSfn5+9erVlag8PT09LS2tatWqxT3UTOevv/7y8PAoMYycnJykpKQKFSqULl1avjD/EYafn1/lypWVqBwm3Lt3z8vLy8TvXgC5ZGdnp6enKzTHhgkPHjy4d+9eeHi4t7e37JVLpy3lypUrX7686ZIpKSlZWVnmnLYoejqWnJycm5tb4ukYZJeVlfXo0SMZn9/q5vLy8u7evWvpv0+GhIR4X7ly5fTp00KInj17Fne2+fDhQ+myi0qVKp0+ffrMmTNvvfWWbj3Vy8tr9uzZzZo1mz179po1a2xtim10E9NHjx4ZLZCcnCy9MD3XycvL8/HxseVfe5s3b37nzh2rN4eBO3fuPHjwoG7duo4OxO389ttvly5d6tChgxKV37t3b/PmzY0bNy5xNrBx48ZHjx6VGEZOTs5ff/1Vv379xo0byxfm/2zZssXDw0OhowETkpOTMzMz69Sp4+hA4PpycnIuXLjQtGlTT09PR8cC13fu3Lnw8HD+Ac7+vv766ypVqrRt21aJyvfv35+UlFTibKGgoCA2NrZixYolljx8+PD58+cVmn48ePBg48aNjRs3Jsna3+nTp+vUqSPjE46A4ly/fl0IER4e7uhA3M6ePXvu37+v0AB+9erVH3/8sWXLliX+E/zXX3/t6elZYhgpKSnbt29v3ry5Ql1l7dq1lStX5mza/q5du+bj4yPj7/OA4qSnp1+/fl2up73CfBcuXPj111+fe+456S6t8tJoNF999VXt2rWbN29uuuSePXuysrLMGee/+uqratWqyfUcHAP79+9PSUkh3djf/fv3k5KS7PmLUNeWnZ198eLFyMhIi9YoQ0NDhe4RvEuXLtUW4/Dhw1KZt99+++OPPxZC7Ny506BMhQoVatSoUVwNSujatWt0dLTBm7GxsVKoq1evNrrVJ598IhXYsmVLcTU/ePAgICDg/ffflzNcQJ2mTZsWFBSkUOXSlRlffvlliSXr1q3r5+dXYjHp+pUffvhBjuiM6NixY0xMjEKVAwAA+3jsscfeeecdhSr/9NNPfXx8CgsLTRfLzMwUQvTq1avECkeNGlW3bl2ZojN05coVIURcXJxC9QOAOxs8eHDjxo0VqvzMmTNmnvwGBwdXqlSpxGJbtmwRQiQmJsoRnRG1a9ceM2aMQpUDgDv79ttvhRDJyckK1R8WFvbee++VWKxz585CiBKLSedBy5cvlyM0I0aPHh0REaFQ5YDz85RuUiqEqFevXnErw7pf7vbs2fOHH34QQhS9WqdevXp//fVXSkqK+QvOStD9sC8+Pt5ogatXr0ovTFxusH79+uzs7MGDB8sdHYB/CAoKKlu2bGJiolwVXrt2Tfz/5w8BAADYX9WqVfPz82/evClXhYmJicxtAAAGpNQg79m0p6cnd10GABioUqWKjOlGqoobDwAK8dTdtDAjI8NoiVu3bkk/nH3iiSdatWol3RW56D86SM/XlC4Sd6BGjRpJ96Y+ceKE0QLnzp0TQgQHB0dERBRXSWxsbJs2bbizGWAHbdu23bNnj1y17dq167HHHjNx/QoAAICi2rRp4+HhsXv3bllqy8jI+PnnnxW6ATUAQL1CQkIaN24s79l0q1ateLg4AMBA27Zt9+/fn5eXJ0ttu3bt8vHxadWqlSy1ATDgqfu1rnQ31KImT56cm5srhJgzZ46Hh0d6erqnp6eXl5dBsYCAACGE9Kt8B/Lz8+vWrZsQ4tChQ6mpqQaf3rx58+jRo0KIF198sbj7X58/f/7o0aNDhw5VOlQAQogePXqcOXNG+m2ujTQazc6dO7t3727LE7gBAABs8dhjjz355JPbtm2Tpba9e/fm5OT06NFDltoAAK7kxRdf3Lt3b1ZWlu1V3b9//5dffunevbvtVQEAXEyPHj3S09MPHTokS21xcXHR0dHBwcGy1AbAgGdUVJS0fLtw4cK0tDT9z7Ra7fvvv7927VohxMSJEzt16iSEePjwobe3d9GKpDeL+6GwPQ0cOFAIkZOTM3v2bIOPZsyYodVqhRBDhgwpbvPY2NjSpUv36tVL0SABSLp37x4UFPTZZ5/ZXtXatWtTUlL69etne1UAAABWe/XVV/fv3y89YdEWWq12zpw5DRs21D25BgAAnb59++bk5CxdutT2qhYsWCCE6N27t+1VAQBczNNPP12jRo05c+bYXtWvv/56+PDhV1991faqABjlWb169bFjxwoh0tLSWrVq9f333z98+PD+/fvff/99u3btPv74YyHEq6+++umnn0ob+Pv7FxQUFK0oPz9f/P9f+pqpT58+1apVq1at2l9//WV7S3S6du0aExMjhJg3b96KFSt07y9ZsmTlypVCiB49erRu3drotvn5+WvXrn3llVdKlSolY0gAilO+fPmJEyeuWLHi4sWLttSTk5PzwQcfxMTEFPfXDQAAYB8jR46sWrXqv/71Lxvr2bx58x9//CGdkQEAYKBBgwb9+vWbOXPmvXv3bKknOTl57ty5I0aMqFGjhkyhAQBch5eX1/Tp0/ft27d//34bq5o0aVK9evUGDBggS2AAivIUQkyfPj0qKkoIER8fHxMTU7Zs2fLly8fExBw8eNDX1/fDDz/89ttvdbdxLleunEajkdZ39Ul3fi5Xrpz5+05NTb158+bNmzcLCwtlaYzOihUrKleurNVqR4wY0bx58969e9etW/fNN9/UaDQ1atRYvnx5cRvu3LkzNTWVWzoD9vTOO++EhIQMHz5cGkasM2HChFu3bs2aNUvGwAAAAKzg7+8/Y8aMvXv3StebWicpKWn8+PGtW7fmHpsAgOLMmDEjJydn1KhR0g3trFBYWDhs2DAvL69///vf8sYGAHAZ/fv3b9q06ahRowzuEWuRefPm/fbbb7NmzTJ6B1kAsvAUQgQFBf3+++8ffvhh+fLldR+UKVNm8ODB586dmzp1qv5DMaU13Rs3bhhUdPPmTSFE2bJl7RB0iapUqXLy5Ml27doJIU6ePLl58+YrV64IITp37nzkyJGwsLDiNoyNjX388cdbtmxpv1gBt1e6dOl169YdO3Zs5MiR1tWwbNmy5cuXz549m3seAgAAZzBgwIB+/fqNGTPml19+sWLznJycl156KT8/f82aNbLHBgBwGdKvGjZt2jRjxgzrapg0adL333+/atWqSpUqyRsbAMBleHp6rlu3Li0trVevXkV/CmiOvXv3vvfee6NGjXrxxRfljg7A//z3egpvb++pU6dOnTr177//vnr1aqVKlerUqePn51d0g7p16x4/fvzKlSu1atXSf//PP//09/evWbOm+fs+cOCALaGbFhYW9uOPP546dWrfvn2pqalVq1Zt166d6dWg5OTkPXv28BtBwP7atWu3YMGCMWPG5ObmxsbGWnR/+C+//HLs2LEDBw58++23lYsQAADAfB4eHl999dXVq1e7dOmydu1ai/5d4+7du7179z558uS+ffu4wSYAwLRBgwZJv9ZIS0ubP3++p6enmRsWFha+//77c+bMmT59+ksvvaRokAAAtatfv/7GjRu7dOnSoUOHzZs3V6hQwfxtN23aNHjw4Keffvrzzz9XLkIAQvqNr77q1au3a9euYcOGRpd7hRA9evQQQvzxxx/6b165cuXOnTvt2rULDAxUKFDrREZG/utf/5ozZ8748eNL/PHfmjVrPDw8uI884BBvvPHGsmXLvvvuu3bt2pn5TN87d+70799/5MiRI0eO/Oqrr5SOEAAAwHz+/v579uxp2bLlyy+//OGHH2ZnZ5uz1U8//dS8efOzZ8/u2bMnOjpa4RgBAK7g008/ff/99xctWvTiiy9Kd+Ar0bVr155//vnPPvvsk08++b//+z+lIwQAuIBOnTpt3br11KlTzzzzzO+//27OJhkZGe+++27fvn07dOiwe/duX19fpYME3Jy5l/7pxMTE+Pn5rVq1Sv/fLBYuXCiEUPsjpmJjY1944QXuYwM4yqhRo/bt2/f33383btx4xIgRly9fLq5kSkrKjBkz6tSpExcXt3z58sWLF/MECAAA4GyCg4P37Nkzbty4GTNm1K1bd+XKlY8ePTJaUqvVHj58+IUXXmjfvn1wcPCRI0fat29v52gBACrl6en50UcfrVu37ueff65bt+7kyZOLPotN59q1axMmTHj88cdPnTq1bdu2SZMm6T/KDQAAE7p163b48GEvL69nnnnm5ZdfPn78eHElHzx4sHTp0oiIiAULFrz//vtbt24tXbq0PUMF3JPFaySlS5d+7733ZsyY0adPn88//7xy5crLli1bsmRJvXr1Bg0apESI9vHbb7/Fx8d/9tlnjg4EcGvR0dFXrlyZP3/+p59+umLFiscffzwmJqZmzZoPHz4sLCz84osvbty48dNPPx05csTT03PIkCEffvjhY4895uioAQAAjPP29p43b96QIUMmTZr0+uuvv/nmm23btm3VqlXFihWFENevX58/f/7Fixd37dqVlJRUtWrV2NjYgQMHenl5OTpwAIDKvPLKKx07dvzoo4/mzZs3e/bsZs2adezYsVq1anl5eYWFhYsXL75+/fq+ffvOnDkTEBAwceLEf/3rX+XKlXN01AAAlWnYsOHZs2dXrlw5bdq0qKio8PDwLl261KtXLykpSQjx1Vdf3bx589dffz106FB+fn7Pnj0/+eSTevXqOTpqwF1Y86u4qVOn3rt3b+nSpTt37pTeeeKJJ+Li4vz9/WWNza5iY2MrVarUpUsXRwcCuLvAwMD/+7//e+utt3bv3r1t27b//Oc/KSkp0kejRo0qV65cVFTUokWLevToUaVKFceGCgAAYI4nnnhi165dFy5c2LZt2/bt22fNmpWVlSWEOHr0/7V3nwFRXWvfxtcMHWwoKk0FFRRU7CiiUcByRGCwEUtii4nx2NDEhkZjYhJLYotJjCZgw2BBAfVEESuKCBFLLKhgRYq9IM1heD/Mc3g9FkDYDA65fp8mm7Xv+Ut01szce68Vd/LkSWtray8vL4VC4eHh8aa9dQAAKFatWrWWLl06c+bMiIiIsLCw1atXP3jwQP2jCRMmmJmZde7c2d/f39vbu1atWhUbFQCgvfT09MaOHTtixIjIyMjw8PBdu3atXr1apVIJIUaPHm1iYtKqVav58+f7+vra29tXdFjgn6U0HV8dHZ2VK1eOGzcuMjIyMzOzVatWvXv3lsvfeoHod0dmZuaWLVvGjh3LwrDAO6J69eqDBw8ePHiwECIvL69p06a3b99++PChsbFxRUcDAAAoDUdHR0dHx4CAACFEWlqapaWlp6dnREQEd/QCACRUp06d0aNHjx49WgiRk5NTt25dPT2927dvc1ERAEBCRkZGCoVCoVAIIZRKZffu3Q8fPvzkyRNWbwYqUOkbnA4ODg4ODhJGqUBbt27NzMwcOXJkRQcB8Br6+vp6enoymYx2LwAAqByqV68uhDA2NqbdCwAoP4aGhjo6Orq6urR7AQDlR1dXV73+K+1eoGJp8Y25EgoKCnJxcak0DWwAAAAAAAAAAAAA/xBavIixra1tZmamJKVSU1Pnz58vSSkAAAAAAAAAAAAA0Bgt7viuWLFCqlJJSUlSlQIAAAAAAAAAAAAAjWFVZwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtJUWd3yVSmVeXp4kpXJzcyWpAwAAAAAAAAAAAACapMUd37Fjxw4fPlySUjY2Nj///LMkpQAAAAAAAAAAAABAY7S445uenp6eni5JqTZt2vz444+SlAIAAAAAAAAAAAAAjdHijm9J5OfnJyUlHThw4Pz58yqV6k3DRo4cmZiYGBsbq8lsAAAAAAAAAAAAAFBGlbbjq1Kpli1bVr9+fTs7Ow8Pj+bNm9va2r7pRl4fH59atWoFBgZqOCQAAAAAAAAAAAAAlIVuRQcoF7m5uUOGDNm+fbv6P42NjbOysm7evDlx4sTo6OiQkBC5/H9a3fr6+kOHDl27du2yZcuMjY0rIjLwDrl9+3ZERMS+fftu37599uzZnJycZs2aWVhYtGzZUqFQuLq66ujoVHRGzTl79mx4eHhsbGxKSsq5c+dkMlmrVq2srKxcXV0VCkWzZs0qOiAAACiGSqU6fvx4eHj4qVOn0tLS0tLSVqxYcejQIWtra3d3d4VCUb9+/YrOqDnZ2dn79u3btWtXYmLizZs3hRAjR450cHCwsbHx9PT09PSsUaNGRWcEAG115cqVsLCw6OjolJSUv//+Oz8/v0WLFlZWVu3bt/f19W3Tpo1MJqvojBqiUqni4uLCw8MTEhJu37599erV1atXx8bGWltbd+vWTaFQ2NraVnRGANBW9+/f37Vr1549e27evHn+/HkhROfOna2srJo1a+bt7e3u7m5gYFDRGTXn6tWrYWFhhw8fVk++SqWyefPmVlZWbdu29fX1bd++/T9n8gUq5z2+c+fOVbd7R48enZ6enpmZ+ffffw8cOFAIsXXr1gULFrx6yqhRo548eRIaGqrprMC7JDY21t3dvV69euPHj79582bjxo0dHR11dHQ6depkYGAQFBTUtWtXS0vLxYsX5+TkVHTY8lVQUBASEtK0adOWLVt+++232dnZrVq1qlOnTt26dVu2bJmVlfXVV181b968WbNmoaGhBQUFFZ0XAAC8Rl5e3vLly62srDp37rx69Wo9Pb0OHToYGBg0adKkSZMmqamp/v7+DRo0eO+9944ePVrRYcvdvXv3/P39zczMFArFnj17atas6erqKoTo0KGDubn5yZMnhw4dWqdOnaFDh167dq2iwwKAlvnzzz/btm1rb28fEBDw8OHD5s2bN2jQoFq1au3atVOpVEuXLm3Xrl3Dhg1///33/Pz8ig5bvp4/f/7zzz/Xr1/fxcXlp59+kslkzs7OxsbGjRo1cnBwuHPnzueff96wYcNOnTodOHCgosMCgJZJTEwcMGBA3bp1R4wYce7cOSsrq3bt2gkhXF1da9SoERYW5unpWbt27RkzZjx69Kiiw5a7qKiojh07NmrUaNq0affu3XN0dGzYsKGJiYm6y/vjjz926NChQYMGv/76q1KprOiwgEYUaC0vL69u3bq9evzy5cu6urpCiA8//PDF4/n5+X379hVC6OrqXr169dUTW7du7ebmVl5xgXfb/fv3Bw4cKJPJ7OzsVq1alZaWpj4+b968KlWqqB8/f/48Kirqgw8+kMvl9evX37lzp8bi2dvbGxgYaOzpzp4927ZtWyGEm5vbtm3bMjMz1ce7d+/u6empfvzkyZMtW7Z07txZCNGxY8eLFy9qLB4AACiJyMhIW1tbmUzm5+cXGRmZm5urPm5hYTF16lT144yMjDVr1jg4OAghFArFnTt3NJPt2bNnQogBAwZo5ukKCgqWLVtWrVo1Y2Pjzz777K+//lKpVAUFBVeuXBFChIeHq8dcunRp/vz5tWrV0tfXnzZtWl5ensbiAYD2un79upubmxCibdu2GzdufPDggfr4iBEjnJyc1I+zsrIiIiL69OkjhGjWrFlsbKzG4pmamtatW1djT3fw4EE7OzuZTNavX78///wzJydHfbxRo0bjxo1TP757925QUFCLFi2EEJ6enqmpqRqLBwDaKzs7e9y4cbq6uubm5osWLUpOTlYfDw4OFkKov8vNz8+PjY2dMGGCgYFBzZo116xZo7F4vXr10mSzKSUlRf2MLVu2XLt27b1799THx44da2dnp36cnZ29e/duX19fIUSTJk2io6M1Fg+oKJXwHt/Vq1crlUpDQ8OFCxe+eFwuly9ZskRHR0epVG7YsOHVE0eNGnXo0CGuZ8c/UGJiYseOHffu3fvjjz+eP39+zJgx5ubmrw7T1dX18PDYsGFDQkKCra2tQqFYsGBBQaW7vXXnzp2urq5PnjzZvXv3gQMH+vfvb2Ji8uqwqlWrDhw4MDo6OiwsLCMjo2PHjnv27NF8WgAA8FrLly/v3bu3ubl5XFzc5s2be/Tooa+v/+qwOnXqjB49+uzZs7/++uuRI0ecnZ3Pnj2r+bTlKjc3d/jw4f7+/r6+vpcvX/7+++/btm372pXN7O3tZ82alZyc7O/v/8MPP/Tq1ev+/fuaDwwAWuTYsWPOzs6XLl36448/4uPjhw4dampq+uowIyMjb2/vXbt2HTx4UC6Xd+vW7bVfTGm7X3/9tWfPnjVq1IiJiQkNDf3Xv/712mVFzczMRowYcfr06cDAwLi4uPbt2//111+aTwsAWiQ9Pd3NzW316tWzZs26cuXK1KlTGzZs+OowuVzeoUOHFStWJCYmuru7f/zxx//+97+fP3+u+cDlKj4+3tnZ+dSpU+vWrUtISBg+fHitWrVeHWZoaOjp6bljx46jR4+amJh4eHj89ttvmk8LaFIl7Phu2rRJCNG1a1cLC4uXfmRjY9O1a1chxMaNG189cciQIfr6+mvXri3/jMA75Ny5cy4uLiqVKiYmZty4cXp6esWe0rJly6ioqPHjx8+cOXPy5MkaCKkxwcHBvr6+HTt2PHHihKenZ0lOUSgUcXFxrVu39vLy2rp1a3knBAAAxfriiy/8/f3VF3SqVzkrmq6u7ieffBIbG2tgYODq6nry5EkNhNSM58+fe3l5/fHHH7/88su6deusrKyKPaV69eoLFy6MiIg4efKkq6vrgwcPNJATALRRVFSUh4dH/fr14+LiBg0aVJJtArt163b8+PE+ffoMGzZsxYoVGgipMd9+++2nn346ePDg6Ojojh07FjteLpePHDkyLi7O1NT0vffei4mJ0UBIANBG6enpLi4uSUlJkZGRX375ZZUqVYo9xcbGZuvWrYsXL169evWAAQNUKpUGcmrG0aNHu3btWrt27bi4uGHDhsnlxXe4XF1djx49OmDAgI8//viluwSBSqaydXyvXr2ampoqhGjZsuVrB6iPX7ly5d69ey/9qGbNmgqFYu3atZXpFRAo2r1793x8fOrUqRMbG9usWbOSn6irq7t8+fL58+cvX7589erV5ZdQk2JjY0ePHu3r6/uf//zntddlv4mZmVlkZGTv3r1HjBiRkJBQfgkBAECxgoODv/nmm4CAgNWrV7/2vt43sbe3j42NtbGx8fX1TUtLK7+EmjRx4sSDBw9u3779008/fasTPT09o6OjU1NT33//fXa9AoBXXb582c/Pz9nZ+ciRIyW5nqaQiYnJ1q1bR48ePWXKlL1795ZfQk0KDQ2dPXv25MmT161b99r7et/E1tY2JibG0dGxX79+N2/eLL+EAKClcnJy+vXr9/Tp05iYmG7dur3VuZ9//vnGjRt37tw5c+bM8kmnadevX+/Xr1+LFi2OHj3aoEGDkp9oZGS0cePG8ePHBwQEhIeHl19CoGJVto7v6dOn1Q/e1PFt0qSJ+sGZM2de/enIkSNv3rx54MCB8kkHvHM+/PDDhw8fRkREmJmZleL0WbNmDR06dPz48a/9B6Vdnjx50q9fPwcHh/Xr16v3An8renp6wcHBtra2ffv2zcrKKo+EAACgWImJiaNHj+7bt+/8+fNLcXqNGjUiIiJycnIGDx4sebZXlffuGBs3bly1atWiRYu8vLxKcbqTk1NwcPCBAwfmzZsneTYA0GpKpbJfv37Vq1cPDQ01MjJ629NlMtnPP//s6uo6aNCg9PT08khYSAM7MV27dm348OG9e/devHhxKU6vWrVqWFiYXC738/OrfPtGAUAZTZ069a+//tq2bZudnV0pTh80aNCcOXMWLVoUEREheTYNU6lU/fv319fX37FjR0ludH6JTCZbunRp9+7dP/zww1u3bpVHQqDCvabjGxcX9+9//9vFxcXa2rpmzZpdu3adP39+eaz2vmrVqqlTp06dOlXC3aEK1xxr3LjxawcUHn/tfr09e/a0trYOCgqSKg/wLouMjNyzZ8+KFSsKr4QohTVr1lhYWEyfPl3CYIXS09OnT5/etGnTK1eu5Obm2tvbf/bZZ7dv3y6P51q8ePG9e/c2b9782l17S6JatWohISG3b99eunSptNkAAEAJBQQEVK9efe3atSVZWvO1bG1tf/nll8OHD4eFhUka7f+o3960atVKCLF9+/bye3uTnZ0dEBDQq1evKVOmlLqIt7f3hAkTfvjhh5SUFAmzAYC2++23386fP79hw4batWuXroKenl5ISIhSqfzqq6+kzaZW+Gn60aNHGRkZ5fppevbs2YaGhhs3btTR0SldBWtr699+++3EiRMhISHSZgMArXbp0qVVq1bNnDnzbe/ufdHcuXM7deo0bdq08li5p3C6iYyMFEKU63SzcePGhISEoKAgS0vL0lXQ1dUNDg7W0dH54osvpM0GvCsKXhAXF9e0adPXDnN2ds7JySmQVOHrVFJSUilO9/Ly6tat20sHCy8nPHv27GvPOn78uHrAkiVLXjsgICDA0NDw4cOHpYgEaBGVStW6detWrVrl5+cXMWzevHlVqlQputS6deuEEPv375c0YMGbmq9GRkbr16+X9rnS0tJMTEzGjRtX9LDu3bt7enoWPeajjz6qVq3a3bt3pUsHAABK5Pjx4+q7pooeZmFhMXXq1CIGqFQqFxeXpk2bKpVKSQNq9O3N4sWL5XL5mTNnihhz5coVIUR4eHgRY+7evVu9evVRo0ZJGw8AtNezZ8/Mzc19fX2LHjZixAgnJ6eix8ydO1dPT+/y5cvSpSso0Ox0c+rUKblc/sMPPxQ9rFGjRsV+4nZ3d7e1tc3Ly5MuHQBotwEDBtStW/fp06dFjAkODhZCpKWlFTHm6NGjQohVq1ZJG0+T001ubm6DBg169uxZ9LCxY8fa2dkVPWbBggVyufxN/SNAq/3PPb7Hjh1LTEx0cHCYMWPGunXrYmNjw8LCWrduLYSIi4tbtmzZa5vB75RHjx6pH7xpyy49PT31g6dPn752wMiRI3NycrioEJXe6dOnT506NXv27JLsb1+0Dz74oGHDhoGBgZIEU9uyZcugQYOePXv26o+ys7OHDRu2fv16aZ8uJydn1qxZZS/1xRdfPH36NDQ0tOylAADAWwkKCjI3Nx89enQZ68hksjlz5iQmJhZeLSoJDb+9CQoK8vX1dXJyKmMdMzOzcePGhYSEsG8FAKj9+eef6enpc+bMKXupzz77TF9ff8OGDWUvVUjD083atWtNTU3HjRtX9lJz5sy5du3aoUOHyl4KACqBBw8ehIWFTZ48uRQrGL/E1dW1e/fuWv3l7f79+2/cuCHJ5Dtx4sRq1aqpb2ECKpn/6fTUrl07LCzs/Pnz33333bBhwzp06KBQKCIiItQNoe3bt0v73HPmzAkJCQkJCalbt65UNR8+fKh+UGzHNzMz87UDGjdu3KVLF2lf/oB3UFhYmLGxce/evcteSi6X9+3bd/fu3Xl5eWWvJoTIyMj46KOPCorcv+fTTz+VcIWQsLAwV1dXCwuLspdq0KBB+/btw8PDy14KAACUnEql2rlzp6+vb+Eb/rLw8PAwNTWVcELX8NubK1euXLhwoX///pJU69+/f1ZW1r59+ySpBgDaLiwszMbGRn2DRBlVrVq1Z8+e2jvdCCEiIiK8vb0NDAzKXqpLly7m5uZ8mgYAtV27dqm3jZekWv/+/ePj46Xaq6VCvry1tLTs1KlT2UsZGRn16dOnnDbxASrW/3R8hw4dqlAoXtryytraul69ekKIV7ezzsvLK7ynthTc3Nzef//9999/v+xXqbwYSf1ApVK9dkDh8SKWrR81alR8fPy5c+ekSgW8g/bu3du9e3djY2NJqnl7ez969CguLk6SasuWLXvTNRmFsrOzlyxZIsnTZWVlRUdHe3l5SVJNCOHt7X3gwAGp+t8AAKAkzpw5k5aWJtWErqen969//WvPnj2SVBMaf3vz559/6ujoeHp6SlKtdevW1tbWe/fulaQaAGi7vXv3KhQKqap5e3ufPXs2NTVVkmoanm4SExOvXbsm1eQrl8t79+4t4eQLAFotMjLS0dHRzs5Okmo+Pj4FBQVSXcSp4elGCLF3794+ffq81LoqNW9v7+Tk5KSkJEmqAe+O4ldzzc/PT09PF0Ko+75qZ86c6dmzp5GRkampqa2t7a+//lqOGd9GYfP4Tb2WwuPVq1d/U5GBAwdWqVIlKChI8njAu+PatWuOjo5SVXNwcBBCXL9+XZJqO3fuLMmwiIgISZ4uJSVFqVRK+9vIzc1NS0uTqiAAACiW+n2IhBN606ZNr127JlU1Db+9uX79uqWlZY0aNSSpJpPJHBwcpHqnBwBaLSsr6+7du3yaVpN88nVwcLhx48ab7uIAgH8Uab+8tbS0rF69+o0bNySppuHpRqlUpqSkvLOTL/Du0C12RFJSUm5urhCiTZs26iMnT550c3OTy+VTpkwxNTXdvn27+g79r776qnzDlkDVqlXVD8rS8TUxMRk4cOCmTZu+//77Ul82cvHixejo6NKdi1c9evToyZMn9evXr+gglYRKpbp7925qaurWrVuLHnn+/HmlUlnssIKCAl1d3c2bN0uywdvly5dLMuzq1aurVq0q+z7EFy9eFEKcP3++2PAZGRm6urrF/jauXLkihFi5cqVUV+HhwYMH2dnZVlZWFR0ElZ9Sqbxy5Yr6rT9Q3pKSkqysrIyMjCo6SCURGRkpk8liYmLi4+OLHpmTk3Pp0qViJ/Tbt28/e/ZsxYoVhoaGZY+n4bc3UVFRMpms2D+j+tLeY8eOqT/xFeHZs2dJSUmrV68uYzAUunz5coMGDSRZBxUoWkZGhhBCwu20/uHUv8/k5ORiX2OvX7/++PHjYofdv39fCPH7779LstSchqcb9Z67cXFxxYbPzMxMSkoq9rdx8+ZNpVK5ZMmSatWqlTEb1NLS0vT09MzMzCo6CCq/7Ozs27dvN27cuKKDVB4XLlwwNjYu9pXzxIkTQoidO3cWe7mngYHB7t27LS0ty55Nw9PNw4cP8/Pzb9y4UexvIzk5OTMzs9hhT58+FUKsXbv26tWrZcwGtWfPnmVkZDRs2LCig1QSpft+0tzcXBS84v79+xEREdOnTx8yZEiPHj3s7e3VowMDAwsKClQqVcuWLY2MjE6fPq0er1Qqe/TooaOjc+7cuVerlR8vL69u3bq9dHDRokXqtNHR0a89a8uWLS/+cd5k6NCh9erVK0u8IUOGSPg/GAAAAAAAAAAAAABeYmRk9P/v8c3Ozg4MDPz111/VjdtXRzs7OwshTp8+febMmQkTJrRs2VJ9XEdHZ+HChW3atFm4cOH69es1E/1NCq9ZS05O7ty586sDkpOT1Q+KuObl8ePH27dvnzJlSlmSrF+/fuXKlWWpgBcVFBQolUo9Pb2KDlJJFBQUWFpazpgxY9KkSUWPXLRo0Y8//vjqNt4vef78uYWFxTfffDNmzJiyx+vcufOFCxeKHda4cWNJdg7+66+/evbsuWfPHvWrXBH69u2rr6+/efPmoodFR0crFIpDhw45OTmVPR6EEAUFBfn5+bq6xa9LAZTd8+fPmW6gGXl5efr6+hWdovLYuHHjxIkTr1+/XuxdQQ4ODn5+fvPmzSt62Jo1a2bMmJGamirJXZgafnszfvz4M2fOFLvm0NWrV9u1axccHNy7d++iR3700Ue3bt2KjIwsezaoMd1AY/Lz84UQOjo6FR2kkrh9+3aLFi2CgoKK3cq3hC/FycnJ7du3/+OPP3r16lX2eBqebrZt2/bJJ58kJibWqVOn6JFt27b18PAovE/jTUo+m6OElEqlXC4v+w12QEnwAUdaHTt27Nix47Jly4oeVvKX4tatW/fq1WvBggVlz6bh6ebBgweNGzf+6aefBg8eXPTIzz///PDhw8Uu+5Samtq8efPAwEBfX9+yx4MarwDSKsUHRkNDw//79vz8+fP9+vVT34zv5OQ0aNCgFi1aODo6mpube3h4xMbGVqlSRX0H8Z49e4QQL70Nbd26de3atd+FRYwL+ytvWligsOPbrFmzNxUJCQnJzs4eMWJEWZLo6OiYmpqWpQJQrszNzR89elTs31IjIyOZTFbssFu3bqlUqsaNG0vy175///4ledMwYMAASZ6uSZMmQojMzMxiq+np6enp6RU7LDMzU12WFwEAADRGvYJcdnZ2gwYNih4pl8sNDQ2LnaYfP35cs2ZNc3NzSeJp+O2NjY1NZGRksaXUO91UqVKl2JH37t2ztrbmvQ0AVKlSRS6XP3nypNiXRH19/ZJ8NfTs2TMhhL29vTZ+mlbvZJSVlVVsNblcbmBgUJLJ19jYuNipHAD+CerVq3f//v1iXzlNTEyEENWrVy96ZEFBQUZGho2NjTZONzVq1DA0NCzJ5GtgYCCXy4sdlpSUJISws7PjAw4qGbkQ4uHDh927d798+bKjo2N0dPSZM2dmzpzp5eXVsGFDPT2906dPCyHatWunvhwsKipKCNGiRYuXCjVp0uT69evqjaAqUPPmzdX7bJ08efK1A/7++28hhKmpaRH7awYGBnbt2pVdB1C5OTg4qLd5kERsbKz476b3ZTdx4sQidtpWq1q16uTJkyV5OktLy+rVq0v42zhx4oSZmVmxF9YBAAAJqd+HSDuhOzo6SlVNw29vHBwc7t27V3i1axnl5uaePn1awt8GAGgvPT29xo0bS/tpWl1Tkmoanm6aNm0ql8vf2ckXALSag4NDfHy8SqWSpNqZM2dycnK09MtbmUzWtGlTaSdfuVyuvgsIqEzkQoilS5eqO7WhoaEvrYT8999/5+TkiP8u6SyESEtLE0JYWVm9VMjW1lYIceXKlfLPXBQDAwNvb28hxOHDh+/evfvST1NSUtTLCPj6+spkstdWOH/+fFxc3KhRo8o7KlCxfHx84uLi1P+iyy4sLKxRo0ZF3Dr/VszMzDZs2FDEokNyuXzdunVStVR1dXU9PT137NghSTUhREREhLe3N4smAQCgSTY2Nk5OTmFhYZJUe/To0ZEjR3x8fCSpJjT+9sbT01NXVzc8PFySavv373/69KmEvw0A0Go+Pj67d+/Oy8uTpFpYWJibm5tUixhreLoxNzdv3769VJNvZmZmVFQU0w0AqPn4+Ny5c+f48eOSVAsLCzMyMurRo4ck1TQ83QghfHx89u7dm5WVJUm1sLCwTp061a5dW5JqwLtDLoRQL2sul8stLS1f+nHh7laFHd/Hjx/L5fJXN4AxMjIS/12LpmINGzZMCJGTk7Nw4cKXfvT111+rtygeOXLkm04PDAysWrXqgAEDyjUkUOF8fHwKCgr++OOPspd6/Pjx7t27pd32wNvbOyIiombNmq/+yNTUNCwsrG/fvhI+na+vb1JSkiQbS0RHR1+/fr3YLZ0AAIDkfH19IyMjX73usxRCQkKeP38u7YSuybc3NWvW7NKly6ZNm9Qff8ooODjY0tKyffv2ZS8FAJWAQqFQfwoueyn151DtnW6EEL6+vgcPHkxNTS17qdDQ0JycHD5NA4Ba165da9SoERwcXPZS+fn5mzdv7tGjh3oJaEloeLpRKBTZ2dmS3LFz69at6OhophtUSnIhxPPnz4UQKpVqwoQJly5dEkLk5uZGRkZ269YtIiJCPa6w4/vkyRNdXd1XC6kPqnevLCE/P7969erVq1fv+vXrZfpD/C8vL6/evXsLIZYsWbJmzZrC4z/99NNvv/0mhFAoFF26dHntuc+fP9+wYcOgQYOMjY0ljAS8g6ysrPz8/L777rvHjx+XsdR3332XnZ09duxYSYIV6tOnT3Jy8rffftuxY8fatWubmZl16NDh66+/Tk5OVt/KLyFfX99GjRpNmzat7KVmzpxpb2/v6elZ9lIAAOCtjBkzRiaTff3112Wsk52d/c033/j4+BSxEUzpaPLtzeTJk0+ePLlt27Yy1jl79mxISIi/vz/rlwCAmqurq4uLS0BAgFKpLGOpgICAWrVqffDBB5IEK6TJ6Wb06NGGhoZz584tY528vLyvvvrKzc3NyclJkmAAoO309fXHjRv322+/lX1d1aCgoMTExEmTJkkSrJAmp5s2bdq4u7t/8cUXubm5ZSz1xRdfmJiYFHFPIKDFCgoKFi9e/OIRY2Nj9YrH1apVU1/0Ubdu3YL/MjMzk8vlBa/4+OOPhRC7du169Udv0q1bN/UzJiUllfysQl5eXt26dXvtj1JSUiwsLNTF27RpM2DAgMIva2xsbNLS0t5Uc/v27UKI48ePlyIPoHWSkpL09fU/++yzIsbMmzevSpUqRRcxMjLy9/eXOp2mqa+Y27FjRxFjunfv7unpWcQA9T3ToaGhEocDAAAlExAQoK+vf/78+SLGWFhYTJ06tYgBs2fP1tHRKbqIVnjvvfcaN2789OnTNw1Qf3kUHh7+pgH5+fnu7u7169fPzs4un4wAoJUOHTokhPjpp5+KGDNixAgnJ6ciBhw5ckQmk61YsULqdJr29ddf6+joJCQkFDGmUaNG48aNK2LAt99+K5fLT548KXU6ANBijx8/rl27tkKhUKlUbxqj/kqziJbHgwcPrKysvLy8yiej5pw4cUImky1evLiIMWPHjrWzsyu6iFwuX7BggdTpgHeCXAjh7++vvilWLTs728nJad68ecnJyQUFBeKFG3yFEDVq1FCpVOrbgl+kvraiRo0aZW9Cl52VlVVCQoK7u7sQIiEhYdu2bervMnr16nXixAlzc/M3nRgYGNi0adOOHTtqLitQcdR3tS5ZsmTLli2lq/D06VOFQmFmZjZ79mxps2neoEGD3NzcRo4cmZiYWLoK586d++STT3r37i3toiUAAKDkpk+fXq9ePYVC8eDBg9JV2Llz57fffuvv7+/o6ChtNs1btmxZSkrKsGHDVCpV6SrMmjXr4MGDy5cvNzQ0lDYbAGi1rl27DhkyZMqUKTExMaWrkJKS4ufn17p16zFjxkibTfMmT55sZ2fXt2/fO3fulK7Cvn375syZM2bMmDZt2kibDQC0WrVq1RYvXhweHr5gwYLSVVAqle+///6TJ0++//57abNpnrOz80cffRQQEHDgwIHSVUhPTx8wYICjo+PEiROlzQa8I3SFELq6uv/5z3/Onj17584dc3PzevXqVa9eXf3jV/flVfd0b9261bBhwxePp6SkCCEKTyyJgwcPliF5MczNzffv33/q1Cn1Vl7W1tbu7u5FrwyTlpb2559/lvrVE9BG8+bNO3PmzMiRI2vXru3m5vZW5z579szPz+/atWvR0dG1atUqp4QaI5fLt2zZ4uzs7OPjs2/fvgYNGrzV6VevXvXx8bGwsNi0aZN6mQQAAKB51apVCw8P79SpU79+/cLDw9/q44kQ4vjx4x988IGHh0fl+FDQunXr33///YMPPpgyZcqSJUvedlnmX375ZeHChV988YWvr2/5BAQALbZmzZrExMR+/fpFRUU1b978rc69c+eOj49PQUFBWFiYvr5+OSXUGBMTk4iIiA4dOvj6+u7ateu1ezoW4eTJk4MGDXJxcVm2bFn5BAQALTZ8+PCEhITZs2dbW1t/+OGHb3WuUqkcO3bs/v37d+zY0aRJk3JKqEkrV668cOHCwIED9+3b97YXCd2/f9/X1zcrK+vQoUNGRkbllBCoWP//M7+Tk1P37t2bN29e9Nci9vb2QohX144/d+6coaGhra1teaQstdatW0+fPv3777/39/cvdiOQ9evXy2Syt33dBLSaXC4PDg5u2bJlr169Vq1aVfITb9y44erqeujQoU2bNlWai3DNzMx27tz57NkzZ2fno0ePlvzEgwcPOjs7K5XKnTt3viNLHQAA8I/VrFmzLVu2/PXXXy4uLklJSSU/ce3atW5ubnZ2dps3b9bV1S2/hJo0ZMiQ+fPnr1ixom/fvk+fPi3hWUqlcuLEif/+97+HDx/+5ZdflmdAANBWxsbG6kuLOnXqFBERUfITT58+3b59+xs3boSHh9erV6/8EmqSnZ1daGjo+fPnO3TocPHixZKfGBIS0qVLFysrq9DQ0ErQ/AaA8vDDDz/07dt3+PDhAQEBJV+85+HDh56enoGBgcuWLfPx8SnXhBpjYGCwfft2CwuLLl26bN26teQnnjt3ztnZOTExcceOHS/dyghUJm93lbcQQqFQCCFiY2NfPHjlypU7d+64u7ur9/3VUoGBgX369Klbt25FBwE0qmrVqgcPHhw6dOjYsWN79Ohx+vTposdnZ2cvXLiwVatWd+7cOXTokPo1odJo1qxZfHy8jY2Nm5vbmDFj0tPTix5/9+7dSZMm9ezZ097ePi4uTn1NDAAAqFi9evWKiYnJzs5u1arVjBkznjx5UvT4xMREPz+/kSNH+vj4HDlyxNTUVDM5NSMgIGDz5s1RUVGOjo6rV6/Oz88venxUVJSzs/PKlSvnzp0bGBjI4iUA8CbW1tbx8fFdu3b19fX18/NLTk4uevzDhw9nzJjh4uJiaGh47NixDh06aCanZri5ucXHx+vo6LRr127GjBmPHz8uevzly5f9/PyGDBni5uYWHR1du3ZtzeQEAK2jq6u7devW7777bsGCBR07dix25VSVSrV+/frmzZsfP348NDR0woQJmsmpGXXr1o2Nje3Ro4efn5+3t/ertya+JDMzc+HChS4uLnK5PCYmpkuXLprJCVSIt+749u7d28DAICgoKDs7u/DgihUrhBBafanIsWPHLl++PGrUqIoOAlQA9T/qtWvXXrp0qW3btj4+PoGBgXfv3n1xTH5+/pEjRz777LPGjRvPmjWrb9++CQkJlewDqpqlpeWhQ4cCAgKCg4Pt7OxGjRoVHh7+4iueECIrK2vHjh0jRoywtbUNCgqaO3fuwYMHi9gjHAAAaJiTk1NcXNzQoUN/+OEHe3v7SZMmHThwQKlUvjjm/v3769ev79evX4sWLY4dO7ZmzZrNmzcbGxtXVObyM3DgwNjYWAcHhzFjxjg5OX311Vdnzpx5aczVq1eXLl3q6urao0cPmUx24MCBL7/8knYvABStWrVqO3bs+P777/fv39+sWbMhQ4Zs3rz5pSuNcnNz9+zZ8+mnnzZq1Gj58uXjxo2Lj49v2rRpRWUuP/b29jExMSNHjlyyZImdnd2ECROioqKeP3/+4piHDx8GBwcPHDiwefPmhw8fXrly5c6dO992FwYA+KeRyWTTp0/fvXt3VlaWu7t7t27dfvzxx5s3b744pqCg4OTJk3PmzHFwcBg+fHjbtm1PnjxZKfdnqVKlyvbt21esWHHixIlmzZr5+flt2rTp0aNHL47Jy8vbt2/fuHHjbG1t58yZM2rUqPj4eEdHxwqKDGiIrKCg4G3PmTNnztdff+3l5bV8+XILC4tffvnl888/t7e3P336tKGhYXmkfC1vb+/MzEypNgP+6KOPdu/enZKSUmkWcANKITs7++effw4ODj516pQQolq1anK5/PHjxxYWFhkZGfn5+aampl5eXtOmTXvbbYq0UXp6+uLFi7dt26Z+/1SnTp3Hjx/LZLKqVauq2+E2NjYDBw78/PPP69SpU9FhAQDA6yUmJi5atCgiIuL+/ftyubxu3bp37twxMTGRyWTq249atGgxdOjQ8ePHa/V6RSW0b9++FStWREVF5eTkGBgY1KpVKzU1tU6dOk+fPs3OztbR0enSpcvHH388aNCgt930FwD+4R49erRkyZKQkBD1zUY1a9bMzc3Ny8urVatWRkZGQUGBhYVF3759p02b1qBBg4oOW+6SkpIWLVoUFhZ29+5d9eR79+5dIyMjXV3dhw8fCiEcHR0HDx48adKkqlWrVnRYANAm+fn569atCwwMPH78uEqlMjY2NjExuXv3rqWl5b179/Ly8oyNjXv16uXv7//ee+9VdNhy9+TJk2XLloWEhKg3FDA1NVUqldnZ2bVr187IyFCpVHXq1FFPvqzkjH+I0nR88/PzJ02a9PPPPxee26JFi/DwcA1v4ithxzczM9PCwmLs2LGLFi0qezWgErh+/fr+/ftv3boVHx9/6dIlhUJhbW3t5OTUtWvXf+BVEQkJCTExMampqZGRkXK5vEePHpaWlq6urq1ataroaAAAoETy8/Ojo6NPnz6dkpKyc+fOBg0auLi4WFtbe3h4/AM//D979mzfvn2XLl26detWWFiYh4eHnZ1d48aNe/ToUatWrYpOBwDa7cKFC4cPH05LSzt48OCjR488PT2trKycnZ2dnZ3/aRfT5Ofnx8TEJCQk3L59e9euXebm5l26dLG0tHR3d7ezs6vodACg3e7cuRMZGXnt2rWLFy9GR0f369fP2trawcHBw8PDyMiootNp2qVLlw4dOpSamnrkyJGMjAwvLy8rK6t27dqpF3Ou6HSA5pSm46t28eLFyMjIzMzMVq1a9e7dW/P/ciTs+AYFBY0aNerChQsODg5lrwYAAAAAAAAAAAAAmlH6e/UcHBwqTX80KCjIxcWl0vxxAAAAAAAAAAAAAPxDaPHqrLa2tpmZmZKUSk1NnT9/viSlAAAAAAAAAAAAAEBj/h/9/D/RuDfc4gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "oracle.circuit.draw(output='latex')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen, the $v_i$'s correspond to the 3 input bits; the $o_0$ is the oracle's output qubit; the $a_0$ is an ancilla qubit.\n", + "\n", + "Next we can simply create a `DeutschJozsa` instance using the oracle, and run it to check the result." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The truth table 11110000 represents a balanced function.\n" + ] + } + ], + "source": [ + "dj = DeutschJozsa(oracle)\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "result = dj.run(QuantumInstance(backend, shots=1024))\n", + "print('The truth table {} represents a {} function.'.format(bitstr, result['result']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The truth table 11110000 represents a balanced function.\n" + ] + } + ], + "source": [ + "bitstr = '11110000'\n", + "params = {\n", + " 'problem': {\n", + " 'name': 'functionevaluation',\n", + " },\n", + " 'algorithm': {\n", + " 'name': 'DeutschJozsa'\n", + " },\n", + " 'oracle': {\n", + " 'name': 'TruthTableOracle',\n", + " 'bitmaps': [bitstr]\n", + " },\n", + " 'backend': {\n", + " 'shots': 1024,\n", + " },\n", + "}\n", + "\n", + "result_dict = run_algorithm(params, backend=backend)\n", + "print('The truth table {} represents a {} function.'.format(bitstr, result_dict['result']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can of course quickly put together another example for a `'constant'` function, as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The truth table 1111111111111111 represents a constant function.\n" + ] + } + ], + "source": [ + "bitstr = '1' * 16\n", + "oracle = TruthTableOracle(bitstr)\n", + "dj = DeutschJozsa(oracle)\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "result = dj.run(QuantumInstance(backend, shots=1024))\n", + "print('The truth table {} represents a {} function.'.format(bitstr, result['result']))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From bed38dc101eead4ace3b1de38fc7a84ddf6a717c Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Tue, 23 Apr 2019 14:01:33 -0400 Subject: [PATCH 074/116] add notebook for bernstein-vazirani --- .../aqua/general/bernstein_vazirani.ipynb | 213 ++++++++++++++++++ 1 file changed, 213 insertions(+) create mode 100644 community/aqua/general/bernstein_vazirani.ipynb diff --git a/community/aqua/general/bernstein_vazirani.ipynb b/community/aqua/general/bernstein_vazirani.ipynb new file mode 100644 index 000000000..24d5ae62f --- /dev/null +++ b/community/aqua/general/bernstein_vazirani.ipynb @@ -0,0 +1,213 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# _*Experiment with the Bernstein-Vazirani Algorithm in Aqua*_\n", + "\n", + "This notebook demonstrates how to experiment with the `Bernstein-Vazirani` algorithm in `Qiskit Aqua`.\n", + "\n", + "We first import all necessary modules." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.algorithms import BernsteinVazirani\n", + "from qiskit.aqua.components.oracles import TruthTableOracle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Bernstein-Vazirani algorithm is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. We can experiment with it in Aqua by feeding it oracles created using truth tables. For example, we can create a `TruthTableOracle` instance as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "bitstr = '00111100'\n", + "oracle = TruthTableOracle(bitstr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown, the truthtable is specified with the `bitstr` containing values of all entries in the table. It has length $8$, so the corresponding truth table is of $3$ input bits. The truthtable represents the function mappings as follows.\n", + "\n", + "- $\\mathbf{a} \\cdot 000 \\mod 2 = 0$\n", + "- $\\mathbf{a} \\cdot 001 \\mod 2 = 0$\n", + "- $\\mathbf{a} \\cdot 010 \\mod 2 = 1$\n", + "- $\\mathbf{a} \\cdot 011 \\mod 2 = 1$\n", + "- $\\mathbf{a} \\cdot 100 \\mod 2 = 1$\n", + "- $\\mathbf{a} \\cdot 101 \\mod 2 = 1$\n", + "- $\\mathbf{a} \\cdot 110 \\mod 2 = 0$\n", + "- $\\mathbf{a} \\cdot 111 \\mod 2 = 0$\n", + "\n", + "And obviously the goal is to find the bitstring $\\mathbf{a}$ that satisfies all the inner product equations.\n", + "\n", + "We can inspect the circuit corresponding to the binary function encoded in the `TruthTableOracle` instance." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSwAAAGZCAIAAAAG23qhAAC6/UlEQVR4nOzdd2AU1dr48Se9AyEEwqVDEASUGkAEQw2CVAURETARFSwIePWivBcEBMFLU6qACRcsARQIXUQpFqRFeg0gLRAgCSUhfff3x/zefddN2zJb8/38teyeOfOc4eQ5O3Nmz7hptVqBY0hLS3vmmWceffRRLy8ve8cCJ3P27Nno6Ojhw4fbOxAAzuGFF17Iz88PCQmxdyBwMjdv3gwLC/viiy/sHQgA5zB79uxt27bVq1fP3oHAyWRlZf311187d+709va2dyww38cff/zLL7/Url3b3oHAyWRmZiYnJ+/cudPd3d3esQAAoAI3JuEcx48//hgVFfWPf/zD19fX3rHAyVy5ciUqKmrLli32DgSAc/D19fXz86tYsaK9A4GTuX37tqenZ1pamr0DAeAcWrVqdeLEiWrVqtk7EDiZzMzMlJSUpKQkZnCdWuPGjS9dulS1alV7BwIn8+DBg9u3b9+6dSs0NNTesQAAoAJPeweA/xMcHCwi33777VNPPWXvWOBkatas2aBBA3tHAcBpBAYGjhw58uOPP7Z3IHAyr7766u+//27vKAA4jUceecTd3f3AgQP2DgROZs2aNYMGDfLx8bF3ILBIeHh45cqVd+3aZe9A4GRWrFgRHR3t4eFh70AAAFAHv+wGAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQmae9AzBffn6+RqPx9va2vKqcnBwfHx/L6yk70tLStFptuXLlvLy87B2LK9BqtWlpaSISHBzs7s7UOAD8H0YcdTHiAECRGG7UxXAD50IGUBcZAAAAfU48Fo4aNWr48OGqVFW7du1FixapUlVZsGTJkpCQkJ49e+bn59s7Fhfh5uY2ZsyYSpUqvfXWW/aOBQAcCCOO6hhxAKAwhhvVMdzAiZABVEcGAABAnxP/Eu7mzZsZGRmqVNWiRYv58+e/8cYbqtRmF5mZmcrR8Pf3DwoKKqFkdnb2vXv3RKRcuXJ+fn6m7ighIeGtt96qUaPGxo0bzdgcxVm+fHlSUtLixYtr1KjxwQcf2DscACiazYYbYcSxGkYcAI6P4cYFMNzAbGQAF0AGAABAx4l/CWeMgoKCpKSkn3/++eTJkxqNprhi0dHRZ86c+eOPP2wZm7rGjRsXFhYWFhYWFxdXcskFCxYoJXft2mXqXpKTk4cOHVpQULBs2bIqVaqYG6ztGNkBHIGPj8/KlSt9fX0nTJjw+++/2zscACiabYYbcbYRx4mGG2HEAeAMGG6KxHCDMoIMUCQyAAAATsplJ+E0Gs28efNq1qxZv379Ll26NGnSpE6dOvPnzy+ycJ8+fUJCQmJjY20cpIoOHDigvGjTpo2RJVu3bm3qXsaMGfPgwYMhQ4Z0797d1G2NMXv27IiIiIiICMv/L0zqALZXZEvr168/adIkrVY7cuRI1sEA4JhsM9yIlUecMj7cCCMOAIfnGsONqDfiMNygTCEDGCADAADg3LROq1evXh07dizyo+zs7GeffVbXRn9/f93rgQMHFhQUFN5k9OjR5cqVy8zMtHLUJTl48KCI7Nmzx9QNMzMzPT09RcTb2zs7O7vkwjVr1hSRevXqmbqXrVu3ioiHh8eFCxdM3dZInTp1Uv6bNm/ebEk9ZnQAGyuupQ8fPqxcubKI/Oc//zGpwho1aowdO1bVGAG4spCQkAkTJpi6lW2GG631RxyGG625I86IESMaNWqkaowAXNngwYMjIiJM3cplhhutSiNOGRxuVq9eLSJXr15VNUzYWp8+fYq7aFMCMoCBMpgBlF9ApqamqhomAAB245q/hJs0adK6detEZMSIEcqj444fPz5w4EARWbt27YwZMwpvEhMTc//+/e+//97Wsarh8OHDyl1FTZs29fHxKaFkSkrKlStXxPTbxDQazejRo0Vk8ODBdevWtSDYYmm12sTEROV1q1atLKnKjA5gSyW01M/Pb+zYsSLy0Ucf3b592w7BAUDxbDDciPVHHIYbBSMOAIflGsONqDfiMNygTCEDGCADAADg7FxwEu78+fOzZ88WkaFDhyrreru5uTVp0iQ+Pr5///4iMmnSpEuXLhls1bRp0+bNm5e64Lhj2r9/v/Ki1LUajC9pYNu2bUlJSSLy+uuvmx6gUQoKChISEnbv3r13715LVmM3rwPYUsktfeWVVzw9PTMzM520NwJwYTYYbsT6Iw7DjQ4jDgDH5BrDjag04jDcoKwhA+gjAwAA4AJccBJu6dKl+fn5vr6+M2fO1H/f3d19zpw5Hh4e+fn5q1atKrxhTEzM7t277fv1xTzGf/U0fml1A0uWLBGRmjVrPvnkk6YHaBRPT8/IyMjIyMgOHTpYUo/ZHcBmSm5paGhoVFSUiHzxxRdardbm0QFAsWww3Ij1RxyGGx1GHACOyTWGG1FpxGG4QVlDBtBHBgAAwAW44CTcN998IyKRkZFVq1Y1+Kh27dqRkZEi8tVXXxXe8MUXX/T29l6xYoX1Y1SZqV9Svb29mzdvbnz9mZmZO3bsEJEePXq4ubmZG6aNmN0BHEfPnj1F5OLFi8eOHbN3LADwf6w93IhTjTguMNwIIw4Ah8Rwo4/hBmUNGUAfGQAAABfgapNwFy9eTE5OFpGmTZsWWUB5//z583fu3DH4qGLFin379l2xYoVGo7F2nCq6cePG1atXRaRixYr169cvoaRWqz148KAYsbS6gd27d+fm5orFz86xAUs6gOOIiIhQXmzfvt2+kQCAjg2GG3GeEcc1hhthxAHgeBhu9DHcoKwhA+gjAwAA4BpcbRLuyJEjyovivqM0aNBAeXH06NHCn0ZHR1+5cuXnn3+2TnRWoVuBodRnEZ87d+7u3bti+loNP/74o/LCwb+hisUdwEE0bdrUy8tL9I68fWk0GueambYqjgbKLBsMN+I8I45rDDfiYCMOCVYfRwNlFsONPoYbayDB6nO0o0EG0EcGAJydo+VYO+JQoIzz1L26fv36vHnzRKRRo0bR0dFFlt66deuuXbtEZNSoUXXr1rV890uWLLlw4YKIjB8/PiQkxPIK09LSlBfh4eFFFtC9X+Sz36KioqpXrx4XF9e1a1fLg7EN3VoNpX5JNXvBdGXFAB8fn8aNGxtTPjs7+9///reIREREPP/88w8ePNiwYcMff/yRlJSUmprasmXLiRMnVqtWTX+TjIyMyZMni0i7du2Uxwubx8IOYBIzminGtdTHx+exxx5LTEy071oNN2/enDt3bkJCwoULF7Rabd26dXv37j1u3LjCjSoLOBqADYYbMXHEKSPDjVizpY4w4pBg9XE0ANcYbkSlEYfhRkUkWH0OezTIAPrIAICTctgca3scCuD/0/6v1NRU5Z3mzZtri3L37t3Q0FARiYiI0Gg0RZYxVceOHZWdJiUlmbptr169OnbsaPDmf/7zH6XCY8eOFbnVvn37lAJz5swpssCHH37o6+ubnp5uajyWU9ZS2LNnj0lbde7cWWnRli1bSi755ptvKiXPnTtn0i6UxccjIiKMLK87yOPHj//ggw/8/PwMel3jxo3v37+vv4kyuSsiCxcuNCk2A5Z3AOOZ0Uyt0S19/fXXlWJ37twxJpgaNWqMHTvW/MYUsnr16oCAgMIZw8/Pb+XKlSruyClwNOB6QkJCJkyYYNImNhhutCaOOGVkuNFauaUmjTgjRoxo1KiRRY35OxKsPo4GXM/gwYONP4lQuMZwo1VpxCmzw83q1atF5OrVqxa15+8VkmB1bHY0+vTpU/iiTcnIAPrKbAaIi4sTkdTUVIvaA9gJI44OhwLQ+b9fwlWsWDE0NPT27dvnz58v/OchIpMnT759+7abm9tnn33msI+uVZYjEBFvb+8iCyg/gReRBw8eFFkgOjp6+vTp8fHxI0eOtEKAKtNoNIcOHVJeG3mnWKlLqxu4d+/ejRs3RKRWrVpGbqK7Je3TTz/18PDo1KlT69at09LSNm7ceO3aNRE5efLk5MmTZ82apdvE+PvdSmZ5BzCeGc0Uo1tao0YN5cWZM2eefPJJC0M11Zo1a1544QWtVlv4o6ysrGHDhmm12mHDhtk4KnvhaABik+FGTB9xyshwI1ZuqR1HHBKsPo4GIC403IhKIw7DjSpIsPoc+WiQAQyQAQCn48g51sY4FIC+vz0TrmHDhiKSkZFx8+ZNg3Jnz55dsGCBiAwZMuSJJ55Qa/cTJ06Mj4+Pj4+vUqWKKhWmp6crL0r9jpKRkVFkgfDw8A4dOsTGxqoSj7WdPn36/v37IlKvXr1KlSqVUDInJ0dZJdzUr4DKc4BFpFy5ckZuor+M+6lTp3744YepU6cuXLjw2LFjui9ba9as0U/EyiY+Pj7FrXVuJMs7gPHMaKYY3dLy5csrL65fv25hnKZKSUl55ZVXihwmdUaOHGn7wOyCowEobDDciOkjThkZbsTKLbXXiEOC1cfRABQuM9yISiMOw43lSLD6HPxokAEMkAEA5+LgOdaWOBSAgSIm4UTk3LlzBuXGjh2bl5cXEBAwY8YM3Zu5ubm6G3PM06lTp0GDBg0aNCgwMNCSevRDUl4U97BH3fv5+fnFVRITE3Pw4METJ06oEpJV6W47KnUZ9CNHjigHp3DJnJycEr6x6T4ydRIuLCxs9+7d+muXBwcHL1682N3dXUSuXr2qP9erbNK8eXPdl0jzqNIBjGRGM8Xoluq+oapyR5tJ5s2bV+o3+KysrDlz5tgmHvviaAAKGww3YvqIU0aGG7FyS+014pBg9XE0AIUqw42ofYJj1a/9JWO4sRwJVp+DHw0ygAEyAOBcHDzH2hKHAjBQ9CScwYqUW7du3bZtm4h88MEHyoMTjx49GhUV5efnFxwcXKdOnS+++MJWAZdCN5mn+7JiQPe+7htAYQMHDgwMDFQWoXZwxn9JLfKpxXFxcc2aNfP39w8KCqpVq9Ynn3ySnZ1tsKHuG1IJR0xfenq60n/atGnj4+Nj8Oljjz2m+zKn++qWnJysLG5g4eJgolIHMIYZzRRTWmrHb6ibNm0yptjGjRutHYkj4GgAChsMN2LiiFNGhhuxfkvtNeKQYPVxNACFhcONWOEEx9pf+0vGcGM5Eqw+Bz8aZAADZADAuTh4jrUlDgVgwFP/H0VOwuXl5Y0bN05Eateu/e6774rI4cOHO3Xq5O7uPm7cuODg4HXr1ik/IJ0yZYoNIy9aUFCQ8sKS7ygBAQEDBw785ptvZs2aZfbT77Ra7datWx8+fGj8JhcuXJDib3EqUnFfPQszWKpbo9G8+OKLq1evjoqKiomJCQgI+O677z788MPdu3dv27ZNucVJYeptYgcPHtTfUWH16tVTfmqp+88yvhWlUqUDGMOMZoopLTX1G2pubu65c+fWrl1rTOGSFf4hbJEuXry4evVq/a5ibWfOnKlbt25xC3FYicMejTLo1KlT9evXt/DXS9DJzc3NysoyvrwNhhsxccQpI8ONWL+lJo04Dx8+vH//vmsPN9evX/f19Q0JCbHZHsWBj0YZdO3aNT8/Pxt3ABd25coV2ww3YrUTHGt/7S9ZmR1ulJ/1bN682fI/RodNsBkZGSkpKfXq1bPZHsXmRyM5OdnDw8P48mQAA2U2AyjtSkhIUGvRrDJOq9WePHmycePGZl/hhJEcc8SxSwdwzENRNmk0mlOnTpEBVGTG9UlPT8+/TcI1aNBAeaE/Cbdo0aKzZ8+KyOzZs319fbVa7SuvvJKfn79v3z5l0ed//etfPXr0mD59+qBBgxo3bqxCUyyg+zZQ3LiuPIBXSvuOkpub6+XlZUnvvHr1at++fQsKCkzdULmTyBhZWVnKmpleXl7NmjUrubDyJTU8PFw5jZk/f/533323cuXKoUOHKgVeeeWVqKioHTt2fPvtt0OGDNFtaOpB0H0Pi4iIKLJAZmam8iIsLMxgE8t/mqBWByiVGc0UU1qqWzfZyOOfnp6+ZcuWLVu2GFNYFRqN5oUXXrDZ7hwcRwPO6OTJk0aWtM1wIyaOOGVkuBHrt9SkEef06dPXrl17/vnnSy2pFhKsPo4GnFGFChWMLGnJcCNWO8Gx9tf+kpXZ4SYpKUlERo0aVWpJtZBg9al4NCpXrmxkSTJAYWU2AyiX72NiYkotCTgjRhwdDgXKjr9NwtWuXdvHxycnJ+fixYvKO/fu3Zs6daqIdOzY8dlnnxWRI0eOHD169O2339Y9dtXDw2PmzJktWrSYOXPmypUrbRu/Id3Dey9cuNC+ffvCBZRfm0mJZ4P37t1bt26d8vs/s9WsWfPGjRsm/dD++PHj/fr1q1mzppHlL1++rNwhGBYWVni5AH3Hjh1TTmOefvpp5Z1nnnnm1q1buq+nujd//PHH3377Tf8bqu7Oo3v37hkTlfI9zM3NrVWrVoU/1Wg0p0+fFpEmTZroalY2CQ4O1l923DyqdABjmNFMMaWlyvOoRe/4l6xy5cpRUVETJkwwLvyS9OzZU5l3L1ndunV//PFHy3dnvJycnJL7uTU47NEog+zSAVxYq1atikxfRbLNcCMmjjhlZLgR67fUpBGnRYsWGRkZ27dvNzr8Yjlsgs3Ly3N3dzfpzn3LOezRKIPs0gFc2JgxY3TXiEtlyXAjVjvBsfbX/pKV2eFGWaTnt99+05/YMI/DJlitVpubm2vj77c2Phqvv/56Xl6ekYXJAIWV2QzQpEkTETl8+LDl7YKCs2nbcNgRx/YdwGEPRdlEBlCXGcfT19f3b5NwHh4e9evXP3HiREpKivLOzJkzU1NTPTw8PvvsM+Ud5bJL9+7d9Tds3rx5aGjoL7/8Yn74Knn88ceVF8X97lX3HaWEH+3Fx8dnZWW9/PLLFgYTGhoaGhpqfPm0tDST6r9165byQvfNrDirVq1SXuhuXQ8PD582bZpBsdTUVCn0lci8Sbj69esHBwcX/nTv3r23b98WkaioKOUdrVarrHtg+e8SRKUOYAxTmykmtlR3tPUXtSiBm5tb+fLl69ata0zhkj3//PPK1HupxVTZnYPjaMBVmbTgg22GGzHrmojLDzdi/ZaaNOK4ubl5eXkx3KiOowFXFRgYaPyPTiwZbsRqJzjW/tpfsjI73Chq1qxZvXp1IwsXhwSrz8ZHw9/fXzf1UioyQGFlPAPUrl27YsWKRhYGHAEjjg6HAjBgeA1OuePs1q1bGo3m+vXr8+bNE5HXXntNN/bv3LlTRB577DGDDRs0aPDXX3/pP4rWLpo0aeLr6ysihw8fLrLA8ePHRSQ4OLh+/frFVRIbGxsZGWn5bfLWpltwoOQnz6WnpytfUp966qkOHToUVyw3N/frr78WkX79+um/r/uGZMy35ytXrigzuEWuYFBQUDB27FgRcXNze+2115Q3z5w5o9Rs+RN6RKUOUCozmikmtlR3tI3/hqqW0aNHl7qWRVBQkNJGl8fRAMRWw42YMuKUkeFGbNJSe404JFh9HA1A1B5uRI0THBt87S8Zw43lSLD6HPlokAEKIwMAzsWRc6yNcSgAA0VPwhUUFNy5c+fjjz/OysoKDg7Wn7tWlhOpVq2awYZ16tSRvz9Mzi58fHx69+4tInv27FHu09F37do15e6efv36FXdL5smTJw8cOOAUa08/8sgjyo8fL126VMK6lzExMSkpKd7e3p9//nlxZVJSUp577rmLFy++9NJL7dq10/9I939t/G1iUszNUHPnzj1y5IiIDBgwQPcAQhWf0CNqdABjmNHMUrcyoDvahf/WrK1SpUqrVq0q4Vcy7u7u//3vf41f3N+pcTQAsdVwI6aMOGVkuBGbtNReIw4JVh9HAxBVhxtR6QTHBl/7S8ZwYzkSrD5HPhpkgMLIAIBzceQca2McCsBA0ZNwInL8+PEVK1aIyOTJk3WPuhWRe/fuFfmYBD8/P9F7UqsdDRs2TESys7Nnzpxp8NHUqVOVh8FGR0cXt3lsbGxQUNCAAQOsGqQq/Pz8evToISK5ubnz588vssyUKVM2bNggIrNnz9Y9xk/foEGDGjduXLNmzc2bN48YMWLZsmUGBYKCgpQvSZcvXy41JN33MIPCWq125syZ48ePF5Hg4GDd6qbyv09UluIf/ysiDx8+XLx48caNG0sNQMztACbtwoxminEt1dHVrPuTtKXevXtv3LixyJUfgoODN2zY0L9/f9tHZS8cDcA2w42YMuKUkeFGrNZSfXYccUiw+jgagCrDjah6gmOlr/0MN0ZGpRYSrD6HPRpkgCKRAQDn4rA51vY4FMDfaP/u0KFDyvuRkZEi0qhRo7y8PP0CgYGB3t7e2kLeeOMNEVm7dm3hj0owcODA6tWrV69e/dKlSyZtqNVqe/Xq1bFjxyI/Ur66ubm5LV26VPfmggULlBn4vn37Fldnbm5uaGjoq6++amowqlAW1N6zZ4/xmyQmJnp5eYmIh4fHhg0b9D+6fv26brXuKVOmFFdD7969W7ZsWbFiRTc3tyFDhly8eLFwmS5duoiIt7d3dnZ2yfEo3UZEPD09ly9fnpeXV1BQcODAAeXuLaWS7du362/SsmVLEalTp04J1Sq9S0Tmz59fcgAKMzqASbswo5lGtlSnRYsWIhIaGmpMYa1WW6NGjbFjxxpZ2Ejp6enTp09v27atm5ubv79/mzZtpk6dmpaWpu5enIVyNJSFecuXL1/GjwZcQEhIyIQJE4wvb5vhRmv0iFNGhhvrtVSfSSPOiBEjGjVqZGTNRtINNz4+Pp6enmU8weqOhru7u5+fXxk/GnABgwcPjoiIML685cONVtUTHCt97We4KdXq1atF5OrVq0ZWbgxdglVWw2vVqlVZTrC6o+Hr62u9wbdPnz7FXbQpEhmgSGUwA8TFxYlIamqqkZUDjkbJsc2bNxeRoKCgsvyV3mDwbdGiRZk9FCjjDCfhDH71/8MPPxgUqFSpkru7e+GKXn31VRHZvHmzSbvv2LGjsqOkpCSTNtSWOAl37dq1qlWrKjW3aNFiwIABugWya9eufePGjeLqXLdunYjs27fP1GBUYcYknFarXbJkiW7lgfbt20+YMGHixIn9+/dXfpsYEBDw1VdflVqJRqPZs2dPpUqVQkNDjx49avDpuHHjlPoPHDhQQiUFBQXKI44bNmxYo0YNEfHy8vL29tZ1pwoVKhj0kKysLOVL9qBBg0qouVOnTkoNRl74M6MDGL8LM5ppfEsVOTk5SoVdu3Y1pr1a60zC6ZQrV27SpElWqty5KKtw7Ny5096BAJYydRJOa5PhRmvciFNGhhurtlTH1BHHGpNwOgMHDnziiSesVLnTCQsLe//99+0dBWApUyfhtCoNN1o1TnCs97Wf4aZU1piE01m6dKmI3L9/3xqVO51hw4Y1a9bMSpWbOgmnJQMUpQxmACbh4BqUH4Ca+nsVV6U8zjMlJcXegQD2YbgcZWBgYPXq1ZXXffr00d1qpD/6ajSavLw8g/dzcnKUT8UBVKtWLTExsXPnziKSmJj43XffKQ+r6969+/79+8PCworbMDY2tmHDhm3btrVdrBZ7/fXXExISlGfy/frrr9OmTZsyZcr69es1Gs2IESPOnDkzZMiQUitxc3N76qmnli1bdvv27ejoaK1Wq/9pt27dlBfKNGFxTp06lZGRISK9evU6ePBgnz59CgoKcnNzRcTb23vo0KFHjx595pln9Dc5cuSI0pdKXkb8/fffr1y5cnh4eEFBgUFsRTKjAxi/CzOaaXxLFceOHVMqLPwHCAD2YoPhRowbccrIcGPVluow4gBwNKoMN6LGCY71vvYz3ADFIQMURgYAAMDZeRZ+6+rVqyVsoEyzXb16tW7duvrvX7t2TUTKly9v0u537dplUnnjhYWF/fTTT3/++eeOHTtu375dvXr1zp07K0vJFefGjRvbtm2bMWOGlUKynt69e/fo0WPPnj379+9PTU0NCQlp0KBB9+7dlbuZTKrH398/MTHx+PHj+scqMjLS19c3Ozu75Ek43TLiERERVapUSUhIuHXr1tmzZ729vRs2bFhk32jbtq0xXzqffvrplJQUEenVq5dGoyn8SMLCTO0Axu/CjGaK0S1V6FaF7d69u5GbAIANWHu4EeNGnDIy3Ig1W6rDiAPAAak13IhlJzjW+9rPcAOUgAxQGBkAAACnVsQkXMkeeeSRQ4cOnT9/3mAS7sSJE76+vsr9So6jefPmygq8xli5cqWbm9vQoUOtGpKVeHp6dunSRVnZ3GweHh6VKlW6cuXK1atX9b/PKU9IXr9+/aZNm7Kzs319fYvcXP+rm/KicuXKlStXtiSkIoM0vrBJHcDIXdigmZs2bRKRevXqlTxtDAC2Z9XhRowbccrIcCOMOADKMFWGG7HsBIfhxtQdlYDhBiYhAxSJDAAAgJMyXI6yVH379hWRP/74Q//N8+fP37p1q3PnzgEBAaqFZnOxsbHPPPNMlSpV7B2ILehuRNKXk5Nz/fp1EWnSpInBR6NGjRKR1NRUZXX+Iilf3UJCQqw0F5uZmenv72+Nmk3ahbWbeefOnR07dojIyJEjrVE/ANiSqcONGDHilJHhRhhxAMAUqp/gMNyoheEGNkAGMHsXZAAAAKzN5Em4Hj16+Pj4xMXFZWVl6d78/PPPRaRPnz5qhmZbv/3227lz52JiYuwdiI0MGDAgPj7e4M1ly5YVFBQ0adKkVq1aBh917dq1UaNGIrJo0aIiK8zKyjp+/Ljo3Tyluq+++kqZA7aeUndhg2YuX748Pz8/MDDw5ZdfttIuAMBmTB1upLQRp4wMN8KIAwAmUvcEh+FGRQw3sAEygHm7IAMAAGADJk/CBQUFvf/++5cvX37++ecvXryYlZU1Z86chQsXNmjQYPjw4dYI0TZiY2OrVKnSs2dPewdiI5MnT37xxRcHDBjw008/PXjwIDU1dfHixe+9956np+eKFSsKl3dzc1uwYIGIHDhwoMhbzP7888/8/Hyx2le3hw8frl69etCgQdao3PhdWLuZWVlZc+fOFZGpU6dWqlTJGrsAAFsydbiR0kacMjLcCCMOAJhI3RMchhu1MNzANsgA5u2CDAAAgA2YPAknIpMmTXrzzTe3bNlSr149f3//d999t0mTJtu2bSvuUWGOLyMjY82aNcOGDfP0NPkheU5q+PDhGzZsOHz4cNeuXcuVK1epUqU33nijatWqP/30U8uWLYvcpFOnTsOGDRORadOmFf608DLi6nrnnXdGjRpl1f8gY3Zh7WbOnTv31q1bzZo1e/vtt61RPwDYmBnDjZQ44pSR4UYYcQDAROqe4DDcqIXhBrZBBjBvF2QAAABswJwh38PDY8GCBW+++eaOHTsyMjKaNWvWo0cPd3dz5vMcxNq1azMyMqKjo+0diE316dPn6aef3rNnz6FDhzw9PVu2bNm2bduSVwyfNWvWpk2bNmzYsH79+v79++t/ZNWvbkePHq1SpcrAgQNVr9nUXVi1mefOnZs6daq7u/sXX3xh0vOZAcCRmTHcSPEjThkZboQRBwBMp+IJDsONKhhuYEtkADN2QQYAAMAGzL/v5tFHH3300UdVDMWO4uLinnjiCZdpjvG8vb27devWrVs3I8uHhobGx8f36tVr1KhRrVq1qlGjhu6jL7/8ctmyZSISEBCgepxNmzZt2rSp6tWasQvrNTMrK+ull17Kzs6eM2dO69at1a0cAOzL1OFGih9xyshwI4w4AGAWtU5wGG4sx3AD2yMDmLoLMgAAADbgxD9fq1OnTp06dVSpKjk5efTo0apU5fKioqKWL1+ekpLSu3fvjIwM3ft+fn4BAQHW+IbqUKzUTK1WO3z48IMHD7777rtjx45Vt3IAcFJFjjhlZLgRRhwAsBWGG4YblGVkADIAAADW5sSPQPv888/VqiopKUmtqsqCYcOGKU/39fLysncsLsLNzW3VqlWrVq3y8fGxdywA4EAYcVTHiAMAhTHcqI7hBk6EDKA6MgAAAPqceBIOdsQXKdVxSAGgSKRH1XFIAaAwcqPqOKRwInRX1XFIAQDQceLlKAEAAAAAAAAAAADHxCQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFCZp70DgKEHDx6kp6fbOwo4GY1GY+8QADgTrVabnZ3NcANT5eTkaLVae0cBwGlotdr8/HyGG5gqMzPT3iFABWQAmIcMAABwMUzCOZDU1FQR6dWrl70DgVNKTEy0dwgAnMb9+/dnz549e/ZsewcC5xMYGGjvEAA4jaNHj54+fbpixYr2DgROKS8vz94hwCInTpy4dOkSGQDm4cYvAIDLYBLOgXTr1m3q1KmPPPKIm5ubvWOBk7l06RLTtwCMt3z58oKCgqCgIHsHAieTnp7OpTQAxouNjd23b1/16tXtHQicTF5e3vXr1+vUqWPvQGCRuLi4o0ePVq1a1d6BwMnk5ubeunUrJCTE3oEAAKAOJuEciLu7+//8z//YOwoAgOsbPny4vUMAALi+tm3btm3b1t5RALCPyMjIyMhIe0cBAABgZ+72DgAAAAAAAAAAAABwNUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDJPewcAAAAAAHBBubm5d+/e9fLysncgcD5arbZixYr2jgIWyc3NvXfvnqcn151gMjMyQEpKire3t5XigQvLzc2tUqWKvaOApW7evOnj42PvKOB88vLyKleubIMd8WUIAAAAAKC+Nm3aHDlyxN5RwFldv379H//4h72jgPkef/zxs2fP2jsKOKt79+6VK1fOyMJTpkyZNGmSVeOBC/v3v/89ZcoUe0cB87377rtz5syxdxRwVrNnzx43bpy198IkHAAAAABAfbVq1Xrw4MEnn3xi70DgZPbt2zd37lyNRmPvQGCRGjVqeHp6MjUCU+3evXvRokX5+fnGbxIWFiYisbGxgYGBVosLLujhw4cvv/xy1apV7R0ILFKtWjUR+frrr1l9ASZJT09//fXXQ0NDbbAvJuEAAAAAAOrz9/evWLHiwIED7R0InIxWq7V3CFCBv79/aGgoGQCmyszMNHUTZSHKvn37sowtTHLv3j353/4D56UsRPncc8+xIiVMkpycLCK2mbt1t8E+AAAAAAAAAAAAgDKFSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDJPewdgvvz8fI1G4+3tbXlVOTk5Pj4+ltcDAAAAAHA6aWlpWq22XLlyXl5e9o7FFWi12rS0NBEJDg52d+feXzg6MoC6yAAloLOpi84G50IGUJcTZQCHDq5ko0aNGj58uCpV1a5de9GiRapUBQAAAABwIkuWLAkJCenZs2d+fr69Y3ERbm5uY8aMqVSp0ltvvWXvWIBSkAFURwYoDp1NdXQ2OBEygOqcKAM48S/hbt68mZGRoUpVLVq0mD9//htvvKFKbQAAAAAAs2VmZirnev7+/kFBQSWUzM7OvnfvnoiUK1fOz8/PjH0lJCS89dZbNWrU2Lhxo3k1oEjLly9PSkpavHhxjRo1PvjgA3uHA2dCBnABTpQBbNbf6GxW4kSdDQ6IDODsnCUDOPEv4YxRUFCQlJT0888/nzx5UqPRFFcsOjr6zJkzf/zxhy1jAwAAAAAUNm7cuLCwsLCwsLi4uJJLLliwQCm5a9cuM3aUnJw8dOjQgoKCZcuWValSxaxgbcfI01sH4ePjs3LlSl9f3wkTJvz+++/2DgfOhAxQJDKAldimv9HZrMeJOhscEBmgMDKANbjsJJxGo5k3b17NmjXr16/fpUuXJk2a1KlTZ/78+UUW7tOnT0hISGxsrI2DBAAAAAAYOHDggPKiTZs2RpZs3bq1GTsaM2bMgwcPhgwZ0r17dzM2L9Xs2bMjIiIiIiIsPNk06fTW9oprZv369SdNmqTVakeOHMnKSzAeGcAAGcCqbNPf6GxqKbKlztLZ4IDIAPrIANbjmpNwOTk5AwcOHDt2bHJysoj4+/uLyJUrV0aPHv38888XnsL19vYeMmTI6tWrHz58aIdwAQAAAAAiIvLw4cMTJ06IiLe3d7NmzUouvH//fhGpV69epUqVTN3Rtm3b1q5d6+HhMWXKFLMiLd2WLVsOHTp06NAhS+56NvX01vZKaOY777xTuXLl48ePz5s3zx6hwfmQAQyQAazKNv2Nzqai4lrq+J0NDogMoI8MYFWuOQk3adKkdevWiciIESOUR8cdP3584MCBIrJ27doZM2YU3iQmJub+/fvff/+9rWMFAAAAAPyvw4cPKzexNm3a1MfHp4SSKSkpV65cEbNuSdZoNKNHjxaRwYMH161b19xgS6LVahMTE5XXrVq1MrseM05vbankZvr5+Y0dO1ZEPvroo9u3b9s6ODghMoABMoBV2aC/0dlUVEJLHb+zwQGRAfSRAazKBSfhzp8/P3v2bBEZOnSostCqm5tbkyZN4uPj+/fvLyKTJk26dOmSwVZNmzZt3rx5qcu/AgAAAACsR7nRWIxYF8j4koVt27YtKSlJRF5//XVTtzVSQUFBQkLC7t279+7da/aNyead3tpSqc185ZVXPD09MzMzOd2GMcgA+sgA1maD/kZnU1HJLXXwzgYHRAbQIQNYmwtOwi1dujQ/P9/X13fmzJn677u7u8+ZM8fDwyM/P3/VqlWFN4yJidm9e7fd+xMAAAAAlFnGX+Yw/jEehS1ZskREatas+eSTT5q6rZE8PT0jIyMjIyM7dOhgdiVmn97aTKnNDA0NjYqKEpEvvvhCq9XaNjo4HzKAPjKAtdmgv9HZVFRySx28s8EBkQF0yADW5oKTcN98842IREZGVq1a1eCj2rVrR0ZGishXX31VeMMXX3zR29t7xYoV1o8RAAAAAFAEUy+IeHt7N2/e3KRdZGZm7tixQ0R69Ojh5uZmVpg2YvbprUPp2bOniFy8ePHYsWP2jgWOjgygjwxgbdbub3Q2G3PkzgYHRAbQIQNYm6tNwl28eFF5eGDTpk2LLKC8f/78+Tt37hh8VLFixb59+65YscJBnjQIAAAAAGXKjRs3rl69KiIVK1asX79+CSW1Wu3BgwfFiMd4FLZ79+7c3Fyx7MkZNmDJ6a1DiYiIUF5s377dvpHAwZEB9JEBrM0G/Y3OZmMO29nggMgAOmQAG3C1SbgjR44oL4rrNA0aNFBeHD16tPCn0dHRV65c+fnnn60THeCsHPBnvHbE0QAAayC7GuCAoGzSrfZT6nPvz507d/fuXTFrJboff/xReeHg10QsPL11HE2bNvXy8hK9I29HZFd9jnY0yAD6yADWZoP+RmezMQfsbI6WZu3FAY8DGUCHDGADnrpX169fnzdvnog0atQoOjq6yNJbt27dtWuXiIwaNapu3bqW737JkiUXLlwQkfHjx4eEhFheYVpamvIiPDy8yAK694t89ltUVFT16tXj4uK6du1qeTCAU7t58+bcuXMTEhLu378/derUb7/9tnfv3uPGjatWrZq9Q7MD5WisWbNGRLp3716vXr2yfDQAQEW64ebcuXMi8sgjj5TlBKs7Gjdv3pw1a9aGDRvK8tFA2aRbF6jUCyKWPA5KWaPGx8encePGpRbOzs7+97//LSIRERHPP//8gwcPNmzY8McffyQlJaWmprZs2XLixImF/0gzMjImT54sIu3atVMeaG8GC09vTWVGS41spo+Pz2OPPZaYmGjH1YF0Cfb8+fMi0rx58759+5bZBOuwgy8ZQB8ZwNps0N/obEWyXksdpLMpOfa7774TkRdeeGHChAkOkmNtTzfcJCUlicgTTzzRr18/BzkUZAAdMoAtaP9Xamqq8k7z5s21Rbl7925oaKiIREREaDSaIsuYqmPHjspOk5KSTN22V69eHTt2NHjzP//5j1LhsWPHitxq3759SoE5c+YUWeDDDz/09fVNT083NR7AlaxevTogIKBwxvDz81u5cqW9o7M1jgYAWAkJVh9HA65n8ODBERERJm3SuXNnpedv2bKl5JJvvvmmUvLcuXOmBqY87sLI2HSnkOPHj//ggw/8/PwM/kgbN258//59g62Uu1dFZOHChaaGp2P56a1JzGip8c18/fXXlZJ37twpNZLVq1eLyNWrVy1qz98rJMHq2Oxo9OnTp/BFm5KRAfSV2QwQFxcnIqmpqcYHb8YmWpv0NzpbybVZo6UmdTbl503Lly+3qD1/x4ijY7NDsWDBAhHJzs42aSsygE6ZzQDXr18XkW+//dai9hjn/34JV7FixdDQ0Nu3byv3hRU2efLk27dvu7m5ffbZZw77LEEle4qIt7d3kQWU3ySKyIMHD4osEB0dPX369Pj4+JEjR1ohQMAJrFmz5oUXXtAW9VPxrKysYcOGabXaYcOG2T4wu+BoAICVkGD1cTQAEdFoNIcOHVJeG3lXcqmP8Sjs3r17N27cEJFatWoZU153+/Onn37q4eHRqVOn1q1bp6Wlbdy48dq1ayJy8uTJyZMnz5o1S38r42+vLoHlp7cmMaOlxjezRo0ayoszZ848+eSTlkdrPBKsPkc+GmQAA2QAq7JBf6OzFceqLbVvZ3PkHGtjDn4oyAD6yAA28LdnwjVs2FBEMjIybt68aVDu7NmzyqzykCFDnnjiCd37BQUFGRkZZu9+4sSJ8fHx8fHxVapUMbsSfenp6cqLUjtNcWGHh4d36NAhNjZWlXgAp5OSkvLKK68UOUzqjBw5UrlZwOVxNADASkiw+jgagOL06dP3798XkXr16lWqVKmEkjk5OcpDKYo8D8/JySnhLFV58ryIlCtXzpio9B8ZcurUqR9++GHq1KkLFy48duyY7tx+zZo1Bn/CylY+Pj7FPV3DGJaf3prEjJYa38zy5csrL2ycykiw+hz8aJABDJABrEqV/kZnM49VW2rHzubgOdaWHP9QkAH0kQFsoIhJOBFRlgXXN3bs2Ly8vICAgBkzZuje/Ouvvzp16vTll1+avftOnToNGjRo0KBBgYGBZleiLzc3V3mh0WiKLKB7Pz8/v7hKYmJiDh48eOLECVVCApzLvHnzSk2pWVlZc+bMsU089sXRAAArIcHq42gACt0trqU+cuPIkSPKqZ9Bybi4uGbNmvn7+wcFBdWqVeuTTz7Jzs422Fb352bSNZGwsLDdu3frPyojODh48eLF7u7uInL16lWDO1mVrZo3b667bGEGVU5vjWdGS41vpu6aiCr3UBuPBKvPwY8GGcAAGcCqLOxvdDZLWLWlduxsDp5jbcnxDwUZQB8ZwAaKnoQzWJFy69at27ZtE5EPPvigWrVqq1evfvvttzt37lyvXr1ffvnFZrEaQzeZp+s9BnTv6/5LChs4cGBgYKCyojRQ1mzatMmYYhs3brR2JI6AowEAVkKC1cfRABTGXxDR3UKrK6nRaF544YWYmJgqVarMnTt3+fLljRo1+vDDD/v27WtwQUF3Tl7CKaFOenq6cnbcpk0bHx8fg08fe+wx3bUD/SsFycnJynI6liwNJCqd3hrJjJaa1Ex7XRMhwepz8KNBBjBABrAqs/sbnc2SHYn1W2rHzubgOdaWHP9QkAH0kQFswFP/H0VOwuXl5Y0bN05Eateu/e6774rI4sWLk5KSmjRp0q5du19//dWG0ZYuKChIeWFJpwkICBg4cOA333wza9Yss59+d+vWraioKEf7/3ZqN27cCA4O9vX1tXcgLu7SpUvGFEtKSqpXr561g9F348aNihUrFk7QVuWwR6Os0Wq1N2/etH0HQNmUlpbm4eFh+ZdLlMxhE6xdOoDDHo0yKDU11cvLy8j7VVGqW7dumbTkSeEL68Up/FiI+fPnf/fddytXrhw6dKjyziuvvBIVFbVjx45vv/12yJAhum1NujH54MGDBjsyUK9ePWUhGd2pqEkNKZkqp7dGMqOlJjXTpGsiV69eFZEnn3zS09Oz1MIlc9gEm5mZmZmZWblyZVvu1MZH4+bNmyY1kAxgoMxmgL/++ktEWrZsqfwewhhKtSb9RMPs/kZns2RHYv2WmtTZCgoKROSDDz6YPn16qYVL5ZgjTn5+/q1bt6pUqeLh4WGzndr4UCgLS5a8+qUBMoC+MpsBcnJyROSdd96ZMGFCqYUVyvXJkJCQ4pbuLJK3t/ffvtE2aNBAeaE/Cbdo0aKzZ8+KyOzZs5X5j127dilTUx988IHDTsIVd6CVJyJKaZ0mNzfXy8vL7Bk4EQkMDOzSpYsqK6VCceTIkXr16un/BcIaYmNjjfnm6u7u3qVLF0v+RkyVmJj4yCOPqLV0rZEc9miUQYmJiQ0bNvT397d3IHB9Fy9e9Pb2rl69ur0DcXEOm2AvXLjg6+tbrVo1m+1RHPholEFJSUn+/v7/+Mc/7B2Ii/j555+NvyCSlZWlPBHAy8urWbNmJRdWLoiEh4eHhIQo7zzzzDO3bt3SXRDRvfnjjz/+9ttv+tdETPoj0p3zR0REFFkgMzNTeREWFlZ4KwtvTFbr9NYYZrTUpGbqeoIxx1+5XNWhQ4eAgIBSC5fMYRNsampqSkpKo0aNbLZHsfnR+OGHH4w/fSMDFFZmM4DSnMjISONvwTx37tzu3buNn2OwpL/R2SzZkVi/pSZ1NqXPPProo7rfpVjCMUecvLy8o0ePNmvWzPL7Woxn40Nx8uTJO3fuGF8PGcBAmc0AysqWjz32mPGTwVqtNjEx8dFHHzXp+qSXl9ff/vxq167t4+OTk5Nz8eJF5Z179+5NnTpVRDp27Pjss88a3wZ70T1K8cKFC+3bty9c4MKFC8qLChUqFFfJvXv31q1bp/z+z2z+/v6zZ8+2pAbALvbt23f8+PFSi9WvX3/p0qU2iMe+OBoAYCUkWH0cDbiqF198MSkpycjCly9fVq7XhIWFlXzh9dixY0q1Tz/9tO7N8PDwadOmGZRMTU0VvTV2FLp/3rt3r9SolHN+Nze3Vq1aFf5Uo9GcPn1aRJo0aaK/F2Wr4OBg/QddmEGV01sjmdFSk5qp3KUuhf47iqRc4pkxY4bl98SQYPXZ+Gj07dtX9/9eKjJAYWU2AwQHB4vInDlzKlasaGT8K1as2L17t/GXKy3pb3Q2S3Yk1m+pSZ1NMWzYsFdeecXIwiVgxNGx8aFYuHDhb7/9Znx5MoCBMpsBlN9bjxgx4oUXXjC2Aeb62y+7PTw86tevLyIpKSnKOzNnzkxNTfXw8Pjss8+sHYoqHn/8ceWF8rvFwnSdpnHjxsVVEh8fn5WV9fLLL6sdHeAE+vXrZ0yx/v37WzkQh8DRAAArIcHq42gAInLr1i3lhe5CQHFWrVqlvHj++edLKJabm/v1119LoT8xM66J1K9fX7kobGDv3r23b98WkaioKN2bWq1WWWnHwruSRaXTWyOZ2lJTm6k72jZe2oQEq8+RjwYZoDAygPWo29/obCaxdkvt2NkcOcfamIMfCjKAATKADRgur6z8/PbWrVsajeb69evz5s0Tkddee033n+HgmjRpoqyZefjw4SILKPPwwcHBynRjkWJjYyMjIy2cQwac1OjRo0v9cXFQUNDYsWNtE499cTQAwEpIsPo4GoDorW/z8OHDEoqlp6crF0SeeuqpDh06FFcsJSXlueeeu3jx4ksvvdSuXTv9j3Tn5KX+RufKlSvK/alFLphTUFCg/FW6ubm99tpruvfPnDmj1Gzh8zlEpdNbY5jRUlObqTvaNr4mQoLV58hHgwxQGBnAelTsb3Q2k9igpXbsbI6cY23MwQ8FGcAAGcAGip6EKygouHPnzscff5yVlRUcHKysSOkUfHx8evfuLSJ79uxRJk71Xbt2TZlu7devX3G/Uj958uSBAwdiYmKsHSrgmCpVqrRq1aoSHoDs7u7+3//+18aPELcXjgYAWAkJVh9HAxCRRx55RFkR6NKlSyU8Sj0mJiYlJcXb2/vzzz8vssCgQYMaN25cs2bNzZs3jxgxYtmyZQYFdA99LPXG5JKfPzF37twjR46IyIABA3SPVy91K5NYfnprJDNaamozdUfbxg/dJMHqc+SjQQYojAxgPar0NzqbGWzQUjt2NkfOsTbm4IeCDGCADGADRU/Cicjx48dXrFghIpMnT9Y96tYpDBs2TESys7Nnzpxp8NHUqVOVp/NFR0cXt3lsbGxQUNCAAQOsGiTgyHr37r1x48Yil18PDg7esGFDWfjtvA5HAwCshASrj6MB+Pn59ejRQ0Ryc3Pnz59fZJkpU6Zs2LBBRGbPnt20adMiy2RlZfn5+QUGBrq5uWVlZemeJK8TFBSknJZfvny55JB05/wGJbVa7cyZM8ePHy8iwcHBBs9u2L9/v/KiuAfOP3z4cPHixRs3bix57wrzTm9N2oWY1dJSm2lAV7PumoPNkGD1OezRIAMUiQxgJar0NzqbqbsQq7VUn307m8PmWNtz5ENBBiiMDGB12r87dOiQ8n5kZKSINGrUKC8vT1sM5dDMmzevuAKlGjhwYPXq1atXr37p0iVTt+3Vq1fHjh2L/Ej5Q3Jzc1u6dKnuzQULFigz8H379i2uztzc3NDQ0FdffdXUYADXk56ePn369LZt27q5ufn7+7dp02bq1KlpaWn2jss+lKOhLMxbvnz5Mn40AEBFuuHGx8fH09OzjCdY3dFwd3f38/Mr40cDLmDw4MERERHGl09MTPTy8hIRDw+PDRs26H90/fp13cMhpkyZUmpVGo1mz549lSpVCg0NPXr0qMGnXbp0ERFvb+/s7OwSKlFOikXE09Nz+fLleXl5BQUFBw4cUG4WVmrYvn27wVYtW7YUkTp16hRX7RtvvKFsPn/+/FIbojXr9NbUXZjR0lKbaaBFixYiEhoaakzh1atXi8jVq1eNrNwYugSrLE/UqlWrspxgdUfD19fXeoNvnz59irtoUyQyQJHKYAaIi4sTkdTUVCMrN28Ttfobnc3anc2YluozqbPdvXtXRJYvX25MYeMpObZ58+YiEhQUVJa/0hsMvi1atLDGoViwYIGIlPxXZoAMUFgZzADXr18XkW+//daYwhYynIQz+A3mDz/8UMLGlk/CdezYUdlRUlKSqduWMAl37dq1qlWrKjW3aNFiwIABuhVLa9eufePGjeLqXLdunYjs27fP1GAAF1auXLlJkybZOwqHoPwseufOnfYOBABc0MCBA5944gl7R+EowsLC3n//fXtHAVjK1Ek4rVa7ZMkS3UI37du3nzBhwsSJE/v37+/n5yciAQEBX331lfG1rV+/Xjkl1Gg0+u+PGzdO2cWBAweK27agoCAwMFBEGjZsWKNGDRHx8vLy9vbWnSxXqFBh8+bNBltlZWUp13QGDRpUXM2dOnVSamjUqJExrTDj9NakXZjRUmOaqS8nJ0epsGvXrsaUt8YknM7SpUtF5P79+9ao3OkMGzasWbNmVqrc1Ek4LRmgKGUwA9hmEk6ran+js1mpsxnZUh1TO5uVJuEUyi9y1q5da43KnY7ycLWUlBRrVG7GJJyWDFBIGcwAtpyEM1yOMjAwsHr16srrPn366CZ+nUu1atUSExM7d+4sIomJid9999358+dFpHv37vv37w8LCytuw9jY2IYNG7Zt29Z2sQIAAAAARETk9ddfT0hIqFOnjoj8+uuv06ZNmzJlyvr16zUazYgRI86cOTNkyBDja+vdu7e/v39iYqLyPHmdbt26KS8OHjxY3LanTp3KyMgQkV69eh08eLBPnz4FBQW5ubki4u3tPXTo0KNHjz7zzDMGWx05ciQvL09KfGrF+++/X7ly5fDw8IKCAq1WW2orzDi9NWkXZrTUmGbqO3bsmFKhk15hgM2QAQojA1iPiv2NzmalzmZkS3UctrPBAZEBDJABrMqz8FtXr1612e537dplpZrDwsJ++umnP//8c8eOHbdv365evXrnzp2VpeSKc+PGjW3bts2YMcNKIQEAAAAASta7d+8ePXrs2bNn//79qampISEhDRo06N69u3LzrEk8PDwqVap05cqVq1ev6p8MRkZG+vr6Zmdnl3BNRPfUioiIiCpVqiQkJNy6devs2bPe3t4NGzYsX758kVu1bdu21GsQTz/9dEpKioj06tVLo9F4eHiU2hBTT29N2oUZLTWmmfp0j73o3r278VuhbCIDFEYGsB61+hudzUqdTUzsb47c2eCAyAAGyADWU8QknCtp3ry5sgKvMVauXOnm5jZ06FCrhgQAAAAAKIGnp2eXLl2UB2kY6dChQ61atTJ4MycnR1lnpkmTJvrv+/n59ejRY/369Zs2bcrOzvb19S1cof6VAuVF5cqVK1eubHxIxjDmgoiOSae3xu/CBi3dtGmTiNSrV6/k+2IBBRmgSGQAKzG1v9HZzN4FnQ0OiAxQGBnAGgyXoyzLYmNjn3nmmSpVqtg7EAAAAACACQYMGBAfH2/w5rJlywoKCpo0aVKrVi2Dj0aNGiUiqampyuPHClOuFISEhCjrFKkuMzPT39/fGjWbugtrt/TOnTs7duwQkZEjR1qjfkDIABbsggxgKjqb2bugs8EFkAHM3kUZzwDmTMJt3bp15syZM2fO3Ldvn4js3LlT+eeePXvUDs92fvvtt3PnzsXExNg7EAAAAACAaSZPnvziiy8OGDDgp59+evDgQWpq6uLFi9977z1PT88VK1YULt+1a9dGjRqJyKJFiwp/mpWVpTzVQ3evruq++uqrvn37Wqly43dhg5YuX748Pz8/MDDw5ZdfttIuADKAebsgA5iBzmbeLuhscA1kAPN2QQYwZznKtWvX6veqzZs3b968WUTGjx8fGRmpVmQ2FhsbW6VKlZ49e9o7EAAAAACAaYYPHx4cHPzOO+907dpV92adOnVWrFjRsmXLwuXd3NwWLFjQuXPnAwcOFF5Z6M8//8zPzxerXSl4+PDh6tWrldt1rcTIXVi7pVlZWXPnzhWRqVOnVqpUyRq7AIQMYO4uyABmoLOZtws6G1wDGcC8XZABzJmEi4uLi4uLUz0UO8rIyFizZs2oUaM8PV38IXkAAAAA4JL69Onz9NNP79mz59ChQ56eni1btmzbtm0Jy+N06tRp2LBhK1eunDZt2vr16/U/KvzUCnW988471j79NHIX1m7p3Llzb9261axZs7ffftsa9QM6ZAAzdkEGMA+dzYxd0NngMsgAZuyCDMCck4jI2rVrMzIyoqOj7R0IAAAAAMBM3t7e3bp169atm5HlZ82atWnTpg0bNqxfv75///669616peDo0aNVqlQZOHCg6jWbsQurtvTcuXNTp051d3f/4osvPDw8VK8fMEAGMHUXZACz0dlM3QWdDa6EDGDqLsgA5jwTzvXExcU98cQTjz76qL0DAQAAAADYSGhoaHx8vJeX16hRo65evap7/8svv8zIyMjIyAgLC1N9p02bNv34449Vr9a8XVivpVlZWS+99FJ2dvasWbNat26tbuWAKsgAZACbobPR2VCWkQHIAE48CVenTp06deqoUlVycvLo0aNVqQoAAAAA4CyioqKWL1+ekpLSu3fvjIwM5U0/P7+AgICAgAD7xmYDVmqpVqsdPnz4wYMH33333bFjx6pbOaAiMgAZwGbobHQ2lGVkgDKeAZx4OcrPP/9craqSkpLUqgoAAAAA4ESGDRs2aNAgEfHy8rJ3LC7Czc1t1apVq1at8vHxsXcsQCnIAKojAxSHzqY6OhucCBlAdU6UAZx4Eg4AAAAAAMs5/qm70+GQwonQXVXHIS0OR0Z1HFI4Ebqr6pzlkDrxcpQAAAAAAAAAAACAY2ISDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACozNPeAQAAAAAAXNDNmzf/+uuv119/3d6BwMlcvHhRRAoKCuwdCCySkpJy9epVMgBMde7cORHRarXGb5KWliYi48aN8/HxsVZYcEW5ubkikpqaau9AYJE7d+6IyJtvvunh4WHvWOBMHj58KCJ37961wb6YhAMAAAAAqC80NDQvL2/nzp32DgROJjc3t1y5ckFBQfYOBBYJDQ09d+4cGQCmysnJqVChgr+/v/GbhIaGBgQE7N27183NzXqBwSUFBARUrlzZ3lHAIpUrVw4ICNi1a5e9A4GT0Wq1/v7+oaGhNtgXk3AAAAAAAPWtXr3a3iEAsJtNmzbZOwSUFUOHDh06dKi9owBgH6NGjRo1apS9owBKwjPhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVOZp7wDwf+7cufPMM880atTI29vb3rHAyZw+fTo6Ojo6OtregcB8169f79+//2OPPebpSWaGaU6ePPnmm28OHjzY+E0GDhyo0WgqVapkvajgkm7evBkaGrp8+XJ7BwKL9OnTx9fXNzg42N6BwMlcv369Tp068+fPt3cgAAAAAOA0uNTrQP78888DBw5cu3bN19fX3rHAyVy5ciUoKIhJOKe2f//+gwcPJicn+/j42DsWOJnLly9XrVrVpEm4TZs2+fn5VaxY0XpRwSXdvn3by8uLSThnt2XLlgoVKlSoUMHegcDJ3Lp1KzExkUk4AAAAADAek3AORLkf+dtvv33qqafsHQucTM2aNRs0aGDvKGAR5TdJGzZsaNWqlb1jgZOpVKmSqRkgMDBw5MiRH3/8sZVCgqt69dVXf//9d3tHAUt5e3u/++67H374ob0DgZN58cUXk5KS7B0FAAAAADgTngkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMk97B2C+/Px8jUbj7e1teVU5OTk+Pj6W11N2pKWlabXacuXKeXl52TsWV6DVatPS0kQkODjY3Z2pcTg6MoC6yAAlo7+pi/4G50IGUBcZAAAAAABszIlPvUaNGjV8+HBVqqpdu/aiRYtUqaosWLJkSUhISM+ePfPz8+0di4twc3MbM2ZMpUqV3nrrLXvHApSCDKA6MkAJ6G+qo7/BiZABVEcGAAAAAAAbc+Jfwt28eTMjI0OVqlq0aDF//vw33nhDldrsIjMzUzka/v7+QUFBJZTMzs6+d++eiJQrV87Pz8/UHSUkJLz11ls1atTYuHGjGZujOMuXL09KSlq8eHGNGjU++OADe4cDJ0MGcHZOlAFs1tmE/mY1TtTf4GjIAC6ADAAAAAAAtuTEv4QzRkFBQVJS0s8//3zy5EmNRlNcsejo6DNnzvzxxx+2jE1d48aNCwsLCwsLi4uLK7nkggULlJK7du0ydS/JyclDhw4tKChYtmxZlSpVzA3WdozsAI7Ax8dn5cqVvr6+EyZM+P333+0dDpwMGaAwJ/rzF6fKALbpbEJ/syYn6m9wNGSAIpEBAAAAAADFcdlJOI1GM2/evJo1a9avX79Lly5NmjSpU6fO/Pnziyzcp0+fkJCQ2NhYGwepogMHDigv2rRpY2TJ1q1bm7qXMWPGPHjwYMiQId27dzd1W2PMnj07IiIiIiLC8v8LkzqA7RXZ0vr160+aNEmr1Y4cOZJll2ASMoA+B//zFyfPALbpbGLl/lbGhxtxnv4GR0MGMEAGAAAAAACUzDUn4XJycgYOHDh27Njk5GQR8ff3F5ErV66MHj36+eefL3yDqre395AhQ1avXv3w4UM7hGuxhw8fnjhxQkS8vb2bNWtWcuH9+/eLSL169SpVqmTSXrZt27Z27VoPD48pU6aYG2kptmzZcujQoUOHDll4y7OpHcD2imvpO++8U7ly5ePHj8+bN89OocH5kAH0Of6fvzhzBrBNZxPr9zeGG3GG/gZHQwYwQAYAAAAAAJTKNSfhJk2atG7dOhEZMWKE8ui448ePDxw4UETWrl07Y8aMwpvExMTcv3//+++/t3Wsajh8+LByE2vTpk19fHxKKJmSknLlyhUx/a5kjUYzevRoERk8eHDdunUtCLZYWq02MTFRed2qVStLqjKjA9hSCS318/MbO3asiHz00Ue3b9+2Q3BwQmQAfQ7+5y9OngFs0NnE+v2N4Ubh+P0NjoYMYIAMAAAAAAAolQtOwp0/f3727NkiMnToUOUxEm5ubk2aNImPj+/fv7+ITJo06dKlSwZbNW3atHnz5qU+38IxKfcaixFLAxlf0sC2bduSkpJE5PXXXzc9QKMUFBQkJCTs3r177969ltyYbF4HsKWSW/rKK694enpmZmY6aW+E7ZEBdBz/z1+cPAPYoLOJ9fsbw42Og/c3OBoygD4yAAAAAADAGC44Cbd06dL8/HxfX9+ZM2fqv+/u7j5nzhwPD4/8/PxVq1YV3jAmJmb37t12vz5rBuOvdBj/JA8DS5YsEZGaNWs++eSTpgdoFE9Pz8jIyMjIyA4dOlhSj9kdwGZKbmloaGhUVJSIfPHFF1qt1ubRwfmQAXQc/89fnDwD2KCzifX7G8ONjoP3NzgaMoA+MgAAAAAAwBguOAn3zTffiEhkZGTVqlUNPqpdu3ZkZKSIfPXVV4U3fPHFF729vVesWGH9GFVm6jURb2/v5s2bG19/Zmbmjh07RKRHjx5ubm7mhmkjZncAx9GzZ08RuXjx4rFjx+wdC5wAGUDHBf78xbEzgLU7m9DfbM6R+xscDRlAHxkAAAAAAGAMV5uEu3jxovJo9KZNmxZZQHn//Pnzd+7cMfioYsWKffv2XbFihSM8R914N27cuHr1qohUrFixfv36JZTUarUHDx4UI57kYWD37t25ubli8ZMzbMCSDuA4IiIilBfbt2+3byRwfGQAHdf48xcHzgA26GxCf7M5h+1vcDRkAH1kAAAAAACAkVxtEu7IkSPKi+JOiRs0aKC8OHr0aOFPo6Ojr1y58vPPP1snOqvQLfjTunXrkkueO3fu7t27YvrSQD/++KPywsEviIjFHcBBNG3a1MvLS/SOPEREo9E41wS5bZABdFzjz18cOAPYoLMJ/c3mHLa/2RHDTZHIAPrIAAAsx3ADALABhhvAEXjqXl2/fn3evHki0qhRo+jo6CJLb926ddeuXSIyatSounXrWr77JUuWXLhwQUTGjx8fEhJieYVpaWnKi/Dw8CIL6N4v8tlvUVFR1atXj4uL69q1q+XB2IZuaaBSr4mY/XwOZYEaHx+fxo0bG1M+Ozv73//+t4hEREQ8//zzDx482LBhwx9//JGUlJSamtqyZcuJEydWq1ZNf5OMjIzJkyeLSLt27ZSn2ZvHwg5gEjOaKca11MfH57HHHktMTGRpIBG5efPm3LlzExISLly4oNVq69at27t373HjxhU+tmUTGUDHln/+UiYzgA06m5jY38rIcCPWbKnD9jfbY7gpGRlAHxkAgNkYbgAANsBwAziU/5uE8/PzmzVrlog0b968yEm4e/fuvfzyy7dv346IiPj0009V2f3q1at3794tIiNHjlRlEk658VZE/Pz8iiwQEBCgvHjw4EHhT93d3YcNGzZnzpy7d+9WqFDB8nhswPjncxhf0sCZM2dE5PHHH1dulS3VkSNHlL40fvz4I0eOzJs3LysrS/fp4cOHf/vtt3379gUFBenePHTokLLJwoULTYrNgIUdwCRmNFOMbmlERERiYuLt27dTU1NV+dNwUmvWrImJicnMzNS9c/78+Tlz5ixevPiLL74YOnSoHWNzEGQAHVv++UuZzAA26GxiYn8rI8ONWLmljtnfbIzhplRkAH1kAADmYbgBANgAww3gaP5vEq5ixYqhoaG3b98+f/58kUUnT558+/ZtNze3zz77zGGflK47Jfb29i6ygO6UvrhT4ujo6OnTp8fHx48cOdIKAapMo9EcOnRIeW3kjcmlPsnDwL17927cuCEitWrVMnIT3R3Qn376qYeHR6dOnVq3bp2WlrZx48Zr166JyMmTJydPnqxcGlAYf3t1ySzvAMYzo5lidEtr1KihvDhz5syTTz5pYahOas2aNS+88IJWqy38UVZW1rBhw7Ra7bBhw2wfmOMgA+iz5Z+/lL0MYIPOJqb3tzIy3IiVW+qA/c3GGG5KRQYwQAYAYAaGGwCADTDcAA7ob8+Ea9iwoYhkZGTcvHnToNzZs2cXLFggIkOGDHniiSfU2v3EiRPj4+Pj4+OrVKmiSoXp6enKi1JPiTMyMoosEB4e3qFDh9jYWFXisbbTp0/fv39fROrVq1epUqUSSubk5CgPpTD1ooPy2HkRKVeunJGb6D815NSpUz/88MPUqVMXLlx47Ngx3bn9mjVr9McDZRMfH5/iHq1hJMs7gPHMaKYY3dLy5csrL65fv25hnE4qJSXllVdeKfJLg87IkSPL7PFRkAH02fLPX8peBrBBZxPT+1sZGW7Eyi11wP5mSww3xiADGCADADAVww0AwAYYbgDHVMQknIicO3fOoNzYsWPz8vICAgJmzJihezMjI6OgoMCS3Xfq1GnQoEGDBg0KDAy0pB6d3Nxc5UVxz5zUvZ+fn19cJTExMQcPHjxx4oQqIVmV8Qv+HDlyRDk4hUvm5OSUcIFA95Gpl+DDwsJ2796t/6iM4ODgxYsXu7u7i8jVq1f153qVTZo3b27kenfFUaUDGMmMZorRLdVdEFHlBmpnNG/evFKvW2VlZc2ZM8c28TgmMoA+W/75S9nLADbobGJ6fysjw41YuaUO2N9sieHGGGQAA2QAAKZiuAEA2ADDDeCYip6EM1iRcuvWrdu2bRORDz74oFq1agUFBXPnzq1bt265cuWCgoLatWv39ddf2yzikukm83TnxgZ07+tOOAsbOHBgYGBgXFyc6uGpzvhrIrpbaPVLxsXFNWvWzN/fPygoqFatWp988kl2drbBhroT8hKOmL709HSl/7Rp08bHx8fg08cee0x37UB3pSA5OVlZS8fCpYFEpQ5gDDOaKaa0lAsimzZtMqbYxo0brR2JIyMD6LPZn7+UyQxgg84mJva3MjLciPVb6oD9zZYYboxBBjBABgBgKoYbAIANMNwAjslT/x9FTsLl5eWNGzdORGrXrv3uu++KyMsvv/z1118/99xzw4YNO3PmzMaNG1966aVdu3YtX77chpEXTfdAcktOiQMCAgYOHPjNN9/MmjXL7KffabXaLVu26D81vVQXLlyQ4u+oLVKRVzqKZPBkCI1G8+KLL65evToqKiomJiYgIOC777778MMPd+/evW3bNuWOWoWpdyUfPHhQf0eF1atXT/mppe4/y/hWlEqVDmAMM5opprTU1Asiubm5586dW7t2rTGFTZWTk3PkyBErVV6cwr/HLdLFixdXr16t32Ot6q+//hKR3bt3p6WlqV756dOnRaTkRQMMkAH02ezPXxwvA+Tn558+fdqkP9Lc3FyTRigbdDYxsb+VkeFGrN9Sk/pbZmbm/fv3rTQiXLhwIS0tjeFGkZmZeezYMSsdjYKCgiKnwYpDBjBQljOA7f9IXVhmZmZycrKpT0+E5ZRMtX79ej8/P5vt1GGHm3Pnzt2+fZu/a9u7f//+7du369WrZ+9A4Pq0Wu3x48cfe+wxs69wwjx37twRkV9//dWk6zwWctjhZt++fSKyceNGy78ewyQajebEiRNkABWdOHGiQYMGJq2t4uHh8bdJuAYNGigv9CfhFi1adPbsWRGZPXu2r6/v999//9VXX3377bcvvPCCUuDUqVPdu3f/8ssve/To8dxzz1naDsvoTj6LO41UnvcupZ0S5+bmenl5WdI7r1692q9fPzOW61RuXDVGVlaWsmaml5dXs2bNSi6snGmEh4eHhISIyPz587/77ruVK1cOHTpUKfDKK69ERUXt2LHj22+/HTJkiG5DUw+C7rQ/IiKiyAKZmZnKi7CwMINNLL8xWa0OUCozmimmtFQ3Qht5/NPT07ds2bJlyxZjCpshISEhISHBSpVbQqPR6HKRzXz88cfWqzwlJcXIkmQAAzb78xfHywAZGRnr1q1bt26dMYV1Tp48aWRJ23Q2MbG/lZHhRqzfUpP625kzZ65du/b888+XWtJsVq3cbHYZbrZv3759+3YrVU4GsESZzQDnzp27cOGCY/6RAqYaPny4vUMogl2GG3HUwRcAXMBnn3322Wef2TsKQ/Yabl599VXb7xRwBH+bhKtdu7aPj09OTs7FixeVd+7duzd16lQR6dix47PPPisi8+fPf/rpp/X/UBs1ajR79uxBgwZ9/PHHdp+E0z0r/sKFC+3bty9cQPm1mYhUqFChuEru3bu3bt065fd/ZqtZs+bdu3fz8vKM3+TPP//s0qVLzZo1jSx/+fJl5TkTYWFhhVen0Xfs2LGkpCQRefrpp5V3nnnmmVu3bukuiOje/PHHH3/77Tf9ayK69Xbu3btnTFTKab+bm1urVq0Kf6rRaJSf+zRp0kRXs7JJcHCw/lMuzKNKBzCGGc0UU1p6//595YWRj0usXLly7969p02bZlz4pqlVq9Ybb7zxr3/9yxqVF6d9+/anTp0qtVh4eLjuSpMNnDhx4qmnnlq/fn1kZKTqlf/++++9evXSn7MpGRnAgM3+/MXxMkD58uWjo6MnTJhgXPgiIuHh4UUGXyTbdDYxsb+VkeFGrN9Sk/pbixYtHj58qNzGqLqXX345OTl5x44d1qi8OI453IhIgwYNBg8e/NFHH1mj8qpVq7Zs2dLIwmSAwspsBmjWrJmfn99PP/1kdPgoRU5OTsl/VrCGlStXjhkz5sqVK2o9md4YDjvcjBo16uTJk3v37rXlTqEgA8BmcnNzvb297R1FmXPt2rXHH398xYoVffr0sdlOHXa4WbNmzciRI8+ePRsaGmrL/ULIAGoz43ga/hLOw8Ojfv36J06c0P0UY+bMmampqR4eHrpJ+7p163br1s2gol69erm7u588eTIvL8/C55xb6PHHH1deFPfzW90pcePGjYurJD4+Pisr6+WXX7YwGFO/0xu52pvOrVu3lBe6CwHFWbVqlfJCd4NbeHh44Qmb1NRUKRS2eZfg69evHxwcXPjTvXv33r59W0SioqKUd7RarbLMjuV3JYtKHcAYpjZTTGyp7mjrr2VXAjc3N19f3yKDsZxVKy/Oc889Z8z3hgEDBtgyMOWPNCgoyBo7NfL/WocMYMBmf/7iEhnApF+c2KaziVmX4F1+uBHrt9Sk/ubm5ubh4WGlxOvj4+Pl5cVwo/Dw8LDqyG58YTJAYWU5A3h6etr4bwFQnb+/v4hUqFDB1K/flnDY4cbHx4e/awCwBmXJhICAAFvmWIcdbgICAkSkQoUKjDgomwzXflUeC3fr1i2NRnP9+vV58+aJyGuvvaY71Vy4cGGvXr0MtvLz8wsICMjLy0tPT7d6yCVq0qSJr6+viBw+fLjIAsePHxeR4ODgEhbfj42NjYyMtPwmWWvTrW/z8OHDEoqlp6cr10SeeuqpDh06FFcsNzf366+/FpF+/frpv687M9HdJ1uCK1euKDO4RS6YU1BQMHbsWBFxc3N77bXXlDfPnDmj1Gz58zlEpQ5QKjOaKSa2VHe0bXlm6FBGjx5d6gpOQUFByqEum8gABmzz5y9lMgPYprOJKf2tjAw3YpOWOlp/szGGm1KRAQojAwAwFcMNAMAGGG4Ax1T0JFxBQcGdO3c+/vjjrKys4OBgZUVKhZ+fX+EztLNnzz548KBixYqVK1e2dsQl8/Hx6d27t4js2bNHuS1U37Vr15SbSfv161fcLcAnT548cOBATEyMtUO13COPPKKsXXDp0qUSHqUeExOTkpLi7e39+eefF1cmJSXlueeeu3jx4ksvvdSuXTv9j6pVq6a8MP6uZCnm3tu5c+ceOXJERAYMGKB7AKGKz+cQNTqAMcxoZqlbGdAdbd3xL2sqVaq0atWqEh4S6+7u/t///tfuOceOyAAGbPPnL2UyA9ims4kp/a2MDDdik5Y6Wn+zMYabUpEBCiMDADAVww0AwAYYbgDHVPQknIgcP358xYoVIjJ58mTlyeol2Lp1q4iMGDFC/QBNN2zYMBHJzs6eOXOmwUdTp05Vnj0eHR1d3OaxsbFBQUEDBgywapCq8PPz69Gjh4jk5ubOnz+/yDJTpkzZsGGDiMyePbtp06aFCwwaNKhx48Y1a9bcvHnziBEjli1bZlAgKChIOSe/fPlyqSHpTvsNCmu12pkzZ44fP15EgoOD9R9Jun//fuVFcU+bF5GHDx8uXrx448aNpQYg5nYAk3ZhRjPFuJbq6GrW/UmWQb179964cWPFihULfxQcHLxhw4b+/fvbPirHQQYozAZ//lImM4BtOpuY0t/s3tnEgfubSZ1NHK+/2R7DTcnIAEUiAwAwFcMNAMAGGG4AR6T9u0OHDinvR0ZGikijRo3y8vK0Jbp27VpwcHC9evXS09NLLlnYwIEDq1evXr169UuXLpm6ba9evTp27FjkR8qVAjc3t6VLl+reXLBggXIjQN++fYurMzc3NzQ09NVXXzU1GFUoz2/Ys2eP8ZskJiYqD+Hz8PDYsGGD/kfXr1/XPRxiypQpxdXQu3fvli1bVqxY0c3NbciQIRcvXixcpkuXLiLi7e2dnZ1dcjxKtxERT0/P5cuX5+XlFRQUHDhwQLlZWKlk+/bt+pu0bNlSROrUqVNCtW+88Yay+fz580sOQGFGBzBpF2Y008iW6rRo0UJEQkNDjSms1Wpr1KgxduxYIwubqly5cpMmTbJS5aVKT0+fPn16q1atRCQwMLBNmzZTp05NS0uzSzDK/eY7d+60RuV79uwRkYMHDxq/CRmgMGv/+ZvXTCNbqmNqBggJCZkwYYKRhc3bxDadTWt0f3OEzqZ11P5mUmfTmtjfRowY0ahRIyNrNtXAgQOfeOIJK1VeKmW4adu2raenp4+Pj32HG61WGxYW9v7771upcl9f32nTphlfngxQpDKYAQYPHhwREWFkzYDDWrp0qYjcv3/fLnvXDTf+/v5ubm52H26GDRvWrFkze+0dAFyYcqvT2rVr7bJ33XBToUIFEWnSpIl9hxtl4fqUlBR7BQDYl+EknMEiMz/88EPJ29+7d69p06aVK1c+c+aMGbvv2LGjsqOkpCRTty1hEu7atWtVq1ZVam7RosWAAQN0z2OoXbv2jRs3iqtz3bp1IrJv3z5Tg1GFGZNwWq12yZIluoVu2rdvP2HChIkTJ/bv39/Pz09EAgICvvrqq1Ir0Wg0e/bsqVSpUmho6NGjRw0+HTdunFL/gQMHSqikoKAgMDBQRBo2bFijRg0R8fLy8vb21nWnChUqbN68WX+TrKws5ZrOoEGDSqi5U6dOSg1GXvgzowMYvwszmml8SxU5OTlKhV27djWmvVqXnoRTKM+b/PLLL+0bhqNNwmnJAIVY9c/fvGYa31KFGRnABpNwWpt0Nq1x/c1BOpvWIfubSZ1Na3p/c+FJOJ3WrVu/8MIL9o7CsSbhtGSAopTBDMAkHFyDfSfhdP7nf/6nYsWK9o1ByyQcAFiNfSfhdPbu3Vvyt2vbYBIOZZzhcpSBgYHVq1dXXvfp00d3Z2uR7t+///TTT9+9e/fXX3/Vf/KN3VWrVi0xMbFz584ikpiY+N13350/f15Eunfvvn///rCwsOI2jI2NbdiwYdu2bW0Xq8Vef/31hISEOnXqiMivv/46bdq0KVOmrF+/XqPRjBgx4syZM0OGDCm1Ejc3t6eeemrZsmW3b9+Ojo7WarX6n3br1k15oUwTFufUqVMZGRki0qtXr4MHD/bp06egoCA3N1dEvL29hw4devTo0WeeeUZ/kyNHjuTl5UlpT614//33K1euHB4eXlBQYBBbkczoAMbvwoxmGt9SxbFjx5QKS/4DBIQMUIhV//zNa6bxLVU4bAawQWcT4/qbg3Q2ccj+ZlJnEwfub3A0ZIDCyAAAAAAAgFJ5Fn7r6tWrxmx5//797t2737lzZ+/evTVr1jRv97t27TJvw1KFhYX99NNPf/75544dO27fvl29evXOnTs//vjjJWxy48aNbdu2zZgxw0ohWU/v3r179OixZ8+e/fv3p6amhoSENGjQoHv37srNsybV4+/vn5iYePz4cf1jFRkZ6evrm52dXfIleN1TKyIiIqpUqZKQkHDr1q2zZ896e3s3bNiwfPnyhTdp27atMdc4nn766ZSUFBHp1auXRqPx8PAodRNTO4DxuzCjmWJ0SxW6VWG7d+9u5CYoy8gABqz3529eM8WFMoC1O5sY198cp7OJ4/U3kzqbOHZ/g6MhAxRGBgAAAAAAlKyISThj3Lt3r3v37hkZGb/88ksJPyyzu+bNmzdv3tzIwitXrnRzcxs6dKhVQ7IST0/PLl26KA/SMJuHh0elSpWuXLly9epV/csHfn5+PXr0WL9+/aZNm7Kzs319fYvcXP9KgfKicuXKlStXtiSkIoM0vrBJHcDIXdigmZs2bRKRevXqlTxtDOiQAQqzxp+/kAGs3NnEuP7maJ1N6G8oM8gARSIDAAAAAACKY7gcpTHu3bsXFRWVm5u7e/duR56BM1VsbOwzzzxTpUoVewdiC7r7XvXl5ORcv35dRJo0aWLw0ahRo0QkNTV19erVxdWpXCkICQlRlipSXWZmpr+/vzVqNmkX1m7mnTt3duzYISIjR460Rv2AkAEsqJ8MYCpTO5sY0d+cvbMZvwv6G5wdGcCSXZABAAAAAMAFmDwJd/fu3W7durm5uf3888+VKlWyRkx28dtvv507dy4mJsbegdjIgAED4uPjDd5ctmxZQUFBkyZNatWqZfBR165dGzVqJCKLFi0qssKsrKzjx4+L3r26qvvqq6/69u1rpcqN3IUNmrl8+fL8/PzAwMCXX37ZSrsAyADm1U8GMIOpnU1K628u0NmM3AX9DS6ADGD2LsgAAAAAAOAaTJ6Ei4mJOXjwoK+v79ChQ3v16tXj727cuGGNKG0gNja2SpUqPXv2tHcgNjJ58uQXX3xxwIABP/3004MHD1JTUxcvXvzee+95enquWLGicHk3N7cFCxaIyIEDB4q8qfnPP//Mz88Xq10pePjw4erVqwcNGmSNyo3fhbWbmZWVNXfuXBGZOnWqK01yw9GQAcyrnwxgBlM7m5TW35y9sxm/C/obXAAZwOxdkAEAAAAAwDWY/Ey427dvi8iePXuK/PThw4eWRmQPGRkZa9asGTVqlKenmQ/JczrDhw8PDg5+5513unbtqnuzTp06K1asaNmyZZGbdOrUadiwYStXrpw2bdr69esNPi381Ap1vfPOO9b+DzJmF9Zu5ty5c2/dutWsWbO3337bGvUDCjKAefWTAcxgRmeTEvubs3c243dBf4MLIAOYvQsyAAAAAAC4BpPPMH/55RdrxGFfa9euzcjIiI6OtncgNtWnT5+nn356z549hw4d8vT0bNmyZdu2bUt+QMWsWbM2bdq0YcOG9evX9+/fX/8jq14pOHr0aJUqVQYOHKh6zabuwqrNPHfu3NSpU93d3b/44gsPDw/V6wf0kQHMqJ8MYB4zOpsU39+curOZtAv6G1wDGcC8XZABAAAAAMA1lJUffpUsLi7uiSeeePTRR+0diK15e3t369atW7duRpYPDQ2Nj4/v1avXqFGjWrVqVaNGDd1HX3755bJly0QkICBA9TibNm3atGlT1as1YxfWa2ZWVtZLL72UnZ09Z86c1q1bq1s5UCQygKn1kwHMZmpnk+L7m1N3NpN2QX+DyyADmLELMgAAAAAAuAaTnwnnOOrUqVOnTh1VqkpOTh49erQqVbm8qKio5cuXp6Sk9O7dOyMjQ/e+n59fQECANS6IOBQrNVOr1Q4fPvzgwYPvvvvu2LFj1a0cUBEZgAxgS0X2tzLS2YT+hjKPDEAGAAAAAAAX4MS/hPv888/VqiopKUmtqsqCYcOGKQ+T9/LysncsLsLNzW3VqlWrVq3y8fGxdyxAKcgAqiMDlID+pjr6G5wIGUB1ZAAAAAAAsDEnnoSDHXHerjoOKZwI3VV1HNIScHBUxyGFE6G7qo5DCgAAAAC25MTLUQIAAAAAAAAAAACOiUk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyT3sHAEPJyckXL160dxRwMvn5+Vqt1t5RQAXXr1+vWLGivaOAk9FoNKZuotVq7969y3ADUz148IDhxjWkpaWRAWCqjIwMM0YcAAAAACjLmIRzIHfu3BGRwYMH2zsQOKU///zT3iHAIjdu3BCRfv362TsQOKXExESTyt+/f3/hwoULFy60UjxwYYGBgfYOAZbKzc2dPXv27Nmz7R0InE9wcLC9QwAAAAAAZ8IknAOJior65JNP6tat6+bmZu9Y4GQuX77cq1cve0cBizz33HPTpk0LDw8nA8BUly5deu6550zaZMWKFbm5ucymwFR3794NDQ21dxSw1PLly93d3f39/e0dCJxMampqzZo17R0FAAAAADgTJuEciLu7+/jx4+0dBQD78PT0/PDDD+0dBcqKIUOG2DsEAHYTHR1t7xAAAAAAACgT3O0dAAAAAAAAAAAAAOBqmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypx4Ei4/Pz83N1eVqnJyclSpBwAAAAAAAAAAABCnnoQbNWrU8OHDVamqdu3aixYtUqUqAAAAAAAAAAAAwIkn4W7evHnz5k1VqmrRosX8+fNVqQoAAAAAAAAAAABw4kk4YxQUFCQlJf38888nT57UaDTFFYuOjj5z5swff/xhy9gAAAAAAAAAAADgqjztHYC1aDSazz///D//+U9ycrLyTs2aNf/5z3++/fbbhQv36dMnJCQkNja2bdu2tg0TQClu3rx5/vz5c+fOiciuXbuqVatWu3btBg0a2DsuAIBLefjw4bFjx27evHn58uWMjIxNmzb94x//ePzxx728vOwdGgDAdWg0mhMnTly9evX333/PzMz87rvvqlat2rhx4woVKtg7NACAS/nrr78uXLiwc+dOEdmyZUtGRka9evVq1qxp77iAssg1J+FycnJefPHFdevWKf/09/d/+PDhlStXRo8e/csvv8THx7u7/+0ngN7e3kOGDFmxYsW8efP8/f3tETKAv7lz586XX36ZkJCwf/9+3c9Yv/rqq6+++kpE6tSp07dv3+HDhzdr1syeUQIAnFxeXl58fPz333+/Y8eOrKws5c2UlJQ+ffqISIUKFXr27Dlo0KDevXu7ubnZNVIAgHPbs2fP119/vXHjxpSUFN2bAwcOFBEvL6/IyMj+/fsPHz48ICDAfjECAJzehQsXYmNjExISTp48qXtz8uTJyoumTZv27ds3JiamVq1adgoQKItccznKSZMmKTNwI0aMuHnzZkZGxvHjx5Vvt2vXrp0xY0bhTWJiYu7fv//999/bOlYAf/fw4cPp06eHh4dPnDgxMDBw/vz5hw8fPnDggIgMGTLkxIkT3333XYcOHVatWtWyZcshQ4ZcunTJ3iEDAJyPVqv97rvvGjduPGzYsMuXL7///vt79+69dOlSQEBAjRo1zp8/v3PnzhEjRhw4cKBv375t27bdvXu3vUMGADilI0eOPP300x07dty6deuzzz67devW06dPP/HEE25ublevXt23b9/HH3/88OHDt99+u379+kuXLs3Pz7d3yAAA53Pr1q233367UaNGn3/++aOPPrpy5cpjx4598sknIvL5558fPXo0Li6uTp06s2bNatCgwT//+c+0tDR7hwyUFS44CXf+/PnZs2eLyNChQ5ctW1alShU3N7cmTZrEx8f3799fRCZNmlT4qn3Tpk2bN28eFxdnh4gB/K8LFy5ERET8+9//joqKOnv27I4dO954440WLVpUrlxZRLy9vRs3bvzcc8/997//vXHjxuLFi3fu3NmoUaOvv/7a3oEDAJxJdnb2sGHDBg4cGBISsnfv3j///POjjz7q0KFD7dq1RcTNzS08PLxLly7/+c9/zp8//+OPP+bk5HTq1On111/nwigAwCRLly6NiIg4efLkF198cfny5UWLFvXo0aNhw4YeHh4iUr169bZt277//vu//fbbqVOn2rdvP3LkyI4dO966dcvegQMAnMnvv//++OOPx8bGjh079tq1a2vXrh06dOhjjz0WFBQkIuXKlXv88cdffvnl9evXX7t2bcyYMYsWLWrSpMn+/fvtHThQJrjgJJxy45ivr+/MmTP133d3d58zZ46Hh0d+fv6qVasKbxgTE7N7925+VQPYy969e9u0aZORkXHw4ME1a9YoV0KL4+Xl9dprr505c6Zz585Dhw6dOnWqrcIEADi3mzdvtm/ffu3atbGxsfv27evQoUPJ5bt27Xr48OHJkycvW7asT58+mZmZtokTAODUCgoKXn311ddffz0mJub8+fOvvfaaMvFWnAYNGqxZs2bz5s0nT55s27bt6dOnbRYqAMCprVy5slOnTjVr1jxz5syMGTPKly9fQuHg4OAZM2acOHGicuXKHTt2XL16tc3iBMosF5yE++abb0QkMjKyatWqBh/Vrl07MjJSRJTHShl48cUXvb29V6xYYf0YARg6ffp0nz59wsPDDxw40KJFCyO3Cg4O3rhx45gxYyZOnLh48WKrRggAcAFZWVl9+vS5fPnyzz//HB0dbeRWHh4eEydOXLt27a5du4YNG6bVaq0aJADABfzrX//68ssvP/vssy+++MLX19fIrXr27PnHH3+4u7v37Nnz9u3bVo0QAOACtm3bFhMT069fvz179tSoUcPIrerWrfvrr79GRUUNHTp0165dVo0QgKtNwl28eDE5OVlEmjZtWmQB5f3z58/fuXPH4KOKFSv27dt3xYoVGo3G2nEC0JeWltanT59KlSpt2bKlSpUqJm3r4eExZ86c4cOHv/POOzywBwBQspiYmKNHj65fv75du3ambvvcc88tX7583bp1H330kRVCAwC4jhUrVsyePXvKlCmjR482ddsGDRps3br13r17zz33XF5enjXCAwC4htOnTw8ePDgyMvKrr77y8/MzadvAwMA1a9a0atVq4MCBFy9etFKEAMT1JuGOHDmivChuEq5BgwbKi6NHjxb+NDo6+sqVKz///LN1ogNQtI8++ig5OXnjxo0hISHm1fDFF180a9bs1Vdf5TQVAFCczZs3x8fHz58/v3379ubVMGTIkH/+85/Tpk07deqUurEBAFzGnTt33nnnneeee27ChAnm1fDII4/Ex8f/+uuvS5YsUTc2AIAreeONNypUqLBmzRovLy8zNvfx8Vm3bp23t/c777yjemwAdIqYhDt16tR7773XvHnz4ODg+vXrP//8899//72Vdr9kyZL33nvvvffeS01NVaXCtLQ05UV4eHiRBXTvF/nst6ioqOrVq8fFxakSDABjXLp06Ysvvhg7dmyjRo3MrsTHx2fBggUXLlxYunSpirEBAFxGQUHB+PHjIyIiXn31VUvqmTJlStWqVcePH69WYAAAFzN16tS8vLy5c+e6ubmZXUlUVNSAAQOmTJly7949FWMDALiMLVu27N69e+bMmWbf0S4iYWFhU6ZM2bx5Mz9KAaznb5Nw9+7dGzVqVJMmTWbNmnXkyJG7d+8mJSWtXbt2wIABgwcPzsjIUH33q1evnjVr1qxZs+7evatKhbp6ivsFbkBAgPLiwYMHhT91d3cfNmzYunXr1IoHQKlmzpxZrly59957z8J6Wrdu/eyzz06fPp0VZQEAhSUkJJw8eXLmzJmWXBIVET8/v4kTJ27atKnIZRUAAGVcWlraF198MXr0aOMfzFOc6dOn37t3b9myZaoEBgBwMdOnT2/ZsuXzzz9vYT3R0dGNGjWaMWOGKlEBKOz/JuGuXbvWrl27JUuWeHt7v/zyy6tXr965c+f8+fPr168vIvHx8R9++KH94jSWbvLM29u7yAK6H+cWOQknItHR0dnZ2fHx8VaIDoAhjUaTkJAwaNCg8uXLW17bq6++mpyc/Mcff1heFQDAxXz//ffh4eGdOnWyvKqXXnrJ399//fr1llcFAHAxmzZtysnJeeWVVyyvKjw8vGPHjuvWrbO8KgCAi0lOTt63b9+IESMsvMVQRDw8PKKjo3ft2qVbYQ6Auv7/JFxaWlpkZOSpU6fq169/+PDhuLi4559/vkuXLm+99daxY8eefPJJEVm4cOGff/6pv3Fubq6FvxibOHFifHx8fHx8lSpVLKlHJz09XXlR6iRccT/sCw8P79ChQ2xsrCrxACjZvn37bt682bdvX1Vq69y5c4UKFRISElSpDQDgMvLy8rZt29avXz9VavPz8+vWrduGDRtUqQ0A4EoSEhIee+wx5W5my/Xt23f//v03btxQpTYAgMvYuHGjiPTq1UuV2vr375+fn79161ZVagNg4P9Pwr300ksXL16sVKnSTz/91LhxY/0Svr6+n3/+uYhoNJrNmzcrbx49ejQqKsrPzy84OLhOnTpffPGFebvv1KnToEGDBg0aFBgYaEEr/k9ubq7yorj16HTv5+fnF1dJTEzMwYMHT5w4oUpIAEqQmJjo7u7+1FNPqVKbl5fXE088cfjwYVVqAwC4jIsXL6anp0dGRqpVYadOnY4fP56Xl6dWhQAA15CYmNixY0e1auvUqZNGozG4HxoAgMTExEceeaR69eqq1FavXr3q1atzPQ2wEncRSUhI2LZtm4hMmDChyFXLmzdv7u/vLyLHjx8XkcOHD3fo0OHAgQPjxo2bNm1aSEjIyJEjJ06caNvIi6abzNPNxhnQvV/C2ncDBw4MDAyMi4tTPTwABpKTkytVquTj46NWhdWrV09OTlarNgCAa7h+/bqIWP54Hp1q1appNBp+mgAA0KfVam/evKnWJVERUariBAcAYCA5OVnF4Ua4ngZYk5tWq23evPmRI0eqV69+/vx5X1/fIstVq1YtOTm5VatWBw4caN68+blz5/bt29e0aVMRKSgo6NGjx88//3z06FGDX9FZVe/evTMyMnbt2qX/5sSJE6dOnSoiR44cUcIz8Ouvv3bo0EFE5s6dO2bMmOIqj4mJ2bZtW3Jystnr6t66datbt27FLXoJM9y4cSM4OLi4LgrruXTpUkBAQOXKla1R+fXr1/Py8mrXrl1ysfz8/CtXrgQFBYWGhpZcMiUl5eHDh3Xq1FEtRD3Z2dnJycmVK1dW68e7MJJyOaNixYoqztcCxUlLS/Pw8FDlQZUwybVr1woKCmrVqmWNytPT09PT02vVquXh4VFyyUuXLnl4eNSsWbPkYg8fPrx582aVKlUCAgLUC/NvYfj5+YWFhVmjcpQgNTXVy8urXLly9g4Eru/hw4cPHjxQ67kMMF5aWtrdu3dr167t7u6ueuXKaUvFihUrVKhQcsnk5OTs7Oy6deuWWuelS5f8/f2t1FWSk5Pz8vKsNPiiBJmZmQ8fPiz19BawXEFBQUpKSpUqVUr9Ggx15eXlXb16NSQkxEqnln/99ZeXl1e1atVKLnb//v07d+6EhoYGBQWVXNKqp2N3795NS0urWbOmp6enNepHcfLz82/dukUGUItWq71x40alSpWKexRakby8vDzPnz9/5MgREenfv39x0xv3799XZsKrVKly5MiRo0ePvv3227opLg8Pj5kzZ7Zo0WLmzJkrV660tCmW0SWUBw8eFFlAd8NyyRkwNzfXy8vLkidbBgUFdevWrbgwYIYjR46Eh4cz+WF7X375Zc2aNdu3b2+Nyrdt23bnzp2uXbuWXCwjI+Obb775xz/+UepKYr/88ktSUlKpFZrn1q1bGzZsaN68Oaeptvfnn382aNBA+Vk2YFWXLl3y9vYu9WQGqtu0adPDhw+tlMBPnz79yy+/PPnkk6V+kYiLi/Px8Sk1jGvXrm3durVNmzZWmidbsWJF9erVVVzQDEZKSkoKCAioWrWqvQOB60tPT09OTrblbaxQHD16dP/+/Z06ddI9MF5Fubm5K1aseOSRRx5//PGSS27cuPHmzZvGjHrLly+vU6dOu3btVIrxb7Zt25aenm6lwRcluHPnzp07dxo2bGjvQOD68vPzjx492rRpUyY/bOzBgwfffvtt48aNrfSX/u233wYGBpaawE+ePHnnzp3GjRs/8sgjJZdcv359Xl6elUaEEydO/P7775GRkX5+ftaoH8XJzc09fvx4s2bNmIRThVarPXLkiKnXJ729vUX3OLdFixZpi7Fv3z6lzLvvvjt9+nQR2bx5s0GZ0NDQ2rVrF1eDNfTq1atjx44Gb8bGxiqhrlixositPvnkE6XAunXriqv57t27fn5+EyZMUDNcwGmVK1du0qRJVqp80qRJ5cqVK7XYX3/9JSLR0dGllhw6dGjz5s3VCK0Iyi0LO3futFL9AFCWDRw48IknnrBS5b/99puI/PHHH6WWDAgIqFmzZqnFVq1aJSIpKSlqRFeEsLCw999/30qVA0BZtnTpUhG5f/++leoPCgqaPHlyqcXat2/v5uZWarGUlBQRWbVqlRqhFWHYsGHNmjWzUuUAUJZdvnxZRNauXWul+p977rknn3yy1GILFiwo4Tq5vmbNmg0bNkyN0Ipg7bMnwMG5X716VZmUatCgQXGTdbrft/Xv33/nzp0i8thjjxmUadCgwV9//XXz5k3j5wCtQXe72blz54oscOHCBeVFCbccxsfHZ2Vlvfzyy2pHB8BQ9erV79+/n5qaqlaFFy9e5PcrAAADyvMSLl68qFaFly5d8vHxqVSpkloVAgBcQ7Vq1dQdbuR/RzEAAHSqVaumjBGq0Gg0ly9f5noaYCXuumXQi3t62fXr15Wflz322GPt2rVTlnMs/DepPIHp/PnzVgzWCE2aNFEW1Tx8+HCRBY4fPy4iwcHB9evXL66S2NjYyMjI8PBwKwUJQKdTp04isnXrVlVqS0tLU9aWUaU2AIDLqFmzZv369bdt26ZWhVu2bOnYsaM1nicEAHBqnTp12r59u0ajUaW2LVu2+Pv7t27dWpXaAAAuo1OnTsnJycqKTZb7/fff09PTuZ4GWIm77jdtxf3RfvDBBzk5OSIya9YsNze3e/fuubu7F15FVFnRNTMz04rBGsHHx6d3794ismfPntu3bxt8eu3atQMHDohIv379inve28mTJw8cOBATE2PtUAGISL169Zo0abJhwwZVatu8eXN+fn7fvn1VqQ0A4Ep69+69ZcuWvLw8y6u6cePGwYMH+/TpY3lVAAAX07dv35SUlD/++EOV2hISEqKionguMgDAQFRUlJ+fn1rX0xISEsqXLx8ZGalKbQAMuEdERCgzap9//rnBinBarXbChAnKmq3jxo2LiooSkfv37xf5JE/lzeJ+TmdLw4YNE5Hs7OyZM2cafDR16lStVisi0dHRxW0eGxsbFBQ0YMAAqwYJQGfw4MGbNm06e/ashfVoNJo5c+a0bt26Xr16qgQGAHAlL7zwQlpa2pdffml5VbNnz/b29u7fv7/lVQEAXEynTp3CwsJmzZpleVU7duw4duzY4MGDLa8KAOBi/P39+/btu2TJEsuvxitnSQMGDPD29lYlNgAG3GvVqjV69GgRSU1Nbdeu3fbt2+/fv5+enr59+/bOnTtPnz5dRAYPHvzpp58qG/j6+ubn5xeuSLmtWPk9nPGef/75GjVq1KhR46+//rKwJTq9evXq0aOHiMyZM2fZsmW69xcuXLh8+XIR6du3b4cOHYrcNi8vb9WqVS+88AI3mgE2M3r06JCQkA8//NDCelauXHn06NFp06apEhUAwMVERET069dv0qRJDx48sKSev/76a8GCBaNHj65atapasQEAXIa3t/ekSZPWr1//66+/WlKPRqMZP35806ZNuUUYAFCkyZMnp6WlWX7bx/Tp07Oysv7973+rEhWAwtxFZMqUKRERESJy7ty5Hj16lC9fvmLFij169Ni9e7e3t/dHH3309ddf69afrFChgkajKbySj7JkZYUKFUza/e3bt69du3bt2rWCggLLG6OzbNmyqlWrarXa1157rWXLlgMHDnzkkUfeeustjUZTu3btJUuWFLfh5s2bb9++zVqUgC0FBgZOnDhx/fr13377rdmVXL58+f3333/66ae7du2qYmwAAFfyySefpKenv/POO2bXkJeXFx0dHRgYOH78eBUDAwC4khEjRjRs2PC11167d++e2ZV8/PHHf/7556xZs3j+KACgSI888siIESM+/fTTgwcPml3JL7/8Mn/+/LfffrtWrVoqxgZAn7uIBAYG/v777x999FHFihV1H5QrV+7ll18+fvz4pEmT9B+fpkyzXb161aCia9euiUj58uVtEHSpqlWrlpiY2LlzZxFJTEz87rvvzp8/LyLdu3ffv39/WFhYcRvGxsY2bNiwbdu2tosVgMjrr7/et2/fV155xbzvDZmZmX379vXy8lJlkTEAgKtq2LDh3Llz4+Li5syZY14NY8aM+eWXX1atWhUcHKxubAAAl+Hp6fntt99euXJl8ODB5t1wvH79+o8++uif//wntxgCAErw6aef1q9fv1+/fsnJyWZsfvny5QEDBjRt2nTy5MmqxwZA5//fUeXp6Tlp0qTU1NS//vrrp59+OnHixK1bt+Li4h555BGDDZR3lDktfSdOnPD19a1Tp45Ju9+1a5dWq9Vqtao/wyksLOynn35KTEycMWPGu+++O3fu3KNHj27fvr1y5crFbXLjxo1t27a98sor6kYCoFTu7u6rVq2qX79+165dN2/ebNK2ycnJXbp0OXv27Lp16/7xj39YKUIAgGt48803R44c+c9//nP8+PHKo4KNlJ+fP3r06EWLFn366afKyucAABSnWbNmq1at+uGHH3r16mXq7+G++eabIUOGREVFzZgxw0rhAQBcQ2Bg4MaNG/Pz8zt06HDy5EmTtj127FjHjh09PDzWrVtn6hOmAJjEcFmDWrVqde7cuXHjxj4+PkVu0LdvXxH5448/9N88f/78rVu3OnfuHBAQYKVAzdO8efN//etfs2bNGjNmzOOPP15y4ZUrV7q5uQ0dOtQ2sQHQFxgYuHPnzqZNm/bv3/+TTz5RVrgt1fbt2yMiIi5duvTjjz+2adPG2kECAFzAggULxowZM3PmzEGDBt28edOYTc6dO9e5c+fFixfPnTt33Lhx1o4QAOAC+vfvHx8fv3fv3nbt2h06dMiYTe7du/f2228PGTKkT58+69at0z0WBACA4tSqVWv37t3u7u7t2rX76quvjLnRUKPRLF++vF27dv7+/nv37q1evboN4gTKMpPXFu/Ro4ePj09cXFxWVpbuzc8//1xE+vTpo2ZoNhcbG/vMM89UqVLF3oEAZVRoaOjOnTtfffXVCRMmNGzY8L///W9mZmaRJTUazS+//NKtW7cePXpUq1btwIED7du3t3G0AAAn5eHhMWfOnNjY2G3btoWHh0+aNKmExVuSkpLefPPNJk2anDt3bsuWLWPGjLFhpAAA5zZw4MBff/01JyendevWgwcPPnLkSHEl09LS5s2bFx4evnTp0mnTpn377bf+/v42jBQA4MQeffTR/fv3P/nkk0OHDo2IiNiyZUteXl6RJXNzcxMSEpo3b/7qq69GRUXt27cvPDzcxtECZZCnqRsEBQW9//77U6dOff755z/77LOqVasuXrx44cKFDRo0GD58uDVCtI3ffvvt3Llz//nPf+wdCFCmeXt7L1q0aMSIEf/6179efvnlkSNHdu3atU2bNsrv4pOSkubMmXPy5MktW7akpKTUrl37q6++Gjx4MM8qBwCYKjo6umfPnlOmTPnkk0+mTp0aERHRtWvX6tWr5+fnZ2Zmzp8///Lly9u3bz958mRAQMAHH3zwz3/+MygoyN5RAwCcTPPmzU+dOrV48eKPP/44Pj6+Tp06PXv2rF+//q1bt0Rk+fLl165d27t37y+//FJQUDBo0KBp06bVrVvX3lEDAJxMxYoVt27dum3btvHjx/fq1atChQo9evRo1qyZskbl77//fuPGjT///HP79u33799v2bLlzp07u3TpYu+ogbLC5Ek4EZk0aVJaWtqiRYt0j2567LHHEhISfH19VY3NpmJjY6tUqdKzZ097BwJAWrRo8eOPPx47diwhIWHjxo3Tp09Xfnr7yy+/7Nu3r0aNGs8++2y/fv06duzo7e1t72ABAM6qSpUqCxcu/J//+Z+EhIQNGzYsXrw4PT1dRHJyckaPHl25cuWnnnpq/PjxzzzzTHBwsL2DBQA4K29v73feeefVV1/dvn37hg0bNmzYcOPGDY1GIyKvvvpqYGBgy5YtZ86c2a9fP6bfAACW6NGjR/fu3X///feEhITNmzd///33ubm5IrJ06VIfH5/w8PBRo0b169evTZs2bm5u9g4WKEPMmYTz8PBYsGDBm2++uWPHjoyMjGbNmvXo0cOpf4mSkZGxZs2aUaNGeXqac0AAWMPjjz/++OOP//vf/xaR48ePP/7444MGDfrmm2+cOtsAABxN1apVR44cOXLkSBHJysoKCQkJDg6+ePFicQ9IBgDADP7+/s8+++yzzz4rIvn5+cqD4u7fvx8YGGjv0AAArsPd3b19+/bt27dX1nubMWPGBx98MH/+/LfeesveoQFll/lzTo8++uijjz6qYih2tHbt2oyMjOjoaHsHAqBo5cqVExF/f39m4AAA1uPn5+fu7u7p6ckMHADAenQDDTNwAACrUlbUZ119wL64nC0iEhcX98QTT7jMnCIAAAAAAAAAAADsy4lXX6xTp05GRoYqVSUnJ3/88ceqVAUAAAAAAAAAAAA48STc559/rlZVSUlJalUFAAAAAAAAAAAAsBwlAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTjwJl5+fn5ubq0pVOTk5qtQDAAAAAAAAAAAAiFNPwo0aNWr48OGqVFW7du1FixapUhUAAAAAAAAAAADgxJNwN2/evHnzpipVtWjRYv78+apUBQAAAAAAAAAAADjxJJwxCgoKkpKSfv7555MnT2o0muKKRUdHnzlz5v+1d99xTV1vA8BP2EN22BsRQQHBxayACIiyBAQKaivWUapWUAS0FK0WV6s46hZE1IJSTSJqRQQVkWHLEBUEcYAyRDaRmeT9435+vBQ1jNxcDD7fv+K9z3nywEfuSe6555ycnBwiawMAAAAAAAAAAAAAAAAAAABj1ZgdhGMymTExMRoaGhMmTLC3tzc0NNTW1v7UdDc3Nzc5ObnY2FiCiwQAAAAAAAAAAAAAAAAAAABjksBoF8AVXV1d/v7+ly5dwv4pJib2/v37ysrKtWvXZmZmJiYm8vH9Z/RRSEgoICDg9OnTMTExYmJio1EyAJ8RBoORlZVFpVKLiopqampaW1t37dp1/fp1VVVVBwcHNzc3VVXV0a6ROHQ6/caNG1evXi0rK3vx4gVC6Ouvv9bT0xs/fvz8+fPnzp0rKSk52jUCAACvKi0tpVAo9+7de/PmTXFxMYvFMjY2VlNTMzMzc3d3NzExGe0CicNkMrOzs6lUakFBQXV1dV1d3f79+9PT09XU1Ozt7d3c3DQ0NEa7RgAA4FX19fVXrly5ceNGVVXVo0ePEEIzZsxQUlIyMjJyc3OzsbEREhIa7RqJU15eTqFQMjMzX79+XVxczGAwjIyM1NTUZsyY4e7uPnXqVBKJNNo1AgAAT+rs7ExLS0tJSSkpKamqqkIIrVixYt++fVpaWvPmzZs3b56MjMxo10ichoaGlJSUv//+u7Ky8vHjxwghKysrFRUVQ0NDV1dXOzs7YWHh0a4RAIKMzZlwUVFR2Ajcd999V1tb297eXlxcvHDhQoTQxYsXd+7c+WGTwMDA1tbWv/76i+haAficdHR07N69W1lZ2cbG5vTp08LCwpaWlgICAgYGBrq6upWVlatXr1ZXV7e3t8/NzR3tYrmutrb2+++/l5eX9/LySk9PJ5PJ1tbWCCELCwtFRcXs7GxfX18FBYWlS5diH60AAAAMHZVKNTY2NjAwiIqKamtrMzIyUlVVlZWVnTp1and3965du0xNTSdMmHD27Fk2K4qPDV1dXTExMaqqqtbW1idOnBAUFDQ3NxcWFtbT05s4cWJ1dfWPP/6oqak5a9ase/fujXaxAADAYx49euTm5qasrLxs2bLS0lINDQ3sCQ8rKytJSckLFy44OjoqKCj8/PPPbW1to10s1127dm3q1Kl6enqbN29uamoyNDTU0NCQkpKaPn06g8H4/fffp0+fPn78+Li4OAaDMdrFAgAAL2loaFi/fj2ZTHZ1db169aq0tDR2B2nGjBkqKioFBQWLFi1SVFT8+uuvKyoqRrtYristLfXy8lJUVPz2228fPXqkpqY2bdo0hJCVlZW0tPTly5ednZ0VFBQiIiKam5tHu1gACMHiWS4uLra2th8eLysrExAQQAgtXry4/3EGg7FgwQKEkICAwPPnzz9saGpqamdnx61yAfjs0Wg0dXV1Pj6+xYsX37p1q6enBzsuKSkZFRWFva6urj5y5Iiuri6JRPLx8WlsbCSmtpcvXyKEli5dSszbMZnMnTt3iouLjxs3LiIiorCwEDteWFiIEEpLS8P++fjx4y1btkhLS4uIiERGRvb29hJTHgAA8LTy8nIrKyuEkLm5+Z9//tnc3Iwd9/b2trS0xF7T6fRLly45ODgghExMTPLz8wkrT1xcXENDg7C3u3HjhpaWFolE8vPzS01N7e7uxo4rKSlt3LgRe11XV3fixAl9fX2EkIeHx9u3bwkrDwAAeBedTv/uu+/4+flVVVX37dv38uVL7Pjx48cRQq2trSwWi8Fg3Lt3b9WqVYKCgvLy8gkJCYSVZ21tTSKRCHu7Fy9e2NraIoSmT59+9uzZvu9xS5YsMTExwV6/f/+eRqPNmzcPIWRoaJibm0tYeQAAwNMOHTokLS0tKioaHBz84MEDJpPJ+t+NrOTkZCymrKwsOjqaTCYLCQmFhIR0dXURVhtC6PTp08S8XUdHR1BQkICAgJKS0p49e/ruwCckJCCE6urqWCwWg8HIzs5evXq1kJCQnJzcyZMniakNgFE0BgfhNmzYgBASERGprq4ecOrFixf8/PwIoa1bt37Y8ODBgyQS6aPjcwCMbUwmc8eOHXx8fLa2tkVFRQPO9h+Ew3R3dx88eFBCQmLChAklJSUEVEjkIBydTscmzi5fvry2trb/qQGDcJiGhoYff/yRRCI5Ozv33UoGAADwUbdu3ZKVldXQ0EhOTsa+nfbpPwjX58aNG/r6+uLi4hcvXiSmQiIH4fbt28fPz29lZfXPP/8MONV/EA7T09Nz7NgxGRkZLS2thw8fElMhAADwqKqqqqlTpwoLC0dHR79//77/qf6DcH3KyspcXV0RQiEhIcQ8WkfkINzdu3fl5eVVVFQSExMHdL79B+H6pKenGxoaioiInD17lpgKAQCAR3V1dQUGBiKE/P39Kysr+58aMAiHaWlpiYiI4OfnnzVrVn19PQEVEjkIV1NTY25uLigouGXLlvb29v6n+g/C9Xn+/LmXlxdC6IcffuibCQDAmDQGl6M8f/48QsjGxkZZWXnAKS0tLRsbG4TQ2bNnP2zo7+8vJCR0+vRp7tcIwOclJCQkIiJizZo1aWlpxsbGg8YLCgquXr36/v37DAbDwsIC21ZhbOjs7HR0dKTRaPHx8cePH1dUVBy0iaysbExMTHJy8t27d2fNmvUlrGMDAAAjc+XKFScnJwMDgwcPHnh5eQ1lyxlHR8fc3FwbGxsfH59Tp04RUCRhNm/eHBwc/N1332VkZGDLs7AnICCwYsWKnJwcbLHo/Px8AooEAABeVFVVZWZmVl1dnZGRERERISoqOmiTCRMmUKnUX375Zd++fQEBASwWi4A6iZGamjpnzhxtbe0HDx74+voOpfO1s7PLycmZN2/eokWLsLu3AAAAPtTb2+vu7n7mzJmDBw+eO3dOXV190CaSkpLR0dFXr159+PChhYXFu3fvCKiTGLW1tebm5s+ePbt582ZUVJS4uPigTbS1tZOTk3fv3n3kyBFvb+8xvw0B+JKNtUG458+fV1dXI4SmTJny0QDseHl5+YeXOVlZWXd399OnT8PfPPiiHD9+PCYm5tdff42JicGmig4RtkSJvLy8u7v7mPncsHz58ry8vGvXri1ZsmRYDT09PdPT0589exYQEADXEAAA+FBxcXFAQICdnd2tW7cUFBSG3lBSUpJGo/n5+QUFBWVmZnKvQiIlJCRER0f/9NNPR48eFRQUHHpDPT297OxsTU1Nd3f32tpa7lUIAAA8ik6nu7u7M5nMnJwcCwuLoTckkUiRkZEnT55MSkratm0b9yok0tOnT319fc3NzW/fvq2iojL0huLi4snJyYGBgcHBwTdv3uRehQAAwLtCQkJSU1MvXry4evXqYTV0cnK6d+9efX39woULe3p6uFQekTo7OxcsWECn0+/fv49NgBm60NDQhIQEGo22efNmLpUHwKgba4Nw2GJx6NODcBMnTsReFBUVfXh26dKllZWV6enp3KkOgM9OQUHB6tWrFy9evGnTphE0J5PJNBqtoaHhm2++wb22D3H7idSjR4+ePXv20KFDs2fPHkHzmTNnxsXFpaSk7N69G/faAACAp2HfypSVlZOSkoSFhYfbnJ+f/9SpUyYmJt7e3k1NTdyokEglJSUrVqzw9vb+5ZdfRtBcRkaGRqN1dHT4+/vjXhsAAPC6NWvWlJSUXL58WVNTcwTNAwMDN2zYsGXLlrS0NNxrI1hPT8+CBQtkZGT++uuvoUwHHIBEIh05csTCwsLX17euro4bFQIAAO9KSko6ePBgdHS0h4fHCJpPnjw5MTExMzMzMjIS79L+g5jHxDds2PDvv/8mJydPmDBhBM39/f1/+umnXbt2paSk4F4bAJ+DjwzC5eXlBQUFWVhYqKmpycrK2tjYbN++nUvD8kePHg0NDQ0NDW1oaMAlYWNjI/ZCV1f3owF9x1+8ePHhWUdHRzU1tbi4OFyKAeDzFxYWpqKigu2LMDL6+voHDhy4du0alx6QrK2tDQsLs7e3RwjFx8fr6emtX7/+zZs3uL9RW1tbVFSUl5fXihUrRpzEx8dn2bJlO3bsqK+vx7E2AADgdX/88ceLFy/+/PNPGRmZkWUQFRVNSkpqbW2Njo7GtzYM1t3o6+vT6fTKykrudTcIoYiICBkZmbi4uKGsCfZROjo6R44cycjIoNFo+NYGAAA8raioKD4+fuvWrebm5iNOsnPnThMTk9DQUG7cuOzrbrKyslgsFle7mxMnTpSWlp49e5ZMJo8sg5CQUGJiYnd398ieGgEAgLGqq6srPDzc3t4+LCxsxEnmzp0bHBwcExOD7R6Hr77uZt26dQihsLAw7nU3paWlx44d27Rp03DnwPW3detWMzOz0NDQ3t5eHGsD4HPRf4O4vLw8fX39j4bNnDmzs7MT9y3pbG1tsfzPnj0bblsXFxdbW9sBB/fs2YMl/NR+9dnZ2VjA3r17PxqwadMmERGRpqam4dYDAM/Bnu48c+YM+zBJScmoqCg2AQwGY8qUKaampgN2+eZcUlLSR1eRFhUVHbTs4YqKihIUFCwrK2MTg821TUtLYxPz5s0bMTGxtWvX4lseAADwrubmZllZWWyLHTa8vb0tLS3Zx6xfv15ERGTAnuecI7K7ycrKQggdPXqUfZiSktLGjRvZBDCZTHNzcwMDAwaDgWuBAADAw5ydnTU0NDo6OtjEYA8gtra2solJTU1FCJ09exbf8ojsbtrb2xUVFT09PdmHLVmyxMTEhH1MZGSkoKBgeXk5ftUBAABvi4mJIZFI//zzD5sYbGgtOTmZTUxjY6OsrOzixYvxLY/I7obFYnl5eSkpKbW1tbGJSUhIQAjV1dWxicG2Hjh+/DjeBQIw+v4zEy4rK6u0tNTAwCA8PDw+Pj4nJ4dCoZiamiKE8vLyYmJiPjo+91lpbm7GXggJCX00oG/Xjba2to8GLF26tLOzMzExkQvVAfB5iY2NHT9+fEBAAId5+Pj4IiMjCwoK+taDxcWFCxf8/PzodPqHpzo6OpYsWXLmzBm83ovFYsXFxX399dcjmzjfn4qKynfffZeQkDA21vUGAADOUanUxsbGn3/+mfNUERERTCbz/PnznKfqQ2R3gxCKi4tTVVVdtmwZh3mwvYtKSkpycnJwKQwAAHhddXX1jRs3QkNDRUREOEzl4OBgYWGB7xo5BHc3165dq6urw6XzDQ0NFRQUxO6fAgAAQAjFxcW5uLhMmzaNwzwyMjJr1qy5ePFie3s7LoUhwrubxsZGKpUaHBw8btw4DlNZW1vPnj07NjYWl8IA+Kz8ZxBOXl6eQqE8fvx4x44dS5YsMTMzc3d3p9FofHx8CKFLly7h/vY///xzYmJiYmKioqIiLgn7tgkZdBDuU1c3XV3dr776Cv7gwZjX09Nz/fp1T09P7A+cQ/PmzRMXF6dSqZynwtTV1S1btozFdhO4VatW4TWVPj8/v7Ky0svLC5dsXl5eTU1Nd+/exSUbAADwOgqFYmxsrKenx3kqOTk5W1tb3u1umExmSkqKh4eHgIAA59kcHBykpaVx/G0AAABPo1KpLBZrZHvzfMjT0/POnTt4bZxBcHeDEKJQKLq6ulOmTOE8lYSEhKOjI3Q3AACAefnyZVFREY53kDo7O//++29cshHf3Vy5cqW3t3fBggW4ZPPy8srLy6upqcElGwCfj//cfA8ICHB3dx+wO4Wampq6ujpCqKqqakDj7u7uvplnI2NnZ+fr6+vr68v5aHlfSdiLT63e3neczQqzgYGBDx48ePToES4lAfB5ysnJaWpqcnFxwSWbqKiovb09Xh8aEEIxMTGDPgfU0dGxd+9eXN4uNTVVRERkzpw5uGSzsrKSk5O7ceMGLtkAAICnsVis1NRUvLobhJCrq2tubm7fc1ccIri7KSgoqK2txeu3ISgo6OTkhGPnCwAAPC01NXX69Olqamq4ZHNzc+vt7U1PT8clG8HdDULoxo0brq6ueGVzdXUtKiqCu6IAAIAQun79Oh8f3/z583HJZmRkpK2tjdcdJOK7m9TU1MmTJ3O+rBTGzc2NyWRii0IDMJYMPgOGwWDU1tYihLChOExRUZGjo6OoqKiMjIy2tvaxY8e4WONw9A3m9Y3GDdB3XEpK6lNJFi5cOG7cOHyXngDgc4MtTj1p0iS8EhoYGOC4l+yVK1eGEkaj0XB5uxcvXmhra4uJieGSjZ+fX09Pjxs76wIAAM+pr6+n0+n4djdMJrOyshKXbAR3N7h3vvr6+tDdAAAA5sWLFzheYHV1dQUFBfG6xhLc3bS1tTU0NODb+aL/9WIAAPCFe/nypYKCAplMxishjvfTCO5uEN6dr5qamoSEBHQ3YOwZfCWcZ8+edXV1IYSmTp2KHfn333/t7Oz4+PhCQkJkZGQuXbqEzWP95ZdfuFvsEEhISGAvOBmEExcXX7hw4fnz53/77bcB8wKHjslkJicnczhTEPRXVlamqakpLCw82oWMETQajZ+fPz09fdD/5D09PU+ePLl48SL7sJqamrdv3x4+fBiXJbbKysqGEvb8+fOjR49yvqLmnTt3WCzWoD/jq1evsODGxkb2kZ2dndnZ2diu7wAXT58+1dHR6VtSGADuqampERQUxPE71RcOu3KWlZUNeo19/fp1U1PToGHY2inHjh0zMTHhvDyCu5u///6bRCJlZWXl5uayj+zs7Hz69OlQfhutra0HDhzgfAMkgHnz5o2IiIicnNxoFwLGPjqdXldXp6OjM9qFjB3l5eVqamqDXjn//fdfhNDly5dFRUXZR4qJiVGpVDa3DoaO4O4Gm7JWUVExlC84zc3Ng4a9e/cOIXTy5Mni4mIOawMYbKBUS0trtAsBYx+LxSopKTEwMBjxHU4wQGpqKj8//6BXzvr6eoRQdnb2p1Zr69Pe3v748WNc7iAR3N0ghJ48eSIuLj7obyMvLw8hRKPRBu1VRURErl69qqyszHltACHEZDJLS0vhCoCj0tLS8ePHD+v+pKioKGJ9oKGhgUajhYWF+fv7Ozg49G3gERsby2KxmEzmlClTREVFCwsLsfje3l4HBwd+fv5Hjx59mI17XFxcbG1tBxzcvXs3Vm1mZuZHW124cKH/j/MpAQEB6urqnJT36tUrXIYiAAAAAAAAAAAAAAAAAAAAAM/5/1Gijo6O2NjYY8eOYWNpH4bOnDkTIVRYWFhUVLRmzZq+DX75+fl37do1derUXbt2nTlzhpi6P6XvufWKigpra+sPAyoqKrAX0tLSn0rS0tJy6dKlkJAQTirR0NBobm7+1IQ8MAI9PT0wCQZHR48e/emnn7AJH+wjNTU1g4KCwsLC2Ift379/x44dNTU1uDxbYW1t/eTJk0HDdHV1sadpOLR06dKamppBt9V59OjRrFmzLl++bGNjwz7Sz8+vq6vr8uXLnNcGMN3d3UJCQqNdBfgi9Pb28vHx4fJUIEAIlZeXm5mZJSUlOTg4sI/89ttva2trB70UP3z40NbWlkqlfvXVV5yXR3B3c+bMmXXr1lVWVg66HbK+vr6fn9+WLVvYhx07dmzTpk01NTVwhcRLb28vPz8/PCgKiAEfb/BlbGzs6ur666+/sg8b+qVYT09v8eLFkZGRnNdGcHdTVVU1ZcqU+Pj4QbeFCwoKevz48Z07d9iHPXv2bObMmYmJiY6OjpyXBzBwBQCEgftp+AoODs7Ozs7JyWEfNvRL8apVq54+fZqRkcF5bQR3NwghMzMzS0vLffv2sQ+7cOEC9mPKy8uzj5wyZcr8+fOjo6NxKQ8guALgbQS/T4G+qVqPHz/29PTEpqwaGxv7+fkZGRlNmjRJSUnJ3t4+Jydn3Lhx2CLg2J0RJyen/olMTU3l5eUzMzPx+VE4YGxsjL341PTbvkG4yZMnfypJYmJiR0fHt99+y2Ex4uLi4uLiHCYBgEt0dXWZTGZ3d7eCggL7SBKJJCIiIiMjwz6sublZSUlJVlYWl/K8vLyG8rnB29t70MKGQlNTs6ioaNBUkpKSCCEJCYlBI+vr6ydPnoxLbQAAwNP09fURQm1tbYNeEoWEhAQEBAYNo9PpCKGJEyfico0luLvR1dVFCHV0dPTfa/mj+Pj4htL5trS0kMlkRUVFzmsDAABep6am1tDQMOiVE9sHWlpaum8zi4/q7u5uaGjQ1tbmxe5GXFycRCK1trYOpfPl5+cfYuerp6cHX3AAAEBLS4tCoQx6PWxtbUUIiYuLDxr57t07NTU1XuxuEELq6upD6XyxO+TS0tLsI1ks1tu3b7W0tKC7AWMMH0Koqalpzpw5ZWVlkyZNyszMLCoqioiIcHFxwXbfKSwsRAhNnz4deyQ8LS0NIWRkZDQg0cSJE1++fFlbW0v0T/BfhoaG2JYY2DrvH8JWMJeRkZkwYcKnksTGxtrY2GB3SQAYq7B9Uwd9cmfocnNzcdyLde3atYOuEy0hIREcHIzL2xkYGFRWVmJ7J3Cura3tyZMnOP42AACAd0lKSqqqqg66BdrQ5eTkiImJaWpq4pKN+O4GfcadLwAA8DQDAwMcu5u8vDwWi4VdtzlHcHcjJCQ0fvx4fDtfLCdeCQEAgHcZGBi0tLSUlpbikq2npyc/Px+vj/QEdzcIIQMDgwcPHgy6790QFRQUdHV14dX5AvD54EMI7du3Dxs8++uvvwYs4VhcXNzZ2Yn+txYl+t8Gv6qqqgMSaWtrI4TKy8u5XzM7wsLC2CTfO3fuYBtg9vf69Wtssq2Hh8enFpl5/PhxXl5eYGAgt0sFYHRNnjx5woQJVCoVl2zV1dW5ublubm64ZEMIkcnkhIQENsvB8fHxxcfHDzqNb4jc3NxYLNaVK1dwyXb9+vWuri4cfxsAAMDT3NzcqFQqXl/MKBSKk5MT9tAV5wjubnR0dAwNDfHqfBsbGzMzM6G7AQAAjJub26tXr7DHiDlHoVCkpKRmzZqFSzaCuxuEkJubW0pKSk9PDy7ZKBSKnZ0dti4IAAB84ebOnSskJITXR/rbt283Nzfj9ZF+VLqburo6vJ4ypFAoYmJic+bMwSUbAJ8PPoTQgwcPEEJ8fHwqKioDTm/duhV70TcI19LSwsfHx8/PPyBSVFQU/W+NgtG1ZMkShFBnZ+euXbsGnNq2bRu23d3SpUs/1Tw2NlZCQsLb25urRQLwOXB1dU1JSWlpaeE81Z9//okQwvc+oKurK41G++j6ljIyMhQKZcGCBXi9l4qKyvTp08+dO4dLtvPnz+vq6rJZ8xYAAL4oHh4eb9++xVZT4FBxcXFxcbG7uzvnqfoQ2d0ghDw8PG7cuPHu3TvOUyUmJvb29uL72wAAAN7l6OgoJiaGy0f67u7u5OTk+fPn47hlF/HdTXNz87Vr1zhPVV5e/uDBA+huAAAAIyUlZWtre/78eVyeMjx37pyCgoKFhQXnqTAEdze2trZSUlK4dL4MBiMpKQnrzTnPBsBnhQ8hhD0bxWQy16xZ8/TpU4RQV1dXamqqra0tjUbD4voG4VpbW/t2kusPO9je3j6st/fx8VFXV1dXV3/58uXIf4j/cnFxcXZ2Rgjt3bv3xIkTfcf/+OOPkydPIoTc3d2/+uqrj7bt6elJSEjw8/ODv3bwJVi9enVHR8eHw9XD1dLSsnPnTj8/vw/nyHJo/vz5FRUV0dHR5ubm8vLyZDLZzMxs27ZtFRUVg25sO1zBwcF37969fv06h3lyc3NpNFpISAguVQEAwBgwZ84cExOTsLAwzr+mhoeHq6qqLly4EJfC+hDZ3Xz//fcsFmv79u0c5qHT6du3b/fw8IDFwQAAACMmJrZixYpDhw5VVlZymOrw4cOVlZVr1qzBpbA+RHY31tbW5ubmERERvb29HKbatGmTnJxcQEAALoUBAMAYEBwc/PDhw8TERA7zlJSUnDt37scff/xwugsniOxuhISEfvjhhxMnTjx79ozDVKdOnSorK1u7di0uhQHweWGxWHv27Ol/RExMDFuqUVJSEts1UVFRkfU/ZDKZj4+P9YHly5cjhFJSUj48xYatrS32ps+ePRtWQxaL5eLiYmtr+9FTr1+/VlZWxjJPnTrV29u7bwc4LS2tmpqaT+W8dOkSQig7O3u4xQDAo9auXSsmJlZRUcEmRlJSMioqik1AcHCwkJAQ+ySfPyaTOW3aNENDw46Ojk/FYIvbpKWlfSqgp6fH3NxcT0+vu7ubO2UCAABPunr1KkLo9OnTbGK8vb0tLS3ZBGDPSZw6dQrv6ogWHh4uJCT05MkTNjFKSkobN25kE7B582YBAQH2SQAA4EtTX18vJSXl7+/PJub48eMIodbW1k8F1NXVkclkX19fLhRIqPT0dITQkSNH2MQsWbLExMSETcDt27dJJNLBgwfxrg4AAHjb7NmztbW12fQm2IST5OTkTwUwGAxHR0dVVVU6nc6dGgnS3NxMJpM9PDyYTOanYhISEhBCdXV1nwpoaGhQVlbGNosBYOzhQwitW7cOmzqG6ejoMDY23rp1K3ZLHfWbBocQkpaWZjKZHy4s3tXVhZ3lcFAQF6qqqvn5+bNnz0YI5efnJycnY5vVOTk55ebmKikpfaphbGysvr6+ubk5cbUCMKoiIyNlZWXd3d3b2tpGluHChQsxMTHh4eE6Ojr41kYwEol04MCBp0+fYo8UjExISEheXt6BAwcEBQVxrA0AAHjdvHnz3N3dg4KC8vPzR5ahoqJi0aJFVlZW33zzDb61EQ+bz+fh4dHU1DSyDDQabceOHevWrYNNywEAoD8ymRwdHX3+/PkDBw6MLEN3d7e3tzeTydy5cye+tRHPzs7Oz89v3bp12dnZI8tQVVXl6+s7derUlStX4lsbAADwupiYmLq6On9//xGv9rFly5abN2/u27eP19djk5KS2rNnD4VCGfFSW729vb6+vnQ6fcBMIQDGDAGEkICAwLVr1x4+fPj27VslJSV1dXUpKSns9Id7vGHDbFVVVQNuuL9+/Roh1NdwiDIyMkZa+SCUlJRu3bpVUFCQmppaX1+vpqY2e/ZsY2NjNk1qamquX78+Bj5qAzB0ZDKZQqHMmjXLx8cnOTkZm/w6dBkZGUuXLnV1dY2KiuJShUSytLQ8dOjQypUrNTQ0tm/fjs0JHrrff//94MGDu3btcnJy4lKFAADAuxISEiwsLNzd3dPS0iZOnDistm/evHFzcxMTE/vrr7/wXaplVEhJSdFoNEtLS09PTyqVKikpOazm9+/fX7Rokb29/Y4dO7hUIQAA8C7sgY/169erqKgMd6/37u7uwMDA7Ozsa9euaWlpcadAQp06derp06eenp5paWnD3bK6rq7Ozc2NRCJRKBR4xBAAAAYwMjKKi4vz8/Nbu3bt/v37h/sl5eTJk9u3bw8PD8d9pf1R8e233+bn52/evFlNTW3RokXDatvb27tq1ar09HQqlaqnp8elCgEYXXx9r4yNjefMmWNoaMh+IA37Y8AmlvX36NEjERERbW1tblQ5YqampmFhYb/99tu6devYj8AhhM6cOUMikRYvXkxMbQB8JqZNm3bu3Lnbt29bWVm9evVq6A2PHDni5ORkYmJy9uxZPj6+wRvwghUrVmzatCk6Ovrrr79+//79EFt1d3cvX758w4YNQUFBGzdu5GqFAADAoyQkJGg0moCAgLm5eWpq6tAb5ubmzpgxo6GhgUajKSoqcq9CIhkaGiYlJT148MDCwqKiomLoDePi4mbPnq2np5eUlPTRfZoBAAAcPnzY0dHRx8dn+/bt2Oo+Q1FfX+/g4JCUlHT06FEHBweuVkgYMTExKpUqISFhYWFx5cqVoTcsKCiYMWNGVVUVlUpVU1PjXoUAAMC7fHx8du3adfjwYXd399bW1iG2YjAYISEhy5cv9/f353yj6M/H3r17PTw8lixZsnnz5qHPDmxsbJw7d25cXNyBAwdcXFy4WiEAo2jY983d3d0RQjk5Of0PlpeXv337dvbs2cOdRvNZiY2NnT9//pi5uQPA0Hl4eNy/f7+xsdHQ0HDLli0dHR3s4588eeLj4xMUFOTt7Z2WliYhIUFMncT49ddfz507R6VSDQwMjh8/PuhHh7S0tBkzZsTFxe3cufOPP/4gpkgAAOBFOjo6//zzj6mpqbOzs4+PD7ZNAhsNDQ3h4eE2Njby8vI5OTkmJiZEVEkUZ2fn+/fv0+n0KVOmhIeHD/q9vbS01MfHJzAw0M3N7e7duzIyMsTUCQAAPEdISIhGo23cuDEyMtLCwuLu3bvs43t6eo4fP25sbFxYWHj58uVly5YRUycx1NXVc3NzzczM3N3dfXx8nj9/zj6+qakpPDzc0tJSVFQ0Kyur/+4kAAAABggNDb1w4cLt27cnT558/PhxBoPBPj4tLW3mzJkxMTFhYWEJCQlj5ol2hJCAgEBycvKOHTt27Nhhbm4+6Op3TCbzzJkzhoaGubm5ly5d+uGHH4ipE4BRMew/dWdnZ2Fh4bi4uP636bH11t3c3PAsjVhZWVllZWWBgYGjXQgAo8PU1DQ3N9fb23vbtm26urrr16+/e/fugE8P9fX1sbGxbm5uRkZGOTk58fHx58+fFxUVHa2aucff3z8rK0tbW3vlypWmpqbR0dGPHz8eEFNeXr5nz56ZM2c6ODiIiorevXs3LCxsVKoFAAAeIicn9/fff2/fvj01NXXSpEmLFy9OTk5ub2/vH9PZ2ZmSkrJ8+XIdHZ2DBw+uX7/+/v37Y2NZsAGMjY3z8vL8/f1///33iRMnrlu3LiMjo7e3t39MQ0NDfHz8ggULDA0Ns7KyTpw4kZSUxOv7RgAAALfx8/Pv3LmTQqE0NTXZ2NjMmTPnyJEjb9686R/DYrHy8vI2bdqkr6+/atUqKyurgoKCMfkYvoyMzPXr13fv3n3r1q1Jkyb5+/tfuHBhwMMfXV1d169fX7Vq1fjx4/fv37969ep//vlnuMtHAwDAF8jb2zs3N9fQ0HDlypVGRkZbt24tLCwcEPPixYuYmBhra2sHBwcGg3Hz5s2dO3cOdw+Uzx+JRAoLC0tJSaHT6bNnz7azszt06FBlZWX/GBaL9e+//0ZGRurr63/zzTczZ87Mz8/H5vwAMIaRhr44Q5+ff/5527ZtLi4u+/fvV1ZWPnLkyIYNG/T09AoLC0VERLhR5Ue5urq2t7fjtavcsmXLrl69+vr1a1jYB3zhiouL9+zZk5KS0tTUxM/Pr6ioWFtbKykpyWQyse9ppqamixYtCgoKIvLvfbSkpKT88ccfGRkZXV1dwsLCsrKyNTU1SkpKzc3NnZ2dgoKCNjY2K1eu9PLyGnsfngAAgKsaGhp+++23CxcuYI/kk8lkOp3OYDBkZGTq6uoQQmpqal5eXqGhoaqqqqNdLNeVlJTs3r37ypUrDQ0N/Pz8CgoKb9++FRcXJ5FILS0tCCFjY2N/f/81a9bA8BsAAAxLT09PbGzs6dOn8/LymEymuLi4qKjou3fvVFVV375929PTM27cOGdn55CQEHNz89Euluuampr27duXmJiI7TAiJyfX2dnZ3d0tJydXV1fHYrGUlZU9PT03btyooaEx2sUCAACPSU9P379//82bNzs6OoSEhMhkcnV1tYKCQnt7+/v37/n5+a2trZctWxYQEDCWJsB9FIPBiI+Pj42Nzc7OZjKZYmJi4uLi9fX1qqqq9fX13d3d4uLiTk5OwcHB1tbWo10sAEQYySAcg8H48ccfDx8+3NfWyMiISqUSvCEcjoNw7e3tysrK33///e7duznPBsAY0Nvbe+fOnYcPH75+/RrbGXXmzJnq6upz5szR1NQc7eqI1tbWlpqaWl5e/urVKxqNNnfuXB0dnQkTJjg4OMBqYAAAwKGHDx/eu3evuro6PT39/fv3zs7OKioqFhYW06ZN+9Keb2AwGJmZmYWFha9fv75y5YqmpqalpaWqqqq9vb2Ojs5oVwcAALytpqbm5s2bL1++fPToUW5urqenp5qa2qRJk+zs7L6EhwsHePLkyZ07d2pqajIyMlpaWubNm6eiomJmZjZjxowxf2sYAAC46v379zdv3nz69GllZSWFQrGzs9PT09PV1XVwcCCTyaNdHdHq6upu3rz5/PnzkpKSe/fuYZ2vgYGBvb39mFxYC4BPGckgHKakpCQ1NbW9vd3ExMTZ2Zn4D2o4DsLFxcUFBgY+efLEwMCA82wAAAAAAAAAAAAAAAAAAADgCzfypRcNDAzGzJBVXFychYXFmPlxAAAAAAAAAAAAAAAAAAAAwOji4f3PtLW129vbcUlVXV29fft2XFIBAAAAAAAAAAAAAAAAAAAA8H9XnUV2pAskwQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "oracle.circuit.draw(output='latex')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As seen, the $v_i$'s correspond to the 3 input bits; the $o_0$ is the oracle's output qubit; the $a_0$ is an ancilla qubit.\n", + "\n", + "Let us first compute the groundtruth $\\mathbf{a}$ classically:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The groundtruth result bitstring is 110.\n" + ] + } + ], + "source": [ + "a_bitstr = \"\"\n", + "num_bits = math.log2(len(bitstr))\n", + "for i in reversed(range(3)):\n", + " bit = bitstr[2 ** i]\n", + " a_bitstr += bit\n", + "print(f'The groundtruth result bitstring is {a_bitstr}.')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we can create a `BernsteinVazirani` instance using the oracle, and run it to check the result against the groundtruth." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The result bitstring computed using Bernstein-Vazirani is 110.\n" + ] + } + ], + "source": [ + "bv = BernsteinVazirani(oracle)\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "result = bv.run(QuantumInstance(backend, shots=1024))\n", + "print('The result bitstring computed using Bernstein-Vazirani is {}.'.format(result['result']))\n", + "assert(result['result'] == a_bitstr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The result bitstring computed using Bernstein-Vazirani is 110.\n" + ] + } + ], + "source": [ + "params = {\n", + " 'problem': {\n", + " 'name': 'hiddenstringfinding',\n", + " },\n", + " 'algorithm': {\n", + " 'name': 'BernsteinVazirani'\n", + " },\n", + " 'oracle': {\n", + " 'name': 'TruthTableOracle',\n", + " 'bitmaps': [bitstr]\n", + " },\n", + " 'backend': {\n", + " 'shots': 1024,\n", + " },\n", + "}\n", + "\n", + "result_dict = run_algorithm(params, backend=backend)\n", + "print('The result bitstring computed using Bernstein-Vazirani is {}.'.format(result_dict['result']))\n", + "assert(result_dict['result'] == a_bitstr)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From b42e98832a4435542c42dba87944d632163a9adf Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Tue, 23 Apr 2019 14:01:43 -0400 Subject: [PATCH 075/116] add notebook for simon's --- community/aqua/general/simon.ipynb | 222 +++++++++++++++++++++++++++++ 1 file changed, 222 insertions(+) create mode 100644 community/aqua/general/simon.ipynb diff --git a/community/aqua/general/simon.ipynb b/community/aqua/general/simon.ipynb new file mode 100644 index 000000000..e5c2ac1a7 --- /dev/null +++ b/community/aqua/general/simon.ipynb @@ -0,0 +1,222 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# _*Experiment with the Simon's Algorithm in Aqua*_\n", + "\n", + "This notebook demonstrates how to experiment with the `Simon`'s algorithm in `Qiskit Aqua`.\n", + "\n", + "We first import all necessary modules." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.algorithms import Simon\n", + "from qiskit.aqua.components.oracles import TruthTableOracle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The [Simon's algorithm](https://en.wikipedia.org/wiki/Simon's_problem) is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. We can experiment with it in Aqua by feeding it oracles created using truth tables. For example, we can create a `TruthTableOracle` instance as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "bitmaps = [\n", + " '01101001', \n", + " '10011001', \n", + " '01100110'\n", + "]\n", + "oracle = TruthTableOracle(bitmaps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As shown, the truthtable is specified with three length-8 bitstrings, each containing the values of all entries for a particular output column in the table. Each bitstring has length $8$, so the truthtable has $3$ input bits; There are $3$ bitstrings, so the truthtable has $3$ output bits.\n", + "\n", + "The function $f$ represented by the truthtable is promised to be either 1-to-1 or 2-to-1. Our goal is to determine which. For the case of 2-to-1, we also need to compute the mask $\\mathbf{s}$, which satisfies $\\forall \\mathbf{x},\\mathbf{y}$: $\\mathbf{x} \\oplus \\mathbf{y} = \\mathbf{s}$ iff $f(\\mathbf{x}) = f(\\mathbf{y})$. Apparently, if $f$ is 1-to-1, the corresponding mask $\\mathbf{s} = \\mathbf{0}$.\n", + "\n", + "Let us first compute the groundtruth mask $\\mathbf{s}$ classically:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The groundtruth mask is 011.\n" + ] + } + ], + "source": [ + "def compute_mask(input_bitmaps):\n", + " vals = list(zip(*input_bitmaps))[::-1]\n", + " def find_pair():\n", + " for i in range(len(vals)):\n", + " for j in range(i + 1, len(vals)):\n", + " if vals[i] == vals[j]:\n", + " return i, j\n", + " return 0, 0\n", + "\n", + " k1, k2 = find_pair()\n", + " return np.binary_repr(k1 ^ k2, int(np.log2(len(input_bitmaps[0]))))\n", + "\n", + "mask = compute_mask(bitmaps)\n", + "print(f'The groundtruth mask is {mask}.')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we can create a `Simon` instance using the oracle, and run it to check the result against the groundtruth." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The mask computed using Simon is 011.\n" + ] + } + ], + "source": [ + "simon = Simon(oracle)\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "result = simon.run(QuantumInstance(backend, shots=1024))\n", + "print('The mask computed using Simon is {}.'.format(result['result']))\n", + "assert(result['result'] == mask)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The mask computed using Simon is 011.\n" + ] + } + ], + "source": [ + "params = {\n", + " 'problem': {\n", + " 'name': 'periodfinding',\n", + " },\n", + " 'algorithm': {\n", + " 'name': 'Simon'\n", + " },\n", + " 'oracle': {\n", + " 'name': 'TruthTableOracle',\n", + " 'bitmaps': bitmaps\n", + " },\n", + " 'backend': {\n", + " 'shots': 1024,\n", + " },\n", + "}\n", + "\n", + "result_dict = run_algorithm(params, backend=backend)\n", + "print('The mask computed using Simon is {}.'.format(result_dict['result']))\n", + "assert(result_dict['result'] == mask)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also quickly try a truthtable that represents a 1-to-1 function (i.e., the corresponding mask is $\\mathbf{0}$), as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The groundtruth mask is 000.\n", + "The mask computed using Simon is 000.\n" + ] + } + ], + "source": [ + "bitmaps = [\n", + " '00011110', \n", + " '01100110', \n", + " '10101010'\n", + "]\n", + "mask = compute_mask(bitmaps)\n", + "print(f'The groundtruth mask is {mask}.')\n", + "oracle = TruthTableOracle(bitmaps)\n", + "simon = Simon(oracle)\n", + "result = simon.run(QuantumInstance(backend, shots=1024))\n", + "print('The mask computed using Simon is {}.'.format(result['result']))\n", + "assert(result['result'] == mask)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 54f254116b6242376bfcde4c22ee4b9d0f35a6f5 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Tue, 23 Apr 2019 14:01:53 -0400 Subject: [PATCH 076/116] add notebook for shor's --- community/aqua/general/shors.ipynb | 118 +++++++++++++++++++++++++++++ 1 file changed, 118 insertions(+) create mode 100644 community/aqua/general/shors.ipynb diff --git a/community/aqua/general/shors.ipynb b/community/aqua/general/shors.ipynb new file mode 100644 index 000000000..a3d29375f --- /dev/null +++ b/community/aqua/general/shors.ipynb @@ -0,0 +1,118 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# _*Experiment with the Shor's Algorithm in Aqua*_\n", + "\n", + "This notebook demonstrates how to experiment with the `Shor`'s algorithm in `Qiskit Aqua`.\n", + "\n", + "We first import all necessary modules." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit import BasicAer\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import run_algorithm\n", + "from qiskit.aqua.algorithms import Shor" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The [Shor's Factoring Algorithm](https://en.wikipedia.org/wiki/Shor's_algorithm) is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. With Aqua, we can create a `Shor` instance by simply providing the target integer to be factored and run it, as follows." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The list of factors of 15 as computed by the Shor's algorithm is [3, 5].\n" + ] + } + ], + "source": [ + "N = 15\n", + "shor = Shor(N)\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "quantum_instance = QuantumInstance(backend, shots=1024)\n", + "ret = shor.run(quantum_instance)\n", + "print(\"The list of factors of {} as computed by the Shor's algorithm is {}.\".format(N, ret['factors'][0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The list of factors of 15 as computed by the Shor's algorithm is [3, 5].\n" + ] + } + ], + "source": [ + "params = {\n", + " 'problem': {\n", + " 'name': 'factoring',\n", + " },\n", + " 'algorithm': {\n", + " 'name': 'Shor',\n", + " 'N': N,\n", + " },\n", + " 'backend': {\n", + " 'shots': 1024,\n", + " },\n", + "}\n", + "result_dict = run_algorithm(params, backend=backend)\n", + "print(\"The list of factors of {} as computed by the Shor's algorithm is {}.\".format(N, result_dict['factors'][0]))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 5f4cbcdff10cb1f2091b3e41a10c5f14dd82dfa9 Mon Sep 17 00:00:00 2001 From: Manoel Marques Date: Fri, 26 Apr 2019 13:15:21 -0400 Subject: [PATCH 077/116] Change seed_mapper to seed_transpiler --- .../qsvm_kernel_directly.ipynb | 4 +- .../qsvm_variational.ipynb | 4 +- .../aqua/general/simulations_with_noise.ipynb | 6 +- community/aqua/general/vqe2iqpe.ipynb | 4 +- .../qsvm_kernel_classification.ipynb | 6 +- .../aqua/finance/portfolio_optimization.ipynb | 6 +- qiskit/aqua/optimization/docplex.ipynb | 4 +- qiskit/aqua/optimization/maxcut_and_tsp.ipynb | 194 ++++++++---------- 8 files changed, 98 insertions(+), 130 deletions(-) diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb index 601c0fc37..23c6701ae 100644 --- a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb @@ -195,7 +195,7 @@ "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entangler_map=[[0, 1]])\n", "svm = QSVMKernel(feature_map, training_input, test_input, None)# the data for prediction can be fed later.\n", "svm.random_seed = random_seed\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_mapper=random_seed)\n", + "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)\n", "result = svm.run(quantum_instance)" ] }, @@ -297,7 +297,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.8" } }, "nbformat": 4, diff --git a/community/aqua/artificial_intelligence/qsvm_variational.ipynb b/community/aqua/artificial_intelligence/qsvm_variational.ipynb index ed80f5fc3..9d4e15b28 100644 --- a/community/aqua/artificial_intelligence/qsvm_variational.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_variational.ipynb @@ -186,7 +186,7 @@ "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2)\n", "var_form = RYRZ(num_qubits=feature_dim, depth=3)\n", "svm = QSVMVariational(optimizer, feature_map, var_form, training_input, test_input)\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_mapper=random_seed)" + "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)" ] }, { @@ -243,7 +243,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.8" } }, "nbformat": 4, diff --git a/community/aqua/general/simulations_with_noise.ipynb b/community/aqua/general/simulations_with_noise.ipynb index 75d56803e..72d52d925 100644 --- a/community/aqua/general/simulations_with_noise.ipynb +++ b/community/aqua/general/simulations_with_noise.ipynb @@ -123,7 +123,7 @@ ], "source": [ "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_mapper=167) \n", + "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_transpiler=167) \n", "\n", "counts = []\n", "values = []\n", @@ -210,7 +210,7 @@ "basis_gates = noise_model.basis_gates\n", "\n", "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_mapper=167,\n", + "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_transpiler=167,\n", " coupling_map=coupling_map,\n", " noise_model=noise_model,\n", " basis_gates=basis_gates)\n", @@ -300,7 +300,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.8" } }, "nbformat": 4, diff --git a/community/aqua/general/vqe2iqpe.ipynb b/community/aqua/general/vqe2iqpe.ipynb index 48fd89215..9367a2235 100644 --- a/community/aqua/general/vqe2iqpe.ipynb +++ b/community/aqua/general/vqe2iqpe.ipynb @@ -163,7 +163,7 @@ "iqpe = IQPE(algo_input.qubit_op, state_in, num_time_slices, num_iterations,\n", " expansion_mode='suzuki', expansion_order=2,\n", " shallow_circuit_concat=True)\n", - "quantum_instance = QuantumInstance(backend, shots=100, seed=random_seed, pass_manager=PassManager(), seed_mapper=random_seed)\n", + "quantum_instance = QuantumInstance(backend, shots=100, seed=random_seed, pass_manager=PassManager(), seed_transpiler=random_seed)\n", "result_iqpe = iqpe.run(quantum_instance)\n", "print(\"Continuing with VQE's result, IQPE estimated the ground energy to be {}.\".format(\n", " result_iqpe['energy']))" @@ -193,7 +193,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.8" } }, "nbformat": 4, diff --git a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb index df5c71642..eee1be33b 100644 --- a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb +++ b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb @@ -184,7 +184,7 @@ "qsvm = QSVMKernel(feature_map, training_input, test_input, datapoints[0])\n", "\n", "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", "\n", @@ -284,7 +284,7 @@ "qsvm = QSVMKernel(feature_map, training_input, test_input)\n", "\n", "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", "\n", @@ -324,7 +324,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.8" } }, "nbformat": 4, diff --git a/qiskit/aqua/finance/portfolio_optimization.ipynb b/qiskit/aqua/finance/portfolio_optimization.ipynb index 3858359da..8b04146c1 100644 --- a/qiskit/aqua/finance/portfolio_optimization.ipynb +++ b/qiskit/aqua/finance/portfolio_optimization.ipynb @@ -270,7 +270,7 @@ "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full', initial_state=init_state)\n", "vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", "vqe.random_seed = seed\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -324,7 +324,7 @@ "cobyla.set_options(maxiter=250)\n", "qaoa = QAOA(qubitOp, cobyla, 3, operator_mode='matrix')\n", "qaoa.random_seed = seed\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", "\n", "result = qaoa.run(quantum_instance)\n", "\n", @@ -374,7 +374,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.8" } }, "nbformat": 4, diff --git a/qiskit/aqua/optimization/docplex.ipynb b/qiskit/aqua/optimization/docplex.ipynb index e2570c306..7e77e94ad 100644 --- a/qiskit/aqua/optimization/docplex.ipynb +++ b/qiskit/aqua/optimization/docplex.ipynb @@ -231,7 +231,7 @@ "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -287,7 +287,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.8" } }, "nbformat": 4, diff --git a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb index 91296bd69..04cabd9db 100644 --- a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb +++ b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb @@ -97,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -136,21 +136,9 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, - "outputs": [ - { - "ename": "ImportError", - "evalue": "cannot import name 'IBMQ'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mIBMQ\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m# IBMQ.load_accounts()\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mImportError\u001b[0m: cannot import name 'IBMQ'" - ] - } - ], + "outputs": [], "source": [ "from qiskit import IBMQ\n", "# IBMQ.load_accounts()" @@ -165,19 +153,17 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlclWX+//HXxS4CouK+IS6VlfktdcyWqalmGpuvWllZ+XXBfqFOU2plpZOVppK5oIICCpplY2ZumZNWVlbaoqSWa64IaoosooII5/r9cYMhshzgnHOf5fN8PHh4lpv7/lxp73Ode/ncSmuNEEIIz+JldgFCCCEcT8JfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHsjH7AIqEhYWpsPDw80uQwghXMq2bdsytNaNqlrOacM/PDycrVu3ml2GEEK4FKXUUWuWc9rwFx6msBBSU+HcOfDygkaNoHFjUMrsyoRwSxL+wjw5ObB6NSxbBvv3G0Hv5QVaGx8GdetC164wcCDcfjt4e5tdsRBuQ8JfON7FizB7NixYAEVF4OsLQUFG8Jco+QDYtAm++QYaNIDoaLjrLtPKFsKdyNk+wrH27YP774f4eKhTB0JDjRm+V5l/ikoZHwr16kFICJw9C0OHwsiRcOGCObUL4UYk/IXj7NwJDz8MaWlQvz74VOOLZ2Cg8UHw8ccwYACcP2+/OoXwABL+wjGOHTNCu7DQCPGa8PIyvins2AHDhoHFYtsahfAgEv7C/iwWGD3a2F0TFFS7dSllfABs3gxLl9qmPiE8kIS/sL+PPoKUlJrP+MtSyjhOMHEinDplm3UK4WEk/IV9WSwwZw74+1d6zv6yzEz+7/Bhbt27l9ePH696vX5+UFBgnCYqhKg2CX9hX1u3wsmTxpk9lQjz8WFoWBi9q/PtIDAQkpKM4whCiGqxSfgrpZKVUqeUUr9W8L5SSs1WSh1QSu1USt1si+0KF7B5M1y6VOWVun8JCeGu4GDqVedCLn9/4zjCoUO1LFIIz2Ormf8i4P5K3v870KH452lgno22K5zd998bIW0vWsOePfZbvxBuyibhr7XeBGRWskgfYLE2fA+EKqWa2WLbwskdPGjsn7eXggJjG0KIanHUPv8WwLFSz9OKXxPurqDg6qt3K1BUVERWdjbZOTmct/YqXi8vueBLiBpwqgO+SqmnlVJblVJbT58+bXY5whb8/Ky6GKuoqIijqal4e3vj7+/PiePHOXL0KOfOn0dX9osWS5UHk4UQV3NU+KcDrUo9b1n82hW01ola665a666NGlV5LwLhCiIijNl/JQqLijh09Ci+gYHUDQ7GPyCAVhERhNSrx++//87hw4fJzc0t/0PAzw/atbNL6UK4M0eF/xpgYPFZPz2AHK31CQdtW5ipe3eji2cFCouKSE1NZTXwYGYm75w5w7qcHG7bt4/lly4RERFBWFgYpzMyOHToEDlnz175IaAUXHedvUchhNuxSUtnpdR/gLuAMKVUGvAa4AugtY4H1gG9gAPABWCILbYrXMDttxsdPLW+6nTPwqIiUo8eJSgoiOcbN+aFClYREhxMcHAw58+dI+PMGU6fOkXDsDDqBQTgVacOtG9v/3EI4WZsEv5a68ereF8D/7TFtoSL6dYNmjSBzEzjoqxihUVFHD16lODgYBo1akRV9+tSQFBQEEFBQZy/cIGMjAzyjh/n5COPcH1REf7V6RAqhHCuA77CDXl5wTPPGLt+tLHDprrBX1bdwEDaNG1Kw6ZNWVOnDr1792bx4sVckD7/QlhNwl/Y36OPQufOkJNDYWFhrYIfMD5Ezp/H/7XXeD0+nri4OPbu3Uvv3r1JTEzk7Nmzth6BEG5Hwl/Yn5cXzJxJoa8vJw8dIiQ4mMa1Cf7sbGN30v/9HwDt27dn8uTJJCcnc/LkSfr27cvs2bPJzKzsukMhPJuEv3CIzJAQxrVsSd26dWlU03YPFgtkZUGnTjB//lUXj7Vu3Zrx48ezZMkS8vPz6devH1OnTuXkyZM2GIEQ7kXCX9jdmTNniIqKov2jj1L/88+hcWNj9l5UZP1K8vIgJ8e4/+/SpRAcXOGizZo1Y8yYMXz44YcEBATwxBNPMHHiRI4dO1bh7wjhaZTWlV4/aZquXbvqrVu3ml2GqKWMjAyGDRvG/fffz1NPPWW8mJcH06fD4sXGbN7PDwICrm4DUVhodO3U2rgRzOTJcN99VXYILSsnJ4elS5eybNkyevToQWRkJO3kwjDhppRS27TWXatcTsJf2EtGRgZRUVE88MADREZGXr1AZiasWGHckOXQIfD2/uMDoLAQfH3hlltg0CC4667q3fC9HOfPn2f58uUsWbKEzp07ExkZSadOnWq1TiGcjYS/MNXp06eJioriH//4R/nBX1ZBARw+DOfOGR8AYWHQsmW1Z/nWyM/PZ9WqVSxevJiIiAgiIyO5+Wa5xYRwDxL+wjSnTp1i2LBh9O7dm8GDB5tdToUKCgpYt24dCxcupHHjxkRGRtKjRw+UHT5whHAUCX9hilOnThEVFcWDDz7IwIEDzS7HKkVFRWzYsIGFCxfi7+/P0KFDufPOO/GyshW1EM5Ewl84nCsGf2kWi4WvvvqK5ORkCgoKiIyM5L777sO7OreWFMJkEv7CoX7//XeioqLo168fAwYMMLucWtFas2XLFpKTk8nIyGDw4ME88MAD+Pr6ml2aEFWS8BcOc/LkSaKionj00Ud58sknzS7HplJSUkhKSuLIkSMMHDiQvn374m/PexILUUvWhr/s1BS1cuLECaKionjsscfcLvgBbr75ZuLi4nj77bf58ccfpYmccBsS/qLGSoK/f//+PPHEE2aXY1edOnVi+vTp0kROuA0Jf1Ejx48fJyoqiieeeILHH6/0dg5uRZrICXch4S+q7fjx4wwbNowBAwbQv39/s8sxhTSRE65Owl9US3p6OlFRUQwYMIBHH33U7HJMJ03khKuS8BdWKwn+QYMGSfCX0bBhQ5599llWrlxJ48aNGTx4MOPGjePgwYNmlyZEuST8hVXS0tKIiopiyJAh9OvXz+xynFa9evWIiopizZo1dOzYkeHDh/PCCy+we/dus0sT4gpynr+o0rFjxxg2bBhDhw7loYceMrsclyJN5ISjyUVewiZSU1MZPnw4Tz31FA8++KDZ5bgsaSInHEXCX9Raamoqw4YN4+mnn6Zv375ml+MWSjeRCwgIIDIyUprICZuS8Be1cvToUYYPH365NbOwLWkiJ+xFwl/UmAS/45RtIjdkyBB69eolTeREjUn4ixo5cuQII0aMYPjw4fzv//6v2eV4FGkiJ2xBwl9U2+HDhxkxYgTPPPMMDzzwgNnleKxdu3aRlJTErl27ePLJJ+nXrx+BgYFmlyVchHT1FNVy6NAhRowYwb/+9S8JfpNdf/31zJgxQ5rICbuS8BdXBH+vXr3MLkcUkyZywp4k/D3cwYMHGTFiBCNHjpTgd1LSRE7Yg4S/Bztw4AAjRoxg1KhR3H///WaXI6ogTeSELUn4e6jffvuNf/7znzz//PP87W9/M7scUQ3SRE7YgoS/B9q/fz/PPPMMzz//PH/961/NLkfUkDSRE7Uhp3p6mJLgHzNmDPfee6/Z5QgbkiZyAuQ8f1GOkuB/6aWXuOeee8wuR9iJNJHzbBL+4gp79+7l2Wef5eWXX+Yvf/mL2eUIB5Amcp5Jwl9cVhL8r7zyCnfffbfZ5QgHkyZynkXCXwCwZ88ennvuOcaOHctdd91ldjnCRNJEzjM4tL2DUup+pdQ+pdQBpdTL5bw/WCl1Wim1vfjnKVtsV1Ru9+7dPPfcc4wbN06CX6CUomfPnixYsIDx48ezYcMG+vbtywcffMDFixfNLk84WK1n/kopb2A/cB+QBvwEPK613l1qmcFAV631M9auV2b+tbN7925GjhzJv//9b+68806zyxFOSprIuR9Hzvy7Awe01oe01gXAUqCPDdYramjXrl0899xzEvyiStJEznPZIvxbAKWvL08rfq2sh5VSO5VSy5VSrcpbkVLqaaXUVqXU1tOnT9ugNM/z66+/MnLkSMaPHy/BL6wmTeQ8j6PO+foYCNdadwY+A94pbyGtdaLWuqvWumujRo0cVJr72LlzJ6NGjeL111/njjvuMLsc4YKkiZznsEX4pwOlZ/Iti1+7TGt9RmtdckRpAXCLDbYrStm5cyfPP/88b7zxBrfddpvZ5QgXJ03k3J8twv8noINSqq1Syg/oD6wpvYBSqlmpp72BPTbYrii2Y8eOy8Hfs2dPs8sRbqS8JnL//ve/pYmcG6h1+GutC4FngPUYob5Ma71LKTVBKVVy9+9nlVK7lFI7gGeBwbXdrjBs376dF154gQkTJkjwC7sp3USuffv20kTODchFXi7s559/ZsyYMUycOJEePXqYXY7wINJEznnJFb5uLiUlhTFjxjB58mS6d+9udjnCQxUUFPDJJ5+waNEiaSLnJCT83VhKSgovvfQSkyZNkuAXTkGayDkPCX83tW3bNl566SWmTJlCt27dzC5HiCtIEznzSfi7oa1bt/Lyyy8THR1N165V/t0KYRppImceCX8389NPPzF27Fiio6O55Ra5TEK4jpSUFJKSkjhy5AgDBw6kb9+++Pv7m12W25LwdyM//vgjY8eOZerUqXJGhXBZ0kTOMRza0lnYz48//si4ceMk+IXLkyZyzkXC34l9//33MuMXbkeayDkHCX8ntWXLFl599VWmTZvG//zP/5hdjhA2J03kzCXh74Q2b97M+PHjmTZtGl26dDG7HCHsSprImUPC38ls3ryZ1157jenTp3PTTTeZXY4QDiNN5BxLwt+JfPfdd5eDv3PnzmaXI4QppImcY8ipnk7im2++YcKECcyYMYMbb7zR7HKEcBqlm8i1a9eOyMhIOQ5WCTnP34Vs2rSJN998k5kzZ3L99debXY4QTkmayFlHwt9FbNq0iYkTJzJr1iw6depkdjlCOD1pIlc5CX8X8PXXXzNp0iRiYmIk+IWoprJN5IYOHcp9993n8R8CEv5O7ssvv2TKlCnMmjWL6667zuxyhHBZJU3kkpKSyMzMZPDgwR7dRE7C34lt3LiR6OhoZs+ezbXXXmt2OUK4Ba01P//8s8c3kZPwd1IS/ELYnyc3kZPGbk7oiy++IDo6mjlz5kjwC2FH0kSuahL+DvL555/z1ltvERsbyzXXXGN2OUJ4BGkiVzEJfwfYsGEDU6dOJTY2lo4dO5pdjhAeR5rIXU32+dvZhg0bmD59OrGxsXTo0MHscoQQwJkzZ1iyZAmrVq3i7rvvZvDgwbRq1cq2G8nOhj17YO9eyMoyXmvcGK691vgJCrLt9orJAV8n8OmnnzJz5kzi4uJo37692eUIIcrIyclh6dKlLFu2jFtvvZUhQ4bQrl27mq/QYoFvv4X582HLFvDxgYIC0Nr48fYGX18oKoJ774XISOjaFWx4lbKEv8n++9//MmvWLOLi4mr3j0kIYXfnz5/nww8/5P3336dz585ERkZW/8LLo0dh1Cj45RfjeXAwVHTBmcUCOTlG6P/5zxAdDY0a1W4QxST8TbRu3Tpmz57N3LlziYiIMLscIYSVatxEbu1aeOEFKCyEevWsn8lrbXwIBAYa3xb+9KfaDQAJf9N88sknzJkzR4JfCBdWrSZyq1YZwV+nDtT0grILF4xdQYsWwa231qp2CX8TrF27lri4OObOnUvbtm3NLkcIUUtVNpH79Vd46CEj9Gt7JfGFC8Y3hg0boEWLGq9Gwt/BPv74Y+bOncu8efMIDw83uxwhhA2V20Tuz3/Gq1cvSEuDkBDbbCg7G7p1gyVLKj5eUAUJfwdas2YN8fHxzJ07V4JfCDdWuoncTdu3E5meTmCLFnjZ6mydkmMA8fHG2UA1IO0dHGT16tXEx8fLjF8ID6CUomfPnixITCTy0iXOFhRw8MABMrOysFQwkT5bVMQLaWncvncv/zhwgE9zcirbgDHjT0y00wj+4GP3LbixVatWkZiYSHx8PK1btza7HCGEg6iUFILy8wlq25a8/HwyMjLIyMigQYMG1K9fH+9Su2yiT57EVyk2dOzI/vx8njt2jI4BAURUdIwgOBhSUozdSS1b2m0MMvOvoRUrVkjwC+Gptm83TutUijp16tCqVStat25Nfn4+Bw4c4PTp0xQVFZFnsbAxN5fhjRoR6OVFl8BA/hwczCfWzP537rTrECT8a2DFihUkJSWRkJAgwS+EJ/rhB+Pq3VIC/P1p2aIF4eHhXCos5MDBg6ScOIGX1rT287u8XAd/fw5dvFj5+i9dsnv4e95un9xc4y9u507jq1VurnHJdZs2xlH2Ll3guusqvEhj+fLlLFy4kISEBFra8SuZEMKJpacbbRpK0RgHhL29vQkLCyMkJIRDp06h8vM5mppKq1at8FKKIC8vzlssla/f1xeOHLFb+eBJ4Z+aahxE+egj49LqggLw8zOCX2vjw2DNGuPrVtu2MGwY9OljvF/sww8/5J133pHgF8IFaa0pKCggLy+P/Px88vLyLj8ueV729bLvlzz/544d1Dt/notKoS0WLFpjsVhQSuHl5YWXUigvL3y1Jl8psrKyaNG8OV4+Ppy3WKhrzWmcVX1A1JL7h7/FYlw199Zbxj664OCrvq5dQWs4dgxefNH4vZgYiIhg2bJlLF68mISEBFrU4gIMIUT5tNZcunTpqvCtKICrG975+fn4+PgQEBBAQEAAderUufxnyU/Z90JCQmjSpMkVrwUEBND60CECDh5E1a2Ll5cXysvL+LPMmBrm5VG0bx8+LVviU5w7+y9erPhgb4miIqNNhB3ZJPyVUvcDswBvYIHWOrrM+/7AYuAW4AzwmNb6iC22Xam8PBg+HL75BurWNYK/KkoZywYGwu7d8MADbHzkEd79+WcSExNp3ry53csWwhmVDmdrZshVzZ7Lhnd+fj7e3t5XhXDZkC79XkhICI0bN64wvMu+7l3qm3yt3H03/PabsfegAvkXL3I6LY17QkJ4Pz+fVy0W9ufn83VuLgutOS3cmp5CtVDr8FdKeQNxwH1AGvCTUmqN1np3qcWGAlla6/ZKqf7AW8Bjtd12pQoK4Omn4bvvoH796rdMVQpCQ8k+eZJrZsxg4bvvEibBL5xYSTjXZoZcVbCXF87lhXTJ+0FBQTRq1KjC8C77OzYLZ3u76aar9vmXln/xIqmpqTRp0oTX6tbljePHuW//fup5e/NK06ZVz/x9fIye/3Zki5l/d+CA1voQgFJqKdAHKB3+fYDXix8vB2KVUkrb8/LiOXNqHvzFzmRmknnuHOHNm+P76qvQsyc0aWLjQoWnKBvO1u5friq8S7/n5eVVZciWDeewsLAKw7vs6y4TzvZ2221GrhQWXrUbOT8/n9Rjx2japAkhxW0fplfnRjH5+caNXjp3tmXFV7FF+LcAjpV6ngaU7Ut6eRmtdaFSKgdoCGTYYPtX27XLuDw6JKR2wZ+ZSZs2bfD19TV6brz8MiQn2/TGC8J5lA7n2s6QKwrvknCuKmRLHgcGBtKwYcNKd32U/tOnsuNZwnbq1YO+fWH5cmOCWSw/P5/U1FSaNm16OfirLS8PRoyo/NikDTjVvxSl1NPA00Dtzp+fPNk4cFvD/3hnMjPJyswkvCT4wfjL/vZb+PlnuPnmmtcmakxrTWFhoU1myBWFt5eXV5UhW/pxYGAgDRo0uOqgYUXBLuHsRoYPN9o5F585eDn4mzUjxJrji+XJyzNm/f3727bWctjiX2I6UPo7Tcvi18pbJk0p5QPUwzjwewWtdSKQCEZjtxpVk5pqnMdfxadugcVC9MmT/HjhAmeLimjp68szjRtzzcWLZGVl/THjL6GU8YGycKGEfyVKHxC0xe6Nsu+p4isqrdmHXPJTv379KvdNl7wu4SysFh5unBU4ZQp5RUUcO3asdsFvscDFizBjBjRoYNNSy2OLf+k/AR2UUm0xQr4/8ESZZdYAg4AtQD9go93293/yifEfsYrzaIuApr6+JLZuTVNfX747d47njxxhmp8f3SMi8C0vBIKD4dNPjU/nOnXsUr69lcycbXX6XNnXtdZWzYJLv1e/fn2rzuwICAi48gNZCLMNGUL22rVcWL+epq1a1S74s7ONGf9f/2rbGitQ6/Av3of/DLAe41TPZK31LqXUBGCr1noNkAS8q5Q6AGRifEDYx5YtlR6FL1HHy4unS90z87qCAhpaLJxv1Kj84Afjgi9vb+MULzsdjCm9W6M2M+SKwrt0OFu7e6N0OFc1e5ZwFp5k9759jMnNZcGddxLy22/lHgCuUkEBnD9v3BRm4kSHHVO0yXdcrfU6YF2Z18aXepwPPGKLbVXp118hIKBav5KRkcGRrCzO+PrSMTCw0mUthYUUbN9ObrNmdtm9YbFYrN5FUfI4NDTU6gtXfHx8yr8VnRCiWnbv3s3IkSP592uv0fTWW2HuXIiNNXYPh4RUfTOWoiI4e9a4VmDCBHj88RrfwKUm3O9mLu3aGQdnrfyPeDojg7QTJ5jp7U1zHx/+GRiIxWK54pJtbbFgKX5e79IllrRuzecRERUGdHXDu/R7vr6+Es5COLldu3YxcuRIXn31Ve68884/3tizB6ZNg02b/tj9HBBgfBvQ2vhmkJ9vLOvlBX//u3H/3+qcCloFa2/m4n5Ht6oZnL5+fswt7qHxrwYNCC6+XLukN0fJ45JLuNWZM7z40ku8+NRT9qheCOHkfv31V0aNGsX48eO54447rnzzuusgKQmOH4f16/9oIpmTY2RT/frGCSM9esDf/uaQA7sVcb/wDw39o2lbFbTWzDp3DhUaytv16pF75gwF+fnGRS91617VpwMwPsFDQ21ethDC+f3yyy+MHj2a119/ndtuu63iBZs3hyFDjB8n5X79/G+44Y+vVVWYcvIkhwsKiGnViiahobRr146GDRpw+tQpDh8+zNmzZ7lqp5i3t90vuxZCOJ+dO3cyevRo3njjjcqD30W438y/Z09jf1sVTly6xIrsbPyU4m+//Xb59bFNm3J/RATnzp0jIyODU6dPExYWRr2QEJTFYuy369DBniMQQjiZHTt28MILL/DGG2/Qs2dPs8uxCfcL/1694O23qzzXv5mvL1uvu67C94ODgggKCuLC+fNkZGRw+vRpmvn7U6d/f7yrasokhHAb27dv58UXX2TChAnceuutZpdjM+6326dlS2P2f/ZsrVelgLp169KmTRtaNG9O3sWL/GvrVpYsWUJeXl7taxVCOLWff/6ZF198kYkTJ7pV8IM7hj/AuHHGrP/SJZutMrCggEaPPcZzSUns3LmT3r17k5SURG5urs22IYRwHikpKbz44otMmjSJHj16mF2Ozbln+HfsCM89Z9yf1xbXMVy4YNzgZfJkrrn2Wt566y0SExM5evQoffv2Ze7cuWRlZdV+O0IIp5CSksKYMWOYPHky3bt3N7scu3DP8AeIioJ77oGsrNp9AFy4YFyJN38+NGx4+eW2bdsyYcIEFi9eTHZ2Ng8//DAzZszg1KlTNiheCGGWbdu28dJLLzFlyhS3DX5w5/D38YG4OONCiuxso1tedWht/J5S8M47UME/ghYtWjB27FiWLl0KQP/+/Zk8eTLHjx+v7QiEEA62devWy8HfrVs3s8uxK/cNfzAu9IqLgylTjMuqs7KMC8Aqo7WxuygnB7p2Na7Ss2J/X+PGjRk9ejQfffQRoaGhDBgwgPHjx3P48GEbDUYIYU8//fQTr7zyCm+99RZdu1bZHcHluV9vn4qcOGHM4N97zzgQfOnSH106tTael/TfuOEGGDYM7ruvxo2WcnNzWbZsGUuXLuXmm28mMjKSa665xnbjEULYzI8//sjYsWOZOnUqN7v4/Tqs7e3jOeFfIj8fUlKMWz2mpBinhPr4QJs2cMstRqvmtm1ttrkLFy6wcuVK3nvvPTp27MjQoUPpbOd7cwohrPfDDz8wbtw4twh+kPB3OgUFBXz88ccsWrSIFi1aEBkZSbdu3aSDpxAm+v7773n11Vd5++236dKli9nl2ISEv5MqLCzk008/ZeHChQQHBzN06FBuv/12+RAQwsG2bNnC+PHjmTZtGjfddJPZ5diMhL+Ts1gsfPHFFyxcuBCAIUOGcM899+DlwJs5COGpNm/ezGuvvcb06dPdbjeshL+L0Frz7bffkpyczNmzZxk8eDB///vf5UbiQtjJd999x+uvv+6WwQ8S/i5Ha83WrVtJSkoiPT2dQYMG0bt3b/ysuC+BEMI63377LW+88QYzZszgxhtvNLscu5Dwd2E7d+4kOTmZffv2MWDAAB566CHq1KljdllCuLRvvvmGCRMmMHPmTG644Qazy7Eba8NfdjA7oc6dOxMTE0NMTIw0kRPCBjZt2sSECROIiYlx6+CvDgl/J3bNNddcbiKXmppKnz59iIuLkyZyQlTD119/zZtvvsmsWbO4/vrrzS7HaUj4u4C2bdvyxhtv8N5773H27FlpIieElb766ismTZpETEwMnTp1MrscpyLh70KaN2/OK6+8Ik3khLDCl19+yeTJk5k1a5YEfzkk/F2QNJETonIbN25kypQpzJ49m+squV2rJ5Pwd2H169dnxIgRrF69mvDwcKKiohgzZgz79u0zuzQhTPPFF18QHR3NnDlzuPbaa80ux2nJqZ5uJC8vj5UrV/Luu+9KEznhkT7//HOmTp1KbGwsHTt2NLscU8h5/h6spIncO++8Q7NmzRg6dKg0kRNu77PPPmPatGnMmTPHY4MfJPwFVzeRi4yM5I477pAPAeF2NmzYwPTp04mNjaVDhw5ml2MqCX9xmcViYePGjSQnJ6O1ZsiQIdx7773SRE64hfXr1zNjxgzi4uJo37692eWYTsJfXEVrzXfffUdSUhI5OTkMGTJEmsgJl/bpp58SExNDXFwc7dq1M7scpyDhLypU0kQuOTmZtLQ0aSInXNK6deuYPXs2c+fOJSIiwuxynIaEv7BKSRO5vXv3Xm4iFxgYaHZZQlRq3bp1zJkzh7i4OAn+MqSxm7BKSRO52bNn8+uvv9KnTx8WLFggTeSE01q7di0I+BczAAARHElEQVRz5syRGX8tSfgLADp27Eh0dDTz58/n2LFj0kROOKWPP/6YuLg45s2bR9u2bc0ux6VJ+IsrhIeHSxM54ZTWrFnDvHnziI+PJzw83OxyXJ6EvyhXRU3k0tPTTa5MeKI1a9YQHx/PvHnzaNOmjdnluAUJf1Gpsk3kBg4cyPjx4zl06JDZpQkPsWrVKuLj44mPj5fgt6Fahb9SqoFS6jOl1G/Ff9avYLkipdT24p81tdmmMEdJE7lVq1YRHh7OsGHDpImcsLsVK1Ywf/584uPjad26tdnluJVaneqplJoKZGqto5VSLwP1tdYvlbPcOa11UHXWLad6OrfSTeQ6dOjAU089JU3khE2tWLGCpKQk4uPjadWqldnluAyHnOevlNoH3KW1PqGUagZ8pbW+ppzlJPzdVEFBAWvXrmXRokXSRE7YzEcffcTChQuJj4+nZcuWZpfjUhwV/tla69DixwrIKnleZrlCYDtQCERrrVdVtW4Jf9dSWFjI+vXrWbhwIXXr1mXo0KHSRE7UyIcffsg777xDQkICLVq0MLscl2Oz8FdKfQ40LeetccA7pcNeKZWltb5qv79SqoXWOl0pFQFsBO7RWh8sZ7mngacBWrdufcvRo0erql84GWkiJ2pj2bJlvPvuu8THx0vw15BT7fYp8zuLgLVa6+WVLSczf9dW0kQuOTmZ7OxsaSInqvTBBx+wZMkS4uPjad68udnluCxHtXdYAwwqfjwIWF1OIfWVUv7Fj8OA24DdtdyucHJKKW6//XaSkpIYO3Ys69at48EHH+TDDz+koKDA7PKEk1m6dKkEv4PVdubfEFgGtAaOAo9qrTOVUl2BYVrrp5RSPYEEwILxYROjtU6qat0y83c/v/zyC8nJyezZs0eayInL3n//fZYuXUpCQgLNmjUzuxyXJ109hdPav38/ycnJbNu2jccee4zHHnuM4OBgs8sSJnj//ff54IMPSEhIoGnT8g4tiuqSrp7CaZVuIpeWliZN5DzUe++9x7Jly0hMTJTgN4GEvzBNeHg4r7/++hVN5KZPny5N5DzAu+++y/Lly0lISKBJkyZml+ORJPyF6UqayH3wwQd4eXlJEzk3t3jxYlasWEFiYqIEv4kk/IXTaNSoEaNGjWLFihXSRM5NLVq0iFWrVpGQkEDjxo3NLsejSfgLpxMaGsqIESNYvXq1NJFzIwsXLrzcmlmC33wS/sJpBQUFERkZyerVq+nSpQsjR47k2WefZceOHWaXJqopOTmZtWvXyozficipnsJlSBM515SUlMS6detISEggLCzM7HLcnpznL9yWNJFzHfPnz2f9+vUkJCTQsGFDs8vxCBL+wu1ZLBa+/PJLkpKSsFgsREZGShM5J5KYmMhnn31GfHy8BL8DSfgLj1G2idzgwYPp1auXNJEzidaaxMREvvjiC+Lj42nQoIHZJXkUCX/hcbTWbNu2jaSkJNLS0hg4cCB9+vTBz8/P7NI8htaahIQENm7cKMFvEgl/4dFKN5F78sknefjhh6WJnJ1prYmPj+err75i3rx5Evwmkd4+wqPdeOONzJw5k9mzZ7N792769OnDggULyM3NNbs0t6S1Zt68eXz99dcy43cREv7CrXXs2JEpU6Zc0UQuNjaWzMxMs0tzG1pr4uLi+Oabb4iPj6d+/atu5ieckIS/8Ailm8jl5ubSr18/aSJnA1prYmNj2bx5M/PmzSM09KpbeAsnJeEvPEp5TeQmTZpEWlqa2aW5HK01c+bMYcuWLRL8LkjCX3ik0k3kGjRowKBBg6SJXDVorZk1axY//PAD8+bNo169emaXJKpJwl94tNDQUIYPH35VE7m9e/eaXZrT0loTExPD1q1bJfhdmIS/EFzdRG7UqFHSRK4cWmtmzpxJSkoKc+fOJSQkxOySRA3Jef5ClKN0E7mmTZsydOhQunfv7tH9g7TWzJgxgx07dhAbGyvB76TkIi8hbKCoqIj169eTnJx8uYnc7bff7nH9g7TWTJs2jV9++YW4uDiCg4PNLklUQMJfCBvy5CZyWmvefvttdu3aRVxcHEFBQWaXJCoh4S+EHWit2bx5M0lJSR7RRE5rzdSpU9mzZw+xsbES/C5Awl8IOyppIpecnExqaurlJnL+/v5ml2YzFouFqVOnsm/fPmJjY6lbt67ZJQkrSPgL4SC//PILCxcuZPfu3W7TRM5isRAdHc2BAweYM2eOBL8LkcZuQjjIjTfeyIwZM65oIjd//nzOnj1rdmk1UhL8Bw8elBm/G5PwF8JGSjeRS09Pp2/fvi7XRM5isTB58mQOHTrEnDlzXP4bjKiYhL8QNla6idy5c+fo168f06ZNc/omchaLhUmTJnH06FFmz54twe/mJPyFsJPmzZvz8ssvs2zZMnx8fBzXRC4/HzIzISsLCgut+hWLxcKbb77JsWPHmDVrlgS/B5ADvkI4SHZ2Nv/5z39Yvnw5PXv2ZMiQIURERNR+xRYLfPstrFgBW7fC8ePg7f3H++3bQ8+e8Nhj0LFjOb9uYeLEiaSnpxMTEyPB7+LkbB8hnNS5c+dYtmwZS5cupUuXLkRGRnLttddWf0Vaw6pVEB1tzPKLiqBOHfD3h5I2FBaL8U3g4kXjtRtvhAkTjD8xgn/ChAmcOHGCmJgY6tSpY8ORCjNI+Avh5PLy8li5ciXvvfce7du3JzIyki5dulj3y6dPwwsvGDP+gAAj9KuiNZScgRQVheXZZ3n9zTc5deoUMTExBAQE1HwwwmlI+AvhIqrdRC49HR59FE6ehNDQP2b51iosRJ89y7Z69VjUrRvTZs+W4Hcjcp6/EC7Cz8+Phx56iJUrV9K3b1+mTZvGoEGD2LRpExaL5cqFc3KMffenTkH9+tUPfkD7+HD8wgXaHDxIjLc3AW50VbKwnoS/EE7C29ubXr168cEHHzB48GDi4+N54okn2LBhwx8fAq+9BidOQA1voKKB4+npFFosNGzXDp/PPoO1a203COEyZLePEE6qbBO50d26cduCBah69aAG3UQ1kJ6ejqWoiJatWuGllHEwWCn4+mto0MD2gxAOZ+1uH/dsRSiEG1BKcdttt9GzZ09SUlLwfuQR0k+dIhDj9pNeFezyeTU9nR8vXCDPYiHMx4eBDRvSJzT06uAH42BxdjZ89BH8v//nuMEJ00n4C+HklFLcEhIC3t7ktW5NxpkzZGRk0LBBA0Lr18e7zLeAIWFhvOrri5+XF0cuXuTpo0epl5NDOy+vK4O/REAAzJ8PkZFXXh8g3Fqt9vkrpR5RSu1SSlmUUhV+zVBK3a+U2qeUOqCUerk22xTCI23aBEVF1AkMpFWrVrRu1Yq8/HwOHjjA6YwMioqKLi8a4e+PX8kHgtZcvHiR44WFtGzZsvxvCwEBxoHkAwccNBjhDGp7wPdX4CFgU0ULKKW8gTjg70An4HGlVKdablcIz/Ljj1fMygMCAmjZogVtwsO5VFDAgYMH+f3UKQqL2zlEnzzJbXv30nvfPuorRZ/w8Ap3EwHGNQB79th7FMKJ1Gq3j9Z6D1DVTa27Awe01oeKl10K9AF212bbQniUPXuMGXoZ/n5+NG/enIJLlzhz5gwHDx2iXr16jG7YkMcvXWKPnx/HgoMJqOoA8aVLxjb69rXTAISzccSpni2AY6WepxW/JoSwVl5epef0+/n60qxpUyIiIlDAkSNH8FKKv7Zty+nCQpZnZVW+fi8vyM21bc3CqVU581dKfQ40LeetcVrr1bYsRin1NPA0QOvWrW25aiFcm6+v0Z+nqsV8fGjSpAmNmzSh5KOiCEgrKKj8F7UGP79alylcR5Uzf631vVrrG8r5sTb404FWpZ63LH6tvG0laq27aq27NmrUyMrVC+EBWreGqgIcyCwsZMPZs+RZLFi0Zsu5c6zPyaF7VXfjUsro/ik8hiNO9fwJ6KCUaosR+v2BJxywXSHcx5/+BD/8AEFBlS6mgOVZWUw+cQIL0MzXl+ebNOHO4ODK1+/rC9ddZ7NyhfOrVfgrpR4E5gCNgE+UUtu11n9TSjUHFmite2mtC5VSzwDrAW8gWWu9q9aVC+FJ/vQn8Kn6f9f6Pj4ktmlTvXUXFhozfwl/j1Lbs31WAivLef040KvU83XAutpsSwiP1qOH0X7h3Dnr2jdXR26u0SxObuLiUaSxmxCuwMsLhg0zevHYsh9XUZGx7sGDbbdO4RIk/IVwFQMGGAdlS27IYgu5uUbwl3N7R+HeJPyFcBW+vjBrlnGlb35+7deXkwMtW8Lo0bVfl3A5Ev5CuJJrr4V584zTPi9cqNk6tDY6eTZoAO+/b/tjCMIlSPgL4WruvhsWLTK+CWRnGzdpt9alS8aMv0MH4+bvzZvbrUzh3CT8hXBFPXvCl1/CX/9q7LfPyjKCvTxaG+0hsrON3UWjR8PHH0OzZo6tWTgV6ecvhKtq0ADmzoX9++Hdd2HlSmNXkLe38W1AKePn0iVo2tQ4sPvww3LHLgHIbRyFcB9aw/HjsG+fcT2Alxc0bGhcvBUaanZ1wkHkNo5CeBqloEUL40eIKsg+fyGE8EBOu9tHKXUaOGp2HTUUBmSYXYQDedp4wfPG7GnjBdcdcxutdZVtkZ02/F2ZUmqrNfvc3IWnjRc8b8yeNl5w/zHLbh8hhPBAEv5CCOGBJPztI9HsAhzM08YLnjdmTxsvuPmYZZ+/EEJ4IJn5CyGEB5LwtwGlVAOl1GdKqd+K/6xfybIhSqk0pVSsI2u0JWvGq5TqopTaopTapZTaqZR6zIxaa0spdb9Sap9S6oBS6uVy3vdXSn1Q/P4PSqlwx1dpO1aMd7RSanfx3+kXSqlq3jPS+VQ15lLLPayU0koptzgDSMLfNl4GvtBadwC+KH5ekYnAJodUZT/WjPcCMFBrfT1wPxCjlHKpHgNKKW8gDvg70Al4XCnVqcxiQ4EsrXV7YCbwlmOrtB0rx/sz0FVr3RlYDkx1bJW2ZeWYUUoFA88BPzi2QvuR8LeNPsA7xY/fAfqWt5BS6hagCbDBQXXZS5Xj1Vrv11r/Vvz4OHAKqPLCEyfTHTigtT6ktS4AlmKMvbTS/y2WA/copZQDa7SlKsertf5Sa11yI4HvgZYOrtHWrPk7BmPS9hZgg7voOAcJf9toorU+Ufz4JEbAX0Ep5QVMB15wZGF2UuV4S1NKdQf8gIP2LszGWgDHSj1PK36t3GW01oVADtDQIdXZnjXjLW0o8F+7VmR/VY5ZKXUz0Epr/YkjC7M3aexmJaXU50DTct4aV/qJ1lorpco7hWoEsE5rneYKE0MbjLdkPc2Ad4FBWutq3HVEODOl1ACgK/Bns2uxp+JJ2wxgsMml2JyEv5W01vdW9J5S6nelVDOt9YnisDtVzmK3AncopUYAQYCfUuqc1rqy4wOmscF4UUqFAJ8A47TW39upVHtKB1qVet6y+LXylklTSvkA9YAzjinP5qwZL0qpezEmAX/WWl90UG32UtWYg4EbgK+KJ21NgTVKqd5aa5fuOS+7fWxjDTCo+PEgYHXZBbTWT2qtW2utwzF2/Sx21uC3QpXjVUr5ASsxxrncgbXZ0k9AB6VU2+Lx9McYe2ml/1v0AzZq1714psrxKqX+B0gAemuty/3QdzGVjllrnaO1DtNahxf/v/s9xthdOvhBwt9WooH7lFK/AfcWP0cp1VUptcDUyuzDmvE+CtwJDFZKbS/+6WJOuTVTvA//GWA9sAdYprXepZSaoJTqXbxYEtBQKXUAGE3lZ3o5NSvH+zbGN9cPi/9Oy34YuhQrx+yW5ApfIYTwQDLzF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAf6/8VVmMmjvlP6AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWooP1t2dJqVnVLaWkbW5couUgi7iy+rZbtBV22paW7SEIItaQ2RbpaBJVsXBKXyGVyz1zO749j2iDJzCRn5nNm5v18PPJ4tOnMmZd9HK898zmfz+dwPM+DEEIIezLWAQghhAiokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCLkprzY19eX79Kli5miEEKIbTpz5kwJz/N+hl5nUiF36dIFp0+fbn0qQgixQxzHFRrzOhqyIIQQiaBCJoQQiaBCJoQQiaBCJoQQiaBCJoQQiTBplgUh5D61Grh6FSgtBXQ6wM0N6NYNcHVlnYxYMcsWsv4kvngRKCoCGhqEE/nxx4GePYGAAIDjLBqJEKPV1ADp6cC2bcCFC4CDAyCTAfqn7jQ0AB07Ai+9BEycCPj7s81LrA5nyiOcwsLC+FbNQ752DdixQ/hRq4UrioYGoXw5DlAqAY0GCAkBZs4ExowBnJ1N/xxCzEGnA3btApYuBerrhSJ2cRHKuDGeB+rqhB8HByA6Gpg/X3gtsWscx53heT7M4OvMWsgNDcDGjcCWLYBWK1wNOzo2/VqeB6qrhde1awds2AA884zxn0WIOZSWAm+/DfznP0KxKpXGvU+rBVQqIDAQ2LwZ6N3bvDmJpBlbyOa7qVdcDIwbB3z0kXAie3s3X8aAcKXs5gZ4egLl5cLVxfLlwtUJISyUlAATJghl7OVlfBkDwhWyt7dwjEmTgLNnzZeT2AzzFHJxMTB+PFBQIJyUchOHqt3cAHd34JNPgCVLfhujI8RSGhqAV18FbtwQzuHW3ttwdxfO36lThaE7QlogfiGr1cCf/wzcuydcVbSWg4NwtbxjB7Bzp3j5CDHGpk3ApUvCOdhWrq5AbS3w3nv0jY+0SPxC/vhj4MoVwMOj7ceSyYSTeelS4Pr1th+PEGPk5wuF7O4u3qwfT0/gxx+BPXvEOR6xSeIW8p07wP/9nzDkINaJrFAIXx9TUsQ5HiGGfPGFcFPO1KG2lnCccC5v2kRDcKRZ4s5D3rVLOJFbunnXGp6eQFYWcOuWcNeaEHOprQW++kq4qGhBg06HFbduIaemBiqtFh0dHfG2vz8iWnqfs7MwJp2bC/TvL3JwYgvEu0LmeWDrVqPmXMbfvInRV65gyKVLmHD1Kr4tL2/5DfrJ999+K05WQppz8aIwzmvgokILINDREVuCg3Gse3e85eeHhTdvoqihofk3cZww3z4nR9zMxGaIV8jFxUBFhVFTg/7s64t9ISE4HhqKdR07YtOdO7hYW9vym+Ry4MQJkcIS0oyLF4Ub0wY4y2SY4eeH9goFZByH37u7o72jI/Lq6lp+o1wOnDolUlhia8Qr5Lw8YWaEER5TKqG4v8qJA8BxHG4Y+kvg5AT89BONvxGz4Xkeurw88DwPXv/vD//odNA+9MMDKNVocK2hAY8ZuiBRKoXtAwhpgnhjyHfuGHVlobfi1i38s7QU9TodHlco0IfnoaqsfPBF98uXv//PCpUK3+3fD9394ud5/oGfxr/T3Z9e1NJrmvtp7WsAQKfTifIa/Z/B0GtY/VnF/N9D7D9ra/730Hvnxg0MLytD9e3bwi8eujn967/d/71Go4HSxQXrHBzwnKcnuhgqZI4TblIT0gTxCtnE+ZWxAQF4vrQUhc7OOK/VoqaiAg2N9gZ44K/B/ZPfpb4e2SdOQOfoCI7jwN3/vf6fm/tp6jUAIJPJDL6G47hfX2fos2T6q/4WPt+Y15jy57Dkn9WU10j9z9rca5CUJGwe5OPT4vmrdzU/H6urq6FTKrGgUyfDb9DphG97hDRBvEJ2dTV6yAIQ/gIEBATArboauS4u+I9SiZdb+kug0wEqFZKXL390UxdCxNKzp9HncV19PTZUV0Pj6ooYtRo6jcbwDKP6eiA0VISgxBaJ12zduplclO3atYNOq0V1bS1uGPoaV1cnbNNJZUzMqUcPows55fp13JbLsbFLFwT5+qK4uBgG73DodEB4eJtjEtskXrs9/rgwpcfA0EWpRoNDKhVq7o8ZFnp54aBKhf6GvsbV1QFhBjdLIqRtevQQbrwZuEAoUqvxr6oqFPI8Rl+5gvElJXixrAy7b95s/k08L1xQDBokcmhiK8QbslAogBEjgCNHWtzDggPwdVkZlhUXQwcgyNER73h74/HKSvBeXg+OHevxvHDV8txzosUlpEkKBTBlirBLoULR7Mu8NBrsdXdHSEjIr+dsXX09CgsLodZo4NjUKr+qKmG4omdP82QnVk/clXrTpgkr6ni+2aXT3nI5tnTu/MDvdDyPgoICqCoq4NnUZi61tcLTROirHrGE6Ghhp8GGhmZLWX+uNj7LnZRK+Pj4oLi4GJ06dXrw4oLnhW+QMTHmTE6snLgDsmFhQJ8+wgIRU0JwHNq3b4/bt29Do9E8+B95XrgRsmABjR8TywgKAhYvFh6YwD86KszzPFQqVZMXD77t2kGj0UD18N+BigrhG+TIkeZKTWyAuA0nkwHr1gmrkUyca+ns5ARPLy/c0s//1CsvB4YOBZ5/XsSghBgQHQ0MHAiUlT1SylXV1VAoFFA0MaOC4zgEBQU9eHGhUgl7Kqem0jMjSYvEv+Ts3Fl40kd1tcml7Ofnh7q6ut8WiFRUCEMVK1fSiUwsSyYTHr3Ur59wUdDoZnVFRQU8Wtgn2dnJCV7e3sKsi7IyYRvPL78E/PwskZxYMfOMAYwfL+xhXFMjFLOxYTgO7YOCcKu4GNrSUuGpvV99RScyYcPVVdiKc8IE4eKguhparRbVVVXwMLDft6+HBxyrq3HX31/YFCskxEKhiTUz36Ds5MnA9u3C1UFZmXHLqnkeLjod/BwdcdbHB9i3DzBm9RMh5uLiAqxeDXz+OeDri7rbt9FOJoNcq310fFmjASorgYoKyHgemgULMNXdHWUGtvIkRM+8d8kiIoRpcNOnCydrRYVQzrW1wr7JWq1Q1FVVwiOfVCqgc2c4b92K5MBAZOflmTUeIUYbMgT47jt8NGAAaoYOFfY2Li8Xzt2qKuHc1miEfY7XrgVOn0bHhASMHjsWa9asYZ2eWAmOb+IucnPCwsL406dPt+6TamuFcs7OBn74QdiuU6MRTuzQUGDAACAyEnjiCYDjcOrUKSxduhS7du2CixF7LBNibiUlJZg4cSIyMjKgVCqFQi4tFcaX3d2FIbaH7nXU1dXhlVdeQUxMDIYOHcooOWGN47gzPM8bXNlmuUJuheTkZCiVSsTGxlrsMwlpzs6dO3HlyhUkJiaa9L7c3FwsWrQIX331lcGxZ2KbjC1kSU/snTNnDo4dO4azZ8+yjkII0tLSMGbMGJPf169fPwwfPhx//etfzZCK2BJJF7KHhwcWLlyIlJQU1Bl6EgMhZlRQUIB79+4hrJX7qbz99ts4c+YMsrOzRU5GbImkCxkAhg4dip49e2Lz5s2soxA7lp6ejtGjR/+6x7OpXFxcEBcXh9TUVFSbMBWU2BfJFzIAzJ8/HwcOHMD58+dZRyF2SKfTISMjA2PHjm3TccLDwxEREYENGzaIlIzYGqsoZG9vb7z33ntISkpCAz3+hljYuXPn4OTkhG7durX5WDExMThx4gR++OEHEZIRW2MVhQwAo0ePRseOHfH555+zjkLsTHp6OsaMGfPr457aws3NDYsWLUJKSgpqDT1pndgdqylkjuOwcOFC7N69G1euXGEdh9gJtVqNw4cPIyoqSrRjDh48GH379sWHH34o2jGJbbCaQgYAf39/vP3220hOToZWq2Udh9iB7OxshISEICgoSNTjzps3D4cPH8aPP/4o6nGJdbOqQgaAP/zhD3B3d8ff//531lGIHUhLSxP16ljPw8MDsbGxSE5ORn19vejHJ9bJ6gqZ4zjExcVh+/btKCwsZB2H2LCqqiqcOnUKI820qfzw4cMRGhpKUzrJr6yukAGgffv2eOONN5CcnAydgYeqEtJaWVlZCA8PN+ty5/nz52P//v00pZMAsNJCBoBJkyaB53ns3r2bdRRio1q7VNoUPj4+mDt3Lk3pJACsuJBlMhkSEhKwZcsWFBUVsY5DbMydO3dw+fJlDB482Oyf9eyzz6JTp0747LPPzP5ZRNqstpABoEuXLpgyZQqWLl0KU3atI8SQjIwMREZGQtHMU6fFpJ/S+c033+Dy5ctm/zwiXVZdyAAwZcoUqFQq7Nu3j3UUYkPS09PbvFTaFH5+fnj33XexZMmSR5+8TuyG1Reyg4MDEhISsHHjRty9e5d1HGIDfvnlF6hUKvTt29ein/vcc8+hXbt22L59u0U/l0iH1RcyAHTv3h0vvvgili9fTkMXpM3S09MRFRXV6p3dWovjOCxevBg7d+5Efn6+RT+bSINNFDIAvP7667hx4wYyMzNZRyFWTKfTWXy4orHAwEDMmjULSUlJNKXTDtlMISsUCiQkJGDNmjUoKytjHYdYqdzcXHh6eiIkJIRZhhdeeAHOzs7YsWMHswyEDZspZADo3bs3xo4di9WrV7OOQqyUfmc3lmQyGeLj47F161Zcu3aNaRZiWTZVyADw5ptv4uLFizh+/DjrKMTKNDQ0ICsryyx7V5iqQ4cOtBrVDtlcITs5OSE+Ph4rVqxAZWUl6zjEipw4cQKhoaHw9/dnHQXAb6tRv/76a9ZRiIXYXCEDQP/+/fH73/+envJLTCKF4YrG9KtRN2/eTKtR7YRNFjIAvPvuu8jJycF//vMf1lGIFVCpVMjJyUFkZCTrKA/o3Lkzpk6dipSUFJrSaQdstpBdXV2xaNEipKamoqamhnUcInGHDx/GwIED4ebmxjrKI6Kjo1FdXY1vv/2WdRRiZjZbyAAQERGBfv360aNyiEFSG65ozMHBAYmJifjwww9x+/Zt1nGIGdl0IQPA3LlzceTIEXpUDmlWcXEx8vPzERERwTpKs0JCQvDyyy8jNTWVhi5smM0XsoeHBxYsWECPyiHNysjIwMiRI+Ho6Mg6Sotee+01lJSUIC0tjXUUYiY2X8gAEBkZiW7dumHLli2soxCJ4Xme6VJpU8jlciQmJmL9+vUoKSlhHYeYgV0UMgDExsZi3759uHDhAusoREKuXLmCuro69OnTh3UUo4SGhmL8+PFYsWIFDV3YILspZB8fH8yZMwfJyclQq9Ws4xCJ0D9VmuM41lGMNn36dBQWFuLw4cOsoxCR2U0hA8CYMWMQEBCArVu3so5CJECn0yEjI0Oysyuao1AokJiYSBtp2SC7KmSO47Bo0SJ89dVXuHr1Kus4hLHTp0/D19cXXbt2ZR3FZLSRlm2yq0IGgICAgF/3m9VqtazjEIas5WZec958803k5eXh2LFjrKMQkdhdIQPCfrMuLi7YuXMn6yiEkbq6Ohw7dgzPPvss6yitplQqER8fj5UrV0KlUrGOQ0Rgl4Usk8kQFxdH+83asePHj6NXr17w9fVlHaVN+vXrh+HDh2PdunWsoxAR2GUhA0DHjh0xbdo0LF26lPabtUMZGRlWPVzR2Ntvv42zZ88iOzubdRTSRnZbyADw8ssvQ61W45tvvmEdhVhQeXk5zp49i+HDh7OOIgoXFxfExcUhNTUV1dXVrOOQNrDrQtbvN/vxxx+juLiYdRxiIZmZmRg0aBBcXFxYRxFNeHg4IiIisGHDBtZRSBvYdSEDQNeuXREdHY1ly5bRyic7IeWd3doiJiYGJ06cwA8//MA6Cmkluy9kAHj11Vdx79497N+/n3UUYmY3b97E9evXMWDAANZRROfm5obFixcjJSWF9gC3UlTI+G3Tlo0bN9KmLTYuPT0do0aNglwuZx3FLAYNGoR+/fph06ZNrKOQVqBCvk+/acvKlStp6MJG6Xd2s8Xhisbmzp2Lw4cP0x7gVogKuZHp06ejoKAAR44cYR2FmMHFixeh1WrRu3dv1lHMysPDA7GxsbQHuBWiQm5EoVAgISEBq1evRnl5Oes4RGT6pdLWtLNbaw0fPhyhoaHYvHkz6yjEBFTID+nTpw9Gjx6NtWvXso5CRKTVanHw4EFERUWxjmIxCxYswP79+3H+/HnWUYiRqJCb8NZbb+HcuXM4ceIE6yhEJDk5OQgKCkJwcDDrKBbj7e2NefPmISkpCQ0NDazjECNQITfB2dkZcXFxWLZsGaqqqljHISKw9p3dWmvUqFHo1KkTPv30U9ZRiBGokJvx9NNPY/DgwbTyyQbU1tbi+PHjGDVqFOsoFsdxHN5//33s2bMHly5dYh2HGECF3IJ3330XJ0+epJVPVu67775Dnz594OPjwzoKE76+voiJiUFSUhI0Gg3rOKQFVMgtcHNzw6JFi5CSkoLa2lrWcUgrpaWl2eVwRWPjxo2Dr68vtm/fzjoKaQEVsgGDBw/Gk08+SSufrFRpaSnOnTuHoUOHso7ClP7xZTt37kR+fj7rOKQZVMhGmDdvHg4dOoRz586xjkJMlJmZiSFDhsDZ2Zl1FOYCAwMxa9YsLFmyhB5fJlFUyEbw9PTE/PnzkZycTNOHrExaWprNL5U2xfjx4+Hq6kqPL5MoKmQjjRgxAl27dsUnn3zCOgox0rVr11BcXIzw8HDWUSSD4zh6fJmEUSEbieM4xMbGYu/evcjLy2MdhxghPT0do0ePhoODA+soktKhQwe88cYbSE5OpseXSQwVsgn004eSk5Np+pDE2cvObq01adIk8DyP3bt3s45CGqFCNhFNH7IOP//8MxwcHNCzZ0/WUSRJJpMhMTERW7ZsQVFREes45D4qZBPppw/t2LGDpg9JmD3t7NZawcHBmDp1KlJSUmgPcImgQm6FwMBAvPXWWzQGJ1EajQaZmZl2tbNba0VHR6O6uhp79+5lHYWACrnVJkyYAIVCgS+//JJ1FPKQU6dOoVOnTujQoQPrKJLn4OCAxMREbNq0Cbdv32Ydx+5RIbeSTCZDXFwcPv30U9y4cYN1HNIILZU2TUhICCZPnozU1FQaumCMCrkNgoOD8dprryElJYWGLiSipqYG2dnZGDlyJOsoVmXq1KkoKSlBWloa6yh2jQq5jaKjo1FXV4dvv/2WdRQC4OjRo+jfvz+8vLxYR7Eq+ievr1+/np68zhAVchvppw/RGJw00FLp1tM/eX358uU0dMEIFbIIHnvsMbz00ktYtmwZncgMlZSU4MKFCxgyZAjrKFZr+vTpuH79OjIzM1lHsUtUyCJ57bXXcOfOHaSnp7OOYrcOHTqEYcOGQalUso5itfRPXl+zZg3KyspYx7E7VMgicXR0REJCAtavX4/S0lLWcewSDVeIo3fv3hg3bhxWr17NOordoUIWUc+ePfH8889j5cqVrKPYnYKCAty7dw9hYWGso9iEN998E3l5eTh69CjrKHaFCllkM2bMwJUrV5CVlcU6il3R7+wmk9EpLQalUon4+HisWrUKKpWKdRy7QWevyJRKJRITE+lEtiCdToeMjAxaDCKyfv36ITIyEuvWrWMdxW5QIZvBk08+iREjRmDt2rWso9iFc+fOwcnJCd26dWMdxebMnj0bZ8+eRXZ2NusodoEK2Uxmz56N3NxcOpEtQH8zj3Z2E5+Liwvi4uKwdOlSVFVVsY5j86iQzcTFxQWLFy9GamoqqqurWcexWWq1GkeOHKGd3cwoPDwcgwYNwsaNG1lHsXlUyGb0zDPPYMCAAXQim1F2djZCQkIQFBTEOopNi4mJwcmTJ5GTk8M6ik2jQjazOXPm4N///jfOnDnDOopNornHluHm5oZFixZh6dKlqKmpYR3HZlEhm5m7uzsWLlyIlJQU1NXVsY5jU6qqqnDq1CmMGDGCdRS7MGjQIPTr1w8ffvgh6yg2iwrZAoYMGYLf/e53+Oijj1hHsSlZWVkIDw+Hh4cH6yh2Y+7cucjKykJubi7rKDaJCtlC5s2bh/T0dPz888+so9gMGq6wPA8PD8TGxiIlJQX19fWs49gcKmQL8fb2xrx585CcnIyGhgbWcazenTt3cPnyZQwePJh1FLszbNgw9OjRA5s3b2YdxeZQIVvQqFGj0LFjR3z66aeso1i9jIwMREZGQqFQsI5il+bPn4/9+/fTNz6RUSFbEMdxeP/997Fnzx5cvnyZdRyrlp6eTkulGaJvfOZBhWxhfn5+eOedd5CcnAytVss6jlX65ZdfoFKp0LdvX9ZR7NqoUaMQHBxM3/hERIXMwPPPPw9PT0988cUXrKNYpfT0dERFRdHOboxxHIeFCxdiz549uHTpEus4NoHOaAY4jsPixYvxxRdf4H//+x/rOFZFp9PRcIWE+Pr6IiYmBklJSdBoNKzjWD0qZEbat2+PmTNnIjk5GTqdjnUcq5GbmwsvLy+EhISwjkLuGzduHHx9fbFt2zbWUaweFTJDL774ImQyGXbt2sU6itXQD1cQ6dB/4/vHP/6B/Px81nGsGhUyQzKZDPHx8fjb3/6Gmzdvso4jeQ0NDcjKyqJClqCAgADMmjULS5YsoZvVbUCFzFjnzp0xdepUpKamgud51nEk7cSJEwgNDYW/vz/rKKQJ48ePh6urK3bs2ME6itWiQpaA6OhoVFZW4p///CfrKJKWnp5OS6UljOM4xMXFYdu2bSgsLGQdxypRIUuAg4MDEhIS8MEHH+DOnTus40iSSqVCTk4OIiMjWUchLejQoQNmzJhBN6tbiQpZIrp164aJEydi+fLlNHTRhMOHD2PgwIFwc3NjHYUYMHHiRADA7t27GSexPlTIEvL666+jqKgIBw8eZB1Fcmi4wnrIZDIkJiZiy5YtdLPaRFTIEuLo6IjExESsW7cOpaWlrONIRnFxMfLz8xEREcE6CjFScHAwpk6dipSUFPrGZwIqZInp1asXxo0bhzVr1rCOIhkZGRkYOXIkHB0dWUchJoiOjkZNTQ327t3LOorVoEKWoDfffBN5eXk4duwY6yjM8TxPS6WtlIODA5YsWYJNmzbh9u3brONYBSpkCVIqlYiLi8PKlSuhUqlYx2HqypUrqKurQ58+fVhHIa3w2GOPYfLkyTTP3khUyBLVv39/DBs2DOvXr2cdham0tDRERUWB4zjWUUgrTZ06FSUlJThw4ADrKJJHhSxh77zzDnJycvD999+zjsKETqdDRkYGza6wcnK5HImJidiwYQNKSkpYx5E0KmQJc3FxweLFi7Fs2TLU1NSwjmNxp0+fhq+vL7p27co6Cmmj0NBQTJgwgebZG0CFLHEDBw5EWFgYPvjgA9ZRLI5u5tmWadOm4fr168jMzGQdRbKokK3AX/7yFxw9ehS5ubmso1hMXV0djh07hmeffZZ1FCIShUKBhIQErFmzBmVlZazjSBIVshXw8PDAggULkJKSgvr6etZxLOL48ePo1asXfH19WUchIurduzfGjRuH1atXs44iSVTIVmL48OEIDQ3F5s2bWUexiIyMDBqusFH6efZHjx5lHUVyqJCtyPz587F//35cuHCBdRSzKi8vx9mzZzF8+HDWUYgZKJVKJCQkYNWqVXY/z/5hVMhWxMfHB3/5y1+QlJQEtVrNOo7ZZGZmYtCgQXBxcWEdhZhJ3759ERkZibVr17KOIilUyFYmKioK7du3x+eff846itnQzm72Yfbs2cjNzcXJkydZR5EMKmQrw3Ec3n//fezatQu//PIL6ziiu3nzJq5fv44BAwawjkLMzMXFBXFxcVi2bBmqqqpYx5EEKmQr5O/vj9mzZyM5OdnmHiiZnp6OUaNGQS6Xs45CLCA8PByDBg3Chg0bWEeRBCpkK/XCCy/Y3AMl9Tu70XCFfXn33XeRnZ2NnJwc1lGYo0K2Uo0fKHnt2jXWcURx8eJFaLVa9O7dm3UUYkFubm5YvHgxli5dapdbBDRGhWzFOnTogOnTp9vMAyX1S6VpZzf7ExERgf79++PDDz9kHYUpKmQr99JLL0Gn0+Hrr79mHaVNtFotDh48iKioKNZRCCPvvfcesrKy7GqLgIdRIVs5mUyGhIQEbN68GUVFRazjtFpOTg6CgoIQHBzMOgphxMPDA7GxsUhJSUFdXR3rOExQIduALl264E9/+pNVP5WBdnYjADBs2DD06NHDbrYIeBgVso2YMmUKysvLsW/fPtZRTFZbW4vjx49j1KhRrKMQCZg/fz4OHDiAn3/+mXUUi6NCthH6pzJs3LgRd+/eZR3HJN999x369OkDHx8f1lGIBHh7e2PevHlITk5GQ0MD6zgWRYVsQ7p3744//vGPWLFihVUNXaSlpdFwBXnAqFGjEBwcjE8++YR1FIuiQrYx1vZUhtLSUpw7dw5Dhw5lHYVICMdxWLhwIfbu3YtLly6xjmMxVMg2RqFQID4+3mqeynDo0CEMGTIEzs7OrKMQifH19cWcOXOQlJQEjUbDOo5FUCHboCeeeAJRUVFYs2YN6ygG0VJp0pKxY8fC19cXW7duZR3FIqiQbdSsWbNw/vx5HD9+nHWUZl27dg3FxcUIDw9nHYVIFMdxWLx4Mb788ktcvXqVdRyzo0K2UU5OToiPj8eKFStQWVnJOk6T0tPTERUVBQcHB9ZRiIQFBARg1qxZSEpKsrndDR9GhWzDnnrqKQwePFiSWxvqd3ajpdLEGOPHj7e53Q2bQoVs42JiYvD9999LbmvDn3/+GQ4ODujZsyfrKMQKcByH+Ph4bNu2DYWFhazjmA0Vso1zdXWV5NaGtLMbMVX79u0xY8YMm9ndsClUyHYgIiICffv2xaZNm1hHAQBoNBpkZmbScAUx2cSJEwEAu3btYpzEPKiQ7cTcuXORmZmJ//73v6yj4NSpU+jUqRM6dOjAOgqxMjKZDImJifjb3/6Gmzdvso4jOipkO+Hp6YnY2FhJ7A9AS6VJWwQHB+O1115DSkqKVW0RYAwqZDsSGRmJkJAQbNmyhVmGmpoanDx5EiNHjmSWgVi/6Oho1NbWYu/evawkgiCMAAALhUlEQVSjiIoK2c7ExsbiX//6Fy5evMjk848ePYqnnnoKXl5eTD6f2Ab90MWmTZtw69Yt1nFEQ4VsZ9q1a4c5c+YgOTkZarXa4p+flpZGS6WJKB577DFMnjwZy5Yts5mhCypkOzRmzBj4+flh27ZtFv3ckpISXLhwAUOGDLHo5xLbNXXqVJSUlODAgQOso4iCCtkONd4fID8/32Kfe+jQIQwbNgxKpdJin0lsm1wux5IlS7BhwwarezBDU6iQ7VRAQADeeustJCUlWWySPQ1XEHPo3r07JkyYgOXLl1v90AUVsh0bP348nJycsHPnTrN/VkFBAe7du4ewsDCzfxaxP9OmTcONGzes5sEMzaFCtmMymQzx8fH4/PPPcf36dbN+Vnp6OkaPHg2ZjE45Ij6FQoHExESreTBDc+hvh53r2LEjXn/9daSkpJht6EKn0yEjI4MWgxCz+t3vfofnnnsOq1atYh2l1aiQCSZPnoyGhgbs2bPHLMc/d+4cnJyc0K1bN7McnxC9mTNn4tKlS8jKymIdpVWokAlkMhkSEhLw0UcfmWWSvf5mHu3sRsxNqVQiISEBq1atgkqlYh3HZFTIBIAwyf6VV14RfZK9Wq3GkSNHaGc3YjF9+/bFyJEjsXbtWtZRTEaFTH6ln2SflpYm2jGzs7MREhKCoKAg0Y5JiCGzZ89Gbm4uTpw4wTqKSaiQya/kcjkSEhKwfv163Lt3T5Rj0txjwoKzszPi4uKwbNkyVFVVsY5jNCpk8oAePXrghRdewMqVK9t8rKqqKpw6dQojRowQIRkhpgkPD5fsMyWbQ4VMHvHGG28gPz8fR44cadNxsrKyEB4eDg8PD5GSEWKamJgYZGdnS+6Zks2hQiaPUCgUv96prqioaPVxaLiCsCbVZ0o2hwqZNKlPnz549tlnW32n+s6dO7h8+TIGDx4scjJCTBMREYH+/fvjgw8+YB3FICpk0qxZs2bhxx9/xMmTJ01+b0ZGBiIjI6FQKMyQjBDTvPfeezh69Chyc3NZR2kRFTJplv5OdWpqast3qrVa4KFl1+np6bRUmkiGh4cHFi5ciJSUFNTV1TX9IpUKuHkTKCoCGA1vyJl8KrEa4eHhiIiIwMaNG7Fo0SLhl5cvA/v2AdnZwIULQG2t8HtXV6BXL9zt1g0uxcXo27cvu+CEPGTo0KE4ePAgPv74Y8yZMwfQaICjR4GvvwbOngVKSwH5/UrUaIAOHYBnngFefhno3x+wwEpTzpRVWWFhYfzp06fNGIdIUVVVFSZNmoQ1r7yCXt98A/z0k3BFrFAATk4PnsR1dai4exe8TAavYcOA+HigTx+m+QnRKysrw8uTJmFLVBQ679wpXBUDgLMz4Oj4W+nyPFBfL1xsyGRAcDCwdCkwcGCrPpfjuDM8zxvce5aGLIhBbo6O2NS+PbxnzoTup58AT0/Axwdwc/utjAFALgfv5oY7Gg2cAgKAH38EJkwAVq0CGhrY/QEIuc9brcZWrRbKxETo6uqEc9nTU7i4aHwFzHHCxYa3N+DhIQxlTJkCLFoENDfkIQIqZNKy6mpgyhR0OXpUKNv6+ha/utXU1MBBLoeTk5Nworu5AR9/DEyb9tvQBiEs3LwJvPACAgsLoXZ1RYmxK/g4TjiP3d2BL78UitlMY8xUyKR5Gg0wfTpw5gzg5QX/9u2hUqlQ00KxVlRUPLgQRC4XrjJOngRmzXrk5h8hFqFSAS+9BNy9C87bG4FBQSgvK0OtKVe7Dg7CuXzmDDBzplnOZSpk0rzPPgNycgAvL4DjIHdwQGBAAIqLi6Fr4t6DjudRWVkJT0/PB/8Dxwkn8vHjwI4dFgpPSCNJSUBxsfCtDYCjXA7/gAAUFxU1eS43S38uf/+9Wc5lKmTStPx8YO1a4ataoyEKdw8PKBQKlJSUPPKWqqoqODk5wVHexOQdjhNmYaSmAjdumDM5IQ/Kzga+/fbXMtbz9PSE3NHR9I20OA5wcRHO5aIiEYNSIZPmbNkCqNXCnedGOACBgYEoLyt7ZD5nRUUFPFvat0KhEI752WdmCExIMzZsEIYbHnqeIwcgKDAQpaWlqKuvN+2Y+nNZ5KtkKmTyKJVKuKJoplz1X/eKiotRodFg3o0bGJSXhyklJTC4ps/NDfjqK2YT74mdKSgQxnzd3Zv8z46OjvD398cnBQWYUlCAgXl5WGLsVa+rK/DFF8L0OJFQIZNHnTolzMNsaujhPk9PT8gdHJBYUABHjsMuf3+87+WFVbdvI7+lE9TRUVjZR/PZiSV8/71wLrcwM8jLywvt5HK86OiI//fw/Y+WKBTCdM7z50UIKqBCJo/66SeD84Y5AJ4BAThWVYXXPTygrqxERLt2GOrujgOGdogT+SQmpFk5OQZX2HEA/ti5M3rU1MDV1OOr1UBeXmvTPYIKmTwqN1f4f38DbvE8lI6OkN29i/r6eri6uaGbUtnyFTIgXHlLfJMXYiPOnweUSoMvUzg6ws/PDxUVFTD5iZI//dSqaE2hvSzIo6qqhJsgBtTodPBUKMBxHDQaDQoLC1FdX49bajUKtFrhq2ITlGo1Cg8dwkevvvrA75tbxi/W75tDn2u7n7vqzBm4qtVQy4y79mxoaDBtfrFMJur9ECpk8ii5vNkybcxFJkO1ToeuXbui7v5iEUV5OXzr6hAYENDs+2TV1XB54gksXLjQ6EhcM187xfo9fa5tfq7XH/8I7u5dYRm0EfxLSnDPlELmeaOuwI1FhUwe1bWrMKTg2vKIWrBCAS2A6w0NCHZ2BgD8r6wM3V1d4Xz/35tUWwvlU0/Bq1cvEUMT0oTQUOD27RZvUDfmIJOZdoWs0wHdu7cy3KNoDJk8KizskTmbTXGWyRDp7o6P795FrU6H/9bU4LvKSowzdKdaLgf69RMpLCEtGDBA2ALAAC3Po0Gngw6ADkCDTgetMUMjCgUg4oUFXSGTR+nL0sB0IQBYGBiIpKIijLp8GZ4ODng/MBCPtfQVjueFH9ormVjC008L90MMnMuflpRgS6PVp2kVFZjh64sZfn7NH1ujEY7bu7docamQyaO6dxd+rl4VFnK0wMPBAWs7dTL+2JWVwJNPAp07tzEkIUbo0wfo1EnYx6KFIbgZfn4tl29TKiuB8eObXUDVGjRkQZr21lvCHEsT76S3iOeFMbeZM8U7JiEt4Thg9mxh7ruY57JWKwzrvf66eMcEFTJpztixwtCFoUUepqioEMb0Ro4U75iEGDJ+vPjnskol7Iss8o1pKmTSNJkMWLdOmNIjxjzL6mrhMTmrV1vk2WSE/KrxuVxd3fbjVVQIwyDz5rX9WA+hQibNCw4GPvlE+HrWlhNZ/2SGbduAoCBxshFiiuBgYOtW4Z+NfVLIw3geKC8H2rUDdu4UtuAUGRUyadnAgcKOVkolUFZm+hzN8nLhZsrOncKTewlh5emnhUcweXoK56VWa/x71WrhPT17Anv3Au3bmyUiFTIxLDwcyMoCoqKEO8tlZS3P7dRohNdUVgLPPSe8l+YdEyl48kngyBFg0qTfzuX6+qZv+PG8MFxXXi68ZuFCYVtaM37L40xZFx4WFsafpm0T7duFC8D27cKJqZ9TrC9nuVwYH+Y44MUXhZseoaFs8xLSnJs3gX/8A9i1C7h3T1jk0bgP1WphqOPPfwb+8IdHnjhiCo7jzvA8H2bwdVTIpFU0GmHz77w84QpCJhOevdejB9Cli1GbExEiGWVlwOXLwuwJjgN8fIRzWaRxYmMLmRaGkNaRy4Fu3YQfQqydtzfwzDOsU9AYMiGESAUVMiGESAQVMiGESAQVMiGESAQVMiGESAQVMiGESIRJ85A5jrsLoNB8cQghxCZ15nne4IbLJhUyIYQQ86EhC0IIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkYj/D7RINcvS0wgWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -199,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -235,7 +221,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -264,14 +250,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlcVeXa//HPzSwyqTiL4lhamU+px2w4dRpO2XnUytLKxwH7hXo6pVZWerLSVDIHVFBAwSk7ZuaUedLKykrLlNRyzFlQUxQQFUTY9++PBYbIzN577eF6v1682sNiretW++57r+FaSmuNEEII9+JhdgFCCCHsT8JfCCHckIS/EEK4IQl/IYRwQxL+QgjhhiT8hRDCDUn4CyGEG5LwF0IINyThL4QQbsjL7AJKExoaqsPDw80uQwghnMq2bdvStNZ1y1vOYcM/PDycrVu3ml2GEEI4FaXU0Yos57DhL9xMXh4cOwYXLoCHB9StC/XqgVJmVyaES5LwF+bJzIRVq2DpUti/3wh6Dw/Q2vgwqFkTOnaEfv3grrvA09PsioVwGRL+wv4uX4YZM2DuXMjPB29vCAgwgr9Q4QfAxo3w3XdQuzZERcG995pWthCuRM72Efa1bx88/DDExUGNGhASYszwPYr9U1TK+FAIDoagIDh/HgYNgmHD4NIlc2oXwoVI+Av72bkTnngCUlKgVi3wqsQXT39/44Pg00+hb1+4eNF2dQrhBiT8hX0cP26Edl6eEeJV4eFhfFPYsQMGDwaLxbo1CuFGJPyF7VksMGKEsbsmIKB661LK+ADYtAmWLLFOfUK4IQl/YXuffALJyVWf8RenlHGcYNw4OH3aOusUws1I+Avbslhg5kzw9S3znP2l587xf4cPc8fevbx94kT56/Xxgdxc4zRRIUSlSfgL29q6FU6dMs7sKUOolxeDQkPpXplvB/7+kJhoHEcQQlSKVcJfKZWklDqtlPqtlPeVUmqGUuqAUmqnUuo2a2xXOIFNm+DKlXKv1P1bUBD3BgYSXJkLuXx9jeMIhw5Vs0gh3I+1Zv7zgYfLeP8RoHXBz/PAbCttVzi6H380QtpWtIY9e2y3fiFclFXCX2u9EThXxiI9gIXa8CMQopRqaI1tCwd38KCxf95WcnONbQghKsVe+/wbA8eLPE8peE24utzc66/eLUV+fj7pGRlkZGZysaJX8Xp4yAVfQlSBQx3wVUo9r5TaqpTaeubMGbPLEdbg41Ohi7Hy8/M5euwYnp6e+Pr6cvLECY4cPcqFixfRZf2ixVLuwWQhxPXsFf6pQFiR500KXruG1jpBa91Ra92xbt1y70UgnEGLFsbsvwx5+fkcOnoUb39/agYG4uvnR1iLFgQFB/PHH39w+PBhsrKySv4Q8PGBli1tUroQrsxe4b8a6Fdw1k8XIFNrfdJO2xZm6tzZ6OJZirz8fI4dO8Yq4LFz51hw9ixrMzO5c98+ll25QosWLQgNDeVMWhqHDh0i8/z5az8ElIK2bW09CiFcjlVaOiul/gPcC4QqpVKAtwBvAK11HLAW6AYcAC4BA62xXeEE7rrL6OCp9XWne+bl53Ps6FECAgJ4uV49XillFUGBgQQGBnLxwgXSzp7lzOnT1AkNJdjPD48aNaBVK9uPQwgXY5Xw11o/Xc77GvinNbYlnEynTlC/Ppw7Z1yUVSAvP5+jR48SGBhI3bp1Ke9+XQoICAggICCAi5cukZaWRvaJE5x68kluys/HtzIdQoUQjnXAV7ggDw944QVj1482dthUNviLq+nvT7MGDajToAGra9Sge/fuLFy4kEvS51+ICpPwF7b31FPQvj1kZpKXl1et4AeMD5GLF/F96y3ejosjNjaWvXv30r17dxISEjh//ry1RyCEy5HwF7bn4QHTppHn7c2pQ4cICgykXnWCPyPD2J30f/8HQKtWrZgwYQJJSUmcOnWKnj17MmPGDM6dK+u6QyHcm4S/sItzQUGMbtKEmjVrUreq7R4sFkhPh3btYM6c6y4ea9q0KWPGjGHx4sXk5OTQq1cvJk2axKlTp6wwAiFci4S/sLmzZ88SGRlJq6eeotaXX0K9esbsPT+/4ivJzobMTOP+v0uWQGBgqYs2bNiQkSNH8vHHH+Pn58czzzzDuHHjOH78eKm/I4S7UVqXef2kaTp27Ki3bt1qdhmimtLS0hg8eDAPP/wwzz33nPFidjZMmQILFxqzeR8f8PO7vg1EXp7RtVNr40YwEybAgw+W2yG0uMzMTJYsWcLSpUvp0qULERERtJQLw4SLUkpt01p3LHc5CX9hK2lpaURGRvLoo48SERFx/QLnzsHy5cYNWQ4dAk/PPz8A8vLA2xtuvx3694d7763cDd9LcPHiRZYtW8bixYtp3749ERERtGvXrlrrFMLRSPgLU505c4bIyEj+8Y9/lBz8xeXmwuHDcOGC8QEQGgpNmlR6ll8ROTk5rFy5koULF9KiRQsiIiK47Ta5xYRwDRL+wjSnT59m8ODBdO/enQEDBphdTqlyc3NZu3Yt8+bNo169ekRERNClSxeUDT5whLAXCX9hitOnTxMZGcljjz1Gv379zC6nQvLz81m/fj3z5s3D19eXQYMGcc899+BRwVbUQjgSCX9hd84Y/EVZLBa++eYbkpKSyM3NJSIiggcffBDPytxaUgiTSfgLu/rjjz+IjIykV69e9O3b1+xyqkVrzebNm0lKSiItLY0BAwbw6KOP4u3tbXZpQpRLwl/YzalTp4iMjOSpp57i2WefNbscq0pOTiYxMZEjR47Qr18/evbsia8t70ksRDVVNPxlp6aolpMnTxIZGUnv3r1dLvgBbrvtNmJjY3n//ffZsmWLNJETLkPCX1RZYfD36dOHZ555xuxybKpdu3ZMmTJFmsgJlyHhL6rkxIkTREZG8swzz/D002XezsGlSBM54Sok/EWlnThxgsGDB9O3b1/69OljdjmmkCZywtlJ+ItKSU1NJTIykr59+/LUU0+ZXY7ppImccFYS/qLCCoO/f//+EvzF1KlThxdffJEVK1ZQr149BgwYwOjRozl48KDZpQlRIgl/USEpKSlERkYycOBAevXqZXY5Dis4OJjIyEhWr15NmzZtGDJkCK+88gq7d+82uzQhriHn+YtyHT9+nMGDBzNo0CAef/xxs8txKtJETtibXOQlrOLYsWMMGTKE5557jscee8zscpyWNJET9iLhL6rt2LFjDB48mOeff56ePXuaXY5LKNpEzs/Pj4iICGkiJ6xKwl9Uy9GjRxkyZMjV1szCuqSJnLAVCX9RZRL89lO8idzAgQPp1q2bNJETVSbhL6rkyJEjDB06lCFDhvC///u/ZpfjVqSJnLAGCX9RaYcPH2bo0KG88MILPProo2aX47Z27dpFYmIiu3bt4tlnn6VXr174+/ubXZZwEtLVU1TKoUOHGDp0KP/6178k+E120003MXXqVGkiJ2xKwl9cE/zdunUzuxxRQJrICVuS8HdzBw8eZOjQoQwbNkyC30FJEzlhCxL+buzAgQMMHTqU4cOH8/DDD5tdjiiHNJET1iTh76Z+//13/vnPf/Lyyy/z97//3exyRCVIEzlhDRL+bmj//v288MILvPzyyzz00ENmlyOqSJrIieqQUz3dTGHwjxw5kgceeMDscoQVSRM5AXKevyhBYfC/9tpr3H///WaXI2xEmsi5Nwl/cY29e/fy4osv8vrrr/O3v/3N7HKEHUgTOfck4S+uKgz+N954g/vuu8/scoSdSRM59yLhLwDYs2cPL730EqNGjeLee+81uxxhImki5x7s2t5BKfWwUmqfUuqAUur1Et4foJQ6o5TaXvDznDW2K8q2e/duXnrpJUaPHi3BL1BK0bVrV+bOncuYMWNYv349PXv25KOPPuLy5ctmlyfsrNozf6WUJ7AfeBBIAX4GntZa7y6yzACgo9b6hYquV2b+1bN7926GDRvGv//9b+655x6zyxEOSprIuR57zvw7Awe01oe01rnAEqCHFdYrqmjXrl289NJLEvyiXNJEzn1ZI/wbA0WvL08peK24J5RSO5VSy5RSYSWtSCn1vFJqq1Jq65kzZ6xQmvv57bffGDZsGGPGjJHgFxUmTeTcj73O+foUCNdatwe+ABaUtJDWOkFr3VFr3bFu3bp2Ks117Ny5k+HDh/P2229z9913m12OcELSRM59WCP8U4GiM/kmBa9dpbU+q7UuPKI0F7jdCtsVRezcuZOXX36Zd955hzvvvNPscoSTkyZyrs8a4f8z0Fop1Vwp5QP0AVYXXUAp1bDI0+7AHitsVxTYsWPH1eDv2rWr2eUIF1JSE7l///vf0kTOBVQ7/LXWecALwDqMUF+qtd6llBqrlCq8+/eLSqldSqkdwIvAgOpuVxi2b9/OK6+8wtixYyX4hc0UbSLXqlUraSLnAuQiLyf2yy+/MHLkSMaNG0eXLl3MLke4EWki57jkCl8Xl5yczMiRI5kwYQKdO3c2uxzhpnJzc/nss8+YP3++NJFzEBL+Liw5OZnXXnuN8ePHS/ALhyBN5ByHhL+L2rZtG6+99hoTJ06kU6dOZpcjxDWkiZz5JPxd0NatW3n99deJioqiY8dy/26FMI00kTOPhL+L+fnnnxk1ahRRUVHcfrtcJiGcR3JyMomJiRw5coR+/frRs2dPfH19zS7LZUn4u5AtW7YwatQoJk2aJGdUCKclTeTsw64tnYXtbNmyhdGjR0vwC6cnTeQci4S/A/vxxx9lxi9cjjSRcwwS/g5q8+bNvPnmm0yePJn/+Z//MbscIaxOmsiZS8LfAW3atIkxY8YwefJkOnToYHY5QtiUNJEzh4S/g9m0aRNvvfUWU6ZM4dZbbzW7HCHsRprI2ZeEvwP54YcfrgZ/+/btzS5HCFNIEzn7kFM9HcR3333H2LFjmTp1KrfccovZ5QjhMIo2kWvZsiURERFyHKwMcp6/E9m4cSPvvvsu06ZN46abbjK7HCEckjSRqxgJfyexceNGxo0bx/Tp02nXrp3Z5Qjh8KSJXNkk/J3At99+y/jx44mOjpbgF6KSijeRGzRoEA8++KDbfwhI+Du4r7/+mokTJzJ9+nTatm1rdjlCOK3CJnKJiYmcO3eOAQMGuHUTOQl/B7ZhwwaioqKYMWMGN954o9nlCOEStNb88ssvbt9ETsLfQUnwC2F77txEThq7OaCvvvqKqKgoZs6cKcEvhA1JE7nySfjbyZdffsl7771HTEwMN9xwg9nlCOEWpIlc6ST87WD9+vVMmjSJmJgY2rRpY3Y5QrgdaSJ3Pdnnb2Pr169nypQpxMTE0Lp1a7PLEUIAZ8+eZfHixaxcuZL77ruPAQMGEBYWZtVtZGTAnj2wdy+kpxuv1asHN95o/AQEWHVzV8kBXwfw+eefM23aNGJjY2nVqpXZ5QghisnMzGTJkiUsXbqUO+64g4EDB9KyZcsqr89ige+/hzlzYPNm8PKC3FzQ2vjx9ARvb8jPhwcegIgI6NgRrHmRsoS/yf773/8yffp0YmNjq/WPSQhhexcvXuTjjz/mww8/pH379kRERFT6wsujR2H4cPj1V+N5YCCUdr2ZxQKZmUbo//WvEBUFdetWcxAFJPxNtHbtWmbMmMGsWbNo0aKF2eUIISqoqk3k1qyBV16BvDwIDq74TF5r40PA39/4tvCXv1RzAEj4m+azzz5j5syZEvxCOLHKNJFbudII/ho1oKrXk126ZOwKmj8f7rijerVL+JtgzZo1xMbGMmvWLJo3b252OUKIaiqvidxvv8HjjxuhX90LiS9dMr4xrF8PjRtXfT0S/nb26aefMmvWLGbPnk14eLjZ5QghrKikJnJ//euDdOvmQUoKBAVZZzsZGdCpEyxeXPrxgvJI+NvR6tWriYuLY9asWRL8Qriwok3ktm+/ldTUCBo39kcp61wyVXgMIC7OOBuoKqS9g52sWrWKuLg4mfEL4QaUUnTt2pWEhLlcuRJBbu55Dhw4SHr6ObS2lPg7+fnnSUl5hb177+LAgX+Qmfl5Ges3ZvwJCbYawZ+8bL8J17Vy5UoSEhKIi4ujadOmZpcjhLCT5GRFTk4AzZsHkJOTTVpaGmlpadSuXZtatWrh4eF5ddlTp6JQyps2bdaTk7Of48dfws+vDb6+JZ8QEhgIycmQkgJNmthuDDLzr6Lly5dL8AvhprZvN07rVApq1KhBWFgYTZs2JScnhwMHDnDmzBny8/OxWLLJytpA3bpD8PDwx9+/A4GBfyUz87NS1104+9+507ZjkPCvguXLl5OYmEh8fLwEvxBu6KefjKt3i/L19aNx4yaEh4eTl3eFgwcPcPJkMlp74OPTtMhyrbl8+VCZ679yxfbh73a7fbKyjL+4nTuNr1ZZWcYl182aGUfZO3SAtm1Lv0hj2bJlzJs3j/j4eJrY8juZEMJhpaYabRqupdFa4+npSWhoKEFBQZw+fYicHMWxY0cJCwtDKQ88PAKwWC6WuX5vbzhyxFbVG9wm/I8dMw6ifPKJcWl1bi74+BjBr7XxYbB6tfF1q3lzGDwYevQw3i/08ccfs2DBAgl+IZyQ1prc3Fyys7PJyckhOzv76uPC58VfL/5+4fMdO/7JxYvBKHUZi0WjtQWLxYJSCg8Pj4KQV2jtjVI5pKen06hRY7y8PLBYLuLhUbPcei0lHz+2GpcPf4vFuGruvfeMfXSBgdd/XStKazh+HF591fi96Gho0QKWLl3KwoULiY+Pp3F1rsAQQpRIa82VK1euC9/SAriy4Z2Tk4OXlxd+fn74+flRo0aNq/8t/Cn+XlBQEPXr17/mNT8/Pw4dasrBg37UrGmEvYeHKrjw69pdBtnZddi3L58mTbzwKgiey5f3l3qwt1B+vtEmwpasEv5KqYeB6YAnMFdrHVXsfV9gIXA7cBborbU+Yo1tlyU7G4YMge++g5o1jeAvj1LGsv7+sHs3PPooPPnkBn75ZREJCQk0atTI1mUL4ZCKhnNFZsjlzZ6Lh3dOTg6enp7XhXDxkC76XlBQEPXq1Ss1vIu/7ln0q3w13Hcf/P67sfegNJcv55CScoagoPvJyfkQi+VNcnL2k5X1LeHh88rdRgVaClVLtcNfKeUJxAIPAinAz0qp1Vrr3UUWGwSka61bKaX6AO8Bvau77bLk5sLzz8MPP0CtWpVvmaoUhITAqVMZTJ16A4sWzaNRo1DbFCuEFRSGc3VmyOUFe0nhXFJIF74fEBBA3bp1Sw3v4r9jrXC2tVtvLWmf/58uX87h2LFj1K9fn5o13+LEiXfYv/9BPD2DadDgjXJn/l5eRs9/W7LGzL8zcEBrfQhAKbUE6AEUDf8ewNsFj5cBMUoppW14efHMmVUP/kLnzp3lwoVzNGoUzptvetO1K9Svb906hfsoHs4V3b9cXngXfc/Dw6PckC0ezqGhoaWGd/HXnSWcbe3OO41cycu7fjdyTk4Ox48fo379BgQV9H0IC5tS4XXn5Bg3emnf3poVX88a4d8YOF7keQpQvDHp1WW01nlKqUygDpBmhe1fZ9cu4/LooKDqBf+5c+do1qwZ3t7eZGTA669DUpJ1b7wgHEfRcK7uDLm08C4M5/JCtvCxv78/derUKXPXR9H/epV1QEtYTXAw9OwJy5YZE8xCOTnGjL9Bgz+Dv7Kys2Ho0LKPTVqDQ/1LUUo9DzwPVOv8+QkTjAO3Vf3DM4I/nWbNwvEu+G4XHGzcoeeXX+C226pcmqgGrTV5eXlWmSGXFt4eHh7lhmzRx/7+/tSuXfu6g4alBbuEs+sYMsRo51x45mBh8Dds2IDAwKoHf0AA9Olj5WJLYI1/ialA0ZtfNil4raRlUpRSXkAwxoHfa2itE4AEMBq7VaWYY8eM8/jL+9C1WHI5dSqKS5e2kJ9/Hm/vJtSr9wKXL99Aenr61Rl/IaWMD5R58yT8y1L0gKA1dm8Uf08pVeYsuKQzOGrVqlXuvunC1yWcRUWFhxtnBU6cCPn52Rw/frxawW+xwOXLMHUq1K5t3VpLYo1/6T8DrZVSzTFCvg/wTLFlVgP9gc1AL2CDrfb3f/aZ8YdYfjvUfLy9G9C0aQLe3g24cOEHjhx5GR+fybRo0Rkvr+uP5gQGwuefG5/ONWrYonrbK5w5W+v0ueKva60rNAsu+l6tWrUqdGaHn5/fNR/IQpht4EBYsyaDdesuERZWveDPyDBm/A89ZOUiS1Ht8C/Yh/8CsA7jVM8krfUupdRYYKvWejWQCCxSSh0AzmF8QNjE5s1lH4Uv5OFRg7p1n7/6PDe3LRZLHerWvVhi8INxwZenp3GKl60OxhTdrVGdGXJp4V00nCu6e6NoOJc3e5ZwFu5k377dZGWN5J575vL770ElHgAuT24uXLxo3BRm3Dj7HVO0yndcrfVaYG2x18YUeZwDPGmNbZXnt9/Az69yv5OWlkZ6+hG8vc/i79+mzGXz8ixs355Lw4ZZNtm9YbFYKryLovBxSEhIhS9c8fLyKvFWdEKIytm9ezfDhg3jrbf+zR13NGDWLIiJMXYPBwWVv/chPx/OnzeOF4wdC08/XfUbuFSFy93MpWVL4+BsRf8Q09LOcPJkCp6e0/DyaoS//z+xWCzXXLJtsWgsFgtaW7hyJZimTRfTosWXpQZ0ZcO76Hve3t4SzkI4uF27djFs2DDefPNN7rnnnquv79kDkyfDxo1/7n728zO+DWhtnBqak2Ms6+EBjzxi3P83LKyUDVVBRW/m4nJHtyqbmz4+3lgsswCoXftf1KwZeE1vjj8fG8/PnlW89tqrPPfcqzaoXgjh6H777TeGDx/OmDFjuPvuu695r21bSEyEEydg3bo/m0hmZhrZVKuWccJIly7w97/b58BuaVwu/ENC/jz1qjxaay5cmE5IiCI4+H3Ons0iJyeX0NBQatasQfE+HWB8goeEWL9uIYTj+/XXXxkxYgRvv/02d955Z6nLNWpkHAweONCOxVWSy/Xzv/nmP79WlefUqYnk5h4mLCyakJD6tGzZktq163D69BkOHz7M+fPngWt3i3l62v6yayGE49m5cycjRozgnXfeKTP4nYXLzfy7djX2t5XnypWTZGQsRykffv/971dfb9BgFC1aPMyFCxdIS0vjzJnTBb25g7FYFFpD69Y2HIAQwuHs2LGDV155hXfeeYeuXbuaXY5VuFz4d+sG779f/rn+3t4Nadu29APKAQGBBAQEcPHipYIPgTP4+jakT58a+PpKfxMh3MX27dt59dVXGTt2LHfccYfZ5ViNy+32adLEmP2fP2+NtSlq1qxJs2bNaNSoMZcvZ7N1679YvHgx2dnZ1tiAEMKB/fLLL7z66quMGzfOpYIfXDD8AUaPNmb9V65Yb525uf707l2XxMSX2LlzJ927dycxMZGsrCzrbUQI4TCSk5N59dVXGT9+PF26dDG7HKtzyfBv0wZeesm4P681LmO4dMm4wcuECXDjjTfw3nvvkZCQwNGjR+nZsyezZs0iPT29+hsSQjiE5ORkRo4cyYQJE+jcubPZ5diES4Y/QGQk3H8/pKdX7wPg0iXjSrw5c6BOnT9fb968OWPHjmXhwoVkZGTwxBNPMHXqVE6fPl394oUQptm2bRuvvfYaEydOdNngBxcOfy8viI01LqTIyDC65VWG1sbvKQULFkBp/wYaN27MqFGjWLJkCQB9+vRhwoQJnDhxopojEELY29atW68Gf6dOncwux6ZcNvzBuNArNtZouZqXZ3wLyM0t+3e0NnYXZWZCx47GVXoV2d1Xr149RowYwSeffEJISAh9+/ZlzJgxHD582DqDEULY1M8//8wbb7zBe++9R8eO5XZHcHou19unNCdPGjP4Dz4wDgRfufJnl06tjeeF/TduvhkGD4YHH6x6o6WsrCyWLl3KkiVLuO2224iIiOCGG26w2niEENazZcsWRo0axaRJk7jNyW/YUdHePm4T/oVyciA52bjVY3KycUqolxc0awa33260am7e3Hrbu3TpEitWrOCDDz6gTZs2DBo0iPa2vjmnEKLCfvrpJ0aPHu0SwQ8S/g4nNzeXTz/9lPnz59O4cWMiIiLo1KmTdPAUwkQ//vgjb775Ju+//z4dOnQwuxyrkPB3UHl5eXz++efMmzePwMBABg0axF133SUfAkLY2ebNmxkzZgyTJ0/m1ltvNbscq5Hwd3AWi4WvvvqKefPmATBw4EDuv/9+POx5Nwch3NSmTZt46623mDJlisvthpXwdxJaa77//nuSkpI4f/48AwYM4JFHHpEbiQthIz/88ANvv/22SwY/SPg7Ha01W7duJTExkdTUVPr370/37t3xqciNCYQQFfL999/zzjvvMHXqVG655Razy7EJCX8ntnPnTpKSkti3bx99+/bl8ccfp0aNGmaXJYRT++677xg7dizTpk3j5ptvNrscm6lo+MsOZgfUvn17oqOjiY6OliZyQljBxo0bGTt2LNHR0S4d/JUh4e/AbrjhzyZyx44do0ePHsTGxkoTOSEq4dtvv+Xdd99l+vTp3HTTTWaX4zAk/J1A8+bNeeedd/jggw84f/68NJETooK++eYbxo8fT3R0NO3atTO7HIci4e9EGjVqxBtvvCFN5ISogK+//poJEyYwffp0Cf4SSPg7IWkiJ0TZNmzYwMSJE5kxYwZt27Y1uxyHJOHvxGrVqsXQoUNZtWoV4eHhREZGMnLkSPbt22d2aUKY5quvviIqKoqZM2dy4403ml2Ow5JTPV1IdnY2K1asYNGiRdJETrilL7/8kkmTJhETE0ObNm3MLscUcp6/GytsIrdgwQIaNmzIoEGDpImccHlffPEFkydPZubMmW4b/CDhL7i+iVxERAR33323fAgIl7N+/XqmTJlCTEwMrVu3NrscU0n4i6ssFgsbNmwgKSkJrTUDBw7kgQcekCZywiWsW7eOqVOnEhsbS6tWrcwux3QS/uI6Wmt++OEHEhMTyczMZODAgdJETji1zz//nOjoaGJjY2nZsqXZ5TgECX9RqsImcklJSaSkpEgTOeGU1q5dy4wZM5g1axYtWrQwuxyHIeEvKqSwidzevXuvNpHz9/c3uywhyrR27VpmzpxJbGysBH8x0thNVEhhE7kZM2bw22+/0aNHD+bOnSsBoRciAAARI0lEQVRN5ITDWrNmDTNnzpQZfzVJ+AsA2rRpQ1RUFHPmzOH48ePSRE44pE8//ZTY2Fhmz55N8+bNzS7HqUn4i2uEh4dLEznhkFavXs3s2bOJi4sjPDzc7HKcnoS/KFFpTeRSU1NNrky4o9WrVxMXF8fs2bNp1qyZ2eW4BAl/UabiTeT69evHmDFjOHTokNmlCTexcuVK4uLiiIuLk+C3omqFv1KqtlLqC6XU7wX/rVXKcvlKqe0FP6urs01hjsImcitXriQ8PJzBgwdLEzlhc8uXL2fOnDnExcXRtGlTs8txKdU61VMpNQk4p7WOUkq9DtTSWr9WwnIXtNYBlVm3nOrp2Io2kWvdujXPPfecNJETVrV8+XISExOJi4sjLCzM7HKchl3O81dK7QPu1VqfVEo1BL7RWt9QwnIS/i4qNzeXNWvWMH/+fGkiJ6zmk08+Yd68ecTFxdGkSROzy3Eq9gr/DK11SMFjBaQXPi+2XB6wHcgDorTWK8tbt4S/c8nLy2PdunXMmzePmjVrMmjQIGkiJ6rk448/ZsGCBcTHx9O4cWOzy3E6Vgt/pdSXQIMS3hoNLCga9kqpdK31dfv9lVKNtdapSqkWwAbgfq31wRKWex54HqBp06a3Hz16tLz6hYORJnKiOpYuXcqiRYuIi4uT4K8ih9rtU+x35gNrtNbLylpOZv7OrbCJXFJSEhkZGdJETpTro48+YvHixcTFxdGoUSOzy3Fa9mrvsBroX/C4P7CqhEJqKaV8Cx6HAncCu6u5XeHglFLcddddJCYmMmrUKNauXctjjz3Gxx9/TG5urtnlCQezZMkSCX47q+7Mvw6wFGgKHAWe0lqfU0p1BAZrrZ9TSnUF4gELxodNtNY6sbx1y8zf9fz6668kJSWxZ88eaSInrvrwww9ZsmQJ8fHxNGzY0OxynJ509RQOa//+/SQlJbFt2zZ69+5N7969CQwMNLssYYIPP/yQjz76iPj4eBo0KOnQoqgs6eopHFbRJnIpKSnSRM5NffDBByxdupSEhAQJfhNI+AvThIeH8/bbb1/TRG7KlCnSRM4NLFq0iGXLlhEfH0/9+vXNLsctSfgL0xU2kfvoo4/w8PCQJnIubuHChSxfvpyEhAQJfhNJ+AuHUbduXYYPH87y5culiZyLmj9/PitXriQ+Pp569eqZXY5bk/AXDickJIShQ4eyatUqaSLnQubNm3e1NbMEv/kk/IXDCggIICIiglWrVtGhQweGDRvGiy++yI4dO8wuTVRSUlISa9askRm/A5FTPYXTkCZyzikxMZG1a9cSHx9PaGio2eW4PDnPX7gsaSLnPObMmcO6deuIj4+nTp06ZpfjFiT8hcuzWCx8/fXXJCYmYrFYiIiIkCZyDiQhIYEvvviCuLg4CX47kvAXbqN4E7kBAwbQrVs3aSJnEq01CQkJfPXVV8TFxVG7dm2zS3IrEv7C7Wit2bZtG4mJiaSkpNCvXz969OiBj4+P2aW5Da018fHxbNiwQYLfJBL+wq0VbSL37LPP8sQTT0gTORvTWhMXF8c333zD7NmzJfhNIr19hFu75ZZbmDZtGjNmzGD37t306NGDuXPnkpWVZXZpLklrzezZs/n2229lxu8kJPyFS2vTpg0TJ068polcTEwM586dM7s0l6G1JjY2lu+++464uDhq1bruZn7CAUn4C7dQtIlcVlYWvXr1kiZyVqC1JiYmhk2bNjF79mxCQq67hbdwUBL+wq2U1ERu/PjxpKSkmF2a09FaM3PmTDZv3izB74Qk/IVbKtpErnbt2vTv31+ayFWC1prp06fz008/MXv2bIKDg80uSVSShL9wayEhIQwZMuS6JnJ79+41uzSHpbUmOjqarVu3SvA7MQl/Ibi+idzw4cOliVwJtNZMmzaN5ORkZs2aRVBQkNkliSqS8/yFKEHRJnINGjRg0KBBdO7c2a37B2mtmTp1Kjt27CAmJkaC30HJRV5CWEF+fj7r1q0jKSnpahO5u+66y+36B2mtmTx5Mr/++iuxsbEEBgaaXZIohYS/EFbkzk3ktNa8//777Nq1i9jYWAICAswuSZRBwl8IG9Bas2nTJhITE92iiZzWmkmTJrFnzx5iYmIk+J2AhL8QNlTYRC4pKYljx45dbSLn6+trdmlWY7FYmDRpEvv27SMmJoaaNWuaXZKoAAl/Iezk119/Zd68eezevdtlmshZLBaioqI4cOAAM2fOlOB3ItLYTQg7ueWWW5g6deo1TeTmzJnD+fPnzS6tSgqD/+DBgzLjd2ES/kJYSdEmcqmpqfTs2dPpmshZLBYmTJjAoUOHmDlzptN/gxGlk/AXwsqKNpG7cOECvXr1YvLkyQ7fRM5isTB+/HiOHj3KjBkzJPhdnIS/EDbSqFEjXn/9dZYuXYqXl5f9msjl5MC5c5CeDnl5FfoVi8XCu+++y/Hjx5k+fboEvxuQA75C2ElGRgb/+c9/WLZsGV27dmXgwIG0aNGi+iu2WOD772H5cti6FU6cAE/PP99v1Qq6doXevaFNmxJ+3cK4ceNITU0lOjpagt/Jydk+QjioCxcusHTpUpYsWUKHDh2IiIjgxhtvrPyKtIaVKyEqypjl5+dDjRrg6wuFbSgsFuObwOXLxmu33AJjxxr/xQj+sWPHcvLkSaKjo6lRo4YVRyrMIOEvhIPLzs5mxYoVfPDBB7Rq1YqIiAg6dOhQsV8+cwZeecWY8fv5GaFfHq2h8AykyEgsL77I2+++y+nTp4mOjsbPz6/qgxEOQ8JfCCdR6SZyqanw1FNw6hSEhPw5y6+ovDz0+fNsCw5mfqdOTJ4xQ4Lfhch5/kI4CR8fHx5//HFWrFhBz549mTx5Mv3792fjxo1YLJZrF87MNPbdnz4NtWpVPvgB7eXFiUuXaHbwINGenvi50FXJouIk/IVwEJ6ennTr1o2PPvqIAQMGEBcXxzPPPMP69ev//BB46y04eRKqeAMVDZxITSXPYqFOy5Z4ffEFrFljvUEIpyG7fYRwUMWbyI3o1Ik7585FBQdDFbqJaiA1NRVLfj5NwsLwUMo4GKwUfPst1K5t/UEIu6vobh/XbEUohAtQSnHnnXfStWtXkpOT8XzySVJPn8Yf4/aTHqXs8nkzNZUtly6RbbEQ6uVFvzp16BEScn3wg3GwOCMDPvkE/t//s9/ghOkk/IVwcEopbg8KAk9Psps2Je3sWdLS0qhTuzYhtWrhWexbwMDQUN709sbHw4Mjly/z/NGjBGdm0tLD49rgL+TnB3PmQETEtdcHCJdWrX3+SqknlVK7lFIWpVSpXzOUUg8rpfYppQ4opV6vzjaFcEsbN0J+PjX8/QkLC6NpWBjZOTkcPHCAM2lp5OfnX120ha8vPoUfCFpz+fJlTuTl0aRJk5K/Lfj5GQeSDxyw02CEI6juAd/fgMeBjaUtoJTyBGKBR4B2wNNKqXbV3K4Q7mXLlmtm5X5+fjRp3Jhm4eFcyc3lwMGD/HH6NHkF7RyiTp3izr176b5vH7WUokd4eKm7iQDjGoA9e2w9CuFAqrXbR2u9ByjvptadgQNa60MFyy4BegC7q7NtIdzKnj3GDL0YXx8fGjVqRO6VK5w9e5aDhw4RHBzMiDp1ePrKFfb4+HA8MBC/8g4QX7libKNnTxsNQDgae5zq2Rg4XuR5SsFrQoiKys4u85x+H29vGjZoQIsWLVDAkSNH8FCKh5o350xeHsvS08tev4cHZGVZt2bh0Mqd+SulvgQalPDWaK31KmsWo5R6HngeoGnTptZctRDOzdvb6M9T3mJeXtSvX5969etT+FGRD6Tk5pb9i1qDj0+1yxTOo9yZv9b6Aa31zSX8VDT4U4GwIs+bFLxW0rYStNYdtdYd69atW8HVC+EGmjaF8gIcOJeXx/rz58m2WLBozeYLF1iXmUnn8u7GpZTR/VO4DXuc6vkz0Fop1Rwj9PsAz9hhu0K4jr/8BX76CQICylxMAcvS05lw8iQWoKG3Ny/Xr889gYFlr9/bG9q2tVq5wvFVK/yVUo8BM4G6wGdKqe1a678rpRoBc7XW3bTWeUqpF4B1gCeQpLXeVe3KhXAnf/kLeJX/v2stLy8SmjWr3Lrz8oyZv4S/W6nu2T4rgBUlvH4C6Fbk+VpgbXW2JYRb69LFaL9w4ULF2jdXRlaW0SxObuLiVqSxmxDOwMMDBg82evFYsx9Xfr6x7gEDrLdO4RQk/IVwFn37GgdlC2/IYg1ZWUbwl3B7R+HaJPyFcBbe3jB9unGlb05O9deXmQlNmsCIEdVfl3A6Ev5COJMbb4TZs43TPi9dqto6tDY6edauDR9+aP1jCMIpSPgL4Wzuuw/mzze+CWRkGDdpr6grV4wZf+vWxs3fGzWyWZnCsUn4C+GMunaFr7+Ghx4y9tunpxvBXhKtjfYQGRnG7qIRI+DTT6FhQ/vWLByK9PMXwlnVrg2zZsH+/bBoEaxYYewK8vQ0vg0oZfxcuQINGhgHdp94Qu7YJQC5jaMQrkNrOHEC9u0zrgfw8IA6dYyLt0JCzK5O2IncxlEId6MUNG5s/AhRDtnnL4QQbshhd/sopc4AR82uo4pCgTSzi7AjdxsvuN+Y3W284Lxjbqa1LrctssOGvzNTSm2tyD43V+Fu4wX3G7O7jRdcf8yy20cIIdyQhL8QQrghCX/bSDC7ADtzt/GC+43Z3cYLLj5m2ecvhBBuSGb+QgjhhiT8rUApVVsp9YVS6veC/9YqY9kgpVSKUirGnjVaU0XGq5TqoJTarJTapZTaqZTqbUat1aWUelgptU8pdUAp9XoJ7/sqpT4qeP8npVS4/au0ngqMd4RSanfB3+lXSqlK3jPS8ZQ35iLLPaGU0koplzgDSMLfOl4HvtJatwa+KnhemnHARrtUZTsVGe8loJ/W+ibgYSBaKeVUPQaUUp5ALPAI0A54WinVrthig4B0rXUrYBrwnn2rtJ4KjvcXoKPWuj2wDJhk3yqtq4JjRikVCLwE/GTfCm1Hwt86egALCh4vAHqWtJBS6nagPrDeTnXZSrnj1Vrv11r/XvD4BHAaKPfCEwfTGTigtT6ktc4FlmCMvaiifxbLgPuVUsqONVpTuePVWn+ttS68kcCPQBM712htFfk7BmPS9h5ghbvoOAYJf+uor7U+WfD4FEbAX0Mp5QFMAV6xZ2E2Uu54i1JKdQZ8gIO2LszKGgPHizxPKXitxGW01nlAJlDHLtVZX0XGW9Qg4L82rcj2yh2zUuo2IExr/Zk9C7M1aexWQUqpL4EGJbw1uugTrbVWSpV0CtVQYK3WOsUZJoZWGG/hehoCi4D+WutK3HVEODKlVF+gI/BXs2uxpYJJ21RggMmlWJ2EfwVprR8o7T2l1B9KqYZa65MFYXe6hMXuAO5WSg0FAgAfpdQFrXVZxwdMY4XxopQKAj4DRmutf7RRqbaUCoQVed6k4LWSlklRSnkBwcBZ+5RndRUZL0qpBzAmAX/VWl+2U222Ut6YA4GbgW8KJm0NgNVKqe5aa6fuOS+7faxjNdC/4HF/YFXxBbTWz2qtm2qtwzF2/Sx01OCvgHLHq5TyAVZgjHOZHWuzpp+B1kqp5gXj6YMx9qKK/ln0AjZo5714ptzxKqX+B4gHumutS/zQdzJljllrnam1DtVahxf8v/sjxtidOvhBwt9aooAHlVK/Aw8UPEcp1VEpNdfUymyjIuN9CrgHGKCU2l7w08GccqumYB/+C8A6YA+wVGu9Syk1VinVvWCxRKCOUuoAMIKyz/RyaBUc7/sY31w/Lvg7Lf5h6FQqOGaXJFf4CiGEG5KZvxBCuCEJfyGEcEMS/kII4YYk/IUQwg1J+AshhBuS8BdCCDck4S+EEG5Iwl8IIdzQ/wc1PZjJsDIxAQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWkgva3ZUurWdUtpaVtbF2i5CKJuLP4tlq2F3TZVlvsIgkh1JLaFOlqEVSycYtL5DK5TTKX8/vjSItkkpnkzHzOzLyfj0cejz5i5szLPo7Xnvmcz/l8OJ7nQQghhD0Z6wCEEEIEVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRclNe7Ovry3fp0sVMUQghxDadPn26hOd5v5ZeZ1Ihd+nSBadOnWp9KkIIsUMcxxUZ8zoasiCEEImgQiaEEImgQiaEEImgQiaEEImgQiaEEIkwaZYFIUSg0QBXrgClpYBeD7i5Ad26Aa6urJMRa2bZQm44iy9cAG7eBOrrhTP58ceBnj2BgACA4ywaiRBj1dQAGRnA1q3A+fOAgwMgkwENm+7U1wMdOwIvvQRMmAD4+7PNS6wPZ8oWTmFhYXyr5iFfvQps3y78aDTCJUV9vVC+HAcolYBWC4SEADNmAKNHA87Opn8OIWag1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIiQHmzRNeS+wbx3GneZ4Pa/F1Zi3k+npgwwZg82ZApxOuhh0dm34tzwPV1cLr2rUD1q8HnnnG+M8ixAxKS4G33wb+8x+hWJVK496n0wEqFRAYCGzaBPTubd6cRNqMLWTz3dQrLgbGjgU++kg4k729DZcxIFwpu7kBnp5AeblwebFsmXB5QggDJSXA+PFCGXt5GV/GgHCF7O0tHGPiRODMGfPlJLbDPIVcXAyMGwcUFgpnpdzEoWo3N8DdHfjkE2Dx4t8G6QixkPp64NVXgevXhVO4tbc23N2F03fKFGHkjpDmiF/IGg3w5z8D9+4JlxWt5eAgXC1v3w7s2CFePkKMsHEjcPGicAq2lasrUFsLvPcefeEjzRO/kD/+GLh8GfDwaPuxZDLhbF6yBLh2re3HI8QIBQVCIbu7izfpx9MT+PFHYNcucY5HbJO4hXznDvB//ycMOYh1JisUwvfH1FRxjkdIC774QrgpZ+pIW3M4TjiVN26kEThimLjzkHfuFM7k5m7etYanJ5CdDdy6Jdy2JsRMamuBr74Srimao9fX49at5aipyYVOp4KjY0f4+78NN7cIg+9xdhbGpPPygP79RQ5ObIJ4V8g8D2zZYtSky4QbNzDq8mUMuXgR469cwZ7y8ubf0DD7fs8ecbISYsCFC8I4b8vXFDo4OgYiOHgzunc/Cj+/t3DjxgLU1980+A6OE6bb5+aKmZjYEvEKubgYqKgwam7Qn319sTckBMdCQ7G2Y0dsvHMHF2prm3+TXA4cPy5SWEKaduGCcF+6JTKZM/z8pkOhaA+Ok8Hd/fdwdGwPtTq/2ffJ5cDJkyKFJTZHvELOzxdmRhjhMaUSivuPOXEAOI7D9Zb+FTg5AT/9RANwxGx4nkd+vh7Cw1I8eJ4Hz+sf+tHr9dDrdQ/9ADy02lLU11+FUvlYs5+hVAqrBxDSFPHGkO/cMe7S4r7lt27hn6WlqNPr8bhCgT48D1Vl5cMvul++/P3/VqhU+G7fPujvF7/wD+a3nwd/p78/v6i51xj6ae1rAECv14vymoa/Q0uvYfV3FfN/D7H/rq3536PB9evvoKxsOG7frgbQ1L1p7qHfa7VauLgo4eCwFp6ez0Gp7PLoGx5+NyfcoyakKeIVsokTLOMCAvB8aSmKnJ1xTqdDTUUF6h9YHOChfwf3z36XujrkHD8OvaMjOI4DxzX84+Ca/WnqNQAgk8lafA3Hcb++rqXPkjVc9Tfz+ca8xpS/hyX/rqa8Rup/V0OvSU4WFg/y8Wn29P1VQcEVVFevglKpR6dO81t8vV4vfNkjpCniFbKrq9FDFoDwDyAgIABu1dXIc3HBf5RKvNzcvwK9HlCpkLJsWeNVXQgRSc+exp/GdXVqVFevh6urFhpNLLRafYs3A+vqgNDQtucktkm8ZuvWzeSibNeuHfQ6Hapra3G9pe9xarWwTCeVMTGjHj2ML+Rr11Ihl99Gly4b4OsbhOLiYtwfYDNIrwfCw9uek9gm8drt8ceFOT0tDF2UarU4qFKh5v6YYZGXFw6oVOjf0vc4tRoIa3GxJELapEcP4cZbS9cHGs1NVFX9CzxfhMuXR6GkZBzKyl7EjRtfG3wPzwvXE4MGiRya2AzxhiwUCmDECODw4WbXsOAAfFNWhqXFxdADCHJ0xDve3ni8shK8l9fDY8cNeF64bHnuOdHiEtIUhQKYPFlYpFChMPw6rdYL7u67ERISgoY7HnV1ahQVFUGr1UAubzx2UVUlDFf07Gmm8MTqifuk3tSpwhN1PG/w0WlvuRybO3d+6Hd6nkdhYSFUFRXwbGo1l9paYTcR+q5HLCAmRlhosL7ecClXVKjun6u/nedKpRN8fHxQXFyMTp06PfRnPC98gYyNNW92Yt3EHZANCwP69BEeEDElBMehffv2uH37NrRa7cN/yPPCnZD582n8mFhEUBCwaJGwX0JT0955nodKpWry4qFdO19otVpUVKge+n1FhfAFcuRIc6UmtkDchpPJgLVrhceRTJxs6ezkBE8vL9y6ffvhPygvB4YOBZ5/XsSghDQvJgYYOBAoK2tcytXVVVAoFHB0bHz5zHEcgoKCHrq4UKmENZXT0mjLSNI88S85O3cWdvqorja5lP38/KBWq397QKSiQhiqWLGCzmRiUTKZsPVSv37CNcGD96orKirg6Wl4eVknJ2d4e3uhuLgYZWU83N2BL78E/PwsEJxYNfOMAYwbJ6xhXFMjFLOxYTgO7YOCcKu4GLrSUmHb3q++ojOZMOHqKizFOX68cG0gbPmoQ1VVNTxaWO/bw8MX1dWO8Pe/iz17hP17CWmJ+QZlJ00Ctm0TVvkuKzPusWqeh4teDz9HR5zx8QH27gU6dTJbREJa4uICrFoFfP454OsL3L6thkzWDjqdvNFQhlYLVFYK5c3zMsyfr4W7+xS4uZWxCU+sjnnvkkVECNPgpk0TztaKCqGca2uFdZN1OqGoq6qELZ9UKqBzZzhv2YKUwEDk5De/chYhljJkCPDdd8CAAR9h6NAaODsLQxlVVcJPRYVwivfvD6xZA5w6BSQmdsSYMaOwevVq1vGJleD4pm4jGxAWFsafOnWqdZ9UWyuUc04O8MMPwnKdWq2wandoKDBgABAZCTzxBMBxOHnyJJYsWYKdO3fCxYg1lgkxt5KSEkyYMAGZmZlQKpUoLwdKS4XxZXd3YYTt0VsdarUar7zyCmJjYzF06FA2wQlzHMed5nm+xSfbLFfIrZCSkgKlUom4uDiLfSYhhuzYsQOXL19GUlKSSe/Ly8vDwoUL8dVXX7U49kxsk7GFLOmJvbNnz8bRo0dx5swZ1lEIQXp6OkaPHm3y+/r164fhw4fjr3/9qxlSEVsi6UL28PDAggULkJqaCrVazToOsWOFhYW4d+8ewlq5nsrbb7+N06dPIycnR+RkxJZIupABYOjQoejZsyc2bdrEOgqxYxkZGRg1atSvazybysXFBfHx8UhLS0O1CVNBiX2RfCEDwLx587B//36cO3eOdRRih/R6PTIzMzFmzJg2HSc8PBwRERFYv369SMmIrbGKQvb29sZ7772H5ORk1NP+N8TCzp49CycnJ3Tr1q3Nx4qNjcXx48fxww8/iJCM2BqrKGQAGDVqFDp27IjPP/+cdRRiZzIyMjB69Ohft3tqCzc3NyxcuBCpqamobWmndWJ3rKaQOY7DggUL8PXXX+Py5cus4xA7odFocOjQIURHR4t2zMGDB6Nv37748MMPRTsmsQ1WU8gA4O/vj7fffhspKSnQ6XSs4xA7kJOTg5CQEAQFBYl63Llz5+LQoUP48ccfRT0usW5WVcgA8Ic//AHu7u74+9//zjoKsQPp6emiXh038PDwQFxcHFJSUlBXVyf68Yl1srpC5jgO8fHx2LZtG4qKiljHITasqqoKJ0+exEgzrSo/fPhwhIaG0pRO8iurK2QAaN++Pd544w2kpKRA38KmqoS0VnZ2NsLDw836uPO8efOwb98+mtJJAFhpIQPAxIkTwfM8vv7a8C6/hLRFax+VNoWPjw/mzJlDUzoJACsuZJlMhsTERGzevBk3b95kHYfYmDt37uDSpUsYPHiw2T/r2WefRadOnfDZZ5+Z/bOItFltIQNAly5dMHnyZCxZsgSmrFpHSEsyMzMRGRkJhaFtp0XUMKXz22+/xaVLl8z+eUS6rLqQAWDy5MlQqVTYu3cv6yjEhmRkZLT5UWlT+Pn54d1338XixYsb77xO7IbVF7KDgwMSExOxYcMG3L17l3UcYgN++eUXqFQq9O3b16Kf+9xzz6Fdu3bYtm2bRT+XSIfVFzIAdO/eHS+++CKWLVtGQxekzTIyMhAdHd3qld1ai+M4LFq0CDt27EBBQYFFP5tIg00UMgC8/vrruH79OrKyslhHIVZMr9dbfLjiQYGBgZg5cyaSk5NpSqcdsplCVigUSExMxOrVq1FWRrv8ktbJy8uDp6cnQkJCmGV44YUX4OzsjO3btzPLQNiwmUIGgN69e2PMmDFYtWoV6yjESjWs7MaSTCZDQkICtmzZgqtXrzLNQizLpgoZAN58801cuHABx44dYx2FWJn6+npkZ2ebZe0KU3Xo0IGeRrVDNlfITk5OSEhIwPLly1FZWck6DrEix48fR2hoKPz9/VlHAfDb06jffPMN6yjEQmyukAGgf//++P3vf0+7/BKTSGG44kENT6Nu2rSJnka1EzZZyADw7rvvIjc3F//5z39YRyFWQKVSITc3F5GRkayjPKRz586YMmUKUlNTaUqnHbDZQnZ1dcXChQuRlpaGmpoa1nGIxB06dAgDBw6Em5sb6yiNxMTEoLq6Gnv27GEdhZiZzRYyAERERKBfv360VQ5pkdSGKx7k4OCApKQkfPjhh7h9+zbrOMSMbLqQAWDOnDk4fPgwbZVDDCouLkZBQQEiIiJYRzEoJCQEL7/8MtLS0mjowobZfCF7eHhg/vz5tFUOMSgzMxMjR46Eo6Mj6yjNeu2111BSUoL09HTWUYiZ2HwhA0BkZCS6deuGzZs3s45CJIbneaaPSptCLpcjKSkJ69atQ0lJCes4xAzsopABIC4uDnv37sX58+dZRyEScvnyZajVavTp04d1FKOEhoZi3LhxWL58OQ1d2CC7KWQfHx/Mnj0bKSkp0Gg0rOMQiWjYVZrjONZRjDZt2jQUFRXh0KFDrKMQkdlNIQPA6NGjERAQgC1btrCOQiRAr9cjMzNTsrMrDFEoFEhKSqKFtGyQXRUyx3FYuHAhvvrqK1y5coV1HMLYqVOn4Ovri65du7KOYjJaSMs22VUhA0BAQMCv683qdDrWcQhD1nIzz5A333wT+fn5OHr0KOsoRCR2V8iAsN6si4sLduzYwToKYUStVuPo0aN49tlnWUdpNaVSiYSEBKxYsQIqlYp1HCICuyxkmUyG+Ph4Wm/Wjh07dgy9evWCr68v6yht0q9fPwwfPhxr165lHYWIwC4LGQA6duyIqVOnYsmSJbTerB3KzMy06uGKB7399ts4c+YMcnJyWEchbWS3hQwAL7/8MjQaDb799lvWUYgFlZeX48yZMxg+fDjrKKJwcXFBfHw80tLSUF1dzToOaQO7LuSG9WY//vhjFBcXs45DLCQrKwuDBg2Ci4sL6yiiCQ8PR0REBNavX886CmkDuy5kAOjatStiYmKwdOlSevLJTkh5Zbe2iI2NxfHjx/HDDz+wjkJaye4LGQBeffVV3Lt3D/v27WMdhZjZjRs3cO3aNQwYMIB1FNG5ublh0aJFSE1NpTXArRQVMn5btGXDhg20aIuNy8jIQFRUFORyOesoZjFo0CD069cPGzduZB2FtAIV8n0Ni7asWLGChi5sVMPKbrY4XPGgOXPm4NChQ7QGuBWiQn7AtGnTUFhYiMOHD7OOQszgwoUL0Ol06N27N+soZuXh4YG4uDhaA9wKUSE/QKFQIDExEatWrUJ5eTnrOERkDY9KW9PKbq01fPhwhIaGYtOmTayjEBNQIT+iT58+GDVqFNasWcM6ChGRTqfDgQMHEB0dzTqKxcyfPx/79u3DuXPnWEchRqJCbsJbb72Fs2fP4vjx46yjEJHk5uYiKCgIwcHBrKNYjLe3N+bOnYvk5GTU19ezjkOMQIXcBGdnZ8THx2Pp0qWoqqpiHYeIwNpXdmutqKgodOrUCZ9++inrKMQIVMgGPP300xg8eDA9+WQDamtrcezYMURFRbGOYnEcx+H999/Hrl27cPHiRdZxSAuokJvx7rvv4sSJE/Tkk5X77rvv0KdPH/j4+LCOwoSvry9iY2ORnJwMrVbLOg5pBhVyM9zc3LBw4UKkpqaitraWdRzSSunp6XY5XPGgsWPHwtfXF9u2bWMdhTSDCrkFgwcPxpNPPklPPlmp0tJSnD17FkOHDmUdhamG7ct27NiBgoIC1nGIAVTIRpg7dy4OHjyIs2fPso5CTJSVlYUhQ4bA2dmZdRTmAgMDMXPmTCxevJi2L5MoKmQjeHp6Yt68eUhJSaHpQ1YmPT3d5h+VNsW4cePg6upK25dJFBWykUaMGIGuXbvik08+YR2FGOnq1asoLi5GeHg46yiSwXEcbV8mYVTIRuI4DnFxcdi9ezfy8/NZxyFGyMjIwKhRo+Dg4MA6iqR06NABb7zxBlJSUmj7MomhQjZBw/ShlJQUmj4kcfaysltrTZw4ETzP4+uvv2YdhTyACtlENH3IOvz8889wcHBAz549WUeRJJlMhqSkJGzevBk3b95kHYfcR4VsoobpQ9u3b6fpQxJmTyu7tVZwcDCmTJmC1NRUWgNcIqiQWyEwMBBvvfUWjcFJlFarRVZWll2t7NZaMTExqK6uxu7du1lHIaBCbrXx48dDoVDgyy+/ZB2FPOLkyZPo1KkTOnTowDqK5Dk4OCApKQkbN27E7du3Wcexe1TIrSSTyRAfH49PP/0U169fZx2HPIAelTZNSEgIJk2ahLS0NBq6YIwKuQ2Cg4Px2muvITU1lYYuJKKmpgY5OTkYOXIk6yhWZcqUKSgpKUF6ejrrKHaNCrmNYmJioFarsWfPHtZRCIAjR46gf//+8PLyYh3FqjTsvL5u3TraeZ0hKuQ2apg+RGNw0kCPSrdew87ry5Yto6ELRqiQRfDYY4/hpZdewtKlS+lEZqikpATnz5/HkCFDWEexWtOmTcO1a9eQlZXFOopdokIWyWuvvYY7d+4gIyODdRS7dfDgQQwbNgxKpZJ1FKvVsPP66tWrUVZWxjqO3aFCFomjoyMSExOxbt06lJaWso5jl2i4Qhy9e/fG2LFjsWrVKtZR7A4Vsoh69uyJ559/HitWrGAdxe4UFhbi3r17CAsLYx3FJrz55pvIz8/HkSNHWEexK1TIIps+fTouX76M7Oxs1lHsSsPKbjIZndJiUCqVSEhIwMqVK6FSqVjHsRt09opMqVQiKSmJTmQL0uv1yMzMpIdBRNavXz9ERkZi7dq1rKPYDSpkM3jyyScxYsQIrFmzhnUUu3D27Fk4OTmhW7durKPYnFmzZuHMmTPIyclhHcUuUCGbyaxZs5CXl0cnsgU03Myjld3E5+Ligvj4eCxZsgRVVVWs49g8KmQzcXFxwaJFi5CWlobq6mrWcWyWRqPB4cOHaWU3MwoPD8egQYOwYcMG1lFsHhWyGT3zzDMYMGAAnchmlJOTg5CQEAQFBbGOYtNiY2Nx4sQJ5Obmso5i06iQzWz27Nn497//jdOnT7OOYpNo7rFluLm5YeHChViyZAlqampYx7FZVMhm5u7ujgULFiA1NRVqtZp1HJtSVVWFkydPYsSIEayj2IVBgwahX79++PDDD1lHsVlUyBYwZMgQ/O53v8NHH33EOopNyc7ORnh4ODw8PFhHsRtz5sxBdnY28vLyWEexSVTIFjJ37lxkZGTg559/Zh3FZtBwheV5eHggLi4OqampqKurYx3H5lAhW4i3tzfmzp2LlJQU1NfXs45j9e7cuYNLly5h8ODBrKPYnWHDhqFHjx7YtGkT6yg2hwrZgqKiotCxY0d8+umnrKNYvczMTERGRkKhULCOYpfmzZuHffv20Tc+kVEhWxDHcXj//fexa9cuXLp0iXUcq5aRkUGPSjNE3/jMgwrZwvz8/PDOO+8gJSUFOp2OdRyr9Msvv0ClUqFv376so9i1qKgoBAcH0zc+EVEhM/D888/D09MTX3zxBesoVikjIwPR0dG0shtjHMdhwYIF2LVrFy5evMg6jk2gM5oBjuOwaNEifPHFF/jf//7HOo5V0ev1NFwhIb6+voiNjUVycjK0Wi3rOFaPCpmR9u3bY8aMGUhJSYFer2cdx2rk5eXBy8sLISEhrKOQ+8aOHQtfX19s3bqVdRSrR4XM0IsvvgiZTIadO3eyjmI1GoYriHQ0fOP7xz/+gYKCAtZxrBoVMkMymQwJCQn429/+hhs3brCOI3n19fXIzs6mQpaggIAAzJw5E4sXL6ab1W1AhcxY586dMWXKFKSlpYHnedZxJO348eMIDQ2Fv78/6yikCePGjYOrqyu2b9/OOorVokKWgJiYGFRWVuKf//wn6yiSlpGRQY9KSxjHcYiPj8fWrVtRVFTEOo5VokKWAAcHByQmJuKDDz7AnTt3WMeRJJVKhdzcXERGRrKOQprRoUMHTJ8+nW5WtxIVskR069YNEyZMwLJly2joogmHDh3CwIED4ebmxjoKacGECRMAAF9//TXjJNaHCllCXn/9ddy8eRMHDhxgHUVyaLjCeshkMiQlJWHz5s10s9pEVMgS4ujoiKSkJKxduxalpaWs40hGcXExCgoKEBERwToKMVJwcDCmTJmC1NRU+sZnAipkienVqxfGjh2L1atXs44iGZmZmRg5ciQcHR1ZRyEmiImJQU1NDXbv3s06itWgQpagN998E/n5+Th69CjrKMzxPE+PSlspBwcHLF68GBs3bsTt27dZx7EKVMgSpFQqER8fjxUrVkClUrGOw9Tly5ehVqvRp08f1lFIKzz22GOYNGkSzbM3EhWyRPXv3x/Dhg3DunXrWEdhKj09HdHR0eA4jnUU0kpTpkxBSUkJ9u/fzzqK5FEhS9g777yD3NxcfP/996yjMKHX65GZmUmzK6ycXC5HUlIS1q9fj5KSEtZxJI0KWcJcXFywaNEiLF26FDU1NazjWNypU6fg6+uLrl27so5C2ig0NBTjx4+nefYtoEKWuIEDByIsLAwffPAB6ygWRzfzbMvUqVNx7do1ZGVlsY4iWVTIVuAvf/kLjhw5gry8PNZRLEatVuPo0aN49tlnWUchIlEoFEhMTMTq1atRVlbGOo4kUSFbAQ8PD8yfPx+pqamoq6tjHccijh07hl69esHX15d1FCKi3r17Y+zYsVi1ahXrKJJEhWwlhg8fjtDQUGzatIl1FIvIzMyk4Qob1TDP/siRI6yjSA4VshWZN28e9u3bh/Pnz7OOYlbl5eU4c+YMhg8fzjoKMQOlUonExESsXLnS7ufZP4oK2Yr4+PjgL3/5C5KTk6HRaFjHMZusrCwMGjQILi4urKMQM+nbty8iIyOxZs0a1lEkhQrZykRHR6N9+/b4/PPPWUcxG1rZzT7MmjULeXl5OHHiBOsokkGFbGU4jsP777+PnTt34pdffmEdR3Q3btzAtWvXMGDAANZRiJm5uLggPj4eS5cuRVVVFes4kkCFbIX8/f0xa9YspKSk2NyGkhkZGYiKioJcLmcdhVhAeHg4Bg0ahPXr17OOIglUyFbqhRdesLkNJRtWdqPhCvvy7rvvIicnB7m5uayjMEeFbKUe3FDy6tWrrOOI4sKFC9DpdOjduzfrKMSC3NzcsGjRIixZssQulwh4EBWyFevQoQOmTZtmMxtKNjwqTSu72Z+IiAj0798fH374IesoTFEhW7mXXnoJer0e33zzDesobaLT6XDgwAFER0ezjkIYee+995CdnW1XSwQ8igrZyslkMiQmJmLTpk24efMm6zitlpubi6CgIAQHB7OOQhjx8PBAXFwcUlNToVarWcdhggrZBnTp0gV/+tOfrHpXBlrZjQDAsGHD0KNHD7tZIuBRVMg2YvLkySgvL8fevXtZRzFZbW0tjh07hqioKNZRiATMmzcP+/fvx88//8w6isVRIduIhl0ZNmzYgLt377KOY5LvvvsOffr0gY+PD+soRAK8vb0xd+5cpKSkoL6+nnUci6JCtiHdu3fHH//4Ryxfvtyqhi7S09NpuII8JCoqCsHBwfjkk09YR7EoKmQbY227MpSWluLs2bMYOnQo6yhEQjiOw4IFC7B7925cvHiRdRyLoUK2MQqFAgkJCVazK8PBgwcxZMgQODs7s45CJMbX1xezZ89GcnIytFot6zgWQYVsg5544glER0dj9erVrKO0iB6VJs0ZM2YMfH19sWXLFtZRLIIK2UbNnDkT586dw7Fjx1hHMejq1asoLi5GeHg46yhEojiOw6JFi/Dll1/iypUrrOOYHRWyjXJyckJCQgKWL1+OyspK1nGalJGRgejoaDg4OLCOQiQsICAAM2fORHJyss2tbvgoKmQb9tRTT2Hw4MGSXNqwYWU3elSaGGPcuHE2t7phU6iQbVxsbCy+//57yS1t+PPPP8PBwQE9e/ZkHYVYAY7jkJCQgK1bt6KoqIh1HLOhQrZxrq6uklzakFZ2I6Zq3749pk+fbjOrGzaFCtkOREREoG/fvti4cSPrKAAArVaLrKwsGq4gJpswYQIAYOfOnYyTmAcVsp2YM2cOsrKy8N///pd1FJw8eRKdOnVChw4dWEchVkYmkyEpKQl/+9vfcOPGDdZxREeFbCc8PT0RFxcnifUB6FFp0hbBwcF47bXXkJqaalVLBBiDCtmOREZGIiQkBJs3b2aWoaamBif/IE+WAAALo0lEQVROnMDIkSOZZSDWLyYmBrW1tdi9ezfrKKKiQrYzcXFx+Ne//oULFy4w+fwjR47gqaeegpeXF5PPJ7ahYehi48aNuHXrFus4oqFCtjPt2rXD7NmzkZKSAo1GY/HPT09Pp0eliSgee+wxTJo0CUuXLrWZoQsqZDs0evRo+Pn5YevWrRb93JKSEpw/fx5Dhgyx6OcS2zVlyhSUlJRg//79rKOIggrZDj24PkBBQYHFPvfgwYMYNmwYlEqlxT6T2Da5XI7Fixdj/fr1VrcxQ1OokO1UQEAA3nrrLSQnJ1tskj0NVxBz6N69O8aPH49ly5ZZ/dAFFbIdGzduHJycnLBjxw6zf1ZhYSHu3buHsLAws38WsT9Tp07F9evXrWZjBkOokO2YTCZDQkICPv/8c1y7ds2sn5WRkYFRo0ZBJqNTjohPoVAgKSnJajZmMIT+ddi5jh074vXXX0dqaqrZhi70ej0yMzPpYRBiVr/73e/w3HPPYeXKlayjtBoVMsGkSZNQX1+PXbt2meX4Z8+ehZOTE7p162aW4xPSYMaMGbh48SKys7NZR2kVKmQCmUyGxMREfPTRR2aZZN9wM49WdiPmplQqkZiYiJUrV0KlUrGOYzIqZAJAmGT/yiuviD7JXqPR4PDhw7SyG7GYvn37YuTIkVizZg3rKCajQia/aphkn56eLtoxc3JyEBISgqCgINGOSUhLZs2ahby8PBw/fpx1FJNQIZNfyeVyJCYmYt26dbh3754ox6S5x4QFZ2dnxMfHY+nSpaiqqmIdx2hUyOQhPXr0wAsvvIAVK1a0+VhVVVU4efIkRowYIUIyQkwTHh4u2T0lDaFCJo288cYbKCgowOHDh9t0nOzsbISHh8PDw0OkZISYJjY2Fjk5OZLbU9IQKmTSiEKh+PVOdUVFRauPQ8MVhDWp7ilpCBUyaVKfPn3w7LPPtvpO9Z07d3Dp0iUMHjxY5GSEmCYiIgL9+/fHBx98wDpKi6iQiUEzZ87Ejz/+iBMnTpj83szMTERGRkKhUJghGSGmee+993DkyBHk5eWxjtIsKmRiUMOd6rS0tGbvVOt0wKNPXWdkZNCj0kQyPDw8sGDBAqSmpkKtVjf9IpUKuHEDuHkTYDS8IWfyqcRqhIeHIyIiAhs2bMDChQsBAJcuAXv3Ajk5wPnzQG2t8FpXV6BXL6Bbt7soLnZB3759GSYn5GFDhw7FgQMH8PHHH2P27NmAVgscOQJ88w1w5gxQWgrI71eiVgt06AA88wzw8stA//6ABZ405Ux5KissLIw/deqUGeMQKaqqqsLEiRPxyiur8e23vfDTT8IVsUIBODk9fA6r1cDduxWQyXgMG+aFhASgTx+2+QlpUFZWhpcnTsTm6Gh03rFDuCoGAGdnwNHxt9LleaCuTrjakMmA4GBgyRJg4MBWfS7Hcad5nm9x7VkasiAtcnR0Q/v2GzFjhjd++kkPT0/Axwdwc/utjAHhv93ceGi1dxAQ4IQffwTGjwdWrgTq69nlJ6SBt0aDLTodlElJ0KvVgKen8KNQPHwFzHHC1Ya3N+DhIQxlTJ4MLFwoXHWYCRUyaVZ1tXAeHjnSBW5uPOrq7jT7za2mpgZyuQOcnJzg6SmU9scfA1On/ja0QQgTN24AL7yAwKIiaFxdUWLsE3wcJ5zI7u7Al18K/yDMNMZMhUwM0mqBadOA06cBLy+gfXt/qFQq1NYaPhkrKioeehBELhcuMk6cAGbObHzzjxCLUKmAl14C7t4F5+2NwKAglJeVodaUq10HB+FkPn0amDHDLCczFTIx6LPPgNxcoYw5DnBwkCMgIBDFxcXg+cYnI8/rUVlZCU9Pz4d+z3HCeXzsGLB9u6XSE/KA5GSguFgYngDgKJfDPyAAxTdvQm/K6oYNJ/P335vlZKZCJk0qKADWrBG+qT04ROHh4Q6FQoGSkpJG76mqqoKTkxPkcsdGf8ZxwiyMtDTg+nVzJifkETk5wJ49v5ZxA09PT8gdHU1fSIvjABcX4WS+eVPEoFTIxIDNmwGNRrjx/DAOgYGBKCsrbzSfUxiu8Hz0Db9SKIRjfvaZ+HkJMWj9emG44ZH9HDkAQYGBKC0thbquzrRjNpzMIl8lUyGTRlQq4YLC0JpAcrkjAgL8UVx8E1ptBa5fn4v8/EEoKZkMoPmn+tzcgK++YjbvntibwkJhzNfdvck/dnR0hL+/Pz4pLMTkwkIMzM/HYmOvel1dgS++EKbHiYQKmTRy8qQwDVPezGNDnp6ecHCQo7AwCRznCH//nfDyeh+3b69EXV2Bwfc5OgpP9tF0dmIR338vnMzNTA3y8vJCO7kcLzo64v95Gv6G14hCIcznPHdOhKACKmTSyE8/GTNvmENAgCeqqo7Cw+N1VFZq0K5dBNzdh6KiYn+z7xT5HCbEsNzcFp+w4wD8sXNn9Kipgaupx9dogPz81qZrhAqZNJKXJ/yff0t4/hYcHZW4e1eGuro6uLm5Qqns1uwVMiBceUt8jRdiK86dA5TKFl+mcHSEn58fKioqYPKOkj/91KpoTaG1LEgjVVXCPZCW6PU1UCg8wXEctFotioqKUFdXDY3mFnS6QhiaTaTRKHHwYBFeffWjh35v6DF+sX5vCH2u7X7uytOn4arRQCMz7tqzvr7etPnFMpmoN0SokEkjcjkMlumDZDIX6PXV6Nq1K2prhRkX5eUKqNW+CAgINPi+6moZnnjCBQsWLDA6E2fga6dYv6fPtc3P9frjH8HdvSs8Bm0E/5IS3DOlkHneqCtwY1Ehk0a6dhWGFFxbGFBTKIIB6FBffw3OzsEAgLKy/8HVtTucnZ0Nvq+2FnjqKSV69fISMTUhTQgNBW7fbv4O9QMcZDLTrpD1eqB791aGa4zGkEkjYWGNpmw2SSZzhrt7JO7e/Rh6fS1qav6Lysrv4Ok5ttn3yeVAv34ihSWkOQMGCGsAtEDH86jX66EHoAdQr9dDZ8zXRIVCWHNWJHSFTBppKMsWZgsBAAIDF+DmzWRcuhQFBwdPBAa+D6XyMYOv53nhh5ZKJhbx9NPCDZEWTuZPS0qw+YGnT9MrKjDd1xfT/fwMH1urFY7bu7docamQSSPduws/V64ID3I0x8HBA506Gb/vXmUl8OSTQOfObQxJiDH69AE6dRLWsWhmDG66n1/z5duUykpg3DjDT1C1Ag1ZkCa99ZYwxdLEG+nN4nlhyG3GDPGOSUizOA6YNUuY/C7myazTCeN6r78u3jFBhUwMGDNGGLqoqBDvmBUVwpDeyJHiHZOQFo0bJ/7JrFIJ6yKLOH4MUCETA2QyYO1aYUaPGNMsq6uFXXJWrbLI1mSE/ObBk7m6uu3Hq6gQhkHmzm37sR5BhUwMCg4GPvlE+HbWlvO4YWOGrVuBoCBxshFikuBgYMsW4b+N3SnkUTwPlJcD7doBO3YIS3CKjAqZNGvgQGFBK6USKCszfYpmeblwL2XHDmHjXkKYefppYQsmT0/hxNTpjH+vRiO8p2dPYPduoH17s0SkQiYtCg8HsrOB6GjhxnJZWfNTO7Va4TWVlcBzzwnvpXnHRBKefBI4fBiYOPG3k7murukbfjwvjNeVlwuvWbBAWJfWjF/zOFOeCw8LC+NP0bqJdu38eWDbNuG8bJhT3FDOcrkwPsxxwIsvCvc8QkPZ5iXEoBs3gH/8A9i5E7h3T3jI48E+1GiEoY4//xn4wx8a7ThiCo7jTvM8H9bi66iQSWtotcLa3/n5wgWETCbsvdejB9Cli3GLExEiGWVlwKVLwuwJjgN8fISTWaRxYmMLmR4MIa0ilwPdugk/hFg9b2/gmWdYp6AxZEIIkQoqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQiT5iFzHHcXQJH54hBCiE3qzPN8iwsum1TIhBBCzIeGLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCL+PyxUNcsEcERnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -302,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -320,7 +304,7 @@ }, { "cell_type": "code", - "execution_count": 62, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -340,7 +324,7 @@ }, { "cell_type": "code", - "execution_count": 63, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -356,7 +340,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -371,14 +355,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlclWX+//HXdVhFQFTcN1wrK/Nb6pgtU1PNODZftXLKyq8L9gt1mlIrK52sNJXMBRUUUNAsGzNzy5y0srLSFiW1XHNFUEcRRFQQ4Vy/P24wRJYDnHPus3yejwcPz3Jz358r7X2ucy+fW2mtEUII4V0sZhcghBDC+ST8hRDCC0n4CyGEF5LwF0IILyThL4QQXkjCXwghvJCEvxBCeCEJfyGE8EIS/kII4YV8zS6gPOHh4ToiIsLsMoQQwq1s27YtQ2vdoLLlXDb8IyIi2Lp1q9llCCGEW1FKHbVlOZcNf+FdCgogNRXOnweLBRo0gIYNQSmzKxPCM0n4C9NkZ8Pq1bBsGezfbwS9xQJaGx8GtWtDly4wcCDceSf4+JhdsRCeQ8JfON2lSzB7NixYAIWF4OcHwcFG8Bcr/gDYtAm++Qbq1YPoaLjnHtPKFsKjyNk+wqn27YOePSE+HmrVgrAwY4ZvKfUvUSnjQ6FOHQgNhXPnYOhQGDkSLl40p3YhPImEv3CanTvhkUcgLQ3q1gXfKnzvDAoyPgg+/hgGDIALFxxXpxDeQMJfOMWxY0ZoFxQYIV4dFovxTWHHDhg2DKxW+9YohDeR8BcOZ7XC6NHG7prg4JqtSynjA2DzZli61D71CeGNJPyFw330EaSkVH/GX5pSxnGCiRPh1Cn7rFMIbyPhLxzKaoU5cyAgoOJz9jMzl3H48P+xd+/tHD/+eqXr9feH/HzjNFEhRNVJ+AuH2roVTp40zuypiK9vOOHhQ6lTp7fN6w4KgqQk4ziCEKJq7BL+SqlkpdQppdSv5byvlFKzlVIHlFI7lVK32mO7wvVt3gyXL1d+pW5o6J8ICbkHHx/b9w0FBBjHEQ4dqmGRQnghe838FwE9K3j/r0D7op+ngXl22q5wcd9/b4S0o2gNe/Y4bv1CeCq7hL/WehOQWcEifYDF2vA9EKaUamKPbQvXdvCgsX/eUfLzjW0IIarGWfv8mwHHSjxPK3pNeLj8/Guv3i1PYWEhZ89mkZ19losXbbuKy2KRC76EqA6XOuCrlHpaKbVVKbX19OnTZpcj7MDf37aLsQoLC0lNPYqPjw8BAQEcP36Co0ePcOHCeUCX+3tWa+UHk4UQ13JW+KcDLUo8b1702lW01ola6y5a6y4NGlR6LwLhBtq0MWb/FSksLODo0UMEBfkRElKbwMAA2rRpQZ06ofz3v//l8OHD5OTkUNaHgL8/tG3rmNqF8GTOCv81wMCis366A9la6xNO2rYwUbduRhfP8hQWFpCamgqsJjPzIc6ceYfs7HXs23cHly8vp02bNoSHh5ORcZpDhw5x7lw2JT8ElIIbbnD4MITwOHZp6ayU+jdwDxCulEoDXgP8ALTW8cA6oBdwALgIDLHHdoXru/NOo4On1tee7mnM+FMJDg6mYcPngRfKXEdISCghISGcP3+BM2cyOHXqNOHh9QkMrEOtWhbatXP8OITwNHYJf63145W8r4F/2GNbwr107QqNGkFmpnFRVjEj+I8SEhKCsYuvslt2KYKDgwkODubixQtkZGRw/Hguf//7SQoLb8TX14HnkwrhgVzqgK/wPBYLPPOMsetHF+2tqXrwXy0oqDaNG7eiceP61Kq1ht69e7N48WIuSqN/IWwm4S8c7tFHoVMn47aNBQU1C34wPkQuXIDXXgsgPv514uLi2Lt3L7179yYxMZFz587ZfxBCeBgJf+FwFgvMnAl+fgUcOnSSkJBQGjRoSHWD/+xZY3fS//2f8Vq7du2YPHkyycnJnDx5kr59+zJ79mwyMyu67lAI7ybhL5wiNDST5s3HUbt2bQICqncar9UKWVnQsSPMn3/txWMtW7Zk/PjxLFmyhLy8PPr168fUqVM5efKkHUYghGeR8BcOd+bMGaKionj00XZ8/nldGjY0Zu+FhbavIzfX2G3Us6dxE5eQkPKXbdKkCWPGjOHDDz8kMDCQJ554gokTJ3Ls2LHyf0kIL6O0Lv/qSTN16dJFb9261ewyRA1lZGQwbNgwevbsyVNPPQUYQT59OixebMzm/f0hMPDamXxBgdG1U2vjRjCTJ8MDD1TeIbS07Oxsli5dyrJly+jevTuRkZG0lSvDhIdSSm3TWnepdDkJf+EoGRkZREVF8eCDDxIZGXnN+5mZsGKFcUOWQ4fAx+f3D4CCAvDzg9tug0GD4J57qnbD97JcuHCB5cuXs2TJEjp16kRkZCQdO3as2UqFcDES/sJUp0+fJioqir/97W9lBn9p+flw+DCcP298AISHQ/PmVZ/l2yIvL49Vq1axePFi2rRpQ2RkJLfeKreYEJ5Bwl+Y5tSpUwwbNozevXszePBgs8spV35+PuvWrWPhwoU0bNiQyMhIunfvjnLEJ44QTiLhL0xx6tQpoqKieOihhxg4cKDZ5diksLCQDRs2sHDhQgICAhg6dCh33303Flt7UQvhQiT8hdO5Y/CXZLVa+eqrr0hOTiY/P5/IyEgeeOABfHx8zC5NCJtJ+Aun+u9//0tUVBT9+vVjwIABZpdTI1prtmzZQnJyMhkZGQwePJgHH3wQPz8/s0sTolIS/sJpTp48WXQe/6M8+eSTZpdjVykpKSQlJXHkyBEGDhxI3759CXDkTYmFqCFbw192aooaOXHiBFFRUTz22GMeF/wAt956K3Fxcbz99tv8+OOP0kROeAwJf1FtxcHfv39/nnjiCbPLcaiOHTsyffp0aSInPIaEv6iW48ePExUVxRNPPMHjj1d4OwePIk3khKeQ8BdVdvz4cYYNG8aAAQPo37+/2eWYQprICXcn4S+qJD09naioKAYMGMCjjz5qdjmmkyZywl1J+AubFQf/oEGDJPhLqV+/Ps8++ywrV66kYcOGDB48mHHjxnHw4EGzSxOiTBL+wiZpaWlERUUxZMgQ+vXrZ3Y5LqtOnTpERUWxZs0aOnTowPDhw3nhhRfYvXu32aUJcRU5z19U6tixYwwbNoyhQ4fy8MMPm12OW5EmcsLZ5CIvYRepqakMHz6cp556ioceesjsctyWNJETziLhL2osNTWVYcOG8fTTT9O3b1+zy/EIJZvIBQYGEhkZKU3khF1J+IsaOXr0KMOHD7/SmlnYlzSRE44i4S+qTYLfeUo3kRsyZAi9evWSJnKi2iT8RbUcOXKEESNGMHz4cP73f//X7HK8ijSRE/Yg4S+q7PDhw4wYMYJnnnmGBx980OxyvNauXbtISkpi165dPPnkk/Tr14+goCCzyxJuQrp6iio5dOgQI0aM4J///KcEv8luvPFGZsyYIU3khENJ+Iurgr9Xr15mlyOKSBM54UgS/l7u4MGDjBgxgpEjR0rwuyhpIiccQcLfix04cIARI0YwatQoevbsaXY5ohLSRE7Yk4S/l/rtt9/4xz/+wfPPP89f/vIXs8sRVSBN5IQ9SPh7of379/PMM8/w/PPP8+c//9nsckQ1SRM5URNyqqeXKQ7+MWPGcP/995tdjrAjaSInQM7zF2UoDv6XXnqJ++67z+xyhINIEznvJuEvrrJ3716effZZXn75Zf70pz+ZXY5wAmki550k/MUVxcH/yiuvcO+995pdjnAyaSLnXST8BQB79uzhueeeY+zYsdxzzz1mlyNMJE3kvINT2zsopXoqpfYppQ4opV4u4/3BSqnTSqntRT9P2WO7omK7d+/mueeeY9y4cRL8AqUUPXr0YMGCBYwfP54NGzbQt29fPvjgAy5dumR2ecLJajzzV0r5APuBB4A04Cfgca317hLLDAa6aK2fsXW9MvOvmd27dzNy5Ej+9a9/cffdd5tdjnBR0kTO8zhz5t8NOKC1PqS1zgeWAn3ssF5RTbt27eK5556T4BeVkiZy3sse4d8MKHl9eVrRa6U9opTaqZRarpRqUdaKlFJPK6W2KqW2nj592g6leZ9ff/2VkSNHMn78eAl+YTNpIud9nHXO18dAhNa6E/AZ8E5ZC2mtE7XWXbTWXRo0aOCk0jzHzp07GTVqFK+//jp33XWX2eUINyRN5LyHPcI/HSg5k29e9NoVWuszWuviI0oLgNvssF1Rws6dO3n++ed54403uOOOO8wuR7g5aSLn+ewR/j8B7ZVSrZVS/kB/YE3JBZRSTUo87Q3sscN2RZEdO3ZcCf4ePXqYXY7wIGU1kfvXv/4lTeQ8QI3DX2tdADwDrMcI9WVa611KqQlKqeK7fz+rlNqllNoBPAsMrul2hWH79u288MILTJgwQYJfOEzJJnLt2rWTJnIeQC7ycmM///wzY8aMYeLEiXTv3t3scoQXkSZyrkuu8PVwKSkpjBkzhsmTJ9OtWzezyxFeKj8/n08++YRFixZJEzkXIeHvwVJSUnjppZeYNGmSBL9wCdJEznVI+Huobdu28dJLLzFlyhS6du1qdjlCXEWayJlPwt8Dbd26lZdffpno6Gi6dKn071YI00gTOfNI+HuYn376ibFjxxIdHc1tt8llEsJ9pKSkkJSUxJEjRxg4cCB9+/YlICDA7LI8loS/B/nxxx8ZO3YsU6dOlTMqhNuSJnLO4dSWzsJxfvzxR8aNGyfBL9yeNJFzLRL+Luz777+XGb/wONJEzjVI+LuoLVu28OqrrzJt2jT+53/+x+xyhLA7aSJnLgl/F7R582bGjx/PtGnT6Ny5s9nlCOFQ0kTOHBL+Lmbz5s289tprTJ8+nVtuucXscoRwGmki51wS/i7ku+++uxL8nTp1MrscIUwhTeScQ071dBHffPMNEyZMYMaMGdx8881mlyOEyyjZRK5t27ZERkbKcbAKyHn+bmTTpk28+eabzJw5kxtvvNHscoRwSdJEzjYS/m5i06ZNTJw4kVmzZtGxY0ezyxHC5UkTuYpJ+LuBr7/+mkmTJhETEyPBL0QVlW4iN3ToUB544AGv/xCQ8HdxX375JVOmTGHWrFnccMMNZpcjhNsqbiKXlJREZmYmgwcP9uomchL+Lmzjxo1ER0cze/Zsrr/+erPLEcIjaK35+eefvb6JnIS/i5LgF8LxvLmJnDR2c0FffPEF0dHRzJkzR4JfCAeSJnKVk/B3ks8//5y33nqL2NhYrrvuOrPLEcIrSBO58kn4O8GGDRuYOnUqsbGxdOjQwexyhPA60kTuWrLP38E2bNjA9OnTiY2NpX379maXI4QAzpw5w5IlS1i1ahX33nsvgwcPpkWLFvbdyNmzsGcP7N0LWVnGaw0bwvXXGz/BwfbdXhE54OsCPv30U2bOnElcXBzt2rUzuxwhRCnZ2dksXbqUZcuWcfvttzNkyBDatm1b/RVarfDttzB/PmzZAr6+kJ8PWhs/Pj7g5weFhXD//RAZCV26gB2vUpbwN9l//vMfZs2aRVxcXM3+MQkhHO7ChQt8+OGHvP/++3Tq1InIyMiqX3h59CiMGgW//GI8DwmB8i44s1ohO9sI/T/+EaKjoUGDmg2iiIS/idatW8fs2bOZO3cubdq0MbscIYSNqt1Ebu1aeOEFKCiAOnVsn8lrbXwIBAUZ3xb+8IeaDQAJf9N88sknzJkzR4JfCDdWpSZyq1YZwV+rFlT3grKLF41dQYsWwe2316h2CX8TrF27lri4OObOnUvr1q3NLkcIUUOVNpH79Vd4+GEj9Gt6JfHFi8Y3hg0boFmzaq9Gwt/JPv74Y+bOncu8efOIiIgwuxwhhB2V2UTuj3/E0qsXpKVBaKh9NnT2LHTtCkuWlH+8oBIS/k60Zs0a4uPjmTt3rgS/EB6sZBO5W7ZvJzI9naBmzbDY62yd4mMA8fHG2UDVIO0dnGT16tXEx8fLjF8IL6CUokePHixITCTy8mXO5edz8MABMrOysJYzkT5XWMgLaWncuXcvfztwgE+zsyvagDHjT0x00Ah+5+vwLXiwVatWkZiYSHx8PC1btjS7HCGEk6iUFILz8ghu3ZrcvDwyMjLIyMigXr161K1bF58Su2yiT57ETyk2dOjA/rw8njt2jA6BgbQp7xhBSAikpBi7k5o3d9gYZOZfTStWrJDgF8Jbbd9unNapFLVq1aJFixa0bNmSvLw8Dhw4wOnTpyksLCTXamVjTg7DGzQgyGKhc1AQfwwJ4RNbZv87dzp0CBL+1bBixQqSkpJISEiQ4BfCG/3wg3H1bgmBAQE0b9aMiIgILhcUcODgQVJOnMCiNS39/a8s1z4ggEOXLlW8/suXHR7+3rfbJyfH+IvbudP4apWTY1xy3aqVcZS9c2e44YZyL9JYvnw5CxcuJCEhgeYO/EomhHBh6elGm4YSNMYBYR8fH8LDwwkNDeXQqVOovDyOpqbSokULLEoRbLFwwWqteP1+fnDkiMPKB28K/9RU4yDKRx8Zl1bn54O/vxH8WhsfBmvWGF+3WreGYcOgTx/j/SIffvgh77zzjgS/EG5Ia01+fj65ubnk5eWRm5t75XHx89Kvl36/+Pk/duygzoULXFIKbbVi1Rqr1YpSCovFgkUplMWCn9bkKUVWVhbNmjbF4uvLBauV2racxlnZB0QNeX74W63GVXNvvWXsowsJuebr2lW0hmPH4MUXjd+LiYE2bVi2bBmLFy8mISGBZjW4AEMIUTatNZcvX74mfMsL4KqGd15eHr6+vgQGBhIYGEitWrWu/Fn8U/q90NBQGjVqdNVrgYGBtDx0iMCDB1G1a2OxWFAWi/FnqTHVz82lcN8+fJs3x7cod/ZfulT+wd5ihYVGmwgHskv4K6V6ArMAH2CB1jq61PsBwGLgNuAM8JjW+og9tl2h3FwYPhy++QZq1zaCvzJKGcsGBcHu3fDgg2z8+9959+efSUxMpGnTpg4vWwhXVDKcbZkhVzZ7Lh3eeXl5+Pj4XBPCpUO65HuhoaE0bNiw3PAu/bpPiW/yNXLvvfDbb8beg3LkXbrE6bQ07gsN5f28PF61Wtmfl8fXOTkstOW0cFt6CtVAjcNfKeUDxAEPAGnAT0qpNVrr3SUWGwpkaa3bKaX6A28Bj9V02xXKz4enn4bvvoO6daveMlUpCAvj7MmTXDdjBgvffZdwCX7hworDuSYz5MqCvaxwLiuki98PDg6mQYMG5YZ36d+xWzg72i23XLPPv6S8S5dITU2lUaNGvFa7Nm8cP84D+/dTx8eHVxo3rnzm7+tr9Px3IHvM/LsBB7TWhwCUUkuBPkDJ8O8DvF70eDkQq5RS2pGXF8+ZU/3gL3ImM5PM8+eJaNoUv1dfhR49oFEjOxcqvEXpcLZ1/3Jl4V3yPYvFUmnIlg7n8PDwcsO79OtuE86OdscdRq4UFFyzGzkvL4/UY8do3KgRoUVtH6ZX5UYxeXnGjV46dbJnxdewR/g3A46VeJ4GlO5LemUZrXWBUiobqA9k2GH719q1y7g8OjS0ZsGfmUmrVq3w8/Mzem68/DIkJ9v1xgvCdZQM55rOkMsL7+Jwrixkix8HBQVRv379Cnd9lPzTt6LjWcJ+6tSBvn1h+XJjglkkLy+P1NRUGjdufCX4qyw3F0aMqPjYpB241L8UpdTTwNNAzc6fnzzZOHBbzf94ZzIzycrMJKI4+MH4y/72W/j5Z7j11urXJqpNa01BQYFdZsjlhbfFYqk0ZEs+DgoKol69etccNCwv2CWcPcjw4UY756IzB68Ef5MmhNpyfLEsubnGrL9/f/vWWgZ7/EtMB0p+p2le9FpZy6QppXyBOhgHfq+itU4EEsFo7FatalJTjfP4K/nUzbdaiT55kh8vXuRcYSHN/fx4pmFDrrt0iaysrN9n/MWUMj5QFi6U8K9AyQOC9ti9Ufo9VXRFpS37kIt/6tatW+m+6eLXJZyFzSIijLMCp0wht7CQY8eO1Sz4rVa4dAlmzIB69exaalns8S/9J6C9Uqo1Rsj3B54otcwaYBCwBegHbHTY/v5PPjH+I1ZyHm0h0NjPj8SWLWns58d358/z/JEjTPP3p1ubNviVFQIhIfDpp8anc61aDinf0YpnzvY6fa7061prm2bBJd+rW7euTWd2BAYGXv2BLITZhgzh7Nq1XFy/nsYtWtQs+M+eNWb8f/6zfWssR43Dv2gf/jPAeoxTPZO11ruUUhOArVrrNUAS8K5S6gCQifEB4RhbtlR4FL5YLYuFp0vcM/OG/HzqW61caNCg7OAH44IvHx/jFC8HHYwpuVujJjPk8sK7ZDjbunujZDhXNnuWcBbeZPe+fYzJyWHB3XcT+ttvZR4ArlR+Ply4YNwUZuJEpx1TtMt3XK31OmBdqdfGl3icB/zdHtuq1K+/QmBglX4lIyODI1lZnPHzo0NQUIXLWgsKyN++nZwmTRyye8Nqtdq8i6L4cVhYmM0Xrvj6+pZ9KzohRJXs3r2bkSNH8q/XXqPx7bfD3LkQG2vsHg4NrfxmLIWFcO6cca3AhAnw+OPVvoFLdXjezVzatjUOztr4H/F0RgZpJ04w08eHpr6+/CMoCKvVetUl29pqxVr0vM7lyyxp2ZLP27QpN6CrGt4l3/Pz85NwFsLF7dq1i5EjR/Lqq69y9913//7Gnj0wbRps2vT77ufAQOPbgNbGN4O8PGNZiwX++lfj/r9VORW0ErbezMXzjm5VMTj9/P2ZW9RD45/16hFSdLl2cW+O4sfFl3CrM2d48aWXePGppxxRvRDCxf3666+MGjWK8ePHc9ddd1395g03QFISHD8O69f/3kQyO9vIprp1jRNGuneHv/zFKQd2y+N54R8W9nvTtkporZl1/jwqLIy369Qh58wZ8vPyjIteate+pk8HYHyCh4XZvWwhhOv75ZdfGD16NK+//jp33HFH+Qs2bQpDhhg/Lsrz+vnfdNPvX6sqMeXkSQ7n5xPTogWNwsJo27Yt9evV4/SpUxw+fJhz585xzU4xHx+HX3YthHA9O3fuZPTo0bzxxhsVB7+b8LyZf48exv62Spy4fJkVZ8/irxR/+e23K6+PbdyYnm3acP78eTIyMjh1+jTh4eHUCQ1FWa3Gfrv27R05AiGEi9mxYwcvvPACb7zxBj169DC7HLvwvPDv1QvefrvSc/2b+Pmx9YYbyn0/JDiY4OBgLl64QEZGBqdPn6ZJQAC1+vfHp7KmTEIIj7F9+3ZefPFFJkyYwO233252OXbjebt9mjc3Zv/nztV4VQqoXbs2rVq1olnTpuReusQ/t25lyZIl5Obm1rxWIYRL+/nnn3nxxReZOHGiRwU/eGL4A4wbZ8z6L1+22yqD8vNp8NhjPJeUxM6dO+nduzdJSUnk5OTYbRtCCNeRkpLCiy++yKRJk+jevbvZ5didZ4Z/hw7w3HPG/XntcR3DxYvGDV4mT+a666/nrbfeIjExkaNHj9K3b1/mzp1LVlZWzbcjhHAJKSkpjBkzhsmTJ9OtWzezy3EIzwx/gKgouO8+yMqq2QfAxYvGlXjz50P9+ldebt26NRMmTGDx4sWcPXuWRx55hBkzZnDq1Ck7FC+EMMu2bdt46aWXmDJliscGP3hy+Pv6QlyccSHF2bNGt7yq0Nr4PaXgnXegnH8EzZo1Y+zYsSxduhSA/v37M3nyZI4fP17TEQghnGzr1q1Xgr9r165ml+NQnhv+YFzoFRcHU6YYl1VnZRkXgFVEa2N3UXY2dOliXKVnw/6+hg0bMnr0aD766CPCwsIYMGAA48eP5/Dhw3YajBDCkX766SdeeeUV3nrrLbp0qbQ7gtvzvN4+5TlxwpjBv/eecSD48uXfu3RqbTwv7r9x000wbBg88EC1Gy3l5OSwbNkyli5dyq233kpkZCTXXXed/cYjhLCbH3/8kbFjxzJ16lRudfP7ddja28d7wr9YXh6kpBi3ekxJMU4J9fWFVq3gttuMVs2tW9ttcxcvXmTlypW89957dOjQgaFDh9LJwffmFELY7ocffmDcuHEeEfwg4e9y8vPz+fjjj1m0aBHNmjUjMjKSrl27SgdPIUz0/fff8+qrr/L222/TuXNns8uxCwl/F1VQUMCnn37KwoULCQkJYejQodx5553yISCEk23ZsoXx48czbdo0brnlFrPLsRsJfxdntVr54osvWLhwIQBDhgzhvvvuw+LEmzkI4a02b97Ma6+9xvTp0z1uN6yEv5vQWvPtt9+SnJzMuXPnGDx4MH/961/lRuJCOMh3333H66+/7pHBDxL+bkdrzdatW0lKSiI9PZ1BgwbRu3dv/G24L4EQwjbffvstb7zxBjNmzODmm282uxyHkPB3Yzt37iQ5OZl9+/YxYMAAHn74YWrVqmV2WUK4tW+++YYJEyYwc+ZMbrrpJrPLcRhbw192MLugTp06ERMTQ0xMjDSRE8IONm3axIQJE4iJifHo4K8KCX8Xdt11111pIpeamkqfPn2Ii4uTJnJCVMHXX3/Nm2++yaxZs7jxxhvNLsdlSPi7gdatW/PGG2/w3nvvce7cOWkiJ4SNvvrqKyZNmkRMTAwdO3Y0uxyXIuHvRpo2bcorr7wiTeSEsMGXX37J5MmTmTVrlgR/GST83ZA0kROiYhs3bmTKlCnMnj2bGyq4Xas3k/B3Y3Xr1mXEiBGsXr2aiIgIoqKiGDNmDPv27TO7NCFM88UXXxAdHc2cOXO4/vrrzS7HZcmpnh4kNzeXlStX8u6770oTOeGVPv/8c6ZOnUpsbCwdOnQwuxxTyHn+Xqy4idw777xDkyZNGDp0qDSREx7vs88+Y9q0acyZM8drgx8k/AXXNpGLjIzkrrvukg8B4XE2bNjA9OnTiY2NpX379maXYyoJf3GF1Wpl48aNJCcno7VmyJAh3H///dJETniE9evXM2PGDOLi4mjXrp3Z5ZhOwl9cQ2vNd999R1JSEtnZ2QwZMkSayAm39umnnxITE0NcXBxt27Y1uxyXIOEvylXcRC45OZm0tDRpIifc0rp165g9ezZz586lTZs2ZpfjMiT8hU2Km8jt3bv3ShO5oKAgs8sSokLr1q1jzpw5xMXFSfCXIo3dhE2Km8jNnj2bX3/9lT59+rBgwQJpIidc1tq1a5n6+sCLAAARHklEQVQzZ47M+GtIwl8A0KFDB6Kjo5k/fz7Hjh2TJnLCJX388cfExcUxb948WrdubXY5bk3CX1wlIiJCmsgJl7RmzRrmzZtHfHw8ERERZpfj9iT8RZnKayKXnp5ucmXCG61Zs4b4+HjmzZtHq1atzC7HI0j4iwqVbiI3cOBAxo8fz6FDh8wuTXiJVatWER8fT3x8vAS/HdUo/JVS9ZRSnymlfiv6s245yxUqpbYX/aypyTaFOYqbyK1atYqIiAiGDRsmTeSEw61YsYL58+cTHx9Py5YtzS7Ho9ToVE+l1FQgU2sdrZR6GairtX6pjOXOa62Dq7JuOdXTtZVsIte+fXueeuopaSIn7GrFihUkJSURHx9PixYtzC7HbTjlPH+l1D7gHq31CaVUE+ArrfV1ZSwn4e+h8vPzWbt2LYsWLZImcsJuPvroIxYuXEh8fDzNmzc3uxy34qzwP6u1Dit6rICs4uellisAtgMFQLTWelVl65bwdy8FBQWsX7+ehQsXUrt2bYYOHSpN5ES1fPjhh7zzzjskJCTQrFkzs8txO3YLf6XU50DjMt4aB7xTMuyVUlla62v2+yulmmmt05VSbYCNwH1a64NlLPc08DRAy5Ytbzt69Ghl9QsXI03kRE0sW7aMd999l/j4eAn+anKp3T6lfmcRsFZrvbyi5WTm796Km8glJydz9uxZaSInKvXBBx+wZMkS4uPjadq0qdnluC1ntXdYAwwqejwIWF1GIXWVUgFFj8OBO4DdNdyucHFKKe68806SkpIYO3Ys69at46GHHuLDDz8kPz/f7PKEi1m6dKkEv5PVdOZfH1gGtASOAo9qrTOVUl2AYVrrp5RSPYAEwIrxYROjtU6qbN0y8/c8v/zyC8nJyezZs0eayIkr3n//fZYuXUpCQgJNmjQxuxy3J109hcvav38/ycnJbNu2jccee4zHHnuMkJAQs8sSJnj//ff54IMPSEhIoHHjsg4tiqqSrp7CZZVsIpeWliZN5LzUe++9x7Jly0hMTJTgN4GEvzBNREQEr7/++lVN5KZPny5N5LzAu+++y/Lly0lISKBRo0Zml+OVJPyF6YqbyH3wwQdYLBZpIufhFi9ezIoVK0hMTJTgN5GEv3AZDRo0YNSoUaxYsUKayHmoRYsWsWrVKhISEmjYsKHZ5Xg1CX/hcsLCwhgxYgSrV6+WJnIeZOHChVdaM0vwm0/CX7is4OBgIiMjWb16NZ07d2bkyJE8++yz7Nixw+zSRBUlJyezdu1amfG7EDnVU7gNaSLnnpKSkli3bh0JCQmEh4ebXY7Hk/P8hceSJnLuY/78+axfv56EhATq169vdjleQcJfeDyr1cqXX35JUlISVquVyMhIaSLnQhITE/nss8+Ij4+X4HciCX/hNUo3kRs8eDC9evWSJnIm0VqTmJjIF198QXx8PPXq1TO7JK8i4S+8jtaabdu2kZSURFpaGgMHDqRPnz74+/ubXZrX0FqTkJDAxo0bJfhNIuEvvFrJJnJPPvkkjzzyiDSRczCtNfHx8Xz11VfMmzdPgt8k0ttHeLWbb76ZmTNnMnv2bHbv3k2fPn1YsGABOTk5ZpfmkbTWzJs3j6+//lpm/G5Cwl94tA4dOjBlypSrmsjFxsaSmZlpdmkeQ2tNXFwc33zzDfHx8dSte83N/IQLkvAXXqFkE7mcnBz69esnTeTsQGtNbGwsmzdvZt68eYSFXXMLb+GiJPyFVymridykSZNIS0szuzS3o7Vmzpw5bNmyRYLfDUn4C69UsolcvXr1GDRokDSRqwKtNbNmzeKHH35g3rx51KlTx+ySRBVJ+AuvFhYWxvDhw69pIrd3716zS3NZWmtiYmLYunWrBL8bk/AXgmubyI0aNUqayJVBa83MmTNJSUlh7ty5hIaGml2SqCY5z1+IMpRsIte4cWOGDh1Kt27dvLp/kNaaGTNmsGPHDmJjYyX4XZRc5CWEHRQWFrJ+/XqSk5OvNJG78847va5/kNaaadOm8csvvxAXF0dISIjZJYlySPgLYUfe3EROa83bb7/Nrl27iIuLIzg42OySRAUk/IVwAK01mzdvJikpySuayGmtmTp1Knv27CE2NlaC3w1I+AvhQMVN5JKTk0lNTb3SRC4gIMDs0uzGarUydepU9u3bR2xsLLVr1za7JGEDCX8hnOSXX35h4cKF7N6922OayFmtVqKjozlw4ABz5syR4Hcj0thNCCe5+eabmTFjxlVN5ObPn8+5c+fMLq1aioP/4MGDMuP3YBL+QthJySZy6enp9O3b1+2ayFmtViZPnsyhQ4eYM2eO23+DEeWT8BfCzko2kTt//jz9+vVj2rRpLt9Ezmq1MmnSJI4ePcrs2bMl+D2chL8QDtK0aVNefvllli1bhq+vr9OayOXlQWYmZGVBQYFtv2O1WnnzzTc5duwYs2bNkuD3AnLAVwgnOXv2LP/+979Zvnw5PXr0YMiQIbRp06bG67Va4dtvYcUK2LoVjh8HH5/f32/XDnr0gMcegw4dyvp9KxMnTiQ9PZ2YmBgJfjcnZ/sI4aLOnz/PsmXLWLp0KZ07dyYyMpLrr7++yuvRGlatguhoY5ZfWAi1akFAABR3obBajW8Cly4Zr918M0yYYPxpvG9lwoQJnDhxgpiYGGrVqmXHkQozSPgL4eJyc3NZuXIl7733Hu3atSMyMpLOnTvb9LunT8MLLxgz/sBAI/QrozUUn4AUFQXPPmvlzTdf59SpU8TExBAYGFjtsQjXIeEvhJuoahO59HR49FE4eRLCwn6f5duqoADOndPUqbONrl0XMXv2NAl+DyLn+QvhJvz9/Xn44YdZuXIlffv2Zdq0aQwaNIhNmzZhtVqvWjY729h3f+oU1K1b9eAH8PXVXLx4nIMHW+HjE0NAgAS/N5LwF8JF+Pj40KtXLz744AMGDx5MfHw8TzzxBBs2bLjyIfDaa3DiBFT//ima9PTjWK0FtG1bn88+82XtWrsNQbgR2e0jhIsq3USua9fRLFhwB3XqKKrXTFSTnp5OYaGVFi2ao5SFvDzj28PXX0O9evYegTCDrbt9PLMVoRAeQCnFHXfcQY8ePUhJSeHvf/fh1Kl0IIiwsDCUKvsTID39VS5e/BGrNRdf33Dq1x9IWFifa4IfjIPFZ8/CRx/B//t/ThycMJ2EvxAuTilFaOht+PhAy5a5nDmTQUZGBvXq1adu3TAsFp+rlg8PH4Kf36tYLP5cunSEo0efJju7DhZL26uCv1hgIMyfD5GRV18fIDxbjfb5K6X+rpTapZSyKqXK/ZqhlOqplNqnlDqglHq5JtsUwhtt2mScxx8UVIsWLVrQokVL8vJyOXDgIBkZpyksLLyybEBAGywWf8A4vfPSpUsUFBynefNrgx+M8M/OhgMHnDYc4QJqesD3V+BhYFN5CyilfIA44K9AR+BxpVTHGm5XCK/y449Xz8oDAwNp1qw5ERGtyM+/zMGDBzh16r8UFPVzOHkymr1772Dfvt4oVZeIiD7l7iYC40Nizx5Hj0K4khrt9tFa7wEqu6l1N+CA1vpQ0bJLgT7A7ppsWwhvsmePMUMvzd8/gKZNm3L5cj5nzpzh0KGD1KlTh/r1R3P58uP4++8hJOQYFkvFp3Nevmxso29fBw1AuBxnnOrZDDhW4nla0WtCCBvl5lZ8Tr+fnz+NGzcp6hWkOHLkCEpZaN36zxQUnCYra3mF67dYICfHvjUL11bpzF8p9TnQuIy3xmmtV9uzGKXU08DTAC1btrTnqoVwa35+Rn+eyvj6+tGoUSMaNWoIFH9aFJKfX3EnUa3B37/GZQo3UunMX2t9v9b6pjJ+bA3+dKBFiefNi14ra1uJWusuWusuDRo0sHH1Qni+li0hP7/y5QoKMjl3bgNWay5aWzl/fgvZ2eupXbtbhb+nlNH9U3gPZ5zq+RPQXinVGiP0+wNPOGG7QniMP/wBfvgBgoMrW1KRlbWcEycmA1b8/JrQqNHzhITcXeFv+fnBDTfYq1rhDmoU/kqph4A5QAPgE6XUdq31X5RSTYEFWuteWusCpdQzwHrAB0jWWu+qceVCeJE//AF8bfi/1de3Lq1aJVZp3QUFxsxfwt+71PRsn5XAyjJePw70KvF8HbCuJtsSwpt17260Xzh/3rb2zVWRk2M0i5N7uHgXaewmhBuwWGDYMOPGLPZsx1VYaKx78GD7rVO4Bwl/IdzEgAHGQdniG7LYQ06OEfxl3d5ReDYJfyHchJ8fzJplXOmbl1fz9WVnQ/PmMHp0zdcl3I+EvxBu5PrrYd4847TPixertw6tjU6e9erB++/b/xiCcA8S/kK4mXvvhUWLjG8CZ88aN2m31eXLxoy/fXvj5u9NmzqsTOHiJPyFcEM9esCXX8Kf/2zst8/KMoK9LFob7SHOnjV2F40eDR9/DE2aOLdm4Vqkn78QbqpePZg7F/bvh3ffhZUrjV1BPj7GtwGljJ/Ll6FxY+PA7iOPyB27hEFu4yiEh9Aajh+HffuM6wEsFqhf37h4KyzM7OqEs8htHIXwMkpBs2bGjxCVkX3+QgjhhVx2t49S6jRw1Ow6qikcyDC7CCfytvGC943Z28YL7jvmVlrrStsiu2z4uzOl1FZb9rl5Cm8bL3jfmL1tvOD5Y5bdPkII4YUk/IUQwgtJ+DtG1Rqquz9vGy9435i9bbzg4WOWff5CCOGFZOYvhBBeSMLfDpRS9ZRSnymlfiv6s24Fy4YqpdKUUrHOrNGebBmvUqqzUmqLUmqXUmqnUuoxM2qtKaVUT6XUPqXUAaXUy2W8H6CU+qDo/R+UUhHOr9J+bBjvaKXU7qK/0y+UUq3MqNOeKhtzieUeUUpppZRHnAEk4W8fLwNfaK3bA18UPS/PRGCTU6pyHFvGexEYqLW+EegJxCil3KrJgFLKB4gD/gp0BB5XSnUstdhQIEtr3Q6YCbzl3Crtx8bx/gx00Vp3ApYDU51bpX3ZOGaUUiHAc8APzq3QcST87aMP8E7R43eAvmUtpJS6DWgEbHBSXY5S6Xi11vu11r8VPT4OnAIqvfDExXQDDmitD2mt84GlGGMvqeR/i+XAfUop5cQa7anS8Wqtv9RaF99J4HuguZNrtDdb/o7BmLS9BdjhNjquQcLfPhpprU8UPT6JEfBXUUpZgOnAC84szEEqHW9JSqlugD9w0NGF2Vkz4FiJ52lFr5W5jNa6AMgG6julOvuzZbwlDQX+49CKHK/SMSulbgVaaK0/cWZhjiaN3WyklPocaFzGW+NKPtFaa6VUWadQjQDWaa3T3GFiaIfxFq+nCfAuMEhrXYXbjghXppQaAHQB/mh2LY5UNGmbAQw2uRS7k/C3kdb6/vLeU0r9VynVRGt9oijsTpWx2O3AXUqpEUAw4K+UOq+1ruj4gGnsMF6UUqHAJ8A4rfX3DirVkdKBFiWeNy96raxl0pRSvkAd4IxzyrM7W8aLUup+jEnAH7XWl5xUm6NUNuYQ4Cbgq6JJW2NgjVKqt9barXvOy24f+1gDDCp6PAhYXXoBrfWTWuuWWusIjF0/i101+G1Q6XiVUv7ASoxxLndibfb0E9BeKdW6aDz9McZeUsn/Fv2Ajdp9L56pdLxKqf8BEoDeWusyP/TdTIVj1lpna63DtdYRRf/vfo8xdrcOfpDwt5do4AGl1G/A/UXPUUp1UUotMLUyx7BlvI8CdwODlVLbi346m1Nu9RTtw38GWA/sAZZprXcppSYopXoXLZYE1FdKHQBGU/GZXi7NxvG+jfHN9cOiv9PSH4ZuxcYxeyS5wlcIIbyQzPyFEMILSfgLIYQXkvAXQggvJOEvhBBeSMJfCCG8kIS/EEJ4IQl/IYTwQhL+Qgjhhf4/LxmYyYQFGIsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWooP1t2dJqVnVLq6VtbF2i5CKJuLP4tlq2F3TZlpbuIgkh1JLaFOlqEVSycUlcIpfJbZK5nN8fRxS5zExyZj5nZt7PxyOPx1ecOedlH6ev75nP+ZzP4XieByGEEPZkrAMQQggRUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEyE3Z2NfXl+/SpYuZohBCiG06ffp0Cc/zfoa2M6mQu3TpglOnTrU+FSGE2CGO4wqN2Y6GLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCJMmmVBCLlHowGuXAFKSwG9HnBzA7p1A1xdWScjVsyihdxwDl+4ABQVAfX1wnn8+ONAz55AQADAcZZMRIgJamqA9HRg61bg/HnAwQGQyYCGt+7U1wMdOwIvvQRMnAj4+7PNS6wOZ8ornMLCwvjWzEO+ehXYvl340WiEC4r6eqF8OQ5QKgGtFggJAWbMAMaMAZydTT4MIeah1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIjgbmzRO2JXaN47jTPM+HGdzOnIVcXw9s2ABs3gzodMLVsKNj09vyPFBdLWzXrh2wfj3wzDNGH4oQ8ygtBd55B/jPf4RiVSqN+5xOB6hUQGAgsGkT0Lu3eXMSSTO2kM12U6+4GBg3Dvj4Y+E89vZuvowB4UrZzQ3w9ATKy4WLi2XLhIsTQpgoKQEmTBDK2MvL+DIGhCtkb29hH5MmAWfOmC8nsRlmKeTiYmD8eKCgQDgn5SaOVLu5Ae7uwKefAosX/zZER4jF1NcDr74KXL8unMStvbnh7i6cwFOnCmN3hLRA9ELWaIA//xm4e1e4qGgtBwfhann7dmDHDvHyEWKUjRuBixeFk7CtXF2B2lrg/ffpKx9pkeiF/MknwOXLgIdH2/clkwnn8pIlwLVrbd8fIUbJzxcK2d1dvGk/np7ATz8Bu3eLsz9ik0Qt5Nu3gf/7P2HIQazzWKEQvj2mpIizP0IM+vJL4aacqWNtLeE44WTeuJHG4EizRJ2HvHOncB63dPOuNTw9gaws4OZN4aY1IWZTWwt8/bVwVdGCer0ey2/eRE5NDVQ6HTo6OuIdf39EtPQ5Z2dhTDo3F+jfX+TgxBaIdoXM88CWLcZNubxxIx6XL4/GxYtDcOXKBJSXf9fi9g1z779reTNC2u7CBWGc18BVhQ5AoKMjNgcH42j37njbzw8LbtxAUX198x/iOGHCfU6OuJmJzRCtkIuLgYoK42YG+fr+GSEhexEaegwdO67F7dsbUVt7ocXPyOXA8eMihSWkORcuCHemDXCWyfCmnx/aKxSQcRx+7+6O9o6OyFOrW/6gXA6cPClSWGJrRCvkvDxhZoQxlMrHIJMp7v2JA8dx0Giut/gZJyfg559p+I2YD8/z0Oflged58A1/fvRHr4fukR8eQKlWi6v19XjM0BWJUimsH0BIE0QbQ75926gLi/tu3lyO0tJ/Qq+vg0LxOHi+DyorVQ9t81v58uB5QKVSYN++7+HgoL/39/xDPw/+Tq83vE1zP63dBgD0er0o2zT8Gwxtw+rfKub/HmL/W1vzv0eDd69fx/CyMlTfuiX84pG70/f/dO/3Wq0WShcXrHVwwHOenuhiqJA5TrhLTUgTRCtkU6dXBgTEorT0eTg7F0KnO4eKihrIZA+eqL/9h9Dw30RdnQuOH8+Go6MeHCdcWQt/z7X409Q2ACCTyQxuw3Hc/e0MHUt2b22Dlo5vzDam/Dss+W81ZRup/1ub2wZJScLiQT4+LZ6/Da7k52NVdTX0SiXmd+pk+AN6vfB1j5AmiFbIrq7GD1kAwn8AAQEBqK52g4tLLpTK/8DH5+Vmt9frhaUBli1LbrSmCyGi6dnT6BNZXVeH9dXV0Lq6IkajgV6rNTzFqK4OCA0VISixRaJVW7dujRe/MqRdu3bQ6fSora1GfX3LY8hqtbBMJ5UxMasePYwu5JRr13BLLseGLl0Q5OuL4uJiGLzFodcD4eFtjklsk2j19vjjwoweQ0MXWm0pVKqD0OtrwPM8vLwKoVIdgJNTy/My1WogzOBaSYS0UY8ewo03A+O8RRoN/lVVhUKex+jLlzG+pAQvlpVh140bzX+I54UrikGDRA5NbIVoQxYKBTBiBHD4sKE1LDiUlX2D4uKlAPRwdAyCt/e7qKx8HF5ePB4cO27A88JFy3PPiZWWkGYoFMCUKcIyhQpFs5t5abXY4+6OkJCQ+2esuq4OhYWF0Gi1cGzqKb+qKmG4omdP82QnVk/UJ/WmTROeqOP55h+dlsu90bnz5od+x/N6FBQUoKJCBc8mFnOprRXeJkLf9IhFREcLSw3W1zdbyqqKCnh6ej50+eCkVMLHxwfFxcXo1KnTw5cWPC98hYyJMWdyYuVEHZENCwP69BEeEDEFx8nQvn173Lp1C1qt9qG/43nhPsj8+TR+TCwkKAhYtEh4YwLfeFSY53moVE1fPPi2awetVgvVo/8RVFQIXyFHjjRXamIDRK04mQxYu1Z4GMnUqZZOTs7w8vLErVs3H/p9eTkwdCjw/PMiBiXEkOhoYOBAoKysUSlXVVdDoVBA0cSMCo7jEBQU9PDFhUolrKmcmkovjSQtEv2as3Nn4U0f1dWml7Kfnx/UavX9B0QqKoShihUr6DwmFiaTCa9e6tdPuCp44G51RUUFPFpYJ9nZyQle3t7CrIuyMmEZz6++Avz8LJGcWDGzDAKMHy+sYVxTIxSzsThOhqCg9iguvonSUh38/YWFt+g8Jky4ugpLcU6YIFwdVFdDp9OhuqoKHgYW/Pb18IBjdTXu+PsLq2KFhFgoNLFmZhuVnTwZ2LZNuDgoKzPusWqeB/R6Fzg6+sHH5wz27gWMefiJELNxcQFWrQK++ALw9YX61i20k8kg1+kajy9rtUBlJVBRARnPQzt/Pqa6u6PMwFKehDQw622yiAhhGtz06cK5WlEhlHNtrbBusk4nFHVVlfDKJ5VKGPLYssUZgYHJyMvLNmc8Qow3ZAjw/ff4eMAA1AwdKqxtXF4unLxVVcLJrdUK6xyvWQOcOoWOCQkYPXYsVq9ezTo9sRIc38Rd5OaEhYXxp06datWBamuFcs7OBn78UViuU6sVzuvQUGDAACAyEnjiCWG8+OTJk1iyZAl27twJF2MWWSbEzEpKSjBx4kRkZGRAqVQKhVxaKowvu7sD/v6Nbnao1Wq88soriImJwdChQxklJ6xxHHea53mDj7ZZrJBbIzk5GUqlErGxsRY7JiHN2bFjBy5fvozExESTPpebm4uFCxfi66+/Njj2TGyTsYUs6Zm9s2fPxtGjR3HmzBnWUQhBWloaxowZY/Ln+vXrh+HDh+Ovf/2rGVIRWyLpQvbw8MCCBQuQkpICtaE3MRBiRgUFBbh79y7CWrmgyjvvvIPTp08jO5vui5DmSbqQAWDo0KHo2bMnNm3axDoKsWPp6ekYPXr0/TWeTeXi4oK4uDikpqai2pS5oMSuSL6QAWDevHnYv38/zp07xzoKsUN6vR4ZGRkYO3Zsm/YTHh6OiIgIrF+/XqRkxNZYRSF7e3vj/fffR1JSEurp9TfEws6ePQsnJyd069atzfuKiYnB8ePH8eOPP4qQjNgaqyhkABg9ejQ6duyIL774gnUUYmfS09MxZsyY+697ags3NzcsXLgQKSkpqK2tFSEdsSVWU8gcx2HBggXYtWsXLl++zDoOsRMajQaHDh1CVFSUaPscPHgw+vbti48++ki0fRLbYDWFDAD+/v545513kJycDJ1OxzoOsQPZ2dkICQlBUFCQqPudO3cuDh06hJ9++knU/RLrZlWFDAB/+MMf4O7ujr///e+soxA7kJaWJurVcQMPDw/ExsYiOTkZdXV1ou+fWCerK2SO4xAXF4dt27ahsLCQdRxiw6qqqnDy5EmMNNOi8sOHD0doaChN6ST3WV0hA0D79u3xxhtvIDk5GXpDb1UlpJWysrIQHh5u1sed582bh3379tGUTgLASgsZACZNmgSe57Fr1y7WUYiNau2j0qbw8fHBnDlzaEonAWDFhSyTyZCQkIDNmzejqKiIdRxiY27fvo1Lly5h8ODBZj/Ws88+i06dOuHzzz83+7GItFltIQNAly5dMGXKFCxZsgSmrFpHiCEZGRmIjIyEopm3ToupYUrnt99+i0uXLpn9eES6rLqQAWDKlClQqVTYu3cv6yjEhqSnp7f5UWlT+Pn54b333sPixYsbvXmd2A+rL2QHBwckJCRgw4YNuHPnDus4xAb8+uuvUKlU6Nu3r0WP+9xzz6Fdu3bYtm2bRY9LpMPqCxkAunfvjhdffBHLli2joQvSZunp6YiKimr1ym6txXEcFi1ahB07diA/P9+ixybSYBOFDACvv/46rl+/jszMTNZRiBXT6/UWH654UGBgIGbOnImkpCSa0mmHbKaQFQoFEhISsHr1apSVlbGOQ6xUbm4uPD09ERISwizDCy+8AGdnZ2zfvp1ZBsKGzRQyAPTu3Rtjx47FqlWrWEchVqphZTeWZDIZ4uPjsWXLFly9epVpFmJZNlXIAPDWW2/hwoULOHbsGOsoxMrU19cjKyvLLGtXmKpDhw70NKodsrlCdnJyQnx8PJYvX47KykrWcYgVOX78OEJDQ+Hv7886CoDfnkb95ptvWEchFmJzhQwA/fv3x+9//3t6yy8xiRSGKx7U8DTqpk2b6GlUO2GThQwA7733HnJycvCf//yHdRRiBVQqFXJychAZGck6ykM6d+6MqVOnIiUlhaZ02gGbLWRXV1csXLgQqampqKmpYR2HSNyhQ4cwcOBAuLm5sY7SSHR0NKqrq/Hdd9+xjkLMzGYLGQAiIiLQr18/elUOMUhqwxUPcnBwQGJiIj766CPcunWLdRxiRjZdyAAwZ84cHD58mF6VQ5pVXFyM/Px8REREsI7SrJCQELz88stITU2loQsbZvOF7OHhgfnz59OrckizMjIyMHLkSDg6OrKO0qLXXnsNJSUlSEtLYx2FmInNFzIAREZGolu3bti8eTPrKERieJ5n+qi0KeRyORITE7Fu3TqUlJSwjkPMwC4KGQBiY2Oxd+9enD9/nnUUIiGXL1+GWq1Gnz59WEcxSmhoKMaPH4/ly5fT0IUNsptC9vHxwezZs5GcnAyNRsM6DpGIhrdKcxzHOorRpk+fjsLCQhw6dIh1FCIyuylkABgzZgwCAgKwZcsW1lGIBOj1emRkZEh2dkVzFAoFEhMTaSEtG2RXhcxxHBYuXIivv/4aV65cYR2HMHbq1Cn4+vqia9eurKOYjBbSsk12VcgAEBAQcH+9WZ1OxzoOYchabuY156233kJeXh6OHj3KOgoRid0VMiCsN+vi4oIdO3awjkIYUavVOHr0KJ599lnWUVpNqVQiPj4eK1asgEqlYh2HiMAuC1kmkyEuLo7Wm7Vjx44dQ69eveDr68s6Spv069cPw4cPx9q1a1lHISKwy0IGgI4dO2LatGlYsmQJrTdrhzIyMqx6uOJB77zzDs6cOYPs7GzWUUgb2W0hA8DLL78MjUaDb7/9lnUUYkHl5eU4c+YMhg8fzjqKKFxcXBAXF4fU1FRUV1ezjkPawK4LuWG92U8++QTFxcWs4xALyczMxKBBg+Di4sI6imjCw8MRERGB9evXs45C2sCuCxkAunbtiujoaCxdupSefLITUl7ZrS1iYmJw/Phx/Pjjj6yjkFay+0IGgFdffRV3797Fvn37WEchZnbjxg1cu3YNAwYMYB1FdG5ubli0aBFSUlJoDXArRYWM3xZt2bBhAy3aYuPS09MxatQoyOVy1lHMYtCgQejXrx82btzIOgppBSrkexoWbVmxYgUNXdiohpXdbHG44kFz5szBoUOHaA1wK0SF/IDp06ejoKAAhw8fZh2FmMGFCxeg0+nQu3dv1lHMysPDA7GxsbQGuBWiQn6AQqFAQkICVq1ahfLyctZxiMgaHpW2ppXdWmv48OEIDQ3Fpk2bWEchJqBCfkSfPn0wevRorFmzhnUUIiKdTocDBw4gKiqKdRSLmT9/Pvbt24dz586xjkKMRIXchLfffhtnz57F8ePHWUchIsnJyUFQUBCCg4NZR7EYb29vzJ07F0lJSaivr2cdhxiBCrkJzs7OiIuLw9KlS1FVVcU6DhGBta/s1lqjRo1Cp06d8Nlnn7GOQoxAhdyMp59+GoMHD6Ynn2xAbW0tjh07hlGjRrGOYnEcx+GDDz7A7t27cfHiRdZxiAFUyC147733cOLECXryycp9//336NOnD3x8fFhHYcLX1xcxMTFISkqCVqtlHYe0gAq5BW5ubli4cCFSUlJQW1vLOg5ppbS0NLscrnjQuHHj4Ovri23btrGOQlpAhWzA4MGD8eSTT9KTT1aqtLQUZ8+exdChQ1lHYarh9WU7duxAfn4+6zikGVTIRpg7dy4OHjyIs2fPso5CTJSZmYkhQ4bA2dmZdRTmAgMDMXPmTCxevJheXyZRVMhG8PT0xLx585CcnEzTh6xMWlqazT8qbYrx48fD1dWVXl8mUVTIRhoxYgS6du2KTz/9lHUUYqSrV6+iuLgY4eHhrKNIBsdx9PoyCaNCNhLHcYiNjcWePXuQl5fHOg4xQnp6OkaPHg0HBwfWUSSlQ4cOeOONN5CcnEyvL5MYKmQTNEwfSk5OpulDEmcvK7u11qRJk8DzPHbt2sU6CnkAFbKJaPqQdfjll1/g4OCAnj17so4iSTKZDImJidi8eTOKiopYxyH3UCGbqGH60Pbt22n6kITZ08purRUcHIypU6ciJSWF1gCXCCrkVggMDMTbb79NY3ASpdVqkZmZaVcru7VWdHQ0qqursWfPHtZRCKiQW23ChAlQKBT46quvWEchjzh58iQ6deqEDh06sI4ieQ4ODkhMTMTGjRtx69Yt1nHsHhVyK8lkMsTFxeGzzz7D9evXWcchD6BHpU0TEhKCyZMnIzU1lYYuGKNCboPg4GC89tprSElJoaELiaipqUF2djZGjhzJOopVmTp1KkpKSpCWlsY6il2jQm6j6OhoqNVqfPfdd6yjEABHjhxB//794eXlxTqKVWl48/q6devozesMUSG3UcP0IRqDkwZ6VLr1Gt68vmzZMhq6YIQKWQSPPfYYXnrpJSxdupROZIZKSkpw/vx5DBkyhHUUqzV9+nRcu3YNmZmZrKPYJSpkkbz22mu4ffs20tPTWUexWwcPHsSwYcOgVCpZR7FaDW9eX716NcrKyljHsTtUyCJxdHREQkIC1q1bh9LSUtZx7BINV4ijd+/eGDduHFatWsU6it2hQhZRz5498fzzz2PFihWso9idgoIC3L17F2FhYayj2IS33noLeXl5OHLkCOsodoUKWWRvvvkmLl++jKysLNZR7ErDym4yGZ3SYlAqlYiPj8fKlSuhUqlYx7EbdPaKTKlUIjExkU5kC9Lr9cjIyKCHQUTWr18/REZGYu3atayj2A0qZDN48sknMWLECKxZs4Z1FLtw9uxZODk5oVu3bqyj2JxZs2bhzJkzyM7OZh3FLlAhm8msWbOQm5tLJ7IFNNzMo5XdxOfi4oK4uDgsWbIEVVVVrOPYPCpkM3FxccGiRYuQmpqK6upq1nFslkajweHDh2llNzMKDw/HoEGDsGHDBtZRbB4Vshk988wzGDBgAJ3IZpSdnY2QkBAEBQWxjmLTYmJicOLECeTk5LCOYtOokM1s9uzZ+Pe//43Tp0+zjmKTaO6xZbi5uWHhwoVYsmQJampqWMexWVTIZubu7o4FCxYgJSUFarWadRybUlVVhZMnT2LEiBGso9iFQYMGoV+/fvjoo49YR7FZVMgWMGTIEPzud7/Dxx9/zDqKTcnKykJ4eDg8PDxYR7Ebc+bMQVZWFnJzc1lHsUlUyBYyd+5cpKen45dffmEdxWbQcIXleXh4IDY2FikpKairq2Mdx+ZQIVuIt7c35s6di+TkZNTX17OOY/Vu376NS5cuYfDgwayj2J1hw4ahR48e2LRpE+soNocK2YJGjRqFjh074rPPPmMdxeplZGQgMjISCoWCdRS7NG/ePOzbt4++8YmMCtmCOI7DBx98gN27d+PSpUus41i19PR0elSaIfrGZx5UyBbm5+eHd999F8nJydDpdKzjWKVff/0VKpUKffv2ZR3Fro0aNQrBwcH0jU9EVMgMPP/88/D09MSXX37JOopVSk9PR1RUFK3sxhjHcViwYAF2796Nixcvso5jE+iMZoDjOCxatAhffvkl/ve//7GOY1X0ej0NV0iIr68vYmJikJSUBK1WyzqO1aNCZqR9+/aYMWMGkpOTodfrWcexGrm5ufDy8kJISAjrKOSecePGwdfXF1u3bmUdxepRITP04osvQiaTYefOnayjWI2G4QoiHQ3f+P7xj38gPz+fdRyrRoXMkEwmQ3x8PP72t7/hxo0brONIXn19PbKysqiQJSggIAAzZ87E4sWL6WZ1G1AhM9a5c2dMnToVqamp4HmedRxJO378OEJDQ+Hv7886CmnC+PHj4erqiu3bt7OOYrWokCUgOjoalZWV+Oc//8k6iqSlp6fTo9ISxnEc4uLisHXrVhQWFrKOY5WokCXAwcEBCQkJ+PDDD3H79m3WcSRJpVIhJycHkZGRrKOQFnTo0AFvvvkm3axuJSpkiejWrRsmTpyIZcuW0dBFEw4dOoSBAwfCzc2NdRRiwMSJEwEAu3btYpzE+lAhS8jrr7+OoqIiHDhwgHUUyaHhCushk8mQmJiIzZs3081qE1EhS4ijoyMSExOxdu1alJaWso4jGcXFxcjPz0dERATrKMRIwcHBmDp1KlJSUugbnwmokCWmV69eGDduHFavXs06imRkZGRg5MiRcHR0ZB2FmCA6Oho1NTXYs2cP6yhWgwpZgt566y3k5eXh6NGjrKMwx/M8PSptpRwcHLB48WJs3LgRt27dYh3HKlAhS5BSqURcXBxWrFgBlUrFOg5Tly9fhlqtRp8+fVhHIa3w2GOPYfLkyTTP3khUyBLVv39/DBs2DOvWrWMdham0tDRERUWB4zjWUUgrTZ06FSUlJdi/fz/rKJJHhSxh7777LnJycvDDDz+wjsKEXq9HRkYGza6wcnK5HImJiVi/fj1KSkpYx5E0KmQJc3FxwaJFi7B06VLU1NSwjmNxp06dgq+vL7p27co6Cmmj0NBQTJgwgebZG0CFLHEDBw5EWFgYPvzwQ9ZRLI5u5tmWadOm4dq1a8jMzGQdRbKokK3AX/7yFxw5cgS5ubmso1iMWq3G0aNH8eyzz7KOQkSiUCiQkJCA1atXo6ysjHUcSaJCtgIeHh6YP38+UlJSUFdXxzqORRw7dgy9evWCr68v6yhERL1798a4ceOwatUq1lEkiQrZSgwfPhyhoaHYtGkT6ygWkZGRQcMVNqphnv2RI0dYR5EcKmQrMm/ePOzbtw/nz59nHcWsysvLcebMGQwfPpx1FGIGSqUSCQkJWLlypd3Ps38UFbIV8fHxwV/+8hckJSVBo9GwjmM2mZmZGDRoEFxcXFhHIWbSt29fREZGYs2aNayjSAoVspWJiopC+/bt8cUXX7COYja0spt9mDVrFnJzc3HixAnWUSSDCtnKcByHDz74ADt37sSvv/7KOo7obty4gWvXrmHAgAGsoxAzc3FxQVxcHJYuXYqqqirWcSSBCtkK+fv7Y9asWUhOTra5F0qmp6dj1KhRkMvlrKMQCwgPD8egQYOwfv161lEkgQrZSr3wwgs290LJhpXdaLjCvrz33nvIzs5GTk4O6yjMUSFbqQdfKHn16lXWcURx4cIF6HQ69O7dm3UUYkFubm5YtGgRlixZYpdLBDyICtmKdejQAdOnT7eZF0o2PCpNK7vZn4iICPTv3x8fffQR6yhMUSFbuZdeegl6vR7ffPMN6yhtotPpcODAAURFRbGOQhh5//33kZWVZVdLBDyKCtnKyWQyJCQkYNOmTSgqKmIdp9VycnIQFBSE4OBg1lEIIx4eHoiNjUVKSgrUajXrOExQIduALl264E9/+pNVv5WBVnYjADBs2DD06NHDbpYIeBQVso2YMmUKysvLsXfvXtZRTFZbW4tjx45h1KhRrKMQCZg3bx7279+PX375hXUUi6NCthENb2XYsGED7ty5wzqOSb7//nv06dMHPj4+rKMQCfD29sbcuXORnJyM+vp61nEsigrZhnTv3h1//OMfsXz5cqsaukhLS6PhCvKQUaNGITg4GJ9++inrKBZFhWxjrO2tDKWlpTh79iyGDh3KOgqREI7jsGDBAuzZswcXL15kHcdiqJBtjEKhQHx8vNW8leHgwYMYMmQInJ2dWUchEuPr64vZs2cjKSkJWq2WdRyLoEK2QU888QSioqKwevVq1lEMokelSUvGjh0LX19fbNmyhXUUi6BCtlEzZ87EuXPncOzYMdZRmnX16lUUFxcjPDycdRQiURzHYdGiRfjqq69w5coV1nHMjgrZRjk5OSE+Ph7Lly9HZWUl6zhNSk9PR1RUFBwcHFhHIRIWEBCAmTNnIikpyeZWN3wUFbINe+qppzB48GBJLm3YsLIbPSpNjDF+/HibW92wKVTINi4mJgY//PCD5JY2/OWXX+Dg4ICePXuyjkKsAMdxiI+Px9atW1FYWMg6jtlQIds4V1dXSS5tSCu7EVO1b98eb775ps2sbtgUKmQ7EBERgb59+2Ljxo2sowAAtFotMjMzabiCmGzixIkAgJ07dzJOYh5UyHZizpw5yMzMxH//+1/WUXDy5El06tQJHTp0YB2FWBmZTIbExET87W9/w40bN1jHER0Vsp3w9PREbGysJNYHoEelSVsEBwfjtddeQ0pKilUtEWAMKmQ7EhkZiZCQEGzevJlZhpqaGpw4cQIjR45kloFYv+ga9GluAAALnklEQVToaNTW1mLPnj2so4iKCtnOxMbG4l//+hcuXLjA5PhHjhzBU089BS8vLybHJ7ahYehi48aNuHnzJus4oqFCtjPt2rXD7NmzkZycDI1GY/Hjp6Wl0aPSRBSPPfYYJk+ejKVLl9rM0AUVsh0aM2YM/Pz8sHXrVoset6SkBOfPn8eQIUMselxiu6ZOnYqSkhLs37+fdRRRUCHboQfXB8jPz7fYcQ8ePIhhw4ZBqVRa7JjEtsnlcixevBjr16+3uhczNIUK2U4FBATg7bffRlJSksUm2dNwBTGH7t27Y8KECVi2bJnVD11QIdux8ePHw8nJCTt27DD7sQoKCnD37l2EhYWZ/VjE/kybNg3Xr1+3mhczNIcK2Y7JZDLEx8fjiy++wLVr18x6rPT0dIwePRoyGZ1yRHwKhQKJiYlW82KG5tB/HXauY8eOeP3115GSkmK2oQu9Xo+MjAx6GISY1e9+9zs899xzWLlyJesorUaFTDB58mTU19dj9+7dZtn/2bNn4eTkhG7dupll/4Q0mDFjBi5evIisrCzWUVqFCplAJpMhISEBH3/8sVkm2TfczKOV3Yi5KZVKJCQkYOXKlVCpVKzjmIwKmQAQJtm/8sorok+y12g0OHz4MK3sRiymb9++GDlyJNasWcM6ismokMl9DZPs09LSRNtndnY2QkJCEBQUJNo+CTFk1qxZyM3NxfHjx1lHMQkVMrlPLpcjISEB69atw927d0XZJ809Jiw4OzsjLi4OS5cuRVVVFes4RqNCJg/p0aMHXnjhBaxYsaLN+6qqqsLJkycxYsQIEZIRYprw8HDJvlOyOVTIpJE33ngD+fn5OHz4cJv2k5WVhfDwcHh4eIiUjBDTxMTEIDs7W3LvlGwOFTJpRKFQ3L9TXVFR0er90HAFYU2q75RsDhUyaVKfPn3w7LPPtvpO9e3bt3Hp0iUMHjxY5GSEmCYiIgL9+/fHhx9+yDqKQVTIpFkzZ87ETz/9hBMnTpj82YyMDERGRkKhUJghGSGmef/993HkyBHk5uayjtIiKmTSrIY71ampqS3fqdbpgEceu05PT6dHpYlkeHh4YMGCBUhJSYFarW5yG5UKuHEDKCoCWI1uyNkclliL8PBwREREYMOGDVi4cKHwy0uXgL17gexs4Px5oLZW+L2rK9CrF+506waX4mL07duXXXBCHjF06FAcOHAAn3zyCWbPng2tFjhyBPjmG+DMGaC0FJDfa0StFujQAXjmGeDll4H+/QFLPGjKmfJUVlhYGH/q1CkzxiFSVFVVhUmTJmH1K6+g17ffAj//LFwRKxSAk9PDZ7FajYo7d8DLZPAaNgyIjwf69GGan5AGZWVlmDTpZURFbcaOHZ3R8HS1szPg6Phb6fI8UFcnXGvIZEBwMLBkCTBwYOuOy3HcaZ7nDa49S0MWxCA3R0dsbN8e3jNmQP/zz4CnJ+DjA7i5/VbGACCXg3dzw22tFk4BAcBPPwETJgArVwL19ez+AYTco9F4Q6fbgsREJdRqPTw9hdNZoXj4CpjjhGsNb2/Aw0MYypgyBVi4EGhmxEMUVMikZdXVwJQp6HLkiFC2dXUtfnerqamBg1wOJycn4Ux3cwM++QSYNu23oQ1CGLhxA3jhBaCwMBCurhpUVZUY9TmOE05jd3fgq6+EYjbXGDMVMmmeVgtMnw6cPg14ecG/fXuoVCrUtFCsFRUVDz8IIpcLlxknTgAzZza6+UeIJahUwEsvAXfuAN7eHIKCAlFWVg612viLBAcH4VQ+fRqYMcM8pzIVMmne558DOTmAlxfAcZA7OCAwIADFxcXQN3HvQc/zqKyshKen58N/wXHCmXzsGLB9u4XCE/KbpCSguFj40gYAcrkjAgL8UVRUDJ43vlkbTuUffjDPqUyFTJqWnw+sWSN8V3tgiMLdwwMKhQIlJY2/7lVVVcHJyQmO8iYm73CcMAsjNRW4ft2cyQl5SHY28N13v5VxA09PTzg6yk1eSIvjABcX4VQuKhIxKKiQSXM2bwY0GuHW8wM4AIGBgSgvK2s0n7OiogKeLa1boVAI+/z8czMEJqRp69cLww2NX+fIITAwCKWlpairM+1OXcOpLPZVMhUyaUylEi4pmilXR7kc/gEBKCouRoVWi7nXr2NQXh6mlJTA4DN9bm7A11+zm3lP7EpBgTDm6+7e9N87OjrC398fBQWfoqBgCvLyBqKoaLFR+3Z1Bb78UpgeJxYqZNLYyZPCRMymhh7u8fT0hNzBAYkFBXDkOOz098cHXl5YeesW8ls6Qx0dhSf7aD47sYAffhBO5ZYe6vDy8oJc3g6Oji/C0/P/Gb1vhUKYzXnunAhB76FCJo39/LPBecMcAM+AABytqsLrHh7QVFYiol07DHV3x35DK8SJfRYT0oycHGOesOPQufMfUVPTA4CrSfvXaIC8vNama4wKmTSWmyv8v38DbvI8lI6OkN25g7q6Ori6uaGbUtnyFTIgXHlLfJEXYhvOnQOUSsPbOToq4Ofnd2+5WdPeKfnzz63L1hRay4I0VlUl3AUxoEavh6dCAY7joNVqUVhYiOq6OtzUaFCg0wnfFZug1GhQePAgPn711Yd+39xj/GL9vjl0XNs97unTK6HRuEIm0xi1fX19vUnzi2UycW+HUCGTxuTyZsv0QS4yGar1enTt2hXqew+LKMrL4atWIzAgoNnPyaqr4fLEE1iwYIHRkbhmvneK9Xs6rm0e949/9MKdOxycnIzLUVLiD73e+GlwPG/cFbixqJBJY127CkMKri2PpwUrFNABuFZfj2BnZwDA/8rK0N3VFc73/tyk2loon3oKXr16iRiakMZCQ4Fbt1q8P/0QmczBpCtkvR7o3r112Zo8vni7IjYjLKypSZuNOMtkiHR3xyd37qBWr8d/a2rwfWUlxj06A/9RcjnQr59IYQlp3oABwgoAhvC8Dnp9PQA9AD30+nrwvM7g5xQKQMzrCrpCJo01lKWh+UIAFgQGIqmoCKMuXYKngwM+CAzEYy19h+N54YfWSiYW8PTTwu0QQ6dySclnKCnZfP/PFRVp8PV9E35+bzb7Ga1W2G/v3uLlpUImjXXvLvxcuSI8yNECDwcHrOnUyfh9V1YCTz4JdO7cxpCEGNanD9Cpk7CORUsjcH5+LZdvUyorgfHjm31+qlVoyII07e23hUmWJt5JbxHPC4NuM2aIt09CWsBxwKxZwtR3MU9lnU4Y1Xv9dfH2CVAhk+aMHSsMXRh6yMMUFRXCoN7IkeLtkxADxo8X/1RWqYR1kcW+L02FTJomkwFr1wpzesSYaFldLbwnZ9Uqy7ycjJB7HjyVq6vbvr+KCmEYZO7ctu/rUVTIpHnBwcCnnwrfz9pyJje8sXrrViAoSJxshJggOBjYskX4v1t6gXpLeB4oLwfatQN27BCW4BQbFTJp2cCBwpJWSiVQVmbaaxL0euEMdnUVzuD+/c2XkxADnn5aeAWTp6dwWuoMz2q7T6MRPtOzJ7BnD9C+vXkyUiETw8LDgawsICpKuLVcVtby5E6tVtimshJ47jnhszTvmEjAk08Chw8Dkyb9dirX1TV9w4/nhdG68nJhmwULhFVpzfkljzPlufCwsDD+FC2baN/Onwe2bRPOzIY5xQ3lLJcL48McB7z4onDXIzSUbV5CmnHjBvCPfwA7dwJ37woPeTxYhxqNMNTx5z8Df/hD4zeOmILjuNM8z4cZ3I4KmbSKVius/p2XJ1xCyGTCu/d69AC6dDFqcSJCpKKsDLh0SZg9wXGAj49wKos1TmxsIdODIaR15HKgWzfhhxAr5+0NPPMM6xQ0hkwIIZJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJh0jxkjuPuACg0XxxCCLFJnXme9zO0kUmFTAghxHxoyIIQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiTi/wNGxDXLo9qWxwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -418,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "scrolled": true }, @@ -427,23 +409,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -1.4919238629420386\n", - "time: 11.324347019195557\n", - "maxcut objective: -3.9919238629420386\n", - "solution: [0. 1. 0. 1.]\n", + "energy: -1.4979345138091684\n", + "time: 5.0429768562316895\n", + "maxcut objective: -3.9979345138091684\n", + "solution: [1. 0. 1. 0.]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VGXa+PHvkx4gBQidQEIoioKvgkgRUHAVEUESFGV5U+giNaEj1QKoqIgg0oPrvuoyg4Liuoj4c11lFVZ0pSb0ngpJCKTN8/tjEoyYBpnkTLk/15WLycyZc+4ZJvc85yn3UVprhBBCuBY3owMQQghR/ST5CyGEC5LkL4QQLkiSvxBCuCBJ/kII4YIk+QshhAuS5C+EEC5Ikr8QQrggSf5CCOGCPIwOoDRBQUE6JCTE6DCEEMKh7N27N0VrXa+87ew2+YeEhLBnzx6jwxBCCIeilDpZke2k20cIIVyQJH8hhHBBkvyFEMIFSfIXQggXJMlfCCFckCR/IYRwQXY71VMIh5KWBv/6F/z0E+zbB1lZ4OEBzZpBp05wzz1w112glNGRCgFI8heico4cgbffhr//3fp7Xh74+ICbG2gNCQmwYwe4u0PjxjBmDAwaZP1iEMJA8gkU4lbk5sI771gTv8UC/v7WBF8arSEpCWbPhk2bYNkyaNWq+uIV4gbS5y/EzcrMhCFD4K23oGZNqF277MQP1u6eGjUgMNB6NvD447BzZ/XEK0QJJPkLcTOuXoWoKGvffmDgzXffKAUBAdbnjRkD33xTNXEKUQ5J/kLcjFdesQ7oBgZWbvDWxwe8vGDsWGt3kBDVTJK/EBW1Zw+895615W6LWTu+vnDtGkyfbh0TEKIaSfIXoqJefNE6i6e8/v2bERAA334LP/9su30KUQGS/IWoiCNH4Ndfwc+vzM1yLRYWnjtHv8REehw+zJBjx/guK6v0JyhlnS20YYONAxaibJL8haiIbdugoKDc7p4CoKGnJ6ubNePr1q15tl49Zpw9y7nc3NKf5O8P27dbp48KUU0k+QtREbt3g7d3uZv5urkxql49Gnt54aYU3f38aOzpyaFr10p/kru7tTspMdGGAQtRNkn+QlTEgQPWGTo3KS0/n1O5ubQo74vDYoHDh28xOCFuniR/IcpjscCVKxUe6M3Ly+PSpUtcycnh+XPn6BcQQEh5yT8/Hy5ftkGwQlSMlHcQojwVmNapgaysLC6lp5N99So5OTms0Bq3WrWYFhxcseO4SVtMVB/5tAlRnqJVufn5f3goLz+flJQUEhMTSUlOxs/Pj5ZhYawB8mrU4Ln8fC6np1PuLH5PT+vCMSGqibT8haiIO++0LvLy9EQD2VeukJ6ezpUrV/D396dp06b4Fo4JvHT+PGcsFv7SogWeBQWcOX2anJwcGjZsiFtpZxFKwe23V9/rES5Pkr8QFdG1KwXffcel1FTSL13CTSkCa9emUePGuBfrrjmfl4c5PR2tNX0SEgDQWjNaa7qfPEnTpk3xuLEeUH6+NfmHhlbnKxIuTpK/EGXQWrNv3z6+PHSIIRcuoAIDady4Mb6+vpTUhm/k6ck/Q0JISkoiJCTkt/0AKcnJHD9x4ndnCcBvVUKlxr+oRvJpE6IEmZmZbN++HZPJhMViITw8nHpJSXjt3WutyVOGvPz8P7TuFVCvXj28fXw4deoUjRo2xN/f3zqTyM0N/vd/q/DVCPFHkvyFKKS15sCBA5hMJnbt2kWXLl2YMWMGd999N0op6NDBWoc/L886QFuK/Px8PEp53N/PDy9PT06fOcO1nBzqeXqinngCWreuqpclRIkk+QuXl52dzd///ndMJhNZWVlERERgMpmoU6fO7zds0wYmTIDXX7dewKWUwdv8Elr+xfn4+BAaEkLyiROc8fGh7pQp1LDlCxKiAmwy1VMp1UcpdVgplaiUmlHGdhFKKa2U6miL4wpRGUeOHGHRokX069eP77//nvHjx7NlyxYiIyP/mPiLjBkDDz0Ely5Zu2xKkJ+Xh2c5/fce167RoHFjtg8aRMzEiZw7d66yL0eIm1Lplr9Syh1YAfwJOAP8qJTaqrU+cMN2fsBE4N+VPaYQtyonJ4cdO3ZgMpm4ePEi4eHhfPjhh9SrV69iO/DwsF63NzYWPv/cemnGG1bvltny19q6krdWLdzi4xnVvj2BH31EdHQ0ixYtokOHDpV8hUJUjC26fToBiVrrYwBKqQ+AAcCBG7Z7AVgCTLXBMYW4KcePH8dsNrN9+3buvPNOYmJi6NatG+63UpvfywuWLwezGebOhfR067V8vbyAwgHfG/v8LRbrrB6t4YEH4OWXoX59FDB48GBCQ0OZOXMmo0aNYtCgQZV+vUKUxxbJvwlwutjvZ4D7im+glLoHCNZaf6aUkuQvqkVubi67du3CZDJx8uRJBgwYwHvvvUfjxo0rv3OlICICuneHv/wF4uMhMxOdn4/PtWt4XL1qvUpXXp71zKCgALp0gREjrM+5YbygU6dOrFu3jtjYWBISEpg6dWqZ4wZCVJbSlbx8nFJqENBHaz2i8Pf/Be7TWo8r/N0N+AqI1lqfUEp9DUzRWu8pYV+jgFEAzZo163Dy5MlKxSZc05kzZzCbzXz66ae0bNmSiIgIevbsWbXJNDcXfvmFnJ9+Ysv8+Qx+9FGUhweEhUH79tafRo3K3c2VK1eYPXs2V69eZcmSJQRKyQdxk5RSe7XW5Y6r2iL5dwHma60fKfx9JoDWelHh7wHAUaDockYNgTSgf0lfAEU6duyo9+wp9WEhfic/P59vvvkGs9nMoUOHePzxxxk4cCDNmjWr1jhOnDhBbGwsZrP5lvdhsVhYuXIl//jHP3j99ddp2bKlDSMUzq6iyd8WTaEfgVZKqVDgLPA0MKToQa31ZSCoWGBfU0rLX4ibdeHCBT7++GM++eQTmjZtSnh4OK+//jpehf3v1S05OZmgoKDyNyyDm5sb48aNo2XLlowZM4bnn3+eBx54wDYBClGo0slfa52vlBoHfAG4A+u11vuVUguBPVrrrZU9hhDFWSwWvvvuO8xmM/v27ePRRx9lxYoVtGjRwujQSE5OrvjMoXL06dOHZs2aMWXKFI4ePcqwYcOsi82EsAGbdIJqrbcD22+4b24p2z5gi2MK15OSksLWrVsxm83UrVuXiIgIXnrpJXzLKbdQnVJSUqhfv77N9te2bVs2bdrElClTSExMZN68efjcwhXFhLiR1PMXds1isfDDDz8wbdo0nnzySS5cuMBrr71GfHw8/fv3t6vED7Zt+RcJCgpi9erVeHp6Mnz4cC5evGjT/QvXJHPJhF26dOkS27Ztw2w24+PjQ0REBPPmzaNmzZpGh1am5ORk2rVrZ/P9enl5sWDBAt5//32ioqJ45ZVXaN++vc2PI1yHJH9hN4rKJ5tMJv71r3/Rs2dPFi5cyJ133ukwfd1V0fIvopRi6NChtGjRgri4OMaPH0///v2r5FjC+UnyF4a7sXxyREQE06ZNs5Y8djBVmfyLdO3alTVr1hAbG0tiYiITJ068tZXKwqVVep5/VZF5/s6tePnkr776iq5duzJo0KDfyic7IK01Xbt2ZdeuXdUyKJuRkcGsWbPQWrNo0SKH/LIUtled8/yFqLCSyiebzebSq2g6kIyMDHx8fKptNo6/vz/Lli3jrbfeIjo6mqVLlxIql4IUFSTJX1SLI0eOYDKZ2LFjBx06dGD8+PF06tQJNzfnmXBWHV0+N3J3d2fy5MmEhYUxatQo5s+fT7du3ao1BuGYJPmLKnPt2jV27NiB2WwmKSmJgQMH3lz5ZAdji9W9t6p///6EhIQwffp0hgwZwtChQx22+0xUD0n+wuZsWj7ZgSQnJ9t0gdfNat++PRs3biQuLo6EhASef/55w8pcCPvnPOfcwlC5ubl88cUXjBo1ijFjxuDr68t7773HsmXL6NGjh9MnfrCu7jX6rKZBgwasXbuWvLw8Ro4cSXJysqHxCPslLX9RKTeWTx48eHDVl0+2U8nJyXYx4Orj48PLL7/Mhg0biIqK4rXXXqNt27ZGhyXsjOv9hYpKKyqfbDKZOHLkCP369WPt2rXVXj7Z3iQnJ3PvvfcaHQZgXRA2bNgwwsLCmDBhAnFxcTz66KNGhyXsiCR/UWE3lk+OiIigV69e0q9cKCkpyfBunxv17NmTJk2aXF8Q9txzzznVDCtx6+RTIMpksVj49ttvmTx5MkOGDCEzM5MVK1awZs0a+vTpI4m/GHvo8y9Jy5Yt2bRpE7/++iuxsbFcuXLF6JCEHZDkL0qUkpLC+vXr6d+/P2vWrOHBBx9k+/btTJ061S7q5tsbi8VCamoqdevWNTqUEgUGBrJixQoaNWpEdHQ0p0+fLv9JwqlJt4+4zmKxsGfPHjZv3syPP/7In/70J1577TVuu+02o0Oze+np6fj7++Pp6Wl0KKXy8PBg+vTpmEwmhg8fzosvvkinTp2MDksYRJK/+EP55EGDBjlE+WR7YsTq3lsVERFBaGgoM2fOJCYmhsGDB8uCMBckyd9FOUP5ZHviSMkf4J577mHDhg3ExsaSkJDA9OnTZfzGxUifv4vJzMzkgw8+YPDgwbz00kvccccdfPLJJ8yfP5927dpJ4r9Fjpb8ARo3bsz69evJyMjg2WefJS0tzeiQRDWSlr8LKF4+edeuXXTp0oUZM2Y4dPlke2OvM33KU6NGDZYsWcKaNWuIiopi6dKltG7d2uiwRDWQ5O/ESiqfbDKZnKJ8sr1JTk7m9ttvNzqMW+Lm5sbo0aMJCwtj7NixzJw5k969exsdlqhikvydUPHyyR07dnTK8sn2Jikpie7duxsdRqU89NBDBAcHExcXR2JiIiNHjpTPjBOT5O8kisonm0wmkpOTnb58sr1xxD7/krRp04ZNmzYxZcoUjh49yvz586lRo4bRYYkqIF/rDu748eMsXbqUxx57jJ07dzJs2DC2bt3KiBEjnCIZOQpH7fMvSZ06dVi1ahW1atVi+PDhnDt3zuiQRBWQlr8Dys3NZdeuXZhMJk6ePMmAAQP4y1/+QqNGjYwOzSXl5+dz+fJlpxpL8fLyYs6cOXz44YfExMSwaNEi7rnnHqPDEjYkyd+BSPlk+5SamkqdOnWcrn9cKcXTTz9NaGgoM2bMYMyYMYSHhxsdlrARyRp2Tson2z9n6e8vzX333cfatWuvVwaNjY2VBocTkP9BO1VUPvnjjz8mODhYyifbMWdP/gDNmjVj48aNzJ49m3HjxrFkyRICAgKMDktUgnOdpzq4ksonr1y5Uson2zlXSP4AtWrV4o033qBt27ZERkZy9OhRo0MSlWCTlr9Sqg+wDHAH1mqtF9/weCwwAsgHkoFhWuuTtji2M0hJSWHr1q2YzWbq1q1LREQEixYtwsfHx+jQRAU400yf8ri5uTFhwgRatmzJmDFjmDNnDj169DA6LHELKp38lVLuwArgT8AZ4Eel1Fat9YFim/0EdNRaZyulngVeAQZX9tiOTMonO4/k5GTuvvtuo8OoVn379qV58+ZMnTqVxMREYmJipFSIg7FFy78TkKi1PgaglPoAGABcT/5a613Ftt8NDLXBcR1Seno627ZtY8uWLfj6+hIRESHlkx1cUlISQUFBRodR7e644w7i4+OvrwieO3eunK06EFv0+TcBil8W6EzhfaUZDnxug+M6DK01P/30E88//zzh4eEcP36chQsX8v777xMRESGJ38G5Sp9/SerVq8eaNWvw8PBg5MiRJCUlGR2SqKBqne2jlBoKdAR6lvL4KGAUUOmpjFpDQgL8+iv89BNcvAgWC9SvD3ffDXfcAbfdBlU5NTszM5PPPvsMk8mE1pqIiAimTZuGv79/1R1UVDtX6vMvibe3NwsWLOC9994jKiqKJUuW0L59e6PDEuWwRfI/CwQX+71p4X2/o5R6CJgN9NRa55S0I631amA1QMeOHfWtBJObC1u3wqpVcLJwSLmgAIqmJRcUwN/+BkpBw4YwahSEh4Otypdordm/fz9ms5ldu3bRtWtXZs6cKeWTnVROTg5Xr151+WmPSikiIyMJCwsjLi6OiRMn0q9fP6PDEmWwRfL/EWillArFmvSfBoYU30ApdTfwLtBHa11l54UHDsCECXD8OHh5gb+/NcmXRGtISYF586xfFMuWQYcOt37sovLJmzdv5sqVK1I+2UUUtfrli92qW7durF69+voVwiZMmIC7u7vRYYkSVLrTQ2udD4wDvgAOAh9prfcrpRYqpfoXbvYqUAv4m1Jqn1Jqa2WPe6PNm+GJJ+DUKQgMhJo1S0/8YH2sRg2oXRuSk+Hpp+Hdd61fCjfjyJEjLFq0iH79+rF7924mTJjAli1biIyMlMTvApKTk11ysLcsoaGhxMfHk5CQwKRJk8jMzDQ6JFECm/T5a623A9tvuG9usdsP2eI4pfnb32DGDGvCv5V1UH5+kJ8Pr7xiTf5jxpS9vZRPFkVcebC3LP7+/ixfvpw333yTqKgo3njjDZo3b250WKIYhy/v8OuvMHv2rSf+Ih4e1i+B116Du+6CLl3+uM3x48cxm81s376ddu3aMWzYMLp16yantS5Mkn/p3N3diYuLo2XLlowYMYIFCxbQtWtXo8MShRw6+efmWvv4oXKJv4iHB3h6wqRJsHMn1Kol5ZNF2Vx9pk9FDBgwgJCQEKZPn87QoUP585//LGMkdsChk/+WLdY+fltOtKhZ0zoQvGxZGn5+f5HyyaJMSUlJtGzZ0ugw7N5dd93Fxo0br1cGnTVrltSqMpjDFnbT2jpA6+lZ9sAuwNmzc0hIeITDh3tw9Gg4ly59XMo+NZmZGaSnn2XJkmTy82Ht2rWsXLmS3r17S+IXfyADvhXXsGFD1q1bx7Vr1xg9ejQpKSlGh+TSHDb5HzoEp09XbH5+UFAMYWHbaNPmG5o2fZ2kpJVcvXrw+uN5eXkkJyeRmJhAWloaQUG1aNiwFV26TJC6+aJM0ud/c3x9fVm0aBH3338/UVFRHDhwoPwniSrhsMl//35r678iXYfe3i1wcys6xVQopcjLO01WVianT5/m+PFjFBRYaNasOc2bh+DvH0B+vhv//W+VvgThBKTP/+YppRg+fDhTpkxh4sSJfPHFF0aH5JIcth9j796bm5N/4cJiLl3ahsVyDaVCuHixIZ6eKQQG1qZp0yYo9fvvQQ8P+OEH6wpgIUqSnZ2N1lpqM92iBx98kODgYGJjYzl69Chjxoxxukth2jOHfafPn/+tZENFNGgwDV/fvwBz8PTsStOmoYSEhBIYGPiHxA/WfV+8aLt4hfMp6vKRmSu3rmXLlmzatIl9+/YxZcoUrly5YnRILsNhk//NslgsZGdfpWHDHtSsmcPVq58ZHZJwcDLYaxuBgYGsXLmSevXqERMTw5kzZ4wOySU4bPIPCrKuyq0od3cPwsLCSE9PIzPzErm5p8vcvqAApDqDKIsM9tqOh4cHM2fO5KmnnmLYsGH8+OOPRofk9Bw2+Ve0CFt+fhoZGf/AYsnG09OT+vUvcPXqLrKymlNQUFDq83Jz4d57bRSscEqS/G1v0KBBvPzyy8yePZuPPvoIfbPFtkSFOWzyv+MOqFhVBUV6+mYSEvpy5MgDJCcvp1mzmfj59eTEiePk5JRYXRovL5CS5KIsMtOnanTs2JENGzZgMplYtGgReXl5RofklBw2+d95J9StC1evlr2dh0dtmjdfTZs2X9OmzTe0aPEhtWuH06BBA4KCgjh58iRZWb+vOpibC97e0LlzFb4A4fCSkpIk+VeRJk2asGHDBlJSUhg7dizp6elGh+R0HDb5u7lZp2GW0nCvkICAQIKDm3L+/HlSU1MA6ylmVhZERtqmXpBwXjLgW7Vq1KjBa6+9xt13301UVBRHjhwxOiSn4rDJH+DJJ62t/8rMDvP1rUFISCgZGRmcO3eO7GwLfn4QE2O7OIVzkj7/qufm5sbYsWMZN24cY8eO5auvvjI6JKfh0Mm/Vi14803Iy7u5mT838vT0JCQkhIICOH06mZkzL1G3ru3iFM5Hay19/tXo4YcfZvny5SxdupTVq1djsViMDsnhOXTyB2vd/QkTIDOzcl8AFosbtWo1plevs8THD2H//v22C1I4nczMTLy9vfHx8TE6FJdx++23s2nTJnbv3s2MGTO4Wt6AnyiTwyd/gPHjrT+ZmZCdffPPv3oVMjJg6FDFli33MGPGdCZOnMjnn39u+2CFU5AuH2PUrVuXVatWUbNmTYYPH8758+eNDslhOUXyV8p6AZb168HXF9LSKjYQnJtr3dbDA5Yvh/nzrQPJPXv2ZNWqVbzzzjssX75cTjHFH8hgr3G8vLyYO3cu/fr1IyYmhn379hkdkkNyiuRfpGdP2LULJk60rgHIzITUVOu/V69af4rfpzWMHm29alffvr+vEFpUc+S///0vsbGxUnNE/I60/I2llGLIkCHMnz+fadOm8fHHJV+jQ5RO2esKuo4dO+o9e/bc8vNzc2H3bvjvf+Hf/4bkZGuyr1sXOnWCdu2ga1cor8s2Pz+fV199lf/85z+8/vrrBAcH33JMwnmsX7+e7Oxsxo0bZ3QoLu/UqVNMnjyZzp07Exsb6/LX1FZK7dVadyx3O2dN/ra2efNmVq9ezYsvvkinTp2MDkcYbMmSJYSEhDB48GCjQxFAVlYWs2bNIj8/n8WLF+Pv7290SIapaPJ3qm6fqlRUc+T555+XmiNCun3sTK1atXjzzTe57bbbiIyM5NixY0aHZPck+d+E4jVHXn75Zak54sJkwNf+uLm5MWHCBEaNGsXo0aP55z//aXRIdk2S/00qqjmSmpoqNUdcWHJyMvXr1zc6DFGCvn378sYbb7Bo0SLi4+PlLL0UkvxvQfGaI5GRkVJzxMVYLBbS0tKoK8vA7dadd97Jxo0b2blzJ3PmzCm1eq8rk+R/i4pqjowfP15qjriYS5cu4efnh6enp9GhiDLUr1+fNWvWADBy5EiSkpIMjsi+SPKvpIcffpi33nqLpUuXsmbNGlkQ5gJksNdxeHt788ILL9C7d2+io6P59ddfjQ7Jbkjyt4G2bdsSHx/Pv/71L2bOnCk1R5ycDPY6FqUUUVFRzJw5k8mTJ/PZZ3L9brBR8ldK9VFKHVZKJSqlZpTwuLdS6sPCx/+tlAqxxXHtSVBQEKtXr8bHx4fhw4dz4cIFo0MSVURa/o6pe/fuvPvuu6xZs4Zly5a5/Fl6pZO/UsodWAE8CrQFnlFKtb1hs+FAuta6JfAGsKSyx7VHXl5ezJ8/n759+xIVFcXPP/9sdEiiCkjyd1wtWrRg06ZNHD58mEmTJpGVlWV0SIaxRcu/E5CotT6mtc4FPgAG3LDNACC+8PZmoLdSxSvpOA+lFEOHDmXevHlMmTKFrVu3Gh2SsDFJ/o7N39+ft956i+DgYKKiojh16pTRIRnCFsm/CXC62O9nCu8rcRutdT5wGXDqeXJdu3ZlzZo1bNy4kaVLl1JQUGB0SMJGJPk7Pg8PD6ZOncrQoUMZMWIEu3fvNjqkamdXA75KqVFKqT1KqT3JyclGh1NpISEhbNy4kWPHjjFhwgQyMjKMDknYgCR/5zFw4ECWLFnC/Pnz+etf/+pSC8JskfzPAsVLXTYtvK/EbZRSHkAAkHrjjrTWq7XWHbXWHZ3lj6voFDMsLIzo6GhOnDhhdEiikiT5O5e7776bDRs28Omnn/LCCy+Qm5trdEjVwhbJ/0eglVIqVCnlBTwN3NjRvRWIKrw9CPhKu9BXrLu7O7GxsURHRzNy5Ei+++47o0MStyg/P5+MjAzq1KljdCjChho1asS6devIyspizJgxpKb+oW3qdCqd/Av78McBXwAHgY+01vuVUguVUv0LN1sH1FVKJQKxwB+mg7qC/v3789prr7Fw4ULee+89lzrFdBZpaWnUrl0bNze76jEVNuDr68vixYvp0qULkZGRHDp0yOiQqpSHLXaitd4ObL/hvrnFbl8DnrTFsRzdXXfdxcaNG4mNjSUxMZHZs2fj5eVldFiigqTLx7m5ubkxcuRIwsLCGD9+PFOnTuXhhx82OqwqIc0XAzRs2JB169aRk5PDqFGjSElJMTokUUGyutc19OrVixUrVvD222+zcuVKp1wQJsnfIL6+vixatIj777+fyMhIDhw4YHRIogKk5e86WrduTXx8PD/99BNTp04lOzvb6JBsSpK/gZRSjBgxgqlTpzJhwgS++OILo0MS5ZDk71pq167NypUrqVOnDtHR0Zw9e+NERsclyd8OPPjgg7zzzjusWLGCFStWOOUpprOQ5O96PD09mTVrFoMGDSImJgZ7urZ4ZUjytxOtWrUiPj6en3/+mSlTpnDlyhWjQxIlkOTvmpRSPPXUU7z00kvMmjWLzZs3Gx1SpUnytyO1a9dmxYoVBAUFERMT41SnmM5Ckr9ru/fee1m/fj0fffQRixYtIj8/3+iQbpkkfzvj6enJzJkzne4U01lI8hdNmzZlw4YNJCcnM3bsWC5dumR0SLfEJvP8hW0VnWKGhoYya9YsRo4cyZNPyjIJo+Xm5nL16lUCAgKMDkUYrGbNmrz22musWrWKyMhIli5dSqtWrcp9XkEBJCTAwYNw+DBkZICXF4SGQtu21p+aNavhBSDJ364VnWIWLQibMmWKXDfWQCkpKQQFBeGk1cjFTSq6jndYWBhjx45l9uzZPPDAAyVum5YGJhOsWQOXL4PFAvn54OYGWoNSUPSnPXAgREdDmzZVHH/V7l5UVtEpZlJSEs8995zDnmI6A+nyESV55JFHWLZsGa+++irr1q37XdkWreGzz+CBB2DxYsjOBj8/CAiAunWhdm2oU8f6b61a4OMDH30E/frBwoVQlVeEleTvAGrWrMnSpUtp3749kZGRJCQkGB2SS5LVvaI0Rdfx/vbbb69fxzs3FyZNggkTrC392rWtyb0sHh6/fRHEx0OfPnDmTNXELMnfQbi5uTFu3DjGjh3Ls88+y9dff210SC4nKSlJWv6iVEFBQbz77rv4+PgwbNgohg3LZts2ayu/vKR/I3d365fAuXMQHg5VMfFPkr+D6dOnD2+99RavvPLKH04xRdVKSUmR5C/K5OXlxbx583B3n4i7E/XtAAAa9klEQVTZfBkfn2wqUwA2IADS02HYMMjLs12cIMnfIRWdYn7zzTfMmjWLa9euGR2SS0hOTqZ+/fpGhyHs3MGDin//uyNNmvhx5syZSo/T+fvD0aOwapWNAiwkyd9B1atXjzVr1uDp6cnw4cO5ePGi0SE5PenzFxUxt7CYfUBALUJCmpOamsLFixeAWztLV8o6BvD222DLq9tK8ndgXl5eLFiwgEceeYSoqCh++eUXo0NyajLbR5QnIQF+/tnaWgfw8vImNDSUnJxcTp06RUFBAQBpaR9x/Pj/cuhQF86dm1/ufj08rGsEbFlVQpK/g1NKERkZyZw5c4iLi2Pbtm1Gh+S0JPmL8mzebJ3ZU3wpiJubO82aBePt7cOJE8fJycnBwyOIoKDhBAT0L31nN/Dxsc4AshVJ/k6iW7durF69mvXr1/P6669fb2EI28jOzsZisVCzupZfCof0r3+Bt3dJjygaNGhAUFAQJ0+exM2tE35+D+DuXvHV4t7ekJJiXTBmC5L8nUhoaCjx8fEkJiYyadIkMjMzjQ7JaRTN9JHVvaI0BQVw5Ehpyd8qICCQ4OCmnD9/jtTUFG5mHEApa/fPwYOVjxUk+Tsdf39/li9fTvPmzYmKiuLkyZNGh+QUpMtHlOfKFWuXj7t72dv5+tYgNDSUjIyMm54JZLFAamolgixGkr8Tcnd3Z8qUKURGRjJixAi+//57o0NyeElJSTLTR5SpotdgysvLJS0tjby8vFtap2OrHl0p7ObEnnjiCUJCQpg+fTqRkZEMGTJEui1ukczxF+WpUcNay6eoUNvvaTIzM0lPv8S1a1cJCAgkJCSES5fqkJ+fVOFjKGWtDWQL0vJ3cv/zP//Dxo0b+eyzz1i4cCG5ublGh+SQZHWvKI+XFwQHQ07Ob/fl5eWRnJxEQkICaWlpBAQE0KpVK+rXD8LDQwEWwILFkovW5TfptYbWrW0TryR/F9CoUSPWrVvHlStXGDNmDKm26jR0IdLnLyqiQwe4elWTlZXJ6dOnOX78GAUFFpo1a0bz5iEEBASglBspKes4fLgrqakbuXx5O4cPdyUlZV2Z+87Ptw74Nm1qm1il28dF+Pr6snjxYtauXXv94hO33Xab0WE5DFndK8qTkpKCp+duLly4G1/fXAIDa9OkSRPcSijuU6/eKOrVG3VT+8/MhMGDqVStoOIk+bsQNzc3Ro0aRcuWLRk3bhzTpk3j4YcfNjoshyAtf1ESi8XCjz/+iMlk4scff6R37z/RqlUv8vJq4Otru+NobU36kZG226ckfxfUq1cvmjZtSlxcHImJiYwZM6bE1omw0lpLy1/8Tnp6Otu2bcNsNlOjRg0iIiKYN28eNWvWpF07iI21rsi11fyKy5ehVy+w5cm6/MW7qNatWxMfH89//vMfpk6dSnZ2ttEh2a3MzEy8vLzwtWVTTjgcrTX/+c9/mDVrFuHh4Zw4cYIXX3yR999/n4iIiOurv/v3h549wVYX3bt61Xpd35dfts3+ikjyd2F16tThnXfeoXbt2sTExHDu3DmjQ7JLMtPHtWVkZPDXv/6VJ598ksWLF9O+fXs++eQT5s6dy5133vmH6dNKwauvQqNG1hZ7ZVy7Brm51oqetj7xrFTyV0rVUUrtUEolFP5bu4Rt/kcp9b1Sar9S6hel1ODKHFPYlqenJ7NnzyY8PJzo6Gj27t1rdEh2R/r7XY/Wml9++YV58+YxYMAADh48yOzZs/nwww95+umn8S8q21mKunWt1+Jt1Mh6MZaKLgD77fiQkWG9gMuqVdC9eyVeTCkq2+c/A9iptV6slJpR+Pv0G7bJBiK11glKqcbAXqXUF1pruRK5nVBKMXjwYEJDQ5k5cyajR48mIiLC6LDshly+0XVkZWXx+eefYzKZyM3NJTw8nMmTJxMYGHjT+2rcGD79FBYsgI8/tpZ98PMrfxzg2jVrV0+LFrBsGbRte4svphyVTf4DgAcKb8cDX3ND8tdaHyl2+5xSKgmoB0jytzOdOnVi7dq1xMXFkZCQwJQpU/DwkDkB0vJ3fgcOHMBsNrNz507uu+8+4uLi6NChQ6UnQvj7w9KlMHAgvPkm7Nv3W/0fb+/fpm3m5loXh3l6Wq/dGxcHf/6zdeFYVansX3YDrfX5wtsXgAZlbayU6gR4AUcreVxRRZo1a8aGDRuYPXs2zz33HEuWLLmlVo8zSUlJoXnz5kaHIWwsOzubf/zjH5hMJi5fvszAgQPZvHkzdevWtfmx7r/f+pOYCN98Az/8YK3OmZ1tTfjBwdC5M3TqBF262G4uf1nKTf5KqS+BhiU8NLv4L1prrZQqtUqRUqoR8B4QpbUusQdMKTUKGAXWJCSMUatWLd544w3efvttoqKieP311wkLCzM6LMMkJyfTsWNHo8MQNpKQkIDZbOaLL77g7rvv5tlnn6Vz587VMt25ZUvrz7BhVX6ocpWb/LXWD5X2mFLqolKqkdb6fGFyL7FCkVLKH/gMmK213l3GsVYDqwE6dux4axe8FDbh5ubGhAkTaNmyJaNHj2bu3Ln06NHD6LAMIXP8HV9OTg47duzAbDZz4cIFnnjiCT744AOXLtZX2W6frUAUsLjw309u3EAp5QVsATZprW14BUpRHfr27Uvz5s2ZOnUqiYmJxMTEuFxlUOnzd1wnTpzAbDbz2WefcccddxAVFcX999+Pe3lF911AZZP/YuAjpdRw4CTwFIBSqiMwRms9ovC+HkBdpVR04fOitdb7KnlsUU3uuOMONm7cyJQpU0hMTGTu3Ln4+PgYHVa1sFgspKamVkk/sKgaubm5fP3112zevJmTJ08yYMAA3nvvPRo3bmx0aHZF3crFBKpDx44d9Z49e4wOQxSTk5PDCy+8wMmTJ1m6dKlLnDKnpaXx1FNP8eWXXxodiijHmTNnMJvNfPrpp7Rs2ZKIiAh69OiBp6en0aFVK6XUXq11uYNUMo9PVJi3tzcvvPACmzZtIioqildeeYV27doZHVaVktW99i0/P59vvvkGk8nE4cOHefzxx1m7dq1MGKkASf7ipiiliIqKokWLFsTGxjJx4kT69etndFhVRhZ42afz58/z8ccf88knnxAcHExERARvvPEGXlU5Md7JSPIXt6R79+68++67xMbGkpiYyIQJE5yyMqgM9toPi8XCt99+i9ls5pdffqFv376sXLmSFi1aGB2aQ3K+v1ZRbVq0aEF8fDyHDx9m0qRJZGZmGh2SzUnyN15SUhJr1qzh8ccfZ/369fTu3Zvt27czZcoUSfyVIMlfVEpAQADLly8nODiY6OhoTp06ZXRINiV9/sawWCx8//33TJkyhcGDB5OSksIbb7zBxo0befzxx11mtllVkm4fUWkeHh5MnTqVLVu2MGLECBYuXEjnzp2NDssmkpOTuf/++40Ow2WkpaWxdetWzGYzfn5+REREsHDhQmrUqGF0aE5Hkr+wmYEDB9K8eXNmzpxJVFQUzzzzjMMvCJPVvVVPa83evXsxmUx8//339OrVi8WLF3P77bc7/OfHnknyFzZ1zz33sGHDhuuXiJwxY4ZDz8CQPv+qc/nyZT799FNMJhMeHh4MGjSIWbNm4efnZ3RoLkH6/IXNNW7cmHXr1pGZmcmYMWNIS0szOqRbUlBQwOXLl6lTp47RoTgNrTU///wzc+fOZcCAARw+fJh58+bx4Ycf8tRTT0nir0bS8hdVokaNGixZsoS1a9cSGRnJ0qVLadOmjdFh3ZTU1FQCAwOlDowNZGVlsX37djZv3kx+fj4RERHExcUREBBgdGguS5K/qDJubm6MGjWKFi1a8NxzzzFjxgweeqjUIrF2JyUlxSVKWFQVrTUHDx5k8+bN7Nq1i86dOzNt2jQ6dOggffl2QJK/qHIPPfQQwcHBxMXFcfToUUaOHOkQC8KSkpJksPcWZGdn8/e//x2TyURmZibh4eGYTCbpPrMzkvxFtWjTpg2bNm26Xhl0wYIFdj99TwZ7b86RI0cwmUzs2LGDDh06MG7cOO677z6H+KJ3RfK/IqpNnTp1WLVqFX5+fgwbNoxz584ZHVKZJPmX79q1a2zbto3o6GgmTZpEUFAQH3zwAa+++ipdunSRxG/HpOUvqpWXlxdz5szhgw8+ICYmhkWLFnHPPfcYHVaJUlJSuOuuu4wOwy4dO3YMs9nM9u3badeuHcOGDaNbt24yOO5AJPmLaqeU4plnniE0NJQZM2YwZswYwsPDjQ7rD6Tl/3u5ubns3LkTs9nM6dOn6d+/P++//z6NGjUyOjRxCyT5C8N07tyZtWvXMnnyZBITE4mNjcXDw34+krK61+rUqVNs2bKFTz/9lNatW/PMM8/Qo0cPu/q/EjdPOuSEoZo1a0Z8fDxnzpxh/PjxXL582eiQrnPlln9+fj47d+5k7NixDB8+HKUU69evZ8WKFfTq1UsSvxOQ/0FhuFq1avHmm2/y9ttvExUVxeuvv254qd7c3Fyys7NdbhHSuXPnrl8kpXnz5kRERPDggw86dIkOUTJJ/sIuuLm5MWHCBMLCwhg9ejRz586le/fuhsWTkpJCUFCQS8xWKSgo4Ntvv8VkMrF//34ee+wxVq1aRWhoqNGhiSokyV/Ylccee4xmzZoxffp0jh07RmRkpCGrQV2hyycpKYmPP/6Yjz/+mIYNGxIeHs6rr76Kt7e30aGJaiDJX9iddu3asXHjRuLi4khISGDOnDnVnpCcdbDXYrGwe/duTCYTP/30E4888gjLli2jVatWRocmqpnzn9MKh1S/fn3Wrl2L1pqRI0eSlJRUrcd3tpZ/amoq69ev54knnuCdd96he/fufPrpp0yfPl0Sv4uSlr+wW97e3rz44ots3LiR6OhoXn31Ve64445qObYzJH+LxcKePXswmUz88MMP9O7dm8WLF9O2bVujQxN2QJK/sGtKKWJiYggLC2PSpElMnjyZvn37VvlxU1JSCAsLq/LjVIVLly6xbds2tmzZgpeXF+Hh4cyZM4datWoZHZqwI5L8hUPo0aMH77777vUFYePGjavSmTiO1vLXWrNv3z5MJhPffvstPXv2ZP78+bRr107KJ4sSSfIXDqNFixZs2rSJ6dOnM3nyZF566aUqa806yoBvRkYG27dvx2w2U1BQQEREBNOmTcPf39/o0ISdkwFf4VACAgJ4++23adKkCdHR0Zw6dapKjmPPLX+tNb/++isLFiygf//+/PLLL0yfPp3NmzczZMgQSfyiQqTlLxyOh4cH06ZNw2w2M2LECF588UU6depks/1nZ2dTUFBgd33k2dnZfP7555hMJq5cuUJERATjx4+Xi6SIW1Kp5K+UqgN8CIQAJ4CntNbppWzrDxwAPtZaj6vMcYUACA8PJyQkhJkzZxITE8PgwYNt0r+dkpJCvXr17Kav/PDhw9cvknLvvfcyceJE7r33XpdYfSyqTmVb/jOAnVrrxUqpGYW/Ty9l2xeAbyp5PCF+55577mHDhg3ExsaSkJDAjBkz8PT0rNQ+7aHL5+rVq+zYsYPNmzeTmppKeHg4H330keFxCedR2abDACC+8HY88ERJGymlOgANgH9U8nhC/EHjxo1Zv349ly9f5tlnnyUtLa1S+zNysPfo0aO88sorPPbYY+zatYtRo0axbds2hg8fLolf2FRlW/4NtNbnC29fwJrgf0cp5QYsBYYCD1XyeEKUqEaNGrzyyiu8++67REVFsXTpUlq3bl2xJ6emwsGDkJgIWVkE7t1LZ4BDhyAsDCp5JlGe3NxcvvzyS0wmE+fOnWPAgAH89a9/pWHDhlV6XOHayk3+SqkvgZI+hbOL/6K11kopXcJ2Y4HtWusz5fWhKqVGAaPAWuddiJvh5ubGs88+S1hYGGPHjmXWrFn06tWr5I1zc+HLL+Hdd2H/fvDwgJwc0JrbL1+mrbc3fPed9f6nn4Y//xlsXGb65MmTmM1mPvvsM2677TaGDh1K9+7dpVa+qBZK65LydQWfrNRh4AGt9XmlVCPga611mxu2eR/oDliAWoAXsFJrPaOsfXfs2FHv2bPnlmMTru3QoUPExcUxYMAARowY8fvB0X37YOJEOHcO3NygVi0o1jA5c/Ysfn5+BPj7Q14eZGVZtxs2DCZPBh+fW44rLy+Pr7/+GpPJxLFjx3j88ccZOHAgTZs2rczLFeI6pdRerXXHcrerZPJ/FUgtNuBbR2s9rYzto4GOFZntI8lfVFZqaipTp04lKCiIBQsW4OvjAytWwLJl1mTu51fi806cPEm9evWoWaPGb3cWFEBmJjRtCu+9B8HBNxXL2bNn2bJlC1u3biU0NJSIiAgeeOABuUiKsLnqSv51gY+AZsBJrFM905RSHYExWusRN2wfjSR/UY1yc3NZtGgRhw8dYlWrVvi//7416ZfRtZKYmEhws2Z4l5SYL1+GwEAwm8v9AigoKOCf//wnJpOJAwcO8Nhjj12fnipEVamW5F+VJPkLW9Fa801cHK1WrSIwOJgapbT4ATRw+NAhWrduXfo8+suXrWcAf/87lHCdgYsXL16/SEqjRo0YNGgQvXv3loukiGpR0eQvI0vC6ankZHr+4x9cadSIM+fPU6+ggNqBgSVua7FYUEqVvYAqIABOn7Z2H02bdv153333HWazmX379tGnTx+WL19Oy5Ytq+IlCVFpkvyF81uyBK5epWbt2jSvWZPTp0+Tc+0aDRo25Mb5Z/l5eXhUZGpnrVqwdi1pDz/Mlr172bJlC3Xq1CEiIoKXXnoJX1/fKnkpQtiKdPsI55aeDp07Q40a4O4OQIHFwtkzZ9BA0yZNcC+8P6OggOdPneL7jAwa1KzJuHr16BMQ8IddauDKlSvknD+PqU4dkocPJzw8nNtvv70aX5gQJZNuHyEAtm+3ztQpTPAA7m5uBDdrRtLFixw/cYLgpk3x9vZm8YULuFss/F9QEFm1azPx9Gla+/jQorCvPr+ggEuXLnEpPR03NzdqBwQw3McH95kzrbOHhHAgkvyFc/v229/N4S+igAYNGuDt48PJkycJbNiQrzIzWRUYiJ+bGy1r1KCnnx+fXr7M8Fq1SE9P50pWFn5+fjRu0gRfX19rl1FmJpw4YfMFYEJUNUn+wrn99FOZi7ICAwLw8vLim5MnseTn0wDw9PCgoKCARnl5/JCWxoWsLAIDA2nUsOH1LqLfOXhQkr9wOJL8hXNLTrbOzilDDV9f6jRujPfx46Snp+Pj40NycjKeHh7g60uLFi3+MDB8XW4uXLxo87CFqGqS/IVz07rEbp8bBXh5YfH2pm6dOrgpRe06dfjx0iUCs7NLT/xF+y8osFm4QlQXSf7Cufn6WpNzOcXSmnl5UQDkBAbSrHBl75GcnOuDvaVyd4eaNW0UrBDVR6YoCOfWpo21Wmc5fN3c6OXnx6rkZK5aLPycnc3/y8zksXK6jPD0hFatbBSsENVHkr9wbvfdB9euVWjTGQ0bkmOx8KcjR5h19iwzGzYsu+VvsVirft52m42CFaL6SLePcG59+sDatRXq+/d3d2fpzVTrzMy0frmUUStICHslLX/h3Nq3h9BQuHLFtvstWhk/YkTZ2wlhpyT5C+emFEyfbu2esVhst9+MDOvc/h49bLdPIaqRJH/h/Hr3hkcftZZitoW8POuXyltvlTuLSAh7JclfuIYXXrDW4K/sF0B+vvWyjs8/b51JJISDkuQvXEPt2vDBB9C4sbXS5610AWVnWwd5p02DyEjbxyhENZLkL1xHo0bwySfQr5/1DCAr67eB27Lk51u/MLy9YfVqGD266mMVoopJ8heuJTDQegWutWuts4AyMiA11fpFUDQoXFBgXRtw6ZL1SyInB/78Z/jqK+v4gRBOQEarhGt68EF44AHYvx++/BJ274ZDh6xTQt3coEED6NABunWDhx+2XrlLCCciyV+4LqXgzjutP0K4GOn2EUIIFyTJXwghXJAkfyGEcEGS/IUQwgVJ8hdCCBckyV8IIVyQJH8hhHBBSldkebsBlFLJwEkb7zYISLHxPp2NvEcVI+9T+eQ9qhhbv0/Ntdb1ytvIbpN/VVBK7dFadzQ6Dnsm71HFyPtUPnmPKsao90m6fYQQwgVJ8hdCCBfkasl/tdEBOAB5jypG3qfyyXtUMYa8Ty7V5y+EEMLK1Vr+QgghcPLkr5R6Uim1XyllUUqVOpqulOqjlDqslEpUSs2ozhiNppSqo5TaoZRKKPy3dinbFSil9hX+bK3uOI1S3mdDKeWtlPqw8PF/K6VCqj9KY1XgPYpWSiUX+/yMMCJOIyml1iulkpRSv5byuFJKvVX4Hv6ilLqnqmNy6uQP/AqEA9+UtoFSyh1YATwKtAWeUUq1rZ7w7MIMYKfWuhWws/D3klzVWv9P4U//6gvPOBX8bAwH0rXWLYE3gCXVG6WxbuLv58Nin5+11RqkfdgI9Cnj8UeBVoU/o4B3qjogp07+WuuDWuvD5WzWCUjUWh/TWucCHwADqj46uzEAiC+8HQ88YWAs9qYin43i799moLdSSlVjjEZz9b+fCtFafwOklbHJAGCTttoNBCqlGlVlTE6d/CuoCXC62O9nCu9zFQ201ucLb18AGpSynY9Sao9SardSylW+ICry2bi+jdY6H7gM1K2W6OxDRf9+Igq7MzYrpYKrJzSHUu15yOEv46iU+hJoWMJDs7XWn1R3PPaorPeo+C9aa62UKm36V3Ot9VmlVAvgK6XUf7XWR20dq3BK24D/01rnKKVGYz1T6mVwTC7P4ZO/1vqhSu7iLFC8JdK08D6nUdZ7pJS6qJRqpLU+X3iamVTKPs4W/ntMKfU1cDfg7Mm/Ip+Nom3OKKU8gAAgtXrCswvlvkda6+Lvx1rglWqIy9FUex6Sbh/4EWillApVSnkBTwMuM5sF62uNKrwdBfzhbEkpVVsp5V14OwjoBhyotgiNU5HPRvH3bxDwlXatxTPlvkc39F33Bw5WY3yOYisQWTjrpzNwuVh3bNXQWjvtDzAQa99ZDnAR+KLw/sbA9mLb9QWOYG3JzjY67mp+j+pineWTAHwJ1Cm8vyOwtvB2V+C/wM+F/w43Ou5qfH/+8NkAFgL9C2/7AH8DEoEfgBZGx2yH79EiYH/h52cXcJvRMRvwHv0fcB7IK8xJw4ExwJjCxxXWWVNHC//GOlZ1TLLCVwghXJB0+wghhAuS5C+EEC5Ikr8QQrggSf5CCOGCJPkLIYQLkuQvhBAuSJK/EEK4IEn+Qgjhgv4/Mo3tKUZbboYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWkgva3ZUurWdUtpaVtbF2i5CKJuLP4tlq2F3TZVlvsIgkh1JLaFOlqEVSycYtL5DK5TTKX8/vjSItkkpnkzHzOzLyfj0cejz5i5szLPo7Xnvmcz/l8OJ7nQQghhD0Z6wCEEEIEVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRclNe7Ovry3fp0sVMUQghxDadPn26hOd5v5ZeZ1Ihd+nSBadOnWp9KkIIsUMcxxUZ8zoasiCEEImgQiaEEImgQiaEEImgQiaEEImgQiaEEIkwaZYFIUSg0QBXrgClpYBeD7i5Ad26Aa6urJMRa2bZQm44iy9cAG7eBOrrhTP58ceBnj2BgACA4ywaiRBj1dQAGRnA1q3A+fOAgwMgkwENm+7U1wMdOwIvvQRMmAD4+7PNS6wPZ8oWTmFhYXyr5iFfvQps3y78aDTCJUV9vVC+HAcolYBWC4SEADNmAKNHA87Opn8OIWag1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIiQHmzRNeS+wbx3GneZ4Pa/F1Zi3k+npgwwZg82ZApxOuhh0dm34tzwPV1cLr2rUD1q8HnnnG+M8ixAxKS4G33wb+8x+hWJVK496n0wEqFRAYCGzaBPTubd6cRNqMLWTz3dQrLgbGjgU++kg4k729DZcxIFwpu7kBnp5AeblwebFsmXB5QggDJSXA+PFCGXt5GV/GgHCF7O0tHGPiRODMGfPlJLbDPIVcXAyMGwcUFgpnpdzEoWo3N8DdHfjkE2Dx4t8G6QixkPp64NVXgevXhVO4tbc23N2F03fKFGHkjpDmiF/IGg3w5z8D9+4JlxWt5eAgXC1v3w7s2CFePkKMsHEjcPGicAq2lasrUFsLvPcefeEjzRO/kD/+GLh8GfDwaPuxZDLhbF6yBLh2re3HI8QIBQVCIbu7izfpx9MT+PFHYNcucY5HbJO4hXznDvB//ycMOYh1JisUwvfH1FRxjkdIC774QrgpZ+pIW3M4TjiVN26kEThimLjzkHfuFM7k5m7etYanJ5CdDdy6Jdy2JsRMamuBr74Srimao9fX49at5aipyYVOp4KjY0f4+78NN7cIg+9xdhbGpPPygP79RQ5ObIJ4V8g8D2zZYtSky4QbNzDq8mUMuXgR469cwZ7y8ubf0DD7fs8ecbISYsCFC8I4b8vXFDo4OgYiOHgzunc/Cj+/t3DjxgLU1980+A6OE6bb5+aKmZjYEvEKubgYqKgwam7Qn319sTckBMdCQ7G2Y0dsvHMHF2prm3+TXA4cPy5SWEKaduGCcF+6JTKZM/z8pkOhaA+Ok8Hd/fdwdGwPtTq/2ffJ5cDJkyKFJTZHvELOzxdmRhjhMaUSivuPOXEAOI7D9Zb+FTg5AT/9RANwxGx4nkd+vh7Cw1I8eJ4Hz+sf+tHr9dDrdQ/9ADy02lLU11+FUvlYs5+hVAqrBxDSFPHGkO/cMe7S4r7lt27hn6WlqNPr8bhCgT48D1Vl5cMvul++/P3/VqhU+G7fPujvF7/wD+a3nwd/p78/v6i51xj6ae1rAECv14vymoa/Q0uvYfV3FfN/D7H/rq3536PB9evvoKxsOG7frgbQ1L1p7qHfa7VauLgo4eCwFp6ez0Gp7PLoGx5+NyfcoyakKeIVsokTLOMCAvB8aSmKnJ1xTqdDTUUF6h9YHOChfwf3z36XujrkHD8OvaMjOI4DxzX84+Ca/WnqNQAgk8lafA3Hcb++rqXPkjVc9Tfz+ca8xpS/hyX/rqa8Rup/V0OvSU4WFg/y8Wn29P1VQcEVVFevglKpR6dO81t8vV4vfNkjpCniFbKrq9FDFoDwDyAgIABu1dXIc3HBf5RKvNzcvwK9HlCpkLJsWeNVXQgRSc+exp/GdXVqVFevh6urFhpNLLRafYs3A+vqgNDQtucktkm8ZuvWzeSibNeuHfQ6Hapra3G9pe9xarWwTCeVMTGjHj2ML+Rr11Ihl99Gly4b4OsbhOLiYtwfYDNIrwfCw9uek9gm8drt8ceFOT0tDF2UarU4qFKh5v6YYZGXFw6oVOjf0vc4tRoIa3GxJELapEcP4cZbS9cHGs1NVFX9CzxfhMuXR6GkZBzKyl7EjRtfG3wPzwvXE4MGiRya2AzxhiwUCmDECODw4WbXsOAAfFNWhqXFxdADCHJ0xDve3ni8shK8l9fDY8cNeF64bHnuOdHiEtIUhQKYPFlYpFChMPw6rdYL7u67ERISgoY7HnV1ahQVFUGr1UAubzx2UVUlDFf07Gmm8MTqifuk3tSpwhN1PG/w0WlvuRybO3d+6Hd6nkdhYSFUFRXwbGo1l9paYTcR+q5HLCAmRlhosL7ecClXVKjun6u/nedKpRN8fHxQXFyMTp06PfRnPC98gYyNNW92Yt3EHZANCwP69BEeEDElBMehffv2uH37NrRa7cN/yPPCnZD582n8mFhEUBCwaJGwX0JT0955nodKpWry4qFdO19otVpUVKge+n1FhfAFcuRIc6UmtkDchpPJgLVrhceRTJxs6ezkBE8vL9y6ffvhPygvB4YOBZ5/XsSghDQvJgYYOBAoK2tcytXVVVAoFHB0bHz5zHEcgoKCHrq4UKmENZXT0mjLSNI88S85O3cWdvqorja5lP38/KBWq397QKSiQhiqWLGCzmRiUTKZsPVSv37CNcGD96orKirg6Wl4eVknJ2d4e3uhuLgYZWU83N2BL78E/PwsEJxYNfOMAYwbJ6xhXFMjFLOxYTgO7YOCcKu4GLrSUmHb3q++ojOZMOHqKizFOX68cG0gbPmoQ1VVNTxaWO/bw8MX1dWO8Pe/iz17hP17CWmJ+QZlJ00Ctm0TVvkuKzPusWqeh4teDz9HR5zx8QH27gU6dTJbREJa4uICrFoFfP454OsL3L6thkzWDjqdvNFQhlYLVFYK5c3zMsyfr4W7+xS4uZWxCU+sjnnvkkVECNPgpk0TztaKCqGca2uFdZN1OqGoq6qELZ9UKqBzZzhv2YKUwEDk5De/chYhljJkCPDdd8CAAR9h6NAaODsLQxlVVcJPRYVwivfvD6xZA5w6BSQmdsSYMaOwevVq1vGJleD4pm4jGxAWFsafOnWqdZ9UWyuUc04O8MMPwnKdWq2wandoKDBgABAZCTzxBMBxOHnyJJYsWYKdO3fCxYg1lgkxt5KSEkyYMAGZmZlQKpUoLwdKS4XxZXd3YYTt0VsdarUar7zyCmJjYzF06FA2wQlzHMed5nm+xSfbLFfIrZCSkgKlUom4uDiLfSYhhuzYsQOXL19GUlKSSe/Ly8vDwoUL8dVXX7U49kxsk7GFLOmJvbNnz8bRo0dx5swZ1lEIQXp6OkaPHm3y+/r164fhw4fjr3/9qxlSEVsi6UL28PDAggULkJqaCrVazToOsWOFhYW4d+8ewlq5nsrbb7+N06dPIycnR+RkxJZIupABYOjQoejZsyc2bdrEOgqxYxkZGRg1atSvazybysXFBfHx8UhLS0O1CVNBiX2RfCEDwLx587B//36cO3eOdRRih/R6PTIzMzFmzJg2HSc8PBwRERFYv369SMmIrbGKQvb29sZ7772H5ORk1NP+N8TCzp49CycnJ3Tr1q3Nx4qNjcXx48fxww8/iJCM2BqrKGQAGDVqFDp27IjPP/+cdRRiZzIyMjB69Ohft3tqCzc3NyxcuBCpqamobWmndWJ3rKaQOY7DggUL8PXXX+Py5cus4xA7odFocOjQIURHR4t2zMGDB6Nv37748MMPRTsmsQ1WU8gA4O/vj7fffhspKSnQ6XSs4xA7kJOTg5CQEAQFBYl63Llz5+LQoUP48ccfRT0usW5WVcgA8Ic//AHu7u74+9//zjoKsQPp6emiXh038PDwQFxcHFJSUlBXVyf68Yl1srpC5jgO8fHx2LZtG4qKiljHITasqqoKJ0+exEgzrSo/fPhwhIaG0pRO8iurK2QAaN++Pd544w2kpKRA38KmqoS0VnZ2NsLDw836uPO8efOwb98+mtJJAFhpIQPAxIkTwfM8vv7a8C6/hLRFax+VNoWPjw/mzJlDUzoJACsuZJlMhsTERGzevBk3b95kHYfYmDt37uDSpUsYPHiw2T/r2WefRadOnfDZZ5+Z/bOItFltIQNAly5dMHnyZCxZsgSmrFpHSEsyMzMRGRkJhaFtp0XUMKXz22+/xaVLl8z+eUS6rLqQAWDy5MlQqVTYu3cv6yjEhmRkZLT5UWlT+Pn54d1338XixYsb77xO7IbVF7KDgwMSExOxYcMG3L17l3UcYgN++eUXqFQq9O3b16Kf+9xzz6Fdu3bYtm2bRT+XSIfVFzIAdO/eHS+++CKWLVtGQxekzTIyMhAdHd3qld1ai+M4LFq0CDt27EBBQYFFP5tIg00UMgC8/vrruH79OrKyslhHIVZMr9dbfLjiQYGBgZg5cyaSk5NpSqcdsplCVigUSExMxOrVq1FWRrv8ktbJy8uDp6cnQkJCmGV44YUX4OzsjO3btzPLQNiwmUIGgN69e2PMmDFYtWoV6yjESjWs7MaSTCZDQkICtmzZgqtXrzLNQizLpgoZAN58801cuHABx44dYx2FWJn6+npkZ2ebZe0KU3Xo0IGeRrVDNlfITk5OSEhIwPLly1FZWck6DrEix48fR2hoKPz9/VlHAfDb06jffPMN6yjEQmyukAGgf//++P3vf0+7/BKTSGG44kENT6Nu2rSJnka1EzZZyADw7rvvIjc3F//5z39YRyFWQKVSITc3F5GRkayjPKRz586YMmUKUlNTaUqnHbDZQnZ1dcXChQuRlpaGmpoa1nGIxB06dAgDBw6Em5sb6yiNxMTEoLq6Gnv27GEdhZiZzRYyAERERKBfv360VQ5pkdSGKx7k4OCApKQkfPjhh7h9+zbrOMSMbLqQAWDOnDk4fPgwbZVDDCouLkZBQQEiIiJYRzEoJCQEL7/8MtLS0mjowobZfCF7eHhg/vz5tFUOMSgzMxMjR46Eo6Mj6yjNeu2111BSUoL09HTWUYiZ2HwhA0BkZCS6deuGzZs3s45CJIbneaaPSptCLpcjKSkJ69atQ0lJCes4xAzsopABIC4uDnv37sX58+dZRyEScvnyZajVavTp04d1FKOEhoZi3LhxWL58OQ1d2CC7KWQfHx/Mnj0bKSkp0Gg0rOMQiWjYVZrjONZRjDZt2jQUFRXh0KFDrKMQkdlNIQPA6NGjERAQgC1btrCOQiRAr9cjMzNTsrMrDFEoFEhKSqKFtGyQXRUyx3FYuHAhvvrqK1y5coV1HMLYqVOn4Ovri65du7KOYjJaSMs22VUhA0BAQMCv683qdDrWcQhD1nIzz5A333wT+fn5OHr0KOsoRCR2V8iAsN6si4sLduzYwToKYUStVuPo0aN49tlnWUdpNaVSiYSEBKxYsQIqlYp1HCICuyxkmUyG+Ph4Wm/Wjh07dgy9evWCr68v6yht0q9fPwwfPhxr165lHYWIwC4LGQA6duyIqVOnYsmSJbTerB3KzMy06uGKB7399ts4c+YMcnJyWEchbWS3hQwAL7/8MjQaDb799lvWUYgFlZeX48yZMxg+fDjrKKJwcXFBfHw80tLSUF1dzToOaQO7LuSG9WY//vhjFBcXs45DLCQrKwuDBg2Ci4sL6yiiCQ8PR0REBNavX886CmkDuy5kAOjatStiYmKwdOlSevLJTkh5Zbe2iI2NxfHjx/HDDz+wjkJaye4LGQBeffVV3Lt3D/v27WMdhZjZjRs3cO3aNQwYMIB1FNG5ublh0aJFSE1NpTXArRQVMn5btGXDhg20aIuNy8jIQFRUFORyOesoZjFo0CD069cPGzduZB2FtAIV8n0Ni7asWLGChi5sVMPKbrY4XPGgOXPm4NChQ7QGuBWiQn7AtGnTUFhYiMOHD7OOQszgwoUL0Ol06N27N+soZuXh4YG4uDhaA9wKUSE/QKFQIDExEatWrUJ5eTnrOERkDY9KW9PKbq01fPhwhIaGYtOmTayjEBNQIT+iT58+GDVqFNasWcM6ChGRTqfDgQMHEB0dzTqKxcyfPx/79u3DuXPnWEchRqJCbsJbb72Fs2fP4vjx46yjEJHk5uYiKCgIwcHBrKNYjLe3N+bOnYvk5GTU19ezjkOMQIXcBGdnZ8THx2Pp0qWoqqpiHYeIwNpXdmutqKgodOrUCZ9++inrKMQIVMgGPP300xg8eDA9+WQDamtrcezYMURFRbGOYnEcx+H999/Hrl27cPHiRdZxSAuokJvx7rvv4sSJE/Tkk5X77rvv0KdPH/j4+LCOwoSvry9iY2ORnJwMrVbLOg5pBhVyM9zc3LBw4UKkpqaitraWdRzSSunp6XY5XPGgsWPHwtfXF9u2bWMdhTSDCrkFgwcPxpNPPklPPlmp0tJSnD17FkOHDmUdhamG7ct27NiBgoIC1nGIAVTIRpg7dy4OHjyIs2fPso5CTJSVlYUhQ4bA2dmZdRTmAgMDMXPmTCxevJi2L5MoKmQjeHp6Yt68eUhJSaHpQ1YmPT3d5h+VNsW4cePg6upK25dJFBWykUaMGIGuXbvik08+YR2FGOnq1asoLi5GeHg46yiSwXEcbV8mYVTIRuI4DnFxcdi9ezfy8/NZxyFGyMjIwKhRo+Dg4MA6iqR06NABb7zxBlJSUmj7MomhQjZBw/ShlJQUmj4kcfaysltrTZw4ETzP4+uvv2YdhTyACtlENH3IOvz8889wcHBAz549WUeRJJlMhqSkJGzevBk3b95kHYfcR4VsoobpQ9u3b6fpQxJmTyu7tVZwcDCmTJmC1NRUWgNcIqiQWyEwMBBvvfUWjcFJlFarRVZWll2t7NZaMTExqK6uxu7du1lHIaBCbrXx48dDoVDgyy+/ZB2FPOLkyZPo1KkTOnTowDqK5Dk4OCApKQkbN27E7du3Wcexe1TIrSSTyRAfH49PP/0U169fZx2HPIAelTZNSEgIJk2ahLS0NBq6YIwKuQ2Cg4Px2muvITU1lYYuJKKmpgY5OTkYOXIk6yhWZcqUKSgpKUF6ejrrKHaNCrmNYmJioFarsWfPHtZRCIAjR46gf//+8PLyYh3FqjTsvL5u3TraeZ0hKuQ2apg+RGNw0kCPSrdew87ry5Yto6ELRqiQRfDYY4/hpZdewtKlS+lEZqikpATnz5/HkCFDWEexWtOmTcO1a9eQlZXFOopdokIWyWuvvYY7d+4gIyODdRS7dfDgQQwbNgxKpZJ1FKvVsPP66tWrUVZWxjqO3aFCFomjoyMSExOxbt06lJaWso5jl2i4Qhy9e/fG2LFjsWrVKtZR7A4Vsoh69uyJ559/HitWrGAdxe4UFhbi3r17CAsLYx3FJrz55pvIz8/HkSNHWEexK1TIIps+fTouX76M7Oxs1lHsSsPKbjIZndJiUCqVSEhIwMqVK6FSqVjHsRt09opMqVQiKSmJTmQL0uv1yMzMpIdBRNavXz9ERkZi7dq1rKPYDSpkM3jyyScxYsQIrFmzhnUUu3D27Fk4OTmhW7durKPYnFmzZuHMmTPIyclhHcUuUCGbyaxZs5CXl0cnsgU03Myjld3E5+Ligvj4eCxZsgRVVVWs49g8KmQzcXFxwaJFi5CWlobq6mrWcWyWRqPB4cOHaWU3MwoPD8egQYOwYcMG1lFsHhWyGT3zzDMYMGAAnchmlJOTg5CQEAQFBbGOYtNiY2Nx4sQJ5Obmso5i06iQzWz27Nn497//jdOnT7OOYpNo7rFluLm5YeHChViyZAlqampYx7FZVMhm5u7ujgULFiA1NRVqtZp1HJtSVVWFkydPYsSIEayj2IVBgwahX79++PDDD1lHsVlUyBYwZMgQ/O53v8NHH33EOopNyc7ORnh4ODw8PFhHsRtz5sxBdnY28vLyWEexSVTIFjJ37lxkZGTg559/Zh3FZtBwheV5eHggLi4OqampqKurYx3H5lAhW4i3tzfmzp2LlJQU1NfXs45j9e7cuYNLly5h8ODBrKPYnWHDhqFHjx7YtGkT6yg2hwrZgqKiotCxY0d8+umnrKNYvczMTERGRkKhULCOYpfmzZuHffv20Tc+kVEhWxDHcXj//fexa9cuXLp0iXUcq5aRkUGPSjNE3/jMgwrZwvz8/PDOO+8gJSUFOp2OdRyr9Msvv0ClUqFv376so9i1qKgoBAcH0zc+EVEhM/D888/D09MTX3zxBesoVikjIwPR0dG0shtjHMdhwYIF2LVrFy5evMg6jk2gM5oBjuOwaNEifPHFF/jf//7HOo5V0ev1NFwhIb6+voiNjUVycjK0Wi3rOFaPCpmR9u3bY8aMGUhJSYFer2cdx2rk5eXBy8sLISEhrKOQ+8aOHQtfX19s3bqVdRSrR4XM0IsvvgiZTIadO3eyjmI1GoYriHQ0fOP7xz/+gYKCAtZxrBoVMkMymQwJCQn429/+hhs3brCOI3n19fXIzs6mQpaggIAAzJw5E4sXL6ab1W1AhcxY586dMWXKFKSlpYHnedZxJO348eMIDQ2Fv78/6yikCePGjYOrqyu2b9/OOorVokKWgJiYGFRWVuKf//wn6yiSlpGRQY9KSxjHcYiPj8fWrVtRVFTEOo5VokKWAAcHByQmJuKDDz7AnTt3WMeRJJVKhdzcXERGRrKOQprRoUMHTJ8+nW5WtxIVskR069YNEyZMwLJly2joogmHDh3CwIED4ebmxjoKacGECRMAAF9//TXjJNaHCllCXn/9ddy8eRMHDhxgHUVyaLjCeshkMiQlJWHz5s10s9pEVMgS4ujoiKSkJKxduxalpaWs40hGcXExCgoKEBERwToKMVJwcDCmTJmC1NRU+sZnAipkienVqxfGjh2L1atXs44iGZmZmRg5ciQcHR1ZRyEmiImJQU1NDXbv3s06itWgQpagN998E/n5+Th69CjrKMzxPE+PSlspBwcHLF68GBs3bsTt27dZx7EKVMgSpFQqER8fjxUrVkClUrGOw9Tly5ehVqvRp08f1lFIKzz22GOYNGkSzbM3EhWyRPXv3x/Dhg3DunXrWEdhKj09HdHR0eA4jnUU0kpTpkxBSUkJ9u/fzzqK5FEhS9g777yD3NxcfP/996yjMKHX65GZmUmzK6ycXC5HUlIS1q9fj5KSEtZxJI0KWcJcXFywaNEiLF26FDU1NazjWNypU6fg6+uLrl27so5C2ig0NBTjx4+nefYtoEKWuIEDByIsLAwffPAB6ygWRzfzbMvUqVNx7do1ZGVlsY4iWVTIVuAvf/kLjhw5gry8PNZRLEatVuPo0aN49tlnWUchIlEoFEhMTMTq1atRVlbGOo4kUSFbAQ8PD8yfPx+pqamoq6tjHccijh07hl69esHX15d1FCKi3r17Y+zYsVi1ahXrKJJEhWwlhg8fjtDQUGzatIl1FIvIzMyk4Qob1TDP/siRI6yjSA4VshWZN28e9u3bh/Pnz7OOYlbl5eU4c+YMhg8fzjoKMQOlUonExESsXLnS7ufZP4oK2Yr4+PjgL3/5C5KTk6HRaFjHMZusrCwMGjQILi4urKMQM+nbty8iIyOxZs0a1lEkhQrZykRHR6N9+/b4/PPPWUcxG1rZzT7MmjULeXl5OHHiBOsokkGFbGU4jsP777+PnTt34pdffmEdR3Q3btzAtWvXMGDAANZRiJm5uLggPj4eS5cuRVVVFes4kkCFbIX8/f0xa9YspKSk2NyGkhkZGYiKioJcLmcdhVhAeHg4Bg0ahPXr17OOIglUyFbqhRdesLkNJRtWdqPhCvvy7rvvIicnB7m5uayjMEeFbKUe3FDy6tWrrOOI4sKFC9DpdOjduzfrKMSC3NzcsGjRIixZssQulwh4EBWyFevQoQOmTZtmMxtKNjwqTSu72Z+IiAj0798fH374IesoTFEhW7mXXnoJer0e33zzDesobaLT6XDgwAFER0ezjkIYee+995CdnW1XSwQ8igrZyslkMiQmJmLTpk24efMm6zitlpubi6CgIAQHB7OOQhjx8PBAXFwcUlNToVarWcdhggrZBnTp0gV/+tOfrHpXBlrZjQDAsGHD0KNHD7tZIuBRVMg2YvLkySgvL8fevXtZRzFZbW0tjh07hqioKNZRiATMmzcP+/fvx88//8w6isVRIduIhl0ZNmzYgLt377KOY5LvvvsOffr0gY+PD+soRAK8vb0xd+5cpKSkoL6+nnUci6JCtiHdu3fHH//4Ryxfvtyqhi7S09NpuII8JCoqCsHBwfjkk09YR7EoKmQbY227MpSWluLs2bMYOnQo6yhEQjiOw4IFC7B7925cvHiRdRyLoUK2MQqFAgkJCVazK8PBgwcxZMgQODs7s45CJMbX1xezZ89GcnIytFot6zgWQYVsg5544glER0dj9erVrKO0iB6VJs0ZM2YMfH19sWXLFtZRLIIK2UbNnDkT586dw7Fjx1hHMejq1asoLi5GeHg46yhEojiOw6JFi/Dll1/iypUrrOOYHRWyjXJyckJCQgKWL1+OyspK1nGalJGRgejoaDg4OLCOQiQsICAAM2fORHJyss2tbvgoKmQb9tRTT2Hw4MGSXNqwYWU3elSaGGPcuHE2t7phU6iQbVxsbCy+//57yS1t+PPPP8PBwQE9e/ZkHYVYAY7jkJCQgK1bt6KoqIh1HLOhQrZxrq6uklzakFZ2I6Zq3749pk+fbjOrGzaFCtkOREREoG/fvti4cSPrKAAArVaLrKwsGq4gJpswYQIAYOfOnYyTmAcVsp2YM2cOsrKy8N///pd1FJw8eRKdOnVChw4dWEchVkYmkyEpKQl/+9vfcOPGDdZxREeFbCc8PT0RFxcnifUB6FFp0hbBwcF47bXXkJqaalVLBBiDCtmOREZGIiQkBJs3b2aWoaamBif/IE+WAAALo0lEQVROnMDIkSOZZSDWLyYmBrW1tdi9ezfrKKKiQrYzcXFx+Ne//oULFy4w+fwjR47gqaeegpeXF5PPJ7ahYehi48aNuHXrFus4oqFCtjPt2rXD7NmzkZKSAo1GY/HPT09Pp0eliSgee+wxTJo0CUuXLrWZoQsqZDs0evRo+Pn5YevWrRb93JKSEpw/fx5Dhgyx6OcS2zVlyhSUlJRg//79rKOIggrZDj24PkBBQYHFPvfgwYMYNmwYlEqlxT6T2Da5XI7Fixdj/fr1VrcxQ1OokO1UQEAA3nrrLSQnJ1tskj0NVxBz6N69O8aPH49ly5ZZ/dAFFbIdGzduHJycnLBjxw6zf1ZhYSHu3buHsLAws38WsT9Tp07F9evXrWZjBkOokO2YTCZDQkICPv/8c1y7ds2sn5WRkYFRo0ZBJqNTjohPoVAgKSnJajZmMIT+ddi5jh074vXXX0dqaqrZhi70ej0yMzPpYRBiVr/73e/w3HPPYeXKlayjtBoVMsGkSZNQX1+PXbt2meX4Z8+ehZOTE7p162aW4xPSYMaMGbh48SKys7NZR2kVKmQCmUyGxMREfPTRR2aZZN9wM49WdiPmplQqkZiYiJUrV0KlUrGOYzIqZAJAmGT/yiuviD7JXqPR4PDhw7SyG7GYvn37YuTIkVizZg3rKCajQia/aphkn56eLtoxc3JyEBISgqCgINGOSUhLZs2ahby8PBw/fpx1FJNQIZNfyeVyJCYmYt26dbh3754ox6S5x4QFZ2dnxMfHY+nSpaiqqmIdx2hUyOQhPXr0wAsvvIAVK1a0+VhVVVU4efIkRowYIUIyQkwTHh4u2T0lDaFCJo288cYbKCgowOHDh9t0nOzsbISHh8PDw0OkZISYJjY2Fjk5OZLbU9IQKmTSiEKh+PVOdUVFRauPQ8MVhDWp7ilpCBUyaVKfPn3w7LPPtvpO9Z07d3Dp0iUMHjxY5GSEmCYiIgL9+/fHBx98wDpKi6iQiUEzZ87Ejz/+iBMnTpj83szMTERGRkKhUJghGSGmee+993DkyBHk5eWxjtIsKmRiUMOd6rS0tGbvVOt0wKNPXWdkZNCj0kQyPDw8sGDBAqSmpkKtVjf9IpUKuHEDuHkTYDS8IWfyqcRqhIeHIyIiAhs2bMDChQsBAJcuAXv3Ajk5wPnzQG2t8FpXV6BXL6Bbt7soLnZB3759GSYn5GFDhw7FgQMH8PHHH2P27NmAVgscOQJ88w1w5gxQWgrI71eiVgt06AA88wzw8stA//6ABZ405Ux5KissLIw/deqUGeMQKaqqqsLEiRPxyiur8e23vfDTT8IVsUIBODk9fA6r1cDduxWQyXgMG+aFhASgTx+2+QlpUFZWhpcnTsTm6Gh03rFDuCoGAGdnwNHxt9LleaCuTrjakMmA4GBgyRJg4MBWfS7Hcad5nm9x7VkasiAtcnR0Q/v2GzFjhjd++kkPT0/Axwdwc/utjAHhv93ceGi1dxAQ4IQffwTGjwdWrgTq69nlJ6SBt0aDLTodlElJ0KvVgKen8KNQPHwFzHHC1Ya3N+DhIQxlTJ4MLFwoXHWYCRUyaVZ1tXAeHjnSBW5uPOrq7jT7za2mpgZyuQOcnJzg6SmU9scfA1On/ja0QQgTN24AL7yAwKIiaFxdUWLsE3wcJ5zI7u7Al18K/yDMNMZMhUwM0mqBadOA06cBLy+gfXt/qFQq1NYaPhkrKioeehBELhcuMk6cAGbObHzzjxCLUKmAl14C7t4F5+2NwKAglJeVodaUq10HB+FkPn0amDHDLCczFTIx6LPPgNxcoYw5DnBwkCMgIBDFxcXg+cYnI8/rUVlZCU9Pz4d+z3HCeXzsGLB9u6XSE/KA5GSguFgYngDgKJfDPyAAxTdvQm/K6oYNJ/P335vlZKZCJk0qKADWrBG+qT04ROHh4Q6FQoGSkpJG76mqqoKTkxPkcsdGf8ZxwiyMtDTg+nVzJifkETk5wJ49v5ZxA09PT8gdHU1fSIvjABcX4WS+eVPEoFTIxIDNmwGNRrjx/DAOgYGBKCsrbzSfUxiu8Hz0Db9SKIRjfvaZ+HkJMWj9emG44ZH9HDkAQYGBKC0thbquzrRjNpzMIl8lUyGTRlQq4YLC0JpAcrkjAgL8UVx8E1ptBa5fn4v8/EEoKZkMoPmn+tzcgK++YjbvntibwkJhzNfdvck/dnR0hL+/Pz4pLMTkwkIMzM/HYmOvel1dgS++EKbHiYQKmTRy8qQwDVPezGNDnp6ecHCQo7AwCRznCH//nfDyeh+3b69EXV2Bwfc5OgpP9tF0dmIR338vnMzNTA3y8vJCO7kcLzo64v95Gv6G14hCIcznPHdOhKACKmTSyE8/GTNvmENAgCeqqo7Cw+N1VFZq0K5dBNzdh6KiYn+z7xT5HCbEsNzcFp+w4wD8sXNn9Kipgaupx9dogPz81qZrhAqZNJKXJ/yff0t4/hYcHZW4e1eGuro6uLm5Qqns1uwVMiBceUt8jRdiK86dA5TKFl+mcHSEn58fKioqYPKOkj/91KpoTaG1LEgjVVXCPZCW6PU1UCg8wXEctFotioqKUFdXDY3mFnS6QhiaTaTRKHHwYBFeffWjh35v6DF+sX5vCH2u7X7uytOn4arRQCMz7tqzvr7etPnFMpmoN0SokEkjcjkMlumDZDIX6PXV6Nq1K2prhRkX5eUKqNW+CAgINPi+6moZnnjCBQsWLDA6E2fga6dYv6fPtc3P9frjH8HdvSs8Bm0E/5IS3DOlkHneqCtwY1Ehk0a6dhWGFFxbGFBTKIIB6FBffw3OzsEAgLKy/8HVtTucnZ0Nvq+2FnjqKSV69fISMTUhTQgNBW7fbv4O9QMcZDLTrpD1eqB791aGa4zGkEkjYWGNpmw2SSZzhrt7JO7e/Rh6fS1qav6Lysrv4Ok5ttn3yeVAv34ihSWkOQMGCGsAtEDH86jX66EHoAdQr9dDZ8zXRIVCWHNWJHSFTBppKMsWZgsBAAIDF+DmzWRcuhQFBwdPBAa+D6XyMYOv53nhh5ZKJhbx9NPCDZEWTuZPS0qw+YGnT9MrKjDd1xfT/fwMH1urFY7bu7docamQSSPduws/V64ID3I0x8HBA506Gb/vXmUl8OSTQOfObQxJiDH69AE6dRLWsWhmDG66n1/z5duUykpg3DjDT1C1Ag1ZkCa99ZYwxdLEG+nN4nlhyG3GDPGOSUizOA6YNUuY/C7myazTCeN6r78u3jFBhUwMGDNGGLqoqBDvmBUVwpDeyJHiHZOQFo0bJ/7JrFIJ6yKLOH4MUCETA2QyYO1aYUaPGNMsq6uFXXJWrbLI1mSE/ObBk7m6uu3Hq6gQhkHmzm37sR5BhUwMCg4GPvlE+HbWlvO4YWOGrVuBoCBxshFikuBgYMsW4b+N3SnkUTwPlJcD7doBO3YIS3CKjAqZNGvgQGFBK6USKCszfYpmeblwL2XHDmHjXkKYefppYQsmT0/hxNTpjH+vRiO8p2dPYPduoH17s0SkQiYtCg8HsrOB6GjhxnJZWfNTO7Va4TWVlcBzzwnvpXnHRBKefBI4fBiYOPG3k7murukbfjwvjNeVlwuvWbBAWJfWjF/zOFOeCw8LC+NP0bqJdu38eWDbNuG8bJhT3FDOcrkwPsxxwIsvCvc8QkPZ5iXEoBs3gH/8A9i5E7h3T3jI48E+1GiEoY4//xn4wx8a7ThiCo7jTvM8H9bi66iQSWtotcLa3/n5wgWETCbsvdejB9Cli3GLExEiGWVlwKVLwuwJjgN8fISTWaRxYmMLmR4MIa0ilwPdugk/hFg9b2/gmWdYp6AxZEIIkQoqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQiT5iFzHHcXQJH54hBCiE3qzPN8iwsum1TIhBBCzIeGLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCL+PyxUNcsEcERnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -455,7 +435,7 @@ "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -508,22 +488,20 @@ "output_type": "stream", "text": [ "energy: -1.5\n", - "time: 34.49035096168518\n", + "time: 10.28870177268982\n", "maxcut objective: -4.0\n", - "solution: [1 0 1 0]\n", + "solution: [0 1 0 1]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XlcVXX+x/HXl00WEVBxBxW3cEUETMscoWnUcoPS9pppxpmmpqamdWqapmkaa9qctslWm5rqV2OW6UxTou3CRdyXRFRcAFHZZOdyv78/Dp7AWK5yuecCn+fj4SMuHM75QHre97uc71dprRFCCNH1eFldgBBCCGtIAAghRBclASCEEF2UBIAQQnRREgBCCNFFSQAIIUQXJQEghBBdlASAEEJ0URIAQgjRRflYXUBzevfurYcMGWJ1GUII0aFs3LjxuNY63JljPTYAhgwZQkZGhtVlCCFEh6KUynH2WI8NAJfTGvLz4cQJcDggOBgiI8Hb2+rKhBDCEp07AOx2+OILeOMN2LgRqqqMG75SRggAjBoFixbB3LlGKAghRBehPHU10Li4OH3WXUBaw//+B/ffD8XFxucCA8HXt/FxdXVGKNjt4OMDv/oV3Hgj+Pm1rXghhLCIUmqj1jrOmWM73yygsjK46Sb49a+hvBxCQow/p9/8wWgNBAUZX/fzg7//HS65BPbtc3/dQgjhZp0rAEpLje6cTz4xbuqBgc5/r68vhIbC/v2wYAHs3Nl+dQohhAfoPAFQVwc33AC7dxs3cq+z+NGUMoKjqgquvNIYNBZCiE6q8wTAa69BZqZx81eqbecKDja6ku680xhPEEKITqhzBMCRI/C3vxn9+W29+Z8SEgLffgurV7vmfEII4WE6RwC8+aYxk6eV2Tv/V1jINfv3M2X3bh7MzW35nEoZM4OeeUZaAUKITqnjB0BNjREAQUGtHtrbx4cbevdmbkiIc+cOCjJmBG3b1sYihRDC87gkAJRSryqlCpRS25v5ulJK/V0ptVcptVUpFeuK6wLGoG9trVNz9xN79OBHwcGEOPv0r1LG4PKGDW0sUgghPI+rWgCvAzNb+PosYET9n8XACy66rjFd02532el+wMcH0tLa7/xCCGERlwSA1voLoLCFQ+YBb2jDBiBUKdXfFddmz57vl3VoD926GdcQQohOxl1jAAOBQw1eH67/XCNKqcVKqQylVMaxY8ecO3NFxRnN/Km12zlaUEBpaSnFxcXU1Na2/A1KGeMMQgjRyXjUYnBa62XAMjDWAnLqmwICzmiWjpeXF1prfHx8KCsvp6CgAC8vL4KCgggKCiIwKAifhmMEWje9jIQQQnRw7gqAI0BEg9eD6j/XdiNHOt0CqNOaOqBbQAAVQJ/+/fFSCntNDeXl5RSXlJCbl4efnx9BgYEEBQURUFeHd5xT6yoJIUSH4q4A+Ai4WSn1DjAZKNFa57nkzNHRTr9Df+X4cZYdP47D4aC2tpb1333H4t69WRwejn+3bvTq2ROtNZVVVZSXl3P8xAn8Tp5k7Z49VC5bRkJCAmPHjsXHx6MaTkIIcVZcshy0Uupt4EdAb+Ao8EfAF0Br/Q+llAKexZgpVAH8VGvd4lrPTi8HXV0NkyYZK3s6GQQa2L9vH3379iWopecHtMZRXMy2Bx5gfXEx6enpHDp0iJiYGBISEkhISGD48OF4nc26Q0II0Q7OZDlol7yV1Vpf0crXNXCTK671A926wVVXwcsvQ1iYU9+igNCwMIqKi1sOgIoKvIYOZcK11zKhvpuppKSEjIwM0tPTWbFiBaWlpcTHxxMfH09CQgIDBw5EuWo5CiGEaEedY0OYQ4fgwgvB39/pVkCdw8HerCyGDRvWdJeO1lBSAk88AfPmNXue/Px80tPTsdlspKen4+fnZ7YO4uPj6dmzp3M/gxBCuMCZtAA6RwAAvPACPP74Ga0Gmpubi1+3bvTu1euHXywuhvh4eOstp5eW1lqzf/9+Mww2btxI3759zTCYNGlSyy0OIYRoo64ZAHY7XHaZsW5PSIhTIVBRWUlubi7Dhg2j0dFlZUbX0po1MPAHjys4ra6ujl27dpkthO3btzNixAizu2jcuHH4yfaTQggX6poBAMa79kWLYO9ep1oCGti3bx/9+vUj6NTuYSUlRlfSv/4F48adXfHNqK6uZsuWLaSnp5Oens6BAwcYN26c2WU0atQoGVAWQrRJ1w0AMLaFvP12WL/euJH7+7d4eGFRERUVFQzq2xdOnoTISHjxReP5gnZ28uRJNm7caLYQTpw4QVxcnNlCiIyMlAFlIcQZ6doBAMYA7urV8Ic/GN05Shn7A58+2OtwUFdeTt7Bg/QfOBDvX/4SbrnF6P6xQEFBgTnDKD09HaDRgHJ4eLgldQkhOg4JgFNqaiA1FZYvh82bjaWdTy3z4HAYr4cN4wN/f2pmz2bRL3/Z9sJdRGvNoUOHSEtLw2azkZGRQc+ePc1AmDRpEsHBwVaXKYTwMBIATXE44PBhOHHC+Dg4GIYMAT8/tmzZwp/+9Cf+/e9/e2yXi8Ph4LvvvjNnGG3dupUhQ4aYgTBhwgS6WdRyEUJ4DgmAM6S1ZtGiRdx9991MmjTJLddsq5qaGrZt22aOH2RlZTFmzBgzEKKjo/F2duMbIUSnIQFwFt555x22bdvGX/7yF7dd05XKy8vJzMw0xw+OHj1KbGysGQhDhw712NaNEMJ1JADOQmlpKXPnzmXlypWEhoa67brtpbCw0OwuSk9Pp6amxhxMTkhIoF+/flaXKIRoBxIAZ+mBBx5g1KhRXHXVVW69bnvTWnPkyBGzu8hmsxEcHGy2DuLi4ggJCbG6TCGEC0gAnKXNmzfz5z//mffff79Td5c4HA727t1rthA2bdpERESE2UKYOHEiAQEBVpcphDgLEgBnSWvNwoULuffee4mNjXXrta1UW1vLjh07zBbC7t27iY6ONruLxowZI3sgCNFBSAC0wb/+9S927drFn//8Z7df21NUVFSwefNmc/zgyJEjxMTEMHnyZOLj4xk2bJgsWSGEh5IAaIOSkhLmzZvHhx9+KP3i9YqLi80nlG02G2VlZT/YA0EI4RkkANroD3/4A9HR0Vx55ZWWXN/T5eXlNZph5O/v32hAWfZAEMI6EgBttGnTJv7yl7/w3nvvderBYFc4tQfCqSUrMjMz6devnxkIsbGxBJ5aaVUI0e4kANpIa81ll13Gfffdx8SJEy2poaOqq6tj586dZgthx44djBgxwgyEsWPHyh4IQrQjCQAX+Ne//sXu3bt56KGHLKuhM6iqqjL3QLDZbBw4cIDx48ebgTBy5EgZUBbChSQAXODUYPBHH31Ejx49LKujsyktLTX3QEhPT6eoqIi4uDgzECIiIqTbTYg2kABwkfvvv58xY8ZwxRVXWFpHZ1ZQUGB2F9lsNpRSjZas6N27t9UlCtGhSAC4SGZmJkuWLOHdd9+Vd6VuoLUmJyfHDIONGzfSq1evRgPKsgeCEC2TAHARrTUpKSn88Y9/ZMKECZbW0hU5HA52796NzWYjLS2N7du3M3ToULOFEBMTIwPKQpxGAsCF3nzzTbKysvjTn/5kdSldXk1NDVu3bjVbCHv37mXcuHFmd1F0dLQMKIsuTwLAhYqLi5k/f74MBnugsrKyRnsgHDt2jNjYWHPJiiFDhkjXnehyJABc7Pe//z0TJkxg0aJFVpciWnDixIlGTyjb7fZGA8p9+/a1ukQh2p0EgItt3LiRRx99VAaDOxCtNYcPH240wygkJKTRkhXSohOd0ZkEgKzx64TY2Fjsdjvbtm1j/PjxVpcjnKCUIiIigoiICJKTk809ENLS0li5ciUPPvggkZGRZiDExMTg7+9vddlCuJW0AJz0z3/+k+zsbB588EGrSxEuUFtby/bt280WwnfffUd0dLQZCKNHj5Y9EESHJF1A7aCoqIgFCxbIYHAnVVFRwaZNm8zuoiNHjjBx4kQzEIYNGybdf6JDkC6gdhAWFsbUqVP573//y8KFC60uR7hYYGAg5513Hueddx5gBH5GRgY2m413332XysrKRktWDBgwwOKKhWg7aQGcAZvNxhNPPMHbb78t7wa7mNzc3EYDygEBAeYMo/j4eMLCwqwuUQhAuoDajcPhICUlhYceeohx48ZZXY6wiNaa7OxsMwwyMzMZMGAA8fHxTJ48mYkTJ8oeCMIyEgDt6I033uDAgQM88MADVpciPITdbjf3QEhLS2PXrl2MHDnSbCGMGzcOX19fq8sUXYQEQDsqLCwkJSWFVatW0b17d6vLER6oqqqKzZs3my2EnJwcYmJizAfSRowYIUtWiHYjAdDO7r33XiZOnCiDwcIppaWlZGRkmE8ol5SUEBcXZy5ZMWjQIBlTEi4jAdDO0tPTefLJJ2UwWJyVgoICMwxsNhve3t6Nlqzo1auX1SWKDsztAaCUmgksBbyBl7XWS077+vXA34Aj9Z96Vmv9ckvn9OQAcDgcJCcn8/DDDzN27FiryxEdmNaaAwcOmDOMNm7cSHh4eKM9EKSrUZwJtwaAUsob2AP8GDgM2IArtNY7GxxzPRCntb7Z2fN6cgAALF++nJycHBkMFi51ag+EtLQ0bDYb27dvJyoqygyE8ePHyx4IokXuDoApwINa65/Uv74XQGv91wbHXE8nC4DCwkKSk5P5+OOP5R2aaDc1NTVs2bLFbCHs27ePsWPHmoFwzjnnyICyaMTdAXApMFNr/fP619cAkxve7OsD4K/AMYzWwm1a60NNnGsxsBggMjJyUk5OTptqa29333038fHxXHrppVaXIrqIkydPmnsg2Gw2jh8/TmxsrBkIgwcPlnGpLs4TA6AXUKa1rlZK/RJYpLVObOm8nt4CAEhLS2Pp0qW89dZb8o9OWOL48eON9kBwOBzmYHJCQgJ9+vSxukThZu5eC+gIENHg9SC+H+wFQGt9osHLl4HHXHBdy8XHx1NWVsauXbsYPXq01eWILqh3797MmjWLWbNmobXm0KFD2Gw2vvzyS5566ilCQ0PNGUayB4I4nStaAD4Y3TpJGDd+G3Cl1npHg2P6a63z6j9eANyttT63pfN2hBYAwGuvvcaRI0e4//77rS5FiEYcDgd79uwxu4u2bNnC4MGDzSUrJkyY0CH2QKipgb17Yf9+qK4GHx+IiIBRo0BW3PghK6aBzgaexpgG+qrW+i9KqYeADK31R0qpvwJzATtQCNyotd7d0jk7SgCcOHGCSy+9lI8//pigoCCryxGiWbW1tWzbts1csiIrK4vRo0ebLYQxY8bg7e1tdZkA1NXBF1/Ayy9DWppx09caHA7w8gKloLYWoqNh8WK46CLoAFnmFvIgmJvdddddTJ48mZSUFKtLEcJpFRUVjQaU8/LyiI2NNccQoqKiLBnb2rIFbr0VjtR3JAcHGzf902kN5eVGWAQHw+OPQ2KLI4tdgwSAm23YsIG///3vMhgsOrTCwsJGS1ZUVVWZ3UXx8fH079+/Xa+vNTz9NDz3nHHDP5PhiooKo3to3jxYsgS68qMSEgBu5nA4mD9/PkuWLJHBYNFp5ObmmmGQkZFBYGBgoz0QQkNDXXYtreGPf4S33jLezZ/NbpwOB5SUwHnnGV1HXTUEJAAs8Oqrr5KXl8d9991ndSlCuJzD4SA7O9uccrpp0yYGDhxoTjeNiYlp0x4Ir7wCjzwCISFNd/c4S2soLobLLjNaAl2RBIAFjh8/zmWXXcbq1atlMxDR6Z3aA+HUkhW7du1i1KhRZiCMGTPG6T0QsrNh9mxjENcV2yacagksXw7nn9/283U0EgAWufPOO5kyZQrJyclWlyKEW1VWVrJ582azhXDw4EFiYmLMQBg+fHizS1YsWgQbN4ILe5QoLzfGEL7++uy6kzoy2RTeIgsWLOCFF16QABBdTkBAAFOmTGHKlCkAlJSUmAPKK1asoLS0lLi4ODMQBg4ciFKKrCzj5h8S0vo16upKyct7iLKyDfj4hBIefjMhITObPDYoCAoL4fPPISnJlT9p5yIB4ELnnnsuf/3rX9m1axfR0dFWlyOEZUJCQkhKSiKp/u6bn59vtg5efPFF/Pz8iI+PJyvrcuz2KIznSVuWn78EpXwZOfJ/VFXt4dChW/H3H0m3blFNHq+UMRgsAdA8CQAX8vLyYv78+XzwwQcSAEI00K9fP+bMmcOcOXPQWrN//35sNhsvvwwnThyitNRBUFAQQUFBBAYG4uXV+IE0h6OSkydTiYr6P7y8AgkMjCE4eDolJavp0+c3TV4zKAgyM43nBDzk+TaPI+vIutjcuXP57LPPqKiosLoUITySUoqoqCjmz1+Er+9IRo0aQv/+A/D29qGwsJCsrCwOHNjPsWMFVFSUo7WDmpqDgDd+fpHmebp1G0F19b5mr3Pqpn/gQPv+PB2ZtABcLDw8nNjYWD755BMWLFhgdTlCeKyjR40BWi8vRUBAAAEBAUBvtHZQUVFJeXk5R48WUFNTjY9PNnV1flRVVeLvHwCAl1d3HI7yFq/h5QW5uTBsmBt+oA5IWgDtIDk5mQ8++MDqMoTwaHa70U9/OqW8CAoKok+fPgwdOoSIiAi8vAKpri5m//79VFVVAeBwlOPl1fL6W1obawaJpkkAtINzzz2XwsJCdu9ucb07Ibq0gACjf/6HNJWVFRw9epS9e/eSm5tHQMBQ/P19CQ2tori4CIDq6j3NDgCfopRxHdE0CYB20HAwWAjRtL59jX56IwQ0FRXl5Ofnk5WVRV5eHl5eikGDIhg+fBj9+g0hJORC7PZ3KSkpoKwsk5MnPyck5OJmz3/q3b90/zRPAqCdzJ07l08//VQGg4VoRl1dLf36Hefw4WPs2bOHo0eP4uPjw+DBg4mKGkZ4eJ/6/QqMfqJ+/e4B7FRX/5xDh+6hX797W2wB2O3QvTuEh7vn5+mIZBC4nfTp04eYmBg+/fRT5s2bZ3U5QniE6upqvv32W1JTU/nqq6+oq7sSL69FDB06FF/flldv8/buQUTEE4SFneTYseOEhAxt8fiyMli4sOlxBmGQAGhHycnJvPTSSxIAokurqKjgq6++Yu3atWzYsIHo6GgSExP5zW9+g69vOJMnn9lNunv37uTn5zeaEXQ6rY1zXnedi36ITkoCoB1NnTqVRx55hD179jBy5EiryxHCbUpLS/n8889JTU1l48aNxMTEkJSUxL333vuDZaSvuspYuC0szNmzK0JDQykqKqZ//6YDoKQEzj0XzjmnbT9HZyeLwbWzZcuWUVRUxN133211KUK0q8LCQtavX8/atWvZvn07CQkJzJgxg2nTphEcHNzs91VUGMs1FBUZffbOsNtryc7ex4gRw3/w1HB1tdH/v3YtDBjQlp+oY5LVQD1IQUEBl19+OatXr65/0EWIzuPo0aOkpqaSmppKVlYWU6dOJSkpialTp57R3/fMTLjiCuPBMGe/7fDhQ3Tv3p3Q0O+bDrW1Rt//U0/B3Lln+tN0DrIaqAdpOBg8t6v+jRSdyqFDh0hNTWXt2rUcPnyY6dOnc+211zJ58mT8znIbrthYeOkl+MUv4ORJY1ew1oSGhnHsWIEZAJWVUFUFDz7YdW/+Z0oCwA0WLFjAK6+8IgEgOiStNfv27TPf6Z84cYIZM2Zw0003MWnSJHxctOD+BRfAe+/BzTcbG8J3797yBjHduweRn19HeXkltbUBdO8OzzwjG8OfCekCcoO6ujrmzJnD008/LYPBokPQWrN7927znX51dTWJiYkkJiYyYcKEZjd3cYWqKuNG/vrrUFNjzOY5tVuYUsYMH7vdOK6oqASHw85Pf9qLe++Fnj3brawOQ8YAPNCyZcsoLi7mrrvusroUIZrkcDjYtm0ba9euZd26dfj4+JCYmEhSUhLR0dEoN0+or6iANWvgv/+FLVvgxAljcTeHw+giGjcOJk8+ybvvXsUnn7xNUFDL6wJ1FRIAHig/P58rr7ySNWvW1D/dKIT16urqyMzMJDU1lXXr1pkbucyYMYPhw4e7/abfkooKo0Xg6wuBgd8/O3DXXXeRkJDApZdeam2BHkIGgT1Qv379GD9+PJ9++ilz5syxuhzRhdXU1GCz2Vi7di1ffPEF/fv3JzExkWXLlhEZGdn6CSwSGGj8OV1KSgpLly4lJSXFowKrI5AAcKPk5GRef/11CQDhdlVVVXzzzTekpqby9ddfExUVRVJSEr/4xS/o37+/1eW1SXx8POXl5ezYsYOxY8daXU6HIgHgRueddx5Llixh7969DB8+3OpyRCdXXl5uLsGQlpbGmDFjSExM5Le//S29e/e2ujyX8fLyIjk5mRUrVkgAnCEZA3CzF198kZKSEhkMFu2ipKTEXIIhMzOTiRMnkpSUxAUXXPCDJRg6k8LCQpKTk1m1alWLTx13BTIG4MHmzZvHlVdeyS233CKDwcIlTpw4wbp160hNTWXHjh1MnjyZmTNn8vDDD9Pd2bUVOriePXty7rnn8p///IeFCxdaXU6HIQHgZv369WPcuHF89tlnXHLJJVaXIzqovLw886afnZ3Neeedx6WXXsoTTzzRZZccSU5O5oknnuCyyy6TwWAnSQBYIDk5meXLl0sAiDNy8OBB82ncI0eOMH36dK6//noSEhLOegmGziQuLo6amhq2bdvG+PHjrS6nQ5AAsMD555/PkiVLyM7OZpjsVyeaobUmOzvbfBq3uLiYGTNmcPPNNzNp0iS8vb1bP0kX4uXlxYIFC/j3v/8tAeAkCQALeHt7M3fuXD744APuuOMOq8sRHkRrza5du8x3+jU1NSQmJnLvvfcyfvz4dl2CoTOYM2cOCxYsoLS0lB49elhdjseTALDIvHnzuPrqq/nNb35Dt27drC5HWMjhcLB161bzpu/n50diYiIPP/ywJUswdGRhYWFMnTqV1atXc8UVV1hdjseTALDIgAEDGDt2LGvXrmX27NlWlyPczG63k5mZydq1a1m/fj1hYWEkJiaydOlSoqKi5KbfBikpKSxZsoTLL79cfo+tkACw0IIFC3jrrbckALqImpoa0tLSWLduHZ9//jkDBw4kKSmJl156yaOXYOhoYmNjcTgcbNmyhZiYGKvL8WgSABaaNm0ajz76KPv27SMqKsrqckQ7qKys5Ntvv2Xt2rV88803DB8+nBkzZrB48WL69etndXmdklLKfDJYAqBlLgkApdRMYCngDbystV5y2te7AW8Ak4ATwCKt9QFXXLsj8/HxMQeDf/e731ldjnCRsrIyvvzyS1JTU0lLS2Ps2LEkJSVx++2306tXL6vL6xIuueQSXnrpJUpKSggJCbG6HI/V5ikFSilv4DlgFjAauEIpNfq0w24AirTWw4GngEfbet3OYv78+axZs4bq6mqrSxFtUFxczEcffcStt97K7Nmz+d///se0adNYtWoVzz//PCkpKXLzd6OQkBCmTZvG6tWrrS7Fo7miBZAA7NVa7wNQSr0DzAN2NjhmHvBg/cfvA88qpZT21IWI3GjAgAGMHj1aBoM7oOPHj5tP4+7cuZPJkycze/ZsHnnkEdmcxAMkJyfz8MMPc8UVV8hgcDNcEQADgUMNXh8GJjd3jNbarpQqAXoBx11w/Q5vwYIFvP322xIAHUBubi7r1q1j7dq17N+/n/PPP5+FCxcyZcoUWdvJw8TExODl5cWmTZuIjY21uhyP5FGDwEqpxcBioEvNirjgggt49NFH2b9/P0OHDrW6HHGanJwcc45+Xl4e06dP54YbbiA+Pl6WYPBgpwaD//3vf0sANMMVAXAEiGjwelD955o65rBSygcIwRgMbkRrvQxYBsZy0C6orUNoOBh8++23W11Ol6e1Zu/eveYSDKWlpcyYMYNbbrmF2NhYWYKhA7n44ot58cUXKS4u7tTLYZ8tVwSADRihlBqKcaO/HLjytGM+Aq4DvgUuBVKl/7+x+fPnc91113HzzTfLu0oLaK3ZuXOnuSG63W4nMTGR+++/n7Fjx8oSDB1Ujx49mD59OqtWreKaa66xuhyP0+YAqO/Tvxn4BGMa6Kta6x1KqYeADK31R8ArwD+VUnuBQoyQEA0MHDiQUaNGkZqaysyZM60up0twOBxs3rzZHMj19/cnKSmJRx55hHPOOUcGDjuJlJQUHnzwQa6++mr5f3oal4wBaK3XAGtO+9wDDT6uAi5zxbU6s+TkZN59910JgHZkt9vZuHGjuQRDr169SExM5JlnnmHo0KFyg+iExo0bh6+vLxkZGcTHx1tdjkfxqEHgrm769Ok8+uijHDhwgCFDhlhdTqdRU1PDhg0bSE1N5YsvviAiIoKkpCReeeUVIiIiWj+B6NCUUqSkpLBixQoJgNNIAHiQhoPBt912m9XldGgVFRV88803pKam8s033zBy5EgSExO58cYb6du3r9XlCTebNWsWzz//PIWFhfTs2dPqcjyGBICHmT9/Ptdffz033XSTDAafoZMnT5pLMKSnpzNu3DiSkpK444475B99FxccHExiYiKrVq3iuuuus7ocjyEB4GEGDRrEyJEjWbduHT/5yU+sLsfjFRUV8fnnn5OamsrmzZuJi4sjMTGRBx54QDYEEY0kJydz3333cc0118isrnoSAB4oOTmZ9957TwKgGQUFBaxfv57U1FR27drFlClTuOSSS1iyZAmBgYFWlyc81JgxYwgMDMRmszF58umLFXRNEgAeaPr06Tz22GMcPHiwSz0R3ZLc3FzzadwDBw5w/vnnc/nllzNlyhTZUU04peGTwRIABgkAD+Tr68sll1zCBx98wK233mp1OZY5cOCA+TRuQUEB06dP5+c//znx8fH4+vpaXZ7ogGbNmsVzzz3HiRMnZHVWJAA81vz587nhhhu48cYbu8xgsNaarKws853+yZMnmTFjBrfddhsTJ06UJRhEm3Xv3p2kpCQ+/PBDfvazn1ldjuUkADxUZGQkw4cPZ/369Vx00UVWl9NuHA4HO3fuNN/pa61lCQbRrlJSUrjnnnu4/vrru/zfLwkAD7ZgwQI++OCDThcAp5ZgOLXuTmBgIImJiTz22GOMHDlSnsYV7So6Oprg4GDS0tKYMmWK1eVYSgLAg82YMYPHH3+8UwwG2+12bDYb69atY/369fTu3ZukpCSeffaO+a8cAAAcf0lEQVRZ2Q9ZuFXDJ4MlAITHOjUYvHLlSm655Raryzlj1dXVpKWlsXbtWr788ksiIyNJTEzk1VdfZdCgQVaXJ7qwmTNn8swzz3Ds2DHCw8OtLscyEgAebv78+fz85z/nV7/6VYcYDK6oqODrr78mNTWVb7/9lpEjR5KUlMRNN91Enz59rC5PCAACAwP58Y9/zEcffcQNN9xgdTmWkQDwcJGRkQwdOowXXthMSUkC6emwdy9UVYG3N/TvDzExcMEFMGsWBAe7v8bS0lJzCQabzcaECROYMWMGd955pyzBIDxWcnIyd9xxBz/96U+77GCw8tR9WeLi4nRGRobVZVjK4YCVK+GBB4o4fLiWnj374O8P3bqBlxdoDbW1UFkJSoGPD1x2Gdx+O7T35keFhYXmEgxbtmwhLi6OpKQkpk2bJkswiA7j2muv5Ze//CXnnXee1aW4jFJqo9Y6zpljpQXgofLy4I47YMMG8PMLoa5uL927hzbqBlLKCINTD8La7fDWW/Dxx/DEEzBjhmtrKigoMDdE/+6775g6dSpz587l0UcflSUYRId06sngzhQAZ0ICwANlZ8OiRVBcbLyTV8qL0NAQiouL6NOn+aWMfXwgLAwqKuAXv4D774frr29bLUeOHDGna+bk5DBt2jSuuuoqzj33XFmCQXR4F110EX//+98pKCjokmNUEgAeJjfXuPmXljbuxgkLC+XAgRzCw8NRquX+ysBA8PWFP/8ZgoKMbqEzsX//fvPBrGPHjvGjH/2IxYsXExcXJ0swiE4lMDCQiy66iJUrV7J48WKry3E7GQPwIA4HXHEFZGQY7+RPl5NzgJ49exIc7Fwfe02N8ec//4GhQ5s/TmvNnj17WLt2LampqVRUVDBjxgySkpKIiYnpsgNkomvYs2cPv/3tb1m1alWnWG5ExgA6qP/7P+Pm39wAblhYGEVFRU4HgJ+f0R10222wYoUxcHyKw+Fg+/bt5ro7SimSkpL44x//yJgxY+SmL7qMkSNH0qdPH77++msuuOACq8txKwkAD1FXZwzcBgQYg7tNCQ4OJj8/n5qaGqefCQgJgR07jGCZNKnOXIJh/fr1BAUFkZiYyOOPP86IESNkCQbRZSUnJ7NixQoJAGGNL7+EkhJoaQalUl706BFITs4fUGoHdXWl+PoOok+fm+nefWoz3+WgsrKam27aRWjo3fTp04ekpCSee+45hrbULyREF3LRRRfx9NNPk5+fT79+/awux20kADzEqlVGK6A1oaHBHD/enREj/oGf3wDKyr7myJF7GDr0Hfz8BgCgtYOysnJOniylrKwMX19/Dh4cznvvvc6QIQPb+ScRouPx9/dn5syZrFy5kl/96ldWl+M20tHrITZuNLp/WuPvH0pw8DXU1PRAKS+Cg6fh6zuAysodlJaWcOTIYfbs2UNhYSEBAQFERUUxdOhgQkN7UFUlN38hmpOSksKHH35InTPvxDoJCQAPYLfDwYPfP9DVmtDQMIqKiqmrq6OwcD8nT+4lN9eLkpISgoKCGD58OIMHDyYsrCc+Pt9P28zKaqcfQIhOYNiwYfTv358vv/zS6lLcRgLAA1RXGwO/zo7B9ugRTFVVJTt2bCE393569JjFqFE/IiIiktDQMLy9f9izV1dnzAgSQjTv1DLRXYUEgAfw9jaeAXCWUl5ERkYSELAcLy8/qqsXcfDgIY4dK6Ciohytf3iyU2sFCSGad+GFF7Jjxw5yc3OtLsUtJAA8QLduxhO7drtzx2utKSx8DD+/Ks455x+MGjWa8PBwtIajRwvYs2cPBw/mcOLEcaqqKgGNtzf0bX4VCSEE0K1bN2bNmsXKlSutLsUtJAA8gFIwdqyxqqcz8vP/Sk3NfiIinsLLqxtKeREUFESfPn0YOnQoI0aMICysJ7W1dnJzc/nuuz3k5x9nz54PycnJwVOf/hbCEyQnJ/Phhx9id/YdWQcmnQIe4oILwGZr/bja2jyKi1eglB9ZWT8xP9+v3+8JCZkFgJeXN8HBwQTXbw5QVlaLUmUcPLiJG298EYD4+HgSEhKIj4/vkotgCdGcqKgoIiIi+OKLL0hMTLS6nHYlawF5iPx8OP9840EwV6/CUFQEv/893HCD0X106NAh0tPTSU9PJyMjg549e5phMGnSJFnPX3R5a9asYc2aNTz77LNWl3LGzmQtIAkAD/LLX8Lata7dzKWmxtg05uuvoanNuRwOB9999x02m4309HS2bt3KkCFDzBZCTEyMLPssupyamhpmz57N8uXLGTiwYz0/IwHQQR0+DD/+sTFbxxX3XK2NPQXuvx9++lPnvqempobt27ebLYSsrCzGjBljthBGjx7dKVZMFKI1Tz75JH5+ftx8881Wl3JGJAA6sHfegfvuM7qC2nqfLS6GCRPgvffOvlupoqKCzMxMMxDy8/OJjY01WwhRUVGyiJzolA4cOMDixYtZvXp1h9oHQ5aD7sAWLTKe2H39dWOD97OZu6+1sbDcoEHw0kttG1MIDAzk/PPP5/zzzweMvYAzMjJIT0/n7bffpqqqioSEBLOF0L9//7O/mBAeZMiQIQwZMoTPP/+cCy+80Opy2oW0ADyQ1vD00/Dcc0YroH4yj1Nqa6GszJhW+uqr0KtX+9UJkJuba7YObDYbQUFBZhjEx8cT2t670wvRjj755BM+/PBDnn/+eatLcZp0AXUSmZlw663GDCEvL+jevfnlIqqrjaUefHzgd78zZvy4u6ve4XCQnZ1tDihv2rSJgQMHmi2EmJgY2TxedCg1NTVcfPHFvPrqq0RERFhdjlMkADqRmhpITYV//AO2bTN2+aqpMdb2Ucp4rbURDj/7GSxcCJ4yrd9ut7Nz506zhbBr1y5GjRplthDGjh3bofpWRde0dOlSlFLccsstVpfiFLcFgFKqJ/AuMAQ4ACzUWhc1cVwdsK3+5UGt9dzWzi0B8EMlJbB7N2Rnf/9uf8AAOOcco7/f03dxrKysZPPmzWYL4eDBg8TExJgthOHDh8tWlMLjHDx4kBtuuIHVq1c7vROfldwZAI8BhVrrJUqpe4AwrfXdTRxXprXufibnlgDo/EpKSti4caPZQigtLSUuLs5sIQwaNEhmGAmPcOONN7JgwQIuuugiq0tplTsD4DvgR1rrPKVUf2C91npUE8dJAIhWHT161BxMTk9Px8fHp9EMo17tPaItRDM+/fRT3n//fV588UWrS2mVOwOgWGsdWv+xAopOvT7tODuwGbADS7TWrS61JwHQtWmtOXDggBkGGzduJDw83AyE2NhYunc/o/cUQpy12tpaLr74Yl566SUGDx5sdTktcmkAKKU+A5raJfk+YHnDG75SqkhrHdbEOQZqrY8opaKAVCBJa53dxHGLgcUAkZGRk3Jycpz5GUQXUFdXx+7du80WwrZt2xg2bJgZCOPHj+8Q/bOi43rmmWew2+3cdtttVpfSIo/rAjrte14HPtZav9/ScdICEC2pqalhy5YtZgth3759jB071gyEc845RwaUhUsdPnyY66+/njVr1nj0mw13BsDfgBMNBoF7aq3vOu2YMKBCa12tlOoNfAvM01rvbOncEgDiTJw8edJcssJms3H8+HFiY2PN8YMhQ4bIgLJos5tuuolLLrmEWbNmWV1Ks9wZAL2A/wMigRyMaaCFSqk44Fda658rpaYCLwIOjA1ontZav9LauSUARFscP34cm82GzWYjLS0Nh8Nhrl+UkJAgeyCIs5Kamsrbb7/NSy+9ZHUpzZIHwYRo4NQeCKe6izIyMggJCTHDIC4uTvZAEE6x2+1cfPHFvPDCC0RFRVldTpMkAIRogcPhICsry+wu2rx5M4MHD260B4K/v7/VZQoP9fzzz1NZWcnvfvc7q0tpkgSAEGegtraWbdu2mS2EPXv2EB0dbbYQRo8ejc/ZLMsqOqXc3FyuueYa1qxZ45GbJUkACNEGFRUVbNq0yWwh5ObmMnHiRLOFMGzYMBlQ7uJuueUWZs6cyezZs60u5QckAIRwoaKiInMPhPT0dCorK80lKxISEhgwYIDVJQo3W7duHW+++SavvNLqfBa3kwAQoh3l5uaa3UU2mw1/f38mT55s7oEQFvaDZyFFJ2O327nkkkt4/vnnPW4wWAJACDfRWpOdnW2GQWZmJgMGDDC7i2JjY2UPhE7qhRdeoKysjDvvvNPqUhqRABDCInV1dezYscNsIezcuZORI0eaD6SNGzdO9kDoJPLy8rjqqqtYs2aNR80akwAQwkNUVVWxZcsW0tLSsNls5OTkMGHCBLOFMHLkSFmyogO79dZbufDCC5kzZ47VpZgkAITwUKWlpWRkZJgthOLi4kZ7IERERMgMow7kiy++4LXXXuO1116zuhSTBIAQHURBQYG5XIXNZsPLy8sMg4SEBHr37m11iaIFdXV1zJkzh6VLlzJixAirywEkAITokLTW5OTkmAPKGzdupFevXo32QAgODra6THGaZcuWUVRUxN13/2AzREtIAAjRCTgcDnbv3m22ELZv387QoUPNFkJMTIxHL0vcVRQUFHD55ZezevVqAgICrC5HAkCIzqimpoatW7eaLYTs7GzGjBljthCio6NlQNkit99+O9OnT2fevHlWlyIBIERXUFZWRmZmptlCOHbsWKM9EIYOHSoDym7y1VdfsWzZMt544w2rS5EAEKIrOnHiRKMnlGtraxvtgdC3b1+rS+y0HA4Hc+fO5YknnmDUqBY3RWx3EgBCdHFaa44cOWKGgc1mo0ePHmYgxMXFERISYnWZncrLL79MQUEBv//97y2tQwJACNGIw+Fg79695oJ2mzdvJiIiwmwdxMTEeMQAZkd27NgxFi5cyOrVqy1d/kMCQAjRotraWnbs2GG2EHbv3k10dLTZQhgzZozsgXAW7rjjDqZOnUpycrJlNUgACCHOSEVFBZs3bzZbCEeOHCEmJsYcUB4+fLjMMHLCN998w/PPP8+bb75pWQ0SAEKINikuLjb3QLDZbJSVlZnLXSckJDBw4ECrS/RIDoeD+fPns2TJEkaPHm1JDRIAQgiXysvLM2cYpaen4+/vb4ZBfHw8PXv2tLpEj/Hqq6+Sl5fHfffdZ8n1JQCEEO1Ga83+/fvNMMjMzKRfv35mGMTGxhIUFGR1mZY5ceIEl156KR9//LElvwcJACGE29TV1bFz506zhbBjxw5GjBhhthDGjRvX5ZasuOuuu5g8eTIpKSluv7YEgBDCMtXV1WzZssVsIRw4cIDx48ebLYRRo0Z1+gHltLQ0li5dyltvveX2p7HPJABknpcQwqW6detmPl8Axh4ImZmZpKen84c//IHCwkLi4uLMFkJkZGSnW7IiPj6e8vJydu7cyZgxY6wup1nSAhBCuFVBQYE5wyg9PR3ADIz4+HjCw8MtrtA1li9fTk5ODg888IBbrytdQEKIDkFrzaFDh8wNcTIyMujZs6cZBpMmTaJHjx5Wl3lWCgsLSUlJYdWqVXTv3t1t15UAEEJ0SA6Hg++++84cUN66dStDhgwxWwgTJkygW7duVpfptHvuuYfY2FgWLlzotmtKAAghOoWamhq2b99uthCysrLMPRDi4+MZPXo03t7eVpfZrPT0dJ588knefvvt78c5Tp6E6mrw84PgYHDx+IcEgBCiUyovLzf3QEhPTyc/P9/cAyEhIcHj9kBwOBxcNXcuS6ZNY/DOnbB1K5SWgpcXOBwQEABjxsCFF0JyMvTq1eZrSgAIIbqEwsLCRgPK1dXVjZ5Q7t+/v3XFVVTAU09R8txz2Kur6dWrl3HD9/H5/l2/3Q5VVcZ/vbxgzhy47z5ow5PVEgBCiC7p9D0QgoKCzNZBXFwcoaGh7ikkMxN+8xvIz8ceGEj2gQMMHz685e6qujqjdRAcDI8/brQKzoIEgBCiy3M4HGRnZ5vdRZs2bWLgwIGN9kBol3X7166FX//aeJdfP/vn8JEjBAYEOLdmUmWlMUbwwANw7bVnfHkJACGEOI3dbm+0B8KuXbsYNWqUGQhjxozB19e3bRdJT4errzYGeP39zU+XV1SQn59PVFQUTo1Q1NZCWRk89RTMnXtGJUgACCFEKyorK9m8eTM2m420tDQOHTpk7oGQkJBw5nsglJVBYqIxy+e0ReA0kJ2dzYD+/Z1vdVRXG91Cn30GAwY4XYYsBSGEEK0ICAhgypQpTJkyBYCSkhJzQHnFihWUlpYSFxdnBsLAgQNbnmH06KNQWAhNjDMoICwsjKLiYucDoFs3KC6Gu++Gf/7zLH7C1kkLQAghmnD06FGzuyg9PR1fX99GM4x6NZyyWVgI555rvPNvZqDXXldH9t69vBEUREZlJZUOB719fLi2Vy/mNzc4rbUxMPzxxzBqlFN1SxeQEEK40Kk9EE6FQWZmJuHh4WbrIGH7dvyffLLJd/8NHcnNJd/bm3Hh4fh5eXGguprFOTksjYggOiCg6W8qKoJFi+CRR5yq1W1dQEqpy4AHgWggQWvd5B1bKTUTWAp4Ay9rrZe05bpCCOFOSimioqKIiopi0aJF1NXVsXv3btLT03nnnXdQ775LlN2Ob20tQUFBBAQE4NVEd1FYaCiVeXn49u1rnLf+3Idra5sPgKAg+O9/nQ6AM/q52tICUEpFAw7gReCOpgJAKeUN7AF+DBwGbMAVWuudLZ1bWgBCiA7B4cBxzjlUAuVVVZRXVFBdXU1AQABBQUEEBQXh7++PwhgM3rdvH2/5+PBJRQXVWjPK35+XBg8msLkBZ62hpAQ2bIDevVstx20tAK31rvoLtnRYArBXa72v/th3gHlAiwEghBAdQl4eXkBQjx4E1a9cWudwUFFeTnl5Obm5udjtdgIDAwkKCqJ79+7cUFvL/aNGsbWyko0VFfi1dA9VCnx9Yd8+pwLgTLhjFtBA4FCD14eByW64rhBCtL/KSmMZhwa8vbwIDg4mODgYgFq73QyEsvJy0BqlFDGBgawpKeH9oiIub+khMa2N67hYqwGglPoM6NfEl+7TWn/oymKUUouBxQCRkZGuPLUQQrQPHx/jBt0CXx8fQkJCCAkJQWMMKp96z18HHK6pafkap1oBLtZqAGitz25Biu8dASIavB5U/7mmrrUMWAbGGEAbryuEEO2vXz9jMTeH4wctgdMV2u1kVFRwfvfu+ANp5eV8UlLCIwMHtnyNurozehjMWe7oArIBI5RSQzFu/JcDV7rhukII0f78/SEyEgoKjNU+W6CA94uKeCQvDwfQ39eX3/XtywX1XUVNqqszgqUdekXaOg10AfAMEA6sVkpt1lr/RCk1AGO652yttV0pdTPwCcY00Fe11jvaXLkQQniKGTNg+fJWAyDMx4dlgwef2bnLymDKlFZbF2ejrbOAPgA+aOLzucDsBq/XAGvaci0hhPBYl19uLNegtct3+EIp+NnPXHvOeq6PFCGE6GpGjoSJE435+q5UVgbh4TBtmmvPW08CQAghXGHJEmMdoNpa15yvrs441xNPNLu+UFtJAAghhCtERcFddxnv2h2Otp3r1CJwV15pLDLXTiQAhBDCVX72M2NDmJISY2ro2XA4jGWgZ8wwdgVrRxIAQgjhKkrBgw/CrbcaLYHS0jP7/vJyIzwuuwxeeKFdHv5qSAJACCFcSSm45RZYsQIGDTJCoKSk+W4hh8PYRezUhvCvv26MJ7TzzR9kRzAhhGgf48cb2zl+9RW8/DJ8+60xmKv199NFlTIGesePh8WLISnJ2E/YTSQAhBCivXh5wQUXGH9qa40VPffvN/b79fWFiAhjCmm3bpaUJwEghBDu4OtrbOvo5NaO7iBjAEII0UV57J7ASqljQM5pn+4NHLegHGd5en0gNbqK1Nh2nl4fdMwaB2utw535Ro8NgKYopTKc3erMCp5eH0iNriI1tp2n1wedv0bpAhJCiC5KAkAIIbqojhYAy6wuoBWeXh9Ija4iNbadp9cHnbzGDjUGIIQQwnU6WgtACCGEi3h0ACileiqlPlVKZdX/N6yZ4x5TSu1QSu1SSv1dKVdvydPm+iKVUv+rr2+nUmqIO+o7kxrrj+2hlDqslHrWXfU5W6NSKkYp9W39/+etSqlFbqhrplLqO6XUXqXUPU18vZtS6t36r6e58//rGdR4e/3fua1KqbVKqTPcj7D9a2xwXIpSSiul3D7rxpkalVIL63+XO5RS//K0GuvvM+uUUpvq/3/Pbuo8jWitPfYP8BhwT/3H9wCPNnHMVOBrjP2GvYFvgR95Sn31X1sP/Lj+4+5AoCf9DhscuxT4F/CsB/5/HgmMqP94AJAHhLZjTd5ANhAF+AFbgNGnHfNr4B/1H18OvOvm35szNc449fcNuNETa6w/Lhj4AtgAxHlajcAIYBMQVv+6jwfWuAy4sf7j0cCB1s7r0S0AYB6wvP7j5cD8Jo7RgD/GL6Ub4AscdUt1TtSnlBoN+GitPwXQWpdprSvcVB849ztEKTUJ6Av8z011NdRqjVrrPVrrrPqPc4ECwKmHXc5SArBXa71Pa10DvFNfZ0MN634fSHJX69PZGrXW6xr8fdsADHJjfU7VWO/PwKNAlTuLq+dMjb8AntNaFwForQs8sEYN9Kj/OATIbe2knh4AfbXWefUf52PcoBrRWn8LrMN4R5gHfKK13uUp9WG8cy1WSq2ob5r9TSnVPvu7Na3VGpVSXsATwB1urKshZ36PJqVUAkbgZ7djTQOBQw1eH67/XJPHaK3tQAnQqx1rOp0zNTZ0A/Cfdq3oh1qtUSkVC0RorVe7s7AGnPk9jgRGKqW+VkptUErNdFt1BmdqfBC4Wil1GFgD/Ka1k1q+GJxS6jOgXxNfuq/hC621Vkr9YMqSUmo4EM3372w+VUpN01p/6Qn1YfyOpwETgYPAu8D1wCuuqM9FNf4aWKO1Ptxeb2BdUOOp8/QH/glcp7Vu4757XYdS6mogDphudS0N1b/5eBLj34Qn88HoBvoRxr3mC6XUOK11saVVNXYF8LrW+gml1BTgn0qpsS39O7E8ALTWFzb3NaXUUaVUf611Xv0//KaaXQuADVrrsvrv+Q8wBXBJALigvsPAZq31vvrvWQmciwsDwAU1TgGmKaV+jTFG4aeUKtNaNztgZ0GNKKV6AKuB+7TWG1xVWzOOABENXg+q/1xTxxxWSvlgNLtPtHNdTV3/lKZqRCl1IUbQTtdaV7uptlNaqzEYGAusr3/z0Q/4SCk1V2ud4SE1gvHvOE1rXQvsV0rtwQgEm3tKdKrGG4CZYPSMKKX8MdYJara7ytO7gD4Crqv/+DrgwyaOOQhMV0r5KKV8Md7huKsLyJn6bECoUupUf3UisNMNtZ3Sao1a66u01pFa6yEY3UBvuPLm74RWa1RK+QEf1Nf2vhtqsgEjlFJD6699eX2dDTWs+1IgVdePwLlJqzUqpSYCLwJzLei3brVGrXWJ1rq31npI/d+/DfW1uuvm32qN9VZivPtHKdUbo0ton4fVeBBIqq8xGmNs9FiLZ3XnSPZZjHz3AtYCWcBnQM/6z8cBLzcYHX8R46a/E3jSk+qrf/1jYCuwDXgd8PO0Ghscfz3unwXkzP/nq4FaYHODPzHtXNdsYA/GWMN99Z97COMGRf0/sPeAvUA6EOXO35uTNX6GMSni1O/sI0+r8bRj1+PmWUBO/h4VRlfVzvp/x5d7YI2jMWZEbqn/f31Ra+eUJ4GFEKKL8vQuICGEEO1EAkAIIbooCQAhhOiiJACEEKKLkgAQQoguSgJACCG6KAkAIYTooiQAhBCii/p/K9d8/GvFkz8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWooP1t2dJqVnVLq6VtbF2i5CKJuLP4tlq2F3TZlpbuIgkh1JLaFOlqEVSycUlcIpfJbZK5nN8fRxS5zExyZj5nZt7PxyOPx1ecOedlH6ev75nP+ZzP4XieByGEEPZkrAMQQggRUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEyE3Z2NfXl+/SpYuZohBCiG06ffp0Cc/zfoa2M6mQu3TpglOnTrU+FSGE2CGO4wqN2Y6GLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCJMmmVBCLlHowGuXAFKSwG9HnBzA7p1A1xdWScjVsyihdxwDl+4ABQVAfX1wnn8+ONAz55AQADAcZZMRIgJamqA9HRg61bg/HnAwQGQyYCGt+7U1wMdOwIvvQRMnAj4+7PNS6wOZ8ornMLCwvjWzEO+ehXYvl340WiEC4r6eqF8OQ5QKgGtFggJAWbMAMaMAZydTT4MIeah1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIjgbmzRO2JXaN47jTPM+HGdzOnIVcXw9s2ABs3gzodMLVsKNj09vyPFBdLWzXrh2wfj3wzDNGH4oQ8ygtBd55B/jPf4RiVSqN+5xOB6hUQGAgsGkT0Lu3eXMSSTO2kM12U6+4GBg3Dvj4Y+E89vZuvowB4UrZzQ3w9ATKy4WLi2XLhIsTQpgoKQEmTBDK2MvL+DIGhCtkb29hH5MmAWfOmC8nsRlmKeTiYmD8eKCgQDgn5SaOVLu5Ae7uwKefAosX/zZER4jF1NcDr74KXL8unMStvbnh7i6cwFOnCmN3hLRA9ELWaIA//xm4e1e4qGgtBwfhann7dmDHDvHyEWKUjRuBixeFk7CtXF2B2lrg/ffpKx9pkeiF/MknwOXLgIdH2/clkwnn8pIlwLVrbd8fIUbJzxcK2d1dvGk/np7ATz8Bu3eLsz9ik0Qt5Nu3gf/7P2HIQazzWKEQvj2mpIizP0IM+vJL4aacqWNtLeE44WTeuJHG4EizRJ2HvHOncB63dPOuNTw9gaws4OZN4aY1IWZTWwt8/bVwVdGCer0ey2/eRE5NDVQ6HTo6OuIdf39EtPQ5Z2dhTDo3F+jfX+TgxBaIdoXM88CWLcZNubxxIx6XL4/GxYtDcOXKBJSXf9fi9g1z779reTNC2u7CBWGc18BVhQ5AoKMjNgcH42j37njbzw8LbtxAUX198x/iOGHCfU6OuJmJzRCtkIuLgYoK42YG+fr+GSEhexEaegwdO67F7dsbUVt7ocXPyOXA8eMihSWkORcuCHemDXCWyfCmnx/aKxSQcRx+7+6O9o6OyFOrW/6gXA6cPClSWGJrRCvkvDxhZoQxlMrHIJMp7v2JA8dx0Giut/gZJyfg559p+I2YD8/z0Oflged58A1/fvRHr4fukR8eQKlWi6v19XjM0BWJUimsH0BIE0QbQ75926gLi/tu3lyO0tJ/Qq+vg0LxOHi+DyorVQ9t81v58uB5QKVSYN++7+HgoL/39/xDPw/+Tq83vE1zP63dBgD0er0o2zT8Gwxtw+rfKub/HmL/W1vzv0eDd69fx/CyMlTfuiX84pG70/f/dO/3Wq0WShcXrHVwwHOenuhiqJA5TrhLTUgTRCtkU6dXBgTEorT0eTg7F0KnO4eKihrIZA+eqL/9h9Dw30RdnQuOH8+Go6MeHCdcWQt/z7X409Q2ACCTyQxuw3Hc/e0MHUt2b22Dlo5vzDam/Dss+W81ZRup/1ub2wZJScLiQT4+LZ6/Da7k52NVdTX0SiXmd+pk+AN6vfB1j5AmiFbIrq7GD1kAwn8AAQEBqK52g4tLLpTK/8DH5+Vmt9frhaUBli1LbrSmCyGi6dnT6BNZXVeH9dXV0Lq6IkajgV6rNTzFqK4OCA0VISixRaJVW7dujRe/MqRdu3bQ6fSora1GfX3LY8hqtbBMJ5UxMasePYwu5JRr13BLLseGLl0Q5OuL4uJiGLzFodcD4eFtjklsk2j19vjjwoweQ0MXWm0pVKqD0OtrwPM8vLwKoVIdgJNTy/My1WogzOBaSYS0UY8ewo03A+O8RRoN/lVVhUKex+jLlzG+pAQvlpVh140bzX+I54UrikGDRA5NbIVoQxYKBTBiBHD4sKE1LDiUlX2D4uKlAPRwdAyCt/e7qKx8HF5ePB4cO27A88JFy3PPiZWWkGYoFMCUKcIyhQpFs5t5abXY4+6OkJCQ+2esuq4OhYWF0Gi1cGzqKb+qKmG4omdP82QnVk/UJ/WmTROeqOP55h+dlsu90bnz5od+x/N6FBQUoKJCBc8mFnOprRXeJkLf9IhFREcLSw3W1zdbyqqKCnh6ej50+eCkVMLHxwfFxcXo1KnTw5cWPC98hYyJMWdyYuVEHZENCwP69BEeEDEFx8nQvn173Lp1C1qt9qG/43nhPsj8+TR+TCwkKAhYtEh4YwLfeFSY53moVE1fPPi2awetVgvVo/8RVFQIXyFHjjRXamIDRK04mQxYu1Z4GMnUqZZOTs7w8vLErVs3H/p9eTkwdCjw/PMiBiXEkOhoYOBAoKysUSlXVVdDoVBA0cSMCo7jEBQU9PDFhUolrKmcmkovjSQtEv2as3Nn4U0f1dWml7Kfnx/UavX9B0QqKoShihUr6DwmFiaTCa9e6tdPuCp44G51RUUFPFpYJ9nZyQle3t7CrIuyMmEZz6++Avz8LJGcWDGzDAKMHy+sYVxTIxSzsThOhqCg9iguvonSUh38/YWFt+g8Jky4ugpLcU6YIFwdVFdDp9OhuqoKHgYW/Pb18IBjdTXu+PsLq2KFhFgoNLFmZhuVnTwZ2LZNuDgoKzPusWqeB/R6Fzg6+sHH5wz27gWMefiJELNxcQFWrQK++ALw9YX61i20k8kg1+kajy9rtUBlJVBRARnPQzt/Pqa6u6PMwFKehDQw622yiAhhGtz06cK5WlEhlHNtrbBusk4nFHVVlfDKJ5VKGPLYssUZgYHJyMvLNmc8Qow3ZAjw/ff4eMAA1AwdKqxtXF4unLxVVcLJrdUK6xyvWQOcOoWOCQkYPXYsVq9ezTo9sRIc38Rd5OaEhYXxp06datWBamuFcs7OBn78UViuU6sVzuvQUGDAACAyEnjiCWG8+OTJk1iyZAl27twJF2MWWSbEzEpKSjBx4kRkZGRAqVQKhVxaKowvu7sD/v6Nbnao1Wq88soriImJwdChQxklJ6xxHHea53mDj7ZZrJBbIzk5GUqlErGxsRY7JiHN2bFjBy5fvozExESTPpebm4uFCxfi66+/Njj2TGyTsYUs6Zm9s2fPxtGjR3HmzBnWUQhBWloaxowZY/Ln+vXrh+HDh+Ovf/2rGVIRWyLpQvbw8MCCBQuQkpICtaE3MRBiRgUFBbh79y7CWrmgyjvvvIPTp08jO5vui5DmSbqQAWDo0KHo2bMnNm3axDoKsWPp6ekYPXr0/TWeTeXi4oK4uDikpqai2pS5oMSuSL6QAWDevHnYv38/zp07xzoKsUN6vR4ZGRkYO3Zsm/YTHh6OiIgIrF+/XqRkxNZYRSF7e3vj/fffR1JSEurp9TfEws6ePQsnJyd069atzfuKiYnB8ePH8eOPP4qQjNgaqyhkABg9ejQ6duyIL774gnUUYmfS09MxZsyY+697ags3NzcsXLgQKSkpqK2tFSEdsSVWU8gcx2HBggXYtWsXLl++zDoOsRMajQaHDh1CVFSUaPscPHgw+vbti48++ki0fRLbYDWFDAD+/v545513kJycDJ1OxzoOsQPZ2dkICQlBUFCQqPudO3cuDh06hJ9++knU/RLrZlWFDAB/+MMf4O7ujr///e+soxA7kJaWJurVcQMPDw/ExsYiOTkZdXV1ou+fWCerK2SO4xAXF4dt27ahsLCQdRxiw6qqqnDy5EmMNNOi8sOHD0doaChN6ST3WV0hA0D79u3xxhtvIDk5GXpDb1UlpJWysrIQHh5u1sed582bh3379tGUTgLASgsZACZNmgSe57Fr1y7WUYiNau2j0qbw8fHBnDlzaEonAWDFhSyTyZCQkIDNmzejqKiIdRxiY27fvo1Lly5h8ODBZj/Ws88+i06dOuHzzz83+7GItFltIQNAly5dMGXKFCxZsgSmrFpHiCEZGRmIjIyEopm3ToupYUrnt99+i0uXLpn9eES6rLqQAWDKlClQqVTYu3cv6yjEhqSnp7f5UWlT+Pn54b333sPixYsbvXmd2A+rL2QHBwckJCRgw4YNuHPnDus4xAb8+uuvUKlU6Nu3r0WP+9xzz6Fdu3bYtm2bRY9LpMPqCxkAunfvjhdffBHLli2joQvSZunp6YiKimr1ym6txXEcFi1ahB07diA/P9+ixybSYBOFDACvv/46rl+/jszMTNZRiBXT6/UWH654UGBgIGbOnImkpCSa0mmHbKaQFQoFEhISsHr1apSVlbGOQ6xUbm4uPD09ERISwizDCy+8AGdnZ2zfvp1ZBsKGzRQyAPTu3Rtjx47FqlWrWEchVqphZTeWZDIZ4uPjsWXLFly9epVpFmJZNlXIAPDWW2/hwoULOHbsGOsoxMrU19cjKyvLLGtXmKpDhw70NKodsrlCdnJyQnx8PJYvX47KykrWcYgVOX78OEJDQ+Hv7886CoDfnkb95ptvWEchFmJzhQwA/fv3x+9//3t6yy8xiRSGKx7U8DTqpk2b6GlUO2GThQwA7733HnJycvCf//yHdRRiBVQqFXJychAZGck6ykM6d+6MqVOnIiUlhaZ02gGbLWRXV1csXLgQqampqKmpYR2HSNyhQ4cwcOBAuLm5sY7SSHR0NKqrq/Hdd9+xjkLMzGYLGQAiIiLQr18/elUOMUhqwxUPcnBwQGJiIj766CPcunWLdRxiRjZdyAAwZ84cHD58mF6VQ5pVXFyM/Px8REREsI7SrJCQELz88stITU2loQsbZvOF7OHhgfnz59OrckizMjIyMHLkSDg6OrKO0qLXXnsNJSUlSEtLYx2FmInNFzIAREZGolu3bti8eTPrKERieJ5n+qi0KeRyORITE7Fu3TqUlJSwjkPMwC4KGQBiY2Oxd+9enD9/nnUUIiGXL1+GWq1Gnz59WEcxSmhoKMaPH4/ly5fT0IUNsptC9vHxwezZs5GcnAyNRsM6DpGIhrdKcxzHOorRpk+fjsLCQhw6dIh1FCIyuylkABgzZgwCAgKwZcsW1lGIBOj1emRkZEh2dkVzFAoFEhMTaSEtG2RXhcxxHBYuXIivv/4aV65cYR2HMHbq1Cn4+vqia9eurKOYjBbSsk12VcgAEBAQcH+9WZ1OxzoOYchabuY156233kJeXh6OHj3KOgoRid0VMiCsN+vi4oIdO3awjkIYUavVOHr0KJ599lnWUVpNqVQiPj4eK1asgEqlYh2HiMAuC1kmkyEuLo7Wm7Vjx44dQ69eveDr68s6Spv069cPw4cPx9q1a1lHISKwy0IGgI4dO2LatGlYsmQJrTdrhzIyMqx6uOJB77zzDs6cOYPs7GzWUUgb2W0hA8DLL78MjUaDb7/9lnUUYkHl5eU4c+YMhg8fzjqKKFxcXBAXF4fU1FRUV1ezjkPawK4LuWG92U8++QTFxcWs4xALyczMxKBBg+Di4sI6imjCw8MRERGB9evXs45C2sCuCxkAunbtiujoaCxdupSefLITUl7ZrS1iYmJw/Phx/Pjjj6yjkFay+0IGgFdffRV3797Fvn37WEchZnbjxg1cu3YNAwYMYB1FdG5ubli0aBFSUlJoDXArRYWM3xZt2bBhAy3aYuPS09MxatQoyOVy1lHMYtCgQejXrx82btzIOgppBSrkexoWbVmxYgUNXdiohpXdbHG44kFz5szBoUOHaA1wK0SF/IDp06ejoKAAhw8fZh2FmMGFCxeg0+nQu3dv1lHMysPDA7GxsbQGuBWiQn6AQqFAQkICVq1ahfLyctZxiMgaHpW2ppXdWmv48OEIDQ3Fpk2bWEchJqBCfkSfPn0wevRorFmzhnUUIiKdTocDBw4gKiqKdRSLmT9/Pvbt24dz586xjkKMRIXchLfffhtnz57F8ePHWUchIsnJyUFQUBCCg4NZR7EYb29vzJ07F0lJSaivr2cdhxiBCrkJzs7OiIuLw9KlS1FVVcU6DhGBta/s1lqjRo1Cp06d8Nlnn7GOQoxAhdyMp59+GoMHD6Ynn2xAbW0tjh07hlGjRrGOYnEcx+GDDz7A7t27cfHiRdZxiAFUyC147733cOLECXryycp9//336NOnD3x8fFhHYcLX1xcxMTFISkqCVqtlHYe0gAq5BW5ubli4cCFSUlJQW1vLOg5ppbS0NLscrnjQuHHj4Ovri23btrGOQlpAhWzA4MGD8eSTT9KTT1aqtLQUZ8+exdChQ1lHYarh9WU7duxAfn4+6zikGVTIRpg7dy4OHjyIs2fPso5CTJSZmYkhQ4bA2dmZdRTmAgMDMXPmTCxevJheXyZRVMhG8PT0xLx585CcnEzTh6xMWlqazT8qbYrx48fD1dWVXl8mUVTIRhoxYgS6du2KTz/9lHUUYqSrV6+iuLgY4eHhrKNIBsdx9PoyCaNCNhLHcYiNjcWePXuQl5fHOg4xQnp6OkaPHg0HBwfWUSSlQ4cOeOONN5CcnEyvL5MYKmQTNEwfSk5OpulDEmcvK7u11qRJk8DzPHbt2sU6CnkAFbKJaPqQdfjll1/g4OCAnj17so4iSTKZDImJidi8eTOKiopYxyH3UCGbqGH60Pbt22n6kITZ08purRUcHIypU6ciJSWF1gCXCCrkVggMDMTbb79NY3ASpdVqkZmZaVcru7VWdHQ0qqursWfPHtZRCKiQW23ChAlQKBT46quvWEchjzh58iQ6deqEDh06sI4ieQ4ODkhMTMTGjRtx69Yt1nHsHhVyK8lkMsTFxeGzzz7D9evXWcchD6BHpU0TEhKCyZMnIzU1lYYuGKNCboPg4GC89tprSElJoaELiaipqUF2djZGjhzJOopVmTp1KkpKSpCWlsY6il2jQm6j6OhoqNVqfPfdd6yjEABHjhxB//794eXlxTqKVWl48/q6devozesMUSG3UcP0IRqDkwZ6VLr1Gt68vmzZMhq6YIQKWQSPPfYYXnrpJSxdupROZIZKSkpw/vx5DBkyhHUUqzV9+nRcu3YNmZmZrKPYJSpkkbz22mu4ffs20tPTWUexWwcPHsSwYcOgVCpZR7FaDW9eX716NcrKyljHsTtUyCJxdHREQkIC1q1bh9LSUtZx7BINV4ijd+/eGDduHFatWsU6it2hQhZRz5498fzzz2PFihWso9idgoIC3L17F2FhYayj2IS33noLeXl5OHLkCOsodoUKWWRvvvkmLl++jKysLNZR7ErDym4yGZ3SYlAqlYiPj8fKlSuhUqlYx7EbdPaKTKlUIjExkU5kC9Lr9cjIyKCHQUTWr18/REZGYu3atayj2A0qZDN48sknMWLECKxZs4Z1FLtw9uxZODk5oVu3bqyj2JxZs2bhzJkzyM7OZh3FLlAhm8msWbOQm5tLJ7IFNNzMo5XdxOfi4oK4uDgsWbIEVVVVrOPYPCpkM3FxccGiRYuQmpqK6upq1nFslkajweHDh2llNzMKDw/HoEGDsGHDBtZRbB4Vshk988wzGDBgAJ3IZpSdnY2QkBAEBQWxjmLTYmJicOLECeTk5LCOYtOokM1s9uzZ+Pe//43Tp0+zjmKTaO6xZbi5uWHhwoVYsmQJampqWMexWVTIZubu7o4FCxYgJSUFarWadRybUlVVhZMnT2LEiBGso9iFQYMGoV+/fvjoo49YR7FZVMgWMGTIEPzud7/Dxx9/zDqKTcnKykJ4eDg8PDxYR7Ebc+bMQVZWFnJzc1lHsUlUyBYyd+5cpKen45dffmEdxWbQcIXleXh4IDY2FikpKairq2Mdx+ZQIVuIt7c35s6di+TkZNTX17OOY/Vu376NS5cuYfDgwayj2J1hw4ahR48e2LRpE+soNocK2YJGjRqFjh074rPPPmMdxeplZGQgMjISCoWCdRS7NG/ePOzbt4++8YmMCtmCOI7DBx98gN27d+PSpUus41i19PR0elSaIfrGZx5UyBbm5+eHd999F8nJydDpdKzjWKVff/0VKpUKffv2ZR3Fro0aNQrBwcH0jU9EVMgMPP/88/D09MSXX37JOopVSk9PR1RUFK3sxhjHcViwYAF2796Nixcvso5jE+iMZoDjOCxatAhffvkl/ve//7GOY1X0ej0NV0iIr68vYmJikJSUBK1WyzqO1aNCZqR9+/aYMWMGkpOTodfrWcexGrm5ufDy8kJISAjrKOSecePGwdfXF1u3bmUdxepRITP04osvQiaTYefOnayjWI2G4QoiHQ3f+P7xj38gPz+fdRyrRoXMkEwmQ3x8PP72t7/hxo0brONIXn19PbKysqiQJSggIAAzZ87E4sWL6WZ1G1AhM9a5c2dMnToVqamp4HmedRxJO378OEJDQ+Hv7886CmnC+PHj4erqiu3bt7OOYrWokCUgOjoalZWV+Oc//8k6iqSlp6fTo9ISxnEc4uLisHXrVhQWFrKOY5WokCXAwcEBCQkJ+PDDD3H79m3WcSRJpVIhJycHkZGRrKOQFnTo0AFvvvkm3axuJSpkiejWrRsmTpyIZcuW0dBFEw4dOoSBAwfCzc2NdRRiwMSJEwEAu3btYpzE+lAhS8jrr7+OoqIiHDhwgHUUyaHhCushk8mQmJiIzZs3081qE1EhS4ijoyMSExOxdu1alJaWso4jGcXFxcjPz0dERATrKMRIwcHBmDp1KlJSUugbnwmokCWmV69eGDduHFavXs06imRkZGRg5MiRcHR0ZB2FmCA6Oho1NTXYs2cP6yhWgwpZgt566y3k5eXh6NGjrKMwx/M8PSptpRwcHLB48WJs3LgRt27dYh3HKlAhS5BSqURcXBxWrFgBlUrFOg5Tly9fhlqtRp8+fVhHIa3w2GOPYfLkyTTP3khUyBLVv39/DBs2DOvWrWMdham0tDRERUWB4zjWUUgrTZ06FSUlJdi/fz/rKJJHhSxh7777LnJycvDDDz+wjsKEXq9HRkYGza6wcnK5HImJiVi/fj1KSkpYx5E0KmQJc3FxwaJFi7B06VLU1NSwjmNxp06dgq+vL7p27co6Cmmj0NBQTJgwgebZG0CFLHEDBw5EWFgYPvzwQ9ZRLI5u5tmWadOm4dq1a8jMzGQdRbKokK3AX/7yFxw5cgS5ubmso1iMWq3G0aNH8eyzz7KOQkSiUCiQkJCA1atXo6ysjHUcSaJCtgIeHh6YP38+UlJSUFdXxzqORRw7dgy9evWCr68v6yhERL1798a4ceOwatUq1lEkiQrZSgwfPhyhoaHYtGkT6ygWkZGRQcMVNqphnv2RI0dYR5EcKmQrMm/ePOzbtw/nz59nHcWsysvLcebMGQwfPpx1FGIGSqUSCQkJWLlypd3Ps38UFbIV8fHxwV/+8hckJSVBo9GwjmM2mZmZGDRoEFxcXFhHIWbSt29fREZGYs2aNayjSAoVspWJiopC+/bt8cUXX7COYja0spt9mDVrFnJzc3HixAnWUSSDCtnKcByHDz74ADt37sSvv/7KOo7obty4gWvXrmHAgAGsoxAzc3FxQVxcHJYuXYqqqirWcSSBCtkK+fv7Y9asWUhOTra5F0qmp6dj1KhRkMvlrKMQCwgPD8egQYOwfv161lEkgQrZSr3wwgs290LJhpXdaLjCvrz33nvIzs5GTk4O6yjMUSFbqQdfKHn16lXWcURx4cIF6HQ69O7dm3UUYkFubm5YtGgRlixZYpdLBDyICtmKdejQAdOnT7eZF0o2PCpNK7vZn4iICPTv3x8fffQR6yhMUSFbuZdeegl6vR7ffPMN6yhtotPpcODAAURFRbGOQhh5//33kZWVZVdLBDyKCtnKyWQyJCQkYNOmTSgqKmIdp9VycnIQFBSE4OBg1lEIIx4eHoiNjUVKSgrUajXrOExQIduALl264E9/+pNVv5WBVnYjADBs2DD06NHDbpYIeBQVso2YMmUKysvLsXfvXtZRTFZbW4tjx45h1KhRrKMQCZg3bx7279+PX375hXUUi6NCthENb2XYsGED7ty5wzqOSb7//nv06dMHPj4+rKMQCfD29sbcuXORnJyM+vp61nEsigrZhnTv3h1//OMfsXz5cqsaukhLS6PhCvKQUaNGITg4GJ9++inrKBZFhWxjrO2tDKWlpTh79iyGDh3KOgqREI7jsGDBAuzZswcXL15kHcdiqJBtjEKhQHx8vNW8leHgwYMYMmQInJ2dWUchEuPr64vZs2cjKSkJWq2WdRyLoEK2QU888QSioqKwevVq1lEMokelSUvGjh0LX19fbNmyhXUUi6BCtlEzZ87EuXPncOzYMdZRmnX16lUUFxcjPDycdRQiURzHYdGiRfjqq69w5coV1nHMjgrZRjk5OSE+Ph7Lly9HZWUl6zhNSk9PR1RUFBwcHFhHIRIWEBCAmTNnIikpyeZWN3wUFbINe+qppzB48GBJLm3YsLIbPSpNjDF+/HibW92wKVTINi4mJgY//PCD5JY2/OWXX+Dg4ICePXuyjkKsAMdxiI+Px9atW1FYWMg6jtlQIds4V1dXSS5tSCu7EVO1b98eb775ps2sbtgUKmQ7EBERgb59+2Ljxo2sowAAtFotMjMzabiCmGzixIkAgJ07dzJOYh5UyHZizpw5yMzMxH//+1/WUXDy5El06tQJHTp0YB2FWBmZTIbExET87W9/w40bN1jHER0Vsp3w9PREbGysJNYHoEelSVsEBwfjtddeQ0pKilUtEWAMKmQ7EhkZiZCQEGzevJlZhpqaGpw4cQIjR45kloFYv+ga9GluAAALnklEQVToaNTW1mLPnj2so4iKCtnOxMbG4l//+hcuXLjA5PhHjhzBU089BS8vLybHJ7ahYehi48aNuHnzJus4oqFCtjPt2rXD7NmzkZycDI1GY/Hjp6Wl0aPSRBSPPfYYJk+ejKVLl9rM0AUVsh0aM2YM/Pz8sHXrVoset6SkBOfPn8eQIUMselxiu6ZOnYqSkhLs37+fdRRRUCHboQfXB8jPz7fYcQ8ePIhhw4ZBqVRa7JjEtsnlcixevBjr16+3uhczNIUK2U4FBATg7bffRlJSksUm2dNwBTGH7t27Y8KECVi2bJnVD11QIdux8ePHw8nJCTt27DD7sQoKCnD37l2EhYWZ/VjE/kybNg3Xr1+3mhczNIcK2Y7JZDLEx8fjiy++wLVr18x6rPT0dIwePRoyGZ1yRHwKhQKJiYlW82KG5tB/HXauY8eOeP3115GSkmK2oQu9Xo+MjAx6GISY1e9+9zs899xzWLlyJesorUaFTDB58mTU19dj9+7dZtn/2bNn4eTkhG7dupll/4Q0mDFjBi5evIisrCzWUVqFCplAJpMhISEBH3/8sVkm2TfczKOV3Yi5KZVKJCQkYOXKlVCpVKzjmIwKmQAQJtm/8sorok+y12g0OHz4MK3sRiymb9++GDlyJNasWcM6ismokMl9DZPs09LSRNtndnY2QkJCEBQUJNo+CTFk1qxZyM3NxfHjx1lHMQkVMrlPLpcjISEB69atw927d0XZJ809Jiw4OzsjLi4OS5cuRVVVFes4RqNCJg/p0aMHXnjhBaxYsaLN+6qqqsLJkycxYsQIEZIRYprw8HDJvlOyOVTIpJE33ngD+fn5OHz4cJv2k5WVhfDwcHh4eIiUjBDTxMTEIDs7W3LvlGwOFTJpRKFQ3L9TXVFR0er90HAFYU2q75RsDhUyaVKfPn3w7LPPtvpO9e3bt3Hp0iUMHjxY5GSEmCYiIgL9+/fHhx9+yDqKQVTIpFkzZ87ETz/9hBMnTpj82YyMDERGRkKhUJghGSGmef/993HkyBHk5uayjtIiKmTSrIY71ampqS3fqdbpgEceu05PT6dHpYlkeHh4YMGCBUhJSYFarW5yG5UKuHEDKCoCWI1uyNkclliL8PBwREREYMOGDVi4cKHwy0uXgL17gexs4Px5oLZW+L2rK9CrF+506waX4mL07duXXXBCHjF06FAcOHAAn3zyCWbPng2tFjhyBPjmG+DMGaC0FJDfa0StFujQAXjmGeDll4H+/QFLPGjKmfJUVlhYGH/q1CkzxiFSVFVVhUmTJmH1K6+g17ffAj//LFwRKxSAk9PDZ7FajYo7d8DLZPAaNgyIjwf69GGan5AGZWVlmDTpZURFbcaOHZ3R8HS1szPg6Phb6fI8UFcnXGvIZEBwMLBkCTBwYOuOy3HcaZ7nDa49S0MWxCA3R0dsbN8e3jNmQP/zz4CnJ+DjA7i5/VbGACCXg3dzw22tFk4BAcBPPwETJgArVwL19ez+AYTco9F4Q6fbgsREJdRqPTw9hdNZoXj4CpjjhGsNb2/Aw0MYypgyBVi4EGhmxEMUVMikZdXVwJQp6HLkiFC2dXUtfnerqamBg1wOJycn4Ux3cwM++QSYNu23oQ1CGLhxA3jhBaCwMBCurhpUVZUY9TmOE05jd3fgq6+EYjbXGDMVMmmeVgtMnw6cPg14ecG/fXuoVCrUtFCsFRUVDz8IIpcLlxknTgAzZza6+UeIJahUwEsvAXfuAN7eHIKCAlFWVg612viLBAcH4VQ+fRqYMcM8pzIVMmne558DOTmAlxfAcZA7OCAwIADFxcXQN3HvQc/zqKyshKen58N/wXHCmXzsGLB9u4XCE/KbpCSguFj40gYAcrkjAgL8UVRUDJ43vlkbTuUffjDPqUyFTJqWnw+sWSN8V3tgiMLdwwMKhQIlJY2/7lVVVcHJyQmO8iYm73CcMAsjNRW4ft2cyQl5SHY28N13v5VxA09PTzg6yk1eSIvjABcX4VQuKhIxKKiQSXM2bwY0GuHW8wM4AIGBgSgvK2s0n7OiogKeLa1boVAI+/z8czMEJqRp69cLww2NX+fIITAwCKWlpairM+1OXcOpLPZVMhUyaUylEi4pmilXR7kc/gEBKCouRoVWi7nXr2NQXh6mlJTA4DN9bm7A11+zm3lP7EpBgTDm6+7e9N87OjrC398fBQWfoqBgCvLyBqKoaLFR+3Z1Bb78UpgeJxYqZNLYyZPCRMymhh7u8fT0hNzBAYkFBXDkOOz098cHXl5YeesW8ls6Qx0dhSf7aD47sYAffhBO5ZYe6vDy8oJc3g6Oji/C0/P/Gb1vhUKYzXnunAhB76FCJo39/LPBecMcAM+AABytqsLrHh7QVFYiol07DHV3x35DK8SJfRYT0oycHGOesOPQufMfUVPTA4CrSfvXaIC8vNama4wKmTSWmyv8v38DbvI8lI6OkN25g7q6Ori6uaGbUtnyFTIgXHlLfJEXYhvOnQOUSsPbOToq4Ofnd2+5WdPeKfnzz63L1hRay4I0VlUl3AUxoEavh6dCAY7joNVqUVhYiOq6OtzUaFCg0wnfFZug1GhQePAgPn711Yd+39xj/GL9vjl0XNs97unTK6HRuEIm0xi1fX19vUnzi2UycW+HUCGTxuTyZsv0QS4yGar1enTt2hXqew+LKMrL4atWIzAgoNnPyaqr4fLEE1iwYIHRkbhmvneK9Xs6rm0e949/9MKdOxycnIzLUVLiD73e+GlwPG/cFbixqJBJY127CkMKri2PpwUrFNABuFZfj2BnZwDA/8rK0N3VFc73/tyk2loon3oKXr16iRiakMZCQ4Fbt1q8P/0QmczBpCtkvR7o3r112Zo8vni7IjYjLKypSZuNOMtkiHR3xyd37qBWr8d/a2rwfWUlxj06A/9RcjnQr59IYQlp3oABwgoAhvC8Dnp9PQA9AD30+nrwvM7g5xQKQMzrCrpCJo01lKWh+UIAFgQGIqmoCKMuXYKngwM+CAzEYy19h+N54YfWSiYW8PTTwu0QQ6dySclnKCnZfP/PFRVp8PV9E35+bzb7Ga1W2G/v3uLlpUImjXXvLvxcuSI8yNECDwcHrOnUyfh9V1YCTz4JdO7cxpCEGNanD9Cpk7CORUsjcH5+LZdvUyorgfHjm31+qlVoyII07e23hUmWJt5JbxHPC4NuM2aIt09CWsBxwKxZwtR3MU9lnU4Y1Xv9dfH2CVAhk+aMHSsMXRh6yMMUFRXCoN7IkeLtkxADxo8X/1RWqYR1kcW+L02FTJomkwFr1wpzesSYaFldLbwnZ9Uqy7ycjJB7HjyVq6vbvr+KCmEYZO7ctu/rUVTIpHnBwcCnnwrfz9pyJje8sXrrViAoSJxshJggOBjYskX4v1t6gXpLeB4oLwfatQN27BCW4BQbFTJp2cCBwpJWSiVQVmbaaxL0euEMdnUVzuD+/c2XkxADnn5aeAWTp6dwWuoMz2q7T6MRPtOzJ7BnD9C+vXkyUiETw8LDgawsICpKuLVcVtby5E6tVtimshJ47jnhszTvmEjAk08Chw8Dkyb9dirX1TV9w4/nhdG68nJhmwULhFVpzfkljzPlufCwsDD+FC2baN/Onwe2bRPOzIY5xQ3lLJcL48McB7z4onDXIzSUbV5CmnHjBvCPfwA7dwJ37woPeTxYhxqNMNTx5z8Df/hD4zeOmILjuNM8z4cZ3I4KmbSKVius/p2XJ1xCyGTCu/d69AC6dDFqcSJCpKKsDLh0SZg9wXGAj49wKos1TmxsIdODIaR15HKgWzfhhxAr5+0NPPMM6xQ0hkwIIZJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJh0jxkjuPuACg0XxxCCLFJnXme9zO0kUmFTAghxHxoyIIQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiTi/wNGxDXLo9qWxwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -536,7 +514,7 @@ "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", "\n", "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -569,7 +547,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -584,14 +562,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlclWX+//HXdVhFQFTcN1wrK/Nb6pgtU1PNODZftXLKyq8L9gt1mlIrK52sNJXMBRUUUNAsGzNzy5y0srLSFiW1XHNFUEcRRFQQ4Vy/P24wRJYDnHPus3yejwcPz3Jz358r7X2ucy+fW2mtEUII4V0sZhcghBDC+ST8hRDCC0n4CyGEF5LwF0IILyThL4QQXkjCXwghvJCEvxBCeCEJfyGE8EIS/kII4YV8zS6gPOHh4ToiIsLsMoQQwq1s27YtQ2vdoLLlXDb8IyIi2Lp1q9llCCGEW1FKHbVlOZcNf+FdCgogNRXOnweLBRo0gIYNQSmzKxPCM0n4C9NkZ8Pq1bBsGezfbwS9xQJaGx8GtWtDly4wcCDceSf4+JhdsRCeQ8JfON2lSzB7NixYAIWF4OcHwcFG8Bcr/gDYtAm++Qbq1YPoaLjnHtPKFsKjyNk+wqn27YOePSE+HmrVgrAwY4ZvKfUvUSnjQ6FOHQgNhXPnYOhQGDkSLl40p3YhPImEv3CanTvhkUcgLQ3q1gXfKnzvDAoyPgg+/hgGDIALFxxXpxDeQMJfOMWxY0ZoFxQYIV4dFovxTWHHDhg2DKxW+9YohDeR8BcOZ7XC6NHG7prg4JqtSynjA2DzZli61D71CeGNJPyFw330EaSkVH/GX5pSxnGCiRPh1Cn7rFMIbyPhLxzKaoU5cyAgoOJz9jMzl3H48P+xd+/tHD/+eqXr9feH/HzjNFEhRNVJ+AuH2roVTp40zuypiK9vOOHhQ6lTp7fN6w4KgqQk4ziCEKJq7BL+SqlkpdQppdSv5byvlFKzlVIHlFI7lVK32mO7wvVt3gyXL1d+pW5o6J8ICbkHHx/b9w0FBBjHEQ4dqmGRQnghe838FwE9K3j/r0D7op+ngXl22q5wcd9/b4S0o2gNe/Y4bv1CeCq7hL/WehOQWcEifYDF2vA9EKaUamKPbQvXdvCgsX/eUfLzjW0IIarGWfv8mwHHSjxPK3pNeLj8/Guv3i1PYWEhZ89mkZ19losXbbuKy2KRC76EqA6XOuCrlHpaKbVVKbX19OnTZpcj7MDf37aLsQoLC0lNPYqPjw8BAQEcP36Co0ePcOHCeUCX+3tWa+UHk4UQ13JW+KcDLUo8b1702lW01ola6y5a6y4NGlR6LwLhBtq0MWb/FSksLODo0UMEBfkRElKbwMAA2rRpQZ06ofz3v//l8OHD5OTkUNaHgL8/tG3rmNqF8GTOCv81wMCis366A9la6xNO2rYwUbduRhfP8hQWFpCamgqsJjPzIc6ceYfs7HXs23cHly8vp02bNoSHh5ORcZpDhw5x7lw2JT8ElIIbbnD4MITwOHZp6ayU+jdwDxCulEoDXgP8ALTW8cA6oBdwALgIDLHHdoXru/NOo4On1tee7mnM+FMJDg6mYcPngRfKXEdISCghISGcP3+BM2cyOHXqNOHh9QkMrEOtWhbatXP8OITwNHYJf63145W8r4F/2GNbwr107QqNGkFmpnFRVjEj+I8SEhKCsYuvslt2KYKDgwkODubixQtkZGRw/Hguf//7SQoLb8TX14HnkwrhgVzqgK/wPBYLPPOMsetHF+2tqXrwXy0oqDaNG7eiceP61Kq1ht69e7N48WIuSqN/IWwm4S8c7tFHoVMn47aNBQU1C34wPkQuXIDXXgsgPv514uLi2Lt3L7179yYxMZFz587ZfxBCeBgJf+FwFgvMnAl+fgUcOnSSkJBQGjRoSHWD/+xZY3fS//2f8Vq7du2YPHkyycnJnDx5kr59+zJ79mwyMyu67lAI7ybhL5wiNDST5s3HUbt2bQICqncar9UKWVnQsSPMn3/txWMtW7Zk/PjxLFmyhLy8PPr168fUqVM5efKkHUYghGeR8BcOd+bMGaKionj00XZ8/nldGjY0Zu+FhbavIzfX2G3Us6dxE5eQkPKXbdKkCWPGjOHDDz8kMDCQJ554gokTJ3Ls2LHyf0kIL6O0Lv/qSTN16dJFb9261ewyRA1lZGQwbNgwevbsyVNPPQUYQT59OixebMzm/f0hMPDamXxBgdG1U2vjRjCTJ8MDD1TeIbS07Oxsli5dyrJly+jevTuRkZG0lSvDhIdSSm3TWnepdDkJf+EoGRkZREVF8eCDDxIZGXnN+5mZsGKFcUOWQ4fAx+f3D4CCAvDzg9tug0GD4J57qnbD97JcuHCB5cuXs2TJEjp16kRkZCQdO3as2UqFcDES/sJUp0+fJioqir/97W9lBn9p+flw+DCcP298AISHQ/PmVZ/l2yIvL49Vq1axePFi2rRpQ2RkJLfeKreYEJ5Bwl+Y5tSpUwwbNozevXszePBgs8spV35+PuvWrWPhwoU0bNiQyMhIunfvjnLEJ44QTiLhL0xx6tQpoqKieOihhxg4cKDZ5diksLCQDRs2sHDhQgICAhg6dCh33303Flt7UQvhQiT8hdO5Y/CXZLVa+eqrr0hOTiY/P5/IyEgeeOABfHx8zC5NCJtJ+Aun+u9//0tUVBT9+vVjwIABZpdTI1prtmzZQnJyMhkZGQwePJgHH3wQPz8/s0sTolIS/sJpTp48WXQe/6M8+eSTZpdjVykpKSQlJXHkyBEGDhxI3759CXDkTYmFqCFbw192aooaOXHiBFFRUTz22GMeF/wAt956K3Fxcbz99tv8+OOP0kROeAwJf1FtxcHfv39/nnjiCbPLcaiOHTsyffp0aSInPIaEv6iW48ePExUVxRNPPMHjj1d4OwePIk3khKeQ8BdVdvz4cYYNG8aAAQPo37+/2eWYQprICXcn4S+qJD09naioKAYMGMCjjz5qdjmmkyZywl1J+AubFQf/oEGDJPhLqV+/Ps8++ywrV66kYcOGDB48mHHjxnHw4EGzSxOiTBL+wiZpaWlERUUxZMgQ+vXrZ3Y5LqtOnTpERUWxZs0aOnTowPDhw3nhhRfYvXu32aUJcRU5z19U6tixYwwbNoyhQ4fy8MMPm12OW5EmcsLZ5CIvYRepqakMHz6cp556ioceesjsctyWNJETziLhL2osNTWVYcOG8fTTT9O3b1+zy/EIJZvIBQYGEhkZKU3khF1J+IsaOXr0KMOHD7/SmlnYlzSRE44i4S+qTYLfeUo3kRsyZAi9evWSJnKi2iT8RbUcOXKEESNGMHz4cP73f//X7HK8ijSRE/Yg4S+q7PDhw4wYMYJnnnmGBx980OxyvNauXbtISkpi165dPPnkk/Tr14+goCCzyxJuQrp6iio5dOgQI0aM4J///KcEv8luvPFGZsyYIU3khENJ+Iurgr9Xr15mlyOKSBM54UgS/l7u4MGDjBgxgpEjR0rwuyhpIiccQcLfix04cIARI0YwatQoevbsaXY5ohLSRE7Yk4S/l/rtt9/4xz/+wfPPP89f/vIXs8sRVSBN5IQ9SPh7of379/PMM8/w/PPP8+c//9nsckQ1SRM5URNyqqeXKQ7+MWPGcP/995tdjrAjaSInQM7zF2UoDv6XXnqJ++67z+xyhINIEznvJuEvrrJ3716effZZXn75Zf70pz+ZXY5wAmki550k/MUVxcH/yiuvcO+995pdjnAyaSLnXST8BQB79uzhueeeY+zYsdxzzz1mlyNMJE3kvINT2zsopXoqpfYppQ4opV4u4/3BSqnTSqntRT9P2WO7omK7d+/mueeeY9y4cRL8AqUUPXr0YMGCBYwfP54NGzbQt29fPvjgAy5dumR2ecLJajzzV0r5APuBB4A04Cfgca317hLLDAa6aK2fsXW9MvOvmd27dzNy5Ej+9a9/cffdd5tdjnBR0kTO8zhz5t8NOKC1PqS1zgeWAn3ssF5RTbt27eK5556T4BeVkiZy3sse4d8MKHl9eVrRa6U9opTaqZRarpRqUdaKlFJPK6W2KqW2nj592g6leZ9ff/2VkSNHMn78eAl+YTNpIud9nHXO18dAhNa6E/AZ8E5ZC2mtE7XWXbTWXRo0aOCk0jzHzp07GTVqFK+//jp33XWX2eUINyRN5LyHPcI/HSg5k29e9NoVWuszWuviI0oLgNvssF1Rws6dO3n++ed54403uOOOO8wuR7g5aSLn+ewR/j8B7ZVSrZVS/kB/YE3JBZRSTUo87Q3sscN2RZEdO3ZcCf4ePXqYXY7wIGU1kfvXv/4lTeQ8QI3DX2tdADwDrMcI9WVa611KqQlKqeK7fz+rlNqllNoBPAsMrul2hWH79u288MILTJgwQYJfOEzJJnLt2rWTJnIeQC7ycmM///wzY8aMYeLEiXTv3t3scoQXkSZyrkuu8PVwKSkpjBkzhsmTJ9OtWzezyxFeKj8/n08++YRFixZJEzkXIeHvwVJSUnjppZeYNGmSBL9wCdJEznVI+Huobdu28dJLLzFlyhS6du1qdjlCXEWayJlPwt8Dbd26lZdffpno6Gi6dKn071YI00gTOfNI+HuYn376ibFjxxIdHc1tt8llEsJ9pKSkkJSUxJEjRxg4cCB9+/YlICDA7LI8loS/B/nxxx8ZO3YsU6dOlTMqhNuSJnLO4dSWzsJxfvzxR8aNGyfBL9yeNJFzLRL+Luz777+XGb/wONJEzjVI+LuoLVu28OqrrzJt2jT+53/+x+xyhLA7aSJnLgl/F7R582bGjx/PtGnT6Ny5s9nlCOFQ0kTOHBL+Lmbz5s289tprTJ8+nVtuucXscoRwGmki51wS/i7ku+++uxL8nTp1MrscIUwhTeScQ071dBHffPMNEyZMYMaMGdx8881mlyOEyyjZRK5t27ZERkbKcbAKyHn+bmTTpk28+eabzJw5kxtvvNHscoRwSdJEzjYS/m5i06ZNTJw4kVmzZtGxY0ezyxHC5UkTuYpJ+LuBr7/+mkmTJhETEyPBL0QVlW4iN3ToUB544AGv/xCQ8HdxX375JVOmTGHWrFnccMMNZpcjhNsqbiKXlJREZmYmgwcP9uomchL+Lmzjxo1ER0cze/Zsrr/+erPLEcIjaK35+eefvb6JnIS/i5LgF8LxvLmJnDR2c0FffPEF0dHRzJkzR4JfCAeSJnKVk/B3ks8//5y33nqL2NhYrrvuOrPLEcIrSBO58kn4O8GGDRuYOnUqsbGxdOjQwexyhPA60kTuWrLP38E2bNjA9OnTiY2NpX379maXI4QAzpw5w5IlS1i1ahX33nsvgwcPpkWLFvbdyNmzsGcP7N0LWVnGaw0bwvXXGz/BwfbdXhE54OsCPv30U2bOnElcXBzt2rUzuxwhRCnZ2dksXbqUZcuWcfvttzNkyBDatm1b/RVarfDttzB/PmzZAr6+kJ8PWhs/Pj7g5weFhXD//RAZCV26gB2vUpbwN9l//vMfZs2aRVxcXM3+MQkhHO7ChQt8+OGHvP/++3Tq1InIyMiqX3h59CiMGgW//GI8DwmB8i44s1ohO9sI/T/+EaKjoUGDmg2iiIS/idatW8fs2bOZO3cubdq0MbscIYSNqt1Ebu1aeOEFKCiAOnVsn8lrbXwIBAUZ3xb+8IeaDQAJf9N88sknzJkzR4JfCDdWpSZyq1YZwV+rFlT3grKLF41dQYsWwe2316h2CX8TrF27lri4OObOnUvr1q3NLkcIUUOVNpH79Vd4+GEj9Gt6JfHFi8Y3hg0boFmzaq9Gwt/JPv74Y+bOncu8efOIiIgwuxwhhB2V2UTuj3/E0qsXpKVBaKh9NnT2LHTtCkuWlH+8oBIS/k60Zs0a4uPjmTt3rgS/EB6sZBO5W7ZvJzI9naBmzbDY62yd4mMA8fHG2UDVIO0dnGT16tXEx8fLjF8IL6CUokePHixITCTy8mXO5edz8MABMrOysJYzkT5XWMgLaWncuXcvfztwgE+zsyvagDHjT0x00Ah+5+vwLXiwVatWkZiYSHx8PC1btjS7HCGEk6iUFILz8ghu3ZrcvDwyMjLIyMigXr161K1bF58Su2yiT57ETyk2dOjA/rw8njt2jA6BgbQp7xhBSAikpBi7k5o3d9gYZOZfTStWrJDgF8Jbbd9unNapFLVq1aJFixa0bNmSvLw8Dhw4wOnTpyksLCTXamVjTg7DGzQgyGKhc1AQfwwJ4RNbZv87dzp0CBL+1bBixQqSkpJISEiQ4BfCG/3wg3H1bgmBAQE0b9aMiIgILhcUcODgQVJOnMCiNS39/a8s1z4ggEOXLlW8/suXHR7+3rfbJyfH+IvbudP4apWTY1xy3aqVcZS9c2e44YZyL9JYvnw5CxcuJCEhgeYO/EomhHBh6elGm4YSNMYBYR8fH8LDwwkNDeXQqVOovDyOpqbSokULLEoRbLFwwWqteP1+fnDkiMPKB28K/9RU4yDKRx8Zl1bn54O/vxH8WhsfBmvWGF+3WreGYcOgTx/j/SIffvgh77zzjgS/EG5Ia01+fj65ubnk5eWRm5t75XHx89Kvl36/+Pk/duygzoULXFIKbbVi1Rqr1YpSCovFgkUplMWCn9bkKUVWVhbNmjbF4uvLBauV2racxlnZB0QNeX74W63GVXNvvWXsowsJuebr2lW0hmPH4MUXjd+LiYE2bVi2bBmLFy8mISGBZjW4AEMIUTatNZcvX74mfMsL4KqGd15eHr6+vgQGBhIYGEitWrWu/Fn8U/q90NBQGjVqdNVrgYGBtDx0iMCDB1G1a2OxWFAWi/FnqTHVz82lcN8+fJs3x7cod/ZfulT+wd5ihYVGmwgHskv4K6V6ArMAH2CB1jq61PsBwGLgNuAM8JjW+og9tl2h3FwYPhy++QZq1zaCvzJKGcsGBcHu3fDgg2z8+9959+efSUxMpGnTpg4vWwhXVDKcbZkhVzZ7Lh3eeXl5+Pj4XBPCpUO65HuhoaE0bNiw3PAu/bpPiW/yNXLvvfDbb8beg3LkXbrE6bQ07gsN5f28PF61Wtmfl8fXOTkstOW0cFt6CtVAjcNfKeUDxAEPAGnAT0qpNVrr3SUWGwpkaa3bKaX6A28Bj9V02xXKz4enn4bvvoO6daveMlUpCAvj7MmTXDdjBgvffZdwCX7hworDuSYz5MqCvaxwLiuki98PDg6mQYMG5YZ36d+xWzg72i23XLPPv6S8S5dITU2lUaNGvFa7Nm8cP84D+/dTx8eHVxo3rnzm7+tr9Px3IHvM/LsBB7TWhwCUUkuBPkDJ8O8DvF70eDkQq5RS2pGXF8+ZU/3gL3ImM5PM8+eJaNoUv1dfhR49oFEjOxcqvEXpcLZ1/3Jl4V3yPYvFUmnIlg7n8PDwcsO79OtuE86OdscdRq4UFFyzGzkvL4/UY8do3KgRoUVtH6ZX5UYxeXnGjV46dbJnxdewR/g3A46VeJ4GlO5LemUZrXWBUiobqA9k2GH719q1y7g8OjS0ZsGfmUmrVq3w8/Mzem68/DIkJ9v1xgvCdZQM55rOkMsL7+Jwrixkix8HBQVRv379Cnd9lPzTt6LjWcJ+6tSBvn1h+XJjglkkLy+P1NRUGjdufCX4qyw3F0aMqPjYpB241L8UpdTTwNNAzc6fnzzZOHBbzf94ZzIzycrMJKI4+MH4y/72W/j5Z7j11urXJqpNa01BQYFdZsjlhbfFYqk0ZEs+DgoKol69etccNCwv2CWcPcjw4UY756IzB68Ef5MmhNpyfLEsubnGrL9/f/vWWgZ7/EtMB0p+p2le9FpZy6QppXyBOhgHfq+itU4EEsFo7FatalJTjfP4K/nUzbdaiT55kh8vXuRcYSHN/fx4pmFDrrt0iaysrN9n/MWUMj5QFi6U8K9AyQOC9ti9Ufo9VXRFpS37kIt/6tatW+m+6eLXJZyFzSIijLMCp0wht7CQY8eO1Sz4rVa4dAlmzIB69exaalns8S/9J6C9Uqo1Rsj3B54otcwaYBCwBegHbHTY/v5PPjH+I1ZyHm0h0NjPj8SWLWns58d358/z/JEjTPP3p1ubNviVFQIhIfDpp8anc61aDinf0YpnzvY6fa7061prm2bBJd+rW7euTWd2BAYGXv2BLITZhgzh7Nq1XFy/nsYtWtQs+M+eNWb8f/6zfWssR43Dv2gf/jPAeoxTPZO11ruUUhOArVrrNUAS8K5S6gCQifEB4RhbtlR4FL5YLYuFp0vcM/OG/HzqW61caNCg7OAH44IvHx/jFC8HHYwpuVujJjPk8sK7ZDjbunujZDhXNnuWcBbeZPe+fYzJyWHB3XcT+ttvZR4ArlR+Ply4YNwUZuJEpx1TtMt3XK31OmBdqdfGl3icB/zdHtuq1K+/QmBglX4lIyODI1lZnPHzo0NQUIXLWgsKyN++nZwmTRyye8Nqtdq8i6L4cVhYmM0Xrvj6+pZ9KzohRJXs3r2bkSNH8q/XXqPx7bfD3LkQG2vsHg4NrfxmLIWFcO6cca3AhAnw+OPVvoFLdXjezVzatjUOztr4H/F0RgZpJ04w08eHpr6+/CMoCKvVetUl29pqxVr0vM7lyyxp2ZLP27QpN6CrGt4l3/Pz85NwFsLF7dq1i5EjR/Lqq69y9913//7Gnj0wbRps2vT77ufAQOPbgNbGN4O8PGNZiwX++lfj/r9VORW0ErbezMXzjm5VMTj9/P2ZW9RD45/16hFSdLl2cW+O4sfFl3CrM2d48aWXePGppxxRvRDCxf3666+MGjWK8ePHc9ddd1395g03QFISHD8O69f/3kQyO9vIprp1jRNGuneHv/zFKQd2y+N54R8W9nvTtkporZl1/jwqLIy369Qh58wZ8vPyjIteate+pk8HYHyCh4XZvWwhhOv75ZdfGD16NK+//jp33HFH+Qs2bQpDhhg/Lsrz+vnfdNPvX6sqMeXkSQ7n5xPTogWNwsJo27Yt9evV4/SpUxw+fJhz585xzU4xHx+HX3YthHA9O3fuZPTo0bzxxhsVB7+b8LyZf48exv62Spy4fJkVZ8/irxR/+e23K6+PbdyYnm3acP78eTIyMjh1+jTh4eHUCQ1FWa3Gfrv27R05AiGEi9mxYwcvvPACb7zxBj169DC7HLvwvPDv1QvefrvSc/2b+Pmx9YYbyn0/JDiY4OBgLl64QEZGBqdPn6ZJQAC1+vfHp7KmTEIIj7F9+3ZefPFFJkyYwO233252OXbjebt9mjc3Zv/nztV4VQqoXbs2rVq1olnTpuReusQ/t25lyZIl5Obm1rxWIYRL+/nnn3nxxReZOHGiRwU/eGL4A4wbZ8z6L1+22yqD8vNp8NhjPJeUxM6dO+nduzdJSUnk5OTYbRtCCNeRkpLCiy++yKRJk+jevbvZ5didZ4Z/hw7w3HPG/XntcR3DxYvGDV4mT+a666/nrbfeIjExkaNHj9K3b1/mzp1LVlZWzbcjhHAJKSkpjBkzhsmTJ9OtWzezy3EIzwx/gKgouO8+yMqq2QfAxYvGlXjz50P9+ldebt26NRMmTGDx4sWcPXuWRx55hBkzZnDq1Ck7FC+EMMu2bdt46aWXmDJliscGP3hy+Pv6QlyccSHF2bNGt7yq0Nr4PaXgnXegnH8EzZo1Y+zYsSxduhSA/v37M3nyZI4fP17TEQghnGzr1q1Xgr9r165ml+NQnhv+YFzoFRcHU6YYl1VnZRkXgFVEa2N3UXY2dOliXKVnw/6+hg0bMnr0aD766CPCwsIYMGAA48eP5/Dhw3YajBDCkX766SdeeeUV3nrrLbp0qbQ7gtvzvN4+5TlxwpjBv/eecSD48uXfu3RqbTwv7r9x000wbBg88EC1Gy3l5OSwbNkyli5dyq233kpkZCTXXXed/cYjhLCbH3/8kbFjxzJ16lRudfP7ddja28d7wr9YXh6kpBi3ekxJMU4J9fWFVq3gttuMVs2tW9ttcxcvXmTlypW89957dOjQgaFDh9LJwffmFELY7ocffmDcuHEeEfwg4e9y8vPz+fjjj1m0aBHNmjUjMjKSrl27SgdPIUz0/fff8+qrr/L222/TuXNns8uxCwl/F1VQUMCnn37KwoULCQkJYejQodx5553yISCEk23ZsoXx48czbdo0brnlFrPLsRsJfxdntVr54osvWLhwIQBDhgzhvvvuw+LEmzkI4a02b97Ma6+9xvTp0z1uN6yEv5vQWvPtt9+SnJzMuXPnGDx4MH/961/lRuJCOMh3333H66+/7pHBDxL+bkdrzdatW0lKSiI9PZ1BgwbRu3dv/G24L4EQwjbffvstb7zxBjNmzODmm282uxyHkPB3Yzt37iQ5OZl9+/YxYMAAHn74YWrVqmV2WUK4tW+++YYJEyYwc+ZMbrrpJrPLcRhbw192MLugTp06ERMTQ0xMjDSRE8IONm3axIQJE4iJifHo4K8KCX8Xdt11111pIpeamkqfPn2Ii4uTJnJCVMHXX3/Nm2++yaxZs7jxxhvNLsdlSPi7gdatW/PGG2/w3nvvce7cOWkiJ4SNvvrqKyZNmkRMTAwdO3Y0uxyXIuHvRpo2bcorr7wiTeSEsMGXX37J5MmTmTVrlgR/GST83ZA0kROiYhs3bmTKlCnMnj2bGyq4Xas3k/B3Y3Xr1mXEiBGsXr2aiIgIoqKiGDNmDPv27TO7NCFM88UXXxAdHc2cOXO4/vrrzS7HZcmpnh4kNzeXlStX8u6770oTOeGVPv/8c6ZOnUpsbCwdOnQwuxxTyHn+Xqy4idw777xDkyZNGDp0qDSREx7vs88+Y9q0acyZM8drgx8k/AXXNpGLjIzkrrvukg8B4XE2bNjA9OnTiY2NpX379maXYyoJf3GF1Wpl48aNJCcno7VmyJAh3H///dJETniE9evXM2PGDOLi4mjXrp3Z5ZhOwl9cQ2vNd999R1JSEtnZ2QwZMkSayAm39umnnxITE0NcXBxt27Y1uxyXIOEvylXcRC45OZm0tDRpIifc0rp165g9ezZz586lTZs2ZpfjMiT8hU2Km8jt3bv3ShO5oKAgs8sSokLr1q1jzpw5xMXFSfCXIo3dhE2Km8jNnj2bX3/9lT59+rBgwQJpIidc1tq1a5n6+sCLAAARHklEQVQzZ47M+GtIwl8A0KFDB6Kjo5k/fz7Hjh2TJnLCJX388cfExcUxb948WrdubXY5bk3CX1wlIiJCmsgJl7RmzRrmzZtHfHw8ERERZpfj9iT8RZnKayKXnp5ucmXCG61Zs4b4+HjmzZtHq1atzC7HI0j4iwqVbiI3cOBAxo8fz6FDh8wuTXiJVatWER8fT3x8vAS/HdUo/JVS9ZRSnymlfiv6s245yxUqpbYX/aypyTaFOYqbyK1atYqIiAiGDRsmTeSEw61YsYL58+cTHx9Py5YtzS7Ho9ToVE+l1FQgU2sdrZR6GairtX6pjOXOa62Dq7JuOdXTtZVsIte+fXueeuopaSIn7GrFihUkJSURHx9PixYtzC7HbTjlPH+l1D7gHq31CaVUE+ArrfV1ZSwn4e+h8vPzWbt2LYsWLZImcsJuPvroIxYuXEh8fDzNmzc3uxy34qzwP6u1Dit6rICs4uellisAtgMFQLTWelVl65bwdy8FBQWsX7+ehQsXUrt2bYYOHSpN5ES1fPjhh7zzzjskJCTQrFkzs8txO3YLf6XU50DjMt4aB7xTMuyVUlla62v2+yulmmmt05VSbYCNwH1a64NlLPc08DRAy5Ytbzt69Ghl9QsXI03kRE0sW7aMd999l/j4eAn+anKp3T6lfmcRsFZrvbyi5WTm796Km8glJydz9uxZaSInKvXBBx+wZMkS4uPjadq0qdnluC1ntXdYAwwqejwIWF1GIXWVUgFFj8OBO4DdNdyucHFKKe68806SkpIYO3Ys69at46GHHuLDDz8kPz/f7PKEi1m6dKkEv5PVdOZfH1gGtASOAo9qrTOVUl2AYVrrp5RSPYAEwIrxYROjtU6qbN0y8/c8v/zyC8nJyezZs0eayIkr3n//fZYuXUpCQgJNmjQxuxy3J109hcvav38/ycnJbNu2jccee4zHHnuMkJAQs8sSJnj//ff54IMPSEhIoHHjsg4tiqqSrp7CZZVsIpeWliZN5LzUe++9x7Jly0hMTJTgN4GEvzBNREQEr7/++lVN5KZPny5N5LzAu+++y/Lly0lISKBRo0Zml+OVJPyF6YqbyH3wwQdYLBZpIufhFi9ezIoVK0hMTJTgN5GEv3AZDRo0YNSoUaxYsUKayHmoRYsWsWrVKhISEmjYsKHZ5Xg1CX/hcsLCwhgxYgSrV6+WJnIeZOHChVdaM0vwm0/CX7is4OBgIiMjWb16NZ07d2bkyJE8++yz7Nixw+zSRBUlJyezdu1amfG7EDnVU7gNaSLnnpKSkli3bh0JCQmEh4ebXY7Hk/P8hceSJnLuY/78+axfv56EhATq169vdjleQcJfeDyr1cqXX35JUlISVquVyMhIaSLnQhITE/nss8+Ij4+X4HciCX/hNUo3kRs8eDC9evWSJnIm0VqTmJjIF198QXx8PPXq1TO7JK8i4S+8jtaabdu2kZSURFpaGgMHDqRPnz74+/ubXZrX0FqTkJDAxo0bJfhNIuEvvFrJJnJPPvkkjzzyiDSRczCtNfHx8Xz11VfMmzdPgt8k0ttHeLWbb76ZmTNnMnv2bHbv3k2fPn1YsGABOTk5ZpfmkbTWzJs3j6+//lpm/G5Cwl94tA4dOjBlypSrmsjFxsaSmZlpdmkeQ2tNXFwc33zzDfHx8dSte83N/IQLkvAXXqFkE7mcnBz69esnTeTsQGtNbGwsmzdvZt68eYSFXXMLb+GiJPyFVymridykSZNIS0szuzS3o7Vmzpw5bNmyRYLfDUn4C69UsolcvXr1GDRokDSRqwKtNbNmzeKHH35g3rx51KlTx+ySRBVJ+AuvFhYWxvDhw69pIrd3716zS3NZWmtiYmLYunWrBL8bk/AXgmubyI0aNUqayJVBa83MmTNJSUlh7ty5hIaGml2SqCY5z1+IMpRsIte4cWOGDh1Kt27dvLp/kNaaGTNmsGPHDmJjYyX4XZRc5CWEHRQWFrJ+/XqSk5OvNJG78847va5/kNaaadOm8csvvxAXF0dISIjZJYlySPgLYUfe3EROa83bb7/Nrl27iIuLIzg42OySRAUk/IVwAK01mzdvJikpySuayGmtmTp1Knv27CE2NlaC3w1I+AvhQMVN5JKTk0lNTb3SRC4gIMDs0uzGarUydepU9u3bR2xsLLVr1za7JGEDCX8hnOSXX35h4cKF7N6922OayFmtVqKjozlw4ABz5syR4Hcj0thNCCe5+eabmTFjxlVN5ObPn8+5c+fMLq1aioP/4MGDMuP3YBL+QthJySZy6enp9O3b1+2ayFmtViZPnsyhQ4eYM2eO23+DEeWT8BfCzko2kTt//jz9+vVj2rRpLt9Ezmq1MmnSJI4ePcrs2bMl+D2chL8QDtK0aVNefvllli1bhq+vr9OayOXlQWYmZGVBQYFtv2O1WnnzzTc5duwYs2bNkuD3AnLAVwgnOXv2LP/+979Zvnw5PXr0YMiQIbRp06bG67Va4dtvYcUK2LoVjh8HH5/f32/XDnr0gMcegw4dyvp9KxMnTiQ9PZ2YmBgJfjcnZ/sI4aLOnz/PsmXLWLp0KZ07dyYyMpLrr7++yuvRGlatguhoY5ZfWAi1akFAABR3obBajW8Cly4Zr918M0yYYPxpvG9lwoQJnDhxgpiYGGrVqmXHkQozSPgL4eJyc3NZuXIl7733Hu3atSMyMpLOnTvb9LunT8MLLxgz/sBAI/QrozUUn4AUFQXPPmvlzTdf59SpU8TExBAYGFjtsQjXIeEvhJuoahO59HR49FE4eRLCwn6f5duqoADOndPUqbONrl0XMXv2NAl+DyLn+QvhJvz9/Xn44YdZuXIlffv2Zdq0aQwaNIhNmzZhtVqvWjY729h3f+oU1K1b9eAH8PXVXLx4nIMHW+HjE0NAgAS/N5LwF8JF+Pj40KtXLz744AMGDx5MfHw8TzzxBBs2bLjyIfDaa3DiBFT//ima9PTjWK0FtG1bn88+82XtWrsNQbgR2e0jhIsq3USua9fRLFhwB3XqKKrXTFSTnp5OYaGVFi2ao5SFvDzj28PXX0O9evYegTCDrbt9PLMVoRAeQCnFHXfcQY8ePUhJSeHvf/fh1Kl0IIiwsDCUKvsTID39VS5e/BGrNRdf33Dq1x9IWFifa4IfjIPFZ8/CRx/B//t/ThycMJ2EvxAuTilFaOht+PhAy5a5nDmTQUZGBvXq1adu3TAsFp+rlg8PH4Kf36tYLP5cunSEo0efJju7DhZL26uCv1hgIMyfD5GRV18fIDxbjfb5K6X+rpTapZSyKqXK/ZqhlOqplNqnlDqglHq5JtsUwhtt2mScxx8UVIsWLVrQokVL8vJyOXDgIBkZpyksLLyybEBAGywWf8A4vfPSpUsUFBynefNrgx+M8M/OhgMHnDYc4QJqesD3V+BhYFN5CyilfIA44K9AR+BxpVTHGm5XCK/y449Xz8oDAwNp1qw5ERGtyM+/zMGDBzh16r8UFPVzOHkymr1772Dfvt4oVZeIiD7l7iYC40Nizx5Hj0K4khrt9tFa7wEqu6l1N+CA1vpQ0bJLgT7A7ppsWwhvsmePMUMvzd8/gKZNm3L5cj5nzpzh0KGD1KlTh/r1R3P58uP4++8hJOQYFkvFp3Nevmxso29fBw1AuBxnnOrZDDhW4nla0WtCCBvl5lZ8Tr+fnz+NGzcp6hWkOHLkCEpZaN36zxQUnCYra3mF67dYICfHvjUL11bpzF8p9TnQuIy3xmmtV9uzGKXU08DTAC1btrTnqoVwa35+Rn+eyvj6+tGoUSMaNWoIFH9aFJKfX3EnUa3B37/GZQo3UunMX2t9v9b6pjJ+bA3+dKBFiefNi14ra1uJWusuWusuDRo0sHH1Qni+li0hP7/y5QoKMjl3bgNWay5aWzl/fgvZ2eupXbtbhb+nlNH9U3gPZ5zq+RPQXinVGiP0+wNPOGG7QniMP/wBfvgBgoMrW1KRlbWcEycmA1b8/JrQqNHzhITcXeFv+fnBDTfYq1rhDmoU/kqph4A5QAPgE6XUdq31X5RSTYEFWuteWusCpdQzwHrAB0jWWu+qceVCeJE//AF8bfi/1de3Lq1aJVZp3QUFxsxfwt+71PRsn5XAyjJePw70KvF8HbCuJtsSwpt17260Xzh/3rb2zVWRk2M0i5N7uHgXaewmhBuwWGDYMOPGLPZsx1VYaKx78GD7rVO4Bwl/IdzEgAHGQdniG7LYQ06OEfxl3d5ReDYJfyHchJ8fzJplXOmbl1fz9WVnQ/PmMHp0zdcl3I+EvxBu5PrrYd4847TPixertw6tjU6e9erB++/b/xiCcA8S/kK4mXvvhUWLjG8CZ88aN2m31eXLxoy/fXvj5u9NmzqsTOHiJPyFcEM9esCXX8Kf/2zst8/KMoK9LFob7SHOnjV2F40eDR9/DE2aOLdm4Vqkn78QbqpePZg7F/bvh3ffhZUrjV1BPj7GtwGljJ/Ll6FxY+PA7iOPyB27hEFu4yiEh9Aajh+HffuM6wEsFqhf37h4KyzM7OqEs8htHIXwMkpBs2bGjxCVkX3+QgjhhVx2t49S6jRw1Ow6qikcyDC7CCfytvGC943Z28YL7jvmVlrrStsiu2z4uzOl1FZb9rl5Cm8bL3jfmL1tvOD5Y5bdPkII4YUk/IUQwgtJ+DtG1Rqquz9vGy9435i9bbzg4WOWff5CCOGFZOYvhBBeSMLfDpRS9ZRSnymlfiv6s24Fy4YqpdKUUrHOrNGebBmvUqqzUmqLUmqXUmqnUuoxM2qtKaVUT6XUPqXUAaXUy2W8H6CU+qDo/R+UUhHOr9J+bBjvaKXU7qK/0y+UUq3MqNOeKhtzieUeUUpppZRHnAEk4W8fLwNfaK3bA18UPS/PRGCTU6pyHFvGexEYqLW+EegJxCil3KrJgFLKB4gD/gp0BB5XSnUstdhQIEtr3Q6YCbzl3Crtx8bx/gx00Vp3ApYDU51bpX3ZOGaUUiHAc8APzq3QcST87aMP8E7R43eAvmUtpJS6DWgEbHBSXY5S6Xi11vu11r8VPT4OnAIqvfDExXQDDmitD2mt84GlGGMvqeR/i+XAfUop5cQa7anS8Wqtv9RaF99J4HuguZNrtDdb/o7BmLS9BdjhNjquQcLfPhpprU8UPT6JEfBXUUpZgOnAC84szEEqHW9JSqlugD9w0NGF2Vkz4FiJ52lFr5W5jNa6AMgG6julOvuzZbwlDQX+49CKHK/SMSulbgVaaK0/cWZhjiaN3WyklPocaFzGW+NKPtFaa6VUWadQjQDWaa3T3GFiaIfxFq+nCfAuMEhrXYXbjghXppQaAHQB/mh2LY5UNGmbAQw2uRS7k/C3kdb6/vLeU0r9VynVRGt9oijsTpWx2O3AXUqpEUAw4K+UOq+1ruj4gGnsMF6UUqHAJ8A4rfX3DirVkdKBFiWeNy96raxl0pRSvkAd4IxzyrM7W8aLUup+jEnAH7XWl5xUm6NUNuYQ4Cbgq6JJW2NgjVKqt9barXvOy24f+1gDDCp6PAhYXXoBrfWTWuuWWusIjF0/i101+G1Q6XiVUv7ASoxxLndibfb0E9BeKdW6aDz9McZeUsn/Fv2Ajdp9L56pdLxKqf8BEoDeWusyP/TdTIVj1lpna63DtdYRRf/vfo8xdrcOfpDwt5do4AGl1G/A/UXPUUp1UUotMLUyx7BlvI8CdwODlVLbi346m1Nu9RTtw38GWA/sAZZprXcppSYopXoXLZYE1FdKHQBGU/GZXi7NxvG+jfHN9cOiv9PSH4ZuxcYxeyS5wlcIIbyQzPyFEMILSfgLIYQXkvAXQggvJOEvhBBeSMJfCCG8kIS/EEJ4IQl/IYTwQhL+Qgjhhf4/LxmYyYQFGIsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWooP1t2dJqVnVLq6VtbF2i5CKJuLP4tlq2F3TZlpbuIgkh1JLaFOlqEVSycUlcIpfJbZK5nN8fRxS5zExyZj5nZt7PxyOPx1ecOedlH6ev75nP+ZzP4XieByGEEPZkrAMQQggRUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEyE3Z2NfXl+/SpYuZohBCiG06ffp0Cc/zfoa2M6mQu3TpglOnTrU+FSGE2CGO4wqN2Y6GLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCJMmmVBCLlHowGuXAFKSwG9HnBzA7p1A1xdWScjVsyihdxwDl+4ABQVAfX1wnn8+ONAz55AQADAcZZMRIgJamqA9HRg61bg/HnAwQGQyYCGt+7U1wMdOwIvvQRMnAj4+7PNS6wOZ8ornMLCwvjWzEO+ehXYvl340WiEC4r6eqF8OQ5QKgGtFggJAWbMAMaMAZydTT4MIeah1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIjgbmzRO2JXaN47jTPM+HGdzOnIVcXw9s2ABs3gzodMLVsKNj09vyPFBdLWzXrh2wfj3wzDNGH4oQ8ygtBd55B/jPf4RiVSqN+5xOB6hUQGAgsGkT0Lu3eXMSSTO2kM12U6+4GBg3Dvj4Y+E89vZuvowB4UrZzQ3w9ATKy4WLi2XLhIsTQpgoKQEmTBDK2MvL+DIGhCtkb29hH5MmAWfOmC8nsRlmKeTiYmD8eKCgQDgn5SaOVLu5Ae7uwKefAosX/zZER4jF1NcDr74KXL8unMStvbnh7i6cwFOnCmN3hLRA9ELWaIA//xm4e1e4qGgtBwfhann7dmDHDvHyEWKUjRuBixeFk7CtXF2B2lrg/ffpKx9pkeiF/MknwOXLgIdH2/clkwnn8pIlwLVrbd8fIUbJzxcK2d1dvGk/np7ATz8Bu3eLsz9ik0Qt5Nu3gf/7P2HIQazzWKEQvj2mpIizP0IM+vJL4aacqWNtLeE44WTeuJHG4EizRJ2HvHOncB63dPOuNTw9gaws4OZN4aY1IWZTWwt8/bVwVdGCer0ey2/eRE5NDVQ6HTo6OuIdf39EtPQ5Z2dhTDo3F+jfX+TgxBaIdoXM88CWLcZNubxxIx6XL4/GxYtDcOXKBJSXf9fi9g1z779reTNC2u7CBWGc18BVhQ5AoKMjNgcH42j37njbzw8LbtxAUX198x/iOGHCfU6OuJmJzRCtkIuLgYoK42YG+fr+GSEhexEaegwdO67F7dsbUVt7ocXPyOXA8eMihSWkORcuCHemDXCWyfCmnx/aKxSQcRx+7+6O9o6OyFOrW/6gXA6cPClSWGJrRCvkvDxhZoQxlMrHIJMp7v2JA8dx0Giut/gZJyfg559p+I2YD8/z0Oflged58A1/fvRHr4fukR8eQKlWi6v19XjM0BWJUimsH0BIE0QbQ75926gLi/tu3lyO0tJ/Qq+vg0LxOHi+DyorVQ9t81v58uB5QKVSYN++7+HgoL/39/xDPw/+Tq83vE1zP63dBgD0er0o2zT8Gwxtw+rfKub/HmL/W1vzv0eDd69fx/CyMlTfuiX84pG70/f/dO/3Wq0WShcXrHVwwHOenuhiqJA5TrhLTUgTRCtkU6dXBgTEorT0eTg7F0KnO4eKihrIZA+eqL/9h9Dw30RdnQuOH8+Go6MeHCdcWQt/z7X409Q2ACCTyQxuw3Hc/e0MHUt2b22Dlo5vzDam/Dss+W81ZRup/1ub2wZJScLiQT4+LZ6/Da7k52NVdTX0SiXmd+pk+AN6vfB1j5AmiFbIrq7GD1kAwn8AAQEBqK52g4tLLpTK/8DH5+Vmt9frhaUBli1LbrSmCyGi6dnT6BNZXVeH9dXV0Lq6IkajgV6rNTzFqK4OCA0VISixRaJVW7dujRe/MqRdu3bQ6fSora1GfX3LY8hqtbBMJ5UxMasePYwu5JRr13BLLseGLl0Q5OuL4uJiGLzFodcD4eFtjklsk2j19vjjwoweQ0MXWm0pVKqD0OtrwPM8vLwKoVIdgJNTy/My1WogzOBaSYS0UY8ewo03A+O8RRoN/lVVhUKex+jLlzG+pAQvlpVh140bzX+I54UrikGDRA5NbIVoQxYKBTBiBHD4sKE1LDiUlX2D4uKlAPRwdAyCt/e7qKx8HF5ePB4cO27A88JFy3PPiZWWkGYoFMCUKcIyhQpFs5t5abXY4+6OkJCQ+2esuq4OhYWF0Gi1cGzqKb+qKmG4omdP82QnVk/UJ/WmTROeqOP55h+dlsu90bnz5od+x/N6FBQUoKJCBc8mFnOprRXeJkLf9IhFREcLSw3W1zdbyqqKCnh6ej50+eCkVMLHxwfFxcXo1KnTw5cWPC98hYyJMWdyYuVEHZENCwP69BEeEDEFx8nQvn173Lp1C1qt9qG/43nhPsj8+TR+TCwkKAhYtEh4YwLfeFSY53moVE1fPPi2awetVgvVo/8RVFQIXyFHjjRXamIDRK04mQxYu1Z4GMnUqZZOTs7w8vLErVs3H/p9eTkwdCjw/PMiBiXEkOhoYOBAoKysUSlXVVdDoVBA0cSMCo7jEBQU9PDFhUolrKmcmkovjSQtEv2as3Nn4U0f1dWml7Kfnx/UavX9B0QqKoShihUr6DwmFiaTCa9e6tdPuCp44G51RUUFPFpYJ9nZyQle3t7CrIuyMmEZz6++Avz8LJGcWDGzDAKMHy+sYVxTIxSzsThOhqCg9iguvonSUh38/YWFt+g8Jky4ugpLcU6YIFwdVFdDp9OhuqoKHgYW/Pb18IBjdTXu+PsLq2KFhFgoNLFmZhuVnTwZ2LZNuDgoKzPusWqeB/R6Fzg6+sHH5wz27gWMefiJELNxcQFWrQK++ALw9YX61i20k8kg1+kajy9rtUBlJVBRARnPQzt/Pqa6u6PMwFKehDQw622yiAhhGtz06cK5WlEhlHNtrbBusk4nFHVVlfDKJ5VKGPLYssUZgYHJyMvLNmc8Qow3ZAjw/ff4eMAA1AwdKqxtXF4unLxVVcLJrdUK6xyvWQOcOoWOCQkYPXYsVq9ezTo9sRIc38Rd5OaEhYXxp06datWBamuFcs7OBn78UViuU6sVzuvQUGDAACAyEnjiCWG8+OTJk1iyZAl27twJF2MWWSbEzEpKSjBx4kRkZGRAqVQKhVxaKowvu7sD/v6Nbnao1Wq88soriImJwdChQxklJ6xxHHea53mDj7ZZrJBbIzk5GUqlErGxsRY7JiHN2bFjBy5fvozExESTPpebm4uFCxfi66+/Njj2TGyTsYUs6Zm9s2fPxtGjR3HmzBnWUQhBWloaxowZY/Ln+vXrh+HDh+Ovf/2rGVIRWyLpQvbw8MCCBQuQkpICtaE3MRBiRgUFBbh79y7CWrmgyjvvvIPTp08jO5vui5DmSbqQAWDo0KHo2bMnNm3axDoKsWPp6ekYPXr0/TWeTeXi4oK4uDikpqai2pS5oMSuSL6QAWDevHnYv38/zp07xzoKsUN6vR4ZGRkYO3Zsm/YTHh6OiIgIrF+/XqRkxNZYRSF7e3vj/fffR1JSEurp9TfEws6ePQsnJyd069atzfuKiYnB8ePH8eOPP4qQjNgaqyhkABg9ejQ6duyIL774gnUUYmfS09MxZsyY+697ags3NzcsXLgQKSkpqK2tFSEdsSVWU8gcx2HBggXYtWsXLl++zDoOsRMajQaHDh1CVFSUaPscPHgw+vbti48++ki0fRLbYDWFDAD+/v545513kJycDJ1OxzoOsQPZ2dkICQlBUFCQqPudO3cuDh06hJ9++knU/RLrZlWFDAB/+MMf4O7ujr///e+soxA7kJaWJurVcQMPDw/ExsYiOTkZdXV1ou+fWCerK2SO4xAXF4dt27ahsLCQdRxiw6qqqnDy5EmMNNOi8sOHD0doaChN6ST3WV0hA0D79u3xxhtvIDk5GXpDb1UlpJWysrIQHh5u1sed582bh3379tGUTgLASgsZACZNmgSe57Fr1y7WUYiNau2j0qbw8fHBnDlzaEonAWDFhSyTyZCQkIDNmzejqKiIdRxiY27fvo1Lly5h8ODBZj/Ws88+i06dOuHzzz83+7GItFltIQNAly5dMGXKFCxZsgSmrFpHiCEZGRmIjIyEopm3ToupYUrnt99+i0uXLpn9eES6rLqQAWDKlClQqVTYu3cv6yjEhqSnp7f5UWlT+Pn54b333sPixYsbvXmd2A+rL2QHBwckJCRgw4YNuHPnDus4xAb8+uuvUKlU6Nu3r0WP+9xzz6Fdu3bYtm2bRY9LpMPqCxkAunfvjhdffBHLli2joQvSZunp6YiKimr1ym6txXEcFi1ahB07diA/P9+ixybSYBOFDACvv/46rl+/jszMTNZRiBXT6/UWH654UGBgIGbOnImkpCSa0mmHbKaQFQoFEhISsHr1apSVlbGOQ6xUbm4uPD09ERISwizDCy+8AGdnZ2zfvp1ZBsKGzRQyAPTu3Rtjx47FqlWrWEchVqphZTeWZDIZ4uPjsWXLFly9epVpFmJZNlXIAPDWW2/hwoULOHbsGOsoxMrU19cjKyvLLGtXmKpDhw70NKodsrlCdnJyQnx8PJYvX47KykrWcYgVOX78OEJDQ+Hv7886CoDfnkb95ptvWEchFmJzhQwA/fv3x+9//3t6yy8xiRSGKx7U8DTqpk2b6GlUO2GThQwA7733HnJycvCf//yHdRRiBVQqFXJychAZGck6ykM6d+6MqVOnIiUlhaZ02gGbLWRXV1csXLgQqampqKmpYR2HSNyhQ4cwcOBAuLm5sY7SSHR0NKqrq/Hdd9+xjkLMzGYLGQAiIiLQr18/elUOMUhqwxUPcnBwQGJiIj766CPcunWLdRxiRjZdyAAwZ84cHD58mF6VQ5pVXFyM/Px8REREsI7SrJCQELz88stITU2loQsbZvOF7OHhgfnz59OrckizMjIyMHLkSDg6OrKO0qLXXnsNJSUlSEtLYx2FmInNFzIAREZGolu3bti8eTPrKERieJ5n+qi0KeRyORITE7Fu3TqUlJSwjkPMwC4KGQBiY2Oxd+9enD9/nnUUIiGXL1+GWq1Gnz59WEcxSmhoKMaPH4/ly5fT0IUNsptC9vHxwezZs5GcnAyNRsM6DpGIhrdKcxzHOorRpk+fjsLCQhw6dIh1FCIyuylkABgzZgwCAgKwZcsW1lGIBOj1emRkZEh2dkVzFAoFEhMTaSEtG2RXhcxxHBYuXIivv/4aV65cYR2HMHbq1Cn4+vqia9eurKOYjBbSsk12VcgAEBAQcH+9WZ1OxzoOYchabuY156233kJeXh6OHj3KOgoRid0VMiCsN+vi4oIdO3awjkIYUavVOHr0KJ599lnWUVpNqVQiPj4eK1asgEqlYh2HiMAuC1kmkyEuLo7Wm7Vjx44dQ69eveDr68s6Spv069cPw4cPx9q1a1lHISKwy0IGgI4dO2LatGlYsmQJrTdrhzIyMqx6uOJB77zzDs6cOYPs7GzWUUgb2W0hA8DLL78MjUaDb7/9lnUUYkHl5eU4c+YMhg8fzjqKKFxcXBAXF4fU1FRUV1ezjkPawK4LuWG92U8++QTFxcWs4xALyczMxKBBg+Di4sI6imjCw8MRERGB9evXs45C2sCuCxkAunbtiujoaCxdupSefLITUl7ZrS1iYmJw/Phx/Pjjj6yjkFay+0IGgFdffRV3797Fvn37WEchZnbjxg1cu3YNAwYMYB1FdG5ubli0aBFSUlJoDXArRYWM3xZt2bBhAy3aYuPS09MxatQoyOVy1lHMYtCgQejXrx82btzIOgppBSrkexoWbVmxYgUNXdiohpXdbHG44kFz5szBoUOHaA1wK0SF/IDp06ejoKAAhw8fZh2FmMGFCxeg0+nQu3dv1lHMysPDA7GxsbQGuBWiQn6AQqFAQkICVq1ahfLyctZxiMgaHpW2ppXdWmv48OEIDQ3Fpk2bWEchJqBCfkSfPn0wevRorFmzhnUUIiKdTocDBw4gKiqKdRSLmT9/Pvbt24dz586xjkKMRIXchLfffhtnz57F8ePHWUchIsnJyUFQUBCCg4NZR7EYb29vzJ07F0lJSaivr2cdhxiBCrkJzs7OiIuLw9KlS1FVVcU6DhGBta/s1lqjRo1Cp06d8Nlnn7GOQoxAhdyMp59+GoMHD6Ynn2xAbW0tjh07hlGjRrGOYnEcx+GDDz7A7t27cfHiRdZxiAFUyC147733cOLECXryycp9//336NOnD3x8fFhHYcLX1xcxMTFISkqCVqtlHYe0gAq5BW5ubli4cCFSUlJQW1vLOg5ppbS0NLscrnjQuHHj4Ovri23btrGOQlpAhWzA4MGD8eSTT9KTT1aqtLQUZ8+exdChQ1lHYarh9WU7duxAfn4+6zikGVTIRpg7dy4OHjyIs2fPso5CTJSZmYkhQ4bA2dmZdRTmAgMDMXPmTCxevJheXyZRVMhG8PT0xLx585CcnEzTh6xMWlqazT8qbYrx48fD1dWVXl8mUVTIRhoxYgS6du2KTz/9lHUUYqSrV6+iuLgY4eHhrKNIBsdx9PoyCaNCNhLHcYiNjcWePXuQl5fHOg4xQnp6OkaPHg0HBwfWUSSlQ4cOeOONN5CcnEyvL5MYKmQTNEwfSk5OpulDEmcvK7u11qRJk8DzPHbt2sU6CnkAFbKJaPqQdfjll1/g4OCAnj17so4iSTKZDImJidi8eTOKiopYxyH3UCGbqGH60Pbt22n6kITZ08purRUcHIypU6ciJSWF1gCXCCrkVggMDMTbb79NY3ASpdVqkZmZaVcru7VWdHQ0qqursWfPHtZRCKiQW23ChAlQKBT46quvWEchjzh58iQ6deqEDh06sI4ieQ4ODkhMTMTGjRtx69Yt1nHsHhVyK8lkMsTFxeGzzz7D9evXWcchD6BHpU0TEhKCyZMnIzU1lYYuGKNCboPg4GC89tprSElJoaELiaipqUF2djZGjhzJOopVmTp1KkpKSpCWlsY6il2jQm6j6OhoqNVqfPfdd6yjEABHjhxB//794eXlxTqKVWl48/q6devozesMUSG3UcP0IRqDkwZ6VLr1Gt68vmzZMhq6YIQKWQSPPfYYXnrpJSxdupROZIZKSkpw/vx5DBkyhHUUqzV9+nRcu3YNmZmZrKPYJSpkkbz22mu4ffs20tPTWUexWwcPHsSwYcOgVCpZR7FaDW9eX716NcrKyljHsTtUyCJxdHREQkIC1q1bh9LSUtZx7BINV4ijd+/eGDduHFatWsU6it2hQhZRz5498fzzz2PFihWso9idgoIC3L17F2FhYayj2IS33noLeXl5OHLkCOsodoUKWWRvvvkmLl++jKysLNZR7ErDym4yGZ3SYlAqlYiPj8fKlSuhUqlYx7EbdPaKTKlUIjExkU5kC9Lr9cjIyKCHQUTWr18/REZGYu3atayj2A0qZDN48sknMWLECKxZs4Z1FLtw9uxZODk5oVu3bqyj2JxZs2bhzJkzyM7OZh3FLlAhm8msWbOQm5tLJ7IFNNzMo5XdxOfi4oK4uDgsWbIEVVVVrOPYPCpkM3FxccGiRYuQmpqK6upq1nFslkajweHDh2llNzMKDw/HoEGDsGHDBtZRbB4Vshk988wzGDBgAJ3IZpSdnY2QkBAEBQWxjmLTYmJicOLECeTk5LCOYtOokM1s9uzZ+Pe//43Tp0+zjmKTaO6xZbi5uWHhwoVYsmQJampqWMexWVTIZubu7o4FCxYgJSUFarWadRybUlVVhZMnT2LEiBGso9iFQYMGoV+/fvjoo49YR7FZVMgWMGTIEPzud7/Dxx9/zDqKTcnKykJ4eDg8PDxYR7Ebc+bMQVZWFnJzc1lHsUlUyBYyd+5cpKen45dffmEdxWbQcIXleXh4IDY2FikpKairq2Mdx+ZQIVuIt7c35s6di+TkZNTX17OOY/Vu376NS5cuYfDgwayj2J1hw4ahR48e2LRpE+soNocK2YJGjRqFjh074rPPPmMdxeplZGQgMjISCoWCdRS7NG/ePOzbt4++8YmMCtmCOI7DBx98gN27d+PSpUus41i19PR0elSaIfrGZx5UyBbm5+eHd999F8nJydDpdKzjWKVff/0VKpUKffv2ZR3Fro0aNQrBwcH0jU9EVMgMPP/88/D09MSXX37JOopVSk9PR1RUFK3sxhjHcViwYAF2796Nixcvso5jE+iMZoDjOCxatAhffvkl/ve//7GOY1X0ej0NV0iIr68vYmJikJSUBK1WyzqO1aNCZqR9+/aYMWMGkpOTodfrWcexGrm5ufDy8kJISAjrKOSecePGwdfXF1u3bmUdxepRITP04osvQiaTYefOnayjWI2G4QoiHQ3f+P7xj38gPz+fdRyrRoXMkEwmQ3x8PP72t7/hxo0brONIXn19PbKysqiQJSggIAAzZ87E4sWL6WZ1G1AhM9a5c2dMnToVqamp4HmedRxJO378OEJDQ+Hv7886CmnC+PHj4erqiu3bt7OOYrWokCUgOjoalZWV+Oc//8k6iqSlp6fTo9ISxnEc4uLisHXrVhQWFrKOY5WokCXAwcEBCQkJ+PDDD3H79m3WcSRJpVIhJycHkZGRrKOQFnTo0AFvvvkm3axuJSpkiejWrRsmTpyIZcuW0dBFEw4dOoSBAwfCzc2NdRRiwMSJEwEAu3btYpzE+lAhS8jrr7+OoqIiHDhwgHUUyaHhCushk8mQmJiIzZs3081qE1EhS4ijoyMSExOxdu1alJaWso4jGcXFxcjPz0dERATrKMRIwcHBmDp1KlJSUugbnwmokCWmV69eGDduHFavXs06imRkZGRg5MiRcHR0ZB2FmCA6Oho1NTXYs2cP6yhWgwpZgt566y3k5eXh6NGjrKMwx/M8PSptpRwcHLB48WJs3LgRt27dYh3HKlAhS5BSqURcXBxWrFgBlUrFOg5Tly9fhlqtRp8+fVhHIa3w2GOPYfLkyTTP3khUyBLVv39/DBs2DOvWrWMdham0tDRERUWB4zjWUUgrTZ06FSUlJdi/fz/rKJJHhSxh7777LnJycvDDDz+wjsKEXq9HRkYGza6wcnK5HImJiVi/fj1KSkpYx5E0KmQJc3FxwaJFi7B06VLU1NSwjmNxp06dgq+vL7p27co6Cmmj0NBQTJgwgebZG0CFLHEDBw5EWFgYPvzwQ9ZRLI5u5tmWadOm4dq1a8jMzGQdRbKokK3AX/7yFxw5cgS5ubmso1iMWq3G0aNH8eyzz7KOQkSiUCiQkJCA1atXo6ysjHUcSaJCtgIeHh6YP38+UlJSUFdXxzqORRw7dgy9evWCr68v6yhERL1798a4ceOwatUq1lEkiQrZSgwfPhyhoaHYtGkT6ygWkZGRQcMVNqphnv2RI0dYR5EcKmQrMm/ePOzbtw/nz59nHcWsysvLcebMGQwfPpx1FGIGSqUSCQkJWLlypd3Ps38UFbIV8fHxwV/+8hckJSVBo9GwjmM2mZmZGDRoEFxcXFhHIWbSt29fREZGYs2aNayjSAoVspWJiopC+/bt8cUXX7COYja0spt9mDVrFnJzc3HixAnWUSSDCtnKcByHDz74ADt37sSvv/7KOo7obty4gWvXrmHAgAGsoxAzc3FxQVxcHJYuXYqqqirWcSSBCtkK+fv7Y9asWUhOTra5F0qmp6dj1KhRkMvlrKMQCwgPD8egQYOwfv161lEkgQrZSr3wwgs290LJhpXdaLjCvrz33nvIzs5GTk4O6yjMUSFbqQdfKHn16lXWcURx4cIF6HQ69O7dm3UUYkFubm5YtGgRlixZYpdLBDyICtmKdejQAdOnT7eZF0o2PCpNK7vZn4iICPTv3x8fffQR6yhMUSFbuZdeegl6vR7ffPMN6yhtotPpcODAAURFRbGOQhh5//33kZWVZVdLBDyKCtnKyWQyJCQkYNOmTSgqKmIdp9VycnIQFBSE4OBg1lEIIx4eHoiNjUVKSgrUajXrOExQIduALl264E9/+pNVv5WBVnYjADBs2DD06NHDbpYIeBQVso2YMmUKysvLsXfvXtZRTFZbW4tjx45h1KhRrKMQCZg3bx7279+PX375hXUUi6NCthENb2XYsGED7ty5wzqOSb7//nv06dMHPj4+rKMQCfD29sbcuXORnJyM+vp61nEsigrZhnTv3h1//OMfsXz5cqsaukhLS6PhCvKQUaNGITg4GJ9++inrKBZFhWxjrO2tDKWlpTh79iyGDh3KOgqREI7jsGDBAuzZswcXL15kHcdiqJBtjEKhQHx8vNW8leHgwYMYMmQInJ2dWUchEuPr64vZs2cjKSkJWq2WdRyLoEK2QU888QSioqKwevVq1lEMokelSUvGjh0LX19fbNmyhXUUi6BCtlEzZ87EuXPncOzYMdZRmnX16lUUFxcjPDycdRQiURzHYdGiRfjqq69w5coV1nHMjgrZRjk5OSE+Ph7Lly9HZWUl6zhNSk9PR1RUFBwcHFhHIRIWEBCAmTNnIikpyeZWN3wUFbINe+qppzB48GBJLm3YsLIbPSpNjDF+/HibW92wKVTINi4mJgY//PCD5JY2/OWXX+Dg4ICePXuyjkKsAMdxiI+Px9atW1FYWMg6jtlQIds4V1dXSS5tSCu7EVO1b98eb775ps2sbtgUKmQ7EBERgb59+2Ljxo2sowAAtFotMjMzabiCmGzixIkAgJ07dzJOYh5UyHZizpw5yMzMxH//+1/WUXDy5El06tQJHTp0YB2FWBmZTIbExET87W9/w40bN1jHER0Vsp3w9PREbGysJNYHoEelSVsEBwfjtddeQ0pKilUtEWAMKmQ7EhkZiZCQEGzevJlZhpqaGpw4cQIjR45kloFYv+ga9GluAAALnklEQVToaNTW1mLPnj2so4iKCtnOxMbG4l//+hcuXLjA5PhHjhzBU089BS8vLybHJ7ahYehi48aNuHnzJus4oqFCtjPt2rXD7NmzkZycDI1GY/Hjp6Wl0aPSRBSPPfYYJk+ejKVLl9rM0AUVsh0aM2YM/Pz8sHXrVoset6SkBOfPn8eQIUMselxiu6ZOnYqSkhLs37+fdRRRUCHboQfXB8jPz7fYcQ8ePIhhw4ZBqVRa7JjEtsnlcixevBjr16+3uhczNIUK2U4FBATg7bffRlJSksUm2dNwBTGH7t27Y8KECVi2bJnVD11QIdux8ePHw8nJCTt27DD7sQoKCnD37l2EhYWZ/VjE/kybNg3Xr1+3mhczNIcK2Y7JZDLEx8fjiy++wLVr18x6rPT0dIwePRoyGZ1yRHwKhQKJiYlW82KG5tB/HXauY8eOeP3115GSkmK2oQu9Xo+MjAx6GISY1e9+9zs899xzWLlyJesorUaFTDB58mTU19dj9+7dZtn/2bNn4eTkhG7dupll/4Q0mDFjBi5evIisrCzWUVqFCplAJpMhISEBH3/8sVkm2TfczKOV3Yi5KZVKJCQkYOXKlVCpVKzjmIwKmQAQJtm/8sorok+y12g0OHz4MK3sRiymb9++GDlyJNasWcM6ismokMl9DZPs09LSRNtndnY2QkJCEBQUJNo+CTFk1qxZyM3NxfHjx1lHMQkVMrlPLpcjISEB69atw927d0XZJ809Jiw4OzsjLi4OS5cuRVVVFes4RqNCJg/p0aMHXnjhBaxYsaLN+6qqqsLJkycxYsQIEZIRYprw8HDJvlOyOVTIpJE33ngD+fn5OHz4cJv2k5WVhfDwcHh4eIiUjBDTxMTEIDs7W3LvlGwOFTJpRKFQ3L9TXVFR0er90HAFYU2q75RsDhUyaVKfPn3w7LPPtvpO9e3bt3Hp0iUMHjxY5GSEmCYiIgL9+/fHhx9+yDqKQVTIpFkzZ87ETz/9hBMnTpj82YyMDERGRkKhUJghGSGmef/993HkyBHk5uayjtIiKmTSrIY71ampqS3fqdbpgEceu05PT6dHpYlkeHh4YMGCBUhJSYFarW5yG5UKuHEDKCoCWI1uyNkclliL8PBwREREYMOGDVi4cKHwy0uXgL17gexs4Px5oLZW+L2rK9CrF+506waX4mL07duXXXBCHjF06FAcOHAAn3zyCWbPng2tFjhyBPjmG+DMGaC0FJDfa0StFujQAXjmGeDll4H+/QFLPGjKmfJUVlhYGH/q1CkzxiFSVFVVhUmTJmH1K6+g17ffAj//LFwRKxSAk9PDZ7FajYo7d8DLZPAaNgyIjwf69GGan5AGZWVlmDTpZURFbcaOHZ3R8HS1szPg6Phb6fI8UFcnXGvIZEBwMLBkCTBwYOuOy3HcaZ7nDa49S0MWxCA3R0dsbN8e3jNmQP/zz4CnJ+DjA7i5/VbGACCXg3dzw22tFk4BAcBPPwETJgArVwL19ez+AYTco9F4Q6fbgsREJdRqPTw9hdNZoXj4CpjjhGsNb2/Aw0MYypgyBVi4EGhmxEMUVMikZdXVwJQp6HLkiFC2dXUtfnerqamBg1wOJycn4Ux3cwM++QSYNu23oQ1CGLhxA3jhBaCwMBCurhpUVZUY9TmOE05jd3fgq6+EYjbXGDMVMmmeVgtMnw6cPg14ecG/fXuoVCrUtFCsFRUVDz8IIpcLlxknTgAzZza6+UeIJahUwEsvAXfuAN7eHIKCAlFWVg612viLBAcH4VQ+fRqYMcM8pzIVMmne558DOTmAlxfAcZA7OCAwIADFxcXQN3HvQc/zqKyshKen58N/wXHCmXzsGLB9u4XCE/KbpCSguFj40gYAcrkjAgL8UVRUDJ43vlkbTuUffjDPqUyFTJqWnw+sWSN8V3tgiMLdwwMKhQIlJY2/7lVVVcHJyQmO8iYm73CcMAsjNRW4ft2cyQl5SHY28N13v5VxA09PTzg6yk1eSIvjABcX4VQuKhIxKKiQSXM2bwY0GuHW8wM4AIGBgSgvK2s0n7OiogKeLa1boVAI+/z8czMEJqRp69cLww2NX+fIITAwCKWlpairM+1OXcOpLPZVMhUyaUylEi4pmilXR7kc/gEBKCouRoVWi7nXr2NQXh6mlJTA4DN9bm7A11+zm3lP7EpBgTDm6+7e9N87OjrC398fBQWfoqBgCvLyBqKoaLFR+3Z1Bb78UpgeJxYqZNLYyZPCRMymhh7u8fT0hNzBAYkFBXDkOOz098cHXl5YeesW8ls6Qx0dhSf7aD47sYAffhBO5ZYe6vDy8oJc3g6Oji/C0/P/Gb1vhUKYzXnunAhB76FCJo39/LPBecMcAM+AABytqsLrHh7QVFYiol07DHV3x35DK8SJfRYT0oycHGOesOPQufMfUVPTA4CrSfvXaIC8vNama4wKmTSWmyv8v38DbvI8lI6OkN25g7q6Ori6uaGbUtnyFTIgXHlLfJEXYhvOnQOUSsPbOToq4Ofnd2+5WdPeKfnzz63L1hRay4I0VlUl3AUxoEavh6dCAY7joNVqUVhYiOq6OtzUaFCg0wnfFZug1GhQePAgPn711Yd+39xj/GL9vjl0XNs97unTK6HRuEIm0xi1fX19vUnzi2UycW+HUCGTxuTyZsv0QS4yGar1enTt2hXqew+LKMrL4atWIzAgoNnPyaqr4fLEE1iwYIHRkbhmvneK9Xs6rm0e949/9MKdOxycnIzLUVLiD73e+GlwPG/cFbixqJBJY127CkMKri2PpwUrFNABuFZfj2BnZwDA/8rK0N3VFc73/tyk2loon3oKXr16iRiakMZCQ4Fbt1q8P/0QmczBpCtkvR7o3r112Zo8vni7IjYjLKypSZuNOMtkiHR3xyd37qBWr8d/a2rwfWUlxj06A/9RcjnQr59IYQlp3oABwgoAhvC8Dnp9PQA9AD30+nrwvM7g5xQKQMzrCrpCJo01lKWh+UIAFgQGIqmoCKMuXYKngwM+CAzEYy19h+N54YfWSiYW8PTTwu0QQ6dySclnKCnZfP/PFRVp8PV9E35+bzb7Ga1W2G/v3uLlpUImjXXvLvxcuSI8yNECDwcHrOnUyfh9V1YCTz4JdO7cxpCEGNanD9Cpk7CORUsjcH5+LZdvUyorgfHjm31+qlVoyII07e23hUmWJt5JbxHPC4NuM2aIt09CWsBxwKxZwtR3MU9lnU4Y1Xv9dfH2CVAhk+aMHSsMXRh6yMMUFRXCoN7IkeLtkxADxo8X/1RWqYR1kcW+L02FTJomkwFr1wpzesSYaFldLbwnZ9Uqy7ycjJB7HjyVq6vbvr+KCmEYZO7ctu/rUVTIpHnBwcCnnwrfz9pyJje8sXrrViAoSJxshJggOBjYskX4v1t6gXpLeB4oLwfatQN27BCW4BQbFTJp2cCBwpJWSiVQVmbaaxL0euEMdnUVzuD+/c2XkxADnn5aeAWTp6dwWuoMz2q7T6MRPtOzJ7BnD9C+vXkyUiETw8LDgawsICpKuLVcVtby5E6tVtimshJ47jnhszTvmEjAk08Chw8Dkyb9dirX1TV9w4/nhdG68nJhmwULhFVpzfkljzPlufCwsDD+FC2baN/Onwe2bRPOzIY5xQ3lLJcL48McB7z4onDXIzSUbV5CmnHjBvCPfwA7dwJ37woPeTxYhxqNMNTx5z8Df/hD4zeOmILjuNM8z4cZ3I4KmbSKVius/p2XJ1xCyGTCu/d69AC6dDFqcSJCpKKsDLh0SZg9wXGAj49wKos1TmxsIdODIaR15HKgWzfhhxAr5+0NPPMM6xQ0hkwIIZJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJh0jxkjuPuACg0XxxCCLFJnXme9zO0kUmFTAghxHxoyIIQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiTi/wNGxDXLo9qWxwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -646,7 +622,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -654,21 +630,19 @@ "output_type": "stream", "text": [ "distance\n", - " [[ 0. 61. 6.]\n", - " [61. 0. 57.]\n", - " [ 6. 57. 0.]]\n" + " [[ 0. 52. 21.]\n", + " [52. 0. 73.]\n", + " [21. 73. 0.]]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFu9JREFUeJzt3X2QXXWd5/H3N+k8EfJASBsSEiZxBIWyBtQGQQenIKAojOBoUbiOFYWaIOPOKCoCujXlY42gLsrWlE6WuJuxHEdBWBjdocgE0LF2DHYUZngKyfA0eW4ISYc8dbr7u3+cmyKG7tzT6XtzO6ffr6pb995zz8P3pDuf++vf+Z1zIjORJB39xrS6AElSYxjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFtB3Jjc2cOTPnz58/9AW3boUNG4rXY8eWX66vr3g+/niYPXvo25WkEWDVqlUvZGZ7vfmOaKDPnz+fzs7OoS303e/CzTfDKafA+PFD32hfH3R3w1vfCrfeOrQvBEkaASLiuTLzjewul7vvhq9/HaZOPbwwhyLAp0+He++Fr361sfVJ0ggycgN90yb43Odg0iRoG+YfEhHFl8Lf/R089FBj6pOkEWbkBvoXvwh79sDEiY1Z39ixxRfDtde+0rcuSRUyMgN9wwb453+GadMOOduPt27lw888wzlPPskX9h80PZRjj4WuLvjFLxpUqCSNHCMz0G+/Hfr7Ycyhy5vZ1sZVM2fy3jrB/zsyYenSYRYoSSPPER3lUtry5aUOgp4/dSoAj+/ezZbe3nLrnjIFfv3rotvFES+SKmTktdD7+uCppxrXd36w/a3+Z55pzvolqUVKBXpEXBsRj0XEoxHxw4iYGBELImJlRKyNiB9FxGGOKzxIV1fRLdLM1nMEPP9889YvSS1QN9Aj4kTgL4GOzHwjMBa4ArgJuCUzXwe8BFzVkIr27avbd94QZbtoJOkoUTY524BJEdEGHANsBM4H7qh9vgy4rCEVTZhQHBBttgkTmr8NSTqC6gZ6Zq4HvgE8TxHk24FVwLbM3N/MXQec2JCKZs6EceNKtaD7Munp76cf6Ad6+vvpy6y/jf5+WLBg2KVK0khSpsvlOOBSYAEwB5gMXFR2AxGxOCI6I6Kzq6urREVj4LTTipOK6lj6wgu8bfVq/veLL/J/t2/nbatXs/SFFw69UG9v0T8/d27JPZCko0OZYYsXAM9kZhdARNwJvB2YHhFttVb6XGD9QAtn5hJgCUBHR0eJ5jPwnvfAww/XnW1xezuL2+tegOx37dgB73rXkemnl6QjqEyqPQ+cHRHHREQAC4HHgQeAD9TmWQTc3bCq3ve+InAbfYp+ZrHeK69s7HolaQQo04e+kuLg52+Af68tswS4HvhURKwFjgcad/rlccfB5ZcXl71tpO7u4jK8b3lLY9crSSNAZJmDiA3S0dGRpa+H3t0NCxfCyy/D5MnD3/i+fbB7N/z0p0WoS9JRIiJWZWZHvflGbkfy1KnFDSl6e2Hv3uGtq6+v+GK4/nrDXFJljdxABzjnHPjWt4oRLzt3Ht46enqK1v7VV9t3LqnSRnagA1x8MSxbVnS7vPRS+QOlmbBtWxHoX/kKXHddccq/JFXUyA90gLe9De6/vzhQunNnEdQ7d7463Pv7i37yrVth+/ZiueXL4YMfNMwlVd7IPSg6mBdfhDvvLA5url79ynXTM4uAf+1r4bzz4IorPBtUUiWUPSh69AX6gfr7i3uP7tlT3F7uhBMO/2bSkjRClQ30kXmDi7LGjIE5c1pdhSSNCEdHH7okqS4DXZIqwkCXpIow0CWpIgx0SaoIA12SKsJAl6SKMNAlqSIMdEmqCANdkirCQJekijDQJakiDHRJqggDXZIqwkCXpIow0CWpIgx0SaqIuoEeEa+PiIcPeHRHxCcjYkZELI+INbXn445EwZKkgdUN9MxcnZlnZOYZwFuAXcBdwA3Aisw8GVhRey9JapGhdrksBP4jM58DLgWW1aYvAy5rZGGSpKEZaqBfAfyw9npWZm6svd4EzBpogYhYHBGdEdHZ1dV1mGVKkuopHegRMR54L3D7wZ9lZgI50HKZuSQzOzKzo729/bALlSQd2lBa6O8GfpOZm2vvN0fEbIDa85ZGFydJKm8ogf5BXuluAbgHWFR7vQi4u1FFSZKGrlSgR8Rk4ELgzgMmfw24MCLWABfU3kuSWqStzEyZuRM4/qBpL1KMepEkjQCeKSpJFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEaUCPSKmR8QdEfFkRDwREedExIyIWB4Ra2rPxzW7WEnS4Mq20L8N3JuZbwBOB54AbgBWZObJwIrae0lSi9QN9IiYBrwDWAqQmT2ZuQ24FFhWm20ZcFmzipQk1Vemhb4A6AL+V0T8NiJui4jJwKzM3FibZxMwq1lFSpLqKxPobcCbge9k5puAnRzUvZKZCeRAC0fE4ojojIjOrq6u4dYrSRpEmUBfB6zLzJW193dQBPzmiJgNUHveMtDCmbkkMzsys6O9vb0RNUuSBlA30DNzE/CfEfH62qSFwOPAPcCi2rRFwN1NqVCSVEpbyfn+AvhBRIwHngY+SvFl8OOIuAp4Dri8OSVKksooFeiZ+TDQMcBHCxtbjiTpcHmmqCRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBFtZWaKiGeBHUAf0JuZHRExA/gRMB94Frg8M19qTpmSpHqG0kI/LzPPyMyO2vsbgBWZeTKwovZektQiw+lyuRRYVnu9DLhs+OVIkg5X2UBP4L6IWBURi2vTZmXmxtrrTcCsgRaMiMUR0RkRnV1dXcMsV5I0mFJ96MAfZub6iHgNsDwinjzww8zMiMiBFszMJcASgI6OjgHnkSQNX6kWemaurz1vAe4CzgI2R8RsgNrzlmYVKUmqr26gR8TkiJiy/zXwTuBR4B5gUW22RcDdzSpSklRfmS6XWcBdEbF//r/PzHsj4tfAjyPiKuA54PLmlSlJqqduoGfm08DpA0x/EVjYjKIkSUPnmaKSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFVE60CNibET8NiJ+Wnu/ICJWRsTaiPhRRIxvXpmSpHqG0kL/BPDEAe9vAm7JzNcBLwFXNbIwSdLQlAr0iJgLXAzcVnsfwPnAHbVZlgGXNaNASVI5ZVvo3wI+C/TX3h8PbMvM3tr7dcCJDa5NkjQEdQM9Ii4BtmTmqsPZQEQsjojOiOjs6uo6nFVIkkoo00J/O/DeiHgW+AeKrpZvA9Mjoq02z1xg/UALZ+aSzOzIzI729vYGlCxJGkjdQM/MGzNzbmbOB64A7s/MDwEPAB+ozbYIuLtpVUqS6hrOOPTrgU9FxFqKPvWljSlJknQ42urP8orMfBB4sPb6aeCsxpckSTocnikqSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVRN1Aj4iJEfFQRDwSEY9FxBdr0xdExMqIWBsRP4qI8c0vV5I0mDIt9L3A+Zl5OnAGcFFEnA3cBNySma8DXgKual6ZkqR66gZ6Fl6uvR1XeyRwPnBHbfoy4LKmVChJKqVUH3pEjI2Ih4EtwHLgP4Btmdlbm2UdcGJzSpQklVEq0DOzLzPPAOYCZwFvKLuBiFgcEZ0R0dnV1XWYZUqS6hnSKJfM3AY8AJwDTI+IttpHc4H1gyyzJDM7MrOjvb19WMVKkgZXZpRLe0RMr72eBFwIPEER7B+ozbYIuLtZRUqS6murPwuzgWURMZbiC+DHmfnTiHgc+IeI+ArwW2BpE+uUJNVRN9Az89+ANw0w/WmK/nRJ0gjgmaKSVBFlulwkSWVs3QqPP1481q2D/n6YMQNOO614zJsHEU3bvIEuScORCb/6FSxdCj//OYwdCz09rwR3fz+MH188L1gAV18NF18MEyc2vJTIzIavdDAdHR3Z2dl5xLYnSU3V1QU33lgEeSZMnQpjBunJzoRdu2DfPpg9G779bXjzm0ttJiJWZWZHvfnsQ5ekw7FqFSxcCA8+WAT59OmDhzkULfbJk4v5tmyByy+H73ynCPoGsctFkoZq1Sr40z8tXk+fPvTlp0yB3l74xjeK7plPfKIhZdlCl6Sh6OqCj360eD158uGvp62tCPZbb4UVKxpSmoEuSWVlFn3mu3YNL8z3a2uDCRPgM5+Bl14a9uoMdEkq66GHigOg06Y1bp3HHAPd3fA3fzPsVRnoklTWbbcVrfRDjCXv6e/nSxs2cMnatbxj9Wr+y9NP8/9efnnQ+QE49lj44Q9h9+5hlWegS1IZ27a9MqLlEPqAE8aNY8lJJ/HgKadwTXs7N6xfz4aensEXGjeuGM74wAPDKtFAl6QyHn+8OGnoUEMTgUljxrC4vZ0548czJoJzp0xhzrhxPLlnz6HX39sLwzxPx0CXpDIee6wYYjhEW3t7eb6nh9dOmHDoGSdOLProh+HoCvTM4vRZSTrSNmwY8iK9mfy3DRu4ZNo05tcL9La24oSjYRjZJxZt3w4/+xn84hfw8MOweXMR6uPHw+//Ppx5Jlx0EZx9dt0/gyRpWPr6hjR7fyZ/tWEDbcBnTzih/gIRw26wjsxA37oVbr4Z7rqr+EeMKP4cmTGj+DwTnnsOVq8ujgy3t8OnPgV/8icGu6TmmDGj9Gn6mcmXN27kxd5ebp03j7YyV1js63sl4w7TyEu/++6D886D22+HSZOK02qnTSsG30cUjzFjirGbM2YUR5y3b4frr4cPfxg2bmz1HkiqotNOK3oHSvjrTZt4pqeHW+bNY0LZRuaePXDGGcMocKQF+t/+LVxzTXG097jjij6leiJeCf6VK+GP/xjWrm1+rZJGl1NPLbpE6rTSN+7bx53btvHUnj28a80azl29mnNXr+aftm8/9Pozi27kYRg5XS7f/z7cdFPR4i4T5AeLKEK9uxuuuALuuQfmzGl8nZJGp7lzi2N3zz5bnAg0iNnjxtF56qlDW3d/f9HzsHDhsEocGS30NWvgy18uLlRzOGF+oKlTixMAPv1pR8RIapwI+NjHih6ERtu+vehqnjVrWKtpfaD398MnP1n8uTFuXGPWOW1aMZ7zjjsasz5JAnj3u+HEE2HHjsats7e3OGHp2muHvarWB/q//is89VTd02mHZP+omG9+01a6pMaZMKG43G1/f2Na6plFN/Gf/3nRRz9MrQ/0Ehe7Aeju6+Mz69bxh08+ySVr13JvvQMMkyYVwx9/+csGFitp1Dv99OJytzt2DC/UM4vu4be+tQj0Bqgb6BExLyIeiIjHI+KxiPhEbfqMiFgeEWtqz8cNeet798K//Eup1vnXNm1iXAT3nXIKX5kzh7/etImn9+499EJ9fcWJSZLUSIsXF+e+7NhRXBt9qHp7i+ufn3VWcXPpksMh6ynTQu8FPp2ZpwFnAx+PiNOAG4AVmXkysKL2fmjWrCl1sZvd/f3cv2MH17S3c8yYMZxxzDH80ZQp/KxMK33VqiGXJUmHFAEf/3jRwzBxYtEbUOY6L/39RZDv3Fncdm7ZsuKcmgapG+iZuTEzf1N7vQN4AjgRuBRYVpttGXDZkLe+dm2pPu7ne3oYC5x0wLfYyRMm1G+hT5gAzzxjP7qk5jjvvOKSt3/2Z0XOdHfDiy8Wgd3TUzx27y66VrZtK1r0F1wA//iPRaA3qGW+35DGCEbEfOBNwEpgVmbuPy1zEzD08Ta7dpUK2139/Uw+qBV/7Jgx7Ky37Jgxxfp7eopvUUlqtGnTitvSXXttcb30zs5ilN3mzUX+TJ1anAF65pkNGZp4KKUDPSKOBX4CfDIzu+OAg5iZmREx4OlTEbEYWAxw0kknHbT1troHQwGOGSC8dw4Q8q+SWTzGjq27DUkalokTi4sFXnRRy0ooNcolIsZRhPkPMvPO2uTNETG79vlsYMDrPmbmkszsyMyO9vb23/1w1qxSJxKdNH48fRRdL/s9tXdv/esL9/YWZ482any7JI1gZUa5BLAUeCIz//sBH90DLKq9XgTcPeStn3pqEbp1ro0wacwYzp8yhe92dbG7v59Hdu3i5zt2cHG9G7Xu2QN/8AdDLkuSjkZlWuhvBz4MnB8RD9ce7wG+BlwYEWuAC2rvh6a9HWbOLIYv1nHDCSewt7+fC596is+tX8+NJ5xQroV+7rlDLkuSjkZ1+zsy85fAYB3dw7uSTARceWVx7fM6By2njh3LN+fNK7/uvr7ioOhlQx98I0lHo9afKfr+9xf96Idxr75D6u4uDk4c3G8vSRXV+kA//ni47rpi3GbJu4HUtXdv0eL//Ocbsz5JOgq0PtABPvKR4uBlvTM/y+jrK8a3f+lLUOY+fpJUESMj0MeOLU6hnTu3OC32cFvqvb3Fl8LVVxf3F5WkUWRkBDoUXS8/+Qm88Y3FKbL79g1t+e5uePnl4sYW111X6oQlSaqSyEb1W5fZWEQX8NwR22A5M4EXWl1EC7jfo8to3O8q7fPvZWbdER5HNNBHoojozMyOVtdxpLnfo8to3O/RuM8jp8tFkjQsBrokVYSBDktaXUCLuN+jy2jc71G3z6O+D12SqsIWuiRVxKgL9Ih4NiL+vXbVyM7atK9HxJMR8W8RcVdETG91nY02yH5/ubbPD0fEfRExp9V1NtJA+3zAZ5+OiIyIma2qr1kG+Vl/ISLWH3TF1EoZ7OcdEX9R+//9WETc3Moam23UdblExLNAR2a+cMC0dwL3Z2ZvRNwEkJnXt6jEphhkv6dmZnft9V8Cp2Xmx1pUYsMNtM+16fOA24A3AG85+POj3SA/6y8AL2fmN1pVV7MNst/nAZ8HLs7MvRHxmswc8GY8VTDqWugDycz7MrO39vZXwNxW1nOk7A/zmsnAaPl2vwX4LKNnf0eza4CvZeZegCqHOYzOQE/gvohYVbvf6cGuBP7pCNd0JAy43xHx1Yj4T+BDwF+1rLrmeNU+R8SlwPrMfKS1pTXVYL/j/7XWxfa9iDiuVcU10UD7fQpwbkSsjIifR8SZLayv+TJzVD2AE2vPrwEeAd5xwGefB+6i1hVVpceh9rs2/Ubgi62us9n7DKwEptWmPwvMbHWdR2i/ZwFjKRpxXwW+1+o6j9B+Pwr8D4qb9JwFPFPF/9/7H6OuhZ6Z62vPWyjC+yyAiPgIcAnwoaz9VlTJYPt9gB8A7z/SdTXTAPv8R8AC4JFaf+tc4DcRUanrLA/0s87MzZnZl5n9wP/k1T//o94gv+PrgDuz8BDQT3GNl0oaVYEeEZMjYsr+18A7gUcj4iKKPtX3ZuauVtbYDIfY75MPmO1S4MlW1NcMg+zzrzPzNZk5PzPnU/xnf3NmbmphqQ11iJ/17ANmex9Fy7UyBttv4P8A59WmnwKMpzoX7HqVuvcUrZhZwF1RXFq3Dfj7zLw3ItYCE4Dltc9+lRUa7cHg+/2TiHg9RavlOaDy+9zako6IwX7W34+IMyj6mZ8Frm5diU0x2H6PB74XEY8CPcCiKv4Fvt+oG7YoSVU1qrpcJKnKDHRJqggDXZIqwkCXpIow0CWpIgx0SaoIA12SKsJAl6SK+P+OdbQVLfAAQAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAADV1JREFUeJzt3WtsVGUex/HfmUuvtEVttZJwv0SQkAVRg1llNcH1Qoy80OCaVQyIoBglrKhkMSuSsC/coCTeWI2BV7pGAyEaYuLKBiTRlOCCmIooEaGAVKD0QjudmbMvnhRdoXM5M+38h/l+kgmlPXP6JMZvHp55zjme7/sCABReqNADAAA4BBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBGRbA6ur6/3R40adf4PTp+WDh92X4fD2Y0gmXSv+nrpyiuzey8AFIFdu3a1+r7fkO64rII8atQoNTU1/f83N22Sli2TJkyQysqyG2WfREJqa5PuuktauVLyvGDnAQCDPM/7IZPjcluy2L9fevppqbo6eIwlN6uuq5M2bJA++iinIQFAsQoe5HhceuIJyfdzi3GfcFiqrJSefVZqbc39fABQZIIHeetW6cABqaYmf6OpqJA6OqRXX83fOQGgSAQP8htvSKFQyvXeWDKpVS0tmn3ggG765hv96fvvtbOjI/V5a2qkd9+VuroCDw0AilGwIB86JDU3S0OGpDwsIakxGtX6ESO0bcIELW5o0DNHjqglFuv/TdGo1Nsrbd8eaGgAUKyCBXnfvrSzY0mqDIW0sKFBw8rKFPI83VhTo2HRqJq7u1Ofv7dX2r070NAAoFgFC/KePVKqWW4/TsbjOhSLaUx5eeoDKyqkL74INDQAKFbBgnz8eNYXgMR9X39tadHsujqNShfkSET6+edAQwOAYhUsyFk+hy/p+3qupUURScsbGwP9SgC42GV1pd45V1zhrq7LgO/7euHoUf0cj2vd8OGKZHIVXjwuXXJJoKEBQLEKFuQpUzK+GGTNsWM6GIvp1REjVB7KcELe3S1de22goQFAsQoW5EmT3A2BfD/lToujvb364PRplXme/vjtt+e+v6KxUbfX1fV//mhUmjo10NAAoFgFC/LIkdK4cdLBgyn3Il8Zjapp4sTszt3b6z7Umzkz0NAAoFgF+1DP86RFi9xab5Yf8KXV3i7dc4+7YREAlJDgl07ffrs0erQLaL50d7sbDD36aP7OCQBFIniQy8qkl192Xwe4SOQ8yaR09qy0erXbxQEAJSa3+yFPmiStWiV1duYW5WTS3aD+3nulu+/OaUgAUKyCfaj3a3PnunXklSulnp7sb8fZ3e1mxnPnSi+8wNNCAJSs/Dzk9L77pPfec0sNp065wKb7sC8Wk06edDcpWrfOLVVkuk8ZAC5Cuc+Q+0ydKn38sfTOO9L69e6pH4mEi2wk4ma+8bh7RaNSebn78G7ePPeAUwAocfkLsuTu0jZvnvTAA9KXX0p797q7th096n4+dKi7Am/yZOn66/Pz6CcAuEjkN8h9QiFp2jT3evDBAfkVAHCxYdEWAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwIlLoASCFjg6puVlqaZESCamiQho7VhozRorwnw642PB/tTVdXdKHH0r//Kf03XdSNColk+5nnuf+9H1p5kxp/nzpuuukEP/QAS4GBNkK35c2b5aee046e9bNgIcO/SXCv5ZISJ9+Km3bJk2YIL30kjR+/KAPGUB+MbWyoKtLevhhadkyNxuuq5Oqqy8cY0kKh12sa2ul/fulO++UNm4c3DEDyDtmyIXW1SXdf7+0Z0//M+L+eJ6Ld2+v9Pzz0pkz0pIlAzdWAAOKGXIh+b70+OPBYvxr0ahUUyOtXStt2ZLfMQIYNAS5kDZvduvAucS4TyQiVVZKK1ZIP/2Ul+EBGFwEuVA6O6WVK11Ec41xn4oKtwSyenV+zgdgUBHkQtmyRerudhHNp9paaetW6cSJ/J4XwIAjyIXy5psZXdxxJpHQXw4f1u+bmzX7wAFtbWtL/YZw2G2L27QpTwMFMFgIciGcOSMdPChVVaU99O/Hjinqefp4wgStHjZMa44d0/c9PanfFIm4fcoAigpBLoTmZrczIs3a8dlkUv9ub9fihgZVhUL6XVWVZtbU6MN0s+TKSmnvXreLA0DRIMiF0HdvijQOxWIKSxpRVnbue+PLyzObIXd2uiv+ABQNglwI8XhGh3Ulk6r+zX0qhoRC6uy7t0UqnucuGAFQNAhyIVRWZnRDoKoLxLfzApE+j++7V753cAAYUAS5EMaMyeiwEWVlSsgtXfTZ39OjMeXlqd8Yi0mNjVK64wCYQpALYexYt4acZumhMhTSLTU1ev3ECZ1NJvXfri79p71dd9bVpT5/d7c0dWoeBwxgMBDkQigrk2680W1/S+OZxkb1JJOatX+/Vhw5omcbG9PPkCXpjjvyMFAAg4m7vRXKggXSjh1urTfF9rfacFj/GD488/PGYm6NetasPAwSwGBihlwoM2a4pYsMZskZ83233W3xYjcLB1BUCHKhhELuSR/53J525ox7gsiCBfk5H4BBRZAL6aqrpOXL3cNMM9yb3K/OTrerYt06dxUggKJDkAtt/nz3lI/2dindFXgX4vtSW5u7qdDGjTxbDyhiBLnQPE9aulR68UW3De706bTb4c6JxdzxY8dKH3wgTZs2sGMFMKAIshVz5kiffOJ2R7S3u9D+dinD990suq3NvXzfPRh1yxa3dgygqLHtzZLGRum116Tjx6X333ePd9q3z4XZ89zFJJdfLt1wgzR7tnTrrVyNB1xEPD+LWzROnz7db2pqGsDh4Dy+72bM8bjbX1xZWegRAciS53m7fN+fnu44ZsjWeZ57LBOAix5ryABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARkUIPAADMaW2Vvv7avQ4fdt+77DLp6quliROl4cMH5NcSZACQJN+Xtm+X3npL2rlTCoelWEzyPPfzZFIqK3N/jh8vLVok3Xab+16eeL7vZ3zw9OnT/aamprz9cgAwoaVFeuop6fPP3d9ra6VQPyu6vi91dkrxuDRypPTyy9LkySlP73neLt/3p6cbBmvIAErbzp3SrFkuxnV10tCh/cdYcjPmIUPcsT/+KM2ZI23YkJehEGQApWvHDumhh9zXQ4f+sjyRCc9zM+mqKmnVKrfUkSOCDKA0HTkiPfKIFIlIlZXBzxONuhnzmjVutp0Dggyg9CST0rJlUk9PbjHuE42619KlUkdH4NMQZAClZ9s2qanJrQPnS3W1dOJETksXBBlA6Vm/3n1wl2bN+F8nT+rPBw9qRnOz/tbSkv681dXS229Lvb2BhkWQAZSWo0fd7LimJu2h9ZGI5tfX665MZ9Ll5VJXl/TZZ4GGRpABlJavvnIXfWSwo+KW2lr9oaZGdeFw5ufv7ZV27w40NIIMoLTs3euuwBso5eW/XGCSJYIMoLQcPuxmyAMlEpGOHw/0VoIMoLQkk9ldAJItz3O/IwCCDKC0XHqplEgM3PkTCXcFXwAEGUBpmTIl4yWLhO8rlkwqKSkpKZZMKpHuhmzd3dI11wQaGrffBFBaJk1yywq+n3bp4q3WVq1vbT3394/a2rSwvl4LGxr6f1M4LE2bFmhoBBlAaRk3TmpsdDehr6pKeejChobU8f2tRMJdcHLTTYGGxpIFgNISCkkLFw7M1re2Nmn2bHfnuAAIMoDSM2eOVF/vbjSfL7GYu8HQkiWBT0GQAZSe6mpp7Vp3VV0+dlz0PUVk+XJp9OjApyHIAErTjBnSY4+5ZYZcouz70qlT0s03S/Pm5TQkPtQDULqefNI9G+/116WKiuzvjdzbK7W3uxi/8krOVwBm9ZBTz/NOSPohp98IAKVnpO/7abdrZBVkAMDAYQ0ZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjPgfhw/43StvS80AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -695,27 +669,25 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "order = (0, 1, 2) Distance = 124.0\n", - "Best order from brute force = (0, 1, 2) with total distance = 124.0\n" + "order = (0, 1, 2) Distance = 146.0\n", + "Best order from brute force = (0, 1, 2) with total distance = 146.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt41fWV7/H32rkHSEwgQOQqlVI5SJEBauHQUVBGaAvSCSFgQAxjcOKAwYgRPXBaEE2VIQ55YIbQaKDhhJAUj0z1YC2Flj6ZSkOHlhYFLGIqAiIgEQLksr/nj9+OxpjLDtk7v/3bWa/nyZPsa9aPwCeL9f1dxBiDUkop53PZXYBSSinf0EBXSqkgoYGulFJBQgNdKaWChAa6UkoFCQ10pZQKEhroSikVJDTQlVIqSGigK6VUkAjtzG/Wq1cvM3jw4Pa/8MIF+Ogj6+uQEO9fV19vfe7ZExIT2/99lVIqABw8ePATY0xCW8/r1EAfPHgwFRUV7XvRf/wHvPACfP3rEB7e/m9aXw9VVfCtb8H69e37haCUUgFARD7w5nmBPXJ57TV48UWIibmxMAcrwG+6CXbvhjVrfFufUkoFkMAN9DNn4OmnISoKQjv4HwkR65fC1q1w4IBv6lNKqQATuIH+ox/BtWsQGemb9wsJsX4xLF36xWxdKaWCSGAG+kcfwS9/CbGxrT5tx4ULzHv/fb797rv8sGHRtDXdu8O5c/Cb3/ioUKWUChyBGeilpeB2g6v18nqFhrKwVy+mtxH8X2IMFBR0sECllAo8nbqXi9feesurRdBJMTEAHLl6lY/r6rx77x494Pe/t8YuuseLUiqIBF6HXl8Px475bnbeVEPX//77/nl/pZSyiVeBLiJLReQvIvJnESkWkUgRuUVE3haR90SkRERucL/CJs6ds8Yi/uyeRaCy0n/vr5RSNmgz0EWkH7AEGGOMGQGEACnAj4FcY8ytwEVgoU8qqq1tc3be1PkLF6j67DPq27P3ircjGqWUcghvkzMUiBKRUCAaOA1MAso8j28B7vdJRRER1oJoO9TW1SHAX0+c4FJVFV5d9joi4kaqU0qpgNVmoBtjTgFrgUqsIL8EHAQ+NcY0tLkfAv18UlGvXhAW5lUHXW8MNW43xhiiunend79+nD13jr9VVlJTW9vyC91uuOUWn5SrlFKBwpuRSxwwA7gFuBnoBtzn7TcQkXQRqRCRinPnznlRkQuGD7cOKmpDwSefMP7oUV6tq2N3VRX3fPABe2NiiO7Wjffff59Pzp/HmCb9el2dNZ/v39/bTVBKKUfwZrfFe4D3jTHnAERkJzABuElEQj1den/gVHMvNsbkA/kAY8aM8WoawrRpcOhQm09LT0jg4YQE3nnnHW677Tak0WMxMTGcOX2aS5cukZiYSHRUlPXAZ5/BP/xDu+f0SikV6LxJtUrgThGJFhEBJgNHgL1Akuc5DwKv+ayqmTOtwPVikdMYg4h8KcwBwsPCGDBwIL169eLDDz/k9Jkz1qKpywVpaT4rVSmlAoU3M/S3sRY//wAc9rwmH8gGHheR94CegO8Ov4yLg+Rk67S3bdXnduOSpnFuESA2JoavDRkCxnD62DE+6dkTM3q0z0pVSqlA4dXcwRjzv40x3zDGjDDGzDPGXDfGnDDGjDPG3GqMmWWMue7Typ58EuLj4cqVtmpDWgj0BiEhIST26kWvXr1YHRfH0scf5/Tp076sVimlbBe4g+SYGOuCFHV1cL3l3xVuLwKd+nq4fJnIlStZu2sXI0eOJDU1laKiovbtu66UUgEscAMd4NvfhpdesvZ4aaFTb7NDr6mxRjeLFkFaGmFhYaSlpVFYWEh5eTnz5s3jyJEjftoApZTqPIEd6ADf/S5s2QLdusHFi19ZKDXGIM3tsWIMfPqpFejPPgvLllmH/HsMGDCADRs2kJqaSmZmJmvXrqW6utrfW6OUUn4T+IEOMH48/OpX1kLplStWUF+5AvX1X+7Q3W64etW6qPSlS9br3noL5sz5Upg3EBGmTZtGaWkp1dXVJCUlsW/fvs7dNqWU8hH5yoE3fjRmzBjT7otEN3X+POzcCT//ORw9yrWrV7n46ack9u1rde9DhsDdd0NKSruPBj148CDPPfccgwcP5sknn6RPnz4dq1UppXxARA4aY8a0+TzHBXpjbjd/fPNNSrZs4bkXXoC+fW/8YtIeNTU1FBYWUlJSwj/90z8xe/ZsXHoQklLKRt4GurOTyuXiSmwsVb16wcCBHQ5zgPDwcNLT0ykoKGDv3r0sWLCAo0eP+qBYpZTyL2cHOlBbW0u4D4K8qcGDB7Np0yaSkpJYvHgxubm5umiqlApojg/0mpoawsLC/PLeIsL06dMpKSnh4sWLzJ49m/379/vleymlVEc5PtBra2v9FugN4uLiWLVqFStWrGDdunVkZ2fj1ZkjlVKqEwVFoPtj5NKccePGsX37dgYNGsScOXMoLS3F3c6LcSillL84PtD9OXJpTkREBBkZGeTn57N7927S0tI4fvx4p31/pZRqieMDvTM79MaGDBnC5s2bmTFjBhkZGeTl5XHNi4tyKKWUvzg+0Du7Q2/M5XIxc+ZMtm/fzpkzZ0hOTqa8vNyWWpRSypsrFgW0mpoaWzr0xnr27MmaNWsoLy8nJyeHESNGkJWVRc+ePW2tSynVtTi+Q7dr5NKc8ePHs2PHDhITE0lJSWHnzp26aKqU6jSOD3Q7Ry7NiYyMZPHixWzcuJFdu3bx8MMPc+LECbvLUkp1AY4P9M7YD/1GDB06lJdffpmpU6eSnp7Oxo0bud7KhTqUUqqjgiLQA2Xk0pTL5SIpKYni4mIqKytJSUnhwIEDdpellApSQbEoGogdemMJCQnk5OSwf/9+Vq9ezR133MHSpUuJi4uzuzSlVBDRDr0TTZw4kZKSEuLj45k9eza7du2iM09frJQKbo4PdCd06I1FR0eTmZlJXl4eZWVlLFq0iA8++MDuspRSQSAoAt0pHXpjw4YNo7CwkEmTJpGWlkZ+fj41NTV2l6WUcjDHB7qTRi5NuVwuUlJSKC4u5tixY6SkpHDw4EG7y1JKOVSbgS4iw0TkUKOPKhHJFJF4EXlLRI57Ptuywue0kUtzevfuzdq1a1myZAkrVqxg1apVXLp0ye6ylFIO02agG2OOGmNGGWNGAX8HVAOvAk8Be4wxQ4E9ntudLlD3Q78Rd911F2VlZURHRzNr1izeeOMNXTRVSnmtvSOXycBfjTEfADOALZ77twD3+7Iwbzl55NKc6OhonnjiCV566SW2bdvGo48+SmVlpd1lKaUcoL2BngIUe77uY4w57fn6DNCnuReISLqIVIhIhT+u8hMMI5fmDB8+nK1btzJhwgQeeughCgoKqK2ttbsspVQA8zrQRSQcmA6UNn3MWHOBZmcDxph8Y8wYY8yYhISEGy60JcHWoTcWEhLCAw88QFFREYcPH2bu3LkcOnTI7rKUUgGqPR36VOAPxpiznttnRSQRwPP5Y18X541g7dAbS0xMJDc3l0ceeYTly5ezZs0aqqqq7C5LKRVg2hPoc/hi3AKwC3jQ8/WDwGu+Kqo9nLofenuJCJMnT6a0tJTQ0FCSk5N58803ddFUKfU5rwJdRLoB9wI7G92dA9wrIseBezy3O10wj1ya0717d7Kzs3nxxRd55ZVXWLJkCadOnbK7LKVUAPAq0I0xV4wxPY0xlxrdd94YM9kYM9QYc48x5oL/ymxZVxi5NOf222+nqKiIsWPHMn/+fLZs2UJdXZ3dZSmlbOToI0Xdbjf19fWEhjr+pJE3JDQ0lPnz57N161YqKipITU3l8OHDdpellLKJowO9rq6OsLAwRMTuUmzVr18/1q9fT1paGsuWLSMnJ4fLly/bXZZSqpM5OtC76rilOSLClClT2LFjB/X19cyaNYs9e/booqlSXYjjA70rLYh6IyYmhmeeeYbnn3+eTZs2sXTpUk6fPt32C5VSjufoQO9qe7i0x6hRo9i2bRsjR44kNTWVoqIi6uvr7S5LKeVHjg50Hbm0LiwsjLS0NAoLCykvL2fevHkcOXLE7rKUUn7i6EDXDt07AwYMYMOGDaSmppKZmcnatWuprq62uyyllI85OtC1Q/eeiDBt2jRKS0uprq4mKSmJffv22V2WUsqHNNC7mNjYWFauXMmzzz5LXl4eWVlZnD17tu0XKqUCnqMDva6uTkcuN2j06NEUFxczbNgw5s6dS3FxMW632+6ylFId4OhA1w69Y8LDw0lPT6egoIC9e/eyYMECjh49andZSqkb5PhA1w694wYPHsymTZtISkpi8eLF5Obm6qKpUg7k6EDXvVx8R0SYPn06JSUlXLx4kdmzZ7N//367y1JKtYOjA11HLr4XFxfHqlWrWLFiBevWrSM7Oxt/XDpQKeV7jg507dD9Z9y4cWzfvp1BgwYxZ84cSktLddFUqQDn6EDXDt2/IiIiyMjIID8/n927d5OWlsbx48ftLksp1QINdNWmIUOGsHnzZmbMmEFGRgZ5eXlcu3bN7rKUUk04OtB1P/TO43K5mDlzJiUlJZw5c4bk5GTKy8vtLksp1YijL/WjHXrni4+PZ82aNZSXl5OTk8OIESPIysqiZ8+edpemVJfn6A5d90O3z/jx49mxYweJiYmkpKSwc+dOXTRVymaODnTdy8VekZGRLF68mI0bN7Jr1y4efvhhTpw4YXdZSnVZjg50HbkEhqFDh/Lyyy8zdepU0tPT2bhxI9evX7e7LKW6HEcHunbogcPlcpGUlERxcTGVlZWkpKRw4MABu8tSqkvxKtBF5CYRKRORd0XkHRH5tojEi8hbInLc8znO38U2pR164ElISCAnJ4fHH3+c1atXs3LlSi5evGh3WUp1Cd526P8G7DbGfAP4JvAO8BSwxxgzFNjjud2pdFE0cE2cOJGSkhLi4+OZPXs2u3btwhhjd1lKBbU2A11EYoHvAAUAxpgaY8ynwAxgi+dpW4D7/VVkS+rq6rRDD2DR0dFkZmaSl5dHWVkZixYt4uTJk3aXpVTQ8qZDvwU4B7wiIv8tIj8RkW5AH2PMac9zzgB9/FVkS3Tk4gzDhg2jsLCQSZMmsXDhQvLz86mpqbG7LKWCjjeBHgqMBv7dGHMHcIUm4xVj/V+62f9Pi0i6iFSISIWvz9qnIxfncLlcpKSkUFxczLFjx0hJSeHgwYN2l6VUUPEm0D8EPjTGvO25XYYV8GdFJBHA8/nj5l5sjMk3xowxxoxJSEjwRc2f071cnKd3796sXbuWJUuWsGLFClatWsWlS5fsLkupoNBmoBtjzgB/E5FhnrsmA0eAXcCDnvseBF7zS4Wt0JGLc911112UlZURHR3NrFmzeOONN3TRVKkO8nYvl8XANhH5EzAKeA7IAe4VkePAPZ7bnUo7dGeLjo7miSee4KWXXmLbtm08+uijVFZW2l2WUo7lVaAbYw55xiYjjTH3G2MuGmPOG2MmG2OGGmPuMcZc8HexTWmHHhyGDx/O1q1bmTBhAg899BAFBQXU1tbaXZZSjuPoI0V1UTR4hISE8MADD1BUVMThw4eZO3cuhw4dsrsspRzF0YGu+6EHn8TERHJzc3nkkUdYvnw5a9asoaqqyu6ylHIERwe6jlyCk4gwefJkSktLCQ0NJTk5mTfffFMXTZVqg+MDXUcuwat79+5kZ2fz4osv8sorr7BkyRJOnTpld1lKBSxHB7ru5dI13H777RQVFTF27Fjmz5/Pli1bqKurs7sspQKOYwPdGENtbS2hoY6+ip7yUmhoKPPnz2fr1q1UVFSQmprK4cOH7S5LqYDi2EBvCHOXy7GboG5Av379WL9+PWlpaSxbtoycnBwuX75sd1lKBQTHpqGOW7ouEWHKlCns2LEDt9tNcnIye/bs0UVT1eU5NtB1DxcVExPD008/zXPPPcemTZtYunQpp0+fbvuFSgUpxwZ6bW2tBroCYNSoUWzbto2RI0eSmppKUVER9fX1dpelVKdzdKDryEU1CAsLIy0tjcLCQsrLy5k3bx5HjhyxuyylOpVjA11HLqo5AwYMYMOGDaSmppKZmcnatWuprq62uyylOoVjA107dNUSEWHatGmUlpZSXV1NUlIS+/bts7sspfzOsYGuHbpqS2xsLCtXruTZZ58lLy+PrKwszp49a3dZSvmNowNdO3TljdGjR1NcXMywYcOYO3cuxcXFuN1uu8tSyuccG+g6clHtER4eTnp6OgUFBezdu5cFCxZw9OhRu8tSyqccG+g6clE3YvDgwWzatImkpCQWL15Mbm6uLpqqoOHYQNf90NWNEhGmT59OSUkJFy9eJDk5mf3799tdllId5uhA15GL6oi4uDhWrVrFypUrWbduHdnZ2Zw7d87uspS6YY4NdB25KF8ZN24c27dvZ9CgQcyZM4fS0lJdNFWO5NhA1w5d+VJERAQZGRnk5+eze/du0tLSOH78uN1lKdUujg107dCVPwwZMoTNmzczY8YMMjIyyMvL49q1a3aXpZRXHB3o2qErf3C5XMycOZOSkhLOnDlDcnIy5eXldpelVJsce7kfHbkof4uPj2fNmjWUl5eTk5PDiBEjyMrKomfPnnaXplSzvOrQReSkiBwWkUMiUuG5L15E3hKR457Pcf4t9ct05KI6y/jx49mxYweJiYmkpKSwc+dOXTRVAak9I5e7jTGjjDFjPLefAvYYY4YCezy3O43uh646U2RkJIsXL2bjxo3s2rWLhx9+mBMnTthdllJf0pEZ+gxgi+frLcD9HS/HezpyUXYYOnQoL7/8MlOnTiU9PZ2NGzdy/fp1u8tSCvA+0A3wCxE5KCLpnvv6GGMarvd1BujT3AtFJF1EKkSkwpcHbejIRdnF5XKRlJREcXExlZWVpKSkcODAAbvLUsrrRdH/aYw5JSK9gbdE5N3GDxpjjIg0e4VeY0w+kA8wZswYn13FVzt0ZbeEhARycnLYv38/q1ev5o477mDp0qXExXXqcpJSn/OqQzfGnPJ8/hh4FRgHnBWRRADP54/9VWRztENXgWLixImUlJQQHx/P7Nmz2bVrF8b4rHdRymttBrqIdBORHg1fA1OAPwO7gAc9T3sQeM1fRTZH90NXgSQ6OprMzEzy8vIoKytj0aJFnDx50u6yVBfjTYfeB/itiPwROAC8bozZDeQA94rIceAez+1OoyMXFYiGDRtGYWEhkyZNYuHCheTn51NTU2N3WaqLaDPQjTEnjDHf9Hz8D2PMGs/9540xk40xQ40x9xhjLvi/3C/oyEUFKpfLRUpKCsXFxRw7doyUlBQOHjxod1mqC3D0kaIa6CqQ9e7dm7Vr17Jv3z5WrFjBnXfeyWOPPUZsbKzdpakg5dhzuejIRTnFXXfdRVlZGdHR0cyaNYs33nhDF02VXzg20HXkopwkOjqaJ554gpdeeolt27bx6KOPUllZaXdZKsg4NtC1Q1dONHz4cLZu3cqECRN46KGHKCgooLa21u6yVJBwbKBrh66cKiQkhAceeICioiIOHz7M3LlzOXTokN1lqSDg6EDXDl05WWJiIrm5uTzyyCMsX76cNWvWUFVVZXdZysEcG+g6clHBQESYPHkypaWlhIaGkpyczJtvvqmLpuqGODbQdeSigkn37t3Jzs7mxRdf5JVXXmHJkiWcOnXK7rKUwzg20LVDV8Ho9ttvp6ioiLFjxzJ//ny2bNlCXV2d3WUph3BkoBtj9MAiFbRCQ0OZP38+W7dupaKigtTUVA4fPmx3WcoBHBno9fX1iAgulyPLV8or/fr1Y/369aSlpbFs2TJycnK4fPmy3WWpAObIRNQ9XFRXISJMmTKFHTt24Ha7SU5OZs+ePbpoqprlyEDX+bnqamJiYnj66ad57rnn2LRpE0uXLuX06dNtv1B1KY4MdN3DRXVVo0aNYtu2bYwcOZLU1FSKioqor6+3uywVIBwZ6Nqhq64sLCyMtLQ0CgsLKS8vZ968eRw5csTuslQAcGSga4euFAwYMIANGzaQmppKZmYma9eu5cqVK3aXpWzk2EDXDl0pa9F02rRplJaWUl1dzaxZs9i3b5/dZSmbODLQ6+rqtENXqpHY2FhWrlzJs88+S15eHllZWZw9e9buslQnc2Sg68hFqeaNHj2a4uJihg0bxty5cykuLsbtdttdluokjg10Hbko1bzw8HDS09MpKChg7969LFiwgKNHj9pdluoEjgx03ctFqbYNHjyYTZs2kZSUxOLFi8nNzaW6utruspQfOTLQdeSilHdEhOnTp1NSUsLFixdJTk5m//79dpel/MSRga4dulLtExcXx6pVq1i5ciXr1q0jOzubc+fO2V2W8jGvA11EQkTkv0Xk557bt4jI2yLynoiUiEinJax26ErdmHHjxrF9+3YGDRrEnDlzKC0t1UXTINKeDv0x4J1Gt38M5BpjbgUuAgt9WVhrdFFUqRsXERFBRkYG+fn57N69m7S0NI4fP253WcoHvAp0EekPfBf4iee2AJOAMs9TtgD3+6PA5ui50JXquCFDhrB582ZmzJhBRkYG69ev59q1a3aXpTrA2w79JeBJoOH/Zj2BT40xDZdS+RDo5+PaWqSBrpRvuFwuZs6cSUlJCWfPniU5OZny8nK7y1I3qM1AF5HvAR8bYw7eyDcQkXQRqRCRCl8twujIRSnfio+PZ82aNTz11FPk5OTw9NNPc/78ebvLUu3kTYc+AZguIieB7Vijln8DbhKRUM9z+gPNXtHWGJNvjBljjBmTkJDgg5J1Lxel/GX8+PHs2LGDxMREUlJS2Llzpy6aOkibgW6MWW6M6W+MGQykAL8yxjwA7AWSPE97EHjNb1U2oXu5KOU/kZGRLF68mI0bN/Kf//mfPPzww5w4ccLuspQXOrIfejbwuIi8hzVTL/BNSW3TDl0p/xs6dCgFBQVMnTqV9PR0Nm7cyPXr1+0uS7WiXYFujNlnjPme5+sTxphxxphbjTGzjDGd9pPWDl2pzuFyuUhKSqK4uJjKykpSUlI4cOCA3WWpFoS2/ZTAo4uiSnWuhIQEcnJy2L9/P6tXr+aOO+5g6dKlxMXF2V2aasSxh/5rh65U55s4cSIlJSXEx8cze/Zsdu3ahTHG7rKUhwa6UqpdoqOjyczMJC8vj7KyMhYtWsTJkyftLkvh0EDXkYtS9hs2bBiFhYVMmjSJhQsXkp+fT01Njd1ldWmODHTdy0WpwOByuUhJSaG4uJhjx46RkpLCwYM3dAyi8gHHLorqyEWpwNG7d2/Wrl3Lvn37WLFiBXfeeSePPfYYsbGxdpfWpWiHrpTymbvuuouysjK6devGrFmzeOONN3TRtBM5MtC1Q1cqcEVHR5OVlcVLL73Etm3bePTRR6msrLS7rC7BsYGuHbpSgW348OFs3bqVCRMm8NBDD1FQUEBtba3dZQU1Rwa67raolDOEhITwwAMPUFRUxOHDh5k7dy6HDh2yu6ygpYGulPK7xMREcnNzeeSRR1i+fDlr1qyhqqrK7rKCjiMDXUcuSjmPiDB58mRKS0sJDQ0lOTmZN998UxdNfciRga57uSjlXN27dyc7O5sXX3yRV155hSVLlnDqVLOXU1Dt5MhA171clHK+22+/naKiIsaOHcv8+fPZsmULdXV1bb9QtciRga4dulLBITQ0lPnz57N161YqKipITU3l8OHDdpflWI4L9Pr6esBaPVdKBYd+/fqxfv160tLSWLZsGTk5OVy+fNnushzHcYGu4xalgpOIMGXKFHbs2IHb7WbWrFn88pe/1EXTdnBcoOu4RangFhMTw9NPP83zzz9Pfn4+S5cu5fTp03aX5QiODHTt0JUKfqNGjWLbtm2MHDmS1NRUioqKPh+5quY5LtB15KJU1xEWFkZaWhqFhYWUl5czb948jhw5YndZActxga4jF6W6ngEDBrBhwwZSU1PJzMxk7dq1XLlyxe6yAo7jAl07dKW6JhFh2rRplJaWUl1dzaxZs9i3b5/dZQUURwa6duhKdV2xsbGsXLmSZ599lry8PLKysjh79qzdZQUExwW6jlyUUgCjR4+muLiYYcOGMXfuXIqLi3G73XaXZas2A11EIkXkgIj8UUT+IiI/8tx/i4i8LSLviUiJiHRKyurIRSnVIDw8nPT0dAoKCti7dy8LFizg3Xfftbss23jToV8HJhljvgmMAu4TkTuBHwO5xphbgYvAQv+V+QXt0JVSTQ0ePJhNmzaRlJTEkiVLyM3Npbq62u6yOl2bgW4sDcfghnk+DDAJKPPcvwW43y8VNqH7oSulmiMiTJ8+nZKSEi5evEhycjL79++3u6xO5dUMXURCROQQ8DHwFvBX4FNjTMOp0T4E+vmnxC/TkYtSqjVxcXGsWrWKlStXsm7dOrKzszl37pzdZXUKrwLdGFNvjBkF9AfGAd/w9huISLqIVIhIhS/+UHXkopTyxrhx49i+fTuDBg1izpw5lJaWBv2iabv2cjHGfArsBb4N3CQioZ6H+gPNnqHeGJNvjBljjBmTkJDQoWJBO3SllPciIiLIyMggPz+f3bt3k5aWxvHjx+0uy2+82cslQURu8nwdBdwLvIMV7Emepz0IvOavIhvT/dCVUu01ZMgQNm/ezIwZM8jIyGD9+vVcu3bN7rJ8zpsOPRHYKyJ/An4PvGWM+TmQDTwuIu8BPYEC/5X5BR25KKVuhMvlYubMmZSUlHD27FmSk5MpLy+3uyyfCm3rCcaYPwF3NHP/Cax5eqfSkYtSqiPi4+NZs2YN5eXl5OTkMGLECLKysujZs6fdpXWYHimqlOqSxo8fz44dO0hMTCQlJYWdO3c6ftG0zQ490NTW1hIVFWV3GUqpIBAZGcnixYu57777eO6553j99dd55plnGDJkyI294YULcOSI9fHhh+B2Q3w8DB9ufQwYACK+3YhGHBfoNTU1xMTE2F2GUiqIDB06lIKCAnbu3El6ejo/+MEPWLhwIREREW2/2Bj43e+goAB+/WsICYGami+C2+2G8HDr8y23wKJF8N3vQmSkz7dDRy5KKYW1aJqUlERxcTGVlZWkpKRw4MCB1l907hw8/DDMnw/79kGPHtC9u9WVx8VZHz17WvfHxMDf/gbZ2XDvvfCHP/h+G3z+jn4rQpqwAAANdklEQVSmi6JKKX9KSEggJyeHxx9/nNWrV7Ny5UouXrz41ScePAiTJ1tBHhMDN90ErlYiVQS6dbOe9/HHkJwM//7vVofvI44MdO3QlVL+NnHiREpKSoiPj2f27Nns2rUL0xC+Bw9CairU1loB3d65eEMnv3YtrF/vs5odF+g6clFKdZbo6GgyMzPJy8ujrKyMRYsWUXnwIDz0kPWEbt1u/M1DQ61gX78e9uzxSb2OC3QduSilOtuwYcMoLCxk0t138+fvf59Lp0/jjo7u+BuHhkJEBDzxBDQ31mknxwW6duhKKTu4XC5ShgxhSkQEVS4XJ06c4IovzrkeHQ1VVbBhQ8dr7Hg1nUs7dKWUbX7yE0JDQhgwYAB9evfmo1On+Oj0aerq6z9/So3bzaqPPuJ7773Hd44eZe6JE5RfvtzKm2LN04uL4erVDpXnuEDXC1wopWzx6adf7NEC9OjRgyFf+xoul4sTf/0rly5dwgD1QN+wMPIHDmTf17/OPyck8NSpU3xUU9Pye4eFWQuse/d2qERHBrqOXJRSne7IEeugoUa7Joa4XPTt04cBAwdy/sIFKisrcdXVkZ6QwM3h4bhEmNijBzeHhfFuW2d3rKuDiooOlei4QNeRi1LKFn/5i3UEaDOiIiO55ZZb6N69OydPnuTcJ5/g9uzieKGujsqaGoa0ddRpZCS0dSBTG5x16L8x1F6/rh26UqrzffTRl24awLjduN1u3MZg3G6io6Lo27cvn3zyCefPn6f/wIH8r3Pn+F5sLIPbCvTQUOuAow4I7EC/dAlefx1+8xs4dAjOnmXj2bP0nDQJhg2DsWPhvvvgzjtbP0JLKdXlGGOoqanh6tWrXLt2jatXr37+dePbjR9v+rnx49MrKphw5gxVn3xiBbkxuEQQlwtXw4fndlhoKMYYVp07RyjwZN++bRcsYp3vpQMCM9AvXIAXXoBXX4X6emtDIyMhPp5L588T3707fPABHD1qrQwnJMDjj8MPfqDBrpRDGGOora294YBtGtJNH7t27RqhoaFERkYSGRlJVFQUUVFRX/m68e3Y2Fj69Onzpec1fO6zfTtxW7eSEB//eYi3dHyoMYZVp09zqbaW9QMGEOrNkaT19dY5YDog8AL9F7+AZcvg8mXrKKrQL5doAAkJsc5eFh1tnQfh0iXrhDevvmodSpuYaE/tSgWZuro6n3S3LYWvy+VqNWCbBmv37t3p1avXVx5vLrAjIyMJCQnx3R/Gd74DpaVfyaTmPH/mDO/X1LBx4EAivG0yr12DUaM6VGJgBfqmTVZnHhlpnaWsGcbtRhr/thOBqCjrNW+/Dd//PmzfDrfe2klFK2Uft9vtl+624bbb7W41YJt2vFFRUcTFxXndEYd6EY4B47bbrJGIMa2eu+V0bS07P/2UcBH+odEFqZ/u25epsbEtv78x1hi5AwLnT/OnP4Uf/9jax7OVH7Ix5suB3kDEOklOVRWkpMCuXXDzzX4sWKm2ud1url+/7rOAbfo+tbW1XwpWb8I3JibG6444LCys+X9vXVH//vC1r8HJk9aBQC1IDAuj4rbb2vfebrc1Lp48uUMlBkagHz8Oq1c3O2JpzHg+Wv0LFhNjHQCQlQXbtulMXbWq8cKZLwK26fMbzg7qbXcbGRlJfHy8V91tVFQU4eHhGridRQQeecQ674qvXbpkhXmfPh16G/sD3e2GzEzrvxtt7F/e0J23+dc3Ntban7OszDrnsHKsxgtnvgjYpq+5du0aYWFhrQZs01CNjY2lb9++XnXEERERuLSpCB5Tp0JuLpw5YzWgvlBXZx2wtHRph9/K/kD/r/+CY8c+P5y2NS2OW5pq2CvmX/8VkpK0S/ezuro6v3S3DbddLlebC2CNH+vevTsJCQledcQRERG+XThTwS0iwjrdbVKSFcQdXQMwxhoTL1lizeg7yP5A/8lP2lxkAKiqr+eHp07x66tXSXzvPf4lIYH7WltgiIqydn/87W+t1ekuzO12+6W7bbjtdru9HhE03I6Li/O6I3bUwpkKft/8pjV2eeGFNsfErTLGGg9/61uQkeGT0tqsREQGAFuBPlgj7HxjzL+JSDxQAgwGTgLJxpj2ndD3+nXYv9+r7jznzBlCgVeio3HffDOP/e1vfD0ysvXDaevrrQOTAjzQG/ZU8Nf+uHV1dZ8HZXv2x/W2I9aFM9XlpKdbHfq6dVbX3t5zo9fVWZ35t75lXVzaR0e/e/OrpQ7IMsb8QUR6AAdF5C1gAbDHGJMjIk8BTwHZ7frux49/5WQ3zbnqdvOrzz7jp/37I2fOcGt0NH/fowevX7rE4t69W35hVJR1qagOMsa0uKeCL/ZYqKmpISIiol374/bq1cur7lYXzpTyAxF49FEYPtzaAePCBWvPl7aC2e22FkBdLnjsMfjnf/ZZmIMXgW6MOQ2c9nz9mYi8A/QDZgB3eZ62BdhHewP9vfe8OtS1sqaGEGBAWBinPOE/NCKCP3hOLm+s2nC73Z8fkuv2nGMh5J13KP/lL7naJJDbM3JounDmzR4LcXFxJCYmetUR68KZUg51993WKW83brT2qquqsk6DGxn5xU4e9fXWNAKsXwT33GMtgH7jGz4vp13DHxEZDNwBvA308YQ9wBmskUz7VFd7FejVbjfdPOdJcNfX89cTJ/js+nU+qq3l3epqjNsNIrhErMNxG51XoXtNDW+9/jphPXp8KURjYmLo3bu31x2xBq5SqlmxsbB8uRXS+/ZZp8A9cADOnrXyLSbGOgJ07FjrF0AHd01sjdeBLiLdgZ8BmcaYqsb/hTfGGBExLbwuHUgHGDhwYJPvHurV1bKjXS6uuN2Eh4czcNAg66xmly7R99o1hg4YYJ0Qp7n3MQbOn+f5F15oc5dIpZTqkMhI62SB991nWwletZ0iEoYV5tuMMTs9d58VkUTP44lAs+d9NMbkG2PGGGPGJCQkfPnBPn28WiEeGB5OPdboJSI8nMjISE7U13NrVBQhLlfL8+G6OuvoUQ1zpVQX0Gagi5WWBcA7xph1jR7aBTzo+fpB4LV2f/fbbrNC1zTb3H8uyuViUo8e/Me5c1x1u/ljdTW//uwzvtvabotgnexm5Mh2l6WUUk7kTYc+AZgHTBKRQ56PaUAOcK+IHAfu8dxun4QE6NXriwWDVjzVty/X3W7uPXaMp0+dYnnfvm1fAaSuDiZObHdZSinlRN7s5fJbaPFo+46dSUYE0tK+OMNiK2JCQvjXAQO8f+/6emvXoPvv71CJSinlFPbvuvGP/2jN0Vu7IvaNqKqyFieazu2VUipI2R/oPXtaF7S4cqXNWbrXrl+3Ov5nnvHN+ymllAPYH+gACxZYi5eXLnX8verrrf3bV60Cb67jp5RSQSIwAj0kxDpJV//+cPHijXfqdXXWL4VFi6zriyqlVBcSGIEO1ujlZz+DESOsM5DV1rbv9VVV1nVIs7KsEY6eu0Qp1cWI8dXc2ptvJnIO+KDTvqF3egGf2F2EDXS7u5auuN3BtM2DjDFt7uHRqYEeiESkwhgzxu46Optud9fSFbe7K25z4IxclFJKdYgGulJKBQkNdMi3uwCb6HZ3LV1xu7vcNnf5GbpSSgUL7dCVUipIdLlAF5GTInLYc9bICs99L4rIuyLyJxF5VURusrtOX2thu1d7tvmQiPxCRG62u05fam6bGz2WJSJGRHrZVZ+/tPCz/qGInGpyxtSg0tLPW0QWe/59/0VEXrCzRn/rciMXETkJjDHGfNLovinAr4wxdSLyYwBjTPuujxrgWtjuGGNMlefrJcBwY8wjNpXoc81ts+f+AcBPgG8Af9f0cadr4Wf9Q+CyMWatXXX5WwvbfTfwDPBdY8x1EeltjGn2YjzBoMt16M0xxvzCGFPnufk7oL+d9XSWhjD36IZ1ve2uIBd4kq6zvV3ZPwM5xpjrAMEc5tA1A90AvxCRg57rnTaVBvy/Tq6pMzS73SKyRkT+BjwArLStOv/4yjaLyAzglDHmj/aW5lct/R3/F8+I7WURibOrOD9qbru/DkwUkbdF5NciMtbG+vzPGNOlPoB+ns+9gT8C32n02DPAq3hGUcH00dp2e+5fDvzI7jr9vc3A20Cs5/6TQC+76+yk7e4DhGA1cWuAl+2us5O2+89AHtZFesYB7wfjv++Gjy7XoRtjTnk+f4wV3uMARGQB8D3gAeP5WxFMWtruRrYB/9jZdflTM9v898AtwB8989b+wB9EJKjOs9zcz9oYc9YYU2+McQOb+erP3/Fa+Dv+IbDTWA4AbqxzvASlLhXoItJNRHo0fA1MAf4sIvdhzVSnG2Oq7azRH1rZ7qGNnjYDeNeO+vyhhW3+vTGmtzFmsDFmMNY/9tHGmDM2lupTrfysExs9bSZW5xo0Wtpu4P8Cd3vu/zoQTvCcsOsr2rymaJDpA7wq1ql1Q4H/Y4zZLSLvARHAW57HfmeCaG8PWt7un4nIMKyu5QMg6LfZ3pI6RUs/65+KyCisOfNJYJF9JfpFS9sdDrwsIn8GaoAHg/F/4A263G6LSikVrLrUyEUppYKZBrpSSgUJDXSllAoSGuhKKRUkNNCVUipIaKArpVSQ0EBXSqkgoYGulFJB4v8DY08U8NkL5UYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlY1dXWwPHv73CYR1EUMQdwSMm08qZpmWZl3jS7JR4OOCASqDgLGjnVi4YDyCWSIAUHlFFI3yyza3nNSssyzczQVykVZ80BUWQ45/3j3LyZynAYDsP6PA+Pym/vzeKf5XrW2Xv/FL1ejxBCCNNTmToAIYQQBpKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEerKDG7WrJm+Xbt2dz+4cgXy8gx/NzOrXAQ6neGrWTNo2bJyc4UQoh7Yu3fvRb1e71LeuEol5Hbt2vH999/f+c1NmyAkBDp1AguLykX5h9JSuHoVhg6FefNAUYxbRwgh6iBFUY5XZFzVWhZHjsDrr4OtrfHJGAxVtaMjrF0LW7ZUKSQhhKivjE/IJSUwdSro9VVLxn8wMwNra3jjDbh4serrCSFEPWN8Qt66FY4eBXv76ovGygquX4f33qu+NYUQop4wPiG//z6oVGX2e4t0OsJPn2bI0aM8ffgwvrm57Lp+vex17e0hIwNu3DA6NCGEqI+MS8gnTkBODtjZlTmsFHA1N2dFmzbs6NSJCS4uhJ06xemiovtPMjeH4mL48kujQhNCiPrKuIT888/lVscA1ioVQS4uuFlYoFIU+trb42ZuTk5hYdnrFxfDvn1GhSaEEPWVcQn5wAEoq8q9j99LSjhRVISHpWXZA62sYM8eo0ITQoj6qlL7kG87d67SB0Au5+cz9/Jlhjg60q68hKxWw6VLRoUmhBD1lXEVciXfw1dUUkLo//0f169eZXqzZkb9SCGEaOiMS8gtWhhO11WAXq9n0fnzKE2aEGJmxtGcHC5fuUKZKb2kBJo0MSo0IYSor4xrWXTrVuHDIIvOnuXXoiLea9sWK0Xh5IkTnDx5kqtXruDWqhUW5uZ3TyoshMcfNyo0IYSor4xLyJ6ehguB9Poyd1qcKS7mgytXsFAUXvi//7v9/YlOTjycn8+xY8do0aIFTZo04Y5VzM3h0UeNCk0IIeor4xJy27bQoQP8+muZe5FbmpvzfZcu93x2LT+f06dOcfHiRa5dvUrLli2xtLQ0bHlTq6FfP6NCE0KI+sq4HrKiwPjxhl5vJT/g+4ODvT3t3N1RFAUUhd+OH+fCxYvo8/Nh+HDDhUVCCNGIGH90+u9/B3d3yM83egkrS0vc/3O/spWVFUX5+eRdusSR554zek0hhKivjE/IFhbwzjuGvxtxSOQParWaNm3aYGFmhvrWLY75+zNpwQJiY2O5deuW0esKIUR9U7X7kD09ITwcCgqqlJRVej2uNjZcePZZFv/yC3PnzuXMmTNotVp++OGHKoUohBD1RdXfqafVwsKFhtvZjGlfFBbC1asoWi1dN27kzbfeYsGCBfTu3ZupU6cyd+5cIiIiuF7eLXFCCFHPVc9LTn18YMMGw4GRy5fh5s3yP+wrKoLffzdcUhQba0jqKhW9e/dm5cqVrFmzhn379pGWloZer0ej0fCl3AAnhGjAFH0ldkn87W9/09/1Tr0/KyyE9HRYscLw1o/SUkPCVasNOzNKSgxf5uZgaQmjR8OYMYYXnP7FtWvXCAsLQ61WExERwS+//MLChQvp2rUroaGhNJGTfEKIekJRlL16vf5v5Y6r1oT8B50O9u+Hn34y3Np25ozh+05OhhN4XbtCr17lnvYrLS0lOjqab7/9lujoaJo3b05CQgJbtmwhJCSEgQMHGrbNCSFEHWbahFzNPvjgAxISEli4cCE9e/bk559/Jjw8HDc3N9544w2aN29e6zEJIURFVTQhV08PuYa9+uqrLFq0iLlz55KZmYmnpyfr16/H09MTX19fsrOz0el0pg5TCCGqpF4kZIAePXqwevVqsrKyWLRoEYqiEBgYyIoVK9i8eTPjx4/nxIkTpg5TCCGMVm8SMkCrVq1YvXo1Fy5cYOLEiVy9ehUPDw9WrVpF//798ff3Jzk5mdIKXg0qhBB1Sb1KyAC2trYsW7aMrl27Mnr0aHJzc1GpVPj6+pKcnMw333yDn58fR44cMXWoQghRKfUuIQOoVComT57MuHHjGDdu3O39ya1atSIuLg6NRsPEiROJj4+nqAonCIUQojbVy4T8hxdffJHo6GgiIiJITk5Gr9ejKApDhw4lNTWVY8eO4evry4EDB0wdqhBClKtebHsrz7lz5wgJCcHDw4O5c+di8Z/9zXq9nu3bt7N06VKee+45Jk6ciI2NjYmjFUI0Ng1q21t5WrRoQWJiIsXFxYwbN45L/3ljtaIoPPvss2RmZlJQUIC3tze7d+82cbRCCHFvDaJC/oNerycpKYmNGzeybNkyOnfufMfz3bt3ExERQY8ePZgxYwYODg4milQI0Zg0qgr5D4qi8NprrxESEsKkSZP47LPP7njeu3dvMjIysLW1RaPRsH37dhNFKoQQd2tQFfKfHTlyhBkzZjB06FBee+01VKo7/+/58ccfCQ8Px8PDg9dff51m97jgSAghqkOjrJD/rFOnTrf3JYeFhXHz5s07nnfv3p20tDTc3d3x8fHhww8/pDL/OQkhRHVrsAkZwNnZmYSEBGxsbAgICODcuXN3PLewsCA4OJi4uDgyMzOZOHEip06dMlG0QojGrkEnZDAk3TfffJMXX3yRMWPG3HNPcqdOnVi7di1PPPEEo0ePJjU1VS4rEkLUugafkMHwYd/IkSOZO3cuISEhfPTRR3eNMTMzY/To0axevZodO3YQEBBAbm6uCaIVQjRWjSIh/+HJJ5/k/fffJzExkdjY2HtWwW3atCEhIYEhQ4YQGBjIypUrKS4uNkG0QojGplElZAAPDw/Wrl3LoUOHmDFjBgUFBXeNUalUDBs2jNTUVA4ePMjIkSM5dOiQCaIVQjQmjS4hAzg6OrJ8+XJcXV3x9/cnLy/vnuNatGhBTEwM/v7+TJs2jZiYGAoLC2s5WiFEY9EoEzKAWq0mLCyM4cOHM3bsWO63v1pRFAYNGkRGRgYXLlxAq9Xed6wQQlRFgz0YUhnfffcdc+bMYdy4cQwbNqzMsTt37mTx4sU89dRTTJkyBTs7u1qKUghRXzX6gyGV8fjjj5OUlER6ejpLliyhpKTkvmOffvppMjMzAdBoNOzcubO2whRCNHBSIf/J9evXmT17NsXFxSxZsqTcy4f27t3LggUL8PT0JDQ0FGdn51qKVAhRn0iFbAQ7OztiYmLo3Lkzfn5+/Prrr2WO79GjB+np6bi6uqLVatmyZYscvxZCGE0S8l+oVCqmTp3K2LFjCQoKYteuXWWOt7KyYsqUKcTExJCcnMzUqVM5e/ZsLUUrhGhIJCHfx0svvcSyZcsIDw8nJSWl3MrX09OTdevW0b17d0aOHMmGDRvk+LUQolIkIZehW7durFmzho8//pjw8PByX5hqbm5OQEAAK1asYMuWLYwbN47jx4/XUrRCiPpOEnI5XF1dSUpKoqCggPHjx/P777+XO8fDw4OkpCSeffZZxo4dy5o1a8rcuSGEECAJuUKsra1ZvHgxvXr1ws/PjyNHjpQ7R6VSodVqWbduHd999x1+fn4cPny4FqIVQtRXkpArSKVSMW7cOKZMmcLEiRP597//XaF5bm5uLF++HK1Wy6RJk4iLiyu39SGEaJwkIVfS888/T2xsLJGRkSQmJlZom5uiKLz00kukp6dz/PhxfHx82L9/fy1EK4SoT+RgiJEuXrxISEgIrVq1Yv78+VhZWVV47vbt21m6dCkDBgxg0qRJ2NjY1GCkQghTk4MhNaxZs2asXLkStVpNYGAg58+fr/DcAQMGkJmZSWFhIRqNpty9zkKIxkEq5CrS6/UkJyeTkZHB0qVL6dq1a6Xmf/PNN0RERPDII48QEhKCo6NjDUUqhDAVqZBriaIo+Pn5ERYWxvTp0/nkk08qNf+JJ54gPT0dR0dHNBoN27Ztk+PXQjRSUiFXo2PHjjF9+nQGDhxIcHAwKlXl/r87cOAACxYsoE2bNoSFheHi4lJDkQohapNUyCbQvn17kpOTOXDgAKGhody4caNS87t160ZKSgodO3bEx8eHTZs2SbUsRCMiCbmaOTk5ERcXR9OmTfH39+f06dOVmm9hYcH48eOJj48nOzub4ODg+75iSgjRsEhCrgHm5ubMnj2bV199FX9/f3744YdKr9GxY0fWrFlDnz598PPzIyUlRS4rEqKBk4RcQxRFwdvbm/DwcMLCwti4cWOl1zAzM2PUqFGsWbOGL774An9/f44dO1YD0Qoh6gJJyDWsV69eJCYmsn79eqKioigtLa345OvX4fvvab1vHwkvvEBQ69aEjxrFyvh4iouLay5oIYRJyC6LWpKfn8/s2bPR6XQsWrTo/q+HunEDPv4YVq6EY8fA3Bz+aFUoCiWlpfx+6RIHmjTBfcEC2vv4QCV3cwghapfssqhj7O3tiYmJoX379owZM+bue5L1eti0CZ54AmbPhpMnwckJ7OzAwcHwZW+P2skJl3bt6F1YiGVgILldu1L400+m+aWEENVKEnItMjMzY8aMGfj5+REYGMg333xjeHDjBgQGQkiIoRp2dARbW1CUe66jmJlh6+aGa6dOOJw9y6XevTn25pu1+JsIIWqCtCxMZN++fYSFhRHg48PwTZtQfvrJUBHfJwmX5fqVK+SfPs3+AQN4Ki0Ne3v7GohYCGGsirYsJCGb0OlTp8jp25dHrlzBqV27Sp/s+7PSoiKu5eUR4+7OM8uW0b9//+oLVAhRJdJDrgfcvvuO/kCBuTknTp6kpDI7MP7CzMKCJm5uhF29ytrISMLCwir0uikhRN0hCdlUCgpg3jxUNjY80Lo1NjY2/PrrrxTeumX8mlZWWOv1rGzXjlatWqHVavn444/l+LUQ9YQkZFPZvBkKC8HKCgVo7uJC8+bNOXH8OPn5+cav6+CAets2Jmu1vPPOO6SkpDBlyhTOnDlTbaELIWqGJGRTSUwEtfqObzk6ONC6TRvOnj3LxYsX0QPXSksJzcvjqZwchhw9ytarV8te18wMSkth0ya6dOlCcnIyjz76KCNHjiQzM1OOXwtRh0lCNoVr1+DXX+Eer26ytrKinbs7+fn5nD51ikVnzmCuKPyrUycWurmx6OxZcstra6jV8J+XsKrVasaOHUtSUhJbt24lMDCQ3377rQZ+KSFEVUlCNoWcHMMJvPtscTNXq2nbrh039Hq2XrzIa02aYKNS8YiNDf3s7fm4vCrZ2hp++slw2OQ/2rVrR2JiIi+88AIBAQGsWrWKkpKS6vythBBVJAnZFE6fNrQVyqBSFEqbNcNcrUZ36hQ3b94EoKOlZcUq5IIC+M+c22uqVGg0GtavX8++ffsYPXo0OTk5VfpVhBDVRxKyKVSwMr2p0+FkYYGrqytnz53j7Llz2CgKBRXpAysK3OcCopYtWxIbG8uIESOYPHky7777LreqsrtDCFEtJCGbgrV1hS4EslGpKNDpsLe3p/UDD6DT6cg9cwZ1cTFlbmTT6w1fVlb3HaIoCoMHDyYjI4NTp07h4+Nj1L3NQojqIwnZFDw8KjSsjYUFpcCJoiLUajVuLVvyu709zYuL+e3XX7nxl5bEbUVF4OoKlpbl/gxnZ2cWL17M5MmTmTNnDosXL6agoKASv4wQorpIQjaF9u0NPeRyWg/WKhUD7O1JuHCBmzodP964wa6bNxnl4YGzszN5eXmcOn2a4r+2QAoL4dFHKxXSM888Q0ZGBsXFxWg0Gr7++uvK/lZCiCqShGwKFhbQt69h+1s5wlxduaXT8fyRI8w+dYo3XF1pb2mJo6Mj7du3x1ytJjc3l4uXLqH784m8F1+sdFgODg7MmzePN998kyVLljBv3jyuXLlS6XWEEMaRy4VM5euvYcwYwz3HRtzw9me3ioo4f+4ct4qKcHV2xs7WFr7/3pD4jXTz5k3i4+PZunUroaGhPP/88yhVjFOIxkouF6rrevc2tC4qUCWXx9LCgtatW+PavDn5Z8+S2bQpJ86erdKa1tbWzJgxg2XLlpGYmEhISAjnz5+vcqxCiPuThGwqKhXExJS5Pa2y7HQ6Wjz1FMV+fvj7+xMbG1vlD+gefvhh1q9fT+fOnfH19eWDDz6Q49dC1BBJyKbUuTPMmmV4mWlVT80VFIClJarlyxkxZgyZmZlcvnwZLy8vPvrooyolUQsLC4KCgkhISGDTpk1MmDCBkydPVi1eIcRdpIdsanq9oVJevtxwt0UFtqrdNf/aNcO85GR47LE7Hh88eJDIyEgURWHWrFl4enpWKVydTkdaWhqrVq1izJgx+Pr6YmZmVqU1hWjo5I0h9c3GjTB3Lty6ZfigryJvDykqMlTGHTtCbCx06nTPYTqdjo8//pi4uDj69OnDpEmTcHZ2rlK4eXl5LFy4kBs3bjBv3jw6duxYpfWEaMjkQ7365pVX4PPP4fnnIT8frly5u5Wh1xsS9tWrhi+93vBi1M2b75uMwXCHxUsvvUR2djaOjo6377MorkLv+oEHHiA+Pp5XX32VCRMmkJCQQFFRkdHrCSGkQq6bzp2D7GzYsQN+/tmQhBXFcJikeXPo3h2GDIGBAyvf4gCOHz/OsmXLOHXqFCEhIfTp06dK4Z4/f57Fixdz8uRJ5s2bR7du3aq0nhANjbQsGgq93lAxl5QY7sCwtq6mZfV89dVXREdH4+7uzvTp02ndunWV1vvss8+Iiopi4MCBTJgwAZt73PcsRGMkLYuGQlEMPWVn52pLxoZlFfr27UtGRgbdu3dnzJgxLF++nBs3bhi93vPPP09mZiZXr15Fq9Xy7bffVlu8QjQGUiELAC5cuMC7777L999/z+TJkxk0aFCVTubt2rWLiIgIevbsybRp03BwcKjGaIWoX6RCFpXi4uJCeHg4ixcvJjU1lYCAAH755Rej1+vTpw+ZmZlYWVmh0WjYvn17NUYrRMMkFbK4i06nY/PmzcTFxdGvXz+Cg4Np0qSJ0evt27ePBQsW0KFDB15//XWaNm1ajdEKUfdJhSyMplKpePnll8nOzsba2prhw4eTlpZm9Dv4Hn30UdLT02nbti1arZbNmzdTmUJAiMZCKmRRrtzcXJYtW8aFCxcIDQ2lZ8+eRq91+PBhwsPDcXJyYs6cObi5uVVjpELUTbLtTVQrvV7Pzp07WbZsGQ8++CDTp083OpmWlJSwfv161q1bR2BgIBqNBlVFTiYKUU9Jy0JUK0VR6NevH1lZWXTp0oWRI0cSHx9/+23YlaFWqxkzZgyrVq3is88+47XXXiM3N7cGohaifpGELCrFwsKCsWPHkp6eTl5eHl5eXvzrX/8yqifctm1bVqxYwd///ncCAwNJSkqq0nFuIeo7aVmIKtm3bx+RkZHY2toyc+ZMOpVxp0ZZzp49S0REBBcuXGDevHlVvpVOiLpEesii1uh0OjZt2kRCQgLPPPMMEyZMwMnJqdLr6PV6PvnkE2JiYhgyZAhBQUFYWVnVQMRC1C7pIYtao1KpePXVV8nKykKtVjN8+HAyMzMpLS2t1DqKovDiiy+Snp7O2bNn8fHxYe/evTUUtRB1j1TIotodPXqUqKgorly5wsyZM+nRo4dR63zxxRcsWbKEp556iilTpmBnZ1fNkQpRO6RCFibToUMH4uPjCQoK4q233iIsLIwzZ85Uep1+/fqRkZGBXq9Ho9Gwc+fOGohWiLpDKmRRowoLC0lOTiY9PR2tVoufnx+WRtzh/N1337Fw4UK6du1KaGholY5yC1HbpEIWdYKVlRVBQUGkpKSQm5uLl5cXn3/+eaW3yT3++ONkZGTg4uKCt7c3W7dulePXosGRClnUqr179xIZGYmTkxOhoaF06NCh0mv8/PPPhIeH07JlS9544w1atGhRA5EKUX2kQhZ1Uo8ePUhJSWHAgAFMmDCBpUuXcu3atUqt8dBDD7F+/XoeeughRowYQXZ2NjqdroYiFqL2SEIWtc7MzAyNRkNWVhY6nQ4vL69KJ1Vzc3MCAwNZsWIFmzdvZvz48Zw4caIGoxai5klCFibj6OhIWFgYy5cv59NPP2XkyJHs27evUmt4eHiwatUq+vfvj7+/P8nJyZXe/yxEXSE9ZFEn6PV6tm3bxjvvvEP37t2ZOnVqpXvDp0+fZuHChVy7do358+cbfYxbiOomPWRRryiKwsCBA8nKyqJNmzb4+PiwatUqioqKKryGm5sbcXFxaDQagoODee+99yo1XwhTk4Qs6hRra2vGjx/P+vXrycnJwcvLix07dlR4i5uiKAwdOpS0tDRyc3Px9fXlxx9/rOGohage0rIQddqePXuIioqiWbNmhIaG4uHhUeG5er2e7du3ExkZybPPPsvEiROxsbGpwWiFuDdpWYgGoWfPnqSmpvL0008TFBREdHQ0+fn5FZqrKArPPvssmZmZFBQU4O3tze7du2s4YiGMJxWyqDcuX75MfHw8O3bsIDg4mKFDh1bq1U+7d+8mIiKCHj16MGPGDBwcHGowWiH+Sypk0eA0adKE2bNnExsby4cffoifnx8HDhyo8PzevXuTkZGBra0tGo3GqCPcQtQkqZBFvaTX6/n000+JjY3lb3/7G5MnT8bFxaXC83/88UcWLFiAu7s7r7/+Os2aNavBaEVjJxWyaNAURWHQoEFkZWXRokULtFota9asqfA2t+7du5Oamoq7uzs+Pj58+OGHUi0Lk5MKWTQIeXl5REdHk5uby4wZM+jbty+KolRo7pEjRwgPD8fBwYE5c+bQqlWrGo5WNDbyTj3RKO3evZuoqChatWpFSEgIbdu2rdC80tJSUlJSWLt2LQEBAWi12kp9YChEWaRlIRql3r17k56eTq9evQgICCAmJoaCgoJy55mZmTF69GhWr17Njh07GDt2LLm5ubUQsRD/JQlZNDjm5uaMGDGCzMxMrl27xrBhw/jwww8rdJtcmzZtSEhI4KWXXiIwMJCVK1dSXFxcC1ELIS0L0QgcOnSIyMhIdDodM2fOpGvXrhWad+7cORYtWsSZM2eYP38+Dz30UA1HKhoq6SEL8Sc6nY5PPvmE5cuX06tXLyZPnkzTpk3LnffH9rro6GhefPFFxo8fj5WVVS1ELBoS6SEL8ScqlYrBgweTnZ2Ns7MzGo2GdevWlduO+GN7XUZGBhcvXkSr1SJFiagpUiGLRunEiRNER0dz4sQJQkND6dOnT4XmffnllyxatIgnn3ySKVOmYG9vX8ORioZAKmQhytCmTRtiYmKYMWMGUVFRTJs2rUKvgOrbty+ZmZkoioK3tzc7d+6shWhFYyEVsmj0iouLSUtLY+3atfzjH/8gICCgQtd07t27l4ULF9KlSxdCQ0NxdnauhWhFfSQVshAVZG5uzujRo8nIyODSpUsMGzaMLVu2lLtNrkePHqSlpeHq6opWq2XLli1y/FpUiVTIQvzFTz/9RGRkJGq1mtDQUDw9Pcudc+jQIRYsWICLiwuzZ8/G1dW1FiIV9YVUyEIY6eGHH2bNmjX84x//YPr06SxYsIDff/+9zDmenp6sW7eORx55hJEjR7Jhw4YKHUQR4s8kIQtxDyqViqFDh5KdnY2dnR0ajYbU1FRKSkruO0etVjN27FhWrlzJJ598QlBQEMePH6/FqEV9JwlZiDLY2dkxffp0EhMT2b17Nz4+PnzzzTdlznF3dycxMZHnnnuOsWPHsmbNmjITuRB/kB6yEBWk1+v58ssviY6Opn379syYMaPcqzpPnz7N22+/zeXLl3nzzTd58MEHaylaUZdID1mIaqYoCk8//TSZmZl07dqV0aNH895773Hjxo37znFzc2P58uX4+voyadIkli9fXuFL9EXjIwlZiEqysLDA39+ftLQ0zpw5g5eXF1u3br3vljdFURgyZAjp6emcPHkSrVbL/v37azlqUR9Iy0KIKtq/fz+RkZFYW1szc+bMctsS27dvZ+nSpQwYMIBJkyZV6BCKqN+kZSFELXnkkUdYt24dgwcPZvLkyURERHD58uX7jh8wYACZmZkUFhai0WjYtWtXLUYr6jKpkIWoRteuXWPFihVs3bqVwMBAvLy8MDMzu+/4b7/9lrfffptHHnmEGTNm4OTkVIvRitoiFbIQJuDg4EBoaCgrVqzgiy++wMfHh+++++6+43v16kV6ejpOTk54e3uzbds2OX7diEmFLEQN0ev1/Pvf/yYmJobOnTszbdo03Nzc7jv+wIEDLFy4kNatWxMWFoaLi0stRitqklTIQpiYoigMGDCADRs20KlTJ0aNGsX7779PYWHhPcd369aN9evX07FjR3x8fNi0aZNUy42MJGQhapilpSWvvfYaKSkpHD9+HC8vLz777LN7JlsLCwvGjx9PfHw8H3zwARMmTCAvL88EUQtTkJaFELXshx9+IDIyEnt7e2bOnEnHjh3vOa60tJTU1FTWrFmDv78/vr6+qFRSQ9VH0rIQoo567LHHWL9+PQMHDiQ4OJglS5Zw9erVu8aZmZkxatQo1qxZw5dffsmYMWM4duyYCSIWtUUSshAmYGZmhpeXF9nZ2SiKwvDhw8nKyrrnlZ2tW7cmPj6eV155hXHjxrFixQo5ft1ASUIWwoQcHByYNWsWcXFxbNu2jREjRvDDDz/cNU6lUvHKK6+QmppKTk4OI0eO5ODBgyaIWNQk6SELUUfo9Xo+//xzYmJi6NatG1OnTqVFixb3HLdt2zaioqIYNGgQEyZMwNra2gQRi4qSHrIQ9YyiKDz33HNkZWXRrl07fHx8SExM5NatW3eNGzhwIJmZmVy+fBlvb2/27NljoqhFdZIKWYg66vTp08TExJCTk8O0adN45plnUBTlrnFff/01ERER9OrVi+nTp2Nvb2+CaEVZpEIWop5zc3Nj6dKlzJs3j4SEBCZOnEhubu5d45588kkyMzOxtLREo9GwY8eO2g9WVAupkIWoB0pLS8nOzmblypW88MILBAUF4eDgcNe4H374gYUiQ1oaAAAL5ElEQVQLF9KpUydmzZqFs7OzCaIVfyUVshANiJmZGRqNhg0bNlBUVISXlxcffPDBXdvkHnvsMdLS0mjVqhXe3t589NFHcvy6HpEKWYh66PDhw0RGRnLz5k1mzZpF9+7d7xqTk5NDeHg4zs7OzJ49u8yLjUTNkgpZiAbswQcfZOXKlYwePZo33niDuXPncv78+TvGdO7cmeTkZHr06MGoUaPIyMi458ETUXdIQhainlIUhRdeeIHs7Gzc3Nzw8fFh1apVd5ziU6vV+Pv7k5SUxL/+9S8CAwP57bffTBe0KJMkZCHqOWtra4KDg0lOTubQoUMMHz6cnTt33tE7bteu3e0PBAMCAli1ahUlJSUmjFrci/SQhWhgvv32W6KiomjRogUhISG4u7vf8fzMmTNERERw6dIl5s2bR5cuXUwUaeMhPWQhGqlevXqRlpZGnz59CAwMJDo6muvXr99+3rJlS2JjYxkxYgRTp04lNjb2rtOAwjQkIQvRAKnVanx9fcnMzOTGjRsMGzaMDz/88PaHeoqiMHjwYNLT0zlz5gw+Pj73vNRI1C5pWQjRCPzyyy9ERkZSUlJCaGgo3bp1u+P5jh07WLp0KU8//TSTJ0/G1tbWRJE2TNKyEELc1qVLF5KSktBqtbz++uu8+eabXLx48fbz/v37k5GRQUlJCRqNhq+++sqE0TZeUiEL0cjcuHGDVatWsXHjRvz8/NBqtVhYWNx+vmfPHt5++20efvhhQkJCaNKkiQmjbRikQhZC3JONjQ2TJk1i9erV7Nu3D29v7zsq4p49e5Kenk7Tpk3x9vbm008/lePXtUQqZCEauV27dhEVFUXr1q0JCQmhTZs2t58dPHiQ8PBwWrVqxRtvvEHz5s1NGGn9JRWyEKJC+vTpQ0ZGBo8//jj+/v7ExsZSUFAAQNeuXUlJSaFLly74+vre80IjUX0kIQshMDc3Z+TIkbffQuLl5cVHH32ETqfD3NycoKAg3n//ff73f/+XCRMmcPLkSVOH3CBJy0IIcZeDBw8SGRmJoijMmjULT09PAHQ6Henp6SQlJeHn58eIESMwMzMzcbR1X0VbFpKQhRD3pNPp+Pjjj4mLi6NPnz5MmjTp9oX3eXl5vP3221y/fp158+bRqVMnE0dbt0kPWQhRJSqVipdeeons7GwcHR3RaDSsX7+e4uJiHnjgAd577z28vLwIDg4mPj7+jlvmhHEkIQshymRra8vUqVNJSkpiz549aLVadu3ahaIovPzyy6SlpXH06FFGjBjBgQMHTB1uvSYtCyFEhen1er766iuio6Nxd3dn+vTptG7dGr1ez+eff05kZCQDBw5kwoQJ2NjYmDrcOkNaFkKIaqcoCn379iUjI4Pu3bszZswYli9fzs2bN3nuuefIzMzk2rVraLVavvnmG1OHW+9IhSyEMNqFCxd49913+f7775k8eTKDBg1CURR27dpFREQEjz/+ONOnT7/nG7IbE6mQhRA1zsXFhfDwcBYvXkxqaioBAQH88ssv9OnTh8zMTKytrdFoNGzfvt3UodYLUiELIaqFTqdj8+bNxMXF0a9fP4KDg2nSpAn79+9nwYIFtG/fnlmzZtGsWTNTh1rrpEIWQtQqlUrFyy+/THZ2NtbW1gwfPpy0tDS6du1KWloa7dq1w8fHh82bN8tlRfchFbIQokbk5uYSFRXFxYsXCQ0NpWfPnhw5coT/+Z//wcnJiTlz5uDm5mbqMGuFVMhCCJPy8PAgLi6O4OBgFi5cyMyZM7Gzs2Pt2rX07NmTUaNGkZaWJpcV/YkkZCFEjVEUhf79+5OVlUWXLl0YOXIkiYmJaDQaVq1axfbt2wkICCA3N9fUodYJkpCFEDXOwsKCsWPHkp6ezsmTJ/Hy8uLw4cMkJCQwePBgAgMDSUxMpLi42NShmpT0kIUQtW7fvn1ERkZiZ2dHaGgoDg4OREREcOHCBebNm3f7drmGQm57E0LUaTqdjk2bNpGQkMCAAQMYP348u3fv5p///CeDBw9m3LhxWFlZmTrMaiEf6gkh6jSVSsWrr75KVlYWZmZmDB8+nPz8fFJSUjh37hxarZa9e/eaOsxaJRWyEKJOOHr0KFFRUVy5coWZM2dSUFDA4sWLeeqpp5gyZQp2dnamDtFoUiELIeqVDh06EB8fT1BQEG+99RZbtmwhNjYWAI1Gw86dO00cYc2ThCyEqDMURWHAgAFs2LABDw8PgoKCaNasGXPnziU6Opo5c+Zw+fJlU4dZYyQhCyHqHCsrK4KCgkhJSSE3N5dFixYxbtw4XFxc8Pb25pNPPmmQx6+lhyyEqPP27t1LZGQkTk5OvPzyy6xdu5YWLVowe/ZsWrRoYerwyiU9ZCFEg9GjRw9SUlIYMGAA0dHRdO/enQ4dOuDr60tWVlaDOX4tCVkIUS+YmZmh0WjIyspCURQ2b97MsGHD+Oijjxg3bhwnTpwwdYhVJglZCFGvODo6EhYWxvLly9m/fz+3bt3Cw8MDf39/kpOTKS0tNXWIRpMeshCi3tLr9Wzbto133nkHDw8P8vPzKSkpYf78+XTq1MnU4d0mR6eFEI3GzZs3Wbt2LRkZGTz88MP8/PPPDBs2jNdeew0LC4vKL3jxIhw6ZPjKyzN8r2lTeOgh6NIFWreu1HKSkIUQjc7p06eJiYnhxx9/pEmTJhQXFzN//ny6d+9e/mS9Hr78EpKSYNcuMDODoiJQFMNznQ4sLAx/duwI48fDoEGG75VDErIQotHas2cPUVFRFBYWcuXKFYYMGcKkSZOwsbG594TTp2HmTPj2W8O/HRxAdZ+P2PR6KCiAkhJo2xbeeQe6di0zHtn2JoRotHr27Elqaiq+vr6oVCo+//xzhg0bxu7du+8evGsXPP+8IRk7OoKT0/2TMRgqZjs7w9iTJ+GVV2Dt2mqJWxKyEKJBUqvVaLVaNm7cSL9+/bh06RJTpkxh/vz5XL161TDoq6/A39/wdyen/7YnKkJRDJW0jQ2EhxtaHVUkLQshRKOQk5NDREQEP//8M5aWliyZMoWnFixAAbC2rtrixcWGNkZyMvTpc9djaVkIIcSfdO7cmbVr1/L2229jpijkBwVxIS+PYnPzqi9ubm74mj4drl83ehlJyEKIRkNRFAYNGsS2OXPoY2nJ+cJCDh8+zO+XL1Plq4psbeHChSq1LiQhCyEaHavkZJyaNKHTgw9ia2tL3smTHDt6lKKiojvGZf7+O6N+/ZXeOTm8dfp0+Qvb2sLq1YYWhhEkIQshGpczZ+D778HeHgsLC9zbtcPdw4Oi4mJycnI4d/787Wq5mVpNQLNmDHV0rNjalpZw4wZ8/bVRoUlCFkI0LgcPGg59/GlHhb2dHZ07d6aFqytnz54l55dfuHHzJgMcHOhvb4+jmVnF1y8uhn37jApNErIQonH56SfDCby/UCkKLZo3x9PTEwtLS44cPszxEyfQVfYifEvL/x4wqSRJyEKIxiUvz1Ah34e5Wk17Dw/ad+hAfn4+Bw8evKu3XCa1Gs6dMyo0SchCiMZFp6vQARB7Ozseeughmru4oK7M1jhFMfwMI0hCFkI0Ls7OUME7kxXA1dUVVWVO8JWWGk7wGUESshCicenWrcyWxZ+V6vUU6XToAB1QpNNRWl5PubAQevQwKjS1UbOEEKK+8vQ0tBX0+nJbF0kXL7Li4sXb/95y9SpBzZoR5OJy/0lmZvDYY0aFJglZCNG4dOgArq6GS+jvdx3nfwS5uJSdfP+qtNRwU9zTTxsVmrQshBCNi0oFQUH33PpWZVevwpAhhpvjjCAJWQjR+LzyCjRrZrihrboUFRkuGJo0yeglJCELIRofW1v45z8Np+qq4y3Vf7xFZNYscHc3ehlJyEKIxql3b5g40dBmqEpS1uvh8mV45hkYM6ZKIcmHekKIxmvaNMO78RISwMqq8hfVFxdDfr4hGcfFVXg73f1U6o0hiqJcAI5X6ScKIUTj01av15e7XaNSCVkIIUTNkR6yEELUEZKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEf8P0hlJzrXGzocAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -763,7 +735,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -781,7 +753,7 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -802,7 +774,7 @@ }, { "cell_type": "code", - "execution_count": 73, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -818,30 +790,28 @@ }, { "cell_type": "code", - "execution_count": 76, + "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "energy: -600062.0\n", - "tsp objective: 124.0\n", + "energy: -600073.0\n", + "tsp objective: 146.0\n", "feasible: True\n", "solution: [0, 1, 2]\n", - "solution objective: 124.0\n" + "solution objective: 146.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt41fWV7/H32rkHSEwgQOQqlVI5SJEBauHQUVBGaAvSCSFgQAxjcOKAwYgRPXBaEE2VIQ55YIbQaKDhhJAUj0z1YC2Flj6ZSkOHlhYFLGIqAiIgEQLksr/nj9+OxpjLDtk7v/3bWa/nyZPsa9aPwCeL9f1dxBiDUkop53PZXYBSSinf0EBXSqkgoYGulFJBQgNdKaWChAa6UkoFCQ10pZQKEhroSikVJDTQlVIqSGigK6VUkAjtzG/Wq1cvM3jw4Pa/8MIF+Ogj6+uQEO9fV19vfe7ZExIT2/99lVIqABw8ePATY0xCW8/r1EAfPHgwFRUV7XvRf/wHvPACfP3rEB7e/m9aXw9VVfCtb8H69e37haCUUgFARD7w5nmBPXJ57TV48UWIibmxMAcrwG+6CXbvhjVrfFufUkoFkMAN9DNn4OmnISoKQjv4HwkR65fC1q1w4IBv6lNKqQATuIH+ox/BtWsQGemb9wsJsX4xLF36xWxdKaWCSGAG+kcfwS9/CbGxrT5tx4ULzHv/fb797rv8sGHRtDXdu8O5c/Cb3/ioUKWUChyBGeilpeB2g6v18nqFhrKwVy+mtxH8X2IMFBR0sECllAo8nbqXi9feesurRdBJMTEAHLl6lY/r6rx77x494Pe/t8YuuseLUiqIBF6HXl8Px475bnbeVEPX//77/nl/pZSyiVeBLiJLReQvIvJnESkWkUgRuUVE3haR90SkRERucL/CJs6ds8Yi/uyeRaCy0n/vr5RSNmgz0EWkH7AEGGOMGQGEACnAj4FcY8ytwEVgoU8qqq1tc3be1PkLF6j67DPq27P3ircjGqWUcghvkzMUiBKRUCAaOA1MAso8j28B7vdJRRER1oJoO9TW1SHAX0+c4FJVFV5d9joi4kaqU0qpgNVmoBtjTgFrgUqsIL8EHAQ+NcY0tLkfAv18UlGvXhAW5lUHXW8MNW43xhiiunend79+nD13jr9VVlJTW9vyC91uuOUWn5SrlFKBwpuRSxwwA7gFuBnoBtzn7TcQkXQRqRCRinPnznlRkQuGD7cOKmpDwSefMP7oUV6tq2N3VRX3fPABe2NiiO7Wjffff59Pzp/HmCb9el2dNZ/v39/bTVBKKUfwZrfFe4D3jTHnAERkJzABuElEQj1den/gVHMvNsbkA/kAY8aM8WoawrRpcOhQm09LT0jg4YQE3nnnHW677Tak0WMxMTGcOX2aS5cukZiYSHRUlPXAZ5/BP/xDu+f0SikV6LxJtUrgThGJFhEBJgNHgL1Akuc5DwKv+ayqmTOtwPVikdMYg4h8KcwBwsPCGDBwIL169eLDDz/k9Jkz1qKpywVpaT4rVSmlAoU3M/S3sRY//wAc9rwmH8gGHheR94CegO8Ov4yLg+Rk67S3bdXnduOSpnFuESA2JoavDRkCxnD62DE+6dkTM3q0z0pVSqlA4dXcwRjzv40x3zDGjDDGzDPGXDfGnDDGjDPG3GqMmWWMue7Typ58EuLj4cqVtmpDWgj0BiEhIST26kWvXr1YHRfH0scf5/Tp076sVimlbBe4g+SYGOuCFHV1cL3l3xVuLwKd+nq4fJnIlStZu2sXI0eOJDU1laKiovbtu66UUgEscAMd4NvfhpdesvZ4aaFTb7NDr6mxRjeLFkFaGmFhYaSlpVFYWEh5eTnz5s3jyJEjftoApZTqPIEd6ADf/S5s2QLdusHFi19ZKDXGIM3tsWIMfPqpFejPPgvLllmH/HsMGDCADRs2kJqaSmZmJmvXrqW6utrfW6OUUn4T+IEOMH48/OpX1kLplStWUF+5AvX1X+7Q3W64etW6qPSlS9br3noL5sz5Upg3EBGmTZtGaWkp1dXVJCUlsW/fvs7dNqWU8hH5yoE3fjRmzBjT7otEN3X+POzcCT//ORw9yrWrV7n46ack9u1rde9DhsDdd0NKSruPBj148CDPPfccgwcP5sknn6RPnz4dq1UppXxARA4aY8a0+TzHBXpjbjd/fPNNSrZs4bkXXoC+fW/8YtIeNTU1FBYWUlJSwj/90z8xe/ZsXHoQklLKRt4GurOTyuXiSmwsVb16wcCBHQ5zgPDwcNLT0ykoKGDv3r0sWLCAo0eP+qBYpZTyL2cHOlBbW0u4D4K8qcGDB7Np0yaSkpJYvHgxubm5umiqlApojg/0mpoawsLC/PLeIsL06dMpKSnh4sWLzJ49m/379/vleymlVEc5PtBra2v9FugN4uLiWLVqFStWrGDdunVkZ2fj1ZkjlVKqEwVFoPtj5NKccePGsX37dgYNGsScOXMoLS3F3c6LcSillL84PtD9OXJpTkREBBkZGeTn57N7927S0tI4fvx4p31/pZRqieMDvTM79MaGDBnC5s2bmTFjBhkZGeTl5XHNi4tyKKWUvzg+0Du7Q2/M5XIxc+ZMtm/fzpkzZ0hOTqa8vNyWWpRSypsrFgW0mpoaWzr0xnr27MmaNWsoLy8nJyeHESNGkJWVRc+ePW2tSynVtTi+Q7dr5NKc8ePHs2PHDhITE0lJSWHnzp26aKqU6jSOD3Q7Ry7NiYyMZPHixWzcuJFdu3bx8MMPc+LECbvLUkp1AY4P9M7YD/1GDB06lJdffpmpU6eSnp7Oxo0bud7KhTqUUqqjgiLQA2Xk0pTL5SIpKYni4mIqKytJSUnhwIEDdpellApSQbEoGogdemMJCQnk5OSwf/9+Vq9ezR133MHSpUuJi4uzuzSlVBDRDr0TTZw4kZKSEuLj45k9eza7du2iM09frJQKbo4PdCd06I1FR0eTmZlJXl4eZWVlLFq0iA8++MDuspRSQSAoAt0pHXpjw4YNo7CwkEmTJpGWlkZ+fj41NTV2l6WUcjDHB7qTRi5NuVwuUlJSKC4u5tixY6SkpHDw4EG7y1JKOVSbgS4iw0TkUKOPKhHJFJF4EXlLRI57Ptuywue0kUtzevfuzdq1a1myZAkrVqxg1apVXLp0ye6ylFIO02agG2OOGmNGGWNGAX8HVAOvAk8Be4wxQ4E9ntudLlD3Q78Rd911F2VlZURHRzNr1izeeOMNXTRVSnmtvSOXycBfjTEfADOALZ77twD3+7Iwbzl55NKc6OhonnjiCV566SW2bdvGo48+SmVlpd1lKaUcoL2BngIUe77uY4w57fn6DNCnuReISLqIVIhIhT+u8hMMI5fmDB8+nK1btzJhwgQeeughCgoKqK2ttbsspVQA8zrQRSQcmA6UNn3MWHOBZmcDxph8Y8wYY8yYhISEGy60JcHWoTcWEhLCAw88QFFREYcPH2bu3LkcOnTI7rKUUgGqPR36VOAPxpiznttnRSQRwPP5Y18X541g7dAbS0xMJDc3l0ceeYTly5ezZs0aqqqq7C5LKRVg2hPoc/hi3AKwC3jQ8/WDwGu+Kqo9nLofenuJCJMnT6a0tJTQ0FCSk5N58803ddFUKfU5rwJdRLoB9wI7G92dA9wrIseBezy3O10wj1ya0717d7Kzs3nxxRd55ZVXWLJkCadOnbK7LKVUAPAq0I0xV4wxPY0xlxrdd94YM9kYM9QYc48x5oL/ymxZVxi5NOf222+nqKiIsWPHMn/+fLZs2UJdXZ3dZSmlbOToI0Xdbjf19fWEhjr+pJE3JDQ0lPnz57N161YqKipITU3l8OHDdpellLKJowO9rq6OsLAwRMTuUmzVr18/1q9fT1paGsuWLSMnJ4fLly/bXZZSqpM5OtC76rilOSLClClT2LFjB/X19cyaNYs9e/booqlSXYjjA70rLYh6IyYmhmeeeYbnn3+eTZs2sXTpUk6fPt32C5VSjufoQO9qe7i0x6hRo9i2bRsjR44kNTWVoqIi6uvr7S5LKeVHjg50Hbm0LiwsjLS0NAoLCykvL2fevHkcOXLE7rKUUn7i6EDXDt07AwYMYMOGDaSmppKZmcnatWuprq62uyyllI85OtC1Q/eeiDBt2jRKS0uprq4mKSmJffv22V2WUsqHNNC7mNjYWFauXMmzzz5LXl4eWVlZnD17tu0XKqUCnqMDva6uTkcuN2j06NEUFxczbNgw5s6dS3FxMW632+6ylFId4OhA1w69Y8LDw0lPT6egoIC9e/eyYMECjh49andZSqkb5PhA1w694wYPHsymTZtISkpi8eLF5Obm6qKpUg7k6EDXvVx8R0SYPn06JSUlXLx4kdmzZ7N//367y1JKtYOjA11HLr4XFxfHqlWrWLFiBevWrSM7Oxt/XDpQKeV7jg507dD9Z9y4cWzfvp1BgwYxZ84cSktLddFUqQDn6EDXDt2/IiIiyMjIID8/n927d5OWlsbx48ftLksp1QINdNWmIUOGsHnzZmbMmEFGRgZ5eXlcu3bN7rKUUk04OtB1P/TO43K5mDlzJiUlJZw5c4bk5GTKy8vtLksp1YijL/WjHXrni4+PZ82aNZSXl5OTk8OIESPIysqiZ8+edpemVJfn6A5d90O3z/jx49mxYweJiYmkpKSwc+dOXTRVymaODnTdy8VekZGRLF68mI0bN7Jr1y4efvhhTpw4YXdZSnVZjg50HbkEhqFDh/Lyyy8zdepU0tPT2bhxI9evX7e7LKW6HEcHunbogcPlcpGUlERxcTGVlZWkpKRw4MABu8tSqkvxKtBF5CYRKRORd0XkHRH5tojEi8hbInLc8znO38U2pR164ElISCAnJ4fHH3+c1atXs3LlSi5evGh3WUp1Cd526P8G7DbGfAP4JvAO8BSwxxgzFNjjud2pdFE0cE2cOJGSkhLi4+OZPXs2u3btwhhjd1lKBbU2A11EYoHvAAUAxpgaY8ynwAxgi+dpW4D7/VVkS+rq6rRDD2DR0dFkZmaSl5dHWVkZixYt4uTJk3aXpVTQ8qZDvwU4B7wiIv8tIj8RkW5AH2PMac9zzgB9/FVkS3Tk4gzDhg2jsLCQSZMmsXDhQvLz86mpqbG7LKWCjjeBHgqMBv7dGHMHcIUm4xVj/V+62f9Pi0i6iFSISIWvz9qnIxfncLlcpKSkUFxczLFjx0hJSeHgwYN2l6VUUPEm0D8EPjTGvO25XYYV8GdFJBHA8/nj5l5sjMk3xowxxoxJSEjwRc2f071cnKd3796sXbuWJUuWsGLFClatWsWlS5fsLkupoNBmoBtjzgB/E5FhnrsmA0eAXcCDnvseBF7zS4Wt0JGLc911112UlZURHR3NrFmzeOONN3TRVKkO8nYvl8XANhH5EzAKeA7IAe4VkePAPZ7bnUo7dGeLjo7miSee4KWXXmLbtm08+uijVFZW2l2WUo7lVaAbYw55xiYjjTH3G2MuGmPOG2MmG2OGGmPuMcZc8HexTWmHHhyGDx/O1q1bmTBhAg899BAFBQXU1tbaXZZSjuPoI0V1UTR4hISE8MADD1BUVMThw4eZO3cuhw4dsrsspRzF0YGu+6EHn8TERHJzc3nkkUdYvnw5a9asoaqqyu6ylHIERwe6jlyCk4gwefJkSktLCQ0NJTk5mTfffFMXTZVqg+MDXUcuwat79+5kZ2fz4osv8sorr7BkyRJOnTpld1lKBSxHB7ru5dI13H777RQVFTF27Fjmz5/Pli1bqKurs7sspQKOYwPdGENtbS2hoY6+ip7yUmhoKPPnz2fr1q1UVFSQmprK4cOH7S5LqYDi2EBvCHOXy7GboG5Av379WL9+PWlpaSxbtoycnBwuX75sd1lKBQTHpqGOW7ouEWHKlCns2LEDt9tNcnIye/bs0UVT1eU5NtB1DxcVExPD008/zXPPPcemTZtYunQpp0+fbvuFSgUpxwZ6bW2tBroCYNSoUWzbto2RI0eSmppKUVER9fX1dpelVKdzdKDryEU1CAsLIy0tjcLCQsrLy5k3bx5HjhyxuyylOpVjA11HLqo5AwYMYMOGDaSmppKZmcnatWuprq62uyylOoVjA107dNUSEWHatGmUlpZSXV1NUlIS+/bts7sspfzOsYGuHbpqS2xsLCtXruTZZ58lLy+PrKwszp49a3dZSvmNowNdO3TljdGjR1NcXMywYcOYO3cuxcXFuN1uu8tSyuccG+g6clHtER4eTnp6OgUFBezdu5cFCxZw9OhRu8tSyqccG+g6clE3YvDgwWzatImkpCQWL15Mbm6uLpqqoOHYQNf90NWNEhGmT59OSUkJFy9eJDk5mf3799tdllId5uhA15GL6oi4uDhWrVrFypUrWbduHdnZ2Zw7d87uspS6YY4NdB25KF8ZN24c27dvZ9CgQcyZM4fS0lJdNFWO5NhA1w5d+VJERAQZGRnk5+eze/du0tLSOH78uN1lKdUujg107dCVPwwZMoTNmzczY8YMMjIyyMvL49q1a3aXpZRXHB3o2qErf3C5XMycOZOSkhLOnDlDcnIy5eXldpelVJsce7kfHbkof4uPj2fNmjWUl5eTk5PDiBEjyMrKomfPnnaXplSzvOrQReSkiBwWkUMiUuG5L15E3hKR457Pcf4t9ct05KI6y/jx49mxYweJiYmkpKSwc+dOXTRVAak9I5e7jTGjjDFjPLefAvYYY4YCezy3O43uh646U2RkJIsXL2bjxo3s2rWLhx9+mBMnTthdllJf0pEZ+gxgi+frLcD9HS/HezpyUXYYOnQoL7/8MlOnTiU9PZ2NGzdy/fp1u8tSCvA+0A3wCxE5KCLpnvv6GGMarvd1BujT3AtFJF1EKkSkwpcHbejIRdnF5XKRlJREcXExlZWVpKSkcODAAbvLUsrrRdH/aYw5JSK9gbdE5N3GDxpjjIg0e4VeY0w+kA8wZswYn13FVzt0ZbeEhARycnLYv38/q1ev5o477mDp0qXExXXqcpJSn/OqQzfGnPJ8/hh4FRgHnBWRRADP54/9VWRztENXgWLixImUlJQQHx/P7Nmz2bVrF8b4rHdRymttBrqIdBORHg1fA1OAPwO7gAc9T3sQeM1fRTZH90NXgSQ6OprMzEzy8vIoKytj0aJFnDx50u6yVBfjTYfeB/itiPwROAC8bozZDeQA94rIceAez+1OoyMXFYiGDRtGYWEhkyZNYuHCheTn51NTU2N3WaqLaDPQjTEnjDHf9Hz8D2PMGs/9540xk40xQ40x9xhjLvi/3C/oyEUFKpfLRUpKCsXFxRw7doyUlBQOHjxod1mqC3D0kaIa6CqQ9e7dm7Vr17Jv3z5WrFjBnXfeyWOPPUZsbKzdpakg5dhzuejIRTnFXXfdRVlZGdHR0cyaNYs33nhDF02VXzg20HXkopwkOjqaJ554gpdeeolt27bx6KOPUllZaXdZKsg4NtC1Q1dONHz4cLZu3cqECRN46KGHKCgooLa21u6yVJBwbKBrh66cKiQkhAceeICioiIOHz7M3LlzOXTokN1lqSDg6EDXDl05WWJiIrm5uTzyyCMsX76cNWvWUFVVZXdZysEcG+g6clHBQESYPHkypaWlhIaGkpyczJtvvqmLpuqGODbQdeSigkn37t3Jzs7mxRdf5JVXXmHJkiWcOnXK7rKUwzg20LVDV8Ho9ttvp6ioiLFjxzJ//ny2bNlCXV2d3WUph3BkoBtj9MAiFbRCQ0OZP38+W7dupaKigtTUVA4fPmx3WcoBHBno9fX1iAgulyPLV8or/fr1Y/369aSlpbFs2TJycnK4fPmy3WWpAObIRNQ9XFRXISJMmTKFHTt24Ha7SU5OZs+ePbpoqprlyEDX+bnqamJiYnj66ad57rnn2LRpE0uXLuX06dNtv1B1KY4MdN3DRXVVo0aNYtu2bYwcOZLU1FSKioqor6+3uywVIBwZ6Nqhq64sLCyMtLQ0CgsLKS8vZ968eRw5csTuslQAcGSga4euFAwYMIANGzaQmppKZmYma9eu5cqVK3aXpWzk2EDXDl0pa9F02rRplJaWUl1dzaxZs9i3b5/dZSmbODLQ6+rqtENXqpHY2FhWrlzJs88+S15eHllZWZw9e9buslQnc2Sg68hFqeaNHj2a4uJihg0bxty5cykuLsbtdttdluokjg10Hbko1bzw8HDS09MpKChg7969LFiwgKNHj9pdluoEjgx03ctFqbYNHjyYTZs2kZSUxOLFi8nNzaW6utruspQfOTLQdeSilHdEhOnTp1NSUsLFixdJTk5m//79dpel/MSRga4dulLtExcXx6pVq1i5ciXr1q0jOzubc+fO2V2W8jGvA11EQkTkv0Xk557bt4jI2yLynoiUiEinJax26ErdmHHjxrF9+3YGDRrEnDlzKC0t1UXTINKeDv0x4J1Gt38M5BpjbgUuAgt9WVhrdFFUqRsXERFBRkYG+fn57N69m7S0NI4fP253WcoHvAp0EekPfBf4iee2AJOAMs9TtgD3+6PA5ui50JXquCFDhrB582ZmzJhBRkYG69ev59q1a3aXpTrA2w79JeBJoOH/Zj2BT40xDZdS+RDo5+PaWqSBrpRvuFwuZs6cSUlJCWfPniU5OZny8nK7y1I3qM1AF5HvAR8bYw7eyDcQkXQRqRCRCl8twujIRSnfio+PZ82aNTz11FPk5OTw9NNPc/78ebvLUu3kTYc+AZguIieB7Vijln8DbhKRUM9z+gPNXtHWGJNvjBljjBmTkJDgg5J1Lxel/GX8+PHs2LGDxMREUlJS2Llzpy6aOkibgW6MWW6M6W+MGQykAL8yxjwA7AWSPE97EHjNb1U2oXu5KOU/kZGRLF68mI0bN/Kf//mfPPzww5w4ccLuspQXOrIfejbwuIi8hzVTL/BNSW3TDl0p/xs6dCgFBQVMnTqV9PR0Nm7cyPXr1+0uS7WiXYFujNlnjPme5+sTxphxxphbjTGzjDGd9pPWDl2pzuFyuUhKSqK4uJjKykpSUlI4cOCA3WWpFoS2/ZTAo4uiSnWuhIQEcnJy2L9/P6tXr+aOO+5g6dKlxMXF2V2aasSxh/5rh65U55s4cSIlJSXEx8cze/Zsdu3ahTHG7rKUhwa6UqpdoqOjyczMJC8vj7KyMhYtWsTJkyftLkvh0EDXkYtS9hs2bBiFhYVMmjSJhQsXkp+fT01Njd1ldWmODHTdy0WpwOByuUhJSaG4uJhjx46RkpLCwYM3dAyi8gHHLorqyEWpwNG7d2/Wrl3Lvn37WLFiBXfeeSePPfYYsbGxdpfWpWiHrpTymbvuuouysjK6devGrFmzeOONN3TRtBM5MtC1Q1cqcEVHR5OVlcVLL73Etm3bePTRR6msrLS7rC7BsYGuHbpSgW348OFs3bqVCRMm8NBDD1FQUEBtba3dZQU1Rwa67raolDOEhITwwAMPUFRUxOHDh5k7dy6HDh2yu6ygpYGulPK7xMREcnNzeeSRR1i+fDlr1qyhqqrK7rKCjiMDXUcuSjmPiDB58mRKS0sJDQ0lOTmZN998UxdNfciRga57uSjlXN27dyc7O5sXX3yRV155hSVLlnDqVLOXU1Dt5MhA171clHK+22+/naKiIsaOHcv8+fPZsmULdXV1bb9QtciRga4dulLBITQ0lPnz57N161YqKipITU3l8OHDdpflWI4L9Pr6esBaPVdKBYd+/fqxfv160tLSWLZsGTk5OVy+fNnushzHcYGu4xalgpOIMGXKFHbs2IHb7WbWrFn88pe/1EXTdnBcoOu4RangFhMTw9NPP83zzz9Pfn4+S5cu5fTp03aX5QiODHTt0JUKfqNGjWLbtm2MHDmS1NRUioqKPh+5quY5LtB15KJU1xEWFkZaWhqFhYWUl5czb948jhw5YndZActxga4jF6W6ngEDBrBhwwZSU1PJzMxk7dq1XLlyxe6yAo7jAl07dKW6JhFh2rRplJaWUl1dzaxZs9i3b5/dZQUURwa6duhKdV2xsbGsXLmSZ599lry8PLKysjh79qzdZQUExwW6jlyUUgCjR4+muLiYYcOGMXfuXIqLi3G73XaXZas2A11EIkXkgIj8UUT+IiI/8tx/i4i8LSLviUiJiHRKyurIRSnVIDw8nPT0dAoKCti7dy8LFizg3Xfftbss23jToV8HJhljvgmMAu4TkTuBHwO5xphbgYvAQv+V+QXt0JVSTQ0ePJhNmzaRlJTEkiVLyM3Npbq62u6yOl2bgW4sDcfghnk+DDAJKPPcvwW43y8VNqH7oSulmiMiTJ8+nZKSEi5evEhycjL79++3u6xO5dUMXURCROQQ8DHwFvBX4FNjTMOp0T4E+vmnxC/TkYtSqjVxcXGsWrWKlStXsm7dOrKzszl37pzdZXUKrwLdGFNvjBkF9AfGAd/w9huISLqIVIhIhS/+UHXkopTyxrhx49i+fTuDBg1izpw5lJaWBv2iabv2cjHGfArsBb4N3CQioZ6H+gPNnqHeGJNvjBljjBmTkJDQoWJBO3SllPciIiLIyMggPz+f3bt3k5aWxvHjx+0uy2+82cslQURu8nwdBdwLvIMV7Emepz0IvOavIhvT/dCVUu01ZMgQNm/ezIwZM8jIyGD9+vVcu3bN7rJ8zpsOPRHYKyJ/An4PvGWM+TmQDTwuIu8BPYEC/5X5BR25KKVuhMvlYubMmZSUlHD27FmSk5MpLy+3uyyfCm3rCcaYPwF3NHP/Cax5eqfSkYtSqiPi4+NZs2YN5eXl5OTkMGLECLKysujZs6fdpXWYHimqlOqSxo8fz44dO0hMTCQlJYWdO3c6ftG0zQ490NTW1hIVFWV3GUqpIBAZGcnixYu57777eO6553j99dd55plnGDJkyI294YULcOSI9fHhh+B2Q3w8DB9ufQwYACK+3YhGHBfoNTU1xMTE2F2GUiqIDB06lIKCAnbu3El6ejo/+MEPWLhwIREREW2/2Bj43e+goAB+/WsICYGami+C2+2G8HDr8y23wKJF8N3vQmSkz7dDRy5KKYW1aJqUlERxcTGVlZWkpKRw4MCB1l907hw8/DDMnw/79kGPHtC9u9WVx8VZHz17WvfHxMDf/gbZ2XDvvfCHP/h+G3z+jn4rQpqwAAANdklEQVSmi6JKKX9KSEggJyeHxx9/nNWrV7Ny5UouXrz41ScePAiTJ1tBHhMDN90ErlYiVQS6dbOe9/HHkJwM//7vVofvI44MdO3QlVL+NnHiREpKSoiPj2f27Nns2rUL0xC+Bw9CairU1loB3d65eEMnv3YtrF/vs5odF+g6clFKdZbo6GgyMzPJy8ujrKyMRYsWUXnwIDz0kPWEbt1u/M1DQ61gX78e9uzxSb2OC3QduSilOtuwYcMoLCxk0t138+fvf59Lp0/jjo7u+BuHhkJEBDzxBDQ31mknxwW6duhKKTu4XC5ShgxhSkQEVS4XJ06c4IovzrkeHQ1VVbBhQ8dr7Hg1nUs7dKWUbX7yE0JDQhgwYAB9evfmo1On+Oj0aerq6z9/So3bzaqPPuJ7773Hd44eZe6JE5RfvtzKm2LN04uL4erVDpXnuEDXC1wopWzx6adf7NEC9OjRgyFf+xoul4sTf/0rly5dwgD1QN+wMPIHDmTf17/OPyck8NSpU3xUU9Pye4eFWQuse/d2qERHBrqOXJRSne7IEeugoUa7Joa4XPTt04cBAwdy/sIFKisrcdXVkZ6QwM3h4bhEmNijBzeHhfFuW2d3rKuDiooOlei4QNeRi1LKFn/5i3UEaDOiIiO55ZZb6N69OydPnuTcJ5/g9uzieKGujsqaGoa0ddRpZCS0dSBTG5x16L8x1F6/rh26UqrzffTRl24awLjduN1u3MZg3G6io6Lo27cvn3zyCefPn6f/wIH8r3Pn+F5sLIPbCvTQUOuAow4I7EC/dAlefx1+8xs4dAjOnmXj2bP0nDQJhg2DsWPhvvvgzjtbP0JLKdXlGGOoqanh6tWrXLt2jatXr37+dePbjR9v+rnx49MrKphw5gxVn3xiBbkxuEQQlwtXw4fndlhoKMYYVp07RyjwZN++bRcsYp3vpQMCM9AvXIAXXoBXX4X6emtDIyMhPp5L588T3707fPABHD1qrQwnJMDjj8MPfqDBrpRDGGOora294YBtGtJNH7t27RqhoaFERkYSGRlJVFQUUVFRX/m68e3Y2Fj69Onzpec1fO6zfTtxW7eSEB//eYi3dHyoMYZVp09zqbaW9QMGEOrNkaT19dY5YDog8AL9F7+AZcvg8mXrKKrQL5doAAkJsc5eFh1tnQfh0iXrhDevvmodSpuYaE/tSgWZuro6n3S3LYWvy+VqNWCbBmv37t3p1avXVx5vLrAjIyMJCQnx3R/Gd74DpaVfyaTmPH/mDO/X1LBx4EAivG0yr12DUaM6VGJgBfqmTVZnHhlpnaWsGcbtRhr/thOBqCjrNW+/Dd//PmzfDrfe2klFK2Uft9vtl+624bbb7W41YJt2vFFRUcTFxXndEYd6EY4B47bbrJGIMa2eu+V0bS07P/2UcBH+odEFqZ/u25epsbEtv78x1hi5AwLnT/OnP4Uf/9jax7OVH7Ix5suB3kDEOklOVRWkpMCuXXDzzX4sWKm2ud1url+/7rOAbfo+tbW1XwpWb8I3JibG6444LCys+X9vXVH//vC1r8HJk9aBQC1IDAuj4rbb2vfebrc1Lp48uUMlBkagHz8Oq1c3O2JpzHg+Wv0LFhNjHQCQlQXbtulMXbWq8cKZLwK26fMbzg7qbXcbGRlJfHy8V91tVFQU4eHhGridRQQeecQ674qvXbpkhXmfPh16G/sD3e2GzEzrvxtt7F/e0J23+dc3Ntban7OszDrnsHKsxgtnvgjYpq+5du0aYWFhrQZs01CNjY2lb9++XnXEERERuLSpCB5Tp0JuLpw5YzWgvlBXZx2wtHRph9/K/kD/r/+CY8c+P5y2NS2OW5pq2CvmX/8VkpK0S/ezuro6v3S3DbddLlebC2CNH+vevTsJCQledcQRERG+XThTwS0iwjrdbVKSFcQdXQMwxhoTL1lizeg7yP5A/8lP2lxkAKiqr+eHp07x66tXSXzvPf4lIYH7WltgiIqydn/87W+t1ekuzO12+6W7bbjtdru9HhE03I6Li/O6I3bUwpkKft/8pjV2eeGFNsfErTLGGg9/61uQkeGT0tqsREQGAFuBPlgj7HxjzL+JSDxQAgwGTgLJxpj2ndD3+nXYv9+r7jznzBlCgVeio3HffDOP/e1vfD0ysvXDaevrrQOTAjzQG/ZU8Nf+uHV1dZ8HZXv2x/W2I9aFM9XlpKdbHfq6dVbX3t5zo9fVWZ35t75lXVzaR0e/e/OrpQ7IMsb8QUR6AAdF5C1gAbDHGJMjIk8BTwHZ7frux49/5WQ3zbnqdvOrzz7jp/37I2fOcGt0NH/fowevX7rE4t69W35hVJR1qagOMsa0uKeCL/ZYqKmpISIiol374/bq1cur7lYXzpTyAxF49FEYPtzaAePCBWvPl7aC2e22FkBdLnjsMfjnf/ZZmIMXgW6MOQ2c9nz9mYi8A/QDZgB3eZ62BdhHewP9vfe8OtS1sqaGEGBAWBinPOE/NCKCP3hOLm+s2nC73Z8fkuv2nGMh5J13KP/lL7naJJDbM3JounDmzR4LcXFxJCYmetUR68KZUg51993WKW83brT2qquqsk6DGxn5xU4e9fXWNAKsXwT33GMtgH7jGz4vp13DHxEZDNwBvA308YQ9wBmskUz7VFd7FejVbjfdPOdJcNfX89cTJ/js+nU+qq3l3epqjNsNIrhErMNxG51XoXtNDW+9/jphPXp8KURjYmLo3bu31x2xBq5SqlmxsbB8uRXS+/ZZp8A9cADOnrXyLSbGOgJ07FjrF0AHd01sjdeBLiLdgZ8BmcaYqsb/hTfGGBExLbwuHUgHGDhwYJPvHurV1bKjXS6uuN2Eh4czcNAg66xmly7R99o1hg4YYJ0Qp7n3MQbOn+f5F15oc5dIpZTqkMhI62SB991nWwletZ0iEoYV5tuMMTs9d58VkUTP44lAs+d9NMbkG2PGGGPGJCQkfPnBPn28WiEeGB5OPdboJSI8nMjISE7U13NrVBQhLlfL8+G6OuvoUQ1zpVQX0Gagi5WWBcA7xph1jR7aBTzo+fpB4LV2f/fbbrNC1zTb3H8uyuViUo8e/Me5c1x1u/ljdTW//uwzvtvabotgnexm5Mh2l6WUUk7kTYc+AZgHTBKRQ56PaUAOcK+IHAfu8dxun4QE6NXriwWDVjzVty/X3W7uPXaMp0+dYnnfvm1fAaSuDiZObHdZSinlRN7s5fJbaPFo+46dSUYE0tK+OMNiK2JCQvjXAQO8f+/6emvXoPvv71CJSinlFPbvuvGP/2jN0Vu7IvaNqKqyFieazu2VUipI2R/oPXtaF7S4cqXNWbrXrl+3Ov5nnvHN+ymllAPYH+gACxZYi5eXLnX8verrrf3bV60Cb67jp5RSQSIwAj0kxDpJV//+cPHijXfqdXXWL4VFi6zriyqlVBcSGIEO1ujlZz+DESOsM5DV1rbv9VVV1nVIs7KsEY6eu0Qp1cWI8dXc2ptvJnIO+KDTvqF3egGf2F2EDXS7u5auuN3BtM2DjDFt7uHRqYEeiESkwhgzxu46Optud9fSFbe7K25z4IxclFJKdYgGulJKBQkNdMi3uwCb6HZ3LV1xu7vcNnf5GbpSSgUL7dCVUipIdLlAF5GTInLYc9bICs99L4rIuyLyJxF5VURusrtOX2thu1d7tvmQiPxCRG62u05fam6bGz2WJSJGRHrZVZ+/tPCz/qGInGpyxtSg0tLPW0QWe/59/0VEXrCzRn/rciMXETkJjDHGfNLovinAr4wxdSLyYwBjTPuujxrgWtjuGGNMlefrJcBwY8wjNpXoc81ts+f+AcBPgG8Af9f0cadr4Wf9Q+CyMWatXXX5WwvbfTfwDPBdY8x1EeltjGn2YjzBoMt16M0xxvzCGFPnufk7oL+d9XSWhjD36IZ1ve2uIBd4kq6zvV3ZPwM5xpjrAMEc5tA1A90AvxCRg57rnTaVBvy/Tq6pMzS73SKyRkT+BjwArLStOv/4yjaLyAzglDHmj/aW5lct/R3/F8+I7WURibOrOD9qbru/DkwUkbdF5NciMtbG+vzPGNOlPoB+ns+9gT8C32n02DPAq3hGUcH00dp2e+5fDvzI7jr9vc3A20Cs5/6TQC+76+yk7e4DhGA1cWuAl+2us5O2+89AHtZFesYB7wfjv++Gjy7XoRtjTnk+f4wV3uMARGQB8D3gAeP5WxFMWtruRrYB/9jZdflTM9v898AtwB8989b+wB9EJKjOs9zcz9oYc9YYU2+McQOb+erP3/Fa+Dv+IbDTWA4AbqxzvASlLhXoItJNRHo0fA1MAf4sIvdhzVSnG2Oq7azRH1rZ7qGNnjYDeNeO+vyhhW3+vTGmtzFmsDFmMNY/9tHGmDM2lupTrfysExs9bSZW5xo0Wtpu4P8Cd3vu/zoQTvCcsOsr2rymaJDpA7wq1ql1Q4H/Y4zZLSLvARHAW57HfmeCaG8PWt7un4nIMKyu5QMg6LfZ3pI6RUs/65+KyCisOfNJYJF9JfpFS9sdDrwsIn8GaoAHg/F/4A263G6LSikVrLrUyEUppYKZBrpSSgUJDXSllAoSGuhKKRUkNNCVUipIaKArpVSQ0EBXSqkgoYGulFJB4v8DY08U8NkL5UYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlY1dXWwPHv73CYR1EUMQdwSMm08qZpmWZl3jS7JR4OOCASqDgLGjnVi4YDyCWSIAUHlFFI3yyza3nNSssyzczQVykVZ80BUWQ45/3j3LyZynAYDsP6PA+Pym/vzeKf5XrW2Xv/FL1ejxBCCNNTmToAIYQQBpKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEerKDG7WrJm+Xbt2dz+4cgXy8gx/NzOrXAQ6neGrWTNo2bJyc4UQoh7Yu3fvRb1e71LeuEol5Hbt2vH999/f+c1NmyAkBDp1AguLykX5h9JSuHoVhg6FefNAUYxbRwgh6iBFUY5XZFzVWhZHjsDrr4OtrfHJGAxVtaMjrF0LW7ZUKSQhhKivjE/IJSUwdSro9VVLxn8wMwNra3jjDbh4serrCSFEPWN8Qt66FY4eBXv76ovGygquX4f33qu+NYUQop4wPiG//z6oVGX2e4t0OsJPn2bI0aM8ffgwvrm57Lp+vex17e0hIwNu3DA6NCGEqI+MS8gnTkBODtjZlTmsFHA1N2dFmzbs6NSJCS4uhJ06xemiovtPMjeH4mL48kujQhNCiPrKuIT888/lVscA1ioVQS4uuFlYoFIU+trb42ZuTk5hYdnrFxfDvn1GhSaEEPWVcQn5wAEoq8q9j99LSjhRVISHpWXZA62sYM8eo0ITQoj6qlL7kG87d67SB0Au5+cz9/Jlhjg60q68hKxWw6VLRoUmhBD1lXEVciXfw1dUUkLo//0f169eZXqzZkb9SCGEaOiMS8gtWhhO11WAXq9n0fnzKE2aEGJmxtGcHC5fuUKZKb2kBJo0MSo0IYSor4xrWXTrVuHDIIvOnuXXoiLea9sWK0Xh5IkTnDx5kqtXruDWqhUW5uZ3TyoshMcfNyo0IYSor4xLyJ6ehguB9Poyd1qcKS7mgytXsFAUXvi//7v9/YlOTjycn8+xY8do0aIFTZo04Y5VzM3h0UeNCk0IIeor4xJy27bQoQP8+muZe5FbmpvzfZcu93x2LT+f06dOcfHiRa5dvUrLli2xtLQ0bHlTq6FfP6NCE0KI+sq4HrKiwPjxhl5vJT/g+4ODvT3t3N1RFAUUhd+OH+fCxYvo8/Nh+HDDhUVCCNGIGH90+u9/B3d3yM83egkrS0vc/3O/spWVFUX5+eRdusSR554zek0hhKivjE/IFhbwzjuGvxtxSOQParWaNm3aYGFmhvrWLY75+zNpwQJiY2O5deuW0esKIUR9U7X7kD09ITwcCgqqlJRVej2uNjZcePZZFv/yC3PnzuXMmTNotVp++OGHKoUohBD1RdXfqafVwsKFhtvZjGlfFBbC1asoWi1dN27kzbfeYsGCBfTu3ZupU6cyd+5cIiIiuF7eLXFCCFHPVc9LTn18YMMGw4GRy5fh5s3yP+wrKoLffzdcUhQba0jqKhW9e/dm5cqVrFmzhn379pGWloZer0ej0fCl3AAnhGjAFH0ldkn87W9/09/1Tr0/KyyE9HRYscLw1o/SUkPCVasNOzNKSgxf5uZgaQmjR8OYMYYXnP7FtWvXCAsLQ61WExERwS+//MLChQvp2rUroaGhNJGTfEKIekJRlL16vf5v5Y6r1oT8B50O9u+Hn34y3Np25ozh+05OhhN4XbtCr17lnvYrLS0lOjqab7/9lujoaJo3b05CQgJbtmwhJCSEgQMHGrbNCSFEHWbahFzNPvjgAxISEli4cCE9e/bk559/Jjw8HDc3N9544w2aN29e6zEJIURFVTQhV08PuYa9+uqrLFq0iLlz55KZmYmnpyfr16/H09MTX19fsrOz0el0pg5TCCGqpF4kZIAePXqwevVqsrKyWLRoEYqiEBgYyIoVK9i8eTPjx4/nxIkTpg5TCCGMVm8SMkCrVq1YvXo1Fy5cYOLEiVy9ehUPDw9WrVpF//798ff3Jzk5mdIKXg0qhBB1Sb1KyAC2trYsW7aMrl27Mnr0aHJzc1GpVPj6+pKcnMw333yDn58fR44cMXWoQghRKfUuIQOoVComT57MuHHjGDdu3O39ya1atSIuLg6NRsPEiROJj4+nqAonCIUQojbVy4T8hxdffJHo6GgiIiJITk5Gr9ejKApDhw4lNTWVY8eO4evry4EDB0wdqhBClKtebHsrz7lz5wgJCcHDw4O5c+di8Z/9zXq9nu3bt7N06VKee+45Jk6ciI2NjYmjFUI0Ng1q21t5WrRoQWJiIsXFxYwbN45L/3ljtaIoPPvss2RmZlJQUIC3tze7d+82cbRCCHFvDaJC/oNerycpKYmNGzeybNkyOnfufMfz3bt3ExERQY8ePZgxYwYODg4milQI0Zg0qgr5D4qi8NprrxESEsKkSZP47LPP7njeu3dvMjIysLW1RaPRsH37dhNFKoQQd2tQFfKfHTlyhBkzZjB06FBee+01VKo7/+/58ccfCQ8Px8PDg9dff51m97jgSAghqkOjrJD/rFOnTrf3JYeFhXHz5s07nnfv3p20tDTc3d3x8fHhww8/pDL/OQkhRHVrsAkZwNnZmYSEBGxsbAgICODcuXN3PLewsCA4OJi4uDgyMzOZOHEip06dMlG0QojGrkEnZDAk3TfffJMXX3yRMWPG3HNPcqdOnVi7di1PPPEEo0ePJjU1VS4rEkLUugafkMHwYd/IkSOZO3cuISEhfPTRR3eNMTMzY/To0axevZodO3YQEBBAbm6uCaIVQjRWjSIh/+HJJ5/k/fffJzExkdjY2HtWwW3atCEhIYEhQ4YQGBjIypUrKS4uNkG0QojGplElZAAPDw/Wrl3LoUOHmDFjBgUFBXeNUalUDBs2jNTUVA4ePMjIkSM5dOiQCaIVQjQmjS4hAzg6OrJ8+XJcXV3x9/cnLy/vnuNatGhBTEwM/v7+TJs2jZiYGAoLC2s5WiFEY9EoEzKAWq0mLCyM4cOHM3bsWO63v1pRFAYNGkRGRgYXLlxAq9Xed6wQQlRFgz0YUhnfffcdc+bMYdy4cQwbNqzMsTt37mTx4sU89dRTTJkyBTs7u1qKUghRXzX6gyGV8fjjj5OUlER6ejpLliyhpKTkvmOffvppMjMzAdBoNOzcubO2whRCNHBSIf/J9evXmT17NsXFxSxZsqTcy4f27t3LggUL8PT0JDQ0FGdn51qKVAhRn0iFbAQ7OztiYmLo3Lkzfn5+/Prrr2WO79GjB+np6bi6uqLVatmyZYscvxZCGE0S8l+oVCqmTp3K2LFjCQoKYteuXWWOt7KyYsqUKcTExJCcnMzUqVM5e/ZsLUUrhGhIJCHfx0svvcSyZcsIDw8nJSWl3MrX09OTdevW0b17d0aOHMmGDRvk+LUQolIkIZehW7durFmzho8//pjw8PByX5hqbm5OQEAAK1asYMuWLYwbN47jx4/XUrRCiPpOEnI5XF1dSUpKoqCggPHjx/P777+XO8fDw4OkpCSeffZZxo4dy5o1a8rcuSGEECAJuUKsra1ZvHgxvXr1ws/PjyNHjpQ7R6VSodVqWbduHd999x1+fn4cPny4FqIVQtRXkpArSKVSMW7cOKZMmcLEiRP597//XaF5bm5uLF++HK1Wy6RJk4iLiyu39SGEaJwkIVfS888/T2xsLJGRkSQmJlZom5uiKLz00kukp6dz/PhxfHx82L9/fy1EK4SoT+RgiJEuXrxISEgIrVq1Yv78+VhZWVV47vbt21m6dCkDBgxg0qRJ2NjY1GCkQghTk4MhNaxZs2asXLkStVpNYGAg58+fr/DcAQMGkJmZSWFhIRqNpty9zkKIxkEq5CrS6/UkJyeTkZHB0qVL6dq1a6Xmf/PNN0RERPDII48QEhKCo6NjDUUqhDAVqZBriaIo+Pn5ERYWxvTp0/nkk08qNf+JJ54gPT0dR0dHNBoN27Ztk+PXQjRSUiFXo2PHjjF9+nQGDhxIcHAwKlXl/r87cOAACxYsoE2bNoSFheHi4lJDkQohapNUyCbQvn17kpOTOXDgAKGhody4caNS87t160ZKSgodO3bEx8eHTZs2SbUsRCMiCbmaOTk5ERcXR9OmTfH39+f06dOVmm9hYcH48eOJj48nOzub4ODg+75iSgjRsEhCrgHm5ubMnj2bV199FX9/f3744YdKr9GxY0fWrFlDnz598PPzIyUlRS4rEqKBk4RcQxRFwdvbm/DwcMLCwti4cWOl1zAzM2PUqFGsWbOGL774An9/f44dO1YD0Qoh6gJJyDWsV69eJCYmsn79eqKioigtLa345OvX4fvvab1vHwkvvEBQ69aEjxrFyvh4iouLay5oIYRJyC6LWpKfn8/s2bPR6XQsWrTo/q+HunEDPv4YVq6EY8fA3Bz+aFUoCiWlpfx+6RIHmjTBfcEC2vv4QCV3cwghapfssqhj7O3tiYmJoX379owZM+bue5L1eti0CZ54AmbPhpMnwckJ7OzAwcHwZW+P2skJl3bt6F1YiGVgILldu1L400+m+aWEENVKEnItMjMzY8aMGfj5+REYGMg333xjeHDjBgQGQkiIoRp2dARbW1CUe66jmJlh6+aGa6dOOJw9y6XevTn25pu1+JsIIWqCtCxMZN++fYSFhRHg48PwTZtQfvrJUBHfJwmX5fqVK+SfPs3+AQN4Ki0Ne3v7GohYCGGsirYsJCGb0OlTp8jp25dHrlzBqV27Sp/s+7PSoiKu5eUR4+7OM8uW0b9//+oLVAhRJdJDrgfcvvuO/kCBuTknTp6kpDI7MP7CzMKCJm5uhF29ytrISMLCwir0uikhRN0hCdlUCgpg3jxUNjY80Lo1NjY2/PrrrxTeumX8mlZWWOv1rGzXjlatWqHVavn444/l+LUQ9YQkZFPZvBkKC8HKCgVo7uJC8+bNOXH8OPn5+cav6+CAets2Jmu1vPPOO6SkpDBlyhTOnDlTbaELIWqGJGRTSUwEtfqObzk6ONC6TRvOnj3LxYsX0QPXSksJzcvjqZwchhw9ytarV8te18wMSkth0ya6dOlCcnIyjz76KCNHjiQzM1OOXwtRh0lCNoVr1+DXX+Eer26ytrKinbs7+fn5nD51ikVnzmCuKPyrUycWurmx6OxZcstra6jV8J+XsKrVasaOHUtSUhJbt24lMDCQ3377rQZ+KSFEVUlCNoWcHMMJvPtscTNXq2nbrh039Hq2XrzIa02aYKNS8YiNDf3s7fm4vCrZ2hp++slw2OQ/2rVrR2JiIi+88AIBAQGsWrWKkpKS6vythBBVJAnZFE6fNrQVyqBSFEqbNcNcrUZ36hQ3b94EoKOlZcUq5IIC+M+c22uqVGg0GtavX8++ffsYPXo0OTk5VfpVhBDVRxKyKVSwMr2p0+FkYYGrqytnz53j7Llz2CgKBRXpAysK3OcCopYtWxIbG8uIESOYPHky7777LreqsrtDCFEtJCGbgrV1hS4EslGpKNDpsLe3p/UDD6DT6cg9cwZ1cTFlbmTT6w1fVlb3HaIoCoMHDyYjI4NTp07h4+Nj1L3NQojqIwnZFDw8KjSsjYUFpcCJoiLUajVuLVvyu709zYuL+e3XX7nxl5bEbUVF4OoKlpbl/gxnZ2cWL17M5MmTmTNnDosXL6agoKASv4wQorpIQjaF9u0NPeRyWg/WKhUD7O1JuHCBmzodP964wa6bNxnl4YGzszN5eXmcOn2a4r+2QAoL4dFHKxXSM888Q0ZGBsXFxWg0Gr7++uvK/lZCiCqShGwKFhbQt69h+1s5wlxduaXT8fyRI8w+dYo3XF1pb2mJo6Mj7du3x1ytJjc3l4uXLqH784m8F1+sdFgODg7MmzePN998kyVLljBv3jyuXLlS6XWEEMaRy4VM5euvYcwYwz3HRtzw9me3ioo4f+4ct4qKcHV2xs7WFr7/3pD4jXTz5k3i4+PZunUroaGhPP/88yhVjFOIxkouF6rrevc2tC4qUCWXx9LCgtatW+PavDn5Z8+S2bQpJ86erdKa1tbWzJgxg2XLlpGYmEhISAjnz5+vcqxCiPuThGwqKhXExJS5Pa2y7HQ6Wjz1FMV+fvj7+xMbG1vlD+gefvhh1q9fT+fOnfH19eWDDz6Q49dC1BBJyKbUuTPMmmV4mWlVT80VFIClJarlyxkxZgyZmZlcvnwZLy8vPvrooyolUQsLC4KCgkhISGDTpk1MmDCBkydPVi1eIcRdpIdsanq9oVJevtxwt0UFtqrdNf/aNcO85GR47LE7Hh88eJDIyEgURWHWrFl4enpWKVydTkdaWhqrVq1izJgx+Pr6YmZmVqU1hWjo5I0h9c3GjTB3Lty6ZfigryJvDykqMlTGHTtCbCx06nTPYTqdjo8//pi4uDj69OnDpEmTcHZ2rlK4eXl5LFy4kBs3bjBv3jw6duxYpfWEaMjkQ7365pVX4PPP4fnnIT8frly5u5Wh1xsS9tWrhi+93vBi1M2b75uMwXCHxUsvvUR2djaOjo6377MorkLv+oEHHiA+Pp5XX32VCRMmkJCQQFFRkdHrCSGkQq6bzp2D7GzYsQN+/tmQhBXFcJikeXPo3h2GDIGBAyvf4gCOHz/OsmXLOHXqFCEhIfTp06dK4Z4/f57Fixdz8uRJ5s2bR7du3aq0nhANjbQsGgq93lAxl5QY7sCwtq6mZfV89dVXREdH4+7uzvTp02ndunWV1vvss8+Iiopi4MCBTJgwAZt73PcsRGMkLYuGQlEMPWVn52pLxoZlFfr27UtGRgbdu3dnzJgxLF++nBs3bhi93vPPP09mZiZXr15Fq9Xy7bffVlu8QjQGUiELAC5cuMC7777L999/z+TJkxk0aFCVTubt2rWLiIgIevbsybRp03BwcKjGaIWoX6RCFpXi4uJCeHg4ixcvJjU1lYCAAH755Rej1+vTpw+ZmZlYWVmh0WjYvn17NUYrRMMkFbK4i06nY/PmzcTFxdGvXz+Cg4Np0qSJ0evt27ePBQsW0KFDB15//XWaNm1ajdEKUfdJhSyMplKpePnll8nOzsba2prhw4eTlpZm9Dv4Hn30UdLT02nbti1arZbNmzdTmUJAiMZCKmRRrtzcXJYtW8aFCxcIDQ2lZ8+eRq91+PBhwsPDcXJyYs6cObi5uVVjpELUTbLtTVQrvV7Pzp07WbZsGQ8++CDTp083OpmWlJSwfv161q1bR2BgIBqNBlVFTiYKUU9Jy0JUK0VR6NevH1lZWXTp0oWRI0cSHx9/+23YlaFWqxkzZgyrVq3is88+47XXXiM3N7cGohaifpGELCrFwsKCsWPHkp6eTl5eHl5eXvzrX/8yqifctm1bVqxYwd///ncCAwNJSkqq0nFuIeo7aVmIKtm3bx+RkZHY2toyc+ZMOpVxp0ZZzp49S0REBBcuXGDevHlVvpVOiLpEesii1uh0OjZt2kRCQgLPPPMMEyZMwMnJqdLr6PV6PvnkE2JiYhgyZAhBQUFYWVnVQMRC1C7pIYtao1KpePXVV8nKykKtVjN8+HAyMzMpLS2t1DqKovDiiy+Snp7O2bNn8fHxYe/evTUUtRB1j1TIotodPXqUqKgorly5wsyZM+nRo4dR63zxxRcsWbKEp556iilTpmBnZ1fNkQpRO6RCFibToUMH4uPjCQoK4q233iIsLIwzZ85Uep1+/fqRkZGBXq9Ho9Gwc+fOGohWiLpDKmRRowoLC0lOTiY9PR2tVoufnx+WRtzh/N1337Fw4UK6du1KaGholY5yC1HbpEIWdYKVlRVBQUGkpKSQm5uLl5cXn3/+eaW3yT3++ONkZGTg4uKCt7c3W7dulePXosGRClnUqr179xIZGYmTkxOhoaF06NCh0mv8/PPPhIeH07JlS9544w1atGhRA5EKUX2kQhZ1Uo8ePUhJSWHAgAFMmDCBpUuXcu3atUqt8dBDD7F+/XoeeughRowYQXZ2NjqdroYiFqL2SEIWtc7MzAyNRkNWVhY6nQ4vL69KJ1Vzc3MCAwNZsWIFmzdvZvz48Zw4caIGoxai5klCFibj6OhIWFgYy5cv59NPP2XkyJHs27evUmt4eHiwatUq+vfvj7+/P8nJyZXe/yxEXSE9ZFEn6PV6tm3bxjvvvEP37t2ZOnVqpXvDp0+fZuHChVy7do358+cbfYxbiOomPWRRryiKwsCBA8nKyqJNmzb4+PiwatUqioqKKryGm5sbcXFxaDQagoODee+99yo1XwhTk4Qs6hRra2vGjx/P+vXrycnJwcvLix07dlR4i5uiKAwdOpS0tDRyc3Px9fXlxx9/rOGohage0rIQddqePXuIioqiWbNmhIaG4uHhUeG5er2e7du3ExkZybPPPsvEiROxsbGpwWiFuDdpWYgGoWfPnqSmpvL0008TFBREdHQ0+fn5FZqrKArPPvssmZmZFBQU4O3tze7du2s4YiGMJxWyqDcuX75MfHw8O3bsIDg4mKFDh1bq1U+7d+8mIiKCHj16MGPGDBwcHGowWiH+Sypk0eA0adKE2bNnExsby4cffoifnx8HDhyo8PzevXuTkZGBra0tGo3GqCPcQtQkqZBFvaTX6/n000+JjY3lb3/7G5MnT8bFxaXC83/88UcWLFiAu7s7r7/+Os2aNavBaEVjJxWyaNAURWHQoEFkZWXRokULtFota9asqfA2t+7du5Oamoq7uzs+Pj58+OGHUi0Lk5MKWTQIeXl5REdHk5uby4wZM+jbty+KolRo7pEjRwgPD8fBwYE5c+bQqlWrGo5WNDbyTj3RKO3evZuoqChatWpFSEgIbdu2rdC80tJSUlJSWLt2LQEBAWi12kp9YChEWaRlIRql3r17k56eTq9evQgICCAmJoaCgoJy55mZmTF69GhWr17Njh07GDt2LLm5ubUQsRD/JQlZNDjm5uaMGDGCzMxMrl27xrBhw/jwww8rdJtcmzZtSEhI4KWXXiIwMJCVK1dSXFxcC1ELIS0L0QgcOnSIyMhIdDodM2fOpGvXrhWad+7cORYtWsSZM2eYP38+Dz30UA1HKhoq6SEL8Sc6nY5PPvmE5cuX06tXLyZPnkzTpk3LnffH9rro6GhefPFFxo8fj5WVVS1ELBoS6SEL8ScqlYrBgweTnZ2Ns7MzGo2GdevWlduO+GN7XUZGBhcvXkSr1SJFiagpUiGLRunEiRNER0dz4sQJQkND6dOnT4XmffnllyxatIgnn3ySKVOmYG9vX8ORioZAKmQhytCmTRtiYmKYMWMGUVFRTJs2rUKvgOrbty+ZmZkoioK3tzc7d+6shWhFYyEVsmj0iouLSUtLY+3atfzjH/8gICCgQtd07t27l4ULF9KlSxdCQ0NxdnauhWhFfSQVshAVZG5uzujRo8nIyODSpUsMGzaMLVu2lLtNrkePHqSlpeHq6opWq2XLli1y/FpUiVTIQvzFTz/9RGRkJGq1mtDQUDw9Pcudc+jQIRYsWICLiwuzZ8/G1dW1FiIV9YVUyEIY6eGHH2bNmjX84x//YPr06SxYsIDff/+9zDmenp6sW7eORx55hJEjR7Jhw4YKHUQR4s8kIQtxDyqViqFDh5KdnY2dnR0ajYbU1FRKSkruO0etVjN27FhWrlzJJ598QlBQEMePH6/FqEV9JwlZiDLY2dkxffp0EhMT2b17Nz4+PnzzzTdlznF3dycxMZHnnnuOsWPHsmbNmjITuRB/kB6yEBWk1+v58ssviY6Opn379syYMaPcqzpPnz7N22+/zeXLl3nzzTd58MEHaylaUZdID1mIaqYoCk8//TSZmZl07dqV0aNH895773Hjxo37znFzc2P58uX4+voyadIkli9fXuFL9EXjIwlZiEqysLDA39+ftLQ0zpw5g5eXF1u3br3vljdFURgyZAjp6emcPHkSrVbL/v37azlqUR9Iy0KIKtq/fz+RkZFYW1szc+bMctsS27dvZ+nSpQwYMIBJkyZV6BCKqN+kZSFELXnkkUdYt24dgwcPZvLkyURERHD58uX7jh8wYACZmZkUFhai0WjYtWtXLUYr6jKpkIWoRteuXWPFihVs3bqVwMBAvLy8MDMzu+/4b7/9lrfffptHHnmEGTNm4OTkVIvRitoiFbIQJuDg4EBoaCgrVqzgiy++wMfHh+++++6+43v16kV6ejpOTk54e3uzbds2OX7diEmFLEQN0ev1/Pvf/yYmJobOnTszbdo03Nzc7jv+wIEDLFy4kNatWxMWFoaLi0stRitqklTIQpiYoigMGDCADRs20KlTJ0aNGsX7779PYWHhPcd369aN9evX07FjR3x8fNi0aZNUy42MJGQhapilpSWvvfYaKSkpHD9+HC8vLz777LN7JlsLCwvGjx9PfHw8H3zwARMmTCAvL88EUQtTkJaFELXshx9+IDIyEnt7e2bOnEnHjh3vOa60tJTU1FTWrFmDv78/vr6+qFRSQ9VH0rIQoo567LHHWL9+PQMHDiQ4OJglS5Zw9erVu8aZmZkxatQo1qxZw5dffsmYMWM4duyYCSIWtUUSshAmYGZmhpeXF9nZ2SiKwvDhw8nKyrrnlZ2tW7cmPj6eV155hXHjxrFixQo5ft1ASUIWwoQcHByYNWsWcXFxbNu2jREjRvDDDz/cNU6lUvHKK6+QmppKTk4OI0eO5ODBgyaIWNQk6SELUUfo9Xo+//xzYmJi6NatG1OnTqVFixb3HLdt2zaioqIYNGgQEyZMwNra2gQRi4qSHrIQ9YyiKDz33HNkZWXRrl07fHx8SExM5NatW3eNGzhwIJmZmVy+fBlvb2/27NljoqhFdZIKWYg66vTp08TExJCTk8O0adN45plnUBTlrnFff/01ERER9OrVi+nTp2Nvb2+CaEVZpEIWop5zc3Nj6dKlzJs3j4SEBCZOnEhubu5d45588kkyMzOxtLREo9GwY8eO2g9WVAupkIWoB0pLS8nOzmblypW88MILBAUF4eDgcNe4H374gYUiQ1oaAAAL5ElEQVQLF9KpUydmzZqFs7OzCaIVfyUVshANiJmZGRqNhg0bNlBUVISXlxcffPDBXdvkHnvsMdLS0mjVqhXe3t589NFHcvy6HpEKWYh66PDhw0RGRnLz5k1mzZpF9+7d7xqTk5NDeHg4zs7OzJ49u8yLjUTNkgpZiAbswQcfZOXKlYwePZo33niDuXPncv78+TvGdO7cmeTkZHr06MGoUaPIyMi458ETUXdIQhainlIUhRdeeIHs7Gzc3Nzw8fFh1apVd5ziU6vV+Pv7k5SUxL/+9S8CAwP57bffTBe0KJMkZCHqOWtra4KDg0lOTubQoUMMHz6cnTt33tE7bteu3e0PBAMCAli1ahUlJSUmjFrci/SQhWhgvv32W6KiomjRogUhISG4u7vf8fzMmTNERERw6dIl5s2bR5cuXUwUaeMhPWQhGqlevXqRlpZGnz59CAwMJDo6muvXr99+3rJlS2JjYxkxYgRTp04lNjb2rtOAwjQkIQvRAKnVanx9fcnMzOTGjRsMGzaMDz/88PaHeoqiMHjwYNLT0zlz5gw+Pj73vNRI1C5pWQjRCPzyyy9ERkZSUlJCaGgo3bp1u+P5jh07WLp0KU8//TSTJ0/G1tbWRJE2TNKyEELc1qVLF5KSktBqtbz++uu8+eabXLx48fbz/v37k5GRQUlJCRqNhq+++sqE0TZeUiEL0cjcuHGDVatWsXHjRvz8/NBqtVhYWNx+vmfPHt5++20efvhhQkJCaNKkiQmjbRikQhZC3JONjQ2TJk1i9erV7Nu3D29v7zsq4p49e5Kenk7Tpk3x9vbm008/lePXtUQqZCEauV27dhEVFUXr1q0JCQmhTZs2t58dPHiQ8PBwWrVqxRtvvEHz5s1NGGn9JRWyEKJC+vTpQ0ZGBo8//jj+/v7ExsZSUFAAQNeuXUlJSaFLly74+vre80IjUX0kIQshMDc3Z+TIkbffQuLl5cVHH32ETqfD3NycoKAg3n//ff73f/+XCRMmcPLkSVOH3CBJy0IIcZeDBw8SGRmJoijMmjULT09PAHQ6Henp6SQlJeHn58eIESMwMzMzcbR1X0VbFpKQhRD3pNPp+Pjjj4mLi6NPnz5MmjTp9oX3eXl5vP3221y/fp158+bRqVMnE0dbt0kPWQhRJSqVipdeeons7GwcHR3RaDSsX7+e4uJiHnjgAd577z28vLwIDg4mPj7+jlvmhHEkIQshymRra8vUqVNJSkpiz549aLVadu3ahaIovPzyy6SlpXH06FFGjBjBgQMHTB1uvSYtCyFEhen1er766iuio6Nxd3dn+vTptG7dGr1ez+eff05kZCQDBw5kwoQJ2NjYmDrcOkNaFkKIaqcoCn379iUjI4Pu3bszZswYli9fzs2bN3nuuefIzMzk2rVraLVavvnmG1OHW+9IhSyEMNqFCxd49913+f7775k8eTKDBg1CURR27dpFREQEjz/+ONOnT7/nG7IbE6mQhRA1zsXFhfDwcBYvXkxqaioBAQH88ssv9OnTh8zMTKytrdFoNGzfvt3UodYLUiELIaqFTqdj8+bNxMXF0a9fP4KDg2nSpAn79+9nwYIFtG/fnlmzZtGsWTNTh1rrpEIWQtQqlUrFyy+/THZ2NtbW1gwfPpy0tDS6du1KWloa7dq1w8fHh82bN8tlRfchFbIQokbk5uYSFRXFxYsXCQ0NpWfPnhw5coT/+Z//wcnJiTlz5uDm5mbqMGuFVMhCCJPy8PAgLi6O4OBgFi5cyMyZM7Gzs2Pt2rX07NmTUaNGkZaWJpcV/YkkZCFEjVEUhf79+5OVlUWXLl0YOXIkiYmJaDQaVq1axfbt2wkICCA3N9fUodYJkpCFEDXOwsKCsWPHkp6ezsmTJ/Hy8uLw4cMkJCQwePBgAgMDSUxMpLi42NShmpT0kIUQtW7fvn1ERkZiZ2dHaGgoDg4OREREcOHCBebNm3f7drmGQm57E0LUaTqdjk2bNpGQkMCAAQMYP348u3fv5p///CeDBw9m3LhxWFlZmTrMaiEf6gkh6jSVSsWrr75KVlYWZmZmDB8+nPz8fFJSUjh37hxarZa9e/eaOsxaJRWyEKJOOHr0KFFRUVy5coWZM2dSUFDA4sWLeeqpp5gyZQp2dnamDtFoUiELIeqVDh06EB8fT1BQEG+99RZbtmwhNjYWAI1Gw86dO00cYc2ThCyEqDMURWHAgAFs2LABDw8PgoKCaNasGXPnziU6Opo5c+Zw+fJlU4dZYyQhCyHqHCsrK4KCgkhJSSE3N5dFixYxbtw4XFxc8Pb25pNPPmmQx6+lhyyEqPP27t1LZGQkTk5OvPzyy6xdu5YWLVowe/ZsWrRoYerwyiU9ZCFEg9GjRw9SUlIYMGAA0dHRdO/enQ4dOuDr60tWVlaDOX4tCVkIUS+YmZmh0WjIyspCURQ2b97MsGHD+Oijjxg3bhwnTpwwdYhVJglZCFGvODo6EhYWxvLly9m/fz+3bt3Cw8MDf39/kpOTKS0tNXWIRpMeshCi3tLr9Wzbto133nkHDw8P8vPzKSkpYf78+XTq1MnU4d0mR6eFEI3GzZs3Wbt2LRkZGTz88MP8/PPPDBs2jNdeew0LC4vKL3jxIhw6ZPjKyzN8r2lTeOgh6NIFWreu1HKSkIUQjc7p06eJiYnhxx9/pEmTJhQXFzN//ny6d+9e/mS9Hr78EpKSYNcuMDODoiJQFMNznQ4sLAx/duwI48fDoEGG75VDErIQotHas2cPUVFRFBYWcuXKFYYMGcKkSZOwsbG594TTp2HmTPj2W8O/HRxAdZ+P2PR6KCiAkhJo2xbeeQe6di0zHtn2JoRotHr27Elqaiq+vr6oVCo+//xzhg0bxu7du+8evGsXPP+8IRk7OoKT0/2TMRgqZjs7w9iTJ+GVV2Dt2mqJWxKyEKJBUqvVaLVaNm7cSL9+/bh06RJTpkxh/vz5XL161TDoq6/A39/wdyen/7YnKkJRDJW0jQ2EhxtaHVUkLQshRKOQk5NDREQEP//8M5aWliyZMoWnFixAAbC2rtrixcWGNkZyMvTpc9djaVkIIcSfdO7cmbVr1/L2229jpijkBwVxIS+PYnPzqi9ubm74mj4drl83ehlJyEKIRkNRFAYNGsS2OXPoY2nJ+cJCDh8+zO+XL1Plq4psbeHChSq1LiQhCyEaHavkZJyaNKHTgw9ia2tL3smTHDt6lKKiojvGZf7+O6N+/ZXeOTm8dfp0+Qvb2sLq1YYWhhEkIQshGpczZ+D778HeHgsLC9zbtcPdw4Oi4mJycnI4d/787Wq5mVpNQLNmDHV0rNjalpZw4wZ8/bVRoUlCFkI0LgcPGg59/GlHhb2dHZ07d6aFqytnz54l55dfuHHzJgMcHOhvb4+jmVnF1y8uhn37jApNErIQonH56SfDCby/UCkKLZo3x9PTEwtLS44cPszxEyfQVfYifEvL/x4wqSRJyEKIxiUvz1Ah34e5Wk17Dw/ad+hAfn4+Bw8evKu3XCa1Gs6dMyo0SchCiMZFp6vQARB7Ozseeughmru4oK7M1jhFMfwMI0hCFkI0Ls7OUME7kxXA1dUVVWVO8JWWGk7wGUESshCicenWrcyWxZ+V6vUU6XToAB1QpNNRWl5PubAQevQwKjS1UbOEEKK+8vQ0tBX0+nJbF0kXL7Li4sXb/95y9SpBzZoR5OJy/0lmZvDYY0aFJglZCNG4dOgArq6GS+jvdx3nfwS5uJSdfP+qtNRwU9zTTxsVmrQshBCNi0oFQUH33PpWZVevwpAhhpvjjCAJWQjR+LzyCjRrZrihrboUFRkuGJo0yeglJCELIRofW1v45z8Np+qq4y3Vf7xFZNYscHc3ehlJyEKIxql3b5g40dBmqEpS1uvh8mV45hkYM6ZKIcmHekKIxmvaNMO78RISwMqq8hfVFxdDfr4hGcfFVXg73f1U6o0hiqJcAI5X6ScKIUTj01av15e7XaNSCVkIIUTNkR6yEELUEZKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEf8P0hlJzrXGzocAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, + "metadata": {}, "output_type": "display_data" } ], @@ -883,7 +853,29 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -599082.2118605649\n", + "time: 14.73941707611084\n", + "feasible: True\n", + "solution: [2, 1, 0]\n", + "solution objective: 146.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlY1dXWwPHv73CYR1EUMQdwSMm08qZpmWZl3jS7JR4OOCASqDgLGjnVi4YDyCWSIAUHlFFI3yyza3nNSssyzczQVykVZ80BUWQ45/3j3LyZynAYDsP6PA+Pym/vzeKf5XrW2Xv/FL1ejxBCCNNTmToAIYQQBpKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEerKDG7WrJm+Xbt2dz+4cgXy8gx/NzOrXAQ6neGrWTNo2bJyc4UQoh7Yu3fvRb1e71LeuEol5Hbt2vH999/f+c1NmyAkBDp1AguLykX5h9JSuHoVhg6FefNAUYxbRwgh6iBFUY5XZFzVWhZHjsDrr4OtrfHJGAxVtaMjrF0LW7ZUKSQhhKivjE/IJSUwdSro9VVLxn8wMwNra3jjDbh4serrCSFEPWN8Qt66FY4eBXv76ovGygquX4f33qu+NYUQop4wPiG//z6oVGX2e4t0OsJPn2bI0aM8ffgwvrm57Lp+vex17e0hIwNu3DA6NCGEqI+MS8gnTkBODtjZlTmsFHA1N2dFmzbs6NSJCS4uhJ06xemiovtPMjeH4mL48kujQhNCiPrKuIT888/lVscA1ioVQS4uuFlYoFIU+trb42ZuTk5hYdnrFxfDvn1GhSaEEPWVcQn5wAEoq8q9j99LSjhRVISHpWXZA62sYM8eo0ITQoj6qlL7kG87d67SB0Au5+cz9/Jlhjg60q68hKxWw6VLRoUmhBD1lXEVciXfw1dUUkLo//0f169eZXqzZkb9SCGEaOiMS8gtWhhO11WAXq9n0fnzKE2aEGJmxtGcHC5fuUKZKb2kBJo0MSo0IYSor4xrWXTrVuHDIIvOnuXXoiLea9sWK0Xh5IkTnDx5kqtXruDWqhUW5uZ3TyoshMcfNyo0IYSor4xLyJ6ehguB9Poyd1qcKS7mgytXsFAUXvi//7v9/YlOTjycn8+xY8do0aIFTZo04Y5VzM3h0UeNCk0IIeor4xJy27bQoQP8+muZe5FbmpvzfZcu93x2LT+f06dOcfHiRa5dvUrLli2xtLQ0bHlTq6FfP6NCE0KI+sq4HrKiwPjxhl5vJT/g+4ODvT3t3N1RFAUUhd+OH+fCxYvo8/Nh+HDDhUVCCNGIGH90+u9/B3d3yM83egkrS0vc/3O/spWVFUX5+eRdusSR554zek0hhKivjE/IFhbwzjuGvxtxSOQParWaNm3aYGFmhvrWLY75+zNpwQJiY2O5deuW0esKIUR9U7X7kD09ITwcCgqqlJRVej2uNjZcePZZFv/yC3PnzuXMmTNotVp++OGHKoUohBD1RdXfqafVwsKFhtvZjGlfFBbC1asoWi1dN27kzbfeYsGCBfTu3ZupU6cyd+5cIiIiuF7eLXFCCFHPVc9LTn18YMMGw4GRy5fh5s3yP+wrKoLffzdcUhQba0jqKhW9e/dm5cqVrFmzhn379pGWloZer0ej0fCl3AAnhGjAFH0ldkn87W9/09/1Tr0/KyyE9HRYscLw1o/SUkPCVasNOzNKSgxf5uZgaQmjR8OYMYYXnP7FtWvXCAsLQ61WExERwS+//MLChQvp2rUroaGhNJGTfEKIekJRlL16vf5v5Y6r1oT8B50O9u+Hn34y3Np25ozh+05OhhN4XbtCr17lnvYrLS0lOjqab7/9lujoaJo3b05CQgJbtmwhJCSEgQMHGrbNCSFEHWbahFzNPvjgAxISEli4cCE9e/bk559/Jjw8HDc3N9544w2aN29e6zEJIURFVTQhV08PuYa9+uqrLFq0iLlz55KZmYmnpyfr16/H09MTX19fsrOz0el0pg5TCCGqpF4kZIAePXqwevVqsrKyWLRoEYqiEBgYyIoVK9i8eTPjx4/nxIkTpg5TCCGMVm8SMkCrVq1YvXo1Fy5cYOLEiVy9ehUPDw9WrVpF//798ff3Jzk5mdIKXg0qhBB1Sb1KyAC2trYsW7aMrl27Mnr0aHJzc1GpVPj6+pKcnMw333yDn58fR44cMXWoQghRKfUuIQOoVComT57MuHHjGDdu3O39ya1atSIuLg6NRsPEiROJj4+nqAonCIUQojbVy4T8hxdffJHo6GgiIiJITk5Gr9ejKApDhw4lNTWVY8eO4evry4EDB0wdqhBClKtebHsrz7lz5wgJCcHDw4O5c+di8Z/9zXq9nu3bt7N06VKee+45Jk6ciI2NjYmjFUI0Ng1q21t5WrRoQWJiIsXFxYwbN45L/3ljtaIoPPvss2RmZlJQUIC3tze7d+82cbRCCHFvDaJC/oNerycpKYmNGzeybNkyOnfufMfz3bt3ExERQY8ePZgxYwYODg4milQI0Zg0qgr5D4qi8NprrxESEsKkSZP47LPP7njeu3dvMjIysLW1RaPRsH37dhNFKoQQd2tQFfKfHTlyhBkzZjB06FBee+01VKo7/+/58ccfCQ8Px8PDg9dff51m97jgSAghqkOjrJD/rFOnTrf3JYeFhXHz5s07nnfv3p20tDTc3d3x8fHhww8/pDL/OQkhRHVrsAkZwNnZmYSEBGxsbAgICODcuXN3PLewsCA4OJi4uDgyMzOZOHEip06dMlG0QojGrkEnZDAk3TfffJMXX3yRMWPG3HNPcqdOnVi7di1PPPEEo0ePJjU1VS4rEkLUugafkMHwYd/IkSOZO3cuISEhfPTRR3eNMTMzY/To0axevZodO3YQEBBAbm6uCaIVQjRWjSIh/+HJJ5/k/fffJzExkdjY2HtWwW3atCEhIYEhQ4YQGBjIypUrKS4uNkG0QojGplElZAAPDw/Wrl3LoUOHmDFjBgUFBXeNUalUDBs2jNTUVA4ePMjIkSM5dOiQCaIVQjQmjS4hAzg6OrJ8+XJcXV3x9/cnLy/vnuNatGhBTEwM/v7+TJs2jZiYGAoLC2s5WiFEY9EoEzKAWq0mLCyM4cOHM3bsWO63v1pRFAYNGkRGRgYXLlxAq9Xed6wQQlRFgz0YUhnfffcdc+bMYdy4cQwbNqzMsTt37mTx4sU89dRTTJkyBTs7u1qKUghRXzX6gyGV8fjjj5OUlER6ejpLliyhpKTkvmOffvppMjMzAdBoNOzcubO2whRCNHBSIf/J9evXmT17NsXFxSxZsqTcy4f27t3LggUL8PT0JDQ0FGdn51qKVAhRn0iFbAQ7OztiYmLo3Lkzfn5+/Prrr2WO79GjB+np6bi6uqLVatmyZYscvxZCGE0S8l+oVCqmTp3K2LFjCQoKYteuXWWOt7KyYsqUKcTExJCcnMzUqVM5e/ZsLUUrhGhIJCHfx0svvcSyZcsIDw8nJSWl3MrX09OTdevW0b17d0aOHMmGDRvk+LUQolIkIZehW7durFmzho8//pjw8PByX5hqbm5OQEAAK1asYMuWLYwbN47jx4/XUrRCiPpOEnI5XF1dSUpKoqCggPHjx/P777+XO8fDw4OkpCSeffZZxo4dy5o1a8rcuSGEECAJuUKsra1ZvHgxvXr1ws/PjyNHjpQ7R6VSodVqWbduHd999x1+fn4cPny4FqIVQtRXkpArSKVSMW7cOKZMmcLEiRP597//XaF5bm5uLF++HK1Wy6RJk4iLiyu39SGEaJwkIVfS888/T2xsLJGRkSQmJlZom5uiKLz00kukp6dz/PhxfHx82L9/fy1EK4SoT+RgiJEuXrxISEgIrVq1Yv78+VhZWVV47vbt21m6dCkDBgxg0qRJ2NjY1GCkQghTk4MhNaxZs2asXLkStVpNYGAg58+fr/DcAQMGkJmZSWFhIRqNpty9zkKIxkEq5CrS6/UkJyeTkZHB0qVL6dq1a6Xmf/PNN0RERPDII48QEhKCo6NjDUUqhDAVqZBriaIo+Pn5ERYWxvTp0/nkk08qNf+JJ54gPT0dR0dHNBoN27Ztk+PXQjRSUiFXo2PHjjF9+nQGDhxIcHAwKlXl/r87cOAACxYsoE2bNoSFheHi4lJDkQohapNUyCbQvn17kpOTOXDgAKGhody4caNS87t160ZKSgodO3bEx8eHTZs2SbUsRCMiCbmaOTk5ERcXR9OmTfH39+f06dOVmm9hYcH48eOJj48nOzub4ODg+75iSgjRsEhCrgHm5ubMnj2bV199FX9/f3744YdKr9GxY0fWrFlDnz598PPzIyUlRS4rEqKBk4RcQxRFwdvbm/DwcMLCwti4cWOl1zAzM2PUqFGsWbOGL774An9/f44dO1YD0Qoh6gJJyDWsV69eJCYmsn79eqKioigtLa345OvX4fvvab1vHwkvvEBQ69aEjxrFyvh4iouLay5oIYRJyC6LWpKfn8/s2bPR6XQsWrTo/q+HunEDPv4YVq6EY8fA3Bz+aFUoCiWlpfx+6RIHmjTBfcEC2vv4QCV3cwghapfssqhj7O3tiYmJoX379owZM+bue5L1eti0CZ54AmbPhpMnwckJ7OzAwcHwZW+P2skJl3bt6F1YiGVgILldu1L400+m+aWEENVKEnItMjMzY8aMGfj5+REYGMg333xjeHDjBgQGQkiIoRp2dARbW1CUe66jmJlh6+aGa6dOOJw9y6XevTn25pu1+JsIIWqCtCxMZN++fYSFhRHg48PwTZtQfvrJUBHfJwmX5fqVK+SfPs3+AQN4Ki0Ne3v7GohYCGGsirYsJCGb0OlTp8jp25dHrlzBqV27Sp/s+7PSoiKu5eUR4+7OM8uW0b9//+oLVAhRJdJDrgfcvvuO/kCBuTknTp6kpDI7MP7CzMKCJm5uhF29ytrISMLCwir0uikhRN0hCdlUCgpg3jxUNjY80Lo1NjY2/PrrrxTeumX8mlZWWOv1rGzXjlatWqHVavn444/l+LUQ9YQkZFPZvBkKC8HKCgVo7uJC8+bNOXH8OPn5+cav6+CAets2Jmu1vPPOO6SkpDBlyhTOnDlTbaELIWqGJGRTSUwEtfqObzk6ONC6TRvOnj3LxYsX0QPXSksJzcvjqZwchhw9ytarV8te18wMSkth0ya6dOlCcnIyjz76KCNHjiQzM1OOXwtRh0lCNoVr1+DXX+Eer26ytrKinbs7+fn5nD51ikVnzmCuKPyrUycWurmx6OxZcstra6jV8J+XsKrVasaOHUtSUhJbt24lMDCQ3377rQZ+KSFEVUlCNoWcHMMJvPtscTNXq2nbrh039Hq2XrzIa02aYKNS8YiNDf3s7fm4vCrZ2hp++slw2OQ/2rVrR2JiIi+88AIBAQGsWrWKkpKS6vythBBVJAnZFE6fNrQVyqBSFEqbNcNcrUZ36hQ3b94EoKOlZcUq5IIC+M+c22uqVGg0GtavX8++ffsYPXo0OTk5VfpVhBDVRxKyKVSwMr2p0+FkYYGrqytnz53j7Llz2CgKBRXpAysK3OcCopYtWxIbG8uIESOYPHky7777LreqsrtDCFEtJCGbgrV1hS4EslGpKNDpsLe3p/UDD6DT6cg9cwZ1cTFlbmTT6w1fVlb3HaIoCoMHDyYjI4NTp07h4+Nj1L3NQojqIwnZFDw8KjSsjYUFpcCJoiLUajVuLVvyu709zYuL+e3XX7nxl5bEbUVF4OoKlpbl/gxnZ2cWL17M5MmTmTNnDosXL6agoKASv4wQorpIQjaF9u0NPeRyWg/WKhUD7O1JuHCBmzodP964wa6bNxnl4YGzszN5eXmcOn2a4r+2QAoL4dFHKxXSM888Q0ZGBsXFxWg0Gr7++uvK/lZCiCqShGwKFhbQt69h+1s5wlxduaXT8fyRI8w+dYo3XF1pb2mJo6Mj7du3x1ytJjc3l4uXLqH784m8F1+sdFgODg7MmzePN998kyVLljBv3jyuXLlS6XWEEMaRy4VM5euvYcwYwz3HRtzw9me3ioo4f+4ct4qKcHV2xs7WFr7/3pD4jXTz5k3i4+PZunUroaGhPP/88yhVjFOIxkouF6rrevc2tC4qUCWXx9LCgtatW+PavDn5Z8+S2bQpJ86erdKa1tbWzJgxg2XLlpGYmEhISAjnz5+vcqxCiPuThGwqKhXExJS5Pa2y7HQ6Wjz1FMV+fvj7+xMbG1vlD+gefvhh1q9fT+fOnfH19eWDDz6Q49dC1BBJyKbUuTPMmmV4mWlVT80VFIClJarlyxkxZgyZmZlcvnwZLy8vPvrooyolUQsLC4KCgkhISGDTpk1MmDCBkydPVi1eIcRdpIdsanq9oVJevtxwt0UFtqrdNf/aNcO85GR47LE7Hh88eJDIyEgURWHWrFl4enpWKVydTkdaWhqrVq1izJgx+Pr6YmZmVqU1hWjo5I0h9c3GjTB3Lty6ZfigryJvDykqMlTGHTtCbCx06nTPYTqdjo8//pi4uDj69OnDpEmTcHZ2rlK4eXl5LFy4kBs3bjBv3jw6duxYpfWEaMjkQ7365pVX4PPP4fnnIT8frly5u5Wh1xsS9tWrhi+93vBi1M2b75uMwXCHxUsvvUR2djaOjo6377MorkLv+oEHHiA+Pp5XX32VCRMmkJCQQFFRkdHrCSGkQq6bzp2D7GzYsQN+/tmQhBXFcJikeXPo3h2GDIGBAyvf4gCOHz/OsmXLOHXqFCEhIfTp06dK4Z4/f57Fixdz8uRJ5s2bR7du3aq0nhANjbQsGgq93lAxl5QY7sCwtq6mZfV89dVXREdH4+7uzvTp02ndunWV1vvss8+Iiopi4MCBTJgwAZt73PcsRGMkLYuGQlEMPWVn52pLxoZlFfr27UtGRgbdu3dnzJgxLF++nBs3bhi93vPPP09mZiZXr15Fq9Xy7bffVlu8QjQGUiELAC5cuMC7777L999/z+TJkxk0aFCVTubt2rWLiIgIevbsybRp03BwcKjGaIWoX6RCFpXi4uJCeHg4ixcvJjU1lYCAAH755Rej1+vTpw+ZmZlYWVmh0WjYvn17NUYrRMMkFbK4i06nY/PmzcTFxdGvXz+Cg4Np0qSJ0evt27ePBQsW0KFDB15//XWaNm1ajdEKUfdJhSyMplKpePnll8nOzsba2prhw4eTlpZm9Dv4Hn30UdLT02nbti1arZbNmzdTmUJAiMZCKmRRrtzcXJYtW8aFCxcIDQ2lZ8+eRq91+PBhwsPDcXJyYs6cObi5uVVjpELUTbLtTVQrvV7Pzp07WbZsGQ8++CDTp083OpmWlJSwfv161q1bR2BgIBqNBlVFTiYKUU9Jy0JUK0VR6NevH1lZWXTp0oWRI0cSHx9/+23YlaFWqxkzZgyrVq3is88+47XXXiM3N7cGohaifpGELCrFwsKCsWPHkp6eTl5eHl5eXvzrX/8yqifctm1bVqxYwd///ncCAwNJSkqq0nFuIeo7aVmIKtm3bx+RkZHY2toyc+ZMOpVxp0ZZzp49S0REBBcuXGDevHlVvpVOiLpEesii1uh0OjZt2kRCQgLPPPMMEyZMwMnJqdLr6PV6PvnkE2JiYhgyZAhBQUFYWVnVQMRC1C7pIYtao1KpePXVV8nKykKtVjN8+HAyMzMpLS2t1DqKovDiiy+Snp7O2bNn8fHxYe/evTUUtRB1j1TIotodPXqUqKgorly5wsyZM+nRo4dR63zxxRcsWbKEp556iilTpmBnZ1fNkQpRO6RCFibToUMH4uPjCQoK4q233iIsLIwzZ85Uep1+/fqRkZGBXq9Ho9Gwc+fOGohWiLpDKmRRowoLC0lOTiY9PR2tVoufnx+WRtzh/N1337Fw4UK6du1KaGholY5yC1HbpEIWdYKVlRVBQUGkpKSQm5uLl5cXn3/+eaW3yT3++ONkZGTg4uKCt7c3W7dulePXosGRClnUqr179xIZGYmTkxOhoaF06NCh0mv8/PPPhIeH07JlS9544w1atGhRA5EKUX2kQhZ1Uo8ePUhJSWHAgAFMmDCBpUuXcu3atUqt8dBDD7F+/XoeeughRowYQXZ2NjqdroYiFqL2SEIWtc7MzAyNRkNWVhY6nQ4vL69KJ1Vzc3MCAwNZsWIFmzdvZvz48Zw4caIGoxai5klCFibj6OhIWFgYy5cv59NPP2XkyJHs27evUmt4eHiwatUq+vfvj7+/P8nJyZXe/yxEXSE9ZFEn6PV6tm3bxjvvvEP37t2ZOnVqpXvDp0+fZuHChVy7do358+cbfYxbiOomPWRRryiKwsCBA8nKyqJNmzb4+PiwatUqioqKKryGm5sbcXFxaDQagoODee+99yo1XwhTk4Qs6hRra2vGjx/P+vXrycnJwcvLix07dlR4i5uiKAwdOpS0tDRyc3Px9fXlxx9/rOGohage0rIQddqePXuIioqiWbNmhIaG4uHhUeG5er2e7du3ExkZybPPPsvEiROxsbGpwWiFuDdpWYgGoWfPnqSmpvL0008TFBREdHQ0+fn5FZqrKArPPvssmZmZFBQU4O3tze7du2s4YiGMJxWyqDcuX75MfHw8O3bsIDg4mKFDh1bq1U+7d+8mIiKCHj16MGPGDBwcHGowWiH+Sypk0eA0adKE2bNnExsby4cffoifnx8HDhyo8PzevXuTkZGBra0tGo3GqCPcQtQkqZBFvaTX6/n000+JjY3lb3/7G5MnT8bFxaXC83/88UcWLFiAu7s7r7/+Os2aNavBaEVjJxWyaNAURWHQoEFkZWXRokULtFota9asqfA2t+7du5Oamoq7uzs+Pj58+OGHUi0Lk5MKWTQIeXl5REdHk5uby4wZM+jbty+KolRo7pEjRwgPD8fBwYE5c+bQqlWrGo5WNDbyTj3RKO3evZuoqChatWpFSEgIbdu2rdC80tJSUlJSWLt2LQEBAWi12kp9YChEWaRlIRql3r17k56eTq9evQgICCAmJoaCgoJy55mZmTF69GhWr17Njh07GDt2LLm5ubUQsRD/JQlZNDjm5uaMGDGCzMxMrl27xrBhw/jwww8rdJtcmzZtSEhI4KWXXiIwMJCVK1dSXFxcC1ELIS0L0QgcOnSIyMhIdDodM2fOpGvXrhWad+7cORYtWsSZM2eYP38+Dz30UA1HKhoq6SEL8Sc6nY5PPvmE5cuX06tXLyZPnkzTpk3LnffH9rro6GhefPFFxo8fj5WVVS1ELBoS6SEL8ScqlYrBgweTnZ2Ns7MzGo2GdevWlduO+GN7XUZGBhcvXkSr1SJFiagpUiGLRunEiRNER0dz4sQJQkND6dOnT4XmffnllyxatIgnn3ySKVOmYG9vX8ORioZAKmQhytCmTRtiYmKYMWMGUVFRTJs2rUKvgOrbty+ZmZkoioK3tzc7d+6shWhFYyEVsmj0iouLSUtLY+3atfzjH/8gICCgQtd07t27l4ULF9KlSxdCQ0NxdnauhWhFfSQVshAVZG5uzujRo8nIyODSpUsMGzaMLVu2lLtNrkePHqSlpeHq6opWq2XLli1y/FpUiVTIQvzFTz/9RGRkJGq1mtDQUDw9Pcudc+jQIRYsWICLiwuzZ8/G1dW1FiIV9YVUyEIY6eGHH2bNmjX84x//YPr06SxYsIDff/+9zDmenp6sW7eORx55hJEjR7Jhw4YKHUQR4s8kIQtxDyqViqFDh5KdnY2dnR0ajYbU1FRKSkruO0etVjN27FhWrlzJJ598QlBQEMePH6/FqEV9JwlZiDLY2dkxffp0EhMT2b17Nz4+PnzzzTdlznF3dycxMZHnnnuOsWPHsmbNmjITuRB/kB6yEBWk1+v58ssviY6Opn379syYMaPcqzpPnz7N22+/zeXLl3nzzTd58MEHaylaUZdID1mIaqYoCk8//TSZmZl07dqV0aNH895773Hjxo37znFzc2P58uX4+voyadIkli9fXuFL9EXjIwlZiEqysLDA39+ftLQ0zpw5g5eXF1u3br3vljdFURgyZAjp6emcPHkSrVbL/v37azlqUR9Iy0KIKtq/fz+RkZFYW1szc+bMctsS27dvZ+nSpQwYMIBJkyZV6BCKqN+kZSFELXnkkUdYt24dgwcPZvLkyURERHD58uX7jh8wYACZmZkUFhai0WjYtWtXLUYr6jKpkIWoRteuXWPFihVs3bqVwMBAvLy8MDMzu+/4b7/9lrfffptHHnmEGTNm4OTkVIvRitoiFbIQJuDg4EBoaCgrVqzgiy++wMfHh+++++6+43v16kV6ejpOTk54e3uzbds2OX7diEmFLEQN0ev1/Pvf/yYmJobOnTszbdo03Nzc7jv+wIEDLFy4kNatWxMWFoaLi0stRitqklTIQpiYoigMGDCADRs20KlTJ0aNGsX7779PYWHhPcd369aN9evX07FjR3x8fNi0aZNUy42MJGQhapilpSWvvfYaKSkpHD9+HC8vLz777LN7JlsLCwvGjx9PfHw8H3zwARMmTCAvL88EUQtTkJaFELXshx9+IDIyEnt7e2bOnEnHjh3vOa60tJTU1FTWrFmDv78/vr6+qFRSQ9VH0rIQoo567LHHWL9+PQMHDiQ4OJglS5Zw9erVu8aZmZkxatQo1qxZw5dffsmYMWM4duyYCSIWtUUSshAmYGZmhpeXF9nZ2SiKwvDhw8nKyrrnlZ2tW7cmPj6eV155hXHjxrFixQo5ft1ASUIWwoQcHByYNWsWcXFxbNu2jREjRvDDDz/cNU6lUvHKK6+QmppKTk4OI0eO5ODBgyaIWNQk6SELUUfo9Xo+//xzYmJi6NatG1OnTqVFixb3HLdt2zaioqIYNGgQEyZMwNra2gQRi4qSHrIQ9YyiKDz33HNkZWXRrl07fHx8SExM5NatW3eNGzhwIJmZmVy+fBlvb2/27NljoqhFdZIKWYg66vTp08TExJCTk8O0adN45plnUBTlrnFff/01ERER9OrVi+nTp2Nvb2+CaEVZpEIWop5zc3Nj6dKlzJs3j4SEBCZOnEhubu5d45588kkyMzOxtLREo9GwY8eO2g9WVAupkIWoB0pLS8nOzmblypW88MILBAUF4eDgcNe4H374gYUiQ1oaAAAL5ElEQVQLF9KpUydmzZqFs7OzCaIVfyUVshANiJmZGRqNhg0bNlBUVISXlxcffPDBXdvkHnvsMdLS0mjVqhXe3t589NFHcvy6HpEKWYh66PDhw0RGRnLz5k1mzZpF9+7d7xqTk5NDeHg4zs7OzJ49u8yLjUTNkgpZiAbswQcfZOXKlYwePZo33niDuXPncv78+TvGdO7cmeTkZHr06MGoUaPIyMi458ETUXdIQhainlIUhRdeeIHs7Gzc3Nzw8fFh1apVd5ziU6vV+Pv7k5SUxL/+9S8CAwP57bffTBe0KJMkZCHqOWtra4KDg0lOTubQoUMMHz6cnTt33tE7bteu3e0PBAMCAli1ahUlJSUmjFrci/SQhWhgvv32W6KiomjRogUhISG4u7vf8fzMmTNERERw6dIl5s2bR5cuXUwUaeMhPWQhGqlevXqRlpZGnz59CAwMJDo6muvXr99+3rJlS2JjYxkxYgRTp04lNjb2rtOAwjQkIQvRAKnVanx9fcnMzOTGjRsMGzaMDz/88PaHeoqiMHjwYNLT0zlz5gw+Pj73vNRI1C5pWQjRCPzyyy9ERkZSUlJCaGgo3bp1u+P5jh07WLp0KU8//TSTJ0/G1tbWRJE2TNKyEELc1qVLF5KSktBqtbz++uu8+eabXLx48fbz/v37k5GRQUlJCRqNhq+++sqE0TZeUiEL0cjcuHGDVatWsXHjRvz8/NBqtVhYWNx+vmfPHt5++20efvhhQkJCaNKkiQmjbRikQhZC3JONjQ2TJk1i9erV7Nu3D29v7zsq4p49e5Kenk7Tpk3x9vbm008/lePXtUQqZCEauV27dhEVFUXr1q0JCQmhTZs2t58dPHiQ8PBwWrVqxRtvvEHz5s1NGGn9JRWyEKJC+vTpQ0ZGBo8//jj+/v7ExsZSUFAAQNeuXUlJSaFLly74+vre80IjUX0kIQshMDc3Z+TIkbffQuLl5cVHH32ETqfD3NycoKAg3n//ff73f/+XCRMmcPLkSVOH3CBJy0IIcZeDBw8SGRmJoijMmjULT09PAHQ6Henp6SQlJeHn58eIESMwMzMzcbR1X0VbFpKQhRD3pNPp+Pjjj4mLi6NPnz5MmjTp9oX3eXl5vP3221y/fp158+bRqVMnE0dbt0kPWQhRJSqVipdeeons7GwcHR3RaDSsX7+e4uJiHnjgAd577z28vLwIDg4mPj7+jlvmhHEkIQshymRra8vUqVNJSkpiz549aLVadu3ahaIovPzyy6SlpXH06FFGjBjBgQMHTB1uvSYtCyFEhen1er766iuio6Nxd3dn+vTptG7dGr1ez+eff05kZCQDBw5kwoQJ2NjYmDrcOkNaFkKIaqcoCn379iUjI4Pu3bszZswYli9fzs2bN3nuuefIzMzk2rVraLVavvnmG1OHW+9IhSyEMNqFCxd49913+f7775k8eTKDBg1CURR27dpFREQEjz/+ONOnT7/nG7IbE6mQhRA1zsXFhfDwcBYvXkxqaioBAQH88ssv9OnTh8zMTKytrdFoNGzfvt3UodYLUiELIaqFTqdj8+bNxMXF0a9fP4KDg2nSpAn79+9nwYIFtG/fnlmzZtGsWTNTh1rrpEIWQtQqlUrFyy+/THZ2NtbW1gwfPpy0tDS6du1KWloa7dq1w8fHh82bN8tlRfchFbIQokbk5uYSFRXFxYsXCQ0NpWfPnhw5coT/+Z//wcnJiTlz5uDm5mbqMGuFVMhCCJPy8PAgLi6O4OBgFi5cyMyZM7Gzs2Pt2rX07NmTUaNGkZaWJpcV/YkkZCFEjVEUhf79+5OVlUWXLl0YOXIkiYmJaDQaVq1axfbt2wkICCA3N9fUodYJkpCFEDXOwsKCsWPHkp6ezsmTJ/Hy8uLw4cMkJCQwePBgAgMDSUxMpLi42NShmpT0kIUQtW7fvn1ERkZiZ2dHaGgoDg4OREREcOHCBebNm3f7drmGQm57E0LUaTqdjk2bNpGQkMCAAQMYP348u3fv5p///CeDBw9m3LhxWFlZmTrMaiEf6gkh6jSVSsWrr75KVlYWZmZmDB8+nPz8fFJSUjh37hxarZa9e/eaOsxaJRWyEKJOOHr0KFFRUVy5coWZM2dSUFDA4sWLeeqpp5gyZQp2dnamDtFoUiELIeqVDh06EB8fT1BQEG+99RZbtmwhNjYWAI1Gw86dO00cYc2ThCyEqDMURWHAgAFs2LABDw8PgoKCaNasGXPnziU6Opo5c+Zw+fJlU4dZYyQhCyHqHCsrK4KCgkhJSSE3N5dFixYxbtw4XFxc8Pb25pNPPmmQx6+lhyyEqPP27t1LZGQkTk5OvPzyy6xdu5YWLVowe/ZsWrRoYerwyiU9ZCFEg9GjRw9SUlIYMGAA0dHRdO/enQ4dOuDr60tWVlaDOX4tCVkIUS+YmZmh0WjIyspCURQ2b97MsGHD+Oijjxg3bhwnTpwwdYhVJglZCFGvODo6EhYWxvLly9m/fz+3bt3Cw8MDf39/kpOTKS0tNXWIRpMeshCi3tLr9Wzbto133nkHDw8P8vPzKSkpYf78+XTq1MnU4d0mR6eFEI3GzZs3Wbt2LRkZGTz88MP8/PPPDBs2jNdeew0LC4vKL3jxIhw6ZPjKyzN8r2lTeOgh6NIFWreu1HKSkIUQjc7p06eJiYnhxx9/pEmTJhQXFzN//ny6d+9e/mS9Hr78EpKSYNcuMDODoiJQFMNznQ4sLAx/duwI48fDoEGG75VDErIQotHas2cPUVFRFBYWcuXKFYYMGcKkSZOwsbG594TTp2HmTPj2W8O/HRxAdZ+P2PR6KCiAkhJo2xbeeQe6di0zHtn2JoRotHr27Elqaiq+vr6oVCo+//xzhg0bxu7du+8evGsXPP+8IRk7OoKT0/2TMRgqZjs7w9iTJ+GVV2Dt2mqJWxKyEKJBUqvVaLVaNm7cSL9+/bh06RJTpkxh/vz5XL161TDoq6/A39/wdyen/7YnKkJRDJW0jQ2EhxtaHVUkLQshRKOQk5NDREQEP//8M5aWliyZMoWnFixAAbC2rtrixcWGNkZyMvTpc9djaVkIIcSfdO7cmbVr1/L2229jpijkBwVxIS+PYnPzqi9ubm74mj4drl83ehlJyEKIRkNRFAYNGsS2OXPoY2nJ+cJCDh8+zO+XL1Plq4psbeHChSq1LiQhCyEaHavkZJyaNKHTgw9ia2tL3smTHDt6lKKiojvGZf7+O6N+/ZXeOTm8dfp0+Qvb2sLq1YYWhhEkIQshGpczZ+D778HeHgsLC9zbtcPdw4Oi4mJycnI4d/787Wq5mVpNQLNmDHV0rNjalpZw4wZ8/bVRoUlCFkI0LgcPGg59/GlHhb2dHZ07d6aFqytnz54l55dfuHHzJgMcHOhvb4+jmVnF1y8uhn37jApNErIQonH56SfDCby/UCkKLZo3x9PTEwtLS44cPszxEyfQVfYifEvL/x4wqSRJyEKIxiUvz1Ah34e5Wk17Dw/ad+hAfn4+Bw8evKu3XCa1Gs6dMyo0SchCiMZFp6vQARB7Ozseeughmru4oK7M1jhFMfwMI0hCFkI0Ls7OUME7kxXA1dUVVWVO8JWWGk7wGUESshCicenWrcyWxZ+V6vUU6XToAB1QpNNRWl5PubAQevQwKjS1UbOEEKK+8vQ0tBX0+nJbF0kXL7Li4sXb/95y9SpBzZoR5OJy/0lmZvDYY0aFJglZCNG4dOgArq6GS+jvdx3nfwS5uJSdfP+qtNRwU9zTTxsVmrQshBCNi0oFQUH33PpWZVevwpAhhpvjjCAJWQjR+LzyCjRrZrihrboUFRkuGJo0yeglJCELIRofW1v45z8Np+qq4y3Vf7xFZNYscHc3ehlJyEKIxql3b5g40dBmqEpS1uvh8mV45hkYM6ZKIcmHekKIxmvaNMO78RISwMqq8hfVFxdDfr4hGcfFVXg73f1U6o0hiqJcAI5X6ScKIUTj01av15e7XaNSCVkIIUTNkR6yEELUEZKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEf8P0hlJzrXGzocAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "seed = 10598\n", "\n", @@ -892,7 +884,7 @@ "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", "\n", "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\"\"\"\n", @@ -944,10 +936,10 @@ "\n", "spsa = SPSA(max_trials=300)\n", "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis', batch_mode=True)\n", + "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", "\n", "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -979,33 +971,9 @@ }, { "cell_type": "code", - "execution_count": 77, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -4532.0\n", - "tsp objective: 124.0\n", - "feasible: True\n", - "solution: [0, 1, 2]\n", - "solution objective: 124.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt41fWV7/H32rkHSEwgQOQqlVI5SJEBauHQUVBGaAvSCSFgQAxjcOKAwYgRPXBaEE2VIQ55YIbQaKDhhJAUj0z1YC2Flj6ZSkOHlhYFLGIqAiIgEQLksr/nj9+OxpjLDtk7v/3bWa/nyZPsa9aPwCeL9f1dxBiDUkop53PZXYBSSinf0EBXSqkgoYGulFJBQgNdKaWChAa6UkoFCQ10pZQKEhroSikVJDTQlVIqSGigK6VUkAjtzG/Wq1cvM3jw4Pa/8MIF+Ogj6+uQEO9fV19vfe7ZExIT2/99lVIqABw8ePATY0xCW8/r1EAfPHgwFRUV7XvRf/wHvPACfP3rEB7e/m9aXw9VVfCtb8H69e37haCUUgFARD7w5nmBPXJ57TV48UWIibmxMAcrwG+6CXbvhjVrfFufUkoFkMAN9DNn4OmnISoKQjv4HwkR65fC1q1w4IBv6lNKqQATuIH+ox/BtWsQGemb9wsJsX4xLF36xWxdKaWCSGAG+kcfwS9/CbGxrT5tx4ULzHv/fb797rv8sGHRtDXdu8O5c/Cb3/ioUKWUChyBGeilpeB2g6v18nqFhrKwVy+mtxH8X2IMFBR0sECllAo8nbqXi9feesurRdBJMTEAHLl6lY/r6rx77x494Pe/t8YuuseLUiqIBF6HXl8Px475bnbeVEPX//77/nl/pZSyiVeBLiJLReQvIvJnESkWkUgRuUVE3haR90SkRERucL/CJs6ds8Yi/uyeRaCy0n/vr5RSNmgz0EWkH7AEGGOMGQGEACnAj4FcY8ytwEVgoU8qqq1tc3be1PkLF6j67DPq27P3ircjGqWUcghvkzMUiBKRUCAaOA1MAso8j28B7vdJRRER1oJoO9TW1SHAX0+c4FJVFV5d9joi4kaqU0qpgNVmoBtjTgFrgUqsIL8EHAQ+NcY0tLkfAv18UlGvXhAW5lUHXW8MNW43xhiiunend79+nD13jr9VVlJTW9vyC91uuOUWn5SrlFKBwpuRSxwwA7gFuBnoBtzn7TcQkXQRqRCRinPnznlRkQuGD7cOKmpDwSefMP7oUV6tq2N3VRX3fPABe2NiiO7Wjffff59Pzp/HmCb9el2dNZ/v39/bTVBKKUfwZrfFe4D3jTHnAERkJzABuElEQj1den/gVHMvNsbkA/kAY8aM8WoawrRpcOhQm09LT0jg4YQE3nnnHW677Tak0WMxMTGcOX2aS5cukZiYSHRUlPXAZ5/BP/xDu+f0SikV6LxJtUrgThGJFhEBJgNHgL1Akuc5DwKv+ayqmTOtwPVikdMYg4h8KcwBwsPCGDBwIL169eLDDz/k9Jkz1qKpywVpaT4rVSmlAoU3M/S3sRY//wAc9rwmH8gGHheR94CegO8Ov4yLg+Rk67S3bdXnduOSpnFuESA2JoavDRkCxnD62DE+6dkTM3q0z0pVSqlA4dXcwRjzv40x3zDGjDDGzDPGXDfGnDDGjDPG3GqMmWWMue7Typ58EuLj4cqVtmpDWgj0BiEhIST26kWvXr1YHRfH0scf5/Tp076sVimlbBe4g+SYGOuCFHV1cL3l3xVuLwKd+nq4fJnIlStZu2sXI0eOJDU1laKiovbtu66UUgEscAMd4NvfhpdesvZ4aaFTb7NDr6mxRjeLFkFaGmFhYaSlpVFYWEh5eTnz5s3jyJEjftoApZTqPIEd6ADf/S5s2QLdusHFi19ZKDXGIM3tsWIMfPqpFejPPgvLllmH/HsMGDCADRs2kJqaSmZmJmvXrqW6utrfW6OUUn4T+IEOMH48/OpX1kLplStWUF+5AvX1X+7Q3W64etW6qPSlS9br3noL5sz5Upg3EBGmTZtGaWkp1dXVJCUlsW/fvs7dNqWU8hH5yoE3fjRmzBjT7otEN3X+POzcCT//ORw9yrWrV7n46ack9u1rde9DhsDdd0NKSruPBj148CDPPfccgwcP5sknn6RPnz4dq1UppXxARA4aY8a0+TzHBXpjbjd/fPNNSrZs4bkXXoC+fW/8YtIeNTU1FBYWUlJSwj/90z8xe/ZsXHoQklLKRt4GurOTyuXiSmwsVb16wcCBHQ5zgPDwcNLT0ykoKGDv3r0sWLCAo0eP+qBYpZTyL2cHOlBbW0u4D4K8qcGDB7Np0yaSkpJYvHgxubm5umiqlApojg/0mpoawsLC/PLeIsL06dMpKSnh4sWLzJ49m/379/vleymlVEc5PtBra2v9FugN4uLiWLVqFStWrGDdunVkZ2fj1ZkjlVKqEwVFoPtj5NKccePGsX37dgYNGsScOXMoLS3F3c6LcSillL84PtD9OXJpTkREBBkZGeTn57N7927S0tI4fvx4p31/pZRqieMDvTM79MaGDBnC5s2bmTFjBhkZGeTl5XHNi4tyKKWUvzg+0Du7Q2/M5XIxc+ZMtm/fzpkzZ0hOTqa8vNyWWpRSypsrFgW0mpoaWzr0xnr27MmaNWsoLy8nJyeHESNGkJWVRc+ePW2tSynVtTi+Q7dr5NKc8ePHs2PHDhITE0lJSWHnzp26aKqU6jSOD3Q7Ry7NiYyMZPHixWzcuJFdu3bx8MMPc+LECbvLUkp1AY4P9M7YD/1GDB06lJdffpmpU6eSnp7Oxo0bud7KhTqUUqqjgiLQA2Xk0pTL5SIpKYni4mIqKytJSUnhwIEDdpellApSQbEoGogdemMJCQnk5OSwf/9+Vq9ezR133MHSpUuJi4uzuzSlVBDRDr0TTZw4kZKSEuLj45k9eza7du2iM09frJQKbo4PdCd06I1FR0eTmZlJXl4eZWVlLFq0iA8++MDuspRSQSAoAt0pHXpjw4YNo7CwkEmTJpGWlkZ+fj41NTV2l6WUcjDHB7qTRi5NuVwuUlJSKC4u5tixY6SkpHDw4EG7y1JKOVSbgS4iw0TkUKOPKhHJFJF4EXlLRI57Ptuywue0kUtzevfuzdq1a1myZAkrVqxg1apVXLp0ye6ylFIO02agG2OOGmNGGWNGAX8HVAOvAk8Be4wxQ4E9ntudLlD3Q78Rd911F2VlZURHRzNr1izeeOMNXTRVSnmtvSOXycBfjTEfADOALZ77twD3+7Iwbzl55NKc6OhonnjiCV566SW2bdvGo48+SmVlpd1lKaUcoL2BngIUe77uY4w57fn6DNCnuReISLqIVIhIhT+u8hMMI5fmDB8+nK1btzJhwgQeeughCgoKqK2ttbsspVQA8zrQRSQcmA6UNn3MWHOBZmcDxph8Y8wYY8yYhISEGy60JcHWoTcWEhLCAw88QFFREYcPH2bu3LkcOnTI7rKUUgGqPR36VOAPxpiznttnRSQRwPP5Y18X541g7dAbS0xMJDc3l0ceeYTly5ezZs0aqqqq7C5LKRVg2hPoc/hi3AKwC3jQ8/WDwGu+Kqo9nLofenuJCJMnT6a0tJTQ0FCSk5N58803ddFUKfU5rwJdRLoB9wI7G92dA9wrIseBezy3O10wj1ya0717d7Kzs3nxxRd55ZVXWLJkCadOnbK7LKVUAPAq0I0xV4wxPY0xlxrdd94YM9kYM9QYc48x5oL/ymxZVxi5NOf222+nqKiIsWPHMn/+fLZs2UJdXZ3dZSmlbOToI0Xdbjf19fWEhjr+pJE3JDQ0lPnz57N161YqKipITU3l8OHDdpellLKJowO9rq6OsLAwRMTuUmzVr18/1q9fT1paGsuWLSMnJ4fLly/bXZZSqpM5OtC76rilOSLClClT2LFjB/X19cyaNYs9e/booqlSXYjjA70rLYh6IyYmhmeeeYbnn3+eTZs2sXTpUk6fPt32C5VSjufoQO9qe7i0x6hRo9i2bRsjR44kNTWVoqIi6uvr7S5LKeVHjg50Hbm0LiwsjLS0NAoLCykvL2fevHkcOXLE7rKUUn7i6EDXDt07AwYMYMOGDaSmppKZmcnatWuprq62uyyllI85OtC1Q/eeiDBt2jRKS0uprq4mKSmJffv22V2WUsqHNNC7mNjYWFauXMmzzz5LXl4eWVlZnD17tu0XKqUCnqMDva6uTkcuN2j06NEUFxczbNgw5s6dS3FxMW632+6ylFId4OhA1w69Y8LDw0lPT6egoIC9e/eyYMECjh49andZSqkb5PhA1w694wYPHsymTZtISkpi8eLF5Obm6qKpUg7k6EDXvVx8R0SYPn06JSUlXLx4kdmzZ7N//367y1JKtYOjA11HLr4XFxfHqlWrWLFiBevWrSM7Oxt/XDpQKeV7jg507dD9Z9y4cWzfvp1BgwYxZ84cSktLddFUqQDn6EDXDt2/IiIiyMjIID8/n927d5OWlsbx48ftLksp1QINdNWmIUOGsHnzZmbMmEFGRgZ5eXlcu3bN7rKUUk04OtB1P/TO43K5mDlzJiUlJZw5c4bk5GTKy8vtLksp1YijL/WjHXrni4+PZ82aNZSXl5OTk8OIESPIysqiZ8+edpemVJfn6A5d90O3z/jx49mxYweJiYmkpKSwc+dOXTRVymaODnTdy8VekZGRLF68mI0bN7Jr1y4efvhhTpw4YXdZSnVZjg50HbkEhqFDh/Lyyy8zdepU0tPT2bhxI9evX7e7LKW6HEcHunbogcPlcpGUlERxcTGVlZWkpKRw4MABu8tSqkvxKtBF5CYRKRORd0XkHRH5tojEi8hbInLc8znO38U2pR164ElISCAnJ4fHH3+c1atXs3LlSi5evGh3WUp1Cd526P8G7DbGfAP4JvAO8BSwxxgzFNjjud2pdFE0cE2cOJGSkhLi4+OZPXs2u3btwhhjd1lKBbU2A11EYoHvAAUAxpgaY8ynwAxgi+dpW4D7/VVkS+rq6rRDD2DR0dFkZmaSl5dHWVkZixYt4uTJk3aXpVTQ8qZDvwU4B7wiIv8tIj8RkW5AH2PMac9zzgB9/FVkS3Tk4gzDhg2jsLCQSZMmsXDhQvLz86mpqbG7LKWCjjeBHgqMBv7dGHMHcIUm4xVj/V+62f9Pi0i6iFSISIWvz9qnIxfncLlcpKSkUFxczLFjx0hJSeHgwYN2l6VUUPEm0D8EPjTGvO25XYYV8GdFJBHA8/nj5l5sjMk3xowxxoxJSEjwRc2f071cnKd3796sXbuWJUuWsGLFClatWsWlS5fsLkupoNBmoBtjzgB/E5FhnrsmA0eAXcCDnvseBF7zS4Wt0JGLc911112UlZURHR3NrFmzeOONN3TRVKkO8nYvl8XANhH5EzAKeA7IAe4VkePAPZ7bnUo7dGeLjo7miSee4KWXXmLbtm08+uijVFZW2l2WUo7lVaAbYw55xiYjjTH3G2MuGmPOG2MmG2OGGmPuMcZc8HexTWmHHhyGDx/O1q1bmTBhAg899BAFBQXU1tbaXZZSjuPoI0V1UTR4hISE8MADD1BUVMThw4eZO3cuhw4dsrsspRzF0YGu+6EHn8TERHJzc3nkkUdYvnw5a9asoaqqyu6ylHIERwe6jlyCk4gwefJkSktLCQ0NJTk5mTfffFMXTZVqg+MDXUcuwat79+5kZ2fz4osv8sorr7BkyRJOnTpld1lKBSxHB7ru5dI13H777RQVFTF27Fjmz5/Pli1bqKurs7sspQKOYwPdGENtbS2hoY6+ip7yUmhoKPPnz2fr1q1UVFSQmprK4cOH7S5LqYDi2EBvCHOXy7GboG5Av379WL9+PWlpaSxbtoycnBwuX75sd1lKBQTHpqGOW7ouEWHKlCns2LEDt9tNcnIye/bs0UVT1eU5NtB1DxcVExPD008/zXPPPcemTZtYunQpp0+fbvuFSgUpxwZ6bW2tBroCYNSoUWzbto2RI0eSmppKUVER9fX1dpelVKdzdKDryEU1CAsLIy0tjcLCQsrLy5k3bx5HjhyxuyylOpVjA11HLqo5AwYMYMOGDaSmppKZmcnatWuprq62uyylOoVjA107dNUSEWHatGmUlpZSXV1NUlIS+/bts7sspfzOsYGuHbpqS2xsLCtXruTZZ58lLy+PrKwszp49a3dZSvmNowNdO3TljdGjR1NcXMywYcOYO3cuxcXFuN1uu8tSyuccG+g6clHtER4eTnp6OgUFBezdu5cFCxZw9OhRu8tSyqccG+g6clE3YvDgwWzatImkpCQWL15Mbm6uLpqqoOHYQNf90NWNEhGmT59OSUkJFy9eJDk5mf3799tdllId5uhA15GL6oi4uDhWrVrFypUrWbduHdnZ2Zw7d87uspS6YY4NdB25KF8ZN24c27dvZ9CgQcyZM4fS0lJdNFWO5NhA1w5d+VJERAQZGRnk5+eze/du0tLSOH78uN1lKdUujg107dCVPwwZMoTNmzczY8YMMjIyyMvL49q1a3aXpZRXHB3o2qErf3C5XMycOZOSkhLOnDlDcnIy5eXldpelVJsce7kfHbkof4uPj2fNmjWUl5eTk5PDiBEjyMrKomfPnnaXplSzvOrQReSkiBwWkUMiUuG5L15E3hKR457Pcf4t9ct05KI6y/jx49mxYweJiYmkpKSwc+dOXTRVAak9I5e7jTGjjDFjPLefAvYYY4YCezy3O43uh646U2RkJIsXL2bjxo3s2rWLhx9+mBMnTthdllJf0pEZ+gxgi+frLcD9HS/HezpyUXYYOnQoL7/8MlOnTiU9PZ2NGzdy/fp1u8tSCvA+0A3wCxE5KCLpnvv6GGMarvd1BujT3AtFJF1EKkSkwpcHbejIRdnF5XKRlJREcXExlZWVpKSkcODAAbvLUsrrRdH/aYw5JSK9gbdE5N3GDxpjjIg0e4VeY0w+kA8wZswYn13FVzt0ZbeEhARycnLYv38/q1ev5o477mDp0qXExXXqcpJSn/OqQzfGnPJ8/hh4FRgHnBWRRADP54/9VWRztENXgWLixImUlJQQHx/P7Nmz2bVrF8b4rHdRymttBrqIdBORHg1fA1OAPwO7gAc9T3sQeM1fRTZH90NXgSQ6OprMzEzy8vIoKytj0aJFnDx50u6yVBfjTYfeB/itiPwROAC8bozZDeQA94rIceAez+1OoyMXFYiGDRtGYWEhkyZNYuHCheTn51NTU2N3WaqLaDPQjTEnjDHf9Hz8D2PMGs/9540xk40xQ40x9xhjLvi/3C/oyEUFKpfLRUpKCsXFxRw7doyUlBQOHjxod1mqC3D0kaIa6CqQ9e7dm7Vr17Jv3z5WrFjBnXfeyWOPPUZsbKzdpakg5dhzuejIRTnFXXfdRVlZGdHR0cyaNYs33nhDF02VXzg20HXkopwkOjqaJ554gpdeeolt27bx6KOPUllZaXdZKsg4NtC1Q1dONHz4cLZu3cqECRN46KGHKCgooLa21u6yVJBwbKBrh66cKiQkhAceeICioiIOHz7M3LlzOXTokN1lqSDg6EDXDl05WWJiIrm5uTzyyCMsX76cNWvWUFVVZXdZysEcG+g6clHBQESYPHkypaWlhIaGkpyczJtvvqmLpuqGODbQdeSigkn37t3Jzs7mxRdf5JVXXmHJkiWcOnXK7rKUwzg20LVDV8Ho9ttvp6ioiLFjxzJ//ny2bNlCXV2d3WUph3BkoBtj9MAiFbRCQ0OZP38+W7dupaKigtTUVA4fPmx3WcoBHBno9fX1iAgulyPLV8or/fr1Y/369aSlpbFs2TJycnK4fPmy3WWpAObIRNQ9XFRXISJMmTKFHTt24Ha7SU5OZs+ePbpoqprlyEDX+bnqamJiYnj66ad57rnn2LRpE0uXLuX06dNtv1B1KY4MdN3DRXVVo0aNYtu2bYwcOZLU1FSKioqor6+3uywVIBwZ6Nqhq64sLCyMtLQ0CgsLKS8vZ968eRw5csTuslQAcGSga4euFAwYMIANGzaQmppKZmYma9eu5cqVK3aXpWzk2EDXDl0pa9F02rRplJaWUl1dzaxZs9i3b5/dZSmbODLQ6+rqtENXqpHY2FhWrlzJs88+S15eHllZWZw9e9buslQnc2Sg68hFqeaNHj2a4uJihg0bxty5cykuLsbtdttdluokjg10Hbko1bzw8HDS09MpKChg7969LFiwgKNHj9pdluoEjgx03ctFqbYNHjyYTZs2kZSUxOLFi8nNzaW6utruspQfOTLQdeSilHdEhOnTp1NSUsLFixdJTk5m//79dpel/MSRga4dulLtExcXx6pVq1i5ciXr1q0jOzubc+fO2V2W8jGvA11EQkTkv0Xk557bt4jI2yLynoiUiEinJax26ErdmHHjxrF9+3YGDRrEnDlzKC0t1UXTINKeDv0x4J1Gt38M5BpjbgUuAgt9WVhrdFFUqRsXERFBRkYG+fn57N69m7S0NI4fP253WcoHvAp0EekPfBf4iee2AJOAMs9TtgD3+6PA5ui50JXquCFDhrB582ZmzJhBRkYG69ev59q1a3aXpTrA2w79JeBJoOH/Zj2BT40xDZdS+RDo5+PaWqSBrpRvuFwuZs6cSUlJCWfPniU5OZny8nK7y1I3qM1AF5HvAR8bYw7eyDcQkXQRqRCRCl8twujIRSnfio+PZ82aNTz11FPk5OTw9NNPc/78ebvLUu3kTYc+AZguIieB7Vijln8DbhKRUM9z+gPNXtHWGJNvjBljjBmTkJDgg5J1Lxel/GX8+PHs2LGDxMREUlJS2Llzpy6aOkibgW6MWW6M6W+MGQykAL8yxjwA7AWSPE97EHjNb1U2oXu5KOU/kZGRLF68mI0bN/Kf//mfPPzww5w4ccLuspQXOrIfejbwuIi8hzVTL/BNSW3TDl0p/xs6dCgFBQVMnTqV9PR0Nm7cyPXr1+0uS7WiXYFujNlnjPme5+sTxphxxphbjTGzjDGd9pPWDl2pzuFyuUhKSqK4uJjKykpSUlI4cOCA3WWpFoS2/ZTAo4uiSnWuhIQEcnJy2L9/P6tXr+aOO+5g6dKlxMXF2V2aasSxh/5rh65U55s4cSIlJSXEx8cze/Zsdu3ahTHG7rKUhwa6UqpdoqOjyczMJC8vj7KyMhYtWsTJkyftLkvh0EDXkYtS9hs2bBiFhYVMmjSJhQsXkp+fT01Njd1ldWmODHTdy0WpwOByuUhJSaG4uJhjx46RkpLCwYM3dAyi8gHHLorqyEWpwNG7d2/Wrl3Lvn37WLFiBXfeeSePPfYYsbGxdpfWpWiHrpTymbvuuouysjK6devGrFmzeOONN3TRtBM5MtC1Q1cqcEVHR5OVlcVLL73Etm3bePTRR6msrLS7rC7BsYGuHbpSgW348OFs3bqVCRMm8NBDD1FQUEBtba3dZQU1Rwa67raolDOEhITwwAMPUFRUxOHDh5k7dy6HDh2yu6ygpYGulPK7xMREcnNzeeSRR1i+fDlr1qyhqqrK7rKCjiMDXUcuSjmPiDB58mRKS0sJDQ0lOTmZN998UxdNfciRga57uSjlXN27dyc7O5sXX3yRV155hSVLlnDqVLOXU1Dt5MhA171clHK+22+/naKiIsaOHcv8+fPZsmULdXV1bb9QtciRga4dulLBITQ0lPnz57N161YqKipITU3l8OHDdpflWI4L9Pr6esBaPVdKBYd+/fqxfv160tLSWLZsGTk5OVy+fNnushzHcYGu4xalgpOIMGXKFHbs2IHb7WbWrFn88pe/1EXTdnBcoOu4RangFhMTw9NPP83zzz9Pfn4+S5cu5fTp03aX5QiODHTt0JUKfqNGjWLbtm2MHDmS1NRUioqKPh+5quY5LtB15KJU1xEWFkZaWhqFhYWUl5czb948jhw5YndZActxga4jF6W6ngEDBrBhwwZSU1PJzMxk7dq1XLlyxe6yAo7jAl07dKW6JhFh2rRplJaWUl1dzaxZs9i3b5/dZQUURwa6duhKdV2xsbGsXLmSZ599lry8PLKysjh79qzdZQUExwW6jlyUUgCjR4+muLiYYcOGMXfuXIqLi3G73XaXZas2A11EIkXkgIj8UUT+IiI/8tx/i4i8LSLviUiJiHRKyurIRSnVIDw8nPT0dAoKCti7dy8LFizg3Xfftbss23jToV8HJhljvgmMAu4TkTuBHwO5xphbgYvAQv+V+QXt0JVSTQ0ePJhNmzaRlJTEkiVLyM3Npbq62u6yOl2bgW4sDcfghnk+DDAJKPPcvwW43y8VNqH7oSulmiMiTJ8+nZKSEi5evEhycjL79++3u6xO5dUMXURCROQQ8DHwFvBX4FNjTMOp0T4E+vmnxC/TkYtSqjVxcXGsWrWKlStXsm7dOrKzszl37pzdZXUKrwLdGFNvjBkF9AfGAd/w9huISLqIVIhIhS/+UHXkopTyxrhx49i+fTuDBg1izpw5lJaWBv2iabv2cjHGfArsBb4N3CQioZ6H+gPNnqHeGJNvjBljjBmTkJDQoWJBO3SllPciIiLIyMggPz+f3bt3k5aWxvHjx+0uy2+82cslQURu8nwdBdwLvIMV7Emepz0IvOavIhvT/dCVUu01ZMgQNm/ezIwZM8jIyGD9+vVcu3bN7rJ8zpsOPRHYKyJ/An4PvGWM+TmQDTwuIu8BPYEC/5X5BR25KKVuhMvlYubMmZSUlHD27FmSk5MpLy+3uyyfCm3rCcaYPwF3NHP/Cax5eqfSkYtSqiPi4+NZs2YN5eXl5OTkMGLECLKysujZs6fdpXWYHimqlOqSxo8fz44dO0hMTCQlJYWdO3c6ftG0zQ490NTW1hIVFWV3GUqpIBAZGcnixYu57777eO6553j99dd55plnGDJkyI294YULcOSI9fHhh+B2Q3w8DB9ufQwYACK+3YhGHBfoNTU1xMTE2F2GUiqIDB06lIKCAnbu3El6ejo/+MEPWLhwIREREW2/2Bj43e+goAB+/WsICYGami+C2+2G8HDr8y23wKJF8N3vQmSkz7dDRy5KKYW1aJqUlERxcTGVlZWkpKRw4MCB1l907hw8/DDMnw/79kGPHtC9u9WVx8VZHz17WvfHxMDf/gbZ2XDvvfCHP/h+G3z+jn4rQpqwAAANdklEQVSmi6JKKX9KSEggJyeHxx9/nNWrV7Ny5UouXrz41ScePAiTJ1tBHhMDN90ErlYiVQS6dbOe9/HHkJwM//7vVofvI44MdO3QlVL+NnHiREpKSoiPj2f27Nns2rUL0xC+Bw9CairU1loB3d65eEMnv3YtrF/vs5odF+g6clFKdZbo6GgyMzPJy8ujrKyMRYsWUXnwIDz0kPWEbt1u/M1DQ61gX78e9uzxSb2OC3QduSilOtuwYcMoLCxk0t138+fvf59Lp0/jjo7u+BuHhkJEBDzxBDQ31mknxwW6duhKKTu4XC5ShgxhSkQEVS4XJ06c4IovzrkeHQ1VVbBhQ8dr7Hg1nUs7dKWUbX7yE0JDQhgwYAB9evfmo1On+Oj0aerq6z9/So3bzaqPPuJ7773Hd44eZe6JE5RfvtzKm2LN04uL4erVDpXnuEDXC1wopWzx6adf7NEC9OjRgyFf+xoul4sTf/0rly5dwgD1QN+wMPIHDmTf17/OPyck8NSpU3xUU9Pye4eFWQuse/d2qERHBrqOXJRSne7IEeugoUa7Joa4XPTt04cBAwdy/sIFKisrcdXVkZ6QwM3h4bhEmNijBzeHhfFuW2d3rKuDiooOlei4QNeRi1LKFn/5i3UEaDOiIiO55ZZb6N69OydPnuTcJ5/g9uzieKGujsqaGoa0ddRpZCS0dSBTG5x16L8x1F6/rh26UqrzffTRl24awLjduN1u3MZg3G6io6Lo27cvn3zyCefPn6f/wIH8r3Pn+F5sLIPbCvTQUOuAow4I7EC/dAlefx1+8xs4dAjOnmXj2bP0nDQJhg2DsWPhvvvgzjtbP0JLKdXlGGOoqanh6tWrXLt2jatXr37+dePbjR9v+rnx49MrKphw5gxVn3xiBbkxuEQQlwtXw4fndlhoKMYYVp07RyjwZN++bRcsYp3vpQMCM9AvXIAXXoBXX4X6emtDIyMhPp5L588T3707fPABHD1qrQwnJMDjj8MPfqDBrpRDGGOora294YBtGtJNH7t27RqhoaFERkYSGRlJVFQUUVFRX/m68e3Y2Fj69Onzpec1fO6zfTtxW7eSEB//eYi3dHyoMYZVp09zqbaW9QMGEOrNkaT19dY5YDog8AL9F7+AZcvg8mXrKKrQL5doAAkJsc5eFh1tnQfh0iXrhDevvmodSpuYaE/tSgWZuro6n3S3LYWvy+VqNWCbBmv37t3p1avXVx5vLrAjIyMJCQnx3R/Gd74DpaVfyaTmPH/mDO/X1LBx4EAivG0yr12DUaM6VGJgBfqmTVZnHhlpnaWsGcbtRhr/thOBqCjrNW+/Dd//PmzfDrfe2klFK2Uft9vtl+624bbb7W41YJt2vFFRUcTFxXndEYd6EY4B47bbrJGIMa2eu+V0bS07P/2UcBH+odEFqZ/u25epsbEtv78x1hi5AwLnT/OnP4Uf/9jax7OVH7Ix5suB3kDEOklOVRWkpMCuXXDzzX4sWKm2ud1url+/7rOAbfo+tbW1XwpWb8I3JibG6444LCys+X9vXVH//vC1r8HJk9aBQC1IDAuj4rbb2vfebrc1Lp48uUMlBkagHz8Oq1c3O2JpzHg+Wv0LFhNjHQCQlQXbtulMXbWq8cKZLwK26fMbzg7qbXcbGRlJfHy8V91tVFQU4eHhGridRQQeecQ674qvXbpkhXmfPh16G/sD3e2GzEzrvxtt7F/e0J23+dc3Ntban7OszDrnsHKsxgtnvgjYpq+5du0aYWFhrQZs01CNjY2lb9++XnXEERERuLSpCB5Tp0JuLpw5YzWgvlBXZx2wtHRph9/K/kD/r/+CY8c+P5y2NS2OW5pq2CvmX/8VkpK0S/ezuro6v3S3DbddLlebC2CNH+vevTsJCQledcQRERG+XThTwS0iwjrdbVKSFcQdXQMwxhoTL1lizeg7yP5A/8lP2lxkAKiqr+eHp07x66tXSXzvPf4lIYH7WltgiIqydn/87W+t1ekuzO12+6W7bbjtdru9HhE03I6Li/O6I3bUwpkKft/8pjV2eeGFNsfErTLGGg9/61uQkeGT0tqsREQGAFuBPlgj7HxjzL+JSDxQAgwGTgLJxpj2ndD3+nXYv9+r7jznzBlCgVeio3HffDOP/e1vfD0ysvXDaevrrQOTAjzQG/ZU8Nf+uHV1dZ8HZXv2x/W2I9aFM9XlpKdbHfq6dVbX3t5zo9fVWZ35t75lXVzaR0e/e/OrpQ7IMsb8QUR6AAdF5C1gAbDHGJMjIk8BTwHZ7frux49/5WQ3zbnqdvOrzz7jp/37I2fOcGt0NH/fowevX7rE4t69W35hVJR1qagOMsa0uKeCL/ZYqKmpISIiol374/bq1cur7lYXzpTyAxF49FEYPtzaAePCBWvPl7aC2e22FkBdLnjsMfjnf/ZZmIMXgW6MOQ2c9nz9mYi8A/QDZgB3eZ62BdhHewP9vfe8OtS1sqaGEGBAWBinPOE/NCKCP3hOLm+s2nC73Z8fkuv2nGMh5J13KP/lL7naJJDbM3JounDmzR4LcXFxJCYmetUR68KZUg51993WKW83brT2qquqsk6DGxn5xU4e9fXWNAKsXwT33GMtgH7jGz4vp13DHxEZDNwBvA308YQ9wBmskUz7VFd7FejVbjfdPOdJcNfX89cTJ/js+nU+qq3l3epqjNsNIrhErMNxG51XoXtNDW+9/jphPXp8KURjYmLo3bu31x2xBq5SqlmxsbB8uRXS+/ZZp8A9cADOnrXyLSbGOgJ07FjrF0AHd01sjdeBLiLdgZ8BmcaYqsb/hTfGGBExLbwuHUgHGDhwYJPvHurV1bKjXS6uuN2Eh4czcNAg66xmly7R99o1hg4YYJ0Qp7n3MQbOn+f5F15oc5dIpZTqkMhI62SB991nWwletZ0iEoYV5tuMMTs9d58VkUTP44lAs+d9NMbkG2PGGGPGJCQkfPnBPn28WiEeGB5OPdboJSI8nMjISE7U13NrVBQhLlfL8+G6OuvoUQ1zpVQX0Gagi5WWBcA7xph1jR7aBTzo+fpB4LV2f/fbbrNC1zTb3H8uyuViUo8e/Me5c1x1u/ljdTW//uwzvtvabotgnexm5Mh2l6WUUk7kTYc+AZgHTBKRQ56PaUAOcK+IHAfu8dxun4QE6NXriwWDVjzVty/X3W7uPXaMp0+dYnnfvm1fAaSuDiZObHdZSinlRN7s5fJbaPFo+46dSUYE0tK+OMNiK2JCQvjXAQO8f+/6emvXoPvv71CJSinlFPbvuvGP/2jN0Vu7IvaNqKqyFieazu2VUipI2R/oPXtaF7S4cqXNWbrXrl+3Ov5nnvHN+ymllAPYH+gACxZYi5eXLnX8verrrf3bV60Cb67jp5RSQSIwAj0kxDpJV//+cPHijXfqdXXWL4VFi6zriyqlVBcSGIEO1ujlZz+DESOsM5DV1rbv9VVV1nVIs7KsEY6eu0Qp1cWI8dXc2ptvJnIO+KDTvqF3egGf2F2EDXS7u5auuN3BtM2DjDFt7uHRqYEeiESkwhgzxu46Optud9fSFbe7K25z4IxclFJKdYgGulJKBQkNdMi3uwCb6HZ3LV1xu7vcNnf5GbpSSgUL7dCVUipIdLlAF5GTInLYc9bICs99L4rIuyLyJxF5VURusrtOX2thu1d7tvmQiPxCRG62u05fam6bGz2WJSJGRHrZVZ+/tPCz/qGInGpyxtSg0tLPW0QWe/59/0VEXrCzRn/rciMXETkJjDHGfNLovinAr4wxdSLyYwBjTPuujxrgWtjuGGNMlefrJcBwY8wjNpXoc81ts+f+AcBPgG8Af9f0cadr4Wf9Q+CyMWatXXX5WwvbfTfwDPBdY8x1EeltjGn2YjzBoMt16M0xxvzCGFPnufk7oL+d9XSWhjD36IZ1ve2uIBd4kq6zvV3ZPwM5xpjrAMEc5tA1A90AvxCRg57rnTaVBvy/Tq6pMzS73SKyRkT+BjwArLStOv/4yjaLyAzglDHmj/aW5lct/R3/F8+I7WURibOrOD9qbru/DkwUkbdF5NciMtbG+vzPGNOlPoB+ns+9gT8C32n02DPAq3hGUcH00dp2e+5fDvzI7jr9vc3A20Cs5/6TQC+76+yk7e4DhGA1cWuAl+2us5O2+89AHtZFesYB7wfjv++Gjy7XoRtjTnk+f4wV3uMARGQB8D3gAeP5WxFMWtruRrYB/9jZdflTM9v898AtwB8989b+wB9EJKjOs9zcz9oYc9YYU2+McQOb+erP3/Fa+Dv+IbDTWA4AbqxzvASlLhXoItJNRHo0fA1MAf4sIvdhzVSnG2Oq7azRH1rZ7qGNnjYDeNeO+vyhhW3+vTGmtzFmsDFmMNY/9tHGmDM2lupTrfysExs9bSZW5xo0Wtpu4P8Cd3vu/zoQTvCcsOsr2rymaJDpA7wq1ql1Q4H/Y4zZLSLvARHAW57HfmeCaG8PWt7un4nIMKyu5QMg6LfZ3pI6RUs/65+KyCisOfNJYJF9JfpFS9sdDrwsIn8GaoAHg/F/4A263G6LSikVrLrUyEUppYKZBrpSSgUJDXSllAoSGuhKKRUkNNCVUipIaKArpVSQ0EBXSqkgoYGulFJB4v8DY08U8NkL5UYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "ee = ExactEigensolver(qubitOp_docplex, k=1)\n", "result = ee.run()\n", @@ -1046,7 +1014,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.8" } }, "nbformat": 4, From ab9a33c7d1b85b6202983ec8cc1d6a42a59c69aa Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Sun, 28 Apr 2019 11:44:58 +0200 Subject: [PATCH 078/116] merge PR --- .../finance/data_providers/time_series.ipynb | 173 +++--------------- .../portfolio_diversification.ipynb | 123 ++++--------- .../simulation/credit_risk_analysis.ipynb | 9 +- 3 files changed, 58 insertions(+), 247 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index 8ef7b99a2..4580a34ce 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -33,7 +33,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { "scrolled": true }, @@ -51,11 +51,11 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "stocks = [\"GOOG\", \"AAPL\"]\n", + "stocks = [\"TICKER_A\", \"TICKER_B\"] # TODO\n", "from qiskit.aqua.translators.data_providers.wikipediadataprovider import StockMarket\n", "wiki = WikipediaDataProvider(token = \"\",\n", " tickers = stocks,\n", @@ -74,52 +74,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "A time-series similarity measure:\n", - "[[1.00000000e+00 8.44268222e-05]\n", - " [8.44268222e-05 1.00000000e+00]]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARUAAAD8CAYAAABZ0jAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAECFJREFUeJzt3X+s3XV9x/Hna/xog04pVKUiCESiYhTQpqgsioIU+QNIJLNkm2WBEJ1sicZlGBY0uGXg/mAx02lVJuoGTDa1bjAGVOISLFg3oIKDlroMcjthFCEMrBbf++N8uxwu99ze2/PpOffcPB/Jzfmez/fzOff9TeGV7/me873vVBWS1MqvjbsASYuLoSKpKUNFUlOGiqSmDBVJTRkqkpoaKlSSHJLkliRbusdlA+Y9l+Tu7md93/jRSe7s1l+f5MBh6pE0fsOeqVwC3FZVxwK3dc9n8mxVndD9nNU3fiVwVbf+CeCCIeuRNGYZ5stvSR4ATqmq7UlWALdX1WtnmPd0Vb142liAx4DDqmpXkrcBn6yq1XtdkKSx23/I9a+oqu0AXbC8fMC8pUk2AbuAK6rqW8ChwM+qalc35xHg8EG/KMlFwEUALzoob3nda3ynNEkevPegcZegefg5/8svamf2Zu0eQyXJrcBhM+y6dB6/58iqmkpyDLAhyWbgqRnmDTxtqqp1wDqAlccvrbtuPmIev17jtvqVJ4y7BM3DnXXbXq/dY6hU1WmD9iX5aZIVfW9/Hh3wGlPd47YktwMnAn8PHJxk/+5s5VXA1F4cg6QFZNgLteuBtd32WuDb0yckWZZkSbe9HDgZuL96F3O+C5w723pJk2XYULkCeE+SLcB7uuckWZnkS92c1wObktxDL0SuqKr7u31/BHw0yVZ611i+PGQ9ksZsqAu1VfU4cOoM45uAC7vtO4A3Dli/DVg1TA2SFha/USupKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlP7vO1pkhOSfD/JfUnuTfL+vn1fSfKTvpao9nGQJtwo2p4+A3ygqt4AnAH8RZKD+/b/YV9L1LuHrEfSmA0bKmcD13Tb1wDnTJ9QVQ9W1ZZue4peb6CXDfl7JS1Qw4bK89qeAoPangKQZBVwIPBQ3/Cfdm+LrtrdH0jS5BpV21O6DoZfA9ZW1a+64Y8D/00vaNbR6wN0+YD1/99L+cjDh20BLWlfGUnb0yQvAf4J+OOq2tj32tu7zZ1J/hr42Cx1PK+X8p7qljQeo2h7eiDwTeCrVfWNaftWdI+hdz3mR0PWI2nMRtH29DeBdwDnz/DR8d8k2QxsBpYDfzJkPZLGbBRtT78OfH3A+ncP8/slLTx+o1ZSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNNQmVJGckeSDJ1iQvaH2aZEmS67v9dyY5qm/fx7vxB5KsblGPpPEZOlSS7Ad8FngvcBxwXpLjpk27AHiiql4DXAVc2a09DlgD7O6z/Lnu9SRNqBZnKquArVW1rap+AVxHr8dyv/6eyzcAp3a9fs4GrquqnVX1E2Br93qSJlSLUDkceLjv+SPd2IxzqmoX8CRw6BzXAr22p0k2Jdn02OPPNShb0r7QIlQyw9j0tqSD5sxlbW+wal1VrayqlS871HdI0kLVIlQeAY7oe/4qYGrQnCT7Ay8FdsxxraQJ0iJUfgAcm+Torm/yGno9lvv191w+F9hQVdWNr+k+HToaOBa4q0FNksZkqLan0LtGkuRi4GZgP+DqqrovyeXApqpaD3wZ+FqSrfTOUNZ0a+9L8nfA/cAu4MNV5QUTaYKld8IwWVYev7TuuvmIPU/UgrH6lSeMuwTNw511G0/Vjpmuee6R36iV1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqmpUbU9/WiS+5Pcm+S2JK/u2/dckru7n+l/MFvShBn6D1/3tT19D72WGz9Isr6q7u+b9u/Ayqp6JsmHgE8D7+/2PVtV/gFTaZEYSdvTqvpuVT3TPd1Ir7+PpEVoVG1P+10A3NT3fGnXznRjknMGLbLtqTQZhn77wzxalyb5bWAl8M6+4SOrairJMcCGJJur6qEXvGDVOmAd9Fp0DF+2pH1hVG1PSXIacClwVlXt3D1eVVPd4zbgduDEBjVJGpORtD1NciLwBXqB8mjf+LIkS7rt5cDJ9LoVSppQo2p7+ufAi4FvJAH4r6o6C3g98IUkv6IXcFdM+9RI0oRpcU2FqroRuHHa2GV926cNWHcH8MYWNUhaGPxGraSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTY2q7en5SR7ra296Yd++tUm2dD9rW9QjaXxG1fYU4Pqqunja2kOAT9DrBVTAD7u1Twxbl6TxGEnb01msBm6pqh1dkNwCnNGgJklj0uKv6c/U9vSkGea9L8k7gAeBj1TVwwPWztgyNclFwEUASzmI1a+0p/skuXnq7nGXoHlYtfqZPU8aoMWZylzann4HOKqq3gTcClwzj7W9wap1VbWyqlYewJK9LlbSvjWStqdV9Xhfq9MvAm+Z61pJk2VUbU9X9D09C/hxt30zcHrX/nQZcHo3JmlCjart6R8kOQvYBewAzu/W7kjyKXrBBHB5Ve0YtiZJ45OqGS9hLGgvySF1Uk4ddxmaBy/UTpZVqx9m0z0/n+ma5x75jVpJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoaVdvTq/panj6Y5Gd9+57r27d++lpJk2UkbU+r6iN9838fOLHvJZ6tKjuDSYvEONqengdc2+D3SlqAWoTKfFqXvho4GtjQN7w0yaYkG5OcM+iXJLmom7fpl+wcNE3SmLXopTzn1qX0Go3dUFXP9Y0dWVVTSY4BNiTZXFUPveAFq9YB66DXomPYoiXtGyNpe9pnDdPe+lTVVPe4Dbid519vkTRhRtL2FCDJa4FlwPf7xpYlWdJtLwdOBu6fvlbS5BhV21PoXaC9rp7fEvH1wBeS/IpewF3R/6mRpMnT4poKVXUjcOO0scumPf/kDOvuAN7YogZJC4PfqJXUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqalWbU+vTvJokh8N2J8kn+naot6b5M19+9Ym2dL9rG1Rj6TxaXWm8hXgjFn2vxc4tvu5CPgrgCSHAJ8ATqLX6fATSZY1qknSGDQJlar6HrBjlilnA1+tno3AwUlWAKuBW6pqR1U9AdzC7OEkaYFr8tf052BQa9T5tEy9iN5ZDks5aN9UKWloo7pQO6g16pxbplbVuqpaWVUrD2BJ0+IktTOqUBnUGnU+LVMlTYBRhcp64APdp0BvBZ6squ30uhqe3rU/XQac3o1JmlBNrqkkuRY4BVie5BF6n+gcAFBVn6fXvfBMYCvwDPC73b4dST5Frx8zwOVVNdsFX0kLXKu2p+ftYX8BHx6w72rg6hZ1SBo/v1ErqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJTo2p7+ltdu9N7k9yR5Pi+ff+ZZHOSu5NsalGPpPEZVdvTnwDvrKo3AZ8C1k3b/66qOqGqVjaqR9KYtPrD199LctQs++/oe7qRXn8fSYvQOK6pXADc1Pe8gH9J8sOutamkCTaqXsoAJHkXvVD5jb7hk6tqKsnLgVuS/EfX8H36WnspSxNgZGcqSd4EfAk4u6oe3z1eVVPd46PAN4FVM623l7I0GUYSKkmOBP4B+J2qerBv/EVJfn33Nr22pzN+giRpMoyq7ellwKHA55IA7Oo+6XkF8M1ubH/gb6vqn1vUJGk8RtX29ELgwhnGtwHHv3CFpEnlN2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHU1Kh6KZ+S5MmuX/LdSS7r23dGkgeSbE1ySYt6JI3PqHopA/xr1y/5hKq6HCDJfsBngfcCxwHnJTmuUU2SxqBJqHQdBXfsxdJVwNaq2lZVvwCuA85uUZOk8Rhl29O3JbkHmAI+VlX3AYcDD/fNeQQ4aabF/W1PgZ231g2LsenYcuB/xl3EvrDfikV7bIv1uF67twtHFSr/Bry6qp5OcibwLeBYIDPMrZleoKrWAesAkmzqmpEtKov1uGDxHttiPq69XTuST3+q6qmqerrbvhE4IMlyemcmR/RNfRW9MxlJE2pUvZQPS9fbNMmq7vc+DvwAODbJ0UkOBNYA60dRk6R9Y1S9lM8FPpRkF/AssKaqCtiV5GLgZmA/4OruWsuerGtR9wK0WI8LFu+xeVzTpPf/tiS14TdqJTVlqEhqaiJCJckhSW5JsqV7XDZg3nN9twIs2Au+e7o1IcmSJNd3++9MctToq5y/ORzX+Uke6/s3unAcdc7XHG5DSZLPdMd9b5I3j7rGvTHM7TWzqqoF/wN8Grik274EuHLAvKfHXescjmU/4CHgGOBA4B7guGlzfg/4fLe9Brh+3HU3Oq7zgb8cd617cWzvAN4M/GjA/jOBm+h97+qtwJ3jrrnRcZ0C/ON8X3cizlTofXX/mm77GuCcMdYyrLncmtB/vDcAp+7+SH4BW7S3XNSeb0M5G/hq9WwEDk6yYjTV7b05HNdemZRQeUVVbQfoHl8+YN7SJJuSbEyyUINnplsTDh80p6p2AU8Ch46kur03l+MCeF/3FuGGJEfMsH8SzfXYJ9HbktyT5KYkb5jLglHe+zOrJLcCh82w69J5vMyRVTWV5BhgQ5LNVfVQmwqbmcutCXO+fWEBmUvN3wGuraqdST5I72zs3fu8sn1vEv+95mLQ7TWzWjChUlWnDdqX5KdJVlTV9u608tEBrzHVPW5LcjtwIr33+QvJXG5N2D3nkST7Ay9lH5ymNrbH46qqx/uefhG4cgR1jcKivN2kqp7q274xyeeSLK+qWW+gnJS3P+uBtd32WuDb0yckWZZkSbe9HDgZuH9kFc7dXG5N6D/ec4EN1V05W8D2eFzTrjOcBfx4hPXtS+uBD3SfAr0VeHL32/VJNsvtNbMb9xXoOV6lPhS4DdjSPR7Sja8EvtRtvx3YTO9Th83ABeOue5bjORN4kN5Z1KXd2OXAWd32UuAbwFbgLuCYcdfc6Lj+DLiv+zf6LvC6cdc8x+O6FtgO/JLeWckFwAeBD3b7Q++PjT3U/be3ctw1Nzqui/v+vTYCb5/L6/o1fUlNTcrbH0kTwlCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmvo/oHm/x8sukMUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "A covariance matrix:\n", - "[[269.60118129 25.42252332]\n", - " [ 25.42252332 7.86304499]]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARUAAAD8CAYAAABZ0jAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEAZJREFUeJzt3X/sXXV9x/Hny2KpkymFijQIApGoGKVggz9YFBUBMSkkMi3ZZlkgjU62ROMyDIsuODNwf7CY6fSrMlE3QNnUuoGsUolLsGjdgEodtNRlklZBijBCByu898c9XS5fvvfbb3s/vfd7m+cjubnnns/5nPs+Kbxy7rn3fN+pKiSpleeMuwBJBxZDRVJThoqkpgwVSU0ZKpKaMlQkNTVUqCQ5LMnaJJu758UDtnsqyR3dY03f+uOS3N7Nvz7JwmHqkTR+w56pXArcUlUnALd0r2eys6qWdY8VfeuvBK7q5j8MXDRkPZLGLMP8+C3JPcDpVbU9yVLg1qp6+QzbPVZVh0xbF+BB4Miq2pXkDcCfVdVZ+1yQpLE7aMj5L66q7QBdsBwxYLtFSTYAu4ArquqbwOHAr6tqV7fN/cBRg94oyWpgNcDzfyOvfcXL/KQ0STb/9AXjLkF7Yeeu/+bJp3dmX+buMVSSfBc4coahy/bifY6pqm1JjgfWJdkIPDrDdgNPm6pqCpgCWH7SovrhzUfvxdtr3N55iiegk+S2X31tn+fuMVSq6oxBY0l+mWRp38efBwbsY1v3vDXJrcDJwD8AhyY5qDtbeQmwbR+OQdI8MuyF2jXAqm55FfCt6RskWZzk4G55CXAasKl6F3O+B5w/23xJk2XYULkCeHuSzcDbu9ckWZ7kC902rwQ2JLmTXohcUVWburE/AT6UZAu9ayxfHLIeSWM21IXaqnoIeNsM6zcAF3fLtwGvHjB/K3DqMDVIml/8Ra2kpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU3t97anSZYl+UGSu5PcleQ9fWNfSvKzvpaoy4apR9L4jaLt6ePAe6vqVcDZwF8lObRv/I/7WqLeMWQ9ksZs2FA5F7imW74GOG/6BlV1b1Vt7pa30esN9KIh31fSPDVsqDyj7SkwqO0pAElOBRYC9/Wt/kT3seiq3f2BJE2uUbU9petg+BVgVVU93a3+CPALekEzRa8P0OUD5v9/L+Vjjhq2BbSk/WUkbU+TvAD4Z+BPq2p93763d4tPJPlb4MOz1PGMXsp7qlvSeIyi7elC4BvAl6vq69PGlnbPoXc95idD1iNpzEbR9vTdwJuAC2f46vjvkmwENgJLgD8fsh5JYzaKtqdfBb46YP5bh3l/SfOPv6iV1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU01CJcnZSe5JsiXJs1qfJjk4yfXd+O1Jju0b+0i3/p4kZ7WoR9L4DB0qSRYAnwbeAZwIXJDkxGmbXQQ8XFUvA64CruzmngisBHb3Wf5Mtz9JE6rFmcqpwJaq2lpVTwLX0eux3K+/5/INwNu6Xj/nAtdV1RNV9TNgS7c/SROqRagcBfy87/X93boZt6mqXcAjwOFznAv02p4m2ZBkw4MPPdWgbEn7Q4tQyQzrprclHbTNXOb2VlZNVdXyqlr+osP9hCTNVy1C5X7g6L7XLwG2DdomyUHAC4Edc5wraYK0CJUfASckOa7rm7ySXo/lfv09l88H1lVVdetXdt8OHQecAPywQU2SxmSotqfQu0aS5BLgZmABcHVV3Z3kcmBDVa0Bvgh8JckWemcoK7u5dyf5GrAJ2AV8oKq8YCJNsKFDBaCqbgRunLbuo33L/wP89oC5nwA+0aIOSePnL2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGpqVG1PP5RkU5K7ktyS5KV9Y08luaN7TP+D2ZImzNB/o7av7enb6bXc+FGSNVW1qW+zfweWV9XjSd4PfBJ4Tze2s6qWDVuHpPlhJG1Pq+p7VfV493I9vf4+kg5Ao2p72u8i4Ka+14u6dqbrk5w3aJJtT6XJ0KJFx5xblyb5XWA58Oa+1cdU1bYkxwPrkmysqvuetcOqKWAKYPlJi2bcv6TxG1XbU5KcAVwGrKiqJ3avr6pt3fNW4Fbg5AY1SRqTkbQ9TXIy8Dl6gfJA3/rFSQ7ulpcAp9HrVihpQo2q7elfAocAX08C8F9VtQJ4JfC5JE/TC7grpn1rJGnCjKrt6RkD5t0GvLpFDZLmB39RK6kpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU6Nqe3phkgf72pte3De2Ksnm7rGqRT2SxmdUbU8Brq+qS6bNPQz4GL1eQAX8uJv78LB1SRqPkbQ9ncVZwNqq2tEFyVrg7AY1SRqTFn9Nf6a2p6+bYbt3JXkTcC/wwar6+YC5M7ZMTbIaWA2waMEhvPOUsxqUrlHZ9YtfjrsE7YWqXfs8t8WZylzann4bOLaqXgN8F7hmL+b2VlZNVdXyqlq+8DnP2+diJe1fI2l7WlUP9bU6/Tzw2rnOlTRZRtX2dGnfyxXAT7vlm4Ezu/ani4Ezu3WSJtSo2p7+UZIVwC5gB3BhN3dHko/TCyaAy6tqx7A1SRqfVM14CWNee+HCI+qNS9497jK0F7xQO1lur1t4tHbMdM1zj/xFraSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTY2q7elVfS1P703y676xp/rG1kyfK2myjKTtaVV9sG/7PwRO7tvFzqpaNmwdkuaHcbQ9vQC4tsH7SpqHWoTK3rQufSlwHLCub/WiJBuSrE9y3qA3SbK6227Dk0/vbFC2pP2hRS/lObcupddo7Iaqeqpv3TFVtS3J8cC6JBur6r5n7bBqCpiCXouOYYuWtH+MpO1pn5VM++hTVdu6563ArTzzeoukCTOStqcASV4OLAZ+0LducZKDu+UlwGnApulzJU2OUbU9hd4F2uvqmS0RXwl8LsnT9ALuiv5vjSRNHtueaiRsezpZbHsqad4wVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ11art6dVJHkjykwHjSfKpri3qXUlO6RtblWRz91jVoh5J49PqTOVLwNmzjL8DOKF7rAb+BiDJYcDHgNfR63T4sSSLG9UkaQyahEpVfR/YMcsm5wJfrp71wKFJlgJnAWurakdVPQysZfZwkjTPtehQOBeDWqPuTcvU1fTOcli04JD9U6WkoY3qQu2g1qhzbplaVVNVtbyqli98zvOaFiepnVGFyqDWqHvTMlXSBBhVqKwB3tt9C/R64JGq2k6vq+GZXfvTxcCZ3TpJE6rJNZUk1wKnA0uS3E/vG53nAlTVZ4EbgXOALcDjwO93YzuSfJxeP2aAy6tqtgu+kua5JqFSVRfsYbyADwwYuxq4ukUdksbPX9RKaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdTUqNqe/k7X7vSuJLclOalv7D+TbExyR5INLeqRND6janv6M+DNVfUa4OPA1LTxt1TVsqpa3qgeSWPS6g9ffz/JsbOM39b3cj29/j6SDkDjuKZyEXBT3+sC/iXJj7vWppIm2Kh6KQOQ5C30QuW3+lafVlXbkhwBrE3yH13D9+lz7aUsTYCRnakkeQ3wBeDcqnpo9/qq2tY9PwB8Azh1pvn2UpYmw0hCJckxwD8Cv1dV9/atf36S39y9TK/t6YzfIEmaDKNqe/pR4HDgM0kAdnXf9LwY+Ea37iDg76vqOy1qkjQeo2p7ejFw8QzrtwInPXuGpEnlL2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHU1Kh6KZ+e5JGuX/IdST7aN3Z2knuSbElyaYt6JI3PqHopA/xr1y95WVVdDpBkAfBp4B3AicAFSU5sVJOkMWgSKl1HwR37MPVUYEtVba2qJ4HrgHNb1CRpPEbZ9vQNSe4EtgEfrqq7gaOAn/dtcz/wupkm97c9BZ74zvZPH4hNx5YAvxp3EfvJgXpsB+pxvXxfJ44qVP4NeGlVPZbkHOCbwAlAZti2ZtpBVU0BUwBJNnTNyA4oB+pxwYF7bAfyce3r3JF8+1NVj1bVY93yjcBzkyyhd2ZydN+mL6F3JiNpQo2ql/KR6XqbJjm1e9+HgB8BJyQ5LslCYCWwZhQ1Sdo/RtVL+Xzg/Ul2ATuBlVVVwK4klwA3AwuAq7trLXsy1aLueehAPS44cI/N45omvf+3JakNf1ErqSlDRVJTExEqSQ5LsjbJ5u558YDtnuq7FWDeXvDd060JSQ5Ocn03fnuSY0df5d6bw3FdmOTBvn+ji8dR596aw20oSfKp7rjvSnLKqGvcF8PcXjOrqpr3D+CTwKXd8qXAlQO2e2zctc7hWBYA9wHHAwuBO4ETp23zB8Bnu+WVwPXjrrvRcV0I/PW4a92HY3sTcArwkwHj5wA30fvd1euB28ddc6PjOh34p73d70ScqdD76f413fI1wHljrGVYc7k1of94bwDetvsr+XnsgL3lovZ8G8q5wJerZz1waJKlo6lu383huPbJpITKi6tqO0D3fMSA7RYl2ZBkfZL5Gjwz3Zpw1KBtqmoX8Ahw+Eiq23dzOS6Ad3UfEW5IcvQM45Norsc+id6Q5M4kNyV51VwmjPLen1kl+S5w5AxDl+3Fbo6pqm1JjgfWJdlYVfe1qbCZudyaMOfbF+aRudT8beDaqnoiyfvonY29db9Xtv9N4r/XXAy6vWZW8yZUquqMQWNJfplkaVVt704rHxiwj23d89YktwIn0/ucP5/M5daE3dvcn+Qg4IXsh9PUxvZ4XFX1UN/LzwNXjqCuUTggbzepqkf7lm9M8pkkS6pq1hsoJ+XjzxpgVbe8CvjW9A2SLE5ycLe8BDgN2DSyCuduLrcm9B/v+cC66q6czWN7PK5p1xlWAD8dYX370xrgvd23QK8HHtn9cX2SzXJ7zezGfQV6jlepDwduATZ3z4d165cDX+iW3whspPetw0bgonHXPcvxnAPcS+8s6rJu3eXAim55EfB1YAvwQ+D4cdfc6Lj+Ari7+zf6HvCKcdc8x+O6FtgO/C+9s5KLgPcB7+vGQ++Pjd3X/be3fNw1NzquS/r+vdYDb5zLfv2ZvqSmJuXjj6QJYahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTf0f+jfHoesqPVsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "if wiki._n <= 1: \n", " raise Exception(\"Not enough data to plot covariance or time-series similarity. Please use at least two tickers.\")\n", @@ -148,79 +105,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The underlying evolution of stock prices:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEsCAYAAADNd3h6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VPWd//HXJzcSICQEAgKBAoJc1MolXlovtbit2lovdW2p25W6bml/xW7d7m/V9qe/rb+fbW3317XtbtfWra24tlir9bLW+lhFacV6aUAUEZBLuYRbIBBuIbeZz++PcxKGEMgkJDkzh/fz8TiPOed7zpn5fGHyPme+c2bG3B0REYmvnKgLEBGR3qWgFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGXF3UBAEOHDvWxY8dGXYaISFZZsmTJLncv72y7jAj6sWPHUlVVFXUZIiJZxcw2prOdhm5ERGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRibmMuI6+JySSTnMiSSLptCSc5mSyra0l4bQkk7SE6xpbkjQnkjS1BFNzIklTItlheyIJF08q56zRpVF3UURipKE5wR/X7WLyKYMYWVrUq4+V1UH/05fX893nVtOcTNKbP3177wvvMX1MKZ/74FguP2MEBXl6ISQiXbd9bwMvrqph4codvLJuFw3NSb7+scnMvejUXn3crA76M0eVcNOF48jLMfJycsjLtWA+N4f83LAtx4L23HA+xyjIywmm3Jy2+fzcYLlf63zY3tCc4PEl1Tz06ka+8sgy7i5eyWfPfR/XnzuG8uJ+Uf8TiEgGSyad5Vv2sjAM9xVb9wFQMbiI2WePYdbkYZw7vqzX6zDvzVPhNFVWVnqmfwVCMun8Yc1OHvzjBhat3kl+rnHF+0fyuQ+O1bCOiLQ52NjC4rW7eHFlDS+urmHn/kZyDGa+bzCzJg/nkinDmDhsIGZ2wo9lZkvcvbKz7bL6jL4v5eQYF08axsWThrF+5wEeenUjjy2p5ok3tzBtdCk3nq9hHZGT2Xs79vPtZ1fyyrpamlqSFBfm8aHTyrlkyjA+dNowygYURFabzuhPwIHGFh5fUs38P25g/a6DlBf346/OHcO1MyoYXdY/6vL6RDLpbKk7xIiSQvJydZCTk9NTy7Zw++PL6V+QyzXTRzFryjDOHltGfi//TaR7Rq+g7wHJpPPy2l08+MqfeWn1TgBOGz6w7WXa9NGlsQnBZNJ5r2Y/r62r5bX1u3n9z7XsqW9m6ohB3HPtmby/QsNYcfPnXQf5j5fX898rtlNSlM/I0iJGlBQyoqSIkaWFnFJSxMiSQkaUFjGw38k1SNDYkuDuZ1byn69t5JyxZfzr9dMZPqiwzx5fQR+RTbX1PL9yBy+u2sHr63fTknRKivK5eFI5syYP4+LThlHSPz/qMtOWTDqrd+zntfW1vLa+ltf/vJu6+mYgeEPpvPFDmDBsID9b/Gd2HWjkxvPH8dWPnMaAk+wPPo7erq7jx79fx+/e2U5+bg4fnTqcloSzbe8htu5tYNeBxqOudisuzGNkSREjSgvbDgYjSgqPODgUFeRG06EeVr2nnnm/fJO3Ntcx96Lx/OOlk3r9DL49BX0G2NfQzOI1u1i4soZFq2uoPdhEbo4x832DuWTyMC6ZMoxTy3vmTZnjSSadhDuJpJN0pyXpQVvr5CnzSedgY4KqjbuPGeznjR/CuePKjhie2nuome8+t4pfvL6JUaVF3H31GXx48rBe7Zf0PHfnD2t28eNF63h1fS3FhXn89Xnv43Pnj2VY8ZFnqk0tSXbsa2Db3oYg/Osa2B4eBLbtPcS2ugZqDzYd9Ril/fODVwMlheEBof0rhEL65WX2wWDR6hpu+dUyEgnnn697P5edMSKSOhT0GSaRdN6qruOlVTUsXFnDu9uCy6xGlxUxaXhx8EGvMIgTR4QwJJLBB7eSyeCDX0mn3TYervO2UE+d7+5/8eiyIs4bFwb7+DIqBnf+vsOfNuzma79ZztqaA3zirJH87yumdvsy1JZEklfX1/Jfb20lLzeHL1w0nvcNGdCt+5Lja0kk+e3ybfzk9+t5d9s+ThlUyE0XjGP2OaMpLuz+K9CG5gQ79jWwtS4M/70NbK07xPa9DW0HhNYTiVRDBxYwoqSIU0oK24aFWl8ZnDIoOBh0dPbsHnwgsrE5SUNLou22oTlBQ3OSwf3zmXACV7wkks4PFq7hX19cw6Thxdz32ZmMGxrdc1JBn+G21h3ipdU1vLSqhm17G8jNMXIsuM4/J8fIteD6/xwzcnPCKXW+/fY5hOtzyM0JrhLKC/dpnc/p4D5yU7ZpfcyC3BzOrChJK9g70tiS4MeL1vOjl9ZSmJ/D//r4FD5VOTqtPy53Z9nmOp5atpVn3t7GrgONFPfLoykRfLL5k9NH8eVZExkz5OR4s7u3HWpK8GjVZv7j5fVU7znEqeUD+MKHTuXqaaP67Aqy+qaW4FVBysGg9RVC6/L+hpYj9jGD8oH9KCrIbQvxhuYEjS3JTh9v3NABXHbGKVx+ximcOaok7dDffbCJrzzyJi+v2cW1Myq4++ozIh+G6rGgN7NJwK9SmsYD/xt4KGwfC2wAPuXueyz4V/sB8DGgHvicuy893mOcjEF/Mlhbs5+v/+Yd3tiwm3PHlfHtT57J+PKBx9z2qWVbeWrZVjbtrqcgL4dZk4Zx1bSRfHjyMPYdaua+36/jF69vIpl0rp1Rwc2zJpw0Vzf1pETSWbfzAM8u38b8P25gT30zM8aU8sUPncpfTBlOTk7vDiV2x4HGFrbVhcNCdYcPBk0tSfrl5VKYn0Nhfi798nPplxfMF+bnHF6Xl0thfi4bdx/kuXe288d1tSSSzqjSorbQnzFm8DH7vnTTHub9Yim1B5u468rTmX12eicuva1XzujNLBfYApwLzAN2u/s9ZnY7MNjdbzOzjwFfJgj6c4EfuPu5x7tfBX18JZPOr6o2861nV9LYkuTLH57AFz50KgV5OWytO8R/vRWE+7vb9pFj8MFTh3LltJFcevoplBQdPWSwY18D9y1axy/fCAL/usoK5n14QrdffcRdMums33WQ5VvqWF69j+Vb6lixdR/1TQkALpk8jC9efCpnj+39T2dmkrr6Jp5/dwfPvbOdl9fsoimRZFhxPy49PQj9c8aVkZebg7sz/48b+OazKxk+qJAff3YmZ4wqibr8Nr0V9B8F/sndzzez1cDF7r7NzEYAi9x9kpn9JJxfEO7Ttt2x7ldBH381+xq465l3+e3b2zht+EAG9y/gjQ27cYezRpdy1VkjueL9IxiW5qVp2/c28O+L1vLIG5txnOsqRzPvwxMY1ctfDtWZlkSSg00JDjUlONjUQn1jgvqmFupbl5sS1De2HL1Nc2t7uE1TgoLcHIYMLGDIgALKBvRjyMACygYEy8F8P8oGFDCoMA8zI5l0Nu6u5+3qOpZX72X5lr2s2LqPA43BsEdhfg6njyzhzFHBVDl2sN7zAPY3NPPiqhqee2c7L62uoaE5SdmAAj4yZTj7G5t5dvl2Lpk8jH/51LSMu2Kut4L+Z8BSd/83M6tz99KUdXvcfbCZPQPc4+6Lw/aFwG3uXtXuvuYCcwHGjBkzc+PGtH7MXLLcC+/u4O7fvktOjnHVWaO4atpIxp7Am1lb6w7x74vW8qs/bQbg02cHgT+i5PiBn0j64QBuPByuB5taggBubGm3fDiw65taguUwnNvamhI0pTFG3CrHYEBBHkUFuQzol0f/gtxwCuYbW5LUHmxi98FGdh9o4mB4Ft5efq5RNqCA+qZE21h2QV4OU0cM4v0VYbBXlDChfGBsPs/RWw41Jfj9ezX87p3tLFxZQ31TC//w0Un8jw+dmpFDWj0e9GZWAGwFTnf3HccJ+t8C324X9Le6+5Jj3bfO6OVEbak7xI9eWsuvqzZjGBdPKifpHBXOh5qDEE/nTbtWOUZb+A7ol0dRfi4D+h0O5P4FeQzolxsEdru2w9uk7hu09cvL6dI4b0NzIgj+A03UHmxk98Emdh9sYteB4GCQn5sTBnspE4cP7PNruuOmsSXBgYYWhgzM3C8v7I3vurmc4Gx+R7i8w8xGpAzd1ITt1cDolP0qCA4QIr1mVGkR37rmTL508an86KV1vL6+lsIwkAcV5TOipPBw6PY7MpCPCOIjwjpo62og95bC/FxGlRZFPjx1suiXl0u/gZl9PX+6uhL0nwEWpCw/DcwB7glvn0ppv9nMHiF4M3bv8cbnRXpSxeD+fPuTZ0ZdhkhGSSvozaw/8BHgCynN9wCPmtlNwCbgurD9WYIrbtYSXF55Y49VKyIiXZZW0Lt7PTCkXVstcEkH2zrBpZciIpIB9G6NiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcWkFvZqVm9piZrTKzlWb2ATMrM7PnzWxNeDs43NbM7IdmttbM3jazGb3bBREROZ50z+h/ADzn7pOBs4CVwO3AQnefCCwMlwEuByaG01zgvh6tWEREuqTToDezQcBFwAMA7t7k7nXAVcD8cLP5wNXh/FXAQx54DSg1sxE9XrmIiKQlnTP68cBO4Odm9qaZ/dTMBgDD3X0bQHg7LNx+FLA5Zf/qsE1ERCKQTtDnATOA+9x9OnCQw8M0HbEO2vyojczmmlmVmVXt3LkzrWJFRKTr0gn6aqDa3V8Plx8jCP4drUMy4W1NyvajU/avALa2v1N3v9/dK929sry8vLv1i4hIJzoNenffDmw2s0lh0yXAu8DTwJywbQ7wVDj/NHBDePXNecDe1iEeERHpe3lpbvdl4BdmVgCsB24kOEg8amY3AZuA68JtnwU+BqwF6sNtRUQkImkFvbsvAyo7WHVJB9s6MO8E6xIRkR6iT8aKiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMylFfRmtsHMlpvZMjOrCtvKzOx5M1sT3g4O283Mfmhma83sbTOb0ZsdEBGR4+vKGf2H3X2au1eGy7cDC919IrAwXAa4HJgYTnOB+3qqWBER6boTGbq5Cpgfzs8Hrk5pf8gDrwGlZjbiBB5HREROQLpB78B/m9kSM5sbtg13920A4e2wsH0UsDll3+qwTUREIpCX5nbnu/tWMxsGPG9mq46zrXXQ5kdtFBww5gKMGTMmzTJERKSr0jqjd/et4W0N8ARwDrCjdUgmvK0JN68GRqfsXgFs7eA+73f3SnevLC8v734PRETkuDoNejMbYGbFrfPAR4F3gKeBOeFmc4CnwvmngRvCq2/OA/a2DvGIiEjfS2foZjjwhJm1bv9Ld3/OzP4EPGpmNwGbgOvC7Z8FPgasBeqBG3u8ahERSVunQe/u64GzOmivBS7poN2BeT1SnYiInDB9MlZEJOYU9CIiMaegFxGJOQW9iEjMpfuBKRGRPtfc3Ex1dTUNDQ1RlxKpwsJCKioqyM/P79b+CnoRyVjV1dUUFxczduxYwku8TzruTm1tLdXV1YwbN65b96GhGxHJWA0NDQwZMuSkDXkAM2PIkCEn9KpGQS8iGe1kDvlWJ/pvoKAXETmOHTt2cP311zN+/HhmzpzJBz7wAZ544gkAFi9ezDnnnMPkyZOZPHky999//xH73n///W3rzjnnHBYvXty2rqWlha9//etMnDiRadOmMW3aNL75zW/2Sh80Ri8icgzuztVXX82cOXP45S9/CcDGjRt5+umn2b59O9dffz1PPvkkM2bMYNeuXVx66aWMGjWKj3/84zzzzDP85Cc/YfHixQwdOpSlS5dy9dVX88Ybb3DKKadwxx13sH37dpYvX05hYSH79+/ne9/7Xu91JOpp5syZLiLS3rvvvhvp47/wwgt+0UUXdbjujjvu8DvvvPOo7S+44AJ3d7/gggt84cKFR+1zxx13+MGDB72srMz37duXdi0d/VsAVZ5GxuqMXkSywl3/tYJ3t+7r0fucOnIQ//SJ04+5fsWKFcyY0fHPXq9YsYI5c+Yc0VZZWcmKFSva1s+cOfOo9fPnz2ft2rWMGTOG4uLiE+xBejRGLyKSpnnz5nHWWWdx9tln4+4dvkl6vDdOj7XPz3/+c6ZNm8bo0aPZvHlzB3ueGJ3Ri0hWON6Zd285/fTTefzxx9uWf/SjH7Fr1y4qKyu59NJLqaqq4sorr2xbv2TJEqZOnQrA1KlTWbJkCbNmzWpbv3TpUqZOncqECRPYtGkT+/fvp7i4mBtvvJEbb7yRM844g0Qi0eP90Bm9iMgxzJo1i4aGBu677762tvr6eiA4u3/wwQdZtmwZALW1tdx2223ceuutANx6663cdttt1NbWArBs2TIefPBBvvSlL9G/f39uuukmbr755rbr4xOJBE1NTb3SD53Ri4gcg5nx5JNP8vd///d897vfpby8nAEDBvCd73yHESNG8PDDD/P5z3+e/fv34+7ccsstfOITnwDgyiuvZMuWLXzwgx/EzCguLubhhx9mxIgRAHzzm9/kzjvv5IwzzqC4uJiioiLmzJnDyJEje74fwRu30aqsrPSqqqqoyxCRDLNy5UqmTJkSdRkZoaN/CzNb4u6Vne2roRsRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYm5tIPezHLN7E0zeyZcHmdmr5vZGjP7lZkVhO39wuW14fqxvVO6iIikoytn9F8BVqYsfwe4190nAnuAm8L2m4A97j4BuDfcTkQkaz3xxBOYGatWrTqi/d5776WwsJC9e/e2tS1atIiSkhKmT5/OlClTuOuuu9rar7jiij6tu1VaQW9mFcDHgZ+GywbMAh4LN5kPXB3OXxUuE66/xPTLASKSxRYsWMAFF1zAI488clT72Wef3fb99K0uvPBC3nzzTaqqqnj44YdZsmRJX5Z7lHTP6L8P3Aokw+UhQJ27t4TL1cCocH4UsBkgXL833P4IZjbXzKrMrGrnzp3dLF9EpHcdOHCAV155hQceeOCIoF+3bh0HDhzg7rvvZsGCBR3uO2DAAGbOnMm6dev6qtwOdfoVCGZ2BVDj7kvM7OLW5g429TTWHW5wvx+4H4JPxqZVrYicvH53O2xf3rP3ecqZcPk9x93kySef5LLLLuO0006jrKyMpUuXMmPGDBYsWMBnPvMZLrzwQlavXk1NTQ3Dhg07Yt/a2lpee+017rzzTqI8oU3njP584Eoz2wA8QjBk832g1MxaDxQVwNZwvhoYDRCuLwF292DNIiJ9ZsGCBcyePRuA2bNnt529P/LII8yePZucnBw++clP8utf/7ptn5dffpnp06fz0Y9+lNtvv53TT+/7b95M1ekZvbt/DfgaQHhG/z/d/a/M7NfAXxKE/xzgqXCXp8PlV8P1L3omfKGOiGS3Ts68e0NtbS0vvvgi77zzDmZGIpHAzPjsZz/LmjVr+MhHPgJAU1MT48ePZ968eUAwRv/MM8/0eb3HciLX0d8GfNXM1hKMwT8Qtj8ADAnbvwrcfmIliohE47HHHuOGG25g48aNbNiwgc2bNzNu3DhuueUWvvGNb7BhwwY2bNjA1q1b2bJlCxs3boy65A51KejdfZG7XxHOr3f3c9x9grtf5+6NYXtDuDwhXL++NwoXEeltCxYs4Jprrjmi7dprr2XDhg1HtV9zzTVHXZXT3sKFC6moqGibXn311R6vuSP6mmIRyVj6muLD9DXFIiJyTAp6EZGYU9CLiMScgl5EMlomvI8YtRP9N1DQi0jGKiwspLa29qQOe3entraWwsLCbt9Hpx+YEhGJSkVFBdXV1ZF+fUAmKCwspKKiotv7K+hFJGPl5+czbty4qMvIehq6ERGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjrNOjNrNDM3jCzt8xshZndFbaPM7PXzWyNmf3KzArC9n7h8tpw/dje7YKIiBxPOmf0jcAsdz8LmAZcZmbnAd8B7nX3icAe4KZw+5uAPe4+Abg33E5ERCLSadB74EC4mB9ODswCHgvb5wNXh/NXhcuE6y8xM+uxikVEpEvSGqM3s1wzWwbUAM8D64A6d28JN6kGRoXzo4DNAOH6vcCQDu5zrplVmVnVyf7rMSIivSmtoHf3hLtPAyqAc4ApHW0W3nZ09n7UDz66+/3uXunuleXl5enWKyIiXdSlq27cvQ5YBJwHlJpZ608RVgBbw/lqYDRAuL4E2N0TxYqISNelc9VNuZmVhvNFwF8AK4GXgL8MN5sDPBXOPx0uE65/0U/mn3AXEYlYOj8OPgKYb2a5BAeGR939GTN7F3jEzO4G3gQeCLd/APhPM1tLcCY/uxfqFhGRNHUa9O7+NjC9g/b1BOP17dsbgOt6pDoRETlh+mSsiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcp0FvZqPN7CUzW2lmK8zsK2F7mZk9b2ZrwtvBYbuZ2Q/NbK2ZvW1mM3q7EyIicmzpnNG3AP/g7lOA84B5ZjYVuB1Y6O4TgYXhMsDlwMRwmgvc1+NVi4hI2joNenff5u5Lw/n9wEpgFHAVMD/cbD5wdTh/FfCQB14DSs1sRI9XLiIiaenSGL2ZjQWmA68Dw919GwQHA2BYuNkoYHPKbtVhm4iIRCDtoDezgcDjwC3uvu94m3bQ5h3c31wzqzKzqp07d6ZbhoiIdFFaQW9m+QQh/wt3/03YvKN1SCa8rQnbq4HRKbtXAFvb36e73+/ule5eWV5e3t36RUSkE+lcdWPAA8BKd/+XlFVPA3PC+TnAUyntN4RX35wH7G0d4hERkb6Xl8Y25wN/DSw3s2Vh29eBe4BHzewmYBNwXbjuWeBjwFqgHrixRysWEZEu6TTo3X0xHY+7A1zSwfYOzDvBukREpIfok7EiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnOdBr2Z/czMaszsnZS2MjN73szWhLeDw3Yzsx+a2Voze9vMZvRm8SIi0rl0zugfBC5r13Y7sNDdJwILw2WAy4GJ4TQXuK9nyhQRke7K62wDd/+DmY1t13wVcHE4Px9YBNwWtj/k7g68ZmalZjbC3bf1VMFH2LUGdq6GwhIoKg1uC0ugoBhyNColIgJpBP0xDG8Nb3ffZmbDwvZRwOaU7arDtt4J+lXPwAvfOLrdcqDfoMPBf8SBoBQKBkLBgHAaCP0GHp5PXdevGHLze6V0kazhDg11sH9H8LeVkws5ee2m9m25YBZ15RLqbtAfS0f/s97hhmZzCYZ3GDNmTPcebcYcOHUWNOwNpkN1h+cb9gZPztb52nWH1zcfTP8xcgtgwDAYNAKKT4Hi9rcjg9vCkt5/YrtDMgGegGRLynwyWPZESlu7+bZ9kinrWw7vn9qWbIGWRmg5FNw2H4KWhvA2bG9uOHybaIT8/kceWNsfaAsHBQfZ1nWehKYD0Lg/mJoOQOMBaNof3rZbxsP7HBTcHjFfHM6Hj6ODc9e4Q30t1G2Eus1Qtwn2hrety037u36/1i78czs5MKRz8Gibzw+W8ZTnb8vRz//Uv4tkAgr6w9DTYOhEGDopmB8wpMf/SdPmHvwt5OT26sN0N+h3tA7JmNkIoCZsrwZGp2xXAWzt6A7c/X7gfoDKysoODwad6l8WTF2VTEJzfRAmTQdTQiWcP6J9Pxyogf3bgqGiP/8hOFi0l1d0+ACQVxA+4ZIdBHOygwDuKJTbz7dwjGNm38krhLx+QV/zCw/f5vYLDqI7Vx0+sHqyhx6zKHjFBcH/RUtDenXm9w8PvOHBt3W+7WBsHa8/YlvabZvufu237Wi/Y61vN+8O+OHbI9pIWRfKyQkDNjclaHMPn4mnrks0BkG+d3Pw95Cq3yAoHRNMYy+A0tHBcxuOPCFofV4fd7m1rbkL+ySgueno9YnmI+8PCw8A7fub23H7vq3B33Dq86ioDMonHRn+QycGfU83gFtPwhKNcGhPcOCsr4X63SnztR23f/x7MOOG9B6nm7ob9E8Dc4B7wtunUtpvNrNHgHOBvb02Pn8icnKC8GgNkK5qqocD22H/9uCJs397cCDYH7Y11R9+guX1O/oPrMM/xpS2nLyU9TlHP3k7ajvqMTr6A2/XdsTjtLuf/MIw2AshvygI83Tf93APDpJtr6z2tXultTe4r4LicNisdfisODg7b20rGBicBaZqaQwCv2Fv+GpgX3D/jfvC9n3QuDd49dFROKbOtwWkpxxDjxGqx9yv/fyxtqXzbdvv19FB4rgHFjo+YfAkJJqObsvJCwJtwl8EQV46BkrC26LSY/73Zr1kMji47XovmHauDk7iVj0L9Q8d3i6vEAaNInjVcIyDUeuBxxOdPKhB0WDoPyQ4OS0dAyOnBcvDpvZmb4NH99QnYkcbmC0geON1KLAD+CfgSeBRYAywCbjO3XebmQH/RnCVTj1wo7tXdVZEZWWlV1V1upmISO+q333kAWDfluDEJzf/GMNL7abcvOAVQv8hR05Fpb0yPGNmS9y9stPtOgv6vqCgFxHpunSDXtcgiojEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjLiA9MmdlOYGMfPdxQYFcfPVZvUR8yQ7b3IdvrB/Xhfe5e3tlGGRH0fcnMqtL5JFkmUx9Qj17jAAAJRElEQVQyQ7b3IdvrB/UhXRq6ERGJOQW9iEjMnYxBf3/UBfQA9SEzZHsfsr1+UB/SctKN0YuInGxOxjN6EZGTioJeRCTmFPQiIjGnoM8iZjbYzIqjrqMnmFk3ftU9GmYW4x9QBTPr5o8nRy+bnketzKzczKab2Zl99W8f66A3s79Jma8ws4VmVmdmfzSz06KsLV1mNtLMHjKzvQSfnlthZpvM7Btmlh91fekws/PNbKWZrTCzc83seaDKzDab2Qeiri8Nu8zsBTO7Kaah/27UBaTDzO5ImZ9qZu8BS8xsg5mdG2FpaQlrfgF4FXgd+Cmw3MweNLOS3nzsWAc9cHPK/L8Q/KB5GfDPwH2RVNR1DwM/c/cS4DrgcWAKkAf8KMrCuuBe4FPA3wK/Be5y9/HAVcD/i7KwNK0Evg/MAtaZ2VNmNtvMiiKuK21m9tVjTP8AZMsZ/SdT5v8Z+Iq7jyN4bt0bTUld8jNgnrtPAC4AVoX1vwI80JsPHPegT3Wau//E3ZPu/gRB4GeDIe6+CMDdfwNc5O4H3f0O4KJIK0tfvrsvd/dXgZ3uvhjA3ZcC2RCWze7+jLv/FVAB/IIgXKrN7JfRlpa2bwGDgeJ200CyMwdGuvvvANz9DbLjeVTk7quhreYzw/n/AKb25gPn9eadZ4AKM/shYEC5meW7e3O4LiuGPYCdZvZZ4EXgWmADgJkZ2fMHmlrn19qtK+jLQrrJWmfc/RDBK8NHw5fbV0dWVdcsBZ509yXtV5jZ30ZQT3eMN7OnCf4/Ksysv7vXh+uy4e95nZndCSwkeHWyDCAcgu3VLI570P9jynwVwdnLHjM7BXg6mpK67G8IhjduJ3hitA5HlXF0aGaqO1v/KN39ydZGMzsVeCjCutL1i44a3X0vML+Pa+muG4Hdx1iXLV8KdlW75RwAMxtOdgzF/g3w9XB6C/hK2N4fuKE3H1ifjBURiblseenfLWaWZ2ZfMLPfmdnbZvZWOP/FLLpiJev7cDxmltXfVZIt9ZtZbvg8+r9mdn67dXcca79Mku19aFf/B9ut69X6Y31Gb2YLgDqCl9fVYXMFMAcoc/dPR1VbumLSh2O98W3AW+5e0Zf1dFW21w9gZj8lGCJ4A/hr4Pfu/tVw3VJ3nxFlfenI9j5EWX/cg361u086xrr33D3jr6WPSR8SBL8gZinNHi6PcveMfkM22+sHMLO33f394Xwe8O8Ev2z0GeA1d58eZX3pyPY+RFl/rIduCN54vc7M2vppZjlm9mlgT4R1dUUc+rAeuNjdx6VM48NriHdEXVwasr1+SLm6yd1b3H0uwZv7L5I919Fnex8iqz/uQT8b+Etgh5m9F36SbgfBpU2zI60sfXHow/cJruHuyHf7spBuyvb6Ifgk8mWpDe7+f4CfA2Mjqajrsr0PkdUf66GbVGY2hKC/WftDwnHog4j0vbif0bdx91p335UtV0l0JA59aJXtfcj2+kF9yAR9Vf9JE/QpsuXDIcejPkQv2+sH9SET9En9J2PQ10RdQA9QH6KX7fWD+pAJ+qT+k2aMXkTkZHUyntED2T+2B+pDJsj2+kF9yAS9XX+sv9Ssk080fqwva+ku9SF62V4/qA+ZIMr6Yz10E5NPNKoPEcv2+kF9yARR1h/rM3qCTzRe4u6b2q8ws80R1NMd6kP0sr1+UB8yQWT1x32MPg6faFQfopft9YP6kAkiqz/WQzciIhL/oRvMbDLBL9OMIhgP2wo87e4rIy2sC9SH6GV7/aA+ZIKo6o/10I2Z3QY8QvBmxxvAn8L5BWZ2e5S1pUt9iF621w/qQyaIsv5YD92E3/R4esoPgre2FwAr3H1iNJWlT32IXrbXD+pDJoiy/lif0QNJYGQH7SPCddlAfYhettcP6kMmiKz+uI/R3wIsNLM1QOvlS2OACcDNkVXVNepD9LK9flAfMkFk9cd66AaCX2MCziF488MIfnf1T+6eiLSwLlAfopft9YP6kAmiqj/2Qd+emc1192z/Xgz1IWLZXj+oD5mgr+qP+xh9R74YdQE9QH2IXrbXD+pDJuiT+k/GoLfON8l46kP0sr1+UB8yQZ/UfzIO3VS4e3XUdZwI9SF62V4/qA+ZoK/qj/UZvZmda2aDwvkiM7sLuM/MvmNmJRGXlxb1IXrZXj+oD5kgyvpjHfTAz4D6cP4HQAnwnbDt51EV1UXqQ/SyvX5QHzJBZPXH/Tr6HHdvCecr3X1GOL/YzJZFVVQXqQ/Ry/b6QX3IBJHVH/cz+nfM7MZw/i0zqwQws9OA5mPvllHUh+hle/2gPmSCyOqP9Zux4bjXD4ALgV3ADIJPpG0G/s7d34qwvLSoD9HL9vpBfcgEUdYf66BvZWbFwHiCoapqd98RcUldpj5EL9vrB/UhE0RR/0kR9B0xs4HufiDqOk6E+hC9bK8f1IdM0Nv1x32M/njejbqAHqA+RC/b6wf1IRP0av2xvurGzL56rFXAwL6spbvUh+hle/2gPmSCKOuP+xn9twh+jLe43TSQ7Om7+hC9bK8f1IdMEFn9sT6jB5YCT7r7kvYrzOxvI6inO9SH6GV7/aA+ZILI6o/1m7FmNgnY7e47O1g3PBverVcfopft9YP6kAmirD/WQS8iItkxrtVtZlZiZveY2Sozqw2nlWFbadT1pUN9iF621w/qQyaIsv5YBz3wKLAHuNjdh7j7EODDYduvI60sfepD9LK9flAfMkFk9cd66MbMVrv7pK6uyyTqQ/SyvX5QHzJBlPXH/Yx+o5ndambDWxvMbLiZ3cbhX2HPdOpD9LK9flAfMkFk9cc96D8NDAF+b2Z7zGw3sAgoAz4VZWFdoD5EL9vrB/UhE0RWf6yHbgDMbDJQAbyW+l0SZnaZuz8XXWXpUx+il+31g/qQCSKr391jOwF/B6wGngQ2AFelrFsadX3qQ3b0IdvrVx8yY4qy/rh/MvbzwEx3P2BmY4HHzGysu/8AsubX49WH6GV7/aA+ZILI6o970Od6+PLI3TeY2cUE/7jvIzueGKA+ZIJsrx/Uh0wQWf1xfzN2u5lNa10I/5GvAIYCZ0ZWVdeoD9HL9vpBfcgEkdUf6zdjzawCaHH37R2sO9/dX4mgrC5RH6KX7fWD+pAJoqw/1kEvIiLxH7oRETnpKehFRGJOQS8iEnMKehGRmFPQi4jE3P8H50NuO7MIc7MAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GOOG\n", - "Date\n", - "2016-01-04 741.84\n", - "2016-01-05 742.58\n", - "2016-01-06 743.62\n", - "2016-01-07 726.39\n", - "2016-01-08 714.47\n", - "2016-01-11 716.03\n", - "2016-01-12 726.07\n", - "2016-01-13 700.56\n", - "2016-01-14 714.72\n", - "2016-01-15 694.45\n", - "2016-01-19 701.79\n", - "2016-01-20 698.45\n", - "2016-01-21 706.59\n", - "2016-01-22 725.25\n", - "2016-01-25 711.67\n", - "2016-01-26 713.04\n", - "2016-01-27 699.99\n", - "2016-01-28 730.96\n", - "2016-01-29 742.95\n", - "Name: Adj. Close, dtype: float64\n", - "AAPL\n", - "Date\n", - "2016-01-04 101.783763\n", - "2016-01-05 99.233131\n", - "2016-01-06 97.291172\n", - "2016-01-07 93.185040\n", - "2016-01-08 93.677776\n", - "2016-01-11 95.194629\n", - "2016-01-12 96.576222\n", - "2016-01-13 94.093220\n", - "2016-01-14 96.151117\n", - "2016-01-15 93.842021\n", - "2016-01-19 93.387931\n", - "2016-01-20 93.513531\n", - "2016-01-21 93.040118\n", - "2016-01-22 97.986799\n", - "2016-01-25 96.073825\n", - "2016-01-26 96.605206\n", - "2016-01-27 90.257610\n", - "2016-01-28 90.904929\n", - "2016-01-29 94.044912\n", - "Name: Adj. Close, dtype: float64\n" - ] - } - ], + "outputs": [], "source": [ "print(\"The underlying evolution of stock prices:\")\n", "for (cnt, s) in enumerate(stocks):\n", @@ -254,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -264,28 +151,19 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "'Accessing NASDAQ Data on Demand failed.'\n", - "You need to replace REPLACE-ME with a valid token.\n" - ] - } - ], + "outputs": [], "source": [ "from qiskit.aqua.translators.data_providers.dataondemandprovider import StockMarket\n", "try:\n", - " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", - " tickers = [\"GOOG\", \"AAPL\"],\n", + " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", + " tickers = [\"TICKER_A\", \"TICKER_B\"],\n", " stockmarket = StockMarket.NASDAQ.value,\n", " start = datetime.datetime(2016,1,1),\n", " end = datetime.datetime(2016,1,2))\n", - " nasdaq.run()\n", - " nasdaq.plot()\n", + " nasdaq.run()\n", + " nasdaq.plot()\n", "except QiskitFinanceError as e:\n", " print(e)\n", " print(\"You need to replace REPLACE-ME with a valid token.\")" @@ -302,28 +180,19 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "'Cannot retrieve Exchange Data data.'\n", - "You need to replace REPLACE-ME with a valid token.\n" - ] - } - ], + "outputs": [], "source": [ "from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket\n", "try:\n", - " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", - " tickers = [\"AIBGl\", \"AVSTl\"],\n", + " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", + " tickers = [\"TICKER_A\", \"TICKER_B\"],\n", " stockmarket = StockMarket.LONDON.value,\n", " start = datetime.datetime(2019,1,1),\n", " end = datetime.datetime(2019,1,30))\n", - " lse.run()\n", - " lse.plot()\n", + " lse.run()\n", + " lse.plot()\n", "except QiskitFinanceError as e: \n", " print(e)\n", " print(\"You need to replace REPLACE-ME with a valid token.\")" @@ -353,7 +222,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index 5b3a04b52..791e2c9ce 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -192,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -239,37 +239,29 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cannot load real data. This may happen with over 50 accesses per day, for instnace. Using a constant rho.\n" - ] - } - ], + "outputs": [], "source": [ "# Generate a pairwise time-series similarity matrix\n", - "stocks = [\"GOOG\", \"AAPL\"]\n", + "stocks = [\"TICKER_A\", \"TICKER_B\"]\n", "n = len(stocks)\n", "rho = np.ones((n,n))\n", "rho[0,1] = 0.8\n", "rho[1,0] = 0.8\n", "\n", "try:\n", - " wiki = WikipediaDataProvider(token = \"\",\n", + " wiki = WikipediaDataProvider(token = \"\",\n", " tickers = stocks,\n", " stockmarket = StockMarket.NASDAQ.value,\n", " start = datetime.datetime(2016,1,1),\n", " end = datetime.datetime(2016,1,30))\n", - " wiki.run()\n", - " rho = wiki.get_similarity_matrix()\n", + " wiki.run()\n", + " rho = wiki.get_similarity_matrix()\n", "except Exception as e:\n", - " print(\"Cannot load real data. This may happen with over 50 accesses per day, for instnace. Using a constant rho.\")\n", + " print(\"Cannot load real data. This may happen with over 50 accesses per day, for instnace. Using a constant rho.\")\n", "\n", "# Actually, we consider the additive inverse to invert the direction of optimisation. \n", "rho = -1 * rho" @@ -284,7 +276,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -302,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -389,18 +381,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of feasible combinations= 2\n", - "Total number of combinations= 64\n" - ] - } - ], + "outputs": [], "source": [ "# Instantiate the classical optimizer class\n", "classical_optimizer = ClassicalOptimizer(rho, n, q)\n", @@ -414,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -467,7 +450,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -540,7 +523,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -561,7 +544,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -574,7 +557,7 @@ " classical_solution, classical_cost = classical_optimizer.cplex_solution()\n", " print(quantum_cost, classical_cost)\n", " if np.abs(quantum_cost - classical_cost) < 0.01:\n", - " print('Binary formulation is correct')\n", + " print('Binary formulation is correct')\n", " else: print('Error in the formulation of the Hamiltonian')\n", "except: None" ] @@ -592,25 +575,17 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0 1 0 1 0 1]\n" - ] - } - ], + "outputs": [], "source": [ "ground_state, ground_level = quantum_optimizer.exact_solution()\n", "print(ground_state)\n", "\n", "try:\n", - " if np.abs(ground_level - classical_cost)<0.01:\n", - " print('Ising Hamiltonian in Z basis is correct')\n", - " else: print('Error in the Ising Hamiltonian formulation')\n", + " if np.abs(ground_level - classical_cost)<0.01:\n", + " print('Ising Hamiltonian in Z basis is correct')\n", + " else: print('Error in the Ising Hamiltonian formulation')\n", "except: None" ] }, @@ -625,27 +600,18 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0 1 0 1 0 1]\n", - "VQE produces the same solution as the exact eigensolver.\n" - ] - } - ], + "outputs": [], "source": [ "warnings.filterwarnings('ignore')\n", "vqe_state, vqe_level = quantum_optimizer.vqe_solution()\n", "print(vqe_state)\n", "\n", "try:\n", - " if np.linalg.norm(ground_state - vqe_state)<0.01:\n", - " print('VQE produces the same solution as the exact eigensolver.')\n", - " else: print('VQE does not produce the same solution as the exact eigensolver, but that is to be expected.')\n", + " if np.linalg.norm(ground_state - vqe_state)<0.01:\n", + " print('VQE produces the same solution as the exact eigensolver.')\n", + " else: print('VQE does not produce the same solution as the exact eigensolver, but that is to be expected.')\n", "except: None" ] }, @@ -659,34 +625,9 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4lGXWx/HvmRRKQkdCFVSwgCAIIi6CREABIROqVEEFbFhecJVVdFnbirpgQ1ZFFFQMLSShiYiAsooUBRWQuigdKQFDSzvvHzO6MQYSmEmeycz5XNdc0+557t8heuaZe2aeEVXFGGNMaHE5HcAYY0zRs+ZvjDEhyJq/McaEIGv+xhgTgqz5G2NMCLLmb4wxIciavyl0IjJaRD4oxO2vF5E2Pm6jUDMaE2is+Ru/EJG+IrJaRNJEZK+ILBCR64tiblVtoKpLi2IufxCROiKiIhJeBHNFishMEdnhnbNNAbLNF5EjIrJPRF4vipym6FnzNz4TkeHAy8BzQAxwIfAG4HYyl/ndcqA/sK8AY98ADgDVgMbADcC9hRfNOMWav/GJiJQDngLuU9VEVT2uqhmqOkdV/3qGx8zw7lUeFZHPRaRBjvs6icgGEflVRHaLyMPe2yuLyFwRSRWRwyLyhYi4vPftEJF23sthIvKYiGzzbmONiNTy3veKiOwUkWPe21udQ51uEVnrfew2Eengvb26iKR4M20VkSE5HtPc+2romIjsF5Gx3rs+956nel8pXVfQHOdKVdNV9WVVXQ5kFeAhFwHTVfWUqu4DPgYa5PMYUwxZ8ze+ug4oCcw+h8csAOoBVYBvgA9z3PcOcJeqlgGuBD7z3j4C2AVcgOfVxWNAXscmGQ70AToBZYE7gBPe+1bh2ZutCEwFZohIyfzCikhzYArwV6A80BrY4b37I2+u6kAP4DkRaeu97xXgFVUtC1wCTPfe3tp7Xl5Vo1X1qzzm7Ot9ojvT6cL8cp+nV4DeIlJaRGoAHfE8AZggY83f+KoScFBVMwv6AFWdpKq/quppYDRwlfcVBEAGUF9EyqrqEVX9Jsft1YDa3lcWX2jeB6YaDIxS1U3qsU5VD3nn/UBVD6lqpqr+CygBXFaAyHcCk1R1kapmq+puVf3R+4rieuBR757yWmAiMCBH5roiUllV01R1xTn8G01V1fJnOf1c0G2do2V49vSP4XlSWw0kFdJcxkHW/I2vDgGVC/qmoHdZ5nnv0skx/rcHXdl73h3PXvtPIrIsx5LIi8BW4BMR2S4iI88wRS1g2xnmHiEiG73LTalAuRzzns2ZtlkdOKyqv+a47SeghvfyncClwI8iskpEOhdgrvMmIhd6l5HSRCTtPB7vAhYCiUAUnn+bCsAY/yY1gcCav/HVV8ApIL6A4/vieSO4HZ7mW8d7uwCo6ipVdeNZEkrCu1TifaUwQlUvBroAw3Msr+S0E88Syx941/cfBXoBFVS1PHD0t3nzkec2gT1ARREpk+O2C4Hd3sxbVLWPt5YxwEwRiSLv5arcefvlbOR5nP607KOqP3uXkaJVNboAdeVWEc8T3euqetr7iuldPE/GJshY8zc+UdWjwJPAeBGJ964VR4hIRxF5IY+HlAFO43nFUBrPJ4SA3z+W2E9EyqlqBp6lhyzvfZ1FpK6ISI7b83oDcyLwtIjUE49GIlLJO28m8AsQLiJP4nlPoCDeAW4XkbYi4hKRGiJyuaruBL4E/ikiJUWkEZ69/Q+9mfuLyAWqmg2kereV5c2QDVx8pglV9cOcjTyPU4GXfUSkRI73NiK9Wf/0pKeqB4H/AveISLiIlAcGAusKOpcpPqz5G5+p6lg8b7SOwtPYdgLDyHuteAqepZHdwAYg9zr4AGCHd0nobjwfUQTPG8SfAml4Xm28cYbP9o/F82rhEzxPEu8ApfAsZywANnvnP+XNWZD6VgK3A+PwvFpYBtT23t0Hz6uXPXje9P67qi7y3tcBWO9dgnkF6O19b+AE8CzwH++bty0KksMHm4CTeJajFnov1wbwfjJqQY6x3by5f8GzzJYJ/F8h5zMOEPsxF2OMCT2252+MMSHImr8xxoQga/7GGBOCrPkbY0wICtij9VWuXFnr1KnjdAwAjh8/TlRUlNMx/CbY6gGrqTgItnogMGtas2bNQVW9IL9xAdv869Spw+rVq52OAcDSpUtp06aN0zH8JtjqAaupOAi2eiAwaxKRnwoyzpZ9jDEmBFnzN8aYEOSX5i8iHURkk/d45n864JaI3C0i33uPh75cROr7Y15jjDHnx+fmLyJhwHg8x/2uD/TJo7lPVdWGqtoYeAHPV/CNMcY4xB97/s2Braq6XVXTgQRy/Xyfqh7LcbVARzU0xhhTeHw+to+I9AA6qOpg7/UBwLWqOizXuPvwHPwrErhRVbfksa2hwFCAmJiYpgkJCT5l85e0tDSio8/nCLmBKdjqAaupOAi2eiAwa4qNjV2jqs3yHaiqPp2AnsDEHNcHAK+dZXxfYHJ+223atKkGiiVLljgdwa+CrR5Vq6k4CLZ6VAOzJmC1FqB3+2PZZxeeH4D4TU08h7c9kwQK/sMfgWPXLrj/frjuOihdGkRgxw6nUxljzHnxR/NfBdQTkYtEJBLoDaTkHCAi9XJcvQX405KPY9LSoFcvz/nZbN0K06dDhQrQqlXRZDPGmELic/NXzw93D8PzIxEbgemqul5EnhKROO+wYSKyXkTW4ln3H+jrvH6zeDHMmAGffXb2ca1bw/79MH8+9OxZNNmMMaaQ+OXwDqo6H5if67Ync1x+0B/zFIbsxEQE0MREXHFxZx7osu/DGWOCR0h2tNOZWcz+dhc3jV3K0emzESB1eiI3j13K7G93cTozr5+GNcaY4BGwB3YrLGt3pjJo0koysrKpvns7JbLSASiZmU7Who2MSj3FP1I2MPmO5lxVq7zDaY0xpnCE1J7/up2p9HlrBaknMzienkXs9tW4srMBcGVnE7ttFcfTs0g9mUHvt1awbmeqw4mNMaZwhEzzP52ZxcBJKzmZ8b8lnc4/fkHJrAwASmZl0PnH5b/fdzLDM96WgIwxwSi4l326d4fERABKAGtz3Z0e9sfyL//lv+wY0/mPg0ZDm98ud+sGs2b5P6cxxhSx4N7zf/55aNwYzvBLO5FZmX+4XiLX9d9klSwJTZp4tmeMMUEguJt/vXqwejXZo0dzMrwEmfLHchUYPag6i68uk+fDM8XFyfAS/Pf222H1ali3DmbOhDVrPAMWLPBcX7askAsxxhj/Cu5lH4CwMNKGPUi3beV4JfF5Ljqym9IZpwE4FhXG9xeXYlabirRdfZS/fbCXmFTP3v+JiBJsr1CDh7qN5LGedanrcv35y1333us5v+EGWLq0CIsyxhjfBPeev1dUZDjbyleny8BxjG/Ri1NhEQCUO55Fwj+28dD0fSxvVAb3P+vxUduKHA+PYHyLXnQZ9DLbylfHJeLZkGreJ2v8xphiJvj3/IEwl1CvSjSb96ex+YLaZIRF/P4pn4gsuHP+QW5adYynB1bnuQHVSW55CtfPFVBxcVmVaOznB4wxwSYk9vwB7mlzCVGRYdy8+Uui0k/+6f5av6Tz5ks7+OebO9lTOZz1rT4juupCBreulcfWjDGmeAuZ5t+pYTUiXELbratw5diT97ypG0mmuBCg81dHSfnbFm7+Og2psIR3dtzHjyd/dC64McYUgpBp/iXCw0i4vuzvh3MAz5u6P15QhyHdnuDHC+pwIqIEAOWPZzH63b38vfIIwl1hjD8wnr998TcOnzrsVHxjjPGrkGn+AJd/u5ySAlnej3D+6/r+dBn0MssvakLcwHGMvb4fJ8NLkCUuSrqgx8aDzIqbRYdyHfh4x8fEJcWRtDXpt18kM8aYYiukmj/Tp+PKzECuasTymYtY3mUAuFxEhAkaFsYXXQayfOYipFFDXBkZMH06JcJKcEv5W5jZZSYXl7uYJ/7zBIM/GcyOozucrsYYY85bSHza53dVq8KLL+J66CHau1y0B7KylePpmURFhhPm8n6ks/MaePnlP3yE85Lyl/Beh/eYuXkmL695me4p3RnaaCh3XHkHEd6PjhpjTHERWnv+c+bA8OF/+GGWMJdQtmTE/xo/QFgYjBjhGZ+DS1z0uqwXyfHJxF4Yy+trX6fnnJ58e+DboqrAGGP8IrSav59cUPoCXrrhJca3Hc+JzBPctuA2nv7qaY6lH3M6mjHGFIg1fx+0rtmaJHcSA+oPYOaWmbiT3CzcsdDeEDbGBDxr/j4qHVGaR655hKm3TOWCUhfw8LKHuf+z+9mbttfpaMYYc0bW/P2kQaUGTL1lKg83e5iV+1biTnbz/ob3ycq2H4MxxgQevzR/EekgIptEZKuIjMzj/uEiskFEvhORxSJS2x/zBppwVzgDGwxktns2zWKa8cKqF+g7vy8bD210OpoxxvyBz81fRMKA8UBHoD7QR0Tq5xr2LdBMVRsBM4EXfJ03kNWIrsH4tuN58YYX2X98P73n9ealVS9xIuOE09GMMQbwz55/c2Crqm5X1XQgAXDnHKCqS1T1t863Aqjph3kDmojQoU4HkuOT6VavG5M3TKZrclc+3/W509GMMQbx9ZMpItID6KCqg73XBwDXquqwM4x/Hdinqs/kcd9QYChATExM04SEBJ+y+UtaWhrR0dE+bWPbqW0kHE5gX8Y+ri59Nd0rdqdsWFk/JTw3/qgn0FhNgS/Y6oHArCk2NnaNqjbLd6Cq+nQCegITc1wfALx2hrH98ez5l8hvu02bNtVAsWTJEr9s53TmaZ2wdoI2mdJEr5t6nc7YNEOzsrP8su1z4a96AonVFPiCrR7VwKwJWK0F6N3+WPbZBeQ86H1NYE/uQSLSDngciFPV036Yt9iJDIvk7qvuZlbcLC6rcBn/+Oof3P7x7WxP3e50NGNMiPFH818F1BORi0QkEugNpOQcICJNgDfxNP4DfpizWLuo3EVMunkST/3lKbambqX7nO6MXzue01kh+ZxojHGAz81fVTOBYcBCYCMwXVXXi8hTIhLnHfYiEA3MEJG1IpJyhs2FDBGha72upMSncFPtm/j3un/TI6UHq/atcjqaMSYE+OWonqo6H5if67Ync1xu5495glGlUpUY03oMcZfE8fSKp7lj4R10rduVEc1GUK5EOafjGWOClH3DN0C0rNGS2e7Z3H7l7aRsSyEuKY552+fZcYKMMYXCmn8AKRVeiuFNh5PQOYHqUdUZ+cVI7vn0Hnb9usvpaMaYIGPNPwBdXvFyPuj0ASObj+TbA9/SNbkr7/7wLhnZGU5HM8YECWv+ASrMFUa/K/qRHJ9Mi+otGLtmLH3m9uGHgz84Hc0YEwSs+Qe4qlFVeTX2Vca1GceRU0foO68vz698nuMZx52OZowpxqz5FwMiQrva7UiKT6LXZb2YunEq7iQ3S35e4nQ0Y0wxZc2/GCkTWYZRLUYxpeMUykSW4YElD/B/S/6PAydC/ntzxphzZM2/GGpcpTHTu0znwasf5IvdX+BOcjPtx2lka7bT0YwxxYQ1/2IqwhXB4IaDSYxLpEHlBjzz9TPctuA2thzZ4nQ0Y0wxYM2/mLuw7IW83f5tnrv+OX469hO95vTi1W9e5VTmKaejGWMCmDX/ICAidLmkCynxKXS6uBNvf/823VO6s2LvCqejGWMClDX/IFKhZAWevf5Z3r7pbQCGfDKEx5c/zpFTRxxOZowJNNb8g1CLai2YFTeLIQ2HMH/7fOKS4kjZlmLHCTLG/M6af5AqGV6SB65+gOldplO7bG0eX/44QxYN4edjPzsdzRgTAKz5B7l6FeoxpeMUnmjxBOsPrqdbSjcWHl1IRpYdJ8iYUGbNPwS4xEWvy3qRHJ9M65qtmZs6l15ze7H2wFqnoxljHGLNP4RUKV2FsW3GMvSCoaRlpHHbgtt4ZsUz/Jr+q9PRjDFFzJp/CGpYuiFJ7iT6XdGPGZtn4E5ys+inRfaGsDEhxJp/iIqKiOLR5o8ytdNUKpWqxPClw3lgyQPsO77P6WjGmCJgzT/ENajcgI9u+YgRTUfw9d6vcSe5+WDDB2RlZzkdzRhTiKz5G8Jd4Qy6chCJcYk0iWnCmFVj6D+/Pz8e/tHpaMaYQmLN3/yuZpmaTGg7gRdav8Ce43voPbc3Y1eP5UTGCaejGWP8zC/NX0Q6iMgmEdkqIiPzuL+1iHwjIpki0sMfc5rCISJ0vKgjKfEpxNeN593179ItpRvLdy93Opoxxo98bv4iEgaMBzoC9YE+IlI/17CfgUHAVF/nM0WjXIlyjP7LaN69+V0iXBHc8+k9PPL5Ixw8edDpaMYYP/DHnn9zYKuqblfVdCABcOccoKo7VPU7wH5tpJhpVrUZs+Jmce9V9/LpT5/iTnKTuCXRPhZqTDEnvv5P7F3G6aCqg73XBwDXquqwPMa+B8xV1Zln2NZQYChATExM04SEBJ+y+UtaWhrR0dFOx/Cb861nX8Y+ph2axtbTW6lboi63VrqVqhFVCyHhuQu2vxEEX03BVg8EZk2xsbFrVLVZvgNV1acT0BOYmOP6AOC1M4x9D+hRkO02bdpUA8WSJUucjuBXvtSTlZ2lszbP0uumXqdNpjTRN759Q09nnvZfuPMUbH8j1eCrKdjqUQ3MmoDVWoAe649ln11ArRzXawJ7/LBdE4Bc4qJbvW6kxKfQrnY73lj3Bj3m9GDN/jVORzPGnAN/NP9VQD0RuUhEIoHeQIoftmsCWOVSlXmh9QtMaDeB9Kx0Bn08iNFfjubo6aNORzPGFIDPzV9VM4FhwEJgIzBdVdeLyFMiEgcgIteIyC48S0Rvish6X+c1geH6GteTGJfIoAaDSNqahDvJzYL/LrA3hI0JcH75nL+qzlfVS1X1ElV91nvbk6qa4r28SlVrqmqUqlZS1Qb+mNcEhtIRpRnRbAQJnROoGlWVRz5/hHsX38vutN1ORzPGnIF9w9f4zeUVL+fDTh/y6DWPsmb/Gromd+W9H94jMzvT6WjGmFys+Ru/CnOF0b9+f5LdyVxb9Vr+teZf9J3Xl/UHbaXPmEBizd8UimrR1Xj1xlcZ22YsB08epO/8voxZOcaOE2RMgLDmbwqNiNC+dnuS45PpeWlPPtz4Ie5kN0t3LnU6mjEhz5q/KXRlIsswqsUopnScQnRENPd/dj/Dlw7nlxO/OB3NmJBlzd8UmcZVGjO983QeaPIAy3YuIy4pjumbppOtdsgnY4qaNX9TpCLCIhjSaAiJ7kQaVGrA0yueZuCCgWw9stXpaMaEFGv+xhG1y9bm7Zve5pmWz7Dj2A56zu3Jq9+8yums005HMyYkWPM3jhER3HXdJMcn07FOR97+/m26p3Rn5d6VTkczJuhZ8zeOq1iyIs+1eo632r9FtmZz5yd3Mmr5KFJPpTodzZigZc3fBIzrql9HYlwigxsOZt72ecQlxTFn2xw7TpAxhcCavwkoJcNL8uDVDzKtyzRqla3FY8sf465Fd7Hz2E6noxkTVKz5m4B0aYVLmdJhCo9f+zjfHfyOrildmfj9RDKyM5yOZkxQsOZvAlaYK4zel/cm2Z1MqxqteOWbV7h17q2s+2Wd09GMKfas+ZuAFxMVw7jYcbwS+wpHTx9lwPwBPLviWdLS05yOZkyxZc3fFBs3XngjKfEp9L2iL9M2TcOd7GbxT4udjmVMsWTN3xQrURFRjGw+kg87fUiFEhV4aOlDPPjZgxzJPOJ0NGOKlXCnAxhzPhpe0JCPOn/E+xveZ8LaCXyZ/SUnNp6g92W9CXOFOR3PmIBne/6m2IpwRXDHlXeQ6E6kTok6PL/yeQYsGMCmw5ucjmZMwLPmb4q9WmVqcW+Ve3m+1fPsTtvNrXNvZdyacZzMPOl0NGMCljV/ExREhFsuvoWU+BTiLolj0g+T6JrclS93f+l0NGMCkl+av4h0EJFNIrJVREbmcX8JEZnmvf9rEanjj3mNya1ciXI81fIpJt08iQhXBHd9ehcjvxjJoZOHnI5mTEDxufmLSBgwHugI1Af6iEj9XMPuBI6oal1gHDDG13mNOZtrql7DzLiZ3H3V3SzcsRB3spvZW2bbcYKM8fLHnn9zYKuqblfVdCABcOca4wYmey/PBNqKiPhhbmPOqERYCe5rfB8zu8zkknKX8OSXT3LnJ3ey4+gOp6MZ4zjxdU9IRHoAHVR1sPf6AOBaVR2WY8wP3jG7vNe3eccczLWtocBQgJiYmKYJCQk+ZfOXtLQ0oqOjnY7hN8FWD+RfU7Zm81XaVyQfSSZDM7i53M20K9eOcAncTzsH298p2OqBwKwpNjZ2jao2y2+cP/7Lz2sPPvczSkHGoKpvAW8BNGvWTNu0aeNzOH9YunQpgZLFH4KtHihYTTdyI3edvIsxK8cwb8c8NrKRv1/3d66OubpoQp6jYPs7BVs9ULxr8seyzy6gVo7rNYE9ZxojIuFAOeCwH+Y25pxULlWZF294kfFtx3Mq8xQDPx7IP776B8fSjzkdzZgi5Y/mvwqoJyIXiUgk0BtIyTUmBRjovdwD+EztnTfjoNY1WzPbPZuB9QeSuCURd5Kbj3d8bG8Im5Dhc/NX1UxgGLAQ2AhMV9X1IvKUiMR5h70DVBKRrcBw4E8fBzWmqJWOKM3D1zzMR7d8RJXSVfjrsr8y7LNh7EnL/cLVmODjl3e7VHU+MD/XbU/muHwK6OmPuYzxt/qV6vNhpw+ZunEqr699nfjkeO5rfB/9ruhHuCtw3xA2xhf2DV9jgHBXOLc1uI0kdxLXVL2Gl1a/RN95fdlwaIPT0YwpFNb8jcmhenR1Xr/xdV664SV+OfkLfeb14cVVL3Ii44TT0YzxK2v+xuQiItxc52aS45PpXq87UzZMIT45ns93fe50NGP8xpq/MWdQNrIsT173JJM7TKZ0eGnuW3wfDy97mIMnD+b/YGMCnDV/Y/JxdczVzOgyg2GNh7Hk5yXEzY5jxuYZZGu209GMOW/W/I0pgIiwCO666i5mxc3i8kqX89RXTzHo40FsS93mdDRjzos1f2POQZ1ydXjnpnd4uuXTbD+6nR5zevD6t69zOuu009GMOSfW/I05RyJCfN14UuJT6FCnA29+9yY9Unqwat8qp6MZU2DW/I05TxVLVuSfrf7Jm+3fJDM7kzsW3sET/3mC1FOpTkczJl/W/I3x0V+q/4VEdyJ3Xnknc7bNwZ3sZu72uXacIBPQrPkb4welwkvxUNOHmNZ5GjWja/K3L/7G3Z/ezc5fdzodzZg8WfM3xo8uq3gZUzpO4W/N/8a6X9bRLbkbk36YREZ2htPRjPkDa/7G+FmYK4y+V/QlyZ1EyxotGbdmHL3n9ub7X753Opoxv7Pmb0whqRpVlZdjX+bl2JdJPZ1Kv/n9+OfX/+R4xnGnoxljzd+Ywtb2wrYku5PpfXlvPvrxI9xJbj77+TOnY5kQZ83fmCIQHRnNY9c+xgedPqBsibI8uORBHlryEPuP73c6mglR1vyNKUKNLmjEtM7TeOjqh1i+eznuZDcf/fgRWdlZTkczIcaavzFFLMIVwZ0N72R23GwaVW7Ec18/x20f38bmI5udjmZCiDV/YxxSq2wt3mz/Js9d/xw7j+3k1jm38so3r3Aq85TT0UwIsOZvjINEhC6XdCElPoVbLr6Fid9PpFtKN77a85XT0UyQs+ZvTAAoX7I8z1z/DBNvmohLXAxdNJQpB6dw+NRhp6OZIOVT8xeRiiKySES2eM8rnGHcxyKSKiJzfZnPmGB3bbVrmRU3i6GNhvLN8W9wJ7lJ3ppsxwkyfufrnv9IYLGq1gMWe6/n5UVggI9zGRMSSoSV4P4m9/NotUepU7YOo/4ziiGfDOGnYz85Hc0EEV+bvxuY7L08GYjPa5CqLgZ+9XEuY0JKtchqTO44mSdaPMGGQxvoltyNt757i4wsO06Q8Z2vzT9GVfcCeM+r+B7JGPMbl7jodVkvkuOTaVOrDa99+xq95vZi7YG1TkczxZzkt5YoIp8CVfO463FgsqqWzzH2iKqead2/DfCwqnY+y1xDgaEAMTExTRMSEvItoCikpaURHR3tdAy/CbZ6IHRq+uHED0w/PJ0jWUe4Pvp6ulToQmlXaYcSnptQ+Rs5LTY2do2qNst3oKqe9wnYBFTzXq4GbDrL2DbA3IJuu2nTphoolixZ4nQEvwq2elRDq6bj6cd1zMox2mhyI42dFqsL/7tQs7OzizbceQilv5GTgNVagB7r67JPCjDQe3kgkOzj9owx+SgdUZpHrnmEqbdMpXKpyoxYNoL7P7ufvWl7nY5mihFfm//zQHsR2QK0915HRJqJyMTfBonIF8AMoK2I7BKRm32c15iQ16BSA6beMpWHmz3Myn0rcSe7eX/D+3acIFMgPjV/VT2kqm1VtZ73/LD39tWqOjjHuFaqeoGqllLVmqq60NfgxhgId4UzsMFAZrtn0zSmKS+seoF+8/ux8dBGp6OZAGff8DUmCNSIrsEbbd/gxdYvsu/4PvrM68NLq17iRMYJp6OZAGXN35ggISJ0uKgDyfHJxNeNZ/KGyXRN7soXu75wOpoJQNb8jQky5UqUY/RfRvNeh/coGV6SexffyyPLHuHgyYNORzMBxJq/MUGqaUxTZnSZwb2N7+XTnz8lLimOWZtnka3ZTkczAcCavzFBLDIsknuuuodZcbO4rMJljP5qNLd/fDvbU7c7Hc04zJq/MSHgonIXMenmSTz1l6fYmrqV7nO688baN0jPSnc6mnGINX9jQoSI0LVeV1LiU7ip9k1MWDeB7indWbVvldPRjAOs+RsTYiqVqsSY1mP4d7t/k5GdwR0L7+DvX/6do6ePOh3NFCFr/saEqJY1WjLbPZvbr7yd5K3JxCXFMX/7fPvhmBBhzd+YEFYqvBTDmw4noXMC1aOq8+gXj3LPp/ew69ddTkczhcyavzGGyytezgedPmBk85F8e+BbuiZ35d0f3iUzO9PpaKaQWPM3xgAQ5gqj3xX9SI5PpkX1FoxdM5Y+8/rww8EfnI5mCoE1f2PMH1SNqsqrsa8yrs04Dp88TL/5/Xh+5fMczzjudDTjR9b8jTF/IiK0q92OpPgkel7ak6kbp+JOcrN051Knoxk/seZvjDmjMpFlGNViFFMvWUZJAAAP3UlEQVQ6TqFMZBnu/+x+hi8dzoETB5yOZnxkzd8Yk6/GVRozvct0Hrz6QT7f9TnuJDfTfpxmxwkqxqz5G2MKJMIVweCGg0mMS6RB5QY88/UzDFwwkC1HtjgdzZwHa/7GmHNyYdkLebv92zx3/XPsOLaDXnN68eo3r3Iq85TT0cw5sOZvjDlnIkKXS7qQEp9Cp4s78fb3b9M9pTtf7/3a6WimgKz5G2POW4WSFXj2+md5+6a3ARj8yWAeX/44R04dcTiZyY81f2OMz1pUa8GsuFkMaTiE+dvnE5cUx5xtc+w4QQHMmr8xxi9KhpfkgasfYHqX6dQuW5vHlj/GkEVD+PnYz05HM3nwqfmLSEURWSQiW7znFfIY01hEvhKR9SLynYjc6sucxpjAVq9CPaZ0nMITLZ5g/cH1dEvpxsTvJ5KlWU5HMzn4uuc/ElisqvWAxd7ruZ0AblPVBkAH4GURKe/jvMaYAOYSF70u60VyfDKta7bmlW9eYczeMaw9sNbpaMbL1+bvBiZ7L08G4nMPUNXNqrrFe3kPcAC4wMd5jTHFQJXSVRjbZiyv3fgap7JPcduC23hmxTP8mv6r09FCnvjyhoyIpKpq+RzXj6jqn5Z+ctzfHM+TRAPVP381UESGAkMBYmJimiYkJJx3Nn9KS0sjOjra6Rh+E2z1gNVUHBz69RBLM5ay7NdllA0rS4+KPbiq1FWIiNPRzlsg/o1iY2PXqGqzfAeq6llPwKfAD3mc3EBqrrFHzrKdasAmoEV+c6oqTZs21UCxZMkSpyP4VbDVo2o1FQe/1fP9L99r9+TueuV7V+qwxcN0b9peZ4P5IBD/RsBqLUCPzXfZR1XbqeqVeZySgf0iUg3Ae57n0Z5EpCwwDxilqivyfUYyxgStKytfSULnBEY0HcGKPStwJ7n5cOOHZGXbG8JFydc1/xRgoPfyQCA59wARiQRmA1NUdYaP8xljgkC4K5xBVw5itns2TWKa8PzK5+k/vz+bDm9yOlrI8LX5Pw+0F5EtQHvvdUSkmYhM9I7pBbQGBonIWu+psY/zGmOCQM0yNZnQdgJjWo1hz/E93Dr3VsauHsvJzJNORwt64b48WFUPAW3zuH01MNh7+QPgA1/mMcYELxGh08WdaFmjJWPXjOXd9e/yyU+f8ESLJ2hZo6XT8YKWfcPXGBMQypUoxz/+8g/evfldIlwR3P3p3Tz6+aMcOnnI6WhByZq/MSagNKvajFlxs7jnqntY9NMi4pLiSNySaMcJ8jNr/saYgBMZFsm9je9lZpeZ1C1fl79/+XfuWHgH/z36X6ejBQ1r/saYgHVx+Yt5t8O7jL5uNJuObKJ7SncmrJtAela609GKPWv+xpiA5hIX3S/tTkp8Cu0ubMcba9+gx5werNm/xuloxZo1f2NMsVC5VGVeuOEF3mj7BqczTzPo40GM/nI0R08fdTpasWTN3xhTrLSq2YrZ7tkMajCIpK1JuJPcfPzfj+0N4XNkzd8YU+yUjijNiGYj+OiWj4iJiuGvn/+Vexffy+603U5HKzas+Rtjiq0rKl3B1E5TefSaR1mzfw1dk7syef1kMrMznY4W8Kz5G2OKtTBXGP3r9yfZnUzzqs15afVL9J3Xl/WH1jsdLaBZ8zfGBIVq0dV47cbX+NcN/+LgyYP0ndeXMSvHcCLjhNPRApI1f2NM0BARbqpzE8nxyfS8tCcfbPyA+OR4lu1c5nS0gGPN3xgTdMpElmFUi1G83/F9oiKiGPbZMEYsHcEvJ35xOlrAsOZvjAlajas0Znrn6dzf5H6W7lyKO8nN9E3Tyf7zr8iGHGv+xpigFhEWwdBGQ0l0J3JFpSt4esXTDFwwkK1HtjodzVHW/I0xIaF22dpMvGkiz7R8hh3HdtBzbk9e+/Y1TmeddjqaI6z5G2NChojgrusmOT6ZjnU68tZ3b9E9pTsr9650OlqRs+ZvjAk5FUtW5LlWz/FW+7fI1mzu/OROnvjPE6SeSnU6WpGx5m+MCVnXVb+OxLhEBjcczNxtc4lLimPOtjkhcZwga/7GmJBWMrwkD179INO6TKNW2Vo8tvwx7lp0FzuP7XQ6WqGy5m+MMcClFS5lSocpPH7t43x38Du6pnTlne/fISM7w+lohcKn5i8iFUVkkYhs8Z5XyGNMbRFZIyJrRWS9iNzty5zGGFNYwlxh9L68N8nuZFrVaMXL37xM77m9+e6X75yO5ne+7vmPBBaraj1gsfd6bnuBv6hqY+BaYKSIVPdxXmOMKTQxUTGMix3HK7GvkHo6lf7z+/Pc18+Rlp5W+JPv3Ak9ekC5clC2LHTrBj//7PdpfG3+bmCy9/JkID73AFVNV9XfPkhbwg9zGmNMkbjxwhtJiU+h7xV9SfgxAXeym8U/Ly68CU+cgBtvhB9/hMmT4f33YcsWiI2F48f9OpX48q62iKSqavkc14+oal5LP7WAeUBd4K+qOv4M2xsKDAWIiYlpmpCQcN7Z/CktLY3o6GinY/hNsNUDVlNxUNzr2XF6BwmHEtidsZtGpRrRo2IPIk5F+LWmGjNnUnfCBFZOmcLJGjUAKLl3L9f278+2u+5iV69e+W4jNjZ2jao2y29cvs1fRD4FquZx1+PA5II0/xz3VweSgC6quv9s8zZr1kxXr1591mxFZenSpbRp08bpGH4TbPWA1VQcBEM9GdkZvL/hfSasnUCYK4yO0R0Z1XkUYa6wsz4uMyubExlZREWGE+aSMw9s2xZOnYL//OePt99wg+d8Wf5HJxWRAjX/8PwGqGq7s0yyX0SqqepeEakGHMhnW3tEZD3QCpiZ39zGGBNIIlwR3HHlHbSv3Z5nVjzDzD0z2bxgM09e9ySXVbzsD2NPZ2Yx//u9TFi6jS0H0gh3CZnZyqVVorm7zSV0aliNEuG5njTWrwe3+88TN2gAM2b4tRZf199TgIHeywOB5NwDRKSmiJTyXq4AtAQ2+TivMcY4plaZWvy73b8ZWHkgu9J20Xtub8atGcfJzJMArN2ZyrXPLmbU7B/YvD8NVcjIUlRh0/40Rs3+gWufXcy6nbm+UXz4MFTIY/GkYkU4csSvNfja/J8H2ovIFqC99zoi0kxEJnrHXAF8LSLrgGXAS6r6vY/zGmOMo0SEZlHNSIlPocslXZj0wyS6JXfjg3WL6PPWClJPZnA8PSvPxx5PzyL1ZAa931rx5ycAyWNZqBC+cexT81fVQ6raVlXrec8Pe29fraqDvZcXqWojVb3Ke/6WP4IbY0wgKFeiHE+1fIpJN0/CJWGMWTscvWAqEpb/x0JPZmQxcNJKTmd6nyQqVPDs/ed25Ejerwh8YB+7NMYYP7im6jUMrP0qergd4WW/I+risYSXWw2cfa89IyubBd/v81xp0MCz7p/bhg1Qv75f81rzN8YYP5n4+U7S9rfjxPYHyEqvQqnqMyl14dtI5Jl/PvJ4ehYTlnp/WCYuDlasgO3b/zdgxw7Pp3/i4vya1Zq/Mcb4QVa2suWAZ6knOz2Gkz8N5dTeboSV3EPURa8QWWnpGR+7+UAaWdkKQ4ZAnTqeT/wkJ0NKiudyrVpw111+zWvN3xhj/OB4eibhf/gMv4uM1OYc3zaCzF/rg5z5AHHhLuF4eiZERcFnn8Gll8KAAdCvH1x0kec2P39BLt/P+RtjjMlfVGQ4mdl/Xt/XrDKc2tMXOPOPxmdmK1GR3nZ84YUwa1Yhpfwf2/M3xhg/CHMJ9aqcbe/8zO320irRZ//mbyGw5m+MMX5yT5tLiIo8+6EecouKDOOeNnULKdGZWfM3xhg/6dSwGhFh59ZWI8JcdGyY1+HTCpc1f2OM8ZMS4WFMvqM5pSIKtvdfKsIz/k/H+CkC1vyNMcaPrqpVnoShLShfKuKMS0BRkWGULxVBwtAWXFWrfJ5jCpt92scYY/zsqlrl+frxtiz4fh8Tlm5l8x+O6lmGe9pcQseGVR3Z4/+NNX9jjCkEJcLDiG9Sg/gmNcjKVo6nZ+Z/PP8iZM3fGGMKWZhLKFsywukYf2Br/sYYE4Ks+RtjTAiy5m+MMSHImr8xxoQga/7GGBOCrPkbY0wIsuZvjDEhyJq/McaEIGv+xhgTgqz5G2NMCBLVP//sWCAQkV+An5zO4VUZOOh0CD8KtnrAaioOgq0eCMyaaqvqBfkNCtjmH0hEZLWqNnM6h78EWz1gNRUHwVYPFO+abNnHGGNCkDV/Y4wJQdb8C+YtpwP4WbDVA1ZTcRBs9UAxrsnW/I0xJgTZnr8xxoQga/7GGBOCrPnnQUQqisgiEdniPa+Qx5jaIrJGRNaKyHoRuduJrAVRwHoai8hX3lq+E5FbnchaUAWpyTvuYxFJFZG5RZ2xIESkg4hsEpGtIjIyj/tLiMg07/1fi0idok95bgpQU2sR+UZEMkWkhxMZz1UBahouIhu8/+8sFpHaTuQ8F9b88zYSWKyq9YDF3uu57QX+oqqNgWuBkSJSvQgznouC1HMCuE1VGwAdgJdFpHwRZjxXBakJ4EVgQJGlOgciEgaMBzoC9YE+IlI/17A7gSOqWhcYB4wp2pTnpoA1/QwMAqYWbbrzU8CavgWaqWojYCbwQtGmPHfW/PPmBiZ7L08G4nMPUNV0VT3tvVqCwP63LEg9m1V1i/fyHuAAkO+3BB2Ub00AqroY+LWoQp2j5sBWVd2uqulAAp66cspZ50ygrYhIEWY8V/nWpKo7VPU7INuJgOehIDUtUdUT3qsrgJpFnPGcBXLDclKMqu4F8J5XyWuQiNQSke+AncAYb9MMRAWq5zci0hyIBLYVQbbzdU41BagaeP7b+c0u7215jlHVTOAoUKlI0p2fgtRU3JxrTXcCCwo1kR+EOx3AKSLyKVA1j7seL+g2VHUn0Mi73JMkIjNVdb+/Mp4Lf9Tj3U414H1goKo6umfmr5oCWF578Lk/e12QMYGkuOUtiALXJCL9gWbADYWayA9Ctvmrarsz3Sci+0Wkmqru9TbDA/lsa4+IrAda4XlpXuT8UY+IlAXmAaNUdUUhRS0wf/6NAtQuoFaO6zWB3K8efxuzS0TCgXLA4aKJd14KUlNxU6CaRKQdnh2TG3IsCQcsW/bJWwow0Ht5IJCce4CI1BSRUt7LFYCWwKYiS3huClJPJDAbmKKqM4ow2/nKt6ZiYBVQT0Qu8v7798ZTV0456+wBfKaB/c3MgtRU3ORbk4g0Ad4E4lS1eOyIqKqdcp3wrKkuBrZ4zyt6b28GTPRebg98B6zzng91OreP9fQHMoC1OU6Nnc7uS03e618AvwAn8ezB3ex09lx1dAI243l/5XHvbU/haSIAJYEZwFZgJXCx05n9UNM13r/FceAQsN7pzH6o6VNgf47/d1KczpzfyQ7vYIwxIciWfYwxJgRZ8zfGmBBkzd8YY0KQNX9jjAlB1vyNMSYEWfM3xpgQZM3fGGNC0P8D8YEnrDImQ5IAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VHX2x/H3mRRKQkdCFVCwgCAIIoogEVBAyIQqgggqYlksP3GVVezoirpgQ1ZlUVAxtJAJTVSKyipSlCIgdVGQJiVgaGnn90eG3RgDSZhJ7mTmvJ5nnrl35pv7PSeBz9y5M3NHVBVjjDGhxeV0AcYYY4qfhb8xxoQgC39jjAlBFv7GGBOCLPyNMSYEWfgbY0wIsvA3xpgQZOFvjDEhyMLfOEJEFojIc3nc7haRvSIS7l2/RkQWicjvInJERJJF5JIc49uLSJaIpOa6XF1MfSwRkSHFNNcwEVkpIqdE5IN8xoqIjBKRX72/tyUi0rg46jQlg4W/ccoHwEARkVy3DwQ+VtUMb4B/BniAmkB9YC3wbxGpl+NndqtqdK7Lt0XeQfHbDYwCJhZgbB/gDqAtUBn4Fviw6EozJY2Fv3FKEtmh1Pb0DSJSCegGTPbe9DIwWVVfV9XfVfWQqo4ElgNPn8ukIlJHRBJF5DcROSgib3lvd4nISBH5WUT2i8hkEangva+0iHzkHZ8iIitEJEZEXvDW/5b32cZb5/rLKAhVTVTVJOBgAYbXB5aq6nZVzQQ+AhoVZX2mZLHwN45Q1RPANOC2HDf3BX5S1TUiUha4Bpiex49PA24o7JwiEgbMAX4G6gG1gATv3YO9l1jgAiAaOB3mg4AKQB2gCnAPcEJVnwC+BoZ5n20MO8O8KWe5jChsHwWUADQQkYtEJMLbw6dFNJcpgcKdLsCEtEnAXBG53/tgcJv3Nsh+VuAC9uTxc3uA83Ks1xSRlFxjaqnqsVy3tSL78NFfVTXDe9tS7/UAYIyqbgcQkb8BP4rI7UA62aHfQFXXAqsK06SqVizMeD/ZQ/YD0yYgE9gJXO9AHSZA2Z6/cYyqLgV+A9wicgFwJTDFe/dhIAuokceP1vD+3Gm7VbVirkvu4IfsPfefcwR/TjXJfkZw2s9k7xzFkH2sfAGQICK7ReRl7950kRGR+TlevB5wDpt4muzfZx2gNPAssMj7jMoYC3/juMlk7/EPBD5T1X0A3vD+luwXLnPrC3x5DnPtBM4//U6iXHYDdXOsnw9kAPtUNV1Vn1XVRmQfiurG/w5X5XtO9DzeiZTz8nheP6OqXXK8eP1xYZr0uhyYqqq7VDVDVT8AKmHH/Y2XHfYxTpsMjASaAv+X674RwAIR+Ql4n+x/r8OBdkDrc5hrOdmHQ14SkafJPhzSQlX/DXwCPCYi88l+VvEi2eGZISKxwAFgA3CU7MNAmd5t7iP7NYIzUtXoc6j1T7wPWuFAGBAmIqWBjDM8k1kB9BGRBG8/A4AIYKs/ajEln+35G0ep6g7gGyAKSM5131LgRqAn2aF9iOwXLq9X1XU5htbMY4+6Vx5zZQLdgQbAL8Au4Gbv3RPJPrzzFfAf4CRwv/e+6sAMsoN/I9nPOj7y3vc60FtEDovIG+f6eyigkcAJsh8Ub/UujwQQkfO9fZ/vHTsaWAOsBlLIfmDtpaq5XxsxIUrsm7xMSSEilwOLgP6qusDpeowpyWzP35QYqroGiAeanOG4vTGmgGzP3xhjQpDt+RtjTAgK2KfOVatW1Xr16jldBgDHjh0jKirK6TL8Jtj6AeupJAi2fiAwe1q1atUBVT0vv3EBG/716tVj5cqVTpcBwJIlS2jfvr3TZfhNsPUD1lNJEGz9QGD2JCI/5z/KDvsYY0xIsvA3xpgQ5JfwF5HOIrJJRLbmdZZCEblHRNaJyGoRWSoi9hFzY4xxkM/h7z1N7jigC9nnDbklj3CfoqpNVLUZ2edoH+PrvMYYY86dP/b8WwFbvV8akUb2ecTdOQeo6tEcq1EU4GRYxhhjio7PH/ISkd5AZ1Ud4l0fCFyV+4stROQvwMNAJNnnZtmSx7aGAkMBYmJiWiQkJOQe4ojU1FSio/1ybq6AEGz9gPVUEgRbPxCYPcXGxq5S1Zb5DlRVny5kn3J3Qo71gcCbZxnfH5iU33ZbtGihgWLx4sVOl+BXwdaPqvVUEgRbP6qB2ROwUguQ3f447LOL7C+MOK022edGP5MEss/PUrLs2gX33w9XXw1ly4II7NjhdFXGGHNO/BH+K4CGIlJfRCKBfuQ6Na+INMyxehPwp0M+jklNhb59s6/PZutWmDYNKlWCtm3PPtYYYwKcz+Gv2V8kMYzsr7nbCExT1fUi8pyIxHmHDROR9SKymuzj/oN8nddvFi6E6dNh0aKzj2vXDvbtg3nzoE9eXy5ljDElh19O76Cq84B5uW57Ksfyg/6YpyhkJSYigCYm4oqLO/NAl30ezhgTPEIy0U5lZDLrh13cMGYJR6bNQoCUaYncOGYJs37YxamMzHy3YYwxJVnAntitqKzemcLgictJz8yi5q/bKZWZBkDpjDQyN2xkZMpJnk3ewKQ7WnF5nYoOV2uMMUUjpPb81+xM4ZZ3l5FyIp1jaZnEbl+JKysLAFdWFrHbVnAsLZOUE+n0e3cZa3ba150aY4JTyIT/qYxMBk1czon0/x3S6fbT15TOTAegdGY63X5a+t/7TqRnj7dDQMaYYBTch3169YLERABKAatz3Z0W9sf2L/ntP+wY3e2Pg56B9qeXe/aEmTP9X6cxxhSz4N7zf+klaNYMzvBNO5GZGX9YL5Vr/bTM0qWhefPs7RljTBAI7vBv2BBWriTrmWc4EV6KDPljuwo8M7gmC68ol+ePZ4iLE+Gl+M/tt8PKlbBmDcyYAatWZQ+YPz97/csvi7gRY4zxr+A+7AMQFkbqsAfpua0Crye+RP3Dv1I2/RQAR6PCWHdBGWa2r0yHlUf420d7iEnJ3vs/HlGK7ZVq8VDPETzepwENXK4/f7jrvvuyr6+7DpYsKcamjDHGN8G95+8VFRnOtoo16T5oLONa9+VkWAQAFY5lkvDsNh6atpelTcvh/ntDPulQmWPhEYxr3Zfug19jW8WauESyN6Sa98WC3xhTwgT/nj8Q5hIaVotm875UNp9Xl/SwiP++yyciE+6cd4AbVhzl+UE1eXFgTTxtTuL6pRIqLi6uFo19/YAxJtiExJ4/wL3tLyQqMowbN39DVNqJP91f57c03nl1B39/Zye7q4azvu0ioqsvYEi7OnlszRhjSraQCf+uTWoQ4RI6bF2BK8eefPaLupFkiAsBun17hOS/beHG71KRSov5146/8NOJn5wr3BhjikDIhH+p8DASri3/39M5QPaLuj+dV4+7ej7JT+fV43hEKQAqHsvkmff38HTV4YS7whi3fxx/+/pvHDp5yKnyjTHGr0Im/AEu+WEppQUyvW/h/Me1t9J98Gssrd+cuEFjGXPtAE6ElyJTXJR2Qe+NB5gZN5POFTrz6Y5PiUuKI2lr0ulvJDPGmBIrpMKfadNwZaQjlzdl6YzPWdp9ILhcRIQJGhbG190HsXTG50jTJrjS02HaNEqFleKmijcxo/sMLqhwAU/++0mGfDaEHUd2ON2NMcacs5B4t89/Va8Or7yC66GH6ORy0QnIzFKOpWUQFRlOmMv7ls5uq+C11/7wFs4LK17IB50/YMbmGby26jV6JfdiaNOh3HHZHUR43zpqjDElRWjt+c+eDQ8//IcvZglzCeVLR/wv+AHCwmD48OzxObjERd+L++KJ9xB7fixvrX6LPrP78MP+H4qrA2OM8YvQCn8/Oa/sebx63auM6zCO4xnHuW3+bTz/7fMcTTvqdGnGGFMgFv4+aFe7HUnuJAY2GsiMLTNwJ7lZsGOBvSBsjAl4Fv4+KhtRlkevfJQpN03hvDLn8ciXj3D/ovvZk7rH6dKMMeaMLPz9pHGVxky5aQqPtHyE5XuX4/a4+XDDh2Rm2ZfBGGMCj1/CX0Q6i8gmEdkqIiPyuP9hEdkgImtFZKGI1PXHvIEm3BXOoMaDmOWeRcuYlry84mX6z+vPxoMbnS7NGGP+wOfwF5EwYBzQBWgE3CIijXIN+wFoqapNgRnAy77OG8hqRddiXIdxvHLdK+w7to9+c/vx6opXOZ5+3OnSjDEG8M+efytgq6puV9U0IAFw5xygqotV9XTyLQNq+2HegCYidK7XGU+8h54NezJpwyR6eHrw1a6vnC7NGGMQX9+ZIiK9gc6qOsS7PhC4SlWHnWH8W8BeVR2Vx31DgaEAMTExLRISEnyqzV9SU1OJjo72aRvbTm4j4VACe9P3ckXZK+hVuRflw8r7qcLC8Uc/gcZ6CnzB1g8EZk+xsbGrVLVlvgNV1acL0AeYkGN9IPDmGcbeSvaef6n8ttuiRQsNFIsXL/bLdk5lnNLxq8dr88nN9eopV+v0TdM1MyvTL9suDH/1E0isp8AXbP2oBmZPwEotQHb747DPLiDnSe9rA7tzDxKRjsATQJyqnvLDvCVOZFgk91x+DzPjZnJxpYt59ttnuf3T29mest3p0owxIcYf4b8CaCgi9UUkEugHJOccICLNgXfIDv79fpizRKtfoT4Tb5zIc9c8x9aUrfSa3Ytxq8dxKjMkHxONMQ7wOfxVNQMYBiwANgLTVHW9iDwnInHeYa8A0cB0EVktIsln2FzIEBF6NOxBcnwyN9S9gX+u+Se9k3uzYu8Kp0szxoQAv5zVU1XnAfNy3fZUjuWO/pgnGFUpU4XR7UYTd2Eczy97njsW3EGPBj0Y3nI4FUpVcLo8Y0yQsk/4Bog2tdowyz2L2y+7neRtycQlxTF3+1w7T5AxpkhY+AeQMuFleLjFwyR0S6BmVE1GfD2Ce7+4l12/73K6NGNMkLHwD0CXVL6Ej7p+xIhWI/hh/w/08PTg/R/fJz0r3enSjDFBwsI/QIW5whhw6QA88R5a12zNmFVjuGXOLfx44EenSzPGBAEL/wBXPao6b8S+wdj2Yzl88jD95/bnpeUvcSz9mNOlGWNKMAv/EkBE6Fi3I0nxSfS9uC9TNk7BneRm8S+LnS7NGFNCWfiXIOUiyzGy9Ugmd5lMuchyPLD4Af5v8f+x/3jIf27OGFNIFv4lULNqzZjWfRoPXvEgX//6Ne4kN1N/mkqWZjldmjGmhLDwL6EiXBEMaTKExLhEGldtzKjvRnHb/NvYcniL06UZY0oAC/8S7vzy5/Nep/d48doX+fnoz/Sd3Zc3vn+DkxknnS7NGBPALPyDgIjQ/cLuJMcn0/WCrry37j16Jfdi2Z5lTpdmjAlQFv5BpFLpSrxw7Qu8d8N7ANz12V08sfQJDp887HBlxphAY+EfhFrXaM3MuJnc1eQu5m2fR1xSHMnbku08QcaY/7LwD1Klw0vzwBUPMK37NOqWr8sTS5/grs/v4pejvzhdmjEmAFj4B7mGlRoyuctknmz9JOsPrKdnck8WHFlAeqadJ8iYUGbhHwJc4qLvxX3xxHtoV7sdc1Lm0HdOX1bvX+10acYYh1j4h5BqZasxpv0Yhp43lNT0VG6bfxujlo3i97TfnS7NGFPMLPxDUJOyTUhyJzHg0gFM3zwdd5Kbz3/+3F4QNiaEWPiHqKiIKB5r9RhTuk6hSpkqPLzkYR5Y/AB7j+11ujRjTDGw8A9xjas25pObPmF4i+F8t+c73EluPtrwEZlZmU6XZowpQhb+hnBXOIMvG0xiXCLNY5ozesVobp13Kz8d+snp0owxRcTC3/xX7XK1Gd9hPC+3e5ndx3bTb04/xqwcw/H0406XZozxM7+Ev4h0FpFNIrJVREbkcX87EfleRDJEpLc/5jRFQ0ToUr8LyfHJxDeI5/3179MzuSdLf13qdGnGGD/yOfxFJAwYB3QBGgG3iEijXMN+AQYDU3ydzxSPCqUq8Mw1z/D+je8T4Yrg3i/u5dGvHuXAiQNOl2aM8QN/7Pm3Araq6nZVTQMSAHfOAaq6Q1XXAvZtIyVMy+otmRk3k/suv48vfv4Cd5KbxC2J9rZQY0o48fU/sfcwTmdVHeJdHwhcparD8hj7ATBHVWecYVtDgaEAMTExLRISEnyqzV9SU1OJjo52ugy/Odd+9qbvZerBqWw9tZUGpRpwc5WbqR5RvQgqLLxg+xtB8PUUbP1AYPYUGxu7SlVb5jtQVX26AH2ACTnWBwJvnmHsB0Dvgmy3RYsWGigWL17sdAl+5Us/mVmZOnPzTL16ytXafHJzffuHt/VUxin/FXeOgu1vpBp8PQVbP6qB2ROwUguQsf447LMLqJNjvTaw2w/bNQHIJS56NuxJcnwyHet25O01b9N7dm9W7VvldGnGmELwR/ivABqKSH0RiQT6Acl+2K4JYFXLVOXldi8zvuN40jLTGPzpYJ755hmOnDridGnGmALwOfxVNQMYBiwANgLTVHW9iDwnInEAInKliOwi+xDROyKy3td5TWC4tta1JMYlMrjxYJK2JuFOcjP/P/PtBWFjApxf3uevqvNU9SJVvVBVX/De9pSqJnuXV6hqbVWNUtUqqtrYH/OawFA2oizDWw4noVsC1aOq8+hXj3Lfwvv4NfVXp0szxpyBfcLX+M0llS/h464f89iVj7Fq3yp6eHrwwY8fkJGV4XRpxphcLPyNX4W5wri10a143B6uqn4V/1j1D/rP7c/6A3akz5hAYuFvikSN6Bq8cf0bjGk/hgMnDtB/Xn9GLx9t5wkyJkBY+JsiIyJ0qtsJT7yHPhf14eONH+P2uFmyc4nTpRkT8iz8TZErF1mOka1HMrnLZKIjorl/0f08vORhfjv+m9OlGROyLPxNsWlWrRnTuk3jgeYP8OXOL4lLimPapmlkqZ3yyZjiZuFvilVEWAR3Nb2LRHcijas05vllzzNo/iC2Ht7qdGnGhBQLf+OIuuXr8t4N7zGqzSh2HN1Bnzl9eOP7NziVecrp0owJCRb+xjEigruBG0+8hy71uvDeuvfoldyL5XuWO12aMUHPwt84rnLpyrzY9kXe7fQuWZrFnZ/dycilI0k5meJ0acYELQt/EzCurnk1iXGJDGkyhLnb5xKXFMfsbbPtPEHGFAELfxNQSoeX5sErHmRq96nUKV+Hx5c+zt2f383OozudLs2YoGLhbwLSRZUuYnLnyTxx1ROsPbCWHsk9mLBuAulZ6U6XZkxQsPA3ASvMFUa/S/rhcXtoW6str3//OjfPuZk1v61xujRjSjwLfxPwYqJiGBs7ltdjX+fIqSMMnDeQF5a9QGpaqtOlGVNiWfibEuP6868nOT6Z/pf2Z+qmqbg9bhb+vNDpsowpkSz8TYkSFRHFiFYj+Ljrx1QqVYmHljzEg4se5HDGYadLM6ZECXe6AGPORZPzmvBJt0/4cMOHjF89nm+yvuH4xuP0u7gfYa4wp8szJuDZnr8psSJcEdxx2R0kuhOpV6oeLy1/iYHzB7Lp0CanSzMm4Fn4mxKvTrk63FftPl5q+xK/pv7KzXNuZuyqsZzIOOF0acYELAt/ExREhJsuuInk+GTiLoxj4o8T6eHpwTe/fuN0acYEJL+Ev4h0FpFNIrJVREbkcX8pEZnqvf87Eannj3mNya1CqQo81+Y5Jt44kQhXBHd/cTcjvh7BwRMHnS7NmIDic/iLSBgwDugCNAJuEZFGuYbdCRxW1QbAWGC0r/MaczZXVr+SGXEzuOfye1iwYwFuj5tZW2bZeYKM8fLHnn8rYKuqblfVNCABcOca4wYmeZdnAB1ERPwwtzFnVCqsFH9p9hdmdJ/BhRUu5KlvnuLOz+5kx5EdTpdmjOPE1z0hEekNdFbVId71gcBVqjosx5gfvWN2ede3ecccyLWtocBQgJiYmBYJCQk+1eYvqampREdHO12G3wRbP5B/T1maxbep3+I57CFd07mxwo10rNCRcAncdzsH298p2PqBwOwpNjZ2laq2zG+cP/7l57UHn/sRpSBjUNV3gXcBWrZsqe3bt/e5OH9YsmQJgVKLPwRbP1Cwnq7neu4+cTejl49m7o65bGQjT1/9NFfEXFE8RRZSsP2dgq0fKNk9+eOwzy6gTo712sDuM40RkXCgAnDID3MbUyhVy1TlleteYVyHcZzMOMmgTwfx7LfPcjTtqNOlGVOs/BH+K4CGIlJfRCKBfkByrjHJwCDvcm9gkdorb8ZB7Wq3Y5Z7FoMaDSJxSyLuJDef7vjUXhA2IcPn8FfVDGAYsADYCExT1fUi8pyIxHmH/QuoIiJbgYeBP70d1JjiVjaiLI9c+Qif3PQJ1cpW469f/pVhi4axOzX3E1djgo9fXu1S1XnAvFy3PZVj+STQxx9zGeNvjao04uOuHzNl4xTeWv0W8Z54/tLsLwy4dADhrsB9QdgYX9gnfI0Bwl3h3Nb4NpLcSVxZ/UpeXfkq/ef2Z8PBDU6XZkyRsPA3Joea0TV56/q3ePW6V/ntxG/cMvcWXlnxCsfTjztdmjF+ZeFvTC4iwo31bsQT76FXw15M3jCZeE88X+36yunSjPEbC39jzqB8ZHmeuvopJnWeRNnwsvxl4V945MtHOHDiQP4/bEyAs/A3Jh9XxFzB9O7TGdZsGIt/WUzcrDimb55OlmY5XZox58zC35gCiAiL4O7L72Zm3EwuqXIJz337HIM/Hcy2lG1Ol2bMObHwN6YQ6lWox79u+BfPt3me7Ue203t2b9764S1OZZ5yujRjCsXC35hCEhHiG8STHJ9M53qdeWftO/RO7s2KvSucLs2YArPwN+YcVS5dmb+3/TvvdHqHjKwM7lhwB0/++0lSTqY4XZox+bLwN8ZH19S8hkR3Indediezt83G7XEzZ/scO0+QCWgW/sb4QZnwMjzU4iGmdptK7eja/O3rv3HPF/ew8/edTpdmTJ4s/I3xo4srX8zkLpP5W6u/sea3NfT09GTijxNJz0p3ujRj/sDC3xg/C3OF0f/S/iS5k2hTqw1jV42l35x+rPttndOlGfNfFv7GFJHqUdV5LfY1Xot9jZRTKQyYN4C/f/d3jqUfc7o0Yyz8jSlqHc7vgMftod8l/fjkp09wJ7lZ9Msip8syIc7C35hiEB0ZzeNXPc5HXT+ifKnyPLj4QR5a/BD7ju1zujQToiz8jSlGTc9rytRuU3noiodY+utS3B43n/z0CZlZmU6XZkKMhb8xxSzCFcGdTe5kVtwsmlZtyovfvchtn97G5sObnS7NhBALf2McUqd8Hd7p9A4vXvsiO4/u5ObZN/P6969zMuOk06WZEGDhb4yDRITuF3YnOT6Zmy64iQnrJtAzuSff7v7W6dJMkLPwNyYAVCxdkVHXjmLCDRNwiYuhnw9l8oHJHDp5yOnSTJDyKfxFpLKIfC4iW7zXlc4w7lMRSRGROb7MZ0ywu6rGVcyMm8nQpkP5/tj3uJPceLZ67DxBxu983fMfASxU1YbAQu96Xl4BBvo4lzEhoVRYKe5vfj+P1XiMeuXrMfLfI7nrs7v4+ejPTpdmgoiv4e8GJnmXJwHxeQ1S1YXA7z7OZUxIqRFZg0ldJvFk6yfZcHADPT09eXftu6Rn2nmCjO98Df8YVd0D4L2u5ntJxpjTXOKi78V98cR7aF+nPW/+8CZ95/Rl9f7VTpdmSjjJ71iiiHwBVM/jrieASapaMcfYw6p6puP+7YFHVLXbWeYaCgwFiImJaZGQkJBvA8UhNTWV6Ohop8vwm2DrB0Knpx+P/8i0Q9M4nHmYa6OvpXul7pR1lXWowsIJlb+R02JjY1epast8B6rqOV+ATUAN73INYNNZxrYH5hR02y1atNBAsXjxYqdL8Ktg60c1tHo6lnZMRy8frU0nNdXYqbG64D8LNCsrq3iLOweh9DdyErBSC5Cxvh72SQYGeZcHAR4ft2eMyUfZiLI8euWjTLlpClXLVGX4l8O5f9H97End43RppgTxNfxfAjqJyBagk3cdEWkpIhNODxKRr4HpQAcR2SUiN/o4rzEhr3GVxky5aQqPtHyE5XuX4/a4+XDDh3aeIFMgPoW/qh5U1Q6q2tB7fch7+0pVHZJjXFtVPU9Vy6hqbVVd4GvhxhgId4UzqPEgZrln0SKmBS+veJkB8waw8eBGp0szAc4+4WtMEKgVXYu3O7zNK+1eYe+xvdwy9xZeXfEqx9OPO12aCVAW/sYECRGhc/3OeOI9xDeIZ9KGSfTw9ODrXV87XZoJQBb+xgSZCqUq8Mw1z/BB5w8oHV6a+xbex6NfPsqBEwecLs0EEAt/Y4JUi5gWTO8+nfua3ccXv3xBXFIcMzfPJEuznC7NBAALf2OCWGRYJPdefi8z42ZycaWLeebbZ7j909vZnrLd6dKMwyz8jQkB9SvUZ+KNE3numufYmrKVXrN78fbqt0nLTHO6NOMQC39jQoSI0KNhD5Ljk7mh7g2MXzOeXsm9WLF3hdOlGQdY+BsTYqqUqcLodqP5Z8d/kp6Vzh0L7uDpb57myKkjTpdmipGFvzEhqk2tNsxyz+L2y27Hs9VDXFIc87bPsy+OCREW/saEsDLhZXi4xcMkdEugZlRNHvv6Me794l52/b7L6dJMEbPwN8ZwSeVL+KjrR4xoNYIf9v9AD08P3v/xfTKyMpwuzRQRC39jDABhrjAGXDoAT7yH1jVbM2bVGG6Zews/HvjR6dJMEbDwN8b8QfWo6rwR+wZj24/l0IlDDJg3gJeWv8Sx9GNOl2b8yMLfGPMnIkLHuh1Jik+iz0V9mLJxCu4kN0t2LnG6NOMnFv7GmDMqF1mOka1HMrnLZMpFluP+Rffz8JKH2X98v9OlGR9Z+Btj8tWsWjOmdZ/Gg1c8yFe7vsKd5GbqT1PtPEElmIW/MaZAIlwRDGkyhMS4RBpXbcyo70YxaP4gthze4nRp5hxY+BtjCuX88ufzXqf3ePHaF9lxdAd9Z/flje/f4GTGSadLM4Vg4W+MKTQRofuF3UmOT6brBV15b9179EruxXd7vnO6NFNAFv7GmHNWqXQlXrj2Bd674T0Ahnw2hCeWPsHhk4cdrszkx8LfGOOz1jVaMzNuJnc1uYt52+cRlxTH7G2z7TxBAczC3xjjF6XDS/PAFQ8wrfs06pavy+NLH+euz+/il6O/OF2ayYNP4S8ilUXkcxFmSCpdAAAOzklEQVTZ4r2ulMeYZiLyrYisF5G1InKzL3MaYwJbw0oNmdxlMk+2fpL1B9bTM7knE9ZNIFMznS7N5ODrnv8IYKGqNgQWetdzOw7cpqqNgc7AayJS0cd5jTEBzCUu+l7cF0+8h3a12/H6968zes9oVu9f7XRpxsvX8HcDk7zLk4D43ANUdbOqbvEu7wb2A+f5OK8xpgSoVrYaY9qP4c3r3+Rk1klum38bo5aN4ve0350uLeSJLy/IiEiKqlbMsX5YVf906CfH/a3IfpBorPrnjwaKyFBgKEBMTEyLhISEc67Nn1JTU4mOjna6DL8Jtn7AeioJDv5+kCXpS/jy9y8pH1ae3pV7c3mZyxERp0s7Z4H4N4qNjV2lqi3zHaiqZ70AXwA/5nFxAym5xh4+y3ZqAJuA1vnNqaq0aNFCA8XixYudLsGvgq0fVeupJDjdz7rf1mkvTy+97IPLdNjCYbondY+zhfkgEP9GwEotQMbme9hHVTuq6mV5XDzAPhGpAeC9zvNsTyJSHpgLjFTVZfk+IhljgtZlVS8joVsCw1sMZ9nuZbiT3Hy88WMys+wF4eLk6zH/ZGCQd3kQ4Mk9QEQigVnAZFWd7uN8xpggEO4KZ/Blg5nlnkXzmOa8tPwlbp13K5sObXK6tJDha/i/BHQSkS1AJ+86ItJSRCZ4x/QF2gGDRWS199LMx3mNMUGgdrnajO8wntFtR7P72G5unnMzY1aO4UTGCadLC3rhvvywqh4EOuRx+0pgiHf5I+AjX+YxxgQvEaHrBV1pU6sNY1aN4f317/PZz5/xZOsnaVOrjdPlBS37hK8xJiBUKFWBZ695lvdvfJ8IVwT3fHEPj331GAdPHHS6tKBk4W+MCSgtq7dkZtxM7r38Xj7/+XPikuJI3JJo5wnyMwt/Y0zAiQyL5L5m9zGj+wwaVGzA0988zR0L7uA/R/7jdGlBw8LfGBOwLqh4Ae93fp9nrn6GTYc30Su5F+PXjCctM83p0ko8C39jTEBziYteF/UiOT6Zjud35O3Vb9N7dm9W7VvldGklmoW/MaZEqFqmKi9f9zJvd3ibUxmnGPzpYJ755hmOnDridGklkoW/MaZEaVu7LbPcsxjceDBJW5NwJ7n59D+f2gvChWThb4wpccpGlGV4y+F8ctMnxETF8Nev/sp9C+/j19RfnS6txLDwN8aUWJdWuZQpXafw2JWPsWrfKnp4ejBp/SQysjKcLi3gWfgbY0q0MFcYtza6FY/bQ6vqrXh15av0n9uf9QfXO11aQLPwN8YEhRrRNXjz+jf5x3X/4MCJA/Sf25/Ry0dzPP2406UFJAt/Y0zQEBFuqHcDnngPfS7qw0cbPyLeE8+XO790urSAY+FvjAk65SLLMbL1SD7s8iFREVEMWzSM4UuG89vx35wuLWBY+Btjglazas2Y1m0a9ze/nyU7l+BOcjNt0zSy/vwtsiHHwt8YE9QiwiIY2nQoie5ELq1yKc8ve55B8wex9fBWp0tzlIW/MSYk1C1flwk3TGBUm1HsOLqDPnP68OYPb3Iq85TTpTnCwt8YEzJEBHcDN554D13qdeHdte/SK7kXy/csd7q0Ymfhb4wJOZVLV+bFti/ybqd3ydIs7vzsTp7895OknExxurRiY+FvjAlZV9e8msS4RIY0GcKcbXOIS4pj9rbZIXGeIAt/Y0xIKx1emgeveJCp3adSp3wdHl/6OHd/fjc7j+50urQiZeFvjDHARZUuYnLnyTxx1ROsPbCWHsk9+Ne6f5Gele50aUXCp/AXkcoi8rmIbPFeV8pjTF0RWSUiq0VkvYjc48ucxhhTVMJcYfS7pB8et4e2tdry2vev0W9OP9b+ttbp0vzO1z3/EcBCVW0ILPSu57YHuEZVmwFXASNEpKaP8xpjTJGJiYphbOxYXo99nZRTKdw671Ze/O5FUtNSi37ynTuhd2+oUAHKl4eePeGXX/w+ja/h7wYmeZcnAfG5B6hqmqqefiNtKT/MaYwxxeL6868nOT6Z/pf2J+GnBNweNwt/WVh0Ex4/DtdfDz/9BJMmwYcfwpYtEBsLx475dSrx5VVtEUlR1Yo51g+ral6HfuoAc4EGwF9VddwZtjcUGAoQExPTIiEh4Zxr86fU1FSio6OdLsNvgq0fsJ5KgpLez45TO0g4mMCv6b/StExTelfuTcTJCL/2VGvGDBqMH8/yyZM5UasWAKX37OGqW29l2913s6tv33y3ERsbu0pVW+Y3Lt/wF5EvgOp53PUEMKkg4Z/j/ppAEtBdVfedbd6WLVvqypUrz1pbcVmyZAnt27d3ugy/CbZ+wHoqCYKhn/SsdD7c8CHjV48nzBVGl+gujOw2kjBX2Fl/LiMzi+PpmURFhhPmkjMP7NABTp6Ef//7j7dfd1329Zf5n51URAoU/uH5DVDVjmeZZJ+I1FDVPSJSA9ifz7Z2i8h6oC0wI7+5jTEmkES4IrjjsjvoVLcTo5aNYsbuGWyev5mnrn6Kiytf/IexpzIymbduD+OXbGPL/lTCXUJGlnJRtWjuaX8hXZvUoFR4rgeN9evB7f7zxI0bw/Tpfu3F1+PvycAg7/IgwJN7gIjUFpEy3uVKQBtgk4/zGmOMY+qUq8M/O/6TQVUHsSt1F/3m9GPsqrGcyDgBwOqdKVz1wkJGzvqRzftSUYX0TEUVNu1LZeSsH7nqhYWs2ZnrE8WHDkGlPA6eVK4Mhw/7tQdfw/8loJOIbAE6edcRkZYiMsE75lLgOxFZA3wJvKqq63yc1xhjHCUitIxqSXJ8Mt0v7M7EHyfS09OTj9Z8zi3vLiPlRDrH0jLz/NljaZmknEin37vL/vwAIHkcFiqCTxz7FP6qelBVO6hqQ+/1Ie/tK1V1iHf5c1VtqqqXe6/f9UfhxhgTCCqUqsBzbZ5j4o0TcUkYo1c/jJ43BQnL/22hJ9IzGTRxOacyvA8SlSpl7/3ndvhw3s8IfGBvuzTGGD+4svqVDKr7BnqoI+Hl1xJ1wRjCK6wEzr7Xnp6Zxfx1e7NXGjfOPu6f24YN0KiRX+u18DfGGD+Z8NVOUvd15Pj2B8hMq0aZmjMoc/57SOSZvz7yWFom45d4v1gmLg6WLYPt2/83YMeO7Hf/xMX5tVYLf2OM8YPMLGXL/uxDPVlpMZz4eSgn9/QkrPRuouq/TmSVJWf82c37U8nMUrjrLqhXL/sdPx4PJCdnL9epA3ff7dd6LfyNMcYPjqVlEP6H9/C7SE9pxbFtw8n4vRHImU8QF+4SjqVlQFQULFoEF10EAwfCgAFQv372bX7+gFy+7/M3xhiTv6jIcDKy/nx8XzPLcXJ3f+DMXxqfkaVERXrj+PzzYebMIqryf2zP3xhj/CDMJTSsdra98zPH7UXVos/+yd8iYOFvjDF+cm/7C4mKPPupHnKLigzj3vYNiqiiM7PwN8YYP+napAYRYYWL1YgwF12a5HX6tKJl4W+MMX5SKjyMSXe0okxEwfb+y0Rkj//TOX6KgYW/Mcb40eV1KpIwtDUVy0Sc8RBQVGQYFctEkDC0NZfXqZjnmKJm7/Yxxhg/u7xORb57ogPz1+1l/JKtbP7DWT3LcW/7C+nSpLoje/ynWfgbY0wRKBUeRnzzWsQ3r0VmlnIsLSP/8/kXIwt/Y4wpYmEuoXzpCKfL+AM75m+MMSHIwt8YY0KQhb8xxoQgC39jjAlBFv7GGBOCLPyNMSYEWfgbY0wIsvA3xpgQZOFvjDEhyMLfGGNCkKj++WvHAoGI/Ab87HQdXlWBA04X4UfB1g9YTyVBsPUDgdlTXVU9L79BARv+gUREVqpqS6fr8Jdg6wesp5Ig2PqBkt2THfYxxpgQZOFvjDEhyMK/YN51ugA/C7Z+wHoqCYKtHyjBPdkxf2OMCUG252+MMSHIwt8YY0KQhX8eRKSyiHwuIlu815XyGFNXRFaJyGoRWS8i9zhRa0EUsJ9mIvKtt5e1InKzE7UWVEF68o77VERSRGROcddYECLSWUQ2ichWERmRx/2lRGSq9/7vRKRe8VdZOAXoqZ2IfC8iGSLS24kaC6sAPT0sIhu8/3cWikhdJ+osDAv/vI0AFqpqQ2Chdz23PcA1qtoMuAoYISI1i7HGwihIP8eB21S1MdAZeE1EKhZjjYVVkJ4AXgEGFltVhSAiYcA4oAvQCLhFRBrlGnYncFhVGwBjgdHFW2XhFLCnX4DBwJTire7cFLCnH4CWqtoUmAG8XLxVFp6Ff97cwCTv8iQgPvcAVU1T1VPe1VIE9u+yIP1sVtUt3uXdwH4g308JOijfngBUdSHwe3EVVUitgK2qul1V04AEsvvKKWefM4AOIiLFWGNh5duTqu5Q1bVAlhMFnoOC9LRYVY97V5cBtYu5xkIL5MByUoyq7gHwXlfLa5CI1BGRtcBOYLQ3NANRgfo5TURaAZHAtmKo7VwVqqcAVYvsfzun7fLelucYVc0AjgBViqW6c1OQnkqawvZ0JzC/SCvyg3CnC3CKiHwBVM/jricKug1V3Qk09R7uSRKRGaq6z181FoY/+vFupwbwITBIVR3dM/NXTwEsrz343O+9LsiYQFLS6i2IAvckIrcCLYHrirQiPwjZ8FfVjme6T0T2iUgNVd3jDcP9+Wxrt4isB9qS/dS82PmjHxEpD8wFRqrqsiIqtcD8+TcKULuAOjnWawO5nz2eHrNLRMKBCsCh4invnBSkp5KmQD2JSEeyd0yuy3FIOGDZYZ+8JQODvMuDAE/uASJSW0TKeJcrAW2ATcVWYeEUpJ9IYBYwWVWnF2Nt5yrfnkqAFUBDEanv/f33I7uvnHL22RtYpIH9ycyC9FTS5NuTiDQH3gHiVLVk7Iioql1yXcg+proQ2OK9ruy9vSUwwbvcCVgLrPFeD3W6bh/7uRVIB1bnuDRzunZfevKufw38Bpwgew/uRqdrz9VHV2Az2a+vPOG97TmyQwSgNDAd2AosBy5wumY/9HSl929xDDgIrHe6Zj/09AWwL8f/nWSna87vYqd3MMaYEGSHfYwxJgRZ+BtjTAiy8DfGmBBk4W+MMSHIwt8YY0KQhb8xxoQgC39jjAlB/w+lv5qG0xejFAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "xc, yc = wiki.get_coordinates()\n", "visualize_solution(xc, yc, ground_state, ground_level, n, q, 'Classical')\n", @@ -710,9 +651,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "qiskit_master", "language": "python", - "name": "python3" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { @@ -724,7 +665,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb index c8ec89cbe..0458db2a4 100644 --- a/qiskit/finance/simulation/credit_risk_analysis.ipynb +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -30,9 +30,8 @@ "### Introduction\n", "This tutorial shows how quantum algorithms can be used for credit risk analysis.\n", "More precisecly, how Quantum Amplitude Estimation (QAE) can be used to estimate risk measures with a quadratic speed-up over classical Monte Carlo simulation.\n", - "The tutorial is based on the following two papers:\n", - "- Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger. [Woerner2019]\n", - "- Quantum Credit Risk Analysis. Daniel J. Egger et al. [Egger2019]\n", + "The tutorial is based on the following paper:\n", + "Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger. [Woerner2019]\n", "\n", "A general introduction to QAE can be found in the following paper and tutorial:\n", "- Quantum Amplitude Amplification and Estimation. Gilles Brassard et al.\n", @@ -101,7 +100,9 @@ "\n", "$$ \\text{CVaR}_{\\alpha}(L) = \\mathbb{E}[ L \\mid L \\geq \\text{VaR}_{\\alpha}(L) ].$$\n", "\n", - "For more details on the considered problem see [Egger2019].\n", + "For more details on the considered model, see, e.g.,
\n", + "Regulatory Capital Modelling for Credit Risk. Marek Rutkowski, Silvio Tarca.\n", + "\n", "\n", "The problem is defined by the following parameters:\n", "- number of qubits used to represent $Z$, denoted by $n_z$\n", From 9293f0614890599b2ce9e68b5bb70ed7111c32cf Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Sun, 28 Apr 2019 07:54:23 -0400 Subject: [PATCH 079/116] edit notebooks after VQC refactor --- .../qsvm_kernel_directly.ipynb | 305 ---------------- .../qsvm_kernel_multiclass.ipynb | 124 ------- .../qsvm_variational.ipynb | 251 ------------- .../qsvm_kernel_classification.ipynb | 332 ------------------ 4 files changed, 1012 deletions(-) delete mode 100644 community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb delete mode 100644 community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb delete mode 100644 community/aqua/artificial_intelligence/qsvm_variational.ipynb delete mode 100644 qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb deleted file mode 100644 index 23c6701ae..000000000 --- a/community/aqua/artificial_intelligence/qsvm_kernel_directly.ipynb +++ /dev/null @@ -1,305 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Quantum SVM (quantum kernel method)*_\n", - "\n", - "### Introduction\n", - "\n", - "Please refer to [this file](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb) for introduction.\n", - "\n", - "In this file, we show two ways for using the quantum kernel method: (1) the non-programming way and (2) the programming way. \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Part I: non-programming way.\n", - "In the non-programming way, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import *\n", - "from qiskit import Aer\n", - "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit.aqua import run_algorithm, QuantumInstance\n", - "from qiskit.aqua.input import SVMInput\n", - "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", - "from qiskit.aqua.algorithms import QSVMKernel" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", - "\n", - "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1}\n" - ] - } - ], - "source": [ - "feature_dim = 2 # dimension of each data point\n", - "training_dataset_size = 20\n", - "testing_dataset_size = 10\n", - "random_seed = 10598\n", - "shots = 1024\n", - "\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(training_size=training_dataset_size, \n", - " test_size=testing_dataset_size, \n", - " n=feature_dim, gap=0.3, PLOT_DATA=False)\n", - "\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "print(class_to_label)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the svm in the non-programming way.\n", - "In the following json, we config:\n", - "- the algorithm name \n", - "- the feature map " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\n", - " 'problem': {'name': 'svm_classification', 'random_seed': random_seed},\n", - " 'algorithm': {\n", - " 'name': 'QSVM.Kernel'\n", - " },\n", - " 'backend': {'shots': shots},\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", - "}\n", - "backend = Aer.get_backend('qasm_simulator')\n", - "algo_input = SVMInput(training_input, test_input, datapoints[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With everything setup, we can now run the algorithm.\n", - "\n", - "The run method includes training, testing and predict on unlabeled data.\n", - "\n", - "For the testing, the result includes the success ratio.\n", - "\n", - "For the prediction, the result includes the predicted class names for each data.\n", - "\n", - "After that the trained model is also stored in the svm instance, you can use it for future prediction." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "result = run_algorithm(params, algo_input, backend=backend)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4Tff2xt+viAhREUOShiSImiPmKlUNWvRX1YFSVb06T3Sk1eFWq+Mt7b1uJ701lKq61V4tLTXWULMSIghJEBIRJEIiEr6/P3Lcx7HeXbmiId3r8zye5LzWztl7n7Oyc9Ze33cZay0URXEf5S71DiiKcmnQ5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaWUKPmNMT2MMduNMTuNMc9frJ1SFOWPx1xoh58xxgfADgDdAaQCWAtggLV26+9sI54ssFowjS04eUJoNa50iM0vEFpwjWo0dmv8NqHVCruSxpbzMUILqlJFaIeP5tDt8/PyhZZ5II3GVqkSRJ6f/272q1RRaCdPnKSxNWrJ81DOyOMCgIz0Q0KrFVJdaMdPyNcGAAL8/YWWlc3PTa3qcr+ycnNpLCM/V55bAPD18xWaDzmP5csV/7qXfYQfA3uuGtWq0tijeXlCy83hx1u9eqDQThYW0lifc44jbd8+ZB0+zF/gcyhfnCAH2gHYaa1NAgBjzHQAtwBwTH5G1653Uz1173ahPTDqSRqbnpIutKf/0pfGtoy+VmiPj36JxlYMkG/mgbGdhTZ1wRK6ffLmFKF99t7rNLZLbH+hVapSicY2bNdQaLvjd9PYIU/I81CxQgUa+893pwjtyecHC23lFvkLFACuad5YaN//tIzGPjGoj4zd8BuNZSTFJVE9tF6o0KpcUVloQQEBdHuWNT9+s5jGhkTKi9H9fW+isQu2bBHahsUbaezge24WWvLBgzS2aiXv98iQW2+lcYyS/NkfBmDvWY9TPZqiKGWAklz5i4Ux5kEAD/7Rz6Moyv9GSZJ/H4A6Zz2u7dG8sNaOBzAe4J/5FUW5NJQk+dcCaGCMqYuipO8P4K7f2yCwWrD4jD/zmzE0tnfvJ4SWtosXy+pG1xVaxtGjNPam/rLGsG/nfhpbP6a+0OL27BFa+Qqy8AMAjchn83seG05ja4XXEtqJ47yw9sPEGUJr3rYdjS3v4yO0pIwMGlstWBbhWH1gy3L5+RUAMlMzhcbqMQCQnSsLYN2aNqWx036Un7l9Hc75sn/LGkNMbIzQApvJ1xYAVixaJ7TgCF5oXvatfK5H+/emsVPf/FJonW7tRGMbhsq6xTMPvEZj/z5hlNdj9no7ccHJb60tNMY8DmAeAB8AE6y18Rf68xRFKV1K9JnfWvsjgB8v0r4oilKKaIeforgUTX5FcSma/IriUv7w+/xnU3DyhOjcY1V9APj++3FCa9dTdqABwJTRE4XW9NOXaeyeBFmtD60rq6sAMPfzuULrM+GvQtu0bRfdPri2rBKXc2gr/eDFkXL74Aga+9TYV4SWmijusgIAFi9bL7S6jfnP/fQ9eWzhTcKFdmifbAMG+N0Cp85DX1KVHvvRVzQ2PUneMajXoh6NZZX9Q/vlXYg5m3mHIOt273WT7AoFgONHjwttRWIijQ1vJM95dKtGNHbvIXl+G7ZpQmNnzFro9fhIFr/LxdArv6K4FE1+RXEpmvyK4lI0+RXFpVzwev4LIfKqhvblcR95aU4tu4b8WnrpkUE09rnXPpTaML5U+I13PhfatvW8MbFJu2ihPfuU3IdXXpLPDwCfjpNFvC+XLaex2RlZQtuTsJdEAl37yALU2Gc/oLFhkbLQVLGyH42NbC7bpO+57UahVfbj2x8+dkxoFvz9VdFXtg3XuuIKGptfIP0anNq3w4KkL0J6ljy3/g7LmlMPHxZaGtkeAK5rJAt2xsErIZ+sx/8tJYXGZpO1/y0jeJG2WmXv5crXdeyI3zZsKNZ6fr3yK4pL0eRXFJeiya8oLkWTX1Fciia/oriU0m3vzS8Q5g7MiAPgLbusqg8Af3vlMRnrUO2vRMwcOzi0b8YtiRNafqGsPD/5gjS5BIDCU6eEVj80hMb2HTBEaK1b96Cx9z9wm9A69OLHkLRJtrFWrcXNKT578x2hXRklnY1rBnKH2gYh8thmzllCY6+7tpXQZi1dRWMDqkmzzdOF8twCQLcYeYfmp5XSoMPHl7/1a9aULcrt6nPjj+P50kF41q9raGx4mDznzWrXprEffvaN0Or2r0ljlyV4m6lm/w8OyHrlVxSXosmvKC5Fk19RXIomv6K4lBK19xpjUgDkADgFoNBa2+b34lu1bm1XrFzppTm1aR45LtdKh1XjI7gYtaryohQrwq3exdfjs3XVox8YIbT+jz1At49uL9dgt4yIpLGHSGusU/Emeb9c394luhmNnbNcFqB8K/BiV1SkLEAdJq/DvmTeku3nL9t+w8N5gbNbM7m/7/5rOo0NrCnHV2VlHKGxLzw0UGjLtskJQzuSeet00wayAL2PtPwCwG1t2wrtzY+lSy8AhNaXnhE+5bnTbrtGDYTG3h8AkHLA24n5rw8+iOTt2/7wcV1nuN5aK90SFEW5rNE/+xXFpZQ0+S2An40x6z1juQTGmAeNMeuMMesyM/UPBEW5XChp8ney1rYC0BPAY8YYMcLWWjveWtvGWtumRo0aJXw6RVEuFiVKfmvtPs/XDADfoWhst6IoZYALLvgZYyoDKGetzfF8fwMAPlDMw9b4bWgZ7d2GymbnAdxlN4y0mgK8ZZdV9QE+y2zSQj5/Pe+YnJW3KW6J0D6b/TPd/sRJ2Qp8Ry/eCtw+NlZoCetkezEA3P3CvULr0/1OGjvwyYeFFlCtCo39dekGuf3t0syjkoMRxlVkxpzTHYs95E5KjxuuobHMTCPeYV5gYrq8E5JJKuUdW/C5gH6+cgbgh6Mn0djyT8j30rAhd9DY+H3SXfmfr02gsZUe9Rdae4cW4zrVvc1LAvwr0jhGSar9wQC+8ziXlAcwzVorva4VRbksKcmgziQALS7iviiKUororT5FcSma/IriUkrVvTe8fgM7/J2xXtq+nftp7PEs2Va6Y+NWGsvW43fvwYtHiXtl4eXertfT2Hr15Kea1RuXCW36z7/Q7a9vL0dHrduxk8bu/E22GMct3URjR7wnR5z9upLHJsXJ9fwPDxtAYz8eK1tTa9SW68hje3ag2/+yQLYS120WSWNzc6RDbWAt2cYLANkHs4U2uIcskALAVlJYYyPLCvJlMRYA0pNlwfCFEdJrAQDWJclz61QMLTx9Wmgdr5JtvADg6yM/jU+ez4vSmanevTMfvvEiUlOS1L1XURRnNPkVxaVo8iuKS9HkVxSXosmvKC6lVN17y/kYVAzwbl2sH8PbFud+LpsF2ew8gLvsNmrbkMayll1W1QeApCRZQT92Qm7fuoWc2QYAWaS1tVZ1bkjy0/pEoSUmStdZgM+0a9qCV45nT5gptILCvjR29/ZkoWXul224IXW5QUfeUXm8VavyVuLkLSlCS1iZQGPz86RLblidWjT2ioqyNXb7mu1Cy9zHV5hWripbxUMcjGFYK/CqFfyuS+NWVwmtQnm5PQDsPyKNSgICpYMxAMw7J0+OZ6t7r6Io50GTX1Fciia/orgUTX5FcSml2t7L3Hvj9sh1+wBQP1iONzpZWEhj2Qit3rG8qMXW4x92cEZlxb26tWSh6fm3PuH7lSsLVQP/cjONDago12H7lOO/m8f9fZrQRr30EI2dvV6u0d+0mBelHnukn9AqknbVA9my3RYAgirLYpnTMVQkxbLtZC0+AESRc758xw4ae4W/LPg1JWOxqlWqRLdnrNrJW7L9yblZvoqf22bRsiBb3uHcxDaVXgML4+NpbNQ5eXJzt26I27hR23sVRXFGk19RXIomv6K4FE1+RXEp5+3wM8ZMAPB/ADKstc08WhCArwFEAkgB0M9ay+cnncXhozmYumCJ9w5U4F1Om7bJ9e1rflpLY598QZpiOo3QYmabBcRoE+Cde6y49/YL0iQTAFaTQtGaODk6CgCaNpRjotas3kxjn3pKmp4u3y672AAgOU527fn48jFRCfult0JXUnzadeAA3Z6Zpu51GHXVOjJSaE7F59yTJ4VWJyiIRAJt6tUT2imylt7J4DWfFJXDHJ4rvHp1+XPJcwGAj5E1OFZMBYDj+bLQ7FTBq3JOobicQxGRUZzISQB6nKM9D2ChtbYBgIWex4qilCHOm/zW2qUAzv31fQuAyZ7vJwPoc5H3S1GUP5gL/cwfbK09M6o1HUU23pSzx3XlONwfVhSl9Clxwc8WfVBz7BQ6e1xXFYfVUYqilD4XmvwHjDGhAOD5mnGeeEVRLjMudD3/9wAGA3jb83VWcTbKz8tH8uYUL61RO77uPri2/CRx37iRNJZVbqPbN6GxbIRWk7AwGsvW47OWXVbVB4D2UVFCu2vQCzT2mtGyql49jA82fXn4P4T21pinaGz1KnI9vdMILVa9Hj9L+iq0iuavGavWO1XlkzLk9WJzPD+PeY1lBb+dw/iq3r2ls/HAkQNpLONYtnSN7ti8MY3td8czQmPOygCQnSfdioMd/hI2pLZ/xOE1mzbX29X3cHYOjWOc98pvjPkKwEoADY0xqcaY+1CU9N2NMYkAunkeK4pShjjvld9ay03ega4XeV8URSlFtMNPUVyKJr+iuJRSXc/v61vBBgZ6F/LueWw4jWVtis2va05j64dKQ8mIGrxYdkcv2Qr8yJuycANws01mnunUsrt8phztNW3KWzT2HzNkzTR1eyqNrddCFrtSd/DYnr07C4211gLA18t/FVqP1nLk2IaU3XR79nPnb95CY29p00pom/bspbGsNTYuUbYtA0B5X/lJNrq+3K+gAOk94MTfiX8CAES1lAXdR27tRWPXJ8v9/e7fC2jsK0//RWisQAoAlfy8W4R7d78Bm3U9v6Iov4cmv6K4FE1+RXEpmvyK4lI0+RXFpZTquK4qVYLQJba/l1YrnI9d+uBF2co7svH7NLbvgCFC+2nVIhrbPjZWaDt/k8YhAB+hNWrMMKExIw6At+xeffPVNHZov1uEduON99HYAYNuElpuDm//jEuQx7Ynk4+qerCnrFS/9+XXQjtxTLaqAkBV4og7c6wcFwYA138u269nf7uYRAKBtQKFFtE4nMY2CJF3frbulXdCdm/ldyxq1akptBHP3ktjU8h5nDBvIY015I7F0IfvpLHjv/1JaCGRfOFsxl7vuwDZOdyJmqFXfkVxKZr8iuJSNPkVxaVo8iuKSynVgl85n3KoVMW7KHTiuHQqBYDg4Aih7Ung7Z+tW5/rL+q8Zj1hXZzQ/P35DPnExHVC8ykn1807ueyy9fhOLbusuDdv3uc09h3zitBOnpAOtwAwY9xkoT34uixaAkDnzrIAdfTQUaE5zYrfECcdhAeM4EWttUlJQivI5y7KB/ceFJqfvx+NrUH8C1hx70i6g9k0aXc/1oq/RxP37hOa07k5mSd9IPYf4fvQrVNr+VwOjslpSd4jzpzOIUOv/IriUjT5FcWlaPIrikvR5FcUl1IcD78JxpgMY8yWs7RXjTH7jDEbPf/4ImZFUS5bzmvmYYzpDOAYgC/OmtX3KoBj1tr3/pcnC4uoZx97cbSX9sPEGTT24TeeFFpwDe4EW7embMlclcBn17E2y6jaV9JYZtwxjhg7sNl5AHfZ7XRbJxrbPlrOBWT7CgAxEfJOyDOvjqOx77z8qNCmLllKY+uFhQqtdpA0NFmfnEK3r0Rmzzk51Fb2k9X6OtX565uYLivd6xJk6zUArPlxjdA63S7PefcW0XR7NvNw27odNJYZqAx9bhCNXbB8vdCc7tDc31deS8dN5G3Sg+70vtN1Uc08HMZ1KYpSxinJZ/7HjTFxno8F8vKgKMplzYUm/8cA6gOIAZAGYIxT4Nmz+o4fK/5AAUVR/lguKPmttQestaestacBfAag3e/E/ndWX+UA3kmnKErpUyz3XmNMJIDZZxX8Qs9M6TXGPAWgvbW2v/NPKKJmcG17W//HvDSn549oKotav8zka6U79LpWaEPuvpnG9uku200HPvUIjW3aooF8rgZSY0UigBfmPp34HY0NCpXFLqeCEGt3HfMqHxM1aaFcI+/kX1A/RroCD+wiz+3xfNmqCvCC324H7wC27t6JXPJ8H03/nsY+dKd83cuR8ldlv4p0+/wC2R7b9/anaez4KaOF5le++B3zD9//GtVjYqVj8iMDpd8DAFzh7+/1uF3btli3bl2xCn7n3VPPuK4uAGoYY1IB/BVAF2NMDIqm86YAeKg4T6YoyuXDhY7r4itOFEUpM2iHn6K4FE1+RXEpmvyK4lJKdVZf4+bN7aTvvKvd5X18aOziZbIdMn55PI0tLCgUWodbOtDY3OzjQkvazOe+bV33m9Duf/0xoSXH8e273Sj3wel8M5fdyW99QmOXr/hWaE4tu/d2vV5oA+5+gcYyZ2HmZtu8Th26/ba0NKH1aS2NKQBgXpw0VckvlK8jwCvoTrFdGjcW2oodsj33tMPrEEgciNvU5e7M2XnSxXjjbu4KzM7ZqdOnaexX/5Ez/O7rx5fP/BznbSTz8v33IWnbNp3VpyiKM5r8iuJSNPkVxaVo8iuKSynVgl/T6Gg7bfZsLy0pI4PGsoLMgmm8vbcqGedUv0U9GnuqUBZZrmkpx2oBQAEpKk2f8qPQfHx50bLLTdcI7XpSkAKA79ZJp+A8B2fjcqRf1alld9dGqX819S0aO+3XX4XWs0ULofmU49cMtkY/+aBsRQaA6gHS5fZkIXeereovi3BTF/ECZ6doOQasXi05Eq6cg1cCY2E8LzS3JO3b+7OyaGydINm+7fRzU3ftF9odN3amsX6+3sXQG67rgo2//aYFP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lFKt9tesFWb79PN2k60WzO3/Pn3vr0Ib+f4/aexnb74jte+n0thfl24QmtP8vN3bZdvuR5OlgUPCflmdBYCIGnJW37odO2nsgz1l+yabnQcAL48bIbRdqbK1FuCz9mqSll0AuOsaeXfirc++Etr+nfx465E7LPO+kHdHAGA8uePw7ruTaGw+mXPHWpEBoHx5eedl+1rZ3rsvUc7ZA/i5efHZv9DYGYuWCc0w5xAAW1cmCG3Es/fS2Lg9e4S26hfZag4A+bne52bCP95AWmqKVvsVRXFGk19RXIomv6K4lOKM66pjjFlsjNlqjIk3xgzz6EHGmPnGmETPV/XuV5QyRHGsRgsBPGOt3WCMqQJgvTFmPoB7ASy01r5tjHkewPMAZCXqLGqFVMeTzw/20ioSx1cACG8SLrTbu/JRV1dGyXFbh4/LdfsAMPD2G4X2+RfcCTZz/yGhsf3t2pS3B4+fNVdo/bpLN1wAeO/Lr4XGinUAH6F1dVQUjZ25Ro6v6kFadgFe3HvhAWnhOPKd8XT7uCWbhPbQaO7tev9dw4UWHy8LaAAQGdlcaK27c5+Ao8fkOVv6w89C27KFP1dEhGwPHjykN409kiFbeedO4e+lvsMGCi0+lReab2gujzfzKJ95MbBTR6oXh+KM60qz1m7wfJ8DIAFAGIBbAEz2hE0G0OeC90JRlFLnf/rM7/HvbwlgNYDgM979ANIBBF/UPVMU5Q+l2MlvjAkAMBPAk9Zar7+tbFGzAG0YOHtc15HDOu9TUS4XipX8xhhfFCX+l9baMwZyB4wxoZ7/DwVA1+aePa6rGlnWqCjKpaE4E3sMioZ0JFhrx571X98DGAzgbc/XWef7WcdPnMDKLdu8tC3Lt9DYQ/tkse2eXl1pbM1AOQN+x7YUGstGSsX25GafIXXlSKkD2dlC23VAzo8HgFbRDYW2IYUbPJ44Js0gAwLlmncAWJ+cIrRqlXksM450Wo/POvdYce/NEQ/S7VvGdBMaK4oBwD8myU7Jd177jMbOnilnxCyYyv0aCvLliDM/P3+htWghjU0BwBh5brbt592TC6fPE9qQUQ/T2Ed6yTFir306gcbWJ/4DY4fx0V7PvDrO6/HUT9+lcYziVPs7AhgEYLMxZqNHG4mipJ9hjLkPwG4A/Yr9rIqiXHKKM65rOQCnXmF+KVYU5bJHO/wUxaVo8iuKS9HkVxSXUpyC30UjwN8f1zT3dq/NTM2ksWyd/+Fjx2hsgxBZld+9m1dorwoNFdqU6XzNed7RXKEFXSfXkReeOkW3Z14JrSMjaWxVMiZqQ9x2GsvuWDAN4CO0GoeF0Vi2Hp+17LKqPgD8tlGOmWrdsQuNnfLlHKE1bCvvjgDAhpX1hRZ7VyyNnTdRtlQfPLhXaNWr83OwebN0BW5d930ay1pbrm3ciEZGRbUSWucOMTQ2jdxRyszkrcA5h73bfk+d4iPAGHrlVxSXosmvKC5Fk19RXIomv6K4lFIt+GVl5+D7n7zXUaenpNPY3fGyDfae/j1p7Mw5S4TWvBUvHmXnyiJe3WaRNLZq1SpCY62xex0WLLERTfM383bmmWNnCm3ACG7gGVxVtjPvzuSF0z6t5bp3pxFazGyTrcd3atllxb1/ffgSjWWvwxc/8nFssb3lavHYdrxYtmmxLFDeOvRWoaU6GHg2ipFr6UOqynFwABDVTBb3LF/fhtq15fuxpUPx9/2p3wotPFz6DADAtXd4+0PMnzeZxjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUkp1XFer1q3tsl9XeGnZudLEAgB8feTYpcLTvHVxD6l0t6pbl8cekiYhP69cT2MP7JYmHUOH3CG04/lynBQAJGVIc6M29fh+Hc07IbS1SUk09irSztzoSulgDAA/btwotGuuuorG5uTJ14K57DIjDoC37A5/TLrWAryd+aX3/kVjq4XIVu+QSHkOnJg7Qbb8Vqoinx8A/Cr5Ce32e/hdpoM50lF39dy1NPa+++UdhywHh2n2Pk8+QI2yMOcT73M+b+4kHD6UpuO6FEVxRpNfUVyKJr+iuJSSjOt61Rizzxiz0fNPzphWFOWypSTjugDgfWvte8V9sqzcXHy/wXvOeDeHUVdjP5Kjo0YPf4DGzlq6SmgLFq6msT1ukDPoA2vx9s0EMlN9e7psR3Yqmm6O3yk03/L8lM/+drHQCvILaGzXEfdRnZFfWCi0k4X857777iShsRFaTi67bD2+U8suK+6NfvZ+Gsucdm+6S44RA4CoVnJsWZEBtTdzZvI22M6xtwktoGJFGrs9WfoELPlBFj0BILS+9JFo2IQXf7uTcV2HHLws5s/7wuvx0WxZ0HaiOAaeaQDSPN/nGGPOjOtSFKUMU5JxXQDwuDEmzhgzQaf0KkrZoiTjuj4GUB9ADIr+MhjjsN1/x3XlHDlyEXZZUZSLwQWP67LWHrDWnrLWngbwGYB2bNuzx3VVqaZ/HCjK5UJxqv10XNeZOX0ebgXAF6orinJZUpJxXQOMMTEosjBNASBdH4rBtB9llRsA0pNkVT2/gFepA6rJOXWnCrmjblqWNKLIPijdUgEgP0+27UaROWq5J+V8OADIayzdcH1I5RngdxwO7uWmG4npsu2YtfwCgB+5u1DVn7e2suONjJSVZzY7D3Bw2SVGHABQu2FtoTnNz9u0Sb5HmrfsSGOzDsrX95cF0iglN5e/5it+kSMn+xzoTWMXTV0ktN738rsQU/72kdCGvDiUxp4md8Amvj6FxkZENPN6nJcn73w5UZJxXdzvWlGUMoF2+CmKS9HkVxSXosmvKC6lVNfzh0XUs4+OfN1L863gS2Pzc2XxaVC/HjR26ZatQtu7XbZeAsC+HdK1dczbT9HYBfHyBkYhGYfEXHoBoCFZYz99sWyXBYArqkmn4PQUWdgDgMqBlYWWdYD3UNRvKltIDx/ixS5TTpZ2Ck7IIuuCqXIsF8BHaDm57K5PShZa/Ip4GrsnYY/Qpjp4Cizdtk1oEz/4Wmi1G/Am1YbtpCPvmKGjaOyoz98W2vI5vOBWnrzPp308jsau3CjfIyt27KCx6Xu91/m/M/xJ7NmZqOv5FUVxRpNfUVyKJr+iuBRNfkVxKZr8iuJSSnVWn6+fL0LreZsaLPs3r37HxMoqcZhDVb1bTLTQQrp0prGJxIxj6z4+t+2Kiv5CY86qberJNl4A6N37CaHdOlSaRQBAA9KeW6OKvAMAAF9/KltQx7z7NI0tPCXbnDOOHqWxq7fJivLRYzK2IJ+3M8+bKF1y2ew8AOjcV74+zIgD4C27rKoPAJ0byWr9oCEvC+2kg1HKv16Wbbgz502lsVEh8m5OgYNRyjUdZIvwzyt/prHs9Xl58DAae8/T3i3Cpx3a2hl65VcUl6LJryguRZNfUVyKJr+iuJRSLfj5+JRDlSu8W1NZYQ8ADu2XI7jSyVp8APhp5TqhNawfTmMziQtqcsJuGrt9zXahvf7G40I75TBGbOBIOaoqKjiYxm7dmyq03Vv5fnW6vZPQSGcuAN4WemO0LJACwBdTZgtt6Q+yKOXnJwuhAHDwoGypvnWoHFMF8BFazGUX4Ovx847xMW+suDdlwutCa9pUnkMAOH5ctj5vSOGvQ987nxXajFW8vTcoSBYHl27i7cz3dOsitGbRfH9XzFrq9fhYFnf5ZeiVX1Fciia/orgUTX5FcSnFMfCsaIxZY4zZ5BnXNcqj1zXGrDbG7DTGfG2MqfDH766iKBeL4hT88gHEWmuPeSy8lxtjfgLwNIrGdU03xnwC4D4Uefk7P1m5cggK8DbbDGwmTR8BYM5mOZvevwL//eLjKw9jBxmlBAAdW0hzxB0b5VgtAMjcJ4uO1chcedZF50RQgFyLD/Di3pF0vkZ/yJ03Ca2yHx8pdZr4NZRzKKztS5Sdjlu2yA5MJ6PN6tXlGvlU8jMBoFIVeR6dRmgxs02n9fisc48V9+Ljl9Ptw8ObCK0+MW0FgIgmsqi8YCofT1YrTI7rujKkBo1l49TqteBdpB++OdLrcW4u795knPfKb4s4U0L09fyzAGIBfOPRJwPgNq2KolyWFHdoh4/HtjsDwHwAuwBkWWvPTIFMhc7vU5QyRbGS3zOZJwZAbRRN5pGrJxw4e1xXlo7rUpTLhv+p2m+tzQKwGEAHAIHy2b4fAAALa0lEQVTGmDMftmsDoB/uzh7XFajjuhTlsqE41f6axphAz/f+ALoDSEDRL4E7PGGDAch1poqiXLYUp9ofCmCyMcYHRb8sZlhrZxtjtgKYbowZDeA3FM3zOy/n1plXLJKtuQDATIVTDx+msTVryr8onNbC+/lKF9X0ZLnGHwAqV+WV+XPJLyyk+rHs48XaHgBq1akpRQdn5eXbZdtx71ataGwguTvhRE2yDxERsvptDL9mbN68VGiNYuS4LwDwq+QntM6x3OuAjdBiLrsAX4/PWnZZVR8A9uyRTtANQnhL9vKfpIvx0x+8QGPHPTdWaI2JuzMA5BfI99OSWXxAVqNGV3s93rp1BY1jFGdcVxyAlkRPgsNkXkVRLn+0w09RXIomv6K4FE1+RXEppTquK+TKcHv3Q8O9tOAIXky57lpZwDpE1uIDQMvISKEtczB4/M9H3wttzD+Gk0ggpGpVof2SkCA0J2NR1vb7yUczaOyIZ+8V2rETJ2js9JnzhbZ23hoe++/3hLbcYfRTu/qy1Tr18CGhbdufRrdvXTdSaCFVA2ns2iTZvh1Qkbco7zogx5a99Yhctw9ws022Ht+pZZcV9wKIkSsAJBDj12UOa/Qj68j23p4xopQGANi+X/7cqv58Hw5kexcz+/Xqhfi4OB3XpSiKM5r8iuJSNPkVxaVo8iuKS9HkVxSXUurjukIivaupy77l47qOH5WtscMfGsBj8/OFdlvbtjS2/BM+QltHKs8AbwVmVdfw6tXp9v3ueEZo3QZ1p7EpmdI4JHEvN8JI3SGdfsdPGU1js/Oky23LiAgaO2ORfC2OZEjH5IXT59Hti2wevIlqxttwuw6IFdp2BwOWRVMXCW3U52/TWDZCi7nsMiMOgLfssqo+ADQOk6vYnYxd2ra+UWirE/ldlwLSLn5Na3m+AOCBkd53qrJzit9Srld+RXEpmvyK4lI0+RXFpWjyK4pLKdWCX41qVXF/X2/n2Uf7y7nlALAiMVFoTuOcZv0qW1vTdvEW1GFD7hCaU8Fv1Qo5W75iZdmCWugwrmvEe08IrV097sI6YZ50fQ0IDCCRwNDnBgnNrzx/KVftlM7EVzo4Khky82vuFNkOPWTUw3T7axvL4p4lRUAA+PiTb4S25Ic5NLb3vbLQu3wOH4tVQJxv2QgtJ5ddth7fqWWXFffK+8iCMgBs3C1bjBcsXUtjH+13s9DiE/jx9v6/R7we5xy+iO69iqL8OdHkVxSXosmvKC5Fk19RXEpJZvVNMsYkG2M2ev7F/PG7qyjKxaIks/oA4DlrrSzbOnA0Lw8Ltmzx0qa++SWNDW8kW1DbvsIr5eFh3BCEEU9aNZ2q9Y1bXSW0yn7SddbH4S4Ea61dn5xMY9mdjJN5sm0ZABYsXy+0e27uRmOb16kjtEoOMw8nrZRGJX2HDRTaI71kNRoAoqKkAUvt2g1p7JjPXhFaaH1peAEAU/4mHXl7DuhHY6/pIO8eBQXJll82Ow/gLrsv/vNFGstadllVHwBiSEv1lKW8tX1XhjQv6diUuzOP+uQzr8dbtstWaCeK495rAbBZfYqilGEuaFaftXa157/eMMbEGWPeN8bISyK8x3UdzZKLRBRFuTRc0Kw+Y0wzAC+gaGZfWwBBAEY4bPvfcV1XBHI/N0VRSp8LndXXw1qb5hnfnQ9gInSAh6KUKc7r3muMqQmgwFqb5ZnV9zOAdwCst9ammaJK1fsATlhrn/+9nxVaO8L+5Qnv4klQCG81jW4lW0V9HVonG4bK4s289Rtp7IIvpPPteFJ8AoAK5eV6fuYKXN1hNBhb+//p59/S2KEP3ym0/Q5TjRf9IkecrZvHx569O+45oa3ZtYvGXttInvP4VOkdsGmjHBcGAJ07yBs+zFkZ4C3VTu7MSTvlOv8xz/Ei3M8rfxbaUtKee2VIDbo9G6EVFcrHarH1+EtWbKCxzKV6UOdraeyONNmafsqhKH3ue+SRfv2wPT6+WO69JZnVt8jzi8EA2AiAN3wrinJZUpJZfdxaRFGUMoF2+CmKS9HkVxSXosmvKC6lVGf1NWvRws6cO9dLY5V6ANh7SM6IW5+SQmPXLpQV1rvu6kljt5Dq9a1t2tDYNNKUFFFDVomP5/OZegay6OpkSDL+25+E1q1TaxrLzDg+mSZNN5yez68S7cdC0+ZRQruheXOhpRw8SLdPO2duHACs+JXfdelwdbTQ2KxAADhNKt1HcnNpbMZRaWbBKvgniekHAOQXSOdcp+diLrvs/QHwll0/cjcJAK4iObGKmNsAQKu6db0eX92+PdavW6ez+hRFcUaTX1Fciia/orgUTX5FcSml6t57srAQyecUi5554DUa27BNE6ENfZyP66rbv6bQnFpF25Oi0uT5i2ksc8/deUAWbpyqK6xQ1MihwHnuGDMASCTPBQAz/yPXbA8lrsQAL0qdKODFrolfSffczKM5Qhs7jL9mmZmymBoeLl9HAAipGyI0p9ds4utThHb3yLto7MuDhwmtWXQnodVrwb0hlsz6UWiz53PPCTZCy8lll63HX50g3aEBXty7ukEDGjt50RKvx4dz5OvlhF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKqVb7fcqVQ9VKlby0v08YRWNnzJKz1KpVrkxjlyVIgw3WEgoAdaoHCS0zNZPGzvt8rtDGfCJnuVWpKOf3AcC0ufIuQqtI6eIKABl7M4SWlpROYx8Y0kdoVxDjEAD4asWvQuse3YzG5udKt+CBnToK7ZlXx9Htcw7LSvO1d3DDijmfyDsL8+d9QWMjIuT+ppPzBQD3PD1UaCtmLRXah2+OpNs3anS10A6QtmUAeGDkcKGdOzvvDOe67ALOZi3MVOXcqv4ZBsd2oXpx0Cu/orgUTX5FcSma/IriUjT5FcWllOp6fmPMQQBn5hnVAMArbWUbPa6yx5/p2CKstbLfnVCqye/1xMass9ZyF40yjB5X2ePPfGy/h/7ZryguRZNfUVzKpUz+8Zfwuf9I9LjKHn/mY3Pkkn3mVxTl0qJ/9iuKSyn15DfG9DDGbDfG7DTG/O5gz8sdY8wEY0yGMWbLWVqQMWa+MSbR85VPIr2MMcbUMcYsNsZsNcbEG2OGefQyfWzGmIrGmDXGmE2e4xrl0esaY1Z73pNfG2MqXOp9LQ1KNfk9wz4/BNATQBMAA4wx3OepbDAJQI9ztOcBLLTWNgCw0PO4rFEI4BlrbRMAVwN4zPM6lfVjywcQa61tASAGQA9jzNUomjr9vrU2CsARAPddwn0sNUr7yt8OwE5rbZK19iSA6QBuKeV9uGhYa5cCOHyOfAuAyZ7vJwOQS/Auc6y1adbaDZ7vcwAkAAhDGT82W8QZo0Bfzz8LIBbANx69zB3XhVLayR8G4Oxh66ke7c9EsLX2zID1dADSmbMMYYyJRNGU5tX4ExybMcbHGLMRQAaA+QB2Aciy1p5xOv0zvicpWvD7A7FFt1LK7O0UY0wAgJkAnrTWes3BKqvHZq09Za2NAVAbRX+JysXzLqG0k38fgDpnPa7t0f5MHDDGhAKA5yt3nbjMMcb4oijxv7TWfuuR/xTHBgDW2iwAiwF0ABBojDljbPNnfE9SSjv51wJo4KmuVgDQHwCfMFl2+R7AYM/3gwHMuoT7ckGYoumenwNIsNaOPeu/yvSxGWNqGmMCPd/7A+iOonrGYgBnBh+UueO6UEq9yccY0wvABwB8AEyw1r5RqjtwETHGfAWgC4pWhR0A8FcA/wEwA0A4ilYw9rPWnlsUvKwxxnQCsAzAZgBn/NBGouhzf5k9NmNMNIoKej4ouvDNsNa+Zoyph6LicxCA3wDcba2VnmZ/MrTDT1Fcihb8FMWlaPIrikvR5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJS/h/l3KikFmmUawAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n", - "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()\n", - "\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "print(\"predicted classes:\", result['predicted_classes'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### part II: Programming way.\n", - "We construct the svm instance directly from the classes. The programming way offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. We will demonstrate this advantage soon." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the svm in the programming way.\n", - "- We build the svm instance by instantiating the class QSVMKernel. \n", - "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "backend = Aer.get_backend('qasm_simulator')\n", - "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entangler_map=[[0, 1]])\n", - "svm = QSVMKernel(feature_map, training_input, test_input, None)# the data for prediction can be fed later.\n", - "svm.random_seed = random_seed\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)\n", - "result = svm.run(quantum_instance)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us check the result." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4Tff2xt+viAhREUOShiSImiPmKlUNWvRX1YFSVb06T3Sk1eFWq+Mt7b1uJ701lKq61V4tLTXWULMSIghJEBIRJEIiEr6/P3Lcx7HeXbmiId3r8zye5LzWztl7n7Oyc9Ze33cZay0URXEf5S71DiiKcmnQ5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaWUKPmNMT2MMduNMTuNMc9frJ1SFOWPx1xoh58xxgfADgDdAaQCWAtggLV26+9sI54ssFowjS04eUJoNa50iM0vEFpwjWo0dmv8NqHVCruSxpbzMUILqlJFaIeP5tDt8/PyhZZ5II3GVqkSRJ6f/272q1RRaCdPnKSxNWrJ81DOyOMCgIz0Q0KrFVJdaMdPyNcGAAL8/YWWlc3PTa3qcr+ycnNpLCM/V55bAPD18xWaDzmP5csV/7qXfYQfA3uuGtWq0tijeXlCy83hx1u9eqDQThYW0lifc44jbd8+ZB0+zF/gcyhfnCAH2gHYaa1NAgBjzHQAtwBwTH5G1653Uz1173ahPTDqSRqbnpIutKf/0pfGtoy+VmiPj36JxlYMkG/mgbGdhTZ1wRK6ffLmFKF99t7rNLZLbH+hVapSicY2bNdQaLvjd9PYIU/I81CxQgUa+893pwjtyecHC23lFvkLFACuad5YaN//tIzGPjGoj4zd8BuNZSTFJVE9tF6o0KpcUVloQQEBdHuWNT9+s5jGhkTKi9H9fW+isQu2bBHahsUbaezge24WWvLBgzS2aiXv98iQW2+lcYyS/NkfBmDvWY9TPZqiKGWAklz5i4Ux5kEAD/7Rz6Moyv9GSZJ/H4A6Zz2u7dG8sNaOBzAe4J/5FUW5NJQk+dcCaGCMqYuipO8P4K7f2yCwWrD4jD/zmzE0tnfvJ4SWtosXy+pG1xVaxtGjNPam/rLGsG/nfhpbP6a+0OL27BFa+Qqy8AMAjchn83seG05ja4XXEtqJ47yw9sPEGUJr3rYdjS3v4yO0pIwMGlstWBbhWH1gy3L5+RUAMlMzhcbqMQCQnSsLYN2aNqWx036Un7l9Hc75sn/LGkNMbIzQApvJ1xYAVixaJ7TgCF5oXvatfK5H+/emsVPf/FJonW7tRGMbhsq6xTMPvEZj/z5hlNdj9no7ccHJb60tNMY8DmAeAB8AE6y18Rf68xRFKV1K9JnfWvsjgB8v0r4oilKKaIeforgUTX5FcSma/IriUv7w+/xnU3DyhOjcY1V9APj++3FCa9dTdqABwJTRE4XW9NOXaeyeBFmtD60rq6sAMPfzuULrM+GvQtu0bRfdPri2rBKXc2gr/eDFkXL74Aga+9TYV4SWmijusgIAFi9bL7S6jfnP/fQ9eWzhTcKFdmifbAMG+N0Cp85DX1KVHvvRVzQ2PUneMajXoh6NZZX9Q/vlXYg5m3mHIOt273WT7AoFgONHjwttRWIijQ1vJM95dKtGNHbvIXl+G7ZpQmNnzFro9fhIFr/LxdArv6K4FE1+RXEpmvyK4lI0+RXFpVzwev4LIfKqhvblcR95aU4tu4b8WnrpkUE09rnXPpTaML5U+I13PhfatvW8MbFJu2ihPfuU3IdXXpLPDwCfjpNFvC+XLaex2RlZQtuTsJdEAl37yALU2Gc/oLFhkbLQVLGyH42NbC7bpO+57UahVfbj2x8+dkxoFvz9VdFXtg3XuuIKGptfIP0anNq3w4KkL0J6ljy3/g7LmlMPHxZaGtkeAK5rJAt2xsErIZ+sx/8tJYXGZpO1/y0jeJG2WmXv5crXdeyI3zZsKNZ6fr3yK4pL0eRXFJeiya8oLkWTX1Fciia/oriU0m3vzS8Q5g7MiAPgLbusqg8Af3vlMRnrUO2vRMwcOzi0b8YtiRNafqGsPD/5gjS5BIDCU6eEVj80hMb2HTBEaK1b96Cx9z9wm9A69OLHkLRJtrFWrcXNKT578x2hXRklnY1rBnKH2gYh8thmzllCY6+7tpXQZi1dRWMDqkmzzdOF8twCQLcYeYfmp5XSoMPHl7/1a9aULcrt6nPjj+P50kF41q9raGx4mDznzWrXprEffvaN0Or2r0ljlyV4m6lm/w8OyHrlVxSXosmvKC5Fk19RXIomv6K4lBK19xpjUgDkADgFoNBa2+b34lu1bm1XrFzppTm1aR45LtdKh1XjI7gYtaryohQrwq3exdfjs3XVox8YIbT+jz1At49uL9dgt4yIpLGHSGusU/Emeb9c394luhmNnbNcFqB8K/BiV1SkLEAdJq/DvmTeku3nL9t+w8N5gbNbM7m/7/5rOo0NrCnHV2VlHKGxLzw0UGjLtskJQzuSeet00wayAL2PtPwCwG1t2wrtzY+lSy8AhNaXnhE+5bnTbrtGDYTG3h8AkHLA24n5rw8+iOTt2/7wcV1nuN5aK90SFEW5rNE/+xXFpZQ0+S2An40x6z1juQTGmAeNMeuMMesyM/UPBEW5XChp8ney1rYC0BPAY8YYMcLWWjveWtvGWtumRo0aJXw6RVEuFiVKfmvtPs/XDADfoWhst6IoZYALLvgZYyoDKGetzfF8fwMAPlDMw9b4bWgZ7d2GymbnAdxlN4y0mgK8ZZdV9QE+y2zSQj5/Pe+YnJW3KW6J0D6b/TPd/sRJ2Qp8Ry/eCtw+NlZoCetkezEA3P3CvULr0/1OGjvwyYeFFlCtCo39dekGuf3t0syjkoMRxlVkxpzTHYs95E5KjxuuobHMTCPeYV5gYrq8E5JJKuUdW/C5gH6+cgbgh6Mn0djyT8j30rAhd9DY+H3SXfmfr02gsZUe9Rdae4cW4zrVvc1LAvwr0jhGSar9wQC+8ziXlAcwzVorva4VRbksKcmgziQALS7iviiKUororT5FcSma/IriUkrVvTe8fgM7/J2xXtq+nftp7PEs2Va6Y+NWGsvW43fvwYtHiXtl4eXertfT2Hr15Kea1RuXCW36z7/Q7a9vL0dHrduxk8bu/E22GMct3URjR7wnR5z9upLHJsXJ9fwPDxtAYz8eK1tTa9SW68hje3ag2/+yQLYS120WSWNzc6RDbWAt2cYLANkHs4U2uIcskALAVlJYYyPLCvJlMRYA0pNlwfCFEdJrAQDWJclz61QMLTx9Wmgdr5JtvADg6yM/jU+ez4vSmanevTMfvvEiUlOS1L1XURRnNPkVxaVo8iuKS9HkVxSXosmvKC6lVN17y/kYVAzwbl2sH8PbFud+LpsF2ew8gLvsNmrbkMayll1W1QeApCRZQT92Qm7fuoWc2QYAWaS1tVZ1bkjy0/pEoSUmStdZgM+0a9qCV45nT5gptILCvjR29/ZkoWXul224IXW5QUfeUXm8VavyVuLkLSlCS1iZQGPz86RLblidWjT2ioqyNXb7mu1Cy9zHV5hWripbxUMcjGFYK/CqFfyuS+NWVwmtQnm5PQDsPyKNSgICpYMxAMw7J0+OZ6t7r6Io50GTX1Fciia/orgUTX5FcSml2t7L3Hvj9sh1+wBQP1iONzpZWEhj2Qit3rG8qMXW4x92cEZlxb26tWSh6fm3PuH7lSsLVQP/cjONDago12H7lOO/m8f9fZrQRr30EI2dvV6u0d+0mBelHnukn9AqknbVA9my3RYAgirLYpnTMVQkxbLtZC0+AESRc758xw4ae4W/LPg1JWOxqlWqRLdnrNrJW7L9yblZvoqf22bRsiBb3uHcxDaVXgML4+NpbNQ5eXJzt26I27hR23sVRXFGk19RXIomv6K4FE1+RXEp5+3wM8ZMAPB/ADKstc08WhCArwFEAkgB0M9ay+cnncXhozmYumCJ9w5U4F1Om7bJ9e1rflpLY598QZpiOo3QYmabBcRoE+Cde6y49/YL0iQTAFaTQtGaODk6CgCaNpRjotas3kxjn3pKmp4u3y672AAgOU527fn48jFRCfult0JXUnzadeAA3Z6Zpu51GHXVOjJSaE7F59yTJ4VWJyiIRAJt6tUT2imylt7J4DWfFJXDHJ4rvHp1+XPJcwGAj5E1OFZMBYDj+bLQ7FTBq3JOobicQxGRUZzISQB6nKM9D2ChtbYBgIWex4qilCHOm/zW2qUAzv31fQuAyZ7vJwPoc5H3S1GUP5gL/cwfbK09M6o1HUU23pSzx3XlONwfVhSl9Clxwc8WfVBz7BQ6e1xXFYfVUYqilD4XmvwHjDGhAOD5mnGeeEVRLjMudD3/9wAGA3jb83VWcTbKz8tH8uYUL61RO77uPri2/CRx37iRNJZVbqPbN6GxbIRWk7AwGsvW47OWXVbVB4D2UVFCu2vQCzT2mtGyql49jA82fXn4P4T21pinaGz1KnI9vdMILVa9Hj9L+iq0iuavGavWO1XlkzLk9WJzPD+PeY1lBb+dw/iq3r2ls/HAkQNpLONYtnSN7ti8MY3td8czQmPOygCQnSfdioMd/hI2pLZ/xOE1mzbX29X3cHYOjWOc98pvjPkKwEoADY0xqcaY+1CU9N2NMYkAunkeK4pShjjvld9ay03ega4XeV8URSlFtMNPUVyKJr+iuJRSXc/v61vBBgZ6F/LueWw4jWVtis2va05j64dKQ8mIGrxYdkcv2Qr8yJuycANws01mnunUsrt8phztNW3KWzT2HzNkzTR1eyqNrddCFrtSd/DYnr07C4211gLA18t/FVqP1nLk2IaU3XR79nPnb95CY29p00pom/bspbGsNTYuUbYtA0B5X/lJNrq+3K+gAOk94MTfiX8CAES1lAXdR27tRWPXJ8v9/e7fC2jsK0//RWisQAoAlfy8W4R7d78Bm3U9v6Iov4cmv6K4FE1+RXEpmvyK4lI0+RXFpZTquK4qVYLQJba/l1YrnI9d+uBF2co7svH7NLbvgCFC+2nVIhrbPjZWaDt/k8YhAB+hNWrMMKExIw6At+xeffPVNHZov1uEduON99HYAYNuElpuDm//jEuQx7Ynk4+qerCnrFS/9+XXQjtxTLaqAkBV4og7c6wcFwYA138u269nf7uYRAKBtQKFFtE4nMY2CJF3frbulXdCdm/ldyxq1akptBHP3ktjU8h5nDBvIY015I7F0IfvpLHjv/1JaCGRfOFsxl7vuwDZOdyJmqFXfkVxKZr8iuJSNPkVxaVo8iuKSynVgl85n3KoVMW7KHTiuHQqBYDg4Aih7Ung7Z+tW5/rL+q8Zj1hXZzQ/P35DPnExHVC8ykn1807ueyy9fhOLbusuDdv3uc09h3zitBOnpAOtwAwY9xkoT34uixaAkDnzrIAdfTQUaE5zYrfECcdhAeM4EWttUlJQivI5y7KB/ceFJqfvx+NrUH8C1hx70i6g9k0aXc/1oq/RxP37hOa07k5mSd9IPYf4fvQrVNr+VwOjslpSd4jzpzOIUOv/IriUjT5FcWlaPIrikvR5FcUl1IcD78JxpgMY8yWs7RXjTH7jDEbPf/4ImZFUS5bzmvmYYzpDOAYgC/OmtX3KoBj1tr3/pcnC4uoZx97cbSX9sPEGTT24TeeFFpwDe4EW7embMlclcBn17E2y6jaV9JYZtwxjhg7sNl5AHfZ7XRbJxrbPlrOBWT7CgAxEfJOyDOvjqOx77z8qNCmLllKY+uFhQqtdpA0NFmfnEK3r0Rmzzk51Fb2k9X6OtX565uYLivd6xJk6zUArPlxjdA63S7PefcW0XR7NvNw27odNJYZqAx9bhCNXbB8vdCc7tDc31deS8dN5G3Sg+70vtN1Uc08HMZ1KYpSxinJZ/7HjTFxno8F8vKgKMplzYUm/8cA6gOIAZAGYIxT4Nmz+o4fK/5AAUVR/lguKPmttQestaestacBfAag3e/E/ndWX+UA3kmnKErpUyz3XmNMJIDZZxX8Qs9M6TXGPAWgvbW2v/NPKKJmcG17W//HvDSn549oKotav8zka6U79LpWaEPuvpnG9uku200HPvUIjW3aooF8rgZSY0UigBfmPp34HY0NCpXFLqeCEGt3HfMqHxM1aaFcI+/kX1A/RroCD+wiz+3xfNmqCvCC324H7wC27t6JXPJ8H03/nsY+dKd83cuR8ldlv4p0+/wC2R7b9/anaez4KaOF5le++B3zD9//GtVjYqVj8iMDpd8DAFzh7+/1uF3btli3bl2xCn7n3VPPuK4uAGoYY1IB/BVAF2NMDIqm86YAeKg4T6YoyuXDhY7r4itOFEUpM2iHn6K4FE1+RXEpmvyK4lJKdVZf4+bN7aTvvKvd5X18aOziZbIdMn55PI0tLCgUWodbOtDY3OzjQkvazOe+bV33m9Duf/0xoSXH8e273Sj3wel8M5fdyW99QmOXr/hWaE4tu/d2vV5oA+5+gcYyZ2HmZtu8Th26/ba0NKH1aS2NKQBgXpw0VckvlK8jwCvoTrFdGjcW2oodsj33tMPrEEgciNvU5e7M2XnSxXjjbu4KzM7ZqdOnaexX/5Ez/O7rx5fP/BznbSTz8v33IWnbNp3VpyiKM5r8iuJSNPkVxaVo8iuKSynVgl/T6Gg7bfZsLy0pI4PGsoLMgmm8vbcqGedUv0U9GnuqUBZZrmkpx2oBQAEpKk2f8qPQfHx50bLLTdcI7XpSkAKA79ZJp+A8B2fjcqRf1alld9dGqX819S0aO+3XX4XWs0ULofmU49cMtkY/+aBsRQaA6gHS5fZkIXeereovi3BTF/ECZ6doOQasXi05Eq6cg1cCY2E8LzS3JO3b+7OyaGydINm+7fRzU3ftF9odN3amsX6+3sXQG67rgo2//aYFP0VRnNHkVxSXosmvKC5Fk19RXIomv6K4lFKt9tesFWb79PN2k60WzO3/Pn3vr0Ib+f4/aexnb74jte+n0thfl24QmtP8vN3bZdvuR5OlgUPCflmdBYCIGnJW37odO2nsgz1l+yabnQcAL48bIbRdqbK1FuCz9mqSll0AuOsaeXfirc++Etr+nfx465E7LPO+kHdHAGA8uePw7ruTaGw+mXPHWpEBoHx5eedl+1rZ3rsvUc7ZA/i5efHZv9DYGYuWCc0w5xAAW1cmCG3Es/fS2Lg9e4S26hfZag4A+bne52bCP95AWmqKVvsVRXFGk19RXIomv6K4lOKM66pjjFlsjNlqjIk3xgzz6EHGmPnGmETPV/XuV5QyRHGsRgsBPGOt3WCMqQJgvTFmPoB7ASy01r5tjHkewPMAZCXqLGqFVMeTzw/20ioSx1cACG8SLrTbu/JRV1dGyXFbh4/LdfsAMPD2G4X2+RfcCTZz/yGhsf3t2pS3B4+fNVdo/bpLN1wAeO/Lr4XGinUAH6F1dVQUjZ25Ro6v6kFadgFe3HvhAWnhOPKd8XT7uCWbhPbQaO7tev9dw4UWHy8LaAAQGdlcaK27c5+Ao8fkOVv6w89C27KFP1dEhGwPHjykN409kiFbeedO4e+lvsMGCi0+lReab2gujzfzKJ95MbBTR6oXh+KM60qz1m7wfJ8DIAFAGIBbAEz2hE0G0OeC90JRlFLnf/rM7/HvbwlgNYDgM979ANIBBF/UPVMU5Q+l2MlvjAkAMBPAk9Zar7+tbFGzAG0YOHtc15HDOu9TUS4XipX8xhhfFCX+l9baMwZyB4wxoZ7/DwVA1+aePa6rGlnWqCjKpaE4E3sMioZ0JFhrx571X98DGAzgbc/XWef7WcdPnMDKLdu8tC3Lt9DYQ/tkse2eXl1pbM1AOQN+x7YUGstGSsX25GafIXXlSKkD2dlC23VAzo8HgFbRDYW2IYUbPJ44Js0gAwLlmncAWJ+cIrRqlXksM450Wo/POvdYce/NEQ/S7VvGdBMaK4oBwD8myU7Jd177jMbOnilnxCyYyv0aCvLliDM/P3+htWghjU0BwBh5brbt592TC6fPE9qQUQ/T2Ed6yTFir306gcbWJ/4DY4fx0V7PvDrO6/HUT9+lcYziVPs7AhgEYLMxZqNHG4mipJ9hjLkPwG4A/Yr9rIqiXHKKM65rOQCnXmF+KVYU5bJHO/wUxaVo8iuKS9HkVxSXUpyC30UjwN8f1zT3dq/NTM2ksWyd/+Fjx2hsgxBZld+9m1dorwoNFdqU6XzNed7RXKEFXSfXkReeOkW3Z14JrSMjaWxVMiZqQ9x2GsvuWDAN4CO0GoeF0Vi2Hp+17LKqPgD8tlGOmWrdsQuNnfLlHKE1bCvvjgDAhpX1hRZ7VyyNnTdRtlQfPLhXaNWr83OwebN0BW5d930ay1pbrm3ciEZGRbUSWucOMTQ2jdxRyszkrcA5h73bfk+d4iPAGHrlVxSXosmvKC5Fk19RXIomv6K4lFIt+GVl5+D7n7zXUaenpNPY3fGyDfae/j1p7Mw5S4TWvBUvHmXnyiJe3WaRNLZq1SpCY62xex0WLLERTfM383bmmWNnCm3ACG7gGVxVtjPvzuSF0z6t5bp3pxFazGyTrcd3atllxb1/ffgSjWWvwxc/8nFssb3lavHYdrxYtmmxLFDeOvRWoaU6GHg2ipFr6UOqynFwABDVTBb3LF/fhtq15fuxpUPx9/2p3wotPFz6DADAtXd4+0PMnzeZxjH0yq8oLkWTX1Fciia/orgUTX5FcSma/IriUkp1XFer1q3tsl9XeGnZudLEAgB8feTYpcLTvHVxD6l0t6pbl8cekiYhP69cT2MP7JYmHUOH3CG04/lynBQAJGVIc6M29fh+Hc07IbS1SUk09irSztzoSulgDAA/btwotGuuuorG5uTJ14K57DIjDoC37A5/TLrWAryd+aX3/kVjq4XIVu+QSHkOnJg7Qbb8Vqoinx8A/Cr5Ce32e/hdpoM50lF39dy1NPa+++UdhywHh2n2Pk8+QI2yMOcT73M+b+4kHD6UpuO6FEVxRpNfUVyKJr+iuJSSjOt61Rizzxiz0fNPzphWFOWypSTjugDgfWvte8V9sqzcXHy/wXvOeDeHUVdjP5Kjo0YPf4DGzlq6SmgLFq6msT1ukDPoA2vx9s0EMlN9e7psR3Yqmm6O3yk03/L8lM/+drHQCvILaGzXEfdRnZFfWCi0k4X857777iShsRFaTi67bD2+U8suK+6NfvZ+Gsucdm+6S44RA4CoVnJsWZEBtTdzZvI22M6xtwktoGJFGrs9WfoELPlBFj0BILS+9JFo2IQXf7uTcV2HHLws5s/7wuvx0WxZ0HaiOAaeaQDSPN/nGGPOjOtSFKUMU5JxXQDwuDEmzhgzQaf0KkrZoiTjuj4GUB9ADIr+MhjjsN1/x3XlHDlyEXZZUZSLwQWP67LWHrDWnrLWngbwGYB2bNuzx3VVqaZ/HCjK5UJxqv10XNeZOX0ebgXAF6orinJZUpJxXQOMMTEosjBNASBdH4rBtB9llRsA0pNkVT2/gFepA6rJOXWnCrmjblqWNKLIPijdUgEgP0+27UaROWq5J+V8OADIayzdcH1I5RngdxwO7uWmG4npsu2YtfwCgB+5u1DVn7e2suONjJSVZzY7D3Bw2SVGHABQu2FtoTnNz9u0Sb5HmrfsSGOzDsrX95cF0iglN5e/5it+kSMn+xzoTWMXTV0ktN738rsQU/72kdCGvDiUxp4md8Amvj6FxkZENPN6nJcn73w5UZJxXdzvWlGUMoF2+CmKS9HkVxSXosmvKC6lVNfzh0XUs4+OfN1L863gS2Pzc2XxaVC/HjR26ZatQtu7XbZeAsC+HdK1dczbT9HYBfHyBkYhGYfEXHoBoCFZYz99sWyXBYArqkmn4PQUWdgDgMqBlYWWdYD3UNRvKltIDx/ixS5TTpZ2Ck7IIuuCqXIsF8BHaDm57K5PShZa/Ip4GrsnYY/Qpjp4Cizdtk1oEz/4Wmi1G/Am1YbtpCPvmKGjaOyoz98W2vI5vOBWnrzPp308jsau3CjfIyt27KCx6Xu91/m/M/xJ7NmZqOv5FUVxRpNfUVyKJr+iuBRNfkVxKZr8iuJSSnVWn6+fL0LreZsaLPs3r37HxMoqcZhDVb1bTLTQQrp0prGJxIxj6z4+t+2Kiv5CY86qberJNl4A6N37CaHdOlSaRQBAA9KeW6OKvAMAAF9/KltQx7z7NI0tPCXbnDOOHqWxq7fJivLRYzK2IJ+3M8+bKF1y2ew8AOjcV74+zIgD4C27rKoPAJ0byWr9oCEvC+2kg1HKv16Wbbgz502lsVEh8m5OgYNRyjUdZIvwzyt/prHs9Xl58DAae8/T3i3Cpx3a2hl65VcUl6LJryguRZNfUVyKJr+iuJRSLfj5+JRDlSu8W1NZYQ8ADu2XI7jSyVp8APhp5TqhNawfTmMziQtqcsJuGrt9zXahvf7G40I75TBGbOBIOaoqKjiYxm7dmyq03Vv5fnW6vZPQSGcuAN4WemO0LJACwBdTZgtt6Q+yKOXnJwuhAHDwoGypvnWoHFMF8BFazGUX4Ovx847xMW+suDdlwutCa9pUnkMAOH5ctj5vSOGvQ987nxXajFW8vTcoSBYHl27i7cz3dOsitGbRfH9XzFrq9fhYFnf5ZeiVX1Fciia/orgUTX5FcSnFMfCsaIxZY4zZ5BnXNcqj1zXGrDbG7DTGfG2MqfDH766iKBeL4hT88gHEWmuPeSy8lxtjfgLwNIrGdU03xnwC4D4Uefk7P1m5cggK8DbbDGwmTR8BYM5mOZvevwL//eLjKw9jBxmlBAAdW0hzxB0b5VgtAMjcJ4uO1chcedZF50RQgFyLD/Di3pF0vkZ/yJ03Ca2yHx8pdZr4NZRzKKztS5Sdjlu2yA5MJ6PN6tXlGvlU8jMBoFIVeR6dRmgxs02n9fisc48V9+Ljl9Ptw8ObCK0+MW0FgIgmsqi8YCofT1YrTI7rujKkBo1l49TqteBdpB++OdLrcW4u795knPfKb4s4U0L09fyzAGIBfOPRJwPgNq2KolyWFHdoh4/HtjsDwHwAuwBkWWvPTIFMhc7vU5QyRbGS3zOZJwZAbRRN5pGrJxw4e1xXlo7rUpTLhv+p2m+tzQKwGEAHAIHy2b4fAAALa0lEQVTGmDMftmsDoB/uzh7XFajjuhTlsqE41f6axphAz/f+ALoDSEDRL4E7PGGDAch1poqiXLYUp9ofCmCyMcYHRb8sZlhrZxtjtgKYbowZDeA3FM3zOy/n1plXLJKtuQDATIVTDx+msTVryr8onNbC+/lKF9X0ZLnGHwAqV+WV+XPJLyyk+rHs48XaHgBq1akpRQdn5eXbZdtx71ataGwguTvhRE2yDxERsvptDL9mbN68VGiNYuS4LwDwq+QntM6x3OuAjdBiLrsAX4/PWnZZVR8A9uyRTtANQnhL9vKfpIvx0x+8QGPHPTdWaI2JuzMA5BfI99OSWXxAVqNGV3s93rp1BY1jFGdcVxyAlkRPgsNkXkVRLn+0w09RXIomv6K4FE1+RXEppTquK+TKcHv3Q8O9tOAIXky57lpZwDpE1uIDQMvISKEtczB4/M9H3wttzD+Gk0ggpGpVof2SkCA0J2NR1vb7yUczaOyIZ+8V2rETJ2js9JnzhbZ23hoe++/3hLbcYfRTu/qy1Tr18CGhbdufRrdvXTdSaCFVA2ns2iTZvh1Qkbco7zogx5a99Yhctw9ws022Ht+pZZcV9wKIkSsAJBDj12UOa/Qj68j23p4xopQGANi+X/7cqv58Hw5kexcz+/Xqhfi4OB3XpSiKM5r8iuJSNPkVxaVo8iuKS9HkVxSXUurjukIivaupy77l47qOH5WtscMfGsBj8/OFdlvbtjS2/BM+QltHKs8AbwVmVdfw6tXp9v3ueEZo3QZ1p7EpmdI4JHEvN8JI3SGdfsdPGU1js/Oky23LiAgaO2ORfC2OZEjH5IXT59Hti2wevIlqxttwuw6IFdp2BwOWRVMXCW3U52/TWDZCi7nsMiMOgLfssqo+ADQOk6vYnYxd2ra+UWirE/ldlwLSLn5Na3m+AOCBkd53qrJzit9Srld+RXEpmvyK4lI0+RXFpWjyK4pLKdWCX41qVXF/X2/n2Uf7y7nlALAiMVFoTuOcZv0qW1vTdvEW1GFD7hCaU8Fv1Qo5W75iZdmCWugwrmvEe08IrV097sI6YZ50fQ0IDCCRwNDnBgnNrzx/KVftlM7EVzo4Khky82vuFNkOPWTUw3T7axvL4p4lRUAA+PiTb4S25Ic5NLb3vbLQu3wOH4tVQJxv2QgtJ5ddth7fqWWXFffK+8iCMgBs3C1bjBcsXUtjH+13s9DiE/jx9v6/R7we5xy+iO69iqL8OdHkVxSXosmvKC5Fk19RXEpJZvVNMsYkG2M2ev7F/PG7qyjKxaIks/oA4DlrrSzbOnA0Lw8Ltmzx0qa++SWNDW8kW1DbvsIr5eFh3BCEEU9aNZ2q9Y1bXSW0yn7SddbH4S4Ea61dn5xMY9mdjJN5sm0ZABYsXy+0e27uRmOb16kjtEoOMw8nrZRGJX2HDRTaI71kNRoAoqKkAUvt2g1p7JjPXhFaaH1peAEAU/4mHXl7DuhHY6/pIO8eBQXJll82Ow/gLrsv/vNFGstadllVHwBiSEv1lKW8tX1XhjQv6diUuzOP+uQzr8dbtstWaCeK495rAbBZfYqilGEuaFaftXa157/eMMbEGWPeN8bISyK8x3UdzZKLRBRFuTRc0Kw+Y0wzAC+gaGZfWwBBAEY4bPvfcV1XBHI/N0VRSp8LndXXw1qb5hnfnQ9gInSAh6KUKc7r3muMqQmgwFqb5ZnV9zOAdwCst9ammaJK1fsATlhrn/+9nxVaO8L+5Qnv4klQCG81jW4lW0V9HVonG4bK4s289Rtp7IIvpPPteFJ8AoAK5eV6fuYKXN1hNBhb+//p59/S2KEP3ym0/Q5TjRf9IkecrZvHx569O+45oa3ZtYvGXttInvP4VOkdsGmjHBcGAJ07yBs+zFkZ4C3VTu7MSTvlOv8xz/Ei3M8rfxbaUtKee2VIDbo9G6EVFcrHarH1+EtWbKCxzKV6UOdraeyONNmafsqhKH3ue+SRfv2wPT6+WO69JZnVt8jzi8EA2AiAN3wrinJZUpJZfdxaRFGUMoF2+CmKS9HkVxSXosmvKC6lVGf1NWvRws6cO9dLY5V6ANh7SM6IW5+SQmPXLpQV1rvu6kljt5Dq9a1t2tDYNNKUFFFDVomP5/OZegay6OpkSDL+25+E1q1TaxrLzDg+mSZNN5yez68S7cdC0+ZRQruheXOhpRw8SLdPO2duHACs+JXfdelwdbTQ2KxAADhNKt1HcnNpbMZRaWbBKvgniekHAOQXSOdcp+diLrvs/QHwll0/cjcJAK4iObGKmNsAQKu6db0eX92+PdavW6ez+hRFcUaTX1Fciia/orgUTX5FcSml6t57srAQyecUi5554DUa27BNE6ENfZyP66rbv6bQnFpF25Oi0uT5i2ksc8/deUAWbpyqK6xQ1MihwHnuGDMASCTPBQAz/yPXbA8lrsQAL0qdKODFrolfSffczKM5Qhs7jL9mmZmymBoeLl9HAAipGyI0p9ds4utThHb3yLto7MuDhwmtWXQnodVrwb0hlsz6UWiz53PPCTZCy8lll63HX50g3aEBXty7ukEDGjt50RKvx4dz5OvlhF75FcWlaPIrikvR5FcUl6LJryguRZNfUVxKqVb7fcqVQ9VKlby0v08YRWNnzJKz1KpVrkxjlyVIgw3WEgoAdaoHCS0zNZPGzvt8rtDGfCJnuVWpKOf3AcC0ufIuQqtI6eIKABl7M4SWlpROYx8Y0kdoVxDjEAD4asWvQuse3YzG5udKt+CBnToK7ZlXx9Htcw7LSvO1d3DDijmfyDsL8+d9QWMjIuT+ppPzBQD3PD1UaCtmLRXah2+OpNs3anS10A6QtmUAeGDkcKGdOzvvDOe67ALOZi3MVOXcqv4ZBsd2oXpx0Cu/orgUTX5FcSma/IriUjT5FcWllOp6fmPMQQBn5hnVAMArbWUbPa6yx5/p2CKstbLfnVCqye/1xMass9ZyF40yjB5X2ePPfGy/h/7ZryguRZNfUVzKpUz+8Zfwuf9I9LjKHn/mY3Pkkn3mVxTl0qJ/9iuKSyn15DfG9DDGbDfG7DTG/O5gz8sdY8wEY0yGMWbLWVqQMWa+MSbR85VPIr2MMcbUMcYsNsZsNcbEG2OGefQyfWzGmIrGmDXGmE2e4xrl0esaY1Z73pNfG2MqXOp9LQ1KNfk9wz4/BNATQBMAA4wx3OepbDAJQI9ztOcBLLTWNgCw0PO4rFEI4BlrbRMAVwN4zPM6lfVjywcQa61tASAGQA9jzNUomjr9vrU2CsARAPddwn0sNUr7yt8OwE5rbZK19iSA6QBuKeV9uGhYa5cCOHyOfAuAyZ7vJwOQS/Auc6y1adbaDZ7vcwAkAAhDGT82W8QZo0Bfzz8LIBbANx69zB3XhVLayR8G4Oxh66ke7c9EsLX2zID1dADSmbMMYYyJRNGU5tX4ExybMcbHGLMRQAaA+QB2Aciy1p5xOv0zvicpWvD7A7FFt1LK7O0UY0wAgJkAnrTWes3BKqvHZq09Za2NAVAbRX+JysXzLqG0k38fgDpnPa7t0f5MHDDGhAKA5yt3nbjMMcb4oijxv7TWfuuR/xTHBgDW2iwAiwF0ABBojDljbPNnfE9SSjv51wJo4KmuVgDQHwCfMFl2+R7AYM/3gwHMuoT7ckGYoumenwNIsNaOPeu/yvSxGWNqGmMCPd/7A+iOonrGYgBnBh+UueO6UEq9yccY0wvABwB8AEyw1r5RqjtwETHGfAWgC4pWhR0A8FcA/wEwA0A4ilYw9rPWnlsUvKwxxnQCsAzAZgBn/NBGouhzf5k9NmNMNIoKej4ouvDNsNa+Zoyph6LicxCA3wDcba2VnmZ/MrTDT1Fcihb8FMWlaPIrikvR5FcUl6LJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJS/h/l3KikFmmUawAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n" - ] - } - ], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()\n", - "\n", - "print(\"testing success ratio: \", result['testing_accuracy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "Different from the non-programming way, the programming way allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", - "\n", - "Use the trained model to evaluate data directly, and we store a `label_to_class` and `class_to_label` for helping converting between label and class name" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ground truth: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n", - "preduction: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n" - ] - } - ], - "source": [ - "predicted_labels = svm.predict(datapoints[0])\n", - "\n", - "predicted_classes = map_label_to_class_name(predicted_labels, svm.label_to_class)\n", - "print(\"ground truth: {}\".format(datapoints[1]))\n", - "print(\"preduction: {}\".format(predicted_labels))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb b/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb deleted file mode 100644 index 2b7c41f3f..000000000 --- a/community/aqua/artificial_intelligence/qsvm_kernel_multiclass.ipynb +++ /dev/null @@ -1,124 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Quantum SVM kernel algorithm: multiclass classifier extension*_\n", - "\n", - "A multiclass extension works in conjunction with an underlying binary (two class) classifier to provide multiclass classification.\n", - "\n", - "Currently three different multiclass extensions are supported:\n", - "\n", - "* OneAgainstRest\n", - "* AllPairs\n", - "* ErrorCorrectingCode\n", - "\n", - "These use different techniques to group the data with binary classification to achieve the final multiclass classification." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import *\n", - "from qiskit import Aer\n", - "from qiskit.aqua.input import SVMInput\n", - "from qiskit.aqua import run_algorithm\n", - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we choose the `Wine` dataset which has 3 classes." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4XXV97/H3JyEhMVwzQC4cMkDQCCJGoMfoFa9FwIBwJVEhBKpGhSJVK8VbanCMiDWWthBan6sUEdRWCFFDbOQJM4iKcpAwBBuIQUoOAVJCUoYQMnzvH+u3w9r7rLXHtdeevq/n2U/O/q1h//Y6J+u7frPMDOecc65gWKsz4Jxzrr14YHDOOVfEA4NzzrkiHhicc84V8cDgnHOuiAcG55xzRTwwuKaQZJJeH37+tqQvtTpPSSQdLWl9zp95YLg+e2R0vhckHZTFuSp8zkJJP2z257jW88DQpST9UdLWcNN4WtJVkvaKbT9e0p2Snpe0UdIdkk4uOcfR4Qb2uUbyYmbnmNnXGjlHr5B0gaQbStIeTUmbB2Bme5nZujzzWUn4e7uoWz6n13hg6G7vM7O9gCOBfuCLAJJOAa4Dvg9MBvYFvgy8r+T4+cAm4CN5ZbgRWT2Bt9idwDskDQeQ1AeMAI4oSXt92Ne5zHlg6AFmNgjcABwmScA/Al8zsyvMbIuZ7TKzO8zszwvHSBoDnAJ8Cpguqb/cZ0g6X9IGSU9K+njJtt1PdYWqG0l/I+mZcMwcSSdKekTSJkmfr/a7hZLR5yQ9ALwoaQ9J+0v6cSgJPSbpM7H9R4f8PCfpYeCtJefbXQVWmvfwfrakVZL+W9IfJJ0Q0sdK+m74PoOSLordyIdL+ntJ/yVpHXBSma90D1EgODy8/9/AbcCakrQ/mNmTpXkO+f2WpBWhNPgbSa+L5f8QSTeF67xG0twy13ZaKEk+L+kmYJ+S7ddJekrSllD6fFNIPxv4M+BvQon1ZyF9Qbhmz0t6WNL7Y+d6ffisLeE6XVspz2mf4zJgZv7qwhfwR+C48PMUYDXwNeAQwIBpFY7/MLABGA78DPinMvueADwNHAaMAf4tfMbrw/argIvCz0cDO4hKKCOAPwc2hmP+B/AmYGul/JV8z1XhO44meti5N5x/JHAQsA44Puy/CPgFMCEc8xCwPna+3flOyPtMYAvwnvA5k4BDwrafAt8J3/9/Ar8FPhG2nQP8R/i8CUQ3egP2SPlOtwHnhZ//Gfg48PWStCuT8hzy+2zI6x7AvwLXhG1jgCeAj4VtRwD/BRyako9fEz1E7Am8C3ge+GFs+8fD72xP4FJgVdJ1i6WdCuwfrt1pwItAX9j2I+ALYdso4J3V5Dnpc/zV+MtLDN1tmaTNwF3AHcDfAnuHbRsqHDsfuNbMdhLdtOdJGpGy71zge2b2kJm9CCyscO7twNfNbDtwDdGT6GIze97MVgMPA2+pcI64y8zsCTPbSlQCmGhmF5rZKxbVvf8LMC+W16+b2SYzewK4rIbPOZPohnyTRaWsQTP7D0n7AicCf2VmL5rZM8AlJZ95acjjJuAbFT7nDqIbMUSlg1+EVzztjjLH/9TMfmtmO4gCQ6Gk8X+AP5rZ98xsh5ndB/yY6IZdRNJUomv5JTPbZmZ3Ej0g7GZmV4bf2Tai3/lbJI1Ny5SZXWdmT4Zrdy3wKFEAg+hv4gBgfzN72czuqjXPLjseGLrbHDMbZ2YHmNknw43z2bCtL+0gSVOAdxPdVACuJ3qKS6sC2Z/oqa7g8Qr5ejYEHIhKBxCVOIil7UX14p99ALC/pM2FF/B5onaUevIaNwX4Q0L6AUSlnw2xz/wOUcmhns+8E3inpAlEQe5R4FdEbQ8TiEpm5doXnor9/BKvXssDgLeVXJs/A/ZLOMf+wHMh0A/Jd6geWxSqhv6bqOQGJdVNcZI+EqrhCp99WGz/vwEE/FbS6lh1ZC15dhnphsY6V5s1RDepDwJ/n7LPh4keGn4WNUkAUWCYDyxL2H8D0U2zYGomOa1efIrgJ4DHzGx6yr6FvK4O70vz+hLwmtj7/YBCd9YngNcx1BPANmCf8JSe9pkFla7Pr4GxRNVsvwQws/+W9GRIe9LMHqtwjiRPAHeY2Xuq2HcDMF7SmFhwmMqr1/oMYDZwHFFQGAs8R3Rzh+LfCZIOICq5HQv82sx2SlpV2N/MngrfDUnvBG6WdGcVefbpoZvASww9xswM+CzwJUkfk/RaScMkvVPS5WG3+cBXiaogCq8PAidK2jvhtEuAj0o6VNJrgK80/5uk+i3wfGiQHh2ebA+TVGhkXgJcIGm8pMnAX5Ycvwo4Ixx3AvCnsW3fBT4m6dhwzSZJOsTMNgA3Av8Qu56vk1Q4dgnwGUmTJY0HFpT7AqFkN0D0e/pFbNNdIa3e3kj/DrxB0ocljQivt0p6Y0IeHg95+KqkkeFmHe+19j+IguGzRIH0b0tO8TRR+07BGKKb+EYASR8jKjEQ3p8afh8QBRgDdlWR59LPcRnwwNCDzGwpUePfx4Enif5zXQRcL+ntRMX3b5nZU7HXcmAtcHrC+W4gany8Nexza1Z5lfRnklZX3nN3XnYS1UsfDjxG1FB5BdETLUQB7/Gw7UbgByWnOJfoBliosthdQjKz3xI1gl5C1Ah9B9G1gqhL70ii9pHngKW8Wl33L8BK4H7gd8BPqvgqdxBVRd0VS/tFSKsrMJjZ88AsoraPJ4mqnL5J1Hic5AzgbURdlr9C1L254PtE13GQ6DvfXXLsd4FDQ/XPMjN7GPgHotLQ08CbCaWh4K3AbyS9ACwHzjWzdVXkuehzargcrgxFD5DOOedcxEsMzjnninhgcM45V8QDg3POuSIeGJxzzhXpyHEM++yzjx144IGtzoZzznWUe++997/MbGKl/ToyMBx44IEMDAy0OhvOOddRJFU10t+rkpxzzhXxwOCcc66IBwbnnHNFPDA455wr4oHBOedcEQ8MzjnnimQSGCRdqWj93odStkvSZZLWSnpA0pGxbfMlPRpe87PIj3MNe2AJXHIYLBwX/fvAklbnyLncZFViuIpo3d807wWmh9fZwP8DCKtRfYVoat+ZwFfCfPXOtc4DS+Bnn4EtTwAW/fuzz3hwcD0jk8AQ1oPdVGaX2cD3LXI3ME5SH3A8cFNYf/c54CbKBxjnmu+WC2H71uK07VujdOd6QF5tDJMoXvN2fUhLSx9C0tmSBiQNbNy4sWkZdY4t62tLd67LdEzjs5ldbmb9ZtY/cWLFqT6cq9/YybWlO9dl8goMgxQvhj45pKWlO9c6x34ZRowuThsxOkp3rgfkFRiWAx8JvZPeDmwJC6ivBGaFhdnHE63tujKnPDmXbMZceN9lMHYKoOjf910WpTvXAzKZXVXSj4CjgX0krSfqaTQCwMy+DfwcOJFoofiXiBZUx8w2SfoacE841YVmVq4R27l8zJjrgcD1rEwCg5mdXmG7AZ9K2XYlcGUW+XDOOde4jml8ds45lw8PDM4554p4YHDOOVfEA4NzzrkiHhhc7/CJ8ZyrSia9kpxre4WJ8QpzIBUmxgPvlupcCS8xuN7gE+M5VzUPDK43+MR4zlXNA4PrDT4xnnNV88DgeoNPjOdc1TwwuN7gE+M5VzXvleR6h0+M51xVvMTgnHOuiAcG55xzRTwwOOecK+KBwTnnXJFMAoOkEyStkbRW0oKE7ZdIWhVej0jaHNu2M7ZteRb5cc45V7+GeyVJGg58C3gPsB64R9JyM3u4sI+ZnRfb/y+BI2Kn2GpmhzeaD+ecc9nIosQwE1hrZuvM7BXgGmB2mf1PB36Uwec655xrgiwCwyTgidj79SFtCEkHANOAW2PJoyQNSLpb0py0D5F0dthvYOPGjRlk2znnXJK8G5/nAUvNbGcs7QAz6wfOAC6V9LqkA83scjPrN7P+iRMn5pFX55rH14ZwbSyLwDAITIm9nxzSksyjpBrJzAbDv+uA2yluf3Cu+xTWhtjyBGCvrg3hwcG1iSwCwz3AdEnTJI0kuvkP6V0k6RBgPPDrWNp4SXuGn/cBjgIeLj3Wua7ia0O4NtdwryQz2yHp08BKYDhwpZmtlnQhMGBmhSAxD7jGzCx2+BuB70jaRRSkFsV7MznXlXxtCNfmMplEz8x+Dvy8JO3LJe8XJhz3K+DNWeTBuY4xdnKoRkpId64N+Mhn1/k6rSHX14Zwbc6n3XadrdCQW6izLzTkQvtOsV3I1y0XRtVHYydHQaFd8+t6jgcG19nKNeS2843W14Zwbcyrklxn84Zc5zLngcF1trQGW2/Ida5uHhhcZ+vmhtxOa1R3XcPbGFxn69aG3E5sVHddwwOD63zd2JDbqY3qrit4VZJzWci62scb1V0LeWBw3aNVdfLNmBSv1kZ1b49wGfLA4LpDK2csbcakeEmN6gimzxq6r8/W6jLmgcG1l3qffFs5Y2mj1T5J33nGXHjLGYBiOxrc/29Dr4nP1uoy5oHBtY9GnnybUSdfbZBqZCxFue/86I1RWlzSDT/r7+7VUj3PA4NrH408+Va6Odd6s6slSDUylqLcd672hp/lID+vlnJ4YHDtpJEn33I353pudrUEqRlz4X2XwdgpgKJ/33dZlF4pIJX7ztXe8LMc5OfVUo6MAoOkEyStkbRW0oKE7R+VtFHSqvA6K7ZtvqRHw2t+FvlxHaqRJ99yN+d6bna1BqkZc+G8h2Dh5ujfQlCoFJDKfedqb/jlvnutvJusI4MBbpKGA98C3gOsB+6RtDxhJbZrzezTJcdOAL4C9BNVpt4bjn2u0Xy5DnTsl4tH+0JtT75pA93qudllsZhONYPUyn3n0lHdo8dH739ydpQW3yerQX6+iJAjmxLDTGCtma0zs1eAa4DZVR57PHCTmW0KweAm4IQM8uQaUa76o5kNk1k++cbVUxLJonomNSDFbryVvnOhJPKBy2HHVti6iabW/Xfz3FOuallMiTEJiD9irAfelrDfByW9C3gEOM/Mnkg5dlLSh0g6GzgbYOrUqRlk2yUqN0cPNH/+nmZMb1FPSSSLOZjSnr4R/Ptno15Haed+YEnxZ7/yYj5TZHTr3FOuJjKzynuVO4F0CnCCmZ0V3n8YeFu82kjS3sALZrZN0ieA08zsGEl/DYwys4vCfl8CtprZ35f7zP7+fhsYGGgo3y7FJYelVCVMif5N23beQ83NV6NKb7R53OweWBJV+5R2OQWi8Qmx9BGjixusr/8U7Hylig9R1K7hXBUk3Wtm/ZX2y6LEMAhMib2fHNJ2M7NnY2+vAP4uduzRJcfenkGeXL3qqY/vhIbJVky0N2Mu/OTPUzamjE+YMRdu+FyVQYH86/5bEWBd7rJoY7gHmC5pmqSRwDxgeXwHSX2xtycDvw8/rwRmSRovaTwwK6S5VilXH++L4tRu7JTK+xQUAuzWTdXtX0/dfyNtRD7GoWc0HBjMbAfwaaIb+u+BJWa2WtKFkk4Ou31G0mpJ9wOfAT4ajt0EfI0ouNwDXBjSXKuUa3z0hsnapc15lKSaANtIw3yjN3Yf49AzMlmPwcx+Dvy8JO3LsZ8vAC5IOfZK4Mos8uEyUE3jo1clVC/pek6fFc15lNYYPnpCcqlh9ITG2nIaXePBxzj0DF+oxw1Vrj6+GxfFabakazb17ekB9r3fhGWfhF3bX91/2IgovRGN3th9jEPP8MDgXCtUCr6Qfcms0Rt7owMQXcfwwOBcO2qX8RyleQKvSuwBHhic6xVZ3Ni9KrEneGBwrpf4jd1Vwafddt3NF51xrmYeGNxQedxM8/oMH5CVLQ+0PcGrklyxcpPoZVUFkcdnQOP99l3xFBijx8O251/tRtus35trOS8xuGJ5jG5txmckPcnmPSCr256mS0tcWzcVj60AH/ncpbzE4IplcTOtNNFaMxavTyqBjB6fPIK4GQOy8ioF5SkpgCdJnFrcdTIvMbhijU6U1+hylvVIK4FAfnM7deM8QlUHanV+6cgV8cDgijU6UV41N8isJ+NLu4Ftfa45K8LVkodOnkeo6kBtnR0A3RBeleSKNToIqpobZNYjaMtN9ZBXv/1unEcoaaR0mk4OgG4IDwxuqEZuptXeILO8YbfDHD7tkIesJQXwV17Mr93GtYxXJblstWLNhhlz86syauc8NMOMudFU3ws3R/++95u+JkcPaHjNZwBJJwCLgeHAFWa2qGT7Z4GzgB3ARuDjZvZ42LYTeDDs+p9mdjIV+JrPbc6Xf+xu/vvtWNWu+dxwYJA0HHgEeA+wnmglttPN7OHYPu8GfmNmL0n6C+BoMzstbHvBzPaq5TM9MDjnXO2qDQxZVCXNBNaa2TozewW4Bpgd38HMbjOzl8LbuwGvkHSdodsGrTlXhSwCwyQg3tq4PqSlORO4IfZ+lKQBSXdLmpN2kKSzw34DGzdubCzHzlXD51pyPSrXxmdJHwL6gYtjyQeEos0ZwKWSXpd0rJldbmb9ZtY/ceLEHHLrel43DlpzrgpZBIZBYErs/eSQVkTSccAXgJPNbFsh3cwGw7/rgNuBIzLIk3ON68ZBa43yqrWekEVguAeYLmmapJHAPGB5fAdJRwDfIQoKz8TSx0vaM/y8D3AU8DDOlWrFDSnrqTs6nVet9YyGA4OZ7QA+DawEfg8sMbPVki6UVOh6ejGwF3CdpFWSCoHjjcCApPuB24BF8d5MzgG135CyCiKtGJPRzrxqrWdkMo4hb95dtcdccljKaOop0aCruNJZTiG6mdc72Mz77L9q4Tgg6X6haACca3vVdlf1KTFc+6ulrj/rxXl8jeRXdeN8UC6RT4nh2l8tdf3eYNw8XrXWMzwwuPZXyw3JG4ybp1vng3JDeFWSa3+1TNPdjbOcthOvWusJHhhcZ6j2hpT1Wg/dyhvVXRkeGFz38afa8rpxfWqXKW9jcK7X+HgEV4EHBud6jffcchV4YHCu13RIz60V61Ywa+ksZlw9g1lLZ7Fi3YpWZ6lneBuDa4pl9w1y8co1PLl5K/uPG835xx/MnCPKzcbuUmXdUNwBPbdWrFvBwl8t5OWdLwOw4cUNLPzVQgBOOuikFuasN3iJwWVu2X2DXPCTBxncvBUDBjdv5YKfPMiy+4ZMuusqacbEdR0wHmHx7xbvDgoFL+98mcW/W9yiHPUWLzG4zF28cg1bt+8sStu6fScXr1zjpYZaZT3FR0Gb99x66sWnakp32fISg8vck5u31pTuyujRhuL9xuxXU7rLlgcGl7n9x42uKd2V0SENxVk798hzGTV8VFHaqOGjOPfIc1uUo97igaGHLLtvkKMW3cq0BSs4atGtTavzP//4gxk9YnhR2ugRwzn/+INrPldeeW5bPTpx3UkHncTCdyykb0wfQvSN6WPhOxY2veHZe0JFMlmPQdIJwGJgOHCFmS0q2b4n8H3gT4BngdPM7I9h2wXAmcBO4DNmtrLS5/l6DLUrNAjH6/5HjxjONz7w5qbU+2fRKynvPLctn74iF6U9oSAqpeQRkPJS7XoMDQcGScOBR4D3AOuJlvo8Pb4Sm6RPAjPM7BxJ84D3m9lpkg4FfgTMBPYHbgbeYGY7Sz8nzgND7Y5adCuDCXX8k8aN5pcLjmlBjirrxDy7zjVr6Sw2vLhhSHrfmD5uPOXGFuQoe9UGhiyqkmYCa81snZm9AlwDzC7ZZzZwdfh5KXCsJIX0a8xsm5k9BqwN53MZ68QG4U7Ms+tc3hPqVVkEhklAfFmn9SEtcZ+wRvQWYO8qjwVA0tmSBiQNbNy4MYNs95ZObBDuxDy7zuU9oV7VMY3PZna5mfWbWf/EiRNbnZ2Ok2WDcF46Mc+uc3lPqFdlMcBtEJgSez85pCXts17SHsBYokboao51GSg01nbSNBVpeYao/aFTvofrDIUG5sW/W8xTLz7FfmP249wjz+2ahudaZNH4vAdR4/OxRDf1e4AzzGx1bJ9PAW+ONT5/wMzmSnoT8G+82vh8CzC9Fxuf22VuoXbJRxrvqeRc/aptfG64xGBmOyR9GlhJ1F31SjNbLelCYMDMlgPfBX4gaS2wCZgXjl0taQnwMLAD+FSloNCNSm92hbmFgObd7BK6QC7beVT++aiRT7fhXPNlMo4hb91WYsi9W2bpCl4AI0az0D7BVS8M7RTWTt1Dpy1YQdJfrIDHFpUv8rd7aajVVqxb4dUoXS7P7qquQbl3y0yZmO2sV36Ybz7qUG9PJZ/xtbzC4K4NL27AsN3TXPfqyN9e54GhDeTeLTNlArb9hz2bbz7qkNRTScC7DynfU61cFZTzaa7z1AnTbnhgaAO5d8tMmYDt5dH7tX330DlHTOKDfzIJxdIM+PG9g2Wf/n2wXHk+uCsfnVIy88DQBuYcMYlvfODNTBo3GhHV6Te1l03KxGyvee+F+eajTrf9x8Yh7QyVnv59sFx53TS4K+mJvF2e0julZOYL9bSJOUdMyu8GXJiALWFitjm0Tw+kNPU8/Z9//MGJ3VzjpaFebpw+98hzEyeQa+Xgrnoaw5OWBP3SL7+EmbHDduxOa9UyoZ1SMvPA0KvafAWvcvYfNzqxF1e5p/9KA/xa0mW4jbTD4K54IBi751i2bNuChbLhhhc38MW7vliU1yRJT+Tbd20fst/LO1/mq7/6Kp+/6/Pssl0M0zBOfcOpfPHtX8zwGw2135j9Eifqa7eSmXdXdR2nGYPcfCbX1kqa8jrJ2JFjuev0u1K3z7h6xu5gUo/TDj6tqcGh1VN7e3dV11LNXGCnGW0y3jjdWklP+km2vLIldduKdSuIJm2u33WPXNfQ8ZW0agGiWnlVkstcHtUyWbfJ1FM95bLTaB174Ul8l+0asm3EsBFFbQzlJB2ftZMOOqntAkEpLzG4imp9+u/EMQM+k2trVVvHPm7PcYnpaSWOYRrG1476Ghe986Kip3SRXLIYJr8lgpcYOl6ze9LU8/TfidUynTj7bDdJ6hVVasSwESyYuSBxW1qJw8x2P53Hn9Ivuvsirl1z7ZD9T33DqbVku2t5YOhgX1z2IP9693/ubmrLuspm2X2D/N8l97OzpINCpUnrxo4eweatQ3uCtHu1TK5dhl2RpF5R75r8Lu5cf2fZXlKFnkxpDc5j9xzLrKWzhpyj0MB83SPX5dorqVN4r6QOtey+Qc67dlXif4csetIk9fyJS5u0btl9g5y/9H627yzO2Yhh4uJT3+I3XpeZSj2ZktoW8uwB1I68V1KHq1Svf/HKNamd8gY3b224F1BSO0Fc2tP/xSvXDAkKAHuN2sODgstUuZ5MfWP6eM0erxnS4NyOo4zbkVcltaFq6vUr1dfH96+nHaLc+cs1yqYdt/mloVVLzjUiaaAYgBA3nnIjM66ekbi93UYZl9OqqdAbKjFImiDpJkmPhn/HJ+xzuKRfS1ot6QFJp8W2XSXpMUmrwuvwRvLTLarp1VOpvr6wf9J003917SqOuPDGsqWKtPMPl8qOGfA5iVweys11VOjh1M7zP1Uzd1MrJ9xrtCppAXCLmU0nWpYzqcvAS8BHzOxNwAnApZLifc7ON7PDw2tVg/npCtX06knqXpm0f1qV0HMvbS+7HkFa981/mFu+ncC7fbo8lKsOKszvdO6R5zJq+Kiiba2e/wmqv+G3csK9RgPDbODq8PPVwJzSHczsETN7NPz8JPAMUH7y/B5XzVN3fPRvufOUqxIqN7ag3tHFuc8U63pSueqgePfUakYZ5z3zarU3/FZOuNdoG8O+Zlao6HsK2LfczpJmAiOBP8SSvy7py4QSh5ltazBPHa+amUDh1e6VaXMHnX/8wVy8ck3iiN6CcoGj3u6b3u3TNVvaZHR9Y/qK3lcaZZw0G2uzZ16t9obfygn3KpYYJN0s6aGE1+z4fhb1e03t+yqpD/gB8DGz3ePOLwAOAd4KTAA+V+b4syUNSBrYuHFj5W/WwWp96i63f6Uqp2qWxGzWnEfO1SuraqJ6q2saKWVU2/bRyqqwiiUGMzsubZukpyX1mdmGcON/JmW/1wIrgC+Y2d2xcxfC4TZJ3wP+ukw+Lgcuh2gcQ6V8d7pan7rT9i+kLVy+esigsxHDVLbuv9enonbtK6tpwuuprmm0lFHt2hetnAq90aqk5cB8YFH49/rSHSSNBH4KfN/MlpZsKwQVEbVPPNRgftpWKxeBKXzOkIFnFSaiLNc7ygODa7UsJqOrp7qmXCmjmvzUcsNv1YR7jQaGRcASSWcCjwNzAST1A+eY2Vkh7V3A3pI+Go77aOiB9K+SJhLdolYB5zSYn7bUDk/eSQPPtu+0sjf5TpzzyLla1LNyXRaNwu0+w2pDgcHMngWOTUgfAM4KP/8Q+GHK8T2xAko7PHnXc5P3qahdt6unuqZTVmFrhI98zkFeT97lqqvqucm/+5CJRZP0gY9JcN2n1qf3dlwfO2s+V1IO8hgNnDTCOT6ArdaBZ8vuG+TH9w4WBQUBH/yTKNB4TyWXpbzHEjSiU1Zha4TPrpqDZqxRXKqaNYtraQBPO9/414zg5e27mvpdXO9YsW4Fi367iM3bNhel9/osqM1S7eyqXpWUgzwWgammuqqWLrBp53suYTI876nk6lFu2uxaevm47HlgyEmzRwNn3VCcdr403lPJ1arctNnQWbOgdhtvY+gSWU9el3a+caNHJO7vPZVcrSrd+Lupl0+n8RJDl4hXVw1u3spwqWiSvFpLK2nVX0BV8zg5V0lat0/ovl4+ncYDQxcp3MyzGkxXrvqrVaO4XfdI6vYJMHbkWC542wVt1b7QqgVzWsUDQ5fJYzCdz57qstDKuYBq0YoZWFvNA0OXaeZgulbO9+S6U7tPDQGNz43UiTwwNFneN9NmTWPRDvM9OdcKrVwwp1U8MDRRK26m1S7yk5TXcgGs0jrUXpJw3aoX5kYq5d1Vm6jSzbQZ6llas9J0GpBeFVXYt9yxrje067QWjearXdeObiYvMTRRq6atrrVxuJoG67QqqkK32HLHuu7Xrg20WeSrUxrJs+SBoYnqre+vt12i3uOqCWBpVVSlQaHSOV13apcG2tJupS9tfymTfHVCI3mWvCqpieoZjVxNtU6Wx0F1s7+mVVFNymHmWNf+2qGBtlA62PDiBgxjw4sb2PLKlpbnqxM1VGKQNAG4FjgQ+CMw18yeS9hvJ/C541bKAAAPD0lEQVRgePufZnZySJ8GXAPsDdwLfNjMXmkkT+2knsnz6h2HUOm4cqWJahus06qo8hoJ7d1l21c7NNBWmnsprpsbjrPQaIlhAXCLmU0Hbgnvk2w1s8PD6+RY+jeBS8zs9cBzwJkN5qftzDliEr9ccAyPLTqJXy44puKNrN52iXLHVSpNlJYGxo0ewagRwzjv2lUV11uop7G7Ho2UiFzztUMDbbWlgG5vOM5CQ+sxSFoDHG1mGyT1Abeb2ZBHRUkvmNleJWkCNgL7mdkOSf8LWGhmx1f63E5bj6EW1ayrUOtxQNXnzGPtiHrUe11cfvKcNiLpsxb/bnFiqWXcnuMYvcfonmk4Liev9Rj2NbPCb+IpYN+U/UZJGgB2AIvMbBlR9dFmM9sR9lkPpN55JJ0NnA0wderUBrPdvuodh1DuuPOuXZV4TFIpox3Wp07Sqh5ernp5NdCm9TSa/frZXL/2+iFLbi6YuaBnA0G9KlYlSbpZ0kMJr9nx/SwqeqQVPw4IUeoM4FJJr6s1o2Z2uZn1m1n/xIkTaz28Y9RbNVPuuFqWFm3XG3Aey6O6zpDWA+rO9Xe2ZMnNdh2/0YiKJQYzOy5tm6SnJfXFqpKeSTnHYPh3naTbgSOAHwPjJO0RSg2TgaZWGHdK42W9k9SlHVdLKaRZU2o0qt6SlOs+5XpA5d2ttF3HbzSq0cbn5cD88PN84PrSHSSNl7Rn+Hkf4Cjg4VDCuA04pdzxWenlxstaSiFZL/iTlbwauV37S+tR1IqeRuXGb3SyRhuf9waWAFOBx4m6q26S1A+cY2ZnSXoH8B1gF1EgutTMvhuOP4iou+oE4D7gQ2a2rdLn1tP43KmNl60o5XRKycr1pqS1okcNHzWk2iiPxvAZV8/AEmrQhXhg/gOZflYWcml8NrNngWMT0geAs8LPvwLenHL8OmBmI3moVrvWnZfTqhlNfb0F186qmaIiryqedhi/0Qw9M/K5ExsvWzEJn3Od4KSDTuLGU27kgfkPcOMpNw652edVxdMO4zeaoWcCQ7vWnZfTiaUc56rVzN48eU3RcdJBJ7WkJ1Sz9cwkevVMT9Fq7dpDyLlGNbuq57UjX5s4T9JrR7624XOX6sYJ9nomMEDn1Z17F03XrZoxG2u8sTlNNOGCq6SnAkOnaXUpx3snuWaptqqn2p5FST2VkmzZljzbqivmgaHNtaqU42s8u2aqpjdPLdVN1c6sWmtvoTznf2onPdP47GrjPaJcM1XqzbNi3Qo+f9fnq+5ZVE2jcq29hZLWd1j4q4VdMeVFJV5iaJJOr4bxHlGumcqNRSjckHfZrsRjk4JAWglkmIZhZnU97bfLqnSt4IGhCbqhGsZ7RLlmS+vNU6laKKk66Nwjz61qNHQt2mFVulbxqqQm6IZqmE4c9+E634p1KxKf/AvSqoOaMZ6gneZkypuXGJqgG6phWt0jyvWeQhVSmmEaVvZmn/V4grRSSKePaq6GB4Ym6JZqmE4b9+GaJ4/eOeWqkBqtFqpHNXMydSsPDE3gA9NcN8lrQrpydfetmmaiG0c1V8PbGJrA1w5w3SSvCenS6u77xvT15M25lbzE0CReDeO6RV69c5Lq9AG27tjKinUrPDjkqKESg6QJkm6S9Gj4d3zCPu+WtCr2elnSnLDtKkmPxbYd3kh+8rTsvkGOWnQr0xas4KhFt/bESnCuN+XVO6fQs2j08OK2uM3bNvfMwLJ20WhV0gLgFjObDtwS3hcxs9vM7HAzOxw4BngJuDG2y/mF7Wa2qsH85KKXlwl1vSfvNQe27hzacaMblsvsJI0GhtnA1eHnq4E5FfY/BbjBzF5q8HNbqhvGKThXrTzXHCh38++FgWXtotE2hn3NrDAa5Slg3wr7zwP+sSTt65K+TChxpK35LOls4GyAqVOn1p/jDHTDOAXnapFX75xyN/9eGFjWLiqWGCTdLOmhhNfs+H5mZpCwKvar5+kjWvt5ZSz5AuAQ4K3ABOBzaceb2eVm1m9m/RMnTqyU7abqxGVCnesE5W7+vTCwrF1UDAxmdpyZHZbwuh54OtzwCzf+Z8qcai7wUzPbHjv3BotsA74HzGzs6+TDp4twrjmS2jMATjv4tKaWWJq5zGgnarQqaTkwH1gU/r2+zL6nE5UQdpPUZ2YbFC2rNAd4qMH85MKni3CuOVox2jivAXydRFENUJ0HS3sDS4CpwOPAXDPbJKkfOMfMzgr7HQj8Ephi9upcupJuBSYCAlaFY16o9Ln9/f02MDBQd76dc65g1tJZiRP39Y3p48ZTbkw4onNJutfM+ivt11CJwcyeBY5NSB8Azoq9/yMw5HHazI5p5POdc65RvTy9dhqfEsM519N6eXrtNB4YnHM9Le8BfJ3A50pyzvW0Xp5eO40HBudcz+vV6bXTeFWSc865Ih4YnHPOFfHA4JxzrogHBuecc0U8MDjnnCvigcE551wRDwzOOeeKeGBwzjlXxAODc865Ih4YnHPOFfHA4JxzrkhDgUHSqZJWS9oVFudJ2+8ESWskrZW0IJY+TdJvQvq1kkY2kh/nXMSXqnSNaLTE8BDwAeDOtB0kDQe+BbwXOBQ4XdKhYfM3gUvM7PXAc8CZDebHuZ5XWKpyw4sbMGz3UpUeHFy1GgoMZvZ7M1tTYbeZwFozW2dmrwDXALPDOs/HAEvDflcTrfvsnGvA4t8t3r1+ccHLO19m8e8WtyhHrtPk0cYwCXgi9n59SNsb2GxmO0rSE0k6W9KApIGNGzc2LbPOdTpfqtI1qmJgkHSzpIcSXrPzyGCBmV1uZv1m1j9x4sQ8P9q5juJLVbpGVQwMZnacmR2W8Lq+ys8YBKbE3k8Oac8C4yTtUZLunGuAL1XpGpVHVdI9wPTQA2kkMA9YbmYG3AacEvabD1QbbJxzKU466CQWvmMhfWP6EKJvTB8L37HQVyhzVVN0f67zYOn9wD8BE4HNwCozO17S/sAVZnZi2O9E4FJgOHClmX09pB9E1Bg9AbgP+JCZbav0uf39/TYwMFB3vp1zrhdJutfMUocW7N6vkcDQKh4YnHOudtUGBh/57JxzrogHBuecc0U8MDjnnCvigcE551wRDwzOOeeKeGBwzjlXxAODc865Ih05jkHSRuDxBk6xD/BfGWUnS56v6rVjnqA989WOeQLPVy2yytMBZlZxsrmODAyNkjRQzSCPvHm+qteOeYL2zFc75gk8X7XIO09eleScc66IBwbnnHNFejUwXN7qDKTwfFWvHfME7ZmvdswTeL5qkWueerKNwTnnXLpeLTE455xL4YHBOedcka4NDJJOlbRa0i5Jqd28JJ0gaY2ktZIWxNKnSfpNSL82rD6XRb4mSLpJ0qPh3/EJ+7xb0qrY62VJc8K2qyQ9Ftt2eB55CvvtjH3u8lh6K6/V4ZJ+HX7XD0g6LbYts2uV9ncS275n+O5rw7U4MLbtgpC+RtLx9eahznx9VtLD4drcIumA2LbE32dO+fqopI2xzz8rtm1++J0/Kml+jnm6JJafRyRtjm1ryrWSdKWkZyQ9lLJdki4LeX5A0pGxbU25TgCYWVe+gDcCBwO3A/0p+wwH/gAcBIwE7gcODduWAPPCz98G/iKjfP0dsCD8vAD4ZoX9JwCbgNeE91cBp2R8rarKE/BCSnrLrhXwBmB6+Hl/YAMwLstrVe7vJLbPJ4Fvh5/nAdeGnw8N++8JTAvnGZ7R9akmX++O/e38RSFf5X6fOeXro8A/p/y9rwv/jg8/j88jTyX7/yXRapPNvlbvAo4EHkrZfiJwAyDg7cBvmnmdCq+uLTGY2e/NbE2F3WYCa81snZm9QrTM6GxJAo4Blob9rgbmZJS12eF81Z73FOAGM3spo8/PIk+7tfpamdkjZvZo+PlJ4BmipWazlPh3UiavS4Fjw7WZDVxjZtvM7DFgbThfLvkys9tifzt3A5Mz+uyG8lXG8cBNZrbJzJ4DbgJOaEGeTgd+lMHnlmVmdxI9+KWZDXzfIncD4yT10bzrBHRxVVKVJgFPxN6vD2l7A5vNbEdJehb2NbMN4eengH0r7D+PoX+gXw/Fyksk7ZljnkZJGpB0d6Fqiza6VpJmEj0N/iGWnMW1Svs7SdwnXIstRNemmmPrVeu5zyR6+ixI+n3mma8Pht/NUklTajy2WXkiVLdNA26NJTfrWlWSlu9m/l2xR1YnagVJNwP7JWz6gpldn3d+CsrlK/7GzExSan/h8GTwZmBlLPkCopvkSKK+zZ8DLswpTweY2aCkg4BbJT1IdAOsW8bX6gfAfDPbFZLrulbdSNKHgH7gT2PJQ36fZvaH5DNk7mfAj8xsm6RPEJW2jsnpsyuZByw1s52xtFZeq9x1dGAws+MaPMUgMCX2fnJIe5aoyLZHePorpDecL0lPS+ozsw3hZvZMmVPNBX5qZttj5y48QW+T9D3gr/PKk5kNhn/XSbodOAL4MS2+VpJeC6wgeiC4O3buuq5VgrS/k6R91kvaAxhL9HdUzbH1qurcko4jCrR/ambbCukpv88sbnYV82Vmz8beXkHUnlQ49uiSY2/PI08x84BPxROaeK0qSct3s64T4FVJ9wDTFfWqGUn0B7Hcotad24jq9wHmA1mVQJaH81Vz3iH1nOEGWajbnwMk9mbIOk+SxheqYiTtAxwFPNzqaxV+bz8lqoddWrItq2uV+HdSJq+nALeGa7McmKeo19I0YDrw2zrzUXO+JB0BfAc42cyeiaUn/j5zzFdf7O3JwO/DzyuBWSF/44FZFJeYm5ankK9DiBpzfx1La+a1qmQ58JHQO+ntwJbwwNOs6xTJqhW73V7A+4nq3bYBTwMrQ/r+wM9j+50IPEIU/b8QSz+I6D/wWuA6YM+M8rU3cAvwKHAzMCGk9wNXxPY7kOipYFjJ8bcCDxLd5H4I7JVHnoB3hM+9P/x7ZjtcK+BDwHZgVex1eNbXKunvhKha6uTw86jw3deGa3FQ7NgvhOPWAO/N+O+8Ur5uDn//hWuzvNLvM6d8fQNYHT7/NuCQ2LEfD9dxLfCxvPIU3i8EFpUc17RrRfTgtyH8Da8nagc6BzgnbBfwrZDnB4n1sGzWdTIznxLDOedcsV6vSnLOOVfCA4NzzrkiHhicc84V8cDgnHOuiAcG55xzRTwwOOecK+KBwTnnXJH/D8SbXHWwlhNTAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "n = 2 # dimension of each data point\n", - "sample_Total, training_input, test_input, class_labels = Wine(training_size=40,\n", - " test_size=10, n=n, PLOT_DATA=True)\n", - "\n", - "temp = [test_input[k] for k in test_input]\n", - "total_array = np.concatenate(temp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we setup an Aqua configuration dictionary to use the quantum `QSVMKernel` algorithm and add a multiclass extension to classify the Wine data set, since it has 3 classes.\n", - "\n", - "Although the `AllPairs` extension is used here in the example the following multiclass extensions would also work:\n", - "\n", - " 'multiclass_extension': {'name': 'OneAgainstRest'}\n", - " 'multiclass_extension': {'name': 'ErrorCorrectingCode', 'code_size': 5}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "aqua_dict = {\n", - " 'problem': {'name': 'svm_classification', 'random_seed': 10598},\n", - " 'algorithm': {\n", - " 'name': 'QSVM.Kernel'\n", - " },\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': [[0, 1]]},\n", - " 'multiclass_extension': {'name': 'AllPairs'},\n", - " 'backend': {'shots': 1024}\n", - "}\n", - "\n", - "backend = Aer.get_backend('qasm_simulator')\n", - "algo_input = SVMInput(training_input, test_input, total_array)\n", - "result = run_algorithm(aqua_dict, algo_input, backend=backend)\n", - "for k,v in result.items():\n", - " print(\"'{}' : {}\".format(k, v))\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/aqua/artificial_intelligence/qsvm_variational.ipynb b/community/aqua/artificial_intelligence/qsvm_variational.ipynb deleted file mode 100644 index 9d4e15b28..000000000 --- a/community/aqua/artificial_intelligence/qsvm_variational.ipynb +++ /dev/null @@ -1,251 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Quantum SVM (variational method)*_\n", - "\n", - "The QSVMKernel notebook here demonstrates a kernel based approach. This notebook shows a variational method.\n", - "\n", - "For further information please see: [https://arxiv.org/pdf/1804.11326.pdf](https://arxiv.org/pdf/1804.11326.pdf)\n", - "\n", - "\n", - "**This notebook shows the SVM implementation based on the variational method.**\n", - "\n", - "In this file, we show two ways for using the quantum variational method: (1) the non-programming way and (2) the programming way. \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Part I: non-programming way.\n", - "In the non-programming way, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import *\n", - "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit import Aer\n", - "from qiskit.aqua.input import SVMInput\n", - "from qiskit.aqua import run_algorithm, QuantumInstance\n", - "from qiskit.aqua.algorithms import QSVMVariational\n", - "from qiskit.aqua.components.optimizers import SPSA\n", - "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", - "from qiskit.aqua.components.variational_forms import RYRZ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", - "\n", - "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFWFJREFUeJztnV+sZlV5xp+HYSwwMzpJz9RMHcKQtDE1k1TghKbBgMVoqBLxwgtJJOlYPDeVYLww2qQhc9GkvTFyQZqenmGCETUGSqYhFmsiMkoqeg5iBQaJoUMYqpk5tcRzWi2Iby/Ot+Fj9/v2Xnvv9W+v7/klk5kzZ/959157red913rXWjQzCCHK5ILUBgghwqEKLkTBqIILUTCq4EIUjCq4EAWjCi5EwaiCC1EwquBCFIwquBAFc2GIiy7tv8QOH9zf6ZzNza3511va53zu85vbne7bl8uW9jber/p9E0221s9vewcxqZdVF9uqc2OX0zT1ew8pq+lzY5XR5uYW/nPrV9j61StsOzZIBT98cD/WT3y80zkn1h6Z+7ujt17nfO7Hjs+/jk/uuOmqxvtVv2+iydb6+W3vICb1supiW3Vu7HKapn7vIWU1fW6sMjqx9giOndxwOjZIBd/c3MKJtUecHnhexR5ybhN3//nOdX19YL6vVyfmRxPzfl0Y8o6nz6muU79e9Xf1/31tyPEdKgYXomCCKLgLQ9y8Oi4te1Pr7IpLCx/q+qHo4gXNO7aPck0/q6sy9znH5XpdrjVP/ad/l5OSS8GFKBhVcCEKxslFJ7kfwBqAIwAMwMfM7F/73NCHa+7SE5vC3e1KSht9uttdqK7bp4N0mj7u9bzOtD7l4HJODq66awx+J4CHzOzDJN8E4JKANgkhPNFawUm+BcC1AP4MAMzsZQAvu1x8Vis9pDVzafXHoNyp6NuhFlqBhgyDDVHy+jVC4VvJj956He569FmnY11i8MsBnAdwguQPSK6R3FM/iOQKyXWS69u/fKWbxUKIILi46BcCuBLAbWb2GMk7AXwGwF9NH2RmqwBWAeDwgX0G+Gux6sozpAUeohKLSpvyh1L4RX/vPnBR8LMAzprZY5Of78NOhRdCZE6rgpvZz0i+QPLtZvZjAO8B8HTTOUtL+wa36k2qoZa9G0N7rEMw/X1U9g0pVx/prLFicSBez7prL/ptAO6d9KA/B+BoOJOEEL5wquBm9gSA5cC2AAinNoq938i89zH2Z/Y9MSUUscbIlckmRMEkm2xSJ8c4cQizWubYz9jnfl3i0ZQZWvV715916DTe2HF5qHcpBReiYFTBhSiYbOaDjx0XF8vXRIu+9E3nzKXjrekdp363QwnlqkvBhSiY6Ao+r4WNPQGgiZw6mPq07L5VzGeHk4ttQ95tXcmHrgITq7OtwudKR4AUXIiiCargTa11W2vqOwZ0GTaZd59Qk2Z84+odpSB2bDwrJg+9Am4XXBONhqa3SsGFKJig66JXDG0xfcRBfWzIYVXMiqZYPJY6xo5HQ+FzuSffNPVFTZdz005A00jBhSiYIAr+/OZ2lDinSWG7qFq9Vfat3D4Vtsu1QpdBqLFbn9edNS21IqeYfB6zbOviRUjBhSgYVXAhCiab2WRNdHGhx5qquGgMdT37MC+dNYWr7mveehtScCEKJlsFn9Wa9+l06bJyic/OopSeRM6dRk3Uh6JCdeK1Kfksm8aKFFyIgslOwfso6yy1TKXcKYmlNqGTPnJKqAn9jKGRggtRMNkoeJ9kkyHKHUq1U8TeqeNEl1h5yIIMsWPxkpCCC1EwyRV8yBj32CeQDCG1ag/FZSGGWLF4yUouBReiYJwUnOQZAFsAXgXwazMbvMtJLOWu7lOKci8yoff2apqYMo/cPakuLvqfmNlmMEuEEN6Riy5EwdDM2g8i/x3AfwEwAH9vZqstx7/hokM7SYZsHBjbNY+9ukoOdEke6jK0OeQ+vshp/n0dM2PbMa4u+rvM7EWSvwPgGySfMbNT0weQXAGw0sNOIUQgXLcPfnHy9zmSDwC4GsCp2jGrAFaB1xW8j3IPbQVL71TLSbn74Hu109Cb97Vtcpg7rTE4yT0k91X/BvA+AE+GNkwIMRwXBX8rgAdIVsd/ycwe8mXAEEUqeeLI2OmjrGNYI60pKSZH+1sruJk9B+API9gihPBM0FTVUC1ZrIkjIg19lDB0LF5nLEqucXAhCsZpHLzzRWvj4EMJvWeYDxZx/Lti6G6sId5dym8j1h5xLuPgUnAhCkYVXIiCST4ffB4aAktDqA6i2J1gKZmXHOMyB943UnAhCiabTramjpqcW/3YqYuhW/4+a4N3SUnOqbPN5X6x1srvU67qZBNiwUmm4L5a/VT4VJsua4LFit26KHmfSUV9Vk/pg2+PIdbW0i7lLAUXYsEZhYJXpFZy30rTZypiikSXHHYY8UHoqZ9Dvs8+C0tIwYVYcJL3ovtQh7HuUtJnPe6UqaqlKHkq+u7WM4tjJzdw5vyWFFyIRSa5glcMUQdfCj6G5XhymGwiJU+PFFwIoQouRMlkM9lkyEZzXba0GeKGT7vHclNFG0PW8/eFFFyIgsmmk60iB2XMoeVtQ51tO/TZiDI2ocpKiS5CLDjZKHhKNfDZwsZ6jkVXcJWZFFyIhWdUk018kmLhhFCkUvNSFHwWY1B1KbgQC46zgpPcBWAdwItmdmPLsb13Fw1NygUTQrNISh77WXNUdN8KfjuA0x2OF0IkximTjeQhAB8A8NcAPtV2/GVLe3HHTVcNMmxWRpqvLDQhujIk07ILTdfv8w27KvjnAXwawG/mHUByheQ6yfXtX77S2RAhhH9aKzjJGwGcM7ONpuPMbNXMls1see/Fu70ZKIToj4uLfg2AD5J8P4CLALyZ5BfN7KNtJ/peaaXPCihjwNdKHzltWyuamVfmTeU87b4fO9mot6/RquBm9lkzO2RmhwF8BMA3XSq3ECI9QaaLLi3tS74Cap1Y6hZqvfdSvZexEGvtQJ/rtgEdK7iZfQvAt7qcI4RIRzYLPoyV2Ou7uyi5YvHh5LBGYNP173r0WadjlaoqRMEsnIL3SSQYGn/l1h8xVkJ5JGPcZccVKbgQBTMqBQ/dg+wzDTGHFj50LJ7jZKLQ5FCuXZCCC1EwquBCFEy2LvpYEzpydOFmudJD3PbSVpDtMlOs+i5zLOdZSMGFKJjkCj5WpR47Y+ggi52oM+t+897TrO82R1WXggtRMEFWVV3+g9+19RMfn/m7RVRsny37Iry/MaTYpk6OWT76D1g//R9aVVWIRSZ5DD6EnKZ+NrEIqrtouHx79e+nz3cwVPWl4EIUzKgUPIde1Yox9EKPjTHE3l3oo/J15qn+5uaWkw1ScCEKJoqClxiDtrXOUnjhQv078v3dSMGFKBhVcCEKZlSdbHX3JedOmbF20DUNy4QKtXIux9CE/hak4EIUTPRU1Tq+VWHMapBS2bskVKjMXidVmR07uYEz57eUqirEIpM8Bve9k8O8FnUMKjFtYyxlyHGKY06ELoe+79/buugkLyL5PZI/JPkUyWO9LBJCRMdFwf8XwPVmtk1yN4DvkPxnM/tuYNteo97K9YkBx9QDH5P6u5ylKCF6z3N8/77VOgfvqLWC204v3Pbkx92TP/575oQQ3nGKwUnuArAB4PcA3GVmjwW1ag4+laTPDiehyWF8PHRasZQ7Lk696Gb2qpm9E8AhAFeTPFI/huQKyXWS6+df+h/fdgohetBpmMzMXgLwMIAbZvxu1cyWzWz5wP5LfNknhBhAq4tO8gCAV8zsJZIXA3gvgL/tcpOxzSbLwVUW4QlVzjmtne4Sgx8EcM8kDr8AwFfN7MGwZgkhfODSi/5vAK4YcpPplmxsai7KY5E8NKWqClEw0VNVfSStNOFzGGaRWvrQaAvjNEjBhSiYbCeb5BCrh14va5HQu0uDFFyIgkm+4EMXuqh6rJTIMSlTzDTRMb0X38QY/9beZEKI9DF4F7r0wFcKElq1quvnqFg5TuwQcZGCC1EwquBCFMyoXPQ+yFWPx9ifPcWaeKGRggtRMEEUfHNzq3VIK4epdCHIQcnH2rnW9k34Sn5yeT9Dkpxymi4qBReiYJLF4DmkooakxHhuHkOfL6Ry+/JmcvDMKk6sPYLNzS2nY6XgQhRMEAV/fnO7teXMoSWMRU6tfy743tGmIqf+B5c15+cd6wspuBAFkywGl6qNnz5l51vFclLsNlI8nxRciIJRBReiYIpPVc0JhSVxk1XGiO/nkoILUTDJFTyWqsWadLIIxPZAciiz0M8c6hml4EIUTHIFd6FP0v68WG9WS5yDQvhk7N7KIm/f7JtWBSd5KcmHST5N8imSt8cwTAgxnNZVVUkeBHDQzB4nuQ/ABoAPmdnTDef0Xqq1qRX1Mf3OpRe3lF04fD/HmOLQsajxkGc2s+GrqprZT83s8cm/twCcBvC23lYJIaLRaV10kocBnAJwxMx+0XDc4MXWQyv5NKVOXc1ZwX3ZNhalnkdoBXfuZCO5F8D9AD45q3KTXAGw0slCIURQnBSc5G4ADwL4upl9ru34wwf22R03XRW8lS5FyZvekw+FGloOUu75zPoGY+3A4yUGJ0kAxwGcdqncQoh8cEl0uQbALQCuJ/nE5M/7A9slhPBAkM0HKxe9iT6uSSxXvSKWy+7yLlK66qlddJf7d/kG+pSr7+v7CFW8uOhCiPGSTMHrdGnRYg6hTRNK0UOp2pB7+u7EGqJYqcq7K23fh+9hSym4EAtOEAWvJ7r4VhvfMVloXJXflxfj416+FNyncudUphUpU5+l4EIsOFEUfBaxEhVyavVDxWhD3uW8e6ZU8NijJX1oKstY012l4EIsOFoXPSKVAuU0uSWnxSHGrtw5IgUXomBUwYUomORrsslVf53pd5CDyyxeZ8hwWNO3HbqcpeBCFExyBa8YouQ5dcKkIIQXNK0ssdasr5NDuXbpVMvRC5WCC1Ew2Sj42Omy2Xv9mFkqkdPw1RAPYd5z5Kh2JSIFF6Jgoit4iJZ7WgFziNuAPG1KydgUO3RCy9AU3mMnN5zOkYILUTDFTjZJpZouLX/dNl9TDvu80xSLTXQlRVmGUHCf04GPndzAmfNbmmwixCJT7GSTPr3aseijDk296mOLb3MlxUSS0GUnBReiYFTBhSiYZJ1sdUrruBnLvOExdLJVqMx2qMpMK7oIseAsbKpq6ESU6WuORRlEfgxNVXbZfPBukudIPjnoTkKI6LTG4CSvBbAN4AtmdsTlokO2D85hyGfse525EGqnkZAsQrlUuJSPlxjczE4B+LmbWUKInPAWg5NcAbACAL+957cA9JvymMMSTlWLnlNyzCIj5e6Pt150M1s1s2UzW9578W5flxVCDMBpHJzkYQAPdo3BZ5E6Lm+6f9t9fCnJEOXwtU+1YvB+7yfUs/cpD42DC7HgtMbgJL8M4N0AlkieBXCHmR1vOmdpad/cceB6C5jDkkQVbcsK+Ro7z3GHE9/0mRIbi7otKb/BvlNIXRd8aK3gZnazswVCiKyQiy5EwURJVW1K28xp9dA6TUN2Oc83r4gdCuT4DqYZ4pr77lxru3fT/Y7eeh3uevRZp/tIwYUomOiTTeZ1vuSQojoPl1VUfK+LLv4/fTo5Z73blMo95Lp9PCQpuBAFk3y6aGwV8xXzxxpSy4khaha7nIcq9xB8pFv7+mak4EIUTHIFrxh7POrS4z6vVR77s6dg3jv19Q5d1beLV5DCk5OCC1Ew2Sh4RSw1m26hfcZmodctTzGV1Yf9ocqz7bq+e8z77DCTsg9GCi5EwaiCC1Ew2bnoJePa2TZ9bGxiJWCExveQ2Nhc8wopuBAFk62Cx1Sz0BNe6kNoOaz5Vn/mHFOFY9nWdP0+k0L6rLoT6luQggtRMNkq+FBir6nlQo5qmZMtFfWy6zL0mHIiSZsKz/JEQ3txUnAhCiaIgm9ubuHE2iNZ9CLWaVLRPrH4kPi9Kf4aQ/qqS/mGsj+0N+Qae8d8B9PX2dzccjpHCi5EwQSNwZtartTq3hTXhVbyHGPxRWJI/N6lzHx8/0PVXwouRMEk60XvssRRn3jUx75osWLyHMbFu5CznUPKvQtN72Ded+prV5ouSMGFKBhVcCEKxslFJ3kDgDsB7AKwZmZ/49sQFzd1nqseeg52yrXbfQyXdbnGrPef81DdEHwnxeTkmle0KjjJXQDuAvCnAN4B4GaS7/BqhRAiCC4KfjWAn5jZcwBA8isAbgLwdNuJKdWg3mE2pLOtossqMC7H5jRc1mUddxdirsjTFR+emO/n6+pd+dzZ5G0AXpj6+ezk/4QQmUMzaz6A/DCAG8zs1snPtwD4IzP7RO24FQArkx+PAHjSv7mdWQKwmdqICbnYkosdgGyZhasdl5nZgbaDXFz0FwFcOvXzocn/vQEzWwWwCgAk181s2eHaQcnFDiAfW3KxA5AtMexwcdG/D+D3SV5O8k0APgLgn3wZIIQIR6uCm9mvSX4CwNexM0x2t5k9FdwyIcRgnMbBzexrAL7W4bqr/czxTi52APnYkosdgGyZhVc7WjvZhBDjRamqQhSM1wpO8gaSPyb5E5Kf8XntjnbcTfIcyaRDdSQvJfkwyadJPkXy9oS2XETyeyR/OLHlWCpbJvbsIvkDkg8mtuMMyR+RfILkemJb9pO8j+QzJE+T/OPB1/Tlok9SWp8F8F7sJMN8H8DNZtaa8eYbktcC2AbwBTM7Evv+U3YcBHDQzB4nuQ/ABoAPJXonBLDHzLZJ7gbwHQC3m9l3Y9sysedTAJYBvNnMbkxhw8SOMwCWzSz5GDjJewB828zWJiNWl5jZS0Ou6VPBX0tpNbOXAVQprdExs1MAfp7i3jU7fmpmj0/+vQXgNBJlAdoO25Mfd0/+JOmAIXkIwAcArKW4f46QfAuAawEcBwAze3lo5Qb8VnCltDZA8jCAKwA8ltCGXSSfAHAOwDfMLJUtnwfwaQC/SXT/aQzAv5DcmGRjpuJyAOcBnJiELmsk9wy9qDrZIkByL4D7AXzSzH6Ryg4ze9XM3omdbMSrSUYPX0jeCOCcmW3Evvcc3mVmV2JntuRfTMK7FFwI4EoAf2dmVwD4bwCD+7F8VnCnlNZFYxLv3g/gXjP7x9T2AMDE9XsYwA0Jbn8NgA9OYt+vALie5BcT2AEAMLMXJ3+fA/AAdkLNFJwFcHbKq7oPOxV+ED4ruFJaa0w6to4DOG1mn0tsywGS+yf/vhg7naHPxLbDzD5rZofM7DB2vpFvmtlHY9sBACT3TDo/MXGH34dEk6TM7GcAXiD59sl/vQcOU7Lb8LboYk4prSS/DODdAJZIngVwh5kdT2DKNQBuAfCjSewLAH85yQyMzUEA90xGOy4A8FUzSzpElQFvBfDATjuMCwF8ycweSmjPbQDunQjkcwCODr2gMtmEKBh1sglRMKrgQhSMKrgQBaMKLkTBqIILUTCq4EIUjCq4EAWjCi5EwfwfixeNGe+8BZQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFzpJREFUeJzt3X+QXWV9x/HPxyXqCppVWR2yAUM7ulNNkHVumdFYxjG1wQoa0w5FVNR2JtNptWidMMQ/IjrVMM1U1NbaSfkhKmojhowCEhkBkY6iG5YmCKQqxZKNNIuy/LBbCfHbP87ZZHfdH+dm77nnPPe+XzM7u3v37M132ctnn/vc5/k+jggBANLxjKoLAAA0h+AGgMQQ3ACQGIIbABJDcANAYghuAEgMwY1asf1u23fM8/XP2f67dtYE1A3BjbawfZvtR20/q+paFpL/8Ths+8n87b9sX2X7ZU3cB39gUBqCG6WzvULSH0gKSW+utJjivhcRJ0haKukPJU1I2m17ZbVlAQQ32uMCSd+X9DlJ75r6BdsvtP1124/b/oGk3y1wf8+3fYPtJ2zfafvI99h+je0f2n4sf/+aKV97QT5yPpCP/ncu9A9FxOGI+GlE/JWk70i6ZMr9fdX2w/m/dbvtV+S3b5D0dkkX5SP2b+S3X2z7p3nd99p+a4GfFfgtBDfa4QJJ1+Rva22/eMrXPiPp/ySdJOnP87eFnCfpI5KeL+knkj4mZcEs6QZJn5b0QkmfkHSD7Rfm3/cFSc+R9ApJL5J0WZM/xw5lzxwmfVPSS/P7uiv/+RQR2/KP/z4iToiIc/Lrf5p//9K8/i/aPqnJGgCCG+Wy/VpJL5G0PSJ2Kwuv8/Ov9Uj6E0mbI+JXEXGPpKsL3O11EfGDiHhaWUCent/+Jkk/jogvRMTTEfFlSfdLOicPyDdK+suIeDQiDkXEd5r8cQ5IesHkJxFxZUQ8ERG/VjYSf6XtpXN9c0R8NSIORMRvIuLfJP1Y0hlN1gAQ3CjduyR9KyIeyT//ko5Ol/RLOk7SQ1Ou/9nkB7Y/NOUFwn+Zcs3DUz7+X0kn5B8vm/r9U+5vQNLJkn4ZEY8u4mcZkPTLvLYe25fmUx+PS3owv+bEub7Z9gW277Y9bntc0sr5rgfmclzVBaBz2e6VdK6kHtuTYfssSX22XynpHklPKwvV+/OvnzL5/RHxcUkfb+KfPKBsdD/VKZJuUvbH4QW2+yJivNmfJfdWSd/NPz5f0luUvXD5oLLpj0clOf/6tLabtl8i6V8lrVH2wudh23dPuR4ojBE3yrRO0mFJL1c2nXG6pN9TFn4XRMRhZfPGl9h+ju2Xa8aLl026UdLLbJ9v+zjbf5b/29dHxM+VzUn/s+3n215i+8yF7jAfWZ9q+x8lvU7Z3LQkPVfSryX9Qtm8+cw/MP8j6XemfH68sjAfy+/3PcpG3EDTCG6U6V2SroqI/46IhyffJP2TpLfbPk7Se5VNdTysbNXJVcf6j0XELySdLemDygL1IklnT5mmeaekQ8pG9wclvX+eu3u17SclPS7pNknPk/T7EbE3//rnlU3DjEq6V9mqmamukPTyfFpkZ0TcK+kfJH1PWaivkvTvx/qzoruZgxQAIC2MuAEgMQQ3ACSG4AaAxBDcAJCYUtZxn3jiibFixYoy7hoAOtLu3bsfiYj+IteWEtwrVqzQ8PBwGXcNAB3J9sxdv3NiqgQAEkNwA0BiCG4ASAzBDQCJIbgBIDGFgtt2n+1rbd9v+z7bry67MADA7IouB/yUpJsi4k9tP1NZG0sA6Co7R0a1ddc+HRif0LK+Xm1cO6h1QwNtr2PB4M6PYjpT0rslKSKekvRUuWUBQL3sHBnVph17NXHosCRpdHxCm3ZkXX7bHd5FpkpOVdb8/SrbI7Yvt338zItsb7A9bHt4bGys5YUCQDN2joxq9aW36NSLb9DqS2/RzpHRRd3f1l37joT2pIlDh7V1175F3e+xKBLcx0l6laTPRsSQpF9JunjmRRGxLSIaEdHo7y+0axMASjE5Oh4dn1Do6Oh4MeF9YHyiqdvLVCS490vaHxF35p9fqyzIAaCWyhgdL+vrber2Mi0Y3PlRUw/ZHsxvWqPsqCYAqKUyRscb1w6qd0nPtNt6l/Ro49rBOb6jPEVXlbxP0jX5ipIHJL2nvJIAYHGW9fVqdJaQXszoePIFyCRWlUhSRNwtqVFyLQDQEhvXDk5bASK1ZnS8bmigkqCeqZS2rgBQpTqNjstAcAPoSHUZHZeBXiUAkBiCGwASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJAYghsAEkNwt9Oe7dJlK6VL+rL3e7ZXXRGABNGrpF32bJe+8TfSobzV5GMPZZ9L0mnnVlcXgOQw4m6Xb3/0aGhPOjSR3Y5jwzMYdClG3O3y2P7mbsf8eAaDLsaIu12WLm/udsyPZzDoYoy422XN5ukjREla0pvdvgg7R0YXbBZf5Jrk8AwGXYzgbpfJp+/f/mgWLkuXZ6G9iKf1O0dGpx3PNDo+oU079ko6egJIkWuStHR5Nj0y2+1Ah2OqpJ1OO1f6wD3SJePZ+0XOxW7dtW/amXqSNHHosLbu2tfUNUlaszl7xjJVC57BACkguBN2YJZTrGfeXuSaJJ12rnTOp6WlJ0ty9v6cT/PCJLoCUyUJW9bXq9FZAnhZX29T1yTrtHMJanQlRtwJ27h2UL1Leqbd1rukRxvXDjZ1DYC0FBpx235Q0hOSDkt6OiIaZRaFYiZfXJxvxUiRawCkxRGx8EVZcDci4pEid9poNGJ4eHiRpQFA97C9u+igmKkSAEhM0eAOSd+yvdv2hjILAgDMr+iqktdGxKjtF0m62fb9EXH71AvyQN8gSaecckqLywQATCo04o6I0fz9QUnXSTpjlmu2RUQjIhr9/f2trRIAcMSCI27bx0t6RkQ8kX/8R5Lo5FOhjuw9AqCwIlMlL5Z0ne3J678UETeVWhXm1LG9RwAUtmBwR8QDkl7ZhlpQwHy9RwjuEuzZ3tLGYEArsOU9MR3be6SOOKwBNcU67sTM1WOkI3qP1A2HNaCmCO7E0HukjTisATXFVEli6D3SRhzWgJoiuBO0bmiAoG6Hko6bAxaLqRJgLhzWgJpixA3Mh8MaUEOMuAEgMQQ3ACSG4AaAxBDcAJAYghsAEkNwA0BiCG4ASAzBjc6wZ7t02Urpkr7s/Z7tVVcElIYNOEgf7VfRZRhxI320X0WXIbiRPtqvosvUM7iZr0Qz5mqzSvtVdKj6BffkfOVjD0mKo/OVhDfmsmZz1m51KtqvooPVL7iZr0SzaL+KLlO/VSXMV+JY0H4VXaR+I27mKwFgXvULbuYrAWBehYPbdo/tEdvXl1kQ85UAML9m5rgvlHSfpOeVVMtRzFcCwJwKjbhtL5f0JkmXl1sOAGAhRadKPinpIkm/KbEWAEABCwa37bMlHYyI3Qtct8H2sO3hsbGxlhUItAw7ctEhioy4V0t6s+0HJX1F0uttf3HmRRGxLSIaEdHo7+9vcZnAIrEjFx1kweCOiE0RsTwiVkg6T9ItEfGO0isDWokduegg9VvHDZSBHbnoIE1teY+I2yTdVkolQBn2bM9H1TH719mR29V2joxq6659OjA+oWV9vdq4dlDrhgaqLmtB9etVArTKzJNxZmJHblfbOTKqTTv2auLQYUnS6PiENu3YK0m1D2+CG5LSHXkcMTmyfmx/Nopes3n2ee1JS0/OrmGjV9faumvfkdCeNHHosLbu2lf7xz7BjaRHHpLmPnNyrtCWpQ/c07byUE8Hxmd/fMx1e53w4iTmHXkkYa4VI+6Z/XrmtSFpWV9vU7fXCcGNpEcekuZeGRKH6TSJOW1cO6jeJdP/uPcu6dHGtYMVVVQcwY2kRx6S5unhfjKdJjGndUMD2rJ+lQb6emVJA3292rJ+VRLTg8xxQxvXDk6b45bSGXlIykbQM+e0J0fWdJrEPNYNDSQR1DMR3DjywE12VclkMM9cVUJgo0M5Yo6NCYvQaDRieHi45fcLAJ3K9u6IaBS5ljluAEgMUyUAcAyq3LRGcANAk6retMZUCQA0qepNawQ3ADSp6k1rBDcANKnqTWsENwA0qert8rw4OZfZ2oSyoQOAqt+0RnDPZq42oRLhDUBStdvlmSqZDQfLAqgxgns2HCwLoMYI7tnM2SaUBvwAqkdwz2bNZhrwA6gtgns2p51LA34AtcWqkrnQgB9ATS0Y3LafLel2Sc/Kr782Ij5cZlFVdt0CgLorMuL+taTXR8STtpdIusP2NyPi+2UUVHXXLQCouwWDO7Ijcp7MP12Sv7X+2JzcfF23pgY3o3IA3arQi5O2e2zfLemgpJsj4s6yCirSdWtyVD46PqHQ0VH5zpHRssoCgNooFNwRcTgiTpe0XNIZtlfOvMb2BtvDtofHxsaOuaAiXbeq7oULAFVqajlgRIxLulXSWbN8bVtENCKi0d/ff8wFFem6VXUvXACo0oLBbbvfdl/+ca+kN0i6v6yC1g0NaMv6VRro65UlDfT1asv6VdPmr6vuhQsAVSqyquQkSVfb7lEW9Nsj4voyi1qo69bGtYPTVp5I7e2FCwBVKrKqZI+koTbUUljVvXABoErJ7pysshcuAFSJXiV1sGe7dNlK6ZK+7P2e7VVXBKDGkh1xdwxO2wHQpK4J7trutJzvtB2CuxqcN4qa64rgrnX/E07bqReeASEBXTHHXeudlpy2Uy+cN4oEdEVw13qnJaft1AvPgJCArgjuWu+05LSdeuEZEBLQFXPctd9pyWk79bFm8/Q5bolnQKidrghudlqisMk/oKwqQY05OyehtRqNRgwPD7f8fgGgU9neHRGNItd2xRw3AHQSghsAEkNwA0BiCO66oeEUgAV0xaqSZLDdGkABjLjrhO3WAAoguOuE7dYACiC466Qd262ZQweSR3DXSdkNpybn0B97SFIcnUMnvIGkENx1UnbDKebQgY7AqpK6KbPhFHPoQEdgxN1NaFkKdASCu5twaAPQERYMbtsn277V9r22f2T7wnYUhhJwaAPQEYrMcT8t6YMRcZft50rabfvmiLi35NpQBg5tAJK34Ig7In4eEXflHz8h6T5JnEAAABVpao7b9gpJQ5LuLKMYAMDCCge37RMkfU3S+yPi8Vm+vsH2sO3hsbGxVtaIlLAzE3XXAY/RQsFte4my0L4mInbMdk1EbIuIRkQ0+vv7W1kjUsHOTNRdhzxGi6wqsaQrJN0XEZ8ovyQki52Z7dWikePOkVGtvvQWnXrxDVp96S3aOTLa4kJrpJWP0QpH7kVWlayW9E5Je23fnd/2oYi4sbyykCR2ZrZPi3q37xwZ1aYdezVx6LAkaXR8Qpt27JUkrRvqwDUIrXqMVtw7v8iqkjsiwhFxWkScnr8R2vht7MxsnxaNHLfu2ncktCdNHDqsrbv2TbutY0blrXqMVvzskp2TaB12ZrZPi0aOB8YnFrx9clQ+Oj6h0NFReZLh3arHaMXPLglutA47M9unRSPHZX29C95edFSehFY9Rit+dkl3QLQWOzPbY83m6XOs0jGNHDeuHZw2xy1JvUt6tHHt4JHPi4zKk9KKx2iL/vsfK0bcQIpaNHJcNzSgLetXaaCvV5Y00NerLetXTXthssiovOtU/OzSEdHyO200GjE8PNzy+wXQfjNXnkjZqHxmwGNxbO+OiEaRa5kqATCvyXDeumufDoxPaFlfrzauHSS0K0Rwd4GdI6P8T4dFWTc0wGOmRgjuDtd1GyyALsCLkx2uo5ZyAZBEcHe8jlvKBYCpkk63rK9Xo7OEdFcv5arCnu3ZdujH9mebNNZsrv16d14bqS9G3B1u49pB9S7pmXbbzA0WKFmCrUQ7apt7ByK4O1yRDRYoWYLtbnltpN6YKukCLOWqWILtbnltpN4YcQNlS7DdLdvc643gBsqWYLtbXhupN6ZK0D2qWtkx+W8ktKqEbe71RpMpdIeZR01J2aiXfuGoiWaaTDFVgu6Q4MoOYC4EN7pDgis7gLkQ3OgOCa7sAOZCcKM7JLiyA5gLwY3uwEHG6CAsB0T34CBjdIgFR9y2r7R90PY97SgIADC/IlMln5N0Vsl1AAAKWnCqJCJut72i/FIwH3ojA5jUsjlu2xskbZCkU045pVV3C3FuJIDpWraqJCK2RUQjIhr9/f2tuluI3sgApmM5YALojQxgKoI7AfRGBjBVkeWAX5b0PUmDtvfb/ovyy8JU9EZugz3bpctWSpf0Ze9rfB4kUGRVydvaUQjmRm/kks1s+Tp5mK/Ehh3UEv24gctW5iewz7D0ZOkD7DtDe9CPG2gGLV+RGIIboOUrEkNwA7R8RWIIboCWr0gMbV0BiZavSArBDaCrdELDNoIbQNfolIZtzHED6Bqd0rCN4AbQNTqlYRtTJailTpiHRP0s6+vV6CwhnVrDNkbcqJ3JecjR8QmFjs5D7hwZrbo0JK5TGrYR3KidTpmHRP2sGxrQlvWrNNDXK0sa6OvVlvWrkns2x1QJaqdT5iFRT+uGBpIL6pkYcaN2ODgCmB/BjdrplHlIoCxMlaB2ODgCmB/BjVrqhHlIoCxMlQBAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEFFoOaPssSZ+S1CPp8oi4tNSqgITQyTAtnfD7WjC4bfdI+oykN0jaL+mHtr8eEfeWXRxQd51yokq36JTfV5GpkjMk/SQiHoiIpyR9RdJbyi0LSAOdDNPSKb+vIsE9IOmhKZ/vz2+bxvYG28O2h8fGxlpVH1BrdDJMS6f8vlr24mREbIuIRkQ0+vv7W3W3QK3RyTAtnfL7KhLco5JOnvL58vw2oOvRyTAtnfL7KrKq5IeSXmr7VGWBfZ6k80utCkgEnQzT0im/L0fEwhfZfyzpk8qWA14ZER+b7/pGoxHDw8OtqRAAuoDt3RHRKHJtoXXcEXGjpBsXVRUAoCXYOQkAiSG4ASAxBDcAJIbgBoDEENwAkJhCywGbvlN7TNLPWnBXJ0p6pAX3UxXqrxb1V4v6m/OSiCi07byU4G4V28NF1zXWEfVXi/qrRf3lYaoEABJDcANAYuoe3NuqLmCRqL9a1F8t6i9Jree4AQC/re4jbgDADAQ3ACSmlsFt+yzb+2z/xPbFVdfTLNtX2j5o+56qa2mW7ZNt32r7Xts/sn1h1TU1w/azbf/A9n/k9X+k6pqOhe0e2yO2r6+6lmbZftD2Xtt3206uv7PtPtvX2r7f9n22X111TTPVbo47P1X+PzXlVHlJb0vpVHnbZ0p6UtLnI2Jl1fU0w/ZJkk6KiLtsP1fSbknrUvnvb9uSjo+IJ20vkXSHpAsj4vsVl9YU238rqSHpeRFxdtX1NMP2g5IaEZHk5hvbV0v6bkRcbvuZkp4TEeNV1zVVHUfcyZ8qHxG3S/pl1XUci4j4eUTclX/8hKT7NMvh0HUVmSfzT5fkb/UanSzA9nJJb5J0edW1dBvbSyWdKekKSYqIp+oW2lI9g7vQqfIon+0VkoYk3VltJc3JpxnulnRQ0s0RkVT9yk6bukjSb6ou5BiFpG/Z3m17Q9XFNOlUSWOSrsqnqi63fXzVRc1Ux+BGDdg+QdLXJL0/Ih6vup5mRMThiDhd2cHWZ9hOZrrK9tmSDkbE7qprWYTXRsSrJL1R0l/nU4epOE7SqyR9NiKGJP1KUu1eZ6tjcHOqfMXyueGvSbomInZUXc+xyp/i3irprKpracJqSW/O54m/Iun1tr9YbUnNiYjR/P1BSdcpm/5MxX5J+6c8S7tWWZDXSh2D+8ip8vkLA+dJ+nrFNXWN/MW9KyTdFxGfqLqeZtnut92Xf9yr7EXu+6utqriI2BQRyyNihbLH/i0R8Y6KyyrM9vH5i9rKpxj+SFIyq6si4mFJD9kezG9aI6l2L8wXOiy4nSLiadvvlbRLR0+V/1HFZTXF9pclvU7Sibb3S/pwRFxRbVWFrZb0Tkl783liSfpQfmB0Ck6SdHW+OukZkrZHRHJL6hL2YknXZX//dZykL0XETdWW1LT3SbomHzg+IOk9FdfzW2q3HBAAML86TpUAAOZBcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDE/D/M94jD9blJRQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1}\n" - ] - } - ], - "source": [ - "feature_dim = 2 # dimension of each data point\n", - "training_dataset_size = 20\n", - "testing_dataset_size = 10\n", - "random_seed = 10598\n", - "shots = 1024\n", - "\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(training_size=training_dataset_size, \n", - " test_size=testing_dataset_size, \n", - " n=feature_dim, gap=0.3, PLOT_DATA=True)\n", - "\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "print(class_to_label)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the svm in the non-programming way.\n", - "In the following json, we config:\n", - "- the algorithm name \n", - "- the variational form\n", - "- the feature map \n", - "- the optimizer" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\n", - " 'problem': {'name': 'svm_classification', 'random_seed': 10598},\n", - " 'algorithm': {'name': 'QSVM.Variational', 'override_SPSA_params': True},\n", - " 'backend': {'shots': 1024},\n", - " 'optimizer': {'name': 'SPSA', 'max_trials': 200, 'save_steps': 1},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 3},\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2}\n", - "}\n", - "\n", - "svm_input = SVMInput(training_input, test_input, datapoints[0])\n", - "backend = Aer.get_backend('qasm_simulator')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With everything setup, we can now run the algorithm.\n", - "\n", - "For the testing, the result includes the details and the success ratio.\n", - "\n", - "For the prediction, the result includes the predicted labels. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "result = run_algorithm(params, svm_input, backend=backend)\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "print(\"predicted classes:\", result['predicted_classes'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Part II: programming way.\n", - "We construct the svm instance directly from the classes. The programming way offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the svm in the programming way.\n", - "- we build the optimizer instance (required by the svm instance) by instantiating the class SPSA.\n", - "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion.\n", - "- We build the varitional form instance (required by the svm instance) by instantiating the class RYRZ.\n", - "- We build the svm instance by instantiating the class QSVMVariational. \n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "backend = Aer.get_backend('qasm_simulator')\n", - "optimizer = SPSA(max_trials=100, c0=4.0, skip_calibration=True)\n", - "optimizer.set_options(save_steps=1)\n", - "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2)\n", - "var_form = RYRZ(num_qubits=feature_dim, depth=3)\n", - "svm = QSVMVariational(optimizer, feature_map, var_form, training_input, test_input)\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we run it." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "result = svm.run(quantum_instance)\n", - "print(\"testing success ratio: \", result['testing_accuracy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Different from the non-programming way, the programming way allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", - "\n", - "Use the trained model to evaluate data directly, and we store a label_to_class and class_to_label for helping converting between label and class name" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "predicted_probs, predicted_labels = svm.predict(datapoints[0])\n", - "predicted_classes = map_label_to_class_name(predicted_labels, svm.label_to_class)\n", - "print(\"prediction: {}\".format(predicted_labels))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb deleted file mode 100644 index eee1be33b..000000000 --- a/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb +++ /dev/null @@ -1,332 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Experiment with classification problem with quantum-enhanced support vector machines*_\n", - "\n", - "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", - "\n", - "***\n", - "### Contributors\n", - "Vojtech Havlicek[1], Kristan Temme[1], Antonio Córcoles[1], Peng Liu[1], Richard Chen[1], Marco Pistoia[1] and Jay Gambetta[1]\n", - "### Affiliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "Classification algorithms and methods for machine learning are essential for pattern recognition and data mining applications. Well known techniques such as support vector machines and neural networks have blossomed over the last two decades as a result of the spectacular advances in classical hardware computational capabilities and speed. This progress in computer power made it possible to apply techniques, that were theoretically developed towards the middle of the 20th century, on classification problems that were becoming increasingly challenging.\n", - "\n", - "A key concept in classification methods is that of a kernel. Data cannot typically be separated by a hyperplane in its original space. A common technique used to find such a hyperplane consists on applying a non-linear transformation function to the data. This function is called a feature map, as it transforms the raw features, or measurable properties, of the phenomenon or subject under study. Classifying in this new feature space -and, as a matter of fact, also in any other space, including the raw original one- is nothing more than seeing how close data points are to each other. This is the same as computing the inner product for each pair of data in the set. So, in fact we do not need to compute the non-linear feature map for each datum, but only the inner product of each pair of data points in the new feature space. This collection of inner products is called the kernel and it is perfectly possible to have feature maps that are hard to compute but whose kernels are not.\n", - "\n", - "In this notebook we provide an example of a classification problem that requires a feature map for which computing the kernel is not efficient classically -this means that the required computational resources are expected to scale exponentially with the size of the problem. We show how this can be solved in a quantum processor by a direct estimation of the kernel in the feature space. The method we used falls in the category of what is called supervised learning, consisting of a training phase (where the kernel is calculated and the support vectors obtained) and a test or classification phase (where new unlabelled data is classified according to the solution found in the training phase).\n", - "\n", - "References and additional details:\n", - "\n", - "[1] Vojtech Havlicek, Antonio D. C´orcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta1, \"Supervised learning with quantum enhanced feature spaces,\" [arXiv: 1804.11326](https://arxiv.org/pdf/1804.11326.pdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", - " 'functionality and more.', DeprecationWarning)\n" - ] - } - ], - "source": [ - "from qsvm_datasets import *\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit.aqua.input import SVMInput\n", - "from qiskit.aqua import run_algorithm, QuantumInstance\n", - "from qiskit.aqua.algorithms import QSVMKernel\n", - "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", - "\n", - "# setup aqua logging\n", - "import logging\n", - "from qiskit.aqua import set_qiskit_aqua_logging\n", - "# set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Optional] Setup token to run the experiment on a real device\n", - "If you would like to run the experiement on a real device, you need to setup your account first.\n", - "\n", - "Note: If you do not store your token yet, use `IBMQ.save_accounts()` to store it first." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit import IBMQ\n", - "# IBMQ.load_accounts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", - "\n", - "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFXtJREFUeJztnWGsZVV1x/9/htGBYYSEN7VThwJJG1NDUqEvNA2GsRgNtUT94AdJJHF0+r5UgvGD0SYNnQ9N2qQxkpQ0HWegGFFjoGQaYlETUaqpo+8hRmCQGDKGQc3MqyG+abUgrn5498Ll9Nx79jln7bP32ff/SybMHc49Z51z7t7/tfZee22aGYQQZXJeagOEEPFQAxeiYNTAhSgYNXAhCkYNXIiCUQMXomDUwIUoGDVwIQpGDVyIgjk/xkn37Nppl+7Z9fLnlZU9jd/Z3NxqPCbkPKHn//HmudbnuHzlok7XbrJ7alsXm2bpat8sy/6upsyzv8+7CrGpet15z/q/tn6FrV+9yKbzRWngl+7Zhdvf/Ucvfz546EDjd+4++o3GY0LOE3r+Dx5rvl6V2XtqQ5PdU9u62DRLV/tmWfZ3NWWe/X3eVYhN1evOe9aHj28EXTNKA59Syo9FjI/pe77rQ91/O4uYnrfN76nu2Kp9Ie2hDYrBhSiYqApeh3cPlfo6fcjRxqlNdV5TjvbGYt5zmH72ehaxPQ0puBAFowYuRMEEuegkLwFwFMBVAAzAB83sP5u+18eNaTOwFtt1XOQ+hbhsi9zeUvG85y4DWkMx+9voY18sVz00Br8DwENm9l6SrwFwoasVQogoNDZwkhcDuB7ABwDAzF4A8EKbi4RMD0xZ1OPnNMjTRZli2R9rgGbKPLur7zW2HXUMde8hg20enoa3kofE4FcCOAvgbpLfI3mU5O7qQSTXSK6TXD/3yxddjBNC9CPERT8fwDUAbjWzEyTvAPBxAH89e5CZHQFwBABIWttebCjlzjmey4lFzzyHZze0t9Ck5LPH5PQbC1Hw0wBOm9mJyef7sN3ghRCZ06jgZvYzks+SfKOZ/RDA2wA82fWC1Z63KefXmza9aqitXrQZkU0R76ZmbPfcR8m9YvHQUfRbAdw7GUF/BsDBXlcVQgxCUAM3s8cArHa9SF0vFLpqBmjuzcaSVtnmnqv3Gmue1PO8s0rV53ze6aCeLJrfj2F332eqTDYhCibqYpMuyt0mXokVE3vH3vO+36bHj6XcpZFDHkX1vXqNqnfxtqTgQhSMGrgQBRPFRb985aLGkk1tXHMPlzmWS+rh9uUwqBR7XXIOeD7nLotpvBemhCAFF6JgBq/JFlq0LmSAro4+vbPn4FqX79alPXb5fujikLYMPTAXy7PJwWMaKp1VCi5EwURR8JWVPTh46EBtDxlLufuQWrkXnSd21dkqfWLxHOL3NrFxHyWPfX4vpOBCFEwUBd/c3HpVrxUSZ/RRUa9Ekb5xcwxyKl2VithKmMpbAuLH4lJwIQomioL/ePNccI8UW7lFOWmpfWcZ2py/FKTgQhSMGrgQBTP41kVTukypzHPLvBJERDdSTI81DYwtYy36OqTgQhTM4Are1Nv3napoUzWlFIa6x5yqhU7JIZkkZ6TgQhTMIAruFaN5xlNjj81CFCuW0sZKGmq6J3lu7ZGCC1EwyUbR2xBDDWb//9jVfFlo885yeqcpxwmk4EIUzOBVVUPp2gMr9uoXe+ew5DOE0ua5Y81QSMGFKJggBSd5CsAWgJcA/NrMFu5yUi262IYU+273+f7QCpL7rp9iPrEXy9TRxkX/UzPbjGaJEMIduehCFEyoghuAr5A0AP9sZke8DfFyzee5qbEGj9q4WrHceQ/XfCyDa1VKG2zzJrSBv8XMniP5WwC+SvIpM3tk9gCSawDWAODS3a91NlMI0QWaWbsvkH8D4JyZ/cO8Y67Yu8dCB9n6VHDpolwplaqPysQeXPN4Ll4qOu89x0qRTUmfGvZmxqZjGmNwkrtJ7pn+HcA7ADzeeHUhRHJCXPTXA3iA5PT4z5nZQ30v3NTTdqmpvkws47OYved5aj62mHxeGqtX4ktjAzezZwD8Ya+rCCGSkM1iEyVw1DOm1NtYC3jq1GwZdkMF+u9IqnlwIQommYLH2gGzibH3/MvszbSh7veVc1wesqR09jd7+PhG0Hml4EIUjBq4EAWTzSDbUK7nWF3zZaJp6gh45ffSJuTyGLAcarNJr8FVKbgQBRN188GQXlXKLbqQqkb7ImWNXfW3i6pLwYUomOQx+DIoa4oqNakZKmU0p99P9Z1533uX+FwKLkTBRFHwPjXZhMiJNjF+1ZuIFa8fPHQAd37r6aBjpeBCFEzyGLxUvOOvsaaojm35Zh+a3tGswseO16dIwYUomKVTcO0nPR5yeFee8+1dztFX2aXgQhSMGrgQBdO6qmoIbaqqxqJLzbchrruIHKraxE4c6VNFNwdyeQ+Hj2/g1Nmt/lVVhRDjJfliE288lbvaW+eUFinq6VKxp83Cjup5Yyn6ovO2uTcpuBAFEyUGn+xh9jKxlC9WPOexv9nQtnkx1hh8qHeW07ty2dlECDFeRjmKnoM6po7Hx6rkOb+7WHurdWGwvcmEEOMleBSd5A4A6wCeM7Ob4pn0/4ldMGGMCzn67ngxNDktNpk30u61M4uHlxIyDx5CGwW/DcDJFscLIRITFIOT3A/gHgB/C+CjTQq++ge/Y+t3/4WPhS0JVW4v1Usdi9fhreip9g4fygtbdH85eR6zrB78NNZP/sQtBv8UgI8B+M28A0iukVwnuX72+f8JPK0QIiaNDZzkTQDOmNlCp9/MjpjZqpmt7r3kQjcDhRDdCRlkuw7Au0i+E8AuAK8j+Vkze39c0+Lg7b56JFh4k6pm+Cy5urZ11D2n6TMcqvJKLBoV3Mw+YWb7zewKAO8D8LWxNm4hlo2lq+gyFItUQSwmh2WiIVNpQP6K3qqBm9nXAXw9iiVCCHeWTsFziE/bUFWINurW5167eBu5q1kXmpYMD7VXWVeUqipEwRSn4KGVOHNM9Qzp8bvsOhnba8lBqYZi6P3I57G5uRV0nBRciIIpTsGntKmpHVvhmnr7vgroWT98rCP9Q4+tpJwl0d5kQggAauBCFE2xLvqUNtNMHhUzY9Vt86DOti5VSKd4259DgksfPKvwej1bKbgQBVO8glfpUwM7xrVTk4Nyl4pXjfY+SMGFKJhkVVVzVIEc9yvrQuxYNvb9DFWVdGg8ldy7oosQYoRkVxc9B2X3UJCU9zF2TyTn0fSU9e5mn78UXAiR3yj6tPfOQcm7MFa7RRghittG5bsuXtFiEyFEfgo+1tg1B+Uee+xdCm3i6tij/VJwIQpGDVyIgknuopeSBJJycDDnaaWxEnurpSmx15BLwYUomMEVvPRkiaGUvETVTn1PXpV15pHi/qTgQhRMVAUfSzzaNFXRJU6qs6PP80itbqI/Ie/f+z2H7C66i+R3SH6f5BMkD7taIISIRoiC/y+AG8zsHMmdAL5J8t/N7NuRbQsm9kbxXhU0pcL16Lm8gmeFXCCggdv2crNzk487J3/8l6AJIdwJisFJ7gCwAeD3ANxpZidCvhd7RDm2cottYrzHHFV71qZS0nODRtHN7CUzezOA/QCuJXlV9RiSayTXSa6f++WL3nYKITrQaprMzJ4H8DCAG2v+3xEzWzWz1Ysu2OllnxCiB40uOsm9AF40s+dJXgDg7QD+vs1FcnTH2jDW7Xy8qb7HPlsb507TvQ513b6ExOD7ANwzicPPA/BFM3vQ1QohRBSi1GQjOfekMdSw7wCaFFq0JfWuLoePb+DU2S3VZBNimRlcwXNh7KrdxmsZ+73mMM2aG1JwIUT6gg9jZaiCAB702UE0JbFHrr3TQnNECi5EwWS3s8mUIVNLQ5Ut9cjpLF7PJ0dVH+uc85AoBhdCDBODd1no7r2DRMh5hlazHGLAscbnpeLtuUrBhSgYNXAhCibqIFuKBAUPF2eeu5pTpdTYg5B1z6DLNT03ve9LjoNqfd6jmWmQTYhlZvBpshi9dCxFX6Q+OanNGKrVhCj50L+NHJCCCyE6E3WxScr4a17P7R1H5qDkUvBXiK3Y3rXNpeBCiM5ks1w0lkpKyfMgtoLnoNxVYr8zKbgQS042Cl7FWy29R9pznCtfJgUPVexFzySncYEu704KLsSSowYuRMFk66LX4eEWe7m4Te5dyjpiY3XVm56Z173nmHQjF10I0ZpRKXiVNj1xrOSDUtRgKHJ+Z2MbIJWCC7HkDFLRpU3KapueLKQaSZcEiOr56mxKXQFlVm3mVcPJWckX4Zm0kvo9paZRwUleRvJhkk+SfILkbUMYJoToT2MMTnIfgH1m9ijJPQA2ALzHzJ5c8J1XndS7F+2bvDA0qdNYc1JyvZ96ksXgZvZTM3t08vctACcBvKG1NUKIwWkVg5O8AsDVAE7EMAao7027VFxdJnKozhqKqri+mtjeVXADJ3kRgPsBfMTMflHz/9cArDnaJoToSdA8OMmdAB4E8GUz+2TT8X12NvFeUJ+KoXbnmEWxeD+G3LnG4124xOAkCeAYgJMhjVsIkQ8hiS7XAbgFwA0kH5v8eWdku4QQDmS7+WBOrnoKd7sPXVI8F7nMMVz7HF30WXKpIrQIpaoKseQMkqoai9jTQ2NT7iltnkuIko499XUohlLuNkjBhSiYbBV8tjdMpaRTG8aq5KWx6D2kmjpNsWz3rg8dwOHjG0HHSsGFKJhkCl7tjas9YRvVXLR0cpnxHqMYOhYf2nPqW/orxY6vTUjBhSiYbGLwoXvr2d62qWes660Vly8XqUbI++YLSMGFKBg1cCEKJvn2wanqh3tVhRmTq+412NbHLY31m+hzb12m31K75oePb+DU2S2lqgqxzAxSFz2FknvU1O4ywJGzontPIeawBfPQ06JeO6f04eChA1g9+Gmsn/yJFFyIZWbUy0VDGLuSe6bLxlK7lPuBpVLwoZa7znsmUnAhRL4KPsvQ6uWp5ICvMsUoRJALXrvEelL9LQwRX4cgBRdC5JOqugiPONSjCELXWDNGHJ3zaH1bcrmXLrkRXktYYz0DKbgQBTOKGHweKePRPvtRe8SafXv8nOLx0HtJMY/f5d2F2Nn3t6tMNiGEGrgQJTOKQbZ5pFyn3aa6STU5wmOgzLtmXZsEjjFtdlhHLNe8iRSJPFJwIQomGwVvqtEWytCqMqaa4X2fTfUd9ZkiGsrTGvK9eP72vGq+hWw+eBfJMyQfb312IURSQhT8XwD8I4DPxDSkGpfW9fA5x3whSh4jFu9LLIXLJXmlDXXjD0334T0lNj2f13tpVHAzewTAz12uJoQYFLcYnOQagDUA+N3fvhgHDx1wV9zUo7cpvIqQe/b0BIZeDhmLvgqYs3In2dnEzI6Y2aqZre695EKv0wohehB1FL2L4oaoUSolr5t7rtrSJRYXfniXkari/ZtrUu554wJ3fuvpoPNrHlyIgmlUcJKfB/BWACskTwO43cyOtblIrL3DUsfks8xTcsBnRDSne10mmsomdxl5nz1vW+VuS2MDN7ObW59VCJEFctGFKJjBU1VDXc02iynahABegzDzBgPr7q9p4C2HhJdFDGVXTs8hxo4mi36bMRa3AFJwIYomioJvbm7h7qPfCJrqmuI1eBRjMKrLtFadV6FpsXqq72ooJW/zPkKUu4u9sZR7ihRciILJdrmo1/mq6tBneefsd9osGPH0Khady0P5hvIyxjLd51Ejf9G9di0Csbm5FXSsFFyIgomi4Csre7IYCQXiJYh0WfqpZJV2pBxVD/XwQmxLsc/eFCm4EAWTTQw+NF6ppH1G2Mei5LnMT3ulPHvvXBOTeYVFtdhECKEGLkTJLI2Lvsgt9qiMWv3ukIMvVdq41Dm4nKnp8t5jvzuva0rBhSiYpVHwKbGVfIr3ziN9bRgjXaYcF73DqrfSZwNJb2JtMikFF6Jgoi42qSP1VMuURVMuHumsJS4s6TNdlmrHGW+8f7+xn4sUXIiCGTwGj60CXc4bY2HKLLkkiniR0/10SRrKIfbuo9xabCKEAJBwFL3ag8VKyG9zXk8lr1tauoyMfSR/isfvs8uz0P7gQoi5FD8P7ukp1ClxG1X3iF1LUcQUpIq9U74zKbgQBaMGLkTBBLnoJG8EcAeAHQCOmtnfeRvSxX0NSUfscp02Uy85bTaYU5JNKaFErHCqKVzweoeNCk5yB4A7AfwZgDcBuJnkm1yuLoSISoiCXwvgR2b2DACQ/AKAdwN4sumLdb1f6I4mXXvOas84rycMWQzireTVa8dKFAl9BstAioG1GLuidCUkBn8DgGdnPp+e/JsQInNoZosPIN8L4EYzOzT5fAuAPzazD1eOWwOwNvl4FYDH/c1tzQqAzdRGTMjFllzsAGRLHaF2XG5me5sOCnHRnwNw2czn/ZN/exVmdgTAEQAguW5mqwHnjkoudgD52JKLHYBsGcKOEBf9uwB+n+SVJF8D4H0A/s3LACFEPBoV3Mx+TfLDAL6M7Wmyu8zsieiWCSF6EzQPbmZfAvClFuc90s0cd3KxA8jHllzsAGRLHa52NA6yCSHGi1JVhSgY1wZO8kaSPyT5I5If9zx3SzvuInmGZNKpOpKXkXyY5JMknyB5W0JbdpH8DsnvT2w5nMqWiT07SH6P5IOJ7ThF8gckHyO5ntiWS0jeR/IpkidJ/knvc3q56JOU1qcBvB3byTDfBXCzmTVmvHlD8noA5wB8xsyuGvr6M3bsA7DPzB4luQfABoD3JHomBLDbzM6R3AngmwBuM7NvD23LxJ6PAlgF8DozuymFDRM7TgFYNbPkc+Ak7wHwH2Z2dDJjdaGZPd/nnJ4K/nJKq5m9AGCa0jo4ZvYIgJ+nuHbFjp+a2aOTv28BOIlEWYC2zbnJx52TP0kGYEjuB/DnAI6muH6OkLwYwPUAjgGAmb3Qt3EDvg1cKa0LIHkFgKsBnEhoww6SjwE4A+CrZpbKlk8B+BiA3yS6/iwG4CskNybZmKm4EsBZAHdPQpejJHf3PakG2QaA5EUA7gfwETP7RSo7zOwlM3sztrMRryU5ePhC8iYAZ8xsY+hrz+EtZnYNtldL/uUkvEvB+QCuAfBPZnY1gP8G0Hscy7OBB6W0LhuTePd+APea2b+mtgcAJq7fwwBuTHD56wC8axL7fgHADSQ/m8AOAICZPTf57xkAD2A71EzBaQCnZ7yq+7Dd4Hvh2cCV0lphMrB1DMBJM/tkYlv2krxk8vcLsD0Y+tTQdpjZJ8xsv5ldge3fyNfM7P1D2wEAJHdPBj8xcYffgUSLpMzsZwCeJfnGyT+9DQFLsptwK7qYU0oryc8DeCuAFZKnAdxuZscSmHIdgFsA/GAS+wLAX00yA4dmH4B7JrMd5wH4opklnaLKgNcDeGC7H8b5AD5nZg8ltOdWAPdOBPIZAAf7nlCZbEIUjAbZhCgYNXAhCkYNXIiCUQMXomDUwIUoGDVwIQpGDVyIglEDF6Jg/g8z+0pk/j+HgwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFxBJREFUeJzt3X+QXWV9x/HPx5DqArqrsnXIBgztYKaYBEK3jIplrKkEC2iknVRR8UdnMp0qYuuEAWcakWmFNlNRWttOyg9RUbtiyAhYgsMP0Q4iG0I3CET8AU020izKBrBbCfHbP85Zskn2x72799xznnPfr5md3T179u737m4+efZ5vuc5jggBANLxorILAAA0h+AGgMQQ3ACQGIIbABJDcANAYghuAEgMwY1Ksf1+29+d5uOft/037awJqBqCG21h+y7bT9l+cdm1zCT/z2Of7Wfzl5/avtb2a5p4DP6DQWEIbhTO9iJJvy8pJL2t1GIad09EHCmpW9IfShqTtMX2knLLAghutMd5kr4n6fOS3jfxA7Zfafsbtp+2/X1Jv93A473c9i22n7F9r+0XPsf2G2zfZ3tP/voNEz72inzkvCsf/W+a6QtFxL6I+HFE/IWkb0u6ZMLjfc32E/nXutv2a/PjayS9W9KF+Yj9pvz4RbZ/nNf9kO13NPBcgUMQ3GiH8yRdn7+stP2qCR/7nKT/k3S0pA/mLzN5p6RPSnq5pB9J+lspC2ZJt0i6UtIrJX1a0i22X5l/3hclHS7ptZJ+U9IVTT6Pjcr+chj3H5KOzx/r/vz5KSI25G//fUQcGRFn5+f/OP/87rz+L9k+uskaAIIbxbL9RkmvljQQEVuUhde5+cfmSfpjSesi4pcR8aCk6xp42Bsj4vsR8byygDwpP36mpEcj4osR8XxEfEXSI5LOzgPyrZL+PCKeioi9EfHtJp/OLkmvGH8nIq6JiGci4lfKRuIn2u6e6pMj4msRsSsifh0R/y7pUUmnNFkDQHCjcO+TdFtEPJm//2Xtny7plXSYpB0Tzn98/A3bH5+wQPivE855YsLb/yvpyPztBRM/f8Lj9Uk6RtIvIuKpOTyXPkm/yGubZ/vyfOrjaUmP5eccNdUn2z7P9gO2R22PSloy3fnAVA4ruwDUl+0uSaslzbM9HrYvltRj+0RJD0p6XlmoPpJ//Njxz4+IT0n6VBNfcpey0f1Ex0q6Vdl/Dq+w3RMRo80+l9w7JH0nf/tcSW9XtnD5mLLpj6ckOf/4Adtu2n61pH+TtELZwuc+2w9MOB9oGCNuFGmVpH2STlA2nXGSpN9RFn7nRcQ+ZfPGl9g+3PYJOmjxsknflPQa2+faPsz2n+Zf++aI+JmyOel/tv1y2/NtnzbTA+Yj6+Ns/6OkNymbm5akl0r6laSfK5s3P/g/mP+R9FsT3j9CWZiP5I/7AWUjbqBpBDeK9D5J10bEf0fEE+Mvkv5J0rttHybpw8qmOp5Q1nVy7Wy/WET8XNJZkj6mLFAvlHTWhGma90raq2x0v1vSR6d5uNfbflbS05LukvQySb8XEdvyj39B2TTMsKSHlHXNTHS1pBPyaZFNEfGQpH+QdI+yUF8q6T9n+1zR2cyNFAAgLYy4ASAxBDcAJIbgBoDEENwAkJhC+riPOuqoWLRoUREPDQC1tGXLlicjoreRcwsJ7kWLFmlwcLCIhwaAWrJ98FW/U2KqBAASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxBDcAJAY7oCDYgwNSLdfKu3ZKXUvlFask5atLruqJG3aOqz1m7dr1+iYFvR0ae3KxVq1vK+1X4SfV1IIbrTe0IB000ekvWPZ+3t2ZO9LhEGTNm0d1sUbt2ls7z5J0vDomC7emN3LoWXhzc8rOUyVoPVuv3R/CIzbO5YdR1PWb97+QmiPG9u7T+s3b2/dF0nt5zU0IF2xRLqkJ3s9NFB2RW3HiButt2dnc8cxpV2jY00dn5WUfl78dSCJETdaaXwkpCluh9e9sK3l1MGCnq6mjs/KVD+XKv68UvvroCAEN1pjfCS0Z8fkH5/flS14oSlrVy5W1/x5Bxzrmj9Pa1cubt0XWbEu+/lMVNWfV0p/HRSI4EZrTDYSGtd9jHT2lR31p2yrrFrep8vOWaq+ni5ZUl9Ply47Z2lru0qWrc5+Pt3HSHK1f14p/XVQoIbmuG33SLpK0vjfwR+MiHuKLAyJmXLEY+kvH2xrKXWzanlf69v/DrZsdTWD+mAr1h04xy1V96+DAjW6OPlZSbdGxJ/Y/g1JhxdYU1u1pUe2E3QvnHyapMNGQkX0Q/M7OsH497LDe85nDG7b3ZJOk/R+SYqI5yQ9V2xZ7dGWHtlOwUiokI4HfkcnkcpfBwVqZI77OEkjkq61vdX2VbaPOPgk22tsD9oeHBkZaXmhRWhLj2ynSGmetCgFdDzwO9piNekBb2Sq5DBJJ0s6PyLutf1ZSRdJ+uuJJ0XEBkkbJKm/v3+KfrBqaUuPbCfp9JFQAR0P/I62UI16wBsZce+UtDMi7s3fv0FZkFfSpq3DOvXyO3TcRbfo1Mvv0Katw1Oe25YeWXSOAjoe+B1toRr1gM8Y3BHxhKQdtscbR1dIeqjQqmZpfD5weHRMof3zgVOFd1t6ZNE5CuiH5ne0hWrUA95oH/f5kq63PSTpJEmfKq6k2Wt2PrAtPbLoHAXM8/M72kI16gF3ROuno/v7+2NwcLDljzuT4y66ZdKLrS3pp5ef2e5yAFTJwXPcUvYXUUUW0W1viYj+Rs6t1ZWTzAcCmFKNOp9qtTvg2pWLD+h5lZgPBDBBTTqfahXc4/N+XGUGoM5qFdxSm/Z1AIAS1WqOGwA6Qe1G3KgfNlkCDkRwo9LYZAk4FFMlqDQ2WQIORXCj0thkCTgUwY1K46Iq4FAENyqNTZaAQ7E4iUpL4qKqAm5XBkyH4EblVfqiqhptzo90ENyYk47vsZ5uc36CGwUhuDFr9FirVpvzIx0sTmLW6LFWrTbnRzoIbswaPdYq5HZlwEwIbswaPdaq1eb8SAdz3Jg1blyRq8nm/EgHwY1ZS6LHGmilivTsE9yYk0r3WAOtVKGefea4AaAR0/XstxnBDQCNqFDPPsENAI2oUM9+Q8Ft+zHb22w/YHuw6KIAoHIq1LPfzOLkH0TEk4VVAgBVNr4ASVcJACSkIj37jc5xh6TbbG+xvWayE2yvsT1oe3BkZKR1FQIADtBocL8xIk6W9FZJH7J92sEnRMSGiOiPiP7e3t6WFgkA2K+h4I6I4fz1bkk3SjqlyKIAAFObMbhtH2H7peNvSzpd0oNFFwYAmFwji5OvknSj7fHzvxwRtxZaFQBgSjMGd0T8RNKJbagFANAArpwEgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEENwAkBiCGwASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxDRy6zIAbbBp67DWb96uXaNjWtDTpbUrF2vV8r6yy0IFEdxABWzaOqyLN27T2N59kqTh0TFdvHGbJBHeOARTJUAFrN+8/YXQHje2d5/Wb95eUkWoMoIbqIBdo2NNHUdnI7iBCljQ09XUcXQ2ghuogLUrF6tr/rwDjnXNn6e1KxeXVBGqrOHgtj3P9lbbNxdZENB2QwPSFUukS3qy10MDbS9h1fI+XXbOUvX1dMmS+nq6dNk5S9u3MFmB7wEa10xXyQWSHpb0soJqAdpvaEC66SPS3nwuec+O7H1JWra6raWsWt5XTgdJhb4HaExDI27bCyWdKemqYssB2uz2S/cH1ri9Y9nxTsH3IDmNTpV8RtKFkn491Qm219getD04MjLSkuKAwu3Z2dzxOuJ7kJwZg9v2WZJ2R8SW6c6LiA0R0R8R/b29vS0rEChU98LmjtfRdN8D5r4rqZER96mS3mb7MUlflfRm218qtCqgXVask+Yf1HI3vys73imm+h4cf3o2171nh6TYP/dNeJduxuCOiIsjYmFELJL0Tkl3RMR7Cq8MaIdlq6Wzr5S6j5Hk7PXZV3bWotxU34NHb2Puu6LYqwRYtrqzgnoyk30PNq6Z/FzmvkvXVHBHxF2S7iqkEgDV0r0wnyaZ5DgO0O6dHblyEsDkmP9vyPjOjsOjYwrt39lx09bhwr4mwQ1gcsz/N6SMnR2Z4wYwNeb/Z1TGzo6MuAFgDsrY2ZHgBoA5KGNnx46fKuE+f3PD9w+dbvz3vZ3/Djo6uLnP39zw/QMy7d7ZsaOnSrjP39zw/QPK0dHBzX3+5obvH1COjg7uqVZ9Q9Kpl99RaAN9HXCfRKAcHR3ck60Gj2vH1U+p4z6JQDk6Orgn3udvMszXTq/0+yQCHcoR0fIH7e/vj8HBwZY/bpGOu+gWTfadsKSfXn5mu8sB0GFsb4mI/kbO7eh2wIkW9HRpeJJFNeZrUQb64zGdjp4qmYj5WlRFGbvNIS0Ed475WlQF/fGYCVMlE7T76idgMvTHYyaMuIGKoT8eMyG4gYphvQUzYaoEqJgydptDWghuoIJYb8F0kgpuelsBIKHgZu9nAMgkszhJb6ukoQHpiiXSJT3Z66GBsisCUIIZR9y2XyLpbkkvzs+/ISI+UXRhB+v43tahAemmj0h78+e7Z0f2vsRduIEO08iI+1eS3hwRJ0o6SdIZtl9XbFmH6vje1tsv3R/a4/aOZccBdJQZgzsyz+bvzs9fWr+l4Aw6vrd1z87mjgOorYbmuG3Ps/2ApN2SvhUR905yzhrbg7YHR0ZGWl0ne4l0L2zuOIDaamo/bts9km6UdH5EPDjVeSnux115B89xS9L8LunsK5njBmqgmf24m+oqiYhRSXdKOmM2hWEOlq3OQrr7GEnOXhPaQEdqpKukV9LeiBi13SXpLZL+rvDKcKhlqwlqAA1dgHO0pOtsz1M2Qh+IiJuLLQsAMJUZgzsihiQtb0MtrTc0kLXL7dmZLeKtWMeIFUDykrnkvWlcsAKgppK55L1pXLACoKbqG9xcsAKgpuob3FywAqCm6hvcK9ZlF6hMNL8rOw4ACatvcHPBCoCaqm9XicQFKwBqqb4jbgCoKYIbABJDcANAYghuAEgMwQ0AiSG4ASAxBDcAJIbgBoDEVDO4hwakK5ZIl/Rkr4cGyq4IACqjeldOso82AEyreiNu9tEGgGlVL7jZRxsAplW94GYfbUyn6PUP1leQgOoFN/toYyrj6x97dkiK/esfrQrXoh8faJHqBTf7aGMqRa9/sL6CRFSvq0RiH21Mruj1D9ZXkIgZR9y2j7F9p+2HbP/A9gXtKAw4RNHrH6yvIBGNTJU8L+ljEXGCpNdJ+pDtE4otC5hE0esfrK8gETMGd0T8LCLuz99+RtLDkvqKLgw4RNHrH6yvIBGOiMZPthdJulvSkoh4eqrz+vv7Y3BwcM7FAUCnsL0lIvobObfhrhLbR0r6uqSPThbattfYHrQ9ODIy0ni1AICmNBTctucrC+3rI2LjZOdExIaI6I+I/t7e3lbWCACYoJGuEku6WtLDEfHp4ksCAEynkRH3qZLeK+nNth/IX/6o4LoAAFOY8QKciPiuJLehltJt2jqs9Zu3a9fomBb0dGntysVatZwGGgDVUs0rJ0uwaeuwLt64TWN790mShkfHdPHGbZJEeAOolOrtVVKS9Zu3vxDa48b27tP6zdtLqghAoRLeCZIRd27X6FhTxwEkLPE7bTHizi3o6WrqOICEJb4TJMGdW7tysbrmzzvgWNf8eVq7cnFJFQEoTOI7QTJVkhtfgKSrBOgA3QvzG2ZMcjwBBPcEq5b3EdQJoX0Ts7Zi3YFz3FJSO0ES3EgS7ZuYk/EFyNsvzaZHuhdmoZ3AwqREcCNR07VvEtxoSMJ32mJxEkmifROdjOBGkmjfRCcjuJEk2jfRyZjjRpJo30QnI7iRLNo30amYKgGAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJoR0QBxoaSHLjHXYKRCchuLFfordzYqdAdBqmSrBfordz4kbP6DQEN/ZL9HZO7BSITjNjcNu+xvZu2w+2oyCUaKrbNlX8dk7sFIhO08iI+/OSzii4DlTBinXZ7ZsmSuB2TuwUiE4z4+JkRNxte1HxpaB0Fb2d00wdI+wUiE7jiJj5pCy4b46IJdOcs0bSGkk69thjf/fxxx9vUYnoZAd3jEjZaPqyc5YSzKgV21sior+Rc1u2OBkRGyKiPyL6e3t7W/Ww6HB0jACHoqsElUbHCHAoghuVRscIcKhG2gG/IukeSYtt77T9Z8WXBWToGAEO1UhXybvaUQgwGTpGgEOxVwkqj3tLAgdijhsAEkNwA0BimCoB2oD9wtFKBDdQMPYLR6sxVZKqoQHpiiXSJT3Z66GBsivCFLj6E63GiDtFid6pplNx9SdajRF3ihK9U02n4upPtBrBnaJE71TTqbj6E63GVEmKuhdm0yOTHUflcPUnWo3gTtHxp0uDV09+HJXE1Z9oJYI7RY/e1txxoEboiSe408QcNzoUPfEZFidTlOjd2IG5oic+Q3CnKNG7sQNzRU98ptZTJbWdC6vo3diBoi3o6dLwJCHdaT3xtQ3u2s+FLVtNUKPjrF25+IB/11Jn9sTXdqqEuTCgflYt79Nl5yxVX0+XLKmvp0uXnbO0HoOxJtR2xM1cGFBP9MTXeMTN/hAA6qq2wc3+EADqqrZTJewPAaCuahvcEnNhAOqpoakS22fY3m77R7YvKrooAMDUZgxu2/MkfU7SWyWdIOldtk8oujAAwOQaGXGfIulHEfGTiHhO0lclvb3YsgAAU2kkuPskTdy1f2d+DABQgpa1A9peY3vQ9uDIyEirHhYAcJBGgntY0jET3l+YHztARGyIiP6I6O/t7W1VfQCAgzgipj/BPkzSDyWtUBbY90k6NyJ+MM3njEh6vAX1HSXpyRY8TplSfw6p1y/xHKqC5zC9V0dEQ6PeGfu4I+J52x+WtFnSPEnXTBfa+ee0ZMhtezAi+lvxWGVJ/TmkXr/Ec6gKnkPrNHQBTkR8U9I3C64FANCA2u5VAgB1VfXg3lB2AS2Q+nNIvX6J51AVPIcWmXFxEgBQLVUfcQMADkJwA0BiKhncddiN0PY1tnfbfrDsWmbD9jG277T9kO0f2L6g7JqaZfsltr9v+7/y5/DJsmuaLdvzbG+1fXPZtcyG7cdsb7P9gO3BsuuZDds9tm+w/Yjth22/vrRaqjbHne9G+ENJb1G2L8p9kt4VEQ+VWliTbJ8m6VlJX4iIJWXX0yzbR0s6OiLut/1SSVskrUrp52Dbko6IiGdtz5f0XUkXRMT3Si6tabb/SlK/pJdFxFll19Ms249J6o+IZC/AsX2dpO9ExFW2f0PS4RExWkYtVRxx12I3woi4W9Ivyq5jtiLiZxFxf/72M5IeVmKbi0Xm2fzd+flLtUYqDbC9UNKZkq4qu5ZOZbtb0mmSrpakiHiurNCWqhnc7EZYMbYXSVou6d5yK2lePsXwgKTdkr4VEck9B0mfkXShpF+XXcgchKTbbG+xvabsYmbhOEkjkq7Np6yusn1EWcVUMbhRIbaPlPR1SR+NiKfLrqdZEbEvIk5StjnaKbaTmrayfZak3RGxpexa5uiNEXGyshuyfCifSkzJYZJOlvQvEbFc0i8llbb+VsXgbmg3QhQvnxf+uqTrI2Jj2fXMRf5n7Z2Szii7liadKult+RzxVyW92faXyi2peRExnL/eLelGZVOiKdkpaeeEv9huUBbkpahicN8n6Xjbx+ULAO+U9I2Sa+o4+cLe1ZIejohPl13PbNjutd2Tv92lbMH7kXKrak5EXBwRCyNikbJ/C3dExHtKLqspto/IF7iVTy+cLimpbquIeELSDtuL80MrJJW2UF+5u7zPZjfCKrL9FUlvknSU7Z2SPhERV5dbVVNOlfReSdvyOWJJ+ni+4VgqjpZ0Xd6p9CJJAxGRZDtd4l4l6cZsLKDDJH05Im4tt6RZOV/S9fmA8ieSPlBWIZVrBwQATK+KUyUAgGkQ3ACQGIIbABJDcANAYghuAEgMwQ0AiSG4ASAx/w+lGPRpAxgJGwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1}\n" - ] - } - ], - "source": [ - "feature_dim=2 # we support feature_dim 2 or 3\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(training_size=20, \n", - " test_size=10, \n", - " n=feature_dim, \n", - " gap=0.3, \n", - " PLOT_DATA=True)\n", - "extra_test_data = sample_ad_hoc_data(sample_Total, 10, n=feature_dim)\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(extra_test_data)\n", - "print(class_to_label)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the dataset ready we initialize the necessary inputs for the algorithm:\n", - "- the input dictionary (params) \n", - "- the input object containing the dataset info (algo_input).\n", - "\n", - "With everything setup, we can now run the algorithm.\n", - "\n", - "For the testing, the result includes the details and the success ratio.\n", - "\n", - "For the prediction, the result includes the predicted labels. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n", - "preduction of datapoints:\n", - "ground truth: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n", - "prediction: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], - "source": [ - "seed = 10598\n", - "\n", - "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entanglement='linear')\n", - "qsvm = QSVMKernel(feature_map, training_input, test_input, datapoints[0])\n", - "\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", - "\n", - "result = qsvm.run(quantum_instance)\n", - "\n", - "\"\"\"declarative approach\n", - "params = {\n", - " 'problem': {'name': 'svm_classification', 'random_seed': 10598},\n", - " 'algorithm': {\n", - " 'name': 'QSVM.Kernel'\n", - " },\n", - " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'qasm_simulator', 'shots': 1024},\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", - "}\n", - "algo_input = SVMInput(training_input, test_input, datapoints[0])\n", - "result = run_algorithm(params, algo_input)\n", - "\"\"\"\n", - "\n", - "print(\"testing success ratio: {}\".format(result['testing_accuracy']))\n", - "print(\"preduction of datapoints:\")\n", - "print(\"ground truth: {}\".format(map_label_to_class_name(datapoints[1], qsvm.label_to_class)))\n", - "print(\"prediction: {}\".format(result['predicted_classes']))" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXtcVXXW/z9fUBRBERQUUPIKYorg/VY5ecmxpjKd7pOVz1gz02RPNdVTMzbNWFM9ZjU1U2ql1nQRs7LMS+Y9My+hKAoqICoXr4jiBQT9/v7g8Pw4rM9OEkVwr/fr5QvOx7XP2fucs9jnrL2+n2WstVAUxX34XOodUBTl0qDJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS6lW8htjhhtjthtj0o0xT12onVIU5eJjzrfDzxjjC2AHgKEAsgGsB3CHtXbbT2wjHiw+IYHGFpw4IbSjB4/SWN/69YR2uqiYxtb3qy80v4Z+NDaoaWN5v6WlQgsOCKDbF546JbQG9eXjA8DxoiKhNfH3p7FFJSVCO5J/jMYGBctjaOTHjzc396DQIiPDaCzj8NFCoQU2akhjG5J9MA73e4a8R0+T5wAA/Bs0EFoJec2KieYUGxIYSGNZ7rD3BwD4+MjzLHssAPD19RWaH9EA4MjJk163D+blobCgwOmp9EJmTdXpDSDdWpsJAMaYTwDcBMAx+RlLV62i+pdr1wvt66nzaWxwi2Ch7d2ZRWNDI1oKLSo2isaOuOkaoe05dEhoo3v3ptsvT00VWvswnkyrt+8Q2tC4LjR25779Qpvzn4U0dtjoQULr0aYNjZ3w7L+F9o/nHxaa0wnjwwVLhdavBz+G2IgIodVzeIOzP4y7Dso/VAAQFyVfy5z8/Cpvn5t/RGh3DRxAY4vJH6C95LEA/gc3r6CAxoYEypNJZHAIjf1svXeePH3//TSOUZ2P/ZEA9la4ne3RFEWpA1TnzF8ljDHjAIy72I+jKMrPozrJnwOgdYXbrTyaF9baqQCmAvw7v6Iol4bqFPzqoazgNxhlSb8ewJ3W2q1O2yR0724rf8d3Kqb8ZfK7Qvv9/aNo7IL1SUK7uR//Hr5p926hHS+W3ykBoHnjJkJbs3az0Pwa8CJeTnqu0H7zmxtobFgT+VhOxcGZ8xYLrXdCZxo7/2tZUxl8XT8a27tdO6Gt3L5daNvTdtHtB/WNF1rRaV6YyycF3fzjx2ns7tQ9QkvoxY+3RVCQ0Lq2bi20Zdt4aapxQ1mgzHX4bt6zbVuhbcsR5z8AwJZkWdOJ6tiKxg7v1k1ohwtlMRUA2oSGeu9Tz57YsGHDxS34WWtLjTEPAVgEwBfAez+V+Iqi1C6q9Z3fWjsfAC/BK4pSq9EOP0VxKZr8iuJSNPkVxaVc9Ov8FSk4cUJ07rGqPgD8/dGxQnvw3pE0ds5riULL3p5NY995+UWhNQuR3WYAMG+pvN+HJk8RWuc4fmWhcTPZWut0dePTZauFtodUuQGgxRUthPbyk7I7DwBSU9cKrUNCBxrLOuG+n7tGaI1D5HEBwJpGsqNxReJKGvv+9L8LbepXi2jsLSNkp2VSVhaNDSTVenaFZ3eu7JIEgOE9Zbv5ptR0GptDriy0bNqUxi7O3Ce07t1jaeyZs2flPuzh74W8o94t7yeKeVs7Q8/8iuJSNPkVxaVo8iuKS9HkVxSXct7tvedDSEhLO2TYPV7aP6c8Q2PPkqJHZAhf1phKWir/MUEW5gDgxgdke23OrjwaG9VeLlLMzpKxPbp1otvHtZbtm/M2bqKxzBMggKxNB3hbaVoeP4YOLeQS4qcm/IvGpm+WrbyTpk0QWieyHBcACn+GJ8HRSuvQAeDU6dM01p8sh23o0PqcXcXluwOiO9Lt0/cfEFqIg1+DL1mj7+TtwPwDWCsxAKzLzBSa03uh8vP421GjkJaSUqX2Xj3zK4pL0eRXFJeiya8oLkWTX1Fciia/oriUGm3v9a1fT5htMiMOgLfssqo+AMRGyqr8+yt4W+k7E6YJbeDNsn0UAKJbSrPPg/sPCy09l1fat6RlyMdK4IaWq5JShBYX257GJq75QWhJi/nz6OMr/74/95cHaCwzn/xmpTRSfceh7bhZeDOh7UnjsW9OfkJoGft5y223K64Q2uSZn9LY+0YPF9rubNlau2KBfA4BIKZPjNDah8v3AQBc2UpezZmfnExj8w9JQ5CEGP76sqs5yaRFGQC2pHq/x045uFYz9MyvKC5Fk19RXIomv6K4FE1+RXEp1WrvNcZkASgEcAZAqbW250/FBwWF2gEDbvHSPpw9mca+OeMzoaVv5Ouqh9wzRGj3XHM1jR02TE40yczkRZo1Scvk/d72uNAeeekhun38FXJ6zPc7+TGsWSDX3beNk266AHDb4KuE9v5X39LY9jFyH46dlGPEAOCVh58T2pTZbwktqrks7AHAK29+JLR77vkVje3QQnoSnHRo7808IFtu2WQegI8y8zWy25W15gLAhl3SmbgzKSg73Ud9h6lDR8notq9Wy9ccAO4cLN+7Tuv0fYz3Pgy55hpsSkq66OO6yvmFtVbOsFIUpVajH/sVxaVUN/ktgG+MMT96xnIJjDHjjDEbjDEbTp/mwzEURal5qvuxf6C1NscYEwZgsTEmzVrr1V1TcVxXUFCojutSlFpCtc781tocz88DAD5H2dhuRVHqAOd95jfGBADwsdYWen4fBuBvP7VNfb/6CI3wbpVkzqoAd9md/OkMHktadllVHwC++eY9oUVEcDdbZqBQUiK/umTtljP5AGBbimzvHXJVDxqb1V4aZDhd3Ugk1evEN2bS2NBQOafur68/SmN7DJBtzhtS5Iy5XZVatMup7ycNNt6ZMofGTvyzbDHe7OBQGxEsH29dhnxuAe6e60Nq31uzeat4ONneaf4em6/oV4+n1OIN0sQlIIg7OZ85Kz8g5xUcJZHSqOQ4MVRxojof+1sA+NyUvRHrAfjIWruwGvenKEoNUp1BnZkA5DhRRVHqBHqpT1Fciia/oriUGl3P79fQD1Gx3m2Zx4t5gYKN0HJy2WXr8WdMepXGsuJebi4vrPmQwtrGjbKN9qqswXT7uH5XCq3QYb11wUG53rv0tGxVBYCIVqFCGzxauhIDwNGDslC0fqt06QWAwsOFUsuXWru2vN01sKksYHXszoup9XxkGyxz6QV4228CWeMPAFmHZLNpA+L0OzBGrtt3YsvevVQ35P3RuhlvfY5uI9f+78qVPgMAdyY+RtqDAaBjpTbpBg4FR4ae+RXFpWjyK4pL0eRXFJeiya8oLkWTX1FcSo1W+4OaNsaIm7hTbmXmLZXuvWyGGcBddh+480Yay1p2WVUfABqS6vMeUk2e/vHXdPvgRo2EtnDeKhqbcFWc0JhTMAC89Mfnhfbu7Ddp7IFjx4T2wiOv0NjEz/8pNGb2EugwY64pOd5mjRvT2L+/LtuRJzxyL41l7bUp2dk0thsx+Sg9e0ZoTu29rFrfpz132WUGG9ty+H717SCvejjNG2R0IU7BgLwScYbMuHRCz/yK4lI0+RXFpWjyK4pL0eRXFJdSLffen0v72Fj7wvTpXlpOBl8L/+HkKUK77+k/0tgG/rIw9/mbfB05W4/PWnYBYOP2zUKLat5caL/6FXfv/fXjtwqtb3RHGrtqyzah7XEYixXTS7amWrIGHACWfrRUaIHBfB25D3GjbRwiC3axfTrR7UMC5f2WnpHFNgC4Lk4WOJ28HZoGBAiNFVMB4MjJk0IrJK2xUQ5tuEHkfr/bztuhO5JCczPyHADcFZg93wDQjxQHV6Sm0thmjb0f77YR12Pr5s1Vcu/VM7+iuBRNfkVxKZr8iuJSNPkVxaWcs8PPGPMegBsAHLDWdvFoIQBmAWgDIAvArdbaI+e6r+CAAIzu7W3w+1Y2747rHCeNgHt044Wm9Fy5zt9phBYz23Raj88691hx76uveHddazIqq+9jvOB3TbcuQltSzNfz702T68sTenWmsTu2yKLlqVPHaewL018WWsGJE0JjRTEAGNa1q9Cmzf+Gxh5sK30CmHkmwItok96dRWMfH3ub0FLIMUxL5O+764f1F1q7sDAaG0wKkZ+sWk1jo6Nkhx4r7AHAWVKEjw4Pp7EL1id53T7h4BfBqMqZfwaA4ZW0pwAssdZ2BLDEc1tRlDrEOZPfM4Qjv5J8E4Dy5uyZAG6+wPulKMpF5ny/87ew1pZ/1t6HMhtvSsVxXQcreYwrinLpqHbBz5Z1CTl2Cllrp1pre1pre4aGSu85RVEuDeeb/PuNMeEA4PkpB6grilKrOd/1/F8CGAPgRc/PuVXZqPDUKSyv1KaYk87bexs3k22lca0d1jSnydFN8fGyfRTgI7SYyy7AW0jbxrUVGqvqA8C/Jz0htJcn8hZltja8zRXSwRgou7xSmf+8NpvGZmRsFNrcVYtoLFunH+FQgWecJMdQWsLbe0NIpXzGwiU0Nqa9fH7z9/GLS4lrfhDabf37Ce2DTP6WPVwor4RUHolVzr590m+h+CSvti9Jk/vVOiSExn67UV6h6dqOuxUfyvb2lyg9XUrjGOc88xtjPgawBkCMMSbbGDMWZUk/1BizE8AQz21FUeoQ5zzzW2vvcPgvfnFcUZQ6gXb4KYpL0eRXFJdSo+v54+Lj7ZeLF3tpbBQTwNeGO61p7tpazqDfsY+PQurQQrZqOo3QYmabd9/+SxrLiAiWxbLAhv409rrrxgrNh4y0AoC7nr5HaN3a8KJjZLAsKs1ZtYbGni2Vxbkro2WBc0saN1K9YaBsyV6zcyeNLSVGk7ERvMB5JTGvZGv0AT6ui3kKOLXs7ibb13cYgZV5QF7kYu9FAMjJr9wn5zwybGNWltDySYsyIM1FrxkwABuTknQ9v6IozmjyK4pL0eRXFJeiya8oLkWTX1FcSo2O6zpeVITV23d4add14224ny6Tpgjt2kbS2FVJKULLTJZtvACQ1V5WlAsOFtBYNkKLuewyIw6At+yyqj4ALFr0rtDGPz2Zxo7uI6vqTqPMGPHR7aheWCSdjT/9YIHQio7zSvvRQ0eFxtx/AeBXV/URWuKC5TQ27PomQmOjwQDgx207hBYZISv7V7bi76XOkVJ/8yPeCtyoidyHoV14q/jsL6WLclEJN2vxJ2PiktZtpbGDYmO9bjs5AjP0zK8oLkWTX1Fciia/orgUTX5FcSk1WvBr4u+PoXHexbEGDjPK2aiqrp14oSouVs5Pd2pbTt+YLrTS07zwcnC/XK/N/AecXHbZenynll1W3Hv9hUdpbDgpWh49KIttANCyrRwpVXRCFvYAoGGAXM8fECTX3Xcb1I1uHx0li2VTXvoPjQ0Nl+OymjgUB9kc++S90sEYAGBkZysrvCZl8dFgjKZhQVRnngKpOdyfIqRlsNCcRoblHJH36/Sa5VaKLSm9gOv5FUW5PNHkVxSXosmvKC5Fk19RXEpVPPzeM8YcMMakVND+aozJMcZs8vwbcXF3U1GUC805zTyMMVcDOA7g/Qqz+v4K4Li1dtLPebBOXbrYdz/7zEvbuHk7jT1TKs0eHhzF/8Ywx9YbenTnsUu/E1pEKz5P4KU/Pi+0P/zv40Jjs/MAoGmorBIHNJUmJQBv2X3tg89IJPDU2NuF9r8zEmls0Ymqz24beeMgobF5dC2CePV7QXKy0AIaNKCxC79YIbQnH/4NjU3eI6/8NGvMrwwwR9wm/tJA5cddu+j2oU3k/Qb581ZiZkTj1LLbxF9eSVmZxt/7Q7rIdnFmSAIAX6xe63V74sO/R9aOHRfGzMNhXJeiKHWc6nznf8gYs9nztUBexFQUpVZzvsn/FoD2AOIB5AF4xSmw4qy+AtK8oCjKpeG8kt9au99ae8ZaexbANADyC+v/j/2/WX1Ng/UDgqLUFs6rvdcYE15hSu9IAHJBPeFI/jHM+c9CL+32MdfT2Jef/LfQBvVPoLFJi5OElp/LyxSJb8wU2uDRN9DYd2e/KbQfM2WhKKFXZ7o9G6H1p7/+F41l6/GdWnZZce9P995KY2+8UY4H+8+sl2nsS2/KVtyev5DPeT2HNeNZmTlCm/s2HyP24Zx/Cu2N6XNo7F23Dhfa/BVrSSTQPLK50Eb26im3/1o6MwNAQBNZ4HRq7y0ho7FY2zIAzJs2X2h3P/JrGsvclTtEcWfjiJbex+vkNMw4Z6RnXNcgAM2NMdkAngUwyBgTj7LpvFkAHqjyIyqKUis433Fd0nZGUZQ6hXb4KYpL0eRXFJeiya8oLqVGzTyCghtj2OhBXppT1TU1VVZz2Zw9APDxlX/D2sfw2XWhoXKWmlNV/cCxY0Jb+pF0Yd2xZTPdPiNjo9Bee/0JGstgRhwAcOyQ3C9W1QeAL798Q2izV91MY1llv3FD2ZZ6hszZA4Bbrh0gtLyMPBIJNG0kq+r9BvGWbNbaeij7II0d3F/eB5sL6GSOcctIOXn+5xhkpOziJiFxg6QTdLcoPtcvoqmc8cjarAHgk/nLvG4XFfHZlww98yuKS9HkVxSXosmvKC5Fk19RXMo51/NfSOITEuziFd7ruNPyeEFo9wFZ0Fk7j7d0PvcX2WC4MJkX4TqTMU3rt/J11Z+98anQYnrIVt7Vi76h2781S7YHb9rBx2qxEVpLV2ygsadPyaLO+PtH09jZq74X2thhsqgFAFO/XiS0Fi1lu2zPtm3p9s0CpVeB0+tbcOKE0GIieAsrc+/dfegQjWWOuCnZ2UILchj31T5MejvkFfCCcFgTOUYs//hxGss8BRrU5/V2A7kcP/3AARp79ORJr9u/HTUKaSkpF2Y9v6Iolyea/IriUjT5FcWlaPIrikvR5FcUl1Kj7b25uQcx4Vlvk47XXn6MxubkSzOOdAen370k9pWHn6OxPQZcI7TCw4U0NvFzaTjx7AtThfbCdG6OEUhaY8+WchfWwiLZbspm5wHA9UP7C40ZcQC8ZZdV9QFg3PXXCe00aW31IfPwAOCHdDkHkT0HAJDQpo3Qikp4a2oDYlDBXHoBoJ6vnIXIrk4cIVcbAGDOD+uEdlv/fjT2MKnsN/Tzq3Ksv0PsroPyStdVMTE0dvZa7ytgJQ4uvww98yuKS9HkVxSXosmvKC6lKuO6Whtjlhljthljthpjxnv0EGPMYmPMTs9PteZVlDpEVQp+pQAes9YmGWMaA/jRGLMYwL0AllhrXzTGPAXgKQBP/tQdRUaG4R/PP+ylrdzOi3jfz5UOppOmTaCx36xcL7Qps9+isRtSdgitMJ8X/Fjrc+MQOc6JtaoCfF32ldG8NfbTDxYILSCIr+EOHip1VtgD+Hp8H9KyC/Dinh8ptvXpw92O7336D0Jb/slyGvvBB3IU2i8Gcp+BWfPfF5pxKDo+cKccpxYQIF+Hf/ybv1WHxXcTWqfoHjQ2NlYWAmd8wou/D415RmjjJj5IY9ctku/nO96+kcZu2OpdoHQqsDKqMq4rz1qb5Pm9EEAqgEgANwEo98GeCYC/coqi1Ep+1nd+Y0wbAAkA1gJoUcG7fx+AFhd0zxRFuahUOfmNMYEA5gB4xFrr5SNlyz4f0+WBFcd1HXJYiaUoSs1TpeQ3xtRHWeJ/aK0tnxu93xgT7vn/cAB0zWHFcV3Nm/Pvmoqi1DxVmdhjUDakI9VaO7nCf30JYAyAFz0/51blASsX0ban8TnprLDWyWG99zupcn571A3X0thdLeRFiXZt5Rp/gBdPYvt0EprT2nDGljS+nr/o+CmhdRski08A0CJIjo9yGqHFzDad1uOzzj1W3Fu7dh7d/pVOcl7r54f5uK6DxBw1oe9VNLZtqFxjP2PxMhIJjLhPlp52b5WmmquTt9Lt/RrKrrurB4+ksZ37S2+H+eulaSsAlJbK7sWrHbr2jhfKAvKok7w4WNlDgXU4OlGVav8AAL8BsMUYs8mjPY2ypE80xowFsBsAHxanKEqtpCrjur4DiLVIGdwSRlGUWo92+CmKS9HkVxSXosmvKC6lRtfzHz5aiA8XeI+7GtQ3nsauaZQqNLbmHQCahUvH1lfe/IjG1veTTrCBTaXrLAA0JVX8EOJQO6xrV7r9yeJioQUN7E1jjx6SDrHRUfwqxILkZKFlZebQWDZCi7nsAnw9PmvZZVV9ABhIqtczl68gkcCCdUlCi+nFq99jH/ib0P488Xc09vMFK4U2eswIoTk9B9nEG6Jj9440NiRcegr0iulAY80zY4UWF8Nbst+alyi0mN78uUnNzfW6XXRax3UpinIONPkVxaVo8iuKS9HkVxSXUqMFv8BGDdGvRxcvreh0CY1dkSgLN2N/OZTG7kmT7b3jn7iHxr4zZY7QOnbnRZpmjWWL8aFCufZ/2nw+rqu0RJopNm/JjSdZO/OUl7gp572P3ia0uW/zNtq8DDku69bbpVEnwNuZ2Xp8p5ZdVtwbM0gapgLAhkzZ5jx9CW+NnfrWn4X24B9foLF9RvQRWnLKTqEt/5i3B4e1kYtTGzbia+T9/GUr8PR1X9DY1Qu/Fdq363kxdOf+/UI7sIeP62rUz3sfnMxVGXrmVxSXosmvKC5Fk19RXIomv6K4FE1+RXEphjnUXiy69+hhv/v+ey/tux3STRcAhnTpIrSjJ0/S2IAGDYTmdFylZ2UFvp4PN0D4++szhfbco/cL7SC5AgAAIQHSZXfOeunMCgADo6OFxtptAWDDEtka+9hDd9LYpo3kPqzZKavfAB+hxUZKMSMOgLfsxke3o7E920m91GHU1Mibxwut13W8TXr8/aOFtnPfPqEtXy33FQBOHZOmKk+Mu53GMsb9biLVp739F6E99szrNHbSxIeFVlTCr4rNWrbK6/bz4x9C1s4dVSr565lfUVyKJr+iuBRNfkVxKdUZ1/VXY0yOMWaT559cN6koSq2lOuO6AOBVa+2kqj6YgXQXzSdzywFg6ldyhvyNV8nWTQDIIO2Q7VvwGSKb98hWYKc56RMeuVdom3ZLJ9hwMpYLAGYsXCK03l2l+y8AJC5YLrQmpOUXAJ58+DdCe2O6bFsGgH6DugstLiqKxhaVyLXgbISWk8suW4/v1LLLintOzrMzly4X2pD4OBrbPkruw/jnZCvwXb8eRrc/S+rEAf58bFpoaGuhpezYRCKB1pGyhfyxF/lor/59pWNyQQFv7/12jXeevBFQdSfpqhh45gHI8/xeaIwpH9elKEodpjrjugDgIWPMZmPMezqlV1HqFtUZ1/UWgPYA4lH2yYB6O+m4LkWpnZz3uC5r7X5r7Rlr7VkA0wDQrgsd16UotZOqVPvpuK7yOX0eRgJIufC7pyjKxeKc7b3GmIEAVgHYAqB88NvTAO5A2Ud+CyALwAMVRnZT4rt3t0tXept0TEv8msbeMkKaQDQn5hoAN6FgVX0AaOLvL7STDo6n7LlpTLZvFczLHaw9tz9p4wV4y2zD+tJpGACSybG1biYdjAFeVW/pcHWiQT1Z/805ckRobHYewF12mREHAIy+5b+l9t+yNRcAxlw7SGgr09Jo7JrvpbNxp26y0t4ujB9DcUmp0LZkyis8AHCmVD63Pr78fNo9ur3Qru/PzWkmvP1PoYWE8fdY5bmNvx01CmkpKVVq763OuK75VXkARVFqJ9rhpyguRZNfUVyKJr+iuJQade89XVKCXQcPemkJvTrT2KSsLKHd2F22qgLA5JmfCu3RMbx4tC4jQ2gJV1xBY1Oys4UWTEZ4TXp3Ft0+f58slnV9XLaEAnw0WPLevTSWuQrPX7GWRAKHsg8KbdRoXmhqHSKdhQ1xg52xmDvfshFaTi67bD2+U8suK+5d3Ym3SZ85e1Zo68lr3rU1f807x/YT2g9Jsk0b4AXZoMa8MPf2gnlCW7J+OY3t2LKl0NhxAcCzk971un20gHtLMPTMryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSarTa79+ggTCS2JaTQ2NZy252fj6NvW/0cKE5uZ2y1tYsh9WG3YjpRTZpd318rJydBwCJa36o8mP9uI24GDvMXRt9dX+hNY/ki6YG95dXSCIc2pGZmcYDdz4utBH3SYMPAPh8gZyvyGbnAcAdQ64WGjPiAIA/vSz9Ypyq374+8nx215hnyPbcKZi1Q7cIbUVjT52ULdlFxdxh+mbiQJx+TTcaO+VF2SZd7HC/c9d4z/ub8wFvgWfomV9RXIomv6K4FE1+RXEpmvyK4lJqtOBXUlqKnEpFu66tebsrc8mt3Bpczu5sOY7prmtlQQkAfEgNrYHDunk22qvwlBznlHLiBN3+tv6yVZQdFwBERoQJ7URxMY1lngQje/WksaWkMOa0Dz3bthVaQIAskO7eyrcfPUa6tyen8NFgbIQWc9kF+Hp81rIL8OLehzOfF9ojE+TYNYA7Od897k809thhWfDbkJlJY++fMEZoQeR1BIDt62QBee9uPtYuI9vbQqP4NC90M/TMryguRZNfUVyKJr+iuJSqGHg2NMasM8Yke8Z1PefR2xpj1hpj0o0xs4wxfOyNoii1kqoU/IoBXGutPe6x8P7OGLMAwKMoG9f1iTHmbQBjUebl73xHpaWiaJdxgI8h2p0rR3DdRjrbAGDFAtlJ5ztkEI3dmi07CgfG8M4yFtuBjAFzMiH9IHOu0P785Fgae2UrOQQpKYsX1n7ctUto879eRSKBohNFQrvz7utp7BFSuPzHv58U2urkrXT7ZoGBQlv+MV/7X3xKFjOdRmixwqfTenzWuceKe73aS0NNAIiO7iW0H5L4MTQixcGWYbyA/fKH7wstoU8PGvvxRy8KraRUGosCwN9eneF1u/gkLxIzznnmt2WUD9Sr7/lnAVwLoNxFYyYA3vOpKEqtpKpDO3yNMZsAHACwGEAGgAJrbfmfo2zo/D5FqVNUKfk9k3niAbRC2WQe7qFEqDiu66jDwhxFUWqen1Xtt9YWAFgGoB+ApsaY8ppBKwB0eV7FcV1BxCNOUZRLQ1Wq/aHGmKae3/0BDAWQirI/AuUumWMAyOqWoii1lqpU+8MBzDTG+KLsj0WitXaeMWYbgE+MMRMBbETZPL+fpKS0FLn53uvhO4ZLp1IAGN4zQWjp+/mVgZg+slq/gVTEASDcYVQVg43ACiIuu9cP41chDhceF9puh/X8nSOM+FwPAAAKpElEQVSrXjIJbSLXbAc0CaCxt4wcLLT2DqOq5vywTmjD4uWac7+G/Kou81sIayOvjgDAqWOyTfqsw+Q4NkKLuewCfD0+a9llVX0A2LFjvdCcRtqxMW8BAUEkEmgQIP0p8goKaCzzsvCrJ70WAKDXYG+/hlkz5PvTiaqM69oMQGSitTYTDpN5FUWp/WiHn6K4FE1+RXEpmvyK4lJqdD1/SGAg7ho4wEv74scfaeymVDnb/pf9+Jr19qRo6FRAY4ahWxzGYvUhLaDfbd8utHZhci0+wP0HgkkLLAC8+ZG8WNI0jBePriTH5hTL2kLzCo7SWOY/0ClatqBePXgk3b5j945Ca9hIFq8A4IlxtwstwJ8XLactXCQ0pxFazGyTrcd3atllxT02Hg0AwsPl+yMjaxuN7Rn/C6HdOf73NPaP730s7zdjI41dvWWD1202QswJPfMrikvR5FcUl6LJryguRZNfUVyKJr+iuJQarfZba1FcaYwWc4wFgJwgWb1mo5gA4MpWssLr4zDqKqxJE6EZh1hmItGxpbyyEBzAq9T79h0W2hmHHtZGTWRbZv4+ORoM4G2lJae52QODPQcAcPi4bEeOJW20nft3ptuHhMuFW37+VTd4Cg3lRhhnSmXLrlNVm43QYi67zIgD4M8tq+oDQF6edBD2q8dTqn0HOTYtqDm/QrNzp7wC5uPw3j9e5G3WctZhjBlDz/yK4lI0+RXFpWjyK4pL0eRXFJdSowW/06Wl2FtpzXemg3tvS7Lu3qmwNj85WWgjuvHZ56wgw9btA8C2nGyhdWwhC36frFpNt2dOqk7jyYZ2uVJoqTm5NLaoRI5kCg3nx5CySzoAM5ddAGhIimAzPnlZaPPX81bTXjFyrNb0dV/Q2HG/myi0lB2baOzcH+Qa+6DGwTS2iMyxZyO0nFx22Xp8p5Zd9l6q58vX3X++YYPQnF6H/Pw8oZ1xKORNmjHb6/axQnn8TuiZX1Fciia/orgUTX5FcSma/IriUqozq2+GMWaXMWaT51/8xd9dRVEuFNWZ1QcAf7LWfvoT23rh4+Mj2iq3JO+gsYsz9wntmcfvo7H5h6QL6tFT0h0WABZvkBXl6DayPRgA+naQ1ev1pHIcHcW3X5ImZwjmOAwumf3lUqGFtOQV7Zuv7iu0edPm09i4QXFCa9Lbn8ay9t6HxjwjtNJS2QILAOYZOYdw9cJvaezK7+YIrXWkfL4BYNG6FUJ7e8E8GnvzzeOFdv+EMUJjs/MA7rLLjDgA3rLLqvoAMLKnNKJZQK5SAcD4p18V2uFc2SoOAFOm/Nnr9qx/yaszTlTFvdcCYLP6FEWpw5zXrD5r7VrPfz1vjNlsjHnVGNPAYdv/G9d12MGzXlGUmue8ZvUZY7oA+B+UzezrBSAEgJzlDO9xXc2aN79Au60oSnU531l9w621eZ7x3cUApkMHeChKneKc3/mNMaEASqy1BRVm9b1kjAm31uaZssXwNwNIOdd9lZSWihFFUR15sax791ihNSZjjAAgIUaut/5q9VoSCQQEyZbKXbmyuAjwNeNsXXU/UhgEgNZkMGlEsENbKmnZjXJoO16ZJh2E737k1zS2W5RsY21Qn7/sbKzVuIkPCu3qGDkeDQDiYuSItW/Xy2IdADz2zOtSe5EXq67vP1RoS9Yvp7Hp18i27iB/WeBM6CNdiQE+QsvJZZetx3dq2WXFvV86tKBPnf+N0EqK5fsDALZme7tRnyJ+BE5UZ1bfUs8fBgNgEwD5LlEUpdZSnVl9116UPVIUpUbQDj9FcSma/IriUjT5FcWl1KiZh6+vL0ICvQ05osN5xZOZF6wjrbUAdwCOjYxwuF/ZnPhz5psxA4ezZL4bAHy7cbPQura7gsaySnvOEe7eO6RLF6HNWbWGxkYQU5TAUH7VhM0WXLdIGmkcLzxBt39rXqLQdu7fT2MnTXxYaP373kBjJ7z9T6ExF2UAmPLi34S2fd1tQvv4oxfp9oHkihKbnQdwl11mxAHwll1W1QeAcSOGCS0hfgiNDXztL163i07zqwIMPfMrikvR5FcUl6LJryguRZNfUVxKjRb8/Hx9ERns3fKa61DU2rRnj9DahYXR2OTd0qE2qjlvjc0rOCq0Yw5r/7uQMWBrdu4UWnR4ON2eFffyT/BiWdK6rUIrOlFEIoFu90YJrUMUL3Ayx+N0B8fkq0jb7h1v3yi0USd5M2dMb7n9gT38sa7tLEd+FRTw2JAw2RLt5GZbTNx79+6WnhElpXy8mV896b6bkcHdilmrt9N+sfX4Ti27rLi3cRP3RYhv957X7UYNqj4eTc/8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC7FWIfW1ItBu9hY+8J73tXJ2/v1o7Fr0tOFVnrmDI3dkpohtFsHX0Vjv9shK78dW7SgsczNtnJ7MgCsS5VXAADgULb0LHzw9l/RWNbe63QlhDkQR7TkFmlpW2VLdK+eci4gAOwjRhZXdeokNCfDitRcOVuwsltzOct+lOYWQ3tJMxAAYr4jACz4gpuEXHejfN0zsmXLbcZG+Z4BgF6DpSNvbAS/knK8SF6N+XbZOhr70F03Ca2yEUc5aUSPbydb2AGgW5S88mOtNTS4EnrmVxSXosmvKC5Fk19RXIomv6K4lBot+BljDgIo78VtDuBynOKhx1X3uJyO7QprbWhVAms0+b0e2JgN1lo5wKyOo8dV97icj+2n0I/9iuJSNPkVxaVcyuSfegkf+2Kix1X3uJyPzZFL9p1fUZRLi37sVxSXUuPJb4wZbozZboxJN8Y8VdOPfyExxrxnjDlgjEmpoIUYYxYbY3Z6fvLJnLUYY0xrY8wyY8w2Y8xWY8x4j16nj80Y09AYs84Yk+w5ruc8eltjzFrPe3KWMabqdjh1mBpNfs+wz38B+CWAzgDuMMZIP6e6wwwAwytpTwFYYq3tCGCJ53ZdoxTAY9bazgD6AviD53Wq68dWDOBaa203APEAhhtj+gJ4CcCr1toOAI4AGHsJ97HGqOkzf28A6dbaTGvtaQCfAJDLneoI1tqVACovObsJwEzP7zNRNr68TmGtzbPWJnl+LwSQCiASdfzYbBnlSzXre/5ZANcC+NSj17njOl9qOvkjAeytcDvbo11OtLDWlq8h3QeArxeuIxhj2qBsSvNaXAbHZozxNcZsAnAAwGIAGQAKrLXljp6X43uSogW/i4gtu5RSZy+nGGMCAcwB8Ii19ljF/6urx2atPWOtjQfQCmWfRKVhgUuo6eTPAdC6wu1WHu1yYr8xJhwAPD+5H3UtxxhTH2WJ/6G19jOPfFkcGwBYawsALAPQD0BTY0y5jf3l+J6k1HTyrwfQ0VNd9QNwO4Ava3gfLjZfAhjj+X0MgLmXcF/OC2OMAfAugFRr7eQK/1Wnj80YE2qMaer53R/AUJTVM5YBGO0Jq3PHdb7UeJOPMWYEgNcA+AJ4z1r7fI3uwAXEGPMxgEEoWxW2H8CzAL4AkAggCmUrGG+11kofqlqMMWYggFUAtgAon0LxNMq+99fZYzPGxKGsoOeLshNforX2b8aYdigrPocA2Ajgbmtt8aXb05pBO/wUxaVowU9RXIomv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLuX/AZCcUsZF7GXNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The breast cancer dataset\n", - "Now we run our algorithm with the real-world dataset: the breast cancer dataset, we use the first two principal components as features." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH65JREFUeJzt3X+cXHV97/HXO8kGVoFsAhiTTSCogCDhgqyoRQqaUKitJgWLv+pNrJZabmttFQm1pRa9D6Kp4rXaapRW9HG9JaVxiUUbIIhaLijhBhMBA4gKWZIQkKDR1YTwuX+c75DJZmZ2dufX2Tnv5+Oxjz1zznfmfGbmzOd85/v9zvkqIjAzs2KZ1OkAzMys/Zz8zcwKyMnfzKyAnPzNzArIyd/MrICc/M3MCsjJvwtJCkkvSsufkfQ3nY6pEklnS9rS5n3OS6/PlHbu1w7k96KznPxbQNKPJQ1L2iVpu6QvSDqkbPu5kr4l6eeSdkj6pqTXj3iMs9MH49JGYomId0XEhxp5jCIZ8d49KekGSXM7EMdSSf/V7v3mVbsqCp2okHSKk3/rvC4iDgFeCgwAfw0g6Q3AvwFfBOYAM4HLgdeNuP8S4KfAf29XwI3ostpb6b2bBWwH/qFaQUmT2xbVBNJlx0N3igj/NfkP+DGwsOz2CuA/AAEPA5eMcv/nAj8H3gTsBgZGKX8JsBV4FPhDIIAXpW1fAD6cls8GtgDvBx5L91kMvBa4n+xk81djfJ6XAhuBXwNTgNnAvwM7gB8B7y4r35vieRK4N8W9pWz7s3GPjD3dXgTcDfwM+CFwXlo/Dbg6PZ8h4MPA5LRtMvD3wOPAQ8D/SPuZUud791rg/hEx/RPwNeAXwELgoLSPh8lOFp8BelP56em935Ge938Ac8oeb2mK6+fp9XorcALwK2AvsAvYWSXWGcC/pPf9SWCwzn3eCnwIuC3t90bgiLLtrwL+L7ATeARYmtbXep5nkx1blwLbgC9ViLfmewG8HbgvxfQQ8Mdln4dh4Jn0euwiO85OB25PcW4FPgVMTfcRcBXZcf4zYBNwUq3nUW0/nc4nLctTnQ6gG//KEwgwF7gnfdhenA72Y0a5/9vSwTwZ+CrwDzXKnpcO4JPSwftlaif/p8m+afQAf5QSxJeBQ4GXpIO/Znwjnufd6Tn2kn2TvCs9/lTgBelDfG4qvxz4NlnSmgt8nzqTf/qgPwWck/bTD7w4bfsK8Nn0/J8HfLcscbwL+EHa3wzgG9SZ/IHnANcAXxwR01PAGSmOg1OSWZMe/9D0nl2Zyh8OXJAe61Cyb32lJP1cssR0fLo9C3hJWl4K/Ncor/8NwLVkyb4HOGu0fabtt5KdPI9L79utwPK07Wiy5Pvm9JiHA6ekbbWe59lkx9ZHyJJrb4V4a74XwO8ALyRL3GcBvwReWvb4W0Y83mnAK8gqHfPIThzvSdvOJTsW+9LjnQDMqvN5bKn1unfLX8cD6Ma/lEB2kdVIfgL8Y/qQnZEO9oNHuf/NwCfS8pvJEnRPlbL/XPrgptvHUTv5D7OvVnxoKvvysvvfBSwew/P8w7LbLwceHlHmMuBf0vJDpNp6un0R9Sf/zwJXVYhhJtm3jt6ydW8GvpGWbwHeVbbttxg9+Zfeuz1kter5I2IqPxmI7BvAC8vWvRL4UZXHPwV4Mi0/N+3nAkYkS0ZJ/mQnimeA6XW8T8/uM92+FfjrstsXA/9Z9n59pcJj1Hye6djaTY1jexzvxSDw52WPXzMpA+8pxQ68huzb7CuASWN8HoVI/m6Xa53FEXFz+QpJT6TFWWRf8Q+QOhdfTfYhBLgeWElWKxqscJfZZAm75CejxPVEROxNy8Pp//ay7cPAIdTvkbLlo4HZknaWrZtMVtsvxVpefrRYy80la2oZ6WiyGupWSaV1k8r2M559Lo6Im1N7/iLgm5JOjIhtaXv54x1JVsO+q2z/InveSHoOWU3zPLIaOsChkiZHxC8kvRF4H3C1pNuA90bED+qIcS7w04h4cuSGUfZZeu+3ld3ll+x7z+eSfSsYqebzTHZExK9qxFzzvZD028DfklVgJqX9bar2YJKOAz5O1qf2HLJvAHcBRMQtkj4FfBo4WtJqstf54DqeRyG4w7e9NpMd/BfUKPM2svflq5K2kdWWDybrAK5kK9kHtuSoJsQ5FlG2/AhZDaqv7O/QiHht2j5arL8k+2CWPH/EY7+wwv4fIav5H1G2z8Mi4iV17rOqiNgbEavJ2t5fVb6pbPlxshPmS8r2Py2yDmOA9wLHk327Ogz4zbReaR9rI+IcsgrBD4DPVdhHJY8AMyT1VdhWc591PG6l13m051lPzFXfC0kHkfUV/T0wMyL6yE72pZgrPfY/kb1mx6bn+Vdl5YmIT0bEacCJZCeUS+p4HqM9h67h5N9GkX2v/EvgbyS9XdJhkiZJepWklanYEuDvyL6ql/4uAF4r6fAKD7sKWCrpxFTj+9vWP5Oqvgv8XNKlknolTZZ0kqSXpe2rgMskTZc0B/izEfe/G3hLut95ZO2+JVcDb5e0IL1m/ZJeHBFbyTosP1b2er5QUum+q4B3S5ojaTqwrN4no8wistrzfZXKRMQzZAn7KknPS/frl3RuKnIoWbLZKWkGZe+PpJmSFkl6LtkJbBdZUw5k38bmSJpaZb9bga8D/5hezx5JpSRfdZ91+N/AQkkXSpoi6XBJp9TxPOtR672YStZXsAN4On0L+K2y7duBwyVNK1t3KFmfyS5JLwb+pLRB0sskvVxSD1kzz6+AZ+p4HpX205Wc/NssIq4D3kg2KudRsoPtw8D1kl5B1ozx6YjYVva3BniQrC175ON9HfgEWXvqg+l/U0h6q6R76i2fmhR+l+yE9SOyWtbnyUbjQHZS+0nadiPwpREP8edkQ153ko16ebaZKyK+SzYa5CqyDtdvkr1WkA2HnUo2guhJ4DqymjRkH/S1wPeA/wesruOpfFXSLrLE8j+BJRFR63W4lOy1v0PSz8j6bI5P2z5B1t/zOHAH8J9l95tEVhl4lGyk1VnsS2C3kA0U2Cbp8Sr7fRtZv8QPyEa1vKeOfdYUEQ+TjXB6b4rpbuC/1fE861H1vYiInwPvJjtBPAm8haxTtrT9B8D/AR6StFPSbLJmnLeQdVB/jqzzu+SwtO5JsmPuCbJRdzWfR5X9dCWlTg4zMysQ1/zNzArIyd/MrICc/M3MCsjJ38ysgHL7I68jjjgi5s2b1+kwzMwmlLvuuuvxiDhytHK5Tf7z5s1j/fr1nQ7DzGxCkVTXL+fd7GNmVkBO/mZmBeTkb2ZWQE7+ZmYF5ORvZlZATv5mZgXk5G9mVkBO/mZmBdSU5C/pPEmbJT0o6YDJMiQdJOnatP07kuY1Y79mE8XghiHOWH4Lxyy7gTOW38LghqFOh2QF13DyT/Ocfhr4bbLp0t4s6cQRxd5BNoH0i8gm4/hIo/s1mygGNwxx2epNDO0cJoChncNctnqTTwDWUc2o+Z8OPBgRD0XEbuBfySa9LrcIuCYtXwcsUNnsyWbdbMXazQzv2bvfuuE9e1mxdnOHIjJrTvLvJ5v0uWRLWlexTEQ8TTYN3wHz0Uq6SNJ6Set37NjRhNDMOu/RncNjWm/WDrnq8I2IlRExEBEDRx456kXpzCaE2X29Y1pv1g7NSP5DwNyy23PSuoplJE0hm9D7iSbs2yz3Ljn3eHp7Ju+3rrdnMpecO5a5z82aqxnJ/07gWEnHSJoKvAlYM6LMGmBJWn4DcEt45ngriMWn9nPl+fPp7+tFQH9fL1eeP5/Fp45sHTVrn4av5x8RT0v6U2AtMBn454i4R9IVwPqIWANcDXxJ0oPAT8lOEGaFsfjUfid7q2pwwxAr1m7m0Z3DzO7r5ZJzj2/58dKUyVwi4mvA10asu7xs+VfA7zdjX2Zm3aQ0FLg0Iqw0FBho6QkgVx2+ZmZF06mhwE7+ZmYd1KmhwE7+ZmYd1KmhwE7+ZmYd1KmhwE3p8DUzs/EpdepOyNE+ZmY2fp0YCuzkb9ZmnRjTbTaSk79ZG3VqTLfZSO7wNWsjX97Z8sLJ36yNfHlnywsnf7M28uWdLS+c/M3ayJd3trxwh69ZG3VqTLfZSE7+Zm3myztbHrjZx8ysgJz8zcwKyMnfzKyA3OZvZl3Nl9OozMnfqvKHxiY6X06jOjf7WEWlD83QzmGCfR+awQ1DnQ7NrG6+nEZ1Tv5WkT801g18OY3qnPytIn9orBv4chrVOflbRf7QWDfw5TSqc/K3ivyhsW6w+NR+rjx/Pv19vQjo7+vlyvPnF76zFzzax6rwNWisW/hyGpU5+VtV/tCYdS83+5iZFZCTfx5tXAVXnQQf7Mv+b1zV6YjMrMu42SdvNq6Cr74b9qQhlU89kt0GOPnCzsVlZl3FNf+8WXfFvsRfsmc4W29m1iRO/nnz1JaxrTczGwcn/7yZNmds683MxsHJfzxa2SG74HLoGfEr2p7ebH2BDG4Y4ozlt3DMshs4Y/ktvqCcWZO5w3esWt0hW3qMdVdkTT3T5mSJv5s7ezeu2u/53vnCP+OyO4/2ZXjNWkgR0ekYKhoYGIj169d3OowDXXVSlvBHmjYX/uL77Y9nROKccCeKkSdTYJiDuHT3O1jzzKv2K9rf18tty17T7gjNJhRJd0XEwGjl3OwzVnnqkC0lzqceAWLft5CJ9LuACqObevk1759y4HPwFUXNmsfJf6zy1CHbDcNCq5w0Z+uJA9f5iqJmTePkP1Z56pDN07eQ8apy0tzK4fvd7u2ZzKtffKQ7gc2apKHkL2mGpJskPZD+T69Q5hRJt0u6R9JGSW9sZJ8dd/KF8LpPZm38KPv/uk92pp09T99CxqvKyfTR096/32V4Lzitn3+/a8jTSpo1SUMdvpI+Cvw0IpZLWgZMj4hLR5Q5DoiIeEDSbOAu4ISI2FnrsXPb4ZsnFTpL6ent3MlovOrotD5j+S0MVWjzdyew2f7q7fBtdKjnIuDstHwNcCuwX/KPiPvLlh+V9BhwJFAz+VsdumVY6MkXjhqzp5U0a65Gk//MiNialrcBM2sVlnQ6MBX4YZXtFwEXARx11FENhlYQdSTObjC7r7dizd+dwGbjM2qbv6SbJX2/wt+i8nKRtR9VbUOSNAv4EvD2iHimUpmIWBkRAxExcOSRR47xqVg387SSZs01as0/IhZW2yZpu6RZEbE1JffHqpQ7DLgB+EBE3DHuaK2wPK2kWXM12uyzBlgCLE//rx9ZQNJU4CvAFyPiugb3ZwXmaSXNmqfR5L8cWCXpHcBPgAsBJA0A74qId6Z1vwkcLmlput/SiLi7wX1bzg1uGHJN3SynfG0fa4nBDUNctnrTsxdng6yN/srz5/sEYNZCvraPddSKtZv3S/wAw3v2smLt5g5FZGblnPytJTwu3yzfnPytJaqNv/e4fLN8cPK3lvC4fLN880xe1hIel2+Wb07+tUz0WbI6zOPyzfLLyb+aVs/Va2bWQW7zr6YbZskyM6vCyb+abpgly8ysCif/arphliwzsyqc/KvJ01y9ZmZN5uRfTZ7m6jUzazKP9qmlILNkmVnxuOZfy8ZVcNVJ8MG+7P/GVRPr8c3MqnDNv5pWj/P37wjMrINc86+m1eP8/TsCM+sg1/yrafU4/5z+jsCzb5kVg2v+1bR6nH8Of0dQmn1raOcwAQztHOay1ZsY3DDUsZjMrDWc/Ktp9Tj/HP6OwLNvmRWHk381rR7nn8PfEXj2LbPicJt/La0e55+z3xHM7utlqEKi9+xbZt3HNX97lmffMisO1/wb0WWTvXj2LbPicPIfry79kZZn3zIrBjf7jJd/pGVmE5iT/3jl9EdaZmb1cPIfrxz+SMvMrF5O/uO14HKY1LP/ukk9nuzFzCYEJ/9GSLVvm5nllJP/eK27Avbu3n/d3t1j7/D1Nf3NrAM81HO8mtHh26XDRc0s/1zzH696O3xr1ew9XNTMOsTJf7zquSpnqWb/1CNA7KvZl04AHi5qZh3i5D9e9VyVc7SavYeLmlmHuM2/EaNdlXO0mv2Cy/dv84eOX9PfzIrByb+Vps1JTT4V1sO+E0cOLw7n6RzNupuTfyvVU7PP2TX9Yd90jqVZvUrTOQI+AZh1Cbf5t9J4Z+vq8Nh/T+do1v0aqvlLmgFcC8wDfgxcGBFPVil7GHAvMBgRf9rIfieUsdbsczD239M5mnW/Rmv+y4B1EXEssC7druZDwLca3F/3y8HY/2rTNno6R7Pu0WjyXwRck5avARZXKiTpNGAmcGOD++t+ORj77+kczbpfo8l/ZkRsTcvbyBL8fiRNAj4GvG+0B5N0kaT1ktbv2LGjwdA6qJE2+xyM/V98aj9Xnj+f/r5eBPT39XLl+fPd2WvWRUZt85d0M/D8Cps+UH4jIkJSVCh3MfC1iNiiUa56GRErgZUAAwMDlR4rn8rn8u2dDrt37bvo21jb7HMy9t/TOZp1t1GTf0QsrLZN0nZJsyJiq6RZwGMVir0SOFPSxcAhwFRJuyKiVv/AxDGyg3b4pweWKbXZ15P8czz238y6R6Pj/NcAS4Dl6f/1IwtExFtLy5KWAgNdk/ihcgdtJWNps8/h2H8z6y6NtvkvB86R9ACwMN1G0oCkzzca3IRQb1L39XrMLEcaqvlHxBPAggrr1wPvrLD+C8AXGtln7lS7hEM5X6/HzHLGv/BtVKVLO0/qgd4ZjOlXvWZmbeRr+zTKHbRmNgE5+TeDO2jNbIJxs4+ZWQG55m/WAZ4vwTrNyd+szTxfguWBm33M2szzJVgeOPmbtZnnS7A8cPI3azPPl2B54ORv1maeL8HywB2+VnjtHnlTemyP9rFOcvK3QuvUyBvPl2Cd5mYfKzSPvLGicvK3QvPIGysqN/tYR3X6l66z+3oZqpDoPfLGup1r/tYxpfb2oZ3DBPva2wc3DLUtBo+8saJy8m+1javgqpPgg33Z/42rWnOfCSgP7e2LT+3nyvPn09/Xi4D+vl6uPH++O2Ot6ykiOh1DRQMDA7F+/fpOh9GYkZO7QzbxS63JXcZznwnqmGU3UO3o6/fwR7NxkXRXRAyMVs41/1aqNLn7nuFsfTPvM0HValfvRBOQWZE4+TdbeZNNtbl9a036Xm1bvRPFTyCV2tvLecilWet4tE8zVWqyqWTanNrbKp00at1ngir/pWulETfgIZdmreKafzNVarIZqac3m+O3mkoTwo92nwls8an93LbsNfT7YmdmbeXk30w1m2YE0+aO3nF78oVZmWlz679PF/CQS7P2crNPM1VtspkLf/H9+h+ngBPC+2JnZu3l5N9MCy6HwYvhmT371k3q2ddks3FV1jT01JbsRLHg8sIl+Vp8sTOz9nHybzap8u2RncFPPZLdBp8AzKztnPybad0VsHf3/uv27t43Rr/a+H0nfzNrMyf/ZhrPGP0uHL9vZvnn0T7NVG0s/rQ5tbeZmbWZk38z1RqjX7Dx+2aWb272aaZS232tET0e7WNmOeCrepqZdRFf1dPMzKrq3uRfkAlRzMzGozvb/P2DKjOzmrqz5l+gCVHMzMajO5N/gSZEMTMbj+5s9inQhCh5MLhhyFfjNJtgGqr5S5oh6SZJD6T/06uUO0rSjZLuk3SvpHmN7HdU/kFV2wxuGOKy1ZsY2jlM4Ll3zSaKRpt9lgHrIuJYYF26XckXgRURcQJwOvBYg/utraATonTCirWbGd6zd791nnvXLP8abfZZBJydlq8BbgUuLS8g6URgSkTcBBARuxrcZ30KOCFKJ1SbY9dz75rlW6M1/5kRsTUtbwNmVihzHLBT0mpJGyStkDS5QjmbgKrNseu5d83ybdTkL+lmSd+v8LeovFxk14modK2IKcCZwPuAlwEvAJZW2ddFktZLWr9jx46xPhfrAM+9azYxjdrsExELq22TtF3SrIjYKmkWldvytwB3R8RD6T6DwCuAqyvsayWwErJr+9T3FKyTPPeu2cTUaJv/GmAJsDz9v75CmTuBPklHRsQO4DWAr9jWRTz3rtnE02ib/3LgHEkPAAvTbSQNSPo8QETsJWvyWSdpEyDgcw3u18zMGtBQzT8ingAWVFi/Hnhn2e2bgJMb2ZeZmTVPd17ewczManLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAmr0ev5mNsLghiFPbmO55+Rv1kSDG4a4bPUmhvfsBWBo5zCXrd4E4BOA5YqbfcyaaMXazc8m/pLhPXtZsXZzhyIyq8zJ36yJHt05PKb1Zp3i5G/WRLP7ese03qxTnPzNmuiSc4+nt2fyfut6eyZzybnHdygis8rc4WvWRKVOXY/2sbxz8jdrssWn9jvZW+45+Vvuedy8WfM5+Vuuedy8WWu4w9dyzePmzVrDyd9yzePmzVrDyd9yzePmzVrDyd9yzePmzVrDHb6Wax43b9YaTv6Wex43b9Z8bvYxMysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswLyj7zMrCrPpdC9nPzNrCLPpdDdGmr2kTRD0k2SHkj/p1cp91FJ90i6T9InJamR/ZpZ63kuhe7WaJv/MmBdRBwLrEu39yPpN4AzgJOBk4CXAWc1uF8zazHPpdDdGk3+i4Br0vI1wOIKZQI4GJgKHAT0ANsb3K+Ztdi03p6K6z2XQndotM1/ZkRsTcvbgJkjC0TE7ZK+AWwFBHwqIu6r9GCSLgIuAjjqqKMaDM3MxmtwwxC/2P30Aet7Jqmjcym4A7p5Rk3+km4Gnl9h0wfKb0RESIoK938RcAIwJ626SdKZEfHtkWUjYiWwEmBgYOCAxzKz9lixdjN79h74ETzk4CkdS7bugG6uUZN/RCystk3SdkmzImKrpFnAYxWK/R5wR0TsSvf5OvBK4IDkb2b5UK1df+cv97Q5kn1qdUA7+Y9do23+a4AlaXkJcH2FMg8DZ0maIqmHrLO3YrOPmeVDHudOdgd0czWa/JcD50h6AFiYbiNpQNLnU5nrgB8Cm4DvAd+LiK82uF8za6E8zp2cxxPSRNZQh29EPAEsqLB+PfDOtLwX+ONG9mNm7ZXHuZMvOff4/dr8ofMnpInMv/A1s4ryNndyHk9IE5mTv5lNGHk7IU1kvqqnmVkBOfmbmRWQk7+ZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkBOfmbmRWQIvJ55WRJO4CfpJtHAI93MJxqHNfY5TU2xzU2jmts2hnX0RFx5GiFcpv8y0laHxEDnY5jJMc1dnmNzXGNjeMamzzG5WYfM7MCcvI3MyugiZL8V3Y6gCoc19jlNTbHNTaOa2xyF9eEaPM3M7Pmmig1fzMzayInfzOzAspl8pf0+5LukfSMpKrDoySdJ2mzpAclLWtDXDMk3STpgfR/epVyH03x3yfpk5KUk7iOknRjiuteSfNaGddYYktlD5O0RdKn8hCXpFMk3Z7ey42S3tjCeGoey5IOknRt2v6ddrx3dcb1l+lY2ihpnaSj8xBXWbkLJEWtPNLuuCRdmF6zeyR9uR1xVRQRufsDTgCOB24FBqqUmUw2MfwLgKlkk8Of2OK4PgosS8vLgI9UKPMbwG0pvsnA7cDZnY4rbbsVOCctHwI8pw3vZV2xpe3/C/gy8Kk8xAUcBxyblmcDW4G+FsQy6rEMXAx8Ji2/Cbi2Da9RPXG9unQcAX+Sl7hSuUOBbwF3VMsjHXi9jgU2ANPT7ee1Oq5qf7ms+UfEfRGxeZRipwMPRsRDEbEb+FdgUYtDWwRck5avARZXKBPAwWRv/kFAD7C903FJOhGYEhE3AUTEroj4ZYvjqiu2FN9pwEzgxjbEVFdcEXF/RDyQlh8FHgNG/eXkONRzLJfHex2woNXfKOuJKyK+UXYc3QHMaXFMdcWVfAj4CPCrNsRUb1x/BHw6Ip4EiIjH2hTbAXKZ/OvUDzxSdntLWtdKMyNia1reRpas9hMRtwPfIKslbgXWRsR9nY6LrBa7U9JqSRskrZA0ucVx1RWbpEnAx4D3tSGeuuMqJ+l0shP6D1sQSz3H8rNlIuJp4Cng8BbEMta4yr0D+HpLI8qMGpeklwJzI+KGNsRTd1xkn8PjJN0m6Q5J57UtuhE6NoG7pJuB51fY9IGIuL7d8ZTUiqv8RkSEpAPGyUp6EVmzVakGdJOkMyPi252Mi+y9PhM4FXgYuBZYClzdSFxNiu1i4GsRsaWZldkmxFV6nFnAl4AlEfFM0wLsIpL+ABgAzspBLJOAj5Md33kzhazp52yyHPEtSfMjYmcnAumIiFjY4EMMAXPLbs9J6xpSKy5J2yXNioitKSFU+sr2e8AdEbEr3efrwCuBhpJ/E+LaAtwdEQ+l+wwCr6AJyb8Jsb0SOFPSxWR9EVMl7YqIhjrxmxAXkg4DbiCrlNzRSDw11HMsl8pskTQFmAY80aJ4xhIXkhaSnVDPiohftzimeuI6FDgJuDVVJp4PrJH0+ohY38G4IPscfici9gA/knQ/2cngzhbGVdFEbva5EzhW0jGSppJ1gq1p8T7XAEvS8hKg0jeUh4GzJE2R1ENWE2p1s089cd0J9EkqtVm/Bri3xXHVFVtEvDUijoqIeWRNP19sNPE3I650XH0lxXNdC2Op51guj/cNwC2Regw7GZekU4HPAq9vY/t1zbgi4qmIOCIi5qVj6o4UXysT/6hxJYNktX4kHUHWDPRQi+OqrFM9zbX+yGrPW4Bfk3WWrk3rZ5M1D5TKvRa4n6wd9gNtiOtwYB3wAHAzMCOtHwA+H/t6/D9LlvDvBT6eh7jS7XOAjcAm4AvA1LzEVlZ+Ke0Z7VPPe/kHwB7g7rK/U1oUzwHHMnAFWdKCbBDBvwEPAt8FXtDq16jOuG5On9HS67MmD3GNKHsrbRjtU+frJbImqXvT5/BN7Yir0p8v72BmVkATudnHzMzGycnfzKyAnPzNzArIyd/MrICc/M3MCsjJ38ysgJz8zcwK6P8DWUu36a1Rk58AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sample_Total, training_input, test_input, class_labels = Breast_cancer(training_size=20,\n", - " test_size=10,\n", - " n=2,\n", - " PLOT_DATA=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "seed = 10598\n", - "\n", - "feature_map = SecondOrderExpansion(num_qubits=feature_dim, depth=2, entanglement='linear')\n", - "qsvm = QSVMKernel(feature_map, training_input, test_input)\n", - "\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", - "\n", - "result = qsvm.run(quantum_instance)\n", - "\n", - "\"\"\"declarative approach, re-use the params above\n", - "algo_input = SVMInput(training_input, test_input)\n", - "result = run_algorithm(params, algo_input)\n", - "\"\"\"\n", - "print(\"testing success ratio: \", result['testing_accuracy'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} From ee2860b5947f1159a5248d44e8f87851b6ecf988 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Sun, 28 Apr 2019 08:19:02 -0400 Subject: [PATCH 080/116] switch BasicAer -> Aer --- .../qsvm_directly.ipynb | 306 +++++++++++++++ .../qsvm_multiclass.ipynb | 136 +++++++ .../aqua/artificial_intelligence/vqc.ipynb | 276 +++++++++++++ .../qsvm_classification.ipynb | 362 ++++++++++++++++++ ...ld_a_pluggable_algorithm_components.ipynb} | 19 +- 5 files changed, 1086 insertions(+), 13 deletions(-) create mode 100644 community/aqua/artificial_intelligence/qsvm_directly.ipynb create mode 100644 community/aqua/artificial_intelligence/qsvm_multiclass.ipynb create mode 100644 community/aqua/artificial_intelligence/vqc.ipynb create mode 100644 qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb rename qiskit/aqua/general/{Aqua_howto_build_a_pluggable_algorithm_components.ipynb => Aqua_how_to_build_a_pluggable_algorithm_components.ipynb} (92%) diff --git a/community/aqua/artificial_intelligence/qsvm_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_directly.ipynb new file mode 100644 index 000000000..a0db62a60 --- /dev/null +++ b/community/aqua/artificial_intelligence/qsvm_directly.ipynb @@ -0,0 +1,306 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*Quantum SVM*_\n", + "\n", + "### Introduction\n", + "\n", + "Please refer to [this file](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb) for introduction.\n", + "\n", + "In this file, we show two ways for using the quantum kernel method: (1) the non-programming way and (2) the programming way. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Part I: non-programming way.\n", + "In the non-programming way, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import *\n", + "from qiskit import Aer\n", + "from qiskit.aqua import run_algorithm, QuantumInstance\n", + "from qiskit.aqua.input import ClassificationInput\n", + "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", + "from qiskit.aqua.algorithms import QSVM\n", + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", + "\n", + "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'A': 0, 'B': 1}\n" + ] + } + ], + "source": [ + "feature_dim = 2 # dimension of each data point\n", + "training_dataset_size = 20\n", + "testing_dataset_size = 10\n", + "random_seed = 10598\n", + "shots = 1024\n", + "\n", + "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", + " training_size=training_dataset_size, \n", + " test_size=testing_dataset_size, \n", + " n=feature_dim, gap=0.3, PLOT_DATA=False\n", + ")\n", + "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", + "print(class_to_label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we create the svm in the non-programming way.\n", + "In the following json, we config:\n", + "- the algorithm name \n", + "- the feature map " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "params = {\n", + " 'problem': {'name': 'classification', 'random_seed': random_seed},\n", + " 'algorithm': {\n", + " 'name': 'QSVM'\n", + " },\n", + " 'backend': {'shots': shots},\n", + " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", + "}\n", + "backend = Aer.get_backend('qasm_simulator')\n", + "algo_input = ClassificationInput(training_input, test_input, datapoints[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With everything setup, we can now run the algorithm.\n", + "\n", + "The run method includes training, testing and predict on unlabeled data.\n", + "\n", + "For the testing, the result includes the success ratio.\n", + "\n", + "For the prediction, the result includes the predicted class names for each data.\n", + "\n", + "After that the trained model is also stored in the svm instance, you can use it for future prediction." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "result = run_algorithm(params, algo_input, backend=backend)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kernel matrix during the training:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYlWX6x78PKKaCgIKCouJu7uRGalampmZlM6YtlpaVVtY0NVPWNK3T/GzG9pzKsjQz9yXLzFzTSilxw8QVNxRFWQQFleX5/cFxLg739y1G6Ci+9+e6vOB8vd9z3rPc53Du536+t7HWQlEU9+F3oU9AUZQLgya/orgUTX5FcSma/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUzJb4zpZ4zZYYzZbYwZW14npSjK74853w4/Y4w/gJ0A+gBIBvAzgNuttdt+5RhxY7UjomhsRESY0JzOdffOJKFd3qo5jS0sLBRa2olsGhtUvarQ0tNPCC04JIgen3vmrND8/Pn7bebRTKFFN6pLYwvIfcg6lUNjw4JrCO1sfj6NDahUSWin8/KE5vQ8VA0IEFrOmTM09jISe4bcltPtnS0ooLHs+Q2tXl0GGkOPP31WPmcnc3JpbHAguV4H/MjtHc+QryWAv0Zqh4bQ2LwSj8PBAweQnpbG71wJ5LNderoA2G2tTQIAY8wMADcDcEx+xtDhf6b6M0+PFFq+wxN+43W3Cm1d3Lc09hR5MX62eAWN7dmlvdCmT/taaP0HXU2P3757v9Cq1qhGYxe8tUBok6a+TGMzT50S2tKfN9LYkf37CO1gWhqNbRgm33C3HTokNKfkb1lXvllt3LePxl5eT8buO3acxrI3oIPp6TSWJeqQK2OFZhySP/HwYaF9H59AYwd070x1RvUqVYQ2aZZ8LQFANfIaeXTITTT2yAnvN5Drr7mm1OdUlj/76wE4WOxyskdTFKUCUJZP/lJhjHkAwAO/9+0oivK/UZbkPwSgfrHLUR7NC2vtRAATAf6dX1GUC0NZkv9nAM2MMY1QlPS3Abjj1w6oHRElvuO/8+oTNPaRx+RVLf9pE40tqj16w767AUCDWrWENrj3VTT2nQ9mCS04LFhocybz724d+14htDVz1tDYwNBAoSUcPEgigaDLLhNaThYvSm05cEBo6xN30diYFk2Etv2QfBybRUbQ43/YuVNoBxy+x+84nCK0xHWJNPbpR4YJrUmdOjR2zuofhZaalSW01Ynb6fG3dbtSaCdyeDF15peyVlQ1UBaJAeDugb2FdmO/HjS2ZBEPADJInQcAdpR4nbP6iBPnnfzW2nxjzBgASwD4A/jYWvvL+V6foii+pUzf+a21XwPgH3uKolzUaIeforgUTX5FcSma/IriUs67vfd8aB8TY5esWuWlZefyKnXzyEihLdmyhcdGyOrzknUbaGz6EdkZVieaV45v6dZVaFMWLhVavcbyXAGgBel4q+TH329ZBT/L4bH56IO5Qrt/9GAa+/n0xUIbMvR6Gjt37jKh9e7fTWhdGjemxx/Llm3StWvI9mIn1u7iqxC7D8gVh8oBvFxVKaCy0G6Nlc8j6/QEgCqkxfnnJNk+DgBhQbKtu0ZVXu0/nJEhtAKH3Fu18mehPXGP7GIF5GrO3TffjG0JCaVq79VPfkVxKZr8iuJSNPkVxaVo8iuKS/Fpwa9dhw726xXeLZFfff8TjW3cSG4QvL5dOxr7ybKVQnvtsedpbECALKz9+9PXaeyfbntIaBPnTxLaV/Pk7QPA9jjZQpqQsJrGzvh2ttBef+EjGtukg2zD3b2BF8v2J+2Q2n6+67pGDdn6/Mqnbwnt6GHesjukl2xXffND2SINAPlnpadAdJuGNLZxQ/laYG3aALAsjm9tLknvrjFUj6pZU2grt/HHa2OcbGhNO8S3S7/y7GihfREfT2Mrk6Jj2lG+hfmWnt7tyH2uvhqbNm7Ugp+iKM5o8iuKS9HkVxSXosmvKC5Fk19RXMrvbuNVnN07k4TZJjPiAIB5S6YJjVX1AeCe3tcKbfV2btbQMTpaaHuPHaOxT074h9DiN8vrPZPLW0VvHiNNF6O/k7cPAA8OHSO0mV99QmN/2CFNMzr0aEtjmelFxsmTNJa1q25NThaanz8vJrPW1thrpaEJAIQQR10n04xjxIxj/+GjNHZXvFz1+PtT0gy2GnEPBoBk0oabnMxvq3M3ufqUmungyEsMQ39aLNt4AcD4ydjHHuE+OZklHjPm7OyEfvIrikvR5FcUl6LJryguRZNfUVxKmQp+xph9ALIBFADIt9Z2+rX4y1s1F5N0nFx22X78d5/5J41lxb2eLVvS2H797hfayxP4mMEdP8nW2J7Xy73hdaLC6fEz/iVbW1t25ec1YfrbQhv/7yk0Nu+MdGjtPkjuuweAv734qtBycnhRKi9PFi7f+1y2Pi/euY4ezwqnTgWonQdkITEwiI+/2rJaTsyp3aA2jW3dvbXQ3vhghtAeGsn9DyLIeLM2Lbh/QWKSdEauF8lfC8yJObROKI3NOyuf38kzuFXmI/f80etyJX9eQGeUR7X/Wmstb/ZWFOWiRf/sVxSXUtbktwC+NcbEe8ZyCYwxDxhj1htj1h93WE9XFMX3lDX5e1hrrwDQH8DDxpieJQOstROttZ2stZ3Cwvn3IUVRfE+Zkt9ae8jzMxXAfBSN7VYUpQJw3gU/Y0x1AH7W2mzP730BvPRrxxQWFgrXVCdThkXEZZcZcQC8ZZdV9QHgm28+FFr1J2VbKwDUbSpNJA4eThXakb1y7hwAhEXJeffZ6dLhFgDaN5RGFi06N6exgaHyfLMzeMtuUpKcb9i5m5wbBwA/frdIaGz2Wzi5XwAQSByIt2/ZTWMzjmYKrekVTWnso6OHCs2pPfeXQ2JWLArypHFIpsPsu+PZspU4wKGCnkFeo2wlBgDa94wV2rAh3EU5+7RcdVkdx+dUloWyVPvrAJhvinqWKwH43Fr7TbmclaIovztlGdSZBKB9OZ6Loig+RJf6FMWlaPIrikvx6X7+tBPZ+Gyxt3vv4N5X0Vg2QsvJZZe1lTq17LLi3ty5/HrXkfFRK1etF1pohHR8BXgLav9Y3gH9/jxZbLuuW0cay0Z7ObV1ZqdLn4DevfiiDGuNDa5WTWh9Yvi3vTQyrqtRq2ga27ytPN8uTaQrMQDUCgwUGtsfDwDt6kcJjfkXsEImAPz8i2zpvn9AXxobRPwL0h0KiWyU2eVknBsAnM2X53a4OXc2Llm41P38iqL8Jpr8iuJSNPkVxaVo8iuKS9HkVxSX4tNqf1D1qujZxbtS/M4HfJbbXx6WbqU9YwfQWOayy4w4AN6yy6r6ABDbrJnQEkn76Jff/kCPP7pfur5O+ecHNHby3P8IbfSdf6Wx4ya+ILTnxkjTDgC4enAvof3hmoE0dtAd9wltdt4KobWMkY8LwJ2CJz77Po0NqiGNLOLJagMAjLjzBqGFVpcrAADw+berhJZxVDry5l7BW6cHdpMrISUdcs/x3oSZQluzeDGNXbRCvs73H+c2GP7EvXfPbmkGAshVD6dVDHpsqSMVRbmk0ORXFJeiya8oLkWTX1FcirHW+uzGIqMa2hFjnvHSgsOCaexl1WULa9fObWgsG6HV3KEdku3HP3aQ24sNGiCMiXB5PVkwzC8ooMcP6C89BV6d+ByNXfadHN00aggvzLG97IfJmCkAyC+U55Zz5iyNZa28kSEhQluyZQs9/rrWsmA38/sfaWztWrLg9+2cVTT2lWdHCy2gEq9VF5LX89IE6f7LzhUA4vbsEdoO4tILAMcPpQntniG8KF27hnQF3rhvH43tQLwdvt/BC9hXlXCp7tK5M9avX897n0ugn/yK4lI0+RXFpWjyK4pL0eRXFJfymx1+xpiPAQwEkGqtbePRagKYCSAawD4AQ6y1vOJUjOCQIPQfdLWXNmcyH0N01S3dhfbVvJU09kyuNDx0GqHFzDad9uOzzj1W3HPaS5+SKU0qn3j0XzR24GhZ3Dt6go/VSkqVRUtW6AKAZfNXC63HwCtp7IbVm4WWcUQ+rVEt5J55gO9vDwvlBd2d2/cJbfh9g2hsGtmPzzQAGP+8NGgd+/Iooc1fL30ZAKBTYzmaK78hL+jWqyv9Gsa/OZXGPvvXe4VW0sz2HJO+Xiq02pHcNHXCnC+9LqdmyNecE6X55J8MoF8JbSyA5dbaZgCWey4rilKB+M3kt9auBlDSo/hmAOemSE4BwN+yFUW5aDnf7/x1rLXn/n4+giIbb0rxcV2ZDmvRiqL4njIX/GxRl5Bjp1DxcV0hoXwksaIovud8k/+oMSYSADw/ZQVKUZSLmvPdz78QwHAA4zw/vyjNQblnzmL77v1eWse+V9DYFsTZdEYc3/t/85ibZOy/eCwbocVcdgG+H5+17LKqPsBbY8f+H9/fXpAvK8qzF8q99ADQ57quQvs+jrfcdr5eugXPeWc+jb16iGxnHnJrH6Gt3ZJIj+9G/A+efGkCjW3QsoHQlq/hFfjGLWW7q5Pz7QNjhwlt0sR5Qhv/4iP0+FXbtgkt6/RpGrt7a5LQWnZtSSK54/K2nftobLcY2Xr8xcJVNPZP9w72uvzx/8k2Yid+85PfGDMdwFoALYwxycaYkShK+j7GmF0AensuK4pSgfjNT35r7e0O/3VdOZ+Loig+RDv8FMWlaPIrikvxqYGnn78fqtbw3jO+Zs4aGtv5KVk8SkiQraoAEP1dtNCcCi/Z6XJsktMILWa2+e40OdrLqWWXFffGPS33pgPAsq1bhXaiFm/v/TlB7u2e/e6nNLbp5W2FdvpkLo1dPVs+F7knZbGrenB1evz2w4eFFhEdQWNP58jrrRnBl4JbEw+F6lWq0Nip0+TYs4ceHio09ngDQJso2br88XR5nQBQpZo8h61rpHcAAJy+tofQ/Cvxz95fkpOFdvNN19DYzQe8vQZyz3KvBoZ+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ+694aGRtheve700gJD+dilf7z6qNCOZctKPQA8OHSM0CZMf5vGtifOqO/P49Xc/j1lG+2CJbIiXq+ZrEYDvGU3siavaPduI52J2WgwAPh8hhwJddvQkpYLRTDTC9ZqCgAFhYVCa1u/vtCcTEYyyFirUOIIDAARpPX5hMNYrJlL5SpP3QZ8I2mjcGniwm4r89QpevzabXIlJaaZNPgAgGhyWyXHZ51jfZJsBf45jq841KglW3SH95Nj1wCgcgkX49iuXRGv7r2KovwamvyK4lI0+RXFpWjyK4pL8Wl7b3Sjupg09WUvLeEgnzuelStbUF9/4SMaO/OrT4Q2/t9TSCTQorOcy35dt440dvSdfxXa/K8mCs2pAMb24zu17LLiHhsNBgATFy0R2ot/4QXOGx6Q46P+MvRuGjvy8WekOLSvkJycc9kIrPGTZ9PYmpHSMblrG96S3aBRpNCa1eFtwzmkvXX0cDkibebs8fT4kM6ydfmyypVp7DbynK1YGkdjnxolN8fGREfT2DP5+UJ7bpx0JQaA554c6XW5kBRtndBPfkVxKZr8iuJSNPkVxaVo8iuKSymNh9/HxphUY8zWYtoLxphDxphNnn98KLmiKBctv9nea4zpCeAkgE+Lzep7AcBJay0vmTrQrkMHu3Cp9xyyTIeWzikfLRAaa3sEgOadZAV/9Wxu/BF7Y6zQese0o7Gsis8qtMt/+YUeX7O6rBwzIw4ASNkjjTDqt5SttQDwwA3XC+2jb5bR2PnvzBFar9ulIy8ArPtyndDe/uBvQnMy0li0caPQ/tilC41lZJMVHgB48P6XhdaqWysa26OXNGaJbdpEaImH5OMN8FWmI5l8haZXG7m64bQy8PbH8nm4rDpvsz6QeEBob417nMbuPXbM6/ItffsiYfPm8mnvdRjXpShKBacs3/nHGGO2eL4W6CgeRalgnG/yvwegCYAOAFIAvOYUWHxWX1pa2nnenKIo5c15Jb+19qi1tsBaWwjgQwCOX+yKz+qrVavW+Z6noijlzHm19xpjIotN6b0FAN+YXIKsUzlY+rN3USgnixd57h89WGivPM1HP3XoIR1quw/qRmOzM2RraiV/fxr73JhXhfbB1H8KrdChaMpGaDm57H446x2hObXssuLeff1609jXPpsrtMWT+XS1jr2uFFpqVpbQnEZl9WjRQmirEvlor7pkj30Vh2LZ+x/J9txAB0+Cn/bsEdqe1GMkktO9uSwevz/3axqbHi1fS+t37qaxrL3XqbW9Wt/uQmNty4B8HPz8Sv95/pvJ7xnXdQ2AMGNMMoDnAVxjjOmAoum8+wCMKvUtKopyUXC+47om/Q7noiiKD9EOP0VxKZr8iuJSNPkVxaX41MwjLLgGRvb3bi3dckC2MgLA59OlQ+3+JN4a26SOdHL924uyUg8ASUmbhJadLt1/AeDqwdIxNb9QOvIum89biTtfL1tN2ew8gBtkMCMOAJj12gyhsao+ADwx7I9Ce/x5vorw9stPCu2pR+8S2o87d9LjDXGuZS3OABCXKK8jrJZcAQCAiOBgoTlV+0OIWzBrR96ZmUmPL9kuCwB1G3HjkB82y7buNs250+9SMhuwQVgYjWUmIU5t+E1LvPYr/Q/Vfv3kVxSXosmvKC5Fk19RXIomv6K4FJ8W/M7m5+Ngic096xN30dghQ+We9Slv8f1DGaRYlpPD92B37ibbYHv34lsT/nDNQKENJK2XPQbKtlgAmPPOfKGdPsnbmdkILSeX3bFvvCE0p5ZdVtx7/UU5Cg0AbrhhtNC2JicLzamduVvTpkJ7+S3uohwSLot44WG84JdORmvVrsG9HbanpAjtm5nLhTb2yXvp8Wy8WIhD0XJJvPQvmP0pbwV+9fmHhZZ4mHsKNI+UbsWLl6+lsaOG3uh1+X8Zvqef/IriUjT5FcWlaPIrikvR5FcUl6LJryguxafV/oBKldCwREtjTAvprAoAc+dKw4oaNbgTUFhQkNDy8s7Q2B+/WyS01t2lCysADLrjPqEFk2rwhtWb6fFXD+kptNWz19DYAjJjjc7OA3fZZUYcAG/ZZVV9AFi06H2hfTRtnNAOpXM/1x1Hjght0B9kizQA7D56VGi1AuXzCPDH5tQZ/vyGk9fCiAf+ILQ95PYBoAWptB84fpzGBgbJVYC+g6+hsRv27pXHO7Qo7ye31+farjS2WkCA12U/0mLthH7yK4pL0eRXFJeiya8oLqU047rqG2NWGmO2GWN+Mcb8yaPXNMYsNcbs8vxU735FqUCUpuCXD+AJa+0GY0wQgHhjzFIAIwAst9aOM8aMBTAWwFO/dkWn8/LEXuXtDmOTeveX7rsxV/GxWqwF9b3PX3c8h5KwIh4AzM5bIbRI4jqbcSSDHj/kVjkWK/fkaRrbtj4ZzTW0L42t92BNoTGXXYDvx2ePF8CLe+z+Tly0hB6/aaUsfJ7J4YW52g1qC8325F4HcYvihJaVxu/vqiXS12DSV9OFNuvDhfT4KmSE1kt/4/60Cbv3Ce25P0unYQAYNGKE0Bq2akBj08nrKaV+OI3t3dG73TwzkxcyGaUZ15Vird3g+T0bQCKAegBuBnCucXsKgEGlvlVFUS44/9N3fmNMNIAYAHEA6hTz7j8CQNrpKIpy0VLq5DfGBAKYC+Axa63X31y2yGOIbigqPq4rXcd1KcpFQ6mS3xhTGUWJP81aO88jHzXGRHr+PxJAKju2+LiumjquS1EuGoyTMeB/A4pcGacASLfWPlZM/zeAtGIFv5rWWtlOVozW7drZWV9773d26tRq30AWQyZ/IwtwAODnL7uaThznBaHwKGma2CemPY2NI6OfqlSSNdKEDdxYtGaEXADxcxgN1rdTB6E57fe+slkzoTnNhWdmm0778WtUrSq0DcRv4YEbpNcCAJwmI6XGvvQfGrtzgxzj1eHqjjT2j0Nk4fR4djaNXb82QWhrv/xeaHPmvUWPXxAfL7Tv5/9AY09lSh+J5p3lyDIAeHLkUKG9NmUOjY1sIrsMX77vcRr7+TczvS7fddNN2JaQUKo2v9JU+7sDuAtAgjHmnPXtMwDGAZhljBkJYD+AIaW5QUVRLg5KM67rewBO7yTXle/pKIriK7TDT1Fciia/orgUTX5FcSk+3c9fNSAALevW9dJ+cBj9dIxUc4f06kFjWZWajV0C+B7qNIfKMRsD1iJCjm4KIrcPAN1IVX67QwU/IydHaNe15j4Ds+Nku2uPFrzKzEZoMZddgO/HZy27rKoPAJeV2FsOAIs3c6+Dzv06Cy3jKG+TnvmZdMTNz5dj0wAgtr90Yv4rqbQHVePeAXfcO1Zor41/gsbOXilXEYwfL4+Fh9UT2vwf+OoVY1OCvC0A6NLReyVkL2k5dkI/+RXFpWjyK4pL0eRXFJeiya8oLsWnBb+cM2ewcd8+L+3AMW6OGEuKUq+8O5XHXnuF0JjpIwBs37JbaI1aRdPYic9KQ8s7x8oRWmGhcvQUADz50gShRUTzWe+33SiNLsdPnk1jHx8+WGirEmW7LADUJKOmnEZoMbNNth/fqWWXFff6t+et07VrNxRax468bfjpN2RrKxtvBgDL16wX2ogJcpTZ1NUr6fEJP2wVmlML+ievvCe0I0eSaOzU5bJoWSeYv26Yv8RddzxNY4f9+SGvy++8xE1fGfrJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSfFrtvywgAJfX827v3XE4xSFakn82n+ohpKK98wB3qM04mim05m25wUZQDWnGUbuW1HZu30ePb9BSGpKczuHuvRHEJbdmpHTpdaIuOR4A4hJl+3RIOK8ysxFazGV38+oN9HjWssuq+gCQmrpfaIcPS+MQgBu7+Du00W5rJI0wKgVIo5PMtBP0+Oi2jYS2ab88VwBIStoktHr1mtNYPz/5OetU7a9epYrQTp3iLegh4d7Pu39l/lqm51TqSEVRLik0+RXFpWjyK4pLKcu4rheMMYeMMZs8/wb8/qerKEp5UZZxXQDwhrV2fGlv7ExeHvaVaOdNXMfbUtfWksWu6Da8eHSC7IVns9MBoOkVsm24S5MmNDa+u9xP/+2cVUIbfh8fVsRaTZmjL8DvQ9c2LWlsdm6u0Ko4uPeG1ZKFwPAwXhysFSj3uLMRWswjAOD78Z1adllxb/Nm3nJblfgE5OXz4m+XpvK5PHFjrNSO8YJf314yNi6Bv0bZaKxhD/K9/ympcmZFlZb8+fUjj2/vO/njGBxWw+uyf6XSF/xKY+CZAiDF83u2MebcuC5FUSowZRnXBQBjjDFbjDEf65ReRalYlGVc13sAmgDogKK/DF5zOO6/47oy0tPL4ZQVRSkPzntcl7X2qLW2wFpbCOBDANI8Dd7jukJrlr5pRVGU35fSVPsNgEkAEq21rxfTi7dS3QJAboRWFOWipTSz+noAWAMgAcA5h4xnANyOoj/5LYB9AEYVG9lNadW2rZ26cKGX1rKubMcEgBmr5Hy06ChuhHEsS87l27JazmwDgEdHSyfXWoGBNDY5XVZoI4JlpTztpJzZBgDr9+4VWut6vFb67Y9yRlwD0qoKAJ/9a6bQ3v/oORq7izjypp86RWNZW+ncqYuFdrfD6gZz2R14Kx/qxFp2WVUfAALIfMRateqSSOC6PsOENuaFe4WWkCjnMALA9nXbhfbi30fRWOYaPXPtOho7fdxnQsvK4l+DT52SLehvTOOzBT99x3ve34JZ/8Gx1EPlM6vvV8Z1yWdaUZQKg3b4KYpL0eRXFJeiya8oLsWn+/nPFhTgYIm1fjYSCwAqB8hTa1CrFo3df7h0+9ABoBopKrF2SgAIrS4Lgaz45FTwu7yuLEqxohoA1G0gH4dmdXiBs1W3VkJjY8ic9No1apBI7lKblSaLqccdxpuxEVpOLrtsP75Tyy4r7qWl8bFnR1MOCI0V5rLT+X3w85fnVcmft8wWkmJ51Sq8aMkoKMijelaWLDQ7kXHEO5/y8/gYM4Z+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ9W+wsLC3Eyx9uIYs7qH2lstSA5r2xZ3EYauyteGkO0JkYcAPDLoUNCa1c/isZ+/u0qod1/ozRVGP/8h/T4B8bKVtOp0xbR2MG39hFaztmzNLZHr05C+2kPb1cNIXPftqfwLuzwIGnmsWrJXKE1jZGGKAAQ21/u7WKGJgB32WVGHABv2WVVfQD47rsZQsvKfUFojVtH0+MDQ+QKz/7jx2hsIemMnzZuOo2985m7hDbntTkkkrPrgHzdAkBurnerdmGhVvsVRfkNNPkVxaVo8iuKS9HkVxSX8pv7+cuTjh072rVxcV5aKtmLD/BRRh999S2Nva13T6G98YEs/ABAVHNZ3IuK4i3GG+N+EVpMV1lIbBgWRo+fNHGe0B56WPoJALwNd/Rwvkd/2sxXhbYnlRelapDrffNNubccAEY88AehZZC9/68/9S49ft6Cd+R13vN3GstGaMUSl10AaNOysdBYyy4AZBFn457EJdfpdT95+SqhXdu+DY2dvmCZ0IzDGLG/jLhVaNsP8xblUDJ+rnl9OUYMADbt2eF1+Za+fZGweXOp9vPrJ7+iuBRNfkVxKZr8iuJSSmPgeZkx5idjzGbPuK4XPXojY0ycMWa3MWamMab0exkVRbnglKbD7wyAXtbakx4L7++NMYsBPI6icV0zjDHvAxiJIi9/Z4wRo55WJ0rDRAAYENNBaL27xtBYtkf/oZGDaWwmKWCdzuP7qnOvkLPWr2stC37z1/MutvEvPiK0ZVu5yTHzKpg5m09CSzh4kOqMnZnSDHLsk9LQEgD2HJW+CLM+XCi0OfO4mWRQNdkhOHU1H8GVmSbHZTmN0GJmm0778VnnHivuOY0ce+zZN4V2aw9eiKxSTXozFORxT4Lmza4Q2twVX9DYY8QvIeME3+PfpVNfr8t7dknTWCd+85PfFnHOraKy558F0AvAuf7EKQC4pauiKBclpR3a4W+M2QQgFcBSAHsAZFprz73NJUPn9ylKhaJUye+ZzNMBQBSKJvPw8aKE4uO6jh/ja9GKovie/6nab63NBLASwJUAQowx52oGUQDotqPi47rCwsPLdLKKopQfpan2hxtjQjy/VwXQB0Aiit4nHT0iAAALcklEQVQEzlXVhgPg1QtFUS5KSjOuqx2KCnr+KHqzmGWtfckY0xjADAA1AWwEMMxaK+1fi9G6XTs7fZH3fvY2UXwv/RmHCjzjMKloRwRzh9q95KvH2i2JNHZgN7k/nY2/qhvKp5MfOH5caC2Joy8ALInfJLT+nWWFGAC2JScLrXtzuTIB8PvbyOEvsOzTp4X2j1cnCe3Kgbz6vWSKbL+OasZLQdFtZbtqp5bNaOxHE2YLjbnsAkCzjvJxqB4s22U3r9pMj3/zH48JLYW8vgC+OrJpq/SWAICV0+Wqxw2jbqCxTaKk10HCNu7X8OMC77F23yz6BGlpKeU2rmsLALHGZq1NgsNkXkVRLn60w09RXIomv6K4FE1+RXEpPt3P37BpM/vUeO/W0LaXc9NGdl4nSUEKAJKTZeGlTQu5BxwAAsjopU6NeWxmTo7QZq/6XmhNGvKiVhY5361xDsXFG64SWrRDYe7rjbI4eOwg76Go20iO/LqK7G8HSl+g/NsL/6HHv/TcaKGxEWAAsGn/fqGlpPD7MPjq7kJzGqHFzDaDLpN7/8OCpFEnAGSflucbGRJCY9+d+5XQ7h5wHY0tKCwU2gczvqSx7TtdLrSqlaX/AQDENvU2U+0WG4v4+Hjdz68oijOa/IriUjT5FcWlaPIrikvR5FcUl+LTcV3BgdUxoHtnL23mlyto7I3X9xDamu/iaWznbu2ElpjExzllHEkXWpCDE+x7E2YKrU5D6fRbr25tevzurUlCYwYQAK/sbyOjxQCgVxtpKJIefZJEAj9slg7ES+L52LPAINkGm7B7n9BOZfLbmr1SroR88gr3d0lKkisWmZly1QYA7s2VBiyFDqtUbIQWc9l1eh66dJKPLavqA8CYPw4UWvzoF2ls72G9hTbqthtpbBBxXH5m3Ac09kgvbwMUtkLlhH7yK4pL0eRXFJeiya8oLkWTX1Fcik8LfoyqgbzYxsYxpR3iDqapmdL1tV4kb43NOyN9AtKJoy8ArFm8WGiLVswS2vg3p9LjW3aVbbRb1yTQWD/iJrtiaRyJBFqNkGO11u/cTWPbNJety7M//ZrG9h18jdCe+7McGXbX49KVGOCjqo4ckUVPAKhXT+67H/bgEzR25tp1QqtahTvFTxs3XWidB8id504uu2w/vlPLLivuffL+8zR2wD39hJboMK4rL1+eW2Uy3gwA5r+9wOtyRir3HmDoJ7+iuBRNfkVxKZr8iuJSNPkVxaWUZVbfZGPMXmPMJs8/OV9LUZSLltK49xoA1YvP6gPwJwCjAXxlrZ3zq1dQjA4xMXbpd995aZUr8QWHnSkpQmtbvz6NZZVyp3l29WrWFBqbjQYAtWtIB2CmZeXm0uNZm+bpvLM0Nm63dGd1Mt34v/emCe2pUbfT2KVkNuD17WQ7NABs2CvnvC2cJ11nX/7rffT48DBpajJ1OV9Z8POTnzspqXw1Z95b0r3XiTufuUtot3btKjQ2Ow8AYq6QbbgfTXmJxjJTlYDK/PXMzuGDL7+hsSdPyNWnMUNvorG9e93hdXnjxmXIzk4vN/deC4DN6lMUpQJzXrP6rLXnFqBfMcZsMca8YYyhOyWKj+tKS+Pv7Iqi+J7zmtVnjGkD4GkUzezrjKLBHU85HPvfcV21yBhqRVEuDOc7q6+ftTbFM777DIBPoAM8FKVCUZqCXziAPGttpmdW37cAXgUQb61N8RQE3wBw2lo79teuKyq6sR3z7D+9tBv7yX37AHe+3e8w5fenxT8LLbQOH6E1bMj18rxq8r9I9hM32xNkv7STQ+22nfuE5l+Jv9+mH8kQ2gND5X5xAPhw1iKh9bq6E40NcHB9ZfiTwukPm6QfwInjWfT4rrFthVYnOJjGMr2KQ/G3X5+7hVZQwMe5RUREC+3FN/8stLyCAnr8xl2yHTn1QCqNZfvxnVp2E7bLgu6oG2XLLwBERclC7+fLFpBIIOmQd2H8hQdHYe+OHeVT8AMQCWCKMab4rL6vjDErPG8MBsAmFFX/FUWpIJRlVl+v3+WMFEXxCdrhpyguRZNfUVyKJr+iuBSfmnn4+fuhWo1qXppT1XXVSlnBb96hKYnkJhJ5Z3k1mM1iO5vPY/3J9XZo2FBok75eSo/vFiOdYH9JTqax+XnycThDTB0A4ECidCau1lfOswO4A3DzyEgay1Y32CpEVIsoejwjuFo1qlevInvCWJs2AJw6JQ0qsrJK3zAWWl26Eju1dDeJko9NZG2+GsTat5kRB8BbdllVHwCSk7cLzelxPJnpfb0FBXImoBP6ya8oLkWTX1Fciia/orgUTX5FcSm/2d5bnnTq1MmuX7/eS8twcM5lBaHJ3yynsf2vlK2tk2fwfeShdUKE1rS5LOIBwJ7d0hOgzeXSDTfDYURSwrptQrv5pmtobNPacuTXc+M+pLGv/v0hoeWc5T4BB0gRb/HytTS2z7Vyz/n6ROlm+69Hn6bHb0qQ47ruuoPHnjolC26975St1wDQpXMbqjN2HZAFzkdvkW7HGSd4wXDiF3KPPXvOAeDr+auE5uSy+9xjI4QWt0e2/AK8uNe+QQMa++Mu7+fn3ltuQWJCQqnae/WTX1Fciia/orgUTX5FcSma/IriUjT5FcWl+LTa3z4mxi5ZtcpL2+FgfsCq/Q3DwmhsJqm2hxOXXScyHVYcdh45IrTebWTlecKcL+nxwwf2EdrmA7I1FwBim8rW5VyHCn5qljTTCCStpgAQSirHZx1aqqsFyPl3EXXkSsg3P62mx4+4aYTQhv1ZrkwAQEi4XHUJDuPP2fJpK4SWcSSdxubmyufyrY/lTL1b+90hNABo1VaueHw8SR4PAAvi44VWcnbeOQ4nS5OQkS/wx6Zkyy4AXNGuBY3t1qyZ0Ky1Wu1XFMUZTX5FcSma/IriUjT5FcWl+LTgZ4w5BmC/52IYANl7WvHR+1XxuJTuW0NrbXhpAn2a/F43bMx6ay33m67A6P2qeFzK9+3X0D/7FcWlaPIriku5kMk/8QLe9u+J3q+Kx6V83xy5YN/5FUW5sOif/YriUnye/MaYfsaYHcaY3caYXx3sebFjjPnYGJNqjNlaTKtpjFlqjNnl+cknhl7EGGPqG2NWGmO2GWN+Mcb8yaNX6PtmjLnMGPOTMWaz53696NEbGWPiPK/JmcYYucnhEsSnye8Z9jkBQH8ArQDcboxp5ctzKGcmAyg5anUsgOXW2mYAlnsuVzTyATxhrW0FIBbAw57nqaLftzMAellr2wPoAKCfMSYWRVOn37DWNgWQAWDkBTxHn+HrT/4uAHZba5OstWcBzABws4/Podyw1q4GUHJ72c0Apnh+nwJgkE9Pqhyw1qZYazd4fs8GkAigHir4fbNFnPRcrOz5ZwH0AjDHo1e4+3W++Dr56wEo7oqZ7NEuJepYa88NTT8CoM6FPJmyYoyJRtGU5jhcAvfNGONvjNkEIBXAUgB7AGRaa8+N2rkUX5MULfj9jtiipZQKu5xijAkEMBfAY9ZaLxOBinrfrLUF1toOAKJQ9Jcon5nlAnyd/IcA1C92OcqjXUocNcZEAoDnZ+oFPp/zwhhTGUWJP81aO88jXxL3DQCstZkAVgK4EkCIMebc3MpL8TVJ8XXy/wygmae6GgDgNgALfXwOvzcLAQz3/D4cwBcX8FzOC2OMATAJQKK19vVi/1Wh75sxJtwYE+L5vSqAPiiqZ6wEMNgTVuHu1/ni8yYfY8wAAG8C8AfwsbX2FZ+eQDlijJkO4BoU7Qo7CuB5AAsAzALQAEU7GIdYa7nn1EWKMaYHgDUAEgCcG/v6DIq+91fY+2aMaYeigp4/ij74ZllrXzLGNEZR8bkmgI0Ahllr5TjnSwzt8FMUl6IFP0VxKZr8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4lP8Hv0Or98j6qc0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 1.0\n", + "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" + ] + } + ], + "source": [ + "print(\"kernel matrix during the training:\")\n", + "kernel_matrix = result['kernel_matrix_training']\n", + "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", + "plt.show()\n", + "\n", + "print(\"testing success ratio: \", result['testing_accuracy'])\n", + "print(\"predicted classes:\", result['predicted_classes'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### part II: Programming way.\n", + "We construct the svm instance directly from the classes. The programming way offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. We will demonstrate this advantage soon." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we create the svm in the programming way.\n", + "- We build the svm instance by instantiating the class QSVM. \n", + "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "backend = Aer.get_backend('qasm_simulator')\n", + "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2, entangler_map=[[0, 1]])\n", + "svm = QSVM(feature_map, training_input, test_input, None)# the data for prediction can be fed later.\n", + "svm.random_seed = random_seed\n", + "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)\n", + "result = svm.run(quantum_instance)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us check the result." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kernel matrix during the training:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYlWX6x78PKKaCgIKCouJu7uRGalampmZlM6YtlpaVVtY0NVPWNK3T/GzG9pzKsjQz9yXLzFzTSilxw8QVNxRFWQQFleX5/cFxLg739y1G6Ci+9+e6vOB8vd9z3rPc53Du536+t7HWQlEU9+F3oU9AUZQLgya/orgUTX5FcSma/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUzJb4zpZ4zZYYzZbYwZW14npSjK74853w4/Y4w/gJ0A+gBIBvAzgNuttdt+5RhxY7UjomhsRESY0JzOdffOJKFd3qo5jS0sLBRa2olsGhtUvarQ0tNPCC04JIgen3vmrND8/Pn7bebRTKFFN6pLYwvIfcg6lUNjw4JrCO1sfj6NDahUSWin8/KE5vQ8VA0IEFrOmTM09jISe4bcltPtnS0ooLHs+Q2tXl0GGkOPP31WPmcnc3JpbHAguV4H/MjtHc+QryWAv0Zqh4bQ2LwSj8PBAweQnpbG71wJ5LNderoA2G2tTQIAY8wMADcDcEx+xtDhf6b6M0+PFFq+wxN+43W3Cm1d3Lc09hR5MX62eAWN7dmlvdCmT/taaP0HXU2P3757v9Cq1qhGYxe8tUBok6a+TGMzT50S2tKfN9LYkf37CO1gWhqNbRgm33C3HTokNKfkb1lXvllt3LePxl5eT8buO3acxrI3oIPp6TSWJeqQK2OFZhySP/HwYaF9H59AYwd070x1RvUqVYQ2aZZ8LQFANfIaeXTITTT2yAnvN5Drr7mm1OdUlj/76wE4WOxyskdTFKUCUJZP/lJhjHkAwAO/9+0oivK/UZbkPwSgfrHLUR7NC2vtRAATAf6dX1GUC0NZkv9nAM2MMY1QlPS3Abjj1w6oHRElvuO/8+oTNPaRx+RVLf9pE40tqj16w767AUCDWrWENrj3VTT2nQ9mCS04LFhocybz724d+14htDVz1tDYwNBAoSUcPEgigaDLLhNaThYvSm05cEBo6xN30diYFk2Etv2QfBybRUbQ43/YuVNoBxy+x+84nCK0xHWJNPbpR4YJrUmdOjR2zuofhZaalSW01Ynb6fG3dbtSaCdyeDF15peyVlQ1UBaJAeDugb2FdmO/HjS2ZBEPADJInQcAdpR4nbP6iBPnnfzW2nxjzBgASwD4A/jYWvvL+V6foii+pUzf+a21XwPgH3uKolzUaIeforgUTX5FcSma/IriUs67vfd8aB8TY5esWuWlZefyKnXzyEihLdmyhcdGyOrzknUbaGz6EdkZVieaV45v6dZVaFMWLhVavcbyXAGgBel4q+TH329ZBT/L4bH56IO5Qrt/9GAa+/n0xUIbMvR6Gjt37jKh9e7fTWhdGjemxx/Llm3StWvI9mIn1u7iqxC7D8gVh8oBvFxVKaCy0G6Nlc8j6/QEgCqkxfnnJNk+DgBhQbKtu0ZVXu0/nJEhtAKH3Fu18mehPXGP7GIF5GrO3TffjG0JCaVq79VPfkVxKZr8iuJSNPkVxaVo8iuKS/Fpwa9dhw726xXeLZFfff8TjW3cSG4QvL5dOxr7ybKVQnvtsedpbECALKz9+9PXaeyfbntIaBPnTxLaV/Pk7QPA9jjZQpqQsJrGzvh2ttBef+EjGtukg2zD3b2BF8v2J+2Q2n6+67pGDdn6/Mqnbwnt6GHesjukl2xXffND2SINAPlnpadAdJuGNLZxQ/laYG3aALAsjm9tLknvrjFUj6pZU2grt/HHa2OcbGhNO8S3S7/y7GihfREfT2Mrk6Jj2lG+hfmWnt7tyH2uvhqbNm7Ugp+iKM5o8iuKS9HkVxSXosmvKC5Fk19RXMrvbuNVnN07k4TZJjPiAIB5S6YJjVX1AeCe3tcKbfV2btbQMTpaaHuPHaOxT074h9DiN8vrPZPLW0VvHiNNF6O/k7cPAA8OHSO0mV99QmN/2CFNMzr0aEtjmelFxsmTNJa1q25NThaanz8vJrPW1thrpaEJAIQQR10n04xjxIxj/+GjNHZXvFz1+PtT0gy2GnEPBoBk0oabnMxvq3M3ufqUmungyEsMQ39aLNt4AcD4ydjHHuE+OZklHjPm7OyEfvIrikvR5FcUl6LJryguRZNfUVxKmQp+xph9ALIBFADIt9Z2+rX4y1s1F5N0nFx22X78d5/5J41lxb2eLVvS2H797hfayxP4mMEdP8nW2J7Xy73hdaLC6fEz/iVbW1t25ec1YfrbQhv/7yk0Nu+MdGjtPkjuuweAv734qtBycnhRKi9PFi7f+1y2Pi/euY4ezwqnTgWonQdkITEwiI+/2rJaTsyp3aA2jW3dvbXQ3vhghtAeGsn9DyLIeLM2Lbh/QWKSdEauF8lfC8yJObROKI3NOyuf38kzuFXmI/f80etyJX9eQGeUR7X/Wmstb/ZWFOWiRf/sVxSXUtbktwC+NcbEe8ZyCYwxDxhj1htj1h93WE9XFMX3lDX5e1hrrwDQH8DDxpieJQOstROttZ2stZ3Cwvn3IUVRfE+Zkt9ae8jzMxXAfBSN7VYUpQJw3gU/Y0x1AH7W2mzP730BvPRrxxQWFgrXVCdThkXEZZcZcQC8ZZdV9QHgm28+FFr1J2VbKwDUbSpNJA4eThXakb1y7hwAhEXJeffZ6dLhFgDaN5RGFi06N6exgaHyfLMzeMtuUpKcb9i5m5wbBwA/frdIaGz2Wzi5XwAQSByIt2/ZTWMzjmYKrekVTWnso6OHCs2pPfeXQ2JWLArypHFIpsPsu+PZspU4wKGCnkFeo2wlBgDa94wV2rAh3EU5+7RcdVkdx+dUloWyVPvrAJhvinqWKwH43Fr7TbmclaIovztlGdSZBKB9OZ6Loig+RJf6FMWlaPIrikvx6X7+tBPZ+Gyxt3vv4N5X0Vg2QsvJZZe1lTq17LLi3ty5/HrXkfFRK1etF1pohHR8BXgLav9Y3gH9/jxZbLuuW0cay0Z7ObV1ZqdLn4DevfiiDGuNDa5WTWh9Yvi3vTQyrqtRq2ga27ytPN8uTaQrMQDUCgwUGtsfDwDt6kcJjfkXsEImAPz8i2zpvn9AXxobRPwL0h0KiWyU2eVknBsAnM2X53a4OXc2Llm41P38iqL8Jpr8iuJSNPkVxaVo8iuKS9HkVxSX4tNqf1D1qujZxbtS/M4HfJbbXx6WbqU9YwfQWOayy4w4AN6yy6r6ABDbrJnQEkn76Jff/kCPP7pfur5O+ecHNHby3P8IbfSdf6Wx4ya+ILTnxkjTDgC4enAvof3hmoE0dtAd9wltdt4KobWMkY8LwJ2CJz77Po0NqiGNLOLJagMAjLjzBqGFVpcrAADw+berhJZxVDry5l7BW6cHdpMrISUdcs/x3oSZQluzeDGNXbRCvs73H+c2GP7EvXfPbmkGAshVD6dVDHpsqSMVRbmk0ORXFJeiya8oLkWTX1FcirHW+uzGIqMa2hFjnvHSgsOCaexl1WULa9fObWgsG6HV3KEdku3HP3aQ24sNGiCMiXB5PVkwzC8ooMcP6C89BV6d+ByNXfadHN00aggvzLG97IfJmCkAyC+U55Zz5iyNZa28kSEhQluyZQs9/rrWsmA38/sfaWztWrLg9+2cVTT2lWdHCy2gEq9VF5LX89IE6f7LzhUA4vbsEdoO4tILAMcPpQntniG8KF27hnQF3rhvH43tQLwdvt/BC9hXlXCp7tK5M9avX897n0ugn/yK4lI0+RXFpWjyK4pL0eRXFJfymx1+xpiPAQwEkGqtbePRagKYCSAawD4AQ6y1vOJUjOCQIPQfdLWXNmcyH0N01S3dhfbVvJU09kyuNDx0GqHFzDad9uOzzj1W3HPaS5+SKU0qn3j0XzR24GhZ3Dt6go/VSkqVRUtW6AKAZfNXC63HwCtp7IbVm4WWcUQ+rVEt5J55gO9vDwvlBd2d2/cJbfh9g2hsGtmPzzQAGP+8NGgd+/Iooc1fL30ZAKBTYzmaK78hL+jWqyv9Gsa/OZXGPvvXe4VW0sz2HJO+Xiq02pHcNHXCnC+9LqdmyNecE6X55J8MoF8JbSyA5dbaZgCWey4rilKB+M3kt9auBlDSo/hmAOemSE4BwN+yFUW5aDnf7/x1rLXn/n4+giIbb0rxcV2ZDmvRiqL4njIX/GxRl5Bjp1DxcV0hoXwksaIovud8k/+oMSYSADw/ZQVKUZSLmvPdz78QwHAA4zw/vyjNQblnzmL77v1eWse+V9DYFsTZdEYc3/t/85ibZOy/eCwbocVcdgG+H5+17LKqPsBbY8f+H9/fXpAvK8qzF8q99ADQ57quQvs+jrfcdr5eugXPeWc+jb16iGxnHnJrH6Gt3ZJIj+9G/A+efGkCjW3QsoHQlq/hFfjGLWW7q5Pz7QNjhwlt0sR5Qhv/4iP0+FXbtgkt6/RpGrt7a5LQWnZtSSK54/K2nftobLcY2Xr8xcJVNPZP9w72uvzx/8k2Yid+85PfGDMdwFoALYwxycaYkShK+j7GmF0AensuK4pSgfjNT35r7e0O/3VdOZ+Loig+RDv8FMWlaPIrikvxqYGnn78fqtbw3jO+Zs4aGtv5KVk8SkiQraoAEP1dtNCcCi/Z6XJsktMILWa2+e40OdrLqWWXFffGPS33pgPAsq1bhXaiFm/v/TlB7u2e/e6nNLbp5W2FdvpkLo1dPVs+F7knZbGrenB1evz2w4eFFhEdQWNP58jrrRnBl4JbEw+F6lWq0Nip0+TYs4ceHio09ngDQJso2br88XR5nQBQpZo8h61rpHcAAJy+tofQ/Cvxz95fkpOFdvNN19DYzQe8vQZyz3KvBoZ+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ+694aGRtheve700gJD+dilf7z6qNCOZctKPQA8OHSM0CZMf5vGtifOqO/P49Xc/j1lG+2CJbIiXq+ZrEYDvGU3siavaPduI52J2WgwAPh8hhwJddvQkpYLRTDTC9ZqCgAFhYVCa1u/vtCcTEYyyFirUOIIDAARpPX5hMNYrJlL5SpP3QZ8I2mjcGniwm4r89QpevzabXIlJaaZNPgAgGhyWyXHZ51jfZJsBf45jq841KglW3SH95Nj1wCgcgkX49iuXRGv7r2KovwamvyK4lI0+RXFpWjyK4pL8Wl7b3Sjupg09WUvLeEgnzuelStbUF9/4SMaO/OrT4Q2/t9TSCTQorOcy35dt440dvSdfxXa/K8mCs2pAMb24zu17LLiHhsNBgATFy0R2ot/4QXOGx6Q46P+MvRuGjvy8WekOLSvkJycc9kIrPGTZ9PYmpHSMblrG96S3aBRpNCa1eFtwzmkvXX0cDkibebs8fT4kM6ydfmyypVp7DbynK1YGkdjnxolN8fGREfT2DP5+UJ7bpx0JQaA554c6XW5kBRtndBPfkVxKZr8iuJSNPkVxaVo8iuKSymNh9/HxphUY8zWYtoLxphDxphNnn98KLmiKBctv9nea4zpCeAkgE+Lzep7AcBJay0vmTrQrkMHu3Cp9xyyTIeWzikfLRAaa3sEgOadZAV/9Wxu/BF7Y6zQese0o7Gsis8qtMt/+YUeX7O6rBwzIw4ASNkjjTDqt5SttQDwwA3XC+2jb5bR2PnvzBFar9ulIy8ArPtyndDe/uBvQnMy0li0caPQ/tilC41lZJMVHgB48P6XhdaqWysa26OXNGaJbdpEaImH5OMN8FWmI5l8haZXG7m64bQy8PbH8nm4rDpvsz6QeEBob417nMbuPXbM6/ItffsiYfPm8mnvdRjXpShKBacs3/nHGGO2eL4W6CgeRalgnG/yvwegCYAOAFIAvOYUWHxWX1pa2nnenKIo5c15Jb+19qi1tsBaWwjgQwCOX+yKz+qrVavW+Z6noijlzHm19xpjIotN6b0FAN+YXIKsUzlY+rN3USgnixd57h89WGivPM1HP3XoIR1quw/qRmOzM2RraiV/fxr73JhXhfbB1H8KrdChaMpGaDm57H446x2hObXssuLeff1609jXPpsrtMWT+XS1jr2uFFpqVpbQnEZl9WjRQmirEvlor7pkj30Vh2LZ+x/J9txAB0+Cn/bsEdqe1GMkktO9uSwevz/3axqbHi1fS+t37qaxrL3XqbW9Wt/uQmNty4B8HPz8Sv95/pvJ7xnXdQ2AMGNMMoDnAVxjjOmAoum8+wCMKvUtKopyUXC+47om/Q7noiiKD9EOP0VxKZr8iuJSNPkVxaX41MwjLLgGRvb3bi3dckC2MgLA59OlQ+3+JN4a26SOdHL924uyUg8ASUmbhJadLt1/AeDqwdIxNb9QOvIum89biTtfL1tN2ew8gBtkMCMOAJj12gyhsao+ADwx7I9Ce/x5vorw9stPCu2pR+8S2o87d9LjDXGuZS3OABCXKK8jrJZcAQCAiOBgoTlV+0OIWzBrR96ZmUmPL9kuCwB1G3HjkB82y7buNs250+9SMhuwQVgYjWUmIU5t+E1LvPYr/Q/Vfv3kVxSXosmvKC5Fk19RXIomv6K4FJ8W/M7m5+Ngic096xN30dghQ+We9Slv8f1DGaRYlpPD92B37ibbYHv34lsT/nDNQKENJK2XPQbKtlgAmPPOfKGdPsnbmdkILSeX3bFvvCE0p5ZdVtx7/UU5Cg0AbrhhtNC2JicLzamduVvTpkJ7+S3uohwSLot44WG84JdORmvVrsG9HbanpAjtm5nLhTb2yXvp8Wy8WIhD0XJJvPQvmP0pbwV+9fmHhZZ4mHsKNI+UbsWLl6+lsaOG3uh1+X8Zvqef/IriUjT5FcWlaPIrikvR5FcUl6LJryguxafV/oBKldCwREtjTAvprAoAc+dKw4oaNbgTUFhQkNDy8s7Q2B+/WyS01t2lCysADLrjPqEFk2rwhtWb6fFXD+kptNWz19DYAjJjjc7OA3fZZUYcAG/ZZVV9AFi06H2hfTRtnNAOpXM/1x1Hjght0B9kizQA7D56VGi1AuXzCPDH5tQZ/vyGk9fCiAf+ILQ95PYBoAWptB84fpzGBgbJVYC+g6+hsRv27pXHO7Qo7ye31+farjS2WkCA12U/0mLthH7yK4pL0eRXFJeiya8oLqU047rqG2NWGmO2GWN+Mcb8yaPXNMYsNcbs8vxU735FqUCUpuCXD+AJa+0GY0wQgHhjzFIAIwAst9aOM8aMBTAWwFO/dkWn8/LEXuXtDmOTeveX7rsxV/GxWqwF9b3PX3c8h5KwIh4AzM5bIbRI4jqbcSSDHj/kVjkWK/fkaRrbtj4ZzTW0L42t92BNoTGXXYDvx2ePF8CLe+z+Tly0hB6/aaUsfJ7J4YW52g1qC8325F4HcYvihJaVxu/vqiXS12DSV9OFNuvDhfT4KmSE1kt/4/60Cbv3Ce25P0unYQAYNGKE0Bq2akBj08nrKaV+OI3t3dG73TwzkxcyGaUZ15Vird3g+T0bQCKAegBuBnCucXsKgEGlvlVFUS44/9N3fmNMNIAYAHEA6hTz7j8CQNrpKIpy0VLq5DfGBAKYC+Axa63X31y2yGOIbigqPq4rXcd1KcpFQ6mS3xhTGUWJP81aO88jHzXGRHr+PxJAKju2+LiumjquS1EuGoyTMeB/A4pcGacASLfWPlZM/zeAtGIFv5rWWtlOVozW7drZWV9773d26tRq30AWQyZ/IwtwAODnL7uaThznBaHwKGma2CemPY2NI6OfqlSSNdKEDdxYtGaEXADxcxgN1rdTB6E57fe+slkzoTnNhWdmm0778WtUrSq0DcRv4YEbpNcCAJwmI6XGvvQfGrtzgxzj1eHqjjT2j0Nk4fR4djaNXb82QWhrv/xeaHPmvUWPXxAfL7Tv5/9AY09lSh+J5p3lyDIAeHLkUKG9NmUOjY1sIrsMX77vcRr7+TczvS7fddNN2JaQUKo2v9JU+7sDuAtAgjHmnPXtMwDGAZhljBkJYD+AIaW5QUVRLg5KM67rewBO7yTXle/pKIriK7TDT1Fciia/orgUTX5FcSk+3c9fNSAALevW9dJ+cBj9dIxUc4f06kFjWZWajV0C+B7qNIfKMRsD1iJCjm4KIrcPAN1IVX67QwU/IydHaNe15j4Ds+Nku2uPFrzKzEZoMZddgO/HZy27rKoPAJeV2FsOAIs3c6+Dzv06Cy3jKG+TnvmZdMTNz5dj0wAgtr90Yv4rqbQHVePeAXfcO1Zor41/gsbOXilXEYwfL4+Fh9UT2vwf+OoVY1OCvC0A6NLReyVkL2k5dkI/+RXFpWjyK4pL0eRXFJeiya8oLsWnBb+cM2ewcd8+L+3AMW6OGEuKUq+8O5XHXnuF0JjpIwBs37JbaI1aRdPYic9KQ8s7x8oRWmGhcvQUADz50gShRUTzWe+33SiNLsdPnk1jHx8+WGirEmW7LADUJKOmnEZoMbNNth/fqWWXFff6t+et07VrNxRax468bfjpN2RrKxtvBgDL16wX2ogJcpTZ1NUr6fEJP2wVmlML+ievvCe0I0eSaOzU5bJoWSeYv26Yv8RddzxNY4f9+SGvy++8xE1fGfrJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSfFrtvywgAJfX827v3XE4xSFakn82n+ohpKK98wB3qM04mim05m25wUZQDWnGUbuW1HZu30ePb9BSGpKczuHuvRHEJbdmpHTpdaIuOR4A4hJl+3RIOK8ysxFazGV38+oN9HjWssuq+gCQmrpfaIcPS+MQgBu7+Du00W5rJI0wKgVIo5PMtBP0+Oi2jYS2ab88VwBIStoktHr1mtNYPz/5OetU7a9epYrQTp3iLegh4d7Pu39l/lqm51TqSEVRLik0+RXFpWjyK4pLKcu4rheMMYeMMZs8/wb8/qerKEp5UZZxXQDwhrV2fGlv7ExeHvaVaOdNXMfbUtfWksWu6Da8eHSC7IVns9MBoOkVsm24S5MmNDa+u9xP/+2cVUIbfh8fVsRaTZmjL8DvQ9c2LWlsdm6u0Ko4uPeG1ZKFwPAwXhysFSj3uLMRWswjAOD78Z1adllxb/Nm3nJblfgE5OXz4m+XpvK5PHFjrNSO8YJf314yNi6Bv0bZaKxhD/K9/ympcmZFlZb8+fUjj2/vO/njGBxWw+uyf6XSF/xKY+CZAiDF83u2MebcuC5FUSowZRnXBQBjjDFbjDEf65ReRalYlGVc13sAmgDogKK/DF5zOO6/47oy0tPL4ZQVRSkPzntcl7X2qLW2wFpbCOBDANI8Dd7jukJrlr5pRVGU35fSVPsNgEkAEq21rxfTi7dS3QJAboRWFOWipTSz+noAWAMgAcA5h4xnANyOoj/5LYB9AEYVG9lNadW2rZ26cKGX1rKubMcEgBmr5Hy06ChuhHEsS87l27JazmwDgEdHSyfXWoGBNDY5XVZoI4JlpTztpJzZBgDr9+4VWut6vFb67Y9yRlwD0qoKAJ/9a6bQ3v/oORq7izjypp86RWNZW+ncqYuFdrfD6gZz2R14Kx/qxFp2WVUfAALIfMRateqSSOC6PsOENuaFe4WWkCjnMALA9nXbhfbi30fRWOYaPXPtOho7fdxnQsvK4l+DT52SLehvTOOzBT99x3ve34JZ/8Gx1EPlM6vvV8Z1yWdaUZQKg3b4KYpL0eRXFJeiya8oLsWn+/nPFhTgYIm1fjYSCwAqB8hTa1CrFo3df7h0+9ABoBopKrF2SgAIrS4Lgaz45FTwu7yuLEqxohoA1G0gH4dmdXiBs1W3VkJjY8ic9No1apBI7lKblSaLqccdxpuxEVpOLrtsP75Tyy4r7qWl8bFnR1MOCI0V5rLT+X3w85fnVcmft8wWkmJ51Sq8aMkoKMijelaWLDQ7kXHEO5/y8/gYM4Z+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ9W+wsLC3Eyx9uIYs7qH2lstSA5r2xZ3EYauyteGkO0JkYcAPDLoUNCa1c/isZ+/u0qod1/ozRVGP/8h/T4B8bKVtOp0xbR2MG39hFaztmzNLZHr05C+2kPb1cNIXPftqfwLuzwIGnmsWrJXKE1jZGGKAAQ21/u7WKGJgB32WVGHABv2WVVfQD47rsZQsvKfUFojVtH0+MDQ+QKz/7jx2hsIemMnzZuOo2985m7hDbntTkkkrPrgHzdAkBurnerdmGhVvsVRfkNNPkVxaVo8iuKS9HkVxSX8pv7+cuTjh072rVxcV5aKtmLD/BRRh999S2Nva13T6G98YEs/ABAVHNZ3IuK4i3GG+N+EVpMV1lIbBgWRo+fNHGe0B56WPoJALwNd/Rwvkd/2sxXhbYnlRelapDrffNNubccAEY88AehZZC9/68/9S49ft6Cd+R13vN3GstGaMUSl10AaNOysdBYyy4AZBFn457EJdfpdT95+SqhXdu+DY2dvmCZ0IzDGLG/jLhVaNsP8xblUDJ+rnl9OUYMADbt2eF1+Za+fZGweXOp9vPrJ7+iuBRNfkVxKZr8iuJSSmPgeZkx5idjzGbPuK4XPXojY0ycMWa3MWamMab0exkVRbnglKbD7wyAXtbakx4L7++NMYsBPI6icV0zjDHvAxiJIi9/Z4wRo55WJ0rDRAAYENNBaL27xtBYtkf/oZGDaWwmKWCdzuP7qnOvkLPWr2stC37z1/MutvEvPiK0ZVu5yTHzKpg5m09CSzh4kOqMnZnSDHLsk9LQEgD2HJW+CLM+XCi0OfO4mWRQNdkhOHU1H8GVmSbHZTmN0GJmm0778VnnHivuOY0ce+zZN4V2aw9eiKxSTXozFORxT4Lmza4Q2twVX9DYY8QvIeME3+PfpVNfr8t7dknTWCd+85PfFnHOraKy558F0AvAuf7EKQC4pauiKBclpR3a4W+M2QQgFcBSAHsAZFprz73NJUPn9ylKhaJUye+ZzNMBQBSKJvPw8aKE4uO6jh/ja9GKovie/6nab63NBLASwJUAQowx52oGUQDotqPi47rCwsPLdLKKopQfpan2hxtjQjy/VwXQB0Aiit4nHT0iAAALcklEQVQEzlXVhgPg1QtFUS5KSjOuqx2KCnr+KHqzmGWtfckY0xjADAA1AWwEMMxaK+1fi9G6XTs7fZH3fvY2UXwv/RmHCjzjMKloRwRzh9q95KvH2i2JNHZgN7k/nY2/qhvKp5MfOH5caC2Joy8ALInfJLT+nWWFGAC2JScLrXtzuTIB8PvbyOEvsOzTp4X2j1cnCe3Kgbz6vWSKbL+OasZLQdFtZbtqp5bNaOxHE2YLjbnsAkCzjvJxqB4s22U3r9pMj3/zH48JLYW8vgC+OrJpq/SWAICV0+Wqxw2jbqCxTaKk10HCNu7X8OMC77F23yz6BGlpKeU2rmsLALHGZq1NgsNkXkVRLn60w09RXIomv6K4FE1+RXEpPt3P37BpM/vUeO/W0LaXc9NGdl4nSUEKAJKTZeGlTQu5BxwAAsjopU6NeWxmTo7QZq/6XmhNGvKiVhY5361xDsXFG64SWrRDYe7rjbI4eOwg76Go20iO/LqK7G8HSl+g/NsL/6HHv/TcaKGxEWAAsGn/fqGlpPD7MPjq7kJzGqHFzDaDLpN7/8OCpFEnAGSflucbGRJCY9+d+5XQ7h5wHY0tKCwU2gczvqSx7TtdLrSqlaX/AQDENvU2U+0WG4v4+Hjdz68oijOa/IriUjT5FcWlaPIrikvR5FcUl+LTcV3BgdUxoHtnL23mlyto7I3X9xDamu/iaWznbu2ElpjExzllHEkXWpCDE+x7E2YKrU5D6fRbr25tevzurUlCYwYQAK/sbyOjxQCgVxtpKJIefZJEAj9slg7ES+L52LPAINkGm7B7n9BOZfLbmr1SroR88gr3d0lKkisWmZly1QYA7s2VBiyFDqtUbIQWc9l1eh66dJKPLavqA8CYPw4UWvzoF2ls72G9hTbqthtpbBBxXH5m3Ac09kgvbwMUtkLlhH7yK4pL0eRXFJeiya8oLkWTX1Fcik8LfoyqgbzYxsYxpR3iDqapmdL1tV4kb43NOyN9AtKJoy8ArFm8WGiLVswS2vg3p9LjW3aVbbRb1yTQWD/iJrtiaRyJBFqNkGO11u/cTWPbNJety7M//ZrG9h18jdCe+7McGXbX49KVGOCjqo4ckUVPAKhXT+67H/bgEzR25tp1QqtahTvFTxs3XWidB8id504uu2w/vlPLLivuffL+8zR2wD39hJboMK4rL1+eW2Uy3gwA5r+9wOtyRir3HmDoJ7+iuBRNfkVxKZr8iuJSNPkVxaWUZVbfZGPMXmPMJs8/OV9LUZSLltK49xoA1YvP6gPwJwCjAXxlrZ3zq1dQjA4xMXbpd995aZUr8QWHnSkpQmtbvz6NZZVyp3l29WrWFBqbjQYAtWtIB2CmZeXm0uNZm+bpvLM0Nm63dGd1Mt34v/emCe2pUbfT2KVkNuD17WQ7NABs2CvnvC2cJ11nX/7rffT48DBpajJ1OV9Z8POTnzspqXw1Z95b0r3XiTufuUtot3btKjQ2Ow8AYq6QbbgfTXmJxjJTlYDK/PXMzuGDL7+hsSdPyNWnMUNvorG9e93hdXnjxmXIzk4vN/deC4DN6lMUpQJzXrP6rLXnFqBfMcZsMca8YYyhOyWKj+tKS+Pv7Iqi+J7zmtVnjGkD4GkUzezrjKLBHU85HPvfcV21yBhqRVEuDOc7q6+ftTbFM777DIBPoAM8FKVCUZqCXziAPGttpmdW37cAXgUQb61N8RQE3wBw2lo79teuKyq6sR3z7D+9tBv7yX37AHe+3e8w5fenxT8LLbQOH6E1bMj18rxq8r9I9hM32xNkv7STQ+22nfuE5l+Jv9+mH8kQ2gND5X5xAPhw1iKh9bq6E40NcHB9ZfiTwukPm6QfwInjWfT4rrFthVYnOJjGMr2KQ/G3X5+7hVZQwMe5RUREC+3FN/8stLyCAnr8xl2yHTn1QCqNZfvxnVp2E7bLgu6oG2XLLwBERclC7+fLFpBIIOmQd2H8hQdHYe+OHeVT8AMQCWCKMab4rL6vjDErPG8MBsAmFFX/FUWpIJRlVl+v3+WMFEXxCdrhpyguRZNfUVyKJr+iuBSfmnn4+fuhWo1qXppT1XXVSlnBb96hKYnkJhJ5Z3k1mM1iO5vPY/3J9XZo2FBok75eSo/vFiOdYH9JTqax+XnycThDTB0A4ECidCau1lfOswO4A3DzyEgay1Y32CpEVIsoejwjuFo1qlevInvCWJs2AJw6JQ0qsrJK3zAWWl26Eju1dDeJko9NZG2+GsTat5kRB8BbdllVHwCSk7cLzelxPJnpfb0FBXImoBP6ya8oLkWTX1Fciia/orgUTX5FcSm/2d5bnnTq1MmuX7/eS8twcM5lBaHJ3yynsf2vlK2tk2fwfeShdUKE1rS5LOIBwJ7d0hOgzeXSDTfDYURSwrptQrv5pmtobNPacuTXc+M+pLGv/v0hoeWc5T4BB0gRb/HytTS2z7Vyz/n6ROlm+69Hn6bHb0qQ47ruuoPHnjolC26975St1wDQpXMbqjN2HZAFzkdvkW7HGSd4wXDiF3KPPXvOAeDr+auE5uSy+9xjI4QWt0e2/AK8uNe+QQMa++Mu7+fn3ltuQWJCQqnae/WTX1Fciia/orgUTX5FcSma/IriUjT5FcWl+LTa3z4mxi5ZtcpL2+FgfsCq/Q3DwmhsJqm2hxOXXScyHVYcdh45IrTebWTlecKcL+nxwwf2EdrmA7I1FwBim8rW5VyHCn5qljTTCCStpgAQSirHZx1aqqsFyPl3EXXkSsg3P62mx4+4aYTQhv1ZrkwAQEi4XHUJDuPP2fJpK4SWcSSdxubmyufyrY/lTL1b+90hNABo1VaueHw8SR4PAAvi44VWcnbeOQ4nS5OQkS/wx6Zkyy4AXNGuBY3t1qyZ0Ky1Wu1XFMUZTX5FcSma/IriUjT5FcWl+LTgZ4w5BmC/52IYANl7WvHR+1XxuJTuW0NrbXhpAn2a/F43bMx6ay33m67A6P2qeFzK9+3X0D/7FcWlaPIriku5kMk/8QLe9u+J3q+Kx6V83xy5YN/5FUW5sOif/YriUnye/MaYfsaYHcaY3caYXx3sebFjjPnYGJNqjNlaTKtpjFlqjNnl+cknhl7EGGPqG2NWGmO2GWN+Mcb8yaNX6PtmjLnMGPOTMWaz53696NEbGWPiPK/JmcYYucnhEsSnye8Z9jkBQH8ArQDcboxp5ctzKGcmAyg5anUsgOXW2mYAlnsuVzTyATxhrW0FIBbAw57nqaLftzMAellr2wPoAKCfMSYWRVOn37DWNgWQAWDkBTxHn+HrT/4uAHZba5OstWcBzABws4/Podyw1q4GUHJ72c0Apnh+nwJgkE9Pqhyw1qZYazd4fs8GkAigHir4fbNFnPRcrOz5ZwH0AjDHo1e4+3W++Dr56wEo7oqZ7NEuJepYa88NTT8CoM6FPJmyYoyJRtGU5jhcAvfNGONvjNkEIBXAUgB7AGRaa8+N2rkUX5MULfj9jtiipZQKu5xijAkEMBfAY9ZaLxOBinrfrLUF1toOAKJQ9Jcon5nlAnyd/IcA1C92OcqjXUocNcZEAoDnZ+oFPp/zwhhTGUWJP81aO88jXxL3DQCstZkAVgK4EkCIMebc3MpL8TVJ8XXy/wygmae6GgDgNgALfXwOvzcLAQz3/D4cwBcX8FzOC2OMATAJQKK19vVi/1Wh75sxJtwYE+L5vSqAPiiqZ6wEMNgTVuHu1/ni8yYfY8wAAG8C8AfwsbX2FZ+eQDlijJkO4BoU7Qo7CuB5AAsAzALQAEU7GIdYa7nn1EWKMaYHgDUAEgCcG/v6DIq+91fY+2aMaYeigp4/ij74ZllrXzLGNEZR8bkmgI0Ahllr5TjnSwzt8FMUl6IFP0VxKZr8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4lP8Hv0Or98j6qc0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 1.0\n" + ] + } + ], + "source": [ + "print(\"kernel matrix during the training:\")\n", + "kernel_matrix = result['kernel_matrix_training']\n", + "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", + "plt.show()\n", + "\n", + "print(\"testing success ratio: \", result['testing_accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Different from the non-programming way, the programming way allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", + "\n", + "Use the trained model to evaluate data directly, and we store a `label_to_class` and `class_to_label` for helping converting between label and class name" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ground truth: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n", + "preduction: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n" + ] + } + ], + "source": [ + "predicted_labels = svm.predict(datapoints[0])\n", + "\n", + "predicted_classes = map_label_to_class_name(predicted_labels, svm.label_to_class)\n", + "print(\"ground truth: {}\".format(datapoints[1]))\n", + "print(\"preduction: {}\".format(predicted_labels))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb b/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb new file mode 100644 index 000000000..80ba41c78 --- /dev/null +++ b/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb @@ -0,0 +1,136 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*Quantum SVM algorithm: multiclass classifier extension*_\n", + "\n", + "A multiclass extension works in conjunction with an underlying binary (two class) classifier to provide multiclass classification.\n", + "\n", + "Currently three different multiclass extensions are supported:\n", + "\n", + "* OneAgainstRest\n", + "* AllPairs\n", + "* ErrorCorrectingCode\n", + "\n", + "These use different techniques to group the data with binary classification to achieve the final multiclass classification." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from datasets import *\n", + "from qiskit import Aer\n", + "from qiskit.aqua.input import ClassificationInput\n", + "from qiskit.aqua import run_algorithm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we choose the `Wine` dataset which has 3 classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4XXV97/H3JyEhMVwzQC4cMkDQCCJGoMfoFa9FwIBwJVEhBKpGhSJVK8VbanCMiDWWthBan6sUEdRWCFFDbOQJM4iKcpAwBBuIQUoOAVJCUoYQMnzvH+u3w9r7rLXHtdeevq/n2U/O/q1h//Y6J+u7frPMDOecc65gWKsz4Jxzrr14YHDOOVfEA4NzzrkiHhicc84V8cDgnHOuiAcG55xzRTwwuKaQZJJeH37+tqQvtTpPSSQdLWl9zp95YLg+e2R0vhckHZTFuSp8zkJJP2z257jW88DQpST9UdLWcNN4WtJVkvaKbT9e0p2Snpe0UdIdkk4uOcfR4Qb2uUbyYmbnmNnXGjlHr5B0gaQbStIeTUmbB2Bme5nZujzzWUn4e7uoWz6n13hg6G7vM7O9gCOBfuCLAJJOAa4Dvg9MBvYFvgy8r+T4+cAm4CN5ZbgRWT2Bt9idwDskDQeQ1AeMAI4oSXt92Ne5zHlg6AFmNgjcABwmScA/Al8zsyvMbIuZ7TKzO8zszwvHSBoDnAJ8Cpguqb/cZ0g6X9IGSU9K+njJtt1PdYWqG0l/I+mZcMwcSSdKekTSJkmfr/a7hZLR5yQ9ALwoaQ9J+0v6cSgJPSbpM7H9R4f8PCfpYeCtJefbXQVWmvfwfrakVZL+W9IfJJ0Q0sdK+m74PoOSLordyIdL+ntJ/yVpHXBSma90D1EgODy8/9/AbcCakrQ/mNmTpXkO+f2WpBWhNPgbSa+L5f8QSTeF67xG0twy13ZaKEk+L+kmYJ+S7ddJekrSllD6fFNIPxv4M+BvQon1ZyF9Qbhmz0t6WNL7Y+d6ffisLeE6XVspz2mf4zJgZv7qwhfwR+C48PMUYDXwNeAQwIBpFY7/MLABGA78DPinMvueADwNHAaMAf4tfMbrw/argIvCz0cDO4hKKCOAPwc2hmP+B/AmYGul/JV8z1XhO44meti5N5x/JHAQsA44Puy/CPgFMCEc8xCwPna+3flOyPtMYAvwnvA5k4BDwrafAt8J3/9/Ar8FPhG2nQP8R/i8CUQ3egP2SPlOtwHnhZ//Gfg48PWStCuT8hzy+2zI6x7AvwLXhG1jgCeAj4VtRwD/BRyako9fEz1E7Am8C3ge+GFs+8fD72xP4FJgVdJ1i6WdCuwfrt1pwItAX9j2I+ALYdso4J3V5Dnpc/zV+MtLDN1tmaTNwF3AHcDfAnuHbRsqHDsfuNbMdhLdtOdJGpGy71zge2b2kJm9CCyscO7twNfNbDtwDdGT6GIze97MVgMPA2+pcI64y8zsCTPbSlQCmGhmF5rZKxbVvf8LMC+W16+b2SYzewK4rIbPOZPohnyTRaWsQTP7D0n7AicCf2VmL5rZM8AlJZ95acjjJuAbFT7nDqIbMUSlg1+EVzztjjLH/9TMfmtmO4gCQ6Gk8X+AP5rZ98xsh5ndB/yY6IZdRNJUomv5JTPbZmZ3Ej0g7GZmV4bf2Tai3/lbJI1Ny5SZXWdmT4Zrdy3wKFEAg+hv4gBgfzN72czuqjXPLjseGLrbHDMbZ2YHmNknw43z2bCtL+0gSVOAdxPdVACuJ3qKS6sC2Z/oqa7g8Qr5ejYEHIhKBxCVOIil7UX14p99ALC/pM2FF/B5onaUevIaNwX4Q0L6AUSlnw2xz/wOUcmhns+8E3inpAlEQe5R4FdEbQ8TiEpm5doXnor9/BKvXssDgLeVXJs/A/ZLOMf+wHMh0A/Jd6geWxSqhv6bqOQGJdVNcZI+EqrhCp99WGz/vwEE/FbS6lh1ZC15dhnphsY6V5s1RDepDwJ/n7LPh4keGn4WNUkAUWCYDyxL2H8D0U2zYGomOa1efIrgJ4DHzGx6yr6FvK4O70vz+hLwmtj7/YBCd9YngNcx1BPANmCf8JSe9pkFla7Pr4GxRNVsvwQws/+W9GRIe9LMHqtwjiRPAHeY2Xuq2HcDMF7SmFhwmMqr1/oMYDZwHFFQGAs8R3Rzh+LfCZIOICq5HQv82sx2SlpV2N/MngrfDUnvBG6WdGcVefbpoZvASww9xswM+CzwJUkfk/RaScMkvVPS5WG3+cBXiaogCq8PAidK2jvhtEuAj0o6VNJrgK80/5uk+i3wfGiQHh2ebA+TVGhkXgJcIGm8pMnAX5Ycvwo4Ixx3AvCnsW3fBT4m6dhwzSZJOsTMNgA3Av8Qu56vk1Q4dgnwGUmTJY0HFpT7AqFkN0D0e/pFbNNdIa3e3kj/DrxB0ocljQivt0p6Y0IeHg95+KqkkeFmHe+19j+IguGzRIH0b0tO8TRR+07BGKKb+EYASR8jKjEQ3p8afh8QBRgDdlWR59LPcRnwwNCDzGwpUePfx4Enif5zXQRcL+ntRMX3b5nZU7HXcmAtcHrC+W4gany8Nexza1Z5lfRnklZX3nN3XnYS1UsfDjxG1FB5BdETLUQB7/Gw7UbgByWnOJfoBliosthdQjKz3xI1gl5C1Ah9B9G1gqhL70ii9pHngKW8Wl33L8BK4H7gd8BPqvgqdxBVRd0VS/tFSKsrMJjZ88AsoraPJ4mqnL5J1Hic5AzgbURdlr9C1L254PtE13GQ6DvfXXLsd4FDQ/XPMjN7GPgHotLQ08CbCaWh4K3AbyS9ACwHzjWzdVXkuehzargcrgxFD5DOOedcxEsMzjnninhgcM45V8QDg3POuSIeGJxzzhXpyHEM++yzjx144IGtzoZzznWUe++997/MbGKl/ToyMBx44IEMDAy0OhvOOddRJFU10t+rkpxzzhXxwOCcc66IBwbnnHNFPDA455wr4oHBOedcEQ8MzjnnimQSGCRdqWj93odStkvSZZLWSnpA0pGxbfMlPRpe87PIj3MNe2AJXHIYLBwX/fvAklbnyLncZFViuIpo3d807wWmh9fZwP8DCKtRfYVoat+ZwFfCfPXOtc4DS+Bnn4EtTwAW/fuzz3hwcD0jk8AQ1oPdVGaX2cD3LXI3ME5SH3A8cFNYf/c54CbKBxjnmu+WC2H71uK07VujdOd6QF5tDJMoXvN2fUhLSx9C0tmSBiQNbNy4sWkZdY4t62tLd67LdEzjs5ldbmb9ZtY/cWLFqT6cq9/YybWlO9dl8goMgxQvhj45pKWlO9c6x34ZRowuThsxOkp3rgfkFRiWAx8JvZPeDmwJC6ivBGaFhdnHE63tujKnPDmXbMZceN9lMHYKoOjf910WpTvXAzKZXVXSj4CjgX0krSfqaTQCwMy+DfwcOJFoofiXiBZUx8w2SfoacE841YVmVq4R27l8zJjrgcD1rEwCg5mdXmG7AZ9K2XYlcGUW+XDOOde4jml8ds45lw8PDM4554p4YHDOOVfEA4NzzrkiHhhc7/CJ8ZyrSia9kpxre4WJ8QpzIBUmxgPvlupcCS8xuN7gE+M5VzUPDK43+MR4zlXNA4PrDT4xnnNV88DgeoNPjOdc1TwwuN7gE+M5VzXvleR6h0+M51xVvMTgnHOuiAcG55xzRTwwOOecK+KBwTnnXJFMAoOkEyStkbRW0oKE7ZdIWhVej0jaHNu2M7ZteRb5cc45V7+GeyVJGg58C3gPsB64R9JyM3u4sI+ZnRfb/y+BI2Kn2GpmhzeaD+ecc9nIosQwE1hrZuvM7BXgGmB2mf1PB36Uwec655xrgiwCwyTgidj79SFtCEkHANOAW2PJoyQNSLpb0py0D5F0dthvYOPGjRlk2znnXJK8G5/nAUvNbGcs7QAz6wfOAC6V9LqkA83scjPrN7P+iRMn5pFX55rH14ZwbSyLwDAITIm9nxzSksyjpBrJzAbDv+uA2yluf3Cu+xTWhtjyBGCvrg3hwcG1iSwCwz3AdEnTJI0kuvkP6V0k6RBgPPDrWNp4SXuGn/cBjgIeLj3Wua7ia0O4NtdwryQz2yHp08BKYDhwpZmtlnQhMGBmhSAxD7jGzCx2+BuB70jaRRSkFsV7MznXlXxtCNfmMplEz8x+Dvy8JO3LJe8XJhz3K+DNWeTBuY4xdnKoRkpId64N+Mhn1/k6rSHX14Zwbc6n3XadrdCQW6izLzTkQvtOsV3I1y0XRtVHYydHQaFd8+t6jgcG19nKNeS2843W14Zwbcyrklxn84Zc5zLngcF1trQGW2/Ida5uHhhcZ+vmhtxOa1R3XcPbGFxn69aG3E5sVHddwwOD63zd2JDbqY3qrit4VZJzWci62scb1V0LeWBw3aNVdfLNmBSv1kZ1b49wGfLA4LpDK2csbcakeEmN6gimzxq6r8/W6jLmgcG1l3qffFs5Y2mj1T5J33nGXHjLGYBiOxrc/29Dr4nP1uoy5oHBtY9GnnybUSdfbZBqZCxFue/86I1RWlzSDT/r7+7VUj3PA4NrH408+Va6Odd6s6slSDUylqLcd672hp/lID+vlnJ4YHDtpJEn33I353pudrUEqRlz4X2XwdgpgKJ/33dZlF4pIJX7ztXe8LMc5OfVUo6MAoOkEyStkbRW0oKE7R+VtFHSqvA6K7ZtvqRHw2t+FvlxHaqRJ99yN+d6bna1BqkZc+G8h2Dh5ujfQlCoFJDKfedqb/jlvnutvJusI4MBbpKGA98C3gOsB+6RtDxhJbZrzezTJcdOAL4C9BNVpt4bjn2u0Xy5DnTsl4tH+0JtT75pA93qudllsZhONYPUyn3n0lHdo8dH739ydpQW3yerQX6+iJAjmxLDTGCtma0zs1eAa4DZVR57PHCTmW0KweAm4IQM8uQaUa76o5kNk1k++cbVUxLJonomNSDFbryVvnOhJPKBy2HHVti6iabW/Xfz3FOuallMiTEJiD9irAfelrDfByW9C3gEOM/Mnkg5dlLSh0g6GzgbYOrUqRlk2yUqN0cPNH/+nmZMb1FPSSSLOZjSnr4R/Ptno15Haed+YEnxZ7/yYj5TZHTr3FOuJjKzynuVO4F0CnCCmZ0V3n8YeFu82kjS3sALZrZN0ieA08zsGEl/DYwys4vCfl8CtprZ35f7zP7+fhsYGGgo3y7FJYelVCVMif5N23beQ83NV6NKb7R53OweWBJV+5R2OQWi8Qmx9BGjixusr/8U7Hylig9R1K7hXBUk3Wtm/ZX2y6LEMAhMib2fHNJ2M7NnY2+vAP4uduzRJcfenkGeXL3qqY/vhIbJVky0N2Mu/OTPUzamjE+YMRdu+FyVQYH86/5bEWBd7rJoY7gHmC5pmqSRwDxgeXwHSX2xtycDvw8/rwRmSRovaTwwK6S5VilXH++L4tRu7JTK+xQUAuzWTdXtX0/dfyNtRD7GoWc0HBjMbAfwaaIb+u+BJWa2WtKFkk4Ou31G0mpJ9wOfAT4ajt0EfI0ouNwDXBjSXKuUa3z0hsnapc15lKSaANtIw3yjN3Yf49AzMlmPwcx+Dvy8JO3LsZ8vAC5IOfZK4Mos8uEyUE3jo1clVC/pek6fFc15lNYYPnpCcqlh9ITG2nIaXePBxzj0DF+oxw1Vrj6+GxfFabakazb17ekB9r3fhGWfhF3bX91/2IgovRGN3th9jEPP8MDgXCtUCr6Qfcms0Rt7owMQXcfwwOBcO2qX8RyleQKvSuwBHhic6xVZ3Ni9KrEneGBwrpf4jd1Vwafddt3NF51xrmYeGNxQedxM8/oMH5CVLQ+0PcGrklyxcpPoZVUFkcdnQOP99l3xFBijx8O251/tRtus35trOS8xuGJ5jG5txmckPcnmPSCr256mS0tcWzcVj60AH/ncpbzE4IplcTOtNNFaMxavTyqBjB6fPIK4GQOy8ioF5SkpgCdJnFrcdTIvMbhijU6U1+hylvVIK4FAfnM7deM8QlUHanV+6cgV8cDgijU6UV41N8isJ+NLu4Ftfa45K8LVkodOnkeo6kBtnR0A3RBeleSKNToIqpobZNYjaMtN9ZBXv/1unEcoaaR0mk4OgG4IDwxuqEZuptXeILO8YbfDHD7tkIesJQXwV17Mr93GtYxXJblstWLNhhlz86syauc8NMOMudFU3ws3R/++95u+JkcPaHjNZwBJJwCLgeHAFWa2qGT7Z4GzgB3ARuDjZvZ42LYTeDDs+p9mdjIV+JrPbc6Xf+xu/vvtWNWu+dxwYJA0HHgEeA+wnmglttPN7OHYPu8GfmNmL0n6C+BoMzstbHvBzPaq5TM9MDjnXO2qDQxZVCXNBNaa2TozewW4Bpgd38HMbjOzl8LbuwGvkHSdodsGrTlXhSwCwyQg3tq4PqSlORO4IfZ+lKQBSXdLmpN2kKSzw34DGzdubCzHzlXD51pyPSrXxmdJHwL6gYtjyQeEos0ZwKWSXpd0rJldbmb9ZtY/ceLEHHLrel43DlpzrgpZBIZBYErs/eSQVkTSccAXgJPNbFsh3cwGw7/rgNuBIzLIk3ON68ZBa43yqrWekEVguAeYLmmapJHAPGB5fAdJRwDfIQoKz8TSx0vaM/y8D3AU8DDOlWrFDSnrqTs6nVet9YyGA4OZ7QA+DawEfg8sMbPVki6UVOh6ejGwF3CdpFWSCoHjjcCApPuB24BF8d5MzgG135CyCiKtGJPRzrxqrWdkMo4hb95dtcdccljKaOop0aCruNJZTiG6mdc72Mz77L9q4Tgg6X6haACca3vVdlf1KTFc+6ulrj/rxXl8jeRXdeN8UC6RT4nh2l8tdf3eYNw8XrXWMzwwuPZXyw3JG4ybp1vng3JDeFWSa3+1TNPdjbOcthOvWusJHhhcZ6j2hpT1Wg/dyhvVXRkeGFz38afa8rpxfWqXKW9jcK7X+HgEV4EHBud6jffcchV4YHCu13RIz60V61Ywa+ksZlw9g1lLZ7Fi3YpWZ6lneBuDa4pl9w1y8co1PLl5K/uPG835xx/MnCPKzcbuUmXdUNwBPbdWrFvBwl8t5OWdLwOw4cUNLPzVQgBOOuikFuasN3iJwWVu2X2DXPCTBxncvBUDBjdv5YKfPMiy+4ZMuusqacbEdR0wHmHx7xbvDgoFL+98mcW/W9yiHPUWLzG4zF28cg1bt+8sStu6fScXr1zjpYZaZT3FR0Gb99x66sWnakp32fISg8vck5u31pTuyujRhuL9xuxXU7rLlgcGl7n9x42uKd2V0SENxVk798hzGTV8VFHaqOGjOPfIc1uUo97igaGHLLtvkKMW3cq0BSs4atGtTavzP//4gxk9YnhR2ugRwzn/+INrPldeeW5bPTpx3UkHncTCdyykb0wfQvSN6WPhOxY2veHZe0JFMlmPQdIJwGJgOHCFmS0q2b4n8H3gT4BngdPM7I9h2wXAmcBO4DNmtrLS5/l6DLUrNAjH6/5HjxjONz7w5qbU+2fRKynvPLctn74iF6U9oSAqpeQRkPJS7XoMDQcGScOBR4D3AOuJlvo8Pb4Sm6RPAjPM7BxJ84D3m9lpkg4FfgTMBPYHbgbeYGY7Sz8nzgND7Y5adCuDCXX8k8aN5pcLjmlBjirrxDy7zjVr6Sw2vLhhSHrfmD5uPOXGFuQoe9UGhiyqkmYCa81snZm9AlwDzC7ZZzZwdfh5KXCsJIX0a8xsm5k9BqwN53MZ68QG4U7Ms+tc3hPqVVkEhklAfFmn9SEtcZ+wRvQWYO8qjwVA0tmSBiQNbNy4MYNs95ZObBDuxDy7zuU9oV7VMY3PZna5mfWbWf/EiRNbnZ2Ok2WDcF46Mc+uc3lPqFdlMcBtEJgSez85pCXts17SHsBYokboao51GSg01nbSNBVpeYao/aFTvofrDIUG5sW/W8xTLz7FfmP249wjz+2ahudaZNH4vAdR4/OxRDf1e4AzzGx1bJ9PAW+ONT5/wMzmSnoT8G+82vh8CzC9Fxuf22VuoXbJRxrvqeRc/aptfG64xGBmOyR9GlhJ1F31SjNbLelCYMDMlgPfBX4gaS2wCZgXjl0taQnwMLAD+FSloNCNSm92hbmFgObd7BK6QC7beVT++aiRT7fhXPNlMo4hb91WYsi9W2bpCl4AI0az0D7BVS8M7RTWTt1Dpy1YQdJfrIDHFpUv8rd7aajVVqxb4dUoXS7P7qquQbl3y0yZmO2sV36Ybz7qUG9PJZ/xtbzC4K4NL27AsN3TXPfqyN9e54GhDeTeLTNlArb9hz2bbz7qkNRTScC7DynfU61cFZTzaa7z1AnTbnhgaAO5d8tMmYDt5dH7tX330DlHTOKDfzIJxdIM+PG9g2Wf/n2wXHk+uCsfnVIy88DQBuYcMYlvfODNTBo3GhHV6Te1l03KxGyvee+F+eajTrf9x8Yh7QyVnv59sFx53TS4K+mJvF2e0julZOYL9bSJOUdMyu8GXJiALWFitjm0Tw+kNPU8/Z9//MGJ3VzjpaFebpw+98hzEyeQa+Xgrnoaw5OWBP3SL7+EmbHDduxOa9UyoZ1SMvPA0KvafAWvcvYfNzqxF1e5p/9KA/xa0mW4jbTD4K54IBi751i2bNuChbLhhhc38MW7vliU1yRJT+Tbd20fst/LO1/mq7/6Kp+/6/Pssl0M0zBOfcOpfPHtX8zwGw2135j9Eifqa7eSmXdXdR2nGYPcfCbX1kqa8jrJ2JFjuev0u1K3z7h6xu5gUo/TDj6tqcGh1VN7e3dV11LNXGCnGW0y3jjdWklP+km2vLIldduKdSuIJm2u33WPXNfQ8ZW0agGiWnlVkstcHtUyWbfJ1FM95bLTaB174Ul8l+0asm3EsBFFbQzlJB2ftZMOOqntAkEpLzG4imp9+u/EMQM+k2trVVvHPm7PcYnpaSWOYRrG1476Ghe986Kip3SRXLIYJr8lgpcYOl6ze9LU8/TfidUynTj7bDdJ6hVVasSwESyYuSBxW1qJw8x2P53Hn9Ivuvsirl1z7ZD9T33DqbVku2t5YOhgX1z2IP9693/ubmrLuspm2X2D/N8l97OzpINCpUnrxo4eweatQ3uCtHu1TK5dhl2RpF5R75r8Lu5cf2fZXlKFnkxpDc5j9xzLrKWzhpyj0MB83SPX5dorqVN4r6QOtey+Qc67dlXif4csetIk9fyJS5u0btl9g5y/9H627yzO2Yhh4uJT3+I3XpeZSj2ZktoW8uwB1I68V1KHq1Svf/HKNamd8gY3b224F1BSO0Fc2tP/xSvXDAkKAHuN2sODgstUuZ5MfWP6eM0erxnS4NyOo4zbkVcltaFq6vUr1dfH96+nHaLc+cs1yqYdt/mloVVLzjUiaaAYgBA3nnIjM66ekbi93UYZl9OqqdAbKjFImiDpJkmPhn/HJ+xzuKRfS1ot6QFJp8W2XSXpMUmrwuvwRvLTLarp1VOpvr6wf9J003917SqOuPDGsqWKtPMPl8qOGfA5iVweys11VOjh1M7zP1Uzd1MrJ9xrtCppAXCLmU0nWpYzqcvAS8BHzOxNwAnApZLifc7ON7PDw2tVg/npCtX06knqXpm0f1qV0HMvbS+7HkFa981/mFu+ncC7fbo8lKsOKszvdO6R5zJq+Kiiba2e/wmqv+G3csK9RgPDbODq8PPVwJzSHczsETN7NPz8JPAMUH7y/B5XzVN3fPRvufOUqxIqN7ag3tHFuc8U63pSueqgePfUakYZ5z3zarU3/FZOuNdoG8O+Zlao6HsK2LfczpJmAiOBP8SSvy7py4QSh5ltazBPHa+amUDh1e6VaXMHnX/8wVy8ck3iiN6CcoGj3u6b3u3TNVvaZHR9Y/qK3lcaZZw0G2uzZ16t9obfygn3KpYYJN0s6aGE1+z4fhb1e03t+yqpD/gB8DGz3ePOLwAOAd4KTAA+V+b4syUNSBrYuHFj5W/WwWp96i63f6Uqp2qWxGzWnEfO1SuraqJ6q2saKWVU2/bRyqqwiiUGMzsubZukpyX1mdmGcON/JmW/1wIrgC+Y2d2xcxfC4TZJ3wP+ukw+Lgcuh2gcQ6V8d7pan7rT9i+kLVy+esigsxHDVLbuv9enonbtK6tpwuuprmm0lFHt2hetnAq90aqk5cB8YFH49/rSHSSNBH4KfN/MlpZsKwQVEbVPPNRgftpWKxeBKXzOkIFnFSaiLNc7ygODa7UsJqOrp7qmXCmjmvzUcsNv1YR7jQaGRcASSWcCjwNzAST1A+eY2Vkh7V3A3pI+Go77aOiB9K+SJhLdolYB5zSYn7bUDk/eSQPPtu+0sjf5TpzzyLla1LNyXRaNwu0+w2pDgcHMngWOTUgfAM4KP/8Q+GHK8T2xAko7PHnXc5P3qahdt6unuqZTVmFrhI98zkFeT97lqqvqucm/+5CJRZP0gY9JcN2n1qf3dlwfO2s+V1IO8hgNnDTCOT6ArdaBZ8vuG+TH9w4WBQUBH/yTKNB4TyWXpbzHEjSiU1Zha4TPrpqDZqxRXKqaNYtraQBPO9/414zg5e27mvpdXO9YsW4Fi367iM3bNhel9/osqM1S7eyqXpWUgzwWgammuqqWLrBp53suYTI876nk6lFu2uxaevm47HlgyEmzRwNn3VCcdr403lPJ1arctNnQWbOgdhtvY+gSWU9el3a+caNHJO7vPZVcrSrd+Lupl0+n8RJDl4hXVw1u3spwqWiSvFpLK2nVX0BV8zg5V0lat0/ovl4+ncYDQxcp3MyzGkxXrvqrVaO4XfdI6vYJMHbkWC542wVt1b7QqgVzWsUDQ5fJYzCdz57qstDKuYBq0YoZWFvNA0OXaeZgulbO9+S6U7tPDQGNz43UiTwwNFneN9NmTWPRDvM9OdcKrVwwp1U8MDRRK26m1S7yk5TXcgGs0jrUXpJw3aoX5kYq5d1Vm6jSzbQZ6llas9J0GpBeFVXYt9yxrje067QWjearXdeObiYvMTRRq6atrrVxuJoG67QqqkK32HLHuu7Xrg20WeSrUxrJs+SBoYnqre+vt12i3uOqCWBpVVSlQaHSOV13apcG2tJupS9tfymTfHVCI3mWvCqpieoZjVxNtU6Wx0F1s7+mVVFNymHmWNf+2qGBtlA62PDiBgxjw4sb2PLKlpbnqxM1VGKQNAG4FjgQ+CMw18yeS9hvJ/C541bKAAAPD0lEQVRgePufZnZySJ8GXAPsDdwLfNjMXmkkT+2knsnz6h2HUOm4cqWJahus06qo8hoJ7d1l21c7NNBWmnsprpsbjrPQaIlhAXCLmU0Hbgnvk2w1s8PD6+RY+jeBS8zs9cBzwJkN5qftzDliEr9ccAyPLTqJXy44puKNrN52iXLHVSpNlJYGxo0ewagRwzjv2lUV11uop7G7Ho2UiFzztUMDbbWlgG5vOM5CQ+sxSFoDHG1mGyT1Abeb2ZBHRUkvmNleJWkCNgL7mdkOSf8LWGhmx1f63E5bj6EW1ayrUOtxQNXnzGPtiHrUe11cfvKcNiLpsxb/bnFiqWXcnuMYvcfonmk4Liev9Rj2NbPCb+IpYN+U/UZJGgB2AIvMbBlR9dFmM9sR9lkPpN55JJ0NnA0wderUBrPdvuodh1DuuPOuXZV4TFIpox3Wp07Sqh5ernp5NdCm9TSa/frZXL/2+iFLbi6YuaBnA0G9KlYlSbpZ0kMJr9nx/SwqeqQVPw4IUeoM4FJJr6s1o2Z2uZn1m1n/xIkTaz28Y9RbNVPuuFqWFm3XG3Aey6O6zpDWA+rO9Xe2ZMnNdh2/0YiKJQYzOy5tm6SnJfXFqpKeSTnHYPh3naTbgSOAHwPjJO0RSg2TgaZWGHdK42W9k9SlHVdLKaRZU2o0qt6SlOs+5XpA5d2ttF3HbzSq0cbn5cD88PN84PrSHSSNl7Rn+Hkf4Cjg4VDCuA04pdzxWenlxstaSiFZL/iTlbwauV37S+tR1IqeRuXGb3SyRhuf9waWAFOBx4m6q26S1A+cY2ZnSXoH8B1gF1EgutTMvhuOP4iou+oE4D7gQ2a2rdLn1tP43KmNl60o5XRKycr1pqS1okcNHzWk2iiPxvAZV8/AEmrQhXhg/gOZflYWcml8NrNngWMT0geAs8LPvwLenHL8OmBmI3moVrvWnZfTqhlNfb0F186qmaIiryqedhi/0Qw9M/K5ExsvWzEJn3Od4KSDTuLGU27kgfkPcOMpNw652edVxdMO4zeaoWcCQ7vWnZfTiaUc56rVzN48eU3RcdJBJ7WkJ1Sz9cwkevVMT9Fq7dpDyLlGNbuq57UjX5s4T9JrR7624XOX6sYJ9nomMEDn1Z17F03XrZoxG2u8sTlNNOGCq6SnAkOnaXUpx3snuWaptqqn2p5FST2VkmzZljzbqivmgaHNtaqU42s8u2aqpjdPLdVN1c6sWmtvoTznf2onPdP47GrjPaJcM1XqzbNi3Qo+f9fnq+5ZVE2jcq29hZLWd1j4q4VdMeVFJV5iaJJOr4bxHlGumcqNRSjckHfZrsRjk4JAWglkmIZhZnU97bfLqnSt4IGhCbqhGsZ7RLlmS+vNU6laKKk66Nwjz61qNHQt2mFVulbxqqQm6IZqmE4c9+E634p1KxKf/AvSqoOaMZ6gneZkypuXGJqgG6phWt0jyvWeQhVSmmEaVvZmn/V4grRSSKePaq6GB4Ym6JZqmE4b9+GaJ4/eOeWqkBqtFqpHNXMydSsPDE3gA9NcN8lrQrpydfetmmaiG0c1V8PbGJrA1w5w3SSvCenS6u77xvT15M25lbzE0CReDeO6RV69c5Lq9AG27tjKinUrPDjkqKESg6QJkm6S9Gj4d3zCPu+WtCr2elnSnLDtKkmPxbYd3kh+8rTsvkGOWnQr0xas4KhFt/bESnCuN+XVO6fQs2j08OK2uM3bNvfMwLJ20WhV0gLgFjObDtwS3hcxs9vM7HAzOxw4BngJuDG2y/mF7Wa2qsH85KKXlwl1vSfvNQe27hzacaMblsvsJI0GhtnA1eHnq4E5FfY/BbjBzF5q8HNbqhvGKThXrTzXHCh38++FgWXtotE2hn3NrDAa5Slg3wr7zwP+sSTt65K+TChxpK35LOls4GyAqVOn1p/jDHTDOAXnapFX75xyN/9eGFjWLiqWGCTdLOmhhNfs+H5mZpCwKvar5+kjWvt5ZSz5AuAQ4K3ABOBzaceb2eVm1m9m/RMnTqyU7abqxGVCnesE5W7+vTCwrF1UDAxmdpyZHZbwuh54OtzwCzf+Z8qcai7wUzPbHjv3BotsA74HzGzs6+TDp4twrjmS2jMATjv4tKaWWJq5zGgnarQqaTkwH1gU/r2+zL6nE5UQdpPUZ2YbFC2rNAd4qMH85MKni3CuOVox2jivAXydRFENUJ0HS3sDS4CpwOPAXDPbJKkfOMfMzgr7HQj8Ephi9upcupJuBSYCAlaFY16o9Ln9/f02MDBQd76dc65g1tJZiRP39Y3p48ZTbkw4onNJutfM+ivt11CJwcyeBY5NSB8Azoq9/yMw5HHazI5p5POdc65RvTy9dhqfEsM519N6eXrtNB4YnHM9Le8BfJ3A50pyzvW0Xp5eO40HBudcz+vV6bXTeFWSc865Ih4YnHPOFfHA4JxzrogHBuecc0U8MDjnnCvigcE551wRDwzOOeeKeGBwzjlXxAODc865Ih4YnHPOFfHA4JxzrkhDgUHSqZJWS9oVFudJ2+8ESWskrZW0IJY+TdJvQvq1kkY2kh/nXMSXqnSNaLTE8BDwAeDOtB0kDQe+BbwXOBQ4XdKhYfM3gUvM7PXAc8CZDebHuZ5XWKpyw4sbMGz3UpUeHFy1GgoMZvZ7M1tTYbeZwFozW2dmrwDXALPDOs/HAEvDflcTrfvsnGvA4t8t3r1+ccHLO19m8e8WtyhHrtPk0cYwCXgi9n59SNsb2GxmO0rSE0k6W9KApIGNGzc2LbPOdTpfqtI1qmJgkHSzpIcSXrPzyGCBmV1uZv1m1j9x4sQ8P9q5juJLVbpGVQwMZnacmR2W8Lq+ys8YBKbE3k8Oac8C4yTtUZLunGuAL1XpGpVHVdI9wPTQA2kkMA9YbmYG3AacEvabD1QbbJxzKU466CQWvmMhfWP6EKJvTB8L37HQVyhzVVN0f67zYOn9wD8BE4HNwCozO17S/sAVZnZi2O9E4FJgOHClmX09pB9E1Bg9AbgP+JCZbav0uf39/TYwMFB3vp1zrhdJutfMUocW7N6vkcDQKh4YnHOudtUGBh/57JxzrogHBuecc0U8MDjnnCvigcE551wRDwzOOeeKeGBwzjlXxAODc865Ih05jkHSRuDxBk6xD/BfGWUnS56v6rVjnqA989WOeQLPVy2yytMBZlZxsrmODAyNkjRQzSCPvHm+qteOeYL2zFc75gk8X7XIO09eleScc66IBwbnnHNFejUwXN7qDKTwfFWvHfME7ZmvdswTeL5qkWueerKNwTnnXLpeLTE455xL4YHBOedcka4NDJJOlbRa0i5Jqd28JJ0gaY2ktZIWxNKnSfpNSL82rD6XRb4mSLpJ0qPh3/EJ+7xb0qrY62VJc8K2qyQ9Ftt2eB55CvvtjH3u8lh6K6/V4ZJ+HX7XD0g6LbYts2uV9ncS275n+O5rw7U4MLbtgpC+RtLx9eahznx9VtLD4drcIumA2LbE32dO+fqopI2xzz8rtm1++J0/Kml+jnm6JJafRyRtjm1ryrWSdKWkZyQ9lLJdki4LeX5A0pGxbU25TgCYWVe+gDcCBwO3A/0p+wwH/gAcBIwE7gcODduWAPPCz98G/iKjfP0dsCD8vAD4ZoX9JwCbgNeE91cBp2R8rarKE/BCSnrLrhXwBmB6+Hl/YAMwLstrVe7vJLbPJ4Fvh5/nAdeGnw8N++8JTAvnGZ7R9akmX++O/e38RSFf5X6fOeXro8A/p/y9rwv/jg8/j88jTyX7/yXRapPNvlbvAo4EHkrZfiJwAyDg7cBvmnmdCq+uLTGY2e/NbE2F3WYCa81snZm9QrTM6GxJAo4Blob9rgbmZJS12eF81Z73FOAGM3spo8/PIk+7tfpamdkjZvZo+PlJ4BmipWazlPh3UiavS4Fjw7WZDVxjZtvM7DFgbThfLvkys9tifzt3A5Mz+uyG8lXG8cBNZrbJzJ4DbgJOaEGeTgd+lMHnlmVmdxI9+KWZDXzfIncD4yT10bzrBHRxVVKVJgFPxN6vD2l7A5vNbEdJehb2NbMN4eengH0r7D+PoX+gXw/Fyksk7ZljnkZJGpB0d6Fqiza6VpJmEj0N/iGWnMW1Svs7SdwnXIstRNemmmPrVeu5zyR6+ixI+n3mma8Pht/NUklTajy2WXkiVLdNA26NJTfrWlWSlu9m/l2xR1YnagVJNwP7JWz6gpldn3d+CsrlK/7GzExSan/h8GTwZmBlLPkCopvkSKK+zZ8DLswpTweY2aCkg4BbJT1IdAOsW8bX6gfAfDPbFZLrulbdSNKHgH7gT2PJQ36fZvaH5DNk7mfAj8xsm6RPEJW2jsnpsyuZByw1s52xtFZeq9x1dGAws+MaPMUgMCX2fnJIe5aoyLZHePorpDecL0lPS+ozsw3hZvZMmVPNBX5qZttj5y48QW+T9D3gr/PKk5kNhn/XSbodOAL4MS2+VpJeC6wgeiC4O3buuq5VgrS/k6R91kvaAxhL9HdUzbH1qurcko4jCrR/ambbCukpv88sbnYV82Vmz8beXkHUnlQ49uiSY2/PI08x84BPxROaeK0qSct3s64T4FVJ9wDTFfWqGUn0B7Hcotad24jq9wHmA1mVQJaH81Vz3iH1nOEGWajbnwMk9mbIOk+SxheqYiTtAxwFPNzqaxV+bz8lqoddWrItq2uV+HdSJq+nALeGa7McmKeo19I0YDrw2zrzUXO+JB0BfAc42cyeiaUn/j5zzFdf7O3JwO/DzyuBWSF/44FZFJeYm5ankK9DiBpzfx1La+a1qmQ58JHQO+ntwJbwwNOs6xTJqhW73V7A+4nq3bYBTwMrQ/r+wM9j+50IPEIU/b8QSz+I6D/wWuA6YM+M8rU3cAvwKHAzMCGk9wNXxPY7kOipYFjJ8bcCDxLd5H4I7JVHnoB3hM+9P/x7ZjtcK+BDwHZgVex1eNbXKunvhKha6uTw86jw3deGa3FQ7NgvhOPWAO/N+O+8Ur5uDn//hWuzvNLvM6d8fQNYHT7/NuCQ2LEfD9dxLfCxvPIU3i8EFpUc17RrRfTgtyH8Da8nagc6BzgnbBfwrZDnB4n1sGzWdTIznxLDOedcsV6vSnLOOVfCA4NzzrkiHhicc84V8cDgnHOuiAcG55xzRTwwOOecK+KBwTnnXJH/D8SbXHWwlhNTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "n = 2 # dimension of each data point\n", + "sample_Total, training_input, test_input, class_labels = Wine(\n", + " training_size=40,\n", + " test_size=10, n=n, PLOT_DATA=True\n", + ")\n", + "temp = [test_input[k] for k in test_input]\n", + "total_array = np.concatenate(temp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we setup an Aqua configuration dictionary to use the quantum `QSVM` algorithm and add a multiclass extension to classify the Wine data set, since it has 3 classes.\n", + "\n", + "Although the `AllPairs` extension is used here in the example the following multiclass extensions would also work:\n", + "\n", + " 'multiclass_extension': {'name': 'OneAgainstRest'}\n", + " 'multiclass_extension': {'name': 'ErrorCorrectingCode', 'code_size': 5}" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "'testing_accuracy' : 0.8260869565217391\n", + "'test_success_ratio' : 0.8260869565217391\n", + "'predicted_labels' : [0 0 0 0 0 0 1 0 0 0 2 2 1 1 1 0 1 1 1 1 2 2 2]\n", + "'predicted_classes' : ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'A', 'C', 'C', 'B', 'B', 'B', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C']\n" + ] + } + ], + "source": [ + "aqua_dict = {\n", + " 'problem': {'name': 'classification', 'random_seed': 10598},\n", + " 'algorithm': {\n", + " 'name': 'QSVM'\n", + " },\n", + " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': [[0, 1]]},\n", + " 'multiclass_extension': {'name': 'AllPairs'},\n", + " 'backend': {'shots': 1024}\n", + "}\n", + "\n", + "backend = Aer.get_backend('qasm_simulator')\n", + "algo_input = ClassificationInput(training_input, test_input, total_array)\n", + "result = run_algorithm(aqua_dict, algo_input, backend=backend)\n", + "for k,v in result.items():\n", + " print(\"'{}' : {}\".format(k, v))\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/community/aqua/artificial_intelligence/vqc.ipynb b/community/aqua/artificial_intelligence/vqc.ipynb new file mode 100644 index 000000000..426256fdd --- /dev/null +++ b/community/aqua/artificial_intelligence/vqc.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*Variational Quantum Classifier*_\n", + "\n", + "The QSVM notebook demonstrates a kernel based approach. This notebook shows a variational method.\n", + "\n", + "For further information please see: [https://arxiv.org/pdf/1804.11326.pdf](https://arxiv.org/pdf/1804.11326.pdf)\n", + "\n", + "\n", + "**This notebook shows the variational quantum classifier method.**\n", + "\n", + "In this file, we show two ways for using the variational quantum classifier method: (1) the non-programming way and (2) the programming way. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Part I: non-programming way.\n", + "In the non-programming way, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import *\n", + "from qiskit import Aer\n", + "from qiskit.aqua import run_algorithm, QuantumInstance\n", + "from qiskit.aqua.algorithms import VQC\n", + "from qiskit.aqua.components.optimizers import SPSA\n", + "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", + "from qiskit.aqua.components.variational_forms import RYRZfrom qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua.input import ClassificationInput" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", + "\n", + "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFhJJREFUeJztnV+sZlV5xp+HAYMwo1ycqQGHMCRtDIakiic0DQYsRkOVSC+8kESSDuC5qQRjE6tNGjIXTdobI0lJ0+P8KUbUGCihIRZrIg5iKnoGMQKDxFAIg5rh1BLP1FgE316cb9uPzfftvfZef/c6zy85mfOd2d9e715rr/W8613/aGYQQtTJGbkNEELEQxVciIpRBReiYlTBhagYVXAhKkYVXIiKUQUXomJUwYWoGFVwISrmzBg3JWkAcNHK7tf938rKns7vbm5uBbGhLx1fG57bPO18vyYfhti0zIZF91h27Rgbu9JxTXcoY8rKNW2XPBjznnbZsey7XTYPtfO/tn6NrV//hn3fiVLBG2677l2v+9uBm6/q/M7RQ8eCpN2Xjq8NNx52t7PJhyE2LbNh0T2WXTvGxq50XNMdypiyck3bJQ/GvKdddiz7bpfNQ+08eN9xB+siVfCLVna/xpiUL4sPIW04ctP4Bman0eS7T6PsQ1O5QpVZ+z1qnmv++drXNGl3VfQhDXaD+uBCVExUFz0WXS1ubnfPx6bQXoyLKvjQPFcO7yt22q5eRZcqd91rmf2hy0wKLkTFqIILUTFOLjrJ8wAcAnApAANwo5n9R9/3QgVNQrqYY1y6WC5uSfgEmoa4y13pjAm29aU9n07uchzy7oVy1V374LcDeMDMPkzyDQDO8UpVCJGE3gpO8s0ArgTw5wBgZi8DeLnrOysre7wDS0NarljDcENsaCtSrCGfVENK8/nlmpZLwKlhPm9LHlIckt8xAn++HohLH/xiAC8COEryByQPkTy3fRHJNZIbJDdefOlXgw0RQoTHxUU/E8BlAG4xs0dI3g7g0wD+Zv4iM1sHsA4Aq5dc0LuTo49yD2nxUyt3DnIOVy3Dp18eoy++U3FR8JMATprZI7PPd2O7wgshCqdXwc3s5ySfJ/k2M/sxgPcCeDK0IWP6F10tfK5oea7pll34RmRzTyUNReyJPw2xvIkx9rtG0W8BcNcsgv4MgANDjRNCpMepgpvZYwBWQyTYbtXG9HeHKHes1jpV1Dw1oRde+KStvvhijtx0lfNqMs1kE6Jikiw2WdSahlRu3/tPiZyewpQUtSvdVH3xEpCCC1ExquBCVExUF32MW+YS3PHZ+sbHPYsdeBoy1TMnsYfNQgTbGlx2UXGhhKHC+bTv+M7TTt+RggtRMVEUfHNza7ACdbWmywImoae1jiFWi5572C3WYhAfD6prAcyyfdAW/a1k7yg0UnAhKoZmvetCBrN/7x5btBVtKEIod6gFJbmVFgi7p1wXy/JhzHbQqRb0hJ7OHGLr63na+eDyrAduvgqrBz6PjRM/7d0XXQouRMVMYlfVkK19qMkNJSh3anJOYx1LV7+9xD65i6IfPXTM+WQXKbgQFVOsgpew6cKUlConY8aIS9oM0eU4qNynrswz5L2UggtRMargQlRMMcNkoaaO+kyKcbn/svRS4xsYCuEW+6yJn7ff1ZZQXaZUZTakjMaUh5lpmEyInUy2IFsIRY3VEvvs2jqV4bMQa6KnOGwGlLFwpE2sNepScCEqJkkfPPQUySEnmeQabkt58kgIfMrI9xhnldVyuvJEfXAhdjhR+uDPbZ4OqtqhJ/h3pRWKMWd7TZWp9sUbFr0zIcvMZ0rssjzVrqpCiPKmqrrsfe6C69ZNKSgxatumhJ1GS7ChIUaZ5diSSwouRMU4KTjJZwFsAXgVwCtmFuSUEyDM2LZLaxhCsbuUZar9z1j4nKtdu5LP3y+2kg9x0f/EzDajWSKECI5cdCEqxmmiC8n/BPDfAAzAP5nZes/1S28aYl+vhlSBitATMHzcvdjPHMotHhMsXfZsvmuiQ1JKoNR1TzZXF/3dZvYCyd8D8A2ST5nZQ/MXkFwDsDbCViFEJFyPD35h9u8pkvcCuBzAQ61r1gGsA27LRXOp2JDgxhg1m/qkj5wsK5uS8nIKQ57z9PbBSZ5Lck/zO4D3A3g8tmFCCH9cFPwtAO4l2Vz/JTN7YGyCqVu+MemVMDxTC1M6cngIU1Hy3gpuZs8A+MMEtgghApNkqmrKVq6UFjXW2V6iLGIvVPFF4+BCVEwUBV9Z2RO1FYsVgS+5711yf7REXPY6j0VJ/XMpuBAVowouRMUUtx48FnJxp0fo4bK2yxz7nei6fyr3XQouRMXsGAVPTaihsRIX1CxjasOBqRU9VFpD1F8KLkTFVK/gJfW9Sxg2mRI+ZeczRXZI2l33j/XuHT10DJubW07XSsGFqJjiFHxIq5ej9UyF+t556eufT8Ubk4ILUTHZFDyEQpU0JbDBR81Seh07RblDnTDTHpPPuXXWkHyXggtRMVEUfHNzK3sfeAqbBjSMsXHMctQci2libaY55uQan350STGRIeUoBReiYlTBhaiY4obJhjDmWJxYuLjJsQ6CX7aTayyXfArBNZfdbbtc9il07VyQggtRMVEU/LnN04PVY4gqhA6OlLyTyxDbSn6OXAw5FSWnascqOym4EBWTvQ8e+yyvqTJ1NS65zGKdPhP6DLsQSMGFqJhsCt7XgvkqQF9/qkSFHGtTk5clPlPJhFDysXmeqqyk4EJUjLOCk9wFYAPAC2Z27dgEQ54PPoYSVS5U301KXh/Lyvvgfcedvj9EwW8FcGLA9UKIzDgpOMl9AD4I4G8BfHJoIl2qE1q5c41ljunPhVoSmIrYNg0puxDeSojnWXSPkjwoVwX/HIBPAfjtsgtIrpHcILkRxDIhhDe9FZzktQBOmVmn029m62a2amarwawTQnjh4qJfAeBDJD8A4GwAbyL5RTP76LIvXLSyG7dd967Om5Y8EcKHIW53LJd3JwXbhiywSdXtSbXox4VeBTezz5jZPjPbD+AjAL7ZVbmFEOWQfKJLbuXOoW4lBsyGUFJwrY9QtoY8orrLpmXvYajnGFTBzexbAL4VJGUhRHSSKHhu1V5ErOGNqau1DyWWswuh7V52v0WeSuz3RVNVhagYmlnwm+7fu8eWRdFTt/K1bL3jwxjPZIyyjC3b1GVUkqcx9tkP3nccz764xb7rpOBCVExyBW+TqjUtWclj7R3exkXJUyp3Q4yyKUmlXRiaB1JwIYQquBA1k91Fb8jpUk09yBPCXc/hmrcJUQ5Tcc19n1UuuhAijoKTNKAMVRhCLCWP/Uy5AoixnmvM8+R6b3LlvRRcCBFXwRt2kpJP1e4hTKWfG5Pcw65ScCFEmsUmYw6rn28hUyvGmBNJpWpiGTlPPJGCC1ExyTd8iHUuVAykymIZQ7w8lw0fYtUHKbgQFZNcwaeg3EK40uXl+ap7CKTgQlSMKrgQFRPFRXfZF70PBbjKpXE9VUbdtPMnx+QYKbgQFZM8yLYMqYGonUXveGxVl4ILUTHZFFyKPX3UF0/LmN1xXU4XPZvk90j+kOQTJA+Osk4IkRwXBf9fAFeb2WmSZwF4mOS/mdl3+76olj0NuZcuSsmH41pmvqft9FZw214wfnr28azZT/hF5EKI4Dht+EByF4DjAH4fwB1m9ldd169ecoFtHP1YGAvFQnKrdh+lqPmifJrC9k4uym1mYTZ8MLNXzewdAPYBuJzkpe1rSK6R3CC58eJLv3K5rRAiMoOGyczsJQAPArhmwf+tm9mqma3uPe+cUPYJITzo7YOT3AvgN2b2Esk3AngfgL+PbVhsF7QUF3IoofMl1gH0qQNvQ/LF5dqQdufsTrlE0c8HcOesH34GgK+a2f1xzRJChCDKrqohgmw5Wr0pqLpPvowdcgmxZjlE3pYQWEx1UGRDV5kFC7IJIaZJsQo+z9TPDgtBDuVuo914Xs+QdyXUe9yUpxRciB1O1NNFSzh90idKXIKSl6DcbaTk/4/vOzK2fHWyiRAi7nLR0NMEx2yB06hNW81cTltp378ERXchlnKL6SEFF6Jikm/4EFIVh2yBs0zJ5//W17fMeV7aTqTmGILvCbZ3fOdpp2ul4EJUjCq4EBWTfVfV1IEsF1e9fe0iStzFJHZwLbZrmyo4mOsATN+JLmPeNSm4EBWTXcHblLCgoMGlpS9RyadGrmG9VEqe852WggtRMVGnqpaIj1rknN4aej+vIdTS917GmOdLvWy0jaaqCiHK64MvIncL3zBkeutO7JPPP3OfWpVSpkOZWrlKwYWomEn1wUtq9fv6bVPvi4eKNyyzt4SynEpMpaGdZ9rwQYgdjiq4EBUTJcj23OZp3Hj4WKcL1Of6LHJh2vcrwc1LTZNvOSdPTC3Q1GYKu/mEerel4EJUTJQgG8nX3NRHyRfRVq+cSl6CGsQYkgpVZiUF2YZMaJlCmSnIJsQOJ8lEl64JImMmhrT7oYta5qkvnRxCyH55aG8rNyWpdiiO3HQVDt533OnaXgUneSHJB0k+SfIJkrd6WyiESIKLgr8C4C/N7FGSewAcJ/kNM3tyTILLNlXwUfJ52qq+EyPtbXZiXpTkYTUM8bBC2d+r4Gb2MzN7dPb7FoATAN4aJHUhRFQGRdFJ7gfwEIBLzeyXHdeNDs0varlCLs0LHVF2IXXfzkUphmxPFftkUNcyyaHKpZ4T7rpc1DnIRnI3gHsAfGJR5Sa5BmBtkJVCiKg4KTjJswDcD+DrZvbZvuubxSahFzv4tKY7aeZXSQpe0hZcPpRwvvm8DasHPo+NEz/1HwcnSQCHAZxwqdxCiHJwmehyBYAbAFxN8rHZzwci2yWECEBvH9zMHgbQ6woswmd4xuU7PpNjYpNz0oTLs5Y4jBSDrvdoSB747NSjXVWFEFHItqNLrN1GXFvY0K1qidMcQz3jlIJssXexaejKk5DPvCydYEE2IcR0iaLgq5dcYBtHP/a7z2OGbYYwZkgtxzlRqSlBwRuG2NJOL8ee8LljFH15LgUXQqRZLtq1KKQh9HZMMfp+U1DtKdKXry6jArUspAn9jknBhaiYbCebLGupujZxaGi31i4njojxhDitJVYkfurKHdsrlIILUTGq4EJUTHGHD44JyO10almxlZuU75Vvl2Vzc8vpWim4EBVTnIIvoi8gl4r59HIPmYV69iHrwmsl1TP7vjNjylwKLkTFTELBl+HSX6+NWMpdIrHLMrZyl7BIRwouRMVEUfDNzS0cPXQsSz+1hNM3p0yj7IvULcSElxIYc56cz2KZIYR+b6XgQlRM1D54zhY/tpJPSc2m0N8eS98ipZSnv8bezmlMOUrBhaiYKAr+3OZp3Hj42OvOHZtnCsoXmmWtdei8mLpi+3hdqU8THXuPVOemS8GFqBhVcCEqJmqQbZG74XNccK0MyYuu4OHUXfNUDHnnQgRpc65nl4ILUTHJp6q2J1LEUvIpTnQpaTFLjYRUbpd7te+Rw8NyOXzwCMlTJB9PYZAQIhwuCv7PAP4BwBdiGhJKyaeo3IvYiTGK3Dvhhkq/BOVu6FVwM3sIwC8S2CKECEywPjjJNQBrrtcvW9QwRrmmotpTXwgzJW+iZuU+ctNVOHjfcadrg1VwM1sHsA4AJMOfhySEGEyUKPpFK7sxf7po13j4MmJFlEOdF90Qoq88Zr7A/OepegQxiK3cLstIYyr3UDQOLkTF9Co4yS8DeA+AFZInAdxmZoeHJJJyaxwfNeva7GAKNHZPbUZbzs0zAX8Ps+s+vvi+i70V3Myu90pBCJENuehCVMykd1VdxNSHohpSTemthdhTR0Pn+zLXW+vBhRDORFXwnPuWL1Nyl0BU7GDbEC9j6oG/ZaR6D4YEwxblcd+wmIviupRdrMCoFFyIikm+q2rqPmQtffIuQj7jVDyFvvfIdxjL5z0dkofa8EEIMZokUfQSNzKYb2XHtKK5nsMlml7yhBcfL2NMpNwFH6+l67s+p6OEQgouRMUkHwfPNZ7b1U/NpXjtPMgZ2Xchd9mNIeVY95Bz7FO9a1JwISpGFVyIisk2VbXttrgEJEIeNVOSq14CsV3/EGuvQ9+/eWaf4N0QG4e8V6HKQwouRMUUs9jEpQUOGeTpWkM+hckei4Ye296Ji0fis4tNO/2SCP3MPkcD51DuBim4EBWT5Gyy0K2Slk76E7JMusojdt/bh1jpDFHu2N6iFFyIiknSBx+z55ULoZQ894KURfaHjOSniinkyL8haZYUW0llixRciIqJquBdUdyQ/fMci1l2UhygXX6xN8IIicsmDqHo63t32RLL+5GCC1ExSfrgXUszQ0faa1HW3LPqSl/40keOuIPPVlCxkIILUTGq4EJUjJOLTvIaALcD2AXgkJn9XWhDSnbVxxwOOIapHSgYqsym2J1yKZ92vuTYZbhXwUnuAnAHgD8F8HYA15N8e1SrhBBBcFHwywH8xMyeAQCSXwFwHYAnxyTYFzyaQgAnJS7BttjeSomUMgXWZRJXaOUeUkYuffC3Anh+7vPJ2d+EEIVDM+u+gPwwgGvM7ObZ5xsA/JGZfbx13RqAtdnHSwE8Ht7cwawA2MxtxIxSbCnFDkC2LMLVjovMbG/fRS4u+gsALpz7vG/2t9dgZusA1gGA5IaZrTrcOyql2AGUY0spdgCyJYUdLi769wH8AcmLSb4BwEcA/GsoA4QQ8ehVcDN7heTHAXwd28NkR8zsieiWCSG8cRoHN7OvAfjagPuujzMnOKXYAZRjSyl2ALJlEUHt6A2yCSGmi6aqClExQSs4yWtI/pjkT0h+OuS9B9pxhOQpklmH6kheSPJBkk+SfILkrRltOZvk90j+cGbLwVy2zOzZRfIHJO/PbMezJH9E8jGSG5ltOY/k3SSfInmC5B973zOUiz6b0vo0gPdhezLM9wFcb2ajZrx52nIlgNMAvmBml6ZOf86O8wGcb2aPktwD4DiAP8uUJwRwrpmdJnkWgIcB3Gpm301ty8yeTwJYBfAmM7s2hw0zO54FsGpm2cfASd4J4Ntmdmg2YnWOmb3kc8+QCv67Ka1m9jKAZkprcszsIQC/yJF2y46fmdmjs9+3AJxAplmAts3p2cezZj9ZAjAk9wH4IIBDOdIvEZJvBnAlgMMAYGYv+1ZuIGwF15TWDkjuB/BOAI9ktGEXyccAnALwDTPLZcvnAHwKwG8zpT+PAfh3ksdnszFzcTGAFwEcnXVdDpE81/emCrIlgORuAPcA+ISZ/TKXHWb2qpm9A9uzES8nmbz7QvJaAKfM7HjqtJfwbjO7DNurJf9i1r3LwZkALgPwj2b2TgD/A8A7jhWygjtNad1pzPq79wC4y8z+Jbc9ADBz/R4EcE2G5K8A8KFZ3/crAK4m+cUMdgAAzOyF2b+nANyL7a5mDk4CODnnVd2N7QrvRcgKrimtLWaBrcMATpjZZzPbspfkebPf34jtYOhTqe0ws8+Y2T4z24/td+SbZvbR1HYAAMlzZ8FPzNzh9yPTIikz+zmA50m+bfan92Lkkux5gm26WNKUVpJfBvAeACskTwK4zcwOZzDlCgA3APjRrO8LAH89mxmYmvMB3Dkb7TgDwFfNLOsQVQG8BcC92+0wzgTwJTN7IKM9twC4ayaQzwA44HtDzWQTomIUZBOiYlTBhagYVXAhKkYVXIiKUQUXomJUwYWoGFVwISpGFVyIivk/YvwfZIiSgxgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFjBJREFUeJzt3X2QXXV9x/HPp8mqK9BdlejABgzt1Ew1CcTZMtVYx5pqcCQ2pp3U+oDaPzKdtoBTJwz4R0SmGlqmYtMHOxREVNSuCJkCFmR4EO0odENwgzyM1WKTjTSLkgB2qyF++8c5azZpdvfcvefsOb9z36+Znbt77tm738sNn/u7v6fjiBAAIB2/VHcBAIDOENwAkBiCGwASQ3ADQGIIbgBIDMENAIkhuNEott9n+xuz3P9p23+xkDUBTUNwY0HYvsf2U7afX3ctc8nfPA7bfjb/+k/b19p+RQePwRsMKkNwo3K2l0n6LUkh6W21FlPcNyPiREkDkn5H0qSknbZX1FsWQHBjYZwn6VuSPi3pvdPvsP0S2/9i+2nb90v61QKP9yLbt9p+xvZ9tn/xO7Zfa/vfbR/Mb1877b4X5y3nfXnrf8dcfygiDkfE9yLiTyR9TdKl0x7vS7afyP/WvbZflR/fLOldki7KW+w358cvtv29vO6Hbb+9wHMF/h+CGwvhPEnX51/rbL9s2n1/L+l/JZ0i6Y/yr7m8Q9JHJL1I0n9I+qiUBbOkWyVtl/QSSR+XdKvtl+S/91lJL5T0KkkvlXRlh8/jRmWfHKb8q6Rfyx/rgfz5KSKuyr//q4g4MSLW5+d/L//9gbz+z9k+pcMaAIIb1bL9OkkvlzQSETuVhdc78/sWSfo9SVsj4icR8ZCk6wo87E0RcX9EPKcsIM/Kj79V0ncj4rMR8VxEfEHSo5LW5wH5Fkl/HBFPRcShiPhah09nn6QXT/0QEZ+KiGci4qfKWuJn2h6Y6Zcj4ksRsS8ifh4R/yzpu5LO7rAGgOBG5d4r6asR8WT+8+d1pLtkiaTFkvZMO/8HU9/Y/tC0AcJ/nHbOE9O+/x9JJ+bfnzr996c93pCk0yT9OCKe6uK5DEn6cV7bItuX510fT0t6PD/n5Jl+2fZ5th+0fcD2AUkrZjsfmMniugtAe9nul7RJ0iLbU2H7fEmDts+U9JCk55SF6qP5/adP/X5EfEzSxzr4k/uUte6nO13SbcreHF5sezAiDnT6XHJvl/T1/Pt3SvpdZQOXjyvr/nhKkvP7j9p20/bLJf2TpLXKBj4P235w2vlAYbS4UaUNkg5LeqWy7oyzJP26svA7LyIOK+s3vtT2C22/UscMXnboK5JeYfudthfb/oP8b98SET9U1if9D7ZfZLvP9uvnesC8ZX2G7b+V9AZlfdOSdJKkn0r6kbJ+82PfYP5b0q9M+/kEZWE+kT/u+5W1uIGOEdyo0nslXRsR/xURT0x9Sfo7Se+yvVjSnynr6nhC2ayTa+f7xyLiR5LOlfRBZYF6kaRzp3XTvEfSIWWt+/2SPjDLw73G9rOSnpZ0j6RflvQbEbE7v/8zyrphxiU9rGzWzHTXSHpl3i2yIyIelvTXkr6pLNRXSvq3+T5X9DZzIQUASAstbgBIDMENAIkhuAEgMQQ3ACSmknncJ598cixbtqyKhwaAVtq5c+eTEbGkyLmVBPeyZcs0OjpaxUMDQCvZPnbV74zoKgGAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJIbgBIDGFgtv2oO0bbD9q+xHbr6m6MADA8RVdgPM3km6LiN+3/TxlG8c329iIdOdl0sG90sBSae1WadWmuqsCgK7NGdz5xU9fL+l9khQRP5P0s2rL6tLYiHTzBdKhyezng3uynyXCG0DyinSVnKHsckvX2t5l+2rbJxx7ku3Ntkdtj05MTJReaEfuvOxIaE85NJkdB4DEFQnuxZJeLemTEbFa0k8kXXzsSRFxVUQMR8TwkiWF9kmpzsG9nR0HgIQUCe69kvZGxH35zzcoC/LmGlja2XEASMicwZ1f3HWP7eX5obXKLo7aXGu3Sn39Rx/r68+OA0Diis4qOV/S9fmMku9Len91JZVgagCSWSUAWqhQcEfEg5KGK66lXKs2EdQAWomVkwCQGIIbABJDcANAYghuAEgMwQ0AiankKu+YAxtgtdKOXeO64vbHtO/ApE4d7NeWdcu1YfVQ3WWhhQjuhcYGWK20Y9e4LrlxtyYPHZYkjR+Y1CU37pYkwhulo6tkobEBVitdcftjvwjtKZOHDuuK2x+rqSK0GcG90NgAq5X2HZjs6DjQDYJ7obEBViudOtjf0XEkZGxEunKFdOlgdjs2UndFBPeCYwOsVtqybrn6+xYdday/b5G2rFs+w28gCVNjUgf3SIojY1I1hzfBvdBWbZLWb5cGTpPk7Hb9dgYmE7dh9ZC2bVypocF+WdLQYL+2bVzJwGTqGjomxaySOrABVittWD1EULdNQ8ekaHEDwEwaOiZFcAPATBo6JkVwA8BMGjomRR83AMymgWNStLgBIDEENwDMR40Lc+gqAYBO1bxZHC1uYC4NXPKMmtW8MIcWNzAbtuHF8dS8MIcWd1G0unpTQ5c8o2Y1L8whuIto6EYzWAANXfKMmtW8MIfgLoJWV+9q6JJn1KzmhTmF+rhtPy7pGUmHJT0XEcNVFtU4tLp619qtR/dxS41Y8owGqHFhTieDk78dEU9WVkmTDSzNu0mOcxztNvU/Jhd3RoMwq6QIWl29rYFLntHbivZxh6Sv2t5pe/PxTrC92fao7dGJiYnyKmyChm40A6A3OSLmPskeiohx2y+VdIek8yPi3pnOHx4ejtHR0RLLBICZ7dg1rituf0z7Dkzq1MF+bVm3PLmLWtjeWXT8sFCLOyLG89v9km6SdPb8ywOA8uzYNa5Lbtyt8QOTCknjByZ1yY27tWPXeN2lVWbO4LZ9gu2Tpr6X9GZJD1VdGI7BAqBm4nWp3RW3P6bJQ4ePOjZ56LCuuP2xmiqqXpHByZdJusn21Pmfj4jbKq0KR2PZdTPxujTCvgOTHR1vgzlb3BHx/Yg4M/96VUR8dCEKwzQsAGomXpdGOHWwv6PjbcDKyRSwAKiZeF0aYcu65ervW3TUsf6+RdqybnlNFVWP4E4By66bidelETasHtK2jSs1NNgvSxoa7Ne2jSuTm1XSCRbgpIAFQM3E69IYG1YPtTqoj0Vwp6DiZddtmANbC5bDoyaFFuB0igU46ZiaAzt9OlV/36LWf9QEmqb0BThor16cAwukjuDucb04BxZIHcHd43pxDiyQulYF945d41pz+V064+Jbtebyu1q9V0FZenEOLJC61swqOXaQbWqjGUkMss1i6r8Ns0qAdLQmuGcbZCOEZtdrc2BRDNNEm6s1wc0gG1AePsE2W2v6uBlkA8rDNNFma01wM8gGlIdPsM3WmuDuxY1mgKrwCbbZWtPHLTHIBpRly7rlx90KgU+wzdCq4AZQDqaJNhvBDeC4+ATbXK3p4waAXkFwA0BiCG4ASEzP9XGzjBdA6noquFnGC6ANeqqrhGW8ANqgp4KbZbwA2qBwcNteZHuX7VuqLKhKLOOt0NiIdOUK6dLB7HZspO6KgNbqpMV9oaRHqipkIbARVUXGRqSbL5AO7pEU2e3NFxDeQEUKBbftpZLeKunqasupFhtRVeTOy6RDx3Q3HZrMjgMoXdFZJZ+QdJGkkyqsZUGwjLcCB/d2dhxAV+Zscds+V9L+iNg5x3mbbY/aHp2YmCitQCRgYGlnxwF0pUhXyRpJb7P9uKQvSnqj7c8de1JEXBURwxExvGTJkpLLRKOt3Sr1HTPA29efHQdQujmDOyIuiYilEbFM0jsk3RUR7668MqRj1SZp/XZp4DRJzm7Xb8+OAyhdT62cRIVWbSKogQXSUXBHxD2S7qmkEgBAIT21chIA2oDgBoDENLaPm+1XAeD4GhncbL8KADNrZFcJ268CwMwaGdxsvwoAM2tkcLP9KgDMrJHBzfarADCzRg5OTg1ALvSsEmayAEhBI4NbWvjtV5nJAiAVjewqqQMzWQCkguDOMZMFQCoI7hwzWQCkguDOMZMFQCoaOzi50OqayQIAnSK4p+FCwgBSQFcJACSG4AaAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJacw8brZUBYBiGhHcbKkKAMU1oquELVUBoLg5g9v2C2zfb/vbtr9j+yNlF8GWqgBQXJEW908lvTEizpR0lqRzbP9mmUWwpSoAFDdncEfm2fzHvvwryiyCLVUBoLhCfdy2F9l+UNJ+SXdExH3HOWez7VHboxMTEx0VsWH1kLZtXKmhwX5Z0tBgv7ZtXMnAJAAchyOKN55tD0q6SdL5EfHQTOcNDw/H6OhoCeUBQG+wvTMihouc29Gskog4IOluSefMpzAAQPfmnMdte4mkQxFxwHa/pDdJ+svKKwOAWfTyor0iC3BOkXSd7UXKWugjEXFLtWUBwMx6fdHenMEdEWOSVi9ALQBQyGyL9nohuBuxchIAOtHri/YIbgDJ6fVFewQ3gOT0+qK9RuwOiObq5ZF7NNfUv8Fe/bdJcGNGvT5yj2bbsHqoZ/8d0lWCGbHdLtBMBDdm1Osj90BTEdyYUa+P3ANNRXBjRr0+cg80FYOTmFGvj9wDTUVwY1a9PHIPNBVdJQCQGIIbaKuxEenKFdKlg9nt2Eix+9B4dJUAbTQ2It18gXQon7p5cE/285SZ7lu1aWHrxLwQ3EAb3XnZkWCecmgyOz71/fHuI7iTQHADbXRwb2fH57oPjUIfN9BGA0tnPj7bfUgCwQ200dqtUt8xK1z7+rPjs92HJNBVArTRVF/1nZdlXSADS7Ngnt6HPdt9aDRHROkPOjw8HKOjo6U/LoDjGBshhFvA9s6IGC5yLi1uIGWzTfsjvFuL4AZKUsvVgmab9kdwtxbBDZSgtqsFzWfaH5LHrJK6sfS4FWq7WhBT+3oSwV2nqf7Jg3skxZH+ScI7ObVdLYipfT1pzuC2fZrtu20/bPs7ti9ciMJ6wlzLkpGM2q4WtGqTtH67NHCaJGe367fTv91yRfq4n5P0wYh4wPZJknbaviMiHq64tvajf7I1tqxbflQft7SAVwtatYmg7jFztrgj4ocR8UD+/TOSHpHEzvploH+yNTasHtK2jSs1NNgvSxoa7Ne2jSu5CAUq0dGsEtvLJK2WdN9x7tssabMknX766SWU1gPWbj16Dq5E/2TCuFoQFkrhwUnbJ0r6sqQPRMTTx94fEVdFxHBEDC9ZsqTMGtuL/kkA81CoxW27T1loXx8RN1ZbUo+hfxJAh4rMKrGkayQ9EhEfr74kAMBsirS410h6j6Tdth/Mj30oIr5SXVnlqmUpMgBUZM7gjohvSPIC1FKJ2pYiA0BFWr9ysralyABQkdYHd21LkQGgIq0P7tqWIgNARVof3FvWLVd/36Kjji3YUmQAqEDr9+OeGoBkVgmAtmh9cEssRQbQLq3vKgGAtiG4ASAxBDcAJIbgBoDEENwAkBiCGwASQ3ADQGJ6Yh43ysH2uEAzENwohO1xgeagqwSFsD1uDxobka5cIV06mN2OjZT20Dt2jWvN5XfpjItv1ZrL79KOXeOlPXYvoMWNQtget8eMjUg3XyAdyl/fg3uyn6Wur5HKp7futarFzbt4ddget8fcedmR0J5yaDI73iU+vXWvNcE99S4+fmBSoSPv4oR3Odget8cc3NvZ8Q7w6a17rQlu3sWrtWH1kLZtXKmhwX5Z0tBgv7ZtXFn9R9sK+1kxi4GlnR3vAJ/euteaPm7exau34NvjVtjPijms3Xr0f3tJ6uvPjndpy7rlR/VxS3x661RrgvvUwX6NHyekeRfvTq1zt2frZyW4qzX13/fOy7LukYGlWWiX8N+di5t0rzXBzbt4+Wof/a+wnxUFrNpU2RskFzfpTmv6uGvrg22x2scNKuxnBVLWmha3xLt42WofN6iwnxVIWWta3Chf7aP/qzZJ67dLA6dJcna7fjv92+h5c7a4bX9K0rmS9kfEiupLQlM0Ytygwn5WzB8bjtWrSIv705LOqbgONBDjBjgeFrvVb84Wd0Tca3tZ9aWgiRg3wLFmG7Tm38rCKK2P2/Zm26O2RycmJsp6WAANU/ugNcoL7oi4KiKGI2J4yZIlZT0sgIapfdAazCoB0Bk2HKtfq+ZxA3XqlZkWLFmvX5HpgF+Q9AZJJ9veK+nDEXFN1YUBKal9e4AFxqB1vYrMKvnDhSgESFlqMy1K/XQwNlLJZlSlaXp980BXCVCClGZalPrpoOlb7za9vnlicBIoQUozLUrdPKzCS5yVoun1zRPBDZQgpZkWpX46aPrWu02vb54IbqAEKW0PUOqng6Zvvdv0+uaJPm6gJKnMtCh187Cmb73b9PrmieAGekyp87ArvMRZKZpe3zw5Ikp/0OHh4RgdHS39cbEAWjh1CkiB7Z0RMVzkXFrcOKKlU6eAtmFwEke0dOoU0DYEN45o6dQpoG0IbhzR0qlTQNsQ3Dhi7dZsqtR0LZg6BbQNwY0j5rqq+tiIdOUK6dLB7HZspNZyUQFe4yQwqwRHm+mq6sw4aT9e42TQ4kYxzDhpP17jZBDcKIYZJ+3Ha5wMghvFMOOk/XiNk0FwoxhmnLQfr3EyCG4UM9eME6SP1zgZbDIFAA3QySZTtLgBIDEENwAkhuAGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AialkAY7tCUk/KP2B63GypCfrLqJEPJ9m4/k0X1XP6eURsaTIiZUEd5vYHi26mikFPJ9m4/k0XxOeE10lAJAYghsAEkNwz+2qugsoGc+n2Xg+zVf7c6KPGwASQ4sbABJDcANAYgjuGdj+lO39th+qu5Yy2D7N9t22H7b9HdsX1l1TN2y/wPb9tr+dP5+P1F1TGWwvsr3L9i1119It24/b3m37QdvJX1nF9qDtG2w/avsR26+prRb6uI/P9uslPSvpMxGxou56umX7FEmnRMQDtk+StFPShoh4uObS5sW2JZ0QEc/a7pP0DUkXRsS3ai6tK7b/XNKwpF+OiHPrrqcbth+XNBwRrViAY/s6SV+PiKttP0/SCyPiQB210OKeQUTcK+nHdddRloj4YUQ8kH//jKRHJA3VW9X8RebZ/Me+/CvpVojtpZLeKunqumvB0WwPSHq9pGskKSJ+VldoSwR3T7K9TNJqSffVW0l38m6FByXtl3RHRCT9fCR9QtJFkn5edyElCUlftb3T9ua6i+nSGZImJF2bd2VdbfuEuoohuHuM7RMlfVnSByLi6brr6UZEHI6IsyQtlXS27WS7tGyfK2l/ROysu5YSvS4iXi3pLZL+NO9+TNViSa+W9MmIWC3pJ5IurqsYgruH5H3BX5Z0fUTcWHc9Zck/st4t6Zy6a+nCGklvy/uFvyjpjbY/V29J3YmI8fx2v6SbJJ1db0Vd2Stp77RPdTcoC/JaENw9Ih/Mu0bSIxHx8brr6ZbtJbYH8+/7Jb1J0qP1VjV/EXFJRCyNiGWS3iHproh4d81lzZvtE/JBcOVdCm+WlOwMrYh4QtIe28vzQ2sl1Tawv7iuP9x0tr8g6Q2STra9V9KHI+KaeqvqyhpJ75G0O+8XlqQPRcRXaqypG6dIus72ImUNkJGISH4KXYu8TNJNWXtBiyV9PiJuq7ekrp0v6fp8Rsn3Jb2/rkKYDggAiaGrBAASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxPwf7Fn+ks2DEBcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'A': 0, 'B': 1}\n" + ] + } + ], + "source": [ + "feature_dim = 2 # dimension of each data point\n", + "training_dataset_size = 20\n", + "testing_dataset_size = 10\n", + "random_seed = 10598\n", + "shots = 1024\n", + "\n", + "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", + " training_size=training_dataset_size, \n", + " test_size=testing_dataset_size, \n", + " n=feature_dim, gap=0.3, PLOT_DATA=True\n", + ")\n", + "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", + "print(class_to_label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we create the svm in the non-programming way.\n", + "In the following json, we config:\n", + "- the algorithm name \n", + "- the variational form\n", + "- the feature map \n", + "- the optimizer" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "params = {\n", + " 'problem': {'name': 'classification', 'random_seed': 10598},\n", + " 'algorithm': {'name': 'VQC', 'override_SPSA_params': True},\n", + " 'backend': {'shots': 1024},\n", + " 'optimizer': {'name': 'SPSA', 'max_trials': 200, 'save_steps': 1},\n", + " 'variational_form': {'name': 'RYRZ', 'depth': 3},\n", + " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2}\n", + "}\n", + "\n", + "svm_input = ClassificationInput(training_input, test_input, datapoints[0])\n", + "backend = Aer.get_backend('qasm_simulator')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With everything setup, we can now run the algorithm.\n", + "\n", + "For the testing, the result includes the details and the success ratio.\n", + "\n", + "For the prediction, the result includes the predicted labels. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 1.0\n", + "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" + ] + } + ], + "source": [ + "result = run_algorithm(params, svm_input, backend=backend)\n", + "print(\"testing success ratio: \", result['testing_accuracy'])\n", + "print(\"predicted classes:\", result['predicted_classes'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Part II: programming way.\n", + "We construct the svm instance directly from the classes. The programming way offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we create the svm in the programming way.\n", + "- we build the optimizer instance (required by the svm instance) by instantiating the class SPSA.\n", + "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion.\n", + "- We build the varitional form instance (required by the svm instance) by instantiating the class RYRZ.\n", + "- We build the svm instance by instantiating the class VQC. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "backend = Aer.get_backend('qasm_simulator')\n", + "optimizer = SPSA(max_trials=100, c0=4.0, skip_calibration=True)\n", + "optimizer.set_options(save_steps=1)\n", + "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2)\n", + "var_form = RYRZ(num_qubits=feature_dim, depth=3)\n", + "svm = VQC(optimizer, feature_map, var_form, training_input, test_input)\n", + "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we run it." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 1.0\n" + ] + } + ], + "source": [ + "result = svm.run(quantum_instance)\n", + "print(\"testing success ratio: \", result['testing_accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Different from the non-programming way, the programming way allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", + "\n", + "Use the trained model to evaluate data directly, and we store a label_to_class and class_to_label for helping converting between label and class name" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "prediction: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n" + ] + } + ], + "source": [ + "predicted_probs, predicted_labels = svm.predict(datapoints[0])\n", + "predicted_classes = map_label_to_class_name(predicted_labels, svm.label_to_class)\n", + "print(\"prediction: {}\".format(predicted_labels))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb new file mode 100644 index 000000000..d0b72e1f8 --- /dev/null +++ b/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb @@ -0,0 +1,362 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Experiment with classification problem with quantum-enhanced support vector machines*_\n", + "\n", + "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", + "\n", + "***\n", + "### Contributors\n", + "Vojtech Havlicek[1], Kristan Temme[1], Antonio Córcoles[1], Peng Liu[1], Richard Chen[1], Marco Pistoia[1] and Jay Gambetta[1]\n", + "### Affiliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "Classification algorithms and methods for machine learning are essential for pattern recognition and data mining applications. Well known techniques such as support vector machines and neural networks have blossomed over the last two decades as a result of the spectacular advances in classical hardware computational capabilities and speed. This progress in computer power made it possible to apply techniques, that were theoretically developed towards the middle of the 20th century, on classification problems that were becoming increasingly challenging.\n", + "\n", + "A key concept in classification methods is that of a kernel. Data cannot typically be separated by a hyperplane in its original space. A common technique used to find such a hyperplane consists on applying a non-linear transformation function to the data. This function is called a feature map, as it transforms the raw features, or measurable properties, of the phenomenon or subject under study. Classifying in this new feature space -and, as a matter of fact, also in any other space, including the raw original one- is nothing more than seeing how close data points are to each other. This is the same as computing the inner product for each pair of data in the set. So, in fact we do not need to compute the non-linear feature map for each datum, but only the inner product of each pair of data points in the new feature space. This collection of inner products is called the kernel and it is perfectly possible to have feature maps that are hard to compute but whose kernels are not.\n", + "\n", + "In this notebook we provide an example of a classification problem that requires a feature map for which computing the kernel is not efficient classically -this means that the required computational resources are expected to scale exponentially with the size of the problem. We show how this can be solved in a quantum processor by a direct estimation of the kernel in the feature space. The method we used falls in the category of what is called supervised learning, consisting of a training phase (where the kernel is calculated and the support vectors obtained) and a test or classification phase (where new unlabelled data is classified according to the solution found in the training phase).\n", + "\n", + "References and additional details:\n", + "\n", + "[1] Vojtech Havlicek, Antonio D. C´orcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta1, \"Supervised learning with quantum enhanced feature spaces,\" [arXiv: 1804.11326](https://arxiv.org/pdf/1804.11326.pdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from qsvm_datasets import *\n", + "\n", + "from qiskit import Aer\n", + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua.input import ClassificationInput\n", + "from qiskit.aqua import run_algorithm, QuantumInstance\n", + "from qiskit.aqua.algorithms import QSVM\n", + "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", + "\n", + "# setup aqua logging\n", + "import logging\n", + "from qiskit.aqua import set_qiskit_aqua_logging\n", + "# set_qiskit_aqua_logging(logging.DEBUG) # choose INFO, DEBUG to see the log" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Setup token to run the experiment on a real device\n", + "If you would like to run the experiement on a real device, you need to setup your account first.\n", + "\n", + "Note: If you do not store your token yet, use `IBMQ.save_accounts()` to store it first." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# from qiskit import IBMQ\n", + "# IBMQ.load_accounts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", + "\n", + "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFZRJREFUeJztnW+spUV9x79fllVgd3UT79asLmFJ2hjNJhV6Q9NgWIuppUrUF76QRJJeXO6bSjC+MNKkwX3RtE0aI0lJ02WXLUbUGCihIRY1EaGait5FVNhFYiiEBc1ya4n3tlhW/PXFPcecfXKec+Z55u8z5/tJNuxhnzPze2bOzPc3M7+ZoZlBCFEn5+U2QAgRDzVwISpGDVyIilEDF6Ji1MCFqBg1cCEqRg1ciIpRAxeiYtTAhaiY82MkurT7Itu/d/dvP6+vb8z/ztKu1n9rfv+59c1zPl+ytHNu+s3vzMIlvRD5dMnP5Z1nlaErPnXl8l0XXMrQp4665NMn39h1tb6+gf/a+BU2fnWW856N0sD3792NteM3/vbz8aMPz/3OyqGDrf/W/P4Nx879fOsH/2Bu+s3vzMIlvRD5dMnP5Z1nlaErPnXl8l0XXMrQp4665NMn39h1dfzowzh8/wmnZ6M08ElDYnz3zo+5F06XSuySbmrGts16n3GZhWjoXQjVsIfAuPxn/VZi19XKoYO4/TtPOz2rMbgQFRNVwbuQUwWavXGzV3WxrY+714cSvIwSFLtNSbvUnYvS+uBSV7G9Lim4EBWjBi5ExTi56CR3AzgK4AAAA3CDmf1H2/Pr6xtJ3LixWzMtr3lu1zT3qY+blMo1T8WsMk1FSNd5sk7b3qlPfi6TbV1o2hbKZXcdg98G4EEz+zDJ1wG4KEjuQoiozG3gJN8I4CoAfw4AZvYqgFfjmjWdEL1aKOUOQQkTZkOni5LO804m08jtmYWafHMZg18K4CUAx0n+gORRkjuaD5FcJblGcm3zlbNeRgkhwuDiop8P4HIAN5nZoyRvA/BpAH81+ZCZHQFwBAD279nlfZKjS8/VZZw4bzmlJkL0/i5j1xJxeXeXpbTYS2iuTNrWpz5dFPw0gNNm9ujo8z3YavBCiMKZq+Bm9nOSz5N8m5n9BMB7AJx0SXxa7zdvrBRKWdvyCZV+7p5dnIvPrPassXkzvdCz512YtM91Y4/rLPpNAO4ezaA/A2Clq3FCiPQ4NXAzexzAsmuiz61vdla4LsraZ0xY85g7NiWsjXelzzxElzXzWMxqN33yViSbEBXDGFcXkTwn0Vk9Tx9l7aIksfZI+4zBU43fQnstIRV8mm1t6fcp61DxDiHeuctZB2Nc3tnM5h74IAUXomLUwIWomGz7wUMFYYj8dFkOHVrd+Uwwurxr7AlMKbgQFRN1kq2kjR19mHfYY19SB0nEnmzrsrTTJwQ59ISm74GHroSY1Jv17ppkE2LBiTIGv2RpZ5BjbX3IdcLoLLQ9tAx8TzSdTCN0Ps30fbewSsGFqJjks+gxjqaZ1ZuWqOSpGVoZtKlY6A0+qZS8D7Ns6lIOUnAhKmaQ6+BjfK9E8kl3Hhpvb5F6e2WffGJ7ONN+Tz5eAwDnq4uk4EJUjBq4EBVTzNVFLpS4H3lIrrjv+V4hbeiTf+xTT0O50l3y0uWDQojeRAlV3b9nl00Guvj2gn1CI3NNrg2NEGGbfa5ojn2Cz1BxLZfllTuwdupFhaoKschEHYOHCurvc89Y37xEeQzxTLi+hA4Ek4ILUTFRFHxpaVfnnifUFkHXfBdBDVzIFcZawoz+EGj7nbqeiy4FF6Jisq2Dh1Ds1DOyXU4CHRqplDzEDSTAMMs99JnnLkjBhagYJwUn+SyADQCvAfi1mTnfcgKUca54LbehxN684aLkzbL03c4Z03sIfUttH1zKJdZdd11c9D82s/UoVgghoiAXXYiKcQpVJfmfAP4bgAH4JzM7Muv5ZqjqJCFd8z5XwrhQUpirS3nF3vDSLI+QVwwB/U5enWdLl7RSTdiFdsNdTlV1ddHfZWYvkPwdAN8g+ZSZPTL5AMlVAKsA8KYdr+9srBAiPJ03m5D8DIBNM/v7tmfGCj60c8RTnZftQuzw3BiEUvAxPkpekhc2jRBtI8i56CR3kNw1/juA9wJ4wts6IUR0XFz0NwO4j+T4+S+a2YOzvvDc+qZ3D+WrUM38U41ThxiAkZvU57a1kTKQJtZJsU3mNnAzewbA70e1QggRheKObOrTi/v2giEDLHzCWWP35kPDZVzdVrZDOQs+tpJrHVyIiilGwWMpdwn3VIccn+cep+akT/nF3pba5W70HEjBhagYNXAhKqYYF92FPqd31sIQ3if2ueW+dJl48xlWtb37rDqMNdkmBReiYrIreGhlGoLSdcH35JNJUgbhdFGk1HUW8uTSLl5LDq9GCi5ExUS52YTk3ERzKW3OwIfYClr6BotFIZVSB9lsIoQYLknG4LWNi0sglCcyhE0yQ7vHrO33rjG4ECIoSW4XLYmhj8Fj21+CAo4p6QCOVHRReY3BhVhwoij48tvfYmvHb/RKI1YPPFQFH6rdfRiCl5JzXmCs8lJwIRYcNXAhKmZhXPQST/ZweceS7E7lque8yrgruYYTh+8/gWdf2pCLLsQiU72Cl6SAtbEIXlapLK/cgbVTL0rBhVhksm8XbSLlHg5DCHNddKTgQlRMdgVX7z98Qin5UM4yHxJScCEqxlnBSW4DsAbgBTO7tm+GUux6CXW3l5Q8HF0U/GYAp2IZIoQIj5OCk9wH4P0A/hrAJ10Tz6HWQ+z1+5RT6e8ZYlwe8nDEUulbPuvrG07PuSr45wB8CsBv2h4guUpyjeTaSy//r2OyQoiYzG3gJK8FcMbMTsx6zsyOmNmymS3v2X1RMAOFEP1xcdGvBPABku8DcAGAN5D8gpl9tO0L6+sbmkybQsgyiX2pXihCBsPMSqPkMsjJXAU3s1vMbJ+Z7QfwEQDfnNW4hRDlkD3QJTSlLLGk9GBKeeecyGOcTqcGbmbfAvCtKJYIIYJTnYKnJqRyTJ6o2ecseSm5aKJQVSEqZmHORc95b1eIGy1C3jKakqGPjXPV3Tx0ZJMQYnHG4LGUJNV9U+N8hnLP2xCVO1Zdzko3dn1KwYWoGDVwISpmYSbZQpDj+tc2urh2qSbbYrvlXco/lOubqs672qtJNiFEnEm2paVdWDl0cJATLZOUpNglE+tyvRBp+Cr5UCY125CCC1ExC7NM5kKtih06hHVIS46+4b9DRwouRMVoFh3DVG5fNcp5gT2Qt8xjK3mKVQvdTSaE0Bh8aIRSn1wrHCV4S7HCfkvY3NNECi5ExSysgpegJCIvoTeBtHlFOZVdCi5ExaiBC1Ex1bvotbjiixikkZN5v5su9RFjQjP01UVCiAFShYLXotLTqE25x+8z9DrLeUpLF6TgQlTMIENVh977u5A7nDJlIEzt9elTl231FCxUleQFJL9H8ocknyR5uIedQogMuIzB/w/A1Wa2SXI7gG+T/Dcz+25k2xaOWKrdJ9Bi1ndCq3st4/ImJZxlP7eB25YPvzn6uH30J7xfL4QIjtMsOsltAE4A+F0At5vZo1GtmsOsnrE2FfAhVohkM91Qit6s16HWZUkHYjrNopvZa2b2TgD7AFxB8kDzGZKrJNdIrm2+cja0nUKIHnRaJjOzlwE8BOCaKf92xMyWzWx554XbQ9knhPBg7jIZyT0AzprZyyQvBPB1AH9nZg+0fafEE11Kdvdq3Jcc61rl0uhbd7515LpM5jIG3wvgrtE4/DwAX5nVuIUQ5eAyi/4jAJclsMWZce/XRSVKnJirUbnHxJqIy01JYaguKFRViIoZ1GaTpiqEOhm0rVcueew3SUnK3UYfr6skQiu3bzlou6gQIs5mE5KtiYboCUMrlk9vmuPGS2AYqj2NVGXtS+ljbd0uKoRIPwZv64V9jsDxVbO277uoTek9vWhnEepOCi5ExQzywIdZxBybljADPNSx95jYd4kPXZW7zDOYmcbgQiwyauBCVEx1LvqY2K5sLnd9qC56CcObJiHKMtR79VkClIsuxIIzqFBVF1IpXK2bKUJTu6czmU+JvwEpuBAVk03BhzqWbGPomylCkPLda/v9uJxHN/nM4ftPOKUrBReiYrIpeOhw01JYJCWP9Y5D+i3EKoNQATtScCEqJso6+PLb32Jrx2/06t2G1ItPI7aC5ywfKXf++g12N5kQYriogQtRMVFd9DGh3ZkhuXJAfncuFIvsmpdWh3LRhRBplsm6hPPNW+Cfl8YQ1CA04/KI9e4h6qxJ6fWUapmziMsHhRDDJMkYfBp9VKGJSzBACUqROugl1TZInzpaxHqZRt9yCDYGJ3kxyYdIniT5JMmbe1kkhEiOy+2iewHsNbPHSO4CcALAh8zsZNt3XBS8yazetM9m+JKUY0hbJkMp9xjVQxyCnYtuZj8zs8dGf98AcArAW/1NFELEptMYnOR+AI8AOGBmv2x7bnxkU2gFGZKSl6gWs945tHKPUfmHZ1wPQY9sIrkTwL0APjGtcZNcJblGcm3zlbMdzBVCxMJJwUluB/AAgK+Z2WfnPe9y6GKIm0FD3wsWUlVqUhCfO8Ga5V7SvXJDo1kPQRScJAEcA3DKpXELIcrBxUW/EsD1AK4m+fjoz/si2yWECEAx1we7uG4hJoJiu+o1uoy5J9dqLFNXZpW9zkUXYsFJruBNYiu6DyEmAmsgpIKP8V2yqx2XMpeCC7HgZFfwJrN6/rZevwQlL0F12np93xM6Yyh4KoZSd2N0fbAQwpniFHwaXcbpMXvj0u+hCrGC0CfdkHn5UsIKSJez8X2CiKTgQiw4g1DwMX3WsEtU2liEDt3tmn7OcXfqu759x/Y+yj1GCi7EgqMGLkTFDMpFHyNXfTqxXfS2/Ibumo8JdVpviN2PLshFF2LBGaSCj/HZOFKjoqdW8NTkOPe9ROUeIwUXYsGJcrPJJUs7MXmiS6weTIg+hPTeYi+F+SIFF6JiktxNNm28l6p3i31vV22kDv91IVTd9XmP5u8nd1l0RQouRMUUcz947A0Ni3TAQJ9toyVuqyxh44gPsb1UzaILseAUe7toKEpUptg0lcNXuZuUcMBGk6HXYdebWoPdTSaEGC5q4EJUTJJlsmmUtOzgY0sJGy6alGRLbBaxzlYOHcTt33na6VkpuBAVk22SrUloJY+9xOJzukkJG2BKXIKaZ1OXfENtvAlpUx/a8l9euQNrp14McvngnSTPkHyih31CiIy4jMH/GcA/APi8a6Lr6xs4fvThTipR2wENkwrSVIi28NnST23NRSzlnkWu0ObQ+c5VcDN7BMAvguYqhEhCsFl0kqsAVgHgTTteD8Bvo0fpajZWZRfF6DNrG2OVYWgbbmIrd7M+YpdPjvIPNotuZkfMbNnMlndeuD1UskIID5Ksg0/2xD5qnjq8tUTPISepyiP1mDtWaGzMI6bW1zecntU6uBAVM1fBSX4JwLsBLJE8DeBWMzs26zvPrW/ihmMPFxUpFAufsbjLHEWbNzEtP5+71ksglYcwLqchKndX5jZwM7uulzVCiOzIRReiYqJOsk1bHgqxdDb0ya8SNzsMjdRXGqd2zUP9xqXgQlRMtu2isU87TX2aapfJtljU7hnkCEOdp6S+v6/Y3qgUXIiKSXKzySwWWcmbz3RZLptU6dhew5DnPCbLKaRy9yFHOUrBhaiYbGPwJi5K69MD6oaT4ZJqxnza76ttXiPWab2hV4qk4EJUTDEKPqaWMXmfMbLvppyQDHncPUlfpW2rs9DKHbuepeBCVIwauBAVU5yLPo1USxZd3KWQQSVd0po2CVNCkE0MYk+u+ezQa0tjWjrT0kg1BJOCC1Exg1DwVJtM+kzAuahvKoWtJUS1BOXumoZLOjkuwpSCC1Exg1Dw1OS672qaAqReLqtleWwaXZS7rR5DpOGS7ix0N5kQAkDBCj4t6MNlLN7Wo5YwPq11tjsUoe4TmySWR9LF1lDh1328OSm4EBVTrIJP0pzd7jOrHvowhDY1HuqhC6luyfTJJ1SZ+nh5Lsrtcmqrazn4zsFIwYWomEEo+BiXdep549xZClui+obYHJNzq6xLnj53raeqsy7K3YYOfBBCBEUNXIiKcXLRSV4D4DYA2wAcNbO/7Zthm8vWxX1pupw+gSku/5YjDDWG6zlt6bGt7GKdrBOKkJObLkOALjTLzudkl7Z0gl0+SHIbgNsB/BmAdwC4juQ7HO0UQmSEZjb7AfKPAHzGzP509PkWADCzv2n7zv49u2zeqaohlHxeLweEUdYuqtBly2GfiZvYG29CnzzqomZ9JtlCBDSl/m2EYuXQQSyv3IG1Uy9y3rMuY/C3Anh+4vPp0f8TQhSOi4J/GMA1ZnZo9Pl6AH9oZh9vPLcKYHX08QCAJ8Kb25klAOu5jRhRii2l2AHIlmm42nGJme2Z95DLJNsLAC6e+Lxv9P/OwcyOADgCACTXzGzZIe2olGIHUI4tpdgByJYUdri46N8H8HskLyX5OgAfAfCvoQwQQsRjroKb2a9JfhzA17C1THanmT0Z3TIhhDdO6+Bm9lUAX+2Q7pF+5gSnFDuAcmwpxQ5AtkwjqB1zJ9mEEMNFoapCVEzQBk7yGpI/IflTkp8OmXZHO+4keYZk1qU6kheTfIjkSZJPkrw5oy0XkPweyR+ObDmcy5aRPdtI/oDkA5nteJbkj0k+TnItsy27Sd5D8imSp0ZBZn5phnLRRyGtTwP4E2wFw3wfwHVmdjJIBt1suQrAJoDPm9mB1PlP2LEXwF4ze4zkLgAnAHwoU5kQwA4z2yS5HcC3AdxsZt9NbcvInk8CWAbwBjO7NocNIzueBbBsZtnXwEneBeDfzezoaMXqIjN72SfNkAp+BYCfmtkzZvYqgC8D+GDA9J0xs0cA/CJH3g07fmZmj43+vgHgFDJFAdoWm6OP20d/skzAkNwH4P0AjubIv0RIvhHAVQCOAYCZverbuIGwDVwhrTMguR/AZQAezWjDNpKPAzgD4BtmlsuWzwH4FIDfZMp/EgPwdZInRtGYubgUwEsAjo+GLkdJ7vBNVJNsCSC5E8C9AD5hZr/MZYeZvWZm78RWNOIVJJMPX0heC+CMmZ1InXcL7zKzy7G1W/IvRsO7HJwP4HIA/2hmlwH4HwDe81ghG7hTSOuiMRrv3gvgbjP7l9z2AMDI9XsIwDUZsr8SwAdGY98vA7ia5Bcy2AEAMLMXRv89A+A+bA01c3AawOkJr+oebDV4L0I2cIW0NhhNbB0DcMrMPpvZlj0kd4/+fiG2JkOfSm2Hmd1iZvvMbD+2fiPfNLOPprYDAEjuGE1+YuQOvxeZNkmZ2c8BPE/ybaP/9R4A3pOxwQ5dLCmkleSXALwbwBLJ0wBuNbNjGUy5EsD1AH48GvsCwF+OIgNTsxfAXaPVjvMAfMXMsi5RFcCbAdy31Q/jfABfNLMHM9pzE4C7RwL5DIAV3wQVySZExWiSTYiKUQMXomLUwIWoGDVwISpGDVyIilEDF6Ji1MCFqBg1cCEq5v8B04YISr+1zCMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF8lJREFUeJzt3X9wXXd95vH3U0WlNwmVgKhMLMc4u9N6ltomompmqNlMG7c1LAlVzYyX0gLtdtaz3bak3Y4Zu3+kaWZLPPWUdLI/upMmhLQEWDVxNIW0GCbmVzIQkFAqhyTeAk1rX5PalMgQVguK+Owf595YtvXjXOmee8733uc1o5Hu0dHV51wfPf6ez/mecxURmJlZOn6g7ALMzKw1Dm4zs8Q4uM3MEuPgNjNLjIPbzCwxDm4zs8Q4uK1SJP2qpEdW+P77Jf3XTtZkVjUObusISZ+S9Jykl5Rdy2oa/3ksSHq+8fEPku6R9GMtPIf/g7HCOLitcJI2A/8WCODNpRaT3+ci4nJgAPhZYA6YkrS13LLMHNzWGe8APg+8H3jn4m9IeoWkv5b0LUlfAP51jud7maSHJH1b0mOSXvwZST8l6YuSzjY+/9Si7728MXI+1Rj9T6z2iyJiISK+GhH/Gfg0cMui5/srSc82ftdnJP14Y/le4JeBdzdG7B9pLN8v6auNup+U9Is5ttXsIg5u64R3APc1PnZJeuWi7/0P4P8BVwL/ofGxmrcCfwi8DPgK8EeQBTPwEHAH8ArgvcBDkl7R+Lm/BC4Ffhz4EeD2FrfjMNmRQ9PfAj/aeK4vNbaPiLiz8fUfR8TlEXFjY/2vNn5+oFH/ByRd2WINZg5uK5ak1wOvAsYjYoosvN7W+F4f8Bbg5oj4TkQ8Adyb42kfjIgvRMQLZAF5TWP5m4C/j4i/jIgXIuJDwNPAjY2AfCPwnyLiuYiYj4hPt7g5p4CXNx9ExPsi4tsR8V2ykfhrJA0s98MR8VcRcSoivh8R/xv4e+DaFmswc3Bb4d4JfDwivtF4/EHOtUuGgEuAE4vW/8fmF5J+f9EJwv+1aJ1nF339f4HLG19vWPzzi55vGLgK+GZEPLeObRkGvtmorU/SwUbr41vAM411rljuhyW9Q9LjkmYlzQJbV1rfbDmXlF2AdS9JNWAP0CepGbYvAQYlvQZ4AniBLFSfbnx/U/PnI+I9wHta+JWnyEb3i20CPkb2n8PLJQ1GxGyr29Lwi8BnG1+/DfgFshOXz5C1P54D1Pj+ebfdlPQq4M+BnWQnPhckPb5ofbPcPOK2Io0BC8CrydoZ1wD/hiz83hERC2R941skXSrp1Vxw8rJFfwP8mKS3SbpE0r9v/O6PRsTXyXrS/1PSyyT1S7putSdsjKyvlvTfgJ8m600DvBT4LvAvZH3zC/+D+WfgXy16fBlZmJ9pPO+vkY24zVrm4LYivRO4JyL+KSKebX4A/x34ZUmXAL9F1up4lmzWyT1r/WUR8S/ADcDvkQXqu4EbFrVp3g7Mk43uTwO/s8LTvU7S88C3gE8BPwz8ZEQca3z/L8jaMHXgSbJZM4vdDby60RaZiIgngT8BPkcW6tuAR9e6rdbb5DdSMDNLi0fcZmaJcXCbmSXGwW1mlhgHt5lZYgqZx33FFVfE5s2bi3hqM7OuNDU19Y2IGMqzbiHBvXnzZiYnJ4t4ajOzriTpwqt+l+VWiZlZYhzcZmaJcXCbmSXGwW1mlhgHt5lZYhzcZmaJ8f24zczWaWK6zqEjxzk1O8eGwRr7dm1hbGS4sN/n4DYzW4eJ6ToHDh9jbn4BgPrsHAcOZ3f/LSq83Sop2sw43L4VbhnMPs+Ml12RWRoS+ds5dOT4i6HdNDe/wKEjxwv7nR5xF2lmHD7yLpifyx6fPZE9Bti+p7y6zKouob+dU7NzLS1vB4+4i/Twred2vKb5uWy5Wa/KM5JO6G9nw2CtpeXt4OAu0tmTrS0363bNkfTZE0CcG0lfGN4J/e3s27WFWn/fectq/X3s27WlsN/p4C7SwMbWlpt1u7wj6YT+dsZGhrlt9zaGB2sIGB6scdvubZ5VkqydN5/fpwPor2XLzXpR3pF0Yn87YyPDhQb1hXKNuCUNSrpf0tOSnpL0uqIL6wrb98CNd8DAVYCyzzfeUbmTK2Ydk3ck7b+dFeV6l3dJ9wKfjYi7JP0gcGlEzC63/ujoaPh+3GZ2kQtni0A2knYoI2kqIkbzrLtqq0TSAHAd8KsAEfE94HvrKdDMelQznB++NWuPDGzM2h89HtqtytPjvho4A9wj6TXAFHBTRHxn8UqS9gJ7ATZt2tTuOs0sAbku/d6+p/Wgnhl32C+Sp8d9CfBa4M8iYgT4DrD/wpUi4s6IGI2I0aGhXG+bZmZdpHnpd312juDcpd8T0/X1PXHeKYQ9JE9wnwRORsRjjcf3kwW5mXWLNlxeXtil3wldjNMpqwZ3RDwLnJDUnE2+E3iy0KrMrHPaNKIt7NLvhC7G6ZS8F+D8NnCfpBngGuA9xZVkZh3VphFtYZd+J3QxTqfkCu6IeLzRv94eEWMR8VzRhZmt1cR0nR0Hj3L1/ofYcfDo+nus3a5NI9rCLv3eeXM2ZXCxCl+M0wm+ctK6Shn3Rk7ewMZGm2SJ5S1ovr5tf0MBTyG8SK4LcFrlC3CsE5aaenboyHHqS/RUhwdrPLr/+hKqTIAviqmEtl6AY1ZFy42sL5zV0FTkvZGT5xFtchzclqTlpp71SSwscRRZ5L2Ru8JaLoqx0vi2rpak5UbQCxEdvzeyWac5uC1Jy42gm/dC7uS9kc06za0SS9K+XVsu6mk3R9advjeyWac5uC1JhU09M0uAg9uS5ZG19Sr3uM3MEuPgNjNLjIPbzCwxDm4zs8Q4uM3MEuNZJWZWSbnev7JHObjNrHJ8e96VuVViZpVT2PtXdgkHt5lVTmHvX9klHNxmVjmFvX9ll3Bwm1nlFPb+lV3CJyfNrHJ8E7GV9WZwz4z7bZqsPN7/cvFNxJbXe8F94Rujnj2RPQb/8VjxvP9ZG/Rej/vhW89/N2vIHj98azn1WG/x/mdt0HvBffZka8vN2sn7n7VB7wX3wMbWlpu1k/c/a4NcwS3pGUnHJD0uabLoogq182bov2AuaH8tW25WNO9/1gatnJz8mYj4RmGVdErzBJDP6lsZvP9ZG/TerBLI/kj8h2Jl8f5n65S3xx3AxyVNSdq71AqS9kqalDR55syZ9lVoZmbnyRvcr4+I1wJvBH5T0nUXrhARd0bEaESMDg0NtbVIMzM7J1dwR0S98fk08CBwbZFFmZnZ8lYNbkmXSXpp82vg54Enii7MzMyWlufk5CuBByU11/9gRHys0KrMzGxZqwZ3RHwNeE0HajEzsxx678pJM7PEObjNzBLj4DYzS4yD28wsMQ5uM7PEOLjNzBLj4DYzS4yD28wsMdUL7plxuH0r3DKYfZ4ZL7siM7NKqdb9uP0O2GZmq6rWiNvvgG1mtqpqjbj9Dtilmpiuc+jIcU7NzrFhsMa+XVsYGxkuuyyz8syMV/Jt5qoV3AMbs/bIUsutUBPTdQ4cPsbc/AIA9dk5Dhw+BuDwtt5U4dZttVolfgfs0hw6cvzF0G6am1/g0JHjJVVkrZiYrrPj4FGu3v8QOw4eZWK6XnZJ6atw67ZaI26/A3ZpTs3OtbTcqsNHSwWpcOu2WsENfgfskmwYrFFfIqQ3DNaWWNuqZKWjJQf3OlS4dVutVomVZt+uLdT6+85bVuvvY9+uLSVVZHn5aKkgFW7dVm/EbaVojsyqNqvEM11W56OlglS4dauIaPuTjo6OxuTkZNuf13rLhb1byI4Cbtu9zeG9iF+n7iBpKiJG86zrVolVlme65DM2Msxtu7cxPFhDwPBgzaHd5dwqscpy7za/sZFhB3UP8YjbKmu5Hq17t9brHNxWWZ7pYrY0t0qssqo608WsbA5uqzT3bs0u5laJmVliHNxmZonJHdyS+iRNS/pokQWZmdnKWhlx3wQ8VVQhZmaWT67glrQReBNwV7HlmJnZavKOuP8UeDfw/eVWkLRX0qSkyTNnzrSlODMzu9iqwS3pBuB0REyttF5E3BkRoxExOjQ01LYCzczsfHlG3DuAN0t6BvgwcL2kDxRalZmZLWvV4I6IAxGxMSI2A28FjkbErxRemZmZLcnzuM3MEtPSJe8R8SngU4VUYmZmuXjEbWaWGAe3mVliHNxmZolxcJuZJcbBbWaWGAe3mVliHNxmZolxcJuZJcbBbWaWGAe3mVliHNzWWTPjcPtWuGUw+zwzXnZFZslp6V4lZusyMw4feRfMz2WPz57IHgNs31NeXWaJ8YjbOufhW8+FdtP8HBz+jx59m7XAwW2dc/bkCt9rjL4d3marcnBb5wxsXPn783PZqNzMVuTgts7ZeTP011ZeZ6VRuZkBDm7rpO174MY7YOCq5ddZbVRuZg5u67Dte+B3n4Ddf37x6Lu/lo3KzWxFDm4rx3mjb2Wfb7zD0wLNcvA87iLMjGcn2c6ezA79d96cfiAVsU3b96T/upiVwMHdbt14kUk3bpNZwtwqabflLjJJeZpbN26TFaOdtzTw7RGW5RF3uy03nS3laW7duE3Wfu08MvNR3oo84m635aazpTzNrRu3ydqvnUdmPspbkYO73Za6yCT1aW7duE3Wfu08MvNR3ooc3O3WjdPcunGbrP3aeWTmo7wVrdrjlvRDwGeAlzTWvz8i/qDowpLWiWlunZ5y6Kl7tpqdN5/fl4a1H5m187m6UJ6Tk98Fro+I5yX1A49I+tuI+HzBtdlyfOLGqqi577VjQNHO5+pCioj8K0uXAo8AvxERjy233ujoaExOTrahPFvS7VuzsL7QwFXZ5eRmlhxJUxExmmfdXD1uSX2SHgdOA59YKrQl7ZU0KWnyzJkzrVVsrfGJG7Oeliu4I2IhIq4BNgLXStq6xDp3RsRoRIwODQ21u05bzCduzHpaS7NKImIW+CTwhmLKsVw8Pc+sp60a3JKGJA02vq4BPwc8XXRhtgJPzzPraXlmlVwJ3CupjyzoxyPio8WWZavy9DyznrVqcEfEDDDSgVrMzCwHXzlpZpYYB7eZWWIc3GZmiXFwm5klxsFtZpYYB7eZWWIc3GZmiXFwm5klxsFtZpYYv8t7F5iYrnPoyHFOzc6xYbDGvl1bGBsZLrusyvHrZN3CwZ24iek6Bw4fY25+AYD67BwHDh8DcCgt4tfJuolbJYk7dOT4i2HUNDe/wKEjx0uqqHMmpuvsOHiUq/c/xI6DR5mYri+7bi+/TtZ9POJO3KnZuZaWd4tWR9C9+jpZd/KIO3EbBmstLe8WrY6ge/V1su7k4E7cvl1bqPX3nbes1t/Hvl1bSqqoM1odQffq62TdycGduLGRYW7bvY3hwRoChgdr3LZ7W9efcGt1BD02MsxbfmKYPgmAPom3/MRw179O1p3c4+4CYyO9F0D7dm05r8cNK4+gJ6brPDBVZyECgIUIHpiqM/qql/fca2fp84jbktTqkYZnlVg38YjbktXKkYZnlazMFyelxSNu6wmeVbK85tTK+uwcwbmplSvNi7dyObitJ3hWyfLcRkqPWyXWE5qH/W4HXMxtpPQ4uK1n9OLsmzw2DNaoLxHSAew4eNT/wVWQWyVmPW6pNlKT+93V5BG3WRfLM1tkcRtpqZF3s9/tUXd1eMRt1qVamS0yNjLMo/uvR8s8l/vd1eLgNutSa5kt4mmTaVg1uCVdJemTkp6U9GVJN3WiMDNbn7XMFvG0yTTk6XG/APxeRHxJ0kuBKUmfiIgnC67NzNZhudkiK42ePW0yDasGd0R8Hfh64+tvS3oKGAYc3GYV1uqNuJo8bbL6WppVImkzMAI8tsT39gJ7ATZt2tSG0sxsPTx67l6Kxm0uV11Ruhz4NPBHEXF4pXVHR0djcnKyDeWZmfUGSVMRMZpn3VyzSiT1Aw8A960W2mZmVqw8s0oE3A08FRHvLb4kMzNbSZ4R9w7g7cD1kh5vfPy7gusyM7Nl5JlV8ggse0GVmZl1mK+cNDNLjIPbzCwx6Qf3zDjcvhVuGcw+z4yXXZGZWaHSvq3rzDh85F0w37is9+yJ7DHA9j3l1WVmVqC0R9wP33outJvm57LlZmZdKu3gPnuyteVmZl0g7eAe2NjacjOzLpB2cO+8GfovuEVlfy1bbmbWpdIO7u174MY7YOAqQNnnG+/wiUkz62ppzyqBLKQd1GbWQ9IecZuZ9SAHt5lZYhzcZmaJcXCbmSXGwW1mlhgHt5lZYhzcZmaJcXCbmS2WwK2i078Ax8ysXRK5VbRH3GZmTYncKtrBbWbWlMitoh3cZmZNidwq2sFt1kMmpuvsOHiUq/c/xI6DR5mYrpddUrUkcqton5w06xET03UOHD7G3PwCAPXZOQ4cPgbA2MhwmaVVR/ME5MO3Zu2RgY1ZaFfoxCQ4uM16xqEjx18M7aa5+QUOHTnu4F4sgVtFu1Vi1iNOzc61tNyqa9URt6T3ATcApyNia/ElmVmrJqbrHDpynFOzc2wYrLFv15aLRtEbBmvUlwjpDYO1i5ZZteUZcb8feEPBdZjZGjV71/XZOYJzvesLTzzu27WFWn/fectq/X3s27Wlg9VaO6w64o6Iz0jaXHwpVrqZ8cqflFmPPKPSFOXtXTe/XvNr0OX7R1MK+0nbTk5K2gvsBdi0aVO7ntY6JZFLfdeqm2dUtNK7HhsZXtv2dvn+0ZTKftK2k5MRcWdEjEbE6NDQULue1jolkUt912qlUWnqlutRt7V33eX7R1Mq+4lnlVgmkUt916qbZ1R0pHfd5ftHUyr7iYPbMolc6rtWHRmVlmRsZJjbdm9jeLCGgOHBGrft3tbeQ/su3z+aUtlPVg1uSR8CPgdskXRS0q8XX5Z1XCKX+q5Vt8+oGBsZ5tH91/MPB9/Eo/uvb38/tsv3j6ZU9pM8s0p+qROFWMkSudR3rdY9o6LXdfn+0ZTKfqKIaPuTjo6OxuTkZNuf18ysW0maiojRPOu6x21mlhjfZMp6RgoXVpjl4eC2npDKhRVmebhVYj0hlQsrzPJwcFtPSOXCCrM8HNzWE1K5sMIsDwe39YRULqwwy8MnJ60npHJhhVkeDm7rGWu+palZxbhVYmaWGAe3mVliHNxmZolxcJuZJcbBbWaWGAe3mVliCrkft6QzwD+u82muAL7RhnLK5G2oBm9DNXgbVvaqiMj1TuuFBHc7SJrMe1PxqvI2VIO3oRq8De3jVomZWWIc3GZmialycN9ZdgFt4G2oBm9DNXgb2qSyPW4zM1talUfcZma2BAe3mVliKhnckt4g6bikr0jaX3Y9rZL0PkmnJT1Rdi1rJekqSZ+U9KSkL0u6qeyaWiXphyR9QdLfNbbhD8uuaS0k9UmalvTRsmtZK0nPSDom6XFJk2XXsxaSBiXdL+lpSU9Jel1ptVStxy2pD/g/wM8BJ4EvAr8UEU+WWlgLJF0HPA/8RURsLbuetZB0JXBlRHxJ0kuBKWAssX8HAZdFxPOS+oFHgJsi4vMll9YSSf8FGAV+OCJuKLuetZD0DDAaEclegCPpXuCzEXGXpB8ELo2I2TJqqeKI+1rgKxHxtYj4HvBh4BdKrqklEfEZ4Jtl17EeEfH1iPhS4+tvA08BSb0LQWSebzzsb3xUa6SyCkkbgTcBd5VdSy+TNABcB9wNEBHfKyu0oZrBPQycWPT4JIkFRreRtBkYAR4rt5LWNdoMjwOngU9ERGrb8KfAu4Hvl13IOgXwcUlTkvaWXcwaXA2cAe5ptK3uknRZWcVUMbitQiRdDjwA/E5EfKvseloVEQsRcQ2wEbhWUjKtK0k3AKcjYqrsWtrg9RHxWuCNwG822okpuQR4LfBnETECfAco7fxbFYO7Dly16PHGxjLrsEZf+AHgvog4XHY969E4rP0k8Iaya2nBDuDNjf7wh4HrJX2g3JLWJiLqjc+ngQfJWqIpOQmcXHTEdj9ZkJeiisH9ReBHJV3dOAHwVuCvS66p5zRO7N0NPBUR7y27nrWQNCRpsPF1jeyE99PlVpVfRByIiI0RsZns7+BoRPxKyWW1TNJljRPcNNoLPw8kNeMqIp4FTkja0li0EyjtRH3l3uU9Il6Q9FvAEaAPeF9EfLnksloi6UPATwNXSDoJ/EFE3F1uVS3bAbwdONboEQP8fkT8TYk1tepK4N7GTKUfAMYjItkpdQl7JfBgNhbgEuCDEfGxcktak98G7msMKL8G/FpZhVRuOqCZma2siq0SMzNbgYPbzCwxDm4zs8Q4uM3MEuPgNjNLjIPbzCwxDm4zs8T8f7NNCvYfTgMaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'A': 0, 'B': 1}\n" + ] + } + ], + "source": [ + "feature_dim=2 # we support feature_dim 2 or 3\n", + "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", + " training_size=20, \n", + " test_size=10, \n", + " n=feature_dim, \n", + " gap=0.3, \n", + " PLOT_DATA=True\n", + ")\n", + "extra_test_data = sample_ad_hoc_data(sample_Total, 10, n=feature_dim)\n", + "datapoints, class_to_label = split_dataset_to_data_and_labels(extra_test_data)\n", + "print(class_to_label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the dataset ready we initialize the necessary inputs for the algorithm:\n", + "- the input dictionary (params) \n", + "- the input object containing the dataset info (algo_input).\n", + "\n", + "With everything setup, we can now run the algorithm.\n", + "\n", + "For the testing, the result includes the details and the success ratio.\n", + "\n", + "For the prediction, the result includes the predicted labels. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 0.9\n", + "preduction of datapoints:\n", + "ground truth: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n", + "prediction: ['A', 'A', 'B', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" + ] + } + ], + "source": [ + "seed = 10598\n", + "\n", + "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2, entanglement='linear')\n", + "qsvm = QSVM(feature_map, training_input, test_input, datapoints[0])\n", + "\n", + "backend = Aer.get_backend('qasm_simulator')\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", + "\n", + "result = qsvm.run(quantum_instance)\n", + "\n", + "\"\"\"declarative approach\n", + "params = {\n", + " 'problem': {'name': 'classification', 'random_seed': 10598},\n", + " 'algorithm': {\n", + " 'name': 'QSVM'\n", + " },\n", + " 'backend': {'provider': 'qiskit.Aer', 'name': 'qasm_simulator', 'shots': 1024},\n", + " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", + "}\n", + "algo_input = SVMInput(training_input, test_input, datapoints[0])\n", + "result = run_algorithm(params, algo_input)\n", + "\"\"\"\n", + "\n", + "print(\"testing success ratio: {}\".format(result['testing_accuracy']))\n", + "print(\"preduction of datapoints:\")\n", + "print(\"ground truth: {}\".format(map_label_to_class_name(datapoints[1], qsvm.label_to_class)))\n", + "print(\"prediction: {}\".format(result['predicted_classes']))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kernel matrix during the training:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4VPX1xt8vISEhIQRIgECAALKHHUF2RNmUxQ0Eiguioi1al7rhT6VarbQordaiWAQRBRFQUEFBdioCsoQlIAlhJxCWkH0j+f7+yNAnw3mvjCyBcM/neXiSeTl35t6ZObkz557ve4y1FoqiuI8yV3oHFEW5MmjyK4pL0eRXFJeiya8oLkWTX1Fciia/orgUTX5FcSma/IriUi4q+Y0xfY0xvxhjEowxz1+qnVIU5fJjLrTDzxjjB2A3gF4ADgHYAGCYtTbuV7YRDxbTogWNTUnNEFp6ShqNDa1SUWi2kB9Xfl6+0MLDw2hsRla20FJPpAqtTBn+N7SQ7ENIWDCNzc6Qj5WdlUljwyOrke2zaGzValWEluLwPKaeOi20wKDyQqsYIZ9vAAgNDBSaMYbGliF6dl4ejQ3w9xdaYWEhjS3r5ye0AhLrT+KcYlMy5HsRAPAbUicnK1doNauH09iT6elCCy0vXwcAyDtzxuv20cOHcTolhT/p51DWlyAH2gNIsNYmAoAxZhaAQQAck58x7/vvqf7lolVCW/HFUhp78+/6CC0/VyY5ABzde1RoIx++g8au2bhNaIumLBRa+RCe0Dnkj8cN/TvS2B3/3SG0uNh1NPaBFx8X2tZVcl8BYMwz9wjti9mLaezi2V8KrVFMG6H1e7Af3f6mZk2FFugfQGMDSUJvPXCAxtarWlVoadnyuQWAahXlH6aUTPlHlMUBQHpOjtDmrPqRxtITp8PJNGHLHqG99uxDNHb6DyuE1re9fB0AYO/x4163H7rzThrHuJiP/TUBHCx2+5BHUxSlFHAxZ36fMMY8DODhy/04iqL8Ni4m+Q8DqFXsdpRH88JaOxnAZIB/51cU5cpwMQW/sigq+N2EoqTfAGC4tVZ+efXQvGVLe+53/IaRkTR2wx75Henn7btpbMdW8rtmlkPxiBWlXn3mXRr7zOujhbYpLl5oA7veQLdfT44hOfkUjT2Td0ZozRvXo7FxCfuElksKSgAQXlMWldYv2kBjRz86WGgBZWVh7GQ6L4A1qVlDaH+bNJPGvvz4fULbvG8fjW1UQ97vd7GxNDa4XDmhnUyTBbTM07yY2q9TO6HlFxTQ2MTkZKG1q1uXxh45nSL3y+F5ZMcQFMBrJ2fOKVAO798fO7ZuvbwFP2vtGWPMGADfA/AD8NGvJb6iKFcXF/Wd31q7EIAsfyuKctWjHX6K4lI0+RXFpWjyK4pLueBq/4UQFV3fPv7KX720nt1ldRUArq9fX2iPPj2expYtK0sXn344gca+MPEdofXowrunerSQ+kvvfCC0w7vFFU4AwLwZ7wutbdu+NLZWo9pCa9mDtz6fyZfV5wM7eXfc0OGyG2/ePN4pGb9RXsnwI9X+XvfeTLe/q5O86pFGOuYA4NDJk0JbuoJfhWh9vbyaUyUkhMayzkGGU9txTr7sDF38w080tlK1SkLLzeZXXbYs3Sy0J/7vARq7Yq2MvatXVxq7NiHB6/az996LPTt3+lTt1zO/orgUTX5FcSma/IriUjT5FcWlXPaFPcVJT0kTy3JDq4TSWFbcm/TWczT2ngdeEtptdz9KYz+dOEmK9hEa+8KEfwlt4ljpWRIUVIFuHxQkj82pwLppzX+FlpXO1+jHb5fLdzdu5Eujg0PlcuPJ4/9CYwcMHiW0hm0bCK1tA1mMBXhxr7xDW2pUFekzcOetPWhs3YgIoR0na94BIKKCfC2OpUoPhnASBwAZ5BjadGhGYysEBQnN6XiDK8rXoUWtWiQSSM2Sr7tTgbNzw4Zet0NI+7oTeuZXFJeiya8oLkWTX1Fciia/orgUTX5FcSklWu0PrVJRmG0yIw4AiPtR+oCyqj4AfPLRa0K7d9TLNJa5vnbq1IrGzv/iB6HFxMg2S39/XmH195emDJ0Gdqaxc96fJrQbbu1AYxd//anQOnQYwGNnLRBay5Y30tgKlWUF/La+3YQWGcbNL/efkC27Npibmy7fIV/f29q1pbH7TpwQGjO8AICcfGniEhEqr7pk5vI23PH/mC60393Hn1s/0iJ8rrnGWQZ0lG3suaSVGACCSIvyrqQkGhsTFeV128mVmKFnfkVxKZr8iuJSNPkVxaVo8iuKS7mo9fzGmH0A0gEUADhjreWL8z1ERde3j738hpfWrRsv8vTvIAtNTi27zPl2+pRXaezLEz8SWq3GvM3y+RHSYfbe38sW47wc7hS8YuF8oeXn80JT8+aykNiofWMaGxgsC4zH9h+jsd3vlPe7Zj6fQLN++Uqh1W8UI7SWPVrS7R8cfIvQmMMtAFQk46dmfL6IxrbrKh+Pbe9EpWAZm3CM71d0uHQ7nvUZ3y9bIIt7YWSNPwDsWrdLaKP+NIzGzvzgK6G9Mo6/9xes9vYaeP3Jx7A/fvdlH9d1lhuttbIcqyjKVY1+7FcUl3KxyW8BLDbGbPSM5RIYYx42xvxsjPk5M4NPh1UUpeS52I/9Xay1h40xVQEsMcbsstZ6jdctPq4rKrq+jutSlKuEizrzW2sPe34mA/gSRWO7FUUpBVzMrL5gAGWsteme35cAeNVa+53TNtVq1LbDRz3tpT04ms8TX7RMOqZSIw7wlt3bRt5LY199Ujqmbty7l8ZujJOzAd8b+6bQTp06Srdv1eomobXvy1t2t62WBh2R9fkcwy8/+VBoTlcRmjbtJLQCh9lzXQf0FNrdQ/oIjZlrAMBny1cL7cG+3Ol37gbp1NuvBXcrLkfaXfPOyCs8Tpwm5hhOZh5z168XWu/mzWkscwD2K8PPp2nZ2UILJWYgALBl/36fHgsA2tfznufY6YYbsHHjxste7a8G4EvPTpUF8NmvJb6iKFcXFzOoMxEAv+CrKMpVj17qUxSXosmvKC6lRMd1NWvRws789lsv7fVnpUMuADzz+mihrVi9kcay9fhxe2TRBADaNL5OaG3r1qWxu8ka6vnfy6LW9e1lCywAlCVrq998Wo4LA4BBf7hNaOXK8zXrhWdkwe5k0ikaG1FLFufWfbOOxg68Rxb3TmZkCC3tBO/XGNlPFjjvH8l9Ff41aazQFqz7mcYO7iLHgE2cMofGduspO8ybE5fcWT+sEpoTTsW2MmWk3snBn2JTfKLQygXx1zeIOAC3J+PrAGD+Ku/C+BtP+d7eq2d+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJdSotX+Otc1sM9N+KeX1r4FN6zo0aKN0NjsPABIOyXntk15m8+j++v0qfKx2vC20oaRsr128rdyJl6qQ/V75j9lG26zVry9l1XlG7VrSCKBoFBpTnH84HEa27v79UJbs2kHjV09V17JiIiS5hYd+svqOwDc1ExWurNyudFJVp7U5361jMaGVJJz6np3k8cFAAXk/Xz09GmhsTl7ABBVSZpxfLd+E43Ny5bHEBAoW5EBYNuq7UIbPWYIjZ05SzbKDh/Wj8aea5by5O9+h/i4OK32K4rijCa/orgUTX5FcSma/IriUkq04BcWVtV27epd5Bgwmo9CSkmWRZqJY5+nsWyEVotO3Eh42QLpjDriSe6MWjFCjqV6+FbZAtumTW+6fXh4lNAiSBERAJYsmiG0du360tgdO9YILSWFu/cOHvFHoc35lLcYd+8+VGiDxsi248bR3O04gqyRr0kKaACQnCaLpE6OvAFlZZt0eg73L6hKRnOx97jTqCy29n99omzNdbqPWlWq0NiMnByh3diUtwL/Fk+BU5mZXrdv790b22JjteCnKIozmvyK4lI0+RXFpWjyK4pLOa+NlzHmIwD9ASRba2M8WmUAnwOIBrAPwBBrbcr57qtMmTIoH+I9r31gV94t9sZfpwgtKIibLvr7y/FVTiO0mNmm03r8DRtkJxwr7m3atJhu37p1L6E1aNmExnbpIo1Mm3XmBSFWwEpM3EJjazepLbQOHXiRtUa9GkIrJCOpalWuTLcvJPsVSNamA8CJdNmVyYp1APdFKCyUhpgAkEoKdkdS5FuzcQ15rE6xmdmyWAcAzevI5/bACT68KricXLuf72BCyvwHjqam0tg64d4FRv+yvjvz+XLmnwbg3LLz8wCWWmsbAFjqua0oSinivMnvGcJxrk3MIAAfe37/GIC8HqQoylXNhX7nr2atPetxdRRFNt6U4uO6cnP5RzVFUUqeiy742aIvoI6dQtbaydbadtbaduXK8ZVUiqKUPBea/MeMMZEA4PnJh50rinLVcqFDOxYAuA/Am56f833ZqLDQIifL+6P/+j17aOy8Ge8LLSiIV4P9/WUldcVCvktshBarJgN8PT5r2WVVfQDYvHmJ0OrV422ayckHhNYgtwGNjYyW+3Dy5GEa27CtvI8fv+HOtYlx8UILIA6zTevXodvfcJ10RnZqH69B2n43kzFVANC0Zk2hFZARbQBvBWaP5bR9BLnisHlXAo2NPyqvHGVmyKsNALAhVrYId3iUO/LGHZav5eAO3Adi15EjXrd/yxiz8575jTEzAawF0MgYc8gYMwpFSd/LGBMP4GbPbUVRShHnPfNba4c5/Jc8hSqKUmrQDj9FcSma/IriUi5mRPdvJiQsGDf07+ilJSfzMVNt28q17E7Fo04DOwvtl7/zkVTt+8rCidMILWa2ydpdnVp2WXFv7ty3aexDj70utERSJAKAZp2bCS0jRY7VAnibc3Cw9CkAgKws2XJ7cNdBoc2e9g3dvuaT9wjtpwReLOsVI1uq587gE95rPia/ea7euYvG1o+sLrQw4hPw826+Xy3qRQstdsVWGku378YLuttXSwPPbzvyluyFU+Tz0LUxN7r9ZIb3+LuTJ3kbMEPP/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUTde6uER9p+/Ud5aV3u6EJjt6+R1dFNa/5LY/Py5GrB6GhZEQcAP395gaPXfbw9d+dPO4U2Y9JbQmNGHABv2W3SujWN/fDdF4X28ONv0Nif16wQmtPr2G/oYKHNfJ+PPYuMlO2mw58eJbTadbkDcd8WLX3er73H5XgxZngB8HFbTkQR99wKgfJ+UzJ5G25atnwvLVvLx3Vlpsn7CAmTo8UAoEqkNEDp04KPiZuzUr7Pb+/akUQCR1O9n5u7b7kVO7ZuVfdeRVGc0eRXFJeiya8oLkWTX1FcSom292ZnZSIu1rvt9tGx99JYv7Ly71JWOi/S3HCrbMPdHyeLbQCQmZYptHLleaGpUbuGQmMjtJxcdtl6fKeWXVbcm/zOWBo77p1pQjuwkx9v/dayiDf4gdE0dtHs2UL7buq3QouowV3bDvRJEtrwPj1obKC/nGP/6VfS/wAAnhkp59j/sF0WhAEgLDhYaKzgx9yDASA6IkJoKcd4wfHQ7kNCa9eXj4mb8/ZcoQU+z52N5707R2jtY3h779TJ87xunzh+XhPt/6FnfkVxKZr8iuJSNPkVxaVo8iuKS/HFw+8jY0yyMWZ7MW2cMeawMWaL598tl3c3FUW51Jy3vdcY0w1ABoDpxWb1jQOQYa2d8FserHb9BvbZ8d5mFk6V9jP5BUL7bMJHNHbvXmm2MPqF/6Ox//mb9Bp9dep7NLYMcYJ96d5Hhda0qTQTAbjLLpudBwALpn0mtIH3D6ex4x6/Xz4Wac0FAD8/WVW3ljvXPjL2JaE9MOxWoYUEytmIALB42zah3dJStvwCwNI4OQdxQOs2NDa/QL4X8s7k09igAPl+KmNkt2tmLp+/N3P5GqH173g9jc3IkfcRXoHPk2RUcHge/7t7t9CqhPC24QbVvc1LOnbogI0bN16a9l6HcV2KopRyLuY7/xhjzFbP1wJpjK4oylXNhSb/JAD1AbQCkARALnXzUHxWX0aa7/5iiqJcXi4o+a21x6y1Bbboy+OHANr/Suz/ZvWFhHLjSEVRSp4Lau81xkQWm9J7OwDea3kO2RlZ2LrKuyjk5HZ6OOGI0DZu/J7GdugwQGjH9h+jsfn5uUI7meR7SSMlRd5vYiJ3YWUjtJxcdlnh1alllxX3kpL42LPBdz8jtO8XTaWxyQfkyMV1ZJxam+houn10eLjQ8kixDgAaVJMuu6cy+HPDWnadYM/jabJG368MP+91aSFbtZPT0mhsIRn5xdqWAe5fwMabAUBOvixm1qws/QAAIDPX+/1c+Bv8Oc6b/J5xXT0AhBtjDgF4BUAPY0wrFE3n3QeAN4srinLVcqHjuqZchn1RFKUE0Q4/RXEpmvyK4lI0+RXFpZSomUfValUw5hnveW5xh6QhAgB0bS/bQoNDedV38awFQut+Z1cau2uTbAWOqCUNHACgNZnbFjfij0Jzatlt2FaaebDZeQDwywZZ+WVGHACw+GvZCsyq+gDwxed/9zm26+2yTXlgG9lym07aWgFgxlx5NabCwJ40ducReTXn3FbVs7AKflYufx4LCmUsa6Pdd+IE3X7GZwuF9sqTI2nsSXJ1orLDlYnIsDCh5eTzY8jKk3rC0aM0tmEkd1L2BT3zK4pL0eRXFJeiya8oLkWTX1FcSokW/FJS0vDF7MVeWmaqdNMFgJ2Vdwlt8vi/0NiWLW8U2pr5P9LYAtJuuu6bdSQSyOwi923Op+8IjbUXA8CP36wSWnAwX9+wefMPQnNy2WXr8Z1adllxjxUBASCqofQfYO2izaJq0u3vG9yP6ozmtWoJ7biDoy5by56UyheJNavJ9+1cnApzg4f0FtqKnXJsG8ALkTUr8QWurEW4S6NGNLZS+fJCa+pwXKezvB2tf0t7r575FcWlaPIrikvR5FcUl6LJryguRZNfUVzKed17LyXBwWE2JqaLlzb9qw9p7J+ffVdoIZW4g2mFytIx9cfvl9LYXoNlZb5LL25E9PGEWULLOC0r0jXq1aDbJ8bFC61MGekIDABpabLdND2dm4wMeeRBoTEjDoC37K79ll/dmPiabF3u3n2o0K5r1oxu/9hzcu5itYr86garts/bsIHGtqtXT2iHT/HnJvfMGaH1bi4NYxbFxtLtWezQYc/R2PRUORcvNIybbhjiIDxq7AgaO+HpiUJb9N1/aOwbkz71uv3++Jdx+MDeS+PeqyjKtYkmv6K4FE1+RXEpvozrqmWMWW6MiTPG7DDG/NGjVzbGLDHGxHt+qne/opQifGnvPQPgaWvtJmNMBQAbjTFLANwPYKm19k1jzPMAngfAKyMeAoPKo1GM9/rwADISCwD8iM7WxwPAbX27Ce3YPu7ee/eQPkLbevAgjY2Ikm60N424SWiFBXz8VUCQHB11cBd/rP4PDRLad1O/pbFshBZz2QX4enynFtDuq2Rxb+VKWfTMzpaPDwCb47sIbXCXG2jsD9ul4fMXE+bQ2L6fvCa0f7/3OY8dLFu904h7b0XSQgsAW/bvF9rB/b/Q2JAQuUa/jIMr8FdzZVt4+1t5oTk0VJ5HnV7f1fOXe91OJwVpJ3wZ15Vkrd3k+T0dwE4ANQEMAvCxJ+xjALf5/KiKolxxftN3fmNMNIDWANYBqFbMu/8ogGqXdM8URbms+Jz8xpgQAHMBPGGt9VqiZIuaBehnyeLjunJzsliIoihXAJ+S3xjjj6LE/9RaO88jHzPGRHr+PxIA7TIpPq6rXCD/nqUoSsnjy8Qeg6IhHTuttW8X+68FAO4D8Kbn5/zz3VfFiIro96D3mu+T6XxEU697bxZa2wbc0DIyTHaRtezB58LXjZBmnWs2y1nxANChvyxW1SEjqWo5jFJqWr+O0GZP+4bG1q4rjRgjavBvUiHEkNJphBYz23Raj88691hxb/16XohstUB2EwaHBNHYhK2JQnPqNj1O1sLHrZdGrAAf09Z+0otCm/buF3T7Eb+/Q2h79/LHys6WxbUGDdrR2GYx0lB22nhZBASAggI5ris5bTiNXblyptdtNo7OCV+q/Z0B3ANgmzHm7FC6sShK+tnGmFEA9gMY4vOjKopyxfFlXNcaAE69wvK6l6IopQLt8FMUl6LJryguRZNfUVxKia7nb9W6tV28coWXFlxOtsACgCFlhjSHMVGnyNgkNh4JAOauXiu0e2/uQWNPZ0n33tQs2SoaUJaXTmpVqSK0gydP0tgaxPV18vzvaGy1KHnFIppchQCA75fI43Vy2WXjpzbHy6r82gXyPgFg8jtjhRZ74ACNHfO7p4XWplsnGnvrUHnlZ8VCvg/pp2QF/uExg4X2xRzplgwAtRpLV2FbyNu3j+xJElpYBH/f5efJCv7SmYtJJBBeXV7lqRjBfRGSztmHZcs+RUrKUV3PryiKM5r8iuJSNPkVxaVo8iuKSynRcV3GGAT6B3hpf5s0k8Y+OlK2WZYPCCCRgCVmkInJ3NDywb6yeDT8HlmoAoA33n5SaGwcU6DTfpFi6k8JCTT29nayLXR4nx40thwpMOaRMWQAUGFgT6ozmNkmW4/v1LL7hz/J4l7L2rVp7Iq4OKGxkVYAkHRSmnX2HSQ9HABgwrPvCe1Uhizcfj2dv++efe/PQgsN4sdbOUK+F3JJYQ8Abm4uW6cPxx+msdf3vV5o0VVlkRcAdsTv9bq9cevXNI6hZ35FcSma/IriUjT5FcWlaPIrikvR5FcUl1Ki7b1t27a1a9d5j4ryc3A73bxvn9CiSLssACzbLs042l/HjT9Yu+mNTZrQ2KOpqUJjVxxOpHPHVNayG+jvT2OPk/twit16UB5Dg2rVaezOI0eE1ryWbGEFgNrk+WUuu7EbdtLtF33ypdBe+0BWzwGgR9OmQrtryJ9obO/7eglt+cwVNLZ6Xfk8MEff7VvlKDUA2LJsi9A63yZNSgAgIEi+F/Ky82gs4+sPvqL6yFceENq4B/hz072f9/i52dP/ieSjB7W9V1EUZzT5FcWlaPIriku5mHFd44wxh40xWzz/brn8u6soyqXivAU/jy13ZPFxXSiazjMEQIa1doKvD9a0eXM7ff55TX4BAEtXyFntd97ag8bWIGv3//aBQ/vm6GFCm72Grw1no7XG3C/bjlm7LQBsJqOf5s7ga/SfekLOav/0qyU09rkH7hYa8zQA+FgqVlwEeMstG6Hl9J6p3VS28nYe0JHGzn5b3u+c2fyt9O4c2bK6YZF8fwBAs86yjdbPX45+y8mQvgwAEFolVGjHDx6nsaknZDtyTBf5+ADw7xfHC61ZS/7c+AfIQu9hUgAHgOxs79d9y5alSE8/5VPBzxcDzyQASZ7f040xZ8d1KYpSirmYcV0AMMYYs9UY85FO6VWU0sXFjOuaBKA+gFYo+mTwlsN2/xvXlXJKrs5SFOXKcMHjuqy1x6y1BdbaQgAfAqDzhouP66rkMNlGUZSSx5dqPx3XdXZOn4fbAchWMEVRrlp8qfZ3AbAawDYAZ21MxwIYhqKP/BbAPgCji43sprRq08YuW7XKS/N3qJSvjZftlzeRWXIAsO/ECaHtPMyNEvq1lDP8cvJ5S+bkuYuE9vCd0vnW348fQ2aunJuWmsUnFbMW4TZ169LYAuIm69QmzV7fQofXfD95HsMrVBAam50H8NeBGXEAQG6mdGLOdWiNfeyuAULbflBeiQGAefOXC231/GVC69S/O93+j6Ok0y9zcQaAAyekE/O+JDkrEAC6EzOPLQ7Oxvlnzght6xp+bh02tK/X7SG33ILtsbGXrNrvNK5roS8PoCjK1Yl2+CmKS9HkVxSXosmvKC6lRN17CwsLkZbt3Va5IVGOgwKAelWrCs2pLZWN/GJtrQCQR4opE6fIVlMAuH1gD6Gl58giXmEhbxVlhbnVO3fR2CZRsmmSraUHgM4NG1CdkZUri2hJxKcAAFJIi/C/3/tcaHHrt9Lt2/bsIDQnl91Jf/lYaP7luH8BK+7FOHgSvDllltAmTHlVaOu2cU+CF158V2hJe6UnAgD4kUJvdEw0jV35xSqhHT/EHaZvHCodl9NO8iLrEyNf8rp9YC8vdDP0zK8oLkWTX1Fciia/orgUTX5FcSma/IriUkq02l/Wz0/Mg2OVeoA710aQVlPAuT3XV7r1lHPyAKCAtMFWDZVmD04tuwFlpYlE/UjussucicPIDEIACAqQz5lTm3ZBodSb1eR2DEt3SBdk5nx7bD9vYU0/Ja/GsNl5AFC/5XVCY867AG/ZZVV9AHh+1FChhS2QBipPDR1Ct49N3C201196n8ayCvy6pSto7DPvvCi03w+QpiwAEB4p5/K17dOWxp4778/PoV2eoWd+RXEpmvyK4lI0+RXFpWjyK4pLKdGCX0FhIVIyvddGn0zjLbt1wsOFdsyhLTWCFOEqBfP23tOkOOc0voq1HrNi2ZGUFLo9G9cV5tB2XCFQFvGYBgBljFxhfTqbtxhXCAykOqN38+ZCO7cdGwDaT5LFKwA4dEqubz+VwdfC5+TnC21brCy2AXw9PmvZBXhx75GBfYX2zmzuIl2ZFFnfe/d5Gnvk9GmhORWfWZF21rJvaGyVkBChvfXaFBo7eeo4r9s9u8nnygk98yuKS9HkVxSXosmvKC7FFwPPQGPMemNMrGdc1589el1jzDpjTIIx5nNjjJxXrCjKVYsvBb9cAD2ttRkeC+81xphFAJ4CMNFaO8sY8z6AUSjy8nfEn3T4ZZ7mBSFDilrMTBLgRpkJx/ha6UaRNYT2n28W09hWzeS6+VxSqGpcQ94nwNfz/7w7gcaGBgUJjZl6AkCD6tWE5mTgyUw1WVELAH5KkPvGfBGmvfsF3T6yXqTQvp7Ox6aNePoRoTmN0GJmm07r8VnnHivuPT5kEN1+4HE5muuNt6bR2KQ9cp1/bpZ8LwLAw6/cL7Snh4+hsU2aSV+EPiP70Ngnn/i71+1DB4/SOMZ5z/y2iLMuD/6efxZATwBnXTA+RtH8PkVRSgm+Du3wM8ZsAZAMYAmAPQBOW2vP2uIcgs7vU5RShU/J75nM0wpAFIom8zT29QGKj+s6Tj5SKYpyZfhN1X5r7WkAywF0BBBmjDlbM4gCQM3Dio/rioiQq5UURbky+FLtjzDGhHl+DwLQC8BOFP0RuMsUQPuLAAALYklEQVQTdh8A3jKlKMpViS/julqgqKDnh6I/FrOtta8aY+oBmAWgMoDNAEZYa3mp00PrNm3s8jVrvDSntfAniZNsNGn5BYDx/5gutGH33Epjdx2RFdqUZNmmCQD9u8jZo6yq7tTey9qOz21vPksAWYfN2oMBYM6qH4XWpUVTGjvjMzlYafCQ3jQ2JipKaFv27xcau7oCALv3HRJaSEV+ZWHhf+QotOv7cl+FEbfcJDTmsgsAf3phpNDY1Y30HDkuDACiyafTVbu443ItMng2MIBf8d5KRnOdcGhtv6uDfN/9+e2pNLZpJ+/X/aUHRyFx165LNq5rK4DWRE+Ew2ReRVGufrTDT1Fciia/orgUTX5FcSnnLfhdSqIbNrT/986/vbQereUacgCY87U0bWzTQc44B4DqYWFC+2zGtzT22cdGCG32sjUkEvDzlwacEVVlkSczmxePstJkcS92BR911bh9I6GlHOOFyIdGDBRachof59SEtB6v2MlbYye/JkdoHdz/i9D27uXH8Jepk4VWs4YcuwYABw9KE9DD8bJgCAAj7xkgtCce/AuNrVxNGqGy9fgvv/kh3X7Q0F5C69aYt7VERNQWGmtLB4BWrWTRsrBQjo4DgAoV5DGM++eTNHZoH28T0L17tyI7O8Ongp+e+RXFpWjyK4pL0eRXFJeiya8oLkWTX1FcSom698LKsVKJydx0o1I12dpagRheAIAfqbDaAmmkAfBqbJkyvDialy2dWJmZR/M6suoLAPFHfTdWyEyTbc6HdvPqdwZpTS0kxiEAb5N2usKTnirblENC5JWU7GzelnpkT5LQKkfwFuWAINkGm3qCX7E4cEK6Avv58bcuG6HFXHaZEQfAW3ZZVR8Ajh+XLbtRUT4veEVmJj/exMRYoaVmjaaxWVne91FYWODz4+uZX1Fciia/orgUTX5FcSma/IriUkq24AcA5xSb2tWtS8N27dwrtPIOa6XPkGJXGCkYAnw9fqdWfC382q2yDbZWFdl6eYA45AJAZoYs4rXoxtuZ8/Nkq2c7h/XtzMU40N+fxrK17DUdfAJCw2Sxqwx5vho04PsVFiGLg7l5skAK8GJqTBfevr0vSbYCR8dE09h1S1cIjY3QcnLZZevxnVp2WXHv0CG+9n/QsFFCS9jKY6tUkS7ITmPXmjTp5HU7JUU+V07omV9RXIomv6K4FE1+RXEpmvyK4lIuZlbfNGPMXmPMFs+/Vpd/dxVFuVRczKw+AHjGWjvnV7b1IicrFwlb9nhpR1o0obFblm4WWrCDE+yAjrL6vGsdr6Sm3SnnwW2KT6Sx21ZtF1qdWrISG1yuHN1+Q6y83+2r5X0CwOA/3SW0OW/P5bHdOwttr8NAlEhidOJk/MGq2l/NfUdozWK60u3zSWX/5ua8gv/lyp+E9u8Xx/PYxbOEtvKLVTT2mXdeFFpQgHx92Ow8gLvsMiMOJ1hVHwDe+/szQnvp7Sk0dtPSDULbsEOaqgBASop3S3VBAb+6wvDFvdcCYLP6FEUpxVzQrD5r7TrPf71ujNlqjJlojKGnv+LjurIz5SITRVGuDBc0q88YEwPgBRTN7LseRYM7nnPY9n/juoKCQy7RbiuKcrFc6Ky+vtbaJM/47lwAU6EDPBSlVOHLuK4IAPnW2tOeWX2LAYwHsNFam2SKqkQTAeRYa6VNajHatm1r165b56WtjY+nsZVC5KeEFrVq0Vi2xn7dnj0kEmhVp47QFsXK9dMAH1/VMFIW/PLPcBdWxrdbtlD95pgYoa10GBM1oLUYoIRCh9cx74x8bgLK8lbg5XFxQtsWu1to08bLIiAAREVJB+LG7XjBL36zPLawcNk6DQB3PXa70KaM4+OrNm78Tmizln0jtD8M5uvjX3j/r0KbOu4DGsvW44eG8mNo36eT0F57ihcH77jjKaE1c2h9/ugt7yJpcvJ+5OXlXJpxXQAiAXxsjCk+q+8bY8wyzx8GA2ALgEd8eUBFUa4OLmZWX8/LskeKopQI2uGnKC5Fk19RXIomv6K4lBI18ziZno7pP6zw0lo1rEdjV6yV7b2pWdIcAwCCiJHFzA++4jsx+ja5vYNJyMxZsnIc01lWXZs7XIWIO3xYaAunyPsEgNO3pQpt3ru8c7ryRFkNziFXPAAgK08aWVQqX57GTnh6otBCQ6Xxh1MLaXj1akK7vu/1NLbLQFn9/ubDhTSWXU25cSgvOYVHRgitCrly1KRZB7r9XR3kFes5FfjrwFx2mREHwFt2WVUfAObNe1tof3iVt4V/OyPa63ZKiu+O0XrmVxSXosmvKC5Fk19RXIomv6K4lPO2915KWrRqZRcuW+alORXxKhHXWVa4AYBdSXJMVLWKFWksG6HVoHp1GnuKjLqqTu73aKos1gFA05o1fY4tS1xyD6fI8VlOsTXJmCkASCDHy/YLAMqRwilrk3byA/jh8+VCG/7QIBo7+o4HhRYZyYu/Hfp0ERobywUADdo2ENqmxRuF1vkOeZ8AkEg8GO4e1pfGsveuk8suW49/8Bc+jq1Hb1mMvIm0fwPAv+Z6ty6Pf/YJHEiI96m9V8/8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC6lRNt7886cES6zoUFBNHZtQoLQOjdsSGOZ6caUhUto7H19ZFvotO+WkUigZlRVoQWUlU9ZHQcTil1Hjgjtkxnf0thhw2VFeerkeTT2b+PGCC0zl8+eY+Yjpx2usEz5TJperJ4vK/grV86k2/fv/3uh7YiXMxcBoHu/AUKLXbuORALDhsrn5omRL9HYw/GypXry1HFCe/KJv9Pte9/fW2hD+9xNY7Oy5BWHc2fnneVcl10AOHRIGqUAsmUXkFX9s4y5sz/VfUHP/IriUjT5FcWlaPIrikvR5FcUl1Ki7b3GmOMA9ntuhgM4UWIPXnLocZU+rqVjq2OtlaYGhBJNfq8HNuZna60cslfK0eMqfVzLx/Zr6Md+RXEpmvyK4lKuZPJPvoKPfTnR4yp9XMvH5sgV+86vKMqVRT/2K4pLKfHkN8b0Ncb8YoxJMMb86mDPqx1jzEfGmGRjzPZiWmVjzBJjTLznp/S+vsoxxtQyxiw3xsQZY3YYY/7o0Uv1sRljAo0x640xsZ7j+rNHr2uMWed5T35ujOFe7tcYJZr8nmGf7wHoB6ApgGHGmKYluQ+XmGkAzl118jyApdbaBgCWem6XNs4AeNpa2xTADQD+4HmdSvux5QLoaa1tCaAVgL7GmBtQNHV6orX2OgApAPj43GuMkj7ztweQYK1NtNbmAZgFgJu8lQKstasAnDpHHgTgY8/vHwOQU0Kucqy1SdbaTZ7f0wHsBFATpfzYbBFnjRn9Pf8sgJ4Azk7mKHXHdaGUdPLXBHCw2O1DHu1aopq19uz6zaMA5BibUoQxJhpFU5rX4Ro4NmOMnzFmC4BkAEsA7AFw2lp7dizQtfiepGjB7zJiiy6llNrLKcaYEABzATxhrfVavF5aj81aW2CtbQUgCkWfRBtf4V26YpR08h8GUHywXZRHu5Y4ZoyJBADPz+QrvD8XhDHGH0WJ/6m19qyryDVxbABgrT0NYDmAjgDCjDFnXVquxfckpaSTfwOABp7qagCAoQAWlPA+XG4WALjP8/t9AOZfwX25IIwxBsAUADuttcWnRpbqYzPGRBhjwjy/BwHohaJ6xnIAd3nCSt1xXSgl3uRjjLkFwD8A+AH4yFr7eonuwCXEGDMTQA8UrQo7BuAVAF8BmA2gNopWMA6x1p5bFLyqMcZ0AbAawDYAhR55LIq+95faYzPGtEBRQc8PRSe+2dbaV40x9VBUfK4MYDOAEdZa7ot2DaEdforiUrTgpyguRZNfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS9HkVxSX8v+oisd11lU/0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\"kernel matrix during the training:\")\n", + "kernel_matrix = result['kernel_matrix_training']\n", + "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The breast cancer dataset\n", + "Now we run our algorithm with the real-world dataset: the breast cancer dataset, we use the first two principal components as features." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH65JREFUeJzt3X+cXHV97/HXO8kGVoFsAhiTTSCogCDhgqyoRQqaUKitJgWLv+pNrJZabmttFQm1pRa9D6Kp4rXaapRW9HG9JaVxiUUbIIhaLijhBhMBA4gKWZIQkKDR1YTwuX+c75DJZmZ2dufX2Tnv5+Oxjz1zznfmfGbmzOd85/v9zvkqIjAzs2KZ1OkAzMys/Zz8zcwKyMnfzKyAnPzNzArIyd/MrICc/M3MCsjJvwtJCkkvSsufkfQ3nY6pEklnS9rS5n3OS6/PlHbu1w7k96KznPxbQNKPJQ1L2iVpu6QvSDqkbPu5kr4l6eeSdkj6pqTXj3iMs9MH49JGYomId0XEhxp5jCIZ8d49KekGSXM7EMdSSf/V7v3mVbsqCp2okHSKk3/rvC4iDgFeCgwAfw0g6Q3AvwFfBOYAM4HLgdeNuP8S4KfAf29XwI3ostpb6b2bBWwH/qFaQUmT2xbVBNJlx0N3igj/NfkP+DGwsOz2CuA/AAEPA5eMcv/nAj8H3gTsBgZGKX8JsBV4FPhDIIAXpW1fAD6cls8GtgDvBx5L91kMvBa4n+xk81djfJ6XAhuBXwNTgNnAvwM7gB8B7y4r35vieRK4N8W9pWz7s3GPjD3dXgTcDfwM+CFwXlo/Dbg6PZ8h4MPA5LRtMvD3wOPAQ8D/SPuZUud791rg/hEx/RPwNeAXwELgoLSPh8lOFp8BelP56em935Ge938Ac8oeb2mK6+fp9XorcALwK2AvsAvYWSXWGcC/pPf9SWCwzn3eCnwIuC3t90bgiLLtrwL+L7ATeARYmtbXep5nkx1blwLbgC9ViLfmewG8HbgvxfQQ8Mdln4dh4Jn0euwiO85OB25PcW4FPgVMTfcRcBXZcf4zYBNwUq3nUW0/nc4nLctTnQ6gG//KEwgwF7gnfdhenA72Y0a5/9vSwTwZ+CrwDzXKnpcO4JPSwftlaif/p8m+afQAf5QSxJeBQ4GXpIO/Znwjnufd6Tn2kn2TvCs9/lTgBelDfG4qvxz4NlnSmgt8nzqTf/qgPwWck/bTD7w4bfsK8Nn0/J8HfLcscbwL+EHa3wzgG9SZ/IHnANcAXxwR01PAGSmOg1OSWZMe/9D0nl2Zyh8OXJAe61Cyb32lJP1cssR0fLo9C3hJWl4K/Ncor/8NwLVkyb4HOGu0fabtt5KdPI9L79utwPK07Wiy5Pvm9JiHA6ekbbWe59lkx9ZHyJJrb4V4a74XwO8ALyRL3GcBvwReWvb4W0Y83mnAK8gqHfPIThzvSdvOJTsW+9LjnQDMqvN5bKn1unfLX8cD6Ma/lEB2kdVIfgL8Y/qQnZEO9oNHuf/NwCfS8pvJEnRPlbL/XPrgptvHUTv5D7OvVnxoKvvysvvfBSwew/P8w7LbLwceHlHmMuBf0vJDpNp6un0R9Sf/zwJXVYhhJtm3jt6ydW8GvpGWbwHeVbbttxg9+Zfeuz1kter5I2IqPxmI7BvAC8vWvRL4UZXHPwV4Mi0/N+3nAkYkS0ZJ/mQnimeA6XW8T8/uM92+FfjrstsXA/9Z9n59pcJj1Hye6djaTY1jexzvxSDw52WPXzMpA+8pxQ68huzb7CuASWN8HoVI/m6Xa53FEXFz+QpJT6TFWWRf8Q+QOhdfTfYhBLgeWElWKxqscJfZZAm75CejxPVEROxNy8Pp//ay7cPAIdTvkbLlo4HZknaWrZtMVtsvxVpefrRYy80la2oZ6WiyGupWSaV1k8r2M559Lo6Im1N7/iLgm5JOjIhtaXv54x1JVsO+q2z/InveSHoOWU3zPLIaOsChkiZHxC8kvRF4H3C1pNuA90bED+qIcS7w04h4cuSGUfZZeu+3ld3ll+x7z+eSfSsYqebzTHZExK9qxFzzvZD028DfklVgJqX9bar2YJKOAz5O1qf2HLJvAHcBRMQtkj4FfBo4WtJqstf54DqeRyG4w7e9NpMd/BfUKPM2svflq5K2kdWWDybrAK5kK9kHtuSoJsQ5FlG2/AhZDaqv7O/QiHht2j5arL8k+2CWPH/EY7+wwv4fIav5H1G2z8Mi4iV17rOqiNgbEavJ2t5fVb6pbPlxshPmS8r2Py2yDmOA9wLHk327Ogz4zbReaR9rI+IcsgrBD4DPVdhHJY8AMyT1VdhWc591PG6l13m051lPzFXfC0kHkfUV/T0wMyL6yE72pZgrPfY/kb1mx6bn+Vdl5YmIT0bEacCJZCeUS+p4HqM9h67h5N9GkX2v/EvgbyS9XdJhkiZJepWklanYEuDvyL6ql/4uAF4r6fAKD7sKWCrpxFTj+9vWP5Oqvgv8XNKlknolTZZ0kqSXpe2rgMskTZc0B/izEfe/G3hLut95ZO2+JVcDb5e0IL1m/ZJeHBFbyTosP1b2er5QUum+q4B3S5ojaTqwrN4no8wistrzfZXKRMQzZAn7KknPS/frl3RuKnIoWbLZKWkGZe+PpJmSFkl6LtkJbBdZUw5k38bmSJpaZb9bga8D/5hezx5JpSRfdZ91+N/AQkkXSpoi6XBJp9TxPOtR672YStZXsAN4On0L+K2y7duBwyVNK1t3KFmfyS5JLwb+pLRB0sskvVxSD1kzz6+AZ+p4HpX205Wc/NssIq4D3kg2KudRsoPtw8D1kl5B1ozx6YjYVva3BniQrC175ON9HfgEWXvqg+l/U0h6q6R76i2fmhR+l+yE9SOyWtbnyUbjQHZS+0nadiPwpREP8edkQ153ko16ebaZKyK+SzYa5CqyDtdvkr1WkA2HnUo2guhJ4DqymjRkH/S1wPeA/wesruOpfFXSLrLE8j+BJRFR63W4lOy1v0PSz8j6bI5P2z5B1t/zOHAH8J9l95tEVhl4lGyk1VnsS2C3kA0U2Cbp8Sr7fRtZv8QPyEa1vKeOfdYUEQ+TjXB6b4rpbuC/1fE861H1vYiInwPvJjtBPAm8haxTtrT9B8D/AR6StFPSbLJmnLeQdVB/jqzzu+SwtO5JsmPuCbJRdzWfR5X9dCWlTg4zMysQ1/zNzArIyd/MrICc/M3MCsjJ38ysgHL7I68jjjgi5s2b1+kwzMwmlLvuuuvxiDhytHK5Tf7z5s1j/fr1nQ7DzGxCkVTXL+fd7GNmVkBO/mZmBeTkb2ZWQE7+ZmYF5ORvZlZATv5mZgXk5G9mVkBO/mZmBdSU5C/pPEmbJT0o6YDJMiQdJOnatP07kuY1Y79mE8XghiHOWH4Lxyy7gTOW38LghqFOh2QF13DyT/Ocfhr4bbLp0t4s6cQRxd5BNoH0i8gm4/hIo/s1mygGNwxx2epNDO0cJoChncNctnqTTwDWUc2o+Z8OPBgRD0XEbuBfySa9LrcIuCYtXwcsUNnsyWbdbMXazQzv2bvfuuE9e1mxdnOHIjJrTvLvJ5v0uWRLWlexTEQ8TTYN3wHz0Uq6SNJ6Set37NjRhNDMOu/RncNjWm/WDrnq8I2IlRExEBEDRx456kXpzCaE2X29Y1pv1g7NSP5DwNyy23PSuoplJE0hm9D7iSbs2yz3Ljn3eHp7Ju+3rrdnMpecO5a5z82aqxnJ/07gWEnHSJoKvAlYM6LMGmBJWn4DcEt45ngriMWn9nPl+fPp7+tFQH9fL1eeP5/Fp45sHTVrn4av5x8RT0v6U2AtMBn454i4R9IVwPqIWANcDXxJ0oPAT8lOEGaFsfjUfid7q2pwwxAr1m7m0Z3DzO7r5ZJzj2/58dKUyVwi4mvA10asu7xs+VfA7zdjX2Zm3aQ0FLg0Iqw0FBho6QkgVx2+ZmZF06mhwE7+ZmYd1KmhwE7+ZmYd1KmhwE7+ZmYd1KmhwE3p8DUzs/EpdepOyNE+ZmY2fp0YCuzkb9ZmnRjTbTaSk79ZG3VqTLfZSO7wNWsjX97Z8sLJ36yNfHlnywsnf7M28uWdLS+c/M3ayJd3trxwh69ZG3VqTLfZSE7+Zm3myztbHrjZx8ysgJz8zcwKyMnfzKyA3OZvZl3Nl9OozMnfqvKHxiY6X06jOjf7WEWlD83QzmGCfR+awQ1DnQ7NrG6+nEZ1Tv5WkT801g18OY3qnPytIn9orBv4chrVOflbRf7QWDfw5TSqc/K3ivyhsW6w+NR+rjx/Pv19vQjo7+vlyvPnF76zFzzax6rwNWisW/hyGpU5+VtV/tCYdS83+5iZFZCTfx5tXAVXnQQf7Mv+b1zV6YjMrMu42SdvNq6Cr74b9qQhlU89kt0GOPnCzsVlZl3FNf+8WXfFvsRfsmc4W29m1iRO/nnz1JaxrTczGwcn/7yZNmds683MxsHJfzxa2SG74HLoGfEr2p7ebH2BDG4Y4ozlt3DMshs4Y/ktvqCcWZO5w3esWt0hW3qMdVdkTT3T5mSJv5s7ezeu2u/53vnCP+OyO4/2ZXjNWkgR0ekYKhoYGIj169d3OowDXXVSlvBHmjYX/uL77Y9nROKccCeKkSdTYJiDuHT3O1jzzKv2K9rf18tty17T7gjNJhRJd0XEwGjl3OwzVnnqkC0lzqceAWLft5CJ9LuACqObevk1759y4HPwFUXNmsfJf6zy1CHbDcNCq5w0Z+uJA9f5iqJmTePkP1Z56pDN07eQ8apy0tzK4fvd7u2ZzKtffKQ7gc2apKHkL2mGpJskPZD+T69Q5hRJt0u6R9JGSW9sZJ8dd/KF8LpPZm38KPv/uk92pp09T99CxqvKyfTR096/32V4Lzitn3+/a8jTSpo1SUMdvpI+Cvw0IpZLWgZMj4hLR5Q5DoiIeEDSbOAu4ISI2FnrsXPb4ZsnFTpL6ent3MlovOrotD5j+S0MVWjzdyew2f7q7fBtdKjnIuDstHwNcCuwX/KPiPvLlh+V9BhwJFAz+VsdumVY6MkXjhqzp5U0a65Gk//MiNialrcBM2sVlnQ6MBX4YZXtFwEXARx11FENhlYQdSTObjC7r7dizd+dwGbjM2qbv6SbJX2/wt+i8nKRtR9VbUOSNAv4EvD2iHimUpmIWBkRAxExcOSRR47xqVg387SSZs01as0/IhZW2yZpu6RZEbE1JffHqpQ7DLgB+EBE3DHuaK2wPK2kWXM12uyzBlgCLE//rx9ZQNJU4CvAFyPiugb3ZwXmaSXNmqfR5L8cWCXpHcBPgAsBJA0A74qId6Z1vwkcLmlput/SiLi7wX1bzg1uGHJN3SynfG0fa4nBDUNctnrTsxdng6yN/srz5/sEYNZCvraPddSKtZv3S/wAw3v2smLt5g5FZGblnPytJTwu3yzfnPytJaqNv/e4fLN8cPK3lvC4fLN880xe1hIel2+Wb07+tUz0WbI6zOPyzfLLyb+aVs/Va2bWQW7zr6YbZskyM6vCyb+abpgly8ysCif/arphliwzsyqc/KvJ01y9ZmZN5uRfTZ7m6jUzazKP9qmlILNkmVnxuOZfy8ZVcNVJ8MG+7P/GVRPr8c3MqnDNv5pWj/P37wjMrINc86+m1eP8/TsCM+sg1/yrafU4/5z+jsCzb5kVg2v+1bR6nH8Of0dQmn1raOcwAQztHOay1ZsY3DDUsZjMrDWc/Ktp9Tj/HP6OwLNvmRWHk381rR7nn8PfEXj2LbPicJt/La0e55+z3xHM7utlqEKi9+xbZt3HNX97lmffMisO1/wb0WWTvXj2LbPicPIfry79kZZn3zIrBjf7jJd/pGVmE5iT/3jl9EdaZmb1cPIfrxz+SMvMrF5O/uO14HKY1LP/ukk9nuzFzCYEJ/9GSLVvm5nllJP/eK27Avbu3n/d3t1j7/D1Nf3NrAM81HO8mtHh26XDRc0s/1zzH696O3xr1ew9XNTMOsTJf7zquSpnqWb/1CNA7KvZl04AHi5qZh3i5D9e9VyVc7SavYeLmlmHuM2/EaNdlXO0mv2Cy/dv84eOX9PfzIrByb+Vps1JTT4V1sO+E0cOLw7n6RzNupuTfyvVU7PP2TX9Yd90jqVZvUrTOQI+AZh1Cbf5t9J4Z+vq8Nh/T+do1v0aqvlLmgFcC8wDfgxcGBFPVil7GHAvMBgRf9rIfieUsdbsczD239M5mnW/Rmv+y4B1EXEssC7druZDwLca3F/3y8HY/2rTNno6R7Pu0WjyXwRck5avARZXKiTpNGAmcGOD++t+ORj77+kczbpfo8l/ZkRsTcvbyBL8fiRNAj4GvG+0B5N0kaT1ktbv2LGjwdA6qJE2+xyM/V98aj9Xnj+f/r5eBPT39XLl+fPd2WvWRUZt85d0M/D8Cps+UH4jIkJSVCh3MfC1iNiiUa56GRErgZUAAwMDlR4rn8rn8u2dDrt37bvo21jb7HMy9t/TOZp1t1GTf0QsrLZN0nZJsyJiq6RZwGMVir0SOFPSxcAhwFRJuyKiVv/AxDGyg3b4pweWKbXZ15P8czz238y6R6Pj/NcAS4Dl6f/1IwtExFtLy5KWAgNdk/ihcgdtJWNps8/h2H8z6y6NtvkvB86R9ACwMN1G0oCkzzca3IRQb1L39XrMLEcaqvlHxBPAggrr1wPvrLD+C8AXGtln7lS7hEM5X6/HzHLGv/BtVKVLO0/qgd4ZjOlXvWZmbeRr+zTKHbRmNgE5+TeDO2jNbIJxs4+ZWQG55m/WAZ4vwTrNyd+szTxfguWBm33M2szzJVgeOPmbtZnnS7A8cPI3azPPl2B54ORv1maeL8HywB2+VnjtHnlTemyP9rFOcvK3QuvUyBvPl2Cd5mYfKzSPvLGicvK3QvPIGysqN/tYR3X6l66z+3oZqpDoPfLGup1r/tYxpfb2oZ3DBPva2wc3DLUtBo+8saJy8m+1javgqpPgg33Z/42rWnOfCSgP7e2LT+3nyvPn09/Xi4D+vl6uPH++O2Ot6ykiOh1DRQMDA7F+/fpOh9GYkZO7QzbxS63JXcZznwnqmGU3UO3o6/fwR7NxkXRXRAyMVs41/1aqNLn7nuFsfTPvM0HValfvRBOQWZE4+TdbeZNNtbl9a036Xm1bvRPFTyCV2tvLecilWet4tE8zVWqyqWTanNrbKp00at1ngir/pWulETfgIZdmreKafzNVarIZqac3m+O3mkoTwo92nwls8an93LbsNfT7YmdmbeXk30w1m2YE0+aO3nF78oVZmWlz679PF/CQS7P2crNPM1VtspkLf/H9+h+ngBPC+2JnZu3l5N9MCy6HwYvhmT371k3q2ddks3FV1jT01JbsRLHg8sIl+Vp8sTOz9nHybzap8u2RncFPPZLdBp8AzKztnPybad0VsHf3/uv27t43Rr/a+H0nfzNrMyf/ZhrPGP0uHL9vZvnn0T7NVG0s/rQ5tbeZmbWZk38z1RqjX7Dx+2aWb272aaZS232tET0e7WNmOeCrepqZdRFf1dPMzKrq3uRfkAlRzMzGozvb/P2DKjOzmrqz5l+gCVHMzMajO5N/gSZEMTMbj+5s9inQhCh5MLhhyFfjNJtgGqr5S5oh6SZJD6T/06uUO0rSjZLuk3SvpHmN7HdU/kFV2wxuGOKy1ZsY2jlM4Ll3zSaKRpt9lgHrIuJYYF26XckXgRURcQJwOvBYg/utraATonTCirWbGd6zd791nnvXLP8abfZZBJydlq8BbgUuLS8g6URgSkTcBBARuxrcZ30KOCFKJ1SbY9dz75rlW6M1/5kRsTUtbwNmVihzHLBT0mpJGyStkDS5QjmbgKrNseu5d83ybdTkL+lmSd+v8LeovFxk14modK2IKcCZwPuAlwEvAJZW2ddFktZLWr9jx46xPhfrAM+9azYxjdrsExELq22TtF3SrIjYKmkWldvytwB3R8RD6T6DwCuAqyvsayWwErJr+9T3FKyTPPeu2cTUaJv/GmAJsDz9v75CmTuBPklHRsQO4DWAr9jWRTz3rtnE02ib/3LgHEkPAAvTbSQNSPo8QETsJWvyWSdpEyDgcw3u18zMGtBQzT8ingAWVFi/Hnhn2e2bgJMb2ZeZmTVPd17ewczManLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAmr0ev5mNsLghiFPbmO55+Rv1kSDG4a4bPUmhvfsBWBo5zCXrd4E4BOA5YqbfcyaaMXazc8m/pLhPXtZsXZzhyIyq8zJ36yJHt05PKb1Zp3i5G/WRLP7ese03qxTnPzNmuiSc4+nt2fyfut6eyZzybnHdygis8rc4WvWRKVOXY/2sbxz8jdrssWn9jvZW+45+Vvuedy8WfM5+Vuuedy8WWu4w9dyzePmzVrDyd9yzePmzVrDyd9yzePmzVrDyd9yzePmzVrDHb6Wax43b9YaTv6Wex43b9Z8bvYxMysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswLyj7zMrCrPpdC9nPzNrCLPpdDdGmr2kTRD0k2SHkj/p1cp91FJ90i6T9InJamR/ZpZ63kuhe7WaJv/MmBdRBwLrEu39yPpN4AzgJOBk4CXAWc1uF8zazHPpdDdGk3+i4Br0vI1wOIKZQI4GJgKHAT0ANsb3K+Ztdi03p6K6z2XQndotM1/ZkRsTcvbgJkjC0TE7ZK+AWwFBHwqIu6r9GCSLgIuAjjqqKMaDM3MxmtwwxC/2P30Aet7Jqmjcym4A7p5Rk3+km4Gnl9h0wfKb0RESIoK938RcAIwJ626SdKZEfHtkWUjYiWwEmBgYOCAxzKz9lixdjN79h74ETzk4CkdS7bugG6uUZN/RCystk3SdkmzImKrpFnAYxWK/R5wR0TsSvf5OvBK4IDkb2b5UK1df+cv97Q5kn1qdUA7+Y9do23+a4AlaXkJcH2FMg8DZ0maIqmHrLO3YrOPmeVDHudOdgd0czWa/JcD50h6AFiYbiNpQNLnU5nrgB8Cm4DvAd+LiK82uF8za6E8zp2cxxPSRNZQh29EPAEsqLB+PfDOtLwX+ONG9mNm7ZXHuZMvOff4/dr8ofMnpInMv/A1s4ryNndyHk9IE5mTv5lNGHk7IU1kvqqnmVkBOfmbmRWQk7+ZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkBOfmbmRWQIvJ55WRJO4CfpJtHAI93MJxqHNfY5TU2xzU2jmts2hnX0RFx5GiFcpv8y0laHxEDnY5jJMc1dnmNzXGNjeMamzzG5WYfM7MCcvI3MyugiZL8V3Y6gCoc19jlNTbHNTaOa2xyF9eEaPM3M7Pmmig1fzMzayInfzOzAspl8pf0+5LukfSMpKrDoySdJ2mzpAclLWtDXDMk3STpgfR/epVyH03x3yfpk5KUk7iOknRjiuteSfNaGddYYktlD5O0RdKn8hCXpFMk3Z7ey42S3tjCeGoey5IOknRt2v6ddrx3dcb1l+lY2ihpnaSj8xBXWbkLJEWtPNLuuCRdmF6zeyR9uR1xVRQRufsDTgCOB24FBqqUmUw2MfwLgKlkk8Of2OK4PgosS8vLgI9UKPMbwG0pvsnA7cDZnY4rbbsVOCctHwI8pw3vZV2xpe3/C/gy8Kk8xAUcBxyblmcDW4G+FsQy6rEMXAx8Ji2/Cbi2Da9RPXG9unQcAX+Sl7hSuUOBbwF3VMsjHXi9jgU2ANPT7ee1Oq5qf7ms+UfEfRGxeZRipwMPRsRDEbEb+FdgUYtDWwRck5avARZXKBPAwWRv/kFAD7C903FJOhGYEhE3AUTEroj4ZYvjqiu2FN9pwEzgxjbEVFdcEXF/RDyQlh8FHgNG/eXkONRzLJfHex2woNXfKOuJKyK+UXYc3QHMaXFMdcWVfAj4CPCrNsRUb1x/BHw6Ip4EiIjH2hTbAXKZ/OvUDzxSdntLWtdKMyNia1reRpas9hMRtwPfIKslbgXWRsR9nY6LrBa7U9JqSRskrZA0ucVx1RWbpEnAx4D3tSGeuuMqJ+l0shP6D1sQSz3H8rNlIuJp4Cng8BbEMta4yr0D+HpLI8qMGpeklwJzI+KGNsRTd1xkn8PjJN0m6Q5J57UtuhE6NoG7pJuB51fY9IGIuL7d8ZTUiqv8RkSEpAPGyUp6EVmzVakGdJOkMyPi252Mi+y9PhM4FXgYuBZYClzdSFxNiu1i4GsRsaWZldkmxFV6nFnAl4AlEfFM0wLsIpL+ABgAzspBLJOAj5Md33kzhazp52yyHPEtSfMjYmcnAumIiFjY4EMMAXPLbs9J6xpSKy5J2yXNioitKSFU+sr2e8AdEbEr3efrwCuBhpJ/E+LaAtwdEQ+l+wwCr6AJyb8Jsb0SOFPSxWR9EVMl7YqIhjrxmxAXkg4DbiCrlNzRSDw11HMsl8pskTQFmAY80aJ4xhIXkhaSnVDPiohftzimeuI6FDgJuDVVJp4PrJH0+ohY38G4IPscfici9gA/knQ/2cngzhbGVdFEbva5EzhW0jGSppJ1gq1p8T7XAEvS8hKg0jeUh4GzJE2R1ENWE2p1s089cd0J9EkqtVm/Bri3xXHVFVtEvDUijoqIeWRNP19sNPE3I650XH0lxXNdC2Op51guj/cNwC2Regw7GZekU4HPAq9vY/t1zbgi4qmIOCIi5qVj6o4UXysT/6hxJYNktX4kHUHWDPRQi+OqrFM9zbX+yGrPW4Bfk3WWrk3rZ5M1D5TKvRa4n6wd9gNtiOtwYB3wAHAzMCOtHwA+H/t6/D9LlvDvBT6eh7jS7XOAjcAm4AvA1LzEVlZ+Ke0Z7VPPe/kHwB7g7rK/U1oUzwHHMnAFWdKCbBDBvwEPAt8FXtDq16jOuG5On9HS67MmD3GNKHsrbRjtU+frJbImqXvT5/BN7Yir0p8v72BmVkATudnHzMzGycnfzKyAnPzNzArIyd/MrICc/M3MCsjJ38ysgJz8zcwK6P8DWUu36a1Rk58AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sample_Total, training_input, test_input, class_labels = Breast_cancer(\n", + " training_size=20,\n", + " test_size=10,\n", + " n=2,\n", + " PLOT_DATA=True\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 0.9\n" + ] + } + ], + "source": [ + "seed = 10598\n", + "\n", + "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2, entanglement='linear')\n", + "qsvm = QSVM(feature_map, training_input, test_input)\n", + "\n", + "backend = Aer.get_backend('qasm_simulator')\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", + "\n", + "result = qsvm.run(quantum_instance)\n", + "\n", + "\"\"\"declarative approach, re-use the params above\n", + "algo_input = SVMInput(training_input, test_input)\n", + "result = run_algorithm(params, algo_input)\n", + "\"\"\"\n", + "print(\"testing success ratio: \", result['testing_accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kernel matrix during the training:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXd4VWXW9u8nCQkpkFBCiCGBiCA9NOkKyCCoDIKjyMjYRj8d2zCODdH3G3R01HEYy9heC8iMBRnEEWmGZgGkhVACIdSQAiFAeiH1+f7IYb4c1r01EgyEvX7X5UXO7drn7L3PWdk5a6/nXsZaC0VR3IfPud4BRVHODZr8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4lHolvzFmrDEmxRizzxgz7WztlKIoPz/mTDv8jDG+APYAGA0gA8AmAL+21u76gW3Ei/n7B9LYZs3DhBYR2ZrGZhw6IrTAkCAaW5RfILRWbfnzNvFvIrTysgqhFecX0e3DwuUx+Prw37fsfcjPkfsKAMYYuV8ny2lsYIg8v8UFxTTWz89PaE2DmwrN6RNTXVUtNLKrAICqShnr41v3a9FP+dyyXWgSIN9bACgrlefRx4cfRHW13AcfXx57srhMaEHN+Ge/sqJSaJa8Vs3reZ+zgvwclJYUO5x1b+S7XXcGANhnrT0AAMaYuQCuA+CY/Ix27S6l+rCR44X28J/uorHT7nlWaD2H9aaxaxYvF9pvHvs/NDYqOkJoaQcyhfb9l+vp9hPvv05ooUH8l1JZhfylsuQjua8AT9L0lHQa22NYD6FtXrGBxrYMl78ELx3QRWjV1TJxAaC0qFRo7BcVABTlyl+YQc34uWFPUVEuEwTgvxR8/XyF1ja2Ld0+NSlVaOwXIACUlciEdordk5AitLgR/DN6PPO40CpOys8HIH+5fzrnZRrHqM+f/VEAan/iMjyaoiiNgPpc+euEMeZuAHf/3K+jKMpPoz7Jnwkgutbjdh7NC2vtOwDeAfh3fkVRzg31Sf5NADoZY2JRk/STAdz8Qxv4+weK7/gHDmylsddNuUNohaXyO2XN88rvWbE9Yh32YrRQLuvJ6w7b9h4UWteuFwvNh3ynBICc7FyhDRnaicYeOnFCaBNvv4bGpqYdFpp/oD+NjekaLbTE1Ztp7PBJw6l+OsahMFecJwuJrOAIAFVVVULzb8qPoYIUWctJYQ4AfP3kvvmRwq1TwQ+kZhAUGkxDC3MKhRYSFkJjIzrI+lFo6+Y0NiAoQGj+AfzchLTwfr2m83nNgXHGyW+trTTGPADgKwC+AGZZa3ee6fMpitKw1Os7v7V2CYAlZ2lfFEVpQLTDT1Fciia/orgUTX5FcSk/+33+2jRrHiY691hVHwBe/vNUoV33a948uGzpu0LbuXMtje3bf5TQYh5oRWP3Z2cLrU/79kJLTj5Atw9t21JoBQ53LCJDQ4W2vYC392anyf16+6WnaGxUVGehpafvprFjyd2FGb/7ndB695bnEAC2bl0ptJGj+A2gizpeJLRvly6isX0Hj6jT9gBQlCc7Bw9s3y+0UVN+QbdnLbtznn+Txk6eeqfQ3n/2VR77oOxOXfnhKho7cNxAobE7HgDw5lMveD3OzsyicQy98iuKS9HkVxSXosmvKC5Fk19RXMoZr+c/E7r36mU/WbzYS3Nq2a0k7Z8junWjsfE7dsjXiuILDFnBLduhsHZVXF+hLU2UrbHtWsrCHgD4k6W33yXzYltwoGzL7BghW0IBIMhftnoeIMVJAOjRrp3QdmbKZckAENNKFj4rquTS2YvCWtDt2Xm8qAWPrSafu22HDtHYvrGyVbu+n9vDubL1GgDCgmUrr6/DsuSSctliHEhaiQGgtFwW7FqQ1wKAE0WybTjAjz/v7sPerd73TpqElJ0767SeX6/8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC6lQav9oaHhdujQ6700ZsQB8JbdLxM20tirevYUWp/evH3z4kvihDbrn3+msQvWSaPLG4cNEtrsL7nRZjAxdhjdV74+wO9u7D16lMau/yZRaK/NmE5jo6O7Ci0xke/vP+Z/KbRXp80QWseO3HgyJUW+PwMGXU1jIztGCm3nBnlcABDT6RKhRbTnd0JKCkuElp4szU1HTObGJQUn5B2Lrz5eSGPH3XGD0D5/52Mee/uNQtu1lttfxI2U57eijJuXnL5viYkrUFiYo9V+RVGc0eRXFJeiya8oLkWTX1FcSr3W8xtjUgEUAqgCUGmt7f9D8YEhQWKSjpPLLluP79Syy4p7iVtX0NhBo6R7b9MmvHVy3IB+JFa21m5axt1wb31oktC+S5GTWwAg96hsNz2WfozG+vpKt+C+fa+isfHxs+scu55MHiopyRfa2rUL6PYV5SeFtmrFJzS2VaIs+I25fjKN/fxDWfx1mvRUWJgjtIwMec7ZmnkAWL9YnoM1az6jsbGdZTF1/XpeHOzWR36WVsbzc9OUOB7nZvF25LjB3sexe8/3NI5xNsw8Rlpr5XwhRVHOa/TPfkVxKfVNfgsg3hiT4BnLJTDG3G2M2WyM2VxazKfZKorS8NT3z/5h1tpMY0wbAMuNMbuttd/WDqg9rqttVHsd16Uo5wn1uvJbazM9/2YD+Bw1Y7sVRWkEnHF7rzEmGICPtbbQ8/NyAM9Ya5c5bRMS0sLGxY300oZdK6vvAJC6I1VoT8+Ujr4A8NTUvwutTfs2NPatmY8Lbe2ePTS2lJg1hDeX89VuH/9buv3r86Tr69KF35JIILaXvOuxeekmGjv3g1eE1qWLbDsGgMtGXCG0zL3czCMjXVbFh1wl3x/jw7tHqypli3JVhdSc9qGwUM4rBIBLesiqev5xbsDiS+YmNmsh26zXr+Z3g8LbxAitc29uIpO0cYvQeg3mN7wW/Osdof3qVj68OuHbdULz8+Oz+oqL87we79y5BsXF+XVq763Pn/0RAD43NS4nfgA+/qHEVxTl/KI+gzoPAOCrVBRFOe/RW32K4lI0+RXFpTToev72l3Sy02a+5qVd1pO3aca0lk6yuw8fobG9yQgtp5bdzQcPCm1oZznSCgDW7d1LYuX+fr+Ht+xWVlcLrVmgbN0EgI5twoX2yDRZ2AOAx6bLAmNusVzHDgBxMbKAVVxWRmO3paUJrWd0tNDCgoLo9uWV0unXODjfsn1IIO8NAFx+qTznTp9b5grsQ/ahtIKPv/InrdO+PvwayV7Lj2wPADvSpacAe28AoIzsG/ssAcCG/d6jyO6/6SbsUfdeRVF+CE1+RXEpmvyK4lI0+RXFpWjyK4pLORvr+etME/8miIr2dl3dtpdXePeT2XO3Db+Sxr69ZInQmBEHwFt2WVUfAIZ06iS0NcSMo21YGN2+6KQ0t0jKyOD7Rarfj0+/k8YeyZcGG0kO55HN3/tyAzcfYc7CaSdky20AmUEIAIeOS1uHzpHStAMAggMChJaVm0ci+czDCuJ2DABNSGWe3RlIcZgLyOYjstmIAHCsUM7UaxkiW4kBINThDgnjcJ48D+x8AUDmUe9zXkHuuDihV35FcSma/IriUjT5FcWlaPIriktp0IJfeVkF0g54r+Pu2vViGtuHtOwuTeSFqgEd5XMwl12Ar8fv3b4DjWXFvWGk1dSpLZUV/K7o0oXGsoLOn1+aRWMf/cNvhNa8KR971rpZM6FNunwwjd2WJltQe5MW1ECHAlintm2FVuXQlnqStLDGRnAPBtY27PS8bOwZa7nt06ED3Z49r1PLbiQp9Dq1ApeWy4KuU+szK9Ky4wKAzjHejtYBDu8NQ6/8iuJSNPkVxaVo8iuKS9HkVxSX8qMFP2PMLADjAGRba3t4tJYAPgXQAUAqgEnWWj5PqBbF+UX4/rSRUD7EcBEAkpMPCG3MsMto7Owv5bx5pxFaOxKkOaLTenzWuceKe/1i+cixb5KThfb6O/+msSmb5D7k5/FxXSM/lWOe7v6fR2nsG5vlvPhug6QhJgA8eON4ob35H9k9uWHRBrp9++6ySLvxKz4+Kj1dnpuHZs6gsU/eLfW8vCwa6+MjP9Lh4dKTICQklG6flLRGaD16Xk5jU3ZLg9W4fjz2438+L7Tx4x+gsQcObBNaRQX3YLj/2Se9HpeUyCKzE3W58n8AYOxp2jQAK621nQCs9DxWFKUR8aPJ7xnCcfr0w+sAzPH8PAfAhLO8X4qi/Myc6Xf+CGvtKU+tLNTYeFNqj+s6eZJbTSmK0vDUu+Bna5ZMORoBWmvfsdb2t9b2b9q07iubFEX5eTnT5D9qjIkEAM+/cv2toijnNXVy7zXGdACwqFa1/yUAJ6y1LxhjpgFoaa197Meep2PXrvbFOXO8tJxsfpMgtLWsxg665BIau2rrDqHFRPJWUdaa6nQOmEvtiaK6Txoe3lVW1XOLi2ksawXec4S7FYcFBwvtKFnjDwBtSDvztn28HTk2SrbntiLtwaEODsQZOaeXhoCoFi1obABxVz54jN/d6NC6tdCCHNa3l1fKtuGcInnOo1q2pNv7kfbc7cTVGAD6krs82xx8AspIi/LFbfhnlLVkO31GNx3wvit25/XXY3dS0tlx7zXGfALgewCXGmMyjDF3AngBwGhjzF4Av/A8VhSlEfGj9/mttb92+F+jzvK+KIrSgGiHn6K4FE1+RXEpDbqe39fHRxgZDhkqTTIBoKC0VGjfJe+mscx48juyFh8Adq3bJbQbJ11FY5nZJluP79Syy4p7LUixDgCefetfQstO4wWw4FD5HNdOHEFjd6bKYtXY/n1o7Gtvfyq0MdddIbQ1CbLACgCXdpLtvfOXfE1jU3fKwtjg8dxnYPVK2U6ce9TB7LOpLOi2jJTFvc/e+pBu3z5Wvr+jbuHfcP/y8GtCG3/fdTR2T8IeoYW3kyPaAGDVXNmu7uvLx8/d+McbvR6zUV9O6JVfUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaU0aLXfWiuqkYfIOCgAiAyV7b3Bgdyhljmb5h7lbcOxvWRLZsc2vOrKRmgxl11mxAHwll1W1QeAp+69RWjvLVtBY3OzZBttZ+KcCwC79qUKzWnU1aEkWYG/6HbZnrtqPzfo6Nq5g3x9cncFAE5kyfd95sCpNHbyzPlCy8riLcrNmsn97RTXTWjX3zOFbr/w/XlCy07rSWPz8+XdGPbeAMDxDDnKLDuVL4mpJC3KFRXcpGPi4IFej19xGBfG0Cu/orgUTX5FcSma/IriUjT5FcWlNGjBLz+nAEs+8m5dnHj7NTR2e0GB0NjsdADYe/So0I6l89bYowel6+umJRtp7OPT7xQaG6Hl5LLL1uM7teyy4t5dY39BYx977k2hrdy5k8ayNth95HwBwMH98jl2ZWYKLTScO9+m7JOtxDHE0RcAjK+87vwnIYHG9hreS2qQGgBUlMliGVsLH9KCF8aGXH2l0IrzuAfD8AmyLbwwl/s9HEmVreIjbuRtw9FdpdtwYU4hjV2wztsNO/cn+E3olV9RXIomv6K4FE1+RXEpmvyK4lLq4uE3yxiTbYxJqqXNMMZkGmO2ev7jVTtFUc5b6lLt/wDA6wD+eZr+srX2bz/lxYwx8PPzfsnUtMM0NjtNtj52mziaxq7/JlFovr58BuDcD14RWkKKnI0GAEeII+6jf/iN0NjsPIC77DIjDoC3hbKqPgD89cn7hHb/oy/R2JiuMUJb9/UWGlteLltIs4+Q9msHJ9mKsnKhVVdV01hL9G/mf0tjQ0JlZd7pbk5gc+ks3CqyldBem/YM3b5jx95CGzxuKI1dPT9eaFdNGUdjExPl3ZxB1/Dn/W7hSqE1bco/N0dTve/cFByXd8mcONNxXYqiNHLq853/AWPMds/XAm7OrijKecuZJv9bADoC6A3gCICZToG1Z/WVlvBmCUVRGp4zSn5r7VFrbZW1thrAuwAG/EDsf2f1BQbx7y2KojQ8ZzquK/LUlF5jzEMABlprJ//Y87RoEWFHjLjZS+vYuyONffulp4S24PvvaOyUK+XNhr59uSNvYaEsX7z+8cs0NiF5r9CG9JQjuFas4W2pnbt2EFpzh1FXbD2+U8vums/XCu2Nlx6lsWPGyBblLVukOywA/M8b/xDaq0/MENqIMdfT7bes+0ZoV07gbras8PnGs/I9B4B7n5DFueat5BgyACgrkR4MxzJkcbBpCPeGaH2RHA2WEM/f3/5j+glt/SLpNAwA3Yd2F1pJAZ9aHR4t/SWc8vQvDz3g9bioKA9VVRV1Gtf1o9V+z7iuEQBaG2MyAPwJwAhjTG/UTOdNBXBPXV5MUZTzhzMd1/X+z7AviqI0INrhpyguRZNfUVyKJr+iuJQGNfMIDAlEj2E9vLQYYlwAAFFRnYXWo107GhsdLSvw8fGzaezvn5AtCXExsgUWAGJaybbQ1s2aCe2NzR/T7YcNlIYTbHYewF12nebRsZZdVtUHgK++kuWZ/v2vprHbv5Ez+NjdkY9mvUi3r66uFFp6Bp+v2KrVRUKbcvcjNPaDV2QXeVQUn/FYXCxbstPTk4U27W9yzh4AfDN/ldCWLn2XxgYEPSm0z+b/ncZGXizbrz+dzfdh3MTfCo25HQPA7fdP93o8dzZ/fYZe+RXFpWjyK4pL0eRXFJeiya8oLqVBC37FBcXYvMK7/TFx9WYam54uC0U7iZMsACQmynZVp/bezL3yOYrJWC4A+HKD3LdJlw8WWrdBsuAIANv2yZFSY/v3obFshJaTyy5bj+/UssuKe5s3L6Wxt02TPgFrV8nCnNO53bNnk9AGDuHFxYgO0ol518btNHbMeDlaq01MGxpbUihbZjN29xdaUPMguj1bu8+KngBv2R2SPIHGRnaMFNroq6U3BAB0IZ8n5pUAAMvnLvZ6XFJU98VzeuVXFJeiya8oLkWTX1Fciia/orgUTX5FcSl1MvM4W7RqFWnHXnuHlzZ80nAaW35SVjdHD5VVWwBYvk6aLaz/cj2JBPbtlk69L83hJsSx4dJUIe2EbLMc2lm2IgPAKmLG8dUX3KH2UNIhobHZeQB32b3jiQdIJG/ZjRsZR2MfvOGXQvvH/C+FtmmprOoDQHQX2aq9eQV/Hw4dksf2+OvP09jZz7wttMIC3u5qfOT1rGVLaZQSEcXbyhM3fS20Tp2kaQcAHDqUJLTOXfhn9D8LZCvvmDF30dgMcqerrLyUxj74vLcByvN//D0O7dtTJzMPvfIrikvR5FcUl6LJrygupS7juqKNMauNMbuMMTuNMVM9ektjzHJjzF7Pv+rdryiNiB8t+BljIgFEWmu3GGOaAUgAMAHA7QByrLUvGGOmAWhhrX38h54rKibW3vPY015aW9LmCQDTb5drmr/eyotHE0dOFFpJiVzXDQA33fmg0P7vNF54YcW9S9rIttI5y+QacAAY2reH0E4UFtLYi1rI3527HNqZ2Qitlx56gsay1lS2lh4A7vvzdKGxImCf3r+g2yfvlu/P8OE30diIdlFC27OTj02L6XCp0Npdyr0dinKLhLYvaZfQrr51PN2+kGw//11uWXnrw/Kz9N7zfGzaA3/+H6Etm7OYRAIjbhwltOJ83rb79efLvB4nJq5AYWHO2Sn4WWuPWGu3eH4uBJAMIArAdQDmeMLmoOYXgqIojYSf9J3f49/fB8AGABGnvPsBZAHgl3BFUc5L6pz8xpgQAJ8B+IO11msUqK357kC/P9Qe11VcxP/kVRSl4alT8htjmqAm8T+y1i7wyEc99YBTdQE5Uxve47qCQ6T/naIo54a6TOwxqBnSkWytre0OuBDAbQBe8Pz7xY89lwVQXe09l9348t8/vXvLosdFYfyGApupvnbtAhIJGB9ZCwkL4mu7A/zk6Qn09xfaBocRTdcMvUxoaxJkxx0ArNr/vdBCw0NpLEiR1mmEFjPbdFqPzzr3WHEvcaucNQ8AbdteLLTlyz+gsS1byqLjYy/xea8z7pcFWbY9AJSWyvn0ubnSF2HouJF0+0X/mis05lMAAPEfLRJaaip/f5PWyG7A+PhZNLZmBKY3eXnc22HCXd5eBwfSuD8Goy5mHkMB3AJghzFmq0ebjpqkn2eMuRPAIQCT6vyqiqKcc+oyrmsNAKdbB/LyrChKo0A7/BTFpWjyK4pL0eRXFJfSoO691VXVKC3yXpdcnMfbFrduXSm07AJZyQWAlJSNQqsga94BoKpSuuSWV8oxUwBw6PhxoXVqK9eGt+/enm6fkSNbay/txGO7du4gtJR9fLQXc3Ldsu4bGstGaDlVr/uNul9o8z6SLbusqg8AWVkHhNajxxU0NiJCnoeNS+X7CAA9e0rPh/ax3DE5P1e2Pu/dK/0ewtu1ptsPHT1GaAcPclfh/qOGCG3TpiU0lrn3du8+jMb2u3Kg0ApzeI9MwnLvYyspkO7FTuiVX1Fciia/orgUTX5FcSma/IriUhq04GcMUNMt/P8JDAmksSNH3Sw0tuYdAAYMkiOhVq34hMZWVciC3+n7dIrOkbJIU1UtWy83fiVbcwHgjinjhDZ/ydc0dtc6ueY8xqGQWF0l9+HKCdfR2PQMaQbpNEKLmW2y9fhOLbusuJeUxA1L9++X6zxemfdvGnvPL2Xbb3IyP+dlJ2UBmZlfpiWn0+0XzpUtt2VlvIgW/+/5Qquulp8vANj29Vah7djBi7T+85oKLS+PLp3B1OdneD3esPlzGsfQK7+iuBRNfkVxKZr8iuJSNPkVxaVo8iuKS2nQan9VZbVwV62q4tXRizpKs4ZqB6dh1jrZKlFqAJC5VzriFpeV0djggAChnayoEFp6ejLdPqBJE6Gl7pRjuQDgRJZsS3UyOrGk2h/dNYbGMqfeCAfH5MTNq4U2YKg0/nAy0mAtu6yqDwClpbJdlRmtAECAv6x+s6o+AJRXyPcyKKi50NKSeev0iRPy8xEaKse2AcDhw/uFFhYm3Z0BIC1NjicLDuZmLZmZe4VWXJxHY+uDXvkVxaVo8iuKS9HkVxSXUp9xXTOMMZnGmK2e/675+XdXUZSzRV0KfpUAHq49rssYs9zz/1621vLh9gQfXx8ENfN2yvVvKt1wAeDbpdIZddstY2nszg2JQhtz/WQau2uTbLNMOHiQxmblyiJLbIQs6Dw0cwbd/uCxY0IbPH4wjZ05cKrQ/pMg16EDwDfzZcvsG88+RSKBKXc/IrRdG/n69Mdff15o//vUK0Jzctll6/GdWnZZce/ua+VaegB4b5l0Cw5qzh2Xy0tlwa/ghPSB2LNZFtUA4NXPPhNaegpvBY7qJEeOpTsUEpu3kkVHJ3fmqkpZ0PX149fpu689PSd+ePxebepi4HkEwBHPz4XGmFPjuhRFacTUZ1wXADxgjNlujJmlU3oVpXFRn3FdbwHoCKA3av4yoH8L1h7XVVosJ6AqinJuOONxXdbao9baKlszXuRdAAPYtrXHdQUGh5yt/VYUpZ7UpdpPx3WdmtPnYSIAOY9IUZTzlvqM6/q1MaY3asqLqQDuqcsLnu6bUVEm22UBoO/gEVKLjaWxMZ0uEdrnH75LY6/91a1Cu/zSS2msP5nVx5x+n7x7Bt3+owWvC231Sj7Xb/JMaQzRa3gvGhsSKv+CuveJZ2jsB6/ImzFjxk8hkcDsZ94WWkwHeW7Y7DyAu+wyIw6At+yyqj4A3DVWzgsM8OcmMGXEtdnHR17jHnj8Jbr99FvvFFplpXRLBoCwMNkmXVAgHZ8BPh8xPn42je3adZDQ8vPlnSMAeGfxMq/Hz019gMYx6jOui3sUK4rSKNAOP0VxKZr8iuJSNPkVxaU06Hp+ay0qyr0LZuWlvJjC1vNbh/X8Ee1l4aVdO17Eyz8uWz2dnreCeA0w9968vCy6fRDxA8g9ytdlZ2XJFuNe4AW/Y+my+NNtSDcaGxXVSWhtYvia8y3rpKdA/5FDhea0np+N0PopLrtOLbusuMcceWuQ5akWLeTnIyMlg26dT1xyL+7Ym8aydfft23enscwnoHnzVjQ2O1t6PpSW8h4ZH19fb8HBiZpuW+dIRVEuKDT5FcWlaPIrikvR5FcUl6LJrygupUGr/YCsrDuZFBTl1X0FYEmhnKVWWJhDY339fIXm5ArchLSFVpI7AD4+/DSWV8rWZSfzkmbN5Ipop9bnwOak+l3CHYiLi/OFxs4XABhyvKe7LQNAaam8YwIA+bnybsFPcdllRhwAb9nlTacAM7MoKZFOwSEt+CIzvyby/XFqrW3aNFhoublHaSy76+J0bkJCwoTm5HJdffrdJ4fPMkOv/IriUjT5FcWlaPIrikvR5FcUl9KgBT8DWXDz85cjrQDgwHY5CsmJ9GTprpqRkUJjLx8tHcZ9HFoiWduv3+ntlADCw6Pp9jlFsqDTMrIlje0UJ9tzndqOW0XKttBjGbwoxUaJZezuT2NbtmwrtH1Ju4TmVNTau1e6DTu14bIRWsxlF+Dr8VnLLsCLe2w0WNuL5bECQESE9IzIyNhNY5l/QdIO6awMAHFxI4TGC5lAdLRsk3byCTj9nDkVBhl65VcUl6LJryguRZNfUVxKXQw8mxpjNhpjtnnGdT3t0WONMRuMMfuMMZ8aY3j3iqIo5yXGqaj034Aa995ga22Rx8J7DYCpAP4IYIG1dq4x5m0A26y1b/3Qc0XHdrRTn37RS2sRwWd9FOfLYtlVw3ihavnazUIrLeLFlLmvSWPPVWu/oLEphw8LrU+HDkK7efLjdPvZHz4ntKtG8jFi198jTTWdutBemybNOsffIo1JAaBFG3l+ndbNb1wix231HhkntIIcWUADgPB2rYWWRoqxNboca+XkM+DjK69RTuvx2Tljxb2/Pnkf3X7gwHFC++Ud/D376NU3hHbbI3LsGgAs/3ix0PpcMZDGLpjzntBCm8tzCwB9Bl/h9fiL+W/jeHZmnRb1/+iV39Zwqseziec/C+BKAKcsZ+cAmFCXF1QU5fygrkM7fD223dkAlgPYDyDPWnvKlicDOr9PURoVdUp+z2Se3gDaoWYyT5e6vkDtcV1Fhfw+rqIoDc9PqvZba/MArAYwGECYMeZUk1A7ANKkDN7jukKaycYORVHODXWp9ocbY8I8PwcCGA0gGTW/BG7whN0GgFfNFEU5L6lLe28kgDnGGF/U/LKYZ61dZIwInXigAAALOUlEQVTZBWCuMeZZAImomef3g5SVliM1KdVbdLjbUF0t9bBguX4a4G2h6xevp7HhbWKE5k9adgGgY4RsIWXuvUlJa+j2fqQttX0s/8a08P15Qhty9ZV8v4ibbOuLeDX4m/mrhDZ4nHTkBYDETV/L1+rdUWiL/jWXbj909BihLZw7i8YyN9tXP/uMxrIRWsxlF+Dr8VnLLqvqA8CGDYuE1qSJHC0GAMnJ8jO27F98pFxW1gGh7Zu1hcamp8t24upq3rZ7158e8nq8Ip7fyWHUZVzXdgB9iH4ADpN5FUU5/9EOP0VxKZr8iuJSNPkVxaU06Hp+Hx+DpsHexZOgUF7Em/P8m0K741djaexXHy8U2po1vHh0/6N/FZovKcwBQJC/LB6x9fw9el5Ot9+eJltYR90yisZmp/UUWnEeN3hkBbuEeLmWHgCWLpXtzE7mpp069RPa/HdlHXfPnk10+4MHtwutrIybhYaGhgstPYW3AldWypFuTiO0mNkmW4//28ceoduz4t6aNfNJJDBu3P1CW7RItvwCwM23ThfawgW8G37CBNkinJPDR8Id2X/E67GT6StDr/yK4lI0+RXFpWjyK4pL0eRXFJeiya8oLqVBq/3V1VaMlSp0MIaYPFW2dJaUy6ovAIy74wahxXaWDqgAkLRRtlQ6jes6Vij3LTJMjlJK2c2r331jXxTaXx5+jcayKvXwCVfR2NXz44U29pZf0tiAoCeF1n1odxr7yWv/K7RbH35QaPEfyRZYAOg/aoiM/TevlB8+LN2ZozrxVeFhYbLNOjNzL41lI7SYyy4z4gB4yy6r6gO8sn/99X+ksYmbVgvtkktE4ywAYMGCvxOV+3NMvPcmr8d+/nVPab3yK4pL0eRXFJeiya8oLkWTX1FcSsO29/rK9t6QMO5Q+/6zrwptyji+vv3zdz4W2vr1suUXAH7/xEyhsZZdAGgZIveNtQLH9ePtvdsOHRLa+Puuo7G5WbLltjC3iEQCV02Ra9HXL9pAYz+bL4tHQ5K512rnLtId+b3nXxJaauoOuv2mTUuE5rQOPSxMOvWmE0dfgI+qat+eFy3ZKDE2Quvpt2bT7dl6fKeWXVbc48U64La7/iS0zz99ncZOmvyY0HJPcP+Co6nex1tRVknjGHrlVxSXosmvKC5Fk19RXIomv6K4lPrM6vvAGHPQGLPV8x9fYK0oynlJfWb1/Q7AImst798khIVF2OHDvdsRL//VFTS2ukq65N70S17t//Czr4R2YJt0SwWA+C/lnYEvvltKY0ODpBNqaXmZ0HrFdKDbf7c7WWgL56+kscczZEX7SCqfR5eYuEJodz/+FI3NOSLvIkR2jKSxTz8oW6r/Okc69SatSaLbs+fd9vVWGpuWtlNoU/7wOxq7/ONlQmPuvwDg5ycNWFq3lm3DJ09yoxTWNtx3AP/csZbdAUN5S/ac954W2g2TuKHIzh1rhVZVxav4k++91+vxuzOfxuH01DrN6quLe68FwGb1KYrSiDmjWX3W2lM3lZ8zxmw3xrxsjAlw2Pa/47rKy0vP0m4rilJfzmhWnzGmB4AnUDOz7zIALQHQOdW1x3X5+weepd1WFKW+nOmsvrHW2iOe8d1lAGZDB3goSqPiR7/zG2PCAVRYa/Nqzep70RgTaa094ikITgDAq0C1CGoWiLgR3jcFQlvz4Z0rP5Rjpn43ma9Z37VWFo9Wxn9CYyff+XuhxcXIEV5O1ByuN+PHP0BjL24jW1jD20nXWgDITpXtmyNu5E6/g66R7r1Ovgifzpb+AaOv/g2NHTPmLqEtm7NYaPHxfARX9+7DhLZjxzc0Njg4VGih4VKreT3Zitu8eSsaW0YKeWXlJ4X2yNP/oNuzEVpOLrtsPb5Tyy4r7s2f9zca26+fHHtWUHCCxraJ8f6M+QU0oXGM+szqW+X5xWAAbEVN9V9RlEZCfWb18fsfiqI0CrTDT1Fciia/orgUTX5FcSkNauZRWVGJ45nebawBQbQ3CAPHDRTaiSJe0Y4bKZcVNA3hPQUJ364TWlnFfTT2cF6e0GJaySrzgQPb6PatmzUT2qq5y2lsZaWcsRbdNZrGfrdQtghffSs3CRk38bdC6zKIOxvPfU3O9bvpQXkHwFrZeg0A/a6U75n/PDn7DuBttFWV/Hm7dh0ktOxsaZQCACEh0l05Oloe74I579Ht09PlXD82Ow/gxh3MiAMAdmz7Tmisqg8ACQmyXd0Yfp0+WeJ9J8NW83PI0Cu/orgUTX5FcSma/IriUjT5FcWlNGjBz1ZbVJz0Lmz5B8j11wBQUSYLYAF+vHWxokyO8crNyqWxbL13pUORJDhAFiMrq6QbbUWFXOMPAMwrwdfX4RgqZAuqU8suG0nl5MtwIku2hbLzBQBlZNVlcb5sl83Lkw65AN/fvDzuOltcLIupvn78WsRGmZWWcmfjKvL+MPff0Oat6fbMbTgnJ4vGshFaTi67bD2+U8suK+45FVl9hfN0nZbyA9Arv6K4Fk1+RXEpmvyK4lI0+RXFpWjyK4pL+VH33rNJRGS0vem2h7y0roN5q+mbT70gtFfnvkljZ9wrnVHjBstWUwDYsFqahDw360Uam3lUVok7x0gn2C3bU+j2fXp2Ftr+zCM0diLZ3wXr1tPYr2bHC23xQtmaCwC33z9daNvWbaSxk/94m9A+/ps07rjm1uvp9gnLE4R2xQ18jiHj95P4DMF3Fkv3Xh+H+YrV5M5NwYkCoe1at4tu3++qfkI7sp+/Z+HR0pjl9Nl5p/DzlzfWTjfiOMXpLbsAq+rX8NDNE4Vmra1TyV+v/IriUjT5FcWlaPIrikvR5FcUl9KgBT9jzDEApxZitwYgK2qNHz2uxseFdGztrbXcIvo0GjT5vV7YmM3W2v7n5MV/RvS4Gh8X8rH9EPpnv6K4FE1+RXEp5zL53zmHr/1zosfV+LiQj82Rc/adX1GUc4v+2a8oLqXBk98YM9YYk2KM2WeMmdbQr382McbMMsZkG2OSamktjTHLjTF7Pf+2OJf7eCYYY6KNMauNMbuMMTuNMVM9eqM+NmNMU2PMRmPMNs9xPe3RY40xGzyfyU+NMdxe6gKjQZPfM+zzDQBXA+gG4NfGmG4NuQ9nmQ8AjD1NmwZgpbW2E4CVnseNjUoAD1truwEYBOB+z/vU2I+tDMCV1to4AL0BjDXGDALwIoCXrbWXAMgFcOc53McGo6Gv/AMA7LPWHrDWlgOYC4BPm2gEWGu/BZBzmnwdgDmen+egZnx5o8Jae8Rau8XzcyGAZABRaOTHZms4Zf7XxPOfBXAlgPkevdEd15nS0MkfBSC91uMMj3YhEWGtPbUGNAtAxLncmfpijOmAminNG3ABHJsxxtcYsxVANoDlAPYDyLPWnnLYvBA/kxQt+P2M2JpbKY32dooxJgTAZwD+YK31WhTfWI/NWltlre0NoB1q/hLtco536ZzR0MmfCaD2ALp2Hu1C4qgxJhIAPP9yL+fzHGNME9Qk/kfW2gUe+YI4NgCw1uYBWA1gMIAwY8wpt40L8TNJaejk3wSgk6e66g9gMoCFDbwPPzcLAZyyxLkNwBfncF/OCGOMAfA+gGRrbe1plI362Iwx4caYMM/PgQBGo6aesRrADZ6wRndcZ0qDN/kYY64B8AoAXwCzrLXPNegOnEWMMZ8AGIGaVWFHAfwJwH8AzAMQg5oVjJOstacXBc9rjDHDAHwHYAeAU75Y01Hzvb/RHpsxphdqCnq+qLnwzbPWPmOMuRg1xeeWABIB/MZayyexXEBoh5+iuBQt+CmKS9HkVxSXosmvKC5Fk19RXIomv6K4FE1+RXEpmvyK4lI0+RXFpfw/CF0Crth00EAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "print(\"kernel matrix during the training:\")\n", + "kernel_matrix = result['kernel_matrix_training']\n", + "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/aqua/general/Aqua_howto_build_a_pluggable_algorithm_components.ipynb b/qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb similarity index 92% rename from qiskit/aqua/general/Aqua_howto_build_a_pluggable_algorithm_components.ipynb rename to qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb index 57fbef38e..71b0f23a8 100644 --- a/qiskit/aqua/general/Aqua_howto_build_a_pluggable_algorithm_components.ipynb +++ b/qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb @@ -95,7 +95,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "['QAOA.Variational', 'QSVM.Variational', 'VQE', 'ExactEigensolver', 'SVM', 'EOH', 'QSVM.Kernel', 'AmplitudeEstimation', 'BernsteinVazirani', 'DeutschJozsa', 'Grover', 'IQPE', 'QPE', 'Simon', 'EvolutionFidelity']\n" + "['QAOA.Variational', 'VQC', 'VQE', 'ExactEigensolver', 'ExactLSsolver', 'SVM', 'EOH', 'QSVM', 'AmplitudeEstimation', 'BernsteinVazirani', 'DeutschJozsa', 'Grover', 'HHL', 'IQPE', 'QPE', 'Shor', 'Simon', 'EvolutionFidelity']\n" ] } ], @@ -120,7 +120,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.9234907613356655\n" + "0.934847761060059\n" ] } ], @@ -185,7 +185,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "0.9234907613356655\n" + "0.9348477610600592\n" ] } ], @@ -193,20 +193,13 @@ "result = run_algorithm(params, algo_input, backend=backend)\n", "print(result['score'])" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Quantum py37", + "display_name": "Python 3", "language": "python", - "name": "quantum-dev-37" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -218,7 +211,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.7.2" } }, "nbformat": 4, From 3dbc76dcb97ccba272909fd4502dd2377e52f607 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Sun, 28 Apr 2019 09:06:24 -0400 Subject: [PATCH 081/116] switch back Aer -> BasicAer --- .../aqua/artificial_intelligence/qsvm_directly.ipynb | 6 +++--- .../aqua/artificial_intelligence/qsvm_multiclass.ipynb | 4 ++-- community/aqua/artificial_intelligence/vqc.ipynb | 6 +++--- .../artificial_intelligence/qsvm_classification.ipynb | 8 ++++---- ...ua_how_to_build_a_pluggable_algorithm_components.ipynb | 4 ++-- 5 files changed, 14 insertions(+), 14 deletions(-) diff --git a/community/aqua/artificial_intelligence/qsvm_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_directly.ipynb index a0db62a60..0d65df11b 100644 --- a/community/aqua/artificial_intelligence/qsvm_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_directly.ipynb @@ -28,7 +28,7 @@ "outputs": [], "source": [ "from datasets import *\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", "from qiskit.aqua.input import ClassificationInput\n", "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", @@ -98,7 +98,7 @@ " 'backend': {'shots': shots},\n", " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", "}\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "algo_input = ClassificationInput(training_input, test_input, datapoints[0])" ] }, @@ -192,7 +192,7 @@ "metadata": {}, "outputs": [], "source": [ - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2, entangler_map=[[0, 1]])\n", "svm = QSVM(feature_map, training_input, test_input, None)# the data for prediction can be fed later.\n", "svm.random_seed = random_seed\n", diff --git a/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb b/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb index 80ba41c78..b3161ea2e 100644 --- a/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb @@ -25,7 +25,7 @@ "source": [ "import numpy as np\n", "from datasets import *\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua.input import ClassificationInput\n", "from qiskit.aqua import run_algorithm" ] @@ -104,7 +104,7 @@ " 'backend': {'shots': 1024}\n", "}\n", "\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "algo_input = ClassificationInput(training_input, test_input, total_array)\n", "result = run_algorithm(aqua_dict, algo_input, backend=backend)\n", "for k,v in result.items():\n", diff --git a/community/aqua/artificial_intelligence/vqc.ipynb b/community/aqua/artificial_intelligence/vqc.ipynb index 426256fdd..7e2d70a64 100644 --- a/community/aqua/artificial_intelligence/vqc.ipynb +++ b/community/aqua/artificial_intelligence/vqc.ipynb @@ -31,7 +31,7 @@ "outputs": [], "source": [ "from datasets import *\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", "from qiskit.aqua.algorithms import VQC\n", "from qiskit.aqua.components.optimizers import SPSA\n", @@ -130,7 +130,7 @@ "}\n", "\n", "svm_input = ClassificationInput(training_input, test_input, datapoints[0])\n", - "backend = Aer.get_backend('qasm_simulator')" + "backend = BasicAer.get_backend('qasm_simulator')" ] }, { @@ -189,7 +189,7 @@ "metadata": {}, "outputs": [], "source": [ - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "optimizer = SPSA(max_trials=100, c0=4.0, skip_calibration=True)\n", "optimizer.set_options(save_steps=1)\n", "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2)\n", diff --git a/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb index d0b72e1f8..92b21d66a 100644 --- a/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb +++ b/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb @@ -46,7 +46,7 @@ "source": [ "from qsvm_datasets import *\n", "\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", "from qiskit.aqua.input import ClassificationInput\n", "from qiskit.aqua import run_algorithm, QuantumInstance\n", @@ -176,7 +176,7 @@ "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2, entanglement='linear')\n", "qsvm = QSVM(feature_map, training_input, test_input, datapoints[0])\n", "\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", @@ -187,7 +187,7 @@ " 'algorithm': {\n", " 'name': 'QSVM'\n", " },\n", - " 'backend': {'provider': 'qiskit.Aer', 'name': 'qasm_simulator', 'shots': 1024},\n", + " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'qasm_simulator', 'shots': 1024},\n", " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", "}\n", "algo_input = SVMInput(training_input, test_input, datapoints[0])\n", @@ -286,7 +286,7 @@ "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2, entanglement='linear')\n", "qsvm = QSVM(feature_map, training_input, test_input)\n", "\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", "\n", "result = qsvm.run(quantum_instance)\n", diff --git a/qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb b/qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb index 71b0f23a8..986010fd0 100644 --- a/qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb +++ b/qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb @@ -73,7 +73,7 @@ "metadata": {}, "outputs": [], "source": [ - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "import numpy as np\n", "from qiskit.aqua.operator import Operator\n", "from qiskit.aqua import local_pluggables, PluggableType" @@ -136,7 +136,7 @@ "\n", "algo = EvolutionFidelity(qubit_op, initial_state, expansion_order=1)\n", "\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend=backend)\n", "\n", "result = algo.run(quantum_instance)\n", From c2fbb6b59758adf2959eeaa2315729b76fb6cb8e Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Sun, 28 Apr 2019 09:14:25 -0400 Subject: [PATCH 082/116] minor edits on wording --- .../artificial_intelligence/qsvm_directly.ipynb | 16 ++++++++-------- community/aqua/artificial_intelligence/vqc.ipynb | 16 ++++++++-------- 2 files changed, 16 insertions(+), 16 deletions(-) diff --git a/community/aqua/artificial_intelligence/qsvm_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_directly.ipynb index 0d65df11b..3fe700da2 100644 --- a/community/aqua/artificial_intelligence/qsvm_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_directly.ipynb @@ -10,15 +10,15 @@ "\n", "Please refer to [this file](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb) for introduction.\n", "\n", - "In this file, we show two ways for using the quantum kernel method: (1) the non-programming way and (2) the programming way. \n" + "In this file, we show two ways for using the quantum kernel method: (1) the declarative approach and (2) the programmatic approach. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part I: non-programming way.\n", - "In the non-programming way, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " + "### Part I: declarative approach.\n", + "In the declarative approach, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " ] }, { @@ -78,7 +78,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we create the svm in the non-programming way.\n", + "Now we create the svm in the declarative approach.\n", "In the following json, we config:\n", "- the algorithm name \n", "- the feature map " @@ -173,15 +173,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### part II: Programming way.\n", - "We construct the svm instance directly from the classes. The programming way offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. We will demonstrate this advantage soon." + "### part II: programmatic approach.\n", + "We construct the svm instance directly from the classes. The programmatic approach offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. We will demonstrate this advantage soon." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now we create the svm in the programming way.\n", + "Now we create the svm in the programmatic approach.\n", "- We build the svm instance by instantiating the class QSVM. \n", "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion." ] @@ -254,7 +254,7 @@ "collapsed": true }, "source": [ - "Different from the non-programming way, the programming way allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", + "Different from the declarative approach, the programmatic approach allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", "\n", "Use the trained model to evaluate data directly, and we store a `label_to_class` and `class_to_label` for helping converting between label and class name" ] diff --git a/community/aqua/artificial_intelligence/vqc.ipynb b/community/aqua/artificial_intelligence/vqc.ipynb index 7e2d70a64..b2a569dcd 100644 --- a/community/aqua/artificial_intelligence/vqc.ipynb +++ b/community/aqua/artificial_intelligence/vqc.ipynb @@ -13,15 +13,15 @@ "\n", "**This notebook shows the variational quantum classifier method.**\n", "\n", - "In this file, we show two ways for using the variational quantum classifier method: (1) the non-programming way and (2) the programming way. \n" + "In this file, we show two ways for using the variational quantum classifier: (1) the declarative approach and (2) the programmatic approach. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part I: non-programming way.\n", - "In the non-programming way, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " + "### Part I: declarative approach.\n", + "In the declarative approach, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " ] }, { @@ -106,7 +106,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we create the svm in the non-programming way.\n", + "Now we create the svm in the declarative approach.\n", "In the following json, we config:\n", "- the algorithm name \n", "- the variational form\n", @@ -168,15 +168,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Part II: programming way.\n", - "We construct the svm instance directly from the classes. The programming way offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. " + "### Part II: programmatic approach.\n", + "We construct the svm instance directly from the classes. The programmatic approach offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now we create the svm in the programming way.\n", + "Now we create the svm in the programmatic approach.\n", "- we build the optimizer instance (required by the svm instance) by instantiating the class SPSA.\n", "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion.\n", "- We build the varitional form instance (required by the svm instance) by instantiating the class RYRZ.\n", @@ -227,7 +227,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Different from the non-programming way, the programming way allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", + "Different from the declarative approach, the programmatic approach allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", "\n", "Use the trained model to evaluate data directly, and we store a label_to_class and class_to_label for helping converting between label and class name" ] From 0c3a13bff4538371644e94ff9f52847a891ddbf9 Mon Sep 17 00:00:00 2001 From: woodsp Date: Sun, 28 Apr 2019 10:43:46 -0400 Subject: [PATCH 083/116] Updates to chemistry notebooks --- .../LiH_with_qubit_tapering_and_uccsd.ipynb | 2 +- ...ipynb => ParticleHoleTransformation.ipynb} | 66 ++- ...d2end.ipynb => PySCFChemistryDriver.ipynb} | 49 ++- .../aqua/chemistry/Pyquante_end2end.ipynb | 157 ------- community/aqua/chemistry/QubitMappings.ipynb | 238 +++++++++++ .../aqua/chemistry/beh2_reductions.ipynb | 127 +++--- community/aqua/chemistry/energyplot.ipynb | 52 +-- community/aqua/chemistry/h2_basis_sets.ipynb | 22 +- .../aqua/chemistry/h2_excited_states.ipynb | 30 +- community/aqua/chemistry/h2_mappings.ipynb | 126 +++++- .../aqua/chemistry/h2_particle_hole.ipynb | 94 ++++- community/aqua/chemistry/h2_qpe.ipynb | 49 ++- community/aqua/chemistry/h2_swaprz.ipynb | 75 +++- community/aqua/chemistry/h2_uccsd.ipynb | 66 +-- community/aqua/chemistry/h2_var_forms.ipynb | 68 ++- .../aqua/chemistry/h2_vqe_initial_point.ipynb | 154 ++++++- community/aqua/chemistry/h2_vqe_spsa.ipynb | 77 ++-- community/aqua/chemistry/h2o.ipynb | 398 ++++++++++++++++-- community/aqua/chemistry/lih_dissoc.ipynb | 48 +-- community/aqua/chemistry/lih_uccsd.ipynb | 94 ++++- 20 files changed, 1427 insertions(+), 565 deletions(-) rename community/aqua/chemistry/{ParticleHole_example.ipynb => ParticleHoleTransformation.ipynb} (64%) rename community/aqua/chemistry/{PySCF_end2end.ipynb => PySCFChemistryDriver.ipynb} (58%) delete mode 100644 community/aqua/chemistry/Pyquante_end2end.ipynb create mode 100644 community/aqua/chemistry/QubitMappings.ipynb diff --git a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb index d4d685ed4..ddb7c9f28 100644 --- a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb +++ b/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb @@ -328,7 +328,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/ParticleHole_example.ipynb b/community/aqua/chemistry/ParticleHoleTransformation.ipynb similarity index 64% rename from community/aqua/chemistry/ParticleHole_example.ipynb rename to community/aqua/chemistry/ParticleHoleTransformation.ipynb index c1b1ba1f5..e58512f7f 100644 --- a/community/aqua/chemistry/ParticleHole_example.ipynb +++ b/community/aqua/chemistry/ParticleHoleTransformation.ipynb @@ -1,5 +1,18 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*Particle hole transformation of FermionicOperator*_\n", + "\n", + "This notebook demonstrates carrying out a ParticleHole transformation on the FermionicOperator in Qiskit Chemistry. Here we use the FermionicOperator directly to demonstrate.\n", + "\n", + "Note: The Hamiltonian class that wraps this provides a means to use either full, or particle hole transformation. Under the covers it does what is shown here though.\n", + "\n", + "This notebook has been written to use the PYSCF chemistry driver." + ] + }, { "cell_type": "code", "execution_count": 1, @@ -7,7 +20,8 @@ "outputs": [], "source": [ "import numpy as np\n", - "from qiskit import Aer\n", + "\n", + "from qiskit import BasicAer\n", "from qiskit.transpiler import PassManager\n", "\n", "from qiskit.aqua import Operator, QuantumInstance\n", @@ -20,9 +34,16 @@ "from qiskit.chemistry.drivers import PySCFDriver, UnitsType" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll do this with H2 molecule and use the PySCF driver to create the integrals we need for the FermionicOperator." + ] + }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -31,9 +52,16 @@ "molecule = driver.run()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first create the FermionicOperator and use ExactEigensolver with qubit operator we get from it via a jordan wigner mapping to compute the ground state energy. Here this is the electronic component of the total ground state energy (the total ground state energy would include the nuclear repulsion energy we can get from the molecule that comes from the driver)" + ] + }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -60,9 +88,16 @@ "print('The Hartree Fock Electron Energy is: {}'.format(molecule.hf_energy - molecule.nuclear_repulsion_energy))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now the same as above but with ParticleHole transformation. This removes out energy from the FermionicOperator that is equivalent to the electronic part of the Hartree Fock Energy that we also computed above. The Hartree Fock energy also comes from the driver. To get the total electronic ground state energy we need to add the part we now compute with the part that was removed by the transformation." + ] + }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -90,21 +125,28 @@ "print('The exact ground state energy in PH basis is {} (with energy_shift)'.format(ret['energy'] - energy_shift))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We run here using the quantum VQE algorithm to show the same result. The parameters printed are the optimal parameters of the variational form at the minimum energy, the ground state." + ] + }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Minimum value: -0.020307038772801052\n", - "Minimum value: -1.8572750299757856\n", - "Parameters: [ 0.6968305 -0.75469172 -0.93681376 0.90714539 -0.35663766 1.80503875\n", - " 0.36268468 0.91067094 -3.01470787 0.13268903 1.07891483 1.80043481\n", - " -2.97791979 -0.99008645 0.99278289 2.88254594 0.16418367 2.7610048\n", - " -1.98782455 -2.77533268 -2.72793504 1.146142 -0.83030385 -2.75112004]\n" + "Minimum value: -0.020307038771711697\n", + "Minimum value: -1.8572750299746963\n", + "Parameters: [-0.62024568 -0.94461634 -0.12822854 -1.33174693 -3.12835752 -2.41119768\n", + " 0.67926104 2.44344768 0.72721421 -2.76518798 -1.08251803 -1.75962366\n", + " 0.54861203 1.8995056 3.04269648 -1.75046119 0.16409288 0.68204022\n", + " -0.07661803 -0.76359574 -1.56412942 -2.02324628 1.50961019 1.31452025]\n" ] } ], @@ -119,7 +161,7 @@ "# setup VQE with operator, variational form, and optimizer\n", "vqe_algorithm = VQE(newqubitOp_jw, var_form, lbfgs, 'matrix')\n", "\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", "\n", "results = vqe_algorithm.run(quantum_instance)\n", diff --git a/community/aqua/chemistry/PySCF_end2end.ipynb b/community/aqua/chemistry/PySCFChemistryDriver.ipynb similarity index 58% rename from community/aqua/chemistry/PySCF_end2end.ipynb rename to community/aqua/chemistry/PySCFChemistryDriver.ipynb index 878d72ab5..991697bf8 100644 --- a/community/aqua/chemistry/PySCF_end2end.ipynb +++ b/community/aqua/chemistry/PySCFChemistryDriver.ipynb @@ -1,5 +1,22 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*Using PySCF driver*_\n", + "\n", + "Qiskit Chemistry supports a number of different chemistry drivers, i.e chemistry programs and software libraries, which are used to compute integrals that are then used to build the second quantized Hamiltonian in the FermionicOperator.\n", + "\n", + "Drivers include Gaussian 16, PyQuante, PySCF, PSI4 and HDF5. The main Qiskit documentation has more information on [drivers](https://qiskit.org/documentation/aqua/chemistry/qiskit_chemistry_drivers.html).\n", + "\n", + "For non-Windows platforms (where PySCF has no pre-built packages), the PySCF driver is installed as a dependent when you `pip install qiskit-chemistry`. HDF5 support is built into Qiskit Chemistry. If you would like/prefer to use one of the other drivers then refer to the above link for installation and usage guidance.\n", + "\n", + "Note: drivers were written to allow existing users of them to leverage creating the molecular input in a native way for the driver. While Multiplicity (2S+1) is commonly used to specify the overall spin of the molecule, PySCF uses Spin (2S) if you are programming directly with its API and that is what is exposed here. For a singlet system, as in the example below i.e. equal numbers of alpha and beta electrons, the overall spin here is 0 and 2S is 0 (Multiplicity would have been 1).\n", + "\n", + "This notebook has been written to use the PySCF chemistry driver." + ] + }, { "cell_type": "code", "execution_count": 1, @@ -7,7 +24,8 @@ "outputs": [], "source": [ "import numpy as np\n", - "from qiskit import Aer\n", + "\n", + "from qiskit import BasicAer\n", "from qiskit.transpiler import PassManager\n", "\n", "from qiskit.aqua import Operator, QuantumInstance\n", @@ -52,7 +70,7 @@ "metadata": {}, "outputs": [], "source": [ - "# If you do not install any driver and would like to start with a random Hamiltonian\n", + "# If you do have the driver installed or would like to start with a random Hamiltonian\n", "# SIZE=4\n", "# matrix = np.random.random((SIZE,SIZE))\n", "# qubitOp = Operator(matrix=matrix)" @@ -87,15 +105,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "Minimum value: -1.8543764647149892\n", - "Parameters: [-0.11491214 0.32930264 -0.88261763 1.06617404 0.40859901 -1.97440033\n", - " -1.92168204 -0.84401099 0.86926132 0.19962884 1.88259456 0.58563547\n", - " 0.2392261 -1.22095488 -1.8106901 -2.18264222 0.33053157 1.44130586\n", - " 1.16319625 3.08314583 2.86759507 1.39583915 0.89226104 -1.33970127\n", - " -0.20377285 -1.78328421 -1.13356666 2.15515282 1.72935768 -1.02814735\n", - " 0.9198738 -0.51798203 2.25275439 2.70574515 -0.7428116 2.69334082\n", - " -1.96540296 -2.06722665 0.19826459 1.29081156 0.03509571 0.55931109\n", - " 1.61732516 -0.3508986 1.62533384 -0.64622024 3.14159265 -1.78378164]\n" + "Minimum value: -1.8532124263217393\n", + "Parameters: [-2.13953054 0.70800218 -0.17157494 -2.67458466 2.43244041 0.04126769\n", + " 0.34740155 -0.04775077 -1.151147 2.76097941 -1.48948796 -0.30086504\n", + " 0.7290411 2.40033569 -2.30581555 1.06377607 -2.97789243 1.43082718\n", + " -0.91377262 -2.29316671 -0.04083006 -0.54650779 -2.43032826 -0.79940815\n", + " -1.88176584 0.05495389 2.47406188 -0.82144629 -2.44818703 -3.11585379\n", + " -2.54844951 -2.58470426 -0.99008597 -2.88926043 1.20856368 2.67069418\n", + " 2.4613227 1.22966774 -0.03176877 0.93517933 0.06694405 1.33700758\n", + " 1.49080935 -1.39533027 0.47972164 1.7949311 -3.01432916 -2.43192278]\n" ] } ], @@ -110,13 +128,20 @@ "# setup VQE with operator, variational form, and optimizer\n", "vqe_algorithm = VQE(qubitOp, var_form, lbfgs, 'matrix')\n", "\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", "\n", "results = vqe_algorithm.run(quantum_instance)\n", "print(\"Minimum value: {}\".format(results['eigvals'][0].real))\n", "print(\"Parameters: {}\".format(results['opt_params']))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/community/aqua/chemistry/Pyquante_end2end.ipynb b/community/aqua/chemistry/Pyquante_end2end.ipynb deleted file mode 100644 index adada2985..000000000 --- a/community/aqua/chemistry/Pyquante_end2end.ipynb +++ /dev/null @@ -1,157 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from qiskit import Aer\n", - "from qiskit.transpiler import PassManager\n", - "\n", - "from qiskit.aqua import Operator, QuantumInstance\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import L_BFGS_B\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "from qiskit.chemistry import FermionicOperator\n", - "from qiskit.chemistry.drivers import PyQuanteDriver, UnitsType, BasisType" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# using driver to get fermionic Hamiltonian\n", - "# PyQuante example\n", - "driver = PyQuanteDriver(atoms='H .0 .0 .0; H .0 .0 0.735', units=UnitsType.ANGSTROM,\n", - " charge=0, multiplicity=1, basis=BasisType.BSTO3G)\n", - "molecule = driver.run()\n", - "h1 = molecule.one_body_integrals\n", - "h2 = molecule.two_body_integrals" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# convert from fermionic hamiltonian to qubit hamiltonian\n", - "ferOp = FermionicOperator(h1=h1, h2=h2)\n", - "qubitOp_jw = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", - "qubitOp_pa = ferOp.mapping(map_type='PARITY', threshold=0.00000001)\n", - "qubitOp_bi = ferOp.mapping(map_type='BRAVYI_KITAEV', threshold=0.00000001)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "IIII\t(-0.8105479862760991+0j)\n", - "IIIZ\t(0.17218394273085635+0j)\n", - "IIZI\t(-0.22575350251540605+0j)\n", - "IIZZ\t(0.12091263358559995+0j)\n", - "IZII\t(0.17218394273085635+0j)\n", - "IZIZ\t(0.16892754048859007+0j)\n", - "IZZI\t(0.16614543338049342+0j)\n", - "IZZZ\t(-8.326672684688674e-17+0j)\n", - "XXXX\t(0.045232799794893426+0j)\n", - "XXYY\t(0.045232799794893426+0j)\n", - "YYXX\t(0.045232799794893426+0j)\n", - "YYYY\t(0.045232799794893426+0j)\n", - "ZIII\t(-0.2257535025154061+0j)\n", - "ZIIZ\t(0.16614543338049342+0j)\n", - "ZIZI\t(0.17464343142442207+0j)\n", - "ZZII\t(0.12091263358559991+0j)\n", - "ZZIZ\t(-2.42861286636753e-17+0j)\n", - "ZZZI\t(-6.938893903907228e-17+0j)\n", - "ZZZZ\t(-3.122502256758253e-17+0j)\n", - "\n", - "The exact ground state energy is: -1.8572750766378763\n" - ] - } - ], - "source": [ - "# print out qubit hamiltonian in Pauli terms and exact solution\n", - "\n", - "qubitOp_jw.to_matrix()\n", - "qubitOp_jw.chop(10**-10)\n", - "\n", - "print(qubitOp_jw.print_operators())\n", - "\n", - "# Using exact eigensolver to get the smallest eigenvalue\n", - "exact_eigensolver = ExactEigensolver(qubitOp_jw, k=1)\n", - "ret = exact_eigensolver.run()\n", - "print('The exact ground state energy is: {}'.format(ret['energy'])) " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Minimum value: -1.857275076588138\n", - "Parameters: [ 1.72459655 1.92029571 -0.34982926 -1.49153618 2.26170073 0.1302224\n", - " 0.72586921 0.29764644 -1.401497 1.49290088 -3.09131598 0.1647657\n", - " -2.69893629 -1.46110898 -1.99677374 1.92441472 -0.94314616 2.69400524\n", - " 2.75985138 0.16260948 -2.3450682 1.46493868 1.22492389 3.03079433]\n" - ] - } - ], - "source": [ - "# setup VQE \n", - "# setup optimizer, use L_BFGS_B optimizer for example\n", - "lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", - "\n", - "# setup variational form generator (generate trial circuits for VQE)\n", - "var_form = RY(qubitOp_jw.num_qubits, 5, entangler_map = [[0, 1], [1, 2], [2, 3]])\n", - "\n", - "# setup VQE with operator, variational form, and optimizer\n", - "vqe_algorithm = VQE(qubitOp_jw, var_form, lbfgs, 'matrix')\n", - "\n", - "backend = Aer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", - "\n", - "results = vqe_algorithm.run(quantum_instance)\n", - "\n", - "print(\"Minimum value: {}\".format(results['eigvals'][0]))\n", - "print(\"Parameters: {}\".format(results['opt_params']))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/aqua/chemistry/QubitMappings.ipynb b/community/aqua/chemistry/QubitMappings.ipynb new file mode 100644 index 000000000..70b1d7878 --- /dev/null +++ b/community/aqua/chemistry/QubitMappings.ipynb @@ -0,0 +1,238 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*FermionicOperator and qubit mapping*_\n", + "\n", + "When we compute a FermionicOperator in Qiskit Chemistry it needs to be converted to a qubit operator to run on the simulator or real device. The FermionicOperator is built from electronn integrals where electrons behave anti-symmetrically under swap. qubits however do not exhibit this behavior and hence a mapping is needed to ensure that this is accounted for.\n", + "\n", + "Here we have the jordan wigner mapping, the bravyi-kitaev mapping and a parity.\n", + "\n", + "This notebook has been written to use the PYQUANTE chemistry driver. See the PYQUANTE chemistry driver readme if you need to install the external PyQuante2 library that this driver requires." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.transpiler import PassManager\n", + "\n", + "from qiskit.aqua import Operator, QuantumInstance, aqua_globals\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import L_BFGS_B\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "from qiskit.chemistry import FermionicOperator\n", + "from qiskit.chemistry.drivers import PyQuanteDriver, UnitsType, BasisType\n", + "\n", + "aqua_globals.random_seed = 50" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# using driver to get fermionic Hamiltonian\n", + "# PyQuante example\n", + "driver = PyQuanteDriver(atoms='H .0 .0 .0; H .0 .0 0.735', units=UnitsType.ANGSTROM,\n", + " charge=0, multiplicity=1, basis=BasisType.BSTO3G)\n", + "molecule = driver.run()\n", + "h1 = molecule.one_body_integrals\n", + "h2 = molecule.two_body_integrals" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# convert from fermionic hamiltonian to qubit hamiltonian\n", + "ferOp = FermionicOperator(h1=h1, h2=h2)\n", + "qubitOp_jw = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", + "qubitOp_pa = ferOp.mapping(map_type='PARITY', threshold=0.00000001)\n", + "qubitOp_bk = ferOp.mapping(map_type='BRAVYI_KITAEV', threshold=0.00000001)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " --- jordan wigner ---\n", + "IIII\t(-0.8105479862760991+0j)\n", + "IIIZ\t(0.17218394273085635+0j)\n", + "IIZI\t(-0.22575350251540605+0j)\n", + "IIZZ\t(0.12091263358559995+0j)\n", + "IZII\t(0.17218394273085635+0j)\n", + "IZIZ\t(0.16892754048859007+0j)\n", + "IZZI\t(0.16614543338049342+0j)\n", + "IZZZ\t(-8.326672684688674e-17+0j)\n", + "XXXX\t(0.045232799794893426+0j)\n", + "XXYY\t(0.045232799794893426+0j)\n", + "YYXX\t(0.045232799794893426+0j)\n", + "YYYY\t(0.045232799794893426+0j)\n", + "ZIII\t(-0.2257535025154061+0j)\n", + "ZIIZ\t(0.16614543338049342+0j)\n", + "ZIZI\t(0.17464343142442207+0j)\n", + "ZZII\t(0.12091263358559991+0j)\n", + "ZZIZ\t(-2.42861286636753e-17+0j)\n", + "ZZZI\t(-6.938893903907228e-17+0j)\n", + "ZZZZ\t(-3.122502256758253e-17+0j)\n", + "\n", + "The exact ground state energy using jordan wigner mapping is: -1.8572750766378716\n", + "\n", + " --- parity ---\n", + "IIII\t(-0.8105479862760991+0j)\n", + "IIIZ\t(0.17218394273085635+0j)\n", + "IIZI\t(0.1209126335855999+0j)\n", + "IIZZ\t(-0.2257535025154061+0j)\n", + "IXIX\t(0.045232799794893426+0j)\n", + "IXZX\t(-0.045232799794893426+0j)\n", + "IZII\t(-6.938893903907228e-17+0j)\n", + "IZIZ\t(0.16614543338049345+0j)\n", + "IZZI\t(0.17218394273085635+0j)\n", + "IZZZ\t(0.16892754048859007+0j)\n", + "ZIII\t(-3.469446951953614e-17+0j)\n", + "ZIIZ\t(-6.245004513516506e-17+0j)\n", + "ZIZI\t(0.1209126335855999+0j)\n", + "ZIZZ\t(-2.0816681711721685e-17+0j)\n", + "ZXIX\t(0.045232799794893426+0j)\n", + "ZXZX\t(-0.045232799794893426+0j)\n", + "ZZII\t(-0.2257535025154061+0j)\n", + "ZZIZ\t(0.16614543338049342+0j)\n", + "ZZZZ\t(0.17464343142442207+0j)\n", + "\n", + "The exact ground state energy using parity mapping is: -1.8572750766378738\n", + "\n", + " --- bravyi-kitaev ---\n", + "IIII\t(-0.8105479862760991+0j)\n", + "IIIZ\t(0.17218394273085635+0j)\n", + "IIZI\t(0.1209126335855999+0j)\n", + "IIZZ\t(-0.2257535025154061+0j)\n", + "IXIX\t(0.045232799794893426+0j)\n", + "IXZX\t(-0.045232799794893426+0j)\n", + "IZII\t(0.17218394273085635+0j)\n", + "IZIZ\t(0.16892754048859007+0j)\n", + "IZZI\t(-6.938893903907228e-17+0j)\n", + "IZZZ\t(0.16614543338049345+0j)\n", + "ZIII\t(-3.469446951953614e-17+0j)\n", + "ZIIZ\t(-6.245004513516506e-17+0j)\n", + "ZIZI\t(0.1209126335855999+0j)\n", + "ZIZZ\t(-2.0816681711721685e-17+0j)\n", + "ZXIX\t(0.045232799794893426+0j)\n", + "ZXZX\t(-0.045232799794893426+0j)\n", + "ZZIZ\t(0.17464343142442207+0j)\n", + "ZZZI\t(-0.2257535025154061+0j)\n", + "ZZZZ\t(0.16614543338049342+0j)\n", + "\n", + "The exact ground state energy using bravyi-kitaev mapping is: -1.8572750766378796\n" + ] + } + ], + "source": [ + "# print out qubit hamiltonian in Pauli terms and exact solution\n", + "qubit_ops = [(qubitOp_jw, 'jordan wigner'),\n", + " (qubitOp_pa, 'parity'),\n", + " (qubitOp_bk, 'bravyi-kitaev')]\n", + "\n", + "for qubit_op, name in qubit_ops:\n", + " qubit_op.to_matrix()\n", + " qubit_op.chop(10**-10)\n", + "\n", + " print(\"\\n --- {} ---\".format(name))\n", + " print(qubit_op.print_operators())\n", + "\n", + " # Using exact eigensolver to get the smallest eigenvalue\n", + " exact_eigensolver = ExactEigensolver(qubit_op, k=1)\n", + " ret = exact_eigensolver.run()\n", + " print('The exact ground state energy using {} mapping is: {}'.format(name, ret['energy'])) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we run on quantum backend, in this case a simulator" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ground state energy using jordan wigner: -1.8570893208672647\n", + "Ground state energy using parity: -1.8572686760592785\n", + "Ground state energy using bravyi-kitaev: -1.85727507635405\n" + ] + } + ], + "source": [ + "for qubit_op, name in qubit_ops:\n", + " # setup VQE \n", + " # setup optimizer, use L_BFGS_B optimizer for example\n", + " lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", + "\n", + " # setup variational form generator (generate trial circuits for VQE)\n", + " var_form = RY(qubit_op.num_qubits, 5, entanglement='full')\n", + "\n", + " # setup VQE with operator, variational form, and optimizer\n", + " vqe_algorithm = VQE(qubit_op, var_form, lbfgs, 'matrix')\n", + "\n", + " backend = BasicAer.get_backend('statevector_simulator')\n", + " quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", + "\n", + " results = vqe_algorithm.run(quantum_instance)\n", + "\n", + " print(\"Ground state energy using {}: {}\".format(name, results['eigvals'][0]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/community/aqua/chemistry/beh2_reductions.ipynb b/community/aqua/chemistry/beh2_reductions.ipynb index b2f247456..9d383850a 100644 --- a/community/aqua/chemistry/beh2_reductions.ipynb +++ b/community/aqua/chemistry/beh2_reductions.ipynb @@ -6,11 +6,13 @@ "source": [ "## _*BeH2 plots of various orbital reduction results*_\n", "\n", - "This notebook demonstrates using the Qiskit Chemistry to plot graphs of the ground state energy of the Beryllium Dihydride (BeH2) molecule over a range of inter-atomic distances using ExactEigensolver. Freeze core reduction is true and different virtual orbital removals are tried as a comparison.\n", + "We have notebooks showing LiH, where we often remove (discard) two unoccupied orbitals, in addition to freezing the core. While freezing of the core electrons can always be done, discarding unoccupied orbitals should be done with great care.\n", + "\n", + "This notebook demonstrates this for Beryllium Dihydride (BeH2) where we show the effect of removing different unoccupied orbitals. We use Qiskit Chemistry to plot graphs of the ground state energy of the Beryllium Dihydride (BeH2) molecule over a range of inter-atomic distances using ExactEigensolver. Freeze core reduction is true and different virtual orbital removals are tried as a comparison.\n", "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop as well as the orbital reductions.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "This notebook has been written to use the PYSCF chemistry driver." ] }, { @@ -36,7 +38,7 @@ " -15.52863269 -15.5598192 -15.56723345 -15.55823699 -15.53789746\n", " -15.50975433 -15.476334 -15.43948849 -15.40061366 -15.38534487\n", " -15.30406975 -15.24876708 -15.23982192 -15.25303723 -15.27323362\n", - " -15.2904802 -15.29973676 -15.30358774]\n", + " -15.29048022 -15.29973676 -15.30358774]\n", " [-14.38085785 -14.8496625 -15.152928 -15.34484824 -15.46196656\n", " -15.52847583 -15.56042602 -15.5686254 -15.5604457 -15.54096661\n", " -15.51373779 -15.48129162 -15.44548034 -15.4076929 -15.43902234\n", @@ -51,7 +53,7 @@ " -15.53627247 -15.56808784 -15.57642757 -15.5686708 -15.54991949\n", " -15.52376812 -15.49282421 -15.45905583 -15.42402529 -15.38905694\n", " -15.31000383 -15.2593924 -15.25594154 -15.26939038 -15.28973515\n", - " -15.30706594 -15.31636055 -15.32022639]\n", + " -15.30706596 -15.31636055 -15.32022639]\n", " [-14.38815095 -14.85518765 -15.15741167 -15.34871007 -15.46542593\n", " -15.53165667 -15.56340888 -15.57146946 -15.5631985 -15.54366894\n", " -15.51642669 -15.48400243 -15.44824819 -15.41055403 -15.44242866\n", @@ -66,7 +68,7 @@ " -15.54630491 -15.58068771 -15.59206637 -15.58785438 -15.57320634\n", " -15.55177264 -15.52620548 -15.49849044 -15.47015952 -15.37198719\n", " -15.27680792 -15.18982171 -15.11557267 -15.0565821 -15.01697352\n", - " -14.99729007 -14.98854807 -14.98398255]]\n" + " -14.99729008 -14.98854807 -14.98398255]]\n" ] } ], @@ -109,25 +111,24 @@ ] }, { - "cell_type": "code", - "execution_count": 2, + "cell_type": "markdown", "metadata": {}, + "source": [ + "First we plot the ground state energy against interatomic distance for the set of reductions" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAHwCAYAAAAM12EMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xt8nHWd9//XZ86TQ3Ns0zZJ2/SALQUasVCpghyUs2hBWR6rrLjLct9S3VV33bq3ei/L3rs3uv7UVXDVBUWQ3XUpVnSBW8WWkwq0QFtaWpo2Dc2hhTZp0pwzmfn+/phpSNskTZNMrpn0/Xw88sgcruua92Qehfd85zvfy5xziIiIiIjI5PN5HUBERERE5HSlMi4iIiIi4hGVcRERERERj6iMi4iIiIh4RGVcRERERMQjKuMiIiIiIh5RGRcRkROY2VNmdqvXOUREpjqVcRGZ8syszsy6zazDzA6b2WNmVjnKfS82s4Yhbh8oq2b2bjP7jZm1mNlBM3vYzGad5LgfMLMNZtZuZs1mttnM1phZZGzPcvKYWaGZ/dDMDqTy7zKzLw6635nZwlM43riKf2r/ntTre/Tnl2M9nojIZFIZF5HTxQedc3nALOBN4DsTeOwi4AfAPGAu0A78aLiNzeyjwFrg34G5zrkS4I+ACmDINwlmFpjAvOP1TSAPWAIUANcBuz1NBJ92zuUN+vngRD9Ahr0GIjJFqIyLyGnFOddDsgifefQ2Mwub2dfNbJ+ZvWlm3zOz6Ckc8wnn3MPOuSPOuS7gbuA9Q21rZgZ8A7jTOfdvzrmW1DFed859xjlXk9ruDjNba2Y/MbMjwC2pnN8ys6bUz7fMLJza/hYze+64xxoYoTaz+83sntSnAu1m9oKZLRi07QfMbKeZtZnZ3YCN8JTPA/7dOXfYOZdwzu10zq1NHeeZ1DZbUiPUf2RmRWb236lPDQ6nLlektv9H4ELg7tT2d6duXzzo04bXzezG0b4ex/0NLjazBjP7KzN7y8z2m9knB90/7Gs/aN81ZnaA1BssM/ub1HGazOzWo39nMzsvdQz/oONfb2ZbxpJdRE4PKuMicloxsxySo9DPD7r5LuAMoBpYCJQD/3scD3MRsH2Y+95BcgT8kVEc50Mk3zgUAg8BXwLencq5DDgf+PIp5LoJ+HuSI/m7gX8EMLNS4GepY5UCexjmzUTK88A/mtknzWzR4DuccxelLi5LjVD/lOT/a35E8lODOUA3yTcsOOe+BDzL2yPbnzazXOA3JD85mJHK/V0zO5OxmUlyBL8c+DPgHjMrSt13std+JlCcyn6bmV0JfB54f2r7iwc9941AM3D5oP1vBh4YY24ROQ2ojIvI6eLnZtYKtAEfAP4ZBkaqbwM+55xrcc61A/9EsgAeNdvMWgf/AO8d6kHM7BySZe4Lw+QoTf0+MGif/0wdt8vMbh607R+ccz9PjT53Ax8jOaL+lnPuIMliPXj7k1nnnHvROddPstxXp26/GtjunFvrnIsB3xqcbwifSe3/aeA1M9ttZlcNt7Fzrtk594hzriv19/1H4H0jHP9aoM459yPnXL9z7hWSb14+OsI+3z7uNfqHQffFSP7dYs65x4EO4B2jfO0TwN8553pTr8GNwI+cc9tTn4LccVyOHwMfBzCzYuAKkm8qRESGpPlvInK6+LBz7snUFIIPAU+nRloTQA7wUrKbAckpGv5B+zY55yoGH8zMnjr+AVJTQp4A/tI59+wwOZpTv2cBewGcczel9n/uuMetP27f2cAbg66/kbpttAYX7C6S876PHnfgsZxzzsyOf2wG3d9NsrT+k5lNA74IPGxmc45Ouxks9WnEN4ErSY7KA+Sbmd85Fx/iIeYCK1Jveo4KAA+O8Nz+wjl37zD3NafegBx19LlP5+Sv/cHU1KajZgObBl0//u/0E2BHanT/RuBZ59z+EXKLyGlOI+MiclpxzsWdcz8D4iRHtw+RnDax1DlXmPopSH3Zc9TMbC7wJPAPzrmRSuPrQCNw/WjiHne9iWRRPWpO6jaATpLF8miemaM4/lH7GfTF0dSI8ahWm3HOHSFZzHOBqmE2+yuS03NWOOemkZzGA2/PSz/+edYDTw96PQpTU1g+NapnM3qjee2Pz7af5DSjo475OznnGoE/kHx9b2bkNxAiIirjInJ6saQPkRyh3eGcSwD/BnzTzGaktik3sytO4ZjlwHrgbufc90baNvV4fwX8nZn9eerLjZaae112kof6D+DLZjY9Nc/7f5MciQXYAiw1s2pLLo94x2jzA4+l9r3ekiuG/AXJudJDMrOvpL6sGEo91l8CrSTfaEBytZr5g3bJJ1l6W1NTN/7uuEMev/1/A2eY2c1mFkz9nGdmS07hOZ3UGF/7/wI+aWZLUiP+XxlimweAvwHOJjkXX0RkWCrjInK6+KWZdQBHSM5Z/oRz7uiXLNeQ/ELj85ZcueRJkiO5o3UryTJ5hw1a63q4jVNfaryR5NziepIjtP9FcnnEh0d4nP9DcorEVuBV4OXUbTjndgF3prLXAM8Nc4yh8hwiOR/7LpLTaBYBvxtpF5JfyDxEcmT+A8A1zrmjz/kO4Mepuds3kpyDHk1t/zzw/4473r8AH7HkSivfTs3dvpzk3O0mktNrvgqER8h0tx27zvhLo3v2p/baO+eeAL4NbDi6X+qu3kGbrSP5Cca61LxyEZFhmXPHfwInIiIio5Eard8GhAfPSzezPcD/cM496Vk4EckKGhkXERE5BWa2KrU+eRHJEftfHlfEbyD56cF6rzKKSPZQGRcRETk1/wN4i+R67HFg4IulqVV2/hVYnZqTLiIyIk1TERERERHxiEbGRUREREQ8ojIuIiIiIuKR0+oMnKWlpW7evHlexxARERGRKe6ll1465JybfrLtTqsyPm/ePDZt2nTyDUVERERExsHM3hjNdpqmIiIiIiLiEZVxERERERGPqIyLiIiIiHjktJozLiIiIiJjE4vFaGhooKenx+soGSUSiVBRUUEwGBzT/irjIiIiInJSDQ0N5OfnM2/ePMzM6zgZwTlHc3MzDQ0NVFVVjekYmqYiIiIiIifV09NDSUmJivggZkZJScm4Pi1QGRcRERGRUVERP9F4/yYq4yIiIiIiHlEZFxEREZGsUFdXRzQapbq6mu7ubqqrqwmFQhw6dMjraGOmL3CKiIiISNZYsGABmzdvBmDz5s3MmzfP20DjpDIuIiIiIqfk73+5ndeajkzoMc+cPY2/++DSCT1mNtA0FRERERERj2hkXEREREROyek4gp0uGhkXEREREfGIyriIiIiIiEdUxkVEREREPKIynmbOOVp6Wki4hNdRRERERCTDqIyn2brd63jfT9/Hm51veh1FREREJKv5/X7a2tqOOelPLBbD58veSqvVVNJsZmcrAPsP1zArb5bHaURERESyV2VlJfX19QPXj578J5tl79uILOGraeKqP0ynoe4Vr6OIiIiISIbxrIyb2UfNbLuZJcxs+RD3zzGzDjP765Mc59tm1pG+pOPj39lG2eEcDu3Y5nUUEREREckwXo6MbwOuB54Z5v5vAE+MdIBUiS+a4FwTq+QsADr3NXscREREREQyjWdl3Dm3wzn3+lD3mdmHgb3A9uH2NzM/8M/A36Qn4cToCc1g2pyVuOag11FEREREJMNk3JxxM8sD1gB/f5JNPw38wjm3P/2pxs5FQjTm9hFMFHsdRURERCRr1dXVEY1Gqa6uHvL+hx56iHPOOYezzz6blStXsmXLllN+jCuvvJLCwkKuvfbaY27/2Mc+RnFxMWvXrh1T9pGkdTUVM3sSmDnEXV9yzj06zG53AN90znWY2XDHnQ18FLh4FBluA24DmDNnzslDT7CCiumwGwK+aZP+2CIiIiJTyYIFC4ZdQaWqqoqnn36aoqIinnjiCW677TZeeOGFUzr+F77wBbq6uvj+979/zO0PPfQQt9xyy1hjjyitZdw59/4x7LYC+IiZfQ0oBBJm1uOcu3vQNu8EFgK7U4U9x8x2O+cWDpHhB8APAJYvX+7GkGdcXo8lP3zwhXJo72snP5Q/2RFEREREJtYTX4QDr07sMWeeDVfdNebdV65cOXD53e9+Nw0NDad8jMsuu4ynnnpqzBnGIuPWGXfOXXj0spndAXQcV8Rxzj3GoBF3M+sYqohngtlzZ7DzOcMFgxxobyS/ZLHXkURERESmtPvuu4+rrrrK6xij4lkZN7NVwHeA6cBjZrbZOXfFSfZ5HLjVOdc0GRknQnlxLlEXoj9gNB7YyiKVcREREcl24xjBTrcNGzZw33338dxzz3kdZVS8XE1lnXOuwjkXds6VDVXEnXN3OOe+Puj61UMVcedcXrrzjtWsggiRRIC+gLH/dZ34R0RERGQi3HPPPVRXV1NdXU1TU7Iebt26lVtvvZVHH32UkpKSEfd/4YUXBvb/xS9+MRmRh5Rx01SmmkjQTzAe5Eiwi7Y9b3gdR0RERGRKWL16NatXrx64vm/fPq6//noefPBBzjjjjGO2veyyy3jggQcoLy8fuG3FihXDfhl0MqmMT4oQ3dZGaH+310FEREREpqQ777yT5uZmbr/9dgACgQCbNm0ikUiwe/duiotPvsz0hRdeyM6dO+no6KCiooL77ruPK64YcRb1uKmMT4JEeBqOtwh0FXgdRURERGRKuvfee7n33ntPuP21117jhhtuIBqNnvQYzz77bDqijSjjTvozFVnqnViIIo+TiIiIiGQnv99PW1vbsCf9Gc5ZZ53FN77xjXE99sc+9jGefvppIpHIuI4zFI2MT4Kc2SXQAv5gLvFEHL/P73UkERERkaxSWVlJfX29J4/90EMPpe3YGhmfBDPmJpdEd8EwB7sPepxGRERERDKFyvgkqJhVSMgFSAQC7G+p8TqOiIiIiGQIlfFJMLswQk4iSCzgo2Gf90voiIiIiEhmUBmfBMW5IULxAH1+x8Ed27yOIyIiIiIZQmV8EpgZfhekyxejs+6Q13FEREREsk5dXR3RaHTY1VQeffRRzjnnHKqrq1m+fDnPPffcKR3/N7/5De9617s4++yzede73sX69esH7rvkkkvIy8tj06ZN43oOQ9FqKpMk4cshZi0kWoJeRxERERHJSgsWLBj2rJmXXXYZ1113HWbG1q1bufHGG9m5c+eoj11aWsovf/lLZs+ezbZt27jiiitobGwEYMOGDVx88cUT8RROoDI+SVxeIfQ2EEporXERERHJbl998avsbBl90R2NxcWLWXP+mjHvn5eXN3C5s7MTMzul/d/5zncOXF66dCnd3d309vYSDofHnGk0NE1lkgTLSgEI2DSPk4iIiIhMTevWrWPx4sVcc801/PCHPxzzcR555BHOPffctBdx0Mj4pCmsLKVxH/hCOXTGOskN5nodSURERGRMxjOCnU6rVq1i1apVPPPMM3zlK1/hySefPOVjbN++nTVr1vDrX/86DQlPpJHxSTJ73gx8znDBIAeONHgdR0RERCSr3XPPPVRXV1NdXU1TU9Mx91100UXU1tZy6NDwC2esW7duYP+jX8xsaGhg1apVPPDAAyxYsCCt+Y9SGZ8kFcW5RF2I/oCPxgOveh1HREREJKutXr2azZs3s3nzZmbPns3u3btxzgHw8ssv09vbS0lJCQCLFy8+Yf9Vq1YN7L98+XJaW1u55ppruOuuu3jPe94zac9DZXySzCyIEEkE6AsYTTU68Y+IiIjIRHrkkUc466yzqK6uZvXq1fz0pz/FzDh06NBASR/J3Xffze7du7nzzjsHRszfeuuttOfWnPFJEg74CcaDtAe7aN1d63UcERERkSllzZo1rFlz4lz2559/ntWrV590/y9/+ct8+ctfTke0EamMTyIjRJe1EWzq8TqKiIiISFbx+/20tbVRXV097FrjQ7n22mvH/diXXHIJtbW1BIMTf74YlfFJFA/n43iLYKeWNxQRERE5FZWVldTX13vy2Bs2bEjbsTVnfBJZUfJLBAHTiX9ERERERGV8UuWWJ8u4P5hLPBH3OI2IiIiIeE1lfBJNn1uWvBAM09zT7G0YEREREfGcyvgkqpxdRMgFSAQCNDXv8jqOiIiIiHhMZXwSlRdGiSaCxAI+GvZt8TqOiIiISNaoq6sjGo1SXV094nYbN24kEAiwdu3aUzr+iy++OLC++LJly1i3bh0A3d3dVFdXEwqFRjyj51hpNZVJVJgTJBwP0OuP8dbr22DyTu4kIiIikvUWLFgw4rKG8XicNWvWcPnll5/ysc866yw2bdpEIBBg//79LFu2jA9+8INEo1E2b97MvHnzxpF8eCrjk8jM8Lsg3b4uAnUHvY4jIiIiMiYH/umf6N2xc0KPGV6ymJn/63+N6xjf+c53uOGGG9i4ceMp75uTkzNwuaenBzMbV5bR0jSVSZbw5dBncRLNE79ovIiIiMjpqrGxkXXr1vGpT31qzMd44YUXWLp0KWeffTbf+973CATSP26tkfHJll8IPQ2E+gu9TiIiIiIyJuMdwU6Hz372s3z1q1/F5xv7WPOKFSvYvn07O3bs4BOf+ARXXXUVkUhkAlOeSCPjkyxYVgpAwF/gcRIRERGR7HXPPfcMfOGyqamJTZs2cdNNNzFv3jzWrl3L7bffzs9//vNh91+3bt3A/ps2bTrmviVLlpCXl8e2bdvS/TQ0Mj7ZCipKaXgDfMEIXbEucoI5J99JRERERI6xevVqVq9ePXB97969A5dvueUWrr32Wj784Q8DsHjxYnbuPHaO+6pVq1i1atUx+1dWVhIIBHjjjTfYuXNn2r60OZhGxidZ+ZwZmDMSwSAH2hu8jiMiIiIypR06dAjn3Em3e+6551i2bBnV1dWsWrWK7373u5SWlqY9n0bGJ1lFaR45LkQ8YDQeeJX5xWd4HUlERERkSrn//vsHLj///PPHjKAP5+abb+bmm29OY6qhqYxPspkFESKJAH2BBI27t8CZN3gdSURERCTj+f1+2traqK6uHnGt8eNde+2143rc7u5uLrjgAmKx2Li+HDoclfFJFgr4CMYDtAe7ad1V63UcERERkaxQWVlJfX39pD/u0ZP+pIvmjHvACNNlMbr3d3kdRUREREQ8pDLugUQ4H2eOYMc0r6OIiIiIiIdUxr1QXAJA0Io8DiIiIiIiXlIZ90Be+XQA/IFcEi7hcRoRERER8YrKuAdmzJ0BgIXCNHc3e5xGREREJDvU1dURjUaprq4+4b6dO3dywQUXEA6H+frXvz5we3d3N9XV1YRCIQ4dOjSZcUdFq6l4oGJ2ISEXIB7w09Syi+k5072OJCIiIpIVFixYMOTqJsXFxXz729/m5z//+TG3H10NZTLOpjkWKuMeKC+MEk0E6Q9Aw74tLKt4j9eRREREREbt2f/axaH6jgk9ZmllHhfeOPaTIc6YMYMZM2bw2GOPTWCq9NM0FQ8URIOE4wF6/Y63Xn/V6zgiIiIi4hGNjHvAzPC7IN2+LgJ1mTd3SURERGQk4xnBlmNpZNwjzhelz+IkDun9kIiIiMipuueee6iurqa6upqmpiav44yZmqBHXF4h9DYS6i/0OoqIiIhI1lm9ejWrV6/2Osa4qYx7JFRWCvsg4C/wOoqIiIhI1jtw4ADLly/nyJEj+Hw+vvWtb/Haa68xbVpmn/FcZdwjhZXTqd8HvmCE7v5uooGo15FEREREstbMmTNpaGjwOsYp05xxj5TPnYE5IxEMcuBIo9dxRERERDKe3++nra1tyJP+DOfoSX9isRg+X+ZVX42Me6S8NI8cFyIeMBrffJWq4oVeRxIRERHJaJWVldTX15/SPkdP+pOpMu/twWliZkGESCJAzG807X7F6zgiIiIi4gGVcY8E/T6C8QA9/jgtNXu9jiMiIiIiHlAZ95ARpstidDd2eR1FRERERDygMu6hRDgPZ45gZ77XUURERETEAyrjHrLiEgCCFHmcRERERCTz1dXVEY1Gh1xN5aGHHuKcc87h7LPPZuXKlWzZsgV4ezWVUCjEoUOHJjvySWk1FQ/llU+HFvAHckm4BD7TeyMRERGRkSxYsGDI1VGqqqp4+umnKSoq4oknnuC2227jhRdeGFhNZd68eZMfdhQ8KeNm9lHgDmAJcL5zbtNx988BXgPucM59fYj9Dfg/wEeBOPCvzrlvpzv3RJsxZwa7XwULhWnpaaE0Wup1JBEREZGT2nD/D3jrjdoJPeaMufO55Jbbxrz/ypUrBy6/+93vzpoTAHk1FLsNuB54Zpj7vwE8McL+twCVwGLn3BLgPyc03SSpKC8m5ALEAwH2N9d4HUdERERkSrjvvvu46qqrvI4xKp6MjDvndgAkB7iPZWYfBvYCnSMc4lPAHzvnEqnjvZWGmGlXXhQlmgjSH4CGfZs5u+ICryOJiIiInNR4RrDTbcOGDdx3330899xzXkcZlYyapGxmecAa4O9PsukC4I/MbJOZPWFmi9KfbuJNiwQIxwP0+h1v7trudRwRERGRrHHPPfdQXV1NdXU1TU1NAGzdupVbb72VRx99lJKSEo8Tjk7aRsbN7Elg5hB3fck59+gwu90BfNM51zHUqPkgYaDHObfczK4HfghcOEyO24DbAObMmTPK9JPDzPC7IN2+bgJ1b3odR0RERCRrrF69mtWrVw9c37dvH9dffz0PPvggZ5xxhofJTk3ayrhz7v1j2G0F8BEz+xpQCCTMrMc5d/dx2zUAP0tdXgf8aIQcPwB+ALB8+XI3hkxp5XwR+qyFxCG/11FEREREstadd95Jc3Mzt99+OwCBQIBNmzadZC/vZdTShs65gdFtM7sD6BiiiAP8HLiE5Nzy9wG7JiVgOuQVQW8ToZjWGhcREREZq3vvvZd7773X6xinzJM542a2yswagAuAx8zsV6PY53Ezm526ehdwg5m9Cvxf4Nb0pU2vYNl0AAL+aR4nEREREclsfr+ftra2IU/6M5yjJ/2JxWL4fBn1dUnAu9VU1pGcXjLSNnccd/3qQZdbgWvSEm6SFc2ZTv0+sGCUnv4eIoGI15FEREREMlJlZSX19fWntM/Rk/5kqsx7e3CaKZ87A3OGCwZ5s73R6zgiIiIiMolUxj1WXppLjgsRD/hpfPNVr+OIiIiIyCRSGfdY2bQIkUSAmN9o3LPF6zgiIiIiMolUxj0W9PsIxgP0+OO01OzxOo6IiIiITCKV8QzgI0SXxehu6PQ6ioiIiEjGqqurIxqNDrmayqOPPso555xDdXU1y5cv57nnngNgz549VFdXk5eXN9lxRyWj1hk/XSXC+TgOEujM9zqKiIiISEZbsGDBkKujXHbZZVx33XWYGVu3buXGG29k586dA9urjMuwrKgYDtcSdDrxj4iIiGS+1l/uoa9pYj/RD83OpfCDC8a8/+Cy3dnZiZlNRKy00zSVDJBXMQMAfyAX55zHaURERESy07p161i8eDHXXHMNP/zhD72OMyoaGc8AZfNmUPMqEAxzuPcwxZFiryOJiIiIDGs8I9jptGrVKlatWsUzzzzDV77yFZ588kmvI52URsYzQEV5MSEXIBEM0NS8y+s4IiIiIhnvnnvuobq6murqapqamo6576KLLqK2tpZDhw55lG70VMYzwOzCKNFEkP6Aj8Z9mXu6VhEREZFMsXr1ajZv3szmzZuZPXs2u3fvHpju+/LLL9Pb20tJSYnHKU9O01QywLRIkHA8QK8/xoGa7XCB14lEREREsssjjzzCAw88QDAYJBqN8tOf/jQrvsSpMp4h/C5At6+bI7VveR1FREREJOusWbOGNWvWeB3jlGmaSqbw5dBn/SSa9ZKIiIiIDMXv99PW1jbkSX+Gc/SkP2VlZWlMNnYaGc8UeQXQ20ior9DrJCIiIiIZqbKykvr6+lPaZ7iTBGUKDcNmiEDZ9ORv/zSPk4iIiIjIZFEZzxBFc5Mn/rFglL54n8dpRERERGQyqIxniPK5MzBnEAxyoL3B6zgiIiIiMglUxjNEZWkeOS5Ef8BP44FXvY4jIiIiIpNAZTxDzMgPE0kEiPmNhj1bvI4jIiIiknHq6uqIRqMjrqayceNGAoEAa9euBd5eTSUvL2+yYp4SlfEMEfD7CMYD9PjjNO/e43UcERERkYw00uoo8XicNWvWcPnll49q+0ygpQ0ziI8Q3XaEYEOn11FEREREhvXEE09w4MCBCT3mzJkzueqqq8Z1jO985zvccMMNbNy4cYJSpZ9GxjNIIpxPwhz+9sz8GEVEREQkUzU2NrJu3To+9alPeR3llGhkPIP4iouhpZaQFXkdRURERGRY4x3BTofPfvazfPWrX8Xny66xZpXxDJJXPgNawO/PxTmHmXkdSURERCQj3XPPPfzbv/0bAI8//jibNm3ipptuAuDQoUM8/vjjBAIBPvzhD3sZ86RUxjNI2bwydr0KBMO09rZSFNEIuYiIiMhQVq9ezerVqweu7927d+DyLbfcwrXXXpvxRRw0ZzyjVJQXE3R+EsEATc01XscRERERkTTTyHgGmV0YIScRoj8ADfWbWVp+vteRRERERLLO/fff73WEUdPIeAbJjwQJJwL0+h0Hdm/3Oo6IiIhIRvH7/bS1tY140p/jHT3pT1lZWRqTjZ1GxjOMPxGgO9BN+56JXbtTREREJNtVVlZSX19/Svtk+kl/NDKeaXxR+qyf+EGtpCIiIiKZxTnndYSMM96/icp4hrHcQgACMa2kIiIiIpkjEonQ3NysQj6Ic47m5mYikciYj6FpKhkmMHM67IOgf5rXUUREREQGVFRU0NDQwMGDB72OklEikQgVFRVj3l9lPMMUzZ3Bvn3gD0bpi/cR8oe8jiQiIiJCMBikqqrK6xhTjqapZJiKeTMwZ7hgkDc79nsdR0RERETSSGU8w1SU5hF1QfoDfpr2b/U6joiIiIikkcp4hpmRHyGaCBLzG/V1W7yOIyIiIiJppDKeYfw+IxgP0OOP0/z6bq/jiIiIiEgaqYxnIB8hui1GV2On11FEREREJI1UxjOQC+eRMEegPc/rKCIiIiKSRirjGciKigEIukKPk4iIiIhIOqmMZ6C8yjIA/IFcneVKREREZApTGc9AZfOSZdyCYY70HfE4jYiIiIiki8p4BppTXkzQ+UkE/TQ17/I07vSsAAAgAElEQVQ6joiIiIikicp4BppVGCUnEaI/4KehXmuNi4iIiExVKuMZKC8cIJwI0Ot3NO3e5nUcEREREUkTlfEMFUgE6Pb107HngNdRRERERCRNVMYzlPNF6bN++g+a11FEREREJE1UxjOUL3caAIGY1hoXERERmapUxjNUYGZyecOgf5rHSUREREQkXVTGM1TRnBkA+ANRYomYx2lEREREJB1UxjNUeVUZ5gwXCPJWx36v44iIiIhIGqiMZ6jK0jyiLkh/0E/j/le9jiMiIiIiaaAynqFm5IeJJoLE/Eb93le8jiMiIiIiaaAynqF8PiMYD9Djj9NSU+t1HBERERFJA5XxDOYjRLfF6Gxo9zqKiIiIiKSBZ2XczD5qZtvNLGFmy4e4f46ZdZjZXw+z/2Vm9rKZbTaz58xsYfpTT7JQLglz+I/keZ1ERERERNLAy5HxbcD1wDPD3P8N4IkR9v9X4GPOuWrg34EvT2w87/mKigEIohP/iIiIiExFAa8e2Dm3A8DsxNO9m9mHgb1A50iHAI6eEacAaJrgiJ7LnTMTWsHvz8U5N+TfSkRERESyV8bNGTezPGAN8Pcn2fRW4HEzawBuBu5Kd7bJNrMqeRZOC4Zpj2neuIiIiMhUk9YybmZPmtm2IX4+NMJudwDfdM51nOTwnwOuds5VAD8iOa1lqAy3mdkmM9t08ODBMT0Pr1SWFxN0fhJBP03NNV7HEREREZEJltZpKs65949htxXAR8zsa0AhkDCzHufc3Uc3MLPpwDLn3Aupm34K/L9hMvwA+AHA8uXL3RjyeGZWQZRoIkR/ABr2vcLiWe/yOpKIiIiITCDP5owPxzl34dHLZnYH0DG4iKccBgrM7Azn3C7gA8COyUs5OXLDASKJAH3+GE17Xku+TRERERGRKcPLpQ1XpeZ7XwA8Zma/GsU+j5vZbOdcP/DnwCNmtoXknPEvpDexNwKJAN2+ftpr93sdRUREREQmmJerqawD1p1kmzuOu371qew/Jfgi9Nph+t/Mqhk2IiIiIjIKGbeaihzLcgsACMSKPE4iIiIiIhNNZTzDBWfOSP725XucREREREQmmsp4hiuam1xr3B/MoT/R73EaEREREZlIKuMZrqKqDHPgAkEOdh7wOo6IiIiITCCV8QxXWZpH1IXoD/ppaNridRwRERERmUAq4xmuNC9MJBEk5jca9m71Oo6IiIiITCCV8Qzn8xmhRIAef5xDu2u8jiMiIiIiE0hlPAv4XIhui9FZ3+51FBERERGZQCrj2SCUS8Ic/vY8r5OIiIiIyARSGc8CgaLkCX+CrsDjJCIiIiIykVTGs0DOnFkABPy5HicRERERkYmkMp4FyqqSJ/4hGOZwz2Fvw4iIiIjIhFEZzwKV5SUEnZ9EMMCuAy95HUdEREREJojKeBYoL4wSTYToD/jZuWOD13FEREREZIKojGeBaMhPOBGkz+/Y9/prXscRERERkQmiMp4l/C5Et6+f+N5ur6OIiIiIyARRGc8SLphLr/WT21ZAf6Lf6zgiIiIiMgFUxrNEvHQGAPmhmexr2+txGhERERGZCCrjWSKvqhyAQHQaO2uf9jiNiIiIiEwElfEssfCM2YRcgEQ4h107/uB1HBERERGZACrjWeLM8kLy4lF6Qkbrrkav44iIiIjIBFAZzxLFuSF8iShH/DF8+wNexxERERGRCaAynkVi0UL6LU5RfBZtvW1exxERERGRcVIZzyKhitkARCLFvL7/JY/TiIiIiMh4qYxnkfIz54IDi+axc+d6r+OIiIiIyDipjGeRM+eVku8ixEJB9r3+mtdxRERERGScVMazyPzSXCL9UTqDjv7abq/jiIiIiMg4qYxnkYDfR8KXS4evl5y2acQTca8jiYiIiMg4qIxnmXhpGQDTQjN5o22vx2lEREREZDxUxrNM4fwKAALRaeysfdrjNCIiIiIyHirjWWbRknKCzk8inMOunb/3Oo6IiIiIjIPKeJY5c3Yh+fEoPSHj8K4mr+OIiIiIyDiojGeZotwQvkQO7f4Y/ia/13FEREREZBxUxrNQf04hMYtTFJ9FW2+b13FEREREZIxUxrNQqGI2AJFIMbsOvOxxGhEREREZK5XxLFS+ZC44sGgeO3es9zqOiIiIiIyRyngWWlpVSr6LEAsF2bdru9dxRERERGSMVMaz0LySXML9UTqDjlhtt9dxRERERGSMVMazUMDvw/ly6fD1ktM2jXgi7nUkERERERkDlfEsFS+ZAcC04Ezqj7zhcRoRERERGQuV8SxVvLASgEB0Gjtrn/I2jIiIiIiMyajKuJn9zMyuMTOV9wyxcHEFQecnEc7h9R2/9zqOiIiIiIzBaMv1d4E/BmrM7C4ze0caM8koLC0vJD8epSdktOxq8jqOiIiIiIzBqMq4c+5J59zHgHOBOuBJM/u9mX3SzILpDChDK8gJ4k9EaffH8Df5vY4jIiIiImMw6mknZlYC3ALcCrwC/AvJcv6btCSTk+rPKSJmcQrjM2nva/c6joiIiIicotHOGV8HPAvkAB90zl3nnPupc+4zQF46A8rwgpWzAYhGitm1/2WP04iIiIjIqRrtyPi3nXNnOuf+r3Nu/+A7nHPL05BLRqFyyVxwYNE8duz4rddxREREROQUBUa5XZGZXX/cbW3Aq865tyY4k4zSknnT2eUi9IWMN2s2w5VeJxIRERGRUzHaMv5nwAXAhtT1i4GXgCozu9M592AasslJVJXmEumP0BXsJrany+s4IiIiInKKRlvGg8AS59ybAGZWBjwArACeAVTGPeD3Gc6XR4evlWjbNBIugU9LwYuIiIjg+vtxfX34cnK8jjKi0ZbxiqNFPOUtoNI512JmsTTkklGKl5RBWwMFwZnUt9Uxt3C+15FEREREhuT6+0n09OJ6e0h094z/d08PiZ63ryd63r6N/n6Cc+ew8Fe/8vppj2i0ZfwpM/tv4OHU9RtSt+UCrWlJJqNSvLCCwy+9RCA6jZ21TzH3XJVxERERGZ9Eby/x1jbiba0k2trob20lcaSdRE/32wW4pydZrHu6j/3d3U2i9+3ryX16kwU5NrYxXAuFsEgEXyRywm9/cRG+SBSLhE/4HSgumeC/zMQbbRlfDVwPvDd1/QHgEeecAy5JRzAZnUVLKti3yU8iHGbXjue54tw/9TqSiIiIZIhEXx/xw63Hluq2NuJtbcmy3dqavNx27GXX3X3SY1swiEWj+MLhE377iwrxhWdi0Qi+cGTY377oieX6hN/hMOafuic4PGkZNzM/8KRz7hLgkfRHklOxZHYhL8aj9ITitNQ0eB1HRERE0iDR15csy8eU6dahS/Wg+0Ys1cEg/sIC/AUF+AsKCVZUEFm6NHm9sDD1++3Lvvxp+HJSpTsSmdIFeTKdtIw75+JmljCzAudc22SEktEryAniT0RpDbbga9I/ChERkUyX6OsjVl9PvKXl2PLceuII9dHrJy3VR4tzQSHB2bOJnHlmqmSnynRhwbElu6AAy8nBzCbviY9SIpEgFovR398/8DPW69FolMsvv9zrpzSi0U5T6QBeNbPfAJ1Hb3TO/UVaUskpiecUEes/SHF/GR19HeSFdFJUERERr8VbW+mt3Uvf3lp699TSV1tL795aYvUNkEicuEMgMGhEOlWqlyw5dpT6uELtLyxMe6nu7++np6eHnp6ecZfj0VxPDPW3OQWBQIBgMEggEKC4uHiC/grpM9oy/rPUj2SgUEU51O0iGilh14GXOHfO+7yOJCIiclpw8Tix/fuTRXtQ4e6r3Uu8pWVgOwuFCM2bR2TJmRRccw2hefMIlJa+PQWkoBBfbnpKdTwep7e3d6BQd3d3D1w+/meo+/r7+8f0uEcL8eByfPQnEokcc/34+8d63e/3Z+Ro/0hGVcadcz82sygwxzn3+ngf1Mw+CtwBLAHOd85tSt0+D9gBHH2M551z/3OI/YuBnwLzgDrgRufc4fHmylYVZ87lwF4gmseOHetVxkVERCZYorubvr17kyPdgwp3X10drrd3YDt/URGh+fPJv+xSQlXzCc2vIjx/PsHy8jHPsXbOHVOmT1aej7+vr69vxOObGZFI5JifadOmnXBbOBweKL0nK8fZWIq9MqoybmYfBL4OhEiedbMauNM5d90YH3cbydVZvj/EfXucc9Un2f+LwG+dc3eZ2RdT19eMMUvWO7OqlJ0uQixk1O3aAld4nUhERCT7OOeINzcnR7j31tJbmyrctbXEmpre3tDnI1hRQbiqityVKwcKd2j+fAJFRSM+Rjwep7W1lcOHD9PV1TWqUt3T00NyAbvhhcPhY4pzYWEhs2bNOqFQH/2JRqMDl0OhkIqzh0Y7TeUO4HzgKQDn3GYzG/OC1s65HcB4XvgPARenLv84leu0LeNzS3KJ9kfoCnYT29PldRwREZGM5mIx+uobTijcvXv3kjhyZGA7i0YJV1URPfdcCj5yQ7JwV80nNG8uvnB42OMfLdzNzc20tLTQ0tIycLm1tXXIYh0MBo8py3l5eZSWlp5QnIcq1eFwGJ9PZ+DOVqMt4zHnXNtx5Xl8s+uHV2VmrwBHgC87554dYpsy59z+1OUDQNlwBzOz24DbAObMmTPRWTOC32c4Xx4d1kq0LZ+ES+Az/aMUEZHTW7y9PTW1JFW499Ymp5ns23fMyWcC06cTmj+faddcTbgqOcIdXjCfQFkZNkzJPVq4Bxfto5ePL9yhUIiSkhJmz57N2WefTXFxMUVFReTm5g6U6kBgtJVMpprRvvLbzeyPAb+ZLQL+Avj9SDuY2ZPAzCHu+pJz7tFhdttPcl56s5m9C/i5mS11zh0ZZnucc87Mhv3sxjn3A+AHAMuXLx/5M54slpg+Aw43UBAso/HIPioL5nkdSUREZFL0NzfTs3PnsYV7zx76Dx58e6NAgNCcOYTmV5F/6aUDhTtUVYU/P3/I48bjcVqHGN0+OsI9eNWPwYX7rLPOoqSkhOLiYoqLi8nNzdU0EBnWaMv4Z4AvAb3AfwC/Av5hpB2cc+8/1TDOud7UY+Cce8nM9gBnAJuO2/RNM5vlnNtvZrOAt071saaa4oVzaNn4MoFoATtrN1D5zk96HUlERCQtnHP01tTQsX4D7RvW07Nl68B9vrw8Qgvmk/ue9yQL9/wqQvMXEKqswILBE44Vj8eHHN0ernAXFxcza9Ysli5dSnFx8UDpVuGWsRrtaipdJMv4l9IZxsymAy2pEw3NBxYBtUNs+gvgE8Bdqd/DjbSfNhYtruCNF/0kwmFef+0PfEBlXEREphAXi9H10ku0r19Px/oNxBqSZ52OnH020//yL4i+81zCC+bjLy09oRTH43EOt7UNO6VkqMI9c+bMgcJ9tHSrcEs6jHY1lTOAvya5lODAPs65S8fyoGa2CvgOMB14zMw2O+euAC4C7jSzGMk56f/TOdeS2ude4HupZRDvAv7LzP4MeAO4cSw5ppIl5QW8EI/SE4rTUtPodRwREZFxi7e30/HMM3Ss30DHM8+QaG/HQiFyL7iAkj//c/Iuvphg2QwgedbG1tZWWvbsOaF0Hz58+JjCHQwGKSkpYebMmZx55pnHTCnJy8tT4ZZJNdppKg8D3wPuBeLjfVDn3Dpg3RC3PwI8Msw+tw663AxcNt4cU8m0SBB/IkprsAVfk768KSIi2amvoZGODRvo2LCezhc3Qn8//qIi8t//fvIvu5TclSvx5eQQj8epr6+n5je/Yffu3Rw8ePCEwl1cXExZWRlLliw5ZkqJCrdkktGW8X7n3L+mNYmMWzxaSCx+kOL+MjpjneQGc72OJCIiMiKXSNCzffvA9JPe15Pn/QvNn0/JLZ8g79JLiS5bhvn9tLe3s+X116mpqWHPnj309vbi8/mYM2cOK1euPGZKiQq3ZIvRlvFfmtntJEezB04zdXQKiWSGcGUF1NUQjZSwa//LvHPOhV5HEhEROUGit5eu55+nff0GOjZsoP+tt8DnI+fcc5nxN39D3iUXE66qIpFI0NDQQM1TT1FTU8OBAwcAyM/PZ+nSpSxatIiqqioikYjHz0hk7EZbxj+R+v2FQbc5YMwn/pGJV7F0Lvv3AtE8duz4rcq4iIhkjP6WFjqeepqODevp+N3vcV1dWE4Oee99L3mXXkLe+95HoKiIzs5Odu7eTc3atezZs4fu7m7MjMrKSi677DIWLVpEWVmZRr1lyhjtaipV6Q4i43dm1XR2uAixkPHGrk1whdeJRETkdNZbu5eODetp/+16ul95BZwjUFZGwYeuI//SS8k5/3wIBmlqamLzli3U1NTQ2JhchCA3N5czzjiDRYsWsWDBAqLRqMfPRiQ9RizjZvY3zrmvpS5/1Dn38KD7/sk597/SHVBGb25xDtH+CF3Bbnpru7yOIyIipxnX30/35s3J6Sfr19NXVwdA+MwllN5+O3mXXkLkzDPp7u5mz5491Dz2GLt376arK/n/rIqKCi655BIWLVrEzJkzdYp3OS2cbGT8JuBrqct/S3JVlaOuBFTGM4jPZzhfHh3WSrQ1j4RL4DP9h0xERNIn3tFJ5+9+R8f69XQ8/TTx1lYIBsk9/3yKbv44+ZdcQmDWLA4cOMDGmhpqfvhDGhoacM4RjUZZuHDhwOh3bq4WHpDTz8nKuA1zeajrkgESpTOgtYGCYBlNRxqoKJjjdSQREZliYm++SceGDbSvX0/XH57HxWL4CgrIe99F5F96KbnvfS+xQIA9e/bw7MaN1NTU0NHRAcDs2bO58MILWbRoEeXl5Rr9ltPeycq4G+byUNclA5QsmkPLxpcJRAvYUbueinfe4nUkERHJcs45enfuHFh+sGf7dgCClZUU/fEfJ5cffGc1Bw8fZmtNDTUPP0x9fT2JRIJwODww+r1w4ULy8vI8fjYimeVkZXyZmR0hOQoeTV0mdV3rCGWgM5ZUUPein0Q4zOs7fs8HVMZFRGQMXF8fnRs30rF+A+0b1tPftB/MiC5bxvTPf578Sy+Bykr27t3LizU11Nx9N0eOJGtCWVkZK1euZNGiRVRUVOD3+z1+NiKZa8Qy7pzTv54ss3h2AX+IR+kJxWmpafI6joiIZBEXj9Px9NO0/fKXdD7zLInOTiwSIXflSvJXryb3ootoBXbV1FDzu9+xb98+4vE4oVCIBQsW8L73vY9FixYxbdo0r5+KSNYY7TrjkiXyI0H8iSitwRZ8jZqHJyIiJ5fo7KR13c9pefABYm/sw19ayrSrryLvkksJLX8Xbxw4kJx+8tBDtLa2AjB9+nRWrFjBokWLqKysJBBQpRAZC/3LmYIS0UJi8YMU98+gK9ZFTjDH60giIpKBYgcOcPgnP+Hwfz1M4sgRotXVzPjc54idey679+6lpqaGvf/yHPF4nGAwSFVVFe95z3tYtGgRhYWFXscXmRJUxqegUGUF1NUQiRSz68DLVFe+1+tIIiKSQbpf3UbL/fdz5Fe/gkSC/MsvZ9rHP8Yev59fvfgi+59/HoCSkhLOO+88Fi5cyNy5cwkGgx4nF5l6VManoMqz5rJ/L1g0nx3bn1QZFxERXDxO+/r1tNz/Y7pfeglfXh7FH/84gVWr2NxQz0vr19PV1cX06dO58sorWbRoESUlJV7HFpnyVManoKVV03nNRegPGXt3b/I6joiIeCje0Unbz35Gy4MPEquvJ1hezowvrqH9ggt4ZutWXvvP/8A5xzve8Q5WrFhBVVUVZjqViMhkURmfgiqLcoj2R+gMdhPb0+11HBER8UCsqYmWnzxE68MPk2hvJ3ruuRR//vO8UTaD327cyP7/+A/C4TDvfve7Oe+88yguLvY6sshpSWV8CvL5DHy5dFgr0bZcnHMa5RAROU10b92amg/+awCmXXEFwT+6kW2dnWzatImuF5JTUa699lrOOeccQqGQx4lFTm8q41NUorQMWhspCJTR1F5P+bQ5XkcSEZE0cfE47U/+lpb776f7lVfw5edT9Cd/QvcH3s8famt57Ve/IpFIaCqKSAZSGZ+iShbNpXnjywSi09hZu4Hy6k94HUlERCZYvKODtkceoeWBB4k1NhKsrKTkb/+WhsXv4KnNm9n/i18QDodZsWKFpqKIZCiV8SnqjDPL2fuin0Q4zM7Xfs9lKuMiIlNGX0Mjh3/yE1rXriXR0UF0+bvI+dxn2RmN8tLLL9O5t5bS0lKuueYazjnnHMLhsNeRRWQYKuNT1OLZhfw+HqUnFKelptHrOCIiMgG6XnmFlh8/QPuvfw1m5F95JT0fvJZNhw7x2ssvk0gkOOOMM1ixYgXz58/XVBSRLKAyPkXlhQMEElEOB1vwNfm8jiMiImPk+vtpf/JJWn50P91btuCbNo3CT97C/vPP59nXX6fpqacIh8Ocf/75nH/++ZqKIpJlVMansHi0gFj8IMWxGXTFusgJ5ngdSURERine3k7r2kc4/OCDxJqaCM6dQ94Xv0jNrJn8YutWOjdsoKSkhKuvvpply5ZpKopIllIZn8LCcypg724ikWJ2H3iFcyrf43UkERE5ib6GBg4/+CCtax8h0dlJznnnkfjMp9kSj7P9tddI1O1l0aJFA1NRfD59+imSzVTGp7A5S6toqn0KXzSf1177jcq4iEiGcs7R/cortNz/Y9qffBJ8PnKvvoq3Lr6YZxsaaNqyZWAqynnnnafT1ItMISrjU9iZVdPZ5iLEQkZdzUtwhdeJRERkMBeLceTXv6blxw/Qs3UrvoICIp/8JLVLFvPyjh10vviipqKITHEq41NYRVGUaH+EzmA3PXu6vI4jIiIp8SNHaH34YVp+8hD9+/cTmjsX94W/Zlt+Ptt37iSxaZOmooicJlTGpzCfz8CXS4e1Em3LwTmnZa5ERDzUt28fLQ88SOvPfobr6iK8YgWHb7uNLR3tNNbXEwqFOO+88zj//PM1FUXkNKEyPsW56WVwuJGCwEwOdDQyK7/C60giIqcV5xzdL71E8/330/Hb9RAIELz6KuqWL2fzG2/Q8fpOSkpKuOqqq1i2bBmRSMTryCIyiVTGp7iShXM4tPFlAtFp7NiznlnVf+J1JBGR04Jzjo4NT3Hou9+lZ9s2/AUF9P/pn/J6+Wxe272bxPbtLFy4kBUrVrBgwQJNRRE5TamMT3FnLK2k9kU/iXCY11/7PZeqjIuIpF33q9t462tfo2vjRnzz5tL2+c/xKtDY1ESoro7ly5dz/vnnU1pa6nVUEfGYyvgUt3hWAb+LR+kJxWnZ3eh1HBGRKa2voYGD3/gmRx5/HEpK2P+ZT/NydzcdTU0UFxdrKoqInEBlfIrLDQcIJKIcDrbga9RHoCIi6RBvbeXQ977P4Ycewvn9NP/pJ9kUCNB68CDz5s3jQx/6kKaiiMiQVMZPA4loAbH4QYpj0+nu7yYaiHodSURkSkj09XH4Jw9x6PvfJ3HkCO03XM9LZWW82dzMzJkz+fh117FgwQKtZCUiw1IZPw2E51ZC7W4ikWJ2H3iFsytWeh1JRCSruUSCI48/wcFvfpNYYyPdl17K1rPPpu7NAxTG41x//fWcddZZGgkXkZNSGT8NVJ45j8Y94Ivms2P7kyrjIiLj0PnCi7z1z/9Mz7Zt9C1bxo6PfoSdBw4QPdLGlVdeyfLlywkE9L9XERkd/dfiNLB0/nS2uQixkFFb8xJc4XUiEZHs07t7N299/f+j46mn6J8zhz2fXs3Wlhb8zc1cdNFFrFy5Ul/MFJFTpjJ+GqgoihLtj9AZ7KZnb5fXcUREskr/wYMc/M7dtK5dSzw/n31/fiube3uJNTdz7rnncvHFF5Ofn+91TBHJUirjpwEzw3w5dFgr0cM5OOf0ZSIRkZNIdHbS/MMf0fyjHxGPxThw0028HAnT2d7OkiVLuOyyy7ROuIiMm8r4acJNnwmHm5gWmMmbHU3MzC/3OpKISEZy/f20PvIzDt79HfoPHqL52mt5ZfYsWo4cYU5pKTd94AP8/+zdd3wU953/8dfM9q5eABWQ6GB6E8aYZoNpNm5pduJc2iX+JblLzr4kTuLUS86J0y/NcUkcO04cO8U1NsYGDKb3LqHe+0rbd2d+f6wkJJDosAI+zzw2OzttPxJ4eeur73wmJycn0WUKIa4SEsavEakjc2ncuhOTzc2hkrfImnxPoksSQohBRdd1Ot9+m4Yf/pBwcQltRUXsvf12atvaSLdYeP/738+oUaPkN4tCiItKwvg1YtS4HEq2GNAsZo4cepcFEsaFEKJHYN9+Gh55BP/WrfjGjmX/v3+KstZW3JrG6tWrmTRpkrQpFEJcEhLGrxFjhnjYGLMRNMdoPVaT6HKEEGJQCFdV0/ijH+F9+WWCQ4Zw5OMf43BHB9ZAgCVLljBz5kxMJlOiyxRCXMUkjF8j7GYjRs1Kq6kVpTrR1QghRGLF2tvjt69/+mlCVgvH772X/bEo+P3MnTuX66+/HptN7lYshLj0JIxfQ3Sbh0isiZRIBs2BZlJtqYkuSQghListHKb1j8/Q9KtfEfb5qLz1VvbYbYQjYSZNmsSCBQvweDyJLlMIcQ2RMH4NseTlwvESbNYU3j38V1ZN+USiSxJCiMui9+3rQzU11C5Zwp6hQ+gIBBiVn8+iRYvIzMxMdJlCiGuQhPFrSO744VSVrEOxudiy7RUJ40KIa4Jv61YaHvkBgX37aJw5k71Lb6bZ52NYaiq3L15Mfn5+oksUQlzDJIxfQ8aNSGOvbiVihuaSNmJaDINqSHRZQghxSYRKSuK3r1+3jpZRozjwbx+lxucj1WrlruXLGTt2rLQpFEIknITxa8jQJBvWmA2fyU9OqZv9dduZNGRWossSQoiLKtrYSOPPf0Hb88/TkZ7OoY98mNJgEKeisGLFCqZMmYLBIAMRQojBQcL4NURRFMKWJDq1VlJws377H5m0SsK4EOLqoPn9ND/xBM2/exyfqnLsrjs5Apg0jYULFzJ79mzMZnOiyxRCiD4kjF9rcoZDeWsYLvIAACAASURBVCn25Dx2798EqxJdkBBCXBg9GqXthRdo/NnPCLS1c/yWWzjgdKDpOrNmzmTevHk4HI5ElymEEP2SMH6NmTBjJLtKNxJx2HFUWGnyN5FmT0t0WUIIcc50XafznXdo+MEPCBwvpfzG+ewbOpRgJMLEceNYuHAhycnJiS5TCCFOS8L4NWbuyHQORN20mFtJbzPz7qHnWT3tU4kuSwghzklg/wEaHnmEzq1bqZk6lX33fAhvKERBbi6LFy8mOzs70SUKIcRZkTB+jXFYjPiThhLxN5HmzmXrtlcljAshrhjhqmoaf/xj2l96iYaRhey/50M0hcNkp6Rw65IljBgxItElCiHEOZEwfg3Knjyaynf3orqzaCndLy0OhRCDnh4O0/z44zT93y9pTk7m4Ac/SHUsSrLDwR2rVjFu3DhUVU10mUIIcc4kjF+Dbpicy8vrnXTaouSUudhXu5XJQ+ckuiwhhOhXYM8eah/6Kq1VVexfsZxSsxm7xcyy+UuYNm0aRqP8UyaEuHIlZBhBUZQ7FUU5oCiKpijK9F7r8xVFCSiKsrvr8asBjn9EUZTDiqLsVRTlRUVRki5f9Ve+gnQHASWZdkMAlxJvcSiEEION5vNR993vcvz9H+Cg28Vra26j0m5n/vz5fO5zn2PWrFkSxIUQV7xEfYrtB9YAv+5nW4mu65PPcPwbwJd0XY8qivJ94EvAgxe5xquWoigYhxdARQW2pHx2738XVie6KiGEOKFz/XpqH36YJn+AXXfdSQNQkJ/PihUrpEOKEOKqkpAwruv6IeC8b0Os6/q/er18D7jjIpR1TZk8axQ7yt4l4rDjrLTS5G8kzZ6e6LKEENe4aHMz9f/zPVpefZXD18/l0JAhWG02bl+2jAkTJsjt64UQV53BeLXLcEVRdimK8o6iKPPOYv+PAq8OtFFRlE8oirJdUZTtjY2NF6/KK1zRyHQsUTct5hBpbWY2HvhLoksSQlzDdF2n7W9/4/gtyzm6aydv3H0XB7KzmTR5Mvfffz8TJ06UIC6EuCpdspFxRVHeBLL62fQVXdf/PsBhtUCuruvNiqJMA/6mKMp4Xde9A7zHV4AoMOCkZ13XfwP8BmD69On6uXwNVzO72Yg/eRgRXxNpnly2bX+NW2d8OtFlCSGuQeHKSuq+/jAt27ezb9FCSjweUpKS+PDKlQwfPjzR5QkhxCV1ycK4ruuLz+OYEBDqWt6hKEoJMArYfvK+iqJ8BFgBLNJ1XUL2eciePJqKjXtQXVm0lu4nqkUxqnIxlBDi8tCjUVp+/wcafvpTynNz2X3nHYR1nRuuv5558+ZhMpkSXaIQQlxygyp5KYqSDrTouh5TFGUEMBI43s9+S4EHgPm6rvsvc5lXjRun5PKPd+ItDoeVuthXs4Upw+YmuiwhxDUgeOgQtQ99labyMnYtW0aNxcyw7GxWrlxJZmZmossTQojLJlGtDW9TFKUKmAO8rCjK612bbgD2KoqyG3ge+JSu6y1dxzzWqw3izwEX8MbpWiCK0xue5iCgpsRbHKpu1m+TFodCiEtLCwZp+OEPKbnzLvZYLby+ahVNLifLly/nox/9qARxIcQ1J1HdVF4EXuxn/V+Bvw5wzMd6LRdeuuquLeYRBQTLyuMtDg9shNsSXZEQ4mrle+89ar/2deo6O9l1+xqaFYWxo0ezbNky3G53ossTQoiEGFTTVMTlN3nWKLYd30jYYcdVaZcWh0KIiy7W1kb9I4/Q9Pd/cHBuEYezs3G5XNx9yy2MHTs20eUJIURCSRi/xhUVprMn6qbV3Epqu4kN+57ltlmfTXRZQoirgK7rdLz2GnXf/g4VNhu777yDTl1nxowZLFq0CKvVmugShRAi4SSMX+OsJgOBnhaHeWzd/i8J40KICxapraXum9+icfNm9tx4I+VJHjLS07l75UpycnISXZ4QQgwaEsYFw6aOoXR9vMWht0xaHAohzp+uabQ++ywNP3yU4txc9t52KzFVZeH8+RQVFWE0ymeLEEL0Jp+KgvmTc2hd193i0Mne6k1Mzbkh0WUJIa4woeJiar/6NepLitl5803UWywMz89nxYoVpKamJro8IYQYlCSMC/JSHQTVFAJqOamqhw1bnpYwLoQ4a1o4TPOvf0P9Y49xeOIEDi5fjsVqZfVNNzF58mS5jb0QQpyGhHEBgKmgkEBpObbkPHYf2pjocoQQVwj/zl3UfvWrVHm97Fy9inZVZeKECdx88804nc5El3f5aRqEOyDQBsF2CLZBNAyONHBmgiMdDPJPrxDiBPlEEABMmzWK90o2EHHYcVc6aPQ1kO7ISHRZQohBKtbZSeOjj1L//F/ZN2c2xdnTSUpK4kMrVlBYeIXfCiIWiQfpnkDd2jdcn2455AVdO83JlXggd2aCKzP+7MwEVxY4M8CZdWK92XHZvmQhROJIGBcAzCpIY1fUTYsp3uJw/b5nuH325xNdlhBiEOp46y1qv/FNSi1mdq+5jaCiUDRnDjfeeCNmsznR5YGuQyRw5uA80HLEd/rzGyxgSwJrElg98RCdNiq+3Ht997LBDL5G6KyDjnro7PWoPwi+BtCip76P2RU/tyurV2jPjAf2nvVZYEsGNSE31BZCXAQSxgXQ1eIwZRiRzibSknLZvu1NCeNCiD6ijY3Ufee71K1fz675N1Dt8ZCdnc2qVavIzs6+9AUEWuHo69DZcOZArUVOfy6zq29wThl+aogeaNl0kfujaxoEWqCj7kRI76iLf53dAb52T3x9uPPU41VjV1g/aWS9Z8Q988R2o+Xi1i6EuGASxkWPnGnjOP72HlRXJh1lB6TFoRACiN+8p/2FF6j9/v9ydOhQ9q9eBUYjNy9cyMyZMzEYDJfyzaFqG2x/Ag68ANFgfL1iODUsJ+WcRaBOBot7cM3bVtX4nHJHGjDh9PuGOvuOrHfUxwN7Z0M8wLdXQfV28DUB+qnH25JPGlkfYJqMxQ1y4a0Ql8Ug+jQSiTZ/0jCa1zrpsEUYWupgT9VGpuXemOiyhBAJFC4vp/ZrX6f6yBF2LlxAk9XKyMJCli9fTlJS0qV742A77P1zPIQ3HACzEya9H6beE58SYnYO+rCoazqxaHz+uNF8kX5gsTjjj9SC0+8Xi8QDee+g3mfUvR4qNsfDfCx06vFmF6SOgNTC+COloGt5RDzQCyEuGgnjokdOip2gIZWAUkaq6mH9lqcljAtxjdIjEZqfeJK6X/2K/ePHcWTpzdgdDu5Ytozx48dfmnaFug7VO2HH47D/BYj4IXsSrPgxTLwDLK6+u2s6sZhGLKqjRePPsaiGFtOIRXuv14jFdGIRDS2md23rWo5oxGJaz/FaTCMW6T6vhhbtWu7v2N7v2c96XTsxMm2yGnB4LNjdZhweM3aPBbvHHF/nMeNwx58tduPF+d4aTODOjj/O9D0Ptp86NaatEpqLoXoHHHix70Wp9tReAb07pBdAygi56FSI8yBhXPRhKSgkcLws3uLw4LuJLkcIkQCBffup/epXKWtrY9fyW+gwGJg6dSpLlizBZrNd/DcMdcRHwXc8AXX7wGSPh+9p98HQqei6Tn2pl8ObD1O6t4lwIIoW1dG0fqZhXCCDUUU1KhiMKgaDgsGkohpUDF3rVIOKwaRgMhtQjfH18XVd+xvV+PqeYxV0HQLeML72MH5viPoyL/72MNHIqV1XDCa1K7BbTgrt8WWHx4zdbcHmNKGoFyG0K0p8Go8tCdJH979PNAStZdBcEg/ozcXQchyOr4M9z/Td1z00Hsq7A3r3yHpSHhgHwcW9QgxCEsZFH9Nnj2JT8QbCDjueKgf1nbVkOi/DhVlCiITT/H4af/ozap57jj0zZ1I2eRKpqal8ZOVK8vPzL/4b1uyKT0PZ93y8g0nmRFj+Q5h4F1jdeJsCHHm5lCPv1dHeGMBoVsm/Lg1nkuVE6O0OzsZ48O1Z7gnUvZa715+0rnu9qiqX7QZFuq4TDsbwt4fiIf3kZ2+IlloflYdbCQdO7bSiqgq2k0fZ3b0Cu8fSNRJvQjVcYKcVoyUe1PsL66HOeDBvLoaWkhOB/eDf4xeldlPUeCDvHdC7Q7tnGKiX8LoDIQY5CeOijxkjUtkeddFiaiXFa2TDnj9yx9wvJrosIcQl1rnxXWq//nWOmU3sWb2KiKoyf9485s2bh9F4Ef+pCHXC/ufjIbx2NxhtMOF2mH4fDJ1GOBijeEcDR94rpuZYGwBDRycxbVk+BVPTMVuvjn+2FEXBYjNisRlJzjr91I5IOIb/pKDua+t67Q3T0Ryg7ng7wc5+OsgoYHOa+ob0U0K7GbvHjNF0HoHY4oTs6+KPk/lb4uG8pXtEveu5fHPf9pEG84lgntJrnnpqQfzi0kF+bYAQF+rq+FQTF43FaCCYmkO0owlXUh47dqyTMC7EVSza2krD975H1dq32DFvHvUeN7m5uaxYsYKMjIt446/avfFpKHv/Er9DZcY4WPYIXHcXmsVD1aEWDr9+kNLdjUQjGkmZdmatGsGoWZm4Uy/B1JgriMlswJNuw5N++u9DLKrh94bxt4fxtYfwe7ueewX55qpO/B2RPvPZu1nsRuxdQd2VYiEp005Shp2kTDuedNu5X4RqT4k/cmb0Xa/r8Tnq3VNemnuNqB/7F8TCJ/Y1O08N6N2h3Z5ybvUIMUhJGBenyJk2lpJ1u1HcmXSWHSCiRTCppkSXJYS4iHRdx/vyK9R897scHJLNwRXLMVosrFiyhKlTp6JejJvIhH3xCzF3PBG/ENBohfG3xeeC58ykucbHkVfqOLJ1P/72MBa7kTFzshk9J4vMfPdlmzJytTAYVVwpVlwpp++Drmk6wc4IvrZQT2g/MU0mHuArDrZweHNdn+OcKZaecJ6UYceTYSMp04471XpuU2EUJd5K0ZUF+defVFwM2iv7BvSWEqjZCQf/1vdCUltKr4BeAMnD41NhknLjbRrl74+4QkgYF6e4cXIOTW+66LCGGXrczq7yd5g5fHGiyxJCXCSxtjZqH/4Gpdu2seOGebRZrYwbN45ly5bhcrnOfIIzqT8YD+B7noNQe7wV4dLvwXV34486ObatnsN/2EZTZSeqqpA3MZXRs7PIn5CGwSR3krzUVFWJj4C7zaQz8J93OBilvSFAW72ftgZ/13OAo1vr+8xjV1UFd7qtK6Tb+oyo2z3mc/uhSjVAcn78Ubio77ZoCFrLe81P7xpVP/4O7Hm2775GK3hy4sG8+5GcdyKsO9IlrItBQ8K4OMXQJBtBQ0q8xaHBw8Ytz0gYF+Iq0bnxXaq+/GX2DBnC4SWLcbndvH/5ckaPHqCTxtmKBOIt8HY8CZVb4vOAx62GafcRHTKLsn0tHHmikvIDLeiaTkaei3l3j2Tk9ExsLumyMRiZrUbSc12k557UUlKPj6yfCOmBnrBeeaiFWK8uMUaLIR7Qe0bUbXi6wrrVcY6/cTVaIH1U/HGysA/aKk48WstOLNfs6nsxKcTDeu+gnpTbFdS7w3qahHVx2UgYF/2yFY4kUBJvcXjkiLQ4FOJKpwUCNPzgh5S+9BJb599Aq93OlClTWLp0KRbLBdwiveFw1yj4s/F+1amFcNO30a97P3X1Jo68W0vxjk2E/FEcSRamLMlh1KwsUoc4L94XJy4rRVGwuczYXGayC/ve+EnXdDrbQvGg3iusN1R0ULKzAb3XVHWr09QV0m14MnrNT8+wYTrX+elmB2SMjT/6E+qI907vCezlXY+K+BSqQGvf/Y22U8N6ct6J0G5PlbAuLhoJ46Jf02aP5N1j6wk77CRVOajrqCHLNSTRZQkhzkNg336qH3yQ/SYje5ctxWa3875VqxgzZsz5nTASjLeu2/FE/C6OqgnGroTp9+F1TufI1noOf/8Y3q52hCOmpDNmVjZDxySjXoze2GLQUlSlZ956zti+F1jGohrepgBtvaa+tNf7qexvfnrySReQnu/89G4WF2SOiz/6E/TG56r3jKz3CutV2yDY1nd/k32AkfXusJ4iYV2cNQnjol8zhqexravFYbLXyIY9T3Pn9Q8kuiwhxDnQo1Gaf/tbyp54km1z5lCfnMTo0aNZuXIlTud5jEw3HYtPQ9n9x/hIYvJwWPwNwmPeR/ERjSMv1FFz7D0g3o5wxi35jJhy9bQjFBfGYFRJznL028qxZ356g5/2XlNfjm2vJ+TvZ356r+ku3aHdkXSO89N7s7rBOh4yx/e/Pdjea2S9vO8Ie+WW+PbeTI7Tj6zbkiWsix7yCSn6ZTaqhNJyiXqbcCblsXPHOgnjQlxBwuXlVD/43xxqa2PXsqUoFgurly1j8uTJ5xZYoiE49M94CC/bAKoRxixHm/IRKoMTObK1gePPHSbW3Y5w9QhGzZR2hOLcnHZ+ui8SD+f1XUG9K6xXHW7tcxdTgyneTcadasWVasWdZsPVvZxqw+YyXUBY90CWB7Im9L890BYfWW8t7zt3va0i/tujkPekL9gZv8DUnnriDqjWrmdb8olla3KvdR65OdJVSsK4GFDe9LEcXbsL1Z2Jr+ygtDgU4gqg6zptf/kLFY/+iG2TJ1E1ZjS5ubncdtttJCcnn/2JmktOjIL7m+OjeYu+RnPmHRzeF+HoY3X42/dhsRsZW5TN6NnSjlBcfIqiYHOasTnNZBd4+mzrmZ/eNd3F2xTE2xygozlIQ0XHKTdBMprUrnBuw512IqR3L1sdFxDWuwN11sT+twfaTpqvXhEfaQ903Rgp2BbfJxo4/ftY3H2Du7UrqA8Y5rueLR64GO1KxSUhYVwM6MZJOdS/7qTDGmHIcTu7ytYxc8RNiS5LCDGAaFMTtQ99laNHjrB9yWLCJhNLFi1izpw5Z9c3PBqGIy/H745Z+g4oBhi9DP/Y+zjWOJLD6+tpqiyRdoRiUOgzP33MqTcACgejdDQH6WgO4m0+EdQ7moPUl7b3mf4C8c4v7tTukXVb1+h6PLC7Uq1Y7MYLD+v93am0t0jwRDAPtsWng/Usd73uvb3xyIl1vW+WdAolPrJ+1gG+13aLS6bUXGISxsWAsjxWQqY0/JSSZnCzYcuzEsaFGKQ61q6l4uFvsGPEcI7Pv4HMzExuu+02srKyznxwSynsfAp2PQ2+RvDkEL3hq5SZV3J4T5CKX7egayXSjlBcUcxWI6lDnaQO7f/6iFCgO6wH8DZ1h/YA3uYgNcfaCAdjffY3WQ09wdx9yjQYKxb7RfjNsckKpq4bIp0LXY+3Fz2bAN+9vb3yxDotOvC5FcOJYG51x9tCGszxVpNGCxi6n09eZz6xrb91BnP8XGdadw38ICBhXJyWbeRI/MdKsSbnc/jwxkSXI4Q4SazTR/33/oeSdW+z5YZ5dFoszJ07lwULFmA0nuYjXtfh6Ouw9ddQ8hYoKvrIpdQNuY/DVTkU/7ORcKC6px3h6FnZpAw59cI7Ia5UFpsRyzAnacMGCOv+CN7mIB29pr94u8J79ZFWIqG+Yd1iN8bDeUrXaHraiVF2d5r10l7IrChgtscf7nPsfKbrEO48uwAf8savI+kO/tEwxEK9nrsesdDF+9pU00kBvdez0TrAOvOJHwCcGXD95y9ePZeAhHFxWjNmjWTDkXcIO4wkVzup81aR5R6W6LKEEIB/504qH/xvdqckc3jJYjweD/etWUNeXt7pD2w4DK8+EJ+K4h6Kd/rXORJaxOHdfrzrAxjN9RRMyWD07CyGjpZ2hFcyXdcJa2GC0SCBaIBANEAwGiQYO+n1SesiWgRd19F1HQ0tvoyOpp9YPnmbrndtP3lb72Pp//Xptp38vn229XqfS87e9cgBdDBGLFgDLqx+V9ezO/5c4sK634Uh1nekPGIKErR1ELR3ELR5Cdo6iVqCRE0hoqYQEXOoazkMyomvR+HM//2d1T5nMcI84HkUur5+KyjWM54Hvev/dC0e9nUN0FF0vdfrXttOu7772L6v0cOgh+KvozpE+j82Q7XyQwnj4ko2bXgq70VdtJhaSOo0sn73H7jrhi8luiwhrml6OEzjL/6P4889x5br59LqdDJlyhRuvvlmrNbT/EMZbIe3vw9bf41mcnJs5K84WDuKmpfaQWlm6KhkaUd4GZ0clHueYye9Povw3L3u5OODsSCarp25mF4UFEyqCVVRURQl/oyCoigonOG1oqCi9t3WtdxnWz/Hnm6bgoJBNZzY96Rt3c+XXRKAjzA+wtTR0zNFB0PYjMnnwOSzY/LZMfvjy25fGqmNuaixgf8bixkjxMzh+MN0Ylnrtdy9LWoO9Sxrpgj9fRt0zuKHlbPa5fx/6LmQH5gu5H0ttvTzPvZykU9bcVomg0ooPZdoexNOTx47d6yXMC5EAoWKi6l64AH2xWLsu/kmLHYH71t9hhv4aBrsfQ7e+Br4GqnJ/w82VCyhaUOQpMwIs1aPYPSsLFwpZzHiJU4rFAtR7i2n3FtOWXsZZd4yan21BCKBU8PzeQZlq9GKzWjDZrRhNVh7XidZk8g2ZmM1xF9bjdZ+9x3o+O5jzOoF9OsWZ0XXdQIdEYK+CCF/lJA/QsgXIeiPxl/3Wh/0dW1vjhL0R9CiAwfT+GwVIxa7CavdiMVhwmI3YrXHny12ExZHr9eOrnV2IyaLQf7cE0TCuDij4TPGcfiNeIvDQPkBIrEIJoO0OBTictI1jdann6b0F//HllkzaUhJObsb+NTshlf+C6q24k1bxCbzf1DyXgRnss5NHxtP4bQM+Qf4HGm6Rr2vnlJvKWXtZfHg7Y0/13TW9BnFy7BnMMw5jCRrUk/4PWNQNtiwmSQoX80URcHuNmN3n9uF0LquE41ohLoDeu+w3hXkgycFeW9ToGebrg0c5FVV6RPOrY5eAb7rtdlmwGBSMRi7Hr2XjSpGk4pqVE7ZLlPdTk/CuDijG68bRu2rLjqsYYZU29lZ9iazCpYluiwhrhmRujpqvvxlDtTUsuvmm1AsFlYtW8aUKVMGDmb+Flj7TdjxJGHbUHZm/57d+9woSoyZK4czeUkuJrPcQOR0vGEv5e3xoF3aXtoTuiu8FQRjwZ797EY7+Z58JqVPYnXBavI9+eS788lz52E32RP4FYirjaIomMwGTGYDzmTLOR2r6zqRYIxgd3D3DRzgQ/4Ifm+Y1jpffH0gelbTWAaiqgqqScXQFdSN3SG9V4g39Arxaq994qFeOXWdsesYk6HPsYaTjjOaDTg85/a9utwkjIszynBbCZtS8VFKmsnDxvf+JGFciMuk/eWXKf/u/7B1/HiqZs868w18tBjseALWfgs92MnRId9kc8kUfKURRs3MYM5tBTiTZTpKt0gsQmVnZU/oLvOW9UwvaQm29OxnUAwMcw0jz53H7OzZPYE7351Pmi3tihit1jSNWChCLBQmGgyjhSLEwpH4ciSKFooSC0fRIlH0aCx+jVz3wV0XS6LHl3ut7nl9YnvP1q7jehXRfaFe9269z9e1Qu99jt7nPnn/nrc4c0oc8M/nfP7YzuNc5/3343THnfb9znjiniVT18MFoALurkcvuq4Si2po0a6LZrWuC2g1HV0j/rpruXs7uo4W09H0+A2auvfXtK7Xmo4eAi2gxY/rWhfTIapphPqc96S/R+fAYDOz+tE7z+/gy0TCuDgrtlEj8R0txZqUx5Ej0uJQiEst1t5O3Te/xeGdO9m24EbCZjOLFy6kqKho4Bv4lG+GV/8L6vZRl3oXGyL30rAzQkaelaWfvI6sEZ7+j7vK6bpOU6DplLBd7i2nqqOKmH6iRV2KNYV8dz435tzYE7bzPHnkOHPOa3pexBfEV99MNBBGC0fQwjGioQh6JIoWjqJFY/HnSAw9qvU89zxi8U4RekyHmA6aDhoQA7R40w1FU0BXULoeqq4QvxxS7Xo2oCoqBuXs/sm/tLdwUji/BCwS7xL/Jk25NG/hi3nPvFOCSRgXZ2XW7FG8ffgdwg5DV4vDSrLcOYkuS4irkm/zZsofeogdQ4ZSMv8GMjIyWLNmzcA38Omoi1+cufc5Om3j2ex+jqMHzNg9Cos+MpbRM7NQroE5m/6Iv2cqSXfg7g7dvoivZz+rwUquO5fRyaO5Ke8mhnuG94Rut9l9mnfoS4vG6KxtorOiEX9tK+HmTmJtYfBpGMMGzJoFi9r/NJXu3HEie3S/6hv44637Ymh6DK3rfzoamhJ/1hW966GhG0BXiafp7odBQTEoYFDAoKIYFRSjimJUUY2G+LLZgGo0oppUVLMR1WREMaigKChqd7Vdo7tK93PfdT1DsUr8/5TuRK909Tjp3l/tCuPdu3e97hk5Vru6oii9zoES30/p/7WCAqf7+z3APOnTdugYYNPAc64v5rnOfM7TXvd7hiHk037dZ6jpwlpIXkA3lTN+rwZmN52h1esgIGFcnJUpeSm829Xi0OMz8M6Op7h7wUOJLkuIq4oWDNL4ox9x9KWX2TrvejqsVoqKili4cGH/N/CJhmHLL+Gd/yUa1dmV+mN2HhuOrsG0pTlMXZp31bUojGkxajpr+oxyl3vLKfWW0uBv6NlPQWGIcwh57jwmF0wm3xOfwz3cPZxMRyaqcubx30BrBx1ltfhrWwnWe4m2BdE7oqhBBVPUjFWxoyrxOG0FrDiJaGFCSoCoKYLfFiDojmL0WFEtRlRjV9g1GuLPFiMGkwnVbEA1mzBazRgsJlSLCZPFjGoxoZqMA/8mRAhxVbi6PqXFJWM0qIQz8oi2NeHy5LNz1wbuXpDoqoS4egQPHqTiwQfZZbVxeMli3G43H1mzhvz8/P4PKF4Lrz6I3nSM4uTPsKnuZjprYhRMTaVoTSHuNNtlrf9Sag+1807VO6wtX8ummk19Lp50m93ke/Lj87jd+T2hO9eVi9U48Nz4aChMR0UDvqpGAnXthJt9aN4Iil/HEDFi1W2Y1PhFX0bAiRVNNxPUfUQMYUKOEGFnFGOyDUu6E/vQFFx5mViT3RKehRDnRMK4OGsjZozj4L92orgzCZUfRQ10rQAAIABJREFUkhaHQlwEeixG8+8ep/jJJ9kyezatbheTJ09m6dKl/d/Ap7UcXv8yHH6JRts8Nhi/R+1hldRhNhZ/dCRDRw1wYecVpsHfwFsVb7G2Yi3b6rYR02Nk2jO5tfBWxqWO6wndyZbkUy6O0zQNf30rdZWl+GpaCDd2Em0Lgk/DEFTj00cUe89xNgzYcBPSAoSVIFFzlE5HJwZPBHOaA1t2Es5h6TiHpWPo7zcUp6HrOqGoRlTTicY0IjGdmKYTiWnENJ2o1r3txLqefTSNWCy+z8nHRTSdWCx+bHyb1ue46Mn7d+/TVUef9+l1zu5tsV7TAvSTvp7+1ne/OJt9+15/qfe/fqCpHQO9/wD6m7xythdT9rdbv+v6eZf+9zv7Wk5b4Xlci3qu73P660Yv3ZS3S3EddLbHyhP3zbz4J76IJIyLszb/umFUv+LCaw2TXW1lR+m/mF24PNFlCXHFCldVUf3Ag+zp7GTfksVY7HbuXrWKsWPHnrpzJADv/gQ2/giflswWx2McOp6KzWnixg+OYOzcIVd8L99ybzlrK9aytmItexv3ApDvzue+CfexKHcR41PHoygK4Q4f3op6OnaV0NjgJdoSiI9qB+iZPtJ9saIFsGAnppsJ6n4ixjABR4CgK4opxYY1041jWCrunEzMbsdZ1+oPR2nsCNHUGaKxI0RjZ7jndVNHiMbOE9uCkXO7sc+FMKgKBlXB1P1sUDEaFIxq/Dm+Te3apmA0xJctJhW7qmJSFYwGBVVR+gSjPgGs/8U+gU/pWXf2+5567l77DHiefr4JXfoL9P0F+P73O7uD+z/fqWvP9n0H2vd05z7TMQPOWR9gw+mmhV/QlPEzuJC7bJ5OmnNwtzUECePiHKS7LITNqfj0rhaHm/4kYVyI86DrOu0vvMjxRx/lvSmTaRg1klGjRrFq1apTb+Cj63D4JXj9y8Raa9jj/BLbq6YTi+pMXjSM6cuHY7FdmR/luq5zpPUIb5a/ydqKtRS3FQMwPnU8n53yWRblLmJE0gg6a5upfWMf+4/+DZvPjrXrokgD4MCMrpsI6X7CaoiwLRyfPpJkxZzmxDEkBWduBvbM5DNOHwmEYzR1hmjoDtVdYfrE84nA7Q/HTjleUSDZbibdaSHNZWZabjJpTgvJDnM8+KoqJoOCQe0OyPEw3Ds4G7rCcHd47h2ce4frnlDdax+jqlzxP5AJcS26Mj/BRcI4Ro3GdyTe4vDg0Q3EtBgGVW4cIsTZira0UPO1r3GguJidixaiWCysXLqUqVOnnvqr5Maj8NqD6MVvUWq9nXdDH8JbD/nXpTD39kKSMq+8G8rEtBi7G3eztmItb1W8RXVnNaqiMjVjKv89879ZmLOQTGsGdVsP0frUQQ7W7sOlJ2NTDKiaHb/TTyglijnVgTXTgzMnDVdOBkZr/6NfwUiMxo4Qx6ra+4Tpk5+bOsN0hqL9niPZbiLNaSHdZWFyThLpLgtpTgtpTnPPcobLQorDjNEg88WFEOdGwrg4J7PmjOStQ+sIO4yk17hZd+QFFo8d3M30hRgsOt5+m7KHv8HWwgIqZ88mJyeH2267jZSUlL47hjrgne/De7+kWR/NBvWPVJfbSc52sPLeQnLHpSbmCzhP4ViYLbVbWFuxlnWV62gJtmBSTcwZModPXvdJ5ufMx9IONe/so+kv7+HvdGBRbbh1Nx1KK96hXlJmjmD49CJUo4FQNEZTZ5imjhBHOkI07a0/Ea47QzR1hHuCdscAAdtjM3UFaTMThyWR5jT3BO70ruc0p4VUpxmTBGwhxCUkYVyck8m5KWyIumkxNeMJqDz71i9YNOaOK+Luc0IkiubzUf+/j3Bo/Ttsm1tEyGLp/wY+ug57/wxvfI2A18dW6/c4UFmA2WZk3t0jmHDDENQrJBj6I342Vm/kzYo32VC1gc5IJ3ajnRuG3cCivEXMzSzCt6+a5teOU1uzAZeWhE1RUTUHfocPbbSZ7BsnMiwzhWMNnbxW3MSmZ3axo7yVFl+43/d0W42kdYXpsUPc3NATqs29RrPjAdtilN/oCSEGBwnj4pwYVIVoRh7Rtkac7kIcR3aytXwts/IXJ7o0IQalwO7dlH3pS2xPTaNk/nwy0tO5d80asrOz++5YuxdefYBY+Vb2mz7ONu/NhJsUJswfyswVw7E6B3/norZgG29Xvd3TgjCshUm2JHNT/k0syl3EZPM4GtYfIrC+ifqOzVhVOx7ceGnBm91Byox88mfNobo9zKaSJjatq2BTyS6aOkMA5KbYWTQmg9wUe0+4TndZSHNZSHWYsZokYAshrjwSxsU5K5g9jv2v7kBJGkZu2WH+8Ob/MutjEsaF6E2PRGj65S85/Oe/sHVuER02G0VFRSxYsACTqVew9rfAuu/A9scp1+exMfgsbfUmcsalMPeOQlKHOAd+k0GgzlfXM/97R/0OYnqMbEc2d42+i4XDFjCsxkXLe8fhny20aQewKiqq5sRn70QbZSZ7/gTMLhebSprjAfyH66lqDQDxi8avL0ylqCCNOQWp5KRceXPkhRDiTCSMi3N2w4ShlL3kps0SQMVI5FAnB+p2MD5rWqJLE2JQCB0vpfLBB9mJzqFFC3F7PKfewEeLwc6nYO23aO10sFH5FRUN6XgybCz/9EjyJqYO2ulfpe2l8RaE5WvZ37wfgAJPAR+d8FFuTJqLY3cA/78asXlbiKkhPLjp0FvxZnlJmpqLZ/I0jla2xwP4cwcpbugE4tNM5hSk8vF5I5hbmEpBunPQfg+EEOJikTAuzlmq00KrIw81tJeczOsprH6bJ974Jj+45++JLk2IhNJ1ndZnnuHYr37Ne9On0erx9H8Dn8qt8MoXCVYXs039D/Y3T8NoNjD3juFMvHEYBuPgmheu6zoHWw6ytjzeA/x4+3EAJqZN5LOTP8vszrEY9nagbw3hinWgKgZUzUWnrQNtpBnPnDHUR41sLmnm3b1NHHhtHboONpOBmcNTuHPaMIoK0hg3xI1BWvMJIa4xEsbFeRkxbxKN/zpKh0dHqVdo2ddCWcsx8lNGJro0IRIi0tBAzZe/wq6GBvYtXIDFZuPu1av73sCnox7efBht9584qN3Jlo6vEQypjLt+CLNWjsDuNifuCzhJTIuxs2Fnz10wa321GBQD0zOn876htzO+PAtljw/rO1Zsqg446dCjeDO8OCYNozZnJO9VeNlc0sSu3+0mqumYDApTcpP5/KJRFBWmMmlYEuZB9oOHEEJcbspAd3O6Gk2fPl3fvn17osu4KgTCMb717T9hVo8xtNFMa8sm/Le7ePiOZxNdmhCXnR6Lsf8DH2BDWhoN6emMGjWKlStX4nK54jvEIrDl1/D296j0FbIx8gVavA6Gjkri+rtGkjbMldgvoEs4Fua92vfiLQgr1tEaasWsminKnsNN2hxyS1wYqmK4okkYFCMRLUyn1YupwEXHmFy2BVQ2lzSzrayFYERDVWDiUA9zCtKYW5jK9LwUbGa5yFIIcW1QFGWHruvTz7SfjIyL82IzG8ieOxXfu+WEkm0YmqB0VyX1S2vIdA5JdHlCXFatf/s7b2Zl409NYeXy5X1v4HP8bXjlAdrq2tmkPUxpywhcqVaWfqKQEVPSEz4n2hfxsaFqA2sr1rK+aj3+qB+nycnCtPksaJhIeoUN2z4rdjX+A0On3oY3zUuoMJ19yTm8W+5lS2kzHYeOATAq08n7ZuRSVJDKrBGpeGyDvwuMEEIkkoRxcd7umVfAjzdkEzSWk5U0jTFl23n67W/whRW/TnRpQlw2mt/Plj//mfaxY7hjzRomTJgQ39BWAa9/hfCBN9ge+zf2tC1ENRqZfWsekxblYExgGz5d19lev52nDz7NhuoNRLQIKdYU3m9dwfTqESTV23tGv6NahA5LO51DFYqHZrCh08nmkiaatrQCreSm2Fk+MZuiwjTmjEgl3dX/nTCFEEL0T8K4OG9JdjPWKZOJ7a2CVA/mNoXd2/bRvrgdj9WT6PKEuCxqH/sde/LzGJKczPjx4yEShE0/Q1v/KIf983kv8BSBoIkxs7OYfWsBjqTEhdWoFuXNijd5av9T7G/eT7Yhg/8IfpDR9UPweN04VDcAPq2dluQ2arPdrDd72FAB1WUBKKvrajeYJu0GhRDiIpEwLi7IhxeP4fFd26k3VZPhHMfo4wd4duO3+dTiRxJdmhCXXKS+gXc3byI4ejTL1qxBOfIqvP4lauptbIz8hMaONLJGuFl+1ygy890Jq9Mf8fNi8Yv84eAfqO6sZlZsIr+o/gLDOoZhVi1EtQheUxs1qa3sSPbwaouTkkYftAdxW6PMKUjlk/NHUFQg7QaFEOJikzAuLki2x0Z41AQMJTUY0nOxlR5k4+Z3+fCNAWxGW6LLE+KSKv3xjzhSUMBYd5ScVz6Et6qazeH7KW6/DmeyhSUfLWDkjMyEhddGfyPPHn6W5448hzfs5S7/IpZVf5iMSPy6jgZzIwfTrPxdt7OzwYLeALbWADOHp3DX9BzmFqYxNlvaDQohxKUkYVxcsHuWTuCFn+ym3tJAkjWfwuMxXtjyYz4490uJLk2Ii6+tAorXEtzwDzbVuCEvh8XeZ9ja+WF2tsxFUY3MWJ7LlJvyMFkSMy+8pK2Epw48xUvHX4KIxv9ru4MZ9eNJUtIIa0FK7A38zmhlY6cNU6PClFwbn1+UI+0GhRAiARISxhVFuRN4GBgLzNR1fXvX+nzgEHCka9f3dF3/1GnO8wXgB0C6rutNl7BkcRqFGS5acsZgq63HljkWV3kZr234J3fN+SImVTopiCtc2Adl70LJWiheC83H0HU4sGs8ZVMncV1mGq/XPU1rTZDCaRkU3V6IK8V65vNeZN0XZT554EnWV60nK5zCw433MaatALvqolP38p6zjh+GrNQG7Uwa5uHRW/JZOiELu1nGZYQQIlES9Qm8H1gD9Nd2o0TX9clnOoGiKDnATUDFRa5NnIe7bpnMul/vo97WgtOUQW5xhFd3P86qqZ9MdGlCnBtdh/oDJ8J3xWaIhcFog/y5MP2jdNS52Ny4BSNGqveOwpMMK+6fRN6E1MteblSL8mb5mzx54EkONB9gmn8kP6/7PHmBfIyqmSa1kVccAX7SacEYdLB8YjYfLspnSm7yZa9VCCHEqRISxnVdPwRc6DzKHwEPAHIP9kFgam4yz6aNwtH+Hs6sqUQrG3jh7T+wYsrHURX5lbcY5PwtUPJWPHyXvAWddfH1GeNg5iegcBHkFoHJih6JsPbjX6IpPw2nN58pC4czc+VwzNbL+3Ha56JMbzVr2ubxxYYvk6kNRSNGlamRp01GXg1aSFctfG5JLh+YlUuG6/KP2gshhBjYYPzd5HBFUXYBXuAhXdc3nLyDoiirgWpd1/fIVf2Dx/JbprLzD4dosnsxq27Sj4VYf+Sv3DjmzkSXJkT/Aq3wyn/BvucBHaxJULAAChZBwULwDO2ze2driDd+8Ab7h6Vj1uCD968ge0TSZS250d/IM4ef4bkjzxHyBfhU0yqKWqbgUVMJaQH2WGr5cdRMcczBlKFJ/KQon2UTsmUeuBBCDFKXLIwrivImkNXPpq/ouj7QaHYtkKvrerOiKNOAvymKMl7XdW+v89qBLxOfonI2dXwC+ARAbm7uuXwJ4hzNH5XOy44ROEK7SMueg1b9Os+8+Qvmj75DWqGJwad0Pbz4Keish6L/B+NWw5ApoJ560aWu6RzYUM3mF0vwKk3EPAHuuPvuyxrEe1+Umdpp54HGu5jQORarasdLK6+aa3g0aCWmuVkxJZtHi/K5btjl/UFBCCHEubtkYVzX9cXncUwICHUt71AUpQQYBWzvtVsBMBzoHhUfBuxUFGWmrut1/ZzzN8BvAKZPn66fa03i7CmKwtybp1Ly4lHaHD5QrNiOBthZ/hbT8hclujwh4qJhWPdtePen6KkjeH35tyk1wj0ZY3D2E8Rbany8/cfD1Ja0k2procF2jLyMoYwZM+aSl9p9UeYT+59gQ/UGpraO4NHGTzM8WoBBMVKr1POC2sazuoNMayqfnp/H+2flkuaUu2AKIcSVYlBNU1EUJR1o0XU9pijKCGAkcLz3Prqu7wMyeh1TBkyXbiqDw4pJQ3non7lY9UPkZM6FurX8/o3vM+3jEsbFINB4BP76MajbS+uUD/Atp4mKl3+P22fihXHP8ck593Nb4W0YVAOxiMaO18rY8Vo5JquB+Ssz2fvH3xEZWRi/wc8l/G1PVIvyRvkbPHngSQ41HuLWhjk82fIVMpWhRLUIxYZ6fqEZ2KnYmZGbzM+L8rl5fBYmg0xFEUKIK02iWhveBvwMSAdeVhRlt67rNwM3AN9UFCUCaMCndF1v6TrmMeBX3W0QxeBkNKiMWzKD+tdK6XRF0esMhA9FOFK7g9HZ0xJdnrhW6Tpsewz+9RCYHbxz81f5n8MvM+FfBuY0xTugjKlW+Evpo/xp0jN8asgXaXhVpbXOz8gZmVx/50jKv/EligsLmDR2LFlZ/c3Au3D+iJ8Xjr3AHw7+gfbWJu6rW8bD3g/iMiTj1zrZYKzkh7oVr8HD6qlD+GZRPhOGei5JLUIIIS4PRdevnZkb06dP17dvlyx/qQUjMb7zrWcxqMUMbbTT1rye5ltUvnfvPxJdmrgWdTbA3++HY6/jK1jIIzmF7H53A3MOpWFRzSy89xMMHTOet3//W8r27CRqtmMz34zmyWTu+0YwY+Y4/Lt28czPfk5dbg6f/c//xO2+uLe2731RpqfFxCfrVjMxNAGLaqMl1syrqo/HcJGe5OBDc/J434xcUhzmi1qDEEKIi0tRlB26rk8/036DapqKuDpYTQayr5+Od2M5kSQTapNC0/42KluLyUkuTHR54lpy5DX4+2cg1MH2+Z/jGzVbGPHCDubVp5E9eiy3fOYLJGXGR7knLf0MTbWv4mt6k0j4RWrtEb6wo4VV3EXRL/ZTNXw484uKLmoQL24t5qmD8Ysyp9bn8z/N/8ZwrQBQqKSeJ6ONvGHwMGvECH5alM+ScZkYZSqKEEJcVWRkXFwS7YEIP/nO02jGcrJrDbR7txC+zclDd/0p0aWJa0HYH5+Ssv13hDLH8/PxN/LW5rVcfyANS8zIvPd9mGnLV6OqBjpbQ6z/0xFK9zSRluPkhvcVUnXwbTY//wzhcIhWZxsZ1sn40lP4/AMPYrfaL6g0XdfZVreNJw88yabKjdxaPYdV3oVkqEOIaCH20cDPYkYq7S5umzKUe+fkMzb74o7ECyGEuPRkZFwklMdmwjp1MpE9VZDiwdAGxburaLqlnjRnZqLLE1ezmt3wwseh6SiHpt/DV/0VpP9tEwur00nLG87y+79AWm4+uqaz/50qNr9YQiymM+e2AiYtzsFgUMkuWMO4eQvY8Mcn2L1rF62pqVTq+/jgax/gv2Y+QNGQonMuq/uizCf2P0F1bRkfrrqJzwa+i9PgoVP38lK0jF+qLpwpWdw7J4+7Z+SQZJepKEIIcbWTkXFxydR7gzz+/d8TNtaQXhXGG9yL9X1D+PzK3yS6NHE10mKw6afw1neIOtL53bTVvLhzHdfvTcUWMjD71ruYffv7MBhNfdoVDhuTzI0fHI0n/dQR7/rf/pYnjh1DM5swH9tDR7LOxtH1jLtuDl+Y/gXyPflnLMsX8fHCsRd4+uDTWGui3Fe3nEnR6zCpFuqjjTyv+fizKYlZhel8uCifxWMzMajSl18IIa50MjIuEi7TbSUyZiJKcS2m9CGYSveyc/t+Om7y4rLIr93FRdRWGb+BT/lGysbczEMWsLy6iSVl6Xiysll+/xfJHjmaWERj6z+P97QrXHjvWMbMyeq3TWG0pYVNb64lOHYM9957L6GaCt754+Pc8p5CedUhPlh8O6un3s0nr/skHsupHU0a/A08c+gZ/nz4z1xXNZSHWu4mjwJA55hWy2NRnd2OFNZMHcmrRfmMynRdhm+UEEKIwUZGxsUldbyxk7/++CmCxmaSy1tpix0l695xfGzJI4kuTVwt9j0PL/0nmh7jTzPu5qnDm5mzOwlXp4Epy1Yy7/0fxmSxUlvcxrqnD/dpV2h3DzwNpPQb3+SP4RD5w4fzoY99DIBwMMC2vz/P1n/8lRgau4e3UDlW4VPTPs2do+7EqBopbi3myQNP8kbxa6wsn8mKzgWkGbIIaQG2Ruv5pWqFjDTunZPHndNy8NhNl+s7JYQQ4jKSkXExKIxId9KWMw5T7TvYMkYSKj/G+vfe5Z4FQSxGa6LLE1eyYDu88l+w9znqhk3jqxnZBN/eypKSVBzJKdzy0H+SN3EyoUCUt585woH11ThTLKy4fxJ5E1JPe+pQSQkbi4+hFRSw9NZbe9abrTbm3n0PExYs4Z2nH0fZsonxtSp/rPwxz43+E1mubA4X7+GeyiX8Ifwt7AYn7XobzwaP86TZw9Txo/h6UT43js6QqShCCCEAGRkXl8GeyjbW/vr3BA1eHCWVtBorGfux67n7+i8nujRxpSpeC//4f+gddbw07U5+XnWAGTsdJLebGHfDQhbe90ksdgfHdzWy/k9H8HvDXLcgh5mrhmO2nnkMYu9n7ufFtFSmTZrEijVrBtyvYv9e1j31G5oqytAykxljm8ZE/TqMqonKSB3PxgK85UxnzYwc7p2TT2GG82J+F4QQQgxiMjIuBo1JOUk8mzISq3cLWVmTiFZW88rGl7i96AGMqvwVFOcg6I23LNz5FC3pI/n2qFXUbNvP4qPJ2BxObv7i5xg5Yw6+thBv/WEfx3c1kjrUybJ/v47M/LO7TsG3eTObI2FMqsqCm28+7b65E67j/V/8HhXPbsVSa0BDY1+khsdUlbasLD5clM+3pw3DbZWpKEIIIfonSUhcFstXTmfbU4dosrdhUlPIKY7yxu7HWDb1U4kuTVwpStbFR8O91bw29XZ+0ljMpJermdGSTMGM2dz08fuxuTzsX18db1cY1Zh96wgmL8nFcJY3ytFjMXb94v+oLSxg8YIFOByOAfeNNgfwvlWJf2c9RsXE80qQZzUf464byeeK8pk/Mh1VpqIIIYQ4Awnj4rK4vjCNlx0jsIZ2k5M1C63mVZ5f9zRLp3yy304WQvQIdcAbX4Ptj1OfVsC3py6nYcdhFh5NwWKysvjT/864GxbSVu/ntd/upLa4naGjk7jxA2NIyjy3G/S0vvg3tqWl4rZYmF3Ufy/xaEsQ71sV+HfUE1Xgb4T5ox7mhqlDeHZBAQXpMhVFCCHE2ZMwLi4LRVGYu2w6R/96lHZnJygOUo+Feffw81w/9s5ElycGq9L18PfPoLdV8sKklfymvoypLzWQ35bC8KkzWPKxz2D3pLD9lTK2v1qGyWxgwT1jGFuUfc4/5Gk+H1v+/Gfax43ljpUrMRr7fjxGW4J0rKvEt6OeqK7zd8I8rYeZP3UIf1lQSH7awKPoQgghxEAkjIvL5pbrhrL573mY9UPkZFwP9a/zzJu/kDAuThXqhDcfhm2/pSp1OA9PWkJgRxmLS5Kw2p0s/uy/M6boBupLvbz0i2201PgonJ7BvLtGnbZd4enU/u5x9gzPZ0hyMuPHj+9ZH20L0vFWJb7t9cT+f3v3HR9Xded9/PObqtGoV6tYktUsy5arbOOCsQFTUoAESLJJCEnIQggpJNkku89mk02e7IYkuwkQeiAFQkkAUw2hhGJwr7jKRZYlS1bvmpGmnucPDcT4kUEu0ljy7/16zUujuWfu/d2j6/FXV+eeawzP4ufPDJ4Jf+L8YvJTNYQrpZQ6eRrG1aixWoSpF86j4aWDeBN8mBYnjn39bKv5OzMnXRDt8tSZ4tBqeOZrhDpreXT6JTx0pI55L/SS1JPE5IVLOP9LN2C1xbLq0X3sfKuBuCQnH/3adAqmp530JgPNzaxZs4aBsslc+slPIiIEu32DZ8I3NBEyhufeDeFzsnl8WQl5qSc2BEYppZQaioZxNaqunJfHf7+Ui9dWTU7qIqTlNe596Wf89vrzdGaVs53fA3//Kay/h4OpBfx46hKsG4+wvCaV2MQkLv7+NyicPY99G5pZ/cR2BvoCTF+ay/zLC4c1XeEHqbn1NqqKi5hSWEh2QgadzxwYDOFhw0oCPISP8ypzeHxZMRNTNIQrpZQ6fTT9qFEVY7eSvbiSztW1BBMF2mzYdwu/fukmvn/pvdEuT0VL7Vp45msEOg7yh6kXsKLhCAteDBDnSaTi/Is575ov4+2BZ27dRsPeTjIKEvj4N2aSnnfqt5Dv37WLNUeOwKQCznHNoPGXGwmFDS9GQviSuTn8damGcKWUUiNDw7gadZ9dUsztq7JodhwmK/lc8ptfZ+O6nTyVdhufmPutaJenRpPfC6/9DNbdxZ7Uifxk8kLiN7SzvC6N+PR0LvnOzWSXTmPTi4fY+nIdNoeV8z47mfLF2ac8bWCou5v2B37PgRf/zqFFlUwP5SObe1gpAf4sPhZX5vLY0iIN4UoppUaUhnE16hJi7Lhmz6b/nQYk2YF9oJTKqr084P4z+anlzC5cHu0S1WioWw9P34ivs5p7ys/jpboWFr4kuAYSmPPRy1n0qc/TsL+PR3+6np62AUrnZ7LoypKTvkDzXaE+D50PPciRR1dQVbGAvQvnEWOstAZz+Lylj8Vzc3l0aRG5yRrClVJKjTwN4yoqrrlwCn/YvJ5GRzPZ7nPBdHHuNsOPXP/KfZ8vJDu5KNolqpES6IfX/wvW3MG21In8tHAumet6uKAhjaScHD5y43eIT8vn73/aT/XWVpIyY7n85pnklqWc0mbDAwN0PvoYjX96mL1l86hatoQAIWLDabwWymLOvCweXVZMTpLrNO2oUkop9eE0jKuoyEiIIVg2Aw68jNO5F1/gMpzBR5i3OcS3XZ/lD194jViHThk37ux7CV74Ht7uOm4vW8jqQx0s3OjEGYhl/pWfZu5lV7H77Waeu2M94bBh/mWFzFqeh9U+vDuRQFByAAAgAElEQVRoDsX4/XStWEHj7/7IvsKZ7D5vCX4JERdKZl0om2mVJTxwvoZwpZRS0SHGmGjXMGoqKyvNpk2bol2GijjU5uHRW/+Mz9bI9HoHDeTj7/sLTUle/Evt/ObTK7HIyYcwdQbpqoO//RtUPc+qzGL+x5XApC1CXnMs6ZOKuPTGmwmFUnjjkb201/eRPy2Vcz9dSmL6yQdkEwrR/dxzNN19H/typrJ7YiIDEiQ+lMrqUDZFs4r55gUlOiZcKaXUiBCRzcaYyg9rp2fGVdQUpLnpLK8ko+oNdud4mHK4nYbYi5nQ+SL7NvVyR9LX+eYld0W7THUqgn5Yewe8+UvqbFZ+Ub6I5qpOFu1z48DG4s9/gannfYT1zx1i91ubcSc5ueSGaRTOTD/hO2i+y4TD9L78Ck133sX+lEJ2zV+E1xIgPhzPFn822TOK+d8LS5mkd8xUSil1BtAz4yqqPL4g19/+OhV9G7GFIacpj9ZgDQHvetZP6eBLH/8cl865KdplqpNRswpWfhdv+35+VzSbF9o9zN2ZRHKPndzyaSz/52/QUmthzYoDDHiCTD8/l3kfm3TSc4YbY/CsWkXTbbdzIDaHnYUT6LP4iQ8nsiWQQ9K0Ym6+sISSzFOfDlEppZT6MHpmXI0JbqeNW65bxA9v66XIsoOe1MO4u2biMR3M27OPO91/IC+1nKkFy6Jdqhqu3iZ4+YeYHY/zt/Q8fjuxgoLNYS46kk5scjLn33w9aXmzePPRfRzZ38WEwgQu+9Zk0nJPPiR7Nmyg+dbbOWAS2Dm1kh6rj/iwk0P+Qhylhfzw4jKmZCWcxp1USimlTg8N4yrqJqbEcv01S3jqDx7CMdVMtr9DQJZjwl0s3mb4N9d3uf/zK8hIKoh2qeqDhIKw8X54/b/YJ0FuKa2kv2qApdWJ2LAy7xNXMeOiK9j+WhOvPbQRe4yVpZ+bTPmibOQk5wzv376dlltv40CvlR2Tp9Jl8xEXtnHEX0CwuJDvXlRGRW7iad5RpZRS6vTRYSrqjPHA2zW0/O1lfLZGZteFqbPOJuB9mG5HDwcWdXP/F14jxqEX252RDm+Eld+mu2Und+VP463WAPP2pBDfZ6Vw9lyWXPMVGvaG2fB8DT5vkCkLs1hwRRGu+JObM3xg925a7riT6kYvO8tLabf7cIdd1AZz6ZlUyM0XlzE7L/k076RSSik1fMMdpqJhXJ0xjDF8/y9bmbDrDbyWPmbVWKhxFODv+ytHUjzYzovhlk89f9IX9qkR4O2AV39MeMuDPJWWw+8ciZTtjGVis4vECVmcf+31WGyTWP3kAbqaveRMTmbx1cUnPSRlYO9eWu+4g+rDPewqL6PV4SPWxHAkkEvzxAK+fUk58yad2nzkSiml1OmgYXwIGsbPfAOBENff+SZTO9ZjIUxRQzL14RAB70vsyevlnOUz+cpFt0W7TBUOw9aH4NX/ZHvYyy3Zpdj2GSoOJmG3O1l45T+RP+MC1j19iPqqTpIyY1l4ZTEFFakn9cuUb/9+Wu68i4M17eyaOoUWhw+XcdIWzOFQ9iS+ffEUFhSd3LqVUkqpkaBhfAgaxseGpu4BfnDr3ygObyfNbyexu4S2/l0EvBtZV97OjR//EufPvj7aZZ69GrfDyu/QdmQzt+aWsq0FzqlKxdVvoWzxUuZe9jl2rupiz5pGnLE25n1sElOX5GC1nvic8b7qalruvIuaA63smjaF5qNCeM2EAr5+URnnlZ78NIhKKaXUSNHZVNSYNSExhm9+cQl/vs9DyLmfRPse4qzz6TMdzN9t+LX7PnJSy5icvyTapZ5dvB3w5i8JbLiXR1MzeDhtMtM3xbOs3UlqfgHLrrmB1sNxPPXrfYSDYWZcMJHKSwuIcdtPeFO+mhra7rqbg1VH2DltKs2z44kx0B+YxM4JkzSEK6WUGjf0zLg6Y/1lYx37n36JoL2BObU+GlxL8PU9hjfUwoYFzTxwzTOkJE6Mdpnj30A3rL0L1t3FOvHzq8xCkqrsTKlNwBkby7mfvpaYhFmsf7aGvk4fhbPSWfCJIpIyTvxiW39t7WAI31XHzooKmpw+YoyDzmAO1Zn53HRxOUs1hCullBoDdJjKEDSMjz0/fuodEra8jsfSzfz9A+xzzyXofZguZx91i7q57wtvYrc7o13m+OTrg/X3wJrfss14uTu7mNbDMHdfCg6/MP2CSymefxmbVjbRUttLel48i68uJrvkxGcx8dfX03b33Rx8p4Zd0ypojBkM4d3BHPZl5vP1i8pZOllDuFJKqbFDw/gQNIyPPYFQmBvufouylrUYQkyvs3HAmoXf8zgNqV4Slrj48aee05B2Ovm9g/OFr76VzaE+7s6eREsDzD6YQnyvlazSMuZ/4svs3xSieksr7iQnC64opHTehBOeLzzQ0EDbPfdSvfXAeyHcaRz0BHPYn5nP1y6awrLJGfrzVUopNeZoGB+ChvGxqb3Px3dufZmSwFaSA3ZyunOo9XYS9L7CroIeLriwks8t/3W0yxz7AgOw+Y/w9q/ZGOzinsx82hqtzKpOJr7PSkruROZd9mk6W3PY8UY9Fosw++J8Zl6Yh91pPbFNNTXRdu+9HNywh13TpnPE5cdp7PQFc6hKL+BrF0/h/DIN4UoppcYuvYBTjRupcU6+96Ul3Ht3L0HHPhLttaSnzKaNDqYe2syKdWuYlP4AC2deF+1Sx6agH7b9GbPqf9jgb+PujDy6GlOY9XYK5X0WUvPymXftp+n3TmTdc/UMeA5TtiCLcy4rxJ10YkOE/LW1tP/+D9Rs3MOuihk0zC3DaQzBQD470idx40VT+NkUDeFKKaXOHhrG1ZgwLSeRi65eyta/ejmQVM+culUMJC2nz3Rwzi7DLbF3cWtKKYV550a71LEjFITtj2He/AXrBpq5Jz2XnsZCZr2dgttjIS2/gMovfIqezixWP9WIv7+GvPIUzrmiiPS8E7tpT//OXbTdfz81Ne1UlZVxZN4UHMYQCuSzJb2AGy4q5/9qCFdKKXUW0mEqaky5ZeUu7Otepc/SxeJ9XexLvhh/3yN4w628vKCRz+TP4ovLb8fpPLk7PJ4VwiHY+STmjZ+zpv8I96Rl42mMYdbBZGI9FtILCpl1yVV0tmSy5+1GgsEwRTPTmX1JPhn5CcPejDEG77p1tP7ufqr7bOwpKaDNPnhhpieYxZ60Am64uJwLNYQrpZQah3TM+BA0jI99obDhpvtXU1S/mhAB5tcMsDNmFkHvowTxsrm4i+6JvXx3yue4YMH3EcuJ32hm3AqHYc8zmDd+ztt9tdybmoW30cWsgynEeoWMwiJmXHgVrfWp7NvQDAZK52cy++J8kie4h70ZEwrR+8ortDzwR/bHTGBPQQY9Vj+xYRctoWzqs/O5btlkDeFKKaXGNQ3jQ9AwPj509wf45m9eptS3hYSgjbKuRKr8mbhi19PdtJv+2ACryzvJSTN8f9GPKS39WLRLjq5wCPa+iHnjv3mrp5p7UjPxH3EzsyYFl1fILCph6tJP0HwomeqtrVhtFsoXZTNz+UQSUl3D34zPR/fTz9D40CPsn1BGVXY8/ZYAceF4DgazCJQUccOyEioLUkZwZ5VSSqkzg4bxIWgYHz8OtPTym9++QLp1D4U9VjJip1LdloTNfhgTWIWns5mmNC/rp3RycWoGX7/otySmlka77NHVug/eeYTQ9r/yZrCD+5LTCTbGMfNgCq5+YUJxKZMXXU5jdSJ1uzpwxFiZtjSXGedPJDbBMezNhHp76XzsMRpWPM++whnsS7MTkBBxoWR2hrJIm1HC9UuLKc3UoUNKKaXOHhrGh6BhfHx5dXczbz+8Eux1zKnzUH7hcrbUpdBc00lsXBW9rW8S8A+wJ7+bg4Vd3JAzn6uW/wbbeB5P7u0YHA++7WF2t+1iZVwcr8Ymk9gQw8yaZGL6hazSyRTN/Tj1e+Noqu4hJs7OjAsmUnFeDs7Y4d+6PtDSQueDD1L36hqqymZyMNFgMMSG0tlEFhXnlHHduZPIShz+2XWllFJqvNAwPgQN4+PP7a/sxf/my3is7Zy78zClBSn0XHo9619uxtPVRVzCVtrrNxC0hdhY2kk4u5d/Lb+WeQv+BcbLeOVQAPa/DNseoe7gq6yMdfBifAqhNifFR+KZ2BqLhAzZk8spmPkRane7aK/3EJfsZObyPMoXZ2N3DH+ecP+hQ7Q/8HtqtuyjqryCutgAVizYQplssOVwwZLJXHNOAYknEOyVUkqp8UbD+BA0jI8/xhi+/af15Bx8C4/FQ1GPlRlb3yLrqzdwwDGDbX8/jAm34bCtprv5AL3xflaXd1CRDN9d/DNySi6J9i6cHGOg8R1451Hadj3OSxYfK+OTaO11UXgkjqLmeKx+Q0xCApPPWUJsUgUH37HQ3dJPUmYssy/Oo3TeBKy24V3gaozBu2EjHY88QnVdN1VlpTQ5fTiMjUAoi21xuVy5tIyr5uQSYz+xGwAppZRS45GG8SFoGB+fPL4g19z9NjPbDmCsDTiwMnt/M5Ot3bi//UM2rh/g4LZWnDG1BLxv0N/TweFMD1snd3B1chZfvvgOYlOLo70bw9PbBNv/gmfbI/y9/zAr3XHsDcYxqcFNSVMizn6wOZ0UVy4gOWc2PW2p1O7sJBgIkzYxjjmXFFA4Kx3LMG9bH2hpofvpZ2h59nlqkyexPz+TDtvg9IQ9wWz2p+dz7fmTuXRaFtZhrlMppZQ6G2gYH4KG8fFrIBDirjeqWfXGLs611tBr6WGCz8mc9asp+OSl9J93NaufqqG9oQt3/G66m1YRDPnZPqmH5vwOvpW9iEuX/y8ScwaOJw/0Q9VKAtse4e3Gtax0u9goCeQ0upnclEhcjwWxWCiYMYf0/Dl4PTnU7ugh4AvhirdTNCuDkrkZZBUnDWsqQRMM0rfqLTqfeILDtR3UlJZzKMEQlDBxYTcNoSw6Cwr552WlLCxK1ekJlVJKqSFoGB+ChvHx70BLH/+x4h1yD1eTZKsjRIiKpgGmNuwm+0c/pMabxfpnD+LzdOKO20J7/Wb8zhDryjpJSu/lB1Ovo3z+N8EapZvTGgN9zdBaBa17CTdsZUvN33jBAW84EkhpdlPamEhqx2B92aVTmFA8l0CgkLrdXnzeIM5YG4Wz0impzCSnNAmLdXhDUfx1dXQ9uYLmF1+lZmI51dnJdFt92IwVWyidbaSRNbWQ65YUMS0ncSR7QSmllBrzNIwPQcP42cEYw4otDdz33DtcGDqEx9pKYshJ5dadFM8qJOHGm9m8qp2dqxqwSBNWeZue1lo6En2sLW8nI9ZDvjgocCRT4M4mP7mE/IwK3GllkFwAMcO/C+UHFAnd9dC6F1qrCLXsobF9D7XdhziEj1qbnVq7jWpbDLFtboqPxJPdFoOEISVnIjll52AspdRXBRnoC2CPsVI4I53iygwmTkkZ9ljwsM9H7yuv0vHEk9R2hakpLuGwO0hYDPHhBBpC6dSm5nL5gklcPiNHL8pUSimlhknD+BA0jJ9dOj1+fv7iHtq27KHMfgivDFDcbWXG9rXkfecmAjOW8PbjB6iv6sDlrqa/6w18nh58CWG6Yn20xPrpdgfocQfpcQeIt/jJDwYpMFYKHEnku7PJTyoiN2Ma9pQiSJ4E8Vlw9F0/wyHoqoXWvZiWPXS07KK2Yy+1ngYOSYhau51DdhtNxkms106Cx06ix06K10mK14WrDyRkcCenkDdtARZ7GUeqbfT3BLA5LBRMT6OkMpO8qSnYTuDCyYG9e+l6/AkaV62nprCC6gw3Hosfp7ETDqWzRTKYMqeIz8zN07PgSiml1EnQMD4EDeNnpw01Hfz0yW3M7zpI2NqAEyuz9jdR5vYz4Uf/QUN7DKuf2E93aw8JSVVYba3097TS295MOBR6bz3GLvS7Q3TEDtAW66fHHaTbHcATGyBT/OQHguQHwxQ4Esl1ZdDt6+RQfyu1VqHWbuOwxY4MOEnw2Ej02EnyOEjrdxHXZ8PqC7+3HbFaScqcQFJGNjHxGWAtoKU2Hk+XH6vNQv60VIorMyioSMPuHH4AD/X10bPyBdqfXEEtiVRPKuBIjA+AuHAyNaF0OnPzuHJ+AR+pyMJ1AtMdKqWUUur9NIwPQcP42csfDPO7tw7y6qvbWWw9RK+lh6wBJ7M3raXwny4n4bPXsP3NI2x6sZagbzCAi8UQl+QjJtaD1dpDONyJ39uGp6uF3vbWwaEmESGn4HEHaXMN0On20xsbxBmwkOixk+51keh1YPcY5Kh/bu6kZJIm5BCbmIHDlYZYkgkFE+jvc9Hd5qO/NwCAxSpMLE+hpDKTSdPTcLiGP5491NWFZ/0G+l5/nfqtezlUMo2DqQ4GJIjLOOkPZbDVnsE584r5VOVEitLjTk+HK6WUUmc5DeND0DCuats9/OipHWTU7HvfBZ7TWg+Q+5MfYS2eQkejh84mL13Ng4/OZi/drV7CwX/8W3G4wJ04gNPVh8XSQ8jfwYCnlb72Jjxdne+1s8fEkJSZTWxSJg5XGhZbCqFgAr7+OHrbwwx4Au+rLy7ZSWK6a/CREUtihouc0mRi3MMbqx32+ejfsgXPmrX0rl1Hc5+hZWIRDemJtDp8WIzgCqeyJ5QGRQV8an4BF0zJwD7MizyVUkopNTwaxoegYVzB4AWez29v5J5ntrE0UPPeBZ5zt+6g+JyppH7lOmyZme+bsi8cNvS299PV3P9eQO9q9tDV5MXT7f/HygXikoXYuAGCQSd9nVb8/aH3LY9PjiExIxK40wcDd2KGi8Q0F7YTHBpiQiEGdu/Bs3YtfWvX0FbXRktuMU0ZaTTFhvHL4LbjwnF0htLY4Z7A8vlFXFWZq7epV0oppUaQhvEhaBhXR+sZCPA/L+2lYf1OJr97gWeXhdJt60kK9eGaXoGrYhoxFRW4pk3Dmjj0hYz+geDgWfQWL12RM+rdrf043fb3znInRc5yJ6S6sNpP/iy0MYZAXR2etWvxrFlL+469tGROonlCFo0JNjyWwV8MXMaJCSVRH07goCuF8rJsrpiZw8Ki1GHf8EcppZRSJ0/D+BA0jKuhbDvcxU+e2Mbs9gOErQ0YMdiNldSAg9RuD8mtzSQ1VJMUb8dVUTH4mF6Bc8oULE7niNcXbG/Hs24dnrVr6dmwhabYDFpy8mhKdtFhG7wA025sOMJJtIQTqLImkjkpi8Wl6SwuSaco3a035lFKKaVGmYbxIWgYV8cTDIX545pDrHh5B5PDvWSIB4e1Dw99hCNXXcYYG6k+GyldvSS3NpHceJCkCSnETK/AVTGdmIppOIuKEOsHDzUx4TDh3l5CXV3vewQ7O4/6vptQVxf+1jZaQjG05hXTlJpAi8NPWAwWI7hNIl2hRPaaeMidwMLSDM4tSWN6bpKOAVdKKaWiTMP4EDSMqw/T7Q2w9XAnO+q72d7QTVVdJ+meLoot/aSKB6u1Dw8eTOREszvsIHUAUjp7SGk+QlJbHYlFecRMnQoWy/sDd2cn/l4v/WELflcc/tgE/C43flcsPmcMfqcDn8OOz27FZxN8ljD9EiQog9MexoXjGAgnciAcT3tKBpWTM1lcnMb8wlTinFG6Y6hSSimlhnRGh3ERuRr4T2AKMM8YsynyegGwB9gbabrOGPPV46zjG8BNQAhYaYz5/odtV8O4OhnNPQPvhfPt9V1U13WQO9BDocVLksWDsfThlf732ieEnKR4wwgGn8OGzwo+SxifhAhI6LjbsRsrduxYjR1j7ISxETA2GsNuDsSkUD45i0XFaSwuSSMzIWY0dl0ppZRSJ2m4YTxap9N2Ap8E7h1iWbUxZuYHvVlElgGXAzOMMT4RyRiBGpUCIDMhhszyGC4szwQGL6I80j3A9sNdbG/oZkd9N3WHWykM9JEnXsIWD81xHiwIFmMHbISNDcKDX/ux0Wds9GKl09jwORyY2Fji42JIdTtIdjtIcTtIjnWQ6nZwdV4SJRlxOu5bKaWUGoeiEsaNMXuAUwkXNwK3GGN8kfW1nKbSlPpQIkJOkoucJBeXVmQBgwG9tt0bCedd7DrSg9Ui74XqFLeD7KNCdorbQbLbTpLLgcOm47uVUkqps9WZONB0kohsBXqAHxpj3hqiTSlwroj8FzAA/IsxZuNoFqnU0USEgjQ3BWluLpuRHe1ylFJKKTVGjFgYF5FXgQlDLPp3Y8wzx3lbI5BnjGkXkTnA0yIy1RjTc0w7G5ACnAPMBf4qIoVmiAHwInI9cD1AXl7eSe6NUkoppZRSp9+IhXFjzIUn8R4f8O7Qk80iUs3gWfBjr7qsB1ZEwvcGEQkDaUDrEOu8D7gPBi/gPNGalFJKKaWUGiln1GBVEUkXEWvkeSFQAhwcounTwLJIu1LAAbSNVp1KKaWUUkqdDlEJ4yLyCRGpBxYAK0XkpciiJcB2EdkGPAF81RjTEXnP/SLy7vQwvwcKRWQn8Bhw7VBDVJRSSimllDqT6U1/lFJKKaWUOs2GO8/4GTVMRSmllFJKqbOJhnGllFJKKaWiRMO4UkoppZRSUaJhXCmllFJKqSjRMK6UUkoppVSUaBhXSimllFIqSjSMK6WUUkopFSUaxpVSSimllIoSDeNKKaWUUkpFiYZxpZRSSimlokTDuFJKKaWUUlGiYVwppZRSSqko0TCulFJKKaVUlIgxJto1jBoRaQVqT+AtaUDbCJWj/kH7eXRoP4887ePRof088rSPR4f288iLZh/nG2PSP6zRWRXGT5SIbDLGVEa7jvFO+3l0aD+PPO3j0aH9PPK0j0eH9vPIGwt9rMNUlFJKKaWUihIN40oppZRSSkWJhvEPdl+0CzhLaD+PDu3nkad9PDq0n0ee9vHo0H4eeWd8H+uYcaWUUkoppaJEz4wrpZRSSikVJRrGARG5RET2isgBEfnXIZZ/UURaRWRb5PGVaNQ5lonI70WkRUR2Hme5iMjtkZ/BdhGZPdo1jgfD6OelItJ91LH8o9GucawTkYki8rqI7BaRXSLyrSHa6PF8CobZx3osnyIRiRGRDSLyTqSffzJEG6eI/CVyLK8XkYLRr3TsGmYfa8Y4TUTEKiJbReT5IZadsceyLdoFRJuIWIE7geVAPbBRRJ41xuw+pulfjDFfH/UCx48/AncADx5n+aVASeQxH7g78lWdmD/ywf0M8JYx5mOjU864FAS+a4zZIiLxwGYReeWYzww9nk/NcPoY9Fg+VT7gfGNMn4jYgbdF5EVjzLqj2lwHdBpjikXkM8AvgE9Ho9gxajh9DJoxTpdvAXuAhCGWnbHHsp4Zh3nAAWPMQWOMH3gMuDzKNY07xphVQMcHNLkceNAMWgckiUjW6FQ3fgyjn9UpMsY0GmO2RJ73MvjBn3NMMz2eT8Ew+1idosjx2Rf51h55HHsh2eXAnyLPnwAuEBEZpRLHvGH2sToNRCQX+Chw/3GanLHHsobxwQ/4w0d9X8/QH/pXRv7c/ISITByd0s4qw/05qFO3IPIn0xdFZGq0ixnLIn/mnAWsP2aRHs+nyQf0MeixfMoif9bfBrQArxhjjnssG2OCQDeQOrpVjm3D6GPQjHE63Ap8HwgfZ/kZeyxrGB+e54ACY8x04BX+8ZuVUmPNFgZvzzsD+C3wdJTrGbNEJA54ErjZGNMT7XrGow/pYz2WTwNjTMgYMxPIBeaJyLRo1zTeDKOPNWOcIhH5GNBijNkc7VpOhoZxaACO/i00N/Lae4wx7cYYX+Tb+4E5o1Tb2eRDfw7q1Bljet79k6kx5gXALiJpUS5rzImM/XwSeNgYs2KIJno8n6IP62M9lk8vY0wX8DpwyTGL3juWRcQGJALto1vd+HC8PtaMcVosAi4TkUMMDjc+X0T+fEybM/ZY1jAOG4ESEZkkIg7gM8CzRzc4ZqznZQyOX1Sn17PAFyKzUJwDdBtjGqNd1HgjIhPeHSMnIvMY/Aw4Iz6MxopI/z0A7DHG/Po4zfR4PgXD6WM9lk+diKSLSFLkuYvBiQyqjmn2LHBt5PlVwGtGb1AybMPpY80Yp84Y82/GmFxjTAGDOe41Y8znj2l2xh7LZ/1sKsaYoIh8HXgJsAK/N8bsEpGfApuMMc8C3xSRyxi8wr8D+GLUCh6jRORRYCmQJiL1wI8ZvJAFY8w9wAvAR4ADgBf4UnQqHduG0c9XATeKSBDoBz5zpnwYjSGLgGuAHZFxoAD/B8gDPZ5Pk+H0sR7Lpy4L+FNkVjEL8FdjzPPH/P/3APCQiBxg8P+/z0Sv3DFpOH2sGWOEjJVjWe/AqZRSSimlVJToMBWllFJKKaWiRMO4UkoppZRSUaJhXCmllFJKqSjRMK6UUkoppVSUaBhXSimllFIqSjSMK6XUCBCRvmG0uVlEYk/jNq8QkfLTuL41p/DevsjXbBF54gPaJYnI1052O0opNdZpGFdKqei5GTihMB6Zr/h4rgBOWxg3xiw8Des4Yoy56gOaJAEaxpVSZy0N40opNYJEZKmIvCEiT4hIlYg8HLkz5zeBbOB1EXk90vYiEVkrIltE5HERiYu8fkhEfiEiW4CrReSfRWSjiLwjIk+KSKyILGTw7n2/EpFtIlIkIjNFZJ2IbBeRp0QkObK+N0TkNyKySUT2iMhcEVkhIvtF5GdH1d531PMfiMiOyDZvGWI/J0Vq33HMOgpEZGfk+VQR2RCpb7uIlAC3AEWR134lInEi8vdIH+wQkcuPWs8eEfmdiOwSkZcjdzRERIpF5NVIbVtEpCjy+vci/bRdRH5yWn+wSil1mmgYV0qpkTeLwbPg5UAhsMgYcztwBFhmjFkmImnAD4ELjTGzgU3Ad45aR7sxZrYx5jFghTFmrjFmBoO3zr7OGLOGwds9f88YM9MYUw08CPzAGDMd2MHgHVnf5TfGVAL3AM8ANwHTgC+KSOrRxYvIpcDlwPzINn85xD7eBtxtjKkAGo/TD18FbjPGzAQqgXrgX4HqSM3fAwaAT0nVvL4AAAK5SURBVET6YBnwv+/e9h4oAe40xkwFuoArI68/HHl9BrAQaBSRiyLt5wEzgTkisuQ4dSmlVNTYol2AUkqdBTYYY+oBIrd3LwDePqbNOQyG9dWR7OkA1h61/C9HPZ8WOfucBMQBLx27QRFJBJKMMW9GXvoT8PhRTZ6NfN0B7DLGNEbedxCYCLQf1fZC4A/GGC+AMaZjiH1cxD/C8UPAL4Zosxb4dxHJZfAXiv3/yNn/KB3470hwDgM5QGZkWY0xZlvk+WagQETigRxjzFOR2gYi+3ERcBGwNdI+jsFwvmqIupRSKmo0jCul1MjzHfU8xNCfvQK8Yoz5p+Osw3PU8z8CVxhj3hGRLwJLT6Gm8DH1hY9T33CYD1xozCMish74KPCCiNwAHDym2eeAdGCOMSYgIoeAmGNqhsF+dH3A5gT4uTHm3hOoXymlRp0OU1FKqejpBeIjz9cBi0SkGEBE3CJSepz3xTM4FMPOYHj9/9ZnjOkGOkXk3Miya4A3OTmvAF96d+YXEUkZos1q4DOR558bYjkiUggcjAzReQaYzvv7ACARaIkE8WVA/gcVZozpBepF5IrINpyROl8CvnzUuPscEckY1t4qpdQo0jCulFLRcx/wNxF53RjTCnwReFREtjM4pKPsOO/7D2A9gwG46qjXHwO+JyJbIxcxXsvgBZ3bGRw3/dOTKdIY8zcGh7Vsigyz+Zchmn0LuElEdjA4tGQonwJ2RtYxDXjQGNPO4NCcnSLyKwbHf1dG1vOFY/bveK4BvhnZzzXABGPMy8AjwNrIup7g/aFfKaXOCGLMB/5VUSmllFJKKTVC9My4UkoppZRSUaJhXCmllFJKqSjRMK6UUkoppVSUaBhXSimllFIqSjSMK6WUUkopFSUaxpVSSimllIoSDeNKKaWUUkpFiYZxpZRSSimlouT/Aex11HwnpM1BAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -141,29 +142,28 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('BeH2 Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { - "cell_type": "code", - "execution_count": 3, + "cell_type": "markdown", "metadata": {}, + "source": [ + "Now the difference in energy, compared to no reduction, is plotted so it is easier to see the effect. First in one larger plot so its easier to compare, and then in individual plots." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": false + }, "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAHwCAYAAACYMcj+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFXex/HPSU8IoSRAKkUemgWiZEEQUURsKN0uRUUswXXXXcWCDV2FtTw21lVwRVysICJtER9RUKQEBBSp0lIIkBAS0tt5/pghOwkJUjKZlO/79ZqXM/eee+d370zMN4dzzzXWWkREREREpHp5eboAEREREZH6SEFbRERERMQNFLRFRERERNxAQVtERERExA0UtEVERERE3EBBW0RERETEDRS0RaTWMsY8bYz5t/N5a2NMtjHG2/m6lTFmuTHmqDHmZePwnjEmwxizxrOVy4kYY/YYYy73dB3uZowZY4z53g37LfezUI37bWuMsc59j3Mu6+h8XWKMGVud7yfSEPh4ugARqX7GmD1AK6DEZfEMa+14z1R05qy1+4Bgl0XjgDQgxFprjTEXAwOAaGttjidqlDNnjJkBJFlrJ3q6ltrC+fM81lr7NVT6s1Ddmlpri53vtR0INsZ868b3E6m3FLRF6q/rjv1idhdjjM+xX8ge0Ab41f73rlttgD2nE7I9fBx1WkM5dw3lOEWkemnoiEgDc+yfs40xLzmHWew2xlztsr6JMeZdY8x+Y0yyMeY5l+EaY4wxPxhj/tcYkw48bYzxdg7dSHPua7zzn599jDHXG2PWVXj/B40x86qorZ0x5jvncJClQJjLurYu+50BjAYedv6z9t3AdKCX8/Uzzm2uNcZsMMYcMcasNMZ0ddnfHmPMBGPMJiDHud9IY8wcY8wh57H80aX908aYT40xM531bTbGxLmsjzHGfO7cNt0Y86bLujuMMVuc53uJMabNCT6fPs5ajxhjEo0xY1w+l5nO/e81xkw0xnhV8rkcMcbsMsb0di5PNMYcNMaMdnmPGcaYfxpjljqP5TvXmowxrzm3yzLGrHP+a4HreZhtjPm3MSYLGGOM8TLGPGKM+c157J8aY5q7bDPSWXO6MebxExz7OOBWl891vnN5F2PMt85j22yMGXSCfXxrjHnWeT6OGmO+Msa4fo8GOfdxxNm2ywn2ZY0x8caYHcAO57LOzvN22BizzRhzg0v7UGPMl87ztgZo77Ku7PtbodaxLq/vcn5PjhpjfjXGXGCM+QBoDcx3npOHK+7L+b390lnTTmPMXRU+ryq/tyLiZtZaPfTQo549gD3A5VWsGwMUAXcB3sC9QApgnOvnAm8DjYCWwBrgbpdti4H7cfyLWCBwD/ArEA00A74GrHO9P3AY6OLy/j8Bw6uo7UfgFed2fYGjwL+d69oe26/z9QzguQrH9b3L6/OBg0BP53GOdp4Xf5dztAGIcR6HF7AOeBLwA84CdgFXOts/DeQD1zj39wKwyrnOG9gI/K/zvAUAfZzrBgM7gS7OczIRWFnF8bdxHvPNgC8QCsQ6180E5gGNnediO3Bnhc/ldmctzwH7gKnOc3mFc7/BLufuqPMc+wOvVTh3tznf2wf4C5AKBLichyJgiPOcBQIPAKuc3wF/HN+fj5ztzwayXd7rFWetVX0/K36uvs7z95jzc7nMWXunKrb/FvgN6Ois7VtgsnNdRyAHxxAjX+Bh5779qtiXBZYCzZ37agQkOs+zD47vWBpwtrP9x8CnznbnAsnHzisVvr8utY51Pr/e2f4PgAH+B2hT2c9zxX0By4F/4PjexQKHgMt+73tbyfEeV2Nlteqhhx4n//B4AXrooUf1P5y/mLOBIy6Pu5zrxgA7XdoGOX+5huMY110ABLqsvxlY5rLtvgrv9Q3OIO58fXmFEPAW8Dfn83OADJxht8J+WuMIYI1cln3I6Qftt4BnK7zHNuASl3N0h8u6npUc26PAe87nTwNfu6w7G8hzPu/lDDeVBZTFOAOx87UXkHssRFXyfnMrWe4NFOIMdM5ldwPfuhz7Dpd15znPVSuXZen8N7TPAD52WReMYzx/TBXfpwygm8t5WF5h/Ragv8vrCBxh3AfHHy6u79XIeSwnG7QvxhH0vVyWfQQ8XcX23wITXV7fB/zH+fwJ4NMKn0UycGkV+7I4A6vz9Y3Aigpt3gaecn5GRUBnl3XPc/JBewnwwAl+nisN2jj+UCwBGrusfwHHNRnHPq9Kv7eVvM9xNVZWqx566HHyD43RFqm/htiqx2inHntirc01xoAjbDXH0dO337kMHGEk0WVb1+cAkb+z/n3gI2PMRGAkjqBTUElNkUCGLT/Gei+OIHE62gCjjTH3uyzzc75PZbW2ASKNMUdclnkDK1xep7o8zwUCnP98HwPstZWP4W0DvGaMedllmQGicByfqxgcvbEVheH4XFzb73Xu45gDLs/zAKy1FZe5XkBXduzW2mxjzGGcn6Ux5q/Anc7XFgjBZRgPx3/GbYC5xphSl2UlOP5wK/f9sNbmGMewo5MVCSRaa133XfHYK6r4OR077khczqG1ttQYk/g7+6r4HelZ4TviA3wAtHA+d21f8fM9kao++98TCRy21h6t8L6uw0Mq/d5W8X0VkWqkoC0irhJx9GiHneCXsK3wej+OIQPHlAvG1tpVxphCHD2TtzgfldkPNDPGNHIJ260reb+TlYijJ/1vJ2jjuu9EYLe1tsNpvlfrKsLLsTpmneR+elSyPA1Hb2kbHMN0wHFukk+j1mPKPidjzLE/slKc47EfBvoDm51hNAPHHwfHVPxMEnH868APFd/EGLMfx7CZY6+DcAxLqUrFfacAMcYYL5ew3RrH0JlTlYKjt/9YLQbHeTjReaz4HfnOWjugYiPjuI6h2Lm/rS51HnPsOx0EZDmfh1fYd3sqd6KfgRSguTGmsUvYPtPvhohUE10MKSJlrLX7ga+Al40xIc6L3NobYy45wWafAg8YY6KMMU2BCZW0mQm8CRRZayudV9hauxdIAJ4xxvgZY/oA153B4UwD7jHG9DQOjYwxA40xjatovwY4ahwXSAYax0We5xpj/nAS77UGxx8Kk53vE2CMuci57p/Ao8aYc6Dsosbrq9jPLOByY8wNxnFxZqgxJtZaW4LjPP/NGNPYOC5cfBD498mdikpdYxwXXvoBz+IYt5uIYwx4Mc6hMMaYJ3H0aJ/IP521tXEeYwtjzGDnutnAtS7vNYkT/+45gGN8/DGrcfTCPmyM8TXGXIrje/HxKRzrMZ8CA40x/Y0xvjjGnxcAK09y+wVAR+O4uNPX+fiDMaaL8zP6HMcFwkHGmLNxXBcAgLX2EI7we5vzu3UH5YP1dOCvxpjuzu/r/5j/XqBa8ZyUcX5mK4EXnN+7rjj+NeJMvhsiUk0UtEXqr2OzFBx7zD3J7UbhGGLxK46xubNxjLmtyjQc4XwTjgsdF+EIaq5zeH+A4+Kw3/vlfwuOsdKHcYx7nXmSNR/HWpuA44LPN3Ecx04cY5mral8CXIvjYrLdOHqRpwNNTuK9SnCEv//BcRFiEo7xvFhr5wJTgI+NY5aOX4Crq9jPPhwXrf0FxznYAHRzrr4fR6/oLuB7HOPX//V7tZ3AhzjO8WGgO44LIMExVvg/OHqM9+K4kK7iUJGKXgO+BL4yxhzFcWFkT+cxbQbine+3H8dnkXSCfb0LnG0cs4J8Ya0txHFur8bxmfwDGGWt3XqCfVTKWrvNeZxvOPd1HY5pMAtPcvujOC4svQlHT3Iqjs/W39lkPI5hKqk4xpq/V2EXdwEP4Rgvfw4uAd9a+xnwNxzn6SjwBY5/ZQDHmOuJznPy10pKuxnH+OoUHBczP3WCYWMiUoOOzTIgIlItjGOqwH9aa9u4LAvEMQPIBdbaHR4rTgDdFEYq5+xB34bjj6uHrLXTjDEdgLU4/vi+z1o7w4MlitQ5GqMtImfEGaL74ejVboWjl7Ri7/m9wFqFbJHayzl8K6DCsh1AU89UJFL3KWiLyJkywDPAJzhmtliIY0o3x0rH7aMNjnmXRUREGgwNHRERERERcQNdDCkiIiIi4gYK2iIiIiIiblBvxmiHhYXZtm3beroMEREREann1q1bl2atbfF77epN0G7bti0JCQmeLkNERERE6jljzN6TaaehIyIiIiIibqCgLSIiIiLiBgraIiIiIiJuUG/GaFemqKiIpKQk8vPzPV1KrRIQEEB0dDS+vr6eLkVERESk3qrXQTspKYnGjRvTtm1bjDGeLqdWsNaSnp5OUlIS7dq183Q5IiIiIvVWvR46kp+fT2hoqEK2C2MMoaGh6uUXERERcbN6HbQBhexK6JyIiIiIuF+9D9oiIiIiIp6goO1me/bsITAwkNjYWPLy8oiNjcXPz4+0tDRPlyYiIiIiblSvL4asLdq3b8+GDRsA2LBhA7pVvIiIiEj912CC9jPzN/NrSla17vPsyBCeuu6cat2niIiIiNQPGjoiIiIiIuIGDaZHWz3PIiIiIlKT1KMtIiIiIuIGCtoiIiIiIm6goC0iIiIi4gYK2iIiIiJS55QcPUppXp6nyzihBnMxpKd4e3uTmZlJbGwsP/74I7169aKoqAgvL/2NIyIiIlIZay2lWVkUJSdTlJJCUXIyhWXPHa9Ls7KIfPklmgwc6Olyq6Sg7WYxMTEkJiaWvT524xoRERGRhspaS8mRI2Wh2TVQH3temp1dbhsTFIRfVCS+kVEEnX8+vlGRBHTu7KEjODkK2iIiIiJSray1lBw+fHyATk6hKCWZwuQUbG5uuW28GjXCNzoa36gognr0wDcqCt/ISMd/oyLxbtoUY4yHjuj0KGiLiIiIyCmx1lKSllZhSEfyf3uoU1Kw+fnltvEKCXGE5jZtCOrVC7+oKGeIdgRqr5CQOhekf4+CtoiIiIiUY0tLKT50qHx4dg3UKSnYwsJy23g3bYpvZCT+7dsT3LdvWU/0sSDt3bixh47GcxS0RURERBooW1hI3ubN5K1fT8Hu3WUhujhlP7aoqFxb7+bN8Y2Kwr9zZ4Ivu6xciPaNjMI7uJGHjqL2UtB2oz179tClSxc6depU6UWQs2bNYsqUKVhrady4MW+99RbdunU7pfe46qqrWLVqFX369GHBggVly2+99VYWL17MO++8w4gRI874WERERKTuK83JIW/jRnIT1pG7bh15GzeWDfHwbhGGb2Qkgeecg+8VV7iMj47CNyICr6AgD1df9yhou1n79u2rnGmkXbt2fPfddzRr1ozFixczbtw4Vq9efUr7f+ihh8jNzeXtt98ut3zWrFmMGTPmdMsWERGReqA4I4O89esdwTohgfxff4WSEvDyIqBzZ5recD1B3eMI6n4BPmFhni633mk4QXvxI5D6c/XuM/w8uHryaW/eu3fvsucXXnghSUlJp7yP/v378+233552DSIiIlJ/FO3fT25CgrPHOoHCnb8BYPz8COh6HqFjxxIU153A88/HOzjYw9XWfw0naNdy7777LldffbWnyxAREZE6wlpL4a5dZaE6L2EdRSkpgGOqvMALLqDJtdcR9Ic4As49Fy9/fw9X3PA0nKB9Bj3P7rZs2TLeffddvv/+e0+XIiIiIrWULS4mf8tWR6het47cdespOXwYAO/QUIK6d6f5mDEExXXHv1MnjLe3hyuWhhO0a4GpU6cybdo0ABYtWkRkZCSbNm1i7NixLF68mNDQ0BNuv3r1au6++24AJk2axKBBg9xes4iIiHhGaX4+eZs2OUJ1wjryfvqJUudNXnxjYgju29cxDKR7d/zatq13c1DXBwraNSg+Pp74+Piy1/v27WPYsGF88MEHdOzYsVzb/v37M3PmTKKiosqW9ezZU7dwFxERqadKjh7974WL69aR//PPZVPs+XfsSJMhgwns3p2guDh8W7XycLVyMhS0PWjSpEmkp6dz3333AeDj40NCQgKlpaXs3LmT5s2b/+4+Lr74YrZu3Up2djbR0dG8++67XHnlle4uXURERM5Q8aFD5Dp7q3MTEijYtg2sBR8fAs85h2ajRjpmBLngfLybNvV0uXIa3Bq0jTFXAa8B3sB0a+3kCuvvAeKBEiAbGGet/dUY0xbYAmxzNl1lrb3HnbV6wvTp05k+ffpxy3/99VeGDx9OYGDg7+5jxYoV7ihNREREqpG1lqLERHLXJjjC9boEivbuA8AEBhIY242w+HiC4uII7NYVr5PIAA1NSUkJ2dnZZGVlkZWVRWZmJh06dKBFixaeLq1KbgvaxhhvYCowAEgC1hpjvrTW/urS7ENr7T+d7QcBrwBXOdf9Zq2NdVd9NcHb25vMzExiY2NPacjHueeeyyuvvHJG733rrbeycuVK3axGRETEA2xpKQXbt5ebEaT40CEAvJs0IbB7d5rdeBNBcd0J6NIF4+vr4Yo961iIzszMLAvSroE6KyuL7OxsrLXltgsICGiYQRvoAey01u4CMMZ8DAwGyoK2tTbLpX0joPzZq+NiYmJITEz0yHvPmjXLI+8rIiLSkBWlpJD21ltkLfmK0ixHzPEJDyeoZ0+C4roT1L07fu3bY7y8PFxpzSkpKeHo0aNVBuiqQrSvry8hISGEhITQvn37sufHHk2aNCEgIMBDR3Vy3Bm0owDXlJkE9KzYyBgTDzwI+AGXuaxqZ4z5CcgCJlprNUZCREREaqXitDTS3nmHIx99DEDItdfS6MKeBHaPwzcqst7OCFIxRFfWI11ViG7SpMlxIfrYspCQEAICAur8efP4xZDW2qnAVGPMLcBEYDSwH2htrU03xnQHvjDGnFOhBxxjzDhgHEDr1q1ruHIRERFp6EoyM0n/13scnjkTW1hI02FDCbv3XnwjIz1d2hk7FqIrC8/HQnV2dvZx21UM0a7huT6F6JPhzqCdDMS4vI52LqvKx8BbANbaAqDA+XydMeY3oCOQ4LqBtfYd4B2AuLi4ejXsRERERGqv0txcDn/wb9LffZfSrCxCrrmGsPvH49+unadLOyVFRUWkpqaSnJxMRkbGccM5KvLz8ysLyx06dKh0OIe/v3+DCNEnw51Bey3QwRjTDkfAvgm4xbWBMaaDtXaH8+VAYIdzeQvgsLW2xBhzFtAB2OXGWkVERER+V2lhIUc++ZS0t9+mJC2N4H79aPHAHwno3NnTpf2u0tJS0tPTSU5OJjk5maSkJA4cOEBpaSngCNHHep9btWpV5XAOOXluC9rW2mJjzHhgCY7p/f5lrd1sjJkEJFhrvwTGG2MuB4qADBzDRgD6ApOMMUVAKXCPtfawu2p1lz179tClSxc6depU6awj8+bN44knnsDLywsfHx9effVV+vTpc9L7X7p0KY888giFhYX4+fnx4osvctlljmHu/fr1Y+3atXz77bfExcVV2zGJiIg0RLa4mMx58zg0dSrFKfsJ6tGDFm+8TtD553u6tCodPXq0LFQfexQUFACOUB0ZGUnv3r2JiooiKiqKkJAQD1dc/7h1jLa1dhGwqMKyJ12eP1DFdnOAOe6sraa0b9++yqn9+vfvz6BBgzDGsGnTJm644Qa2bt160vsOCwtj/vz5REZG8ssvv3DllVeSnOwYnbNs2TIuvfTS6jgEERGRBsuWlnJ0yRIOvfY6hXv2EHDeeUQ+9xxBvXrVquERhYWFpKSklAvVmZmZABhjaNWqFeeeey7R0dFERUURFhaGVwOa+cRTPH4xZE2ZsmYKWw+ffIg9GZ2bd2ZCjwmnvX1wcHDZ85ycnFP+gT3f5a/oc845h7y8PAoKCvD39z/tmkRERMRxg5ns777j0KuvUbB1K/4d/ofoN98guH9/jwfs0tJSDh48WC5UHzx4sGxmj6ZNmxIdHU3Pnj2Jjo4mPDwcPz8/j9bcUDWYoF1bzZ07l0cffZSDBw+ycOHC097PnDlzuOCCCxSyRUREzlDOmjUc+t9XyfvpJ3xjYoh88e+EXHMNxtu7xmux1pKVlUVSUlJZqE5JSaGoqAhw3LAlKiqKTp06ER0dTWRkZLmOPPGsBhO0z6Tn2Z2GDh3K0KFDWb58OU888QRff/31Ke9j8+bNTJgwga+++soNFYqIiDQMeT//wqFXXyXnhx/wadmS8KefpunwYTV618b8/HxSUlLKBetjs394e3sTHh7O+eefT1RUFNHR0TRv3tzjPexStQYTtGuDqVOnMm3aNAAWLVpEpMscm3379mXXrl2kpaURFhZW6fZz587lmWeeAWD69OnExcWRlJTE0KFDmTlzJu3bt3f/QYiIiNQzBTt2cOj11zm69Gu8mzal5cMP0+yWm/Fy8wwbxcXFHDx4sFyoTktLK1sfGhrKWWedVXaxYnh4OD4+im51iT6tGhQfH098fHzZ6507d9K+fXuMMaxfv56CggJCQ0MB6Ny583EXRh7r/T7myJEjDBw4kMmTJ3PRRRfVzEGIiIjUE4WJiaS9+SaZX87HKyiIsPvH03z0aLzdMPTCWktGRkbZtHrJycns37+fkpISAIKCgoiOjua8884rC9aBgYHVXofULAVtD5ozZw4zZ87E19eXwMBAPvnkE4wxpKWlHXer0sq8+eab7Ny5k0mTJjFp0iQAvvrqK1q2bOnu0kVEROqsogMHSfvnWxz5bDbG25vmd9xO6Nix+DRrVm3vkZubW26+6uTkZPLy8gDw8fEhMjKSHj16lIXqpk2baghIPaSg7UETJkxgwoTjx46vWrWqXM93VSZOnMjEiRPdUZqIiEi9U5yRQfq06WTMmoUtKaHp9SMIu+defFtVTweVtZadO3eyYsUK9u3bV7a8ZcuWdO7cuSxUt2zZEm8PXFgpNU9B2428vb3JzMwkNja2yrm0K3Pttdee8Xv369ePXbt24VuDF3CIiIjURiXZ2Rye8T6H33uP0txcmgwaRNj4ePxiYqpl/6WlpWzZsoUVK1aQmppKSEgI/fr1o3Xr1kRGRmpGsAZMQduNYmJiSExM9Mh7L1u2zCPvKyIiUluU5ueTMetD0qdNo+TIERoPGECLP96Pf4cO1bL/kpISNm3axPfff096ejqhoaEMHjyY8847TxctCqCgLSIiIvWMLSzkyOefk/aPtyg+eJBGffrQ4oEHCDzv3GrZf1FREevXr2flypVkZmYSHh7O9ddfT5cuXXS3RSlHQVtERETqBVtSQtbChRx6402KEhMJvOACIl96kUY9elTL/vPz80lISODHH38kJyeHmJgYBg4cSIcOHXQho1RKQVtERETqNGstR7/+mrTXX6dgx078u3Qh5u1/0qhv32oJwDk5OaxevZo1a9aQn59P+/btufjii2nTpo0CtpyQgraIiIjUSdZaclau5NCrr5H/88/4tWtH1Kv/S+MrrsBUwxCOrKwsVq5cybp16ygqKqJLly706dOHqKioaqheGgINJHKjPXv2EBgYSGxs7AnbrV27Fh8fH2bPnn1K+1+zZg2xsbHExsbSrVs35s6dC0BeXh6xsbH4+fmVu8OUiIhIfZG7/if2jR5D4p1jKU5PI+Jvf+Os+V8SctVVZxyyDx8+zPz583nttddYvXo1Xbp04b777uPGG29UyJZToh5tN2vfvv0Jp/YrKSlhwoQJXHHFFae873PPPZeEhAR8fHzYv38/3bp147rrriMwMJANGzbQtm3bM6hcRESk9snfsoVDr75G9nff4R0aSqvHH6fpjTfg5ed3xvs+cOAA33//Pb/88gteXl6cf/75XHTRRTSrxhvZSMPSYIJ26vPPU7Bl6+83PAX+XToT/thjZ7SPN954g+HDh7N27dpT3jYoKKjseX5+vsaJiYhIvVWwezdpb7xB1qLFeIWE0OLBB2l+2614ufwuPF1JSUmsWLGCbdu24evrS69evejVqxeNGzeuhsqlIWswQbs2Sk5OZu7cuSxbtuy0gjbA6tWrueOOO9i7dy8ffPCB5u0UEZF6pTgjg4Mvv0zm3C8w/v6E3nM3oXfcgXdIyBnt11rL7t27WbFiBbt37yYgIIBLL72UHj16lOvIEjkTDSaVnWnPszv86U9/YsqUKWc052bPnj3ZvHkzW7ZsYfTo0Vx99dUEBARUY5UiIiKeUZyRwb7RYyjcvZtmt95C2Lhx+ISFndE+rbVs376dFStWkJSURHBwMAMGDCAuLk53cJRq12CCdm0wdepUpk2bBsCiRYtISEjgpptuAiAtLY1Fixbh4+PDkCFDKt1+7ty5PPPMMwBMnz6duLi4snVdunQhODiYX375pdxyERGRuqg4I4N9Y26ncO9ex1R9vXuf0f5KS0vZvHkzK1as4ODBgzRt2pSBAwcSGxuLr69vNVUtUp6Cdg2Kj48nPj6+7PXu3bvLno8ZM4Zrr722LGR37tyZrVvLjykfOnQoQ4cOLbd9TEwMPj4+7N27l61bt+oCSBERqfOKMzLYd8edFO7eTfRb/zijkF1cXMzGjRv54YcfOHz4MGFhYQwdOpRzzz0Xb2/vaqxa5HgK2rVQWloa1trfbff9998zefJkfH198fLy4h//+AdhZ/hPaiIiIp5UcuQI++68k8LffiP6H/8g+KKLTms/hYWFrF+/nh9++IGjR48SERHBDTfcQOfOnXWbdKkxCtq1xIwZM8qer1q1qlzPd1VGjhzJyJEj3ViViIhIzSnJzHT0ZO/8jeipUwnuc+ohOy8vj7Vr17Jq1Spyc3Np06YNgwcPpn379pqdS2qcgrYbeXt7k5mZSWxs7Ann0q7o2muvPaP3zcvLo1evXhQVFemvdhERqRNKsrLYd8edFOzYQfTUNwm+uM8pbZ+dnc2qVatYu3YtBQUFdOjQgT59+tCmTRs3VSzy+xS03SgmJobExMQaf99jN6wRERGpC0qysth351gKtm8n+s03CO7b96S3PXLkCCtXrmT9+vUUFxdz9tlnc/HFFxMREeHGikVOjoK2iIiIeEzJ0aPsG3sX+Vu3Ev36awRfcslJbZeWlsYPP/zAxo0bAejatSt9+vTRtUpSqyhoi4iIiEc4QvZY8rdsIfq112jcr9/vbpOamsqKFSvYvHkzPj4+xMXF0bt3b5o2bVoDFYucGgVtERERqXEl2dkkjr2L/M2/Ev3aqzS+7MQhe9++faxYsYIdO3bg5+dHnz59uPDCCwkODq6hikXBSq8XAAAgAElEQVROnYK2iIiI1KiS7BwSx95F3ubNRP3vKzTu37/KtocOHWLBggXs3buXwMBA+vXrR48ePQgMDKzBikVOj6akcLM9e/YQGBhIbGzsceu2bt1Kr1698Pf356WXXipbnpeXR2xsLH5+fqSlpdVkuSIiIm5Vkp1D4rhx5P38M1GvvEzIgAFVtt2/fz/vvfcehw4d4sorr+TPf/4zl1xyiUK21Bnq0a4B7du3r3QWkObNm/P666/zxRdflFt+bNYQ3eVRRETqk9KcHBLvvpu8jRuJevllQq64osq2iYmJ/Pvf/8bf35/Ro0cTGhpag5WKVI8GE7RXfLqdtMTsat1nWEwwF9/Q8bS3b9myJS1btmThwoXVWJWIiEjtU5qTw7677yZvwwaiXn6JkKuurLLtrl27+Oijj2jcuDGjRo3ShY5SZzWYoC0iIiKeUZqbS+I995K3/ieiXnqRkKuuqrLt9u3b+eSTTwgNDWXkyJE0bty4BisVqV4NJmifSc+ziIiInJ7SvDwS77mX3HXriPz73wm55poq227evJk5c+YQHh7ObbfdRlBQUA1WKlL9dDFkDZo6dSqxsbHExsaSkpLi6XJERETcqjQvj8R77yM3IYHIKVNocu3AKtv+9NNPzJ49m+joaEaNGqWQLfVCg+nRrg3i4+OJj4/3dBkiIiJuV5qfT+J995G7ejWRUybT5Lprq2y7Zs0aFi1axFlnncVNN92En59fDVYq4j4K2h6UmppKXFwcWVlZeHl58eqrr/Lrr78SEhLi6dJEREROW2l+Pkn3xZO7ajURLzxPk0GDqmz7/fff8/XXX9OpUyeuv/56fHwUTaT+0LfZg8LDw0lKSvJ0GSIiItWmtKCApPjx5Pz4IxHPP0/TIUMqbWetZdmyZSxfvpzzzjuPIUOG4O3tXcPViriXxmi7mbe3N5mZmZXesKYqx25YU1RUhJeXPiIREakbSgsKSBp/PzkrVxLx3HM0HVp1yF6yZAnLly/nggsuYOjQoQrZUi+pR9vNYmJiSExMPKVtjt2wRkREpK4oLSwk6f77yVmxgojnnqXp8GGVtystZcGCBaxfv54LL7yQK6+8EmNMDVcrUjMUtEVEROSMlBYWknz/H8lZvoLwSc/QdMSIStuVlJQwd+5cfvnlF/r27Uu/fv0UsqVeU9AWERGR01ZaWEjyHx8g+7vvCH/mGZrdcEOl7YqKipg9ezbbtm3j8ssvp0+fPjVcqUjNU9AWERGR02ILC0n+05/J/vZbwp9+imY3Vh6yCwsL+fjjj9m1axfXXHMNPXr0qOFKRTxDQVtEREROmS0sJOnPD5L9zTe0evIJmt10U6Xt8vPzmTVrFklJSQwZMuSUJgcQqes0pYWb7dmzh8DAwEr/xzJr1iy6du3KeeedR+/evdm4cSPw31lH/Pz8SEtLq+mSRURETsgWFZH8l7+Q/X//R6snJtL8llsqbZeTk8P7779PcnIyI0aMUMiWBkc92jWgffv2lc4i0q5dO7777juaNWvG4sWLGTduHKtXry6bdaRt27Y1X6yIiMgJOEL2Xzm69GtaPf44zW+9tdJ2R48eZebMmWRkZHDTTTfRsWPHGq5UxPPcGrSNMVcBrwHewHRr7eQK6+8B4oESIBsYZ6391bnuUeBO57o/WmuXnEkty2a8w8G9u85kF8dp2eYs+o0Zd9rb9+7du+z5hRdeqJvXiIhIrWaLikj+60Mc/eorWj32KM1H3lZpuyNHjjBz5kyOHj3KrbfeSrt27Wq4UpHawW1B2xjjDUwFBgBJwFpjzJfHgrTTh9bafzrbDwJeAa4yxpwN3AScA0QCXxtjOlprS9xVr6e9++67XH311Z4uQ0REpFK2uJjkhx7m6JIltHxkAs1Hjaq0XXp6Ou+//z6FhYWMGjWKmJiYGq5UpPZwZ492D2CntXYXgDHmY2AwUBa0rbVZLu0bAdb5fDDwsbW2ANhtjNnp3N+Pp1vMmfQ8u9uyZct49913+f777z1dioiIyHFscTEpDz/M0f/8h5YTJhA6Zkyl7Q4cOMDMmTOx1jJ69GgiIiJqtlCRWsadF0NGAa63RExyLivHGBNvjPkN+Dvwx1PZtq6ZOnUqsbGxxMbGkpKSAsCmTZsYO3Ys8+bNIzQ01MMVioiIlOcI2RPIWrSYlg89ROjtYyptl5yczIwZM/Dy8uL2229XyBahFsw6Yq2daq1tD0wAJp7KtsaYccaYBGNMwqFDh9xTYDWKj49nw4YNbNiwgcjISPbt28ewYcP44IMPdJGIiIjUOrakhJRHHiVr0SJa/vUvhN55R6Xt9u7dy/vvv4+/vz+33347LVq0qOFKRWondw4dSQZcB2ZFO5dV5WPgrVPZ1lr7DvAOQFxcnK24vrabNGkS6enp3HfffQD4+PiQkJDg4apEREScIfvRR8lasIAWDz5I6NixlbbbuXMnH3/8MU2aNGHUqFE0adKkhisVqb3cGbTXAh2MMe1whOSbgHITbRpjOlhrdzhfDgSOPf8S+NAY8wqOiyE7AGvcWKtHTJ8+nenTp3u6DBERkXJsSQn7H3uMrC/n0+JPfyJs3F2VttuyZQuzZ88mLCyMkSNHEhwcXMOVitRubgva1tpiY8x4YAmO6f3+Za3dbIyZBCRYa78ExhtjLgeKgAxgtHPbzcaYT3FcOFkMxNfVGUe8vb3JzMwkNja20rm0K5OXl0evXr0oKirCy8vjo3tERKQBsSUl7H98IpnzvqTFA38k7J67K223adMm5s6dS2RkJLfddhuBgYE1XKlI7WesrXMjLioVFxdnKw672LJlC126dPFQRbWbzo2IiFRkS0vZP/EJMj//nLD7x9MiPr7SduvWrWP+/Pm0bduWm2++GX9//xquVMSzjDHrrLVxv9dOd4YUERERR8h+8klHyI6PrzJk//jjjyxZsoQOHTpwww034OvrW8OVitQdCtoiIiINnC0tJfWpp8icPYew++4lbPzxIdtay/Lly1m2bBlnn302w4YNw8dHMULkRPQTIiIi0oDZ0lJSn36GI5/NJvSeuwm7/36MMeXbWMvXX3/NDz/8QLdu3Rg0aBDe3t4eqlik7lDQFhERaaCstaROmsSRTz8ldNw4WjzwwHEhu7S0lMWLF7N27Vr+8Ic/cPXVV+tCfZGTpJ8UN9uzZw+BgYHExsYet27evHl07dqV2NhY4uLiym7B/ttvvxEbG6tpkkRExG2stRx49lmOfPwJoXeNpcWf/3RcyC4pKWHevHmsXbuWiy66iGuuuUYhW+QUqEe7BrRv377Sqf369+/PoEGDMMawadMmbrjhBrZu3VrWXkFbRETcwVrLgef+RsaHH9H8zjto8eCDx4Xs4uJi5syZw5YtW+jXrx99+/Y9ro2InFiDCdpH5v9GYUpOte7TL7IRTa9rf9rbuwbpnJwc/Q9MRETczlrLgedfIGPWLJrffjst//rX437/FBUV8cknn7Bz506uvPJKevXq5aFqReq2BhO0a6u5c+fy6KOPcvDgQRYuXOjpckREpB6z1nJw8mQyPviA5qNH0/Lhh44L2QUFBXz00Ufs2bOH6667ju7du3uoWpG6r8EE7TPpeXanoUOHMnToUJYvX84TTzzB119/7emSRESknjry2Wccfn8mzUaNpOUjE44L2Xl5efz73/8mJSWFYcOG0bVrVw9VKlI/6IqGGjR16lRiY2OJjY0lJSWl3Lq+ffuya9cu0tLSPFSdiIjUZwW7d3Pghck06t2LVo88clzIzs7OZsaMGaSmpnLjjTcqZItUAwXtGhQfH8+GDRvYsGEDkZGR7Ny5E2stAOvXr6egoIDQ0FAPVykiIvWNLSoi5aGH8fLzI+KFFzAVZg7JyspixowZpKenc8stt9C5c2cPVSpSvzSYoSO10Zw5c5g5cya+vr4EBgbyySef6IJIERGpdofenEr+L78Q9fpr+LZqVW5dRkYG77//Prm5uYwcOZI2bdp4qEqR+kdB24MmTJjAhAkTPF2GiIjUY7lr15L+zjs0GTGckCuuKLfu0KFDzJw5k+LiYkaPHk1UVJSHqhSpnzR0xM28vb3JzMys9IY1VTl2w5pWFXodRERETkVJVhbJEybg2zqG8EcfLbdu//79vPfee5SWljJmzBiFbBE3UI+2m8XExJCYmHhK21R1gxsREZFTkTrpWYoPHKTth7PwatSobHliYiKzZs3Cz8+P0aNH6/ogETdR0BYREamHMufPJ2vBAlo88EcCu3UrW757924+/PBDGjduzKhRo2jatKkHqxSp3xS0RURE6pnCpGRSn5lE4AUXEDpuXNnylJQUZs2aRbNmzRg1ahSNGzf2YJUi9Z+CtoiISD1iS0pImTABrCXy71Mw3t4A5Ofn89lnnxEUFMSYMWNo5DKURETcQxdDioiI1CPp06aRt24d4U89iV90NOC49frChQs5cuQIw4cPV8gWqSEK2m62Z88eAgMDTzjryNq1a/Hx8WH27NnAf2cdCQ4OrqkyRUSkHsjbtIlDb04l5JprCLnuurLlGzdu5Oeff+bSSy/VPNkiNUhBuwacaBaRkpISJkyYwBUuc5tq1hERETlVpTk5JD/0ED4tWhD+9FNlN0BLS0tj4cKFtG3blosvvtjDVYo0LA1mjPbixYtJTU2t1n2Gh4dz9dVXn9E+3njjDYYPH87atWurqSoREWmIDkyeTNG+RFq/PwPvkBAAioqK+Oyzz/D19WXYsGF4eal/TaQm6SfOg5KTk5k7dy733nuvp0sREZE6LGvpUo58NpvQsWNp1KNH2fKlS5dy4MABhgwZQogzfItIzWkwPdpn2vPsDn/605+YMmWKehhEROS0FR04SOrEJwg45xxa3D++bPnWrVtZs2YNF154IR07dvRghSINV4MJ2rXB1KlTmTZtGgCLFi0iISGBm266CXCMoVu0aBE+Pj4MGTLEk2WKiEgdYUtL2f/oo5QWFhL54osYPz8AMjMz+eKLL4iIiODyyy/3cJUiDZeCdg2Kj48nPj6+7PXu3bvLno8ZM4Zrr71WIVtERE5axgcfkLNyJeFPP43/We0Ax0X2c+bMobS0lBEjRuDjo1/1Ip6iMQsiIiJ1UP62bRx86WWCL7uMpjfeULZ8+fLl7Nu3j2uvvZbQ0FAPVigi+jO3lpgxY4anSxARkTqiND+flL8+hFfTJkQ892zZVH67d+/mu+++IzY2lq5du3q4ShFRj7abeXt7k5mZecIb1lR07IY1rVq1cmNlIiJSVx18+RUKduwg8vnn8WneHICcnBw+//xzQkNDa+UEACINkXq03SwmJobExMRT2kY3rBERkapkr/iejA8+oNnIkQQ7b0BjreWLL74gNzeXW265BX9/fw9XKSLQAHq0rbWeLqHW0TkREambig8fJuWxR/Hv8D+0/MuDZctXrVrFjh07uOKKK4iIiPBghSLiql4H7YCAANLT0xUsXVhrSU9PJyAgwNOliIjIKbDWsn/iE5QeySTypZfwcv5/PCUlhaVLl9KpUyd6uNysRkQ8r14PHYmOjiYpKYlDhw55upRaJSAggOjoaE+XISIip+DIp5+R/c03tHxkAgGdOgFQUFDA7NmzCQ4OZvDgwWUXRYpI7VCvg7avry/t2rXzdBkiIiJnpGDXbg5Mnkyj3r1oPmoU4OjhXrBgARkZGYwZM4agoCAPVykiFdXroSMiIiJ1nS0sJOWhh/Dy8yPihckYL8ev7o0bN/Lzzz9zySWX0KZNGw9XKSKVqdc92iIiInXdoTenkr95M1FvvI5vq5YApKWlsXDhQtq0aUPfvn09XKGIVEU92iIiIrVU7tq1pE+bRpMRwwkZMACAoqIiZs+ejY+PD8OHD8fLS7/KRWor/XSKiIjUQiVZWSQ/PAHf1jGEP/po2fKlS5eSmprKkCFDCAkJ8WCFIvJ7NHRERESklrHWkvr0MxQfPEjbjz7Eq1EjALZu3cqaNWu48MIL6eSceUREai/1aIuIiNQyWfPnk7VoES3GxxPYtSsAmZmZzJs3j4iICC6//HIPVygiJ0NBW0REpBYpTEomddKzBHbvTui4cQCUlJQwZ84cSkpKGDFiBD4++gdpkbpAQVtERKSWsMXFpDz8MACRU6ZgvL0BWL58Ofv27WPgwIGEhoZ6skQROQX6k1hERKSWSJ82jbz164n8+xT8oqMA2L17N8uXL6dbt25069bNwxWKyKlQj7aIiEgtkLdpE4fenErIwIGEXHcdADk5OXz++ec0b96ca665xsMVisipUtAWERHxsNKcHJIfegifVi0Jf+pJjDFYa5k3bx65ubmMGDECf39/T5cpIqfIrUHbGHOVMWabMWanMeaRStY/aIz51RizyRjzf8aYNi7rSowxG5yPL91Zp4iIiCelvvACRfsSiZw8GW/n3NirV69m+/btXHHFFURERHi4QhE5HW4bo22M8QamAgOAJGCtMeZLa+2vLs1+AuKstbnGmHuBvwM3OtflWWtj3VWfiIhIbZC1dCmZs+cQOm4cjXr0ACAlJYWvvvqKTp060cO5TETqHnf2aPcAdlprd1lrC4GPgcGuDay1y6y1uc6Xq4BoN9YjIiJSqxQdOEjqxCcIOOccWoyPB6CgoIDZs2cTHBzM4MGDMcZ4uEoROV3uDNpRQKLL6yTnsqrcCSx2eR1gjEkwxqwyxgxxR4EiIiKeYktL2f/oI5QWFhL54osYPz8AFi5cSEZGBsOGDSMoKMjDVYrImagV0/sZY24D4oBLXBa3sdYmG2POAr4xxvxsrf2twnbjgHEArVu3rrF6RUREztThmTPJWfkj4c88g/9Z7QDYsGEDmzZt4tJLL6Vt27aeLVBEzpg7e7STgRiX19HOZeUYYy4HHgcGWWsLji231iY7/7sL+BY4v+K21tp3rLVx1tq4Fi1aVG/1IiIibpK/dSuHXn6F4P79aXrD9QCkpaWxcOFC2rRpQ9++fT1coYhUB3cG7bVAB2NMO2OMH3ATUG72EGPM+cDbOEL2QZflzYwx/s7nYcBFgOtFlCIiInVSaX4+KQ89hFfTJkQ8OwljDMXFxcyePRsfHx+GDRuGl5dm3xWpD9w2dMRaW2yMGQ8sAbyBf1lrNxtjJgEJ1tovgReBYOAz58Ue+6y1g4AuwNvGmFIcfwxMrjBbiYiISJ108OVXKNixk5hp0/Bp3hyApUuXkpqays0330yTJk08XKGIVBe3jtG21i4CFlVY9qTL88ur2G4lcJ47axMREalp2StWkPHBBzQbOZLgi/sAsHXrVlavXk3Pnj3p1KmThysUkeqkf5sSERGpAcWHD5Py6GP4d+hAy7/+BYDMzEzmzZtHeHg4AwYM8HCFIlLdasWsIyIiIvWZtZb9E5+gNDOTyHen4+XvT0lJCXPmzKGkpITrr78eHx/9Shapb9SjLSIi4mZHPvmU7G++ocVfHiTAOTxk+fLl7Nu3j4EDBxIaGurhCkXEHRS0RURE3Khg124OTJ5Mo969aT5qFAB79uxh+fLldOvWjW7dunm4QhFxFwVtERERN7GFhY6p/AICiHjhBYyXFzk5OcyZM4dmzZpxzTXXeLpEEXEjBW0RERE3OfTGm+Rv3kz4s5PwbdUSay3z5s0jNzeX66+/Hn9/f0+XKCJupKAtIiLiBjlr1pA+fTpNrx9BiHNGkdWrV7N9+3YGDBhARESEhysUEXdT0BYREalmJZmZpEx4BN/WMbR65BEAUlJSWLp0KR07dqRnz54erlBEaoLmEhIREalG1lpSn5lE8aFDtP3oQ7waNaKgoIDZs2cTFBTEkCFDcN4NWUTqOfVoi4iIVKOs+fPJWrSIFuPjCTzPcZPjRYsWkZGRwfDhwwkKCvJwhSJSUxS0RUREqklhUhKpz0wisHt3Qu+6C4ANGzawceNGLrnkEtq2bevZAkWkRiloi4iIVANbXEzKwxPAGCKnTMF4e5OWlsbChQtp06YNffv29XSJIlLDNEZbRESkGqRPm0be+vVEvvh3/KKjKC4uZvbs2fj4+DBs2DC8vNS3JdLQ6KdeRETkDOVt3MihN6cSMnAgTa67DoClS5eSmprKkCFDaNKkiYcrFBFPUNAWERE5A6U5OSQ//DA+rVoS/tSTAGzbto3Vq1fTs2dPOnXq5OEKRcRTNHRERETkDKS+8AJF+xJpM/N9vENCyMzM5IsvviA8PJwBzhvViEjDpB5tERGR05T11Vdkzp5D6F13EfSHP1BaWsrnn39OcXExI0aMwMdH/VkiDZmCtoiIyGkoTksj9cmnCDj3XFqMjwdg+fLl7N27l4EDBxIWFubhCkXE0xS0RURETkPqs89RmptL5JTJGD8/9uzZw3fffUfXrl2JjY31dHkiUgsoaIuIiJyirP8s4eiSJYSNH49/+/bk5uYyZ84cmjVrxsCBAz1dnojUEgraIiIip6A4I4PUZ58l4JxzCL3jdqy1fPHFF+Tk5DBixAj8/f09XaKI1BK6SkNEROQUHHj+BUqysmj9r3cxPj6sXr2a7du3c9VVVxEZGenp8kSkFlGPtoiIyEk6+s0ysubPJ+zuuwno1In9+/fz1Vdf0bFjR3r27Onp8kSkllHQFhEROQklWVmkPv00/h07EjbuLgoLC5k9ezZBQUEMHjwYY4ynSxSRWkZBW0RE5CQcmDKF4vR0Ip5/HuPnxzfffEN6ejpDhw6lUaNGni5PRGohBW0REZHfkf39D2TO+ZzQO+4g8Nxz2LNnD6tWreIPf/gDZ511lqfLE5FaSkFbRETkBEqyc9j/5BP4nXUWYePjKSwsZN68eTRr1ozLL7/c0+WJSC2moC0iInICB19+ieL9qUT87Tm8/P35+uuvycjIYPDgwZrKT0ROSEFbRESkCjmr13Dko49pPmoUQeefz+7du1mzZg09e/akbdu2ni5PRGo5BW0REZFKlObmsn/iRHxbt6bFnx6goKCAefPm0bx5c/r37+/p8kSkDlDQFhERqcSh116jKDGRiOeexSswkKVLl3LkyBGGDBmCn5+fp8sTkTpAQVtERKSC3PU/cXjmBzS75WYa9ejBb7/9RkJCAr169aJ169aeLk9E6ggFbRERERel+fnsf/xxfCMiaPHgX8jPz2fevHmEhoZy2WWXebo8EalDFLRFRERcpE2dSuHu3YQ/Ownv4EZ89dVXHD16lCFDhuDr6+vp8kSkDlHQFhERccr7+WfS3/0XTUYMJ/iii9ixYwfr16+nd+/exMTEeLo8EaljFLRFRESA0sJC9j/2OD4tWtBqwgTy8vL48ssvadGiBZdeeqmnyxOROkhBW0REBEj/59sU7NhB+NNP4d24MUuWLCE7O1tDRkTktCloi4hIg5e/dStp77xDyKDraNyvH9u2bWPDhg306dOHqKgoT5cnInWUgraIiDRotqiIlMcew7tpU8Ife4zc3Fzmz59Py5YtueSSSzxdnojUYQraIiLSoKW/+y8Kft1C+JNP4N20Kf/5z3/Izc1lyJAh+Pj4eLo8EanDFLRFRKTBKti5k7SpU2l81VWEXHEFW7ZsYdOmTVx88cVERkZ6ujwRqeMUtEVEpEGyJSWkPP44Xo0aEf7ERHJycliwYAHh4eFcfPHFni5PROoBBW0REWmQDr8/k/yNm2g1cSI+oaEsXryYvLw8DRkRkWqjoC0iIg1O4Z49HHrtNYIvu4yQgdewefNmfvnlFy655BLCw8M9XZ6I1BMK2iIi0qDY0lJSJk7E+PsT/tRT5OTksHDhQiIiIujTp4+nyxOResStQdsYc5UxZpsxZqcx5pFK1j9ojPnVGLPJGPN/xpg2LutGG2N2OB+j3VmniIg0HBkffkRewjpaPfIIPi1bsHDhQgoKChgyZAje3t6eLk9E6hG3BW1jjDcwFbgaOBu42RhzdoVmPwFx1tquwGzg785tmwNPAT2BHsBTxphm7qpVREQahsKkJA6+8gqN+vShydAhbN68mS1btnDppZfSqlUrT5cnIvWMO3u0ewA7rbW7rLWFwMfAYNcG1tpl1tpc58tVQLTz+ZXAUmvtYWttBrAUuMqNtYqISD1nrWX/E09gjCFi0jNkZ2ezcOFCoqKi6N27t6fLE5F6yJ1BOwpIdHmd5FxWlTuBxae5rYiIyAkd+ewzcn9cRcuHHsInIoIFCxZQWFioISMi4ja1Yv4iY8xtQBxwSve6NcaMA8YBtG7d2g2ViYhIfVC0fz8Hp/ydoJ49aXrD9fz8889s27aNAQMG0KJFC0+XJyL1lDt7tJOBGJfX0c5l5RhjLgceBwZZawtOZVtr7TvW2jhrbZz+RykiIpWx1rL/6aexpaVEPPcsR7OzWbRoEdHR0fTq1cvT5YlIPebOoL0W6GCMaWeM8QNuAr50bWCMOR94G0fIPuiyaglwhTGmmfMiyCucy0RERE5J5rx55Hy3nJZ//jO+0dEsWLCA4uJihgwZgpeXZrkVEfc5qf/DGGM+N8YMNMac9P+RrLXFwHgcAXkL8Km1drMxZpIxZpCz2YtAMPCZMWaDMeZL57aHgWdxhPW1wCTnMhERkZNWdPAgB55/gcALLqDZbbeyceNGtm/fTv/+/QkLC/N0eSJSz53sGO1/ALcDrxtjPgPes9Zu+72NrLWLgEUVlj3p8vzyE2z7L+BfJ1mfiIhIOfb/2bvv8CjLrI/j3ye9kN57gZCEEBJI6E0p0kREkSK6rmsXC7rWVde1r7v2squIqKuIoChdqiAdEnqHQEJ67z2Zud8/nrwKiBohk5nA+VzXXCYzz0wOyJX8cs+5z60U+c8/j2poIODFF6msquL7778nNDSUvn37mrs8IcRloFUr1EqptUqp6UAvIANYq2naVk3TbtU0zdaUBQohhBAXour776leuw6fB+7HLiKcpUuXYjQamTBhgrSMCCHaRau/02ia5gX8Gbgd/aCZt9GD9xqTVCaEEEJcoObSUvJfeBGH+Hg8b7mFPXv2kJaWxogRI/Dy8jJ3ea64sqAAACAASURBVEKIy0SrWkc0TfsOiAY+B8YrpfJaHpqvaVqqqYoTQgghLkTBiy9hqK4m9KUXqaiuZuXKlYSHh9O7d29zlyaEuIy0tkf7HaXU+vM9oJRKbsN6hBBCiItStXYtlStW4PPgA9hHRbHg889RSknLiBCi3bU2aHtomnbdOfdVAAfOGcsnhBBCmI2hvJy8557DPjYWr9tvZ9euXZw6dYpx48bh4eFh7vKEEJeZ1gbt24D+wP+val8B7AIiNE17Xin1uQlqE0IIIf6Qgn++iqGsnNAPP6S8uppVq1YRGRlJcrK8+SqEaH+tfQ/NFohVSl2vlLoe6AYooC/wuKmKE0IIIVqreuNGKhYtwuuO27GLiWHx4sVomsY111yDpmnmLk8IcRlqbdAOVkoVnPF5IRDScohMU9uXJYQQQrSeoaqKvL8/i12Xznjfcw+pqalkZGQwatQo3N3dzV2eEOIy1drWkQ2api0Dvm75/PqW+5yBcpNUJoQQQrRS4b9fo7mwkPB35lFeXc2aNWvo3LkzvXr1MndpQojLWGuD9gzgOmBQy+f/AxYqpRRwpSkKE0IIIVqjZts2yhcswPO2v2DfvTvzPv0UKysraRkRQpjd7wZtTdOsgbVKqSuBhaYvSQghhGgdY00NeU8/g11YGD7338/OnTvJzMxkwoQJuLm5mbs8IcRl7neDtlLKoGmaUdM0N6VURXsUJYQQQrRG4Ztv0ZSbS9gXn1NaXc3atWuJiooiMTHR3KUJIUSrW0eqgQOapq0Bav7/TqXUAyapSgghhPgdtamplH3xBR4334xDz57M++QTbGxsGD9+vLSMCCEsQmuD9rctNyGEEMLsjHV15D31NLbBwfg+NJPt27eTlZXFxIkTcXV1NXd5QggBtDJoK6U+0zTNEQhVSh0zcU1CCCHEbyp69z0aT58m9NNPKKmpYd26dURHR9OjRw9zlyaEED9p1RxtTdPGA3uBlS2fJ2qatsSUhQkhhBDnU7dvH6Wffor7lCk49O7NokWLsLOz4+qrr5aWESGERWntgTX/APrQMjNbKbUXiDRRTUIIIcR5GRsbyX3qKWx8ffF99BG2bdtGTk4OY8eOxcXFxdzlCSHEWVrbo92klKo4Z6XAaIJ6hBBCiF9V/J//0Jh2kpCPZlFSW8v69euJjY2le/fu5i5NCCF+obUr2oc0TbsRsNY0LUrTtHeBrSasSwghhDhL/eHDlHw0G7eJE3EcMIDvvvsOe3t7xo0bJy0jQgiL1NqgfT8QBzQA84BKYKapihJCCCHOpBobyf3bU1h7euD3xONs2bKFvLw8xo0bR6dOncxdnhBCnFdrp47UAk+13IQQQoh2VTx7Ng1HjxL8/nsU1dWxYcMG4uLiiIuLM3dpQgjxq1oVtDVN6wo8AoSf+Ryl1DDTlCWEEELo6o8fp/i/H+A6bhxOV1zB3I8+wtHRkbFjx5q7NCGE+E2t3Qz5NfABMBswmK4cIYQQ4mequZm8vz2FtYsLfk8/xaZNm8jPz2fKlCk4OzubuzwhhPhNrQ3azUqp/5q0EiGEEOIcpZ9+Sv3BgwS9+QZF9fVs3LiR+Ph4YmNjzV2aEEL8rtZuhlyqadq9mqYFaJrm+f83k1YmhBDistZwKp2id97FZeQInEaO5LvvvsPJyYkxY8aYuzQhhGiV1q5o39Ly30fPuE8hh9YIIYQwAWUwkPfUU2iOjvj//e9s3LiRwsJCpk2bhpOTk7nLE0KIVmnt1JEIUxcihBBC/L+yuXOp27OHwFf/SUFjI5s2bSIhIYHo6GhzlyaEEK32m60jmqY9dsbHN5zz2MumKkoIIcTlqzEzk8I33sR56BCcxo5l0aJFdOrUidGjR5u7NCGE+EN+r0d76hkfP3nOY/IdTwghRJtSRiN5z/wdzcaGgOee48cff6SoqIhrrrkGR0dHc5cnhBB/yO8Fbe1XPj7f50IIIcRFKV+wgNodO/B9/DEKmpvZsmULPXv2JCoqytylCSHEH/Z7QVv9ysfn+1wIIYS4YE25uRT+6984D+iP84QJLFq0CBcXF0aNGmXu0oQQ4oL83mbIBE3TKtFXrx1bPqblcweTViaEEOKyoZqbyX3iSRTg//wLbNiwgeLiYm6++WYcHOTHjRCiY/rNoK2Usm6vQoQQQly+Cl97ndqdOwn45yvkGw1s3bqVpKQkOnfubO7ShBDigrX2wBohhBDCJCqWLaf000/xmD79pykjbm5uXHXVVeYuTQghLooEbSGEEGZTf+wYeU8/jWNSEn5PPM4PP/xAaWkpEyZMwN7e3tzlCSHERZGgLYQQwiwM5eVk33c/1q6uBL/1Jpm5uWzfvp3evXsTGSkHDwshOr7WHsEuhBBCtBllMJDz6GM05ecT9r/PqHd0ZOHnn+Ph4cGIESPMXZ4QQrQJWdEWQgjR7orefZeaTZvwf+op7OLjWbBgAbW1tUyePFlaRoQQlwwJ2kIIIdpV1dq1lHzwIW6Trsd9ymRWrlxJZmYmEyZMICAgwNzlCSFEm5GgLYQQot00nDpF7uNP4BAfj/8zz7B7925SU1MZOHAg8fHx5i5PCCHalARtIYQQ7cJQXU32jPvQHBwIfudtsgsKWL58OZ07d2b48OHmLk8IIdqcBG0hhBAmp4xGch9/gsbMTILefIM6Z2cWLFiAu7s7kyZNwspKfhwJIS498p1NCCGEyZV8+CHV69bh9/hj2PXsyfz582lsbGTq1Kk4OjqauzwhhDAJCdpCCCFMqnrjRoreeRfX8eNxv+kmli9fTk5ODhMnTsTX19fc5QkhhMlI0BZCCGEyjadPk/PIo9jHxBDw/HOkpKSwd+9ehg4dSmxsrLnLE0IIkzJp0NY0bbSmacc0TUvTNO2J8zw+RNO03ZqmNWuaNumcxwyapu1tuS0xZZ1CCCHanrG2luz7H0DTNILffYfT+fmsXLmS6Ohohg4dau7yhBDC5Ex2MqSmadbA+8BIIBtI0TRtiVLq8BmXZQJ/Bh45z0vUKaUSTVWfEEII01FKkff00zSkpREyaxY1zs4smDULLy8vJk6cKJsfhRCXBVN+p+sDpCmlTimlGoGvgAlnXqCUylBK7QeMJqxDCCFEOyv95FMqV3yPz8yZ2PXpzfz58zEajUydOhUHBwdzlyeEEO3ClEE7CMg64/Pslvtay0HTtFRN07ZrmnZt25YmhBDCVGq2b6fwtddwueoqPG+/jSVLlpCfn8+kSZPw9vY2d3lCCNFuTNY60gbClFI5mqZFAj9omnZAKXXyzAs0TbsTuBMgNDTUHDUKIYQ4Q1NODjkPPYxdZAQBL7/M1q1bOXjwIMOHDycqKsrc5QkhRLsy5Yp2DhByxufBLfe1ilIqp+W/p4ANQM/zXDNLKZWslEr28fG5uGqFEEJcFGN9Pdn3P4BqaiL43Xc5lZfL2rVriYuLY9CgQeYuTwgh2p0pg3YKEKVpWoSmaXbAVKBV00M0TfPQNM2+5WNvYCBw+LefJYQQwlyUUuT/4znqDx8m8N//otrVlYULF+Ln58eECRPQNM3cJQohRLszWdBWSjUD9wGrgCPAAqXUIU3Tntc07RoATdN6a5qWDdwAfKhp2qGWp8cCqZqm7QPWA/88Z1qJEEIIC1L25ZdULFqE94wZ2A0YwFdffYWmaUydOhU7OztzlyeEEGZh0h5tpdQKYMU59/39jI9T0FtKzn3eViDelLUJIYRoG7W7dlHwyj/pdMUVeN17Dwu+/pri4mJuvvlmPDw8zF2eEEKYjQwyFUIIccGaCgrJnjkTu6AgAv/1Khs3beLo0aOMGjWKyMhIc5cnhBBmZclTR4QQQlgw1dhIzoMPYqypJWzOHE7k5rJhwwYSEhLo27evucsTQgizkxVtIYQQFyT/5Zep27uXwJdfosLNjW+//ZbAwECuvvpq2fwohBBI0BZCCHEByhcupPyr+Xjdfhu2Q4fy1VdfYWtry5QpU7C1tTV3eUIIYREkaAshhPhD6vbvJ/8fz+E8oD9eDzzAwoULKS8vZ8qUKbi5uZm7PCGEsBgStIUQQrRac0kJ2Q88iI2vL4Gvv876jRtJS0tj7NixckKvEEKcQzZDCiGEaBXV1ETOzIcwlJURPu9LjubksHnzZpKSkkhOTjZ3eUIIYXFkRVsIIUSrFL72GrUpKQS88Dzlnp4sWrSIkJAQxowZY+7ShBDCIknQFkII8bsqli6j9LP/4XHzzdgMH868efNwdHRk8uTJ2NjIm6NCCHE+ErSFEEL8pvojR8h75hmckpPx/uvDfP3111RXVzN16lRcXFzMXZ4QQlgsCdpCCCF+laG8nOz7H8DazY2gt95kzfr1ZGRkMH78eIKCgsxdnhBCWDR5v08IIcR5KYOBnL8+QnNBAWFffM7B7Gx27NhBv379SExMNHd5Qghh8WRFWwghxHkVvf0ONVu24PfM05R4ebF06VIiIiIYOXKkuUsTQogOQYK2EEKIX6hcvZqSWbNwv+EGbMaMYf78+bi4uDBp0iSsra3NXZ4QQnQIErSFEEKcpSEtjbwnnsQhoQfef3uSBQsWUF9fz9SpU3F2djZ3eUII0WFI0BZCCPETQ1UV2TPuQ3NyIvidd1i5di1ZWVlMmDABf39/c5cnhBAdimyGFEIIAYAyGsl97HEac3II+/QT9mVlsWvXLgYNGkT37t3NXZ4QQnQ4sqIthBACgOL//pfq9evxe/xxinx8WLFiBV26dGHYsGHmLk0IITokCdpCCCGo2rCB4vfex23CNVhfM54FCxbg7u7O9ddfj5WV/KgQQogLId89hRDiMteYkUHuo49hHxuD19NPM3/+fJqampg2bRqOjo7mLk8IITosCdpCCHEZM9bUkH3//WjW1gS9/Q7L16whNzeX6667Dh8fH3OXJ4QQHZpshhRCiMuUUorcp5+m4eQpQmd/xO7sLPbv388VV1xBTEyMucsTQogOT1a0hRDiMlU6Zw5V36/E9+GHKPD3Z/Xq1cTExDBkyBBzlyaEEJcECdpCCHEZqtm6lcLX38Bl9Gi0667j66+/xtvbm4kTJ8rmRyGEaCPy3VQIIS4zjdk55Dz0MPadI/F+9u/Mnz8fpRRTp07F3t7e3OUJIcQlQ4K2EEJcRoz19WQ/cD/KaCTo3XdZsmYNhYWFTJo0CS8vL3OXJ4QQlxTZDCmEEJcJpRT5zz5Lw5GjBP/3P+zMyuLw4cOMHDmSLl26mLs8IYS45MiKthBCXCbKvphLxeIleN83g7zAQNatW0f37t0ZMGCAuUsTQohLkgRtIYS4DNSmplLw6qt0GjYMbfJkFi5ciL+/P9dccw2appm7PCGEuCRJ0BZCiEtcU0EB2Q/OxC44GK/nn+Or+fOxtrZm6tSp2NnZmbs8IYS4ZEnQFkKIS5ixsZHsBx5A1dUR9O47LFq9mpKSEm644Qbc3d3NXZ4QQlzSZDOkEEJcwgpefIn6ffsJevtttmZlcfz4ccaMGUNERIS5SxNCiEuerGgLIcQlquzrrylfsACvO+4gOySYjRs3kpiYSJ8+fcxdmhBCXBYkaAshxCWoNiWFgudfwHngQNSN0/juu+8ICgpi3LhxsvlRCCHaiQRtIYS4xFStXUvm7XdgGxyMx4sv8NWCBdjb2zNlyhRsbW3NXZ4QQlw2JGgLIcQlpOyrr8h+4EHsY6IJ+eJzFq1dS2VlJVOmTMHV1dXc5QkhxGVFgrYQQlwClFIUvvUW+f94jk5DhhD2ySds2LWLkydPMnbsWEJCQsxdohBCXHYkaAshRAenmprIe/ppSj74EPcbJhH83rukHjzI1q1b6d27N0lJSeYuUQghLksy3k8IITowY20t2Q89RM2PG/GeMQOvGffyw/r1bNq0ia5duzJ69GhzlyiEEJctCdpCCNFBNZeWknXX3dQfOoT/c8/hcv11LFq0iP3799OrVy/GjRuHtbW1ucsUQojLlgRtIYTogBqzssi8/XaaCwoJfu9dbAcMYO7cuaSnpzNs2DAGDx4sY/yEEMLMJGgLIUQHU3fwEFl33QXNzYR+MoemyEjmzJlDcXEx1157LYmJieYuUQghBBK0hRCiQ6netJnsBx/Ext2dkM//R7mzM1/Mnk1DQwPTp0+nc+fO5i5RCCFEC5k6IoQQHUTF4sVk3XMPdqGhhM2bRw4wZ84cAP7yl79IyBZCCAsjK9pCCGHhlFKUzJ5N0etv4NS/H8HvvsuhU6dYtGgRXl5e3HTTTbi5uZm7TCGEEOcwadDWNG008DZgDcxWSv3znMeHAG8BPYCpSqlvznjsFuDplk9fVEp9ZspahRDCEimDgYKXX6Fs7lxcx40j4OWX2LJzJ+vWrSM8PJwpU6bg6Oho7jIvXl0ZpM6B4hPg7A3OvuDso986tfzXyRts7MxdqRBCtJrJgramadbA+8BIIBtI0TRtiVLq8BmXZQJ/Bh4557mewLNAMqCAXS3PLTNVvUIIYWmMDQ3kPvY4VatW4XnrrXj/9WFWrFxJamoq3bt359prr8XGpoO/MVlVANvfh5SPobEaXAKhtgQMDee/3sG9JXz7tgRyn5ZQ7t1yn8/PN3sXkMkrQggzMuV36D5AmlLqFICmaV8BE4CfgrZSKqPlMeM5zx0FrFFKlbY8vgYYDcwzYb1CCGExDBUVZM+4j9rUVHwffxyX6Tcyf8ECjh8/zsCBAxk+fDhWVh14m01ZBmx5B/Z8AcYmiJsIgx4C/3hQSg/d1YVQUww1RVDT8nF1YcvnxVB4BGo26qvh52Ntf/5AflZQbwnnTl5g3cF/aRFCWBxTflcJArLO+Dwb6HsRzw1qo7qEEMKiNeXnk3XHHTRknCbw9dewHjqUzz77jNzcXMaOHUufPn3MXeKFKzwCm9+EA9+AZgWJ02DgTPA6YyOnpumr0fYuZ9//a5ob9VXwMwN5TdEZQb0Qqgug4JB+n7HpPC+igZPn2SviZ7atnLtybufcZn8lQohLV4f+9V3TtDuBOwFCQ0PNXI0QQly8hhMnyLzjToxVVYR+NIv6qCg+/fhjqqqqmDJlCjExMeYu8cJkp8KmN+DYcrB1gr53Q/8Z4NYGayg2duAaoN9+j1JQX9ESyovOCeRnBPW8ffp/GyrO/zq2Tj+viIf2g543gW/sxf9ZhBCXFFMG7Rwg5IzPg1vua+1zrzjnuRvOvUgpNQuYBZCcnKwupEghhLAUtampZN07Ayt7e8LmfkGRszPzPv4YgFtuuYWQkJDfeQULoxSk/wibXof0jXp/9dDHoc9d4Oxlnpo0DRzd9Zt31O9f39xwRig/s3Wl5VaZCzs+gG3vQWAvSLwR4ieBo4fp/yxCCItnyqCdAkRpmhaBHpynAje28rmrgJc1Tfv/71RXAU+2fYlCCGEZKletJvfRR7ENCiJ09kecrKrim88+w8XFhZtuugkvLzMF0wthNMKxFXrAzt0Nnfxg5AuQfKveDtKR2NiDW7B++zXVRXDga9g7F1Y8Aquegphx0HM6RF4JVtbtV68QwqJoSpluIVjTtLHo4/usgTlKqZc0TXseSFVKLdE0rTfwHeAB1AP5Sqm4luf+Bfhby0u9pJT65Le+VnJyskpNTTXVH0UIIUym9Iu5FLz0Eo4JCQT/9z/sPnGC77//nsDAQKZNm0anTp3MXWLrGJrg4EK9B7voKLiHwaCZkHAj2DqYuzrTU0pvOdk7Vw/edWX6FJWEqXprSWv6zYUQHYKmabuUUsm/e50pg3Z7kqAthOholFIUvfkWJbNm0WnYMAJf+zc/bNnCli1b6Nq1K5MmTcLOrgPMjW6q06eHbH0HyjPBtxsMelifJHK5TvJobtBX9fd+CWlrQRkhpJ++yh03seOt7AshziJBWwghLJhqaiLv6WeoWLwY9ylT8H7yCRYvW8bBgwdJTk5m7Nixlj++r75SP2Rm2/v6JsKgZBj8V+g6Giy99vZUmQf7v4I9c6HkhL6RstsESJwOYQPl70qIDkiCthBCWChjTQ3ZD86kZvNmvB+4n0633sr8+fPJyMhgxIgRDBw4EM2SD1qpKdY3AO6cpU/wiLwSBj8M4YPlgJjfohRkp+ir/we/hcYqvb0mcbreXuIRZu4KhRCtJEFbCCEsUHNxMVl33U390aP4/+NZtJEjmTt3LiUlJVx77bX06NHD3CX+uops2Poe7PoUmusg5mo9YAcltcnLN9Q20dRgpJOHfZu8nkVrrIWjy/TQnf6jfl/EEEi8CWLHg52TeesTQvwmCdpCCGFhGk+fJvOOO2kuLCTozTeojonhyy+/pLGxkSlTphAZGWnuEs+vOA22vAn75uu9xj0m64fM+F78TG9Dk5HTB0s4tiOfjIPFGJsVzu72+Ee44hfhhn+kKz6hLtjYXcKTO8ozYe88fRNl+Wmwd9X7uHveBMG95V0CISyQBG0hhLAgdQcOkHXX3WA0EvLhB+R26sT8+fNxcHBg+vTp+Pn5mbvEX8rbpx8yc3ixPuau580w4P6LbnFQSpF/soJjO/JJ21VIQ20zjq52dE32w8XbgYL0SgrSK6gsrgfAykrDO6QTfpFuPwVwV28Hy26vuRBGI5zeogfuw4uhqRa8ovTZ3AnTWncgjxCiXUjQFkIIC1G9cSPZD87ExtOTkNkfcaSigiVLluDj48ONN96Im5ubuUs82+mt+gzstLVg5wJ9bod+9+pHj1+E8oJaju3I5/jOfCqL67GxtSIi0Yfofv6ExHhgZX32psDaykYK0ivIT6+k4FQFBaeraG4wAODoYvvTirdfhBu+YS7YOVxCE04aquDQIj10Z27Tj6vvPFyfWhI9Vv/FRwhhNhK0hRDCApR/+x15zzyDfXRXQj74gK1HjrB+/XoiIiKYMmUKDg4WMl9aKTixBja/oQc7Jy89XPe+XT9F8QLVVTVyIrWQYzvyKcyoBA2Coz2I7udPZKLPHwrHRoOR0rwa8k/pwTs/vZLyglpA767wDOqEf4Qr/pFu+EW44u7ndGmsepec1AP3vq+gMkc/YTP+Bj10ByRKa4kQZiBBWwghzEgpRcmHH1L01ts4DxhAwFtv8f2G9ezevZsePXpwzTXXYGNjASuwRgMcXgSb3oSCA+AaDAMf0NtELnBDXnOjgfT9xRzfkU/moVKMRoVXcCei+/gT1duvTTc71lc3UZBRSX56hb7qnV5JY72+6m3vZHPGqre+8m3vaAF/5xfKaIBTG/TQfWQZGBrAN04P3D2mgLO3uSsU4rIhQVsIIcxEGQwUvPQSZV/Ow3X8eLyf/TvfLF7MiRMnGDx4MMOGDTP/Smtzoz7befNbUHpS7wUeNBPiJ4PNHz8kRxkVuSfKObYjn5O7C2msN+DsZkfXPv5E9/PHK6h9TrdURkVZfu1PwTs/vZLSvBpQgAYe/s5nrXp7BDhjZdUBV4TryvRTOPfM1Y+5t7LR55cnToeokWBta+4KhbikSdAWQggzMNbXk/voo1StWYvX7bfheOedfDlvHvn5+YwbN47k5N/9vmxajTWw6zPY+i5U5UJAgn6KY+x4sPrjkz1Kc2t+6ruuLmvA1t6azr186NrXn6CuHhYRYhvqminM0DdY5p/SV78bapoBsHWwxi/85+DtH+GGQ6cOFlILj7S0lszXDw5y9tFXuBOng183c1cnxCVJgrYQQrQzQ3k5WffOoG7PHvyefBLj2DF88cUX1NTUMGnSJKKjo81XXF0Z7PwItv8X6kr1EwkHP6xvsPuDq+s1FQ2cSCng2I58irOq0aw0Qrt50rWvHxEJPtha+Cg+pRQVhXUtq9568C7JqUEZ9Z+Hbr6O+J+x0dIryPkXGzUtkqFJ38C65ws4vhKMzRDYUw/c8ZPA0cPcFQpxyZCgLYQQ7agpN5fMO+6kKTOTwH+9SnlcHPPmzUPTNKZPn05QUJB5CqvK149IT50DjdUQNUoP2KH9/tDLNDUYOLW3iOM78sk6UopS4BvmQte+/kQl++Hk+sfbTSxJU4OBwtOVFKRXkn+qgvxTFdRVNQFgY2eFb5jrT8HbL8IVZzcLn/pRUwz7F+gr3QUHwdoeYsbpobvzlRf07oUQ4mcStIUQop3UHztO1p13YqytJfi99zjt0omFCxfi5ubGTTfdhKenZ/sXVZ6lTxDZMxeMTfoBKIMeAv/4Vr+E0ajIPlrK8R0FnNxbRHODARdPB7r29SO6rz8e/s4m/AOYl1KKqpL6M1a9KynOqsJo0H9mung56DO9I90Ij/fCzcdCT3JUCvL36/8ODizQ39lwCYR+90Dv28Du0v1/KIQpSdAWQoh2ULNjJ9kzZmDl5ETIRx+xt6yUlStXEhwczLRp03B2bucgU1euB+ztH+inOCbeCAMfBK/OrXq6Uori7GqO78jneEoBtRWN2Dna0CXJl+i+/gR0dkOzgL5rc2huMlCUWf1Tr3dBegXVZQ0ABHV1J3ZAAJG9fC23daa5AY59D6kfQ/pGfYRj//ugzx1g72Lu6oToUCRoCyGEiVWuXEnuo49hGxpKyKwPWX/wINu2bSMmJobrr78eW9t23FTX3KD3YG96TQ/bPabAsKfAPbRVT68uq+f4Tr3vujS3BitrjbDuXkT39Scs3gsbWwsNj2ZWWVLHiZQCjmzJo6KoDjsHa7r09qPbgEB8w13MP13m12TugI3/0nu6HT2g3wzoeyc4WNjhSUJYKAnaQghhQqX/+5yCV17BsWdPAt55m8U//MDhw4fp06cPo0ePxsqqnTbPGY36mLcfnofyTOg8DEY8BwE9fvepjXXNnNxTyLEdBeQcLwMF/pGuRPf1p0uSX8ebvmFGSiny0so5siWPtN2FNDca8Qx0JnZAAF37+FtuD3v2Ltj4bzj+Pdi76S0l/e6WjZNC/A4J2kIIYQLKaKTojTcomf0xLiNH4PH888z/7jsyMzO56qqr6N+/f/utYp7aAGv+Dnn7wC8eRj4HXYb/5lMMBiNZh0s5viOfU/uKMTQZcfNxpGtff6L7+llur3EH0ljXzInUAo5se4VPQwAAIABJREFUzaMgvRIrK43wBG9iBwQQ2s3TMieY5O7VA/fRZWDnAn3vgv4zwMkM+wuE6AAkaAshRBtTjY3kPvU0lUuX4nHjNOxnzGDuvHmUlZVx7bXXEh/f+o2GFyX/IKx9Vn/b3y0Ehj2jH8n9K6voSikKT1dxbEc+aakF1FU14eBsS1SyL137+uMX4Wq5LQ4dXGluDUe25nJsRz51VU04u9kR3T+A2P4BuPtZ4C81+Qf1wH14Mdg6QZ/bof/90MnH3JUJYVEkaAshRBsyVNeQ88AD1Gzdis/MB2m85hq+/PJLmpubmTp1KuHh4aYvoiIb1r8Me78EB1cY/Aj0uRNsHc57eWVxHcd35nNsRwHlBbVY21gR3sOb6L5+hMZ5YW1jgSurlyiDwcjpAyUc2ZrH6YMlKKMioIsb3QYG0rmXL7b2FtYDX3gENr4Gh77VRwP2vg0GPAAufuauTAiLIEFbCCHaiLG2ltM33Uz9sWMEvPACRfHdWbBgAU5OTkyfPh1fX1/TFlBXDlve0g+bUUb9bf1BD//q2/oFGZWkrsggY38xAIFR7kT39adzLx/snaTv2txqyhs4tiOfI1vzKC+oxdbemqhkX2IHBlreuwvFJ2DT6/pMbmtbSPqzPsXGNdDclQlhVhK0hRCijVSuWk3Ogw8S+PprnAwIYOnSpfj5+XHjjTfi6upqui/c3AApH+vTIerK9EkiVz4FHmHnvTz/VAUpyzPIPFSCvZMNPa4MJmZAAK5ejqarUVwwpRR5Jys4sjWPtF2FNDcY8PB3InZAINH9LGwDZclJfWzkvq9As4Jef4KBM8E9xNyVCWEWErSFEKKNFLzyCqVfzSf/9df4cfNmOnfuzOTJk7G3N9HpgEaj/pb9uueh/DREDIWrXoCAhPNenptWTurydLKOlOHgbEviyBDihwZj52hjmvpEm2usbyZtVyFHtuSRf6oCKyuNsHgvYgcGEhZnQRsoyzJg85v6ATigz2kf/DB4hJuzKiHanQRtIYRoI6dumMy2kGBOuLqSmJjI+PHjsbY2UU9t+kZY/Qzk7QW/7vokkc7D4TztBDnHykhZkU7OsXIcXWzpOTKMuCGB2DlIwO7IyvJrOLI1j6Pb86mrbMTJ1Y6Y/v7E9A+wnNM4y7P0dqbd/wOjARKm6YG7lQcjCdHRSdAWQgjQj6C+iJ5XY20tG8ddzYahQxg4cCAjRowwTQ9twWF9ksiJ1eAaDMOehh6TwersQK+UIvtYGanLM8g9UY6Tqx29RoXRbXCg5Z5IKC6IwWAk86C+gTLjQMsGys5uxAwIoEuSr2X8QlWZC1vehl2fgqER4ifDkEfAO8rclQlhUhK0hRCXN6MBds6CDa9Aj6kw8vlfnc7xW2q2b2fFa69xuHt3Hn/iCRwc/vhr/KaKHNjQMknEzkVfFex7F9ie3VetlCLrcCkpyzPIP1WBs7u9HrAHBmAjAfuSV1Ohb6A8ujWPsvxabOytiUryJXZAAP6d3cy/gbKqALa+A6lzoKkOul+vB27fWPPWJYSJSNAWQly+io7B4vsge6d+kEvBAf2/k+aAT9c/9lLvv883Bw6i9Yjn7nvvbbsa6ytg81uw/T/6JJE+d8Lgv/5ikohSitMHS0hZnkFhRiWdPO1JGh1ObP8ArG0tpG9XtBulFAXplRzekktaaiFNDQbc/ZyIHRBAdD9/nN1MtG+gtaqLYNt7sPMjaKqFbtfAkMfAv7t56xKijUnQFkJcfgxNet/oj/8Cu04w5lX9IJcTq2HRPfpK25hXoefNrW4nyfjLbXwRFEiv/v0ZO3bsxdfY3Kiv+v34KtSV6m+1D3v6F5NElFKk7ysmdUUGRZlVuHg5kDwmnOh+/jL/WgD6BsqTu4s4sjWXvLQKNCuNsO5exA4IICzeC2tzbqCsKdF/idzxITRWQczVMORRCEw0X01CtCEJ2kKIy0vuXn0Vu+AAxE2EMf8++zS7yjz47k59s2HcdTD+LXBw+82XVM3NbBt5FauHDmHSpEl0734Rq3JK/TxJpCwDIobo7SyBPc++zKg4tbeIlBUZlGRX4+rjSPKYMLr29TdvcBIWrbygtmUDZR61FY04utgS3S+A2AEBeAaYcQNlXZketrf/R38Xp+tofYU7OMl8NQnRBiRoCyEuD011sOGfsPVdcPaBca9D7NXnv9Zo0EeTrX8Z3ILg+jkQ0vtXX7ru0CFWPfk39vbqycMPP3zhM7MzNuuTRHJ3g2+cHrC7nD1JxGhUnNxdSOqKDEpza3D3cyJ5TBhRvf0sZ7SbsHhGg5HMQ6X6Bsr9xRiNCv9IV2IHBOobKM018rG+Qt8zse19PXx3GQFDH4eQPuapR4iLJEFbCHHpO70VltwPJWl6O8hVL4Kj++8/L2snfHMbVObobRsDZ4LVL8Ns6f8+59sfN1DdrRsz//rXP15f4RFY+w84vhJcg1omiUw5a5KI0WDkRGohu77PoCy/Fg9/J5LHhdMlyQ8rKws6IVB0OLWVjfoJlFty9Q2UdlZ06aWfQBnQxUwbKBuqIGW2/otxbQlEXqGvcIcPbP9ahLgIErSFEJeuhipY+xykfATuoTD+Heh85R97jbpyWDYTDn2nHwhz3Sxw8T/rkqyZDzHXyZGuyclcd911rX/tylx91Xzv3JZJIg9B37vPmiRiNBg5vrOA1O8zqCiswyvImeSxEXTu6YMmAVu0IaUUBRmVHNmSx4nUAprqDfiGu9J7XDhh3b3ME7gba/S9ClvegZpCCBsEQx/TW6rMPUFFiFaQoC2EuDSlrYWlM6EiWw+vw58Bu/P3oDYbm9mZt5Pe/r2xtbb95QVK6QdufP+4/hoTP4CokS0PKfaMGs2SAf25+uqrSU7+3e+nUF+pzxTe9j4Ym/VJIkMeOWuSiMFg5Nj2fHZ9n0FlcT3eIZ3oPTaCiARvCdjC5JoaDBzfmc+ulaepKqnHN8yF5HERhMebKXA31cGuz/RNzFV5ENJPD9ydh0ngFhZNgrYQ4tJSWwqr/gb75oF3NEx47zf7O1PyU3hl5yucKDvBo8mP8qe4P/36axcdg2/+AgUHod8MGPEsjXmFrL3zTnb27cu9996Lr6/vrz+/uRF2faJPEqktge6T9F8AzjiW2tBk5Oj2PHZ9f5qqUgsIOOKydt5f+Ma1/MJnlsBdD3s+1/dQVOZAULLewx01UgK3sEgStIUQl45Di2DFI/omqkEP6WPCbM4/LzivOo/XUl9j9enVBHUKosnYRKRbJB9d9dFvf42melj9tN6OEpBAufNNLF61mbzYGB574gmsztPDjVJweJHexlKWDuGD4aoXzpok0txk4MiWPHavOk11WQN+Ea70HhdBaJynBGxhdgaDkeM79BamyqI6vII70XtcOJEJZmpham7QD2/a9AZUZEJAoh64o8dI4BYWRYK2EKLjq8rXA/aRpRCQANe8BwE9zntpfXM9nxz6hDkH5gBwe/zt/Knbn3h/9avMK1nCpmmbcbJ1+v2veWQZLJ5B3hYbvoy+loCevbhx+vRfXpexBdb8HXJSwbdbyySRET+FgeZGA4c257Jn1WlqKhoJ6OxG73ERBMd6SMAWFsdoMHI8pYDUFRayZ8DQBPu+gk2v6eMw/brrrVjxk361VUyI9iRBWwjRcRmNsO9LvVWkqR6ufBL63w/WvxxNppRibeZaXkt5jdyaXEaHj+bhpIexLq5j/WezyD58kK3dS3jgz/9kaMjQ1n39imwOTbiWr6+4mhH+lQy69Tmwd9EfKzqmTxI5tgJcAvVJIglTf5ok0tRg4NCmHHavzqSuspGgru4kj4sgqKu7BGxh8f5/Ck7qigzKC2rxDHQmeWw4nXv5mmcKjqEZDn6jb5osPAT2bpB4I/S+Dbyj2r8eIVq0NmibaaCmEEL8iowtesDO2wuh/eGad3/1B+qJshO8uvNVduTvoKtHV+YMmkOcU1e2zPucA+tWY9+pEw4uroQVNbA5Z3Org3az0Zk8a/0wm9D8lfDhev0AnCNL9D5Su04w/Fl9M6advkreWN/MwR9z2Ls2k7qqJoJjPOh9RxyBUR5t8/ciRDuwsrYiuq8/Ub39SNtVQOryDFbPPoSHf7p5xk5a2+i/yPaYApnbIfVjfTzgjv/qE0p63w7RY+F8m52FsACyoi2EsAwlJ/VWjKPL9JnTw/+uH09+nt7oioYK/rP3P8w/Nh9nW2fu73k/EyOv5dDaVWz95ksa6+roOepq+k+6kS0LPmf3uhVsuNbA8htWtKqUqh9+YNmHs0iL68aTNw3DZtFdUJkNVrb6D/Yhj4KzFwCNdc3s35DNvrVZ1Nc0ERrnSfLYCAI6//apk0J0BOcepOTh70TSmHCikn3Nd5BSdaH+C2/qJ1CRBS4BkPRn6HULuAaYpyZx2ZHWESFEx1BbCj/+S9+EaOMAg2bqkz/sftlPbTAa+DbtW97Z/Q6VjZXc0PUG7ku8j/Jjp1j/2UeU5mQR1qMnV95yB17BoQCc3LWTRf96nlV9Cvjojm8Icw373ZIK/v1vFmRm4pSQwG23367XuOcLiB0PnhEANNQ2sX99NvvWZdFQ20x4vBfJYyPwi7jA0yOFsGDKqDi5p4jUFemU5NTg5utI8thwuprz5FKjAU6s1le409aCZq2fCtv7dn1jsrRqCROS1hEhhGVrboCdH8HGf+kH0PT6E1zxN3DxO+/lewr38MqOVzhSeoQkvySe7PMkvg2dWP/OO5zatRN3vwCufewZInv1OasXOiQuHitrawKLHdics7lVQbtq9x7KukYRGx6u3+HkCQMfAKC+pol967LY/0MWjfUGIhK8SR4bjm+YBGxx6dKsNLok+dK5pw+n9hWRsjyDdZ8eIXV5Bkljwuna1w/r9g7cVtb6NJLoMVB6Sj8AZ88XcHgxeHeF5Nv0tpPWnBYrhIlI0BZCtC+l9B+Ea5/Vpwl0Hq4fne7X7byXF9QU8MauN1iRvgI/Jz/+PeTfXOE7mJ2LFrBi+WKsbW0ZfOOf6TV2Aja2v+zTtHNwJDg2jsqs/WzJ2cL02PNMEDmDsb6enPx8jNFdCQ0N/en+uupG9q7N4sD6bJoaDHTu5UPy2HC8g10u6q9DiI5Es9Lo3NOXyAQf0vcXk7I8nR/+d4TUFekkjQknup9/+wduAM9I/fvIlU/p40BTZsPKx2HdcxB/g755MiCh/esSlz0J2kKI9pO9S9/omLVdH4l300J9JN55NBga+Pzw58zaPwuD0cBdPe7i1m5/Jn3rNj555S5qK8qJu2IEg6fdgrP7b284DE9IIvPgftal76LB0IC99flncAPUHzhAsYe+AhYSEkJlSR371mVxeEsezY0GopJ8SRoTjldQpwv/exCig9OsNCITfYhI8CbjQAkpy9JZ//lRUldkkDQ6jJj+AVjbmCFw2zpC4jT9lrsHUj6G/Qtg92cQ3FtvK+l2Ldg6tH9t4rIkPdpCCNMrz9QPdTn4DTj7wrCnIPGm847razI2sezkMj7c/yE51TkMDx3OI8mPYJVXxQ+fzKLg1AkCoqIZ9ue78O/StVVfvuh0Ov977H42xxfz6K1vMCBowK9eW/zBh3yzezcNMd2IdRtB2q5CNCCqjx+9RoXhGSAzfIU4l1KK0wf1wF14uopOnvYkjQ4ntn8A1rZm6uH+f3Vl+kzulNlQkgaOntDrZki69ac9F0L8UbIZUghhfvWVsPkN2PYffWPSgPth4IM/z6Q+Q5OxiaUnlzJr/yxyqnOI9YxlZtJM4h26sunLzziyaT2dPDwZMv1WYgZd8YdmUiul+ODuP3HEMZfg6aN4rPdjv3rdrrv+zgp/G+zq/fFsiCFucCA9hoXg4ikrYEL8HqUUmYdLSVmWTkF6JZ087Ok1KoxuAwPNH7iVgvQf9cB9dAUoo37Ee+/b9XfWWmbhC9EaErSFEOZjaIbdn8L6V6C2GHpMheHPgFvwLy5tMjSx+ORiZh+YTU51DnFecdyTcA8DfPuxa/kidixagDIaSb76OvpcOwk7B8cLKmnlf99i/7Z1bLlWY/F1S856zGgwkra7kD2rMsnPz6fMezc9uwxh9HWDsXeS+bxC/FFKKbKOlJKyLIP8UxU4u7cE7kEB2NhaQKCtyNHbSXZ9BtX54BYKybdCz5uhk4+5qxMdgEUEbU3TRgNvA9bAbKXUP8953B74H5AElABTlFIZmqaFA0eAYy2XbldK3f1bX0uCthAWQCk4vkqfh118DMIGwagXIbDnLy5tMjTxXdp3fHzgY3Jrcon3jufuhLsZ4NePwxt/YMd3C6gsKiSqzwCG3PQX3P38L6q0o1s3svztf7G8fx5f3L6UwE6BNDUYOLwll31rs6gqrcfN0waV8Q0nu3ry4IMP4uEhh80IcTGUUmQfLSNleTp5aRU4udnR66ow4gYHYmNnAYHb0ARHl+ur3BmbwNpO7+HufTuE9JERgeJXmX28n6Zp1sD7wEggG0jRNG2JUurwGZfdBpQppbpomjYVeBWY0vLYSaVUoqnqE0K0IaNBPzVx0+uQfwA8O8PUL/UT2875QdVoaGRR2iI+OvAR+TX59PDuwTP9n6GvTx8ObVjLnJfvoqqkCP8uXRl194OEdm+bSQFh8YmgaQQVObLxxBYispI4sCGbhtpmArq4MXhKFK4H17A4rwoXp2Dc3WUkmBAXS9M0QmI9CY7xIOd4OSnL0tn89Ql2rzpNz6tCiRsShK05A7e1LcRdq98Kj+ojAvfNgwMLwK+7Pq0kfjLYy+ZncWFMtqKtaVp/4B9KqVEtnz8JoJR65YxrVrVcs03TNBsgH/ABwoBlSqnurf16sqIthBkYmmD/fNj8pr7JyCsKBj0EPSb/4kjkRkMj3574ltkHZlNQW0CCTwL3JNxDH+9kDq5fzc7F31BdWkJA1xgGXD+NsIRef6gPuzX+9/hD5BQU0MnpVqyUNRE9vOl5VdhPpzhm//UR5traEJmUxA033NCmX1sIocs5rq9w5xwrx9HVjp4jQ+k+JAhbewtY4QZoqIYDX+sTSwoOgJ2LPsUk+TbwjTF3dcJCmH1FGwgCss74PBvo+2vXKKWaNU2rALxaHovQNG0PUAk8rZTaZMJahRB/RFMd7P4ctr6jH4Hs3wNu+Ew/OfGcDUUNhoafAnZhbSGJPok8P/B5kj17cmDdaj5eegc1ZaUExcQx+t6HCO2e0OYBOz+9gj2rMynN98KuPo1Twdv5270P4BN49jHpRYcOUdev71nzs4UQbSuoqwdBXT3IPVFOyvJ0ti5MY8/q0ySOCKX70CDsHMw8edi+k96vnfRnyE7R20p2fQo7Z+ntcL1vg5irwcbOvHWKDsFS52jnAaFKqRJN05KARZqmxSmlKs+8SNO0O4E7AfnBKER7qK+E1I9h2/tQUwQh/eDqN/Ud++eE4wZDA98c/4Y5B+ZQWFdIL99evDjwRZI8Etm/9ns+XnoHtRXlhHSLZ9z9jxDcLb5NA7bBYCR9bzH712eRl1aBvZMNcYP7s3/NdtKcl5FhNRofev90fVNuLgXKCMj3EyHaQ2CUOxNm9iQvrZyUFRls++4ke9ZkkjgihPgrgs0fuDVN79MO6QOjXoY9n+utJd/cCp38oNctehh3CzJvncKimfJfcQ4QcsbnwS33ne+a7JbWETegROn9LA0ASqldmqadBLoCZ/WGKKVmAbNAbx0xxR9CCAHUlMCO/+orOvUV+mmOQx6BsF/Oo65vrmfhiYU/BewkvyReHvwyie7x7Fu9gtnL3qOusoLQ7gn0n/kEwd1a3SHWulIrGji0KZfDm3KoqWjExdOBQTdEETswABs7jWNbZxFSXMPmnM309v85aNfu2k2Rtw92Njb4+Z3/GHghRNsL6OLONQ8kkn+qgpTl6WxfdEoP3MND6XFlMHaOFrAm6Oytt8UNeADS1umr3Bv/re9LiR6jb56MGApWZh5hKCyOKf/1pgBRmqZFoAfqqcCN51yzBLgF2AZMAn5QSilN03yAUqWUQdO0SCAKOGXCWoUQ51OZC1vfg12fQFOt3hoy+K/nnSKSX5PPgmMLWHhiIaX1pST7JfPPIf+kh2sce1ctY/byt6mvqiQ8oRf9rptKUMz5j1y/EEop8tIqOPBjNqd2F2E0KkK7eTJ0ejBh3b2wsvp5pTysRy+q925hc/YmHkp66Kf7a3fvotjPl5DQUKzkh6UQ7c4/0o3x9ydSkF5Jyop0diw5xd61mSQMD6HHsBDsLSFwW1lD16v0W1kGpH6ir3QfXaZvAu99GyTeCI4ysUjoTPavtqXn+j5gFfp4vzlKqUOapj0PpCqllgAfA59rmpYGlKKHcYAhwPOapjUBRuBupVSpqWoVQpyj9BRseRv2fqlPFOkxGQbO/MVGIKUUO/N38tXRr1iftR6jMjI0eCh/ivsT8S6x7Fm5lNnLX6e+ppqInsn0v34aAVHRbVZmU4OB4zvzObAhh5KcauwcbYi/MpjuQ4Jw93M673MiEnpxfNsmijIzKKwtxNfJF4Dyvfuo6BFPr7CwNqtPCPHH+UW4cvWMBApPV5KyPIOdS9PZuyaTmP4BdB8ahIe/hZzO6hEOI5+DK56Ew4v1Ve5Vf4N1L0D89ZAwDYKS9GPhxWVLDqwRQvys4LB+kuPBhWBlCz1v0k9y9Dg7fFY3VrPk5BLmH5vPqYpTuNu7c13UdUyOnowXbuz+fjG7VyyhobaGyKQ+9L9+Gv6do9qszPKCWg78mM3Rbfk01jXjFdyJ+KFBdO3j/7uTC6pKi5l1z59JjS5j8s2PMDFqIoaKCjZMnMimIUO45ZZbiIiQY5mFsBRFmVXsWZPJyd2FGA2K4BgP4ocGE97DCytrC3v3KW+/vo9l/wL9XUArG/CPh+A+ENwbQnqDe5jM574EWMLUESFER2A0/NxzeGIV2HWC/vdB/xngcvYhMSfLTzLv6DyWnlxKbXMt3b2689KglxgVPorKnDz2zvuOI5s20NRQT5fe/el3/VT8Ijq3TZlGxekDxRz4MYesw6VYWWt07uVL/NAg/Du7tXojpYunN96h4YSXGtics5mJUROp27uXYm9vrDSNoCDZ2CSEJfEJdeGq2+KovSGKw1tyObQxh+8/PICzuz1xgwPpNigQZzd7c5epC+gB49+Gkc9DxhbI3gnZqXp7yc4P9WucfX8O3cF99FY8u/O/Ayc6PgnaQlyuqvL1b/67PtNH9Dn76m+B9rkTnDx/uqzZ2Mz6rPXMOzqPlPwU7KzsGB0xmmkx04h1j+HEzq0s+vxZso8cxMbWjugBQ+g19hp8wyPbpMy6qsaWH665VJXW4+xuT5/xERf1wzU8oRdFy0+zOGsbzcZmanftptjHB39/f+zsZGSXEJbIydWO5DHh9LoqlIwDJRzcmMPOpemkLs8gspcP8UODCOji3ubjQS+IgxvEjNVvAIZmKDwEWS3BO3snHFuuP6ZZg393PXSHtKx8e4TLqvclQoK2EJcToxHSf9RHVB1bAcZmiLwCrnoRYsaddchMcV0x3xz/hq+Pf01hbSGBzoE8lPQQE7tMxKbWwP61q/ho3avUlJfh5uvHkOm30v3KkTi6uF50mUopCjIqOfhjDmmphRiajQRFuzNwUhfCE7yxvsi3i8MTepG69Fs65TVzsPggrrt3UxIZQd/w8IuuXQhhWlbWVkQm+hCZ6EN5QS0HN+ZwdFseaamFeAY6621kff3NPx7wTNY2EJCg3/rcod9XU/xz6M7aqe+JSflIf8zZRw/cwb318B3YE+wspDdd/CEW9K9QCGEyNSWwd64+PaT0FDh6Qr97IOlW8Pq5tUMpxd6ivcw7Oo81p9fQbGxmYOBAnun3DIMCB5F39DCb//MBJ1K2oZQiIqEXiaOuJjyxF1ZWF3+qW015A8d25HN0Wx5l+bXY2lsTO1DfAOUV2HZHIAfFxGFjZ09wsSObMzaQmJODsUtnmZ8tRAfj7ufEoBui6DshkhMpBRzYkM2P846z9buTxPT1J66Nv3e0KWdviB6t30Bf9S460rLqnaLfjq3QH9OswS+uZcW7DwQng2ekrHp3ALIZUohLlVKQ+X/t3Xl8HOd95/nPU9X3gW407oMkwJsgKR6idcuSLVu2ZMfylbU9Mz4Sz85mE4+T16y9mdkjs8nsziSb18xuspNJJqdjTxwndpxEieVDtg5LtCRLJHXxvg+AIMDuRgN9d1U9+0cVGgcBEiSIi/y99SrV2dUPCk30t59+6nlecmuvD/092FVYfR/s+Xm3mz5/qH7oSHmEH5z9Ad889k2OZI4Q98d5Yv0TfGLTJ+gMtHLox8/y+g++Q/rCOULRGNve/Sg73vMYyfaOeRfTqtmcfuMyR166yPlDGbR2u/nafG87G/a0LVgfun/7W7/O4eP7yOzU3PdDH2/u3MGXvvQlYrFl+qYshLimmb4N69yQZPvD3fTunP+3YYuumHED93j47t8H1by7L9I8qa33O6BztzuqpVgUc70ZUoK2ELea0gi88Q03YF8+CsEE7PikO6Rw65b6YcVakWfPP8tTp5/iJ/0/wdIWGxs38qnNn+Lx3scpXbrM6z/4Dod+/AzVUom2tevZ+egH2HT/O/EH5nfjkdaaS6dH3a979w1RKVrEGoNsuqedzfd0zNo138104Hv/wDN/9l/JJs6zWt9FeetWvvgrv7LgzyuEWBylfJXDey/y9o/7GUuXiSQC9D3QydYHuog1LpObJ6+XY8PQ4Yka7/M/hfRxd58y3Frv7ndMtPeWWu8FI0FbiNuJ1m5Nx2t/5nbNZ5Xc/lv3/Dxs/Wj9jvaaXWPvwF6eOvUUz114jpJVoj3azmO9j/F47+NsaFjPyX2v8Pr3v8P5g29i+nxsuvdBdr7vg7Sv3zjvm4zy2bLXNGSQkUtFfH6Dtbtb2HxvB90bG1HG4r0hZAcH+NNf/hdEq5dJ9z3Ctrvu4oknnli05xdCLA7H0Zw7mObt5/s5ezCNUoq1O5rZ9lAXXZsal8fNk/NRzLizf7GjAAAgAElEQVR//8//1OvlZB9Ux9x94dTUHk66dkMwvrTlvUVI935C3A7yQ3Dw7+DAV2HwLfBHJ2qvO3YAYDs2+y7+lKdOP8XTZ59mtDpKMpjkQ+s+xOO9j7OzdScjFy9y+IfP8fyz/4F8Jk1DSysPfOqzbH/3o0QaEvMqYq1qc/r1YY68PMj5wxnQ0LE+wa5HN7N+d+uSDa/c2N5Joq0du19T8/ulfbYQtyjDUPRsb6ZnezO54SIHfzzAoZ8McPLAMI3tEbY91MWmezqWx8iTNyKSgg3vdSdwa72Hj3qh+1U4/6rbdSu4td6tfRM3WXa/A5rWS633ApIabSFWmkIaDj8JB78NZ14E7UDbdjdcb/9ZCDWgteZQ+hDfOf0dvn/6+wyVhgj7wjyy+hEe732cezrvoTyS4+hPXuDI3ue5dOoEKMWa7TvZ+b4Psnb3nnnd3Ki1ZvBkjiMvD3LitUtUyzbxVIhN97az+Z52Ei3Lo8/YH/yn3+TA4cOUunr5pS/8Ei3NLUtdJCHEIrCqNif2D/HWc/0MnRnFFzTZdFcb2x7qprn7FmznXMp6td6vTtR6V3LuvnDjRHOT5vVuV6+xNoi1urXfEsJnJDXaQtxKSiNw5B/h7W/DqedA224txINfgm0frbe9PpU7xXePfI2nTj3FubFz+A0/D3Q9wJfXfpmHuh+CssXxV/byt3/ya5w//DZoTdvaDTz8mX/OxnsfIJ5qnlcxs4MFTuwb4ugrg+SGSviCJut3uU1DOjckF7VpyFy0GX5q0TiWrnBJX6IFCdpC3A58AZPN93Sw+Z4Ohs6O8tbz/Rx5eZCDLwzQsS7Btoe7WLerFdO3wm6enE24Eda/x53A7er18rGJrgUvvAbHnwamVb76Qm7gnhy+61Obt92bpPvBGUmNthDLVWUMjn7XDdcnf+T2GpJcDds+5ra7bt8OStGf7+fpM0/z1OmnOJw5jEJxV/tdPL72cR5Z/QgRgpzc91OO7H2e0wf24dgWjR1dbL7/ITbf/xCpzhsfCVFrTWagwMn9Q5w8MExmoABA54YkW+7rYO2uluXVl+00Z7/8Zb7iN8mbo6z7+B38wo5fWOoiCSGWSLlQ48hLF3n7+X5ywyXCcb978+SDXcRToWufYKUr5yB3wW2SmB+CwhDkL02s5731YporAjm4owrXQ/mkMD4lqLe4y/6Vfz3lZkghVqJqEY59z20WcvxpsMrQ0AVbP+KG667d1ByLA0MHeKH/BV648AIncycB2N68ncd6H+N9Pe+jKZDi7FsHOPLi85x49WVqlTKxxhSb7n+ILfc/RGvvuhu+AUhrzeULeTdc7x9m5FIRFHSuT7JudyvrdrUQTa6MO/rf/MAH+PY73oEavcCJ91T42uNfW+oiCSGWmHY05w9neOv5fs6+dRmAnjua2f5QN92bF/em7WXJtqB4eWr4LkxanhzUS9mZzxFKTA3fMwXyWJs7cM+kgdSWE2k6IsRKUSvDiR+64frod6FWdP/Y7P6MG65X3c2l0jAv9r/IC899jZcGXqJoFfEZPva07eGjGz7Kw6seZlWsm/5jh3nz69/i6MsvUh4bJRSNsfkBN1x3bdl6w+2utdYMnxvj5P5hTu4fIjdcQino2tTIjkdW0buj+YaHQ18qtUtDDFarAITTYxy/cIxcJUciOL+bP4UQK5syFKu3NrF6axOj6RIHXxjg8N4BTr9xmURrmG3v7GLzvR2EosszAC440wfxdne6FqsCheFZQrk3XXzTPaYyOvM5wqlpgdwL4OPb2u9wQ/oyJUFbiKVQHoXTP4bD/+CO/FUZhUgT3PEJ2PZRrFV382b6oFtr/cZ/5Gj2KABtkTYeX/s4D3Y9yD0d9xA2Q1w6fZJj//gM39v7PGOXh/EFgqzbczdbHniInh27MX039mYwPvDDeLgeS5dRhqJ7cyO737eG3h3NhOOBm3lVFlXpwH6Gm1swDQOjXKRjKMhLF1/i/T3vX+qiCSGWiYamMPd+eB13faCXkwfcmyf3fusEr/z9KTbc1cb2h7ppWS3d5c3KF4REtztdS7XohfDh2WvJz//UnVulicd9+A9g56cW7meYJ2k6IsRi0Bouve3WXB//IZx/GRzL/fps88/Ato9yuX0rewdf4YX+F/jJwE8Yq45hKpNdrbt4sPtBHux6kPXJ9VRLJc6+dYBT+1/lzOv7KIxkMUyTnh272Xz/Q6zbczeBUPjGiuloBk/l3HB9YIh8toJhKlZtSbFudwu9d7QQit0atTiD/9e/56+Gh0js2EH55Wc4Gr1E7GN38+/u/3dLXTQhxDI2fH6Mt3/cz7FXBrGqDm29DWx/qIt1d7bi8994b01ijrR2R8ccD9+ptRBvW/RiSNMRIZZaKQsnn4UTP3IDdn7Q3d62He79Avb6RzgYjvLC4Mu8cOSPOLj3IADN4WYeWf2IW2vdeQ9xf5xM/wVOv/gq3zzwZ/QfOYhj2wSjUXp23MnaXXvo2XnnDfd3XavY9B/NcvZgmtOvD1PIVTF9Bqv6UtzzxFp67mgmGLk1wvVkowcOMLK1j+1r1lAt3cnYy8/w3Qt70Vqv/AEshLhBjnawtY3t2NjaxnKsWdctbV1z+5yPm8O5J1cMau9mvPFtGj1luX6c1hPHTj9GTzvXXM4xvtwB6nEfiTOrqJxcy6WvjPK9r7/OSO8ZMmtPUosWp5zjZlqo8y40xcL8Xf3c1s9x9xIE7bmSoC3EzeI4cPF1N1Sf+KE7UIB23Frrde+mtPYh3k52sD9/lgPDB3jjpV8lX8tjKIM7mu/gX+76lzzY9SCbUpuwazUuHHyLV5/5OqcPvEpu6BIAzat72PPBj9C7aw+dG7dgmNdfe6K1JjtY5NzBNOcOpuk/PoJjaXwBg9V9Tay7s4Webc1LNpDMYrDzBfrTl9FKsXr1aqyQj4PP/xAu5jiWPcam1KalLqIQc2Y5FrlKjlwlx0hlhJHKyMzrVXd9tDJKzanNGKAd7Sz1j4NP+TANE1OZmIaJT/kwlIFSqh7WFIrx3FbfNm3/5A/MMx4zabl+3NXOoSZt944Z6DqP6nyJZLqLzrNbaT62gaajG8m0nmOo+xhjqSGqoeJNvT6Ty7JSLGTriYpdWbBz3wy37jupEIuhcBlOPuOF6x+5d2IDdO4ifd8XeD3VyX57lNeH3+TQwd/F0hYA65Preaz3Mfa07eG+zvtIhpKMXh7i1L7X+PsDf825t9/EqlbwBYOs3raDd3zo4/TuupOG5hu74aNatrxa6wznDqYZS5cBaGyPsP3hbtZsbaJzfRLTf4v0GXsNpTde53JTEwro7u5Gt7WCUnQNh3mx/0UJ2mJJaK3J1/KzBuXZtudr+VnP6VM+EsEEyWCSRDBBd6ybRFOCgBGoh1mf4ZsSamfaPq/jZnjMbOcYD9QrVT5b5uALAxx8MUjT/jUAxFJB2tcmaO9N0L42QfOq2K3TP7e4JgnaQlyPasEdXev0C264HjgAaHSkibO993GgeTX7VY3Xs0c4M/B3MAABI8C25m18dutn2d22mx0tO0gEE9iWxcVjR3jzb/6W0wde4/L5swAk2trZ/u5H6d21h1V92/EFrv+GQ6012YtFznq11gMnvFrroMkq72bG1VtTNDTdWFvula60bz/DLS20tbYSCoUgFKJj3UbGRo6xd2Avn9/++aUuoljhKnaFkfIIueq1a5rH56OV0fqH8ZnEA3E3MAcSJENJehI99QCdCLhhOhlMkggl6sdF/dEVHVxXmlhjiLs/tJY9H+hh+NwYl06NMngqx+DJHCdeGwLA9Bu0ro7TtjZB+9oG2tcmVlyvTWLuJGgLcTWjA3DuZfdO5/Mvu90QaZuaMjjcvYMDuz/MAR8cGD1FpvgGnHuDRDDBrtZdfGTDR9jdupu+pj4CZoBapczF48c4+NJ36D9ykIHjR7AqFQzTpHvLVh56+PP07tpDqrP7ht4Yq2WLC0eynDuY5uzBNPmM+3VaqjPKHe9axZqtKTrWJ6UmBcjv309m9Sp29/TUt/Xs3M3FvznKwfNvkK/miQVuwWGYxU1hORZncmc4lDnE4fRhhopDU5pm5Co5SpN7RZgmZIZoCDbUg/H65Pp6YJ48TwaT9eMaAg34DHnLXilM03BrsHsT7HhkFQD5bMUN3adzXDqV481nz/P6026TingqRPvaBi98J2jullrvW4X8qxVinGPD0CEvWL8C516B3DkKSnEsHONYy1qObn2Qo8rmWGmQsp2GbJpV8VU80P0gu1p3sbt1Nz2JHgxlUMqPMXD0EC/94L/Rf+Qgl06dxLEtUIqWNb1sf9ejrOrbzurtOwlGItddXNt2GD47xsDxEc4dynDxxAiOrfEHTbo3N7LnsR5Wb226PUY0uw66VmPg7FmsnjWsXr26vr1nx25e+tZf0jrs45XBV3hk9SNLWEqxXNScGqdGTnEofYhD6UMczhzmaOYoZdttfhUyQ7RH20kGk7RH2tnYuHGiZnlacB6fh3zyb/J2FGsMsv7OVtbf6TYBtGsOw+fH3PB9apSLJ3Mcn1zrvSZeb27StrZBar1XKAna4vZVGYMLr7mh+vwrOBdeo98ucCwQ4GgsxdHmFMfatnGhNt6JfpZ4zWJT4yY+vsoN1rtad9ESaQFgLHOZ/oMHeebI9+k//Ha9KYjp89G2biN7PvhhurZspXPjFkLR668ttWo2Q2dG6T82wsDxEQZP5bCq7o1Lqc4oO969itXbmuhYl5CakKsoHznCcNzt93Zy0G5ft5FgNMaaTJm9/XslaN+GanaN4yPHOZw+PCVUVx13YKOIL8Lm1GY+vvHj9DX10dfUR09DD+YNDgQlbm+m33Dbbq+d6DEqny0zON7c5FSON549z4GnzwEz1HqvimGa8rd+uZOgPU8/972fw3IsNjRuYH1yPRsaN7CxcaOMLrfcODZkz7htqs+/QvHcSxwbOc4xv88N1tEEx7uaKOgk4N5VvibWSF/jRj6S2sTGxo1satxEe7QdpZTXBnqACy/t57UjB+k/crDeM4g/FKZz42Y23fdOujdvpW39BvyB66+JqFVsBk/lGDjuButLp0exLQcUNHXF2HJ/J10bknSsTxJpWLkDxyy24r59XG5pJhmP09DQUN9umCZrtu+k8OZL/OjCi9LN3y2uYlc4nj1er6k+lD7E8ZHjWI7bRjruj7OlaQuf2vwp+pr62NK0hTUNazCUBBuxcGKNIdbfGZJa71uIBO156mvq42D6IN8/832+Wf1mfXtLuIUNjRvYkNzA+kY3gK9LrJOvDBdDMQNDh7AH3+LSxf2cTx/mwtgFLhgOZ/1+jgaCnA+b6LD7hyzmj7KxcRM/07iRTalNbGrcxLrkOiJ+tzmH1prR4SGGDp3kJ2d+xNDpkwyePE4xNwJAuCFB9+at7Hr/h+jespWWNb031O1etWRx8WSOgeNZBo6PMHRmDMfRKAUtq+Nsf7iLTi9Y37ZD/94ExX37udzWxsbe3iv29ezczbGXX6Q8eJnTudOsTa5dghKKm61klTiaOcrhjFdTnT7MyZGT9RsPGwIN9DX18em+T9PX1MfW1Fa64l0SqsWSu+5a76aQd7x7k2VTt9R6LzUJ2vP05Xd8GXDD2FBxiBMjJziePc7xkeMczx7nL4/8Zf1rR0MZrIqvYkNygxvCvVrw1fHV8tXjjbBr5Aff5MKFl7gw9AYXRk5yvniJC06FC34fAz4fllLgB1JxfBh0hlvY2LyVDzZtZlPjJjalNtEZ7azXXDq2Tab/PGcOv8zQmZMMnT7F0NlTVAoFAJQySHV103PHLrq2bKVr89YbvnmxlK8yeDJH//ERBo6NcPn8GFqDYShae+LsfO9qN1ivS9zSfVovJq01Q4cPU37g/inNRsb17NgNQOdlt5s/CdorT7FW5EjmSL3px6H0IU7lTtX7h24MNtLX1Mc7u9/JlqYt9DX1TfkbIMRyd/Vab/db0OOvut+w+vwGLWvi9bDevjYh34AuMnn3vkmUUrRF22iLtnF/1/317bZjc27sHMezx6eE8B+d+1F9dKegGWRtYi3d8W7aIm20RdpojbTSGmmlLeouB83b7+sgRzvkKjmypQzDmeP0D+7jQvqIWztdzXJe1xiZ9kk9EQrQHWxlS6yb9zZtpju1kVUNq+vXdvJd+7VKmeGzZ3jjzHcZOnOS4TOnuHzuLFbN/WDk8wdoXtPDpnsfpLVnHa29a2le3XNDzUCqZYvhc2MMnRnj0plRhs6O1vuyNn0Gbb0N3PlYD50bk7T3JvAH5YPXQqidPcslv/samClox1PNNK9aw/os7B3Yy2e2fmaxiyiuw1h1rB6qx4P1mdyZ+t/W5nAzfU19PLL6kXqb6rZIm4RqcUuZqdZ7LFNm8FTO7V7wdI43fnSeAz9wa70bmkO09Uqt92KRoD1ftgXm7JfRNEx6E730Jnp5lEfr20tWiVO5U27wnhTCX+x/ccZuoRqDjVeE7/ZI+5RtcX98Wb+BONphrDpGupwmW86SKWfIlrPuemGIzNgFssUhMuURMrU8OV3FnnYOn9Z0ONBtRnlvZBXdyXV0t26nu2MP3cleGgINVzyvbVnkhi5x7tgB0v3nGTp9kqEzp8gO9KO9Wq5QNEZr71p2vO8DtPaspbVnLanO7htqAmLXHC735xnyAvWlM2NkBwv14X7jqRCtPXG2PdRFe28DrT0N+PwSrBdDcd9+hptbCAUCNDc3z3hMz847Gf7OOZ6+sI+SVSLsuz37Gl9ucpXclKYfh9KHODd2rr6/LdLGlqYtPNb7GH0pN1SP36gsxO0mngoRT4XYsMcdmtyq2Qyfy7vh+/Tstd6N7REiDUEiDQEiDQHCcT+GhPB5kaA9X79/rzs6YLwD4m3evP3KeawNzIl2tWFfmK1NW9natHXK6cZHBhsqDnGpcIlLRXcaKg6524qXOJg+SKacuaIoYV+Y1kgrUX+UoBkkaAYJmSGCvmB9PWgGCflCBMyAu2+Wdb/hx9Y2FbtCza5RsStUnSpV250qdoWa4223J7ZXneqUx1TsCtlKlkwpw0gliz3L8L5x2yHl2KRsm9W2w04MGv0NNIWbaIy20dSwhq6O3bSvuh9fvO2KxzuOzdjlYc4MHCc7OEB2cICRiwNkLw6QG76EdiaeN9bUTGvPWjbe8wCtvWtp61lHvLnlhj6kOI4mO1hg6MwYQ2dHGTozyuX+PI7lpupw3E/rmgbW39lK65o4rWsa5Gu7JVTcv490Wyur16zBMGZ+8+jZsZvX/uHbpIYNXh18lXd2v3ORSymy5awbpjMTNyr25/vr+zujnfQ19fHE+ifoa+pjc2ozzeGZPzgJIcDnN+lYl6Bj3dVrvR172lDpCkJRfz14RxIBIvGAG8bHlxPuvlDUjzKWb2XfUpGgPV+7PwOZ0zA2CPlBGD7qLuvpdbFApHlSAJ8extsg3IgKNhAPxIgn1rIuuW7Wp63a1Snhe6g4xGBhkOHSMMVakYpdoWgVGamMULbK9dBbsStUrMpVRx+7Xn7lI6BMgsrAj0EQCGiNX2tCjk13tcwd1SIp26bRdtw5Bk3hVhobumlM9uJP9UJyDTSugWQPRFIwLfhqx2Esk2bk7BtkL7phOnuxn5GLA+SGBrGtiZ/JHwyR7OiktXcdm+57J40dnSTbO0l1dhGOX1nrPRe25ZAdLJIZyDN83q2xHj43Rq3i/q79IZPW1XF2vHsVrWsaaO2JE0+FlvW3DLeb7BtvMrrnTu5as2bWY7o2b8UXDLImHWNv/14J2gtIa81waZjD6cMczhyuzy8WLtaP6Y51s7Vpa71LvS2pLTSGGpew1ELcGqbXets1h0KuQnG0euXkbR88maOQq2LXrqw0U4YiHB8P5UEiDf6J2vFpoTwQ9t02740StOfJuecXMabfyOjYUEzD2EU3dNfngxPrg29BYQhmqeHF8EMwBsE4BOLuPBiDgLstEIzTHYzT7a0TjENyJ7TG3IDq2G7Yd2z3ORwbHKu+zXIsqlaFsuMG74pToWJXKTtVql5ttK9WIlAtECzn8VfGCJZzBMqj+EsjBCt5Amj8Gq6oFzSDblAOpyDSCi2rvAC9ZmIe74BJNYqObVPIZSlkMuQHjlMYyZDPZshnMhSyaTdgD17EqlYmnsbvJ9nWQaqrm3V77ibZ3kljRyeNHV1Ek403/I9YO5rRdJl0f57MQJ70QIF0f4HcpSKO437aN3yK5u44m+/toLXHralubIvIp/llzEqnGSi5zbJmap89zuf3s3rrHZROHOCF/hcXq3i3PK01/fn+eqA+lDnEkfQR0uU04HWp2bCGnS07+Seb/wlbmrawObVZukoVYpGYfoOG5jANzVdvLqe1pla2p4XxqQG9NFolM5CnmKvW3zenPJfPIDw5iM80JdzAvtLvWZKgPU9f+Ve/SD6bIRSNEYrFvHmc4JT1VoLRtYTWxOv7Q9EYwWAAVZoUyMs5dxCV6pg7r+S9dW9ezMDIuYl91bEbLrfPm64+HqGCcNILzCmIdUOrF6DDjRBpnNhXnzeCP1KvjXZsm2JuhHw244bnYxny2ecoZNMURrLkMxny2TTF0Rzo6V9ZKaKJJNHGFA3NLazZvoNkexeN7Z00dnYSTzWjZvn6f66Ko1XSA3ky/QXS/W6ozlwsYFUmvpFoaA6R6oyxdkczTV0xUp1Rkm0RGRRmhSnu38/llmZMw6Czs/Oqx/bs2M2p/a+SHRzg3Og5VjfMHszFlWzH5uzo2XqYPpxxa6rHvL9ZpjJZl1zHA10PsKVpC1tSW9iU2kTUH13ikgshrkUpRSDsIxD2kWy7eorQjqZStGYM4+PTWKbMpTOjlMeqV8QAAF/QJNIQINoQIDxDIG9d00A0uXw7jJCgPU/bH3iYfCFPpZCnXMhTzo+RGbhAuZCnks/Xe7CYkVKEIlGCXiAPhCP4g0H8wRD+UAp/qINAKOyuNwTxh8Lu/lAIfzCMPxDAbzoEDBsfNfxU8TklFIBhgjLdueEDZaCVARhow5w0V2CYaIyJuXdszfFRrZSplkpUS0Uq3rxaKlEdKVK9WKRaGqZaOku1VKJSKk7sH18ul2cM0JGGBLHGJmKpFG1r1xFtbCLWmCLamCLmTZFE8oZuRpxOa01xtEpuqOg1/Si44XqgQGmsVj8uHPeT6ozRd38HTZ0xUl1RUh1RAiH5Z3IrKO3bz+XWVjo7O/H5rv47He/mr2s4xN6BvRK0r6Jm1ziZOzllNMVj2WP1m7oDRoBNqU28v+f9bnd6qT7WN66/LXtSEuJ2owxFKOYnFPOT6rz6B2nH0ZTzNTeQ56oUx6rufFIozw4W6T+WpVKYaCr6ns9tYdM9HQv9o9wwSRDzlPrKX5AYyRHZtYvwrl1E3ruLUF8fKuDe8FarVqjkJ0J4uVBwQ3l+bGJb3g3q1XKJsUweq1KmVi5TLZepVcpTbuS7FqUMUNR7uNDoK4PuTaIMg0A4TCAcIRiO4A+HCUVjNDS31rcHwhFijY1Ek254jqZSRBqSmNcIOtdLO5pCrkpuuEhuqFSfj3jL40OVg/vpuKkzSs8dzTR1xmjqipLqjMlNire40QMHyGzexJaenmsem2zvJNHWzroRzYv9L/KpzZ9a+AKuACWrxLHsMQ6nD9e71TsxcoKa435gjfqjbGrcxMc2fKze9KM30YvfkAGWhBBXZxiqXktN99WPtS2H0pgbvuOp5T0QoATtedBak/pnn6a4fx+l/QcYe/ppAFQgQGj7diK73fAd3rWL2KrZb7661nPYlkWtXKJWKVMrVyaWKxWqk7d7Ad1N2WriXkKlJq0rt+2ycttEjh9Ub8+s3P1KKfzBEIGIG5YDoTDBSGRSgA7jCwQX9WYG7WjyIxVywyVyQ+OBusTIUJHR4RLWpJszDFPR0Bwm2Rqme1MjidYwidYwydaIe4OitKW+rTjFIgNDl9BbNl+1ffY4pRQ9O+5k5Nnv8lz/q1Tsym1XAzveR/XkGxVPj56uD/ySDCbZktrCp/s+zZbUFrY0bWFVfJWMprjAHMfBrtSwylXschW7WsUuW9iVKnbVwqnWcKo17KqNU7Nwqja6ZuFYDrpm49RstO24bxMa0Nqti9H12plJ27wN43U1Wtcfp5lYVvWHT2yrnwsNWk09P0xdnut8Dub8l30+9U8LU3clblDpoVWseXTPUhdjVhK050EpReMnP0HjJz8BQG1oiNKB1ynt30/x9QOkv/Ln8Ed/DECgp4fw7t318B1Yu3ZOIVUphc/vx+f333BvGSuB1m47rsJIhfxIhUK2Qj5brq+PZSqMDpewrUlh2qdINIdJtEZY1Zci2eIuJ1rCxFIhDAnTwlN68y0uN7o9VaxatWpOj+nZsZs3fvAd4sOa/Zf2c2/nvQtZxCWVLqXdUD2p54/zY+fr+1sjrWxJbeG9Pe91Q3VqC+3R9tum14Dp7KpFcThLaShLOZ3HLlVwag6OZaGrNtpycCx37k4abAdtaxifHNzJBqVBOQq0QnmToRUKAwPDm5uYysRQc2tOZ3qTy/CmG3vLd+o37ev6YEBa60nbpu6bvHXqfnc+df/0NW9ZXbl9zub4spz5jJKiVxptzdDL2zIiQfsm8re24n/fozS8zx2YximXKb/9NsX9BygdOED+mWfIffvbAJiJRL22O7J7F6Ft2zDCt+bAGNrRlPI18tky+Wxlapge8daz5SnNOwBQEIkHiDUGSbaGWbOtiUTLRM10NBmUMC3mpHTAHaimpamJ8Bz/na3euh3DNFl9OcqL/S/eEkFba82l4qUptdSHMocYKg7Vj+mOdbOlaQsf3fBRNqc23xZ9VNcKZQqXMpQv56ikx6iOFLHGytiFGrpoQQWMmoHP9uEnQMCY+Kp6PMLOtDaZrS0c7eBgo3FwcNy50mjloBWgHBwTtDHpVAZgKpSp3LnPqM+Vz8DwmSi/ieE3UD4fRsDECPgwAyaG348R9GEG/O4U8mMGA5hBt79jw6A8legAABmvSURBVHCbGirDBMP91tNddpsGztbXvBBi7iRoz9PZg2m0owmEfATCJv6gj0DIJBDyYYZCRPbsIbLH/UpDa0319GlKBw5Q3L+f0oHXyT/3nHsin4/A6tUEVq3CX5+vcufd3RjB5fG1tW05VIoW5UKNSqFGuWhRzteoFGveNoty0dtXsCjl3ZsZpneCbxiKaDJINBmkuTvGmu1NxLz1WGOIWKPbGb4MCytuhvy+/aQ72tnR2zvnxwTCEbo2b6V48RB7+/fy5Xd8eQFLePPV7BoDhQEOZw5P9PyRPky2kgXAUAa9Db3c1X4Xm1Ob6WvqY1Nq04yjq64kjuNQHS1QvDTiBufMGLVcCWu0jFO00CUbVQHDMvA5fvwE8RsT92eYQBgTiOJoh6ouY6kqtmlTDVephmqUIhWMWAB/IkwgGcEXCWIE/JhBH75QwA26wQC+UKAebCW0CnF7kqA9T89//Shj6fKM+wxT4fdCdyDkhfCwiT+4icDmPgI7PodJDZUeRF88j04PYV++jHPyBJTfQmkHpW0UDr5kgkBLM/62ZgLtbQQ72vB3tBPs7MCXbMAwFIapUIbCsTW25bhTzcG2pq9PW65dud+yHCoF64oAXSvP/hWNUhCM+glF/YSiPiKJAKmOqBeeg1PmkXhA2kmLRaFtm8GTJ6h1d8252ci4nh27OX/wTQYuXeBi/iIdsaW9s73m1MiUMqTLaS6XLpMupUmX0+68lOZyeWJbrpKrP85n+NiQ3MC7Vr+LLSn3JsWNjRuJ+K/eNddy4Fg2pXSO4lCWSnqUSqaINVrCyldwChaUHVQVTMvEpwMEVBBTTby1+QG/939bW15wrmH7bCrhCpVwDSPiwxcL4kuECaaihJobCLc2Em5swPCt7D58hRBLS4L2PH3oizvrAbRWtqmWLare3N02sV4t25TzNcbSZaoli2rFdkcV1ACr3KkRd5rNqDcdA8h6081j+g1Mn4HpUwQjbmCOJYM0dcUIRfwEoz4vSE8sByNu1z2BoCnhWSw7lWPHGIrGgKsPVDOTnh27eeHrX6HrcogXB17kZzf+7E0vn+VYZMoZNyiXLteD8/hyppSpL49URmY8R9QfpSnURHO4mXXJddwVuoumcBNtkTY2pzazPrkev7l8ev6wKlUKg2lKgyOUhnNUMwWsXBknX4OyxqgpTNvErwP4VWjKDZZBIOj9v+ZUqVHBMmrYARsrUKIcrmBGA/jiQfzJCMFUjFBTgkhbkkBDVGqWhRCLSoL2PF2rs/Zr0Y6mVnVDum05OLbGcTTa0e5yfd3BtjXa1tilMtWhy9SGhqkOp6ldTmNlRqhmR7BGRjHsGsqxMBwLw6m5c21hhoMEYmF8DTH8iTj+ZJxAYwP+VIJAUyP+VCO+phS+VAozlVo2zVWEmI/iPnegmng0SjKZvK7HtqzpJZpsZF3WZm//3jkHbcuxyJazV4TmmWqhRyoj024Mc0V8EZrCTTSFmuhN9LKnfU99vSnshurx5bBv6e/vcBzHrXm+mKY0lKOSzlMbKWKPVaHooCrgs3z4dZCgMVFet645AASoOmU3OJsWtaBFLWijIlXMqB9fQ4hAMkKwqYFwS4JISyP+6PLu1ksIISRoz9MPv/qPaEfTkGwg0ZQk0Zoi2ZEi3DC3Ec6UobymJdf7q+iacau2bexcDjuTwcpksDNZ7Oz05Sz2hX6stzLksyNgWTOeS/n9GLHYxBSNYEYnrceiGNEoZiyGEZ3YZkajkx4TxQiHUTe532wh5qq4fx/D7e2s7em57l4y3G7+dpN/+Tm+NfAylwqXGKmMTG2mMa3JRrqUJlvOzhiew75wPRyvaVjD7tbdV4Tm8TC9XJp1VAslCgNpipeylC+PUssUsUYr6IIFZY1ZM/A7AQIqVG+yYQBhDMLEsLVFRZewjBq1gEUtbFOKVvE1BAl4zTQi7Y1E25skOAshbjmSfubp4JkjZJ38Fdv92kfMDBH1R4iHY8SjMRoSDSRSSRItjSTaGom3JDFu8s1+yjTxpdxa6bnUR2utcUZH3SCezU4J6E4hj53P4xQKOPkCTj6PNTyMfea0u14ooMszt0+/gs+HEQqhwiGMYAgjHEKFwhjBICocdveFQlOOUeEQRiiMCgXd9UDAm/yoQACjvj7D5A9gBPzg99+2XZDdTrTWUKvhVKvo8alSQVerDL/9NqX77rvuZiPjenbs5uDzPyJ8ucZ7vvWeK/aHzFA9IHfHutnZsrMelpvDzW6QDrnz5RKebcuieClL4WKGynCOSqaAlSth52tQdDCqCp/lI0AIvzHxl8RtsBFC6yBVXaKqqtg+i3KkTCVSw2wI4E+GCTbFCbUmiHY2EWpskOYaQojblgTtefrlX/sSlUKZ3MUM2UtpRtM5RkdyjI2NMlbMk68UOTfSTzFbQfdPfayhFREVIuYPEwtGiYTChIIhQuEQ4XCYUDRMOBom0hAjHI8QSUYJNUQxb+LNOUopzEQCM5GA6+iRYZyu1XAKBex8AaeQx8l7U6HghvR8AadcQpcr7rxUxqmU3Xm5jC6XsUdGsMolnCnHVKBWu3YB5vIz+v1TQ7jP59aw+30o0zd13eefWPeZU9aV3wc+7xjTBNNwu8Ian/vMqeuT56YJpjl13fDmKDDcwYOUYbh3larp6+PdcM22PsOHidlGBL3Kdq01OBq0445Ieq1l2555u2WjbQssG23baKsGtu1un7JsgW1duew9xg3NtSnBWVerMwbq2QyucQeLutGgveaOXaAUn/C/h8TdO6fUPjeHm4n4IkvyYc5xHKx8icpYkdpYiWq+hFUoYxcrWKUqdqmGXaxij1XQBbenDbPmtnsOqHC93bMJRPABcWpOlSplLLNGNVyjGrYwYhV8iRCBVJRwa9KtfW5rwgzI24cQQlyL/KW8CYLREK3rO2ld3znrMbZlMzaUZWQwQ244Sy6bYzQ3ylghT75cYLiQoZyvUtU1tz/V2WgIKB8B/IRMP0EzQNAfJOQPuiE9FCIQCOAP+PEH/ARCQQIBP/5QkEAogD8UIBAOulMkRCASnFetuvL7MZNJzOts+zoXulbDqVTQZS+UTw5XtdoMoas27Zjq1GO8x2BZ6JqFtqyJEDi+Xq3iFIvuNi/8udOkY7zHYdtuuLRtcJxr/0DCZRjeBxkfyjTdDxvjH3pMc+q+SR+QjHjM/RbDH0AFg1O+4TDG1+v7vG89gkGOnD9P4PJl2trabqi44XgD7es2oAasGx6K3apUqea9QDxWxCpUsAplrGIF2wvFTsXCqdjugCdVBywNFijLHczEcAwMbWLiw8SHT838bc3EQCU+wIejg1R0GcuoujcMBkuUozXMhiCBxgjBpjiRtkYiHSlCidgN/XxCCCFmJkF7kZg+k2RnM8nOqw/84DgOlbESxVyeYq5AeaxIMV+kXChRKpYolctUyiXK1QrlaoWKVSVbGqVaqFLRNSx1/YHP1AY+5b19KxO/YeIzfJjKxDQMTMP0Jm/Z9GGaBqbpwzc+9/kwTRPT58Pnc+emz8Tn92H4TEzTwDBNd5/fh2GamD7T22di+E18ftPd7jcx/X53fyiML7b83/y11lOCt7YdcGyvxteZCOYzbR8fpthx3FplR3tDHY+vjw+XfI31GT6gzVrTOut2wx24wjDAqy2fWDbcXmWmLxvG1GMUXs2/G5brodnn82r1F7cZwcX/8l9YtWpVvfmC+7vS3ih97mh9U5Ytt2a+vmxrtvTcz/GXfsLRv/gRuuJMCcXUdD0UGzao8UA8HoqVb0p3c/VLzfiNgAbjjTLAHdjE1hY2FraycZSNNhysgA0+G3w18CtUwMQImu6AJGEfRiiAL+zHjITwx4L4oxECiQiR5qR0USeEEEtE6dm+Rr4ZJ1fq/cDv4Faw/LHW+jen7Q8CXwXuBNLAJ7TWZ7x9/wb4PGADX9Raf/9qz7Vnzx792muv3fSfYaWxKjWqxQrVUplqsUq1XPGmGrVKhVqlSq1So1qtUqvVqFWrVGsWVq1GzapRsy0s26JmW9iOja0dHO3O65M3qtn48lyHu71hGgwU7oDECqUmLU/fVt9nuNvUxH5DKZTyHqXAwAuS3rLbAsOboyaWlVF/vNvKY+IcKIU7c0Oc8ppxuL0ceuVSuAHU21/f5u13H+g+58Q56pu955h23LT9N+c663rm1+7/vPmk7VrX97kP0YB2PxdMXga3CYl2Pzxqr1mKxmueojXO+LbpExPL7jEOjtbuqHraqW+vLzPpGO+xDhP7ilS4k/XstnvdDzH2zfubZzlVLCyc8VBsaLThoN3KZPApVMCYFor9mOEAvkgQXzSELxrEHw0TiEcIxMP4QtLbjxBCLHdKqX1a6z3XOm7BarSVUibwe8B7gQvAq0qpJ7XWhyYd9nkgq7Ver5T6JPBbwCeUUn3AJ4GtQCfwQ6XURq318h7QfhnwBf34gn4ijYtTC+w4bi1grVLFrtSwaha1Sg2rWsOuWVhVC9uycGwH27JxLBvbdry5heN4220H27bdddtdry877mPGw5R2JoUuZ1oYmxTqJoKYUw91tuO+hMYDnTMpHDp4y/XtTIQ+rw8JPeU/6ueqHzu+bdrygn8YWYaUhvGPD6r+n/dhwz0Co76XafvdIwxlYEz+AFX/0ON+u2J4y5O3G8odWlp5yz7Tx672bUTDUZQ5Pny1V1M/vjy+3Zy8PHVbfjQDpsIfDxOIh/FHwlJTLIQQ4qoWsunIXcAJrfUpAKXUN4AngMlB+wng//CWvwX8Z+VW8T0BfENrXQFOK6VOeOd7aQHLK26AYRhggOkPQ2zp+/JdzhyviYd23A8GbhMR3OXJNcT1Zadei+xumNgGuB8GJh2r1E1okqGo19yr8RsuZ1hXM+03jPryrdjLRIr4UhdBCCHECrOQQbsLOD9p/QJw92zHaK0tpVQOaPK2vzztsTN3HL3Efv0fDnJoYHSpiyGEEEIIcdvp62zg3/7M1qUuxqxWdLWTUupfKKVeU0q9Njw8vNTFEUIIIYQQom4ha7T7gVWT1ru9bTMdc0Ep5QMSuDdFzuWxaK3/EPhDcG+GvGklvw7L+VOUEEIIIYRYOgtZo/0qsEEp1auUCuDe3PjktGOeBD7rLX8ceEa7DVKfBD6plAoqpXqBDcBPF7CsQgghhBBC3FQLVqPttbn+AvB93O79/lRrfVAp9RvAa1rrJ4E/Ab7m3eyYwQ3jeMf9Ne6NkxbwS9LjiBBCCCGEWEkWtB/txST9aAshhBBCiMUw1360V/TNkEIIIYQQQixXErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWABKa73UZbgplFLDwNnrfFgzcHkBiiOmkuu88OQaLw65zgtPrvHikOu88OQaL46lus5rtNYt1zrolgnaN0Ip9ZrWes9Sl+NWJ9d54ck1XhxynReeXOPFIdd54ck1XhzL/TpL0xEhhBBCCCEWgARtIYQQQgghFsDtHrT/cKkLcJuQ67zw5BovDrnOC0+u8eKQ67zw5BovjmV9nW/rNtpCCCGEEEIslNu9RlsIIYQQQogFcVsEbaXU+5VSR5VSJ5RS/3qG/Z9TSg0rpV73pn++FOVcyZRSf6qUGlJKvT3LfqWU+l3vd/CmUmr3YpdxpZvDNX5YKZWb9Dr+tcUu40qnlFqllHpWKXVIKXVQKfXLMxwjr+V5muN1ltfzPCilQkqpnyql3vCu8a/PcExQKfVX3mv5FaVUz+KXdGWb43WWjHETKKVMpdQBpdQ/zrBv2b6WfUtdgIWmlDKB3wPeC1wAXlVKPam1PjTt0L/SWn9h0Qt46/gK8J+Br86y/zFggzfdDfy+Nxdz9xWufo0BXtBaf3BxinNLsoD/SWu9XykVB/YppZ6e9vdCXsvzN5frDPJ6no8K8G6tdV4p5QdeVEp9V2v98qRjPg9ktdbrlVKfBH4L+MRSFHYFm8t1BskYN8MvA4eBhhn2LdvX8u1Qo30XcEJrfUprXQW+ATyxxGW65WitfwxkrnLIE8BXtetlIKmU6lic0t0a5nCNxTxprS9qrfd7y2O4f9S7ph0mr+V5muN1FvPgvT7z3qrfm6bflPUE8Ofe8reAR5RSapGKeEuY43UW86SU6gY+APzxLIcs29fy7RC0u4Dzk9YvMPMf9I95XwN/Sym1anGKdluZ6+9BzM+93leY31VKbV3qwqxk3lePu4BXpu2S1/JNdJXrDPJ6nhfvq/bXgSHgaa31rK9lrbUF5ICmxS3lyjeH6wySMebr/wX+Z8CZZf+yfS3fDkF7Lv4B6NFa3wE8zcSnIiFWkv24Q8LuAP4/4O+WuDwrllIqBvwN8Cta69GlLs+t6hrXWV7P86S1trXWO4Fu4C6l1LalLtOtaA7XWTLGPCilPggMaa33LXVZbsTtELT7gcmfHru9bXVa67TWuuKt/jFw5yKV7XZyzd+DmB+t9ej4V5ha66cAv1KqeYmLteJ47Sz/BvgLrfW3ZzhEXss3wbWus7yebx6t9QjwLPD+abvqr2WllA9IAOnFLd2tY7brLBlj3u4HPqSUOoPb/PfdSqn/Nu2YZftavh2C9qvABqVUr1IqAHwSeHLyAdPaV34It72guLmeBD7j9dhwD5DTWl9c6kLdSpRS7eNt0pRSd+H++14Wf2hWCu/6/QlwWGv9n2Y5TF7L8zSX6yyv5/lRSrUopZLechi3Q4Aj0w57Evist/xx4Bktg2tcl7lcZ8kY86O1/jda626tdQ9uhntGa/3Pph22bF/Lt3yvI1prSyn1BeD7gAn8qdb6oFLqN4DXtNZPAl9USn0I9074DPC5JSvwCqWU+kvgYaBZKXUB+Le4N4Wgtf4D4CngceAEUAR+bmlKunLN4Rp/HPgflVIWUAI+uVz+0Kwg9wOfBt7y2lwC/C/AapDX8k00l+ssr+f56QD+3Ot5ywD+Wmv9j9Pe+/4E+JpS6gTue98nl664K9ZcrrNkjAWwUl7LMjKkEEIIIYQQC+B2aDoihBBCCCHEopOgLYQQQgghxAKQoC2EEEIIIcQCkKAthBBCCCHEApCgLYQQQgghxAKQoC2EEDdAKZWfwzG/opSK3MTn/LBSqu8mnu8n83hs3pt3KqW+dZXjkkqpX7zR5xFCiJVMgrYQQiycXwGuK2h7/fHO5sPATQvaWuv7bsI5BrTWH7/KIUlAgrYQ4rYkQVsIIeZBKfWwUuo5pdS3lFJHlFJ/4Y0a+UWgE3hWKfWsd+yjSqmXlFL7lVLfVErFvO1nlFK/pZTaD/ysUuq/V0q9qpR6Qyn1N0qpiFLqPtxR5X5bKfW6UmqdUmqnUuplpdSbSqm/VUo1eud7Tin1/yilXlNKHVZKvUMp9W2l1HGl1P85qez5Scu/qpR6y3vO35zh5+z1yv7WtHP0KKXe9pa3KqV+6pXvTaXUBuA3gXXett9WSsWUUj/yrsFbSqknJp3nsFLqj5RSB5VSP/BG2kMptV4p9UOvbPuVUuu87V/2rtObSqlfv6m/WCGEuAkkaAshxPztwq297gPWAvdrrX8XGADepbV+l1KqGfjfgPdorXcDrwH/atI50lrr3VrrbwDf1lq/Q2u9A3e45s9rrX+CO8zwl7XWO7XWJ4GvAr+qtb4DeAt3tNBxVa31HuAPgL8HfgnYBnxOKdU0ufBKqceAJ4C7vef8v2f4GX8H+H2t9XZgtiHnfwH4Ha31TmAPcAH418BJr8xfBsrAR7xr8C7gP44PtQ5sAH5Pa70VGAE+5m3/C2/7DuA+4KJS6lHv+LuAncCdSql3zlIuIYRYErf8EOxCCLEIfqq1vgDgDSneA7w47Zh7cIP4Xi9XBoCXJu3/q0nL27xa4yQQA74//QmVUgkgqbV+3tv058A3Jx3ypDd/Cziotb7oPe4UsApITzr2PcCfaa2LAFrrzAw/4/1MBN+vAb81wzEvAf+rUqob98PC8YkMPVF04N97odgBuoA2b99prfX4kOz7gB6lVBzo0lr/rVe2svdzPAo8Chzwjo/hBu8fz1AuIYRYEhK0hRBi/iqTlm1m/tuqgKe11p+a5RyFSctfAT6stX5DKfU54OF5lMmZVj5nlvLNhb7qTq2/rpR6BfgA8JRS6n8ATk077J8CLcCdWuuaUuoMEJpWZnCvY/gqT6eA/6C1/q/XUX4hhFhU0nRECCEWzhgQ95ZfBu5XSq0HUEpFlVIbZ3lcHLd5hB83mF5xPq11DsgqpR709n0aeJ4b8zTwc+M9pCilUjMcsxf4pLf8T2fYj1JqLXDKazbz98AdTL0GAAlgyAvZ7wLWXK1gWusx4IJS6sPecwS9cn4f+PlJ7dy7lFKtc/pphRBikUjQFkKIhfOHwPeUUs9qrYeBzwF/qZR6E7eZxeZZHve/A6/ghtsjk7Z/A/iyUuqAd0PgZ3FvjnwTt53yb9xIIbXW38NtavKa1/TlSzMc9svALyml3sJt7jGT/w542zvHNuCrWus0bnOZt5VSv43b3nqPd57PTPv5ZvNp4Ivez/kToF1r/QPg68BL3rm+xdRAL4QQS05pfdVvAoUQQgghhBA3QGq0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgA/z82hUeMa0m4sAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -177,19 +177,21 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('Energy difference compared to no reduction []')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { "cell_type": "code", "execution_count": 4, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYXFW59v/vTWckCUNCAMlMCEOYAjSDoDgwBQdAQQVRQcWowBF/vuLwilPUox5/Dqh4FAERBCOgaBwRFVCGAB0ICQkEQgikQ4CQMCRAhk6e94+1GnaK6q4KSXVVd+7PddXVe1h711O7quuptdfaaysiMDMz68wW9Q7AzMwan5OFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFI+oqkX+XpkZJWSGrK8ztI+rek5ZK+q+QXkp6WdEd9I7fOSFog6ch6x1Frkk6XdHMN9rve/8Im3O9oSZH3PSkv2zXPr5V0xqZ8vk2lV70D6M4kLQB2ANYWFl8aEWfXJ6KNFxGPAgMLiyYBTwFbRURIej1wFDA8Ip6vR4y28SRdCrRGxHn1jqVR5P/nMyLiH1D2f2FT2yYi2vJzPQAMlHRjDZ9vozhZbLy3t3+4akVSr/YPVR2MAubEy1dvjgIWvJpEUefX0a1tLsduc3md3ZFPQ9VIe9VY0v+fT9k8LOnYwvqtJV0sabGkRZK+Xjj1c7qkWyR9X9JS4CuSmvJpoKfyvs7OVdlekt4laXrJ839K0h86iG2MpJvyqaXrge0K60YX9nspcBrwmVxF/ihwEfDaPP/VvM3bJM2Q9IykWyXtU9jfAkmflTQTeD7vdydJv5W0JL+WTxTKf0XSVZIuy/HNltRcWD9C0u/ytksl/biw7kOS7svH+zpJozp5f16XY31G0kJJpxfel8vy/h+RdJ6kLcq8L89Imi/p0Lx8oaQnJZ1WeI5LJf1U0vX5tdxUjEnS+Xm75yRNz7W24nG4RtKvJD0HnC5pC0mfk/RQfu1XSRpc2Ob9Oealkr7QyWufBJxaeF//mJfvIenG/NpmSzquk33cKOlr+Xgsl/R3ScXP0XF5H8/ksnt0sq+QdJakB4EH87Ld83FbJmmupHcXyg+RNDUftzuAsYV1L31+S2I9ozD/kfw5WS5pjqT9JV0OjAT+mI/JZ0r3lT+3U3NM8yR9pOT96vBz2yNEhB+v8gEsAI7sYN3pwBrgI0AT8HHgMUB5/bXAz4ABwPbAHcBHC9u2Af9Fqv31Bz4GzAGGA9sC/wAir+8LLAP2KDz/3cCJHcR2G/C9vN3hwHLgV3nd6Pb95vlLga+XvK6bC/P7AU8CB+fXeVo+Ln0Lx2gGMCK/ji2A6cCXgD7AzsB84Jhc/ivASuAteX/fBKbldU3APcD383HrB7wurzsemAfskY/JecCtHbz+Ufk1nwL0BoYAE/K6y4A/AIPysXgA+HDJ+/LBHMvXgUeBC/KxPDrvd2Dh2C3Px7gvcH7JsXtffu5ewP8BHgf6FY7DGuCEfMz6A+cA0/JnoC/p8/PrXH48sKLwXN/LsXb0+Sx9X3vn4/d/8/vy5hz7bh1sfyPwELBrju1G4Ft53a7A86TTlb2Bz+R99+lgXwFcDwzO+xoALMzHuRfpM/YUMD6XnwJclcvtBSxqP66UfH4LsZ6Rp9+Vyx8ICNgFGFXu/7l0X8C/gZ+QPncTgCXAmyt9bsu83lfEWC7WRnvUPYDu/MgfrhXAM4XHR/K604F5hbJb5g/IjqR2jlVA/8L6U4AbCts+WvJc/yInkzx/ZMkH+X+Bb+TpPYGnyV/YJfsZSfoSGVBYdiWvPln8L/C1kueYC7yhcIw+VFh3cJnX9nngF3n6K8A/CuvGAy/m6dfmf9By/2R/JX+p5/ktgBfavwjKPN+1ZZY3AavJX0p52UeBGwuv/cHCur3zsdqhsGwpLyeeS4EphXUDSe1bIzr4PD0N7Fs4Dv8uWX8fcERh/jWkhNKLlHyLzzUgv5Zqk8XrSclqi8KyXwNf6WD7G4HzCvNnAn/L018Erip5LxYBb+xgX0H+0s3z7wH+U1LmZ8CX83u0Bti9sO6/qT5ZXAec08n/c9lkQfqxsxYYVFj/TVIbZfv7VfZzW+Z5XhFjuVgb7eE2i413QnTcZvF4+0REvCAJ0hfGYNIvrsV5GaR/qIWFbYvTADtVWP9L4NeSzgPeT/pnXVUmpp2Ap2P9NodHSP8Mr8Yo4DRJ/1VY1ic/T7lYRwE7SXqmsKwJ+E9h/vHC9AtAv3wqYATwSJQ/pz0KOF/SdwvLBAwjvb6iEaRfxaW2I70vxfKP5H20e6Iw/SJARJQuKzaKvvTaI2KFpGXk91LSp4EP5/kAtqJwSpBXvsejgGslrSssW0v68bHe5yMinlc6hVmtnYCFEVHcd+lrL1X6PrW/7p0oHMOIWCdpYYV9lX5GDi75jPQCLgeG5uli+dL3tzMdvfeV7AQsi4jlJc9bPNVU9nPbwee123GyqI+FpJrFdp18kEqHA15MOv3Qbr0v94iYJmk16Rfie/OjnMXAtpIGFBLGyDLPV62FpBrNNzopU9z3QuDhiBj3Kp9rZAf/gO1xXFHlfg4qs/wp0q/WUaRTfpCOzaJXEWu7l94nSe0/FB7L7ROfAY4AZucv1KdJCa5d6XuykFRLu6X0SSQtJp2Ca5/fknSKqyOl+34MGCFpi0LCGEk6DbehHiPVutpjEek4dHYcSz8jN0XEUaWFlNr12vL+7i/E2a79M70l8Fye3rFk32Mpr7P/gceAwZIGFRLGxn42uhU3cNdBRCwG/g58V9JWueFyrKQ3dLLZVcA5koZJ2gb4bJkylwE/BtZERNl+5xHxCNACfFVSH0mvA96+ES/n58DHJB2sZICkt0oa1EH5O4DlSo3e/ZUa7veSdGAVz3UHKdl9Kz9PP0mH5XU/BT4vaU94qaH6XR3s5wrgSEnvVmpwHyJpQkSsJR3nb0gapNQY/SngV9UdirLeotSY3gf4Guk89kJSm0gb+bSapC+Rahad+WmObVR+jUMlHZ/XXQO8rfBck+n8//sJUntRu9tJv4Y/I6m3pDeSPhdTNuC1trsKeKukIyT1JrXHrAJurXL7PwG7KjXY986PAyXtkd+j35E6fWwpaTypnQyAiFhC+gJ/X/5sfYj1k8NFwKclHZA/r7vo5U4HpcfkJfk9uxX4Zv7c7UOqFW7MZ6NbcbLYeO29J9of11a53QdIp2vmkM5VX0M6B92Rn5MSzExS4/VfSF82xWs8Lic1+FX6AL+X1HawjHQe+LIqY36FiGghNeL/mPQ65pHO7XdUfi3wNlID4cOkX/MXAVtX8VxrSV9gu5AalltJ57eJiGuBbwNTlHoP3Qsc28F+HiU1RP4f0jGYAeybV/8X6dfpfOBmUnvOJZVi68SVpGO8DDiA1KgN6dz530i/3B8hNY6WnnYqdT4wFfi7pOWkxu6D82uaDZyVn28x6b1o7WRfFwPjlXor/T4iVpOO7bGk9+QnwAci4v5O9lFWRMzNr/NHeV9vJ3UxX13l9stJnQVOJv2if5z03vbNRc4mnfJ6nNT28ouSXXwEOJfUfrQnhSQVEVcD3yAdp+XA70m1PUhtEOflY/LpMqGdQmpveIzUQeXLnZyC7nHae+ZYN6PUDfenETGqsKw/qWfS/hHxYN2CM8AXvll5uSYzl/QD4dyI+LmkccCdpB+QZ0bEpXUMsSy3WXQTORG8iVS72IH0a7W0FvNx4E4nCrPGlU8F9ytZ9iCwTX0iqk5NT0NJmqh0Qc08SZ/rpNyJ+eKX4sVXn8/bzZV0TC3j7CYEfJV0euFuUjfKL720Mg1VcA7p1IqZ2SZVs9NQudfCA6QLc1pJVaxTImJOSblBwJ9J1a+zI6IlN1r9mtRjZSfSBWi75nPWZmbWxWpZsziIdFHa/NywNYV0lW2pr5Ear1YWlh1PusBoVUQ8TGo0LdfV0czMukAt2yyGsX7vjlZyz412kvYnXc36Z0nnlmw7rWTbV1zQozTGzSSAAQMGHLD77rtvotDNzDYP06dPfyoihlYqV7cGbqXB2b5HJ90sK4mIC4ELAZqbm6OlpWXTBGdmtpmQVNUV8LVMFotY/yrj4ax/teMg0jUBN+YhL3YEpiqNdFlpWzMz60K1bLO4ExinNBx2H9IFNlPbV0bEsxGxXUSMjojRpNNOx+WLvKYCJ0vqK2kMMI509a6ZmdVBzWoWEdEm6WzSlapNwCURMVvSZKAlIqZ2su1sSVeRrm5uA85yTygzs/rpMVdwl2uzWLNmDa2traxcubKDrTZP/fr1Y/jw4fTu3bveoZhZnUmaHhEVb9TUo6/gbm1tZdCgQYwePRpJlTfYDEQES5cupbW1lTFjxtQ7HDPrJnr0QIIrV65kyJAhThQFkhgyZIhrW2a2QXp0sgCcKMrwMTGzDdXjk4WZmW08JwszM6vIyaKGFixYQP/+/ZkwYULZ9VdccQX77LMPe++9N4ceeij33HPPBj/HxIkT2WabbXjb29623vJTTz2VwYMHc80117yq2M3Mipwsamzs2LHMmDGj7LoxY8Zw0003MWvWLL74xS8yadKkDd7/ueeey+WXX/6K5VdccQXHHXfcBu/PzKycHt11dj23fheWzt20+xyyGxz66m8fceihh740fcghh9Da2tldMMs74ogjuPHGG191DGZm1XDNokFcfPHFHHts2VtGm5nV3eZTs9iIGkCt3XDDDVx88cXcfPPN9Q7FzKws1yy60AUXXMCECROYMGECjz32GAAzZ87kjDPO4A9/+ANDhgzpdPvbb7/9pe2nTu1waC0zs01u86lZNICzzjqLs84666X5Rx99lHe+851cfvnl7LrrruuVPeKII7jssssYNuzlez4dfPDBHTaWm5nVkpNFHU2ePJmlS5dy5plnAtCrVy9aWlpYt24d8+bNY/DgwRX38frXv57777+fFStWMHz4cC6++GKOOeaYWoduZpsZJ4s6uuiii7joootesXzOnDmceOKJ9O/fv+I+/vOf/9QiNDOz9bjNooaampp49tlnO7woryN77bUX3/ve9zbquU899VRuuukm+vXrt1H7MTODzaBmERF1GzhvxIgRLFy4sC7PfcUVV3S4rqfcw8TMuk6Prln069ePpUuX+suxoP1+Fq5xmNmG6NE1i+HDh9Pa2sqSJUvqHUpDab9TnplZtWqaLCRNBM4n3YP7ooj4Vsn6jwFnAWuBFcCkiJgjaTRwH9A+Pse0iPjYhj5/7969fTc4M7NNoGbJQlITcAFwFNAK3ClpakTMKRS7MiJ+mssfB3wPmJjXPRQRG9YybGZmNVHLNouDgHkRMT8iVgNTgOOLBSLiucLsAMCNC2ZmDaiWyWIYUOwK1JqXrUfSWZIeAv4H+ERh1RhJd0u6SdLraxinmZlVUPfeUBFxQUSMBT4LnJcXLwZGRsR+wKeAKyVtVbqtpEmSWiS1uBHbzKx2apksFgEjCvPD87KOTAFOAIiIVRGxNE9PBx4Cdi3dICIujIjmiGgeOnToJgvczMzWV8tkcScwTtIYSX2Ak4H1hkqVNK4w+1bgwbx8aG4gR9LOwDhgfg1jNTOzTtSsN1REtEk6G7iO1HX2koiYLWky0BIRU4GzJR0JrAGeBk7Lmx8OTJa0BlgHfCwiltUqVjMz65x6ytXNzc3N0dLSUu8wzMy6FUnTI6K5Urm6N3CbmVnjc7IwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrKKaJgtJEyXNlTRP0ufKrP+YpFmSZki6WdL4wrrP5+3mSjqmlnGamVnnapYsJDUBFwDHAuOBU4rJILsyIvaOiAnA/wDfy9uOB04G9gQmAj/J+zMzszqoZc3iIGBeRMyPiNXAFOD4YoGIeK4wOwCIPH08MCUiVkXEw8C8vD8zM6uDXjXc9zBgYWG+FTi4tJCks4BPAX2ANxe2nVay7bAy204CJgGMHDlykwRtZmavVPcG7oi4ICLGAp8FztvAbS+MiOaIaB46dGhtAjQzs5omi0XAiML88LysI1OAE17ltmZmVkO1TBZ3AuMkjZHUh9RgPbVYQNK4wuxbgQfz9FTgZEl9JY0BxgF31DBWMzPrRM3aLCKiTdLZwHVAE3BJRMyWNBloiYipwNmSjgTWAE8Dp+VtZ0u6CpgDtAFnRcTaWsVqZmadU0RULtUNNDc3R0tLS73DMDPrViRNj4jmSuXq3sBtZmaNz8nCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCqqabKQNFHSXEnzJH2uzPpPSZojaaakf0oaVVi3VtKM/JhayzjNzKxzvWq1Y0lNwAXAUUArcKekqRExp1DsbqA5Il6Q9HHgf4D35HUvRsSEWsVnZmbVq2XN4iBgXkTMj4jVwBTg+GKBiLghIl7Is9OA4TWMx8zMXqVaJothwMLCfGte1pEPA38tzPeT1CJpmqQTym0gaVIu07JkyZKNj9jMzMqq2WmoDSHpfUAz8IbC4lERsUjSzsC/JM2KiIeK20XEhcCFAM3NzdFlAZuZbWZqWbNYBIwozA/Py9Yj6UjgC8BxEbGqfXlELMp/5wM3AvvVMFYzM+tELZPFncA4SWMk9QFOBtbr1SRpP+BnpETxZGH5tpL65untgMOAYsO4mZl1oZqdhoqINklnA9cBTcAlETFb0mSgJSKmAt8BBgJXSwJ4NCKOA/YAfiZpHSmhfaukF5WZmXUhRfSMU/3Nzc3R0tJS7zDMzLoVSdMjorlSOV/BbWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFVSULSb+T9FZJTi5mZpuhar/8fwK8F3hQ0rck7VbDmMzMrMFUlSwi4h8RcSqwP7AA+IekWyV9UFLvWgZoZmb1V/VpJUlDgNOBM0g3LTqflDyur0lkZmbWMKoaG0rStcBuwOXA2yNicV71G0keY8PMrIerdiDBH0bEDeVWVDOmiJmZdW/VJottJb2zZNmzwKzi0OJmZtYzVZssPgy8FmivXbwRmA6MkTQ5Ii6vQWxmZtYgqk0WvYE9IuIJAEk7AJcBBwP/JrVlmJlZD1Vtb6jh7YkiexIYERHLgDWbPiwzM2sk1dYsbpT0J+DqPH9iXjYAeKYmkZmZWcOoNlmcBbwTeF2evwz4baTb7L2pFoGZmVnjqHgaSlIT8K+I+G1E/H/5cU1UcT9WSRMlzZU0T9Lnyqz/lKQ5kmZK+qekUYV1p0l6MD9O2+BXZmZmm0zFZBERa4F1krbekB3nJHMBcCwwHjhF0viSYncDzRGxD3AN8D9528HAl0kN6AcBX5a07YY8v5mZbTrVnoZaAcySdD3wfPvCiPhEJ9scBMyLiPkAkqYAxwNzCtsXL/SbBrwvTx8DXJ8b0MnPOxH4dZXxmpnZJlRtsvhdfmyIYcDCwnwrqabQkQ8Df+1k22GlG0iaBEwCGDly5AaGZ2Zm1aoqWUTELyX1B0ZGxNxNHYSk9wHNwBs2ZLuIuBC4EKC5ubliG4qZmb061d786O3ADOBveX6CpKkVNlsEjCjMD8/LSvd9JPAF4LiIWLUh25qZWdeo9qK8r5DaIJ4BiIgZwM4VtrkTGCdpjKQ+wMnAeglG0n7Az0iJojjG1HXA0ZK2zQ3bR+dlZmZWB9W2WayJiGclFZet62yDiGiTdDbpS74JuCQiZkuaDLRExFTgO8BA4Oq870cj4riIWCbpa6SEAzC5vbHbzMy6XrXJYrak9wJNksYBnwBurbRRRPwF+EvJsi8Vpo/sZNtLgEuqjM/MzGqo2tNQ/wXsCawidV99DvhkrYIyM7PGUm1vqBdIjdBfqG04ZmbWiKq9requwKeB0cVtIuLNtQnLzMwaSbVtFlcDPwUuAtbWLhwzM2tE1SaLtoj435pGYmZmDavaBu4/SjpT0mskDW5/1DQyMzNrGNXWLNqHCD+3sCyofGGemZn1ANX2hhpT60DMzKxxdXoaStJnCtPvKln337UKyszMGkulNouTC9OfL1k3cRPHYmZmDapSslAH0+Xmzcysh6qULKKD6XLzZmbWQ1Vq4N5X0nOkWkT/PE2e71fTyMzMrGF0miwioqmrAjEzs8ZV7UV5Zma2GXOyMDOzipwszMysIicLMzOrqKbJQtJESXMlzZP0uTLrD5d0l6Q2SSeVrFsraUZ+TK1lnGZm1rlqBxLcYJKagAuAo4BW4E5JUyNiTqHYo8DppBsrlXoxIibUKj4zM6tezZIFcBAwLyLmA0iaAhwPvJQsImJBXreuhnGYmdlGquVpqGHAwsJ8a15WrX6SWiRNk3RCuQKSJuUyLUuWLNmYWM3MrBON3MA9KiKagfcCP5A0trRARFwYEc0R0Tx06NCuj9DMbDNRy2SxCBhRmB+el1UlIhblv/OBG4H9NmVwZmZWvVomizuBcZLGSOpDGu68ql5NkraV1DdPbwccRqGtw8zMulbNkkVEtAFnA9cB9wFXRcRsSZMlHQcg6UBJrcC7gJ9Jmp033wNokXQPcAPwrZJeVGZm1oUU0TNGGm9ubo6WlpZ6h2Fm1q1Imp7bhzvVyA3cZmbWIJwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKyimiYLSRMlzZU0T9Lnyqw/XNJdktoknVSy7jRJD+bHabWM08zMOterVjuW1ARcABwFtAJ3SpoaEXMKxR4FTgc+XbLtYODLQDMQwPS87dO1itesYUVA6zSY/RtYuxr6D+780dSn3hFbD1SzZAEcBMyLiPkAkqYAxwMvJYuIWJDXrSvZ9hjg+ohYltdfD0wEfl3DeM0aS6yDBTfC3b+Ap+6DAdvDgB3guVnw4jJoe7H8dn0Gvpw4+m0LWw7pOLH0HgBSl74s655qmSyGAQsL863AwRux7bDSQpImAZMARo4c+eqiNGs069pg3t9gxi/hmYdhqxFw+Hkw7q3Q1PvlcmteTElj5dPwwtI0Xfp49hFYfBeserb8czX1SQll2zFp/2PeBL36dc3rtG6llsmi5iLiQuBCgObm5qhzOGYbp20VPPBHuOcyWP4YDB4HR/w3jDkCtmh6Zfne/aH3MNjqFb+jXmldG6x8JiWV9uRSTDKPz4Abvgg3D4BdjoHdjoOhe7rWYS+pZbJYBIwozA/Py6rd9o0l2964SaIyazRrXoA5v4WZv4IXl8L2e8Oh58LI1226L+stesGW26VHObEu1UDmToUH/gz3/Q623Rl2fTuMe0s6lWWbNUXU5ge5pF7AA8ARpC//O4H3RsTsMmUvBf4UEdfk+cHAdGD/XOQu4ID2Noxympubo6WlZZO+BrOaWvlsarS+dwqseg6GHQT7fQhec0B9f9GvXgEPXZ8Sx5OzQE0w8rBU2xj5upR4rMeQND0imiuVq9m7HhFtks4GrgOagEsiYrakyUBLREyVdCBwLbAt8HZJX42IPSNimaSvkRIMwOTOEoVZt/LCUzDzCrjvt6lWMeoNsN8HYfu96h1Z0mcg7PGO9Hj64ZQ0HvwLPPLv1Cg+7i2pxjF4bL0jtS5Us5pFV3PNwhre8sfgnsth7h9SG8LYo2HC6TB4l3pHVtm6Nlh4K8z9Y0oasTa1aez2dhh7DPQdVO8I7VWqtmbhZGFWa88sSN1f5/0tnV7a9e0w4TTYani9I3t1XlwGD/411Tiefgia+qZeVLsdBzs1gzwwRHdS99NQZpu9p+6Huy+Bh2+AXn1hr/fA3qfCwB3qHdnG6T8Y9jkV9n5vuv5j7lSYd11KhgNfA7u+LdU4Bu1U70htE3LNwmxTe3xGShILb03n//d8D+x1MvTftt6R1U7bynQB4dw/wqI7gEi1jN2Og52PWv/6EGsoPg1l1tWWPgi3/xBab0sXuu1zKow/KSWMzcmKx+GBP6XEsXwRDNwRJnww1TY8FEnDcbIw6yornoCWn6YvyL6DUvfX8Sf5SuhYl2pXd10ET96bhiqZcDrsfryTRgNxm4VZra1ekYbkmHUlELDP+1IX2L5b1TuyxqAt0nUZIw6DRbfD9Avhlm/DjF/AvqfB7iekthzrFpwszDbU2jXpCue7fp6G0NjlWDjwTBj0mnpH1pgkGH4IDDsYHrsTpv8cbv3Oy0ljj3e4FtYNOFmYVSsCHv4X3PFjeG4h7HQgHHIObLd7vSPrHqR0lfpOB8Li6ammcdt3YcalsO8HYPyJThoNzMnCep5nFqSLyDblxW6P3wO3nw9PzExjJk38QTq94oH2NpyUekrt1AyPTU9tGtO+D/f8EvZ5f2rv6d2/3lFaCScL6znWrkldVu++JM0f+PH0i3VjLhJ79lG4/Uew4IY0CN/h56XrCDw+0qax0wHp8fiMdHrq9vNz0ngf7Plu6L1lvSO0zL2hrGd4cjbcNDldUbzLsalmMf/6dNrjTZM7Hm21Iy8+ndok5vw2NcLu+4F0QZ1/8dbWEzNT0mi9Dfpu/XLS6DOg3pH1WO46a5uHtpXQ8jOYdUVKCK/7PIx6fWpfmPsHuOU76YvmjV+FEa+tbn+zrky9nNpWpsbX/T/iIbq72pP3pqSx8JaUNPY+JV3YuLlds9IFnCys53t8RqpNPPso7P6O1Nhc+mXy9Hz4x+dTjWPfD6ReS+VOIa1bCw/+OV0v8fyTMPqNcNDZsM3orngl1pEnZ6c2jUf/A30GpSFG9jrZAxduQk4W1nOteSH1SJp9dequevh56XRTR9pWwm3fT0OCb78XvPkbL99dLiKd8rj9h7BsXlp/8Dnwmv265rVYdZ66P9U0Hrkp/SDYK9c0+m1d78i6PScL65kevSVd2LV8cRqY78Azq28Enf9P+PfXUoI4/DzYemRqUF10BwwalmoSOx/pHk6N7Km5qaax4IY02u0ux8A7z81oAAAQRElEQVT4d8HQPeodWbflZGE9y7J5MO38VAvYehS84Yuw44QN38/yx+CfX0h3gIN0Pnz/M1J3TQ92130smwezr0pDpbe9mGqE409Kgxb6qvAN4mRhPcOLy1I7wv2/h94D0hf7nu/euC/2dW3pQrC1q1O/fp//7r5Wr0hjcs25Jl1f03frNPbUHie+fKrROuVkYd1b2yq499fppkFtK2HPd6VE0W+bekdmjSgCHmtJtY1H/p0GMRx5WDpFNeK1viFTJxpiIEFJE4HzSffgvigivlWyvi9wGXAAsBR4T0QskDQauA+Ym4tOi4iP1TJWaxAR6fqI238EKxbDqMPh4E+4V5J1ToJhB6bHiifg/mvhvmvhb+ek9qjxJ6Uh0v1j41WrWc1CUhPwAHAU0ArcCZwSEXMKZc4E9omIj0k6GXhHRLwnJ4s/RUTVd7B3zaIHWHw33PGjdGHWkF3hkE923svJrDNr16SG8DnXwOK7UoP42KNT4th+z3pH1zAaoWZxEDAvIubngKYAxwNzCmWOB76Sp68Bfiy5K8pmJQJap6UhOh6/G/oPgcO/mIfUaKp3dNadNfVOyWHs0alBfM418MCf4YE/wtDx6RTV2KM8eGGVapkshgELC/OtwMEdlYmINknPAu2Xyo6RdDfwHHBeRPynhrFaV4t1sOCmNEz1kjnpxjiHfjrf48D/vLaJDd4FXve51D36gT+nxHHTV2HaD9KtX8efCFsNr3eUDa1RR0NbDIyMiKWSDgB+L2nPiHiuWEjSJGASwMiRI+sQpm2wdW0w/x+pJvH0/PQPevh5MO6t7rpqtddnYLo+Z893p2HSZ1+dhneZ+SsYcWjqSDH8ta7VllHLZLEIGFGYH56XlSvTKqkXsDWwNFJDyiqAiJgu6SFgV2C9RomIuBC4EFKbRS1ehG0ia1fDg39JXVafa03DfL/56+kiOI/gal2tOEz680+mxvD7r4W/fRK2HJqu4dlhH9hhbxiym3/IUNtkcScwTtIYUlI4GXhvSZmpwGnAbcBJwL8iIiQNBZZFxFpJOwPjgPk1jNVq5blF6Z/w/j/Ayqdhuz3gqO/A6De4O6M1hgHbQ/NHYf8Pw8M3pBtcPTEz9cqD1DA+dA/Yfu+XE8iGjmLcA9QsWeQ2iLOB60hdZy+JiNmSJgMtETEVuBi4XNI8YBkpoQAcDkyWtAZYB3wsIpbVKlbbxNathUdvTmMxLbwt/YobdXjqhTLsYA+nYY1pi16pwXvsUWl+xRPpSv8nZsITs+DeKTDz8rRu0E45eeQEMmTXHl9D9kV5tum88FS60vq+a+H5J1J1fvcT0mPgDvWOzmzjrF2dBjRsTx5PzIQXlqR1TX1TD6v25LH93t1mWPtG6Dprm4O1a2DR7TB3aurdFGth+CGpZ9Oo1/f4X1u2GWnqk09D7ZPmI9KPomLymHUl3HNZWj9o2MunrXbYJ/XI6sb/D903cqufdW3p3skP/T1d9LTquXyDmvfCHu+ErUdU3odZdyfBwB3TY+zRaVnbylz7yMlj0R0w769pXVPfVHbLIel6oo7+9t+2IZNK40VkjSnWweP3pATx8D/TAH+9B6SG6rFHp7YI9xixzV2vfqknVfuIyBFp2JonZqbriZ5/El5YCkvnwsKlsOb5MjtRGpak/+BCItkuTw9+ObFsuR303arLOoo4WVjH1rWlD/mCm1LPkOefTL+ORh2eGgFHHOoL6Mw6I6XG8EE7wS4TX7m+bWVKHi8u7eDvMnjunjS9dlWZ/TelBLLjBDjymzV9KU4Wtr4VT6R7Rjx6S6pCr3ketuidEsPBn0iJotqbDZlZ53r1S0OpVxpOPSL9L3aUWPrXvjHdyWJzt3YNPHEPLLw1PZbNS8sH7JBOL404NI3kWXpvazPrOlL6H+wzELYZVZcQnCw2N2tehCWz4fEZqQ3iiZm59tArVWUP/kRKENuO9fUQZvYSJ4ue7vklqebw+D3p71NzU/dWlIbc2GViujnMTgdCnwH1jtbMGpSTRU8Rke4vvexBWPpg+vvUXFieh+Nq6pvG8N/3A7Djvqnfd9+t6huzmXUbThbdTUQaY+nZhSkhLJuXk8O89bvhbTUCttstjaK54wQPhmZmG8XJom0V3PDFNDTFgKG5P3P79NDUoNSV5+4jYM0LqW/2c62ptrD8sTQg3/JFsHwxtL34cvneA2DIOBj3lvR38DgYPNY9lsxsk3KyWL0Cnn44dRNdveKV65v6vpxE+gxK5/V7D0hfxu3TxWVEuoBt3dr0N9r/5mXr2mD1clj5LKx8BlY9m6aLf9euXj+G3lumftpbDU8Xv201LA0lMHiXdEWoG6LNrMacLLYcAu++Ok2veTENhvfCktQw/MKSNP98+98n4ZnnYfXz6dd/uYtkqqUm6Ld1Giaj39bpy3/o+Dy/zcsX8mw1LC1zQjCzOnKyKOrdP41rVO3YRuvacuLIyWP18+lLXVukZKAt0h23tMXLy7ZoSg3LvQc4AZhZt+FksTG26JVqBf22rnckZmY15VuVmZlZRU4WZmZWkZOFmZlV5GRhZmYV1TRZSJooaa6keZI+V2Z9X0m/yetvlzS6sO7zeflcScfUMk4zM+tczZKFpCbgAuBYYDxwiqTxJcU+DDwdEbsA3we+nbcdD5wM7AlMBH6S92dmZnVQy5rFQcC8iJgfEauBKcDxJWWOB36Zp68BjpCkvHxKRKyKiIeBeXl/ZmZWB7W8zmIYsLAw3woc3FGZiGiT9CwwJC+fVrLtK24lJWkSMCnPrpA0t4NYtgOe2tAXUEfdLV5wzF3FMdded4sXNi7mqu6m1K0vyouIC4ELK5WT1BIRzV0Q0ibR3eIFx9xVHHPtdbd4oWtiruVpqEVAcdyM4XlZ2TKSegFbA0ur3NbMzLpILZPFncA4SWMk9SE1WE8tKTMVOC1PnwT8KyIiLz8595YaA4wD7qhhrGZm1omanYbKbRBnA9cBTcAlETFb0mSgJSKmAhcDl0uaBywjJRRyuauAOUAbcFZErN2IcCqeqmow3S1ecMxdxTHXXneLF7ogZqUf8mZmZh3zFdxmZlaRk4WZmVXUY5JFFUOLnC5piaQZ+XFGPeIsiekSSU9KureD9ZL0w/yaZkrav6tjLImnUrxvlPRs4Rh/qatjLBPTCEk3SJojabakc8qUabTjXE3MDXOsJfWTdIeke3K8Xy1TpsOhfeqhypgb7jsD0ugYku6W9Kcy62p3nCOi2z9IDegPATsDfYB7gPElZU4HflzvWEtiOhzYH7i3g/VvAf4KCDgEuL3B430j8Kd6H9eSmF4D7J+nBwEPlPlsNNpxribmhjnW+bgNzNO9gduBQ0rKnAn8NE+fDPymG8TccN8ZOa5PAVeWe/9reZx7Ss2imqFFGk5E/JvUC6wjxwOXRTIN2EbSa7omuleqIt6GExGLI+KuPL0cuI9XjgbQaMe5mpgbRj5uK/Js7/wo7TnT0dA+dVFlzA1H0nDgrcBFHRSp2XHuKcmi3NAi5f65TsynGa6RVOWNtuuq2tfVSF6bq/Z/lbRnvYMpylXy/Ui/Iosa9jh3EjM00LHOp0ZmAE8C10dEh8c4ItqA9qF96qaKmKHxvjN+AHwGWNfB+pod556SLKrxR2B0ROwDXM/L2dc2nbuAURGxL/Aj4Pd1juclkgYCvwU+GRHP1TuealSIuaGOdUSsjYgJpNEWDpK0Vz3jqUYVMTfUd4aktwFPRsT0ejx/T0kWFYcHiYilEbEqz14EHNBFsW2MbjXsSUQ81161j4i/AL0lbVfnsJDUm/Sle0VE/K5MkYY7zpVibtRjHRHPADeQbi1Q1NHQPnXXUcwN+J1xGHCcpAWkU+1vlvSrkjI1O849JVlUHFqk5Bz0caTzwI1uKvCB3FvnEODZiFhc76A6ImnH9vOjkg4ifb7q+oWQ47kYuC8ivtdBsYY6ztXE3EjHWtJQSdvk6f7AUcD9JcU6GtqnLqqJudG+MyLi8xExPCJGk77j/hUR7yspVrPj3K1HnW0X1Q0t8glJx5GGD1lG6ulQV5J+TerVsp2kVuDLpIY2IuKnwF9IPXXmAS8AH6xPpEkV8Z4EfFxSG/AicHI9vxCyw4D3A7Py+WmA/wuMhMY8zlQXcyMd69cAv1S6QdkWwFUR8SdVMbRPHVUTc8N9Z5TTVcfZw32YmVlFPeU0lJmZ1ZCThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFNSxJK6oo80lJW27C5zxB0vhNuL9bN2LbFfnvTpKu6aTcNpLOfLXPY1YNJwvr7j4JbFCyyH3rO3ICsMmSRUQcugn28VhEnNRJkW1Io42a1YyThTU8pXs33JgHc7tf0hX5autPADsBN0i6IZc9WtJtku6SdHUeXwlJCyR9W9JdwLskfUTSnXkgvt9K2lLSoaQrdb+jdP+CsZImSJqWB5O7VtK2eX83Svq+pBZJ90k6UNLvJD0o6euF2FcUpj8raVZ+zm+VeZ1jcuyzSvYxWvkeIpL2VLoPw4wc0zjgW8DYvOw7kgZK+mc+BrMkHV/Yz32Sfq50D4e/56uXkbSLpH/k2O6SNDYvPzcfp5kqc88H24xsqrHO/fBjUz+AFfnvG0mjZw4n/cC5DXhdXrcA2C5Pbwf8GxiQ5z8LfKlQ7jOFfQ8pTH8d+K88fSlwUmHdTOANeXoy8IM8fSPw7Tx9DvAY6argvqRRa4eUvIZjgVuBLfP84DKvdyrwgTx9VmHb0eR7iJAGDTw1T/cB+hfX5+W9gK0Kx2Qe6f4No0lXI0/I664C3penbwfekaf7kWprRwMX5m23AP4EHF7vz4Uf9Xn0iOE+bLNwR0S0AuQhMEYDN5eUOYR0CumWPGxSH1JiafebwvRe+df7NsBA0lAx65G0NbBNRNyUF/0SuLpQpH38sVnA7MjjSUmaTxrMrThW05HALyLiBYCIKHdfkMOAE/P05cC3y5S5DfiC0n0NfhcRD+qVtysQ8N+SDicNZT0M2CGvezgi2ocQmQ6MljQIGBYR1+bYVubXcTQpYdydyw8ExpESsm1mnCysu1hVmF5L+c+uSPclOKWDfTxfmL4UOCEi7pF0Oqn28mpjWlcS37oO4qtGp+PvRMSVkm4n3QDnL5I+CswvKXYqMBQ4ICLWKI1S2q8kZkjHsX8nTyfgmxHxsw2I33oot1lYd7ecdOtRgGnAYZJ2AZA0QNKuHWw3CFisNBT4qeX2FxHPAk9Len1e937gJl6d64EPtvfckjS4TJlbeHngt1PLrEfSzsD8iPgh8AdgH9Y/BpCGpX4yJ4o3AaM6CyzS3fhaJZ2Qn6NvjvM64EOFdp9hkrav6tVaj+NkYd3dhcDfJN0QEUtII4P+WtJM0imb3TvY7ouk8/S3sP7Q1FOAcyXdnRt5TyM1eM8EJpDaLTZYRPyNdNqqJZ9G+3SZYucAZ0maRcd36ns3cG/ex16k28EuJZ16u1fSd4ArgOa8nw/wyuHCy3k/aZTVmaS2lR0j4u+kez3flvd1DesnJduMeNRZMzOryDULMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4r+H60x/+SA29n/AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -199,7 +201,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xu4XGV59/Hvj53zAQhJBHIOIRjCwQBbEFAERQmiHKooiAotitag9vVV0VdUGm2LtdXaggWqFMFDOEmNFgUsIEUIsAMRSCAQApIdwJwhQBJyuN8/nmcnK8PsPZNkz57ZO7/Pdc0167zuWbNm3bOeZ61nKSIwMzPryC71DsDMzBqfk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThZmZVeRkYUi6SNJPcvcYSS9Lasr9e0q6S9JqSf+s5D8lrZR0f30jt45IekbS8fWOo9YknSPp7hosd6vfQicud5ykyMs+Lw/bL/dvlPTxzlxfZ+lV7wC6M0nPAHsCGwuDr4qI8+sT0Y6LiGeBQYVB5wHLgF0jIiS9DXgXMCoiXqlHjLbjJF0FtEbEhfWOpVHk3/PHI+J3UPa30Nl2j4gNeV1PAIMk3VnD9e0QJ4sd9762natWJPVq26nqYCwwL7bcvTkWeGZ7EkWdP0e3trNsu53lc3ZHLoaqkbZTY0n/lItsnpZ0YmH8bpJ+JOl5SYslfatQ9HOOpD9I+p6k5cBFkppyMdCyvKzz86lsL0mnS5pdsv7PS/plO7GNl/T7XLR0GzCsMG5cYblXAWcDX8qnyJ8Efggcmfv/Ns/zXklzJK2SdI+kgwvLe0bSBZIeBl7Jyx0h6UZJS/Nn+Wxh+oskXSfp6hzfXEnNhfGjJf0iz7tc0iWFcX8l6bG8vW+RNLaD7+etOdZVkhZJOqfwvVydl/8nSRdK2qXM97JK0kJJR+XhiyQtkXR2YR1XSbpM0m35s/y+GJOk7+f5XpI0O5+1FbfDDZJ+Iukl4BxJu0j6sqSn8me/TtIehXk+mmNeLumrHXz284CzCt/rr/Lw/SXdmT/bXEknd7CMOyV9M2+P1ZJulVTcj07Oy1iVp92/g2WFpGmSngSezMMm5e22QtJ8SR8sTD9U0sy83e4HJhTGbd5/S2L9eKH/E3k/WS1pnqRDJV0DjAF+lbfJl0qXlffbmTmmBZI+UfJ9tbvf9ggR4dd2voBngOPbGXcOsB74BNAE/DXwHKA8/ibgcmAg8AbgfuCThXk3AJ8hnf31Bz4FzANGAUOA3wGRx/cFVgD7F9b/EPD+dmK7F/hunu8YYDXwkzxuXNtyc/9VwLdKPtfdhf5DgCXAEflznp23S9/CNpoDjM6fYxdgNvB1oA+wD7AQOCFPfxGwFnhPXt4/ALPyuCbgj8D38nbrB7w1jzsFWADsn7fJhcA97Xz+sfkznwn0BoYCU/K4q4FfAoPztngCOLfke/nLHMu3gGeBS/O2fHde7qDCtludt3Ff4Psl2+4jed29gP8LvAD0K2yH9cCpeZv1Bz4HzMr7QF/S/vPzPP1k4OXCur6bY21v/yz9Xnvn7ff/8vfyjhz7G9uZ/07gKWC/HNudwMV53H7AK6Tiyt7Al/Ky+7SzrABuA/bIyxoILMrbuRdpH1sGTM7TzwCuy9MdCCxu266U7L+FWD+eu0/P078ZELAvMLbc77l0WcBdwA9I+90UYCnwjkr7bZnP+7oYy8XaaK+6B9CdX3nnehlYVXh9Io87B1hQmHZA3kH2ItVzrAP6F8afCdxRmPfZknXdTk4muf/4kh3534G/y90HACvJB+yS5YwhHUQGFob9jO1PFv8OfLNkHfOBtxe20V8Vxh1R5rN9BfjP3H0R8LvCuMnAmtx9ZP6BlvuR/YZ8UM/9uwCvth0IyqzvpjLDm4DXyAelPOyTwJ2Fz/5kYdxBeVvtWRi2nC2J5ypgRmHcIFL91uh29qeVwJsK2+GukvGPAe8s9O9NSii9SMm3uK6B+bNUmyzeRkpWuxSG/Ry4qJ357wQuLPR/Gvht7v4acF3Jd7EYOLadZQX5oJv7PwT8b8k0lwPfyN/RemBSYdzfU32yuAX4XAe/57LJgvRnZyMwuDD+H0h1lG3fV9n9tsx6XhdjuVgb7eU6ix13arRfZ/FCW0dEvCoJ0gFjD9I/rufzMEg/qEWFeYvdACMqjP8x8HNJFwIfJf1Y15WJaQSwMrauc/gT6cewPcYCZ0v6TGFYn7yecrGOBUZIWlUY1gT8b6H/hUL3q0C/XBQwGvhTlC/THgt8X9I/F4YJGEn6fEWjSf+KSw0jfS/F6f+Ul9Hmz4XuNQARUTqsWCm6+bNHxMuSVpC/S0lfAM7N/QHsSqFIkNd/x2OBmyRtKgzbSPrzsdX+ERGvKBVhVmsEsCgiissu/eylSr+nts89gsI2jIhNkhZVWFbpPnJEyT7SC7gGGJ67i9OXfr8dae+7r2QEsCIiVpest1jUVHa/bWd/7XacLOpjEenMYlgHO1Jpc8DPk4of2mx1cI+IWZJeI/1D/HB+lfM8METSwELCGFNmfdVaRDqj+bsOpikuexHwdERM3M51jWnnB9gWx0+rXM7hZYYvI/1rHUsq8oO0bRZvR6xtNn9Pktr+KDyX6ye+BLwTmJsPqCtJCa5N6XeyiHSW9ofSlUh6nlQE19Y/gFTE1Z7SZT8HjJa0SyFhjCEVw22r50hnXW2xiLQdOtqOpfvI7yPiXaUTKdXrbcjLe7wQZ5u2fXoA8FLu3qtk2RMor6PfwHPAHpIGFxLGju4b3YoruOsgIp4HbgX+WdKuueJygqS3dzDbdcDnJI2UtDtwQZlprgYuAdZHRNnrziPiT0AL8LeS+kh6K/C+Hfg4/wF8StIRSgZKOknS4Hamvx9YrVTp3V+p4v5ASW+uYl33k5LdxXk9/SQdncddBnxF0gGwuaL69HaW81PgeEkfVKpwHyppSkRsJG3nv5M0WKky+vPAT6rbFGW9R6kyvQ/wTVI59iJSncgGcrGapK+Tziw6clmObWz+jMMlnZLH3QC8t7Cu6XT8+/4zqb6ozX2kf8NfktRb0rGk/WLGNnzWNtcBJ0l6p6TepPqYdcA9Vc7/a2A/pQr73vn1Zkn75+/oF6SLPgZImkyqJwMgIpaSDuAfyfvWX7F1cvgh8AVJh+X9dV9tueigdJtslr+ze4B/yPvdwaSzwh3ZN7oVJ4sd13b1RNvrpirn+xipuGYeqaz6BlIZdHv+g5RgHiZVXt9MOtgU7/G4hlThV2kH/jCp7mAFqRz46ipjfp2IaCFV4l9C+hwLSGX77U2/EXgvqYLwadK/+R8Cu1Wxro2kA9i+pIrlVlL5NhFxE/BtYIbS1UOPAie2s5xnSRWR/5e0DeYAb8qjP0P6d7oQuJtUn3Nlpdg68DPSNl4BHEaq1IZUdv5b0j/3P5EqR0uLnUp9H5gJ3CppNamy+4j8meYC0/L6nid9F60dLOtHwGSlq5X+KyJeI23bE0nfyQ+Aj0XE4x0so6yImJ8/57/lZb2PdIn5a1XOv5p0scAZpH/0L5C+2755kvNJRV4vkOpe/rNkEZ8AvkiqPzqAQpKKiOuBvyNtp9XAf5HO9iDVQVyYt8kXyoR2Jqm+4TnSBSrf6KAIusdpuzLHuhmly3Avi4ixhWH9SVcmHRoRT9YtOAN845uVl89k5pP+IHwxIv5D0kTgAdIfyE9HxFV1DLEs11l0EzkRHEc6u9iT9G+19Czmr4EHnCjMGlcuCu5XMuxJYPf6RFSdmhZDSZqqdEPNAklf7mC69+ebX4o3X30lzzdf0gm1jLObEPC3pOKFh0iXUX5988jUVMHnSEUrZmadqmbFUPmqhSdIN+a0kk6xzoyIeSXTDQb+m3T6dX5EtORKq5+TrlgZQboBbb9cZm1mZl2slmcWh5NuSluYK7ZmkO6yLfVNUuXV2sKwU0g3GK2LiKdJlablLnU0M7MuUMs6i5FsfXVHK/nKjTaSDiXdzfrfkr5YMu+sknlfd0OPUhs35wEMHDjwsEmTJnVS6GZmO4fZs2cvi4jhlaarWwW3UuNs36WDyywriYgrgCsAmpubo6WlpXOCMzPbSUiq6g74WiaLxWx9l/Eotr7bcTDpnoA7c5MXewEzlVq6rDSvmZl1oVrWWTwATFRqDrsP6QabmW0jI+LFiBgWEeMiYhyp2OnkfJPXTOAMSX0ljQcmku7eNTOzOqjZmUVEbJB0PulO1SbgyoiYK2k60BIRMzuYd66k60h3N28ApvlKKDOz+ukxd3CXq7NYv349ra2trF27tp25dj79+vVj1KhR9O7du96hmFkDkDQ7Iio+qKlH38Hd2trK4MGDGTduHJIqz9DDRQTLly+ntbWV8ePH1zscM+tGenRDgmvXrmXo0KFOFJkkhg4d6jMtM9tmPTpZAE4UJbw9zGx79PhkYWZmO87JwszMKnKyqKFnnnmG/v37M2XKlLLjf/nLX3LwwQczZcoUmpubufvusg+3a9dtt93GYYcdxkEHHcRhhx3G7bffvnnccccdx6BBg/Bd7WbWGXr01VCNYMKECcyZM6fsuHe+852cfPLJSOLhhx/mgx/8II8/Xv2DyYYNG8avfvUrRowYwaOPPsoJJ5zA4sXpRvc77riDY489tjM+gpnZTpQs7vlnWD6/c5c59I1w1PY/PmLQoEGbu1955ZVtrnw+5JBDNncfcMABrFmzhnXr1tG3b98O5jIz23Yuhqqzm266iUmTJnHSSSdx5ZXb/6jnG2+8kUMPPdSJwsxqYuc5s9iBM4BaOu200zjttNO46667+NrXvsbvfrftz3+fO3cuF1xwAbfeemsNIjQz85lFl7r00kuZMmUKU6ZM4bnnnttq3DHHHMPChQtZtmxZu/PfdNNNm+dvq7hubW3ltNNO4+qrr2bChAk1jd/Mdl47z5lFA5g2bRrTpk3b3L9gwQImTJiAJB588EHWrVvH0KFDAZg0adLrKrvbzkLarFq1ipNOOomLL76Yo48+ums+hJntlHxmUUc33ngjBx54IFOmTGHatGlce+21SGLZsmVU08DjJZdcwoIFC5g+ffrmM44lS5Z0QeRmtrPxmUUdXXDBBVxwwQWvGz5r1qytzkDac+GFF3LhhRfWIjQzs604WdRQU1MTL774IlOmTGn3Xoty3vve9+7wuo877jgWLlzopsjNrFP0+GQREXVrPG/06NEsWrSoLuu+4447yg7vKc8vMbOu1aPrLPr168fy5ct9gMzanmfRr1+/eodiZt1Mjz6zGDVqFK2trSxdurTeoTSMtiflmZlti5omC0lTge+TnsH9w4i4uGT8p4BpwEbgZeC8iJgnaRzwGNDWPsesiPjUtq6/d+/efiKcmVknqFmykNQEXAq8C2gFHpA0MyLmFSb7WURclqc/GfguMDWPeyoiyjfXamZmXaqWdRaHAwsiYmFEvAbMAE4pThARLxV6BwKuXDAza0C1TBYjgeKlQK152FYkTZP0FPCPwGcLo8ZLekjS7yW9rYZxmplZBXW/GioiLo2ICcAFQNsdZs8DYyLiEODzwM8k7Vo6r6TzJLVIanEltplZ7dQyWSwGRhf6R+Vh7ZkBnAoQEesiYnnung08BexXOkNEXBERzRHRPHz48E4L3MzMtlbLZPEAMFHSeEl9gDOAmcUJJE0s9J4EPJmHD88V5EjaB5gILKxhrGZm1oGaXQ0VERsknQ/cQrp09sqImCtpOtASETOB8yUdD6wHVgJn59mPAaZLWg9sAj4VEStqFauZmXVMPeXu5ubm5mh7xoOZmVVH0uyIaK40Xd0ruM3MrPE5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWUU2ThaSpkuZLWiDpy2XGf0rSI5LmSLpb0uTCuK/k+eZLOqGWcZqZWcdqliwkNQGXAicCk4Ezi8kg+1lEHBQRU4B/BL6b550MnAEcAEwFfpCXZ2ZmdVDLM4vDgQURsTAiXgNmAKcUJ4iIlwq9A4HI3acAMyJiXUQ8DSzIyzMzszroVcNljwQWFfpbgSNKJ5I0Dfg80Ad4R2HeWSXzjiwz73nAeQBjxozplKDNzOz16l7BHRGXRsQE4ALgwm2c94qIaI6I5uHDh9cmQDMzq2myWAyMLvSPysPaMwM4dTvnNTOzGqplsngAmChpvKQ+pArrmcUJJE0s9J4EPJm7ZwJnSOoraTwwEbi/hrGamVkHalZnEREbJJ0P3AI0AVdGxFxJ04GWiJgJnC/peGA9sBI4O887V9J1wDxgAzAtIjbWKlYzM+uYIqLyVN1Ac3NztLS01DsMM7NuRdLsiGiuNF3dK7jNzKzxOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUU1TRaSpkqaL2mBpC+XGf95SfMkPSzpfySNLYzbKGlOfs2sZZxmZtaxXrVasKQm4FLgXUAr8ICkmRExrzDZQ0BzRLwq6a+BfwQ+lMetiYgptYrPzMyqV8szi8OBBRGxMCJeA2YApxQniIg7IuLV3DsLGFXDeMzMbDvVMlmMBBYV+lvzsPacC/ym0N9PUoukWZJOLTeDpPPyNC1Lly7d8YjNzKysmhVDbQtJHwGagbcXBo+NiMWS9gFul/RIRDxVnC8irgCuAGhubo4uC9jMbCdTyzOLxcDoQv+oPGwrko4HvgqcHBHr2oZHxOL8vhC4EzikhrGamVkHapksHgAmShovqQ9wBrDVVU2SDgEuJyWKJYXhQyT1zd3DgKOBYsW4mZl1oZoVQ0XEBknnA7cATcCVETFX0nSgJSJmAt8BBgHXSwJ4NiJOBvYHLpe0iZTQLi65isrMzLqQInpGUX9zc3O0tLTUOwwzs25F0uyIaK40ne/gNjOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKyiqpKFpF9IOkmSk4uZ2U6o2oP/D4APA09KuljSG2sYk5mZNZiqkkVE/C4izgIOBZ4BfifpHkl/Kal3LQM0M7P6q7pYSdJQ4Bzg46SHFn2flDxuq0lkZmbWMKpqG0rSTcAbgWuA90XE83nUtZLcxoaZWQ9XbUOC/xoRd5QbUU2bImZm1r1VmyyGSPqLkmEvAo8UmxY3M7OeqdpkcS5wJNB2dnEsMBsYL2l6RFxTg9jMzKxBVJssegP7R8SfASTtCVwNHAHcRarLMDOzHqraq6FGtSWKbAkwOiJWAOs7PywzM2sk1Z5Z3Cnp18D1uf/9edhAYFVNIjMzs4ZRbbKYBvwF8NbcfzVwY6TH7B1Xi8DMzKxxVCyGktQE3B4RN0bE/8mvG6KK57FKmippvqQFkr5cZvznJc2T9LCk/5E0tjDubElP5tfZ2/zJzMys01RMFhGxEdgkabdtWXBOMpcCJwKTgTMlTS6Z7CGgOSIOBm4A/jHPuwfwDVIF+uHANyQN2Zb1m5lZ56m2GOpl4BFJtwGvtA2MiM92MM/hwIKIWAggaQZwCjCvMH/xRr9ZwEdy9wnAbbkCnbzeqcDPq4zXzMw6UbXJ4hf5tS1GAosK/a2kM4X2nAv8poN5R5bOIOk84DyAMWPGbGN4ZmZWraqSRUT8WFJ/YExEzO/sICR9BGgG3r4t80XEFcAVAM3NzRXrUMzMbPtU+/Cj9wFzgN/m/imSZlaYbTEwutA/Kg8rXfbxwFeBkyNi3bbMa2ZmXaPam/IuItVBrAKIiDnAPhXmeQCYKGm8pD7AGcBWCUbSIcDlpERRbGPqFuDdkobkiu1352FmZlYH1dZZrI+IFyUVh23qaIaI2CDpfNJBvgm4MiLmSpoOtETETOA7wCDg+rzsZyPi5IhYIembpIQDML2tstvMzLpetclirqQPA02SJgKfBe6pNFNE3AzcXDLs64Xu4zuY90rgyirjMzOzGqq2GOozwAHAOtLlqy8Bf1OroMzMrLFUezXUq6RK6K/WNhwzM2tE1T5WdT/gC8C44jwR8Y7ahGVmZo2k2jqL64HLgB8CG2sXjpmZNaJqk8WGiPj3mkZiZmYNq9oK7l9J+rSkvSXt0faqaWRmZtYwqj2zaGsi/IuFYUHlG/PMzKwHqPZqqPG1DsTMzBpXh8VQkr5U6D69ZNzf1yooMzNrLJXqLM4odH+lZNzUTo7FzMwaVKVkoXa6y/WbmVkPVSlZRDvd5frNzKyHqlTB/SZJL5HOIvrnbnJ/v5pGZmZmDaPDZBERTV0ViJmZNa5qb8ozM7OdmJOFmZlV5GRhZmYVOVmYmVlFNU0WkqZKmi9pgaQvlxl/jKQHJW2Q9IGScRslzcmvmbWM08zMOlZtQ4LbTFITcCnwLqAVeEDSzIiYV5jsWeAc0oOVSq2JiCm1is/MzKpXs2QBHA4siIiFAJJmAKcAm5NFRDyTx22qYRxmZraDalkMNRJYVOhvzcOq1U9Si6RZkk4tN4Gk8/I0LUuXLt2RWM3MrAONXME9NiKagQ8D/yJpQukEEXFFRDRHRPPw4cO7PkIzs51ELZPFYmB0oX9UHlaViFic3xcCdwKHdGZwZmZWvVomiweAiZLGS+pDau68qquaJA2R1Dd3DwOOplDXYWZmXatmySIiNgDnA7cAjwHXRcRcSdMlnQwg6c2SWoHTgcslzc2z7w+0SPojcAdwcclVVGZm1oUU0TNaGm9ubo6WlpZ6h2Fm1q1Imp3rhzvUyBXcZmbWIJwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKyimiYLSVMlzZe0QNKXy4w/RtKDkjZI+kDJuLMlPZlfZ9cyTjMz61jNkoWkJuBS4ERgMnCmpMklkz0LnAP8rGTePYBvAEcAhwPfkDSkVrGamVnHanlmcTiwICIWRsRrwAzglOIEEfFMRDwMbCqZ9wTgtohYERErgduAqTWM1czMOlDLZDESWFTob83DOm1eSedJapHUsnTp0u0O1MzMOtatK7gj4oqIaI6I5uHDh9c7HDOzHquWyWIxMLrQPyoPq/W8ZmbWyWqZLB4AJkoaL6kPcAYws8p5bwHeLWlIrth+dx5mZmZ1ULNkEREbgPNJB/nHgOsiYq6k6ZJOBpD0ZkmtwOnA5ZLm5nlXAN8kJZwHgOl5mJmZ1YEiot4xdIrm5uZoaWmpdxhmZt2KpNkR0Vxpum5dwW1mZl3DycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwvrWSLg2bvh+QfrHYlZj9Kr3gGYdZqVC+Gef4LF98OA4XDWzSDVOyqzHsFnFtb9vfYy3PtduOFMWPoYjDsWXl0KK5+qd2RmPYbPLKz7ik3wxH/D/ZfAmhUw6VR486dh42vwzJ2w6B7YY996R2nWIzhZWPe0ZC7c8x1Y8ii84SCY+j0YPnnL+CEToHUWvOlj9YvRrAdxsrDuZc0KuP9SmD8T+u8Bx14EE98DKilRHX0UPDoD1r8KvQfUJVSznqSmdRaSpkqaL2mBpC+XGd9X0rV5/H2SxuXh4yStkTQnvy6rZZzWDaxZAbO+Dz8/GZ74NRx8FnzoRtjvva9PFACjj4RN6+G52V0fq1kPVLMzC0lNwKXAu4BW4AFJMyNiXmGyc4GVEbGvpDOAbwMfyuOeiogptYrPuok1K+CP18C861NdxIQT4NBzYfdxHc+31xTo1S/VW4x9W5eEataT1bIY6nBgQUQsBJA0AzgFKCaLU4CLcvcNwCWSr3U0tj9JtGnqAyPeDK331jRMs51FLZPFSGBRob8VOKK9aSJig6QXgaF53HhJDwEvARdGxP/WMFZrFGtWwsPXwNzrti9JFI16Czz7v/DiIthtdKeHarYzadQK7ueBMRGxXNJhwH9JOiAiXipOJOk84DyAMWPG1CFM6zQvPgtzr4fHb9rxJNFm9FHpvfVeJwuzHVTLZLEYKP5CR+Vh5aZpldQL2A1YHhEBrAOIiNmSngL2A1qKM0fEFcAVAM3NzVGLD2E1tGljqlOYe106oO/SC/Z5144niTa7jYZdR8Gie+GAD+748sx2YrVMFg8AEyWNJyWFM4APl0wzEzgbuBf4AHB7RISk4cCKiNgoaR9gIrCwhrFaV1r7Yrr0dd4NsHpxapqj+VPpproBwzp3XaOOhCd+lc5Wmvp07rLNdiI1Sxa5DuJ84BagCbgyIuZKmg60RMRM4EfANZIWACtICQXgGGC6pPXAJuBTEbGiVrFaF1k2P51FLPgtbFwHex8KR3wmNc+xS412xdFHpUryF+bAyMNrsw6znUBN6ywi4mbg5pJhXy90rwVOLzPfjcCNtYzNusgrS+GpW+GpW2DpvHQ568T3pGKhoRNrv/4Rh8EuvVNRlJOF2XZr1Apu687WrYanb09nEM+1AAHD9ocjP59uouu7a9fF0nsA7H1Iqht5y+e6br1mPYyThXWODWvTcyQW3JLeN62HXUfDoR+HfU/onArr7TXqLXDfv8IrS2DgG+oXh1k35mRh22/NyvSPfdEf4Nk/wPpXoP9QmPwBmHhiOptohHssRx+VksWie2HSKfWOxqxbcrKw6sWmVEn97N0pQSyZC0RKEPscn84g9j4Mdmmqd6RbGzIhXXHV6mRhtr2cLKxja1eleodn/5DOItYsBwRvOACaPwmjj4ZhbyzfmF+jkFLDgk/fAZs21O7KK9ti00Z4bXWqv9q0PvXHxrT9N3fv6LBNeWX5FquIkm62jN/cH68f1+G83cTgveGg0jsTOpd/NbZFRLrv4YU58MIf0/uqp9O4vrumsv8xb033LvQfUt9Yt9Xoo9K9HUvmwl5vqnc03UdEusx57ap0f8y6Fwvv5Ybl93Wr2Xzw7RK5uFPa0r25P48vdm81vp15u5Phk50srIY2bYAVC7YEZmksAAANLElEQVRODq8uTeP6DE4H1f1OSi24vuHA7v2PfOTh6eyn9V4nizabNqTnli99DF5qTQf/cgf+ja+1v4zeA6DvbtBvt/Q+eMTW/X0Hp5sh1ZSKJ3fptaVbub/s8ArDtEvjFXf2cN3419+JXnwWBo/s2Tvf2lWw/ElY/gSsyO8rn05FBACD9kr3JOw1Jb2G7NPYRUvbqu+uKeEtujfdLb6z2bg+PZN82eMpOSx7LP1RaEsEatpygO+3W/o9DJ+89YG/+N5v97RNfVf8TsPJYu0quPYvoKkvDBmfntlcfPUf2hhX9FQjNqWb4FYvhpcWpyTYlhxeWbJluv5DYeh+qVhp6H4pOQzaq35xd5VRR8LsK9J33m/3ekdTOxtfgxVPpYSw7PH0Wv7klj8GvQfCsEnpxshhk9JVa7uN7ll/DqzTOVns0js9mnPFgvRadG96ElubvrvlxDEhnWIPfMOW14Dh0NS762LdsDY952HNSnh1Gax+LhUfrF6c35/bushATen+hr0PS0lh6MT03n+Prou5kYw+EmZfnp7Nve/UekfTOTa+lhJBW1JoO2PYtCGN7zM4JYQDz4Dh+6fEsOtIJwbbZk4WfQamu4qL1q7akjxWPJXen/jvdB9Bqf57bEkcA4enf229+qbT86a+qbtXvy39TX3SD3njulQ08Lr311JSWLsK1q5MyWHtqvS+Ye3r1997QGpZdffxMOZt6UCw66hUjDBor65NZo1u2P4p+S+6t3smiw3r0lniVkVJT6WrgyAVCw2bBAedld6H75/2g+5yZmwNzcminH67w4jm9GoTAa+9nIpzyr1efgGWPJIO6BvWsUNXgjT1STH0G5KS0W5j03v/IVuG9R+SDgT9dvfBoFq7NKWit9ZZqciukf9dr381FSEuezzd27Ls8VQZvTkx7JYSwps+uqUoafAI7wtWM04W1ZLSlR19B6ciqY5EpPLhDevSGcNW76+lKzp69U1FYKXvTb0b+yDW3Y0+MjVquPyJdJBtBOtWw/L5haKkx2HVn9j8h6P/HinWMW/dUpQ0aC8nButSTha1IOVipz7A4HpHY0Wj3pLeW2fVJ1msWbl1Ulj2eKpzajNwzxTXhBPyGcOk9IwPJwarMycL27kMGAZD35juRp9yTu3WE5EuQihWPC+bD6/8ecs0u45KZwr7n5aSwtA3dr+bHW2n4WRhO5/RR8Ifr0l1UH0Gbd8y1r+aLjp4dVl+X76l/5U/p8SwZnmeWPmqtENT0yhtiaGvzzqt+3CysJ3PqCNhzlWpzatxx24Z3nZp8qvL04G+LQFs7i4M27CmzIKVzgwGDE/Ni7QVIw2dmK5aM+vGnCxs57PnwekS5/v+DR7+6ZYkUO7SaEhXHg0Ymm5m3POgfDXa0C3DBgxNw/rt3r2bRDHrgPds2/k09YYDTk+t0EqpSGh0PvD33+P1ScAJwKy2yULSVOD7QBPww4i4uGR8X+Bq4DBgOfChiHgmj/sKcC6wEfhsRNxSy1htJ3P4+ellZlWp2QX9kpqAS4ETgcnAmZIml0x2LrAyIvYFvgd8O887GTgDOACYCvwgL8/MzOqglnd/HQ4siIiFEfEaMAMofUzZKcCPc/cNwDslKQ+fERHrIuJpYEFenpmZ1UEti6FGAosK/a3AEe1NExEbJL0IDM3DZ5XMO7J0BZLOA87LvS9Lmt9OLMOAZdv6Aeqou8ULjrmrOOba627xwo7FPLaaibp1zV1EXAFcUWk6SS0R0VxpukbR3eIFx9xVHHPtdbd4oWtirmUx1GJgdKF/VB5WdhpJvYDdSBXd1cxrZmZdpJbJ4gFgoqTxkvqQKqxnlkwzEzg7d38AuD0iIg8/Q1JfSeOBicD9NYzVzMw6ULNiqFwHcT5wC+nS2SsjYq6k6UBLRMwEfgRcI2kBsIKUUMjTXQfMAzYA0yLa2mbeLhWLqhpMd4sXHHNXccy1193ihS6IWemPvJmZWfv84AQzM6vIycLMzCrqMclC0lRJ8yUtkPTlMuPPkbRU0pz8+ng94iyJ6UpJSyQ92s54SfrX/JkelnRoV8dYEk+leI+V9GJhG3+9q2MsE9NoSXdImidprqTPlZmm0bZzNTE3zLaW1E/S/ZL+mOP92zLT9JV0bd7G90ka1/WRbhVPNTE33DEDUusYkh6S9Osy42q3nSOi279IFehPAfsAfYA/ApNLpjkHuKTesZbEdAxwKPBoO+PfA/wGEPAW4L4Gj/dY4Nf13q4lMe0NHJq7BwNPlNk3Gm07VxNzw2zrvN0G5e7ewH3AW0qm+TRwWe4+A7i2G8TccMeMHNfngZ+V+/5ruZ17yplFNU2LNJyIuIt0FVh7TgGujmQWsLukvbsmuterIt6GExHPR8SDuXs18Bivbw2g0bZzNTE3jLzdXs69vfOr9MqZ9pr2qYsqY244kkYBJwE/bGeSmm3nnpIsyjUtUu7H9f5czHCDpNFlxjeaaj9XIzkyn9r/RtIB9Q6mKJ+SH0L6F1nUsNu5g5ihgbZ1LhqZAywBbouIdrdxRGwA2pr2qZsqYobGO2b8C/AlYFM742u2nXtKsqjGr4BxEXEwcBtbsq91ngeBsRHxJuDfgP+qczybSRoE3Aj8TUS8VO94qlEh5oba1hGxMSKmkFpbOFzSgfWMpxpVxNxQxwxJ7wWWRMTseqy/pySLis2DRMTyiFiXe39IeoZGo+tWzZ5ExEttp/YRcTPQW9KwOoeFpN6kg+5PI+IXZSZpuO1cKeZG3dYRsQq4g/RogaL2mvapu/ZibsBjxtHAyZKeIRW1v0PST0qmqdl27inJomLTIiVl0CeTyoEb3UzgY/lqnbcAL0bE8/UOqj2S9morH5V0OGn/qusBIcfzI+CxiPhuO5M11HauJuZG2taShkvaPXf3B94FPF4yWXtN+9RFNTE32jEjIr4SEaMiYhzpGHd7RHykZLKabedu3epsm6iuaZHPSjqZ1HzICtKVDnUl6eekq1qGSWoFvkGqaCMiLgNuJl2pswB4FfjL+kSaVBHvB4C/lrQBWAOcUc8DQnY08FHgkVw+DfD/gDHQmNuZ6mJupG29N/BjpQeU7QJcFxG/VhVN+9RRNTE33DGjnK7azm7uw8zMKuopxVBmZlZDThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFtawJL1cxTR/I2lAJ67zVEmTO3F59+zAvC/n9xGSbuhgut0lfXp712NWDScL6+7+BtimZJGvrW/PqUCnJYuIOKoTlvFcRHygg0l2J7U2alYzThbW8JSe3XBnbsztcUk/zXdbfxYYAdwh6Y487bsl3SvpQUnX5/aVkPSMpG9LehA4XdInJD2QG+K7UdIASUeR7tT9jtLzCyZImiJpVm5M7iZJQ/Ly7pT0PUktkh6T9GZJv5D0pKRvFWJ/udB9gaRH8jovLvM5x+fYHylZxjjlZ4hIOkDpOQxzckwTgYuBCXnYdyQNkvQ/eRs8IumUwnIek/QfSs9wuDXfvYykfSX9Lsf2oKQJefgX83Z6WGWe+WA7kc5q69wvvzr7Bbyc348ltZ45ivQH517grXncM8Cw3D0MuAsYmPsvAL5emO5LhWUPLXR/C/hM7r4K+EBh3MPA23P3dOBfcvedwLdz9+eA50h3BfcltVo7tOQznAjcAwzI/XuU+bwzgY/l7mmFeceRnyFCajTwrNzdB+hfHJ+H9wJ2LWyTBaTnN4wj3Y08JY+7DvhI7r4POC139yOdrb0buCLPuwvwa+CYeu8XftXn1SOa+7Cdwv0R0QqQm8AYB9xdMs1bSEVIf8jNJvUhJZY21xa6D8z/3ncHBpGaitmKpN2A3SPi93nQj4HrC5O0tT/2CDA3cntSkhaSGnMrttV0PPCfEfEqQESUey7I0cD7c/c1wLfLTHMv8FWl5xr8IiKe1OsfVyDg7yUdQ2rKeiSwZx73dES0NSEyGxgnaTAwMiJuyrGtzZ/j3aSE8VCefhAwkZSQbSfjZGHdxbpC90bK77siPZfgzHaW8Uqh+yrg1Ij4o6RzSGcv2xvTppL4NrUTXzU6bH8nIn4m6T7SA3BulvRJYGHJZGcBw4HDImK9Uiul/UpihrQd+3ewOgH/EBGXb0P81kO5zsK6u9WkR48CzAKOlrQvgKSBkvZrZ77BwPNKTYGfVW55EfEisFLS2/K4jwK/Z/vcBvxl25VbkvYoM80f2NLw21llxiNpH2BhRPwr8EvgYLbeBpCapV6SE8VxwNiOAov0NL5WSafmdfTNcd4C/FWh3mekpDdU9Wmtx3GysO7uCuC3ku6IiKWklkF/LulhUpHNpHbm+xqpnP4PbN009Qzgi5IeypW8Z5MqvB8GppDqLbZZRPyWVGzVkovRvlBmss8B0yQ9QvtP6vsg8GhexoGkx8EuJxW9PSrpO8BPgea8nI/x+ubCy/koqZXVh0l1K3tFxK2kZz3fm5d1A1snJduJuNVZMzOryGcWZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhX9f1ZRq7m+TjZEAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -209,7 +211,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XucVVX9//HXm2G4oyIgyh0V8y7qiHctxfsF+9qFStOyqITK/OUtTQ0rtb7ZtwumpmbZxdTSqCzTFM0UZVBAQVFElEGQOwhym5nP74+1BjfHMzNnmNmzz5z5PB+P85h9WXufz9nnzPmcvdbea8nMcM455xrSIesAnHPOFT9PFs455xrlycI551yjPFk455xrlCcL55xzjfJk4ZxzrlGeLBySrpX02zg9WNJaSWVxvp+kJyW9K+lHCn4laaWk57KN3DVE0nxJo7KOI22Szpf0VAr73ep/oQX3O1SSxX2Pjcv2iPM1kr7Qks/XUjpmHUBbJmk+0A+oSSy+y8zGZxNR85nZW0CPxKKxwDJgOzMzSUcDJwADzWxdFjG65pN0F1BlZldlHUuxiP/PXzCzRyHv/0JL28HMquNzvQr0kDQ5xedrFk8WzXdG3YcrLZI61n2oMjAEmG3v3705BJi/LYki49fRprWXY9deXmdb5NVQKak7NZb0v7HK5g1JpyTWby/pDkmLJC2U9N1E1c/5kv4r6ceSlgPXSiqL1UDL4r7Gx1PZjpI+LmlazvNfLOkv9cQ2TNITsWrpEaBPYt3QxH7vAs4DLo2nyF8CbgcOj/PfiducLmm6pFWSnpa0f2J/8yVdJmkmsC7ut7+kP0laGl/L1xLlr5V0r6TfxPhmSapIrB8k6c9x2+WSfp5Y93lJL8fj/bCkIQ28P0fFWFdJWiDp/MT78pu4/zclXSWpQ573ZZWkeZKOiMsXSFoi6bzEc9wl6RZJj8TX8kQyJkk/idutkTQtnrUlj8P9kn4raQ1wvqQOki6X9Hp87fdK2jGxzbkx5uWSrmzgtY8FPpN4X/8al+8laXJ8bbMkndnAPiZLui4ej3cl/UtS8nN0ZtzHqlh2rwb2ZZLGSXoNeC0u2zMetxWS5kj6RKJ8b0mT4nF7DtgtsW7L5zcn1i8k5r8YPyfvSpot6SBJdwODgb/GY3Jp7r7i53ZSjGmupC/mvF/1fm5Lgpn5YxsfwHxgVD3rzgc2A18EyoCvAG8DiusfAG4FugM7Ac8BX0psWw18lXD21xX4MjAbGAj0Ah4FLK7vDKwA9ko8/wvA2fXE9gxwU9zuGOBd4Ldx3dC6/cb5u4Dv5ryupxLzBwJLgEPj6zwvHpfOiWM0HRgUX0cHYBpwNdAJ2BWYB5wUy18LbABOjfu7HpgS15UBM4Afx+PWBTgqrhsNzAX2isfkKuDpel7/kPiaPwWUA72BEXHdb4C/AD3jsXgVuCDnfflcjOW7wFvAxHgsT4z77ZE4du/GY9wZ+EnOsTsnPndH4P8Bi4EuieOwGTgrHrOuwNeBKfEz0Jnw+flDLL83sDbxXDfFWOv7fOa+r+Xx+H0rvi/Hxdg/VM/2k4HXgT1ibJOBG+K6PYB1hOrKcuDSuO9O9ezLgEeAHeO+ugML4nHuSPiMLQP2juXvAe6N5fYFFtYdV3I+v4lYvxCnPx7LHwII2B0Yku//OXdfwJPAzYTP3QhgKXBcY5/bPK/3AzHmi7XYHpkH0JYf8cO1FliVeHwxrjsfmJso2y1+QHYmtHNsBLom1n8KeDyx7Vs5z/UYMZnE+VE5H+RfAN+L0/sAK4lf2Dn7GUz4EumeWPZ7tj1Z/AK4Luc55gDHJo7R5xPrDs3z2q4AfhWnrwUeTazbG1gfpw+P/6D5/sn+QfxSj/MdgPfqvgjyPN8DeZaXAZuIX0px2ZeAyYnX/lpi3X7xWPVLLFvO+4nnLuCexLoehPatQfV8nlYCBySOw5M5618Gjk/M70JIKB0JyTf5XN3jayk0WRxNSFYdEsv+AFxbz/aTgasS8xcC/4zT3wbuzXkvFgIfrmdfRvzSjfOfBP6TU+ZW4Jr4Hm0G9kys+z6FJ4uHga838P+cN1kQfuzUAD0T668ntFHWvV95P7d5nucDMeaLtdge3mbRfGdZ/W0Wi+smzOw9SRC+MHYk/OJaFJdB+IdakNg2OQ3Qv5H1vwb+IOkq4FzCP+vGPDH1B1ba1m0ObxL+GbbFEOA8SV9NLOsUnydfrEOA/pJWJZaVAf9JzC9OTL8HdIlVAYOANy1/nfYQ4CeSfpRYJmAA4fUlDSL8Ks7Vh/C+JMu/GfdR553E9HoAM8tdlmwU3fLazWytpBXE91LSN4EL4rwB25GoEuSD7/EQ4AFJtYllNYQfH1t9PsxsnUIVZqH6AwvMLLnv3NeeK/d9qnvd/UkcQzOrlbSgkX3lfkYOzfmMdATuBvrG6WT53Pe3IfW9943pD6wws3dznjdZ1ZT3c1vP57XN8WSRjQWEM4s+DXyQcrsDXkSofqiz1Ze7mU2RtInwC/HT8ZHPIqCXpO6JhDE4z/MVagHhjOZ7DZRJ7nsB8IaZDd/G5xpczz9gXRy/K3A/I/MsX0b41TqEUOUH4dgs3IZY62x5nyTV/VB4O7ZPXAocD8yKX6grCQmuTu57soBwlvbf3CeRtIhQBVc3341QxVWf3H2/DQyS1CGRMAYTquGa6m3CWVddLCIch4aOY+5n5AkzOyG3kEK7XnXc3yuJOOvUfaa7AWvi9M45+96N/Br6H3gb2FFSz0TCaO5no03xBu4MmNki4F/AjyRtFxsud5N0bAOb3Qt8XdIASTsAl+Up8xvg58BmM8t73bmZvQlUAt+R1EnSUcAZzXg5vwS+LOlQBd0lnSapZz3lnwPeVWj07qrQcL+vpEMKeK7nCMnuhvg8XSQdGdfdAlwhaR/Y0lD98Xr28ztglKRPKDS495Y0wsxqCMf5e5J6KjRGXwz8trBDkdepCo3pnYDrCPXYCwhtItXEajVJVxPOLBpyS4xtSHyNfSWNjuvuB05PPNcEGv7/fofQXlTnWcKv4UsllUv6MOFzcU8TXmude4HTJB0vqZzQHrMReLrA7f8G7KHQYF8eH4dI2iu+R38mXPTRTdLehHYyAMxsKeEL/Jz42fo8WyeH24FvSjo4fl531/sXHeQeky3ie/Y0cH383O1POCtszmejTfFk0Xx1V0/UPR4ocLvPEqprZhPqqu8n1EHX55eEBDOT0Hj9EOHLJnmPx92EBr/GPsCfJrQdrCDUA/+mwJg/wMwqCY34Pye8jrmEuv36ytcApxMaCN8g/Jq/Hdi+gOeqIXyB7U5oWK4i1G9jZg8ANwL3KFw99BJwSj37eYvQEPn/CMdgOnBAXP1Vwq/TecBThPacOxuLrQG/JxzjFcDBhEZtCHXn/yT8cn+T0DiaW+2U6yfAJOBfkt4lNHYfGl/TLGBcfL5FhPeiqoF93QHsrXC10oNmtolwbE8hvCc3A581s1ca2EdeZjYnvs6fxX2dQbjEfFOB279LuFhgDOEX/WLCe9s5FhlPqPJaTGh7+VXOLr4IXEJoP9qHRJIys/uA7xGO07vAg4SzPQhtEFfFY/LNPKF9itDe8DbhApVrGqiCLjl1V+a4NkbhMtxbzGxIYllXwpVJB5nZa5kF5wC/8c3lF89k5hB+IFxiZr+UNByYSvgBeaGZ3ZVhiHl5m0UbERPBRwhnF/0Iv1Zzz2K+Akz1ROFc8YpVwV1ylr0G7JBNRIVJtRpK0skKN9TMlXR5A+XOjje/JG++uiJuN0fSSWnG2UYI+A6heuEFwmWUV29ZGboq+DqhasU551pUatVQ8aqFVwk35lQRTrE+ZWazc8r1BP5OOP0ab2aVsdHqD4QrVvoTbkDbI9ZZO+eca2VpnlmMJNyUNi82bN1DuMs213WExqsNiWWjCTcYbTSzNwiNpvkudXTOOdcK0myzGMDWV3dUEa/cqCPpIMLdrH+XdEnOtlNytv3ADT0KfdyMBejevfvBe+65ZwuF7pxz7cO0adOWmVnfxspl1sCt0DnbTTRwmWVjzOw24DaAiooKq6ysbJngnHOunZBU0B3waSaLhWx9l/FAtr7bsSfhnoDJscuLnYFJCj1dNratc865VpRmm8VUYLhCd9idCDfYTKpbaWarzayPmQ01s6GEaqcz401ek4AxkjpLGgYMJ9y965xzLgOpnVmYWbWk8YQ7VcuAO81slqQJQKWZTWpg21mS7iXc3VwNjPMroZxzLjslcwd3vjaLzZs3U1VVxYYNG+rZqv3p0qULAwcOpLy8POtQnHNFQNI0M2t0oKaSvoO7qqqKnj17MnToUCQ1vkGJMzOWL19OVVUVw4YNyzoc51wbUtIdCW7YsIHevXt7oogk0bt3bz/Tcs41WUknC8ATRQ4/Hs65bVHyycI551zzebJwzjnXKE8WKZo/fz5du3ZlxIgRDZabOnUqHTt25P7772/S/p977jlGjBjBiBEjOOCAA3jggdBj+fr16xkxYgSdOnVi2bJl2xy/c87VKemroYrBbrvtxvTp0+tdX1NTw2WXXcaJJ57Y5H3vu+++VFZW0rFjRxYtWsQBBxzAGWecQdeuXZk+fTpDhw5tRuTOOfe+9pMsnv4RLJ/Tsvvs/SE4onnDR/zsZz/j7LPPZurUqU3etlu3blumN2zY4I3XzrnUeDVUhhYuXMgDDzzAV77ylW3ex7PPPss+++zDfvvtxy233ELHju0n/zvnWk/7+WZp5hlAGi666CJuvPFGOnTY9px96KGHMmvWLF5++WXOO+88TjnlFLp06dL4hs451wR+ZtGKJk6cuKVB+u2336ayspIxY8YwdOhQ7r//fi688EIefPDBerd/4IEHtmyf27XJXnvtRY8ePXjppZfSfhnOuXao/ZxZFIFx48Yxbty4LfNvvPHGlunzzz+f008/nbPOOguAPffck1deeWWr7T/60Y/y0Y9+dKvtBw0aRMeOHXnzzTd55ZVXvFHbufbIDFJus/RkUYSWLVtGIR08PvXUU9xwww2Ul5fToUMHbr75Zvr06dMKETrnWlVtNaxbAu++DWsXh7/vLorzi2C7gXDazamG4MmiSNx1111bpqdMmbLVGUh9zj33XM4999wUo3LOtYraalj7TvjiTyaBuqSwbglsNUqDoHtf6LEL9DsA+nwo9RA9WaSorKyM1atXM2LEiAbvtch1+umnN+t5169fz+GHH87mzZub1XjunGshZrDuHVi9IH9CWLcErDaxgaD7TtBzF9h5BPTsH6Z77BKme/SDsk6t+hJKPlmYWWb3HwwaNIgFCxa0+vPW3ZSXT6mMX+JcUbNaWPkGLH4BFr0Q/q5bkihQlwz6wy4HxQSwS0gIPftD935QVlxjzpR0sujSpQvLly/3bsqjuvEs/NJa51pYbTUsfxUWPR+Tw3TYuDqs69YHdj4wnCH02jUkhCJMBo0p6WQxcOBAqqqqWLp0adahFI26kfKcc81QvRGWznr/rOGdmbD5vbBuu4Ew5BjY5cB41jAg9SuVWkOqyULSycBPCGNw325mN+Ss/zIwDqgB1gJjzWy2pKHAy0Bd/xxTzOzLTX3+8vJyHxHOOdd8m9aFhLDo+ZAclsyC2s1h3Y67w/DTQnLY+cDQ8FyCUksWksqAicAJQBUwVdIkM5udKPZ7M7sllj8TuAk4Oa573cwa7q7VOefSsH5lqEqqa3NYPie0Q6gM+uwJ+44J1Uo7j4Au22cdbatI88xiJDDXzOYBSLoHGA1sSRZmtiZRvjvgra/OuWxUb4DZ98OcSbByXlhW1hl22hcO/Hw4a+i3H5R3a3g/JSrNZDEASF4KVAUcmltI0jjgYqATcFxi1TBJLwBrgKvM7D8pxuqca69qq0OCeP72cMXSLgfByPHhrKHv3q1+iWqxyryB28wmAhMlfRq4CjgPWAQMNrPlkg4GHpS0T86ZCJLGAmMBBg8e3MqRO+faNKuF1/8FlbfCmgXQb3/4yAToX5F1ZEUpzWSxEBiUmB8Yl9XnHuAXAGa2EdgYp6dJeh3YA9iq9zwzuw24DaCiosKrsJxzjTODBf+FqTeHy1133B1OugkGH10SVy2lJc1kMRUYLmkYIUmMAT6dLCBpuJm9FmdPA16Ly/sCK8ysRtKuwHBgXoqxOufag0XPw3MT4Z0Z4RLX474Lu50I8p4OGpNasjCzaknjgYcJl87eaWazJE0AKs1sEjBe0ihgM7CSUAUFcAwwQdJmoBb4spmtSCtW51yJW/ZKOJNY8DR06wtHXQF7joYOmdfEtxkqle4fKioqLHeMB+dcO7dqPlTeAvMehc7bw4jzYJ9PQEfvxaCOpGlm1mhDjadV51zpWbsYpv0SXv1buJrpoC/A/udApx5ZR9ZmebJwzpWO9SvhhTvD/RIQziIO/Bx03THbuEqAJwvnXNu3aS3M/C28+Ptwc90ep8PBY6HHzllHVjI8WTjn2q7qDTDrPph+V+jldddRUPFl2GFo1pGVHE8Wzrm2p7YaXvlLuOv6vaUw8HA45ELou1fWkZUsTxbOubZlwyr4+4Xhhrp++4d7JfofnHVUJc+ThXOu7ahLFKvehFE3wLDj/a7rVuLJwjnXNmxcA38fF+6dOOkmGHhY1hG1K36Pu3Ou+G18NySKlfPgxP/1RJEBP7NwzhW3TWvhofGw4rWQKAYdkXVE7ZKfWTjnitemtfDQV8NIdaNuhMFHZR1Ru+XJwjlXnDatg398HZbOhuOvh6HHZh1Ru+bJwjlXfDavh39eBEteguO/B8M+knVE7Z63WTjnikv1hpAo3pkR7qHYdVTWETn8zMI5V0yqN8DDF8PiF8IQp7udmHVELvJk4ZwrDtUb4eH/Bwunwoevhd1Pzjoil+DJwjmXveqN8MglsPA5+PA1MPzUrCNyOTxZOOeyVbMJHr0sDHl6zJWhe3FXdDxZOOeyU7MZHr0c3noKjv4W7HlW1hG5eqSaLCSdLGmOpLmSLs+z/suSXpQ0XdJTkvZOrLsibjdH0klpxumcy0BtNfz7W/Dmk3DU5bDX/2QdkWtAaslCUhkwETgF2Bv4VDIZRL83s/3MbATwA+CmuO3ewBhgH+Bk4Oa4P+dcKahLFPMfhyO+CXt/LOuIXCPSPLMYCcw1s3lmtgm4BxidLGBmaxKz3QGL06OBe8xso5m9AcyN+3POtXW11fDYt+GNx+Dwi2HfMVlH5AqQ5k15A4AFifkq4NDcQpLGARcDnYDjEttOydl2QJ5txwJjAQYPHtwiQTvnUlRbA5OvhXmPwGEXwX6fzjoiV6DMG7jNbKKZ7QZcBlzVxG1vM7MKM6vo27dvOgE651pGbQ088R2Y+08YOR72PyfriFwTpJksFgKDEvMD47L63APUXQrR1G2dc8XMauHJ78JrD0HFV2DE+VlH5JoozWQxFRguaZikToQG60nJApKGJ2ZPA16L05OAMZI6SxoGDAeeSzFW51xarBae/B68+lc4+Etw0AVZR+S2QWptFmZWLWk88DBQBtxpZrMkTQAqzWwSMF7SKGAzsBI4L247S9K9wGygGhhnZjVpxeqcS4nVwn+uhzl/gYO+AAd/MeuI3DaSmTVeqg2oqKiwysrKrMNwztUxg//+AGbfByM+B4dcCFLWUbkckqaZWUVj5TJv4HbOlahZfwyJYv9zPVGUAE8WzrmWt+J1ePanYRjUQ7/miaIEeLJwzrWsmk3w+LehvDsc821PFCXCR8pzzrWsqb+A5a/CSTdBt95ZR+NaiJ9ZOOdaztuVMPO3oVPAIcdkHY1rQZ4snHMtY+MaePwa2H4QHPaNrKNxLcyroZxzzWcGT90A7y2Ds34F5V2zjsi1MD+zcM4139x/wuv/goPHQt/ckQhcKfBk4ZxrnncXhbOKfgd4n08lzJOFc27b1dbA5GvC9EcmQAcfo6xUebJwzm27mXfDoufhyEtguw8MOeNKiCcL59y2WfYKVN4Cu46C4adlHY1LmScL51zTVW+Ax66CLr3gqCv8Lu12wC+ddc413ZSfwKr5cOpE6LJ91tG4VuBnFs65pnnrqdCb7H6fhoGHZh2NayWeLJxzhVu/Ep64DnrtBoeMyzoa14q8Gso5VxizMI72xjVw6s+hY+esI3KtyM8snHOFeeVBePMJGDkeeg/POhrXylJNFpJOljRH0lxJl+dZf7Gk2ZJmSvq3pCGJdTWSpsfHpDTjdM41YvVb8MyPYMBI2O9TWUfjMpBaNZSkMmAicAJQBUyVNMnMZieKvQBUmNl7kr4C/AD4ZFy33sxGpBWfc65AtdXw2LehrBMcew3IKyTaozTf9ZHAXDObZ2abgHuA0ckCZva4mb0XZ6cAA1OMxzm3LZ6/A5bOgqO/BT36ZR2Ny0iayWIAsCAxXxWX1ecC4B+J+S6SKiVNkXRWvg0kjY1lKpcuXdr8iJ1zW3tnJrxwR7hDe9dRWUfjMlQUV0NJOgeoAI5NLB5iZgsl7Qo8JulFM3s9uZ2Z3QbcBlBRUWGtFrBz7cGmdaH6qcfOoe8n166leWaxEBiUmB8Yl21F0ijgSuBMM9tYt9zMFsa/84DJwIEpxuqcy/X0/8LaRaE32U49so7GZSzNZDEVGC5pmKROwBhgq6uaJB0I3EpIFEsSy3tJ6hyn+wBHAsmGcedcmub9G179axifYme/zsSlWA1lZtWSxgMPA2XAnWY2S9IEoNLMJgE/BHoA9yl0RPaWmZ0J7AXcKqmWkNBuyLmKyjmXlnVL4T/fDyPeHTw262hckUi1zcLMHgIeyll2dWI6b4uZmT0N7JdmbM65PKwWJl8bepX9yAToUBTNmq4I+AXTzrn3zboXFj4Lh38DdhiadTSuiHiycM4FK16HZ38Kg4+Cvc7OOhpXZDxZOOegZlMYzKi8OxzzbR/MyH2AV0g652DqL2DFa3DSj6Fb76yjcUXIzyyca+/eroSZvw1VT0OOzjoaV6Q8WTjXnm1+DyZ/B7YfBIddlHU0rogVlCwk/VnSaZJ3N+lcSXluIqxdDMdeDeVds47GFbFCv/xvBj4NvCbpBkkfSjEm51xrWDw9XCq7zyf8Lm3XqIKShZk9amafAQ4C5gOPSnpa0ucklacZoHMuBdUb4IkJ0HMXGOljabvGFVytJKk3cD7wBcKgRT8hJI9HUonMOZeeab8Mo98d/S0o75Z1NK4NKOjSWUkPAB8C7gbOMLNFcdUfJVWmFZxzLgVLXw5XP33oTBh4WNbRuDai0Pssfmpmj+dbYWYVLRiPcy5NNZtD9VPXXnDYN7KOxrUhhSaLXpL+J2fZauDFZNfizrkiN+PX4ea7E38EnXtmHY1rQwpNFhcAhwN1ZxcfBqYBwyRNMLO7U4jNOdeSVsyF52+H3U6Eocc2Xt65hEKTRTmwl5m9AyCpH/Ab4FDgSUJbhnOuWNXWwBPXhRHvjvAhUl3TFXo11MC6RBEtAQaZ2Qpgc8uH5ZxrUS/9AZbOgiO+GdornGuiQs8sJkv6G3BfnD87LusOrEolMudcy1i9IHQUOPho2O2krKNxbVShyWIc8D/AUXH+N8CfzMyAj6QRmHOuBVgtPHkdlJXD0Vd41+NumzVaDSWpDHjMzP5kZt+Ij/tjomhs25MlzZE0V9LledZfLGm2pJmS/i1pSGLdeZJei4/zmvzKnHPw8p9h0fOhk8DuO2UdjWvDGk0WZlYD1Eravik7jklmInAKsDfwKUl75xR7Aagws/2B+4EfxG13BK4hNKCPBK6R5BWtzjXF2sVh5LsBI+FDo7OOxrVxhVZDrQVelPQIsK5uoZl9rYFtRgJzzWwegKR7gNHA7MT2yRv9pgDnxOmTgEdiAzrxeU8G/lBgvM61b2bwn++Haqijr/TqJ9dshSaLP8dHUwwAFiTmqwhnCvW5APhHA9sOyN1A0lhgLMDgwYObGJ5zJey1v8OCp8PVT9t94F/HuSYrKFmY2a8ldQUGm9mclg5C0jlABdCkO4XM7DbgNoCKiopG21CcaxfeWwbP3AT9DgjdjzvXAgod/OgMYDrwzzg/QtKkRjZbCAxKzA+My3L3PQq4EjjTzDY2ZVvnXB5P3Ri6ID/22+DjlbkWUugn6VpCG8QqADObDuzayDZTgeGShknqBIwBtkowkg4EbiUkimQfUw8DJ0rqFRu2T4zLnHMNmfcozH8cDh4LOwzNOhpXQgpts9hsZqu1dSNZbUMbmFm1pPGEL/ky4E4zmyVpAlBpZpOAHwI9gPvivt8yszPNbIWk6wgJB2BCXWO3c64eG1bBf38AffaE/c9pvLxzTVBospgl6dNAmaThwNeApxvbyMweAh7KWXZ1YnpUA9veCdxZYHzOuWdugg2r4dSfQ4dC/7WdK0yh1VBfBfYBNhIuX10DXJRWUM65JnrrKXjtITjwc9B7j6yjcSWo0Kuh3iM0Ql+ZbjjOuSbbtBb+cz302hUO/HzW0bgSVeiwqnsA3wSGJrcxs+PSCcs5V7BnfwrvLYUTboSyTllH40pUoRWb9wG3ALcDNemF45xrkrcrQ/9P+30Gdto362hcCSs0WVSb2S9SjcQ51zTVG+DJ78J2A+GQr2QdjStxhTZw/1XShZJ2kbRj3SPVyJxzDZv6C1hTBcd8Gzp2yToaV+IKPbOo6yI8OR6j0fiNec65NLzzIrz4e9jrbOh/cNbRuHag0KuhhqUdiHOuQDWb4IkJYXyKQ7+adTSunWiwGkrSpYnpj+es+35aQTnnGvD8HbDqDTj6W9CpR9bRuHaisTaLMYnpK3LWndzCsTjnGrP8VZh+Fww/DQYfmXU0rh1pLFmonul88865NNVWw+TvQJcd4PCLs47GtTONJQurZzrfvHMuTTPuhuVz4MhLoUuTRjl2rtkaa+A+QNIawllE1zhNnPdr9ZxrLUtegmm3wbDjYNfjs47GtUMNJgszK2utQJxz9Vi/Ah65DLr1CY3azmXA+zF2rpjVVsO/vxXGqhh9R2ivcC4DPuaic8XsuYmh/6ejrwiDGjmXEU8WzhWr1x+BmXfD3h+HPU7POhrXznmycK4YrXg93KXdb3+/TNYVhVSThaSTJc2RNFfS5XnWHyPpeUnVkj6Ws65G0vT4mJRmnM4VlU1r4ZFLoLwbjLoRysqzjsi59Bq4JZUBE4ETgCpgqqRJZjY7Uewt4HzAIeFSAAAToUlEQVTCwEq51pvZiLTic64oWS08fjWsWQin3wLd+2YdkXNAuldDjQTmmtk8AEn3AKOBLcnCzObHdbUpxuFc2/HCnfDmk3DEN2GXA7OOxrkt0qyGGgAsSMxXxWWF6iKpUtIUSWflKyBpbCxTuXTp0ubE6lz2FjwNlbfC7qfAPp/MOhrntlLMDdxDzKwC+DTwf5J2yy1gZreZWYWZVfTt66frrg1bUwWPXQW9h8MxV4K86zVXXNJMFguBQYn5gXFZQcxsYfw7D5gM+Dm5K03VG+CRS8EMTviBj3rnilKayWIqMFzSMEmdCN2dF3RVk6RekjrH6T7AkSTaOpwrGWbw5Pdg+WtwXBxP27kilFqyMLNqYDzwMPAycK+ZzZI0QdKZAJIOkVQFfBy4VdKsuPleQKWkGcDjwA05V1E5Vxpm/RHm/gMqvuTjU7iilmrfUGb2EPBQzrKrE9NTCdVTuds9DeyXZmzOZW7xdHjmxzD4aDjw81lH41yDirmB27nStW5p6El2uwFw3HUg/1d0xc17nXWutdVshkcvg83vwWkTfRxt1yZ4snCutT1zE7wzE46/HnbcPetonCuIn/s615pe/RvMvg/2Pwd2OyHraJwrmCcL51rLslfgP9fDLgfDyPFZR+Nck3iycK41bFgVbrzrsgOMuh46eA2wa1v8E+tc2mprQlce65bCmb+ErjtmHZFzTeZnFs6lbdqtUDUFjrwUdto362ic2yaeLJxL0/zJodvxPc+CvT6adTTObTNPFs6lZdV8ePwa6Ls3HHFJ1tE41yyeLJxLw6Z18K9LwpCoJ/wAOnbOOiLnmsUbuJ1raWbwxARY/SacOhF67Jx1RM41m59ZONfSZt4Nb/wbRn4VBhySdTTOtQhPFs61pDceh+d+DruOCndpO1civBrKuZYy+0/w3xtDg/axV/vQqK6keLJwrrnMYNpt8PwvYdCRMOoGKO+adVTOtShPFs41R201PHUjvPIA7HEGHHOld+XhSpJ/qp3bVtUb4N9XwptPwIjPwSEXetWTK1mpNnBLOlnSHElzJV2eZ/0xkp6XVC3pYznrzpP0Wnycl2aczjXZhtXw93Hw5pPhhruR4zxRuJKW2pmFpDJgInACUAVMlTTJzGYnir0FnA98M2fbHYFrgArAgGlx25VpxetcwdYuhn98DVYvCD3I7joq64icS12aZxYjgblmNs/MNgH3AKOTBcxsvpnNBGpztj0JeMTMVsQE8QhwcoqxOleYFa/DXy6Ate/AqT/zROHajTSTxQBgQWK+Ki5rsW0ljZVUKaly6dKl2xyocwVZPB0mfQGsJnQ13r8i64icazVt+qY8M7vNzCrMrKJv375Zh+NK2fzJoY2i644w+k7ovUfWETnXqtJMFguBQYn5gXFZ2ts617Jm/ymMctd7OIy+A3r2zzoi51pdmsliKjBc0jBJnYAxwKQCt30YOFFSL0m9gBPjMudajxlU3gpPXQ8DD4fTfhGGRXWuHUotWZhZNTCe8CX/MnCvmc2SNEHSmQCSDpFUBXwcuFXSrLjtCuA6QsKZCkyIy5xrHbXV8J/vh7uy9zgDTvqR35Xt2jWZWdYxtIiKigqrrKzMOgxXCvxmO9eOSJpmZo1ereF3cDuXtGE1PHwxvDMz3Gy37yezjsi5ouDJwrk6frOdc/XyZOEchJvt/vHVMBzqqT/zeyicy+HJwrnF0+Gf3wjjZJ/5S7+Hwrk82vRNec4125ab7Xr5zXbONcDPLFz7lRzZ7uT/83sonGuAJwvXPr34B3jmRz6ynXMF8mTh2qcXfwe7HBxutvOR7ZxrlLdZuPZn7eLwGPYRTxTOFciThWt/Fs8If/sdkG0czrUhnixc+/PODOjYNfQi65wriCcL1/4sng799vMqKOeawJOFa182rYUVc70Kyrkm8mTh2pclL4HVws4jso7EuTbFk4VrXxZPB3WAnfbNOhLn2hRPFq59WTwjdOnRqXvWkTjXpniycO1HbTUsedHbK5zbBp4sXPux/NUwCp63VzjXZKkmC0knS5ojaa6ky/Os7yzpj3H9s5KGxuVDJa2XND0+bkkzTtdOLJ4e/u7sZxbONVVqF5pLKgMmAicAVcBUSZPMbHai2AXASjPbXdIY4EagbhzL183MfwK6lrN4OvTsD913yjoS59qcNM8sRgJzzWyemW0C7gFG55QZDfw6Tt8PHC9JKcbk2iuz0Ljt7RXObZM0k8UAYEFiviouy1vGzKqB1UDvuG6YpBckPSHp6BTjdO3Buwth/XKvgnJuGxVrfweLgMFmtlzSwcCDkvYxszXJQpLGAmMBBg8enEGYrs3Y0l7hNZvObYs0zywWAoMS8wPjsrxlJHUEtgeWm9lGM1sOYGbTgNeBD4x3aWa3mVmFmVX07ds3hZfgSsbiGdCpJ/TaNetInGuT0kwWU4HhkoZJ6gSMASbllJkEnBenPwY8ZmYmqW9sIEfSrsBwYF6KsbpSt3g69Ns/3L3tnGuy1KqhzKxa0njgYaAMuNPMZkmaAFSa2STgDuBuSXOBFYSEAnAMMEHSZqAW+LKZrUgrVlfiNqyCVW/A8FOyjsS5NivVNgszewh4KGfZ1YnpDcDH82z3J+BPacbm2pF3Zoa/3l7h3Dbzc3JX+hbPCGNX9N0760ica7M8WbjSt3g69NkLOnbJOhLn2ixPFq60VW+EpbO9Csq5ZvJk4UrbspehdrPfjOdcM3mycKWt7mY87+bDuWbxZOFK2+IZsP1g6Nor60ica9M8WbjSZbXhsllvr3Cu2TxZuNK1aj5sXO3JwrkW4MnCla7FM8Jfb69wrtk8WbjStXg6dOkV2iycc83iycKVrndmhEtmfTwt55rNk4UrTe8tgzVV3l7hXAvxZAGw7BWo2Zx1FK4l+WBHzrWoYh0pr/WsXwF/PgfKOoeO5nY+IDSI9tsfumyfdXRuWy2eEd7T3h/KOhLnSoIni45dYdSNoX578QyYcTfYXWHdDsPeTx47HwA9B0CHskzDdQV6ZwbstA+UlWcdiXMlwZNFeVfY9fjwAKjeAEtmvZ885v0bXnkwrOtQDj13ge0GJh6Dwt+e/aFj5+xeh3vf5vWwbA4c8NmsI3GuZHiyyNWxC/Q/ODwg3AW88g1Y8iKsXgBrFoSG08UzYPO6xIaC7n2ha+/QtUSXHaDrjuFvl15xWfzbqQeUd/dfvWlZ8hJYjbdXONeCPFk0Rh1gx93CI8ksDNe5pur9x7sLQxvIhlWwch6sXwk1G+vfd1mnkDQ6dd/6b3m3cMbTsUuod+/YJfHo/P7ysk4h4ZR1Co8O5R9cprIw8E+HjqV1CalZ6E22ZlPisTkc7/mTAYV2J+dci/Bksa2kcJbQtRf026/+cpvXw4aVIXFsWBkSyaa1sGldODPJ/btuSfhbvSE+NoYvxRaJOZE4kg91CI8OZe9PqyyxrCwmGoW/ihfR1ZUNMzlPZvljsNr4sPAXy1lWA7XVUFtT/3RdkmhI7w9B557bfqycc1tJNVlIOhn4CVAG3G5mN+Ss7wz8BjgYWA580szmx3VXABcANcDXzOzhNGNNTXnX8OjZf9v3UVsdkkbNxkQS2RC+MGurc35Zb9r6F/eWL9jq+h9bvqxrwt/amq2X1daw5cu/7ksdi+U2h2mzws5c6hJPhzJQOSEBdUgkIeUks5jgVPb+dIeO7585JR8dysOZV4dy6ONXQTnXklJLFpLKgInACUAVMFXSJDObnSh2AbDSzHaXNAa4EfikpL2BMcA+QH/gUUl7mFlNWvEWtQ4doVNHoHvWkTjn2qk0b8obCcw1s3lmtgm4BxidU2Y08Os4fT9wvCTF5feY2UYzewOYG/fnnHMuA2lWQw0AFiTmq4BD6ytjZtWSVgO94/IpOdsOyH0CSWOBsXF2raQ59cTSB1jW1BeQobYWL3jMrcVjTl9bixeaF/OQQgq16QZuM7sNuK2xcpIqzayiFUJqEW0tXvCYW4vHnL62Fi+0TsxpVkMtBAYl5gfGZXnLSOoIbE9o6C5kW+ecc60kzWQxFRguaZikToQG60k5ZSYB58XpjwGPmZnF5WMkdZY0DBgOPJdirM455xqQWjVUbIMYDzxMuHT2TjObJWkCUGlmk4A7gLslzQVWEBIKsdy9wGygGhjXzCuhGq2qKjJtLV7wmFuLx5y+thYvtELMCj/knXPOufr5eBbOOeca5cnCOedco0omWUg6WdIcSXMlXZ5n/fmSlkqaHh9fyCLOnJjulLRE0kv1rJekn8bXNFPSQa0dY048jcX7YUmrE8f46taOMU9MgyQ9Lmm2pFmSvp6nTLEd50JiLppjLamLpOckzYjxfidPmc6S/hiP8bOShrZ+pFvFU0jMRfedAaF3DEkvSPpbnnXpHWcza/MPQgP668CuQCdgBrB3TpnzgZ9nHWtOTMcABwEv1bP+VOAfhF76DgOeLfJ4Pwz8LevjmhPTLsBBcbon8Gqez0axHedCYi6aYx2PW484XQ48CxyWU+ZC4JY4PQb4YxuIuei+M2JcFwO/z/f+p3mcS+XMopCuRYqOmT1JuAqsPqOB31gwBdhB0i6tE90HFRBv0TGzRWb2fJx+F3iZD/YGUGzHuZCYi0Y8bmvjbHl85F45U1/XPpkoMOaiI2kgcBpwez1FUjvOpZIs8nUtku+f6+xYzXC/pEF51hebQl9XMTk8ntr/Q9I+WQeTFE/JDyT8ikwq2uPcQMxQRMc6Vo1MB5YAj5hZvcfYzKqBuq59MlNAzFB83xn/B1wK1NazPrXjXCrJohB/BYaa2f7AI7yffV3LeR4YYmYHAD8DHsw4ni0k9QD+BFxkZmuyjqcQjcRcVMfazGrMbASht4WRkvbNMp5CFBBzUX1nSDodWGJm07J4/lJJFo12D2Jmy82sbti62wljaBS7NtXtiZmtqTu1N7OHgHJJfTIOC0nlhC/d35nZn/MUKbrj3FjMxXqszWwV8Dhwcs6q+rr2yVx9MRfhd8aRwJmS5hOq2o+T9NucMqkd51JJFo12LZJTB30moR642E0CPhuv1jkMWG1mi7IOqj6Sdq6rH5U0kvD5yvQLIcZzB/Cymd1UT7GiOs6FxFxMx1pSX0k7xOmuhDFsXskpVl/XPpkoJOZi+84wsyvMbKCZDSV8xz1mZufkFEvtOLfpXmfrWGFdi3xN0pmE7kNWEK50yJSkPxCuaukjqQq4htDQhpndAjxEuFJnLvAe8LlsIg0KiPdjwFckVQPrgTFZfiFERwLnAi/G+mmAbwGDoTiPM4XFXEzHehfg1woDnnUA7jWzv6mArn0yVEjMRfedkU9rHWfv7sM551yjSqUayjnnXIo8WTjnnGuUJwvnnHON8mThnHOuUZ4snHPONcqThStaktYWUOYiSd1a8DnPkrR3C+7v6WZsuzb+7S/p/gbK7SDpwm19HucK4cnCtXUXAU1KFvHa+vqcBbRYsjCzI1pgH2+b2ccaKLIDobdR51LjycIVPYWxGybHztxekfS7eLf114D+wOOSHo9lT5T0jKTnJd0X+1dC0nxJN0p6Hvi4pC9Kmho74vuTpG6SjiDcqftDhfELdpM0QtKU2JncA5J6xf1NlvRjSZWSXpZ0iKQ/S3pN0ncTsa9NTF8m6cX4nDfkeZ3DYuwv5uxjqOIYIpL2URiHYXqMaThwA7BbXPZDST0k/TsegxcljU7s52VJv1QYw+Ff8e5lJO0u6dEY2/OSdovLL4nHaabyjPng2pGW6uvcH/5o6QewNv79MKH3zIGEHzjPAEfFdfOBPnG6D/Ak0D3OXwZcnSh3aWLfvRPT3wW+GqfvAj6WWDcTODZOTwD+L05PBm6M018H3ibcFdyZ0Gtt75zXcArwNNAtzu+Y5/VOAj4bp8clth1KHEOE0GngZ+J0J6Brcn1c3hHYLnFM5hLGbxhKuBt5RFx3L3BOnH4W+Gic7kI4WzsRuC1u2wH4G3BM1p8Lf2TzKInuPly78JyZVQHELjCGAk/llDmMUIX039htUidCYqnzx8T0vvHX+w5AD0JXMVuRtD2wg5k9ERf9GrgvUaSu/7EXgVkW+5OSNI/QmVuyr6ZRwK/M7D0AM8s3LsiRwNlx+m7gxjxlngGuVBjX4M9m9po+OFyBgO9LOobQlfUAoF9c94aZ1XUhMg0YKqknMMDMHoixbYiv40RCwnghlu8BDCckZNfOeLJwbcXGxHQN+T+7IoxL8Kl69rEuMX0XcJaZzZB0PuHsZVtjqs2Jr7ae+ArRYP87ZvZ7Sc8SBsB5SNKXgHk5xT4D9AUONrPNCr2UdsmJGcJx7NrA0wm43sxubUL8rkR5m4Vr694lDD0KMAU4UtLuAJK6S9qjnu16AosUugL/TL79mdlqYKWko+O6c4En2DaPAJ+ru3JL0o55yvyX9zt++0ye9UjaFZhnZj8F/gLsz9bHAEK31EtiovgIMKShwCyMxlcl6az4HJ1jnA8Dn0+0+wyQtFNBr9aVHE8Wrq27DfinpMfNbCmhZ9A/SJpJqLLZs57tvk2op/8vW3dNfQ9wiaQXYiPveYQG75nACEK7RZOZ2T8J1VaVsRrtm3mKfR0YJ+lF6h+p7xPAS3Ef+xKGg11OqHp7SdIPgd8BFXE/n+WD3YXncy6hl9WZhLaVnc3sX4Sxnp+J+7qfrZOSa0e811nnnHON8jML55xzjfJk4ZxzrlGeLJxzzjXKk4VzzrlGebJwzjnXKE8WzjnnGuXJwjnnXKP+PxpkjJGRLvhCAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -219,7 +221,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYXFW57/HvL53OQAiEhCRAZiAMYQrYgIoDImpwIJyjKCAKiiJHcLhex6tXFPWIx3M86hWPIiKCQwQEjSgiKjghQgciIYGQEAJpCCRkIANkfu8fazXZKaq7KklXV3Xn93me/fSe661du+uttdbeaysiMDMz60yfegdgZmaNz8nCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAkfU7Sj/L4WElrJDXl6ZGS/ixptaT/UvIDSSsk3VXfyK0zkhZKOrnecdSapHMl/bUG+93mf6EL9zteUuR9n5/nHZSnN0t6T1e+XlfpW+8AejJJC4GRwObC7Ksi4qL6RLTzIuIxYPfCrPOBp4E9IiIkvRx4DTA6ItbWI0bbeZKuAtoi4jP1jqVR5P/n90TE76Hs/0JXGxIRm/JrPQTsLun2Gr7eTnGy2Hlvaj+5akVS3/aTqg7GAXNi692b44CFO5Io6vw+erRd5djtKu+zJ3I1VI20F40l/WeusnlE0imF5XtK+r6kxZIel/TFQtXPuZL+Jum/JS0DPiepKVcDPZ33dVEuyvaVdLqkGSWv/xFJv+wgtgmS/pSrlm4F9i4sG1/Y71XAOcDHcxH5fcAVwEvy9OfzNm+UNFPSSkl3SDqysL+Fkj4h6T5gbd7vfpJ+Lmlpfi8fLKz/OUnXSro6xzdbUkth+RhJN+Rtl0n6VmHZuyU9kI/3LZLGdfL5vCzHulLSIknnFj6Xq/P+H5X0GUl9ynwuKyUtkPTSPH+RpCWSzim8xlWSviPp1vxe/lSMSdI38narJM3Ipbbicbhe0o8krQLOldRH0iclPZzf+7WShha2eUeOeZmkT3fy3s8H3l74XH+V5x8q6fb83mZLOrWTfdwu6Qv5eKyW9DtJxfPo1LyPlXndQzvZV0i6UNI8YF6ed0g+bsslzZX01sL6wyRNz8ftLuCAwrLnz9+SWN9TmH5vPk9WS5oj6RhJ1wBjgV/lY/Lx0n3l83Z6jmm+pPeWfF4dnre9QkR42MEBWAic3MGyc4GNwHuBJuDfgCcA5eU3At8FBgEjgLuA9xW23QR8gFT6GwhcAMwBRgN7Ab8HIi/vDywHDi28/r3AmzuI7e/A1/J2rwBWAz/Ky8a37zdPXwV8seR9/bUwfTSwBDg+v89z8nHpXzhGM4Ex+X30AWYAnwX6AfsDC4DX5fU/B6wDXp/392XgzrysCfgn8N/5uA0AXpaXTQXmA4fmY/IZ4I4O3v+4/J7PBJqBYcDkvOxq4JfA4HwsHgLOK/lc3pVj+SLwGHBZPpavzfvdvXDsVudj3B/4RsmxOzu/dl/gfwNPAgMKx2EjcFo+ZgOBDwF35nOgP+n8+WlefxKwpvBaX8uxdnR+ln6uzfn4/Z/8uZyUYz+4g+1vBx4GDsqx3Q5cmpcdBKwlVVc2Ax/P++7Xwb4CuBUYmvc1CFiUj3Nf0jn2NDAprz8NuDavdzjwePtxpeT8LcT6njx+el7/WEDAgcC4cv/PpfsC/gx8m3TeTQaWAidVOm/LvN8XxFgu1kYb6h5ATx7yybUGWFkY3puXnQvML6y7Wz5B9iG1c6wHBhaWnwncVtj2sZLX+iM5meTpk0tO5P8BvpTHDwNWkL+wS/YzlvQlMqgw7yfseLL4H+ALJa8xF3hl4Ri9u7Ds+DLv7VPAD/L454DfF5ZNAp7L4y/J/6Dl/sluJn+p5+k+wLPtXwRlXu/GMvObgA3kL6U8733A7YX3Pq+w7Ih8rEYW5i1ja+K5CphWWLY7qX1rTAfn0wrgqMJx+HPJ8geAVxem9yUllL6k5Ft8rUH5vVSbLF5OSlZ9CvN+Cnyug+1vBz5TmH4/8Ns8/n+Ba0s+i8eBEzvYV5C/dPP024C/lKzzXeDi/BltBA4pLPt3qk8WtwAf6uT/uWyyIP3Y2QwMLiz/MqmNsv3zKnvelnmdF8RYLtZGG9xmsfNOi47bLJ5sH4mIZyVB+sIYSvrFtTjPg/QPtaiwbXEcYL8Ky38I/FTSZ4B3kP5Z15eJaT9gRWzb5vAo6Z9hR4wDzpH0gcK8fvl1ysU6DthP0srCvCbgL4XpJwvjzwIDclXAGODRKF+nPQ74hqT/KswTMIr0/orGkH4Vl9qb9LkU138076PdU4Xx5wAionResVH0+fceEWskLSd/lpI+CpyXpwPYg0KVIC/8jMcBN0raUpi3mfTjY5vzIyLWKlVhVms/YFFEFPdd+t5LlX5O7e97PwrHMCK2SFpUYV+l58jxJedIX+AaYHgeL65f+vl2pqPPvpL9gOURsbrkdYtVTWXP2w7O1x7HyaI+FpFKFnt3ciKVdge8mFT90G6bL/eIuFPSBtIvxLPyUM5iYC9JgwoJY2yZ16vWIlKJ5kudrFPc9yLgkYiYuIOvNbaDf8D2OH5c5X6OKzP/adKv1nGkKj9Ix+bxHYi13fOfk6T2HwpP5PaJjwOvBmbnL9QVpATXrvQzWUQqpf2t9EUkLSZVwbVP70aq4upI6b6fAMZI6lNIGGNJ1XDb6wlSqas9FpGOQ2fHsfQc+VNEvKZ0JaV2vU15fw8W4mzXfk7vBqzK4/uU7PsAyuvsf+AJYKikwYWEsbPnRo/iBu46iIjFwO+A/5K0R264PEDSKzvZ7FrgQ5JGSRoCfKLMOlcD3wI2RkTZ684j4lGgFfi8pH6SXga8aSfezveACyQdr2SQpDdIGtzB+ncBq5UavQcqNdwfLunYKl7rLlKyuzS/zgBJJ+Rl3wE+JekweL6h+vQO9vNj4GRJb1VqcB8maXJEbCYd5y9JGqzUGP0R4EfVHYqyXq/UmN4P+AKpHnsRqU1kE7laTdJnSSWLznwnxzYuv8fhkqbmZdcDbyy81iV0/v/9FKm9qN0/SL+GPy6pWdKJpPNi2na813bXAm+Q9GpJzaT2mPXAHVVufxNwkFKDfXMejpV0aP6MbiBd9LGbpEmkdjIAImIp6Qv87HxuvZttk8MVwEclvSifrwdq60UHpcfkefkzuwP4cj7vjiSVCnfm3OhRnCx2XvvVE+3DjVVu905Sdc0cUl319aQ66I58j5Rg7iM1Xv+G9GVTvMfjGlKDX6UT+CxS28FyUj3w1VXG/AIR0UpqxP8W6X3MJ9Xtd7T+ZuCNpAbCR0i/5q8A9qzitTaTvsAOJDUst5Hqt4mIG4GvANOUrh66Hzilg/08RmqI/N+kYzATOCov/gDp1+kC4K+k9pwrK8XWiZ+QjvFy4EWkRm1Idee/Jf1yf5TUOFpa7VTqG8B04HeSVpMau4/P72k2cGF+vcWkz6Ktk319H5ikdLXSLyJiA+nYnkL6TL4NvDMiHuxkH2VFxNz8Pv9f3tebSJeYb6hy+9WkiwXOIP2if5L02fbPq1xEqvJ6ktT28oOSXbwX+Bip/egwCkkqIq4DvkQ6TquBX5BKe5DaID6Tj8lHy4R2Jqm94QnSBSoXd1IF3eu0X5ljPYzSZbjfiYhxhXkDSVcmHRMR8+oWnAG+8c3KyyWZuaQfCB+LiO9JmgjcTfoB+f6IuKqOIZblNoseIieCV5FKFyNJv1ZLSzH/BtztRGHWuHJV8ICSefOAIfWJqDo1rYaSNEXphpr5kj7ZyXpvzje/FG+++lTebq6k19Uyzh5CwOdJ1Qv3ki6j/OzzC1NXBR8iVa2YmXWpmlVD5asWHiLdmNNGKmKdGRFzStYbDPyaVPy6KCJac6PVT0lXrOxHugHtoFxnbWZm3ayWJYvjSDelLcgNW9NId9mW+gKp8WpdYd5U0g1G6yPiEVKjablLHc3MrBvUss1iFNte3dFGvnKjnaRjSHez/lrSx0q2vbNk2xfc0KPUx835AIMGDXrRIYcc0kWhm5ntGmbMmPF0RAyvtF7dGriVOmf7Gp1cZllJRFwOXA7Q0tISra2tXROcmdkuQlJVd8DXMlk8zrZ3GY9m27sdB5PuCbg9d3mxDzBdqafLStuamVk3qmWbxd3ARKXusPuRbrCZ3r4wIp6JiL0jYnxEjCdVO52ab/KaDpwhqb+kCcBE0t27ZmZWBzUrWUTEJkkXke5UbQKujIjZki4BWiNieifbzpZ0Lenu5k3Ahb4SysysfnrNHdzl2iw2btxIW1sb69at62CrnmfAgAGMHj2a5ubmeodiZr2ApBkRUfFBTb36Du62tjYGDx7M+PHjkVR5gwYXESxbtoy2tjYmTJhQ73DMbBfSqzsSXLduHcOGDesViQJAEsOGDetVJSUz6xl6dbIAek2iaNfb3o+Z9Qy9PlmYmdnOc7IwM7OKnCxqbOHChQwcOJDJkye/YNmDDz7IS17yEvr3789//ud/Pj//ueeeY/LkyfTr14+nn366O8M1MyurV18N1SgOOOAAZs6c+YL5Q4cO5Zvf/Ca/+MUvtpk/cOBAZs6cyfjx47spQjOzzu06yeKO/4Jlc7t2n8MOhpfu+OMjRowYwYgRI/j1r3/dhUGZmXU9V0OZmVlFu07JYidKAGZmuzqXLLrRZZddxuTJk5k8eTJPPPFEvcMxM6varlOyaAAXXnghF154Yb3DMDPbbk4WdfTkk0/S0tLCqlWr6NOnD1//+teZM2cOe+yxR71DMzPbhpNFHe2zzz60tbXVOwwzs4rcZlFjTU1NPPPMM2VvyutI+015GzdupE8ff0RmVn+9vmQREXXtfG/MmDEsWrRou7ZpvymvnN7y/BEz61l69c/WAQMGsGzZsl7zBdv+PIsBAwbUOxQz28X06pLF6NGjaWtrY+nSpfUOpcu0PynPzKw71TRZSJoCfIP0DO4rIuLSkuUXABcCm4E1wPkRMUfSeOABoL1/jjsj4oLtff3m5mY/Uc7MrAvULFlIagIuA14DtAF3S5oeEXMKq/0kIr6T1z8V+BowJS97OCKqbxU2M7OaqWWbxXHA/IhYEBEbgGnA1OIKEbGqMDkI6B2NC2ZmvUwtk8UooHgZUFuetw1JF0p6GPgP4IOFRRMk3SvpT5JeXsM4zcysgrpfDRURl0XEAcAngM/k2YuBsRFxNPAR4CeSXnBbs6TzJbVKau1NjdhmZo2mlsnicWBMYXp0nteRacBpABGxPiKW5fEZwMPAQaUbRMTlEdESES3Dhw/vssDNzGxbtUwWdwMTJU2Q1A84A5heXEHSxMLkG4B5ef7w3ECOpP2BicCCGsZqZmadqNnVUBGxSdJFwC2kS2evjIjZki4BWiNiOnCRpJOBjcAK4Jy8+SuASyRtBLYAF0TE8lrFamZmnVNvubu5paUlWltb6x2GmVmPImlGRLRUWq/uDdxmZtb4nCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq6imyULSFElzJc2X9Mkyyy+QNEvSTEl/lTSpsOxTebu5kl5XyzjNzKxzNUsWkpqAy4BTgEnAmcVkkP0kIo6IiMnAfwBfy9tOAs4ADgOmAN/O+zMzszqoZcniOGB+RCyIiA3ANGBqcYWIWFWYHAREHp8KTIuI9RHxCDA/78/MzOqgbw33PQpYVJhuA44vXUnShcBHgH7ASYVt7yzZdlSZbc8HzgcYO3ZslwRtZmYvVPcG7oi4LCIOAD4BfGY7t708IloiomX48OG1CdDMzGqaLB4HxhSmR+d5HZkGnLaD25qZWQ3VMlncDUyUNEFSP1KD9fTiCpImFibfAMzL49OBMyT1lzQBmAjcVcNYzcysEzVrs4iITZIuAm4BmoArI2K2pEuA1oiYDlwk6WRgI7ACOCdvO1vStcAcYBNwYURsrlWsZmbWOUVE5bV6gJaWlmhtba13GGZmPYqkGRHRUmm9ujdwm5lZ43OyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKaposJE2RNFfSfEmfLLP8I5LmSLpP0h8kjSss2yxpZh6m1zJOMzPrXN9a7VhSE3AZ8BqgDbhb0vSImFNY7V6gJSKelfRvwH8Ab8vLnouIybWKz8zMqlfLksVxwPyIWBARG4BpwNTiChFxW0Q8myfvBEbXMB4zM9tBtUwWo4BFhem2PK8j5wE3F6YHSGqVdKek08ptIOn8vE7r0qVLdz5iMzMrq2bVUNtD0tlAC/DKwuxxEfG4pP2BP0qaFREPF7eLiMuBywFaWlqi2wI2M9vF1LJk8TgwpjA9Os/bhqSTgU8Dp0bE+vb5EfF4/rsAuB04uoaxmplZJ2qZLO4GJkqaIKkfcAawzVVNko4GvktKFEsK8/eS1D+P7w2cABQbxs3MrBvVrBoqIjZJugi4BWgCroyI2ZIuAVojYjrwVWB34DpJAI9FxKnAocB3JW0hJbRLS66iMjOzbqSI3lHV39LSEq2trfUOw8ysR5E0IyJaKq3nO7jNzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq6iqZCHpBklvkOTkYma2C6r2y//bwFnAPEmXSjq4hjGZmVmDqSpZRMTvI+LtwDHAQuD3ku6Q9C5JzbUM0MzM6q/qaiVJw4BzgfeQHlr0DVLyuLUmkZmZWcOoqm8oSTcCBwPXAG+KiMV50c8kuY8NM7NertqOBL8ZEbeVW1BNnyJmZtazVZss9pL0ryXzngFmFbsWNzOz3qnaZHEe8BKgvXRxIjADmCDpkoi4pgaxmZlZg6g2WTQDh0bEUwCSRgJXA8cDfya1ZZiZWS9V7dVQo9sTRbYEGBMRy4GNXR+WmZk1kmpLFrdLugm4Lk+/Oc8bBKysSWRmZtYwqk0WFwL/CrwsT18N/DzSY/ZeVYvAzMyscVSshpLUBPwxIn4eEf8rD9dHFc9jlTRF0lxJ8yV9sszyj0iaI+k+SX+QNK6w7BxJ8/Jwzna/MzMz6zIVk0VEbAa2SNpze3ack8xlwCnAJOBMSZNKVrsXaImII4Hrgf/I2w4FLiY1oB8HXCxpr+15fTMz6zrVVkOtAWZJuhVY2z4zIj7YyTbHAfMjYgGApGnAVGBOYfvijX53Amfn8dcBt+YGdPLrTgF+WmW8ZmbWhapNFjfkYXuMAhYVpttIJYWOnAfc3Mm2o0o3kHQ+cD7A2LFjtzM8MzOrVlXJIiJ+KGkgMDYi5nZ1EJLOBlqAV27PdhFxOXA5QEtLS8U2FDMz2zHVPvzoTcBM4Ld5erKk6RU2exwYU5geneeV7vtk4NPAqRGxfnu2NTOz7lHtTXmfI7VBrASIiJnA/hW2uRuYKGmCpH7AGcA2CUbS0cB3SYmi2MfULcBrJe2VG7Zfm+eZmVkdVNtmsTEinpFUnLelsw0iYpOki0hf8k3AlRExW9IlQGtETAe+CuwOXJf3/VhEnBoRyyV9gZRwAC5pb+w2M7PuV22ymC3pLKBJ0kTgg8AdlTaKiN8AvymZ99nC+MmdbHslcGWV8ZmZWQ1VWw31AeAwYD3p8tVVwIdrFZSZmTWWaq+GepbUCP3p2oZjZmaNqNrHqh4EfBQYX9wmIk6qTVhmZtZIqm2zuA74DnAFsLl24ZiZWSOqNllsioj/qWkkZmbWsKpt4P6VpPdL2lfS0PahppGZmVnDqLZk0d5F+McK84LKN+aZmVkvUO3VUBNqHYiZmTWuTquhJH28MH56ybJ/r1VQZmbWWCq1WZxRGP9UybIpXRyLmZk1qErJQh2Ml5s2M7NeqlKyiA7Gy02bmVkvVamB+yhJq0iliIF5nDw9oKaRmZlZw+g0WUREU3cFYmZmjavam/LMzGwX5mRhZmYVOVmYmVlFThZmZlZRTZOFpCmS5kqaL+mTZZa/QtI9kjZJekvJss2SZuZhei3jNDOzzlXbkeB2k9QEXAa8BmgD7pY0PSLmFFZ7DDiX9GClUs9FxORaxWdmZtWrWbIAjgPmR8QCAEnTgKnA88kiIhbmZVtqGIeZme2kWlZDjQIWFabb8rxqDZDUKulOSaeVW0HS+Xmd1qVLl+5MrGZm1olGbuAeFxEtwFnA1yUdULpCRFweES0R0TJ8+PDuj9DMbBdRy2TxODCmMD06z6tKRDye/y4AbgeO7srgzMyserVMFncDEyVNkNSP1N15VVc1SdpLUv88vjdwAoW2DjMz6141SxYRsQm4CLgFeAC4NiJmS7pE0qkAko6V1AacDnxX0uy8+aFAq6R/ArcBl5ZcRWVmZt1IEb2jp/GWlpZobW2tdxhmZj2KpBm5fbhTjdzAbWZmDcLJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqqmmykDRF0lxJ8yV9sszyV0i6R9ImSW8pWXaOpHl5OKeWcZqZWedqliwkNQGXAacAk4AzJU0qWe0x4FzgJyXbDgUuBo4HjgMulrRXrWI1M7PO1bJkcRwwPyIWRMQGYBowtbhCRCyMiPuALSXbvg64NSKWR8QK4FZgSg1jNTOzTtQyWYwCFhWm2/K8LttW0vmSWiW1Ll26dIcDNTOzzvXoBu6IuDwiWiKiZfjw4fUOx8ys16plsngcGFOYHp3n1XpbMzPrYrVMFncDEyVNkNQPOAOYXuW2twCvlbRXbth+bZ5nZmZ10LdWO46ITZIuIn3JNwFXRsRsSZcArRExXdKxwI3AXsCbJH0+Ig6LiOWSvkBKOACXRMTyWsVq1rBiCyy+F+b9Bh75I/QfDCOOgJFHwMgjYdhB0Kdm/8Zmz1NE1DuGLtHS0hKtra31DsOsa6xcCA/9Gub/FtYshubdYNwrYfMGWDIL1i5J6zX1h+GHbptAdtu7rqFbzyJpRkS0VFrPP0nMGsVzK+DhW1IpYukcUB8YdTwc+34YfyI0D9y67ponYcn98NR98NQsuH8a3HdNWrb7vjDi8JQ4Rh4Bww6Gpua6vCXrPZwszOpp03p47C+pFLHoDojNqWrpxR+GA6d0XErYfZ807H9ymt68AZ6em5JHexJZcGta1tQP9j4kJY/2EsigEd3z/qzXcLIw626xBZ6cmUoQC34PG9bAbsPhiLPgoDfA0AO3f59N/XI11BFb561dkkodS2al5DH7WrjvR2nZoJE5eeQSyN4Hp32YdcDJwqy7rHw0JYj5N8PqJ6DvQJhwEkx8PezXAn2auvb1Bo2A/V+dBoDNG2HZ3EICmbW19NFv91SSOXhqKoVIXRuL9XhOFma1tG4lzG9vh5id2yGOg5YLYPyrtm2HqLWm5lSSGHE4cGaa9+zTqdTxyG0w91cw5/pUDXbwqXDgKTBgz+6Lzxqar4Yy62rt7RDzfgOP/S21QwydmKqYDngdDGrQ3gbWr04N7A/+Ep5+APo0p4b1Q6amBKce3eGDdcBXQ5l1t3UrU5vAnJ/DhtWpcfqIs1I107CJ9Y6usv6DYdJb0rDsoZQ05t+cqqp23xcOflMqcey+T70jtTpwycJsZz23Il22Ovs62LQutREcchrsd2zXt0N0t03rYeHtMPeX8PhdgGD08altY/wr3SjeC7hkYVZrzy7LJYnr0pfqAa+FY86Dvfavd2Rdp29/OPB1aVj9RGrXmDsd/vAp6L9nKjUdMnXHruCyHsUlC7Pt9ezT8M9rUmPwlo2pHeKY82DI+HpH1j22bIYn7k7VVAtvT8dg+KTcKD4lXVllPUa1JQsnC7NqPfs0zPwhPHBD+oI88BQ4+t0wZFy9I6ufdSth3s2pmmr5/NT9yP6vTtVU+x7jS3B7AFdDmXWVtUvgn1fDAzfClk2p6uXod8OeYypv29sNGAJHnAmHn5G6KJn7y62XCu8xJlVRHfqv0H+PekdqO8klC7OOrHkKZl6VvgC3bE6Xvh79bthjdL0ja2yb1qU70+dOh8X3QPOglFCOOMtJowG5ZGG2o9Y8mZLEg79MXXMcfCpMPhf2qPapwLu4vgPgoDemYdk8uOeKNMz6aS6FnOmb/XogJwuzdqsXw8wfpF/EkJPEu2DwvvWNqycbNhFe85XUnjHje1uTxuFnpJKGk0aP4WRhtvoJuPcH8NCvAKV7JCaf65vPutLQA7cmjXuugHu/n7pVP/xtcMTbnTR6ACcL23WtastJ4qbUlcUh/5KTxMh6R9Z7DT0QTr60kDR+APf/DA57Kxz59tRgbg3JycJ2PcsfTndcz7s53WF92Olw1Dv9jIfutE3S+H5qI5r9MzjsbU4aDaqmV0NJmgJ8g/QM7isi4tKS5f2Bq4EXAcuAt0XEQknjgQeAuXnVOyPigs5ey1dDWaci0jMk/nl16uSv74BUkjjqnY3bsd+uZPnDqaSx4PepJ14njW5T96uhJDUBlwGvAdqAuyVNj4g5hdXOA1ZExIGSzgC+ArwtL3s4IibXKj7bRcQWePTPKUk8dV/68mm5IHWW5y+ixjH0ADj5y7DivSlpzLxqa5vGkWf7s2oAtayGOg6YHxELACRNA6YCxWQxFfhcHr8e+JbkWz6tC2zekG4M++c18MyjMHgUnPCJ1HNq3wH1js46stf+8Op/h2Pek5PGDwttGmfDwL3qHeEuq5bJYhSwqDDdBhzf0ToRsUnSM8CwvGyCpHuBVcBnIuIvNYzVeovnVsCDv0j1388+DcMOTl8+E06CPm6i6zG2SRrfTyXD2dem9qUj3+GkUQeN+t+zGBgbEcskvQj4haTDImJVcSVJ5wPnA4wdO7YOYVrDWDI7fZk8/LvUb9Oo4+HEz+eH9riw2mPttT+8+kspadz7/VRSnH0tTDo9lTR2G1Z5H9YlapksHgeKneeMzvPKrdMmqS+wJ7AsUqv7eoCImCHpYeAgYJsW7Ii4HLgcUgN3Ld6ENbBN69ODeWblBLRdAAAO40lEQVRflx5Z2rwbHPov6Ytkrwn1js660l4T4KQvwtHnpaRx34/g/p/C/ienz3vkkf5RUGO1TBZ3AxMlTSAlhTOAs0rWmQ6cA/wdeAvwx4gIScOB5RGxWdL+wERgQQ1jtZ5kzZPpaXQP3ph6PR0yHk74eOrgz91j927tSeOY96bniMz9Fcz/bXpu+GFvTV2ku02qJmp96ezrga+TLp29MiK+JOkSoDUipksaAFwDHA0sB86IiAWS3gxcAmwEtgAXR8SvOnstXzrby23eCI/9NXXFsehvad64V6QviP2O9a/KXdXGZ9OFDLOvgxUPQ7/B6SKGSae7V+Aq+XkW1js8/WC6w3rezbD+mfRc64PeCIe+2X022Vbt99HMvhYe+SPEZhj9ktQgPuaEnv942xqq+30WZjvsuRUw/+aUJJY9BH2aYfyJKUmMPt5XNdkLSbDv0Wl49un0gKoHboBbPgKD90s/Lg6Z6vs1doJLFtYYNq1L1UzzfwuP/iX9Mhw+CQ56U3q2tTuas+21ZVN67Ovsa9NzNZr6pXNp0ukw4rB6R9cwXLKwxrfxuZQgFvw+tUNsWgcDh6Wuqw96Y7qr12xH9embrpba/+TUB9Wc61P7xkM3pR8ih70V9n8N9O1f70h7BJcsrHttWFtIEHfA5vUpQUw4KT27eZ+jXb9stbNhDTz063Ql1cqF0H/PVD016S2pumoX5AZuaxzPPg2L/g6P/in93bw+NVRPOAkmvBr2mewEYd0rAp5oTVVUj/459SE29mWpQXz0i1OX9bsIV0NZ/WzZDEvuTyWHRX9LVzRB6gL80H9J1QIjj9yl/iGtwUgw6tg0rHkqNYY/eCPc/Jf00Kt9jk7n6MgjUnfqvqjCJQvrIs8tT6WGRX+Dtn+ky1zVJ/3DjXlpunxx2EG+H8Ia1+aN8MgfYMEfUg/Fzy1L8/sOTA3iI46AfY6CEYf3qquqXLKw2lq3Ml1h0j4smwdEan8Y9/KUHEYfD/33qHekZtVpak53gB84JVVTrVmcksZT98FTs1JnhjM3p3X3HAsjj0olj5FHwpAJvb4q1cnCqvPsMnjyXnhiBiyeASty7ytN/dM/S8v7UoLY+2BXL1nPJ6UG78H7peQB6eq9pXNgyayUQB77S35uO9A8KJU4Rh6ZhhGHQ//B9Yu/Bpws7IU2b0yXGi6dnXpzXTIrXTkCqUi+z1HpH2jfY2D4YekXmVlv1zwQ9ntRGiCVPla1bS19LJmVOjmMLYBSP1Yjj9xafbXn2B79Q8rJYlcXW+CZx1JSWDonJYhlD6WHB0Gqmx1xeLo5br8Xwd6HuLHPDFLpY88xaTjoDWnehrXpf6i96uqRP6bnq0Dqt2rwfqlb9YHD0hWBA4cWpvO85kEN2bbn//pdyYY1qcSwfH565vHy+bB8XpoPqdQw/ND0/OPhk1Kj3u77NuSJa9aQ+g1Kz1AZdVyabv8x9tR96QfZ2iWp4Xz5w+mS8tj8wn009d+aQMolk/bxgUO7tYddJ4veaMOadIKufDQlhBU5Max5cus6zYPSHdIHvG5rYtgFGunMupX6pC70h4yHg0/ddllsgfWrUnvgc8vK/139eEo061YCZa5cbR6UEsfIo+DEi2v6Vpwseqr1q2HVopQUVrVt+3fdyq3r9embTtR9JqfrxduHQSNdYjCrJ/VJ1bwDhgAVurbZsil1sNlRUumGqw6dLBrNls2wYXUqrq5dkm4Yah9f+xSsXZrGN67ddrtBI1Pd6fhX5XrUsbDHGBgyzm0MZj1dn74waHga6sTfIhvWwE0XpEdyNg9KdY7Ng9J0+3i/PN2nOVXT9OmbBjVtnW4f37wxNQ5v2Zge+7klTxeH9atg3TPp7/pnth1fv5oXFDfVJ9VVDhqRrrAY/eI0vueYlBD2GOWng5lZTTlZbNmUvog3rE2/3FesTU/f2rh26xVBtdBvcCo6DtgzdWa2x+htpwcNT6WFQSNSnaRLB2ZWR/4GGjAEpny9/LLNG1PS2PhsGrZsKgyb05UMpeN9mlO/+c8PzenqhqbC/H67+8vfzHoUf2N1pqkZmob0qn5gzMx2RE1vJ5Q0RdJcSfMlfbLM8v6SfpaX/0PS+MKyT+X5cyW9rpZxmplZ52qWLCQ1AZcBpwCTgDMlTSpZ7TxgRUQcCPw38JW87STgDOAwYArw7bw/MzOrg1qWLI4D5kfEgojYAEwDppasMxX4YR6/Hni1JOX50yJifUQ8AszP+zMzszqoZZvFKGBRYboNOL6jdSJik6RngGF5/p0l244qfQFJ5wPn58k1kuZ2EMvewNPb+wbqqKfFC465uzjm2utp8cLOxTyumpV6dAN3RFwOXF5pPUmt1Tzco1H0tHjBMXcXx1x7PS1e6J6Ya1kN9TgwpjA9Os8ru46kvsCewLIqtzUzs25Sy2RxNzBR0gRJ/UgN1tNL1pkOnJPH3wL8MdJzXqcDZ+SrpSYAE4G7ahirmZl1ombVULkN4iLgFqAJuDIiZku6BGiNiOnA94FrJM0HlpMSCnm9a4E5wCbgwohyfflWrWJVVYPpafGCY+4ujrn2elq80A0xK/2QNzMz61jPfcafmZl1GycLMzOrqNckiyq6FjlX0lJJM/PwnnrEWRLTlZKWSLq/g+WS9M38nu6TdEx3x1gST6V4T5T0TOEYf7a7YywT0xhJt0maI2m2pA+VWafRjnM1MTfMsZY0QNJdkv6Z4/18mXU67NqnHqqMueG+MyD1jiHpXkk3lVlWu+McET1+IDWgPwzsD/QD/glMKlnnXOBb9Y61JKZXAMcA93ew/PXAzYCAFwP/aPB4TwRuqvdxLYlpX+CYPD4YeKjMudFox7mamBvmWOfjtnsebwb+Aby4ZJ33A9/J42cAP+sBMTfcd0aO6yPAT8p9/rU8zr2lZFFN1yINJyL+TLoKrCNTgasjuRMYImnf7onuhaqIt+FExOKIuCePrwYe4IW9ATTaca4m5oaRj9uaPNmch9IrZzrq2qcuqoy54UgaDbwBuKKDVWp2nHtLsijXtUi5f64352qG6yWNKbO80VT7vhrJS3LR/mZJh9U7mKJcJD+a9CuyqGGPcycxQwMd61w1MhNYAtwaER0e44jYBLR37VM3VcQMjfed8XXg48CWDpbX7Dj3lmRRjV8B4yPiSOBWtmZf6zr3AOMi4ijg/wG/qHM8z5O0O/Bz4MMRsare8VSjQswNdawjYnNETCb1tnCcpMPrGU81qoi5ob4zJL0RWBIRM+rx+r0lWVTsHiQilkXE+jx5BfCiboptZ/Sobk8iYlV70T4ifgM0S9q7zmEhqZn0pfvjiLihzCoNd5wrxdyoxzoiVgK3kR4tUNRR1z5111HMDfidcQJwqqSFpKr2kyT9qGSdmh3n3pIsKnYtUlIHfSqpHrjRTQfema/WeTHwTEQsrndQHZG0T3v9qKTjSOdXXb8QcjzfBx6IiK91sFpDHedqYm6kYy1puKQheXwg8BrgwZLVOurapy6qibnRvjMi4lMRMToixpO+4/4YEWeXrFaz49yje51tF9V1LfJBSaeSug9ZTrrSoa4k/ZR0VcvektqAi0kNbUTEd4DfkK7UmQ88C7yrPpEmVcT7FuDfJG0CngPOqOcXQnYC8A5gVq6fBvg/wFhozONMdTE30rHeF/ih0gPK+gDXRsRNqqJrnzqqJuaG+84op7uOs7v7MDOzinpLNZSZmdWQk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThTUsSWuqWOfDknbrwtc8TdKkLtzfHTux7Zr8dz9J13ey3hBJ79/R1zGrhpOF9XQfBrYrWeRr6ztyGtBlySIiXtoF+3giIt7SySpDSL2NmtWMk4U1PKVnN9yeO3N7UNKP893WHwT2A26TdFte97WS/i7pHknX5f6VkLRQ0lck3QOcLum9ku7OHfH9XNJukl5KulP3q0rPLzhA0mRJd+bO5G6UtFfe3+2S/ltSq6QHJB0r6QZJ8yR9sRD7msL4JyTNyq95aZn3OSHHPqtkH+OVnyEi6TCl5zDMzDFNBC4FDsjzvippd0l/yMdglqSphf08IOl7Ss9w+F2+exlJB0r6fY7tHkkH5Pkfy8fpPpV55oPtQrqqr3MPHrp6ANbkvyeSes8cTfqB83fgZXnZQmDvPL438GdgUJ7+BPDZwnofL+x7WGH8i8AH8vhVwFsKy+4DXpnHLwG+nsdvB76Sxz8EPEG6K7g/qdfaYSXv4RTgDmC3PD20zPudDrwzj19Y2HY8+RkipE4D357H+wEDi8vz/L7AHoVjMp/0/IbxpLuRJ+dl1wJn5/F/AP+SxweQSmuvBS7P2/YBbgJeUe/zwkN9hl7R3YftEu6KiDaA3AXGeOCvJeu8mFSF9LfcbVI/UmJp97PC+OH51/sQYHdSVzHbkLQnMCQi/pRn/RC4rrBKe/9js4DZkfuTkrSA1Jlbsa+mk4EfRMSzABFR7rkgJwBvzuPXAF8ps87fgU8rPdfghoiYpxc+rkDAv0t6Bakr61HAyLzskYho70JkBjBe0mBgVETcmGNbl9/Ha0kJ4968/u7ARFJCtl2Mk4X1FOsL45spf+6K9FyCMzvYx9rC+FXAaRHxT0nnkkovOxrTlpL4tnQQXzU67X8nIn4i6R+kB+D8RtL7gAUlq70dGA68KCI2KvVSOqAkZkjHcWAnLyfgyxHx3e2I33opt1lYT7ea9OhRgDuBEyQdCCBpkKSDOthuMLBYqSvwt5fbX0Q8A6yQ9PK87B3An9gxtwLvar9yS9LQMuv8ja0dv729zHIk7Q8siIhvAr8EjmTbYwCpW+olOVG8ChjXWWCRnsbXJum0/Br9c5y3AO8utPuMkjSiqndrvY6ThfV0lwO/lXRbRCwl9Qz6U0n3kapsDulgu/9Lqqf/G9t2TT0N+Jike3Mj7zmkBu/7gMmkdovtFhG/JVVbteZqtI+WWe1DwIWSZtHxk/reCtyf93E46XGwy0hVb/dL+irwY6Al7+edvLC78HLeQepl9T5S28o+EfE70rOe/573dT3bJiXbhbjXWTMzq8glCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OK/j8Kf3MsUWKFQQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -229,7 +231,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XucHXV9//HXO5vLJuEWksgldyBcgmKANVxUtBYxaCVUocYrVDAqQe3PesFKlUZtsVZbW7FIAREUIxcv0YKIFbAIgWwkgAmmhBDJBpTcSIDck8/vj+93w+Tk7J6TZM+es5v38/E4j52Z73fmfM6c2fmcme/MdxQRmJmZdaZPvQMwM7PG52RhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WRiSLpP03Tw8WtILkpry+EGSfi3peUlfVfJtSaslPVjfyK0zkpZIOr3ecdSapPMl3VuD5e7wv9CFyx0rKfKyp+VpR+bxrZIu7Mr36yp96x1ATyZpCXAQsLUw+bqIuLg+Ee25iHgK2KcwaRqwAtgvIkLSa4E3AiMj4sV6xGh7TtJ1QFtEXFrvWBpF/n++MCJ+CWX/F7raARGxJb/X/wH7SLq7hu+3R5ws9txb2zeuWpHUt32jqoMxwIJ46e7NMcCS3UkUdf4cPdresu72ls/ZE/k0VI20HxpL+pd8yuZJSWcWyveXdI2kZyQtk/TFwqmf8yX9RtK/SloJXCapKZ8GWpGXdXE+lO0r6VxJc0ve/+OSftJBbOMk3ZNPLd0JDCuUjS0s9zrgPOBT+RD5g8DVwCl5/B/yPH8haZ6k5yTdJ+m4wvKWSPq0pEeAF/NyD5V0q6Tl+bN8tFD/Mkk3Sbo+xzdfUkuhfJSkH+Z5V0r6RqHs/ZIey+v7DkljOvl+XpNjfU7SUknnF76X6/Py/yDpUkl9ynwvz0laLOnUPH2ppGclnVd4j+skXSnpzvxZ7inGJOnreb61kubmo7bierhF0nclrQXOl9RH0iWSnsif/SZJBxbmeW+OeaWkz3by2acB7y58rz/N04+RdHf+bPMlndXJMu6W9IW8Pp6X9AtJxe3orLyM53LdYzpZVkiaLulx4PE87ei83lZJWijprwr1h0qaldfbg8DhhbLt229JrBcWxj+Qt5PnJS2QdIKkG4DRwE/zOvlU6bLydjsrx7RI0gdKvq8Ot9teISL82s0XsAQ4vYOy84HNwAeAJuDDwNOAcvmPgG8Bg4GXAQ8CHyzMuwX4COnobyDwIWABMBIYAvwSiFw+AFgFHFN4/4eAt3cQ2/3A1/J8pwHPA9/NZWPbl5vHrwO+WPK57i2MHw88C5yUP+d5eb0MKKyjecCo/Dn6AHOBzwH9gcOAxcCbcv3LgA3Am/Py/gmYncuagIeBf83rrRl4TS6bAiwCjsnr5FLgvg4+/5j8md8J9AOGAhNz2fXAT4B987r4P+CCku/lr3MsXwSeAq7I6/KMvNx9Cuvu+byOBwBfL1l378nv3Rf4W+CPQHNhPWwGzs7rbCDwMWB23gYGkLaf7+f6E4AXCu/1tRxrR9tn6ffaL6+/v8vfyxty7Ed1MP/dwBPAkTm2u4HLc9mRwIuk05X9gE/lZffvYFkB3AkcmJc1GFia13Nf0ja2ApiQ688Ebsr1Xg4sa1+vlGy/hVgvzMPn5vqvAgQcAYwp9/9cuizg18A3SdvdRGA58IZK222Zz7tTjOVibbRX3QPoya+8cb0APFd4fSCXnQ8sKtQdlDeQg0ntHBuBgYXydwJ3FeZ9quS9fkVOJnn89JIN+T+BL+XhY4HV5B12yXJGk3YigwvTbmT3k8V/Al8oeY+FwOsK6+j9hbKTyny2zwDfzsOXAb8slE0A1ufhU/I/aLl/stvJO/U83gdY174jKPN+PyozvQnYRN4p5WkfBO4ufPbHC2WvyOvqoMK0lbyUeK4DZhbK9iG1b43qYHtaDbyysB5+XVL+GPDnhfFDSAmlLyn5Ft9rcP4s1SaL15KSVZ/CtO8Dl3Uw/93ApYXxi4Cf5+G/B24q+S6WAa/vYFlB3unm8XcA/1tS51vA5/N3tBk4ulD2j1SfLO4APtbJ/3PZZEH6sbMV2LdQ/k+kNsr276vsdlvmfXaKsVysjfZym8WeOzs6brP4Y/tARKyTBGmHcSDpF9czeRqkf6ilhXmLwwCHVij/DvB9SZcC7yX9s24sE9OhwOrYsc3hD6R/ht0xBjhP0kcK0/rn9ykX6xjgUEnPFaY1Af9bGP9jYXgd0JxPBYwC/hDlz2mPAb4u6auFaQJGkD5f0SjSr+JSw0jfS7H+H/Iy2v2pMLweICJKpxUbRbd/9oh4QdIq8ncp6RPABXk8gP0onBJk5+94DPAjSdsK07aSfnzssH1ExItKpzCrdSiwNCKKyy797KVKv6f2z30ohXUYEdskLa2wrNJt5KSSbaQvcAMwPA8X65d+v53p6Luv5FBgVUQ8X/K+xVNNZbfbDrbXHsfJoj6Wko4shnWyIZV2B/wM6fRDux127hExW9Im0i/Ed+VXOc8AQyQNLiSM0WXer1pLSUc0X+qkTnHZS4EnI2L8br7X6A7+Advj+F6Vy5lUZvoK0q/WMaRTfpDWzbLdiLXd9u9JUvsPhadz+8SngD8H5ucd6mpSgmtX+p0sJR2l/ab0TSQ9QzoF1z4+iHSKqyOly34aGCWpTyFhjCadhttVT5OOutpjEWk9dLYeS7eReyLijaWVlNr1tuTl/b4QZ7v2bXoQsDYPH1yy7MMpr7P/gaeBAyXtW0gYe7pt9Chu4K6DiHgG+AXwVUn75YbLwyW9rpPZbgI+JmmEpAOAT5epcz3wDWBzRJS97jwi/gC0Av8gqb+k1wBv3YOP81/AhySdpGSwpLdI2reD+g8Czys1eg9Uarh/uaRXVfFeD5KS3eX5fZolvTqXXQl8RtKxsL2h+twOlvM94HRJf6XU4D5U0sSI2Epaz1+StK9SY/THge9WtyrKerNSY3p/4Auk89hLSW0iW8in1SR9jnRk0Zkrc2xj8mccLmlKLrsF+IvCe82g8//vP5Hai9o9QPo1/ClJ/SS9nrRdzNyFz9ruJuAtkv5cUj9Se8xG4L4q5/8ZcKRSg32//HqVpGPyd/RD0kUfgyRNILWTARARy0k78Pfkbev97JgcrgY+IenEvL0eoZcuOihdJ9vl7+w+4J/ydncc6ahwT7aNHsXJYs+1Xz3R/vpRlfO9j3S6ZgHpXPUtpHPQHfkvUoJ5hNR4fRtpZ1O8x+MGUoNfpQ34XaS2g1Wk88DXVxnzTiKildSI/w3S51hEOrffUf2twF+QGgifJP2avxrYv4r32kragR1BalhuI53fJiJ+BHwZmKl09dDvgDM7WM5TpIbIvyWtg3nAK3PxR0i/ThcD95Lac66tFFsnbiSt41XAiaRGbUjnzn9O+uX+B1LjaOlpp1JfB2YBv5D0PKmx+6T8meYD0/P7PUP6Lto6WdY1wASlq5V+HBGbSOv2TNJ38k3gfRHx+06WUVZELMyf8z/yst5KusR8U5XzP0+6WGAq6Rf9H0nf7YBc5WLSKa8/ktpevl2yiA8AnyS1Hx1LIUlFxM3Al0jr6Xngx6SjPUhtEJfmdfKJMqG9k9Te8DTpApXPd3IKutdpvzLHehily3CvjIgxhWkDSVcmnRARj9ctOAN845uVl49kFpJ+IHwyIv5L0nhgDukH5EURcV0dQyzLbRY9RE4Ef0Y6ujiI9Gu19Cjmw8AcJwqzxpVPBTeXTHscOKA+EVWnpqehJE1WuqFmkaRLOqn39nzzS/Hmq8/k+RZKelMt4+whBPwD6fTCQ6TLKD+3vTB1VfAx0qkVM7MuVbPTUPmqhf8j3ZjTRjrEemdELCipty/w36TDr4sjojU3Wn2fdMXKoaQb0I7M56zNzKyb1fLIYhLpprTFuWFrJuku21JfIDVebShMm0K6wWhjRDxJajQtd6mjmZl1g1q2WYxgx6s72shXbrSTdALpbtb/lvTJknlnl8y70w09Sn3cTAMYPHjwiUcffXQXhW5mtneYO3fuiogYXqle3Rq4lTpn+xqdXGZZSURcBVwF0NLSEq2trV0TnJnZXkJSVXfA1zJZLGPHu4xHsuPdjvuS7gm4O3d5cTAwS6mny0rzmplZN6plm8UcYLxSd9j9STfYzGovjIg1ETEsIsZGxFjSaaez8k1es4CpkgZIGgeMJ929a2ZmdVCzI4uI2CLpYtKdqk3AtRExX9IMoDUiZnUy73xJN5Hubt4CTPeVUGZm9dNr7uAu12axefNm2tra2LBhQwdz9TzNzc2MHDmSfv361TsUM+sFJM2NiIoPaurVd3C3tbWx7777MnbsWCRVnqHBRQQrV66kra2NcePG1TscM9uL9OqOBDds2MDQoUN7RaIAkMTQoUN71ZGSmfUMvTpZAL0mUbTrbZ/HzHqGXp8szMxszzlZmJlZRU4WNbZkyRIGDhzIxIkTdyr73ve+x3HHHccrXvEKTj31VB5++GEA1q9fz8SJE+nfvz8rVqzo7pDNzHbSq6+GahSHH3448+bN22n6uHHjuOeeexgyZAi3334706ZN44EHHmDgwIHMmzePsWPHdn+wZmZl7D3J4r6vwsqFXbvMoUfBqbv/+IhTTz11+/DJJ59MW1tnT8E0M6sfn4ZqENdccw1nnln2kdFmZnW39xxZ7MERQK3dddddXHPNNdx77731DsXMrCwfWXSjK664gokTJzJx4kSefvppAB555BEuvPBCfvKTnzB06NA6R2hmVt7ec2TRAKZPn8706dO3jz/11FO87W1v44YbbuDII4+sY2RmZp1zsqijGTNmsHLlSi666CIA+vbtix/gZGaNyMmijq6++mquvvrqeodhZlaR2yxqrKmpiTVr1pS9Ka8j7Tflbd68mT59/BWZWf31+iOLiKhr53ujRo1i6dKluzRP+0155fSW54+YWc/Sq3+2Njc3s3Llyl6zg21/nkVzc3O9QzGzvUyvPrIYOXIkbW1tLF++vN6hdJn2J+WZmXWnmiYLSZOBr5OewX11RFxeUv4hYDqwFXgBmBYRCySNBR4D2vvnmB0RH9rV9+/Xr5+fKGdm1gVqliwkNQFXAG8E2oA5kmZFxIJCtRsj4spc/yzga8DkXPZERFTfKmxmZjVTyzaLScCiiFgcEZuAmcCUYoWIWFsYHQz0jsYFM7NeppbJYgRQvAyoLU/bgaTpkp4A/hn4aKFonKSHJN0j6bU1jNPMzCqo+9VQEXFFRBwOfBq4NE9+BhgdEccDHwdulLRf6bySpklqldTamxqxzcwaTS2TxTJgVGF8ZJ7WkZnA2QARsTEiVubhucATwE6dJ0XEVRHREhEtw4cP77LAzcxsR7VMFnOA8ZLGSeoPTAVmFStIGl8YfQvweJ4+PDeQI+kwYDywuIaxmplZJ2p2NVREbJF0MXAH6dLZayNivqQZQGtEzAIulnQ6sBlYDZyXZz8NmCFpM7AN+FBErKpVrGZm1jn1lrubW1pawj22mpntGklzI6KlUr26N3CbmVnjc7IwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrKKaJgtJkyUtlLRI0iVlyj8k6VFJ8yTdK2lCoewzeb6Fkt5UyzjNzKxzNUsWkpqAK4AzgQnAO4vJILsxIl4REROBfwa+luedAEwFjgUmA9/MyzMzszqo5ZHFJGBRRCyOiE3ATGBKsUJErC2MDgYiD08BZkbExoh4EliUl2dmZnXQt4bLHgEsLYy3ASeVVpI0Hfg40B94Q2He2SXzjigz7zRgGsDo0aO7JGgzM9tZ3Ru4I+KKiDgc+DRw6S7Oe1VEtEREy/Dhw2sToJmZ1TRZLANGFcZH5mkdmQmcvZvzmplZDdUyWcwBxksaJ6k/qcF6VrGCpPGF0bcAj+fhWcBUSQMkjQPGAw/WMFYzM+tEzdosImKLpIuBO4Am4NqImC9pBtAaEbOAiyWdDmwGVgPn5XnnS7oJWABsAaZHxNZaxWpmZp1TRFSu1QO0tLREa2trvcMwM+tRJM2NiJZK9erewG1mZo3PycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKqppspA0WdJCSYskXVKm/OOSFkh6RNL/SBpTKNsqaV5+zaplnGZm1rm+tVqwpCbgCuCNQBswR9KsiFhQqPYQ0BIR6yR9GPhn4B25bH1ETKxVfGZmVr1aHllMAhZFxOKI2ATMBKYUK0TEXRGxLo/OBkbWMB4zM9tNtUwWI4ClhfG2PK0jFwC3F8abJbVKmi3p7HIzSJqW67QuX758zyM2M7OyanYaaldIeg/QAryuMHlMRCyTdBjwK0mPRsQTxfki4irgKoCWlpbotoDNzPYytTyyWAaMKoyPzNN2IOl04LPAWRGxsX16RCzLfxcDdwPH1zBWMzPrRC2TxRxgvKRxkvoDU4EdrmqSdDzwLVKieLYwfYikAXl4GPBqoNgwbmZm3ahmp6EiYouki4E7gCbg2oiYL2kG0BoRs4CvAPsAN0sCeCoizgKOAb4laRspoV1echWVmZl1I0X0jlP9LS0t0draWu8wzMx6FElzI6KlUj3fwW1mZhU5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRVUlC0k/lPQWSU4uZmZ7oWp3/t8E3gU8LulySUfVMCYzM2swVSWLiPhlRLwbOAFYAvxS0n2S/lpSv1oGaGZm9Vf1aSVJQ4HzgQtJDy36Oil53FmTyMzMrGFU1TeUpB8BRwE3AG+NiGdy0Q8kuY8NM7NertqOBP89Iu4qV1BNnyJmZtazVZsshkh6W8m0NcCjxa7Fzcysd6o2WVwAnAK0H128HpgLjJM0IyJuqEFsZmbWIKpNFv2AYyLiTwCSDgKuB04Cfk1qyzAzs16q2quhRrYniuxZYFRErAI2d31YZmbWSKo9srhb0s+Am/P42/O0wcBzNYnMzMwaRrXJYjrwNuA1efx64NZIj9n7s1oEZmZmjaPiaShJTcCvIuLWiPh/+XVLVPE8VkmTJS2UtEjSJWXKPy5pgaRHJP2PpDGFsvMkPZ5f5+3yJzMzsy5TMVlExFZgm6T9d2XBOclcAZwJTADeKWlCSbWHgJaIOA64BfjnPO+BwOdJDeiTgM9LGrIr729mZl2n2tNQLwCPSroTeLF9YkR8tJN5JgGLImIxgKSZwBRgQWH+4o1+s4H35OE3AXfmBnTy+04Gvl9lvGZm1oWqTRY/zK9dMQJYWhhvIx0pdOQC4PZO5h1ROoOkacA0gNGjR+9ieGZmVq2qkkVEfEfSQGB0RCzs6iAkvQdoAV63K/NFxFXAVQAtLS0V21DMzGz3VPvwo7cC84Cf5/GJkmZVmG0ZMKowPjJPK1326cBngbMiYuOuzGtmZt2j2pvyLiO1QTwHEBHzgMMqzDMHGC9pnKT+wFRghwQj6XjgW6REUexj6g7gDElDcsP2GXmamZnVQbVtFpsjYo2k4rRtnc0QEVskXUzayTcB10bEfEkzgNaImAV8BdgHuDkv+6mIOCsiVkn6AinhAMxob+w2M7PuV22ymC/pXUCTpPHAR4H7Ks0UEbcBt5VM+1xh+PRO5r0WuLbK+MzMrIaqPQ31EeBYYCPp8tW1wN/UKigzM2ss1V4NtY7UCP3Z2oZjZmaNqNrHqh4JfAIYW5wnIt5Qm7DMzKyRVNtmcTNwJXA1sLV24ZiZWSOqNllsiYj/rGkkZmbWsKpt4P6ppIskHSLpwPZXTSMzM7OGUe2RRXsX4Z8sTAsq35hnZma9QLVXQ42rdSBmZta4Oj0NJelTheFzS8r+sVZBmZlZY6nUZjG1MPyZkrLJXRyLmZk1qErJQh0Mlxs3M7NeqlKyiA6Gy42bmVkvVamB+5WS1pKOIgbmYfJ4c00jMzOzhtFpsoiIpu4KxMzMGle1N+WZmdlezMnCzMwqcrIwM7OKnCzMzKyimiYLSZMlLZS0SNIlZcpPk/RbSVsknVNStlXSvPyaVcs4zcysc9V2JLjLJDUBVwBvBNqAOZJmRcSCQrWngPNJD1YqtT4iJtYqPjMzq17NkgUwCVgUEYsBJM0EpgDbk0VELMll22oYh5mZ7aFanoYaASwtjLfladVqltQqabaks8tVkDQt12ldvnz5nsRqZmadaOQG7jER0QK8C/g3SYeXVoiIqyKiJSJahg8f3v0RmpntJWqZLJYBowrjI/O0qkTEsvx3MXA3cHxXBmdmZtWrZbKYA4yXNE5Sf1J351Vd1SRpiKQBeXgY8GoKbR1mZta9apYsImILcDFwB/AYcFNEzJc0Q9JZAJJeJakNOBf4lqT5efZjgFZJDwN3AZeXXEVlZmbdSBG9o6fxlpaWaG1trXcYZmY9iqS5uX24U43cwG1mZg3CycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKqppspA0WdJCSYskXVKm/DRJv5W0RdI5JWXnSXo8v86rZZxmZta5miULSU3AFcCZwATgnZImlFR7CjgfuLFk3gOBzwMnAZOAz0saUqtYzcysc7U8spgELIqIxRGxCZgJTClWiIglEfEIsK1k3jcBd0bEqohYDdwJTK5hrGZm1olaJosRwNLCeFue1mXzSpomqVVS6/Lly3c7UDMz61yPbuCOiKsioiUiWoYPH17vcMzMeq1aJotlwKjC+Mg8rdbzmplZF6tlspgDjJc0TlJ/YCowq8p57wDOkDQkN2yfkaeZmVkd1CxZRMQW4GLSTv4x4KaImC9phqSzACS9SlIbcC7wLUnz87yrgC+QEs4cYEaeZmZmdaCIqHcMXaKlpSVaW1vrHYaZWY8iaW5EtFSq16MbuM3MrHs4WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFta7rPg9/PdF8Osv1jsSs16lb70DMOsS61fDnG/C738MBPTpC6d8HPoNqndkZr2CjyysZ9u2BX43E37wNlg4C14+FU7/cpr+9Nx6R2fWa/jIwnqutgfg/q/C6sUw8mQ45W9hyDjYugn6NkPb/TDmtfWO0qxXqOmRhaTJkhZKWiTpkjLlAyT9IJc/IGlsnj5W0npJ8/LrylrGaT3M2jb4xSfgtumwZSOc8S9w5n+kRAHQ1B8OORHaZtc3TrNepGZHFpKagCuANwJtwBxJsyJiQaHaBcDqiDhC0lTgy8A7ctkTETGxVvFZD7R+NTx8Pcz/AagJXjUdXvEu6Dtg57qjToH7fpMSy34juz9Ws16mlqehJgGLImIxgKSZwBSgmCymAJfl4VuAb0hSDWOynmj9Knj4BlhwczrFdMRkmHQxDH5Zx/OMPDn9bZsNE87pnjjNerFaJosRwNLCeBtwUkd1ImKLpDXA0Fw2TtJDwFrg0oj43xrGao1o3YqcJG6BbZvh8DfBCRfAAWMrz7v/GNj3UFh6v5OFWRdo1AbuZ4DREbFS0onAjyUdGxFri5UkTQOmAYwePboOYVpNrFuRTjctuDUliSPOhOPfDweMqX4ZUjq6WHRHujKqT6Nu6mY9Qy3/g5YBowrjI/O0cnXaJPUF9gdWRkQAGwEiYq6kJ4AjgdbizBFxFXAVQEtLS9TiQ1g3evHZdCTx2A/TDn58ThL77+YPgZGnpGX96RE45ISujdVsL1PLZDEHGC9pHCkpTAXeVVJnFnAecD9wDvCriAhJw4FVEbFV0mHAeGBxDWO1eomAZ34L82+CJXenaePfnJPEqE5nrWjEq1JD+NL7nSzM9lDNkkVug7gYuANoAq6NiPmSZgCtETELuAa4QdIiYBUpoQCcBsyQtBnYBnwoIlbVKlarg83r4PHbUpJYvRgG7J+ubJpwDuw3omveo/8+cNAr0v0Wk6Z3zTLN9lI1PZEbEbcBt5VM+1xheANwbpn5bgVurWVsVifPLUkN1gt/CptfhGFHw+s+B4efkW6k62ojT4HW/0xXVA08sOuXb7aXcKuf1d6WDfDUvanfprbZqbH5sDfCsX8FL3t5aoyulVE5WbQ9kNpAzGy3OFlYbWzbAk+3wqKfw5N3paOIwQdBy4fh6LNh0NDKy+gKw46G5gPSqSgnC7Pd5mRhXScCls9PCeKJO2H9ytRucNjp6Ua6Q06APk3dG5P6wIiT0pFFbEvjZrbLnCxsz0TAqsfhyV+lJLG2LfXNNPo16f6IUaeW746jO406BZ64A1Y+DsOOqm8sZj2Uk4Xtus3rYdmDqR1i6X3w4p/SL/ZDW+D4C2Dcn6UjikaxveuP+50szHaTk4VVZ+2ynBx+k9oitm6CfoNhxCRo+SCMenX3tUPsqkHDYOiR6X6LiefXOxqzHsnJwspbtwL+OA+eeSgdRTz3ZJq+/+h0L8To18DBx0NTv/rGWa2RJ8OjN6b7O/z0PLNd5mRhqd3h+afhjw+l5PDHh2DNU6msbzMc9Eo45i9TgtjdrjfqbeQpqb+pp1thzGn1jsasx3Gy2BttfB5WLoQVC2H5gpQcXnw2lQ3YDw6eCEf/JRxyfLr0tDd0wnfwK1PiW3q/k4XZbugFewHr1LoVsOL3KTG0J4jnC/05Dn5ZSg4HH5+Sw5DDeuflpU39UwN82/31jsSsR3Ky6A22bkoN0Gue2vH13JJ0r0O7/UbB8GPSTXHDjoKhRzVuo3QtjDwlNdL76Xlmu8zJIrbBc3+AAfumUzBN/esd0Y4i0t3PLy6HdcsLf5+FNUtTUnjhmfQ52jUfkNoWRp2argIadlT620iXs9bDqFPS36X3w7E7dUlmZp1wsti4Fm4u7Dj6NqceUNuTR/HVbxD0HQj9Bua/g/Jwcy5rBgTAIkQkAAALsklEQVRE2slDGoY8Hmmnvnl9SgCbXoBNL6bhzevS8KYX0mvdivxanvpWKtVvcOrC+2XHpm4s9h/90mvAfrVdZz3VfqNg3xHpVJSThdkucbLo2wxv+BJseh42rNnx78a16ZTFxrXpVW6n3ZWaBqRf//0Hp3sDhh8Dg06DwcPT+KBhMCgP9x9c21h6o+1Pz7sdtm7uOZf9NoKI1N/X1k3p6YVbNxeGN6Xx7cObXqq7dTPbfyRt/8FU5m9s46UfVuXqbnspjmLd0hh3nFBFnV5i8MvSFYs15GTRtxmOeFN1dbdtTQljy/p0dLBlfToi2LLhpb8RuRdVlfSmmsfVJx+RDEqJod/gtOPvN6h3XHXU6EadAo/dCn96ODV493axLV39tmE1bHgO1q9Ow+vz+IbVqfv2TS/suIMvlxSscb3s5U4WDaVPU9qx+1d9z3VoS3p6Xtvsnpkstm2FjWte2ul3mADah5+D2Fp+Wf0Gp/atgUPSqdemfqnNrk+/kuH+abyj4dJ5mvqnHz7t09Wn5AdU4YcT5L8dlKHC/GXqltqpu/tq6lg1nCxs79J/n3TPxdL7YdLF9Y4miXipnWr9ykJ71co8vvKlsg1rKHt6BVJbVfMB0DwktWcddNxLyaB5SP6by5sPqH8Hj9ajOFnY3mfkyTDnm2knXMtLh7du3nln39Hw1k07z9+nX26nGpou9T34lelpf+07/NIk4NOYVkPeumzvM/KUlCyWPQDj37xj2dbNuf0pt0dtXpevXqs0rTC+6YWUCDauKf/+zQfAwKEpCRw88aWE0H4RQ3tZ/319ysQaRk2ThaTJwNeBJuDqiLi8pHwAcD1wIrASeEdELMllnwEuALYCH42IO2oZq+1Fhh2VfpHP/jo89O0dd/rbtlS/nKYB6dLp7ZdU50upBw5ND3oq7vjbhwce6KuwrEeqWbKQ1ARcAbwRaAPmSJoVEQsK1S4AVkfEEZKmAl8G3iFpAjAVOBY4FPilpCMjOmqpM9sF6gMnToM//PqlK9PK7fTby8pOa/ZpH9ur1HJrnwQsiojFAJJmAlOAYrKYAlyWh28BviFJefrMiNgIPClpUV6eO/axrnHsub4xz2wX1DJZjACWFsbbgJM6qhMRWyStAYbm6bNL5h1R+gaSpgHT8ugLkhZ2EMswYMWufoA66mnxgmPuLo659npavLBnMY+pplKPPo6OiKuAqyrVk9QaET3movqeFi845u7imGuvp8UL3RNzLfuiXgaMKoyPzNPK1pHUF9if1NBdzbxmZtZNapks5gDjJY2T1J/UYD2rpM4s4Lw8fA7wq4iIPH2qpAGSxgHjgQdrGKuZmXWiZqehchvExcAdpEtnr42I+ZJmAK0RMQu4BrghN2CvIiUUcr2bSI3hW4Dpe3glVMVTVQ2mp8ULjrm7OOba62nxQjfErOitvTCamVmX6YXPzzQzs67mZGFmZhX1mmQhabKkhZIWSbqkTPn5kpZLmpdfF9YjzpKYrpX0rKTfdVAuSf+eP9Mjkk7o7hhL4qkU7+slrSms4891d4xlYhol6S5JCyTNl/SxMnUabT1XE3PDrGtJzZIelPRwjvcfytQZIOkHeR0/IGls90e6QzzVxNxw+wxIvWNIekjSz8qU1W49R0SPf5Ea0J8ADgP6Aw8DE0rqnA98o96xlsR0GnAC8LsOyt8M3E7qlP9k4IEGj/f1wM/qvV5LYjoEOCEP7wv8X5lto9HWczUxN8y6zuttnzzcD3gAOLmkzkXAlXl4KvCDHhBzw+0zclwfB24s9/3Xcj33liOL7V2LRMQmoL1rkYYWEb8mXQXWkSnA9ZHMBg6QdEj3RLezKuJtOBHxTET8Ng8/DzzGzr0BNNp6ribmhpHX2wt5tF9+lV45MwX4Th6+Bfjz3LVPXVQZc8ORNBJ4C3B1B1Vqtp57S7Io17VIuX+ut+fTDLdIGlWmvNFU+7kaySn50P52ScfWO5iifEh+POlXZFHDrudOYoYGWtf51Mg84FngzojocB1HxBagvWufuqkiZmi8fca/AZ8CtnVQXrP13FuSRTV+CoyNiOOAO3kp+1rX+S0wJiJeCfwH8OM6x7OdpH2AW4G/iYi19Y6nGhVibqh1HRFbI2IiqbeFSZJeXs94qlFFzA21z5D0F8CzETG3Hu/fW5JFxe5BImJlpF5sIR3CndhNse2JHtXtSUSsbT+0j4jbgH6ShtU5LCT1I+10vxcRPyxTpeHWc6WYG3VdR8RzwF3A5JKijrr2qbuOYm7AfcargbMkLSGdan+DpO+W1KnZeu4tyaJi1yIl56DPIp0HbnSzgPflq3VOBtZExDP1Dqojkg5uPz8qaRJp+6rrDiHHcw3wWER8rYNqDbWeq4m5kda1pOGSDsjDA0nPsPl9SbWOuvapi2pibrR9RkR8JiJGRsRY0j7uVxHxnpJqNVvPPbrX2XZRXdciH5V0Fqn7kFWkKx3qStL3SVe1DJPUBnye1NBGRFwJ3Ea6UmcRsA746/pEmlQR7znAhyVtAdYDU+u5Q8heDbwXeDSfnwb4O2A0NOZ6prqYG2ldHwJ8R+mBZ32AmyLiZ6qia586qibmhttnlNNd69ndfZiZWUW95TSUmZnVkJOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4U1LEkvVFHnbyQN6sL3PFvShC5c3n17MO8L+e+hkm7ppN4Bki7a3fcxq4aThfV0fwPsUrLI19Z35Gygy5JFRJzaBct4OiLO6aTKAaTeRs1qxsnCGp7Ssxvuzp25/V7S9/Ld1h8FDgXuknRXrnuGpPsl/VbSzbl/JSQtkfRlSb8FzpX0AUlzckd8t0oaJOlU0p26X1F6fsHhkiZKmp07k/uRpCF5eXdL+ldJrZIek/QqST+U9LikLxZif6Ew/GlJj+b3vLzM5xyXY3+0ZBljlZ8hIulYpecwzMsxjQcuBw7P074iaR9J/5PXwaOSphSW85ik/1J6hsMv8t3LSDpC0i9zbL+VdHie/sm8nh5RmWc+2F6kq/o698uvrn4BL+S/ryf1njmS9APnfuA1uWwJMCwPDwN+DQzO458GPleo96nCsocWhr8IfCQPXwecUyh7BHhdHp4B/Fsevhv4ch7+GPA06a7gAaRea4eWfIYzgfuAQXn8wDKfdxbwvjw8vTDvWPIzREidBr47D/cHBhbL8/S+wH6FdbKI9PyGsaS7kSfmspuA9+ThB4C/zMPNpKO1M4Cr8rx9gJ8Bp9V7u/CrPq9e0d2H7RUejIg2gNwFxljg3pI6J5NOIf0md5vUn5RY2v2gMPzy/Ov9AGAfUlcxO5C0P3BARNyTJ30HuLlQpb3/sUeB+ZH7k5K0mNSZW7GvptOBb0fEOoCIKPdckFcDb8/DNwBfLlPnfuCzSs81+GFEPK6dH1cg4B8lnUbqynoEcFAuezIi2rsQmQuMlbQvMCIifpRj25A/xxmkhPFQrr8PMJ6UkG0v42RhPcXGwvBWym+7Ij2X4J0dLOPFwvB1wNkR8bCk80lHL7sb07aS+LZ1EF81Ou1/JyJulPQA6QE4t0n6ILC4pNq7geHAiRGxWamX0uaSmCGtx4GdvJ2Af4qIb+1C/NZLuc3CerrnSY8eBZgNvFrSEQCSBks6soP59gWeUeoK/N3llhcRa4DVkl6by94L3MPuuRP46/YrtyQdWKbOb3ip47d3lylH0mHA4oj4d+AnwHHsuA4gdUv9bE4UfwaM6SywSE/ja5N0dn6PATnOO4D3F9p9Rkh6WVWf1nodJwvr6a4Cfi7prohYTuoZ9PuSHiGdsjm6g/n+nnSe/jfs2DX1TOCTkh7KjbznkRq8HwEmktotdllE/Jx02qo1n0b7RJlqHwOmS3qUjp/U91fA7/IyXk56HOxK0qm330n6CvA9oCUv533s3F14Oe8l9bL6CKlt5eCI+AXpWc/352Xdwo5JyfYi7nXWzMwq8pGFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUX/H6gdH8S36uCSAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -239,7 +241,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmcHVWd9/HPN52VJGwhomQXgywORmzBFR1BjIMmMG7BDRSNC7g8jgI+omLUEfXRGWfEAVREUAwIotFREUaQUUTSgQgmGAkRSQeUkLCFJUknv+ePczqpvrnddUO6cm93vu/X6766qs6pur+qW12/W+dU1VVEYGZm1pchzQ7AzMxan5OFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknC0PSWZK+m4cnS1onqS2P7yvpekmPSPqykm9LekDSTc2N3Poi6S5JRzc7jqpJOknSbypYbo//hX5c7lRJkZc9N087II9vkvTO/ny//jK02QEMZJLuAvYFNhUmXxgRpzYnoh0XEXcDYwqT5gL3A7tHREh6CfAKYGJEPNqMGG3HSboQ6IyIM5sdS6vI/8/vjIhroO7/Qn/bMyK68nv9GRgj6boK32+HOFnsuNd071xVkTS0e6dqginA0th69+YU4K4nkyiavB4D2q6y7XaV9RyI3AxVke5TY0n/LzfZ/EXSqwrle0j6lqR7Ja2S9NlC089Jkn4r6d8krQHOktSWm4Huz8s6NZ/KDpX0ekmLat7/w5J+3Ets0yT9OjctXQ3sUyibWljuhcCJwGn5FPndwDeBF+TxT+d5Xi1psaQHJd0g6dDC8u6SdLqkW4FH83L3k3SFpNV5XT5QqH+WpMskXZTjWyKpvVA+SdIP87xrJH2tUPYOSbfn7X2VpCl9fD4vzrE+KGmlpJMKn8tFefl/lXSmpCF1PpcHJa2Q9MI8faWk+ySdWHiPCyWdK+nqvC6/LsYk6at5voclLcpnbcXtcLmk70p6GDhJ0hBJZ0i6M6/7ZZL2Lszz1hzzGkkf72Pd5wJvLnyuP8nTD5J0XV63JZJm9bGM6yR9Jm+PRyT9UlJxP5qVl/FgrntQH8sKSadIugO4I087MG+3tZKWSXpDof44SQvydrsJ2L9QtmX/rYn1nYXxd+X95BFJSyUdJuliYDLwk7xNTqtdVt5vF+SYlkt6V83n1et+OyhEhF9P8gXcBRzdS9lJwEbgXUAb8F7gHkC5/ErgPGA08BTgJuDdhXm7gPeTzv5GAe8BlgITgb2Aa4DI5SOAtcBBhfe/BXhtL7H9DvhKnu9I4BHgu7lsavdy8/iFwGdr1us3hfHnAPcBR+T1PDFvlxGFbbQYmJTXYwiwCPgkMBx4OrACeGWufxbwBPBPeXmfB27MZW3AH4B/y9ttJPDiXDYbWA4clLfJmcANvaz/lLzOJwDDgHHAjFx2EfBjYGzeFn8GTq75XN6eY/kscDdwTt6Wx+Tljilsu0fyNh4BfLVm270lv/dQ4F+AvwEjC9thI3Bc3majgA8CN+Z9YARp//l+rn8wsK7wXl/Jsfa2f9Z+rsPy9vu/+XN5eY79mb3Mfx1wJ3BAju064OxcdgDwKKm5chhwWl728F6WFcDVwN55WaOBlXk7DyXtY/cDB+f684HLcr1nAau6tys1+28h1nfm4dfn+s8DBDwDmFLv/7l2WcD1wNdJ+90MYDXw8rL9ts76bhNjvVhb7dX0AAbyK+9c64AHC6935bKTgOWFurvlHeSppH6O9cCoQvkJwLWFee+uea9fkZNJHj+6Zkf+L+BzefgQ4AHyAbtmOZNJB5HRhWmX8OSTxX8Bn6l5j2XASwvb6B2FsiPqrNvHgG/n4bOAawplBwOP5+EX5H/Qev9kPycf1PP4EOCx7gNBnfe7ss70NmAD+aCUp70buK6w7ncUyv4hb6t9C9PWsDXxXAjML5SNIfVvTeplf3oAeHZhO1xfU347cFRh/GmkhDKUlHyL7zU6r0ujyeIlpGQ1pDDt+8BZvcx/HXBmYfx9wC/y8CeAy2o+i1XAy3pZVpAPunn8jcD/1tQ5D/hU/ow2AgcWyv6VxpPFVcAH+/h/rpssSF92NgFjC+WfJ/VRdn9edffbOu+zTYz1Ym21l/ssdtxx0Xufxd+6ByLiMUmQDhh7k75x3ZunQfqHWlmYtzgMsF9J+XeA70s6E3gr6Z91fZ2Y9gMeiJ59Dn8l/TM8GVOAEyW9vzBteH6ferFOAfaT9GBhWhvwv4XxvxWGHwNG5qaAScBfo36b9hTgq5K+XJgmYAJp/Yomkb4V19qH9LkU6/81L6Pb3wvDjwNERO20YqfolnWPiHWS1pI/S0kfAU7O4wHsTqFJkG0/4ynAlZI2F6ZtIn356LF/RMSjSk2YjdoPWBkRxWXXrnut2s+pe733o7ANI2KzpJUly6rdR46o2UeGAhcD4/NwsX7t59uX3j77MvsBayPikZr3LTY11d1ve9lfBxwni+ZYSTqz2KePHan2ccD3kpofuvU4uEfEjZI2kL4hvim/6rkX2EvS6ELCmFzn/Rq1knRG87k+6hSXvRL4S0RMf5LvNbmXf8DuOL7X4HIOrzP9ftK31imkJj9I22bVk4i125bPSVL3F4V7cv/EacBRwJJ8QH2AlOC61X4mK0lnab+tfRNJ95Ka4LrHdyM1cfWmdtn3AJMkDSkkjMmkZrjtdQ/prKs7FpG2Q1/bsXYf+XVEvKK2klK/Xlde3p8KcXbr3qd3Ax7Ow0+tWfb+1NfX/8A9wN6SxhYSxo7uGwOKO7ibICLuBX4JfFnS7rnjcn9JL+1jtsuAD0qaIGlP4PQ6dS4CvgZsjIi6151HxF+BDuDTkoZLejHwmh1YnW8A75F0hJLRko6VNLaX+jcBjyh1eo9S6rh/lqTnNfBeN5GS3dn5fUZKelEuOxf4mKRDYEtH9et7Wc73gKMlvUGpw32cpBkRsYm0nT8naaxSZ/SHge82tinq+ielzvThwGdI7dgrSX0iXeRmNUmfJJ1Z9OXcHNuUvI7jJc3OZZcDry681zz6/v/+O6m/qNvvSd+GT5M0TNLLSPvF/O1Y126XAcdKOkrSMFJ/zHrghgbn/ylwgFKH/bD8ep6kg/Jn9EPSRR+7STqY1E8GQESsJh3A35L3rXfQMzl8E/iIpOfm/fUZ2nrRQe022SJ/ZjcAn8/73aGks8Id2TcGFCeLHdd99UT368oG53sbqblmKamt+nJSG3RvvkFKMLeSOq9/RjrYFO/xuJjU4Ve2A7+J1HewltQOfFGDMW8jIjpInfhfI63HclLbfm/1NwGvJnUQ/oX0bf6bwB4NvNcm0gHsGaSO5U5S+zYRcSXwBWC+0tVDfwRe1cty7iZ1RP4LaRssBp6di99P+na6AvgNqT/ngrLY+nAJaRuvBZ5L6tSG1Hb+C9I397+SOkdrm51qfRVYAPxS0iOkzu4j8jotAU7J73cv6bPo7GNZ3wIOVrpa6UcRsYG0bV9F+ky+DrwtIv7UxzLqiohleT3/My/rNaRLzDc0OP8jpIsF5pC+0f+N9NmOyFVOJTV5/Y3U9/LtmkW8C/goqf/oEApJKiJ+AHyOtJ0eAX5EOtuD1AdxZt4mH6kT2gmk/oZ7SBeofKqPJuhBp/vKHBtglC7DPTciphSmjSJdmXRYRNzRtOAM8I1vVl8+k1lG+oLw0Yj4hqTpwELSF8j3RcSFTQyxLvdZDBA5Efwj6exiX9K31dqzmPcCC50ozFpXbgoeWTPtDmDP5kTUmEqboSTNVLqhZrmkM/qo99p880vx5quP5fmWSXpllXEOEAI+TWpeuIV0GeUntxSmRxV8kNS0YmbWryprhspXLfyZdGNOJ+kU64SIWFpTbyzw36TTr1MjoiN3Wn2fdMXKfqQb0A7IbdZmZraTVXlmcTjpprQVuWNrPuku21qfIXVePVGYNpt0g9H6iPgLqdO03qWOZma2E1TZZzGBnld3dJKv3Ogm6TDS3az/LemjNfPeWDPvNjf0KD3jZi7A6NGjn3vggQf2U+hmZruGRYsW3R8R48vqNa2DW+nhbF+hj8ssy0TE+cD5AO3t7dHR0dE/wZmZ7SIkNXQHfJXJYhU97zKeSM+7HceS7gm4Lj/y4qnAAqUnXZbNa2ZmO1GVfRYLgelKj8MeTrrBZkF3YUQ8FBH7RMTUiJhKanaalW/yWgDMkTRC0jRgOunuXTMza4LKziwiokvSqaQ7VduACyJiiaR5QEdELOhj3iWSLiPd3dwFnOIroczMmmfQ3MFdr89i48aNdHZ28sQTT/Qy18AzcuRIJk6cyLBhw5odipkNApIWRUTpDzUN6ju4Ozs7GTt2LFOnTkVS+QwtLiJYs2YNnZ2dTJs2rdnhmNkuZFA/SPCJJ55g3LhxgyJRAEhi3Lhxg+pMycwGhkGdLIBBkyi6Dbb1MbOBYdAnCzMz23FOFmZmVsrJomJ33XUXo0aNYsaMGduU/fjHP+bQQw9lxowZtLe385vfpB+3u/POO5kxYwZjxozZZh4zs2YY1FdDtYr999+fxYsXbzP9qKOOYtasWUji1ltv5Q1veAN/+tOfttR3sjCzVrHrJIsbvgxrlvXvMsc9E1745H8+opgMHn30UXdem1nLcjNUk1155ZUceOCBHHvssVxwwY781LOZWXV2nTOLHTgDqNLxxx/P8ccfz/XXX88nPvEJrrlml/n9dzMbQHxmsROdc845zJgxgxkzZnDPPff0KDvyyCNZsWIF999/f5OiMzPrnZPFTnTKKaewePFiFi9ezH777cfy5cvpfjbXzTffzPr16xk3blyTozQz29au0wzVgq644gouuugihg0bxqhRo7j00kvdyW1mLcnJoolOP/10Tj/99GaHYWZWys1QFWtra+Ohhx6qe1Neb7pvytt3330rjMzMrHGD/swiIpratDNp0iRWrly5XfP0dhMfwGD5/REzG1gG9ZnFyJEjWbNmzaA5wHb/nsXIkSObHYqZ7WIG9ZnFxIkT6ezsZPXq1c0Opd90/1KemdnOVGmykDQT+CrpN7i/GRFn15S/BzgF2ASsA+ZGxFJJU4Hbge7nc9wYEe/Z3vcfNmyYf1HOzKwfVJYsJLUB5wCvADqBhZIWRMTSQrVLIuLcXH8W8BVgZi67MyIa7xU2M7PKVNlncTiwPCJWRMQGYD4wu1ghIh4ujI4GBkfngpnZIFNlspgAFC8D6szTepB0iqQ7gS8CHygUTZN0i6RfS3pJhXGamVmJpl8NFRHnRMT+wOnAmXnyvcDkiHgO8GHgEkm7184raa6kDkkdg6kT28ys1VSZLFYBkwrjE/O03swHjgOIiPURsSYPLwLuBA6onSEizo+I9ohoHz9+fL8FbmZmPVWZLBYC0yVNkzQcmAMsKFaQNL0weixwR54+PneQI+npwHRgRYWxmplZHyq7GioiuiSdClxFunT2gohYImke0BERC4BTJR0NbAQeAE7Msx8JzJO0EdgMvCci1lYVq5mZ9U2D5e7m9vb26OjoaHYYZmYDiqRFEdFeVq/pHdxmZtb6nCzMzKyUk4WZmZVysjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZVysjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZWqNFlImilpmaTlks6oU/4eSbdJWizpN5IOLpR9LM+3TNIrq4zTzMz6VlmykNQGnAO8CjgYOKGYDLJLIuIfImIG8EXgK3neg4E5wCHATODreXlmZtYEVZ5ZHA4sj4gVEbEBmA/MLlaIiIcLo6OByMOzgfkRsT4i/gIsz8szM7MmGFrhsicAKwvjncARtZUknQJ8GBgOvLww7401806oM+9cYC7A5MmT+yVoMzPbVtM7uCPinIjYHzgdOHM75z0/Itojon38+PHVBGhmZpUmi1XApML4xDytN/OB457kvGZmVqEqk8VCYLqkaZKGkzqsFxQrSJpeGD0WuCMPLwDmSBohaRowHbipwljNzKwPlfVZRESXpFOBq4A24IKIWCJpHtAREQuAUyUdDWwEHgBOzPMukXQZsBToAk6JiE1VxWpmZn1TRJTXGgDa29ujo6Oj2WGYmQ0okhZFRHtZvaZ3cJuZWetzsjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZVysjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZVysjAzs1KVJgtJMyUtk7Rc0hl1yj8saamkWyX9j6QphbJNkhbn14Iq4zQzs74NrWrBktqAc4BXAJ3AQkkLImJpodotQHtEPCbpvcAXgTfmsscjYkZV8ZmZWeOqPLM4HFgeESsiYgMwH5hdrBAR10bEY3n0RmBihfGYmdmTVGWymACsLIx35mm9ORn4eWF8pKQOSTdKOq7eDJLm5jodq1ev3vGIzcysrsqaobaHpLcA7cBLC5OnRMQqSU8HfiXptoi4szhfRJwPnA/Q3t4eOy1gM7NdTJVnFquASYXxiXlaD5KOBj4OzIqI9d3TI2JV/rsCuA54ToWxmplZH6pMFguB6ZKmSRoOzAF6XNUk6TnAeaREcV9h+l6SRuThfYAXAcWOcTMz24kqa4aKiC5JpwJXAW3ABRGxRNI8oCMiFgBfAsYAP5AEcHdEzAIOAs6TtJmU0M6uuYrKzMx2IkUMjqb+9vb26OjoaHYYZmYDiqRFEdFeVs93cJuZWSknCzMzK+VkYWZmpZwszMyslJOFmZmVcrIwM7NSDSULST+UdKwkJxczs11Qowf/rwNvAu6QdLakZ1YYk5mZtZiGkkVEXBMRbwYOA+4CrpF0g6S3SxpWZYBmZtZ8DTcrSRoHnAS8k/SjRV8lJY+rK4nMzMxaRkPPhpJ0JfBM4GLgNRFxby66VJKfsWFmNsg1+iDB/4iIa+sVNPJMETMzG9gaTRZ7SfrnmmkPAbcVHy1uZmaDU6PJ4mTgBUD32cXLgEXANEnzIuLiCmIzM7MW0WiyGAYcFBF/B5C0L3ARcARwPakvw8zMBqlGr4aa2J0osvuASRGxFtjY/2GZmVkrafTM4jpJPwV+kMdfm6eNBh6sJDIzM2sZjSaLU4B/Bl6cxy8Croj0M3v/WEVgZmbWOkqboSS1Ab+KiCsi4v/k1+XRwO+xSpopaZmk5ZLOqFP+YUlLJd0q6X8kTSmUnSjpjvw6cbvXzMzM+k1psoiITcBmSXtsz4JzkjkHeBVwMHCCpINrqt0CtEfEocDlwBfzvHsDnyJ1oB8OfErSXtvz/mZm1n8abYZaB9wm6Wrg0e6JEfGBPuY5HFgeESsAJM0HZgNLC/MXb/S7EXhLHn4lcHXuQCe/70zg+w3Ga2Zm/ajRZPHD/NoeE4CVhfFO0plCb04Gft7HvBNqZ5A0F5gLMHny5O0Mz8zMGtVQsoiI70gaBUyOiGX9HYSktwDtwEu3Z76IOB84H6C9vb20D8XMzJ6cRn/86DXAYuAXeXyGpAUls60CJhXGJ+Zptcs+Gvg4MCsi1m/PvGZmtnM0elPeWaQ+iAcBImIx8PSSeRYC0yVNkzQcmAP0SDCSngOcR0oUxWdMXQUcI2mv3LF9TJ5mZmZN0GifxcaIeEhScdrmvmaIiC5Jp5IO8m3ABRGxRNI8oCMiFgBfAsYAP8jLvjsiZkXEWkmfISUcgHndnd1mZrbzNZoslkh6E9AmaTrwAeCGspki4mfAz2qmfbIwfHQf814AXNBgfGZmVqFGm6HeDxwCrCddvvow8KGqgjIzs9bS6NVQj5E6oT9ebThmZtaKGv1Z1QOAjwBTi/NExMurCcvMzFpJo30WPwDOBb4JbKouHDMza0WNJouuiPivSiMxM7OW1WgH908kvU/S0yTt3f2qNDIzM2sZjZ5ZdD8i/KOFaUH5jXlmZjYINHo11LSqAzEzs9bVZzOUpNMKw6+vKfvXqoIyM7PWUtZnMacw/LGaspn9HIuZmbWosmShXobrjZuZ2SBVliyil+F642ZmNkiVdXA/W9LDpLOIUXmYPD6y0sjMzKxl9JksIqJtZwViZmatq9Gb8szMbBfmZGFmZqWcLMzMrJSThZmZlao0WUiaKWmZpOWSzqhTfqSkmyV1SXpdTdkmSYvza0GVcZqZWd8afZDgdpPUBpwDvALoBBZKWhARSwvV7gZOIv2wUq3HI2JGVfGZmVnjKksWwOHA8ohYASBpPjAb2JIsIuKuXLa5wjjMzGwHVdkMNQFYWRjvzNMaNVJSh6QbJR1Xr4KkublOx+rVq3ckVjMz60Mrd3BPiYh24E3Av0vav7ZCRJwfEe0R0T5+/PidH6GZ2S6iymSxCphUGJ+YpzUkIlblvyuA64Dn9GdwZmbWuCqTxUJguqRpkoaTHnfe0FVNkvaSNCIP7wO8iEJfh5mZ7VyVJYuI6AJOBa4Cbgcui4glkuZJmgUg6XmSOoHXA+dJWpJnPwjokPQH4Frg7JqrqMzMbCdSxOB40nh7e3t0dHQ0OwwzswFF0qLcP9ynVu7gNjOzFuFkYWZmpZwszMyslJOFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknCzMzK+VkYWZmpZwszMyslJOFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknCzMzK+VkYWZmpSpNFpJmSlomabmkM+qUHynpZkldkl5XU3aipDvy68Qq4zQzs75VliwktQHnAK8CDgZOkHRwTbW7gZOAS2rm3Rv4FHAEcDjwKUl7VRWrmZn1rcozi8OB5RGxIiI2APOB2cUKEXFXRNwKbK6Z95XA1RGxNiIeAK4GZlYYq5mZ9aHKZDEBWFkY78zT+m1eSXMldUjqWL169ZMO1MzM+jagO7gj4vyIaI+I9vHjxzc7HDOzQavKZLEKmFQYn5inVT2vmZn1syqTxUJguqRpkoYDc4AFDc57FXCMpL1yx/YxeZqZmTVBZckiIrqAU0kH+duByyJiiaR5kmYBSHqepE7g9cB5kpbkedcCnyElnIXAvDzNzMyaQBHR7Bj6RXt7e3R0dDQ7DDOzAUXSoohoL6s3oDu4zcxs53CyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUpUmC0kzJS2TtFzSGXXKR0i6NJf/XtLUPH2qpMclLc6vc6uM08zM+ja0qgVLagPOAV4BdAILJS2IiKWFaicDD0TEMyTNAb4AvDGX3RkRM6qKz8zMGlflmcXhwPKIWBERG4D5wOyaOrOB7+Thy4GjJKnCmMzM7EmoMllMAFYWxjvztLp1IqILeAgYl8umSbpF0q8lvaTCOM3MrERlzVA76F5gckSskfRc4EeSDomIh4uVJM0F5gJMnjy5CWGame0aqjyzWAVMKoxPzNPq1pE0FNgDWBMR6yNiDUBELALuBA6ofYOIOD8i2iOiffz48RWsgpmZQbXJYiEwXdI0ScOBOcCCmjoLgBPz8OuAX0VESBqfO8iR9HRgOrCiwljNzKwPlTVDRUSXpFOBq4A24IKIWCJpHtAREQuAbwEXS1oOrCUlFIAjgXmSNgKbgfdExNqqYjUzs74pIpodQ79ob2+Pjo6OZodhZjagSFoUEe1l9XwHt5mZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVmpVv2lPDNrJRGwuQs2bYDNG2HTxsLwhjS+ZXjD1rqbNgIBsTktg6j/NzanYeil7uatcRTr1sbYc0IDdQaJ0U+Bg46v9C2cLMwGs9gM6x+BJx6AJx6Exx9Iw4/n8ScegMfXwoZ1PQ/w9ZKCta6nPMvJwswKNm+C9Q9tPej3mgC6hx+E2FR/WcNGw8g9YdReMGIPaBsGbcNhyLCa4eFpvLfh2nnahsOQoVunawhIgHr+VW4F15Dey1Bh/jp1a6l2WiN1rBFOFmbNFpG+2T92Pzy+Jv197H54bE0eX7O17ImHqNu8AjBi93TwH7kX7DEJ9j10azIYuVf+m8tH7glDR+zU1bSBzcliw6Nw6fGw2/jU7tfba/joZkdqA82mjdse7Hsb3rRh2/mHDIPd9oHdxsHuE+Gpz4ZRe2894NcmgSH+d7bqeO/a3AVTXgqP3gfr/gZ/vzWd5tcaNhpG7gHDx6RvcMPHpr8jxvYcHjoSho7Kf+u82ob7NLiVbdoIGx+DrsfT342PwcbHG5hWGN+wLiWCevsR5G/741ISeOqMrQlht33Sq7ts+FjvK9YyKk0WkmYCXwXagG9GxNk15SOAi4DnAmuAN0bEXbnsY8DJwCbgAxFxVSVBjtwDjvx4z2ldT6RvfOv+Do+t3vp3/cOps3D9w/DQX9PwhkdS/YapZ5tuj+FCW/CQofnVtnVYbT2nq23rXw3JdYbkaUO2Tu/xUp6urdN6tAv31Z5cWIct47Vlfai9wqW3aZs3sfUKmuKrOG1TSvSbNxXG87Qtw7mDdnNXGt7ctfWqnc1d6XOrPehv7mr8o2wbAcNGwbDd0heEYbul8VHj4GmH9Tzwdw+P2jt9zmYDTGXJQlIbcA7wCqATWChpQUQsLVQ7GXggIp4haQ7wBeCNkg4G5gCHAPsB10g6IKK3nrp+NnRkOu3ffWJj9Tdt6Jk4+nptfLzm0sI+hrsezwe6rq0HwuKr+yAZm/NBc9PWA+2uaEtCzQm0mHS3JOJhW6eN2APGPG3rQb72oD9stz6mjXSzj+1SqtzbDweWR8QKAEnzgdlAMVnMBs7Kw5cDX5OkPH1+RKwH/iJpeV7e7yqM98lrG56/PY5rdiRJ97fv7sTR6zf1wjf2Htey11znXntd+5Zr1aPncL0rT2r1uCqGwnBhWo8zosIZUPFMaJuzK99falalKpPFBGBlYbwTOKK3OhHRJekhYFyefmPNvBNq30DSXGBuHl0naVkvsewD3L+9K9BEAy1ecMw7i2Ou3kCLF3Ys5imNVBrQ59ERcT5wflk9SR0R0b4TQuoXAy1ecMwGYJ7EAAAIJUlEQVQ7i2Ou3kCLF3ZOzFWeu68CJhXGJ+ZpdetIGgrsQerobmReMzPbSapMFguB6ZKmSRpO6rBeUFNnAXBiHn4d8KuIiDx9jqQRkqYB04GbKozVzMz6UFkzVO6DOBW4inTp7AURsUTSPKAjIhYA3wIuzh3Ya0kJhVzvMlJneBdwyg5eCVXaVNViBlq84Jh3FsdcvYEWL+yEmBWD9SmMZmbWb3y9oZmZlXKyMDOzUoMmWUiaKWmZpOWSzqhTfpKk1ZIW59c7mxFnTUwXSLpP0h97KZek/8jrdKukw3Z2jDXxlMX7MkkPFbbxJ3d2jHVimiTpWklLJS2R9ME6dVptOzcSc8tsa0kjJd0k6Q853k/XqTNC0qV5G/9e0tSdH2mPeBqJueWOGZCejiHpFkk/rVNW3XaOiAH/InWg3wk8HRgO/AE4uKbOScDXmh1rTUxHAocBf+yl/J+An5NujX4+8PsWj/dlwE+bvV1rYnoacFgeHgv8uc6+0WrbuZGYW2Zb5+02Jg8PA34PPL+mzvuAc/PwHODSARBzyx0zclwfBi6p9/lXuZ0Hy5nFlkeLRMQGoPvRIi0tIq4nXQXWm9nARZHcCOwp6Wk7J7ptNRBvy4mIeyPi5jz8CHA72z4NoNW2cyMxt4y83dbl0WH5VXvlzGzgO3n4cuCo/Gifpmgw5pYjaSJwLPDNXqpUtp0HS7Ko92iRev9cr83NDJdLmlSnvNU0ul6t5AX51P7nkg5pdjBF+ZT8OaRvkUUtu537iBlaaFvnppHFwH3A1RHR6zaOiC6g+9E+TdNAzNB6x4x/B04DNvdSXtl2HizJohE/AaZGxKHA1WzNvtZ/bgamRMSzgf8EftTkeLaQNAa4AvhQRDzc7HgaURJzS23riNgUETNIT1s4XNKzmhlPIxqIuaWOGZJeDdwXEYua8f6DJVmUPh4kItZEeootpFO45+6k2HbEgHrsSUQ83H1qHxE/A4ZJ2qfJYSFpGOmg+72I+GGdKi23nctibtVtHREPAtcCM2uKenu0T9P1FnMLHjNeBMySdBepqf3lkr5bU6ey7TxYkkXpo0Vq2qBnkdqBW90C4G35ap3nAw9FxL3NDqo3kp7a3T4q6XDS/tXUA0KO51vA7RHxlV6qtdR2biTmVtrWksZL2jMPjyL9hs2faqr19mifpmgk5lY7ZkTExyJiYkRMJR3jfhURb6mpVtl2HtBPne0WjT1a5AOSZpEeH7KWdKVDU0n6Pumqln0kdQKfInW0ERHnAj8jXamzHHgMeHtzIk0aiPd1wHsldQGPA3OaeUDIXgS8Fbgtt08D/F9gMrTmdqaxmFtpWz8N+I7SD54NAS6LiJ+qgUf7NFEjMbfcMaOenbWd/bgPMzMrNViaoczMrEJOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhLUvSugbqfEjSbv34nsdJOrgfl3fDDsy7Lv/dT9LlfdTbU9L7nuz7mDXCycIGug8B25Us8rX1vTkO6LdkEREv7Idl3BMRr+ujyp6kp42aVcbJwlqe0m83XJcf5vYnSd/Ld1t/ANgPuFbStbnuMZJ+J+lmST/Iz1dC0l2SviDpZuD1kt4laWF+EN8VknaT9ELSnbpfUvr9gv0lzZB0Y36Y3JWS9srLu07Sv0nqkHS7pOdJ+qGkOyR9thD7usLw6ZJuy+95dp31nJZjv61mGVOVf0NE0iFKv8OwOMc0HTgb2D9P+5KkMZL+J2+D2yTNLizndknfUPoNh1/mu5eR9AxJ1+TYbpa0f57+0bydblWd33ywXUh/PevcL7/6+wWsy39fRnp65kTSF5zfAS/OZXcB++ThfYDrgdF5/HTgk4V6pxWWPa4w/Fng/Xn4QuB1hbJbgZfm4XnAv+fh64Av5OEPAveQ7goeQXpq7biadXgVcAOwWx7fu876LgDelodPKcw7lfwbIqSHBr45Dw8HRhXL8/ShwO6FbbKc9PsNU0l3I8/IZZcBb8nDvweOz8MjSWdrxwDn53mHAD8Fjmz2fuFXc16D4nEftku4KSI6AfIjMKYCv6mp83xSE9Jv82OThpMSS7dLC8PPyt/e9wTGkB4V04OkPYA9I+LXedJ3gB8UqnQ/f+w2YEnk50lJWkF6mFvxWU1HA9+OiMcAIqLe74K8CHhtHr4Y+EKdOr8DPq70uwY/jIg7tO3PFQj4V0lHkh5lPQHYN5f9JSK6HyGyCJgqaSwwISKuzLE9kdfjGFLCuCXXHwNMJyVk28U4WdhAsb4wvIn6+65Iv0twQi/LeLQwfCFwXET8QdJJpLOXJxvT5pr4NvcSXyP6fP5ORFwi6fekH8D5maR3Aytqqr0ZGA88NyI2Kj2ldGRNzJC246g+3k7A5yPivO2I3wYp91nYQPcI6adHAW4EXiTpGQCSRks6oJf5xgL3Kj0K/M31lhcRDwEPSHpJLnsr8GuenKuBt3dfuSVp7zp1fsvWB7+9uU45kp4OrIiI/wB+DBxKz20A6bHU9+VE8Y/AlL4Ci/RrfJ2SjsvvMSLHeRXwjkK/zwRJT2lobW3QcbKwge584BeSro2I1aQng35f0q2kJpsDe5nvE6R2+t/S89HU84GPSrold/KeSOrwvhWYQeq32G4R8QtSs1VHbkb7SJ1qHwROkXQbvf9S3xuAP+ZlPIv0c7BrSE1vf5T0JeB7QHteztvY9nHh9byV9JTVW0l9K0+NiF+Sfuv5d3lZl9MzKdkuxE+dNTOzUj6zMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrNT/ByfsUcHpAJkIAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -249,7 +251,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYHFW5x/HvL5N9YUtCkOxAWAJi0GHfFAGDLMGLXCOioGgumIiIrIIIUa5wvahcjULAyOISEcUbuREEIaAikMkGJBAISSATEhKyB8gyM+/945xJajo9Mz2TqamenvfzPP1MLaeq36qu6bfrnKpTMjOcc865hnTIOgDnnHPFz5OFc865RnmycM451yhPFs455xrlycI551yjPFk455xrlCcLh6QbJf0qDg+StFFSWRzvJ+lpSRsk3abgl5LWSHo+28hdQyQtlnRy1nGkTdKFkv6Rwnrr/C+04HqHSLK47jFx2v5xvFrSl1vy/VpKx6wDaMskLQb6AdWJyfeY2bhsItp5ZvYm0DMxaQzwDrCLmZmk44FTgAFm9m4WMbqdJ+keoNLMrs86lmIR/5+/bGaPQ97/hZa2m5lVxfd6FegpaVqK77dTPFnsvDNrD660SOpYe1BlYDAwz7bfvTkYWNycRJHxdrRp7WXftZftbIu8GioltafGkv47VtksknRaYv6ukn4haZmkpZK+l6j6uVDSPyX9SNIq4EZJZbEa6J24rnHxVLajpHMlzch5/8sl/W89sQ2V9FSsWnoM6JOYNySx3nuAC4Cr4inyfwB3A0fH8ZviMmdImi1praRnJB2aWN9iSVdLegF4N653b0l/kLQybsulifI3SnpA0n0xvrmSyhPzB0r6Y1x2laSfJuZ9SdLLcX8/KmlwA5/PcTHWtZKWSLow8bncF9f/hqTrJXXI87mslbRQ0jFx+hJJKyRdkHiPeyTdIemxuC1PJWOSdHtcbr2kGfGsLbkfHpT0K0nrgQsldZB0jaTX47Y/IGmPxDKfjzGvknRdA9s+Bvhc4nP9c5x+kKRpcdvmSjqrgXVMk/TduD82SPqrpORxdFZcx9pY9qAG1mWSxkp6DXgtTjsw7rfVkuZL+vdE+d6SpsT99jywb2LetuM3J9YvJ8a/Eo+TDZLmSfqwpPuBQcCf4z65Kndd8bidEmNaIOkrOZ9XvcdtSTAzfzXzBSwGTq5n3oXAVuArQBlwCfAWoDj/IeBOoAewJ/A88B+JZauArxHO/roBFwPzgAHA7sDjgMX5XYDVwEGJ958FnFNPbP8CfhiXOwHYAPwqzhtSu944fg/wvZzt+kdi/DBgBXBk3M4L4n7pkthHs4GBcTs6ADOAG4DOwD7AQuATsfyNwCbgk3F93weejfPKgDnAj+J+6wocF+eNAhYAB8V9cj3wTD3bPzhu82eBTkBvYEScdx/wv0CvuC9eBS7K+Vy+GGP5HvAmMCHuy1Pjensm9t2GuI+7ALfn7Lvz43t3BL4JLAe6JvbDVuDsuM+6AV8Hno3HQBfC8fPbWH44sDHxXj+MsdZ3fOZ+rp3i/vtW/FxOirEfUM/y04DXgf1jbNOAW+K8/YF3CdWVnYCr4ro717MuAx4D9ojr6gEsifu5I+EYewcYHstPBh6I5Q4BltbuV3KO30SsX47D58byhwMC9gMG5/t/zl0X8DTwM8JxNwJYCZzU2HGbZ3t3iDFfrMX2yjyAtvyKB9dGYG3i9ZU470JgQaJs93iA7EVo59gMdEvM/yzwZGLZN3Pe6wliMonjJ+ccyD8Hbo7DBwNriF/YOesZRPgS6ZGY9huanyx+Dnw35z3mAycm9tGXEvOOzLNt1wK/jMM3Ao8n5g0H3o/DR8d/0Hz/ZH8hfqnH8Q7Ae7VfBHne76E808uALcQvpTjtP4BpiW1/LTHvg3Ff9UtMW8X2xHMPMDkxryehfWtgPcfTGuBDif3wdM78l4GPJ8Y/QEgoHQnJN/lePeK2FJosjickqw6Jab8Fbqxn+WnA9YnxrwKPxOFvAw/kfBZLgY/Wsy4jfunG8c8Af88pcyfwnfgZbQUOTMz7TwpPFo8CX2/g/zlvsiD82KkGeiXmf5/QRln7eeU9bvO8zw4x5ou12F7eZrHzzrb62yyW1w6Y2XuSIHxh7EH4xbUsToPwD7UksWxyGGDvRubfC/xW0vXA5wn/rJvzxLQ3sMbqtjm8QfhnaI7BwAWSvpaY1jm+T75YBwN7S1qbmFYG/D0xvjwx/B7QNVYFDATesPx12oOB2yXdlpgmoD9h+5IGEn4V5+pD+FyS5d+I66j1dmL4fQAzy52WbBTdtu1mtlHSauJnKekK4KI4bsAuJKoE2fEzHgw8JKkmMa2a8OOjzvFhZu8qVGEWam9giZkl15277blyP6fa7d6bxD40sxpJSxpZV+4xcmTOMdIRuB/oG4eT5XM/34bU99k3Zm9gtZltyHnfZFVT3uO2nuO1zfFkkY0lhDOLPg0cSLndAS8jVD/UqvPlbmbPStpC+IV4XnzlswzYXVKPRMIYlOf9CrWEcEZzcwNlkuteAiwys2HNfK9B9fwD1sbx6wLXc0Se6e8QfrUOJlT5Qdg3S5sRa61tn5Ok2h8Kb8X2iauAjwNz4xfqGkKCq5X7mSwhnKX9M/dNJC0jVMHVjncnVHHVJ3fdbwEDJXVIJIxBhGq4pnqLcNZVG4sI+6Gh/Zh7jDxlZqfkFlJo16uK63slEWet2mO6O7A+Du+Vs+59ya+h/4G3gD0k9UokjJ09NtoUb+DOgJktA/4K3CZpl9hwua+kExtY7AHg65L6S9oNuDpPmfuAnwJbzSzvdedm9gZQAdwkqbOk44Azd2Jz7gIulnSkgh6STpfUq57yzwMbFBq9uyk03B8i6fAC3ut5QrK7Jb5PV0nHxnl3ANdKOhi2NVSfW896fg2cLOnfFRrce0saYWbVhP18s6ReCo3RlwO/KmxX5PVJhcb0zsB3CfXYSwhtIlXEajVJNxDOLBpyR4xtcNzGvpJGxXkPAmck3ms8Df9/v01oL6r1HOHX8FWSOkn6KOG4mNyEba31AHC6pI9L6kRoj9kMPFPg8g8D+ys02HeKr8MlHRQ/oz8SLvroLmk4oZ0MADNbSfgCPz8eW1+ibnK4G7hC0kfi8bqftl90kLtPtomf2TPA9+NxdyjhrHBnjo02xZPFzqu9eqL29VCBy32BUF0zj1BX/SChDro+dxESzAuExuuphC+b5D0e9xMa/Bo7gM8jtB2sJtQD31dgzDswswpCI/5PCduxgFC3X1/5auAMQgPhIsKv+buBXQt4r2rCF9h+hIblSkL9Nmb2EHArMFnh6qGXgNPqWc+bhIbIbxL2wWzgQ3H21wi/ThcC/yC050xqLLYG/Iawj1cDHyE0akOoO3+E8Mv9DULjaG61U67bgSnAXyVtIDR2Hxm3aS4wNr7fMsJnUdnAun4BDFe4WulPZraFsG9PI3wmPwO+YGavNLCOvMxsftzOn8R1nUm4xHxLgctvIFwsMJrwi3454bPtEouMI1R5LSe0vfwyZxVfAa4ktB8dTCJJmdnvgZsJ+2kD8CfC2R6ENojr4z65Ik9onyW0N7xFuEDlOw1UQZec2itzXBujcBnuHWY2ODGtG+HKpA+b2WuZBecAv/HN5RfPZOYTfiBcaWZ3SRoGTCf8gPyqmd2TYYh5eZtFGxETwccIZxf9CL9Wc89iLgGme6JwrnjFquCuOdNeA3bLJqLCpFoNJWmkwg01CyRd00C5c+LNL8mbr66Ny82X9Ik042wjBNxEqF6YRbiM8oZtM0NXBV8nVK0451yLSq0aKl618CrhxpxKwinWZ81sXk65XsD/EU6/xplZRWy0+i3hipW9CTeg7R/rrJ1zzrWyNM8sjiDclLYwNmxNJtxlm+u7hMarTYlpowg3GG02s0WERtN8lzo655xrBWm2WfSn7tUdlcQrN2pJ+jDhbtb/k3RlzrLP5iy7ww09Cn3cjAHo0aPHRw488MAWCt0559qHGTNmvGNmfRsrl1kDt0LnbD+kgcssG2NmE4GJAOXl5VZRUdEywTnnXDshqaA74NNMFkupe5fxAOre7diLcE/AtNjlxV7AFIWeLhtb1jnnXCtKs81iOjBMoTvszoQbbKbUzjSzdWbWx8yGmNkQQrXTWfEmrynAaEldJA0FhhHu3nXOOZeB1M4szKxK0jjCnaplwCQzmytpPFBhZlMaWHaupAcIdzdXAWP9SijnnMtOydzBna/NYuvWrVRWVrJp06Z6lmp7unbtyoABA+jUqVPWoTjnSoCkGWbW6IOaSvoO7srKSnr16sWQIUOQ1PgCRc7MWLVqFZWVlQwdOjTrcJxz7UhJdyS4adMmevfuXRKJAkASvXv3LqkzJedc21DSyQIomURRq9S2xznXNpR8snDOObfzPFk455xrlCeLlC1evJhu3boxYsSIestMnz6djh078uCDDwLw+uuvM2LECHr27FnvMs4515o8WbSCfffdl9mzZ+edV11dzdVXX82pp55aUHnnnMtCSV86W8czt8Gq+S27zt4HwDE79/iIn/zkJ5xzzjlMnz69hYJyzrmW52cWGVq6dCkPPfQQl1xySdahOOdcg9rPmcVOngGk4bLLLuPWW2+lQwfP2c654tZ+kkURmDBhAnfddRcAU6dOpaKigtGjRwPwzjvvMHXqVDp27MjZZ5+dZZjOObcDTxataOzYsYwdO3bb+KJFi7YNX3jhhZxxxhmeKJxzRcnrP5xzzjXKzyyKxD333JN1CM45Vy8/s0hZWVkZ69ata/CmvFy1N+X169cvxcicc65wJX9mYWaZdr43cOBAlixZ0qRlGropr1SeP+Kca1tK+syia9eurFq1qmS+YGufZ9G1a9esQ3HOtTMlfWYxYMAAKisrWblyZdahtJjaJ+U551xrSjVZSBoJ3E54BvfdZnZLzvyLgbFANbARGGNm8yQNAV4GavvneNbMLm7q+3fq1MmfKOeccy0gtWQhqQyYAJwCVALTJU0xs3mJYr8xszti+bOAHwIj47zXzazwVmHnnCt1ZrB5HWx8G959G95dEYa77AIf+nyqb53mmcURwAIzWwggaTIwCtiWLMxsfaJ8D6A0Ghecc66pahNBbQJ49+34d0XdxFC9ue5yKoP+h7fpZNEfSF4GVAkcmVtI0ljgcqAzcFJi1lBJs4D1wPVm9vcUY3XOuXRt2QgbliWSQE4yqC8R9OgLPfYMvVwPPgF69IOe/cK0nntB192hQ1nq4WfewG1mE4AJks4DrgcuAJYBg8xslaSPAH+SdHDOmQiSxgBjAAYNGtTKkTvnXD2qt8CqV2HFS7BiLqycC+verFtGHaB73/DF3/sAGHR83STQox9026NVEkEh0kwWS4GBifEBcVp9JgM/BzCzzcDmODxD0uvA/kBFcgEzmwhMBCgvL/cqLOdc6zOD9ZUhMaycG/6+Mx9qtob53XrDnofA/mfAroNCEuixJ3TvDR0y/71esDQjnQ4MkzSUkCRGA+clC0gaZmavxdHTgdfi9L7AajOrlrQPMAxYmGKszjlXmE1rYeW8eNYQzxw2rwvzOnaFPgfBIaNhz4NDkujRDzK8MbilpJYszKxK0jjgUcKls5PMbK6k8UCFmU0Bxkk6GdgKrCFUQQGcAIyXtBWoAS42s9Vpxeqcc3nlVieteAnW1zbFCnYfCkNODElhz0Ng933a1NlCU6hU7m4uLy+3ioqKxgs651x9tmyEN/6+/axh1avbq5O699meFPY8BPocCJ17ZhtvC5A0w8zKGytXminQOeea4v018OJvYO4DsPXdUJ3Ud3isTjokVCmVSHVSc3mycM61X++ugDn3wysPQdVmGHoSHHo+9D2oZKuTmsv3hnOu/Vm/FObcC/P/DFYD+42EEReGNgiXlycL51z7sWYRzP4lLHg03OdwwFnwoS/ALv2zjqzoebJwzpW+d16BWZNg0ZPQsUtoizj0/HB3tCuIJwvnXOlaPjskiSXPhCuXDvsifPA86Lpb1pG1OZ4snHOlxQyWPheSxLKZITEc/lU4+N9L4lLXrHiycM6VBqsJ90jMmhS63ejeF46+HA78FHTqlnV0bZ4nC+dc21ZTDQsfDw3XqxdAr/5w/LdCX0xlnbOOrmR4snDOtU3VW+G1qeES2HVvwm5D4WPjYd9T/R6JFPgedc61Pa8+DNN/Hp4D0fsAOPlWGPqxcDmsS4UnC+dc2zLzF1Dxc9jzg6G6aeAx7bobjtbiycI51zaYwfSfhbaJYZ+EE2/w6qZW5HvaOVf8rAb+9UN4aTIc9G9w3DVe5dTKPFk454pbTTX84/vwyp/CDXVHfcOrnTLgycI5V7xqqmDajbDgETjsIii/2BNFRjxZOOeKU/UW+Nt1sPhJOGJc6BXWZcaThXOu+FRtgseuCn06HXNF6PjPZcqThXOuuGx9Dx69HN6aASdcDweenXVEDkj1cgJJIyXNl7RA0jV55l8s6UVJsyX9Q9LwxLxr43LzJX0izTidc0Vi8waYOg6WzYKTvuuJooikliwklQETgNOA4cBnk8kg+o2ZfdDMRgD/BfwwLjscGA0cDIwEfhbX55wrVZvWwsMXw8p5cPIt4el1rmikeWZxBLDAzBaa2RZgMjAqWcDM1idGewAWh0cBk81ss5ktAhbE9TnnStF778Cfx8DaxXDqbaHrDldU0myz6A8sSYxXAkfmFpI0Frgc6AyclFj22Zxld3juoaQxwBiAQYMGtUjQzrlWtnE5PHxJSBin3Q57l2cdkcsj81sgzWyCme0LXA1c38RlJ5pZuZmV9+3rj0d0rs1ZXwlTvgyb1sDpEzxRFLE0k8VSYGBifECcVp/JQG1rVlOXdc61NWsWhUSx9X044w7od2jWEbkGpJkspgPDJA2V1JnQYD0lWUDSsMTo6cBrcXgKMFpSF0lDgWHA8ynG6pxrTateDW0UZnDmROhzYNYRuUak1mZhZlWSxgGPAmXAJDObK2k8UGFmU4Bxkk4GtgJrgAvisnMlPQDMA6qAsWZWnVaszrlWtOIlmPo16NQdzvg57OrtjW2BzKzxUm1AeXm5VVRUZB2Gc64hy2bCI5dBtz3g9J9Drw9kHVG7J2mGmTXaWJR5A7dzrp2ofDacUfToB2fe5YmijfFk4ZxL3+Kn4JFvwG6DQxtFD796sa3xZOGcS9frfw2dAvY5IFz11G33rCNyzeAdCTrn0jP/z/D0d2GvEfCJH0HnHllH5JrJzyycc+lY/BQ8dRP0PwJO+x9PFG2cn1k451rexrfhqfHh/olTb4OOXbKOyO0kP7NwzrWsmmp48tvhSXcf/09PFCXCk4VzrmXN/mW4n+K4q/2GuxLiycI513KWz4YZd8F+p8Gw07OOxrUgTxbOuZaxeT08cX242e64q0HKOiLXgryB2zm388zg6e/Buyth1CTo3DPriFwL8zML59zOe+UhWPQEHDEO9jw462hcCjxZOOd2zurX4ZnbYMBRcOjnso7GpcSThXOu+ao2wd++FW64++iNIP9KKVXeZuGca75nfwxrXofTfgLd+2QdjUuR/wxwzjXPoidh3oNw6Odh4NFZR+NS5snCOdd0G5eHDgL7DofDv5p1NK4VeLJwzjVNTRU88e3w96SboaxT1hG5VpBqspA0UtJ8SQskXZNn/uWS5kl6QdLfJA1OzKuWNDu+pqQZp3OuCWZNguWz4LhrYNeBWUfjWklqDdySyoAJwClAJTBd0hQzm5coNgsoN7P3JF0C/BfwmTjvfTMbkVZ8zrlmWDYTZt4duvIY9smso3GtKM0ziyOABWa20My2AJOBUckCZvakmb0XR58FBqQYj3NuZ2xaF6qfevWHY6/KOhrXytJMFv2BJYnxyjitPhcBf0mMd5VUIelZSWfnW0DSmFimYuXKlTsfsXMuP7PQoP3+qtDtuD/IqN0pivssJJ0PlAMnJiYPNrOlkvYBnpD0opm9nlzOzCYCEwHKy8ut1QJ2rr15+Q+weBocdRn0PSjraFwG0jyzWAokW78GxGl1SDoZuA44y8w21043s6Xx70JgGnBYirE65+qzegH864cw8Bj44HlZR+MykmaymA4MkzRUUmdgNFDnqiZJhwF3EhLFisT03SV1icN9gGOBZMO4c641bOvOo5d359HOpVYNZWZVksYBjwJlwCQzmytpPFBhZlOAHwA9gd8r9H3/ppmdBRwE3CmphpDQbsm5iso51xqeuQ3WLIRP/hS67ZF1NC5DqbZZmNlUYGrOtBsSwyfXs9wzwAfTjM0514iFj4euxz90QehR1rVrfk7pnNvRhmXw9M3Q92A4/JKso3FFwJOFc66umqrweFSrgY/fDB2K4qJJlzFPFs65umbeDW/PgeOvhV38PlkXeLJwzm33VgXM/AXsfybsNzLraFwR8WThnAs2rQ3deew6EI69MutoXJHxykjnXOjOY9pNIWGM/BF06p51RK7IFHRmIemPkk6X/I4c50rS3Afgzb/DkZdCnwOzjsYVoUK//H8GnAe8JukWSQekGJNzrjWtehWeux0GHQeHjM46GlekCkoWZva4mX0O+DCwGHhc0jOSvijJH5PlXFtVvSW0U3TuBSd+B0JPCs7toOBqJUm9gQuBLxMeWnQ7IXk8lkpkzrn0zbwb1rwOJ34buu2edTSuiBXUwC3pIeAA4H7gTDNbFmf9TlJFWsE551K08mWYfS/sf0aognKuAYVeDfU/ZvZkvhlmVt6C8TjnWkP1Fph2Y+gc8OhvZh2NawMKTRa7S/q3nGnrgBeTXYs759qI2uqnkT+GLr2yjsa1AYUmi4uAo4Has4uPAjOAoZLGm9n9KcTmnEvDynle/eSarNBk0Qk4yMzeBpDUD7gPOBJ4mtCW4Zwrdl795Jqp0KuhBtQmimgFMNDMVgNbWz4s51wqZtwVHmZ0wnVe/eSapNAzi2mSHgZ+H8fPidN6AGtTicw517JWzoM594VOAr36yTVRocliLPBvQO0Rdh/wBzMz4GNpBOaca0G11U/de8PRl2cdjWuDGq2GklQGPGFmfzCzb8TXgzFRNLbsSEnzJS2QdE2e+ZdLmifpBUl/kzQ4Me8CSa/F1wVN3jLn3Ha11U/He/WTa55Gk4WZVQM1knZtyopjkpkAnAYMBz4raXhOsVlAuZkdCjwI/Fdcdg/gO4QG9COA70jy20uda4461U/HZh2Na6MKrYbaCLwo6THg3dqJZnZpA8scASwws4UAkiYDo4B5ieWTN/o9C5wfhz8BPBYb0InvOxL4bYHxOufAq59ciyk0WfwxvpqiP7AkMV5JOFOoz0XAXxpYtn/uApLGAGMABg0a1MTwnGsHaqufRt7u1U9upxSULMzsXkndgEFmNr+lg5B0PlAOnNiU5cxsIjARoLy8vNE2FOfalRVzYc69Xv3kWkShDz86E5gNPBLHR0ia0shiS4GBifEBcVruuk8GrgPOMrPNTVnWOVePqs3w1E3QvY9XP7kWUehNeTcS2iDWApjZbGCfRpaZDgyTNFRSZ2A0UCfBSDoMuJOQKJJ9TD0KnCpp99iwfWqc5pwrxEy/+sm1rELbLLaa2TrVfTBKTUMLmFmVpHGEL/kyYJKZzZU0HqgwsynAD4CewO/jut80s7PMbLWk7xISDsD42sZu51wjVrwUrn464CyvfnItptBkMVfSeUCZpGHApcAzjS1kZlOBqTnTbkgMn9zAspOASQXG55yDWP00Hrr39eon16IKrYb6GnAwsJlw+ep64LK0gnLONVNt9dMJ10PnnllH40pIoVdDvUdohL4u3XCcc822rfppFAw8OutoXIkp9LGq+wNXAEOSy5jZSemE5ZxrkqrNMO2mWP30jayjcSWo0DaL3wN3AHcD1emF45xrlhkTYe0iOO0nXv3kUlFosqgys5+nGolzrnlWvAQv3O/VTy5VhTZw/1nSVyV9QNIeta9UI3PONa5qc+z7yaufXLoKPbOo7SL8ysQ0o/Eb85xzaZpxJ6xd7NVPLnWFXg01NO1AnHNNtOIleOFXcODZXv3kUtdgNZSkqxLD5+bM+8+0gnLONSJZ/XSU3/Lk0tdYm8XoxPC1OfNGtnAszrlC1VY/nfhtr35yraKxZKF6hvONO+daw9svxuqnT8GAo7KOxrUTjSULq2c437hzLm3buh7vC0d9PetoXDvSWAP3hyStJ5xFdIvDxPGuqUbmnNtRxR2h+umTP/XqJ9eqGkwWZlbWWoE45xrx9ovw4q+9+sllotCb8pxzWdrybrj6qceeXv3kMlHoTXnOuayYhUSxfgmc/jOvfnKZ8DML54rdrEmw+Ek48lLYuzzraFw75cnCuWL25j9Co/Z+p8EHP5d1NK4dSzVZSBopab6kBZKuyTP/BEkzJVVJ+nTOvGpJs+NrSppxOleU1r0JT1wPvYfBCdeB/NYml53U2iwklQETgFOASmC6pClmNi9R7E3gQsKDlXK9b2Yj0orPuaK25V149JvQoSOceht09CvVXbbSbOA+AlhgZgsBJE0GRgHbkoWZLY7zalKMw7m2xWpg2nfCmcXpE6DXB7KOyLlUq6H6A0sS45VxWqG6SqqQ9Kyks/MVkDQmlqlYuXLlzsTqXPGYNQkWTwuXyHqDtisSxdzAPdjMyoHzgB9L2je3gJlNNLNyMyvv27dv60foXEt74+9QcWdo0D7ks1lH49w2aSaLpcDAxPiAOK0gZrY0/l0ITAMOa8ngnCs6axeHBu0+B3iDtis6aSaL6cAwSUMldSZ0d17QVU2SdpfUJQ73AY4l0dbhXMnZshH+egWUdYJT/9sbtF3RSS1ZmFkVMA54FHgZeMDM5koaL+ksAEmHS6oEzgXulDQ3Ln4QUCFpDvAkcEvOVVTOlQ6rgSdvgHVL4ORboOdeWUfk3A5S7e7DzKYCU3Om3ZAYnk6onspd7hngg2nG5lzRmHk3vPE0HHOFN2i7olXMDdzOlb7FT8GMiTDsdDj4M1lH41y9PFk4l5W1i0P1U5+D4PhrvUHbFTVPFs5lYcvGcId2WWc49QfeoO2KnndR7lxrsxp44tuwvjJ0Oe4N2q4N8DML51rbjLvgzb/D0d+AvT+SdTTOFcSThXOtafE0mHkX7H+mN2i7NsWThXOtZc2i0KDddzgcd43W8lAzAAARSklEQVQ3aLs2xZOFc61hy0b46zdDQ/YpP4COXbKOyLkm8QZu59JmNaHPp/VL4Yw7oGe/rCNyrsn8zMK5tFXcGR6Pesw34QPeH6ZrmzxZOJemRU/ArF+EBu3h52YdjXPN5snCubSsWQjTboS+B3uDtmvzPFk4l4bNG0KX4x27xTu0vUHbtW3ewO1cS6uphieuCw3aZ94JPfbMOiLndpqfWTjX0irugCXPwLFXwl4jso7GuRbhycK5lvTyH2H2L+GAUXDQOVlH41yL8Woo51qCGcy4MzzIaOAxcNzV3qDtSoonC+d2Vk0VPH0zvPpnOOAsOP5b0MH/tVxpSbUaStJISfMlLZB0TZ75J0iaKalK0qdz5l0g6bX4uiDNOJ1rtq3vwaOXh0Tx4a/ACd/2ROFKUmpHtaQyYAJwClAJTJc0xczmJYq9CVwIXJGz7B7Ad4BywIAZcdk1acXrXJO9twoeuQxWvQonXA8Hnp11RM6lJs0ziyOABWa20My2AJOBUckCZrbYzF4AanKW/QTwmJmtjgniMWBkirE61zRr34D//RKsXQSfuM0ThSt5aSaL/sCSxHhlnNZiy0oaI6lCUsXKlSubHahzTfL2CyFRbH0PzrgTBh2XdUTOpa5NXzprZhPNrNzMyvv27Zt1OK49WDwNHr4EuuwCoybBngdnHZFzrSLNZLEUGJgYHxCnpb2sc+mY9yA8dhXssV9IFLsObHwZ50pEmsliOjBM0lBJnYHRwJQCl30UOFXS7pJ2B06N05xrfWbw/AT4xy0w8NjwTIpuu2cdlXOtKrVkYWZVwDjCl/zLwANmNlfSeElnAUg6XFIlcC5wp6S5cdnVwHcJCWc6MD5Oc651VW8NPcfO/iUc+KnQKWCnbllH5Vyrk5llHUOLKC8vt4qKiqzDcKVky7uh2mnpc1B+MRx2kd+V7UqOpBlmVt5YOb97yLl83nsH/nIprH4dTrwh3JntXDvmycK5XGsXw9Svwaa1MPJHoa8n59o5TxbOJS2fDY9+EzqUwZkToe9BWUfkXFFo0/dZONeiFj0J/zcWuu4aLo31ROHcNn5m4RzAS7+DZ/4b9jwkVD113S3riJwrKp4sXPtmNfD8T2HOfTD4RPj4zdCxa9ZROVd0PFm49qt6Kzw1Hhb8BYZ/Go65MrRVOOd24MnCtU9bNsZ7KJ6Hw8fCiAv9HgrnGuDJwrVP026Ct2bAR2+E/c/IOhrnip5fDeXan5oqqHwWDvqUJwrnCuTJwrU/qxdA1fuw12FZR+Jcm+HJwrU/y2eHv3t9KNs4nGtDPFm49mf5HOi5V3g55wriycK1L2bhzKKfn1U41xSeLFz7snEZvLcS9hqRdSTOtSmeLFz74u0VzjWLJwvXviyfA516wO77Zh2Jc22KJwvXviyfDf0O9W49nGuiVJOFpJGS5ktaIOmaPPO7SPpdnP+cpCFx+hBJ70uaHV93pBmnayc2r4c1C70KyrlmSK27D0llwATgFKASmC5pipnNSxS7CFhjZvtJGg3cCnwmznvdzLwV0rWct18AzBu3nWuGNM8sjgAWmNlCM9sCTAZG5ZQZBdwbhx8EPi55b24uJcvngMrCMyucc02SZrLoDyxJjFfGaXnLmFkVsA7oHecNlTRL0lOSjk8xTtdevD0H+hzoz6twrhmKtYF7GTDIzA4DLgd+I2mX3EKSxkiqkFSxcuXKVg/StSHVW2HFXG+vcK6Z0kwWS4GBifEBcVreMpI6ArsCq8xss5mtAjCzGcDrwP65b2BmE82s3MzK+/btm8ImuJLxzitQvdnbK5xrpjSTxXRgmKShkjoDo4EpOWWmABfE4U8DT5iZSeobG8iRtA8wDFiYYqyu1NXejOfdfDjXLKldDWVmVZLGAY8CZcAkM5sraTxQYWZTgF8A90taAKwmJBSAE4DxkrYCNcDFZrY6rVhdO/D2HNhlIHTv3XhZ59wOUn1SnplNBabmTLshMbwJODfPcn8A/pBmbK4dMQtXQg06NutInGuzirWB27mWs+5N2LTG2yuc2wmeLFzp8/YK53aaJwtX+t6eA112hd2GZB2Jc22WJwtX+mo7D/TOAZxrNk8WrrS9vya0WXh7hXM7xZOFK21vzwl//c5t53aKJwtX2pbPhrLO0Hd41pE416Z5snClbfkc6HNQSBjOuWbzZOFKV9UmeOdlb69wrgV4snCla+U8qKnyZOFcC/Bk4UrXtpvxDs02DudKgCcLV7qWz4Hd94Guu2YdiXNtnicLV5qsJjxz27v4cK5FeLJwpWnNQtiywe+vcK6FeLJwpam2vcIbt51rEZ4sXGlaPge69YZe/bOOxLmS4MnClaa354QqKO880LkWkeqT8tqELe/C7z4F3ftCjz3rf3XukXWkrlDvroANb8Ehoxsv65wriCeLmioYfGL4gtm4PFxBs3ndjuU69QiXYHbuCV12gc69wt8uveoOd+wKHbvFv3leZZ39127alsfOA/1KKOdaTKrJQtJI4HagDLjbzG7Jmd8FuA/4CLAK+IyZLY7zrgUuAqqBS83s0VSC7LornHBd3WlVm+C9d2Dj2/Deyu1/N6+HzRvC33VvhOEtG0L5gikkjA4dw986w52gQ6ft0zp0hA5l24dVVne6yrb/VYdYpkOc1mH79DovxenaPg1tn4e2z4PEfNXdhm3jufMaYAbY9r/1TaupjtNqcl7JadUh0VtNKG/V2/8umxUSc58DmvC5OOcaklqykFQGTABOASqB6ZKmmNm8RLGLgDVmtp+k0cCtwGckDQdGAwcDewOPS9rfzKrTireOjl1hlwHhVYjqLXUTR0Ovre+H8jVV4W9Dw1Xvh/GaqvBFuG24avsXpVXv+IVZ+6Xb3mxLqGWw7yfCuHOuRaT533QEsMDMFgJImgyMApLJYhRwYxx+EPipJMXpk81sM7BI0oK4vn+lGG/zlXWG7r3DqxjU/vquTRz1/lJP/GKvnb9t+cQvfquhTgKy2mGrO0wBZxjJs5cwYcdpdc6IEmdAyTOhHc6u/FoN59KUZrLoDyxJjFcCR9ZXxsyqJK0Desfpz+Ysu8M1kJLGAGPi6EZJ8+uJpQ/wTlM3IENtLV7wmFuLx5y+thYv7FzMgwsp1KbP081sIjCxsXKSKsysvBVCahFtLV7wmFuLx5y+thYvtE7MaZ67LwUGJsYHxGl5y0jqCOxKaOguZFnnnHOtJM1kMR0YJmmopM6EBuspOWWmABfE4U8DT5iZxemjJXWRNBQYBjyfYqzOOecakFo1VGyDGAc8Srh0dpKZzZU0HqgwsynAL4D7YwP2akJCIZZ7gNAYXgWM3ckroRqtqioybS1e8Jhbi8ecvrYWL7RCzDJrp5dZOuecK5hfb+icc65Rniycc841qmSShaSRkuZLWiDpmjzzL5S0UtLs+PpyFnHmxDRJ0gpJL9UzX5L+J27TC5I+3Nox5sTTWLwflbQusY9vaO0Y88Q0UNKTkuZJmivp63nKFNt+LiTmotnXkrpKel7SnBjvTXnKdJH0u7iPn5M0pPUjrRNPITEX3XcGhN4xJM2S9HCeeentZzNr8y9CA/rrwD5AZ2AOMDynzIXAT7OONSemE4APAy/VM/+TwF8It0YfBTxX5PF+FHg46/2aE9MHgA/H4V7Aq3mOjWLbz4XEXDT7Ou63nnG4E/AccFROma8Cd8Th0cDv2kDMRfedEeO6HPhNvs8/zf1cKmcW27oWMbMtQG3XIkXNzJ4mXAVWn1HAfRY8C+wm6QOtE92OCoi36JjZMjObGYc3AC+zY28AxbafC4m5aMT9tjGOdoqv3CtnRgH3xuEHgY/Hrn0yUWDMRUfSAOB04O56iqS2n0slWeTrWiTfP9c5sZrhQUkD88wvNoVuVzE5Op7a/0XSwVkHkxRPyQ8j/IpMKtr93EDMUET7OlaNzAZWAI+ZWb372MyqgNqufTJTQMxQfN8ZPwauAmrqmZ/afi6VZFGIPwNDzOxQ4DG2Z1/XcmYCg83sQ8BPgD9lHM82knoCfwAuM7P1WcdTiEZiLqp9bWbVZjaC0NvCEZIOyTKeQhQQc1F9Z0g6A1hhZjOyeP9SSRaNdg9iZqss9GIL4RTuI60U285oU92emNn62lN7M5sKdJLUJ+OwkNSJ8KX7azP7Y54iRbefG4u5WPe1ma0FngRG5syqr2ufzNUXcxF+ZxwLnCVpMaGq/SRJv8opk9p+LpVk0WjXIjl10GcR6oGL3RTgC/FqnaOAdWa2LOug6iNpr9r6UUlHEI6vTL8QYjy/AF42sx/WU6yo9nMhMRfTvpbUV9Jucbgb4Rk2r+QUq69rn0wUEnOxfWeY2bVmNsDMhhC+454ws/NziqW2n9t0r7O1rLCuRS6VdBah+5DVhCsdMiXpt4SrWvpIqgS+Q2how8zuAKYSrtRZALwHfDGbSIMC4v00cImkKuB9YHSWXwjRscDngRdj/TTAt4BBUJz7mcJiLqZ9/QHgXoUHnnUAHjCzh1VA1z4ZKiTmovvOyKe19rN39+Gcc65RpVIN5ZxzLkWeLJxzzjXKk4VzzrlGebJwzjnXKE8WzjnnGuXJwhUtSRsLKHOZpO4t+J5nSxregut7ZieW3Rj/7i3pwQbK7Sbpq819H+cK4cnCtXWXAU1KFvHa+vqcDbRYsjCzY1pgHW+Z2acbKLIbobdR51LjycIVPYVnN0yLnbm9IunX8W7rS4G9gSclPRnLnirpX5JmSvp97F8JSYsl3SppJnCupK9Imh474vuDpO6SjiHcqfsDhecX7CtphKRnY2dyD0naPa5vmqQfSaqQ9LKkwyX9UdJrkr6XiH1jYvhqSS/G97wlz3YOjbG/mLOOIYrPEJF0sMJzGGbHmIYBtwD7xmk/kNRT0t/iPnhR0qjEel6WdJfCMxz+Gu9eRtJ+kh6Psc2UtG+cfmXcTy8ozzMfXDvSUn2d+8tfLf0CNsa/HyX0njmA8APnX8Bxcd5ioE8c7gM8DfSI41cDNyTKXZVYd+/E8PeAr8Xhe4BPJ+a9AJwYh8cDP47D04Bb4/DXgbcIdwV3IfRa2ztnG04DngG6x/E98mzvFOALcXhsYtkhxGeIEDoN/Fwc7gx0S86P0zsCuyT2yQLC8xuGEO5GHhHnPQCcH4efAz4Vh7sSztZOBSbGZTsADwMnZH1c+CubV0l09+HahefNrBIgdoExBPhHTpmjCFVI/4zdJnUmJJZav0sMHxJ/ve8G9CR0FVOHpF2B3czsqTjpXuD3iSK1/Y+9CMy12J+UpIWEztySfTWdDPzSzN4DMLN8zwU5FjgnDt8P3JqnzL+A6xSea/BHM3tNOz6uQMB/SjqB0JV1f6BfnLfIzGq7EJkBDJHUC+hvZg/F2DbF7TiVkDBmxfI9gWGEhOzaGU8Wrq3YnBiuJv+xK8JzCT5bzzreTQzfA5xtZnMkXUg4e2luTDU58dXUE18hGux/x8x+I+k5wgNwpkr6D2BhTrHPAX2Bj5jZVoVeSrvmxAxhP3Zr4O0EfN/M7mxC/K5EeZuFa+s2EB49CvAscKyk/QAk9ZC0fz3L9QKWKXQF/rl86zOzdcAaScfHeZ8HnqJ5HgO+WHvllqQ98pT5J9s7fvtcnvlI2gdYaGb/A/wvcCh19wGEbqlXxETxMWBwQ4FZeBpfpaSz43t0iXE+Cnwp0e7TX9KeBW2tKzmeLFxbNxF4RNKTZraS0DPobyW9QKiyObCe5b5NqKf/J3W7pp4MXClpVmzkvYDQ4P0CMILQbtFkZvYIodqqIlajXZGn2NeBsZJepP4n9f078FJcxyGEx8GuIlS9vSTpB8CvgfK4ni+wY3fh+Xye0MvqC4S2lb3M7K+EZz3/K67rQeomJdeOeK+zzjnnGuVnFs455xrlycI551yjPFk455xrlCcL55xzjfJk4ZxzrlGeLJxzzjXKk4VzzrlG/T9kdfS0juYsrAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -259,7 +261,8 @@ "source": [ "pylab.rcParams['figure.figsize'] = (6, 4)\n", "for j in range(1, len(reductions)):\n", - " pylab.plot(distances, np.subtract(energies[j], energies[0]), color=[1.0, 0.6, 0.2], label=reductions[j])\n", + " pylab.plot(distances, np.subtract(energies[j], energies[0]), color=[1.0, 0.6, 0.2],\n", + " label=reductions[j])\n", " pylab.ylim(0, 0.4)\n", " pylab.xlabel('Interatomic distance')\n", " pylab.ylabel('Energy')\n", @@ -268,10 +271,21 @@ " pylab.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Frozen core\n", + "\n", + "At the start it was stated that freeze core could always be done. Here we do the computation without freezing the core, with no virtual orbitals removed, so we can compare to the same above where frozen core was used." + ] + }, { "cell_type": "code", "execution_count": 5, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", @@ -299,16 +313,25 @@ "print(e_nofreeze)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We plot the energy with and without frozen core; the one line covers the other as they are almost identical. Plotting the energy difference we can see how small the delta is between freezing the core or not." + ] + }, { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "scrolled": false + }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGDCAYAAABUXwhrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl4VOXd//H3N3sIkI0kECAsgsoqagCxbuBad22tj/o81VqrVqu1e9X+WnweW21ra6u2tda6oK11aVFbtSq1ikuRgrIEEdkhkI2EJGTf7t8fM9AhZJkkMzmZzOd1XbkyM2f7njMnk8+cc5/7mHMOERERiW4xXhcgIiIi3lMgEBEREQUCERERUSAQERERFAhEREQEBQIRERFBgUAGEDNbaGZP+h/nmVmNmcX6n+eY2VIz22dmPzOfR81sr5kt97bywcnMnJlNCsN8XzGzK8Mw3zfNrMHMlga89ob/tXeCnIf2qwHGzL5sZiX+z4PMbsY98BkiPRfndQHSd2a2DcgBWgNefsw59xVvKuo759wOYGjAS9cCe4DhzjlnZicCpwNjnHO1XtQo3TOzhcAk59x/73/NOffpMC7yK865hwOWtcDMrgKuCXL6E9B+1Skzc8Bk59ymMC/nVmAY8APg58BxzrnV4Vym6AjBYHKec25owE/Iw4CZeRkgxwEfuf/0pDUO2NabD22P18MT+4+0SLe63K8G074TjnUJ4TzPAV7G90UnCVgXovlKFxQIBjkzu8rM3jGze/yHQbea2acDhqea2e/NrMjMdpnZnQGH6a8ys3fN7F4zKwcWmlms/5D9Hv+8vuI/tBxnZpeY2cp2y/+6mb3QSW0TzOwt/2mA14ERAcPGB8z3MeBK4Nv+w4bXAQ8D8/zP7/BPc66ZrTKzSjN7z8xmBsxvm5l9x8zWALX++eaa2Z/NrMy/LjcHjL/QzJ4xs0X++taZWX7A8LFm9hf/tOVm9kDAsKvNbL1/e79qZuNC9F7lmtmLZlZhZpvM7EtdzOsxM/uNmb1sZrXAfDNL9M97h/8Q7INmlhwwzbf8+8FuM7u63fzeNLNrAp5fFXgY3symmdnr/tpKzOw2MzsLuA241P8+rW4/LzOLMbPvmdl2Myv1b+9U/7D9+8CV/pr3mNntwWzL3jCzL9JuvzKzU8ys0L/vFAOP+sftal/rar+q9M+7xsxq/es3vrt5dlDrIdvb/3qimf3C/x7u9j9O9A/r8bq0W+b+UzGr/fVf2tE82+8b/mkPnH4KYj9MBw4HyoAN/pcrzewN//BfmtlOM6s2s5XmO1rYUb1JZvak+f4+K83s32aW4x/W6edeVHPO6SfCf4BtwGmdDLsKaAa+BMQCXwZ2A+Yfvhj4LZACZAPLgesCpm0BbsJ3eikZuB74CBgDpANLAOcfnghUAFMClv8h8JlOavsXvsOBicBJwD7gSf+w8fvn63/+GHBnu/V6J+D50UApMNe/nlf6t0tiwDZaBYz1r0cMsBL4PpAATAS2AGf6x18INABn++d3F7DMPywWWA3c699uScAJ/mEXAJuAKf5t8j3gvSDfx+7eq6XAr/3Lm4XvA3NBJ/N6DKgCPuVf1yR/vS8CGfgOx/4VuMs//llACTDdv05/9G//Sf7hbwLXdLT9/fMqAr7hX84wYG7AdnyyXW0H5gVc7d9eE/GdIvoL8ES7feB3/vfsKKCRgP2rs/l2sF3f6Wy7dzUucAq+v4Ef49tPk+liX6Ob/ardsn7kf0/ju5pnB9N1tb3/F1iG7285C3gP+L/erEsn2+fAPtHFPA/Z3hy8L3W6H/qH/xfwVEefA/7X/hvIxPf39Q2gGEhqv78B1/nnPcS/bsfiO+UIXXzuRfOP5wXoJwRvou8PuAaoDPj5kn/YVcCmgHGH+P/ARuI7HNcIJAcMvwz4Z8C0O9ot643APxzgNA7+x/0b4If+x9OAvZ18qOX5P0hSAl77I70PBL/B/8EX8NoG4OSAbXR1wLC5HazbrcCj/scLgSUBw6YC9f7H8/D9M47rYL1eAb4Y8DwGqAPGBfE+dvVejcXXRmRYwPC78LUV6WhejwGLAp4bUAscFvDaPGCr//EjwN0Bww4n+EBwGfBhJ3UspOtA8A/ghoBhR+ALRXEB+8CYgOHLgf/qZFkH1djZvhLEe9A+EDTh/4fT3b7W3X4V8Nql/n0yK5j9t93rXW3vzcDZAc/PxHcKpMfr0sn8OwoE7ed5yPbeP113+6H/+RPA//gf798HDvlbCxh/L3BU+/0NX9h8D5jZbvwuP/ei+WfQnA8TLnTOLelkWPH+B865OjMD37exDHzfTor8r4HvH9jOgGkDHwPkdjP8ceApM/se8D/AM865xg5qygX2uoPP1W7H94+vN8YBV5rZTQGvJfiX01Gt44BcM6sMeC0WeDvgeXHA4zogyXznSMcC251zLZ3U8Usz+1nAawaMxrd+3ensvcoEKpxz+wLG3Q7k07nA9c3CFzBWBrzXhm+dwbedAk/3BFPrfmPx/SPqjdx2y9qOLwzkBLzW/n0IbGzaH8qccw0Bz7va11rpZr8ys6OBB4AznHNlQcyzva62d0fbM3AePVmXYLWfZ1e63A/NLAZfo86vdzYDM/sm8EV/jQ4YTsDpxgBP4NtWfzKzNOBJ4HZ869zd515UUiCIbjvxJeURnfxzA98fXKAifKcL9jvoH7hzbpmZNQEnApf7fzpSBKSbWUpAKMjrYHnB2onvyMQPuxgncN478X0rmdzLZeWZWVwH221/HX/oxXy7shvIMLNhAaEgD9jVxTSB67sHqAemOec6mqaIg9/LvHbDa/F9kO83MuDxTnyHeburoSO78X1ABy63Bd/pizEdTtH/2q9Dp/uame3/ttvhfmVm2cDzwI3OuQ+DmWcHutre+7fn/kZ4ef7X9gt6XXqg/TwP2lfMLHBf6W4/nI0vbJd1MAx/e4FvA6cC65xzbWa2F1+oOLgo55qBO4A7/O00XsZ39ONluv/ci0pqVBjFnHNFwGvAz8xsuPkaeB1mZid3MdkzwFfNbLQ/dX+ng3EW4fsG1Oyc6/D6b+fcdmAFvj/WBDM7ATivD6vzO+B6M5trPilmdo6ZDetk/OXAPn9jqGTzNZacbmazg1jWcnz/QO/2LyfJzD7lH/YgcKuZTYMDjZcu2T+h+RrULezpyjnnduI7/HmXf3kz8X1LCuqaa+dcG75tdK//nxL+9/BM/yjPAFeZ2VQzG4Lvcq9Aq4CLzWyIv3HYFwOG/Q0YZWa3+BuMDTOzuf5hJcB4/ze/jjwFfM18DUyH4juv/nQ4P6jN18D0qj7Moqt9rdP9yn906Tl8h7Sf6cE82+tqez8FfM/MssxsBL62DF3tIz39uynB1y6iK6uBaWY2y8yS8B3GB4LaD88GXupi3sPwBcYyIM7Mvo/vCMEhzGy+mc3wNxasxncqqq2Xn3tRQYFg8Pir/af1co2ZLQ5yus/jO0T4Eb5zcc8Bo7oY/3f4/pjW4Gsw+DK+P9DAPhCewNc4rbt/VpfjO+dage8f0KIgaz6Ec24FvsZ4D+Bbj034zmV2Nn4rcC6+xnlb8X1zeRhIDWJZrfjCyyRgB1CI75wwzrnF+BpY/cnMqoECIPC6+7HAuz1auf+4DN851d34GkX9oIvTRB35Dr7tssxf2xJ85+xxzr0C/AJfG5FN/t+B7sV3rrgE32mhA0dA/EcsTse3TYqBjcB8/+Bn/b/LzeyDDmp6BN/+shTf+9CArxFrWJhZAr7TL8t6O4+u9rVu9qsx+I6c3dLubzWvJ/tvN9v7TnxBew2wFvjA/1qP16UTC4HHzddq/3OdzPMTfI0bl/hra/+loNP9kP9cbtiZV4G/A5/gOx3SQOeH+kfi+zyrBtYDb+Hb16Dnn3tRYX/rZZFeMd9lcQ8658YFvJaMr+XyMc65jZ4VN8CY2Rh8bSqO97qWwcjMXsPXQG2Fc26+/7XXgeOA5c65U/1Hom50zl3mYanSAfNdEvghMNrpH5MnFAikR/z/7OfjO0qQA/wZ3+V4twSM83XgXOfcAm+qFJFIY2aHA8c6557yupZopUAgPeI/v/wWcCS+xkEvAV91zlX7h2/D18DnwnaNpkREZABTIBARERE1KhQREREFAhERESHKOiYaMWKEGz9+vNdliIiI9IuVK1fucc5lBTNuVAWC8ePHs2LFCq/LEBER6RdmFnQ35DplICIiIgoEIiIiokAgIiIiRFkbAhGRway5uZnCwkIaGoK9G7EMFklJSYwZM4b4+Phez0OBQERkkCgsLGTYsGGMHz8es0PuCCyDlHOO8vJyCgsLmTBhQq/no1MGIiKDRENDA5mZmQoDUcbMyMzM7PORIQUCEZFBRGEgOoXifdcpAxERCZnY2FhmzJhx4Pnzzz+P1x3CLVq0iJ/85CeYGXFxcVxxxRV885vfDMuyysvLOfXUUwEoLi4mNjaWrCxfv0DLly8nISEhLMsNBc8CgZldAiwEpgBznHMr2g3PAz4CFjrn7uliPvcBVzvnhoaxXBERCUJycjKrVq3qdHhLSwtxcf33r+eVV17hF7/4Ba+99hq5ubk0NjayaNGioKfvab2ZmZkH1n/hwoUMHTq0w/DhnMM5R0zMwDlQ72UlBcDFwNJOhv8ceKWrGZhZPpAe4rpERCSEHnvsMc4//3wWLFhw4NvzT3/6U2bPns3MmTP5wQ9+cGDcJ598kjlz5jBr1iyuu+46WltbefHFF5k1axazZs3iiCOOONBwbuXKlZx88skce+yxnHnmmRQVFR2y7Lvuuot77rmH3NxcABITE/nSl74EwKpVqzjuuOOYOXMmF110EXv37gXglFNO4ZZbbiE/P59f/vKXlJWV8ZnPfIbZs2cze/Zs3n333V5th02bNjF16lSuuOIKpk2bxs6dO0lLSzsw/E9/+hPXXHMNACUlJVx88cXk5+czZ84cli1b1qtl9oRnRwicc+uh4/MeZnYhsBWo7Wx6M4sFfgpcDlwUnipFRCLTHX9dx0e7q0M6z6m5w/nBedO6HKe+vp5Zs2YBMGHCBBYvXgzABx98wJo1a8jIyOC1115j48aNLF++HOcc559/PkuXLiUrK4unn36ad999l/j4eG644Qb+8Ic/8PnPf57zzz8fgM997nOcfPLJNDc3c9NNN/HCCy8cmO7222/nkUceOaiegoICjj322A5r/fznP8/999/PySefzPe//33uuOMOfvGLXwDQ1NR0oKv7yy+/nK997WuccMIJ7NixgzPPPJP169ezYsUKHnzwQR5++OGgt+HHH3/MokWLyM/Pp6WlpdPxbr75Zr797W9z3HHHsW3bNs4991wKCgqCXk5vDLg2BGY2FPgOcDrQ1UmerwAvOueKumpMYWbXAtcC5OXlhazOHUXFFO3cytw580I2TxGRSNfZKYPTTz+djIwMAF577TVee+01jj76aABqamrYuHEja9asYeXKlcyePRvwhYvs7OwD8/jJT35CcnIyN954IwUFBRQUFHD66acD0NrayqhRo4Kus6qqisrKSk4++WQArrzySi655JIDwy+99NIDj5csWcJHH3104Hl1dTU1NTXk5+f3KAwAHHbYYeTn53c73pIlS9iwYcOB53v37qW+vp7k5OQeLa8nwhoIzGwJMLKDQbc7517oZLKFwL3OuZrO/tGbWS5wCXBKdzU45x4CHgLIz8933VcdnKK//YijC5+k9dgyYmNjQzVbEZGQ6O6bfH9LSUk58Ng5x6233sp111130Dj3338/V155JXfdddch0y9ZsoRnn32WpUuXHpjHtGnT+Ne//tXlcqdNm8bKlStZsGBBr+tta2tj2bJlJCUl9Wge3c03JiYG5/7zbynwskHnXL83QgxrGwLn3GnOuekd/HQWBgDmAj8xs23ALcBtZvaVduMcDUwCNvnHG2Jmm8KxDp2x4aNIsFbKy3b352JFRCLemWeeySOPPEJNTQ0Au3btorS0lFNPPZXnnnuO0tJSACoqKti+fTvbt2/nxhtv5Nlnnz3wDfmII46grKzsQCBobm5m3bp1hyzr1ltv5Vvf+hbFxcWA71TAww8/TGpqKunp6bz99tsAPPHEEweOFrR3xhlncP/99x943lWjyZ6IiYkhPT2djRs30tbWduD0CsBpp53Gr371q5AvsysD7pSBc+7E/Y/NbCFQ45x7oN04LxFw5MHMapxzk/qtSCAhbTQAlSU7yB45tj8XLSIS0c444wzWr1/PvHm+U65Dhw7lySefZOrUqdx5552cccYZtLW1ER8fz69+9SteffVVysvLufDCCwHIzc3l5Zdf5rnnnuPmm2+mqqqKlpYWbrnlFqZNO/jIyNlnn01JSQmnnXYazjnMjKuvvhqAxx9/nOuvv566ujomTpzIo48+2mG99913HzfeeCMzZ86kpaWFk046iQcffLBXbQja+/GPf8yZZ55JdnY2xx57LI2NjQD86le/4stf/jKPPvooLS0tzJ8//6CAEA4WeLiiP5nZRcD9QBZQCaxyzp3ZbpyF+ALBPf7nLwPXOOd2txuvJpjLDvPz893+RiJ9temDN5j04kV8eOJDHH3qpd1PICISZuvXr2fKlClelyEe6ej9N7OVzrnuGy3g7VUGi4HF3YyzsN3zszsZr9/7IEjN9jVQbKwo7O9Fi4iIhNzA6REhwqRn+04TtFUfet2riIhIpFEg6KW4hEQqSCWmptjrUkRERPpMgaAPKmMzSaov9boMERGRPlMg6IN9CVkMbS7zugwREZE+UyDog6Yh2aS1lntdhoiISJ8pEPRBW8pIMlw1jY0N3Y8sIhIFYmNjD9yIaNasWWzbts3rkli0aBHTp09nxowZHH300dxzT6c30A2ZnmyHbdu2MX369LDX1J0B1zFRJIlNHU2MOcqLd5I7brLX5YiIeC7ab3+8X3fbYSDSEYI+SMzw9VZYVbrD40pERAYu3f7YZ9u2bZx44okcc8wxHHPMMbz33nuHjLNu3boD6z9z5kw2btzY6XYJNR0h6IOhWWMAqNujzolEZIB55btQvDa08xw5Az59d5ej6PbHnW+H7OxsXn/9dZKSkti4cSOXXXYZ7XvPffDBB/nqV7/KFVdcQVNTE62traxfv77T7RJKCgR9kJ49DoDGSt3gSEQEdPvjrrZDc3MzX/nKV1i1ahWxsbF88sknh0w3b948fvjDH1JYWMjFF1/M5MmT+cc//tHldgkVBYI+SB0xkmYXC+qtUEQGmm6+yfc33f4Y7r33XnJycli9ejVtbW0dzu/yyy9n7ty5vPTSS5x99tn89re/xTnX6XYJJbUh6AOLiaUiJp24WvVWKCISrGi9/XFVVRWjRo0iJiaGJ554osN2AFu2bGHixIncfPPNXHDBBaxZs6bT7RJqOkLQR5VxI0hqUG+FIiLBitbbH99www185jOfYdGiRZx11lkHHYXY75lnnuGJJ54gPj6ekSNHctttt5GRkdHhdhk3blzQ2zwYnt3+2AuhvP3xfh/ecy7pddsY//2CkM5XRKSndPvj6NbX2x/rlEEfNSfnkKHeCkVEJMIpEPSRGzaK4VbHvupKr0sRERHpNQWCPopP83V2UVGy0+NKREREek+BoI+S/L0V7lNvhSIyAERTuzD5j1C87woEfTQsKw+AunL1Vigi3kpKSqK8vFyhIMo45ygvL+9zPwm67LCPMkb6LvtoqVLnRCLirTFjxlBYWEhZWZnXpUg/S0pKYsyYMX2ahwJBH6UMT6fOJWL71H2xiHgrPj7+wI1/RHpKpwz6yoyKmEzi69Q5kYiIRC4FghCojh9BcqMCgYiIRC4FghBoSMoirWWP12WIiIj0mgJBCDSnjCSzrYK21javSxEREekVBYIQsGEjSbJmKveqZa+IiEQmBYIQiE/zdU60tzj0t6MUERHpDwoEIZA8YiwA+8rUfbGIiEQmBYIQSMvx9VbYuHeXx5WIiIj0jgJBCGRk+44QtFapcyIREYlMCgQhkJCcQiVDiakp9roUERGRXlEgCJG9MZkk1pV4XYaIiEivKBCESG3CCFKadNmhiIhEJgWCEGlIziG1tdzrMkRERHpFgSBEWlJGkukqaW5u9roUERGRHlMgCJHY4aOIszYqSnXpoYiIRB4FghBJyPD1VlhZqs6JREQk8igQhMhQf2+FNWU7PK5ERESk5xQIQiQt29dbYXOlThmIiEjkUSAIkfTs0bQ6o62qyOtSREREekyBIERi4uKpsDRia9VboYiIRB5PAoGZXWJm68yszczyOxieZ2Y1ZvbNTqY3M/uhmX1iZuvN7ObwV929qrhMkhpKvS5DRESkx+I8Wm4BcDHw206G/xx4pYvprwLGAkc659rMLDu05fVOTUI2wxp0gyMREYk8ngQC59x6ADM7ZJiZXQhsBWq7mMWXgcudc23++Q2Ir+VNQ7LJqFvrdRkiIiI9NqDaEJjZUOA7wB3djHoYcKmZrTCzV8xschfzvNY/3oqysvDea8ANHUk6+6ivqwvrckREREItbIHAzJaYWUEHPxd0MdlC4F7nXE03s08EGpxz+cDvgEc6G9E595BzLt85l5+VldXj9eiJ2FRf50TlJeqLQEREIkvYThk4507rxWRzgc+a2U+ANKDNzBqccw+0G68Q+Iv/8WLg0d5XGjpJGbkAVJVsZ8yEIz2uRkREJHheNSrskHPuxP2PzWwhUNNBGAB4HpiPr63BycAn/VJgN4Zl+XorrKtQ50QiIhJZvLrs8CIzKwTmAS+Z2atBTPOymeX6n94NfMbM1gJ3AdeEr9rgpY8cD0DLXl1pICIikcWrqwwW4zvU39U4C9s9PzvgcSVwTliK64NhaVk0uThctQKBiIhElgF1lUGks5gYymMyiK8r8boUERGRHlEgCLGquBEkN4b38kYREZFQUyAIsbqkbIY3KxCIiEhkUSAIsZYh2WS2VeCc87oUERGRoCkQhJgblkuKNVBdtdfrUkRERIKmQBBicWm+KyMrird7XImIiEjwFAhCbEimr3OifWU7Pa5EREQkeAoEITY8awwADeqtUEREIogCQYhljhoHQEulAoGIiEQOBYIQS0pJZR/JWE2x16WIiIgETYEgDPbGZJKg3gpFRCSCKBCEwb74EaSot0IREYkgCgRhUJ+UQ2rLHq/LEBERCZoCQRi0puSQ6Spoa23zuhQREZGgKBCEgQ0fSYK1UrGnyOtSREREgqJAEAbxab6+CCpLdnhciYiISHAUCMIgZYQvENTsUW+FIiISGRQIwiAtx9d9caN6KxQRkQihQBAG6Tl5ALRW7fa4EhERkeAoEIRBfEISFQwnpladE4mISGRQIAiTythMkuoVCEREJDIoEIRJTUIWKU3qrVBERCKDAkGYNCbnkN5a7nUZIiIiQVEgCJO2lJFkuCqaGhu9LkVERKRbCgRhEpM6ihhzlJeoLwIRERn4FAjCJDFjNACVpQoEIiIy8CkQhMnQEb7OierVW6GIiEQABYIwSfN3TtRYqd4KRURk4FMgCJP0rFxaXAyuutjrUkRERLqlQBAmFhNLuaUTV6tAICIiA58CQRhVxY0gqaHU6zJERES6pUAQRnWJWQxr3uN1GSIiIt1SIAijpiE5ZKq3QhERiQAKBGHUNnQUw62W2ppqr0sRERHpkgJBGMWnjQKgvHiHx5WIiIh0TYEgjJIyxgBQrd4KRURkgFMgCKOhWb7OierLCz2uREREpGsKBGGUOWocAM2Vuz2uREREpGsKBGE0dHgG9S4B21fkdSkiIiJdUiAIJzPKYzKJryvxuhIREZEueRYIzOwSM1tnZm1mlt/B8DwzqzGzb3Yy/alm9oGZrTKzd8xsUvir7rl98SNIblRvhSIiMrB5eYSgALgYWNrJ8J8Dr3Qx/W+AK5xzs4A/At8LbXmhUZ+YRWqLeisUEZGBLc6rBTvn1gOY2SHDzOxCYCtQ29UsgOH+x6nAgGy515wykszqd3BtbViMztCIiMjA5Fkg6IyZDQW+A5wOdHi6wO8a4GUzqweqgeP6obyeGzaK5OImKveWk5aZ5XU1IiIiHQrrV1YzW2JmBR38XNDFZAuBe51zNd3M/mvA2c65McCj+E4xdFTDtWa2wsxWlJWV9Wo9+iI+LReAipJt/b5sERGRYIX1CIFz7rReTDYX+KyZ/QRIA9rMrME598D+EcwsCzjKOfe+/6Wngb93UsNDwEMA+fn5rhf19MmQEb7eCveV7oSps/t78SIiIkEZcKcMnHMn7n9sZguBmsAw4LcXSDWzw51zn+A7vbC+/6oM3nB/b4UNewdkEwcRERHA28sOLzKzQmAe8JKZvRrENC+bWa5zrgX4EvBnM1sN/A/wrfBW3DuZo3yBoK1yl8eViIiIdM7LqwwWA4u7GWdhu+dn92T6gSAxeShVpGC1xV6XIiIi0ildB9cP9sZkklCnzolERGTgUiDoBzUJI0hpUiAQEZGBS4GgH9Qn5ZDWUu51GSIiIp1SIOgHrSk5ZLq9tLS0eF2KiIhIhxQI+kHM8FzirI29Zbr0UEREBiYFgn6QkDEagMqS7R5XIiIi0jEFgn6QkunvrbCs0ONKREREOqZA0A/Sc3ydEzXtVedEIiIyMCkQ9IP0nLG0OcNVF3ldioiISIcUCPpBbFw8FZZKTI16KxQRkYFJgaCfVMZmktRQ4nUZIiIiHVIg6Cc1idkMbdrjdRkiIiIdUiDoJ03J2WS07cE553UpIiIih1Ag6C8Zh5HOPir2qB2BiIgMPAoE/SQ5dyoARZvXeFyJiIjIoRQI+knWxBkA1BSu87gSERGRQykQ9JPs0ZNocPG40g1elyIiInIIBYJ+EhMXx+64MSRXb/G6FBERkUMoEPSjyiHjyWrUDY5ERGTgUSDoR80ZkxnVVkptzT6vSxERETmIAkE/Shg5hRhz7N5c4HUpIiIiB1Eg6EcZ46YBULlDgUBERAYWBYJ+NGriDFqd0VzysdeliIiIHESBoB8lJA2hOCaHhL2bvC5FRETkIAoE/aw8eRwZ9Vu9LkNEROQgCgT9rD51EqNbd9PS3Ox1KSIiIgcoEPSz2OwjSbRmdm1Xj4UiIjJwKBD0s+FjfVcalG9d63ElIiIi/6FA0M9GTZoJQEPReo8rERER+Q8Fgn42LC2LctK69lGIAAAgAElEQVSIrdjodSkiIiIHBBUIzOwvZnaOmSlAhEBJYh6pNbrSQEREBo5g/8H/Grgc2Ghmd5vZEWGsadCrHTaRUc07cG1tXpciIiICBBkInHNLnHNXAMcA24AlZvaemX3BzOLDWeCgNOJwUq2WsuJCrysREREBetCGwMwygauAa4APgV/iCwivh6WyQWzIaN+VBiVb1nhciYiIiE+wbQgWA28DQ4DznHPnO+eeds7dBAwNZ4GDUc7EGQDU7vrI40pERER84oIc7z7n3D87GuCcyw9hPVEhc9QEaknClX3idSkiIiJA8IEg3cwubvdaFbDWOVca4poGPYuJYXfcWFL2bfa6FBERESD4QPBFYB6w/yjBKcBKYIKZ/a9z7okw1DaoVadMYEzVSq/LEBERAYJvVBgPTHHOfcY59xlgKuCAucB3wlXcYNaSMZkcyqmuqvC6FBERkaADwRjnXEnA81JgrHOuAtBt+3ohcdQUAHZv1j0NRETEe8EGgjfN7G9mdqWZXQm84H8tBagMX3mD14jxvisNqnYUeFyJiIhI8IHgRuBRYJb/ZxFwo3Ou1jk3v6cLNbNLzGydmbWZWX7A6+PNrN7MVvl/Huxk+gwze93MNvp/p/e0Bq+NHD+FZhdLS6lugywiIt7rtlGhmcUCS/z/+P8couUWABcDv+1g2Gbn3Kxupv8u8A/n3N1m9l3/84hqyxCXkMiO2FEkV+pKAxER8V63Rwicc61Am5mlhmqhzrn1zrm+fDW+AHjc//hx4MK+V9X/KpLHkVm/zesyREREgr7ssAZYa2avA7X7X3TO3RyGmiaY2YdANfA959zbHYyT45wr8j8uBnLCUEfYNaZNJrdmGY2NDSQmJnldjoiIRLFgA8Ff/D9BM7MlwMgOBt3unHuhk8mKgDznXLmZHQs8b2bTnHPVnS3HOefMzHVRx7XAtQB5eXnBr0A/iMs5kvhdrWzdup4JRx7tdTkiIhLFggoEzrnHzSwZ3z/roA71O+dO62kxzrlGoNH/eKWZbQYOB1a0G7XEzEY554rMbBS+yyA7m+dDwEMA+fn5nQYHL6TlTYMPoGLbWgUCERHxVLA3NzoPWAX83f98lpm9GOpizCzL34gRM5sITAa2dDDqi8CV/sf7L4OMOLmHzQSgsfhjjysREZFoF+xlhwuBOfj7HHDOrQIm9nahZnaRmRXi6w75JTN71T/oJGCNma0CngOu93d+hJk9HHCJ4t3A6Wa2ETjN/zziJA9Lo4RM4io2el2KiIhEuWDbEDQ756rMLPC1tt4u1Dm3GFjcwet/ppNLG51z1wQ8LgdO7e3yB5KypHGk1W71ugwREYlywR4hWGdmlwOxZjbZzO4H3gtjXVGjbvhhjG7ZSVtrr/OViIhInwUbCG4CpuFr8PcUvksCbwlXUVFlxBGkWAMluzpqKiEiItI/ggoEzrk659ztzrnZzrl8/+OGcBcXDYaNnQZA6ZY1HlciIiLRLKg2BGZ2OPBNYHzgNM65BeEpK3qMnOi7yVHt7vUeVyIiItEs2EaFzwIPAg8DreErJ/qkZ4+hmhRiyj/xuhQREYliwQaCFufcb8JaSbQyoyg+j6H71IZARES8E2yjwr+a2Q1mNsp/6+EMM8sIa2VRZN/QCeQ07fC6DBERiWLBHiHY3yvgtwJec/ShcyL5j9bMw8na+zJ7y8tIz8zyuhwREYlCwd7LYEK4C4lmyblTYBMUbV5NemaPbwEhIiLSZ12eMjCzbwc8vqTdsB+Fq6hokzXed6VB9c51HlciIiLRqrs2BP8V8PjWdsPOCnEtUSsn7wgaXTxtpUHdSFJERCTkugsE1snjjp5LL8XExbE7bjRDqjd7XYqIiESp7gKB6+RxR8+lDyqHjCezYbvXZYiISJTqrlHhUWZWje9oQLL/Mf7nSWGtLMo0pU8mt/ot6utqSR6S4nU5IiISZbo8QuCci3XODXfODXPOxfkf738e319FRoP4nCOJNceuLQVelyIiIlEo2I6JJMwyxk0HYO92BQIREel/CgQDxKjDptPmjObij70uRUREopACwQCRmDyU4phsEvZu8roUERGJQgoEA0h50jjS6rZ5XYaIiEQhBYIBpC71MEa3FtLS0uJ1KSIiEmUUCAaQmOwjSLYminds9LoUERGJMgoEA8jwMdMAKNu61uNKREQk2igQDCCjJh0FQP3u9R5XIiIi0UaBYAAZnpFDBcOJLf/E61JERCTKKBAMMCUJeQyv3eJ1GSIiEmUUCAaYmmGHMbJ5J87p3lEiItJ/FAgGGJc5mXT2sad0l9eliIhIFFEgGGCGjPZdaVCyeY3HlYiISDRRIBhgsifOAKCm8COPKxERkWiiQDDAZI2eSJ1LxO3RlQYiItJ/FAgGGIuJZXfcGFKqNntdioiIRBEFggGoKmUCWY3bvS5DRESiiALBANScMZlRlFGzr8rrUkREJEooEAxASaOmALB7k640EBGR/qFAMABljJsOQOWOdR5XIiIi0UKBYAAaNXEaLS6GltKPvS5FRESihALBABSfkERR7CgSKzd5XYqIiEQJBYIBqiJpHJl1W70uQ0REooQCwQDVOPJoxrtCykp3e12KiIhEAQWCASpj2gIAtq183eNKREQkGigQDFDjZ5xAnUukefNSr0sREZEo4EkgMLNLzGydmbWZWX7A6+PNrN7MVvl/Huxk+p+a2cdmtsbMFptZWv9V3z/iEpLYkjydkRX/9roUERGJAl4dISgALgY6+vq72Tk3y/9zfSfTvw5Md87NBD4Bbg1TnZ6qyz2OiW3bKSvZ5XUpIiIyyHkSCJxz651zG/ow/WvOuRb/02XAmNBUNrCoHYGIiPSXgdiGYIKZfWhmb5nZiUGMfzXwSriL8sKBdgRb3va6FBERGeTiwjVjM1sCjOxg0O3OuRc6mawIyHPOlZvZscDzZjbNOVfdyTJuB1qAP3RRx7XAtQB5eXk9WQXPxSUk8bHaEYiISD8IWyBwzp3Wi2kagUb/45Vmthk4HFjRflwzuwo4FzjVOee6mOdDwEMA+fn5nY43UNXlzmP6lgcoK9lFVs5or8sREZFBakCdMjCzLDOL9T+eCEwGtnQw3lnAt4HznXN1/Vtl/1I7AhER6Q9eXXZ4kZkVAvOAl8zsVf+gk4A1ZrYKeA643jlX4Z/m4YBLFB8AhgGvd3V54mCgdgQiItIfwnbKoCvOucXA4g5e/zPw506muSbg8aTwVTewxCUk8nHydHLUjkBERMJoQJ0ykI7V5c7jMPVHICIiYaRAEAHUjkBERMJNgSAC7G9H0KL7GoiISJgoEESAuIREtiRPJ2fvIVdfioiIhIQCQYSoy53nu69BcaHXpYiIyCCkQBAhMqedCsC2D5Z4XImIiAxGCgQRYvxMtSMQEZHwUSCIELHxCWpHICIiYaNAEEHUjkBERMJFgSCCZEz33S9K7QhERCTUFAgiyIQZn1I7AhERCQsFgggSG5/A5uQZakcgIiIhp0AQYer97QhK1Y5ARERCSIEgwmRM9/dHoPsaiIhICCkQRJj97Qhat6gdgYiIhI4CQYTZ345gpNoRiIhICCkQRKD63HlMaNtBafFOr0sREZFBQoEgAqkdgYiIhJoCQQSaMONT1JFI65a3vS5FREQGCQWCCOS7r4HaEYiISOgoEESoOrUjEBGREFIgiFCZ09SOQEREQkeBIEKNn/EpaklSOwIREQkJBYIIpXYEIiISSgoEEexAfwRFakcgIiJ9o0AQwTL390fwgdoRiIhI3ygQRLDx04/3tyPQfQ1ERKRv4rwuQHpvfzuCUWpHIBLxnHM0tzpa2tp8v1taaW5upqW5kZaWZlqbm2hpbqC1uRlwB6YJ/B342Gg75LXA8ehiWgJfC5hPe4YBdvBrBi7gNQscAJgdOn4g55/rweO0f2X/gE6+03Yy/qFz3j+bTubfyfjB6LTmbiQmJjFx4qReL7cvFAgiXH3uPGZsvo/Sop1kjxrrdTkig1J9Ywsle8qoLN5O7Z6dNO0tpK26CGuqxdqasbYWrK2ZmLZmzLUc+B3b1kKM8/3EuhZiXTOxrtX3mBbiXAtxtBBLK3G0kkALcbSSTAsJ1ur1aosHNsdOhP/3oSfLViCIcJnTT4XN97H9g9fIPueLXpcjElHa2hx7qmuoKC6kumwH9eU7aancTcy+3cTXlzK0sZS01j1kuQrGW+Mh07cQSzNxtBJHi8X6f8fRZnG0+n/aLI7WmDhcTBxtlkJbTDwtFk9TTBwuJh4XEw8xcbjYeIiJ9/+Ow2LjITYBi43HYuMgNoGYOP/zwG/G+7+JBn4j3f9tnI5eC5y23Tw6He/Qb7sOsMAjDoDDsf/oxYGRDn4QMMwd8qq5/fM4eLyOHDp178Zvvw7/mU0n8w9GH6aNS8no/XL7SIEgwo2ffjy1LyTRsuVtQIFAZL+6xmZKy0rZW7Kduj07aazYBdW7ia0tJrmhlGHNe8hsK2cEVWTbwR/gzcRREZPBvvgsaoZNoTJlJDGpuSSmjyYlayxpOXkMzRxLXMIQfYjKoKF9OcKpHYFEs6qaWtYte5X6wjXE7Csmoa6YoU1lpLaWk+3/Vj++/TQ2jKq4EdQOyaJ4yDSKho8iLm00yRljSM0ZR2p2HvFDR5ATE0OOFysl4hEFgkFA7QgkmmzdsZ3t/3qexK2vM71+BcdbPQBNxFERM4J9CVnUDJtK5dCRxAzPJTFjNEOz8kjPGceQzDGkxieR6vE6iAxECgSDgNoRyGDW1NzKR6uWUbHqRbKL3mRq6wYmmKPC0tmScwYp089h/Kz5JAzLYqQZI70uWCRCKRAMAmpHIINNeWUV6997mdYNrzC58l1m2R4AtiZMZu2E6xg5+wJyDj+OjBh1pSISKgoEg0BsfAJbhhzFuPJ3aG5uJj4+3uuSRHrEOcfmLRvZ8f4LDN22hOmNH3KCNVJPIltSZ1N5+FlMmHchEzJ1SkwkXBQIBotZl5P73ldZ8eZfyD/9Uq+rEelWQ1MzBSuWUr36b+SWvsWRbjOTgNKYLD7JPZ/Umecx7tgzmJaQ7HWpIlFBgWCQmDr/Msrf+wExKx8BBQIZoErKy/nkvb/iNrzKkfv+Rb7tpc0ZW5Kmsmb8Vxk99yKyJ8wiu5e9vIlI7ykQDBKx8YlsGXsxx+x4lB1bN5A34QivSxKhrc2xYcM6iv79PKk732B60xpOtGZqGMLW9OMoP/LTTJh3IZNSs70uVSTqKRAMIhPOvAH73aPseP1B8q691+tyJErVNTRS8P4SagteYmzZ20xhB1OA3bGjWT/2c2QcfT5jj1rAjLgEr0sVkQAKBIPIiDGTWZsylyN2L6ah4S6SkpK8LkmiRGtrG+//8wXcB08ytfZ95tg+ml0sW4bMZO3ESxl73GfIHTuFXK8LFZFOeRIIzOwSYCEwBZjjnFvhf308sB7Y4B91mXPu+i7m8w3gHiDLObcnjCVHjNg5XyTrzS+x/B9PMeecL3hdjgxyLS2tLFvyLGnL7+X4to+pYhjbR3yK0qlnM/G48zkiJd3rEkUkSF4dISgALgZ+28Gwzc65Wd3NwMzGAmcAO0JcW0Q78oSLKX7rNhJXPw4KBBImzS2tLPv7HxnxwS85oW0jpTaCgqO+z9RzbmCmrgoQiUieBALn3Hro/f2i/e4Fvg28EIqaBouYuDh2Tvgcs7f8is0fr+awI4/yuiQZRBqbm1n20iJGrn6AE90WimNyWHfsnUw561qy4xO9Lk9E+mAgdvM1wcw+NLO3zOzEjkYwswuAXc651d3NzMyuNbMVZrairKws5MUORJPP/DLNLpbiN37jdSkySDQ0NvHmnx9k54+O4eRVX2doTAPr5/6YnNsKmHbeTcQoDIhEvLAdITCzJdBht+K3O+c6+1ZfBOQ558rN7FjgeTOb5pyrDpjvEOA2fKcLuuWcewh4CCA/P78PN7iOHGk5Y1k1/ESmlfyV2tp7SEkZ6nVJEqHqGhpY/uLvGPfRbziFXRTGjuXjuT/niFOvZHSs2iSLDCZh+4t2zp3Wi2kagUb/45Vmthk4HAi8t+9hwARgtf+UwxjgAzOb45wr7nPhg8SQ479E2qtv8q/XHmfeRTd6XY5EmJq6ev79wq+ZtOEhTqGY7XET2HD8Axx+yuVYTKzX5YlIGAyoiG9mWUCFc67VzCYCk4EtgeM459YC2QHTbAPydZXBwSbPPZvC10eTuu4J3IU39LW9hkSJqn01rHzhAY7Y9DDzKWNr/GQ2nXAHk078HOhGQiKDmid/4WZ2kZkVAvOAl8zsVf+gk4A1ZrYKeA643jlX4Z/mYTPL96LeSGQxMRRPvoypLev5ZM0yr8uRAa6yqoo3Hv9f6n82kwWb7qIhIZPNZzzKhNv+zaST/0thQCQKmHNRcVod8LUhWLFiRfcjDhL79paS8IuprMw8h+NvftzrcmQAKq+oYPULv2DGtsfJsko2Jk0nbv53mTDnXNBRJZGIZ2YrnXNBfZkeUKcMJLSGpWfzQcapzCx/larKvaSmqZMY8Skr38PaxT/jqJ1PssCq2TDkaOpPu5XJx5yhICASpXQccJBLPfE6hlo9Ba8+7HUpMgCUlJbyxm+/Sdx9R7Gg8NeUDj2SwosWc8R33iTv2DMVBkSimI4QDHKHHT2frS9NIHvDH3Ft38B0Ljgq7SraxYbnf0J+8TMssDo+GnY8dZ++nSnTTvC6NBEZIBQIBjszKqb+N8eu/T8KVrzJ9DkLvK5I+tHOwh1sev5uZpf9mQXWQEHqSYw4+3amHnmc16WJyACjQBAFpp5xDbVrf8q+dx4CBYKosG3bFra+eDdzy59nNE2sS19AzrnfY/qkY7wuTUQGKAWCKJA8LI0VI85iVtnLlO8pIXNEjtclSZiUle+h4KnvM6/sGcbSwrrMM8k973ZmTJjpdWkiMsDphHKUyF5wA8nWxPq/P+R1KRIGDY1N/POpn2H3HcP8PX/gk8wFVF3zL2be/DQjFAZEJAg6QhAl8qbO5ZP4Ixmz+SnaWm8nJlZZcDBwzrH8ny+S/vZC5rstbEqaSuN5f2Dm9A7vCyYi0in9V4gitTOuZLzbxZp3X/K6FAmBDevX8P6Pz2Xu0s+TRjUff+oXTPrue4xWGBCRXlAgiCLTTr+SKobS9L76JIhkZXvK+OcDNzD+T/M5quHfrJr8FTK+s5ojT/+C+hEQkV7TKYMokpCcwuqR5zGr6BlKdu8gJzfP65KkBxoam/jXX+5jxsf3Md+qWDPi04y/9CfMytb7KCJ9pyMEUWbM6TeQYK188uqDXpciQXLO8f4bL7Dj7rnM3/B/VCaNYdclLzPzpj8xXGFAREJERwiizKjDZvJR4iwO2/4szc13EB8f73VJ0oVNG9dT9udvMa/hbUosiw0n/JIjTr1SpwZEJOR0hCAKtRzzBXIpZfWbf/G6FOlEZVUVbzz4dUY/eRKzGt5n1aQbGPHdNRxx2lUKAyISFgoEUWjagssoJ43E5ffT0tLidTkSoLW1jaUv/J66e49lQfHv2ZR+Ak3Xv8+s/76L2MQhXpcnIoOYAkEUio1PpHDWLcxoXsu7f/iR1+WIX8Gq91lz13xO+vDrNMelsP28Z5hxy2JSR070ujQRiQJqQxCljrrgFgo2vcZxW+5j/arTmTJrntclRa2SkhLW/+k2Tqj4C3U2hLVHfY/p59+Cxap9h4j0Hx0hiFZmjPvC76m1ISS8cB21tTVeVxR1Gpub+edT9xD363xOqvgz60ZeQNwtHzDjom8pDIhIv1MgiGLDMnMpXfBzDnPbWfnI170uJ2o45/j3239n613HMX/D/7E3KY+Sy17lqC8/xpA03XhKRLyhUwZR7siTPssH617mpJKn+fc/zmL2qRd7XdKgtnXLJ+x67lZOqFvCHstg/fE/Z8rpV+vKARHxnI4QCNOvuo+dsWMY9/bXKS3Z7XU5g1JlVRVv/Pab5Dx+ArPr3mLVuKtJ/fZqppzxRYUBERkQFAiEhOShcPHDpLlqtj32Jdpa27wuadBoaWnlrcUP+S4jLPodW9LmUXfNe8z6wr3EJw/3ujwRkQMUCASAsdPmUXDETcypf4d3/3Kf1+UMCh++/xYf3XUiJ6/+Fs1xQ9l+3jNM/9oLpI853OvSREQOoUAgBxx96f/j48SZHF1wF1s+KfC6nIi1Y8c2lt5zGUe9fAF5rTtZd8wd5N26gnHHnul1aSIinVIgkAMsNo7sKx/DWQwNT3+RxqZGr0uKKPtqa/nH779Hxu+PY96+V1kz9nKSvrGaaeffgsWq/a6IDGwKBHKQjNzD2DHvTqa2fsyyx27zupyI0Nraxtt/W8Tenx7DqTvvZ8ewWVR/YSmzrvk1ScMyvC5PRCQo+toih5h25hdZ/fHf+dSuR1i97NMcddxpXpc0IDnnWL70FZKX3smJresojB3LltMeZ+q8C70uTUSkxxQIpEOHf+G3lN87h4y/f4XKI98jLU3fdAOtWfkeDa/ewdymZVRYGgVHfZ9p592ExSV4XZqISK/olIF0KHl4BrXn/JrRrph1j9yIc87rkgaETzas452ffpbpL57N1KY1rD78JoZ/u4DpF31DYUBEIpoCgXRqYv4ZfDjuKj5V/TL/eulxr8vx1M7CHbz5y6sZ98eTmF37Jmvz/pu4r63hqMvvJC55mNfliYj0mUXTN7/8/Hy3YsUKr8uIKK3NjWz/8fGkN5dQd/VSRo+LrlvxlpXvYe2zP2JO0R9IppF12ecx/rP/x/Cc8V6XJiLSLTNb6ZzLD2ZcHSGQLsXGJ5Jy+aMkWSMNj11AwYf/8rqkflFdU8M/HltI7H2zWFD8e7alzaXyqqXMvPEJhQERGZQUCKRbORNnsuvM35Puqpj0/Hm8sehOWlpavS4rLMr27OEfjy2k5p6jOHXbvexJmcSuS15i+tdeJHPCTK/LExEJG50ykKDVlO9mx6NfYGrNMlYkzGbk/zzCmLF5XpcVEhs3bqDw7/dy7J4XGG51bEqcRtyCWxk/51zdfEhEIlZPThkoEEjPOMeaxfdwxJofU+OG8PFxP+b4s/4Li8B/ms45Vi57k8alv2RO3VJiaOOj9PmMOO1rjJp+ktfliYj0mQJBJxQIQqd44wc0Pv0FxrVs4620i5n1xftIHRYZre0bmpr592tPMezDh5jVupZaktg4+mImnvsNho+a5HV5IiIho0DQCQWC0Gptqmft419j1q6n2Gx51J//ENOPnud1WZ0q37uX1X97kMM2L2Icuym1LIqnXMWRZ99IwtB0r8sTEQk5BYJOKBCEx6b3FpP++i0Mbavl3Yk3c+IVtxMfF+t1WQA0Nbey9oN3qFrxLEeXPk+67WNrwuE0zbmBw0+5Qp0JicigpkDQCQWC8KmtKGL7I1czteY9Vibkk/0/v2fs2PGe1FK1r5aC916mef1LHL73bXJtD23OWJ/6KVIXfI0xR52qhoIiEhUUCDqhQBBmzrH2+Z8xefXd1LpkVo27kuFHnMThM08gddiQsC66sKiITe8uJmHT35lRv5xhVk8DCWwePoeYI89hwvEXk5Q2Mqw1iIgMNAoEnVAg6B8lmz+k9unrmNi0AYA6l8gncUdQMeIYEid+ivFHnUxuTnafrkxoa3N8/HEBRcsXk1G4hOnNBcRbK3stlZ0jTiblqPOZMPtsYhJTQrVaIiIRZ8AHAjO7BFgITAHmOOdW+F8fD6wHNvhHXeacu76TedwE3Ai0Ai85577d3XIVCPpXfXkhO1b/k/pN75C6ZyV5jZuINUerMzbFjKco9Whs3HGMmj6fww6bTGyM0dTSRnlVNVVlu6kp3019ZREt1SW07Ssjtr6MhIZyhjSVk9a6h/EUAVAYl8ee0aeSM/siRk09EWLU35aICERGIJgCtAG/Bb7ZLhD8zTk3vZvp5wO3A+c45xrNLNs5V9rdchUIvNVaX83OtUup2vA2SUXLyatbRzKNABS6LFosjgxXxXCr63D6WpKpjk2nNj6DhsRM2kbPZtzxnyV1zJT+XA0RkYjRk0AQF+5iOuKcWw/05ZDxl4G7nXON/vl1GwbEe7HJw309/805FwDX0kTJphWUFryFFS4HoCp5BAzNJm54DknpIxmakUvqiNEkpY8kJT4ZnQAQEQkPTwJBNyaY2YdANfA959zbHYxzOHCimf0QaMB3lOHfHc3MzK4FrgXIyxsc3ewOFhaXQM6Rx5Nz5PFelyIiEvXCFgjMbAnQUbPu251zL3QyWRGQ55wrN7NjgefNbJpzrrrdeHFABnAcMBt4xswmug7OfzjnHgIeAt8pg16ujoiIyKAWtkDgnDutF9M0AvtPA6w0s834jga0P/FfCPzFHwCWm1kbMAIo61vVIiIi0WlANcc2sywzi/U/nghMBrZ0MOrzwHz/eIcDCcCe/qpTRERksPEkEJjZRWZWCMwDXjKzV/2DTgLWmNkq4DngeudchX+ah81sf0vJR4CJZlYA/Am4sqPTBSIiIhIcdUwkIiIySPXkssMBdcpAREREvKFAICIiIgoEIiIiokAgIiIiKBCIiIgICgQiIiKCAoGIiIigQCAiIiJEWcdEZlYGbO9ilBFEVxfIWt/BK5rWFbS+g1k0rSuEfn3HOeeyghkxqgJBd8xsRbA9Og0GWt/BK5rWFbS+g1k0rSt4u746ZSAiIiIKBCIiIqJA0N5DXhfQz7S+g1c0rStofQezaFpX8HB91YZAREREdIRAREREojQQmNlZZrbBzDaZ2Xc7GH6VmZWZ2Sr/zzVe1BkKZvaImZWaWUEnw83M7vNvizVmdkx/1xhKQazvKWZWFfDefr+/awwVMxtrZv80s4/MbJ2ZfbWDcQbN+xvk+g6m9zfJzJab2Wr/+t7RwTiJZva0//1938zG93+lfRfkug6az+X9zCzWzD40s791MKz/31vnXFT9wP9v7/xjtarrOP56J6Ag5E2wRKiuIq0pM9JiJEX0i1U2oEmNhiC2tZaWspa6atVyrg3/W4gAAAd0SURBVGRs5bI/zLREA38hFjH8QQm6EFC85r0wXBKxRbLRsBCyLOTTH9/v1cPj81weLs+9D8+579d2dj/nnM/5ns/nfJ77vZ/7Pd/n++EE4M/AWcAQ4FngnAqdBcBPm21rg/ydCpwPbKlx/tPAg4CAycCmZtvcx/5OA1Y1284G+ToaOD/LI4A/Vfkslya+dfpbpvgKGJ7lwcAmYHKFzuXAzVmeA9zTbLv70NfS9MsFn74OLKv2mW1GbAfiCMEkYHtE7IiI/wJ3AzObbFOfERGPAy/2oDITuCMSG4E2SaP7x7rGU4e/pSEidkdER5b3A9uAMRVqpYlvnf6WhhyzA3l3cN4qJ33NBJZkeTnwMUnqJxMbRp2+lgpJY4GLgFtrqPR7bAdiQjAG+GthfxfVO5WL8xDrcklv7x/TmkK9z6NMfCAPTT4o6dxmG9MI8nDie0n/WRUpZXx78BdKFN88pPxHYA+wJiJqxjciDgL7gJH9a2VjqMNXKFe/fCNwDXCoxvl+j+1ATAjq4bdAe0ScB6zh9SzNtD4dpKU83wPcBPy6yfYcM5KGA/cDCyPipWbb09ccwd9SxTciXo2IicBYYJKkCc22qa+ow9fS9MuSPgPsiYinm21LkYGYEPwNKGaWY/Ox14iIvRHxSt69Fbign2xrBkd8HmUiIl7qHpqMiNXAYEmjmmxWr5E0mPTHcWlErKiiUqr4HsnfssW3m4j4J7AW+GTFqdfiK2kQcAqwt3+tayy1fC1ZvzwFmCFpJ+m19Ucl/apCp99jOxATgqeA8ZLOlDSENFljZVGh4h3rDNK7yrKyEpifZ6NPBvZFxO5mG9VXSDq9+z2cpEmk34GW7ECzH7cB2yLiRzXUShPfevwtWXxPk9SW5aHAJ4DnKtRWApdmeTbwaORZaK1EPb6WqV+OiG9GxNiIaCf9DXo0Ii6pUOv32A7qy8aPRyLioKSvAg+TvnHwi4jYKuk6YHNErASulDQDOEiaoLagaQYfI5LuIs28HiVpF/A90oQdIuJmYDVpJvp24GXgsuZY2hjq8Hc28BVJB4F/A3NasQPNTAHmAV353SvAt4B3QCnjW4+/ZYrvaGCJpBNIic29EbGqoq+6DbhT0nZSXzWneeYeE/X4Wpp+uRbNjq1XKjTGGGPMgHxlYIwxxpgKnBAYY4wxxgmBMcYYY5wQGGOMMQYnBMYYY4zBCYExxzWSDtShs1DSsAbec5akcxrY3hPHcO2B/PMMSct70GuTdHlv72OMcUJgTBlYCBxVQpC/712LWUDDEoKIuLABbbwQEbN7UGkjVYczxvQSJwTGtACSpklal4u6PCdpaV598ErgDGCtpLVZd7qkDZI6JN2X1/5H0k5JiyR1AJ+T9CVJT+VCQPdLGibpQtIqcIuVas6PkzRR0sZcVOYBSW/J7a2T9GNJmyVtk/R+SSskPS/p+oLtBwrytZK68j1vqOLnmdn2roo22iVtyfK5kp7M9nVKGg/cAIzLxxZLGi7p9/kZdEmaWWhnm6SfS9oq6ZG8Mh6Szpb0u2xbh6Rx+fjV+Tl1Svp+QwNrzPFEX9dX9ubNW+834ED+OY1U7WwsKZHfAHwwn9sJjMryKOBx4OS8fy3w3YLeNYW2Rxbk64GvZfl2YHbhXCfw4SxfB9yY5XXAoixfBbxAWnHuRFJVxZEVPnwKeAIYlvdPreLvSmB+lq8oXNsObMnyTcDcLA8BhhbP5+ODgDcXnsl2QFnvIDAxn7sXuCTLm4DPZvkk0qjLdOCWfO2bgFXA1GZ/Lrx564ttwC1dbEwL82RE7ALIS/e2A3+o0JlMGu5fn5f0H0JKHrq5pyBPyP+FtwHDSct5H4akU4C2iHgsH1oC3FdQ6a4D0gVsjVwnQdIOUmGWYh2BjwO/jIiXASLixSo+TgEuzvKdwKIqOhuAbyvVk18REc/rjWXiBfxA0lRSedkxwNvyub9ERPfSx08D7ZJGAGMi4oFs23+yH9NJScEzWX84MJ6UdBlTKpwQGNM6vFKQX6X6769IteS/UKONfxXk24FZEfGspAWkUYje2nSowr5DNeyrhx7XU4+IZZI2ARcBqyV9GdhRoTYXOA24ICL+p1RV7qQKmyE9x6E93E7ADyPiZ0dhvzEtiecQGNP67AdGZHkjMEXS2QCSTpb0rhrXjQB2K5UUnlutvYjYB/xD0ofyuXnAY/SONcBl3d+IkHRqFZ31vF7EZW6V80g6C9gRET8BfgOcx+HPAFKp2D05GfgI8M6eDIuI/cAuSbPyPU7Mdj4MfLEwD2OMpLfW5a0xLYYTAmNan1uAhyStjYi/k6rA3SWpkzS8/u4a132H9N58PYeXmr0buFrSM3li3aWkSYadwETSPIKjJiIeIr1i2JxfeXyjitpVwBWSukjD/NX4PLAltzEBuCMi9pJek2yRtBhYCrwvtzOfN5YNrsY8UkW9TtJch9Mj4hFgGbAht7WcwxMPY0qDqx0aY4wxxiMExhhjjHFCYIwxxhicEBhjjDEGJwTGGGOMwQmBMcYYY3BCYIwxxhicEBhjjDEGJwTGGGOMAf4Pv5bCTsnsJIkAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -318,7 +341,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAF1CAYAAACef1IVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmcHHWd//HXZ7qnO+nOnQzkzkASjiTc4VZEUAm3/gRldQUUF2Fl1d/Pk9VFdGVddFd2PUE5BZfDeGzUBDxQUM4kcuSAhAlJSEJCJjPJ5JhkZnrm8/ujaobOOJPpmemZ7up+Px+PfqS7qrr6++2adL/7U9+qMndHREREyktFoRsgIiIig08BQEREpAwpAIiIiJQhBQAREZEypAAgIiJShhQAREREypACgJQsM7vRzO4L7081s91mFgsfH2xmj5vZLjP7TwvcZWbbzezZwrZ8YJjZ4Wb2fNjnT3Qxf7/3pBBtlK6Z2VvNrCb8G76g0O3JlZk9YGZfKnQ7pGvxQjdAio+ZrQMOBlqzJt/t7tcVpkX95+6vAcOyJl0NbANGuLub2VuBdwKT3X1PIdo4CD4H/NHdj+1m/n7vyeA1q7iZ2QeB28KHMSAJNLbPd/dhXT0vz74G3OLu3xuE1/obZrYRGMv+nwmHuvvWQrRH8kMVAOnOhe4+LOuW9y9/MytkAJ0GrMz6opsGrOvLl3+B+9Eb04AVPcxf2d2Xf4T62aPe9MXdf9L+/wA4F3g9+/9Gf9bdC91uOzOrMLPB+Cw/t9Nngr78I04BQHrFzK40s7+Y2X+E5fK1ZnZu1vyRZnaHmW02s01m9rWssvuVZvaEmd1iZnXAjWYWC0vw28J1XWdmbmZxM7vUzJZ2ev3/Z2b/203bDjGzx8IS9u+AcVnzqrPWezdwBfC5sKT6MeB24NTw8VfC51wQlsx3mNmTZnZ01vrWmdnnzexFYE+43olm9jMzqw378oms5W80s4fM7Mdh+1aY2dys+VPM7Ofhc+vM7LtZ8z5iZi+F7/cjZjbtANvnonDdO8zsT2Z2ZDj9UeDtwHfDPh7W6Xmd35N3hG2eb2b3mdlO4Mrwy+YLZrYmbOdDZjYmaz2nhO/VDjN7wczODKe3v7ftt31hpYme1tlFHy8Ot8vO8DnzwukTzWyBmdVbUC7/h07vf6/60htmttHMPmtmy3jz78HNrDprmfvM7MZO2+qF8L36i5nN6Wbd64CpwKLwvYuFy/+rmT0F7AGmmtlkM/t12P9XzOwjWev4mgXl+PvDdbxgZtPN7Evh39xrZvaOPvQ7Hv7NvxH2449mdng3y443s4fD5erCv8n2eVPM7H8t+Bx41cyu6W1bpA/cXTfd9rsB64B3dDPvSqAF+AeCcui1wOuAhfN/QVAuTQMHAc8CH8t6bgb4J4LdT0OBa4CVwGRgNPB7wMP5SaAeODLr9Z8D3ttN254CvhU+7wxgF3BfOK+6fb3h47uBr3Xq11+yHh8HbAVODvt5Rfi+JLPeo+eBKWE/KoClwA1AAjgUeBU4J1z+RmAfcF64vq8DT4fzYsALwC3h+zYEeEs472KgBjgyfE++BDzZTf8PI/gyeCdQSVDyrwES4fw/AR89wHbv/J7cGG7rd4f9Gwp8Eng63F7JcFvfHy4/CagL+1gRtqMOqOr0OpXAY8DXw8fdrrOLNp4ENITrrghf84hw3uPA98P371igFjirL305wHt0JrCxi+kbw+0/OVx3nODvrTprmfuAG8P7JwJvhP/GgI8Aa9q3VTfrPzPr8V8I/gaPDN/POPAE8J2w/8cT7M55W7j814C9wDvCZf8HWAt8IXx8LfDKAfq93+tnTY8DlxPsXhsC/IDw7zqc/wDwpfD+LcB/h89JAGdk/f0vAz4fTj8MeK297boN3K3gDdCt+G7hB8tuYEfW7R/CeVcCNVnLpsIPuvEE4waagKFZ8/+OYL9z+3Nf6/RajxIGhPDxO9j/i/oHwE3h/dnAdsIv4U7rmUoQLtJZ0/6HvgeAHwD/2uk1VmV9oK4DPpI17+Qu+nY9cFd4/0bg91nzZgF7w/unEnxZxbvo1yLgqqzHFQT7n6d1sey/AA91WnZT+wc3fQsAj3da5iXg7KzHEwi+WOPhB/i9nZZ/BLii07QfAL8GKnpaZxdtvI1gX3jn6VMI9k8Pz5r2dYKxK73uywHeozPpPgBcnvW4pwDwI+DLndaxBji9m9ftKgDckPX4kLDt2X//3wRuD+9/DViUNe89BEGqfRuMDts77ACvn/2ZML+b5cYDbcCQ8HF2APgG8FOCsQPZz3kbncIH8BXgB91tB93ycyuZfXqSd+929993M29L+x13bzQzCH4BjCH4NbI5nAbBl9CGrOdm3weY2MP8e4D7LRhJ/CGCL7imLto0Edju++/DX0/wxdAX04ArzOyfsqYlwtfpqq3TgIlmtiNrWgz4c9bjLVn3G4EhFuwvngKsd/dMN+34b9t/VL4R/PJd32nZidnT3L3NzDaEy/ZV5+0xDfiFmbVlTWslCH/TgEvN7MKseZXAHzsaHuxuORM42d3b13GgdW7q9PpTgIVdtHMiUO/uu7KmrQfmZj3uTV86v24uOq//QKYBHzSz/5s1LUHvtlX2600EtnXx95+9W+GNrPt7gdqsbbA3/HcYwRd9Vy5w9z9lTwj/fm8mCBTjCL78jWDAYOf38Cbgq8AfzawF+L67f4vgvaju4v9Od58/kicKAJJPGwgqAOO6+TKD4FdGts0EZdN2+31hu/vTZtYMvBX4QHjrymZgtJmlsz4Ep3bxernaQFB5uOkAy2SvewOw1t1n9vG1pppZvIv3rb0dP8lhPa8DR7U/sCCFTaFvX2btOr9/GwgqH090XjAMG/e6+z90nhfOfyvwrwS7N3bmss4ubACmdzH9dWCMmQ3PCgFT2b/vOfeljzrW7+4ZM2siqJC1G0+wS6b9tb/i7jfn4/UI+j+ui7///mz7XHyYYHfM2wnK9gcT/F+0zgu6ewPBbpdPmtkxBEHgGYL34mV3P6rzc2RgaRCg5I27bwZ+C/ynmY0IB1lNN7O3HeBpDxF8IEwys1EEZeTOfgx8F2hx979089rrgSXAV8wsYWZvAS7satkc/Qi4xsxOtkDazM43s+HdLP8ssMuCgYFDw4Fac8zsxBxe61mCD81/D19niJmdHs67FbjezGZDxyDLS7tZz0PA+WZ2tplVAp8mCGRP5tjnXNwK3GThQEQzqzKzi8N59wEXmtk5Yf+HmNmZ4eC0KWH7Lnf31b1YZ2d3AB8O+1gR/t0c4e4bwn5+PXzdo4Grwjb1pS/58ALBr/yYmZ0PvCVr3o+Aj5vZieHf1zAzu9DM0n15IXdfS/D3/29mljSzYwm+nA/U/3wYTjC2pY5g/MrXulvQgkGPh4bBtIGg2tJGsDsDM/tUuO3iZna0mR0/wG0vewoA0p1f2f6jtn+R4/MuJyhlriTYXz+fYN9qd35EEBpeJBjgt5BgX3728cb3EpQye/ow+wDBvvh64MsEwaFP3H0JwUDH7xL0o4ZgnEB3y7cCFxAMPltLMADrdmBkDq/VShBWZhD8itoIvD+c9wuCEusDFoxeX05wKFpX61kF/D3BQLBt4TovdPfmntrQC/8NLAB+a2a7CAbRnRy+/gaCQYv/TDCmYQPwWYLPmbMJfh3Oz/qbWtHTOrvo47MEX2y3EHyJPEZQQoZgvEk1wa/hXxDsYz9QGTnn1+2jTxCUxncAl4av1d6PpwkG3v2A4O9rNcG264/3AzMJdjXNB/65c8l+ANxBsK23EAzk6zKgh44k2B20i2DA5n+4+1Pu3kIwcPQ0gt0WtQTvy2CcX6GstY/cFikKFhxSeKu7T8uaNpRgRP7x7v5KwRonIlJCVAGQggrL5eeFZb9JBL/cO1cbrgUW68tfRCR/VAGQgjKzFEEZ9wiCkci/AT7ZPkjMgpOgGMFRCc8Vqp0iIqVGAUBERKQMaReAiIhIGVIAEBERKUMlfSKgcePGeXV1daGbISIiMmiWLl26zd2relqupANAdXU1S5YsKXQzREREBo2ZdT5NeJe0C0BERKQMKQCIiIiUIQUAERGRMqQAICIiUoYUAERERMqQAoCIiEgZUgAQEREpQwoAIiIiZUgBQEREpAwpAIiIiJQhBQAREZEypACQo/o9zfzx5a3saGwudFNERET6TQEgRy9t3smH717Mqi27Ct0UERGRflMAyFEqEQOgsbm1wC0RERHpPwWAHKWTwZWT9zRnCtwSERGR/lMAyFFHBaBJFQAREYk+BYAcpROqAIiISOlQAMhRKqkxACIiUjoUAHKUiFUQrzD2NKkCICIi0acAkCMzI5WIqQIgIiIlQQGgF9LJuCoAIiJSEhQAekEVABERKRUKAL2QTsZ1FICIiJQEBYBeUAVARERKhQJAL6QTcRpVARARkRKgANALQxMxnQlQRERKggJAL6QTGgMgIiKlQQGgF1JJVQBERKQ0KAD0QnsFwN0L3RQREZF+UQDohVQyRptDU6at0E0RERHpFwWAXui4IqDOBigiIhGnANALqYSuCCgiIqVBAaAX0smwAqAjAUREJOIUAHqhvQKwR0cCiIhIxCkA9EJ7BUBnAxQRkahTAOgFVQBERKRUKAD0QvtRAHtbVAEQEZFoUwDohVRSFQARESkNCgC9kEpoDICIiJQGBYBeGFqpCoCIiJQGBYBeiFUYQytjqgCIiEjkKQD0UjoZY4/OBCgiIhGnANBLqUScRl0LQEREIk4BoJdSCVUAREQk+hQAeimdjGsMgIiIRJ4CQC+lEjEdBSAiIpGnANBL6YQqACIiEn05BQAzm2dmq8ysxsy+0MX8pJk9GM5/xsyqs+ZdH05fZWbn9LROM7vbzNaa2fPh7dhw+plm1pA1/Yb+dLyvUklVAEREJPriPS1gZjHge8A7gY3AYjNb4O4rsxa7Ctju7jPM7DLgZuD9ZjYLuAyYDUwEfm9mh4XPOdA6P+vu87tozp/d/YLedzN/VAEQEZFSkEsF4CSgxt1fdfdm4AHg4k7LXAzcE96fD5xtZhZOf8Ddm9x9LVATri+XdRalVDJGo44CEBGRiMslAEwCNmQ93hhO63IZd88ADcDYAzy3p3XeZGYvmtktZpbMmn6qmb1gZovMbHZXjTWzq81siZktqa2tzaF7vZNOxGnKtJFpbcv7ukVERAZLMQ4CvB44AjgRGAN8Ppz+V2Caux8DfAf4ZVdPdvcfuvtcd59bVVWV98alEsH1ABpbVAUQEZHoyiUAbAKmZD2eHE7rchkziwMjgboDPLfbdbr7Zg80AXcR7C7A3Xe6++7w/kKg0szG5dD+vOq4IqAGAoqISITlEgAWAzPN7BAzSxAM6lvQaZkFwBXh/UuAR93dw+mXhUcJHALMBJ490DrNbEL4rwHvBpaHj8eH0zCzk8K21/Wt232XToZXBNRAQBERibAejwJw94yZXQc8AsSAO919hZl9FVji7guAO4B7zawGqCf4Qidc7iFgJZABPu7urQBdrTN8yZ+YWRVgwPPANeH0S4BrzSwD7AUuC0PGoFIFQERESkGPAQA6Su4LO027Iev+PuDSbp57E3BTLusMp5/VzXq+C3w3l/YOpHRCFQAREYm+YhwEWNRSybACoAAgIiIRpgDQSx0VAO0CEBGRCFMA6CVVAEREpBQoAPSSKgAiIlIKFAB6qeMoAFUAREQkwhQAeikRr6AyZuzR9QBERCTCFAD6IJWI09ikCoCIiESXAkAfpBO6IqCIiESbAkAfpJJxBQAREYk0BYA+SCViOhOgiIhEmgJAH6QSMV0LQEREIk0BoA/SibgqACIiEmkKAH2gMQAiIhJ1CgB9kE7E2KPDAEVEJMIUAPoglVAFQEREok0BoA/SyeAoAHcvdFNERET6RAGgD1KJOO6wr6Wt0E0RERHpEwWAPkgnwysC6kgAERGJKAWAPui4IqDOBSAiIhGlANAH6YQqACIiEm0KAH2QSoYVAB0JICIiEaUA0AftFYBGVQBERCSiFAD6YGj7LgCNARARkYhSAOiDdPsgQFUAREQkohQA+iDVcRigKgAiIhJNCgB90FEB0PUAREQkohQA+mBopSoAIiISbQoAfVBRYaQSMVUAREQkshQA+iiViKsCICIikaUA0EfpZExHAYiISGQpAPRRKhHXeQBERCSyFAD6KJ1QBUBERKJLAaCPUkmNARARkehSAOijdCLGXlUAREQkohQA+khjAEREJMoUAPpIRwGIiEiUKQD00dBETGMAREQkshQA+iidiNOcaaOlta3QTREREek1BYA+SiWC6wE0qgogIiIRpADQR+lkeEVAjQMQEZEIUgDoo/YKgI4EEBGRKFIA6KN0QhUAERGJLgWAPkolVQEQEZHoUgDoI1UAREQkyhQA+ijdXgHQUQAiIhJBCgB9lGqvADSpAiAiItGjANBHb+4CUAVARESiJ6cAYGbzzGyVmdWY2Re6mJ80swfD+c+YWXXWvOvD6avM7Jye1mlmd5vZWjN7PrwdG043M/t2uPyLZnZ8fzreX0M7TgSkCoCIiERPjwHAzGLA94BzgVnA35nZrE6LXQVsd/cZwC3AzeFzZwGXAbOBecD3zSyWwzo/6+7Hhrfnw2nnAjPD29XAD/rS4XxJxCtIxCo0BkBERCIplwrASUCNu7/q7s3AA8DFnZa5GLgnvD8fONvMLJz+gLs3uftaoCZcXy7r7Oxi4MceeBoYZWYTcmj/gBmaiGkMgIiIRFIuAWASsCHr8cZwWpfLuHsGaADGHuC5Pa3zprDMf4uZJXvRDszsajNbYmZLamtrc+he36V1RUAREYmoYhwEeD1wBHAiMAb4fG+e7O4/dPe57j63qqpqINrXIZWMawyAiIhEUi4BYBMwJevx5HBal8uYWRwYCdQd4LndrtPdN4dl/ibgLoLdBbm2Y1ClEzGdCVBERCIplwCwGJhpZoeYWYJgUN+CTsssAK4I718CPOruHk6/LDxK4BCCAXzPHmid7fv1wzEE7waWZ73G5eHRAKcADe6+uU+9zpNUQhUAERGJpnhPC7h7xsyuAx4BYsCd7r7CzL4KLHH3BcAdwL1mVgPUE3yhEy73ELASyAAfd/dWgK7WGb7kT8ysCjDgeeCacPpC4DyCgYSNwIf73ft+SidjvL6jpdDNEBER6bUeAwCAuy8k+ALOnnZD1v19wKXdPPcm4KZc1hlOP6ub9Tjw8VzaO1hUARARkagqxkGAkZFO6igAERGJJgWAfkgl4joPgIiIRJICQD+kEzEaW1oJ9k6IiIhEhwJAP6SScdxhX0tboZsiIiLSKwoA/ZAOLwi0RwMBRUQkYhQA+iHVfklgnQxIREQiRgGgH9JJVQBERCSaFAD6YWh7BUABQEREIkYBoB86xgBoF4CIiESMAkA/pFQBEBGRiFIA6IeOMQCqAIiISMQoAPSDKgAiIhJVCgD98OZRAKoAiIhItCgA9MOQeAwzdD0AERGJHAWAfqioMFKVuiKgiIhEjwJAP6WScY0BEBGRyFEA6Kd0IkajKgAiIhIxCgD9lErEdRigiIhEjgJAP6WTMe0CEBGRyFEA6KdUIq5BgCIiEjkKAP2USsR0GKCIiESOAkA/pRJxDQIUEZHIUQDop3Qyxh6NARARkYhRAOinVCJOo44CEBGRiFEA6Kd0IkZzaxvNmbZCN0VERCRnCgD9lEoGVwTcq3EAIiISIQoA/ZROtF8RUOMAREQkOhQA+qm9AqCTAYmISJQoAPRTRwVAAwFFRCRCFAD6KZVorwAoAIiISHQoAPRTOhlUALQLQEREokQBoJ/aKwC6HoCIiESJAkA/dVQAdD0AERGJEAWAfkpVqgIgIiLRowDQT0MTqgCIiEj0KAD0UyJeQSJWoQqAiIhEigJAHqSSMR0FICIikaIAkAfpRFwnAhIRkUhRAMiDVEIVABERiRYFgDxIJeMaAyAiIpGiAJAH6URMRwGIiEikKADkQSqhCoCIiESLAkAepJMx9moMgIiIRIgCQB6oAiAiIlGjAJAHGgMgIiJRowCQB6lknMaWVtravNBNERERyUlOAcDM5pnZKjOrMbMvdDE/aWYPhvOfMbPqrHnXh9NXmdk5vVjnt81sd9bjK82s1syeD28f7W1nB0o6EcMd9mW0G0BERKIh3tMCZhYDvge8E9gILDazBe6+Mmuxq4Dt7j7DzC4Dbgbeb2azgMuA2cBE4Pdmdlj4nG7XaWZzgdFdNOdBd7+uLx0dSKnwgkB7mlpJJXp8S0VERAoulwrASUCNu7/q7s3AA8DFnZa5GLgnvD8fONvMLJz+gLs3uftaoCZcX7frDAPHN4HP9a9rg6f9S19nAxQRkajIJQBMAjZkPd4YTutyGXfPAA3A2AM890DrvA5Y4O6bu2jLe83sRTObb2ZTcmj7oEgn36wAiIiIREFRDQI0s4nApcB3upj9K6Da3Y8GfsebFYfO67jazJaY2ZLa2tqBa2wWVQBERCRqcgkAm4DsX9uTw2ldLmNmcWAkUHeA53Y3/ThgBlBjZuuAlJnVALh7nbs3hcvfDpzQVWPd/YfuPtfd51ZVVeXQvf7rqADoXAAiIhIRuQSAxcBMMzvEzBIEg/oWdFpmAXBFeP8S4FF393D6ZeFRAocAM4Fnu1unu//G3ce7e7W7VwON7j4DwMwmZL3eRcBLfenwQOioAOhcACIiEhE9Dll394yZXQc8AsSAO919hZl9FVji7guAO4B7w1/r9QRf6ITLPQSsBDLAx929FaCrdfbQlE+Y2UXheuqBK3vd2wGSDgOAKgAiIhIVOR2z5u4LgYWdpt2QdX8fwb77rp57E3BTLuvsYplhWfevB67Ppb2DLRXuAtAYABERiYqiGgQYVemOQYCqAIiISDQoAOTBkMoKzDQGQEREokMBIA/MjLSuCCgiIhGiAJAnqURMYwBERCQyFADyJJ2M60yAIiISGQoAeTK0UhUAERGJDgWAPEknY6oAiIhIZCgA5EkqEVcFQEREIkMBIE/SyZiOAhARkchQAMiTVCKu8wCIiEhkKADkSTqhCoCIiESHAkCepJIaAyAiItGhAJAn6USMllanOdNW6KaIiIj0SAEgT1IdFwRSFUBERIqfAkCepDsuCaxxACIiUvwUAPJEFQAREYkSBYA8aa8A6GyAIiISBQoAedJeAdijCoCIiESAAkCepNt3AagCICIiEaAAkCdDE+EuAFUAREQkAhQA8kRHAYiISJQoAORJxxgAXQ9AREQiQAEgT1IJVQBERCQ6FADypDJWQSJeoTEAIiISCQoAeZROxHQUgIiIRIICQB6lEnFVAEREJBIUAPIonVQFQEREokEBII9SiTiNLQoAIiJS/BQA8iioAGgXgIiIFD8FgDwKxgCoAiAiIsVPASCP0omYLgcsIiKRoACQR6lkXJcDFhGRSFAAyKNUpSoAIiISDQoAeZRKxmlsbqWtzQvdFBERkQNSAMijdHg9gL06FFBERIqcAkAepZLhFQG1G0BERIqcAkAetVcAdDZAEREpdgoAeZRKqAIgIiLRoACQR+lkWAHQyYBERKTIKQDkUUcFQKcDFhGRIqcAkEftFYC9qgCIiEiRUwDIo3THGAAFABERKW4KAHmUaj8KQIMARUSkyCkA5FG6/TwAOgxQRESKnAJAHiXjFVSYKgAiIlL8FADyyMxIJXRFQBERKX4KAHmWSuiKgCIiUvxyCgBmNs/MVplZjZl9oYv5STN7MJz/jJlVZ827Ppy+yszO6cU6v21mu3N5jWKSTsZ1FICIiBS9HgOAmcWA7wHnArOAvzOzWZ0WuwrY7u4zgFuAm8PnzgIuA2YD84Dvm1msp3Wa2VxgdC6vUWxSiRiNOhGQiIgUuVwqACcBNe7+qrs3Aw8AF3da5mLgnvD+fOBsM7Nw+gPu3uTua4GacH3drjMMB98EPpfjaxSVdCKuawGIiEjRyyUATAI2ZD3eGE7rchl3zwANwNgDPPdA67wOWODum3N8jaKSSsZ0LQARESl6RTUI0MwmApcC3+nHOq42syVmtqS2tjZ/jctROhHXtQBERKTo5RIANgFTsh5PDqd1uYyZxYGRQN0Bntvd9OOAGUCNma0DUmZW08Nr7Mfdf+juc919blVVVQ7dy6/gKABVAEREpLjlEgAWAzPN7BAzSxAM6lvQaZkFwBXh/UuAR93dw+mXhSP4DwFmAs92t053/427j3f3anevBhrDQX8Heo2ikk7GFQBERKToxXtawN0zZnYd8AgQA+509xVm9lVgibsvAO4A7g1/rdcTfKETLvcQsBLIAB9391aArtbZQ1O6fI1io/MAiIhIFPQYAADcfSGwsNO0G7Lu7yPYd9/Vc28CbsplnV0sMyyX1ygm6WScllanOdNGIl5UQyxEREQ66Bsqz3RFQBERiQIFgDxLJ8IrAmocgIiIFDEFgDxLJcMKgA4FFBGRIqYAkGftuwBUARARkWKmAJBnqXAXgCoAIiJSzBQA8kxjAEREJAoUAPKsYwyAjgIQEZEipgCQZx0VgCZVAEREpHgpAOSZKgAiIhIFCgB5lqoMjwJQBUBERIqYAkCexWMVJOMVNLaoAiAiIsVLAWAApJNxGlUBEBGRIqYAMABSiRh7NAZARESKmALAAEgnVAEQEZHipgAwAFJJVQBERKS4KQAMgHQiTqPOBCgiIkVMAWAADE3E2KNrAYiISBFTABgA6URMFQARESlqCgADIJWM60yAIiJS1BQABkA6EdOZAEVEpKgpAAyAVCLO3pZWWtu80E0RERHpkgLAAEiHFwTa26IqgIiIFCcFgAGQCi8J3KgjAUREpEgpAAyAdMclgVUBEBGR4qQAMADaKwA6G6CIiBQrBYABkG7fBaAKgIiIFCkFgAGQCncB6GyAIiJSrBQABoAqACIiUuwUAAZAKqEKgIiIFDcFgAGQTqoCICIixU0BYAB0VAB0FICIiBQpBYABkIxXUGHQqOsBiIhIkVIAGABmRjoRVwVARESKlgLAAEklY6oAiIhI0VIAGCCqAIiISDFTABggqWRMRwGIiEjRUgAYIKlEnEZVAEREpEgpAAyQdEIVABERKV4KAAMklYzrTIAiIlK0FAAGiCoAIiJSzBQABkgqoQqAiIgULwWyZHQbAAAYB0lEQVSAAZIOjwJw90I3RURE5G8oAAyQVCJOps1pbm0rdFNERET+hgLAAGm/IJDOBigiIsVIAWCApBPBJYF1NkARESlGCgADZMTQIAC88sbuArdERETkbykADJAzDqvikHFpvvTL5ezc11Lo5oiIiOwnpwBgZvPMbJWZ1ZjZF7qYnzSzB8P5z5hZdda868Ppq8zsnJ7WaWZ3mNkLZvaimc03s2Hh9CvNrNbMng9vH+1PxwdaKhHnW+87hi0793Hj/64odHNERET202MAMLMY8D3gXGAW8HdmNqvTYlcB2919BnALcHP43FnAZcBsYB7wfTOL9bDO/+vux7j70cBrwHVZr/Ogux8b3m7vW5cHz3FTR3Pd22fw8+c28ZsXNxe6OSIiIh3iOSxzElDj7q8CmNkDwMXAyqxlLgZuDO/PB75rZhZOf8Ddm4C1ZlYTro/u1unuO8NpBgwFIn0g/XVnzeBPq2v54i+XMbd6NAePGFLoJolIL7S0tvHixh08WVPHjr0tzJ44gqMmjeTQqmHEKqzQzRPps1wCwCRgQ9bjjcDJ3S3j7hkzawDGhtOf7vTcSeH9btdpZncB5xGEjE9nLfdeMzsDWE1QKcheR/tzrwauBpg6dWoO3RtYlbEKbnnfMZz/7b/wmZ++wD0fPokKfWiIFK22Nmfl5p08taaOJ9Zs49m19TQ2t2IW/H9uzgTn9kglYsyaMII5k0Zy1KSRHDV5JNMVCiRCcgkAg87dPxzuJvgO8H7gLuBXwP3u3mRmHwPuAc7q4rk/BH4IMHfu3KKoHhxaNYwvnn8kX/rlcu59ej1XnFZd6CaJSMjdWVO7h6fWbOOJmjqeXlvHjsZg4O6hVWnee/xkTps+llMOHcvwIXFqanezbGMDK17fybJNDTy4eAN3P7kOgKGVMWaFFYLZE0dw1OSRzKgaRjym8dZSfHIJAJuAKVmPJ4fTulpmo5nFgZFAXQ/PPeA63b013DXwOeAud6/Lmn078I0c2l40PnjyVP7w0hv828KXOH3GWGYcNLzQTRIpWxu3N/LkmjqeWlPHk2u28cbOJgAmjhzCO448mNNnjOXUQ8cxfuTf7rI7YvwIjhg/gkvDx61tzpowFCzb1MDyMBTsbQlOAjaksoIjJwShoL1aMPMghQIpPOvpXPXhF/pq4GyCL+nFwAfcfUXWMh8HjnL3a8zsMuD/uPv7zGw28D8E+/0nAn8AZgLW1ToJSv7T3b0mHAPwTQB3/4yZTXD3zeHrvQf4vLufcqC2z50715csWdKrN2Qgbd21j3n/9WcmjhrCz689nURcHwAig2Hb7qbwC38bT66pY31dIwBj0wlOnT6W06aP4/QZY5k6JkXw0dM/rW3Oq7W7Wf56A8s27mT5pgZWvN7AnvAKocl4digIdiMcdvBwKhUKJA/MbKm7z+1xuVwuVmNm5wH/BcSAO939JjP7KrDE3ReY2RDgXuA4oB64LGuA3xeBjwAZ4FPuvugA66wA/gyMIAgJLwDXuvtOM/s6cFG4nvpw+ssHanexBQCAh5dv4Zr7lnLd22fwmXMOL3RzSs7e5lae27Cdpeu2s7spQyoRJ52M/c2/6ezHiTipZEwfviWkYW8Lz66t54mabTy1po5Vb+wCYHgyzsmHjuW06WM5bcZYDj94eF6+8HPR2uas3baH5ZuCSsGyTQ2sfH0nu8OrhibiFRw5fnhHlaA9FOiHgvRWXgNAVBVjAAD47E9f4Gd/3chPrzmVE6aNKXRzIq1+TzOL19WzZF09i9dtZ/mmBjJtjhkkYhU0ZXK/GNOkUUM5sXo0J1SPYe600Rx28HAN6IqIvc2tLFlfz5Nr6niyZhvLNjXQ5sEv7ROrx3DajOBX/pyJI4qq9N7W5qytC0JBezBYsWknu9pDQayCIyYM5+RDxjBvzgSOmzJKg4ilRwoAFG8A2N2U4dz/fhzDWPjJtzIsWZRjMYuOu7Ohfi+L19V33NbU7gGCD8pjpozkxOoxnFg9huOnjmZkqpJMaxuNLa00NrWypznz5r/NGfY0tXb8u2tfhpe37GTJ+u3U7gr2Bw9Pxjlu2mjmhrdjp44ildC2KgbNmTZeCA/Ne3LNNp57bQfNrW3EK4xjp4wKf+GP47ipo0jGY4Vubq+0tTnr6xs7xhO8uHEHS9dvp6XVGT9iCPPmjOfcOeOZWz1GAVW6pABA8QYAgMXr6nn/bU9x6QlTuPmSowvdnKJWt7uJb//hFRYt38LW8Mt5xJA4c6vHMLd6NCdVj2HOpJEMqez/B317yFiyvp4l64NdCau37sIdYhXGrAkjOGHaaOZWj+b06eMYnU70+zUld8s3NXDXE+tYtHxzx6F5syaM4PQZ4zh1+lhOqh5DugQDdcPeFh59+Q0WLdvCY6tracq0MW5YgnfNHs95cyZw8qFjtAtLOigAUNwBAOAbD7/M9/+0hh9+6ATeNXt8oZtTdFpa2/jxU+v5r9+vprG5lXlzxnPKocGH/MyDhg1aKbRhbwt/fS0IA0vW1/P8hh3sa2kjVmGccugY5s0ez7tmj9dJngZIS2sbj6zYwt1PrGPJ+u2kEjEuOmYiZx5excmHjC27ELanKcMfV21l0bItPPryVva2tDIqVcm7Zh3MuXMmcPqMcRo3UOYUACj+ANCcaeM933+CLQ37ePhTZ1A1PFnoJhWNP63ayr/+eiVravdwxmFV3HDBkUVz6GRLaxvLNzXwh5e2smj55o7dEMdNHcW82eOZN2c808amC9zK6Kvb3cT9z77GfU+/xpad+5g6JsUVp1VzyQmTGTm0stDNKwp7m1t5bHUtDy/fzB9e2squpgzDh8R5x5EHM2/OeN52WFVeKmMSLQoAFH8AAHjljV1c8J2/cPqMcdxxxdxBG5FcrF6t3c3XfvMSj768leqxKf7lglmcdcRBRf2+1GzdxSMr3uDh5VtYtqkBgCPGD2fenCAMDOZI81LQXub/1Yuv05xp460zx3HladWcefhB2ud9AE2ZVp6o2caiZVv47co3aNjbQioR4+1HHMR5cyZw5uFVJbl7RP6WAgDRCAAAdz2xlq/8aiX/9p6j+MDJhT99cSHs3NfCdx+t4a4n1pKMx/jE2TO48rRDIlfK3FDfyG9XvsEjy7eweH097lA9NsU5s8dz7lETOGbySIWBLnRV5n/v8ZO54rRpRVP5iZKW1jaefrWOhcu28NsVW6jb00wyXsGZh1dx7pwJnHXkQYwYoipKqVIAIDoBoK3NufzOZ1m6fjsPXH0Kx0wZVegmDZrWNmf+0g1885FV1O1p5n0nTOEz5xxeErtDanc18buVb/Dwii08WbONTJszadRQzp0znvOODg7pKvcwoDL/wGttcxavq2fRss08vGILb+xsIhGr4C0zxzFvznjeNetgRqXKaxxFqVMAIDoBAGDrzn2899Yn2bUvw4NXn8rh40v/V8/idfV85VcrWL5pJydWj+bLF85mzqSRhW7WgGhobOF3L73BwmWb+fMrtbS0OhNHDuHcoyZw3lHjOW7K6LI6vltl/sJoa3Oe27CdRcu2sGj5Fjbt2Eu8wjh1+ljOnTOBd80+mHHDoh++y50CANEKAACv1TVy6W1P0ubw04+dSvW40hxI1pxp48sLlnP/sxuYMHII1593JBcePaFsfg037G3hD2EYeHz1Nppb25gwMji++/yjJnD81NIMAyrzFxd3Z9mmBhYt38KiZZtZV9dIhcGJ1WM476gJzJujI1uiSgGA6AUACAYFvu+2p0gl4sy/9lQmjBxa6Cbl1fY9zXzsvqU8u7aea942nU+ePZOhifIdpbxzXxAGfvPiFh5fXUtzaxsHj0hy7pwJnH3kQZxYPSbyo7hV5i9+7s7LW3axaNlmFi3fwitbdwPBYNb2817MnTaGyaOHlk1QjzIFAKIZAACWbWzgAz96mqoRSR762KklU5JbU7ubq+5ezOsN+/iPS4/homMmFrpJRWXXvhb+8NJWFi7bzJ9W19KcaWNIZQWnHDqWM2ZWccZhVUyvSkfmA1hl/uiq2bqLh5dv4Zm19Tz32o6O6xUcNDzJ3OrRnDAtOF32rIkjdAKiIqQAQHQDAAT7xz90xzMcOm4Y9199SuR/KT25ZhvX3LuUylgFP7x8LidMG13oJhW1xuYMT79ax+Ort/H46lpe3Raca2DSqKGccVgVbztsHKfNGFd0I7lV5i89rW3Oy1t2snT9dpas287S9dvZtGMvAEMrYxwzZSRzp43hhOrRwSm4I/5ZVQoUAIh2AAB4bHUtH71nMUdNGsm9V50c2WN4H1z8Gl/8xXIOGZfmzitPZMqYVKGbFDkb6ht5bHUtj6+u5ck1dexuyhCrMI6fOoozZlbxlpnjqBqeZEhlLLjFKwb1ojcq85eXzQ17O8LAkvX1vLR5F63hRbgOO2g4J1S3X0NjDFPGaLfBYFMAIPoBAODh5Zv5x5/8ldOmj+P2K+ZGan9wW5tz88Mvc9vjr/LWmeP43gePL7pfrFHU0trGX9dv5/FXanl89baOkw91Fq+wMBBUkIwH/3YEhMoKhsRjDEnEgn875oXT25+XFSj2e25l8Ly6PU3c9/RrKvOXuT1NGZ7fsIMl4emys3cbVA1PMnfa6HAswRhma7fBgFMAoDQCAMDPlm7k0z99gXfOOpjvf/D4SPznaWzO8KkHnue3K9/gQ6dM48sXziqqy7CWkm27m1iyrp6dezPsy7Syr6WVfS1tb/6baWVfc2s4r336m/Oasqdl2mht691ngsr80llrm7Nqyy6WhhfVWrLuzd0GQyorOGbyqI6Bhe1X7pT8UQCgdAIAwI+fWscN/7uCdx87kW+979iiPkxsS8M+Pvrjxax8fSf/csEsrjytWiXACGlpbdsvRDRlOgWKljfDRKwCzjriYJX5pUdbGvZ17DJYun47K17f2bHbYOZBwzoGFp4wbTSTRw/VD4Z+yDUARHOnchm6/NRqdu3L8M1HVpFOxvnau+cU5Zfq8k0NfPSeJeza18LtV8zlrCMOLnSTpJcqYxVUxioYrkPAJY/GjxzC+UdP4PyjJwBBlfD5DTvCq2xu59cvvs79z74GgBmMSSUYNyxJ1fDgNm5YIvw3e1qSMalEUf8gKmYKABHy8bfPYHdThh/8aQ3DhsT5wrwjiioE/G7lG3zi/ucYnapk/rWnceSEEYVukogUqVQizmnTx3Ha9HFAsNvgla27eP61HWxu2Me23U3U7mqidncT69fvYevOJpoybX+znliFMTb9ZljoKjQcFE4fObSyqD4zC00BIGI+d87h7N6X4bbHXmV4Ms51Z80sdJNwd257/FVufvhljp48ih9dfgIH6eejiPRCrMI4YvwIjhjf9Q8Hd2d3U4Ztu5uDYLCr6c2Q0H5/dxOvvLGL2t1NtLT+7e7typi9GRCGJbNCQ4Kxw4KjaCpjRiJWQWW8IqyGBY8THY8rwvlGZayCeIVFNlQoAESMmfGVi2azpynDf/x2NbuaMnz+nCMKVgLb3ZThc/NfYOGyLZx/9AT+89JjInWkgohEg5kxfEglw4dUckgPp0l3dxr2trBtdxNbOwLC/sFhc8M+XtzUQN3uJno57rVTu3gzFMTszZAQ3z8odF6mY36sgi9fNItUYvC/jhUAIqiiwvjmpceQTsa57bFX2dKwj29ccjTJ+OB+8dZs3c019y1l7bY9fPG8I/noWw+JbBIWkdJhZoxKJRiVSvR4ZEprm7O9sZn6Pc00Z9pobm2jpf3f1jaaM05LeL+ltY3mVqc5Ez7OvDmtY37Hcz1rfvBvY3MmmJ41rSXjFGosvgJARMUqjK9ePJuJo4Zy88Mvs3VnE7ddfsKgHWf/8PLNfOanL5KMV3DvVSd17McTEYmSWEWwW6BUTrneGzrOIsLMjGvPnM4t7z+GJevred+tT7G5Ye+AvmamtY1/X/Qy19z3V6YfNIxff+It+vIXEYkgBYAS8J7jJnP3h09i4/a9/J/vP8mqLbsG5HXq9zRzxV3Pcutja/jAyVN56GOnlNzVCkVEyoUCQIk4fcY4HvrYqbS5c8mtT/LUmrq8rv/FjTu48Dt/YfG67XzjkqP5t/ccNehjDkREJH8UAErIrIkj+Pk/ns74EUO44s5nWfDC63lZ74OLX+OSW58C4GfXnMb75k7Jy3pFRKRwFABKzKRRQ5l/zWkcO3UUn7j/OX70+Kv09XTPTZlWrv/5i3z+Z8s4+ZAx/Oqf3sJRk0fmucUiIlIIOgqgBI1MVfLjj5zEp3/6AjctfInXG/bypfNn5XR1tpbWNl7fsZf1dY385+9W88KGHfzjmdP59LsO19XdRERKiAJAiRpSGeM7lx3H+BFDuOMva9nSsI9b3n8syXgF9Xuaea2+kQ3b97KhvpHX6hrZsL2R1+obeX3H3o6TYgxLxrn1709g3pzxhe2MiIjknQJACauoMP7lgllMGDmEmxa+xJJv/JHGpgx7mlv3W65qeJIpo4cyd9poph43iSljUkwZk+KI8cMZlUoUqPUiIjKQFADKwEffeihTxqT45XObGD9yCFPHpJgyOsXUsSkmjx5akFNQiohIYemTv0ycM3s858xWKV9ERAI6CkBERKQMKQCIiIiUIQUAERGRMqQAICIiUoYUAERERMqQAoCIiEgZUgAQEREpQwoAIiIiZUgBQEREpAwpAIiIiJQhBQAREZEypAAgIiJShhQAREREypC5e6HbMGDMrBZY38Ni44Btg9CcYlBOfQX1t5SVU19B/S1lA9HXae5e1dNCJR0AcmFmS9x9bqHbMRjKqa+g/paycuorqL+lrJB91S4AERGRMqQAICIiUoYUAOCHhW7AICqnvoL6W8rKqa+g/paygvW17McAiIiIlCNVAERERMpQWQQAM5tnZqvMrMbMvtDF/CvNrNbMng9vHy1EO/PBzO40s61mtryb+WZm3w7fixfN7PjBbmM+5dDfM82sIWvb3jDYbcwXM5tiZn80s5VmtsLMPtnFMiWzfXPsbylt3yFm9qyZvRD29ytdLJM0swfD7fuMmVUPfkv7L8e+lszncjszi5nZc2b26y7mDf62dfeSvgExYA1wKJAAXgBmdVrmSuC7hW5rnvp7BnA8sLyb+ecBiwADTgGeKXSbB7i/ZwK/LnQ789TXCcDx4f3hwOou/pZLZvvm2N9S2r4GDAvvVwLPAKd0WuYfgVvD+5cBDxa63QPY15L5XM7q0/8D/qerv9lCbNtyqACcBNS4+6vu3gw8AFxc4DYNGHd/HKg/wCIXAz/2wNPAKDObMDity78c+lsy3H2zu/81vL8LeAmY1Gmxktm+Ofa3ZITbbHf4sDK8dR6kdTFwT3h/PnC2mdkgNTFvcuxrSTGzycD5wO3dLDLo27YcAsAkYEPW4410/SHy3rBkOt/MpgxO0woi1/ejlJwalhoXmdnsQjcmH8Ly4HEEv5yyleT2PUB/oYS2b1gifh7YCvzO3bvdvu6eARqAsYPbyvzIoa9QWp/L/wV8DmjrZv6gb9tyCAC5+BVQ7e5HA7/jzRQm0fdXgtNiHgN8B/hlgdvTb2Y2DPgZ8Cl331no9gy0HvpbUtvX3Vvd/VhgMnCSmc0pdJsGSg59LZnPZTO7ANjq7ksL3ZZs5RAANgHZyXFyOK2Du9e5e1P48HbghEFqWyH0+H6UEnff2V5qdPeFQKWZjStws/rMzCoJvgx/4u4/72KRktq+PfW31LZvO3ffAfwRmNdpVsf2NbM4MBKoG9zW5Vd3fS2xz+XTgYvMbB3BbuizzOy+TssM+rYthwCwGJhpZoeYWYJgcMWC7AU67SO9iGBfY6laAFwejhY/BWhw982FbtRAMbPx7fvRzOwkgr/5SH5ghv24A3jJ3b/VzWIls31z6W+Jbd8qMxsV3h8KvBN4udNiC4ArwvuXAI96OGosSnLpayl9Lrv79e4+2d2rCb6DHnX3v++02KBv2/hArrwYuHvGzK4DHiE4IuBOd19hZl8Flrj7AuATZnYRkCEYUHZlwRrcT2Z2P8HI6HFmthH4MsEAG9z9VmAhwUjxGqAR+HBhWpofOfT3EuBaM8sAe4HLoviBGTod+BCwLNx3CvDPwFQoye2bS39LaftOAO4xsxhBkHnI3X/d6bPqDuBeM6sh+Ky6rHDN7Zdc+loyn8vdKfS21ZkARUREylA57AIQERGRThQAREREypACgIiISBlSABARESlDCgAiIiJlSAFARESkDCkAiIiIlCEFABERkTL0/wEqRxPwEfxJ4gAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -338,6 +361,16 @@ "pylab.plot(distances, np.subtract(energies[0], e_nofreeze), label='Freeze Core: False')\n", "pylab.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true, + "scrolled": true + }, + "outputs": [], + "source": [] } ], "metadata": { @@ -356,7 +389,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/energyplot.ipynb b/community/aqua/chemistry/energyplot.ipynb index 9e3042680..60a1eaa56 100644 --- a/community/aqua/chemistry/energyplot.ipynb +++ b/community/aqua/chemistry/energyplot.ipynb @@ -10,10 +10,9 @@ "\n", "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy and dipole moments of a Lithium Hydride (LiH) molecule over a range of inter-atomic distances.\n", "\n", - "This notebook populates a dictionary, which is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", + "This notebook populates a dictionary, which is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop. The main goal of this notebook is to show this technique and to keep things simpler and quicker a classical algorithm, the ExactEigensolver, is used here.\n", " \n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires.\n", - " " + "This notebook has been written to use the PYSCF chemistry driver. " ] }, { @@ -47,8 +46,9 @@ "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "# Note: In order to allow this to run reasonably quickly it takes advantage\n", "# of the ability to freeze core orbitals and remove unoccupied virtual\n", - "# orbitals to reduce the size of the problem. The result without this\n", - "# will be more accurate but it takes rather longer to run.\n", + "# orbitals to reduce the size of the problem. Freeze core can always\n", + "# be used, but be very cautious when removing unoccupied orbitals.\n", + "# \n", "qiskit_chemistry_dict = {\n", " 'driver': {'name': 'PYSCF'},\n", " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", @@ -88,24 +88,12 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8VvX5//HXlUUIhLCC7D2VpUYEJyh1VQUXglWrtqWK1Wpba8e3y7aOX7W12mqrtc5WQUW0FesEF6IChiV7hxlWwkgg4/r9cR/a20hCArlzct95Px+P8/Dc53zOua+TG/POGffnY+6OiIhIrCSFXYCIiCQ2BY2IiMSUgkZERGJKQSMiIjGloBERkZhS0IiISEwpaKTeMbNTzWxJ2HXEmpm5mfUMuw6RWFPQSGjMbLWZjay43N3fd/c+VbUzs2vM7IMq9m1m9h0zm2dme81sk5lNN7OxtXsUsWFmx5jZG2a23cx2mtlsMzsvWDfczPJquL8jCrVg+z1mtjtq+uHh7k8alpSwCxCJkQeAc4EbgA+A/cAw4JvAcxUbm5kB5u7ldVlkFf4FPAycH7w+AbDwygFgkLsvj+UbmFmKu5fG8j2k7umMRuqdw/mLvcL2vYEJwFh3f9Pdi9y9zN0/cPdrotpNN7PfmtmHwF6gu5m1N7NXgjOJ5Wb2raj2T5jZbyqrMzjz+kFwFlVgZhPNLD1q/W1mttHMNpjZdVXU3xroBjzq7vuD6UN3/8DMmgCvAe2jzizam9kQM/soOPvZaGZ/MrO0YH/vBbueG7S/PFh+vpnlBtvMMLOBh/nz/qWZTTKzp8xsl5ktNLOcqPXtzexFM8s3s1VmdnOFbV8ws2fMrBC4xswam9mTZrbDzBaZ2Q8P/JyDn+GLFd7/ATP74+HULnVDQSOJ6AxgnbvPqkbbq4DxQCawhsjZTh7QHrgUuNPMzqjBe48BziESFAOBawDM7BzgB8BXgF7Aly4ZRtkGLAeeMbPRZnbUgRXuvofImdoGd28aTBuAMuBWoDWRM7cziYQt7n5asPmgoP1EMzsW+DvwbaAV8FfgFTNrVINjjXYhkZ9dc+AV4E/BcScROTubC3QI6rrFzM6O2nYU8EKw7T+AXwBdge5Efl5XRrV9BjjHzJoH+08BxgJPHWbdUgcUNBIvpgR/ee80s53AQ1W0bQ1sil5gZnnBtsVm1iVq1RPuvjC4XNMWOBm43d2L3T0X+BtwdQ3qfMDdN7j7diK/YAcHy8cAj7v7giAsflnZDjzSAeEIYDVwH7DRzN4zs15VbDPb3We6e6m7ryYSHKdXUed44K/u/nFwtvcksA8YWsU2c6I/gwph8YG7T3X3MuBpYFCw/AQg293vCM7MVgKPEgmHAz5y9ynuXu7uRUR+Vne6+w53zyNyGfTAcW4E3gMuCxadA2x199lV1C0hU9BIvBjt7s0PTAR/rVdiG9AueoG7dyQSQI344r2OdVHz7YHt7r4ratkaIn+JV1d0wO0FmkbtO/q91lS1E3fPc/fvuHsPoAuwhyr+ajez3mb27+Chh0LgTiLHW5kuwPcrhHenoM7KHBf9Gbj761HrKh53enC20YXIZb7o9/kJcFRU++ifC3z5Z1Vx/ZP87yznSiLBJvWYgkYS0TtAx+j7BFWI7r58A9DSzDKjlnUG1gfze4CMqHVta1DTRiK/yKP3Wy3uvg74M9D/wKKDNHsYWAz0cvdmRH6ZV/XwwDrgtxWCI8Pdn61uXdW0DlhV4X0y3f28qDYVj2cj0DHqdacK66cAA82sP5GHJf5RyzVLLVPQSNhSzSw9ajriJyHdfQmRS0fPmdlXgpvLycBJh9huHTADuCuoZSDwDSL3BQBygfPMrKWZtQVuqUFZk4jc6D7azDKI3Ic4KDNrYWa/MrOeZpYUPBxwHTAzaLIZaGVmWVGbZQKFwG4z60vkabtom4nc8zjgUeB6MzvRIpqY2VcrhGxt+ATYZWa3H/gczKy/mZ1QxTaTgB8HP4cOwHeiV7p7MZF7Ov8EPnH3tbVcs9QyBY2EbSpQFDX9spb2eyORa/u/B7YTucH/a+ByoKpfTOOI3IjeALwE/MLd3wrWPU3kpvZq4A1gYnWLcffXgPuJnG0tD/5bmf1BDW8RCY8FRO6fXBPsazHwLLAyuBzVnsiDBlcAu4iESMXafgk8GbQfEzwo8S0iN+13BDVdc4jDOPDU2oHp/mocdxmRs47BwCpgK5H7XllVbHYHkc9rVfAzeCE4/mhPAgPQZbO4YBr4TETqMzO7gcij6qdHLetM5FJhW3cvDK04qRad0YhIvWJm7czs5OCyYR/g+0TOLg+sTwK+BzynkIkP6hlAROqbNCL32LoBO4l8P+chAIt8YXUzkaf2zgmrQKkZXToTEZGY0qUzERGJKV06A1q3bu1du3YNuwwRkbgye/bsre6efah2Chqga9euzJpVnW6xRETkADOrsoeLA3TpTEREYkpBIyIiMaWgERGRmAolaCwyIFRuMK02s9xK2t0aDKK0wMyetWAQqaBvpt+a2dJgYKSbo5Y/YJEBq+aZ2XF1eVwiIvJloTwM4O6XH5g3s/uAgoptgs70bgaOdvciM5tEZAyLJ4j0ydQJ6Ovu5WbWJtjsXCKDSvUCTiTSo+2JsTsSERE5lFCfOjMzIzLIUWUjGKYAjc2shEj37BuC5TcAVxwY393dtwTLRwFPBQNHzTSz5mbWLhgsSUREQhD2PZpTgc3uvqziCndfD9xLpKfdjUCBu78RrO4BXG5ms8zstaiRBzvwxUGS8qhk0CozGx9sPys/P7+WDkdERCqKWdCY2VvBvZWK06ioZuOIdHd+sO1bEDlD6UZkxL0mZnZgVL1GQLG75xDpEv3vNa3P3R9x9xx3z8nOPuT3jQ5qRf5ufvWvhZSUlR/W9iIiDUHMLp25+8iq1gcDXF0MHF9Jk5FERubLD9pPJjJw1TNEzlQmB+1eAh4P5tfzxdH4OvK/0RFr3dpte3n8w9Uc36UF5w+sagRcEZGGK8xLZyOBxe6eV8n6tcBQM8sI7uWcCSwK1k0BRgTzpwNLg/lXgKuDp8+GErncFrP7M6f1zqZTy8Y89VG1vhwrItIghRk0Y6lw2czM2pvZVAB3/5jIyHpzgPlEan0kaHo3cImZzQfuAr4ZLJ8KrCQyWuCjwIRYHkByknHliV34ZNV2lmzaFcu3EhGJWxomAMjJyfHD7etsx579nHjX24zJ6chvRg+o5cpEROovM5sd3CuvUthPncW9Fk3SuGBge16as55dxSVhlyMiUu8oaGrB1cO6sGd/GZPnxOy5AxGRuKWgqQWDOjVnUMcsnp65Bl2KFBH5IgVNLblqWFeWb9nNRyu3hV2KiEi9oqCpJecPbEfzjFSe1qPOIiJfoKCpJempyVye04k3Pt/MpoLisMsREak3FDS16MqhXSh355+frA27FBGRekNBU4s6tcxgRJ82PPvJWvaXqv8zERFQ0NS6q4Z2IX/XPl5fuCnsUkRE6gUFTS07vXc2nVtm8PRMPRQgIgIKmlqXlGRcObQzn6zazuJNhWGXIyISOgVNDFx2fCcapSTpUWcRERQ0MdGiSRoXDGrPS5+p/zMREQVNjFw9rAt71f+ZiIiCJlYGdmzOoE7N1f+ZiDR4CpoYumpol0j/ZyvU/5mINFwKmhg6f2A7WmSk6lFnEWnQFDQxlJ6azJgTIv2fbSwoCrscEZFQKGhi7MoTI/2fPfux+j8TkYZJQRNj/+3/7NN16v9MRBokBU0duGqY+j8TkYZLQVMHTu8V9H+mngJEpAFS0NSB//Z/tlr9n4lIw6OgqSNjctT/mYg0TAqaOtI8I40Lg/7PCtX/mYg0IAqaOnTVgf7PZueFXYqISJ1R0NQh9X8mIg2RgqaOXT20Cyvy96j/MxFpMBQ0deyrQf9nT+mhABFpIBQ0dexA/2dvLlL/ZyLSMChoQqD+z0SkIVHQhKBTywzO6NOGf36i/s9EJPEpaEJy1bAubN29j9cWbAy7FBGRmFLQhOS0Xtn0atOUh6evoLxcjzqLSOJS0IQkKcmYMKIHizft4p3FW8IuR0QkZhQ0IbpgYHs6tmjMn6Yt1xc4RSRhKWhClJKcxPWn9yB33U4+WqkvcIpIYlLQhOzS4zuSndmIP09bHnYpIiIxEUrQmNlEM8sNptVmlltJu1vNbKGZLTCzZ80sPVhuZvZbM1tqZovM7OZg+XAzK4ja98/r8rgOR3pqMt86tRsfLt/GZ2t3hF2OiEitCyVo3P1ydx/s7oOBF4HJFduYWQfgZiDH3fsDycDYYPU1QCegr7v3A56L2vT9A/t29ztieRy15WsndiGrcSoPTV8RdikiIrUu1EtnZmbAGODZSpqkAI3NLAXIADYEy28A7nD3cgB3j+vHtpo0SuHak7vy5uebWbJpV9jliIjUqrDv0ZwKbHb3ZRVXuPt64F5gLbARKHD3N4LVPYDLzWyWmb1mZr2iNh1mZnOD5cdU9sZmNj7YflZ+fn7tHdFhuuakrmSkJfPQdN2rEZHEErOgMbO3gnsrFadRUc3GUcnZjJm1AEYB3YD2QBMzuzJY3Qgodvcc4FHg78HyOUAXdx8EPAhMqaw+d3/E3XPcPSc7O/tIDrVWNM9I48qhXfjX3A2s2bYn7HJERGpNzILG3Ue6e/+DTC8DBJfDLgYmVrKLkcAqd8939xIi93FOCtbl8b/7Oi8BA4P3LHT33cH8VCDVzFrH5ABj4JundCMlOYm/vLsy7FJERGpNmJfORgKL3b2ycY3XAkPNLCO4l3MmsChYNwUYEcyfDiwFMLO2QVvMbAiR44ubL6i0aZbOmJyOvDg7j00FxWGXIyJSK8IMmrFUuGxmZu3NbCqAu38MvEDkcth8IrU+EjS9G7jEzOYDdwHfDJZfCiwws7nAA8BYj7Ov3H/7tB6UufPo+zqrEZHEYHH2ezgmcnJyfNasWWGX8V/fm5jLaws28eGPzqBlk7SwyxEROSgzmx3cK69S2E+dyUHcMLwHRSVlPPHhqrBLERE5YgqaeqjXUZmcc0xbnpixml3FJWGXIyJyRBQ09dSEET0oLC7lmZka7llE4puCpp4a2LE5p/ZqzWMfrKS4pCzsckREDpuCph67cURPtu7ez6RZ68IuRUTksClo6rETu7Xk+C4t+Ou7KykpKw+7HBGRw6KgqcfMjO+M6Mn6nUVM+Wx92OWIiBwWBU09N7xPNv3aNePhd1dQVq7vPIlI/FHQ1HNmxo0jerAyfw+vL9wUdjkiIjWmoIkD5/ZvR/fWTfjztOWoJwcRiTcKmjiQnGRcP7wHCzcUMn1p+GPniIjUhIImTowe3IH2Wek8NE0Do4lIfFHQxIm0lCTGn9adT1fv4JNV28MuR0Sk2hQ0ceTyEzrTqkkaf9ZZjYjEEQVNHGmclsx1p3Tj3aX5zM8rCLscEZFqUdDEmauGdSEzPYWHpuusRkTig4ImzjRLT+Xrw7ryn4WbWL5lV9jliIgckoImDl17clfSU5J54G2d1YhI/aegiUOtmjbi2pO78srcDczL2xl2OSIiVVLQxKnrh/egZZM07py6SL0FiEi9pqCJU83SU7llZC9mrtzOO4u3hF2OiEilFDRxbNyQznRv3YQ7py6iVOPViEg9paCJY6nJSfzwnL6syN/DRI3CKSL1lIImzp19zFHkdGnBH95cxu59pWGXIyLyJQqaOGdm/OSr/di6ex+PvLcy7HJERL5EQZMAjuvcgq8ObMej761kc2Fx2OWIiHyBgiZB3H52X0rLy/n9G0vDLkVE5AsUNAmic6sMrhralednr2PJJnVNIyL1h4Imgdx0Rk+aNErhrtcWhV2KiMh/KWgSSIsmaXxnRE+mL8nnw+Vbwy5HRARQ0CScr5/UlQ7NG/PbVxdRXq6uaUQkfAqaBJOemswPz+nD5xsLeemz9WGXIyKioElEFwxsz4AOWdz3xhKKS8rCLkdEGrhqBY2ZTTazr5qZgikOJCUZPzmvHxsKivn7h6vCLkdEGrjqBsdDwBXAMjO728z6xLAmqQXDerTizL5teHjaCrbt3hd2OSLSgFUraNz9LXf/GnAcsBp4y8xmmNm1ZpYaywLl8P34vL7sLSnjwXc0EqeIhKfal8LMrBVwDfBN4DPgj0SC582YVCZHrGebTC4/oRPPzFzDqq17wi5HRBqo6t6jeQl4H8gALnD3C919orvfBDSt6Zua2UQzyw2m1WaWW0m7W81soZktMLNnzSw9WP5+1PYbzGxKsNzM7AEzW25m88zsuJrWlmhuGdmLtJQk7nltcdiliEgDlVLNdg+4+7SDrXD3nJq+qbtffmDezO4DCiq2MbMOwM3A0e5eZGaTgLHAE+5+alS7F4GXg5fnAr2C6UTg4eC/DVabzHS+fVoP/vDWUmat3k5O15ZhlyQiDUx1L521MLOLK0xnmlmbI3lzMzNgDPBsJU1SgMZmlkLkbGpDhe2bAWcAU4JFo4CnPGIm0NzM2h1JjYngW6d1o01mI+6cugh3fYlTROpWdYPmG8DfgK8F06PA7cCHZnbVEbz/qcBmd19WcYW7rwfuBdYCG4ECd3+jQrPRwNvuXhi87gBEDzWZFyz7EjMbb2azzGxWfn7+ERxC/ZeRlsL3z+rNnLU7eW3BprDLEZEGprpBkwr0c/dL3P0S4GjAiVyWuv1gG5jZW8G9lYrTqKhm46jkbMbMWhA5Q+kGtAeamNmVFZpVuv2huPsj7p7j7jnZ2dmHs4u4cunxnehzVCb3/Gcx+0vLwy5HRBqQ6gZNR3ffHPV6C9DJ3bcDJQfbwN1Hunv/g0wvAwSXwy4GJlbyniOBVe6e7+4lwGTgpAMrzaw1MAR4NWqb9UCn6LqDZQ1ecpLxo/P6smbbXp6ZuSbsckSkAalu0Ew3s3+b2dfN7OtEbr5PN7MmwM7DfO+RwGJ3z6tk/VpgqJllBPdyzgSi+7+/FPi3u0cPKfkKcHXw9NlQIpfbNh5mfQlneO9sTu7ZigfeWUZB0UH/PhARqXXVDZobgceBwcH0FHCju+9x9xGH+d5jqXDZy8zam9lUAHf/GHgBmAPMD2p9pKrtganASmA5kftIEw6ztoRkFumapqCohIem6UucIlI37FBPIZlZMvDWEQRKvZeTk+OzZs0Ku4w684Pn5/Jy7nr+fdOp9GmbGXY5IhKnzGx2db7icsgzGncvA8rNLKtWKpPQ/eS8fmSmp3L7i/Mo05g1IhJj1b10thuYb2aPBd+8f8DMHohlYRI7LZuk8YsLjiZ33U6emLE67HJEJMFVt2eAycEkCeLCQe2Z8tl67n19CWcdfRSdWmaEXZKIJKjq9t78JDAJmOnuTx6YYluaxJKZ8ZuLBpBk8JOX5qvHABGJmep2qnkBkAv8J3g92MxeiWVhEnsdmjfmh+f05f1lW5k8R183EpHYqO49ml8S+XLkTgB3zwW6x6gmqUNXDe3C8V1a8OtXP2erBkgTkRiobtCUuHvFHpbVj0kCSEoy7rlkAHv3lfHLVxaGXY6IJKDqBs1CM7sCSDazXmb2IDAjhnVJHerZJpPvnNGTf8/byFufbz70BiIiNVDdoLkJOAbYR+Tb+IXALbEqSure9af3oM9RmfzflAXsKlb3NCJSe6r71Nled/+pu58Q9Hj80wp9jEmcS0tJ4p5LB7J5VzH3/EejcYpI7anuU2e9zewRM3vDzN45MMW6OKlbgzs159qTuvHMzLV8smp72OWISIKo7qWz54HPgP8DbouaJMH84OzedGzRmB+9OI/ikrKwyxGRBFDdoCl194fd/RN3n31gimllEoqMtBTuvGgAK7fu4cF3vjTwqYhIjVU3aP5lZhPMrJ2ZtTwwxbQyCc1pvbO55LiO/PXdlXy+ofDQG4iIVKG6QfN1IpfKZgCzg6nh9KvfAP3s/H40z0jlR5PnUVqmr0yJyOGr7lNn3Q4yqWeABNY8I41fXngM8/IKePzD1WGXIyJxrMqgMbMfRs1fVmHdnbEqSuqHrw5ox8h+bbjvzSWs2bYn7HJEJE4d6oxmbNT8jyusO6eWa5F6xsz49ej+pCQl8ePJ6uFZRA7PoYLGKpk/2GtJQO2yGvOjc/syY8U2np+VF3Y5IhKHDhU0Xsn8wV5LgrpiSGeGdGvJb179nC271CGEiNTMoYJmkJkVmtkuYGAwf+D1gDqoT+qBpCTjrosHUFxarh6eRaTGqgwad09292bununuKcH8gdepdVWkhK9HdlO+e2Yvps7fxOsLN4VdjojEkep+j0aE8ad1p1+7ZvxsygK2aZA0EakmBY1UW2pyEvdeNpCdRSXcOmku5eW6TScih6agkRo5pn0Wv7zgGN5bms+fpi0PuxwRiQMKGqmxcUM6cdGxHfjDW0v5cPnWsMsRkXpOQSM1Zmb89qL+9Mxuynef+4xNBXrkWUQqp6CRw5KRlsLDVx7H3v1l3PTsHErU8aaIVEJBI4etZ5tM7rp4AJ+u3sG9ry8JuxwRqacUNHJERg3uwNdO7Mxf31vJm59vDrscEamHFDRyxH52/tH079CM70/KZd32vWGXIyL1jIJGjlh6ajIPXXE8Dkz4xxyKS8rCLklE6hEFjdSKzq0yuO+yQcxfX8BvXv087HJEpB5R0EitOeuYtow/rTvPzFzLy7nrwy5HROoJBY3UqtvO7sMJXVvw48nzWb5lV9jliEg9oKCRWpWanMSD446jcWoyNzwzh737S8MuSURCpqCRWtc2K50/jj2W5fm7+b+XFmgIaJEGTkEjMXFKr9Z898xeTP5sPc99ui7sckQkRKEEjZlNNLPcYFptZrmVtLvVzBaa2QIze9bM0oPl70dtv8HMpgTLh5tZQdS6n9flcckX3XRGL07t1ZpfvLKQBesLwi5HREISStC4++XuPtjdBwMvApMrtjGzDsDNQI679weSgbHB9qdGbf9Rhe3fP7DO3e+I+cFIpZKTjPsvH0zLjDRu/OccCotLwi5JREIQ6qUzMzNgDPBsJU1SgMZmlgJkABsqbN8MOAOYEss65fC1atqIP11xLOt3FHHb83N1v0akAQr7Hs2pwGZ3X1ZxhbuvB+4F1gIbgQJ3f6NCs9HA2+5eGLVsmJnNNbPXzOyYyt7YzMab2Swzm5Wfn3/kRyKVyunakh+d25fXF27msQ9WhV2OiNSxmAWNmb0V3FupOI2KajaOSs5mzKwFMAroBrQHmpjZlRWaVdx+DtDF3QcBD1LFmY67P+LuOe6ek52dXfMDlBr5xindOPuYo7j7tcUaLE2kgYlZ0Lj7SHfvf5DpZYDgctjFwMRKdjESWOXu+e5eQuQ+zEkHVppZa2AI8GrUexa6++5gfiqQGrSTkJkZ/+/SQfTIbsr4p2YxP08PB4g0FGFeOhsJLHb3vErWrwWGmllGcC/nTGBR1PpLgX+7+3+HdzSztkFbzGwIkePbFpPqpcayGqfy5HVDaJ6RxjWPf8LK/N1hlyQidSDMoBlLhctmZtbezKYCuPvHwAtELofNJ1LrI1VtTyR8FpjZXOABYKzr7nO90jYrnWe+eSIAVz32iYaBFmkATL+HIScnx2fNmhV2GQ3KgvUFjH1kJu2y0nn++mE0z0gLuyQRqSEzm+3uOYdqF/ZTZ9JA9e+QxSNXH8+abXu57olP1SeaSAJT0EhoTurRmgfGDSZ33U4m/GMOJWXlYZckIjGgoJFQndO/Hb+9aADTl+Tzg+fnUl6uS7kidWVTQXGdjIiroJHQjRvSmdvO7sPLuRu449+fq/cAkTrw2vyNnH3/e9z7+pKYv1dKzN9BpBomDO/B9j37eeyDVbRqksZNZ/YKuySRhLRnXym/+tdCJs3KY2DHLK44sXPM31NBI/WCmfHT8/qxY89+7ntzKS2bpvG1E7uEXZZIQvls7Q5umZjLuu17+c6Innx3ZC9Sk2N/YUtBI/VGUpJxz6UD2VlUwv9NWUCLjDTOG9Au7LJE4l5pWTkPTV/BH99eRttm6Tw3fhhDurWss/dX0Ei9kpqcxJ+vOI6rHvuYW57LJatxKif3VC9CIodr3fa93DIxl9lrdjB6cHvuGN2fZumpdVqDHgaQeqdxWjKPff0Eumc3YfxTs5iXtzPskkTijrszeU4e5/7xfZZu2sUfxw7m/rHH1nnIgIJG6qmsjEi/aC2apHHN45+yQv2iiVRbQVEJNz+Xy/cmzaVfu0ymfvdURg3uEFo9Chqpt45qls7T3ziRJIOrH/uEjQVFYZckUu/NXLmNc+9/j9fmb+S2s/vw3PhhdGqZEWpNChqp17q1bsIT1w6hoKiEqx/7hB179oddkki9tL+0nHv+s5hxj86kUWoyL95wEjeO6ElykoVdmoJG6r/+HbJ49Ooc1mzfy2V//Yi8HXvDLkmkXlmRv5tLHp7Bw9NXcHlOJ/590ykM6tQ87LL+S0EjcWFYj1Y8ee0QNhcWc/FDM1i4QQOnibg7//h4DV994H3W7djLX648nrsvGUiTRvXrgWIFjcSNYT1a8eINJ5GcZFz+15m8vyw/7JJEQrNm2x6ufOxjfvrSAnK6tOT1W07jnP5twy7roBQ0Eld6H5XJSxNOpmOLxlz7+Ke8OLuyAVpFElNpWTl/eXcFZ9//HnPXFfDr0f156rohHNUsPezSKlW/zq9EqqFtVjqTrh/G9U/P5vvPz2VTYTEThvcgGMVbJGEtWF/A7S/OY+GGQr5y9FH8elR/2mbV34A5QEEjcalZeipPXDuEH74wl9+9voT1O4u448JjSKmDfptE6lrR/jL+8NZSHvtgFS2bpPHw147jnP5t4+aPKwWNxK20lCR+P2Yw7Zo35uHpK9hSWMwD444lI03/rCVxfLBsKz95aT5rt+9l3JBO/OicfmRl1P23+4+E/o+UuJaUZNx+Tl/aZ6Xzi1cWMu7Rj3ns6zm0btoo7NJEjsiOPfv5zauLeHFOHt1aN+G58UMZ2r1V2GUdFgWNJISrhnXlqGbp3PzcZ1zy8AyevHYIXVs3CbsskRpzd16Zu4E7/vU5BUUl3DiiBzed0Yv01OSwSztsuqAtCeOsY9ryz28NpbCohIsfnsFna3eEXZJIjazfWcR1T3zKd5/LpWPLDP510yncdnbfuA4ZUNBIgjmucwtevOEkmjRKZtyjM3nr881hlySQOskrAAASMklEQVRySGXlzuMfruIrv3+Xj1dt5+fnH83kG06iX7tmYZdWKxQ0knC6Zzdl8g0n0/uoTMY/PYt/fLwm7JJEKrVgfQGXPDyDX/3rc4Z0a8kbt57Gdad0qxd9lNUW3aORhJSd2Yjnxg/lxn/M4acvLWDjzmK+f1bvuHkcVBLfpoJifvf6EiZ/lkfLjDT+OHYwFw5qn5D/RhU0krAy0lJ49OocfvbyAv40bTmrtu7hzosGxN2joZJY9u4v5a/vruSR91ZSVu58+7QeTBjRI5QByeqKgkYSWkpyEndeNIAurZpw7+tLmL1mB/deNohTeml4aKlb5eXOi3Py+N3rS9iyax/nD2zH7ef0DX2smLqgoJGEZ2Zcf3oPTu7RmlsmfsaVj33MNSd15Ufnxv/TPBIfZqzYym9fXcTCDYUM7tSch688juO7tAy7rDqjoJEGY0DHLF69+VTufm0xT8xYzfvL8rn/8mMZ0DEr7NIkQa3M382dUxfz1qLNdGjemAfGHcsFA9sl5H2Yqpi7h11D6HJycnzWrFlhlyF16P1l+dz2/Dy27t7HLSN7cf3pPdRPmtSaHXv288e3l/HMzDWkpyYzYUQPrju5W8KdQZvZbHfPOWQ7BY2CpqEq2FvCz15ewCtzN3Bs5+b8Ycxg9SYgR2R/aTlPfbSaB95exu59pYwd0plbR/YmOzMxu0RS0NSAgqZhezl3PT+bsoCSMudn5x/NuCGdGtylDTky7s7rCzdz92uLWL1tL6f1zuan5/WjT9vMsEuLqeoGje7RSIM3anAHhnRryW3Pz+MnL83nrUWbufuSAbTJrP/jfEi43J23F23hT9OWk7tuJ73aNOWJa09geJ82YZdWr+iMBp3RSER5ufPUR6u567XFZKQlc9fFA+vt0LgSrrJy59X5G3lo2nIWb9pFxxaNmTC8J2NyOjaoe326dFYDChqJtnzLLm6ZmMuC9YVcenxHfnHB0WQm8JfppPr2l5bz0md5PDx9Bau37aVnm6ZMGN6DCwa1J7UBBcwBunQmcph6tslk8g0n8+A7y/jztOV8tGIb9142iGE94nMsEDlyRfvLeO7TtTzy3ko2FhQzoEMWf7nyOM46ui1JCdQnWazojAad0UjlZq/Zwfcm5bJm215G9Mnm+2f1oX8Hfe+moSgsLuHpj9bw2Aer2L5nP0O6teTGET05rVdrPTBCHFw6M7OJQJ/gZXNgp7sPPki7W4FvAg7MB65192IzOxP4HZEeqHcD17j7cjNrBDwFHA9sAy5399VV1aKgkaoU7S/jiRmr+cu7KygoKuG8AW353ld607NNYj9R1JBt272Pv3+4iqdmrGHXvlKG98nmxhE9OaFrw/k2f3XU+6D5QhFm9wEF7n5HheUdgA+Ao929yMwmAVPd/QkzWwqMcvdFZjYBGOLu1wTzA939ejMbC1zk7pdX9f4KGqmOwuIS/vb+Kh57fyVFJWWMPrYDt5zZm86tEr+vqoZiY0ERj7y3kmc/Wcu+0nLO7d+WCcN76iy2EnFzj8Yi559jgDMqaZICNDazEiAD2BAsd+DAqEBZUctHAb8M5l8A/mRm5vUhUSWuNUtP5Xtf6c01J3XlL++u4MkZq3kldwNjTujETWf0pF1W47BLlMPg7sxes4PnPl3Hy7nrKXcYPbgDNwzvQc82TcMuLyGEfkZjZqcBv68sFc3su8BvgSLgDXf/WrD8VGBKsLwQGOruhWa2ADjH3fOCdiuAE919a4X9jgfGA3Tu3Pn4NWs0OJbUzJbCYv40bTnPfrIWM+PKE7swYUQPWjdNzG+BJ5r8XfuYPCePSbPWsSJ/D03Skrn4uI6MP617g+hRuTbUi0tnZvYWcLAvIvzU3V8O2jwMLHf3+w6yfQvgReByYCfwPPCCuz9jZpOBe9z9YzO7Dejj7t+sbtBE06UzORLrtu/lwXeW8cLsPNJTk7n25K6MP7WHxr2ph0rLynl3aT4TP13HO4u3UFru5HRpwZicTnx1YDuaNAr9Ik9cqReXztx9ZFXrzSwFuJjIjfuDGQmscvf8oP1k4CQzex0Y5O4fB+0mAv8J5tcDnYC8YP9ZRB4KEImJTi0z+H+XDuL603vwh7eW8edpK3jqozWMP7U7157Sjab65RW61Vv3MGnWOl6YnceWXfto3TSNb5zSjctyOunyWB0I+/+AkcDiA2cfB7EWGGpmGUQukZ0JzAJ2AFlm1tvdlwJfARYF27wCfB34CLgUeEf3Z6QudM9uyoPjjmXC8B7c98ZS7ntzKY/PWM31p3fnkuM60kqX1OpU0f4yps7fyKRZ6/h41XaSDEb0acOYEzpxRt82DfILlmEJ9R6NmT0BzHT3v0Qtaw/8zd3PC17/isils1LgM+Cb7r7PzC4C7gDKiQTPde6+0szSgaeBY4HtwFh3X1lVHbp0JrGQu24n972xhPeXbSUlyTi1V2tGH9uBrxx9FBlpYf+Nl5jcnXl5BUyctY5/5W5g175SurbK4LKcTlx6fEeOaqb+62pTvbhHEy8UNBJLizYWMiV3Pa/kbmBjQTEZacmcfUxbRg1uzyk9WzeovrFiobSsnDlrdzJtyRbeXrSZpZt3k56axHn92zHmhE6c2K2lvlwZIwqaGlDQSF0oL3c+Wb2dl3PX8+q8jRQWl9K6aRrnD2zPqMHtGdypuX4hVtOWwmKmL83n3SX5vLcsn13FpaQkGcd3acEFg9pz4eD2NFP/dDGnoKkBBY3UtX2lZUxbnM/Luet5e/EW9peW07VVBhcO7sDowe3pnq0b1NFKy8rJXbeT6UvymbZkCws3FALQJrMRI/q0YXifbE7u1VrhUscUNDWgoJEwFRSV8PqCTUzJXc9HK7fhDoM6ZjFqcAfOH9SuwY6Lk79rH+8uzWf6ki28v2wrBUUlJCcZx3duwel9shnRpw392mXqLDBECpoaUNBIfbGpoJhX5q5nymcb+HxjIWbQq01TBnZszqCOWQzo2Jx+7TJplJJYY8+XlzvrdxaxaGMh8/IKeHdpPvPXFwCQndmI4b2zGd6nDaf0ak1WY5211BcKmhpQ0Eh9tGzzLqbO30Tuuh3Myytg2579AKQmG33bNmNgxywGdWzOgI5Z9GrTNG4eKigoKmHJpl0s3lTIoo27WLKpkCWbdrFnfxkASQbHdW7B8D6RcDm6XTN1xV9PKWhqQEEj9Z175C/++XkFzM0rYF7eTubnFbBrXykAjVOTOaZ9s8iZT6csBnTIomurJqH+gi4pK2fV1j0s2ljI4k27IuGysZANBcX/bZPVOJW+bTPp164Zfdpm0rdtJr2PytQ39OOEgqYGFDQSj8rLndXb9jAvr4C5QfAs2FBAcUk5AJnpKXRo3pisxqk0z0glq/EXp2aNU2mekfbFZekpXzozcnf27i+jsLiEXcWlFBYF/y0uobDC613FpewqLmFTQTEr8/ewvyxSS0qS0bNNU/q2zaRP22b0bZdJv7bNOKpZI91jiWP1ogsaEYmdpCSje3ZTumc3ZfSxHYDI01nLtuxmfl4B89bvZHPhPgr2lrB6614KikooKCqhqKSsyv1mNkqhWeNUkpIIgqOUsvKq/yBNS06iWeMUMtMjYdUuK53T+2TTLwiV7q2bkpYSH5f2pPYpaEQSSEpyEv3aNaNfu2aMOaHTQdvsKy2joKiEwiB4CopK2Ln3f/MFRSUU7C2h3J1mjVNplp5KZnokfDLTUw76Oj01sR5OkNqloBFpYBqlJNMmM7nBPjYtdU/nsiIiElMKGhERiSkFjYiIxJSCRkREYkpBIyIiMaWgERGRmFLQiIhITCloREQkptTXGWBm+cCasOs4DK2BrWEXUcd0zImvoR0vxO8xd3H37EM1UtDEMTObVZ0O7RKJjjnxNbTjhcQ/Zl06ExGRmFLQiIhITClo4tsjYRcQAh1z4mtoxwsJfsy6RyMiIjGlMxoREYkpBY2IiMSUgqaeM7O/m9kWM1tQyfpRZjbPzHLNbJaZnVLXNda2Qx1zVLsTzKzUzC6tq9pipRqf83AzKwg+51wz+3ld11jbqvM5B8eda2YLzezduqyvtlXjM74t6vNdYGZlZtayruuMBd2jqefM7DRgN/CUu/c/yPqmwB53dzMbCExy9751XWdtOtQxB22SgTeBYuDv7v5CHZZY66rxOQ8HfuDu59d1bbFSjWNuDswAznH3tWbWxt231HWdtaU6/66j2l4A3OruZ9RJcTGmM5p6zt3fA7ZXsX63/++vhSZA3P/lcKhjDtwEvAjE7S+eaNU85oRSjWO+Apjs7muD9nH9WdfwMx4HPBvDcuqUgiYBmNlFZrYYeBW4Lux6Ys3MOgAXAQ+HXUsdG2Zmc83sNTM7Juxi6kBvoIWZTTez2WZ2ddgF1QUzywDOIfKHVEJICbsAOXLu/hLwUnBq/mtgZMglxdr9wO3uXm5mYddSV+YQ6Vdqt5mdB0wBeoVcU6ylAMcDZwKNgY/MbKa7Lw23rJi7APjQ3RPmDFdBk0Dc/T0z625mrd09Hjvoq64c4LkgZFoD55lZqbtPCbes2HH3wqj5qWb2UAP4nPOAbe6+B9hjZu8Bg4BED5qxJNBlM9Cls7hnZj0t+I1rZscBjYBt4VYVW+7ezd27untX4AVgQiKHDICZtY36nIcQ+X83oT9n4GXgFDNLCS4nnQgsCrmmmDKzLOB0IseeMHRGU8+Z2bPAcKC1meUBvwBSAdz9L8AlwNVmVgIUAZdHPRwQl6pxzAmnGsd8KXCDmZUS+ZzHJvrn7O6LzOw/wDygHPibu1f5yHt9Vs1/1xcBbwRncQlDjzeLiEhM6dKZiIjElIJGRERiSkEjIiIxpaAREZGYUtCIiEhMKWgkIZnZ7mq0uSX4fkZtvedoMzu6Fvc34wi23R38t72ZVdrhqJk1N7MJh/s+ItWhoJGG7BagRkET9BpdmdFArQWNu59UC/vY4O5VDaPQHFDQSEwpaCShBeOZTDezF8xssZn9wyJuBtoD08xsWtD2LDP7yMzmmNnzwRAMmNlqM7vHzOYAl5nZt8zs06CDyxfNLMPMTgIuBH4XjCfSw8wGm9lMi4wX9JKZtQj2N93M/mCR8YMWWWRcnclmtszMfhNV++6o+dvNbH7wnncf5Di7BbXPr7CPrgfGPzGzY8zsk6C+eWbWC7gb6BEs+52ZNTWzt4OfwXwzGxW1n0Vm9qhFxoZ5w8waB+t6mtlbQW1zzKxHsPy24Oc0z8x+VasfrMQXd9ekKeEmYHfw3+FAAdCRyB9WHwGnBOtWA62D+dbAe0CT4PXtwM+j2v0wat+touZ/A9wUzD8BXBq1bh5wejB/B3B/MD8duCeY/y6wAWhHpPugvAP7jzqGc4mMy5IRvG55kON9Bbg6mL8xatuuwIJg/kHga8F8GpGOKv+7PlieAjSL+pksByxoVwoMDtZNAq4M5j8GLgrm04mcJZ4FPBJsmwT8Gzgt7H8XmsKZ1AWNNASfuHsegJnlEvml+UGFNkOJXPb6MOhSLI1IKB0wMWq+f3DW0BxoCrxe8Q2DPquau/uBUSGfBJ6PavJK8N/5wEJ33xhstxLoxBf7MRsJPO7uewH84L36nkykOyKAp4F7DtLmI+CnZtaRyDgvy+zLvV8bcKdFegIvBzoARwXrVrl7bjA/G+hqZplAB4/0II67FwfHcRaRsPksaN+USG/T7x2kLklwChppCPZFzZdx8H/3Brzp7uMq2Ud031NPAKPdfa6ZXUPkrOlwayqvUF95JfVVR5X9Sbn7P83sY+CrwFQz+zawskKzrwHZwPHuXmJmq4mcpUTXDJGfY+Mq3s6Au9z9rzWoXxKU7tFIQ7YLyAzmZwInm1lPADNrYma9K9kuE9hoZqlEfjF/aX/uXgDsMLNTg3VXAYc75v2bwLUHnpCzg48j/yGR7uWpUNN/mVl3YKW7P0Ckd+CBfPFnAJAFbAlCZgTQparC3H0XkGdmo4P3aBTU+TpwXdR9rg5m1qZaRysJR0EjDdkjwH/MbJq75wPXAM+a2Twil5n6VrLdz4jcl/gQWBy1/DngNjP7LLgh/nUiDwfMAwYTuU9TY+7+HyKX2mYFl/5+cJBm3wVuNLP5RC53HcwYYEGwj/5Exq7fRuRy4QIz+x3wDyAn2M/VFY6vMlcBNwfHOQNo6+5vAP8kMljZfCLDOWRWsQ9JYOq9WUREYkpnNCIiElMKGhERiSkFjYiIxJSCRkREYkpBIyIiMaWgERGRmFLQiIhITP1/AI/OIczCUVQAAAAASUVORK5CYII=\n", "text/plain": [ - "Text(0.5, 1.0, 'LiH Ground State Energy')" + "" ] }, - "execution_count": 2, "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VvX5//HXlUUIhLCC7D2VpUYEJyh1VQUXglWrtqWK1Wpba8e3y7aOX7W12mqrtc5WQUW0FesEF6IChiV7hxlWwkgg4/r9cR/a20hCArlzct95Px+P8/Dc53zOua+TG/POGffnY+6OiIhIrCSFXYCIiCQ2BY2IiMSUgkZERGJKQSMiIjGloBERkZhS0IiISEwpaKTeMbNTzWxJ2HXEmpm5mfUMuw6RWFPQSGjMbLWZjay43N3fd/c+VbUzs2vM7IMq9m1m9h0zm2dme81sk5lNN7OxtXsUsWFmx5jZG2a23cx2mtlsMzsvWDfczPJquL8jCrVg+z1mtjtq+uHh7k8alpSwCxCJkQeAc4EbgA+A/cAw4JvAcxUbm5kB5u7ldVlkFf4FPAycH7w+AbDwygFgkLsvj+UbmFmKu5fG8j2k7umMRuqdw/mLvcL2vYEJwFh3f9Pdi9y9zN0/cPdrotpNN7PfmtmHwF6gu5m1N7NXgjOJ5Wb2raj2T5jZbyqrMzjz+kFwFlVgZhPNLD1q/W1mttHMNpjZdVXU3xroBjzq7vuD6UN3/8DMmgCvAe2jzizam9kQM/soOPvZaGZ/MrO0YH/vBbueG7S/PFh+vpnlBtvMMLOBh/nz/qWZTTKzp8xsl5ktNLOcqPXtzexFM8s3s1VmdnOFbV8ws2fMrBC4xswam9mTZrbDzBaZ2Q8P/JyDn+GLFd7/ATP74+HULnVDQSOJ6AxgnbvPqkbbq4DxQCawhsjZTh7QHrgUuNPMzqjBe48BziESFAOBawDM7BzgB8BXgF7Aly4ZRtkGLAeeMbPRZnbUgRXuvofImdoGd28aTBuAMuBWoDWRM7cziYQt7n5asPmgoP1EMzsW+DvwbaAV8FfgFTNrVINjjXYhkZ9dc+AV4E/BcScROTubC3QI6rrFzM6O2nYU8EKw7T+AXwBdge5Efl5XRrV9BjjHzJoH+08BxgJPHWbdUgcUNBIvpgR/ee80s53AQ1W0bQ1sil5gZnnBtsVm1iVq1RPuvjC4XNMWOBm43d2L3T0X+BtwdQ3qfMDdN7j7diK/YAcHy8cAj7v7giAsflnZDjzSAeEIYDVwH7DRzN4zs15VbDPb3We6e6m7ryYSHKdXUed44K/u/nFwtvcksA8YWsU2c6I/gwph8YG7T3X3MuBpYFCw/AQg293vCM7MVgKPEgmHAz5y9ynuXu7uRUR+Vne6+w53zyNyGfTAcW4E3gMuCxadA2x199lV1C0hU9BIvBjt7s0PTAR/rVdiG9AueoG7dyQSQI344r2OdVHz7YHt7r4ratkaIn+JV1d0wO0FmkbtO/q91lS1E3fPc/fvuHsPoAuwhyr+ajez3mb27+Chh0LgTiLHW5kuwPcrhHenoM7KHBf9Gbj761HrKh53enC20YXIZb7o9/kJcFRU++ifC3z5Z1Vx/ZP87yznSiLBJvWYgkYS0TtAx+j7BFWI7r58A9DSzDKjlnUG1gfze4CMqHVta1DTRiK/yKP3Wy3uvg74M9D/wKKDNHsYWAz0cvdmRH6ZV/XwwDrgtxWCI8Pdn61uXdW0DlhV4X0y3f28qDYVj2cj0DHqdacK66cAA82sP5GHJf5RyzVLLVPQSNhSzSw9ajriJyHdfQmRS0fPmdlXgpvLycBJh9huHTADuCuoZSDwDSL3BQBygfPMrKWZtQVuqUFZk4jc6D7azDKI3Ic4KDNrYWa/MrOeZpYUPBxwHTAzaLIZaGVmWVGbZQKFwG4z60vkabtom4nc8zjgUeB6MzvRIpqY2VcrhGxt+ATYZWa3H/gczKy/mZ1QxTaTgB8HP4cOwHeiV7p7MZF7Ov8EPnH3tbVcs9QyBY2EbSpQFDX9spb2eyORa/u/B7YTucH/a+ByoKpfTOOI3IjeALwE/MLd3wrWPU3kpvZq4A1gYnWLcffXgPuJnG0tD/5bmf1BDW8RCY8FRO6fXBPsazHwLLAyuBzVnsiDBlcAu4iESMXafgk8GbQfEzwo8S0iN+13BDVdc4jDOPDU2oHp/mocdxmRs47BwCpgK5H7XllVbHYHkc9rVfAzeCE4/mhPAgPQZbO4YBr4TETqMzO7gcij6qdHLetM5FJhW3cvDK04qRad0YhIvWJm7czs5OCyYR/g+0TOLg+sTwK+BzynkIkP6hlAROqbNCL32LoBO4l8P+chAIt8YXUzkaf2zgmrQKkZXToTEZGY0qUzERGJKV06A1q3bu1du3YNuwwRkbgye/bsre6efah2Chqga9euzJpVnW6xRETkADOrsoeLA3TpTEREYkpBIyIiMaWgERGRmAolaCwyIFRuMK02s9xK2t0aDKK0wMyetWAQqaBvpt+a2dJgYKSbo5Y/YJEBq+aZ2XF1eVwiIvJloTwM4O6XH5g3s/uAgoptgs70bgaOdvciM5tEZAyLJ4j0ydQJ6Ovu5WbWJtjsXCKDSvUCTiTSo+2JsTsSERE5lFCfOjMzIzLIUWUjGKYAjc2shEj37BuC5TcAVxwY393dtwTLRwFPBQNHzTSz5mbWLhgsSUREQhD2PZpTgc3uvqziCndfD9xLpKfdjUCBu78RrO4BXG5ms8zstaiRBzvwxUGS8qhk0CozGx9sPys/P7+WDkdERCqKWdCY2VvBvZWK06ioZuOIdHd+sO1bEDlD6UZkxL0mZnZgVL1GQLG75xDpEv3vNa3P3R9x9xx3z8nOPuT3jQ5qRf5ufvWvhZSUlR/W9iIiDUHMLp25+8iq1gcDXF0MHF9Jk5FERubLD9pPJjJw1TNEzlQmB+1eAh4P5tfzxdH4OvK/0RFr3dpte3n8w9Uc36UF5w+sagRcEZGGK8xLZyOBxe6eV8n6tcBQM8sI7uWcCSwK1k0BRgTzpwNLg/lXgKuDp8+GErncFrP7M6f1zqZTy8Y89VG1vhwrItIghRk0Y6lw2czM2pvZVAB3/5jIyHpzgPlEan0kaHo3cImZzQfuAr4ZLJ8KrCQyWuCjwIRYHkByknHliV34ZNV2lmzaFcu3EhGJWxomAMjJyfHD7etsx579nHjX24zJ6chvRg+o5cpEROovM5sd3CuvUthPncW9Fk3SuGBge16as55dxSVhlyMiUu8oaGrB1cO6sGd/GZPnxOy5AxGRuKWgqQWDOjVnUMcsnp65Bl2KFBH5IgVNLblqWFeWb9nNRyu3hV2KiEi9oqCpJecPbEfzjFSe1qPOIiJfoKCpJempyVye04k3Pt/MpoLisMsREak3FDS16MqhXSh355+frA27FBGRekNBU4s6tcxgRJ82PPvJWvaXqv8zERFQ0NS6q4Z2IX/XPl5fuCnsUkRE6gUFTS07vXc2nVtm8PRMPRQgIgIKmlqXlGRcObQzn6zazuJNhWGXIyISOgVNDFx2fCcapSTpUWcRERQ0MdGiSRoXDGrPS5+p/zMREQVNjFw9rAt71f+ZiIiCJlYGdmzOoE7N1f+ZiDR4CpoYumpol0j/ZyvU/5mINFwKmhg6f2A7WmSk6lFnEWnQFDQxlJ6azJgTIv2fbSwoCrscEZFQKGhi7MoTI/2fPfux+j8TkYZJQRNj/+3/7NN16v9MRBokBU0duGqY+j8TkYZLQVMHTu8V9H+mngJEpAFS0NSB//Z/tlr9n4lIw6OgqSNjctT/mYg0TAqaOtI8I40Lg/7PCtX/mYg0IAqaOnTVgf7PZueFXYqISJ1R0NQh9X8mIg2RgqaOXT20Cyvy96j/MxFpMBQ0deyrQf9nT+mhABFpIBQ0dexA/2dvLlL/ZyLSMChoQqD+z0SkIVHQhKBTywzO6NOGf36i/s9EJPEpaEJy1bAubN29j9cWbAy7FBGRmFLQhOS0Xtn0atOUh6evoLxcjzqLSOJS0IQkKcmYMKIHizft4p3FW8IuR0QkZhQ0IbpgYHs6tmjMn6Yt1xc4RSRhKWhClJKcxPWn9yB33U4+WqkvcIpIYlLQhOzS4zuSndmIP09bHnYpIiIxEUrQmNlEM8sNptVmlltJu1vNbKGZLTCzZ80sPVhuZvZbM1tqZovM7OZg+XAzK4ja98/r8rgOR3pqMt86tRsfLt/GZ2t3hF2OiEitCyVo3P1ydx/s7oOBF4HJFduYWQfgZiDH3fsDycDYYPU1QCegr7v3A56L2vT9A/t29ztieRy15WsndiGrcSoPTV8RdikiIrUu1EtnZmbAGODZSpqkAI3NLAXIADYEy28A7nD3cgB3j+vHtpo0SuHak7vy5uebWbJpV9jliIjUqrDv0ZwKbHb3ZRVXuPt64F5gLbARKHD3N4LVPYDLzWyWmb1mZr2iNh1mZnOD5cdU9sZmNj7YflZ+fn7tHdFhuuakrmSkJfPQdN2rEZHEErOgMbO3gnsrFadRUc3GUcnZjJm1AEYB3YD2QBMzuzJY3Qgodvcc4FHg78HyOUAXdx8EPAhMqaw+d3/E3XPcPSc7O/tIDrVWNM9I48qhXfjX3A2s2bYn7HJERGpNzILG3Ue6e/+DTC8DBJfDLgYmVrKLkcAqd8939xIi93FOCtbl8b/7Oi8BA4P3LHT33cH8VCDVzFrH5ABj4JundCMlOYm/vLsy7FJERGpNmJfORgKL3b2ycY3XAkPNLCO4l3MmsChYNwUYEcyfDiwFMLO2QVvMbAiR44ubL6i0aZbOmJyOvDg7j00FxWGXIyJSK8IMmrFUuGxmZu3NbCqAu38MvEDkcth8IrU+EjS9G7jEzOYDdwHfDJZfCiwws7nAA8BYj7Ov3H/7tB6UufPo+zqrEZHEYHH2ezgmcnJyfNasWWGX8V/fm5jLaws28eGPzqBlk7SwyxEROSgzmx3cK69S2E+dyUHcMLwHRSVlPPHhqrBLERE5YgqaeqjXUZmcc0xbnpixml3FJWGXIyJyRBQ09dSEET0oLC7lmZka7llE4puCpp4a2LE5p/ZqzWMfrKS4pCzsckREDpuCph67cURPtu7ez6RZ68IuRUTksClo6rETu7Xk+C4t+Ou7KykpKw+7HBGRw6KgqcfMjO+M6Mn6nUVM+Wx92OWIiBwWBU09N7xPNv3aNePhd1dQVq7vPIlI/FHQ1HNmxo0jerAyfw+vL9wUdjkiIjWmoIkD5/ZvR/fWTfjztOWoJwcRiTcKmjiQnGRcP7wHCzcUMn1p+GPniIjUhIImTowe3IH2Wek8NE0Do4lIfFHQxIm0lCTGn9adT1fv4JNV28MuR0Sk2hQ0ceTyEzrTqkkaf9ZZjYjEEQVNHGmclsx1p3Tj3aX5zM8rCLscEZFqUdDEmauGdSEzPYWHpuusRkTig4ImzjRLT+Xrw7ryn4WbWL5lV9jliIgckoImDl17clfSU5J54G2d1YhI/aegiUOtmjbi2pO78srcDczL2xl2OSIiVVLQxKnrh/egZZM07py6SL0FiEi9pqCJU83SU7llZC9mrtzOO4u3hF2OiEilFDRxbNyQznRv3YQ7py6iVOPViEg9paCJY6nJSfzwnL6syN/DRI3CKSL1lIImzp19zFHkdGnBH95cxu59pWGXIyLyJQqaOGdm/OSr/di6ex+PvLcy7HJERL5EQZMAjuvcgq8ObMej761kc2Fx2OWIiHyBgiZB3H52X0rLy/n9G0vDLkVE5AsUNAmic6sMrhralednr2PJJnVNIyL1h4Imgdx0Rk+aNErhrtcWhV2KiMh/KWgSSIsmaXxnRE+mL8nnw+Vbwy5HRARQ0CScr5/UlQ7NG/PbVxdRXq6uaUQkfAqaBJOemswPz+nD5xsLeemz9WGXIyKioElEFwxsz4AOWdz3xhKKS8rCLkdEGrhqBY2ZTTazr5qZgikOJCUZPzmvHxsKivn7h6vCLkdEGrjqBsdDwBXAMjO728z6xLAmqQXDerTizL5teHjaCrbt3hd2OSLSgFUraNz9LXf/GnAcsBp4y8xmmNm1ZpYaywLl8P34vL7sLSnjwXc0EqeIhKfal8LMrBVwDfBN4DPgj0SC582YVCZHrGebTC4/oRPPzFzDqq17wi5HRBqo6t6jeQl4H8gALnD3C919orvfBDSt6Zua2UQzyw2m1WaWW0m7W81soZktMLNnzSw9WP5+1PYbzGxKsNzM7AEzW25m88zsuJrWlmhuGdmLtJQk7nltcdiliEgDlVLNdg+4+7SDrXD3nJq+qbtffmDezO4DCiq2MbMOwM3A0e5eZGaTgLHAE+5+alS7F4GXg5fnAr2C6UTg4eC/DVabzHS+fVoP/vDWUmat3k5O15ZhlyQiDUx1L521MLOLK0xnmlmbI3lzMzNgDPBsJU1SgMZmlkLkbGpDhe2bAWcAU4JFo4CnPGIm0NzM2h1JjYngW6d1o01mI+6cugh3fYlTROpWdYPmG8DfgK8F06PA7cCHZnbVEbz/qcBmd19WcYW7rwfuBdYCG4ECd3+jQrPRwNvuXhi87gBEDzWZFyz7EjMbb2azzGxWfn7+ERxC/ZeRlsL3z+rNnLU7eW3BprDLEZEGprpBkwr0c/dL3P0S4GjAiVyWuv1gG5jZW8G9lYrTqKhm46jkbMbMWhA5Q+kGtAeamNmVFZpVuv2huPsj7p7j7jnZ2dmHs4u4cunxnehzVCb3/Gcx+0vLwy5HRBqQ6gZNR3ffHPV6C9DJ3bcDJQfbwN1Hunv/g0wvAwSXwy4GJlbyniOBVe6e7+4lwGTgpAMrzaw1MAR4NWqb9UCn6LqDZQ1ecpLxo/P6smbbXp6ZuSbsckSkAalu0Ew3s3+b2dfN7OtEbr5PN7MmwM7DfO+RwGJ3z6tk/VpgqJllBPdyzgSi+7+/FPi3u0cPKfkKcHXw9NlQIpfbNh5mfQlneO9sTu7ZigfeWUZB0UH/PhARqXXVDZobgceBwcH0FHCju+9x9xGH+d5jqXDZy8zam9lUAHf/GHgBmAPMD2p9pKrtganASmA5kftIEw6ztoRkFumapqCohIem6UucIlI37FBPIZlZMvDWEQRKvZeTk+OzZs0Ku4w684Pn5/Jy7nr+fdOp9GmbGXY5IhKnzGx2db7icsgzGncvA8rNLKtWKpPQ/eS8fmSmp3L7i/Mo05g1IhJj1b10thuYb2aPBd+8f8DMHohlYRI7LZuk8YsLjiZ33U6emLE67HJEJMFVt2eAycEkCeLCQe2Z8tl67n19CWcdfRSdWmaEXZKIJKjq9t78JDAJmOnuTx6YYluaxJKZ8ZuLBpBk8JOX5qvHABGJmep2qnkBkAv8J3g92MxeiWVhEnsdmjfmh+f05f1lW5k8R183EpHYqO49ml8S+XLkTgB3zwW6x6gmqUNXDe3C8V1a8OtXP2erBkgTkRiobtCUuHvFHpbVj0kCSEoy7rlkAHv3lfHLVxaGXY6IJKDqBs1CM7sCSDazXmb2IDAjhnVJHerZJpPvnNGTf8/byFufbz70BiIiNVDdoLkJOAbYR+Tb+IXALbEqSure9af3oM9RmfzflAXsKlb3NCJSe6r71Nled/+pu58Q9Hj80wp9jEmcS0tJ4p5LB7J5VzH3/EejcYpI7anuU2e9zewRM3vDzN45MMW6OKlbgzs159qTuvHMzLV8smp72OWISIKo7qWz54HPgP8DbouaJMH84OzedGzRmB+9OI/ikrKwyxGRBFDdoCl194fd/RN3n31gimllEoqMtBTuvGgAK7fu4cF3vjTwqYhIjVU3aP5lZhPMrJ2ZtTwwxbQyCc1pvbO55LiO/PXdlXy+ofDQG4iIVKG6QfN1IpfKZgCzg6nh9KvfAP3s/H40z0jlR5PnUVqmr0yJyOGr7lNn3Q4yqWeABNY8I41fXngM8/IKePzD1WGXIyJxrMqgMbMfRs1fVmHdnbEqSuqHrw5ox8h+bbjvzSWs2bYn7HJEJE4d6oxmbNT8jyusO6eWa5F6xsz49ej+pCQl8ePJ6uFZRA7PoYLGKpk/2GtJQO2yGvOjc/syY8U2np+VF3Y5IhKHDhU0Xsn8wV5LgrpiSGeGdGvJb179nC271CGEiNTMoYJmkJkVmtkuYGAwf+D1gDqoT+qBpCTjrosHUFxarh6eRaTGqgwad09292bununuKcH8gdepdVWkhK9HdlO+e2Yvps7fxOsLN4VdjojEkep+j0aE8ad1p1+7ZvxsygK2aZA0EakmBY1UW2pyEvdeNpCdRSXcOmku5eW6TScih6agkRo5pn0Wv7zgGN5bms+fpi0PuxwRiQMKGqmxcUM6cdGxHfjDW0v5cPnWsMsRkXpOQSM1Zmb89qL+9Mxuynef+4xNBXrkWUQqp6CRw5KRlsLDVx7H3v1l3PTsHErU8aaIVEJBI4etZ5tM7rp4AJ+u3sG9ry8JuxwRqacUNHJERg3uwNdO7Mxf31vJm59vDrscEamHFDRyxH52/tH079CM70/KZd32vWGXIyL1jIJGjlh6ajIPXXE8Dkz4xxyKS8rCLklE6hEFjdSKzq0yuO+yQcxfX8BvXv087HJEpB5R0EitOeuYtow/rTvPzFzLy7nrwy5HROoJBY3UqtvO7sMJXVvw48nzWb5lV9jliEg9oKCRWpWanMSD446jcWoyNzwzh737S8MuSURCpqCRWtc2K50/jj2W5fm7+b+XFmgIaJEGTkEjMXFKr9Z898xeTP5sPc99ui7sckQkRKEEjZlNNLPcYFptZrmVtLvVzBaa2QIze9bM0oPl70dtv8HMpgTLh5tZQdS6n9flcckX3XRGL07t1ZpfvLKQBesLwi5HREISStC4++XuPtjdBwMvApMrtjGzDsDNQI679weSgbHB9qdGbf9Rhe3fP7DO3e+I+cFIpZKTjPsvH0zLjDRu/OccCotLwi5JREIQ6qUzMzNgDPBsJU1SgMZmlgJkABsqbN8MOAOYEss65fC1atqIP11xLOt3FHHb83N1v0akAQr7Hs2pwGZ3X1ZxhbuvB+4F1gIbgQJ3f6NCs9HA2+5eGLVsmJnNNbPXzOyYyt7YzMab2Swzm5Wfn3/kRyKVyunakh+d25fXF27msQ9WhV2OiNSxmAWNmb0V3FupOI2KajaOSs5mzKwFMAroBrQHmpjZlRWaVdx+DtDF3QcBD1LFmY67P+LuOe6ek52dXfMDlBr5xindOPuYo7j7tcUaLE2kgYlZ0Lj7SHfvf5DpZYDgctjFwMRKdjESWOXu+e5eQuQ+zEkHVppZa2AI8GrUexa6++5gfiqQGrSTkJkZ/+/SQfTIbsr4p2YxP08PB4g0FGFeOhsJLHb3vErWrwWGmllGcC/nTGBR1PpLgX+7+3+HdzSztkFbzGwIkePbFpPqpcayGqfy5HVDaJ6RxjWPf8LK/N1hlyQidSDMoBlLhctmZtbezKYCuPvHwAtELofNJ1LrI1VtTyR8FpjZXOABYKzr7nO90jYrnWe+eSIAVz32iYaBFmkATL+HIScnx2fNmhV2GQ3KgvUFjH1kJu2y0nn++mE0z0gLuyQRqSEzm+3uOYdqF/ZTZ9JA9e+QxSNXH8+abXu57olP1SeaSAJT0EhoTurRmgfGDSZ33U4m/GMOJWXlYZckIjGgoJFQndO/Hb+9aADTl+Tzg+fnUl6uS7kidWVTQXGdjIiroJHQjRvSmdvO7sPLuRu449+fq/cAkTrw2vyNnH3/e9z7+pKYv1dKzN9BpBomDO/B9j37eeyDVbRqksZNZ/YKuySRhLRnXym/+tdCJs3KY2DHLK44sXPM31NBI/WCmfHT8/qxY89+7ntzKS2bpvG1E7uEXZZIQvls7Q5umZjLuu17+c6Innx3ZC9Sk2N/YUtBI/VGUpJxz6UD2VlUwv9NWUCLjDTOG9Au7LJE4l5pWTkPTV/BH99eRttm6Tw3fhhDurWss/dX0Ei9kpqcxJ+vOI6rHvuYW57LJatxKif3VC9CIodr3fa93DIxl9lrdjB6cHvuGN2fZumpdVqDHgaQeqdxWjKPff0Eumc3YfxTs5iXtzPskkTijrszeU4e5/7xfZZu2sUfxw7m/rHH1nnIgIJG6qmsjEi/aC2apHHN45+yQv2iiVRbQVEJNz+Xy/cmzaVfu0ymfvdURg3uEFo9Chqpt45qls7T3ziRJIOrH/uEjQVFYZckUu/NXLmNc+9/j9fmb+S2s/vw3PhhdGqZEWpNChqp17q1bsIT1w6hoKiEqx/7hB179oddkki9tL+0nHv+s5hxj86kUWoyL95wEjeO6ElykoVdmoJG6r/+HbJ49Ooc1mzfy2V//Yi8HXvDLkmkXlmRv5tLHp7Bw9NXcHlOJ/590ykM6tQ87LL+S0EjcWFYj1Y8ee0QNhcWc/FDM1i4QQOnibg7//h4DV994H3W7djLX648nrsvGUiTRvXrgWIFjcSNYT1a8eINJ5GcZFz+15m8vyw/7JJEQrNm2x6ufOxjfvrSAnK6tOT1W07jnP5twy7roBQ0Eld6H5XJSxNOpmOLxlz7+Ke8OLuyAVpFElNpWTl/eXcFZ9//HnPXFfDr0f156rohHNUsPezSKlW/zq9EqqFtVjqTrh/G9U/P5vvPz2VTYTEThvcgGMVbJGEtWF/A7S/OY+GGQr5y9FH8elR/2mbV34A5QEEjcalZeipPXDuEH74wl9+9voT1O4u448JjSKmDfptE6lrR/jL+8NZSHvtgFS2bpPHw147jnP5t4+aPKwWNxK20lCR+P2Yw7Zo35uHpK9hSWMwD444lI03/rCVxfLBsKz95aT5rt+9l3JBO/OicfmRl1P23+4+E/o+UuJaUZNx+Tl/aZ6Xzi1cWMu7Rj3ns6zm0btoo7NJEjsiOPfv5zauLeHFOHt1aN+G58UMZ2r1V2GUdFgWNJISrhnXlqGbp3PzcZ1zy8AyevHYIXVs3CbsskRpzd16Zu4E7/vU5BUUl3DiiBzed0Yv01OSwSztsuqAtCeOsY9ryz28NpbCohIsfnsFna3eEXZJIjazfWcR1T3zKd5/LpWPLDP510yncdnbfuA4ZUNBIgjmucwtevOEkmjRKZtyjM3nr881hlySQOskrAAASMklEQVRySGXlzuMfruIrv3+Xj1dt5+fnH83kG06iX7tmYZdWKxQ0knC6Zzdl8g0n0/uoTMY/PYt/fLwm7JJEKrVgfQGXPDyDX/3rc4Z0a8kbt57Gdad0qxd9lNUW3aORhJSd2Yjnxg/lxn/M4acvLWDjzmK+f1bvuHkcVBLfpoJifvf6EiZ/lkfLjDT+OHYwFw5qn5D/RhU0krAy0lJ49OocfvbyAv40bTmrtu7hzosGxN2joZJY9u4v5a/vruSR91ZSVu58+7QeTBjRI5QByeqKgkYSWkpyEndeNIAurZpw7+tLmL1mB/deNohTeml4aKlb5eXOi3Py+N3rS9iyax/nD2zH7ef0DX2smLqgoJGEZ2Zcf3oPTu7RmlsmfsaVj33MNSd15Ufnxv/TPBIfZqzYym9fXcTCDYUM7tSch688juO7tAy7rDqjoJEGY0DHLF69+VTufm0xT8xYzfvL8rn/8mMZ0DEr7NIkQa3M382dUxfz1qLNdGjemAfGHcsFA9sl5H2Yqpi7h11D6HJycnzWrFlhlyF16P1l+dz2/Dy27t7HLSN7cf3pPdRPmtSaHXv288e3l/HMzDWkpyYzYUQPrju5W8KdQZvZbHfPOWQ7BY2CpqEq2FvCz15ewCtzN3Bs5+b8Ycxg9SYgR2R/aTlPfbSaB95exu59pYwd0plbR/YmOzMxu0RS0NSAgqZhezl3PT+bsoCSMudn5x/NuCGdGtylDTky7s7rCzdz92uLWL1tL6f1zuan5/WjT9vMsEuLqeoGje7RSIM3anAHhnRryW3Pz+MnL83nrUWbufuSAbTJrP/jfEi43J23F23hT9OWk7tuJ73aNOWJa09geJ82YZdWr+iMBp3RSER5ufPUR6u567XFZKQlc9fFA+vt0LgSrrJy59X5G3lo2nIWb9pFxxaNmTC8J2NyOjaoe326dFYDChqJtnzLLm6ZmMuC9YVcenxHfnHB0WQm8JfppPr2l5bz0md5PDx9Bau37aVnm6ZMGN6DCwa1J7UBBcwBunQmcph6tslk8g0n8+A7y/jztOV8tGIb9142iGE94nMsEDlyRfvLeO7TtTzy3ko2FhQzoEMWf7nyOM46ui1JCdQnWazojAad0UjlZq/Zwfcm5bJm215G9Mnm+2f1oX8Hfe+moSgsLuHpj9bw2Aer2L5nP0O6teTGET05rVdrPTBCHFw6M7OJQJ/gZXNgp7sPPki7W4FvAg7MB65192IzOxP4HZEeqHcD17j7cjNrBDwFHA9sAy5399VV1aKgkaoU7S/jiRmr+cu7KygoKuG8AW353ld607NNYj9R1JBt272Pv3+4iqdmrGHXvlKG98nmxhE9OaFrw/k2f3XU+6D5QhFm9wEF7n5HheUdgA+Ao929yMwmAVPd/QkzWwqMcvdFZjYBGOLu1wTzA939ejMbC1zk7pdX9f4KGqmOwuIS/vb+Kh57fyVFJWWMPrYDt5zZm86tEr+vqoZiY0ERj7y3kmc/Wcu+0nLO7d+WCcN76iy2EnFzj8Yi559jgDMqaZICNDazEiAD2BAsd+DAqEBZUctHAb8M5l8A/mRm5vUhUSWuNUtP5Xtf6c01J3XlL++u4MkZq3kldwNjTujETWf0pF1W47BLlMPg7sxes4PnPl3Hy7nrKXcYPbgDNwzvQc82TcMuLyGEfkZjZqcBv68sFc3su8BvgSLgDXf/WrD8VGBKsLwQGOruhWa2ADjH3fOCdiuAE919a4X9jgfGA3Tu3Pn4NWs0OJbUzJbCYv40bTnPfrIWM+PKE7swYUQPWjdNzG+BJ5r8XfuYPCePSbPWsSJ/D03Skrn4uI6MP617g+hRuTbUi0tnZvYWcLAvIvzU3V8O2jwMLHf3+w6yfQvgReByYCfwPPCCuz9jZpOBe9z9YzO7Dejj7t+sbtBE06UzORLrtu/lwXeW8cLsPNJTk7n25K6MP7WHxr2ph0rLynl3aT4TP13HO4u3UFru5HRpwZicTnx1YDuaNAr9Ik9cqReXztx9ZFXrzSwFuJjIjfuDGQmscvf8oP1k4CQzex0Y5O4fB+0mAv8J5tcDnYC8YP9ZRB4KEImJTi0z+H+XDuL603vwh7eW8edpK3jqozWMP7U7157Sjab65RW61Vv3MGnWOl6YnceWXfto3TSNb5zSjctyOunyWB0I+/+AkcDiA2cfB7EWGGpmGUQukZ0JzAJ2AFlm1tvdlwJfARYF27wCfB34CLgUeEf3Z6QudM9uyoPjjmXC8B7c98ZS7ntzKY/PWM31p3fnkuM60kqX1OpU0f4yps7fyKRZ6/h41XaSDEb0acOYEzpxRt82DfILlmEJ9R6NmT0BzHT3v0Qtaw/8zd3PC17/isils1LgM+Cb7r7PzC4C7gDKiQTPde6+0szSgaeBY4HtwFh3X1lVHbp0JrGQu24n972xhPeXbSUlyTi1V2tGH9uBrxx9FBlpYf+Nl5jcnXl5BUyctY5/5W5g175SurbK4LKcTlx6fEeOaqb+62pTvbhHEy8UNBJLizYWMiV3Pa/kbmBjQTEZacmcfUxbRg1uzyk9WzeovrFiobSsnDlrdzJtyRbeXrSZpZt3k56axHn92zHmhE6c2K2lvlwZIwqaGlDQSF0oL3c+Wb2dl3PX8+q8jRQWl9K6aRrnD2zPqMHtGdypuX4hVtOWwmKmL83n3SX5vLcsn13FpaQkGcd3acEFg9pz4eD2NFP/dDGnoKkBBY3UtX2lZUxbnM/Luet5e/EW9peW07VVBhcO7sDowe3pnq0b1NFKy8rJXbeT6UvymbZkCws3FALQJrMRI/q0YXifbE7u1VrhUscUNDWgoJEwFRSV8PqCTUzJXc9HK7fhDoM6ZjFqcAfOH9SuwY6Lk79rH+8uzWf6ki28v2wrBUUlJCcZx3duwel9shnRpw392mXqLDBECpoaUNBIfbGpoJhX5q5nymcb+HxjIWbQq01TBnZszqCOWQzo2Jx+7TJplJJYY8+XlzvrdxaxaGMh8/IKeHdpPvPXFwCQndmI4b2zGd6nDaf0ak1WY5211BcKmhpQ0Eh9tGzzLqbO30Tuuh3Myytg2579AKQmG33bNmNgxywGdWzOgI5Z9GrTNG4eKigoKmHJpl0s3lTIoo27WLKpkCWbdrFnfxkASQbHdW7B8D6RcDm6XTN1xV9PKWhqQEEj9Z175C/++XkFzM0rYF7eTubnFbBrXykAjVOTOaZ9s8iZT6csBnTIomurJqH+gi4pK2fV1j0s2ljI4k27IuGysZANBcX/bZPVOJW+bTPp164Zfdpm0rdtJr2PytQ39OOEgqYGFDQSj8rLndXb9jAvr4C5QfAs2FBAcUk5AJnpKXRo3pisxqk0z0glq/EXp2aNU2mekfbFZekpXzozcnf27i+jsLiEXcWlFBYF/y0uobDC613FpewqLmFTQTEr8/ewvyxSS0qS0bNNU/q2zaRP22b0bZdJv7bNOKpZI91jiWP1ogsaEYmdpCSje3ZTumc3ZfSxHYDI01nLtuxmfl4B89bvZHPhPgr2lrB6614KikooKCqhqKSsyv1mNkqhWeNUkpIIgqOUsvKq/yBNS06iWeMUMtMjYdUuK53T+2TTLwiV7q2bkpYSH5f2pPYpaEQSSEpyEv3aNaNfu2aMOaHTQdvsKy2joKiEwiB4CopK2Ln3f/MFRSUU7C2h3J1mjVNplp5KZnokfDLTUw76Oj01sR5OkNqloBFpYBqlJNMmM7nBPjYtdU/nsiIiElMKGhERiSkFjYiIxJSCRkREYkpBIyIiMaWgERGRmFLQiIhITCloREQkptTXGWBm+cCasOs4DK2BrWEXUcd0zImvoR0vxO8xd3H37EM1UtDEMTObVZ0O7RKJjjnxNbTjhcQ/Zl06ExGRmFLQiIhITClo4tsjYRcQAh1z4mtoxwsJfsy6RyMiIjGlMxoREYkpBY2IiMSUgqaeM7O/m9kWM1tQyfpRZjbPzHLNbJaZnVLXNda2Qx1zVLsTzKzUzC6tq9pipRqf83AzKwg+51wz+3ld11jbqvM5B8eda2YLzezduqyvtlXjM74t6vNdYGZlZtayruuMBd2jqefM7DRgN/CUu/c/yPqmwB53dzMbCExy9751XWdtOtQxB22SgTeBYuDv7v5CHZZY66rxOQ8HfuDu59d1bbFSjWNuDswAznH3tWbWxt231HWdtaU6/66j2l4A3OruZ9RJcTGmM5p6zt3fA7ZXsX63/++vhSZA3P/lcKhjDtwEvAjE7S+eaNU85oRSjWO+Apjs7muD9nH9WdfwMx4HPBvDcuqUgiYBmNlFZrYYeBW4Lux6Ys3MOgAXAQ+HXUsdG2Zmc83sNTM7Juxi6kBvoIWZTTez2WZ2ddgF1QUzywDOIfKHVEJICbsAOXLu/hLwUnBq/mtgZMglxdr9wO3uXm5mYddSV+YQ6Vdqt5mdB0wBeoVcU6ylAMcDZwKNgY/MbKa7Lw23rJi7APjQ3RPmDFdBk0Dc/T0z625mrd09Hjvoq64c4LkgZFoD55lZqbtPCbes2HH3wqj5qWb2UAP4nPOAbe6+B9hjZu8Bg4BED5qxJNBlM9Cls7hnZj0t+I1rZscBjYBt4VYVW+7ezd27untX4AVgQiKHDICZtY36nIcQ+X83oT9n4GXgFDNLCS4nnQgsCrmmmDKzLOB0IseeMHRGU8+Z2bPAcKC1meUBvwBSAdz9L8AlwNVmVgIUAZdHPRwQl6pxzAmnGsd8KXCDmZUS+ZzHJvrn7O6LzOw/wDygHPibu1f5yHt9Vs1/1xcBbwRncQlDjzeLiEhM6dKZiIjElIJGRERiSkEjIiIxpaAREZGYUtCIiEhMKWgkIZnZ7mq0uSX4fkZtvedoMzu6Fvc34wi23R38t72ZVdrhqJk1N7MJh/s+ItWhoJGG7BagRkET9BpdmdFArQWNu59UC/vY4O5VDaPQHFDQSEwpaCShBeOZTDezF8xssZn9wyJuBtoD08xsWtD2LDP7yMzmmNnzwRAMmNlqM7vHzOYAl5nZt8zs06CDyxfNLMPMTgIuBH4XjCfSw8wGm9lMi4wX9JKZtQj2N93M/mCR8YMWWWRcnclmtszMfhNV++6o+dvNbH7wnncf5Di7BbXPr7CPrgfGPzGzY8zsk6C+eWbWC7gb6BEs+52ZNTWzt4OfwXwzGxW1n0Vm9qhFxoZ5w8waB+t6mtlbQW1zzKxHsPy24Oc0z8x+VasfrMQXd9ekKeEmYHfw3+FAAdCRyB9WHwGnBOtWA62D+dbAe0CT4PXtwM+j2v0wat+touZ/A9wUzD8BXBq1bh5wejB/B3B/MD8duCeY/y6wAWhHpPugvAP7jzqGc4mMy5IRvG55kON9Bbg6mL8xatuuwIJg/kHga8F8GpGOKv+7PlieAjSL+pksByxoVwoMDtZNAq4M5j8GLgrm04mcJZ4FPBJsmwT8Gzgt7H8XmsKZ1AWNNASfuHsegJnlEvml+UGFNkOJXPb6MOhSLI1IKB0wMWq+f3DW0BxoCrxe8Q2DPquau/uBUSGfBJ6PavJK8N/5wEJ33xhstxLoxBf7MRsJPO7uewH84L36nkykOyKAp4F7DtLmI+CnZtaRyDgvy+zLvV8bcKdFegIvBzoARwXrVrl7bjA/G+hqZplAB4/0II67FwfHcRaRsPksaN+USG/T7x2kLklwChppCPZFzZdx8H/3Brzp7uMq2Ud031NPAKPdfa6ZXUPkrOlwayqvUF95JfVVR5X9Sbn7P83sY+CrwFQz+zawskKzrwHZwPHuXmJmq4mcpUTXDJGfY+Mq3s6Au9z9rzWoXxKU7tFIQ7YLyAzmZwInm1lPADNrYma9K9kuE9hoZqlEfjF/aX/uXgDsMLNTg3VXAYc75v2bwLUHnpCzg48j/yGR7uWpUNN/mVl3YKW7P0Ckd+CBfPFnAJAFbAlCZgTQparC3H0XkGdmo4P3aBTU+TpwXdR9rg5m1qZaRysJR0EjDdkjwH/MbJq75wPXAM+a2Twil5n6VrLdz4jcl/gQWBy1/DngNjP7LLgh/nUiDwfMAwYTuU9TY+7+HyKX2mYFl/5+cJBm3wVuNLP5RC53HcwYYEGwj/5Exq7fRuRy4QIz+x3wDyAn2M/VFY6vMlcBNwfHOQNo6+5vAP8kMljZfCLDOWRWsQ9JYOq9WUREYkpnNCIiElMKGhERiSkFjYiIxJSCRkREYkpBIyIiMaWgERGRmFLQiIhITP1/AI/OIczCUVQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, "output_type": "display_data" } ], @@ -113,7 +101,7 @@ "pylab.plot(distances, energies)\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", - "pylab.title('LiH Ground State Energy')" + "pylab.title('LiH Ground State Energy');" ] }, { @@ -123,24 +111,12 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4VVX69vHvk0pL6EVAOkgRQQlNqhXGio6KiAUUKzas4/wsM6Pj6NhQURQVEVRGx4IyFlSkKSAGpYr0jjRRegs87x9nM++RIeFgcrJT7s91nYuT3c6zCeTO2mvvtczdERER+b0Swi5AREQKNwWJiIjkioJERERyRUEiIiK5oiAREZFcUZCIiEiuKEikUDKzTmY2Px8+5xMzuyIPjvMXM3s9L2oSKWgUJFKgmdkyMzv14OXuPsndj8lpOzPrY2Zf5XBsN7PtZrbNzH42s7Fm1vOgz/mDu7+WF+fyewXntsfMKh20/PvgHOqEU9mhmdkwM3so7Dok/yhIpLhr4e5lgGOAYcAgM3sg3JIOaSnQ68AXZtYcKBVeOSL/n4JECiUz62pmq/LqeO6+0d1HANcD95hZxeBzxptZv+B9HzP72swGmdlmM/vRzE6Jqqm6mX1oZpvMbJGZXZ1D/e3MbLKZ/WpmM82s62FKHAFcHvX1FcDwg45Z1syGm9kGM1tuZveaWcJBtT8VfOYSMzsxWL7SzNZHX8Izs1Qze9zMVpjZOjN7wcxKBuu6mtkqM7s92O8nM+sbrLsG6A3cFbT0Rh/mvKQIUJCI/NYHQBLQJpv1bYHFQCXgAeA9M6sQrPsXsAqoDlwAPGxmJx98ADOrAXwEPARUAO4A3jWzyjnUNRVIN7MmZpYIXAwc3OfyLFAWqAd0IRI8fQ+qfRZQEXgzqLc10AC4lEhrrEyw7SNAI6BlsL4GcH/UsaoFn1UDuAp4zszKu/sQ4A3gn+5ext3PzuGcpIhQkEhRMir4bftXM/sVeP5ID+Due4GNRH7AH8p6YKC773X3t4D5wJlmdjTQAbjb3Xe5+wzgZX7bijjgUuBjd//Y3fe7++dAJnDGYco70Co5DZgHrD6wIipc7nH3re6+DHgCuCxq/6Xu/qq77wPeAo4G/ubuu939M2AP0MDMDLgGGODum9x9K/BwcPwD9gb77nX3j4FtRC4PSjGUFHYBInmoh7t/ceALM+sD9DuSA5hZMlAZ2JTNJqv9tyOdLifSAqkOHPihG70u4xDHqA1caGbRv60nA+MOU94IYCJQl4MuaxFpISUHnxn9+TWivl4X9X4ngLsfvKwMkfMvBUyPZAoABiRGbfuzu2dFfb0j2FeKIbVIRH7rXCALmJbN+hoW9dMVqAWsCV4VzCztoHWr+V8rgRHuXi7qVdrdH8mpMHdfTqTT/QzgvYNWbyTSSqgdw+cfzkYiodIsqr6ywU0JsdCQ4sWMgkQKg2QzKxH1yvOWtJlVMLPewHPAo+7+czabVgFuNrNkM7sQaELkMtVKYDLwj6DG44j0HRzq2ZHXgbPNrJuZJQbbdzWzmjGUehVwsrtvj14YXK56G/i7maWZWW3gtmw+P0fuvh94CXjKzKpApF/HzLrFeIh1RPpppJhQkEhh8DGR35APvP6Sh8eeaWbbgEVELoMNcPf7c9j+G6Ahkd/a/w5cEBU6vYA6RFon7wMPRF9qOyAInXOBPwMbiLRQ7iSG/4/uvtjdM7NZfROwHVgCfEWkQ33o4Y6ZjbuJ/J1MNbMtwBfE3gfyCtA06Ksa9Ts/XwoR08RWIrE50Ofi7h3DrkWkIFGLREREckVBIiIiuaJLWyIikitqkYiISK4UiwcSK1Wq5HXq1Am7DBGRQmX69Okb3T2noXuAYhIkderUITMzuzsmRUTkUMxs+eG30qUtERHJJQWJiIjkioJERERyRUEiIiK5oiAREZFcUZCIiEiuKEhERCRXFCQ5GD1zDe9/vwoNIyMikj0FSQ7e+24VA96aSb/XMlm7eVfY5YiIFEgKkhy8fEVr7j2zCV8v3shpT03g7W9XqnUiInIQBUkOEhOMfp3q8ektnWlyVDp3vTuLy4dOY9UvO8IuTUSkwFCQxKBOpdL86+p2PHhuM6Yv/4VuT01kxNTl7N+v1omIiIIkRgkJxmXt6zDm1s4cX6s8942awyUvT2X5z9vDLk1EJFQKkiN0dIVSjLiqDY+c35y5q7fQfeAkhn61lH1qnYhIMaUg+R3MjIvb1OKz2zrTrl4F/vafH7joxSks3rAt7NJERPKdgiQXjipbkqF9WvPkRS1YtH4bf3h6Ei9MWEzWvv1hlyYikm8UJLlkZpx/Qk0+H9CZro0q88gnP/LHwZOZv3Zr2KWJiOQLBUkeqZJeghcva8WzvY5n5S87OevZSTwzdiF7stQ6EZGiTUGSh8yMs1tU5/MBnenWrBpPfr6AM5+ZROayTWGXJiISNwqSOKhYJpVBl5zA0D4Z7NizjwtemMI9781m8869YZcmIpLnFCRxdHLjqnw2oDP9OtblrW9XcMoTExg9c42GWRGRIkVBEmelU5O496ymfHhjR44qW4KbRn7PlcO+ZeUmDbMiIkWDgiSfHFujLO/fcCL3ndWUb5Zu4vSnJvLSxCW6VVhECj0FST5KSkzgqo51+fy2LnRoUJG/fzyPc5/7mlmrfg27NBGR301BEoIa5Ury0uUZDO59Ahu27qbHc1/z19Fz2bY7K+zSRESOmIIkJGbGH5ofxRe3d6F329oMm7yM056cwOc/rAu7NBGRI6IgCVl6iWQe7HEs71x3Iuklkrl6eCbXjZiuGRlFpNBQkBQQrWqX5z83d+Su7scwbv56Tn1yAq98tVSd8SJS4ClICpDkxARu6NqAzwZ0plXt8jz4nx8469mv+FZPxotIARa3IDGzoWa23szmZLO+rJmNNrOZZjbXzPpGrdtnZjOC14dRy+ua2TdmtsjM3jKzlHjVH6baFUszrG9rXri0FVt27uXCF6Zw+9sz2bB1d9iliYj8j3i2SIYB3XNY3x/4wd1bAF2BJ6KCYae7twxe50Tt8yjwlLs3AH4Brsr7sgsGM6P7sdX44vYu3NC1Ph/OXM3JT4zntcnLNImWiBQocQsSd58I5HRNxoE0MzOgTLBttve/BtudDLwTLHoN6JE31RZcpVKSuKt7Yz69tTMtapbjgQ/ncs6gr5i+/JewSxMRAcLtIxkENAHWALOBW9z9QM9yCTPLNLOpZnYgLCoCv7r7gbBZBdTI14pDVL9yGUZc1YbnLjmBn7ft4Y+DJ3PXOzP5eZsud4lIuMIMkm7ADKA60BIYZGbpwbra7p4BXAIMNLP6R3pwM7smCKPMDRs25FnRYTIzzjzuKMbe3oVrO9fjve9Wc/ITE3h96nJd7hKR0IQZJH2B9zxiEbAUaAzg7quDP5cA44HjgZ+BcmaWFOxfE1id3cHdfYi7Z7h7RuXKleN3FiEonZrEPWc04ZNbOtHkqDTuHTWH857/mpkrNdSKiOS/MINkBXAKgJlVBY4BlphZeTNLDZZXAjoQ6ZR3YBxwQbD/FcAH+V51AdKwahojr27H0xe3ZO3mXfR4/mvueW82v2zfE3ZpIlKMWLzmxjCzkUTuxqoErAMeAJIB3P0FM6tO5M6uowADHnH3183sROBFYD+RoBvo7q8Ex6wH/AuoAHwPXOruh+0kyMjI8MzMzDw9v4Jm6669DPxiIcMmLyOtRBJ3djuGi1vXIjHBwi5NRAopM5sedDPkvF1xmGSpOATJAT+u3cL9H8xl2tJNNDkqnb+c3ZS29SqGXZaIFEKxBomebC9iGldL561r2jHokuPZvGMPPYdMpf+b37HqF02kJSLxoSApgsyMs46rztjbu3LrqQ0ZO28dpzwxgac+X8DOPfvCLk9EihgFSRFWMiWRW09txNjbu3Ja06o8PXYhpzwxXvPGi0ieUpAUAzXKlWTQJSfw9rXtKVcqhZtGfk/PF6cyZ/XmsEsTkSJAQVKMtKlbgdE3deQf5zdn0YZtnD3oK+55b5aejheRXFGQFDOJCUavNrUYd0dXruxQl39nrqLr4+N5edIS9mruExH5HRQkxVTZksncd1ZTPr21E8fXKs9DH82j+8CJjJ+/PuzSRKSQUZAUcw2qpPFa39a8ckUG+/Y7fV79liuHfcui9VvDLk1ECgkFiWBmnNKkKmMGdObPZzTm26Wb6DZwEveNmqP+ExE5LAWJ/FdqUiLXdK7P+Du70rttLd6ctoKuj43nhQmL2bVXz5+IyKEpSOR/VCyTyt/OPZYxt3aiTd0KPPLJj5zyxAQ9fyIih6QgkWw1qJLGK31a80a/tqSXTOamkd9z/uDJmp1RRH5DQSKH1aFBJf5zU0f+ecFxrP5lJ38cPJn+b37Hyk0av0tENPqvHKHtu7MYMnEJL05czP790LdDHW44qQFlSyaHXZqI5DGN/itxUTo1iQGnNWL8HSdxTsvqDJm0hJMeH8/wKcv0QKNIMaUgkd+lWtkSPH5hC0bf2JFjqqZx/wdz6T5wImPnrVOHvEgxoyCRXDm2RlnevLotL12egTtc9VomPYdM5fsV6pAXKS4UJJJrZsZpTSMPND54bjOWbNjGec9Ppv8b37Fs4/awyxOROFNnu+S5bbuzeGniEl6atIQ9Wfvp3bYWN53SkEplUsMuTUSOgOZsj6IgCcf6rbt4+ouF/OvblZRISuDaLvXp16kupVKSwi5NRGKgIImiIAnX4g3b+OenPzJm7joqp6Uy4NRGXJRRk6REXVkVKch0+68UGPUrl+HFyzJ49/r21K5Qij+/P5tuAycyZu5a3eElUgQoSCTftKpdgX9f154hl7XCgWtHTOfCF6ZoyBWRQk5BIvnKzDi9WTU+u7UzD5/XnOWbdvDHwZO5dkQmizdsC7s8Efkd1EciodqxJ4uXJy3lxQmL2ZW1n4syjuaWUxpSrWyJsEsTKfbU2R5FQVLwbdy2m0FfLuKNb5aTYEafDnW4vkt9ypVKCbs0kWIr9M52MxtqZuvNbE4268ua2Wgzm2lmc82s70Hr081slZkNilo23szmm9mM4FUlXvVL/qpUJpW/nNOML2/vypnNj2LIxCV0+uc4nhu3iB17ssIuT0RyEM8+kmFA9xzW9wd+cPcWQFfgCTOL/vXzQWDiIfbr7e4tg9f6vCpWCoajK5TiyZ4t+eSWTrStW4HHxsyny2PjeX3qcg0KKVJAxS1I3H0isCmnTYA0MzOgTLBtFoCZtQKqAp/Fqz4p2BpXS+flK1rz7+sitwzfO2oOpz45gQ9nrmH//qJ/OVakMAnzrq1BQBNgDTAbuMXd95tZAvAEcEc2+70aXNa6LwihQzKza8ws08wyN2zYkOfFS/5oXSdyy/DQPhmUTE7k5pHfc/agr5iwYIOeQREpIMIMkm7ADKA60BIYZGbpwA3Ax+6+6hD79Hb35kCn4HVZdgd39yHunuHuGZUrV8776iXfmBknN67KRzd34qmeLdi8cy9XDJ1Gr5em8p1GGRYJXZhB0hd4zyMWAUuBxkB74EYzWwY8DlxuZo8AuPvq4M+twJtAmzAKl3AkJhjnHV+TL2/vyl/Pacai9ds4//nJXDM8k4XrtoZdnkixFWaQrABOATCzqsAxwBJ37+3utdy9DpHLW8Pd/U9mlmRmlYLtk4GzgEPeESZFW0pSAlecWIcJd57Ebac1YvLin+k2cCK3vz1T88iLhCBuw7Ca2Ugid2NVMrNVwANAMoC7v0DkrqxhZjYbMOBud9+YwyFTgTFBiCQCXwAvxat+KfhKpyZx8ykNubRdbZ4ft4jhU5fz4czVXNKmFv1PbkCVND3UKJIf9ECiFBk/bd7JM2MX8XbmSlISE+jboQ7Xdq5P2VLJYZcmUijpyfYoCpLiZdnG7Tz1xQI+nLmGMqlJXNelPn1OrEPpVM2DInIkFCRRFCTF07yftvDEZ/P5Yt56KpVJof9JDbikbS1SkxLDLk2kUFCQRFGQFG/Tl//CY2N+ZOqSTdQoV5JbTm3I+cfX0MRaIocR+lhbIgVFq9rlGXl1O16/qi2VyqRw1zuzOH3gRD6a9ZOekhfJAwoSKRbMjI4NKzGqfwdeuLQViWb0f/M7znnuK8bPX6+n5EVyQUEixYqZ0f3Yanx6a2eevCjylHyfV7+l54tTmbY0p6HhRCQ76iORYm1P1n7e+nYFz365iPVbd9OlUWXuOP0YmtcsG3ZpIqHLs852M3uVyEi9v+HuV/7+8vKXgkQOZ+eefQyfsozBExbz6469nNG8Gred1ogGVdLCLk0kNLEGSSw31v8n6n0J4DwiI/aKFBklUxK5tkt9erWtxSuTlvLypCV8Omct5x1fk1tPbcjRFUqFXaJIgXXEl7aCYd6/cvcT41NS3lOLRI7Upu17eGHCYl6bvIz97lzcuhY3ntyAqukadkWKj3je/tsQ0BS3UqRVKJ3Cn89owoQ7T6Jn66MZOW0Fnf85jn98PI9ftu8JuzyRAiWWPpKt/LaPZC1wj7u/G8/C8pJaJJJbK37ewcAvFvD+jNWUTkmiX6e6XNWxLmklNI6XFF16sj2KgkTyyoJ1W3nyswV8Onct5Uslc33X+lzevg4lkjXsihQ9CpIoChLJa7NW/crjny1g4oINVE1P5eZTGnJRxtEka9gVKULiOkSKmX33e/YTKSqOq1mO4Ve24a1r2nF0+VL83/tzOOWJCYz6frWGXZFiRy0SkVxyd8bP38A/x8xn3k9baFwtjdtPP4ZTm1TBzMIuT+R306CNIvnEzDipcRU+uqkjz/Y6nt1Z+7l6eCbnD57M5MU5TfopUjQcNkjMrJ2ZfWtm28xsj5ntM7Mt+VGcSGGSkGCc3aI6nw3ozCPnN2ft5l1c8tI3XPbKN8xc+WvY5YnETSwtkkFAL2AhUBLoBzwXz6JECrPkxAQublOLcXd05d4zmzB3zRbOfe5rrhsxnYXrtoZdnkiei+nSlrsvAhLdfZ+7vwp0j29ZIoVfieRE+nWqx4Q7uzLg1EZ8tWgj3QZO5La3Z7By046wyxPJM7GMtbXDzFKAGWb2T+An1LciErO0EsnccmpDLmtf+7/DroyeuYZebSLDrlRJ07ArUrjF8mR7bWAdkAIMAMoCzwetlEJBd21JQbJ28y6e+XIhb327kpTEBK7qWJdrutQjXU/JSwGjBxKjKEikIFq2cTtPfL6A0TPXUL5UMv1PasCl7WrrKXkpMBQkURQkUpDNWb2ZRz/9kUkLN1KjXEluPbUh559Qk8QEPYMi4dJzJCKFxLE1yjLiqra82a8tlcqkcOc7s/jD0xP5/Id1mkteCoVYniO5MJZlIpI7JzaoxKj+HXi+9wlk7XOuHp7JhS9MIXOZ5pKXgi2WFsk9MS77H2Y21MzWm9mcbNaXNbPRZjbTzOaaWd+D1qeb2SozGxS1rJWZzTazRWb2jGkMCilCzIwzmh/FmAGdefi85qzYtIMLXphCv9e+Zf5aPYMiBVO2fSRm9gfgDOAi4K2oVelAU3dvc9iDm3UGtgHD3f3YQ6z/M1DW3e82s8rAfKCau+8J1j8NVAY2ufuNwbJpwM3AN8DHwDPu/klOdaiPRAqrnXv28erkpQwev5htu7M4//iaDDitITXLa+pfib+86CNZA2QCu4DpUa8PgW6xFOHuE4Gc2uUOpAWtijLBtlnBCbQCqgKfHdjYzI4C0t19qkcScDjQI5ZaRAqjkimJ3NC1AZPuOomrO9Vj9Kw1nPz4BB78zw9s0kyNUkBk+0Ciu88EZprZm+6+N06fP4hIMK0B0oCe7r4/mBf+CeBS4NSo7WsAq6K+XhUs+x9mdg1wDUCtWrXyvnKRfFSuVGTq3z4n1mHgFwt49eulvP3tSq7rWp+rOtbVLcMSqlj6SNqY2edmtsDMlpjZUjNbkkef3w2YAVQHWgKDzCwduAH42N1X5bRzTtx9iLtnuHtG5cqV86ZakZBVL1eSf17QgjG3dqZtvYo8NmY+Jz8+nnenr9I8KBKaWIZIeYXIE+3TgX15/Pl9gUeCy1SLzGwp0BhoD3QysxuIXPJKMbNtwNNAzaj9awKr87gmkQKvYdU0Xr4ig6lLfubhj+dx+79nMvTrpfzfGU04sUGlsMuTYiaWFslmd//E3de7+88HXnn0+SuAUwDMrCpwDLDE3Xu7ey13rwPcQaSz/k/u/hOwJRja3oDLgQ/yqBaRQqddvYqMuqEDT1/ckl937OWSl7/hymHfapRhyVextEjGmdljwHvA7gML3f2w0+2a2UigK1DJzFYBDwDJwf4vAA8Cw8xsNmDA3e5+uJmAbgCGERnS/pPgJVJsJSQY57asQbdm1Rg+ZRnPfrmIbgMn0rN1LQac1lCDQkrcxTJo47hDLHZ3Pzk+JeU93f4rxckv2/fw7JeLGDF1GcmJCVzbuT5Xd65LqZRYfm8U+f801lYUBYkUR8s2buefY37k49lrqZKWyu2nN+KCVkdrDC+JWZ6NtWVmVc3sFTP7JPi6qZldlRdFikj81KlUmud7t+Ld69tTs3xJ7n53Nmc8PYnx89drDC/JU7F0tg8DxhC5RRdgAXBrvAoSkbzVqnYF3r3+RJ7vfQK7svbR59VvueyVafy4dkvYpUkREUuQVHL3t4H9AO6eRd7fBiwicXRgDK/PB3Th/rOaMmfNZs54ehL3jZrDL3pCXnIpliDZbmYViQxngpm1AzbHtSoRiYuUpASu7FiX8Xd05fL2dXhz2gq6Pj6eYV8vZe++/WGXJ4VULHdtnQA8CxwLzCEyiOIF7j4r/uXlDXW2ixzagnVb+dvoH/hq0UYaVinD/Wc3pVNDjQQhEXl615aZJRF5WNCA+XEceysuFCQi2XN3vpi3noc++oHlP+/g1CZVuffMJtSpVDrs0iRkeRYkZpYInAnUIeoBRnd/Mpc15hsFicjh7c7ax9CvljHoy4Xs3edc2bEuN57cgDKpev6kuMrLqXZHA32AikRG6D3wEpEiJDUpkeu71mfcHV05p2V1XpiwmJMeH8+/M1dqQEjJUSwtklnuflw+1RMXapGIHLmZK3/lL6Pn8v2KXzmuZlkeOLsZrWqXD7ssyUd52SL5xMxOz4OaRKQQaXF0Od697kSe6tmCdVt28cfBkxnw1gzWbt4VdmlSwMRy8XMq8H4w2dReIh3u7u7pca1MREKXkGCcd3xNTm9ajcHjFzNk0hI+nbOWG09uwNWd6pGSFMvvolLUxfKv4Eki84OUcvd0d09TiIgUL6VTk7ij2zGMva0LnRtV4rEx8znjmUlMWZxXM0pIYRZLkKwE5rgG5xEp9o6uUIoXL8vg1T6t2Z21j14vTeW2t2awcdvuw+8sRVYsl7aWAOODQRuj5yMpNLf/ikjeOqlxFT6r14Xnxi3ixYmL+WLeOu7q3phL2tQiQaMLFzuxtEiWAmOBFHT7r4gESqYkcke3Y/jkls40q16We0fN4bzBk5mzWiMoFTcxz0diZmUA3H1bXCuKA93+KxJf7s4HM9bw0Ec/sGn7Hi5vX4fbT29EWonksEuTXMjL+UiONbPvgbnAXDObbmbN8qJIESkazIwex9dg7O1d6d22Nq9NWcYpT0xg9Mw1mvukGIjl0tYQ4DZ3r+3utYHbgZfiW5aIFEZlSybzYI9jGXVDB6qkp3LTyO+5fOg0lm7cHnZpEkexBElpd//vvO3uPh7QaG4ikq0WR5fjg/4d+es5zZix4le6DZzIU58vYNdeTWVUFMUSJEvM7D4zqxO87iVyJ5eISLYSE4wrTqzD2Nu70L1ZNZ4eu5DuAycyaeGGsEuTPBZLkFxJZA6S94JX5WCZiMhhVUkvwTO9juf1q9piZlz2yjTuemcmm3cWqtkoJAcx37VVmOmuLZGCYdfefTw9diFDJi6hUpkUHj6vOac0qRp2WZKNXM9HYmYf5rSju5/zO2vLdwoSkYJl1qpfufPfs5i/bivnHV+DB85uSrlSKWGXJQeJNUhyerK9PZHhUUYC3xAZrFFEJNeOq1mO0Td1ZNC4RTw/bhGTFm7koR7N6H7sUWGXJr9DTn0k1YA/E5mr/WngNGCju09w9wn5UZyIFF0pSQncdlojPryxI1XTU7nu9e/o/+Z3GrerEMo2SNx9n7t/6u5XAO2ARUTG3LoxlgOb2VAzW29mc7JZX9bMRpvZTDOba2Z9g+W1zew7M5sRLL8uap/xZjY/WDfDzKoc0dmKSIHTtHo6o/p34M5ux/D53HWc/tREPtSDjIVKjp3tZpZKZL72XkTmbP8QGOruqw97YLPOwDZguLsfe4j1fwbKuvvdZlYZmE+kFXSgrt3BsCxzgBPdfY2ZjQfucPcj6vBQH4lI4bBg3VbufGcWM1f+yulNq/JQj2Opkl4i7LKKrVwPkWJmw4EpwAnAX929tbs/GEuIALj7RGBTTpsAaWZmQJlg2yx33+PuB9q2qTnVKCJFS6Oqabx7XXv+fEZjJizYwGlPTeTd6avUOingcrpraz9wYFyD6I1iniHRzOoA/8mmRZJGpIXTmMhowj3d/aNg3dHAR0AD4E53fy5YPh6oCOwD3gUeym6eFDO7BrgGoFatWq2WL19+uHJFpABZsmEbd70zi8zlv3DSMZV5+PzmHFW2ZNhlFSu5bpG4e0IwG2JaMDPigVdezZDYDZgBVAdaAoPMLD347JXufhyRILnCzA7caN7b3ZsDnYLXZTnUP8TdM9w9o3LlynlQrojkp3qVy/D2te154OymTF2yidOfnMi/pq1Q66QACvOyUV/gPY9YRGTek8bRG7j7GiJ9JJ2Cr1cHf24F3gTa5GvFIpKvEhKMvh3q8umtnWhWI50/vTeba0ZMZ9P2PWGXJlHCDJIVwCkAQYvjGCLjetU0s5LB8vJAR2C+mSWZWaVgeTJwFpGQEZEirnbF0rzZrx33ndWUCfM30E1jdhUocQsSMxtJpLP+GDNbZWZXmdl1UbfzPgicaGaziczAeLe7bwSaAN+Y2UxgAvC4u88m0vE+xsxmEbkkthoNZy9SbCQkGFd1rMuo/h0oVzKZy16Zxt8/+oHdWRpROGwaa0tECp2de/bx8MfzGDF1OU2PSueZXi1pUEUzgOe1PJshUUSkoCmZksiDPY7l5cszWLtlF2c9+xWvT12ujviQKEhEpNA6tWlVPr2lE61MiZGTAAAQu0lEQVTrVODeUXPUER8SBYmIFGpV0kvwWt826ogPkYJERAo9dcSHS0EiIkVG0+rpfHhjRy5rV5uXJi3lvOcms2j91rDLKvIUJCJSpKgjPv8pSESkSDpUR/yvO9QRHw8KEhEpsg7uiD/r2a+Ys3pz2GUVOQoSESnSDnTEv31de/bvd84fPJm3M1eGXVaRoiARkWKh5dGReeJb1ynPXe/M4p73ZuuurjyiIBGRYqNimVSGX9mWG7rWZ+S0FVz0whRW/7oz7LIKPQWJiBQriQnGXd0b8+JlrViyYTtnPTOJrxZuDLusQk1BIiLFUrdm1fjgxg5UTkvl8qHf8Ny4Rezfr1uEfw8FiYgUW/Uql2FU/w6ceVx1Hhszn2tfn86WXXvDLqvQUZCISLFWKiWJZy5uyQNnN2Xcj+s5d9DXzF+rp+GPhIJERIo9s8iUviOvace23Vn0eO5rPpixOuyyCg0FiYhIoHWdCnx0U0ea1yjLLf+awV8+nMveffvDLqvAU5CIiESpkl6CN65uy1Ud6zJs8jJ6DZnK+i27wi6rQFOQiIgcJDkxgfvOasozvY5n7potnPHMV2Qu2xR2WQWWgkREJBvntKjOBzd2IK1EEpe8/A0fzlwTdkkFkoJERCQHjaqm8d71J9KyZjluHvk9z41bpCHpD6IgERE5jPKlUxjRrw09WkaeN7n73VnqhI+SFHYBIiKFQWpSIk/1bEmtiqV5ZuxCVv+6k+d7t6JsyeSwSwudWiQiIjEyM247rRFPXNiCaUs38cfBk1m5aUfYZYVOQSIicoT+2Komw69sy/otuzjv+a+ZsfLXsEsKlYJEROR3aF+/Iu/d0IGSKYlcPGQKn85ZG3ZJoYlrkJjZUDNbb2Zzsllf1sxGm9lMM5trZn2D5bXN7DszmxEsvy5qn1ZmNtvMFpnZM2Zm8TwHEZHsNKhShvdv6ECTo9K5/o3pvDRxSbG8oyveLZJhQPcc1vcHfnD3FkBX4AkzSwF+Atq7e0ugLfAnM6se7DMYuBpoGLxyOr6ISFxVKpPKyKvb8Ydjq/H3j+dx76g5ZBWzO7riGiTuPhHI6XFQB9KCVkWZYNssd9/j7ruDbVIP1GlmRwHp7j7VI7E/HOgRtxMQEYlBieREBvU6geu61OeNb1bQb3gm23ZnhV1Wvgm7j2QQ0ARYA8wGbnH3/QBmdrSZzQJWAo+6+xqgBrAqav9VwbL/YWbXmFmmmWVu2LAhnucgIkJCgvGnPzTmH+c3Z9LCjVwweDI/bS4e0/iGHSTdgBlAdaAlMMjM0gHcfaW7Hwc0AK4ws6pHcmB3H+LuGe6eUbly5byuW0TkkHq1qcWrfVqz6ped9Hjua+as3hx2SXEXdpD0Bd7ziEXAUqBx9AZBS2QO0AlYDdSMWl0zWCYiUmB0blSZd65vT6IZF704hS9/XBd2SXEVdpCsAE4BCFocxwBLzKymmZUMlpcHOgLz3f0nYIuZtQv6VS4HPgindBGR7DWuls6o/h2oV7k01wyfzugiPOBjvG//HQlMAY4xs1VmdpWZXRd1O++DwIlmNhsYC9zt7huJ9Jt8Y2YzgQnA4+4+O9jnBuBlYBGwGPgknucgIvJ7VUkvwcir23F8rXLc8q/veTtzZdglxYUVh3ueMzIyPDMzM+wyRKSY2rEni2tHTGfSwo387dxmXN6+TtglxcTMprt7xuG2C/vSlohIkVcqJYmXr8jgtKZVuf+DuQwevzjskvKUgkREJB+kJiXyfO8TOLtFdR799Eee+Gx+kXkKXsPIi4jkk+TEBAb2bEmp5ESe/XIRO/bs494zm1DYR3pSkIiI5KPEBOMf5zenZEoir3y1lB17snioR3MSEwpvmChIRETyWUKC8cDZTSmVksjz4xezc88+Hr+wBUmJhbO3QUEiIhICM+Ou7o0pnZrEY2Pms3PvPp7pdTypSYlhl3bECmf8iYgUEf1PasD9ZzVlzNx1XDN8Ojv37Au7pCOmIBERCdmVHevyyPnNmbhwA31enVboRg5WkIiIFAAXt6nFwJ4tyVz+C5e+/A2bd+wNu6SYKUhERAqIc1vWYHDvE/hhzRYufmkqG7ftPvxOBYCCRESkADm9WTVeuiKDpRu30fPFKazdvCvskg5LQSIiUsB0aVSZ1/q2Yd2W3Vz04hTWbSnYYaIgEREpgNrWq8iIq9rw87bdXPryN2zavifskrKlIBERKaCOr1Wel69ozYpNO7hi6DS27CqYHfAKEhGRAqx9/YoMvvQE5v20hX7DMgvkcyYKEhGRAu7kxlV5qmdLvl2+ieten86erP1hl/QbChIRkULg7BbVefi85kxYsIFb3/qerH0FJ0w01paISCHRq00ttu/O4qGP5lE6ZTaP/vE4EgrAqMEKEhGRQqRfp3ps2ZXFM2MXUqZEEvef1TT0+UwUJCIihcyAUxuydddeXv16GWklkrnttEah1qMgEREpZMyM+85syvbdkZZJWmoSV3euF1o9ChIRkUIoIcH4x/nHsX33Pv7+8TzKlEiiV5taodSiIBERKaQSE4ynerZk+54s/vz+bEqnJnFOi+r5Xodu/xURKcRSkhIY3LsVretU4La3ZjB23rp8r0FBIiJSyJVMSeSVKzJoWj2d69/4jsmLN+br5ytIRESKgLQSybzWtw21K5Ti6tcy+X7FL/n22XELEjMbambrzWxONuvLmtloM5tpZnPNrG+wvKWZTQmWzTKznlH7DDOzpWY2I3i1jFf9IiKFTfnSKbzery0Vy6TS59Vv+XHtlnz53Hi2SIYB3XNY3x/4wd1bAF2BJ8wsBdgBXO7uzYL9B5pZuaj97nT3lsFrRnxKFxEpnKqml+CNfm0pmZzIpS9PY9nG7XH/zLgFibtPBDbltAmQZpFHMssE22a5+wJ3XxgcYw2wHqgcrzpFRIqaoyuU4vV+bWhaPZ20EvG/OTfMPpJBQBNgDTAbuMXdfzMKmZm1AVKAxVGL/x5c8nrKzFKzO7iZXWNmmWaWuWHDhjiULyJScDWoksbwK9tQsUy2PybzTJhB0g2YAVQHWgKDzCz9wEozOwoYAfSNCph7gMZAa6ACcHd2B3f3Ie6e4e4ZlSurQSMiEi9hBklf4D2PWAQsJRISBIHyEfB/7j71wA7u/lOw/W7gVaBNCHWLiEiUMINkBXAKgJlVBY4BlgQd7u8Dw939negdglYKQb9KD+CQd4SJiEj+iVsvjJmNJHI3ViUzWwU8ACQDuPsLwIPAMDObDRhwt7tvNLNLgc5ARTPrExyuT3CH1htmVjnYfgZwXbzqFxGR2Ji7h11D3GVkZHhmZmbYZYiIFCpmNt3dMw63nZ5sFxGRXFGQiIhIrihIREQkV4pFH4mZbQCWh13HEaoE5O8QnuHTORcPOufCo7a7H/ZBvGIRJIWRmWXG0slVlOiciwedc9GjS1siIpIrChIREckVBUnBNSTsAkKgcy4edM5FjPpIREQkV9QiERGRXFGQiIhIrihIQhbD3PbnBhN5zQgm6uqY3zXmtcOdc9R2rc0sy8wuyK/a4iGG73FXM9scfI9nmNn9+V1jXovlexyc9wwzm2tmE/KzvniI4ft8Z9T3eI6Z7TOzCvldZzyojyRkZtYZ2EZk2PxjD7G+DLDd3d3MjgPedvfG+V1nXjrcOQfbJAKfA7uAoQdPKVCYxPA97grc4e5n5Xdt8RLDOZcDJgPd3X2FmVVx9/X5XWdeiuXfddS2ZwMD3P3kfCkuztQiCdnh5rZ3923+/9O+NJG57gu1w51z4CbgXaBQ/3CBmM+3SInhnC8hMrHdimD74vZ97gWMjGM5+UpBUgiY2Xlm9iORWSOvDLueeDOzGsB5wOCwa8lH7c1sppl9YmbNwi4mHzQCypvZeDObbmaXh11QfjGzUkB3Ir8oFQlxm9hK8o67vw+8HzSdHwRODbmkeBtIZKKz/ZHJMIu874iMabTNzM4ARgENQ64p3pKAVkRmSS0JTDGzqe6+INyy8sXZwNfuXmRaqQqSQsTdJ5pZPTOr5O6FcQC4WGUA/wpCpBJwhpllufuocMuKD3ffEvX+YzN7vhh8j1cBP7v7dmC7mU0EWgDFIUgupghd1gJd2irwzKxBMEc9ZnYCkAr8HG5V8eXudd29jrvXAd4BbiiqIQJgZtWivsdtiPy/LNLfY+ADoKOZJQWXetoC80KuKe7MrCzQhcj5FxlqkYQshrnt/whcbmZ7gZ1Az6jO90IphnMuUmI43wuA680si8j3+OKi/j1293lm9ikwC9gPvOzuOd4OXtDF+O/6POCzoCVWZOj2XxERyRVd2hIRkVxRkIiISK4oSEREJFcUJCIikisKEhERyRUFiRRKZrYthm1uDZ5RyKvP7GFmTfPweJNzse+24M/qZpbtgJZmVs7Mbvi9nyMSCwWJFGW3AkcUJMGow9npAeRZkLj7iXlwjDXuntMw++UABYnElYJECrVgTovxZvaOmf1oZm9YxM1AdWCcmY0Ltj3dzKaY2Xdm9u9giH7MbJmZPWpm3wEXmtnVZvZtMIjiu2ZWysxOBM4BHgvmk6hvZi3NbKpF5ot538zKB8cbb2ZPWWT+mHkWmVflPTNbaGYPRdW+Ler93WY2O/jMRw5xnnWD2mcfdIw6B+a/MLNmZjYtqG+WmTUEHgHqB8seM7MyZjY2+DuYbWbnRh1nnpm9ZJH5QT4zs5LBugZm9kVQ23dmVj9Yfmfw9zTLzP6ap99YKVzcXS+9Ct0L2Bb82RXYDNQk8ovRFKBjsG4ZUCl4XwmYCJQOvr4buD9qu7uijl0x6v1DwE3B+2HABVHrZgFdgvd/AwYG78cDjwbvbwHWAEcRGd5m1YHjR53DH4jMzVEq+LrCIc73Q+Dy4H3/qH3rAHOC988CvYP3KUQGQ/zv+mB5EpAe9XeyCLBguyygZbDubeDS4P03wHnB+xJEWnmnA0OCfROA/wCdw/53oVc4Lw2RIkXBNHdfBWBmM4j8UPzqoG3aEbks9XUwrFUKkdA54K2o98cGv/WXA8oAYw7+wGDMpHLufmBmv9eAf0dt8mHw52xgrrv/FOy3BDia346ldSrwqrvvAPBDjwrbgchwOQAjgEcPsc0U4P/MrCaRuT4W2v+OnmzAwxYZSXo/UAOoGqxb6u4zgvfTgTpmlgbU8MgI1Lj7ruA8TicSJt8H25chMmLxxEPUJUWcgkSKgt1R7/dx6H/XBnzu7r2yOUb02EfDgB7uPtPM+hBp9fzemvYfVN/+bOqLRY7jGbn7m2b2DXAm8LGZXQssOWiz3kBloJW77zWzZURaGdE1Q+TvsWQOH2fAP9z9xSOoX4oo9ZFIUbYVSAveTwU6mFkDADMrbWaNstkvDfjJzJKJ/OD9n+O5+2bgFzPrFKy7DPi9845/DvQ9cIeZHXoe76+JDD/OQTX9l5nVA5a4+zNERpc9jt/+HQCUBdYHIXISUDunwtx9K7DKzHoEn5Ea1DkGuDKqn6mGmVWJ6WylyFGQSFE2BPjUzMa5+wagDzDSzGYRuQzUOJv97iPSL/A18GPU8n8Bd5rZ90GH8xVEOt9nAS2J9JMcMXf/lMilsMzg0twdh9jsFqC/mc0mcjnqUC4C5gTHOJbI3OE/E7mcN8fMHgPeADKC41x+0Pll5zLg5uA8JwPV3P0z4E0iE1LNJjLcf1oOx5AiTKP/iohIrqhFIiIiuaIgERGRXFGQiIhIrihIREQkVxQkIiKSKwoSERHJFQWJiIjkyv8D3HNgeaLooVQAAAAASUVORK5CYII=\n", "text/plain": [ - "Text(0.5, 1.0, 'LiH Dipole Moment')" + "" ] }, - "execution_count": 3, "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd4VVX69vHvk0pL6EVAOkgRQQlNqhXGio6KiAUUKzas4/wsM6Pj6NhQURQVEVRGx4IyFlSkKSAGpYr0jjRRegs87x9nM++RIeFgcrJT7s91nYuT3c6zCeTO2mvvtczdERER+b0Swi5AREQKNwWJiIjkioJERERyRUEiIiK5oiAREZFcUZCIiEiuKEikUDKzTmY2Px8+5xMzuyIPjvMXM3s9L2oSKWgUJFKgmdkyMzv14OXuPsndj8lpOzPrY2Zf5XBsN7PtZrbNzH42s7Fm1vOgz/mDu7+WF+fyewXntsfMKh20/PvgHOqEU9mhmdkwM3so7Dok/yhIpLhr4e5lgGOAYcAgM3sg3JIOaSnQ68AXZtYcKBVeOSL/n4JECiUz62pmq/LqeO6+0d1HANcD95hZxeBzxptZv+B9HzP72swGmdlmM/vRzE6Jqqm6mX1oZpvMbJGZXZ1D/e3MbLKZ/WpmM82s62FKHAFcHvX1FcDwg45Z1syGm9kGM1tuZveaWcJBtT8VfOYSMzsxWL7SzNZHX8Izs1Qze9zMVpjZOjN7wcxKBuu6mtkqM7s92O8nM+sbrLsG6A3cFbT0Rh/mvKQIUJCI/NYHQBLQJpv1bYHFQCXgAeA9M6sQrPsXsAqoDlwAPGxmJx98ADOrAXwEPARUAO4A3jWzyjnUNRVIN7MmZpYIXAwc3OfyLFAWqAd0IRI8fQ+qfRZQEXgzqLc10AC4lEhrrEyw7SNAI6BlsL4GcH/UsaoFn1UDuAp4zszKu/sQ4A3gn+5ext3PzuGcpIhQkEhRMir4bftXM/sVeP5ID+Due4GNRH7AH8p6YKC773X3t4D5wJlmdjTQAbjb3Xe5+wzgZX7bijjgUuBjd//Y3fe7++dAJnDGYco70Co5DZgHrD6wIipc7nH3re6+DHgCuCxq/6Xu/qq77wPeAo4G/ubuu939M2AP0MDMDLgGGODum9x9K/BwcPwD9gb77nX3j4FtRC4PSjGUFHYBInmoh7t/ceALM+sD9DuSA5hZMlAZ2JTNJqv9tyOdLifSAqkOHPihG70u4xDHqA1caGbRv60nA+MOU94IYCJQl4MuaxFpISUHnxn9+TWivl4X9X4ngLsfvKwMkfMvBUyPZAoABiRGbfuzu2dFfb0j2FeKIbVIRH7rXCALmJbN+hoW9dMVqAWsCV4VzCztoHWr+V8rgRHuXi7qVdrdH8mpMHdfTqTT/QzgvYNWbyTSSqgdw+cfzkYiodIsqr6ywU0JsdCQ4sWMgkQKg2QzKxH1yvOWtJlVMLPewHPAo+7+czabVgFuNrNkM7sQaELkMtVKYDLwj6DG44j0HRzq2ZHXgbPNrJuZJQbbdzWzmjGUehVwsrtvj14YXK56G/i7maWZWW3gtmw+P0fuvh94CXjKzKpApF/HzLrFeIh1RPpppJhQkEhh8DGR35APvP6Sh8eeaWbbgEVELoMNcPf7c9j+G6Ahkd/a/w5cEBU6vYA6RFon7wMPRF9qOyAInXOBPwMbiLRQ7iSG/4/uvtjdM7NZfROwHVgCfEWkQ33o4Y6ZjbuJ/J1MNbMtwBfE3gfyCtA06Ksa9Ts/XwoR08RWIrE50Ofi7h3DrkWkIFGLREREckVBIiIiuaJLWyIikitqkYiISK4UiwcSK1Wq5HXq1Am7DBGRQmX69Okb3T2noXuAYhIkderUITMzuzsmRUTkUMxs+eG30qUtERHJJQWJiIjkioJERERyRUEiIiK5oiAREZFcUZCIiEiuKEhERCRXFCQ5GD1zDe9/vwoNIyMikj0FSQ7e+24VA96aSb/XMlm7eVfY5YiIFEgKkhy8fEVr7j2zCV8v3shpT03g7W9XqnUiInIQBUkOEhOMfp3q8ektnWlyVDp3vTuLy4dOY9UvO8IuTUSkwFCQxKBOpdL86+p2PHhuM6Yv/4VuT01kxNTl7N+v1omIiIIkRgkJxmXt6zDm1s4cX6s8942awyUvT2X5z9vDLk1EJFQKkiN0dIVSjLiqDY+c35y5q7fQfeAkhn61lH1qnYhIMaUg+R3MjIvb1OKz2zrTrl4F/vafH7joxSks3rAt7NJERPKdgiQXjipbkqF9WvPkRS1YtH4bf3h6Ei9MWEzWvv1hlyYikm8UJLlkZpx/Qk0+H9CZro0q88gnP/LHwZOZv3Zr2KWJiOQLBUkeqZJeghcva8WzvY5n5S87OevZSTwzdiF7stQ6EZGiTUGSh8yMs1tU5/MBnenWrBpPfr6AM5+ZROayTWGXJiISNwqSOKhYJpVBl5zA0D4Z7NizjwtemMI9781m8869YZcmIpLnFCRxdHLjqnw2oDP9OtblrW9XcMoTExg9c42GWRGRIkVBEmelU5O496ymfHhjR44qW4KbRn7PlcO+ZeUmDbMiIkWDgiSfHFujLO/fcCL3ndWUb5Zu4vSnJvLSxCW6VVhECj0FST5KSkzgqo51+fy2LnRoUJG/fzyPc5/7mlmrfg27NBGR301BEoIa5Ury0uUZDO59Ahu27qbHc1/z19Fz2bY7K+zSRESOmIIkJGbGH5ofxRe3d6F329oMm7yM056cwOc/rAu7NBGRI6IgCVl6iWQe7HEs71x3Iuklkrl6eCbXjZiuGRlFpNBQkBQQrWqX5z83d+Su7scwbv56Tn1yAq98tVSd8SJS4ClICpDkxARu6NqAzwZ0plXt8jz4nx8469mv+FZPxotIARa3IDGzoWa23szmZLO+rJmNNrOZZjbXzPpGrdtnZjOC14dRy+ua2TdmtsjM3jKzlHjVH6baFUszrG9rXri0FVt27uXCF6Zw+9sz2bB1d9iliYj8j3i2SIYB3XNY3x/4wd1bAF2BJ6KCYae7twxe50Tt8yjwlLs3AH4Brsr7sgsGM6P7sdX44vYu3NC1Ph/OXM3JT4zntcnLNImWiBQocQsSd58I5HRNxoE0MzOgTLBttve/BtudDLwTLHoN6JE31RZcpVKSuKt7Yz69tTMtapbjgQ/ncs6gr5i+/JewSxMRAcLtIxkENAHWALOBW9z9QM9yCTPLNLOpZnYgLCoCv7r7gbBZBdTI14pDVL9yGUZc1YbnLjmBn7ft4Y+DJ3PXOzP5eZsud4lIuMIMkm7ADKA60BIYZGbpwbra7p4BXAIMNLP6R3pwM7smCKPMDRs25FnRYTIzzjzuKMbe3oVrO9fjve9Wc/ITE3h96nJd7hKR0IQZJH2B9zxiEbAUaAzg7quDP5cA44HjgZ+BcmaWFOxfE1id3cHdfYi7Z7h7RuXKleN3FiEonZrEPWc04ZNbOtHkqDTuHTWH857/mpkrNdSKiOS/MINkBXAKgJlVBY4BlphZeTNLDZZXAjoQ6ZR3YBxwQbD/FcAH+V51AdKwahojr27H0xe3ZO3mXfR4/mvueW82v2zfE3ZpIlKMWLzmxjCzkUTuxqoErAMeAJIB3P0FM6tO5M6uowADHnH3183sROBFYD+RoBvo7q8Ex6wH/AuoAHwPXOruh+0kyMjI8MzMzDw9v4Jm6669DPxiIcMmLyOtRBJ3djuGi1vXIjHBwi5NRAopM5sedDPkvF1xmGSpOATJAT+u3cL9H8xl2tJNNDkqnb+c3ZS29SqGXZaIFEKxBomebC9iGldL561r2jHokuPZvGMPPYdMpf+b37HqF02kJSLxoSApgsyMs46rztjbu3LrqQ0ZO28dpzwxgac+X8DOPfvCLk9EihgFSRFWMiWRW09txNjbu3Ja06o8PXYhpzwxXvPGi0ieUpAUAzXKlWTQJSfw9rXtKVcqhZtGfk/PF6cyZ/XmsEsTkSJAQVKMtKlbgdE3deQf5zdn0YZtnD3oK+55b5aejheRXFGQFDOJCUavNrUYd0dXruxQl39nrqLr4+N5edIS9mruExH5HRQkxVTZksncd1ZTPr21E8fXKs9DH82j+8CJjJ+/PuzSRKSQUZAUcw2qpPFa39a8ckUG+/Y7fV79liuHfcui9VvDLk1ECgkFiWBmnNKkKmMGdObPZzTm26Wb6DZwEveNmqP+ExE5LAWJ/FdqUiLXdK7P+Du70rttLd6ctoKuj43nhQmL2bVXz5+IyKEpSOR/VCyTyt/OPZYxt3aiTd0KPPLJj5zyxAQ9fyIih6QgkWw1qJLGK31a80a/tqSXTOamkd9z/uDJmp1RRH5DQSKH1aFBJf5zU0f+ecFxrP5lJ38cPJn+b37Hyk0av0tENPqvHKHtu7MYMnEJL05czP790LdDHW44qQFlSyaHXZqI5DGN/itxUTo1iQGnNWL8HSdxTsvqDJm0hJMeH8/wKcv0QKNIMaUgkd+lWtkSPH5hC0bf2JFjqqZx/wdz6T5wImPnrVOHvEgxoyCRXDm2RlnevLotL12egTtc9VomPYdM5fsV6pAXKS4UJJJrZsZpTSMPND54bjOWbNjGec9Ppv8b37Fs4/awyxOROFNnu+S5bbuzeGniEl6atIQ9Wfvp3bYWN53SkEplUsMuTUSOgOZsj6IgCcf6rbt4+ouF/OvblZRISuDaLvXp16kupVKSwi5NRGKgIImiIAnX4g3b+OenPzJm7joqp6Uy4NRGXJRRk6REXVkVKch0+68UGPUrl+HFyzJ49/r21K5Qij+/P5tuAycyZu5a3eElUgQoSCTftKpdgX9f154hl7XCgWtHTOfCF6ZoyBWRQk5BIvnKzDi9WTU+u7UzD5/XnOWbdvDHwZO5dkQmizdsC7s8Efkd1EciodqxJ4uXJy3lxQmL2ZW1n4syjuaWUxpSrWyJsEsTKfbU2R5FQVLwbdy2m0FfLuKNb5aTYEafDnW4vkt9ypVKCbs0kWIr9M52MxtqZuvNbE4268ua2Wgzm2lmc82s70Hr081slZkNilo23szmm9mM4FUlXvVL/qpUJpW/nNOML2/vypnNj2LIxCV0+uc4nhu3iB17ssIuT0RyEM8+kmFA9xzW9wd+cPcWQFfgCTOL/vXzQWDiIfbr7e4tg9f6vCpWCoajK5TiyZ4t+eSWTrStW4HHxsyny2PjeX3qcg0KKVJAxS1I3H0isCmnTYA0MzOgTLBtFoCZtQKqAp/Fqz4p2BpXS+flK1rz7+sitwzfO2oOpz45gQ9nrmH//qJ/OVakMAnzrq1BQBNgDTAbuMXd95tZAvAEcEc2+70aXNa6LwihQzKza8ws08wyN2zYkOfFS/5oXSdyy/DQPhmUTE7k5pHfc/agr5iwYIOeQREpIMIMkm7ADKA60BIYZGbpwA3Ax+6+6hD79Hb35kCn4HVZdgd39yHunuHuGZUrV8776iXfmBknN67KRzd34qmeLdi8cy9XDJ1Gr5em8p1GGRYJXZhB0hd4zyMWAUuBxkB74EYzWwY8DlxuZo8AuPvq4M+twJtAmzAKl3AkJhjnHV+TL2/vyl/Pacai9ds4//nJXDM8k4XrtoZdnkixFWaQrABOATCzqsAxwBJ37+3utdy9DpHLW8Pd/U9mlmRmlYLtk4GzgEPeESZFW0pSAlecWIcJd57Ebac1YvLin+k2cCK3vz1T88iLhCBuw7Ca2Ugid2NVMrNVwANAMoC7v0DkrqxhZjYbMOBud9+YwyFTgTFBiCQCXwAvxat+KfhKpyZx8ykNubRdbZ4ft4jhU5fz4czVXNKmFv1PbkCVND3UKJIf9ECiFBk/bd7JM2MX8XbmSlISE+jboQ7Xdq5P2VLJYZcmUijpyfYoCpLiZdnG7Tz1xQI+nLmGMqlJXNelPn1OrEPpVM2DInIkFCRRFCTF07yftvDEZ/P5Yt56KpVJof9JDbikbS1SkxLDLk2kUFCQRFGQFG/Tl//CY2N+ZOqSTdQoV5JbTm3I+cfX0MRaIocR+lhbIgVFq9rlGXl1O16/qi2VyqRw1zuzOH3gRD6a9ZOekhfJAwoSKRbMjI4NKzGqfwdeuLQViWb0f/M7znnuK8bPX6+n5EVyQUEixYqZ0f3Yanx6a2eevCjylHyfV7+l54tTmbY0p6HhRCQ76iORYm1P1n7e+nYFz365iPVbd9OlUWXuOP0YmtcsG3ZpIqHLs852M3uVyEi9v+HuV/7+8vKXgkQOZ+eefQyfsozBExbz6469nNG8Gred1ogGVdLCLk0kNLEGSSw31v8n6n0J4DwiI/aKFBklUxK5tkt9erWtxSuTlvLypCV8Omct5x1fk1tPbcjRFUqFXaJIgXXEl7aCYd6/cvcT41NS3lOLRI7Upu17eGHCYl6bvIz97lzcuhY3ntyAqukadkWKj3je/tsQ0BS3UqRVKJ3Cn89owoQ7T6Jn66MZOW0Fnf85jn98PI9ftu8JuzyRAiWWPpKt/LaPZC1wj7u/G8/C8pJaJJJbK37ewcAvFvD+jNWUTkmiX6e6XNWxLmklNI6XFF16sj2KgkTyyoJ1W3nyswV8Onct5Uslc33X+lzevg4lkjXsihQ9CpIoChLJa7NW/crjny1g4oINVE1P5eZTGnJRxtEka9gVKULiOkSKmX33e/YTKSqOq1mO4Ve24a1r2nF0+VL83/tzOOWJCYz6frWGXZFiRy0SkVxyd8bP38A/x8xn3k9baFwtjdtPP4ZTm1TBzMIuT+R306CNIvnEzDipcRU+uqkjz/Y6nt1Z+7l6eCbnD57M5MU5TfopUjQcNkjMrJ2ZfWtm28xsj5ntM7Mt+VGcSGGSkGCc3aI6nw3ozCPnN2ft5l1c8tI3XPbKN8xc+WvY5YnETSwtkkFAL2AhUBLoBzwXz6JECrPkxAQublOLcXd05d4zmzB3zRbOfe5rrhsxnYXrtoZdnkiei+nSlrsvAhLdfZ+7vwp0j29ZIoVfieRE+nWqx4Q7uzLg1EZ8tWgj3QZO5La3Z7By046wyxPJM7GMtbXDzFKAGWb2T+An1LciErO0EsnccmpDLmtf+7/DroyeuYZebSLDrlRJ07ArUrjF8mR7bWAdkAIMAMoCzwetlEJBd21JQbJ28y6e+XIhb327kpTEBK7qWJdrutQjXU/JSwGjBxKjKEikIFq2cTtPfL6A0TPXUL5UMv1PasCl7WrrKXkpMBQkURQkUpDNWb2ZRz/9kUkLN1KjXEluPbUh559Qk8QEPYMi4dJzJCKFxLE1yjLiqra82a8tlcqkcOc7s/jD0xP5/Id1mkteCoVYniO5MJZlIpI7JzaoxKj+HXi+9wlk7XOuHp7JhS9MIXOZ5pKXgi2WFsk9MS77H2Y21MzWm9mcbNaXNbPRZjbTzOaaWd+D1qeb2SozGxS1rJWZzTazRWb2jGkMCilCzIwzmh/FmAGdefi85qzYtIMLXphCv9e+Zf5aPYMiBVO2fSRm9gfgDOAi4K2oVelAU3dvc9iDm3UGtgHD3f3YQ6z/M1DW3e82s8rAfKCau+8J1j8NVAY2ufuNwbJpwM3AN8DHwDPu/klOdaiPRAqrnXv28erkpQwev5htu7M4//iaDDitITXLa+pfib+86CNZA2QCu4DpUa8PgW6xFOHuE4Gc2uUOpAWtijLBtlnBCbQCqgKfHdjYzI4C0t19qkcScDjQI5ZaRAqjkimJ3NC1AZPuOomrO9Vj9Kw1nPz4BB78zw9s0kyNUkBk+0Ciu88EZprZm+6+N06fP4hIMK0B0oCe7r4/mBf+CeBS4NSo7WsAq6K+XhUs+x9mdg1wDUCtWrXyvnKRfFSuVGTq3z4n1mHgFwt49eulvP3tSq7rWp+rOtbVLcMSqlj6SNqY2edmtsDMlpjZUjNbkkef3w2YAVQHWgKDzCwduAH42N1X5bRzTtx9iLtnuHtG5cqV86ZakZBVL1eSf17QgjG3dqZtvYo8NmY+Jz8+nnenr9I8KBKaWIZIeYXIE+3TgX15/Pl9gUeCy1SLzGwp0BhoD3QysxuIXPJKMbNtwNNAzaj9awKr87gmkQKvYdU0Xr4ig6lLfubhj+dx+79nMvTrpfzfGU04sUGlsMuTYiaWFslmd//E3de7+88HXnn0+SuAUwDMrCpwDLDE3Xu7ey13rwPcQaSz/k/u/hOwJRja3oDLgQ/yqBaRQqddvYqMuqEDT1/ckl937OWSl7/hymHfapRhyVextEjGmdljwHvA7gML3f2w0+2a2UigK1DJzFYBDwDJwf4vAA8Cw8xsNmDA3e5+uJmAbgCGERnS/pPgJVJsJSQY57asQbdm1Rg+ZRnPfrmIbgMn0rN1LQac1lCDQkrcxTJo47hDLHZ3Pzk+JeU93f4rxckv2/fw7JeLGDF1GcmJCVzbuT5Xd65LqZRYfm8U+f801lYUBYkUR8s2buefY37k49lrqZKWyu2nN+KCVkdrDC+JWZ6NtWVmVc3sFTP7JPi6qZldlRdFikj81KlUmud7t+Ld69tTs3xJ7n53Nmc8PYnx89drDC/JU7F0tg8DxhC5RRdgAXBrvAoSkbzVqnYF3r3+RJ7vfQK7svbR59VvueyVafy4dkvYpUkREUuQVHL3t4H9AO6eRd7fBiwicXRgDK/PB3Th/rOaMmfNZs54ehL3jZrDL3pCXnIpliDZbmYViQxngpm1AzbHtSoRiYuUpASu7FiX8Xd05fL2dXhz2gq6Pj6eYV8vZe++/WGXJ4VULHdtnQA8CxwLzCEyiOIF7j4r/uXlDXW2ixzagnVb+dvoH/hq0UYaVinD/Wc3pVNDjQQhEXl615aZJRF5WNCA+XEceysuFCQi2XN3vpi3noc++oHlP+/g1CZVuffMJtSpVDrs0iRkeRYkZpYInAnUIeoBRnd/Mpc15hsFicjh7c7ax9CvljHoy4Xs3edc2bEuN57cgDKpev6kuMrLqXZHA32AikRG6D3wEpEiJDUpkeu71mfcHV05p2V1XpiwmJMeH8+/M1dqQEjJUSwtklnuflw+1RMXapGIHLmZK3/lL6Pn8v2KXzmuZlkeOLsZrWqXD7ssyUd52SL5xMxOz4OaRKQQaXF0Od697kSe6tmCdVt28cfBkxnw1gzWbt4VdmlSwMRy8XMq8H4w2dReIh3u7u7pca1MREKXkGCcd3xNTm9ajcHjFzNk0hI+nbOWG09uwNWd6pGSFMvvolLUxfKv4Eki84OUcvd0d09TiIgUL6VTk7ij2zGMva0LnRtV4rEx8znjmUlMWZxXM0pIYRZLkKwE5rgG5xEp9o6uUIoXL8vg1T6t2Z21j14vTeW2t2awcdvuw+8sRVYsl7aWAOODQRuj5yMpNLf/ikjeOqlxFT6r14Xnxi3ixYmL+WLeOu7q3phL2tQiQaMLFzuxtEiWAmOBFHT7r4gESqYkcke3Y/jkls40q16We0fN4bzBk5mzWiMoFTcxz0diZmUA3H1bXCuKA93+KxJf7s4HM9bw0Ec/sGn7Hi5vX4fbT29EWonksEuTXMjL+UiONbPvgbnAXDObbmbN8qJIESkazIwex9dg7O1d6d22Nq9NWcYpT0xg9Mw1mvukGIjl0tYQ4DZ3r+3utYHbgZfiW5aIFEZlSybzYI9jGXVDB6qkp3LTyO+5fOg0lm7cHnZpEkexBElpd//vvO3uPh7QaG4ikq0WR5fjg/4d+es5zZix4le6DZzIU58vYNdeTWVUFMUSJEvM7D4zqxO87iVyJ5eISLYSE4wrTqzD2Nu70L1ZNZ4eu5DuAycyaeGGsEuTPBZLkFxJZA6S94JX5WCZiMhhVUkvwTO9juf1q9piZlz2yjTuemcmm3cWqtkoJAcx37VVmOmuLZGCYdfefTw9diFDJi6hUpkUHj6vOac0qRp2WZKNXM9HYmYf5rSju5/zO2vLdwoSkYJl1qpfufPfs5i/bivnHV+DB85uSrlSKWGXJQeJNUhyerK9PZHhUUYC3xAZrFFEJNeOq1mO0Td1ZNC4RTw/bhGTFm7koR7N6H7sUWGXJr9DTn0k1YA/E5mr/WngNGCju09w9wn5UZyIFF0pSQncdlojPryxI1XTU7nu9e/o/+Z3GrerEMo2SNx9n7t/6u5XAO2ARUTG3LoxlgOb2VAzW29mc7JZX9bMRpvZTDOba2Z9g+W1zew7M5sRLL8uap/xZjY/WDfDzKoc0dmKSIHTtHo6o/p34M5ux/D53HWc/tREPtSDjIVKjp3tZpZKZL72XkTmbP8QGOruqw97YLPOwDZguLsfe4j1fwbKuvvdZlYZmE+kFXSgrt3BsCxzgBPdfY2ZjQfucPcj6vBQH4lI4bBg3VbufGcWM1f+yulNq/JQj2Opkl4i7LKKrVwPkWJmw4EpwAnAX929tbs/GEuIALj7RGBTTpsAaWZmQJlg2yx33+PuB9q2qTnVKCJFS6Oqabx7XXv+fEZjJizYwGlPTeTd6avUOingcrpraz9wYFyD6I1iniHRzOoA/8mmRZJGpIXTmMhowj3d/aNg3dHAR0AD4E53fy5YPh6oCOwD3gUeym6eFDO7BrgGoFatWq2WL19+uHJFpABZsmEbd70zi8zlv3DSMZV5+PzmHFW2ZNhlFSu5bpG4e0IwG2JaMDPigVdezZDYDZgBVAdaAoPMLD347JXufhyRILnCzA7caN7b3ZsDnYLXZTnUP8TdM9w9o3LlynlQrojkp3qVy/D2te154OymTF2yidOfnMi/pq1Q66QACvOyUV/gPY9YRGTek8bRG7j7GiJ9JJ2Cr1cHf24F3gTa5GvFIpKvEhKMvh3q8umtnWhWI50/vTeba0ZMZ9P2PWGXJlHCDJIVwCkAQYvjGCLjetU0s5LB8vJAR2C+mSWZWaVgeTJwFpGQEZEirnbF0rzZrx33ndWUCfM30E1jdhUocQsSMxtJpLP+GDNbZWZXmdl1UbfzPgicaGaziczAeLe7bwSaAN+Y2UxgAvC4u88m0vE+xsxmEbkkthoNZy9SbCQkGFd1rMuo/h0oVzKZy16Zxt8/+oHdWRpROGwaa0tECp2de/bx8MfzGDF1OU2PSueZXi1pUEUzgOe1PJshUUSkoCmZksiDPY7l5cszWLtlF2c9+xWvT12ujviQKEhEpNA6tWlVPr2lE61MiZGTAAAQu0lEQVTrVODeUXPUER8SBYmIFGpV0kvwWt826ogPkYJERAo9dcSHS0EiIkVG0+rpfHhjRy5rV5uXJi3lvOcms2j91rDLKvIUJCJSpKgjPv8pSESkSDpUR/yvO9QRHw8KEhEpsg7uiD/r2a+Ys3pz2GUVOQoSESnSDnTEv31de/bvd84fPJm3M1eGXVaRoiARkWKh5dGReeJb1ynPXe/M4p73ZuuurjyiIBGRYqNimVSGX9mWG7rWZ+S0FVz0whRW/7oz7LIKPQWJiBQriQnGXd0b8+JlrViyYTtnPTOJrxZuDLusQk1BIiLFUrdm1fjgxg5UTkvl8qHf8Ny4Rezfr1uEfw8FiYgUW/Uql2FU/w6ceVx1Hhszn2tfn86WXXvDLqvQUZCISLFWKiWJZy5uyQNnN2Xcj+s5d9DXzF+rp+GPhIJERIo9s8iUviOvace23Vn0eO5rPpixOuyyCg0FiYhIoHWdCnx0U0ea1yjLLf+awV8+nMveffvDLqvAU5CIiESpkl6CN65uy1Ud6zJs8jJ6DZnK+i27wi6rQFOQiIgcJDkxgfvOasozvY5n7potnPHMV2Qu2xR2WQWWgkREJBvntKjOBzd2IK1EEpe8/A0fzlwTdkkFkoJERCQHjaqm8d71J9KyZjluHvk9z41bpCHpD6IgERE5jPKlUxjRrw09WkaeN7n73VnqhI+SFHYBIiKFQWpSIk/1bEmtiqV5ZuxCVv+6k+d7t6JsyeSwSwudWiQiIjEyM247rRFPXNiCaUs38cfBk1m5aUfYZYVOQSIicoT+2Komw69sy/otuzjv+a+ZsfLXsEsKlYJEROR3aF+/Iu/d0IGSKYlcPGQKn85ZG3ZJoYlrkJjZUDNbb2Zzsllf1sxGm9lMM5trZn2D5bXN7DszmxEsvy5qn1ZmNtvMFpnZM2Zm8TwHEZHsNKhShvdv6ECTo9K5/o3pvDRxSbG8oyveLZJhQPcc1vcHfnD3FkBX4AkzSwF+Atq7e0ugLfAnM6se7DMYuBpoGLxyOr6ISFxVKpPKyKvb8Ydjq/H3j+dx76g5ZBWzO7riGiTuPhHI6XFQB9KCVkWZYNssd9/j7ruDbVIP1GlmRwHp7j7VI7E/HOgRtxMQEYlBieREBvU6geu61OeNb1bQb3gm23ZnhV1Wvgm7j2QQ0ARYA8wGbnH3/QBmdrSZzQJWAo+6+xqgBrAqav9VwbL/YWbXmFmmmWVu2LAhnucgIkJCgvGnPzTmH+c3Z9LCjVwweDI/bS4e0/iGHSTdgBlAdaAlMMjM0gHcfaW7Hwc0AK4ws6pHcmB3H+LuGe6eUbly5byuW0TkkHq1qcWrfVqz6ped9Hjua+as3hx2SXEXdpD0Bd7ziEXAUqBx9AZBS2QO0AlYDdSMWl0zWCYiUmB0blSZd65vT6IZF704hS9/XBd2SXEVdpCsAE4BCFocxwBLzKymmZUMlpcHOgLz3f0nYIuZtQv6VS4HPgindBGR7DWuls6o/h2oV7k01wyfzugiPOBjvG//HQlMAY4xs1VmdpWZXRd1O++DwIlmNhsYC9zt7huJ9Jt8Y2YzgQnA4+4+O9jnBuBlYBGwGPgknucgIvJ7VUkvwcir23F8rXLc8q/veTtzZdglxYUVh3ueMzIyPDMzM+wyRKSY2rEni2tHTGfSwo387dxmXN6+TtglxcTMprt7xuG2C/vSlohIkVcqJYmXr8jgtKZVuf+DuQwevzjskvKUgkREJB+kJiXyfO8TOLtFdR799Eee+Gx+kXkKXsPIi4jkk+TEBAb2bEmp5ESe/XIRO/bs494zm1DYR3pSkIiI5KPEBOMf5zenZEoir3y1lB17snioR3MSEwpvmChIRETyWUKC8cDZTSmVksjz4xezc88+Hr+wBUmJhbO3QUEiIhICM+Ou7o0pnZrEY2Pms3PvPp7pdTypSYlhl3bECmf8iYgUEf1PasD9ZzVlzNx1XDN8Ojv37Au7pCOmIBERCdmVHevyyPnNmbhwA31enVboRg5WkIiIFAAXt6nFwJ4tyVz+C5e+/A2bd+wNu6SYKUhERAqIc1vWYHDvE/hhzRYufmkqG7ftPvxOBYCCRESkADm9WTVeuiKDpRu30fPFKazdvCvskg5LQSIiUsB0aVSZ1/q2Yd2W3Vz04hTWbSnYYaIgEREpgNrWq8iIq9rw87bdXPryN2zavifskrKlIBERKaCOr1Wel69ozYpNO7hi6DS27CqYHfAKEhGRAqx9/YoMvvQE5v20hX7DMgvkcyYKEhGRAu7kxlV5qmdLvl2+ieten86erP1hl/QbChIRkULg7BbVefi85kxYsIFb3/qerH0FJ0w01paISCHRq00ttu/O4qGP5lE6ZTaP/vE4EgrAqMEKEhGRQqRfp3ps2ZXFM2MXUqZEEvef1TT0+UwUJCIihcyAUxuydddeXv16GWklkrnttEah1qMgEREpZMyM+85syvbdkZZJWmoSV3euF1o9ChIRkUIoIcH4x/nHsX33Pv7+8TzKlEiiV5taodSiIBERKaQSE4ynerZk+54s/vz+bEqnJnFOi+r5Xodu/xURKcRSkhIY3LsVretU4La3ZjB23rp8r0FBIiJSyJVMSeSVKzJoWj2d69/4jsmLN+br5ytIRESKgLQSybzWtw21K5Ti6tcy+X7FL/n22XELEjMbambrzWxONuvLmtloM5tpZnPNrG+wvKWZTQmWzTKznlH7DDOzpWY2I3i1jFf9IiKFTfnSKbzery0Vy6TS59Vv+XHtlnz53Hi2SIYB3XNY3x/4wd1bAF2BJ8wsBdgBXO7uzYL9B5pZuaj97nT3lsFrRnxKFxEpnKqml+CNfm0pmZzIpS9PY9nG7XH/zLgFibtPBDbltAmQZpFHMssE22a5+wJ3XxgcYw2wHqgcrzpFRIqaoyuU4vV+bWhaPZ20EvG/OTfMPpJBQBNgDTAbuMXdfzMKmZm1AVKAxVGL/x5c8nrKzFKzO7iZXWNmmWaWuWHDhjiULyJScDWoksbwK9tQsUy2PybzTJhB0g2YAVQHWgKDzCz9wEozOwoYAfSNCph7gMZAa6ACcHd2B3f3Ie6e4e4ZlSurQSMiEi9hBklf4D2PWAQsJRISBIHyEfB/7j71wA7u/lOw/W7gVaBNCHWLiEiUMINkBXAKgJlVBY4BlgQd7u8Dw939negdglYKQb9KD+CQd4SJiEj+iVsvjJmNJHI3ViUzWwU8ACQDuPsLwIPAMDObDRhwt7tvNLNLgc5ARTPrExyuT3CH1htmVjnYfgZwXbzqFxGR2Ji7h11D3GVkZHhmZmbYZYiIFCpmNt3dMw63nZ5sFxGRXFGQiIhIrihIREQkV4pFH4mZbQCWh13HEaoE5O8QnuHTORcPOufCo7a7H/ZBvGIRJIWRmWXG0slVlOiciwedc9GjS1siIpIrChIREckVBUnBNSTsAkKgcy4edM5FjPpIREQkV9QiERGRXFGQiIhIrihIQhbD3PbnBhN5zQgm6uqY3zXmtcOdc9R2rc0sy8wuyK/a4iGG73FXM9scfI9nmNn9+V1jXovlexyc9wwzm2tmE/KzvniI4ft8Z9T3eI6Z7TOzCvldZzyojyRkZtYZ2EZk2PxjD7G+DLDd3d3MjgPedvfG+V1nXjrcOQfbJAKfA7uAoQdPKVCYxPA97grc4e5n5Xdt8RLDOZcDJgPd3X2FmVVx9/X5XWdeiuXfddS2ZwMD3P3kfCkuztQiCdnh5rZ3923+/9O+NJG57gu1w51z4CbgXaBQ/3CBmM+3SInhnC8hMrHdimD74vZ97gWMjGM5+UpBUgiY2Xlm9iORWSOvDLueeDOzGsB5wOCwa8lH7c1sppl9YmbNwi4mHzQCypvZeDObbmaXh11QfjGzUkB3Ir8oFQlxm9hK8o67vw+8HzSdHwRODbmkeBtIZKKz/ZHJMIu874iMabTNzM4ARgENQ64p3pKAVkRmSS0JTDGzqe6+INyy8sXZwNfuXmRaqQqSQsTdJ5pZPTOr5O6FcQC4WGUA/wpCpBJwhpllufuocMuKD3ffEvX+YzN7vhh8j1cBP7v7dmC7mU0EWgDFIUgupghd1gJd2irwzKxBMEc9ZnYCkAr8HG5V8eXudd29jrvXAd4BbiiqIQJgZtWivsdtiPy/LNLfY+ADoKOZJQWXetoC80KuKe7MrCzQhcj5FxlqkYQshrnt/whcbmZ7gZ1Az6jO90IphnMuUmI43wuA680si8j3+OKi/j1293lm9ikwC9gPvOzuOd4OXtDF+O/6POCzoCVWZOj2XxERyRVd2hIRkVxRkIiISK4oSEREJFcUJCIikisKEhERyRUFiRRKZrYthm1uDZ5RyKvP7GFmTfPweJNzse+24M/qZpbtgJZmVs7Mbvi9nyMSCwWJFGW3AkcUJMGow9npAeRZkLj7iXlwjDXuntMw++UABYnElYJECrVgTovxZvaOmf1oZm9YxM1AdWCcmY0Ltj3dzKaY2Xdm9u9giH7MbJmZPWpm3wEXmtnVZvZtMIjiu2ZWysxOBM4BHgvmk6hvZi3NbKpF5ot538zKB8cbb2ZPWWT+mHkWmVflPTNbaGYPRdW+Ler93WY2O/jMRw5xnnWD2mcfdIw6B+a/MLNmZjYtqG+WmTUEHgHqB8seM7MyZjY2+DuYbWbnRh1nnpm9ZJH5QT4zs5LBugZm9kVQ23dmVj9Yfmfw9zTLzP6ap99YKVzcXS+9Ct0L2Bb82RXYDNQk8ovRFKBjsG4ZUCl4XwmYCJQOvr4buD9qu7uijl0x6v1DwE3B+2HABVHrZgFdgvd/AwYG78cDjwbvbwHWAEcRGd5m1YHjR53DH4jMzVEq+LrCIc73Q+Dy4H3/qH3rAHOC988CvYP3KUQGQ/zv+mB5EpAe9XeyCLBguyygZbDubeDS4P03wHnB+xJEWnmnA0OCfROA/wCdw/53oVc4Lw2RIkXBNHdfBWBmM4j8UPzqoG3aEbks9XUwrFUKkdA54K2o98cGv/WXA8oAYw7+wGDMpHLufmBmv9eAf0dt8mHw52xgrrv/FOy3BDia346ldSrwqrvvAPBDjwrbgchwOQAjgEcPsc0U4P/MrCaRuT4W2v+OnmzAwxYZSXo/UAOoGqxb6u4zgvfTgTpmlgbU8MgI1Lj7ruA8TicSJt8H25chMmLxxEPUJUWcgkSKgt1R7/dx6H/XBnzu7r2yOUb02EfDgB7uPtPM+hBp9fzemvYfVN/+bOqLRY7jGbn7m2b2DXAm8LGZXQssOWiz3kBloJW77zWzZURaGdE1Q+TvsWQOH2fAP9z9xSOoX4oo9ZFIUbYVSAveTwU6mFkDADMrbWaNstkvDfjJzJKJ/OD9n+O5+2bgFzPrFKy7DPi9845/DvQ9cIeZHXoe76+JDD/OQTX9l5nVA5a4+zNERpc9jt/+HQCUBdYHIXISUDunwtx9K7DKzHoEn5Ea1DkGuDKqn6mGmVWJ6WylyFGQSFE2BPjUzMa5+wagDzDSzGYRuQzUOJv97iPSL/A18GPU8n8Bd5rZ90GH8xVEOt9nAS2J9JMcMXf/lMilsMzg0twdh9jsFqC/mc0mcjnqUC4C5gTHOJbI3OE/E7mcN8fMHgPeADKC41x+0Pll5zLg5uA8JwPV3P0z4E0iE1LNJjLcf1oOx5AiTKP/iohIrqhFIiIiuaIgERGRXFGQiIhIrihIREQkVxQkIiKSKwoSERHJFQWJiIjkyv8D3HNgeaLooVQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, "output_type": "display_data" } ], @@ -148,7 +124,7 @@ "pylab.plot(distances, dipoles)\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Moment a.u')\n", - "pylab.title('LiH Dipole Moment')" + "pylab.title('LiH Dipole Moment');" ] }, { @@ -161,9 +137,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Quantum py37", + "display_name": "Python 3", "language": "python", - "name": "quantum-dev-37" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -175,7 +151,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_basis_sets.ipynb b/community/aqua/chemistry/h2_basis_sets.ipynb index 10a097850..110b79e08 100644 --- a/community/aqua/chemistry/h2_basis_sets.ipynb +++ b/community/aqua/chemistry/h2_basis_sets.ipynb @@ -17,7 +17,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -54,7 +54,7 @@ " 'algorithm': {'name': 'ExactEigensolver'},\n", "}\n", "# PSI4 config here is a multi-line string that we update using format()\n", - "# To do so all other curly brackets from PSI4 config must be doubled\n", + "# To do so all other curly brackets that are required in the PSI4 config must be doubled\n", "psi4_cfg = \"\"\"\n", "molecule h2 {{\n", " 0 1\n", @@ -92,24 +92,14 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4FcX6wPHvpBBIQicQkgABQiCUJHQBaSIC0psXBcECiIroVZFr+Vmueu0F9IoXUewogiBKb0qHUBIgEHpLaGmE9Dq/P/ZETkLKSXJO6vt5nvNAdmdn31Pf3dmZWaW1RgghhCgpu7IOQAghROUgCUUIIYRVSEIRQghhFZJQhBBCWIUkFCGEEFYhCUUIIYRVSEIRVqWUekAptb2s46jMlFK9lVLHrVSXt1JKK6UcTH+vUUpNMVv/hlIqSil1xfT3aKXURaVUglKqozVisCal1Dml1J1WrnOiUmq9NeusrCSh2FBeH27zH1yllJNS6kul1HmlVLxSKlgpNaSQOhsrpb5QSl0yfanPKKW+Vkq1seVzsRal1MNKqTDT872qlFqtlKppWve1UuqNItRVouRl2j7T9DqaPzyKW2dp0Fpv01q3tlHdQ7TW3wAopZoCzwBttdbupiLvAzO11q5a64O2iCE/SqlXlVLfl+Y+AbTWP2it7yqt/ZkSvE9p7c+aJKGULQfgItAXqA28BCxRSnnnVVgpVR/YCTgDvYGaQCfgL2BgPts4WDvo4lJK9QX+A9yrta4J+AE/l21U7DL9OJo/LllzB+XpPSiipkC01vqa2bJmQGhxKqvAr4OwlNZaHjZ6AOeAO3MtewDYXsA2h4Cx+ax7AwgB7ArY3hvQwMPABWCrafkIjB+C68CfgJ/ZNhrwMfv7a+AN0//7AeEYR6rXgMvAg2Zl6wMrgRvAXuD1/J4f8CywIp9104F0IA1IAH43Lf8XcBqIB44Co03L/YAUINNU/rppuRPGUfQF4CrwOVAjn30W9l6cM8V8CIjDSH7VzdYPA4JNr+lOwD/XtnNM26ZiHDx0Ag6anssvpvqyX+cjwHCz7R2BKKBjHnH1A8ItjTPXtvam1ycKOAM8bnr/HUzr/wSmAncCyUCW6fVdbPpXA4nAaVN5D2AZEAmcBWaZ7etVYCnwvenzMRXjIDb7PY0GlgD1cn12p5jevyjgRdO6wabPRropjpAC3rPnTZ+VWGBR9msB1AX+MMUaa/q/V67PwxnT+3MWmJj7cwIo4COM78IN4DDQvoDP1y31mdY9BBwzxbEOaGZavtXsNU4A/gE0MMV6HYgBtlHAb0BZPso8gMr8oIgJBWiE8SPZJp/1u4FXC9ln9pfyW8AFqAH4mj6gAzF+qJ4DTgHVTNsUllAygH+btr0bSALqmtb/ZPpRcAHaAxEFPL/eGD9SrwG9AKdc6//er9my8Rg/WnamL1ci0Di/19L0ZV8J1MM4g/sdeCufePJ9L8zev72m/dcz/QDMMK3raPpR6Y7xIz3FVN7JbNtgoInpPagGnAeeNL2OYzB+ILNf5+eAn832PRI4nE9c/bg1oeQZZx7bzgDCTHHVA7aQR0LJaz+5Pyum92Q/8LLp+bXA+AEdZFr/KkYCGGUqW8P0/HcDXhjJ/3/A4lyf3S9MZQMwkrGfWX3fW/CdO2L2/HaYvcb1gbEYZ/g1MZL6CtM6F4wE0dr0d2OgXe7PCTDI9JzrYCQXP0yfx1xxFFTfSIzvnx/GgcZLwM68XmPT329hHBg5mh69AVUWv2mFPco8gMr8MH24EzCOLLIfSeTxI2b6oGwE/ldAfafMfygwzjquYxwBrTcty/5StjAr93/AErO/7TB++PuZ/i4soSRj+sExLbsG3IbxQ5qOWQLEaNIq6Ed6CMaP/HXTa/MhYJ97vwVsHwyMNP3/AfN9mb7giUBLs2U9gLP51PUARrI0f39O53r/Jpn9/S7wuen/84HXc9V3HOhrtu1DZuv6mF5zZbZsu9nr7GF6H2uZ/l4KPJdP3P24NaHkGWce227O9Rm6i+InlO7AhVzrnwcWmf7/KqYzZLP1x4ABZn83Nn2GHLj52TU/a9gLTDCrz5KEYv787jZ/T3OVDQRiTf93Mb3/Y8l1RkvOhHIHcALj819QS0FB9a0BHs71fUzi5llK7u/jv4HfzJeV14dcQ7G9UVrrOtkP4LHcBZRSdsB3GEesMwuoKxrjCwiA1nqlqc5/Yhwhmrto9n8PjKPj7O2yTOs9LXwO0VrrDLO/kwBXwI2b14GynacAWus1WuvhGEePIzG+rFPzK6+UmmzqrHBdKXUd4yyoQT7F3TCOPveblV9rWp6f3ebvj9a6Za71V8z+n/28wbiW8Ez2fkz7aoLxWmfL/R5EaNMvRO712rhuswMYq5Sqg5F4fygg7tzyizM3D4rwfhWiGeCR6zV4AeNMO9vFPLZZblb+GEazpfk2lj6X/OR+fh4ASilnpdT/TJ1gbmA0L9VRStlrrRMxzoBnAJeVUqvy6uiitd4MfAr8F7imlFqglKqVR7mC6msGzDV7DWIwDoby+z6+h3Ewud7UCedfRXw9So0klDKmlFLAlxhfqLFa6/QCim8CRpkSUGHMf7guYXyIzffZBOOIGYwvrbNZeXcsE4lxhN/EbFlTSzbUWmdprTdhHDG3zyNmlFLNMJo/ZgL1TcnzCMaX75byGG3uyRhNC9kJorbWuqg/SJa4CLyZKxk5a60Xm5Uxj+8y4Gl67bOZv24A3wCTMJr5dmmtI7C+yxTj/crHRYyzP/PXoKbW+m6zMrnfo4vAkFzbVLfwueauKz+5n192J4tngNZAd611LYyzRjB9nrTW67TWAzEO2sIwPnu3BqH1PK11Z6AtRnPy7HzK5VffReCRXK9BDa31znzqiddaP6O1boHRKvG0UmpA4S9D6ZOEUvbmY7SlDtdaJxdS9kOMC4vfKaVaKkNNjFP3giwBhiqlBiilHDG+WKkYF5LBaEa6Tyllr5QajNHrrFBa60zgV+BV09FfW4xrCXlSSo1USk1QStU1xd7NtK/dpiJXMdrhs7lg/IhEmrZ/kJvJJ7u8l1KqmimeLIwv7UdKqYambTyVUoMseT5F9AUwQynV3fRcXJRSQ7O7QOdhF8aR+EyllINSaiTQLVeZFRgX7p/EuAZmC0uAWUopL6VUXYwL5MW1F4hXSs1RStUwfX7aK6W6FrDN58CbpoMFlFJuptfCElcBbwsOqB43Pb96wIvc7ElYE+OA47pp3SvZGyilGpk+ny4Y340EjA4JOSiluprec0eM5tWUfMoVVN/nwPNKqXamsrWVUuNzPc8WZnUNU0r5mA5G4jA+R7fsszyQhFKGTF+qRzASwhWzcRAT8yqvtY7CaLtNwWh/j8dIBjWBR/Pbj9b6OMaR7ycYR/HDMRJYmqnIk6Zl14GJGD9slpqJ0SRxBeMayKICysYC04CTGBcsvwfe01pnN+18CbQ1NQWs0FofBT7A+DG+CnTAaBbKthmj59oVpVSUadkcjOaB3aZmjY0YR6X56aFuHYdS0A8iAFrrfabn8qnpeZ3CaL7Lr3waxoX4hzFe50kYPXdSzcokY/SYao6RqG3hC4xeRSHAgZLsx3RAMQzj83sW47O1EKMLfH7mYnSaWK+Uisc4mOhu4S5/Mf0brZQ6UEC5H4H1GB0ETmP0jgT4GONif5Rpv2vNtrEDnsY4m4nBONDJ6ztVC+M1jMVoTovGaJLKLd/6tNbLgXeAn0yf0SMYTZzZXgW+MX0P7gFaYXyOEzC+C59prbcU8PzLjMrZpCuEKC1KqT0YF88XmS17GfDVWk8qu8iEKB45QxGilCil+iql3E1NXlMAf8yOkk3NMA8DC8oqRiFKQhKKEKWnNUZT03WM61jjtNaXAZRS0zAu1q7RWm8tuxCFKD5p8hJCCGEVcoYihBDCKqrUZG0NGjTQ3t7eZR2GEEJUKPv374/SWhc0QBioYgnF29ubffv2lXUYQghRoSilLJpRQZq8hBBCWIUkFCGEEFYhCUUIIYRVVKlrKEIIkVt6ejrh4eGkpKSUdShlrnr16nh5eeHo6Fis7SWhCCGqtPDwcGrWrIm3tzc5J4OuWrTWREdHEx4eTvPmzYtVhzR5CSGqtJSUFOrXr1+lkwmAUor69euX6ExNEooQosqr6skkW0lfB0koFth6IpLP/jxV1mEIIUS5JgnFAjtORfHh+hPEJKYVXlgIIazg448/JikpqUjb7N27l8DAQAIDAwkICGD58uU2ii5vklAsMKqjJxlZmlWHLhVeWAghrKA4CaV9+/bs27eP4OBg1q5dyyOPPEJGRoaNIryVJBQL+DWuRRv3mqwIloQihLC+xMREhg4dSkBAAO3bt+e1117j0qVL9O/fn/79+wOwePFiOnToQPv27ZkzZ06e9Tg7O+PgYHTeTUlJyXFN5PXXX6d169bcfvvt3Hvvvbz//vtWfx7SbdhCIwM9eWdtGBeik2ha37mswxFC2MBrv4dy9NINq9bZ1qMWrwxvV2CZtWvX4uHhwapVqwCIi4tj0aJFbNmyhQYNGnDp0iXmzJnD/v37qVu3LnfddRcrVqxg1KhRt9S1Z88eHnroIc6fP893332Hg4MDQUFBLFu2jJCQENLT0+nUqROdO3e26vMEOUOx2MhADwBWBEeUcSRCiMqmQ4cObNiwgTlz5rBt2zZq166dY31QUBD9+vXDzc0NBwcHJk6cyNated+HrXv37oSGhhIUFMRbb71FSkoKO3bsYOTIkVSvXp2aNWsyfPhwmzwPOUOxkEedGtzWoh4rgiN44g4f6WYoRCVU2JmErfj6+nLgwAFWr17NSy+9xIABAyzabvny5bz22msALFy4kC5duvy9zs/PD1dXV44cOWKTmPMiZyhFMCrQkzORiRyOiCvrUIQQlcilS5dwdnZm0qRJzJ49mwMHDlCzZk3i4+MB6NatG3/99RdRUVFkZmayePFi+vbty+jRowkODiY4OJguXbpw9uzZvy/Cnz9/nrCwMLy9venVqxe///47KSkpJCQk8Mcff9jkeZTJGYpSajzwKuAHdNNa53mTEqXUYGAuYA8s1Fq/bVqugDeA8UAmMF9rPc/WcQ/p0JiXfwtl+cEI/L3q2Hp3Qogq4vDhw8yePRs7OzscHR2ZP38+u3btYvDgwXh4eLBlyxbefvtt+vfvj9aaoUOHMnLkyFvq2b59O2+//TaOjo7Y2dnx2Wef0aBBAxo0aMCIESPw9/enUaNGdOjQ4ZZmNWsok3vKK6X8gCzgf8CzeSUUpZQ9cAIYCIQDQcC9WuujSqkHgf7AA1rrLKVUQ631tcL226VLF13SG2w9+v1+gs7Fsvv5O3CwlxM8ISq6Y8eO4efnV9Zh2FxCQgKurq4kJSXRp08fFixYQKdOnW4pl9froZTar7XuckvhXMrkF1FrfUxrfbyQYt2AU1rrM1rrNOAnIDslPwr8W2udZaqv0GRiLSMDPYlKSGXH6ejS2qUQQpTY9OnTCQwMpFOnTowdOzbPZFJS5fmivCdw0ezvcKC76f8tgX8opUYDkcAsrfXJvCpRSk0HpgM0bdq0xEH1b+NGreoOrDgYQV/fQm+xLIQQ5cKPP/5o833Y7AxFKbVRKXUkj8etDX9F5wSkmE7BvgC+yq+g1nqB1rqL1rqLm1vJE4CTgz1D/T1YF3qFpLTSG4EqhBDlnc0Sitb6Tq11+zwev1lYRQTQxOxvL9MyMM5WfjX9fzngb52oLTMq0IOktEw2HL1amrsVQohyrTxfVQ4CWimlmiulqgETgJWmdSswLsoD9MW4eF9qunrXw7NODZYflEGOQgiRrUwSilJqtFIqHOgBrFJKrTMt91BKrQbQWmcAM4F1wDFgidY61FTF28BYpdRh4C1gamnGb2enGBnowbaTUUQlpJbmroUQotwqq15ey7XWXlprJ611I631INPyS1rru83KrdZa+2qtW2qt3zRbfl1rPVRr3UFr3UNrHVLaz2FUR08yszR/hMiEkUKIkklJSaFbt24EBATQrl07XnnllVvKBAcH06NHD9q1a4e/vz8///zz3+s+/fRTfHyMGTyioqJKM/QcynOTV7nm26gmbRvXYrnMQCyEKCEnJyc2b95MSEjI31PP7969O0cZZ2dnvv32W0JDQ1m7di1PPfUU169fB6BXr15s3LiRZs2alUX4f5OEUgKjO3oScvE6Z6MSyzoUIUQFppTC1dUVgPT0dNLT02+ZL9DX15dWrVoB4OHhQcOGDYmMjASgY8eOeHt731JvZGQkAwcOpF27dkydOpVmzZrZ9AymPI9DKfeGB3jwnzXHWHEwgn8O9C3rcIQQJbXmX3DlsHXrdO8AQ94utFhmZiadO3fm1KlTPP7443Tv3j3fsnv37iUtLY2WLVsWWOdrr73GHXfcwfPPP8/atWv58ssvixx+UcgZSgm4165Oz5b1WREcQVlMYSOEqDzs7e0JDg4mPDycvXv35jtL8OXLl7n//vtZtGgRdnYF/4Rv376dCRMmADB48GDq1q1r9bjNyRlKCY0K9GT20kMEX7xOx6a2fbOEEDZmwZmErdWpU4f+/fuzatUqJk2aBMC///1vRowYwY0bNxg6dChvvvkmt912WxlHeis5Qymhwe3dcXKwY4WMSRFCFFNkZOTfF9iTk5PZsGED7dq1+3tq+hEjRpCWlsbo0aOZPHky48aNs6jeXr16sWTJEgDWr19PbGyszZ4DSEIpsZrVHbmzbSN+P3SZ9Myssg5HCFEBXb58mf79++Pv70/Xrl0ZOHAgw4YNy1FmyZIlbN26la+//prAwEACAwMJDg4GYN68eXh5eREeHo6/vz9TpxpD81555RXWr19P+/bt+eWXX3B3d6dmzZo2ex5lMn19WbHG9PV52Xj0KlO/3ceiB7rSv01Dq9cvhLCdyjx9fWpqKvb29jg4OLBr1y4effTRv5NQfkoyfb1cQ7GCPr5u1HF2ZPnBCEkoQohy48KFC9xzzz1kZWVRrVo1vvjiC5vuTxKKFVRzsGOYf2OW7g8nITUDVyd5WYUQZa9Vq1YcPHiw1PYn11CsZHRHT1LSs1gfeqWsQxFCiDIhCcVKOjWtS5N6MgOxEKLqkoRiJUopRgV6suNUFNfiU8o6HCGEKHWSUKxoZKAnWRp+D7lc1qEIIUSpk4RiRT4NXengWVsGOQohiuz69euMGzeONm3a4Ofnx65du3KsL2iKe5m+vpIa1dGTwxFxnLqWUNahCCEqkCeffJLBgwcTFhZGSEjILWNBCpriXqavr0hCfoZVz1hUdHhAY+wU/BYsZylCCMvExcWxdetWHn74YQCqVatGnTp1cpQpaIp7mb6+Iok9B0ELoecTUNe7wKINa1anl08Dlh+M4OmBvrfc00AIUX69s/cdwmLCrFpnm3ptmNNtToFlzp49i5ubGw8++CAhISF07tyZuXPn4uLikqNcUaa4B5m+vnzqOBGUHRz4zqLiozt6Eh6bzP7ztp2ITQhROWRkZHDgwAEeffRRDh48iIuLC2+/fevMx5ZOcZ9Npq8vj2p7gc+dEPwD9Hse7At+2Qa1c6eG4xFWBEfQxbteKQUphCipws4kbMXLywsvL6+/zzjGjRvHq6++SmBgIAAzZsxgxowZf5fPnuJ+7dq1tG/fvkxizoucoViq0xSIvwynNhRa1MXJgYFtG/HHocukZcgMxEKIgrm7u9OkSROOHz8OwKZNm+jUqdPf09fPmDEjzynu27RpU2C9Mn19eeU7CFwbwf5vLCo+uqMn15PS+etEpI0DE0JUBp988gkTJ07E39+f4OBgXnjhhRzrC5rivrxMXy9NXpayd4TA+2DHXLhxCWp5FFj89lYNqO9SjRXBEQxs26iUghRCVFSBgYEUdHsNf3//fCd6nDVrFrNmzbplee3atVm3bt3f09cHBQXh5ORktZhzkzOUoug0GXSWcS2lEI72xgzEG49e5UZKeikEJ4QQOV24cIGuXbsSEBDArFmzbD59vSSUoqjXApr3MXp7ZRV+bWRUR09SM7JYe0RmIBZClL7s6etDQkIICgqia9euNt2fJJSi6jQFrp+Hs38WWjSwSR286zvLIEchyrmqdOfagpT0dZCEUlRthkGNunDg20KLKqUYGejJztPRRFxPLoXghBBFVb16daKjo6t8UtFaEx0dTfXq1Ytdh1yULyrH6hBwL+z9AhKjwKVBgcXv6dqET7ec4tud53j+7sp532ohKrLs3lGRkdIjs3r16nh5eRV7e0koxdFpMuz+DEIWG9OxFMCzTg2GtHfnx70XeGJAK7k9sBDljKOjI82bNy/rMCoFafKygNaamJSYmwsa+oFXN6PZy4LT5Km9WxCfksEv+y7aMEohhChbklAs8MbuN7hv1X1kabOeXZ2nQNQJuLC70O0Dm9ShS7O6fLXjLJlZVbudVghReUlCsUDXxl2JSIhg56WdNxe2Gw3VasIBy0bOT+3dnIsxyWw4Kl2IhRCVU5klFKXUeKVUqFIqSynVpYByg5VSx5VSp5RS/zJbPkApdUApFayU2q6U8rFVrAOaDKBe9XosOb7k5sJqLtBhHISugOTrhdYxsK07TerVYOG2s7YKUwghylRZnqEcAcYAW/MroJSyB/4LDAHaAvcqpdqaVs8HJmqtA4EfgZdsFaijvSOjfEaxNXwrVxLNzjA6T4GMZDj8S6F12NspHuzZnH3nYwm+WHgCEkKIiqbMEorW+pjW+nghxboBp7TWZ7TWacBPwMjsKoBapv/XBi7ZJlLDON9xZOpMlp9cfnNh40Bw72A0e1lwcf6erk2o6eTAl9vlLEUIUfmU92sonoB516hw0zKAqcBqpVQ4cD9w691oAKXUdKXUPqXUvpL0M29Sswk9PXqy7OQyMrIysis3Rs5fOQyXgwutw9XJgXu7N2X14csy0FEIUenYNKEopTYqpY7k8RhZ+NaF+idwt9baC1gEfJhXIa31Aq11F611Fzc3txLt8B7fe7iadJXtEdtvLuwwHhxqWDyt/ZSe3gB8s/NciWIRQojyxqYJRWt9p9a6fR6P3yysIgJoYva3FxChlHIDArTWe0zLfwZ6WjH0PPVp0ge3Gm45L87XqAPtRsHhpZCaUGgd2QMdF++5QEJqhg2jFUKI0lXem7yCgFZKqeZKqWrABGAlEAvUVkr5msoNBI7ZOhhHO0dGtxrN9ojtXEowu2TTaQqkxcPRFRbVM7V3C+JTZaCjEKJyKctuw6NN1z96AKuUUutMyz2UUqsBtNYZwExgHUbCWKK1DjUtnwYsU0qFYFxDmV0acY9rNQ6lFMtOLru5sOlt0MDX4mYvGegohKiMyrKX13KttZfW2klr3UhrPci0/JLW+m6zcqu11r5a65Za6zdzbd9Bax2gte6ntT5TGnE3dm3M7Z638+vJX0nPMt04Syljfq/wvXDNshMlGegohKhsynuTV7k03nc8UclR/HXxr5sLA+4FO0eLprUHGegohKh8JKEUQ2/P3ri7uOe8OO/SAPyGGTMQp6cUWof5QMeDF2JtGK0QQpQOSSjFYG9nz5hWY9h1eRcXb5hdWO80GZJjIewPi+qRgY5CiMpEEkoxjfEZg72yZ+nJpTcXNu8HdZpZPGFk9kDHNUeuyEBHIUSFJwmlmBq5NKKvV19WnFpBeqbp4rydHXS6H85uhRjL+gjIQEchRGUhCaUExrceT0xKDJsubLq5MHAiKDuLL8571qnB3R0ay0BHIUSFJwmlBHp69MTT1ZNfTpjNNlzLA1oNguAfIfvMpRAP396c+NQMlgTJQEchRMUlCaUE7JQd43zHsffKXs7GmV1Y7zwFEq7CiXUW1SMDHYUQlYEklBIa5TMKB+XA0hNmF+d9BkLNxhZfnAdjoGN4bDLrQ2WgoxCiYpKEUkINajTgjqZ38Nvp30jNTDUW2jsY11JObYS4cIvqyR7oKF2IhRAVlSQUKxjfejxxqXGsP7f+5sJO94POgoM/WFSHDHQUQlR0klCsoJt7N5rVapaz2auuN7ToBwe/g6xMi+qRgY5CiIpMEooV2Ck7xrUax4FrBzgVe+rmik5TIO4inN5iUT3mAx3DY5NsFK0QQtiGJBQrGekzEkc7x5xdiNsMBef6Rbo4LwMdhRAVlSQUK6lbvS4Dmw3k99O/k5xhmkbFwcmYhfj4arhx2aJ6sgc6/rT3ogx0FEJUKJJQrGi873ji0+NZe3btzYVdHwatYecnFtcjAx2FEBWRJBQr6tyoMy1qt8h5cb5eC+gwHvZ9BQmRFtUjAx2FEBWRJBQrUkox3nc8h6IOERYTdnNF72cgIwV2fWpxXTLQUQhR0UhCsbLhLYfjZO/EL8fNLs67+UK70RC0EJJiLKrn7zs6ShdiIUQFIQnFymo71WaQ9yBWnV1FUrpZ198+z0JaAuyeb1E92QMd95+PZf95GegohCj/JKHYwHjf8SSmJ7L67OqbCxu1gzbDYM//ICXOonru6dqEBq7VeGdNGFrLtRQhRPkmCcUGAtwCaFW3Vc57zgP0fQ5S42DPAovqcXVy4Kk7fdl7LoZ1oVdtEKkQQliPJBQbUEpxj+89HIs5RmhU6M0VjQPAdzDs/i+kxltU14SuTWjV0JW31xwjLSPLRhELIUTJSUKxkaEthlLDoQZLTuQ6S+nzHCTHQtCXFtXjYG/HC3f7cS46ie93n7dBpEIIYR2SUGykZrWaDGk+hDVn1xCfZnY24tUZWt5hdCFOs2y+rn6t3ejdqgFzN53kelKajSIWQoiSkYRiQ/f43kNyRjKrzqzKuaLPc5AYCfu/tqgepRQv3O3HjZR0Ptl8qvANhBCiDEhCsaF2DdrhV8+PJSeW5Oyl1awHePeGHXMhPcWiuvwa1+Kezk34dtc5zkUl2iZgIYQoAYsSilLqV6XUUKWUJKAiuqf1PZyMPcmeK3tyrugzGxKuGPdLsdAzd/niaG/HO2vDCi8shBClzNIE8RlwH3BSKfW2Uqq1DWOqVIa3HE5D54bMD56f8yyleR9o0h22fwwZll0XaVirOo/0acmaI1cIOmfZiHshhCgtFiUUrfVGrfVEoBNwDtiolNqplHpQKeVoywArOid7J6Z1mMaBawfYfXn3zRVKGddSboRDyI8W1zetT3Ma1XLijVVs0HcAAAAgAElEQVTHyJKJI4UQ5YjFTVhKqfrAA8BU4CAwFyPBbLBJZJXImFZjaOTciM+CP8t5luIzADw6wrYPITPdorqcqzkwe1AbQi5e5/dDl2wUsRBCFJ2l11CWA9sAZ2C41nqE1vpnrfUTgKstA6wMqtlXY1qHaQRHBrPr0q6bK5SCvnPg+nk4/Ev+FeQypqMn7Txq8e7a46SkW3a/eiGEsDVLz1Dmaa3baq3f0lrnuPWg1rpLUXeqlBqvlApVSmUppfLdXin1lVLqmlLqSK7l9ZRSG5RSJ03/1i1qDKVtdKvRuLu481lIrrMU38Hg3gG2fQBZliUHOzvFi0P9iLiezFc7ZDZiIUT5YGlCqauUGpPrMUAp1bCY+z0CjAG2FlLua2BwHsv/BWzSWrcCNpn+Lteyz1JCIkPYeWnnzRVKGT2+ok9B6HKL6+vZsgF3+jXksy2niUpItUHEQghRNJYmlIeBhcBE0+MLYA6wQyl1f1F3qrU+prU+bkG5rUBe3ZlGAt+Y/v8NMKqoMZSF0T6jaezS+NZrKW2Gg5sfbH0fsiyfr+tfQ/xITs/k440nbBCtEEIUjaUJxRHw01qP1VqPBdoCGuiOkVhKWyOzprcrQKP8Ciqlpiul9iml9kVGWnYLXltxtHdkmv80DkUdYnvE9psr7OyM+6VEHoOw3y2uz6ehKxO7N2Xx3oucvGrZZJNCCGErliYUL621+fzp14AmWusYIM/uSUqpjUqpI3k8RpY0aHPaONTPt/+s1nqB1rqL1rqLm5ubNXddLKNajsLDxePWs5R2o6G+D/z1HhTh3idPDmiFczV7/rP6mA2iFUJUdJlZmp+DLpCeafvZyi1NKH8qpf5QSk1RSk0BfjMtcwGu57WB1vpOrXX7PB6/WSHuq0qpxgCmf69Zoc5S4WjvyHT/6RyJPsK2iG03V9jZG/eev3oYjq+xuL76rk7M7O/DluORbD8ZZYOIhRAV1cWYJCYs2MWcZYdZF3rF5vuzNKE8DiwCAk2Pb4HHtdaJWuv+tgquACuBKab/Zye4CmOEzwg8XT1vPUvpMB7qNIOt7xbpLGVKT2+86tbgjVVHyZTBjkJUeVprftl3kSFztxF2OZ6P/hHA0A6Nbb7fQhOKUsoe2Ky1Xqa1/qfpsVSX4J60SqnRSqlwoAewSim1zrTcQym12qzcYmAX0FopFa6Ueti06m1goFLqJHCn6e8Kw9HOOEsJjQ5la7hZRzd7R+j9NFw6CKc2WVxfdUd75gxuQ9iVeJbtD7dBxEKIiiImMY0Z3+9n9tJDtPOoxZqnejO6oxdKKZvvW1mSF5RSm4AxWmvLboZeTnXp0kXv27evrMMAID0rnRHLR1DLqRY/Df3p5pudkQbzOkJtT3hondGt2AJaa8bM30lEbDJbnu2Hi5ODDaMXQpRHW45f47mlh4hLSufZQb48fHsL7O1KnkiUUvstGXNoaZNXAnBYKfWlUmpe9qNkIVZt2WcpR6OP8lf4XzdXOFSD25+Ci3vgbGHDdG5SSvHSUD+uxaeyYOsZG0QshCivktMy+b8VR3hwURD1nKvx28xeTO/T0irJpCgsTSi/Av+HMRBxv9lDlMDwlsNpUrPJrddSOt4Pru6w9b0i1de5WT2GdmjMgq1nuBJn2X1WhBAVW8jF6wydt43vdp9n6u3N+W1mL/wa1yqTWCydbfgbYAmwW2v9TfbDtqFVfg52Dkz3n86xmGNsubjl5grH6tDrSTi3Dc7vyr+CPMwZ3IbMLM376wsdNyqEqMAyMrOYt+kkY+fvJDk9kx+nduelYW2p7mhfZjFZOjnkcCAYWGv6O1AptdKWgVUVw1oMo2nNpswPyXW/lM4PgIub0eOrCJrWd+aBXt4sOxBO6KUKfclLCJGP89GJ3PO/XXy44QR3d2jM2if70NOnQVmHZXGT16tAN0xjTrTWwUALG8VUpTjYOfBIwCOExYSx+eLmmyuqOUOPmXB6M1zcW6Q6H+/vQ50ajry56hgl6IwnhChntNb8tPcCQ+Zu4+S1BOZOCGTevR2p7Vw+bktlaUJJz6OHl+2HXVYRdze/m2a1mjE/eD5Z2uxl7ToVajaG1c9aPBMxQO0ajjw5oBU7T0ez6ViFGfMphChAVEIq077dz79+PUxgkzqse6oPIwM9yzqsHCxNKKFKqfsAe6VUK6XUJ8DOwjYSlnGwc+AR/0c4HnuczRfMzlKcXGHQf+ByCAQtLFKdE29rRquGrry44jCxiZbdYlgIUT5tOHqVwR9vZevJSF4a6sf3D3fHo06Nsg7rFpYmlCeAdkAqsBi4ATxlq6CqoiHNh+Bdy5vPQj7LeZbSbjS0vAM2vQ43LudfQS6O9nZ89I9AYhPTmbPskDR9CVEBxSWl8/TPwUz7dh8NXJ1YObMXU3u3wK6UuwNbytJeXkla6xe11l1NEy2+qLWWfqlWlH0t5WTsSTZdMBslrxTc/T5kpsG6F4pUZ3vP2jw3uDXrj17lx70XrByxEMKWtoRd466P/+K3kEvMGtCKlTNvp4172XQHtpSlvbx8lVILlFLrlVKbsx+2Dq6qGeJtOksJznWWUr+lMSVL6K/GRfoieKhXc3q3asDrfxzl1DWZ4l6I8u5GSjrPLQ3hwa+DqF3DkRWP9eLpgb5Uc7C0QansWBrhL8BB4CVgttlDWJG9nT0zAmZw6vopNpzfkHNlr6egXgtY9QykW35yaGen+GB8AM7VHHhicTCpGXIPeiHKq60nIhn00VaW7g/nsX4t+f2J2+ngVbusw7KYpQklQ2s9X2u9V2u9P/th08iqqMHeg2lRuwWfh3ye8yzFsToM/QBizsCOj4tUZ8Na1XlvnD/HLt/gvbUy4FGI8iYhNYPnfz3M5K/24lzNnl8f68Vzg9vg5FB2gxSLw9KE8rtS6jGlVGOlVL3sh00jq6LMz1LWn1+fc2XLO6D9WNj2IUSfLlK9A/waMblHMxZuP8vWE2V750ohxE07TkUx6KOt/BR0gel9WrBqVm8Cm9Qp67CKxdLZhs/msVhrrSvU4MbyNNtwQTKzMhm7ciwAy0Ysw97O7Cgl/gp82hW8usCkXy2ejRggJT2TEZ9uJyYxnbVP9aaBq5O1QxdCWCgxNYO314Tx3e7zNG/gwvvj/encrHwep1t1tmGtdfM8HhUqmVQk2Wcpp+NO33qWUtMd7njJuDgfurxI9VZ3tGfevR25kZLOnKXSlViIsrLnTDRD5m7j+z3neahXc1bP6l1uk0lRFJhQlFLPmf1/fK51/7FVUALu8r4Lnzo+zA+ZT2buUfJdp0LjAFj7PKTcKFK9bdxr8fyQNmwKu8Z3u89bMWIhRGGS0zJ57fdQ/rFgNwA/TbuNl4e3pUa1inWtJD+FnaFMMPv/87nWDbZyLMKMnbJjRsAMzsadZeXpXPNw2tnDsI8g4SpsebPIdT/Q05t+rd14Y9Uxjl+RrsRClIagczEMmbuVRTvOMaVHM9Y+1ZvuLeqXdVhWVVhCUfn8P6+/hZUNbDaQjg078sH+D4hJicm50rMzdHkI9i6AS8FFqlcpxfvjA6hV3YFZiw+Ski5diYWwlfiUdF5acZjxn+8iPVPz49TuvDayPc7VKt9dVQtLKDqf/+f1t7AyO2XHKz1eITE9kXeD8pjGfsDL4FwfVj1dpMkjARq4OvH++ACOX43n7TVhVopYCGFuw9GrDPxwKz/sucCDvbxZ/8/yMc28rRSWUAKUUjeUUvGAv+n/2X93KIX4qryWdVoytcNUVp1ZxY6IHTlX1qgDd70JEfth/9dFrrtf64Y82Mubr3eeY3PYVesELITgWnwKj/9wgGnf7qN2DUd+fbQnrwxvh4tT5TsrMWdRt+HKoqJ0G84tNTOVcSvHkZ6Vzq8jfsXZ0fnmSq3hm+Fw5RDM3AeuDYtUd0p6JqP+u4PI+FTWPNWbhjWrWzl6IaoOrTW/7AvnjVVHSUnPYtYAH6b3aVkhpk0piFW7DYuy5WTvxMs9XiYiIYLPQz7PuVIpGPohpCXB+v8rct3VHe355N6OJKRmMPuXQ2RlVZ0DDCGs6VxUIvd9sYfnlh2ijXstVj/Zm5l3tKrwyaQoqs4zreC6undlbKuxfHv0W45FH8u50s3XuAf9oZ/g7NYi192qUU1eGtaWv05EsmjnOesELEQVkZ6Zxfw/TzPo460ciYjjzdHt+Wn6bfg0dC3r0EqdJJQK5J+d/0kdpzq8uuvVW8em9HkW6jQzJo/MKPoNtSZ1b8qdfo14Z00YRy8VbWyLEFXV4fA4Rn66g3fWhtHX140NT/dlYvdm5fZ+JbYmCaUCqe1Um391/xdHo4/yY9iPOVc61jDumxJ1AnbOK3LdSineHedPHWdHZv10kOQ06UosRH6S0zL5z+pjjPzvdiITUvl8UicWTO6Ce+2qfQ1SEkoFM6jZIPp49eGTg59wKeFSzpW+d4HfcNj6HsSeK3Ld9Vyq8cE9AZy6lsCbq49aJ2AhKpltJyO56+O/WLD1DP/o2oSNT/dlcPvGZR1WuSAJpYJRSvFi9xcBeH3367fOxzX4bVD2sPo5owdYEfVu5cb0Pi34fvcF1odesUbIQlQKkfGpPL0kmPu/3IuDnR2Lp93GW2P8qV3DsaxDKzckoVRAHq4ePNHxCbZHbGfduXU5V9b2gv7Pw8l1EPZHsep/9q7WtPesxdNLQjgUft0KEQtRcWVkZvHNznPc8cGf/B5yicf6tWTNk73p0bJyTZtiDZJQKqj72txHu/rteGvvW8SlxuVc2X0GNGwHa+ZAakKR667mYMfCyV2p6+LI5K/2ynxfosrafz6GEZ/u4JWVoQR41WHNk314bnAbqjtWjskcrU0SSgVlb2fPKz1eIS41jo/2f5RrpaMxeeSNCNj4SrHqd69dnR8evo1q9nZM+nIP56MTrRC1EBVDVEIqz/4Swtj5u4hJTOO/93Xiu4e7VcmuwEUhCaUC86vvx+S2k1l2chlBV4JyrmzaHXrMhKCFcGhJsepvWt+ZH6Z2JyMzi4kL93A5LtkKUQtRfmVmab7ddY473v+TFQcjmNG3JZue6ctQ/8aoItzMrqqSqVcquOSMZEb/NhpHO0eWjliKk73ZXRgz0+GbEXDpIEzdCO7ti7WPw+Fx3PvFbhrVcuLnR3rInR5FpbT/fCwv/3aE0Es36OVTn9dGtMOnYc2yDqtcKNdTryilxiulQpVSWUqpfINUSn2llLqmlDqSa/l7SqkwpdQhpdRypVTFvAGzFdRwqMHLt73MuRvn+OLQFzlX2jvC+K+hem34eRIkF+8Cewev2nz1QFciricz+cu9xCWnlzxwIcqJ6IRUnlsawtj5O4lOSOPT+zry/cPdJZkUQ1k1eR0BxgCFzRPyNXnfyGsD0F5r7Q+c4Nabf1UpPT17MqzFML488iWnYk/lXFmzEdzzDcRdhOUzICurWPvo1rwe/7u/CyevxfPQ10EkpWVYIXIhyk5mlua7Xefo//6f/Hoggkf6tmDTM30Z5u8hzVvFVCYJRWt9TGt93IJyW4GYPJav11pn/6LtBrysHGKFM7vrbFwcXXht12tk6VxJo+ltMOg/cGINbP+g2Pvo6+vGvAkdOXghlke+209qhoymFxXTgQuxjPzvdv7vt1Dae9Zm7VO9eX6IX6WfXt7WKsNF+YeANfmtVEpNV0rtU0rti4yMLMWwSle96vWY3WU2wZHBLD2x9NYC3aZDh/Gw+U04tbHY+xnSoTHvjgtg28konvjxIBmZxTvjEaIsXItPYc7SQ4z5bCeR8al8el9HfpgqzVvWYrOEopTaqJQ6ksdjpBX38SKQAfyQXxmt9QKtdRetdRc3Nzdr7bpcGtFyBN3du/PR/o+4lnQt50qlYPhcaNgWlk2F2PPF3s+4zl68Orwt649eZfZSmfJelH9JaRnM3XiSfu/9ya8Hw5nepwWbnuknzVtWZrPzO631nbaqG0Ap9QAwDBigq1JXtQIopXi5x8uMWTmGt/e+zYf9PsxZoJoL/OM7WNAfltwPD60Hx+JNZvdAr+YkpmXy3rrjuDjZ8/rI9vLFFOVOZpZm6f6LfLD+BNfiU7m7gzvPDWqDdwOXsg6tUqqQTV5KqcHAc8AIrXVSWcdTnjSt1ZQZATPYcH4Dmy9svrVA/ZYw+nO4HAKrny3Rvh7r15JH+hrzfr27rtBLYkKUGq01fx6/xt1ztzFn2WG86tZg2aM9+GxiZ0kmNlRW3YZHK6XCgR7AKqXUOtNyD6XUarNyi4FdQGulVLhS6mHTqk+BmsAGpVSwUirXbQyrtintpuBTx4c397xJQloeU6+0uRt6PwsHvyvWveizKaX41+A2TOzelPl/nua/W04VvpEQNnb00g0mf7WXBxYFkZKRyWcTO7Hs0Z50blavrEOr9GRgYyV1KPIQk1ZPYkTLEbze6/Vbm6OyMuGHcXBuOzy0Fjw7F3tfWVmaZ34JYfnBCF4b0Y4pPb1LFrwQxXA5LpkP1p9g2YFwatdwZNYdrZh0W7MqdQvefMWeM27AV8xm6XI9sFHYnr+bP9P9p/Pb6d9YHLb41gJ29jD2S3B1h58nQ2J0sfdlZ6d4b5w/A9s24pWVoSzdH16CyIUomoTUDN5fd5z+7//JyuBLTO/dgr9m9+eh25tLMok8AcumwbyOcHqTzXcnna4rsccCH+N4zHHeDXoXnzo+dGvcLWcB53rGoMevBsOyh2DSr0aiKQYHezs+ubcjU7/Zx3NLQ3B1spebDgmbysjMYnHQReZuPEFUQhojAz149q7WNKnnXNahlb3IE7D1XTi81Liba4+Z4B5g891Kk1cll5CWwMTVE4lJieGnYT/h6ep5a6ED38LKJ6D3MzDg5RLtLyktg0kL9xASHsfzQ9rw8O3NpfeXsCqtNZuOXeOtNcc4HZlIt+b1ePFuPwKaVNkZmG7KnUi6TYMeT4BryYZMWNrkJQmlCjgXd477Vt2Hh6sH3w75FmfHPI7gVj5hJJYJP0KboSXaX3xKOrN/OcTa0CsMae/Ou+P8qVld7monSkZrzZ8nIpm78STBF6/Tws2F54f4cadfQzloiTwOf70LR5bdTCQ9Z4FLA6tULwklD1U1oQBsj9jOYxsfY2Czgbzf9/1bv4DpKbBoMESfhmlboIFPifanteaLbWd4Z+1xmtVzZv6kzrR2l9HIoui01mw5fo25G08SEh6HZ50aPN7fh/FdvHC0r+rXSMwTibMpkTxhtUSSTRJKHqpyQgH46shXfLT/I57s9CRTO0y9tcD1C/C/vuDaCKZtMgZCltCeM9HMXHyQhJQM3hrTgVEd82hyEyIP2U1b8zaf5FB4HF51azCzvw9jOnnJxfZrYUbT1pFfbZpIsklCyUNVTyhaa+Zsm8Pas2v5dMCn9PHqc2uh05vhuzHQfiyMXVjsbobmrt1IYeaPB9l7LobJPZrx4lA/nBzkFqoib1prNhy9yrzNJzkScYOm9ZyZ2d+H0Z085YwkdyLpPt24RuJS8P3tM7IycLArfh8sSSh5qOoJBYwbck1ZM4WL8Rf5YegPtKjd4tZCW9+Hza/DXW9Cz5lW2W96ZhbvrTvOgq1nCGxSh88mdsKjTg2r1C0qh6wszfqjV5m36SRHL9+gWX0jkYzqKImEq0dh2/tFTiSpmaksPbGURUcW8dmdn+Fb17dYu5eEkgdJKIbLCZeZsGoCtarV4oehP1CrWq2cBbKyjLm+wv6AoR9C14fzrqgY1h65zLO/HMLRXjHv3o70blW5J+wUhcvK0qwLvcLcTScJuxKPd31nZt7RilGBHjhU9UQSsR+2fgDHV0E1V2PW8B4zC00kKRkpLDu5jK8Of8W15Gt0atiJ57s/T5t6bYoVhiSUPEhCuWnflX1MWz+NHh49+OSOT7DPPf4kIxWWTIYTa2HIe8YRkZWciUzg0e8PcOJaPE/f6cvj/X2ws6vivXSqoKwszZojV/hks5FIWjRwYeYdPowIkETCuR3GGcnpzcYdV7vPMB7OBU8fk5KRwi8nfuGrI18RlRxFl0ZdeDTgUbq6dy1RTzhJKHmQhJLTz2E/88aeN5jaYSpPdnry1gIZabD0QeNMZdB/oMfjVtt3UloGLy4/wvKDEfRv7cZH/wikjnM1q9Uvyq/UjExWHbrM53+d5sTVBFq4uTDrjlYMD/DAviofWGgNpzYZieTCLnBxM75zXR6G6rUK3DQ5I5lfjv/CotBFRCVH0dW969+JxBosTSgyUr4Ku6f1PRyLOcbCwwtpXbc1g5vnutuyQzXjnvRLH4J1L0BWBvTKI/EUg3M1Bz68J4BOzery799DGfbJduZP7EwHr9pWqV+UP9dupPD9ngv8uOc8UQlp+DR0Ze6EQIb5V/FEkpVlHLRt+wAuB0MtTxjyLnSabIwpKUByRjJLji9h0ZFFRKdE0829G+/2eddqiaSo5AylikvPTOehdQ8RFhPGd3d/l3cba2Y6/DodQn+FO/4P+pRs2vvcgi9e5/EfDhAZn8prI9sxoWsTGahWiRy8EMvXO8+x6tBlMrXmjtYNmdLTm9t9GlTtps7MDOM7te0DiAyDei3g9n+C/wTjYK4ASelJRiIJXURMSgzdG3fn0YBH6dyo+JO8FkSavPIgCSVvUclR/OOPf+CgHFg8bDH1qufRTpuZASsehcNLoN8L0G+OVWOISUzjyZ8Osu1kFGM7efHysLbUdpbR9RVVakYmqw9f5usd5wgJj6OmkwPjuzRhco9mcj+SjFQIWQzbPzJmAW7Y1pj2qO0osC+40SgpPYmfj//M16FfE5MSw22Nb+PRgEfp1KiTTUOWhJIHSSj5C40KZfKayfi7+bPgrgU42uXxY56VCb/NhJAfoc9z0P8Fq4xTyZaZpZm36STzNp+kppMDj/RtyYO9vHGuJi2zFcW1+BR+2H2BH/ZcICohlRZuLjzQ05sxnbxwdari72NaEhz4BnbMg/hL4NHJONv3HQJ2BXdCSEpP4qfjP/H1ka+JTY2lp0dPHg14lMCGgaUSuiSUPEhCKdjvp3/nhe0vcG+be3mh+wt5F8rKgt9nGTfnuv1pYzJJKzdPhV25wfvrTrDx2FUauDoxa4APE7o2ldHR5Vjwxet8veMsqw5fJj1T07+1Gw/0ak7vqt6sBZAYBXsXwN4vIDkGmt0OfZ6BFv0L/e7Epcbx47Ef+f7Y99xIu0Evj17MCJhRaokkm1yUF0U2vOVwwmLC+Pbot7Sp14YxrcbcWsjODobPAzsH2P4hZKXDwNetmlTauNdi4ZQu7D8fy7trw3j5t1C+2HaGf97py8hAz6p9AbccScvIYs2RyyzacY7gi9dxdXJg0m3NmNzDm+ZVvVkLjHnxdn0KwT9CRgq0vtvo1NL0tkI3jUqO4tvQb/n5+M8kZSTRr0k/pnWYhr+bfykEXnxyhiJyyMjK4LGNjxF0NYhFgxblfySkNayeDUFfQPdHYfBbVj9TMXaj2XoyivfWhXEk4ga+jVx59q7WDGzbSC7cl4GsLE3QuRh+C7nEmsOXiU1Kp0UDF6b09GZsZ2nWAuBiEOycC8f+AHtHCJhgjGp3K3yU+qWES3x15CuWn1xOhs5gkPcgpnaYWuwR7tYiTV55kIRimbjUOCb8MYH49Hg+v/Nz2jdon3dBrWHt87BnPnSdBne/Z5OkAjcHwX2w/jhnohLp2LQOswe1pmdL20yGJ27SWhN66QYrQy7xe8glLselUMPRnoFtGzGmkyd9WrlJs1ZWljEIeOc8YwxJ9drQdSp0ewRqNip087NxZ/ny8JesOrMKFIxoOYKH2j9Es1rNSiH4wklCyYMkFMuFx4czdf1UYlNi+XTAp/n3a9caNvwf7PwEOj9oTNVSyAXGksjIzGLZgXA+3niSy3Ep9G7VgNmDWuPvJTdXsrYzkQmsDLnEyuBLnIlKxMFO0a+1G8MDPBjYtpF0lgDjtg+HfjaatqJOQO2m0OMx6Hg/OLkWunlYTBhfHPqCDec34GTvxFjfsTzQ7gHcXdxLIXjLSULJgySUormaeJXpG6YTkRDBh/0+zHt2YjCSyqbXjG6QHe83XWOx7QX0lPRMvt99nv9uOUVsUjpD2rvzzF2t8WlY+JdY5O9yXDJ/hFxmZcglDkfEoRR0b16PkYGeDGnvLrMZZEuOhaAvYc//IPEauPsb10cs6PoLEHwtmAWHFrAtYhuujq5MaDOBSX6TqF+j4Dm6yooklDxIQim62JRYHtnwCCdjT/J2n7cZ5D0o74Jaw5b/GFNrB9wHIz8t9v3piyI+JZ2F286ycNsZktMzGdvJiyk9vWnnUUuusVgoNjGNNUeu8FtwBHvPxaA1+HvVZkSAB8P8PXCvXb2sQyw/rl+A3fNh/zeQnggtB0CvWdC8b6HNvVprdl3excLDCwm6EkQdpzpM8pvEvX733jpBazkjCSUPklCKJz4tnpmbZhIcGcyrPV5ldKvR+Rf+8x348z/QfpyRVAqZOsJaohNS+ezP03y3+zxpGVl41qnBoHbuDGrXiC7e9aRnmJnMLM3RSzfYdSaKHaei2XEqiowsTQs3F0YGeDIi0EN6aZnTGs5th73/g7BVoOyMz3fPJ8A9n+uLZjKyMth4fiNfh35NaHQoDWs0ZEq7KYzzHZf37bjLIUkoeZCEUnzJGck8teUpdl7ayZyuc5jUdlL+hbd9aDSBNWwL4xZBw+JNmV0cMYlpbDx2lfWhV9h6Moq0jCzqu1RjYNtGDGrnTk+f+lXu5l5ZWZoT1+LZeSqaXWei2XMmmhspGQC0cHPhTr9GjAjwkLO63NKSjJkh9iyAa6FQox50nmJcbK/tVejmSelJLD+1nO+OfkdEQgTNajVjSrspjGw5kmr2FavpUBJKHiShlExaZhpzts5h44WNzAycyXT/6fn/AJ3cCMsfgbREGPKOMdFdKf9YJaRm8NfxSNaFXmFz2DUSUjNwdXKgf5uGDGrXiH6tG1bKbq5aa05HJrLrTDS7Tkex+0wMMYlpADSt50yPFpgEjP4AABoBSURBVPXp6VOf21rUp1Etac66Rex5CFoIB76FlOvg3sHordVhnEVn3FHJUSwOW8zPx38mLjWOQLdAHmj/AP2b9MdOVczBuZJQ8iAJpeQysjJ4ZecrrDy9kgfaPcDTnZ/OP6nEXzEmlTz7F7QbDcPnGt0py0BqRiY7T0ez7sgVNhy9SnRiGtUc7Ojt04BB7d25068R9Vwq1lFjNq01F2KS2HU62pREorkWnwqAR+3q3NayPj1bNqBHy/p4yl0y86Y1nN1qXGQ/sQZQ4DfcuAdJ09ssOhg6G3eWb0K/4ffTv5OelU7/Jv15sP2DpT6q3RYkoeRBEop1ZOks3trzFj8d/4nxvuN5sfuLt96g6+/CWbDjI9j8ptFMMO4r8Cr0c2lTmVma/edjWXvkCutCrxBxPRk7Bd2a16Nb8/p413emWX1nmtV3ob5LtXLTDJSemcXFmCTORSdyNiqJc1GJnItO5NS1BC7HpQDgVtOJHi3q06NlfXq2rE/Tes7lJv5yKS3R6Pa7ZwFEHgPn+tD5AeMeJLU9Lari4LWDLDqyiD8v/omjnSMjfUYyue1kvGt72zT00iQJJQ+SUKxHa80nBz/hi8NfMKT5EN68/c28J5TMdnEvLH3YmBTvjpeg55M271psiexBe+tCjeRy8loC5l8JVycHmtZzxruBM03rufD/7Z15fFXVtce/KxOZE0iIDAlkIAgyiKDiKwgYkBa1Sklb61BrHTq8vta+tra+Z322tdVOn0/7se+1aqu2+LTWGvpES1SMDEoFwQBhhpCJMAUSMo/33v3+2CckpJfkBm5yM6zv53M+Z99z9j1nrTv97l5777VTEyKZkBBJakIUY2LD/T6hz+X2UH6mieLKBkpPN1BS2UixIxzlZ5pwezqMiw0PIS0xirTEKOZMHMm/ZCSQMTpaBcQXqoptWGv7C9BcA2Mvt2Gt6dkQ2nMY0O1xs/7Iep7f8zw7T+0kbkQcn7v0c9w25bYBO/T3YlBB8YIKiv95dtez/Dr/1yxKXsQvF/2SEcEjzl+5qdomltz7mk2Mt+IZiE7qP2N9oMXl5khVE2VVDZScbqTMaRGUVTZy5Ewjbe6O70tYSJAVmwQrNokxYXg8BpfH4O6yuTwGj3HOuQ1uc+75hlYXpZWNHKlqxNVJNKJHhJCaaAUsLTGK1IQoUh0RGRkZquLRG9wuKHwHPvqjndUeFAxTb7ZhrZSrfQprNbuaWX14NSv3rqS0tpTx0eO567K7WD5p+aAZsXUhqKB4QQWlb3h5/8v8ZMtPmDtmLk9mPdn9F8sY+4V+8yEYEQufegomLe43Wy8Gt8dwrLqJ0spGSqsa7L6yfd9IU5v7bF0RCAkSgkTsPsjug50tJCiIoCDsXiA8NJiJTsunXTBSE6JIjB44IbdBS1UxbP9f2PEi1B2HqCQ7WuvKeyB2nE+XONFwglcOvMKrB1/lTMsZpiVM4+7pd7NkwhJCgobewI6uqKB4QQWl73j98Os8sukRpiVO47eLf0vciB4630/utUsLn9oH875pw2DBg3dBLWMMLS6PFQwRzW0VaNqa7bK6+SvtoBAJgsylNpPD5I/79FkzxpBfkc9L+14irywPg2FR8iLuvOxOrrzkymEl9CooXlBB6VvySvN4cOODpMel8/T1T/ccS25ttGvVf/Q8jL8SPv0sjEztF1uVIcrJPZD/AhS8bNOjxE+E2Z+HWXf43BppdjWTW5zLi/te5MCZA8SGxZKdmc2tU25lfLRvHfVDjQEtKCLyGeAHwFTgamOM1195EXkOuAmoMMb805RUEfk28EtgtDHmdE/3VUHpe/5x9B88sO4BkiKT+PnCnzMtYVrPT9rzN1j9AGDgk7+2HaOK4istdbB7lW2NHN0GwWF2yO/suyB1gc+DP47XH+cvB/5CzqEcqluqyRyZye1TbufG9BuJCBnew60HuqBMBTzA08B3uhGUBUA9sLKroIhICvAHYAowRwVl4LCjYgff3vBtqpqq+Oqsr3Lv9HvPP6y4nTOlkHMflH9ofwiW/BAivaxtryhg++LKt9kldXevsnm1Rk+1fSMzb/X5s2OMYdvJbby07yXePfIuAFkpWdw+9fZhF9bqjgEtKGdvLrKebgTFqZMKvOFFUF4FHgNeA65UQRlY1LTU8Njmx3ir5C1mjZ7F49c+TkpMSvdPcrfZBJPv/8p22H/s63DNV2BETP8YrQx8zpRYASl4xfa/hUbBjGyY/QUYP8fnbAxNribWFK3hxf0vcujMIeJGxNmw1qW3Mi7at9DYcGJIC4qI3AJkGWMeEJESuhEUEfkS8CWACRMmzCktLfWb/Ur3GGP4e/HfeXzz47iNm4eufojlk5b3/K/v5B47EfLA3+1Es/nfgqvu7bdEk8oAo/a4DYvuzrEhLYCUuXDFnTYDQy/+cJTWlpJzMIecQznUttYyeeRk7ph6B8vSlg37sFZ3BFxQROQdwNsqMQ8bY15z6qynl4IiIpHAOmCpMaamJ0HpjLZQAsPx+uM8vOlhtp7YSlZKFo9+7FFGhfsQkij/CN59DIrWQcxYWPCgHaUTMjhTpCi9oKES9r1mWyMl7wPGrjkyPRumr4D4CT5fqtnVzDtl75BzMIdtJ7cRLMFkTcji9im3M+eSORrW8oGAC4ovXKCgzADygEanSjJwDNu5f6K7+6mgBA6P8bByz0qe3P4ksWGx/Gjej86/YFdXit+zwnJkix21s+g/YOZn+2W9FaUfaa616eF359g/ER4XJGTapIzTsyExs1eXO1B1gJxDObxR9AZ1rXUkRyeTPTmbmzNuJilyYE2oHegMWUHxcr4EbaEMGg5UHeCh9x6isLqQWy+9lW/N+ZZvM4yNgUNrrbCcKIDES+G6/7QznQdAChflAmlthENvWRE5+Da4W+wyutNXWCG5ZHqvslQ3tDWQW5xLzsEcdlfuJjQolCUTl5Cdmc1VY64atNl+A82AFhQR+RTwG2A0UA3sMMZ8XETGAX8wxtzg1PszsAhIBE4Cjxpjnu1yrRJUUAYVLe4Wnsx/kpV7V5Iam8oT1z7B9MSeFyoCbLLJfatt5/3pAzYMkvUIZF7f7+nxlQukuda2QPa9AQfWQGs9RF9i+0Omf9omD+3Fe2mMoeB0ATkHc3iz5E2aXE1Mip9EdmY2N6XfRHx4fB86MzwY0IISKFRQBhZbjm/h+5u+z6nGU3zl8q9w34z7fE9j4XHbkT7rn4DqUki5BhY/Aqnz+9ZopfcYA6cOwKG37Vb2gQ1nhcfDZbfYlsjEeb0OYVY3V/N60eusOrSKwupCIkIiWJa2jBWZK5iZOFP7RvyICooXVFAGHrWttfxk809YU7yGmaNn8sT8J5gQ63uHK65WmzF24y9snqb062DulyEjC0K6SVSp9C2tjVDyXoeIVJfZ40nTYPJSmwYl+WoI7l0erDZPGx8c+4A3Dr/BO2Xv0OZpY0biDFZkrmBZ2jKiQnXp4r5ABcULKigDl9ziXB7b/Bguj4vvXvVdVmSu6F28u60Jtj5r57A0noYRcTD1Jpi2AtIXDuo8YYOGMyW2H+TQ21ZMXM0QGgnpi6yAZF7v09K5XfEYDx+d/Ijc4lzWlq6luqWa2LBYbkq/iRWZK7h01KX+9kTpggqKF1RQBjYnGk7w/fe/z5YTW5gUP4kvX/5lrp9wfc+z7DvjaoWi9bBnlR0x1FJr1wKf+knb0Zt6rY4O8xeuFijb3NEKOX3QHh+VYQVk8lIbyrqAlqIxhr1Ve1lTtIY3S96korGCiJAIFqUs4oa0G5g3bh6h+ieh31BB8YIKysDHYzzkFufyTMEzFNUUkR6Xzv0z7+cTqZ/ofZrwtmY4nGfnMhzItek5okbbuP30bNvvoiPEfKfupE2Nc2QLHNkKx7bbUVnBYbbvKtMJZSVkXPAtimqKyC3OJbc4l9LaUkKCQpg/bj7L0paxKGXRkF5zZCCjguIFFZTBg9vjZm3ZWp7e+TSF1YVMjJ3I/TPu58b0Gy9s/YnWRvsves8qOPiWDcfEjINpy21YrJcji4Y8bhec3A3lWx0B+dAOfgArIGNn2UWpJs6zIcWwC++7OF5/nNwSKyL7q/YjCFePuZplactYMnFJz0shKH2OCooXVFAGHx7jYV3ZOp4qeIr9VftJjk7m/pn388n0T154yKOl3q7Yt3sVFK4FdyvEpVhxmbTEDkUebokpG6usaJR/aPdHP4I2Z+5w9BgrHilz7X7s5Rc94OFU4ynyyvLILc4lvyIfgBmJM1iWtoyPp35cJx4OMFRQvKCCMngxxrChfANP7XyKPZV7GBs1lvtm3MfyScsJC76IVCzNNbB/jW25HH7XDmcFiB0PY2acu8WnDv4QWUsdVB6GykKoKrL7ox/ZPYAEw9iZdgRWirPFpVx0681jPOyr3MeG8g1sKN/A3sq9AGTEZXBD+g0sS11GSmwPyUOVgKGC4gUVlMGPMYZNxzbxu52/o+BUAUmRSdwz/R6yM7MJDwm/uIs3nYFjO+DEro7t9EEwztK+YTEwZrqdvd0uMkmXQehF3tfftDU5YtEuHIeh0hGPhopz68aOty2O5KtsC2TcFRDmn36KhrYGNh/bzIbyDWws30hlcyWCcPnoy1mQvICFKQvJjM/U+SKDABUUL6igDB2MMWw+vpmndj5FfkU+iRGJfHHaF/nMpZ/xb9bYtiao2Gf7E84KzW5orbPnJRgSJ1txSZgE4bE2++2I2E7luI5ySHjv/+27Wu1s8pZaG65rqTv3cXO1HbJbWWiFo7b83OdHJdmO8oQMOwIrIcPaOjLNb+LRzpHaI2w8upENRzaw9eRWXB4XMaExzBs/jwXJC5g/fj4jw0f69Z5K36OC4gUVlKHJ1hNbeXrn02w5sYVR4aO4Mf1GFk9YzKzRs3o35NhXPB6oLukQlxO7bH6x2qM9Pzco1ApLeKwVnXbhCQmH1gZHLOrsvl083C09Xzc8vkMozoqGIyDhsRft8vlo87Sxo2IHG8s3sqF8A8U1xQCkxaWxMHkhC5IXMCtpFqFBOsR3MKOC4gUVlKFN/sl8nt/9PJuObaLN08ao8FFcl3IdWROymDt2LiOC+3jmvNvltBrqOvbNtU65tlO57p/LriY7UmpELIRFOy0bZx8W4zz2diy6Q5T6gTZPG/sr95Nfkc+Oih1sOb6FurY6QoNCufKSK1mYspAF4xdof8gQQwXFCyoow4P61nreP/o+eWV5vHf0PRraGogMiWT++PksnrCYa5OvJSZMV4H0hdrWWnZW7GR7xXZ2nNrBrlO7aHY3A5AcncxVY65iYfJCrhl3jaY9GcKooHhBBWX40epuZcvxLeSV5bHuyDqqmqsICQph7ti5ZKVkkTUhi8SIxECbOSAwxnC84fjZ1kd+RT6FZwoxGIIlmCmjpnBF0hVnt9GRowNtstJPqKB4QQVleOP2uCk4XUBeaR55ZXmU15cjCDNHz2TxhMUsnrC4d4kpBzkNbQ0U1xSz89TOswJS0WhHgUWGRDIraRazkmYxO2k2MxJn6Cz1YYwKihdUUJR2jDEcqj5kWy5l69hXtQ+ApMgkJsVPIiM+g4y4DLuPzxi0ITJjDBWNFRTXFlNc07EV1RSdFQ+wfs9Omn229ZE5MvPCMhIoQxIVFC+ooCjn42j9UdaVrWNP5R4OVx+mqKaIlk6jqwa60LS52yirKztHNIpriimuLaahreFsvajQKNJi00iLs1tqXCrTEqYxNmqszgdRzosKihdUUBRfcXvcHKs/xuGawxRWF1JUXURhdSHFNcVnO6WhQ2jS49JJjkkmIiSC8OBwwkPs1v44IiSi43FIOGFBYV5/wI0xNLoaqW2ppbbV2TqVa1pqOo631lLXUseZljMcqz+Gu30CJjAmasw5wtG+jY4YrcKh9BoVFC+ooCgXi8d4OFp/9KzAFNV0CE2Tq8nn6wRJ0FnhiQiJIFiCqWuto661Dpdxdfu82LDYjm1ELHFhcaTEpnQIR2ya9ncofsVXQdEgqaL0giAJIiUmhZSYFBamLDx73GM81LbU0uxupsnVRLOr2ZbbmmhyO4/bj7maOuo4x9rcbcSExRA74lyx6CocUaFR2sJQBiwqKIriB4IkiPjw+ECboSgBZZCnTlUURVEGCiooiqIoil9QQVEURVH8ggqKoiiK4hdUUBRFURS/oIKiKIqi+AUVFEVRFMUvqKAoiqIofmFYpV4RkVNA6QU+PRE47UdzBgPq8/BAfR4eXIzPE40xPS6AM6wE5WIQkW2+5LIZSqjPwwP1eXjQHz5ryEtRFEXxCyooiqIoil9QQfGdZwJtQABQn4cH6vPwoM991j4URVEUxS9oC0VRFEXxCyooiqIoil9QQemCiHxCRA6ISKGIPOTl/N0ickpEdjjbfYGw05/05LNT57MisldE9ojIS/1to7/x4X3+Vaf3+KCIVAfCTn/ig88TRGSdiGwXkQIRuSEQdvoLH/ydKCJ5jq/rRSQ5EHb6ExF5TkQqRGT3ec6LiDzpvCYFIjLbrwYYY3RzNiAYOAykA2HATuCyLnXuBv470Lb2s8+ZwHZgpPM4KdB297XPXep/HXgu0Hb3w/v8DPBVp3wZUBJou/vY378CX3DKWcALgbbbD34vAGYDu89z/gYgFxDgGmCLP++vLZRzuRooNMYUGWNagZeBWwJsU1/ji8/3A/9jjDkDYIyp6Gcb/U1v3+fbgD/3i2V9hy8+GyDWKccBx/rRPn/ji7+XAe865XVezg86jDEbgapuqtwCrDSWzUC8iIz11/1VUM5lPHCk0+Ny51hXsp3m4qsiktI/pvUZvvg8GZgsIptEZLOIfKLfrOsbfH2fEZGJQBodPzyDFV98/gFwp4iUA2uwLbPBii/+7gRWOOVPATEiktAPtgUSnz/7F4IKSu95HUg1xswE1gJ/CrA9/UEINuy1CPtv/fciEh9Qi/qPzwGvGmPcgTakH7gN+KMxJhkbGnlBRIbyb8R3gIUish1YCBwFhsP73GcM5Q/LhXAU6NziSHaOncUYU2mMaXEe/gGY00+29RU9+oz9F7PaGNNmjCkGDmIFZrDii8/tfI7BH+4C33y+F3gFwBjzARCOTSg4GPHlu3zMGLPCGHMF8LBzbNAPvuiB3nz2e40KyrlsBTJFJE1EwrA/Jqs7V+gSb7wZ2NeP9vUFPfoM/B+2dYKIJGJDYEX9aaSf8cVnRGQKMBL4oJ/t6wt88bkMWAwgIlOxgnKqX630H758lxM7tcD+A3iun20MBKuBu5zRXtcANcaY4/66eIi/LjQUMMa4ROTfgLewo0SeM8bsEZEfAduMMauBb4jIzYAL2/l1d8AM9gM++vwWsFRE9mJDAg8aYyoDZ/XF4aPPYH+EXjbO8JjBjI8+fxsbzvx3bAf93YPVdx/9XQQ8ISIG2Ah8LWAG+wkR+TPWr0SnL+xRIBTAGPMUtm/sBqAQaAS+6Nf7D9LPi6IoijLA0JCXoiiK4hdUUBRFURS/oIKiKIqi+AUVFEVRFMUvqKAoiqIofkEFRRnUiEi9D3W+KSKRfrznchG5zI/X+8dFPLfe2Y8TkVe7qRcvIv96ofdRFF9QQVGGA98EeiUoIhLczenl2MSCfsEY8zE/XOOYMebT3VSJB1RQlD5FBUUZEojIImdNi1dFZL+IvOjMBv4GMA5YJyLrnLpLReQDEckXkb+KSLRzvEREfiYi+cBnROR+EdkqIjtFJEdEIkXkY9gMCb9w1krJEJFZTtLMAhH5m4iMdK63Xuy6KttEZJ+IXCUiq0TkkIj8uJPt9Z3K3xORXc49f+rFzzTH9l1drpHavgaGiEwTkQ8d+wpEJBP4KZDhHPuFiESLXQsk37nWLZ2us09Efi927Zu3RSTCOTdJRN5xbMsXkQzn+IPO61QgIj/06xurDC4Cnb9fN90uZgPqnf0ioAabmygImy5lvnOuBEh0yonYWdFRzuPvAf/Vqd53O107oVP5x8DXnfIfgU93OlcALHTKPwJ+7ZTXAz9zyg9g08GPBUZg86MldPFhGfAPINJ5PMqLv6uBu5zy1zo9NxVnDQzgN8AdTjkMiOh83jkeAsR2ek0KsWtkpGKzQMxyzr0C3OmUtwCfcsrh2FbfUuw6KuK87m8ACwL9udAtMJumXlGGEh8aY8oBRGQH9sfx/S51rsGGqzaJCNgf3M65uv7SqTzdaQXEA9HYNB7nICJxQLwxZoNz6E/YhZvaaU/jsgvYY5y8SSJShE3S1zmFzRLgeWNMI4Axxtu6FvOAbKf8AvAzL3U+AB4WuwLhKmPMIcfXc0wHHheRBYAHm8L8EudcsTFmh1P+CEgVkRhgvDHmb45tzY4fS7Gist2pH41NHLrRi13KEEcFRRlKtHQqu/H++RZgrTHmtvNco6FT+Y/AcmPMThG5GydB5gXa5Olin+c89vlCt/mSjDEvicgW4EZgjYh8mX9O5nkHMBqYY4xpE5ESbKujs81gX8eIbm4nwBPGmKd7Yb8yRNE+FGU4UAfEOOXNwDwRmQQgIlEiMvk8z4sBjotIKPYH+J+uZ4ypAc6IyLXOuc8DG7gw1gJfbB+RJiKjvNTZhE1aSRebziIi6UCRMeZJ4DVgJue+BmBXZKxwxOQ6YGJ3hhlj6oByEVnu3GOEY+dbwD2d+qHGi0iST94qQw4VFGU48AzwpoisM8acwmaI/rOIFGDDQ1PO87xHsP0Gm4D9nY6/DDwoItudjukvYDvpC4BZ2H6UXmOMeRMbItvmhOy+46XaA8DXRGQX519p77PAbuca07FLvlZiw3y7ReQXwIvAlc517uri3/n4PDbbdgG2r2eMMeZt4CXgA+dar3KucCnDCM02rCiKovgFbaEoiqIofkEFRVEURfELKiiKoiiKX1BBURRFUfyCCoqiKIriF1RQFEVRFL+ggqIoiqL4hf8HC7CQkDxW9fYAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -122,7 +112,7 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('H2 Ground State Energy in different basis sets')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { @@ -149,7 +139,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_excited_states.ipynb b/community/aqua/chemistry/h2_excited_states.ipynb index 7bd30e4c6..eee73d724 100644 --- a/community/aqua/chemistry/h2_excited_states.ipynb +++ b/community/aqua/chemistry/h2_excited_states.ipynb @@ -12,7 +12,7 @@ "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "This notebook has been written to use the PYSCF chemistry driver." ] }, { @@ -85,14 +85,14 @@ "cell_type": "code", "execution_count": 2, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAHwCAYAAACVL7i5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd41eX9//Hnnb0TAhFkB1SgIRNQNkKIsgRFqAJqoRYrLuyvX75oax0ttmoVR6H1q6ioBQeggDJkS2UJhiUgCgQEgszsnZz798c5pIwAAZOcjNfjunJdJOc+9+d9Tjpe5877c9/GWouIiIiIiFQOD3cXICIiIiJSmylwi4iIiIhUIgVuEREREZFKpMAtIiIiIlKJFLhFRERERCqRAreIiIiISCVS4BYRqWaMMaONMV9V0bVWGWN+UxXXcl1vlDFmSQXON90YM6mi5hMRqQwK3CJSrRlj9htj+p7zs9JAaozxNca8ZYw5YIzJMsZsMcb0v8ScVxtj3jTGpBpjso0x+1zBrW1lvpaaxhjztDGmyPUenf5K/zlzWmtnWGtvOuMa1hhzzc+v9nzGGB9jzEvGmEOu2vcbY1454/Hz/rN1ifkU7kXkiihwi0hN5wUcBHoBocATwMfGmJZlDTbG1AfWAgFADyAYSAC+BJIu8Byvii66BvnIWht0xleYuwu6DI8DHYHrcf6ebwSS3VmQiNRNCtwiUqNZa3OstU9ba/dbax3W2s+BFKDDBZ7yOyATuNtau9c6pVtr37HW/gPAGNPStfJ6rzHmR2CF6+eDjTE7jDHprlaMdqcnPXel9szVUGPMja5V1t8bY44ZY44YY8acMba+MWa+MSbTGPM10Ppir9kYM8sY85MxJsMYs9oYE3XOdacaYxa4Vvw3GGNan/F4kjHmO9dzpwCmvO/1OTV0NcacMMY0c30fa4xJO/1XAmNMM2PMJ8aY48aYk65rnfvXidWu6ba6VqDvcP18kOsvFenGmLXGmJgzrhtvjEl2vbaPAL+LlNkJ+NRam+r6Pe+31r7nmud9oDnwmeva/3ux99YYcx8wCvhf1/jPXD9vbIyZ43qdKcaYR86o9XpjzCbX7/WoMWbylbzXIlLzKXCLSK1ijGkIXAfsuMCQvjhDmKMc0/UC2gE3G2OuAz4AHgUigIU4w5pPOUtrhHMFvglwLzDVGFPP9dhUIB+4Gvi16+tiFgHXAlfhXLGdcc7jdwLPAPWAPcCzAMaYBsAnOP8K0ADYC3QrZ/1nsdauBf4PeNcY4w/8G/iTtfY7Y4wn8DlwAGjpes0fljFHT9c/Y12r5x8ZY+KBt4HfAvVd15jvah3yAeYC7wPhwCzg9ouUuR74f8aYB4wx0caY0g8X1tq7gR+BW1zXfsH1UJnvrbX2Dde/X3CNv8UY4wF8Bmx1vcZE4FFjzM2uuV4FXrXWhuD8EPXxJd5WEamlFLhFpCaY61rtTHf1EP+zrEHGGG+coehda+13F5irAfDTGc8Z7Jo3y5x/M9/TrhX0POAOYIG1dqm1tgh4EfAHupbzNRQBf7bWFllrFwLZQBtXOL0deNJ1rW+Bdy82kbX2bWttlrW2AHgaiDXGhJ4x5FNr7dfW2mKc70ec6+cDgB3W2tmu1/DKme/FBfzyzPfeGLPyjMeexvkh4mvgMM4PDuBs4WgMTHC9pnxrbXlvAr0P+D9r7QZrbYm19l2gAOjs+vIGXnG9j7OBjReZ62/A8zhXpjcBh40xv7rYxcvx3p6pExBhrf2ztbbQWrsPeBPnBx5w/s6vMcY0sNZmW2vXl+P1i0gtpMAtIjXBrdbasNNfwAPnDnCtNr4PFAIPXWSukzhXkgGw1s53zfk74NzV6oNn/LsxzhXb089zuB5vUs7XcNIVgE/LBYJwrpaf7kM/7QAXYIzxNMY8Z4zZa4zJBPa7HmpwxrAzQ/Tp65x+DaXXsdbac65blo/PfO+ttb3PeH4RMB1oD7zkmg+gGXDgnNdbXi2A35/zAauZq/bGwOEzrgMXea9cgX2qtbYbEIZzpf/tM1uBzlTO9/bcWhufU+sfgIaux+/F+deW74wxG40xg8rx+kWkFlLgFpEaz9Uq8BbOoHO7KwheyHLgVldAv5Qzg10qzoB15jWb4VzZBWewDThjfKNyzA9wHCh2zXVa84uMHwkMwdkaE4qzZQPK14t95MzrnPEarogxpgnwFPAO8JIxxtf10EGgubmym00PAs+eE/IDrLUfuOpvcmZrCBd/r0pZa/OstVOBNOAXp398zrBLvbfnjj8IpJxTa7C1doDrmj9Ya0fgbE95HphtjAksT70iUrsocItIbfAvnL3Wt7jaPy5mMs7e5veNMa2NUzD/bbu4kI+BgcaYRFfryu9xtjqsdT2+BRjpWiXth7P/+5KstSU4+6qfNsYEGGN+AVys7SHYdd2TOAP+X8tzHZcFQJQxZqgrDD9C+T8YnMUVeqfj/KBzL84w/BfXw1+7vn/OGBNojPEzxlyoV/wo0OqM798E7jfG3OD63QQaYwa6fkfrcH44ecQY422MGYqzfeVCNT5qnDes+htjvFztJMHA5gtc+1Lv7bnjvwayjDETXdfwNMa0N8Z0cl3/LmNMhOuvIae3UyzPvQMiUssocItIjWaMaYHzBrs44Cfz3/2iR5U13lp7AmcvcD7wFZCFMywHA+MudB1r7W7gLuAfwAngFpwBv9A1ZLzrZ+k4e4bnXsbLeAhn28dPOEPsOxcZ+x7ONorDwE6cNwaWi+u1DweewxkqrwXWXOJpd5iz9+HONsZchTOsX4XzRkkLjAHGGGN6uD5E3AJcg/PGxEM4e+DL8jTOGy/TjTG/tNZuAsYCU3CuRu8BRrvqLwSGur4/5Zrzk4vUngu8hPN9PQE8iPMvIPtcj/8NeMJ17f/h0u/tW8AvXOPnul7nIJz/2UtxXWMaztVxgH7ADmNMNs4bKO8sxwdCEamFzNmtcCIiIiIiUpG0wi0iIiIiUokUuEVEREREKpECt4iIiIhIJVLgFhERERGpRArcIiIiIiKV6EoOJajWGjRoYFu2bOnuMkRERESklvvmm29OWGsjLjWu1gXuli1bsmnTJneXISIiIiK1nDHmQHnGqaVERERERKQSKXCLiIiIiFQiBW4RERERkUpU63q4RURERKqroqIiDh06RH5+vrtLkcvg5+dH06ZN8fb2vqLnK3CLiIiIVJFDhw4RHBxMy5YtMca4uxwpB2stJ0+e5NChQ0RGRl7RHGopEREREaki+fn51K9fX2G7BjHGUL9+/Z/1VwkFbhEREZEqpLBd8/zc35kCt4iIiEgdcvToUUaOHEmrVq3o0KEDXbp04dNPP63yOlq2bMmJEyfKNXb69OmkpqZW2LiqpsAtIiIiUkdYa7n11lvp2bMn+/bt45tvvuHDDz/k0KFD540tLi52Q4VlU+AWERERkRphxYoV+Pj4cP/995f+rEWLFjz88MOAM7AOHjyYPn36kJiYiLWWCRMm0L59e6Kjo/noo48AWLVqFYMGDSqd46GHHmL69OmAc+X6qaeeIiEhgejoaL777jsATp48yU033URUVBS/+c1vsNaeV19JSQmjR48uvd7LL7/M7Nmz2bRpE6NGjSIuLo68vDz+/Oc/06lTJ9q3b899992HtbbMcd988w29evWiQ4cO3HzzzRw5cqSy3tqL0i4lIiIiIm7wzGc72JmaWaFz/qJxCE/dEnXBx3fs2EFCQsJF50hOTmbbtm2Eh4czZ84ctmzZwtatWzlx4gSdOnWiZ8+el6yjQYMGJCcn889//pMXX3yRadOm8cwzz9C9e3eefPJJFixYwFtvvXXe87Zs2cLhw4f59ttvAUhPTycsLIwpU6bw4osv0rFjR8AZ8J988kkA7r77bj7//HOGDRt21riioiIefvhh5s2bR0REBB999BF//OMfefvtty9Zf0XTCreIiIhIHfXggw8SGxtLp06dSn+WlJREeHg4AF999RUjRozA09OThg0b0qtXLzZu3HjJeYcOHQpAhw4d2L9/PwCrV6/mrrvuAmDgwIHUq1fvvOe1atWKffv28fDDD7N48WJCQkLKnH/lypXccMMNREdHs2LFCnbs2HHemN27d/Ptt9+SlJREXFwckyZNKrN1pipohVtERETEDS62El1ZoqKimDNnTun3U6dO5cSJE6UrxwCBgYGXnMfLywuHw1H6/blb5vn6+gLg6el5Wb3g9erVY+vWrXzxxRe8/vrrfPzxx+etSOfn5/PAAw+wadMmmjVrxtNPP13mln3WWqKioli3bl25r19ZtMItIiIiUkf06dOH/Px8/vWvf5X+LDc394Lje/TowUcffURJSQnHjx9n9erVXH/99bRo0YKdO3dSUFBAeno6y5cvv+S1e/bsycyZMwFYtGgRaWlp5405ceIEDoeD22+/nUmTJpGcnAxAcHAwWVlZwH/DfYMGDcjOzmb27Nmlzz9zXJs2bTh+/Hhp4C4qKipzJbwqaIVbREREpI4wxjB37lx+97vf8cILLxAREUFgYCDPP/98meNvu+021q1bR2xsLMYYXnjhBRo1agTAL3/5S9q3b09kZCTx8fGXvPZTTz3FiBEjiIqKomvXrjRv3vy8MYcPH2bMmDGlq+d/+9vfABg9ejT3338//v7+rFu3jrFjx9K+fXsaNWp0VjvMueNmz57NI488QkZGBsXFxTz66KNERVX9XxZMWXeI1mQdO3a0mzZtcncZIiIiIufZtWsX7dq1c3cZcgXK+t0ZY76x1na8wFNKqaWkghQeOoytRvtVioiIiEj1oMBdAWxhIQfvvZeUX/6SvK1b3V2OiIiIiFQjCtwVwdubiN89SsmJk+y/cwRHnnyKkvR0d1clIiIiItWAAncFMMYQ0q8frRYuJPxXvyJ9zhz29h9A+ieflnmKkoiIiIjUHQrcFcgzKJCGj00kcs5sfFq04Mgf/sCBu+4m//vv3V2aiIiIiLiJAncl8GvblhYzZ3D1pL9QuGcPKbcN5egLf8eRk+Pu0kRERESkiilwVxLj4UHYsGG0WryIsKG3certt9k7cBCZXyxRm4mIiIi4jaenJ3FxcaVfzz333GXPMX/+/NLnzZ07l507d172HEFBQeUe+8orr1z0gJ7LHXemWbNmERUVhYeHB5W1tbQCdyXzqlePq//yF1p8MBPPsDAOjx/Pwd/+lsIff3R3aSIiIlIH+fv7s2XLltKvxx577LLnGDx4cOnzrjRwX47KDNzt27fnk08+oWfPnlda3iUpcFeRgPh4ImfPouHjj5G36Rv23TKY4//8J47CQneXJiIiInVcRkYGbdq0Yffu3QCMGDGCN998E4DFixeTkJBAbGwsiYmJAEyfPp2HHnqItWvXMn/+fCZMmEBcXBx79+5l79699OvXjw4dOtCjRw++++47AFJSUujSpQvR0dE88cQTZdaRk5PDwIEDiY2NpX379nz00Ue89tprpKam0rt3b3r37g3AuHHj6NixI1FRUTz11FMAZY5bsmQJXbp0ISEhgeHDh5OdnX3eNdu1a0ebNm0q8N08n452r0LGy4vwX/2K4H79OPrcc5x47R9kzptPwyf/RFC3bu4uT0RERKrSosfgp+0VO2ejaOh/8RaRvLw84uLiSr9//PHHueOOO5gyZQqjR49m/PjxpKWlMXbsWI4fP87YsWNZvXo1kZGRnDp16qy5unbtyuDBgxk0aBDDhg0DIDExkddff51rr72WDRs28MADD7BixQrGjx/PuHHjuOeee5g6dWqZtS1evJjGjRuzYMECwPlBIDQ0lMmTJ7Ny5UoaNGgAwLPPPkt4eDglJSUkJiaybds2HnnkkbPGnThxgkmTJrFs2bLS4+snT57Mk08+ecVv75VS4HYD74YNafryy2TfPoyf/vJnDt77G0IG9OeqiY/h3fAqd5cnIiIitdjplpJzJSUlMWvWLB588EG2ug7yW79+PT179iQyMhKA8PDwi86dnZ3N2rVrGT58eOnPCgoKAFizZg1z5swB4O6772bixInnPT86Oprf//73TJw4kUGDBtGjR48yr/Pxxx/zxhtvUFxczJEjR9i5cycxMTFnjVm/fj07d+6km2tRs7CwkC5duly0/sqiwO1GQd270Wr+fE5Om8bJ/3uD7C9XEzH+EeqNHInx0q9GRESkVrvESnRVczgc7Nq1i4CAANLS0mjatOkVzREWFlZmoAfn2SUXc91115GcnMzChQt54oknSExMPG9FOiUlhRdffJGNGzdSr149Ro8eTX5+/nlzWWtJSkrigw8+uOzXUdHUw+1mHr6+RDz4IK0+/wz/hASO/vVvpAwbTu7mze4uTUREROqQl19+mXbt2jFz5kzGjBlDUVERnTt3ZvXq1aSkpACc11ICEBwcTFZWFgAhISFERkYya9YswBl6T6+Wd+vWjQ8//BCAGTNmlFlDamoqAQEB3HXXXUyYMIHk5OTzrpGZmUlgYCChoaEcPXqURYsWlVlL586dWbNmDXv27AGc/eHfu+lsFAXuasKneXOavfF/NHn1VUrS0jgwYiRH/vQnitPS3F2aiIiI1CKne7hPfz322GPs3r2badOm8dJLL9GjRw969uzJpEmTiIiI4I033mDo0KHExsZyxx13nDffnXfeyd///nfi4+PZu3cvM2bM4K233iI2NpaoqCjmzZsHwKuvvsrUqVOJjo7m8OHDZda2fft2rr/+euLi4njmmWdKb66877776NevH7179yY2Npb4+Hjatm3LyJEjS1tGzh0XERHB9OnTGTFiBDExMXTp0qX0Bs4zffrppzRt2pR169YxcOBAbr755op4m89iatue0B07drSVtYdiVSnJzuHE1Kmceu89PIODuWrC/xB6220YD30+EhERqcl27dpFu3bt3F2GXIGyfnfGmG+stR0v9VwluGrIMyiQhhP/l8hPPsGnVSuO/PEJ5xHxrq16RERERKTmUOCuxvzaXEeLf7/P1X/9K4UpKaQMvZ2jzz1PSbaOiBcRERGpKRS4qznj4UHY0NtotXABYbffzqnp09k3cCCZi7/QEfEiIiIiNYACdw3hVa8eV//5GVp++AGe4eEcfvRRDo69j8IDB9xdmoiIiIhchAJ3DeMfF0fkrI9p+Ic/kLd5s/OI+H9MwZGX5+7SRERERKQMCtw1kPHyIvyeu2m1cCHBfRM5MXUqe/sPIOOzz7AOh7vLExEREZEzKHDXYN4Nr6LJ5Mm0eP89vMLDSZ3wv+y/cwS5yTo0R0RERMrm6el51j7czz13+Sdezp8/v/R5c+fOZefOnZc9R1BQULnHvvLKK+Tm5lbYuDNNmDCBtm3bEhMTw2233UZ6evplPb88tA93LWEdDjLmzef4yy9TfOwYIQP6c9Xvf493kybuLk1ERERcqsM+3EFBQWRnZ1fYfKNHj2bQoEEMGzas0upo2bIlmzZtokGDBhUy7kxLliyhT58+eHl5MXHiRACef/7588ZpH25x7mZy2620XryIBg88QNaKleztP4Bjk1/WNoIiIiJyURkZGbRp04bdrjM/RowYwZtvvgnA4sWLSUhIIDY2lsTERACmT5/OQw89xNq1a5k/fz4TJkwgLi6OvXv3snfvXvr160eHDh3o0aNH6emOKSkpdOnShejo6NITJM+Vk5PDwIEDiY2NpX379nz00Ue89tprpKam0rt3b3r37g3AuHHj6NixI1FRUTz11FMAZY5bsmQJXbp0ISEhgeHDh5cZ8G+66Sa8vLwA53Hwhw4dqqi3tZRXhc8obuUREEDEIw8TNnwYx15+mZNvvEH6J58QMf4RwoYOxXh6urtEERERAZ7/+nm+O3X+UeM/R9vwtky8fuJFx5w+2v20xx9/nDvuuIMpU6YwevRoxo8fT1paGmPHjuX48eOMHTuW1atXExkZyalTp86aq2vXrgwePPisFe7ExERef/11rr32WjZs2MADDzzAihUrGD9+POPGjeOee+5h6tSpZda2ePFiGjduzIIFCwDnB4HQ0FAmT57MypUrS1eun332WcLDwykpKSExMZFt27bxyCOPnDXuxIkTTJo0iWXLlhEYGMjzzz/P5MmTefLJJy/43rz99ttlHl//cylw11LeV19NkxdeIPyuuzj6t+f46U9PkjZjJg0fm0hg587uLk9ERETcxN/fny1btpz386SkJGbNmsWDDz7I1q1bAVi/fj09e/YkMjISgPDw8IvOnZ2dzdq1axk+fHjpzwoKCgBYs2YNc+bMAeDuu+8ubd84U3R0NL///e+ZOHEigwYNokePHmVe5+OPP+aNN96guLiYI0eOsHPnTmJiYs4as379enbu3Em3bt0AKCwspEuXLhes/dlnn8XLy4tRo0Zd9DVeCQXuWs4/JoYWM2eQtXgxx/7+Ij+OHkNQnz5cNeF/8HX9l0dERESq3qVWoquaw+Fg165dBAQEkJaWRtOmTa9ojrCwsDIDPYAx5qLPv+6660hOTmbhwoU88cQTJCYmnrcinZKSwosvvsjGjRupV68eo0ePJj8//7y5rLUkJSXxwQcfXLLu6dOn8/nnn7N8+fJL1ngl1MNdBxhjCOnfn1aLFhLx//4fuRs2sO+WwRz9298oychwd3kiIiJSDbz88su0a9eOmTNnMmbMGIqKiujcuTOrV68mJSUF4LyWEoDg4GCysrIACAkJITIyklmzZgHO0Ht6tbxbt258+OGHAMyYMaPMGlJTUwkICOCuu+5iwoQJJCcnn3eNzMxMAgMDCQ0N5ejRoyxatKjMWjp37syaNWvYs2cP4OwP//7778+75uLFi3nhhReYP38+AQEBl/mulY8Cdx3i4etLg/vG0vqLxYTddhun3v83e2+6mVPv/xtbVOTu8kRERKQKnO7hPv312GOPsXv3bqZNm8ZLL71Ejx496NmzJ5MmTSIiIoI33niDoUOHEhsbW2Z/85133snf//534uPj2bt3LzNmzOCtt94iNjaWqKgo5s2bB8Crr77K1KlTiY6O5vDhw2XWtn37dq6//nri4uJ45plnSm+uvO++++jXrx+9e/cmNjaW+Ph42rZty8iRI0tbRs4dFxERwfTp0xkxYgQxMTF06dKl9AbOMz300ENkZWWRlJREXFwc999/f0W8zWfRtoB1WP7u3Rx97jly163Hp1UrrvrfCQT16lUpf0oRERGR6rEtoFwZbQsoV8SvTRuav/02Tf/5T3A4OHT/OA7e+xvyy/hzi4iIiIhcGQXuOs4YQ3Cf3rSaP4+Gf3icvB07SLn1No489TTFJ0+6uzwRERGRGk+BWwAwPj6E33MP13yxmHqjRpE+Zw57b+7HyWnTcBQWurs8ERERkRpLgVvO4hkWRqM//oFW8+cT0LEjx158iX0DBpK5+AtqW7+/iIiISFVQ4JYy+baKpNnr/6L522/hERDA4Ucf5cDdd5O3/Vt3lyYiIiJSoyhwy0UFdu1K5Kef0OiZZyhM2c/+4cNJnfgYRUePurs0ERERkRpBgVsuyXh6Uu+OX9L6i8XUH/sbMhcuZG+//hyfMhVHbq67yxMREZHL4OnpedY+3M8999xlzzF//vzS582dO5edO3de9hxBQUHlHvvKK6+QW47MUd5xZ/rTn/5ETEwMcXFx3HTTTaSmpl7W88tD+3DLZSs8dIhjL75E1uLFeDZoQINx91Nv+HCMj4+7SxMREanWqsM+3EFBQWRnZ1fYfKNHj2bQoEEMGzas0upo2bIlmzZtokGDBhUy7kyZmZmEhIQA8Nprr7Fz505ef/3188ZpH26pUj5Nm9L0lZdpMXMmvi1bcvQvk9jbfwDpc+diS0rcXZ6IiIhcpoyMDNq0acPu3bsBGDFiBG+++SbgPPo8ISGB2NhYEhMTAZg+fToPPfQQa9euZf78+UyYMIG4uDj27t3L3r176devHx06dKBHjx6lpzumpKTQpUsXoqOjS0+QPFdOTg4DBw4kNjaW9u3b89FHH/Haa6+RmppK79696d27NwDjxo2jY8eOREVF8dRTTwGUOW7JkiV06dKFhIQEhg8fXmbAPx22T1+/Mg4A9KrwGaXOCEiIp/n775Hz1RqOv/wyRx57nJPTphExfjzBffvqxEoREZGL+Omvf6Vg1/lHjf8cvu3a0ugPf7jomNNHu5/2+OOPc8cddzBlyhRGjx7N+PHjSUtLY+zYsRw/fpyxY8eyevVqIiMjOXXq1Flzde3alcGDB5+1wp2YmMjrr7/Otddey4YNG3jggQdYsWIF48ePZ9y4cdxzzz1MnTq1zNoWL15M48aNWbBgAeD8IBAaGsrkyZNZuXJl6cr1s88+S3h4OCUlJSQmJrJt2zYeeeSRs8adOHGCSZMmsWzZMgIDA3n++eeZPHkyTz755HnX/eMf/8h7771HaGgoK1euLP8bXk5a4ZafxRhDUI/utJw9iyavvAIlDg4//Aj7f3kHOWvXurs8EREROYe/vz9btmwp/brjjjsASEpKIjo6mgcffJBp06YBsH79enr27ElkZCQA4eHhF507OzubtWvXMnz4cOLi4vjtb3/LkSNHAFizZg0jRowA4O677y7z+dHR0SxdupSJEyfyn//8h9DQ0DLHffzxxyQkJBAfH8+OHTvK7CFfv349O3fupFu3bsTFxfHuu+9y4MCBMud79tlnOXjwIKNGjWLKlCkXfY1XQivcUiGMhwch/W4muG8iGfPmcXzKVH789b0EdO7MVY+Ox/+MT9IiIiLCJVeiq5rD4WDXrl0EBASQlpZG06ZNr2iOsLAwtmzZUubjl/rr93XXXUdycjILFy7kiSeeIDEx8bwV6ZSUFF588UU2btxIvXr1GD16NPn5+efNZa0lKSmJDz74oNz1jxo1igEDBvDMM8+U+znloRVuqVDGy4uw22+n9ReLafiHxyn4/nv23zmCgw8+RP7337u7PBEREbmAl19+mXbt2jFz5kzGjBlDUVERnTt3ZvXq1aSkpACc11ICEBwcTFZWFuDsh46MjGTWrFmAM/Ru3boVgG7duvHhhx8CMGPGjDJrSE1NJSAggLvuuosJEyaQnJx83jUyMzMJDAwkNDSUo0ePsmjRojJr6dy5M2vWrGHPnj2Asz/7+zKyyA8//FD673nz5tG2bdvyvmXlphVuqRR4ZDbTAAAgAElEQVQerqPiw26/nVPvvcfJt94mZcithNwyiIiHH8anWTN3lygiIlInndvD3a9fP8aMGcO0adP4+uuvCQ4OpmfPnkyaNIlnnnmGN954g6FDh+JwOLjqqqtYunTpWfPdeeedjB07ltdee43Zs2czY8YMxo0bx6RJkygqKuLOO+8kNjaWV199lZEjR/L8888zZMiQMmvbvn07EyZMwMPDA29vb/71r38BcN9999GvXz8aN27MypUriY+Pp23btjRr1oxu3bqVPv/ccdOnT2fEiBEUFBQAMGnSJK677rqzrvnYY4+xe/duPDw8aNGiRZk7lPxc2hZQqkRJejonp03j1Pv/xpaUEDZ8GA3GjcP7qqvcXZqIiEiVqQ7bAsqV0baAUu15hoVx1f/8D62XLCFs+DDSZ81m7003c+yllyhJT3d3eSIiIiKVRoFbqpR3w6u4+qmnaL1wAcFJSZyc9hZ7km7ixOuv48jJcXd5IiIiIhXOrYHbGPO2MeaYMebbCzxujDGvGWP2GGO2GWMSqrpGqRw+zZvT5O8vEDl3LgGdOnH8lVfZc9PNnHrvfRyFhe4uT0RERKTCuHuFezrQ7yKP9weudX3dB/yrCmqSKuTX5jqa/XMqLT6YiW/r1hz961/Z268f6XM+wRYXu7s8ERGRClfb7p+rC37u78ytgdtauxo4f3+Z/xoCvGed1gNhxpirq6Y6qUoB8fE0f3c6zd6ahld4fY788Y/sGzyEzMVf6H+YRESk1vDz8+PkyZP6/7YaxFrLyZMn8fPzu+I5qvu2gE2Ag2d8f8j1syPuKUcqkzGGoG7dCOzalaylSzn+6mscfvRR/KKiiHj0UQK7d9Nx8SIiUqM1bdqUQ4cOcfz4cXeXIpfBz8/vig4COq26B+5yMcbch7PlhObNm7u5Gvm5jDGE3HQTwYmJZMz/jBP/+AcHx44loFMnIn73OwIS4t1dooiIyBXx9vYuPSZd6g5393BfymHgzBNSmrp+dhZr7RvW2o7W2o4RERFVVpxULuPpSdhtt9Jq8SIaPvEEBSkpHBg5koP3jyP/u+/cXZ6IiIhIuVT3wD0fuMe1W0lnIMNaq3aSOsbDx4fwu0ZxzZIviHj0UXK/+YaUW2/j4EMPkfftDneXJyIiInJRbj1p0hjzAXAj0AA4CjwFeANYa183zobdKTh3MskFxlhrL3qMpE6arP1KMjI49e57nHr/fRxZWQT26knEuHH4n3FMrYiIiEhlK+9JkzraXWqskqws0mbM4NT0dylJTyewaxcajBtHQKdO7i5NRERE6gAd7S61nmdwMA3uv59rli/jqgn/Q/7u7zlw9z0cuOtuctau1ZZLIiIiUi0ocEuN5xEYSP177+WaZUtp+IfHKfzxR3789b0cuHME2V9+qeAtIiIibqXALbWGh78/4ffcQ+ulS2j01JMUHT/Gwd/ez/5hw8latgzrcLi7RBEREamDFLil1vHw9aXeiBFcs3gxV0/6CyWZmRx66GFSbhtK5qJF2JISd5coIiIidYgCt9RaxseHsGHDaL1oIY2ffw5bWMjh3/0/9t0ymIz587HFxe4uUUREROoABW6p9YyXF6FDhtDq889oMvkljKcnqf87kb0DB5I+Zw62qMjdJYqIiEgtpsAtdYbx9CRkwAAi582lyT9ewyMwkCN/fIK9N/cj7cMPcRQWurtEERERqYUUuKXOMR4ehCQlETlnDk1f/xeeEQ346eln2Jt0E6fe/zeO/Hx3lygiIiK1iAK31FnGGIJvvJGWH35Is7em4d2sKUeffZY9fZM4+dbbOHJy3F2iiIiI1AIK3FLnGWMI6taNlv/+N83fexffa6/h2N//zp7Evpx4/f8oyc52d4kiIiJSgylwi5wh8PrrafHOO7T4YCZ+MdEcf+UV9vRJ5PiUqZRkZLi7PBEREamBFLhFyhAQH0/zN96g5axZBHTqxIkpU9jTJ5Fjk1+m+ORJd5cnIiIiNYipbcded+zY0W7atMndZUgtk797Nyf+9TpZX3yB8fYm9NZbCR89Gt9Wke4uTURERNzEGPONtbbjJccpcIuUX8G+FE5Nn07G3LnYoiKC+vSh/q/H4J+QgDHG3eWJiIhIFVLgFqlExSdPkjZjJmkzZ1KSno5fbAz1x/ya4KS+GE9Pd5cnIiIiVUCBW6QKOPLySP/0U05Nf5eiH3/Eu1kzwkf/irDbbsMjIMDd5YmIiEglUuAWqUK2pISs5cs59dbb5G3dimdoKGEjRxA+ahReDRq4uzwRERGpBArcIm6Sm5zMybffJnv5CucNlkOGED5mNL6tWrm7NBEREalA5Q3cXlVRjEhdEpCQQEBCAgUpKZx6910yPp1L+qxZBPXu7bzBsmNH3WApIiJSh2iFW6SSFZ869d8bLNPS8IuOpv69vya4b1+Mlz7zioiI1FRqKRGpZhx5eWTMm8fJd96h6MCPeDdtSvivfkXY0NvwCAx0d3kiIiJymRS4RaopW1JC9sqVnHzrbfI2b8YjNJR6d95J+F2j8IqIcHd5IiIiUk4K3CI1QG7yZk698w5Zy5ZhvLwIGTKY+qNH43vNNe4uTURERC5BN02K1AABCfEEJMRTeOAAp959l/RPPiVj9hyCevUi/Ne/JuD6TrrBUkREpIbTCrdINVKclkbazJmkzZhJyalT+LVvT/1fjyH4ppt0g6WIiEg1o5YSkRrMkZ9Pxrz5nHrnHQr378e7cWPq3XM3YUOH4hkS4u7yREREBAVud5chUiGsw+G8wfLtd8j75huMvz+hgwdTb+RI/Npc5+7yRERE6jQFbpFaJm/HDtJmziTz8wXYggICOnWi3qhRBCf2wXh7u7s8ERGROkeBW6SWKk5LI+OTT0ib+QFFhw/j1bAh9e68g7Dhw/Fq0MDd5YmIiNQZCtwitZwtKSH7y9WkzZhBzpo14O1NSL9+hI8aiV9srHY3ERERqWQK3CJ1SMG+FNI++ICMTz7BkZODX1QU9UaNImRAfzz8/NxdnoiISK2kwC1SB5Vk55D52XxOzZhB4Z69eIaFETZ8GPXuvBPvJk3cXZ6IiEitosAtUodZa8nd8DVpM2aQtXw5AEG9exM+aiQBXbqo3URERKQC6KRJkTrMGENg5xsI7HwDRamppH30Mekff8yPy5fj06oV9UaOJPTWIXgGBbm7VBERkVpPK9widYSjoIDMRYtImzGT/O3b8QgIIPTWW6k3aiS+rVu7uzwREZEaRy0lInJBedu2kTZjJpkLF2KLigjo0pnwUaMI6t0b4+np7vJERERqBAVuEbmk4pMnSZ89h7QPP6T4yBG8Gl9NvREjCBs2DK969dxdnoiISLWmwC0i5WaLi8lasYK0GTPJ3bAB4+NDyIAB1Bs1Cv/o9u4uT0REpFpS4BaRK1Lwww+cmjmTjHnzsbm5+MXGUO+XdxDSvx8eAQHuLk9ERKTaUOAWkZ+lJCuLjE/nkvbBBxSmpOARGEjIoEGEDRuGX/sobS0oIiJ1ngK3iFQIay15ycmkfzyLzC++wObn49uuHWHDbif0llvwDAlxd4kiIiJuocAtIhWuJDOTjM8/J33WbAp27cL4+hLS72bChg/Hv0MHrXqLiEidosAtIpUq79sdpM+eReZnn+PIycEnMpKwYcMIvXUIXvXru7s8ERGRSqfALSJVwpGbS+biL0ifPZu85GTw9ia4Tx/Chg0jsFtXjIeHu0sUERGpFArcIlLlCvbsIX3WbDLmzaMkPR3vxo0JvX0oYbffjnejRu4uT0REpEIpcIuI2zgKC8letoz02bPJWbsOPDwI7NGdesOHE9SrF8bb290lioiI/GwK3CJSLRQePEj6nDlkfPIpxceO4RnRgLBbbyNs2O34tGjh7vJERESumAK3iFQrtriY7NX/IX3WLLK//BIcDgJuuIGw4cMJTuqLh6+vu0sUERG5LArcIlJtFR09Ssanc0mfPZuiQ4fwDA0lZMhg56E6113n7vJERETKRYFbRKo963CQu2ED6bNmkbV0GbaoCP/YWMKGDyOkf388AgPdXaKIiMgFKXCLSI1SnJZGxrx5pM+aTeHevXgEBBA8oD+hgwcT0LGjthcUEZFqR4FbRGokay15m7eQPns2WYsX48jNxbtxY0KGDCZ08GB8IyPdXaKIiAigwO3uMkSkAjhyc8lavpyMefPJWbsWHA78YmMIHTKEkP798apXz90liohIHabALSK1StGxY2R+voCMefMo2L0bvL0J6tWT0MGDCbrxRjx8fNxdooiI1DEK3CJSa+V/9x0Z8+aT8flnlBw/gUdoKCH9+xE6ZAj+cXEYY9xdooiI1AEK3CJS69niYnLWrSdj3jyyli3D5ufj3aI5oYOd/d4+zZq5u0QREanFFLhFpE4pyc4ma8lSMubNI/frr8Fa/Dt0IHTIYEL69cMzJMTdJYqISC2jwC0idVZRaioZn31Oxrx5FO7bh/HxIahPH0KHDCaoe3eMt7e7SxQRkVpAgVtE6jxrLfnf7iBj3jwyFyygJC0Nz/BwQgYOJHTwYPzaR6nfW0RErpgCt4jIGWxREdn/+YqM+fPJXrECW1iIT+vWhA4ZQugtg/C++mp3lygiIjWMAreIyAWUZGaSuXgxGfPmk/fNN2AMATfcQOiQIQQnJeEZpCPlRUTk0hS4RUTKofDgQTLmzydj3nyKfvwR4+dHcN++hAwYQGD3btrfW0RELkiBW0TkMlhryduyxdnvvWgxjowMPEJCnOG7f38CO9+gmy1FROQsCtwiIlfIFhWRs24dmQsWkrV8OY7sbDzDwgi+6SZCBvQnoFMnjKenu8sUERE3U+AWEakAjoICcr76isyFi8hauRKbm4tnRANCbrqZkAH98Y+Px3h4uLtMERFxAwVuEZEK5sjLI/vLL8lcuIjsL7/EFhTg1agRITc7w7dfTIy2GRQRqUMUuEVEKlFJdg7ZK1eSuWgROf/5D7aoCO8mTQgZ0J+Q/v3xbddO4VtEpJZT4BYRqSIlmZlkLVvuDN/r1kFxMT4tWhDsCt9+113n7hJFRKQSKHCLiLhBcVoaWUuXkrloEbkbvgaHA59rWhPSvz8h/Qfg2yrS3SWKiEgFUeAWEXGz4hMnyFyyhMyFC8n7JhmsxbdtW0IGDCCkfz98mjVzd4kiIvIzKHCLiFQjRUePkrV4MZkLF5G3dSsAftHRrpXvfjpaXkSkBlLgFhGppooOHyZz8WIyFywkf+dOAPzj4wnp35/gm2/Gu+FVbq5QRETKo0YEbmNMP+BVwBOYZq197pzHRwN/Bw67fjTFWjvtYnMqcItITVJ44ACZixaRuXARBd9/D4BfbAwhSUkE9+2LT8uW7i1QREQuqNoHbmOMJ/A9kAQcAjYCI6y1O88YMxroaK19qLzzKnCLSE1VsHcvWUuXkrV0Gfk7dgDge+01BPXtS0hSkrYaFBGpZsobuL2qopgLuB7YY63dB2CM+RAYAuy86LNERGop39at8W3dmgb330/R4cNkLV9O1tJlnPy/Nzj5r9fxbtyY4KS+BPfti39Cgo6XFxGpIdwZuJsAB8/4/hBwQxnjbjfG9MS5Gv47a+3BMsaIiNQq3k2aEH7PPYTfcw/Fp06RvXIlWUuWkjbzA069+x6e4eEEJ/YhuG9fArp0wcPHx90li4jIBbgzcJfHZ8AH1toCY8xvgXeBPucOMsbcB9wH0Lx586qtUESkknmFhxN2++2E3X47Jdk55PxnNVlLl5G5cBHps2bjERhIUK9eBCf1JbBHTzyDAt1dsoiInMGdPdxdgKettTe7vn8cwFr7twuM9wROWWtDLzaverhFpK5wFBaSu24dWcuWkbV8BSWnTmF8fAjs2pXgpL4E9emDV7167i5TRKTWqgk3TXrhbBNJxLkLyUZgpLV2xxljrrbWHnH9+zZgorW288XmVeAWkbrIlpSQt3lz6U2XRamp4OFBQIcOBCclEdw3Ee/Gjd1dpohIrVLtAzeAMWYA8ArObQHfttY+a4z5M7DJWjvfGPM3YDBQDJwCxllrv7vYnArcIlLXWWsp2LWLzKVLyV62jIIf9gDgFxXlvOkyKQnf1q3dXKWISM1XIwJ3ZVDgFhE5W+H+/c62k6XLSk+59ImMJLhvX4KT+uIXHa3tBkVEroACt4iInKfo6FGyli8ne9kycr7eCMXFeDVqRHCfPgT17k3A9Z3w8PV1d5kiIjWCAreIiFxUSUYG2atWkbl0KTlfrcHm52P8/Qns2pWgG3sR1LOXjpkXEbkIBW4RESk3R34+uV9/TfaqVWStWkVx6hHA2fcddOONBN3YC7+oKIyHh5srFRGpPhS4RUTkilhrKfj+B7K//JLsVavI27IFHA48GzQgqFdPgm68kcAuXbXft4jUeQrcIiJSIYrT0sj5z3/IXvUl2f/5D46sLPD2JrBTp9LVbx8dOiYidZACt4iIVDhbVETu5s3O8L1qFYX79gHg07o1Qb16EXRjLwLi4zHe3m6uVESk8ilwi4hIpSv88cfS8J2zcSMUFeEREkJQ9+4E9b6RwO7dddqliNRaCtwiIlKlSrJzyFm7xtn7/eVqSk6cAA8P/OPiSltPfK+9Vnt+i0itocAtIiJuYx0O8nfsIHvlKrJXrSJ/504AvBpfTfCNNxJ0440E3HCD9vwWkRpNgVtERKqNoqPHyF79JdmrviRn7VpsXp5zz+/OnQnq2YPA7t3xadbM3WWKiFwWBW4REamWHAUFrj2/nb3fRYcPA+DdojlB3boR2L07AdffoG0HRaTaU+AWEZFqz1pL4f795Hy1hpyvviLn66+xeXng7U1AXByB3bsT2L0bfu3a6dAdEal2FLhFRKTGcRQWkpe8mZw1X5H91RoKdu0CwDM8nMCuXQns3o2gbt3wiohwc6UiIgrc7i5DREQqQPHx4+SsXUv2mjXkrFlLycmTAPi2bUtgt64Ede+Of4cOePj4uLlSEamLFLhFRKRWsQ4HBd99R7ar/SR382YoKsL4+xNwfSeCujnbT3wiI7X1oIhUCQVuERGp1Rw5OeR8/XVp/3fhgQOAc+tBZ/juTmCXzniGhLi5UhGprRS4RUSkTik8dMh54+WaNeSsW48jO9t58E5MDIHduxPUvRt+0dEYT093lyoitYQCt4iI1Fm2qIi8bdvI/uorcr5aQ/6334K1eISGEtili7P/u1s3vBs3dnepIlKDKXCLiIi4FKelkbtuXWn/d/GxY4Bz7+/AGzoT2PkGAm64Aa/69d1cqYjUJArcIiIiZbDWUvDDD+SuX0/OuvXkbtzobD8BfK+7joDONxDYuTMBHTuq/1tELkqBW0REpBxscTH5O3eSs34DuevXk5ucjM3PBw8P/KKinOG78w0EJCTg4e/v7nJFpBpR4BYREbkCjsJC8rZsIXf9BnI2bCBv61YoLnaefhkbS0DnzgR26Yx/dDRG+3+L1GkK3CIiIhXAkZNDbvJmctavI3f9BvJ37gRrnft/d+jg6v/ujN8v2mkHFJE6RoFbRESkEpRkZJC7caOzBWXDegp+2AOAR0gIAdd3Kr0J0+eaa3QAj0gtV97A7VUVxYiIiNQWnqGhBPftS3DfvoDr+PkNX5O7YT056zeQvWy5c1yDBgTecEPpTZjeTZsqgIvUUVrhFhERqUCFhw6Tu2EDOevXk7t+PcXHjwPg3bixs/+78w0EdOqE99VXu7lSEfm51FIiIiLiZtZaClNSXOF7A7kbNlCSkQGAd5MmBHTsSECnjgR07Ih3ixZaARepYRS4RUREqhnrcFCweze5GzeRu8n5VXLqFACeEQ2cAbxjRwI6dsL32mswHh5urlhELkaBW0REpJo7vQJeGsA3bqT4p58A8AgNJaBDh9JVcL927TBeuvVKpDrRTZMiIiLVnDEG31at8G3Vinp3/BJrLUWHU8ndtJHcTZvI27iJ7BUrnGMDAgiIiyttQfGLicHD19fNr0BEykMr3CIiItVY8fHj5H7zTekqeMHu3QAYb2/8YmNKW1D84+LwDAp0c7UidYtaSqrY0gNLaRrUlLbhbXXTi4iIVJqS9HRykzeX9oDn79gBJSXg6YnfL37x3xsxExLwDAtzd7kitZoCdxUqcZSQOCuRk/knaRXaigGRAxgQOYBmIc2qtA4REal7HDk55G7ZUtqCkrdtG7awEADfa68tbUHx79gR76uucnO1IrWLAncVS89PZ8mBJSxMWcg3R78BICYihgGRA+jXsh/1/etXeU0iIlL3OAoKyN++3XUT5iZyN2/G5uYC4N28OQHxcfjHx+MfH4/vNdfoOHqRn0GB242OZB9h0f5FLNi3gO/TvsfTeNL56s4MbDWQPs37EOitHjsREakatriY/F27yN24ibzNyeRu3kLJiRMAeAQG4h8bWxrA/WNj8AwOdnPFIjWHAnc18UPaDyxMWcjCfQtJzUnFz9OPG5vdyIDIAXRv0h1vT293lygiInWItZaiQ4fI27yZ3M2bydu8hYLvvweHA4zB99prXQE8joD4eLybN9e9SSIXoMBdzVhr2Xp8K5/v+5wl+5eQVpBGiE8IN7W8iQGRA+jQsAMeRgcciIhI1SvJziZ/27bSAJ63ZQuO7GwAPMPD8Y+PL21F8YuKwsPPz80Vi1QPCtzVWJGjiPWp61mQsoAVP64grziPhgENnTdbthpAm3pttJogIiJuYx0OCvbscYbvzZvJ27yZwgMHnA96e+P3i3YExMWXtqJ4N9TNmFI3KXDXELlFuaw6uIqFKQtZc3gNxbaY1qGtGdDKudNJ0+Cm7i5RRESE4lOnyNuypbQVJX/7t9iCAgC8Gzf+bx94fBx+bdroVEypExS4a6C0/DSWHljKgn0LSD6WDEBsRCwDIgdwc8ubtdOJiIhUG7awkPzvvnMF8C3kJSdTfOwYAMbfH/+YmNI+cP/YWO0JLrWSAncNl5qdyqKURSxIWcAPaT84dzpp3JmBkdrpREREqh9rLcVHjvy3D3zzZvK/+855KA/g07IlfjHR+EfH4B8bg2/btnj4+Li5apGfR4G7Fvk+7XsW7lvIwpSFHMk5gp+nH72b9WZAqwF0a9xNO52IiEi15MjNJW/7t84+8O3bydu2lZLjzi0Jjbc3vu3a4R8djX9sDH7R0fi0aIHx0AYCUnMocNdCDutgy7EtLExZyBf7vyC9IJ1Q31CSWiSR1DyJTld3wttD4VtERKonay3FP/1E3rbt5G/fRt7WbeTt2FF6MI9HSAj+0dFnrYR71Vc7pVRfCty1XJGjiHWp61iwbwErD64krziPYJ9gejfrTZ/mfejauCv+Xv7uLlNEROSibEkJBXv2/jeAb9/+333Bcd6Q6Rcb4wzgMdHObQn99f9vUj0ocNch+cX5rEtdx7Ifl7Hq4CoyCzPx9/Kne5PuJDZPpGfTngT76OQwERGpGRy5ueTv3Enetu3kbdtG/rZtFKWmOh/09HQezhPjCuDRMfhe01pH1ItbKHDXUUWOIjb9tInlPy5n+Y/LOZF3Ai8PLzpf3Zm+zfvSu3lvwv3C3V2miIjIZSk+ccIZwLdvI9+1Eu7IygLABATgHxXlbEWJicU/JhqvRo10poVUOgVuwWEdbDu+jWUHlrHsx2Uczj6Mh/Eg4aoE+rboS2LzRBoFNnJ3mSIiIpfNOhwU7j/gbEU5vRL+3XdQVASAV0QEfjEx+Ee3xy8qCr+oKLzCteAkFatCA7cx5hPgLWCRtdZRAfVVGgXusllr2Z22m2UHlrH8x+XsSd8DQPv67UlskUjf5n1pGdrSvUWKiIj8DI7CQgp27TprJbz0hEzA6+qr8Yv6hXM1/HQI102Z8jNUdODuC4wBOgOzgHestbt/dpWVQIG7fFIyUpxtJweW8+3JbwG4JuwaEpsn0rdFXx0vLyIitUJJZib5O3eRv2NH6ddZIbxRI1f4/m8Q92rQwI0VS01SKS0lxphQYATwR+Ag8Cbwb2tt0ZUWWtEUuC/fkewjrDi4gmUHlpF8LBmHddAkqAl9m/elb4u+xETE4GG0L6qIiNQOJVlZ54fw/ftLH1cIl/Kq8MBtjKkP3AXcDaQCM4DuQLS19sYrL7ViKXD/PCfzTrLq4CqW/biM9UfWU+wopoF/AxKbJ5LYPJGOjTpqr28REal1SrKzyd+5k/wdO50h/Ntvzw7hDf9/e3ceJdd12Hf+e2uv3vcFjb2xAwRJgBJJSaSoJdpsrbZlKYkj2U40OomtycxYY2U8c8bR5MSK7TkZ54xjx3ZsS0ps2pKjJbJGlESRIikSEAkuAImlsa/dQO977Xf+uK+27mqgAVR19fL7nPNOvXffrVe3WET3r2/dd29nLoRH9u4luncvgfb26jVYloVyDyn5BrAT+Crwl9ba/oJzLy3mhZaKAnf5TCYmeebKMzx56Umeu/ocs6lZGkINPLbhMd698d08vO5hIoFItZspIiJSEfNCeLYn3MtOgY4OF8L37VUIX6PKHbjfYa19qiwtqzAF7sqYTc3y/LXn+dGlH/HU5aeYTEwSDUR5uPthHl3/KG/reRudtZ3VbqaIiEhFpaemiZ84zuwbb+SCeOL8+fkhfO9eIrt3Edm1i8C6dbovapUqd+D+WIniceCYtfbGHbSvYhS4Ky+ZSfLiwIs8efFJfnzlx1yfuQ7AzuadPLr+UR5Z/wj72/bj92kRAhERWf3SU9PET7ox4dkgnjh3LhfCfQ0NRHbtIrJ7F+Fdu93j1q2YUKjKLZe7Ve7A/ffAw0C2l/sx4AiwBfiitfard97U8lLgXlrWWk6PnebZK8/y7NVnefXGq6RtmsZwI29Z9xYe6XmEt/W8jeZIc7WbKiIismQyMzPE+/qInTxJ7MRJYidPED/Vh43FXIVgkPC2bQVB3PWG+xsaqttwuS3lDtzfB37JWnvdO+4EvoKbseQZa+2+u2xv2ShwV9d4fJwX+l/g2SvP8tzV5xiJjWAw3NN+D4/0PMKj6x9lV8suzXoiIiJrjk2nSQZXoNsAACAASURBVFy8SOzECeLZIH7iBOnh4VydYE8P4d27iHg94RqSsryVO3Aft9buKTg2wBvW2j3GmFestfffXXPLR4F7+cjYDMeHj/PslWd55sozufm+26JtvK3nbTy6/lEe6n6I+lB9lVsqIiJSPanBwVxPePzkCWInThbdnKkhKctXuQP3fwQ24ha9Afg54ArweeA71tp33EVby0qBe/kamh3i+WvP88yVZ3j+6vNMJicJmAAHOg/wSM8jPLL+EbY2btVf8SIisuZpSMrKUO7AbYCP4ebdBvgJ8Hf2dlbNWSIK3CtDKpPitcHXXO/31Wc4PXoagJ66nlzv95u63kQ0EK1yS0VERJaHkkNSTp4kPTSUqxNct47wzp2Ed+wgsnMH4R07CG3ejAkEqtjy1atsgdsY4wd+uJx6sW9GgXtlGpge4Jkrz/Ds1Wc53H+Y2dQsYX+YN3W9yc180vMI6+vXV7uZIiIiy44bknLK9YKfOEGsr4/E+QuQTgNggkFCvb2Ed2wnssOF8PCOHQQ6O/Wt8l0qdw/3k8DHrLXj5WhcJSlwr3zxdJwjA0d49qqb+eTixEUAtjRu4dEeN+3ggY4DBP1a8VJERKSUTCJB4uxZNyylr49432nifX2krl/P1fE1NhLevq0ohId37MBfV1fFlq8s5Q7c3wLuB34ATGfLrbWfu5tGVoIC9+pzceJibtrBFwdeJJlJEg1EeaDzAR7qfogHux9ke/N2zXwiIiJyC+mxMeKnTxeF8HhfH5npXLxzw1KKQvh2wlu2YILq6Jqr3IH7U6XKrbVfvoO2VZQC9+o2k5zhUP8hnr/2PIf7D3Nh4gIALZEWHux6kIfWuQDeU9dT3YaKiIisENZaklev5cJ3vK+P+Ok+4ucvQCrlKgWDhLdsKQrhkZ07CXR1relhKWUN3N4Fo8BGa+2pu21cJSlwry0D0wMc6j/E4f7DHOo/xNCsu3FkQ/2GXO/3m7verIV3REREblMmkSBx/nwuhMf6+oif6iM1MJCr46uvz/eCb99OeNs2wtu3E2heG793y93D/UHg94GQtXaLMeY+3AqTH7r7ppaXAvfaZa3l3Pg5DvUf4lD/IV4ceJHp5DQGw66WXbkAfqDzgGY/ERERuUPp8fGCYSn5oSmZqalcHX9LC+HeXsLbt7kbNrdtJ7ytl0BraxVbXn7lDtxHgHcCT2cXuTHGvL6cVpjMUuCWrFQmxRvDb3Do2iEODxzm1RuvkswkCfqC3Nt+by6A72vbR8Cn6ZJERETulLWW1MAA8TNniZ85Q/zsGRKnzxA/e7Y4iDc3E+7tJbR9G+HebYS39RLetg1/a+uKHJpS7sB9yFr7UOGqksaYo9ba/WVoa1kpcMtCZlOzvHL9lVwP+MmRk1gsdcE6dwPmuod4qPshLb4jIiJSJtZaUjduED99hsTZMy6Me6E8MzmZq+dvbCwI4QVBvK1tWf9OLnfg/s/Ak8AXcKtMfg4IWms/e7cNLTcFblms0dgoPx34aW789+XJywC0R9t5sPtBHux+kIe6H6KrtqvKLRUREVldXBAfnBfC42fOkJmYyNXzNTa6oSkFITzUu41AR/uyCOLlDtw1wG8B7wEM8ATwf1lrY3fb0HJT4JY7dXXqqgvf3hCUkdgIAJsbNvNg94M83P0wD3Q9QGO4scotFRERWZ2staQGB90c4nOGp6TH88vB+BoavCDuQnjd299OaPPmJW9v2WcpWSkUuKUcMjbD6dHTud7vl66/xGxqFoNhZ8tODnYe5EDHAQ50HqAt2lbt5oqIiKxq1lrSw8P53vDsGPEzZ0iPjbHu93+fxp/9mSVvV7l7uHcAvwFsBnJ3l1lr33kXbawIBW6phGQ6ybGhYxzuP8yRG0c4OniU2dQs4HrAD3Qe4EDHAQ52HqSnrmdZfM0lIiKyFqSGh/FFIvhqa5f8tcsduF8D/hg4AqSz5dbaI3fTyEpQ4JalkMwkOTF8giPXj/Dy9Zd5+cbLTCTcmLOOmg4Odhx0veCdB+ht6tUqmCIiIqtQ2acFtNYeLEvLiq/7PuAPAD/wZ9baL805Hwa+AhwEhoFftNZeuNk1FbilGjI2w5mxMy58X3+ZI9ePcGP2BgCN4Ubu77ifgx0ugO9u3U3Qp+VxRUREVrpyB+7fBm4A3wDi2XJr7chdNNAP9AH/ALgCvAh80lp7vKDOPwf2W2s/a4z5BPBRa+0v3uy6CtyyHFhruTJ1JRe+X77xMhcnLgIQDUTZ374/1wt+T/s9WohHRERkBSp34D5fothaa7feSeO8az4M/La19r3e8b/yLvo7BXWe8Oq8YIwJAANAu71JoxW4Zbkamh3KDUE5cv0IfaN9WCwBX4A9rXs42HmQgx0Hua/jPs2EIiIisgIsNnAvank9a+2Wu2/SPD3A5YLjK8CDC9Wx1qaMMeNAKzBUgfaIVFRbtI33bn4v7938XgAmEhO8euPVXAj/6vGv8hev/wUGw/bm7e4mzC4Xwttr2qvcehEREblTNw3cxpj/1Vr7u97+L1hrv1Zw7t9aa/+3SjdwMYwxnwE+A7Bx48Yqt0ZkcRpCDTy6/lEeXf8o4FbCfH3odY5cP8KR60f41tlv8fipxwHYUL+B+zvu5972e9nfvp9tTdu0HL2IiMgKcdMhJcaYl621B+bulzq+7RfWkBKRm0pmkpwaOZUL4K8NvpZbjCcaiLK3dS/3tN/DvW0uhKsXXEREZGmVa0iJWWC/1PHtehHYbozZAlwFPgH8wzl1vg18CngB+HngRzcL2yKrSdAXZF/bPva17eNTez+VuxHz6OBRjg0d4+jgUTcMJfMXAHTXdrO/fT/3tN3Dve33srt1N2F/uMrvQkRERG4VuO0C+6WOb4s3JvvXcMvE+4E/t9a+YYz5IvCStfbbwH8GvmqMOQOM4EK5yJpkjGFD/QY21G/gZ7a61bTi6Tgnhk/kAvjRwaM8ceEJAAK+ALuad7G/fb/b2vazvn69FuURERFZYrcaUpIGpnG92VFgJnsKiFhrl91kwhpSImvd4MwgR4eOcmzwGEeHjvL60Ou5VTGbw835AN6+n32t+6gL1VW5xSIiIitTWacFXEkUuEWKpTIpzo6d5ejQ0Vwv+LnxcwAYDL1Nvbke8P3t+9nauBW/z1/lVouIiCx/CtwisqCJxASvD72eC+BHh44yHh8HoDZYy77Wfble8Hva7qE12lrlFouIiCw/CtwismjWWi5PXua1wddyAbxvpI+UTQHQVdvFnpY97G7dzZ7WPexp3UNbtK3KrRYREamusi58IyKrmzGGjQ0b2diwkQ/2fhCAWCrGiZETHB08yvHh4xwfPs5Tl5/CevdLd9R0sKdlTy6A727dTUdNRzXfhoiIyLKkwC0iJUUCEe7vuJ/7O+7PlU0npzk5cjIXwI8PH+fHV36cC+Ft0bZ8AG9xveGdNZ2aGUVERNY0Be5y+eFvQ20H3PPzUKdePlmdaoO1HOw8yMHOg7mymeQMp0ZPFYXw564+R8ZmAGiJtLihKC172Nu6lz2te+iq7VIIFxGRNUNjuMshk4Y/fx9c+SkYP2x7N9z7Cdj5fghGl7YtIsvAbGqWUyMuhJ8YOcHx4eOcHTtL2qYBNz1h4Xjw3S276anrUQgXEZEVRTdNVsONE/Da43D0b2HyGoQbYO9H4N5PwoaHwOerTrtEloFYKkbfaB8nhk9wfMT1hJ8ZPZO7MbMx3Mjult25IL63Za8W6hERkWVNgbuaMmm48KwL38e/DclpaNoI+z/her5be6vbPpFlIpFOcHr0NG8Mv5EbjnJ67DSpjAvhdcE6tjdvZ0fzjty2vXk7tcHaKrdcREREgbvazchLTMOJ78DRx+Hc02AzsP5NLnjv/RjUtFS7hSLLSjKd5PTYaY4PH+fUyCn6Rvs4PXqayeRkrs76uvUugLfkg/j6uvVasEdERJaUAvdyNHENjn3N9XzfOA6+IOx4rxtysv09EAhVu4Uiy5K1loHpAfpG+zg16kJ432gfFycu5m7OjAaibGvaNq83vDHcWOXWi4jIaqXAvZxZCwPHXPA+9jWYvgHRZtj3c27YyfoHQONWRW4plopxdvwsfSN9uRB+avRUbtVMcIv2FIbwHc072NSwiYBPkzSJiMjdUeBeKdIpOPeUC98nvwOpGLT0ul7v/R+H5k3VbqHIimKtZXB2MBfA+0b7ODVyigvjF3I3aIZ8IXqbevMh3Bua0hLREC8REVk8Be6VKDYBx78FR//G3XQJsOmtbrz3ng9DRF+Ni9ypRDrB+fHzRUG8b7SPodmhXJ22aJsbitK0nd6mXnqbetnauJW6UF0VWy4iIsuVAvdKN3bJBe/X/gaGT0MgAjs/4Hq+e98Jfn0dLlIOw7PDRQH89OhpzoydIZlJ5up01nTmwndhENf4cBGRtU2Be7WwFq6+7GY5OfZ1mB2B2na45xdcz3fXfo33FimzVCbF1amrnB07y7nxc5wdO8vZsbOcHz9PLB3L1WuLttHb2MvWpq35x6ZeDU0REVkjFLhXo1QCzvzAjffu+x6kE9C+G+79Rdj7UWjeXO0WiqxqGZvh2tS1ohCe3Z9JzeTqNYeb54Xw3sZe2qJtWshHRGQVUeBe7WZG4Pg3Xfi+fNiVrbsf9nzErW6p8C2yZKy1XJ+5Pi+Enx0/y2QiP394faie3sbeecNTOms6FcRFRFYgBe61ZPSCu9nyjW/CtZddmcK3SNVZaxmaHeLseH5ISjaQj8RGcvVqAjX0NvWypXELWxq3sLlhM5sbNrOhYQNhf7iK70BERG5GgXutGr3ohe9v5MN3931uyInCt8iyMRIb4dzYuaLe8LNjZ4tmTTEY1tWtY1PDJjY1bMoF8U2Nm+iq6dLKmiIiVabALfnwffybcPWIK+u+zwXvPR+Bli3VbZ+IzDOVmOLi5EUujl/kwsQFLkxc4OLERS5OXGQ6OZ2rF/KF2Niw0QXwbCBvdPvN4WYNURERWQIK3FJM4VtkRbPWMhwb5vz4+VwAz4bxy5OXSWVSubr1oXq2NGzJBfFNja53fGP9RmqCNVV8FyIiq4sCtyxs7FJ+2EkufN/rhp0ofIusOKlMimtT14p6w7P7A9MDRXU7azrn9YpvbtjMurp1Wu5eROQ2KXDL4uTC9zfhqvffTeFbZNWYSc5wefLyvDB+YfwCE4mJXL2ACdBd182G+g1sqN/A+rr17rHePapnXERkPgVuuX0Lhe/sbCctW6vbPhEpG2stY/GxXAC/NHGJy5OXc1thGAdoibTkwnhhEN9Qv4HWSKvGjIvImqTALXdn7HLBsBOFb5G1Zjw+zpWpK1yevMyVyStcmbySC+MD0wNY8r87ooEo6+vX53rFC0P5utp1BP3BKr4TEZHKUeCW8smG7+PfhCsvurKu/S547/4QtG2vbvtEZEkl0gmuTV0r6hG/MnUlF8xj6Viurs/46K7tzvWIzw3ldaG6Kr4TEZG7o8AtlVEqfLdug53vhx3vhw0Pgl83XomsVdZaBmcHi3rECwN54YI/AE3hJnrqelhXt451tetYV7eOnroeuuu66anroTZYW6V3IiJyawrcUnnjV+DU/+e2C89COgHRZtj+XhfAe98JkYZqt1JElpGpxFQufGfD+LXpa1ybcls8HS+q3xBqyAXy7truojC+rm4dDSH9jBGR6lHglqUVn4SzP3Lhu+8JmB0BXxC2PAI7PwA73gdNG6rdShFZxqy1jMRGuDZ1javTV+mf6ufq1FWuTV2jf9rtz6Zmi55TF6wr6h0v3Hpqe2gMN+qGThGpGAVuqZ5MGi7/FE591wXw4dOuvPMe1/O98/1u0R2fr7rtFJEVxVrLeHycq9NXcz3iuc3rJZ9KThU9JxqIul7x2u7i4Sq17rEl0oLP6GeRiNwZBW5ZPobOQJ839OTSC2AzUNcFO9/ner+3PArBaLVbKSKrwERiwvWQT5XuIZ873WHQF6SjpoOu2i66arvorOl0+zVdubKmcJN6yUWkJAVuWZ5mRuD09134PvMkJCYhWANb3+HdePleqOuoditFZJWaSkzlesP7p/sZmB7IbddnrnN95jqpTKroOWF/OB/EC0N5wX5DqEGhXGQNUuCW5S8VhwvPeeO+vwfjlwED6x/whp58ANp3gX6JicgSydgMI7GReUE8dzwzwODMIGmbLnpeNBAtCuKless1BaLI6qPALSuLtXD99fysJ9deduXNm910gzvfD5veAlpAQ0SqLJ1JMzQ7xMDMwPwe8mkXzgdnB4sWBwJ3g2c2hHfUdNBe005HtIOOmo7ccUukhYBPU6uKrBQK3LKyTfS7Xu++78G5pyEVg3AjbH+36/ne9i43BaGIyDKUzCQZnBmc30Pu9ZIPzQwxFBsiYzNFz/MZH22RNtpr2nOBvL2mnc6aTlcWbaejpkPjykWWCQVuWT0S0y50n/qum3JwehCM3w096X2XC9/r7gefv9otFRFZtFQmxUhshMGZQW7M3GBwdpDrM9fd8eyNXPlYfGzec7M3e7ZHvWCe7SX3Ank2pGvhIJHKUuCW1SmTgasvuRsvzzwJ114BrOvt3vqYC+C974TGnio3VESkPBLpBIOzg7kAfmPmRi6QZ8P5jZkbTCen5z23JlCTC+DZMN4WbaMl0kJbtC23NYYbNT2iyB1Q4Ja1YXoYzj0FZ5+Cs0/CZL8rb9/l9X6/Eza9VdMOisiqN52cdiG8sKfc6zkfnHFlQ7ND81bzBAiYAC1RF8JbI625IN4abS0K5q2RVmqDtRrOIuJR4Ja1x1q4ccIF7zNPwsXnIR2HQMTdcJkdfqKZT0RkjbLWMp2cZmh2yG2xIYZnh3PH2f3h2WGGY8PzZmMBiPgj84N4tLUoqGfLwv5wFd6lyNJR4BZJzLjQnQ3gQ6dceUMP9L7DBfCtj0FNSzVbKSKyLGVshrH4WFEYz4XzWHFALzXOHKA+VJ/rGW+JtLgt2kJL2HuMtNAcaaY10kp9qF7DWmTFUeAWmWvsMpz9kQvg556G2DgYH6w74Hq+e98FPQfBrym5RERuRzKdZDg2nOsZz/WgF4T1kdgII7GReat9ZgVMgOZIM82R5nw4n7Nlw3lLtIWaQI2GtkjVKXCL3Ew65eb6PvOkC+BXj7gl58ONsPXt7sbLbe+Cpo3VbqmIyKqSzCQZi40xEhthOOaC+GhsNBfIc9use5xJzZS8TtgfXlQ4b4400xRuIhqIKqBL2Slwi9yOmRE4/2MvgP8IJq668tbt+d7vzW+FkKbYEhFZSrFUrHQgn7ONxkYZnh0mkUmUvE7IF6Ip0kRzuJmmSBNNYbdlA3lz2D0W1okGdMO93JwCt8idshYGT+WHn1x4zi284w/BxoddD/jmR2HdfVr5UkRkGbHWMpOacb3j8RGGZ4cZj48zGh9lLDbmHuNjjMXGGIu744n4xLxVQbPC/vC8UN4Ybswfe4+F+5FAZInftVSTArdIuSRjcOl5r/f7KbjxhisP1bkAvvltsOUR6L5Pi++IiKww6UyaicREUSgfj48zGnPhPPuY3UZjowuOQweIBqIulIebaQg30BhqpDHsbd7+vPJwo2Z0WaEUuEUqZXoILjzrer7PP5uf/STc4KYf3PyIC+Cd94BPd9yLiKw2qUyKicREvte8oMe8sCd9Ij7BeGKc8fg4E/EJUja14DUj/ogL4gXBPLu/UHljuFFj06tMgVtkqUxe9wL4sy6Aj5x15ZEmt+jOlkdcCO/YowAuIrJGZYe7jMddAM8G8fH4OBOJiXx5wbmJ+ARj8bEFx6UDBHyBkgG9PlRPQ8g9Fu43hBpy+1rE6O4pcItUy8Q1F7wvPOMexy668ppWL4A/6gJ4+04twCMiIrcUS8XmBfHCwD43oE8mJt2WnLzpdX3G5wJ50Avl4YaiYH6zsF4fqtd4dRS4q90MkbyxS14Af871go9fduW17W789+ZHXAhv3aYALiIiZZPOpJlKTjGZmGQiMZEL4tn98fh4LphPxOefj6VjN71+yBfKh/JwA/XBeupCddQF66gP1VMXrMsd14Xqcudz9UJ1BH0re/IBBW6R5chaGL2QH35y4VmY7Hfn6rryw082vw1atiqAi4hI1STSiZJBfSI+4UJ6YmJeUJ9OTjOZmGQqOUU8Hb/la0T8kXwozwbzgrBeGOJLhfn6UH1VbzhV4BZZCayF4bNu+En2JszpG+5cQ0/+BszNj0Dzpuq2VURE5DYk00kmk5NMJ6aZTE4ylZjKPWZ73gsD+tzzU4mpBRc+KhT0BfniW7/Iz2792SV4V8UWG7i1hrVINRkDbdvc9sCvuAA+1Afnn3G932d+AEcfd3UbN8DGh2DDg+6xY4+mIRQRkWUr6A/S4ncrf96p7LCYXCDPhvQ5wb23sbeMLS8/9XCLLGeZDAyecD3fl56HS4dhasCdCzfA+je5ucA3Pgg9B7USpoiIyBJSD7fIauDzQedetz302fwY8MuH4dIhtz31b7y6AejaX9wLXt9V1eaLiIiIerhFVr7ZUbj8Ilx6wQXxq0fcUvQAzZthw0MufG98CNp2ai5wERGRMlEPt8haEW2GHe9xG0AqAf2vwWWvB/zMD/PjwCNNXu/3g24oyrr7IRitXttFRETWAAVukdUmEIINb3LbW37dDUMZOed6wC8dcr3gp59wdX1BWHefNwzF6wWvbatu+0VERFYZDSkRWYumh13wzvaCX3sF0t7Swa3bioehaEEeERGRkjSkREQWVtsKuz7gNoBkDPpf9XrBD8Opv4dX/4s7V9MKPQ+4WVB6DkLPAai58ymeRERE1hoFbhGBYCTfow1uOsLh094QlJ/C1Zfg9PcB7xuxlq1e+PaCeNc97hoiIiIyjwK3iMzn80H7Trcd/JQri024XvArL7mZUC78BI59zasfhK59Bb3gD7ihKJoRRURERIFbRBYp0gBbHnVb1sQ1F76vHnFB/LXH4cU/c+fCDW4WlPUFw1E0L7iIiKxBCtwicuca1rlt9wfdcSbtlqYvDOHP/T9g01799W4MeM9BF8S774NwXfXaLyIisgQUuEWkfHx+6Njttvv/sStLzkL/UTcOPBvET3zbnTM+aN9VMBTlIHTsAb9+NImIyOqh32oiUlnBqLfQzoP5sukhuPqyF8BfgpPfgVe+6s4Fom5u8J6DbkhK933uJk2NBxcRkRVKgVtEll5tW/HqmNbC6Hm4ciQfwn/6p5COu/OhOjcTSve9+a1tp3rCRURkRdBvKxGpPmNcL3bLVtj/C64slYDBk26Z+v7XYOAovPwVSM6484EIdO6Frv35EN6xR9MTiojIsqOVJkVk5cikYfhMPoT3v+bGh8fH3XlfANp3ewHcC+Kd+3RjpoiIVIRWmhSR1cfnz88Pvv/jrsxaGL1QHML7vpdfKRMDbdtd+M71hu+HaHO13oWIiKwxCtwisrIZAy1b3Lb3I67MWpjsLw7hF5/PL9QD0LSpeEx4971Q11Gd9yAiIquaAreIrD7G5OcI3/n+fPn00JzhKK/lpygEqO/O94R37nXDUVq2uJ51ERGRO1SVwG2MaQH+BtgMXAA+bq0dLVEvDRzzDi9Zaz+0VG0UkVWotg22vcttWbFxGDhWHMJPfx9sxp0PRN284p17XADv3Asde6G2tTrvQUREVpyq3DRpjPldYMRa+yVjzBeAZmvtb5aoN2Wtva27nXTTpIjcteSsmyHl+hve9rp7nBnO16nr8nrBC7a2HRAIV6/dIiKypJb7TZMfBh7z9r8MPA3MC9wiIlURjLpFd9bdny+zFqZuuPB943g+iB9+FtIJV8cXcKG7Y09+SErnHmjoccNcRERkTapW4O601vZ7+wNA5wL1IsaYl4AU8CVr7TeXpHUiInMZA/WdbisckpJOwvDZfC/4jeNw+TC8/vV8nUhjwXAUb2hKx25NVygiskZULHAbY34IdJU49VuFB9Zaa4xZaFzLJmvtVWPMVuBHxphj1tqzJV7rM8BnADZu3HiXLRcRuQ3+IHTscts9P58vnx0r6An3tlf/ChJT+TrNm+cHcd2kKSKy6lRrDPcp4DFrbb8xpht42lq78xbP+UvgO9bar9+snsZwi8iylcnA+KXiEH79DRg5m79J0x92w1Lad0L7rvxjyxYX7kVEZNlY7mO4vw18CviS9/ituRWMMc3AjLU2boxpA94K/O6StlJEpJx8Pter3bwZdv1Mvjx7k+bA6+5x8BRc/mnxsBRfEFq3zQ/irb26UVNEZJmrVuD+EvC3xphfBS4CHwcwxjwAfNZa+0+B3cB/MsZkAB9uDPfxKrVXRKRySt2kCRCfgqE+F8CzQXzgKBz/FuB9O2n80LK1IIh7Ybxtu7uuiIhUXVWGlFSShpSIyKqXnIXhMwVB3Avjw2fBpr1KxvWkF/aGt+90w1V0s6aISFks9yElIiJyp4JR6LrHbYVSCTcePBvAs49nfgiZZL5e40YvhBf2iu9ws6mIiEjZKXCLiKwWgZCbbrBjd3F5OgmjF4p7wwdPwoVnIRXL16vtcENRWnuhdbu3v831lOuGTRGRO6bALSKy2vmDLjy3bYfdH8yXZ9IwdtEL4Kdg+LQblnLyuzAzlK9n/C50ZwN46zZvfzvUdWhRHxGRW1DgFhFZq3zeDZctW2Hn+4vPzY668D102o0XHz4NQ2fg3NPFveLhBq9HfJvXK74tH8pDtUv6dkRElisFbhERmS/aDOsfcFuhTAYmrnhB/KzXK34GLh2GY18nN3sKQP06L4BvL+gV3wZNG7W4j4isKQrcIiKyeD6fC8xNG4uXuAc3e8rIOS+Mn873kL/+dYiN5+v5Q65XPdsTnu1lb9kK9d3uNUREVhEFbhERKY9g1C1T37m3uNxamBmePzxl6DT0PVE8g0og4i0OtMUL4Vu8bSs0btDNmyKyIilwi4hIZRkDtW1u2/Rw8blMGsavuJ7xkXMweh5GvO3c05CaLbiO3/WsZwN4YShv3qyFfkRk2VLgFhGRXdVQwwAAGlhJREFU6vH5oXmT23rfUXzOWpi67oXx8wWB/Bwc+1rxMBWAhh4vhG+ZE8q3aI5xEakqBW4REVmejIH6Lrdtesv88zMjLohnQ3g2lJ/+vgvqhWpa5/SKb/WGrmyCuk5NbSgiFaXALSIiK1NNi9vWH5x/Lj7lFvsp7BUfOQeXDrne8cLZVAKR/I2gTV5ve9Mmd9y82c3YokAuIndBgVtERFafcB107XPbXKk4jF1yPeJjF9026j1ePeLmIC8UqvdCeKlAvgnC9UvznkRkxVLgFhGRtSUQzq+8WUps3AXybAjP7o9egHM/huR0cf1oy/wQ3rTZPTZugGCk0u9IRJY5BW4REZFCkUbousdtc2WnOCzsFR/1Qvn11+HUdyGdKH5OXdf8QN64wdvWK5CLrAEK3CIiIotVOMVhT4mx45kMTA3kQ3hhML98CF7/O7Dp4ufUtrvg3bi+OIhnj2vbNIZcZIVT4BYRESkXnw8a1rlt7pzjAOkkTFx1c4+PX4HxyzB22e0P9sGZJyE5U/ycQKQggK+Hxo1zjte7YTIismwpcIuIiCwVf9CbjnBz6fPWups2xy/nQ/nYpfz+6R+6HvS56jpv3kte06JecpEqUuAWERFZLozJT3fYfW/pOql4cS/52OV8QL/+BvQ9AalY8XOCNS58N/R4m9cLX7iv6Q9FKkaBW0REZCUJhPOL95SSvbEzG8KzQ1bGL8HENTh7EiYHKJqLHCAQLR3Ec/s9bgEhn6/ib1FktVHgFhERWU0Kb+xcd3/pOumkW41z4prrLZ+4Vrx/8Scw2Q+ZVPHz/CGo7y4RyAvK6jrB56/8+xRZQRS4RURE1hp/MD/GeyGZNEwPFoTxOeH86hE48d8hHS9+nvFDfdf8HvL6blde3+1Cebiusu9RZBlR4BYREZH5fF5wru+CngOl61gLMyMFQXxOb/n143D6B/NnXgG3gmf2+rkwPue4rgtCNZV9nyJLQIFbRERE7owxUNvqtu79petY61bvnLruhqlMDsx5vA6XD7vjub3l4BYiqpsbzOcE9LouLSAky5oCt4iIiFSOMRBtclv7zoXrZadELAzkUwPFxxd/4h4zyfnPjzYX94zngnmnG8JS1+EeQ7WVe68iC1DgFhERkeornBKxc8/C9TIZL5iX6i33QvrgKbc/d1VPgFBdPnwXPtbOKatth0Cocu9X1hQFbhEREVk5fL78MJaufQvXy6Rhegimb7jhLFMlHm+cgHNPuyEvpURb5gfzus75+9FmTZcoN6XALSIiIquPz++Gk9R3AvfcvG4y5gXzbBgvEdAvH3aPcxcVAvAFvB7ywmDe4XrJ5241LZo2cQ1S4BYREZG1LRiBpo1uuxlrIT5582A+2Q/9r7kpFUsNaTE+t4BQbbs3X3q7C+u5fW+r8x415nxVUOAWERERWQxjINLgtrZtN6+bHWs+PViweUNccvuDcPVlt5+YLH2dYI0XxjvmhPR2rxe94LimVb3ny5QCt4iIiEi5FY41Z9et6ydn8yF8XkgfdD3o41fg2isL955jvN7zNveY3WrboMYrq20t2G+DQLjc71xKUOAWERERqbZgFJo2uO1WMhmIjS0czGeG3IJEg6fy+9jS1wrVu3Hl80K5F8wLw3ttG4QbXE+/3BYFbhEREZGVxOfLT6F4s7nNszJpmB2DmWEXwKeH8vszI97xkJtS8fobbr/UzaEAvmBBAJ/TW17T6mZsqWnx9r02BmvWfEhX4BYRERFZzXz+guEtOxb3nMS0C+W5cD5cHNSnvbKBo+5xdnTha/nDLnhnA3jhftFjq7ffDJGmVTXVogK3iIiIiBQL1brtVjO3ZKVTLnTPjnihfMTbL3jM7t84mS8rORYdN5tLpKl0GC8V2Js2Qri+fO+/zBS4RUREROTu+ANuKsO69sU/x1qIT3gBfXROQJ8T2ieuwMAxV56anX+tj/wR3PcPy/d+ykyBW0RERESWnjEQaXRby208Lzk7vwd93YGKNbMcFLhFREREZOUIRqGxx20rxOoZjS4iIiIisgwpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFVSVwG2N+wRjzhjEmY4x54Cb13meMOWWMOWOM+cJStlFEREREpByq1cP9OvAx4JmFKhhj/MAfAu8H9gCfNMbsWZrmiYiIiIiUR6AaL2qtPQFgjLlZtTcDZ6y157y6jwMfBo5XvIEiIiIiImWynMdw9wCXC46veGUiIiIiIitGxXq4jTE/BLpKnPota+23yvxanwE+A7Bx48ZyXlpERERE5K5ULHBba999l5e4CmwoOF7vlZV6rT8B/gTggQcesHf5uiIiIiIiZbOch5S8CGw3xmwxxoSATwDfrnKbRERERERuS7WmBfyoMeYK8DDw98aYJ7zydcaY7wJYa1PArwFPACeAv7XWvlGN9oqIiIiI3KlqzVLyDeAbJcqvAR8oOP4u8N0lbJqIiIiISFkt5yElIiIiIiIrngK3iIiIiEgFKXCXyXQ8hbWaIEVEREREilVlDPdq9MH/9zn6x2J0N0bo8rZ1jVG6GiN0N0bobozS3RihqSZ4qxU2RURERGQVUeAuk19+6xYuDU9zbTzGwHiMw+dGGJiIkc4U93qHA76iAN7VGKG7KUp3QyQXzltqQwrlIiIiIquEAneZ/NJDm+aVpTOWoak4/eMx+sdm6R+PMTAR49rYrAvl50e4PhEjNSeUh7xQ3tUQYV3T/F7yrsYIrQrlIiIiIiuCAncF+X2GzoYInQ0R7tvQVLJOOmMZzoby8Rj94y6MZ/dfvOBCeTI9J5T7fbmhK10NEdrqwrTVh2irC9NeF6a1zu231oUIB/xL8XZFREREpAQF7irz+wwdDRE6GiLcu6F0nUzGMjQdzwfxsVn6J2K541cvjzE8FWc6kS75/IZIgLb6MG21+VDeVhDKsyG9rT5ETUj/S4iIiIiUk9LVCuDzGTrqI3TUR9i/fuF6M4kUw1MJBqfiDE3GGZ5OMDQZZ2gqzpBXfmpgkp9MDTM+myx5jWjQXxTK2+oK991xqxfQG6IBDWsRERERuQUF7lWkJhSgpiXAhpaaW9ZNpDIMT8cZmkwwNB33gnmCoak4w15AvzwywyuXRhmZTpApMeNhyO+jqSbotmiIxpogTVHvuCaUK2+qCdLolTfXhKgJ+RXURUREZM1Q4F6j3I2ZUbobo7esm85YRmdcGB+a9B6n4gxOxRmfSTI2k2Rs1gX0Y95+LJlZ8HpBv6Exmg3kQS+Qh2j2wntjTSgf3LP1aoLUhdWjLiIistKlM5ZEKkMilSGeShNPZUikM7mywv255+Kp9Lx68VSGj97fw70L3C+3HChwyy35fSY3pISuxT0nlkwzPuuF8ZkEY7Pe40zS208yPuuOr43FONE/yehMgpkFxqFn29EUDdLo9ZjXhQPURwLeY/FxXa48f64uEqA2FMDvU2gXEZHVz1pLKmNJlgiwhWWJVIZ4OkNyoeA7p24y7criJcpyr7FAYE6kM/OmTL5Txrhv20MBHwc3NStwy9oTCfqJBP10NkRu63nxlAvq4wXBfGwmwfhsktGCwD4xm2QylqJ/PMZULMVU3G2LURvy5wJ5XSRIQ3bfC+X1ucAedAG+qCzghu6E/IQDPvW4i4iscZmMJZnJhs58uM0G0GTKkkinSaSsd5wPvPFUprh+KkMibYuOk3NCb+F143Oulz0fLwi35VwEO+AzhAI+gl7IDfl9hAO+eWU1NQFCgfy5sFceCmTr+PP7AR9hv6+ofmhO/XCp5wR8BHxmxfweVuCWZSUc8NNR76ej/vaCOrgfetMJF7wnY26biqe8QJ4sOs7uT8ZTTMWSXJ9wwX3SC+6L+QFljLvJtCbkJxryEw36iYYC1HhlkZB/zn6gqG7xfoBoyCsLunIFehFZi7K9sqm0C6ipdD7IJkvsp7IBtGA/NadONui6sFp4LkMiNec4bUmk0vPCc+HrFobruWtplEPI7yPonxNuC0Jo0O/2G0NBr8x4z/ERnBOEQwVlhWE1e41QqZBbUB705+vrG+I7p8Atq4bPZ6iPBKmPBOluvPPrZDKWmWR6waA+k0gxm8wwm0gxk0gzk0wTS6Rz+7OJFNcnk8wk0swm0swm3blEauFx7SXfjxfoo16PejToz/2gDAd9hAMulLvtJueCfvfDt0R5Ye9DOOD36rgftgr7IiuHtZaMhVTGhc1UxpLOuACa3c+Gw2Q6WycbUl0PbcoLrMns8wrKs8/Nht9UrrzwOgtcP1MQTrMhtigU54NsNmRXUi6E+o0LqLkQW3Ds9xEJ+qiPBIp6bm/1nKDfEJwTZgvrhouOiwNusOA19PN39VHgFpnD5zO5ISZw+z3tC0mlM8wmXQCfzQb0RJpYMrufKgro2TqzXoifTaZz4+FiyQzjs8nccTyZv/EklkyXnFXmduXDuD/3SyXgNwR9PoIBQ8DnfjkE/IaA30fI78oCfjOn3H3tl6uT7YXxGwI+75eT97x8ufvlE/AZfMbg9xVsxuDzuTH9hed9xhDwZ8/nHwO+/Hn3iH6ZrTDWWqyFtLVkrCWTKdx3QTOd8Y6tC5fWK0tbi7WWdIbcuYzNP6dos5Z0JkM6Q+4xlcmUqFO8pUpeZ36dTK5uPgRnQ2w+IHth1ttPe8MVCs/ln5c/nrs4WqVl//1lfy4EfN6/Xe9nRHGZ+7dcF3bhNfvvPrTAftC7bvZnQCjgy12rcD/7syNY8LOm8GfT3P3sa+vfv1SDArfIEgn4fdT7fdRHghV/rezXqi6I58N4Npjngvqc8niu3Dv2np/Kft1a0MNV2Fs1nUjne8TSmaJesWzPV9LrLSvneMI7VRTc5wT6wgAPbuiQz5j8I0DBfvYcBfuFdU22rPA8c+oVlN2Nm/23tdz8P7y1LpBaC5Z8yM1Y98yMKyRj3bXcuXw9i51zXHg9F5IpKMte19o5gTkboHP7tix/QC4Vn4GAz4fP5z0a92/fZwr++PORC6V+X/YP0vz52mAgF2gDPh9+f34/4DP4/Yagz3tu7lzxsd8LrbnreGEzW54NqcHsuYKgHCz44zlY8Adzrtzn/pgVkcVT4BZZhdwvUB81oWq3ZL7sV9vJooBu86E+nR+7me0dzMztMbT53sLsuWwPYuG5/HPzPZalnjv3uumMzQVGisJhfh9bKjx6gZN8kCwMr9ngmQusGUiTyQXVjOWWoftWMedmvXe3eq7P+8vAfQvgQmP+jwPv2wHy+5D9xqDwjw1TVMcUXbf4j5TsHyM+4/7wMQV//BivzFf4jYVx30C5P4rcdQq/ucjXM149cn88ZZ9jjMn9kWW8cFz0DUrBNycuEJuiP8qyYbPosSBMq/dUREpR4BaRJeWCi5vFRkREZC3wVbsBIiIiIiKrmQK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBRlrbbXbUFbGmEHgYpVevg0YqtJry9LR57z66TNeG/Q5rw36nNeGan3Om6y17beqtOoCdzUZY16y1j5Q7XZIZelzXv30Ga8N+pzXBn3Oa8Ny/5w1pEREREREpIIUuEVEREREKkiBu7z+pNoNkCWhz3n102e8NuhzXhv0Oa8Ny/pz1hhuEREREZEKUg+3iIiIiEgFKXDfAWPM+4wxp4wxZ4wxXyhx/tPGmEFjzKve9k+r0U65c7f6jL06HzfGHDfGvGGM+aulbqPcvUX8W/73Bf+O+4wxY9Vop9ydRXzOG40xTxljXjHGHDXGfKAa7ZS7s4jPeZMx5knvM37aGLO+Gu2UO2eM+XNjzA1jzOsLnDfGmP/g/T9w1BhzYKnbuBANKblNxhg/0Af8A+AK8CLwSWvt8YI6nwYesNb+WlUaKXdlkZ/xduBvgXdaa0eNMR3W2htVabDckcV8znPq/zpwv7X2V5aulXK3Fvnv+U+AV6y1f2SM2QN811q7uRrtlTuzyM/5a8B3rLVfNsa8E/hla+0vVaXBckeMMY8CU8BXrLX7Spz/APDrwAeAB4E/sNY+uLStLE093LfvzcAZa+05a20CeBz4cJXbJOW1mM/4nwF/aK0dBVDYXpFu99/yJ4G/XpKWSTkt5nO2QIO33whcW8L2SXks5nPeA/zI23+qxHlZ5qy1zwAjN6nyYVwYt9baQ0CTMaZ7aVp3cwrct68HuFxwfMUrm+vnvK8zvm6M2bA0TZMyWcxnvAPYYYz5iTHmkDHmfUvWOimXxf5bxhizCdhC/pe1rByL+Zx/G/jHxpgrwHdxPWSysizmc34N+Ji3/1Gg3hjTugRtk6Wz6J/rS02BuzL+O7DZWrsf+AHw5Sq3R8ovAGwHHsP1fP6pMaapqi2SSvoE8HVrbbraDZGK+CTwl9ba9bivor9qjNHvx9XnN4C3G2NeAd4OXAX0b1qWhH6g3L6rQGGP9XqvLMdaO2ytjXuHfwYcXKK2SXnc8jPG/dX8bWtt0lp7Hjd2cPsStU/KYzGfc9Yn0HCSlWoxn/Ov4u7JwFr7AhAB2pakdVIui/ndfM1a+zFr7f3Ab3lluhF6dbmdn+tLSoH79r0IbDfGbDHGhHC/iL9dWGHOeKEPASeWsH1y9275GQPfxPVuY4xpww0xObeUjZS7tpjPGWPMLqAZeGGJ2yflsZjP+RLwLgBjzG5c4B5c0lbK3VrM7+a2gm8u/hXw50vcRqm8bwP/xJut5CFg3FrbX+1GgftaXG6DtTZljPk14AnAD/y5tfYNY8wXgZestd8GPmeM+RCQwg3u/3TVGiy3bZGf8RPAe4wxx3FfSX7eWjtcvVbL7Vrk5wzuF/fjVlM6rUiL/Jz/F9ywsP8JdwPlp/V5ryyL/JwfA37HGGOBZ4B/UbUGyx0xxvw17nNs8+65+D+BIIC19o9x92B8ADgDzAC/XJ2WzqdpAUVEREREKkhDSkREREREKkiBW0RERESkghS4RUREREQqSIFbRERERKSCFLhFRERERCpIgVtE5C4YY6YWUedfGmNqyviaHzHG7Cnj9Z6/i+dOeY/rjDFfv0m9JmPMP7/T1xERWckUuEVEKu9fArcVuI0x/puc/ghQtsBtrX1LGa5xzVr78zep0gQocIvImqTALSJSBsaYx4wxTxtjvm6MOWmM+a/eamefA9YBTxljnvLqvscY84Ix5mVjzNeMMXVe+QVjzL8zxrwM/IIx5p8ZY140xrxmjPk7Y0yNMeYtuBVsf88Y86oxptcYc58x5pAx5qgx5hvGmGbvek8bY/69MeYlY8wJY8ybjDH/zRhz2hjzbwraPlWw/5vGmGPea36pxPvc4rX92JxrbDbGvO7t7zXG/NRr31FjzHbgS0CvV/Z7xpg6Y8yT3n+DY8aYDxdc54Qx5k+NMW8YY75vjIl657YZY37ote1lY0yvV/5577/TUWPMvy7rBysiUgYK3CIi5XM/rjd7D7AVeKu19j8A14B3WGvfYYxpA/534N3W2gPAS8D/XHCNYWvtAWvt48B/s9a+yVp7L3AC+FVr7fO45Ys/b629z1p7FvgK8JvW2v3AMdzqa1kJa+0DwB8D38KtrrcP+LQxprWw8caY9wMfBh70XvN3S7zHPwD+yFp7D7DQksmfBf7AWnsf8ABwBfgCcNZr8+eBGPBR77/BO4D/2xhjvOdvB/7QWrsXGAN+ziv/r175vcBbgH5jzHu8+m8G7gMOGmMeXaBdIiJVoaXdRUTK56fW2isAxphXgc3Ac3PqPIQL5D/x8mUIeKHg/N8U7O/zepGbgDrcstVFjDGNQJO19sde0ZeBrxVUyS5Rfwx4w1rb7z3vHLABGC6o+27gL6y1MwDW2pES7/Gt5APwV4F/V6LOC8BvGWPW4/5oOJ3P0vmmA//WC8cZoAfo9M6dt9a+6u0fATYbY+qBHmvtN7y2xbz38R7gPcArXv06XAB/pkS7RESqQoFbRKR84gX7aUr/jDXAD6y1n1zgGtMF+38JfMRa+5ox5tPAY3fRpsyc9mUWaN9i2JuetPavjDGHgZ8BvmuM+R+Ac3Oq/SOgHThorU0aYy4AkTltBvffMXqTlzPA71hr/9NttF9EZElpSImISOVNAvXe/iHgrcaYbQDGmFpjzI4FnlePGzYRxAXUedez1o4Do8aYR7xzvwT8mDvzA+CXszOqGGNaStT5CfAJb/8flTiPMWYrcM4bTvMtYD/F/w0AGoEbXth+B7DpZg2z1k4CV4wxH/FeI+y18wngVwrGwfcYYzoW9W5FRJaIAreISOX9CfA9Y8xT1tpB4NPAXxtjjuKGX+xa4Hn/B3AYF3JPFpQ/DnzeGPOKd+Pgp3A3UR7FjWP+4p000lr7PdwQlJe8ITG/UaLa/wj8C2PMMdwwkFI+DrzuXWMf8BVr7TBuGM3rxpjfw43HfsC7zj+Z8/4W8kvA57z3+TzQZa39PvBXwAvetb5OcbAXEak6Y+1NvxkUEREREZG7oB5uEREREZEKUuAWEREREakgBW4RERERkQpS4BYRERERqSAFbhERERGRClLgFhERERGpIAVuEREREZEKUuAWEREREamg/x8+AxazZiX4NwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -111,6 +111,13 @@ "pylab.show()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above plot has all the states. Below we plot them individually. With each plot having its own y-axis scale the energy change over distance change is more evident, particularly the ground state curve which is very flattened above by the scale." + ] + }, { "cell_type": "code", "execution_count": 3, @@ -120,7 +127,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4FWX6//H3nQ5JaGmU0AkQAoIQEFBEJKhrAwRdWRs2LGDbXbe51nXXXdfV7ypi766KghS7VFmKLh0CoYuQACkIhACBJOf+/XEGfhETOJBzMknO/bquczFn5jkz9yQhn8wzM8+IqmKMMcZUVYjbBRhjjKkbLFCMMcb4hQWKMcYYv7BAMcYY4xcWKMYYY/zCAsUYY4xfWKAYU0uJyGgRme92HcYcZYFi6gQR2SoiGcfNO/YLV0QiReQ1EflBRPaLyAoR+cVJ1tlMRF4RkR0iUiQiW0TkTRHpHMh9CTQRmSsit5xC+0dE5N1A1mTqBgsUEyzCgO3AQKAh8GfgQxFpU1FjEYkDFgL1gQFALNAT+AYYUslnwvxdtDG1iQWKCQqqekBVH1HVrarqUdVPge+BXpV85D6gELhOVTer115VfUNVnwMQkTYioiJys4hsA2Y78y8XkTUistc5Gkg9ulKnfYdy798Ukced6fNEJFtEfiMieSKyU0RuLNc2TkSmi0ihiPwPaF/Z/opIlIi8KyK7nToWi0iSiPwVb0COd466xjvt/y0i2511LxWRAc78i4A/Ab902q905jd0jvh2ikiOiDwuIqGn+G0xdYwFiglKIpIEdATWVNIkA5iiqh4fVjcQSAUuFJGOwPvAvUAC8DnwiYhE+FhaU7xHUC2Am4HnRaSxs+x5oBhoBtzkvCpzg7OelkAccDtwSFUfAP4LjFPVGFUd57RfDPQAmgDvAR+JSJSqfgn8DZjotO/utH8TKAU6AGcCFwA+d6OZuskCxdQlU52/xveKyF5gQkWNRCQc+A/wlqquq2Rd8cCucp+53FnvfhH5+ri2jzhHQIeAXwKfqeoMVS0BngLqAf193IcS4DFVLVHVz4EioJPz1/8I4CFnW5nAWydZTxzQQVXLVHWpqhZW1lhV31XV3apaqqr/AiKBThW1dcL4YuBep5Y84Bngah/30dRRFiimLhmmqo2OvoA7j28gIiHAO8ARYNzxy8vZjfdIAABVne6s8z7g+KON7eWmmwM/lPucx1newsd92K2qpeXeHwRi8B7tHD0PdNQPVO4d4CvgA+eigiedIK2QiPxWRLJEZJ8Txg3xhmpFWgPhwM5y4f0SkHiynTN1mwWKCRoiIsBrQBIwwjmCqMwsYJgTQCdTfsjuHXh/4ZbfZksgx5l1EO+J/qOa+rB+gHy8XUwty81rVWlB3iOcR1W1C96jo0uB6yuoF+d8ye+Aq4DGTnDuA6Si9nhD7TAQXy7AG6hqmo/7YuooCxQTTF7Ae67jMqd76kSeBhoD74hIe/GKxXue4UQ+BC4RkcHOEcFv8P7yXegsXwH8SkRCnRPeA30pXFXLgI+BR0Skvoh0wXuepEIiMkhEujldZYV4u8COng/KBdqVax6LN6zygTAReQhoUG55LtDmaLiq6k7ga+BfItJAREKcr5FP+2LqLgsUExREpDVwG95A2OVcsVQkItdU1F5VC4C+eE+Czwf24w2DWOCOyrajquuBa4HngALgMrwBdsRpco8zby9wDTD1FHZjHN7ur114T4q/cYK2TYFJeMMkC+/lzu84y/4NjBSRPSLyLN6usS+BDXi70Yr5adfaR86/u0VkmTN9Pd6uv7XAHmdbzTBBTewBW8YYY/zBjlCMMcb4hQWKMcYYv7BAMcYY4xcWKMYYY/wiqAazi4+P1zZt2rhdhjHG1CpLly4tUNWEk7ULqkBp06YNS5YscbsMY4ypVUTkRKMyHGNdXsYYY/zCAsUYY4xfWKAYY4zxi6A6h2KMqTlKSkrIzs6muLjY7VKMIyoqiuTkZMLDKx2Y+oQsUIwxrsjOziY2NpY2bdrgHZTZuElV2b17N9nZ2bRt2/a01mFdXsYYVxQXFxMXF2dhUkOICHFxcVU6YrRAMca4xsKkZqnq98MCxQffbMhnwtxNbpdhjDE1mgWKDxZsKuCZGRvYX3yiB/wZY2qb3NxcfvWrX9GuXTt69epFv379mDJlSrXX0aZNGwoKCnxq++abb7Jjxw6/tfMnCxQfZKQmUVKmzNvg2zfcGFPzqSrDhg3j3HPPZcuWLSxdupQPPviA7Ozsn7UtLS11ocKKWaDUcj1bNaJx/XBmZuW6XYoxxk9mz55NREQEt99++7F5rVu35q677gK8v5Avv/xyzj//fAYPHoyqcv/999O1a1e6devGxIkTAZg7dy6XXnrpsXWMGzeON998E/AeeTz88MP07NmTbt26sW7dOgB2797NBRdcQFpaGrfccgsVPeiwrKyM0aNHH9veM888w6RJk1iyZAnXXHMNPXr04NChQzz22GP07t2brl27MmbMGFS1wnZLly5l4MCB9OrViwsvvJCdO3f6/Wtqlw37ICw0hEGdE5mVlUdpmYewUMthY/zp0U/WsHZHoV/X2aV5Ax6+LK3S5WvWrKFnz54nXMeyZctYtWoVTZo0YfLkyaxYsYKVK1dSUFBA7969Offcc09aR3x8PMuWLWPChAk89dRTvPrqqzz66KOcc845PPTQQ3z22We89tprP/vcihUryMnJITMzE4C9e/fSqFEjxo8fz1NPPUV6ejrgDbCHHnoIgOuuu45PP/2UkSNH/qRdSUkJd911F9OmTSMhIYGJEyfywAMP8Prrr5+0/lNhvxl9NCQ1iX2HSljywx63SzHGBMDYsWPp3r07vXv3PjZvyJAhNGnSBID58+czatQoQkNDSUpKYuDAgSxevPik673iiisA6NWrF1u3bgVg3rx5XHvttQBccsklNG7c+Gefa9euHVu2bOGuu+7iyy+/pEGDBhWuf86cOZx11ll069aN2bNns2bNmp+1Wb9+PZmZmQwZMoQePXrw+OOPV9i1V1V2hOKjAR0TiAgNYebaXPq2i3O7HGPqlBMdSQRKWloakydPPvb++eefp6Cg4Nhf/gDR0dEnXU9YWBgej+fY++Pv44iMjAQgNDT0lM7FNG7cmJUrV/LVV1/x4osv8uGHH/7siKK4uJg777yTJUuW0LJlSx555JEK7yNRVdLS0li0aJHP2z8ddoTio5jIMPq1j2NGVm6F/Z3GmNrl/PPPp7i4mBdeeOHYvIMHD1bafsCAAUycOJGysjLy8/OZN28effr0oXXr1qxdu5bDhw+zd+9eZs2addJtn3vuubz33nsAfPHFF+zZ8/Oej4KCAjweDyNGjODxxx9n2bJlAMTGxrJ//37g/4dXfHw8RUVFTJo06djny7fr1KkT+fn5xwKlpKSkwiOZqrIjlFOQ0SWJB6dmsjm/iA6JsW6XY4ypAhFh6tSp3HfffTz55JMkJCQQHR3NP/7xjwrbDx8+nEWLFtG9e3dEhCeffJKmTZsCcNVVV9G1a1fatm3LmWeeedJtP/zww4waNYq0tDT69+9Pq1atftYmJyeHG2+88djRzxNPPAHA6NGjuf3226lXrx6LFi3i1ltvpWvXrjRt2vQn3XXHt5s0aRJ33303+/bto7S0lHvvvZe0NP8eGUow/bWdnp6uVXnA1s59h+j3xGx+f1Fn7jivvR8rMyb4ZGVlkZqa6nYZ5jgVfV9EZKmqplfykWNc6fISkStFZI2IeESk0iJF5CIRWS8im0TkD+Xmi4j8VUQ2iEiWiNxdHXU3a1iPri0a2OXDxhhTAbfOoWQCVwDzKmsgIqHA88AvgC7AKBHp4iweDbQEOqtqKvBBQKstJyM1iWXb9lBQdLi6NmmMMbWCK4Giqlmquv4kzfoAm1R1i6oewRsaQ51ldwCPqarHWV9e4Kr9qYzUJFRh9rpq26QxdVYwdbnXBlX9ftTkq7xaANvLvc925gG0B34pIktE5AsRSalsJSIyxmm3JD8/v8pFpTVvQLOGUcxca91exlRFVFQUu3fvtlCpIY4+DyUqKuq01xGwq7xEZCbQtIJFD6jqtCquPhIoVtV0EbkCeB0YUFFDVX0ZeBm8J+WruF1EhMGpiUxemkNxSRlR4aFVXaUxQSk5OZns7Gz88Yee8Y+jT2w8XQELFFXNqOIqcvCeJzkq2ZkH3qOVj53pKcAbVdzWKclITeLdb7exaPNuBnVOrM5NG1NnhIeHn/aTAU3NVJO7vBYDKSLSVkQigKuB6c6yqcAgZ3ogsKE6C+vXPo7oiFBm2NVexhhzjFuXDQ8XkWygH/CZiHzlzG8uIp8DqGopMA74CsgCPlTVo7d2/h0YISKrgSeAW6qz/siwUM7tmMCsrFw8Huv/NcYYcOlOeVWdgrer6vj5O4CLy73/HPi8gnZ7gUsCWePJZKQm8UXmLjJ37OOM5EZulmKMMTVCTe7yqtEGdU4kRLCrvYwxxmGBcpqaREeQ3roJM7LsfhRjjAELlCrJ6JJI1s5CsvdUPkKpMcYECwuUKshITQJglh2lGGOMBUpVtEuIoV1CtA0WaYwxWKBU2ZDUJL7dspvC4hK3SzHGGFdZoFRRRpckSsqUeRts+AhjTHCzQKminq0a07h+uF0+bIwJehYoVRQaIpzfOYk56/MpLfO4XY4xxrjGAsUPhnRJZN+hEpb8sMftUowxxjUWKH4wICWBiNAQ6/YyxgQ1CxQ/iI4Mo3+HOGZk5drDgowxQcsCxU8Gpybxw+6DbM4vcrsUY4xxhQWKn2Skeh+0NWOt3TVvjAlOFih+0qxhPbq2aGB3zRtjgpYFih9lpCaxbNseCooOu12KMcZUOwsUP8pITUIVZq+zbi9jTPCxQPGjtOYNaNYwyi4fNsYEJQsUPxIRMlKT+O/GAopLytwuxxhjqpUFip9ldEniUEkZCzcXuF2KMcZUKwsUP+vbrgnREaF2+bAxJuhYoPhZZFgoAzslMCsrF4/H7po3xgQPC5QAyEhNIm//YVbn7HO7FGOMqTYWKAEwqFMiIQKz7CZHY0wQsUAJgMbREaS3acKMLDuPYowJHhYoATIkNYmsnYVk7znodinGGFMtLFACJKNLEgCz7CjFGBMkLFACpG18NO0Tom2wSGNM0LBACaCMLkl8u2U3hcUlbpdijDEBZ4ESQBmpSZSUKfM25LtdijHGBJwFSgD1bNWYxvXDbbBIY0xQsEAJoNAQ4fzOScxel0dJmcftcowxJqAsUALswrQkCotLmb/RBos0xtRtFigBdl6nRJpERzBpabbbpRhjTEBZoARYRFgIQ3s0Z8baXPYePOJ2OcYYEzAWKNXgyl4tOVLmYdqKHW6XYowxAWOBUg26NG9Al2YN+GjpdrdLMcaYgLFAqSZXpieTmVNI1s5Ct0sxxpiAsECpJkN7tCA8VOzkvDGmznItUETkShFZIyIeEUk/QbuLRGS9iGwSkT+Umz9YRJaJyAoRmS8iHaqn8tPTJDqCjNQkpi7PsXtSjDF1kptHKJnAFcC8yhqISCjwPPALoAswSkS6OItfAK5R1R7Ae8CfA1tu1Y3slczuA0eYvc5GIDbG1D2uBYqqZqnq+pM06wNsUtUtqnoE+AAYenQVQANnuiFQ4y+hGtgxgYTYSD5aYt1expi6J8ztAk6iBVD+0qhs4Cxn+hbgcxE5BBQCfStagYiMAcYAtGrVKnCV+iAsNIQrzmzBq/O/J3//YRJiI12txxhj/CmgRygiMlNEMit4DT35p0/qPuBiVU0G3gCerqiRqr6squmqmp6QkOCHzVbNyF7JlHmUaSty3C7FGGP8KqBHKKqaUcVV5AAty71PBnJEJAHorqrfOfMnAl9WcVvVIiUplu4tG/HRkmxuPqctIuJ2ScYY4xc1/bLhxUCKiLQVkQjgamA6sAdoKCIdnXZDgCyXajxlV/ZKZn3uflbn7HO7FGOM8Rs3LxseLiLZQD/gMxH5ypnfXEQ+B1DVUmAc8BXewPhQVdc4828FJovISuA64H439uN0XNa9OZFhIXZPijGmThFVdbuGapOenq5LlixxuwwA7n5/Od9syOe7Pw0mKjzU7XKMMaZSIrJUVSu9X/Comt7lVWeN7JXMvkMlzMyypzkaY+oGCxSXnN0hnmYNo+yeFGNMnWGB4pLQEGFEz2T+uzGfXfuK3S7HGGOqzALFRSN7JeNR+Hi5HaUYY2o/CxQXtYmPpnebxkxakk0wXRxhjKmbLFBcdmWvlmwpOMCybXvcLsUYY6rEAsVlF5/RjHrhoXZPijGm1rNAcVlMZBgXd2vGJyt3cuhImdvlGGPMabNAqQFG9kqm6HApX67Z6XYpxhhz2ixQaoCz2jahZZN6dk+KMaZWs0CpAUJChJE9W7Jw8262/3jQ7XKMMea0WKDUECN6tQDg42X2nBRjTO1kgVJDJDeuT//2cUxath2Px+5JMcbUPhYoNciV6cls//EQ333/o9ulGGPMKbNAqUEuSmtGbGQYHy3d7nYpxhhzyixQapB6EaFc2r0ZX6zeRdHhUrfLMcaYU2KBUsOM7JXMoZIyPl9l96QYY2oXC5QapmerxrRLiLZuL2NMreNToIjIxyJyiYhYAAWYiDCyVzKLt+7h+4IDbpdjjDE+8zUgJgC/AjaKyN9FpFMAawp6V5yZTIjAZBsw0hhTi/gUKKo6U1WvAXoCW4GZIrJQRG4UkfBAFhiMmjaMYkBKApOXZVNm96QYY2oJn7uwRCQOGA3cAiwH/o03YGYEpLIgd2V6Mjv3FbNgU4HbpRhjjE98PYcyBfgvUB+4TFUvV9WJqnoXEBPIAoNVRmoSDeuF85F1exljaokwH9s9q6pzKlqgqul+rMc4osJDGdqjOR8s3s6+QyU0rGc9i8aYms3XLq/GInLFca/BIpIY0OqC3JW9WnKk1GNPczTG1Aq+BsrNwKvANc7rFeD3wAIRuS5AtQW9bskN6dO2Ca/M28KRUo/b5RhjzAn5GijhQKqqjlDVEUAXQIGz8AaLCZCxgzqwq7CYKcvtKMUYU7P5GijJqppb7n0e0FJVfwRK/F+WOerclHjSmjfgxW+22CXExpgazddAmSsin4rIDSJyAzDNmRcN7A1ceUZEGDuoA98XHOCLTBvfyxhTc/kaKGOBN4AezuttYKyqHlDVQYEqznhdmNaUdgnRPD9nM6p2lGKMqZlOGigiEgrMVtXJqnqf85qk9put2oSGCLcPbE/WzkLmbsh3uxxjjKnQSQNFVcsAj4g0rIZ6TCWG9WhB84ZRTJizye1SjDGmQr52eRUBq0XkNRF59ugrkIWZn4oIC2HMue1YvHUP/7NHBBtjaiBfA+Vj4EFgHrC03MtUo1/2bkVcdATP21GKMaYG8mnoFVV9S0TqAa1UdX2AazKVqBcRyk3ntOWfX60nM2cfXVtYL6QxpubwdXDIy4AVwJfO+x4iMj2QhZmKXdu3NbGRYbwwd7PbpRhjzE/42uX1CNAH554TVV0BtAtQTeYEGtYL57p+rfk8cyeb84vcLscYY47xNVBKVHXfcfNscCmX3HROWyJCQ3jpGztKMcbUHL4GyhoR+RUQKiIpIvIcsDCAdZkTiI+J5OreLfl4WQ45ew+5XY4xxgC+B8pdQBpwGHgfKATuPd2NisiVIrJGRDwiUunzVETkdRHJE5HM4+Y3EZEZIrLR+bfx6dZSW916rrfH8ZV5W1yuxBhjvHx9pvxBVX1AVXurarozXVyF7WYCV+C9DPlE3gQuqmD+H4BZqpoCzHLeB5XkxvUZdmYLPli8jd1Fh90uxxhjfL7Kq6OIvCwiX4vI7KOv092oqmb5cvmxqs4DKrqLbyjwljP9FjDsdGupzW4f2J7DpR7eWLDV7VKMMcbnRwB/BLyI9yFbZYErx2dJqnp06N1dQFJlDUVkDDAGoFWrVtVQWvXpkBjDRWlNeWvRVm4b2I7YKHtMsDHGPb6eQylV1RdU9X+quvTo60QfEJGZIpJZwWuoH+o+xhmkstKBKlX1ZaebLj0hIcGfm64R7jyvA/uLS3n3221ul2KMqaGqayxfXwPlExG5U0SaOSfEm4hIkxN9QFUzVLVrBa9pfqg7V0SaATj/5vlhnbVSt+SGDEiJ57X5WyguqQkHj8aYmmRT3n6GT1jI1oIDAd+Wr4FyA3A/3kuFj47jtSRQRflgulMTzr/+CKlaa+ygDhQUHeHDJdvdLsUYU4PMWZfH8OcXkr3nEHsPBf7hur5e5dW2gtdp3ykvIsNFJBvoB3wmIl8585uLyOfl2r0PLAI6iUi2iNzsLPo7MERENgIZzvugdVbbJvRq3ZiXvtlCSZndb2pMsFNVXp63mZveWkyruPpMH3c2PVo2Cvh2TxgoIvK7ctNXHrfsb6e7UVWdoqrJqhqpqkmqeqEzf4eqXlyu3ShVbaaq4U7715z5u1V1sKqmOF1rQT2eu/cxwe3J2XuI6St2uF2OMcZFxSVl/ObDlfzt83Vc3K0Zk27vT/NG9apl2yc7Qrm63PQfj1tW0f0hxiWDOiXSuWksE+ZuwuOxh2kaE4zyCou5+uVv+Xh5Dr8Z0pHxo86kXkRotW3/ZIEilUxX9N64SES4c1AHNucf4Ou1u9wuxxhTzVZl7+Wy8fPZkLufF6/txV2DUxCp3l/TJwsUrWS6ovfGZZd0a0abuPpMmLu52i4TNMa4b9qKHK58cRFhISFMvqM/F3Vt6kodJwuU7iJSKCL7gTOc6aPvu1VDfeYUhIYItw1sz6rsfczfVOB2OcaYAPN4lCe/XMc9H6yge8tGTB93NqnNGrhWzwkDRVVDVbWBqsaqapgzffS93ZZdA13RswVJDSLtMcHG1HH7i0sY884SJszdzKg+rXj35rOIi4l0tSZf70MxtURkWCi3DmjHt1t+ZOkPe9wuxxgTAD/sPsCIFxYyZ30+jw1N42/DuxIR5v6vc/crMH43qk8rGtcP54W5dpRiTF2zcFMBQ59fQN7+w7xzUx+u79em2k++V8YCpQ6KjgxjdP+2zMzKY92uQrfLMcb4garyzqKtXPf6/0iIiWTa2LPp3yHe7bJ+wgKljrqhf2uiI0J56quTPiXAGFPDHSn18MDUTB6ctobzOibw8Z39aR0X7XZZP2OBUkc1qh/BPRkpzMzKY8baXLfLMcacprzCYq559Vve+24bd5zXnpevT6+xj6qwQKnDbjy7LR2TYnhk+hoOHbGRiI2pbZb+8COXPjefzJxCnh11Jr+/qDOhITXjfElFLFDqsPDQEB4f1o2cvYcYP2ej2+UYY3ykqrzz7Q9c/fK31IsI5eM7+3N59+Zul3VSFih1XJ+2TRjRM5mX521hU16R2+UYY06iuKSM+yet4sGpmZzTIZ7pY89x9WbFU2GBEgT+eHFn6oWH8tC0TBuSxZgaLHvPQa58cRGTlmZz9+AUXruhNw3r18zzJRWxQAkC8TGR/O6izizcvJvpK214e2NqogWbCrh8/AK2Fhzg1evT+fWQjoTU4PMlFbFACRKj+rSie3JDHv8si8LiwD+5zRjjG1XlpW82c91r3xEXHcG0cWeT0SXJ7bJOiwVKkAgNER4f1o2CosM8/fUGt8sxxgAHDpcy7r3lPPHFOi7q2pQpY8+mXUKM22WdNguUINItuSHX9W3N24u2kpmzz+1yjAlq3xccYPiEBXyRuZM//qIzz/+qJzGRYW6XVSUWKEHmNxd0okl0BH+emmlPdjTGJTPX5nL5c/PJ33+Yt286i9sGtq8x43FVhQVKkGlYL5wHLkllxfa9TFyy3e1yjAkqHo/y9IwN3PL2ElrH12f6uHM4J6VmjcdVFRYoQWhYjxac1bYJf/9iHbuLDrtdjjFBYd+hEm55ewnPztrIiJ7JTLq9Py2b1He7LL+yQAlCIsLjw7py4HAp//hyndvlGFPnrc7ex2XPzWfehnz+MjSNp648g6jwULfL8jsLlCCVkhTLLQPa8eGSbJZs/dHtcoypk1SVtxZuZcQLCykt8zDxtr5cV4OeX+JvFihB7O7BHWjeMIo/T82ktMzjdjnG1CmFxSWMe285D09fw9kd4vjs7gH0at3E7bICygIliNWPCOPhy9NYt2s/by7c6nY5xtQZmTneLq4v1+ziD7/ozGs39KZxdITbZQWcBUqQu6BLEud3TuSZGRvYta/Y7XKMqdWOjhJ8xYSFHC7x8MGYvtw+sH2tG0LldFmgBDkR4ZHL0ij1KH/5bK3b5RhTa+0vLuGu95fz4NRM+raP47O7z6F3m7rdxXU8CxRDq7j6jBvUgc9W7WTehny3yzGm1lm7o5DLxy/g89U7uf/CTrw5ujdxMZFul1XtLFAMAGMGtqNtfDQPTcukuMSe7miML1SV977bxrAJCzhwuJT3bu3L2EEdgqaL63gWKAaAyLBQHhuaxtbdB3l53ha3yzGmxjtwuJR7J67gT1NWc1bbJnx+zwD6totzuyxX1e6RyIxfDUhJ4NIzmjF+ziaG9mhO67hot0sypkZat6uQO/+zjK0FB/j1kI6MHdShRj/rvbrYEYr5iQcv7UJEaAiPTF9jT3c05jiqysTF2xg6fgGFh0p595azuHtwioWJwwLF/ERSgyjuG9KROevz+WpNrtvlGFNj7C8u4dcfruT3k1fTq3VjPr/nHPq3rzsDO/qDBYr5mRv6tSa1WQP+PHU1O/cdcrscY1y3ZOuPXPzsf5m2Iod7Bqfwzs1nkRgb5XZZNY4FivmZsNAQnr26B4eOlHH7O0vtqi8TtErKPDz99XquemkRqvDhbf24b0hH6+KqhAWKqVBKUixP/7IHK7P38eDUTDufYoLO9wUHGPniIp6dvYlhZ7bgi3sGkB5kNyqeKrvKy1TqwrSm3H1+B56dvYluyQ25vl8bt0syJuC8J96389inawkLEcb/6kwuPaO522XVChYo5oTuzejImh2FPPbJWjolxXJWkF9nb+q2Hw8c4Q+TV/H12lz6t4/jX1d1p1nDem6XVWtYl5c5oZAQ4Zmre9Aqrj53/mcZO/baSXpTN83bkM9F/zePOevz+NPFnXn35rMsTE6RK4EiIleKyBoR8YhI+gnavS4ieSKSedz8f4rIOhFZJSJTRKRR4KsOXg2iwnn5unQOl3q4zU7Smzq4XrS+AAAUkklEQVSmuKSMRz9Zw/Wv/48G9cKZOvZsxpwbPCME+5NbRyiZwBXAvJO0exO4qIL5M4CuqnoGsAH4o1+rMz/TITGGZ37Zg9U5+/jTlNV2kt7UCVk7Cxk6fgFvLNjK6P5t+PSuc0hr3tDtsmotVwJFVbNUdb0P7eYBP3s+rap+raqlzttvgWQ/l2gqMKRLEvdmpPDxshx7IJep1Twe5dX/bmHo+AXsPnCEN27szSOXp9XJ57xXp7pwUv4mYGJlC0VkDDAGoFWrVtVVU5119/kprNlRyOOfZdGpaazdKWxqndzCYn7z4UrmbyogIzWJf4zoFpRDzQdCwI5QRGSmiGRW8Brqx208AJQC/6msjaq+rKrpqpqekJDgr00HrZAQ4emrutMmrj7j3ltO9p6DbpdkjE9UlY+XZXPh/81j6Q97+NvwbrxyfS8LEz8K2BGKqmYEat0AIjIauBQYrNahX61io8J55fp0ho5fwG3vLGXS7f2pF2FdBabmytl7iAemrGbu+nx6tmrEP6/sTvuEGLfLqnNq5WXDInIR8DvgclW1P5Fd0C4hhn+P6sHanYX88eNVdpLe1Egej/cZ7xc8/Q3fbfmRhy/rwke397cwCRC3LhseLiLZQD/gMxH5ypnfXEQ+L9fufWAR0ElEskXkZmfReCAWmCEiK0TkxWreBQOc3zmJX2d0ZOqKHbw2/3u3yzHmJ74vOMDVr3zLg1MzObNVY76+71xuPLutjcMVQK6clFfVKcCUCubvAC4u935UJZ/vELjqzKkYO6gDa3YU8rfPs0ht1oCzO9hJeuOu0jIPr83/nqdnbCAiLIQnR5zBlenJiFiQBFqt7PIyNUdIiPDUVd7+6HHvLWP7j9YDadyTtbOQK15YyBNfrGNgxwRm/nogV/VuaWFSTSxQTJXFRIbxyvXplHmUMe8s5dARu5PeVK/DpWU8/fV6LntuPjl7DjH+V2fy0nW9SGpgzyypThYoxi/axEfz7KgzWberkN9NtpP0pvos37aHS5+dz7OzN3FZ9+bM/PVALj2juR2VuKAu3NhoaojzOiXy2ws68c+v1tO1eQNuG9je7ZJMHXbwSCn/+noDry/4nqYNonhjdG8GdU50u6ygZoFi/OrO89qzdkchT3yxjvDQEG46p63bJZk6aOGmAv7w8Wq2/XiQa/u24vcXdSY2KtztsoKeBYrxKxHhX1d1p9Tj4bFP11JQdJj7L+xk3Q/GL3ILi/n7F+uYsjyHNnH1+WBMX/raM3pqDAsU43dR4aFMuKYXf566mglzN7O76Ah/Hd6VsFA7ZWdOz+HSMl6b/z3jZ2+itEwZO6g94wal2AgNNYwFigmI0BDhb8O7kRATybOzN7H7wBHG/+pMG83VnBJVZVZWHn/5bC0/7D7IkC5J/PmSVFrHRbtdmqmABYoJGBHh1xd0Ii4mkkc+WcN1r33Hq9f3pmF96+s2J7cpr4i/fLqWbzbk0z4hmrdv6sO5HW2A15rMAsUE3A392xAXE8F9E1dw1UuLePvmPnZ/gKlUYXEJz83ayBsLtlIvPJQHL+3C9f1aE25dpjWeBYqpFpee0ZxG9SK47Z0lXDFhIe/c3Id2NkCfKcfjUSYty+bJL9ex+8ARrurVkvsv6kS8DS9fa1jkm2pzTko8H4zpR3FJGSNfXMTK7XvdLsnUEMu37WH4hAX8btIqWjWpz/Sx5/CPkWdYmNQyFiimWnVLbsikO/pTPyKUUa98y3835rtdknFRnvP0xOETFrJzXzHP/LI7k+/oT7dke657bWSBYqpd2/hoPr6jP62a1OemNxczbUWO2yWZana4tIyXvtnMoKfm8snKHdxxXntm//Y8hp9powLXZnYOxbgisUEUE2/rx61vL+GeD1bw44Ej3Hi23VVf1x0p9TBpaTbPz9lEzt5DZKQm8udLutAm3i4DrgssUIxrGtYL5+2b+nDPB8t59BPvXfW/vcDuqq+LSso8TF6azfg5m8jec4geLRvx9xHdGJBilwHXJRYoxlXl76p/fs5mCvbbXfV1SWmZh4+X5/Dc7I1s//EQ3ZMb8pdhXTmvY4L94VAHWaAY1x1/V/2PB4/wr6u608AG+6u1Sss8TF2xg+dmb+SH3Qfp1qIhj45OY1CnRAuSOswCxdQI5e+qf/STNWT86xseuqwLl3RrZr+AapEyjzJtRQ7Pzd7E9wUHSGvegFeuTycj1YIkGFigmBrlhv5tOLNVI/40ZTXj3lvORx2z+cvQrrSKq+92aeYEyjzKp6t28O+ZG9lScIDUZg146bpeXNAlyYIkiEgwPVkvPT1dlyxZ4nYZxgelZR7eXvQD//p6PaUe5e7BKdw6oB0RYXZupSbxeJRPV+/k2Vkb2ZRXRKekWO7NSOHCtKaEhFiQ1BUislRV00/azgLF1GS79hXz6Cdr+CJzFymJMfx1eDf6tG3idllB73BpGV+s3sWEuZvYkFtESmIM92Z05BddLUjqIguUClig1F6z1+Xy4NQ15Ow9xFXpyfzxF6k0jo5wu6ygs/3Hg7z3v218uHg7uw8coX1CNPdkdOSSbs0ItSCps3wNFDuHYmqF8zsn0ffXcfx71kZe++/3zMzK408XpzKiZwvrow+wMo8yd30e7377A3M35CPA4NQkru3bmgEd4u2IxBxjRyim1lm3q5A/fbyaZdv20rddEx4f1o0OiTZysb8VFB1m4uLtvPfdNnL2HiIhNpJRvVtydZ9WNG9Uz+3yTDWyLq8KWKDUHR6PMnHJdp74PItDJWXcMbA9dw7qYE+ErCJV5X/f/8i7323jy8ydlJQp/drFcW3f1lyQlmTPJAlSFigVsECpewqKDvPXz7KYsjyHNnH1+cuwrjacx2nYX1zClOU5vPvtD2zILSI2KoyRvZK55qzWdvRnLFAqYoFSdy3YVMCfp2byfcEBerdpzMheyVzcrRmxdrd9pVSVzJxC3l+8janLczh4pIxuLRpybd9WXNa9OfUj7BSr8bJAqYAFSt1WXFLGO4t+4IPF29icf4Co8BAuSmvKyF4t6dc+zq5Cwvs1WrR5NzOzcpm9Lo+d+4qJDAvh8u7NubZva7q3bOR2iaYGskCpgAVKcFBVVmzfy+Rl2UxfsYPC4lKaN4xieM8WjOiZHHSPHs7bX8ycdXnMzMpj/sYCDpWUUT8ilHM6xJORmsQFaUk0qm+XYJvKWaBUwAIl+BSXlDEzK5dJS7OZtyEfj0Kv1t4usUvOaFYnB6BUVdbuLGRWVh6zsnJZmb0PgOYNoxicmsTg1ET6touzCxiMzyxQKmCBEtxyC4uZujyHSUuz2ZhXRGRYCBemNWVkr2TO7hBfq7vEjnZlzVqXy+ysPHbsKwage8tGZHROZHBqEqnNYu2eHXNaLFAqYIFiwPsX/OqcfUxams20FTvYd6iEpg28XWKDOiXSMSmmRncBlZR52FpwgA25RazP3c/aHftYsGk3h0rKqBceyoAUb1fWeZ0TSIyNcrtcUwdYoFTAAsUc73BpGbOy8pi8NJu5G/Ip83j/P8THRNIhMZqUxFhSkmLokOh9JcREVttf+WUeZfuPB1mfu58Nu/azIa+IDbv2s6WgiJIyb50i0CYumrM7xDE4NYl+1pVlAsACpQIWKOZECooOszpnH5tyi9iYt5+NeUVsyi1i/+HSY20a1gsnJTGGlKQY2ifEkJIUS0piDM0aRvkcNB6PUupRyjxKqcdDmUfZX1zKxrz9bMgtcsJjPxtzizhc6jn2ueTG9eiYFOu8YuiYFEuHxBgLEBNwFigVsEAxp0pVydt/mI3lQyaviI25+9lzsORYu+iIUJIaRFGmSmnZ/w+LUo9SVvbTAPGc5L9c0wZRpCTF0OloeDT1hlZ0pN0XYtxhg0Ma4wciQlKDKJIaRHFOSvxPlu0uOszGvCI25hWxOa+I/P2HCQsVQkOE8JAQQkOFsBAhLCTk2PyK3wtR4aF0SIwhJTGWhvXr3pVnJjhYoBhzmuJiIomLiaRvuzi3SzGmRrCR3owxxviFK4EiIleKyBoR8YhIpf1yIvK6iOSJSGYly38jIioi8RUtN8YYU33cOkLJBK4A5p2k3ZvARRUtEJGWwAXANr9WZowx5rS4EiiqmqWq631oNw/4sZLFzwC/A4LnMjVjjKnBauU5FBEZCuSo6kq3azHGGOMVsKu8RGQm0LSCRQ+o6rQqrLc+8Ce83V2+tB8DjAFo1arV6W7WGGPMSQQsUFQ1I0Crbg+0BVY6dyYnA8tEpI+q7qqgjpeBl8F7Y2OAajLGmKBX6+5DUdXVQOLR9yKyFUhX1QLXijLGGOPO0CsiMhx4DkgA9gIrVPVCEWkOvKqqFzvt3gfOA+KBXOBhVX3tuHVtxcdAEZF84IfTLDseCLbQsn0ODrbPwaEq+9xaVRNO1iioxvKqChFZ4stYNnWJ7XNwsH0ODtWxz7XyKi9jjDE1jwWKMcYYv7BA8d3LbhfgAtvn4GD7HBwCvs92DsUYY4xf2BGKMcYYv7BAMcYY4xcWKMcRkYtEZL2IbBKRP1SwfLSI5IvICud1ixt1+tPJ9tlpc5WIrHUeO/Beddfobz58n58p9z3eICJ73ajTn3zY51YiMkdElovIKhG52I06/cWH/W0tIrOcfZ0rIslu1OlPPjzyQ0TkWedrskpEevq1AFW1l/MCQoHNQDsgAlgJdDmuzWhgvNu1VvM+pwDLgcbO+0S36w70Ph/X/i7gdbfrrobv88vAHc50F2Cr23UHeH8/Am5wps8H3nG7bj/s97lATyCzkuUXA18AAvQFvvPn9u0I5af6AJtUdYuqHgE+AIa6XFOg+bLPtwLPq+oeAFXNq+Ya/e1Uv8+jgPerpbLA8WWfFWjgTDcEdlRjff7my/52AWY703MqWF7r6Ikf+QHefXxbvb4FGolIM39t3wLlp1oA28u9z3bmHW+Ec7g4yXnQV23myz53BDqKyAIR+VZEKnzoWS3i6/cZEWmNdzDS2RUtr0V82edHgGtFJBv4HO+RWW3ly/6uxPugP4DhQKyIxFVDbW7y+Wf/dFignLpPgDaqegYwA3jL5XqqQxjebq/z8P61/oqINHK1oupzNTBJVcvcLqQajALeVNVkvF0j74hIXf4d8VtgoIgsBwYCOUAwfJ8Dpi7/sJyOHKD8EUeyM+8YVd2tqoedt68CvaqptkA56T7j/StmuqqWqOr3wAa8AVNb+bLPR11N7e/uAt/2+WbgQwBVXQRE4R1QsDby5f/yDlW9QlXPBB5w5tX6iy9O4lR+9k+ZBcpPLQZSRKStiETg/WUyvXyD4/obLweyqrG+QDjpPgNT8R6dICLxeLvAtlRnkX7myz4jIp2BxsCiaq4vEHzZ523AYAARScUbKPnVWqX/+PJ/Ob7cEdgfgderuUY3TAeud6726gvsU9Wd/lp5rXseSiCpaqmIjAO+wnuVyOuqukZEHgOWqOp04G4RuRwoxXvya7RrBfuBj/v8FXCBiKzF2yVwv6rudq/qqvFxn8H7S+gDdS6Pqc183Off4O3OvA/vCfrRtXXffdzf84AnRESBecBY1wr2k/KP/HDOhT0MhAOo6ot4z41dDGwCDgI3+nX7tfTnxRhjTA1jXV7GGGP8wgLFGGOMX1igGGOM8QsLFGOMMX5hgWKMMcYvLFBMrSYiRT60uVdE6vtxm8NEpIsf17ewCp8tcv5tLiKTTtCukYjcebrbMcYXFigmGNwLnFKgiEjoCRYPwzuwoF+oan8/rGOHqo48QZNGgAWKCSgLFFMniMh5zjMtJonIOhH5j3M38N1Ac2COiMxx2l4gIotEZJmIfCQiMc78rSLyDxFZBlwpIreKyGIRWSkik0Wkvoj0xztCwj+dZ6W0F5EezqCZq0Rkiog0dtY3V7zPVVkiIlki0ltEPhaRjSLyeLnai8pN/15EVjvb/HsF+9nWqX31cetoc/QZGCKSJiL/c+pbJSIpwN+B9s68f4pIjHifBbLMWdfQcuvJEpFXxPvsm69FpJ6zrIOIzHRqWyYi7Z359ztfp1Ui8qhfv7GmdnF7/H572asqL6DI+fc8YB/esYlC8A6Xco6zbCsQ70zH470rOtp5/3vgoXLtfldu3XHlph8H7nKm3wRGllu2ChjoTD8G/J8zPRf4hzN9D97h4JsBkXjHR4s7bh9+ASwE6jvvm1Swv9OB653pseU+2wbnGRjAc8A1znQEUK/8cmd+GNCg3NdkE95nZLTBOwpED2fZh8C1zvR3wHBnOgrvUd8FeJ+jIs7X/VPgXLd/LuzlzsuGXjF1yf9UNRtARFbg/eU4/7g2ffF2Vy0QEfD+wi0/VtfEctNdnaOARkAM3mE8fkJEGgKNVPUbZ9ZbeB/cdNTRYVxWA2vUGTdJRLbgHaSv/BA2GcAbqnoQQFUreq7F2cAIZ/od4B8VtFkEPCDeJxB+rKobnX39SenA30TkXMCDdwjzJGfZ96q6wpleCrQRkVighapOcWordvbjAryhstxpH4N34NB5FdRl6jgLFFOXHC43XUbFP98CzFDVUZWs40C56TeBYaq6UkRG4wyQeZo1eY6rz1NJfb444XhJqvqeiHwHXAJ8LiK38fPBPK8BEoBeqloiIlvxHnWUrxm8X8d6J9icAE+o6kunUL+po+wcigkG+4FYZ/pb4GwR6QAgItEi0rGSz8UCO0UkHO8v4J+tT1X3AXtEZICz7DrgG07PDODGo1ekiUiTCtoswDtoJcfVdIyItAO2qOqzwDTgDH76NQDvExnznDAZBLQ+UWGquh/IFpFhzjYinTq/Am4qdx6qhYgk+rS3ps6xQDHB4GXgSxGZo6r5eEeIfl9EVuHtHupcyecexHveYAGwrtz8D4D7RWS5c2L6Brwn6VcBPfCeRzllqvol3i6yJU6X3W8raHYPMFZEVlP5k/auAjKddXTF+8jX3Xi7+TJF5J/Af4B0Zz3XH7d/lbkO72jbq/Ce62mqql8D7wGLnHVN4qfBZYKIjTZsjDHGL+wIxRhjjF9YoBhjjPELCxRjjDF+YYFijDHGLyxQjDHG+IUFijHGGL+wQDHGGOMX/w+dvHcmkRy1CQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -130,7 +137,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEWCAYAAACaBstRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4FeX5xvHvE3aQHUQQFVQ2QQkSFaQgCCpugFYQ3MCquEtbtWi11bb+Wqytu1ZxxR0RWdxZFQVRg7KJCyIuCCICoojK9vz+eAeNIQmH5JwzOcn9ua65MnPOe2aeSSB3Zt6Zd8zdERERSURW3AWIiEjmUGiIiEjCFBoiIpIwhYaIiCRMoSEiIglTaIiISMIUGiLFYGZdzeyDJK7vWjN7JFnrE0kVhYaUOmb2iZn1yvfaEDN7LZqvYmb3mdmnZvadmc01s6OLWN8QM9tiZuvzTU2KW6O7v+rurYqqOR12drtm9qCZXVeC7fUws+lmts7MPinueiRzKTQkE1UEPgcOA2oDVwNPmlmzIj7zurvvkm9anvpSy5zvgfuBy+MuROKh0JCM4+7fu/u17v6Ju29192eBpUDHnV2Xme1jZmvM7MBouYmZrTKz7tFyPTN7wMyWm9laMxsfvd7dzJZF8w8DewLPREcwf4pe72Rms8zsGzObt22d0XvNzeyV6EhpMtCgiBobmNmz0XrWmNmrZpZVxHbHmNmX0dHADDNrG70+FDgV+FPU/pk8+zw22u+lZnZJEd/7N939YeDjnf1eS9mg0JCMZ2aNgJbAuzv7WXdfAgwHHjGz6sADwCh3fzlq8jBQHWgL7ArcVMA6Tgc+A46PjmD+bWa7A88B1wH1gMuAsWbWMPrYY8AcQlj8AxhcRJmXAsuAhkAj4M9hs9tvN2r/AtAiqvdt4NGozpHR/L+j9sebWRbwDDAP2B3oCfzezI5K5Psn5U/FuAsQKcR4M9ucZ7ky4Rfgr5hZJcIvwlHu/n4R6+tkZt/kWV7t7vsAuPs9ZnY88AbgQJ9o3Y2Bo4H67r42+twrCdZ/GvC8uz8fLU82s1zgGDObDhwE9HL3n4AZ2/7qL8QmoDGwl7t/BLxa1Ibd/f5t82Z2LbDWzGq7+7oCmh8ENHT3v0fLH5vZPcBA4KUd7qWUOzrSkNKqn7vX2TYBF+RvEP2V/DCwEbhoB+ubnXd92wIjj3uAdsBt0S9ygD2ANXkCY2fsBfSPTil9EwXWbwi//JsAa939+zztPy1iXTcAHwGTzOxjM7uisIZmVsHMRpjZEjP7Fvgkequw0197AU3y1flnwhGNyHZ0pCEZycwMuI/wy+0Yd99UgnXtAtwcre9aMxvr7msIne31zKyOu39T5ErCEUpenwMPu/s5BWxvL6CumdXIExx7FrCOsGL37winqC41s3bANDN7y92nFvCZU4C+QC9CYNQG1gJWRJ1L3b3FDvZPBNCRhmSu/wFtCOfzfyjhum4Bct39bEI/xF0A7r6C0D9wp5nVNbNKZtatkHWsBPbOs/wIcLyZHRX99V816jxv6u6fArnA38ysspn9Bji+sOLM7Dgz2zcKynXAFmBrIdutCfwErCb0xfxzB3W+CXxnZsPNrFpUazszO6iQWrLMrCpQKSxaVTOrXFjtUvYoNCTjRH+pnwtkA1/aL/ddnFrExzrb9vdpHGRmfYHewPlRuz8CB+ZZ1+mEPoX3ga+A3xey/n8BV0eneC5z988Jf/H/GVhF+Iv+cn75P3cKcAiwBrgGeKiI2lsAU4D1wOvAne4+vaDtRuv5FPgCWATMzreu+4D9ovbj3X0LcBzhe7kU+Bq4l3CEUpBuwA/A84Sjox+ASUXULmWM6SFMIiKSKB1piIhIwhQaIiKSMIWGiIgkTKEhIiIJK3P3aTRo0MCbNWsWdxkiIhllzpw5X7t7wx21K3Oh0axZM3Jzc+MuQ0Qko5hZUaMS/Eynp0REJGEKDRERSZhCQ0REElbm+jREJH02bdrEsmXL+PHHH+MuRRJUtWpVmjZtSqVKlYr1eYWGiBTbsmXLqFmzJs2aNSOMpyilmbuzevVqli1bRvPmzYu1Dp2eEpFi+/HHH6lfv74CI0OYGfXr1y/RkaFCQ0RKRIGRWUr681JobLP5J5j0F/jms7grEREptRQa23y3AnIfgDFnwuaNcVcjIgmqUKEC2dnZP08jRozY6XVMnDjx58+NHz+eRYsW7fQ6dtlll4Tb3nzzzWzYsCFp7fIaM2YMbdu2JSsrKyU3Ois0tqnbDPreDl/kwpRr4q5GRBJUrVo15s6d+/N0xRWFPkK9UH369Pn5c8UNjZ2RytBo164dTz/9NN26FfaQyZJRaOTVth8cch7MvhMWTYy7GhEppnXr1tGqVSs++OADAAYNGsQ999wDwIsvvsiBBx5I+/bt6dmzJwAPPvggF110EbNmzWLixIlcfvnlZGdns2TJEpYsWULv3r3p2LEjXbt25f333wdg6dKldO7cmf3335+rr766wDq+//57jj32WNq3b0+7du0YPXo0t956K8uXL6dHjx706NEDgPPPP5+cnBzatm3LNdeEP1oLajdp0iQ6d+7MgQceSP/+/Vm/fv1222zTpg2tWrVK4nfz13TJbX5H/AOWvQUTLoLd2kG9vXf8GRGBF66ALxckd5277Q9HF3266YcffiA7O/vn5SuvvJKTTz6Z22+/nSFDhjBs2DDWrl3LOeecw6pVqzjnnHOYMWMGzZs3Z82aNb9a16GHHkqfPn047rjjOOmkkwDo2bMnd911Fy1atOCNN97gggsuYNq0aQwbNozzzz+fM844gzvuuKPA2l588UWaNGnCc889B4Qwq127NjfeeCPTp0+nQYMGAPzf//0f9erVY8uWLfTs2ZP58+dzySWX/Krd119/zXXXXceUKVOoUaMG119/PTfeeCN//etfi/3tLQ6FRn4VK8NJD8DdXWHMEPjdJKhUNe6qRKQQ205P5XfEEUcwZswYLrzwQubNmwfA7Nmz6dat28/3KNSrV6/Ida9fv55Zs2bRv3//n1/76aefAJg5cyZjx44F4PTTT2f48OHbfX7//ffn0ksvZfjw4Rx33HF07dq1wO08+eSTjBw5ks2bN7NixQoWLVrEAQcc8Ks2s2fPZtGiRXTp0gWAjRs30rlz5yLrTwWFRkHq7gX97oInBsFLf4bjboy7IpHSbwdHBOm2detW3nvvPapXr87atWtp2rRpsdZRp06dAkMJdnz5asuWLXn77bd5/vnnufrqq+nZs+d2RwZLly7lP//5D2+99RZ169ZlyJAhBd5H4e4cccQRPP744zu9H8kUS5+GmdUzs8lmtjj6WreQdi+a2Tdm9my6a6T1MXDoJZB7Hyx4Ku2bF5GSuemmm2jTpg2PPfYYZ555Jps2baJTp07MmDGDpUuXAmx3egqgZs2afPfddwDUqlWL5s2bM2bMGCD84t521NKlSxeeeOIJAB599NECa1i+fDnVq1fntNNO4/LLL+ftt9/ebhvffvstNWrUoHbt2qxcuZIXXnihwFo6derEzJkz+eijj4DQX/Lhhx+W7JtUDHF1hF8BTHX3FsDUaLkgNwCnp62q/Hr+FfY4BJ4ZBl8vjq0MESnctj6NbdMVV1zBBx98wL333st///tfunbtSrdu3bjuuuto2LAhI0eO5MQTT6R9+/acfPLJ261v4MCB3HDDDXTo0IElS5bw6KOPct9999G+fXvatm3LhAkTALjlllu444472H///fniiy8KrG3BggUcfPDBZGdn87e//e3nDvOhQ4fSu3dvevToQfv27enQoQOtW7fmlFNO+fn0U/52DRs25MEHH2TQoEEccMABdO7c+edO+bzGjRtH06ZNef311zn22GM56qijkvFt/pm5e1JXmNBGzT4Aurv7CjNrDLzs7gV295tZd+Aydz8ukXXn5OR4Uq9NXvcF3PUbqNkYzp4Clasnb90iGe69996jTZs2cZchO6mgn5uZzXH3nB19Nq4jjUbuviKa/xJoVJKVmdlQM8s1s9xVq1aVvLq8au8OJ94DXy2CFy5P7rpFRDJMykLDzKaY2cICpr5523k41CnR4Y67j3T3HHfPadhwh4+43XktekG3y+CdR2DuY8lfv4hIhkjZ1VPu3quw98xspZk1znN66qtU1ZE03a+Ez2bDs3+ExtnQaL+4KxIpFdxdgxZmkJJ2ScR1emoiMDiaHwxMiKmOxGVVgN/eC1VqwpjB8NP2d2KKlDdVq1Zl9erVJf5FJOmx7XkaVasW/96zuDrC6wNPAnsCnwID3H2NmeUA57n72VG7V4HWwC7AauAsd3+pqHUnvSM8v6Uz4KG+0O63oa9Df2FJOaYn92Wewp7cl2hHeCyhkUopDw2AV26A6dfBcTdDzpmp3ZaISBqU9qunMlvXS2Gfw+GF4bBiftzViIikjUKjOLKywqmp6vVD/8aP6+KuSEQkLRQaxVWjAZx0P6z9FCZeDGXsNJ+ISEEUGiWxV2fodQ0smgBvjoy7GhGRlFNolFTni6Flb3jpKlg2J+5qRERSSqFRUllZ0O9/YWyq0afBd1/GXZGISMooNJKhej0Y9Bj8+A08cQps+iHuikREUkKhkSy77Q8njoQv5oRHxapjXETKIIVGMrU5Hg7/Cyx8Cl79T9zViIgknR73mmxdL4VVH8C066BBK9ivT9wViYgkjY40ks0M+twGu+fAuHNhxby4KxIRSRqFRipUqgoDH4NqdeHxQfDdyrgrEhFJCoVGqtRsBIMehx/WRldUaRRQEcl8Co1UatweTrgbvsiFZy7RFVUikvEUGqm2Xx/ocTXMHw2v3RR3NSIiJaKrp9Kh22Ww6n2Y+ndo2ApaHxt3RSIixaIjjXQwg763Q5MOMPYc+HJB3BWJiBSLQiNdKlULV1RVrR2uqFr/VdwViYjsNIVGOtVqHMao+v7rMLjh5p/irkhEZKcoNNKtSQc44X/w+RvwzDBdUSUiGSWW0DCzemY22cwWR1/rFtAm28xeN7N3zWy+mZ0cR60p0fYE6H4lzHscZt4SdzUiIgmL60jjCmCqu7cApkbL+W0AznD3tkBv4GYzq5PGGlPrsOEhPKZcC+8/H3c1IiIJiSs0+gKjovlRQL/8Ddz9Q3dfHM0vB74CGqatwlQzg753QpNsePocWPlu3BWJiOxQXKHRyN1XRPNfAo2KamxmBwOVgSWFvD/UzHLNLHfVqlXJrTSVKlcPV1RV3gUeOxm+XR53RSIiRUpZaJjZFDNbWMDUN287d3eg0N5gM2sMPAyc6e5bC2rj7iPdPcfdcxo2zLCDkVpN4JTR8MM38PCJsGFN3BWJiBQqZaHh7r3cvV0B0wRgZRQG20KhwJsWzKwW8BxwlbvPTlWtsWuSDQMfhTVL4PGBsHFD3BWJiBQortNTE4HB0fxgYEL+BmZWGRgHPOTuT6WxtnjsfRiceA98/iaMGQJbNsVdkYjIduIKjRHAEWa2GOgVLWNmOWZ2b9RmANANGGJmc6MpO55y06RtPzj2v7D4JZioUXFFpPSJZcBCd18N9Czg9Vzg7Gj+EeCRNJcWv4POCneMv/xPqNEAjvxH3BWJiPxMo9yWRof9Cb5fBbNuhRoNocslcVckIgIoNEonMzj6etjwNUz+SzjiyD4l7qpERBQapVZWhfDUvw1rYMJFUK0etOodd1UiUs5pwMLSrGKVcCnubvuHK6o+eyPuikSknFNolHZVasJpY8NNgI/1h5WL4q5IRMoxhUYmqNEATh8HFavBIyfCN5/FXZGIlFMKjUxRdy84/WnYtAEePiFclisikmYKjUzSqC0MGg3rlsGj/eGn9XFXJCLljEIj0+zVGfo/CCvmRY+M3Rh3RSJSjig0MlGro6HPrfDxdBh/HmwtcPBfEZGk030amarDaaFfY8o1UL0+HP3vcFOgiEgKKTQyWZdhYbiR12+HilXhiL8rOEQkpRQamcwMjrwONv8YxqkCBYeIpJRCI9OZwTH/CfMKDhFJMYVGWZA/OMyg198UHCKSdAqNsmJbcLjDzFvCawoOEUkyhUZZYhae/AcKDhFJCYVGWbNdcBj0ulbBISJJodAoi/L2ccy8OXztda2CQ0RKTKFRVmVlKThEJOliCQ0zqweMBpoBnwAD3H1tvjZ7AeMIQ51UAm5z97vSW2mGyx8cZtDzGgWHiBRbXGNPXQFMdfcWwNRoOb8VQGd3zwYOAa4wsyZprLFs2BYcOb+D126CqX8LV1iJiBRDXKen+gLdo/lRwMvA8LwN3D3v8K1V0OCKxZeVBcdEneOv3RS+6ohDRIohrtBo5O4rovkvgUYFNTKzPYDngH2By919eSHthgJDAfbcc8/kV1sWbBccBj3/quAQkZ2SstAwsynAbgW8dVXeBXd3MyvwfIm7fw4cEJ2WGm9mT7n7ygLajQRGAuTk5OjcS2G2BYc7vHZjeE3BISI7IWWh4e69CnvPzFaaWWN3X2FmjYGvdrCu5Wa2EOgKPJXkUsuXrCw4NgoMBYeI7KS4+gkmAoOj+cHAhPwNzKypmVWL5usCvwE+SFuFZdm24Oh4ZgiOF6/Ug5xEJCFx9WmMAJ40s7OAT4EBAGaWA5zn7mcDbYD/RqeuDPiPuy+Iqd6yZ1twVKoGs++EDauh351QoVLclYlIKRZLaLj7aqBnAa/nAmdH85OBA9JcWvmSlQVH/RNqNICpf4cf1sKAUVC5RtyViUgppctYyzsz6HopHH8rLJkKD/WFDWvirkpESimFhgQdB8OAh2DFfHjgaFj3RdwViUgppNCQX7Q5Hk4bGwLj/qPg68VxVyQipYxCQ36teVc487nw3PH7j4Iv5sRdkYiUIgoN2V7j9vC7l6DyLvDg8bBkWtwViUgpodCQgtXfB86aBHWbwaMDYOHTcVckIqWAQkMKV3M3OPN5aJoDT/0O3ro37opEJGYKDSlatTpw+jho2RueuxReHqGh1UXKMYWG7FilanDyI5B9Krz8L3j+cg07IlJO6XGvkpgKFaHvHVC9Hsy6LQw7csLdULFy3JWJSBopNCRxZnDkdVCjIUz+axh25ORHoMoucVcmImmS0OkpM3vazI41M53OEugyLBx1LJ0BD/SGdcvirkhE0iTRELgTOAVYbGYjzKxVCmuSTNDhNDjlSVj7KYzsActy465IRNIgodBw9ynufipwIPAJMMXMZpnZmWamsbTLqxa94KzJoaP8gWNggZ6PJVLWJXy6yczqA0MIQ5e/A9xCCJHJKalMMsOureGc6bB7Rxh7Fkz/p66sEinDEu3TGAe8ClQHjnf3Pu4+2t0vBtQLWt7VqA9njIfs0+CV62Hs72DjhrirEpEUSPTqqVvdfXpBb7h7ThLrkUxVsQr0vR0atoTJ18DaT2Dg41CrcdyViUgSJRoadc3sxHyvrQMWuPtXSa5JMpVZuLKqfgsYezbcczgMehyaZMddmYgkSaJ9GmcB9wKnRtM9wHBgppmdnqLaJFO1PiYMdphVAe7vDYsmxF2RiCRJoqFRCWjj7r91998C+wEOHEIID5Ff260dnDMtfH3yDJhxg8asEikDEg2Npu6+Ms/yV8Ae7r4G2LSzGzWzemY22cwWR1/rFtG2lpktM7Pbd3Y7ErNddoXBz8L+A2DadfD0UNj0Y9xViUgJJBoaL5vZs2Y22MwGAxOi12oA3xRju1cAU929BTA1Wi7MP4AZxdiGlAaVqsKJI+Hwq2HBkzDqeFivbjCRTJVoaFwIPABkR9NDwIXu/r279yjGdvsCo6L5UUC/ghqZWUegETCpGNuQ0sIMul0OAx6CLxeEDvIvF8ZdlYgUww5Dw8wqANPcfay7/yGannIv0QnqRu6+Ipr/khAM+bebBfwXuKwE25HSZL++8LsXYOtmuO9IeP+5uCsSkZ20w9Bw9y3AVjOrvTMrNrMpZrawgKlvvvU7oVM9vwuA5919h6PhmdlQM8s1s9xVq1btTJmSbk06hDvIG7aEJ06BKdfCls1xVyUiCUr0Po31wAIzmwx8v+1Fd7+ksA+4e6/C3jOzlWbW2N1XmFljQsd6fp2BrmZ2AeGu88pmtt7dt+v/cPeRwEiAnJwcXaJT2tVqDGe+CC8Oh9duCoMd/vY+qLndAaeIlDKJhsbT0ZQsE4HBwIjo63YX8kcDJAJgZkOAnIICQzJUpapw/C2wRyd49g9wd1c46QFo1iXuykSkCImOcjsKeBKY7e6jtk0l2O4I4AgzWwz0ipYxsxwzu7cE65VMkz0IzpkKVWqGK6teu1n3c4iUYpZIf7aZHQ/8B6js7s3NLBv4u7v3SXWBOysnJ8dzc/Vsh4zz47cw8WJYNB5aHQP9/gfV6sRdlUi5YWZzEhlLMNFLbq8FDia6J8Pd5wJ7F7s6kfyq1oL+D0Lv62HxJLi7GyyfG3dVIpJPoqGxyd3X5XtND02Q5DKDTufBmXkuy53zoE5XiZQiiYbGu2Z2ClDBzFqY2W3ArBTWJeXZHgfDuTNgr0PhmWEw/nw9n0OklEg0NC4G2gI/AY8D3wK/T1VRItRoAKeNhcOugHlPwL294OuP4q5KpNxLqCM8k6gjvAz6aAqMPQe2bAoPempb4KgzIlICSe0IN7OWZjbSzCaZ2bRtU8nLFEnAvr3gvFfD88jHDIYXr4TNG+OuSqRcSvTmvjHAXYQHMW1JXTkihajdFIY8D5P/CrPvhGVvwYn3QL3mcVcmUq4k2qex2d3/5+5vuvucbVNKKxPJr2JlOHpEuDR31Ydw12/gnUd0dZVIGiUaGs+Y2QVm1jh6gFI9M6uX0spECtP2BDh/JjTOhgkXwpOnw4Y1cVclUi4kekf40gJedncvdTf4qSO8HNm6BV6/Hab+A6rXh353wr49465KJCMltSPc3ZsXMJW6wJByJqsCdBkWnkVerQ48ciK8MBw2/RB3ZSJlVpGhYWZ/yjPfP997/0xVUSI7pfEBMPRlOOQ8eOMuGNkdVsyPuSiRsmlHRxoD88xfme+93kmuRaT4KlWDo6+H056GH74Jj5SdeQts1Wg3Ism0o9CwQuYLWhaJ37494YLXoVXvcHnuQ31g3Q4f/igiCdpRaHgh8wUti5QO1evBgIeh7x2w/B2481BY8FTcVYmUCTsKjfZm9q2ZfQccEM1vW94/DfWJFI8ZdDgt3EnesBWMPQvGnh1OXYlIsRUZGu5ewd1ruXtNd68YzW9brpSuIkWKrd7eYaj1HlfBwqfhf11g6atxVyWSsRK9uU8kc1WoCIf9Cc6aHO4qH3U8PH85/PRd3JWJZByFhpQfTTvCua/CIefCm/fAHZ1g8eS4qxLJKAoNKV+q7BIuzT1rElSuAY+eFIZd/3513JWJZASFhpRPexwcOskPGw7vjoM7DoL5YzT4ocgOxBIa0YCHk81scfS1biHttpjZ3GiamO46pYyrWAV6/Dk8WrZuM3j6bHhsgO7rEClCXEcaVwBT3b0FMDVaLsgP7p4dTX3SV56UK432C53kR/0LPnkN7jgk9HnobnKR7cQVGn2BUdH8KEDP75R4ZVWAzheEu8mbHgTPXwYPHhOe2yEiP4srNBq5+4po/kugUSHtqppZrpnNNrNCg8XMhkbtcletWpX0YqUcqdsMTh8H/f4HX70Hd3WBGTeE55OLSGLP0yjWis2mALsV8NZVwCh3r5On7Vp3365fw8x2d/cvzGxvYBrQ092XFLVdPU9Dkua7lfDCn2DReGjUDvrcBrsfGHdVIimR1OdpFIe793L3dgVME4CVZtY4KrQx8FUh6/gi+vox8DLQIVX1imynZiMYMAoGPgYbVsO9PeGlq2Dj93FXJhKbuE5PTQQGR/ODgQn5G5hZXTOrEs03ALoAi9JWocg2rY+FC2bDgWeEJwXefnC4TFeX50o5FFdojACOMLPFQK9oGTPLMbN7ozZtgFwzmwdMB0a4u0JD4lGtDhx/C5z5IlSrC2OGhGHXv3o/7spE0iplfRpxUZ+GpNyWzTDnAZh2HWxcDwefC92HQ9XacVcmUmyx92mIlFkVKsLB58DFb4fh12ffCbflwNzHdW+HlHkKDZHiqlE/nLI6ZxrU2RPGnwf3HwXL58ZdmUjKKDRESmr3A8Md5X3vhLVLYWR3ePYPsGFN3JWJJJ1CQyQZsrKgw6lwUS4cch7MGQW3HQhv3Qdbt8RdnUjSKDREkqlaHTh6BJz3Wrgh8Lk/hiOPz96IuzKRpFBoiKRCo/1g8DNw0v3w/ddw/5Ew7jz47su4KxMpEYWGSKqYQbvfwkVvwW/+CAuegls7wPR/6lGzkrEUGiKpVmUX6HUNXPgGtDwKXrk+hMeb92ggRMk4Cg2RdKm/D/R/EM6eBg1ahuHX7zgEFk3QkCSSMRQaIunWtCMMeQ4GjYYKleDJM+C+I+DTWXFXJrJDCg2ROJhBq95w3sww5Pq6ZfDA0fD4KbDqg7irEymUQkMkThUqhtFzL34bDv8LLJ0Bd3aCZ4bpSisplRQaIqVB5erQ7TIYNhcOHgrvPBo6y6f9n660klJFoSFSmtRoAEdfDxe9CS17w4x/wy3ZutJKSg2FhkhpVG9v6P9AGAxx1zbhSqvbc8IRyJbNcVcn5ZhCQ6Q0271juLP8lDHheR0TLgjhMfcxhYfEQqEhUtqZQcsjYegrMPBxqFITxp+v8JBYKDREMoUZtD4Gzp0BAx8Ld5qPPx/uOCg8AErhIWmg0BDJNGbQ+lg499UQHpVrhAdA3XEwzHtC4SEppdAQyVR5w+PkR6FSdRh3Ltx5CMwbrfCQlIglNMysnplNNrPF0de6hbTb08wmmdl7ZrbIzJqlt1KRDGAGbY4Lp61OfgQqVoVxQ38JDz0ESpIoriONK4Cp7t4CmBotF+Qh4AZ3bwMcDHyVpvpEMk9WFrQ5Phx5DHj4l/C442AdeUjSxBUafYFR0fwooF/+Bma2H1DR3ScDuPt6d9+QvhJFMlRWFuzX55fwqFAlhMetHeCNu2Hj93FXKBksrtBo5O4rovkvgUYFtGkJfGNmT5vZO2Z2g5lVKGhlZjbUzHLNLHfVqlWpqlkks2wLj/NeC5fq1moCL/wJbmoH0/8F36+Ou0LJQOYpGsffzKYAuxXw1lXAKHevk6ftWnf/Vb+GmZ0E3Ad0AD4DRgPPu/t9RW03JyfHc3NzS1rKL+qLAAAPEUlEQVS+SNn02WyYeQt88DxUrAYdToNDL4K6zeKuTGJmZnPcPWdH7SqmqgB371XYe2a20swau/sKM2tMwX0Vy4C57v5x9JnxQCdCkIhIcezZKUyrPoCZt8KcByH3Pmh7AnQZBo3bx12hlHJxnZ6aCAyO5gcDEwpo8xZQx8waRsuHA4vSUJtI2dewFfS7A34/HzpfBB9Ogru7wUP9YMl0PUlQChVXaIwAjjCzxUCvaBkzyzGzewHcfQtwGTDVzBYABtwTU70iZVOtJnDkP+APC6HXtfDVIni4H4w8DBaO1RVXsp2U9WnERX0aIiWw6UeYPxpm3QqrPwp9HZ0vguxTwp3nUmYl2qehO8JF5BeVqkLHwXDhW+FGweoNwrDsN7aBl66CNUvjrlBipiMNESmcO3z+Rri/Y9EE8K3h4VCHDIW9e4S70aVMiP3qKREpA8x+ueLq2+WQez/kPgAfvgANWoZH07YfFEbclXJBRxoisnM2/wTvjoM37oLl70CVWpB9Khx8DtTfJ+7qpJgSPdJQaIhI8bjDslx48254dzxs3QQtjoSDz4V9Dg93pEvGUGiISPp892V0o+D9sH4l1NsHDjk3nLqqWivu6iQBCg0RSb/NG0OH+Zt3w7K3oPIucMAAOHAwNMmOuzopgjrCRST9KlaGA/qH6Ys58OY94TnmufeHIUoOHAz799fRRwbTkYaIpNYP38CCMTBnFKxcEJ4w2PbEcD9I04N02W4podNTIlK6uMPyt0N4LBwLG9dDwzZw4BnQfiBUrxd3heWaQkNESq+fvoOFT8Pbo8JprApVwlMHOw6GZl119BED9WmISOlVpWYIiI6D4cuFITzmj4aFT0G9vcPRR/apsMuucVcq+ehIQ0RKh00/hCuv5oyCz2ZBVsUwZMkBJ0PLo6BilbgrLNN0pCEimaVStdC30X4gfL04Ovp4Et5/FqrWgXYnhvs+1HkeKx1piEjptWUzLH0Z5j0B7z0Lm38Ip68OODlM9ZrHXWGZoY5wESlbfvoOFk2E+U/A0lcBhz06hSOTtv2gWt24K8xoCg0RKbvWLQunruaPhlXvQ4XK0OpoOGAg7Nsr3GQoO0WhISJlnzusmAvzRocbCDd8DdXqwf4nhdNXu3dU/0eCFBoiUr5s2QRLpoX+j/efgy0/Qe09w6mrdidC42wFSBEUGiJSfv24LgTHu+NCkGzdDHWbQ9sTQoA0aqcAyadUh4aZ1QNGA82AT4AB7r42X5sewE15XmoNDHT38UWtW6EhIr+yYU24bPfdcfDxK+BboP6+YfyrtidAo/3irrBUKO2h8W9gjbuPMLMrgLruPryI9vWAj4Cm7r6hqHUrNESkUN9/De89A+8+DZ+8Fp553rB1CI+2J0DDVnFXGJvSHhofAN3dfYWZNQZedvdCf1pmNhQ4zN1P3dG6FRoikpD1X4U70N8dD5/OBBx2bftLgDTYN+4K06q0h8Y37l4nmjdg7bblQtpPA25092cLeX8oMBRgzz337Pjpp5+moGoRKbO+XQHvTQyDKH4+O7zWsA20PjZMTTqU+T6Q2EPDzKYAuxXw1lXAqLwhYWZr3b3AO3OiI5H5QBN337Sj7epIQ0RKZN0XIUDefw4+nRX6QGrt/kuA7NUFKlSKu8qki33sKXfvVdh7ZrbSzBrnOT31VRGrGgCMSyQwRERKrPbu0On8MG1YAx++GALk7YfhzZFQtXYYSLH1seFGwso14q44reIasHAiMBgYEX2dUETbQcCV6ShKRORXqteD7FPCtHFDuHz3/efgwxfC3egVq8LePUKAtDoaajSIu+KUi6tPoz7wJLAn8Cnhkts1ZpYDnOfuZ0ftmgEzgT3cfWsi69bpKRFJuS2b4bPXQ4C8/yys+xwsK4yF1frYcCSSYR3psfdpxEWhISJp5Q5fzo8C5DlYuTC8Xm9vaHEUtDgCmv2m1D8PRKEhIhKHtZ/A4snw4Uvwyauw+UeoVAP2PgxaHBlCpHbTuKvcjkJDRCRuGzeE4Fg8CT6cBOs+C683ahfCo8VR4aFSFeJ/Hp5CQ0SkNHGHVR/A4pfCkchnr4cxsarWgX17hqOQfXvF1pke+yW3IiKShxns2jpMXYaFQRWXTA8BsngSLBwLWLiRcJ8e4aqsPQ4udX0hOtIQEYnb1q3w5bxwCmvJNFj2VripsFL1cDPhPj1gn8PDOFkpujNdRxoiIpkiKyscYTTpAN2Hw4/fhgEVP54eQuSlyaFdzcawd/dwFLJ3d6jZKO2lKjREREqbqrWg9TFhAvjm8yhApoersuY9Hl7ftW10FNID9jwUKldPeWk6PSUikkm2ncpaMj0EyWezYcvG8Jz01sdB/weKtVqdnhIRKYvynsrq+sdwWe+ns0KApKHTXKEhIpLJKleHFr3ClAZZadmKiIiUCQoNERFJmEJDREQSptAQEZGEKTRERCRhCg0REUmYQkNERBKm0BARkYSVuWFEzGwV4bnjxdUA+DpJ5WSK8rbP5W1/QftcXpRkn/dy94Y7alTmQqOkzCw3kfFXypLyts/lbX9B+1xepGOfdXpKREQSptAQEZGEKTS2NzLuAmJQ3va5vO0vaJ/Li5Tvs/o0REQkYTrSEBGRhCk0REQkYeUyNMyst5l9YGYfmdkVBbw/xMxWmdncaDo7jjqTaUf7HLUZYGaLzOxdM3ss3TUmWwI/55vy/Iw/NLNv4qgzmRLY5z3NbLqZvWNm883smDjqTKYE9nkvM5sa7e/LZtY0jjqTxczuN7OvzGxhIe+bmd0afT/mm9mBSS3A3cvVBFQAlgB7A5WBecB++doMAW6Pu9Y073ML4B2gbrS8a9x1p3qf87W/GLg/7rrT8HMeCZwfze8HfBJ33WnY5zHA4Gj+cODhuOsu4T53Aw4EFhby/jHAC4ABnYA3krn98nikcTDwkbt/7O4bgSeAvjHXlGqJ7PM5wB3uvhbA3b9Kc43JtrM/50HA42mpLHUS2WcHakXztYHlaawvFRLZ5/2AadH89ALezyjuPgNYU0STvsBDHswG6phZ42RtvzyGxu7A53mWl0Wv5ffb6NDuKTPbIz2lpUwi+9wSaGlmM81stpn1Tlt1qZHozxkz2wtozi+/WDJVIvt8LXCamS0DniccYWWyRPZ5HnBiNH8CUNPM6qehtrgk/G+/OMpjaCTiGaCZux8ATAZGxVxPOlQknKLqTvir+x4zqxNrRekzEHjK3bfEXUgaDAIedPemhNMYD5tZWf89cBlwmJm9AxwGfAGUh591SpT1fywF+QLIe+TQNHrtZ+6+2t1/ihbvBTqmqbZU2eE+E/4amejum9x9KfAhIUQyVSL7vM1AMv/UFCS2z2cBTwK4++tAVcIgd5kqkf/Py939RHfvAFwVvZbxFz0UYWf+7e+08hgabwEtzKy5mVUm/MKYmLdBvvN/fYD30lhfKuxwn4HxhKMMzKwB4XTVx+ksMskS2WfMrDVQF3g9zfWlQiL7/BnQE8DM2hBCY1Vaq0yuRP4/N8hzNHUlcH+aa0y3icAZ0VVUnYB17r4iWSuvmKwVZQp332xmFwEvEa68uN/d3zWzvwO57j4RuMTM+gCbCR1OQ2IrOAkS3OeXgCPNbBHh0P1yd18dX9Ulk+A+Q/gl84RHl51ksgT3+VLCqcc/EDrFh2Tyvie4z92Bf5mZAzOAC2MrOAnM7HHCPjWI+qauASoBuPtdhL6qY4CPgA3AmUndfgb/exERkTQrj6enRESkmBQaIiKSMIWGiIgkTKEhIiIJU2iIiEjCFBpS6pnZ+gTa/N7Mqidxm/3MbL8krm9WCT67PvraxMyeKqJdHTO7oLjbEUmEQkPKit8DOxUaZlahiLf7EQa6Swp3PzQJ61ju7icV0aQOoNCQlFJoSMYws+7R8xCeMrP3zezR6K7XS4AmwHQzmx61PdLMXjezt81sjJntEr3+iZldb2ZvA/3N7Bwze8vM5pnZWDOrbmaHEkYCuCF61sY+ZpYdDeQ438zGmVndaH0vW3guR66ZvWdmB5nZ02a22Myuy1P7+jzzw81sQbTNEQXsZ/Oo9gX51tFs2zMUzKytmb0Z1TffzFoAI4B9otduMLNdLDxH4u1oXX3zrOc9M7vHwrNTJplZtei9fc1sSlTb22a2T/T65dH3ab6Z/S2pP1jJLHGPDa9J044mYH30tTuwjjCWThZh6I/fRO99AjSI5hsQ7vytES0PB/6ap92f8qy7fp7564CLo/kHgZPyvDcfOCya/ztwczT/MnB9ND+MMNR4Y6AKYTyv+vn24WhgFlA9Wq5XwP5OBM6I5i/M89lmRM9QAG4DTo3mKwPV8r4fvV4RqJXne/IR4RkLzQijHWRH7z0JnBbNvwGcEM1XJRy9HUl4DodF3/dngW5x/7vQFM9U7oYRkYz3prsvAzCzuYRfgK/la9OJcGpppplB+KWad2yp0Xnm20V/zdcBdiEMR/ErZlYbqOPur0QvjSI82GebbUOSLADe9WicHzP7mDBwXN7hWHoBD7j7BgB3L+i5CF2A30bzDwPXF9DmdeAqC0+he9rdF0f7+qvSgX+aWTdgK2F47EbRe0vdfW40PwdoZmY1gd3dfVxU24/RfhxJCI53ova7EAaznFFAXVLGKTQk0/yUZ34LBf8bNmCyuw8qZB3f55l/EOjn7vPMbAjRoI3FrGlrvvq2FlJfIooc38fdHzOzN4BjgefN7Fy2H2DyVKAh0NHdN5nZJ4Sjh7w1Q/g+Viticwb8y93v3on6pYxSn4aUFd8BNaP52UAXM9sXwMxqmFnLQj5XE1hhZpUIv2S3W5+7rwPWmlnX6L3TgVconsnAmduu9DKzegW0mUkYSJF8Nf3MzPYGPnb3W4EJwAH8+nsA4cl8X0WB0QPYq6jC3P07YJmZ9Yu2USWq8yXgd3n6hXY3s10T2lspcxQaUlaMBF40s+nuvoowMvHjZjafcCqndSGf+wvhPP5M4P08rz8BXG5m70SdwYMJHePzgWxCv8ZOc/cXCaezcqPTa5cV0GwYcKGZLaDwJ64NABZG62hHeLznasIpuYVmdgPwKJATreeMfPtXmNMJozzPJ/S97Obuk4DHgNejdT3Fr8NJyhGNcisiIgnTkYaIiCRMoSEiIglTaIiISMIUGiIikjCFhoiIJEyhISIiCVNoiIhIwv4fiKs2oLzt8sUAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -140,7 +147,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEWCAYAAACaBstRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4FOXax/HvnQIhJJQAAqH3KgSISJF2AI0KwQIqKIINFbCLouLRgw1BRVQUQREOB48CHqQoKEUE6T10BAEJAanSS8r9/rEDb4wpS0gy2eT+XNdezOw++8w9G5LfTntGVBVjjDHGG35uF2CMMcZ3WGgYY4zxmoWGMcYYr1loGGOM8ZqFhjHGGK9ZaBhjjPGahYYxmSAirURkWxb296qI/Cer+jMmu1homFxHRHaLSIcUz/UWkV+c6YIi8rmI7BGRkyKyTkRuTKe/3iKSKCKnUjzCM1ujqi5S1Vrp1ZwTLne5IjJORF6/guUNEJGNzue+S0QGZLYv45sC3C7AmEwIAPYCbYDfgZuASSJytaruTuM9S1X1uhyqLy8T4F4gBqgG/Cgie1X1K3fLMjnFtjSMz1HV06r6qqruVtUkVZ0J7AKaXG5fIlJNRI6KSGNnPlxEDolIW2c+TES+EJE4ETkmIt86z7cVkVhnegJQEZjhbME85zzfTESWiMifIrL+Yp/Oa1VE5GfnG/scoGQ6NZYUkZlOP0dFZJGI+KWz3MkickBEjovIQhGp5zzfB7gbeM5pPyPZOn/jrPcuEXk8nc9+qKquUdUEVd0GTANaXu7nbnyXhYbxeSJSGqgJbLrc96rqTuB54D8iEgx8AYxX1QVOkwlAMFAPuAoYnkofPfFs8XRW1RBVHSoi5YDvgNeBMOBZ4BsRKeW87UtgNZ6weA3olU6ZzwCxQCmgNPCiZ7F/X67TfhZQw6l3DTDRqXO0Mz3Uad9ZRPyAGcB6oBzQHnhSRG7I6LMTEQFakYnP3fgu2z1lcqtvRSQh2XwBPH8A/0JEAvH8IRyvqlvT6a+ZiPyZbP6IqlYDUNUxItIZWA4oEO30XRa4ESihqsec9/3sZf33AN+r6vfO/BwRWQXcJCI/AdcAHVT1PLDw4rf+NMQDZYFKqroDWJTeglV17MVpEXkVOCYiRVX1eCrNrwFKqepgZ/43ERkD3AX8kME6vorni+cXGbQzeYhtaZjc6hZVLXbxAfRN2cD5ljwBuAD0z6C/Zcn7uxgYyYwB6gMfOn/IASoAR5MFxuWoBHRzdin96QTWdXj++IcDx1T1dLL2e9LpaxiwA8/xg99EZGBaDUXEX0SGiMhOETkB7HZeSmv3VyUgPEWdL+LZokmTiPTHc2zj5mSfl8kHbEvD+CRn18jneP643aSq8VfQVwjwvtPfqyLyjaoexXOwPUxEiqnqn+l24tlCSW4vMEFVH0pleZWA4iJSOFlwVEylD0/Hqifx7KJ6RkTqA/NFZKWqzkvlPT2ALkAHPIFRFDiG5wB2WnXuUtUaGaxf8vrvBwYCrVU11tv3mbzBtjSMr/oEqINnf/7ZK+xrBLBKVR/EcxxiFICq7sdzfOBjESkuIoEi0jqNPv4Aqiab/w/QWURucL79BzkHz8ur6h5gFfAvESkgItcBndMqTkQ6iUh1JyiPA4lAUhrLDQXOA0fwHIt5M4M6VwAnReR5ESnk1FpfRK5Jo5a7nT47qupvadVs8i4LDeNznG/qDwMRwAH5/+su7k7nbc3l79dpXCMiXYAo4FGn3dNA42R99cRzTGErcBB4Mo3+3wIGObt4nlXVvXi+8b8IHMLzjX4A//871wO4FjgKvAL8O53aawBzgVPAUuBjVf0pteU6/ewB9gGbgWUp+vocqOu0/1ZVE4FOeD7LXcBh4DM8WyipeR0oAaxM9jmOSqd2k8eI3YTJGGOMt2xLwxhjjNcsNIwxxnjNQsMYY4zXLDSMMcZ4Lc9dp1GyZEmtXLmy22UYY4xPWb169WFVLZVRuzwXGpUrV2bVqlVul2GMMT5FRNIbleAS2z1ljDHGaxYaxhhjvGahYYwxxmt57piGMSbnxMfHExsby7lz59wuxXgpKCiI8uXLExgYmKn3W2gYYzItNjaW0NBQKleujGc8RZObqSpHjhwhNjaWKlWqZKoP2z1ljMm0c+fOUaJECQsMHyEilChR4oq2DC00jDFXxALDt1zpz8tCw3E+8TzvrX6Pfaf2uV2KMcbkWhYajsNnDzNp2yReWPQCCUkJGb/BGJMr+Pv7ExERcekxZMiQy+5j+vTpl9737bffsnnz5svuIyQkxOu277//PmfOnMmydskNGDCA2rVr06BBA2699Vb+/DOjm05eHgsNR7mQcgxqNoi1B9cyJmaM2+UYY7xUqFAh1q1bd+kxcGCat1BPU3R09KX3ZTY0Lkd2hkbHjh3ZuHEjMTEx1KxZk7feeiuzZabKQiOZTlU70alqJ0bFjGLtwbVul2OMyaTjx49Tq1Yttm3bBkD37t0ZM8bzZXD27Nk0btyYhg0b0r59ewDGjRtH//79WbJkCdOnT2fAgAFERESwc+dOdu7cSVRUFE2aNKFVq1Zs3boVgF27dtG8eXOuvvpqBg0alGodp0+f5uabb6Zhw4bUr1+fr7/+mg8++IC4uDjatWtHu3btAHj00UeJjIykXr16vPLKKwCptvvxxx9p3rw5jRs3plu3bpw6depvy7z++usJCPCcGNusWTNiY7P2Nu52ym0KL137EmsPrmXgwoFMjp5MkQJF3C7JGJ/w9oq32Xp0a5b2WTusNs83fT7dNmfPniUiIuLS/AsvvMCdd97JRx99RO/evXniiSc4duwYDz30EIcOHeKhhx5i4cKFVKlShaNHj/6lrxYtWhAdHU2nTp3o2rUrAO3bt2fUqFHUqFGD5cuX07dvX+bPn88TTzzBo48+yr333svIkSNTrW327NmEh4fz3XffAZ4wK1q0KO+99x4//fQTJUuWBOCNN94gLCyMxMRE2rdvT0xMDI8//vhf2h0+fJjXX3+duXPnUrhwYd5++23ee+89/vnPf6b52YwdO5Y777wz4w/6MlhopBBSIIS3W79Nr1m9eG3pawxtPdTODjEmF7u4eyqljh07MnnyZPr168f69esBWLZsGa1bt750jUJYWFi6fZ86dYolS5bQrVu3S8+dP38egMWLF/PNN98A0LNnT55//u/hdvXVV/PMM8/w/PPP06lTJ1q1apXqciZNmsTo0aNJSEhg//79bN68mQYNGvylzbJly9i8eTMtW7YE4MKFCzRv3jzN2t944w0CAgK4++6702yTGRYaqWhYqiF9I/ry4doPua7cdXSp3sXtkozJ9TLaIshpSUlJbNmyheDgYI4dO0b58uUz1UexYsVSDSXI+PTVmjVrsmbNGr7//nsGDRpE+/bt/7ZlsGvXLt555x1WrlxJ8eLF6d27d6rXUagqHTt25L///W+GdY8bN46ZM2cyb968LP/Sa8c00vBA/QdoUroJbyx/g99P/O52OcaYyzR8+HDq1KnDl19+yX333Ud8fDzNmjVj4cKF7Nq1C+Bvu6cAQkNDOXnyJABFihShSpUqTJ48GfD84b641dKyZUu++uorACZOnJhqDXFxcQQHB3PPPfcwYMAA1qxZ87dlnDhxgsKFC1O0aFH++OMPZs2alWotzZo1Y/HixezYsQPwHC/Zvn3735Y5e/Zshg4dyvTp0wkODr7MTy1jFhpp8PfzZ0irIQT6BfLcwueIT4x3uyRjTCouHtO4+Bg4cCDbtm3js88+491336VVq1a0bt2a119/nVKlSjF69Ghuu+02GjZsmOr+/rvuuothw4bRqFEjdu7cycSJE/n8889p2LAh9erVY9q0aQCMGDGCkSNHcvXVV7NvX+rXd23YsIGmTZsSERHBv/71r0sHzPv06UNUVBTt2rWjYcOGNGrUiNq1a9OjR49Lu59StitVqhTjxo2je/fuNGjQgObNm186KJ9c//79OXnyJB07diQiIoJHHnkkKz7mS0RVs7RDt0VGRmpW3oRpzp45PL3gaR6o/wBPNnkyy/o1Ji/YsmULderUcbsMc5lS+7mJyGpVjczovbalkYGOlTpye43bGbtxLMv3L3e7HGOMcZWFhheeu+Y5KhWpxIuLXuTPc1l7daUxxvgSCw0vBAcGM7T1UI6eP8orS14hr+3SM+ZK2O+Db7nSn5eFhpfqlKjDk42fZP7e+UzePtntcozJFYKCgjhy5IgFh4+4eD+NoKCgTPdh12lchp51e7IkbgnDVg6jSekmVCtWze2SjHFV+fLliY2N5dChQ26XYrx08c59mWVnT12mw2cPc/v02ylVqBQTb55IQf+C2bYsY4zJKXb2VDYpWagkr7V8jW3HtvH+6vfdLscYY3KUhUYmtC7fmh61e/CfLf9hUewit8sxxpgcY6GRSU9HPk31YtUZtHgQh88edrscY4zJEa6GhohEicg2EdkhIn+7c4qIPC0im0UkRkTmiUglN+pMTUH/ggxtPZTT8acZtHgQSZrkdknGGJPtXAsNEfEHRgI3AnWB7iJSN0WztUCkqjYApgBDc7bK9NUoXoNnI59l8b7FfLnlS7fLMcaYbOfmlkZTYIeq/qaqF4CvgL+MQa6qP6nqxXsdLgMyf55YNrmz1p20rdCW91a/x7aj29wuxxhjspWboVEO2JtsPtZ5Li0PALPSed0VIsLgFoMpVrAYz/z8DCcunHC7JGOMyTY+cSBcRO4BIoFhabzeR0RWicgqNy4yKh5UnHfavMO+k/t4cdGLdnzDGJNnuRka+4AKyebLO8/9hYh0AF4ColX1fGodqepoVY1U1chSpUplS7EZaVy6Mc81fY6fY39m1PpRrtRgjDHZzc3QWAnUEJEqIlIAuAuYnryBiDQCPsUTGAddqPGy3FXrLqKrRfPJ+k9YsHeB2+UYY0yWcy00VDUB6A/8AGwBJqnqJhEZLCLRTrNhQAgwWUTWicj0NLrLFUSEl5u9TJ2wOryw6AV2H9/tdknGGJOlbOypbBB3Ko67Zt5FWFAYE2+eSOHAwq7WY4wxGbGxp1wUHhLOsDbD2HViFy8vftmGjTbG5BkWGtnk2rLX8lTjp5izZw5jN451uxxjjMkSFhrZqFe9XkRVjuKDtR+wJG6J2+UYY8wVs9DIRiLCv1r8i6pFq/LcwueIPRnrdknGGHNFLDSyWXBgMCPajSBJk3hqwVOcTTjrdknGGJNpFho5oGKRigxpNYRtR7cxeOlgOzBujPFZFho5pHX51vSN6MvM32by5VYbEdcY45ssNHJQnwZ9aFehHcNWDmPVAXevJTHGmMyw0MhBfuLHm9e9SYXQCjzz8zMcOH3A7ZKMMeayWGjksJACIYxoN4JzCed4esHTXEi84HZJxhjjNQsNF1QtVpU3r3uTDYc38ObyN90uxxhjvGah4ZL2ldrz0NUP8c2v3zB5+2S3yzHGGK9YaLioX0Q/Woa35M3lb7L+0Hq3yzHGmAxZaLjI38+ft1u/TZngMjz101PsP7Xf7ZKMMSZdFhouK1qwKB/+40POJZyj77y+do9xY0yuZqGRC1QvXp3h7Yaz+8RunvrpKeIT490uyRhjUmWhkUtcW/ZaBrcYzIoDK3hlySs21IgxJlcKcLsA8/86V+tM3Kk4Plr3EeEh4fRv1N/tkowx5i8sNHKZPg36EHc6jk9jPiU8JJzbatzmdknGGHOJhUYuIyIMajaIP07/weClgykdXJqW5Vq6XZYxxgB2TCNXCvQL5N2271K9WHWeXvA0W49udbskY4wBLDRyrcKBhRnZfiShBULpN7efDW5ojMkVLDRysdKFS/Nxh485k3CGR+c+yskLJ90uyRiTz7kaGiISJSLbRGSHiAxM5fXWIrJGRBJEpKsbNbqtZvGanms4ju/mqQV2DYcxxl2uhYaI+AMjgRuBukB3EambotnvQG8gX9/qrlnZZrza4lWW71/Oq0tftWs4jDGucfPsqabADlX9DUBEvgK6AJsvNlDV3c5rSW4UmJt0qd6FuNNxfLzuY8JDwukX0c/tkowx+ZCboVEO2JtsPha41qVafMIjDR4h7lQco9aPIrxwOLfWuNXtkowx+UyeuE5DRPoAfQAqVqzocjXZR0T4Z/N//uUajhblWrhdljEmH3HzQPg+oEKy+fLOc5dNVUeraqSqRpYqVSpLisutAv0Cea/te1QtVpWnf36abUe3uV2SMSYfcTM0VgI1RKSKiBQA7gKmu1iPzwgpEMLI9iMpHFiYvvP62jUcxpgc41poqGoC0B/4AdgCTFLVTSIyWESiAUTkGhGJBboBn4rIJrfqzW3KFC7Dx+0/5nT8afrO68vx88fdLskYkw9IXjt9MzIyUletWuV2GTlmadxS+s3rR+2w2ozuOJqQAiFul2SM8UEislpVIzNqZ1eE+7jm4c15t827bDmyhX7z+nEm/ozbJRlj8jALjTygXcV2vNX6LdYdWsfjPz3O+cTzbpdkjMmjLDTyiKjKUbzW8jWW71/O0wuetuFGjDHZwkIjD4muFs3LzV5mYexCnl/0PAlJCW6XZIzJYyw08pg7at3Bc9c8x5w9c3jpl5dITEp0uyRjTB6SJ64IN3/Vs25PzieeZ8SaEQQFBPFK81fwE/t+YIy5chYaedSDVz/I2YSzjI4ZTUH/grzQ9AVExO2yjDE+zkIjD+sf0Z/zCecZv3k8Qf5BPNXkKQsOY8wVsdDIw0SEZyKf4VziOb7Y9AVBAUH0jejrdlnGGB9moZHHiQgvXvsi5xPP88n6TyjoX5AHrn7A7bKMMT7KQiMf8BM/Xm3+KucTzvP+mvcJCgji7jp3u12WMcYHWWjkE/5+/rzR6g0uJF1gyIohFPQvSNea+fK268aYK2DnYeYjgX6BDG09lOvKXcfgpYOZsXOG2yUZY3yMhUY+U8C/AMPbDueaMtcwaPEgftj9g9slGWN8iIVGPhQUEMSH//iQhqUaMnDhQObsmeN2ScYYH2GhkU8FBwYzsv1I6pWsx7M/P8u0HdPcLskY4wMsNPKx0AKhjO44mqZlmjJo8SAmbpnodknGmFzOQiOfCw4M5qP2H9GuQjuGrBjCmJgx5LW7ORpjso6FhqGgf0HebfsuN1e9mQ/WfsDwNcMtOIwxqbLrNAzgOR33zevepHBAYb7Y+AWnL5zmpWYv2ei4xpi/sNAwl/iJH4OaDSKkQAhjN47ldMJpXmv5GoF+gW6XZozJJSw0zF+ICE81eYrQAqGMWDOCM/FnGNZmGAX9C7pdmjEmF7B9DyZVD179IC80fYGf9v5E/3n9ORN/xu2SjDG5gKuhISJRIrJNRHaIyMBUXi8oIl87ry8Xkco5X2X+1aNOD15v+TorDqzg4TkPc+LCCbdLMsa4zLXQEBF/YCRwI1AX6C4idVM0ewA4pqrVgeHA2zlbpelSvQvvtHmHjUc28sAPD3Dk7BG3SzLGuMir0BCR/4nIzSJZeipNU2CHqv6mqheAr4AuKdp0AcY701OA9mK3nstxHSt15KN/fMTu47vpPbs3B04fcLskY4xLvA2Bj4EewK8iMkREamXBsssBe5PNxzrPpdpGVROA40CJlB2JSB8RWSUiqw4dOpQFpZmUWpZryaiOozh89jC9ZvXi9xO/u12SMcYFXoWGqs5V1buBxsBuYK6ILBGR+0TE9fMxVXW0qkaqamSpUqXcLifPalK6CZ/f8DlnEs7Qa3Yvfj32q9slGWNymNe7m0SkBNAbeBBYC4zAEyKZHSJ1H1Ah2Xx557lU24hIAFAUsJ3qLqpboi7josbhhx/3/XAfMYdi3C7JGJODvD2mMRVYBAQDnVU1WlW/VtXHgJBMLnslUENEqohIAeAuYHqKNtOBXs50V2C+2vgWrqtWrBrjbhxHaGAoD/zwgA2tbkw+4u2WxgeqWldV31LV/clfUNXIzCzYOUbRH/gB2AJMUtVNIjJYRKKdZp8DJURkB/A08LfTco07KoRWYOLNE6kVVotnFjzDFxu/sPGqjMkHxJtfdBG5LZWnjwMbVPVglld1BSIjI3XVqlVul5FvnEs4d+kOgF1rduXFa1+0YUeM8UEistqbjQBvhxF5AGgO/OTMtwVWA1VEZLCqTshUlcbnBQUEMbT1UCqGVmTMhjHEnYrjnTbvEFog1O3SjDHZwNvdU4FAHVW9XVVvx3MxngLXAs9nV3HGN/iJH483fpzBLQazYv8K7p11L3Gn4twuyxiTDbwNjfKq+key+YNABVU9CsRnfVnGF91a41Y+6fgJf5z+gx7f9WDj4Y1ul2SMyWLehsYCEZkpIr1EpBcwzXmuMPBn9pVnfE2zss2YcNMEggKCuG/2fczbM8/tkowxWcjb0OgHfAFEOI9/A/1U9bSqtsuu4oxvqlasGhNvmkjNsJo8teApxm8ab2dWGZNHZHgg3BlYcK4TDt9kf0kmLyhRqASfX/85L/3yEu+seoc9J/bw4rUvEuBnt3Axxpdl+BusqokikiQiRVX1eE4UZfKGoIAghrUZRoU1Ffh84+eXzqwKKZDZ60GNMW7z9mvfKWCDiMwBTl98UlUfz5aqTJ7hJ3482eRJKhapyGtLX+Pe2fcy8h8jKRtS1u3SjDGZ4O0xjf8BLwML8VyfcfFhjFduq3EbH3f4mP2n9tPj+x5sOrzJ7ZKMMZng7Si344FJwDJVHX/xkb2lmbymeXhzJtw4gQJ+Beg9u7edWWWMD/J2wMLOwDpgtjMfISIpBxc0JkPVi1dn4s0TqVm8Jk8ueJIRa0aQmJTodlnGGC95u3vqVTx32vsTQFXXAVWzqSaTx5UsVJKxUWPpWrMrn234jEfmPsLRc0fdLssY4wVvQyM+lTOnkrK6GJN/FPQvyCvNX2Fwi8Gs+WMNd868kw2HNrhdljEmA96GxiYR6QH4i0gNEfkQWJKNdZl84tYatzLhpgn4iz+9Zvdi0rZJdiGgMbmYt6HxGFAPOA/8FzgBPJldRZn8pW6Junx181c0LduU15a9xqDFgziXcM7tsowxqfDqfhq+xO6n4bsSkxL5NOZTPln/CbXDavNe2/eoEFoh4zcaY66Yt/fT8PbsqZoiMlpEfhSR+RcfV16mMf/P38+fvhF9Gdl+JPtO7ePOmXeyMHah22UZY5LxdvfUZGAtMAgYkOxhTJZrXb41X3f6mvDC4fSb14+R60baabnG5BLehkaCqn6iqitUdfXFR7ZWZvK1CqEVmHDTBKKrRTNq/Sj6ze/H8fM29JkxbvM2NGaISF8RKSsiYRcf2VqZyfcKBRTi9Zav83Kzl1m+fzl3zryTzUc2u12WMfmat6HRC8/uqCX8/7hTdrTZZDsR4Y5adzA+ajwJSQn0/L4nU3+d6nZZxuRb3o49VSWVh10RbnJMg1INmNR5Eo2uasQ/l/yTV5a8wpn4M26XZUy+k25oiMhzyaa7pXjtzewqypjUhAWFMarjKB6o/wD/+/V/trvKGBdktKVxV7LpF1K8FpXZhTrHROaIyK/Ov8XTaDdbRP4UkZmZXZbJWwL8AniyyZOM7jiaM/FnuPv7uxm7caydXWVMDskoNCSN6dTmL8dAYJ6q1gDmOfOpGQb0vILlmDyqeXhzvon+hnYV2jF89XAemvMQB04fcLssY/K8jEJD05hObf5ydAEu3o9jPHBLqgtXnQecvILlmDysWFAx3m3zLoNbDGbj4Y3cNv02Zu+e7XZZxuRpGYVGQxE5ISIngQbO9MX5q69guaVVdb8zfQAofQV9ISJ9RGSViKw6dOjQlXRlfIyIcGuNW5nSeQqVi1RmwM8DeOmXlzgdfzrjNxtjLlu6oaGq/qpaRFVDVTXAmb44H5jee0VkrohsTOXRJcUylCvbakFVR6tqpKpGlipV6kq6Mj6qYpGKjL9xPH0a9GHmbzPpOr0r6w6uc7ssY/Icb6/TuGyq2kFV66fymAb8ISJlAZx/D2ZXHSb/CPQL5LFGj/HFDV+QpEn0nt2bT9Z9QkJSgtulGZNnZFtoZGA6ngsGcf6d5lIdJg9qXLoxU6KnEFUlio/Xf0zv2b3Ze3Kv22UZkye4FRpDgI4i8ivQwZlHRCJF5LOLjURkEZ7BEtuLSKyI3OBKtcbnhBYIZUirIQxpNYSdf+6k24xuTN853W7wZMwVsvtpmDwv7lQcLyx6gTUH1xBVOYpBzQZRtGBRt8syJlfJ0vtpGOPLwkPCGXvDWB5v9Dhz98yl64yu/LLvF7fLMsYnWWiYfMHfz5+HGjzEhJsmUCigEI/OfZQXF73In+f+dLs0Y3yKhYbJV+qXrM+UzlN4uMHDzNo1iy7TujBr1yw71mGMlyw0TL5TwL8A/Rv156tOXxFeOJznFj7HY/Mfs2FIjPGChYbJt2qF1eI/N/2HZyOfZfn+5dwy7RYmbZtEkia5XZoxuZaFhsnX/P386VWvF/+L/h/1S9TntWWvcf8P97P7+G63SzMmV7LQMAaoUKQCY64fw+AWg9l+dDu3T7+dzzZ8RnxSvNulGZOrWGgY47g4+OG0W6bRunxrRqwZwd3f3c2WI1vcLs2YXMNCw5gUSgWXYni74QxvO5xDZw/R/bvuDF89nHMJ59wuzRjXWWgYk4YOlTrwbZdvia4WzdiNY+k6oyurDthoAyZ/s9AwJh1FCxZlcMvBjLl+DIlJidz3w30M+mUQh88edrs0Y1xhoWGMF5qVbcY30d9wf/37+W7Xd3Se2pnxm8bbgXKT71hoGOOl4MBgnmryFFOjpxJxVQTvrHqH26ffzpK4JW6XZkyOsdAw5jJVLlqZTzp8wsj2I0lMSuThOQ/zxPwn7J4dJl+w0DAmk1qXb83ULlN5ovETLN2/lFu+vYWP1n7E2YSzbpdmTLax0DDmChTwL8CDVz/I9Fum06FSBz6N+ZTob6OZvXu2DYJo8iQLDWOyQJnCZXi79duMixpH0QJFGfDzAB748QG2H9vudmnGZCkLDWOyUJPSTfi609e83Oxlth/bTrcZ3Xhz+ZscP3/c7dKMyRIWGsZkMX8/f+6odQczb5lJt5rd+Hrb13Sa2onJ2yeTmJTodnnGXBELDWOySbGgYgxqNoivO31N1aJVGbx0MN1mdmNh7EI73mF8loWGMdmsdlhtxkWNY1jrYZxLOEe/ef0zOIFaAAASuklEQVToPbs36w6uc7s0Yy6bhYYxOUBEiKoSxbQu03jp2pfYc2IPPWf15LH5j7Hj2A63yzPGa5LXNpMjIyN11SobVM7kbmfizzBh8wS+2PQFZxPO0rlqZ/pF9KNsSFm3SzP5lIisVtXIjNq5sqUhImEiMkdEfnX+LZ5KmwgRWSoim0QkRkTudKNWY7JDcGAwDzd8mFm3zeLuOnfz/a7v6TS1E8NWDuPPc3+6XZ4xaXJlS0NEhgJHVXWIiAwEiqvq8yna1ARUVX8VkXBgNVBHVdP9jbItDeOL9p/az8h1I5nx2wyCA4K5r/593FPnHoIDg90uzeQT3m5puBUa24C2qrpfRMoCC1S1VgbvWQ90VdVf02tnoWF82Y5jOxixdgQL9i6gZKGSPNLgEW6reRuBfoFul2byuNweGn+qajFnWoBjF+fTaN8UGA/UU9WkVF7vA/QBqFixYpM9e/ZkT+HG5JC1B9fy/ur3WXNwDRVDK/JYo8e4vvL1+Imdu2Kyh+uhISJzgTKpvPQSMD55SIjIMVX923EN57WywAKgl6ouy2i5tqVh8gpVZdG+Rby/5n1+PfYrtcNq06dBH9pXbG/hYbKc66GR7kK93D0lIkXwBMabqjrFm74tNExek5iUyPe7vufTmE/Zc2IP1YpW46EGDxFVOQp/P3+3yzN5RK4+ewqYDvRypnsB01I2EJECwFTg394GhjF5kb+fP52rdWZal2m83eptRISBiwbSZVoXpv461e4eaHKUW1saJYBJQEVgD3CHqh4VkUjgEVV9UETuAb4ANiV7a29VTfcyWtvSMHldkiYx//f5jI4ZzZajWygXUo7769/PLdVvoYB/AbfLMz4qV++eyk4WGia/uHjM49P1nxJzOIargq/i/vr3c1uN2ygUUMjt8oyPsdAwJp9QVZbtX8anMZ+y+o/VhAWF0bteb+6odQeFAwu7XZ7xERYaxuRDqw6sYnTMaJbuX0rRgkXpWacn3et0p0iBIm6XZnI5Cw1j8rGYQzGMiRnDgtgFhASG0L12d3rU6UHJQiXdLs3kUhYaxhi2Ht3K6JjRzN0zlwC/AG6qchM96/akVli6AzCYfMhCwxhzyZ4Te/jP5v8wbec0ziac5doy13JvvXu5rtx1dqGgASw03C7DmFzp+PnjTNk+hS+3fsnBMwepXKQyPev2pHO1znbGVT5noWGMSVN8Ujxzds/h35v/zaYjmyhasCjdanaje+3uXBV8ldvlGRdYaBhjMqSqrD24ln9v/jfzf5+Pv58/UZWj6Fm3J3VL1HW7PJODvA2NgJwoxhiTO4kIjUs3pnHpxuw9sZeJWycy9depzPxtJpGlI+lZtydtyrexMa7MJbalYYz5ixMXTjD116lM3DKR/af3UzG0InfUuoPoatEUD0p1MGqTB9juKWPMFUlISmDu73OZuHki6w6tI9AvkI6VOnJHrTtofFVjPLfCMXmFhYYxJstsP7adKdunMGPnDE7Fn6Jq0ap0q9mNztU6U7RgUbfLM1nAQsMYk+XOxJ/hh90/MHn7ZDYc3kBB/4LcUPkGutXsRsNSDW3rw4dZaBhjstXWo1uZvG0yM3+byZmEM9QoXoNuNbvRqWonQguEul2euUwWGsaYHHE6/jTf7/qeydsms+XoFgoFFOLGKjfSrWY36pWoZ1sfPsJCwxiT4zYd3sSk7ZOYtWsWZxPOUiesDrfWuJUbK99IsaBibpdn0mGhYYxxzckLJ/nut++Ysn0K245tI8AvgNblWhNdLZrW5VsT6B/odokmBQsNY0yusO3oNmbsnMF3u77j8NnDFC1YlKjKUURXi+bqklfb7qtcwkLDGJOrJCQlsGz/MqbvnM783+dzPvE8lYtUpnO1znSq2onwkHC3S8zXLDSMMbnWqQunmLNnDtN3TmfVH57f12vKXEPnqp3pWKkjIQVCXK4w/7HQMMb4hH2n9jFz50xm/DaDPSf2EOQfxD8q/oPoatFcW/ZaAvxsiLycYKFhjPEpqkrM4Rhm7JzBrF2zOHHhBGFBYXSs1JHrK11Pk9JNbODEbGShYYzxWRcSL7AwdiGzd89mYexCziacpURQCTpU6sANlW+g8VWNLUCyWK4ODREJA74GKgO7gTtU9ViKNpWAqYAfEAh8qKqjMurbQsOYvOVM/Bl+2fcLP+z+gUX7FlmAZJPcHhpDgaOqOkREBgLFVfX5FG0KOPWdF5EQYCPQQlXj0uvbQsOYvOtM/BkW7VvkCZDYRZxLPEeJoBKeXViVr7cAuQK5PTS2AW1Vdb+IlAUWqGqtdNqXANYCzSw0jDHgCZCF+xby4+4fLwVIyUIl6VCxgwVIJuT20PhTVYs50wIcuzifol0F4DugOjBAVUem0V8foA9AxYoVm+zZsyfbajfG5D6pBUiJoBK0qdCGtuXb0iy8GYUCCrldZq7memiIyFygTCovvQSMTx4SInJMVdO8JZiIhAPfAp1V9Y/0lmtbGsbkb2fiz7AwdiHzfp/HL/t+4VT8KQr6F6R52ea0rdCWNhXaULJQSbfLzHVcv0e4qnZI6zUR+UNEyibbPXUwg77iRGQj0AqYksWlGmPykODAYKKqRBFVJYr4xHhW/bGKBXsXeB6xC2ApNCjZgLYV2tK2QluqF6tuQ5lcBrd2Tw0DjiQ7EB6mqs+laFPeaXNWRIoDy4HbVXVDen3bloYxJjWqyvZj2/k59mcW7F3AhsOePyXlQspdCpAmpZsQ6Jc/B1N0ffdUugv1HNieBFQE9uA55faoiEQCj6jqgyLSEXgXUECAj1R1dEZ9W2gYY7xx6MyhSwGybP8yzieeJzQwlOvKXUebCm1oEd6C4kFp7jXPc3J1aGQnCw1jzOU6E3+GZfuXsWDvAn6O/Zmj544iCHVL1KVFeAtahLeg4VUN8/RWiIWGMcZkQpImsenwJhbHLWZJ3BJiDsWQqIkUDixM0zJNaRnekhblWlAhtILbpWYpCw1jjMkCJy6cYMX+FZ4Q2beEuNOeS8UqhlakRXgLWpZryTVlrqFwYGGXK70yFhrGGJPFVJU9J/Zc2gpZeWAlZxPOEuAXQESpCFqWa0mL8BbUDquNn/i5Xe5lsdAwxphsdiHxAmsPrmVJ3BKWxC1h69GtABQpUITI0pFcU+YarilzDTWK18j1IWKhYYwxOezw2cMsjVvKygMrWXlgJbGnYgEoWrDoX0KkerHquS5ELDSMMcZl+0/tZ+UfKy+FyL5T+wAoXrA4kWUiiSwdSdMyTalWrJrrFxhaaBhjTC6z79Q+Vh1YxYoDK1h5YCX7T+8HICwo7NKWSOPSjV3ZErHQMMaYXG7fqX2s2L+CVX94guTA6QMAhAaG0qBUAyKuiiDiqggalGxAcGBwttZioWGMMT5EVYk9Fcu6g+tYe3At6w6tY8exHSiKn/hRq3gtT4iUiqDRVY0oU7hMlu7SstAwxhgfd+LCCWIOxbDu4DrWHVxHzOEYziacBeCq4KtodFUjIkp5tkZqhdW6oivWLTSMMSaPSUhKYPux7ZdCZN2hdZeOiwT5B9G2QluGtRmWqb5dHxrdGGNM1grwC6BuibrULVGXHnV6AHDg9AHWHfKESE7caMpCwxhjfFiZwmWIKhxFVOWoHFle7rq6xBhjTK5moWGMMcZrFhrGGGO8ZqFhjDHGaxYaxhhjvGahYYwxxmsWGsYYY7xmoWGMMcZreW4YERE5BOy5gi5KAoezqBxfkd/WOb+tL9g65xdXss6VVLVURo3yXGhcKRFZ5c34K3lJflvn/La+YOucX+TEOtvuKWOMMV6z0DDGGOM1C42/G+12AS7Ib+uc39YXbJ3zi2xfZzumYYwxxmu2pWGMMcZrFhrGGGO8li9DQ0SiRGSbiOwQkYGpvN5bRA6JyDrn8aAbdWaljNbZaXOHiGwWkU0i8mVO15jVvPg5D0/2M94uIn+6UWdW8mKdK4rITyKyVkRiROQmN+rMSl6scyURmees7wIRKe9GnVlFRMaKyEER2ZjG6yIiHzifR4yINM7SAlQ1Xz0Af2AnUBUoAKwH6qZo0xv4yO1ac3idawBrgeLO/FVu153d65yi/WPAWLfrzoGf82jgUWe6LrDb7bpzYJ0nA72c6X8AE9yu+wrXuTXQGNiYxus3AbMAAZoBy7Ny+flxS6MpsENVf1PVC8BXQBeXa8pu3qzzQ8BIVT0GoKoHc7jGrHa5P+fuwH9zpLLs4806K1DEmS4KxOVgfdnBm3WuC8x3pn9K5XWfoqoLgaPpNOkC/Fs9lgHFRKRsVi0/P4ZGOWBvsvlY57mUbnc27aaISIWcKS3beLPONYGaIrJYRJaJSM7ccDj7ePtzRkQqAVX4/z8svsqbdX4VuEdEYoHv8Wxh+TJv1nk9cJszfSsQKiIlcqA2t3j9fz8z8mNoeGMGUFlVGwBzgPEu15MTAvDsomqL51v3GBEp5mpFOecuYIqqJrpdSA7oDoxT1fJ4dmNMEJG8/nfgWaCNiKwF2gD7gPzws84Wef0/S2r2Acm3HMo7z12iqkdU9bwz+xnQJIdqyy4ZrjOebyPTVTVeVXcB2/GEiK/yZp0vugvf3zUF3q3zA8AkAFVdCgThGeTOV3nz+xynqrepaiPgJec5nz/pIR2X83//suXH0FgJ1BCRKiJSAM8fjOnJG6TY/xcNbMnB+rJDhusMfItnKwMRKYlnd9VvOVlkFvNmnRGR2kBxYGkO15cdvFnn34H2ACJSB09oHMrRKrOWN7/PJZNtTb0AjM3hGnPadOBe5yyqZsBxVd2fVZ0HZFVHvkJVE0SkP/ADnjMvxqrqJhEZDKxS1enA4yISDSTgOeDU27WCs4CX6/wDcL2IbMaz6T5AVY+4V/WV8XKdwfNH5it1TjvxZV6u8zN4dj0+heegeG9fXncv17kt8JaIKLAQ6OdawVlARP6LZ51KOsemXgECAVR1FJ5jVTcBO4AzwH1Zunwf/v9ijDEmh+XH3VPGGGMyyULDGGOM1yw0jDHGeM1CwxhjjNcsNIwxxnjNQsPkeiJyyos2T4pIcBYu8xYRqZuF/S25gveecv4NF5Ep6bQrJiJ9M7scY7xhoWHyiieBywoNEfFP5+Vb8Ax0lyVUtUUW9BGnql3TaVIMsNAw2cpCw/gMEWnr3A9hiohsFZGJzlWvjwPhwE8i8pPT9noRWSoia0RksoiEOM/vFpG3RWQN0E1EHhKRlSKyXkS+EZFgEWmBZySAYc69NqqJSIQzkGOMiEwVkeJOfwvEc1+OVSKyRUSuEZH/icivIvJ6stpPJZt+XkQ2OMscksp6VnFq35Cij8oX76EgIvVEZIVTX4yI1ACGANWc54aJSIh47iOxxumrS7J+tojIGPHcO+VHESnkvFZdROY6ta0RkWrO8wOczylGRP6VpT9Y41vcHhveHvbI6AGccv5tCxzHM5aOH56hP65zXtsNlHSmS+K58rewM/888M9k7Z5L1neJZNOvA4850+OArsleiwHaONODgfed6QXA2870E3iGGi8LFMQznleJFOtwI7AECHbmw1JZ3+nAvc50v2TvrYxzDwXgQ+BuZ7oAUCj5687zAUCRZJ/JDjz3WKiMZ7SDCOe1ScA9zvRy4FZnOgjP1tv1eO7DIc7nPhNo7fb/C3u488h3w4gYn7dCVWMBRGQdnj+Av6Ro0wzPrqXFIgKeP6rJx5b6Otl0fefbfDEgBM9wFH8hIkWBYqr6s/PUeDw39rno4pAkG4BN6ozzIyK/4Rk4LvlwLB2AL1T1DICqpnZfhJbA7c70BODtVNosBV4Sz13o/qeqvzrr+pfSgTdFpDWQhGd47NLOa7tUdZ0zvRqoLCKhQDlVnerUds5Zj+vxBMdap30InsEsF6ZSl8njLDSMrzmfbDqR1P8PCzBHVbun0cfpZNPjgFtUdb2I9MYZtDGTNSWlqC8pjfq8ke74Pqr6pYgsB24GvheRh/n7AJN3A6WAJqoaLyK78Ww9JK8ZPJ9joXQWJ8BbqvrpZdRv8ig7pmHyipNAqDO9DGgpItUBRKSwiNRM432hwH4RCcTzR/Zv/anqceCYiLRyXusJ/EzmzAHuu3iml4iEpdJmMZ6BFElR0yUiUhX4TVU/AKYBDfjrZwCeO/MddAKjHVApvcJU9SQQKyK3OMso6NT5A3B/suNC5UTkKq/W1uQ5FhomrxgNzBaRn1T1EJ6Rif8rIjF4duXUTuN9L+PZj78Y2Jrs+a+AASKy1jkY3AvPgfEYIALPcY3Lpqqz8ezOWuXsXns2lWZPAP1EZANp33HtDmCj00d9PLf3PIJnl9xGERkGTAQinX7uTbF+aemJZ5TnGDzHXsqo6o/Al8BSp68p/DWcTD5io9waY4zxmm1pGGOM8ZqFhjHGGK9ZaBhjjPGahYYxxhivWWgYY4zxmoWGMcYYr1loGGOM8dr/AcZ3Ac6i6HQzAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -150,7 +157,7 @@ "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8FHX+x/HXJ42QQiAQWgIkIFaQqodn5bAAJ+UUlQ72E7Hcz1MQUUDFrgiCSlMERURFiEpV8VQQT1QsgJ50Qg2QBEgoKZ/fHzvEGEJYIJvJ7n6ej8c+mNmZ/c57krCfnfnufEdUFWOMMQYgxO0AxhhjKg4rCsYYYwpZUTDGGFPIioIxxphCVhSMMcYUsqJgjDGmkBUFY0ogIheLyG9l2N5wEXmzrNozxlesKJhyJyIbROTyYs/1F5GvnOlKIjJZRDaKyD4RWSEiHUppr7+I5IvI/mKPuiebUVW/VNUzSstcHk50uyIyRUQeP4Xt/UtE1onIXhHZKiKjRCTsZNsz/seKgqmIwoDNwKVAHDAUmCkiyaW85mtVjSn22Or7qAEnFWipqlWAJkAz4G53I5nyZEXBVDiqmq2qw1V1g6oWqOpHwHqg1Ym2JSKNRGSPiLR05uuKSLqIXObMx4vI686n4gwRme08f5mIpDnT04D6wIfOEcgDzvNtRGSpiGSKyI9H2nSWpYjIf5wjnUVAjVIy1hCRj5x29ojIlyISUsp23xWR7SKSJSJfiMg5zvO3Ab2AB5z1Pyyyz+87+71eRI75Jq+qa1U180g0oAA47UR/7sZ/WVEwFZ6I1AJOB1ae6GtVdS0wCHhTRKKA14E3VPVzZ5VpQBRwDlATGFVCG32ATUAn5wjkGRFJBD4GHgfigX8D74tIgvOy6cB3eIrBY0C/UmLeB6QBCUAtYIhns0dv11l/HtDYyfs98JaTc4Iz/YyzficRCQE+BH4EEoF2wL0ictWxwohITxHZC+zCc6QwvpTsJsDYuULjltkikldkPgLPG9yfiEg4nje6N1T111LaayMimUXmd6tqIwBVnSginYBvAAU6O23XAToA1VU1w3ndf7zM3xuYq6pznflFIrIc6Cgii4HzgMtV9RDwxZFP7ceQC9QBGqjqGuDL0jasqq8dmRaR4UCGiMSpalYJq58HJKjqo878OhGZCHQHFhyj/enAdBFpDPQFdpSWxwQWO1IwbumqqlWPPIABxVdwPuVOAw4DA4/T3rKi7R0pCEVMxHOO/CXnjRqgHrCnSEE4EQ2A65xTPplOQboIz5t7XSBDVbOLrL+xlLaeBdYAC51O3sHHWlFEQkXkKRFZ63ya3+AsOtbpqQZA3WI5h+A5IimVqv6O5+js5eOtawKHHSmYCklEBJiM582ro6rmnkJbMcCLTnvDReR9Vd2DpzM7XkSqFjmPfizFhxPeDExT1VtL2F4DoJqIRBcpDPVLaMPTsOo+PKeQ7hORJsBnIvKtqn5awmt6Al2Ay/EUhDggA8/5/2PlXK+qjY+zf8cSBhQvsCaA2ZGCqaheAc7Ccz79wCm2NRpYrqq34OkHeBVAVbfhOT//sohUE5FwEbnkGG3sABoWmX8T6CQiVzmf3iOdzukkVd0ILAdGiEiEiFwEdDpWOBG5WkROcwphFpCPp4O3pO3GAoeA3Xj6Qp44Ts7/AvtEZJCIVHayNhGR846R5RYRqelMnw08CHx6rOwm8FhRMBWO80n7dqA5sF3+uO6gVykvu0COvk7hPBHpArQH7nDW+z+gZZG2+uA5p/8rsBO49xjtPwkMdU7B/FtVN+P5xD4ESMfzifx+/vg/1RP4C7AHGAZMLSV7Y+ATYD/wNfCyqi4uabtOOxuBLcAqYFmxtiYDZzvrz1bVfOBqPD/L9Xg6jyfhOcIoyYXAzyKSDcx1HkNKyW4CjNhNdowxxhxhRwrGGGMKWVEwxhhTyIqCMcaYQlYUjDHGFPK76xRq1KihycnJbscwxhi/8t133+1S1YTjred3RSE5OZnly5e7HcMYY/yKiJR2VX0hO31kjDGmkBUFY4wxhawoGGOMKeR3fQrGmPKRm5tLWloaBw8edDuKOQGRkZEkJSURHh5+Uq+3omCMKVFaWhqxsbEkJyfjGavPVHSqyu7du0lLSyMlJeWk2rDTR8aYEh08eJDq1atbQfAjIkL16tVP6ejOioIx5pisIPifU/2dBU1RyNu1i+1PPIEePux2FGOMqbCCpijkLP+OjKnT2DZ8BDZcuDH+ITQ0lObNmxc+nnrqqRNuIzU1tfB1s2fPZtWqVSfcRkxMjNfrvvjii+Tk5JTZekU9/PDDnHvuuTRv3pwrr7ySrVu3ntDrvaKqfvVo1aqVnqydo8foqjPO1PQJE066DWOCxapVq9yOoNHR0WXaXr9+/fTdd9/1aY4GDRpoenp6ma1XVFZWVuH06NGj9fbbby9xvZJ+d3juPnjc99igOVIAqHHXQKp07Ej68y+wd+FCt+MYY05CVlYWZ5xxBr/99hsAPXr0YOLEiQDMnz+fli1b0qxZM9q1awfAlClTGDhwIEuXLiU1NZX777+f5s2bs3btWtauXUv79u1p1aoVF198Mb/++isA69ev54ILLqBp06YMHTq0xBzZ2dn8/e9/p1mzZjRp0oR33nmHMWPGsHXrVtq2bUvbtm0BuOOOO2jdujXnnHMOw4YNAyhxvYULF3LBBRfQsmVLrrvuOvbv33/UNqtUqfKn7fuizyeovpIqItR58glyt2xh6wODCK9Tl8pNm7gdy5gKb/sTT3Bo9a9l2mals86k9pDS7/R54MABmjdvXjj/4IMPcsMNNzB27Fj69+/PPffcQ0ZGBrfeeivp6enceuutfPHFF6SkpLBnz54/tfXXv/6Vzp07c/XVV9OtWzcA2rVrx6uvvkrjxo355ptvGDBgAJ999hn33HMPd9xxB3379mXcuHElZps/fz5169bl448/BjzFKi4ujhdeeIHFixdTo0YNAEaOHEl8fDz5+fm0a9eOn376ibvvvvtP6+3atYvHH3+cTz75hOjoaJ5++mleeOEFHnnkkaO2+9BDDzF16lTi4uJYvHjxUctPVVAdKQCEVKpE0rixhMXHkzZgALnbt7sdyRhzDJUrV2bFihWFjxtuuAGAK664gqZNm3LnnXcyadIkAJYtW8Yll1xS+P38+Pj4Utvev38/S5cu5brrrqN58+bcfvvtbNu2DYAlS5bQo0cPAPr06VPi65s2bcqiRYsYNGgQX375JXFxJd/2eubMmbRs2ZIWLVqwcuXKEvs0li1bxqpVq7jwwgtp3rw5b7zxBhs3ljx+3ciRI9m8eTO9evVi7Nixpe7jyQiqI4UjwmrUIOnVV9jYoyeb7xhA8pvTCImOdjuWMRXW8T7Rl7eCggJWr15NVFQUGRkZJCUlnVQbVatWZcWKFSUuP96pmdNPP53vv/+euXPnMnToUNq1a3fUJ/v169fz3HPP8e2331KtWjX69+9f4jUEqsoVV1zB22+/7XX+Xr160bFjR0aMGOH1a7wRdEcKR0SefjqJL47i0G+/seXf96P5+W5HMsZ4adSoUZx11llMnz6dG2+8kdzcXNq0acMXX3zB+vXrAY46fQQQGxvLvn37AM/5+ZSUFN59913A88b8448/AnDhhRcyY8YMAN56660SM2zdupWoqCh69+7N/fffz/fff3/UNvbu3Ut0dDRxcXHs2LGDefPmlZilTZs2LFmyhDVr1gCe/oL//e9/R23z999/L5yeM2cOZ555prc/Mq8FbVEAiLn4Ymo9NIT9ixez89nn3I5jjCnmSJ/CkcfgwYP57bffmDRpEs8//zwXX3wxl1xyCY8//jgJCQlMmDCBa665hmbNmhWeaiqqe/fuPPvss7Ro0YK1a9fy1ltvMXnyZJo1a8Y555zDnDlzABg9ejTjxo2jadOmbNmypcRsP//8M+effz7NmzdnxIgRhR3St912G+3bt6dt27Y0a9aMFi1acOaZZ9KzZ08uvPDCwtcXXS8hIYEpU6bQo0cPzj33XC644ILCTu+iBg8eTJMmTTj33HNZuHAho0ePLosf85+I+tl39lu3bq1lfZOd7Y+PJOPNN6k9YgTVbri+TNs2xl+tXr2as846y+0Y5iSU9LsTke9UtfXxXhuUfQrF1Ro8iMObNrL90UeJqJdE9F//6nYkY4xxRVCfPjpCwsJIfOEFKjVsSNo993Jo7Vq3IxljjCusKDhCY2Ko9+orSKVKbP7nHeRlZLgdyRjX+dvpZXPqvzMrCkWEJyZSb9xY8nbuJO3OgRTY4HkmiEVGRrJ7924rDH5EnfspREZGnnQbPutTEJHXgKuBnap61GXDItILGAQIsA+4Q1V/9FUeb1Vu1oy6Tz3Jln/9H9uGDqXu00/b8MEmKCUlJZGWlkZ6errbUcwJOHLntZPly47mKcBYYOoxlq8HLlXVDBHpAEwA/uLDPF6r0qEDhzdsIH30GCKSk0kYMMDtSMaUu/Dw8JO+e5fxXz4rCqr6hYgkl7J8aZHZZcDJlzYfqP7Pf3J4wwZ2jXmJSsnJVOnY0e1IxhjjcxWlT+FmYN6xForIbSKyXESWl9ehrIhQ+7HHqNyqFVsHP8iBY1wKb4wxgcT1oiAibfEUhUHHWkdVJ6hqa1VtnZCQUG7ZQiIiSBr7EmG1arH5zoEcTiv5ykZjjAkUrhYFETkXmAR0UdXdbmY5lrBq1ag3/lU0N5fNN99M3u4KGdMYY8qEa0VBROoDs4A+qnr0yE8VSKWGDan36ivk7tjB5ttuJ39/ttuRjDHGJ3xWFETkbeBr4AwRSRORm0XknyLyT2eVR4DqwMsiskJEynZAozIW1bIliS+O4uCvv5J2l13DYIwJTDYg3gnKnD2bbYMfJPaqq0h84XkkNNS1LMYY4y1vB8RzvaPZ31Tt2pWaDzzAvgUL2P7YY3a1pzEmoNgoqSeh+k03kr9nN7snTSaseg0S7hrodiRjjCkTVhROUsJ995G3J4Nd48YRWj2e+J493Y5kjDGnzIrCSRIR6jw6gvzMTHY89jhh1apRpUMHt2MZY8wpsT6FU+C5D8PzVG7Zki0PDCJ76dLjv8gYYyowKwqnKCQyknqvvEyllBQ2D7yLAz//7HYkY4w5aVYUykBolSrUmzSRsGrV2Hzb7Rxat97tSMYYc1KsKJSR8Jo1qT95EoSEsOmWm8ndscPtSMYYc8KsKJShiORk6k0YT0HWXjbfcgv5mZluRzLGmBNiRaGMVT7nHJLGjePwho1s/ucdFBw44HYkY4zxmhUFH4hu8xfqPv8cB376ibR770Vzc92OZIwxXrGi4CNVrryS2sOGkf2fL9j60ENoQYHbkYwx5rjs4jUfqnbD9eRn7CH9xdGExlWl1pAHERG3YxljzDFZUfCx6rffTn5GJnveeAMJDaXmoAesMBhjKiwrCj4mItQcPAjNy2PPlClIWCgJ991nhcEYUyFZUSgHIkKtoQ+hBfnsnjQZQsNIuPceKwzGmArHikI5ERFqP/ww5OWze/x4JCzMhtw2xlQ4VhTKkYSEUHvEcDQ/n13jxkFoCAkDBrgdyxhjCllRKGcSEkKdxx6F/Hx2jXkJCQ2jxu23uR3LGGMAKwqukNBQ6jwxEs3PJ33UKCQslOo33+x2LGOMsaLgFgkNpe5TT0JBPjuffQ5CQ6nev7/bsYwxQc6KgoskLIy6zzyD5hew86mnkdAw4vv0djuWMSaI+WyYCxF5TUR2isgvx1guIjJGRNaIyE8i0tJXWSoyCQsj8blnib3icnaMHMme6dPdjmSMCWK+HPtoCtC+lOUdgMbO4zbgFR9mqdAkPJzE558n5m9/Y8ejj5Hxzky3IxljgpTPioKqfgHsKWWVLsBU9VgGVBWROr7KU9FJRASJL44i5tJL2T5sGJnvv+92JGNMEHJzlNREYHOR+TTnuaOIyG0islxElqenp5dLODeERESQOGY00RdfzLahD5P5wWy3IxljgoxfDJ2tqhNUtbWqtk5ISHA7jk+FVKpE0ktjiL7gArYNGUJWaqrbkYwxQcTNorAFqFdkPsl5LuiFREaSNG4sUX/5C1sHP0jWhx+5HckYEyTcLAqpQF/nW0htgCxV3eZingolpHJl6r08jqhWrdg6aJD1MRhjyoXPrlMQkbeBy4AaIpIGDAPCAVT1VWAu0BFYA+QAN/oqi78KiYqi3oTxpN11N9seGkrB/v3E9+vndixjTADzWVFQ1R7HWa7Anb7afqAIqVyZpJfHsfXf97PjyafI37+fGgMG2LDbxhif8IuO5mAXEhFB4gvPE/ePf7DrpbHsfPoZPDXVGGPKlg1z4SckLIw6Ix8nJDqaPVOmUJC9n9rDhyOhoW5HM8YEECsKfkRCQqj10BBCYqLZ/ep4CrKzqfv000h4uNvRjDEBwoqCnxERat57L6ExMex87nkKsnNIHP0iIZGRbkczxgQA61PwU9VvuYXaw4ex/4sv2Hzb7eTvz3Y7kjEmAFhR8GPVunen7jPPkPPdd2y66SbyMzPdjmSM8XNWFPxcXKerSRozmkOrV7OxT1/yAnhsKGOM71lRCACx7dpRb8J4Dm/ZwobevcndYqOFGGNOjhWFABF9wQXUnzyJ/IxMNvTqzaF1692OZIzxQ1YUAkhUixY0eGMKevgwG3v35uCvv7odyRjjZ6woBJjIs86iwZtvIhERbOzbj5wffnA7kjHGj1hRCECVGqaQ/NabhFaryqabbmbf4sVuRzLG+AkrCgEqPDGR5DffpFJKCml3DiRjxjtuRzLG+AErCgEsLCGBBtOmEn3xRWwfPpydz7+AFhS4HcsYU4FZUQhwIdHR1Bs3jqrXX8/uiRPZ+sAgCg4fdjuWMaaCsrGPgoCEhVF7xHDCExNJHzWKvJ07SRr7EqFVqrgdzRhTwdiRQpAQEWrcfht1n32GnB9+YEPPnuRu3ep2LGNMBWNFIcjEdepE/YkTyduxkw03dOfgqlVuRzLGVCBWFIJQdJu/kDz9LQgLY2PvPuz/8ku3IxljKggrCkGqUuPGJM+YQXiDBmz+5x1kvvee25GMMRWAFYUgFl6rJg2mTSP6ggvYNvRh0seMsXs/GxPkrCgEudCYaOq98jJx3a5l18uvsG3wYNS+smpM0LKvpBokPJw6jz1GRGIi6aPHkLtzJ0ljxhAaG+t2NGNMOfPpkYKItBeR30RkjYgMLmF5fRFZLCI/iMhPItLRl3nMsYkINe64gzpPPUnOt8vZ2LMXudu2uR3LGFPOfFYURCQUGAd0AM4GeojI2cVWGwrMVNUWQHfgZV/lMd6p2rUr9SdOIHfbNjbc0J0Dv6x0O5Ixphz58kjhfGCNqq5T1cPADKBLsXUUOHJZbRxgV1NVANEXXECDt96C0FA29upF1kcfux3JGFNOfFkUEoHNRebTnOeKGg70FpE0YC5wV0kNichtIrJcRJan2z2Iy0XkGaeT8t67RDZpwtZ//9szmF5+vtuxjDE+5va3j3oAU1Q1CegITBORozKp6gRVba2qrRMSEso9ZLAKq16dBq+/VjiYXtqAO8nft8/tWMYYH/JlUdgC1Csyn+Q8V9TNwEwAVf0aiARq+DCTOUESEUGdR0dQe9gj7F+yhA03dOfQerv/szGBypdF4VugsYikiEgEno7k1GLrbALaAYjIWXiKgp0fqoCq9ehB/dcmk5+RwYbrb7ChMYwJUD4rCqqaBwwEFgCr8XzLaKWIPCoinZ3V7gNuFZEfgbeB/mqX1FZY0eefT/K77xJety6bb/8nuye/ZldAGxNgxJv/1CIyC5gMzFNVV2/d1bp1a12+fLmbEYJeQU4OWx8cwr4FC6jSuRN1Hn2UkMhIt2MZY0ohIt+pauvjreftkcLLQE/gdxF5SkTOOKV0xq+FREWR+OIoatx9F3tTP2Rjn77k7tjhdixjTBnwqiio6ieq2gtoCWwAPhGRpSJyo4iE+zKgqZhEhIQBA0gaN5bDa9eyvls3DqxY4XYsY8wp8rpPQUSqA/2BW4AfgNF4isQinyQzfiG2XTsazHibkMjKbOzTl8xZH7gdyRhzCrwqCiLyAfAlEAV0UtXOqvqOqt4FxPgyoKn4Ik8/neSZ71C5dSu2DRnC9ieeQPPy3I5ljDkJ3h4pjFHVs1X1SVX90yhp3nRcmMAXVq0a9SdOpFrfPmRMncbm224jLyPD7VjGmBPk7dDZ1UTkmmLPZQE/q+rOMs5k/JSEhVF7yBAizziT7cOHs/7aa0kaNYrKzZq5Hc0Y4yVvjxRuBiYBvZzHRGAQsERE+vgom/FTVa+9hgbT30IQNvTuw56p0+x6BmP8hLdFIRw4S1WvVdVr8QyFrcBf8BQHY/6kctOmpMx6n5iLLmLHE0+w5Z57bdwkY/yAt0UhSVWLfhF9J1BPVfcAuWUfywSC0KpVSXp5HDXvv599n37K+m7dOLh6tduxjDGl8LYofC4iH4lIPxHpB8xxnosGMn0Xz/g7EaH6zTfRYNpU9OAhNtzQnYyZM+10kjEVlLdF4U7gdaC585gK3Kmq2ara1lfhTOCIatmSlA9mEXXeeWx/ZBhbBw2iIDvb7VjGmGKO++0j57aanzhv/u/7PpIJVGHx8dSbMJ5d48eza+w4Dq5cRdLoF6l02mluRzPGOI57pKCq+UCBiMSVQx4T4CQ0lIQBAzzDcGdmsv6668maM8ftWMYYh7enj/YDP4vIZBEZc+Thy2AmsEW3aUPKB7Oo3KQJWwcNZtvDD1Nw8KDbsYwJet5evDbLeRhTZsJr1qT+66+R/tJYdo8fz4GffyHpxVFEJCe7Hc2YoOXV/RQARKQyUF9Vf/NtpNLZ/RQC0/4vvmDr/Q+geXnUGfk4Vdq3dzuSMQGlTO+nICKdgBXAfGe+uYgUv7WmMSct5pJLSPlgFpVOO40t9/6L7Y8+aqeTjHGBt30Kw4Hzca5JUNUVQEMfZTJBKrxuXRpMm0r8jTeSMf1t1l/bjYOrVrkdy5ig4m1RyFXVrGLPuXpbThOYJCKCWoMeoP5rkynYt4/1N3Rn96RJaH6+29GMCQreFoWVItITCBWRxiLyErDUh7lMkIv+619JmTOb2LZt2fnc82y68SZyt207/guNMafE26JwF3AOcAh4G9gL3OurUMaA5x4NiaNfpM7IkRz85RfWdelK1scfux3LmIDm9bePKgr79lFwOrxpE1vvf4ADP/5Ilc6dqP3ww4TGxrodyxi/UdbfPjpdRCaIyEIR+ezIw4vXtReR30RkjYgMPsY614vIKhFZKSLTvcljgk9E/fo0eOtNagwcyN6P57K+S1dy7MOBMWXOqyMFEfkReBX4Dijs8VPV70p5TSjwP+AKIA34FuihqquKrNMYmAn8TVUzRKTm8e7kZkcKJueHH9j6wCByt2yh+q23kjDwTiQ83O1YxlRoZXqkAOSp6iuq+l9V/e7I4zivOR9Yo6rrVPUwMAPoUmydW4FxqpoBYLf2NN6IatGClA8+IK5rV3aPH8+GHj05tH6927GMCQjeFoUPRWSAiNQRkfgjj+O8JhHYXGQ+zXmuqNOB00VkiYgsE5ESL2MVkdtEZLmILE9PT/cysglkoTHR1H1iJImjR5O7eTPrr7mWjHfsPg3GnCpvi0I/4H48X0P9znmUxTmcMKAxcBnQA5goIlWLr6SqE1S1taq2TkhIKIPNmkBR5aorSUmdQ1SL5mwfNoy0OweSt2eP27GM8VteFQVVTSnhcbwrmrcA9YrMJznPFZUGpKpqrqqux9MH0djb8MYAhNeqRb1Jk6g5eBDZX37Juk6d2Tt/gduxjPFLpRYFEXmgyPR1xZY9cZy2vwUai0iKiEQA3YHi4yXNxnOUgIjUwHM6aZ1XyY0pQkJCqN6/P8nvvUd4rVpsufde0u65l7xdu9yOZoxfOd6RQvci0w8WW1bqMJaqmgcMBBYAq4GZqrpSRB4Vkc7OaguA3SKyClgM3K+qu71Ob0wxkWecTvLMd0j417/Y/9lnrLu6E1kffmR9DcZ4qdSvpIrID6raovh0SfPlxb6Sarx1aO1atg15iAM//khM27bUHj6M8Fq13I5ljCvK6iupeozpkuaNqVAqNWpEg+lvUXPQILKXLmXd1Z3IfH+WHTUYU4rjFYVmIrJXRPYB5zrTR+ablkM+Y06JhIZS/cb+NJwzm8gzzmDbQw+x+ZZbyd261e1oxlRIpRYFVQ1V1SqqGquqYc70kXm7hNT4jYjkZOpPfYNaDw8l54cfWHd1JzJmzEALbAR4Y4ry9joFY/yehIQQ36sXDVNTqdy8GduHj2DTjTdxeNMmt6MZU2FYUTBBJyIpkXqTJ1P7sUc5uHIl67p0Zc/UqXYjH2OwomCClIhQ7brraPjRh0Sdfx47nniSjb37cGidjaFkgpsVBRPUwmvXpt6rr1L36ac4tG4d67t2JX3sOAoOHXI7mjGusKJggp6IENelC40++pDYy9uxa+xY1nfuwv4lS9yOZky5s6JgjCMsIYHEF16g3uRJKMrmm29hy//dR+5OG9HdBA8rCsYUE3PhhTRMTaXGwIHs++QT1nX8O3umvWkd0SYoWFEwpgQhlSqRMPBOGn6YSuVmzdgxciQbrrueAz//7HY0Y3zKioIxpYho0IB6kyaSOOoF8tLT2XD9DWwbMYL8vXvdjmaMT1hRMOY4RIQqHTrQcN5cqvXpTeY7M1nboSNZqak2jpIJOFYUjPFSaEwMtYcMIeW9dwlPSmTrA4PY1P9GDq2zW4CYwGFFwZgTFHn22SS//Ta1R4zg4OrVrOvSlZ2jXqTgwAG3oxlzyqwoGHMSJCSEajdcT6N5c4n7+9/ZPX685zagixbZKSXj16woGHMKwqpXp+5TT9Jg2lRCKkey5a672dT/Rg7+9pvb0Yw5KVYUjCkDUeedR8oHH1B72CMc+u031v/jGrY9Moy83XZ3WeNfrCgYU0YkLIxqPXrQaMF84vv0IXPWLNZe1Z7dk1+j4PBht+MZ4xUrCsaUsdC4OGo9OJiGqalEtW7NzmefZd3Vndj36afW32AqPCsKxvhIpYYp1Hv1FepNmoREhJN250A23XiT9TeYCs2KgjE+FnPRhTScPZtaDw/l0OrV1t9gKjSfFgURaS8iv4nIGhEZXMp614qIikiaJUCZAAATKklEQVRrX+Yxxi0SFkZ8r140WriA+D69/+hveO111PobTAXis6IgIqHAOKADcDbQQ0TOLmG9WOAe4BtfZTGmovD0NzxIw9Q5RLVqxc5nnmFtJ+tvMBWHL48UzgfWqOo6VT0MzAC6lLDeY8DTwEEfZjGmQqnUsCH1xr9KvYkTkTCnv6FvPw6sWOF2NBPkfFkUEoHNRebTnOcKiUhLoJ6qflxaQyJym4gsF5Hl6enpZZ/UGJfEXHwRDefMptYjD3No3To2dO9B2l13cWjtWrejmSDlWkeziIQALwD3HW9dVZ2gqq1VtXVCQoLvwxlTjiQsjPiePTlt4QIS7rmb7KVfs65TZ7YOHUrutm1uxzNBxpdFYQtQr8h8kvPcEbFAE+BzEdkAtAFSrbPZBKuQ6Ghq3HEHjT5ZRHyfPuydk8raq9qz45lnycvIcDueCRK+LArfAo1FJEVEIoDuQOqRhaqapao1VDVZVZOBZUBnVV3uw0zGVHhh1apR68HBNJo/jyodO7Ln9ddZe+VV7Hp1PAU5OW7HMwHOZ0VBVfOAgcACYDUwU1VXisijItLZV9s1JlCEJyZS96knSZkzm6jzziP9xRdZc9VVZMyYgebmuh3PBCjxt6/BtW7dWpcvt4MJE3xyvv+enc+/wIHvviOiQQMS7r2H2KuuQkLsGlRzfCLynaoe9/S8/TUZ4yeiWrakwZvTSHrlZSQigi3/+j82XHc9+5cscTuaCSBWFIzxIyJCbNu2pMz+gLpPP0V+Rgabb76Fjf36k2NH0KYMWFEwxg9JaChxXbrQcP48ag15kENr17Kxdx829r+RnG+/dTue8WNWFIzxYyEREcT37ctpixZS68HBHFqzho19+nqOHKw4mJNgRcGYABBSuTLx/fr9URzWrS0sDtn//a/b8YwfsaJgTAD5ozgs8pxWWreWTX37WXEwXrOiYEwAComMdE4rFSsOfftZcTClsqJgTAA7qjisX/dHcfjGioM5mhUFY4LAn4vDEA6vX8+mfv3Y2Kcv2cu+sXs5mEJWFIwJIp7i0IdGixZ6isOGDWzq35+N3Xuw75NP0IICtyMal1lRMCYIFS0OtYc9Qt7u3aQNvIt1V3cic9YHdovQIGZFwZggFhIZSbUePWg0fx51n38OiYhg25AhrLnyKnZPmUJBdrbbEU05swHxjDGFVJXsr75i98RJ5Pz3v4TExRHfqyfVevcmLD7e7XjmFHg7IJ4VBWNMiQ6sWMGuSZPY/8mnSGQkVbt1o/qN/QlPTDz+i02FY0XBGFMmDq1dy+7Jr5H14YdQUECVv3ek+s23EHnG6W5HMyfAioIxpkzlbt/OnilvkDFzJpqTQ8yll1L91luo3KoVIuJ2PHMcVhSMMT6Rn5nJnunTyZj2JvkZGUQ2bUp8375UuepKJCLC7XjmGKwoGGN8quDAATI/+ICMqdM4vGEDYTVrUq1nT6recD1h1aq5Hc8UY0XBGFMutKCA7K++Ys8bU8lesgSpVIm4Ll2I79uHSqed5nY847CiYIwpd4d+/509U6eRlZqKHjpE9IUXEt+vL9EXXWT3knaZFQVjjGvyMjLIfGcmGdOnk7dzJxEpKcT37UNcly6EREW5HS8oWVEwxrhODx9m74KF7HnjDQ7+8gshVapQ7frrqNarF+F16rgdL6hYUTDGVBiqyoEfVrBn6lT2LVwIIsReeQXxvXtTuWVL+0prOfC2KIT5OER7YDQQCkxS1aeKLf8/4BYgD0gHblLVjb7MZIwpfyJCVMsWRLVsQe6WLeyZPp3Md99j37z5VGrcmKo9uhPXuTOhMTFuRw16PjtSEJFQ4H/AFUAa8C3QQ1VXFVmnLfCNquaIyB3AZap6Q2nt2pGCMYGhICeHvXPnkvH2DA6uXIlERRHXqRPVenQn8swz3Y4XcLw9UvDl1wHOB9ao6jpVPQzMALoUXUFVF6tqjjO7DEjyYR5jTAUSEhVF1W7dSHn/PZLfnUmV9u3Jmj2b9V3/wYbuPciaM4eCQ4fcjhl0fFkUEoHNRebTnOeO5WZgXkkLROQ2EVkuIsvT09PLMKIxpiKo3LQpdZ8YSeMv/kOtBweTn5nJ1kGDWXPpZex45lkOb7SzyuWlQnxxWER6A62BZ0tarqoTVLW1qrZOSEgo33DGmHITGhdHfL9+NJw3l/pTXifq/PPZ88YbrL2qPZtuvsVzd7i8PLdjBjRfdjRvAeoVmU9ynvsTEbkceAi4VFXtWNEYg4gQ3aYN0W3akLtjJ5nvvUvmzHdJG3gXYbVrU/W6blTtdh3htWq6HTXg+LKjOQxPR3M7PMXgW6Cnqq4ssk4L4D2gvar+7k271tFsTHDSvDz2f/45GW/PIHvJEggJIebii4nrdi2xl15qg/EdR4W4TkFEOgIv4vlK6muqOlJEHgWWq2qqiHwCNAW2OS/ZpKqdS2vTioIx5vDGjWS+P4usDz4gLz2d0Ph44rp0oWq3a6nUqJHb8SqkClEUfMGKgjHmCM3LY/9XX5H1/vvsW/w55OVRuVkz4rpdS5UOHQmNiXY7YoVhRcEYE1Tydu8ma04qme+/z+G1a5HKlanSvj1Vu11rV01jRcEYE6RUlQMrVpA1axZ7P55LQU4OEcnJxF17DVW7diUsSL/BaEXBGBP0CrKz2Tt/AZmzZnHgu+8gNJSYSy+l6jX/IOaSS4Kqc9qKgjHGFHFo3XqyPphF5uzZ5KfvIjQujtiOHYjr3JnKzZsH/OklKwrGGFMCzc0le+lSslI/ZN+nn6IHDxJevz5xnToR17kTEQ0auB3RJ6woGGPMceTv38++hYvI+jCVnGXfgCqVmzWjSpfOVOnQIaDuNW1FwRhjTkDu9u3s/egjsuakcuj33yEsjJhLLiGuc2di2l5GSKVKbkc8JVYUjDHmJB389Vey5qSy96OPyEtPJyQ2lirtr/L0P7Rq5Zf3m7aiYIwxp0jz88letoy9qR+yd9EiNCeH8Lp1ie3QniodOhJ5ztl+00FtRcEYY8pQQU4O+z79jKyPPiR7yVLIyyO8QX2qdOhAlQ4dqXR64wpdIKwoGGOMj+RnZrLvk0/YO3ce2cuWQUEBEY0aeQpExw5UatjQ7YhHsaJgjDHlIG/3bvYtXMjeufPIWb4cVKl0xhmFBSKifn23IwJWFIwxptzl7tjJvgUL2DtvHgd++AGAyCZNnFNM7QmvW9e1bFYUjDHGRblbt7J33nz2zpvHwV9+AaBy8+bEXnUVsVdcTkRS+d6S3oqCMcZUEIc3bfIUiPnzObR6NQCVzj6LKldcQewVVxDRqJHPO6mtKBhjTAV0ePNm9i36hH2LFhWeYopISSHWKRCRTc7xSYGwomCMMRVc7o6d7P/sU/YtWkT2N/+F/HzC6tQh9vLLib3icqJatUJCQ8tkW1YUjDHGj+RnZrJv8eeeAvHVV+jhw4TGxxPb7m/EXnEFUW3aEHIKQ31bUTDGGD9VkJ3N/i+/ZN/CRez//HMKcnIIiYmhxoABVL/pxpNq09uiEHZSrRtjjPGZkOhoqrRvT5X27Sk4dIjsr79m36JFhNep7fNtW1EwxpgKLKRSJWIvu4zYyy4rn+2Vy1aMMcb4BZ8WBRFpLyK/icgaERlcwvJKIvKOs/wbEUn2ZR5jjDGl81lREJFQYBzQATgb6CEiZxdb7WYgQ1VPA0YBT/sqjzHGmOPz5ZHC+cAaVV2nqoeBGUCXYut0Ad5wpt8D2klFHnvWGGMCnC+LQiKwuch8mvNcieuoah6QBVQv3pCI3CYiy0VkeXp6uo/iGmOM8YuOZlWdoKqtVbV1QkKC23GMMSZg+bIobAHqFZlPcp4rcR0RCQPigN0+zGSMMaYUviwK3wKNRSRFRCKA7kBqsXVSgX7OdDfgM/W3S6yNMSaA+HSYCxHpCLwIhAKvqepIEXkUWK6qqSISCUwDWgB7gO6quu44baYDG08yUg1g10m+1l/ZPgcH2+fgcCr73EBVj3v+3e/GPjoVIrLcm7E/Aontc3CwfQ4O5bHPftHRbIwxpnxYUTDGGFMo2IrCBLcDuMD2OTjYPgcHn+9zUPUpGGOMKV2wHSkYY4wphRUFY4wxhQKyKHgxZHd/EUkXkRXO4xY3cpal4+2zs871IrJKRFaKyPTyzljWvPg9jyryO/6fiGS6kbMsebHP9UVksYj8ICI/OdcK+TUv9rmBiHzq7O/nIpLkRs6yIiKvichOEfnlGMtFRMY4P4+fRKRlmQZQ1YB64LlQbi3QEIgAfgTOLrZOf2Cs21nLeZ8bAz8A1Zz5mm7n9vU+F1v/LjwXULqe3ce/5wnAHc702cAGt3OXwz6/C/Rzpv8GTHM79ynu8yVAS+CXYyzvCMwDBGgDfFOW2w/EIwVvhuwONN7s863AOFXNAFDVneWcsayd6O+5B/B2uSTzHW/2WYEqznQcsLUc8/mCN/t8NvCZM724hOV+RVW/wDPCw7F0AaaqxzKgqojUKavtB2JR8GbIboBrnUOv90SkXgnL/Yk3+3w6cLqILBGRZSLSvtzS+Ya3v2dEpAGQwh9vHP7Km30eDvQWkTRgLp4jJH/mzT7/CFzjTP8DiBWRo4bgDyBe/+2fjEAsCt74EEhW1XOBRfxxo59AFobnFNJleD41TxSRqq4mKj/dgfdUNd/tIOWgBzBFVZPwnGaYJiKB/v/838ClIvIDcCme0ZeD4XftE4H4x3LcIbtVdbeqHnJmJwGtyimbr3gzTHkakKqquaq6HvgfniLhr7zZ5yO64/+njsC7fb4ZmAmgql8DkXgGUfNX3vx/3qqq16hqC+Ah5zm//1JBKU7kb/+EBWJROO6Q3cXOv3UGVpdjPl/wZpjy2XiOEhCRGnhOJ5U6Im0F580+IyJnAtWAr8s5ny94s8+bgHYAInIWnqLgz7cr9Ob/c40iR0MPAq+Vc8bylgr0db6F1AbIUtVtZdV4WFk1VFGoap6IDAQW8MeQ3SuLDtkN3C0inYE8PB06/V0LXAa83OcFwJUisgrPofX9quq3NzTycp/B8yYyQ52vbfgzL/f5PjynBv+Fp9O5vz/vu5f7fBnwpIgo8AVwp2uBy4CIvI1nn2o4fUPDgHAAVX0VT19RR2ANkAPcWKbb9+O/F2OMMWUsEE8fGWOMOUlWFIwxxhSyomCMMaaQFQVjjDGFrCgYY4wpZEXBuE5E9nuxzr0iElWG2+wqImeXYXtLT+G1+51/64rIe6WsV1VEBpzsdozxhhUF4y/uBU6oKIhIaCmLu+IZSK1MqOpfy6CNrararZRVqgJWFIxPWVEwFYaIXOaMh/+eiPwqIm85V23eDdQFFovIYmfdK0XkaxH5XkTeFZEY5/kNIvK0iHwPXCcit4rItyLyo4i8LyJRIvJXPFeyP+vca6GRiDR3Bgr8SUQ+EJFqTnufi+e+DMtFZLWInCcis0TkdxF5vEj2/UWmB4nIz842nyphP1Oc7D8XayP5yBj6InKOiPzXyfeTiDQGngIaOc89KyIx4rmPwPdOW12KtLNaRCaK594ZC0WksrPsNBH5xMn2vYg0cp6/3/k5/SQiI8r0F2v8i9tjh9vDHsB+59/LgCw8Y7mE4Bma4iJn2QaghjNdA8+Vq9HO/CDgkSLrPVCk7epFph8H7nKmpwDdiiz7CbjUmX4UeNGZ/hx42pm+B89Q1HWASnjGk6pebB86AEuBKGc+voT9TQX6OtN3FnltMs4Y+sBLQC9nOgKoXHS583wYUKXIz2QNnjH2k/Fcrd/cWTYT6O1MfwP8w5mOxHP0dSWe+zCI83P/CLjE7b8Le7jzCLhhLozf+6+qpgGIyAo8b3BfFVunDZ5TP0tEBDxvmkXHNnqnyHQT59N4VSAGz3AJfyIicUBVVf2P89QbeG7ccsSRITN+BlaqM86MiKzDMzBZ0eFCLgdeV9UcAFUtaVz8C4FrnelpwNMlrPM18JB47iI2S1V/d/b1T9GBJ0TkEqAAz/DJtZxl61V1hTP9HZAsIrFAoqp+4GQ76OzHlXgKww/O+jF4Bkv8ooRcJsBZUTAVzaEi0/mU/DcqwCJV7XGMNrKLTE8BuqrqjyLSH2dQwJPMVFAsX8Ex8nmj1PFlVHW6iHwD/B2YKyK3c/QAhr2ABKCVquaKyAY8n/6LZgbPz7FyKZsT4ElVHX8C+U2Asj4F4y/2AbHO9DLgQhE5DUBEokXk9GO8LhbYJiLheN5Ej2pPVbOADBG52FnWB/gPJ2cRcOORb0qJSHwJ6yzBM1AfxTIVEpGGwDpVHQPMAc7lzz8D8NxZbadTENoCDUoLpqr7gDQR6epso5KTcwFwU5F+mUQRqenV3pqAY0XB+IsJwHwRWayq6XhGtn1bRH7Cc6rlzGO87mE859GXAL8WeX4GcL94bnDfCOiHp+P5J6A5nn6FE6aq8/GcblrunP76dwmr3QPcKSI/c+w7Zl0P/OK00QTP7Rd34zll9ouIPAu8BbR22ulbbP+OpQ+eUYJ/wtP3UVtVFwLTga+dtt7jz8XHBBEbJdUYY0whO1IwxhhTyIqCMcaYQlYUjDHGFLKiYIwxppAVBWOMMYWsKBhjjClkRcEYY0yh/wequhKmOlEsogAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -170,6 +177,13 @@ " pylab.legend(loc='upper right')\n", " pylab.show()" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -188,7 +202,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_mappings.ipynb b/community/aqua/chemistry/h2_mappings.ipynb index 6a3a3ad6c..2c21b217e 100644 --- a/community/aqua/chemistry/h2_mappings.ipynb +++ b/community/aqua/chemistry/h2_mappings.ipynb @@ -12,19 +12,57 @@ "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "This notebook has been written to use the PYSCF chemistry driver." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Processing step __\b\b 0" + "Processing step 20 --- complete\n", + "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", + " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", + "Energies: [[[-1.0550072 -1.07448988 -1.0924703 -1.10560872 -1.11617561\n", + " -1.12411068 -1.12989951 -1.13377934 -1.13618819 -1.13718219\n", + " -1.13693919 -1.11393966 -1.13361768 -1.10702409 -1.10251126\n", + " -1.09745433 -1.11822278 -1.08595587 -1.09165606 -1.10587795\n", + " -1.1011269 ]\n", + " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", + " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", + " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", + " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", + " -1.10115033]]\n", + "\n", + " [[-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", + " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13720975\n", + " -1.1370938 -1.13602101 -1.13411334 -1.13150719 -1.12831842\n", + " -1.1246409 -1.12051863 -1.11605095 -1.11129941 -1.10631446\n", + " -1.10113394]\n", + " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", + " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", + " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", + " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", + " -1.10115033]]\n", + "\n", + " [[-1.05455947 -1.07579394 -1.09245568 -1.1057838 -1.11595615\n", + " -1.12392843 -1.12915081 -1.13217365 -1.13590692 -1.1371984\n", + " -1.13674928 -1.13514718 -1.13336169 -1.13069373 -1.12796665\n", + " -1.1244492 -1.12029028 -1.11595806 -1.11131729 -1.10626288\n", + " -1.10100739]\n", + " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", + " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", + " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", + " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", + " -1.10115033]]]\n", + "Hartree-Fock energies: [-1.04299627 -1.06306214 -1.07905074 -1.0915705 -1.10112824 -1.10814999\n", + " -1.11299655 -1.11597526 -1.11734903 -1.11734327 -1.11615145 -1.11393966\n", + " -1.1108504 -1.10700581 -1.10251055 -1.09745432 -1.09191404 -1.08595587\n", + " -1.07963693 -1.07300676 -1.06610865]\n" ] } ], @@ -84,9 +122,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAHwCAYAAAAM12EMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XtcVVX6+PHPEhUUDBXwgpaakxdA7kKIeE8mUxBTCZ0ma7TGUksnG5ufKWjNNGqlaU1lKn1LA7MyNB3NvKIpoB5U8H7JDDQxRRCQ2/r9cQ5nQAERuanP+/Xiley99lrP3ufw6jnrPHttpbVGCCGEEEIIUfPq1XYAQgghhBBC3K8kGRdCCCGEEKKWSDIuhBBCCCFELZFkXAghhBBCiFoiybgQQgghhBC1RJJxIYQQQgghaokk40KI+4ZSaoxSKra247iXKaUClFJHq6iv9koprZSqb/p9vVLqmWL731RKpSmlzpt+D1FK/aKUylRKeVRFDPcipdRopdTG2o5DCGEkybgQ9yml1Bml1IAbtpmTVaWUpVJqiVLqZ6VUhlLKoJR6/BZ9tlZKLVZKpZgSolNKqUilVJfqPJeqopT6i1LqiOl8Lyil1imlmpj2RSql3ryNvu4o8TcdX2C6jsV/HCvbZ03QWu/QWneupr4f11p/BqCUegj4G+CktW5lajIPmKC1ttFa76+OGMqilApXSn1Rk2NWltZ6udZ6YG3HIYQwkmRcCFGW+sAvQG/AFpgOrFRKtS+tsVLKDtgFNAYCgCaAJ7ANeKyMY+pXddCVpZTqDfwTCNNaNwG6AtG1GxU/mRLL4j8pVTlAXXoNbtNDwCWt9W/FtrUDkirT2V18HYQQdzlJxoUQpdJaX9Nah2utz2itC7XWa4HTgFcZh0wGrgJPa61PaqMrWutlWuuFUKLs4C9KqbPAZtP2IKVUklLqilJqq1Kqa1GnpvZ/KPa7eYZaKdVHKXVOKfU3pdRvSqlUpdSzxdraKaVilFJXlVJxQMdyTrk7xuR3v+n8f9daf6a1zlBKPQ+MBl4zzU6vMfU/TSl10jSTnqyUCjFt7wp8BPiZ2l8xbbdUSs1TSp01zbx/pJRqVOEXpRjTNxuvKqUOKKXSlVLRSimrYvsHm77NuKKU2qWUcr3h2L8rpQ4A15RS9ZVSnkqp/aZz+crUX9F1PqSUGlLs+Aam8pCbSkGKXpOKxnnDsRam65OmlDoFPHHD/q1KqbGmb3R+ABxN1/dLpVQmYAEkKqVOmto7KqW+VkpdVEqdVkpNKtZXuFJqlVLqC6XUVWCMUqpesdf0klJqpVKqual90Xv3GdPrl6aU+n+mfX8E/gGEmuJJLOc1m2q6FteU8ZunlspYfpOhlNqklGpWrP1XSqnzpuu2XSnlXGxfpOn984Pp2G1KqXbF9mul1CRl/HYqTSk1VylVz7SvxLc2prZ/VUodN71fPlBKqWKvyTumPk4rpSaokqVDY0xjZJj2jy7t3IUQZZNkXAhRIUqplkAnyp55HAB8q7UurEB3vTHOPAcqpToBXwKvAA7AOmCNUqphBUNrhXHmvg3wF+CDYgnNB0AO0Bp4zvRTlj2meCKUUv5KKcuiHVrrT4DlwBzT7HRRYnoS47cAtkAE8IVSqrXW+jDwV/43s93U1P5tjNfQHfiDKeYZFTzP0owE/gh0AFyBMQCmJHkp8AJgB3wMxBQ/JyAMY7LbFOP/C74FIoHmGF+PkGJt/w/4U7HfBwGpt1EKUmqcpRgHDAY8AG9geGmNtNabgMeBFNP1DdNa25h2u2mtO5oSzzVAIsbr3B94RSkVWKyrYGAVxmuwHJgIDMX4/nQELmN8DxXXE+hs6m+GUqqr1vq/GL9ViTbF41bOtXgS4zdFnYAhwHqMibwDxtdhUrG264FHgBbAPlOMxY0GZgP2gKGU/SEYr6On6VzLe/8PxviB1BXj61V0ncZhvNbupn6GFh2glLIG3gceN32b1MMUhxDiNkgyLsT9bbVpJuyKMs7eflhaI6VUA4z/o/9Ma32kjL7sgfPFjgky9Zuhbr5ZLNw0854NhALfa61/0FrnYaz7bYTxf+wVkQfM0lrnaa3XAZlAZ6WUBcbEZ4ZprEPAZ2V1orXeAQzDmHB8D1xSSr1r6qesY77SWqeYvjmIBo4DPqW1Nc00Pg9MNs26Z2BM4J4q59weLf76FM34FvO+afzfMSae7qbtzwMfa633aK0LTHXW14FHbzj2F9Nr8CjGsqT3TdfxGyCuWNsvgEFKqQdMvz8NfF5O3DcqK84bjQTmm+L6HfjXbYxxo+6Ag9Z6ltY6V2t9ClhMyev9k9Z6ten1y8b4Aer/aa3Paa2vA+HAcFWyhCVCa52ttU7EmOiXl3iXZqHW+oLW+ldgB7BHa71fa52D8QOR+dsGrfVSrXVGsVjclFK2xfr6Xmu93bT//2H8JubBYvv/bXqvnQXmY/wAVpa3Td9knQW28L/XaCSwwHRNLmP8QFlcIeCilGqktU7VWleqTEiI+5kk40Lc34ZqrZsW/QAv3tjANMP4OZALTCinr0sYZ6AB0FrHmPqcDNw4y/1LsX87Aj8XO67QtL9NBc/hktY6v9jvWYANxpnGorr3Ij9TDq31etOsd3OMM4ljgLFltVdK/Vn9rxTkCuCC8UNJaRww1tPvLdb+v6btZdld/PXRWt9YZnO+2L+LzhuMtdN/u+GD1oMYr3WRG1+DX7XWurT9pjr1ncCTSqmmGGdKb5yFLU9Zcd7Ikdt4vW6hHcYyluLX4B9Ay2JtfinlmG+LtT8MFNxwTEXPpSwXiv07u5TfbcBcHvK2qWTmKnDG1Kb4+6v4a5QJ/E7Zr/HPN+y7UVnndeNrUnzMaxg/TP8VSFVKfa/ukpu1hahLJBkXQpTJNJu7BGMy8qRp5rosPwJDi+pSb6F40peCMQkqPuaDwK+mTVkYk9giraiYi0C+qa8iD1XkQNNM6Y8Ya9pdSokZU33uYowfUOxMHzwOAaq09kAaxmTLuVhybVusvKIq/QK8dUMi31hr/WWxNsXjSwXaFNUJmxS/bmD8VuFPwAiMM8q/UvVSqcTrVYZfgNM3XIMmWutBxdrc+Br9grHkovgxVhU81xv7ulOjMH4gHICxDKq9aXupr5FSygbjh8iU0vZjvJaVufk3FWhbRp9orTdorR/D+EH8CMa/CSHEbZBkXAhRnv9grO0eYvoavzzvAs2Az5VSHZVRE8ouSSiyEnhCKdXfVA7zN4wlFbtM+w3AKNNM4R8x1vPekta6APgGCFdKNVZKOQHPlNVeKRWslHpKKdXMFLuPaazdpiYXgIeLHWKNMQG7aDr+Wf6XuBe1b1tU+26a8V8MvKeUamE6ps0NNcxVZTHwV6WUr+lcrJVST5hej9L8hHEGeIIy3swZzM3lNqsxlvC8jLGGvDqsBCYppdqa6v6n3UFfcUCGMt6o2sj0/nFRSnUv55iPgLdMH7RQSjmYrkVFXADaV/DDaEU0wfh3cAnjh9F/ltJmkFKqp+k9NhvjNynFZ7Gnmt7PD2J83SqzOtBK4GXTe7Up8PeiHcp482mwqXb8OsYSsYrcMyKEKEaScSFEqUwJyQsYk+nz6n/rXJe6WoLWOg1j7XEOEAtkYEykmwDjyxpHa30U44zrQoyzx0MwJv+5piYvm7ZdwXjD2urbOI0JGL9uP4/x5sRl5bS9jPFmteMYV4X5ApirtS4qx1gCOJlKGFZrrZOBdzAmsheAbhhLOYpsxniz63mlVJpp29+BE8BuU+nBJow3A5bFT928znh5ySQAWusE07ksMp3XCcq+aRLTtR6G8QbYKxhfj7UYE6yiNtnA1xhvwvzmVjFU0mJgA8Za7H13Mo7pw9hgjO/f0xjfW59inGUuywIgBtiolMrA+EHMt4JDfmX67yWl1L5KBV3S/2EsLfkVSOZ/HwqLWwHMxFie4kXJm2wBvgP2Yvw7/B7je/h2LQY2AgeA/RhvsM7H+OGtHjAF44z77xg/vJb5ty6EKJ0qWSIohBBCgFJqD/CR1npZsW0zgE5a6xuTPlHDlFKRwDmt9fQy9mvgEa31iSoe93GM74t2t2wshKgQmRkXQgiBUqq3UqqVqUzlGYxL3P232P7mGGfOP6mtGEXNM5X4DDK9L9pgnIn/trbjEuJeUmvJuFJqhDI+5KNQKeVdTrs/KqWOKqVOKKVuqh9USr2vjA97EEIIUXmdMZaHXMFYtz9ca50KoJQah/HmxvVa6+21F6KoBQrjGvqXMZapHObO1sYXQtyg1spUlPEJdYUYH0bxqqnG8cY2FsAxjA9IOAfEY3xUdbJpvzfGetKQalqRQAghhBBCiGpTazPjWuvDphu3yuMDnNBanzLdYBSFcamnokR9LvBa9UYqhBBCCCFE9ajrNeNtKPmwgXP870EgE4CYoq9RhRBCCCGEuNvUv3WTylNKbaL0B3T8P631d3fQryPGB0/0qUDb5zE+Ghpra2uvLl3k4WBCCCGEEKJ67d27N01rXd5TloFqTsa11gPusItfKfm0r7ambR7AH4ATpgfGNVZKndBa/6GUGD7BdPe/t7e3Tki4qTRdCCGEEEKIKqWU+rki7ao1Ga8C8cAjSqkOGJPwp4BRWuskis24K6UyS0vEhRBCCCGEqMtqc2nDEKXUOcAP+F4ptcG03VEptQ5Aa52PsTZ8A8bllFaaEnEhhBBCCCHuevfVEzilTEUIIYQQQtQEpdRerXWZz9IpUtfLVIQQQghRR+Tl5XHu3DlycnJqOxQh6gwrKyvatm1LgwYNKnW8JONCCCGEqJBz587RpEkT2rdvj2kBBSHua1prLl26xLlz5+jQoUOl+qjr64wLIYQQoo7IycnBzs5OEnEhTJRS2NnZ3dG3RZKMCyGEEKLCJBEXoqQ7/ZuQZFwIIYQQdw0bG5sSv0dGRjJhwoTb6sNgMLBu3bqqDKuEyMhIHBwccHd3x93dnT//+c+33cfWrVsZPHhwNUQn6hqpGRdCCCHEfSM/Px+DwUBCQgKDBg0qdX/9+neeHoWGhrJo0aI77kfc+2RmvAbcT8tHCiGEELVlzZo1+Pr64uHhwYABA7hw4QIA4eHhPP300/j7+/P0008zY8YMoqOjcXd3Jzo6+qb9BQUFTJ06le7du+Pq6srHH39sHmPu3Lnm7TNnzryt+AwGA48++iiurq6EhIRw+fJlAE6cOMGAAQNwc3PD09OTkydPljguPj4eDw+Pm7aLe4PMjFezH5Iv8K91h1k9wZ8HrCq35I0QQghR10SsSSI55WqV9unk+AAzhziX2yY7Oxt3d3fz77///jtBQUEA9OzZk927d6OU4tNPP2XOnDm88847ACQnJxMbG0ujRo2IjIwkISHBPHMdHh5eYv8nn3yCra0t8fHxXL9+HX9/fwYOHMjx48c5fvw4cXFxaK0JCgpi+/bt9OrV66Y4o6OjiY2NBeDll1/m2Wef5c9//jMLFy6kd+/ezJgxg4iICObPn8/o0aOZNm0aISEh5OTkUFhYyC+//ALArl27mDhxIt999x0PPfTQnV9kUedIMl7Nmls35FTaNTYmXWC4V9vaDkcIIYS4qzVq1AiDwWD+vSixBuPSi6GhoaSmppKbm1tiqbmgoCAaNWpUZr/F92/cuJEDBw6watUqANLT0zl+/DgbN25k48aNeHh4AJCZmcnx48dLTcZvLFNJT0/nypUr9O7dG4BnnnmGESNGkJGRwa+//kpISAhgXLO6yOHDh3n++efZuHEjjo6Ot3ehxF1DkvFq5vlQU9o2a0RMYook40IIIe4Zt5rBrg0TJ05kypQpBAUFsXXrVsLDw837rK2tyz22+H6tNQsXLiQwMLBEmw0bNvD666/zwgsvlNj+wQcfsHjxYoAqvTG0devW5OTksH//fknG72FSM17NlFIEuTmy80QaaZnXazscIYQQ4p6Vnp5OmzZtAPjss8/KbNekSRMyMjLK3B8YGMh//vMf8vLyADh27BjXrl0jMDCQpUuXkpmZCcCvv/7Kb7/9xksvvYTBYMBgMJSZNNva2tKsWTN27NgBwOeff07v3r1p0qQJbdu2ZfXq1QBcv36drKwsAJo2bcr333/P66+/ztatW2/vYoi7hiTjNSDI3ZGCQs26g6m1HYoQQghxzwoPD2fEiBF4eXlhb29fZru+ffuSnJxsvoHzRmPHjsXJyQlPT09cXFx44YUXyM/PZ+DAgYwaNQo/Pz+6devG8OHDy03qb/TZZ58xdepUXF1dMRgMzJgxAzAm5u+//z6urq706NGD8+fPm49p2bIla9eu5aWXXmLPnj23cTXE3ULdTyt9eHt766K6spoW+N52mljVZ9X4HrUyvhBCCHGnDh8+TNeuXWs7DCHqnNL+NpRSe7XW3rc6VmbGa0iQuyMJP1/m3OWs2g5FCCGEEELUEZKM15AhrsYasjWJUqoihBBCCCGMJBmvIQ/ZNcbjoabEJKbUdihCCCGEEKKOkGS8BgW5OXI49SrHL1T8Zg8hhBBCCHHvkmS8Bj3h2pp6CpkdF0IIIYQQgCTjNapFEyv8OtoRk5jC/bSKjRBCCCGEKJ0k4zUs2K0NP1/K4sC59NoORQghhBBC1DJJxmtYoEsrGlrU4zuDlKoIIYQQt6Nv375s2LChxLb58+czfvx4AJKSkujXrx+dO3emY8eOzJw5k8LCQgAiIyNxcHDA3d3d/JOcnFzueIMGDeLKlSuVjjcyMpIJEyZU+vjKuNOYRc2TZLyG2TZqQO/ODqw9kEJBoZSqCCGEEBUVFhZGVFRUiW1RUVGEhYWRnZ1NUFAQ06ZN4+jRoxw8eJC4uDgWLFhgbhsaGmp+bL3BYMDJyanc8datW0fTpk0rFJvW2pz416bbibky8vPzq63v+1X92g7gfhTs7sgPyRfYc/oSPTqW/bheIYQQos5aPw3OH6zaPlt1g8ffLnP38OHDmT59Orm5uTRs2JAzZ86QkpJCQEAAS5cuxd/fn4EDBwLQuHFjFi1aREBAAJMnT65UOO3btychIQF7e3veffddli5dCsDYsWN55ZVXOHPmDIGBgfj6+rJ3717WrVvH5s2b+de//kXTpk1xc3PD0tISgDVr1vDmm2+Sm5uLnZ0dy5cvp2XLloSHh3P27FlOnTrF2bNneeWVV5g0aVKp8cydOxdLS0smTZrE5MmTSUxMZPPmzWzevJklS5awfPnyEjHPnj2bL774AgcHBx588EG8vLx49dVX6dOnD76+vmzZsoUrV66wZMkSAgICKCgoYNq0aWzdupXr16/z0ksv8cILL7B161beeOMNmjVrxpEjRzh27FilrqconcyM14L+XVpi3dCCNbKqihBCCFFhzZs3x8fHh/Xr1wPGWfGRI0eilCIpKQkvL68S7Tt27Eh2dra5bCM6OrpEmUp2dnaFxt27dy/Lli1jz5497N69m8WLF7N//34Ajh8/zosvvkhSUhINGzZk5syZ7Ny5k9jY2BJlMD179mT37t3s37+fp556ijlz5pj3HTlyhA0bNhAXF0dERAR5eXmlxhEQEMCOHTsASEhIIDMzk7y8PHbs2EGvXr1KtI2Pj+frr78mMTGR9evXk5CQUGJ/fn4+cXFxzJ8/n4iICACWLFmCra0t8fHxxMfHs3jxYk6fPg3Avn37WLBggSTi1UBmxmtBo4YWPObUknUHzxMR5ELD+vKZSAghxF2mnBns6lRUqhIcHExUVBRLliyp8LGhoaEsWrTotseMjY0lJCQEa2trAIYNG8aOHTsICgqiXbt2PProowDs2bOHPn364ODgYB6vKHk9d+4coaGhpKamkpubS4cOHcz9P/HEE1haWmJpaUmLFi24cOECbdu2vSkOLy8v9u7dy9WrV7G0tMTT05OEhAR27NjB+++/X6Ltzp07CQ4OxsrKCisrK4YMGVJi/7Bhw8x9njlzBoCNGzdy4MABVq1aBUB6ejrHjx+nYcOG+Pj4lIhZVB3JAmtJsHsb0rPz2H7sYm2HIoQQQtw1goOD+fHHH9m3bx9ZWVnm2XAnJyf27t1bou2pU6ews7Or1hrqogT9ViZOnMiECRM4ePAgH3/8MTk5OeZ9RaUsABYWFmXWZTdo0IAOHToQGRlJjx49CAgIYMuWLZw4cYKuXbveVtxFYxYfT2vNwoULzTX1p0+fNpf9VPQ8xe2TZLyW9HzEnmaNG8gDgIQQQojbYGNjQ9++fXnuuecICwszbx89ejSxsbFs2rQJgOzsbCZNmmQuwShPly5dyt0fEBDA6tWrycrK4tq1a3z77bcEBATc1M7X15dt27Zx6dIl8vLy+Oqrr8z70tPTadOmDQCfffZZhc61rFjmzZtHr169CAgI4KOPPsLDwwOlVIl2/v7+rFmzhpycHDIzM1m7du0t+w4MDOQ///mPuUzm2LFjXLt2rdKxioqRZLyWNLCox+PdWvND8gWycuXOZCGEEKKiwsLCSExMLJGMN2rUiJiYGN566y06deqEvb09/v7+jB492tzmxprxXbt2kZaWVu6D+JRSeHp6MmbMGHx8fPD19WXs2LF4eHjc1LZ169aEh4fj5+eHv79/idnq8PBwRowYgZeXF/b2lV+8ISAggNTUVPz8/GjZsiVWVlalfjDo3r07QUFBuLq68vjjj9OtWzdsbW3L7Xvs2LE4OTnh6emJi4sLL7zwgqyeUgPU/fQkSG9vb33jDQy1afepSzz1yW4WPOVOsHub2g5HCCGEKNfhw4dvuxyitqxevZopU6awZcsW2rVrV2a7tWvXcurUqZtWMCkoKKBFixacP3+eBg0aVHe41SIzMxMbGxuysrLo1asXn3zyCZ6enrUd1j2ptL8NpdRerbX3rY6VGzhrkU/75rR6wIo1iSmSjAshhBBVaOjQoQwdOvSW7QYPHlzqdmdnZ8aOHXvXJuIAzz//PMnJyeTk5PDMM89IIl5HSTJei+rVUwxxa03krjNcycqlaeOGtR2SEEIIITAuN1hbLl26RP/+/W/a/uOPP2JnZ1fhflasWFGVYYlqIsl4LQtya8PiHadZf+g8YT4P1XY4QgghhKhldnZ2GAyG2g5D1BC5gbOWubR5gIftrYkxyKoqQgghhBD3G0nGa5lSiiFujuw+fYkLV3NufYAQQgghhLhnSDJeBwS5O6I1rJE1x4UQQggh7iuSjNcBHR1scHZ8QJJxIYQQohx9+/Zlw4YNJbbNnz+f8ePHA5CUlES/fv3o3LkzHTt2ZObMmRQWFgIQGRmJg4NDiXXGk5OTqzXemJgY3n77bcC41GJ1jyfuTpKM1xHB7o4knkvnTJo86UoIIYQoTVhYGFFRUSW2RUVFERYWRnZ2NkFBQUybNo2jR49y8OBB4uLiWLBggbltaGio+VHvBoMBJyenaos1Pz/fHA9IMi7KJsl4HTHY1RGQUhUhhBCiLMOHD+f7778nNzcXgDNnzpCSkkJAQAArVqzA39+fgQMHAtC4cWMWLVrE3LlzKz2ejY0NkydPxtnZmf79+3Px4kUAFi9eTPfu3XFzc+PJJ58kKysLgDFjxvDXv/4VX19fXnvtNSIjI5kwYQK7du0iJiaGqVOn4u7uzsmTJ0us+X38+HFZA/w+Jksb1hGOTRvh07453yWmMKHfH1BK1XZIQgghRJn+HfdvjvxetWtxd2nehb/7/L3M/c2bN8fHx4f169cTHBxMVFQUI0eORClFUlISXl5eJdp37NiR7Oxsrly5AkB0dDSxsbHm/T/99BONGjUqc7xr167h7e3Ne++9x6xZs4iIiGDRokUMGzaMcePGATB9+nSWLFnCxIkTATh37hy7du3CwsKCyMhIAHr06EFQUBCDBw9m+PDhANja2mIwGHB3d2fZsmU8++yzt3/BxD1BZsbrkCB3R078lsnh1IzaDkUIIYSok4qXqhSVqFTUjWUq5SXiAPXq1SM0NBSAP/3pT+ZE/tChQwQEBNCtWzeWL19OUlKS+ZgRI0ZgYWFxy1jGjh3LsmXLKCgoIDo6mlGjRlX4PMS9RWbG65BB3VoTHpNETGIKTo4P1HY4QgghRJnKm8GuTsHBwUyePJl9+/aRlZVlng13cnJi+/btJdqeOnUKOzs7mjZtWiVjF31rPWbMGFavXo2bmxuRkZFs3brV3Mba2rpCfT355JNERETQr18/vLy8buvJmuLeIjPjdUhz64b0fMSeNYkpFBbq2g5HCCGEqHNsbGzo27cvzz33XIlZ8dGjRxMbG8umTZsAyM7OZtKkSURERNyyzy5dupS6vbCwkFWrVgHGR8v37NkTgIyMDFq3bk1eXh7Lly+vUNxNmjQhI+N/33xbWVkRGBjI+PHjpUTlPifJeB0T7O7Ir1ey2Xf2cm2HIoQQQtRJYWFhJCYmlkjGGzVqRExMDG+99RadOnXC3t4ef39/Ro8ebW4THR1dYmnDXbt2kZaWhtalT4BZW1sTFxeHi4sLmzdvZsaMGQDMnj0bX19f/P39y0zkb/TUU08xd+5cPDw8OHnyJGD8AFGvXj3zTafi/qTKegPei7y9vXVCQkJth1GuzOv5eM3+gdDuDzIr2KW2wxFCCCHMDh8+TNeuXWs7jApZvXo1U6ZMYcuWLbRr167MdmvXruXUqVNMmjTppn02NjZkZmZWW4zz5s0jPT2d2bNnV9sYomaU9rehlNqrtfa+1bFSM17H2FjWZ0DXlnx/IJUZg52obyFfXgghhBC3a+jQoQwdOvSW7QYPHlwD0dwsJCSEkydPsnnz5loZX9QdkunVQUPcHLl0LZedJy/VdihCCCHEfas6Z8W//fZbDhw4gL29fbWNIe4OkozXQX06O9DEqj4xBnkAkBBCCCHEvUyS8TrIqoEFf3RuxYak8+TkFdR2OEIIIYQQoppIMl5HBbk7knk9ny1HfqvtUIQQQgghRDWRZLyO8nvYDnsbS2ISpVRFCCGEEOJeJcl4HVXfoh6DXVvz45HfyMjJq+1whBBCCCFENZBkvA4b4uZIbn4hG5Mu1HYoQgghRK3r27cvGzZsKLFt/vz5jB8/HoCkpCT69etH586d6dixIzNnzqSwsBCAyMhIHBwcSjz0Jzk5udzxbGxsqudEyjBjxgzzE0RL0759e9LS0m7a3qNHDwDOnDnDihUrqi0+UT0kGa/DPB9qSttmjfj3xn6FAAAgAElEQVROSlWEEEIIwsLCiIqKKrEtKiqKsLAwsrOzCQoKYtq0aRw9epSDBw8SFxfHggULzG1DQ0MxGAzmHycnpzuOKT8//477KDJr1iwGDBhw28ft2rULkGT8biUP/anDlFIEuTny8fZTXMq8jp2NZW2HJIQQQgBw/p//5PrhI1Xap2XXLrT6xz/K3D98+HCmT59Obm4uDRs25MyZM6SkpBAQEMDSpUvx9/c3P1q+cePGLFq0iICAACZPnlzpmCZPnszGjRtp1aoVUVFRODg40KdPH9zd3YmNjSUsLIxOnTrx5ptvkpubi52dHcuXL8fBwYGHH34Yg8FA06ZNAXjkkUfYtGkTffr04dixYzRo0ICrV6/i5ubGsWPHGDduHIMHD2b48OHlxpSdnc2wYcMYNmwY48aNMz8pdNq0aRw+fBh3d3eeeeYZQkJCePrpp7l27RoAixYtMs+iz507l5UrV3L9+nVCQkKIiIhg2rRpPPjgg7z00ksAhIeHY2Njw6uvvlrp6yduTWbG67ggd0cKCjXrDqbWdihCCCFErWrevDk+Pj6sX78eMM6Kjxw5EqUUSUlJeHl5lWjfsWNHsrOzuXLlCgDR0dElylSys7PLHe/atWt4e3uTlJRE7969iYiIMO/Lzc0lISGBv/3tb/Ts2ZPdu3ezf/9+nnrqKebMmUO9evUIDg7m22+/BWDPnj20a9eOdu3a0adPH77//nvzOQwbNowGDRpU6BpkZmYyZMgQwsLCGDduXIl9b7/9NgEBARgMBiZPnkyLFi344Ycf2LdvH9HR0UyaNAmAjRs3cvz4ceLi4jAYDOzdu5ft27cTGhrKypUrzf2tXLmS0NDQCsUlKk9mxuu4Lq0eoFNLG74zpPC0X/vaDkcIIYQAKHcGuzoVlaoEBwcTFRXFkiVLKnxsaGgoixYtqnD7evXqmZPRP/3pTwwbNqxEX0XOnTtHaGgoqamp5Obm0qFDB3ObWbNm8eyzzxIVFWU+ZuzYscyZM4ehQ4eybNkyFi9eXOGYgoODee211xg9evQt2+bl5TFhwgQMBgMWFhYcO3YMMCbjGzduxMPDAzAm+MePH+cvf/kLv/32GykpKVy8eJFmzZrx4IMPVjg2UTkyM34XCHZvQ8LPl/n1Svmf4IUQQoh7XXBwMD/++CP79u0jKyvLPBvu5OTE3r17S7Q9deoUdnZ25jKRO6WUMv/b2tra/O+JEycyYcIEDh48yMcff0xOTg4Afn5+nDhxgosXL7J69WpzMu/v78+ZM2fYunUrBQUFuLi4VDgGf39//vvf/6K1vmXb9957j5YtW5KYmEhCQgK5ubkAaK15/fXXzbXzJ06c4C9/+QsAI0aMYNWqVURHR8useA2RZLya5Rw9yvl//hN9Bzd4DHF1BGCN3MgphBDiPmdjY0Pfvn157rnnCAsLM28fPXo0sbGx5tVIsrOzmTRpUonSkrJ06dKl1O2FhYWsWrUKgBUrVtCzZ89S26Wnp9OmTRsAPvvsM/N2pRQhISFMmTKFrl27YmdnZ9735z//mVGjRvHss8/eMr7iZs2aRbNmzcx13cU1adKEjIyMEnG1bt2aevXq8fnnn1NQYHyqd2BgIEuXLiUzMxOAX3/9ld9+Mz5kMDQ0lKioKFatWsWIESNuKzZROZKMV7Pcn3/m8v99TlZ8fKX7eMiuMe4PNiXGIMm4EEIIERYWRmJiYolkvFGjRsTExPDWW2/RqVMn7O3t8ff3L1HOcWPN+K5du0hLSytzltna2pq4uDhcXFzYvHkzM2bMKLVdeHg4I0aMwMvLC3t7+xL7QkND+eKLL26aZR49ejSXL18ucQ4VtWDBArKzs3nttddKbHd1dcXCwgI3Nzfee+89XnzxRT777DPc3Nw4cuSIeTZ/4MCBjBo1Cj8/P7p168bw4cPNSbyzszMZGRm0adOG1q1b33Zs4vapinzNca/w9vbWCQkJNTpm4cmfSB72V+yGBtM6Ylal+1m28zQRa5LZNKUXf2jRpAojFEIIISrm8OHDdO3atbbDqJDVq1czZcoUtmzZQrt27cpst3btWk6dOmW+ubGmrFq1iu+++47PP/+8RscV1aO0vw2l1F6ttfetjpWZ8Wq2YcU+Gg+cR+q2eLTp66HKeMK1NfUUMjsuhBBCVMDQoUM5depUuYk4wODBg2s8EZ84cSLTpk3jjTfeqNFxRd0kyXg1e8CpIw0trLjaxo+shL23PqAMLZpY4dfRjpjElArdtCGEEEKIumnhwoWcOHGCTp06lbo/JCSkRDmNu7v7TU8eFfcOWdqwmvkGD+DYrvU8YN+JjHVrsPb1qXRfQW6O/P3rgxw4l47bg1VzZ7gQQggh6paitcnF/UFmxqtZ/fr1+dXiPPZWrUnZsfeOSlX+6Nyahhb1iJFVVYQQQggh7gmSjNcAm54PU0/V46pjD7L37690P7aNG9C7swNrD6RQUCilKkIIIYQQdztJxmtA90G9Sc/7nQfsHuFqzDd31FeQmyMXrl4n7vTvVRSdEEIIIYSoLZKM14D69evza/2L2Fu14tedB9CFhZXua0DXljRuaEFM4q9VGKEQQgghhKgNkozXkKa9/0A9VY8Mxx5kGxIr3U+jhhYMdGrJuoPnyc2vfFIvhBBC3I0sLCxKrDLy9ttvV1nfBoOBdevWmX+PjIzEwcGhxHjJycmkpKQwfPjwKhu3Ms6cOYOLi0u1jzNo0CCuXLlS6eMjIyOZMGFCFUZ0a3cac02T1VRqiM+gPhzatBrb5n8g49vlNPb0qHRfQe6OrDaksOP4Rfp3bVmFUQohhBB1W6NGjTAYDNXSt8FgICEhgUGDBpm3hYaGsmjRopvarlq1qlpiqGn5+fnUr192Olj8w8mtaK3RWlOvXu3O9d5OzJVxq2t2uyQZr0G/NryEk36EX3YdpUVhIaqSb9aARxxo1rgB3xlSJBkXQghRK3asPEbaL5lV2qf9gzYEjCx97e3ypKen4+PjQ0xMDJ07dyYsLIx+/foxbtw4xo8fT3x8PNnZ2QwfPpyIiAgA4uPjefnll7l27RqWlpb88MMPzJgxg+zsbGJjY3n99dfLHO/MmTMMHjyYQ4cOkZWVxZgxYzh06BCdO3cmJSWFDz74AG9vbzZu3MjMmTO5fv06HTt2ZNmyZdjY2NC+fXueeeYZ1qxZQ15eHl999RVdunRh27ZtvPzyywAopdi+fTs2Nja89tprrF+/HqUU06dPJzQ0tEQ8jz76KEuWLMHZ2RmAPn36MG/ePLp27crEiRM5dOgQeXl5hIeHExwcTGRkJN988w2ZmZkUFBSwbdu2Ms+1ffv2JCQkYG9vz7vvvsvSpUsBGDt2LK+88gpnzpwhMDAQX19f9u7dy7p169i8eTP/+te/aNq0KW5ublhaWgKwZs0a3nzzTXJzc7Gzs2P58uW0bNmS8PBwzp49y6lTpzh79iyvvPJKmQ9imjt3LpaWlkyaNInJkyeTmJjI5s2b2bx5M0uWLGH58uUlYp49ezZffPEFDg4OPPjgg3h5efHqq6/Sp08ffH192bJlC1euXGHJkiUEBARQUFDAtGnT2Lp1K9evX+ell17ihRdeYOvWrbzxxhs0a9aMI0eOcOzYsQq+O29NylRqkF2/TiilyGzjT07igUr308CiHo93a80PyRfIys2vwgiFEEKIui07O7tE2Uh0dDS2trYsWrSIMWPGEBUVxeXLlxk3bhwAb731FgkJCRw4cIBt27Zx4MABcnNzCQ0NZcGCBSQmJrJp0yasra2ZNWsWoaGhGAwGc8IbHR1dYrzs7OwS8Xz44Yc0a9aM5ORkZs+ezd69xgf8paWl8eabb7Jp0yb27duHt7c37777rvk4e3t79u3bx/jx45k3bx4A8+bN44MPPsBgMLBjxw4aNWrEN998g8FgMMc5depUUlNTS8QQGhrKypUrAUhNTSU1NRVvb2/eeust+vXrR1xcHFu2bGHq1Klcu3YNgH379rFq1apyE/Hi9u7dy7Jly9izZw+7d+9m8eLF7DetEHf8+HFefPFFkpKSaNiwITNnzmTnzp3ExsaSnJxs7qNnz57s3r2b/fv389RTTzFnzhzzviNHjrBhwwbi4uKIiIggLy+v1DgCAgLYsWMHAAkJCWRmZpKXl8eOHTvo1atXibbx8fF8/fXXJCYmsn79ehISEkrsz8/PJy4ujvnz55s/pC1ZsgRbW1vi4+OJj49n8eLFnD592nzNFixYUKWJOMjMeI3yHhjAwf9+S9PmHbm6ahmNPBZUuq8gN0dW7DnLpsO/EeTmWIVRCiGEELdWmRnsqlBWmcpjjz3GV199xUsvvURi4v/uzVq5ciWffPIJ+fn5pKamkpycjFKK1q1b0717dwAeeOCBMscrq0ylSGxsrHk228XFBVdXVwB2795NcnIy/v7+AOTm5uLn52c+btiwYQB4eXnxzTfGldb8/f2ZMmUKo0ePZtiwYbRt25bY2FjCwsKwsLCgZcuW9O7dm/j4ePM4ACNHjmTgwIFERESwcuVKcz37xo0biYmJMSf7OTk5nD171ny9mjdvXuZ5lXaeISEhWFtbm+PfsWMHQUFBtGvXjkcffRSAPXv20KdPHxwcHMzXryh5PXfuHKGhoaSmppKbm0uHDh3M/T/xxBNYWlpiaWlJixYtuHDhAm3btr0pDi8vL/bu3cvVq1extLTE09OThIQEduzYwfvvv1+i7c6dOwkODsbKygorKyuGDBlSYn/x1+DMmTPma3bgwAFzGVJ6ejrHjx+nYcOG+Pj4lIi5qkgyXsNSLH/HWXfil7gztNAapVSl+vFp35xWD1gRY0iRZFwIIcR9r7CwkMOHD9O4cWMuX75M27ZtOX36NPPmzSM+Pp5mzZoxZswYcnJyaiQerTWPPfYYX375Zan7i0o3LCwsyM83fss9bdo0nnjiCdatW4e/vz8bNmyo0Fht2rTBzs6OAwcOEB0dzUcffWSO4euvv6Zz584l2u/Zs8ecVFeFivY1ceJEpkyZQlBQEFu3biU8PNy8r+h6QMlrcqMGDRrQoUMHIiMj6dGjB66urmzZsoUTJ07QtWvX24q7tNdAa83ChQsJDAws0Xbr1q1Ves2KkzKVGtbiMeMbJdOxBzmGfZXup149xRC31mw79htXsnKrKjwhhBDirvTee+/RtWtXVqxYwbPPPkteXh5Xr17F2toaW1tbLly4wPr16wHo3LkzqampxMfHA5CRkUF+fj5NmjQhIyPjtsb19/c3l4gkJydz8OBBwFjHvXPnTk6cOAHAtWvXblnecPLkSbp168bf//53unfvzpEjRwgICCA6OpqCggIuXrzI9u3b8fHxuenY0NBQ5syZQ3p6unnWPDAwkIULF6K18UGB+8t58GCXLl3KjS0gIIDVq1eTlZXFtWvX+PbbbwkICLipna+vL9u2bePSpUvmevgi6enptGnTBoDPPvus3PFuFcu8efPo1asXAQEBfPTRR3h4eNw0wenv78+aNWvIyckhMzOTtWvX3rLvwMBA/vOf/5jLZI4dO2Yu7akukozXMI9+Pfg99yLNmnUkI3rxHfUV5NaGvALNfw+dr6LohBBCiLrtxprxadOmcfToUT799FPeeecdAgIC6NWrF2+++SZubm54eHjQpUsXRo0aZS4ZadiwIdHR0UycOBE3Nzcee+wxcnJy6Nu3L8nJyeZadLi5ZnzXrl0l4nnxxRe5ePEiTk5OTJ8+HWdnZ2xtbXFwcCAyMpKwsDBcXV3x8/PjyJEj5Z7b/PnzzaUuDRo04PHHHyckJARXV1fc3Nzo168fc+bMoVWrVjcdO3z4cKKiohg5cqR52xtvvEFeXh6urq44OzvzxhtvlDpuWlqaOWEvjVIKT09PxowZg4+PD76+vowdOxYPj5tXhmvdujXh4eH4+fnh7+9fYrY6PDycESNG4OXlhb29fbnXojwBAQGkpqbi5+dHy5YtsbKyKvWDQffu3QkKCsLV1ZXHH3+cbt26YWtrW27fY8eOxcnJCU9PT1xcXHjhhRfKnKWvKqq8i3+v8fb21jcW79eG//5jKS6Fj5Cyfx7d/7u60qUqWmv6vbON1rZWrBj3aBVHKYQQQpR0+PDh2y4FuNcVFBSQl5eHlZUVJ0+eZMCAARw9epSGDRvWdmgVtnbtWk6dOnXTCiYFBQW0aNGC8+fP06BBg1qK7s5kZmZiY2NDVlYWvXr14pNPPsHT07PKxyntb0MptVdr7X2rY6VmvBa0CnSG9blkt+5Jzr7dNPLyu/VBpVBKEeTmyPubj3Phag4tH7Cq4kiFEEIIUZ6srCz69u1LXl4eWms+/PDDuyoRBxg8eHCp252dnRk7duxdm4gDPP/88yQnJ5OTk8MzzzxTLYn4nZJkvBa49/Yl8buvadbsYTKiPq50Mg7GBwAt+PE4aw+k8peeVX+HrxBCCCHK1qRJk5uWzLtX3KqspjpdunSJ/v3737T9xx9/xM7OrsL9rFixoirDqha1UjOulBqhlEpSShUqpcqcvldK/VEpdVQpdUIpNa3YdqWUekspdUwpdVgpVfrK8HVYaqN0mlu24PTB9HLrtG6lo4MNzo4PEJOYUoXRCSGEEELUHjs7OwwGw00/t5OI3y1q6wbOQ8AwYHtZDZRSFsAHwOOAExCmlHIy7R4DPAh00Vp3BaKqNdpq0PYJ453OOa17cj1+yx31FeTmSOIvV/j5UvXe7SuEEEIIIapWrSTjWuvDWuujt2jmA5zQWp/SWudiTLiDTfvGA7O01oWm/n6rvmirh0sPb9JyL9C8aQeuRn9yR30NMa0zHmOQ2XEhhBBCiLtJXV7asA3wS7Hfz5m2AXQEQpVSCUqp9UqpR2o8uiqQan2VZpYOnEq6ji4srHQ/jk0b4dO+OTGJKXdU8iKEEEIIIWpWtSXjSqlNSqlDpfwE3/roW7IEckzLxSwGlpYTx/OmpD3h4sWLVTB01XnoCeP6nNcdA7j+060Xoi/PEHdHjv+WyZHzt/ewAiGEEOJuYmFhUWLd77fffrvK+jYYDKxbt878e2RkJA4ODiXGS05OJiUlxfzI+dpy5swZXFxcajWGioiJiTG/RqtXryY5ObmWI6p7qm01Fa31gDvs4leMdeFF2pq2gXGW/BvTv78FlpUTxyfAJ2BcZ/wOY6pSzo96sD/6K+xsO5CxcilW/kGV7uuJbq2JiEniO0MKXVs/UIVRCiGEEHVHo0aNMBgM1dK3wWAgISGBQYMGmbeFhoayaNGim9quWrWqWmKoafn5+dSvXz3pYH5+PkFBQQQFGfOb1atXM3jwYJycnG5x5P2lLpepxAOPKKU6KKUaAk8BMaZ9q4G+pn/3Bsp/vmwddr5JJk0t7Tl5oj4UVP4JT82tG9LzEXvWSKmKEEKI+0x6ejqdO3fm6FHj7WhhYWEsXmx8yvX48ePx9vbG2dmZmTNnmo+Jj4+nR48euLm54ePjQ3p6OjNmzDA/cbPoCZylKT4rnZWVxciRI3FyciIkJARfX1/zUocbN27Ez88PT09PRowYQWZmJgDt27dn5syZeHp60q1bN/MSgtu2bTPPwHt4eJCRkYHWmqlTp+Li4kK3bt1KjevRRx8lKSnJ/HufPn1ISEjg2rVrPPfcc/j4+ODh4cF3330HGGf8g4KC6NevX6nLBxZnY2PD5MmTcXZ2pn///hRVGSxevJju3bvj5ubGk08+SVZWFgBjxozhr3/9K76+vrz22mtERkYyYcIEdu3aRUxMDFOnTsXd3Z2TJ0+WWPP7+PHjdXIN8JpQK+uMK6VCgIWAA/C9UsqgtQ5USjkCn2qtB2mt85VSE4ANgAWwVGtd9E57G1iulJoMZAJja+E0qsTDQ73R0Ze53tKf69u+xLLf05XuK8jNkSkrE9l39jJe7ZpXYZRCCCFESVsiP+G3n09VaZ8t2j1M3zHPl9smOzsbd3d38++vv/66efZ6zJgxvPzyy1y+fJlx48YB8NZbb9G8eXMKCgro378/Bw4coEuXLoSGhhIdHU337t25evUqjRs3ZtasWSQkJJhnwiMjI4mOjiY2NtY83k8//VQing8//JBmzZqRnJzMoUOHzLGlpaXx5ptvsmnTJqytrfn3v//Nu+++y4wZMwCwt7dn3759fPjhh8ybN49PP/2UefPm8cEHH+Dv709mZiZWVlZ88803GAwGEhMTSUtLo3v37vTq1atEDKGhoaxcuZKIiAhSU1NJTU3F29ubf/zjH/Tr14+lS5dy5coVfHx8GDDAWLiwb98+Dhw4QPPm5ecL165dw9vbm/fee49Zs2YRERHBokWLGDZsmPkaT58+nSVLljBx4kQAzp07x65du7CwsCAyMhKAHj16EBQUxODBg80lPra2thgMBtzd3Vm2bBnPPvtsubHcq2olGddaf4uxvOTG7SnAoGK/rwPWldLuCvBEdcZYUzp7dmPf5yuxb9qBq1//B4c7SMYHOrfCsv5BYgwpkowLIYS4J5VVpvLYY4/x1Vdf8dJLL5GYmGjevnLlSj755BPy8/NJTU0lOTkZpRStW7eme/fuADzwQNnlnWWVqRSJjY3l5ZdfBsDFxQVXV+PSxbt37yY5ORl/f38AcnNz8fP730P+hg0bBoCXlxfffGOsvPX392fKlCmMHj2aYcOG0bZtW2JjYwkLC8PCwoKWLVvSu3dv4uPjzeMAjBw5koEDBxIREcHKlSvNye7GjRuJiYlh3rx5AOTk5HD27Fnz9bpVIg5Qr149QkNDAfjTn/5kjvvQoUNMnz6dK1eukJmZSWBgoPmYESNGYGFhccu+x44dy7Jly3j33XeJjo4mLi7ulsfci+QJnHXABdtrdMtpzfGjtjhczwRLm0r1Y2NZnwFdW/L9wVTeGOxEfYu6XIUkhBDibnarGeyaVlhYyOHDh2ncuDGXL1+mbdu2nD59mnnz5hEfH0+zZs0YM2YMOTk5NRKP1prHHnuML7/8stT9lpaWgPGG1Px8Y5nqtGnTeOKJJ1i3bh3+/v5s2LChQmO1adMGOzs7Dhw4QHR0NB999JE5hq+//prOnTuXaL9nzx6sra0rdV5KKcBYjrJ69Wrc3NyIjIxk69at5jYV7fvJJ58kIiKCfv364eXldU8+0KciJFurAzqG+FKoC8lv5c/1Lf93R30NcXMkLTOXXScvVVF0QgghRN333nvv0bVrV1asWMGzzz5LXl4eV69exdraGltbWy5cuMD69esB6Ny5M6mpqcTHxwOQkZFBfn4+TZo0ISPj9lYl8/f3Z+XKlQAkJydz8OBBwFjHvXPnTk6cOAEYyz2OHSv/FreTJ0/SrVs3/v73v9O9e3eOHDlCQEAA0dHRFBQUcPHiRbZv346Pj89Nx4aGhjJnzhzS09PNs+aBgYEsXLjQfC/Z/v37yxy7S5cupW4vLCw036y6YsUKevbsCRivWevWrcnLy2P58uXlnleRG6+vlZUVgYGBjB8//r4tUQFJxuuETm5OXMy9gL1tey5/c2cPE+3T2YEmlvWJSZQHAAkhhLj3FNWMF/1MmzaNo0eP8umnn/LOO+8QEBBAr169ePPNN3Fzc8PDw4MuXbowatQoc8lIw4YNiY6OZuLEibi5ufHYY4+Rk5ND3759SU5OLnEDZ9ENnUU/u3btKhHPiy++yMWLF3FycmL69Ok4Oztja2uLg4MDkZGRhIWF4erqip+fn/lGzbLMnz/fXOrSoEEDHn/8cUJCQnB1dcXNzY1+/foxZ84cWrVqddOxw4cPJyoqipEjR5q3vfHGG+Tl5eHq6oqzszNvvPFGqeOmpaWVufiDtbU1cXFxuLi4sHnzZnPN++zZs/H19cXf37/MRP5GTz31FHPnzsXDw4OTJ08CMHr0aOrVq8fAgQMr1Me9SN1PK294e3vrojuc65p1EZG4ZnfkbNIieny5EGxaVLqvqV8l8t9D54mfPgCrBreu2RJCCCEq4vDhw3Tt2rW2w6hTCgoKyMvLw8rKipMnTzJgwACOHj1Kw4YNazu0Clu7di2nTp1i0qRJN+2zsbExrwJTHebNm0d6ejqzZ8+utjFqQml/G0qpvaZn4pRLasbriM5PPkrh5xfIb+lP7o9LaRg8rdJ9Bbk78tXec2w9+ht/dGldhVEKIYQQorisrCz69u1LXl4eWms+/PDDuyoRBxg8eHCtjBsSEsLJkyfZvHlzrYxfV0gyXkd0dOlCQm4iDrbtuRwzm5Z3kIz7PWyHvU1DYhJTJBkXQgghqlGTJk2oq9+6V4XqnBX/9tubFta7L0nNeB3yW7NsmjRoxom0RyDteKX7qW9Rj8Gujmw6/BsZOXlVGKEQQgghhKhKkozXIV1H+FOoCyl08CN385I76muImyO5+YVsTLpQRdEJIYQQQoiqJsl4HdKh6yNcyE3FwbYDl79fA3dwc63nQ01pZ9eYL+POVmGEQgghhBCiKkkyXsek2V3HpoEtx9M94JfKP4lKKcUzfu1J+Pkyib9cqcIIhRBCCCFEVZFkvI5xCQ2gUBegHfzI2xp5R32N8G6LjWV9lu08XTXBCSGEEEKIKiXJeB3z4CMPcz43lRYPtOfyxh8gP7fSfTWxasBI7wdZeyCVC1dr5vG/QgghRHWysLAo8RCet99+u8r6NhgMrFu3zvx7ZGQkDg4OJcZLTk4mJSWF4cOHV9m4lXHmzBlcXFyqfRwbG5tqH6O4GTNmsGnTpjL3t2/fnrS0tJu29+jRAzBelxUrVlRbfNVBljasg9Lsc3HMeICjWf60OLEJugyqdF9jerRn2a7TfP7Tz7wa2LkKoxRCCCFqXqNGjTAYDNXSt8FgICEhgUGD/vf/3dDQUBYtWnRT26JHxN/t8vPzqV//ztLBquijyKxZsyp1XNGTUYuS8VGjRlVJPDVBZsbrILdRvSnQBWDvS96O/7ujvh6ya8xjXVuyfM/P5OQVVFGEQggh7ndX1pzkt48PVOnPlTUnKxVLeno6nTt35ujRowCEhYWxePJUmzsAACAASURBVPFiAMaPH4+3tzfOzs7MnDnTfEx8fDw9evTAzc0NHx8f0tPTmTFjBtHR0bi7uxMdHV3meMVnpbOyshg5ciROTk6EhITg6+trXnd848aN+Pn54enpyYgRI8xrdrdv356ZM2fi6elJt27dOHLkCADbtm0zz8B7eHiQkZGB1pqpU6fi4uJCt27dSo3r0UcfJSkpyfx7nz59SEhI4Nq1azz33HP4+Pjg4eHBd999Bxhn/IOCgujXrx/9+/e/5fWdPHkyzs7O9O/fn4sXL5rHeOWVV/D2/v/s3Xd4VGX6//H3mUx6I500IHQInQQSEkCqCgsIgjRBimLFXXUtu6v7VVd/a0fsIiKI0sSCimJHOiGEQCAQCISEFJIAqaRNOb8/AllQkAgzc2aS+3VdcyWZzDz3Z0Pc6+Zwn+eJYeHChXz11Vf079+f3r17M3z4cAoLCzGbzbRp04bS0v/du9ahQweys7OJiorCYKjffrm8vLzh61mzZjXqLzrV1dXceOONDX/O56/gP/bYY2zevJlevXqxYMECjh8/zsCBA+nTpw99+vRpaNoBXnzxRWJjY+nRo0fD78Zjjz3Gm2++2fCaJ598kpdeeumKea6FNON2KDyqDSfr8utHVX7ZBjVl17TenMQoSqoMfLEnzzIBhRBCCI1UV1dfNDayevVqfH19eeONN5g1axarVq2ipKSEO+64A4Bnn32W5ORk9u3bx6+//sq+ffuoq6tj8uTJLFy4kL179/Ljjz/i6enJ008/zeTJk0lNTWXy5MkADc35+Ud1dfVFed566y38/PxIT0/nP//5D7t37wbg1KlTPPPMM/z444+kpKQQExPDK6+80vC+wMBAUlJSuPvuuxuavZdeeok333yT1NRUNm/ejLu7O5999hmpqakNOR9++GEKCgouyjB58mTWrFkDQEFBAQUFBcTExPDss88ydOhQkpKS+OWXX3j44Yc5e/YsACkpKaxdu5Zff/31D3/eZ8+eJSYmhgMHDjB48GCeeuqphu/V1dWRnJzMQw89RGJiIjt27GDPnj1MmTKFF154AZ1Ox7hx4xoO99m5cyetW7emdevWXHfddaxfvx6AVatWMWHCBJydnRv1O1BZWcmYMWOYOnVqw5/zec899xwDBw4kNTWVBx54gODgYH744QdSUlJYvXo1999/P1D/F6UjR46QlJREamoqu3fvZtOmTRf9LAHWrFnT8LtgLTKmYqfOBBsIL/PmUN1wgtO/hD4zrnqt/lH+dA31YcnWLCbHRqIoigWTCiGEaI5ajGmnSd3LjamMGDGCTz75hHvvvZe9e/c2PL9mzRoWLVqE0WikoKCA9PR0FEUhNDSU2NhYAHx8fC5b73JjKudt2bKFv/71rwB069aNHj16ALBjxw7S09NJSEgA6hvX+Pj4hvdNmDABgL59+/LZZ58BkJCQwIMPPsj06dOZMGECERERbNmyhalTp+Lk5ERISAiDBw9m165dDXUAbrnlFkaOHMlTTz3FmjVrGubZv//+e7788suGZr+mpoacnJyGn5e/v/9l/3edp9PpGprRW2+9tSH3+Z/Nebm5uUyePJmCggLq6uqIiopqeM3TTz/N7NmzWbVqVcN7br/9dl544QVuuukmPvjgg4Yr3I0xbtw4HnnkEaZPn37F1xoMBu677z5SU1NxcnLi8OHDQP3P5vvvv6d3795AfYN/5MgR5s6dS1FREfn5+RQXF+Pn50dkZGSjs10NuTJup3pNG47JbETnH4th68fXtJaiKMxJjOJwYSVbM09bKKEQQghhP8xmMwcPHsTDw4OSkhIAsrKyeOmll/jpp5/Yt28fo0ePpqbGNhsaqKrKiBEjSE1NJTU1lfT0dN5//38H+rm6ugL1N6QajUagfkRi8eLFVFdXk5CQ0DC+ciXh4eEEBASwb98+Vq9e3dDwqqrKp59+2pAhJyeHLl26AODp6XlV/7suvKB34Rrz58/nvvvuIy0tjXfffbfh5xwfH09mZibFxcV88cUXDc18QkICx48fZ+PGjZhMpj91M2pCQgIbNmxAbcR5LAsWLCAkJIS9e/eSnJxMXV39xhiqqvKPf/yj4WeTmZnJ3LlzAZg0aRJr16696GdpTdKM26nQ1uEUGM7tqrJtP5TlXtN6Y3qGEujlwhLZ5lAIIUQTtGDBArp06cKKFSuYPXs2BoOB8vJyPD098fX1pbCwkG+//RaATp06UVBQwK5duwCoqKjAaDTi7e1NRUXFn6qbkJDQMNaQnp5OWloaUD/HvXXrVjIzM4H6cY/zV2Uv5+jRo3Tv3p1HH32U2NhYDh06xMCBA1m9ejUmk4ni4mI2bdpEv379fvfeyZMn88ILL1BWVtZw1fz666/n9ddfb2ha9+zZc9nanTt3vuTzZrO5YYZ7xYoVJCYmXvJ1ZWVlhIeHA7Bs2bKG5xVFYfz48Tz44IN06dKFgICAhu/NnDmTadOmMXv27D/6sfzO008/jZ+fH/fee+/vvvfbP8OysjJCQ0PR6XQsX74ck6n+/rnrr7+eJUuWNMzx5+XlUVRUBNT/LFetWsXatWuZNGnSn8p2NaQZt2MlLU146L04aLwB0q7trm1XvRO3xrXm50NFHCuutFBCIYQQwrZ+OzP+2GOPkZGRweLFi3n55ZcZOHAggwYN4plnnqFnz5707t2bzp07M23atIaRERcXF1avXs38+fPp2bMnI0aMoKamhiFDhpCenn7RDZy/nRm/8AZAgHvuuYfi4mK6du3K448/TnR0NL6+vgQFBbF06VKmTp1Kjx49iI+Pv+KV7ldffbVh1MXZ2Zkbb7yR8ePH06NHD3r27MnQoUN54YUXaNmy5e/eO3HiRFatWsUtt9zS8NwTTzyBwWCgR48eREdH88QTT1yy7qlTpy57ldnT05OkpCS6devGzz//zL///e9Lvu7JJ59k0qRJ9O3bl8DAwIu+N3nyZD766KPfXWWePn06JSUlTJ069Q9/LpeycOFCqqureeSRRy56vkePHjg5OdGzZ08WLFjAPffcw7Jly+jZsyeHDh1quJo/cuRIpk2bRnx8PN27d2fixIkNTXx0dDQVFRWEh4cTGhr6p7P9WUpjLvE3FTExMer5O5wdQWFeAdULD5JXdpj+7Zeif3jHNa1XXFFLwnM/M6VfJE+Ps/7epEIIIZqWgwcPNow5iHomkwmDwYCbmxtHjx5l+PDhZGRk4OLionW0Rvv66685duxYw82NtrJ27VrWrVvH8uXLbVrXGi7134aiKLtVVY250nvlBk47FhIeyva6nwn2bs2pPSdoeXI/tLz6JjrI25WxvcL4JDmXh0Z0wtejcXctCyGEEOLSqqqqGDJkCAaDAVVVeeuttxyqEQf4y1/+YvOa8+fP59tvv73okCVLqzOaqDOpeLnad7tr3+kEpeFmIk97ccj4F1ruW31NzTjAnIQo1u7OZXVyDvMGaXMnvBBCCNFUeHt740j/6m4vXn/99T/8/vjx48nKuvg+t+eff57rr7++UevXGU0cKz6LCnQK8Uans9+d5KQZt3Mxt47k7IIDOPv3xZi0AP3wJ0HndNXrdQ3zIb5tAMu2ZTMnIQq9k9w2IIQQQgj7cn5v8qtRazSRVXwWk6oSFehp1404yA2cdi8oNIT8unxCvFtz6mA5HN9yzWvOSYwir7Sa79MLLZBQCCFEc9Kc7jUTjqfWUH9F3KSqtA30xMPF+tedr/W/CWnGHUB5JLg5eXDINA7S1lz5DVcwtHMwrQM8WLJFtjkUQgjReG5ubpw+fVoacmGXag0mjp06i6pC20Av3G3UiJ8+fRo3N7erXkPGVBxAvxnXU/bSPlz8emNMeRr9qJfA2f2q13PSKcwa0Ianvkpn74lSeka2sGBaIYQQTVVERAS5ubkUFxdrHUWIixhMZk5V1oGqEujtyvEy211vdnNzIyIi4qrfL824A/APDuJQXT7BXq04dRRaHt4A0eOvac1JMZG88v1hlmzNYuGU3hZKKoQQoilzdnZuOOZcCHtxpLCCGe/tBGDlHf3pEOKtcaI/R8ZUHER5Gx1uTh4cNI+Hfdc+quLlqueW2EjW7yvgZJltjgYWQgghhLCkjJMVTFm0A50Cq+bFOVwjDtKMO4y4maMwmOtw9e2Baf8PcPb0Na85a0AbzKrK8h3Hrz2gEEIIIYQNpeeXM/W9HeidFFbNi6N9sJfWka6KNOMOooW/H/l1eYR4taI4xwPSr37Ln/Mi/T0Y0TWEFTtzqK4zWSClEEIIIYT17c8rY9riHbjqdayeF0/bIMdsxEGacYdS2dYZVyd3Dqo3W2RUBeoPASqpMvBFap5F1hNCCCGEsKa03DKmL96Jp4ue1fPiaRPoqXWkayLNuAMZMGMUdeZa3Hy6YTqaBGeufWvCflH+RIf5sGRLlmxVJYQQQgi7lnqilGmLd+DtpmfVvDhaBXhoHemaSTPuQLz9fOsPAPJsRWGuL6R9cs1rKorCnIQojhRVsiXzlAVSCiGEEEJYXkpOCTMW78TPw4VV8+KI9Hf8RhykGXc4Z9u74OLkxiFugX2rwQJXs//SM5RAL1c5BEgIIYQQdml39hlmvp+Ev1d9Ix7h1zQacZBm3OEkzBxFnakGd68umAqOQn7KNa/pqndiRlxrfsko5mhxpQVSCiGEEEJYRlJWfSMe5O3K6nnxhLW4+oMP7ZE04w7Gy8eHPEM+IV6tKCwIstiNnNPjWuHipGPp1uMWWU8IIYQQ4lptP3qa25Yk0dLXjdXz4mjpe/XHztsracYdUHVHN1x0rhxSb4a0tWAyXPOagV6ujOsVxtrduZRVXft6QgghhBDXYlvmKWYvTSLCz52V8+II9ml6jThIM+6QEmaOptZUjYdnJ0xlp+HYRousOzshimqDiVW7ciyynhBCCCHE1dh8pJjZS3fR2t+zvhH3bpqNOEgz7pA8vbzqR1U8W1FQ3Kr+Rk4L6BrmQ3zbAJZtO47RZLbImkIIIYQQf8bGjCLmLksmKtCTFXf0J9DLVetIViXNuIOq7eKJs86FDOMYOPg11FZYZN25iVHkl9Xw3YFCi6wnhBBCCNFYvxwqYt6Hu2kf5MXKO+IIaOKNOEgz7rASb/0LNaYqvNw7Yq6ugUPrLbLu0M7BtA7wYMlW2eZQCCGEELbzY3oh85Yn06mlNyvu6I+fp4vWkWxCmnEH5e7pTp4hn2DPCPJLOlpsVEWnU5g9oA27s0tIPVFqkTWFEEIIIf7IdwdOcvfHu+ka6sNHc/vTwqN5NOIgzbhDM0b71I+q1N5YfxNnxUmLrDsxJhJvV70cAiSEEEIIq/s2rYB7P06hW7gvy2/vj6+Hs9aRbEqacQeWMGP0uVGVdpgNKuz/1CLrernqmRwbyTdpBRSUVVtkTSGEEEKI3/p6Xz73rdxDz8gWfDinHz5uzasRB2nGHZqbmxu5hjxCPCLIO9vbYqMqALcNaINZVVm+PdtiawohhBBCnLcuNY/7V+6hT6sWLJvTD+9m2IiDNOMOz9y9BXqdM4crhkDBXijOsMi6kf4ejOzakhVJOVTXmSyyphBCCCEEwOd7cnlgdSqxbfxZOrsfXq56rSNpRppxBzdg+iiqjZV4u0dhNjnBvjUWW3tOYhSlVQY+35NnsTWFEEII0byt3Z3Lg2v2Etc2gA9mx+LZjBtxkGbc4bm5uZFnLCDYPZwThkGQtgbMljmwJ7aNH93CfViyNQtVVS2yphBCCCGar9W7cnh47V4S2wfy/m2xeLg070YcpBlvEtRefuh1zmSeiYHSHDix0yLrKorCnIQoMosq2XzklEXWFEIIIUTztGJnDo9+msbADkG8NzMGdxcnrSPZBWnGm4DEqaOpMlbi49oGs87Tojdyju4RSpC3qxwCJIQQQoirtnxHNv/8PI0hnYJYNKMvbs7SiJ8nzXgT4OzqQp4xn2CPcE4Yh8CBz8FYa5G1XfVOzIhrzcaMYjKLKi2yphBCCCGaj6Vbs3jii/0M7xLMO9KI/440402EEhOIk6Ins7Ab1JTCkR8stva0/q1w0etYuk2ujgshhBCi8d759ShPfpXOyK4hvDW9L656acR/S5rxJiJxymjOGsvxdW2F2S3YoqMqgV6u3NQrjE9351FaVWexdYUQQgjRNKmqykvfZfDct4cY0zOMN6f3wUUvbeelyE+lidDr9eSZCghyD+e4cRgc3gDVpRZbf3ZCFNUGE6t2nbDYmkIIIYRoesxmlae+SueNXzKZEhvJq5N74ewkLeflyE+mCdHHhOCkOHEsry2Y6iB9ncXW7hLqw4B2ASzbdhyDyTJbJwohhBCiaTGZVR77bB9Ltx1nbmIU/53QHSedonUsuybNeBMyYPKNVBrKaeEcgerXwaIHAAHMSYiioKyG7w6ctOi6QgghhHB8dUYz96/cw5rkXO4f1oHHR3dBUaQRvxJpxpsQvV5PvrmAYPcwjtYOguwtUGq5sZKhnYNpE+DBki1yI6cQQggh/qfGYOKuj3azPq2Af47qzIMjOkoj3kjSjDcxLnGh6BQnjmeF1T+RZrmr4zqdwuyEKFJyStmTU2KxdYUQQgjhuCprjcz+YBe/ZBTx/8Z3Z96gdlpHcijSjDcxcTdfT4WhDD/ncNSIAbDnY7DgUfYT+0bg7abng63HLbamEEIIIRxTaVUdty7eSdLxMyy4pRfT+rfSOpLDkWa8iTk/qhLkHsaRqgFw5ihkb7PY+p6ueqbERvJNWgEFZdUWW1cIIYQQjqW4opYpi3aQnl/OW9P7cFPvcK0jOSRpxpsgtwHh6BQdORme4OoDKR9adP2Z8W0wqyofbs+26LpCCCGEcAz5pdVMfnc72aereH9WDNdHt9Q6ksOSZrwJ6j9+JOWGUvz1Yahdb67f4tCCe45H+ntwfXRLVuzMobrOZLF1hRBCCGH/jp86y6R3tlNcUcvyuf0Y2CFI60gOTZrxJkiv11NgLiDQLZSMU53BWA3711q0xpzEKMqqDXy2J9ei6wohhBDCfmWcrGDSu9upqjOycl4cMW38tY7k8KQZb6I8BrZGp+jIS6mGlt0tPqoS09qP7uG+LNmShdlsuRtEhRBCCGGf9uWWMnnRdhRgzZ3xdAv31TpSkyDNeBMVO3YYpXWnCXZpTW27SVCwt/5hIYqiMCexDUeLz7I585TF1hVCCCGE/UnKOsO093bi5apn7V0D6BDirXWkJkOa8SZKr9eT51qEn2sQOzYawMkVUpZbtMbo7mEEebvKIUBCCCFEE7Yxo4iZS3YS4uPK2rsG0CrAQ+tITYo0401Yn/njqDPX4lIWgNp5LOxbAwbLbUfootcxM641vx4uJrOowmLrCiGEEMI+fJtWwB0fJtM20IvVd8bT0tdN60hNjjTjTVhQWAg5tdmEebYhozgaasvg4FcWrTGtfytc9Do5BEgIIYRoYj7dncu9K1LoHu7LynlxBHq5ah2pSZJmvInzuD4KJ0VPwT4n8Iuy+I2cAV6ujO8VzqcpuZRW1Vl0bSGEEEJoY/n24zz0yV7i2wWwfG5/fN2dtY7UZEkz3sT1GzWUwpp8wrzaUx4yFo5vhtNHLVpjdmIbagxmViadsOi6QgghhLC9tzce5Yl1BxjeJZj3b4vF01WvdaQmTZrxZqA4tBpPvTdJWz1BcYI9H1l0/c4tfUhoH8CH249jMJkturYQQgghbENVVV787hDPbzjEmJ5hvH1rX9ycnbSO1eRJM94MDL5vMmeNFfjrWmNuMxxSPwaT0aI15iREUVBWw4b9Jy26rhBCCCGsz2xWeeqrdN785ShTYiN5dXIvnJ2kTbQF+Sk3A+6e7uSQS7B7OLuORkNlIRz53qI1hnQKpk2AB0u2yjaHQgghhCMxmVUe/XQfS7cdZ25iFP+d0B0nnaJ1rGZDmvFmIuq2QZhUI3XFoaieLWGPZfcc1+kUZidEsSenlJScEouuLYQQQgjrqDOauX/lHj7Znctfh3Xg8dFdUBRpxG1JmvFmon33zuTWnCDcuy15LtfD4e+gvMCiNSb2jcDbTS/bHAohhBAOoMZg4s7lyaxPK+Bfo7rwwIiO0ohrQJrxZsTQ2wsXnSuHDrYG1QR7V1h0fU9XPVP7teKbtAIKyix3uJAQQgghLKuy1sisD5LYeLiY/ze+O3cMaqt1pGZLmvFmJPHWsZTUnSLUox01fnGQshxU1aI1Zsa3RlVVlm3Ltui6QgghhLCM0qo6pi/eya7jJbw6uRfT+rfSOlKzJs14M6LX68nzOo2vSwA7jvaHkiw4vsWiNSL8PLihW0tW7MymrNpg0bWFEEIIcW2KK2qZsmgHB/PLeXt6H8b1Ctc6UrOnWTOuKMokRVEOKIpiVhQl5g9ed4OiKBmKomQqivLYBc8PUxQlRVGUVEVRtiiK0t42yR1bv/vGUWuqwd3cHtXZ1+IncgLcO6Q9FbVG3vol0+JrCyGEEOLq5JVWc8u728k+XcX7s2IYGd1S60gCba+M7wcmAJsu9wJFUZyAN4Ebga7AVEVRup779tvAdFVVewErgMetG7dp8A8OItuQTahnKw5U3wgHv4Rqy+5+Eh3my819Ivhg63FOnKmy6NpCCCGE+POyTp3llne2c6qiluVz+zGwQ5DWkcQ5mjXjqqoeVFU14wov6wdkqqp6TFXVOmAVMO78EoDPuc99gXzrJG16/MZ0RUHHqVPdwFgDaWstXuPvIzvhpFN4fsMhi68thBBCiMbbl1vKxLe3UW0wsXJeHDFt/LWOJC5g7zPj4cCJC77OPfccwO3AN4qi5AIzgOdsnM1h9R42gJO1eYR7tadE1wNSllm8RktfN+4Y1Jav9xXIvuNCCCGERjYdLmbKoh24OTux9q54uoX7ah1J/IZVm3FFUX5UFGX/JR7jrvzuK3oAGKWqagTwAfDKZTLMUxQlWVGU5OLiYguUbRpKWplw13uxO38knEyD/FSL17hzUFuCvF155ut0VAvv2iKEEEKIP7YuNY85S3fRyt+Dz+4ZQNsgL60jiUuwajOuqupwVVW7XeKxrpFL5AGRF3wdAeQpihIE9FRVdee551cDAy6TYZGqqjGqqsYEBcl81HmD7plIpaGMQLdOmMxuVrmR09NVz99HdiQlp5T1aZY9YEgIIYQQl7d48zH+uiqVvq39WHNXPCE+blpHEpdh72Mqu4AOiqJEKYriAkwBvgRKAF9FUTqee90I4KBGGR2Sm5sb2U75BLqFsrP0Zkj7BOosf7PlxL6RdG7pzfMbDlFrNFl8fSGEEEL8j9ms8t9vDvLM+oPc2K0ly+b0w8fNWetY4g9oubXh+HPz3vHAekVRvjv3fJiiKN8AqKpqBO4DvqO+2V6jquqBc8/fAXyqKMpe6mfGH9bif4cj63rHcIxmA6qxD2pNef3OKhbmpFN4fHRXTpypZtm24xZfXwghhBD1DCYzf/9kL+9uOsaMuNa8Ma0Pbs5OWscSV6A0p1nemJgYNTk5WesYdmXLX5cS7hoJxqeJ6u4Js7+xSp3ZHySRnF3Crw8Pwd/TxSo1hBBCiObqbK2Ruz9OYdPhYh4a0ZH7hrZHURStYzVriqLsVlX1smfpnGfvYyrCytT4QJx1Lhyr/Atkb4VT1jmo55+julBVZ+K1n45YZX0hhBCiuTpdWcu093aw5Ugxz03ozvxhHaQRdyDSjDdzA6f8hVO1hYR5d6Kq0hX2LLdKnQ4h3kyJjeSjHdkcK660Sg0hhBCiuTlxpoqJ72zn0MkK3p0Rw5R+rbSOJP4kacYFBX5leDv7saN8JqSuAJPBKnUeGNERN2cn/vutHAQkhBBCXKv0/HImvL2NM2fr+Pj2/ozoGqJ1JHEVpBkXJM6fSI2pCm/XXpjLi+DI91apE+jlyt3XteOH9EJ2HDttlRpCCCFEc7D96Gkmv7sdvU7hk7vi5VRNBybNuMDbz5ds4wlCPCJJK06wyp7j581NjCK8hTvPrE/HbG4+Nw8LIYQQlvJNWgG3LUkixNeNT+8eQMcQb60jiWsgzbgAIGRSbwBK1VH1V8bL861Sx83ZiYev78T+vHI+35NnlRpCCCFEU7V8+3HuXZFC9whf1t4VT1gLd60jiWskzbgAoNuAvhTU5BLu04HCYp/62XErGdszjB4Rvrz4XQbVdXIQkBBCCHElqqry8vcZPLHuAMM6B/PR3P608JCtgpsCacZFg/JOTrg5ebC/Znb9ripms1Xq6M4dBHSyvIbFm49ZpYYQQgjRVBhNZv7xWRqv/5zJ5JhI3rm1L+4ucphPUyHNuGgwZN5Eyg0lBHp1w3gyB45vtlqtflH+3BDdkrd/PUpRRY3V6gghhBCOrLrOxF0fpbBq1wnmD23Pczd3R+8k7VtTIn+aooFeryfHpZAAtxC2F4622p7j5z12Y2cMJjMLfjhs1TpCCCGEIyqtquPW93fy06FCnh4XzUMjO8lhPk2QNOPiIj3uvAGDuQ4n9yGo+7+EqjNWq9Um0JMZcW1YvesEGScrrFZHCCGEcDT5pdVMemc7abllvDG1DzPj22gdSViJNOPiImFtIjlRm0OYZxRHcsMh7ROr1rt/WHu83Zx59puDVq0jhBBCOIrDhRXc/PY2TpbVsHROLKN7hGodSViRNOPid5yHRKDXOZPL9Po9x1Xr7QfewsOF+UPbs+lwMb8eLrZaHSGEEMIRJB8/w6R3tmM0q6y6M44B7QK1jiSsTJpx8TvxN42gqKaAMJ/OlGccgfw9Vq03M74NrQM8eHZ9OkaTdXZwEUIIIezdD+mFTF+8E39PFz67ewDRYb5aRxI2IM24uKSikLN4Ofuyq2y6VU/kBHDR63jshs4cLqxkTXKuVWsJIYQQ9mhVUg53Lk+mc0tv1t4VT6S/h9aRhI1IMy4uaeD8SVQbK/H1jsW851OoO2vVejd0a0lsGz9e+SGDylqjVWsJIYQQ9kJVVV7/6QiPfZZGYocgVtwRR4CXq9axhA1JMy4uydPLi2w1lxD3CFKOdYX0dVat0V2TjgAAIABJREFUpygK/xrdlVOVdbyz8ahVawkhhBD2wGRW+fe6A7z8w2HG9w7n/dti8HTVax1L2Jg04+KyIqb1R8VMlds41N3LrF6vV2QLxvYM473Nx8gvrbZ6PSGEEEIrNQYT81emsHxHNvMGteXlST1xlsN8miX5UxeX1blvD/JqThDh3YGC5Ew4dcTqNR+5oRMq8NJ3GVavJYQQQmihvMbAbUuS+CbtJI+P7sI/R3VBp5PDfJoracbFH6ru7oGLkxvptTOsfiMnQISfB3MTo/hsTx5puWVWryeEEELYUmF5Dbe8s53d2SW8OrkXtw9sq3UkoTFpxsUfGjRrHKV1pwnx7UH15pVgMli95j3XtSPA04Vn1qejWnGPcyGEEMKWDp8sJ+fVEcwtWcAHM3pwU+9wrSMJOyDNuPhDer2eXI9i/FyDSMpJhMMbrF7T282Zv43oyM6sM/yQXmj1ekIIIYS1/Xq4mPlvryPWvI9Jys8M3DITygu0jiXsgDTj4or63jOWOnMtrl6DUXcttUnNqbGRtA/24r/fHqLOKAcBCSGEcFwf7chmztJdDPbMqX/iun9AcQYsug5ykzXNJrTXqGZcUZTPFEUZrSiKNO/NUFBYCDl1OYR6RZH+ax6U5Vm9pt5Jxz9HdSbr1Fk+3plt9XpCCCGEpZnMKv/5Op3Hv9jPoA6B/D26HPTuMPAhmPsD6F3hgxshdYXWUYWGGttcvwVMA44oivKcoiidrJhJ2CGPG9rhpDhRpLvFZv+nMaRTMAntA1j40xHKqqw/qy6EEEJYytlaI3cuT+b9LVnMGtCG92bG4FKwG8J6gZMzhHSFeRuhVRx8cTds+AeY5NC75qhRzbiqqj+qqjod6AMcB35UFGWboiizFUVxtmZAYR/63TCYwpo8wn07U7rhYzBbf3REURT+NaorZdUG3vjF+tsqCiGEEJZQUFbNpHe28/OhIp4aG82TY6PRqwYo2AcRMf97oYc/3Po59L8bdrwFH0+EqjPaBReaaPTYiaIoAcAs4HZgD7CQ+ub8B6skE3anOLwOD703uwuGw/FNNqnZNcyHiX0iWLYtm5zTVTapKYQQQlyt/Xll3PTmVrJPn+X922K5bUCb+m+c3A+mWgiPufgNTnq48TkY9yZkb4X3hkLRQZvnFtpp7Mz458BmwAMYo6rqWFVVV6uqOh/wsmZAYT8G3zOJs8YK/HxjMG1dYrO6f7++E046hec3HLJZTSGEEOLP+v7ASSa9sx0nRWHt3QMY0jn4f9/MO3ejZkTspd/c+1aYtR7qzsLi4XBovfUDC7vQ2Cvjr6mq2lVV1f+qqnrRPjyqqsZc7k2iaXH3dCdbySPYPZxdP5Xb7J/SQnzcuHNwW9anFbA7W/75TgghhH1RVZXFm49x50e76RjixRf3JdAl1OfiF+XuAu9Q8P2DvcUj+9XPkQd2gFXT4NcXQc7baPIa24z7KYoy4TePYYqiBF/5raIpaXfbQEyqEaPbDaipq21Wd96gtoT4uPLM+oNyEJAQQgi7YTCZ+dcX+3lm/UFuiG7JqnnxBHu7/f6FuckXz4tfjm84zP4WekyGX56BT2bVXy0XTVZjm/G5wGJg+rnHe8CjwFZFUWZYKZuwQ+26dSa35gThPu058elqm/2N3cNFz0MjO7Enp5Sv98khCUIIIbRXVm1gztJdrNiZw93XtePNaX1wd3H6/QvPnoKSrN/Pi1+OszuMfxdG/AcOfgnvj4QS2ea3qWpsM+4MdFFV9WZVVW8GugIq0J/6plw0I4YYX5x1rhwpGQ55KTare3OfCLqE+vDct4eoMZhsVlcIIYT4rRNnqpj49ja2Hz3NCxN78OgNndHplEu/OG93/cfLzYtfiqJAwv0w7RMoPQHvDYHjW649uLA7jW3GI1RVvfBc8iIgUlXVM4BsAN3MJE4dzZm6Ylq26E7VhrdsVtdJp/D46C7klVazdNtxm9UVQgghLrQ7u4Sb3txKYXkNH87txy0xkX/8htxdoDjV7zH+Z3UYDnf8DB4B8OE42LVY5sibmMY24xsVRflaUZTbFEW5DVh37jlPoNR68YQ90uv15PuU4uviz87NeqittFnthPaBDO0czJs/Z3K6stZmdYUQQgiAL/fmM/W9HXi56fn83gQGtAu88ptyk+sP+XHxvLqige3h9h+h3TBY/xB8/Tcw1l3dWsLuNLYZvxf4AOh17vEhcK+qqmdVVR1irXDCfvW7Zwy1pho8vBMw7/nEprX/OaozVQYTC3+Sg4CEEELYhqqqvP7TEe5fuYdeES34/J4E2gU1Yndns7l+TKWx8+KX4+YLU1dC4oOweyl8OBYqi69tTWEXrtiMK4riBPysquqnqqo+cO6xVpUtLZo1/+Agso05hHq2Zv/Htt0LtX2wN1P7RfLxzhwyi2x3VV4IIUTzVGs08dCavbz8w2Em9A5n+e398Pd0adybTx+B2vI/Ny9+OTonGP5/MHEJ5KfCouvqPwqHdsVmXFVVE2BWFMXXBnmEA/EbG42CwpnaRNQi2x7I87fhHXF3duK5b+WUMiGEENZz5mwdMxYn8dmePB4a0ZGXb+mJq/4SO6ZcTu6u+o+N2dawsbrdDHM21H++5AZIW2u5tYXNNXZMpRJIUxTlfUVRXjv/sGYwYf96D4njZG0u4T6dObXKtr8OgV6u3DOkHT8eLGLb0VM2rS2EEKJ5OFpcyfi3tpKaW8prU3szf1gHFOUyO6ZcTm4yuPpCQAfLhgvrVX9AUFgv+HQu/PgkmGWnMUfU2Gb8M+AJYBOw+4KHaObORKm46z3Zt6eFzW8mmZMQRXgLd575+iAms0xNCSGEsJztR08z4a1tVNYYWXlHHGN7hl3dQrnJEN4HdI1tuf4EryCY+SX0nQVbFsDKqVBTZvk6wqoa9ZuhquoyYA2wQ1XVZecf1o0mHMHQuyZRaSgjwLc3xqQ1Nq3t5uzEIzd0Ir2gnM9Scm1aWwghRNO1JvkEM97fSbC3K1/cm0Df1n5Xt1DdWSg6YJl58cvRu8CYhTD6ZTj6EyweDqcyrVdPWFyjmnFFUcYAqcCGc1/3UhTlS2sGE47B2dWFbOcCAt1asnPZRpvXH9szjJ6RLXjp+wyq6ow2ry+EEKLpMJtVnt9wiEfW7iO+XQBr7x5ApL/H1S+YvwdUs3Wb8fNib4eZ66DqNLw3FI78aP2awiIa+28mTwL9OLenuKqqqUBbK2USDqbr3GEYzQbQ9Uc9bdvjehVF4YnRXSgsr+W9TVk2rS2EEKLpqK4zcd/KFN7eeJRp/VuxZFYsvu7O17ZobnL9x/C+1x6wMdokwh2/QItWsGISbH1NDghyAI1txg2qqv52CMls6TDCMUV2aMuJ2mzCvdtx7J2XbF4/po0/N3ZrybubjlJUXmPz+kIIIRxbUUUNUxZt59v9J3l8dBeevakbzk4WmPHO3QX+bcEz4NrXaiy/1jD3O+gyFn54Aj6/EwzVtqsv/rTG/qYdUBRlGuCkKEoHRVFeB7ZZMZdwMEpiCHqdM9nHwusPOLCxx27sjMFk5uXvD9u8thBCCMd16GQ549/cxuHCShbNiOH2gW3//I4pl6Kq527etOCWho3l4gmTlsLQx2HfavjgRijPt30O0SiNbcbnA9FALbASKAf+Zq1QwvEkThrFqdpCQlt0pfLHj2xev3WAJzPj27Bm9wnS88ttXl8IIYTj2ZhRxMS3t2M0m/nkrnhGdA2x3OLleVB50jbz4peiKDDoYZiyEk4dqT8g6ESSNlnEH2rsbipVqqr+S1XVWFVVY859LvMA4iIF/uV4O/uRtDpNk/r3D+2Av4cLD65JpcYge60KIYS4vA+3H2fO0l20DvBg3b2JdAu38NmGDYf92Ghe/HI6j4LbfwRnD/jwJqgs1jaP+J3G7qbSUVGURYqifK8oys/nH9YOJxxL4n03U2OqwtujJ6aTtr2RE8DXw5mXbunJoZMVPLteTuYUQgjxe3VGM//6PI1/rzvA0M4hrLkznpa+bpYvlJsMTq4Q0t3ya/9ZwV1g+lowVsP217VOI36jsWMqnwB7gMeBhy94CNHA28+XbFM2IR6R7Ht1oSYZhnQK5o6BUSzfkc2G/QWaZBBCCGGfCstrmLxoOx/vzOGuwe14d0ZfPF311imWmwyhPev3AbcHge2h20RIWgxnT2udRlygsc24UVXVt1VVTVJVdff5h1WTCYcUMqn+RpWKkraoJm1GRR6+vjM9Inx5ZO0+ckuqNMkghBDCviRlnWH0a1vIOFnBW9P78NiNnXHSWeBGzUsxGaAgVbt58csZ9HcwVMGON7VOIi7Q2Gb8K0VR7lEUJVRRFP/zD6smEw6pW3wfCmpOEO7TkdzX/qNJBhe9jten9saswt9WpWI0yS6cQgjRXKmqytKtWUx7bwfebnrW3ZvAqO6h1i1auB+MNdrPi/9WUCeIvgl2LoKqM1qnEec0thm/jfqxlG3A7nOPZGuFEo6tuq83rk7uHD3gg1qjzd6mrQM8eXZ8N5KzS1j40xFNMgghhNBWjcHEQ2v28uRX6VzXKYh19yXQIcTb+oXPH/Zjb1fGoX6HlboK2PmO1knEOY3dTSXqEg85gVNc0nUzx5FXk0Mrv+4cef5xzXKM6xXOpL4RvPFLJtsyT2mWQwghhO2dOFPFzW9v4/PUPB4c0ZFFM2LwcbvGEzUbKzcZPIPBN9I29f6MkGjoMgZ2vAPVpVqnEVyhGVcU5ZELPp/0m+/9P2uFEo7POCQYZ50rJ/OiMFeUaJbjqXHRRAV68rfVqZyurNUshxBCCNvZfKSYMW9sIedMFUtui+X+YR3QWWs+/FLykuuvilvi8CBrGPQI1JZB0iKtkwiufGV8ygWf/+M337vBwllEE5IwbgQ5Ncdp1aIrB/7zb81yeLjoeWNqH0qrDfz9k72oqqpZFiGEENalqipvbzzKbUuSCPF246v7EhnSOdi2IarOwOlM+5sXv1BoD+g0Cra/CTVyUJ7WrtSMK5f5/FJfC3ERz/Ed0Sk6ysu7Yzql3TG8XcN8+NeoLvySUcz7W7I0yyGEEMJ6KmuN3PNxCs9vOMSo7qF8fu8A2gR62j5IXkr9R3ucF7/QoIehphR2vad1kmbvSs24epnPL/W1EBfpdV0cWbXHiPTtyJ7/e1rTLDPjWzOiawjPbzhEWm6ZplmEEEJY1rHiSsa/uZXvDpzkX6O68PrU3ni4WGn/8CvJ3QUoENZbm/qNFd4HOoyEbW9AbaXWaZq1KzXjPRVFKVcUpQLoce7z81/bwZFSwt61nBmLWTVjpD/GExma5VAUhRcn9iDQy5X5K1OorDVqlkUIIYTl/JBeyLg3tnL6bB0fze3PHYPaomg5q52XDMFdwdUGu7Zcq0GPQPUZSH5f6yTN2h8246qqOqmq6qOqqreqqvpzn5//2ka3JAtH1qlPd44ajxHu1Y6kp1/VNEsLDxcWTulNzpkqHv88TebHhRDCgZnNKq98n8EdHyYTFeTJV/MTGdA+UNtQqlq/k4o9z4tfKDIW2g2Fra9BnRySp5XG7jMuxFXrcOcQDGodzm4JGA4laZqlX5Q/fx3WkS9S8/k0JU/TLEIIIa5OWZWBuct28drPmUzqG8GaO+MJb+GudSw4fbR+Dtve58UvNPhRqDoFuz/QOkmzJc24sLpWndqRqWYR6tma7S98qHUc7hvanv5R/vx73X6OFsucnBBCOJJDJ8sZ++YWtmSe4pmbuvHCxB64OTtpHate7q76j+Ex2ub4M1rFQdQg2LoQDNoc1NfcSTMubKL3A2OpMVXh7T2Qqu3faprFSaewcEpvXPU65q/YQ63RpGkeIYQQjfPl3nzGv7mN6joTq+bFc2tca23nw38rLxlcvOuPnXckgx+FykJI0f6CWXMkzbiwiaCwEDKdcwhyD2PnOz9oHYeWvm68NKkn6QXl/PebQ1rHEUII8QeMJjPPrk/n/pV76Bbuw9f3J9K3tZ/WsX4vd1f9LiU6O7lS31htEqF1AmxZAIYardM0O9KMC5tJePgWzhrLCfBPoPL7j7WOw7AuIcxOaMPSbcf5Ib1Q6zhCCCEu4XRlLTPeT+K9zVncFt+aj2+PI9jbTetYv1dXBYUHIMKBRlQuNPgRqCiA1I+0TtLsSDMubMbbz5dj3ifxdw0m6eP99Xeda+yxGzsTHebDw2v3UlAms3JCCGFP9p4oZczrW0jJKeHlST15alw3XPR22roU7AWz0bFu3rxQ1GCI7A+bF4CxTus0zYqd/kaLpuq6v0+j3FBCy4B4znyyUOs4uOqdeH1qb+qMZv66KhWTWfu/IAghhIA1u04w6d3tKIrCp3cP4Oa+EVpH+mOOePPmhRSl/up4eS7sXaF1mmZFmnFhU+6e7uSElODj4seeb0pRTdofvtM2yItnbupGUtYZXv/5iNZxhBCiWas1mvjn52k88uk++rXx5+v5iXQL99U61pXlJUOL1uAVpHWSq9duGIT3hc0vg8mgdZpmQ5pxYXPDH5zOmdoiIgJjKXr/Ga3jADChTwQTeofz2k9H2HnstNZxhBCiWSosr2HKoh2s2JnDXYPbsWxOP/w8XbSO1Ti5yY47L36eotTvrFKaA/tWa52m2ZBmXNicXq+nsIMRT70PB3a4odbZx6z20zd1o5W/B39dlUrJWZmXE0IIW0rKOsPo17aQcbKCt6f34bEbO+Oks6NtC/9IeT6U5znuvPiFOoyE0J6w6SWwg3+9bg6kGReaGDLvZgpr8mkV0Juchf/SOg4AXq563pjWh9Nna3l47T5UO7jBVAghmjpVVVm6NYtp7+3A203PunsTuLF7qNax/pzc5PqPjjovfqHzV8dLsmD/Wq3TNAvSjAtN6PV6KmI8cHPyICsjEvVsidaRAOgW7stjN3bhx4OFLNt2XOs4QgjRpNUYTDy0Zi9PfpXOdZ2CWXdfAh1CvLWO9eflJYOTC4T20DqJZXQaBSHdYdOLYJaD8axNmnGhmetuHUNeTQ6t/LuT8V/7uDoOMCehDcM6B/P/vjnEgfwyreMIIUSTlH0ohaPPJdAu7RUeHNGRRTP64uPmrHWsq5ObDC27g95V6ySWoSgw+GE4nQkHPtc6TZMnzbjQlHlYKM6KC0VF0ZjP5GodBwBFUXhxUk/8PJ2Zv2IPZ2tlZk4IISxFNZtJWvsywSuvJ9p0kHnuP3P/4FboHGU+/LdMRsjf0zTmxS/UeQwEdYFfXwCzWes0TZo040JT8WOGklObRasWXdj/n//TOk4Df08XXp3cm6zTZ/m/Lw9oHUcIIZqE8tNFpL48ln77nybTLZryka/ibKiAoz9rHe3qFaWDoappzItfSKervzp+KgMOrtM6TZMmzbjQnOdNndApOipq+mPOP6R1nAbx7QKYP6Q9a3fn8sWePK3jCCGEQzu4/VuqX4+jW+U2drT7K9GP/IRP/1vB3c+xRyHyzt286ejbGl5K15sgsCP8+qJcHbciacaF5npdF8ex2mNE+nQk5ZnntY5zkfuHdSC2jR//+jyN46fOah1HCCEcjtFQx47FD9Jxw1QMigvHb/qCuBlPo3NyAidn6DIGDn0Dhhqto16d3GTwCAC/NlonsTydEwx6GIoOQMZ6rdM0WdKMC7sQdls/zKoZozIY05EdWsdpoHfSsXBKb/ROOuav3EOdUa4MCCFEY+UfzyDzhcHE5b5PSovrafHAdjr0HnTxi6LHQ10FZP6oTchrlZtcPy+uOOjM+5VETwD/dvDr8yBb/lqFNOPCLnTs3Y2jxmOEe7Vlx/OLtY5zkbAW7rwwsQdpeWW8sMF+xmiEEMKe7V6/GK+l1xFel0VyzIvEPrAaLx+/37+wzSBw93fMUZXq0vqZ6qY2L34hJz0M+jucTIPDG7RO0yRJMy7sRsd7hmEw1+Lifh3GPd9qHeci10e3ZGZ8axZvyeKXQ0VaxxFCCLt1tqKUpFen0nfXQxToW1ExayMxf5l3+Tc46aHrWMj4Fgz2cSJzo+Wn1H9sivPiF+o+qX4MR66OW4UmzbiiKJMURTmgKIpZUZTL/gYrirJEUZQiRVH2/+Z5f0VRflAU5ci5j5f4q7ZwNJHto8hUjhPq2ZqtC7+yu//g/zmqC51bevPQJ3spLHfQ2UYhhLCizL1bOPNKPDEl37I9fDZtH9lEWFTnK78xegIYzsKRH6wf0pJykwEFwvtoncS6nJxh4EP1Wzg66jiRHdPqyvh+YAKw6QqvWwrccInnHwN+UlW1A/DTua9FE9D7gbFUm87i4zuYql+Wax3nIm7OTrwxrTfVdSYeWJ2KyWxff1kQQgitmE0mdnz0JK0+G4urWsPBkR8Tf8erOLs08hCc1gngGQQHPrNqTovLTYagTuDmq3US6+sxBXxbwcbn7O5imaPTpBlXVfWgqqoZjXjdJuDMJb41Dlh27vNlwE0WjCc0FBQawlGXEwS5h7Hzwz12dwxv+2Bvnhobzbajp3l7Y6bWcYQQQnOnTuaw/8URxGUu4IBnHC73bSc6YfSfW8RJD13GwuHvoM5Bdq5SVcjd1bTnxS+kd4GBD9Rv5XjsF63TNCmOOjMeoqpqwbnPTwIhWoYRlpX46GQqjeUE+g2k8qs3tI7zO5NiIhjbM4wFPx4h+fil/q4ohBDNw95fPkF5J5GO1ftIin6cXn//mhaBLa9usW4T6g/POfK9ZUNaS0kWVJ9p+vPiF+o1HXzCYaPMjluS1ZpxRVF+VBRl/yUe4yxZR1VVFbjsb4SiKPMURUlWFCW5uLjYkqWFlXj5+JDlU4ifaxA7PysEY63WkS6iKArPju9GeAt3/roqlbIqg9aRhBDCpmprqtjx1jx6/no75To/Tk7ZQL9JD6PorqGtaBUPXiGw30FGVXLPH/YTq20OW9K7QuIDcGIHHN+sdZomw2rNuKqqw1VV7XaJhyXOVC1UFCUU4NzHy25voarqIlVVY1RVjQkKCrJAaWELQx6ZRlndGUID4yj5+P9pHed3vN2ceX1qbwrLa3j0032ocoVACNFMZGekkvtiAnFFq9kZNJHQh7fRposFrg7rnKDruPor47WV176eteXuAmdPCO6idRLb6j0DvFrCry9onaTJcNQxlS+B2859fhtgiQZf2BE3NzdOhJbj4+xHykYd1FZoHel3eka24JEbOrHhwEk+2pmjdRwhhLAq1Wwm6dMFBK0Yib+pmL2J79D/3vdxc/e0XJHo8WCscYz9rHOT63dR0TlpncS2nN0g8W/1V8aPb9U6TZOg1daG4xVFyQXigfWKonx37vkwRVG+ueB1K4HtQCdFUXIVRZl77lvPASMURTkCDD/3tWhihj8wldO1RUQExHJy0eNax7mk2xPbMrhjEP/5Op2DBeVaxxFCCKsoO1PMnlfG0S/tSY65dcE4bws9h0+1fKHIOPAOtf8DgAw19YfghPfVOok2+twGnsGwyb6vjldu3UrmKy9pHeOKtNpN5XNVVSNUVXVVVTVEVdXrzz2fr6rqqAteN1VV1VBVVZ3Pvf79c8+fVlV1mKqqHc6Nw8hddE2QXq+nuLMJT7036alhqJX2N/Ov0ym8fEtPfN2duefjFIpk/3EhRBNzcOd3VL8WR/eKrexoez9dH/mZoLA21imm00HXm+r3G6+x4wscJ/eB2dC85sUv5OIBCffDsY2Qs1PrNL+jmkwcfvpJ9n98mMqc1pQX5msd6Q856piKaCaG33kLhTX5tPLvRc6r/9A6ziUFernyzq19KCyvYep7OyiqkIZcCOH4jIY6tr//dzp+Mxmjoidr3OfEzfwPOicrj2VEjwdTrX2PquTuqv/YnHZS+a2YOeARYHdXx41FRWy99V6MZX0I927HKf0Z3HwDtI71h6QZF3bvbD9P3Jw8yMqORj2dpXWcS+rb2p+ls/tRUFbD1EXSkAshHFtBdgZHXhhM/In3SGkxkhYP7KBjn8G2KR4RW799nj2PquQmg28keF/lNo5NgYsnxN9XfyJn7m6t0wBQ+t06Nj/8HpGRk3FWnDnWNp/hL92Ji1sjD5/SiDTjwu4NmvYX8mpyaO3XncMv/p/WcS6rX5Q/H8yKpaCshmnv7aS4wr62ZBRCiMbY/c0SPD+4jsi6LJL7vkDsA2vw8vGzXQCdrv7qeOaPUF1qu7p/Rm5y850Xv1C/O8DdDza9qGkM1Wjk4CP3kfFVGR1CB1FUdxLX2R0YfOcUTXM1ljTjwiGow0LRKy4UlfRHzdundZzL6t82gA9mxZJXUs3U93ZIQy6EcBhVlWUkLZxG36QHKNBHUnbbL8SMuVObMNHjwVQHGd9qU/+PVBRCWU7znRe/kKs3xN0Lh7+Fgr2aRDBmZ7Bp+j0ophsI9WzNQeUwvZ+fSKvo9prkuRrSjAuHEDdmKNk1WUT6diHtBfvePKd/2wA+mF3fkE+ThlwI4QAy927l1MvxxJz5hu3hs2j7yGbC22q4f3Z43/oxEHscVck7f9hPM54Xv1D/eeDqq8m+4yUrXmLzk1/Qps00FEXhRPezjPjvXPSuzjbPci2kGRcOw2dSFxRFR0XdEMxH7Pvkr7i2ASyZFUuuNORCCDtWV1vD9g8epdVnY3FTq0kfuZz4Oxbi7KLxjK2iQPRNcPRnqC7RNstv5SaDTg+hPbVOYh/cfCHubjj0NZzcb5OSauUp9t81kcztLekQMoCTtfn43tODhFtHXfnNdkiaceEweiT2I6v2GJE+Hdn90jtg56dexre7uCE/VSkNuRDCfhza/Qu5z/cjPvsd0nwG4nLfdroljNE61v9ET6jfPvDQeq2TXCx3F4R0A2d3rZPYj7i7wMXbJrPjxqTP2Dj3n7h4zSHYI4KDzkeJeXkyLdtGWr22tUgzLhxKxJx4zKoJk34kpr1faR3nis435CdKqqQhF0LYhbMVZWx/ax4dvhyPl7mCvYnv0PehL2gRaGc7g4T1hhat7WtUxWyC/D0yL/5b7n7Q/05IXwdFB61To7aCMy9OY8s7WbRrMx2zaqagn4lmqfiwAAAgAElEQVQR/5mFk7W327QyacaFQ2nfowuZpmNEeLdl+2ufgdmsdaQrOt+Q55ypYvp7OzktDbkQQiN7f/2c0ldiiS9aze6gcbj/Ldk6J2lagqLU38h5bCNU2cnZfsWHoK5S5sUvJf5ecPaATZY/8VLN/JXUeRPIOjGG9sH9yKs7QeDfYom7eZjFa2lBmnHhcDrdPYw6Uw1uniMwblumdZxGGdAukCW3xZJ95izTpCEXQthYyekidi6YQs9fZmHGiUM3rKLffcvwbmHfh6EQPR7Mxvp5ZHuQe/7mTbky/jse/vVbHe7/FIoPW2bNuiqMa/7GL0+swTPoIQLcQjjokUW/l6YSGBlimRr/n737jo6q3Po4/p1Mei+k956QQi+hhCYdRaqCgO3a+7X312sXUa/Xe+1drBQrqFgIUqSItATSC0lIAul9JjPn/WMAFVFKZnIyyf6sxRqdnJzzy1Jg58l+9tMNSDEurE5oTCR5miICXMLY9NrP0KFTO9JpGRHTh9cvHkJRdTMXvSYFuRDC8hSjkW1fvYHhP0MYVPcNW4Mvwe/OHSQMn6p2tNMT2A+8o2DfKrWTmJRuN7VkeEepnaR7Srve1Ev/07LO3+vgdqruG82mdZHEhl2AXtFRnW7HxAeWWH1byomkGBdWafBt59Pa0YyH5wRa1/xb7TinbWRMH964ZAiFR0wFeU2zdXwjIYSwPodKC9m5dAZDt99CvW0fDs5bw7Ar/o2Do4va0U7fsVaVwg3QfETtNFD2CwQPNuUSf+bqC4Mvg70fQ3X+2d2jox3l2wfYcdftlLXfSbTPQIp1RQTdOYpBM0abN283IcW4sErefr7kO5bSxzGQLavKoL1J7Uin7fcF+cJXf5aCXAhhVgaDkU0fPY3LqyNIatnGtpibibjrZyKT09SOdnaSZoFigP0qb9pvazBtTpR+8b834kbQ2sNPz5z55x7ajf650fzwVj2eQXfj6eDDAfdiRj27BE8/b/Nn7SakGBdWa9Qd82nS1+PrNYbmlY+pHeeMjDzasiIFuRDCnApz9pD1xBhG7n+YUsdYai/OYOiih9DaWtchKH/gnww+sZCpcqtK+a+AIsX4qbj5w6BLYfcHUFt0ep9j0MP6J6l4+Dy25FxMfNhc2gytNE505Zx7Flk0bncgxbiwWq7u7hR6VuHl0Iefv1WguVrtSGdkVGwfXrt48PGWlVopyIUQZ6ld185Pb95H4PLxROjz+LXf/5F453oCo5LUjtZ5x1pVijZCU5V6OUq3m16DB6mXwVqMvMl0MNLprI5XHUB5dQI/v/Y9lfbLiPJOpUBXQMS940idOMzyWbsBKcaFVRt3+0LqdTUE+aRR9+79asc5Y6NjfXl1yWDyDzexUApyIcRZyNq5keIn0hhd/B9y3Iahv/pnBsy6BY1ND/orPmkWKEbY/7l6Gcp+Ma3QO3mpl8FauAfCwCWw632oKzn5NUYDbHoe/b/H8P3mNPwCb8fN3pNsn1LSn7kYVx+Prs2soh70O1X0Ro6OjpQGNeBm58Uv2/yh7qDakc5Yepwvrx0tyGWFXAhxupqam/jpxRuI++xcfIzV7Bv5PKm3fol3QLja0czPLxH6xEPmp+o8X1FMK+My0vD0jbrZ9LrxuT9/rDof3pxG6fJn2Vr9LxKCZtBkaKT9XB8m3N5N595bkBTjwupNuHkBR9orCfUeQuUr96kd56ykx5lWyPMON7Ho9a3UtUhBLoT4azs3fEn100MYXfkOe/tMxeHmHSRPvLjnTvnQaCB5tqlVpbGi659fVwzNhyFEWlROm0cIDFgEv74L9WWm94xG2PYqyouj2PyTI7UOy4jw7EuePp+YByeTOHqAuplVIsW4sHq2trZUxys427qRmd0XpTJL7UhnZUycL68sHkRulWmFXApyIcSJaqqPsPG5xQz84SLsMZAz+V0G3PA+rp6+akezvL7nAwpkqdCqIof9nJ1Rt5jaizb92/ST63fPR7fqDr7P+weBfjfibOtGbuAhxi67BGcPKxq5aWZSjIseYcLV86hoKyPcewAlz9xm+u7bCo2N95OCXAjxJ4qisGXtu+j/M4S02i/YGbQQ79t3EJd2ntrRuo5fAvj1hczVXf/s0h1g6wR+PWBDbFfyCod+C+CXt+B/aRT9UsCOhqUkBEyiXl+LMi+IcTfNVzul6qQYFz1G6zBXHLROFNfNwPDj82rHOWvHC/JKaVkRQkB5WQlbl55P2tbradO6UTbncwZe+SIOzu5qR+t6SbOgZAs0lHftc8t2QNAA0Np27XN7gtG3omDDhqIJNNs+Sph7PDkduSQ8Mp2YofLNDUgxLnqQ0QtmkN+eR6RnMpte3wc1BWpHOmtj4/14eckgcipMBXl9i17tSEKILmYwGNnw8fM4v5LGwOaN7Iy+lpC7thOWmq52NPUkzcLUqvJZ1z2zox0O7ZZ+8bPUonPku5KbCfO8GAetIwVhhxn/9GU4ujipHa3bkGJc9CgJt02h2dCIb+BMDj52rdW2qwCMi/fj5cVSkAvRG+XnZLH7iXNIz7qfw45h1C75noGLH0dr56B2NHX1iQX/lK5tVanYBwad9IufhcyPP2bvI+tI9BlJjf4IdoujSb92ttqxuh0pxkWP4h8cSFl8C252nhQ3nk/Hd9bbrgIwLsGPlxYPJLuikcVvbKW+VQpyIXqydp2OH996iIDlY4nXZ7In9V5i7tyIf3R/taN1H0nnw8GtUF/aNc87ftiPnLx5uow6HetufATbba4EuoSRbcwl5clZhKfGqB2tW5JiXPQ4E66YR64ulwivJDa+mY1SU6h2pE4Zn+DPi4sGsv9QA4tfl4JciJ5q164d5D8xinFFz1Ds2h/9VVtInX0HGhut2tG6l6RZpteumjletgPcgsAjuGueZ+Uqd//KhhtfIcEpHaNioGKAnglPXYadvZ3a0botKcZFj5R8+3Qa9XUEBs2g6KFrTQc2WLEJif68tGiQFORC9EB5VU384+0dNK+8kRBjKVnDn6bvbd/gGRildrTuyScaAvt1XatK6XbpFz8NiqKw6annqXyzgBjPfpS0FxJ0+wiGXjhR7WjdnhTjokfyDfSnop8RZ1s3ynWz0a19Vu1Infb7gnyJFORCWL2qxjbuXb2Xyc9tYHdBGcNtc3Aadil9p1zRcw/vMZekWaYV69piyz6n+QjUFkm/+Cm0VB9m3dVPEnQkCVc7d3K9DzLyuYvxCPBRO5pVkGJc9FjjlswkpyOPcI8ENr1ThFJt3e0qYCrIX7xoEFmHGljyxjYa2qQgF8LatOg6+Pd3uYxdup6Pth9k0bAwvp9rj1bRYxczTu141qHv+aZXS09VOXbYj/SL/6XMzz5j74Nr6es1klp9NcwPZtwdC9WOZVWkGBc92sC7ZtKgryU4ZAr591xn9e0qAOf09ed/Fw0iq7yexa9LQS6EtegwGPlgWwljlq7n2e9yGBPny7e3pPPQzGTcD20GGzsIT1M7pnXwjjTN/c5cZdnnlO0AjRaCZAPtiYx6Pd/e9hi2P9kR6BJGztFNmlFD+qodzepIMS56NC9fH44MtsFR68Jh7RzaPlumdiSzmNjXn/8uHEhWeT1LXt9GTbMcDCREd6UoCt/vr2Tqv3/i7lV7CfVyYuU1aby4aBBRvq6miwozIHQo2PfeI8HPWNJsKP8VLLlJv3Q7+PeV/y4nqMzOZMMNr5CoHYVRMVDVX8d42aR51qQYFz1e+oIZZBvzCXWPY8tH5ShHrL9dBWBSUsDRgryByc9t4MfsKrUjCSFOsKe0jgWv/szlb++gw6jw0qKBrLxmBIPCvX+7qKUGDu2ByDHqBbVGScdaVSw0VcVohLKd0i9+gg3P/o/Klw4Q45lKcXshQbePZPCCSWrHsmpSjIteYfg9c6jTVRMSPIkDd97QI9pVwFSQf3rdSHxc7Ln0ze3cu3ovLboOtWMJ0esdrGnhxg9+5bwXNpFT2cS/Zibx7S3pTEkORHPi5szCDYACUWNVSGrFPMNMvdyWmqpyJAfaG6Rf/KiW+hq+ueYpQg/F42rrTq5nMaOeuxiPAO9Tf7L4W1KMi17BzcuD+tHOOGgdqXecS+snT6kdyWz6Brnz2fUjuSo9ive3lTDt3z+xs6RW7VhC9Ep1LToe+TKLCcsy+CazguvGRZNx+1iWpEVgp/2Lv3ILM8DeFYIHdm3YniB5tumo+up889+77OjmTVkZJ3PtGvbc+yVJHmnU6arRzA1i3F2L1I7VY0gxLnqNkbMmcYB8Qtyi+Xl1NcZKC/zhrRIHWy13T0vkwyuGozcozH1xM09/k42uw6h2NCF6hTa9gVc25JP+1I+8vqmQmf2DWH/7WG6fnICb4yn6aAvWQ/hI0Eq/7RnrO9P0aonV8dLt4OABPr331EijwcDXdz6J7fcQ5BJGjiGH5KdmETksSe1oPYoU46JXGXn/BdToDhMaMoHM227pMe0qxwyL8uHrm0czZ2AIL/yYx+wXN5Fb2ah2LCF6LKNR4bNdZUxYlsFjaw4wIMyLNTeOZum8fgR6OJ36BnUlUFMgLSpnyyMEQodZ5jTO0l9Mh/3Y9M5SqTI/m4zrXyKJNNMmzdQ2xi+9XDZpWkDv/D9M9Fourq40j/PEzsaeVo+51L35sNqRzM7N0Y6l8/rx8uJBlNe1Mf0/G3l9YyFGY8/6xkMItW3OP8LM/27ipg934eFkx3uXD+Pty4aSGOh++jcpyDC9RsnmzbOWNAsq98KRXPPds70JqjJ7bb/4hv++SuUL+4j1SKWkrZCg20Yw+KIpasfqsaQYF71O2rnjOaAtIMg1kl/XtWEoM+Mf4N3I5KQAvrk5nfTYPjz8ZRaLXt9KWV2r2rGEsHo5lY1c9tZ2Fr66leqmdp6Z348vbxjFqNg+Z36zwgxw8QU/mc181vrOBDTmbVUp/xUUY6/rF29tauDr65YSWhxl2qTpXszIf1+MR6CcpGlJUoyLXin93oVUt1cRFjKWfbfe1uPaVY7xdXPg1SWDeWJ2CrsP1jHluQ2s/rUUpYd+vUJYUmVDG3et3MOU5zawvaiGu6Ym8MNtY5k9MAQbm7M4vl5RTCvjkWPgxAkr4vS5B0FYmnmL8eObN3vPyvi+779lz92fkuw2nFpdNcwJYNw9skmzK0gxLnolJxcn9FP90Gps0fnOo+Z/D6gdyWI0Gg0XDg1j7U3pxPu7cctHu7nu/Z3UykFBQpyWpvYOnvk2m7FL17NyZykXj4gg4/ZxXD0mGkc77dnfuGo/NFdJi4o5JM2CqiyoOmCe+5XuAO8ocO75Y/uMRiNr7n0au7UdBDqHkdORTcpTs4ganqJ2tF5DinHRaw2eNJr99kUEuoSze7MN+sIstSNZVJiPMx9dlcadUxJYl1UpBwUJcQp6g5F3fy5m7NIfef6HPMYn+vHdP8fw4LlJeLvYd/4Bhcf6xcd2/l69Xd/zMFuriqKYJqn0ghaViuJ8Mq5/kZSOoaZNmsmtjH/6H7JJs4tJMS56tXH3LeRwewXhQaPYc9u9KMaePQpQa6PhmrHRfHrdSLyc5aAgIU5GURS+zaxg8nMbuP/TfUT2cWH1tSP478KBhPuY8Vj0ggzwijQdXiM6xy0AIkaZivHOtuHVl0JTZY/fvPnjq29Q9dwuYt1/t0lz8VS1Y/VKUoyLXs3R0RHNzFBsNFoInk/1srvUjtQlkoI8+Oz6kVwpBwUJcZzRqPD9/krmv7yFK9/9BYBXFg/i46vSGBDmZd6HGTqgaKO0qJhT0vlwJNvU/tMZPbxfvKWlkbU3PE1Ebjgutu7kuRbKJk2VSTEuer3+Y4ez37EIf+cQ9u52RXdgl9qRuoSjnZZ7piXywe8OClr2bTZ6Q8/+6YAQJ2rRdfDuliLOeSaDy9/ewcGaVh45P5lvbk5nUlLAn4+vN4fynaBrlBYVc0o8DzQ2kLmqc/cp3QFaB/BPNk+ubmRfxg/suXM1KS7DqNVVYzPLn7H3LVE7Vq8nxbgQwDn3LqKyvZyIoJHsvvMRFINB7UhdZvjRg4JmDwzhPz/kMet/clCQ6B0O1bfyxNoDpD3+A/d/lomroy3/vrA/P905jkXDw//6+HpzODZfPCLdcs/obVz9zNOqUroDgvqDrRn2BXQTBqOBL+9fht0XbQQ5h5GrP0DKU7OIHJGqdjSBFONCAGDnYI/dnCgAbCPmUfnIP1VO1LXcHO14el4/XlokBwWJnm/3wTpu/OBXRj/5I69syCctyodPrk7js+tGMrN/sGWL8GMK1kNAKrhIa4BZJc2G6jyo3Hd2n2/Qw6FdPapfPG/3Djbe8Br99aZNmof7NjNu2RWySbMbsVU7gBDdReqoIaz54U1SbWI4kOeP566tOPYfpnasLjUlOYBB4V7ctXIPD3+Zxff7K3l6Xj+CPE/jWG8hujGD0bQp8/WNheworsXVwZYlaRFcOjKCUG/nrg2ja4bSbTDsqq59bm+QeC58datpdTzgLEbzVe6DjrYe0S9uNBr55qFniWiKI9qtL4WtufS/exZuAWbe/yA6TVbGhfidSfcspry9lIjA4ey+fxlGXe+bxe3r5sBrF5sOCtp1sI7JclCQsGKNbXpe+6mAMUt/5JrlO6loaOO+6YlsuXs8D5zbt+sLcYCSLWDQQeTYrn92T+fSByLTYd+qs2tVKe0ZmzdLsnaRcd1LJLUNxkZjw8GQSkb/+zIpxLspWRkX4ndsbW1xXZCIccVhHKLnceiBmwh+4kW1Y3W5YwcFpUX7cOvHu7nlo918l1XFI+cn42WO+cpCWNjBmhbe3FTExzsO0tTeweBwL+6dlsikpAC0Z3NapjkVZICNHYSnqZujp0qaBV/cCId2m3q/z0TpDnD1B49Qy2SzMKPRyLpHniG4LoZYjxSKW/NJum0a8aF+akcTf0OKcSFO0Hdof9Z+9xYpDdHkVkTgtSUD57TeOX4s3MeFj65K4+UN+Ty7LoftRTU8NTeVsfHyB7vofhRFYUdxLa//VMi3WRXYaDRMSwnk8lGR9Av1VDvebwozIHQo2JtxZrn4TeK58NU/Ta0qZ1yMbzf1i1tigo6FlWfv48CzP5DoMZh2m1YKfcsZfeslascSp0HaVIQ4iYl3LKK0/SCRfkPZ/ehLGJub1Y6kGq2NhmvHxvDpdSPxdLbjkje3c9+nclCQ6D70BiOf7Spj5n83Me+lLWwpqObK9Gh+unMczy8Y0L0K8ZYaOLQHInvnN/hdwtnbNDLyTKeqtNRATb7VtagoisJ3jz7NkZeyifMcQFnbQTyv7c/oWy9QO5o4TVKMC3EStra2eF/Snw5Fj0vMXErvvkHtSKpLCvLg8+tHccXoSJZvLWH68xvZnHdEesmFaupadPxvfR6jn/yRmz7cRVNbBw+fn8yWu8dz19QEAj264cbjwg2AIvPFLS1pFtQVm+a5n64y00FP1lSMV+bt5/urniW2fhAutm7kex0k7d+L8Y0KVDuaOAPSpiLEX4jr15e1X+8gpTaS/MokvNetwXXiNLVjqcrRTsu90/syIdGfWz/ezcLXtpIY6M4lI8KZ2T8YRzut2hFFL1BwuIk3NhWy8pcyWvUGRsb48NjsZMbG+WGjdj/4qRRmgL0rBA9UO0nPljAdvrjZtDoePOj0Pqd0h+nQoKABls1mBoqisOGJZXhUhpPgPYTytoOEXDGCMUmT1I4mzoKmN61qDR48WNmxY4faMYQV6ejoYNvtHxJsH0zZ3tcZ9v4LaD270Y+8VdSqM/DprjLe3lzEgYpGPJ3tuGBIKIuGhaszoUL0aIqisDm/mtc3FvLDgSrstTbM7B/EZaMiSQx0Vzve6Xt+APSJg4UfqZ2k51s+H6qy4Oa9p9cD/u5saKyAazdbPlsn1BTm8Mtjq4n1GoJRMVDsUUX63Rei1cpiSHej0Wh+URTllD9qkZVxIf6Gra0tAVcMQf9mEW7xsym57ToiX1uudqxuwcley4KhYVw4JJSthTW8vbmI134q5NUNBUxI9OeSERGMiPaxzFHiotdo7zDw2a5y3thYyIGKRnxc7LlpQiyLhofj6+agdrwzU1cCNQUw5Aq1k/QOSbMg9xvTinfokL+/1mg0tan0ndk12c6CoihsWvoMTmVBJPqMoKKtDL8lAxk3cKLa0UQnSTEuxClE9Y3n68DtJFeFU1A/BO/Vn+Axa57asboNjUbD8Cgfhkf5UF7Xyns/F/Ph9oOsy6ok1s+VJSMimD0gGBcH+eNGnL6Kw4dZuzWT/+7Sc6RJR7y/G0/NSeW8/kHW2w5VkGF6jZLNm10iYRpo7U2tKqcqxmvyoa2u2/aL1xXksv3RT4j2GYrGQUOuYxHpjy6U1fAeQtpUhDhNG295lzD7UEr2vsWwN5/Ezt9f7UjdVpvewBe7y3l7SxH7yhpwc7Rl3qBQlqSFE9FHxrmJk8urauKbzAq+zaxgfsUznKvdzO1hH7E4PYmRMT3gpywr/wEF6+G2XKscnWeVPlhgmjd+8z6w+ZuZFbs+gE+vhmt/Br/Erst3CorRyLZnnsWm2J9Al3AOt1fgNi+RmBHJakcTp0HaVIQws/BrR9L2cjaeCedTeNP1xH7wsfUXBxbiaKdl3uBQ5g4KYWdJLW9tLuadLUW8ubmQsXG+XDwigvRY3+6/2U5YlKIo7C6t55vMCr7JrKDgsGmEaP9gN2Y5/YqzvpWXh1RBbA9YSVYU08p45BgpxLtS0izIXmOaHx427K+vK90O9m6mfv5uormogM3/eoconxHYOtmRY1vImH8tRGsvpVtPI/9FhThNobFRfBP2M0nloRS4puP73lt4Lb5U7VjdmkajYVC4N4PCvamansjyrSUs31rCJW9uJ7KPC0vSwpk7KAQ3Rzu1o4ouojcY2VZYc3QFvJKKhja0NhqGR3lzyYgIJvb1J7BhH7xeY/qEvR9Dag9oC6vaD81V0qLS1eKmgNYBMleduhgPHgg26rd9KEYjO597Dn2+D4l+E6hpr8JuegTjz1midjRhIVKMC3EGJt+4kA23vE2ETyr7PnyHYenjsQ8PVzuWVfBzd+SWiXFcNy6GtfsO8dbmIh76Iounv8lmzqAQlqRFEOPnqnZMYQGtOgMbcg/zTWYF3++vor5Vj6OdDemxvtyeFM+ERD88ne1/+4Tta0CjhQGL4Nf3oPkIuPRR7wswh8Jj/eJj1UzR+zi6Q+xEyPwUJj9+8lYVXQtUZsKoW7o+3wlaCgvY9NAbRPQZhb2rI7maAkY9tgA7J/tTf7KwWlKMC3GGYm4aT9MLe/GJn0nBzTcRv2IlGtlEc9rsbW2Y2T+Ymf2D2VNax1ubi/hw20He2VLM6Ng+XJwWwbgEP7TSwmLV6lp0fL+/im+zKsjIOUyb3oiHkx0TEvyYlBTAmDhfnOz/4vdN9loIHwFDr4Sdb5s24A218gkkBRngFQmeYWon6X2SZsGBL+Hgz6b/r050aBcoBlU3bypGI3uf/zdNOe4kBkymTldN61gPxs24WLVMoutIMS7EGQqKCGVd9CYSi4Mp9J1En5dfpM+116sdyyqlhnjyzPz+3DMtkQ+3lfDezyX8450dhHo7sWR4BPMHh+LhLC0s1qKivo1vs0z93z8X1GAwKgS4OzJ/cCiTkwIYGumNnfYUBz/XFMLh/TDwcQhIBr++sOdj6y7GDR1QtBFS5qqdpHeKmwK2jqZv6k5WjJceHewQrE4x3lqQz6b/e4VQv3Q83VzJMxYw/P/m4+jeDU+QFRYhxbgQZ2HiNRey/p9vEu2VTNba5QwdfwDHhAS1Y1mtPq4OXD8+lqvGRPNtZiVvby7i0TX7WbYum1kDQrh4RDgJAVZ0sEsvkn+46egGzEp2H6wDIMrXhSvTo5icFEBqsMeZbdTN+dr0Gj/F9JoyD75/yFSke0eaOX0XKd8JukbpF1eLgyvEToKsz2DKE3/uCy/dDp7h4OrbpbEUg4Gs5/9DbbYTCUEzaNDXcXiIwti5shre20gxLsRZSrx1CrXP7sQ3bgZ5t95G39WrsLGXvr7OsNPaMD01kOmpgWSVN/D25iJW7Szlg20lDI/y5uI00wY/21OtrgqLURSFvWX1xwvwvKomAFJDPLh9cjyTk/yJ8XM7+wdkrwHfRPCOMv17ylxTMb53BYy53QxfgQqOzRePSFc3R2+WNAv2fw7FmyFy9B8/VvYLhKV1aZzW/Dy2PPg/Av3HEeHpSX5HAYPumY2rTyd+7wirJcW4EGfJPziQffEtxOcHUBwyg8PLluJ/971qx+ox+ga58+TcVO6amsBHOw7y7pZirlm+kyAPRxYMDWNYlA99g9xxlcOELK7j9xNQsio5VG+agDIs0pvFw8OZ2NefIE8z/Ei9tRaKNsHIm357zzMMwkaYpqqk32adYwEL1kNAKrj4qJ2k94qbDHbOplaV3xfjDeXQUNZl/eKKXk/Of/9DVaYDMcEzaTE0Uda3lTFLZDW8N5O/xYTohAlXzOOHW98gziuJ7M0f4vDpp3ief77asXoULxd7rh4TzRWjo/huv6mFZdm6HMBUl0X2cSE5yIOUYA+Sgt1JCvLAw0n6zM+W0ahQVtdKblUj2RVN7D/UwIbcw9S16HGwtSE9zpdbJ8UzIcEPLxcz/yQo73vTRrr4qX98P3UefHmL6fCWoP7mfaal6ZqhdBsMu0rtJL2bvYupIM/6DKY+Bdqj5c+xfvGQU5zQaQbNO3ey7am38QsaT6SPN4X6IvrdNoOEQC+LP1t0b1KMC9FJKbdN58jT2wiIn07O0/8hyd8fl7Su/ZFnb6C10TA5KYDJSQFUNbSxr7yefWUN7C2rZ0dRDZ/vLj9+bZi38/HiPDnIg+RgD7zNXThaOUVRqGpsJ7uikZxK06/syibyKhtp1hmOX+fv7sC4eD8mJ/mTHueLsyUPHMleAy6+EDzoj+/3PR/W3AF7P7G+YrxkCxh0EDlW7SQiaZZpZbx4428jJku3g9YeAlIs9lhDfT2ZjzxKY2M0MavYTMYAACAASURBVOFzaDE0URxVz+grF1vsmcK6SDEuRCf5BvqTk2ZL0DZ7nIdeSe4/7yHhrZdxjO8+J7n1NH7ujox3d2R8gv/x96qb2sksNxXnmeX17C2r56u9h45/PNjTiaQgd5KDPUgONr36uTmqEb/LVTe1k1PZdLzozqlsJLuikYa2juPX9HG1J9bPjXmDQ4n1dyXe341Yf7eu+ylDhw5yv4O+5/55g52zt2lW9N4VMPFf3eJgltNWkAE2dhAu36CrLmYi2LmYCvKosab3yn4xtRDZOpj9cYqiUPPZanZ/sJWQ0LF4ebhSYChiwK3nEi+r4eJ3pBgXwgxGzp3KuqoPiS8O4MjQqyi44kpiP/4Qu4AAtaP1Gj6uDqTH+ZIe99tEhPoWPZnl9cdX0feV17NufyWKYvq4n5uDqTg/XqR7EOjhiMYa+5KB+lY9uZWNfyq8jzTpjl/j7mhLfIAbM/oFHS24XYnzd6OPq/mLkTNSshna6yF+2sk/njLPtHJe9JN1HZxTmAGhQ01tEkJd9s6mFqisz2HaMtN75b/CQPOfbNleWMiu+x9F45lOXOQM6nQ1NKUpjJkjp2iKP5NiXAgzmXjthax95A1SNLGUplxC8eWXEvnRJ2hd5VRJtXg42zEipg8jYn47vbGpvYOs8gb2lZmK9MyyBtZnV2E8WqB7u9iTFOROytHiPDnIg1Bvp25VoLfoOsitbCK7spHco+0luZWNHKpvO36Ns72WWH83xif4EefvRpy/G/EBbvi5OXSrr+W47LWmWdBRY0/+8fipYO8Gez6xnmK8pQYO7YFx96idRByTNAv2rTB9k+TiC/oWs/aLG9vbKXvhBfJ2NhMedAFajS252iJG/GsuDq4yN1ycnBTjQpjR1Psu4+u7XyPZLZ7C4BnYX3cNoa++jkZGHnYbrg62DI30Zmik9/H3WnUG9lc0kFn2Wx/6KxsK6Dhaobs72h5fOfc5ofdcOeH+yglvKH+64s/X/Pnjf76gqd1AXlUj2ZWNHKxpPf6+va0NsX6uDI/yOVpwuxLr50awp9OZzfdWk6KYVr2jxv71CrKdE/Q9zzSebvoysLOCFqPCDYACkTJfvNuIOQfsXU2tKkEDTO+duEfhLDVv3szup17BKXwqsaFBVOkqcDkvlnFjx5nl/qLnkmJcCDM75+FL2Hjnu8R4p5JX3ojtffcS+ORT3XM1UgDgZK9lYJgXA8N+6+Ns7zCQU9F0tMXF9OutzUXoOoyqZLS10RDt60q/EE/mDwol9uhKd5i3M1prKbr/SlUW1JXA6Fv//rqUebBruelgoCQrmFpUmGEq/IIHqp1EHGPnaGqF2v8FdLSDcx/wiujULTuOHKHg4Yc51BBGRNzFGOgg16Oc9FvnoLXkhmfRY8j/JUKYma2tLcMfXcCvd68kOnAEOflrsHv+eXxvuunUnyy6DQdbLSkhHqSEeBx/r8NgRGf4czGu4Y/F8Ol833XiNae6h41GY/1F91/JXmt6jZvy99dFpoNrgGmqijUU4wXrIWIUaGXUZreSPNs0tz5zlWml/CwXShSjkdqPPmLfBz/gHT2NaP8+lOoOEnb5CMYlRZg3s+jRpBgXwgIcHR1JuGcKRY//SGTUZA58+xF2QSvwnDdX7WiiE2y1NnL6pyVkrzW1CridYsOzjRaS58D2V00HBDl144kUdSVQUwBDrlA7iThR9HhwcIf2hrM+7KftwAGy7/8XjV6jiUhcRJuhhcLQGkZft9DMYUVvIH+rCGEhXr4++Fw1gGZDI8F955D10gqafvpJ7VhCdC+NlVC2488H/fyV1Hmmud1Zn1k2V2cVZJheo8aqmUKcjK0DJEw3/XPwmRXjxuZmDj3xOFvveRnH8IuI8E6myFiC/z+HMvq6mRYIK3oDKcaFsKCw+Gj0M/0xYMBnwBKy7n2StqwstWMJ0X3kfG16jTvNYjywP/jEwp6PLZfJHAozwMUP/BLVTiJOZthVED3BNHbyNDV+/z07Zy2i+GAg0XGz6VAMVPTXk750MR5BPhYMK3o6KcaFsLB+6cOoHGrE3sYB58GXk33tTejLy0/9iUL0BtlrwSMM/JNO73qNBlLnQ/EmqDto2WxnS1FMK+OR6WfdjywsLGgALF51WvPf9eXlFFx1Fb+8tgGvftcQ6BpBrraI6AcnMvjC8V0QVvR0UowL0QVGzZtGXngF7nZeGPpdTsFll2Oor1c7lhDq0rVAwY+mFpUzKVpTju692LfCMrk6q2o/NFdJi4qVU/R6ql9/g18W30id4zhiws+h0dBA80Q3xj26GEd3mRsuzEOKcSG6yMTrLiLTLR8/p2Bqoy+g+OorMep0p/5EIXqqgvXQ0Xb6/eLHeEeZDmrZ84lFYnVa4bF+cZkvbq1afv2VA3PmsO+nagIGXYuXQx9yXEtJeeJ8+p5jnrnkQhyjSjGu0WjmaTSaTI1GY9RoNH+5e0Kj0byh0WiqNBrNvhPeX6rRaA5oNJo9Go1mtUaj8bR8aiE6b+p9l5PJAULcoilzTefQnXegGNWZWy2E6rLXmKZahI88889NmQ9VmVCZaf5cnVWQAV6R4BmmdhJxhgz19Rx68EF23vkcHdGXEB0wnMqOSuwWRTL+vgUyN1xYhFor4/uA2cCGU1z3FnCywbPrgGRFUVKBHOBus6YTwoImPHIpebo8In1Sya325/CyZWpHEqLrGY2mzZsx54DtWZxQmzQLNNrut5HT0AFFG6VFxcooikL9F1+Qee5s8g75ETbgMhy1zhQEHWHw0vmEpEarHVH0YKoU44qi7FcUJfs0rtsA1Jzk/W8VRek4+q8/AyFmjiiExdja2jL8sQWUtpcQHTiSrK3V1H7wgdqxhOhaZb9A82HTaYhnw9XXNC967wpTYd9dlO8EXaO0qFiR9sJCii+9lF2vrcN+yC1EeqdSbDhIn5sGkX7jLLRardoRRQ/XE3rGLwPWqh1CiDPh6OhI3N2TOKKrIjJqMnuXZ9D4449qxxKi62SvMa1sx55z9vdInQ8NpVCyxXy5OqsgA9BARLraScQpGNvbOfyfF9i74B8cckknOnEeRhTKUtoY/fQivEJ91Y4oegmLFeMajeY7jUaz7yS/zDYVX6PR3At0AMv/5porNRrNDo1Gs+Pw4cPmerQQnebt54vPVf1pNjQRnDiHvY+9QuvevWrHEqJr5HwN4SM6d4pm/DSwczYdbd5dFKyHgBRwkbnT3VnTxk3knncemRsr8Rx9B8GuUeRqioi4fxzDLpqodjzRy1isGFcU5RxFUZJP8sssx6ZpNJpLgBnARYqiKH+T4xVFUQYrijLY11e+yxXdS1hCDPqZvhgx4NNvEZk334/uYDednSyEudQUQlXW2beoHOPgajpJMfNT6OgGk4l0zVC6TVpUujF9WRmlN9xI5t1P0Rh/MTGRk2g2NNEw3plxjy/G2dNV7YiiF7LKNhWNRjMFuAM4T1GUFrXzCNEZ/dKHUzm4A3sbRxz7XcyBK66jo7ZW7VhCWM6xUzfjT7Y//wylzIe2Oshb1/l7dVbJFjDoZPNmN2Rsb+fw//5H5vnzKWiLJSDtZnwc/clxLqHvE+eRPPn0T+IUwtzUGm04S6PRlAJpwFcajeabo+8HaTSaNb+77gNgCxCv0WhKNRrN5Uc/9ALgBqzTaDS7NBrNS138JQhhVqMumHH8UKCO+IUUXnklxvZ2tWMJYRnZa8A3wTQvvLOix4GzT/eYqlKQATZ2EJamdhJxlKIoNP7wI7nTp5O5vhTnMfcS5dOfUkOZaVzhAxdhZ2+ndkzRy6kyMFNRlNXA6pO8Xw5M+92/L/iLz4+xXDoh1DHxuotY+/CrpGgSKPWbhsMtNxP6wn/R2FjlD7CEOLnWWijaBCNvNM/9tHaQPAd2vgNtDeDobp77no3CDAgdelpHrAvL0xUVUfHY4xwsaMQ5+UpiHAOp1R2hob8jIy9cpHY8IY6Tv+WF6Eam3n8FmewnxC2GYn0yVU88rnYkIcwr73tQDJ3vF/+9lPmmkzz3f2G+e56plho4tEdaVLoBY0sLVc8+x74LLqXEZiChg67C3c6THPdSEp6YweALx6sdUYg/kGJciG5mwiOXkafLJdInlf0HbKh5+221IwlhPtlrwMUXgs14pHjIYNOJl2pOVSncACgQKZs31aIoCg1ff0321Olk7WjCI/1uwjwSKDSW4HFtKuPvWSAtKaJbkmJciG7GdCjQwuOHAu35cj8N33aDzWlCdFaHDnK/g7jJYGPGg1Q0GkiZZyqIGyvMd98zUZgB9m4QPFCd5/dy7Xl5lFx6Gbv/s5qOgTcSEzqGekM9DWMdGbN0MX0iA9SOKMRfkmJciG7o2KFA1boqIiMns+uFVbT8+qvasYTonJLN0F5v3haVY1Lng2KEfSvNf+/TUbAeIkaaethFlzE0NVH55FPsvuRGDrmkE5myCAetA/n+VfRbOpvkqcPUjijEKUkxLkQ35e3ni/dV/Wg2NBIcP5td9yxDV1Skdiwhzl72WrB1tExfdZ9YCOyvzlSVuhKoKZAWlS6kKAr1n3/O/mnncuCAFt8RtxLoEkGOppCgO0cy5pY5coy9sBpSjAvRjYUlxKI/19t0KFDSAvZcezsdNTVqxxLizCmKqRiPGmu5aSOp8+HQLjiSa5n7/5WCDNNr1NiufW4v1bZ/P0UXXcSuN9ejHfJPov2HUtVRRcf5fox/fAmuvh5qRxTijEgxLkQ312/sKCoH60yHAiUsZP+V12BsbVU7lhBnpmo/1BVD/FTLPSN5Dmhsun51vDADXPzAL7Frn9vLGOrrqfjXw+y85l6q+0wnOn4WCgpFMQ0Me2YB0SOS1I4oxFmRYlwIKzDqgvPICy3D3c4LffAsim66CcVgUDuWEKcv++h5bnFmOHXzr7gFQGS6aaqKoljuOb+nKKaV8ch000ZSYXaK0UjdihXsnTGH3INeBA+7ER9Hf7Idiol+aCKj/jFd7YhCdIoU40JYiYk3LGGfSw5+TsFU2aVR9n//h9JVBYcQnZW9FoIGmgpmS0qZD7VFULrdss85pmo/NFdJi4qFtO7dS978eez6ZDfOw24l0qcfBztKsV8SzYSHFuHg6qR2RCE6TYpxIazItAeuJFPJIsQthsKKAGreeF3tSEKcWmMllO2wzBSVEyWea9ok2lWtKoXH+sVl86Y5ddTUUH7f/fxy61KaQy4kJnISbcZWDg3SM2rZIoKTI9WOKITZSDEuhJWZ8Ojl5LWbDgXam3GYhjVr1I4kxN/L+dr0asl+8WMc3U2tMJmrwKC3/PMKMsA7CjzDLP+sXkDp6KBm+XJ2nX8RRdVhhA/4B6527uR4lJL0xHkMmSenZ4qeR4pxIayMra0twx//7VCgnW9toGHtWrVjCfHXsteCRxj4d9EGu9T50FIN+T9a9jmGDijaKCMNzaTll1/InjOHPV8X4zXsn4S4x5FvLMLrhgGMv3sBWntbtSMKYRFSjAthhRwdHYm7ayLV+ioiIybz66vfc+j//g9je7va0YT4I10LFPxoWhXvqg2OMRPB0dO0kdOSyneCrlFaVDpJX1VF2e13sOPB1+iIvoSY4NHUddTSMMGJsUuX4BPmp3ZEISxKinEhrJS3vx8elydR31FLVOx55BS7UTB/nhwMJLqXgvXQ0dY1LSrH2NpD0vlw4Ctob7LccwrWAxqISLfcM3owY0sL1a+9xs4LrqS0JYmo5IXY2TiQF1hF/6fnkDxpqNoRhegSUowLYcUikxIJuXMUJbpiov2HciRkNgfmL6T+y6/UjiaESfYacHCH8JFd+9yU+aBv+W2koiUUZEBACrj4WO4ZPZCxtZXqN95kz9SZ7NvciP+QG/F3CSVbU0jw3aMZe5Ocnil6FynGhbBy3v5+DFu64OiUlWgYeSvZj/6HQ/c/gLGtTe14ojczGiHnG4g5x7Ra3ZXC0sA9xHJTVXTNULpNWlTOgLG1leo33yJz4lT2rq/EdehtRPsNpqKjAsOcACY8vgRXHze1YwrR5aQYF6IHsLW1ZfKTV7GvTw5udp54jbyZvO1lFM2/gPaCArXjid6qfKdpBndXjDQ8kY0NpMyF/B+g6bD571+yBQw6mS9+GoxtbdS8/TbZEyezd10R9sNvJyZoJPWGeg4N0jP8mYVED+urdkwhVCPFuBA9yJTbLqcirQ0DHYSlLqLYfQCFc+ZS/9lnakcTvVH2GtBoIfYcdZ6fegEoBshcbf57F2SAjZ1pBV6clLGtjZp33iHnnIns+SIL49BbiQmbQLuxneLYBvovnSOjCoUAZE6QED1M2qzplCRkc/iVXcSGTKDA1Q/DnffQvHUbAffdi42zs9oRRW+RvRbCR4CTlzrP9+8L/smmqSrDrjTvvQszIHQY2LuY9749gLG9nbqPP+HIK69Q4dUPzyE3E+PgR4O+lrygw4y+bqb0hAvxO7IyLkQPFJYYT8LD08nV5RDlmULr5Hup+DqDwvnzac/NVTue6A1qCqEqq2unqJxMyjwo3Q41ZmzXaqmBQ3ukX/wExvZ2at5bTt7ESWQu/5GmgdcS1Xc+DloncjzLiH1kCmNvnC2FuBAnkGJciB7KxdWVcc9czh67TPwcg3AcdwdVRg8K582nbuUqFEVRO6Loybry1M2/kzIX0MDeFea7Z+EGQJHDfo4y6nTUvP8++ZMmc+CNL6jrfwWR/S/B3d6LbKcSwu4fy/i7LsTOqYs38QphJaRNRYgebtrDV/PDK+8RluuLf/IlFPf5DuXee2nZtpWABx7AxkV+zC4sIHsN+CaYjopXk0eIaazino8h/XbzHDxUmAH2bhA8sPP3smJGnY76lSs58vIrVHe4Yux/MaEu0egVHTnaQgbdNIOYQG+1YwrR7cnKuBC9wPgrF9Ey3YnmjmaiA6dRNuEf1H7xJYXz5tOWnaN2PNHTtNZC0Sb1V8WPSZ0H1blwaJd57lewHiJGgtbOPPezMopOR+2HH5I/eQp5z71BRd8FBI68lSDncPIowu2qJMY/ugQPKcSFOC1SjAvRS6SOTSfgn0Mpaz9IgttQas65lbbGFormz6f244+lbUWYT973pikmaow0PJm+M0FrD3s+6fy96kpM/ee9sEVF0emo/ehj8qZMofCpFyiLn43vmLsJd4unxHAQ20XhjHtyCb7RgWpHFcKqSDEuRC/iGxLE4Cfnk2XIItI5Fv3g62hLHUzFAw9SftvtGJqa1Y4oeoLsNeDiC8GD1E5i4uQFsZNg30owGjp3r4IM02vU2M6mshqKTkftxx+TP2UqJY8+xcGYc/GY8CAxnv0o7zhE2wwvRj+9mJDUaLWjCmGVpBgXopexc7Bn0tKr2OuRhaedN87+s6mePo+GtWspmjOHtv371Y4orJlBD7nfQdxksOlGUzNS5kFTxdHNl51QmAEufuCXaJ5c3Zii11P7ySfkT51G6UOPUhw5CedJjxDnPZhqQzU1o2wZ8cxFxI1OVTuqEFZNinEheqmpd19F2cBaFBRCtGMpmXExxtZWii64kNoPPpC2FXF2ijdDe333aVE5Jm4KOLjD3k60qiiKaWU8aox5NoJ2U4peT93KleRPnUb5/f9HYdgY7KY8SrzvCJqMTRzqp2PoMxeSOkMOPBLCHGSaihC92MgL55CfsIvat3NJckhj/yBXYut3UPHQv2jeuo3Ah/+F1s1N7ZjCmmSvBa1D92vjsHOExPMg6zOYvgzsnM78HlX7obmqx/aLK3o99Z9/wZGXXqL94EEODZ1DQOpgEu19qNVVUxxZz/B/zJI54UKYmRTjQvRy0f370xQRwS8PrSbRIYVSd3d8L0uk8e23acvMJPjZZ3FKTlI7prAGimLqF48a2z1PpkydB7veM33DkDz7zD+/8Fi/eM8qxo06HQ1ffsWRl15CX1JC+eDp+CRfSYKDP436OvL9DjPq+vPQ2kvJIIQlSJuKEAJXT09GLl3MXpu9BDmE0loZR9sNN6Do9RQvWEDNu+9J24o4tar9UFfcfUYanihiNLgGnH2rSkGGaW66Z5h5c6mkLSeHyscfJy99DIfuuYdS7ziapjxAfMhMnLUu5LqXEfXwRMb8c7YU4kJYkPzuEkIAYGtry9THrmXd868TdTAMp/xIiqbPJi4/i8pHH6Vl2zYCH30Erbu72lFFd5W9xvQaN0XdHH/FRms6kXPry6Yj7Z3PYA62oQOKNh490dN6GZqaaVi7hroVK2jbvQdsbSkfMQUnp1RinCJoN7SS41BM2p3nE+flqnZcIXoFKcaFEH8w8cbL+WXNWhy/1xF7JJV9XkaG3jGEqmeepW3WbIKffQanVJmeIE4iey0EDQT3bjxnOmUebHkBsj6FwZed/ueV7wRdo1W2qCiKQuuuXdStXEnDmrUoLS3YREeSP2MJ/oZI4h2C0Rt15GqKGHDzNKKDfdSOLESvIm0qQog/GTRtKl7XJHFIV0aKMpC9e434v/RfUBSKLlpE9VtvSduK+KPGSijb0f2mqJwosB/0iTvzA4AK1gMaiEi3RCqL6Kitpfqttyg491yKFyykYc1aNBPGkT3ranTxV9LfdhSeWg9y7UrwuqEf4x5fjKcU4kJ0OVkZF0KcVFBMDN6PBbPxvndIcOhL4cpDeD90Pw4frqDqiSdp2badoMceRevpqXZU0R3kfG167a794sdoNJAyH358xHSa5un2fxdkQEAKuHTvYlUxGmnevIW6FSto/P570Otx6teP9huvoaTEjoSOcAYrbtRrasjzrmD41TOIdT+LyTJCCLPR9KbVrcGDBys7duxQO4YQVmfNQ/8lqbkvrcYWqvvXkmg0Urn0aWwcHPCcMwevRRdhHxqqdkyhpvcvhMpMuHlP95/BXVMIz/eHCQ/C6H+e+npdMzwZAcOuhkkPWzze2dCXl1O3ajX1q1ahLy9H6+mJ+8yZHIgMoW17K3HaSOxtHKjUHaI9wZVhl0+WEYVCWJhGo/lFUZTBp7pOVsaFEKc07cHr2PDWcgL2eRO0J5BtnlmM/eRjql95lZrly6l55x1cx43De8linIcNQ9PdizFhXroWKPgRBl7c/QtxAO9ICBlqmqpyOsV4yRYw6Lpdv7ii09H4w4/UrVxJ88aNALiMGIH3rbfwU10dnjs6iKoLAVsNpfpSXMdEMmjmfJVTCyFOJMW4EOK0pF9yEdlbNlP/ySGSG/qT8dr3THjicfzuvIPaDz6g7qOPKfnhBxxiY/FavAiPc8/Fxkl+/N0rFGZAR1v3b1H5vdT5sOY2qNgHAcl/f21BBtjYQVj3OHGyPT+fuhUrqf/sMww1NdgGBNDnmmuwmXYOP6zdRPh3jQxyCEdvp6PQeJCI+cMYMaR7fSMhhPiNtKkIIc5I3eFK9j62lkiHaMraDmI7zolBM2dhbG+n4cuvqHn3XdoPHEDr4YHn/Hl4LVyIXWA3nq4hOu/zGyDzU7g9H2zt1U5zepqrYVkcpF0HE//199e+nA72bnDpV12T7SSMLS00rP2auhUraP31V7C1xW38eDznzaU2LpStr35NXI0/3vZ9aDU0c9DhCP3/MQnvCD/VMgvR251um4oU40KIM9ah17PugZdJMCSi1WjJ0+USs6Q/YQOGmMao7dhBzTvvmjaQaTS4nXMO3ksW4zRwoLSw9DRGIyyLh4iRMO8ttdOcmeXzj/a57wWbvxgu1lIDT0XBuHtgzB1dGk9RFNr27qVuxUoavvoKY3Mz9lFReM6Zg8f5M8k8Ukzh21tJ1IXhYutOg76WSt9Whl8zAyePbngCqhC9jPSMCyEsxtbOjqmPX0/e9u0Uv7+HGPs4Ot6vY+0H/2HUbXNwGzIE5yFD0JeVUfP++9R9soLGb77BsW9fvBYvxn36NGzsrWQFVfy98p3QXNX9RxqeTOp8WHk5lGyGiFEnv6ZwA6BAZNe1eRjq6qj//AvqVqygPScHjZMT7lOm4DlvLo79+5Ox8TvaHl9JvCaSwdpkqowVHIlUGH7pNPrKSZlCWB1ZGRdCdNqWT1ah3dxOkEMITfp6ijzzOefOq7G1dwBMP2Kv//wLat57F11ePlofH7wumI/nhRdi5yc/Rrdq3/8LNj4Ht+ed2YmW3YGuGZbGmk7VPO/5k1/z5S2mmeR3FoLWzmJRFKORlp9/pm7FShq/+w5Fp8MxJQXPuXNxnz4No7MDa1etwn1TC5H2kWjQUKYvw3l0GP1m/cU3EkIIVUmbyklIMS6EZX377KsElfrhaedNVXsFTYl1pF95xfGPK4pCy5Yt1Lz7Hk3r14NWi/uUKaYWFjnV0zr9Lw2cfeCSL9VOcnZWXWmakX5bLtg6/Pnjzw8wHRK08COLPF5XWkb96tXUr16NvrwcGw8PPM49F8+5c3BMSKChrYFvXv+EsDwngh1C6TDqKVHKCJk9kKi0JItkEkKYhxTjJyHFuBCW19rcwo+Pv0lcewyOWmeK2vLxnOpD8uRz/3CdrriYmuXLqV+5CmNzM079+plaWCZPQmNnuRVIYUbH5nVPfsy0EdIa5X4Hy+fABcshccYfP1ZXAs+lwJQnYPg1ZnuksbWVxnXrqFu1mpaffwaNBpcRI/CcMxvXCROwcXCgrKaMzS9+QVy1Lz72frQZWjhoX0Xq5RPxiQowWxYhhOVIMX4SUowL0XUqi4vY8/w3xGpjAcjtyCb5ihEEJvb7w3WGpmbqV6+m9r330BUXY+vnh9eCC/G84AJsva2s7aG3+flF+PouuPFX8I5SO83ZMXTAMwkQPgLmv/PHj+18Fz6/Hq7ZAv59O/UYRVFo27OHupWraFizBmNTE3ahoXjOnoXHzJnYBQUBsC9/D3lvbCKhPQxXW3ca9HVU+jSbNmV6uXYqgxCia0kxfhJSjAvR9fZt+Ina1flEOkTTZmghx3Y/4+64CCcv3z9cpxiNNP/0EzXvvEvzpk1o7O1xnzED78WLcExMVCm9+FtvnwtNVXDdVrWTdM6aO+CXt+D2XHD0+O39lf8wzRi/Leesr/51lQAAGfRJREFUDzPqOHKE+s8+p271KnR5+WgcHXGfPBmPObNxHjwYjY0NrR2tfLvqUxy2NhFrE4GD1pHDukqao+1Ju2IaWtmUKYRVkmL8JKQYF0I9G975CNdfNfg5BFKnr6Hcr5BJt10P2j8XGu35+dS89x71n36G0tqK8+DBeC1ejNuE8WhspTDpFlrrYGk0jLgBzvk/tdN0TukOeG0CzPwvDFhkek9R4Ok406mbc147o9spej1NGzZQt3IVTRkZYDDg1L8/HnNm4z51KlpXVxRFYdP2DA5/foCoFj987H0xKgbK9eU4pIUwYF66Bb5QIURXkmL8JKQYF0JdHR0dfPf0G4QfDsLNzoND7aV0DGghbfFlJ115NNTXU7dyFbXLl6MvK8M2KBDvhQvxnDsXraenCl+BOG7vCtNYwMvXQehQtdN0jqKYNmp6hsHFn5veq8yCF9PgvBdg4OLTuk17bi51q1ZT//nnGKqr0fr2wXPmTDxmz8YhytTGU1RRwI531hF0yJVg+2C0Gi21uiMc9mgl+cIx+MUHW+qrFEJ0MSnGT0KKcSG6h6b6en564n3iOmKws7GnsD2PwPMDiRt78lnVisFA048/UvPOu7Rs24bGyQnvJUvwufwytO7uXZxeALDicihYb2rhsNGqnabzfnwMMp6Cf+4H98Df+uFv3msq0v+CobGRhq/WULdqFW179phOxhw3Fo/Zs3EdPRqNrS0NbQ3/396dR8dVnnke/z61aF9sy4u8CO/YBu82FoSELeDQTgPGNGloQjdkYboHAmk6dNKTzJmezEx3kwwh5CQdGrpJoBPIBIIDCQ6bMRCILdtYXjEyxmyyZUvyoq201PLMH1XYslMysi2pLOn3Ocenqu5969Zz63Wpfrp673tZ+fhTFFR2MClYRnYwl9Z4C7sDdYy8ZAZnfeZjv6tFpB9SGE9DYVzk9PLhWzvY8cArTA1PJe5xdsTfZNFtlzB0YtdTtrVVVbH/gQdpfOYZgsXFlNxyC0Nv+AsCOTl9WPkgF4/CdybDjCtg6Y8yXU3PqN8JP1wAi/8PfOI2ePQ6qK9Knpx6DE8kiKxdy6FfPUnT88/j7e1kT51K8TXLKL7iCkIlJSQ8wauvvUjjil1M6hjNkPAw4okYe2I1+PQhnHPjpYRzdeErkYFMYTwNhXGR09Mbz66k49kaynLGE4k18U7Odi79+k2EC0u6fE7b9u3Ufu9eWn7/e0KlpYy47VaKly7VmPK+sOsVeOTK9NMB9mcPXASJOHx5Fdw9IXkxoCu+f3h1R/VuGn796+Sc4Lt3EygspOhPP8uQZdeQM/NszIy3P3yLzY+8Qll9EaVZYwhYgPqOWg6WdDDn85cybPyILl9eRAYWhfE0FMZFTm8r/+1nDK/KoyRrBPs7atk/9n0u+ertaU/y/EhLxVpqv3cPbZs2kzVpEiO+egeFl12GneTsF9INv/sGrH8oeVXKrPxMV9NzVv8rPPcPyXHiT98G1z5MYvLlqTnBnySyOjUn+HnnUrzsGgov/TSBnBwOth7k5Z89zZDtCcaHysgKZNMSa2JPaD9lS+Yy5YJZmd4zEckAhfE0FMZFTn/R9g5evPsnTG4sIy9UyIdt75FVHmXBdTd3Ob2cu9O8ciW1936fjnfeIWf2bEbeeSf555b3cfWDgDvcNwdGTIcbfpnpanpW0z743nQ8u5i23S0cKv4Sjc+tJNHURHjsWIqXXc2QpUsJjx1LPBFn1cpnaX9hN5PiyROSo4kO9sRrCM8ZyYLrLtGUhCKDnMJ4GgrjIv3HgX21rLtnOWcyhYAF2dlRxZmfm0jZeYu7fI7HYjQ89TR1P/whsZoa8j/5SUbe+bfknHVqF2yRTj6aZeRPvw8Lb850NT0m3thIZP16Ij/5Fs1VtXQ0hrGcHAoXX8aQZdeQt+gcLBBg645N7HhsDeMPDWVU9mgA9nXU0FQKC/7qMgpHDc3wnojI6UJhPA2FcZH+Z8eGzdT87A0mhicRTXSwg6186o4lFIyb1uVzEu3tHHz0Mfbffz/xhgaKlixhxB23kzV+fB9WPkC9+n/hpf8Fd76VnHWkn4o3t9C64Q1aKiqIVKyl7c03IZHAwiFyh7VQdNF5FH3tfoKFhdQ11vP7h3/D8F0BzgiXEQqEaYoeoibnEJOvXsT4hV3/XxSRwUthPA2FcZH+a/XyFYRebWR09liaow28z7sMnx9mwbU3djluOd7UxP7/+A8OPPwIHo0y5No/Y/jf/A3hkSP7uPoB5MFPgyfgllWZruSEJNraaK2spGVNBZGKClq3boVYDMJh8ubMIa+8nLzyReTOmEJgxR1EL/w6KyvehtfqmeRjyQsV0pFoozqxl4LyMuYs+xTB4ACY0lFEeo3CeBoK4yL9WywWY+WPfs6I9/IYmV0KwMGOenbbh5SWFzB32Q0Qyv7j59XVUf/jH3Pwl49j4XByjvIvfZFgYWFf70L/1rQP7jkTLv4WXHhXpqs5rkRHB22bNtFSsZbImjW0btqER6MQDJI7axZ55eXkly8id948Arm5ALTF2nh95UqaX6tmfEsJw7NGkfAEe6M1tJaFWfSFy8ktHkAnrIpIr1IYT0NhXGTgeLNiA+8/tZbS1uGMyB4FwP6OOmoC1Yw5fyizr7z+j2Zh6fjgA+ru+4HmKD9ZbzwMv7kd/vp1KJ2Z6WqO4tEorVu3EqlYS0vFGlorN+JtbWBGzllnkXduOfnl5eTOX0CwIBmoE55g85uV7FpRSXFNgDE2gsJw8squhzr2s6+wmRl//inGnKXhTSJy4hTG01AYFxmYtr5WQfUzlZS2j2B4VnIISn1HLTXBas64aAxn/8k1EAgcbq85yk/SY9fD3i3Jq1JmeOpIj8dpe3M7kbUVtFRU0Lr+DRKRCADZ06aRV76I/HPPJW/hwqOu0rqnfjfrf72K0I5WRseGUhIeQcACRBMd1MXqaCqOMe6CmUy5YJaGoYjIKVEYT0NhXGTg2/Tya9Q8u4UxHaMYlpW8wEpd+z72hncz8bKJTL/0isNBUnOUn4COCHxnEsy/EZZ8t89f3hMJ2t9+m8iaNcmhJ+vWkWhqAiBr8mTyyxeRt6icvEXnEBo27PDzmtubWf3CKlor9jCiuYDS8CjCgWwSnuBgtJ79WS0UzhrD7KvOJ7sgt8/3S0QGLoXxNBTGRQaXyudXUftiFWNioxiaNRx3p65jL3uza5iyZDpnfmoxDpqjvDuqfgePXQc3LofJl/T6y7k7Hbt2JWc7WVNBZO1a4ocOARA+44xk+C4/l7xF5xx1Qm7CE2zauoH3VmxkyL4gYwIjyQ8lj4w3xxqp5QCJsjxmXfVJSiaM6vX9EJHBS2E8DYVxkcFr/TMvsP/ldxgbL2VIVgnuTm1HDfty9jLtyjlMOueTmqP8eJ7+CmxdDn+/C0JZPb75RHs7bdu20bphA5HKjbRWVhI/cACA0JjR5C8qP3zSZXjMmKOeW11XzYZfvUzWO22Mjg9lWHgEZkZHop3aWC0tQ50Jl8xhwrkzNPRERPqMwngaCuMiAlCx/Lc0/KGasYkxFIeHkvAEtR011ObVMuOzcyiqeldzlHeWSMA902DC+XDtT3tkk7H6eiKVlbRWbqR1wwbatm1LznYCZI0fT+78+eTOn0d+eTnhsrKjhg41tzez5ncv0bpuLyMjBYwMjyIcyCLhCfZH6ziQ00Lx3DOYc8X5hHN7/hcHEZHuUBhPQ2FcRDqLxWKsW/5bmir2UuZjKQwPIeEJ9rXvoT6vlglZTdhTT2qO8ur18O+fhmUPwuzPnfDTPZGgfedOWjdU0lpZSaSykugHHwBg4TA5s2aRO28uefPnkztv3lFjviE59GTjhrV88NxWhtaFGR0cSV6oAIDG6CHqAgdhQgGzl17A0LHDT31/RUR6gMJ4GgrjItKVWCxGxS+XE3njAGWMpSBcTNzj7GvfQ2Pb+5SsX0FuvIXCiy8me8Z0cqYn/4VGjMh06b1v5bfhte/DXTshb9jHNk9EIrRu3pwM3hsqad248fDJlsGSkmTwnpc88p1z9tkEso4+eh2NR6l6ezvvvrSZ7F3tjE4MY2hWMmS3x1vZF68jUgKTP7OAiQun9/z+ioj0AIXxNBTGRaQ7YrEYq3/+OO2bGikLjCM/VETcY+xr3U1L8x4CB/eSdeA9CureJntoMTnTppE9fTo505O32RMnYuFwpnej5/zreZBXAjf9Nu3qaE3NkeC9YQNtVVUQjwOQPXUKuangnTdvHuEzzsDMcHf2HdpHVcUmDr21l2BdB/mtYYo8j6JQEbnB5FzgcY9TH63lYF4rQxdMZPZnzyOcNYDeWxEZsBTG01AYF5ETFYtGef2Rx4hta2NcYBz5oSNX7Ux4nJZYE83RRtrbG4m1HCDQWEPOofcZNixA3oyzyZkxnexpyaAeLC7O4J6cpAPvwg/mwmf+Cc67FY/FaKuqSg05SZ5sGaupAcByc8mdPftw8M6dM4d4QS5Vb23jw3U7iH3YRHYjFMZyKQ4UUBAqImhH5nZvj7fSGG+k2Vppy3WyxhUz/5oLKRwxJFN7LyJy0hTG01AYF5FT4e58sHkj71ZsIlLdTKglREE8j8JAIYWhYkKBI0dsY4kozbFGIh2NtLc1EI/sJ9BeT1FRO6NmTCV/9hxypk9LHinudEGi04nHYsRfuo+2X91NZOKttL71Hq2bN+Opi+uESkvJmz+PnLlziUwZzzv7m2jYWU+wLkpBW5giz6coVEROMO/wNhMepznWSKM3EwlHiReHKZo0kimLZlIyqTRTuyoi0uMUxtNQGBeR3hJrj7LzjXXsrqyioyZCViSLAk8G9YJQEQE7MqVeR7yN5mgjkWgyqMfiBwlnt1A6dRjjLriInLPnEMjPP+Wa3B2PRIg3NhJvbCLR2EC8qYl4QyOJpuSyeGMDiYYG4g2HkusbGok3NZFoaibR2nZkY4EAWdOn0TB1OvV5o2iP5ZDdFqIwlkNxmn1si0doijfSZG205zvh0gJGz5zMhIXTyM7LOeV9ExE53SmMp6EwLiKZ0B5p463XK6jb8g6x+jZyWrMp8HwKQ4XkBQuPmravNdZCc7SR1mgjrfEG4qFm8kqhdGYZHokQPdRMtLmFREsb8Ug78dYY8fYYifYEHgViDjHD4wFwAwuCBfBAECx4+JZAIPk4GMCDAQgkbz2Qum8BCBhmIbLCRRQGiygKFpEdPHKVyrjHaY410OQtRMJREkPDFE8qZXL5TIaNH4SzzoiIdKIwnobCuIicbpr2H6Lq9XUc2P4+VhclJ5pDgRVQGD56eEcmtcZbaIo30WyttOdD1uhCxs6ayvgFZ2oebxGRLnQ3jIc+roGIiPSewpIhLLzyMrjyj9fVf7iPt19ZQ/P2aqzF8YBB0PBQAIJBPByEUBALBrDULcEAgWCQQCiABYMEggEC4RDBUJBAOEQoHCQYChEMhwhlhwmHsghnhwllZRHKChPOChHIDhPKChHMChMMBxW4RUR6kcK4iMhpanjZKIZ//qpMlyEiIr3o9DyFX0RERERkEFAYFxERERHJEIVxEREREZEMURgXEREREckQhXERERERkQxRGBcRERERyZCMhHEzu9bMtplZwsy6nAzdzB4ys1oz29rF+r8zMzez4b1XrYiIiIhI78jUkfGtwDLg1Y9p91Pg8nQrzKwMWAx80KOViYiIiIj0kYyEcXff7u5V3Wj3KnCgi9X3An8PeE/WJiIiIiLSV/rlmHEzuwrY7e6bMl2LiIiIiMjJCvXWhs3sRaA0zapvuvtTp7DdPOC/kRyi0p32twC3pB42m9nHHpHvBcOB+gy8rvQt9fPgoH4eHNTPA5/6eHDIZD+P706jXgvj7n5pL216MjAR2GRmAOOADWa2yN33pqnjAeCBXqqlW8xsvbt3eaKqDAzq58FB/Tw4qJ8HPvXx4NAf+rnXwnhvcfctwMiPHpvZe8BCd9dvtyIiIiLSr2RqasOrzawaOA94xsyeSy0fY2YrOrV7DFgNTDOzajP7YibqFRERERHpDRk5Mu7uy4HlaZbvAZZ0enx9N7Y1oUeL6x0ZHSYjfUb9PDionwcH9fPApz4eHE77fjZ3zQwoIiIiIpIJ/XJqQxERERGRgUBhvAeZ2eVmVmVmO83sG2nW32RmdWa2MfXvS5moU07Nx/Vzqs3nzOxNM9tmZo/2dY1y6rrxeb6302d5h5kdykSdcvK60cdnmNkqM6s0s81mtiTdduT01o1+Hm9mK1N9/LKZjctEnXLyzOwhM6s1s61drDcz+0Hq/8BmM5vf1zUej4ap9BAzCwI7gMuAamAdcL27v9mpzU0kZ365LSNFyinrZj9PBX4JXOLuB81spLvXZqRgOSnd6edj2n8FmOfuX+i7KuVUdPOz/ABQ6e4/NrOzgBX95DwlSelmPz8O/NbdHzazS4Cb3f3GjBQsJ8XMLgCagUfcfWaa9UuAr5A8L7EcuM/dy/u2yq7pyHjPWQTsdPdd7t4B/AK4KsM1Sc/rTj9/GfiRux8EUBDvl07083w98FifVCY9pTt97EBR6n4xsKcP65Oe0Z1+Pgt4KXV/VZr1cppz91eBA8dpchXJoO7uvgYYYmaj+6a6j6cw3nPGAh92elydWnasa1J/InnCzMr6pjTpQd3p5zOBM83sdTNbY2aX91l10lO6+3nGzMaTvBDZS+nWy2mrO338j8DnU1PxriB5ZE36l+708yZgWer+1UChmZX0QW3Sd7r9Mz0TFMb71m+ACe4+G3gBeDjD9UjvCAFTgYtIHjF90MyGZLQi6U3XAU+4ezzThUiPux74qbuPI/nn7f80M31vDjxfAy40s0rgQmA3oM+z9Bn9UOk5u4HOR7rHpZYd5u773b099fDfgQV9VJv0nI/tZ5K/cT/t7lF3f5fkeMWpfVSf9Izu9PNHrkNDVPqj7vTxF0me/4G7rwZygOF9Up30lO58N+9x92XuPg/4ZmqZTsgeWE7kZ3qfUxjvOeuAqWY20cyySH5BP925wTHjk64EtvdhfdIzPrafgV+TPCqOmQ0nOWxlV18WKaesO/2MmU0HhpK8UrD0L93p4w+ATwOY2QySYbyuT6uUU9Wd7+bhnf7i8Q/AQ31co/S+p4G/TM2qci7Q4O41mS7qIxm5AudA5O4xM7sNeA4IAg+5+zYz+zaw3t2fBm43syuBGMkTDW7KWMFyUrrZz88Bi83sTZJ/6rzL3fdnrmo5Ud3sZ0h+sf/CNS1Vv9PNPv47ksPM/pbkyZw3qa/7l27280XAP5uZA68Ct2asYDkpZvYYyX4cnjrH438AYQB3v5/kOR9LgJ1ABLg5M5Wmp6kNRUREREQyRMNUREREREQyRGFcRERERCRDFMZFRERERDJEYVxEREREJEMUxkVEREREMkRhXESkF5hZczfafNXM8nrwNZea2Vk9uL0/nMJzm1O3Y8zsieO0G2Jm//VkX0dEpL9TGBcRyZyvAicUxs0seJzVS4EeC+Pu/oke2MYed/+z4zQZAiiMi8igpTAuItKLzOwiM3vZzJ4ws7fM7Oepq8DdDowBVpnZqlTbxWa22sw2mNnjZlaQWv6emd1tZhuAa83sy2a2zsw2mdmvzCzPzD5B8sq+3zWzjWY22czmmtkaM9tsZsvNbGhqey+b2b1mtt7MtpvZOWb2pJm9bWb/u1PtzZ3uf93MtqRe81/S7OfEVO1bjtnGBDPbmrp/tpmtTdW32cymAv8CTE4t+66ZFZjZytR7sMXMruq0ne1m9qCZbTOz580sN7Vuipm9mKptg5lNTi2/K/U+bTaz/9mjHSsi0kMUxkVEet88kkfBzwImAee7+w+APcDF7n6xmQ0HvgVc6u7zgfXAnZ22sd/d57v7L4An3f0cd58DbAe+6O5/IHnJ57vcfa67vwM8Anzd3WcDW0hele4jHe6+ELgfeIrkVQdnAjeZWUnn4s3sT4CrgPLUa34nzT7eB/zY3WcBXV1m+q+B+9x9LrAQqAa+AbyTqvkuoA24OvUeXAzcY2aWev5U4EfufjZwCLgmtfznqeVzgE8ANWa2ONV+ETAXWGBmF3RRl4hIxoQyXYCIyCCw1t2rAcxsIzABeO2YNueSDOuvp7JnFrC60/r/1+n+zNTR5yFAAclLfR/FzIqBIe7+SmrRw8DjnZo8nbrdAmxz95rU83YBZcD+Tm0vBX7i7hEAdz+QZh/P50g4/k/g7jRtVgPfNLNxJH+hePtIzj5SOvBPqeCcAMYCo1Lr3nX3jan7bwATzKwQGOvuy1O1taX2YzGwGKhMtS8gGc5fTVOXiEjGKIyLiPS+9k7346T/2WvAC+5+fRfbaOl0/6fAUnffZGY3ARedQk2JY+pLdFFfd/hxV7o/amYVwGeBFWb2X4BdxzS7ARgBLHD3qJm9B+QcUzMk38fc47ycAf/s7v92AvWLiPQ5DVMREcmcJqAwdX8NcL6ZTQEws3wzO7OL5xWSHIoRJhle/2h77t4AHDSzT6XW3Qi8wsl5Abj5o5lfzGxYmjavA9el7t+QZj1mNgnYlRqi8xQwm6PfA4BioDYVxC8Gxh+vMHdvAqrNbGnqNbJTdT4HfKHTuPuxZjayW3srItKHFMZFRDLnAeBZM1vl7nXATcBjZraZ5JCO6V08778DFSQD8Fudlv8CuMvMKlMnMf4VyRM6N5McN/3tkynS3Z8lOaxlfWqYzdfSNLsDuNXMtpAcWpLO54CtqW3MBB5x9/0kh+ZsNbPvkhz/vTC1nb88Zv+6ciNwe2o//wCUuvvzwKPA6tS2nuDo0C8iclow9+P+VVFERERERHqJjoyLiIiIiGSIwriIiIiISIYojIuIiIiIZIjCuIiIiIhIhiiMi4iIiIhkiMK4iIiIiEiGKIyLiIiIiGSIwriIiIiISIb8f0eSyTyE3Tm5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.rcParams['figure.figsize'] = (12, 8)\n", "pylab.ylim(-1.14, -1.04)\n", @@ -103,9 +152,70 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVFX/wPHPYV9EENxAVNwVFXBDEXPJhWxB0dyz3Fo1fapfT/ZUZk/LU2Y9PZVWaqZZKWaWe6KWmjuouOGGO4uKCwgCsp3fH3egERkYYIZBOO/Xa14wM+fe+507y/eec+49R0gpURRFUZTysrJ0AIqiKErVoBKKoiiKYhIqoSiKoigmoRKKoiiKYhIqoSiKoigmoRKKoiiKYhIqoVRjQohxQogdlo5DASHEGCFERDHP9xZCxJVifRuEEE+ZJjoQQpwXQvQz1frKEce/hBALLB1HZSKEaCSESBNCWFs6FpVQdIr6wuj/4Aoh7IUQ3wohLgghUoUQ0UKIgSWs01MIMV8IkaB7w88KIRYJIVqb87WYihBiohDihO71XhFCrBdCuOieWySEeK8U6ypX8tItn6vbj/o3r7KuszKRUv4opRyQf18IIYUQzcuxvoFSysWmia7ykFJ+IKWcZOk4KhMp5UUpZQ0pZa6lY1EJxXg2wCWgF+AKvAksF0L4FFVYCOEB7AKcgAcAF6AjsA3ob2AZG1MHXVZCiF7AB8AoKaUL0AYIt2xU7NZ9cfRvCabcQGV6Dyyhur9+Q9R+MZKUUt200QLOA/0KPTYO2FHMMoeBoQaeew84BFgVs7wPIIGJwEVgu+7xUOAYkAxsBdroLSOB5nr3FwHv6f7vDcQBrwBXgURgvF5ZD2A1cAvYB7xr6PUB/wf8ZuC5Z4BsIAtIA9boHp8OnAFSgRggTPd4GyATyNWVT9Y9bg/M1r32K8DXgKOBbZb0XpzXxXwYSEFLfg56zz8KROv26S7Ar9Cyr+mWvYN28NAROKh7LT/r1pe/n48Cj+ktbwtcAzoUEde2/M8IEKx7/x7R3e8LRBd+fcB2Xbnbuv01oqT3tojtbgUm6f63QjsAuqBb9nvAtYTP4Fhd+evAG+h9P4BAYLduXyYCXwJ2hT6jzwGndWXmAKKE798FoJPu/zG6dbTV3Z+I7rMIzAR+0FvuSb043yoU50xgue71pqJ9pzrrLesF/AIkAeeAqXrPzQRWAD+gfV8mFRHzImAusEH3Pu0E6gOfATeBE/qfCQx8P/Te/526fZmiW7ZvoffzP2jf21vAKsC90Htoo1f2Xd36UoEIoLYx+6y8N1VDKSMhRD2gJdqHtCj9gF+llHlGrK4X2o9uiBCiJbAU+AdQB1gPrBFC2BkZWn20GlQDtC/iHCFELd1zc9B+2D2BCbqbIXt18bwjhAgWQtjnPyGlnAf8CMySWi3hMd1TZ9BqY67AO8APQghPKeVxtB+Y/BqGm678h2j7MABorot5hpGvsyjDgYeAJoAf2pcUIUQHYCHwLFpS/QZYrf+agFHAI4Ab2g/wr2g/GO5o70eYXtnvgSf07j8MJEopDxYR0za0ZADa+3wW6Kl3f1vhBaSU+c/76/ZXfs2wuPe2OON0tz5AU6AG2g+XPv3PoC/wFVpS8ULbZ956ZXOBl4DaQBBaYnyh0PoeBbqgvQ/DgZASYiz1ftLFORctAXny977RFwosQ3tfV6N73UIIK2AN2kFfA91r+IcQQj/OQWhJxQ3t816U4WjJujbawchu4IDu/grgU72yRX4/9J7vqitTG3gbWCmEcNd7/km076wnkAN8biAmgNHAeKAuYId2sGXsPis7U2SlqnBDy9JpaEdU+bd0ijgqRjsi3Qx8U8z6YoHn9O6H6taZCkQUOrJoqlfuLWC53n0rIB7orbtfUg0lA92Riu6xq0A3wBqtVtFa77kPinp9es8PRPvSJev2zaeAdeHtFrN8NDBI9/84/W0BAu0IvJneY0HAOQPrGof2JdJ/f84Uev+e0Ls/C/ha9/9XwLuF1ncS6KW37AS953rq9rnQe2yH3n720r2PNXX3VwD/NBB3X+Cw7v/fgUnAHt39bcAQA/un8Pts8L01sN2t/F1D2QK8oPdcK91nwYaiP4MzgGV6953RaqNFHsWiHfz8Wij2Hnr3lwPTS/isTARW6/4/rttPy3T3LwAddf/PRFdD0cW5VG8dTvpx6spu1nveF8jQ/d8VuFgohteB7/SW3V5CzIuA+Xr3XwSO691vj642buT3I6HQZ24fMFbv/fyw0GvJQvte57+H+jWUN/XKvgD8bsw+K+9N1VDuNlhK6ZZ/496jrvwjmyVob8KUYtZ1He0IAAAp5WrdOl9CO2LQd0nvfy+0L1D+cnm65409irgupczRu5+OdkRah7/7gfJdoBhSyg1Sq324ox2tjUP7ohdJCPGk7mSFZCFEMtAO7WirKHXQPsz79cr/rnvckD3674+Uslmh5y/r/Z//ugEaA6/kb0e3rYZo+zpf4fcgXuq+cYWfl1q/zU5gqBDCDS3xGjqC3Q201NVoA9BqNw2FELXRmo62F/N6CzP03pbkrs+U7n8boJ7eY4Vfv/7rvY32eQZACNFSCLFWCHFZCHEL7cCk8Pts6L0wZBvwgO6I3RotCQXr+ihd0X58i3pd+nGm68dpIA4HXX9IY8Cr0GfiXxjeJ4Zc0fs/o4j7Ba/biO9H4c/cBQx/Ri+gHdga+n4Z2v/G7LMyUwmlFIQQAvgW7UM3VEqZXUzxLcBgXQIqif6HKAHtw66/zYZoR8ygfTic9MrXN2L9oLUT5+jWla+RMQtKKfOklFuAP9C+BIVjRgjRGJiPlmQ9dMnzKFpN5J7yaH0OGWjt5PkJwlVKacwPZGldAt4vlIycpJRL9crox5cINNDt+3z6+w1gMVqz1zC0prx4iqD7wu4HpgFHpZRZaH04L6PVsK6V65UZ567PFNr7nsPdP36FX3/B6xVCOKE1e+X7Cq2Nv4WUsibaD7H+vio1KWUs2mf7RbSawS20H8Vn0GpuRTUdJ6LXFCeEcCwUZ3EuodWG9T8TLlLKh/XDKstrKYoR3w+49zPXCO29y1f4u5uN9j0qjfLssxKphFI6X6G1Mz8mpcwooeynQC1giRCimdC4oB2lFmc58IgQoq8QwhatE/YO2o8QaEdqo4UQ1kKIh9Dal0sktVMKVwIzhRBOurbUpwyVF0IMEkKMFELU0sUeqNvWHl2RK2jt8fmc0b6ASbrlx/N38skv753fF6T7gZgP/FcIUVe3TINCbdimMh94TgjRVfdanIUQj+SfAl2E3Wj9BFOEEDZCiEFotQl9v6F13E9Dq3UUZxvaD0l+P8DWQveLUnj/lsdS4CUhRBMhRA20GkV4odqOvhXAo0KIHrr369/c/VvhgtYxnKY7Bf55E8VZ2v20AnhMCNFdF+dMjE9s+4BUIcRrQghH3fepnRCiS5mjL15J3w/Q+jumCiFshRDD0H5r1us9/4QQwleX4P8NrJClP1W4PPusRCqhGEl3hPEsWkK4rHcdxJiiyuuOPLuhdYLvQGtzj0b7Mhr8AkopT6Id+X6BdvTxGFoCy9IVmaZ7LBmtY+23UryMKWhV38to7b/fFVP2JvA02pk6t9DOdvlYSpnftPMt4Kurvv8mpYwBPkH7Mb6C1n68U299f6CdwHBZCJF/VPUaWl/THl3TyWa09n1DgsS916GU+AMgpYzSvZYvda8rFl2HvYHyWcAQtHb9ZLT3Yy1aYs8vk4F2hlATtERdnG1o7/t2A/eLMhNYrNu/w0tYf0kWojXTbkc7mykTrSZQJCnlMWAy8BPaEe1NtDPM8v0fWqdvKlqyNtXp5KXaT7o4X0TrdE9E6+e7it77ZIjuh/hRtO/zObTv2gK05jWTM+L7AdqJMC10sbwPPC6l1G+OWoL2vb0MOABTyxBHmfeZMcTdTXaKohRFCLEXrZP/O73HZgAtpZRPGF7SMoQQ24EFUsqSak9Vhq72lYzWFHfO0vGUhhBiHNpJFD0MPL8V7WQEk44SYOp9pmooilIEIUQvIUR9XZPXU2inv/6u97w7Wg1mnqViNETXJNIU7ci7ShNCPKZrwnVGu6bpCNpZe4oB5txnFksoQohhQohjQog8IUTnYso9JIQ4KYSIFUJML+L5z4UQaeaNVqmGWqFdo5CM1o/1uJQyEUAI8TRap+4GKWVpztIyO11/1GW05qJKNU6bEOLrIpos04QQX5djtYPQOq4T0JqLRkrV7FISs+0zizV5CSHaAHloF5n9n66du3AZa+AU2lAlcUAk2lAgMbrnO6P1KYSZ6ewgRVEUxUgWq6FIKY/rOqCLEwjESinP6jpKl6Fl1/xk8zHwT/NGqiiKohijsg941oC7L+aJQ7vCFbQzllZLKRPvPnX7bkKIZ9DOZcfZ2blT69b3xUC/iqIolcb+/fuvSSmLu+gYMHNCEUJspugL796QUq4qx3q90C4o611SWamNOzUPoHPnzjIq6p6WNUVRFKUYQohiR9XIZ9aEIqUs74Q88dx9dai37rEOaIMJxupqJ05CiFgpZZnnj1AURVHKp7I3eUUCLYQQTdASyUhgtO7inIKajxAiTSUTRVEUy7LkacNhQpvSNAhYJ4TYqHvcSwixHkA3NMQUYCPaCKTLdclEURRFqWSq1ZXy5elDyc2TWFuZbMgbRbnvZGdnExcXR2ZmpqVDUczEwcEBb29vbG1t73pcCLFfSmnwesF8lb3Jq1L4JOIkf568ypopPSjujDJFqcri4uJwcXHBx8dHfQ+qICkl169fJy4ujiZNmpRpHWroFSPUrenA0fhbnLicaulQFMViMjMz8fDwUMmkihJC4OHhUa4aqEooRni4XX2srQSrDyWUXFhRqjCVTKq28r6/KqEYwaOGPQ+0qM3q6ASqU5+ToihKaaiEYqRQfy/ikzM4cPGmpUNRlGqrRo27h+xbtGgRU6YUNxP3vaKjo1m/fn3JBcto0aJF1KlTh4CAAAICAnjyySdLvY6tW7fy6KOPmiE681IJxUgD2tbH3saK1dGq2UtR7lc5OTnFJpScHEOTWJbOiBEjiI6OJjo6mu+/rzZT0qiEYqwa9jb0bVOXdUcSycktanprRVEsac2aNXTt2pUOHTrQr18/rly5AsDMmTMZO3YswcHBjB07lhkzZhAeHk5AQADh4eH3PJ+bm8urr75Kly5d8PPz45tvvinYxscff1zw+Ntvv12q+KKjo+nWrRt+fn6EhYVx86bW2hEbG0u/fv3w9/enY8eOnDlz5q7lIiMj6dChwz2PV0bqtOFSCPVvwPojl9l15jo9W5Y4TpqiVFnvrDlGTMItk67T16smbz/WttgyGRkZBAQEFNy/ceMGoaGhAPTo0YM9e/YghGDBggXMmjWLTz75BICYmBh27NiBo6MjixYtIioqii+//BLQEo7+8/PmzcPV1ZXIyEju3LlDcHAwAwYM4PTp05w+fZp9+/YhpSQ0NJTt27fTs2fPe+IMDw9nxw5tOppp06Yxfvx4nnzySb744gt69erFjBkzeOedd/jss88YM2YM06dPJywsjMzMTPLy8rh0SRsTd9euXbz44ousWrWKRo0alX8nm5lKKKXQu1UdXOxtWH0oQSUURbEAR0dHoqOjC+7nJwfQrpMZMWIEiYmJZGVl3XUtRWhoKI6OjgbXq/98REQEhw8fZsWKFQCkpKRw+vRpIiIiiIiIoEOHDgCkpaVx+vTpIhPKiBEjChJW/jqSk5Pp1asXAE899RTDhg0jNTWV+Ph4wsLCAO3CwnzHjx/nmWeeISIiAi8vr9LtKAtRCaUUHGytCWlXn41HL/Pe4HY42FpbOiRFsYiSahKW8OKLL/Lyyy8TGhrK1q1bmTlzZsFzzs7OxS6r/7yUki+++IKQkJC7ymzcuJHXX3+dZ5999q7H58yZw/z58wFM2tnv6elJZmYmBw8evG8SiupDKaVBAV6k3slh68mrlg5FURQ9KSkpNGjQAIDFixcbLOfi4kJqquGLlENCQvjqq6/Izs4G4NSpU9y+fZuQkBAWLlxIWpo243h8fDxXr15l8uTJBR3whn74XV1dqVWrFn/99RcAS5YsoVevXri4uODt7c1vv/0GwJ07d0hPTwfAzc2NdevW8frrr7N169bS7QwLUQmllIKaelC7hp26yFFRKpmZM2cybNgwOnXqRO3atQ2W69OnDzExMQWd8oVNmjQJX19fOnbsSLt27Xj22WfJyclhwIABjB49mqCgINq3b8/jjz9ebGIqbPHixbz66qv4+fkRHR3NjBkzAC25fP755/j5+dG9e3cuX75csEy9evVYu3YtkydPZu/evaXYG5ahBocsg7dXHWVZ5CWi3uyHi4NtyQsoShVw/Phx2rRpY+kwFDMr6n02dnBIVUMpg9AAL+7k5LEp5oqlQ1EURak0VEIpg46NauFdy5FV6iJHRVGUAiqhlIEQgsf8vdgRe43raXcsHY6iKEqloBJKGYX6e5GbJ1l/9HLJhRVFUaoBlVDKqHV9F1rWq8Hq6HhLh6IoilIpqIRSRkIIQv29iDx/k/jkDEuHoyiKYnEqoZTDY/7aRUxr1TUpimJ2ffr0YePGjXc99tlnn/H8889z7NgxHnzwQVq1akWzZs14++23ycvTBnEtPJx8QEAAMTExlngJVZ5KKOXQ2MMZ/4Zu6mwvRakAo0aNYtmyZXc9tmzZMkaOHEloaCjTp0/n5MmTHDlyhH379vG///2voJz+cPLR0dH4+vpWdPjVgkoo5TTI34uYxFvEXk2zdCiKUqU9/vjjrFu3jqysLADOnz9PQkICsbGxBSMCAzg5OfHll1/y8ccfWzLcakkNDllOj/p58t66GFYfSuDl/i0tHY6iVIwN0+HyEdOus357GPihwafd3d0JDAxkw4YNDBo0iGXLljF8+HCOHTtGp06d7irbrFkzMjIySE5OBu4eTh5g9+7dxY4+rJSNqqGUU92aDnRr6sHq6Hg137yimJl+s9eyZcsYNWqUUcsVbvJSycQ8VA3FBEL9vZi+8ghH4lPw83azdDiKYn7F1CTMadCgQbz00kscOHCA9PR0OnXqxMGDB9m+fftd5c6ePYuHhwdubur7WJFUDcUEBrbzxNZaqPnmFcXMatSoQZ8+fZgwYUJB7WTMmDHs2LGDzZs3A9qsjlOnTuWdd96xZKjVkkooRjj0xwx+XtLf4POuTrb0almXNYcTyM1TzV6KYk6jRo3i0KFDBQnF0dGR1atX8/7779OyZUtq165NcHAwY8aMKVgmfw75/NuuXbssFX6Vppq8jLAh9TQ/5yQyMPEQNTz9iywTGuDF5uNX2HfuBkHNPCo4QkWpPgYPHnxPf2W7du34888/Afjtt994+eWXGT16NI0bN2bcuHGMGzfOApFWP6qGYoSH/CaSZSXYGvWlwTL92tTFyc5aTbylKBY2ePBgzp49S+PGjS0dSrWjEooR/HwepB7WbLyyBwycyeVkZ0N/33psOJpIVk5eBUeoKIpieSqhGMFKWDGgdkd22khundtmsFyovxfJ6dn8dTqpAqNTFEWpHFRCMdJDAU+TLQRbD35jsMwDLerg6mirmr0URamWVEIxUnuvbngKOzZei4acrCLL2NlY8XB7TzbFXCE9K6eCI1QURbEslVCMJIQgpH4Qu+ytSTm5xmC5UH8v0rNy2Xz8agVGpyiKYnkqoZTCQwFPkyMEfxz+zmCZwCbu1Ktpry5yVBQzsLa2vut6kg8/NN0V+9HR0axfv77gvqFh7xMSEnj88cdNtt2yOH/+PO3atbNoDEWxyHUoQohhwEygDRAopYwyUO4h4H+ANbBASvmh7nEBvAcMA3KBr6SUn5s7bt86fjSwcmRjyinCMlPAwfWeMtZWgsf8vFi8+zwp6dm4OtmaOyxFqTYcHR2Jjo42y7qjo6OJiori4YcfLnhsxIgRfPnlvZcLrFixwiwxVLScnBxsbEyXBixVQzkKDAG2GyoghLAG5gADAV9glBAifxKDcUBDoLWUsg2wrMiVmJgQgpCGfdjrYEfykeUGy4UGeJGdK/n9WGJFhKUo1VpKSgqtWrXi5MmTgHYl/fz58wF4/vnn6dy5M23btuXtt98uWCYyMpLu3bvj7+9PYGAgKSkpzJgxo+CK+vDwcIPb068dpKenM3z4cHx9fQkLC6Nr165ERWnHxxEREQQFBdGxY0eGDRtGWpo2xYWPjw9vv/02HTt2pH379pw4cQKAbdu2FdSEOnToQGpqKlJKXn31Vdq1a0f79u2LjKtbt24cO3as4H7v3r2Jiori9u3bTJgwgcDAQDp06MCqVasAreYVGhrKgw8+SN++fcu834tikRqKlPI4aD/QxQgEYqWUZ3VllwGDgBjgeWC0lDJPt74K67B4qN1TLLywni0xPzK0y9NFlmnfwBUfDydWRScwokujigpNUSrMR/s+4sSNEyZdZ2v31rwW+FqxZTIyMggICCi4//rrrxfUIsaNG8e0adO4efMmTz+tfTfff/993N3dyc3NpW/fvhw+fJjWrVszYsQIwsPD6dKlC7du3cLJyYl///vfREVFFdRIFi1aVOSw9/rmzp1LrVq1iImJ4ejRowWxXbt2jffee4/Nmzfj7OzMRx99xKeffsqMGTMAqF27NgcOHGDu3LnMnj2bBQsWMHv2bObMmUNwcDBpaWk4ODiwcuVKoqOjOXToENeuXaNLly707NnzrhhGjBjB8uXLeeedd0hMTCQxMZHOnTvzr3/9iwcffJCFCxeSnJxMYGAg/fr1A+DAgQMcPnwYd3f3srxVBlXmoVcaAJf07scBXXX/NwNGCCHCgCRgqpTydFErEUI8AzwD0KhR+X/cW3u0oZGNCxtT4xmaEg+uDYraJqH+XnzxZyxXb2VSt6ZDuberKIrhJq/+/fvz888/M3nyZA4dOlTw+PLly5k3bx45OTkkJiYSExODEAJPT0+6dOkCQM2aNQ1uz1CTV74dO3Ywbdo0QBv+xc/PD4A9e/YQExNDcHAwAFlZWQQFBRUsN2TIEAA6derEypUrAQgODubll19mzJgxDBkyBG9vb3bs2MGoUaOwtramXr169OrVi8jIyILtAAwfPpwBAwbwzjvvsHz58oL+nYiICFavXs3s2bMByMzM5OLFiwX7y9TJBMyYUIQQm4H6RTz1hpRyVTlXbw9kSik7CyGGAAuBB4oqKKWcB8wD6Ny5c7lHbhRCEOITwsLTP3Pj0BLce04vslxogBef/xHL2sOJTOjRpLybVZRKpaSaREXLy8vj+PHjODk5cfPmTby9vTl37hyzZ88mMjKSWrVqMW7cODIzMyskHikl/fv3Z+nSpUU+b29vD2gnGeTkaJcYTJ8+nUceeYT169cTHBzMxo0bjdpWgwYN8PDw4PDhw4SHh/P1118XxPDLL7/QqlWru8rv3bsXZ2fnsr60YpmtD0VK2U9K2a6Im7HJJB6tnySft+4x0GorK3X//wr4UYFC2owkVwg2n/zFYJnmdV3w9azJKnWRo6KY3X//+1/atGnDTz/9xPjx48nOzubWrVs4Ozvj6urKlStX2LBhAwCtWrUiMTGRyMhIAFJTU8nJycHFxYXU1NRSbTc4OJjly7X+1JiYGI4c0Wax7NatGzt37iQ2NhaA27dvc+rUqWLXdebMGdq3b89rr71Gly5dOHHiBA888ADh4eHk5uaSlJTE9u3bCQwMvGfZESNGMGvWLFJSUgpqLyEhIXzxxRcFA2kePHiwVK+tLCrzacORQAshRBMhhB0wElite+43oI/u/15A8e+UibWs1RIfOzcicpPh8lGD5UIDvDh0KZkL129XYHSKUnXl96Hk36ZPn87JkydZsGABn3zyCQ888AA9e/bkvffew9/fnw4dOtC6dWtGjx5d0PxkZ2dHeHg4L774Iv7+/vTv35/MzEz69OlDTEzMXZ3yJQ17/8ILL5CUlISvry9vvvkmbdu2xdXVlTp16rBo0SJGjRqFn58fQUFBBZ3vhnz22WcFzWa2trYMHDiQsLAw/Pz88Pf358EHH2TWrFnUr39vw8/jjz9eMCVyvrfeeovs7Gz8/Pxo27Ytb731Vnl3f8mklBV+A8LQahl3gCvARt3jXsB6vXIPoyWLM2hNZfmPuwHrgCPAbsDfmO126tRJmsoXez+Sft+1lUkbXjVYJu5mumz82lr5xZZTJtuuolhKTEyMpUOodHJycmRGRoaUUsrY2Fjp4+Mj79y5Y+Goyqeo9xmIkkb8xlrqLK9f0ZqqCj+egJZE8u+vB9YXUS4ZeMScMZYkpEUY3xxfwuYzaxmZ9yFY3VvZa+DmSBefWqyKTmByn+YlndWmKMp9Jj09nT59+pCdnY2Ukrlz52JnZ2fpsCymMp/lVam1qNWCZg512JhxiZEXdkCTnkWWCw1owFu/HeVwXAr+DdX81opSlbi4uBRcd6JU7j6USi+k+WD2O9hzNfp7g2UGB3hRw96G73aeq8DIFMU8pIH5gJSqobzvr0oo5RDS7FGkEGy69CdkZxRZxsXBlmGdvVl7OJErtyrmlEVFMQcHBweuX7+ukkoVJaXk+vXrODiU/bo51eRVDk3dmtLCyYuIzLOMOfU7tA0rsty47j4s2nWeJbsv8H8hrYosoyiVnbe3N3FxcSQlqQnkqioHBwe8vb3LvLxKKOUU0iKMLw/N4fKhH6lvIKE09nCmX5t6/Lj3AlMebI6DrXUFR6ko5Wdra0uTJuoiXcUw1eRVTiFNHgJg05V9cPu6wXITgptwMz2b3w7GGyyjKIpyP1MJpZx8XH1o7dKYjU4OEHPPmdAFujV1p41nTRbuPKfaoBVFqTDX0+7wzPdRJKYU3c9rSiqhmEBI80EccrAn8XDR4/aANgbYhGAfTl1JY2es4ZqMoiiKqSSl3mHU/D1sP53EhevpZt+eSigmEOKjNXtFpJyEG4ZPD37M34vaNexYqE4hVhTFzK6mZjJq/h4u3chg4bgudGvqYfZtqoRiAg1rNsTXtTkbnZ3gyM8GyznYWvNEt8b8ceIqZ5PSKjBCRVGqkyu3Mhk5bw8JyRl8N74L3ZvVrpDtqoRiIiHNH+OIgz1xR8KhmD6SMV0bY2dtxaJd5ysuOEVRqo3ElAxGzturpsCWAAAgAElEQVTDlZRMFk8IrJCaST6VUExkQOMBAERkX4EEw8NE13GxJzTAi5+j4khJz66o8BRFqQbikzMY8c0eklLv8P3ErnTxMf0kWsVRCcVEvF28ae/eho3ONeCw4fnmAcYH+5CRnUt41MUKik5RlKou7mY6I+ft5ubtLJZMDKRT41oVHoNKKCYU0vQRYuxtuXj8F8jNMViurZcr3Zq6s3jXBXJy8yowQkVRqqJLN9IZ8c0eUtKz+WFSVzo0qvhkAiqhmFRBs5fIhLNbiy07IbgJ8ckZRMRcqYDIFEWpqi5cv82Ib3aTdieHn57uZtFRzVVCMSHPGp741/Zjo4sLHA4vtmzfNvVo5O7EtzvUKcSKopTNuWu3GfHNHjKyc/np6a60a+Bq0XhUQjGxkCYPccLWmvOx6+GO4VODra0E47r7sP/CTaIvJVdghIqiVAVnktIY8c1usnLz+OnpbrT1smwyAZVQTK5/4/4AbLS3ghPrii07rLO3mitFUZRSi72aysh5e8iTkqVPd6ONZ01LhwSohGJy9Z3r07FuBza6uJXY7OXiYMvwzg1ZdziRyylqrhRFUUp26oqWTACWPdONVvVdLBzR31RCMYMBPiGctoGzl/6C1OI73cd19yFXSpbsOV8xwSmKct86nniLkfP2YCUEy57pRvO6lSeZgEooZtG/cX8EQhuB+OgvxZZt5OFE/zb1+GnvRTKycisoQkVR7jfHElIYPX8PdtZWhD8bRLM6NSwd0j1UQjGDuk516VSvExtdPUps9gKY0EM3V0q0mitFUZR7HY1PYcyCvTjaWhP+bDea1Ha2dEhFUgnFTEJ8Qjhjlcvpa8cg6WSxZbs2ccfXsyYLd6i5UhRFuVvk+RuMmrcHZzsblj0TRGOPyplMQCUUs+nXuB9WWLGxhnOJQ7EIIZjQowmnr6axI/ZaBUWoKEpl99fpJMZ+u5c6Lvb8/FwQjTycLB1SsVRCMZPajrXpUr8LG908kEeWQ17xQ6w85u9J7Rr2LFQXOiqKAmw8dpmJi6JoUrsG4c8G4eXmaOmQSqQSihkN8BnAebI5lZ4IF3YWW9bexpqx3Rrz58kkzqi5UhSlWvvtYDwv/HgAX6+aLHu6G3Vc7C0dklFUQjGjfo37YSWs2FizFhxcUmL5Md0aaXOl7Dxv/uAURamUftx7gZeWRxPo484Pk7ri6mRr6ZCMphKKGbk7uBNYP5CNrrWQMasgo/ghVmrXsGdQgBcr9qu5UhSlOpq3/Qxv/HqUPq3q8t34LtSwt7F0SKWiEoqZDWwykIt5GRyyzit2euB844ObkJGdy7JINVeKolQXUko+jTjJB+tP8IifJ18/0QkHW2tLh1VqKqGYWYhPCM62ziyr2xAOfF9ieV+vmgQ19WDxrvNqrhRFqQaklLy79jif/xHL8M7efD6yA3Y29+dP8/0Z9X3E2daZ0GahRNjmcv3qUUiILnGZCT2akJCSycZjaq4URanKcvMkr688wsKd5xgf7MOHQ/ywthKWDqvMVEKpACNbjyRb5rHS1c2ozvkHW9elsYcTC9UoxIpSZWXn5jFt2UGWRV7ixQebM+NRX6zu42QCKqFUiKauTenq2ZXltdzJOfwzZGcUW17NlaIoVVtmdi7PLdnP2sOJTB/YmlcGtEKI+zuZgEooFWZUq1Fclllss86CmNUllh/WuSEuaq4URalybt/JYcKiSLacuMq7g9vxXK9mlg7JZCyWUIQQw4QQx4QQeUKIzsWUe0gIcVIIESuEmK73eF8hxAEhRLQQYocQonnFRF42vRr2or5TfZZ61DWqc76GvQ3Du2hzpSSmFF+jURTl/pCSns0T3+5l77kbfDrcn7HdGls6JJOyZA3lKDAE2G6ogBDCGpgDDAR8gVFCCF/d018BY6SUAcBPwJvmDbd8bKxsGNZqGHttJGcT9sD1MyUuM667DwBf/hFr5ugURTG3a2l3GDV/D0fjU5gzuiNDOnpbOiSTs1hCkVIel1IWPwwvBAKxUsqzUsosYBkwKH8VQP68l65AgnkiNZ2hLYZia2VLeM2aRnXON3R34olujVm67yKnrqRWQISKopjDpRvpDPt6N2evpbHgqS481K6+pUMyi8reh9IAuKR3P073GMAkYL0QIg4YC3xY1AqEEM8IIaKEEFFJSUlmDbYkHo4eDPAZwOqaNUmP/glyS74afmrfFjjb2/DB+uMVEKGiKKYWk3CLIV/t4sbtLH6Y2JVeLetYOiSzMWtCEUJsFkIcLeI2qOSlS/QS8LCU0hv4Dvi0qEJSynlSys5Sys516lj+jRzZaiRp5LFW3IbTESWWd3e248UHm7P1ZBJ/nbZsQlQUpXR2n7nOiG92Y2Ml+Pm5IDr7uFs6JLMya0KRUvaTUrYr4rbKyFXEAw317nsD8UKIOoC/lHKv7vFwoLsJQzcb/zr+tKnVmqVubsj9JXfOAzzV3YeG7o68v+44uXlqAi5FuR+sP5LIUwv3Ud/VgV+e707LepVr/ndzqOxNXpFACyFEEyGEHTASWA3cBFyFEC115foD90WbkBCCkW1GEWtjRdSlrXCr5K4fextrXnuoNScup7Ji/6USyyuKYlnf7z7P5J8O0N7blZ+fuz/mMjEFS542HKbr/wgC1gkhNuoe9xJCrAeQUuYAU4CNaAljuZTymO7xp4FfhBCH0PpQXrXE6yiLgU0GUtO2BstcnCH6J6OWeaS9Jx0buTE74hS37+SYOUJFUcpCSsnsjSeZseoYfVvX48dJXXFzsrN0WBXGkmd5/Sql9JZS2ksp60kpQ3SPJ0gpH9Yrt15K2VJK2UxK+X6h5dtLKf2llL2llGct8TrKwtHGkbAWQ/nD2Zmr0UtKnM0RtJrNG4/4kpR6h2+23zcvVVGqjZzcPKb/coQv/4xlZJeGfP1Ex/tyxODyqOxNXlXWiFYjyBWwIu8mXNhh1DKdGtfiET9P5m0/w+WUTDNHqCiKsTKycnnuhwOER2njcv1nSHtsrKvfz6tRr1gIsVII8YgQovrtITNpWLMhwZ7d+bmmC9n7Fxm93PSHWpOXB7MjSrqER1GUipCcnsUT3+5ly4krvDuobZUZl6ssjE0Qc4HRwGkhxIdCiFZmjKnaGOU7hmvWVmy5sAkybhq1TEN3J8YH+/DLgTiOJaSYOUJFUYqTkJzBsK93cyROu/p9bJCPpUOyKKMSipRys5RyDNAROA9sFkLsEkKMF0LcPxMeVzLBXsF4O9ZlaQ0HOFzybI75XujTHDdHW95fdxwp1WnEimIJp66kMvSrXVxOyWTxhEAebu9p6ZAszugmLCGEBzAO7Qr1g8D/0BLMJrNEVg1YW1kzwncsBxwcOHXwOzAyObg62vKPfi3ZdeY6f5y4auYoFUUpLOr8DR7/ahc5eZLwZ4MIauZh6ZAqBWP7UH4F/gKcgMeklKFSynAp5YtADXMGWNWFtQjDXlizLDsREkuezTHf6K6NaFrHmffXHydbTRWsKBVmU8wVxizYi0cNe1Y+3x1fr5olL1RNGFtD+VxK6Sul/I+UMlH/CSmlwaHnlZK52rsysHEIa2vU4FbUt0YvZ2ttxesD23A26TZL9100Y4SKouTbtHE1n/zwK63ru7DiuSAaujtZOqRKxdiEUksIMaTQra8Qoq5Zo6smRrZ7kgwrwerzGyAr3ejl+rWpS7em7ny2+TS3MkseaFJRlLLJy5N8uD6GLrueY7XdmyzvdgGPGvaWDqvSMTahTAQWAGN0t/nAa8BOIcRYM8VWbbT1aIufSxPCHW3JO/ab0csJIXjzEV9upmcx5081Z4qimENGVi6TfzrApr924CZuY+vshv3aF2DjG5CrRq3QZ2xCsQXaSCmHSimHok12JYGuaIlFKaeR/k9z3s6WPQfnl2q5dg1cCevQgO92nOfSDeNrN4qilOzqrUxGztvN78cuM6OD9v0SY3+FwGdg95fw0zCjT/mvDoxNKN5Syit6968CDaWUNwDV1mICIT4huFs5sCzzIlw7XaplXw1phZUVzNqoLnZUFFM5nniLwXN2cupKGvPGdqaX0wWwrwl128LDH8Nj/4Nzf8H8ByFJfffA+ISyVQixVgjxlBDiKWCV7jFnINl84VUfdtZ2DGkexjYnRxIivynVsp6ujjzzQFPWHErg4EV1tKQo5fXnias8/tUucqXk5+eC6O9bD+KioEFHsNL9bHYaB0+tgTupML8vnPzdojFXBsYmlMlok1gF6G7fA5OllLellH3MFVx1M7z9eBCC5efWGjWbo75nezWjjos976mLHRWlXBbvOs/ExZH41HZm1eQetGvgqp0sc+UYeHe5u3DjIHhmK3g0haUjYftso68nq4pKTChCCGvgDynlL1LKl3S3FVL9apmcZw1PetVqy0oHK+6cWFOqZZ3tbXilf0v2X7jJhqOXzRSholRdObl5zFx9jLdXH+PB1vVY/mwQ9V0dtCcTo0HmQoMirpJw9Ybxv0O7ofDHu7BiPGTdrtjgK4kSE4qUMhfIE0K4VkA81d6ojlO4aW1NxIHSNXsBDOvckNb1Xfhwwwnu5OSaITpFqZrS7uTw9PdRLNp1nkk9mvDN2E4429v8XSAuUvvrbeCyOzsnGLoA+s2EY7/BwhBIrn6T4Rnb5JUGHBFCfCuE+Dz/Zs7AqqtuDYLxsXFhWcY5SIkv1bLWVoJ/PdyGizfSWbL7gpkiVJSqJT45g8e/2sX209d4P6wdbz7qi7VVodGC4yKhlg841za8IiGgx0swejncvADzesP5neYMvdIxNqGsBN4CtgP79W6KiQkhGNlqBIft7Tm2t/Q5u2fLOvRqWYfPt5zm5u0sM0SoKFXHoUvJDJ6zk/ibGSwa34UxXRsXXTBu/739J4a0HACTtoCjG3wfCpHGj4BxvzN2tOHFwHJgj5Rycf7NvKFVX6F+E3BEsPT8eqNmcyzsjUfakHYnh8//KN3px4pSnfx+NJER83Zjb2PFyhe680CLOkUXTImH1ISi+08MqdNSSypNe8O6l2HtS5BT9Q/wjB0c8jEgGvhddz9ACLHanIFVZy52Ljzq0ZHfbfNIPr2h1Mu3rOfCyMBGLNl9gbNJaWaIUFHuX1JKvt52hud+OEAbz5r8NjmYFvVcDC8QH6X9NbaGks/RTWv+Cp4GUQthyWBISyp74PcBY5u8ZgKB6K45kVJGA03NFJMCjOz6f9yxsuLX/V+WafmX+rXEwdaaf/16hNw8dUKeogBk5Wjzvn+44QSP+nmy9Olu1C5pTK64SLC2g/rtSr9BK2vo/28YMh/i92tJpQytDvcLYxNKtpSy8PSAVXevVAIt67Sjk20twjPOk3u79Ec1dVzsmRnalj1nbzBXjfOlKFxOyWTEvN0F875/PrIDDrbWJS8Ytx88/cGmHINB+g2HQXPgylE4vqrs66nkjE0ox4QQowFrIUQLIcQXwC4zxqUAI33HEm9jw7bt/y7T8kM7NmBwgBf/3XyKyPM3TBydotw/9p27waNf7ODk5VS+GtORVwa0wqrwmVxFyc2GhIOl6z8xpG0Y1G4J2z6usrUUYxPKi0Bb4A6wFLgF/MNcQSmavn7jaIQdc+K3kHf7WqmXF0LwXlh7Grk7MW3pQZLTq36noKLok1KyaOc5Rs/fg4uDDasmBzOwNFP1Xo2BnAzD15+UhpU19HwVrh6Dk+vKv75KyNizvNKllG9IKbtIKTvr/s80d3DVna2VLZP9n+OUrTUbNr1SpnXUsLfhi1EdSUq7wz9XHFbDsijVRkZWLq8sP8TMNTH0blWXVVNK6HwvSkkXNJZW2yHg3gy2fVQlh2gx9iyvlkKIeUKICCHEH/k3cwenwEP+E2lp5cSca/vIvnm+TOto7+3Kaw+1JiLmCj/sURc8KlXfpRvpDP1qF79Gx/Ny/5bMG9uJmg62pV9R3H5wrgNuBq5PKS1rG+j5f3D5CJyqeoNJGtvk9TNwEHgTeFXvppiZlbBiapdXuWRrw6+bXirzeib2aEKfVnV4d91xYhJumTBCRalc/jqdxGNf7uDSzXQWPtWFqX1bGNdfUpS4SO10YVHG5YvSfph21X0VrKUYm1BypJRfSSn3SSn359/MGplSoGeroQTY1uKb1JNkXj5cpnUIIZg9zB83R1teXHqA9Cw105xStUgpmbs1lqcW7qOeiwNrpvSgT+tyzFKecROun4YGnUwXJIC1LTzwitbZH7vZtOu2MGMTyhohxAtCCE8hhHv+zayRKQWEEEzr/jZXbaxZuuX/yrwejxr2fDYygLPXbjNz9TETRqgolpV2J4cXfjzArN9P8nB7T36d3B2f2s7lW2m87pi5tBc0GsNvJLg2gq0fVqlairEJ5Sm0Jq5d/D2OV5S5glLu1dmnL8EOnnx7J47U89vLvJ7uzWozpU9zlkfFsSq6dINPKkpldCYpjcFzdhIRc4U3H2nDF6M64GRnU/KCJYnbDwjw6lD+dRVmYwcPvKRdhX/2T9Ov30KMPcurSRE3daV8BZva8wNSrK1ZtPVf5Tqqmda3BZ0b1+KNX49y4Xr1nLdBqRo2xVxh8Jc7uXE7iyUTA5n0QFOEqfo74iKhbhtwqGma9RUWMAZqNoCtVacvpdiEIoT4p97/wwo994G5glKK5uvZmQEuzVgib3KtHFfb2lhb8dnIAKwETF16kKycqnmRlVJ15eZJPo04ydPfR9GkjjNrXuxB92bFDC1fWlJqtQdT95/os7HXhru/tAfO/2W+7VSgkmooI/X+f73Qcw+ZOBbFCFN6f0SWsOLb3e+W62pb71pOzHrcj0NxKcyOOGnCCBXFvFKuX+abuR/zxR+nGNbJm+XPBtHAzdG0G7lxVuuUN0f/ib4OY6FGfdg2y7zbqSAlJRRh4P+i7isVoIl7KwZ5+BNufYeEg9+Va10PtfPkiW6NmLf9LFtPXjVRhIpiPsd2ruPOF0G8cO19vut+nVmP+xk3HldpxeWPMGyiCxoNsXWAHv/QaihVYDKukhKKNPB/UfeVCvJ8748QCL468D9trKFyePMRX1rXd+GV5Ye4eksNfqBUTtlZd9gzfxptIsZwRziQa1eT3tk7TddfUlhcJNjVgDqtzbN+fR2fAue6sP3+r6WUlFD8hRC3hBCpgJ/u//z77SsgPqUI9V0aMMLzAVbb5nF292flWpeDrTVfju7A7awcXloeTZ4a6l6pZBLOHefsrJ50i19EVK2BuL+8G+u2g+DkesjOMM9G46O0s7uszFD7KczOCYKnwtmtcHGv+bdnRsUmFCmltZSyppTSRUppo/s//34ZxjHQCCGGCSGOCSHyhBAG65RCiIVCiKtCiKOFHncXQmwSQpzW/a1V1ljuV5N6vosDVnwZ8x1kpZdrXc3ruvBOaFt2xl7nq21nTBShopRf1JpvqLmoD545F4nq8imB/1iKs4sbtBsCWWkQu8X0G83O0IZGMXf/ib7OE8DJ476vpRh7HYqpHQWGoM1RX5xFFN35Px3YIqVsAWzR3a9W3B09eNLnETbZW3Ns+3vlXt/wzg151M+TTzedYv+FmyaIUFHKLu3WTSL/O5zO+/9JnF0T0sZtpfMjE/8u4NMTHN3h2ErTbzzxEOTlmL//RJ+dM3R/UbtyPu7+HYTEIglFSnlcSlniqUVSyu1AURN5DALy57RfDAw2YXj3jae6v4Eb1nx+ZiWkl2++EyEEHwxpj5ebA1OXHiQlo3x9M4pSVqcPbif5v0F0TI5gd8NJNP/nNrx8Wt1dyNoGfEPh5O/lrqHfI79D3hRzoJRGl0ngWOu+rqVYqoZSXvWklIm6/y8D9QwVFEI8I4SIEkJEJSVVrfmca9jVYFKrUexysCXyjzfKvb6aDrZ8MaojV25lMv0XNdS9UrHycnPZ8/1b+Pw2GBuZzcmBywia+Ak2tnZFL9A2DLJvQ+wm0wYSFwlujcDF4M+Kedi7QNBkbRTihOiK3baJmC2hCCE2CyGOFnEbZMrtSO1Xz+Avn5Rynm4Ol8516tQx5aYrhRGdp1FX2PFZwp/I5Lhyry+goRuvhrRiw9HL/LD3ogkiVJSSXUu4wLFZfel29nOO1AjGceoefLuVcKlb4x7a0PLHfjVtMPH7K752ki/wGXBwhe0fm2yVd24n8c3K4WSWYZK+0jJbQpFS9pNStiviZooJla8IITwBdH+r7UUUDjYOPO/3DIftbdm6+Z8lL2CEpx9oSq+WdZi5+hhrDyeYZJ2KYkj0lmVYz+tB88xj7G0/kw6vrMLV3YiDP2sbaBMKpzZClomGEEq9DCmXKrZDXp+DK3R7AU6s1U4MKKdzR8MZvawPX6YeZ8ehb00QYPHu1yav1WgDVqL7a4okdd8a5DeBRtZOfH7zALlJJ8q9PisrwdwxHenYyI1py6JVUlHMIjPjNnvnTCTgr2e5Ye3B1VEb6Tr0JYRVKX6W2oZBdrqWVEyhoi5oLE7XZ8G+ZvlqKVm3WfPLaEZE/pskK8Fc/5fo1/0108VogEUSihAiTAgRBwQB64QQG3WPewkh1uuVWwrsBloJIeKEEPmneXwI9BdCnAb66e5XW7ZWtkzp9DKxdras31T24e31OdvbsGh8YEFSWXc4seSFFMVI52IiSfi4O12TVrCn7gga/N9OGrfuWPoVNe4ONeqZrtkrLhKsbKG+n2nWVxaOtbSkErMKrsSUevH0c9t4c1EQ/0o7gq99bX4OW8MDARPMEOi9LHWW169SSm8ppb2Usp6UMkT3eIKU8mG9cqOklJ5SSltd+W91j1+XUvaVUrbQNa2V7xSnKiCk9TBa27oxNz2W7EumuTjK2d6G78YH0qGhG1OXHVRJRSm3O5np7P72FRqEh+CWd4NDPefT7YV5ODiWce4SK2vwHQSnI+BOWvkDjN8P9dtrQ6JYUrcXtCv1/5pt/DLZmZxaN5VRm59ltZ3kucYPs2DkFuq5+ZgtzMLu1yYvpRArYcWL3d4gztaWlX+Y7rKcGvY2LJrwd1JZf0QlFaVsTkRuJnFWIEGXFnDY9UHE5H34Pzi8/CtuGwY5meWfoz0vF+IPWK7/RJ+TOwQ+DUdXQtKpEovLuP2sWBjM6KtbuGXvzLw+nzO590fYWJlgXphSUAmlCnmgSQgdHevzTc5lMkzVpszfSSWgoRsvLj3IBpVUlFJIS01m95xJtFz7OA55GRzutYDOL6+gVh1P02ygYTdw8Sx/s9fV49ppyJbsP9EXNAVsHYuvpeRkkbblHV5bNZx3HLLo6N6an4dtpFvjPhUXpx6VUKoQIQRTg/9Nko0NP21/y6ST9tSwt2HR+C4FSeX3oyqpKCWL/nMFqZ90puvVFUTVHYrLy1H49RlW8oKlYWUFvoPh9CbIvFX29cRFan8rS0Jxrq0NyXLkZ7hexJBIV45x7NteDD+3lIgaTkxr/yxfh/5MbUcTzgtTSiqhVDGdGgTRw6UpC63SuHV4mUnX7eJgy6LxXfDzdmXKTwf5/ehlk65fqTquJyWy79NhBGybSLaVPbGPriBw8rc41zTTsHttwyD3DpzcUPZ1xEdp42nVamK6uMqr+1SwtoO/Pvn7sdwc5PZP+PGngTxhn0qWc22+G/g9kzpOwUpY9iddJZQqaGrPD7hlbc2ivR9Cbo5J1+3iYMviCYG6pHJAJRXlLjIvj72r5yHmBNIhZQt7G06i/j+jaNmln3k37N1Fm063PM1ecVHaBY3mGhK/LFzqQafxcGgZ3DgH12JJ+W4A/zg6lw/dXenhFcyKsLV0qGuGee/LQCWUKqhN7bY85O7HD7Y5XNs31+Trz08q7VVSUfQkXIgletZDdD3wKtdt6pMw4ne6TvwEOwcTz6ZYlPxmrzNbICO59MtnpkDSycrT3KUveBpY2cDP44he2Jth4grba9Tgn51f5fP+X+Pm4GbpCAuohFJFTen5PlnCii8OzoFbpr8wMT+ptGugJZWNx1RSqa5yc3PZuWwWNRf2oHXGQSJbvUKz6btp7BtYsYG0GwK5WWVr9oo/AMjKmVBqepLXYSzfpp9hXL1aWLs24IeHf2Js2yfNN8FYGamEUkU1dvVhbLPBrHS2Y+eqSSbtoM9X08GW7ydqSWXyjweIUEml2jlzIprjH/Yk+MT7XHRsza0Jf9Fl1AysbCr2dFUAGnQC14ZlG9I+XneFvFcZLq40s6T0JJ63TeEz91r0bTyA5aG/0LZ2W0uHVSSVUKqwKd3fpKldLWZknePWgcUlL1AGdyWVnw6wKeaKWbajVC63MrNZt+QTvJf2o1H2OQ52fJ82//yDeo0rYMpcQ4SAtoPhzB+QUco5feKioHYrcKw8zUcAf178kyGrh3Ag6RAzgmYwu9dsXOxcLB2WQSqhVGH21va83/dLrlvb8NG+/2gD35lBflLx9XLlhR/3s1kllSorKyePRTvP0XvWnwTEzuGKYzPynt9Lh9AppRuDy1zaDtEmxzqxzvhlpNQSSmW4oFEnIyeDd3e/y9Q/p+Lp7En4Y+EMazms0jVxFVYJPgGKObWr68eE5kNZ7WTHn6snmqXpC3RJZUIgvp41eV4llSpHSsn6I4kM+O82Zq6JoXedVBqI6zTq+zRu9RpaOry/eXUAt8baFebGunke0q+BdyezhVUaJ26cYOTakSw/tZxxbcfxw8M/0NS1qaXDMopKKNXAc0H/ooWdO//OPEfywe/Nth1XR1u+n9gVX8+aPPvDfj6NOEl2bp7ZtqdUjKjzNxj61S5e+PEA9jbWfDe+C5900jUpNelt0djuIYR2TcrZrcbPYhqvm3LXwjWUPJnH4mOLGbVuFGlZaczrP49XOr+CnbWBCcYqIZVQqgE7azs+6D+XZGtrPtj3H0gz3/Qxro62/DCpK2EdGvD5H7EMmbuL2KupZtueYj5nktJ4dkkUj3+9m7ibGXw0tD3rpz1An1Z1Eee2QU1v8Ghm6TDv1TYMZC4cX2Nc+bhIsHWCOm3MG1cxrqZf5blNzzE7ajY9G/Tkl9BfCPIKslg8ZaUSSjXRunZbnl3KNe8AACAASURBVGk5gg2OtmxaPcFsTV+gnVI8e5g/Xz/RifjkDB75fAff7TxHXp6aUvh+cC3tDm/9dpQB/93OjtPXeKV/S7a+2psRXRphbSW0QRTP/wVNe1WuiwDzefqDe1PjL3KMi9LO7rK2wJlpaB3vQ1cP5eDVg8wImsFnfT6rVNeWlIZKKNXIpG6v4Wtfm3czz3I9eonZt/dQu/r8/o8H6NG8Nu+siWHswr0kJGeYfbtK2WRk5fLFltP0mvUnP+27yOjARmx9tQ8v9m2Bk53ej+3lw9pZVE16WS7Y4uQ3e53bDiVNe5tzR3s9Fug/uV873oujEko1Ymtly3v9vyLNypr39v0HmWr+mZPrujiw4KnO/GdIew5eTCbks+38djAeacYaklI6uXmS8MiL9J79J59sOkVw89pEvNSTdwe3o46L/b0LnN2m/W1aSRMK6DV7rS6+XOJh7WLICu4/OX79OCPWjrgvO96LoxJKNdPCozUvtBrNZgcbNqyZWPICJiCEYFRgIzZMe4CW9Vz4R3g0U346yM3bWRWyfaVoUkq2HL/Cw//7i9d+OYKXmyM/PxfEvCc706xODcMLntsGdVqDS/2KC7a06rUDj+YlN3vlX9DYoGKukM/veB+9fjS3s27flx3vxVEJpRoa1/VV/Oxr837mGZIOmr/pK19jD2eWPxvEPx9qRUTMZUI+287Wk+avJSl3y8zO5ae9F+n/3+1MXBxFZk4uc8d0ZOXz3eni4178wjl34MLuytvclU8I7ZqU8zuKPwklLlI7uaCmieZmKUZV6Xgvjkoo1ZCNlQ3vDZjPHStr3on8DzKthHZmE7K2ErzQuzm/TQ7GzcmWcd9F8uZvR0jPMu2oyMq9rt7KZPbGkwT9Zwv/+vUI9jZWfDrcn00v9eLh9p7Gtd1f2gc5GdC0t7nDLb+2YSDztLnZDYmLMnv/iZSS9WfXE7YqrEp0vBfHMqc1KBbXxL05U9uM5eMTS1i1ZgKDR5XQ1mxibb1cWT2lB59EnGTBjnPsjL3Op8P96dDITPNlVGNH41NYuOMcaw4nkJMn6demHhN7NKFrE/fSdwCf2wbCCnz+v707j6uqzB84/vly2RdxQURQARE3REupUNNMyy1TtDStMa3MbKzRaaym/DUtVjNlOVOTZdNomqMtlqbmQq5ZSi5pKmigAm6AuSKCKMvz++NcDAkE5FwuF57363Vf93DO4Zzvw/blPM85z7e7bYI1k387YzqVhK+NcrolXTgJ5w6Xvs0kZ3LP8OqPr7Lm8Bo6+nXk1VtfJdS3BtVbMZlOKHXYH26ewrqUWN64eIjo3QsI6PRAtZ7f3cXC1Lva07ttE6Ys2s29s+KY2CuMJ/uE42LRF89VUVBojI/M/iGFrSln8HS18MAtwYztFkKIn9f1Hzh5ozEJo7uvabHajIgxA/HGfxjTDpUc87Hx+Mn6I+t5Oe5lzl8+z6TOkxgbMbbaa7xXN/1bW4c5iROv9v+IAnHixa2vobJP2yWOrmGNWDW5BzE3GA9DDn1/M2v3naBAP7dSadmX8pm7OYXeb29k/PyfOHb2Is8PbEvcc314aXBE1ZJJbqYxzXtNHz8prn0MoErv9jq23agz0rSTqac8f/k8U3+YyqQNk/D39Oezuz5jXOS4Wp9MQF+h1HnN67fkz+3G8Pov8/hy+cMMH3mN/mYbqufuwtsjOnFne39eWraPcZ/soEVDT0ZHBzMiqjm+ni52ictRpJ27yLwtqSzcdoSs3HxubFGfp/u1oX9EAM5mXe2lbjZuxa3JtwuX5N8W/Nsbd3vd8tjV247tMO4Gc/U07XRbjm/hhS0vcPriaR7r+BiPdXwMF0vd+dnVCUXjvpufYl3Kat66eJBuuxcQVM1dX8X179CUPu2aEJuQwbwtqby2cj8z1iQRc2MQY7uF0Cag5k7dXd0uXi5g0/7jFHw3nRcybuUcPvTvEMAjt4bS2RZjUSnfgbMHNKvmwllVFTEUNrxmFJqrF2isKywwrrY63WfKKXLycnh7x9t8kfQFob6hvHP7O3Tw62DKsR2JTigaTuLEK/1nM+zrQbyw7XX+G94fJ89GdovHxeLEoI6BDOoYSEJaJp9sOczincf4dNsRols2ZGy3EO5o18S8/7wdyLmcy6zb/yuxCRlsOnCS2wvi+MD1E7xD3QgbPo2g+jYst5v8HbSIBhd3253DFooSyr6lEP24se5UElzOMuWBxh0ZO3hh8wscv3CcMe3H8MSNT+Du7GBfI5PohKIBEFg/mKfbP8JL+2fz2fJHuP++r+0dEmDcDfbGvR3564C2fL7jKPPjDjPhfzsJ9HXnD12DGXlTCxp61Y6HwsqSnnmRbxNOEJuQwdaUMxQUKpr6unNfVHMmZn4GydAzdwP42vCPWFYGnNxv2n/01covHJpEGlPaFyWUY9uN9yoMyOfm5/LvXf9m/r75BHkH8XH/j+nSpGZMgW8vOqFoVwy7aRJrklfwr5wD3Lp7IS063W/vkK5o4OXKhNvCeLRHS9buP8G8Lam8uTqRf609wJBOgYzpFkKHIAe486iCDv56gdiEDL5NyGD3sUwAWvl7M+G2lvSLCCAyyBcpLIC3vgP3+nD6IKTtgiAblbBN2WS8t+xlm+PbWkQMrJ8G545C/ebG+Il7/eueLTn+VDzP//A8KZkp3NfmPp7q8hSeLuaNxTgqnVC0K0SElwbOZtjiu/i/7a/zcXh/LJ7lPDldzSxOQr+IAPpFBJB0Iot5W1JZvPM4i346RlRwA8Z0C6FXm8b4uDvWQKhSij3HMolNyCA2IYNDJ7MB6NS8Ps/0b0O/iIDfT4dydKsxSePd78LKKbB3ke0SSrI1cQV0tM3xbS1iqJFQ9i2Fbk9YH2iMqvRsyXkFeczaM4vZe2fj5+HHh3d8SLegbjYK2vHohKJdJaBeC/4a8ShT933E/GUPMva+5TVzinKgdRMfXhsayTP927Jox1Hm/3iYJz/dBUConxcRgfXoEORLZJAvEYH1qO9ZM7rG8goKST2VTdKJCySeyOLAiSx2HTlHxvlcLE5CdMuGjOkWwp3tm9DU9xpjIokrweJqPGtxcA3EfwV9XwUni7kBK2U8fxLa0/xjV5dGYcbtwQmLocsYo/uu/eBKHSL+VDwvbnmRpLNJDA4bzLM3P0s913o2Ctgx6YSi/c7dUU+yPmU1/8pJJXT1ZG4b8I69Q7omXw8XxvVoycPdQ4lLPs2uI2fZezyTXUfO8c2e9Cv7NWvgQYdAXyKb+V5JNn7epcyma5KCQsXRMzkknsgiKSOLpF8vkJSRRfKpC+QVGM/YOAmENPKiS3ADerf1p087/4onvqTVENID3HwgcoRRUCrlOwjrbW5DziTD+WPQ48/mHre6RQyFtS8ZVymqsMLjJzl5Obz383ss2L+ARu6NePf2d7m9xe22jdVB6YSi/Y6I8HrMIh76vA9PZ6xl9pa3iOw2xd5hlcvJSejeyo/urfyurDubfZn4tEzij58nPi2ThOOZrE7IuLI9oJ47HYJ86RBUjw6BvqVO117a45WlTb9/NucySScuWJNHFgdOXOBS/m8lkJs18KBNEx96t/OndRNvWjfxIayxN+4u1/Ff/6kDxrjJLROMj8P7gpsv7PnC/ISSvNF4r2nlfiurfYyRUNa/Znxcge7BH47/wLS4aaRlpzGi9Qgmd5mMj6u+db0sOqFopfJ09WJmzBL+sHggE3+Zw//qNadFB8e7w6eBlys9whvTI7zxlXWZF/PYl3aehLRM4o9nsvd4Jut+OWFaEcuAeu60DvBhdHQjWgf40LqJD+H+3ni5mfjrlrjSeG8zwHh3cTe6cBKWwF0zTH1Yj+SNNbfcb2U0DDUqM6btNKa2v8b44JncM7y5/U1WJK8g1DeUef3n0bmJjcanahGdULQy+fk0ZdbATxi94gEmbH2Z+d6BNArpYe+wqszXw4WuYY3oGvbbszbZl/LZn36e87l5v9tfKGMMqcRqHzdnwpv44OtRDTcEJK4yBsh9m/22ruMI2DUfklZBh3vMOU9hoVHut83AGjuWVikRQ42EUsbzJ0oplicvZ/r26VzIu8CEThN4NPLRWlOvxNZ0QtGuKaRxJO/1+ifjNk5i4toJzIlZgqdfa3uHZTovN2eiyqsFUlNknzLu8Or5zNXrg28Fn0DYs8i8hFLTy/1WVsRQWP+qcYNBCUezjjItbhpx6XF0atyJl7q+RKsGrewQpOOyy6PGIjJcRBJEpFBEyhwZE5E5IvKriMSXWD9dRH4RkT0iskREal9hgRqkU0gfpnd5lv3OwpSlw8nPPmnvkOq2A98ag8pF3V1FnJwg8h7jjq+cM+acq2j8xJHm77qW+s3hz/HQceSVVfmF+cyNn8uwpcPYc2oPz9/yPJ8M+EQnk+tgr7kr4oFhwKZy9psL9C9l/Rqgg1KqI5AEPGdqdNrv9IoczdTwUXzvXMi0RXej8nLtHVLdlbjSuBIpbZbcyBFQmF9+6duKcoRyv5Xl7W8kX2Df6X3cv+J+3v7pbaKbRvP1kK8Z1XYUTlL3pvUxg12+akqp/UqpxArstwn43b9aSqlvlVJFJf5+BJqV3Ecz34juUxnfpAeLJZsPFg0x+te16pWXCwfXQ5v+pY9pBEQaCWDvoqqfq6jcb8teVT9WDXMx/yIzdszg/hX382vOr7x121u82/tdArxqUeK0g9qQhh8GVpW1UUTGi8gOEdlx8qTuqqmqJ/rNZIhPOB/kpfHVsjH2DqfuSf0e8rKNQfLSiEDkcDgSB+eOVO1cReV+a8v4iVVcWhzDlg7j44SPGdJqCEtjltIvpF/lq1dqv2OzhCIia0UkvpTXEBPPMRXIBxaUtY9S6j9KqSilVFTjxo3L2k2rIBHhxSGf0d2lEdPO7WLTOt3bWK0SV4KLl/FAY1kihxvvVb1KcaRyvxWQfiGdv2z8C+PXjMfiZGFOvzm83O1lfN1qzxxw9mazu7yUUnfY6tgAIjIWGAT0UaU9ZabZjIvFlRn3LOehz/sw5cgyZm9vTuRNf7R3WLWfUpC4Glr1vvYU8g2CoXm0cbfXrU9d/+2+jlTu9xpy83OZmzCX2Xtno1D88YY/8lDEQ3V2inlbcsguLxHpDzwDDFZK5dg7nrrI082HmUO+oqE4M3HvTI4kLrd3SLVf+m7ISiu7u6u4jsON+apOxJe/b2lyzzteud8SlFKsO7KOmKUxzPx5Jj2a9WBZzDIe7/S4TiY2Yq/bhoeKyDGgK7BCRGKt6wNFZGWx/T4F4oA2InJMRB6xbnoP8AHWiMjPIjKrmpugAX6+zZnVfy5KnJjww185fXyHvUOq3RJXGV1Q4X3L37f9UKNe+p4vru9chx2w3G8xyeeSmbB2ApM3TMbD2YP/9v0vM3rNINA70N6h1WpSl3qLoqKi1I4d+o+e2XYfWsW4758mrECYc88KPOu3sHdItdOsHuDqBQ+vrtj+C++DjL0wOf7KbbIVtupZ+GkePJvqUBUasy5nMWv3LBbuX4iHswcTb5zIiDYjcHFyrHIGNY2I/KSUKnc2TYfs8tJqlk5hA3iz02T2WxRTFseQn5tp75Bqn8xjxlPrJR9mvJbI4XD+uHG1UVkOVu63UBXy9cGvuXvJ3czfN58hrYbwzbBveKDdAzqZVCOdUDRT3H7jOKaGDuN7Sx7TvhiEyv/9nFhaFSRa74yvyPhJkTYDwdUb9lay2yvrhDH+0rJX5T7PTuJPxTN65Whe2PwCQT5BfHrXp7zU7SUaujvIVDq1iE4ommlG3PYK4/1uZrE6x8yvhqIKCuwdUu2RuMqYIdcvvOKf4+oJbQdBwlLjgciKSvnOeK/h4yenLp7ib5v/xqgVo0jLTuO1W19j/oD5RPhF2Du0OksnFM1UTwz8LzGeIXyYe5hpC3uTZ9acUnVZ7nmjpntluruKdBwOlzKN+b8qqoaX+80ryGP+vvncveRulicv56GIh1ges5zBYYP1lCl2pr/6mqlEhJeGLWFcoy4sKjzDo5/15kzGHnuH5dgOrYfCPGh9HQkltBd4Na54t1cNLvdbUFjA8kPLGfz1YN7c/iadGndi8eDFPBX1FN6u3vYOT0MnFM0GLBZnJg2ayxttHiTeKZ9RK0eRGP+5vcNyXImrwKMBNL+l8p9rcTamsk+KhYvnyt+/qNxvDeruUkqx4cgG7l1+L8//8Dzert683+d9PrjjA0J9Q+0dnlaMTiiazQyMfpq5t04nX5wYvf0V1m34P3uH5HgK8uFALIT3M5LD9YgcAQWXYf+y8vetYeV+t2dsZ/Sq0fxpw5/IK8xjes/pfD7oc3o066Hn3qqBdELRbKpDqwF8NmQJ4U6eTD6ylFlf3qPvAKuMY9uMAlfXM35SJKgzNGxZsYcca0i534TTCTy25jEejn2Y9Ox0Xuz6IkuGLKF/aH89TlKD6e+MZnONG7ZizqiN3O0exMzsJKYs6ElOVrq9w3IMiSvB4gqt+lz/MUSMq5TUH+B8Wtn7FZX7bXmb3cr9Jmcm89TGpxj5zUj2nd7HlKgprBi6gntb36ufJ3EAOqFo1cLN1YvXRqxiSkAv1qosxizqR/rROHuHVfMlrjJmFnbzqdpxOo4AFOz9sux9isr9tuxVtXNdh/QL6fxt898YunQom49vZkKnCawatooxEWP0vFsORCcUrdqICGP6/Zv3Ov6JY1LIyDXj2LnzI3uHVXOdOgCnD1atu6tIozAI7Hztu72ujJ/8vt66rZzJPcMb297griV38U3yN9zf9n5W3bOKiTdM1HduOSCdULRq16PzeBb0mYWPWHhkzzssjp1k3K6qXS3ROk+qGQkFjKuUjL3w6y+lb6/Gcr9Zl7OY+fNMBnw1gIW/LGRQy0GsGLqCZ29+Vj/h7sB0QtHsomWLW1lw7ypucvLhxYz1/OPzgeRf1pUIrpK4yni40NekCtcRw4zZiku7Sqmmcr8Z2RlM3z6dO7+8k1m7Z9E9qDtLhizhle6v0NS7qU3PrdmeTiia3fj6BPH+/d8x2jucBZeO8fjCnmSeTbF3WDVD9ik4urVyc3eVx6cJtLzdqORY8orQxuV+E88k8tz3zzHgqwEs2L+Ans168sWgL5jRawYtfVva5Jxa9dMJRbMrZ2dXnrlnMa+0GMxP5DJqyWAOHarENCG11YFvQRWa191VpOMIo9b80a1Xr7dBuV+lFFuOb2H8t+O5d/m9rDuyjpFtR7Jy2Ere7Pkm7Rq1M+1cWs1gsxLAmlYZQ29/jdD4SCZvf5UHNj3FH3+JZlSff+LiXsW7mxxV4krwCYSmncw9btu7wNnDeCalRfRv600s95tXmMfqlNXMS5hH4tlE/Dz8mNR5EsNbD9f122s5fYWi1Rg3dBjJZwP+R0eLF9NPbSVmYTfWbppW92YtzsuFg+uhTX/znwdx84G2AyFhCRRYHzA1qdzvhcsXmJcwjwFfDeD5H54nvzCfV7q9Quw9sYyLHKeTSR2gE4pWowQE3MCHo3/k/YgJuIgTf075grGfRJGwd6G9Q6s+qT9AXra54yfFRY6Ai2fg4Drj4yvlfntd1+FOZJ9gxk8zuPPLO3lrx1u0qNeCmX1msnjIYoaGD8XV4mpa6FrNpru8tBpHROgRNZGuNzzK4u+mMvPIKkbu/DuDfv6ASb2mE9A8uvyDOLLEleDiZTzQaAut+oBHQ+Nurzb9je4uZw9ofnOlDrP/9H7+t/9/rExZSaEqpG9wX8ZGjNX1SOownVC0GsvZ2ZURfaYzMPtpZq+ZxCfn9rJm7Tge9A7jkTv/jVdtrF2vlHG7cKvetiu/a3GBiKHw80K4lPVbuV9nt3I/9dTFU6xIXsGyQ8tIOpuEh7MHI1qPYHT70TTzMen2Zs1h6YSi1XjeXv5MivmU4Sf28s76p/goJ5nFiwcwMeBWhvZ5C+eqTktSk6Tvhqw0aPOCbc/TcQTsmA3bZxvlfjuNLHPXSwWX2HB0A8sOLmNL2hYKVAGRfpFMvWUqA0IH6LER7QpRdegJ5aioKLVjxw57h6FV0d4D3zA9bhq7VA6t8hVT2jxA927PglMtGBLc8HfY9CZMOQBefrY7j1LwTkfjeZe8HBi/EQJvLLZZsfvkbpYdWsbq1NVkXc7C39Ofu1vezeBWg/WzI3WMiPyklIoqbz99haI5nMjwQcxrdRdrt7/LjIQ5TDi0kO5Ji5hy87O06nCfvcOrmsSVRiEtWyYTsM5APBy+f/uqcr/pF9JZnryc5YeWk3o+FXeLO32C+zA4bDC3BNyCpYZVcdRqFn2Fojm0y3m5fLrxOT48toZsgXssDRnTZTLBbWMc74ol8xj8MwLufAW6T7L9+X79Bd6/hZy2d7H2ppEsO7iMbRnbUCi6NOnCkLAh3Bl8p56kUavwFYpOKFqtcO5COrPWTOLzzH3ki9A2X9Gvfjv6RT5M83AbPM9hC9s+gpVT4Ikd4Bdu01OduniKH9N/ZPPOj1iXe5yLBZdo5t2MwWGDGRQ2iOY+zW16fs2x6IRSCp1Qar8TZ5P5duf7rD6+iT3qIgDt86F/w0j63vAoQSG9am5ymT8Mzh2GJ38y/dC5+bnsPLGTuPQ4tqRtIelsEgD13erTu0VvBocNprN/Z11WVyuVTiil0Amlbkk79Qvf7nyf2PQtxHMJgI4FQl+/G+l34+M163mW3PPwZkuIngB9X63y4QpVIUlnk9iStoW4tDh2ntjJ5cLLuDi50Nm/M9GB0XQN7Eq7hu10SV2tXDqhlEInlLrraMZuvt31AbEntrFfjClHbiiw0M8/ir5dJuLf9MZyjmBjCV/DojEwduV1T9B4IvvElSuQrelbOZN7BoBW9VvRNbAr3QK70dm/M54unmZGrtUBOqGUQicUDeDw8W3E7ppF7MmdJDkVIEpxI270C4gmunUMzQJvwdW9XvUGtWQCJK2GKQfBcu2bL5VSnM49TUpmCqnnUzl49iBb07dyKPMQAI3cG9E1sCtdA7sS3TQaf0//6miBVovphFIKnVC0kpIPbyL254+IPbOHQ06FADgpRWAhBFs8CHbzI9inOSGN2tKiSWeaBkZhcTP5rqeCfHgrHML7wrAPr6y+VHCJw+cPk5qZSur51Kves/KyruznbnGnc5POdAvsRnTTaFo3aK3HQjRT6YRSCp1QtGs5lLyWfUe+4/C5QxzJTiM1L5PDKo8cp9/+OLsoRYsCCLZ4EuzuR3C9YIIbtSWkaRSN6odRkJdN4eUc8vOzKcjLoeByDvl5OcZy/kUK8i5eec/Pz6WgIJeCnNPkHFrH4VvGkeLlS8r5FFIzU0m7kIbit9/PJp5NCPENIaReCKG+oVfeA7wC9DiIZlM6oZRCJxStspRSnDp7iMNp2zh8Mp7D5w5xOCeDw3nnOUIeeSZfCXg4exBcL5jQeqFXkkfRux770OxFPymvaSYQERo3bEXjhq0o+dtUUFhAxtkDHE7bTurJvZy9eBpnixsWiysWixsWZ+Pd2dkNJ4s7zs5uWJw9sDi7Y3HxwNnihpOTBWcnZ9wsbgTXC8bf019fbWgOSycUTbtOFicLQY3aEtSoLd3sHYym1QD6XyFN0zTNFHZJKCIyXEQSRKRQRMrslxOROSLyq4jEl7H9LyKiRMTGM+lpmqZp5bHXFUo8MAzYVM5+c4H+pW0QkeZAX+CIqZFpmqZp18UuCUUptV8plViB/TYBZ8rY/E/gGaDu3KamaZpWgznkoLyIDAGOK6V2l/cAl4iMB8ZbP7wgIuUmsjL4Aaeu83MdlW5z3aDbXDdUpc3BFdnJZglFRNYCAaVsmqqUWlqF43oCz2N0d5VLKfUf4D/Xe75i591RkfuwaxPd5rpBt7luqI422yyhKKXusNGhw4BQoOjqpBmwU0RuVkpl2OicmqZpWjkcrstLKbUXuDLbnYikAlFKqbp2+appmlaj2Ou24aEicgzoCqwQkVjr+kARWVlsv0+BOKCNiBwTkUfsEa9VlbvNHJBuc92g21w32LzNdWouL03TNM129JPymqZpmil0QtE0TdNMoRNKCSLSX0QSReSgiPy1lO1jReSkiPxsfY2zR5xmKq/N1n1GiMg+65Q5C6s7RrNV4Pv8z2Lf4yQROWePOM1UgTa3EJENIrJLRPaIyEB7xGmWCrQ3WETWWdu6UUSa2SNOM1VguioRkXetX5M9ItLZ1ACUUvplfQEW4BDQEnAFdgPtS+wzFnjP3rFWc5vDgV1AA+vH/vaO29ZtLrH/k8Ace8ddDd/n/wCPW5fbA6n2jtvG7V0EjLEu9wbm2ztuE9rdE+gMxJexfSCwChAgGthq5vn1FcrVbgYOKqWSlVKXgc+AIXaOydYq0uZHgZlKqbMASqlfqzlGs1X2+zwK+LRaIrOdirRZAfWsy75AWjXGZ7aKtLc9sN66vKGU7Q5HXXu6KjDa+Iky/AjUF5GmZp1fJ5SrBQFHi318zLqupHusl4tfWiepdGQVaXNroLWIbBaRH0Wk1Ak7HUhFv8+ISDDGg7TrS9vuQCrS5peAP1hv6V+JcWXmqCrS3t0Yk9QCDAV8RKRRNcRmTxX+2b8eOqFU3nIgRCnVEVgDzLNzPNXBGaPbqxfGf+sfiUh9u0ZUfUYCXyqlCuwdSDUYBcxVSjXD6BqZL1Kry0dOAW4TkV3AbcBxoC58n22mNv+wXI/jQPErjmbWdVcopU4rpS5ZP/wv0KWaYrOVctuM8V/MMqVUnlIqBUjCSDCOqiJtLjISx+/ugoq1+RHgCwClVBzgjjGhoCOqyO9ymlJqmFLqRmCqdZ3D33xRjsr87FeaTihX2w6Ei0ioiLhi/DFZVnyHEv2Ng4H91RifLZTbZuBrjKsTrMXMWgPJ1RmkySrSZkSkLdAAY7YGR1eRNh8B+gCISDuMhHKyWqM0T0V+l/2KXYE9B8yp5hjtYRnwoPVur2ggUymVbtbBHW4uL1tSSuWLyBNALMZdInOUUgki8gqwQym1DPiTiAwG8jEGv8baLWAT8OGGYAAABLFJREFUVLDNsUBfEdmH0SXwtFLqtP2irpoKthmMP0KfKevtMY6sgm3+C0Z35p8xBujHOmrbK9jeXsDfRURhFPubaLeATWKdrqoX4GcdC3sRcAFQSs3CGBsbCBwEcoCHTD2/g/68aJqmaTWM7vLSNE3TTKETiqZpmmYKnVA0TdM0U+iEommapplCJxRN0zTNFDqhaA5NRC5UYJ/JIuJp4jljRKS9icfbUoXPvWB9DxSRL6+xX30R+eP1nkfTKkInFK0umAxUKqGIiOUam2MwJhY0hVKqmwnHSFNK3XuNXeoDOqFoNqUTilYriEgva02LL0XkFxFZYH0a+E9AILBBRDZY9+0rInEislNEFomIt3V9qoi8ISI7geEi8qiIbBeR3SLylYh4ikg3jBkSpltrpYSJyA3WSTP3iMgSEWlgPd5GMeqq7BCR/SJyk4gsFpEDIvJqsdgvFFt+VkT2Ws/5j1LaGWqNfW+JY4QU1cAQkQgR2WaNb4+IhAP/AMKs66aLiLcYtUB2Wo81pNhx9ovIR2LUvvlWRDys21qJyFprbDtFJMy6/mnr12mPiLxs6jdWcyz2nr9fv/SrKi/ggvW9F5CJMTeRE8Z0Kbdat6UCftZlP4ynor2sHz8L/K3Yfs8UO3ajYsuvAk9al+cC9xbbtge4zbr8CvAv6/JG4A3r8iSM6eCbAm4Y86M1KtGGAcAWwNP6ccNS2rsMeNC6PLHY54ZgrYEB/Bt4wLrsCngU325d7wzUK/Y1OYhRIyMEYxaIG6zbvgD+YF3eCgy1LrtjXPX1xaijItav+zdAT3v/XOiXfV566hWtNtmmlDoGICI/Y/xx/KHEPtEY3VWbRQSMP7jF5+r6vNhyB+tVQH3AG2Maj6uIiC9QXyn1nXXVPIzCTUWKpnHZCyQo67xJIpKMMUlf8Sls7gA+VkrlACilSqtr0R24x7o8H3ijlH3igKliVCBcrJQ6YG3rVaEDr4tIT6AQYwrzJtZtKUqpn63LPwEhIuIDBCmlllhjy7W2oy9GUtll3d8bY+LQTaXEpdVyOqFotcmlYssFlP7zLcAapdSoMo6RXWx5LhCjlNotImOxTpB5nTEVloivsIz4KuKa8yUppRaKyFbgLmCliDzG7yfzfABoDHRRSuWJSCrGVUfxmMH4Onpc43QC/F0p9WEl4tdqKT2GotUFWYCPdflHoLuItAIQES8RaV3G5/kA6SLigvEH+HfHU0plAmdFpId122jgO67PGuChojvSRKRhKftsxpi0khIxXSEiLYFkpdS7wFKgI1d/DcCoyPirNZncDgRfKzClVBZwTERirOdws8YZCzxcbBwqSET8K9RardbRCUWrC/4DrBaRDUqpkxgzRH8qInswuofalvF5L2CMG2wGfim2/jPgaRHZZR2YHoMxSL8HuAFjHKXSlFKrMbrIdli77KaUstskYKKI7KXsSnsjgHjrMTpglHw9jdHNFy8i04EFQJT1OA+WaF9ZRmPMtr0HY6wnQCn1LbAQiLMe60uuTlxaHaJnG9Y0TdNMoa9QNE3TNFPohKJpmqaZQicUTdM0zRQ6oWiapmmm0AlF0zRNM4VOKJqmaZopdELRNE3TTPH/ugbjiJpd16cAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAEWCAYAAAAKFbKeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8XNWZ8PHfM11l5CLLVbZsS7KxcbcxRXYCbEhwApiQTcBhN2FDQpJd0nY3CXmXXVKWZd99N500EhKSTQGSBQMJPQRsY8CWARsbkC25Su5Vdfp5/7h35LGsMpKm+/l+PvrYc9t55s6d+8w959xzxRiDUkopVSgc2Q5AKaWUSiVNbEoppQqKJjallFIFRRObUkqpgqKJTSmlVEHRxKaUUqqgnHOJTUS+KiK/tv8/RUTaRcRpvx4nImtEpE1EvimWX4jICRHZkN3Ih05E3i8i++z3ujDb8eSansdBrkk8ZnOFiGwTkUv7mf+8iHw8yW0tF5GGFMZ2k4isS9X2hsM+rqZnO45cIiI/FpF/TWcZrkEEsxsYB0QTJt9njLk11UFlijFmL1CaMOkW4ChQZowxIrIcuAKoNMZ0ZCPGFPlv4FZjzCPZKFxEDNAJJN40+XVjzH+lqbybgI8bY5YlTLsP+DAQSli0yRgzv5fjQA3AGHN+/P8i8lWgxhjzN0Pc1lpgZopCyynGGD2uejDGfCrdZSSd2GxXG2OeTUskNhFxGWMi6SyjH1XAm+b0XetVwO6hJLUsv4+eqoBtvc3IYJzzjTGNGSinP/9ljLk9yzHkDBFxGmOiAy+ZuwrhPaRajp17ssMYk9QfsBt4Vx/zbgLWYV0ZnAB2ASsS5o8A7gUOAC3AvwPOhHVfBL4NHIvPA76JdfW0C7gV69e+C/ggsKlH+f8IPNJHbNOAF4A24BngbuDX9rypCdu9Dwhj/aJvBz4JBLCuUNuBr9nrXAW8DpwE1gPzeuyjLwNbgKC93YnA/wJH7Pfy2YTlvwo8CPzKjm8bsCRh/mTgIXvdY8DdCfM+Brxl7++ngKpe3rvXjt0AHVhXKH3FOQt43n5f24BrErZzH/BD4Al7ey8C44Hv2OW/DSzs59gxWL/oe5v3OPDNhNf3Az+3/18NPGe/96PAb4CR/e0f+30kfm4nE97Dv/cRQ/dxkHDMrLE/k2eBH8SPGXv+RfZnfxLYDFyaMO954Bv2PmoDngbG2PN8wK/tWE8CG4Fx9ryJwKPAcaAR+ESP4yR+zD6BdfWdGP9m4Dr7/+dhHefHgQbgQz0+xx/Z+7yDHt9n4DLgjYTXzwAbE16vBa5NPB8AV2J9Z8L2/t480H7oZf9fCjQnvB7oWDzjPQDl9r5rBTbY5a5LWOe7wD57/iZgebLfwT7i/TvgsYTXO4DfJ7zeByzoeezbcT5mx7ER61yXGKcBPmVv7yTWcSfJfOftdf/BXndXP8f439nxnbDLugDrPHCSM88vA333dgNfAd60t/ULwJf4eQL/x153N3Bjj8/w33ss+0/AYawc8XcJy/a7z/r8jAZaoMcb6S+xhYFPYCWlTwP74x8K8DDwE6AEGGsffJ9MWDcCfAbrBFtk7/A3gUpgFNbJJZ6AvFhf2lkJ5b8GfKCP2F4CvmWv9w6sg/esxNbbyc+OLfHAW2jv/Avt9/lRe794E/bR61gn3CKsNsxNwL8BHmA6sBN4T8KXKgC8197eXcDL9jwn1gnr2/Z+8wHL7HkrsU5+s+x9cjuwvp/P7ozE0kucbnt7/8eO83J7P81M2C9HgcV2HM9hJemP2HH+O/CXZMvvMW+8vU8vB26094/fnleDVRXsBSqwks13ktg/Z3xuvX22fXzp48fBS1g/0jzAMqwvVfyYmYT1ZX+v/fleYb+uSDihNwEz7H37PPCf9rxPYn1Ji+34F2NVe2O/tx/a72MBVrK+POE4iZf/EeDFhNhnY52UvPZ+2Id18nJhHa9HgdkJ++AUUGfH7uuxH4qwjscx9jFxCOuHqN+e1wWU9zwfJMaXsK0+90Mv+/9S7MRGcsfiGe8B68fQg/b7n2PHnPi9/RusE6QL6wR6kNMn4a/Sx3ewn+N5ur3PHVg/SPYkxD8d60Tv6Hns23Heb3/+s+3Pqmdi+yMwEphiHwNXJvOdt9d9BhgNFPVzjP/Y3mfvtt/3aqxz8iSs7+E7B/ruJXz+W7HOIaOxfsAkJqsIp8+778T6EZL4GfZc9uv2Z/9erGaLUcnssz4/o2SSWsIbabc/0PjfJxJOJI0JyxbbO3E8VrtcMHFnA6uwT4T2unt7lPUcduKzX7+LM088PwLutP9/vn0geXuJeYq900oSpv2WoSe2HwHf6FFGQ8LBsBv4WMK8C3t5b18BfpHwpXq2x0mqy/7/xVgHtquX9/UEcHPCa4d9MFT18dn1ltgS41yO9WV3JEz7HfDVhP3y04R5nwHeSng9F/vKqJ/yW3scO+9JmP8BrAP2KHZy6mM71wKvJbF/zvjcEt5DoEcMv+x5HCQcM8UJ6/464Zj5MvA/Pbb9FPBR+//PA7cnzPt74En7/x+jx1W+PX0y1hWmP2HaXVht2PHjJF6+H+skUWW/vpPTV7jXA2t7bPsnwB0J++BXA3zP1wLXYV2VPo2VMK7Euprb0uMYGiix9bofeinzUk4nhmSOxV8lzHNi/ag+L2Haf/T8/HuUdwKrajwee6/fwQH20z5gEXADcA/Wj/XzsH5UPNrzu5cQ58yEeb1dsS1LeP0gcFsy33l73cv7iXeqvcykhGnHgOsTXv8v8PmBvnsJn/+nEl6/l9M1Qpdy9nn3QeBfEz7DxMTWRcL3GCvBXpTMPuvrb7BtbNeavtvYDsb/Y4zpFBGwGuRHY2XiA/Y0sD6UfQnrJv4frF9B/c3/JfA7Ebkd+FvgQWNMsJeYJgInzJltZHuwTiRDUQV8VEQ+kzDNY5fTW6xVwEQROZkwzYl18og7mPD/TsAnIi47xj2m97ryKuC7IvLNhGmC9atrT5LvJTHOicA+Y0wsYdoee3txhxL+39XL64EayReZvtvYHgO+DzQYY7p7s4nIOKxqpOVYJ3QH1kkJ+t8/fflvM3Ab20TguDGmM2HaPk4fM1XAB0Xk6oT5buAvCa97fqbxffM/9nbuF5GRWAnzXxLKbEtYbw+wpGdwxpg2EfkT1gn1/2L9SPxEQmwX9jjeXHa5ie+lPy9wunroBaz9/U6sH6cvDLBuT33th/4kcywmvocKrPe4r8fy3UTkn4Gb7W0boAzrqrSvOH1JtFPF91ON/f+TWPvpYnrfT73F2dtn0dc+S+Y7P9BnC0l+jwf47vUW/x7OPA/2dt5NnJ/oWI99HX/fye6zs2Siu/8+rC/FGGPMSPuvzCT0quLM3nJg1bNWJrw+IxEZY17GqtdfjtXTLfGL23M7o0SkJGHalCG8h7h9WFeKIxP+io0xv0sMr8fyu3os7zfGvDfJsqbYSa63eZ/ssd0iY8z6QbyXxDj3A5NFJPF4mIJVpZMJd2K1HUwQkVUJ0/8DK865xpgyrCql+K+j/vZPz+NpMA4Ao0WkOGFa4vG3D+uKLXHflxhj/nOgDRtjwsaYrxljZgOXYLXXfgRr/48WEX/C4v3t/98Bq0TkYqxqpXhS3Qe80CO2UmPMpxPDGCDM+An7Hfb/X8A6Yb+TvhPbcPZ3T8kci4nlHcG6OpjcY3nAupUA+BLwIazqrZFYVZnC8MT303KS20/xOPs8rw0gme98Kj+H/r57cT33+f6E172ddxPnJ2PI+yztic0YcwCrSuObIlImIg4RqRaRd/az2oPA50Rkkv3L9su9LPMrrM4C4cRf+T3K3gPUA18TEY+ILAOu7m3ZJP0U+JSIXGjf41YiIu/rcUJKtAFoE5Evi0iRiDhFZI6IXJBEWRuwTrL/aZfjE5E6e96Pga+IyPkAIjJCRD44jPf1CtavpC+JiNu+P+lqrLrttBKRd2BV33wEq83y+yIS/3Xux6r+PmVP+2LCqv3tn0NApYh4BhtPwjHzVfuYuZgzj5lfA1eLyHvsz9MnIpeKSGWvGzzzvV4mInPt++VasapZYsaYfVhVlHfZ25uHdYXR171rj2P9gv868EDC1c0fgRki8rf25+gWkQtEZNYgdsF6rK73S4ENxphtdlkXYrWz9OYQMLVHMhqqQR2LxuoR+RDW51UsIrOxjqM4P9bJ8QjgEpF/w7piG64XsKpni4wxzVi1MFditeW9lkSc52Ed88lK9Xd+IP199+L+QUQqRWQ0Vs3DAz3mx8+7y7F+xP1+MAEMZ58N9kB8zL7hMP73cJLrfQSryi7eg+YPwIR+lv8pVjLcgnWQPI51cCZ26/0frIbigW5c/TDWl/I4cAdWQhwSY0w9VrXP3VjvoxGrPaev5aNYH+gCrM4WR4GfYfUSHaisKNYXugbYi1U1dL0972Gsaqj7RaQVqxF3xRDfFsaYkF3WCjvGHwIfMca8PdRt9mJzj2PnOyJShvV53GqMaTHW/Uz3Ar8Qq976a1jtGKeAP2Ed5PGY+9w/WG2024CDInI0IYYv9YghcV6iG7GqlOK9dB/AqnXATkIrsTo3HMH6Jf1Fkvsujcc69luxrlBf4HRtwyqsdpD9WJ2t7uir2t+udn8Iq+35twnT27A6Bdxgb+cg1nHiTSK2+DY6gFeBbfZxAVZnmj3GmMN9rBY/YR0TkVeTLauP8odyLN6KVXV1EKv95hcJ854CngS2Y1WHBUiyOmuAOLdjnfjX2q9bsTo+vWj6vv3gVqzv/kGsz/132MdVEuWl9DufhD6/ewl+i3We3onVUejfE+YdxDpH7sfqUfmpIZ5PhrTP4r0Wc5qIrAB+bIypSphWhNXIuMgYsyNrwamCJyIPAG8bY+7IdiyFSEQuB35mjDmnRugQkf8LjDfGfHTAhXOMWAN2fLy3H1/2VfavjTED1mIModyk9llODqllV9u9V0Rc9mXwHVi/YhN9GuseG01qKqXs6rtqu9r8SqwrtNXZjquAzcGq0ShoInKeiMyzmzGWYlU3J1vrdU4a6j4bbK/ITIlXQz2A1VPnT1j3glkzrV8LgtUFValUG49V9VKOVcX5aWPMWe0mavhE5LvANZzZLpZ1IjIFq+mkN7ONNQzbYPmxqtImYrVLfhPIyjB3eWRI+ywvqiKVUkqpZOVkVaRSSik1VLlaFTkkYt00e7Xf7//EjBkzsh2OUkrllU2bNh01xlRkO47hKsiqyCVLlpj6+vpsh6GUUnlFRDYZY84a8SbfaFWkUkqpgqKJTSmlVEHRxKaUUqqgFGTnkZqammyHopTKY+FwmObmZgKBQLZDSQufz0dlZSVutzvboaSFdh5RSqkedu3ahd/vp7y8HJHhPgggtxhjOHbsGG1tbUybNu2Medp5RCmlClQgECjIpAYgIpSXlxfs1ShoYlNKqV4VYlKLK+T3BprYlFLqLLFQgGhXe7bDUENUUIlNRK4WkXtOnTqV7VCUUnkq2tlG9NRRwvubCB3YRSyU+Sq7yy67jKeeeuqMad/5znf49Kc/zbZt27j88suZOXMm1dXV3HHHHcRi1rNm77vvPioqKliwYEH335tv9jWWc+EqqMRmjHnMGHPLiBEDPsdTKZUDjDFEO9sIH2kmsGsrnVtfpO3lxzn1599y/JEfceJPP8PEYgNvKIU6N78AgNM/mligg9C+BsKH92Ei4YzFsGrVKu6//8yHht9///3ccMMNXHPNNdx22200NDTwxhtvsGHDBr773e92L3f99dfz+uuvd//Nnj07Y3HnioLq7q+UyjxjDCbQQbT9JLGOU0TbTxJtP0Ws/QTRjlPE2k/Z/54k2nEqYdpJYh2tEOvrgdMWT2UtJfPfmaF3A+0bn4aFK3FVVOIqn0DkxCGip44RbT+Jc2QFrpEViMOZ1hj++q//mttvv51QKITH42H37t3s37+fxsZG6urqePe73w1AcXExd999N8uXL+cLX/hCWmPKJ5rYlFL96np7Ax2vP28lrTYrOVkJ7ER30iIa6XsDDifO0hE4SkbiLBmBs3QknnFVOEqt146SEafnl8Zfj0Q8Pnb9/YW0b3gyY4nNRCN0vPpnHBdeb3WwcLo48dhPCOx8AxMOQSwCCOL2IE4X1mMhB8877XzG/t3X+5w/evRoli5dyhNPPMHKlSu5//77+dCHPsS2bdtYvHjxGctWV1fT1dXFyZMnAXjggQdYt25d9/yXXnqJoqKiIcWZrzSxKaX6dfCH/0T4wE4cxWVWIiq1EpCrfCLO0pE4Skd0J6zuZFU60npdMgJHUemQe+GVLLiM9g1PMvbmOxFH+ltOuho2EWs/gXjPTAQiDsTjw8SimEgIEw5iImErwTnScxqNV0fGE9u9997Lb37zmwHXu/7667n77rvTElO+0MSmVB4wxtCx8UlKFr8bcaa3GixRtLON8P4myld9mfIPfC5j5caVXriC9lceJ9D4GkUzFg+8wjB11D+FuDyIx9s9reeVlTGGWGcrkWMHMOEgDl8JrvIJOHwlKY1l5cqVfOELX+DVV1+ls7OTxYsX89prr7FmzZozltu5cyfl5eWMHDkypeXns4LqPKJUoera9hL7/+tm2jc+mdFygzvfAMA3fV5Gy40rWfRX4HTR/soTGSmvvf5piuZcgkjfp0YRwVkyAs/kmbjGTCIWDhJqaSR0cA+xcDBlsZSWlnLZZZfxsY99jFWrVgFw4403sm7dOp599lkAurq6+OxnP8vXvva1lJVbCDSxKZUHgvveBiCw49WMlhto2gyAN0uJzVk6kuLzL6F9w5Oke/i/UEsj4f07KV18RVLLiwiuEWPwTjkP56hxxDpbCe1tIHy0BdNfm+MgrFq1is2bN3cntqKiIh599FHuvPNOZsyYwZgxY6irq+PGG2/sXueBBx44o7v/+vXrUxJLPimoqkgdBFkVqlDzDgACjZszWm6wabPVO3BEeUbLTVR64QoO//QrhJp34J08I23ltNc/A0DJkivgaFvS64nDiXv0eFxl5USOHyR66igm2IVn0vDPQ9dee+1ZCX3OnDn85S9/AWD16tX84z/+Ix/+8Iepqqripptu4qabbhp2ufmuoK7Y9D42VajiiS24c0tG7+sK7HwDX/X8jJXXm9IL3gNA+4b0Vkd21D+Nd+r5uCsqh7S+uNy4x07GObKCWKAzI5/Ttddey86dO6mqqkp7WfmkoBKbUoUq1LID8ZUQ62ontL8pI2VG208SPrgLX3V2qiHjXKPH45uxOK3tbNG243Q1bKTkgncPe1sObwlgMKGu4QemhkQTm1I5Ltp+kujJI/gvvgqAQONrGSk33nEkW+1riUqXXklw5xbCR5rTsv2OV5+DWIzSxacT21Db9OK3CsSCuZvYCvFxZYk0sSmV4+LVkKUXrkB8JQQaX89IufGOI9nqEZmo9MIVALRvSE+v0PaNT+McPR7v9LmA9SDOY8eODSkBiMsNThcm0JnqMFMi/jw2n8+X7VDSpqA6jyhViELN2wHwTJ6Jb/o8ghnqQBJo2oJ7XBVO/6iMlNcfz4TpeCbPpH3Dk4x638dTuu1YOEjH63+hbPl13TeBV1ZW0tzczJEjR4a0zcip4xA9jOt4RypDTZn4E7QLlSY2pXJcqKUR8fhwj6nEVzOfk4//HBMOIW5PWssN7NyMr2ZBWssYjNKlV3L84e8TbT2Gsyx1vTS7tr2ECXRYvSFtbrf7rKdLD8ax33+LYw9+k5pfNeAoKk1FmGoQtCpSqRwXbN6BZ2I14nTiq1mIiYQI7nkrrWVG244TObwv6z0iE5UuXQGxWHe3/FRpr38a8RZRPKcuZdv0VS8AYwg0bUnZNlXyNLEpleNCLTvwVNYCdF9BBZrS284WPyHnQvtanHf6XFxjJqW0278xho76pyme/04c3tQNFOyrsX4QpPtzUr3TxKZUDosFOokcacYzyUpsropKnGWj096BJJ7Y4p0pcoGIULr0Sjo3ryHWlZq2q+DubUSO7qd0yfC7+SdylpXjGjs54zfUK4smNqVyWGh/IxjTfcUmInirF6Q9sQWbNuOeMB1nSW4NdlC6dAXG7uyRCh31z4AIJYvflZLtJfJVL9ArtizJi8QmIteKyE9F5AERSe1PK6VyWKi5EQBP5emhpHw1Cwi17EjZVUtvAjs3Z/3G7N4UzVqKwz8qZTdrt9c/ja92Ea4RY1KyvUS+mvlEDu8jcupYyret+pf2xCYiPxeRwyKytcf0K0WkQUQaReS2/rZhjFltjPkE8Cng+nTGq1QuCbXsAIcTz/ip3dN8NQsgFiOw6420lBk5dZTI0f051XEkTpwuSpe8m45X/2w9+HMYIscPEmzaTGkKRhvpja/aag8NNml1ZKZl4ortPuDKxAki4gR+AKwAZgOrRGS2iMwVkT/2+BubsOrt9npKnRNCzTtwj596Rtf+7g4kaaqODMbb13IwsYF1s3ass5XObcMbtb59k/Xol5IUt6/F+arngYhWR2ZB2u9jM8asEZGpPSYvBRqNMTsBROR+YKUx5i7gqp7bEOvxu/8JPGGM6fW5HSJyC3ALwJQpU1IWv1LZlNgjMs41Ygyuisq0Da0VaNoMIvimzUnL9oereN47EF8x7a88QcmCS4e8nY6NT+MeV3VGNW8qOYpK8UyqydhIMeq0bLWxTQL2Jbxutqf15TPAu4C/FpFP9baAMeYeY8wSY8ySioqK1EWqVJaYSJjQgV14J9WeNc9XvSBtI5AEmjbjmVidszcWOzw+ShZcTvvGp4Y8gn4s0EnnG2spWfJurN/N6WF1INlc8GMz5pq86DxijPmeMWaxMeZTxpgf97WciFwtIvecOnUqk+EplRahg7shGsHTyzPIfDXzCR/eS7Q19R0TAju35Gw1ZFzphVcSPXmYwPZNQ1q/c8sLmHAwbe1rcd6a+URPHiFybH9ay1FnylZiawEmJ7yutKcNiz6PTRWS+ODHnt6u2Lpv1E7tyBaRE4eIHj+Ykx1HEpUsehe43LRvHNqgyO31z+AoLqPovKUpjuxM8Q4kej9bZmUrsW0EakVkmoh4gBuAR4e7Ub1iU4Uk1BJPbGc/idk73e6YkOJ2tu4RR3Kwq38iZ0kZxXPqaH/lyUFX85lolI76ZyhZdLk1En8aeafOBqdLO5BkWCa6+/8OeAmYKSLNInKzMSYC3Ao8BbwFPGiM2TbcsvSKTRWSUPMOXGMm4fAVnzXPWexPS8eEQNNmcDjwTs3NjiOJSpeuIHxwF6F9DYNaL9D4GtHWY2nrDZnI4fHhrZpFUDuQZFTaE5sxZpUxZoIxxm2MqTTG3GtPf9wYM8MYU22MuTPdcSiVb0LN28/qEZkoHR0Tgk1b8Eyq7TWZ5prSC94DIoO+Wbuj/hlwuihZeFmaIjuT9TltGXJHFzV4edF5JFlaFakKhYnFCLU09tsVPdUdE4wx9ogjud2+FucaNRbfjMWDHhS5vf5pimZdlLHhwnw184l1thI+uCsj5akCS2xaFakKReRoCyYU6LXjSJyvZiGQuhu1I8cPEj15BG+Ot68lKl26guCurYQP7xt4YayepqF9DWnvDZlIO5BkXkElNqUKRbxHpLfy7I4jcd6ps8HlTlliiw/9lC9XbGCNQgLQviG53pEd9rPcEh8qmm6eyTMQj087kGRQQSU2rYpUhaK7R2Q/bWwOtxfvlFkpuxIING0BhxNv1eyUbC8TPOOn4pkyK+nqyPb6Z/BMnolnXFWaIztNnC680+fqCCQZVFCJTasiVaEINm/HWVaO0z+63+V8NQsI7tycko4JgabNeCbPTOkDNzOh9MIr6Xp7w4Cj6EfbT9L15kspf/ZaMnzVCwju2oqJRjJe9rmooBKbUoUi1LwjqTEMfTULiHW2ET7QNKzyjDEEc/RRNQMpXboCYjE66p/qd7mO1/8CsSglGWxfi/PVzMeEAoO+NUENTUElNq2KVIXAGGP3iOy7GjLu9Ej/w6uOjBxtIdp6PK/a1+K8U8/HVVFJ+yv9t7N11D+Dc8SY7k43mZTuJzKoMxVUYtOqSFUIoqeOEms/2euIIz15JtUivuJhnzBPjziSf4lNRChduoLOLWuIdbX3uoyJhOl49TlKFr8LcWT+tOcePw1HyQjrBniVdgWV2JQqBN1jRCZxxSZOJ75pw++YEGzaDC43nqpZw9pOtpReuAITCdHx2nO9zu966xVina1ZaV8DK/n6qucR2JGeRw2pM2liUyrHhJq3A8klNrA7kOzeNqwnSgeaNuOdPBOH2zvkbWRT0cwLcJaV9zkKSXv904jHR/G8d2Q4stN81QsI7n2bWLArazGcKzSxKZVjQi07cBSV4ho9IanlfTULMOEgwX1vD6k8a8SRLXlZDRknTiclF7ybjlf/TCwcPGOeMYaOjU9TPGdZVocK89YsgFiU4O5hD4urBlBQiU07j6hCEGreYbWdJfkATO8wO5CED+8l1n4y55/BNpDSpSuIdbXT9caLZ0wPNW8nfHhvVnpDJvLVWPtXO5CkX0ElNu08ogpBMMkekXHusVNw+EcN+RE2wTx5VM1AiucuQ3wlZ92s3bHxaQBKF78rG2F1c42egHPUOO1AkgEFldiUynfRjlaixw8m1SMyzuqYsGDIV2yBps2Iy4N38nlDWj9XODw+ShZdTvvGpzDRaPf09vqn8VbPxzV6fBaji39O8/WKLQM0sSmVQ5IZSqs3vpr5hJobiAU6B11moGkLnqmzEbdn0OvmmtKlK4ieOkpgxyYAIiePENjxatZ6Q/bkq1lAeH8T0Y7WbIdS0DSxKZVDBtPVP5GvZgHEYgR3vTGo9UwsRnDnFnzT87saMq5k0V8hLk9378iOTc+CMRkdzb8/8Ru1gzu3ZDmSwlZQiU07j6h8F2rZgbi9uMdOGdR6px+NMrhqrvCh3cQ6W/O+fS3OWeynaO4y2jc8iTGG9vqncY2ZhCdHBnaO72etjkyvgkps2nlE5btQ8w7cE6YjTteg1nONGotrzMRBnzDzecSRvpQuXUH40B4Cja/TuWUNJUuuSLqHabo5/aNxj6vSDiRpVlCJTal8Z40RmXzHkUS+6gWDPmEGmzYjHl9SAy7ni9IL3g0iHPn5v2KCXTnTvhanHUjSTxObUjkiFuwifGhPv0/N7o+vZj7hg7uJth1qiMLAAAAgAElEQVRPep1A0xa8U89HXO4hlZmLXCMrKJp5AYEdr+IoKqXo/IuzHdIZvDULiBxtIXLqaLZDKVia2JTKEeEDO8EYvIPsOBIXH7U+Xr04EBOLEdi5Be/0uUMqL5fFn6xdPP/SnBsmTEf6Tz9NbErliGB3j8ihVQt6pw+uY0L4QBMm0FFQ7WtxpRe9D/H48C+7NtuhnMU3bS44HJrY0mhwLdRKqbQJtewAhwP3xOlDWt9ZUoZ7YnXSJ8xAk3VrQCEmNndFJdU/35rVsSH74igqwTOp1nqigkoLvWJTKkeEmhtxj60aVtWZr2YBgcbXMcYMuGygaTPiLRrUKCf5JBeTWpyvZn7Sn5MavIJKbHofm8pnoebtQ+4RGeerWUD05GEixw8MuGywaTPeaXMGfWuBGj5f9QKirceIHG3JdigFqaASm97HpvKViUYIHdg55B6Rcb4kR/o30SiBXW8UZDVkPtAOJOlVUIlNqXwVPrQHImE8k4d3P5l36vngdBEc4IQZ2t+ICXYVzFBa+cZTNQtcbk1saaKJTakc0D1G5DCv2BweH94p5w34CJv4o2ry/Rls+crh9uKtmq0jkKSJJjalckD3qP4p6Mjhq1lIoGkLJhbrc5lA02bEV4JnwtB6YKrh89UsILiz/89JDY0mNqVyQHDfDutBlMX+YW/LVzOfWGcr4YO7+lwm0LQZ3/S5iNM57PLU0Piq5xPrbCN8oCnboRQcTWwpEjq0h6O/uQsTjWQ7FJWHQi07ht0jMu70SP+9V3OZaITg7m3acSTLku3oowZPE1uKnFj9Q44//H06N6/Jdigqzxhj7MGPUzMQsWfyDMTj67OdLbRvOyYUKMihtPKJZ1It4ivWDiRpoIktBUwkTNvLfwSgde1DWY5G5ZvIsf2YQMewO47EidOFb/q8Pk+Y8Q4LesWWXeJ04ps2VzuQpIEmthTo2LKGWNsJ3OOn0r7xSWKBzmyHpPLIUJ+a3R9vzQKCu7dhIuGz5gV2bsFR7Mc9flrKylND4+vnc1JDp4ktBdrWPYKjZARjP3EXJtBJe/1T2Q5J5ZF0JDZfzXxMKEBw79tnzQs2bcE7fR7i0K9/tnmr+/6c1NDl/JEtIrNE5Mci8gcR+XS24+kpFuyifcMTlF64guK5y3GNmUjbmoezHZbKI6GWHThKR+EsK0/ZNrs7kPSo5jLhEME9b+Kr1huzc0F3BxKtjkyptCY2Efm5iBwWka09pl8pIg0i0igit/W3DWPMW8aYTwEfAurSGe9QdLz6Z0ygA/+yaxGHA3/dtXRsfp5o67Fsh6byRKh5B97KWkQkZdt0j5+Ko3TkWe1swX0NmHBQ29dyhHtcFY7SUdqBJMXSfcV2H3Bl4gQRcQI/AFYAs4FVIjJbROaKyB97/I2117kG+BPweJrjHbS2datxjqyg+Hwr55Ytvw6iEdrWP5blyFS+sLr6p64aEkBE8FXPJ9h05gkz/hBSrw6llROsz2neWZ+TGp60JjZjzBqg53PqlwKNxpidxpgQcD+w0hjzhjHmqh5/h+3tPGqMWQHc2FdZInKLiNSLSP2RI0fS9ZbOEO1opePVP+O/+OruG109VbPwTJ6pvSNVUiKnjhFtPZ6yHpGJfDULCO5tIBY83ZkpuHMLjpIRuMdVpbw8NTS9fU5qeLLRxjYJ2Jfwutme1isRuVREviciP6GfKzZjzD3GmCXGmCUVFRWpi7Yf7RufxISDZzylV0QoW34dgYZ6wof2ZiQOlb+6h9JK8RUb2N35Y1GCu063BASaNuOrnpfSak81PKc/p23ZDqVg5HznEWPM88aYzxpjPmmM+UF/y2b6eWxt61bjGjsZ34zFZ0z3L38/AK3rVmckDpW/0tEjMs5XuxA4PbJFLBwkuPctHfg4x2gHktTLRmJrASYnvK60pw1bJp/HFjl1jM4ta/HXrTzr16+7opKi85bStvYhfUKu6leoZQfiK8ZVPjHl23aNGodr9ITujgmhPW9DJKwdR3KMa/R4nKPHaweSFMpGYtsI1IrINBHxADcAj6Ziw5m8Ymt/6TGIRSmru7bX+f7l1xFq3k5wt1YvqL6FmnfgmViTtnvKvDXzu0+Y3SOOaMeRnOOrnk9AO5CkTLq7+/8OeAmYKSLNInKzMSYC3Ao8BbwFPGiMScnZP5NXbG3rVuOpnGE9MLAX/ovfB04Xbev0njbVt3T0iEzkq15A+OAuou0nrRFH/KNwVVSmrTw1NL6aBYT37yTakZlmlEKX7l6Rq4wxE4wxbmNMpTHmXnv648aYGcaYamPMnemMIR3CR5rpenuDde9aH43wzrJyShZcStu61fq8JdWrWFc7kaP709IjMs5Xe7r9Jti0GV/1fO04koPi1cPxB8Cq4cn5ziODkamqyLb1Vs2pv25lv8v5l19H5NgBut58Oa3xqPwUamkE0tNxJC5+wux68xWC+xq0fS1HxT8XrY5MjYJKbJmqimxbtxpvzQI8E/ofRLb0gncjvhK9p031Kt4j0pui57D1xlkyAveE6bQ+/wBEIzqUVo5y+kfhHj9Vn82WIgWV2DIh1NJIcNfWPjuNJHJ4iylduoL2l/9ELBzMQHQqnwRbdoDLjXvc1LSW46ueT+TYAUBHHMll2oEkdQoqsWWiKrJ13WoQwV93TVLLly1/P7GOU3S+9lzaYlL5KdS8A8/4aYjLndZy4vezOUeMScttBSo1fDULiBzdT+RkZkZOKmQFldjSXRVpjKHtxdUUzb4Y1+jxSa1TPG85zhFjaNUR/1UPoeb09oiMi7ffaMeR3OaNP5FB72cbtoJKbOkW3PUG4f07zxhCayDidOG/5Bo6Nj1DtKM1jdGpfBILBwkf2p3WHpFx3mlzcBSVUjRradrLUkPnmz4XHA6tjkwBTWyD0LZuNThd+C9676DW8y+/DhMO0v5Kzj2cQGVJ+MAuiMXwpLHjSJzDW8TU761l1FWfTHtZaugcvmI8lTO0A0kKFFRiS2cbm4nFaFv/KCXzL8XpHz2odX21C3GPn6o3a6tup8eInJGR8lyjxiFuT0bKUkMXf9SQDsU3PAWV2NLZxhZo2Ejk6P5BVUPGiQj+ZdfSufVFIicOpTw2lX9CLTtABM/E6myHonJI0cwlRFuPE97fmO1Q8lpBJbZ0al23GvH4KL3gPUNav2z5dRCL0bbukRRHpvJRaN923BWTcXiLsh2KyiFFc5cB0LllXZYjyW9JJTYReUhE3ici52QiNNEI7S/9kZIlV+AoKhnSNjyTavBOn6c3aysAgi2NGekRqfKLe+wUXBWVdG59Mduh5LVkE9UPgQ8DO0TkP0VkZhpjGrJ0tbF1vrGOaOsxyoZQDZmobPl1BHdu6R5KSZ2bTDRKeH8Tnknp7zii8ouIUDx3GZ3b1mOi0WyHk7eSSmzGmGeNMTcCi4DdwLMisl5E/k5E0nt36SCkq42tbd1qHMVlFC+8fFjb8S9bCSK0aieSc1r4yD5MOJixjiMqvxTPWUas/STBPfrIq6FKumpRRMqBm4CPA68B38VKdM+kJbIcEQsFaN/wBKUXrsDh9g5rW65R4yieU0fb2oe119M5LJ1PzVb5r3huHWDVFKmhSbaN7WFgLVAMXG2MucYY84Ax5jNAaToDzLaOV58j1tk2pN6QvfEvv47wwd0EdryWku2p/BNq3g5oYlO9c40ah6eyls43tJ1tqJK9YvueMWa2MeYuY8yBxBnGmCVpiCtntK1bjXPEGIrn1KVke6UXvhdxe2lLUSeSWFc7h++9nY7NL6Rkeyr9Qi07cI4ci7Mk/Q/EVfmpeO4yut56GRMOZTuUvJRsYhslItf1+PsrERmb1uiyLNrZRserz+K/5GrE6UrJNp0lZZQsvoK29Y9iopFhbSt8tIW9t1/LySd+zoFv3kLo4O6UxKjSK9SsPSJV/4rmLMMEu+jSmp0hSTax3Qz8DLjR/vsp8GXgRRH52zTFNmip7hXZsfEpTCiAP4lH1AxG2TveT/TU0WHVoQcaN7P3tvcRObyXcZ/+JoiDA9/6JLFQIIWRqlQzxhBqyczgxyp/FZ9/MYjQtVXb2YYi2cTmBmYZYz5gjPkAMBswwIVYCS4npLpXZOu61bgqKvHNTG1ta/HCy3GUjKB1zdCqI9s3PMG+f3s/4vYw+c5HGfFXqxh/63cI7nyDI7/8WkpjVakVPXGIWGcb3gwMfqzyl7N0JN5pc7UDyRAlm9gqjTGJY0EdBiYbY44D4dSHlX3R1mN0blmDv25lyh/14XB7Kb3ofbRveIJYsDPp9YwxHH/kR+z/fx/HWzWbKXf9Ce+U8wAoveA9jLr6k5x66pe0rX80pfGq1AlqxxGVpOK5y+ja8SqxQPLnCGVJNrE9LyJ/FJGPishHgUfsaSXAyfSFlz1tL/0JopFh35Tdl7Ll12ECHbRvfDqp5U0kzOGffImj//MNSi+6isqv/h7XyIozlhlz4//BN2Mxh370z4QO7ExH2GqYtKu/Slbx3GUQCdP19oZsh5J3kk1s/wD8Alhg//0K+AdjTIcx5rJ0BZdNbS+uxlNZi6dqdlq2XzT7IlzlE5Ia8T/acYqW//gbTj37G0Zf91kmfOFHvY4xKC43E77wI3C6OfBNbW/LRaGWRhzFZThHFnS/K5UCRectBZdbqyOHYMDEJiJO4DljzP8aY75g//3BFPAdxuFj++l66xX8ddem7YnD4nDgX3YtHa/9hWjb8b5jObSXff9yDZ1vvsy4f/g2Yz58G+Lo+2NzV1Qy/jPfJbh7G0d+cUc6QlfDEH9qtj7JWg3E4SumaMZiTWxDMGBiM8ZEgZiInDM33bS9+CgYk7KbsvviX/Z+iEZoW//HXud3NdSz9yvvI3LyCJW3/44Rl12f1HZLF7+LUSv/nlPP/I8O35VjtEekGoziOXUEd71BtL0gW3zSJtmqyHbgDRG5V0S+F/9LZ2DZ1LZuNd7q+XgmTEtrOd6p5+OpnNHrzdqt61bT/NUP4ij2M+XORymec8mgtj1m1ZfxnXcBh378JR10OUdE204QPXkEj/aIVEkqnrsMjKFz20vZDiWvJJvYHgL+FVgDbEr4yympuI8tdGAnwZ1b0tZpJJGI4F9+HV1vbyB8pBmwej4e+8N3OPidv8dXs4Ap//HYkEaBj7e3OTxe9n/rU8SCXakOXw1SqEU7jqjB8dUsRLxFej/bICU7uv8vgQeBl40xv4z/pTe0wUvFfWxt6x4BEUovuTqFkfWtbPn77XIfJhYOcvD7n+PY/f+F/x0fYNK/3Y+zrHzI23aXT2T8Z75PaM+bHP75v6YqZDVEwT1vAZrYVPLE7aFo1kXazjZIyQ6CfDXwOvCk/XqBiBTczVLGGNpeXE3RrAtxl0/MSJnusZPxnXcBrc//npZvrKJtzR8ov/6LjP/M94b9NAGAkoWXMfr9n6H1z7+ldc3/piBiNRQmGuHEn36GZ/JM3BWTsx2OyiPFc+sINe8gcuLQwAsrIPmqyK8CS7HvWTPGvA5MT1NMWRPa8yah5h0pH0JrIGXL3k+opZHAjtcY//kfUP7BL6S011z5DV+kaPZFHPrJlwja91GpzGpb+zDh/U2UX//P/fZqVaqn4rnLAHS0/0FI9hsWNsb0bLiKpTqYbGtdtxqcLvwXvy+j5fqXX0fZpR+i8o4HKVv2/pRvX5wuJnz+hzi8xRz45i06kkGGmUiYY7//Ft5pcyhduiLb4ag84606H0fpSDrfWJvtUPJGsoltm4h8GHCKSK2IfB9Yn8a4ssIzYRojr7xpWO1aQ+EsKWP8rd+h6LwL0laGa/R4xn/ubkLN2zl877+krRx1ttbnHyR8aA/l139Rr9bUoInTSfH5l9D5xjp9QHGSkv2WfQY4HwgCvwNagc+nK6hsGfFXH2bs330922GkTcn8dzL6A5+j9S8PcOr5B7MdzjkhFg5y7A/fxle7iJLF78p2OCpPFc+pI3K0hfChPdkOJS8k2yuy0xjzL8aYC4wxS+z/63hNeaj8g/9E0fmXcPie2wjua8h2OAWv9dnfEjm6n/IbvqijjaghK56n7WyDkWyvyBkico+IPC0iz8X/0h2cSj1xOpnw+R/gKPZb7W1dHdkOqWDFgl0ce+h7FM26kOJ578h2OCqPuSfW4Bw1ji5tZ0tKslWRvwdeA24Hvpjwp/KQa9Q4Jnz2bkItjRz66Ve03j5NTj39K6InDlF+w5f0ak0Ni4hQPHcZnVtf1O9rEpJNbBFjzI+MMRuMMZvif2mNLIGIlIhIvYhclakyC13xvOWUf/AfaVvzB049+9tsh1NwYl0dHH/4bornLbeehqzUMBXPqSPaeozQ3rezHUrOSzaxPSYify8iE0RkdPxvoJVE5OciclhEtvaYfqWINIhIo4jclkT5X8Ya+USl0OgPfJ7i+e/k8E9vo239Y9kOp6CcfPLnRFuPUX7Dl7IdiioQ3fezbdV2toEkm9g+ilX1uJ7T40TWJ7HefcCViRPsx+D8AFgBzAZWichsEZlrP8w08W+siFwBvIn11G6VQuJ0MvGff0bRjMUc+M7f0/by49kOqSBEO1o5/siPKFn0VxTNWJztcFSBcFdU4h4/Ve9nS4IrmYWMMUMa5t4Ys0ZEpvaYvBRoNMbsBBCR+4GVxpi7gLOqGkXkUqAEKwl2icjjxpizbg4XkVuAWwCmTJkylHDPSY6iEib9y69p/sYqDnz7U8g/3UPp0isHXlH16eSffkqs/STl12sztEqt4rnLaHvxEUw0gjiTOn2fk/q9YhORLyX8/4M95v3HEMucBOxLeN1sT+uVfWvB54HfAj/tLanZy91j34qwpKKiYoihnZscRaVMuv23+KbPY/+3Pkl7/TPZDilvRdtOcOKP91C6dAW+6nnZDkcVmOK5y4h1thFo2pLtUHLaQFWRNyT8/ys95mX0Z70x5j5jTO9P5LSl4rE15ypnsZ9Jt/8W79TzOfDfn6DjVb2bYyhOPPpjYl3tlF//z9kORRWgovPrAOjSdrZ+DZTYpI//9/Y6WS1A4vDmlfa0YUvFY2vOZc6SMipv/y2eKTPZ//9upuP157MdUl6JnDrGiSfuxX/JNXirZmU7HFWAXCPK8VTN1na2AQyU2Ewf/+/tdbI2ArUiMk1EPFhXhQX3CJx85SwdSeW/3o9nUg37/+tjdGxZk+2Q8saJ1XdjQgHKP/RP2Q5FFbDiOXV0NdQTC+ngT30ZKLHNF5FWEWkD5tn/j7+eO9DGReR3wEvATBFpFpGbjTER4FbgKeAt4EFjzLZhvo94eVoVmQJO/ygq73gA94Tp7P/Pm7R7cRIixw9y8qlfUrb8A0N64rlSySqeuwwTChDYnrFbifNOv4nNGOM0xpQZY/zGGJf9//hr90AbN8asMsZMMMa4jTGVxph77emPG2NmGGOqjTF3purNaFVk6jj9o6n8twdwj6ui5a6P0LntpWyHlNOOP/x9TDTC6A9+IduhqAJXNPsicDj1qdr9KKhnaOgVW2q5RpRTeceDuCsqabnrb+l665Vsh5STwkeaOfXMbxhx2fV4xk/NdjiqwDmL/fhqFmhi60dBJTa9Yks918gKKu/4Pa7RE2i+82/oentjtkPKOccf+h4Aoz/wuSxHos4VxXPqCDS+TrSzLduh5KSCSmwqPVyjxjL5q7/HNWocLXfeSNf2V7MdUs4IHdrDqefuZ8QVN+KuqMx2OOocUTx3GcSiWovSh4JKbFoVmT6u0eOp/OrvcY4YQ8u/ryLQ+Hq2Q8oJx3//bcTpYvR1n812KOoc4puxGHF7tTqyDwWV2LQqMr3c5ROs5FY6iuZvrCKw89we/SDU0kjrmj8w8j0fxTVqXLbDUecQh7cI38wL6Nqqia03BZXYVPq5x0yi8mt/wFHsp/nrNxDYtXXglQrUsQe/iXh8jLr2H7IdijoHFc+tI7j7TSKnjmU7lJyjiU0Nmruikslf/QMOXwktd/4NJhzKdkgZF9z7Nm3rH2XUiptxjRiT7XDUOSj+GJuubeuzHEnuKajEpm1smeMeN4Wxn7iL6MnDdGx+IaNlm3CIQz/9CqGWxoyWm+jYA/+No6iUUdd8KmsxqHObr3o+jqJSbWfrRUElNm1jy6ySee/AUTqKthcfyWi5Ha89x6mnfknr87/PaLlxgZ1baH/lcUZddQtO/6isxKCUOF0Uzb5IRwbqRUElNpVZ4vbgv+i9tG98iliwM2Pltq59GICuHa9lrMxEx+7/bxylIxn5vk9kpXyl4ornLCN8YCfhoykZR75gaGJTw+KvW4kJdGTsMTfRzjY6Nj0DDgfBptcx0WhGyo3r2r6JjlefZfQ1n8ZZUpbRspXqKd7OpldtZyqoxKZtbJlXNPtinCMrMlYd2f7K45hQgBFX/C2xrnZC+zPbznbyjz/F4R/FyBUfy2i5SvXGM+U8nGXldG7RdrZEBZXYtI0t88TpxH/x1XRsejYjw/u0rX0I9/ip3YklkMFRUIwxdL69gZL5l+IoKslYuUr1RRwOiuZcQufWdRgz1CeJFZ6CSmwqO/x1KzHhIB0bn0prOZETh+jc+iL+ZdfimViNo7iMQGPm2tkiR1uIHj9I0cwlGStTqYEUz11O9PhBwvubsh1KztDEpobNN3MJrorKtFdHtq17BGIxypZfhzgc+GoWENiRuSu2rgZrAGifJjaVQ4rn1AFot/8EmtjUsIkI/kuuoWPzC0TbjqetnNa1D+GdPq/7QZ6+2kUE975NLJCZHpmBhnrEV4y3alZGylMqGe7xU3GNmaQdSBJoYlMp4a9bCdEIbS8/kZbth1oaCe7cQtny67qn+WoXQiyWsTEruxrq8dUsRJyujJSnVDJEhOK5dXRuXY+JxbIdTk4oqMSmvSKzxzttDu6J09NWHdm69iFwOPAvW9k9zVe7CCAj1ZGxQCfB3W9q+5rKScVzlxNrP0Fw97Zsh5ITCiqxaa/I7BER/HUr6dr2IpETh1K6bWMMbWsfpnhO3Rmj6LtGlOMeO4VABm7UDjS+DrGotq+pnKTtbGcqqMSmsst/yUowhraX/pjS7QZ2vEr40B78y95/1jxf7cKMXLF1NdQDUGRfJSqVS1yjx+OZVKPtbDZNbCplvJNn4KmaTdu61SndbtvahxG3l9IL33vWPF/tIiLHDhA5fjClZfYUaKjHU1mrY0OqnFU0p46ut14+J5+20ZMmNpVSZctWEti+ifDhfSnZnolGaFv/KCWLr+h1CCtf7UIgveNGmliMru2b8M1YnLYylBqu4rnLMYFOAk36dHtNbCql/JdYnTva1j+aku11bllL9NRRyt5xdjUkWJ1WcLnTWh0ZPtBErP2EdhxROa14ziWM/eR/4Z4wPduhZJ0mNpVS7nFT8NUuSlnvyNa1D+EoGUHxwst7ne/w+PBWzU5rB5Kuhk0A+GZekLYylBouZ+lIRl7xN/rgWzSxqTTw160kuGvrsB8EGgt00r7hCfwXX4XD7e1zOV/NAgJNm9M20n9XQz2O0pF4JlanZftKqdQqqMSm97HlhtKLrwKRYVdHttc/hQl04k+4Kbs3RbWLMIEOQs3bh1VeXwIN9RTNWIw4CurrolTBKqhvqt7Hlhvc5RMomnURbetWD2vE8bY1D+MaM5GiWRf2u1y8A0k62tmi7ScJNW/XjiNK5ZGCSmwqd/jrVhJqaSS0580hrR9tPUbH5ufx11074JWSe8J0HCUj0tIzMv5YHO04olT+0MSm0sJ/8fvA4aR1iJ1I2tY/BtHIGWND9uX0SP+pT2xd2+vB4cBXszDl21ZKpYcmNpUWzrJyiue9g7YXHxlSdWTr2ofwTDkP79TZSS3vq11IqLmBWFfHoMvqT6ChHm/VbH2wqFJ5RBObShv/spVEDu8b9JVU+NBeAg31lC3v/d613vhqF1kj/TdtHmyYfTLRCF07XtPxIZXKM5rYVNqUXnAl4vIM+p621nUPA/Q6NmRf4lWFqXyidnDv25hAh7avKZVnNLGptHGWlFG86HLa1j+a9D1m1kj+D1F03lLcFZVJl+UaUY57XFVK29kC8YGPZ2hiUyqfaGJTaVVWt5LoiUN0vb0hqeWDu7cRat4x4L1rvbFG+k9dYuvavgnnyLG4xk5O2TaVUumniU2lVcniKxBvUdLVkW1rHwKnC/8lVw26LF/tIiLHDxA+dmDQ6/Ym0FBP0cwliEhKtqeUyoycT2wicqmIrBWRH4vIpdmORw2Ow1dM6QXvoe2lxzCRcL/LmmiUtnWPULLwMpz+0YMu6/SN2sO/aoucOEz40B7tOKJUHkprYhORn4vIYRHZ2mP6lSLSICKNInLbAJsxQDvgA5rTFatKH3/dSmJtJwZ8um/XWy8TOX4gqXvXeuOden7KRvrv2m4NfKwdR5TKP+m+YrsPuDJxgog4gR8AK4DZwCoRmS0ic0Xkjz3+xgJrjTErgC8DX0tzvCoNihdciqO4bMDqyNa1DyG+EkqWXDGkchweH96p56fkii3QsBFxefBOnzvsbSmlMiutic0YswY43mPyUqDRGLPTGBMC7gdWGmPeMMZc1ePvsDEmZq93AuhziHcRuUVE6kWk/siRI2l5P2poHG4vpReuoH3DE8RCgV6XiYUCtL/0J/wXvheHt3jIZRXVLiSwc/gj/Xc11OOdPrffpwoopXJTNtrYJgGJj1dutqf1SkSuE5GfAP8D3N3XcsaYe4wxS4wxSyoqKlIWrEoNf91KYp1tdL7+l17nd7z6HLHOVvyDuCm7N77aRZhAJ6F9DUPeRiwcJLjzDa2GVCpP5XznEWPMQ8aYTxpjrjfGPN/fsvrYmtxVPHcZzrLRtK3rvTqybe1DOEdWUDx32bDKiXcgGc6AyMFdWzHhoD5YVKk8lY3E1gIk3hhUaU8bNn1sTe4Sp4vSi6+mfdMzxAKdZ8yLdpyiY9Oz+OtWIk7XsMpxj5+Go3QUgcahdyDpvjF7pj6qRql8lI3EthGoFZFpIuIBbgCG90RKlRf8dddigl201z99xr86KyAAAA4ZSURBVPT2l/+EiYSG3BsykYgMe6T/roZ63GOn4Bo1btjxKKUyL93d/X8HvATMFJFmEbnZGBMBbgWeAt4CHjTGbEtReVoVmcOKzrsA1+gJtK1bfcb01rUP4x4/DW/1/JSU46tdSGhfA7Gu9kGva4yhq6Fe719TKo+lu1fkKmPMBGOM2xhTaYy5157+uDFmhjGm2hhzZwrL06rIHCYOB/66a+h4/S9E208CED52gK5t6/Evf3/KRvgoql0ExgxppP/I0RaiJw5RpE/MVipv5XznkcHQK7bc569bCZEw7RueBLCu3oyh7B3Dr4aM89UuABjSjdpdDRutbegVm1J5q6ASm16x5T5v9Xzc46q6b9ZuW/sQ3poFeCZMT1kZTv9o3OOnDalnZKChHvEV462albJ4lFKZVVCJTeU+EcFft5LON9bRue0lgru3paTTSE/xkf4H+/TuroZ6fDWLht07UymVPQWV2LQqMj/461ZCLMrBuz8HDgf+S65JeRm+2oVETxwicmx/0uvEujoI7n5Tb8xWKs8VVGLTqsj84K2ahWfyTCJHmimeuxzXqLEpL8NXuwgY3Ej/gabXIRbVxKZUniuoxKbyh79uJUBaqiEBvFNnIy7PoDqQdDVYI/r7ZixKS0xKqczQhgSVFSPf/beYUIDSiwf/QNFkONzeQY/0H2iox1NZi7N0ZFpiUkplRkFdsWkbW/5wlpUz5sO34fAWpa0MX+1CAju3YKKRAZc1sRhd2zdpN3+lCkBBJTZtY1OJfLWLMMEugnvfHnDZ8IEmYu0nKJqhiU2pfFdQiU2pRPGR/pOpjux62x74+DxNbErlO01sqmC5x0/F4R+VVAeSru2bcJSOwj2hOgORKaXSqaASm7axqUTWSP8Lk7piCzTUUzRjEeIoqK+EUuekgvoWaxub6qmodiGhlh1EO9v6XCbafpJQ83btOKJUgSioxKZUTz57pP9gPyP9B7ZbVZV6Y7ZShUETmypovpr4SP99V0d2NdSDw4mvekGmwlJKpZEmNlXQnP5RuCdMp6ufDiSB7fV4p87GUVSSwciUUumiiU0VvP5G+jfRCF07XtNqSKUKSEElNu0VqXrjq11I9ORhIkdbzpoX3Ps2JtCBT5+YrVTBKKjEpr0iVW+K+hnpP9Bg35g984KMxqSUSp+CSmxK9cZbNRtxe3u9UburoR7nqHG4KiqzEJlSKh00samCJ24P3mlz+rxiK5q5BBHJQmRKqXTQxKbOCd0j/UfC3dMiJw4TPrxXO44oVWA0salzgq92ISYUOGOk/67t9oNFNbEpVVA0salzgq+XDiSBho2Iy6qmVEoVDk1s6pzgHjsFZ9loAo2nO5B0NdTjrZ6Hw+3NYmRKqVQrqMSm97Gpvlgj/S/qvmKLhYMEm7Zo+5pSBaigEpvex6b646tdSKilkWhHK8FdWzGRED69f02pguPKdgBKZYqvdiEYQ6DpdUJ73gKgSEccUargaGJT5wxf7ULA6kAS3LUV97gqXKPGZjkqpVSqFVRVpFL9cZaMwD2xmsCOV+l6e6OOD6lUgdLEps4pRbWL6NyylujJw9pxRKkCpYlNnVPiN2qD3pitVKHSxKbOKb4aq51NfCV4p5yX5WiUUumgiU2dU7xVsxC3l6LahYhT+04pVYj0m63OKeL2UHHT1/BMnJ7tUJRSaZLziU1EHMA3gDKg3hjzyyyHpPLcyPd8JNshKKXSKK1VkSLycxE5LCJbe0y/UkQaRKRRRG4bYDMrgUogDDSnK1allFKFId1XbPcBdwO/ik8QESfwA+AKrES1UUQeBZzAXT3W/xgwE1hvjPmJiPwB+HOaY1ZKKZXH0prYjDFrRGRqj8lLgUZjzE4AEbkfWGmMuQu4quc2RKQZCNkvo32VJSK3ALcATJkyZdixK6WUyk/Z6BU5CdiX8LrZntaXh4D3iMj3gTV9LWSMuccYs8QYs6SioiI1kSqllMo7Od95xBjTCdyc7TiUUkrlh2xcsbUAkxNeV9rThk2fx6aUUiobiW0jUCsi00TEA9wAPJqKDevz2JRSSqW7u//vgJeAmSLSLCI3G2MiwK3AU8BbwIPGmG0pKk+v2JRS6hwnxphsx5ByInIE2DPE1ccAR1MYTj7Q93xu0Pdc+Ib7fquMMXnf+64gE9twiEi9MeacGvZd3/O5Qd9z4TvX3m9fdBBkpZRSBUUTm1JKqYKiie1s92Q7gCzQ93xu0Pdc+M6199srbWNTSilVUPSKTSmlVEHRxKaUUqqgnLOJbaBnwonITSJyRERet/8+no04UymZ5+CJyIdE5E0R2SYiv810jKmWxOf87YTPeLuInMxGnKmSxPudIiJ/EZHXROT/t3fusVZUVxz+fhUfIOhFrrY+Gq6ixFJjqLYJ0RZuHyEtTRQfbSQqosY0SnylUtOYvoypEv5pbJu02ihKVKq3WrGxKm1B0itgKcgBq1GLxBBMNNYQqanVsvrHXtcOx3Ouc/Hcmc6c9SWTs87sffb81pxzZmXvmazVkDSnDJ2dJIfPkyX90f1dLemYMnR2kna1LjPtknSrn5OGpFOK1lgqZtZ1G6n229+B44ADgM3AtKY+C4Cfla21YJ9PADYBE/39EWXrHm2fm/pfCdxRtu5R/o5vAy53exqwvWzdBfj8AHCR218ClpWtuwN+zwROAba2aZ8D/B4QMANYX7bmIrdunbG9XxPOzP4NLCdV6q4zeXy+DPi5mb0JYGavFayx04z0e54H3FeIstEhj78GHOL2ocDOAvWNBnl8ngb8ye1VLdorh5mtAf4xTJczgbstsQ7okXRkMerKp1sDW96acOf4NH5A0idbtFeJPD5PBaZKGpS0TtJXC1M3OuSu/SdpMnAs/7sAVpE8/v4QuMAL+D5KmqVWmTw+bwbOdvssYIKkSQVoK5OR1r2sFd0a2PLwCNBnZicDK4G7StZTBGNIy5H9pNnL7ZJ6SlVUHOcBA2bWtkp7TZgHLDWzY0jLVcsk1f06cB0wS9ImYBapTFbdv+eupu4/6HZ8aE04M3vDzN7xt78CTi1I22iRpw7eDmCFmb1rZi8DL5ACXVUZSe2/86j2MiTk8/dS4H4AM1sLHERKnFtV8vyXd5rZ2Wb2GeAG31fph4RyMGp1L6tAtwa2D60J17QefQapxE6VyVMH77ek2RqSeklLk9uKFNlhctX+k3QiMJFUYqnK5PH3FeDLAJI+RQpsrxeqsrPk+S/3Zmal3wXuKFhjGawA5vvTkTOAXWb2atmiimJM2QLKwMzekzRUE24/0pNwz0q6EdhgZiuAqySdAbxHukm7oDTBHSCnz48DsyX9jbRUs8jM3ihP9Ucjp8+QLobLzR8nqyo5/f02aYn5WtKDJAuq7HdOn/uBmyUZsAZYWJrgDuG1LvuBXr9f+gNgfwAz+wXp/ukc4CXgbeDicpSWQ6TUCoIgCGpFty5FBkEQBDUlAlsQBEFQKyKwBUEQBLUiAlsQBEFQKyKwBUEQBLUiAltQCSTtztHnGknjOnjMuZKmdXC8pz7CZ3f761GSBobp1yPpin09ThDUgQhsQZ24BhhRYJO03zDNc0kJdDuCmZ3WgTF2mtm5w3TpASKwBV1NBLagUkjq95paA5Kel3SPZ1e4CjgKWCVplfedLWmtpI2SHpA03vdvl7RY0kbgG5Iuk/QXSZsl/UbSOEmnkTLOLPFabVMkTffk0A1JD0ma6OOtVqrrtkHSc5I+J+lBSS9KuimjfXfGvl7SFj/mLS38PNa1b2kao2+oBpekT0t62vU1JJ0A3AJM8X1LJI1XqkW20cc6MzPOc5JuV6q994Sksd52vKQ/uLaNkqb4/kV+nhqSftTRLzYIOknZdXNiiy3PBuz2135gFyn33cdIabA+723bgV63e0lZJg7299cD38/0+05m7EkZ+ybgSreXAudm2hrALLdvBH7i9mpgsdtXk0rBHAkcSMq/OanJh68BTwHj/P1hLfxdAcx3e2Hms314DS7gp8D5bh8AjM22+/4xwCGZc/ISqUZXHymrznRvux+4wO31wFluH0SaBc8m1XKTn/ffATPL/l3EFlurrStTagWV52kz2wEg6RnSRfrPTX1mkJYRByVBuvBnc0H+OmOf5LOiHmA8KT3TXkg6FOgxsyd9112kApZDDKXn2gI8a56XT9I2UjLabGqyrwB3mtnbAGbWqq7W6cA5bi8DFrfosxa4Qaki9INm9qL7upd04MeSZgJ7SKVLPu5tL5vZM27/FeiTNAE42swecm3/cj9mk4LbJu8/npQge00LXUFQKhHYgiryTsb+D61/xwJWmtm8NmP8M2MvBeaa2WZJC/BE0PuoaU+Tvj1t9OVh2Hx3ZnavpPXA14FHJX2LDyatPh84HDjVzN6VtJ00C8tqhnQexw5zOAE3m9kvR6A/CEoh7rEFdeItYILb64DTJR0PIOlgSVPbfG4C8Kqk/UmB4APjmdku4E1JX/C2C4En2TdWAhcPPcEp6bAWfQZJyZlp0vQ+ko4DtpnZrcDDwMnsfQ4gVcl+zYPaF4HJwwkzs7eAHZLm+jEOdJ2PA5dk7lMeLemIXN4GQcFEYAvqxG3AY5JWmdnrpIoM90lqkJbtTmzzue+R7isNAs9n9i8HFkna5A9QXER6mKQBTCfdZxsxZvYYaelygy+lXtei29XAQklbaF/5+JvAVh/jJOBuS9UYBiVtlbQEuAf4rI8zv8m/dlxIqm7RIN0L/ISZPQHcC6z1sQbYO4AGwf8Nkd0/CIIgqBUxYwuCIAhqRQS2IAiCoFZEYAuCIAhqRQS2IAiCoFZEYAuCIAhqRQS2IAiCoFZEYAuCIAhqxX8BXq+BHIl+szUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcFVX/wPHPYRFEEQU3EBVzRwRUVBDNfS9cUnFNsz2znurpyXpK7cl6emy3zDIzzcqlxdTUICs1d1FRATdUXNhc2WTnnt8fc+F3JZYL3MtlOe/X6768d+bMzPfO4P3OOTNzjpBSoiiKoigVZWXpABRFUZSaQSUURVEUxSRUQlEURVFMQiUURVEUxSRUQlEURVFMQiUURVEUxSRUQlHMSggxSwixx9JxKCCEmCaECC1h/gAhxNXKjKnQ9j8TQrxmqe2bixAiTQhxj6XjqAwqoVQiIUSMEGJIoWkFP7hCCDshxJdCiEtCiFQhRLgQYmQp63QVQnwhhIjT/+FeEEKsEkJ0Mud3MRUhxMNCiNP675sohNgmhHDUz1slhFhUhnVVKHnpl8/T70fDl1t511mVSCm/lVIOy/8shJBCiHaWjMmQlPIJKeUbYPnkZkpSyvpSyguWjqMyqIRStdgAV4D+gBPwKrBBCOFRVGEhhAuwD3AA+gGOQHdgFzC0mGVsTB10eQkh+gNvAVOklI5AZ2C9ZaNiv/4HwPAVZ8oNVKVjUFUIIawtHYNiAlJK9aqkFxADDCk0bRawp4RlTgAPFDNvEXAcsCpheQ9AAg8Dl4Hd+ulBQCSQBOwEOhssI4F2Bp9XAYv07wcAV4EXgGtAPPCQQVkXYDOQAhwC3iju+wH/BH4uZt5jQA6QDaQBW/TT5wHngVQgChinn94ZyATy9OWT9NPtgHf13z0R+AyoW8w2SzsWMfqYTwDJaMnP3mD+fUC4fp/uA7wLLfuSftkstJOH7sAx/Xf5Xr++/P0cAdxvsLwtcAPoVkRcu/L/RoBA/fEbrf88GAgv/P2A3fpyd/T7K7i0Y1vEdncC/9Uf5xRgE+BsMP97IEG/r3YDXQr9TS0DtuljGKKftgioB2QAOn1saYAbkA64GKyjO3AdsC0itoX67X+j378ngQ7Ay/rvdgUYZlD+IeCUvuwF4HGDefn75RX9MYgBphX6Lp8Bv+mX3wW0Lur/k77sUmCrvuxBoK1B2WHAGf0++1S/rkcs/dtl7EvVUKowIUQztP8EkcUUGQJslFLqjFhdf7Qf3eFCiA7AWuAfQBO0/9RbhBB1jAytOVoNqgVaoloqhGikn7cU7YfdFZitfxXnoD6e14UQgUIIu/wZUsrlwLfAYqnVEu7XzzqPVhtzAl4HvhFCuEopTwFP8P81jIb68m+j7UNfoJ0+5vlGfs+iTAJGAG0Ab7QfaYQQ3YCVwONoSfVzYLPhdwKmAKOBhmitAxvRfmCc0Y7HOIOyXwPTDT6PAuKllMeKiGkX2o8eaMf5AnCvweddhReQUubP99Hvr/yaYUnHtigPoh1jVyAXWGIwbzvQHmgKHEU7noamAm+i1awLmiqllHeAkUCcvLuWuBNt/+ebAayTUuYUE9v9wBqgEVriDkHb7y2A/6Ado3zX0E4IGqAllw+EEN0N5jcHGuuXnQksF0J0NJg/De3kqTHaSUXh72poMtrfbiMgWr8PEEI0Bn5AS3ouaImlTwnrqXosndFq0wvtzCYN7Qw2/5VOEWfFaGekO4DPS1hfNPCEwecg/TpTgVD9NA+0M6R7DMq9Bmww+GwFxAID9J9Lq6FkADYG868B/oA1Wq2ik8G8t4r6fgbzRwJb9HGnAe8D1oW3W8Ly4cAY/ftZhtsCBNrZr+EZYABwsZh1zUL7UTQ8PucLHb/pBp8XA5/p3y8D3ii0vjNAf4NlZxvMu1e/z4XBtD0G+9lNfxwb6D//APyrmLgHAyf0738FHgEO6D/vAsYXs38KH+dij20x290JvG3w2ROtRmldRNmG+u05GRzbrwuVKfx3drXQ/GBgr/69NVrtp1cxsS0EfjP4fL/+7yv/b8tRH0/DYpb/GXjWIJZcoJ7B/A3AawZxrzOYVx+tptyy8H7Wl11hUHYUcFr//kG0EyLDv98rqBqKUoKxUsqG+S/gqcIFhBBWaGdW2cDTJazrJtqZIQBSys36dT4HFK5tXDF47wZcMlhOp5/fwsjvcFNKmWvwOR3tP1ET/v86UL5LlEBKuV1qtQ9nYAzaj94jxZUXQjyov1khSQiRBHihnRUWpQna9aUjBuV/1U8vzgHD4yOlbFtofoLB+/zvDdAaeCF/O/pttUTb1/kKH4NYqf/lKDxfamfke4EHhBAN0RJvcWe9+4EO+hqtL1rtpqX+jLcXWnOTsYo7tsUpfKxtgcZCCGshxNtCiPNCiBS0hAp3HyvDZY2xCfAUQrRBu0aYLKU8VEL5RIP3GcANKWWewWfQfzchxEghxAEhxC39sRtVKNbbUqs55btEMcdWSpkG3Co031Bxf0NuhdYj0Zraqg2VUKoYIYQAvgSaobWLF1edB/gdGKtPQKUx/OGKQ/sBNNxmS7QzZtD+yB0Myjc3Yv2gtWfn6teVr5UxC0opdVLK34E/0JJE4ZgRQrQGvkBLsi765BmBdib3t/Jo7d0ZaG33+QnCSUpZ0g9keV0B3iyUjByklGsNyhjGFw+00O/7fIb7DWA1WrPXRLQz11iKIKVMB44AzwIRUspstGs4z6PVsG5U6JuVrPCxzkHb71PRThCGoDWheejLGH7fkro6/9s8KWUmWs1gOlpz15ryBm1I3yz5I9q1tmb6v6tthWJtJISoZ/C5Fdr/o3wF+0EIUR/tBKmsN3PEA+4G6xGGn6sDlVCqnmVo1zrul1JmlFL2fbR22DVCiLZC44h2llqSDcBoIcRgIYQt2kXYLLQfIdCakabqzzJHoLXDl0p/9vcTsFAI4SCE8ERrby6SEGKMEGKyEKKRPvZe+m0d0BdJBAzv36+H9kNzXb/8Q/x/8skv755/LUhf8/oCrT28qX6ZFkKI4cZ8nzL6AnhCCNFb/13qCSFG598CXYT9aM0iTwshbIQQY9BqE4Z+Rrvw/CxaraMku9ASbf71kp2FPhel8P4tj+lCCE8hhAPadYkf9H8Hjmh/UzfRTk7eKuN6EwEXIYRToelfo9VigzBRQkGrzduhPyHS36o/rIhyrwsh6ggh+qFdb/neYN4oIURf/d/eG2g13bLWwLYCXYUQY/V3As7B+JO5KkEllCpEfwb+OFpCSDB4DmJaUeX1Z57+aBfB96C1uYej/Wd+srjtSCnPoJ3lfYx2Nnk/WgLL1hd5Vj8tCe1i489l+BpPo1XhE9Dai78qoext4FHgHNpdQt8A70gp85t2vkRr4kgSQvwspYwC3kP7MU4EuqI1C+X7A+0GhgQhRP5Z+Uto15oO6JtedgCGF1MLCyjiOZSepX1pKWWY/rt8ov9e0egv2BdTPhsYj3bhOwntePyC9iOcXyYD7cy5DVqiLskutOO+u5jPRVkIrNbv30kllCvJGrTjnADYA8/op3+N1iwUi3Y33oGiFi6OlPI02o0KF/Txuemn70W7++uolLLE5tQybCtVH/cGtGM3Fe1ORUMJ+nlxaE2PT+hjzPcdsACtqasHd99QYWwcN9Bqo4vRErEnEIbB30RVJ+5uwlUUxVKEEAfRLvJ/ZTBtPtBBSlnmHyhzE0LsBL6RUq6o5O3+AXxXWdsVQgxA+55FNj8JIVah3UDwqom3a4V2DWWalPJPU67bXFQNRVEsRAjRXwjRXN/kNRPtNuRfDeY7o9VgllsqxqpGX1vsjuUfgDULIcRwIURD/XWdV9Cu45SpdmdJFksoQoiJQohIIYROCOFXQrkRQogzQohoIcS8IuYvEUKkmTdaRTGLjmgPpiahXceaIKWMBxBCPIp2oX+7lLIsd2nVWEKI1WhNlv/QN1PVRAFoz1rlN0WPNeJaapVhsSYvIURntLbQz4F/6tugC5exBs6i3SJ4FTiM1k1HlH6+H1p7/zgz3bmjKIqiGMliNRQp5Sn9xeGS9AKipZQX9Bcx16HdipifbN4B/mXeSBVFURRjVPVO6lpw98NPV4He+vdPA5ullPF338p/NyHEY2j9QlGvXr0enTpVi054FUVRqowjR47ckFKW9EAwYOaEIoTYQdH3Uf9bSrmpAut1Q7u9bkBpZaXWJ9RyAD8/PxkW9reWNUVRFKUEQgijbtE2a0KRUg4pvVSJYrn7SVx3/bRuaB39RetrJw5CiGgpZZUZ20FRFKW2qepNXoeB9vq+e2LReumcKqWMxKDmI4RIU8lEURTFsix52/A4oY3IFgBsFUKE6Ke7CSG2Aeg7qXsardvpU2g95BbXlbuiKIpiQbXqSfmKXEPJ00msrYq/+K8oNV1OTg5Xr14lMzPT0qEoZmJvb4+7uzu2trZ3TRdCHJFSFvu8YL6q3uRVJbwXeoY/z1xjy9N9KemOMkWpya5evYqjoyMeHh7q/0ENJKXk5s2bXL16lTZt2pRrHarrFSM0bWBPRGwKpxNq6sO5ilK6zMxMXFxcVDKpoYQQuLi4VKgGqhKKEUZ5NcfaSrD5eFmHN1CUmkUlk5qtosdXJRQjuNS3o1/7xmwOj6M2XXNSFEUpC5VQjBTk40ZsUgZHL9+2dCiKUmvVr393l32rVq3i6adLGiX778LDw9m2bZspw7rLqlWraNKkCb6+vvj6+vLggw+WeR07d+7kvvvuM0N05qUSipGGdWmOnY0Vm8NVs5eiVFe5ubklJpTc3FyTbCc4OJjw8HDCw8P5+uvSBtusOVRCMVJ9OxsGd27K1pPx5ObpLB2OoiiFbNmyhd69e9OtWzeGDBlCYmIiAAsXLmTGjBkEBgYyY8YM5s+fz/r16/H19WX9+vV/m5+Xl8eLL75Iz5498fb25vPPPy/YxjvvvFMwfcGCBWWKLzw8HH9/f7y9vRk3bhy3b2utHdHR0QwZMgQfHx+6d+/O+fPn71ru8OHDdOvW7W/TqyJ123AZBPm0YNvJBPadv8m9HUrtJ01RaqzXt0QSFZdi0nV6ujVgwf1dSiyTkZGBr69vwedbt24RFBQEQN++fTlw4ABCCFasWMHixYt57733AIiKimLPnj3UrVuXVatWERYWxieffAJoCcdw/vLly3FycuLw4cNkZWURGBjIsGHDOHfuHOfOnePQoUNIKQkKCmL37t3ce++9f4tz/fr17NmzB4Bnn32Whx56iAcffJCPP/6Y/v37M3/+fF5//XU+/PBDpk2bxrx58xg3bhyZmZnodDquXNH6xN23bx9z585l06ZNtGrVquI72cxUQimDAR2b4Ghnw+bjcSqhKIoF1K1bl/Dw8ILP+ckBtOdkgoODiY+PJzs7+65nKYKCgqhbt26x6zWcHxoayokTJ/jhhx8ASE5O5ty5c4SGhhIaGkq3bt0ASEtL49y5c0UmlODg4IKElb+OpKQk+vfvD8DMmTOZOHEiqampxMbGMm7cOEB7sDDfqVOneOyxxwgNDcXNza1sO8pCVEIpA3tba4Z7NSckIoFFY72wt7W2dEiKYhGl1SQsYe7cuTz//PMEBQWxc+dOFi5cWDCvXr16JS5rOF9Kyccff8zw4cPvKhMSEsLLL7/M448/ftf0pUuX8sUXXwCY9GK/q6srmZmZHDt2rNokFHUNpYzG+LqRmpXLzjPXLB2KoigGkpOTadGiBQCrV68utpyjoyOpqcU/pDx8+HCWLVtGTk4OAGfPnuXOnTsMHz6clStXkpamjTgeGxvLtWvXmDNnTsEF+OJ++J2cnGjUqBF//fUXAGvWrKF///44Ojri7u7Ozz//DEBWVhbp6ekANGzYkK1bt/Lyyy+zc+fOsu0MC1EJpYwC7nGhcf066iFHRaliFi5cyMSJE+nRoweNGzcuttzAgQOJiooquChf2COPPIKnpyfdu3fHy8uLxx9/nNzcXIYNG8bUqVMJCAiga9euTJgwocTEVNjq1at58cUX8fb2Jjw8nPnz5wNaclmyZAne3t706dOHhISEgmWaNWvGL7/8wpw5czh48GAZ9oZlqM4hy2HBpgjWHb5C2KtDcLS3LX0BRakBTp06RefOnS0dhmJmRR1nYzuHVDWUcgjydSMrV8dvUYmWDkVRFKXKUAmlHLq3aoR7o7psUg85KoqiFFAJpRyEENzv48ae6BvcTMuydDiKoihVgkoo5RTk40aeTrItIqH0woqiKLWASijl1Km5Ix2a1WdzeKylQ1EURakSVEIpJyEEQT5uHI65TWxShqXDURRFsTiVUCrgfh/tIaZf1DMpimJ2AwcOJCQk5K5pH374IU8++SSRkZEMGjSIjh070rZtWxYsWIBOp3XiWrg7eV9fX6KioizxFWo8lVAqoLVLPXxaNlR3eylKJZgyZQrr1q27a9q6deuYPHkyQUFBzJs3jzNnznDy5EkOHTrERx99VFDOsDv58PBwPD09Kzv8WkEllAoa4+NGVHwK0dfSLB2KotRoEyZMYOvWrWRnZwMQExNDXFwc0dHRBT0CAzg4OPDJJ5/wzjvvWDLcWkl1DllB93m7smhrFJuPx/H80A6WDkdRKsf2eZBw0rTrbN4VRr5d7GxnZ2d69erF9u3bGTNmDOvWrWPSpElERkbSo0ePu8q2bduWjIwMkpKSgLu7kwfYv39/ib0PK+WjaigV1LSBPf73uLA5PFaNN68oZmbY7LVu3TqmTJli1HKFm7xUMjEPVUMxgSAfN+b9dJKTscl4uze0dDiKYn4l1CTMacyYMTz33HMcPXqU9PR0evTowbFjx9i9e/dd5S5cuICLiwsNG6r/j5VJ1VBMYKSXK7bWQo03ryhmVr9+fQYOHMjs2bMLaifTpk1jz5497NixA9BGdXzmmWd4/fXXLRlqraQSihGOR6zj+9Dnip3v5GBL/w5N2XIijjydavZSFHOaMmUKx48fL0godevWZfPmzbz55pt06NCBxo0bExgYyLRp0wqWyR9DPv+1b98+S4Vfo6kmLyNsj/qW79MvMjI1nvqOrkWWCfJ1Y8epRA5dvEVAW5dKjlBRao+xY8f+7Xqll5cXf/75JwA///wzzz//PFOnTqV169bMmjWLWbNmWSDS2kfVUIwwovNksoVg55FPiy0zpHNTHOpYq4G3FMXCxo4dy4ULF2jdurWlQ6l1VEIxgrdnMM3yJCGXfy+2jEMdG4Z6NmN7RDzZubpKjE5RFKVqUAnFCFbWNgxzbMteXQopyVeKLRfk40ZSeg5/nbteidEpiqJUDSqhGGmE51RyhGDnkWXFlunXvglOdW1Vs5eiKLWSSihG6tp5Iq55kpCrfxZbpo6NFaO6uvJbVCLp2bmVGJ2iKIrlqYRiJGFlxfAG7dmnSyU5+XKx5YJ83EjPzmPHqWuVGJ2iKIrlqYRSBiO6TCdXCP4I+6TYMr3aONOsgZ16yFFRzMDa2vqu50neftt0T+yHh4ezbdu2gs/FdXsfFxfHhAkTTLbd8oiJicHLy8uiMRTFIs+hCCEmAguBzkAvKWVYMeVGAB8B1sAKKeXb+ukCWARMBPKAZVLKJeaO27PjOFrsX0jI1V2MK6aMtZXgfm83Vu+PITk9BycHW3OHpSi1Rt26dQkPDzfLusPDwwkLC2PUqFEF04KDg/nkk7+fQP7www9miaGy5ebmYmNjujRgqRpKBDAe2F1cASGENbAUGAl4AlOEEPmDGMwCWgKdpJSdgXVFrsTEhJUVw506cFDeIen2xWLLBfm6kZMn+TUyvjLCUpRaLTk5mY4dO3LmzBlAe5L+iy++AODJJ5/Ez8+PLl26sGDBgoJlDh8+TJ8+ffDx8aFXr14kJyczf/78gifq169fX+z2DGsH6enpTJo0CU9PT8aNG0fv3r0JC9POj0NDQwkICKB79+5MnDiRtDRtiAsPDw8WLFhA9+7d6dq1K6dPnwZg165dBTWhbt26kZqaipSSF198ES8vL7p27VpkXP7+/kRGRhZ8HjBgAGFhYdy5c4fZs2fTq1cvunXrxqZNmwCt5hUUFMSgQYMYPHhwufd7USxSQ5FSngJtGN0S9AKipZQX9GXXAWOAKOBJYKqUUqdfX6VdsBjh9SArD7zK72Gf8MDQ94os07WFEx4uDmwKjyO4Z6vKCk1RKs3/Dv2P07dOm3SdnZw78VKvl0osk5GRga+vb8Hnl19+uaAWMWvWLJ599llu377No48+CsCbb76Js7MzeXl5DB48mBMnTtCpUyeCg4NZv349PXv2JCUlBQcHB/7zn/8QFhZWUCNZtWpVkd3eG/r0009p1KgRUVFRREREFMR248YNFi1axI4dO6hXrx7/+9//eP/995k/fz4AjRs35ujRo3z66ae8++67rFixgnfffZelS5cSGBhIWloa9vb2/PTTT4SHh3P8+HFu3LhBz549uffee++KITg4mA0bNvD6668THx9PfHw8fn5+vPLKKwwaNIiVK1eSlJREr169GDJkCABHjx7lxIkTODs7l+dQFasqX0NpARg+9HFVPw2gLRAshAgTQmwXQrQvbiVCiMf05cKuX6/48yGd2t9PqzwIifur2DL5483vv3CTaymZFd6moiia/Cav/FdwcDAAQ4cOpWvXrsyZM4cVK1YUlN+wYQPdu3enW7duREZGEhUVxZkzZ3B1daVnz54ANGjQoNhmn9K6vd+zZw+TJ08GtO5fvL29AThw4ABRUVEEBgbi6+vL6tWruXTpUsFy48ePB6BHjx7ExMQAEBgYyPPPP8+SJUtISkrCxsaGPXv2MGXKFKytrWnWrBn9+/fn8OHDd8UwadKkgia4DRs2FFzfCQ0N5e2338bX15cBAwaQmZnJ5cuXC/aXqZMJmLGGIoTYATQvYta/pZSbKrh6OyBTSuknhBgPrAT6FVVQSrkcWA7g5+dX4Z4bhZUVwxt2YmXKKW7disbZuV2R5YJ83VjyRzS/nIhndt82Fd2solQppdUkKptOp+PUqVM4ODhw+/Zt3N3duXjxIu+++y6HDx+mUaNGzJo1i8zMyjnBk1IydOhQ1q5dW+R8Ozs7QLvJIDdXe8Rg3rx5jB49mm3bthEYGEhISIhR22rRogUuLi6cOHGC9evX89lnnxXE8OOPP9KxY8e7yh88eJB69eqV96uVyGw1FCnlECmlVxEvY5NJLNp1knzu+mmg1VZ+0r/fCHibJmrjDPeaSZ4Q7Cjhbq92TR3xdG3AJvWQo6KY3QcffEDnzp357rvveOihh8jJySElJYV69erh5OREYmIi27dvB6Bjx47Ex8cXnOmnpqaSm5uLo6MjqampZdpuYGAgGzZsACAqKoqTJ7VRLP39/dm7dy/R0dEA3Llzh7Nnz5a4rvPnz9O1a1deeuklevbsyenTp+nXrx/r168nLy+P69evs3v3bnr16vW3ZYODg1m8eDHJyckFtaThw4fz8ccfF3SkeezYsTJ9t/Koyk1eh4H2Qog2Qog6wGRgs37ez8BA/fv+QMlHysQ6tBuFR54gNH5vieWCfN04fiWJSzfvVFJkilKz5V9DyX/NmzePM2fOsGLFCt577z369evHvffey6JFi/Dx8aFbt2506tSJqVOnEhgYCECdOnVYv349c+fOxcfHh6FDh5KZmcnAgQOJioq666J8ad3eP/XUU1y/fh1PT09effVVunTpgpOTE02aNGHVqlVMmTIFb29vAgICCi6+F+fDDz8saDaztbVl5MiRjBs3Dm9vb3x8fBg0aBCLFy+mefO/N/xMmDChYEjkfK+99ho5OTl4e3vTpUsXXnvttYru/tJJKSv9BYxDq2VkAYlAiH66G7DNoNwotGRxHq2pLH96Q2ArcBLYD/gYs90ePXpIU/n4p2Dp/VUXef36qWLLXL2dLlu/9Iv8+PezJtuuolhKVFSUpUOocnJzc2VGRoaUUsro6Gjp4eEhs7KyLBxVxRR1nIEwacRvrEVqKFLKjVJKdymlnZSymZRyuH56nJRylEG5bVLKDlLKtlLKNw2mJ0kpR0spu0opA6SUxyv7OwzvOgudEOwIW1psmRYN69LToxGbwuPUePOKUgOlp6fTt29ffHx8GDduHJ9++il16tSxdFgWU5WbvKq09u1G0DZPEJKwv8RyQb4tOHctjRNXkyspMkVRKoujoyNhYWEcP36cEydOMHLkSEuHZFEqoVTAcGcvjpDJtcSIYsuM9XWjvp0NX+0t/kFIRakuVE27Zqvo8VUJpQKG+zyMFILfjhY/kqOjvS0T/dz55UQ8ieqZFKUas7e35+bNmyqp1FBSSm7evIm9vX2516HGlK+Ae9oMpv1OK0ITDzKthHKz+niwal8Ma/Zf4p/DO5ZQUlGqLnd3d65evYopHhBWqiZ7e3vc3d3LvbxKKBU03NmbT5LCSUgIp3lz3yLLtHapx5DOzfj24CWeHtQOe1vrSo5SUSrO1taWNm3UQ7pK8VSTVwUN93kEgN+OFj+SI8DswDbcTs/h52OxJZZTFEWprlRCqSAPj/500lkRkni4xHL+9zjT2bUBK/deVG3QiqJUmptpWTz2dRjxyRlm35ZKKCYw3MWX41Y5xMcdKbaMEILZgR6cTUxjb/TNSoxOUZTa6npqFlO+OMDuc9e5dDPd7NtTCcUEhnd7DIDQY5+VWO5+Hzca16/DSnULsaIoZnYtNZMpXxzgyq0MVs7qif89LmbfpkooJtCyZSCeOmtCrhU58GQBe1trpvu35o/T17hwPa2SolMUpbZJTMlk8vIDxCVl8NVDPenTtnGlbFclFBMZ3rg7J61yuXr1QInlpvVuTR1rK1bti6mcwBRFqVXikzOYvPwAicmZrJ7dq1JqJvlUQjGRYQXNXstLLNfE0Y4gXze+D7tKcnpOZYSmKEotEZuUQfDnB7iemsXXD/emp4fpB9EqiUooJuLu7k9XnQ0hN46WWvahQA8ycvJYH3a5EiJTFKU2uHo7ncnL93P7TjZrHu5Fj9aNKj0GlVBMaHhTP6Ks8rh8eU+J5bq4OeF/jzOr910iN09XSdEpilJTXbmVTvDnB0hOz+GbR3rTrVXlJxNQCcWkhnV7AoDQ8C9KLTs7sA2xSRmERiWaOyxFUWqwSzfvEPz5ftKycvnuUX98Wja0WCyylwN5AAAgAElEQVQqoZiQq1sPfHS2hNwML7Xs4M7NaOXswJd71C3EiqKUz8Ubdwj+/AAZOXl892hvvFo4WTQelVBMbHiznpy20hETs6vEctZWgll9PDhy6TbhV5IqKTpFUWqK89fTCP58P9l5Or571J8ubpZNJqASiskN7f4kACHHV5RadqKfuxorRVGUMou+lsrk5QfQScnaR/3p7NrA0iEBKqGYXPPmvnSXdQi5daLUso72tkzya8nWE/EkJKuxUhRFKd3ZRC2ZAKx7zJ+OzR0tHNH/UwnFDIY16805Kx0XLv5eatlZfTzIk5I1B2LMH5iiKNXaqfgUJi8/gJUQrHvMn3ZNq04yAZVQzGJo96cQUhJy/MtSy7ZycWBo52Z8d/AyGdl5lRCdoijVUWRcMlO/OEAdayvWPx5A2yb1LR3S36iEYgZNm3nRA3tCbhU/1ryh2X31Y6WEq7FSFEX5u4jYZKatOEhdW2vWP+5Pm8b1LB1SkVRCMZPhzQM4by05F/1rqWV7t3HG07UBK/eosVIURbnb4ZhbTFl+gHp1bFj3WACtXapmMgGVUMxmiN8crKQk5OSqUssKIZjdtw3nrqWxJ/qG+YNTFKVa+OvcdWZ8eZAmjnZ8/0QArVwcLB1SiVRCMZPGjTvRU9Ql5HYUUld69yr3+7jSuL4dK9WDjoqiACGRCTy8Kow2jeuz/vEA3BrWtXRIpVIJxYyGuQYSYy05G72t1LJ2NtbM8G/Nn2euc16NlaIotdrPx2J56tujeLo1YN2j/jRxtLN0SEZRCcWMhvg9rTV7Raw2qvw0/1baWCl7Y8wbmKIoVda3By/x3IZwenk4880jvXFysLV0SEZTCcWMnJ3b0Us4EJJ02qhmr8b17Rjj68YPR9RYKYpSGy3ffZ5/b4xgYMemfPVQT+rb2Vg6pDJRCcXMRra4l8vWcDxqnVHlHwpsQ0ZOHusOq7FSFKW2kFLyfugZ3tp2mtHernw2vQf2ttaWDqvMVEIxs+H+/6SeTrLueOld2gN4ujUg4B4XVu+LUWOlKEotIKXkjV9OseSPaCb5ubNkcjfq2FTPn+bqGXU1Uq9+c4IcWhOac52bN84atczsvm2IS84kJFKNlaIoNVmeTvLyTydZufciDwV68PZ4b6ythKXDKjeVUCrB5F4vkCMEP+1bZFT5QZ2a0trFgZWqF2JFqbFy8nQ8u+4Y6w5fYe6gdsy/zxOrapxMQCWUSnFPm0H0xp4NN46Sm1N6r8JqrBRFqdkyc/J4Ys0RfjkRz7yRnXhhWEeEqN7JBFRCqTRT2j1AgrVg1+GPjCo/0a8ljmqsFEWpce5k5TJ71WF+P32NN8Z68UT/tpYOyWQsllCEEBOFEJFCCJ0Qwq+EciOEEGeEENFCiHkG0wcLIY4KIcKFEHuEEO0qJ/Ly6d/rHzTPk6w994NR5evb2TCppzZWSnxyhpmjUxSlMiSn5zD9y4McvHiL9yf5MMO/taVDMilL1lAigPHA7uIKCCGsgaXASMATmCKE8NTPXgZMk1L6At8Br5o33IqxsbVnYuNuHCSTCxf/MGqZWX08APjkj2gzRqYoSmW4kZbFlC8OEBGbzNKp3Rnf3d3SIZmcxRKKlPKUlPJMKcV6AdFSygtSymxgHTAmfxVA/riXTkCceSI1nQf6vIatlKw//L5R5Vs6OzDdvzVrD13mbGKqmaNTFMVcrtxKZ+Jn+7lwI40VM3sywqu5pUMyi6p+DaUFcMXg81X9NIBHgG1CiKvADODtolYghHhMCBEmhAi7fv26WYMtjUvjDgyzbcLmOzGkp10zaplnBrennp0Nb207ZeboFEUxh6i4FMYv28etO9l883Bv+ndoYumQzMasCUUIsUMIEVHEa0zpS5fqOWCUlNId+Aoo8rRfSrlcSuknpfRr0sTyB3Kyz6OkWQl+2fumUeWd69Vh7qB27Dxznb/OWTYhKopSNvvP3yT48/3YWAm+fyIAPw9nS4dkVmZNKFLKIVJKryJem4xcRSzQ0uCzOxArhGgC+EgpD+qnrwf6mDB0s/HxnExnnTVrY/80qn8vgJl9PGjpXJc3t54iT6cG4FKU6mDbyXhmrjxEcyd7fnyyDx2aVa3x382hqjd5HQbaCyHaCCHqAJOBzcBtwEkI0UFfbihQLdqEhJUVk1sOIdpaEnZilVHL2NlY89KITpxOSOWHI1dKX0BRFIv6en8Mc747Sld3J75/onqMZWIKlrxteJz++kcAsFUIEaKf7iaE2AYgpcwFngZC0BLGBillpH76o8CPQojjaNdQXrTE9yiPkX1eoYFOsi7iK6OXGd3Vle6tGvJu6FnuZOWaMTpFUcpLSsm7IWeYvymSwZ2a8e0jvWnoUMfSYVUaS97ltVFK6S6ltJNSNpNSDtdPj5NSjjIot01K2UFK2VZK+Wah5btKKX2klAOklBcs8T3Ko66DM+Pqt+OP3NtcS4wwahkhBP8e7cn11Cw+311tvqqi1Bq5eTrm/XiST/6MZnLPlnw2vXu17DG4Iqp6k1eNFez/InnAD/uMuzgP0KN1I0Z7u7J893kSkkvvwkVRlMqRkZ3HE98cZX2Y1i/Xf8d3xca69v28GvWNhRA/CSFGCyFq3x4yk5YtAwkU9fn+9klysu4Yvdy8EZ3Q6eDd0NIe4VEUpTIkpWcz/cuD/H46kTfGdKkx/XKVh7EJ4lNgKnBOCPG2EKKjGWOqNaZ0CuaGteD3g+8avUxLZwceCvTgx6NXiYxLNmN0iqKUJi4pg4mf7efkVe3p9xkBHpYOyaKMSihSyh1SymlAdyAG2CGE2CeEeEgIUX0GPK5iAnvMwT0P1l7YXKblnhrYjoZ1bXlz6ymkVLcRK4olnE1M5YFl+0hIzmT17F6M6upq6ZAszugmLCGECzAL7Qn1Y8BHaAnmN7NEVgtY29QhuGlvjopszkZvN3o5p7q2/GNIB/adv8kfp4174l5RFNMJi7nFhGX7yNVJ1j8eQEBbF0uHVCUYew1lI/AX4ADcL6UMklKul1LOBeqbM8CablzfV7HTSdaFGdetfb6pvVtxT5N6vLntFDlqqGBFqTS/RSUybcVBXOrb8dOTffB0a1D6QrWEsTWUJVJKTynlf6WU8YYzpJTFdj2vlM6poQcj7ZrzS8ZVUpKNf2jR1tqKl0d25sL1O6w9dNmMESqKkm/docs8viaMTs0d+eGJAFo6O1g6pCrF2ITSSAgxvtBrsBCiqVmjqyUmd3+KDCvB5jLcQgwwpHNT/O9x5sMd50jJzDFTdIqi6HSSt7efZt5PJ+nXvgnfPeqPS307S4dV5RibUB4GVgDT9K8vgJeAvUKIGWaKrdbo0mk83job1sfvRZdn/FPwQgheHe3J7fRslv6pxkxRFHPIyM5jzndH+WzXeab2bsWKmX7Us7OxdFhVkrEJxRboLKV8QEr5ANpgVxLojZZYlAqa7DGaGGs4cGx5mZbzauHEuG4t+GpPDFdupZspOkWpna6lZDJ5+X5+jUzg1dGdeXOsF7a18IFFYxm7Z9yllIkGn68BLaWUtwDV1mICw/u8hLNOsi7q2zIv++LwjlhZweIQ9bCjopjKqfgUxi7dy9nENJbP8OORfvfU2gcWjWVsQtkphPhFCDFTCDET2KSfVg9IMl94tUcdO0fGN+jELl0ycXFhZVrW1akuj/W7hy3H4zh2+baZIlSU2uPP09eYsGwfeVLy/RMBDPVsZumQqgVjE8octEGsfPWvr4E5Uso7UsqB5gqutpkU8DIAG/YXOfhkiR7v35YmjnYsUg87KkqFrN4Xw8OrD+PRuB6b5vTFq4WTpUOqNkpNKEIIa+APKeWPUsrn9K8fpPrVMjlXtx70t3Lip5TTZGWWrVuVenY2vDC0A0cu3WZ7RIKZIlSUmis3T8fCzZEs2BzJoE7N2PB4AM2d7C0dVrVSakKRUuYBOiGEStOVYEqXGdy2EoTuX1zmZSf6taRTc0fe3n6arNw8M0SnKDVTWlYuj34dxqp9MTzStw2fz+ih7uQqB2ObvNKAk0KIL4UQS/Jf5gystvLv9hgeeYJ1MdvKvKy1leCVUZ25fCudNfsvmSE6Ral5YpMymLBsH7vP3eDNcV68ep8n1lbq4nt5GJtQfgJeA3YDRwxeiokJKysmuwZywiqXyFM/lnn5ezs0oX+HJiz5/Ry372SbIUJFqTmOX0li7NK9xN7OYNVDPZnWu7WlQ6rWjO1teDWwATggpVyd/zJvaLVXUOCr1NVJ1h5bVq7l/z26M2lZuSz545yJI1OUmuPXiHiCl+/HzsaKn57qQ7/2TSwdUrVnbOeQ9wPhwK/6z75CiLL1ua4YzbFBC+6r686vWQkk3b5Y5uU7NHNkcq9WrNl/iQvX08wQoaJUX1JKPtt1nie+OUpn1wb8PCeQ9s0cLR1WjWBsk9dCoBf6Z06klOHAPWaKSQEm+z1LlpVg495F5Vr+uSEdsLe15pWNJ8nTqRvyFAUgO1cb9/3t7ae5z9uVtY/601j1yWUyxiaUHCll4ftYVZ/pZtSh3Uh6SDvWXztEXm7Zr4U0cbRjYVAXDly4xaeqny9FISE5k+Dl+wvGfV8yuRv2ttaWDqtGMTahRAohpgLWQoj2QoiPgX1mjEsBJt8TRKw17Dr0YbmWf6B7C8b6uvHBjrMcjrll4ugUpfo4dPEW9328hzMJqSyb1p0XhnXESt3JZXLGJpS5QBcgC1gLpAD/MFdQimZwwD9plQdLz3xbpl6I8wkhWDSuK62cHXh27TGS0tVdX0rtIqVk1d6LTP3iAI72NmyaE8hINVSv2Rh7l1e6lPLfUsqeUko//ftMcwdX29naOjCn7XjOWunY/td/yrWO+nY2fDylO9fTsvjXDydUtyxKrZGRnccLG46zcEsUAzo2ZdPT6uK7uRl7l1cHIcRyIUSoEOKP/Je5g1NgRN/X6KCzYumFjeTklK97+q7uTrw0ohOhUYl8c0A98KjUfFdupfPAsn1sDI/l+aEdWD6jBw3sbS0dVo1nbJPX98Ax4FXgRYOXYmZW1jY803kmV6xh45+vlHs9D/dtw8COTXhj6ymi4lJMGKGiVC1/nbvO/Z/s4crtdFbO7Mkzg9ur6yWVxNiEkiulXCalPCSlPJL/MmtkSoF7e/0DX2nL51d3kJlRvu7phRC8O9GHhnVtmbv2KOnZZb8moyhVmZSST3dGM3PlIZo52rPl6b4M7KRGKa9MxiaULUKIp4QQrkII5/yXWSNTCggrK571fYZr1oK1v/+z3OtxqW/Hh5N9uXDjDgs3R5owQkWxrLSsXJ769iiLfz3DqK6ubJzTB4/G9SwdVq1jbEKZidbEtY//78erbKNAKRXi5zuLQBz48vpBUlNiy72ePm0b8/TAdmwIu8qm8PKvR1GqivPX0xi7dC+hUYm8OrozH0/phkMd1VOwJRh7l1ebIl7qSflK9kzvl0m2Eqz6/fkKrefZwe3xa92If2+M4NLNOyaKTlEq329RiYz9ZC+37mSz5uFeapheCysxoQgh/mXwfmKheW+ZKyilaJ6dxjLMuiFrkiK5ceN0uddjY23Fh5N9sRLwzNpjZOeqTg+U6iVPJ3k/9AyPfh1Gmyb12DK3L33aNrZ0WLVeaTWUyQbvXy40b4SJY1GM8HTfN8gW8OUfFbvJzr2RA4sneHP8ajLvhp4xUXSKYn5J6dk8vPowS/6IZmIPdzY8HkCLhnUtHZZC6QlFFPO+qM9KJWjjMYAxdq6sT79IXFzFLmON8HJlun8rlu++wM4z10wUoaKYz/7zNxnx4V/sjb7BorFeLJ7grfrjqkJKSyiymPdFfVYqyZMDFiOAZTvnVXhdr472pFNzR17YcJxrKarzA6VqysnT8W7IGaauOIBDHWs2PhXIdP/W6npJFVNaQvERQqQIIVIBb/37/M9dKyE+pQjNXbsRXK8tm7MTuHDx9wqty97Wmk+mduNOdi7PbQhHp7q6V6qYK7fSmfT5fj75M5oJ3d3ZMrcvXi2cLB2WUoQSE4qU0lpK2UBK6SiltNG/z/9c7n4MhBAThRCRQgidEMKvhHIrhRDXhBARhaY7CyF+E0Kc0//bqLyxVFePDH4Pewmf7FlQ4XW1a+rI60Fd2Bt9k2W7zpsgOkUxjU3hsYz66C+ir6Xx8ZRuvDPRh3p26pbgqsrY51BMLQIYjzZGfUlWUfTF/3nA71LK9sDv+s+1irNzOx5s2JXfdMnlGnu+sEl+LbnP25X3fzvLkUvlexpfUUwlLSuXFzYc59l14XRo7si2Z/pxv4+bpcNSSmGRhCKlPCWlLPXWIinlbqCogTzGAPlj2q8GxpowvGpj5pD3aaiTLDn0vwqvSwjBW+O74tbQnmfWHiM5I8cEESpK2Z24msR9S/5i47GrPDO4Pesf86els4Olw1KMYKkaSkU1k1LG698nAM2KKyiEeEwIESaECLt+/XrlRFdJ6ju68kjTAPaRweFjX1Z4fQ3sbfl4SncSUzKZ96Pq6l6pXDqd5PNd5xn/6T6yc3WseyyA54d2wMa6uv5M1T5mO1JCiB1CiIgiXmNMuR2p/eoV+8snpVyuH8PFr0mTJqbcdJUQPGgxTfMkH4YvReoq/oCib8uGvDi8I9sjEvjm4GUTRKgopbuWksmDKw/x3+2nGerZjO3P3kuvNqq7QFPISr/J5xsnk5l+0+zbMltCkVIOkVJ6FfHaZILVJwohXAH0/9bahyjs6zbiyZbDOGGVw86D75tknY/2u4f+HZqwcHMkv5yIM8k6FaU4v59KZMRHfxF26Rb/Hd+VT6d1x8lBjV1iChfPhzJ13UA+SYlkz7EvzL696lqX3IzWYSX6f02RpKqtMQMW0SoPlpxeQ15uxYf5tbISfDqtO91bNeTZdeEqqShmkZmTx8LNkTy8OoxmDez5ZW5fpvRqpZ4tMQUp2fLbPwne/RzXhY5PuzzJkEDz37tkkYQihBgnhLgKBABbhRAh+uluQohtBuXWAvuBjkKIq0KIh/Wz3gaGCiHOAUP0n2stW1sHnm77ANFWOraVc6jgwurZ2bDqoV4FSWXrifjSF1IUI51JSGXs0r2s2hfD7MA2bHyqD+2aquF5TSE9LYFXvx3AK3EheFo58P19G+jn91SlbFvUpguvfn5+MiysZva6r8vLJfjrHqRJHZunHcDWzjRjQaRl5TJr5SGOXUliyeRujPZ2Ncl6ldopKzePpX+eZ9nOaBrY2/LuRB81CJYJnT3zMy/ufY2LVpLHnbvx+KgvsbGpU+H1CiGOSCmLfWYwX3Vt8lIKsbK2Ya7nbK5aw087C/fjWX717WxYNbsX3Vo25Jl1x9h2UtVUlPI5cukWo5fsYcnv57jP243fnu+vkomJSJ2OH7bPYeq+V0kRkuW+/2RO0BqTJJOyUAmlBunXcy7dZR0+j/2DjPSiHt8pn/yk4tuyIXPXHmO7SipKGaRl5TJ/UwQTPttPRnYeqx7qyQfBvjjXq9wfu5oqLekyL33Tj9ev7aa7tSPfj/kZf99ZFolFJZQaRFhZ8Uy3Z7huLfju9xdMuu76djaseqhnQVL5NUIlFaV0f5xOZOj7u1hz4BKz+ngQ+ty9DOioaiWmEhmxlkk/jSJUl8yzTQL4bPoeGju3s1g8KqHUMD18ZtKXeqy8cZiU5CsmXbejvS2rHuqJt7sTT393jF8jEky6fqXmuJGWxdy1x5i9KowG9rb89GQfFtzfRfXDZSIyL5dvt8xmetibZAvBV73m88io5VhZWbYrf5VQaqBn/F8mxQRDBRfF0d6W1bN76ZPKUZVUlLtIKfnxyFWGvL+LkIgEnh/agS1z+9KtVa3rv9Vskm+e4x/fBPL2rcP0tWnEDw9sp5vnJEuHBaiEUiN17jiGEdaN+Cb5VIWGCi5OflLpqpKKYuDKrXQeXHmIF74/Ttsm9dn6TF+eGdyeOjbqZ8ZUwo99ycRNY9kt7/Av14EsmbqLhg3cLR1WAXWka6in+71JtoCPf5trlvXnJxWvFlpSCYlUSaW2ytNJvtxzkWEf7Obopdv8Z0wXvn88gPbN1HMlpqLLzebLjVOYdfwDrIU13wS+zYxhSxBWVesnvGpFo5hM69b9mFG/PT9lJ7D38Cdm2UYDe1u+flhLKnO+PUqoSiq1zumEFMYv28cbv0QR0NaF357vz4MBHlhZqafdTeV6XBhPrgngw5QIBtdpyoaJO+jS/j5Lh1Uk9WBjDZaVmcyk7/qRho6ND2yngVNLs2wnJTOHB788RGRcMp9O68FQz2I7f1ZqiJTMHJbtPM8Xuy/gVNeWBUFduN/bVXWbYkpS8ufu/zD//AYyheBfHvczYcBbFtnH6sFGBTt7J970f42bVvC/rbPMtp38moqnmxNPfXuEHVGJZtuWYlnZuTpW7b3IgHd2smznecb4tmDH8/0J8nFTycSEMlLjeeO7wTwT8wOuVnasH7KciQP/W+X3sUooNZyX50RmN+jM5pxr/Ln/XbNtp4G9LV/P7oWnawOeVEmlxpFSsu1kPMM+2MXCLVF0au7IL3P78t4kHxqpBxRN6nTEOiZvGMqG3OvMcurCN9P2ck/LPpYOyyiqyasWyM5KZfJ3fbkt89g4bgsNG7Ux27aSM3J48MuDRMSlMGdAW+YObo+tGiCpWguLucVb205x9HISHZs5Mm9UJwZ0aFLlz5arG11uFmt+mc2HScdxloJFPV4kwPtBS4cFGN/kpRJKLXH6zGam7H+FoTYuLJ6+y6zbSs3M4fUtUfxw5CpdWzjxQbCP6km2Gjp/PY3Fv54mJDKRpo52vDCsAxN6tMRaXXA3uWuxh3k19HH2W+UwyNaF1+/7loYNWlg6rAIqoRShNicUgGU/T+PT5BO833YKQ/u+Yvbt/RqRwCsbT3InK5d5IzsxU939Uy3cSMviox3n+O7QZextrHiif1se7tcGhzrqKXeTk5I/dy1g/oUfybQS/MtjDBP6L6pytT+VUIpQ2xNKTk4607/pQzy5bLz/J1wadzD7Nq+lZvLyjyf5/fQ1Atu58M4EH9wa1jX7dpWyy8jOY8VfF/hs13kyc3VM7dWKZwa3p4mjnaVDq5EyUuJ4d/M0NuTdoLOsw9tDlnKPu7+lwyqSSihFqO0JBeBc9K8E7/kn/a0b8v603ZXyYJSUknWHr/DGL1FYWwneGOPFGF91V1BVkaeT/HDkCu//dpbElCyGeTbjpZGdaNukvqVDq7FOnfyWlw79l4s2gllOXZk7+kvq2FbdEy2VUIqgEopmxZZZfHTrCP/zGM+o/q9X2nYv3bzD8xuOc+TSbUZ3dWXRWC91h5AFSSn54/Q1Fv96hjOJqXRr1ZBXRnWmp4ezpUOrsXQ5mdqF9+QT2oV3v38R0HWGpcMqlUooRVAJRZObk8nMbwKIIYefR6+nSdMulbbtPJ3k893n+eC3szRyqMPiCd6qO/NKlpmTx09HY1m59yLR19Jo7eLASyM6MdKruao1mtG1qwd5NfQJ9lvnMsi2Ma/f/y0NHd0sHZZRVEIpgkoo/+9izE4m/vk0/taOfDx9b6X3CRQZl8xz68M5m5jGdP9WvDKqs7roa2bXUjL5ev8lvj14idvpOXRxa8DDfdtwn7eb6sDRjGReHtt/f5E3r4aQbSX4V5vxTLj39WqVvFVCKYJKKHf7ettjvHN9P2+4j2Ls4P9V+vYzc/J4L/QMK/ZcxMOlHu9P8lHdnJtBRGwyK/dcZMuJOHJ1kiGdm/Fw3zb0buNcrX7UqqNbCcdZ9Ouj/CYy8BZ1WTRkKW3celo6rDJTCaUIKqHcTZeXy0NrenNWZrFx5Dc0b+5rkTj2n7/JP78/TkJKpnoY0kTydJLfTyXy5Z6LHLx4C4c61kzya8msPh54NK5n6fBqPin5489XeT3mZ1KsBHNcBzBryAfYWNtaOrJyUQmlCCqh/N2VK3t5YMfjdLNy4LMZByzWHXZKZg6vb47ix6NX8WrRgH8M7sDATk3VQ3RldCcrl+/DrvDVvhgu3UynRcO6zOzTmuCerXCqWz1/zKqblBtn+d/WWWwmlU7UYdGAD+jY+l5Lh1UhKqEUQSWUoq399WneStzFfNchTBz2gUVj+TUinoWbo0hIyaSVswMz/Fszya8lTg7qx7AkcUkZrN4Xw3eHLpOamUu3Vg15uG8bRnRpjo2q7VUOKdm357+8du5bbloJHmnSm8eHfYqtbfV/jkcllCKohFI0XV4uj30TwEldBj8NW0mLFr0sGk9Ono6QyARW74vhcMxt6tpaM7ZbC2b18aBjc9WFS76M7Dx2nb3OlhNxBaNmjvBqzsN929BdXYuqVOlJl3lvyww26G7RRtrwVr//4tV2hKXDMhmVUIqgEkrx4uLCGB8yC09hz4oZB7Cyrhp3XEXGJfP1vkv8HB5LVq4O/3ucmdXHgyGdm9XKM++k9Gx+P3WNkMgEdp+7TmaOjoYOtkzya8nMPh60UL0QVLqwgx/yWsQXxFoLHmzkzdMjv8C+Ts26TqUSShFUQinZj7+9wMK4UF5udi9TRyy1dDh3uX0nm/VhV1iz/xKxSRm4OdkzPaA1k3u2wrmGPxwZn5xBaGQiIZEJHLx4izydxNXJnmGezRju1ZxeHs61MrlaWmZqPB9veZA12fG0kNYsClhIj07jLB2WWaiEUgSVUEomdTqeXBPAUd0dfhj8Ga1a9bV0SH+Tp5PsOJXI6n0x7Dt/kzo2VozxcWNmHw+8WjhZOjyTib6WRkhkAqGRCRy/mgxAu6b1Gd6lGcO7NKdrCyd1y68FRRxdwSvHPuSijSDYsQPPj1qJg33N+fsrTCWUIqiEUrqEhHDGb59OO2HHV9P3Y21Tdc/+zyamsnpfDD8djSUjJw+/1o2Y2ceDAR2b4GhfvS7iSyk5cTWZkMgEQiITOH/9DgA+LRsWJBHVt5bl5dy5yWdbHuTLzEs0llb8x+9f9Ok63dJhmZ1KKEVQCcU4m/94hX9f2cILLr2Zdd8KS4dTquSMHL4Pu8KaA39MYIEAABcMSURBVJe4dDMdgDaN69HFrQFeLZzo2sKJLm4NaOhQNZJjTp6OmBt3OJuYxpnEVM4lpnLschIJKZlYWwn873FmeJfmDPVshquTuiZSVUQc/YIFxz7irI0gyKE1L41eRQOHxpYOq1KohFIElVCMI3U6nvu2Hzvzkvmo02z6+z9v6ZCMotNJ9l+4ybHLtzkZm0xEbAqxSRkF890b1cXLzYmu7k4FyaZxffPd0pmnk1y5lc6ZxFTOJqRy9loaZxNSuXAjjZw87f+dlQAPl3p0dm3AoE5NGdy5aZVJfIomPekyn2ydzbc5CbhIK17zeZqB3R+zdFiVSiWUIqiEYrz0tGs89P0wLpLLl70W0LXLREuHVC6372QTEacll4i4ZCJjk4nR12IAmjewx6uFE14tGuDl5lTk2B9F/Q8p6v/N7fRsziam6ZNHKucS08jK1RXMd29Ul47NHOnQ3JEOzerToZkjbZvUx97W2iTfVTExKdnz1yLeiF5HnLUVk+q35x8jv8DRwcXSkVU6lVCKoBJK2dy4cZrpmyeSLiTfVNGL9OWRnJFDVFwKkXHJRMQmczI2mQs37mCq/wrNG9hrSaNpfX3ycKR90/rUs6sat2IrpbsVf4zFoU+ylTu0kTYsDFhA945jLR2WxaiEUgSVUMouJmYXM/6cg6MUrAn6sVJGebSEO1m5nIpPISUz52/zBMXcTVVosqOdDe2bOaouTqoxmZvDlt/+wTvxO0mzEjzSxJ9Hh31CHVt7S4dmUSqhFEEllPI5HrGORw4voi02rJwYikN9NX6JUvNciQ7ljd0vsd86Fx/hwMJBH9DOvY+lw6oSjE0oFnkaSggxUQgRKYTQCSGKDVIIsVIIcU0IEfF/7d15dBR1tsDx7+1OAmGRCAlCiCQsKiLjAoIBVFAwqKMgoCg6KI6jjqKCT8SF4zaO20PRYdwGl0F4Cooi4IiyCIpKQBAk7CgQtrDvGEOWvvNHFfMC04EGKql0cj/n9El11S9V99fd6Zva7u+w+UNEZLmIZInIpyKSUPpRV17ntLiBIWfeyjIpZOC4rhQW5PkdkjGeKczby4hxN9Dj2/vJkgIebXg1I/tkWjI5Dn7dXrsY6AHMPEq7EUC4gjhTgRaqejawEnjE0+jMf+mY/gCDkzvzrf7K0x9fjYZCR/8lY8q5pQvf48b32/PSviWkV6nL+K7j6H3JswTEKg8cD19eNVVdpqorImg3E9gZZv4UVS10n84GUjwO0YTRK+MV7jipOePyN/PGhJv8DseY4/bb3hyGjr6cGxcMYWsAXmx+O8N6T6denYp5jrCsVIQ0/Efgi5IWisgdIjJPROZt27atDMOqmO7pNppusafwxt7FfDL1Ab/DMebYqJL53fP0GHsZ/8zfSLcajZnQ6yu6tL7PStl4oNSuYxSRaUC9MIsGq+oEj7YxGCgE3i+pjaoOB4aDc1Lei+1WZhII8MR1E9n+wSU8vXEySXNSuPiC+/0Oy5ij2rTma1785iGmSC6pwVjebf0orZv38jusCqXUEoqqdi6tdQOISF/gKqCTVqZL1cqB2NhqDO35GbeOzWDg0nd4p0ZK1N74aCq+vH2bGPHl3byzfyUqwt1J7bi188sVrsR8eRCVh7xE5HJgENBVVXOP1t54r1qNurx29Rhqq9Dvh6dYt+47v0My5hBaVMhX0wdzzUedeS33Fy6qWp+Jv/+Iu64cbsmklPh12XB3EdkAtAU+F5HJ7vxkEZlUrN1oIBM4Q0Q2iMht7qJXgZrAVBH5SUTeLOMuGCAxsRlvXvoqCvx52l3s2L7S75CMAWD18vH8+b3WDFg/kfhgHG+fP5ihvaeRnNTc79AqNLux0Zwwu/HRlBf7dq7izcl388GBjcQr9Gt4Bb06PkNs0ApunohyfWOjqVjOaXED/9usr934aHwTKshj/Bf3cPX4row6sJFu1Rvzrx5fcFOnIZZMypAlFOOJS9oOtBsfjS8WL3iXPiPb8NjWb2gQrM7oi17iyesmUrvWqX6HVulY+VPjmV4Zr7Dl0+sZvncpSRNupF+3D5CA/c9iSsf2TfMZNm0An4Z2kRiAZ5rewFXtHrG73H1kCcV46p5uo9k6JoN/7F3Czo+u5JHunxBbxa6oMd4pyN3FmKn9eX3nj+SJcGvC77ijy6vUiK9845SUN5ZQjKckEODJXpNInHAjb+9fwerRHRjadQy1azf1OzQT5Yryc5k0YzCvb5zChmCA9rEn81DHF2mUku53aMZl+4bGc8GYOPr3/JgX0nqwWPPoPb47K37+3O+wTJTSwgJmfP0E145qw6Obp1EjUIXXzxnAGzd9a8mknLE9FFNqruzwFA2TWtB/9lP0+e4hntu6iE7tH/Y7LBMtVJk7+xX+tuyfLAwqqYEgQ87oQ0ab+wkEbNjk8sjuQzGlbtvWJQz4/A9kBQrpl3AOd1490k7Wm5KpsmThCIbNH8asYCF1Q3BX42voduFjdgmwT2zExjAsofjnQN4envqkO58VbiMjmMDTPT6lWrVEv8My5czqZeN5dc6zTJXfSAjBnxpcyvUdn7VSKT6LNKHYIS9TJqpUrcUzvadxxhd3MnRbJus+7MSwLu9SP7mV36GZcmDTmhm88e3jTAjtoqrCnxPbcEunIXblVpSxPRRT5r79YRiDlgwnDni55SBannOz3yEZn+zMmc9bMwbxYcFmAK6vdRa3d3qJ2ifZmHnliR3yCsMSSvmxes107pvRn40B5bGUy+nR+UW/QzJlaN+25Yyc/iAjc1eTJ0K36o2465Ih1E9s5ndoJgxLKGFYQilf9uxZx4PjryWT37gpPo2B3ccSE1vV77BMKdq8ZjqjMp/jkwM5/BoIcFncKdzT4TkaJ7f2OzRzBJZQwrCEUv4UFuQxdPz1jMpdTTrxvNjtI2olpPkdlvGSKiuyRjLipzf4UvejQEZ8Crde8DBnpnX0OzoTAUsoYVhCKb8+/WoQT6+fRL2Q8PcOQ2nS5DK/QzInSAsOkDn7RUb8PJbMYBHxqvRMaEGfC58k2Q5tRRVLKGFYQinfflr0PgPmPkeewN2ntKN3p5etDlgUKsjdyZczn+C9jTNYESMkhoSbki/mugufpFZ1u1Q8GllCCcMSSvm3edMCHp9yJ5n8RsMiuP/0G+nU7iG7ETIK7N++kk9mPs6o3YvYEgzQRGO5pWlPfp8+kLiYKn6HZ06AJZQwLKFEBw2F+G7eq7y0+G1WBZWWGsegCx7lrDN7+h2aCWNL9kzez3yGsXkb2B8I0DpQk75n/4kLz+5rpeQrCEsoYVhCiS6FBXmMm/Ewr22cxs6AcFVMIv0vHUq9+uf5HZoJFbFs4Uj+L+stJuleQkBG1WT6XjCIsxp19js64zFLKGFYQolO+/dt4p0p9zJy33JE4eZazbktYxjVa9TzO7RKZ/v6TD6f+zcm7lrEypgA8ap0r3UmfS58kpSks/wOz5QSSyhhWEKJbjk58/jbjIFMKtxBnSKlX8pldL/kObt3pZQd2LeJGbOHMnH9V8wK5FMkwu8knq4NO3NF6/upVT3J7xBNKbOEEoYllIph0ZKxDJn7PAskn6ahAANb3E771vf4HVaFooX5LFzwDhNXfMiX+dvYFwxQNyRcXedcup7fn8ZWg61SsYQShiWUikNDIabNep6hK0ezIQjtqcbAC5+maZMMv0OLaptWT+ez+a/z2Z5lZMcEqKpKp/gUup51Mxc0v56gjUNSKVlCCcMSSsWTf2Afo6f9D//YmsmvAj2rpnBL28Gkpl7kd2hRI3f3WqbNeYmJG2fyQ6AQFaGVVKdboyu57Px7qRF/st8hGp9ZQgnDEkrFtXvXGt6ceh8f5q6hUIRmoQBdEs+jy7m3c+qp7f0Or3xRZfvGucxeOprvN8/hq6I9/BYIkKIBuia15qrWAzi1bgu/ozTliCWUMCyhVHxbtmQx5cfX+HLLXLICBQA0DwW5PKkVGefdSYMGbXyO0B95e3OYv3gUmeu+Ztav61kZIwAkhODSGql0/d1ttDzjGkTE50hNeWQJJQxLKJVLTs48psx/k8nbfmRxoBCAs0MxZNRtTZeWd1Xo+1lCBXmsXD6OWav+Reau5cwnn/yAEKtKy2BN0hPPpW2znpyZdqndfGiOyhJKGJZQKq/16zOZ8tNwJm9fwLJAEQDnaixdTmlDRst7qHtKlB/iUWXLhtlkLh3DrC3zmFO4m51BJ1E01Rja1jqNdo2voGWz66hWpYbPwZpoYwklDEsoBmDt2m+ZvHA4k3dksTIQQlQ5jyp0qZdO+undSWlwAXFVavodZom0sIAdWxayJmcO2duX8MvuVczJ3cgq9zBWnRC0ja9P2wYXkd7iRuqe3MTniE20s4QShiUUc7jVa6YzeeE7TN65iFVB528hoEpySEgNxpNaNYnUk1JJq3MmDeu3on69VgRjy6bQ4YF9m1i7fhbZWxaQvetnsn/NIbtgD9lSxL5ixTKrqtIyeBLtks4jvdm1nJ7a0c6FGE9ZQgnDEoo5klWrprJ03Tes3f0L637dRHbBHtZSSG7g/7+cY1VpGBJSY2qQGl+X1JPSSE1qQVpya+rUPoOiUD6honwKCw9QVHSAov9M51MUynd+FuVTVJhPYSifoqICikL55ObtZu32pazZu5Y1edvJDv1GTlDQYonhlJCQFqxOWnxdGiU0Ii3pbBo1SKdeYjM7D2JKlSWUMCyhmGOloRDbd6xkbc4c1m5bzNo9q1mbu4W1hftYJ0UUeLwnEK9KKnE0ijuZtJoppNVuRlr9VqQlp1Ot6kmebsuYSEWaUGLKIhhjopUEAiQlNSMpqRmH/zUVFRaweWsWazfNI3v7Enbl7SAmEENQYggGYggGggQDMcQEYglIjLMsEEMwGOfMD8YSCMQQE4ijSlx1UpPbULf2aba3YaKWJRRjjlMwJpYGya1okNyKdn4HY0w5YP8KGWOM8YQvCUVErhORJSISEpESj8uJyLsislVEFpew/AERURGxgaqNMcZnfu2hLAZ6ADOP0m4EcHm4BSJyKpABrPM0MmOMMcfFl4SiqstUdUUE7WYCO0tY/DIwCKg8l6kZY0w5FpUn5UWkG7BRVRce7QYuEbkDuMN9ul9EjprISpAIbD/O341W1ufKwfpcOZxIn1MjaVRqCUVEpgHhBv0erKoTTmC91YBHcQ53HZWqDgeGH+/2im13XiTXYVck1ufKwfpcOZRFn0stoahq51JadROgEXBw7yQFmC8ibVR1cylt0xhjzFFE3SEvVV0E1D34XESygfNVtbLtvhpjTLni12XD3UVkA9AW+FxEJrvzk0VkUrF2o4FM4AwR2SAit/kRr+uED5tFIetz5WB9rhxKvc+VqpaXMcaY0mN3yhtjjPGEJRRjjDGesIRyGBG5XERWiMgvIvJwmOV9RWSbiPzkPv7kR5xeOlqf3Ta9RGSpWzLng7KO0WsRvM8vF3uPV4rIbj/i9FIEfW4oIjNEZIGIZInIlX7E6ZUI+psqIl+5ff1aRFL8iNNLEZSrEhEZ5r4mWSLS0tMAVNUe7gMIAquAxkAcsBBoflibvsCrfsdaxn0+DVgAnOw+r+t33KXd58Pa3wu863fcZfA+DwfucqebA9l+x13K/R0L3OJOXwqM8jtuD/p9MdASWFzC8iuBLwAB0oE5Xm7f9lAO1Qb4RVVXq2o+MAbo5nNMpS2SPt8OvKaquwBUdWsZx+i1Y32fewOjyySy0hNJnxU4OIpXLSCnDOPzWiT9bQ5Md6dnhFkedfTI5arA6eNIdcwGEkSkvlfbt4RyqAbA+mLPN7jzDtfT3V382C1SGc0i6fPpwOki8r2IzBaRsAU7o0ik7zMikopzI+30cMujSCR9fhL4g3tJ/yScPbNoFUl/F+IUqQXoDtQUkTplEJufIv7sHw9LKMfuMyBNVc8GpgLv+RxPWYjBOezVEee/9bdEJMHXiMrODcDHqlrkdyBloDcwQlVTcA6NjBKp0MNHDgQ6iMgCoAOwEagM73OpqcgfluOxESi+x5HizvsPVd2hqgfcp28DrcoottJy1D7j/BczUVULVHUNsBInwUSrSPp80A1E/+EuiKzPtwEfAahqJlAVp6BgNIrkbzlHVXuo6nnAYHde1F98cRTH8tk/ZpZQDjUXOE1EGolIHM6XycTiDQ473tgVWFaG8ZWGo/YZGI+zd4I7mNnpwOqyDNJjkfQZEWkGnIxTrSHaRdLndUAnABE5EyehbCvTKL0Tyd9yYrE9sEeAd8s4Rj9MBG52r/ZKB/ao6iavVh51tbxKk6oWisg9wGScq0TeVdUlIvIXYJ6qTgTuE5GuQCHOya++vgXsgQj7PBnIEJGlOIcEHlTVHf5FfWIi7DM4X0Jj1L08JppF2OcHcA5n3o9zgr5vtPY9wv52BJ4TEcUZ7K+fbwF7xC1X1RFIdM+FPQHEAqjqmzjnxq4EfgFygVs93X6Ufl6MMcaUM3bIyxhjjCcsoRhjjPGEJRRjjDGesIRijDHGE5ZQjDHGeMISiolqIrI/gjYDRKSah9u8RkSae7i+WSfwu/vdn8ki8vER2iWIyN3Hux1jImEJxVQGA4BjSigiEjzC4mtwCgt6QlXbebCOHFW99ghNEgBLKKZUWUIxFYKIdHTHtPhYRJaLyPvu3cD3AcnADBGZ4bbNEJFMEZkvImNFpIY7P1tEXhCR+cB1InK7iMwVkYUi8omIVBORdjgVEoa4Y6U0EZFz3aKZWSLyqYic7K7va3HGVZknIstEpLWIjBORn0Xkr8Vi319s+iERWeRu8/kw/Wzkxr7osHWkHRwDQ0TOEpEf3PiyROQ04HmgiTtviIjUEGcskPnuuroVW88yEXlLnLFvpohIvLusqYhMc2ObLyJN3PkPuq9Tlog85ekba6KL3/X77WGPE3kA+92fHYE9OLWJAjjlUi50l2UDie50Is5d0dXd5w8BjxdrN6jYuusUm/4rcK87PQK4ttiyLKCDO/0X4BV3+mvgBXe6P045+PpAFZz6aHUO68MVwCygmvu8dpj+TgRudqf7FfvdNNwxMIC/Aze503FAfPHl7vwY4KRir8kvOGNkpOFUgTjXXfYR8Ad3eg7Q3Z2uirPXl4Ezjoq4r/u/gIv9/lzYw5+HlV4xFckPqroBQER+wvly/O6wNuk4h6u+FxFwvnCL1+r6sNh0C3cvIAGogVPG4xAiUgtIUNVv3Fnv4QzcdNDBMi6LgCXq1k0SkdU4RfqKl7DpDPxTVXMBVDXcuBbtgZ7u9CjghTBtMoHB4oxAOE5Vf3b7ekjowLMicjEQwilhfoq7bI2q/uRO/wikiUhNoIGqfurGluf2IwMnqSxw29fAKRw6M0xcpoKzhGIqkgPFposI//kWYKqq9i5hHb8Wmx4BXKOqC0WkL26BzOOMKXRYfKES4ovEEeslqeoHIjIH+D0wSUTu5L+Led4EJAGtVLVARLJx9jqKxwzO6xh/hM0J8Jyq/uMY4jcVlJ1DMZXBPqCmOz0baC8iTQFEpLqInF7C79UENolILM4X8H+tT1X3ALtE5CJ3WR/gG47PVODWg1ekiUjtMG2+xylayWEx/YeINAZWq+owYAJwNoe+BuCMyLjVTSaXAKlHCkxV9wEbROQadxtV3DgnA38sdh6qgYjUjai3psKxhGIqg+HAlyIyQ1W34VSIHi0iWTiHh5qV8HuP4Zw3+B5YXmz+GOBBEVngnpi+BeckfRZwLs55lGOmql/iHCKb5x6yGximWX+gn4gsouSR9noBi911tMAZ8nUHzmG+xSIyBHgfON9dz82H9a8kfXCqbWfhnOupp6pTgA+ATHddH3No4jKViFUbNsYY4wnbQzHGGOMJSyjGGGM8YQnFGGOMJyyhGGOM8YQlFGOMMZ6whGKMMcYTllCMMcZ44t81reJYY3miQwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8FPX9+PHXeze7uSHhvgkCoqj1IKL11l89UBFvoVrrSatFW7UetfZrta1HT+vVqvW2gtSqBUu9Wo96IeCNkYoQJEDCFUjIudl9//6YCS5Ljk2yu5Ns3s/HIzA7MzvzntnZee/nmBlRVYwxxhgv+LwOwBhjTO9lScgYY4xnLAkZY4zxjCUhY4wxnrEkZIwxxjOWhIwxxnjGklCKiMjPReQJd3iUiGwTEb/7erCIvCEi1SLyO3E8LCKVIvKet5F3noicIiKr3W3d1+t4upvY46C7iT5muwsRWSoiR7Qx/TURuSiFIUWvu1t/np0lIteLyF+Stfxun4REpFRE6twPt/nvbq/j6gpV/UpV81Q17I6aCWwE+qjqVcAhwNHACFWd7FWcCfBbYJa7rR+keuUioiJSE3PsXJPE9Z0nIm/GjHtERBpjYvgIWjwOTDtUdQ9VfQ26X5KM/Ty9TIiJpKq3qGrStiMjWQtOsKmq+koyVyAiGaralMx1tGE08Jl+feXwaKBUVWs6uiCPtyPWaGBpSxNSGOfeqro8Betpy69V9QaPY+g2RMSfbom3m33vehZV7dZ/QCnwrVamnQe8ifOLuxJYCUyJmt4XeBBYB6wBfgn4o977FvAHYFPzNOB3OKWSlcAsQHGS9RnAkpj1Xwn8o5XYxgCvA9XAy8DdwBPutKKo5T4ChIBGYBvwPaAeCLuvb3LfcyLwIbAFeBv4Rsw+uhb4GGhwlzsM+Duwwd2Wy6Pm/zkwF3jMjW8pUBw1fSTwjPveTcDdUdMuAErc/f0iMLqFbc90Y1egBviyjTh3B15zt2spcFLUch4B7gX+5S7vLWAIcIe7/s+Bfds4dhQY18q0BcDvol7PAR5yh8cC/3G3fSPwV6Cgrf3jbkf057Ylaht+2UoM24+DqGPmDfczeQW4p/mYcacf6H72W4CPgCOipr0G/MLdR9XAS8AAd1oW8IQb6xZgETDYnTYMmAdsBpYDF8ccJ83H7L9wSrXR8X8EnOoO74ZznG8GlgFnxnyOf3L3eQ0x32fgSOCTqNcvA4uiXv8XODn6fAAch/OdCbn7+6P29kML+/8IoAy43v2cS4Gzo6afAHwAVAGrgZ+38NldCHzlfm7bP0/gV+6xUO/Gd7f7ef4uJoZ5wBVtHL+XAl+42/ILnGPzbTemuUDQnbcQeB7nmKx0h0fEHB+3Au+57/0H0C9mW2YCa3HOlz9u5Thonve77nZvBH4aNW828KgbQwlwDVDW5jm+s8khVX+0n4RCwMU4CeQSdyeKO/1Z4D4gFxjkfgDfi3pvE3CZe9BkA98HPgNGuB/qK1EHVSbOF2z3qPV/AJzWSmzvAL9333eYexDtlIRaOlG5sb0Z9XpfYD1wgLud33X3S2bUPvoQ5+SYjVPNugT4PyAI7AKsAI6NOqjqgePd5d0KvOtO8+OcXP7g7rcs4BB32jScE9Xu7j65AXi7jc9uhyTQQpwBd3nXu3Ee5e6nCVH7ZSMwyY3jPzgJ9Vw3zl8Cr8a7/phpQ9x9ehRwtrt/8t1p43CqQzOBgTgnmDvi2D87fG4tfbYx02KPg3dwflAFcapkq/j6mBmOk0SOdz/fo93XA6NOMl8Cu7r79jXgNnfa94D5QI4b/yScql/cbbvX3Y59cE5iR7Vw8jkXeCsq9ok4CS3T3Q+rgfPd42Jf93ObGLUPtgIHu7FnxeyHbJzjcYB7TFTg/GjMd6fVAf1jzwfR8cWcbFvcDy3s/yNwzgHN39PDcZLkhKjpe7kxf8ON6+SYz+4xd/uzW/g8XwMuilrfZJzzk899PQCoxf1B0Mrx+w+gD7AHzg+3f+N8n/vinKu+687bHzjN/Yzzgb8Bz8XslzXAnm68f2fn89Fsd9pe7nGw036OmvcBd5v3duPa3Z1+G86P70Kc8+jHpEkS2oZzwDf/XRz1pV8eNW+Ou4OGAIPdnZMdNX0G7knLfe9XMev6D26Scl9/K+ag+hPwK3d4D5xsn9lCzKNwDu7cqHFPtvBBxpuE/gT8ImYdy4DDo/bRBVHTDmhh234CPBx1UL0Sc0Kpc4e/6R6AGS1s17+AC6Ne+3C+RKPb+BLFJqHoOA8FynG/lO642bi/ON398kDUtMuAkqjXe+GWONpYf1XMsXNs1PTTcE6eG3ETSSvLORn4II79s8PnFrUN9TExPBp7HEQdMzlR730i6pi5Fng8Ztkv8vVJ6DXghqhplwIvuMMXEFN6dsePxPm1nh817lbgkajjpHn9+Tgn6NHu61/xdcnxLOC/Mcu+D7gxah881s73/L/AqTilvZdwfuUfh1NK+jjmGGovCbW4H1pY5xHs/D2dC/yslfnvAP4Q89ntEjV9++cZFctFMcsoAY52h2cBC9o5fg+Oer0EuDbq9e9wfxy18N59gMqY/XJb1OuJOCVJf1Tcu0VN/zXwYAvHQfO80aWs94Dp7vD2H7vu64toJwl1+44JrpNVtSDq74GoaeXNA6pa6w7m4bRHBIB1IrJFRLbgfDEGRb13dcx6hsWMi53+KPBtERHgO8BcVW1oId5hOAdAdJvOqrY3sU2jgauat8PdlpHuelqKdTQwLGb+63ESc7PyqOFaIEtEMtzlrtKW67dHA3+MWuZmQHB+pccrOs5hwGpVjUSNWxWzvIqo4boWXue1s779Yo6dF6Omzcf5Ei5T1e0dCtzeinNEZI2IVOEkgwHu5Lb2T2t+GxPDd1uYZxiwOeoYhp0/0zNiPtNDgKFR88R+ps375nGchDVHRNaKyK9FJBC1zuqo98XufwDcef4JTHdHzcCppmyO7YCY2M7G+THY0ra05HWcpHCYO/waTsnkcPd1R7S2H1rS0vd0GICIHCAir4rIBhHZilNTMiDm/e1tV6xHgXPc4XNwPpu2xHX8i0iOiNwnIqvcY/YNoCCmp150rKtwzo8D2pgefX6J1do+bu8cupOekoQ6YzVOSWhA1Je/j6ruETWPxrxnHU4RstnI6Imq+i7Or4dDgW/T+gG0DigUkdyocaM6sQ3NVuOUwKJPZDmqOjs6vJj5V8bMn6+qx8e5rlFuQmpp2vdilputqm93YFui41wLjBSR6ONwFE61QSr8CueX6VARmRE1/hacOPdS1T44Jwtxp7W1f2KPp45YB/QTkZyocdHH32qcklD0vs9V1dvaW7CqhlT1JlWdCByE0754Ls7+7yci+VGzt7X/ZwMzROSbONV3r0bF9npMbHmqekl0GO2EGZuEXqf9JNSV/d2spe/pWnf4SZw2m5Gq2hf4M18fB/HE0NK0J4BpIrI3TrX2c52KemdXAROAA9xj9jB3fHS80cfTKJymjI1tTF9Lx7V5Dm1J2iYhVV2HU6z/nYj0ERGfiIwVkcPbeNtc4IciMlxECnCqQGI9htPIGIr+9Ryz7lXAYuAmEQmKyCHA1C5szgPA991fZiIiuSJyQszJI9p7QLWIXCsi2SLiF5E9RWT/ONb1Hs6BdJu7niwROdid9mfgJyKyB4CI9BWRM7qwXQtxfkVdIyIB9/qPqTidBJJKRA7DacM4F6eN7S4RaS4B5ONUAW91x10d9da29k8FMEJEgh2NJ+qY+bl7zHyTHY+ZJ4CpInKs+3lmicgRIjKixQXuuK1Hishe7q/iKpyTT0RVV+NU093qLu8bOA3trXV7XoBT6rkZeCqqBPs8sKuIfMf9HAMisr+I7N6BXfA2zkl0MvCeqi5113UAzq/6llQARTE/Yjqj+Xt6KE6C/ps7Ph+npFgvIpNxfnh2RAVO+812qlqG0zHkceDvqlrXtdC3y8cpGW0RkX7AjS3Mc46ITHR/6NwMPK079lL8mVui2gPnu/FUJ+KYi3OOKHS/O7Pae0NPSULzY66zeDbO952L08j7GU77zdPsWH0R6wGcxPUxTqeDBTh1xtEf1OM4jXvtXZ/wbZwv0GacA+KxOGPeiaouxul8cTfOdizHaX9obf4wzpdpH5yG/I3AX3AaM9tbVxjn5DcOp/dLGU6dP6r6LHA7TrVOFfApMKWTm4WqNrrrmuLGeC9wrqp+3tlltuCjmGPnDhHpg/N5zFLVNar6X5xelA+7Va03AfvhNKb/E6cnXHPMre4fnDbFpUC5iET/wrwmJoboadHOxmlzau6t+RROaR43YUzDqVbdgFP6uJr4vsNDcI79KpyS3+t8XYqfgVPPvxanI8+N2srlEG7V8zM4baVPRo2vBo7Bqapbi1NVcztOY39c3Cqx94Gl7nEBTkeNVaq6vpW3NSeLTSLyfrzrilGO851ai1O9+P2o4+9S4GYRqcbp5DO3g8v+I3C6OBed3xk1/lGc9sz2quI64g6cjgIbgXeBF1qY53Gc9rlynJLs5THTX8c5t/wbpwr5pU7EcTPOd2IlTseup3GP4dY09yIzLRCRKcCfVXV01LhsnF5V+6nqF54FZ9KeiDwFfK6qLf2qNV3klryfUNV2S5MJXu9hOD9iR2uKTsAi8hrOtu505wMRKcJJGoEOtnXGs95LcDottFoD1VNKQinhVl0dLyIZblHyRpxfh9EuwbmGwRKQSSi3CmusW3V8HE7JJ1FtBqYbcDuE/BD4S6oSUCqJyFAROdg9hifgtFW1WXPVU+6YkCrNVTFP4dSv/hOnGO5MFCl15znZi+BM2huCU93VH6dK4xL14HZHJjncNrLFONeZne9xOMkSxOmFPAbncoQ5ONXsrbLqOGOMMZ6x6jhjjDGe6RXVcQMGDNCioiKvwzDGmB5lyZIlG1V1YDLXkdZJSESmAlPHjRvH4sWLvQ7HGGN6FBHpyp1e4mLVccYYYzyT1klIVeer6sy+fdu9RtMYY4wH0joJichUEbl/69atXodijDGmBWndJqSq84H5xcXFF3sdizGm5wqFQpSVlVFfX+91KEmRlZXFiBEjCAQCKV93Wieh6I4JxhjTWWVlZeTn51NUVIRze8H0oaps2rSJsrIyxowZk/L1p3V1nLUJGWMSob6+nv79+6ddAgIQEfr37+9ZKS+tk5AxxiRKOiagZl5um1XHGWM6RFUJV1agqojPDz4/4vO5//vB59s+Hp+vR528NRIhUrOFcHWl+7eZcHUlkT5jaKqsAH8AyYj68/nbX6hpU1onIeuYYEzXReprqV/+AXXLllC/bDF1/1tCZFtl/AuITVAZQbInFJO3/7HkFh9DRkFSL8gHQMNN1H/xAY1rviBctZnwtkrn/6hEE67eTKRmK0QiO70/fPmjNG0u33nBPr+bkII7JCeaX/sDToLuoiOPPJLrrruOY489dvu4O+64g2XLljFr1iwuu+wy1qxZQ1NTE+eccw433ngjPp+PRx55hKuvvprhw79+YvuTTz7JxIkTuxxToqR1EjLGdIyq0rShjLr/LXYSzrLFNJR+BhHnuY7BEbuSd8AUssbsCf4MiITRSNg5cW8fDqM7vI5sH08kQqRuGzUfv0HNkldAriFrQjF5+x9H3uRjCQ7dpZ0I49dYXkrtR29Q+9Hr1H76FpHaqu3TJJCJP78fvvxC/Pn9yBw9EX+ffvjzCp3/3fHN/3+xsZrMMbuj4RDaFIKmENrUiDaFtv9F6mu276cd+DOQjCC+nHz8eQX4glkd3pYZM2YwZ86cHZLQnDlzuP322znppJP405/+xDHHHENtbS2nnXYaf/zjH7niiisAOOuss7j77rs7vgNTJK2TkFXHGdO2SKiBhpWfbk84dcsWE66sAECycsgevx/9TrmM7AnFZO26H/68goSsV1VpXPUZ2957gW2LXmTj479g4+O/cJLc5OPI3f9Yssbu3aFSRLhmK7Wfvu0knY9eJ1Th3HEmY8Bw8g+aSs43DiNr3D74+/RHMrM7VE0om0sQnw/xZUKg9QfGaiT8dWIKhyDk/K+N9YQrKwhXViDBLPy5ffF1ICGdfvrp3HDDDTQ2NhIMBiktLWXt2rUsX76cgw8+mGOOOQaAnJwc7r77bg499NDtSai7S+skZNVxxuyssbyU6jefo+bDV2n48mM05Dx9OTBoFDl7HuwknAnFZI7aDfEn5xQhImQW7UFm0R70P/MqQhvKtiekzc/dw+Zn7sTfbwh5+x9L3v7HkrPHQUgguMMymqvYatykU7/8A4hEkKxccvY8iIITLyZ378MJDN0loe1S6x/+PxpWLu34G1XRSBMabvq6xCQ+xJ9B5i57MfiiW1p9a79+/Zg8eTL/+te/mDZtGnPmzOHMM89k6dKlTJo0aYd5x44dS11dHVu2bAHgqaee4s0339w+/Z133iE7O7vj8SdJWichY4yjqbKC6rfnU/3mc9R/8T4AWeP3o2DK+WRN2J/sXSeRUTjIs/gCA0dQeMJFFJ5wEeHqSmre/zfb3nuBqtfmsvXFR/Hl5JO771Hk7n8MkZoqaj56nbpP3yJSWw0iZI3dh36nXE7O3oeTvet+TrtMdyPitBH5AzskJG1qJFJdScPqZU51XW4BvuDOpa3mKrnmJPTggw/y17/+td3VWnWcMcYT4ZqtbHt3AdVvPkvt0rchEiGzaA8GfOcG8g86icDAEV6H2CJ/fiF9Dj+dPoefTqShjtpP3mTboheoWfQS1W/9A2iuYjuJnL0PJ2fPg/HnF6YsvkHn35zQ5UWaGols20q4ZovT+WFzORLMxp/nVtm51X/Tpk3jiiuu4P3336e2tpZJkybxwQcf8MYbb+ywvBUrVtC/f38KChJTdZpsaZ2ErE3I9DaRhjpqlrxC1ZvPUvv+f9CmRgJDxtDv1MvJP+QUMkeM9zrEDvFlZpNXfDR5xUejM8PUr/gYf04+gWFje1TX77b4MoL4CgaSUTCQSKiRSM1WwtuiElJmNv4+/cnNK+TII4/kggsuYMaMGQCcffbZ3HLLLbzyyit861vfoq6ujssvv5ybbrrJ462KX1onIWsTMr2BNoWo/eRNqv77LNve+xdaX4O/cDB9j/0ufQ49hcyxe6fFCVv8frLH7+t1GEnlC8QmpC2Eq7fQtKGM8OYKzjzpeE4/Zy5z5swBIDs7m3nz5nHZZZdx6aWXsmbNGm644QbOPvvs7cuMbRO69957Oeigg1K+ba0RVfU6hqQrLi5We6id6Y7qv/yYps3rnBeqgLr/OcM0fz+jXmvzcESpW7aIbe88T7hqE77cvuQdeDx9DjmF7InfRPx2IWWilJSUsPvuu3uyblUlUreNcOV6IvXbwOcno+8A/H0H7NRx5LnnnuPKK6/k1VdfZfTo0R1aT0vbKCJLVLW4yxvRhrQuCRnTXTVt2cCGh/9vextHZ0kwi7ziY8g/5GRy9j1ye/uBSR8igj8nH39OPpH6Gpoq19NUWUHTlg34+/Yno+/A7R0xTj75ZE4++WSPI+4YS0LGpJBGIlT9ZzYbHv8l2lBH/zOvInfS0c5Ecf8RcavPnGFnWvNw83Rn3ox+Q/Fl53qxKcYDvqxcgkPHEGmoo2nLesJbNhDeutG5sLZgYI/8EWJJyJgUaSj7gvX3XUNdyUKyJx7I4O/dTnB4z+oo0JupardpW/NlZhMcPJpIvyFOIqraTLhqM768AjIKBuLL7Nh1QF42y6R1ErLecaY7iIQa2PzMXWx+9i58WbkMvuS39DlyekLuKWZSIysri02bNnW7xzn4Apn4Bo4go3AwTVs2EK7aROO2Snw5fcgoHIQvq/1ScvPzhLKyOn47oUSwjgnGJFHt0neouO8aQmu/JP+Qkxl43k0puWGnSaye8mRVde/NF6nbBhpBApn4cvLbvT1Qa09WtY4JxvRQ4epKNjzxS6r+PZuMQSMZ/tO/krvvkV6HZTopEAh48tTRzorUbWPLy09QOf8+snebzLCr7vM6pFZZEjImgVSV6reeY8PDNxKurqRw2iX0P+MqfFk5XodmehFfdh79Tvo+BVPOJ1JT1f4bPGRJyJgECVV8RcUDP6H2w1fJHLs3w2940nnkgTEe8QUy8XXz6l9LQsZ0kYabqHz+ATY99Rvw+Rl4/s0UHHe+XSxqTBx6ZBISkSOAXwBLgTmq+pqnAZleK1JXw+obT6VhxSfkFh/DoIt+RWDA8PbfaIwBIOV9REXkIRFZLyKfxow/TkSWichyEbmuncUosA3IAsqSFasx7akteZeGFZ8waObtDLv2YUtAxnSQFyWhR4C7gceaR4iIH7gHOBonqSwSkXmAH7g15v0XAP9V1ddFZDDwe+BsjPFAaN1KAPIOmNKtrh8xpqdIeRJS1TdEpChm9GRguaquABCROcA0Vb0VOLGNxVUCLd6nQkRmAjMBRo0a1cWojWlZqGIVkpWLv09/r0MxpkfqLpdsDwdWR70uc8e1SEROFZH7gMdxSlU7UdX7VbVYVYsHDuzevUNMzxUqLyU4ZLSVgozppB7ZMUFVnwGeaW8+u22PSbbG8lIyR+3mdRjG9FjdpSS0BhgZ9XqEO86YbkvDYZrWryYwuGPPbTHGfK27JKFFwHgRGSMiQWA6MK+rC1XV+ao6s2/fvl0O0JhYTZvXbX98tjGmc7zooj0beAeYICJlInKhqjYBs4AXgRJgrqouTcC6porI/Vu3bu3qoozZSai8FIDgECsJGdNZXvSOm9HK+AXAggSvaz4wv7i4+OJELtcYgMbyVQAEhhR5G4gxPVh3qY5LCisJmWQKla9EMoJk9BvqdSjG9FhpnYSsTcgkU6hiFRmDRto94ozpgrROQsYkU6h8JUGrijOmS9I6CVl1nEkWVaWxfJW1BxnTRWmdhKw6ziRLuGoTWl9j1wgZ00VpnYSMSZbmG5cGhto1QsZ0RVonIauOM8kSqnC6ZwetJGRMl6R1ErLqOJMsjeWlIELGoJHtzmuMaV1aJyFjkiVUXkrGgOH4Ai0+ScQYEydLQsZ0QqhiFYHBRV6HYUyPl9ZJyNqETLI41whZe5AxXZXWScjahEwyhGurCVdttmuEjEmAtE5CxiRD892zLQkZ03WWhIzpoK8f4VDkaRzGpANLQsZ0UKiiFMDulmBMAqR1ErKOCSYZGstX4e87AF92ntehGNPjpXUSso4JJhlC5aXWHmRMgqR1EjImGUIVpXaNkDEJYknImA6INNbTtGmdXSNkTIJYEjKmA0LrV4MqgSF292xjEsGSkDEd8PU1QlYSMiYRLAkZ0wF2jZAxiZXhdQCdISI+4BdAH2Cxqj7qcUimlwhVlOLLyceX38/rUIxJCykvCYnIQyKyXkQ+jRl/nIgsE5HlInJdO4uZBowAQkBZsmI1JlZj+SoCg0cjIl6HYkxa8KI67hHguOgRIuIH7gGmABOBGSIyUUT2EpHnY/4GAROAt1X1SuCSFMdvejHnGiHrlGBMoqS8Ok5V3xCRopjRk4HlqroCQETmANNU9VbgxNhliEgZ0Oi+DLe0HhGZCcwEGDVqVEJiN72bhpsIbVhN3oHHex2KMWmju7QJDQdWR70uAw5oY/5ngLtE5FDgjZZmUNX7RWQdMDUYDE5KWKSm12rauBaaQgTtnnHGJEx3SUIdoqq1wIVxzDcfmF9cXHxx8qMy6a6x+calVh1nTMJ0ly7aa4CRUa9HuOO6xG5gahIpVL4KsGuEjEmk7pKEFgHjRWSMiASB6cC8ri7UbmBqEilUvhIJZJLRb6jXoRiTNrzooj0beAeYICJlInKhqjYBs4AXgRJgrqouTcC6rCRkEiZUvorA4FGIr7v8djOm5/Oid9yMVsYvABYkeF3WJmQSprFilT3IzpgES+ufdFYSMomiqs4jHKxTgjEJldZJyNqETKKEt2xA62utU4IxCZbWSciYRAmVrwQgaA+zMyah0joJWXWcSZTGCrd79tAibwMxJs2kdRKy6jiTKKHyUvD5CAwY4XUoxqSVtE5CxiRKqLyUwIARSCDodSjGpJW0TkJWHWcSJVS+yjolGJMEaZ2ErDrOJEpjRSkB65RgTMKldRIyJhHCNVuJVFcSsEd6G5NwloSMacfXNy4t8jYQY9JQWichaxMyifD1NULWJmRMoqV1ErI2IZMIjVYSMiZp0joJGZMIoYpS/AWD8GXleB2KMWnHkpAx7QiVlxK0UpAxSWFJyJh2ONcIFXkdhjFpKa2TkHVMMF0VaaijafM6e46QMUmS1knIOiaYrgqt/wqwG5cakyxpnYSM6apQeSmA3S3BmCSxJGRMG5qTUNDuG2dMUlgSMqYNjeWl+HL74ssr9DoUY9KSJSFj2hCqWEVg8GhExOtQjElLloSMaYNdI2RMcvXIJCQih4rIn0XkLyLyttfxmPSk4SZCG8rsGiFjkijlSUhEHhKR9SLyacz440RkmYgsF5Hr2lqGqv5XVb8PPA88msx4Te8V2rgGwk12jZAxSRRXEhKRZ0TkBBFJRNJ6BDguZvl+4B5gCjARmCEiE0VkLxF5PuZvUNRbvw08mYCYjNlJaJ1z9+zA0DEeR2JM+sqIc757gfOBO0Xkb8DDqrqsMytU1TdEpChm9GRguaquABCROcA0Vb0VOLGl5YjIKGCrqla3Mn0mMBNg1KhRnQnV9HKhCvfu2VYSMiZp4irZqOorqno2sB9QCrwiIm+LyPkiEkhAHMOB1VGvy9xxbbkQeLi1iap6P3AT8H4wGOxygKb3CZWXIsEsMgoHex2KMWkr7uo1EekPnAdcBHwA/BEnKb2clMjaoao3qmqbnRLstj2mKxrLS53u2b4e2X/HmB4hruo4EXkWmAA8DkxV1XXupKdEZHEC4lgDjIx6PcId1yUiMhWYOm7cuK4uyvRCzdcIGWOSJ96feHeq6kRVvTUqAQGgqsUJiGMRMF5ExohIEJgOzOvqQq0kZDpLVZ1rhKxTgjFJFW/HhEIROTVm3FbgE1Vd35EVishs4AhggIiUATeq6oMiMgt4EfADD6nq0o4st5V1WUnIdEq4sgJtrLeSkDFJFm8SuhD4JvCq+/oIYAkwRkRuVtXH412hqs5oZfwCYEG8y4lzXfOB+cXFxRcncrkm/TWWuz3j7EJVY5Iq3uq4ALC7qp6mqqfhXMujwAHbOdQwAAAdEElEQVTAtckKrqvsoXams0Ll7jVCloSMSap4k9AIVa2Ier0eGKmqm4FQ4sNKDGsTMp0VqlgFPj+BAe1dKWCM6Yp4q+NeE5Hngb+5r09zx+UCW5ISWQJYm5DprNC6lQQGjkAyEnEZnDGmNfGWhH6Ac2HoPu7fY8APVLVGVY9MVnBdZSUh01mNFausKs6YFGi3JOTe1+0VN9n8PfkhGeO9UMUqssbt43UYxqS9dktCqhoGIiLS44oT1jHBdEa4upLIti32HCFjUiDeNqFtwCci8jJQ0zxSVS9PSlQJYl20TWfYjUuNSZ14k9Az7p8xaa+xvBSw7tnGpEJcSUhVHxWRbGBUZx/hYExPEWpOQoPtESDGJFu8D7WbCnwIvOC+3kdEunxvt2SzNiHTGaGKUvz9huDLzPE6FGPSXrxdtH+O8+C5LQCq+iGwS5JiShjrom06I7SulKC1BxmTEvEmoZCqxhYnIokOxpjuwK4RMiZ14u2YsFREvg34RWQ8cDnQ5gPljOmJIvW1hCsrLAkZkyLxloQuA/YAGoDZQBXwo2QFZYxXmrtn2zVCxqRGvL3jaoGfun/GpK1QRSkAgcFFnsZhTG8R7+O9dwV+DBRFv0dVj0pOWIlhNzA1HfX1c4SsY4IxqRBvm9DfgD8DfwHCyQsnseyOCaajQuWl+PIK8ecVeB2KMb1CvEmoSVX/lNRIjOkGQuWlVgoyJoXi7ZgwX0QuFZGhItKv+S+pkRnjgVC5XSNkTCrFWxL6rvv/1VHjlB5wwaox8dKmEKGNa8g/9FSvQzGm14i3d9yYZAdijNdCG8ogErbqOGNSqM3qOBG5Jmr4jJhptyQrqPaIyCgReU5EHhKR67yKw6SX5huX2jVCxqROe21C06OGfxIz7bjOrNBNHOtF5NOY8ceJyDIRWR5HYtkLeFpVLwD27UwcxsQK2SMcjEm59qrjpJXhll7H6xHgbuCx7QtyHiF+D3A0UAYscu/S7QdujXn/BcC7wNMicgHweCfjMGYHjRWrkMxs/AWDvA7FmF6jvSSkrQy39DouqvqGiBTFjJ4MLFfVFQAiMgeYpqq3AifGLkNEfgzc6C7raeDhzsRiTLRQ+UoCg4sQ6ezvK2NMR7WXhPYWkSqcUk+2O4z7OiuBcQwHVke9LgMOaGP+F4CfuzdVLW1pBhGZCcwEGDXKHk5m2hcqX0VgmHX4NCaV2kxCqupPVSAdoaqfAqe3M8/9IrIOmBoMBielJjLTU2kkQqhiFbn7Hul1KMb0KvFerJpsa4CRUa9HuOO6xB5qZ+LVVFmOhhoIDLGrEYxJpe6ShBYB40VkjIgEcXrldfnx4fZ4bxOvkN241BhPpDwJichs4B1ggoiUiciFqtoEzAJeBEqAuaq6tKvrspKQiVeofCUAQSsJGZNS8d62J2FUdUYr4xcACxK5LnuUg4lXqHwV+DPIGDDM61CM6VW6S3VcUlhJyMSrsaKUwMCRiD/lv8uM6dXSOglZm5CJl/MIhyKvwzCm10nrJGQlIRMPVXWuEbJOCcakXFonISsJmXhEqjcTqa0iOLjI61CM6XXSOglZScjEo7G5e/bQIm8DMaYXSuskZEw8QhWlAASsJGRMyqV1ErLqOBOPhtLPICNAYLDdY9CYVEvrJGTVcSYedSULydrlG/iCibwnrzEmHmmdhIxpT6ShjvoVH5O9e1s3bTfGJIslIdOr1S//EJpCloSM8UhaJyFrEzLtqStZCED2bvt7HIkxvVNaJyFrEzLtqStZSHDUbvjzCrwOxZheKa2TkDFt0XATdcsWW1WcMR6yJGR6rYbSz9D6GrJ3n+x1KMb0WpaETK9V9/l7AFYSMsZDloRMr1VXspCMgSMI9LdnCBnjlbROQtY7zrRGVakrWWilIGM8ltZJyHrHmdaE1q0gvHWjJSFjPJbWSciY1tSVWHuQMd2BJSHTK9V9vhBffiHB4eO8DsWYXs2SkOmV6kreI3u3yYiI16EY06tZEjK9TlNlBaHyUquKM6Yb6JFJSEQmishcEfmTiJzudTymZ7H2IGO6j5QnIRF5SETWi8inMeOPE5FlIrJcRK5rZzFTgLtU9RLg3KQFa9JSXclCJDObrDF7eh2KMb1ehgfrfAS4G3iseYSI+IF7gKOBMmCRiMwD/MCtMe+/AHgcuFFETgL6pyBmk0bqShaSNX4SkhHwOhRjer2UJyFVfUNEimJGTwaWq+oKABGZA0xT1VuBE1tZ1A/c5PVMsmI16SdcU0XDqs/od/oVXodijMGbklBLhgOro16XAa1W2LtJ7HogF/hNK/PMBGYCjBo1KkFhmp6u/n9LQJUcaw8yplvoLkmoQ1S1FDfBtDHP/SKyDpgaDAYnpSQw0+3VlSwEn5+sXe2QMKY76C6949YAI6Nej3DHdYndtsfEqitZSOYue+HLyvE6FGMM3ScJLQLGi8gYEQkC04F5XV2o3cDURIuEGqhf/qFVxRnTjXjRRXs28A4wQUTKRORCVW0CZgEvAiXAXFVdmurYTHpr+PIjNNRgD7EzphvxonfcjFbGLwAWJHhd84H5xcXFFydyuaZnqitZCEDWBEtCxnQX3aU6zpikqyt5j+DwcWT0tUvLjOku0joJWZuQaabhMHWfL7Jb9RjTzaR1ErLecaZZ4+rPidRWWRIypptJ6yRkJSHTzG5aakz3lNZJyEpCplldyUIy+g8lY+AIr0MxxkRJ6yRkDICqUvu5PcTOmO4orZOQVccZgND6rwhvLreqOGO6obROQj25Oi5cW02krsbrMNJCvbUHGdNtpXUS6qlUlbKbz6L0iiNoqqzwOpwer7ZkIb7cvgRHTvA6FGNMDEtC3VDd0rdpWP4hTRvXsObWc61E1EV1JQvJnrA/4rPD3Zjupkc+yiFeIjIVmDpu3DivQ+mQyufvx9+nH4Muvo11f/g+6/54KcOufgjx+70ObQfhmipC61bSuO5LGtd+SWjtCkIbysieUEyfI88ic9RuXodI09aNhNZ+Sd8jz/I6FGNMC9I6CfXEe8c1rv2SmsUv0+/0H5H/zRMJb/kF6x/8KRseuZFBF/4y5fFEQg2EylcRWvcljWtX0LhuBSH3//CWDV/P6PMRGDgSf+EgKhc8SOX8+8gcuzd9jziT/ENOxp9fmPLYAeo+XwRYe5Ax3VVaJ6FEiNTV4MvOTdn6Kv/5FyQjSMGx5wFQMOV8Quu/onL+fQSGFFF4wkVJXX9TZQWV8/5Mw+r/EVq3gtCG1RCJbJ/uLxhIcOgu5E76FsGhuxActguBoWMJDBmNL5DpLGPrJqrffJaqV+c4CfTRm8idfCx9j5xOzjcOS2mJrq5kIRLMInPsN1K2TmNM/CwJtaHuiw9Y88tvM+zqB8nZ86Ckry9cXUnVa3PJP/RkMgoHbR8/4Ds/I1TxFRseuZHAwOHkTZ6SlPXXr/yUtbd9l/DWTQRHTSBr3D7kH3YqwaFj3WQzBn9u+z0NM/r2p/CEiyg84SLqV3xC1WtzqfrvM2x7ez7+fkPoc/jp9D3iTILDk19NWleykKxx+2xPkMaY7kVU1esYkq64uFgXL17c4fdFGupYednBBAaOYOQv/5H0Cx03P3s3G/96C6N/+zKZRXvExFJL2Y1n0PBVCSNvfoascfskdN3bFr/EujsuxZ/bl2HXPUrWmD0TuvxIqIGaJa9Q9Z+nqPnwVYiEydp1En2OnE7+wSfhz8lP6PrAKcUu/+5u9DtlFgNmXJvw5RuT7kRkiaoWJ3Md1l2oDb7MbPqffgX1yxZT88F/kroubQqx5V8Pk7PXITslICeWHIZd9wj+goGsufVcQutXJ2a9qlTOv4+1t59PcPh4Rt22IOEJCMAXyCT/wBMYfv1j7HLfYgZ85wYitVWsv+9qVly0N+v+OIvaj/+LRlX9dVXdF0sgErb2IGO6sbROQom4Y0Lfo6YTGDyaTU/eltATZKzqd+bTtHkdBSfObHWejIKBDL/+CbQpxJpbziFc07U7QWhTiPX3X8uGR28ib/IURt78dzIKB3dpmfHIKBxMv2mXMvoPrzHy1n/S54gzqVnyCmU3n0X5nZeRqNJ5XclC8PnI2nVSQpZnjEm8tE5CibhjgmQE6H/W1TSULmXbu88nMLqvqSqVzz9AYNhYcvc9qs15M0eMZ9jVD9JYXsra31yEhho7tc5wzVbW3HIOW19+gsJTZjH0qvvxZeZ0almdJSJkj9+XwTNvY5cHPqDwlFlUv/ks1W/8PSHLryt5j8yiPZJS1WeMSYy0TkKJkn/wNIKjdmPjnF+j4aaEL7/+8/do+PIjCk+4KK4LKnP2PIghl/yOuk/fouK+azpccmgsL2X19VOp/exdBl/6ewaefb3nF3L6MrMZMP1asnc/gPV/uZ5QxVddWp6GGqn/3xKyd7NHeRvTnVkSioP4/QyYfg2htSuoeu1vCV9+5fz78eUV0ufwM+J+T5/DT6f/mVdR9dpcNj/9h7jfV/f5e6y+/kSatm5kxA2z6XvU9M6EnBTi9zPksjtBhHV3XYaGw51eVv3KT9HGemsPMqabsyQUp9z9jyVr3L5s+tvviIQaErbcxopVbFv0AgVHn4Mvq2PVYf3OuJI+h5/Bpqd+S1UcVVhVbzxD2c/PxJdbwKhb5qek23lHBQaNZNBFt1D/+SI2P3dPp5dTV7IQsItUjenuLAnFSUTo/+1radq4lq0vPZ6w5W5Z8CD4/PQ97rxOxTT4+78he8+DKb/3Smo/fbvF+VSVjXN+Tfmds8jadRKjbplPcNjYLkaePPmHnkr+wdPYNPe31C//qFPLqCtZSGDoLmQUDExwdMaYROr2SUhEdhGRB0Xk6ahxuSLyqIg8ICJnpyqWnL0OJXvPg9n8zJ1E6mu7vLxwTRVb/z2b/IOnEeg/tFPLkECQYT9+gOCQItb+5kIayr7YYXqkoY7yP1zC5qfvoM+RZzHiZ7M9u4VOvESEQRffSkbBQNbd+YMO72uNRKj7fBHZu+2fpAiNMYmS1CQkIg+JyHoR+TRm/HEiskxElovIdW0tQ1VXqOqFMaNPBZ5W1YuBkxIcdqtEhAEzriW8daNTgumirf9+Eq2vofDErt3azp9XwPDrn0AyAqy95Ts0bd0IQNOWDZTddCbVb89jwNnXM/jS3yOBYJfjTgV/XgFDLruT0LqVbHjs5g69t3HNF0S2VVpVnDE9QLJLQo8Ax0WPEBE/cA8wBZgIzBCRiSKyl4g8H/M3aOdFAjACaL5as/Ot152QPaGY3OKj2fyPewlv29Lp5Wi4iS0LHiR74oFk7dL1+5oFBo1k2HWP0rRlPWtvO4/65R/y1U9OoKF0KUN//Bf6nTKrxz3aOmfPgymc+j22vvQY2xa/HPf76uwhdsb0GElNQqr6BrA5ZvRkYLlbwmkE5gDTVPUTVT0x5m99K4suw0lE0Mo2iMhMEVksIos3bNjQ0iydNmD6tURqtlI578+dXsa2hf+iaeMaCtu4OLWjssfvy9Af3UP98g/46rrj0VAjI29+lvwDj0/YOlKt/4xrySyaSMW9V9K0Jb7Psa5kIf6CQQSGFCU3OGNMl3nRJjScr0sx4CSU4a3NLCL9ReTPwL4i8hN39DPAaSLyJ2B+S+9T1ftVtVhViwcOTGzjdGbRRPIPOZnKfz4Q94kxVuXz9xMYUkTupKMTGlve5CkMmnk7Ofscwajb/knWuL0TuvxU8wUyGfLDe4jUbaPi3qviuiaqrmQh2bsf0ONKfsb0Rt2+Y4KqblLV76vqWFW91R1Xo6rnq+olqvrX1t6biNv2tKb/WT9GQ41sfubODr+37n9LqP/fEgqOvzApjzUoOPocRtzwJIEBreb2HiVz5AQGnPNTat5/pd2eiaENZTRtXGOdEozpIbxIQmuAkVGvR7jjepTg0F3oe9R0tr70OKENZR16b+Xz9+PL6UPfI7vPhaLdXcGUC8jZ+3A2PPpzGtcsb3W+us+tPciYnsSLJLQIGC8iY0QkCEwH5iVjRYm4d1xb+p3+IxBhUwfuWBDaUMa2d/9J36PPTunD8no68fkY8oM/IJnZrPvjLLQp1OJ8dSXv4cvJJ3P0xBRHaIzpjGR30Z4NvANMEJEyEblQVZuAWcCLQAkwV1WXJmn9SauOAwgMGE7fY86l6tW5bf46j+Z07RYKplyQlJjSWUa/IQz+3m9oWPExm+b+rsV56koWkrVrcUqf3mqM6bxk946boapDVTWgqiNU9UF3/AJV3dVt5/lVEtef1JIQQL9TL0OCmWx66rftzhup28bWfz9J/oEnpE17TarlH3g8fY6azuZn76L2s4U7TAtXb6Zx9TKyd7eblhrTU3T7jgldkeySEEBG3wEUnjCT6rfnUb/y0zbn3fqfOURqqymY+r2kxdMbDDr/ZgKDR1N+12WEa6q2j69b5jw919qDjOk50joJpaIkBFB40vfw5RWwafavW48lHGbLP/9C1oRissfvm9R40p0vO48hl99F06Z1bHjoZ9vH15UsRDKCCX/0uTEmedI6CaWKP7cv/aZdSs37r2zvnRVr2+KXCK3/KqEXp/Zm2btOot9pP6Tq9b9R/bbTr6Wu5D0yx+2NL5jlcXTGmHildRJKRXVcs4IpF+AvGMTGJ29r8YLKLc/fT8agkeRNPq6Fd5vO6H/aD8kavx8V911L49ovqf/yI3uInTE9TFonoVRVxwH4snLof9oPqfvsXWo/en2HafXLP6KuZCGFUy5E/BlJj6W3kIwAQy6/Cw2HKLv5LAg3WXuQMT1MWiehVOv7rbPJGDSSjbNv36E0VPn8/fiy8+jz/2Z4GF16Cg4dw6Dzb6Zp41oQsTslGNPDpHUSSmV1HDjP9ul/xpU0fPkR2957AYDQpnVUvzOfPkfNwJ+Tn5I4eps+R80g/+BpZO9xEP7c5Jd6jTGJI/HcELKnKy4u1sWLF6dkXRpuYtWVR4H4GP27f7Nxzu1U/uNextz1NoHBo1ISQ2/UfBzbTUuNSRwRWaKqxclcR1qXhLwg/gz6T7+GxrL/sfWVv7L15SfImzzFElCSiYglIGN6IGslT4K8A44nc5e9WP/gTyES7vKTU40xJl2ldUko1W1C29fr8zFgxnUQCZM1bl+yJlhjuTHGtCStk1Aqu2jHytnnCPqf9WMGnn+TVRMZY0wrrDouSUSE/mdc6XUYxhjTraV1ScgYY0z3ZknIGGOMZywJGWOM8UxaJyGvescZY4yJT1onIS97xxljjGlfWichY4wx3ZslIWOMMZ6xJGSMMcYzveIu2iKyAVjVhUUMADYmKJyeoLdtL9g29xa2zR0zWlUHJjKYWL0iCXWViCxO9u3Mu5Petr1g29xb2DZ3P1YdZ4wxxjOWhIwxxnjGklB87vc6gBTrbdsLts29hW1zN2NtQsYYYzxjJSFjjDGesSRkjDHGM5aEXCJynIgsE5HlInJdC9PPE5ENIvKh+3eRF3EmUnvb7M5zpoh8JiJLReTJVMeYaHF8zn+I+oz/JyJbvIgzkeLY5lEi8qqIfCAiH4vI8V7EmUhxbPNoEfm3u72vicgIL+JMFBF5SETWi8inrUwXEbnT3R8fi8h+qY6xVara6/8AP/AlsAsQBD4CJsbMcx5wt9expnibxwMfAIXu60Fex53sbY6Z/zLgIa/jTsHnfD9wiTs8ESj1Ou4UbPPfgO+6w0cBj3sddxe3+TBgP+DTVqYfD/wLEOBAYKHXMTf/WUnIMRlYrqorVLURmANM8zimZItnmy8G7lHVSgBVXZ/iGBOto5/zDGB2SiJLnni2WYE+7nBfYG0K40uGeLZ5IvAfd/jVFqb3KKr6BrC5jVmmAY+p412gQESGpia6tlkScgwHVke9LnPHxTrNLco+LSIjUxNa0sSzzbsCu4rIWyLyrogcl7LokiPezxkRGQ2M4esTVU8Vzzb/HDhHRMqABTglwJ4snm3+CDjVHT4FyBeR/imIzStxH/upZkkofvOBIlX9BvAy8KjH8aRCBk6V3BE4pYIHRKTA04hSZzrwtKqGvQ4kBWYAj6jqCJxqm8dFJN3PDT8GDheRD4DDgTVAb/isu510P9DitQaILtmMcMdtp6qbVLXBffkXYFKKYkuWdrcZ59fSPFUNqepK4H84Samnimebm02n51fFQXzbfCEwF0BV3wGycG562VPF831eq6qnquq+wE/dcT2+E0obOnLsp5QlIcciYLyIjBGRIM4JaF70DDH1pycBJSmMLxna3WbgOZxSECIyAKd6bkUqg0yweLYZEdkNKATeSXF8yRDPNn8F/D8AEdkdJwltSGmUiRXP93lAVGnvJ8BDKY4x1eYB57q95A4EtqrqOq+DAqe6pddT1SYRmQW8iNOz5iFVXSoiNwOLVXUecLmInAQ04TQAnudZwAkQ5za/CBwjIp/hVFVcraqbvIu6a+LcZnBOWnPU7VbUk8W5zVfhVLVegdNJ4byevO1xbvMRwK0iosAbwA88CzgBRGQ2zjYNcNv2bgQCAKr6Z5y2vuOB5UAtcL43ke7MbttjjDHGM1YdZ4wxxjOWhIwxxnjGkpAxxhjPWBIyxhjjGUtCxhhjPGNJyPRIIrItjnl+JCI5CVznySIyMYHLe7sL793m/j9MRJ5uY74CEbm0s+sxJtksCZl09iOgQ0lIRPxtTD4Z58aXCaGqByVgGWtV9fQ2ZikALAmZbsuSkOnRROQI93kwT4vI5yLyV/eq8MuBYcCrIvKqO+8xIvKOiLwvIn8TkTx3fKmI3C4i7wNniMjFIrJIRD4Skb+LSI6IHIRzp4zfuM8aGisi+7g3dv1YRJ4VkUJ3ea+J81yixSJSIiL7i8gzIvKFiPwyKvZtUcPXisgn7jpva2E7x7ixfxKzjKLmZ8iIyB4i8p4b38ciMh64DRjrjvuNiOSJ8xyd991lTYtaTomIPCDOs6NeEpFsd9o4EXnFje19ERnrjr/a3U8fi8hNCf1gTe/h9bMk7M/+OvMHbHP/PwLYinMvLB/OrXYOcaeVAgPc4QE4V8bnuq+vBf4var5ropbdP2r4l8Bl7vAjwOlR0z4GDneHbwbucIdfA253h3+I82iEoUAmzv34+sdswxTgbSDHfd2vhe2dB5zrDv8g6r1FuM+QAe4CznaHg0B29HR3fAbQJ2qfLMd5xkwRzt1A9nGnzQXOcYcXAqe4w1k4pctjcJ5DJO5+fx44zOvjwv563p/dtsekg/dUtQxARD7EOaG+GTPPgThVaW+JCDgn6eh7wz0VNbynW9ooAPJwbv+yAxHpCxSo6uvuqEdxHpTWrPkWQJ8AS9W9T5eIrMC5kWT07Y++BTysqrUAqtrSc2EOBk5zhx8Hbm9hnneAn4rzlNBnVPULd1t3CB24RUQOAyI4t/Mf7E5bqaofusNLgCIRyQeGq+qzbmz17nYcg5OIPnDnz8O5ue0bLcRlTKssCZl00BA1HKbl41qAl1V1RivLqIkafgQ4WVU/EpHzcG/i2smYIjHxRVqJLx5t3mNLVZ8UkYXACcACEfkeO99w9mxgIDBJVUMiUopTuomOGZz9mN3G6gS4VVXv60D8xuzE2oRMOqsG8t3hd4GDRWQcgIjkisiurbwvH1gnIgGck/ZOy1PVrUCliBzqTvsO8Dqd8zJwfnNPPhHp18I8b+HcWJWYmLYTkV2AFap6J/AP4BvsuA/AeXLqejcBHQmMbiswVa0GykTkZHcdmW6cLwIXRLWrDReRQXFtrTFRLAmZdHY/8IKIvKqqG3DufD5bRD7GqbrarZX3/QynHeQt4POo8XOAq0XkA7dx/rs4HRU+BvbBaRfqMFV9Aaf6brFbnfjjFmb7IfADEfmE1p+IeSbwqbuMPXEe57wJpwryUxH5DfBXoNhdzrkx29ea7+DcRf5jnLarIar6EvAk8I67rKfZMdkZExe7i7YxxhjPWEnIGGOMZywJGWOM8YwlIWOMMZ6xJGSMMcYzloSMMcZ4xpKQMcYYz1gSMsYY45n/D2h/JnFH9kMNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcFVX/wPHPYRdEEFwRETU3RHBFFNfcKsstFZfMrbIy86meynrK7Ml6ymzTyrQyzXLLNDU1yMzMXVRUwA0VldWVTXY4vz/mwg/tAhe4l8ty3q/XfcHMnJn53pl753vnzMw5QkqJoiiKopSXhbkDUBRFUaoHlVAURVEUo1AJRVEURTEKlVAURVEUo1AJRVEURTEKlVAURVEUo1AJRUEIMUUIsdfccSgghJgohAguZno/IUR0KZa3WwjxhHGiK7uS3lehclIIcV8R01KFEC2MH13VJIR4XQjxjbnjKEwllHsIIaKEEAPvGVdwwBVC2AohvhVCXBZCpAghQoUQD5awzMZCiK+FELG6L8VFIcQKIURbU74XYxFCTBdCnNG93wQhxHYhhKNu2gohxPxSLKtcyUs3f65uOxZ+uZV1mZWJlPJHKeXg/OHiDrBVyb3vq4zLqC2lvAil/9xVR1LK96SUZv+xUJhKKKVnBVwF+gJOwBvAeiGEp77CQghXYD9gD/QGHIHOwF/AoCLmsTJ20GUlhOgLvAeMl1I6Au2AdeaNigO6g0vhV6wxV1CZ9kFFqYnvWTEyKaV6FXoBUcDAe8ZNAfYWM89J4NEips0HTgAWxczvCUhgOnAF2KMbPwwIBxKB3UC7QvNI4L5CwyuA+br/+wHRwEvANSAOmFqorCuwBUgGDgPvFPX+gH8DvxQx7SkgG8gCUoGtuvFzgAtAChABjNSNbwdkALm68om68bbAQt17TwC+AmoVsc6S9kWULuaTQBJa8rMrNP1hIFS3TfcDPvfM+6pu3ky0Hw+dgeO69/KTbnn52zkMeKTQ/NbADaCTnrj+yv+MAAG6/TdUNzwACL33/QF7dOXu6LZXYEn7Vs96dwP/0+3nZGAz4FLC5+4nIF63/fYA7XXju+vGWxZa/kjd9moEpAGuhaZ1Bq7rtkux+03f5xrohfbjrV/haZTyc1do2dOA08BtIAhophu/BFh4T9nNwIvFxPgscF63rneAlrrPUzKwHrDRla0L/KrbDrd1/7uXcv88BcTq9vW/C807D/jhnrKTdfvyBvCfQmVrASt1MZwGXgGiy3Os1LttjL3Aqv6ilAkFaIh2kGxbxPSDwLwS1pn/YfgecNDt/NZoB5JBui/kK0BkoQ9qSQklB/ivbt6H0L7sdXXT1+o+9A6ANxBTzPvrDaQDb6MdCG3vmV6w3kLjxgBuaGfAgbr30biobQl8gpbgXNDO4LYC/ysiniL3RaH9d1i3fhfdl+dp3bROaAfh7oCl7ssXlf+edP+HAk11+8AGuAzM1m3HUWgHsfzt/AqwrtC6hwOniojrv8Bi3f+vox34Pig07TN970/Pfi523+pZ727d/vXW7e+f+edBqOBzpxs/TbcfbIFP0SU73bQLwKBCwz8Bc3T/bweeuWe/Ltb3vorZf/lJ4wG0ZOKnb1tQ+s/dcLTvTzu0HwpvAPt10/ro1iV0w3XRPvNuxcS4GagDtEf78fEH0AKt1iICmKwr6wo8ilZD4ajbXr8UWpYh+2eNbloHtMQ0UDd9np6yX6N9dn11cbXTTX8f7UdNXcAd7UeASiimfqEdVFLRfsHmv9L0fRnQvtA7gaXFLC8S3QFNNzxMt8wUIPieD0OLQuXeBNYXGrbQffD63fvluvcLhnbQSQesCk2/BvijHUizKZQA0aq0ijtIP4h2kE/UbZuP0f1KRc8XW8/8ocBw3f9TuPuAKdC++C0LjesBXCpiWVPQDqiF98+Fe/bfY4WGFwBf6f5fArxzz/LOAn0LzTut0LQ+um0uCo3bW2g7u+n2Yx3d8AbglSLiHgCc1P3/G/AEcFA3/Bcwqojtoy+h6N23Rax3N/B+oWEvtKRoiZ7PnZ75nXVlnHTD84Hluv8ddfuumW44ENin+98S7WzGT9/7KmZ9EngNLZF765lWZEIp4XO3A5h+z/cpDWim+wxeAfropj0J7CohxoBCw0eBVwsNfwR8WsS8HYHbpdw/hb+rC4Bvdf/P458JpfDZz2FgnO7/i8CQQtOewAQJRV1D0W+ElNI5/4V2ensXIYQFsApt5z9XzLJuAo3zB6SUW3TLfAHtF3BhVwv974b2pcqfL083vYmB7+GmlDKn0HAaUBuoz/9fB8p3mWJIKXdIKR9B+8U/HO3gUOTFQCHE47qbFRKFEIlov77qFVG8Ptqvt6OFyv+mG1+Ug4X3j5Sy5T3T4wv9n/++QTt4vJS/Ht26mqJt63z37oMYqfsG3jtdatdt9gGPCiGc0RLvj0XEfABoLYRoiHZQ+R5oKoSoB/ihVS0Zqqh9W5R797U1d++PgulCCEshxPtCiAtCiGS0JEuh8quBUUIIW7QztmNSyvzPz2bASwjRHO3MOklKebgU7yvfv9B+TIWVZqYSPnfNgM8KTbuFlkia6PbvWmC8ruwEit6P+RIK/Z+uZ7i2LiZ7IcRS3U08yWj72VkIYVmovMH7Rze9uBtQivrsu92znML/G41KKGUghBDAt2jVXY9KKbOLKf4HMEKXgEpS+MAVi/YlKLzOpmi/mEH7sNgXKt/IgOWDdsqco1tWPg9DZpRS5kkp/wB2oX1Z740ZIUQztNPu59Dq053RrjUIfeXR6nrT0erp8xOEk5SyuANkWV0F3r0nGdlLKdcUKlM4vjigiW7b5yu83UCrl34MrbrlgJQyBj2klGlov2RnA2FSyiy0OvcX0c6wbpTrnRXv3n2djbbdC8Ir9P8EtB8NA9Gqbzx14wWAlDIC7aD2oK7s6oKFSJmBVpX6GDAJ7QdXWYxB+87MLqZMaT93V4EZ9+z7WlLK/brpa4DRuuV0R6t6MoaXgDZAdyllHbSzXgrFBSXvn3unl+UGlDi0qi59yzQalVDKZglaXewjUsr0Esp+jFZvuUoI0VJoHNF+pRZnPTBUCDFACGGN9sHMRDsIgXY6P0H3i/IBtLvOSiSlzAU2AvN0v5680K4l6CWEGC6EGCeEqKuL3U+3roO6Iglodcf5HNC+7Nd180/l/5NPfnl3IYSNLp48tAPBJ0KIBrp5mgghhhjyfkrpa+BpIUR33XtxEEIMzb8FWo8DaDcQPCeEsBJCDEc7myjsF7SLz7PRzjqK8xfaAe8v3fDue4b1uXf7lsVjQggvIYQ92rWXDbrPgT6OaJ+zm2g/WN7TU2Y12vvtg3ZNoLDv0c5gh1H2hBKLVkU4WwjxTBFlSvu5+wp4TQjRXjfdSQgxJn+ilPI42kH8GyBISplYxtjv5Yj2gylRCOECvKWnTEn7503dd7U9MJWy3WW5Hu391xVCNKH4WpUyUwmllHS/YGagJYT4Qs9BTNRXXvfL0x/twv1etDr3ULQPWlFfFqSUZ9F+6S1G+6A/gpbAsnRFZuvGJQIT0Q5shnoO7VQ4Hq0u+rtiyt5Gq1M+j3YXyg/Ah1LK/CqBb9GqORKFEL/ofsF+hHYwTkC7kLiv0PJ2od25Fi+EyP8V9irataaDumqBnWi/6orSQ89zKN1KetNSyhDde/lc974i0Q5+RZXPQqvWmY62nR9Du0sns1CZdLRfs83REnVx/kLb73uKGNZnHrBSt33HlrD8oqxC28/xgB3wfDFlv0c7A4lBu7h8UE+ZNWg/Knbde2YlpdwH5HF3VVipSSmvoCWVOUL/g5ml+txJKTcBHwBrdZ+xMLSzrMJWo52ZrcZ4PkW7SH4DbVv+pqdMSfvnL7TP6h9od6OV+ICoHv9FuzvwEtr3awOFPsfGkn9Xg6IoBhBCHEK7yP9doXFzgdZSysfMF1nlIYTYBayWUlaqp7grIyHEbrQL6//YVrpn2y4B1vdcMzPGep9Bu2BvUM2GodQZiqIUQwjRVwjRSFflNRnwodCvTF01xnRgmblirEx0Z4qdMf/Dr0ohQmutI0AIYSGEaINWhb7J2OsxW0IRQowRQoQLIfKEEF2LKfeAEOKsECJSCDFHz/RFQohU00ar1GBt0B5MTUT7Eo6WUsYBCCGeRLvYu0NKWZq7tKolIcRKtOqUf0kpU4oo01tPdWWq+g6bnA2wFK3KfRfaHXlfGnslZqvyEkK0Q6trXYr29GeInjKWwDm0WxCjgSNoTYBE6KZ3RbuWMNJEdwUpiqIoBjLbGYqU8rTuwnNx/IBIKeVF3QXStWi3NOYnmw/RnlZWFEVRzKyyNwbXhLsfwIlGu0cctDuVtkgp4+5+TOBuQoin0NrCwcHBoUvbtlWigV9FUZRK4+jRozeklMU9bAyYOKEIIXai/4G7/0gpN5djuW5oDz/1K6mslHIZugumXbt2lSEh/6hZUxRFUYohhDDoFnCTJhQp5cCSSxUrhruf6HTXjeuE1oBcpO7sxF4IESmlrPL9RiiKolRVlb3K6wjQSmhtA8UA44AJUspwCp35CCFSVTJRFEUxL3PeNjxSaF2Z9gC2CSGCdOPdhBDbAXQP8zyH1nfBabQG48LNFbOiKIpStBr1pHx5rqHk5kksLYq++K8o1V12djbR0dFkZGSYOxTFROzs7HB3d8fa2vqu8UKIo1LKIp8XzFfZq7wqhY+Cz/Ln2Wtsfa4Xxd1RpijVWXR0NI6Ojnh6eqrvQTUkpeTmzZtER0fTvHnzMi1DNb1igAZ17AiLSeZMvN6HfxWlRsjIyMDV1VUlk2pKCIGrq2u5zkBVQjHAQ96NsLQQbDlRlm4IFKX6UMmkeivv/lUJxQCutW3p3aoeW0JjqUnXnBRFUUpDJRQDDfN1IyYxnWNXbps7FEWpsWrXvrvJvhUrVvDcc6XrKyo0NJTt27cbM6y7rFixgvr169OxY0c6duzI448/Xupl7N69m4cfftgE0ZmWSigGGty+EbZWFmwJVdVeilJV5eTkFJtQcnKM0+1IYGAgoaGhhIaG8v33JXXkWX2ohGKg2rZWDGjXgG2n4sjJzTN3OIqi3GPr1q10796dTp06MXDgQBISEgCYN28ekyZNIiAggEmTJjF37lzWrVtHx44dWbdu3T+m5+bm8vLLL9OtWzd8fHxYunRpwTo+/PDDgvFvvaWvN9+ihYaG4u/vj4+PDyNHjuT2ba22IzIykoEDB+Lr60vnzp25cOHCXfMdOXKETp06/WN8ZaRuGy6FYb5N2H4qnv0XbtKndYntpClKtfX21nAiYpONukwvtzq89Uj7Ysukp6fTsWPHguFbt24xbNgwAHr16sXBgwcRQvDNN9+wYMECPvroIwAiIiLYu3cvtWrVYsWKFYSEhPD5558DWsIpPH3ZsmU4OTlx5MgRMjMzCQgIYPDgwZw/f57z589z+PBhpJQMGzaMPXv20KdPn3/EuW7dOvbu3QvA7NmzmTp1Ko8//jiLFy+mb9++zJ07l7fffptPP/2UiRMnMmfOHEaOHElGRgZ5eXlcvaq1ibt//35mzZrF5s2b8fDwKP9GNjGVUEqhX5v6ONpaseVErEooimIGtWrVIjQ0tGA4PzmA9pxMYGAgcXFxZGVl3fUsxbBhw6hVq1aRyy08PTg4mJMnT7JhwwYAkpKSOH/+PMHBwQQHB9OpUycAUlNTOX/+vN6EEhgYWJCw8peRmJhI375aj7uTJ09mzJgxpKSkEBMTw8iRIwHtwcJ8p0+f5qmnniI4OBg3N7fSbSgzUQmlFOysLRni3YigsHjmj/DGztrS3CEpilmUdCZhDrNmzeLFF19k2LBh7N69m3nz5hVMc3BwKHbewtOllCxevJghQ4bcVSYoKIjXXnuNGTNm3DX+iy++4OuvvwYw6sX+xo0bk5GRwfHjx6tMQlHXUEppeEc3UjJz2H32mrlDURSlkKSkJJo0aQLAypUriyzn6OhISkrRDykPGTKEJUuWkJ2dDcC5c+e4c+cOQ4YMYfny5aSmar0Vx8TEcO3aNWbOnFlwAb6oA7+TkxN169bl77//BmDVqlX07dsXR0dH3N3d+eWXXwDIzMwkLS0NAGdnZ7Zt28Zrr73G7t27S7cxzEQllFLq0cKVerVt1EOOilLJzJs3jzFjxtClSxfq1atXZLn+/fsTERFRcFH+Xk888QReXl507twZb29vZsyYQU5ODoMHD2bChAn06NGDDh06MHr06GIT071WrlzJyy+/jI+PD6GhocydOxfQksuiRYvw8fGhZ8+exMfHF8zTsGFDfv31V2bOnMmhQ4dKsTXMQzUOWQZvbQ5j7ZGrhLwxEEc765JnUJRq4PTp07Rr187cYSgmpm8/G9o4pDpDKYNhHd3IzMnj94gEc4eiKIpSaaiEUgadPeriXrcWm9VDjoqiKAVUQikDIQSP+LqxN/IGN1MzzR2OoihKpaASShkN83UjN0+yPSy+5MKKoig1gEooZdS2kSOtG9ZmS2iMuUNRFEWpFFRCKSMhBMN83TgSdZuYxHRzh6MoimJ2KqGUwyO+2kNMv6pnUhTF5Pr3709QUNBd4z799FOeeeYZwsPDuf/++2nTpg0tW7bkrbfeIi9Pa8T13ubkO3bsSEREhDneQrWnEko5NHN1wLeps7rbS1EqwPjx41m7du1d49auXcu4ceMYNmwYc+bM4ezZs5w6dYrDhw/z2WefFZQr3Jx8aGgoXl5eFR1+jaASSjkN93UjIi6ZyGup5g5FUaq10aNHs23bNrKysgCIiooiNjaWyMjIghaBAezt7fn888/58MMPzRlujaQahyynh30aM39bBFtOxPLioNbmDkdRKsaOORB/yrjLbNQBHny/yMkuLi74+fmxY8cOhg8fztq1axk7dizh4eF06dLlrrItW7YkPT2dxMRE4O7m5AEOHDhQbOvDStmoM5RyalDHDv8WrmwJjVH9zSuKiRWu9lq7di3jx483aL57q7xUMjENdYZiBMN83Ziz8RSnYpLwcXc2dziKYnrFnEmY0vDhw3nhhRc4duwYaWlpdOnShePHj7Nnz567yl28eBFXV1ecndX3sSKpMxRDHFoK6x4rcvKD3o2xthSqv3lFMbHatWvTv39/pk2bVnB2MnHiRPbu3cvOnTsBrVfH559/nrffftucodZIKqEY4ERKFD9F74LEK3qnO9lb07d1A7aejCU3T1V7KYopjR8/nhMnThQklFq1arFlyxbeffddWrduTb169QgICGDixIkF8+T3IZ//2r9/v7nCr9ZUQjHADht438WF1FMbiiwzrKMbCcmZHL50qwIjU5SaZ8SIEUgpadu2bcE4b29v/vzzT86dO8ePP/7I119/zeXLlwGYMmUK169fv+saSs+ePc0VfrWmEooBHmgbSJaFYPe5jUWWGdiuAfY2lqrjLUUxsxEjRnDx4kWaNWtm7lBqHJVQDOBT34eGlvYEZcZBUrTeMvY2VgzyasiOsDiycvIqOEJFURTzUwnFABbCgsEeA9hnX4vksGKqvXzdSEzL5u/z1yswOkVRlMpBJRQDPdBuHNmi+Gqv3q3q41TLWlV7KYpSI6mEYqAO9TrQ2NKBoIxYSI7TW8bGyoKHOjTm94gE0rJyKjhCRVEU81IJxUBCCIZ4DGB/LTuSwn4qstwwXzfSsnLZefpaBUanKIpifiqhlMIDXhPIEYJdZ38usoxfcxca1rFVDzkqiglYWlre9TzJ++8b74n90NBQtm/fXjBcVLP3sbGxjB492mjrLYuoqCi8vb3NGoM+Zml6RQgxBpgHtAP8pJQhRZR7APgMsAS+kVK+rxsvgPnAGCAXWCKlXGTquL1cvWhiVZug5BhGpiSAY8N/lLG0EDzi48bKA1EkpWXjZG9t6rAUpcaoVasWoaGhJll2aGgoISEhPPTQQwXjAgMD+fzzz/9RdsOGom/OqUpycnKwsjJeGjDXGUoYMArYU1QBIYQl8AXwIOAFjBdC5HdiMAVoCrSVUrYD1updiJHlV3sdqmVHYtj6IssN6+hGdq7kt3D911oURTGepKQk2rRpw9mzZwHtSfqvv/4agGeeeYauXbvSvn173nrrrYJ5jhw5Qs+ePfH19cXPz4+kpCTmzp1b8ET9unXrilxf4bODtLQ0xo4di5eXFyNHjqR79+6EhGi/j4ODg+nRowedO3dmzJgxpKZqXVx4enry1ltv0blzZzp06MCZM2cA+OuvvwrOhDp16kRKSgpSSl5++WW8vb3p0KGD3rj8/f0JDw8vGO7Xrx8hISHcuXOHadOm4efnR6dOndi8eTOgnXkNGzaM+++/nwEDBpR5u+tjljMUKeVp0A7QxfADIqWUF3Vl1wLDgQjgGWCClDJPt7wKu2DxQLsJLL+4mT/ObuDRHrP0lunQxAlPV3s2h8YS2M2jokJTlArzweEPOHPrjFGX2dalLa/6vVpsmfT0dDp27Fgw/NprrxWcRUyZMoXZs2dz+/ZtnnzySQDeffddXFxcyM3NZcCAAZw8eZK2bdsSGBjIunXr6NatG8nJydjb2/Pf//6XkJCQgjOSFStW6G32vrAvv/ySunXrEhERQVhYWEFsN27cYP78+ezcuRMHBwc++OADPv74Y+bOnQtAvXr1OHbsGF9++SULFy7km2++YeHChXzxxRcEBASQmpqKnZ0dGzduJDQ0lBMnTnDjxg26detGnz597oohMDCQ9evX8/bbbxMXF0dcXBxdu3bl9ddf5/7772f58uUkJibi5+fHwIEDATh27BgnT57ExcWlLLuqSJW5teEmwNVCw9FAd93/LYFAIcRI4DrwvJTyvL6FCCGeAp4C8PAo/8G9rWs7PKxqE5QSy6Op16F2fX3rZJivG4v/jORacgYN6tiVe72KohRd5TVo0CB++uknZs6cyYkTJwrGr1+/nmXLlpGTk0NcXBwREREIIWjcuDHdunUDoE6dOkWur6gqr3x79+5l9uzZgNb8i4+PDwAHDx4kIiKCgIAAALKysujRo0fBfKNGjQKgS5cubNyoPYoQEBDAiy++yMSJExk1ahTu7u7s3buX8ePHY2lpScOGDenbty9HjhwpWA/A2LFjGTx4MG+//Tbr168vuL4THBzMli1bWLhwIQAZGRlcuXKlYHsZO5mACROKEGIn0EjPpP9IKTeXc/G2QIaUsqsQYhSwHOitr6CUchmwDKBr167lbrlRq/YayPILm7gVth4X/5l6yw3r6MaiXZH8ejKOab2al3e1ilKplHQmUdHy8vI4ffo09vb23L59G3d3dy5dusTChQs5cuQIdevWZcqUKWRkZFRIPFJKBg0axJo1a/ROt7W1BbSbDHJytEcM5syZw9ChQ9m+fTsBAQEEBQUZtK4mTZrg6urKyZMnWbduHV999VVBDD///DNt2rS5q/yhQ4dwcHAo61srlsmuoUgpB0opvfW8DE0mMWjXSfK568aBdraS/4ThJsCHCjTEayK5QrDzbNEX5u5r4IhX4zpsVg85KorJffLJJ7Rr147Vq1czdepUsrOzSU5OxsHBAScnJxISEtixYwcAbdq0IS4ujiNHjgCQkpJCTk4Ojo6OpKSklGq9AQEBrF+vXU+NiIjg1CmtF0t/f3/27dtHZGQkAHfu3OHcuXPFLuvChQt06NCBV199lW7dunHmzBl69+7NunXryM3N5fr16+zZswc/P79/zBsYGMiCBQtISkoqOHsZMmQIixcvLuj47/jx46V6b2VRmW8bPgK0EkI0F0LYAOOALbppvwD9df/3BYrfU0bW2qUNnlaOBKdHw52bRZYb1tGNE1cTuXzzTgVGpyjVV/41lPzXnDlzOHv2LN988w0fffQRvXv3pk+fPsyfPx9fX186depE27ZtmTBhQkH1k42NDevWrWPWrFn4+voyaNAgMjIy6N+/PxEREXddlC+p2ftnn32W69ev4+XlxRtvvEH79u1xcnKifv36rFixgvHjx+Pj40OPHj0KLr4X5dNPPy2oNrO2tubBBx9k5MiR+Pj44Ovry/3338+CBQto1OifFT+jR48u6BI535tvvkl2djY+Pj60b9+eN998s7ybv2RSygp/ASPRzjIygQQgSDfeDdheqNxDaMniAlpVWf54Z2AbcAo4APgast4uXbpIY1m85w3p8117ef3gF0WWib6dJpu9+qtc/Mc5o61XUcwlIiLC3CFUOjk5OTI9PV1KKWVkZKT09PSUmZmZZo6qfPTtZyBEGnCMNdddXpvQqqruHR+LlkTyh7cD2/WUSwSGmjLGkgxpP4mlF39h59kNjOv+rN4yTZxr0c2zLptDY5nZ/76S7mpTFKWKSUtLo3///mRnZyOl5Msvv8TGxsbcYZlNZb7Lq1Jr5dKallaOBKVGMy7tFtjrv2NiWMcmvPlLGCejk/Btqvq3VpTqxNHRseC5E6VyX0Op9IZ4DOCorQ3Xwop+CGpERzdq21rx3b5LFRiZopiGlKqL6+qsvPtXJZRyGOI9BSkEvxdzt5ejnTVjurrz68k4EpIr5pZFRTEFOzs7bt68qZJKNSWl5ObNm9jZlf25OVXlVQ4t6raklVUdglOjmZieCLX0V2lN6enJiv1RrDpwmX8PaaO3jKJUdu7u7kRHR3P9uupArrqys7PD3d29zPOrhFJOQzwG8PnFTcSfWkcjvxl6yzRzdWBgu4b8eOgyz91/H3bWlhUcpaKUn7W1Nc2bq4d0laKpKq9yGuIzFaDYai+AaQHNuZ2WzS/HY4otpyiKUlWphFJOnk7NaWtVh6D0K5CRVGQ5/xYutGtch+X7Lqk6aEVRKszN1Eye+j6EuKR0k69LJRQjGOIxkBO2NsQV06S9EIJpAZ6cS0hlX2TRT9criqIYy/WUTMZ/fZA9569z+WaaydenEooRDPGZBkDwmaK7BgZ4xNeNerVtWK5uIVYUxcSupWQw/uuDXL2VzvIp3fBv4WrydaqEYgRNnZrhZVWHoLQrkFl043J21pY85t+MXWeucfF6agVGqChKTZKQnMG4ZQeJTUznu6nd6NmyXoWsVyUUIxniMZBTttZEnyq+88iJ3ZthY2nBiv1RFROYoig1SlxSOuOWHSQhKYOV0/wq5Mwkn0ooRjLYZzoAwWeLr/aq72jLsI5u/BSTSvX1AAAgAElEQVQSTVJadkWEpihKDRGTmE7g0oNcT8nk++nd6eZp/E60iqMSipG4O3nQwcpJV+1VfHXW1ABP0rNzWRdypYKiUxSluou+nca4ZQe4fSeLVdP96NKsboXHoBKKEQ3xGEiEjTVXwoqv9mrv5oR/CxdW7r9MTm5eBUWnKEp1dfVWGoFLD5KUls0PT3Snk0fFJxNQCcWoBnd8Aij5bi/QHnSMSUwnOCLB1GEpilKNXb55h8ClB0jNzGH1k/5mbdVcJRQjauzojm9+tVdW8fd8D2jXEA8Xe77dq24hVhSlbC7duEPg0oOkZ+ey+snueDdxMms8KqEY2RCPgZyxsSIqbE2x5SwtBFN6enL08m1CryZWUHSKolQXF66nErj0AFm5eax+0p/2buZNJqASitEN8n0SgCADqr3GdHVXfaUoilJqkddSGLfsIHlSsuZJf9o1rmPukACVUIyuUZ0mdLZyIijtMmQX33aOo501Y7s2ZdvJOOKTVF8piqKU7FyClkwA1j7lT5tGjmaO6P+phGICgz0Gct7aiouniq/2Aq2vlFwpWXUwyvSBKYpSpZ2OS2bcsoNYCMHap/y5r0HlSSagEopJDOr4FEJKgkp4yBHAw9WeQe0asvrQFdKzcisgOkVRqqLw2CQmfH0QG0sL1s3oQcv6tc0d0j+ohGICDRzd6GLlTNCdy5CTWWL5ab10faWEqr5SFEX5p7CYJCZ+c4ha1pasm+FP83oO5g5JL5VQTGSIx0AuWFty/tTqEst2b+6CV+M6LN+r+kpRFOVuR6JuMX7ZQRxsrFj7VA+auVbOZAIqoZjMwE4zsJCSoDNF95GSTwjBtF7NOX8tlb2RNyogOkVRqoK/z19n0reHqO9oy09P98DD1d7cIRVLJRQTqefYmG66ai+ZXfIdXI/4NqZebVuWqwcdFUUBgsLjmb4ihOb1arNuRg/cnGuZO6QSqYRiQoObDSTK2pJzJbTtBWBrZckk/2b8efY6F1RfKYpSo/1yPIZnfzyGl1sd1j7pT31HW3OHZBCVUExoYKentWqvsyVXewFM9PfQ+krZF2XawBRFqbR+PHSZF9aH4ufpwg9PdMfJ3trcIRlMJRQTcqndCD8rZ4LuRCGzS77bq15tW4Z3dGPDUdVXiqLURMv2XOA/m8Lo36YB303tRm1bK3OHVCoqoZjYg82GcMXKkhPHlhpUfmpAc9Kzc1l7RPWVoig1hZSSj4PP8t72Mwz1acxXj3XBztrS3GGVmkooJjbEbzYOEtae/tGg8l5udejRwpWV+6NUXymKUgNIKXnn19Ms2hXJ2K7uLBrXCRurqnlorppRVyEOtnUY5uRFMHe4eWW/QfNM69Wc2KQMgsJVXymKUp3l5kle23iK5fsuMTXAk/dH+WBpIcwdVpmphFIBxvWYQ7YQbDy4wKDy97dtQDNXe5arVogVpdrKzs1j9trjrD1ylVn338fch72wqMLJBFRCqRAtGnWiu6Uz61POkZN2s8Tyqq8URaneMrJzeXrVUX49GcecB9vy0uA2CFG1kwmohFJhxns/TryVJX/t+8Cg8mO6NsVR9ZWiKNXOncwcpq04wh9nrvHOCG+e7tvS3CEZjdkSihBijBAiXAiRJ4ToWky5B4QQZ4UQkUKIOYXGDxBCHBNChAoh9goh7quYyMumr89UGkkL1lz5DfJKvthe29aKsd20vlLikorvV0VRlKohKS2bx749xKFLt/h4rC+T/JuZOySjMucZShgwCthTVAEhhCXwBfAg4AWMF0J46SYvASZKKTsCq4E3TBtu+VhZWDGmcR8OWUkuhq8zaJ4pPT0B+HxXpAkjUxSlItxIzWT81wcJi0niiwmdGdXZ3dwhGZ3ZEoqU8rSU8mwJxfyASCnlRSllFrAWGJ6/CCC/30snINY0kRrPowGvYy0l60K/Mqh8Uxd7HvNvxprDVziXkGLi6BRFMZWrt9IY89UBLt5I5ZvJ3XjAu5G5QzKJyn4NpQlwtdBwtG4cwBPAdiFENDAJeF/fAoQQTwkhQoQQIdevXzdpsCVxrd2YwQ7N2JJzg7TrZwya5/kBrXCwteK97adNHJ2iKKYQEZvMqCX7uXUnix+md6dv6/rmDslkTJpQhBA7hRBhel7DS567RC8AD0kp3YHvgI/1FZJSLpNSdpVSdq1f3/w7clzXf5FqYcGv+941qLyLgw2z7r+P3Wev8/d58yZERVFK58CFmwQuPYCVheCnp3vQ1dPF3CGZlEkTipRyoJTSW89rs4GLiAGaFhp2B2KEEPUBXynlId34dUBPI4ZuMr6eA2kn7Fhz4ygyy7CL7ZN7etLUpRbvbjtNbp7qgEtRqoLtp+KYvPwwjZzs+PmZnrRuWLn6fzeFyl7ldQRoJYRoLoSwAcYBW4DbgJMQorWu3CCgStQJCSEYd98oIq0tCTn8mUHz2FpZ8uoDbTkTn8KGo1dLnkFRFLP6/kAUM1cfo4O7Ez89XTX6MjEGc942PFJ3/aMHsE0IEaQb7yaE2A4gpcwBngOC0BLGeilluG78k8DPQogTaNdQXjbH+yiLB7vNpo6Eted+MnieoR0a09nDmYXB57iTmWPC6BRFKSspJQuDzjJ3czgD2jbkxye642xvY+6wKow57/LaJKV0l1LaSikbSimH6MbHSikfKlRuu5SytZSypZTy3Xvm7yCl9JVS9pNSXjTH+yiLWtb2jHTtxC6LTK5d2GnQPEII/jPUi+spmSzdU2XeqqLUGDm5ecz5+RSf/xnJuG5N+eqxzlWyxeDyqOxVXtVWYI855AIbDn9k8DxdmtVlqE9jlu25QHxSyd0KK4pSMdKzcnn6h2OsC9Ha5frfqA5YWda8w6tB71gIsVEIMVQIUfO2kIk0redFgE19fkq/THZKnMHzzXmgLXl5sDC4pEd4FEWpCIlpWTz27SH+OJPAO8PbV5t2ucrC0ATxJTABOC+EeF8I0caEMdUY432e4IalJX/sNewWYtAedpwa4MnPx6IJj00yYXSKopQkNjGdMV8d4FS09vT7pB6e5g7JrAxKKFLKnVLKiUBnIArYKYTYL4SYKoSoOh0eVzIBXuNwx4o1Mbsh1/AL7c/2vw/nWta8u+00UqrbiBXFHM4lpPDokv3EJ2WwcpofD3VobO6QzM7gKiwhhCswBe0J9ePAZ2gJ5neTRFYDWFpYEth0EMesBedCVxg8n1Mta/41sDX7L9xk15lrpgtQURS9QqJuMXrJfnLyJOtm9KBHS1dzh1QpGHoNZRPwN2APPCKlHCalXCelnAXUNmWA1d1I/1exlZK1YctLNd+E7h60qO/Au9tPk626ClaUCvN7RAITvzmEa21bNj7TEy+3OiXPVEMYeoaySErpJaX8n5TyrivIUsoim55XSuZk78qDjq34NS+J5NjjBs9nbWnBaw+24+L1O6w5fMWEESqKkm/t4SvMWBVC20aObHi6B01d7M0dUqViaEKpK4QYdc9rgBCigUmjqyHG+f2bdAsLtuz/X6nmG9iuAf4tXPh053mSM7JNFJ2iKHl5kvd3nGHOxlP0blWf1U/641rb1txhVTqGJpTpwDfARN3ra+BVYJ8QYpKJYqsx2jcNwMeiNusSw8jLMPzOLSEEbwz14nZaFl/8qfpMURRTSM/KZebqY3z11wUmdPfgm8ldcbC1MndYlZKhCcUaaCelfFRK+ShaZ1cS6I6WWJRyGtd2PFHWlhw8sLBU83k3cWJkpyZ8tzeKq7fSTBSdotRM15IzGLfsAL+Fx/PG0Ha8O8Ib6xr4wKKhDN0y7lLKhELD14CmUspbgKprMYIhnWbgIgVrL26FUt4K/PKQNlhYwIIg9bCjohjL6bhkRnyxj3MJqSyb1JUnereosQ8sGsrQhLJbCPGrEGKyEGIysFk3zgFINF14NYeNlS2jGnTnL8scYs/8Uqp5GzvV4qneLdh6IpbjV26bKEJFqTn+PHON0Uv2kyslPz3dg0FeDc0dUpVgaEKZidaJVUfd63tgppTyjpSyv6mCq2nG9nwdgPVHPy/1vDP6tqS+oy3z1cOOilIuK/dHMX3lETzrObB5Zi+8mziZO6Qqo8SEIoSwBHZJKX+WUr6ge22Q6qhldI2dm9PXrjEbs+LIvHWpVPM62Frx0qDWHL18mx1h8SaKUFGqr5zcPOZtCeetLeHc37Yh62f0oJGTnbnDqlJKTChSylwgTwih0nQFGN95JrctLQk2sIvgwsZ0bUrbRo68v+MMmTm5JohOUaqn1Mwcnvw+hBX7o3iiV3OWTuqi7uQqA0OrvFKBU0KIb4UQi/JfpgyspvJvNRxPbFibcAByMks1r6WF4PWH2nHlVhqrDlw2UYSKUr3EJKYzesl+9py/wbsjvXnjYS8sLdTF97IwNKFsBN4E9gBHC70UIxNCMK75UE5aWxAe8lWp5+/Tuj59W9dn0R/nuX0nywQRKkr1ceJqIiO+2EfM7XRWTO3GxO7NzB1SlWZoa8MrgfXAQSnlyvyXaUOruYb5vUQtCWtO/1im+f8ztB2pmTks2nXeyJEpSvXxW1gcgcsOYGtlwcZne9K7VX1zh1TlGdo45CNAKPCbbrijEGKLKQOryRztnHjY2YvfuENi1N+lnr91Q0fG+Xmw6sBlLl5PNUGEilJ1SSn56q8LPP3DMdo1rsMvMwNo1dDR3GFVC4ZWec0D/NA9cyKlDAVamCgmBRjX/RUyLSzYdOjDMs3/wsDW2Flb8vqmU+TmqRvyFAUgK0fr9/39HWd42Kcxa570p55qk8toDE0o2VLKexuZUm2mm1Drxl3oYuXMutRIcu9cL/X89R1tmTesPQcv3uJL1c6XohCflEHgsgMF/b4vGtcJO2tLc4dVrRiaUMKFEBMASyFEKyHEYmC/CeNSgHHtJxNjZclfu+eVaf5HOzdhREc3Ptl5jiNRt4wbnKJUIYcv3eLhxXs5G5/CkomdeWlwGyzUnVxGZ2hCmQW0BzKBNUAy8C9TBaVoBvhMxkPY8EXcLvJSS3+WIoRg/sgOeLjYM3vNcRLT1F1fSs0ipWTFvktM+PogjnZWbJ4ZwIOqq16TMfQurzQp5X+klN2klF11/2eYOriaztrCmpk+z3DO2oodO/9dpmXUtrVi8fjOXE/N5JUNJ1WzLEqNkZ6Vy0vrTzBvawT92jRg83Pq4rupGXqXV2shxDIhRLAQYlf+y9TBKfCA7zRaW9jzxY3DZN8u28OKHdydePWBtgRHJPDDQfXAo1L9Xb2VxqNL9rMpNIYXB7Vm2aQu1LGzNndY1Z6hVV4/AceBN4CXC70UE7MQFjzf9SWuWluxaedLZV7O9F7N6d+mPu9sO01EbLIRI1SUyuXv89d55PO9XL2dxvLJ3Xh+QCt1vaSCGJpQcqSUS6SUh6WUR/NfJo1MKdCn7Rg6WjmzNDmCjGsRZVqGEIKFY3xxrmXNrDXHSMvKMXKUimJeUkq+3B3J5OWHaehox9bnetG/reqlvCIZmlC2CiGeFUI0FkK45L9MGplSQAjB7J5zuWZlyZo/ynYtBcC1ti2fjuvIxRt3mLcl3IgRKop5pWbm8OyPx1jw21ke6tCYTTN74lnPwdxh1TiGJpTJaFVc+/n/drxCTBWU8k9dmw8iwLYh36ZHkXL1cJmX07NlPZ7rfx/rQ6LZHBpjxAgVxTwuXE9lxBf7CI5I4I2h7Vg8vhP2NqqlYHMw9C6v5npe6kn5CvZ8n/kkWVqyYver5VrO7AGt6NqsLv/ZFMblm3eMFJ2iVLzfIxIY8fk+bt3JYtV0P9VNr5kVm1CEEK8U+n/MPdPeM1VQin5ebv4MdmjGqpxr3Ljwe5mXY2VpwafjOmIh4Pk1x8nKUY0eKFVLbp7k4+CzPPl9CM3rO7B1Vi96tqxn7rBqvJLOUMYV+v+1e6Y9YORYFAM8128BWULw7d9vQTmeKXGva8+C0T6ciE5iYfBZI0aoKKaVmJbF9JVHWLQrkjFd3Fk/owdNnGuZOyyFkhOKKOJ/fcNKBWhez4vhzu1ZRzKxET+Xa1kPeDfmMX8Plu25yO6z14wUoaKYzoELN3ng07/ZF3mD+SO8WTDaR7XHVYmUlFBkEf/rG1YqyDP9FyAQLDn0frnOUgDeGOpF20aOvLT+BNeSVeMHSuWUnZvHwqCzTPjmIPY2lmx6NoDH/Jup6yWVTEkJxVcIkSyESAF8dP/nD3eogPgUPRo5NSOwfje2WGRw8di35VqWnbUln0/oxJ2sHF5YH0qeaupeqWSu3kpj7NIDfP5nJKM7u7N1Vi+8mziZOyxFj2ITipTSUkpZR0rpKKW00v2fP1zmdgyEEGOEEOFCiDwhRNdiyi0XQlwTQoTdM95FCPG7EOK87m/dssZSVT3R733sEHx+fDHk5ZZrWfc1cOTtYe3ZF3mTJX9dMFKEilJ+m0NjeOizv4m8lsri8Z34cIwvDrbqluDKytDnUIwtDBiF1kd9cVag/+L/HOAPKWUr4A/dcI3i4tCAx5v053frPMIPflru5Y3t2pSHfRrz8e/nOHr5thEiVJSyS83M4aX1J5i9NpTWjRzZ/nxvHvF1M3dYSgnMklCklKellCXeWiSl3APo68hjOJDfp/1KYIQRw6syJvd5F2cpWBSxAnIyy7UsIQTvjeqAm7Mdz685TlJ6tnGCVJRSOhmdyMOL/mbT8WieH9CKdU/509TF3txhKQYw1xlKeTWUUsbp/o8HGhZVUAjxlBAiRAgRcv166fsUqcxq2zryRPNh7LeGI3veLffy6thZs3h8ZxKSM5jzs2rqXqlYeXmSpX9dYNSX+8nKyWPtUz14cVBrrCyr6mGqEqmg77LJ9pQQYqcQIkzPa7gx1yO1o16RW0tKuUzXh0vX+vXrG3PVlUJgz//QQFry6cWfkZmp5V5ex6bOvDykDTvC4vnh0BUjRKgoJbuWnMHjyw/zvx1nGOTVkB2z++DXXDUXaAyZ0SEsXd69zA3LlobJEoqUcqCU0lvPa7MRFp8ghGgMoPtbYx+isLOuxTNtJ3LS2oLdf75hlGU+2bsFfVvXZ96WcH49GWuUZSpKUf44ncADn/1NyOVb/G9UB76c2Bkne9V3SblJyaV9C5mw4zE+t0pnb3RJl6zLr6qeS25Ba7AS3V9jJKkqa7jfv/DAhkXRweTeuVHu5VlYCL6c2JnOHs7MXhuqkopiEhnZuczbEs70lSE0rGPHr7N6Md7PQz1bYgyZKWxdO4LAc99x3caWLwP+x8DOT5t8tWZJKEKIkUKIaKAHsE0IEaQb7yaE2F6o3BrgANBGCBEthJium/Q+MEgIcR4YqBuusawtrHnO5ykirS3Z/kf5Go7M52BrxYqpfgVJZdvJuJJnUhQDnY1PYcQX+1ixP4ppAc3Z9GxP7muguuc1hrToI7zxfQCvZ13Ey74xPz36G73ve7hC1i1q0oXXrl27ypCQ6tnqfp7MI/CHHqRmpbBldDDWTu5GWW5qZg5Tlh/m+NVEFo3rxFCfxkZZrlIzZebk8sWfF1iyO5I6dtYsHOOrOsEyFik5t+9DXj7zHZesLJnh+TAz+szHyqL8z+0IIY5KKYt8ZjBfVa3yUu5hISyY1eVFoq0s2ViOroLvVdvWihXT/OjU1Jnn1x5n+yl1pqKUzdHLtxi6aC+L/jjPwz5u/P5iX5VMjERmJLNh7TAmnF9JsrUty/p8xMx+7xslmZSGSijVSO92Y+ls5cTSxFOk3zhntOXmJ5WOTZ2ZteY4O1RSUUohNTOHuZvDGP3VAdKzclkxtRufBHbExcHG3KFVC6nRh3n1h968nRVFZ/sm/DT6d/xbDDFLLCqhVCNCCJ73f5PrVpas/sN4ZymgSypTuxUkld/CVFJRSrbrTAKDPv6LVQcvM6WnJ8Ev9KFfG3VWYhRSEr73A8b+Nplgq1xmNx/BV2N/o56D+R6PUAmlmunScgi9bBqw/M5FkmOPGXXZjnbWrJjaDR93J55bfZzfwuKNunyl+riRmsmsNceZtiKEOnbWbHymJ2890l61w2UkMiOFH9c+wmORq8iytuW7fot5os87WAjzHtJVQqmGnu/9LsmWFqzY9UrJhUvJ0c6aldP8dEnlmEoqyl2klPx8NJqBH/9FUFg8Lw5qzdZZvejkUePabzWZpCsH+dcPvXg/6zK9HJqyYewuOnn2N3dYgEoo1VI7d38esPfgh+w4blz80+jLz08qHVRSUQq5eiuNx5cf5qWfTtCyfm22Pd+L5we0wsZKHWaMQkpC//4fY36fxh6rXF5pMZpFo7fjXKvytCig9nQ1ld9V8OLdL0NujtGXn59UvJtoSSUoXCWVmio3T/Lt3ksM/mQPxy7f5r/D2/PTjB60aqieKzGWvIxkvl37MFMu/IillS0/DFjCpN5vVbqHQFVCqaaa1W/PpEYBbLTMZN/v/zbJOurYWfP9dC2pzPzxGMEqqdQ4Z+KTGbVkP+/8GkGPlq78/mJfHu/hiYVF5TrQVWXXL+7imR968WnWFQY4eLI+8E/aN+1t7rD0UgmlGntu0CJaCDvmxgSTfHmvSdZxV1JZfYzfIxJMsh6lcknOyOaD387w8KK9RN9KY9H4Tnw7uStuzrXMHVr1kZfHn8EvMmr3LI5Z5TG31QQWjt6Ko52zuSMrknpSvpoLi9nPY78/xdAcK96dfACsTfOFT87IZtK3h4mITWLJxC4M9CqyRwGlCsvKyWP1ocss2hXJrTtZPNrZnTeGtqOueqbEqNJvR7Fwy0TWk0w7UYv3By+lRaNOZotHPSmvAODdpCfTmg5mi3Uuf25/zmTrqWNnzffT/PBqXIdnfjzKTnWmUq1IKdl+Ko7Bn/zFvK0RtG3kyK+zevHRWF+VTIzszPHljNs4lPUkM8W1Cz9M+NusyaQ01BlKDZCVm8W4NX25nZnEpt4f4dz6QZOtKyk9m8e/PURYbDIz+7Vk1oBWWKsOkqq0kKhbvLf9NMeuJNKmoSNzHmpLv9b1K90F4aouLyuNVVsn82nKaVykBfO7v0EPr7HmDgsw/AxFJZQa4kzCccbveJxBWbDg8X1gV8dk60rJyObtrRFsOBpNhyZOfBLoq1qSrYIuXE9lwW9nCApPoIGjLS8Nbs3oLk2xVBfcje7a1QO88fszHLDM5X6bhrz9yA84125k7rAKqISiR01OKABL9rzBl5c287F9OwaNWW/y9f0WFs/rm05xJzOHOQ+2ZbK6+6dKuJGayWc7z7P68BXsrCx4um9Lpvdujr2Nesrd6KTkzz/fZG7UJjIsBK+0HMPoXnMr3dmfSih61PSEkp2XzWNrBxCXcYNN3d7CtUOgydd5LSWD134+xR9nrhFwnysfjvZVdwJVUulZuXzz90W++usCGTl5TPDz4PkBrajvaGvu0Kql9ORYFm6ZwPrcm7TDhvcHLaGFm5+5w9JLJRQ9anpCATh/I4LAXwPpm5nDxxP+QjiavqE+KSVrj1zlnV8jsLQQvDPcm+Ed3Srdr7CaKjdPsuHoVT7+/RwJyZkM9mrIqw+2pWX92uYOrdo6fWoNrx5+l0tWginOPsx66FtsrO3MHVaRVELRQyUUzTcH3uOzc2v4wKopD03YBhV0YL988w4vrj/B0cu3GdqhMfNHeKs7hMxISsmuM9dY8NtZziak0MnDmdcfakc3z8rTlEd1k5eTxapfp/FpYiguUjC/yyv08Jlk7rBKpBKKHiqhaHLycpi8fghRaXH80uEF6nd7ssLWnZsnWbrnAp/8fo669jYsGO2jmjOvYBnZuWw8FsPyfZeIvJZKM1d7Xn2gLQ96N1JnjSZ0Le4ob/z2FAcssrjfypW3H/kR5zpNzB2WQVRC0UMllP936fYFxmwegX9mNovHBiPqelTo+sNjk3hhXSjnElJ5zN+D1x9qpy76mti15Ay+P3CZHw9d5nZaNu3d6jC9V3Me9nFTDTiakMzNZceuV3k3egdZCF7xfITR/d6rUslbJRQ9VEK52/dHPuXDiG95B1dGTNoFFhV7UMnIzuWj4LN8s/cSnq4OfDzWVzVzbgJhMUks33uJrSdjycmTDGzXkOm9mtO9uUuVOqhVRbfiQpkfNIPfRRo+2DL//kU0b9rT3GGVmkooeqiEcrc8mcfUDUM5l3qFTfdNpVFv0zQiWZIDF27y759OEJ+coR6GNJLcPMkfpxP4du8lDl26hb2NJWO7NmVKT0886zmYO7zqLy+PXbte4+0rv5JsIZjZqA9TBn2GlaW1uSMrE5VQ9FAJ5Z+uJl/h0U0P0yk9g69GbUU0aGOWOJIzsnl7SwQ/H4vGu0kd/jWgNf3bNlAP0ZXSncwcfgq5ynf7o7h8M40mzrWY3LMZgd08cKpVNQ9mVU1y/Ak++O0ptog02mLL/P6f0MajcrYObCiVUPRQCUW/NaHLeO/EYuZmOzBm6t9gxl9Rv4XFMW9LBPHJGXi42DPJvxljuzbFyV4dDIsTm5jOyv1RrD58hZSMHDp5ODO9V3MeaN8IK3W2VzHy8tj/5394M2ozNy0teKJhADMGLcbaqurfyagSih4qoeiXJ/N4atNITiVFsrHpSJoMnG/WeLJz8wgKj2fl/iiORN2mlrUlIzo1YUpPT9o0Uk245EvPyuWvc9fZejK2oNfMB7wbMb1Xczqra1EVKi3+FB/teIL1Fmk0x4b3+i3Eu1nl6JbXGFRC0UMllKLFpsYy6ueH8EpP45uHV2PhXuJnp0KExybx/f7L/BIaQ2ZOHv4tXJjS05OB7RrWyF/eiWlZ/HH6GkHh8ew5f52M7Dyc7a0Z27Upk3t60kS1QlCx8nIJ+fNN3oz6hRhLCx5v4M9zgxZjZ6JuIsxFJRQ9VEIp3s/hq5gXsoDXMqyYMG2/yfpOKYvbd7JYF3KVVQcuE5OYjpuTHY/1aMa4bh64VPOHI+OS0gkOTyAoPJ5Dl26Rmydp7GTHYK+GDPFuhJ+nS41MruaWkRDG4m3TWWVxhybChvm936dLi8HmDsskVELRQyWU4kkpeWZrIMduhjSRDUoAABpcSURBVLOh/gA8Hl5k7pD+ITdPsvN0Aiv3R7H/wk1srCwY7uvG5J6eeDdxMnd4RhN5LZWg8HiCw+M5EZ0EwH0NajOkfUOGtG9EhyZO6pZfc8nLJezPt3j90s9csrYisF4XXhz0BfY21ffuOZVQ9FAJpWTxd+IZ9fOD3JeeyneDvsayRT9zh1SkcwkprNwfxcZjMaRn59K1WV0m9/SkX5v6ONpVrYv4UkpORicRFB5PUHg8F67fAcC3qXNBElFta5lfdvwpvtr+BN9a3KGesOG/Ae/Q876h5g7L5FRC0UMlFMNsObuB/xx8m5dSc5gyMQicK/Yp+tJKSs/mp5CrrDp4mcs30wBoXs+B9m518G7iRIcmTrR3q4OzfeWoGsvOzSPqxh3OJaRyNiGF8wkpHL+SSHxyBpYWAv8WLgxp34hBXg1p7FR5qh1rtOx0wna+zlvROzhnY80wF19eHfwFdWyrz1lxcVRC0UMlFMNIKXkh6Al2xx/is3Rb+k7ZCbUq/11DeXmSAxdvcvzKbU7FJBEWk0xMYnrBdPe6tfB2c6KDu1NBsqlX23RNs+fmSa7eSuNsQgrn4lM4dy2Vc/EpXLyRSnau9r2zEODp6kC7xnW4v20DBrRrUGkSn6JJO7udz3fP4UfbPFwtbHjTfy79W48wd1gVSiUUPVRCMVxadhpTt4zhUnIU39KYDpO2gVXV6xfj9p0swmK15BIWm0R4TBJRurMYgEZ17PBu4oR3kzp4uznp7ftD3zdE3/fmdloW5xJSdckjhfMJqWTm5BVMd69bizYNHWndyJHWDWvTuqEjLevXxs7a0ijvVTGylHj2bnuWd1JPE2ttxdhGvfhX/wU42tS8W9dVQtFDJZTSuZF+g8d+GUla+k1+qN0Rj9E/VHh7X6aQlJ5NRGwy4bFJhMUkcSomiYs37mCsr0KjOnZa0mhQW5c8HGnVoDYOtqrxyyohL5dbBz9nwYkv2WZvQ3OrOszr9xGdm/ibOzKzUQlFD5VQSi8qKYpJW0bjmJnKKvfhuD7wgblDMok7mTmcjksmOeP/2rvz+KjKq4Hjv5PJOgkJSwiQAAkk7CAQQTYXFA24gUCxWkWgLq3igi1iLW+t1i5alL6ltS5ViiCCKxYrgqIoCAHFACEQZAkJhJ0AMQGyTPK8f9wrb6QTGGCSm0nO9/OZT+7ce+fe82Qmc/Lc5Tzl/7VMqOZqqtNmNwoLpkOLRlriJICZPev44KP7mBZUSLHLxV0dfszd/aYQ6mrYhyE1oXihCeX8bDi4nrs+Gkdy6Ulm9pyEu999ToeklH+VFrH7k6k8lf8R6RHh9IxszRNDZpDSpIPTkdUJviYUR45fiMgYEdkkIpUiUm2QIjJTRA6KSNZp86eJyBYRyRSRBSLSuOajbrh6xvVi2uDpZIeFMTljOp7sD5wOSSn/MAbPpgXMerUfow59SqY7kl/3nsTs0R9qMjkPTh0QzwJGAcvPst4sYJiX+Z8A3Y0xFwFbgcf8Gp36L4MThzC176OscEfw1GcPY/K1p6cC3NE8Ns8dzk9W/ornIl30j0vl/dGLufWiOwmSwD9X6ARHzhIaY7KBs97pa4xZLiJJXuZ/XOXpauBHfgxPVePmrrdzoGgPL295nRYLb+e+Wz6Cpu2cDkupc1NRzsmV/8sLG15kdqMIGrtjeHbgk6S1G6bVBy5Qfbjs5KfAm9UtFJF7gHsA2rat2zfoBYL7L5nCgeI9vJC/jBZvjWT0HZ+Bu6nTYSnlm50rSF/yC34XXER+tJtRbdP4xcDHiWkgNyjWtBrr14nIUhHJ8vIY4cd9TAU8wNzq1jHGvGyM6WOM6dO8eXN/7brBEhF+e+VzDGranafCPSyffxOUnzz7C5Vy0nd72ffWbfxy0TjuiSjB1agVM4fO5Mkrn9Nk4kc11kMxxlxdU9sGEJHxwA3AENOQLlWrA0KCQpg+7FUmvD+SycX5vPru7fS4+e16cY+Kqmc8ZZSsmsGs9S/waqMITKNo7uv+UyZcdA/hweFOR1fvBOQ3gIgMA6YAw40xJ862vvI/d4ib52+YS9OwGCaeyGbXooedDkmpHzDblvLpP/tx09ZXeT7GzWUJg1g4ahH3pj6oyaSGOHXZ8EgRyQcGAB+KyBJ7fryILKqy3jwgHegkIvkicqe96O9AI+ATEVkvIi/WchMUEBsRy4vXz8UEh/Pz/Uso+PI5p0NSCo7mkfPGaH6+9OdMcnuIiG7NK2mvMD3tJeKj4p2Orl7TGxvVBdtwYB13LR5HcmkpMwf8HnePMU6HpBqi8hKKvnyWFzf9izeiIohwhTKx90Pc3PUnhARp9YILUadvbFT1S88Wvfnz5dPIDg1l8sqpeHJXOR2SakiMoXLLh7z/yiXcmPMGcxq5GZF0Lf8Zs5Tbuo/TZFKLNKEov7iy3VCmXvwLVkSE8dRHP8Uc2uZ0SKohKNhB1twbGfvFw/zGbUhoksy86+fzxOBpNA3Xy9lrW324D0XVETf3mMCBonxe3vYWzd8dxcThryPxPZ0OS9VHZcc5/PkfmbFtPgui3MRGNuEP/X7FDSkj9C53B2lCUX51/4D/4eDxfby0dwVH3hvFY5dMIaTvPaB3ICt/qCinfN1c5n81jX9EQElUJBM6jOGePg8TFapDJDtNE4ryKxHhiSF/I/arabzy7VxyMp5l+s4vaDriBQjXG8jUearwULHhDRatfpZ/hJaRHxnCoCbdePSKP9EuRsv/1BV6lZeqMYt2fMjjK6fSrLyUGSdC6DT6NYjv7XRYKpBUeDCZb/L5qj8zI7SE7aGhdHbH8+CAqVyacJnW3qolvl7lpT0UVWOuS76etjGJPPTJvYx1HeVPb9zIkMt+A5foITB1FhUe2Pg2X698mr8Gn2RDVBiJ4fFM6zuFtHZD9TxJHaU9FFXjDp04xKRP7yfzyGYmHj3Gz1pejox4HiJ0GBt1mgoPZL3DphXPMMNVxCp3BHEh0dx78SRGdLhJLwF2iI7Y6IUmFOeUVpTy5Kon+CDnP6QdP8lTZRG4fzQLWl/sdGiqLqisgI3vkPPlM/xdCvkk0k3jYDd39byXH3e+RUulOEwPeak6JcwVxh8u/SOdmnZm+trn2BVmmPHatbS66rfQ/z49BNZQVVZA1nvsW/40L3CEf0dFEe5qzM+7T2Bct/F65VaA0R6KqnUr8lcwZfkjhJaX8Je9e0lNvApu+oeOq9KQVFbApgUcWf40/6w4xJvR0RDk4sedbuXunnfrTYl1jB7y8kITSt2RU5jDg58+yJ6i3fym4AijiIYx/4I2lzgdmqpJx3bBurkUrX+d2VLE7MYxlIgwInkE9/a6j1ZRrZyOUHmhCcULTSh1S2FpIY988Qjp+9K5rQQmH9hL8JDHYcADOrZKfeIphW8XQcZs9ucuZ05MI96NieE4lVzT9hruT72f9jHtnY5SnYEmFC80odQ9nkoP07+ZzpzNc+gfFMWzO7cQ034IXPM7aNHV6fDUhTiYDRlzYMM8vq0oYlZsSxaHBWFESEsayoRuE+jSrIvTUSofaELxQhNK3bVg2wKeWv0ULV1u/rZrJ8klxdDucuh3L3QcCkEup0NUvigthk3vQcZsTP7XpLsjmdUqifTKIiKCIxjdYTRju47VcUkCjCYULzSh1G3rD65n0rJJlHhOcl90d27dlk7Id3ugSZJ1M2Tv27V8S11kDOSvhXWzIes9ysuKWdwymddiovm2rIDYiFhu63IbYzqO0fHbA5QmFC80odR9+4/v5/GVj5O+L522jdrwcNwghmxdjuxaDSGR0Osn0O9nENvB6VDV8QLIfBMyZsOhbIpDI3k3uS9zzFEOlB4lOSaZcd3GcX376wl1hTodrboAmlC80IQSGIwxfLnnS55b+xw7CneQGpfKlKThdNuyFLLegYoySLnaOhyWfJWewK9NFR7Y8Rmsfx22LILKcg4k9GJufDJvF26muPw4fVv2ZXy38VyacKmWSKknNKF4oQklsHgqPby37T2eX/88R0qOcEP7G3io0220zF4EX78CxQegWQerx9LzVgjTm+BqzOHtVhLZMB+K9oG7GdldhvF6uLBo/yoqTSVpiWmM7zaebrHdnI5W+ZkmFC80oQSm4rJiXs16ldmbZiMi3NH1Du7sMpbIbUthzQuw5xsIi4HUsdD3Lmiq5cz9orQINr0P6+fCrnSQIA4nX8mH8SksLNrO1mPbiAiOYGTKSMZ2HUvrRq2djljVEE0oXmhCCWx7i/fy14y/smjnIpqFN2Ni74mMTBlJ8J51sOZF2Py+dQd2jzFw5a81sZwPY6zkse51K5mUH6e0WTLLOgxiISdYdfAbKkwFPWJ7MDx5ONe2u1ZPtDcAmlC80IRSP2w8tJFpa6ex7uA6UhqnMLnPZAYlDILv9lqJZc3LUOmBPhPg8kcgKs7pkOu+wj2wYZ7VGzmSgwmNYkOnq1gYHcPiwxkUlRUR547jxvY3MjxluN6I2MBoQvFCE0r9YYxh6a6lTF87nfzifAYlDGLyxZNJaZIC3+2DL56xrj4KDocBE2HgAxAe7XTYdUvxQcj5AjLnWyfaTSX7EvvzQXwKHxzPJbdoF+GucIYkDmF48nD6teyHS+8HapA0oXihCaX+KasoY96Weby04SWOe44zusNoxnUbR2J0IhTsgM+egk0LIKIpXD4Z+twJIQ20FPqJI5D7JeSugJ0r4FC2NTs6gaUpA1gYdJKvCrIwGC5ucTEjkkdwTeI1WvFXaULxRhNK/XWs5BgvZr7Im1vexGM8dG7amaFJQxmaOJQ2xYdh6ZOQswxi2sDgx6DnLfX/7vuSQshLh53LIXc57M8CDIS4OdymD6tj27LSVc6nh9dz0nOS1lGtGZ48nBuSb6BNozZOR6/qEE0oXmhCqf8OHD/Ax3kfszh3MZmHMgHo2qwrw5KGkRYUTcKXf4O966B5ZxjyOHS6rv6MxVJ23DqhvnOFlUT2rQdTCa4wStr0IaNlR9JDXawq2snWY9sAaBzWmKvaXsXw5OGkxqXqGO3KK00oXmhCaVj2Fu/l49yPWZK7hKyCLAAuiu1BWngCQ7M/peXhHdCmH1z9BCQOdDTW81JSCLu/ht2rrSSyZ611MUJQMJWt+7A1vger3BGkn9xLxsH1lFWWERIUQmpcKv3j+zMgfgBdmnbRmw/VWWlC8UITSsO1u2j3qeSSfcQ6d9DLHc/Qg7tJO7KfuPZXWz2Wlt0djrQaxsDRnbD7K9i1Gnavsar5YkCCIL43B9r2JT0qhlXlBaw5sJYjJUcASGmcwoD4AQyMH0hqXCruELezbVEBRxOKF5pQFEDed3ksyV3CktwlbD26FQF6l3oYWlRE/yadaN2iF6GtekKL7hDXBUIiaj9ITynsy7R6H7vXwK41cPwgACYsmoKE3uxs0YHcqKZslwrWHMxgR+EOAJqFN2NA/AAGxA+gf6v+xLn1sml1YTSheKEJRZ0upzDHSi45i9jxXS4AQcYQ7/GQWO4h0eMhMbQpSTHtaNuiJ60S+uNqdRFEtfDvuZfjBVbi+P6xJ4PSylLygkPIbRJPbpM25EZEkksZuScOUFRefOql4a5wUlukMjB+IP1b9adjk456LkT5lSYULzShqDPZcWwHmws2k1eYy66CbHKP7SDv5EFOGM+pdUKMoW15OYmVQSSGx5IYk0Ri8x4ktRlEs2adqTh5lMqSI3hOHqXixFEqSo7hKTlGRWkhFSX2o7SIitIiPGXfUVFWTEVpESeMh7yQEHaGhrEzqgm5IcHsrTiJ4f//Plu4W5AUk0RSdBLtYtqd+tkysqWeB1E1ShOKF5pQ1LkyxnD45GHyvssjryCbvP3ryDu2nbwTB9hVcYJyP3cEIlzhJMYk0S663ank8f1PPfehnOJrQgmujWCUClQiQnN3c5q7m9OnZR/oNvbUsorKCvYX7SEvfxW5+7/h6MnDBIe4cQVH4AqNxBUSiSs0kuDQKIJC3AQHBeMKcuESF64gF8ESTJAEERwUTJgrjMToROLccdrbUAFLE4pS58kV5CIhpi0JMW0Z2O0Wp8NRynH6r5BSSim/cCShiMgYEdkkIpUiUu1xORGZKSIHRSSrmuW/FBEjIrE1F61SSilfONVDyQJGAcvPst4sYJi3BSLSBkgDdvk1MqWUUufFkYRijMk2xnzrw3rLgSPVLP4LMAVoOJepKaVUHRaQJ+VFZASwxxiz4Ww3cInIPcA99tNiETlrIqtGLHD4PF8bqLTNDYO2uWG4kDYn+rJSjSUUEVkKtPSyaKox5t8XsF038Gusw11nZYx5GXj5fPdXZb9rfbkOuz7RNjcM2uaGoTbaXGMJxRhzdQ1tOhloB3zfO2kNZIjIJcaY/TW0T6WUUmcRcIe8jDEbgVPV7kQkF+hjjGlo3VellKpTnLpseKSI5AMDgA9FZIk9P15EFlVZbx6QDnQSkXwRudOJeG0XfNgsAGmbGwZtc8NQ421uULW8lFJK1Ry9U14ppZRfaEJRSinlF5pQTiMiw0TkWxHZLiK/8rJ8vIgcEpH19uMuJ+L0p7O12V7nZhHZbJfMeaO2Y/Q3H97nv1R5j7eKyDEn4vQnH9rcVkSWicg6EckUkeuciNNffGhvooh8arf1cxFp7USc/uRDuSoRkRn27yRTRFL9GoAxRh/2A3ABO4D2QCiwAeh62jrjgb87HWstt7kDsA5oYj+Pczrumm7zaes/AMx0Ou5aeJ9fBu61p7sCuU7HXcPtfRsYZ09fBcxxOm4/tPtyIBXIqmb5dcBHgAD9gTX+3L/2UH7oEmC7MSbHGFMGzAdGOBxTTfOlzXcDzxtjjgIYYw7Wcoz+dq7v863AvFqJrOb40mYDRNvTMcDeWozP33xpb1fgM3t6mZflAcecuVwVWG2cbSyrgcYi0spf+9eE8kMJwO4qz/PteacbbXcX37GLVAYyX9rcEegoIitFZLWIeC3YGUB8fZ8RkUSsG2k/87Y8gPjS5ieA2+1L+hdh9cwClS/t3YBVpBZgJNBIRJrVQmxO8vmzfz40oZy7D4AkY8xFwCfAaw7HUxuCsQ57Dcb6b/2fItLY0Yhqzy3AO8aYCqcDqQW3ArOMMa2xDo3MEanXw0dOBq4QkXXAFcAeoCG8zzWmPn9YzsceoGqPo7U97xRjTIExptR++gpwcS3FVlPO2mas/2IWGmPKjTE7ga1YCSZQ+dLm791C4B/uAt/afCfwFoAxJh0IxyooGIh8+Vvea4wZZYzpDUy15wX8xRdncS6f/XOmCeWHvgY6iEg7EQnF+jJZWHWF0443DgeyazG+mnDWNgPvY/VOsAcz6wjk1GaQfuZLmxGRzkATrGoNgc6XNu8ChgCISBeshHKoVqP0H1/+lmOr9MAeA2bWcoxOWAjcYV/t1R8oNMbs89fGA66WV00yxnhE5H5gCdZVIjONMZtE5HfAWmPMQuBBERkOeLBOfo13LGA/8LHNS4A0EdmMdUjgEWNMgXNRXxgf2wzWl9B8Y18eE8h8bPMvsQ5nPox1gn58oLbdx/YOBv4kIgZrsL+JjgXsJ3a5qsFArH0u7LdACIAx5kWsc2PXAduBE8AEv+4/QD8vSiml6hg95KWUUsovNKEopZTyC00oSiml/EITilJKKb/QhKKUUsovNKGogCYixT6sM0lE3H7c500i0tWP21t1Aa8ttn/Gi8g7Z1ivsYjcd777UcoXmlBUQzAJOKeEIiKuMyy+CauwoF8YYwb6YRt7jTE/OsMqjQFNKKpGaUJR9YKIDLbHtHhHRLaIyFz7buAHgXhgmYgss9dNE5F0EckQkbdFJMqenysiz4hIBjBGRO4Wka9FZIOIvCsibhEZiFUhYZo9VkqyiPSyi2ZmisgCEWlib+9zscZVWSsi2SLSV0TeE5FtIvL7KrEXV5l+VEQ22vt82ks729mxbzxtG0nfj4EhIt1E5Cs7vkwR6QA8DSTb86aJSJRYY4Fk2NsaUWU72SLyT7HGvvlYRCLsZSkistSOLUNEku35j9i/p0wRedKvb6wKLE7X79eHPi7kARTbPwcDhVi1iYKwyqVcai/LBWLt6Visu6Ij7eePAo9XWW9KlW03qzL9e+ABe3oW8KMqyzKBK+zp3wH/a09/DjxjTz+EVQ6+FRCGVR+t2WltuBZYBbjt5029tHchcIc9PbHKa5Owx8AA/gbcZk+HAhFVl9vzg4HoKr+T7VhjZCRhVYHoZS97C7jdnl4DjLSnw7F6fWlY46iI/Xv/D3C5058LfTjz0NIrqj75yhiTDyAi67G+HL88bZ3+WIerVooIWF+4VWt1vVllurvdC2gMRGGV8fgBEYkBGhtjvrBnvYY1cNP3vi/jshHYZOy6SSKSg1Wkr2oJm6uBfxljTgAYY7yNazEIGG1PzwGe8bJOOjBVrBEI3zPGbLPb+oPQgT+KyOVAJVYJ8xb2sp3GmPX29DdAkog0AhKMMQvs2ErsdqRhJZV19vpRWIVDl3uJS9VzmlBUfVJaZboC759vAT4xxtxazTaOV5meBdxkjNkgIuOxC2SeZ0yVp8VXWU18vjhjvSRjzBsisga4HlgkIj/jv4t53gY0By42xpSLSC5Wr6NqzGD9HiPOsDsB/mSMeekc4lf1lJ5DUQ1BEdDInl4NDBKRFAARiRSRjtW8rhGwT0RCsL6A/2t7xphC4KiIXGYvGwt8wfn5BJjw/RVpItLUyzorsYpWclpMp4hIeyDHGDMD+DdwET/8HYA1IuNBO5lcCSSeKTBjTBGQLyI32fsIs+NcAvy0ynmoBBGJ86m1qt7RhKIagpeBxSKyzBhzCKtC9DwRycQ6PNS5mtf9Buu8wUpgS5X584FHRGSdfWJ6HNZJ+kygF9Z5lHNmjFmMdYhsrX3IbrKX1R4CJorIRqofae9mIMveRnesIV8LsA7zZYnINGAu0Mfezh2nta86Y7GqbWdinetpaYz5GHgDSLe39Q4/TFyqAdFqw0oppfxCeyhKKaX8QhOKUkopv9CEopRSyi80oSillPILTShKKaX8QhOKUkopv9CEopRSyi/+D8trtCGcVQw+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEWCAYAAAAO4GKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8HHX9+PHXe+/cadI2PZP04GhaSrlBQAoiAgpFBKSiUkBRFBX8flU8AQXF6+fxRUWU0wKFIiBXuaQtlBtsobSAlNIj6ZGkbc7Nscfn98dMwjbk2CS7O3u8n49HH93szM68Z3Z23zufec/nI8YYlFJKqUzncjoApZRSKhE0oSmllMoKmtCUUkplBU1oSimlsoImNKWUUllBE5pSSqmskNMJTUSuEpHF9uNKEWkTEbf9d4WIPCMirSLyW7HcIiJ7RORlZyMfORH5tIhstbf1IKfjSTd9j4N0E3vMpgsRWSci8weZvkJEvhTnsuaLSG3CghuFobbLnmfA90NEfiAif09KcBnK/mxNT9byPSN5kYhsAiqASMzTtxpjLk1EUE4wxmwBCmOeuhhoBIqNMUZEjgU+DkwxxrQ7EWOC/Aa41BjzLydWLiIGCAKxN0D+1BjzqyStbxHwJWPMMTHP3Qp8DuiOmfU9Y8yB/RwHagjGmNk9j0XkKmCmMebzzkWUGLHbNcLX/7znsYhUA+8DXmNMeHSRZS5jTFI/WyNKaLbTjDFPJSySfoiIx8E3vwpYbz6487wK2DSSZObwdvRVBazrb0IK4zzQGLMhBesZzK+MMT9yOIa0ISJuY0xk6DnTS6bGrZIj4U2OIrJIRFaJyG/s5rn3ReSUmOklInKTiGwXkToRuSammW+RiDwnIr8TkV3AVSLitpv8Gu1lXSoiRkQ8InK2iLzWZ/3fFpF+zz5EZJqIrLSbEZ8ExsZMq45Z7q3A+cB37VPkrwB/B46y/77afs2nRGSNiDSJyPMiMjdmeZtE5Hsi8gbQbi93koj8U0Qa7G35Zsz8V4nIPSJyux3fOhE5NGb6VBG5z37tLhG5PmbahSLylr2/HxeRqn623S8ibYAbeF1E3hskzll2M1GTHcfpMcu5VUT+LCLL7H3xnIhMEJHf2+t/e6RNmSLyqIj8NubvJSJys/14hog8bW97o4jcISKlg+0fEZkF3BDzvjXFEUPvcWD/PU0+aHp+SkT+JDFNTCJypP3eN4nI6xLTRGXvw5/Z+6hVRJ4QkbH2tICILLZjbRKRV0Skwp42SUQeFJHdIrJBRL48QKzLROTSPs+9LiJn2o/3F5En7eW8IyLnxMx3q4j8xd7n7cDxfZZzvIisjfn7SRF5JebvZ0XkDPvxJhE5UUROBn4AfNbe36/HLLKqv/0wyPvwA/t93iQi5w0Wt4h8UkRWi0iLWM3pV8Wzj+z38rd9pj0oIpfHbtdgcfZ5rVdE7hLrM+6TvZsjn7H/b7L3zVFxHNP9fl/Yz3eISFnMvAfZy/D2E9dVIrLUPt5aRWStiOwrIt8XkXp7n50UM/8FYn2ftIrIRrG+/3qmzReR2iHenxvs46VVrO/bqpjpRkRmxsz7JxF5xJ73JRGZETPvSfZx2yzWd85KGarp2hgz7H/AJuDEAaYtAkLAl7G+PC8BtgFiT78f+CtQAIwHXga+EvPaMPANrLPHPOCrwHpgCjAGeAqrucoD+IHdwKyY9a8GPjNAbC8A/89+3UeBVmCxPa26Z7n237cC1/TZrlUxfx8E1ANH2Nt5vr1f/DH7aA0w1d4OF/Aa8BPAB0wHNgKfsOe/CugETrWX9wvgRXuaG3gd+J293wLAMfa0BcAGYJa9T34EPD/Ie2ewmoQYIE6vvbwf2HGeYO+n/WL2SyNwiB3H01hNKV+047wGWB7v+vtMm2Dv0xOA8+z9U2RPm4nV5OsHxmF9Qfw+jv2z1/vW33vbZ1rf4+AFrGZaH3AM0MIHx8xkYJf9nrns+HYB4+zpK4D3gH3tfbsCuM6e9hXgISDfjv8QrOZt7G37s70d84AG4ISY46Rn/V8EnouJvQZosvdRAbAVuMA+Lg6y37eamH3QDBxtxx7osx/ysI7HsfYxsROoA4rsaR1Aed/vg9j4YpY14H7oZ//Px/oO6PmcHge0s/fxt1fc9msOsP+ea8d6Rhz76HCs7yaXPW0sVnN4xVDfczHLuwpYbG/XI3Z87n7eq2pijqs4jumhvi+eBr4cs6xfAzcMEmMn8An7WLgd6zP7Q/u9/TLwfsz8nwRmAGLv/yBw8DDen1as71c/8Af2/t7s/fzb8+6y3wcPcAewJOa9aAHOtKd9CyuvfGnQ92OwiYO8iZuANvvA6Pn35ZgvkA0x8+bbGzEB67pbF5AXM30h9heg/dotfdb1NHbCs/8+kb2/cP4CXGs/ng3swU4qfZZTab8RBTHP3TnQAcfQCe0vwM/6rOMd4LiYfXRhzLQj+tm27wO3xBx0T/X54HXYj4/C+lLz9LNdy4CLYv52YR2AVQO8d/0ltNg4jwV2YH/I7efuAq6K2S9/i5n2DeCtmL8PAJoGOXaMfaDGHjufiJn+Gawv4kbspDTAcs4AVsexf/Z632K2obNPDLf1PQ5ijpn8mNcujjlmvgf8o8+yHwfOtx+vAH4UM+1rwGP24wuB54G5fV4/FevadFHMc7/Aukbdc5z0rL8I68ukyv77WuBm+/FngWf7LPuvwJUx++D2IT7nz2J9oRwJPAHcA5yMdTb3Rp9jaKiE1u9+6Ged8/nw5/Qe4MfDiPv3wO+G2kf2328BH7cfXwo82t92DbKuq4AHgZXAH7F/uPfzXvUeV3Ee00N9X3wJeNp+LFifmY8OEuOTMX+fhvX93ZN4i+zYSgd4/QPAt4bx/iyJmVaIdTxPjfn8xya0v8fMeyrwtv34i8ALMdN6tnHQhDaaJsczjDGlMf/+FjNtR88DY0zQfliIdf3GC2wXq5mlCetDNj7mtVv7rGdSn+f6Tr8N+JyICPAF4B5jTFc/8U4C9pi9r4FtHnwTB1UF/E/PdtjbMtVeT3+xVgGT+sz/A6wk32NHzOMgEBCr6WsqsNn0f32rCvhDzDJ3Y735k4exLbFxTgK2GmOiMc9t7rO8nTGPO/r5e6gLvwf3OXYej5n2ENYZyzvGmFU9T4pVdbpErGbqFqzE0tNsNdj+Gchv+sRwfj/zTAJ2xxzD8OH39Ow+7+kxwMSYefq+pz375h9YyW+JiGwTkV/ZzUU962yNeV3f/Q+APc8jwLn2UwuxfuX2xHZEn9jOw/ph2d+29Gcl1hfYR+3HK7B+kR9n/z0cA+2H/vT3OR3oc4WIHCEiy+2muWasVp2xMOQ+Auv7o6eA5fNY78twHYl1Znidsb994zHEMT3U98U/sZrSJ2K9P1GsHyAD6fsZbTQfXHvssP8vtOM6RUReFKupugkr0cQ2Ecf9/hhj2rC+k2KnxxrouNjre9/er0NWv6a6bH8r1hna2JgvkmKzdzVR3wNiO1ZzY4+psRONMS9iVasdi1W5NtABuR0YIyIFMc9VjmAbemzFOjOM/VLMN8bcFRten/nf7zN/kTHm1DjXVWknt/6mfaXPcvOMMc8PY1ti49wGTBWR2GOjEqu5KRWuxfrVPFFEFsY8/3OsOA8wxhRjffmIPW2w/RP3F0w/tgNlIpIf81zs8bcV6wwtdt8XGGOuG2rBxpiQMeZqY0wN8BHgU1i/SrfZ6yyKmX2w/X8XsFBEjsJqflseE9vKPrEVGmMuiQ1jiDD7JrSVDJ3QRrO/e/T3Od02yDruxDpLmmqMKcG6biox0wfaR2AlkQUiciBWs/0DI4j3Cayz6H+LfR20H/3tl6GO6QG/L4wxe+z1fhbre2/JcJLpQETEj5Usf4PV9FoKPMre+3Oo96f3MyIihUBZn+nx2Ot73z5hmTLw7JaUJjRjzHasN+G3IlIsIi77wuhxg7zsHuBbIjLZvmD6vX7muR24HgjF/qrvs+7NwKvA1WJdsD0G69R7pP4GfNX+dSgiUiDWxemiAeZ/GWgVqwAjT6xilzkiclgc63oZ6w2+zl5PQESOtqfdAHxfRGZDb9HN2aPYrpewfil9V6yL3POx9tOSUSwzLiLyUaxrPl/Euib5fyLSc2ZShNVM0mw/952Ylw62f3YCU0TEN9x4Yo6Zq+xj5ij2PmYWA6eJyCfs9zMg1kXzIT94YhVdHCBWQVQL1vWBqDFmK1ZT5C/s5c0FLrLX1Z9HsX7N/xS4O+bM+mFgXxH5gv0+ekXkMLEKZeL1PLAf1jWOl40x6+x1HcEHRQ597QSq+/wgGomez+mxWMl+6SDzFmGd1XaKyOFYX/CxBtpHGGNqgVewfgj/0xjTwQgY67aTO7GSWn8FLw1YZ1Gx92ANdUwP9X1xJ9Zn5Sz7cSL4sK59NQBhsQr6TupnvsHen1NF5Bj7M/czrFqAoVoD+noEOEBEzrB/qH6dvVsX+jWag+4hsap1ev7dH+frvoi109ZjXe+6l72baPr6G1YSfAOr4ONRrDbc2FLdfwBzGPhD3+NzWB/G3cCVWIlwRIwxr2JdTL0eazs2YF2vGWj+CNYbPw/rgmwjVuVkSRzrimB9kc4EtmCden/WnnY/8EuspqsW4E3glAEWNSRjTLe9rlPsGP8MfNEY8/ZIl9mP1/scO78XkWKs9+NSY0ydMeZZ4CbgFvvX2dXAwVgFAY8A98XEPOD+wboGuw7YISKNMTF8t08MsdNinYd1jW4XVsHL3VitDNgf0gVYTUENWL+qv0N8n6sJWMd+C9YZ6Uo+aF1YiHXNZRtWEdWVZoBbZOzm9fuwri3fGfN8K9YX0bn2cnZgHSf+OGLrWUY78B9gnX1cgFUks9kYUz/Ay3q+2HaJyH/iXVcfO7A+U9uwmge/OsTx9zXgpyLSilVEcU/sxIH2UYzbsK79jqS5MXY9P8M6w3tKYioQ7WlBrNaH5+wmxCMZ+pge6vviQWAfYIcxJraidDTb0Ap8E2sf7sH6znywz2xDvT93Yn2/7sYqdhr2PYnGmEbgbOBXWJ+9Gqwfl/1dTurVU3mYMexfDDcYY6pinsvDqo472BjzrmPBqawnIndjXbi+0ulYVGLYLQOLsQpHMusLMcXsFpvFxph+WyHEuuWp1iT4Hk/7jL8WOM8Ys3yg+dK+6yv7dPtUse6PmoyV+fueDV4CvKLJTCWa3Uw3w24ePxnrjGwk11lUGhKrEOdbWNV2mszSiN2UX2pf1/sB1nW8Fwd7TdonNKyNuBrrFHc1VvPMT3onWt1wfQv4HyeCU1lvAlZ1XxtWWfYlxpjVjkakEsK+ntiEdcnj94PMt6xP83TPvx+kLNjcdBTW/YuNWJcUzhjqGmfGNTkqpZRS/cmEMzSllFJqSKPpnDhtjR071lRXVzsdhlJKZZTXXnut0Rgzzuk4RiqrEpqInAacNnPmTF599VWnw1FKqYwiIqPpPclxWdXkaIx5yBhzcUnJkLd2KaWUyjJZldCUUkrlLk1oSimlskJWXUNTSqlECIVC1NbW0tnZ6XQoSREIBJgyZQpe74fGA81omtCUUqqP2tpaioqKqK6uxupKNHsYY9i1axe1tbVMmzbN6XASSpsclVKqj87OTsrLy7MumQGICOXl5Vl59qkJTSml+pGNyaxHtm6bJjSVcYwxNK+4h0jrbqdDUUqlEU1oKuME33iGnddfRvNTdzgdilJJcfzxx/P444/v9dzvf/97LrnkEtatW8cJJ5zAfvvtx4wZM7jyyiuJRq0xS2+99VbGjRvHvHnzev+tX7/eiU1whCY0lXGalt0CQNf76xyORKnkWLhwIUuW7D1I/JIlSzj33HM5/fTTueKKK3jnnXdYu3YtL7/8Mn/4wx965/vsZz/LmjVrev/V1NSkOnzHaEJTGSW0cwvtrz0JInRu0oSmstNZZ53FI488Qne3NVD4pk2b2LZtGxs2bODoo4/mpJNOAiA/P5/rr7+eX//6106Gmza0bF9llKYnbgNxUXz8Z2l5+i6inUFcgXynw1JZrP6WnyS8NcA/bTbjL/jpgNPLyso4/PDDWbZsGQsWLGDJkiWcc845rFu3jkMOOWSveWfMmEFHRwdNTU0A3H333axatap3+gsvvEBeXl5C409XeoamMka0K0jzv++i8PBTKDzkRDCGri1vOR2WUkkR2+y4ZMkSFi5cGNfr+jY55koyAz1DUxmkddUDRNuaKD3lArzjpwLWdbS8fQ8Z4pVKjdxgZ1LJtGDBAi6//HL+85//EAwGOeSQQ1i9ejXPPPPMXvNt3LiR8vJySktLHYkznegZmsoIxhialt2Cr3J/8mqOxDN2Mq6CErr0OprKUoWFhRx//PFceOGFvWdn5513HqtWreKpp54CoKOjg29+85tcffXVToaaNjShqYzQ+c4rdG1aR+kpFyIiiAj+6tma0FRWW7hwIa+//npvQsvLy+PBBx/k2muvZd9992Xs2LEcffTRnHfeeb2vufvuu/cq23/++eedCj/ltMlRZYSmR2/GlV9M8bFn9j7nnzaH5idux0QiiNvtYHRKJccZZ5yBMWav5+bMmcPy5csBeOCBB/j2t7/N5z73Oaqqqli0aBGLFi1yINL0oGdoKu2Fd++g9aVHKT7h3L0qGgPVszHdnXRv3+hgdEo554wzzmDjxo1UVVU5HUpa0ISm0l7Tk4shGqH0E+fv9by/ejYAXZvedCIspVSa0YSm0poJddP85GIKDjoB38S9h7rwTZ6JeHzaY4hKir5NfdkkW7dNE5pKa60vPUKkqZ7Sky/40DTx+vBN3VcLQ1TCBQIBdu3alZVf/D3joQUCAadDSTgtClFprWnZLXgnTCN/3vx+p/urZ9P+2lMYY7J2SAyVelOmTKG2tpaGhganQ0mKnhGrs40mNJW2Oje+Qec7rzJu0dWIq//GBH/1bFqW302kqR7PmIoUR6iyldfrzbrRnHOBNjmqtNW07BbEn0fx8ecMOI9/2hxAe95XSmlCU2kq0rqb1lUPUHzc2bgLSgacz19lDY2h19GUUprQVFpqfupOTKiL0pMXDTqfu6AYb0UVne9r6b5SuU4Tmko7JhKh6fHbyJv9EfyV+w85v3aBpZQCTWgqDbW/9iThxjpKT7kwrvn91bMJ7XifaEdbkiNTSqWztE9oIjJLRG4QkXtF5BKn41HJ17TsZjzlEyk87KS45vdPm22NjbZZx0ZTKpclNaGJyM0iUi8ib/Z5/mQReUdENojIFYMtwxjzljHmq8A5wNHJjFc5r6v2XYJrV1Fy0vmIO767Sj7oAkubHZXKZck+Q7sVODn2CRFxA38CTgFqgIUiUiMiB4jIw33+jbdfczrwCPBokuNVDmt67BbE46PkxPOGntnmKZ+Eq3CMJjSlclxSb6w2xjwjItV9nj4c2GCM2QggIkuABcaYXwCfGmA5DwIPisgjwJ39zSMiFwMXA1RWViYkfpVakWArLSuWUnT0Ajwl5XG/rmdstE5NaErlNCeuoU0Gtsb8XWs/1y8RmS8ifxSRvzLIGZox5kZjzKHGmEPHjRuXuGhVyrSsuAfT2U7pKR/ut3EogWmz6d7yNiYSTkJkSqlMkPZdXxljVgArHA5DJZmJRml67BYC+xxMYOa8Yb/eP22ONTbatvfwT90vCREqpdKdE2dodcDUmL+n2M+pHBZ84xlC2zaO6OwMYgpDtAsspXKWEwntFWAfEZkmIj7gXOBBB+JQaaTpsVtwF5dTeFS/l1GH5Js0A/H6s3awTxPqZs+ym7VHFKUGkdQmRxG5C5gPjBWRWuBKY8xNInIp8DjgBm42xiTkZ7WInAacNnPmzEQsTqVIaOcW2l97irIzv4nL6x/RMsTjxTd1v6ytdGxZdT8NN/0IAP/MeZR+/PMUfWQBrrwChyNTKn0k9QzNGLPQGDPRGOM1xkwxxtxkP/+oMWZfY8wMY8y1CVzfQ8aYi0tKBu7MVqWfpsdvBXFRctIXRrUc/zSrC6xsHJSxZcVSvBOqGXfBTzGdQXb+5X/ZePFB7LzxCjo3vpG09YabGmh9/kG9aV1lhLQvClHZLdoVpPnpJRQefgre8kmjWpa/ejYt/76L8O4deMsnJihC54Xqt9Kx7nnKP/sdxnzyS5SeehGd77xK81N30LLiHpqfuB3/9LmUfPwLFB+zAFde4YjXFQm20rH+RYJrnyW4dhXdW94GwDuhmuo/rhpwXDql0oEmNOWo1lUPEG1rGnExSKxATI8h2ZTQWlYuBaB4/tmAdd9d3v6Hkbf/YYxbdBUtz95H85OLqf/rd2i47SqKj/00JSd+nsCMuUMuOxrqovOd1wiuXUVw7bN0blgD0QjiC5C3/2EUH/tpTNSw667raF/9NIWHnJjUbVVqNDShKccYY2hadjO+ylnk1Rw56uXFdoGVLV+8xhhaVt5L3pyj8Y6b8qHp7sJSxpxyIaUnX0Dnf1+j+anFtKy8l+YnF+OfNoeSEz9P0bGfxp1fZC0vEqHr/Td7z8A63n4Z090JLheBGfMoO+Pr5B9wDIH9DsXlC1ivCYdoevxWmpbdnDX7VWWnrEpoWhSSWTrffpmuTesZ/5VfISKjXp4rrxDvhGlZVbrf+fbLhHZsouysywadT0TI2+9Q8vY7lHGLrqb1mftoenIx9X+7gobbr6boqNOIdrQRXPc80bYmAHxT96PkxPPIP+AY8mqOwl1Q3P+yPV5KT/oiu5b8iu66d/FN3ifh26lUImRVQjPGPAQ8dOihh37Z6VjU0JqW3YKroITiY89M2DKtsdGyp7S9ecU9SCCfoiM+Gfdr3AUllJ5yASUnL6Lz3dU0P7WY1uf+hbuojMLDPkH+AceSf8DReMZUxL3Mko9/nt33/p49y26h4ks/H8mmKJV0WZXQVOYI795B60uPMubUi3AF8hO2XP+02bS9+DCRYGtvM1uminYFaXv+IYqO/NSIyvNFhLx9DyZv34Op+OpvQGTEZ8KekrEUHb2AlhX3MHbhFQOezSnlJC1ZUo5offERiISH1at+PHquo3VvXp/Q5Tqh7eXHiHa09RaDjIa4XKNu1i099SJMZ5CWFfeMOh6lkkETmnJE++rleCdOxzc5sdc7exJaNvS837L8HjzjppBXc5TToQAQmDGXwH6H0rTsZkw06nQ4Sn2IJjSVctGuDjrWPU/BvPkJX7anbALu4rKM7zEktGsbwbXPUnzcWWl179eYUy8itGMT7aufdjoUpT4kfT4pKmd0vPUSpruT/IOOT/iye8ZGy/RKx9Zn/gnGUDz/HKdD2UvhEafiLptA06M3OR2KUh+SVQlNRE4TkRubm5udDkUNon3NCsTrJ392cprS/NPm0L31HUw4lJTlJ5sxhpYVS8nb/3B8E6qdDmcvPSX8wddX0l33rtPhKLWXrEpo2pdjZgiufpq8miNx+RNX3RjLXz0bE+qie9t7SVl+snW+u5ruug0JKQZJhpKPfx7x+Niz7BanQ1FqL1mV0FT6C9VvpbtuAwXzEt/c2MNfPQeArgwdaqVl5VLEF6DwqNOcDqVfsSX8kfYWp8NRqpcmNJVS7WtWACTl+lkP36TpiC+QkYUh0e5OWp/7F4WHn5LW93r1lvAvv9vpUJTqpQlNpVT7muV4xk1JeLl+LHF78FXuT2cGFoa0v/ok0bamtG1u7NFbwv/YLVrCr9KGJrQYJhwi1FDrdBhZy4S6Cb7xLAXzjk9I342DCVRn5thoLSuW4imbSP4BxzodypC0hF+lG01oMbb/8VJqr0rvX8aZrOOdVzGd7RQcND/p6/JXzybatofwrm1JX1eihPfU075mOUXHfQZxu50OZ0hawq/STVYltNGW7QemHUBo52YirXsSHJkCq7kRt4e8OcckfV2xQ8lkipZn74NohJI0b27soSX8Kt1kVUIbbdl+YMaBAHS+93oiw1K29tXLydv/8JR0GuyvqgGRjLnBuufes8A+B2fU8Cxawq/SSVYltNHy2yP8akJLvPDuHXRvXp+U7q7648orwDtxWsacoXW9/ybdW95K+2KQvjwlYyk65gwt4VdpQRNaDHdBCd5J0zWhJUFPuX5BEsv1+7K6wMqMe9FaVtyDeHwUfeR0p0MZttJTLtQSfpUWNKH1EZgxj64NmtASrX3NctxjKvBV1aRsnYHqOYTqtxBpT++u0Eyom9ZV91Nw2CdwF41xOpxh0xJ+lS40ofURmHEg4d3bCe/Z6XQoWcNEwgRff4aCefOTXq4fq7cwZPNbKVvnSLSvfppIy+6Ma26MpSX8Kh1oQusjMNMuDNmwxuFIskfnu6uJtjentLkRrNGrIf27wGpZsRR36biUXV9MBi3hV+lAE1of/mlzwOXW62gJ1L5mObhcKb9Z2F06HnfJ2LQuDIm07KLtP09RfOyZiNvjdDgjFlvC31WrJfzKGVmV0BIxfIzLn49v6n506nW0hGlfs4LAPgen/PpQ79hoaZzQWlY9AOFQ2o17NhI9JfxNy252OhSVo7IqoSVq+JjAjLl0vrcm47pNSkfh5l10vfd6UnvXH4w1Ntp/MaFuR9Y/lJYVS/FPm4O/apbToYxabwn/yqVawq8ckVUJLVECM+YRbd1DuH6r06FkvODrK8GYlF8/6+Gvno0Jd9Ndt8GR9Q+ma8vbdG18IyvOznpoCb9ykia0fgRmzgP0ButEaF+zHHdxGf7pcx1Zf2Ba+naB1bLiHnB7KDrm006HkjC9JfzLbsZEIk6Ho3KMJrR++Cv3Rzw+Ot/TSsfRMNEowTUryD9wPuJy5lDzTrDGRutMs0pHEwnT8sx9FBxyIp6ScqfDSagxp15EaOdmLeFXKacJrR/i9eGrrtHCkFHq2riWSMsux5obAcTtxl9Vk3ZnaO2vryTSVJ8xHREPR28JvxaHqBTThDaAwIwD6dr4hvZ8MArta5YDkH/gcY7G4U/DsdFaVtyDq2gMBQd9zOlQEk5L+JVTNKENIDBzHtGONkLb33M6lIzVvmY5/ulz8ZSMdTQOf/Vsou3NhBvrHI2jR6StifZXnrDuPfP6nA4nKbSEXzlBE9oAeoeS0WbHEYm0NdH539coOOgEp0NJux5DWp97EBPqyuiuroaiJfzKCZrQBuCbvA8SyNcusEYo+MazEI2mZHTqofirZoHLlTbX0VpWLsVXuT/5Z/sZAAAgAElEQVT+aQc4HUpSaQm/SrWsSmiJ6Cmkd1luN4FpB2jp/gi1r1mOK7+YwD4HOx2K1fvLxOl0pkFC667bQOd/X6N4/jkp7ajZCb0l/I/elLY3tqvsklUJLVE9hfQIzJxnFROEQwlZXq4wxtC+ZgX5cz+aNv0TpksXWC0r7wWXm+Jjz3Q6lJQo/8xlhOq3sEevpakUyKqElmj+GXMx3Z10bX3H6VAySveWt4ns3uFouX5f/urZhOu3EmlrciwGE4nQsnIpBfPm4xkz3rE4Uqng4BMoOPhj7L73d4SbGpwOR2U5TWiDCMywegzp0mbHYem5oTY/jYZD8U+bA0DXpvWOxRBc9xzhXduzqqureIw7/0qiXR003vVLp0NRWU4T2iC8E6pxFZbqdbRhal+zAl/lLLzlE50OpVfvYJ8ONjt2vv0KiFBwyImOxeAE3+SZjDn1IlqevovOjW84HY7KYprQBiEiBKbP1UrHYYh2tNHx9stpUd0Yy1M6DnfpeEcTWqixDveYClz+PMdicErZWZfhLiqj4eafpNUN7iq7aEIbQmDGgXRteZtod6fToWSE4JvPQTiUFvef9WUVhjh3L1q4oRbv2MmOrd9J7oISxn7uCjrefpm25x90OhyVpTShDcE/cx5Ewo5ee8kk7auXI4F88vY7zOlQPiQwbQ5dte86VkIeaqjL2YQGUHz8ufinzaHhHz8j2hV0OhyVhTShDSEw0+4xJEt73m998RFaVixNyLKscv3l5M85Ji27dPJPmw3hEF21/035uk00SnjXNjzjcjehidvNuAt+RrhxG3v+9Renw1FZSBPaEDxlE3GXjqMrC7vAioa62HnDd9hx/bfY88jfR7280Lb3CNdvTcvmRnC2MCTS3IgJdeEdOyXl604n+TVHUPSR09n9wJ8INdQ6HY7KMprQhiAiBGYcmJVnaO2v/ZtoWxO+qfvRcMtPaP73XaNb3poVABSkUbl+LG9FNRLId6RPx54vb8+43E5oAGO/8CMAGv9xjcORqGyjCS0OgZnz6K7bQLSjzelQEqplxT24S8dTed0j5B94HDv/+h1aR3HBvn3103gnzcBbUZnAKBNH3G78lbMcOUPr6ek/l6+h9fCOm8KYBV+j9fkHCa5/yelwVBbRhBaHwIx5YAydG9c6HUrChJt30b76aYo/eiYufz6TvnsTefseyvY/XErbq08Oe3nRrg461r+YVr2D9Mc/bY4jY6PpGdreys74Gp7yiTTc8mNMJOJ0OCpLZFVCS2TnxLH8vUPJZE+zY+uq+yESpvg4awgTlz+fSd+/HX9VDdt/ezHBtauGtbyO9S9iujvT9vpZD3/1bKLBVsL1W1O63nBjLa78YtwFxSldb7py+fMZ+4Uf0/X+m7QsX+J0OCpLZFVCS3TnxD08JeV4xk3Jqi6wWlYuxT9tjjW0is1dUMyUH9+Jd0I1db9cRMc7r8a9vPY1yxFfgLxZRyQj3ITpKQxJdc/7oYY6PNrcuJeioxcQ2P8wGu+8TsdMUwmRVQktmQIz5mVNF1hdW96ma+PafvsUdBeVMeUnS/CUVlD38y/QGWcBRfvqp8mrOSrte8HwV+5vj42W2sKQcGMt3hwu2e+PiDD+gp8Rad3N7nt/53Q4KgtoQotTYOaBhHZuJtK62+lQRq1l5VJweyg65ox+p3vGVDDlyrtx5RVQ97OFdNe9O+jyunduJrRtY9pfPwNw+fPwTqime2tq70ULNdTp9bN+BGbMpfiEc9nz6E10121wOhyV4TShxSnQcx3tvczuXNVEIrQ8cx8FBx2Pp2TsgPN5x01hyk/uBpeL2qvPJbRzy4DzBnvK9TMgoYFVvh+qH3h7Ei0SbCXa3qwVjgMYu/AKXL4ADbf9NGHLjHa00fzvO7UpM8doQouTf/pcgIxvdgyufZbInp29xSCD8U2awZQfLyHa3UHtTz9LePeOfudrX70c7/hKvBOnJzrcpPBWVA6aoBOtt2Rfz9D65SkdR9lZl9P+n6do/8/To1qWiUZpXnEP73/jGHb+5X/ZteRXCYpSZYK4EpqI3CcinxSRnE2A7oJivJNmZHylY8uKpbgKSig49ONxze+vmsXkH95BuLnRSmrNu/aaHg11EXxzFfkHHY+IJCPkhPNVVBFtb07ZYJ9asj+0MadehHfidOpvvXLEI8R3vLuarT88nZ3XX4Z37GQKDv4YzU/dMeAPMZV94k1QfwY+B7wrIteJyH5JjCltWT2GZO4ZWiTYStvLyyg6egEurz/u1+XtcxCTv387ofqt1F2zkEj7B7dFdL79CqYzmLa9g/THM9668TtVZ2l6U/XQxOtj3PlXEtr2Hk2P3Tqs14b37GTH9Zex9fufJNRQy4RL/8DUnz/EuIuuwUTC7P7Xn5MTtEo7cSU0Y8xTxpjzgIOBTcBTIvK8iFwgIt5kBphOAjPnEdm9I2N/8bW98DCmu5Pi+UM3N/aVP/soJn3nJrq2vkPdz79AtNPqLb19zXLweMmfc0yiw00aX0VPQtuckvWFGmoRjw936fiUrC9TFRxyIvnz5rPrnt9+qCWgP9FQF7sf+BPvf+MYWlbdz5gFX2Pa/62ieP7ZiMuFr6KK4uPOovnJxYT37EzBFiinxd2EKCLlwCLgS8Bq4A9YCW743UpkqA8KQzLzLK1l5VK8k6YT2OfgEb2+4KDjmXjZn+l89z9s++Uiot2dtK9eQd7+R+DKK0hwtMnTe4aWosKQcEMtnrGTEFfOttjHRUQYt+hqop3tg177MsbQ9uqTbL78BBoXX0v+7KOo/t1yxn3hR7jyCveat+zMb2LCIXZr7/45Id5raPcDzwL5wGnGmNONMXcbY74BFA7+6uzhnzYbXG46M7Dn/dDOLXSsf5Hi484e1bWuoiM/yYSv/Y7g2lXU/fwLdG95K+1Gpx6KO78Id3FZypocQ416U3W8/FP2ofSUC2h+anG/90B2171L3bWfZ9t154PLxeQf3sHk79+Ob4CCJN/EaRQfeybNT9xOuKkh2eErh8X7k/GPxpgaY8wvjDHbYycYYw5NQlxpyeXPxzd1v4zseb/lmXsBKP7oZ0a9rOL5ZzP+Sz+n483nANK+u6v+eMdXpazJMdxQpzdVD0P52d/GVVhKwy1X9va5GWlvoeG2q9n07Y/R+d9XGXf+VVT/v6fjulWk7KxvYcLd7NFraVnPE+d8Y0TkzD7PNQNrjTH1CY4prQVmHkjby49hjMmYqj5jDC0r7yVvztEJKx0vPXkRxkTpfPsVfFMzr0bIW1GZkqZjEw4R3rMDT46PgzYc7sJSxp77Per/dgVtLzxEtKPN6h6rZRfFJyxk7OeuGPQeyr58E6dTdMynaXridsac8fVhvVZllnjP0C4C/g6cZ//7G/A94DkR+UKSYktLgRnziLbuSXnntqPR+c4rhHZsGlExyGDGnHIhEy//S8Yk9ljeiipCDbWYSDip6wnv2g7GaIXjMJWceB6+qhq2/+4Sdv7lf/FOqKbyumVMuOQ3I0pI5Z/5FibUxZ4Hb0hCtCpdxJvQvMAsY8xnjDGfAWoAAxyBldhyRmBmT2FI5jQ7tqxYivjzKDriVKdDSRveikqIhK2Ek0Q996DpTdXDI243FRdfR2DmQUz41vVMveZfBGbMHfHyfJNnUvSRBTQ9fiuRlqErKFVmijehTTHGxNa91gNTjTG7gZHdBZmh/FP3Rzy+jLnBOtrVQevzD1F4xCc/VAGWy7zjU1O633MPmt5UPXx5+x1K5S8epvjYMxPSClB21mWYrg52P/TXBESn0lG8CW2FiDwsIueLyPnAv+znCoDUdLeQJsTrw189O2P6dGx/9QmiwRaK55/ldChpxVtRBSQ/ofX2ElI+ManrUUPzT9mHoo+cTtOyW7Kik3H1YfEmtK8DtwDz7H+3A183xrQbYzKjR9oE8s88kK6Nb2CiUadDGVLLynvxlE8kf/bRToeSVjzlE8HtIZTka6GhxlrcpeNx+QJJXY+Kj3WWFmTPQzc6HYpKgiETmoi4gaeNMf80xlxu/7vXpHoM+zQSmDmPaEcb3dveczqUQYX31NO+ZgXFHz0LcbudDietiNuDd9yU5Dc5NtTp9bM04p+6H4VHfoqmZTcTad3jdDgqwYZMaMaYCBAVkcQOA50EInKaiNzY3Nw89Myj0NNjSLqPYN266n6IRrS5cQDe8cnvdT/UWKs3VaeZ8rMuI9rRxp6H/+Z0KCrB4m1ybAPWishNIvLHnn/JDGwkjDEPGWMuLilJbu71TZqJBPLTvjCkecVSAjMPwjd5H6dDSUveiipC9ck7QzPGEG7cpjdVpxl/1SwKj/wkTctuStmICyo14k1o9wE/Bp4BXov5l5PE7SYwfW5a9+nY+f6bdG9eT/FxenY2EG9FJZGW3USCrUlZfqRlF6a7U8/Q0lD5WZcTDbay55G/Ox2KSqB4e9u/DbgHeNEYc1vPv+SGlt4CMw6ka9O6EY/dlGwtK+8Fj5eiYxY4HUra6ql0DCepk+Kw3oOWtvzVNRQefgpNj/x9r+GQVGaLt3Pi04A1wGP23/NE5MFkBpbu/DMOxHR30rX1HadD+RATDtH67H0UHnwi7qIyp8NJWz33onUn6Tqa3lSd3srOvpxosIWmR29yOhSVIPE2OV4FHI59z5kxZg3Qf/fWOSIwcx5AQnreN5EIba88TrSjfdTLAmh/fSWR5saEd3WVbbxJHhet96ZqbXJMS4Fpcyg47BPsefhvRNpbnA5HJUC8CS1kjOl7Xp7+N2ElkbeiCldhKV2j7ALLGEP9LT9m2y8vYMv3P0l33YZRx9ayYinu4rKM7AU/ldyFpbgKSpI2LlqooRZXXiGugrQvEM5Z5WdfTrS9maZlNzsdikqAeBPaOhH5HOAWkX1E5P+A55MYV9oTEaswZJSVjnv+9WeaH7uVoo+cTqSlkS1XnErby8tGvLxIWxPtrz5B0dFnIF7fqGLLBd6K5JXuhxpq8YybkpGdN+eKwPS5FBxyInsevjFpxUEqdeJNaN8AZgNdwF1AC3BZsoLKFIGZ8+ja+g7Rro4Rvb7l2ftoXHwtRUcvYMJlf6byl4/hnTSDbb+6iMY7foGJRIa9zNbnH8KEuiief86IYso1yRwXLdxYp73sZ4Dys/+HaFsTTctucToUNUrxVjkGjTE/NMYcZow51H7cmezg0l1g5oEQCdO1ef2wXxtcu4odf7qcvNkfoeLS3yMuF95xU5j6s/sp/tjn2H3//1F37XnD7hm8ZeVSfFP2xT/9gGHHlIu8FZWE67cmpRuzUEOddkqcAQIzD6Tg4I+x56G/Eu1oczocNQrxVjnuKyI3isgTIvJ0z79kB5fu/DN6CkOG1+zYtWk92359Eb6J05n03Ztwef2901y+ABMu+Q0VX/01HetfZPP3Tom7I+Tu7RvpfOdViuefrc1ccfJWVGHC3YT37EjocqMd7UTb9ugZWoYoO/vbRNv20PTYrU6HokYh3ibHpcBq4EfAd2L+5TRP2QTcpePpGkbP+6HGOup+/gVcgUIm/3Ax7gEKBkpOPI+p1zwAxrD1Rwto/vddQy67ZeW94HJRdGzfwcXVQD6odEzsdbRQ77AxmtAyQd4+B5E/73j2PHRDwqqNVerFm9DCxpi/GGNeNsa81vMvqZFlABEhMPPAuAf7jLQ3U3ft54l2tjH5h4uH/PUemDmPql89Rt6sw9n5l/9h51+/SzTU1e+8JhqlZeW95B9wLF4dqiRuyRoXrfem6rHa5Jgpys/5NpGW3TQ9kdN9RmS0eBPaQyLyNRGZKCJlPf+SGlmGCMyYR3fdhiHb3qOhLrb98kK6t29k0nduwl81K67lu4vLmfzDOxnz6UtpfnIxtT8+s/fXf6yO9S8SbqjVe8+GyTt2MrhcCU9oveOg6TW0jJG37yHkH3gce/71F6KdQafDUSMQb0I7H6uJ8Xk+6Mfx1WQFlUkCMw4EYwa9zmWiUXZefxkd619gwtd/R/4BxwxrHeJ2M+68HzDxOzfRXfcuW757MsG1q/aap2XlUlx5hRQefvKItiNXideHp3xSwsdFCzfWgduDp3R8Qperkqv87G8TadlF0xO3Ox3KsJlwiKYn78CEup0OxTHxVjlO6+dfTvcU0iMw0xpKZrCOihsXX0Prc/9i7Hk/oHgU17eKjjiFyusewV1cRu3PzmX3v/6MMYZoZ5DWFx6m8KhP4fLnj3j5ucpbkfjS/VBDLd7ySToOXYbJ2/8w8g84hj3/+jPRrsw6S2t+cjH1f/0O7WufdToUxwya0ETkuzGPz+4z7efJCiqTuIvL8YyfOuB1tD2P/J09D95AycmLGHPG10e9Pt/kfaj8xSMUHvFJGv9xDdt/+xVaVt6L6Wyn+DhtbhyJZNxcHWqs1ebGDFV29v8QaW6k+ak7nQ4lbpH2Zhrv+Q15c47O6R6ChjpDOzfm8ff7TNO2LVtgxjy6+unTsfXFR2i49UoKDj+Z8Rf8LGGl9K68QiZ++wbGfvEntL28jPq/XYFn/FTyZh2RkOXnGu/4KiJN9Qn9Ra43VWeu/Joj8E2eSTCDznR2//MPRNuaGPfFn+T0LTtDJTQZ4HF/f+eswIy5hOq3EGnd3ftcx9svs+MPlxLY52AmfutPCW96EhHKTv8qU36yBE/5RMac+iXEFe8lURWrt3Q/QdfRTDhEePcOLdnPYP7q2XRtfsvpMOLSvWMTTY/eTPH8cwjkeIcKQ30DmgEe9/d3zurted8uDOmue5e66xbhGTuZyVfcisufl7R15885mmk3vMqYT305aevIdj3joiXqOlp49w6IRnXYmAzmr64h3FCbEb3wNy7+ObjdjF34PadDcdxQCe1AEWkRkVZgrv245+/c/ikQwz99LojQuWEN4T07qb3mPMTtYfKP7sBdXJ709edyE0MifHAvWmKuo4V02JiM56uqAUj7s7SOt16i7cWHKTvj63jKJjgdjuM8g000xmiJVhzc+UX4Js0g+ObztL30KJHW3Uy96p/47F/+Kr25i8uQQEHiztB0YM+M57cTWvfm9eTXpOe1aRONUn/b1XjKJjLmtK86HU5aGDShqfj5ZxxI6zP/BJebSVfc2lvOr9KfiCS0dL/3purySQlZnko9T9kEXIVjRtTxeKq0rnqArg1rmHDpH3AF9HYdiP/GajWEvP0OBaDiK7+k8OCPORyNGi5vRWXCikLCjXW4S8Ym9dqpSi4RwV81K22bHKNdQRrvuBb/9LkUffQzToeTNvQMLUFKTlhI3n6H4a+ucToUNQK+iiqCa1ZgjBn1NcmegT1VZvNX19D81B2YaDTtKoj3PPw3wru2M+Fbf0q72JykeyJBxOvTZJbBvOMrMd2dRJoaRr0s6x40TWiZzl85C9PVQWjnJqdD2Ut4Tz277/8/Co84lfyaI50OJ61oQlOKxJXuG2Osbq/0HrSM56+eDaRfpWPjkl9iwiHGfv6HToeSdjShKUXszdWjK92PtOzGdHdqyX4W8E3ZB1wuujatczqUXl2b1tHy9BLGnHIhvonTnA4n7WhCU4oPhnkZ7Rla2L4HTc/QMp/Ln4dv4vS0OUMzxlB/69W4Ckop+8y3nA4nLWVEQhORAhF5VUQ+5XQsKju5fAE8ZRNHfXN1b8m+XkPLCv6qmrQp3W9/7Sk63lxF+Tnfxl1Y6nQ4aSmpCU1EbhaRehF5s8/zJ4vIOyKyQUSuiGNR3wPuSU6USlmsXvdHeYamN1VnFV9VDeH6rY53gWXCIRpu/yneSdMpPemLjsaSzpJ9hnYrfXrlFxE38CfgFKAGWCgiNSJygIg83OffeBH5OLAeqE9yrCrHeSuqRn0NLdRYhwTycekv6KzQU7ncvfVtR+NoevIfhLa9Z/Wm7/E6Gks6S+p9aMaYZ0Skus/ThwMbjDEbAURkCbDAGPML4ENNiiIyHyjASn4dIvKoMSbaz3wXAxcDVFZWJnArVK7wVlQSXrmDaHcnLl9gRMsIN9TiHTtF+9fMEv6qWQB0bVpP3v6HOxJDpK2JXff8lrw5x1BwyMcdiSFTOHFj9WQgtkuGWmDAztKMMT8EEJFFQGN/ycye70bgRoBDDz1URwJQw+atqAJjCDfU4ps8c0TL0IE9s4unfBKughJHC0N6xzo7P7fHOotHRhSFABhjbjXGPOx0HCp7JaLXfR3YM7tYXWA5VxjSvWMTe5bdTPHxnyUwbY4jMWQSJxJaHTA15u8p9nNKOWq0N1dHO4NEWnZrQUiW8VfNomvLW5hov41DSdW4+FrE49WxzuLkREJ7BdhHRKaJiA84F3jQgTiU2ou7dBziC4y4MKR3HDS9By2r+KtrMJ3BURcMDVdw/Uu0vfgIZWdcimdMRUrXnamSXbZ/F/ACsJ+I1IrIRcaYMHAp8DjwFnCPMSYht+KLyGkicmNzc3MiFqdyjIjgHV9J9wjP0HpvqtYmx6zSMzZa16bUNTuaaJSG267CUz6RMaddnLL1ZrqkJjRjzEJjzERjjNcYM8UYc5P9/KPGmH2NMTOMMdcmcH0PGWMuLikpSdQiVY6x7kUb4Rlaz03V2uSYVXxT97W6wErhdbTWVffT9d7rjD3vB7j8OtZZvDKmKESpVPBWVBGu34Ixwy+UDTfUgsuNZ8yEJESmnOLy5+OdMC1lCc0a6+zn+GccSNExn07JOrOFJjSlYngrqoh2tBFt3T3s14Ya6/CUT0Tc7iREppzkr6qhO0Wl+3seupHwru2MO/8qHetsmHRvKRWjp9f97hE0O4YbarXCMUv5q2sI7dxMJNia1PWEd+9g9wPXU3jkJ8mvGfD2XDWArEpoWhSiRms0pfuhhlrtlDhL9fQY0r0luV1gNT1+O6a7S8c6G6GsSmhaFKJGyzveukVyuIUhJhImvHuHDhuTpXorHZPc7Bhc+yyBmfPwTahO6nqyVVYlNKVGy+XPx106jlD98M7Qwrt3QDSiZ2hZyjN2Mq784qQWhkSCrXRuWEP+AcckbR3ZThOaUn14xw+/dD/UoAN7ZjOrC6xZSU1oHetfhGiE/DlHJ20d2U4TmlJ9eCuqhn0NTUeqzn7+6hq6NievC6zg2lWIL0Bgv0OTsvxcoAlNqT68FZWEd23DhENxv+aDkao1oWUrX2UNprOdUMPWoWcegeDaVeTtd+iIhy5SWZbQtMpRJYK3ogqi0d6+GeMRbqzFXVyuvTpksd7BPpPQ7BhubqR7y1vkzdHrZ6ORVQlNqxxVIoykdD/UUKdnZ1nOP3U/EElKn44dbz4HoAUho5RVCU2pROi5uXo4hSHhRr2pOtu5Aj1dYCW+dD/45nO48osIzJib8GXnEk1oSvXhGTMB8fjiPkMzxlg3VWtCy3rJGuwzuHYVeTVHIm5PwpedSzShKdWHuFx4xk+J+wwt2rYH09Whw8bkAH/VLEI7NhHtaE/YMkMNtYR2bCL/gGMTtsxcpQlNqX54x1fFfXO1DhuTO3oKQ7q2Jq4LrODaVQB6/1kCaEJTqh/DGRet96ZqPUPLeskY7DO4dhXukrH4KvdP2DJzVVYlNC3bV4niragi2t5MpK1pyHn1purc4Rk3BVd+UcKuoxljCK5dRf6coxGRhCwzl2VVQtOyfZUovaX79UOfpYUaahF/Hq6ismSHpRwmIvgrE9cFVnfdBiJN9Xr/WYJkVUJTKlF8wyjdDzfU4h07WX9h5whf1Sy6N781olHN+wqufRaA/Lma0BJBE5pS/fCM70loQxeGhBrrtCAkh/irZxPtaCNcP/ousIJrV+EZPxWf3SKgRkcTmlL9cOcX4S4ui/8MTRNazugZ7HO0zY4mEqFj3Qta3ZhAmtCUGoBnfOWQZ2jRrg4iLbu026sc4p+6v9UF1ih7DOl6/02i7c3a3VUCaUJTagC+8ZVDFoV8UOGoZ2i5wpVXgLeietRnaME3e+4/04SWKJrQlBqAt6KKUEMtJhIecJ4Pho3RhJZLrME+R3eGFly7Ct+UffGMGZ+gqJQmNKUG4K2ohEiY8K7tA86j96DlJn91DaEd7xPtDI7o9dFQFx1vvaTNjQmWVQlNb6xWiRTPvWihhjpwufGUTUhVWCoN+KtmgTF0bRlZF1id767GdHdqQkuwrEpoemO1SqR4xkULNdTiKZugvaTnGF9PF1gjbHYMrn0WXC7yZh+VyLByXlYlNKUSyVM+EdyeQUv3w4112odjDvKOm4orr5CuzetG9Prg2lX4p8/FXaA/vhNJE5pSAxC3B++4KYOfoTXqOGi5SFwufJX70z2CM7RoRzud767W+8+SQBOaUoPwjp864BmaiUQI79quJfs5yl89m64RdIHV8dZLEAnr9bMk0ISm1CC8FQOPixZu2gmRsN5UnaP8lbOIBlt6K13jFVz7LOLxkbf/YUmKLHdpQlNqEN7xlURadhMJtn5oWti+B03P0HJT72Cfm4Z3HS345nME9j0Elz8/GWHlNE1oSg2ip9Ix3E/pvo5Undv89oCcw6l0jLTupmvTOm1uTBJNaEoNYrB70XpvqtYmx5zkyivEW1E1rIQWXPcCGKMJLUk0oSk1CO8g46KFGupwFY3BFdCmo1zlr6oZVul+cO0qJFBAYOa8JEaVu7IqoWlPISrR3IWluApK6O6ndD+kw8bkPF/VLELb3yfaFV8XWMG1z5JfcyTi8SY5styUVQlNewpRyeCtqOz3DC3cWKcVjjnOXz3b7gLrnSHnDe3aRmjbRm1uTKKsSmhKJYO3n3HRjDF6hqZ6B/vsjmMomY61zwGQpzdUJ40mNKWG4K2oJFy/FRON9j4XbWvCdLbj1WFjcpp3fCUSKIirMCS4dhXu4jL8dj+QKvE0oSk1BO/4Kky4m/CeHb3PhewKR48OG5PTxOXCX7n/kIN9GmMIvrmKvNlHIy792k0W3bNKDaG/Ssfem6r1DC3nWZWOg3eBFdq+kfCu7dp/Y5JpQlNqCP3di/bBTdV6hpbr/NU1RNubB+0CK2hfP8ufqwUhyaQJTakheMdOBm77dUgAAAuVSURBVJdrr8KQcGMd4gvgLi53MDKVDnoKQwa7jhZcuwrP2El4J0xLVVg5SROaUkMQrw9P+aS9mhxDDVbJvog4GJlKB77KnoTW/3U0E40SXPcc+XOO0eMlyTShKRUHb0XVXmdoocZa7fJKAeDOL8I7vnLAhNa1eT3R1j16/1kKaEJTKg59x0ULN9Zpp8Sql69q1oCDfQbXrgL0/rNU0ISmVBy8FVVEmuqJdgWJdncSaWrQm6pVL391Dd3bNxLt6vjQtODaVXgnzcBbPtGByHKLJjSl4tBbul+/VXvZVx/ir6qBaJTurf/d63kTDtHx1ova3JgiWZXQtHNilSze8Xbp/s7NMTdV6xmasnxQ6bh3z/udG1ZjOoOa0FIkqxKadk6skqX3XrSdW3SkavUh3opqxJ/3odL94NpVIEL+7I84FFlu8TgdgFKZwF1chgQKCNVvwZVXCC4XnrIJToel0oTVBdasfhLac/inzcFdNMahyHJLVp2hKZUsItJbuh9u3IZnTIWOaaX24q+uoWvz+t4usKJdQTr/+5p2d5VCmtCUilPPuGihhlq9fqY+xF85i2hbE+Hd2wHoePsVTLib/AOOdTiy3KEJTak49YyLFmrYqhWO6kN89rAwXZusG6yDa1eB20PerCOcDCunaEJTKk7eikpMdyfh+q16hqY+5IPBPq3raMG1q8jb52BcgXwnw8opmtCUilNPpSPosDHqw9wFxXjGTaFr0zoibU10vb+WPC3XTylNaErFyWffXA06bIzqn7+qhq4tb9Gx/gWIRvX6WYppQlMqTp5xU3sf6z1oqj/+qhq6t71H22v/Rvx55O1zkNMh5RRNaErFyeUL4Cmz+uPTohDVH3+11QVW67P3kTfrCMTrczqknKI3Vis1DN6KSqLdHdbN1Ur10VMYYro7tbsrB2hCU2oYCg49Ce+k6U6HodKUt6Ia8QWshDZHE1qqaUJTahjKFlzidAgqjYnbjb9yFt073sdfPdvpcHKOJjSllEqgsrMuI9rejLjdToeSczShKaVUAhUe+nGnQ8hZWuWolFIqK2hCU0oplRU0oSmllMoKWZXQROQ0EbmxubnZ6VCUUkqlWFYlNGPMQ8aYi0tKSpwORSmlVIplVUJTSimVuzShKaWUygqa0JRSSmUFMcY4HUPCiUgDsHmELx8LNCYwnEyg25wbdJuz32i3t8oYMy5RwaRaVia00RCRV40xhzodRyrpNucG3ebsl2vb25c2OSqllMoKmtCUUkplBU1oH3aj0wE4QLc5N+g2Z79c29696DU0pZRSWUHP0JRSSmUFTWhKKaWyQs4mNBE5WUTeEZENInJFP9MXiUiDiKyx/33JiTgTaahttuc5R0TWi8g6Ebkz1TEmWhzv8+9i3uP/ikiTE3EmShzbWykiy0VktYi8ISKnOhFnIsWxzVUi8m97e1eIyBQn4kwkEblZROpF5M0BpouI/NHeJ2+IyMGpjtERxpic+we4gfeA6YAPeB2o6TPPIuB6p2NN8TbvA6wGxth/j3c67mRvc5/5vwHc7HTcSX6PbwQusR/XAJucjjsF27wUON9+fALwD6fjTsB2fxQ4GHhzgOmnAssAAY4EXnI65lT8y9UztMOBDcaYjcaYbmAJsMDhmJItnm3+MvAnY8weAGNMfYpjTLThvs8LgbtSEllyxLO9Bii2H5cA21IYXzLEs801wNP24+X9TM84xphngN2DzLIAuN1YXgRKRWRiaqJzTq4mtMnA1pi/a+3n+vqMfbp+r4hMTU1oSRPPNu8L7Csiz4nIiyJycsqiS45432dEpAqYxgdffJkonu29Cvi8iNQCj2KdlWayeLb5deBM+/GngSIRKU9BbE6K+9jPJrma0OLxEFBtjJkLPAnc5nA8qeDBanacj3W28jcRKXU0otQ5F7jXGBNxOpAkWwjcaoyZgtUs9Q8Ryfbvgf8FjhOR1cBxQB2Q7e9zTsr2A3kgdUDsGdcU+7lexphdxpgu+8+/A4ekKLZkGXKbsX7FPWiMCRlj3gf+i5XgMlU829zjXDK7uRHi296LgHsAjDEvAAGsDm0zVTyf5W3GmDONMQcBP7Sfy+jinzgM59jPGrma0F4B9hGRaSLiw/oyezB2hj7tzacDb6UwvmQYcpuBB7DOzhCRsVhNkBtTGWSCxbPNiMj+wBjghRTHl2jxbO8W4GMAIjILK6E1pDTKxIrnszw25iz0+8DNKY7RCQ8CX7SrHY8Emo0x250OKtk8TgfgBGNMWEQuBR7HqpK62RizTkR+CrxqjHkQ+KaInA6EsS6+LnIs4ASIc5sfB04SkfVYTTLfMcbsci7q0Ylzm8H6Elxi7PKwTBXn9v4PVlPy5VgFIosyebvj3Ob5wC9ExADPAF93LOAEEZG7sLZrrH099ErAC2CMuQHr+uipwAYgCFzgTKSppV1fKaWUygq52uSolFIqy2hCU0oplRU0oSmllMoKmtCUUkplBU1oSimlsoImNJURRKQtjnkuE5H8BK7zDBGpSeDynh/Fa9vs/yeJyL2DzFcqIl8b6XqUymSa0FQ2uQwYVkITEfcgk8/A6tg2IYwxH0nAMrYZY84aZJZSQBOaykma0FRGEZH59phW94rI2yJyh90bwjeBScByEVluz3uSiLwgIv8RkaUiUmg/v0lEfiki/wHOFpEvi8grIvK6iPxTRPJF5CNYPcT82h4rbYaIzLM7bX5DRO4XkTH28laINa7aqyLylogcJiL3ici7InJNTOxtMY+/J/L/2zubUKuqKI7//lHZy/dK1L5w0CstgiSEGgSWFYQQDTKKIExLJw0knGQNoqCIUpxEjapBVmQfRFFEmAZl9DIlP7rPKCjMgRDUIMSKInqrwVovzrve+3iK+PD0/8Hmrrv3Pvusve/hLs7Zh//SaJ1zfY95XlK+j3aNMTyeA0vSlZJ2lX8dSZcB64H5VbdR0qAyF9ieGuu2xjjfSnpRmftuq6SBalsg6ePybY+k+VW/rtapI+nxE/rDGnMimO78NS4uUynAb/V5I3CY1KY7jZSruq7aDgJzy55LqkLMrO8PA481+j3UGHtOw34SeKDsTcCdjbYOcEPZTwDPlP0psKHstWRKlouAGaQ+5pyuOdwCfAGcXd9n95jv+8DKstc0jh2mcmABzwHLyz4TGGi2V/3pwDmNNfmBzJE1TKrgLKq2t4B7yt4J3F72WeRd71Iyl5pq3T8Alkz3deHi0iz/S+krc8qzKyIOAUjaR/45f97V51ryceGIJMg//KZW45sNe2HdBc0CBkkZpQlIOheYFRHbq+plMnHkOOMyWqPAN1G6eZIOkCKxTQmxm4GXIuIPgIjolddqMXBH2a8CG3r02QE8oszA/E5EfF9zneA68JSkJcAYmULkgmr7MSL2lb0bGJY0BMyLiHfLtz9rHkvJoLa3+g+SwtWf9fDLmGnBAc2civzVsP+h93UsYFtE3N1njN8b9iZgWUR8Lek+SqD5OH0a6/JvrI9/U2FSXbqI2CxpJ3Ar8KGk+zlaTHo5cB5wdUT8LekgedfV9BlyHQcmOZ2ApyPi+WPw35iTivfQTJs4AgyV/SWwWNICAEkzJV3e57gh4CdJZ5AB4KjxIuIw8Kuk66ttBbCd42MbsGr8jUxJs3v0GSFFk+ny6T8kXQociIhngfeAq5i4BpBZqX+uYHYTcPFkjkXEEeCQpGV1jhnl50fA6sY+5DxJ509ptsacJBzQTJt4Adgi6ZOI+IXMkPC6pA75eO6KPsc9Su4bjQDfNerfANZJ2lsvRtxLviTSARaR+2jHTERsIR9RflWPTB/s0W0tsEbSKP0zDd8F7K8xFgKvRGZHGJG0X9JG4DXgmhpnZdf8+rGCzDbRIff6LoyIrcBmYEeN9TYTA6cx047V9o0xxrQC36EZY4xpBQ5oxhhjWoEDmjHGmFbggGaMMaYVOKAZY4xpBQ5oxhhjWoEDmjHGmFbwL8KKJxTYp1mYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.rcParams['figure.figsize'] = (6, 4)\n", "for k in range(len(mappings)):\n", @@ -153,7 +263,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_particle_hole.ipynb b/community/aqua/chemistry/h2_particle_hole.ipynb index b130f635a..942387945 100644 --- a/community/aqua/chemistry/h2_particle_hole.ipynb +++ b/community/aqua/chemistry/h2_particle_hole.ipynb @@ -15,16 +15,47 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Processing step 9" + "Processing step 20 --- complete\n", + "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", + " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", + "Energies: [[[-1.05515973 -1.07591359 -1.09262986 -1.105918 -1.11628597\n", + " -1.12416088 -1.12990475 -1.1338262 -1.13618942 -1.13722134\n", + " -1.13711707 -1.13604434 -1.13414766 -1.1315512 -1.12836187\n", + " -1.12467173 -1.12056027 -1.11609624 -1.11133942 -1.10634211\n", + " -1.10115033]\n", + " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599\n", + " -1.12416089 -1.12990476 -1.1338262 -1.13618944 -1.13722136\n", + " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", + " -1.12467175 -1.12056028 -1.11609624 -1.11133943 -1.10634212\n", + " -1.10115034]]\n", + "\n", + " [[-1.05515973 -1.07591359 -1.09262987 -1.105918 -1.11628598\n", + " -1.12416087 -1.12990474 -1.13382619 -1.13618943 -1.13722134\n", + " -1.13711704 -1.13604435 -1.13414766 -1.13155119 -1.12836186\n", + " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.1063421\n", + " -1.10115033]\n", + " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599\n", + " -1.12416089 -1.12990476 -1.1338262 -1.13618944 -1.13722136\n", + " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", + " -1.12467175 -1.12056028 -1.11609624 -1.11133943 -1.10634212\n", + " -1.10115034]]]\n", + "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", + " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", + " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", + " -1.07963694 -1.07300677 -1.06610866]\n", + "VQE num evaluations: [[45. 51. 51. 51. 43. 54. 50. 47. 51. 46. 42. 57. 49. 53. 49. 55. 50. 46.\n", + " 51. 56. 55.]\n", + " [49. 49. 50. 51. 47. 52. 47. 48. 52. 46. 52. 56. 45. 49. 48. 52. 47. 49.\n", + " 54. 58. 60.]]\n" ] } ], @@ -92,9 +123,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVFX/wPHPYQdFRXBBEUFTXFlccEE0TbPFNMol8zGX1MwlH3uezPrl1lM9VlbmUmmm2GK55b5bmXuKioqAIkpuqIiy7zPn98cMPKAsg8wwIOf9es0r5t5z7/3O9dV859x7z/cIKSWKoiiKUlYW5g5AURRFeTSohKIoiqIYhUooiqIoilGohKIoiqIYhUooiqIoilGohKIoiqIYhUooimIiQoiRQoiD5o5DUcqLSihKuRBCxAghet+3LO8LVwhhK4T4TgjxtxAiWQgRKoR4uoR9ugohvhVC3BBCpAghLgkhgoUQLUz5WYxFCPGqECJS/3lvCSG2CyEc9euChRAflGJfZUpe+u01+vOY/9XgYfepVD0qoSgVhRVwFegB1ATeA9YIITwKayyEcAYOAw5AIOAItAP+BPoUsY2VsYN+WEKIHsBHwFAppSPQElht3qg4IqWsft/rhjEPUJH+DRTjUwlFqRCklKlSytlSyhgppVZKuRW4DLQvYpOpQBIwXEoZLXUSpJQrpJQLAYQQHkIIqe8JXAF+1y/vL4Q4J4RIEELsE0K0zN2pvv1j+d7n9RSEEI8LIa4JIf4lhLgthIgVQozK19ZZCLFZCJEkhDgGNC3mI3dE9wV+Sv/570opV0opk4UQ44BhwDR9L2GLfv/ThRDR+h5NuBAiSL+8JfAN0EXfPkG/3FYIMU8IcUXfA/pGCGFv8D9KPvoe5r+FEGeEEIlCiNVCCLt86/vpe5UJQojDQgjv+7Z9WwhxBkgVQlgJIdoJIU7pP8ta/f5yz3OYEOK5fNtbCyHuCCH8HiZ2pfyohKJUSEKIekBz4FwRTXoDG6SUWgN21wNdD6CvEKI58DPwT6AOsB3YIoSwMTC0+uh6UA2BV4HFQggn/brFQAbgCozWv4rylz6eOUKIACGEbe4KKeVS4CfgE30vIffLNRpdb6wmMAf4UQjhKqWMAMbzvx5GLX37uejOoS/wmD7mmQZ+zsIMBp4CPAFvYCSA/ot+OfAa4AwsATbn/0zAUOBZoBa6750NQDBQG92/R1C+tt8D/8j3/hkgNjf5KhWXSihKedqo/wWboP8V/VVhjYQQ1ui+UFdKKSOL2JcLcDPfNv31+00WQuy+r+1sfQ8oHRgCbJNS7pFSZgPzAHugq4GfIRt4X0qZLaXcDqQAXkIIS+BFYKb+WGHAyqJ2IqU8ALyA7jLdNiBeCPG5fj9FbbNWSnlD34NbDUQB/oW1FUIIYBwwVd/7SUZ3ie2lYj5b5/z/PkKI6PvWL9Af/y6wBV2iQn+cJVLKv6SUGinlSiAT6Hzftlf1/wad0V3iXKA/j78Cx/K1/RF4RghRQ/9+OPBDMXErFYRKKEp5el5KWSv3BUy4v4EQwgLdl0cWMKmYfcWj6wkAIKXcrN/nVOD+3sbVfH83AP7Ot51Wv76hgZ8hXkqZk+99GlAdXW8n9z5Qrr8phpRyh773URsYgO4X/5ii2gshXsl3WSkBaIMusRamDrr7Syfytd+pX16Uo/n/faSU91+yu5nv79zPDdAY+Nd9PxYaoTvXue7/N7guC1amzVuvv29zCHhRCFELeBrdDwylglMJRakw9L+qvwPqAS/qexBF+Q14Xp+ASpL/i+sGui/A/MdsBFzXL0pD90Wcq74B+weIA3L0+8rlbsiG+h7Hb+ju8bQpJGaEEI2Bb9ElWWd98gwDRGHtgTtAOtA6X4KoKaWsjvFdBT68Lxk5SCl/ztcmf3yxQEP9uc+V/7yBrnf3D2AQukt511EqPJVQlIrka3T3Op7TXxopzueAE/CDEKKp0HHkf5dhirIGeFYI8YT+0tq/0F2eOaxfHwq8LISwFEI8he7+S4mklBrgV2C2EMJBCNEKGFFUeyHEACHES0IIJ33s/vpjHdU3uQU0ybdJNXRfynH67Ufxv+ST294t916Qvuf1LfCFEKKufpuGQoi+hnyeUvoWGC+E6KT/LNWEEM/q/z0KcwTQAJP0N+gH8OClu43oLgdOQXdPRakEVEJRKgT9L/DX0CWEm+J/4yCGFdZeSnkH3bX4DOAgkIwuGTgCrxd1HCnleXS/fBei+xX/HLoElqVvMkW/LAHdk1YbS/ExJqG7DHQT3Q3nFcW0vQeMRXcfJAndfYNPpZS5l3a+A1rpLyFtlFKGA5+h+zK+BbRFd1ko1+/oHmC4KYS4o1/2NnAROCqESAL2Al7FxNRFPDgOpWNJH1pKGaL/LIv0n+si+hv2RbTPQnf/6FV05/kfwFZ0iT23TTqwHt0DAL+WFINSMQg1wZaiKOYmhPgL+EZKuSLfsplAcynlP4reUqlIVA9FUZRyJ4ToIYSor7/kNQLdY8g7862vja4Hs9RcMSqlpxKKoijm4AWcRnfJ61/AQCllLIAQYiy6G/07pJT7zReiUlrqkpeiKIpiFKqHoiiKohhFlSrU5uLiIj08PMwdhqIoSqVy4sSJO1LK4gbFAmZMKEKIQcBsdOMO/PWPHhbW7ingS8ASWCalnHvf+gXAaEMGbHl4eBASUuhhFEVRlCIIIYqt+pDLnJe8wtA9i17kTTd9XaPF6EovtAKG6geM5a7vgG5wm6IoimJmZksoUsoI/SCz4vgDF6WUl/SDoX5BV/MoN9l8CkwzbaSKoiiKISr6TfmGFCwqd43/FfGbBGzOfdSwKEKIcUKIECFESFxcnInCVBRFUUx6D0UIsZfCi+v9n5RyUxn22wBd0bjHS2qrn1tiKUCHDh3UM9JVXHZ2NteuXSMjI8PcoShKhWNnZ4ebmxvW1tYPtb1JE4qUsnfJrYp1nYJVSN30y/zQTRh0UV+w1EEIcVFK+diDu1CU/7l27RqOjo54eHhQsNitolRtUkri4+O5du0anp6eD7WPin7J6zjQTAjhqa+i+hK6y1zbpJT1pZQeUkoPIE0lE8UQGRkZODs7q2SiKPcRQuDs7Fym3rvZEooQIkgIcQ3oAmwTQuzSL28ghNgOoJ/IaBKwC4gA1kgpi5oSVlEMopKJohSurP9vmG0cipRyA7p5pe9ffgPdHNK577ejm/e7uH2ZYtKgPPsvxBF2I5EJj6tOkKIoSlEq+iWvCuHQxTt8vvsCd1OzSm6sKCWoXr3g75/g4GAmTSputuMHhYaGsn17sb+zyiQ4OJg6derg6+uLr68vr7zySqn3sW/fPvr162eC6JSKSiUUAzzv15AcrWTrmRvmDkVRyMnJKTah5OTkFLq8tIYMGUJoaCihoaF8/72aNFEpmUooBmjpWoMW9R3ZcEpNa62Y1pYtW+jUqRN+fn707t2bW7duATB79myGDx9OQEAAw4cPZ+bMmaxevRpfX19Wr179wHqNRsNbb71Fx44d8fb2ZsmSJXnH+PTTT/OWz5o1q1TxhYaG0rlzZ7y9vQkKCuLevXsAXLx4kd69e+Pj40O7du2Ijo4usN3x48fx8/N7YLnyaKlSxSHLIsivIf/dEcnlO6l4ulQzdziKEczZco7wG0lG3WerBjWY9VzrYtukp6fj6+ub9/7u3bv0798fgG7dunH06FGEECxbtoxPPvmEzz77DIDw8HAOHjyIvb09wcHBhISEsGjRIkCXcPKvX7p0KTVr1uT48eNkZmYSEBDAk08+SVRUFFFRURw7dgwpJf3792f//v107979gThXr17NwYMHAZgyZQqjRo3ilVdeYeHChfTo0YOZM2cyZ84c5s+fz7Bhw5g+fTpBQUFkZGSg1Wq5elU3Jvnw4cNMnjyZTZs24e7uXvaTrFRYKqEYaIBvQ+bujGTjqetM7dPc3OEolZi9vT2hoaF573OTA+jGyQwZMoTY2FiysrIKjAfo378/9vb2Re43//rdu3dz5swZ1q1bB0BiYiJRUVHs3r2b3bt34+fnB0BKSgpRUVGFJpQhQ4bkJazcfSQkJNCjRw8ARowYwaBBg0hOTub69esEBQUBusFxuSIiIhg3bhy7d++mQYMGpTtRSqWjEoqB6te0o2tTZzaGXuefvZupR08fASX1JMxh8uTJvPnmm/Tv3599+/Yxe/bsvHXVqhXfM86/XkrJwoUL6du3b4E2u3bt4p133uG1114rsHzx4sV8++23AEa92e/q6kpGRganTp1SCaUKUPdQSiHIz42/49M4eeWeuUNRHlGJiYk0bKgrV7dy5coi2zk6OpKcnFzk+r59+/L111+TnZ0NwIULF0hNTaVv374sX76clJQUAK5fv87t27eZOHFi3g34or74a9asiZOTEwcOHADghx9+oEePHjg6OuLm5sbGjRsByMzMJC0tDYBatWqxbds23nnnHfbt21e6k6FUOiqhlMJTbepjZ22hbs4rJjN79mwGDRpE+/btcXFxKbJdz549CQ8Pz7spf78xY8bQqlUr2rVrR5s2bXjttdfIycnhySef5OWXX6ZLly60bduWgQMHFpuY7rdy5UreeustvL29CQ0NZebMmYAuuSxYsABvb2+6du3KzZs387apV68eW7duZeLEifz111+lOBtKZVOl5pTv0KGDLOsEW2/8fIr9UXEce7c3NlYqH1c2ERERtGzZ0txhKEqFVdj/I0KIE1LKDiVtq74RSymoXUMS0rLZd/62uUNRFEWpUFRCKaXAx1xwqW6jLnspiqLcRyWUUrKytOA5nwb8FnGbxPRsc4ejKIpSYaiE8hCC/BqSpdGy/Wyxk0UqiqJUKSqhPIS2DWvStE41NpxUl70URVFyqYTyEIQQBPk15FjMXa7eTTN3OIqiKBWCSigPaYCvbvDZplDVS1EM17NnT3bt2lVg2fz583n99dcBOHfuHL169cLLy4umTZsya9YstFot8GBJeV9fX8LDw8sUT1xcXF4xytwBi4WZPXs28+bNA2DkyJF5JV0UJT+VUB5So9oO+HvWZsOp61SlsTxK2QwdOpRffvmlwLJffvmFoUOHkp6eTv/+/Zk+fTrnz5/n7NmzHDt2jC+//DKvbf6S8qGhobRq1arIY+3bt4+RI0cWG89vv/1G27ZtOXXqFIGBgWX6bIqiEkoZBPk1JDoulbPXE80dilJJDBw4kG3btpGVpZusLSYmhhs3bhAYGMiqVavyqgIDODg4sGjRIj799FOTxBIaGsq0adPYtGkTvr6+pKenF5j8a926dSUmJEXJTxWHLINn2roya9M5Npy6jrdbLXOHo5TWjulw86xx91m/LTw9t8jVtWvXxt/fnx07djBgwAB++eUXBg8ejBCCc+fO0b59+wLtmzZtSnp6OgkJCUDBkvIAR44cKbYCcXF8fX15//33C5TBV5SyUD2UMqhpb80TLeuy5fQNcjRac4ejVBL5L3vlXu4y1P2XvApLJp06dcLX15cxY8awefPmvPst99+7URRjUz2UMgrya8iOsJsciLpDzxZ1zR2OUhrF9CRMacCAAUydOpWTJ0+SlpaW1ytp1aoV+/fvL9D20qVLODs7U6uW4T3g3AKM+/btIzg4mODgYIO3zT8tQ0ZGhsHbKQqoHkqZPe5Vl1oO1qoUi2Kw6tWr07NnT0aPHl2gdzJs2DAOHjzI3r17Ad3Mjm+88QZz5swpt9jq1atHREQEWq2WDRs2lNtxlUeDSihlZGNlQT9vV3aH3yQlM8fc4SiVxNChQzl9+nSBhGJvb8/mzZv58MMPad68OS4uLgQEBDBs2LC8NrnzyOe+Dh8+bNS45s6dS79+/ejatSuurq5G3bfy6FPl643gxN93efHrI8wb5MPA9m5G379iPJWpfP3GjRt58803+eOPP2jcuLG5w1GqCFW+vhzcvniuyHXt3J1o7OzAhlPXyjEi5VH3/PPPc+nSJZVMlEpDJRQDfP/qB2z68ByanMIvaQkheN63IYej47mZqG5kKopSNamEYgDHetlk2bpw5PulRbZ53q8hUqpSLIqiVF0qoRggcNwwhDabS4fvFtnG06Uafu611NNeiqJUWSqhGMDFozn2WeGkyzZkpiQX2S7IryGRN5OJiE0qx+gURVEqBpVQDFSnaQo51jXYv+zrItv0826AlYVQvRRFUaoklVAM1P21V7HMSef66aJLrNSuZsPjXnXYFHodjbbqPI6tKIoCKqEYrEbdBthpwsiwbEvynZtFtgvyc+NWUiZHouPLMTqlsqho86GUVUJCAl999VXe+xs3bjBw4MBit3n88cd5mPFgHh4e3Llzx+D2wcHBTJo0qdTHUR6eSiil0LCtQGNlz/4l3xbZ5omWdXG0tVKXvZRCVbT5UMoiJyfngYTSoEEDNflWFWaW4pBCiEHAbKAl4C+lLPTnihDiKeBLwBJYJqWcq18ugA+AQYAG+FpKucDUcXcf9zqXpvzO7ahqRbaxs7bkmbaubD1zgw+eb4O9jaWpw1Ie0sfHPibybqRR99midgve9n+7yPUDBw7kvffeIysrCxsbmwLzoSxfvrzQ+VACAwOZOnWqUePMNXLkSOzs7AgJCSEpKYnPP/+cfv36ERMTw/Dhw0lNTQVg0aJFdO3alX379jFjxgycnJyIjIykXbt2REdH4+vrS58+fZg4cSL9+vUjLCwMjUbD22+/zc6dO7GwsGDs2LFMnjy5wPF3797NrFmzyMzMpGnTpqxYsaLAnCz3W7hwIVu2bCE7O5u1a9fSokUL7t69y+jRo7l06RIODg4sXboUb2/vAtvFxcUxfvx4rly5Auh6hQEBAUY+m4q5qg2HAS8AS4pqIISwBBYDfYBrwHEhxGYpZTgwEmgEtJBSaoUQ5VLm17a6I/acJdW6A3diLuDi0bzQdkHtGrI65Cq7w2/mTRWsKFCx5kPJFRMTw7Fjx4iOjqZnz55cvHiRunXrsmfPHuzs7IiKimLo0KF5l6lOnjxJWFgYnp6exMTEEBYWRmhoaN6+ci1dupSYmBhCQ0OxsrLi7t2Cj93fuXOHDz74gL1791KtWjU+/vhjPv/8c2bOnFlkrC4uLpw8eZKvvvqKefPmsWzZMmbNmoWfnx8bN27k999/55VXXsmLJ9eUKVOYOnUq3bp148qVK/Tt25eIiIgynTflQWZJKFLKCChYKrsQ/sBFKeUlfdtfgAFAOPA68LKUUqvf322TBpyPZ5danAmx4cDSVQR9NLvQNv4etWlYy54Np66rhFKBFdeTMKXcy165CeW7774zeNshQ4aUOBlWp06dyMzMJCUlhbt37+Lr6wvAxx9/TN++fR9oP3jwYCwsLGjWrBlNmjQhMjIST09PJk2aRGhoKJaWlly4cCGvvb+/P56eniXGunfvXsaPH4+Vle5rpnbt2gXWHz16lPDw8LyeQlZWFl26dCl2ny+88AIA7du359dffwXg4MGDrF+/HoBevXoRHx9PUlLBR/f37t1b4H5TUlISKSkpxfaGlNKryPOhNASu5nt/Deik/7spMEQIEQTEAW9IKaMK24kQYhwwDsDd3b3MQXUdOZ6IQxu4d92lyDYWFoIBvg1Ysv8SccmZ1HG0LfNxlUdHRZsP5f4fdkIIvvjiC+rVq8fp06fRarXY2dnlra9WrehLvqUhpaRPnz78/PPPBm9ja6v7f8nS0pKcIkohFUar1XL06NECn0MxPpPdlBdC7BVChBXyGmCE3dsCGfrql98Cy4tqKKVcKqXsIKXsUKdOnTIf2NLKCgebcNLtvLh29niR7YL8GqLRSracvlHmYyqPloo2H8ratWvRarVER0dz6dIlvLy8SExMxNXVFQsLC3744Qc0Gk2h2zo6OpKcXPhg3z59+rBkyZK8L/77L3l17tyZQ4cOcfHiRQBSU1ML9IQMFRgYyE8//QTokqiLiws1atQo0ObJJ59k4cKFee/vvySmGIfJEoqUsreUsk0hr00G7uI6uvskudz0y0DXW/lV//cGoOAdOBPz6u0BwpIjwZuLbNOsniNtGtZQT3sphapI86G4u7vj7+/P008/zTfffIOdnR0TJkxg5cqV+Pj4EBkZWWSvxNnZmYCAANq0acNbb71VYN2YMWNwd3fH29sbHx8fVq1aVWB9nTp1CA4OZujQoXh7e9OlSxciI0v/kMTs2bM5ceIE3t7eTJ8+nZUrVz7QZsGCBYSEhODt7U2rVq345ptvSn0cxQBSSrO9gH1AhyLWWQGXAE/ABjgNtNavmwuM1v/9OHDckOO1b99eGkNOdrb8dsQPctkrS4tt9+3+aNn47a0y6laSUY6rlF14eLi5QzDYhg0bpKenp4yJiTHZMUaMGCHXrl1rsv0rlU9h/48AIdKA71izjEMRQgQJIa4BXYBtQohd+uUNhBDbAaSUOcAkYBcQAayRUuZOSjIXeFEIcRb4LzCmPOO3tLLCodoFMuybcuHPnUW26+/bAAuB6qUoD0XNh6JUNuZ6ymsDuktV9y+/ATyT7/12YHsh7RKAZ00ZY0l8gzrwxzo4se4QzXs8VWibuo52dGtWh42nbvCvPl5YWBT7VJuilLuSbtibQ1BQEJcvXy6wrKgn1JSKpSI/5VWhterdnyM/fEdqRrNi273YriFTfgnlz6g4enqVy3AZRanUNmx44LemUkmo0itl4Fg7hkw7N0I3riqyzdNtXKlfw45lBy6VY2SKoijlTyWUMuj8j6dAagnbWfSjjjZWFowK8ODQxXjCrieWY3SKoijlSyWUMnBvH4B9xgXSM1sWOd88wNBO7lS3teJb1UtRFOURphJKGdVyvUmWbR2O/risyDY17Kx5qWMjtp6J5XpCejlGp1RElpaWBcaSzJ0712j7Dg0NZfv2/z3HUlTJe0PKzJtaTEwMbdq0MWsMoCsc2alTJ/z8/Dhw4ECR7WbPns28efMAXVFNVVX5QSqhlFG3MUMQ2myiD8YV225UN13toxUHLxfbTnn02dvbFyhBP336dKPt+/6EAoWXvH+UyswXV4LFkBL+v/32G23btuXUqVMEBgYaObqKISun6IkBjUkllDKq+1hr7DMjSNe2ISs9rch2DWvZ08/blZ+PXSExPbscI1Qqg8TERLy8vDh//jygG0n/7be6eXdef/11OnToQOvWrZk1a1beNsePH6dr1674+Pjg7+9PYmIiM2fOzBtNv3r16iKPl793kJaWxuDBg2nVqhVBQUF06tQpr7Lw7t276dKlC+3atWPQoEGkpKQAusmuZs2aRbt27Wjbtm3eCPc///wzryfk5+dHcnIyUkreeust2rRpQ9u2bQuNq3Pnzpw7dy7vfe4kXKmpqYwePRp/f3/8/PzYtElXaCM4OJj+/fvTq1cvnnjiiYc+76GhoUybNo1Nmzbh6+tLenp6gYKR69atM+mcMuUhIS2L87eSSSqH7x312LARuDRN4sqNmhxY9jVPTP5Xke3GBjZhU+gNfjl2hdd6NC3HCJXC3PzoIzIjjDsfim3LFtR/991i26Snp+dVAAZ455138qoIjxw5kilTpnDv3j3Gjh0LwIcffkjt2rXRaDQ88cQTnDlzhhYtWjBkyBBWr15Nx44dSUpKwsHBgffff5+QkJC8isTBwcGFlrzP76uvvsLJyYnw8HDCwsLyYiupvHxhpeTnzZvH4sWLCQgIICUlBTs7O3799VdCQ0M5ffo0d+7coWPHjnTv3r1ADEOGDGHNmjXMmTOH2NhYYmNj6dChA++++y69evVi+fLlJCQk4O/vT+/evQFdGf0zZ848UMW4NHx9fR84Z4+Su6lZXL+XhoONFdVsTT83k0ooRtBj/Bh++r9Qrp3KKrZdm4Y1CXjMmRWHYhgV4ImNleogVkW5l7zu16dPH9auXcvEiRM5ffp03vI1a9awdOlScnJyiI2NJTw8HCEErq6udOzYEeCBYoj5lVTy/uDBg0yZMgWANm3a5E1OVVJ5+cJKyQcEBPDmm28ybNgwXnjhBdzc3Dh48CBDhw7F0tKSevXq0aNHD44fP15gEqzBgwfz5JNPMmfOHNasWZN3f2f37t1s3rw5795FRkZG3iRZffr0KTKZlLaE/6PoTkomNxLSqW5rhYdztXIZWK0SihHUqNsA+5wfSbdsS9q9OByciq5qPDawCSNXHGfL6Ru82N6tHKNU7ldST6K8abVaIiIicHBw4N69e7i5uXH58mXmzZvH8ePHcXJyYuTIkWRkZJRLPLKE8vKFlZKfPn06zz77LNu3bycgIIBdu3YZdKyGDRvi7OzMmTNnWL16dV7xRikl69evx8vLq0D7v/76q9gy+qUt4Z9f/nL+5XWuje12UgY3kzKoaW9No9oOWBQ/95TRqJ/IRuLaWovGyoF93xQ5CSUAPZrXwaueI98euJRbBFNRAPjiiy9o2bIlq1atYtSoUWRnZ5OUlES1atWoWbMmt27dYseOHQB4eXkRGxvL8eO6KRSSk5PJyckptpx8UQICAlizZg0A4eHhnD17Fni48vLR0dG0bduWt99+m44dOxIZGUlgYCCrV69Go9EQFxfH/v378ff3f2DbIUOG8Mknn5CYmJjXe+nbty8LFy7M+3/l1KlTpfpsD6NevXpERESg1Wor3ah9KSU3E9O5mZRBLQcb3MsxmYBKKEbT47XxWGUnc+t88dOxCiEYE+hJ5M1kDkTdKafolIok9x5K7mv69OmcP3+eZcuW8dlnnxEYGEj37t354IMP8PHxwc/PjxYtWvDyyy/nXX6ysbFh9erVTJ48GR8fH/r06UNGRgY9e/YkPDy8wE35kkreT5gwgbi4OFq1asV7771H69atqVmz5kOVl58/f37eZTNra2uefvppgoKC8krY9+rVi08++YT69es/sO3AgQPzpkTONWPGDLKzs/H29qZ169bMmDGjrKe/RHPnzqVfv3507doVV1dXkx/PWKSUxCZmcDs5k9rVbGjkZF/SrLhGJ6rSr+QOHTrI3KdXTGHlqx+SZtGel2Y2x6lRkyLbZeZoCPz4D7zqO/LDq52KbKcYX0REBC1btjR3GBWKRqMhOzsbOzs7oqOj6d27N+fPn8fGxsbcoSkGklJy7V4699KycKlui2tNu4dOJoX9PyKEOCF1ExoWS/X+4bhBAAAgAElEQVRQjMjT3xGtpQ1/Lv2+2Ha2VpaMDPDgQNQdwm8kFdtWUUwtLS2Nbt264ePjQ1BQEF999ZVKJpWIVkqu3E3jXloW9WrYlSmZlJVKKEbUdeRrWGfd5e4V5xLbDvNvjIONpSoaqZido6MjISEhnD59mjNnzvD000+bOyTFQFqt5Ep8Gonp2bjWtKdeDfMlE1AJxaisbG2xtzpHhm0LboQVf2mtpoM1L3V0Z/PpG8QmqnIsiqKUjkYriYlPJSkjm4a17KnjaGvukFRCMTavXu5IC0sOB28qse2oAA8ksOJQjMnjUhTl0ZGj1XL5TiqpmTk0cnLAubr5kwmohGJ07QcOxzYjlsS4kseYNKrtwDNtXVn11xWSMlQ5FkVRSpaj0XI5LpX0bA3uzg44Vas497tUQjEySysr7B0ukGHfjIuH9pbYfmygJymZOaw+drUcolMUpTLLztESHZdKZo4WD2cHatpXnGQCKqGYhO8APwBCVu8vsa23Wy06N6nN8kOXydaUT0VQRVEqn6wcDdF3UsjWaPFwqYajnbW5Q3qASigm0Lrv89ilx5CSZFgByHHdmxCbmMG2M7EmjkypCNR8KDoVZT6UskpISOCrr77Ke2/Iuc2tpmyojGwN0XGpPNGxDTWErj6XIYKDg5k0aZLBxykrlVBMpLrTZTLtGhG6pegS4rkeb16Xx+pWZ+l+VY6lKlDzoRhXWedDKeux708oxj63aVk5XIpLQUqwsrTAwabilmCsuJFVcv5De7N9eTbntoXj+1zxbS0sBOMCmzBt/RkOR8cT8JhL+QRZxR1Yc4E7V1OMuk+XRtUJHNy81NslJibi7+/P5s2b8fLyYujQofTq1YuxY8fy+uuvc/z4cdLT0xk4cCBz5swBdPOhTJkyhdTUVGxtbdmzZw8zZ84kPT2dgwcP8s477xR5vJiYGPr160dYWBhpaWmMHDmSsLAwvLy8uHHjBosXL6ZDhw7s3r2bWbNmkZmZSdOmTVmxYgXVq1fHw8ODESNGsGXLFrKzs1m7di0tWrTgzz//zKtcLIRg//79VK9enWnTprFjxw6EELz33nsMGTKkQDydO3fmu+++o3Xr1oDuF/y8efNo2bIlkydPJiwsjOzsbGbPns2AAQMIDg7m119/JSUlBY1Gw59//lnqc55r5MiR2NnZERISQlJSEp9//jn9+vUjJiaG4cOHk5qaCsCiRYvo2rUr+/btY8aMGTg5OREZGUm7du2Ijo7G19eXPn36MHHixLxzq9FoePvtt9m5cycWFhaMHTuWyZMnFzh+UecYIDkjm7/j07CyFHi6VEMACxcufOC83717l9GjR3Pp0iUcHBxYunRpgWrOoJuZcvz48XnVmufPn59XysdYVEIxEc9OPbD/6mvSLFqgycnB0qr4Uz3ArwGf7DrPkv2XVEJ5xKn5UCrOfCi5YmJiOHbsGNHR0fTs2ZOLFy9St25d9uzZg52dHVFRUQwdOjTvMtXJkycJCwvD09OTmJgYwsLC8qYkiImJydvv0qVLiYmJITQ0FCsrK+7evVvguMWd44S0LK7eS8fWygJPl2pYW1oUed5nzZqFn58fGzdu5Pfff+eVV155YIqEKVOmMHXqVLp168aVK1fo27cvERERZT53+amEYkI168dyM9GLYz8vp8vwccW2tbWyZFSAB5/uOk9EbBItXYue30IxjofpSRiDmg+l4s2HMnjwYCwsLGjWrBlNmjQhMjIST09PJk2aRGhoKJaWlgUqLfv7++Pp6VnkOc21d+9exo8fj5X+B+X98RZ1jnPnMqlma0VjZwesLP53d6Kw837w4EHWr18PQK9evYiPjycpqWBZp7179xIeHp73PikpiZSUlAIzVJaVSigm1O3VQayfF0vU/pt0GV5y+2Gd3Fn0+0WWHbjMZ4N9TB+gUqGo+VDMNx/K/eVKhBB88cUX1KtXj9OnT6PVarGzs8tbX9yxS+P+cyyl5FayLpnUsLPWlZ+/b2Ksws67IbRaLUePHi3wOYxN3ZQ3oXrN22KfGUGGpvj55nPVcrBhSMdGbD59nZuJlXNiH+XhqflQzDcfytq1a9FqtURHR3Pp0iW8vLxITEzE1dUVCwsLfvjhBzQaTaHbFnfO+/Tpw5IlS/K++O+/5JX/HEspuXj9DsdCw6jtYENj5weTSVECAwP56aefAF0SdXFxeaDX+uSTT7Jw4cK894X1kstKJRQTc2maSLZNLf5Y+KVB7UcHeKLRSoIPx5g2MMVs1HwoFW8+FHd3d/z9/Xn66af55ptvsLOzY8KECaxcuRIfHx8iIyOL7JU4OzsTEBBAmzZteOuttwqsGzNmDO7u7nmff9WqVQXW5z/Hrdq05dk+j3P3+mUalnIuk9mzZ3PixAm8vb2ZPn06K1eufKDNggULCAkJwdvbm1atWuX1Ao1JzYdiYhnJCXw/5XesNDcZvXKCQdtM/Okk+6PiOPLOEwY/b64YRs2H8qCqPh/KyJEj6devn9nG5Wi0kr/jU0nJzMG1pvmLPKr5UCowO8daVLcPJd2+BaEbV5W8AbqBjskZOaw+rsqxKKan5kMxn2yNlktxKaRmamjk5GD2ZFJW6udvOeg+/jk2L7zL6c0x+D5fcnufRrXw96zN8oOXeaVL47zHBRXFFHLnQ6mqSrphbypZORou30kjW6OlsbMDNez/V0olKCiIy5cvF2hf1BNqFYlKKOXArW1HHLLnkmbVjpuRp6nfouQnuMYFNmHM9yFsPxvLAN+G5RBl1SGlNOskRIqSnq0h5k4qWinxdKlGtfsubW/YsMEscZX1Foj66VtOWj/jitbShj8WG1aSoVeLujSpU41vD6hyLMZkZ2dHfHy8OqeK2aRm6kqpADStU/2BZGIuUkri4+PL9Fix2T6JEGIQMBtoCfhLKQvtcwshngK+BCyBZVLKufrlTwCfokuKKcBIKeXFcgj9oXQcNIKzW78hOcuHzJRkbKs7FtvewkIwNrAJ7/x6loMX7xDYrE45Rfpoc3Nz49q1a8TFxZk7FKUKysjWEJ+ahZWFwLm6DZcTKtZvejs7O9zcSp7LqSjmTI1hwAvAkqIaCCEsgcVAH+AacFwIsVlKGQ58DQyQUkYIISYA7wEjTR51GdRvcYfLfzdn9+df8Jy+fEVxgvwasviPi3y4LYKtk52xUvdSysza2tqgEc6KYmxrQ64y/deztG5QgxUjO1aYWRaNyWzfUFLKCCnl+RKa+QMXpZSXpJRZwC/AgNxdALkjd2oCN0wTqfH0/ueb2GTe4Xa0q0Ht7awt+b9nWhJ5M5mf1RNfilIpSSmZv/cCb607Q5cmzqwa2/mRTCZQ8e+hNATyf5Ne0y8DGANsF0JcA4YDhU4qIYQYJ4QIEUKEmPsyh429AzVqniXDvil//fSdQds81aY+nZvU5vPd50lIyzJxhIqiGFNWjpa31p1h/t4oBrZ3Y/nIjo/02DKTJhQhxF4hRFghrwElb12iqcAzUko3YAXweWGNpJRLpZQdpJQd6tQx/32IXm+8jIUmg4i98Qa1F0Iws19rEtOzmb83ysTRKYpiLEkZ2YwKPsa6E9eY2rs5nw70xsaqov+GLxuTpkopZe8y7uI60CjfezfguhCiDuAjpfxLv3w1sLOMxyoXdZq0pJp2PSnWHbly6gjufl1K3KZVgxoM9Xfnh6N/83Ind5rXK/6GvqIo5nU9IZ1RK45xKS6VeYN8GNj+4W90VyYVPV0eB5oJITyFEDbAS8Bm4B5QUwiRW3+8D2Dcwv4m5PdiC6SFNQe+NTwH/utJL6rZWPKfreHqkVdFqcDCricStPgQsQkZrBztX2WSCZgxoQghgvT3P7oA24QQu/TLGwghtgNIKXOAScAudAljjZTynH75WGC9EOI0unsobxV2nIqo7TMDsU8/R0qmH2n3DLuvU7uaDVP7NOdA1B32Rtw2cYSKojyMP87fZvCSI1hZCNa93rXKTZanikOayZ4vPuHC+Q40qL2foI9mG7RNtkbLM18eIEujZffU7thaWZo2SEVRDLbqryvM2BRGi/qOLB/ZkXo1TDfvSHkzanFIIcSvQohnhRAV/RJZpdFr8pvYZsQSf90DjYGT5FhbWjDzuVb8HZ/G8oMxpg1QURSDaLWSj3dG8u6Gs3Rv5sKa17o8UsmkNAxNEF8BLwNRQoi5QgivkjZQimdpZUUtl0gy7d059N1XBm8X2KwOvVvWY9HvUdxOUpNwKYo5ZeZomLI6lK/3RfNyJ3e+faVDhSmlYg4GJRQp5V4p5TCgHRAD7BVCHBZCjBJCWBe/tVKUJ/41BsucVKKPGD6NJ8B7z7YkS6Pl450ljQtVFMVUEtKyGL7sGFtO32D60y348Pk2Vb6ahcGfXgjhjK60yRjgFLr6Wu2APSaJrApwcm1MNYuTpNm2JWq/YXNvA3i4VGN0N0/Wn7xG6NUEE0aoKEphrsSn8cLXhwm9msCCoX6M79FUVbDG8HsoG4ADgAPwnJSyv5RytZRyMlDdlAE+6jr/ozMAR388WqrtJvdqRh1HW2ZvPodWW3UerFAUcwu9mkDQV4eIT8nixzGd6O/TwNwhVRiG9lAWSClbSSn/K6WMzb/CkDv/StGade+LQ+ZZUrXtuBf7t8HbVbe1YlpfL0KvJrAx9LoJI1QUJdeuczd5aekRHGwt+XVCV/w9a5s7pArF0ITiJIR44b7XE0KIuiaNropo2sUKjVU1fvvcsPpeuV5s54aPW03m7ogkNbN092EURTGclJLFf1xk/I8n8Kpfgw0TAmhaR12cuZ+hCeVVYBkwTP/6FngbOCSEGG6i2KqMgFcnYJt+hYQ4L4MfIQbdnCkzn2vN7eRMvtpXYaeCUZRKLT1Lwxu/hPLprvM8592A1eM64/KIVgsuK0MTijXQUkr5opTyRaAVuvLxndAlFqUMLK2scG4YQ6adK78vKrTGZZHaN3YiyK8h3x64zJX4NBNFqChVU2xiOoOXHGHrmRtMe8qLL1/yxc5aDSguiqEJxU1KeSvf+9tAIynlXSDb+GFVPX3fmohVdhLXTtmXetu3n2qBlYXgw+3hJohMUaqmk1fu0X/RIS7FpfDt8A5MePwx9SRXCQxNKPuEEFuFECOEECOATfpl1QD13KoRODjVobrNKdLsWxO289dSbVu/ph0Tez7GrnO3OHTxjokiVJSqY92Ja7y05Cj21pZsmBhA71b1zB1SpWBoQpmIbs4RX/3re2CilDJVStnTVMFVNYFjnkRoczi5rvQ9jVe7eeLmZM/7W8LJ0WhNEJ2iPPo0WsmH28L599rTtG/sxKaJAWq6iFIoMaHo53X/XUq5Xko5Vf9aJ6tSVcly4t4+AIfsUFJFO+Iula4av521Je8925Lzt5JZdeyKiSJUlEdXYno2o4OP8+2By4zo0pjvX/XHqZqNucOqVEpMKFJKDaAVQtQsh3iqvJa9ndFa2vH7glWl3rZv6/p0aeLMZ7svcC9VTResKIaKjkshaPEhDl28w0dBbZkzoA3WVbyMysMw9IylAGeFEN8JIRbkvkwZWFXVadir2KVHk5TYlqz00j21JYRgVv9WJGdkM3/vBRNFqCiPlj8vxPH84kMkpGfz05hOvNzJ3dwhVVqGJpRfgRnAfuBEvpdiAnWbxpJl68Le+aV7hBigRf0aDOvUmB//usL5m8kmiE5RHg1SSpYduMSoFcdoWMueTRMD6NTE2dxhVWqGVhteCawBjkopV+a+TBta1fXkm1OxzrzLzciHm+3tzT7NqW5rxZwt59R0wYpSiMwcDW+tO8MH2yLo06oe61/vSqPaDuYOq9IztDjkc0AosFP/3lcIsdmUgVVlttUdcax+mnT75hxfW/q87VTNhjf7NOdwdDw7w26aIEJFqbxuJ2cwdOlR1p24xhtPNOPrYe2r9BwmxmToJa/ZgD/6MSdSylCgiYliUoCeEwdiockifMeNh9p+WCd3WrrW4N0NZ7mRkG7k6BSlcjrx9z0GLDpEeGwSi19ux5t9mmNhoQYrGouhCSVbSpl43zI12MGE6rfwwUFzkjRLP26EhZR6eytLCxa/7EdWjpZJq06SrcamKFWYlJLlBy8zZMkRLC0E68Z35VlvV3OH9cgxNKGcE0K8DFgKIZoJIRYCh00YlwL4PN8UrYUVvy3c9lDbN6lTnY8HenPySgIf74g0cnSKUjkkZ2Qz4aeTvL81nMe96rJtciBtGqpREKZgaEKZDLQGMoGfgSTgn6YKStHx7T+EalknSdF24uKhvQ+1j37eDRjRpTHLDl5W91OUKiciNon+iw6xO/wW7zzdgm9faU9NBzVruakY+pRXmpTy/6SUHaWUHfR/Z5g6OAW6jvRGCsHBZQ//lPa7z7bE260mb607rSoSK1XGmpCrPL/4EKmZOawa04nX1DS9JmfoU17NhRBLhRC7hRC/575MHZwCzXs8hSN/kWrTnhPrv3+ofdhaWbL45XYIYMKqE2Rka4wbpKJUIBnZGqatO820dWdo5+7EtjcC1fiScmLoJa+1wCngPeCtfC+lHDz57yAsNemc3pz00PtoVNuBzwb7EnY9iQ+2qTL3yqPp8p1Unl98iDUh15jU8zF+HNOJOo5qMqzyYmhCyZFSfi2lPCalPJH7MmlkSp56zdtSy+E46fat2Ltg3kPvp0+rerzWvQk/Hr3CJjUPvfKI2XE2lucWHuRmUgYrRnXk3329sFSPBJcrQxPKFiHEBCGEqxCidu7LpJEpBTw7cwLWmXeJOeFCTmbmQ+/n33296NDYiXd+PcvF2ylGjFBRzCMrR8v7W8J5/aeTNK1bnW1vBNLTq665w6qSDE0oI9Bd4jrM/+p4lX5whPLQHF3qU6dhGJn27mz7cO5D78fa0oKFL/thZ23JhJ9OkJ6l7qcoldeNhHReWnqE5YcuM7KrB2tf60LDWqWf9VQxDkOf8vIs5KVGypez52a8g236VW5fbUnavbiH3o9rTXvmD/El6nYKMzaFGTFCRSk/f16I49kFBzh/M5lFL/sxu39rbKxUyXlzKvbsCyGm5ft70H3rPjJVUErhrGxtaex3iyxbF7bMKdvsAd2b12Fyr2asO3GNNcevGilCRTE9jVby+Z4LjFxxjLqOdmye3I1+3g3MHZZCyT2Ul/L9/c59654yciyKAfr8cxr26RHcS+7I7YvnyrSvKU80I+AxZ2ZsCiMi9uGfIFOU8nL1bhpDlhxhwW9RvODnxsaJATStU93cYSl6JSUUUcTfhb1Xykmbpx3QWDmw69N1ZdqPpYVg/hA/atpbM+GnkyRnZBspQkUxLikla0Ku8tT8/Zy/mczng32YN8gbextLc4em5FNSQpFF/F3Ye6Wc+L80impZJ0mWnYnav6tM+6rjaMvCoX78HZ/KO7+eVfOnKBVOfEom4388wbR1Z2jTsCY7/hnIC+3c1Kj3CqikhOIjhEgSQiQD3vq/c9+3fdiDCiEGCSHOCSG0QogOxbRbLoS4LYQIu295bSHEHiFElP6/Tg8bS2UVMMoHgEMrQsu8r05NnPl3Xy+2nonlh6N/l3l/imIsv0feou/8A/wRGce7z7Rg1djOuDmpibAqqmITipTSUkpZQ0rpKKW00v+d+74sFdbCgBfQTSlcnGAKv1czHfhNStkM+E3/vkpp1r0vjhwl1aY9x9cEl3l/47s3pVeLuvxnazinryaUPUBFKYO0rBz+b8NZRgeH4FLdhk2TAhjXvakaqFjBmeUZOyllhJTyvAHt9gN3C1k1AMidynAl8LwRw6s0nvz3C1hq0jm7rewDFC0sBJ8N8qGuox0TV50kMU3dT1HM49SVezy74CCrjl1hXPcmbJwYQEvXGuYOSzFAZX1ou56UMlb/902gXlENhRDjhBAhQoiQuLiHH7tREdVr3pZa1Y7pSrJ8+fAlWXI5VbNh0ct+3ErK4F9rT6v7KUq5ytZo+WLPBQZ+c4SsHC2rxnTm3WdaYmetbrxXFiZLKEKIvUKIsEJeA4x5HKn71ivym09KuVRfcr9DnTp1jHnoCqH/7Dewzown5lSdMpVkyeXn7sQ7T7dkb8Qtvv4z2ggRKkrJouNSGPj1Yb78LYoBPg3Y8c9AujRVFYKN4fbFc3w/5gPuxFww+bFMllCklL2llG0KeW0ywu5vCSFcAfT/vW2EfVZKDk51qOt2jky7Rmz94L9G2eeoAA/6ebvyyc7zfHfwslH2qSiFkVLyw9G/eXbBAWLi01j8cjs+H+JLDTs1CZYx/PnNl2z8MIIUi04c/6VswwwMYWXyI5jGZnT1xebq/2uMJFVp9XvvHYJf+4Xb11qTdi8OB6ey9cSEEHw+2BeNVvKfreFk5miY8PhjRopWUXRuJ2Uwbf0Z9p2PI7CZC58O9KF+TTtzh/VIyEhOYN1b80mU3bDhDr4Bl+g64l2TH9cs91CEEEFCiGtAF2CbEGKXfnkDIcT2fO1+Bo4AXkKIa0KIV/Wr5gJ9hBBRQG/9+yrLytYWj3ZxZNs6s3l22Uqy5LKxsmDhUD8G+Dbgk53n+WLPBXVPRTEKKSWbQq/Td/5+jkTHM6d/a74f7a+SiZGE793MT5PWk0h3qmWd4MU5Heg64rVyObaoSl8SHTp0kCEhj26R5OUjFpNl7U7QNA/qNX/oYUIFaLSS6evPsPbENcb3aMrbT3mpAWXKQ4u5k8qMTWEciLqDt1tNPh/sw2N1Hc0d1iNBk5PDltkfcPNmR0DSoNFJ+s+aaZR9CyFOSCmLHDOYq7Je8lIK0fbZahz7zZ7d835l+FLjJBRLC8HHL3pjY2XBN39Gk5mjYWa/ViqpKKWSmaNh6Z+XWPjHRWwsLZj9XCuGd/FQ40qMJO5SBFvf30aaXXfssi/S/dXGNOtunGRSGiqhPEI6Dh7JuR0fk2ytK8nSrHtfo+zXwkLwwfNtsLWyZPmhy2TlaPnPgDZYqC8DxQBHL8XzfxvOEh2XyrNtXZnRr5W6vGVE+5cuJPJIfbJtfXCy3MfAb6ZjY2+eagIqoTxiuo1pz+6VGg6tOG20hAK6G/Uz+rXE1tqCr/dFk5mj5eMXvdUvTKVId1Oz+HBbBOtPXsPNyZ4VIzvSs4WaSdFYMlOSWffWPBK0gdgQj0+nKLqNft+sMamE8oh5LKA3R1bOIckmgGO/rMD/pVFG27cQgml9vbCzsuSLvRfIytHy+WAfrCwr6/hYxRS0Wsm6E9f4aEcEKRk5THi8KZN7NVOVgY0o8vetHFp5kwz7HlTLCqHfrOdx8Whu7rBUQnkU9Z02kF//G03YjjT8Xyq5fWkIIZjSuxk2VhZ8vDOSrBwtC4b6qZnyFAAu3ErmvQ1hHIu5S0cPJz4MakvzeuqmuzFtnDGbm7EdwdoVt7oHGPD+LHOHlEd9CzyC6j7WGifH46Tbt2TP/E9McozXH2/KzH6t2HnuJuN/PEFGtpqbvipLz9Lwyc5InvnyABduJ/PJi96sHtdFJRMjuhNzgeBRn3A9rjvW2Tfo+Q9RoZIJqB7KI+u5WW/w05u/E3O6MXevXKS2u/EHJo7u5omNlQXvbQxj7PchLB3eQV3WqIL+OH+bmZvCuHo3nRfbufHuMy1wrm5r7rAeKQeWLSLyUF2ybPyoZfEnAxf/G9vqFS9Zqx7KI8rBqQ5eXW6TZePM5lmmK7nwj86N+XSgNwcv3mFU8DFSM3NMdiylYrmVlMHEn04yasVxbCwt+HlsZz4b7KOSiRGl3Yvjx9fmcOZ4CwC8O55n2FdzKmQyATWw8ZH34/jZJNIdD/fDPPvueyY7zqbQ67y55jS+jWqxYlRHVYvpEZaYns2SP6NZfugyWgmTez7GuB5NsLVSvVNjOr52Jae3CTLt3Kie9RfPzR5kkisNhjB0YKNKKI+49IS7/DRlMxqr2vQd74RHx0CTHWtnWCyTfz5FS9cafD/an1oONiY7llL+0rM0BB+O4et9F0nOzKG/TwP+1ccLd2c1g6IxZaWnsX7af7mX2Q1LTTqNm4fz1Numr8NVHJVQClEVEwpA6ObVHNlSE9usi4z4bjyWVqa7dfZbxC1e//Ekni7VWDDUD6/6FbNrrhguW6Nl9fGrLPgtitvJmfRqUZd/P+lFqwZq0itjC9+ziSM/3ibDvikO6afp8+9uuLXtaO6wVEIpTFVNKABr3pxBXFpP6lb7g0Gf/cekxzp08Q5v/HyK5IwcpvRuxmvdm6ixKpWQVivZcuYGn++5wN/xaXRo7MTbT7ego0dtc4f2yNHk5LDhnfeJS+iCkBrq1Q+h/+z3TPrjrzRUQilEVU4ompwcVr66hEybpnR9PhmfZweZ9Hh3U7OYuSmMrWdi8XarybxBPuoR0kpCSsm+C3F8svM8EbFJtKjvyLSnvOjpVVfVcDOBmOMH+H1RKOn2rbFPP0/3cc14LKC3ucMqQCWUQlTlhAJw+a8/2bU0EeuceIYtCsLOsZbJj7n9bCwzNoap3kolERJzl092nudYzF3cazvwryeb85x3A1W3zUS2vP8+1//2RVrY4Fz9EC/MfQ8r24r3lJxKKIWo6gkFYOt//sPf1wOoyX7+8c3scjlmfEomMzedY9vZWHz0vZVmqrdSoUTEJjFv13l+i7xNHUdb3niiGUM6NFIVEEzk1oWz7PhoJ6l27bFL/5v2Ax3wfW6IucMqkkoohVAJRSd41Mek2rTHu2MkgWMmldtxt52JZcamMFIycvhnn2aMC1S9FXO7Ep/GF3svsDH0OtVtrRjfoymjAjxwsKkY1+4fRXvmf8LlM03Jtq5BLcuDvPjx1HK5WlAWKqEUQiUUnTsxF9gwJxSQvDinfbk+234nJZOZm8LYfvam6q2YiZSSI5fiWXk4hj3ht7C2tGBUgCfjezRRj3qbUGLsNTa9F0yydVdsM27S+okUugwfZ+6wDKISSiFUQvmf/UsWcPZkK6pnH2fE8nfK/fhbz9xg5qZzpGTkMLVPc8YGeqreiomlZeWw4dR1vj/8N+dvJePkYM1L/u6M7IuRt/0AABqgSURBVOpBvRpqfhJT2vf1l0Qdq0eWbV0ccw7x/EevUqNuA3OHZTCVUAqhEkpBP742m0Rh+lH0RbmTksmMjWHsCLuJT6NafDbIW00HawJX4tP4/kgMa0KukpSRQyvXGozs6kF/3wbYWavR7aZ098pFtsxZTYp1F2wy79C0/TV6TXrT3GGVmkoohVAJpaD/jaJ34ukJLri3Dyj3GKSUbD0Ty8xNYaRmaXizT3PGBjZRE3eVkZSSA1F3WHk4ht/P38ZCCJ5qU5+RXT3o0NhJPf5bDvZ88QmXzzQh26YWjpojPPefV3BybWzusB6KSiiFUAnlQeU5ir44ccm63srOc7reyuSej9GzRV2VWEopJTOH9SeusfJIDJfiUnGpbsNQf3eGdWqspt0tJ7cvnmP7h1tItfXHJuMmLbrdLdeHX0xBJZRCqIRSuDVTZxCX3pO61f9g0DzTjqIvjpSSLWdi+WBrOLeTM2lYy56XO7kzuEMj6jhWvGfzK5JLcSl8f+Rv1p24RkpmDj5uNRnR1YNnvV1V0cZytOO/H3I1qiXZ1o7U5DADPnwNR5f65g6rzFRCKYRKKIXLyczk+3HLym0UfUmyNVr2hN/ix6N/czg6HmtLQd/W9flH58Z08qytLtfoxSVn8nvkLbaeieVA1B2sLQXPtnVlRFcP/NydzB1elXIjLIRd8/aRZtcO24zrtH4ivdI8wWUIlVAKoRJK0cwxit4Q0XEp/HT0CutO6G4oN6tbnWGd3HmhvVuVK5EvpSTqdgp7wm+xN+IWoVcTkBIa1rJnUAc3Xu7kTl1HdVmrPGlyctj+0Ufc+NsHjaU9Na0O8cJHU7Cv9WjVO/v/9u48Pqry3uP455fJMhMSSAJJIAKyBSEgICiLXkUUvaAUwa0qqHh7SxdrtaVuWLRFX1VLW7G2LvRetMV9QcVqpaIsgqwGCEvYF8EACQayMJPJzOS5f5wDN+IEBpjkZJLf+/WaF2fOOTnzeybDfHO259FACUMD5cSO3kWfxiLGNdBd9JHyVYf4oKCIV5btZu3eMjwJLsacl8O4QWfT+6xWTpdXbwKhGlbuKmXexmLmFR7gq1IvAH3at2J4z2yG98ymZ7tU3WtzwFdfLuHTZ1bgdffF7dtNv9EuBlx3m9Nl1QsNlDA0UE7u2F30Azdz8Q/udLqcsAr2HublZbuZs7aIqkAN/TqkMX7w2Yzq065JXAZbXhVg4eYS5hUeYP6mYsqrgiTGx3FR19YMz8vm8h7ZeoLdQaFgkDkPP8aB4gHUxCWSnrSYax+/r9GOohgNGihhaKCcnJN30Z+qMm+Ad/L38vLy3ewoOUJacgLX92/P0HMyyWvXMqaGot1T6uXTwgPMKyxm2Y5vCNYYMlokclmPLIb3zObi3Da0SNLuUJy2bck8Fs3YhM+Th9u3g/NvbOX4OceGoIEShgZKZBY+/zTrV/eiRXU+t/7tl41mTIa6HO1K5JVlXzF3w36CNdZnum1LN3k5LemV05K8di3pldOKDhkexw4PGWM4WFnN1uIKthVXsvVA5bHpg5XVAHTJbMEVPbMZnpdN/47petl0I+GvrOC9X/+e0iNDAKF1yheM+d2DJHqax2iVGihhaKBE7pWfPsLhmqG0MosY/8JvnC4nYmXeAOuLythYVM6GojI27itnW3EldsaQmhRPz2MB05K8nJbkZqVGtVddYwzFFf5jgbG1uJJt9vQhb+DYeqlJ8eRmp5Cblco5bVMZek4mXTNTolaHio4lLz5H4YJk/J4OeHwbGXxrR/KGj3a6rAalgRKGBkrkQsEgL0+cRmXiIFonzeemp527P+VMVQVCbN5fwYaicjbuK2NDUTmb9lXgC4QASHAJuVmp9MppSZsw97uE+y9i+O7Mw0cCxwKkoip4bH4rTwLds1PolpVKblYKudkpdM9OJSs1SU+mN2IHtqzj4yfnUBk/iIRAGTmdNzLywQcb/R57fdBACUMD5dRU+7y88pPn8br7kZOxkLG/+63TJUVNqMaw8+ARNu6z92SKyincV065L/jdlev4zj9+dqo7nm5Z1h5HbnbKsek2KYkaHDEkFAwy5zePUbyvH8H4FqTWLGXUlFsa9fnE+qaBEoYGyqnzHirh9XvewufOpUunFYx88CGnS1Kq3qz54A3y3z6Ez9Mdt28n546MY+BNdzhdluMiDRTtL1ydUHJ6JmMfG4G7ag87d57P/GenO12SUlFXXlzEyz/+DV98kE51QnuyUxdw+4zxGianyJFAEZEbRGSDiNSISJ2pJyIzRaRYRNYfN3+aiGwSkQIReVdEGsdt3U1UeocujLy3D4nVB9mcn8uK1/7X6ZKUipq5057gjfsXU8YlJAfWcPVdbbh+2tRGObZ7Y+fUHsp64Fpg0UnWewkYEWb+J0BvY0wfYAvQ8CNENTM5vc9n2MS2xIV8rJ7XmvUfz3a6JKXOyPYvPuXFCU+xbftAxATp2XsNE168jw59BztdWsxy5HIFY0whcNITlcaYRSLSKcz8f9d6ugy4PorlqTp0vfByKg+9xbLZwtI3grRIX0jnQUOdLkupU/Kte0oSepIev4Cx0+9pcv1vOaEpnEP5L+BfdS0UkYkiskpEVpWUlDRgWU1T36tvoM+lBwjGp/Dpc3vYv2mt0yUpFbH5z05n1s/e5WDVMJKqdzD0+9Xc8pepGiZRUm97KCIyDwg3EMBDxpj3o/QaDwFB4JW61jHGzABmgHWVVzRet7kbcutEvIf/yOZ1vfnw8ZVc+0RazI5Ep5qHDXPfY8VrO/G6+5IQV0rHnMVcNXlys7ynpD7V27tpjBleX9sGEJEJwCjgctOcrn1uJC6/axK+Rx9l994hvPvAB9z89C36V55qdIq3bWDuk+9QIYORhB6kuxYw6okf0zJLj5LXh5g85CUiI4D7gNHGGK/T9TRXo6ZMoW3aInyePN64ZyZBv9/pkpQCrPMkb02awruPb6M87kKSA/mMnJjCLX+dSsusHKfLa7Kcumx4rIjsBYYAH4rIXHt+joh8VGu914ClwDkisldEfmAv+guQCnwiImtE5PkGboKyXffkVDIS5nPE3Z9XfzqNUDDMneZKNaBP/vR7Zv1sDsVHhpEQ3McFl+5mwosP0OmCi50urcnTO+VVVMyaOJXyuP8gLW4h455tOl20qNixZs4b5L9Tgs+TR6K/hJzcrYy47wE9TxIFeqe8alC3PDuZFv4VHK4Zypu/nOJ0OaoZKVq/in/84DGWfJhBdUInWifNZ9yfLuPqyb/WMGlgGigqKlzx8dz8zJ0k+9ZR4h3Gew/rXoqqX77Dpbx+9xTmTN9PRfwgUoIrGHV3Njc9/SjJ6ZlOl9cs6SEvFVUVB/fz5qT3qXJ3JSNxETc+9bD+laiiKhQMMnfaE3y9pRvVSVl4fIWcNyaN88aOc7q0Jkt7Gw5DA6VhHNqzg/emvIfX3Y/kqjWMeXQM6R26OF2WinGhYJD5f53O7vw0qjxdSKraR8dz93LlpPudLq3J00AJQwOl4YSCQd78xVRKqy8hyX+AwTd56D3iWqfLUjFq/l//xI4VKVR5upFQXUpG6wK+98i9JKWkOl1as6CBEoYGSsOb9/Qf2F7QHSMuOuWuZcT9k50uScWQRS/8mW1fJOLzdCeh+jDp6au5+tc/13MkDUwDJQwNFGdsXvARn79YjN/TkTRZyPenT9auwdUJLZ75LFsWGnyensQHyklr+SUjH/yJ3pToEA2UMDRQnFNeXMTs+2dxJOkCPL71jJpyOVndejldlmpkls6aQeE8Pz5PL+IDFbRKWcXIB35Eq3btnS6tWdNACUMDxVmhYJDZ9/+WkopLSAh8w4BRQfpfN97pslQjsOL1F9nwr3K8nnNxBSpp5VnFiPsn6MUcjYQGShgaKI3Dohf+TOHyDtS43JzVfiWjH3nY6ZKUQ/LfeZm1H5TgdffFFfTSMmkFV947njadujtdmqpFAyUMDZTGY+fyhXz27FaqPF1oWfM5N/7pl3rFTjPy5Tv/oOCDErxJfXGF/KQmrOCKSTfqYdBGSgMlDA2UxsV3uJQ3Jz1HZcIQPL7NjLj3AnJ6n/Qzq2JU0O9n3vQ/UrQxHZ/nHOJCflJdyxl+z1ja9ujrdHnqBDRQwtBAaZxmP/gw+7+5iPhABX0uP8Tg8T90uiQVRYf27GDe9Bc5XJpHdVI2CdWHSG2xhmF3Xq9BEiM0UMLQQGm8ls6awbr5GQTjU2nbegnXPKpdtsS6bUvmsfTvSzhSM4BQfDJu3y4yO+3hyl/djTs1zeny1CnQQAlDA6Vx27tuJf/+wyp8nnPw+DaTd0W87q3EoMUzn2XrIh/epD6AkOwvoNvFSVx4+4/0j4QYpYEShgZK4+evrOD9Kb/nUPn5BBNSaVGVz8BxueRdcY3TpakT8FdWMPcPT1Gy8yyqPJ1xBb20iMtn0LiBdB86wuny1BnSQAlDAyV2HNy1hY+feJWK0CCMuEipWcGwu4bToe9gp0tTtRzYso7PnnmTiiN9CSRmkOgvplX6Bq74xR16D0kTooEShgZK7Nm18nMWPvc5lQkXEFcToGXCcq568Hb9snJQ0O9n8czn2b3Si9fVjxpXEh7fFtr1LOWKX0zSbnWaIA2UMDRQYtfaD98i/629eN19iQ+Uk5H+Jd97ZJKe3G1Aq999hQ0fb8Vb3ZtAUgZxIT+eYAF5/5nFwJvucLo8VY80UMLQQIl9i2c+y+aF8VR5upHoP0Dbzlu5avJkPdlbT3YuX8jyV+dRebgbfk8HMCE8VZvJ6HiQoRNv0z3FZkIDJQwNlKYhFAzyyR9/z97CjvjdObh9u+gyqJxhP73H6dKahIO7trDohZc5XNQOnzsXJA63bxepGTsZfNtVdDxviNMlqgamgRKGBkrTUu3z8s+pT3DwQF8Ciel4fBvoO7oVA667zenSYo7vcCkLnnuO/ZvdVCX0osaVSKK/hGT3Rvpe01cHR2vmNFDC0EBpmsqLi/jw0ecp8w0k5HLjqdpKamYRg24eQccBFzldXqPlO1zKslf/wVdfHsHHuYQSUogPVOBhHV0uymDIbRP1UKICNFDC0kBp2vZvWsun02fjrepBtTsbTA3uqh2kZOxhwPVD6XbRcKdLdFTQ7yd/9svsWLobb1kW/sSu1LiSiAtV4w6sJ6dXkKE//rFe6KC+QwMlDA2U5iEUDLL2/dcp/HQrPm8ufrc1yp/bt5MWrXbTb8xAelw2yuEq618oGKRw3hw2zVtNxcF0ql3dCCakAJBUtZ9E1w5adzEMufVmMjp2c7ha1ZhpoIShgdI8rfvobdZ9VIC3ogt+T0cAknxfkZy6g14jz6Xv1Tc4XGH07Fy+kDUfzKfsaw/V0pVAYgYACdWlJJrtpJ3lo8+ooXQZPMzhSlUs0UAJQwNFbfrsn6x5bwVHys6mytMZgKSqIjyerfQcnkvfa26KmfMGvsOlbP78E/au2ULpLqE61Bm/ux0ArkAlSaFtpLY5RI/h59Fz+OiYaZdqfDRQwtBAUbVt/+JTvnxrARWl7alydwWJwxWoJCFYgktKSUiupEVrIbNLNl2HXOhIV+tBv58dy+aze3UBh/dU4CtLJBhIJxSXSXVia5A4AOJCfpKqt5PcqpguQ86m/7Xj9Y51FTUaKGFooKi6fPXlEla8PpcjpUmEgukE4zIJJKYf+8IGcAWPkBAoIU5KSXRXkNxGyOySRZeBA8nu0e+U9gBCwSDBKh+hQBX+Ki8V+4vYtXIVB3eW4C11EahqSUgyCSS0ocaVeOzn4kJ+EgLFuDho1wBZ3drSf8yNeNIyovqeKHWUBkoYGijqVHgPlbDl88/Yt3E7Zft8+CvdhILphOLaUJ2YcVzYeHEFy+15cRhxAYIRF+bYvP9/IK46X1dqgiRWH8RlSohPKiO5VZCMTml0umAAHftfpIeuVIOLNFD0k6lUHZLTM+k3+vv0G/3dZd5DJWxZ/Bn7NmynfL+Pqgo3NXjA1CBSY/9rgBrEGBCDYP97dDoOJM567kqAtJwWtO/bk65DLiMpJbXB26vUmdJAUeo0JKdn0u9736ff95yuRKnGI+7kqyillFIn50igiMgNIrJBRGpEpM7jciIyU0SKRWR9HcsniYgRkTb1V61SSqlIOLWHsh64Flh0kvVeAsKOHyoiHYArga+iWplSSqnT4kigGGMKjTGbI1hvEVBax+KngPuA5nOZmlJKNWIxeQ5FRK4BvjbGrI1g3YkiskpEVpWUlDRAdUop1TzV21VeIjIPaBtm0UPGmPfPYLvJwGSsw10nZYyZAcwA6z6U031dpZRSJ1ZvgWKMqa++wrsCnYG1IgLQHsgXkYHGmP319JpKKaVOIubuQzHGrAOyjj4XkV3A+caYg44VpZRSypmuV0RkLPAMkAkcBtYYY/5TRHKA/zHGXGWv9xpwKdAGOAA8Yoz53+O2tYsIA0VESoDdp1l2G6C5hZa2uXnQNjcPZ9Lms40xmSdbqVn15XUmRGRVJH3ZNCXa5uZB29w8NESbY/IqL6WUUo2PBopSSqmo0ECJ3AynC3CAtrl50DY3D/XeZj2HopRSKip0D0UppVRUaKAopZSKCg2U44jICBHZLCLbROSBMMsniEiJiKyxH//tRJ3RdLI22+vcKCIb7WEHXm3oGqMtgt/zU7V+x1tE5LATdUZTBG3uKCLzRWS1iBSIyFVO1BktEbT3bBH51G7rAhFp70Sd0RTBkB8iIn+235MCEekf1QKMMfqwH4AL2A50ARKBtUDecetMAP7idK0N3OZcYDWQbj/Pcrru+m7zcevfBcx0uu4G+D3PAH5iT+cBu5yuu57b+xZwuz19GTDL6bqj0O5LgP7A+jqWXwX8CxBgMLA8mq+veyjfNhDYZozZYYypBl4HrnG4pvoWSZt/CPzVGHMIwBhT3MA1Rtup/p5vBl5rkMrqTyRtNkBLe7oVUNSA9UVbJO3NAz6zp+eHWR5zzImH/ACrjf8wlmVAmoi0i9bra6B821nAnlrP99rzjnedvbv4tj3QVyyLpM3dge4iskRElolI2EHPYkikv2dE5Gyszkg/C7c8hkTS5t8A40VkL/AR1p5ZrIqkvWuxBvoDGAukikjrBqjNSRF/9k+HBsqp+wDoZIzpA3wC/N3hehpCPNZhr0ux/lr/m4ikOVpRw7kJeNsYE3K6kAZwM/CSMaY91qGRWSLSlL8jfgUMFZHVwFDga6A5/J7rTVP+sJyOr4Haexzt7XnHGGO+Mcb47af/AwxooNrqy0nbjPVXzBxjTMAYsxPYghUwsSqSNh91E7F/uAsia/MPgDcBjDFLATdWh4KxKJL/y0XGmGuNMecBD9nzYv7ii5M4lc/+KdNA+baVQK6IdBaRRKwvkzm1VzjueONooLAB66sPJ20z8B7W3gki0gbrENiOhiwyyiJpMyLSA0gHljZwffUhkjZ/BVwOICI9sQIlVoc5jeT/cptae2APAjMbuEYnzAFus6/2GgyUGWP2RWvjMTceSn0yxgRF5GfAXKyrRGYaYzaIyFRglTFmDvBzERkNBLFOfk1wrOAoiLDNc4ErRWQj1iGBe40x3zhX9ZmJsM1gfQm9buzLY2JZhG2ehHU48xdYJ+gnxGrbI2zvpcDjImKARcCdjhUcJbWH/LDPhT0CJAAYY57HOjd2FbAN8AJ3RPX1Y/TzopRSqpHRQ15KKaWiQgNFKaVUVGigKKWUigoNFKWUUlGhgaKUUioqNFBUTBORygjWuUdEkqP4mmNEJC+K2/viDH620v43R0TePsF6aSLy09N9HaUioYGimoN7gFMKFBFxnWDxGKyOBaPCGHNhFLZRZIy5/gSrpAEaKKpeaaCoJkFELrXHtHhbRDaJyCv23cA/B3KA+SIy3173ShFZKiL5IvKWiKTY83eJyJMikg/cICI/FJGVIrJWRN4RkWQRuRCrh4Rp9lgpXUWkn91pZoGIvCsi6fb2Fog1rsoqESkUkQtEZLaIbBWRx2rVXllr+n4RWWe/5hNh2tnZrn3dcdvodHQMDBHpJSIr7PoKRCQXeALoas+bJiIpYo0Fkm9v65pa2ykUkb+JNfbNv0XEYy/rJiLz7NryRaSrPf9e+30qEJHfRvUXq2KL0/3360MfZ/IAKu1/LwXKsPomisPqLuU/7GW7gDb2dBusu6Jb2M/vBx6utd59tbbdutb0Y8Bd9vRLwPW1lhUAQ+3pqcB0e3oB8KQ9fTdWd/DtgCSs/tFaH9eGkcAXQLL9PCNMe+cAt9nTd9b62U7YY2AAzwDj7OlEwFN7uT0/HmhZ6z3ZhjVGRiesXiD62cveBMbb08uBsfa0G2uv70qscVTEft//CVzi9OdCH848tOsV1ZSsMMbsBRCRNVhfjouPW2cw1uGqJSIC1hdu7b663qg13dveC0gDUrC68fgWEWkFpBljFtqz/o41cNNRR7txWQdsMHa/SSKyA6uTvtpd2AwHXjTGeAGMMeHGtbgIuM6engU8GWadpcBDYo1AONsYs9Vu67dKB34nIpcANVhdmGfby3YaY9bY018CnUQkFTjLGPOuXVuV3Y4rsUJltb1+ClbHoYvC1KWaOA0U1ZT4a02HCP/5FuATY8zNdWzjSK3pl4Axxpi1IjIBu4PM06yp5rj6auqoLxIn7C/JGPOqiCwHrgY+EpEf8d3OPMcBmcAAY0xARHZh7XXUrhms99FzgpcT4HFjzAunUL9qovQcimoOKoBUe3oZcJGIdAMQkRYi0r2On0sF9olIAtYX8He2Z4wpAw6JyMX2sluBhZyeT4A7jl6RJiIZYdZZgtVpJcfVdIyIdAF2GGP+DLwP9OHb7wFYIzIW22EyDDj7RIUZYyqAvSIyxn6NJLvOucB/1ToPdZaIZEXUWtXkaKCo5mAG8LGIzDfGlGD1EP2aiBRgHR7qUcfPTcE6b7AE2FRr/uvAvSKy2j4xfTvWSfoCoB/WeZRTZoz5GOsQ2Sr7kN2vwqx2N3CniKyj7pH2bgTW29vojTXk6zdYh/nWi8g04BXgfHs7tx3XvrrcitXbdgHWuZ62xph/A68CS+1tvc23g0s1I9rbsFJKqajQPRSllFJRoYGilFIqKjRQlFJKRYUGilJKqajQQFFKKRUVGihKKaWiQgNFKaVUVPwfpbLYJha/18YAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -103,14 +145,25 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFX6+PHPQygBpCb0EDrSpEYQASlKcUVARQFZERu6ivrVXSy/dRFdd1fU3XVtq9hAVgVlRbEgiIAI0gKG3gIEktBSJNSElOf3x71hJzFlYDKZlOf9es2LO/eee+9zZoZ5cs+5c46oKsYYY8zFqhDoAIwxxpRulkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYvxKRaSLyH3c5XEROiUiQ+7yBiKwQkZMi8ndxvC8iv4jIusBGfvFE5AYRiXXr2i3Q8ZQ0uT8HJY3nZ9Z4xxJJCSUiMSJy1v0Pl/14LdBx+UJVD6rqJaqa6a6aBCQCNVX190BfYDAQpqo9AxVnEXgJmOzW9efiPrmIqIiczvXZecyP55soIitzrZspIudyxbAJ8vwcmFKuYqADMAW6XlWX+PMEIlJRVTP8eY4CNAO26/9+FdsMiFHV0xd6oADXI7dmwLa8NhRjnF1UNboYzlOQF1T1qQDHUGKISFBZTZ52RVIKZf8FKCIvuc1A+0XkWo/ttUTkXRE5LCLxIvKcR3PSRBFZJSL/FJEkYJqIBLlNS4nusSa7f9VWFJGbRWRDrvM/KiJf5BNbCxH5wW2u+g4I9djW3OO4M4Hbgcfcv1bvBd4BervPn3H3GS4iUSJyXER+EpHOHseLEZHHRWQzcNo9bmMR+a+IJLh1ecij/DQR+UREPnDj2yYiER7bm4rIZ+6+SZ5XgCJyp4jscF/vRSLSLI+6VxGRU0AQsElE9hYQZ3sRWe7Wa5uIjPA4zkwReUNEFrqvxSoRaSgiL7vn33mxTWYi8o2I/N3j+RwRec9dbiUiS926J4rIhyJSu6DXR0TaA296vG/HvYjh/OfAfd5C/tfEuUREXhePpiURucJ974+LyCYRGeCxbbmI/Nl9jU6KyGIRCXW3BYvIf9xYj4vIehFp4G5rLCILRCRZRKJF5J58Yl0oIpNzrdskIje6y+1E5Dv3OLtE5BaPcjNF5N/ua34aGFjYa1Nqqao9SuADiAGuyWfbRCAduAfnS+t3wCFA3O3zgbeA6kB9YB1wr8e+GcCDOFekVYH7gO1AGFAHWAKou70KkAy09zj/z8BN+cS2GviHu99VwEngP+625tnHdZ/PBJ7LVa+VHs+7AceAXm49b3dflyoer1EU0NStRwVgAzAVqAy0BPYBQ93y04BU4Dfu8f4GrHG3BQGbgH+6r1sw0NfdNhKIBtq7r8lTwE8FvHcKtM71XnrGWck93v9z4xzkvk6XerwuiUAPN46lwH5gghvnc8Ayb8+fa1tD9zUdBIx3X58a7rbWOE2LVYB6wArgZS9enxzvW17vba5tuT8Hq3GaAyvjNG+e4H+fmSZAkvueVXDjSwLquduXA3uBtu5ruxx43t12L/AlUM2NvwdOMypu3d5w69EVSAAGeXxOss8/AVjlEXsH4Lj7GlUHYoE73M9FN/d96+DxGqQAfdzYgwP9veK376tAB2CPfN4Y58vnlPuhzX7c426bCER7lK3m/sdsCDQA0oCqHtvHZX/xuPsezHWupbiJxn1+Ta7/6P8G/uIudwR+wf0yz3WccJwkVd1j3UdcfCL5N/DnXOfYBfT3eI3u9NjWK4+6PQm87y5PA5Z4bOsAnHWXe7tfJhXzqNdC4C6P5xWAM0CzfN67vBKJZ5z9gCNABY91HwPTPF6Xtz22PQjs8Hh+GXC8gM+O4nwZe352hnpsvwnnCzARNxnkc5xRwM9evD453jePOqTmimFW7s+Bx2emmse+//H4zDwOzM517EXA7e7ycuApj233A9+6y3cCPwGdc+3fFMjETaDuur8BMz0+J9nnrwGczn6vgb8A77nLY4Afcx37LeBpj9fgA1++B0rLw5q2SrZRqlrb4/G2x7Yj2QuqesZdvASnfb4ScNi9nD+O8+Gu77FvbK7zNM61Lvf2WcCtIiLAbcAnqpqWR7yNgV80Zx/HgYKrWKBmwO+z6+HWpal7nrxibQY0zlX+/+Ek12xHPJbPAMFuE0tT4IDm3X/RDPiXxzGTAcH5a9lbnnE2BmJVNctj3YFcxzvqsXw2j+eXFHK+7rk+O4s8tn2J8xf6LlU930kuzl10c8RpDj2B84We3TRZ0OuTn5dyxXB7HmUaA8ken2H49Xt6c673tC/QyKNM7vc0+7WZjZN05ojIIRF5QUQqeZzzpMd+uV9/ANwyXwNj3VXjgA89YuuVK7bxOH/Q5VWXMss628ueWJwrktAC/tPnHvL5ME6zVramOQqrrhGRczh/Sd/qPvJyGKgjItU9kkl4HufzVizOldBfCijjeexYYL+qtrnIc4VL3p3h2XF8mMd+3vKM8xDQVEQqeCSTcGC3D8e/EH8BdgAtRGScqn7srv+rG+dlqposIqOA7H6igl4fX4YQPwzUFZFqHsnE8/MXi3NFkmcfRkFUNR14BnhGRJoD3+Bc0S52z1nDI5mEA/H5HOpj4GkRWYHTFLbMI7YfVHVwQWFcaNylkV2RlDGqehjnP8rfRaSmiFRwO1H7F7DbJ8DDItLE7Vx9PI8yH+B8qaR7/hWb69wHgEic/7iVRaQvcL0P1XkbuE9EeomjuohcJyI18im/DjgpTsd2VXFuIugkIpd7ca51OF9qz7vnCRaRPu62N4EnRaQjnL+Z4WYf6rUW5y/nx0Skktt5fD0wx4djekVErsJp05+A0+f0qohk/yVeA6c5NcVdN8Vj14Jen6NAmIhUvtB4PD4z09zPTG9yfmb+A1wvIkPd9zNYRAaISFieB8xZ14Eicpk4N5qcwOlXzFLVWJwmr7+5x+sM3OWeKy/f4Fx9PAvM9Uj+XwFtReQ2932sJCKXi3MDQrliiaRk+1Jy3oc/38v9JuB0XG7H6c+YR86mgNzexkk+m3E60r/Babf2vFVxNtCJ/P+zZbsVp68iGXgaJwFdFFWNxLmh4DWcekTjtMfnVz4TGI7Tebofpw/gHaCWF+fKxPkCaw0cBOJw2sBR1fnAdJwmkhPAVuDafA5VKFU9557rWjfGN4AJqrrzYo+Zh025Pjsvi0hNnPdjsqrGq+qPwLvA+26z5TNAd5wO4q+Bzzxizvf1welj2wYcEZFEjxgeyxWD5zZP43H6YJJwbiSYi3NVjfulPxKniTIB5ypgCt59dzXE+eyfwLkC+wHncwxOE1VznKvD+Tj9Gnneau82436G03f4kcf6k8AQnGavQzhNbNNxOuLLley7fIw5T5xbid9U1WYe66ri3O3TXVX3BCw4U+aJyFxgp6o+HehYjHfsisTgNgP9RpzfNzTBuZLIffXzO2C9JRFT1NzmoFZuM+wwnCuQzwMdl/GedbYbcO5AeganSeEsTrPG1PMbRWLcMqMCEZwp8xriNB2F4DSZ/U4DMLSMuXjWtGWMMcYn1rRljDHGJ+WiaSs0NFSbN28e6DCMMabUCA0NZdGiRYtUdVhhZctFImnevDmRkZGBDsMYY0oVcQfALIw1bRljjPGJJRJjjDE+sURijDHGJ+WijyQv6enpxMXFkZqaGuhQTAkSHBxMWFgYlSpVCnQoxpQa5TaRxMXFUaNGDZo3b44zzJAp71SVpKQk4uLiaNGiRaDDMabU8GvTlogME2f6yWgReSKP7VVEZK67fa071DMi0lOc6VWjxJnW8gaPfWJEZIu77aJvxUpNTSUkJMSSiDlPRAgJCbGrVGMukN+uSNyhm1/HmRozDlgvIgtUdbtHsbtwJkJqLSJjcUbOHIMzumqEqmaISCOckUy/9JgHYaCq5jeS6IXE6OshTBljnwljLpw/r0h64kwHu88dNnsOzmBsnkbizL4HznDPV4uIqOoZj6QRTDmZHMYYY4rKziMnmP7tTopjGCx/JpIm5JxmMo5fT2V5voybOFJwBm7DncxoG7AFuM8jsSiwWEQ2iMik/E4uIpNEJFJEIhMSEoqkQkXtkktyzpY6c+ZMJk+efEHHiIqK4ptvvinKsHKYOXMm9erVo2vXrnTt2pUJEyZc8DGWL1/O8OHD/RCdMSa31PRMXly0k+GvrGTu+lgOp/i/qbbEdrar6lqgozvb2CwRWaiqqUBfVY0XkfrAdyKyU1VX5LH/DGAGQERERJm8osnIyCAqKorIyEh+85vf5Lm9YkXf3+IxY8bw2muvFV7QGBNQq6IT+eP8LcQkneGm7mH88br21K1+wRNXXjB/XpHEk3Pu5TB+PSfy+TIiUhFnJrskzwKqugNn+s9O7vN4999jOHNm9PRD7AH35Zdf0qtXL7p168Y111zD0aNHAZg2bRq33XYbffr04bbbbmPq1KnMnTuXrl27Mnfu3F9tz8zMZMqUKVx++eV07tyZt9566/w5XnzxxfPrn376wuYQioqK4oorrqBz587ccMMN/PLLLwBER0dzzTXX0KVLF7p3787evXtz7Ld+/Xq6dev2q/XGmIuXfPocv/9kE+PfWQvAh3f34u+3dCmWJAL+vSJZD7QRkRY4CWMszjSsnhbgzBu9GhgNLFVVdfeJdTvbmwHtgBgRqQ5UUNWT7vIQnHmUffLMl9vYfuiEr4fJoUPjmjx9fccCy5w9e5auXbuef56cnMyIESMA6Nu3L2vWrEFEeOedd3jhhRf4+9//DsD27dtZuXIlVatWZebMmURGRp6/Ypg2bVqO7TNmzKBWrVqsX7+etLQ0+vTpw5AhQ9izZw979uxh3bp1qCojRoxgxYoVXHXVVb+Kc+7cuaxc6UzT/vDDD3PHHXcwYcIEXn31Vfr378/UqVN55plnePnllxk/fjxPPPEEN9xwA6mpqWRlZREb67Rw/vTTTzz44IN88cUXhIeH+/4iG1POqSqfR8Xz5692cOJsOg8MbMWDg9oQXCmoWOPwWyJxk8BkYBEQBLynqttE5FkgUlUX4MwXPVtEonHm+B7r7t4XeEJE0oEs4H5VTRSRlsB8986aisBHqvqtv+rgb1WrViUqKur88+ykAM7vXMaMGcPhw4c5d+5cjt81jBgxgqpVq+Z7XM/tixcvZvPmzcybNw+AlJQU9uzZw+LFi1m8eDHdunUD4NSpU+zZsyfPRJK7aSslJYXjx4/Tv39/AG6//XZuvvlmTp48SXx8PDfc4NytHRwcfH6fHTt2MGnSJBYvXkzjxo0v7IUyxvzKwaQz/PHzLfy4J5GuTWvz/E2X0a5hzYDE4tc+ElX9Bvgm17qpHsupwM157DcbmJ3H+n1Al6KOs7Arh0B48MEHefTRRxkxYgTLly9n2rRp57dVr169wH09t6sqr776KkOHDs1RZtGiRTz55JPce++9Oda//vrrvP322wBF2onfqFEjUlNT+fnnny2RGOOD9Mws3l25n5eX7KZihQo8O7Ij43s1I6hC4G5dt7G2SqiUlBSaNHFucps1a1a+5WrUqMHJkyfz3T506FD+/e9/k56eDsDu3bs5ffo0Q4cO5b333uPUqVMAxMfHc+zYMR544AGioqKIiorK9wu/Vq1a1KlThx9//BGA2bNn079/f2rUqEFYWBiff+5Mt52WlsaZM2cAqF27Nl9//TVPPvkky5cvv7AXwxgDwKbY44x4bRXPL9zJVW3q8d2jVzGhd/OAJhGwRFJiTZs2jZtvvpkePXoQGpr/lAADBw5k+/bt5zvbc7v77rvp0KED3bt3p1OnTtx7771kZGQwZMgQbr31Vnr37s1ll13G6NGjC0xIuc2aNYspU6bQuXNnoqKimDrVudCcPXs2r7zyCp07d+bKK6/kyJEj5/dp0KABX331FQ888ABr1669gFfDmPLtVFoGz3y5jVFvrCL5dBpv/rYHMyZE0KhW/k3cxalczNkeERGhuSe22rFjB+3btw9QRKYks8+GKUmWbD/K1C+2cvhEKr/t1Ywpwy6lZnDxDCoqIhtUNaKwciX2dyTGGFOeHTp+lj9/tZ2FW4/QtsElzLv1Sno0qxPosPJkicQYY0qQcxlZvLdqP698v4csVaYMvZR7+rWkcsWS2xNhicQYY0qIn/YmMvWLbUQfO8U17Rvw9PUdaFq3WqDDKpQlEmOMCbBjJ1J57usdLNh0iKZ1q/Lu7RFc3b5BoMPymiUSY4wJkIzMLGatPsA/v9vNuYwsHhrUmvsHti72X6b7yhKJMcYEQGRMMk99vpWdR05yVdt6PDOiIy1CC/6xcUlVcntvyriBAweyaNGiHOtefvllfve73wGwbds2Bg0axKWXXkqrVq14+umnycrKAn49tHvXrl3Zvn37r85xIRISEs4PEpn9Q8O8TJs2jZdeegmAiRMnnh96xRjjnaRTaUz5dBOj31xNytl0/j2+O7PuuLzUJhGwRBIw48aNY86cOTnWzZkzh3HjxnH27FlGjBjBE088wa5du9iyZQvr1q3jX//61/myY8aMOf8L9KioKDp06JDvuZYvX87EiRMLjOf777/nsssu4+eff6Zfv34+1c0Y82uZWcp/1hxg0N9/YP7P8dzbvyVLHu3PtZc1KvUzc1oiCZDRo0fz9ddfc+7cOQBiYmI4dOgQ/fr146OPPjo/Si9AtWrVeO2113jxxRf9EktUVBSPPfYYX3zxBV27duXs2bM5Jt2aN29eoYnIGJO/TbHHueGNVTz1+VbaN6rBwof78eS17alepWz0LpSNWvhq4RNwZEvRHrPhZXDt8/lurlu3Lj179mThwoWMHDmSOXPmcMsttyAibNu2jR49euQo36pVK86ePcvx48eBnEO7A6xevbrAEYEL0rVrV5599tkcw9EbY3yXfPocLy3excfrDhJ6SRX+NbYrI7o0LvVXILlZIgmg7Oat7ETy7rvver2vN7MW9urVi7S0NE6dOkVycvL5uU+mT5/+q9GAjTFFJz0zi9mrD/Dykt2cPpfJxCub88jgtsU2tElxs0QCBV45+NPIkSN55JFH2LhxI2fOnDl/FdKhQwdWrMg5e/C+ffsICQmhdu3aXh8/e2DE5cuXM3PmTGbOnOn1vp5/MaWm+n/OZ2PKihW7E3j2q+1EHztFvzahTB3egTYNagQ6LL+yPpIAuuSSSxg4cCB33nkn48aNO79+/PjxrFy5kiVLlgDOTIoPPfQQzzzzTLHF1qBBA3bs2EFWVhbz588vtvMaU1rtTzzN3bPWM+G9daRnZvH2hAg+uLNnmU8iYIkk4MaNG8emTZtyJJKqVauyYMEC/vKXv9C2bVtCQ0Pp06cP48ePP18me5727MdPP/1UpHE9//zzDB8+nCuvvJJGjRoV6bGNKUtOpqbzt4U7GPLPH1i9N4knrm3H4keuYnCHBmWuLyQ/Nox8KfD555/z6KOPsmzZMpo1axbocMq80vTZMIGTlaXM2xjHC9/uIvFUGjf3CGPKsEupXyO48J1LCRtGvgwZNWoUo0aNCnQYxhjXhgPJTFuwnS3xKXQLr827t0fQpan3/ZdljSUSY4zx0uGUszy/cCdfRB2iQc0qvDymKyO7lr3beS+UX/tIRGSYiOwSkWgReSKP7VVEZK67fa2INHfX9xSRKPexSURu8PaYxhhT1FLTM3n1+z0MeukHFm49wuSBrVn6+wGM6tak3CcR8OMViYgEAa8Dg4E4YL2ILFBVz0Gh7gJ+UdXWIjIWmA6MAbYCEaqaISKNgE0i8iWgXhzTGGOKRFaW8uXmQ7zw7S7ij5/l2k4N+X+/aV8q5ggpTv5s2uoJRKvqPgARmQOMBDy/9EcC09zlecBrIiKqesajTDBOAvH2mMYY47O1+5L46zc72BSXQvtGNXlxdGeubB0a6LBKJH8mkiZArMfzOKBXfmXcq48UIARIFJFewHtAM+A2d7s3xwRARCYBkwDCw8N9r40xplzYl3CK5xfuZPH2ozSsGcxLN3fhhm5NCKpgTVj5KbGd7aq6FugoIu2BWSKy8AL3nwHMAOf2Xz+EaIwpQ5JOpfHK93v4cO1BqlSswB+GtOWuvi2pWrl0TTIVCP7sbI8Hmno8D3PX5VlGRCoCtYAkzwKqugM4BXTy8pilQkmbj8RXx48f54033jj//NChQ4wePbrAfQYMGEDu3/d4o3nz5iQmJnpdfubMmUyePPmCz2PKh9T0TN5YHs2AF5fzn7UHGduzKcunDGTyoDaWRLzkz0SyHmgjIi1EpDIwFliQq8wC4HZ3eTSwVFXV3acigIg0A9oBMV4es1QoafOR+CIjI+NXiaRx48Y26ZUp0bKylM82xjHopeW88O0uerWsy6L/68dzoy6jXo0qgQ6vVPFb05bbpzEZWAQEAe+p6jYReRaIVNUFwLvAbBGJBpJxEgNAX+AJEUkHsoD7VTURIK9j+hrr9HXT2Zm809fD5NCubjse7/l4vttHjx7NU089xblz56hcuXKO+Ujee++9POcj6devH4888kiRxplt4sSJBAcHExkZyYkTJ/jHP/7B8OHDiYmJ4bbbbuP06dMAvPbaa1x55ZUsX76cP/3pT9SpU4edO3fSvXt39u7dS9euXRk8eDAPPPAAw4cPZ+vWrWRmZvL444/z7bffUqFCBe655x4efPDBHOdfvHgxTz/9NGlpabRq1Yr3338/x5woub366qt8+eWXpKen8+mnn9KuXTuSk5O588472bdvH9WqVWPGjBl07tw5x34JCQncd999HDx4EHCuAvv06VPEr6Yp6X7am8hfv9nB1vgTXNakFn+/pSu9W4UEOqxSy699JKr6DfBNrnVTPZZTgZvz2G82MNvbY5ZGJWk+kmwxMTGsW7eOvXv3MnDgQKKjo6lfvz7fffcdwcHB7Nmzh3Hjxp1vjtq4cSNbt26lRYsWxMTEsHXrVqKios4fK9uMGTOIiYkhKiqKihUrkpycnOO8iYmJPPfccyxZsoTq1aszffp0/vGPfzB16lTyExoaysaNG3njjTd46aWXeOedd3j66afp1q0bn3/+OUuXLmXChAnn48n28MMP88gjj9C3b18OHjzI0KFD2bFjh0+vmyk9oo+d5G/f7OT7ncdoUrsqL49x5gepYB3pPimxne3FqaArB38qafOR3HLLLVSoUIE2bdrQsmVLdu7cSYsWLZg8eTJRUVEEBQWxe/fu8+V79uxJixYtCo11yZIl3HfffVSs6Hzc6tatm2P7mjVr2L59+/krg3PnztG7d+8Cj3njjTcC0KNHDz777DMAVq5cyX//+18ABg0aRFJSEidOnPhVLJ79SSdOnODUqVMFXv2Y0u/YiVT+9f0e5qyPpVqlIB4f1o47+jQnuJL1gRQFSyQBVNLmI8n9C10R4Z///CcNGjRg06ZNZGVlERz8vwHpqlev7nUsBVFVBg8ezMcff+z1PlWqOG3YQUFBZGRkeL1fVlYWa9asyVEPU3alnE3nrR/28v6qGNIzs7jtimY8OKg1IZdYH0hRsmHkA6ikzUfy6aefkpWVxd69e9m3bx+XXnopKSkpNGrUiAoVKjB79mwyMzPz3LdGjRqcPHkyz22DBw/mrbfeOv+Fn7tp64orrmDVqlVER0cDcPr06RxXPt7q168fH374IeAkz9DQUGrWrJmjzJAhQ3j11VfPP8/d9GXKhrPnMnnzh71c9cIy3li+l8EdGrDk0f5MG9HRkogfWCIJsJI0H0l4eDg9e/bk2muv5c033yQ4OJj777+fWbNm0aVLF3bu3JnvVUhISAh9+vShU6dOTJkyJce2u+++m/DwcDp37kyXLl346KOPcmyvV68eM2fOZNy4cXTu3JnevXuzc+eF3/wwbdo0NmzYQOfOnXniiSeYNWvWr8q88sorREZG0rlzZzp06MCbb755wecxJVd6ZhYfrj1A/xeX8fzCnXQPr83XD/XllXHdaB5aNFfQ5tdsPpJSoDjmI5k4cSLDhw8v9Lcf5UFp+mwYR1aW8tWWw/xj8S5iks4Q0awOjw1rR88WdQvf2eTL5iMpQ2w+EmPypqos353Ai9/uYvvhE7RrWIN3b49gULv6NipvMbJEYgAK7YgPhBtuuIH9+/fnWJffHWem/NlwIJnp3+5i3f5kmtZ1buW9vktjGxMrAMp1IlFV+6ulBJs/f36xn7M8NPWWdjuPnOClRbtYsuMYoZdU4c8jOzLm8nAqV7Qu30Apt4kkODiYpKQkQkJCLJkYwEkiSUlJdmtwCXUw6QwvL9nN/Kh4LqlSkSlDL+WOPs2pVrncfo2VGOX2HQgLCyMuLo6EhIRAh2JKkODgYMLCwgIdhvEQm3yG15dFM29DHEEVhElXteR3/VtRu1rlQIdmXOU2kVSqVMmrX2UbYwIj/vhZXl8WzaeRsQjCb69oxu8GtKJBTbtiLGnKbSIxxpRMh1PO8sayvcxdH4uijL08nPsHtqJRLd/GkjP+Y4nEGFMiHDuRyhvL9/LRuoNkZSm3XN6UBwa2pkltSyAlnSUSY0xAJZxM480f9vKfNQfIyFJu7hHGAwNb07RutUCHZrxkicQYExBJp9J4a8U+PlgdQ3qmckO3Jjw4qDXNQmwok9LGEokxplglnz7HDDeBpKZnMqprEx68ug0tbCysUssSiTGmWCSdSuPdlfuZ9VMMZ9IzGdGlMQ9d3YZW9WwumNLOEokxxq+Onkjl7RX7+HDtQVIzMrnuskY8fHUb2jSoEejQTBGxRGKM8Yu4X87w5g97+SQyjswsZWTXxtw/oDWt69sVSFnj10QiIsOAfwFBwDuq+nyu7VWAD4AeQBIwRlVjRGQw8DxQGTgHTFHVpe4+y4FGwFn3MENU9Zg/62GM8d7+xNO8sSya+T/HIwKjezTld/1bER5id2GVVX5LJCISBLwODAbigPUiskBVt3sUuwv4RVVbi8hYYDowBkgErlfVQyLSCVgENPHYb7yq5pxgxBgTULuOnOT1ZdF8tfkQlYIq8NsrmnFv/5b2Q8JywJ9XJD2BaFXdByAic4CRgGciGQlMc5fnAa+JiKjqzx5ltgFVRaSKqqb5MV5jzEXYEpfCa8v2sGjbUapXDuKeq1pyd9+W1KthU9qWF/5MJE2AWI/ncUDo7NsXAAAesElEQVSv/MqoaoaIpAAhOFck2W4CNuZKIu+LSCbwX+A5zWPsbxGZBEwCZwpZY0zR2nAgmVeXRrN8VwI1gyvy0NVtuOPK5tSpboMpljclurNdRDriNHcN8Vg9XlXjRaQGTiK5DaefJQdVnQHMAGeq3WII15gyT1X5aW8Sry2NZvW+JOpWr8yUoZdyW+9m1AyuFOjwTID4M5HEA009noe56/IqEyciFYFaOJ3uiEgYMB+YoKp7s3dQ1Xj335Mi8hFOE9qvEokxpuhkZinfbj3CWyv2sjkuhfo1qvDUde25tVe4zQdi/JpI1gNtRKQFTsIYC9yaq8wC4HZgNTAaWKqqKiK1ga+BJ1R1VXZhN9nUVtVEEakEDAeW+LEOxpRrqemZzNsQx9s/7uNA0hlahFbnrzdcxo3dmxBcKSjQ4ZkSwm+JxO3zmIxzx1UQ8J6qbhORZ4FIVV0AvAvMFpFoIBkn2QBMBloDU0VkqrtuCHAaWOQmkSCcJPK2v+pgTHl1/Mw5/rPmADN/iiHx1Dm6NK3Nk9e2Y3CHhjYnuvkVKQ9zVEdERGhkpN0tbExhDh0/y7sr9/PxuoOcOZfJgEvrcV//VvRqUdempC6HRGSDqkYUVs4aN40x7DpykrdW7GVB1CEUGNGlMZOuakn7RjUDHZopBSyRGFNOqSrr9ifz5g97WbYrgaqVgritdzPu6tuCsDr2K3TjPUskxpQzmVnKd9uP8uYPe4mKPU5I9cr8fnBbfntFM/sNiLkolkiMKSdOpWXwaWQsM3+K4UDSGcLrVuPPozpxc48wuwPL+MQSiTFlXPzxs8z6KYaP1x3kZGoG3cNr89jQdgzt2ICKQRUCHZ4pAyyRGFNGbTz4C++u3M+3W48AcG2nhtzVtwXdwusEODJT1lgiMaYMycjMYtG2o7yzch8/HzxOjeCK3N23BROubE6T2jYKr/EPSyTGlAEnUtOZu87p/4g/fpZmIdWYdn0Hbo5oSvUq9t/c+Jd9wowpxQ4kneb9VTF8GhnL6XOZ9GpRl6ev78DV7RvYL9BNsbFEYkwpo6qs3Z/M+6v2s3j7UYJEuL5LY+7q24JOTWoFOjxTDlkiMaaUOJ2WwedR8Xzw0wF2HT1J7WqVuH9AKyb0bk6DmsGBDs+UY5ZIjCnh9ieeZvbqA3y6IZaTqRl0bFyTF0Z3ZkSXxvb7D1MiWCIxpgTKzFJ+2H2MWT8d4IfdCVQKEn5zWSMm9G5O9/DaNoCiKVEskRhTghw/c45PI+OYveYAB5PP0KBmFR4d3JaxPZtSv4Y1X5mSyRKJMSXA9kMn+GB1DJ9HxZOankXP5nV5bNilDO3YkEr263NTwlkiMSZA0jOz+HbrET5YHcP6mF8IrlSBG7o14bYrmtOhsQ3fbkoPSyTGFLPY5DN8vO4gn0TGkXgqjfC61Xjquvbc3KMptapVCnR4xlwwSyTGFIOMzCy+33mMj9YeZMWeBAQY1K4+43s1o3/belSwHw+aUswSiTF+FH/8LHPXHWRuZCxHT6TRoGYVHhzUhrGXN6WxjX1lygi/JhIRGQb8CwgC3lHV53NtrwJ8APQAkoAxqhojIoOB54HKwDlgiqoudffpAcwEqgLfAA9reZh43pQamVnK8l3O1ceyXcdQoH/bevx5ZDiD2tW3odtNmeO3RCIiQcDrwGAgDlgvIgtUdbtHsbuAX1S1tYiMBaYDY4BE4HpVPSQinYBFQBN3n38D9wBrcRLJMGChv+phjLeOnkhl7vpY5q6PJf74WerVqMLvBrRi7OXhNK1rU9eassurRCIinwHvAgtVNcvLY/cEolV1n3uMOcBIwDORjASmucvzgNdERFT1Z48y24Cq7tVLXaCmqq5xj/kBMApLJCZAsrKUH6MT+XDNAb7feYzMLKVfm1Ceuq4913RoYLfumnLB2yuSN4A7gFdE5FPgfVXdVcg+TYBYj+dxQK/8yqhqhoikACE4VyTZbgI2qmqaiDRxj+N5zCbkQUQmAZMAwsPDCwnVmAsTf/ws8yLj+HRDLHG/nCWkemXu7teCcZeH0zy0eqDDM6ZYeZVIVHUJsEREagHj3OVY4G3gP6qa7o/gRKQjTnPXkAvdV1VnADMAIiIirA/F+CwtI5PF247ySWQsK6MTUYW+rUN5bJgzbW2VijbulSmfvO4jEZEQ4LfAbcDPwIdAX+B2YEAeu8QDTT2eh7nr8ioTJyIVgVo4ne6ISBgwH5igqns9yocVckxjitT2Qyf4JDKWz6PiOX4mnSa1q/LQoDaM7hFmfR/G4H0fyXzgUmA2Tif4YXfTXBGJzGe39UAbEWmB82U/Frg1V5kFOIloNTAaWKqqKiK1ga+BJ1R1VXZhVT0sIidE5AqczvYJwKve1MGYC5FyJp0Fm+KZGxnL1vgTVA6qwJCODRhzeVOubBVqk0YZ48HbK5JXVHVZXhtUNSKf9RkiMhnnjqsg4D1V3SYizwKRqroApwN/tohEA8k4yQZgMtAamCoiU911Q1T1GHA//7v9dyHW0W6KSFaWsnpfEnPXx/LttiOcy8iifaOaTLu+A6O6NaF2tcqBDtGYEkm8+QmGiNyYx+oUYIv75V6iRUREaGRkfhdOprzL3XFeM7gio7o14ZaIpjbjoCnXRGRDfhcLnry9IrkL6A1kX5UMADYALUTkWVWdfVFRGhMgp9IyWLjlMPN/jmf1viRUoU/rEKYMdUbctQmjjPGet4mkEtBeVY8CiEgDnF+k9wJW4PSdGFOiZWYpq6IT+WxjHN9uO0JqehbNQqrx8NVtuKm7dZwbc7G8TSRh2UnEdQxoqqrJIuKXW3+NKSq7jpzks41xfB4Vz9ETadQMrsiN3cO4qXsTuofXsdkGjfGRt4lkuYh8BXzqPr/JXVcdOO6XyIzxQcLJNBZsOsRnG+PYdugEFSsIAy6tx9PXhzGoXX1rujKmCHmbSB4AbsT53Qg4zVr/dQdLHOiPwIy5UKnpmSzZcZTPNsbzw+4EMrOUzmG1ePr6DlzfpTGhl1QJdIjGlEmFJhJ38MUlqjoQ+K//QzLGe1lZytr9yXwRFc/XWw5zMjWDhjWDmXRVS27s1oQ2DWoEOkRjyrxCE4mqZopIlojUUtWU4gjKmIKoKlviU1gQdYgvNx/i6Ik0qlUOYlinhtzUPYwrWobYDwaNKUbeNm2dAraIyHfA6eyVqvqQX6IyJg/Rx06xYNMhvtx0iP2Jp6kUJPRvW58/XteYa9rXp1plm6fNmEDw9n/eZ+7DmGJ16PhZvtx0iAWbDrHt0AlEoHfLEO69qiXDOjW0X5sbUwJ4O/rvLBGpCoR7MXy8MT5JPn2Or7cc5suoQ6yLSQagS1gt/jS8A8M7N6JBzeAAR2iM8eTtoI3XAy/hTH3bQkS6As+q6gh/BmfKj1NpGXy3/QgLog7x455EMrKUVvWq8+jgtozo0tjm+DCmBPO2aWsazoyHywFUNUpEWvopJlNOnErL4PsdR/lq82F+2J3AuYwsmtSuyl39WjCiS2M6NKppPxY0phTwNpGkq2pKrv/U3k65a8x5J1PT+X7HMb7e8r/k0aBmFW7tGc51nRvRI7wOFeyOK2NKFW8TyTYRuRUIEpE2wEPAT/4Ly5QlJ1PTWbLjKF9vPsKKPTmTx/DOjehuycOYUs3bRPIg8EcgDfgYZ46RP/srKFP65UgeuxM4l+kkj/G9wrnuMksexpQl3t61dQYnkfzRv+GY0uxEajrf7zjK15sPs2J3Iucys2hYM5jxV1jyMKYs8/aurbbAH4Dmnvuo6iD/hGVKi2MnU/lu+1EWbTvK6r2JpGcqDWsG89srmnFd54Z0a2rJw5iyztumrU+BN4F3gEz/hWNKgwNJp1m07QiLth1l48FfUIXwutWYeGVzhnWy5GFMeeNtIslQ1X/7NRJTYqkq2w+fYNG2oyzedoSdR04C0L5RTR6+ug1DOzakXcMadquuMeWUt4nkSxG5H5iP0+EOgKomF7STiAwD/gUEAe+o6vO5tlfBGZK+B5AEjFHVGBEJAeYBlwMzVXWyxz7LgUbAWXfVkNIwb3xpk5mlbDz4C4u2HmHR9iPEJp9FBCKa1eGp69oztGNDm1HQGAN4n0hud/+d4rFOgXx/lOgOP/86MBiIA9aLyAJV3e5R7C7gF1VtLSJjgenAGCAV+BPQyX3kNl5VI72M3XgpNT2T1XuTWLz9CN9tP0riqXNUDqpAn9YhPDCgNVe3b0C9GjanhzEmJ2/v2mpxEcfuCUSr6j4AEZkDjAQ8E8lInF/Ng3MF8pqIiKqeBlaKSOuLOK+5AMdOprJs5zGW7DjGyj2JnE3PpHrlIAa2q8/Qjg0ZcGk9agRXCnSYxpgSrMBEIiKPqeoL7vLNqvqpx7a/qur/K2D3JkCsx/M4oFd+ZVQ1Q0RSgBAgsZC43xeRTJyJtp5zZ2rMHfskYBJAeHh4IYcrP7L7O5buOMaSncfYFOvMlNy4VjCje4Rxdfv6XNEyxKaiNcZ4rbArkrHAC+7yk/xvznaAYUBBicRfxqtqvIjUwEkkt+H0s+SgqjOAGQARERG/SjTlSWp6Jqv3JfH9jqMs3XGMQympiECXsNr8fnBbrm7fgPaNrLPcGHNxCkskks9yXs9ziweaejwPc9flVSZORCoCtXA63fOlqvHuvydF5COcJrRfJZLyLuFkmttkdZSV0YmcOZdJ1UpB9GsTyv9d05aB7epbf4cxpkgUlkg0n+W8nue2HmgjIi1wEsZY4NZcZRbgdOSvBkYDS/NqpsrmJpvaqpooIpWA4cCSQuIoF7KylM3xKSzfdYzluxLYFHccVafJ6qbuYQxqX5/e1mRljPGDwhJJFxE5gXP1UdVdxn1e4OxCbp/HZJxxuYKA91R1m4g8C0Sq6gLgXWC2iEQDyTjJxjmBSAxQE6gsIqOAIcABYJGbRIJwksjbF1LhsiTpVBor9iTww64EVuxJJPn0ufNNVo9eY01WxpjiIQVcAJQZERERGhlZ+u8WzsxSNsUdZ/muBH7YdYzN8SmoQkj1yvRvW4/+l9ajX5t61K1u088aY3wnIhtUNaKwct7+jsQESOKpNFbsTmD5rgR+3JPAL2fSqSDQtWltHrmmLQMurUenxrVsSBJjTMBYIilh0jOziIo9zo+7E1i+O4HNcSkAhF5SmYHt6jPg0vr0ax1KHbvqMMaUEJZIAkxV2ZtwmpV7ElgZnciafcmcSsuggkC38Dr8fnBbBlxan46Na9pVhzGmRLJEEgBJp9JYGZ3Iyj2JrIpO5FBKKuCMoDuia2P6tQ7lylah1Kpmvyg3xpR8lkiKQWp6Jutjklm5J5Ef9ySy/bBz81vN4Ir0aR3KA4NC6de6HuEhNgiiMab0sUTiB5lZyo7DJ1gVncjK6ETW7U8mLSOLSkFC9/A6/GFIW/q2qcdlTWoRZM1VxphSzhJJEcjKUnYfO8nqvUms3pvE2v3JpJxNB6Btg0sY36sZ/dqE0rNFXapXsZfcGFO22LfaRcjuIF+9L4k1e5NYvS+J5NPnAKefY1jHhvRuFULvViE0qFng7zaNMabUs0TiBVXlYPIZ54pjn3PVceykM79Xo1rBDLi0Hr1bOokjrI71cxhjyhdLJAWY/3McK/cksXrv/+6sCr2kCr1bhXBlqxB6twyhWUg1G4LEGFOuWSIpwNsr9nM45SxXtAzhvgFO8mhV7xJLHMYY48ESSQFm3nk5odWr2A8BjTGmAJZIClC/hnWUG2NMYSoEOgBjjDGlmyUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE78mEhEZJiK7RCRaRJ7IY3sVEZnrbl8rIs3d9SEiskxETonIa7n26SEiW9x9XhH7daAxxgSU3xKJiAQBrwPXAh2AcSLSIVexu4BfVLU18E9gurs+FfgT8Ic8Dv1v4B6gjfsYVvTRG2OM8ZY/r0h6AtGquk9VzwFzgJG5yowEZrnL84CrRURU9bSqrsRJKOeJSCOgpqquUVUFPgBG+bEOxhhjCuHPRNIEiPV4Hueuy7OMqmYAKUBIIceMK+SYxhhjilGZ7WwXkUkiEikikQkJCYEOxxhjyix/JpJ4oKnH8zB3XZ5lRKQiUAtIKuSYYYUcEwBVnaGqEaoaUa9evQsM3RhjjLf8mUjWA21EpIWIVAbGAgtylVkA3O4ujwaWun0feVLVw8AJEbnCvVtrAvBF0YdujDHGW34b/VdVM0RkMrAICALeU9VtIvIsEKmqC4B3gdkiEg0k4yQbAEQkBqgJVBaRUcAQVd0O3A/MBKoCC92HMcaYAJECLgDKjIiICI2MjAx0GMYYU6qIyAZVjSisXJntbDfGGFM8LJEYY4zxiSUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnfk0kIjJMRHaJSLSIPJHH9ioiMtfdvlZEmntse9Jdv0tEhnqsjxGRLSISJSKR/ozfGGNM4Sr668AiEgS8DgwG4oD1IrJAVbd7FLsL+EVVW4vIWGA6MEZEOgBjgY5AY2CJiLRV1Ux3v4Gqmuiv2I0xxnjPn1ckPYFoVd2nqueAOcDIXGVGArPc5XnA1SIi7vo5qpqmqvuBaPd4xhhjShh/JpImQKzH8zh3XZ5lVDUDSAFCCtlXgcUiskFEJuV3chGZJCKRIhKZkJDgU0WMMcbkrzR2tvdV1e7AtcADInJVXoVUdYaqRqhqRL169Yo3QmOMKUf8mUjigaYez8PcdXmWEZGKQC0gqaB9VTX732PAfKzJyxhjAsqfiWQ90EZEWohIZZzO8wW5yiwAbneXRwNLVVXd9WPdu7paAG2AdSJSXURqAIhIdWAIsNWPdTDGGFMIv921paoZIjIZWAQEAe+p6jYReRaIVNUFwLvAbBGJBpJxkg1uuU+A7UAG8ICqZopIA2C+0x9PReAjVf3WX3UwxhhTOHEuAMq2iIgIjYy0n5wYY8yFEJENqhpRWLnS2NlujDGmBLFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xK+JRESGicguEYkWkSfy2F5FROa629eKSHOPbU+663eJyFBvj2mMMaZ4+S2RiEgQ8DpwLdABGCciHXIVuwv4RVVbA/8Eprv7dgDGAh2BYcAbIhLk5TGNMcYUo4p+PHZPIFpV9wGIyBxgJLDdo8xIYJq7PA94TUTEXT9HVdOA/SIS7R4PL45ZZB784EpiM07549DGGFMsPhm/ispVavj1HP5MJE2AWI/ncUCv/MqoaoaIpAAh7vo1ufZt4i4XdkwARGQSMAkgPDz8oioQVjWUSqlBF7WvMcaUBFIMXeH+TCQBpaozgBkAERERejHHePzmBUUakzHGlEX+TFXxQFOP52HuujzLiEhFoBaQVMC+3hzTGGNMMfJnIlkPtBGRFiJSGafzPPef+AuA293l0cBSVVV3/Vj3rq4WQBtgnZfHNMYYU4z81rTl9nlMBhYBQcB7qrpNRJ4FIlV1AfAuMNvtTE/GSQy45T7B6UTPAB5Q1UyAvI7przoYY4wpnDgXAGVbRESERkZGBjoMY4wpVURkg6pGFFbOftlujDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOOTctHZLiIJwIGL3D0USCzCcEoDq3P5UN7qXN7qC77VORFAVYcVVrBcJBJfiEikN3ctlCVW5/KhvNW5vNUXiq/O1rRljDHGJ5ZIjDHG+MQSSeFmBDqAALA6lw/lrc7lrb5QTHW2PhJjjDE+sSsSY4wxPrFEYowxxieWSFwiMkxEdolItIg8kcf2iSKSICJR7uPuQMRZVAqrr1vmFhHZLiLbROSj4o6xqHnxHv/T4/3dLSLHAxFnUfKizuEiskxEfhaRzSLym0DEWZS8qHMzEfnere9yEQkLRJxFRUTeE5FjIrI1n+0iIq+4r8dmEele5EGoarl/4AxJvxdoCVQGNgEdcpWZCLwW6FiLsb5tgJ+BOu7z+oGO2991zlX+QZxpCgIeu5/f5xnA79zlDkBMoOMuhjp/CtzuLg8CZgc6bh/rfBXQHdiaz/bfAAsBAa4A1hZ1DHZF4ugJRKvqPlU9B8wBRgY4Jn/ypr73AK+r6i8AqnqsmGMsahf6Ho8DPi6WyPzHmzorUNNdrgUcKsb4/MGbOncAlrrLy/LYXqqo6gqc+ZzyMxL4QB1rgNoi0qgoY7BE4mgCxHo8j3PX5XaTe2k4T0Sa5rG9tPCmvm2BtiKySkTWiEihwySUcN6+x4hIM6AF//uyKa28qfM04LciEgd8g3MlVpp5U+dNwI3u8g1ADREJKYbYAsXrz/7FskTivS+B5qraGfgOmBXgePytIk7z1gCcv87fFpHaAY2o+IwF5qk7K2cZNw6YqaphOE0gs0WkrH8v/AHoLyI/A/2BeKA8vNd+U9Y/MN6KBzyvMMLcdeepapKqprlP3wF6FFNs/lBofXH+almgqumquh/YjZNYSitv6pxtLKW/WQu8q/NdwCcAqroaCMYZ6K+08ub/8iFVvVFVuwF/dNeV+hsrCnAhn/2LYonEsR5oIyItRKQyzhfJAs8CudoURwA7ijG+olZofYHPca5GEJFQnKaufcUZZBHzps6ISDugDrC6mOPzB2/qfBC4GkBE2uMkkoRijbJoefN/OdTjqutJ4L1ijrG4LQAmuHdvXQGkqOrhojxBxaI8WGmlqhkiMhlYhHPXx3uquk1EngUiVXUB8JCIjAAycDq2JgYsYB95Wd9FwBAR2Y5z2T9FVZMCF7VvvKwzOF88c9S93aU087LOv8dptnwEp+N9Ymmuu5d1HgD8TUQUWAE8ELCAi4CIfIxTp1C3r+tpoBKAqr6J0/f1GyAaOAPcUeQxlOLPjDHGmBLAmraMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJGYUklETnlR5v9EpFoRnnOUiHQowuP95MO+p9x/G4vIvALK1RaR+y/2PMZ4wxKJKcv+D7igRCIiQQVsHoUz4F+RUNUri+AYh1R1dAFFagOWSIxfWSIxpZqIDHDnlJgnIjtF5EP3F7wPAY2BZSKyzC07RERWi8hGEflURC5x18eIyHQR2QjcLCL3iMh6EdkkIv8VkWoiciXOiAYvuvOVtBKRru6AlptFZL6I1HGPt1ycuU0iRWSHiFwuIp+JyB4Rec4j9lMey4+LyBb3nM/nUc8Wbuxbch2jefY8FCLSUUTWufFtFpE2wPNAK3fdiyJyiThzcWx0jzXS4zg7RORtceafWSwiVd1trUVkiRvbRhFp5a6f4r5Om0XkmSJ9Y03pEuix9O1hj4t5AKfcfwcAKTjjB1XAGdqkr7stBgh1l0NxfsVc3X3+ODDVo9xjHscO8Vh+DnjQXZ4JjPbYthno7y4/C7zsLi8HprvLD+MMzd4IqIIzhllIrjpcC/wEVHOf182jvguACe7yAx77NsedhwJ4FRjvLlcGqnpud9dXBGp6vCbROPNUNMcZtaGru+0T4Lfu8lrgBnc5GOcqbwjOXCbivu5fAVcF+nNhj8A8bIgUUxasU9U4ABGJwvlSXJmrzBU4zVKrRAScL1rP8bTmeix3cv/qrw1cgjPcRg4iUguorao/uKtm4UyYlC17yJUtwDZ1xzYSkX04A+h5DjdzDfC+qp4BUNW85pboA9zkLs8GpudRZjXwR3Fm/PtMVfe4dc0ROvBXEbkKyMIZTryBu22/qka5yxuA5iJSA2iiqvPd2FLdegzBSSY/u+UvwRnUc0UecZkyzhKJKQvSPJYzyftzLcB3qjoun2Oc9lieCYxS1U0iMhF38MqLjCkrV3xZ+cTnjQLHM1LVj0RkLXAd8I2I3MuvB9ocD9QDeqhquojE4FxleMYMzutYtYDTCfA3VX3rAuI3ZZT1kZiy7CRQw11eA/QRkdYAIlJdRNrms18N4LCIVML54v3V8VQ1BfhFRPq5224DfuDifAfckX2HmYjUzaPMKpwBJckV03ki0hLYp6qvAF8Ancn5GoAzC+IxN4kMBJoVFJiqngTiRGSUe44qbpyLgDs9+pmaiEh9r2pryhxLJKYsmwF8KyLLVDUBZ8Tmj0VkM04zULt89vsTTr/AKmCnx/o5wBQR+dntcL4dp/N9M9AVp5/kgqnqtzhNYZFu09wf8ij2MPCAiGwh/9ntbgG2usfohDO9ahJOc95WEXkR+BCIcI8zIVf98nMbzujXm3H6chqq6mLgI2C1e6x55ExYphyx0X+NMcb4xK5IjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGPP/26tjAQAAAIBB/taD2FsSsYgEgEUkACwiAWAJUNxQ5cZBKfYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[0][1]), label='Hartree-Fock')\n", "for k in range(len(transformations)):\n", @@ -118,27 +171,40 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXl8VOW9+P/+zGRfIJCEhIQ9JEF2BFFZoohKVUCqXvu1q22t1a4/22trX7dV67W39mrt5m2rt3WpV2sVFMENBRRERQ1bCAiBYEIWAtkXMlnn+f1xzoRJMjM5k8wkk/i8X695zcxzznPOc86cOZ/zfFZRSqHRaDQaTV/YhnoAGo1GoxkeaIGh0Wg0GktogaHRaDQaS2iBodFoNBpLaIGh0Wg0GktogaHRaDQaS2iBodFoNBpLaIGh+UwjIkUicvkQ7TtFRHaKSKOI/HYQ9/ukiNwfpG1/SUTeDMa2NUOPFhgar4jIGyJyn4f2a0WkQkTCzO9LRGS7eeOrF5FNIjLDbf1LRcQpIk09XhcP5vGEILcCVcAopdSPh3ow/iIiU0REua4DAKXUM0qpK4dyXJrgoQWGxhdPAV8WEenR/hXgGaVUh3nTfxN4GUgDpgJ5wHsiMsWtT7lSKq7H64PgH8Lg4H7T9IPJwGGl0y1ohglaYGh8sRFIBJa7GkRkDLAa+IfZ9N/AP5RSf1BKNSqlapRSPwc+Au7pz05NNdG/i0ieOWP5l4hEmctuFpFdPdZXIjLd/PykiPxZRF43ZzHviUiqiPxeRGpF5IiILOixywtE5LC5/AnXvsztrRaR/SJSJyLvi8jcHuP8qYjkAWc9CQ1z9vWxeRwfi8gS1ziBrwE/McfZSy0mIpEi8pCInBSR0yLyVxGJNpd9IiKr3dYNE5FKETnf/P6COQusN9Ves7yc677O5zUisk9EGkSkRETudVt1p/le55ox9tyet+M3l70jIv9p/kaNIvKmiCSZy6JE5P9EpNo89x+LSIqnY9AMHlpgaLyilHIAzwNfdWu+ETiilDogIjHAEuAFD92fBwaimrgR+BzGjGUucLOffX8OJAGtwAfAXvP7euDhHut/CVgFZABZZl9MwfI48G0MwfkosElEIt363gRcAyQopTrcNyoiY4FXgT+a/R8GXhWRRKXUzcAzwH+bs62tHo7jAXM884HpQDpwt7nsn+a+XawCqpRSe83vrwOZwDjz2J/xfKr65CzG759gHuftIrLOXJZjvid4mjH6On631b4IfN0cZwTw72b714DRwESz722Ao5/HoAkQWmBo+uIp4Aa3p+6vmm0AYzGuoVMe+p0Ckt2+p5lPiu6vWB/7/aNSqlwpVQNsxrhpWuUlpdQepVQL8BLQopT6h1KqE/gX0HOG8YhSqsTc1684dyO+FXhUKfWhUqpTKfUUhgC6qMc4S0zh2pNrgGNKqaeVUh1KqX8CR4A1fR2AqQa8FbjDnLU1Av8F/D9zlWeBtabQBuPG+09Xf6XU4+aMrxW4F5gnIqP72m9PlFLvKKUOKqWcSqk8cx+XWOxu5fifUEoVuD2cuH7ndgxBMd0893uUUg3+jl8TWLTA0PhEKbULwzC7TkQygMUYNyuAWsAJjPfQdbzZz0W5Uiqhx+usj11XuH1uBuL8GPZpt88OD997bqvE7XMxhi0GDBvDj92FHMYTb5qXvj1JM7fnTjHGTKEvkoEYYI/bvt8w21FKHQc+AdaYQmMt5u8iInYReUBECkWkASgyt5lkYb/dEJELReRtU91Vj/Gkb3U7Vo7f2+/8NLAFeE5EykXkv0Uk3N/xawKLFhgaK/wDY2bxZWCLUuo0gHnD/wD4Nw99bgTeCcJYzmLcSAEQkdQAbHOi2+dJQLn5uQT4VQ8hF2M+KbvwZbAuxxA67kwCyiyMqQpDuM1y2/dopZS7sHOppa7FMJ4fN9u/aLZdjqHWmWK293RegL7P57PAJmCiUmo08Fe37fRlrO/38Sul2pVSv1RKzcRQe66mu2pUMwRogaGxwj8wbj7f4pw6ysVdwNdE5AciEi8iY8Tw8V+OoUIJNAeAWSIy31ST3RuAbX5XRCaYOvf/wFBbAfwvcJv5lC0iEmsageMtbvc1IEtEvmgapb8AzARe6aujUspp7v93IjIOQETSRWSV22rPYdiJbufcrA8gHkN1Vo0hDHz9Dn2dz3igRinVIiKLMYSRi0qMGeY0L9vu9/GLyAoRmSMidqABQ0Xl7KufJrhogaHpE6VUEfA+EIvxtOm+bBeGwfU6DLtFDYbBcqVSKt9t1TTpHYdxfT/GUgDcB2wFjgG7fPewxLMYrsEngELgfnNfuRhC8hEM9dtx/DC+K6WqMZ6Mf4xx8/4JsFopVeWz4zl+au5zt6la2gpku23/FMYMbwnnhBwYAr4Y40n+MLDbxxj7Op/fAe4TkUYMg/vzbn2bMWw+75lqM3fbzkCPPxXDQaEBQ/W2A0NNpRlCRLuAawKJGG6nbwNfVEptGerxaDSawKFnGJqAYnrSrAPmSP+C2TQaTYiiZxgajUajsYSeYWg0Go3GEiNKZZCUlKSmTJky1MPQaDSaYcOePXuqlFLJfa85wgTGlClTyM3NHephaDQazbBBRHoGV3pFq6Q0Go1GYwktMDQajUZjCS0wNBqNRmOJEWXD8ER7ezulpaW0tLQM9VA0IURUVBQTJkwgPFzns9NorDLiBUZpaSnx8fFMmTIF6VU4TvNZRClFdXU1paWlTJ06daiHo9EMG4KqkhKRBBFZL0aVs0/MilxjReQtETlmvo/x0vdr5jrHRORr/R1DS0sLiYmJWlhouhAREhMT9axTM/zJex5+NxvuTTDe857vu88ACLYN4w/AG0qpGcA8jCRidwHblFKZwDbzezfMrKH3ABdi1F+4x5tgsYIWFpqe6GtCM+zJex42/wDqSwBlvG/+QVCFRtAEhlndKwf4O4BSqk0pVYeRp9+VIvspjLxDPVkFvGVWGqsF3sIo16nRaDQagG33QXuPQo/tDqM9SARzhjEVI1/+E2IUkf+bWZIzxUzLDEa1LU+F3dPpXsmsFC9VykTkVhHJFZHcysrKAA4/MKxYsYItW7onbf3973/P7bffDsChQ4e47LLLyM7OJiMjg3vuuQen00j7/+STT5KcnMz8+fO7XocPHx7QeCorK7nwwgtZsGAB7777rtf17r33Xh566CEAbr75ZtavXz+g/Wo0mgBTX+pfewAIpsAIA84H/qKUWoBR2aub+kkZmQ8HlP1QKfWYUmqRUmpRcrKl6HafbNxXxtIHtjP1rldZ+sB2Nu6zUhzNOzfddBPPPfdct7bnnnuOm266CYfDwdq1a7nrrrs4evQoBw8e5KOPPuIPf/hD17pf+MIX2L9/f9dr5syZXvf1zjvvcPPNN/scz7Zt25gzZw779u1j+fLlAzo2jUYzhIye4F97AAimwCgFSpVSH5rf12MIkNMiMh7AfD/joW8Z3ctmTsBaWcsBsXFfGT978SBldQ4UUFbn4GcvHhyQ0Ljhhht49dVXaWtrA6CoqIjy8nKWL1/Os88+y9KlS7nyyisBiImJ4ZFHHuHBBx8MxOH0Yv/+/fzkJz/h5ZdfZv78+TgcDuLizlX8XL9+fZ8CR6PRhAgzrundFh4NK+8O2i6D5larlKoQkRIRyVZKHQVWYlT/OoxRke0B8/1lD923AP/lZui+EvjZQMf0y82HOFze4HX5vpN1tHV2rwLpaO/kJ+vz+OdHJz32mZk2invWzPK6zbFjx7J48WJef/11rr32Wp577jluvPFGRIRDhw6xcOHCbutnZGTgcDioq6sD4F//+he7dp0rgvbBBx8QHR3d57F6Yv78+dx3333k5ubyyCOP9GsbGo0mBGisMIzbCZNBdUJ9mTGzWHk3zL0xaLsNdhzG94FnRCQCo/zl1zFmNc+LyDcxykjeCCAii4DblFK3KKVqROQ/gY/N7dynlKoJ8lh7CYu+2q3iUku5BMbf//53y32/8IUv9Hlzv/DCC2ltbaWpqYmamhrmz58PwG9+8xtWrVrls69GoxlmKAWbvg/tzfCNLZCcNWi7DqrAUErtBxZ5WLTSw7q5wC1u3x8HHg/keHzNBACWPrCdsjpHr/b0hGj+9e2L+73fa6+9ljvuuIO9e/fS3NzcNauYOXMmO3fu7LbuiRMnSExMJCEhwfL2P/zQ0Pq98847PPnkkzz55JOW+7q7l+q4BI1mGLDnCTj2Jlz134MqLEDnkurGnauyiQ63d2uLDrdz56rsAW03Li6OFStW8I1vfIObbrqpq/1LX/oSu3btYuvWrQA4HA5+8IMf8Mtf/nJA+/OHlJQUPvnkE5xOJy+99NKg7Vej0fSD6kLY8h8w7VK44FuDvnstMNxYtyCdX183h/SEaARjZvHr6+awboFHj16/uOmmmzhw4EA3gREdHc2mTZv41a9+RVZWFklJSSxdupQvfelLXev861//6uZW+/777w94LO488MADrF69miVLljB+/PiAbluj0QSQzg546Tawh8O1fwbb4N++R1RN70WLFqmeBZQ++eQTzjvvvCEakX9s3LiRH/3oR7z99ttMnjx5qIcz4hlO14ZGw84HYfv9cP3fYc4NAdusiOxRSnkyHfRCzzBCiHXr1nHixAktLDQaTXfK98M7D8Cs6wIqLPxFCwyNRqMJZdod8OKtEJsM1/x2SIcy4tObazQazbBm231QdRS+/CLEjB3SoegZhkaj0YQqJ96B3X+GxbfC9F7RCIOOFhgajUYTijjqYON3IDETLh88V3tfaJWURqPRhCKv/8RIAXLLWxARM9SjAfQMQ6PRaEKPQy9B3r/gkp9A+sK+1x8ktMDoSYBLHoZaPYyBUldXx5///Oeu7+Xl5dxwg283v0svvZSe8TFWmDJlClVVVZbXf/LJJ/ne977n9340mpCisQJeuQPSzoflPx7q0XRDCwx3glDyMNTqYQyEjo6OXgIjLS1NF1fSaAKFUvDyd6G9Ba57zIjqDiE+WzaM1++CioPel5d+DJ2t3dvaHfDy92DPU577pM6Bqx7wuskbbriBn//857S1tREREdGtHsbjjz/usR7G8uXLueOOO/w9OkvcfPPNREVFkZubS0NDAw8//DCrV6+mqKiIr3zlK5w9exaARx55hCVLlvDOO+/wi1/8gjFjxnDkyBHOP/98CgsLmT9/PldccQXf/e53Wb16Nfn5+XR2dvLTn/6UN954A5vNxre+9S2+//3vd9v/m2++yT333ENraysZGRk88cQT3Wpy9ORPf/oTmzdvpr29nRdeeIEZM2ZQU1PDN77xDU6cOEFMTAyPPfYYc+fO7davsrKS2267jZMnjbT0v//971m6dGmAz6ZGE2By/w7Ht8LVD0FS5lCPphefLYHRFz2FRV/tFgilehguioqK+OijjygsLGTFihUcP36ccePG8dZbbxEVFcWxY8e46aabutRIe/fuJT8/n6lTp1JUVER+fj779+/v2paLxx57jKKiIvbv309YWBg1Nd0z0ldVVXH//fezdetWYmNj+c1vfsPDDz/M3Xd7L/iSlJTE3r17+fOf/8xDDz3E3/72N+655x4WLFjAxo0b2b59O1/96le7xuPihz/8IXfccQfLli3j5MmTrFq1ik8++WRA502jCQp5zxuxFq7SquNmwgW3+O4zRHy2BIaPmQBg2CzqS3q3j54IX3+137sNtXoYN954IzabjczMTKZNm8aRI0eYOnUq3/ve99i/fz92u52CgoKu9RcvXszUqVP7HOvWrVu57bbbCAszLquxY7sHGe3evZvDhw93Pem3tbVx8cW+08Zfd911ACxcuJAXX3wRgF27drFhwwYALrvsMqqrq2lo6F4Ya+vWrd3sPQ0NDTQ1NfmczWg0g45LDd7uVlah5gQcfCGohZD6y2dLYPTFyrt7/3gBKHkYavUw3GtguL7/7ne/IyUlhQMHDuB0OomKiupaHhsba3ksvlBKccUVV/DPf/7Tcp/IyEgA7HY7HR0dlvs5nU52797d7Tg0mpBj233d7zcAHS1GewgKDG30dmfujbDmj8aMAjHe1/xxwD9cqNXDeOGFF3A6nRQWFnLixAmys7Opr69n/Pjx2Gw2nn76aTo7Oz32jY+Pp7Gx0eOyK664gkcffbTrxt5TJXXRRRfx3nvvcfz4cQDOnj3bbSZjleXLl/PMM88AhpBMSkpi1KhR3da58sor+dOf/tT1vafKSqMJCVxqKKvtQ4wWGD2ZeyPckQ/31hnvAZLyoVQPY9KkSSxevJirrrqKv/71r0RFRfGd73yHp556innz5nHkyBGvs4rExESWLl3K7NmzufPOO7stu+WWW5g0aRJz585l3rx5PPvss92WJycn8+STT3LTTTcxd+5cLr74Yo4cOeL3+O+991727NnD3Llzueuuu3jqqd4OCX/84x/Jzc1l7ty5zJw5k7/+9a9+70ejCTqjJ/jXPsToehghxGDUw7j55ptZvXp1n7ETnwWG07WhGaHkPW8URVJuM/rw6IBoNqziTz2MoNowRKQIaAQ6gQ6l1CIR+RfgqnmaANQppeZb6RvMsYYC69atY926dUM9DI1GM1jMuAbEBuFR0NZszCxW3h2S9gsYHKP3CqVUV7iuUuoLrs8i8lug3mpfzcDpyyA+FHz+85/n008/7dbmzcNLoxlRHH0dnO3wxY0wZdlQj6ZPhsxLSgxXnRuBy4K9L6VUL88gTejw0ksvDfo+R5IqVjOMyd8A8WkwaclQj8QSwTZ6K+BNEdkjIrf2WLYcOK2UOtaPvl2IyK0ikisiuZWVlb2WR0VFUV1drW8Qmi6UUlRXV2uXW83Q4qiFY2/B7OvANjz8j4I9w1imlCoTkXHAWyJyRCnlCjy4CfDlkO+rbxdKqceAx8AwevdcPmHCBEpLS/EkTDSfXaKiopgwITQ9UTSfET7ZbKijZl831COxTFAFhlKqzHw/IyIvAYuBnSISBlwHeM3b662vv2MIDw+3FKWs0YQaG/eV8eCWo5TXOUhLiObOVdmsW5A+1MPSBIr8DTBmqpGVdpgQtHmQiMSKSLzrM3AlkG8uvhw4opTyGJ3SR1+NZsSzcV8ZP3vxIGV1DhRQVufgZy8eZOO+sqEemiYQNJ6GT3fCnBtgGNlXg6k4SwF2icgB4CPgVaXUG+ay/0cPdZSIpInIaxb6ajQjnge3HMXR3j3a3tHeyYNbjg7RiDQB5fBGUE6Yff1Qj8QvgqaSUkqdAOZ5WXazh7Zy4Oq++mo0nwXK6xx+tWuGGfkbYNwsGDe8AkeHh2leo/mMkZbgOYW9t3bNMKLuJJR8CHOG1+wCtMDQaEKSO1dlEx1u79YWHW7nzlXZXnpohg35Rmr+4aaOAp3eXKMJSVzeUD9+4QCdTkVcZBj3r5utvaRGAvkbIH0RjJky1CPxGz3D0GhClGvnpxFuNzxoLpw6VguLkUBlgVEmes7wTP6pBYZGE6I0tXbQ0u4E4EiF5xokmmFG/npAYNbnh3ok/UILDI0mRKlsNGrJZyTHUlbnoLGlfYhHpBkQShnqqCnLID51qEfTL7TA0GhClKqmNgCWTU8C4NiZpqEcjmagnDoA1ceHrToKtNFbowlZwg+tZ1fEb0jfV823IhI5ueffYdLtQz0sTX/JXw+2MDhvbbfm4ZQCRgsMjSYUyXueOXt/QZitBYAJtirG5d0DGYkhW1xH4wOnE/JfhIyVEDO2q9mVAsYV1e9KAQOEpNDQKimNJhTZdh9hzpZuTRGqFbbdN0QD0gyIkg+hoayXOmq4pYDRAkOjCUXqPebl9N6uCW3y10NYNGRf3a15uKWA0QJDowlFRnuu1dE5KvTUFJo+6OyAQxshaxVExnVb5C3VS1Jc5GCMzG+0wNBoQpGVd9Pew8TYrCIonPOjIRqQpt98ugOaqzx6R925KpswW/f05gJUNbXyl3cKcTpDq1KoFhgaTSgy90bKGIcT42bijBrDXe23sCv6siEemMZv8jdA5CiYfkWvResWpDNhTDThdkGA9IRofvX52Vw1J5XfvHGErzz+IacbWnpvc4jQAkOjCUFUXQlTKGd3+s0AyEW38W7UCgpO64jvYUV7i1GKdcZqCO9dQ77e0U5JrYNbc6bx6QPX8N5dl/HFCyfzP188n99cP4e9xXV87vc72Xr49BAMvjdaYGg0IUjLfiOjadnkdRA/HqkrITs1nqNaYAwvjm+F1gavqcw/KKyi06nIyUzu1i4ifOGCSWz+/jLGj47mln/kcvfL+bT08KgabLTA0GhCEDm0gTznVCJTsiBhMtQVk50ST0FFY8jptTU+yF8PMYkw9VKPi3cUVBEXGcb5k8d4XD59XBwvfXcJ31w2lX98UMy1j7w3pLNMLTA0mlCjupCoyjw2dS4hKS4CEiYZAiN1FGfbOikLUZdLTQ9am+DoGzBzHdh7x0grpdhZUMnFGYmE273fiiPD7Pxi9Uye/PoFVJ9tZc2fdvH07mKUGvwHh6AKDBEpEpGDIrJfRHLNtntFpMxs2y8iV3vp+zkROSoix0XkrmCOU6MJKfI3oBBe6byIcfGRhsCoLyN7nKEDH8l2jI37ylj6wHam3vUqSx/YzsZ9ZUM9pP5z9HXocHjNHXWi6ixldQ5yspI9Lu/JpdnjeP2HOVw0LZFfbMzn1qf38H+7iwf1fA1GapAVSqmqHm2/U0o95K2DiNiB/wGuAEqBj0Vkk1LqcBDHqdEMPUrBwfVUJCygoiKR5LgoQ2CoTrJijOSDRyoaWXleyhAPNPAMtzQZfZK/Hkalw8SLPC7eWVAJwCWZ1gQGQHJ8JE/cfAGPv/cp//XaJ7zlZgwfjPMVqiqpxcBxpdQJpVQb8Bxw7RCPSaMJPqfzoeooeQmXE2G3MSo6DMZMBiC+uYz0hOgRO8MYbmkyfNJcA8e3GXUvbJ5vszsLKpmSGMOkxBi/Nm2zCbcsn0aih+C+YJ+vYAsMBbwpIntE5Fa39u+JSJ6IPC4inqw96UCJ2/dSs60XInKriOSKSG5lZWXgRq7RDAX5G0DsvBexjKS4CETEmGEA1J0kKyWOoyO0mNJwS5Phk082gbPdqzqqtaOT3SdqLKujPFFl1kvpSTDPV7AFxjKl1PnAVcB3RSQH+AuQAcwHTgG/HcgOlFKPKaUWKaUWJSf3/+RrNEOOq8BOxgqKWqJJjjefIEdNAMQQGKnxFFY20d7pHNKhBgNvaTK8tYc0+RtgbAaMn+9xcW5RLY72zl7utP4wFOcrqAJDKVVmvp8BXgIWK6VOK6U6lVJO4H8x1E89KQMmun2fYLZpNCOX0o+h7iTMvp6qxtZz+YTCImBUGtSdZEZqPO2diqKqs0M71iBw56psIsK635Kiw+3cuSp7iEbUTxor4NN3Yfb1IOJxlZ0FlYTbhYszEvu9mztXZRMdbu/WFuzzFTSBISKxIhLv+gxcCeSLyHi31T4P5Hvo/jGQKSJTRSQC+H/ApmCNVaMJCQ6uB3skzFhNZVPruRkGdMViZKXEA4zIAL51C9K5fMa4ru/hduHX180ZfgbvQy8BymdlvR0FlSycPIbYyP77Ha1bkM6vr5tDekJ0V1qRYJ+vYHpJpQAviSFhw4BnlVJviMjTIjIfw75RBHwbQETSgL8ppa5WSnWIyPeALYAdeFwpdSiIY9VohhZnp3GjybqSzoh4qnsJjElQ/B4ZyXHYbcLRikZWzx264QaL5vZOMsfF8bnZqfzP28dZkT2u706hRv4GSJkDyZ6f9M80tHCkopGffG7gM4F1C9IHVaAGTWAopU4A8zy0f8XL+uXA1W7fXwNeC9b4NJqQouhdOHsGZt9AbXMbTtUjxXXCJDj4PFE2J1MSY0ak4dvpVOwtruWauePJyUrmT9uP815hFVfPGd9351ChtshQLV5+r9dVdh4zogwGYr8YKkLVrVaj+WxxcD1ExEHWKipN75deMwzlhIYyslPjR6Rr7bEzTTS0dLBw8ljmT0wgPjKMd48NM8/HfCMHGLOu87rKzoJKkuIimDl+1CANKnBogaHRDDUdbYYb5oxrIDyaqiYPAsOMxaDWsGMU1zTT3NYxBIMNHrnFNQAsmjyGcLuNJdMT2VlQNSQpMPpN/oswYfG536sHTqdi1/EqlmcmY7N5NoiHMlpgaPxiRKVuCBUKt0FLPcw2jKSuGUYvlRR0eUopBcfPNA32SIPKnqJakuIimWwGsuVkJVNW56Cwchh4hOU9Dw9lm4GXBcZ3D+SX11Nzto2crKRBHmBg0AJDYxlX6oayOgeKc6kItNAYIAfXQ/QYmHYpgGeV1Kh0EJsZvGd6So0wO8bHxTUsmjwG01GmS8fvSqERsuQ9D5t/AE0VxveWOuO7B6HhOpblw9B+AVpgaPxgRKVuCBXazsLR12DmtUa8BUZ5zuhwO7ERbj729nBDaNSdZHJiLJFhthElMM40tFBS42DRlHOJHyaOjWFaUiw7Q92Ose0+aO8RXd3uMNp7sLOgillpo0K2ZndfaIGhscyISt0QKhS8Ae3NXeooMGYYSfERXU/aXZixGHabkJkSN6JiMXKLawFY2KMuRE5WMrtPVA954SCf1Jdaam9saWfvydoBpQMZarTA0FhmRKVuCBUOboD48TB5SVdTZVMryZ6eQBMmGZHgQFbKyPKUyi2qJTLMxqy00d3ac7KSaGl3kltUO0Qjs8DoCZba3y+spsNDdb3hhBYYGsvcuSqbyJGQuiFUcNTB8bfMjKbn1E9VjW2eVRYJk6ChHDrayE6J53RDK3XNbYM44OCxp7iGeRMTeqUGuWhaIhF2W2irpVbebdiX3AmPNtrd2FlQSWyEvdcsajihBYbGMusWpPOVi8+5C4bZhP/6/Ozhl7ohVDjyCnS2dVNHAb3TgrhImAQoaCglO3XkGL4dbZ0cKm9gkYcbaUxEGIumjAltw/d5awCbEUeDwOiJsOaPMPfGbqu9e6yKizMSewnF4cTwHblmSJhgqp9+dEUWHU5Fpumxo+kHB9fDmCmQfn5XU3unk5qzbZ4FhlsshktgjAS11P6SOjqcqpvB252crGSOVDRyuqFlkEdmkeL3QXXADU/AvXVwR34vYVFUdZaTNc3D2n4BWmBo/KS01kFUuI0vXzSZMJuwOa98qIdSkPynAAAgAElEQVQ0PGk6A5/u6JXRtOasoWLyqpICqDtJ6qgo4qPCODICZhi5RUbA3sJJYz0uD3n32sLtYI+AKUu9ruJSqQ1n+wVogaHxk9JaBxPGxDA2NoLlmUm8cuAUTucwisQNFQ6/bKT66KmO8hSD4SI+DcQOdScREWaMkBQhucW1ZKXEMTom3OPy88bHkxQX2ZWDKeQ4vg0mXQwRsV5X2VlQycSx0V1BicMVSwJDRDJEJNL8fKmI/EBEEoI7NE0oUlrXzIQxhlpq7fw0yuoc7D0Zwh4socrB9TBuJqTM7NbsU2DYw2B0ejdPqaMVjcMrdUYPnE7F3pO1LJzseXYBICLkZCax61glnaH2cNJQDpWfwPSVXldp63DyQWE1OZnJvV2lhxlWZxgbgE4RmQ48hlHc6NmgjUoTspTUOLoExhUzU4kMs7H5gFZL+UVdCZTsNtRRPah05ZHyFthlxmIAzEiNp6Glg4og6PYHKwVMwZlGGls6PBq83cnJSqa2uZ38svqgjKPfFG433jO8C4w9xbWcbesc9vYLsC4wnEqpDoyCR39SSt0JDKOcw5pA0NDSTr2jnYljjGl1XGQYK88bx6sHT9ExAkuGBo1DLxrvs3tnNPWYR8qdhMndZhgQeE+pwUwB44qv8GbwdrEs08i9FHJ2jOPbIC4VUmZ5XWXnsUrCbMKSAVTXCxWsCox2EbkJ+BrwitnmWeGoGbGU1RoR3RPGnNPDrp2XRlVTGx+cqB6qYQ0/Dq6H9IUwdlqvRZWNrcRHhhEdYffQEcPw3XgKOlqD5ik1mClg9hQbCQcnjfWt20+Ki2R2+qjQisdwdsKJtyHjMq+lWMEQcudPGkN81PC/ZVoVGF8HLgZ+pZT6VESmAk8Hb1iaUKS0S2Cci+y+NHsccZFhWi1llapjUJHXy9jdtbiplSRP9gsXLk+p+lISYiJIGRUZcE+pwUwBk9sj4aAvcjKT2XuyjoaW9oCPo1+U7wdHrSEwvFDZ2Mqh8oZhm522J5YEhlLqsFLqB0qpf5rfP1VK/Sa4Q9OEGiU1zUB3gREVbufKWSm8nl9Ba0cI5/sJFfI3AGJEd3ugstFLWhAXXbEYRUBwUoQMVgqY0x4SDvoiJyuZTqfi/eMhMpst3AYIZKzwusqu46Y77QiwX4B1L6mlIvKWiBSIyAkR+VRETljoVyQiB0Vkv4jkmm0PisgREckTkZe8eVt56qsZWkprHcRE2BkbG9Gtfe28NBpbOthxNITUBaGIUoY6asoyGOXZBOg1ytuFWywGQHZKPMdONwXUe+iHKzN7tQUjBcw5+4V3Dyl3zp80htgIe+hU4Tu+DcbPg1jvs4edBVWMjY1gdo8cWcMVqyqpvwMPA8uAC4BF5rsVViil5iulFpnf3wJmK6XmAgXAz/zoqxlCSmsNl9qe6oOl05MYExPO5rxTQzSyYUJFHlQf8+gd5aKqsZWkuAivy4kfD7awcwIjNZ7WDifF1YErMuSynySaDwYxEXZ+fd2cgKeAyS2uISrcxqw0a6VKI8JsXJyRxM5jlUPvStxSb9Tu9uFO63Qq3j1WybLpScOyup4nrAqMeqXU60qpM0qpaterPztUSr1pelwB7Aa8pHrUhBquoL2ehNttXD1nPFsPnx5xZUMDSv4G42Y/81qPi1vaO2lo6fA9w7DZjSyobgIDAmv43nygnJRRkXz0H5ezdl4aEWE2rpkbeKfIPcW1zJuQQLjdevzwJVlJlNQ4KKpuDvh4/OLEDlCdPt1pD59qoKqpbcSoo8C6wHjbVCVdLCLnu14W+ingTRHZIyK3elj+DeD1fvbVDDIltc3d7BfurJ2XhqO9k7cOnx7kUQ0TnE6j3nPGZRDjWQVTbaYF8SkwoFssRua4eEQImOG73tHOO0crWT03DbtNWDsvjbrmdnYFOMq6ua3DSDho0X7hwnXzHXL32sJtEBEPExd7XeVcOpCRYfAG6wLjQgw11H8BvzVfD1not0wpdT5wFfBdEclxLRCR/wA6gGf87euOiNwqIrkikltZGSK6zRFIvaOdxpaOrhiMnlwwZSypo6LYfECrpTxS+hHUl3j1jgILMRgu3OpiREfYmTw2JmAzjC2HKmjrdLJmXhoAy7OSGBUVxqYAe8HtL6mj06lY5CPC2xOTE2OZnBgztAJDKTi+HabmGJUQvbCzoJIZqfGMGxU1iIMLLla9pFZ4eHn3JTvXr8x8PwO8BCwGEJGbgdXAl5QXZaS3vh7We0wptUgptSg5eeRM/UKN0treHlLu2GzC6rnj2VFwhvrmEHF7DCUOroewKJhxtddVfKYFcSdhMjSd7ioL6koREgg2HyhncmIM8yYYRtrIMDtXzR7Pm4cqAlr1bo9p8D5/kv+1IXIyk/ngRDVtHUMULFp9HOpPwnTvt8CzrR3sKa7lkhGkjgLrXlKjReRh15O8iPxWRHya/UUkVkTiXZ+BK4F8Efkc8BNgrVLKoyLSW1/rh6UJNK4YjFnVW+B3s+HeBOPdrdD92vlptHcq3jgUgrOMvOe9jjv4+50FH/8vIHDUmwbWiMEAizMM6CoBmp0aT1F184Bv6FVNrbx3vIo1c9O6OTasnZ/G2bZOth85M6Dtu+M14aCF3yknK5nmtk5yi2sCNh6/OL7NePdhv/igsJr2TjWi7BdgXSX1ONAI3Gi+GoAn+uiTAuwSkQPAR8CrSqk3gEeAeOAt02X2rwAikiYir/XRVzNElNQ0s9a2i4m77jJUKyjjffMPuv7Uc9JHMyUxJvTUUnnPG+P0Mu7g79es7dzh8Llf1wwj0ZeXFHSriwGGwOh0KgormwY03NcOnsKp6FJHubhoWiJJcZFs2h8YtVSnmXCwlzutxd/p4oxEwmzCzoIhyl5buM2I0h871esqO49VEh1u99tGE+pYFRgZSql7lFInzNcvgd55Ddww15tnvmYppX5ltk9XSk003WXnK6VuM9vLlVJX++qrGTpKax3cFf480tEj2rfdAdvuA4ysomvmpfF+YRVnGkOo2M22+7rUN124jTtU9lvZ2EpCTDiRYV7SgrjoisUwBUZKYDylNu0vJzslvsvzyoXdVDduP3qGxgBEWRec9pJw0OL5iosMY+HkIarC19EKRbt8zi7AsF9cNG1s37/lMMOqwHCIyDLXFxFZCgQ+T4AmZCmtdZAqXjypXU/QGN5STgWvhVJMhtv4LLUP0X6rmlr7VkeBkezOFt5l+J6SFEu4XQbkKVVW5yC3uJa189M8Ll8zL422DidvHhq4F1xusRmw19Pg7cf5yslK5vCphq5Z2aBx8gNob/YZf3Gyupmi6uFfXc8TVgXG7cD/mNHXxRhqpduCNyxNqFFa20yN3csfYPS5UJrMlHhmpMaHVhDfaC+hPt7ah2i/faYFcWGzQcLELoERbreRkRxHwQAExiumF9RqL/EW509KID0hOiDeUnuKakiOj2Ti2B4OFH6cL5cxedCjvo9vM4T1lOVeV9lxbGSlA3HHqpfUfqXUPGAuMEcptUApdSC4Q9OECkopSmsd7JhwuxF45k54NKy8u1vTmnlp7Cmu7fKsGnKWfL93m4dxB5yVdxulOy3ut8+0IO64xWKAYccoON1/G8amA+XMm5jA5ETPVeNc6sZdx6u6ysj2l9ziWs8JB1feben6Apg5fhSJsRGDr5Yq3A6TLoLIOK+rvFtQSXpCNNOSvFfgG674FBgi8mXz/Uci8iPgFuAWt++azwD1jnaaWjuonb4OYpLAbt7UwmNhzR97FbxfaxpNQ8b47TS9h8LNP3B8msdxB5y5N8KkJYAYr9ETfe7XSAtiVWCci8UAw7W2rM7Rr0yuhZVNHCpv6PrdvLF2XhqdTsVrB/v/u55uaKG01sFCTwWTZl8P4TEQZs487BFez5fNJizLTOLdY1WDVyK4sQJO5/vMTtve6eT9wmpysoZ/dT1P9DXDcInIeA8v7yJWM6JwudROj6yDpgq4/B6YsRqix8Ccf+u1/sSxMSyYlBA6Kc/z10PqXPjqy8b3qx4IvrBw0VwN0y6Fe+vgjnyv+z3b2sHZtk4/ZhiT4GwltBmzuBmmofpYPwzfmw+UI+JdHeXivPHxTB8XNyC1lM+Eg0W7oLUBPv8XuPRn0NkO0y/3uq2czGSqz7Zx+FRDv8fjF67qej7sF/tO1tHU2sElIySdeU98Cgyl1KPmx61KqV+6v4BtwR+eJhRwqZYyGz80GjJWGn+ahlKoKvDYZ83cNA6fauD4mYG5eg6YmhNQtsd4eh0/zwieO/nh4Oy7pQHOHDJUGH3gisHwSyUFpguqe/U9/863UopNB8q5cOpYUvqISBYR1sxN4+OiGk7V98/nxWfCwfz1EBEHWZ8zvZCUUaDIC8vNm/KOwVJLHd8GscmQMsfrKjsLKrHbhCXTP4MCw40/WWzTjEBKaoybw7jT78GodEjOPudW6Hrq6sHqueOxCQFPKeE3+a5yqNdDWIRR6a5k9+Dsu/RjUE6YeGGfq54L2usjBsNFj1iM9IRoYiPsHK3w72n7UHkDJyrPsnaetUy0a+enoRS82k+nhtyiWuZP9JBwsKMNDm+CGdcYdov08yEqwUjB4YVx8VGcN37U4NgxnM5z1fVs3m+bO49VsmBiAqNGQHU9T/Rlw7hYRH4MJLvsFubrXmBkORhrvFJa20xClBBevPNcOcoxkyFx+rmo1x6MGxXFRdMSeeVA+dCmos7fABMvMryKwLh5nzrQpcoJKid3g9hgQt/Z+S2nBXHRIxbDZhOyUuM56qdKanNeOWE24arZqZbWn5oUy5z00f16EDjb2sHhUw2e80cVboeWunOp3212Q5VXuM3I3eSFnKwk9hTX0tQa5CzJFQcM9aKP+Iuas20cLKsfkd5RLvqaYURg2CrC6G6/aAC8Z1H7jLBxXxlLH9jO1LteZekD29m4r2xQ+n686VEq7p2O857RVNw7nY83Pdp3pwFQWuvgsvhSaK3vrr/NWGnonds9B+mtmZfGiaqzHCofJB1zT04fhjOHYfb1Xef7G9vt4Oxg144twd9/yW5InQOR8X2u6rfAiB1nOB+4Gb6zzZxSVgW006l45cAplmcmMSbW4swGWDNvPHml9RRV+VeD44CZcHChp+jn/PWGTWyaW/W6jMuM+uVnPvG6zUsyk+lwKj4oDHIVvq50IJ6r623cV8bK376DUvD0B8V+/Z+HE33ZMHaY9oqLetgwHlZKHRukMYYkG/eV8bMXD1JW50BhBD797MWDli6UgfT9eNOjzN7zc1KpxCaQSiWz9/w8qEKjtNbBCnue8bQ87dJzC6avNNJdnPzAY7+rZqcSbpehU0vlrwex8brzwq7zvcdpVJPLfff14P6pOzugdI8xu7FAZVMbIjA2xuKNu0csBhiutbXN7VQ2WQtm23uylrI6h9dgPW+snuvygvPvd80trkXEQ8LBtmY48ppRJyTM7fhdDyeF3s2lC6eMITrcHny1VOF2Q/jHjeu1yPV/rjWTblY2tVr+Pw83wvpeBYBmEXkQmAV0WcasZKwdqTy45SiOHsneHO2d3PViHlsOVfjs+/bRM7S0d8+0abXvz4/9N9HS3Q8+WtqYuPdBWPttP47AGkopSmqbWRC/19D/R7v92acsM1wfC7d5fPJKiIkgJzOZVw6Uc9fnZgxu1TGlDHXU1Eu4f0d1129VTxwFznTmqSP8fMvRgFeR6+L0QWg/C5P6tl+AMcNIjI0gzI9iQr1iMVwpQiqaGBffd0rtTQfKiQyzccVMa+ooF2kJ0SyeMpZNB8r53mXTLbuP5hbXkjUuntHRPfT7BW8Y56pnJcLREyAp23i69xRLg5FN9+KMxOAG8LU0QMmHcPH3PC72di94MJjX1xBh9ep8BjgCTAV+CRQBHwdpTMOC8jrPXiIt7U4KK5t8vnoKC3/6jsdzwrVxKjiJ2Gqb2wlvqyft7Ce99bcRsYYHkA/D5Nr5aZTXt7DnZG1QxueVsr1QWwSzr+/1W+U6szjfdoxTdYEra9oLlyeW1RmGPzEYLnrGYpiutVbsGB2dTl47eIqV540jLtLqc+M51swbz7EzTZbTkXQ6FfuKa72oozYY6U4mL+29bPpKKH7fp80pJzOJoupmTgarCl/Ru+Ds8OpO6+1e4K19OGP1SklUSv1dRH6olNoB7BCRz7TASEuIpszDBZGeEM2bd1zis+/SB7b3r2/TGVoeCieK3sFZZyQJ/54TrVFa28wyWz42nJ7/MBkrYes90HAKRvX247/8vBSiwm1s2l/OBZ5874NF/npj9nPeGtIS9nY733uc2Xwx7G2WjApittOS3Uag3mhrT5hV/kR5u0iYZBhiW5sgMo6kuEiS4iIseUp9cKKaqqa2PoP1vHH1nPHcu/kwmw+Uc974vmtyF5xupLHVQ8LBlno49iZccIth6O5JxkrY/WdDaGR6jslwGZl3HKvkK4mT/T6WPjm+zQj69CL8vd0L0hI8144ZzlidYbjuUKdE5BoRWQAM4r8/9LhzVTYR9u5T8ehwO3euyrbUNzq8+5+jz77HtsJflhCBkzbVva9DRVBy/p3WB+8HpbUOcmx5dEaMhjQPVXmn+3avjY0MY+V5Kbx28BQdnYNU8MbZabjTTr8CohP4Vk73NNS5KguAfz8vSLMepYwZhgV3WheW80i501UXo6SrKSslnqMWUoRs2l9OXGQYl2b31slbITEukqXTk9icZ80LzpVwsNdDwyevQGdbb3WUi8lLDOO+DzvG1KRYJoyJDp4do3AbTF3e3b7ixp2rsumpbbV6LxhuWBUY95sFk34M/DvwN+COoI1qGLBuQTpLMhIBI/FDekI0v75ujiWd5boF6fz6ujmkJ0T33bejFd74GTxzPcSOw/ad9ziw8NdUkIwrI0LlxM9xQRDsFwAl1WfJsefhnHoJ2D1MSFNmQ1yKzz/02nlpVJ9t4/1ge7K4KH7fiEifY9yEOjqNEzU62hh/U/REWiITma+OBmf/9SXQWG4pYA8MO1FVUytJ/s4wxkwx3mvP2TGyUuI5drrRZ7qM1o5O3jhUwZWzUogK7793/Np5aZTUONhXUtfnurlFNYyLj+xdsTF/vXEc6Qs9d4yIMYSGF/dtMAIKc7KSzaJFAX4oqS40VJs+3GmvnJWCAHGRdr/vBcMNSyoppdQr5sd6wLNf2WeQOkcHF0wZwwu3LfG777oF6X1fUJVHYf03DQPq4lvhivsgPJoL1p4Ha7/N/a8c5oaPv0A2A0857Y22U4cZLzWQ5SVFg4jh/liwxXiy96BWuCQrmfhIoy70oPio5683chJlfQ4wvHlmp4/i+W9fzPxfvsX1iyYS1bjEq3fXgDlpBgZanGE0tnbQ2uHs/wzDzY4xIzWe5rZOSmsdTEr0XH99x9FKGls6+q2OcnHlrBQiXrKx+UB5n6VWc4tqWTSlR8LBpko4sQOW/X/GdeSN6SvhzZ8bac69ZLTNyUzm2Q9Psre4lgunJfbncDxjIR3Ihydq6FTw5y8tHNExGGC9ROsTIvJ4z1ewBxfKONo6OVRez0I/i9hbQinY8yQ8egk0lMFNz8HVDxoRsG5kpcbzcscSpPTDbjeNQJJ0ZpfxwccfhoyV4KiBU/s9Lo4Kt7Nqdipb8gNbF9ojne1w+GXIvhoiYimqOsuB0nrWzE0jJiKMRVPMwjsTLzI8jBp9e6X1i5O7ISIeUmZZWt3vGAwXsclGqhM3Tykrhu9NB8oZExPO0gGmrxgVFc6K7GReyTtFp48ZTUV9C2V1jt7/lcMbQXV6V0e5cD3d+5hlLJmeiN0m7Ay0t9TxbYY32ljv9eJ2FFQSGWZj8dSRr6W3qpJ6BXjVfG0DRgFDnCRoaDlQWkd7p+ptxBsojlp44Wuw+YcwcTHc/j5kX+Vx1Rmp8Wx2mmqP/A2BHYdJZsNHlIdP8l07wuVS68tbal4aja0dwc/7U/i2cQ7nGHGlrliB1ebTdE5WMkcqGqlOXGCsfzIIaUJKPoSJF3g24nqgqtFiLe+eiHjMWgveq+81t3Ww7ZMzXD1nfO/0HP1g7bx0Khtb+fCEd3Wjq/Z2r/9K/gZIPq9vwTruPCPDsA+156iocM6flBDYsq0dbYaH1PSVPmdAO49VcuG0xAGp94YLVuthbHB7PYNR17vvfAcjmD2mEc9jmub+Uvw+/GUZHHkVLv8lfGWjR88jF5nj4iljHKfi58DBwAsM1dbM7I58Ssb0oYuPTTIS+/n4Qy/JSCQxNiL4QXz56yFqdFcK6s155VwwZQzppsdKTqahMni7frzxdF4S4ESELfVw+pBld1qgK9DO7xkG9IrFiIsMY8KYaK/urm8dPo2jvXPA6igXl80YR2yEnc153n/X3KJaosPtzHRPOFhXYqgE5/Qxu4Bzas8T7xgBkV7IyUwmv7yeaouBi31S8iG0Nfm0X5TWNnOi8iw5mSMz2WBP+vuIkQn06V5hVug7KCL7RSTXbBsrIm+JyDHz3eMdV0S+Zq5zTES+1s9xBo3cohqmj4vzK6VCN/Keh9/NhnsT4Hez4J9fgievMTwxvvmmodf1keQMIDrCzuSxMbwbdYlh56gMrBG34egOoqSdhvScvlfOWAklHxk3TA+E2W3MSI3n1bxT/UqHYol2hyFsz1sLYZEcqWig4HQTa9xujjNS40mKi2RHYb1haA30DKP0Y0BZDtiDAaikoNcMA4wAPm/V9zYfKCd1VFTAXJyjI+xcMTOF1w5W0Nbh2eC8p7iWeRNHd5/RHHrJeJ91nbUdTb/MuLbK93pdxYlCKVh4/9bAXF+F24yCTlO9X/+uGc0lI9x24cKqDaNRRBpc78Bm4KcW97FCKTVfKeWakdwFbFNKZWKot+7ysL+xwD3AhcBi4B5vgmUocDoVe8yqYf0i73nY/APTHVIZxryjr8CEC+HbO717jHggKyWeF5oXGmk7AqyWaj3yFq0qHPtU7+Uou5i+0tBHf7rT4+KN+8r42JyV+ZsOxTIFW4wnQlMdtWl/OXabcPWcc7M0m03IyUxi17FKnBMuhIq8wCYiPPkhiB3SrU/Aq5pasduEhJ4R0FZImGSo4FrOxV5kpcZTWNnU6wZe19zGjoJKI5NwAKPu185Po97R7jHa2mvCwfz1hpt2Yoa1nUxbAYhX9+2N+8r46zuFXd8Dcn0d3wYTFkOU9ziTnQWVjB8dxfRxn43yQFZVUvFKqVFu71lKqf7ena4FnjI/PwWs87DOKuAtpVSNUqoWeAv4XD/3F3COVzbR0NLRf3XUtvuMp+GeNJRaSlTnTnZqPHtro+icvAwOrveZ2dNfok++w0fObNLGWXganbDYqGXgxTD54JajvW5grvQJASN/vZGUb8pylFJszitnSUZiL9tATlYytc3tFMfNMSJ4y/YEbgwluyF1ts8Snj0xorwj+ncT9xCLMSM1ng6n4tMeyQG3HKqgvVP5nTuqL5ZNT2Z0dLjH3FKuhIOL3CO8q44bGYPn+JG/NGaskfLcx/Xl8JBup9/XV9MZ42FiuvfsRx2dTt4rrCInc2RW1/NEX+nNz/f1srB9BbwpIntE5FazLUUp5UqmXwGkeOiXDpS4fS812zyN8VYRyRWR3MrKwSmk4rNqmBXqS/1r90F2ajydTkXFpGugptD4IwaC+jLiGwvZ6ZzLhDGe3TO7ERZhTN29pKMOevqElnooeBNmfR5sdvaX1FFS4/Coq19m6pu3NphRwYFSS3W2Q2muX/YLMIP2+qOOgl51McCtmFIPw/emA+VMToxhTvro/u3LCxFhNq6ek8qbh0/jaOvuBfdxkZlw0P3hKn8DIMZv5Q8ZK6Es15hR9SDg11fh2+f26YUDpXU0tnSMeFdad/qaYfzWx+shC9tfppQ6H7gK+K6IdFMGKiNEdECPxEqpx5RSi5RSi5KTB+eHyy2uITE2gile/Nx9UrbXu/eML08kL7gSzu2LXQa2cOMpOxCYU//9EedbzzWUcZmhT68u7LXIW5qEgKVPOPIadLaeU0cdKCfCbuPKWb0TpiTFRTI7fRRvfdpmeOkEqqBSxUFob/bLfgFQ1dTmv4eUC1flPTc7xrTkWOw26WbHONPYwgeF1aydlxaUp+E189Jobutk25HuMUG5xTVkp8SfKyiklHGNTl4Ko/yc6UxfaRSkOrGj16KAX1+F2yAmEcbP97rKjoIqbALLRmh1PU/0ld58hY9Xn5lqlVJl5vsZ4CUMe8RpERkPYL6f8dC1DJjo9n2C2RYS7CmuZeHkMf798ZxOeO8P8PcrDdWNvccNIjwaVt7t91imJMUSbhfya8KMP1T+i8a+BkrhNmrtibSMmWG9j4901J7SoUSF2QKXPiF/PYyeBBMuoNOpeDXvFJdmJ/fOjGqSk5nM3pO1tKVfACUfB+aclfiXcNBFv9KCuIhJNIIU3QRGZJidaUmx3TylXss7hVMRMO+onlw4NZFx8ZHd1FKdTsW+k3XdVbcVB42yvla8o3qSvggiR1u/vsL7eX05ncYD07QVvqvrFVQyb2ICo2NGZnU9T1j2khKR2SJyo4h81fXqY/1YEYl3fQauBPKBTYDL6+lrwMseum8BrhSRMaax+0qzbcg509hCcXVzd51sXzRWwP9dB2/dDdmfgx/sg2sfMZLTIcb7mj/C3Bv9Hk+43UZGcpyRcG72DUag30BdRZ2dUPg2H8o8Joz1YxY1dhqMmepRz9wzHQoY1dICkj7hbJWhQph9HYjw4afVnGls9amrz8kyCu8cDZ9lFIaq9F6kxzIndxtCy2LCQTAcKPqVeNBFVyxGcbfmrNT4brEYmw6UMyM1nswU/2xkVrHbhGvmjufto5U0tBip545WNNLU2tH9v5K/wfA8Ou/afuwkDKblGPE+PdSe7teXi68vmdq/6+v0QThb6TNYta65jbzSui437c8KlnQNInIPcCkwE3gNQ8W0C/iHj24pwEvmU3gY8KxS6g0zy+3zIvJNoBgjpgMRWQTcppS6RSlVIyL/ybkU6vcppVq3m1cAACAASURBVGr8PbhgsMdf+0XBFth4u+GJs/r3sPBm408+98Z+CQhPZKfGG3aV7KsgLNqc8l/c/w2W74OWOrZ0zu6d+6cvpq+E/c8aObDCut8E3dOh3Pb0Hj44Uc3Z1g5i+5FeuxuHXzY8tNyC9WIi7Kyc4ck8ZnD+pDHERth5s3EKc8C42VuMzPaIUoagnrLMr271jnY6nKr/KinoFYsBhqry1bxTNLd1UN3Uxt6TdUFPhrd2XhpPvFfElvwK/m3RRPZ0BeyZ/xWljBnwtBUQ28/0HRkr4ZPNxiwlufvxuK6vlvZOFt2/leqz/YzHcHliZXhXouw6XoVT8ZmyX4D1GcYNwEqgQin1dWAe4NNyppQ6oZSaZ75mKaV+ZbZXK6VWKqUylVKXuwSBUipXKXWLW//HlVLTzdcT/Tq6IJBbXEtkmI3ZaX0YDttb4LWfwLM3Qvx4uPUdWPR13zlz+klWSjxldQ4aVaQxgzm00WeAU58c34ZCeLt9FhP9mWGA8Ydub+7TkPztS6ZR72jnuY9LfK5nifwNRqGdlNm0dTh5Pb+CK2amEB3hPfI2IszGxRlJbCwOR8WOG/isrO6kUU7Ujwy1MMCgPReeYjFSXRHfTV1BdcFSR7mYPzGBiWOj2Zxn+LTkFtd2TzhY8hHUn/TPO6on0/tOExIVbufKWSm8nl9Ba0c/UtEc32Yk1Yz3XjBgZ0Elo6LCmDchsA4EoY5VgeFQSjmBDhEZhWF3mNhHnxFJbnEt8yYkEBHm49SdOQJ/WwkfPQoX3g63bINxftgC/GRGqls6iNk3QHMVfNrbMGiZwm00J82ljnj/ZxhTlxsqBx9R3wALJo3hwqlj+fu7JwaWYbS+zIiQn309iLDreCV1ze2Wbo6XZCVRUttCc8qigXtKuQSOxQy1LgYUtOciYZLhJeY4lzX2XPW9RjYfOGXezPvhpOEHIsKauWm8d7yK6qbW3gkH8zcY0fXZV/d/JwmTIDGzz+trzbw0Gls62HHUT8/J1ibjWvAxu1BKsbOgimWZSf5VSBwBWD3aXBFJAP4X2APsBYKU6jN0cbR1cqis3nPVMDCm3LmPw2OXGnaLL74AVz0A4X2XyxwIXW6UFU0w/XKIHNX/ID5HHZTmUjrWUGlZcql1JzLeMPr6yCvl4rZLMiivb/G7NnQ3Dr0EqG7BeqOjw1luQbfsUiccDp9pqHQaTvXRwwcndxvnfdxMv7pVNfUzj5Q7HmIxJo6NISrcxqsHT/HJqYagzy5crJ2fRqdT8fddn1JW5zinjursMH6rzCt9BsJZYvpKKHrPmMV7Ydn0JMbEhHfNdixTtAuc7T7tF8fONFHR0GLpGhtpWA3c+45Sqk4p9VfgCuBrpmpq+NMtRcds47sXDpTW0eF0Szjo3vfhmYageOUO4ynz9vch68pBOYT0hGhiI+zGDCM8Cs5bY+h5ffyhvPLpDlCdHIpZ1LVtv5l+mWE4bPSddv3S7GSyU+J5dMcJS0V4PJK/3nB9TMzA0dbJW4dPc9XsVN8zQJPJibFMToxhS8MUo2Eg7rUnd8OERZYTDroIyAzDQyzG5gPldDpVV7JHC6ejO378L9yZkTqK1FGR/NmMuv7LjkIj2rroXTh7ZmDqKBcZK6HDASff97pKuN3G1XPGs/XwaZrbLKpn856HDd80Pm/8rtdjdhVq+qzZL8B6apBNIvJFEYlVShUppfKCPbBBoVeKjhLju5cLpVvCwZ59G8qM9N6zb4Avvwjx3g2ugcZmE7JS4zniKs05+3pobYDjW/3f2PFtEDmKPZ3TSYyN6J9B2hXs5CWNgwsR4dacaRw93cg7/cliW11oGOjN9Njbj5zhbJt/ifVyMpN5vmwMKiz6XB1uf3HUwZnDfrvTgiEwIuw2RkUNwPDfIxZj474yfvbiQdo7zwnhX79+1HqaDD//F+5s3FdGVVNb1/fKxlZ+9uJBinY8baR8zwzAQ9SUpUb5XR92DDDUUo524yGiT1zH3GYm4W4o9XrMOwoqyUiO7d/D1DDH6nPHb4FlwGERWS8iN4hIcPUsg4GnFB3tDtj0fXjm33q9ln10O/+Ke5iEl75krOMpvUfJh30mDQwG2SnxHK1oNJ7Up14CMUn+B/EpZdzkp+Zwsq7Nf/uFi9S5xv770DODocJIGx3Fozt6B/v1Sf6LxvtsI4HdpgNlJMdH+lVAJycrmYY2oSFxbv9nGKW5+Jtw0EWl6VI7oGC66DFGbI8pMIw0Gd2NvX6lyfD2v9h2X59dH9xylI4etTE621sYe/INmHFNr5ou/SIiFiZd3OcDyeIpY0kdFcXmAxbUUhaPuaW9k48+rflMzi7Aukpqh1LqO8A04FEMV1hPAXfDC2+pODpaDD9st5c6W4ndUU1aeJPR1uFF3dOP9B6BICslntrmduPpzh4Gs9bB0TcMI55Vqo4ZT5PTV1Ja6/DffuHCZjOMhoXb+wyIC7fb+Mayqew+UcN+C6U+u3BFDE9aAqMn0NDSzttHK7lmznjsfuRkujgjkTCbcMh+HpzKg7azfXfqScluvxMOuqhs7Edp1p70qIsx4DQZA0hd42kfObY8RnE2MOooF9NXGrO6Bu/2L5tNWD13PDsK/v/2zj0+ruq699+ltyzJkvW2ZOG3ZMC2DBhCcTAubiCArThAKEmThvaGQJu2JDchKbc3pJeSQuI+uEl6k9AUkpIHJYY4NnExYOMYjHnIT8kYvx962NbTlmS9Nfv+sc9Io9GMdGZ0juSZ2d/PZz46rzlnb83MWWfvtdZvNXChs2/089ns87snWujp9xiDMRYikgrcBTwIXMuQgGDkEkyKI7NEh8H6vA5XbGRV9z/w7h+9qLdlBgkSC0Pewwm8kVKHvNm9C+/W87yHNtk/iTUi8My5mbrWrvBHGKB/0J3NcHZsbat7r7uMqSkJoY0yzh2Axg8HM4ZfPXCO3n5PyMJ66ckJXDNzGq+0zdS5HOEIEZ5+BwoXhSQ46KWpo5e89DAl8n3xycUYt0xGsO/wKGGmo11jdfxOzpMBc1bYu74dbE57Viwpom9A8cqBMUYZKUHCY/3+F9sPN5KUEMf1sx0sAxtB2PVhvAAcBG4GfgDMVUr9tZsNmxBWPjpyiBxEomNE1bAQ3jsRjCjNWfIRmFocWrTU0S2QM4/GhEJ6BzyhZXn74w1LHOMHDfqm/bk/mMkrB86OUFgNSvWL+qn+Ci12vGFfPTOmpXJVSVbITV1emsf6JisjOFQ/xkCfNjIhhtN6GZfwoC/eEYZSAWUyUhPj7SfuLX848PaLzTopc5QABf9rp9LNx+J20TrrNoh3UEKj4EpILxjTj7GoOJOZOVNGn5ZqPAw9F3WJAF8C/J63H27kulnZo+b4RDN2Rxj/gTYSDyql3rByMiKfxfdoSQ4bEh27TraSm57ETK/gYAjvnQhy05PJSUsaEpyLi9Nz+0e3QKeNJPm+bh1SOHclta26PsS4Rhjp+fqp20Z4LcB9N8wmMT6Op7cfH/tgpbTBmLMC0nJp7uhhx9EmVocprLd8fh5tpHMhY17ofgyv4GCICXugtZZaLo5DR8qXrMt0oEP3+REyLMVZqTxx5yL7MhneDP20fAa/2x//ji47u/4v4MUvBC2U5X/tT2VUM0V6mL3C4Rpog1X43tBSNkEPEyrKi3j7WBMN7QGmkQf64DdfhJQMuO27o/6e6893caShg+WlsSM26M+ooRki8nWl1HeVUptF5FPAr332/aNS6n+53kK3sSnRURlIcNBBeQ8nKCvM4ENfSeuFd8Pb34eDG7QkyWic3qmnsOatpKZFz0OXjMdggJ422PkD6Gkfs85HXkYyd18zg3W7avnKx+aTnzFKTEVtpZ5+WaFrb22qPsuAR4Wda3Bl0VRy0pKojr+cZTXb9Q3IbnhsmAl7AC0Xe/Eoxu/DgKFcjPOnIXXaMBmWkKmyhBy/vH+4MsF198Ob/wLbnoDa9+CuZ7QR8WPYtX/1C6ifrn1NTjN3Jez7FdTvhRnBi45VlBfx/a1H2bT/DPctmz185/Z/0pF2n/qZ9vtdd3/Q83gLRMWq/wLGHmHc67P8iN++S6agkds0tHdzuqVzZNWwS4zSggyOnGvH441SmV4O2XPtTUsd26JDFWd9dHCEUZw1zszgeSt1gaITb9o6/P4b59A34OFnb58c/cDqdVrtd8EdAGzcW8/8/PRBP06oxMUJH52fyysXZmkhwoYQhAhP79Q311CluvHJwXBihBEgFyMsLjbrp3ZLyHEYcfFw08Pw56/o9Wduhe1rgz/hd52Ho6/pMqxuRA7OHb0Kn5f5BRksKMwYmcRXu0u3f/G92liMwfbDTRRMTR7Moo9FxvoUJchyoPWoxSs4GDTD+xKhrDCDzt4B6ryRKiI6MuXEmzrzfDSObtVPyUlp1LZ2kZuePP552pKPQGKarfBagNm5ady2sJDndp6ioydIspVnwMoY/hikZHLmQhfvnWwZd52H5fPz2NY9R6/YnZZSSvs8wginBYd0pLz4jjDGw8HfaiO/cBT58ZLr4MG3dAGkrY/DzyoCRxkd3AgDveFJmdshLVc/FNn4fq0uL2LXqdbBhyF6O/VUVMZ0uP27Y75/wKN462gTN8ZQdb1AjGUwVJDlQOtRi23BwUnGKzjnWweBhXcDypLQCEL7WWg4MOiorh1vhJSXhGSt3jqGY9KXB5bPpa27n+ffC3LjO/kWdJwbDNF82XJmrh6n9MWNpbnUqHwuJuXYd3yfPwUdZ8PyXwA0tTsgC+IlJUtLk4zXYFS9CLml2v806vUy4a6fwJof6imdHy7TBsKX6he13H2RneKcYTJvpRY1DOJT8eKdrhx0fr/2KDQfhU/+MHiElA/7a89zoasvpqejYGyDUS4ibSLSDiy2lr3rY3yjoofKky2Ul4whOHgJMN8qRO9bB4E868c/2rTUoJyzDlWsae10xmCA/kG3noAWG85soLwki+vnZPMfb50YXgPcK1XxnxWA6KgWdHTU4hmZzMpNG1cz8zNSuHx6JtVxIVTgOx2+/wIcHmH45WKERVs9nNqhHzLsPEWLwJLPwINvQvZs+K/PwsYvw+6fw79crqe2Opuh6tdjnytc5q7U4dAnto96WEn2FJaUZGndsqOvw/v/Dtd/SZcVtsH2w02IwI0xVF0vEGNV3ItXSk1VSmUopRKsZe96TJSZ6uod4EB921A47SVMRkoixVmpQ7kYXhbeBbXvQ+vJwG88ukVHxBQsZMCjqD8/jqQ9f7zx8qGMMm6ayxlfUcJhUhUACv77azTseI6quguOCestL83l9Yuz9U3XjhBhTXiCg14a23uYkhQ//nogXgLUxQgJr5DjaNNRgciZC3/+Kix7CHY9Cxv+aiihrqfNtqxIWJRcpyVHbHy/KsqLqD9TR/9Lfwl5C0IKgd9+pJHFxZlMS3MgZyaCubQfmS8B9tZYgoOXuP/Cy4LCjMAGAwKPMjwe/SQ492aIi6OhvZu+AUVJtkMjjJy5+snXRj6GlxWleSwozODH249pB34Q2YaU7Y8jAncsnu5IU2+an8d7/fP1ip1Rxul3Yca1IQsOemnq6HFmOsqLTy5GWFSt0z6B3HmhvzchCT72GKTlMWK22qasSFjEJ+pRwrEtY/Z71aJCHk98Fulqhjuftq0ifaGrj70152N+OgqMwRgTb9Wwqy+LDINRWpjBscaO4dM5WZfpeXav9pIvZ/bqaQNLzrm2Vd+YHRthiOhRxont0N879vHo2PkHbprD4XMdbDvcEFS2Ib3nHNfOymZ6pjPG7ZpZ0zieMJdeSR7bj+EVHAxzOgocTNrzknWZFs/rag39vc3HoH635fMaBxebAm93UzJn3s3aUDaPrhSQf+plVsW/w7OJ96IKF9s+/dtHmxjwKGMwMAZjTCpPtTI/P52sKZExFC0ryKDfozjZ7JcxvfAuOFetizv54o0wmfOHANS0OJC058+8lfpGVvue7besWqxFCTe9/nrQJ/h6T46jdR6SE+K5dm4BB2T+2CMMr+BgmA5vsHSknJAF8TIYKRXGtJSfkGPYBJXbcVEyZ1AmZJRpqQu1sOmrNGaV80TbrRyob7N9+u1HGklPTmBJGCoC0YbrBkNE4kVkj4i8bK2/KSJ7rVe9iKwP8r4Bn+M2uN3OQHg8it2nWiNmOgqCREqBDoGUuJEKtke36mmIdP305B1hOCrdPHu5lvEIwY+RGCf888x3+XbjQ/THp+q8Cx/64lL4J88fc/siZ6ajvCyfn8tbvfNQZ/aPLtx4eqfu04zQBQe9NHU4PMIYTy5G9YtaAXa8N/bJkMzJng3Zc4J/vzweWP+XMNBP8qeeJi4+gQ02i3Z5q+vdMDeHxBirrheIifgPPITWoQJAKXWjUmqJUmoJumpfgHkSQJeFXWK9KiagnSM40tBBW3c/11ziCXu+zMlLIz5OhiRCvKTn6xt39YtDc73dbfqp3/uEBtS2dpKfkUxKooNaOSmZ2jlpMx+Di03wyz/mDw5/h3dlEd8o/il84geDsg0qs4Rvxz9I65w1ZDvshFxemscuTykylhBhzbs6+iwpvOis3n4PrZ195KU7WCXAK4gZaqTUuQPQeDB0Z3cgJksyZ+5KXaSpv2fkvvee1oXBbv02U4sXsHx+Hhv31Q8luI7CscaL1J3vMtNRFq4aDBGZAdwB/CTAvqloMcOAI4xLgRGCgxFAckI8s3PThkQIfVl4lw5vrd+j109s10la83wNhkM5GP7MXQln9kHHGIWSjm2FH94Ax7fBbd/l/T/4IS8d6uHY9NvhK9Xw9+fZc9eb/LT9OlfKjs7OTePs1MV4kCHZD38G+vSU1Dj8F80XrRyMDAcNXmqWNs6hGoyqdcOEHMfN4nsGPyu+Uj0x8jnzVmpNL//a7I2H4PVvwfxbB+VxVpcXceZCN7tOj+3r8VbXu8kYDMD9EcZTwNeBQGKFa4AtSqlgk4kpIlIpIu+IiEPf5NCoPNlKbnrykOBghFAWKFIKdOnWuMShaKljW3ThnRnXDR6iczBc6O88S732+BuB9/f3wqvfhOc+qZPQ7t8KH3mAzy/TooQ/eXMoj2PD3nqSEuK45UrnqxqKCFeXzeKomoHH/+bj5ex+rbs1Dv9FU7sOAHBEFsSXUHMxBoUcbxqcloxIZt2ov9u+o9iBPnjpi5A4BSq+P5hb8rErCkhJjGPD3rGnpbYfaWR2bhol41FujiJcMxgisgpoUEoFG9d/GvjVKKeYqZRaCnwGeEpE5ga5zhctw1LZ2BhGmc9RqDzVwlJ/wcEIoKwgg9MtnSNrGadO05Ia1S/ped2jW/Q0VYJ+yu0f8HDmfLc7I4zpSyA1O/A8c/MxeOYWePt7cM2f6XojhQsBnQX9qWtm8OKuOhrauxnwKH5XdYaby/LJSHEnFWj5/DzeHyjFc/rdwDpJ40zYA2js0MqpjvowIPRcjLpd+vjxRkdNNsnp+vPwVUf+/Xd1FODq/zusZHJacgIrLy9gU9UZ+geCC2939w3wzvFmls+P7WQ9X9wcYSwDKkTkJPA8cLOI/BxARHKB64DfBXuzUqrO+nsc2AZcFeS4p5VSS5VSS/PynHtCamjrpqalK6Ic3l5KLXG0I+cCOG0X3gXt9bD35/pG4a1bAZxr76Hfo9x5moqL12JxvlX4lNL1FX50I7ScgHueg9VPQdLw699/4xz6PR6e3XGSd48309jeE3KhpFC4YV4Ouykjoa8jsBBhzTv6ST4MwUEvjU7KgviSNTO0XIyqdVp08vJVzrZjMph7M5yrgvZzUPM+vPlPUP4ZuGKkC3T14iKaL/by9rHmoKerPNlKd1/sVtcLhEMppiNRSj2CpXArIiuArymlPmvtvht4WSkVsM6piEwDOpVSPZZxWQaMrRDmIJWnLMHBCPJfePGtvlfuHwpYdpseum98SK+/+c963nvxPdS6EVLrS1IGXGyAx7L1zXZqkc5An/lRnUiVGViOe1ZuGouLM/nRtmP8cNsxBLgYTJzQAaamJNJVeC00oY2DNdoBhgQHbUpKBKOpw5qScnyEcZmey+9s1uJ8ozEo5HiLLT2lSx5vmZ5/LoW4BD21eduTAQ9dUZZHRrKOlgpmELYfaSQxXrg+hBrx0c5kxYndi990lIgsFRGvc/xyoFJE9gFvAE8qpT6YyAZWntSCg1de4oKDgSjJnkJKYlxgx/eHv9M/LO+Pq/3MoHRDjdNJe77sfwH2P2+tKGir08biijXw+Q1BjQXA+j11HDzbPpg/rIBHf3uA9XvqnG+nxYIFCzmnsug5vmP4jtaTWnAwTIVaL43tPWSkJDgbjQah5WKc2qH74kR01GSz/wU9ovDi6df12Q9vDnh4SmI8ty4sZHP1Wbr7Asuzbz/cyNKZ2c5Jt0QBE2IwlFLblFKrfNZXKKVe8TumUin1BWv5baXUIqVUufX3Pyainb7sOhUZgoOBiI8T5udnDBch9LLlMS3W5osl3VDb2okIFGU5GOrpe93+AAPKul1jSmus3XyInv7hc81dfQOs3XzIyRYOY3lZPpWeUgZO+jm+vZFTJeH7L0ALDzru8IbQcjGq1mn5+dIoKG0TSD5moGdUSZLV5UW09/Tz+8MjfZ/n2rr58Gy7mY7yI/LuhhNAJAkOBqOsMGNk8h4El2i4UEttaxcFGSkkJ7hQr3iU645F/fmukLY7waLiTD5IuIIpXfVDQnqgwzaTp0L+5eM6f2N7jzOV9vyxm4vR36srMS64fYTPKCIJ4/u1bG4OOWlJAZP4vOG0sVyONRDGYAQg0gQHA1FWkEFjew8tF/30m0aRbqh1UtY8wPlD2u5DUZCs82DbnSA+TlBW2KzyDa+tGZ/goJcmp3WkvKRM1dFwYxmM429ozalIj47yEsb3KyE+jtsXTWfLwXMjfGLbjzSRm57M5YVTnWxlxGMMRgAqT+qEvWsui5wMb39KLcf3iGmpUaQbalpcStob47pj8fCtZaT6zfWnJsbz8K1lTrZwBLMXXk+nSqblQ6vEbNd5HTU1jnBaL65NSYG9XIyqddop7BMlF9GE+f1aXV5Ed5+H1w+eG9w24FG8daSR5fNziYuLrJB6tzEGIwCVp1opLUgnc0rklvzwjZQaRhDphv4r7+ZsW7c7Du9RrmsnC3jNVcU8ceciirNSEbTO1RN3LmLNVcEd5U5wY1kR+zxzGTi1U2+ofZ/xCg6Cju9v7+53Z4QBY+di9HbCoU063DQhMkQ1xyTM79fSmdOYnpkyLInvQP0FWjtNdb1AGPe/Hx6PYvfpVlYtdi/OfyLIz0gmMzUxcKTU4ntG/JDOtHQy4HGwDkYgAlzXLmuuKnbdQPhTmJnC1ikLua59nRYiPP3OuAUHYSgHw9URxpFXdQhwoKTTI5u1enC0TEd5CeP7FRcnrC4v4tkdJzjf2UvWlKRB/8VHTcLeCMwIw4/DDe20d/dHtMMbtMRFWUHGSBHCIDheByNKkJnXE4+H7lPvaf/F9MVhCw56aepwQUfKl6yZOiLtYhDlg6p1kF6g660bqCgvom9A8d/VZwFdjnVh8VTnkyqjAGMw/Kg8qRP2Itnh7aWsMIND59pRNrJ+a1pdTtqLUGaW/yEeJZzd+5oWHBxnOC34jjBcCF8Gn1yMAH6M7gtw5DUtdz9Ox320cGXRVGbnprFxXz3t3X3sPt3K8vlmOioQxmD4seuUFhy8LArExkoLM2jv7ufMhYAJ9cOobe1CBMeq10ULV5fO5Agl5Bz+Ly04OM6EPdAOb3BxhDGYi3Fy5L4Pf6fzE6JtOmociOhpqZ3Hm/nt3nr6PYobjcEIiDEYfkSq4GAgyixNqYB+DD9qWzuZPjUlIhMV3SQlMZ6LCVlk9GvNoYZff5X3N/x4XOf0KtXmpLk05TFaLkbVOj1lNU4/TLRRUT4dpeCb66sB+OoLe11VEohUzN3Bh3MRLDgYiEGDYcOPoetgRP6oymne3/BjFvYPqdLk08zCXf97XEajsaObaVMS3TPOyekwJWekwbjYpOuMLLwrsDM8hqmua0NgUH6m/kI3j7xUZYyGH8Zg+DDkv4jc/AtfMqckUjg1xZbju7bFxaS9CKZk91qSZHhSV6r0UrJ7bdjn1LW8XXaoBsrF+GC9loWJBu0oh1m7+RD+nj635WciEWMwfKg81UJKYhxXFkVPdmep5fgejd5+j5WDYQyGP/kqcKRRvmoK+5xNHb3u5WB4CZSLUfUi5C2AgivdvXYEMhnyM5GIMRg+7DrVSvmMrKgq9r6gMIMjDR2jFoo5e6Ebj4IZUeDod5oGCez8bJDwY/Qb3ZIF8SXrMjhfM1R75EItnH5bO7vNdNQIJkN+JhKJnjvjOOns7deCg1Hiv/BSWpBBb7+HU1ati0CYkNrg1Fz9MF1qeDRTl0qi5uqHwz7nhE1JDfTo+iOg614ALLzT3etGKJMlPxNpGINhsbfmPAMexdKZ0eG/8OKVCBnNj1FrGYwS4/QewbUVD1B9zeOcJQ+PEupULtXXPM61FQ+Edb6LPf109Q1MzJQUDPkxqtZB0VWQE7DSccwzWfIzkYaRBrHYZTm8r74sukYY8/LTEYEPz7Zz26LpAY+pbe0iTrQUhmEk11Y8ABUP8G9vHGXt5kPsWB6+YJ/rsiBefOtiTMnRta1v+ba714xwJkN+JtIwIwyLaBAcDERKYjyzctICF1OyqG3tYnpmalT5btxg1WJtcF8OUD/BLkNJey4bjMFcjFNQ/SIgOrvbYBgH5g6BljPefbqVa6JsOspLWcHokVI1JqTWFjNz0igvyQpYcMcuTRM1wkiaAml52mBUrYOZN4xaBtdgsIMxGOiaEe3d/VwbZQ5vL6WFGZxsuhi0drFJ2rNPRXkRB+rbONbYEdb7vSMM130YoB3fR7dA0yGTe2FwBNcNhojEi8geEXnZWv+piJwQkb3Wa0mQ931eRI5Yr8+71b71e+q492ldUe07r3wYlZmdZQUZeBQcbRh5k+vpH+Bcu8nB2GZLaAAAEH1JREFUsMuqxdMRgY1hjjKa2nuIE8hOc7kOxf4XoOEDaIu+77Nh8piIEcZDwEG/bQ8rpZZYr73+bxCRbOBbwEeA64BviYjjj//r99TxyEtVXOjqA+BcW09UygGUBau+B5w5341SUGJyMGxRMDWFj8zOZsO+elsqwP40dvSQnZZMvJuV3Pa/ABv/Bvp8ks5e/Tu93WAYB64aDBGZAdwB/CTEt94KvKaUalFKtQKvAR93un1rNx+iy2+aJhrlAGblTCEpPi6gppTJwQidivJijjde5EB9W8jvnZCkvS2PDTcWoNe3PObudQ1Rj9sjjKeArwP+acbfFpH9IvKvIhLo11MM1Pis11rbRiAiXxSRShGpbGwMUjAmCLEiB5AQH8fc/PSAju+hwknGYNjltoWFJMRJWNNSjR295Ka7PB11oTa07QaDTVwzGCKyCmhQSu3y2/UIsAC4FsgGvjGe6yilnlZKLVVKLc3LC03DPpbkABYUZgQcYdS2dhIfJxRONTkYdpmWlsSN83N5ef8ZPJ7QpqWaJmKEkTkjtO0Gg03cHGEsAypE5CTwPHCziPxcKXVGaXqAZ9E+Cn/qgBKf9RnWNkeJJTmA0oIMzlzoHvTXeKlt7aIoK4UEk4MREhVLiqg738Xu062236OU0lNSbofUrnwUEv0eehJT9XaDYRy4dpdQSj2ilJqhlJoF3AtsVUp9VkSmA4iuULQGqA7w9s3ALSIyzXJ232Jtc5RYkgMoK0wH4IjftFRNSyczsozDO1Q+dkUhyQlxIeVktHX30zvgcX+EsfgeWP09K3lP9N/V39PbDYZxMBnSIL8QkTxAgL3AgwAishR4UCn1BaVUi4j8A/C+9Z7HlFItbjQmVuQAygq1ZPuHZ9uH1fuobe3iplJTjjJU0pMTWHl5PpuqzvDoqitsjdAGZUEmIgdj8T3GQBgcZ0IMhlJqG7DNWg4oxKOUqgS+4LP+DPDMBDQvJijKTCE9OWFYaG133wAN7T0maS9MKsqL2FR1lp3Hm23VgPYaDNeVag0GlzAT1zGCiFBakD7M8e2NBivJjj4n/0Swoiyf9OQENuy1Ny3VNJFZ3gaDCxiDEUOUFU7l0Ln2wYSzmsGQWjPCCIeUxHhuubKAVw6cpac/sOyKLxOmVGswuIQxGDFEWUE65zv7Bm9ctSZpb9xUlBfR3t3P7w+NnQPU2NFDQpyQmRpdisiG2MEYjBii1JII8Sbw1bZ2kRgvFJgcjLBZNi+X7LQkW9FSTValvTg3ZUEMBhcxBiOGKCuwDMbZIYNRlJXqrq5RlJMYH8dtCwvZcrCBzt7+UY9t7JiApD2DwUWMwYghctKTyU1PHjQYpg6GM1SUF9HVN8BrH5wb9Thdy9tlWRCDwUWMwYgxygrTB0Nra1u7TNKeA1w7K5vCqSljaks1mRGGIcIxBiPGKCuYyuFzHXT29tPU0WNGGA4QFyesWjyd3x9u5Hxnb8BjPB5FU0evMRiGiMYYjBijrDCdrr4B3jneDJg6GE5RsaSIvgHF5gNnA+5v7exlwKNM0p4hojEGI8YotRzfrx9sAExIrVMsKs5kVs6UoNFSTR165GFGGIZIxhiMGMNrMLYOGgwzwnACEaGivIidx5ppaO8esd8k7RmiAWMwYoy05ARKslM529ZNUnwc+eaJ1zFWlxfhUbBp/5kR+7yyILnm/22IYIzBiEG8+RjF01JNEpmDzC/IYEFhRsBpqQlVqjUYXMIYjBjEayJONF1k2ZNbWb/H8dpUMUvFkiJ2nz5PTUvnsO2NHT0kJcSRkTwZFQUMBmcwBiPGWL+njm2Hh3SP6s538chLVcZoOMTqxUUAvOw3LdVkVdrTdcMMhsjEGIwYY+3mQ/QNDK9D3dU3wNrNhyapRdFFSfYUrrosa8S0lJEFMUQDxmDEGN4aGHa3G0KnoryIg2faONowVHuk0RIeNBgiGWMwYoyirMB5F8G2G0LnjkXTiRPYsG9oWsrIghiiAdcNhojEi8geEXnZWv+FiBwSkWoReUZEAhYHEJEBEdlrvTa43c5Y4eFby0hNjB+2LTUxnodvLZukFkUf+VNTuH5ODhv31aOUon/AQ/NFIwtiiHwmYoTxEHDQZ/0XwAJgEZCKTx1vP7qUUkusV4XLbYwZ1lxVzBN3LqI4KxUBirNSeeLORay5qniymxZVVJQXcaLpItV1bbRc7EUpyDNKtYYIx9UYPxGZAdwBfBv4nwBKqU0++98DZrjZBsNI1lxVbAyEy3x8YSHf/G01G/fX84klOnLKjDAMkY7bI4yngK8DHv8d1lTU54BXgrw3RUQqReQdEVkT7AIi8kXruMrGxrHLZBoME0HWlCSWz89j4756GtpM0p4hOnDNYIjIKqBBKbUryCH/D9iulHozyP6ZSqmlwGeAp0RkbqCDlFJPK6WWKqWW5uXljb/hBoNDVCwp4syFbl6p1gq2JkrKEOm4OcJYBlSIyEngeeBmEfk5gIh8C8jDmqYKhFKqzvp7HNgGXOViWw0Gx/mjywtISYzjN3t1UqQxGIZIxzWDoZR6RCk1Qyk1C7gX2KqU+qyIfAG4Ffi0UmrEVBWAiEwTkWRrORdtfD5wq60GgxukJSewoDCD3n79Nb/lX7ebjHpDRDMZeRg/AgqAnVbI7KMAIrJURH5iHXM5UCki+4A3gCeVUsZgGCKK9Xvq+KC+bXDdyLAYIh1RSo19VISwdOlSVVlZOdnNMBgAWPbkVuoCZNAXZ6Wy429vnoQWGQwjEZFdlr94TEymt8HgEkaGxRBtGINhMLiEkWExRBvGYBgMLmFkWAzRhqnmYjC4hDebfu3mQ9Sf76IoK5WHby0zWfaGiMUYDIPBRYwMiyGaMFNSBoPBYLCFMRgGg8FgsIUxGAaDwWCwhTEYBoPBYLCFMRgGg8FgsEVUSYOISCNwKsy35wJNDjYnEjB9jn5irb9g+hwqM5VStmpDRJXBGA8iUmlXTyVaMH2OfmKtv2D67CZmSspgMBgMtjAGw2AwGAy2MAZjiKcnuwGTgOlz9BNr/QXTZ9cwPgyDwWAw2MKMMAwGg8FgC2MwDAaDwWCLmDIYIvJxETkkIkdF5G8D7L9PRBqtWuN7ReQLk9FOJxmrz9Yx94jIByJyQER+OdFtdBobn/O/+nzGh0Xk/GS000ls9PkyEXlDRPaIyH4RuX0y2ukkNvo8U0S2WP3dJiIzJqOdTiEiz4hIg4hUB9kvIvI96/+xX0SudrwRSqmYeAHxwDFgDpAE7AOu8DvmPuAHk93WCe7zfGAPMM1az5/sdrvdZ7/j/xp4ZrLbPQGf89PAX1jLVwAnJ7vdE9DnXwOft5ZvBp6b7HaPs8/LgauB6iD7bwf+GxDgeuBdp9sQSyOM64CjSqnjSqle4HngE5PcJrex0+f7gX9TSrUCKKUaJriNThPq5/xp4FcT0jL3sNNnBUy1ljOB+glsnxvY6fMVwFZr+Y0A+yMKpdR2oGWUQz4B/KfSvANkich0J9sQSwajGKjxWa+1tvlzlzWcWyciJRPTNNew0+dSoFREdojIOyLy8QlrnTvY/ZwRkZnAbIZuKpGKnT7/PfBZEakFNqFHVpGMnT7vA+60lj8JZIhIzgS0bbKw/d0Pl1gyGHbYCMxSSi0GXgN+NsntmQgS0NNSK9BP2/8uIlmT2qKJ415gnVJqYLIbMgF8GvipUmoGeuriORGJ9t//14CbRGQPcBNQB8TCZ+0a0f6F8aUO8B0xzLC2DaKUalZK9VirPwGumaC2ucWYfUY/hWxQSvUppU4Ah9EGJFKx02cv9xL501Fgr8//A3gBQCm1E0hBC9ZFKnZ+z/VKqTuVUlcBf2dti/gAh1EI5bsfFrFkMN4H5ovIbBFJQt8sNvge4DffVwEcnMD2ucGYfQbWo0cXiEgueorq+EQ20mHs9BkRWQBMA3ZOcPvcwE6fTwMrAUTkcrTBaJzQVjqLnd9zrs8o6hHgmQlu40SzAfhTK1rqeuCCUuqMkxdIcPJklzJKqX4R+StgMzrC4hml1AEReQyoVEptAP5GRCqAfrRz6b5Ja7AD2OzzZuAWEfkAPVx/WCnVPHmtHh82+wz6BvO8ssJLIhmbff4qerrxK2gH+H2R3HebfV4BPCEiCtgOfGnSGuwAIvIrdJ9yLV/Ut4BEAKXUj9C+qduBo0An8GeOtyGCvzMGg8FgmEBiaUrKYDAYDOPAGAyDwWAw2MIYDIPBYDDYwhgMg8FgMNjCGAyDwWAw2MIYDMMli4h02DjmyyIyxcFrrhGRKxw839vjeG+H9bdIRNaNclyWiPxluNcxGOxiDIYh0vkyEJLBEJH4UXavQYvWOYJS6gYHzlGvlLp7lEOyAGMwDK5jDIbhkkdEVlj1DNaJyIci8gsrm/VvgCLgDRF5wzr2FhHZKSK7ReTXIpJubT8pIt8Rkd3Ap0TkfhF5X0T2iciLIjJFRG5AZ/ivtWplzBWRJZYo434R+Y2ITLPOt010XY1KETkoIteKyEsickREHvdpe4fP8jdEpMq65pMB+jnbanuV3zlmeWsgiMiVIvKe1b79IjIfeBKYa21bKyLpoutA7LbO9Qmf8xwUkX8XXfvkVRFJtfbNE5HXrbbtFpG51vaHrf/TfhH5P45+sIbIY7I13s3LvIK9gA7r7wrgAlobJw4t5/FRa99JINdazkVn9KZZ698AHvU57us+587xWX4c+Gtr+afA3T779gM3WcuPAU9Zy9uA71jLD6HlwqcDyWh9rhy/PtwGvA1MsdazA/R3A/Cn1vKXfN47C6sGAvB94E+s5SQg1Xe/tT0BmOrzPzmKrpEwC61isMTa9wLwWWv5XeCT1nIKetR2C7qOhlj/95eB5ZP9vTCvyXvFjDSIIeJ5TylVCyAie9E3v7f8jrkePZ20Q0RA31B9taL+y2d5ofUUnwWkoyUmhiEimUCWUur31qafoYvyePHKjFQBB5Sl2yMix9EicL4SK38EPKuU6gRQSgWqa7AMuMtafg74ToBjdgJ/J7p63EtKqSNWX4c1HfhHEVkOeNAS1wXWvhNKqb3W8i5glohkAMVKqd9Ybeu2+nEL2mjssY5PRwtTbg/QLkMMYAyGIVLo8VkeIPB3V4DXlFKfDnKOiz7LPwXWKKX2ich9WAKMYbbJ49c+T5D22WFUrR6l1C9F5F3gDmCTiDzASLHIPwHygGuUUn0ichI9avBtM+j/Y+oolxPgCaXUj0NovyGKMT4MQ6TTDmRYy+8Ay0RkHoCIpIlIaZD3ZQBnRCQRfYMdcT6l1AWgVURutPZ9Dvg94fEa8GfeiC4RyQ5wzA60KCJ+bRpEROYAx5VS3wN+Cyxm+P8AdEW9BstY/CEwc7SGKaXagVoRWWNdI9lq52bgz338QMUikm+rt4aoxBgMQ6TzNPCKiLyhlGpEKwz/SkT2o6dvFgR53zfR8/Y7gA99tj8PPCwieyzH7+fRTvD9wBK0HyNklFKvoKewKq0pta8FOOwh4EsiUkXwSmn3ANXWORaiS3I2o6fhqkVkLfALYKl1nj/1618wPodWa96P9rUUKqVeBX4J7LTOtY7hhskQYxi1WoPBYDDYwowwDAaDwWALYzAMBoPBYAtjMAwGg8FgC2MwDAaDwWALYzAMBoPBYAtjMAwGg8FgC2MwDAaDwWCL/w/0NYjD1AH1LAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for k in range(len(transformations)):\n", " pylab.plot(distances, eval_counts[k], '-o', label='VQE + ' + transformations[k])\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Evaluations')\n", "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [] } @@ -159,7 +225,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_qpe.ipynb b/community/aqua/chemistry/h2_qpe.ipynb index ff7148d0c..fc7e2b1e0 100644 --- a/community/aqua/chemistry/h2_qpe.ipynb +++ b/community/aqua/chemistry/h2_qpe.ipynb @@ -8,7 +8,7 @@ "\n", "This notebook demonstrates using Qiskit Chemistry to compute ground state energy of the Hydrogen (H2) molecule using QPE (Quantum Phase Estimation) algorithm. Let's first look at how to carry out such computation programmatically. Afterwards, we will illustrate how the computation can also be carried out using json configuration dictionaries.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "This notebook has been written to use the PYSCF chemistry driver." ] }, { @@ -25,6 +25,8 @@ "outputs": [], "source": [ "from collections import OrderedDict\n", + "import time\n", + "\n", "from qiskit import BasicAer\n", "from qiskit.transpiler import PassManager\n", "from qiskit.aqua import AquaError\n", @@ -34,24 +36,14 @@ "from qiskit.aqua.components.iqfts import Standard\n", "from qiskit.chemistry import FermionicOperator\n", "from qiskit.chemistry import QiskitChemistry\n", - "from qiskit.chemistry.drivers import get_driver_class\n", "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock\n", - "import time\n", + "from qiskit.chemistry.drivers import PySCFDriver, UnitsType\n", "\n", "distance = 0.735\n", - "pyscf_cfg = OrderedDict([\n", - " ('atom', 'H .0 .0 .0; H .0 .0 {}'.format(distance)),\n", - " ('unit', 'Angstrom'),\n", - " ('charge', 0),\n", - " ('spin', 0),\n", - " ('basis', 'sto3g')\n", - "])\n", - "try:\n", - " driver = get_driver_class('PYSCF').init_from_input(pyscf_cfg)\n", - "except ModuleNotFoundError:\n", - " raise AquaError('PYSCF driver does not appear to be installed')\n", - "\n", + "driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 {}'.format(distance),\n", + " unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g')\n", "molecule = driver.run()\n", + "\n", "qubit_mapping = 'parity'\n", "fer_op = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals)\n", "qubit_op = fer_op.mapping(map_type=qubit_mapping,threshold=1e-10).two_qubit_reduced_operator(2)" @@ -73,7 +65,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The exact ground state energy is: -1.8572750302023824\n" + "The exact ground state energy is: -1.8572750302023817\n" ] } ], @@ -100,7 +92,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The ground state energy as computed by QPE is: -1.857136875325887\n" + "The ground state energy as computed by QPE is: -1.8571368753258866\n" ] } ], @@ -180,9 +172,19 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The groundtruth total ground state energy is -1.857275030202381.\n", + "The total ground state energy as computed by QPE is -1.857136875325887.\n", + "In comparison, the Hartree-Fock ground state energy is -1.8369679912029842.\n" + ] + } + ], "source": [ "result_qpe = QiskitChemistry().run(qiskit_chemistry_qpe_dict, backend=backend)\n", "result_ees = QiskitChemistry().run(qiskit_chemistry_ees_dict)\n", @@ -197,6 +199,13 @@ " result_ees['hf_energy'] - result_ees['nuclear_repulsion_energy']\n", "))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -215,7 +224,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_swaprz.ipynb b/community/aqua/chemistry/h2_swaprz.ipynb index da46c7db6..3bb2e2fc6 100644 --- a/community/aqua/chemistry/h2_swaprz.ipynb +++ b/community/aqua/chemistry/h2_swaprz.ipynb @@ -6,7 +6,7 @@ "source": [ "## _*H2 energy plot computed using SWAPRZ variational form*_\n", "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and SWAPRZ. It is compared to the same energies as computed by the ExactEigensolver\n", + "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and SWAPRZ. It is compared to the same energies as computed by the ExactEigensolver. `SWAPRZ` is a particle preserving variational form and should be used in conjunction with operator `jordan_wigner mapping` and `HarteeFock` initial state.\n", "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "scrolled": true }, @@ -24,7 +24,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step __\b\b 0" + "Processing step 20 --- complete\n", + "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", + " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", + "Energies: [[-1.05515972 -1.07591361 -1.09262986 -1.10591801 -1.11628597 -1.12416089\n", + " -1.12990475 -1.1338262 -1.13618944 -1.13722135 -1.13711706 -1.13604435\n", + " -1.13414767 -1.1315512 -1.12836187 -1.12467172 -1.12056028 -1.11609624\n", + " -1.11133942 -1.10634211 -1.10115033]\n", + " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", + " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", + " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", + " -1.11133943 -1.10634212 -1.10115034]]\n", + "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", + " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", + " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", + " -1.07963694 -1.07300677 -1.06610866]\n", + "VQE num evaluations: [ 737. 710. 734. 793. 919. 804. 695. 731. 619. 727. 637. 743.\n", + " 708. 782. 701. 1032. 1051. 1119. 1141. 995. 884.]\n" ] } ], @@ -86,9 +102,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -96,14 +123,25 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYFOW1x/Hvj4GRVUAwGnYiaiRKUHDfvSpqBDRxQ+KuqHHJvd6YaJKrmA0T470maoyoBFwiKHEBl4AmIi4ooOICqODK4AKyyT7buX+8NVDTzNI90zU903M+z9PPVFdVV53q7nlPvUtVy8xwzjnn0tUi1wE455xrWjxxOOecy4gnDueccxnxxOGccy4jnjicc85lxBOHc865jHjicFklabSk+6PpXpLWSSqInu8kaaaktZJuVvA3Saskzc5t5HUn6WRJS6Jj3TvX8TQ2qd+Dxib+nXXp8cTRSEj6WNLG6B+s4nFbruOqDzP71Mzam1lZNGsU8BWwvZn9N3AIcAzQw8z2y1WcWfBH4PLoWN9o6J1LMknrU747P01wf+dKejFl3nhJxSkxvAlVfg9cE9cy1wG4Soaa2bNJ7kBSSzMrTXIfNegNLLCtV532Bj42s/WZbijHx5GqNzC/qgUNGOd3zWxxA+ynJn8ws1/mOIZGQ1JBviZLr3E0ARVneJL+GDXrfCTp+NjyjpLukfS5pKWSfhNrHjpX0kuS/k/SCmC0pIKoqeiraFuXR2etLSWdKum1lP1fJenxamLrK+n5qPnpGaBrbFmf2HbHA+cAP43ORi8G7gYOjJ7fEL3mREnzJK2W9LKkAbHtfSzpZ5LeAtZH2+0m6R+SlkfHcmVs/dGSHpJ0bxTffEmDY8t7Snokeu2KeA1P0vmSFkbv9zRJvas49u0krQMKgDclfVBDnHtImhEd13xJw2LbGS/pL5Kejt6LlyTtLOmWaP/v1rUJTNJTkm6OPZ8oaVw0vYukf0fH/pWkByR1qun9kbQH8NfY57Y6jRi2fA+i5321tcnyWUm3K9ZUJOmA6LNfLelNSUfEls2Q9OvoPVorabqkrtGy1pLuj2JdLWmOpJ2iZd0kTZG0UtJiSRdVE+vTki5PmfempO9H09+W9Ey0nfcknRZbb7ykO6L3fD1wZG3vTZNlZv5oBA/gY+DoapadC5QAFxEKqUuBzwBFyx8F7gTaAd8AZgMXx15bClxBqGG2AS4BFgA9gM7As4BFy7cDVgJ7xPb/BvCDamKbBfxv9LrDgLXA/dGyPhXbjZ6PB36Tclwvxp7vDSwD9o+O85zofdku9h7NA3pGx9ECeA24DigEvgV8CAyJ1h8NbAJOiLY3BnglWlYAvAn8X/S+tQYOiZYNBxYDe0TvyS+Bl2v47Azol/JZxuNsFW3v51GcR0Xv0+6x9+UrYFAUx7+Bj4Czozh/AzyX7v5Tlu0cvadHASOj96dDtKwfoalwO2BHYCZwSxrvT6XPrarPNmVZ6vdgFqF5r5DQXPk1W78z3YEV0WfWIopvBbBjtHwG8AGwW/TezgBujJZdDEwF2kbxDyI0ixId21+i4xgILAeOin1PKvZ/NvBSLPb+wOroPWoHLAHOi74Xe0efW//Ye7AGODiKvXWuy5XEyqtcB+CP6IMIhc266Eta8bgoWnYusDi2btvoH3FnYCdgM9AmtnxERUETvfbTlH39myixRM+PTvnHvgP4bTT9HWAVUeGdsp1ehKTULjbv79Q9cdwB/DplH+8Bh8feo/Njy/av4tiuBf4WTY8Gno0t6w9sjKYPjAqPllUc19PABbHnLYANQO9qPruqEkc8zkOBL4AWsXkPAqNj78tdsWVXAAtjz/cCVtfw3TFC4Rv/7gyJLf8BocD7iqjwr2Y7JwFvpPH+VPrcYsewKSWGCanfg9h3pm3stffHvjM/A+5L2fY04Jxoegbwy9iyHwH/jKbPB14GBqS8vidQRpQwo3ljgPGx70nF/jsA6ys+a+C3wLho+nTghZRt3wlcH3sP7q1POdBUHt5U1bicZGadYo+7Ysu+qJgwsw3RZHtC+3or4POoer6a8GX+Ruy1S1L20y1lXuryCcCZkgScBTxkZpuriLcbsMoq91F8UvMh1qg38N8VxxEdS89oP1XF2hvolrL+zwnJtMIXsekNQOuoyaQn8IlV3f/QG/hTbJsrARHOhtMVj7MbsMTMymPzPknZ3pex6Y1VPG9fy/72SfnuTIstm0o4A3/PzLZ0aiuMcpuo0Lz5NaEAr2hqrOn9qc4fU2I4p4p1ugErY99h2PYzPTXlMz0E+GZsndTPtOK9uY+QZCZK+kzSHyS1iu1zbex1qe8/ANE6TwJnRLNGAA/EYts/JbaRhBO4qo4lb3nneNO3hFDj6FrDP3nqLZA/JzRTVehZaWWzVyQVE86Uz4weVfkc6CypXSx59Kpif+laQqjp/LaGdeLbXgJ8ZGa71nFfvVR153VFHA9U8bp0xeP8DOgpqUUsefQC3q/H9jPxW2Ah0FfSCDN7MJr/uyjOvcxspaSTgIp+npren/rcUvtzYAdJbWPJI/79W0KocVTZB1ETMysBbgBukNQHeIpQY50e7bNDLHn0ApZWs6kHgeslzSQ0bT0Xi+15MzumpjAyjbsp8hpHE2dmnxP+MW6WtL2kFlGn5+E1vOwh4MeSukedoT+rYp17CYVISfwsNWXfnwBzCf+ohZIOAYbW43DuAi6RtL+CdpK+J6lDNevPBtYqdES3Uej031PSvmnsazahELsx2k9rSQdHy/4KXCvpO7Bl8MGp9TiuVwlnxj+V1Crq7B0KTKzHNtMi6TBCm/zZhD6jWyVVnGl3IDSPronmXR17aU3vz5dAD0mFmcYT+86Mjr4zB1L5O3M/MFTSkOjzbC3pCEk9qtxg5WM9UtJeCgNDvib0C5ab2RJCE9aYaHsDgAuifVXlKULt4lfApFiyfwLYTdJZ0efYStK+CgMGmhVPHI3LVFUeB/9omq87m9DRuIDQHzGZylX7VHcRks1bhI7vpwjtzvGhg/cBe1L9P1eFMwl9DSuB6wkJp07MbC5hAMBthONYTGhPr279MuBEQmfnR4Q2/LuBjmnsq4xQYPUDPgWKCG3YmNmjwO8JTR5fA+8Ax1ezqVqZWXG0r+OjGP8CnG1m79Z1m1V4M+W7c4uk7Qmfx+VmttTMXgDuAf4WNUPeAOxD6NB9EngkFnO17w+hj2w+8IWkr2Ix/DQlhviyuJGEPpQVhI7/SYRaM1EhP5zQ5LiccJZ/NemVVTsTvvtfE2pYzxO+xxCanPoQan+PEvolqhz6HjXLPkLo+/t7bP5a4FhCM9ZnhCaz3xM6zpuVilE5rhlTGNr7VzPrHZvXhjAaZx8zW5Sz4FzekzQJeNfMrs91LC49XuNohqJmnRMUri/oTqgppNZuLgXmeNJw2RY17+wSNaseR6hhPJbruFz6vHO8eapopphEGLHzJOFaiLBQ+jha56RcBOfy3s6EpqAuhCawSy0Ht2pxdedNVc455zLiTVXOOecykldNVZKGAkM7dOhw0W677ZbrcJxzrkl57bXXvjKzHWtbLy+bqgYPHmxz587NdRjOOdekSHrNzAbXtl5eNVVJGipp7Jo1a3IdinPO5a28ShxmNtXMRnXsWOv1X8455+oorxKH1ziccy55eZU4vMbhnHPJy6vE4TUO55xLXl4lDq9xOOdc8vIqcTjnnEteXl4A2K9fv1yH4pxz9WJmbC4tZ2NxGRtLokdxGZui6Q0V07Hlm4rLOG3fnvTo3DbR2PIqcZjZVGDq4MGDM/71MOecS1dFob6heGuBnlrAbywpZWNxeSjQo3kV66cW+BuLt00MG0vKyPT6bAkO6tfVE4dzzmXCzCguK69UGG+o5kw9XpBvmS7eul6lZcWV18tUC0Hbwpa0blVAm8IWtGlVEB6FBXRtX0ibwoKwrFUBbQvD39bR34r1WseXRfPiy7dr2YLwG13JyqvE4U1VzjV+ZeUWFcylbCouZ0NJaaUz9kpn8Sl/KyeAUjaWlLOpuCzaRjkbi0vZWFJGeYZn6i1EVPi23FqoF7akTasWdGlXSM/OKQV+YcuowG4RCu8tz8M6oYDfOq91YQsKCxqmUG8Ifq8q51wlxaXlsYK6tFLhvaG48hn4xpQz94qCe0PK2Xn89cWl5bUHkaJ1qxbRmXjLMF1YQNtWLaMz8hZbzuQrzsbjZ+dtU87kK87U4+vmU6FeH+neqyqvahzO5Tszo6TMQmEdnalviJ+pR23rW6aLy9hQUsV0ymvjZ/ylGZ6uVzTBVDSbtI0V2t/s2CqlQG+55ay8YjpegKe+vqLAb9HCC/XGxBOHc1lWVm7hTD0qmDfEOko3xM7It56Vl1Y6g6+YrpgfP8PfUFJGWYYFe8sWSjnDbhmdibekS/vttimst05XNNuE9dvECng/W2/ePHG4ZsfM2FRSvrXArtTcUrq1sK9UkJfGCvRQgFe0rcfnbywuo7gss6aYghaibaxA3lqAt2SHdtulFOZRoR0/W08pyLe0rUfzWxX45Vouu/IqcXjneP6Id6DGz9w3pBbgFcu3aY6pnABSm3Uy7drbppAubEnbVgXs1KF1pSaWrWfzBVXOr7SdVqF5p1WB/IzdNSneOe7qrKJJZkNqIZ5y9l4xb31sebwppqrmmc0ZdqDGm2PaVnE2XtEG37ZV/Iy9xdb5hVvP1uMFfEVnrBfsrjnwznEHQGlZ+Zaz8W0L95Sz8tQz86iwjxfqFWf0dRkdU1jQIqWQDmfdndsW0r3T1kK7qjP7bQr22OvbFBZQ2NKbY5xrKJ44GoHycosK49qbZbYW9KWsr+LMff3mehbuLVtEBXKsvbywgC7tC+lZ2GZLR2nb7UKhXfmsvnKTTLvtYstbFdDS29qdywueONJUXm5sKi1j/eatbeZbzso3Vx4pU2WhXlXhX3ERVEkWztwLW7JDu0J6dK69cK981u6Fu3MuM00icUg6CfgesD1wj5lNT2I/d838kOfeW1apQ3XD5rrdYqCizb1dStNKp7aFdOu09Xm7Sm3soVmm3Xbbdqa2LWxJ2+3Ccx8l45zLpcQTh6RxwInAMjPbMzb/OOBPQAFwt5ndWN02zOwx4DFJnYE/Aokkjo0loWmnQ+uW7Lx9623b2qs6Y2+1tTknngi8zd05l68SH1Ul6TBgHXBvReKQVAC8DxwDFAFzgBGEJDImZRPnm9my6HU3Aw+Y2es17dNHVTnnXOYazagqM5spqU/K7P2AxWb2IYCkicBwMxtDqJ1UojAW8kbg6eqShqRRwCiAXr16ZS1+55xzleWqPaU7sCT2vCiaV50rgKOBUyRdUtUKZjbWzAab2eAdd9wxe5E655yrpEl0jpvZn4E/17aeXznunHPJy1WNYynQM/a8RzTPOedcI5erxDEH2FVSX0mFwBnAlPpu1Mymmtmojh071jtA55xzVUs8cUh6EJgF7C6pSNIFZlYKXA5MAxYCD5nZ/Czsa6iksWvWrKnvppxzzlXDb3LonHMOSH84bl5dpeY1DuecS15eJQ7v43DOueTlVeLwGodzziUvrxKH1ziccy55eZU4vMbhnHPJy6vE4TUO55xLXl4lDuecc8nzxOGccy4jeZU4vI/DOeeSl1eJw/s4nHMueXmVOJxzziXPE4dzzrmMeOJwzjmXkbxKHN457pxzycurxOGd4845l7y8ShzOOeeS54nDOedcRjxxOOecy0ijTxyS9pD0V0mTJV2a63icc665SzRxSBonaZmkd1LmHyfpPUmLJV1T0zbMbKGZXQKcBhycZLzOOedql3SNYzxwXHyGpALgduB4oD8wQlJ/SXtJeiLl8Y3oNcOAJ4GnEo7XOedcLVomuXEzmympT8rs/YDFZvYhgKSJwHAzGwOcWM12pgBTJD0J/L2qdSSNAkYB9OrVKyvxO+ec21aiiaMa3YElsedFwP7VrSzpCOD7wHbUUOMws7HAWIDBgwdbNgJ1zjm3rVwkjoyY2QxgRjrrShoKDO3Xr1+SITnnXLOWi1FVS4Gesec9onnOOeeagFwkjjnArpL6SioEzgCmZGPDfssR55xLXtLDcR8EZgG7SyqSdIGZlQKXA9OAhcBDZjY/S/vzmxw651zCkh5VNaKa+U/hQ2udc65JavRXjmfCm6qccy55eZU4nHPOJS+vEof3cTjnXPLyKnF4U5VzziUvrxKH1ziccy55eZU4vMbhnHPJy6vE4ZxzLnmeOJxzzmUkrxKH93E451zy8ipxeB+Hc84lL68Sh3POueR54nDOOZcRTxzOOecykleJwzvHnXMueXmVOLxz3DnnkpdXicM551zyPHE455zLiCcO55xzGWkSiUNSO0lzJZ2Y61icc665SzRxSBonaZmkd1LmHyfpPUmLJV2TxqZ+BjyUTJTOOecy0TLh7Y8HbgPurZghqQC4HTgGKALmSJoCFABjUl5/PvBdYAHQOuFYnXPOpSHRxGFmMyX1SZm9H7DYzD4EkDQRGG5mY4BtmqIkHQG0A/oDGyU9ZWblVaw3ChgF0KtXrywehXPOubikaxxV6Q4siT0vAvavbmUz+wWApHOBr6pKGtF6YyV9DgwtLCwclL1wnXPOxTWJznEAMxtvZk/Uso5fAOiccwnLReJYCvSMPe8Rzas3v+WIc84lLxeJYw6wq6S+kgqBM4ApOYjDOedcHSQ9HPdBYBawu6QiSReYWSlwOTANWAg8ZGbzs7E/b6pyzrnkJT2qakQ1858Cnsr2/iQNBYb269cv25t2zjkXaTKd4+nwGodzziUvrxKHd44751zy8ipxeI3DOeeSl1eJwznnXPLyKnF4U5VzziUvF7ccSYyZTQWmDh48+KJcx+Kc26qkpISioiI2bdqU61Ac0Lp1a3r06EGrVq3q9Pq0EoekR4B7gKeru1eUc85Vp6ioiA4dOtCnTx8k5TqcZs3MWLFiBUVFRfTt27dO20i3qeovwJnAIkk3Stq9TntzzjVLmzZtokuXLp40GgFJdOnSpV61v7QSh5k9a2YjgX2Aj4FnJb0s6TxJdavrJMD7OJxrvDxpNB71/SzS7hyX1AU4F7gQeAP4EyGRPFOvCLLIh+M656rTvn37Ss/Hjx/P5ZdfntE25s2bx1NPZf2mF1uMHz+eHXfckYEDBzJw4EDOPvvsjLcxY8YMTjwx2V/ZTreP41Fgd+A+YKiZfR4tmiRpblLBOedcY1FaWsq8efOYO3cuJ5xwQpXLW7as/3ij008/ndtuu63e20lSujWOP5tZfzMbE0saAJjZ4ATics65BjN16lT2339/9t57b44++mi+/PJLAEaPHs1ZZ53FwQcfzFlnncV1113HpEmTGDhwIJMmTdpmeVlZGVdffTX77rsvAwYM4M4779yyj5tuumnL/Ouvvz6j+ObNm8cBBxzAgAEDOPnkk1m1ahUAixcv5uijj+a73/0u++yzDx988EGl182ZM4e99957m/n1lW567Czp+ynz1gBvm9myrEbknMtrN0ydz4LPvs7qNvt3257rh36nxnU2btzIwIEDtzxfuXIlw4YNA+CQQw7hlVdeQRJ33303f/jDH7j55psBWLBgAS+++CJt2rRh/PjxzJ07d0uNYPTo0ZWWjx07lo4dOzJnzhw2b97MwQcfzLHHHsuiRYtYtGgRs2fPxswYNmwYM2fO5LDDDtsmzkmTJvHiiy8C8OMf/5jzzjuPs88+m1tvvZXDDz+c6667jhtuuIFbbrmFkSNHcs0113DyySezadMmysvLWbIk/MDqyy+/zBVXXMHjjz+e9Z/TTjdxXAAcCDwXPT8CeA3oK+lXZnZfVqOqI787rnOuOm3atGHevHlbnlckAQjDhU8//XQ+//xziouLKw1THTZsGG3atKl2u/Hl06dP56233mLy5MkArFmzhkWLFjF9+nSmT5/O3nvvDcC6detYtGhRlYkjtalqzZo1rF69msMPPxyAc845h1NPPZW1a9eydOlSTj75ZCBcm1Fh4cKFjBo1iunTp9OtW7fM3qg0pJs4WgF7mNmXAJJ2Au4l/Fb4TELfR875BYDONX611Qxy4YorruCqq65i2LBhzJgxg9GjR29Z1q5duxpfG19uZtx6660MGTKk0jrTpk3j2muv5eKLL640//bbb+euu+4CyGqn+ze/+U02bdrEG2+8kUjiSLePo0dF0ogsA3qa2UqgJOtROedcA1qzZg3du3cHYMKECdWu16FDB9auXVvt8iFDhnDHHXdQUhKKxffff5/169czZMgQxo0bx7p16wBYunQpy5Yt47LLLmPevHnMmzev2gK+Y8eOdO7cmRdeeAGA++67j8MPP5wOHTrQo0cPHnvsMQA2b97Mhg0bAOjUqRNPPvkk1157LTNmzMjszUhDuoljhqQnJJ0j6Rzg8WheO2B11qNyzrkGNHr0aE499VQGDRpE165dq13vyCOPZMGCBVs6x1NdeOGF9O/fn3322Yc999yTiy++mNLSUo499ljOPPNMDjzwQPbaay9OOeWUGhNQqgkTJnD11VczYMAA5s2bx3XXXQeEJPLnP/+ZAQMGcNBBB/HFF19sec1OO+3EE088wWWXXcarr76awbtRO5lZ7SuFq0W+DxwSzXoJ+Iel8+IcGDx4sFW0XTrncm/hwoXsscceuQ7DxVT1mUh6LZ2RsrX2cUgqAJ41syOBf9Q5yjqSdATwa2A+MNHMZjR0DM4557aqtanKzMqAckkZX44taZykZZLeSZl/nKT3JC2WdE1tIQDrgNZAUaYxOOecy650R1WtA96W9AywvmKmmV1Zy+vGA7cRRmABW2owtwPHEBLBHElTgAJgTMrrzwdeMLPno5Fc/wuMTDNm55xzCUg3cTwSPTJiZjMl9UmZvR+w2Mw+BJA0ERhuZmOAmm6wsgrYrrqFkkYBo4CsX+zinHNuq7QSh5lNkNQG6GVm79Vzn92BJbHnRYTrQaoUXbE+BOhEqL1UF+NYSZ8DQwsLCwfVM0bnnHPVSGs4bnRF9jzgn9HzgVHzUuLM7BEzu9jMTq+tY9zvjuucc8lL9zqO0YQmptUAZjYP+FYd97kU6Bl73iOaV2/+exzOuaoceeSRTJs2rdK8W265hUsvvZT58+dz1FFHsfvuu7PLLrtw/fXXU14efug09TbnAwcOZMGCBbk4hEYl3cRRYmappXFdf0J2DrCrpL6SCoEzgAapvTjnmqcRI0YwceLESvMmTpzIGWecwbBhw7jmmmt47733ePvtt5k9ezZ/+tOftqx3+umnb7m6e968efTv37+hw2900k0c8yWdCRRI2lXSrcDLtb1I0oPALGB3SUWSLjCzUuByYBqwEHjIzObXMf5KvKnKOVeVU045hSeffJLi4mIAPv74Yz777DMWL1685Q62AG3btuW2227jpptuymW4jV66o6quAH4BbAYeJBT6v67tRWY2opr5TwFZ/xktvzuuc03A09fAF29nd5s77wXH31jt4h122IH99tuPp59+muHDhzNx4kROO+005s+fz6BBlcfS7LLLLmzcuJHVq8PdlOK3OQeYNWtWjXfLbQ7S/c3xDWb2CzPb18wGR9N1/6XzhHiNwzlXnXhz1cSJExkxosrz2m2kNlU196QB6f907G7AT4A+8deY2VHJhFU3XuNwrgmooWaQpOHDh/Nf//VfvP7662zYsIFBgwbxxhtvMHPmzErrffjhh3Tp0oVOnTrlJM6mIN0+joeBN4BfAlfHHo2K1zicc9Vp3749Rx55JOeff/6W2sbIkSN58cUXefbZZ4HwK4FXXnklN9xwQy5DbfTSTRylZnaHmc02s9cqHolG5pxzWTZixAjefPPNLYmjTZs2TJkyhd/+9rfstttudO3alYMPPpiRI7fe2ajiN8YrHi+/XOu4oLyX7m3VRxN+vOlRQgc5ANEPOTUasaaqixYtWpTrcJxzkaZyW/XHHnuMq666iueee47evXvnOpxE1ee26ukmjo+qmG1mVteLABPlv8fhXOPSVBJHc5Lo73EAmFnf2tdyzjnXHNTYxyHpp7HpU1OW/S6poOrKbzninHPJq61z/IzY9LUpy47Lciz15qOqnGu8GukvTTdL9f0sakscqma6qufOOVel1q1bs2LFCk8ejYCZsWLFClq3bl3nbdTWx2HVTFf13DnnqtSjRw+KiopYvnx5rkNxhETeo0ePOr++tsTxXUlfE2oXbaJpoud1T1fOuWalVatW9O3rY2zyRY2Jw8wKGiqQbPBbjjjnXPLSvXK8SfDOceecS15eJQ7nnHPJ88ThnHMuI544nHPOZSTdXwDMGUktCL82uD0w18wm5Dgk55xr1hKtcUgaJ2mZpHdS5h8n6T1JiyVdU8tmhgM9gBKgKKlYnXPOpSfpGsd44Dbg3ooZkgqA24FjCIlgjqQpQAEwJuX15wO7Ay+b2Z2SJgP/Sjhm55xzNUg0cZjZTEl9UmbvByw2sw8BJE0EhpvZGODE1G1IKgKKo6dlyUXrnHMuHbnoHO8OLIk9L4rmVecRYIikW4GZ1a0kaZSkuZLm+m0NnHMuOY2+c9zMNgAXpLHeWEmfA0MLCwsHJR+Zc841T7mocSwFesae94jmOeecawJykTjmALtK6iupkPCbH1OysWG/5YhzziUv6eG4DwKzgN0lFUm6wMxKgcuBacBC4CEzm5+l/fkvADrnXMKUjz+sMnjwYJs7d26uw3DOuSZF0mtmNri29fLqliNe43DOueTlVeLwPg7nnEteXiUOr3E451zy8ipxeI3DOeeSl1eJwznnXPLyKnF4U5VzziUvrxKHN1U551zy8ipxOOecS15eJQ5vqnLOueTlVeLwpirnnEteXiUO55xzyfPE4ZxzLiOeOJxzzmUkrxKHd44751zy8ipxeOe4c84lL68Sh3POueR54nDOOZcRTxzOOecy0jLXAdRG0qHASEKs/c3soByH5JxzzVqiNQ5J4yQtk/ROyvzjJL0nabGka2rahpm9YGaXAE8AE5KM1znnXO2SrnGMB24D7q2YIakAuB04BigC5kiaAhQAY1Jef76ZLYumzwQuSDhe55xztUg0cZjZTEl9UmbvByw2sw8BJE0EhpvZGODEqrYjqRewxszWJhiuc865NOSic7w7sCT2vCiaV5M5yl6cAAAYMElEQVQLgL/VtIKkUZLmSpq7fPnyeobonHOuOo2+cxzAzK5PY52xkj4HhhYWFg5qgLCcc65ZykWNYynQM/a8RzTPOedcE5CLxDEH2FVSX0mFwBnAlGxs2G854pxzyUt6OO6DwCxgd0lFki4ws1LgcmAasBB4yMzmZ2l/fpND55xLmMws1zFk3eDBg23u3Lm5DsM555oUSa+Z2eDa1surW454jcM555KXV4nD+ziccy55eZU4vMbhnHPJy6vE4TUO55xLXl4lDuecc8nLq8ThTVXOOZe8vEoc3lTlXJ4pL8t1BK4KeZU4nHN5ZNZf4A99ocivyWps8ipxeFOVc3ni7ckw7VrY9DX84wLY7L+o0JjkVeLwpirn8sCHz8Ojl0Cvg+CsR2D1p/DUT3MdlYvJq8ThnGvivngHJv0QuvSDEX+HXY6CQ38Cb/491EJco+CJwznXOKxeAg+cAoXt4YeToU3nMP/wn0GPfeGJq2DVJ7mN0QGeONyqj+GrRbmOwjV3G1bC/T+A4g0haXTssXVZQUv4/l1g5fDIKCgrzV2cDsizxOGd4xnauBrGHQe37wdPXQ0bV+U6ItcclWyCiWfCqo/gjAdgp+9su84OfeF7N8OSV+CFmxs+RldJXiWOeneOfzIL5tyT3aAas2eug3Vfwp4/gDl3w62D4fX7oLw815G55qK8DB65CD6dBSffCX0PrX7d754Oe50Gz/8ePn214WJ028irxFFvr0+AJ6+CZ0fnf+H50cxwvAdeBj+4G0bNgC67wJTL4Z6jYenruY7Q5Tsz+Oc1sHAKDBkDe36/9td874/QsTs8ciFs8paFXPHEETfsNhh8Prz4f/DoKCjdnOuIklG8AaZcCZ37whE/D/O++V04fxqc9NfQSXnXUTD1x7B+RW5jdfnrpVtg9lg48HI48EfpvaZ1R/jBPbBmKTz5k2Tjc9XyxBFX0BK+97/wH9fD2w+HzrqNqxtm3yUbG2Y/ADN+F9qTh/0ZCttunS/BwBFwxVw44Eeh2eq2QaH5zm/94LLpzYmhZr/nKXDMrzN7bc/9wkirtx+CNyclEp6rWaNPHJJ6SXpM0jhJ1zTADuHQq+DksfDpK6HzePWS5PZXvB6evgZ+1w1eHZvcfiosfQ1m3Q6DzoW+h1W9TuuOcNzv4NKXYKc9Q/Pd2CNgyezk48tna7+ERc/C8vehtDjX0eTOB/+Gxy8L37+T/gIt6lAMHfrf0OtAePK/YeVH2Y/R1SjR3xyXNA44EVhmZnvG5h8H/AkoAO42sxtr2Mb3gM5mdr+kSWZ2em37zdpvjn/4fLgYqbAdjHwYdt6r/tuM++iF0Kew6mPYYZdQCxg5Gfr9R3b3U6G0OCSAjSvhsldDgqiNGcx/BKb9EtZ+Bt89E465Adp/I5kY882mr2Hh1HB2/NHMMKQUQC2gU+9woVuXfqF/qWJ6++51K0ybgs/fhL+dAJ37wHlPpfcdrM7qT+GOQ2DH3eC8p6GgVdbCbK7S/c3xpBPHYcA64N6KxCGpAHgfOAYoAuYAIwhJZEzKJs4HyoDJgAH3mdnfattv1hIHwJfz4YFTQwFw+r3hStb62rwWnrke5t4T+hmG3x76GMYNCbWbC58N/wzZ9vxN8Nxv4IwH4dsnZBjzOph5U6ittGoDR/4c9r0oNO+5yko3w6JnQnPn+/+E0k2hoNzr1HCW/fVnsGIxrPhg69+S9Vtf37J1OJHYkkyiv113g7Y75Oyw6m3Vx3DPsVBQCBc8A9t/s/7bfHtyuJfVYT+Fo35R/+3lSlkpfDwT3nkE1n8Fx/4auu7a4GE0isQRBdIHeCKWOA4ERpvZkOj5tQBmlpo0Kl7/E2C2mc2UNNnMTqlmvVHAKIBevXoN+uSTLF5humYp/P00WP4uDLsVBp5Z920t/lfodF5TFEY0HfmLrf0Mqz8NndLbdYAL/5XdQmLZu3DnofDtE+HUWnNv9b5aBE//NDQ3fKN/iP8be4Sz5FatsxdvU1NeDp++DG89BAseh02roW3XMFJor1PDlc9S1a81g7VfREkkeqz8MPr7EZSXhPXUAo77Pew/quGOK1vWr4Bxx4ZC8YLpsOPu2dv2o5fCWxPh3Ceh90HZ227SysvCMOR3/gELpsCGr6CwQ6htlpfB0D/BXlUWd4lpzInjFOA4M7swen4WsL+ZXV7N6/cERgNfAevMrNahFFmtcVTYtAYmnQUfPR8Ky8Ourr4gqMrG1TD9F/DG/eHMcfjtoZMv1aevwoQTodcB8MNHslP9Li8LfTUrFsFlc6D9jvXbnhm8+wT88+ew5tOt89vtGBJIxx7QsWf0t/vW6XbfyK8mGDP48p2QLN75B3y9FFq1g29/DwacBt86ov6fX1lpeI9XfBAGKbz/NBz7GzjoimwcQcMo3gD3Dg/NVGc/Dr0PzO72N6+Fvx4K5aVwyYvQplN2t59NZlA0J3xf5j8G676AVm1ht+PCSUa/Y2DDCph8frjYcfD5YahyA52U5U3iyHBfQ4Gh/fr1u2jRogRuo1FaDFOvhDcfhH3ODiOw0ikY3p8GU/8zfEkO/jEcfk3NX4R5D8Jjl4Qvzff+N7MEVZVX7wy1hJPvhO+eUb9txZVsDP8Ea5aGGtSaJaHwXFMUHsXrKq/fohVs321rIuncB3Y9FrrvU/9jbEirPgnNUG8/HGqhLVrCLv8RksXux4c+sSSUlYSL5eY/Ckf9Mpy8NHZlpfDQWfDe03DavdB/WDL7KXot1Gj2GAqn/K1xfZ/M4PN5oRlq/qPh/6RgO9j1mJAsdjtu2+9MWQn8+9fw0p9C3+qpE0KTZcLSTRy5aKBeCvSMPe8RzWv8WhbCSXeEQm/mTaGt+tQJsF37qtffsDJc4PTWpNCsc8YDoZCszcARoUB66RbYcY/6NU2s+gSevQH6HQ0Dah1XkJlWbaofmWUWmmuqSyqfvBQ6jJ+/MSSS/sPDo/vgxlsrWb0kfJ7vPhGe9zwg3Aaj/8nQrkvy+y9oBd+/OxQ6//5NOJE58ueNq5CMW/lRGPX0wb/ghD8mlzQAegwK78W/fhXO2vceWfdtlZeF/7+STeE73qpNqBVU/E2nX88Mli2IksUjoemxRcvQR3rUL2H3E6D19tW/vqAVHPOrcGv5xy6BOw+H4bfCd06u+3FlUS5qHC0JneP/QUgYc4AzzWx+tvaZSFNVqrl/C/8UO+8JZz4MHXaqvHzh1HA3z40rw9DBQ38SEk+6ysth0shQW/nh5Lp1ypvB/d8Pw2h/NAs69cp8G0nauCqciS54PPSZlBVDh26hgOk/HHruDy0Kch1lOGt+9a/w3O8Ag4OuDP1cnXvnJp7ystBP9sZ9oQZ79A2NK3mUbApnyi/cHArAo0fDfhclv9/yMpgwDD57Ay55If0z9A0rw68MFs0O/ytLX9u2thzXolVIIIVtU5JKbHrZwpB81CKcXO35g9C/WJd+y9VLQtNV0ewwIGXIb6HldplvJw2NoqlK0oPAEUBX4EvgejO7R9IJwC2EkVTjzOy3Wdpfsk1Vqd6fDg+fEzpBfzg5dPit/wqe+kmoku48IBoxNaBu29+8Fu4ZEs7QL/pX5qMs5v0dHrsUjr+p8XeobloTkuSCx8OIpLLN0H4n2CNKIr0Pyk0SWfpaKKS/eBt2HRJuedEYEnB5OTx9dbjH2P6XwnFjGkfyWPRs+P6v+iicHQ/5XWiebChriuCOg2GHb4VO+NSm5PJy+Oq9kCAqEsVX74dlKgg3WOy5fxjM0KYzlGwITbJb/san11cxL/rbfqettehsDF0vKwkXTM66LYzAPHV8OMYsaxSJI1capMZRYenrYcRVWQkcfGUYrrrpazjiZ3Dwf9a/c3T1pzD2yDDe/cJn0z9jWbcMbtsXdvx2GOPeWJt/qrJ5beUkUroxdLx/+8Twj9jn0OSHAW/6OrQxz74LOuwMx/8+JLHGUDhXMINpv4BXbg/9YSfcnLvPeU0R/PPacN+pHXYJCTYbQ9frYsHj8NDZcMhVcMh/wdK5IUEsmR1qFpuje1y16bw1SfTcD7rtU32zc2Px7lOh6cosnJRmufmvWSaOBq9xVFj1Mdx/Shi11G2fcDXsN/bI3vY/fQUmDM1spNVD58B7T8ElLyVzTUhDKV4fkseCx0MyKVkPbXaAPaIk0vfw7F74ZRYKv6d/FobI7jcqtEnX1B6dS2bwrxvC/dUG/jDcRqYha2ZlJfDKX2DG78HK4LCfhKa8hJpS0jblCnj9XkCES8AU+hl77gs99gsJo8sujetEIF2rPoHJ54Xa8P6XhFu2ZNIMXoNmmTgqNGiNo8LGVfDxi7Db8cmcDVc0Ow2+AE7835rXXTg1XPF+1P+Ef+R8UbwhdLQueBze+ycUrw1njXsMhf4nhbbk+iSRVZ+E3yVZNC2MZDnxT6HTtbEzC7canzEmXDNy0l8b5sLMj18M/XzL3w3f++NvDCPlGoPi9TD9f0IzUc/9oPug+l2l3tiUFsOz14ek3W2f0HSVhT63Zpk4clbjaCjT/wde/nMYoVJdZ+PG1XD7/qFpZ9Rz+XsbhpJNIYnMfzR0sBevi9VEMkwiZSXwyh2h4EVhdM7+lzS9q+JfuDmMKuo/PNxBNqnPfu2X8Mz/hNGCHXuFZrxM70TgsmPhVHjsslCxOumOcA1RPTTLxFEhJzWOhlBeBhNHwqLp1Y+0mnJFuMjwon9Dt70bPsZcKNkYrshf8FhKEhkK3zkJ+hxWfRIomhuusfny7XDWfMJN0Kln1es2BbNuh2k/D8M9Tx2f3Saj8rJwEeK/fx3e84N/HEYMxu+w7Breyo/g4XPDtSIHXBZGsdWx6apZJo68r3HA1pFWXxfBhf+Grv22LvtwRrhC9+AfhzHgzVFFEpn/aLhPVPE6aNsldKx/5+StHeub1oSz8zn3QIdvwgl/COs0xTbvVLPvCiOb+h0Np98fhofW15I54S7JX7wVrog/4Y85uZeSq0bpZpj+y/D7Jmc+DLsdW6fNNMvEUSFvaxwVVn0S7mnVplMYadWmc2jTveOgMG780pezU1g0dSUbYfGz4dYO7z0dOtbbdgnDaj/4F6xfDvtdHG6Ot12HXEebXa9NCMOI+x4GIx7M7Gr2zevCENXl74Whq1+8E97HDjuH4bXfOTk/Emw++mwedBtY55d74sjnxAHh99EnDIU+B4dbsVeM8T73SehzSK6ja3y2JJFHQ8d6113hxP9L70r+purNiWFARc8DYORD2ybHDSu3Jofl0eOr98NV/hVatAzDa3cbAof/NP8SrKvEE0e+Jw6ANx6Ax38U7nWzaDrscw4MvSXXUTV+5eVN67qW+njnH/CPi0KC3Cu6w/NX74e/65dvXa9lm5BMd9w9PLpGf3f4Vv4OsHDbaMz3qkpMrI8j16E0jL1HwvKF8PKt4VYdx9yQ64iahuaSNCDc6qKgEB4+L9yQsnXHkBR2GxIuDu26e7jOp2Ov5vW+uHrxGkdTV14GM6OrdHvum+toXGO1bln49cH2O3n/hKtWs6xxNEstCsLtTZyrif/Ur8sir5s655zLiCcO55xzGcmrxCFpqKSxa9asyXUozjmXt/IqcZjZVDMb1bFjHt3MzDnnGpm8ShzOOeeS54nDOedcRjxxOOecy4gnDueccxnJyyvHJS0HPqnjy7sCX2UxnKbAj7l58GPOf/U93t5mtmNtK+Vl4qgPSXPTueQ+n/gxNw9+zPmvoY7Xm6qcc85lxBOHc865jHji2NbYXAeQA37MzYMfc/5rkOP1Pg7nnHMZ8RqHc865jHjicM45l5FmmzgkHSfpPUmLJV1TxfJzJS2XNC96XJiLOLOptmOO1jlN0gJJ8yX9vaFjzLY0Puf/i33G70tanYs4syWN4+0l6TlJb0h6S9IJuYgzm9I45t6S/hUd7wxJPXIRZzZJGidpmaR3qlkuSX+O3pO3JO2T1QDMrNk9gALgA+BbQCHwJtA/ZZ1zgdtyHWsDH/OuwBtA5+j5N3Idd9LHnLL+FcC4XMed8Gc8Frg0mu4PfJzruBvgmB8GzommjwLuy3XcWTjuw4B9gHeqWX4C8DQg4ADg1Wzuv7nWOPYDFpvZh2ZWDEwEhuc4pqSlc8wXAbeb2SoAM1vWwDFmW6af8wjgwQaJLBnpHK8B20fTHYHPGjC+JKRzzP2Bf0fTz1WxvMkxs5nAyhpWGQ7ca8ErQCdJ38zW/ptr4ugOLIk9L4rmpfpBVM2bLKlnw4SWmHSOeTdgN0kvSXpF0nENFl0y0v2ckdQb6MvWAqYpSud4RwM/lFQEPEWoZTVl6Rzzm8D3o+mTgQ6SujRAbLmU9ne/Lppr4kjHVKCPmQ0AngEm5DiehtCS0Fx1BOHs+y5JnXIaUcM5A5hsZmW5DiRhI4DxZtaD0Jxxn6R8Lwd+Ahwu6Q3gcGApkO+fc6Ly/QtTnaVAvAbRI5q3hZmtMLPN0dO7gUENFFtSaj1mwlnJFDMrMbOPgPcJiaSpSueYK5xB026mgvSO9wLgIQAzmwW0JtwYr6lK53/5MzP7vpntDfwimtekB0GkIZPvfsaaa+KYA+wqqa+kQkKhMSW+Qkp74DBgYQPGl4Rajxl4jFDbQFJXQtPVhw0ZZJalc8xI+jbQGZjVwPFlWzrH+ynwHwCS9iAkjuUNGmV2pfO/3DVWq7oWGNfAMebCFODsaHTVAcAaM/s8Wxtvma0NNSVmVirpcmAaYVTGODObL+lXwFwzmwJcKWkYUErohDo3ZwFnQZrHPA04VtICQlX+ajNbkbuo6yfNY4ZQ2Ey0aDhKU5Xm8f43oQnyvwgd5ec25eNO85iPAMZIMmAmcFnOAs4SSQ8Sjqtr1F91PdAKwMz+Sui/OgFYDGwAzsvq/pvwd8Y551wONNemKuecc3XkicM551xGPHE455zLiCcO55xzGfHE4ZxzLiOeOFyTIGldGuv8p6S2WdznSZL6Z3F7L9fjteuiv90kTa5hvU6SflTX/TiXDk8cLp/8J5BR4pBUUMPikwg3yMsKMzsoC9v4zMxOqWGVToAnDpcoTxyuSZF0RPSbCpMlvSvpgejq2CuBbsBzkp6L1j1W0ixJr0t6WFL7aP7Hkn4v6XXgVEkXSZoj6U1J/5DUVtJBhDsG3BT9VscukgZGN398S9KjkjpH25uh8LsecyUtlLSvpEckLZL0m1js62LTP5P0drTPG6s4zr5R7G+nbKNPxW8wSPqOpNlRfG9J2hW4EdglmneTpPYKv0XxerSt4bHtLJR0l8Jvr0yX1CZa1k/Ss1Fsr0vaJZp/dfQ+vSXphqx+sK5pyfV95f3hj3QewLro7xHAGsK9d1oQbhNySLTsY6BrNN2VcJVwu+j5z4DrYuv9NLbtLrHp3wBXRNPjgVNiy94CDo+mfwXcEk3PAH4fTf+YcKvybwLbEe7/1SXlGI4HXgbaRs93qOJ4pwBnR9OXxV7bh+g3GIBbgZHRdCHQJr48mt8S2D72niwm/EZDH8JdEQZGyx4CfhhNvwqcHE23JtTijiX8loei9/0J4LBcfy/8kZtHs7zliGvyZptZEYCkeYRC8MWUdQ4gNDO9JAlCwRq/F9Wk2PSe0Vl9J6A94fYVlUjqCHQys+ejWRMIPxBUoeL2JW8D8y26L5CkDwk3m4vfuuVo4G9mtgHAzKr6XYWDgR9E0/cBv69inVnALxR+0e4RM1sUHWul0IHfSToMKCfcWnunaNlHZjYvmn4N6COpA9DdzB6NYtsUHcexhOTxRrR+e8INMGdWEZfLc544XFO0OTZdRtXfYwHPmNmIaraxPjY9HjjJzN6UdC7RjR7rGFN5Snzl1cSXjhrvB2Rmf5f0KvA94ClJF7PtTSlHAjsCg8ysRNLHhFpEPGYI72ObGnYnYIyZ3ZlB/C5PeR+HyydrgQ7R9CvAwZL6AUhqJ2m3al7XAfhcUitCQbvN9sxsDbBK0qHRsrOA56mbZ4DzKkaASdqhinVeItx8kZSYtpD0LeBDM/sz8DgwgMrvAYRf+VsWJY0jgd41BWZma4EiSSdF+9guinMacH6sn6i7pG+kdbQu73jicPlkLPBPSc+Z2XLCHY0flPQWoVnn29W87n8I7fovAe/G5k8Erpb0RtRBfA6hs/wtYCChnyNjZvZPQtPW3Kip7SdVrPZj4DJJb1P9L7edBrwTbWNPwk+FriA0z70j6SbgAWBwtJ2zU46vOmcR7g79FqEvZmczmw78HZgVbWsylROUa0b87rjOOecy4jUO55xzGfHE4ZxzLiOeOJxzzmXEE4dzzrmMeOJwzjmXEU8czjnnMuKJwznnXEb+H5CaQYI0rpTPAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", @@ -111,20 +149,31 @@ "pylab.ylabel('Energy')\n", "pylab.yscale('log')\n", "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='center right')" + "pylab.legend(loc='center right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl4VOXZ+PHvnUz2TEhIAGVRFnHBBVTABQy474CAe1uXtha7+Lb2tdVf39Zq9UXr283aFrVatRVxQ8UK7kBEBUREVNwoooQ1CSGTPTOZ+/fHOcEkZJkks2Qy9+e65srMmXPOc58E5p5nOc8jqooxxhgTqqRYB2CMMSa+WOIwxhjTJZY4jDHGdIklDmOMMV1iicMYY0yXWOIwxhjTJZY4jDHGdIklDmNcIrJZRE6LUdmDRKRIRCpF5HdRLPchEbktQue+XERejsS5TWxZ4jAhEZEXReTWNrZPF5EdIuJxX58oIq+7H4AVIrJIRA5ttv9UEQmKSFWrxwnRvJ5e6BqgFMhR1Z/GOpiuEpHhIqJN/w4AVPVRVT0jlnGZyLDEYUL1MPANEZFW278JPKqqAffD/2XgOWAwMAJYD7wpIsObHbNNVbNbPd6O/CVER/MPzy44ENigNpWDiQOWOEyongXygZOaNohIHnAe8Ii76bfAI6r6J1WtVNXdqvo/wGrg5u4U6jYf/beIrHdrMI+LSLr73pUisqLV/ioiB7nPHxKRv4rIErdW86aI7CcifxSRchH5RESOblXkBBHZ4L7/j6ay3POdJyLrRGSPiLwlIke1ivPnIrIeqG4rebi1sXfc63hHRE5sihO4AviZG+c+zWUikiYi/yciX4nIThGZJyIZ7nsfi8h5zfb1iEiJiBzjvn7SrRVWuM1hh7fzu+7s93muiLwnIj4R2SIiv262a5H7c09TDbL1+dq7fve9ZSLyG/dvVCkiL4tIgfteuoj8S0TK3N/9OyIyqK1rMNFhicOERFVrgSeAbzXbfBHwiaq+LyKZwInAk20c/gTQkyaLi4CzcGowRwFXdvHY/wEKgHrgbWCt+/op4Pet9r8cOBMYBRzsHoubYB4EvoeTQO8FFolIWrNjLwXOBXJVNdD8pCLSH3gBuNs9/vfACyKSr6pXAo8Cv3VrX6+2cR13uPGMAw4ChgC/ct97zC27yZlAqaqudV8vAUYDA91rf7TtX1WnqnH+/rnudV4rIjPc9wrdn7lt1SA7uv5mu10GXOXGmQr8t7v9CqAfMMw9dg5Q281rMGFgicN0xcPA7Gbfwr/lbgPoj/PvaXsbx20HBjR7Pdj95tj8kdVBuXer6jZV3Q08j/PhGapnVPVdVa0DngHqVPURVW0EHgda1zjuUdUtblm38/UH8jXAvaq6SlUbVfVhnER0fKs4t7hJtrVzgc9V9Z+qGlDVx4BPgPM7uwC3efAa4CduLa4S+F/gEneX+cA0N3mD8wH8WNPxqvqgWwOsB34NjBWRfp2V25qqLlPVD1Q1qKrr3TKmhHh4KNf/D1X9rNmXlKa/sx8nYRzk/u7fVVVfV+M34WOJw4RMVVfgdODOEJFRwEScDy2AciAI7N/Gofu7xzXZpqq5rR7VHRS9o9nzGiC7C2HvbPa8to3Xrc+1pdnzL3H6asDpg/hp82SH8w14cDvHtjbYPV9zX+LUHDozAMgE3m1W9ovudlR1I/AxcL6bPKbh/l1EJFlE7hCR/4iID9jsnrMghHJbEJHjRGSp2wxWgfPNP9TzhHL97f2d/wm8BCwQkW0i8lsRSelq/CZ8LHGYrnoEp6bxDeAlVd0J4H7wvw1c2MYxFwHLIhBLNc4HKgAisl8Yzjms2fMDgG3u8y3A7a2SXab7zblJRx3b23CST3MHAFtDiKkUJ8kd3qzsfqraPOk1NVdNx+lk3+huv8zddhpOc89wd3vrQQ7Q+e9zPrAIGKaq/YB5zc7TWad+t69fVf2qeouqjsFpDj2Plk2mJsoscZiuegTnQ+i7fN1M1eRG4AoRuU5EvCKSJ849AifhNK2E2/vA4SIyzm0++3UYzvkDERnqtsn/Aqc5C+B+YI77rVtEJMvtLPaGeN7FwMEicpnbeX0xMAb4d2cHqmrQLf8PIjIQQESGiMiZzXZbgNOPdC1f1wIBvDhNamU4SaGjv0Nnv08vsFtV60RkIk5SalKCU+Mc2c65u339InKyiBwpIsmAD6fpKtjZcSZyLHGYLlHVzcBbQBbOt8/m763A6ZididOvsRunY/NUVf2w2a6DZd/7OGZ1I5bPgFuBV4HPgRUdHxGS+ThDijcB/wFuc8tag5Ms78FplttIFzrpVbUM55vyT3E+xH8GnKeqpR0e+LWfu2WudJucXgUOaXb+7Tg1vhP5OtmBk+i/xPlmvwFY2UGMnf0+vw/cKiKVOB3zTzQ7tganT+hNtzmted9PT69/P5yBDD6cJrnlOM1XJkbEho2bSBFnuOpS4DJVfSnW8RhjwsNqHCZi3JE3M4AjpXs3xRljeiGrcRhjjOkSq3EYY4zpkj7ZfFBQUKDDhw+PdRjGGBNX3n333VJVHdDZfn0ycQwfPpw1a9bEOgxjjIkrItL6Js02WVOVMcaYLrHEYYwxpksscRhjjOmSPtnH0Ra/309xcTF1dXWxDiUi0tPTGTp0KCkpNvebMSayEiZxFBcX4/V6GT58OLLPInbxTVUpKyujuLiYESNGxDocY0wflzBNVXV1deTn5/e5pAEgIuTn5/fZ2pQx8cRXtJBNcybw2YVD2DRnAr6ihbEOKewSpsYB9Mmk0aQvX5sx8cJXtJCd825AG5y1vAKlW9k57wYAcgpnxjK0sEqYGocxxkRa6fy5e5NGE22opXT+3BhFFBmWOKLo5JNP5qWXWk4S+8c//pFrr72Wjz76iFNOOYVDDjmEUaNGcfPNNxMMOksOPPTQQwwYMIBx48btfWzYsCEWl2CMaUewvpZAadvrUgXKtrW5PV5Z4mhHJNopL730UhYsWNBi24IFC7jkkkuYNm0aN954I59++ikffPABq1ev5k9/+tPe/S6++GLWrVu39zFmzJgex2OM6TltbKRi6eNsvm5yu/t48ge3+148ssTRhqZ2ykDpVlDd207Z0+Qxe/ZsXnjhBRoaGgDYvHkz27ZtY+PGjUyaNIkzzjgDgMzMTO655x7uuuuuHl+LMSYyVJXqdcv48mdnsvMvPyE5bxB5M/8LSc1osZ+kZlBw2U0xijIyEqpzvMmuf/yK+i8+avf9us/eRQMNLbZpQy07/3o9Fa8+2uYxaSMOZ+BVt3ZYbv/+/Zk4cSJLlixh+vTpLFiwgIsuuoiPPvqIY489tsW+o0aNora2lj179gDw+OOPs2LF1wuyvf3222RktPwHaoyJjrpNH1D6r9uoWf8GKYMOZP/r55F9wvmICGlDR1Py0M00+spI7lfAgCt+3ac6xsFqHG1qnTQ6294VzZurFixYwKWXXhrSca2bqixpGBN9/pJitt99HV/9/CzqvviQAVfdyoF/XIb3xGl7RzbmFM5kxF9XIZ5Ucgpn9bmkAQla4+isZrBpzoQ2O7k8BUMYduvTPSp7+vTp/OQnP2Ht2rXU1NRw7LHH8t5771FUVNQyhk2byM/PJzc3t0flGWN6rrFqD7uf+TN7Fj8IIuTN+AH9Z/yA5Kx+be6flJ5J+qETqX6/iE7nKI9DVuNoQ8FlN0WsnTI7O5uTTz6Zq6++em9t4/LLL2fFihW8+uqrANTW1nLddddxyy239Lg8Y0zXtB4Ys/1PP+SLH55I+aJ5eCdPZ/jdbzDg8v/XbtJokjVuCg1ffUxg944oRR49ljjakFM4k0Fz7sJTMARE8BQMYdCcu8JW5bz00kt5//339yaOjIwMFi1axO23387BBx9MQUEBkyZN4vLLL997zOOPP95iOO5bb70VlliMMV9ra2BM5RsLSe6/Pwfe9Qr7/eCPpBQMCelcmWOnAFC9vqiTPeNPn1xzfPz48dp6IaePP/6Yww47LEYRdc2zzz7L9ddfz9KlSznwwANDPi6ertGY3qijZuqR897p0rk0GGTTNUeTecRk9v/xX8IVYkSJyLuqOr6z/azG0QvNmDGDTZs2dSlpGGN6rr0b9bpzA58kJZF5VCE165ej7s28fYUlDmOMcbV3o153b+DLGjeVRt9u6jd/2JOwep2EShx9sVmuSV++NmOiJWfqhfts68nAmMwjTwKgZt3yHsXV2yRM4khPT6esrKxPfsA2rceRnp4e61CMiVva2Ej1mleQrH5ODSMMA2M8eQNJGz6G6vf7VuKI2H0cIvIgcB6wS1WPcLddCPwaOAyYqKprmu1/E/BtoBG4TlVfcrefBfwJSAb+rqp3dCeeoUOHUlxcTElJSfcvqhdrWgHQGNM9Fa/+i/rNH7H/9fPwnjgtbOfNHDuV8hfuJ1hbTVJGVtjOG0uRvAHwIeAe4JFm2z4EZgL3Nt9RRMYAlwCHA4OBV0XkYPftvwCnA8XAOyKySFW7PDVsSkqKrY5njGlTY+VuSh/7LRlHTCL7hPPDeu6ssVMof+6v1Hz0FtnjTw/ruWMlYk1VqloE7G617WNV/bSN3acDC1S1XlW/ADYCE93HRlXdpKoNwAJ3X2OMCZvS+XcSrPEx8OrfhH1RtPTDJiKp6dS8vyys542l3tLHMQTY0ux1sbutve37EJFrRGSNiKzpq81Rxpjwq9u0nopX/0Xu2VeRdsChYT9/UkoaGYef2Kf6OXpL4ugxVb1PVcer6vgBA/ri7DDGmHBTVXY98D8ke/uTf9FPI1ZO1rip+Ldtwr9rS+c7x4Hekji2AsOavR7qbmtvuzHG9Fhl0dPUfbqGghDmnuqJvdOP9JFaR29JHIuAS0QkTURGAKOB1cA7wGgRGSEiqTgd6ItiGKcxpo9orKmk5J+/If2go8k5+eKIlpU65CA8BYOp6SOJI5LDcR8DpgIFIlIM3IzTWf5nYADwgoisU9UzVfUjEXkC2AAEgB+oaqN7nh8CL+EMx31QVdtfgckYY0K0+8nf01hRypAbH0aSIvsdWkTIHDuFqrdfQBsDSHJ8r2gRsehVtb0Vip5pZ//bgdvb2L4YWBzG0IwxCa6++HPKFz9AzimXkH7QuKiUmTV2Kr7XHqNu4zoyDul0HsFerbc0VRljTFSoKiUP/g9JaZlRXQs888jJIEL1umVRKzNSLHEYYxJK1aol1Kx/g/xLbsDTryBq5SZ780gfNa5P9HNY4jDGJIxgfQ0lD/+a1AMOI/fMK6Jefua4KdRtfI/Gqj1RLzucLHEYYxLG7mf/SqCkmIHfvi0mHdRZY6dAMEjNh29GvexwssRhjEkI/p1fUf7sX/BOmk7m4SfEJIb00ceQlOmlJs77OSxxGGMSwq6Hfw1JSRR865cxi0E8KWQcMYnq95fH9RIPljiMMX1e9bplVK9+kfxZPyalm6v5hUvW2KkESorxb98U0zh6whKHMaZPU38Dux78JSn7jSD3/GtiHQ6Z49zpR+K4ucoShzGmTytf/Hf82/7DgKtvJSklLdbhkDroQFL2GxHXw3Lj+753Y4xpg69oIaXz5xIo3QZA6vDDyT7m1BhH9bXMsYX4lj+J+huQlNRYh9NlVuMwxvQpvqKF7Jx3A4HSrYACin/rRnxFC2Md2l5Z46aidTXUfrqm8517IUscxpg+pXT+XLShtsU29ddTOn9ujCLaV8bhJ0Kyh+o4XRXQEocxps9Q1b3NU60FytreHgvJmV4yDhkft/0cljiMMXFPg0Gq3nmJLb+YhtM8tS9PjIfhtpY5dgr1mz4gUFEa61C6zBKHMSZuaWMAX9HTfPnTU9l251UE9uzCe/JFSGpGi/0kNSOqM+GGIstdFbBmfVGMI+k6G1VljIk7wfpafEsfZ/eivxHYtYXUAw5lv+vuwTtpGpLswXdkoTOqqmwbnvzBFFx2EzmFM2MddgtpI44kyZtHzftF5JzUu2LrjCUOY0zcaKz2UfHyw5S/8Hca95SQfvCxDLz6N2Qdc1qLVfxyCmf2ukTRmiQnk3XkSXunHxGRWIcUMkscxpheae+9GGXb8PTfj7QRR1K7YSXBGh+Z46bS/4IfkTHm+Lj6wG0tc9xUKt9aRMNXn5B24GGxDidkljiMMb1O070YTcNqA2XbCZRtJ+2goxl0zVzSRx4V4wjDI3NsIeBMPxJPicM6x40xvU5b92IANO7Z1WeSBkBK/mBShx0Sd8NyLXEYY3qd9u656E33YoRL5tgp1H68imB9TaxDCZklDmNMr9PePRe97V6McMgaNxX111P78epYhxIySxzGmF6n4LKbkFYz2fbGezHCIeOwiUhKWlxNs26JwxjT6+QUzqTfWVe4rwRPwRAGzbmr1w+x7Y6ktEwyDjsurvo5bFSVMaZXShkwDICR97+HJ29gjKOJrMyxUyj952/wl20nJX//WIfTKatxGGN6pUBJMZKSRnK/gliHEnF7px+Jk1qHJQ5jTK/kL9mKp2BIizvC+6rUAw8jOXegJQ5jjOkJf2kxKQOGxjqMqBARssZOoXp9EdrYGOtwOhWxxCEiD4rILhH5sNm2/iLyioh87v7Mc7eLiNwtIhtFZL2IHNPsmCvc/T8XkSvaKssY0/cESorxJEjiAMgcN4VgZTn1X3zY+c4xFskax0PAWa223Qi8pqqjgdfc1wBnA6PdxzXA38BJNMDNwHHARODmpmRjjOm7gvW1NFaUJkyNAyDzKHf6kThYFTBiiUNVi4DdrTZPBx52nz8MzGi2/RF1rARyRWR/4EzgFVXdrarlwCvsm4yMMX2Ms144CZU4PP0KSBt5ZFz0c0S7j2OQqm53n+8ABrnPhwBbmu1X7G5rb7sxpg/zlxQDJFRTFUBy//2o3bCSz2YPYdOcCfiKFsY6pDbFrHNcVZX21njsBhG5RkTWiMiakpKScJ3WGBMD/pLEq3H4ihZSu7e2oQRKt7Jz3g29MnlEO3HsdJugcH/ucrdvBYY122+ou6297ftQ1ftUdbyqjh8wYEDYAzfGRE+gtBiSkvH03y/WoURN6fy5qL+hxTZtqKV0/twYRdS+aCeORUDTyKgrgOeabf+WO7rqeKDCbdJ6CThDRPLcTvEz3G3GmD7MX1KMp/9+SHLiTG4RTzMCR+yvIiKPAVOBAhEpxhkddQfwhIh8G/gSuMjdfTFwDrARqAGuAlDV3SLyG+Add79bVbV1h7sxpo8JlCTOPRxNPPmD9w4KaL29t4lY4lDVS9t569Q29lXgB+2c50HgwTCGZozp5fwlxWSMOT7WYURVwWU3tVj1EHrvjMCJUw80xsQFDfgJ7N6ecDWOppl/S+fP3VvzGHDlzb1yRmCbcsQY06sEdu+AYBBPQWIlDnCSx8h573DAXS87G8I27jS8LHEYY3qVpns4UgYmXuJokjb8cFKHHYKv6KlYh9ImSxzGmF4l0JQ4EqypqjkRIadwFnWfrqFhx+ZYh7MPSxzGmF5l713jBYk9SYT3pAtAhMo37AZAY4zpkL+0mOTcASSlpsc6lJhKKRhCxuEn4lv+NM7A097DEocxplcJlBSTkoAd423JKZyFf8cX1H2+NtahtGCJwxjTq/hLtibc5IbtyT7+XCQ1Hd/y3tVJbonDGNNraDBIoHQrKQMSu3+jSXKml+zxZ1D51qJ95rGKJUscxpheo7GiFPXXW42jGe+U2QQry6letzTWoexlicMY02v4bSjuPrLGTiE5Jx/f8qdjHcpeljiMMb1GoNRNHNY5vpd4UvBOnkH1u6/QWF0R63AASxzGmF4kUVf+60xO4SzUX0/V2/+OdSiAJQ5jTC/i37WFpMwckrNyYh1Kr5I2aiwpg0fhK+odzVUhJQ4RGSUiae7zqSJynYjkRjY0Y0yiCdhQ3DaJCDlTZlO7YeXeWlkshVrjeBpoFJGDgPtwlnOdH7GojDEJyV+aeAs4hSrnJGd69d6wBnmoiSOoqgHgAuDPqnoDsH/kwjLGJBpVTciV/0KVMnAYGYcdR2XRUzGfgiTUxOEXkUtx1glv6p1JiUxIxphEFKyuIFhbZU1VHfAWzqZh60bq/7M+pnGEmjiuAk4AblfVL0RkBPDPyIVljEk0dg9H57wnnIt4UvG9EdtO8pASh6puUNXrVPUx9/UXqnpnZEMzxiQSW4ejc8nZuWSNP53KFc+ijYGYxRHqqKpJIvKKiHwmIptE5AsR2RTp4IwxicPu4QhNTuEsGitKqX5/ecxi8IS43wPAT4B3gcbIhWOMSVSB0q1IajrJOfmxDqVXyzr6FJKy86gseprsY06NSQyhJo4KVV0S0UhMTPiKFlI6fy6Bsm148gdTcNlN5BTOjHVYJgH5S4rxFAxBRGIdSq8mKal4J03Dt/RxgrVVJGVkRz2GUDvHl4rIXSJygogc0/SIaGQm4nxFC9k57wYCpVtBlUDpVnbOu6FXjBM3icdvQ3FDllM4C22oo3LlCzEpP9Qax3Huz/HNtilwSnjDMdFUOn8u2lDbYps21FI6f67VOkzUBUqKSR9xRKzDiAvpBx9Lyn7DqSx6mn4nXxz18kNKHKp6cqQDMdEXKNvWpe3GREqwvoZGX5l1jIdIRPCeNJPdT/0Bf9k2UvIHR7X8UEdV9ROR34vIGvfxOxHpF+ngTGR52vnH1t52YyLFX7IVsKG4XZFTOAtUqXzjmaiXHWofx4NAJXCR+/AB/4hUUCY68i/52T7bJDWDgstuikE0JpHZPRxdl7r/CNIPPjYmfZKhJo5Rqnqzqm5yH7cAIyMZmIk8T/9BACRl9dv7c9Ccu6x/w0Sd3cPRPTmFs2j46mPqN38U1XJDTRy1IjK56YWITAJqO9i/QyLyXyLyoYh8JCI/drf1d28y/Nz9meduFxG5W0Q2ish6G80VPlWrliBpGYy8711nvv9BB1jSMDERKCmGZA+evP1iHUpc8U6aBskefMufimq5oSaOa4G/iMhmEfkSuAeY050CReQI4LvARGAscJ47XfuNwGuqOhp4zX0NcDYw2n1cA/ytO+WaljQYpGr1i87NRGmZ5Ey+gPpNH9CwdWOsQzMJyF9SjCd/fyQ5OdahxJVkb3+yjj4F34pn0cbo3Zsd6lxV61R1LHAUcKSqHq2q73ezzMOAVapa407VvhyYCUwHHnb3eRiY4T6fDjyijpVArojYlO49VPf5WhrLd5I98WzA/eYigm/FszGOzCQif2mxrTPeTTlTZtNYvpOaD1dErcwOE4eIfMP9eb2IXA98B/hOs9fd8SFwkojki0gmcA7OwlCDVHW7u88OYJD7fAiwpdnxxe420wNVq5eAJ4WsY50pCzz99yPj8BOpfPPZmM/1bxKPrcPRfVnHnkZSZg6+5dGbMbezGkeW+9PbxqNb97mr6sfAncDLwIvAOlrNf6XOJ1eXPr1E5Jqm4cIlJSXdCS1hqCpVq5aQecRkkrO+HlXtnTQD/7ZN1G/6IIbRmUSjAT+B8p14Btj3we5ISk3He+L5VK1eTLCuJjpldvSmqt7rPn1VVW9p/sDph+gWVX1AVY9V1UKgHPgM2NnUBOX+3OXuvhWnRtJkqLut9TnvU9Xxqjp+wIAB3Q0tITR8+TH+HZvJPu7sFtu9x58DnhQqV0R/XLhJXIGy7RAMWo2jB7yFs9C6GqpWvxiV8kLtHP9ziNtCIiID3Z8H4PRvzAcW4awwiPvzOff5IuBb7uiq43EmXNyO6baq1UtAhOwJZ7bYnuzNI2vcVCrfXIQGgzGKziQaG4rbcxmHTsQzYCi+ouiMrupwyhEROQE4ERjQqk8jB+jJ8IenRSQf8AM/UNU9InIH8ISIfBv4EudGQ4DFOP0gG4EanNUITQ9UrlpCxiET8OTuWzPzTp5B9ZpXqP14FZmHnxCD6Eyi8ZfazX89JUlJpA0/nOp3XuKz2UPwFER2puvO5qpKxenL8OD0azTxAbO7W6iqntTGtjJgn8nl3f6OH3S3LNNSw47NNHy5gQFX/LrN97PHn4mkZVC54llLHCYqmu4at6luus9XtJCadcvcV1/PdA1EJHl0mDhUdTmwXEQeUtUvw166ibqqVc6yKq37N5okpWeSPeFMKt/+NwOv/g2SkhrN8EwC8pcUk5w7kKTU9FiHErdK589F/fUttkVyputQ+zhq3PU4FovI602PsEdjIq5q1WLSRhxBysBh7e7jnXwBwapyqtcXRTEyk6j8u2wobk9Fe6brUBPHo8AnwAjgFmAz8E5EIjIRE9i9g7rP3iX7uHM63C9r7BSSsnNjMuumSTyBUkscPRXtma5DTRz5qvoA4FfV5ap6NbaIU9ypeuclgE4Th6Sk4j3hPKrWvBS1ceEmMWkwSKB0m42o6qGCy25CUjNabIvkTNehJg6/+3O7iJwrIkcD/SMSkYmYqlWLSRk8ktShozvd1ztphjMufM3LUYjMJKrGPbvQQIPVOHoop3Amg+bchadgCIjgKRgS0ZmuQ1069jZ34aaf4ty/kQP8JCIRmYhorCyn5sO3yJt+LSLS6f4Zhx2Hp//+VK54lpzJMzrd35jusHs4wiencGbUZrcOdenYf7tPKwBbRjYOVb/7KgQb8XbSTNVEkpPxTppG+ZIHaazaQ3J2boQjNInIbws4xaWQEoeI/IM25o5y+zpMHKhctRhP/v6kjRob8jHeyRdQ/vy9VK18gX6nXR7B6EyispX/4lOofRz/Bl5wH6/hNFVVRSooE17Buhpq3l9O9sSzQ2qmapI28khS9h+Jb8Vzne9sTDf4S7eSlJ1LUka35kw1MRJqU1WL+XpF5DEgepO/mx6pXrcUbajrdDRVayKCd/IMdj/1BwK7d+Dpb6uzmfAKlBSTUmCz4sabUGscrY0GBoYzEBM5VSsXk+TNI+OwiV0+NmfyDFCl8q3nIxCZSXT+kmLrGI9DISUOEakUEV/TT+B54OeRDc2Eg/obqF77KtkTzkSSQx1E97XUIQeRNuIIfDbVugkzVcVvCzjFpVCXjvWqak6znwe3br4yvVPNh28SrKnscjNVc97JF1C/cR0N278IY2Qm0QWr9qB11ZY44lBnS8ce09EjWkGa7qtatRhJzyLzyMndPod30jQAKm09chNGdg9H/Oqs7eJ3Hbyn2LQjvZo2NlK1+kWyjzm1RzOPphQMIWPM8VSueIb+s3+EuwQNAAAgAElEQVTcpZFZxrTn63s42p9w0/ROnU2rbjf7xbHaT9fQ6Ctrdwr1rvBOmsGu+2+kfvNHpI84IgzRmUT39T0cNqoq3oQ8qkpEjhCRi0TkW02PSAZmeq5q1WLEk0rWMfusj9Vl3hPOhWSPNVeZsPGXFCNpGSR5bdq7eBPqqKqbceao+jPOlCO/BaZFMC7TQ6pK1arFZI4tDMvNVck5+WSNnULlm8/ZeuQmLALuiCpr+ow/odY4ZuMs67pDVa8CxgL9IhaV6bH6Lz4gULqV7Ik9b6Zq4p18AYHSrdR9akuxmJ7zlxbjKbCO8XgUauKoVdUgEBCRHGAXYD1avVjVqiWQlET2hDPCds7sCWciqen4rLnKhIHdwxG/Qk0ca0QkF7gfeBdYC7wdsahMj1WtWkzGmBNIzskP2zmTMrLIHn8GVW8/jwb8nR9gTDuCdTUEK8stccSpUG8A/L6q7lHVecDpwBVuk5XphRq2fk5D8edkTzwr7Of2Tp5Bo283NR/YVGWm+76+h8NGVMWjUDvHF4nIZSKSpaqbVXV9pAMz3Ve16kWAiCSOzKNPJimrHz5bj9z0gE2nHt9Cbar6HTAZ2CAiT4nIbBHp/h1lJqIqVy8h/aCjIzLraFJKGtnHn0PV6iUE62vDfn6TGOyu8fgWalPVclX9PjASuBe4CKeD3PQy/pJi6jeuI/u48Nc2muRMvgCtq3ZWFTSmG/ylxZDswZM7KNahmG7oyg2AGcAsYA4wAXg4UkGZ7qta7TZT9WBSw85kjDmB5LxBdjOg6bZASTEp+YOR5ORYh2K6IdQ+jieAj3HmproHGKWqP4pkYKZ7qla/SOqwQ0gdPCpiZUhyMt4Tz6d67Ws0VldErBzTd9k6HPEt1BrHAzjJYo6qLnXv6TC9TKCijNqPV4b1pr/2eCdfgAYanPtFjOkif0kxKQMtccSrzqZV/xmAqr4EzGz13v9GMC7TDdVrXoJgMCyTGnYm/aBxJOUUsOv+m/jswiFsmjMBX9HCiJdr4p/6G2gs32l3jcexzmoclzR7flOr97rd+yoiPxGRj0TkQxF5TETSRWSEiKwSkY0i8riIpLr7prmvN7rvD+9uuX1d1aoX8QwcRloUZq+tfOMZgtV7UH89qBIo3crOeTdY8jCd8pdtA1UbihvHOksc0s7ztl6HRESGANcB41X1CCAZJ0HdCfxBVQ8CyoFvu4d8Gyh3t//B3c+00lhTSc36IrInnh2VSeNK58+FxkCLbdpQ62w3pgN2D0f86yxxaDvP23rdFR4gQ0Q8QCawHafj/Sn3/YeBGe7z6Xw9gusp4FSx6TT3Ub32NTTQgDcKzVQAgbJtXdpuTBO7hyP+dbYC4FgR8eHULjLc57ivu3UDoKpuFZH/A74CaoGXcea/2qOqTV9hi4Gmu9eGAFvcYwMiUgHkA6XNzysi1wDXABxwwAHdCS0u+YoWUjp/LoHSrSBJNOzcQsZhx0W8XE/+YKfMNrYb0xF/STGIkGL/VuJWhzUOVU1W1RxV9aqqx33e9DqlOwWKSB5OLWIEMBjIogf9Jc1ivU9Vx6vq+AEDBvT0dHHBV7SQnfNu+PoDXIPsuu/nUelnKLjsJiQ1o8U2Sc2g4LLWXWHGtBQoLSY5bxCSkhrrUEw3hXwDYBidBnyhqiWq6gcWApOAXLfpCmAo0PR1divuFO7u+/2AsuiG3DuVzp+LNrSc9iNa/Qw5hTMZNOcuPE3TmiQlMfCaO8kpnNnxgSbh+Uu2RmQ6HBM9sUgcXwHHi0im21dxKrABWIqzYBTAFcBz7vNF7mvc919X1Z70r/QZse5nyCmcych577D/9fdCMIgnLzFqeqZnArYOR9yLeuJQ1VU4ndxrgQ/cGO4Dfg5cLyIbcfowHnAPeQDId7dfD9wY7Zh7q/b6E6Ldz5A1/nRnxtzlT3W+s4k7vqKFbJozISz362gwiL9sm3WMx7nOOscjQlVvBm5utXkTMLGNfeuAC6MRV7zJnjydPc/+tcW2WPQzJKWm4z1xGr6ipwjWzg3LGuemd2jqR2tqEm26XwfoVrNkoHwnBPxW44hzsWiqMmHQWLWHqqJnSM7bD0/BYBDBUzCEQXPuikk/Q86U2Wh9LZUrX4h62SZywt2PFrChuH1CTGocpud2PfhLAnt2ccDcF0gfdVSswyH9kPGk7DcC3/Kn6HfyxbEOx4RJuPvR/KVNN/8N63ZMJvasxhGHKlcuprLoafrP+q9ekTQARIScKbOp/fDNvTd4mfiXnNf2ehnd7UcL7LK7xvsCSxxxJlBRyq77fk7ayCPJn/VfsQ6nhZwpzqA4X9HTMY7EhEvKfiP22daTfjR/STFJ3jyS0jN7GpqJIUsccURV2XXvzwnWVLLfj+5GPN26BzNiUgYOI2PMCfiWPYmNmI5/9Vs+o+6TVWSMO/nr+3VEGHD1b7rdj+a3obh9giWOOFL5xkKqVi8h/9KfkTbskFiH06acKbPxb99E3edrYx2K6aHSR28nKT2Lwdfdzch573DAnS+CKo0VpZ0f3I5AaTEpNp163LPEESf8ZdvY9fdfkH7oBPLO+16sw2lX9gnnIanpdk9HnKvZsIrqNa/Qf8YPSc7JByB91FFkHXMa5c/fS7C2qsvnVFVb+a+PsMQRB1SVnX/7b7TRz34/+GOvXqc5OdNL9sSzqXzzOYL++liHY7pBVSn91214+u9P7rnfbvFe/kXXE6wqZ8+Sf3T5vMHK3Wh9rTVV9QGWOOJAxSv/ombdMgZ861ek7r9vZ2VvkzP1QoJVe6h+99VYh2K6oWrVYuo+e5f8i39KUlrLTuz0g8aRefQp7H5+HsHa6i6d11/iTD9nNY74Z4mjl2vYsZmSR24h86hC+p3xrViHE5LMI08iOW8QvmVPxjoU00Ua8FP66FxShx5MztSL2twn/8LrCVaWs+fFrtU6/HsXcLIJDuOdJY5eTBsb2fmXnyBJHgZ9/3dRWdkvHCQ5mZzCmVS/9zqBCpvIOJ5UvDYf//ZNFHzj/yHJbd8fnHHwMWSOm0p5F2sdtvJf32GJoxfbs/jv1H68ioFX/ybupqHOmXIhNAaoXPFMrEMxIQrWVlP25O/JOOw4so49vcN98y+8nkbfbva8/HCH+zXnLy1G0jNJys7raagmxixx9FL1Wz6jdP4dZE04E++U2Z0f0MukHXAoaSOPxLfcmqviRfnz82jcU0LBN/+n09ptxiHjyTyqkPLn/kawriak8/tLnKG48VJzNu2zxNELacDPjnv+i6SMLAZ977dx+x8tZ8qF1G/6gPqvPol1KHEvnFObtyWwp4Tdi/5G9vHnknHwsSEdk3/R9TT6ytjz8iOhlVFSTMpAm6OqL7DE0QvtfuYe6v/zPgO/ewee3PhdHMk7eQYke+yejh5qsUSw6t6pzcOZPMqe/D3aUE/BZaEvd5Nx6EQyj5xM+XN/JVjfea3DX7LVRlT1EZY4mon0t7pQ1G1aT9lTf8A7+QK8J5wX9fLDydOvgKyjT8b3xkK0sTHW4cStSC8R3LB9ExWvPkq/079B6uBRXTq2/4U/pbGilIqX/9XhfsHaKoJV5XHXV2faZonDFY1vdR2VvWnOBD6bPYSvbjoPSc9k4Hduj3i50ZAz5UIad++g5oM3Yh1K3Ir0EsGlj96BpKSSf+H1XT42c8xxZBwxid3P/ZVgfW27+/ltHY4+xRKHK9Lf6trTImGh0BiA+jqq174e0XKjZe+ysnZPR7e1N4V5cm7bU553Re1na6la+W/yzp/T7WbR/Auvp3HPLipefbTdffw2FLdPscThivS3uva0mbACDRFPWNGSlJKGd9J0qlYvobGmMizn7A1NitFUcNlNIPv+Vw3WVlL7Wfcnk2yaWiS5XwH9p83p9nkyDz+BjDEnsPvZvxBsqGtzH7uHo2+xxOFq/1vdwIiWGyiNTcKKppypF6INdVSFYVnZWDYpNpUf7aSVeeRkUCUpw7t3ieCCb/4ST78Cin89m8pVS7p13up3X6V2w0ryL7y+x+vE5190PY3lO9utdfhLihFPasT/P5nosMThKrjsJiQ1Y5/tjb4yyhc/gAaDYS1PVZ0Fj9oZatvdFdZ6o/TRx5Cy/8iwNFfFqkkRYpe0fEVPAcoBdy7m4Ce3MnLeO/Sffi3D/vd50g4cw/b/+w7l/76/S+fUxkZKH/1fUvYfSb/TLu9xjBmHn0jGYce1W+sIlBTjKRiMJNlHTl9gf0VXTuFMBs25y1mwpulb3dW3kXlUISUP/pLiX19Iw84vw1JW/eYNFP9qJjvu/hHJA4YiKWkt3u/JCmu90d5lZTe8jX/Xlh6dK5Y1tFgkLVXFt/Rx0g8Zv8+IJ0+/Aob++gmyJ5xFyUM3s+vBX4Y8es237AkatnxKwWU3hmVBMBFx+jp278D32mP7vO8v3YrH1uHoMyxxNJNTOJOR8975+lvdOVcz5P/9k0HX/o76zR/y5U9PZc9LD3e79tFYXcGuB3/Jlz87k/rizxg05y5G3vMWg679XYuENWjOXd1eYa232rusbA/u6aj9ZDW0cy9kNGposegHq/v8PRqKP6ffyRe3+X5SWib7//Q+cs/9LnsWP8C2332303sqgvU1lD3+f6SPPobs488NW6wZR04m/dAJ7H72nn2m1HdW/rOhuH2FJY5OiAj9Tr2UA3/3GhkHj2fX/Tex9TeX7B0lEgoNBqlY9gSbrzuJPUsepN/p32DE3Svod9rlSFLSPgmrryUNcDpFMw4/Ed/yp7q1rGzV6iUU33oJSf0KkJT0Fu9JanpUamjtJadIJi3f0gVIajrZJ05rdx9JTmbgVbcw4KpbqX7nJYpvvpBAB6v07Vn8AIHd20OaWqQrmmodgbLt+F5fsHd70F9PY/lO6xjvQyxxhChlwFCG/PIxBn7vt9R+/h5fXn8Ke155tNMPwbovPmTLL2ew854fkzLoQA64cwmDvjuXZG/iTfSWM2U2/h1fUPfZu106bs9Lj7Dt/75L2oFjGPH71xl07f+5a2A7H3rZJ5wXlWSbO+3afbZFslkxWF9D5ZvPkX38eSRnejvdP+/c7zD4hr9T/9XHbLnpPBq2btxnn8bK3ex+5i9kHXsamWOOD3vMmUcVkn7wsex+5s97ax1NzYt2D0ffYYmjC0SE3NO/wfDfv07aqHHsuvcGtt5+Of7SrfuMttnz8r/Y+ff/x1c/Pwv/9i8Y9P3fM+y250gfeVSsLyNmvE3LyobYSa6qlD72W3bdfyNZ405h6M1PkJyT/3UN7amtpA0/HP/W/0Q4cpfbBJSc13T/hDDgqlsilrSqVr1IsKaSfqe03UzVluyJZzP0lqcJ1tfw1S+mU7NhVYv3y56+m2BdFQXf+EW4wwXcWsdFPyVQug3f0icAG4rbF7U94b7pUMrAYQz91QIqXn6Ekn/dxhc/mgwahIAfgEDpVnbd9zMAcs++ivyLbyA5OzeWIfcKSRnZZB93DpVvLWLAVbeQlJre7r7aGGDnvT/D9/oCck65xJnssY31IbyFsyh95FYatm8idf+REYtdVfEte4L0QydwwG3PUbdpPV/97CyCYbo3pS2+pQvwDBxGxpgTunRcxuijGfa/z7P19m+w9daLyTntcqrXvOx+81fSxxxP2rBDIhM0kDl2Cumjj2H3wrvpd/LFzW7+swkO+wqrcXSTJCWRe9aVHPi71xDVvUmjueTcgQz89u2WNJrJmXohweoKqte80u4+wboatt15Nb7XF9B/9o8ZdO3v2l1UKGfyDBCJ+JDYuo3raNi6kX7uqnjpI48i4/AT2bPkAbSNv31P+UuKqfnwTfpNvahbQ1hTBx3IAbcvwjNwGBUv/uPrmQmA+o3rIvr72tvXUbqVimVP4i8thqQkPPn7R6xME12WOHooddCBaGPbHxyNFSVRjqb3yzxiMsn992t3nY5GXxnFt1xE9brXGXjNnRRc8rMOO3A9/fcj84hJVL6xsFud7qHyLXvC6aQ+4fy92/LO/x6B0m1Urvx3RMpDtd3lW0OR7M1D27inQhvqIn7fS+bRJ5N20Dh2P3M3/u1f4MkbFJZhv6Z3iHriEJFDRGRds4dPRH4sIv1F5BUR+dz9mefuLyJyt4hsFJH1InJMtGPuTCxG28QrSU4m56SZVL+3dJ+RP/6dX/HV/0yn/ssNDP7v+8k945shndNbOAv/js3Ufd796Tc6EvTXO53UE88iOStn7/asY04lZfBIyp+/L6xJS4NBfEufIOOIyT1evyJWU+nsrXXs2kLlimcJlG1PiOlhEkXUE4eqfqqq41R1HHAsUAM8A9wIvKaqo4HX3NcAZwOj3cc1wN+iHXNn2rrrvK/dxBdOOVMvhGAjlW98vaxs3aYP+OoX02j07WborxaQPfHskM+Xfdw5Tqd70dORCJfqNa8QrNqzz7d/SUoi79xrqP/P+9R+vDps5dVuWIl/11f0O+WSHp8rll9qGqsrWsyMEO3pYUzkxLqp6lTgP6r6JTAdaFrA+GFghvt8OvCIOlYCuSLSqxpL27rrvC/exBcuacMOIXnAMEr+eRufXTiE/3z7KL76xTTE42HYb54l49CJXTpfcqaX7PFnUPnmcxHpb/Ate4Lk/vuReeRJ+7yXM3U2Sd48yp+fF77ylj5OUqaX7OPO6vG5Yvmlpmz+HdCqJhat6WFMZMV6VNUlQNP8BINUdbv7fAfQNOZxCNB8nopid9v2ZtsQkWtwaiQccMABkYq3XTmFMy1RhMhXtJDG3TvA7RtqrCgFEXKnfZ+0YQd365zewllUvrWI6nXLyB5/ethiDewpofq9peRNm4MkJ+/zflJaJrlnXMHuhX8Ky8iuYG0VlSv/TU7hLJLSMnt0LmDvv8nS+XMJlG3Dkz+Ygstuisq/1Vg1k5nIi1mNQ0RSgWnAPr2k6jQYd6nRWFXvU9Xxqjp+wID4XW41EZTOn7s3aeylyp5F3W+FzBo3lSRvHpVhbq6qfGMhBBs77KTOPetKJDmF8hf+3vPy3lqE1teS084UI90Rq5kJrO+v74plU9XZwFpV3em+3tnUBOX+3OVu3wo07yEc6m4zcSoS30TFk4L3xGlUrXk5bOt+AFQse5K0g8aRNnR0u/t48gbiPWkGvqWP01hZ3rPylj5O6pCDSB/d68aAdJn1/fVdsUwcl/J1MxXAIuAK9/kVwHPNtn/LHV11PFDRrEnLxKFIfRPNKZzlrPuxunvrU7RW98WHNHy5Ye+9Gx3JO+97aH0tFa90vPZ2Rxq2/Ye6T94h5+SLwzqHVKxY31/fFZPEISJZwOlA8+EVdwCni8jnwGnua4DFwCZgI3A/8P0ohmoiIFLfRNMPPpaUQQeGrbnKt+xJxJOKd9L0TvdNO/AwMo8qpHzJg6i/oXvlLX0CkpL3ziTcFyTCBJ6JKCaJQ1WrVTVfVSuabStT1VNVdbSqnqaqu93tqqo/UNVRqnqkqq6JRcwmfCL1TVRE8BbOpOaDFQR27+jRuTTgp/KNhWSNPz3kCSnzzv8ejeU7qXxrUdfLa2ykYvmTZI07GU9ez9cSNyaSYj0c1ySoSH0TzTlpJqjiW/Fsj85T/d7rNPrKnHtOQpQ5biqpQw+m/Pl5Xb4hsOb95TTu3kFOFyY0NCZWLHGYPiV18CjSDzq6x81VvmVPktyvgKxxJ4d8jIiQd/411G/eQO2Hb3apvIqlj5PkzSP72PANJTYmUixxmD7He9IF1G/+iPotn3br+MbK3VS9+wrek2Z2eX4l70kzSe5XQPnz93WhvHKq33mJnJNmIimpXQ3XmKizxGH6HO+k6ZCUTGU3p7bwrXgWAn76daGZqklSajq5Z11J9dpXqS/+PMTynkEDDWG9d8OYSLLEYfocT+4AMsdOwffGwm6tD+9b9iRpw8eQNvzwbpXf74wrkJQ09rxwf2jlLX2ctOGHkz7iiG6VZ0y0WeIwfVJO4UwCpVup/aRrkw/Wb/mU+v+8T87U7n/79/TLJ2fKbHzLnyJQUdZxeZs3UL/pA6ttmLhiicP0SdkTzkLSM7vcSe5b9gQke/CedEGPys897xq0oY6Klx/ucL+KpY+DJ4WcHpZnTDRZ4jB9UlJ6JtkTz6HyrecJtrGYUVu0MYCvaCFZR5+Mp19Bj8pPGzqarGNOZc+LD7VbvvobqHzjabLHn0FyTn6PyjMmmixxmD4rp3AmwRof1WtfD2n/mvVv0Fi+s0er7jWXd941NFaUtlh3pLmqta/R6NttzVQm7ljiMH1W5pGTSc4d4MxwGwLfsidIys4j69jTwlJ+xpGTST1wDOX/bnuFQN/SBSTnDSJr3NSwlGdMtFjiMH2WJHvwTppB9buv0li1p8N9G6srqFr9It7J00lKSQtP+SL0P/97NGz5lJr3l7d4L1C+i+q1r5NTOAtJjvWyOMZ0jSUO06flFM5CAw1Uvv1Ch/tVvvU86q8PaSbcrvBOmk5y3iDKn7+3xXZf0dMQbKSfTTFi4pAlDtOnpY08ktQhB1H5Rsejq3zLniB16GjSRo0Na/mSkkruWVdR8/5y6r/6BABVxbf0cdIPPpbUIe2v82FMb2WJw/Rpzoy5s6jdsBJ/SXGb+zRs30Tdp2vImXpRRNbByD3jm0haxt5aR93GdTQUf0bOyZeEvSxjosESh+nzciY790i0N7rJt+xJSEoip3BWRMpP9uaRM/UiKt94hkD5LnxLH0dS0/FOmhaR8oyJNEscps9LGXQA6YdOwFf09D6jmzQYxLf8KTKPKsTTf7+IxZB37nfQQAObr5tMxcuPgAjVa16JWHnGRJIlDpMQck6aRUPxZ9Rv/qjF9tqP3iJQurVL6250R93G9yEpiWBtFQBaX8vOeTfg6+ZEjMbEkiUOkxC8J54HnpR9piCpWPoESZlesiecFdHyS+fPhVYTLmpDrbPdmDhjicMkhGRvf7KOPgXfimfRxkYAgrVVVK16Ae+J00hKy+jkDD0TKNvWpe3G9GaWOEzCyCmcRWP5Tmo+clbnq1z5AlpfG/FmKgBP/uAubTemN7PEYRJG1rGnkZTp3bvAk2/Zk6TsN4L0QyZEvOyCy25CUlvWaiQ1g4LLbop42caEmyUOkzCSUtPJPuE8Kle+QP2Wz6j96C1ypl4YkXs3WsspnMmgOXfhKRgCIngKhjBozl3kFM6MeNnGhJtNkmMSSnK/AWhdNV/+ZCoAkpEdtbJzCmdaojB9gtU4TMLwFS1kz79bLuda9uhcGxJrTBdZ4jAJo3T+XLShtsU2GxJrTNdZ4jAJw4bEGhMeljhMwrAhscaEhyUOkzBsSKwx4WGjqkzCaBrRVDp/LoGybXjyB1Nw2U020smYLopJ4hCRXODvwBGAAlcDnwKPA8OBzcBFqlouziD7PwHnADXAlaq6NgZhmz7AhsQa03Oxaqr6E/Ciqh4KjAU+Bm4EXlPV0cBr7muAs4HR7uMa4G/RD9cYY0yTqCcOEekHFAIPAKhqg6ruAaYDD7u7PQzMcJ9PBx5Rx0ogV0T2j3LYxhhjXLGocYwASoB/iMh7IvJ3EckCBqnqdnefHcAg9/kQYEuz44vdbS2IyDUiskZE1pSUlEQwfGOMSWyxSBwe4Bjgb6p6NFDN181SAKizTJu2cWy7VPU+VR2vquMHDBgQtmCNMca0FIvEUQwUq+oq9/VTOIlkZ1MTlPtzl/v+VmBYs+OHutuMMcbEQNRHVanqDhHZIiKHqOqnwKnABvdxBXCH+/M595BFwA9FZAFwHFDRrEmrTe+++26piHzZgzALgNIeHB+PEu2aE+16wa45UfTkmg8MZSdxWoWiS0TG4QzHTQU2AVfh1H6eAA4AvsQZjrvbHY57D3AWznDcq1R1TYTjW6Oq4yNZRm+TaNecaNcLds2JIhrXHJP7OFR1HdDWhZ3axr4K/CDiQRljjAmJTTlijDGmSyxxtO2+WAcQA4l2zYl2vWDXnCgifs0x6eMwxhgTv6zGYYwxpksscRhjjOmShE0cInKWiHwqIhtF5MY23r9SREpEZJ37+E4s4gynzq7Z3eciEdkgIh+JyPxoxxhuIfyd/9Dsb/yZiOyJRZzhFMI1HyAiS90pf9aLyDmxiDOcQrjmA0XkNfd6l4nI0FjEGS4i8qCI7BKRD9t5X0Tkbvf3sV5EjglrAKqacA8gGfgPMBLnXpL3gTGt9rkSuCfWsUb5mkcD7wF57uuBsY470tfcav8fAQ/GOu4o/J3vA651n48BNsc67ihc85PAFe7zU4B/xjruHl5zIc6MGx+28/45wBJAgOOBVeEsP1FrHBOBjaq6SVUbgAU4s/D2ZaFc83eBv6hqOYCq7iK+dfXvfCnwWFQii5xQrlmBHPd5PyDeF10P5ZrHAK+7z5e28X5cUdUiYHcHu0R0VvFETRwhzbgLzHKreU+JyLA23o8noVzzwcDBIvKmiKwUkbOiFl1khPp3RkQOxJm5+fW23o8joVzzr4FviEgxsBinphXPQrnm94GmFbwuALwikh+F2GIl5H/73ZGoiSMUzwPDVfUo4BW+XiukL/PgNFdNxfn2fb+7WmMiuAR4SlUbYx1IFFwKPKSqQ3GaNP4pIn39s+C/gSki8h4wBWei1ET4W0dEX//H0p5OZ9xV1TJVrXdf/h04NkqxRUooswwXA4tU1a+qXwCf4SSSeNWVmZUvIf6bqSC0a/42zrxwqOrbQDrOxHjxKpT/z9tUdaY6Szn8wt0W9wMhOhDRWcUTNXG8A4wWkREikorzobGo+Q6t2gOn4SxvG886vWbgWZzaBiJSgNN0tSmaQYZZKNeMiBwK5AFvRzm+SAjlmr/CnRdORA7DSRzxvPpZKP+fC5rVqm4CHoxyjNG2CPiWO7rqeEKYVbwrYjLJYaypakBEfgi8hDMi40FV/UhEbgXWqOoi4DoRmQYEcDqhroxZwGEQ4jW/BJwhIhtwqvE3qGpZ7KLumRCvGZwPmgXqDkeJZyFe809xmiF/gtNRfmU8X3uI1zwVmCsiChQR5xOnishjONdU4Nagr38AAARySURBVPZV3QykAKjqPJy+q3OAjbizioe1/Dj+92KMMSYGErWpyhhjTDdZ4jDGGNMlljiMMcZ0iSUOY4wxXWKJwxhjTJdY4jBxQUSqQtjnxyKSGcYyZ4jImDCe760eHFvl/hwsIk91sF+uiHy/u+UYEwpLHKYv+THQpcQhIskdvD0DZ3K8sFDVE8Nwjm2qOruDXXIBSxwmoixxmLgiIlPd9RSeEpFPRORR9+7Y64DBwFIRWerue4aIvC0ia0XkSRHJdrdvFpE7RWQtcKGIfFdE3hGR90XkaRHJFJETcWYMuMtdq2OUiIxzJ39cLyLPiEiee75l4qzrsUZEPhaRCSKyUEQ+F5HbmsVe1ez5z0XkA7fMO9q4zhFu7B+0OsfwpjUYRORwEVntxrdeREYDdwCj3G13iUi2OOtQrHXPNb3ZeT4WkfvFWXvlZRHJcN87SERedWNbKyKj3O03uL+n9SJyS1j/sCa+xHpeeXvYI5QHUOX+nApU4My9k4QzTchk973NQIH7vADnDuEs9/XPgV812+9nzc6d3+z5bcCP3OcPAbObvbcemOI+vxX4o/t8GXCn+/y/cKYp3x9Iw5n/K7/VNZwNvAVkuq/7t3G9i4Bvuc9/0OzY4bhrMAB/Bi53n6cCGc3fd7d7gJxmv5ONOGs0DMeZFWGc+94TwDfc56uAC9zn6Ti1uDNw1vEQ9/f+b6Aw1v8u7BGbR0JOOWLi3mpVLQYQkXU4H4IrWu1zPE4z05siAs4Ha/O5qB5v9vwI91t9LpCNM3VFCyLSD8hV1eXupodxFgdq0jR9yQfAR+rOCyQim3Amm2s+dctpwD9UtQZAVdtaV2ESMMt9/k/gzjb2eRv4hTir2S1U1c/da20ROvC/IlIIBHGm1h7kvveFqq5zn78LDBcRLzBEVZ9xY6tzr+MMnOTxnrt/Ns4EmEVtxGX6OEscJh7VN3veSNv/jgV4RVUvbecc1c2ePwTMUNX3ReRK3IkeuxlTsFV8wXbiC0WH8wGp6nwRWQWcCywWke+x76SUlwMDgGNV1S8im3FqEc1jBuf3mNFBcQLMVdV7uxC/6aOsj8P0JZWA132+EpgkIgcBiEiWiBzcznFeYLuIpOB80O5zPlWtAMpF5CT3vW8Cy+meV4CrmkaAiUj/NvZ5E2fyRVrFtJeIjAQ2qerdwHPAUbT8HYCzwt8uN2mcDBzYUWCqWgkUi8gMt4w0N86XgKub9RMNEZGBIV2t6XMscZi+5D7gRRFZqqolODMaPyYi63GadQ5t57hf4rTrvwl80mz7AuCG/9/eHdogGMRgGH67BUMgEMyCAwZAYNiCOUAxAGEBDAnJz78GMxyiZyAgqnkffWly6su1SS8i7n1AvCaH5QMwI+ccZa21M9nauvVW2+7LsS2wiYgHv39uWwBjrzElvwp9ku25MSL2wAGY9zqrj/v9siS3Qw/kLGbSWrsAR+Daa514Dyj9EbfjSpJKfHFIkkoMDklSicEhSSoxOCRJJQaHJKnE4JAklRgckqSSF5uzLnAy17pFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Evaluations')\n", "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { @@ -151,7 +200,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_uccsd.ipynb b/community/aqua/chemistry/h2_uccsd.ipynb index dbde1be85..881f9d0de 100644 --- a/community/aqua/chemistry/h2_uccsd.ipynb +++ b/community/aqua/chemistry/h2_uccsd.ipynb @@ -6,7 +6,7 @@ "source": [ "## _*H2 dissociation curve using VQE with UCCSD*_\n", "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and UCCSD. It is compared to the same energies as computed by the ExactEigensolver\n", + "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and UCCSD. It is compared to the same energies as computed by the ExactEigensolver. `UCCSD` should be used together with `HartreeFock` initial state.\n", "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", @@ -27,9 +27,9 @@ "Processing step 20 --- complete\n", "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515973 -1.0759136 -1.09262986 -1.105918 -1.11628597 -1.12416089\n", - " -1.12990475 -1.1338262 -1.13618942 -1.13722134 -1.13711706 -1.13604434\n", - " -1.13414766 -1.1315512 -1.12836186 -1.12467174 -1.12056028 -1.11609624\n", + "Energies: [[-1.05515973 -1.07591359 -1.09262986 -1.105918 -1.11628597 -1.12416088\n", + " -1.12990475 -1.1338262 -1.13618942 -1.13722134 -1.13711707 -1.13604434\n", + " -1.13414766 -1.1315512 -1.12836187 -1.12467173 -1.12056027 -1.11609624\n", " -1.11133942 -1.10634211 -1.10115033]\n", " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", @@ -39,7 +39,7 @@ " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [45. 52. 50. 50. 43. 50. 47. 47. 51. 46. 42. 57. 45. 47. 44. 54. 53. 49.\n", + "VQE num evaluations: [45. 51. 51. 51. 43. 54. 50. 47. 51. 46. 42. 57. 49. 53. 49. 55. 50. 46.\n", " 51. 56. 55.]\n" ] } @@ -106,24 +106,12 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "" ] }, - "execution_count": 2, "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, "output_type": "display_data" } ], @@ -134,7 +122,7 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { @@ -144,24 +132,12 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VNX9//HXm7DvEnZCAFkUUNYI7oALYFXAqgWlYltb/bZu39ra6rf9KtpNa/urtVpbt6K0FtRvtbiCKIgoAlEDCIiERZOwJshOIMvn98e90CFmGZhMJsvn+XjMgzv3nnvv58wM88k95845MjOcc86541Uv0QE455yr2TyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicXElaaqkv4fLqZL2SkoKn3eQtEDSHkm/V+Bvkr6UtCSxkR8/SZdJygrrOjjR8VQ3JT8H1U3kZ9ZFxxNJNSVpo6QD4X+4w4+HEx1XLMzsCzNrbmZF4arrgVygpZn9CDgbuBBIMbNhiYqzEvwOuCms68dVfXJJJmlfic/OT+J4vm9JWlhi3TRJh0rEsAxK/Ry4Gq5+ogNw5brUzObG8wSS6ptZYTzPUY5uwCr7z69iuwEbzWzfsR4owfUoqRuwsrQNVRjnQDPLrILzlOe3ZvbzBMdQbUhKqq3J069IaqDDfwFK+l3YDLRB0kUR21tJelLSZkk5kn4Z0Zz0LUnvSfqDpDxgqqSksGkpNzzWTeFftfUlXSnpwxLnv03Sv8uIrYekd8LmqjeBthHbukccdxpwLfCT8K/VG4AngDPC5/eE+1wiKUPSTknvSxoQcbyNkn4qaTmwLzxuZ0n/J2l7WJdbIspPlfScpGfC+FZKSovY3lXSv8J98yKvACV9R9Lq8PWeLalbKXVvJGkvkAQsk7SunDj7Spof1mulpHERx5km6c+SXg9fi/ckdZT0YHj+T4+3yUzSa5J+H/F8hqSnwuWekt4O654r6R+SWpf3+kjqC/wl4n3bGUUMRz4H4fMe+k8T51xJjyiiaUnS6eF7v1PSMkkjI7bNl/SL8DXaI2mOpLbhtsaS/h7GulPSUkkdwm2dJc2StENSpqTvlRHr65JuKrFumaSvh8snS3ozPM4aSd+IKDdN0qPha74PGFXRa1NjmZk/quED2AhcUMa2bwEFwPcIvrS+D2wCFG5/Efgr0AxoDywBbojYtxC4meCKtAnwX8AqIAU4AZgLWLi9EbAD6Btx/o+By8uIbRHw/8L9zgX2AH8Pt3U/fNzw+TTglyXqtTDi+WBgGzA8rOe14evSKOI1ygC6hvWoB3wI3AU0BE4E1gNjwvJTgXzga+HxfgN8EG5LApYBfwhft8bA2eG28UAm0Dd8TX4OvF/Oe2dArxLvZWScDcLj/U8Y53nh63RSxOuSCwwN43gb2ABMCeP8JTAv2vOX2NYxfE3PAyaHr0+LcFsvgqbFRkA7YAHwYBSvz1HvW2nvbYltJT8HiwiaAxsSNG/u5j+fmS5AXvie1QvjywPahdvnA+uAPuFrOx+4L9x2A/Ay0DSMfyhBMyph3f4c1mMQsB04L+Jzcvj8U4D3ImLvB+wMX6NmQBbw7fBzMTh83/pFvAa7gLPC2Bsn+nslbt9XiQ7AH2W8McGXz97wQ3v48b1w27eAzIiyTcP/mB2BDsBBoEnE9qsOf/GE+35R4lxvEyaa8PkFJf6jPwr8KlzuD3xJ+GVe4jipBEmqWcS6Zzn+RPIo8IsS51gDjIh4jb4TsW14KXW7E/hbuDwVmBuxrR9wIFw+I/wyqV9KvV4Hrot4Xg/YD3Qr470rLZFExnkOsAWoF7Hun8DUiNfl8YhtNwOrI56fCuws57NjBF/GkZ+dMRHbLyf4AswlTAZlHGcC8HEUr89R71tEHfJLxPB0yc9BxGemacS+f4/4zPwUmF7i2LOBa8Pl+cDPI7b9AHgjXP4O8D4woMT+XYEiwgQarvsNMC3ic3L4/C2AfYffa+BXwFPh8kTg3RLH/itwd8Rr8Ews3wM15eFNW9XbBDNrHfF4PGLblsMLZrY/XGxO0D7fANgcXs7vJPhwt4/YN6vEeTqXWFdy+9PA1ZIEXAM8Z2YHS4m3M/ClHd3H8Xn5VSxXN+BHh+sR1qVreJ7SYu0GdC5R/n8IkuthWyKW9wONwyaWrsDnVnr/RTfgjxHH3AGI4K/laEXG2RnIMrPiiHWflzje1ojlA6U8b17B+YaU+OzMjtj2MsFf6GvM7EgnuYK76GYoaA7dTfCFfrhpsrzXpyy/KxHDtaWU6QzsiPgMw1ff0ytLvKdnA50iypR8Tw+/NtMJks4MSZsk/VZSg4hz7onYr+TrD0BY5lVgUrjqKuAfEbENLxHbZII/6EqrS63lne21TxbBFUnbcv7TlxzyeTNBs9ZhXY8qbPaBpEMEf0lfHT5Ksxk4QVKziGSSWsr5opVFcCX0q3LKRB47C9hgZr2P81ypKr0z/HAc/yhlv2hFxrkJ6CqpXkQySQU+i+H4x+JXwGqgh6SrzOyf4fpfh3GeamY7JE0ADvcTlff6xDKE+GagjaSmEckk8vOXRXBFUmofRnnMrAC4B7hHUnfgNYIr2jnhOVtEJJNUIKeMQ/0TuFvSAoKmsHkRsb1jZheWF8axxl0T+RVJLWNmmwn+o/xeUktJ9cJO1BHl7PYccKukLmHn6k9LKfMMwZdKQeRfsSXO/TmQTvAft6Gks4FLY6jO48B/SRquQDNJF0tqUUb5JcAeBR3bTRTcRHCKpNOiONcSgi+1+8LzNJZ0VrjtL8CdkvrDkZsZroyhXosJ/nL+iaQGYefxpcCMGI4ZFUnnErTpTyHoc/qTpMN/ibcgaE7dFa67PWLX8l6frUCKpIbHGk/EZ2Zq+Jk5g6M/M38HLpU0Jnw/G0saKSml1AMeXddRkk5VcKPJboJ+xWIzyyJo8vpNeLwBwHXhuUrzGsHVx73AzIjk/wrQR9I14fvYQNJpCm5AqFM8kVRvL+vo+/BfjHK/KQQdl6sI+jNe4OimgJIeJ0g+ywk60l8jaLeOvFVxOnAKZf9nO+xqgr6KHcDdBAnouJhZOsENBQ8T1COToD2+rPJFwCUEnacbCPoAngBaRXGuIoIvsF7AF0A2QRs4ZvYicD9BE8lu4BPgojIOVSEzOxSe66Iwxj8DU8zs0+M9ZimWlfjsPCipJcH7cZOZ5ZjZu8CTwN/CZst7gCEEHcSvAv+KiLnM14egj20lsEVSbkQMPykRQ+S2SJMJ+mDyCG4kmElwVU34pT+eoIlyO8FVwO1E993VkeCzv5vgCuwdgs8xBE1U3QmuDl8k6Nco9Vb7sBn3XwR9h89GrN8DjCZo9tpE0MR2P0FHfJ1y+C4f545QcCvxX8ysW8S6JgR3+wwxs7UJC87VepJmAp+a2d2JjsVFx69IHGEz0NcU/L6hC8GVRMmrn+8DSz2JuMoWNgf1DJthxxJcgbyU6Lhc9Lyz3UFwB9I9BE0KBwiaNe46slHaGJaZkIjgXK3XkaDpKJmgyez7loChZdzx86Yt55xzMfGmLeecczGpE01bbdu2te7duyc6DOecqzHatm3L7NmzZ5vZ2IrK1olE0r17d9LT0xMdhnPO1SgKB8CsiDdtOeeci4knEuecczHxROKccy4mdaKPpDQFBQVkZ2eTn5+f6FDqvMaNG5OSkkKDBg0SHYpz7jjU2USSnZ1NixYt6N69O8EwQy4RzIy8vDyys7Pp0aNHosNxzh2HuDZtSRqrYPrJTEl3lLK9kaSZ4fbF4VDPSBqmYHrVDAXTWl4Wsc9GSSvCbcd9K1Z+fj7JycmeRBJMEsnJyX5l6FwNFrcrknDo5kcIpsbMBpZKmmVmqyKKXUcwEVIvSZMIRs6cSDC6apqZFUrqRDCS6csR8yCMMrOyRhI9lhhjPYSrBP4+OFezxfOKZBjBdLDrw2GzZxAMxhZpPMHsexAM93y+JJnZ/oik0Zg6MjmMc85Vlk+37Ob+Nz6lKobBimci6cLR00xm89WpLI+UCRPHLoKB2wgnM1oJrAD+KyKxGDBH0oeSri/r5JKul5QuKX379u2VUqHK1rz50bOlTps2jZtuuumYjpGRkcFrr71WmWEdZdq0abRr145BgwYxaNAgpkyZcszHmD9/PpdcckkconPOlZRfUMQDsz/lkocWMnNpFpt3xb/ZuNp2tpvZYqB/ONvY05JeN7N84Gwzy5HUHnhT0qdmtqCU/R8DHgNIS0urlVc0hYWFZGRkkJ6ezte+9rVSt9evH/tbPHHiRB5++OGKCzrnEuq9zFx+9uIKNubt5/IhKfzs4r60aXbME1ces3hekeRw9NzLKXx1TuQjZSTVJ5jJLi+ygJmtJpj+85TweU747zaCOTOGxSH2hHv55ZcZPnw4gwcP5oILLmDr1q0ATJ06lWuuuYazzjqLa665hrvuuouZM2cyaNAgZs6c+ZXtRUVF3H777Zx22mkMGDCAv/71r0fO8cADDxxZf/fdxzaHUEZGBqeffjoDBgzgsssu48svvwQgMzOTCy64gIEDBzJkyBDWrVt31H5Lly5l8ODBX1nvnDt+O/Yd4kfPLWPyE4sB+Md3h/P7bwyskiQC8b0iWQr0ltSDIGFMIpiGNdIsgnmjFwFXAG+bmYX7ZIWd7d2Ak4GNkpoB9cxsT7g8mmAe5Zjc8/JKVm3aHethjtKvc0vuvrR/uWUOHDjAoEGDjjzfsWMH48aNA+Dss8/mgw8+QBJPPPEEv/3tb/n9738PwKpVq1i4cCFNmjRh2rRppKenH7limDp16lHbH3vsMVq1asXSpUs5ePAgZ511FqNHj2bt2rWsXbuWJUuWYGaMGzeOBQsWcO65534lzpkzZ7JwYTBN+6233sq3v/1tpkyZwp/+9CdGjBjBXXfdxT333MODDz7I5MmTueOOO7jsssvIz8+nuLiYrKyghfP999/n5ptv5t///jepqamxv8jO1XFmxksZOfzildXsPlDAjaN6cvN5vWncIKlK44hbIgmTwE3AbCAJeMrMVkq6F0g3s1kE80VPl5RJMMf3pHD3s4E7JBUAxcAPzCxX0onAi+FdPvWBZ83sjXjVId6aNGlCRkbGkeeHkwIEv3OZOHEimzdv5tChQ0f9xmLcuHE0adKkzONGbp8zZw7Lly/nhRdeAGDXrl2sXbuWOXPmMGfOHAYPHgzA3r17Wbt2bamJpGTT1q5du9i5cycjRowA4Nprr+XKK69kz5495OTkcNllwd3ajRs3PrLP6tWruf7665kzZw6dO3c+thfKOfcVX+Tt52cvreDdtbkM6tqa+y4/lZM7tkxILHHtIzGz14DXSqy7K2I5H7iylP2mA9NLWb8eGFjZcVZ05ZAIN998M7fddhvjxo1j/vz5TJ069ci2Zs2albtv5HYz409/+hNjxow5qszs2bO58847ueGGG45a/8gjj/D4448DVGonfqdOncjPz+fjjz/2ROJcDAqKinly4QYenPsZ9evV497x/Zk8vBtJ9RJ3G72PtVVN7dq1iy5dgpvcnn766TLLtWjRgj179pS5fcyYMTz66KMUFBQA8Nlnn7Fv3z7GjBnDU089xd69ewHIyclh27Zt3HjjjWRkZJCRkVHmF36rVq044YQTePfddwGYPn06I0aMoEWLFqSkpPDSS8F02wcPHmT//v0AtG7dmldffZU777yT+fPnH9uL4ZwDYFnWTsY9/B73vf4p5/Zux5u3ncuUM7onNImAJ5Jqa+rUqVx55ZUMHTqUtm3LnhJg1KhRrFq16khne0nf/e536devH0OGDOGUU07hhhtuoLCwkNGjR3P11VdzxhlncOqpp3LFFVeUm5BKevrpp7n99tsZMGAAGRkZ3HVXcKE5ffp0HnroIQYMGMCZZ57Jli1bjuzToUMHXnnlFW688UYWL158DK+Gc3Xb3oOF3PPySib8+T127DvIX745lMempNGpVdlN3FWpTszZnpaWZiUntlq9ejV9+/ZNUESuJH8/nCvd3FVbuevfn7B5dz7fHN6N28eeRMvGVTPAqaQPzSytonLV9nckzjlXl23aeYBfvLKK1z/ZQp8OzXnh6jMZ2u2ERIdVKk8kzjlXjRwqLOap9zbw0FtrKTbj9jEn8b1zTqRh/erbE+GJxDnnqon31+Vy179XkrltLxf07cDdl/aja5umiQ6rQp5InHMuwbbtzueXr65m1rJNdG3ThCevTeP8vh0SHVbUPJE451yCFBYV8/Siz/nDm59xqLCYW87rxQ9G9aryX6bHyhOJc84lQPrGHfz8pU/4dMsezu3TjnvG9adH2/J/bFxdVd/em1pu1KhRzJ49+6h1Dz74IN///vdZuXIl5513HieddBI9e/bk7rvvpri4GPjqsO6DBg1i1apVpZ3COVcN5e09yO3PL+OKvyxi14ECHp08hKe/fVqNTSLgiSRhrrrqKmbMmHHUuhkzZjBp0iTGjRvHHXfcwZo1a1ixYgVLlizhj3/845FyEydOPPLr84yMDPr161fV4TvnjlFRsfH3Dz7nvN+/w4sf53DDiBOZe9sILjq1U42fJdQTSYJcccUVvPrqqxw6dAiAjRs3smnTJjIzM4+M0AvQtGlTHn74YR544IFEhuuci8GyrJ1c9uf3+PlLn9C3Uwtev/Uc7ryoL80a1Y7ehdpRi1i9fgdsWVG5x+x4Klx0X5mb27Rpw7Bhw3j99dcZP348M2bM4Bvf+AYrV65k6NChR5Xt2bMnBw4cYOfOncDRw7oDLFq0qNzRgJ1zibFj3yF+N2cN/1zyBW2bN+KPkwYxbmDnGn8FUpJfkSRQZPPWjBkzuOqqq6Lar2TTlicR56qXgqJinlq4gZEPzGPm0iy+dWZ33vrRCMYP6lLrkgj4FUmgnCuHeBo/fjw//OEP+eijj9i/fz9Dhw7l448/ZsGCo2cOXr9+PcnJybRu3TohcTrnorfgs+3c+8oqMrft5Zzebbnrkn707tAi0WHFlV+RJFDz5s0ZNWoU3/nOd45cjUyePJmFCxcyd+5cIJhF8ZZbbuGee+5JZKjOuQpsyN3Hd59eypSnllBQVMzjU9J45jvDan0SAU8kCXfVVVexbNmyI4mkSZMmzJo1i1/96lf06dOHtm3bctZZZzF58uQj+xyeo/3w4/33309U+M7VeXvyC/jN66sZ/Yd3WLQujzsuOpk5PzyXC/t1qJXNWKXxYeSruZdeeonbbruNefPm0a1bt0SHEzc15f1w7rDiYuOFj7L57RtryN17kCuHpnD72JNo36JxxTvXED6MfC0xYcIEJkyYkOgwnHMRPvx8B1NnrWJFzi4Gp7bmyWvTGNi17vZheiJxzrkobd51gPte/5R/Z2yiQ8tGPDhxEOMH1b7beY9VXPtIJI2VtEZSpqQ7StneSNLMcPtiSd3D9cMkZYSPZZIui/aYx6IuNOvVBP4+uOouv6CIP721lvN+9w6vf7KFm0b14u0fjWTC4Np5O++xitsViaQk4BHgQiAbWCpplplFDgx1HfClmfWSNAm4H5gIfAKkmVmhpE7AMkkvAxbFMaPSuHFj8vLySE5O9g9CApkZeXl5NG5ce9qVXe1RXGy8vHwTv31jDTk7D3DRKR35n6/1rRFzhFSleDZtDQMyzWw9gKQZwHgg8kt/PDA1XH4BeFiSzGx/RJnGBAkk2mNGJSUlhezsbLZv336su7pK1rhxY1JSUhIdhnNHWbw+j1+/tppl2bvo26klD1wxgDN7tU10WNVSPBNJFyAr4nk2MLysMuHVxy4gGciVNBx4CugGXBNuj+aYAEi6HrgeIDU19SvbGzRoQI8ePY6jWs652mz99r3c9/qnzFm1lY4tG/O7Kwdy2eAuJNXzlouyVNvOdjNbDPSX1Bd4WtLrx7j/Y8BjENz+G4cQnXO1SN7egzz01lr+sfgLGtWvx49H9+G6s0+kScOaNclUIsQzkeQAXSOep4TrSiuTLak+0ArIiyxgZqsl7QVOifKYzjkXtfyCIp56bwOPzlvH/oIirhrWlVvP70O7Fo0SHVqNEc9EshToLakHwZf9JODqEmVmAdcCi4ArgLfNzMJ9ssLmrG7AycBGYGcUx3TOuQoVFxsvZeTwu9lr2LQrnwv6tueOi06mV/vaP6RJZYtbIgmTwE3AbCAJeMrMVkq6F0g3s1nAk8B0SZnADoLEAHA2cIekAqAY+IGZ5QKUdsx41cE5Vzu9vy6XX7+2mk9ydnNql1b8/huDOKNncqLDqrHq7BApzrm6J3PbHn7z2qe89ek2urRuwu1jTmLcwM7U8470UvkQKc45F9q2O58/vrWWGUuzaNogiZ+OPZlvn9Wdxg28I70yeCJxztVauw4U8Nd31vG39zZSUFTMNad34+bzepHc3DvSK5MnEudcrXPgUBFPL9rIo/PXsetAAeMGdua2C/vQvW2zRIdWK3kicc7VGgVFxTyXnsUf565l256DjDqpHT8ecxL9O7dKdGi1micS51yNV1xsvLJiM/9vzho25u0nrdsJPHz1EIb1aJPo0OoETyTOuRrLzJj/2XYeeGMNqzbv5uSOLXjy2jTOO7m9D8ZahTyROOdqpA8/38H9b6xhyYYddG3ThAcnDuLSgZ19TKwE8ETinKtRPt2ym9/NXsPc1dto27wRvxjfn4mnpdKwflynV3Ll8ETinKsRvsjbz4NzP+PFjByaN6rP7WNO4ttndadpQ/8aSzR/B5xz1VrWjv08Mi+TFz7MJqmeuP7cE/n+iJ60btow0aG5kCcS51y1lLPzAI/My+T59CyE+Obp3fj+yJ50aOmzaVY3nkicc9XK5l0H+PO8dcxcmoVhTDotlR+M6kmnVk0SHZorgycS51y1sG13Pn+ev45nl3xBcbHxjdO6cuOoXnRp7QmkuvNE4pxLqO17DvKXd9bx9w8+p7DYuHJoCjeO6kXXNk0THZqLkicS51xC5O09yF8XrOeZRRspKDIuG9yFm8/rRbdkHw+rpvFE4pyrUjv2HeKxMIHkFxQxYVAXbj6/Nz18QMUayxOJc65K5O09yJMLN/D0+xvZX1DEuIGdueX83vRs1zzRobkYeSJxzsXV1t35PL5gPf9Y/AX5hUVcfGonbj2/N707+NzotYUnEudcXGR/uZ+/vLOO59KzKSo2xg/qzA9G9qJXe78CqW3imkgkjQX+CCQBT5jZfSW2NwKeAYYCecBEM9so6ULgPqAhcAi43czeDveZD3QCDoSHGW1m2+JZD+dc9Dbk7uPP8zJ58eMcJLhiaFe+P6Inqcl+F1ZtFbdEIikJeAS4EMgGlkqaZWarIopdB3xpZr0kTQLuByYCucClZrZJ0inAbKBLxH6TzSw9XrE7547dmi17eGReJq8s30SDpHp88/Ru3DDiRP8hYR0QzyuSYUCmma0HkDQDGA9EJpLxwNRw+QXgYUkys48jyqwEmkhqZGYH4xivc+44rMjexcPz1jJ75VaaNUzie+eeyHfPPpF2LXxe9LoinomkC5AV8TwbGF5WGTMrlLQLSCa4IjnscuCjEknkb5KKgP8DfmlmVvLkkq4HrgdITU2NsSrOuZI+/HwHf3o7k/lrttOycX1uOb833z6zOyc088EU65pq3dkuqT9Bc9foiNWTzSxHUguCRHINQT/LUczsMeAxgLS0tK8kGufcsTMz3l+Xx8NvZ7JofR5tmjXk9jEncc0Z3WjZuEGiw3MJEs9EkgN0jXieEq4rrUy2pPpAK4JOdySlAC8CU8xs3eEdzCwn/HePpGcJmtC+kkicc5WnqNh445Mt/HXBOpZn76J9i0b8/OK+XD081ecDcXFNJEuB3pJ6ECSMScDVJcrMAq4FFgFXAG+bmUlqDbwK3GFm7x0uHCab1maWK6kBcAkwN451cK5Oyy8o4oUPs3n83fV8nrefHm2b8evLTuXrQ7rQuEFSosNz1UTcEknY53ETwR1XScBTZrZS0r1AupnNAp4EpkvKBHYQJBuAm4BewF2S7grXjQb2AbPDJJJEkEQej1cdnKurdu4/xN8/+Jxp728kd+8hBnZtzZ0XncyF/Tr6nOjuK1RKP3Wtk5aWZunpfrewcxXZtPMATy7cwD+XfMH+Q0WMPKkd/zWiJ8N7tEHyBFLXSPrQzNIqKueNm8451mzZw18XrGNWxiYMGDewM9efeyJ9O7VMdGiuBvBE4lwdZWYs2bCDv7yzjnlrttOkQRLXnNGN687uQcoJ/it0Fz1PJM7VMUXFxpurtvKXd9aRkbWT5GYN+dGFffjm6d38NyDuuHgica6O2HuwkOfTs5j2/kY+z9tPapum/GLCKVw5NMXvwHIx8UTiXC2Xs/MAT7+/kX8u+YI9+YUMSW3NT8aczJj+HaifVC/R4blawBOJc7XUR198yZMLN/DGJ1sAuOiUjlx3dg8Gp56Q4MhcbeOJxLlapLComNkrt/LEwvV8/MVOWjSuz3fP7sGUM7vTpbWPwuviwxOJc7XA7vwCZi4J+j9ydh6gW3JTpl7ajyvTutKskf83d/HlnzDnarDP8/bxt/c28nx6FvsOFTG8RxvuvrQf5/ft4L9Ad1XGE4lzNYyZsXjDDv723gbmrNpKksSlAztz3dk9OKVLq0SH5+ogTyTO1RD7DhbyUkYOz7z/OWu27qF10wb8YGRPppzRnQ4tGyc6PFeHeSJxrprbkLuP6Ys+5/kPs9iTX0j/zi357RUDGDews//+w1ULnkicq4aKio13PtvG0+9/zjufbadBkvjaqZ2YckZ3hqS29gEUXbXiicS5amTn/kM8n57N9A8+54sd++nQshG3XdiHScO60r6FN1+56skTiXPVwKpNu3lm0UZeysghv6CYYd3b8JOxJzGmf0ca+K/PXTXnicS5BCkoKuaNT7bwzKKNLN34JY0b1OOywV245vTu9Ovsw7e7msMTiXNVLGvHfv655AueS88md+9BUts05ecX9+XKoV1p1bRBosNz7ph5InGuChQWFfPWp9t4dvEXLFi7HQHnndyeycO7MaJPO+r5jwddDeaJxLk4ytl5gJlLvmBmehZbdx+kQ8tG3Hxebyad1pXOPvaVqyXimkgkjQX+CCQBT5jZfSW2NwKeAYYCecBEM9so6ULgPqAhcAi43czeDvcZCkwDmgCvAbdcJ18VAAAZ0ElEQVRaXZh43tUYRcXG/DXB1ce8NdswYESfdvxifCrnndzeh253tU7cEomkJOAR4EIgG1gqaZaZrYoodh3wpZn1kjQJuB+YCOQCl5rZJkmnALOBLuE+jwLfAxYTJJKxwOvxqodz0dq6O5+ZS7OYuTSLnJ0HaNeiEd8f2ZNJp6XStY1PXetqr6gSiaR/AU8Cr5tZcZTHHgZkmtn68BgzgPFAZCIZD0wNl18AHpYkM/s4osxKoEl49dIGaGlmH4THfAaYgCcSlyDFxca7mbn844PPeevTbRQVG+f0bsvPL+7LBf06+K27rk6I9orkz8C3gYckPQ/8zczWVLBPFyAr4nk2MLysMmZWKGkXkExwRXLY5cBHZnZQUpfwOJHH7EIpJF0PXA+QmppaQajOHZucnQd4IT2b5z/MIvvLAyQ3a8h3z+nBVael0r1ts0SH51yViiqRmNlcYK6kVsBV4XIW8DjwdzMriEdwkvoTNHeNPtZ9zewx4DGAtLQ070NxMTtYWMSclVt5Lj2LhZm5mMHZvdryk7HBtLWN6vu4V65uirqPRFIy8E3gGuBj4B/A2cC1wMhSdskBukY8TwnXlVYmW1J9oBVBpzuSUoAXgSlmti6ifEoFx3SuUq3atJvn0rN4KSOHnfsL6NK6Cbec15srhqZ434dzRN9H8iJwEjCdoBN8c7hppqT0MnZbCvSW1IPgy34ScHWJMrMIEtEi4ArgbTMzSa2BV4E7zOy9w4XNbLOk3ZJOJ+hsnwL8KZo6OHcsdu0vYNayHGamZ/FJzm4aJtVjdP8OTDytK2f2bOuTRjkXIdorkofMbF5pG8wsrYz1hZJuIrjjKgl4ysxWSroXSDezWQQd+NMlZQI7CJINwE1AL+AuSXeF60ab2TbgB/zn9t/X8Y52V0mKi41F6/OYuTSLN1Zu4VBhMX07tWTqpf2YMLgLrZs2THSIzlVLiuYnGJK+XsrqXcCK8Mu9WktLS7P09LIunFxdV7LjvGXj+kwY3IVvpHX1GQddnSbpw7IuFiJFe0VyHXAGcPiqZCTwIdBD0r1mNv24onQuQfYeLOT1FZt58eMcFq3PwwzO6pXM7WOCEXd9wijnohdtImkA9DWzrQCSOhD8In04sICg78S5aq2o2HgvM5d/fZTNGyu3kF9QTLfkptx6fm8uH+Id584dr2gTScrhJBLaBnQ1sx2S4nLrr3OVZc2WPfzro2xeyshh6+6DtGxcn68PSeHyIV0YknqCzzboXIyiTSTzJb0CPB8+vzxc1wzYGZfInIvB9j0HmbVsE//6KJuVm3ZTv54YeVI77r40hfNObu9NV85VomgTyY3A1wl+NwJBs9b/hYMljopHYM4dq/yCIuau3sq/Psrhnc+2U1RsDEhpxd2X9uPSgZ1p27xRokN0rlaqMJGEgy/ONbNRwP/FPyTnoldcbCzesIN/Z+Tw6orN7MkvpGPLxlx/7ol8fXAXendokegQnav1KkwkZlYkqVhSKzPbVRVBOVceM2NFzi5mZWzi5eWb2Lr7IE0bJjH2lI5cPiSF009M9h8MOleFom3a2guskPQmsO/wSjO7JS5ROVeKzG17mbVsEy8v28SG3H00SBIj+rTnZxd35oK+7Wna0Odpcy4Rov2f96/w4VyV2rTzAC8v28SsZZtYuWk3EpxxYjI3nHsiY0/p6L82d64aiHb036clNQFSoxg+3rmY7Nh3iFdXbObljE0s2bgDgIEprfjfS/pxyYBOdGjZOMEROuciRTto46XA7wimvu0haRBwr5mNi2dwru7Ye7CQN1dtYVbGJt5dm0thsdGzXTNuu7AP4wZ29jk+nKvGom3amkow4+F8ADPLkHRinGJydcTeg4W8tXorryzfzDufbedQYTFdWjfhunN6MG5gZ/p1auk/FnSuBog2kRSY2a4S/6mjnXLXuSP25Bfw1uptvLriP8mjQ8tGXD0slYsHdGJo6gnU8zuunKtRok0kKyVdDSRJ6g3cArwfv7BcbbInv4C5q7fy6vItLFh7dPK4ZEAnhnjycK5GizaR3Az8DDgI/JNgjpFfxCsoV/MdlTw+286hoiB5TB6eysWnevJwrjaJ9q6t/QSJ5GfxDcfVZLvzC3hr9VZeXb6ZBZ/lcqiomI4tGzP5dE8eztVm0d611Qf4MdA9ch8zOy8+YbmaYtuefN5ctZXZK7eyaF0uBUVGx5aN+ebp3bh4QEcGd/Xk4VxtF23T1vPAX4AngKL4heNqgs/z9jF75RZmr9zKR198iRmktmnKt87szthTPHk4V9dEm0gKzezRuEbiqi0zY9Xm3cxeuZU5K7fw6ZY9APTt1JJbz+/NmP4dObljC79V17k6KtpE8rKkHwAvEnS4A2BmO8rbSdJY4I9AEvCEmd1XYnsjgiHphwJ5wEQz2ygpGXgBOA2YZmY3RewzH+gEHAhXja4J88bXNEXFxkdffMnsT7Ywe9UWsnYcQIK0bifw84v7MqZ/R59R0DkHRJ9Irg3/vT1inQFl/igxHH7+EeBCIBtYKmmWma2KKHYd8KWZ9ZI0CbgfmAjkA/8LnBI+SppsZulRxu6ilF9QxKJ1ecxZtYU3V20ld+8hGibV46xeydw4shfn9+1AuxY+p4dz7mjR3rXV4ziOPQzINLP1AJJmAOOByEQynuBX8xBcgTwsSWa2D1goqddxnNcdg2178pn36Tbmrt7GwrW5HCgoolnDJEad3J4x/Tsy8qR2tGjcINFhOueqsXITiaSfmNlvw+Urzez5iG2/NrP/KWf3LkBWxPNsYHhZZcysUNIuIBnIrSDuv0kqIpho65fhTI0lY78euB4gNTW1gsPVHYf7O95evY25n25jWVYwU3LnVo25YmgK5/dtz+knJvtUtM65qFV0RTIJ+G24fCf/mbMdYCxQXiKJl8lmliOpBUEiuYagn+UoZvYY8BhAWlraVxJNXZJfUMSi9Xm8tXorb6/exqZd+UgwMKU1P7qwD+f37UDfTt5Z7pw7PhUlEpWxXNrzknKArhHPU8J1pZXJllQfaEXQ6V4mM8sJ/90j6VmCJrSvJJK6bvueg2GT1VYWZuay/1ARTRokcU7vtvz3BX0YdXJ77+9wzlWKihKJlbFc2vOSlgK9JfUgSBiTgKtLlJlF0JG/CLgCeLu0ZqrDwmTT2sxyJTUALgHmVhBHnVBcbCzP2cX8NduYv2Y7y7J3YhY0WV0+JIXz+rbnDG+ycs7FQUWJZKCk3QRXH03CZcLn5c4uFPZ53EQwLlcS8JSZrZR0L5BuZrOAJ4HpkjKBHQTJJjiBtBFoCTSUNAEYDXwOzA6TSBJBEnn8WCpcm+TtPciCtdt5Z812FqzNZce+Q0earG67wJusnHNVQ+VcANQaaWlplp5e8+8WLio2lmXvZP6a7byzZhvLc3ZhBsnNGjKiTztGnNSOc3q3o00zn37WORc7SR+aWVpF5aL9HYlLkNy9B1nw2Xbmr9nOu2u38+X+AuoJBnVtzQ8v6MPIk9pxSudWPiSJcy5hPJFUMwVFxWRk7eTdz7Yz/7PtLM/eBUDb5g0ZdXJ7Rp7UnnN6teUEv+pwzlUTnkgSzMxYt30fC9duZ2FmLh+s38Heg4XUEwxOPYEfXdiHkSe1p3/nln7V4ZyrljyRJEDe3oMszMxl4dpc3svMZdOufCAYQXfcoM6c06stZ/ZsS6um/oty51z154mkCuQXFLF04w4Wrs3l3bW5rNoc3PzWsnF9zurVlhvPa8s5vdqRmuyDIDrnah5PJHFQVGys3ryb9zJzWZiZy5INOzhYWEyDJDEk9QR+PLoPZ/dux6ldWpHkzVXOuRrOE0klKC42Ptu2h0Xr8li0Lo/FG3aw60ABAH06NGfy8G6c07stw3q0oVkjf8mdc7WLf6sdh8Md5IvW5/HBujwWrc9jx75DQNDPMbZ/R87omcwZPZPp0LLc320651yN54kkCmbGFzv2B1cc64Orjm17gvm9OrVqzMiT2nHGiUHiSDnB+zmcc3WLJ5JyvPhxNgvX5rFo3X/urGrbvBFn9EzmzJ7JnHFiMt2Sm/oQJM65Os0TSTkeX7CBzbsOcPqJyfzXyCB59GzX3BOHc85F8ERSjmnfOY22zRr5DwGdc64cnkjK0b6Fd5Q751xF6iU6AOecczWbJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOOReTuCYSSWMlrZGUKemOUrY3kjQz3L5YUvdwfbKkeZL2Snq4xD5DJa0I93lI/utA55xLqLglEklJwCPARUA/4CpJ/UoUuw740sx6AX8A7g/X5wP/C/y4lEM/CnwP6B0+xlZ+9M4556IVzyuSYUCmma03s0PADGB8iTLjgafD5ReA8yXJzPaZ2UKChHKEpE5ASzP7wMwMeAaYEMc6OOecq0A8E0kXICvieXa4rtQyZlYI7AKSKzhmdgXHdM45V4VqbWe7pOslpUtK3759e6LDcc65WiueiSQH6BrxPCVcV2oZSfWBVkBeBcdMqeCYAJjZY2aWZmZp7dq1O8bQnXPORSueiWQp0FtSD0kNgUnArBJlZgHXhstXAG+HfR+lMrPNwG5Jp4d3a00B/l35oTvnnItW3Eb/NbNCSTcBs4Ek4CkzWynpXiDdzGYBTwLTJWUCOwiSDQCSNgItgYaSJgCjzWwV8ANgGtAEeD18OOecSxCVcwFQa6SlpVl6enqiw3DOuRpF0odmllZRuVrb2e6cc65qeCJxzjkXE08kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xM4ppIJI2VtEZSpqQ7StneSNLMcPtiSd0jtt0Zrl8jaUzE+o2SVkjKkJQez/idc85VrH68DiwpCXgEuBDIBpZKmmVmqyKKXQd8aWa9JE0C7gcmSuoHTAL6A52BuZL6mFlRuN8oM8uNV+zOOeeiF88rkmFAppmtN7NDwAxgfIky44Gnw+UXgPMlKVw/w8wOmtkGIDM8nnPOuWomnomkC5AV8Tw7XFdqGTMrBHYByRXsa8AcSR9Kur6sk0u6XlK6pPTt27fHVBHnnHNlq4md7Web2RDgIuBGSeeWVsjMHjOzNDNLa9euXdVG6JxzdUg8E0kO0DXieUq4rtQykuoDrYC88vY1s8P/bgNexJu8nHMuoeKZSJYCvSX1kNSQoPN8Vokys4Brw+UrgLfNzML1k8K7unoAvYElkppJagEgqRkwGvgkjnVwzjlXgbjdtWVmhZJuAmYDScBTZrZS0r1AupnNAp4EpkvKBHYQJBvCcs8Bq4BC4EYzK5LUAXgx6I+nPvCsmb0Rrzo455yrmIILgNotLS3N0tP9JyfOOXcsJH1oZmkVlauJne3OOeeqEU8kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xM4ppIJI2VtEZSpqQ7StneSNLMcPtiSd0jtt0Zrl8jaUy0x3TOOVe14pZIJCUBjwAXAf2AqyT1K1HsOuBLM+sF/AG4P9y3HzAJ6A+MBf4sKSnKYzrnnKtC9eN47GFAppmtB5A0AxgPrIooMx6YGi6/ADwsSeH6GWZ2ENggKTM8HlEcs/I8Owm+3BCXQzvnXJW4YQHUbxTXU8QzkXQBsiKeZwPDyypjZoWSdgHJ4foPSuzbJVyu6JgASLoeuB4gNTX1+GrQpgfUb3h8+zrnXLWguJ8hnokkoczsMeAxgLS0NDuug4z9TWWG5JxztVI8O9tzgK4Rz1PCdaWWkVQfaAXklbNvNMd0zjlXheKZSJYCvSX1kNSQoPN8Vokys4Brw+UrgLfNzML1k8K7unoAvYElUR7TOedcFYpb01bY53ETMBtIAp4ys5WS7gXSzWwW8CQwPexM30GQGAjLPUfQiV4I3GhmRQClHTNedXDOOVcxBRcAtVtaWpqlp6cnOgznnKtRJH1oZmkVlfNftjvnnIuJJxLnnHMx8UTinHMuJp5InHPOxaROdLZL2g58fpy7twVyKzGcmsDrXDfUtTrXtfpCbHXOBTCzsRUVrBOJJBaS0qO5a6E28TrXDXWtznWtvlB1dfamLeecczHxROKccy4mnkgq9liiA0gAr3PdUNfqXNfqC1VUZ+8jcc45FxO/InHOORcTTyTOOedi4okkJGmspDWSMiXdUcr2b0naLikjfHw3EXFWlorqG5b5hqRVklZKeraqY6xsUbzHf4h4fz+TtDMRcVamKOqcKmmepI8lLZf0tUTEWZmiqHM3SW+F9Z0vKSURcVYWSU9J2ibpkzK2S9JD4euxXNKQSg/CzOr8g2BI+nXAiUBDYBnQr0SZbwEPJzrWKqxvb+Bj4ITweftExx3vOpcofzPBNAUJjz3O7/NjwPfD5X7AxkTHXQV1fh64Nlw+D5ie6LhjrPO5wBDgkzK2fw14nWDO3dOBxZUdg1+RBIYBmWa23swOATOA8QmOKZ6iqe/3gEfM7EsAM9tWxTFWtmN9j68C/lklkcVPNHU2oGW43ArYVIXxxUM0de4HvB0uzytle41iZgsI5nMqy3jgGQt8ALSW1KkyY/BEEugCZEU8zw7XlXR5eGn4gqSupWyvKaKpbx+gj6T3JH0gqcJhEqq5aN9jJHUDevCfL5uaKpo6TwW+KSkbeI3gSqwmi6bOy4Cvh8uXAS0kJVdBbIkS9Wf/eHkiid7LQHczGwC8CTyd4HjirT5B89ZIgr/OH5fUOqERVZ1JwAsWzspZy10FTDOzFIImkOmSavv3wo+BEZI+BkYAOUBdeK/jprZ/YKKVA0ReYaSE644wszwzOxg+fQIYWkWxxUOF9SX4q2WWmRWY2QbgM4LEUlNFU+fDJlHzm7UgujpfBzwHYGaLgMYEA/3VVNH8X95kZl83s8HAz8J1Nf7GinIcy2f/uHgiCSwFekvqIakhwRfJrMgCJdoUxwGrqzC+ylZhfYGXCK5GkNSWoKlrfVUGWcmiqTOSTgZOABZVcXzxEE2dvwDOB5DUlyCRbK/SKCtXNP+X20Zcdd0JPFXFMVa1WcCU8O6t04FdZra5Mk9QvzIPVlOZWaGkm4DZBHd9PGVmKyXdC6Sb2SzgFknjgEKCjq1vJSzgGEVZ39nAaEmrCC77bzezvMRFHZso6wzBF88MC293qcmirPOPCJotf0jQ8f6tmlz3KOs8EviNJAMWADcmLOBKIOmfBHVqG/Z13Q00ADCzvxD0fX0NyAT2A9+u9Bhq8GfGOedcNeBNW84552LiicQ551xMPJE455yLiScS55xzMfFE4pxzLiaeSFyNJGlvFGX+W1LTSjznBEn9KvF478ew797w386SXiinXGtJPzje8zgXDU8krjb7b+CYEomkpHI2TyAY8K9SmNmZlXCMTWZ2RTlFWgOeSFxceSJxNZqkkeGcEi9I+lTSP8Jf8N4CdAbmSZoXlh0taZGkjyQ9L6l5uH6jpPslfQRcKel7kpZKWibp/yQ1lXQmwYgGD4TzlfSUNCgc0HK5pBclnRAeb76CuU3SJa2WdJqkf0laK+mXEbHvjVj+qaQV4TnvK6WePcLYV5Q4RvfD81BI6i9pSRjfckm9gfuAnuG6ByQ1VzAXx0fhscZHHGe1pMcVzD8zR1KTcFsvSXPD2D6S1DNcf3v4Oi2XdE+lvrGuZkn0WPr+8MfxPIC94b8jgV0E4wfVIxja5Oxw20agbbjcluBXzM3C5z8F7ooo95OIYydHLP8SuDlcngZcEbFtOTAiXL4XeDBcng/cHy7fSjA0eyegEcEYZskl6nAR8D7QNHzeppT6zgKmhMs3RuzbnXAeCuBPwORwuSHQJHJ7uL4+0DLiNckkmKeiO8GoDYPCbc8B3wyXFwOXhcuNCa7yRhPMZaLwdX8FODfRnwt/JObhQ6S42mCJmWUDSMog+FJcWKLM6QTNUu9JguCLNnI8rZkRy6eEf/W3BpoTDLdxFEmtgNZm9k646mmCCZMOOzzkygpgpYVjG0laTzCAXuRwMxcAfzOz/QBmVtrcEmcBl4fL04H7SymzCPiZghn//mVma8O6HhU68GtJ5wLFBMOJdwi3bTCzjHD5Q6C7pBZAFzN7MYwtP6zHaIJk8nFYvjnBoJ4LSonL1XKeSFxtcDBiuYjSP9cC3jSzq8o4xr6I5WnABDNbJulbhINXHmdMxSXiKy4jvmiUO56RmT0raTFwMfCapBv46kCbk4F2wFAzK5C0keAqIzJmCF7HJuWcTsBvzOyvxxC/q6W8j8TVZnuAFuHyB8BZknoBSGomqU8Z+7UANktqQPDF+5Xjmdku4EtJ54TbrgHe4fi8CXz78B1mktqUUuY9ggElKRHTEZJOBNab2UPAv4EBHP0aQDAL4rYwiYwCupUXmJntAbIlTQjP0SiMczbwnYh+pi6S2kdVW1freCJxtdljwBuS5pnZdoIRm/8paTlBM9DJZez3vwT9Au8Bn0asnwHcLunjsMP5WoLO9+XAIIJ+kmNmZm8QNIWlh01zPy6l2K3AjZJWUPbsdt8APgmPcQrB9Kp5BM15n0h6APgHkBYeZ0qJ+pXlGoLRr5cT9OV0NLM5wLPAovBYL3B0wnJ1iI/+65xzLiZ+ReKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xMPJE455yLyf8HByXLL4ekyaQAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 3, "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX9//HXm7DvEnbCJosCyhpxF3ABrApYtaBUbGur39btW1tb/bZfRbtpbX+1rdbWrShtBfWrFhcEURBRBKIGEBAJiyZhS4LsBLJ8fn/cCx1iloHJZLJ8no/HPLhz77n3fs7MMJ/cc+6cIzPDOeecO171Eh2Ac865ms0TiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEhdXkqZK+ke43E3SXklJ4fMOkhZK2iPp9wr8XdKXkpYmNvLjJ+lySZlhXYckOp7qpuTnoLqJ/My66HgiqaYkbZJ0IPwPd/jxcKLjioWZfWFmzc2sKFx1A5ALtDSzHwHnABcBKWY2PFFxVoLfATeHdf24qk8uySTtK/HZ+Ukcz/ctSYtKrJsm6VCJGJZDqZ8DV8PVT3QArlyXmdm8eJ5AUn0zK4znOcrRHVht//lVbHdgk5ntO9YDJbgeJXUHVpW2oQrjHGRmGVVwnvL81sx+nuAYqg1JSbU1efoVSQ10+C9ASb8Lm4E2Sro4YnsrSU9K2iIpW9IvI5qTviXpPUl/kJQHTJWUFDYt5YbHujn8q7a+pKskfVji/LdL+ncZsfWU9E7YXPUm0DZiW4+I404DrgN+Ev61eiPwBHBm+PzecJ9LJaVL2inpfUkDI463SdJPJa0A9oXH7Szp/yTlhHW5NaL8VEnPSXomjG+VpNSI7V0lvRjumxd5BSjpO5LWhK/3HEndS6l7I0l7gSRguaT15cTZT9KCsF6rJI2LOM40SX+RNDt8Ld6T1FHSQ+H5Pz3eJjNJr0v6fcTzGZKeCpd7SXo7rHuupH9Kal3e6yOpH/DXiPdtZxQxHPkchM976j9NnPMkPaKIpiVJZ4Tv/U5JyyWNjNi2QNIvwtdoj6S5ktqG2xpL+kcY605JyyR1CLd1ljRL0g5JGZK+V0assyXdXGLdcklfD5dPlvRmeJy1kr4RUW6apEfD13wfMKqi16bGMjN/VMMHsAm4sIxt3wIKgO8RfGl9H9gMKNz+EvA3oBnQHlgK3BixbyFwC8EVaRPgv4DVQApwAjAPsHB7I2AH0C/i/B8DV5QR22Lg/4X7nQfsAf4Rbutx+Ljh82nAL0vUa1HE8yHAduD0sJ7Xha9Lo4jXKB3oGtajHvAhcDfQEDgR2ACMCctPBfKBr4XH+w3wQbgtCVgO/CF83RoD54TbxgMZQL/wNfk58H45750BvUu8l5FxNgiP9z9hnOeHr9NJEa9LLjAsjONtYCMwJYzzl8D8aM9fYlvH8DU9H5gcvj4twm29CZoWGwHtgIXAQ1G8Pke9b6W9tyW2lfwcLCZoDmxI0Ly5m/98ZroAeeF7Vi+MLw9oF25fAKwH+oav7QLg/nDbjcArQNMw/mEEzaiEdftLWI/BQA5wfsTn5PD5pwDvRcTeH9gZvkbNgEzg2+HnYkj4vvWPeA12AWeHsTdO9PdK3L6vEh2AP8p4Y4Ivn73hh/bw43vhtm8BGRFlm4b/MTsCHYCDQJOI7Vcf/uIJ9/2ixLneJkw04fMLS/xHfxT4Vbg8APiS8Mu8xHG6ESSpZhHr/sXxJ5JHgV+UOMdaYETEa/SdiG2nl1K3u4C/h8tTgXkR2/oDB8LlM8Mvk/ql1Gs2cH3E83rAfqB7Ge9daYkkMs5zga1AvYh1zwJTI16XxyO23QKsiXh+KrCznM+OEXwZR352xkRsv4LgCzCXMBmUcZwJwMdRvD5HvW8RdcgvEcPTJT8HEZ+ZphH7/iPiM/NTYHqJY88BrguXFwA/j9j2A+CNcPk7wPvAwBL7dwWKCBNouO43wLSIz8nh87cA9h1+r4FfAU+FyxOBd0sc+2/APRGvwTOxfA/UlIc3bVVvE8ysdcTj8YhtWw8vmNn+cLE5Qft8A2BLeDm/k+DD3T5i38wS5+lcYl3J7U8D10gScC3wnJkdLCXezsCXdnQfx+flV7Fc3YEfHa5HWJeu4XlKi7U70LlE+f8hSK6HbY1Y3g80DptYugKfW+n9F92BP0Yccwcggr+WoxUZZ2cg08yKI9Z9XuJ42yKWD5TyvHkF5xta4rMzJ2LbKwR/oa81syOd5AruopuhoDl0N8EX+uGmyfJen7L8rkQM15VSpjOwI+IzDF99T68q8Z6eA3SKKFPyPT382kwnSDozJG2W9FtJDSLOuSdiv5KvPwBhmdeASeGqq4F/RsR2eonYJhP8QVdaXWot72yvfTIJrkjalvOfvuSQz1sImrUO63pUYbMPJB0i+Ev6mvBRmi3ACZKaRSSTbqWcL1qZBFdCvyqnTOSxM4GNZtbnOM/VTaV3hh+O45+l7BetyDg3A10l1YtIJt2Az2I4/rH4FbAG6CnpajN7Nlz/6zDOU81sh6QJwOF+ovJen1iGEN8CtJHUNCKZRH7+MgmuSErtwyiPmRUA9wL3SuoBvE5wRTs3PGeLiGTSDcgu41DPAvdIWkjQFDY/IrZ3zOyi8sI41rhrIr8iqWXMbAvBf5TfS2opqV7YiTqinN2eA26T1CXsXP1pKWWeIfhSKYj8K7bEuT8H0gj+4zaUdA5wWQzVeRz4L0mnK9BM0iWSWpRRfimwR0HHdhMFNxGcIum0KM61lOBL7f7wPI0lnR1u+ytwl6QBcORmhqtiqNcSgr+cfyKpQdh5fBkwI4ZjRkXSeQRt+lMI+pz+LOnwX+ItCJpTd4Xr7ojYtbzXZxuQIqnhscYT8ZmZGn5mzuToz8w/gMskjQnfz8aSRkpKKfWAR9d1lKRTFdxospugX7HYzDIJmrx+Ex5vIHB9eK7SvE5w9XEfMDMi+b8K9JV0bfg+NpB0moIbEOoUTyTV2ys6+j78l6LcbwpBx+Vqgv6MFzi6KaCkxwmSzwqCjvTXCdqtI29VnA6cQtn/2Q67hqCvYgdwD0ECOi5mlkZwQ8HDBPXIIGiPL6t8EXApQefpRoI+gCeAVlGcq4jgC6w38AWQRdAGjpm9BDxA0ESyG/gEuLiMQ1XIzA6F57o4jPEvwBQz+/R4j1mK5SU+Ow9JaknwftxsZtlm9i7wJPD3sNnyXmAoQQfxa8CLETGX+foQ9LGtArZKyo2I4SclYojcFmkyQR9MHsGNBDMJrqoJv/THEzRR5hBcBdxBdN9dHQk++7sJrsDeIfgcQ9BE1YPg6vAlgn6NUm+1D5txXyToO/xXxPo9wGiCZq/NBE1sDxB0xNcph+/yce4IBbcS/9XMukesa0Jwt89QM1uXsOBcrSdpJvCpmd2T6FhcdPyKxBE2A31Nwe8buhBcSZS8+vk+sMyTiKtsYXNQr7AZdizBFcjLiY7LRc872x0EdyDdS9CkcICgWePuIxulTWGZCYkIztV6HQmajpIJmsy+bwkYWsYdP2/acs45FxNv2nLOOReTOtG01bZtW+vRo0eiw3DOuRqjbdu2zJkzZ46Zja2obJ1IJD169CAtLS3RYTjnXI2icADMinjTlnPOuZh4InHOORcTTyTOOediUif6SEpTUFBAVlYW+fn5iQ6lzmvcuDEpKSk0aNAg0aE4545DnU0kWVlZtGjRgh49ehAMM+QSwczIy8sjKyuLnj17Jjoc59xxiGvTlqSxCqafzJB0ZynbG0maGW5fEg71jKThCqZXTVcwreXlEftskrQy3Hbct2Ll5+eTnJzsSSTBJJGcnOxXhs7VYHG7IgmHbn6EYGrMLGCZpFlmtjqi2PUEEyH1ljSJYOTMiQSjq6aaWaGkTgQjmb4SMQ/CKDMrayTRY4kx1kO4SuDvg3M1WzyvSIYTTAe7IRw2ewbBYGyRxhPMvgfBcM8XSJKZ7Y9IGo2pI5PDOOdcZfl0624eeONTqmIYrHgmki4cPc1kFl+dyvJImTBx7CIYuI1wMqNVwErgvyISiwFzJX0o6YayTi7pBklpktJycnIqpUKVrXnzo2dLnTZtGjfffPMxHSM9PZ3XX3+9MsM6yrRp02jXrh2DBw9m8ODBTJky5ZiPsWDBAi699NI4ROecKym/oIgH53zKpX9axMxlmWzZFf9m42rb2W5mS4AB4WxjT0uabWb5wDlmli2pPfCmpE/NbGEp+z8GPAaQmppaK69oCgsLSU9PJy0tja997Wulbq9fP/a3eOLEiTz88MMVF3TOJdR7Gbn87KWVbMrbzxVDU/jZJf1o0+yYJ648ZvG8Isnm6LmXU/jqnMhHykiqTzCTXV5kATNbQzD95ynh8+zw3+0Ec2YMj0PsCffKK69w+umnM2TIEC688EK2bdsGwNSpU7n22ms5++yzufbaa7n77ruZOXMmgwcPZubMmV/ZXlRUxB133MFpp53GwIED+dvf/nbkHA8++OCR9ffcc2xzCKWnp3PGGWcwcOBALr/8cr788ksAMjIyuPDCCxk0aBBDhw5l/fr1R+23bNkyhgwZ8pX1zrnjt2PfIX703HImP7EEgH9+93R+/41BVZJEIL5XJMuAPpJ6EiSMSQTTsEaaRTBv9GLgSuBtM7Nwn8yws707cDKwSVIzoJ6Z7QmXRxPMoxyTe19ZxerNu2M9zFH6d27JPZcNKLfMgQMHGDx48JHnO3bsYNy4cQCcc845fPDBB0jiiSee4Le//S2///3vAVi9ejWLFi2iSZMmTJs2jbS0tCNXDFOnTj1q+2OPPUarVq1YtmwZBw8e5Oyzz2b06NGsW7eOdevWsXTpUsyMcePGsXDhQs4777yvxDlz5kwWLQqmab/tttv49re/zZQpU/jzn//MiBEjuPvuu7n33nt56KGHmDx5MnfeeSeXX345+fn5FBcXk5kZtHC+//773HLLLfz73/+mW7dusb/IztVxZsbL6dn84tU17D5QwE2jenHL+X1o3CCpSuOIWyIJk8DNwBwgCXjKzFZJug9IM7NZBPNFT5eUQTDH96Rw93OAOyUVAMXAD8wsV9KJwEvhXT71gX+Z2RvxqkO8NWnShPT09CPPDycFCH7nMnHiRLZs2cKhQ4eO+o3FuHHjaNKkSZnHjdw+d+5cVqxYwQsvvADArl27WLduHXPnzmXu3LkMGTIEgL1797Ju3bpSE0nJpq1du3axc+dORowYAcB1113HVVddxZ49e8jOzubyy4O7tRs3bnxknzVr1nDDDTcwd+5cOnfufGwvlHPuK77I28/PXl7Ju+tyGdy1NfdfcSond2yZkFji2kdiZq8Dr5dYd3fEcj5wVSn7TQeml7J+AzCosuOs6MohEW655RZuv/12xo0bx4IFC5g6deqRbc2aNSt338jtZsaf//xnxowZc1SZOXPmcNddd3HjjTcetf6RRx7h8ccfB6jUTvxOnTqRn5/Pxx9/7InEuRgUFBXz5KKNPDTvM+rXq8d94wcw+fTuJNVL3G30PtZWNbVr1y66dAlucnv66afLLNeiRQv27NlT5vYxY8bw6KOPUlBQAMBnn33Gvn37GDNmDE899RR79+4FIDs7m+3bt3PTTTeRnp5Oenp6mV/4rVq14oQTTuDdd98FYPr06YwYMYIWLVqQkpLCyy8H020fPHiQ/fv3A9C6dWtee+017rrrLhYsWHBsL4ZzDoDlmTsZ9/B73D/7U87r0443bz+PKWf2SGgSAU8k1dbUqVO56qqrGDZsGG3blj0lwKhRo1i9evWRzvaSvvvd79K/f3+GDh3KKaecwo033khhYSGjR4/mmmuu4cwzz+TUU0/lyiuvLDchlfT0009zxx13MHDgQNLT07n77uBCc/r06fzpT39i4MCBnHXWWWzduvXIPh06dODVV1/lpptuYsmSJcfwajhXt+09WMi9r6xiwl/eY8e+g/z1m8N4bEoqnVqV3cRdlerEnO2pqalWcmKrNWvW0K9fvwRF5Ery98O50s1bvY27//0JW3bn883Tu3PH2JNo2bhqBjiV9KGZpVZUrtr+jsQ55+qyzTsP8ItXVzP7k6307dCcF645i2HdT0h0WKXyROKcc9XIocJinnpvI396ax3FZtwx5iS+d+6JNKxffXsiPJE451w18f76XO7+9yoytu/lwn4duOey/nRt0zTRYVXIE4lzziXY9t35/PK1NcxavpmubZrw5HWpXNCvQ6LDiponEuecS5DComKeXvw5f3jzMw4VFnPr+b35wajeVf7L9Fh5InHOuQRI27SDn7/8CZ9u3cN5fdtx77gB9Gxb/o+Nq6vq23tTy40aNYo5c+Ycte6hhx7i+9//PqtWreL888/npJNOolevXtxzzz0UFxcDXx3WffDgwaxevbq0UzjnqqG8vQe54/nlXPnXxew6UMCjk4fy9LdPq7FJBDyRJMzVV1/NjBkzjlo3Y8YMJk2axLhx47jzzjtZu3YtK1euZOnSpfzxj388Um7ixIlHfn2enp5O//79qzp859wxKio2/vHB55z/+3d46eNsbhxxIvNuH8HFp3aq8bOEeiJJkCuvvJLXXnuNQ4cOAbBp0yY2b95MRkbGkRF6AZo2bcrDDz/Mgw8+mMhwnXMxWJ65k8v/8h4/f/kT+nVqwezbzuWui/vRrFHt6F2oHbWI1ew7YevKyj1mx1Ph4vvL3NymTRuGDx/O7NmzGT9+PDNmzOAb3/gGq1atYtiwYUeV7dWrFwcOHGDnzp3A0cO6AyxevLjc0YCdc4mxY98hfjd3Lc8u/YK2zRvxx0mDGTeoc42/AinJr0gSKLJ5a8aMGVx99dVR7VeyacuTiHPVS0FRMU8t2sjIB+czc1km3zqrB2/9aATjB3epdUkE/IokUM6VQzyNHz+eH/7wh3z00Ufs37+fYcOG8fHHH7Nw4dEzB2/YsIHk5GRat26dkDidc9Fb+FkO9726moztezm3T1vuvrQ/fTq0SHRYceVXJAnUvHlzRo0axXe+850jVyOTJ09m0aJFzJs3DwhmUbz11lu59957Exmqc64CG3P38d2nlzHlqaUUFBXz+JRUnvnO8FqfRMATScJdffXVLF++/EgiadKkCbNmzeJXv/oVffv2pW3btpx99tlMnjz5yD6H52g//Hj//fcTFb5zdd6e/AJ+M3sNo//wDovX53HnxScz94fncVH/DrWyGas0Pox8Nffyyy9z++23M3/+fLp3757ocOKmprwfzh1WXGy88FEWv31jLbl7D3LVsBTuGHsS7Vs0rnjnGsKHka8lJkyYwIQJExIdhnMuwoef72DqrNWszN7FkG6tefK6VAZ1rbt9mJ5InHMuSlt2HeD+2Z/y7/TNdGjZiIcmDmb84Np3O++ximsfiaSxktZKypB0ZynbG0maGW5fIqlHuH64pPTwsVzS5dEe81jUhWa9msDfB1fd5RcU8ee31nH+795h9idbuXlUb97+0UgmDKmdt/Meq7hdkUhKAh4BLgKygGWSZplZ5MBQ1wNfmllvSZOAB4CJwCdAqpkVSuoELJf0CmBRHDMqjRs3Ji8vj+TkZP8gJJCZkZeXR+PGtadd2dUexcXGKys289s31pK98wAXn9KR//lavxoxR0hVimfT1nAgw8w2AEiaAYwHIr/0xwNTw+UXgIclycz2R5RpTJBAoj1mVFJSUsjKyiInJ+dYd3WVrHHjxqSkpCQ6DOeOsmRDHr9+fQ3Ls3bRr1NLHrxyIGf1bpvosKqleCaSLkBmxPMs4PSyyoRXH7uAZCBX0unAU0B34NpwezTHBEDSDcANAN26dfvK9gYNGtCzZ8/jqJZzrjbbkLOX+2d/ytzV2+jYsjG/u2oQlw/pQlI9b7koS7XtbDezJcAASf2ApyXNPsb9HwMeg+D23ziE6JyrRfL2HuRPb63jn0u+oFH9evx4dF+uP+dEmjSsWZNMJUI8E0k20DXieUq4rrQyWZLqA62AvMgCZrZG0l7glCiP6ZxzUcsvKOKp9zby6Pz17C8o4urhXbntgr60a9Eo0aHVGPFMJMuAPpJ6EnzZTwKuKVFmFnAdsBi4EnjbzCzcJzNszuoOnAxsAnZGcUznnKtQcbHxcno2v5uzls278rmwX3vuvPhkerev/UOaVLa4JZIwCdwMzAGSgKfMbJWk+4A0M5sFPAlMl5QB7CBIDADnAHdKKgCKgR+YWS5AaceMVx2cc7XT++tz+fXra/gkezendmnF778xmDN7JSc6rBqrzg6R4pyrezK27+E3r3/KW59up0vrJtwx5iTGDepMPe9IL5UPkeKcc6Htu/P541vrmLEsk6YNkvjp2JP59tk9aNzAO9IrgycS51yttetAAX97Zz1/f28TBUXFXHtGd245vzfJzb0jvTJ5InHO1ToHDhXx9OJNPLpgPbsOFDBuUGduv6gvPdo2S3RotZInEudcrVFQVMxzaZn8cd46tu85yKiT2vHjMScxoHOrRIdWq3kicc7VeMXFxqsrt/D/5q5lU95+UrufwMPXDGV4zzaJDq1O8ETinKuxzIwFn+Xw4BtrWb1lNyd3bMGT16Vy/sntfTDWKuSJxDlXI334+Q4eeGMtSzfuoGubJjw0cTCXDersY2IlgCcS51yN8unW3fxuzlrmrdlO2+aN+MX4AUw8rRsN68d1eiVXDk8kzrka4Yu8/Tw07zNeSs+meaP63DHmJL59dg+aNvSvsUTzd8A5V61l7tjPI/MzeOHDLJLqiRvOO5Hvj+hF66YNEx2aC3kicc5VS9k7D/DI/AyeT8tEiG+e0Z3vj+xFh5Y+m2Z144nEOVetbNl1gL/MX8/MZZkYxqTTuvGDUb3o1KpJokNzZfBE4pyrFrbvzucvC9bzr6VfUFxsfOO0rtw0qjddWnsCqe48kTjnEipnz0H++s56/vHB5xQWG1cNS+GmUb3p2qZpokNzUfJE4pxLiLy9B/nbwg08s3gTBUXG5UO6cMv5veme7ONh1TSeSJxzVWrHvkM8FiaQ/IIiJgzuwi0X9KGnD6hYY3kicc5Viby9B3ly0Uaefn8T+wuKGDeoM7de0Ide7ZonOjQXI08kzrm42rY7n8cXbuCfS74gv7CIS07txG0X9KFPB58bvbbwROKci4usL/fz13fW81xaFkXFxvjBnfnByN70bu9XILVNXBOJpLHAH4Ek4Akzu7/E9kbAM8AwIA+YaGabJF0E3A80BA4Bd5jZ2+E+C4BOwIHwMKPNbHs86+Gci97G3H38ZX4GL32cjQRXDuvK90f0oluy34VVW8UtkUhKAh4BLgKygGWSZpnZ6ohi1wNfmllvSZOAB4CJQC5wmZltlnQKMAfoErHfZDNLi1fszrljt3brHh6Zn8GrKzbTIKke3zyjOzeOONF/SFgHxPOKZDiQYWYbACTNAMYDkYlkPDA1XH4BeFiSzOzjiDKrgCaSGpnZwTjG65w7DiuzdvHw/HXMWbWNZg2T+N55J/Ldc06kXQufF72uiGci6QJkRjzPAk4vq4yZFUraBSQTXJEcdgXwUYkk8ndJRcD/Ab80Myt5ckk3ADcAdOvWLcaqOOdK+vDzHfz57QwWrM2hZeP63HpBH759Vg9OaOaDKdY11bqzXdIAguau0RGrJ5tZtqQWBInkWoJ+lqOY2WPAYwCpqalfSTTOuWNnZry/Po+H385g8YY82jRryB1jTuLaM7vTsnGDRIfnEiSeiSQb6BrxPCVcV1qZLEn1gVYEne5ISgFeAqaY2frDO5hZdvjvHkn/ImhC+0oicc5VnqJi441PtvK3hetZkbWL9i0a8fNL+nHN6d18PhAX10SyDOgjqSdBwpgEXFOizCzgOmAxcCXwtpmZpNbAa8CdZvbe4cJhsmltZrmSGgCXAvPiWAfn6rT8giJe+DCLx9/dwOd5++nZthm/vvxUvj60C40bJCU6PFdNxC2RhH0eNxPccZUEPGVmqyTdB6SZ2SzgSWC6pAxgB0GyAbgZ6A3cLenucN1oYB8wJ0wiSQRJ5PF41cG5umrn/kP844PPmfb+JnL3HmJQ19bcdfHJXNS/o8+J7r5CpfRT1zqpqamWluZ3CztXkc07D/Dkoo08u/QL9h8qYuRJ7fivEb04vWcbJE8gdY2kD80staJy3rjpnGPt1j38beF6ZqVvxoBxgzpzw3kn0q9Ty0SH5moATyTO1VFmxtKNO/jrO+uZvzaHJg2SuPbM7lx/Tk9STvBfobvoeSJxro4pKjbeXL2Nv76znvTMnSQ3a8iPLurLN8/o7r8BccfFE4lzdcTeg4U8n5bJtPc38Xnefrq1acovJpzCVcNS/A4sFxNPJM7Vctk7D/D0+5t4dukX7MkvZGi31vxkzMmMGdCB+kn1Eh2eqwU8kThXS330xZc8uWgjb3yyFYCLT+nI9ef0ZEi3ExIcmattPJE4V4sUFhUzZ9U2nli0gY+/2EmLxvX57jk9mXJWD7q09lF4XXx4InGuFtidX8DMpUH/R/bOA3RPbsrUy/pzVWpXmjXy/+YuvvwT5lwN9nnePv7+3iaeT8tk36EiTu/Zhnsu688F/Tr4L9BdlfFE4lwNY2Ys2biDv7+3kbmrt5Ekcdmgzlx/Tk9O6dIq0eG5OsgTiXM1xL6Dhbycns0z73/O2m17aN20AT8Y2YspZ/agQ8vGiQ7P1WGeSJyr5jbm7mP64s95/sNM9uQXMqBzS3575UDGDersv/9w1YInEueqoaJi453PtvP0+5/zzmc5NEgSXzu1E1PO7MHQbq19AEVXrXgica4a2bn/EM+nZTH9g8/5Ysd+OrRsxO0X9WXS8K60b+HNV6568kTiXDWwevNunlm8iZfTs8kvKGZ4jzb8ZOxJjBnQkQb+63NXzXkicS5BCoqKeeOTrTyzeBPLNn1J4wb1uHxIF649owf9O/vw7a7m8ETiXBXL3LGfZ5d+wXNpWeTuPUi3Nk35+SX9uGpYV1o1bZDo8Jw7Zp5InKsChUXFvPXpdv615AsWrstBwPknt2fy6d0Z0bcd9fzHg64G80TiXBxl7zzAzKVfMDMtk227D9KhZSNuOb8Pk07rSmcf+8rVEnFNJJLGAn8EkoAnzOz+EtsbAc8Aw4A8YKKZbZJ0EXA/0BA4BNxhZm+H+wwDpgFNgNdmNzTQAAAZv0lEQVSB26wuTDzvaoyiYmPB2uDqY/7a7Rgwom87fjG+G+ef3N6Hbne1TtwSiaQk4BHgIiALWCZplpmtjih2PfClmfWWNAl4AJgI5AKXmdlmSacAc4Au4T6PAt8DlhAkkrHA7HjVw7lobdudz8xlmcxclkn2zgO0a9GI74/sxaTTutG1jU9d62qvqBKJpBeBJ4HZZlYc5bGHAxlmtiE8xgxgPBCZSMYDU8PlF4CHJcnMPo4oswpoEl69tAFamtkH4TGfASbgicQlSHGx8W5GLv/84HPe+nQ7RcXGuX3a8vNL+nFh/w5+666rE6K9IvkL8G3gT5KeB/5uZmsr2KcLkBnxPAs4vawyZlYoaReQTHBFctgVwEdmdlBSl/A4kcfsQikk3QDcANCtW7cKQnXu2GTvPMALaVk8/2EmWV8eILlZQ757bk+uPq0bPdo2S3R4zlWpqBKJmc0D5klqBVwdLmcCjwP/MLOCeAQnaQBBc9foY93XzB4DHgNITU31PhQXs4OFRcxdtY3n0jJZlJGLGZzTuy0/GRtMW9uovo975eqmqPtIJCUD3wSuBT4G/gmcA1wHjCxll2yga8TzlHBdaWWyJNUHWhF0uiMpBXgJmGJm6yPKp1RwTOcq1erNu3kuLZOX07PZub+ALq2bcOv5fbhyWIr3fThH9H0kLwEnAdMJOsG3hJtmSkorY7dlQB9JPQm+7CcB15QoM4sgES0GrgTeNjOT1Bp4DbjTzN47XNjMtkjaLekMgs72KcCfo6mDc8di1/4CZi3PZmZaJp9k76ZhUj1GD+jAxNO6clavtj5plHMRor0i+ZOZzS9tg5mllrG+UNLNBHdcJQFPmdkqSfcBaWY2i6ADf7qkDGAHQbIBuBnoDdwt6e5w3Wgz2w78gP/c/jsb72h3laS42Fi8IY+ZyzJ5Y9VWDhUW069TS6Ze1p8JQ7rQumnDRIfoXLWkaH6CIenrpazeBawMv9yrtdTUVEtLK+vCydV1JTvOWzauz4QhXfhGalefcdDVaZI+LOtiIVK0VyTXA2cCh69KRgIfAj0l3Wdm048rSucSZO/BQmav3MJLH2ezeEMeZnB272TuGBOMuOsTRjkXvWgTSQOgn5ltA5DUgeAX6acDCwn6Tpyr1oqKjfcycnnxoyzeWLWV/IJiuic35bYL+nDFUO84d+54RZtIUg4nkdB2oKuZ7ZAUl1t/nassa7fu4cWPsng5PZttuw/SsnF9vj40hSuGdmFotxN8tkHnYhRtIlkg6VXg+fD5FeG6ZsDOuETmXAxy9hxk1vLNvPhRFqs276Z+PTHypHbcc1kK55/c3puunKtE0SaSm4CvE/xuBIJmrf8LB0scFY/AnDtW+QVFzFuzjRc/yuadz3IoKjYGprTinsv6c9mgzrRt3ijRITpXK1WYSMLBF+eZ2Sjg/+IfknPRKy42lmzcwb/Ts3lt5Rb25BfSsWVjbjjvRL4+pAt9OrRIdIjO1XoVJhIzK5JULKmVme2qiqCcK4+ZsTJ7F7PSN/PKis1s232Qpg2TGHtKR64YmsIZJyb7Dwadq0LRNm3tBVZKehPYd3ilmd0al6icK0XG9r3MWr6ZV5ZvZmPuPhokiRF92/OzSzpzYb/2NG3o87Q5lwjR/s97MXw4V6U27zzAK8s3M2v5ZlZt3o0EZ56YzI3nncjYUzr6r82dqwaiHf33aUlNgG5RDB/vXEx27DvEayu38Er6ZpZu2gHAoJRW/O+l/bl0YCc6tGyc4Aidc5GiHbTxMuB3BFPf9pQ0GLjPzMbFMzhXd+w9WMibq7cyK30z767LpbDY6NWuGbdf1Jdxgzr7HB/OVWPRNm1NJZjxcAGAmaVLOjFOMbk6Yu/BQt5as41XV2zhnc9yOFRYTJfWTbj+3J6MG9SZ/p1a+o8FnasBok0kBWa2q8R/6min3HXuiD35Bby1ZjuvrfxP8ujQshHXDO/GJQM7MazbCdTzO66cq1GiTSSrJF0DJEnqA9wKvB+/sFxtsie/gHlrtvHaiq0sXHd08rh0YCeGevJwrkaLNpHcAvwMOAg8SzDHyC/iFZSr+Y5KHp/lcKgoSB6TT+/GJad68nCuNon2rq39BInkZ/ENx9Vku/MLeGvNNl5bsYWFn+VyqKiYji0bM/kMTx7O1WbR3rXVF/gx0CNyHzM7Pz5huZpi+5583ly9jTmrtrF4fS4FRUbHlo355hnduWRgR4Z09eThXG0XbdPW88BfgSeAoviF42qCz/P2MWfVVuas2sZHX3yJGXRr05RvndWDsad48nCurok2kRSa2aNxjcRVW2bG6i27mbNqG3NXbeXTrXsA6NepJbdd0IcxAzpycscWfquuc3VUtInkFUk/AF4i6HAHwMx2lLeTpLHAH4Ek4Akzu7/E9kYEQ9IPA/KAiWa2SVIy8AJwGjDNzG6O2GcB0Ak4EK4aXRPmja9pioqNj774kjmfbGXO6q1k7jiABKndT+Dnl/RjzICOPqOgcw6IPpFcF/57R8Q6A8r8UWI4/PwjwEVAFrBM0iwzWx1R7HrgSzPrLWkS8AAwEcgH/hc4JXyUNNnM0qKM3UUpv6CIxevzmLt6K2+u3kbu3kM0TKrH2b2TuWlkby7o14F2LXxOD+fc0aK9a6vncRx7OJBhZhsAJM0AxgORiWQ8wa/mIbgCeViSzGwfsEhS7+M4rzsG2/fkM//T7cxbs51F63I5UFBEs4ZJjDq5PWMGdGTkSe1o0bhBosN0zlVj5SYSST8xs9+Gy1eZ2fMR235tZv9Tzu5dgMyI51nA6WWVMbNCSbuAZCC3grj/LqmIYKKtX4YzNZaM/QbgBoBu3bpVcLi643B/x9trtjPv0+0szwxmSu7cqjFXDkvhgn7tOePEZJ+K1jkXtYquSCYBvw2X7+I/c7YDjAXKSyTxMtnMsiW1IEgk1xL0sxzFzB4DHgNITU39SqKpS/ILili8IY+31mzj7TXb2bwrHwkGpbTmRxf15YJ+HejXyTvLnXPHp6JEojKWS3teUjbQNeJ5SriutDJZkuoDrQg63ctkZtnhv3sk/YugCe0riaSuy9lzMGyy2saijFz2HyqiSYMkzu3Tlv++sC+jTm7v/R3OuUpRUSKxMpZLe17SMqCPpJ4ECWMScE2JMrMIOvIXA1cCb5fWTHVYmGxam1mupAbApcC8CuKoE4qLjRXZu1iwdjsL1uawPGsnZkGT1RVDUzi/X3vO9CYr51wcVJRIBknaTXD10SRcJnxe7uxCYZ/HzQTjciUBT5nZKkn3AWlmNgt4EpguKQPYQZBsghNIm4CWQENJE4DRwOfAnDCJJBEkkcePpcK1Sd7egyxcl8M7a3NYuC6XHfsOHWmyuv1Cb7JyzlUNlXMBUGukpqZaWlrNv1u4qNhYnrWTBWtzeGftdlZk78IMkps1ZETfdow4qR3n9mlHm2Y+/axzLnaSPjSz1IrKRfs7EpcguXsPsvCzHBaszeHddTl8ub+AeoLBXVvzwwv7MvKkdpzSuZUPSeKcSxhPJNVMQVEx6Zk7efezHBZ8lsOKrF0AtG3ekFEnt2fkSe05t3dbTvCrDudcNeGJJMHMjPU5+1i0LodFGbl8sGEHew8WUk8wpNsJ/Oiivow8qT0DOrf0qw7nXLXkiSQB8vYeZFFGLovW5fJeRi6bd+UDwQi64wZ35tzebTmrV1taNfVflDvnqj9PJFUgv6CIZZt2sGhdLu+uy2X1luDmt5aN63N277bcdH5bzu3djm7JPgiic67m8UQSB0XFxpotu3kvI5dFGbks3biDg4XFNEgSQ7udwI9H9+WcPu04tUsrkry5yjlXw3kiqQTFxcZn2/eweH0ei9fnsWTjDnYdKACgb4fmTD69O+f2acvwnm1o1shfcudc7eLfasfhcAf54g15fLA+j8Ub8tix7xAQ9HOMHdCRM3slc2avZDq0LPd3m845V+N5IomCmfHFjv3BFceG4Kpj+55gfq9OrRoz8qR2nHlikDhSTvB+Dudc3eKJpBwvfZzFonV5LF7/nzur2jZvxJm9kjmrVzJnnphM9+SmPgSJc65O80RSjscXbmTLrgOccWIy/zUySB692jX3xOGccxE8kZRj2ndOo22zRv5DQOecK4cnknK0b+Ed5c45V5F6iQ7AOedczeaJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxSSuiUTSWElrJWVIurOU7Y0kzQy3L5HUI1yfLGm+pL2SHi6xzzBJK8N9/iT/daBzziVU3BKJpCTgEeBioD9wtaT+JYpdD3xpZr2BPwAPhOvzgf8FflzKoR8Fvgf0CR9jKz9655xz0YrnFclwIMPMNpjZIWAGML5EmfHA0+HyC8AFkmRm+8xsEUFCOUJSJ6ClmX1gZgY8A0yIYx2cc85VIJ6JpAuQGfE8K1xXahkzKwR2AckVHDOrgmM655yrQrW2s13SDZLSJKXl5OQkOhznnKu14plIsoGuEc9TwnWllpFUH2gF5FVwzJQKjgmAmT1mZqlmltquXbtjDN0551y04plIlgF9JPWU1BCYBMwqUWYWcF24fCXwdtj3USoz2wLslnRGeLfWFODflR+6c865aMVt9F8zK5R0MzAHSAKeMrNVku4D0sxsFvAkMF1SBrCDINkAIGkT0BJoKGkCMNrMVgM/AKYBTYDZ4cM551yCqJwLgFojNTXV0tLSEh2Gc87VKJI+NLPUisrV2s5255xzVcMTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xMPJE455yLiScS55xzMfFE4pxzLiaeSJxzzsXEE4lzzrmYeCJxzjkXE08kzjnnYhLXRCJprKS1kjIk3VnK9kaSZobbl0jqEbHtrnD9WkljItZvkrRSUrqktHjG75xzrmL143VgSUnAI8BFQBawTNIsM1sdUex64Esz6y1pEvAAMFFSf2ASMADoDMyT1NfMisL9RplZbrxid845F714XpEMBzLMbIOZHQJmAONLlBkPPB0uvwBcIEnh+hlmdtDMNgIZ4fGcc85VM/FMJF2AzIjnWeG6UsuYWSGwC0iuYF8D5kr6UNINZZ1c0g2S0iSl5eTkxFQR55xzZauJne3nmNlQ4GLgJknnlVbIzB4zs1QzS23Xrl3VRuicc3VIPBNJNtA14nlKuK7UMpLqA62AvPL2NbPD/24HXsKbvJxzLqHimUiWAX0k9ZTUkKDzfFaJMrOA68LlK4G3zczC9ZPCu7p6An2ApZKaSWoBIKkZMBr4JI51cM45V4G43bVlZoWSbgbmAEnAU2a2StJ9QJqZzQKeBKZLygB2ECQbwnLPAauBQuAmMyuS1AF4KeiPpz7wLzN7I151cM45VzEFFwC1W2pqqqWl+U9OnHPuWEj60MxSKypXEzvbnXPOVSOeSJxzzsXEE4lzzrmYeCJxzjkXE08kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mMQ1kUgaK2mtpAxJd5ayvZGkmeH2JZJ6RGy7K1y/VtKYaI/pnHOuasUtkUhKAh4BLgb6A1dL6l+i2PXAl2bWG/gD8EC4b39gEjAAGAv8RVJSlMd0zjlXherH8djDgQwz2wAgaQYwHlgdUWY8MDVcfgF4WJLC9TPM7CCwUVJGeDyiOGblmX0nbF0Zl0M751zcdTwVLr4/7qeJZ9NWFyAz4nlWuK7UMmZWCOwCksvZN5pjAiDpBklpktJycnJiqIZzzrnyxPOKJKHM7DHgMYDU1FQ7roNUQSZ3zrmaLp5XJNlA14jnKeG6UstIqg+0AvLK2TeaYzrnnKtC8Uwky4A+knpKakjQeT6rRJlZwHXh8pXA22Zm4fpJ4V1dPYE+wNIoj+mcc64Kxa1py8wKJd0MzAGSgKfMbJWk+4A0M5sFPAlMDzvTdxAkBsJyzxF0ohcCN5lZEUBpx4xXHZxzzlVMwQVA7ZaammppaWmJDsM552oUSR+aWWpF5fyX7c4552LiicQ551xMPJE455yLiScS55xzMakTne2ScoDPj3P3tkBuJYZTE3id64a6Vue6Vl+Irc65AGY2tqKCdSKRxEJSWjR3LdQmXue6oa7Vua7VF6quzt605ZxzLiaeSJxzzsXEE0nFHkt0AAngda4b6lqd61p9oYrq7H0kzjnnYuJXJM4552LiicQ551xMPJGEJI2VtFZShqQ7S9n+LUk5ktLDx3cTEWdlqai+YZlvSFotaZWkf1V1jJUtivf4DxHv72eSdiYizsoURZ27SZov6WNJKyR9LRFxVqYo6txd0lthfRdISklEnJVF0lOStkv6pIztkvSn8PVYIWlopQdhZnX+QTAk/XrgRKAhsBzoX6LMt4CHEx1rFda3D/AxcEL4vH2i4453nUuUv4VgmoKExx7n9/kx4Pvhcn9gU6LjroI6Pw9cFy6fD0xPdNwx1vk8YCjwSRnbvwbMBgScASyp7Bj8iiQwHMgwsw1mdgiYAYxPcEzxFE19vwc8YmZfApjZ9iqOsbId63t8NfBslUQWP9HU2YCW4XIrYHMVxhcP0dS5P/B2uDy/lO01ipktJJjPqSzjgWcs8AHQWlKnyozBE0mgC5AZ8TwrXFfSFeGl4QuSupayvaaIpr59gb6S3pP0gaQKh0mo5qJ9j5HUHejJf75saqpo6jwV+KakLOB1giuxmiyaOi8Hvh4uXw60kJRcBbElStSf/ePliSR6rwA9zGwg8CbwdILjibf6BM1bIwn+On9cUuuERlR1JgEvWDgrZy13NTDNzFIImkCmS6rt3ws/BkZI+hgYAWQDdeG9jpva/oGJVjYQeYWREq47wszyzOxg+PQJYFgVxRYPFdaX4K+WWWZWYGYbgc8IEktNFU2dD5tEzW/WgujqfD3wHICZLQYaEwz0V1NF8395s5l93cyGAD8L19X4GyvKcSyf/ePiiSSwDOgjqaekhgRfJLMiC5RoUxwHrKnC+CpbhfUFXia4GkFSW4Kmrg1VGWQli6bOSDoZOAFYXMXxxUM0df4CuABAUj+CRJJTpVFWrmj+L7eNuOq6C3iqimOsarOAKeHdW2cAu8xsS2WeoH5lHqymMrNCSTcDcwju+njKzFZJug9IM7NZwK2SxgGFBB1b30pYwDGKsr5zgNGSVhNc9t9hZnmJizo2UdYZgi+eGRbe7lKTRVnnHxE0W/6QoOP9WzW57lHWeSTwG0kGLARuSljAlUDSswR1ahv2dd0DNAAws78S9H19DcgA9gPfrvQYavBnxjnnXDXgTVvOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkhcjSRpbxRl/ltS00o85wRJ/SvxeO/HsO/e8N/Okl4op1xrST843vM4Fw1PJK42+2/gmBKJpKRyNk8gGPCvUpjZWZVwjM1mdmU5RVoDnkhcXHkicTWapJHhnBIvSPpU0j/DX/DeCnQG5kuaH5YdLWmxpI8kPS+pebh+k6QHJH0EXCXpe5KWSVou6f8kNZV0FsGIBg+G85X0kjQ4HNByhaSXJJ0QHm+BgrlN0iStkXSapBclrZP0y4jY90Ys/1TSyvCc95dSz55h7CtLHKPH4XkoJA2QtDSMb4WkPsD9QK9w3YOSmiuYi+Oj8FjjI46zRtLjCuafmSupSbitt6R5YWwfSeoVrr8jfJ1WSLq3Ut9YV7Mkeix9f/jjeB7A3vDfkcAugvGD6hEMbXJOuG0T0DZcbkvwK+Zm4fOfAndHlPtJxLGTI5Z/CdwSLk8DrozYtgIYES7fBzwULi8AHgiXbyMYmr0T0IhgDLPkEnW4GHgfaBo+b1NKfWcBU8LlmyL27UE4DwXwZ2ByuNwQaBK5PVxfH2gZ8ZpkEMxT0YNg1IbB4bbngG+Gy0uAy8PlxgRXeaMJ5jJR+Lq/CpyX6M+FPxLz8CFSXG2w1MyyACSlE3wpLipR5gyCZqn3JEHwRRs5ntbMiOVTwr/6WwPNCYbbOIqkVkBrM3snXPU0wYRJhx0ecmUlsMrCsY0kbSAYQC9yuJkLgb+b2X4AMyttbomzgSvC5enAA6WUWQz8TMGMfy+a2bqwrkeFDvxa0nlAMcFw4h3CbRvNLD1c/hDoIakF0MXMXgpjyw/rMZogmXwclm9OMKjnwlLicrWcJxJXGxyMWC6i9M+1gDfN7OoyjrEvYnkaMMHMlkv6FuHglccZU3GJ+IrLiC8a5Y5nZGb/krQEuAR4XdKNfHWgzclAO2CYmRVI2kRwlREZMwSvY5NyTifgN2b2t2OI39VS3kfiarM9QItw+QPgbEm9ASQ1k9S3jP1aAFskNSD44v3K8cxsF/ClpHPDbdcC73B83gS+ffgOM0ltSinzHsGAkpSI6QhJJwIbzOxPwL+BgRz9GkAwC+L2MImMArqXF5iZ7QGyJE0Iz9EojHMO8J2IfqYuktpHVVtX63gicbXZY8AbkuabWQ7BiM3PSlpB0Ax0chn7/S9Bv8B7wKcR62cAd0j6OOxwvo6g830FMJign+SYmdkbBE1haWHT3I9LKXYbcJOklZQ9u903gE/CY5xCML1qHkFz3ieSHgT+CaSGx5lSon5luZZg9OsVBH05Hc1sLvAvYHF4rBc4OmG5OsRH/3XOORcTvyJxzjkXE08kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxeT/A03Hzov3BnDFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, "output_type": "display_data" } ], @@ -171,7 +147,7 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { @@ -181,24 +157,12 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXl4W+d1r/suTAQIiZooidRMSZZoeZBFS85gR46oNh3i2qmbOB7Sk7Q3dZ1z2vQmqdO47W2Ge1znxLc5aZvTum6bsXGcNHVSN3MiyVac2LFkUrKo0TYpWQM1UJRECgRADOv+sTdAkOKAaWPi9z4PHgIbe+9vbQDEwvettX5LVBWDwWAwTF9c5TbAYDAYDOXFOAKDwWCY5hhHYDAYDNMc4wgMBoNhmmMcgcFgMExzjCMwGAyGaY5xBAaDwTDNMY7AULOIyFER+ZUyjb1QRHaKyKCI/E0Jx/2SiPxPh859n4j82IlzG8qLcQTTFBH5oYh8apztd4jIaRHx2I/fLCLb7S+0SyLytIi0Zuz/VhFJisjlMbc3lfJ6KpD7gT6gQVU/Um5jckVEVoiIpj4HAKr6NVV9WzntMjiDcQTTly8D7xERGbP9d4GvqWrc/jL/MfCfwCKgBXgZ+LmIrMg45pSqzhhze975SygNmV+GObAcOKCmdN9QBRhHMH35DjAPeEtqg4jMAW4DvmJv+gzwFVX9W1UdVNV+Vf1L4EXg4/kMai/X/KmIvGzPML4hIn77ufeJyHNj9lcRWW3f/5KI/IOI/MCedfxcRJpE5HMickFEDonIhjFDbhKRA/bzX0yNZZ/vNhHZIyIXReQXInL9GDv/TEReBkLjOQN7trTLvo5dIvLmlJ3Ae4GP2nZesTwlInUi8v+JyOsickZEHhORgP3cQRG5LWNfj4icE5E2+/G/27O2S/by0zUTvNZTvZ5vF5FOERkQkeMi8omMXXfafy+mZnhjzzfR9dvPPSMi/6/9Hg2KyI9FpNF+zi8i/yYi5+3XfpeILBzvGgylwTiCaYqqhoFvAv8tY/NdwCFV3Ssi9cCbgX8f5/BvAoUsEdwF/DrWDON64H05HvuXQCMQBZ4HOuzH3wI+O2b/+4BfA1YBa+xjsR3GF4A/xHKI/wQ8LSJ1GcfeA7wdmK2q8cyTishc4HvA39nHfxb4nojMU9X3AV8DPmPPjn46znV82rbnBmA1sBj4K/u5r9tjp/g1oE9VO+zHPwCuAhbY1/618V+qKQlhvf+z7ev8gIi8w35us/139ngzvMmuP2O3e4Hfs+30AX9qb38vMAtYah/7ABDO8xoMRcA4gunNl4F3ZvxK/m/2NoC5WJ+P3nGO6wXmZzxeZP+yy7wFJxn371T1lKr2A/+F9WWYLd9W1ZdUNQJ8G4io6ldUNQF8Axg7I/i8qh63x3qYkS/Y+4F/UtVfqmpCVb+M5VjeOMbO47bTHMvbgVdU9auqGlfVrwOHgN+a6gLs5bj7gQ/Zs6xB4K+Bu+1dngBut50xWF+oX08dr6pfsGdoUeATwHoRmTXVuGNR1WdUdZ+qJlX1ZXuMW7M8PJvr/6KqHsn40ZF6n2NYDmC1/dq/pKoDudpvKB7GEUxjVPU5rIDmO0RkFXAT1pcQwAUgCTSPc2izfVyKU6o6e8wtNMnQpzPuDwEzcjD7TMb98DiPx57reMb9Y1ixDrDW8D+S6bywfqEumuDYsSyyz5fJMaxf9lMxH6gHXsoY+4f2dlT1VeAg8Fu2M7gd+30REbeIfFpEXhORAeCofc7GLMYdhYi8QUR22MtOl7B+mWd7nmyuf6L3+avAj4AnReSUiHxGRLy52m8oHsYRGL6CNRN4D/AjVT0DYH+RPw+8a5xj7gKeccCWENYXJAAi0lSEcy7NuL8MOGXfPw48PMZ51du/bFNMFug9heVMMlkGnMzCpj4sp3VNxtizVDXTiaWWh+7ACjq/am+/1972K1jLKyvs7WOD/jD16/kE8DSwVFVnAY9lnGeqIHfe16+qMVX9pKquw1p+vI3RS5SGEmMcgeErWF8qf8DIslCKjwHvFZEPishMEZkjVo76W7CWMorNXuAaEbnBXq76RBHO+T9EZIm9pv0XWMtHAP8MPGD/KhYRCdrB05lZnvf7wBoRudcO5r4bWAd8d6oDVTVpj/+/RWQBgIgsFpFfy9jtSaw4zAcYmaUBzMRawjqP9SU/2fsw1es5E+hX1YiI3ITlZFKcw5oRrpzg3Hlfv4hsEZHrRMQNDGAtFSWnOs7gHMYRTHNU9SjwCyCI9esw87nnsAKVd2LFBfqxAn1bVbUrY9dFcmUdwe/kYcsR4FPAT4FXgOcmPyIrnsBKge0GXgP+pz3Wbizn93msZbBXySForarnsX7JfgTrS/mjwG2q2jfpgSP8mT3mC/YSz0+BtRnn78Wakb2ZEecFluM+hvXL+wDwwiQ2TvV6/nfgUyIyiBWo/mbGsUNYMZWf28tXmbGTQq+/CSuwP4C1BPYs1nKRoUyISXM2ZItY6ZU7gHtV9UfltsdgMBQHMyMwZI2dWfIO4DrJr8jKYDBUIGZGYDAYDNMcMyMwGAyGaU5VTO8bGxt1xYoV5TbDYDAYqoqXXnqpT1XnT7VfVTiCFStWsHv37nKbYTAYDFWFiIwt+hsXszRkMBgM0xzjCAwGg2GaYxyBwWAwTHOqIkYwHrFYjBMnThCJRMptiiP4/X6WLFmC12u0uAwGg7NUrSM4ceIEM2fOZMWKFcgVTbaqG1Xl/PnznDhxgpaWlnKbYzAYapyqXRqKRCLMmzev5pwAgIgwb968mp3tGGBg51N0P7CJI+9aTPcDmxjY+VS5TTJMY6p2RgDUpBNIUcvXNt0Z2PkUZx57EB22+t3E+05y5rEHAWjYfGc5TTNMU6p2RmAwVCt9TzySdgIpdDhM3xOPlMkiw3THOII82bJlCz/60WgBzs997nN84AMfYP/+/bS3t7N27VpWrVrFxz/+cZJJS279S1/6EvPnz+eGG25I3w4cOFCOSzCUifj5UzltNxicZto4gmKvyd5zzz08+eSTo7Y9+eST3H333dx+++187GMf4/Dhw+zbt48XX3yRv/3bv03v9+53v5s9e/akb+vWrSvIFkN14Zm3KKftBoPTTAtHkFqTjfedBNX0mmwhzuCd73wn3/ve9xgeHgbg6NGjnDp1ildffZWbb76Zt73tbQDU19fz+c9/nkcffbQo12KofhrvfQg8o9OCxRewthsMZaCqg8Upzn7xr4j27J/w+ciRl9D48KhtOhzmzD98mEs//dq4x9S1XMOC3/vUhOecO3cuN910Ez/4wQ+44447ePLJJ7nrrrvYv38/N95446h9V61aRTgc5uLFiwB84xvf4LnnRppFPf/88wQCgSmv01AbNGy+k1DndgZ/Zv0Q8TQupvHeh0yg2FA2psWMYKwTmGp7tmQuDz355JPcc889WR03dmnIOIHph3fBUgBc9Q20/OOLxgkYykpNzAgm++UO0P3AJmtZaAyexsUs/dR/5D3uHXfcwYc+9CE6OjoYGhrixhtvpLOzk507d44ev7ubefPmMXv27LzHMtQWicELACSHBkgM9OOZNa/MFhmmM9NiRtB470OIb/Sv7mKsyc6YMYMtW7bw+7//++nZwH333cdzzz3HT3/6UwDC4TAf/OAH+eQnP1nQWIbaIjHQn74f6+0uoyUGwzRxBA2b72ThA4/iaVwMIngaF7PwgUeLMh2/55572Lt3b9oRBAIBnn76aR5++GHWrFlDY2MjN998M/fdd1/6mG984xuj0kd/8YtfFGyHobpIDPbjnm31Cxk+3VNmawzTnaroWbxx40Yd25jm4MGDXH311WWyKHu+853v8OEPf5gdO3awfPnynI6tlms05M7RD2/F27iY0J4dzP3tP6Lxnj8rt0mGGkREXlLVjVPtNy1mBOXkHe94B93d3Tk7AUNtkxjsxz1nPt4Fyxg2S0OGMuOoIxCRoyKyT0T2iMjujO1/LCKHRGS/iHzGSRsMhkpDVS1HMHMu3uYWYr1maagWqSZhwVJkDW1R1b7UAxHZAtwBrFfVqIgsyPfEqlqz4mzVsGRnyI9k+DLEY7hnzsXX3MKlg7+s6c/ydKTahAXLsTT0AeDTqhoFUNWz+ZzE7/dz/vz5mvzCTPUj8Pv95TbF4ABJO3XUPXMO3uYWNBIicfFcma0yFJNqExZ0ekagwI9FRIF/UtXHgTXAW0TkYSAC/Kmq7hp7oIjcD9wPsGzZsitOvGTJEk6cOMG5c7X5D5TqUGaoPRKDVuqou2EuHk8TAMO9PXjm5D05NlQY1SYs6LQjuEVVT9rLPz8RkUP2mHOBNwKbgG+KyEod89PedhqPg5U1NPbEXq/XdO8yVCWpGgL3zLnpFNJYbzese0M5zTIUEc+8ReMXsc5rLoM1U+Po0pCqnrT/ngW+DdwEnACeUosXgSTQ6KQdBkMlkbhsLw01zMXbuBg8XlNLUGOMV8QKgMdH/FLfldvLjGOOQESCIjIzdR94G9AFfAfYYm9fA/iAyntlDAaHSM8IZsxB3B68C5aZzKEao2Hzncx914fSjz2Ni5n19veT6D/N8T//LYZPvlpG667EyaWhhcC37UwID/CEqv5QRHzAF0SkCxgG3jt2WchgqGUSg/3gcuEKzgLA19zCsHEENYfbfn9X/P1z+JpXAtBw8zs49en38vpf3M6ij36B+nVvLKeJaRybEahqt6qut2/XqOrD9vZhVX2Pql6rqm2qut0pGwyGSiQx0G/NBlzWv5+3qYXY6Z6azICbzoQP7cI9qxFv00gsM7CmjaWPfBfPrEZOfupuBn5WGbUFprLYYCgxicELuGfOST/2Nbeg0TDx/tNltMpQbCKHdxFYu+mK+hDfwuUsffhp/Gs3cvpv/4jz3/pc2X8EGEdgMJSYVFVxCm+z9YvRxAlqh/iFM8TOHMPfumnc590zZrP4L7/GzM2/w/knP8OZf/wIGo+V2MoRjCMwGEpMYrAfV8OII0itH5s4Qe0QPmSVRgUmcAQALm8dTX/8d8x914cY2P4kJ//6PSRCA6UycbQtZRnVYJjGWEtDI47AM28R4vERMymkNUP40C7E58ffct2k+4kIje9+kIV/9DmG9j/P8b+8g9i5EyWycgTjCAyGEjIiODcSIxC3G2/TcrM0VEOED+/Cv2o94vVltf+st97Fkr98gvj5Xl5/6DYir73ssIWjMY7AYCghmYJzmXibWmq6qKyalDgLJRkdItrTNWF8YCLqr7uFpQ8/jXh9HP+r3+bslz9RstfMOAKDoYSkBecaRjsCX3MLsdNH0WSyHGY5SkqJM953ElTTSpy16gwir+yBRJzA2twcAUDd0jUs++vv4prVyMX/erxkr5lxBAZDCUkLzmUsDQF4m1eiwxHi/b3lMMtRqk2Js1DCh+1A8dopG4ONi2fOAiSRuGK7k6+ZcQQGQwnJFJzLxFfDKaTVpsRZKOFDu/AtWXOFs8+FiX4QOPWaGUdgMJSQTAnqTFK1BLWYQuqZtyin7dWMJpNEDu+eNG00G0r9mhlHYDCUkES6Kc1oR+CZ24z4/JYcdY0xnhKn+AI03vtQmSxyjuHjh0kODeQcKB5LqV+zUrSqNBgMNmnBufqGUdvF5cLbtKImZwQNm+8kGb7M2X/+WHrbvPseqsiWjYWSLiTLI1CcSeq16XviEeLnT+GZt4jGe517zYwjMBhKyFjBuUx8TS0Mn6oseeJi4W1aDkDje/6Cvn97GM+s2mxBEj6cEppbUfC5GjbfWTJnaZaGDIYSkhi8cEV8IIW3uYXY6WPoOBkj1U60ex8ADVvejfjriRy+ojttTRA5NL7QXKVjHIHBUEISg9aMYDx8zS1ofLgms2miPV145i/BM6sR/+q29BJKLRG/cIbY2dcLjg+UA+MIDIYSMlZwLhNvWnyu9gLGkaNd1LVcC0CgdSPRYwesKusaYkRo7qYyW5I7xhEYDCUkMdB/RcZQilqtJUiGLxPr7cGfdgQ3QTJJ+JWOMltWXEaE5q4ttyk5YxyBwVAiVJXE5YljBO45C5G6QM1lDkWP7gfV9IzAf1UbiBCpseWh8OFd+FffkLXQXCXhqCMQkaMisk9E9ojI7jHPfUREVERqM32gyphOomDlIi04N0GMQESstpU15ggiPV0A1NmSzO5gA75lVxM+9GI5zSoqycgQ0e59BaeNlotSpI9uUdW+zA0ishR4G/B6CcY3TEFKFCylB5MSuAJqMte7XExUVZyJr7mF6OsHS2VSSYj2dOFumIdnblN6W6B1EwPPfgtNxBF39WexR17thGSiKgPFUL6lof8NfBQw3borgOkmClYukhNUFWfibW4hduZ1NBEvlVmOE+2xAsWZKZWB1k1oJET0WG04vXSgeM2NZbYkP5x2BAr8WEReEpH7AUTkDuCkqu6d7EARuV9EdovI7nPnzjls5vRmuomClYsRwbmJxch8TS2QiJelS5UTJGNRoscPp+MDKVKZNeEaqScohtBcOXHaEdyiqm3AbwD/Q0Q2A38O/NVUB6rq46q6UVU3zp8/32EzpzfTSRSsnGSzNJRKIa2VOMHw8cOQiONfObplo6dxMZ65zTURMNZkksiRlwoWmisnjjoCVT1p/z0LfBu4FWgB9orIUWAJ0CEiTROexOA400kUrJxMJDiXiS+tQlobtQTRdKB49IxARPC3bqyJGUFKaK4a6wdSOOYIRCQoIjNT97GCw7tUdYGqrlDVFcAJoE1VTztlh2FqGjbfycIHHoUM/ZtaFQUrJ5bgnPsKwblM3LPnI/5gzcwIIj1duAIz8C5cccVzgbWbiPedItZ3svSGFZFUfKBaA8Xg7IxgIfCciOwFXgS+p6o/dHA8QwHMvPkOQJhx028A4PLWldegGsQSnJs9ruBcChHB19xSM7UE0e591K24ZtxrTscJqnx5KHx4F+7Z8/EuXF5uU/LGMUegqt2qut6+XaOqD4+zz4qxqaWG8pC4dA6SCeqvfwueBUsJdWwrt0k1R2Kwf9L4QApLfK76HYEmEkSPHbhiWShF3Yp1iL++6usJwoderEqhuUxMZbEBgHi/tTrnmdtEcEM7Q/t+RjIWLbNVtUVi8MKk8YEUvuaVxM4eR+OxEljlHLHT3Wg0PKEjELeHwFVtVR0wjvefJn72eFUHisE4AoNNqkeqZ24zwbataDRM+MALZbaqtkgM9uPKIr3Q29wCyQSxc8dLYJVzpCqKJ9Pe8bduIvr6waoVoEvHB6q0ojiFcQQGAOL9ZwDwzGui/to3I946Qp07ymxVbTGZ4Fwmvqba6F8c7d6HeHz4lqyZcJ/A2k2WAN2Rl0poWfEIH65eoblMjCMwAPbSkMuNu6ERV109gWvebOIERWQqwblMaqWWINrThW9ZK+LxTriPf82N4HJVbcA4fKh6heYyMY7AAFiOwDNnAeJ2AxBsayd26jWGTx8tr2E1wlSCc5m4G+biqm9wpJagVOKCqkqkZ/+E8YEU7vqZ1C1rrcqOZcnIENGerqquH0hhHIEBsGIEnjkjdX3BDe0AhDq3l8ukmiKbquIUImJlDhV5RpASF4z3nQTVtLigE84g3neS5OULWS2Z+NduInyko+r0lapdaC4T4wgMgD0jyFCH9DW34F20klCHcQTFYERnaGpHANbrX2xHUEpxwWiP1aO4boy0xHhUqwBdtQvNZWIcgQGwHcG80UofwQ3thPf/gmR0qExW1Q5p5dEsZgRg1xL0nUBjw0WzoZTigpGeLnC5qFt+9ZT7jhSWVVc9QfjQi/iWrsU9Y3a5TSkY4wgMJMMhkkODo2YEYDkCHY4wtP/5MllWO6SXhrJUp/Q1r4RkktjZY0WzoZTigtGeLnyLVuGqq59yX0/jYjzzqkuAThOJqheay8Q4AsOoGoJMAuveiNQFTPZQEch1acjbtAIobgpp470PwZgmME6JC0a7u6hbkV1KpYgQWLupqgToLKG5wartSDYW4wgMxC/YNQRjZgQun5/6624h1LENVdNDqBASly9MKTiXiRON7Bs234l7bhPisVMd3V4WPvBo0cUF45fOE+/vzSo+kMLfuon4+d6q6cOQclq1ECgG4wgMjJaXGEtww1biZ48TO/Vqqc2qKbIRnMvEPXMurhmzizojiF84Q+LcCebd9REa73sIEjEC17ypaOdPkQoU51JklVpiqZZZQfhQ9QvNZWIcgYH4+dTS0DiOoM1OI+0wVcaFkK3gXCa+phZiRawlSFWKB9vaCW7YCsDQnuK/r+keBCuuyfqYuuUpAboqcQSHdxFovamqheYyMY7AQLz/NK7ADFyBGVc8552/BN/StYQ6TZygELIVnMvEW2Q56lDnDtxzm/AtX4dv+dV45jY7IiMS6dmHZ8HSnNo2VpMAXex8ryU0VyPxATCOwMCVNQRjCba1M3TgBZLhUAmtqi0Sg9npDGXia24hfv4UyeFIweNrPMbQ3mcJbmhHRBAR633d+2zRVU6jPfvxZxkoziQlQJcYGiyqPcUmUmPxATCOwEAWjmDDVojHGNr3sxJaVVskBrJTHs3E29wCqsTOFJ5CGj7yEsmhAYJtW9Pbgm3tJMOXi7ockwxfJtbbPaW0xHikBOgiFS5AFz5UG0JzmRhHYLDkJcakjmYSaN2EKzDDyE3kiarmFyNIi88VHicIdWwDj5f6625Jb6u/7i3g8RZ12S96dD9wZY/ibEgL0FV4wNgSmtswqZheteGoIxCRoyKyT0T2iMhue9ujInJIRF4WkW+LSPWX5VUxmkgQv3B20hmBeLzUX7/ZpJHmSTJ8GRLxvGIEUJxaglDHdgKtb8BdPzO9zRWYQf3VbyiqjEik284YyiF1NIUlQHd1RccJkuEQ0aP7a6aQLEUpZgRbVPUGVd1oP/4JcK2qXg8cAYpfzWLImsTAeUgmJnUEYC0jxM/3Mvz6oRJZVjvkWlWcwh2chbthbsG1BLG+kwy/fjCdAZZJsG0rw8cPFy1/P3q0C/esRtxzFuZ1vL91E+FXKleArpaE5jIp+dKQqv5YVVPv8gvAklLbYBghXUMwbwpHkFIjNVXGOZNrVXEm3qbCM4dG0ka3XvHcSHpwcWYF0Z4u6lquzTut0hKgGyJ67EBR7Ck2tSQ0l4nTjkCBH4vISyJy/zjP/z7wg/EOFJH7RWS3iOw+d+6co0ZOZyaSlxiLZ24TdSuuMXGCPMhVcC4TX/PKgmcEoY5teOYvwbd49RXPeRetxrtgWVHiBMlYlOjxI3nFB1KkUjIrtZ4gfHgXvmWtNSE0l4nTjuAWVW0DfgP4HyKyOfWEiPwFEAe+Nt6Bqvq4qm5U1Y3z58932MzpS2pGkM1UPti2lfChXSRCl5w2q6YYWRrKY0bQ3EK8vzdvBdhkLMrQvp8RbNs67q90EaG+rZ2hfc8VnKY6/PphSMTxt+QeH0jhnb+kYgXo0kJzNVQ/kMJRR6CqJ+2/Z4FvAzcBiMj7gNuA+9REH8uK1aLShWf21M422NYOyQRDL5s00lwYWRrKLUYAmZpDR/MaO3zwl2hkKL20Nx7Btq1oNEz4wAt5jZEi3YOgwLTKwNpNhA/tqrjEhOHjhyyhuRqLD4CDjkBEgiIyM3UfeBvQJSK/DnwUuF1VjdB9mYn39+KevQAZo0o5Hv6r2nDNmG3iBDmSGOzPSXAuk3Tm0On8lodCHdsRbx3119484T7117wJ8dYVXGUc6enCFZhRsP6Ov3UT8f5eq5NaBZFarqq1QDE4OyNYCDwnInuBF4HvqeoPgc8DM4Gf2Gmljzlog2EK4ucnLybLRNwegutvJdS5A00mHbasdrDkJeZkLTiXia/ARvahjm0ErnkTLv/EfQFcdfUErnlzwXGCaE8XdSuuyes6M6nURjWW0NwCvAuWlduUouOYI1DVblVdb9+uUdWH7e2rVXWpnVJ6g6o+4JQNhqmZqqp4LMG2rSQuniV6tMtBq2oLS14i92UhsHL93bPn5zUjGD5zjNip1yZdFkoRbGsndqo77wwlTSSIHjuQk/T0RNQtvxrxBysuYGwJzW2qGaG5TExl8TQnfuFMTo6g/oa3AsVLN5wOJAZy1xnKxFIhzf0Lesh+j8ZLGx1LOj04z6yw4d5uNBouOD4AtgDdmra0pk8lEDvfS/zciZoMFEOWjkBEVolInX3/rSLyQVMRXP0ko0MkQ5fwTpE6molnViN1q28wcYIcSFzOXXk0E2/zirx+qYc6t+NtXpkOOE+Gr7kF76KVeTv4dA+CPMTmxsO/dhPR1w9VjABdLQrNZZLtjOA/gISIrAYeB5YCTzhmlaEkTNaQZjKCG9qJvNJhVSUbpiQxkLvOUCbeppUkLpzJSf01GQ0z1PXzcauJJyK4YSvh/b/IK1U12tOFeOvwLbkq52PHI9BaWQJ0tSg0l0m2jiBpVwP/NvD3qvogkP3PSENFEj+fpyNo2wqqhPY+64RZNUVKcC5X5dFMfHlkDoX3P48OR7KKD6QItrWjsShDXb/I2cZIdxe+Za1FE2ILVJgAXfjQLvxXtdWU0Fwm2TqCmIjcA7wX+K69rTZfEWBg51N0P7CJI+9aTPcDmxjY+VTJji907FxIF5Pl6Aj8q9bjbphXEXGCUr5e+ZAcGsxLcC4Tbx79i0Od25C6AIF1b8z6mMC6NyJ1gZyX/VSV6NGuov5adgVmULfsasIHy+sIBnY+RfcfbiTa/TLR7n0V9/kqFlMnj1v8HvAA8LCq9ohIC/BV58wqHwM7n+LMYw+iw2EA4n0nOfPYgwBZNfku5PhCx86VEXmJ3ByBuFzU37CFUOc2NJFA3O6i25YNpX698iFxOX95iRS+ptxUSFWVUMd26q+9GZfPn/U4Lm8d9de9hVDndlQ16+yYeN9JkpcvFiVQnEng6pu4tOMbaCKeVZ1LsRn7+UqGByvu81Ussnp1VfUA8MGMxz3A/3LKqHLS98Qj6Tc+hQ6HOfuvf5HVmvj5f/9s3sdPdGzfE4845AhOI/7gKGnibAm2tTO481tEXttLYE1b0W3LhoneK6der3xIVxXPyH9pyBUI4p6zkNjp7PoSxE69RuzMMebcnntmdrBtK6HdP2b45KvUZbnen5KeritAWmI8/Gs3cfEHXyR69AD+VdcX9dzZUA2fr2KRlSO/DigLAAAgAElEQVQQkZuBTwDL7WMEUFVd6Zxp5SF+/tS425OhS5z70sfzPm8hx09kU6HkWkOQSXD9reByEercVjZHMNHr4tTrlQ9pnaECZgRgxQmynRGkluxyiQ+kCG7YYp9jW9aOINqzD1wu6pa35jzeZKSkHMKHXiyLI6iGz1exyHa+9a/Ah4CXgIRz5pQfz7xF45a2e+YtYvlnp147PfbhreN+ULI5frJjncByBPnF/N0z5+BfcyOhju00vvvBIluWHZO9V5VCWnm0gBgBWHGC0O6fZLVvqHMbviVr8C5Ymvs485fgW9bKUOd25mY5o4j2dOFbtBpX3cTVy/ngbVyMp3ER4cO7mPP29xf13NlQDZ+vYpFtsPiSqv5AVc+q6vnUzVHLykTjvQ8hvsCobeIL0Hjfn1uNQqa4Nd7353kfP+Gx9zrTu6eQGQFY6YbR1/YSv1gemfDGex+CMWvHTr5e+ZBeGip0RtDUQuJS35R59clwiKEDL+SUNjqW4IYtDB38pdVZLQuiPfuLHh9IEVi7icih3WURoGu89yHEWzdqW6V9vopFto5gh91i8k0i0pa6OWpZmWjYfCcL/uCR9GNP42IWPvBo1muCDZvvZOEDj+JpXAwiOR2fOjYlTuaZtyinsXNBk0mrqniKhjSTkV5G2FOYWFm+NGy+E/e8ReCygtWu4GzHXq98KURwLhNvlppDQ/t+BvFYVtXEExHcsBXiMetcUxC/1Ee8vzev1pTZUE4BuobNdzLj5tvtR7n9L1cb2S4NvcH+uzFjmwL5/+yoYOpWrAOg6f/+BxpueUfOxzdsvjPvD0vD5jsRj4fezz7Aoo99ybEClsTAeUjEC5oR1LVci3vOQkId25j11ruKaF12xC+eI3H2dea9+0Eu/uSr1K97Y8X9k6YF5wrUp0nXEvR2T7peHurcgSswoyAphEDrJlyBGYQ6tjPjpt+YdN9oj6U55eSMACB88EW888vQzDAexz1nISsf76hJjaEU2WYNbXHakEoi9eF26lfOVHibRvLGnXIE6dTROfk7AhEhuGELl1/4fllS/Ib2PANA8MatRF8/VHFqlZASnCtsWQjA22RJO082I1BVQp3bqL9+M+L15T2WeLzUr7+VUMfUaaTpHgQrrsl7vMlIC9Ad3lUWJx8+9CKBtbUpNJdJtlpDs0Tks6nWkSLyNyIyy2njykW0Zx/iD6a/kEtNuhnJ6aOOjZGvvMRYgm1bSQ4NED5ceimAUMc23LMXULfiWgKtm4j3nSJWYRr2luBc/qmjKVx19XjmNU+aOTR8/DDxvlMFxQdSBDe0E+/vZfjYwUn3i/R04Vmw1LHWjZYA3Y1lUSKNnT9FvO9kTTaiGUu2MYIvAIPAXfZtAPiiU0aVm0hPF3Ur1hWsq54vlvTwAoZ7s8sbz4e0vEQBMQKA+uveAm5PUXre5oIm4oT2PktwwxbE5crQsK8MSYIUxZoRgBUniE0iM5GqCK6/ofAJfDr+M8X7Gu3uKqg1ZTYEWjcx/PpBEqEBR8cZS6pdpnEEI6xS1Y/bPQa6VfWTQM3VEIAVRI0ePeD4h3sqfM35SQ9ny0iLygUFnccdbCDQelPJ5SYiR14iGbqUDorWrViH+OsrSroY7BhBgRlDKaxagol/HIQ6tlO3Yh3eeYXLgHnmNlHXcu2k72tiaJDY6R7H4gMp/K2bQJXIKx2OjjOW8KFdSF3AsWWvSiJbRxAWkVtSD+wCs/Ak+1ctsdM9aCTk+Id7KrzNLXm3J8yG+IXTuGfNL8q6frCtneFjB4id7y2CZdkR6tgOLjf1128GrCUE/+q2ipoRpATnijYjaGohOXiBxOWLVzyXCA0QPvSilfFTJIJtWwkf3j3ueADRowcA5wLFKQJXtVkCdCWOAYUP78K/ekPNCs1lkq0j+ADwf0TkqIgcw2o3OWW1ib3/Prsl5W5721wR+YmIvGL/LXwBtYiMlMuX1xH4mltIXDznmB57oTUEmWjSyvHu+cMbSyb8FurcRqD1JtzBkbTMQOtGoscOZJ3/7jQpwblClEczGckcuvIHwtDLOyGZKEp8IEVwQzskE9a5xyHdg8Dh/xVXYAbuuYu48J//WDJxwWQ4RPTogfSSY62TlSNQ1T2quh64HrhOVTeo6t4sx9hit6RMpZ5+DNimqlcB2+zHFUO0pws8XuqWrCmrHem8cYdmBcVyBAM7n6L/3z87cl5b+M3Jf9TY+V6iRw9c8aUXaL0JkknCJV5CmIhiCM5lMlktQahjG67gLPxrbizKWAD+q9pwzZgz4fJQtKcL9+z5uOcsLNqY4zGw8ykS/b1oLAqqJfmMRV7pgGRiWsQHYApHICLvsf9+WEQ+DLwfeH/G43y4A/iyff/LQO6J+g4S7emibllrQel3xcDXlLv0cC4UyxFMJszlFEOd42vp+K9qAxHCBysjjTRdVVyspaGFy0DkijiBJpOEOncQXH9rUVN4xe0meMOthPbsQJPJK563kiqudTy1su+JRyA5WtnG6c9Y+PAuECmqY61kppoRBO2/M8e5zcji/Ar8WEReEpH77W0LVTW1mHwaGPfnhIjcn0pXPXeuNBIGqkqkZ1/Zl4XAak8I2UsP50IyGiZ5+WLeOkOZlEOYK9S5A8+8ZnzLRoucuYMN+JZdXTEB47TgXJGWhlw+P555i674cRA92kXi4tmCqoknIti2lcTFc+namhTJWJThE0dK0rGrHJ+x8MEX8S1tHbX0WMtM+vNBVf/JvvtTVf155nN2wHgqblHVkyKyAPiJiBwac34VkXFFRFT1cay2mGzcuLEkQiPx86dIDl4oWt/VQnDV1eOZ2+zIjGCkhqDwKX2phbk0NszQyzuZecs7xv0lGmjdxMCz3yqbhn0mySLPCMDOHBqzXJhauqnfUPy6z/r1bwURQh3bRlU0D79+GBJx6kpQdFnyz1giQeSVDma+pbKq1J0k22Dx32e5bRSqetL+exb4NnATcEZEmgHsv2eztMFxnC6XzxXvFOmC+VKsYjKYSKTP75gwV/jwLpLhyxNKLAdaN6GRENEpCqFKQWKwuDECSNUSHB21LdSxjbrVN+CZ1Vi0cVJ4Zs3Dv+oGQp2j4wSlTKqYUAjSoc9Y9PWDJMOXp018AKaOEbxJRD4CzE/FBezbJ4BJ21KJSFBEZqbuA28DuoCnsVpeYv/9zwKvoWhEe7pApGLyhr1NKxwJFo90Jit8aWiUyB7WL/QZb/hNx+QAQh3bwOO1CtnGIV1YVgHLQ8USnMvE19xC8vLF9LJTYrCfyKud6QIwJwi2tRN5pWNUY6Xo0S5c9TPxLljm2LgpUp8xt+3o3A3zHBV/SxeSFaDXVG1MNSPwYcUCPIyODwwA75zi2IXAcyKyF3gR+J6q/hD4NPCrIvIK8Cv244og0r0P36JVuPzF1VXPF19zC4mBfhKhS0U9b7z/DFCcGQFY/6grH9vFmm+dxL96A9FjBxyTDQ51bKd+3RtxBYLjPu9pXIxnbnP6n7mcWDUEhQvOZeIdk0Ia2vssJJNFrR8YS7BtK6gS2vNselu0p4u6FdeUrPre+oztxhWYwYw3/IajukPhw7twz1mIJ49+DtXKVDGCZ4FnReRLqnoslxOrajewfpzt5wHnPrUFED3aVVF5w5npgu7VNxTtvFaLynpcebSonIqG9rs5+/ifEX1tL/4i2gwQO3uc4RNHmLX13gn3ERH8rRsrZEZwoajxAcjQoertIWA3BnI3zMW/6op/taJRt/J63A3zCHVso2HznWgiQfTofmb96u86NuZ4iNdH/fWbCXVsy6mncq6ED+0i0HpTzQvNZZKtOx+y+xF8X0S2p26OWlZiEoP9xPtOFb3vaiFkSg8Xk1TqqBMf9Jk334H4/Fza9vWinzu1Tj1V0VRgrS1Ad+5E0W3IhcRAf1HjAwDeBcvB5WK4txtNJBjas4P6G7Yg7klXagtCXC6CG9oJ7XkGTSQYPvUaOhwpScbQWIJt7cTP9zL8+qGpd86D6SQ0l0m2juBrwCGgBfgkcBQo/0+uIhJJSU9XSKAYwLtwaunhfIj39xYlPjAe7mADM954G4M//w7J6FBRzx3q2IZ34XK8i1ZNul+lxAkSg/0FNa0fD/H68DYuIdbbQ+S1vSQG+otaTTwRwbZ2kpcvEHm1s6xJFakkgZTAXrGZjvEByN4RzFPVfwViqvqsqv4+NdaUJloh0hKZuOoCeBoXFb2WoJjyEuMxa+s9JIcGufzC94t2zuRwhKF9zxFsa59yJpMSoCu37lAxBecy8dqN7EOd28DlIrj+1qKPMZb69beCy0WoY7sl0+6tw7d4tePjjsUzt4m6FesIdTrTFW9EaG6dI+evVLJ1BDH7b6+IvF1ENgDF/4SXkWhPF57GxUUr/ikW3qaVRZ0RpFtUOigLEFj3RrxNK7i0/cminTN84AV0OEL9BGmjmYjbQ+CqtrIGjIstOJeJt7mF2OkeQi9tw39VmyNjjMU9YzaBNRsJdW4j0tOFb/nVZRNjC27YSvjQi47IUocPvYj/qrZpITSXSbaO4H/ajWg+Avwp8C/AhxyzqgxEerpKUhyTK+MVEBVCYrAf4jFHZwQiQsOWuwnv/wXDRWquE+rcjvj81F/zpqz297duSueDl4NiC85l4mteSXJokGj3y45UE09EsG0r0e59RF7pKOsSarBtcjG8fEmGLxM9dmDaLQtB9qJz31XVS6rapapbVPVGVX3aaeNKRTIcItbbXVHxgRTeMXnjhRK3paI9RdCsn4yGt74LXC4GdnyjKOcLdWwncM2bcdVll9obWLvJEqA7UvrOaZAhL+HA0lAsQ1rh4g++WBK1VyCdEqzRMIPPf7dk447Fv+ZGXMFZRY8ThF/pgGRy2gWKIftWlV8UkS+MvTltXKmIHtsPqhUVH0gxkjl0tCjni18obg3BRHjnNRO8YQsDO76JJhJTHzAJw73dxHq7cwqK+tfcaGvYl2d5KF1VXORlm4GdT3HpByPNARMXzzquxJkat/8//jb9OHn5YknGHQ9xewiuv5VQ5/hiePkSOTS9hOYyyXZp6LvA9+zbNqABqAzR9yIQqTBpiUyKLUddTHmJqWhov4d4fy+hvc8UdJ6Ulk4uyyDu+pnULWstmwDdiOBccR1B3xOPWHLMGTitxJket8Qqs5NhieGdJXq0a+qdsyR8aBe+ZVdPG6G5TLJdGvqPjNvXsPoWb5zquGoh2tOFu2GeYymVheBduCydN14M4v29IFJwi8psmHHjr+BumMdAgUHjUOd2vItW4bPTabPFv3YT4SMdaCJe0Pj5MCI4V9wYQTmUOMs57kSkBPaK1SI1JTQ3HZeFIPsZwViuApz/JikR0W5LeroSKwld3jo8jYuLljkU77dbVJYgK0K8PhpufSeXd/+Y+KXzUx8wDsnIEOH9z+cVFB0RoDuQ19iF4ITgHEysuOmUEme5x50Iz6xG6lbfULQ4QVpobhoGiiH7GMGgiAyk/gL/BfyZs6aVBo0NEz1xpCKXhVL4mlqKVksQP+9sDcFYGtrvhniMwZ3/kdfxQ10/R2PRvIqm0oVlZYgTOCE4B6VX4iz3uJMR3HClGF6+pAvJzIxgYlR1pqo2ZPxdo6r5/WdXGNHjhyEeq8iMoRTe5hZivT1FEXKzismcbS2YSd3StfivauPS9q/nZX+oczvirydw9RtyPtY7fwmeeeURoHNCcA7GqL2K4Glc7KgSZ7nHnYy0GN7eZ6feeQrCh17EPbcJz/wlRbCs+phUdE5E2iZ7XlUrozlsAaTL5SuwhiCFlTc+QGKgH8+seQWdK95/uuS/ehra7+bsP32UyKt7CFy1IevjVJVQxzbqr70Fl7cur7EDazeVRWoiMeBMMRlYX8rl+AIu17gT4V+1HnfDXEKdO2gosIlM+PAuAms3VeTycCmYqoXT30zynFIDMhORnn24AjPwLlxRblMmxJtWnOwuyBFYLSovlHRpCCwhunNf+jgD27+ekyMYPvEK8XMnmPvbf5z32P7WTQz+4mli507gLeGvPafkJQwjiMtF/Q1bGNqzA00k8hbei/WdJN53isBvPVBkC6uHSZeG7OKxiW5V7wTA1lVfvq5kuur5kK4lKDCFNH7RagZXakfgrp/JzDf9FoPP5SZEl1YbLaDpSmr2U+pZgVPyEobRBNvaSQz0E3ltb97nCE9ToblMsv72E5FrReQuEflvqZuThpUCTSSIHjtQ0ctCgNUFyuUuOHMofr50NQRjaWi/m2T4Mpef/17Wx4Q6tuNb1lrQL/m65eURoEvFCAzOEkyJ4XXmnz0UObwL8ddT11IZnQnLQbZZQx/H6lH898AW4DPA7Q7aVRJip3vQyFBFZwwBiMeLd8HSgmsJ0i0qHZaXGI/A1W/A29TCpe3Z9SlIDA0SPvTLCXsTZ8uIAN2LBZ0nFyzBueI3pTFciXvmXPxXtRVUTxA+tAv/6jbEPdVKee2S7YzgnVhdxU6r6u9hdR6b5ZhVJSLSY0lPV3LGUApvU0vhM4ISVhWPRUSY1X434QMvZOXQhvY9B/FYUUTV/K03EX39EImhwYLPlQ0pwTkTIygNwbatRF/bS/ziuZyPTQvNtdZMfWxeZOsIwqqaBOIi0gCcBbJq6CkibhHpFJHv2o+3ikiHiOwRkedEpPSi5jbRni7E48O3ZE25TMgan61BX0gKabz/NFIXKHpue7akhei2Ty1EF+rYhqt+JoG1hf+DBlotAbpIiQToUvISTiiPGq4k3axmT+49CkaE5iqnRW05yNYR7BaR2cA/Ay8BHcDzWR77J8DBjMf/CNynqjcATwB/meV5ik60pwvfstaq0B73Nq1AIyESefzqSZHqTFauFDnP3CaCN7Rz6dl/n1T2QVUJdW6n/vpbi/LeBFICdCUKGDslOGcYn7qWa3HPWZhXlXH44IuW0NxVk2bK1zzZFpT9d1W9qKqPAb8KvNdeIpoUEVkCvB2rf0H6dFiidWAtL5VFrERViXR3VXx8IIXPFp8rpMI43n/a0YY02dCw9R4S/acJ7Xlmwn2Gjx0g0X+6aC0YXYEZ1C27umSFZU4JzhnGR0QIbtjC0J5nc9aVihyevkJzmWQbLH5aRO4VkaCqHlXVl7M8/+eAjwKZWrHvB74vIieA3wU+PcGY94vIbhHZfe5c/r+CJyLed5Lk5QtVER+A0bUE+eJ0i8psmNG2dUohurTaaAFpo2Pxt24i/EppBOjSgnMmRlAygm1bSQ4NED6c/fKfJuKEj0xfoblMsl0a+hvgFuCAiHxLRN4pIv7JDhCR24Czqjr2nfkQ8JuqugT4IvDZ8Y5X1cdVdaOqbpw/f36WZmZPORtw54N3wVJwe/KuJVBVEv1n8MwrryMYLUTXN+4+oY5t1LVcW9TZiyVAN1QSAbqRGYGJEZSK+uveAm5PTmmk0WMH0UhoWtcPpMh2aehZVf3vwErgn7BkqM9OcdjNwO0ichR4EmgXke8B61X1l/Y+3wDenI/hhRLp6QKXi7rl1dGkWtwevAuW5Z05lBzsR+PDFSG13dB+DyTi4wrRJS5fJHxkd9FbMKb+2UtRT5AYvOCI4JxhYtzBBgJrNzHUmX0aaSpmFLh6egeKIbeCsgDwO8ADwCbgy5Ptr6oPqeoSVV0B3A1sB+4AZolIKk3nVxkdSC4Z0Z59+BatwuXPrvVhJeCzm5bnQzlTR8dSt3QN/jU3cmnblUJ0Q3ufhWSy4PqBsaQE6MIlqCdIDPbjbpg7bXVrykWwrZ3o0QPE7HasUxE5tAvP3GZLSG+ak22M4JtYX9jtwOeBVaqaswCMqsaBPwD+Q0T2YsUIHsz1PMUg2tNF3YrqWBZK4W1uYfj00bxSSGMV5AgAZrXfzfCJI0ReGa1bGOrcgWvGHEeyOAKtNxE5tLsoKq6TkRjoxz3DLAuVmtQsMttZQfjwLvytG43DJvsZwb9iffk/oKo77JqCrFHVZ1T1Nvv+t1X1OlVdr6pvVdXitN7KgcTAeeLne6smPpDC19SCRoZI2H2Hc6Gc8hLjMePNtyN1gVFBY00mCXVuJ3jDrXkLiE2Gv3UT8f5e4n0ni37uTIzgXHnwLV2Lp3FRVlXGsXMnLKE5Ex8ApnAEIvJRAFX9EXDnmOf+2kG7HCXVo9hf4RpDY/GmG9nnvjyUlpcoc/poCnf9TGa++bcY/Pl/koxYQnTR7n0kLvUVPT6QYiRO4OzykBGcKw9WGulWQi/vRGPDk+6bjg9M80KyFFPNCO7OuD+2FdGvF9mWkhHttqQl6lZUl8hUqpYgnxRSq0VlY0UVzzVsuYdk+DKDL3wXwMr4EKF+/VsdGa9u+dWIP+h4wDgVIzCUnmBbOxoJTensw4dsobkV1ZEs4jRTOQKZ4P54j6uGaE8XnvlLqi69z9O4GPH48pwRlL+GYCyBq2/C27ySgW2WEF2oYzv+1RsKbr4zEeL2EFjTRsTBCuO04JyJEZSF+mtvQTy+KauMI0ZobhRTOQKd4P54j6uGyNEu/C3VtSwEIG433oX5pZAmLlSeI7CE6N5N+OAvCR/aReTVzqJVE0+Ef+0mRwXojOBceXEFggTWvTHdy2I8kuHLRF8/SOBqEx9IMZUjWJ9qWg9cb99PPa6+b1KsD0HsVHfVBYpTWJlD+c4Iyl9DMJaGt94FCMf/6ndAlYs/+goDO59ybDynBeiMvET5CbZtZfjEK8TOvD7u8+EjL1lCcyZQnGaqDmXujKb1Hvt+6nHlLDbnQPTofqB6KorH4mteSez0UTSZfeJWMha1+h1X2IwAYGjfz8ElkLSkHxIXz3LmsQcdcwZpATqHAsaJAaM8Wm5Ss8qJZgXhQ7vA5cK/5sZSmlXRVG5/RoeIVJm0xFi8TS3ocCSdBZQNiX4r3bQSHUHfE4/AGKemw2FruwO4AjOoW76O8KHdjpw/cdkoj5Ybb/NKvAuXT+gIIod3UbesFXf9zBJbVrlMO0cQ7enCPauxIr8Us8GXFp/LfnmonJ3JpiJ+fnzx2Ym2F4NA6yYirzojQGcE58qPiBBsa2do33MkhyOjnksJzfnNstAopqEj2Eddy7VVW02YTy1BJclLjMUzb1FO24uBf60tQHe0+AJ0JkZQGQQ3bEWHI4QPvDBqe1poziiOjmJaOYJkLEr0+JGqXRYC6wtSfP6cagkq2RE03vsQ4guM2ia+AI33ji1bKR6pLwEn4gSJwQvg9uAyyw5lJXDNmxCf/4o00tR7bgrJRjOtHMHw8cOQiFdND4LxEJcL78LlOc8IxOfHFay8NtMNm+9k4QOPWsJfIngaF7PwgUdp2Hzn1AfnibdxMZ7GRY50LLOqiudU7YyzVnDVBai/9uYr5CaM0Nz4TKtqipEeBFWZ+ZrG29xC7NRrWe+fKiar1C+nhs13OvrFPx6BtZsYOvhLVLWor0tiwMhLVArBDe2EOrYx3NudrsoPH95FoHVTxf4vlItpNSOIdO/DFZiBd+HycptSEJYc9TE0kchq/0qsKi43/tZNJPpPEz93oqjnTc0IDOWnPpVGas8KYudOED/fi9/EB65gWjkCS3r6GsRV3ZftbWpB48NZZ9YYR3AlqTXiYusOJQYvmBlBheBbuBzf4tXpOMGI0JxxBGOp7m/EHNBEguixA9RVmeLoePjSmUNTB4xV1TiCcahbdjWuwIyixwmM4FxlEWzbSnj/8yQjQyNCc1XSlbCUTBtHMNzbjUbDVZ0xlMKbQy1B8vIFNBatSHmJciJuN/6r2oo6IzCCc5VHcEM7Gh9mqOs5Iod2EbjKCM2Nx7RxBNEeS3raX2VdycbDM6cJ8fkZPn10yn0rrSFNJRFo3cTw6wdJhAaKcj4jOFd5+K++CfHXM/jzp4m+ftDEBybAcUcgIm4R6RSR79qPRUQeFpEjInJQRD7otA1gxQfEW4dvyVWlGM5RxOXC29SSVS1BJdcQlJtELAqqvPbeVrof2FSwvpEpJqs8XN46vM2rGPzZU5BMcunHX3VU1LBaKcUc6U+w+h032I/fBywFWlU1KSILSmAD0Z4ufMtaK6oxSyH4mluIHj885X5peQnjCEYxsPMpLn3vX9KP430nOfOY1T4731TWtOCcmRFUDAM7n2L4+KH048SlvoLf51rE0RmBiCwB3g78S8bmDwCfSvU9VtWzTtpgj0Gkp6uqC8nG4m1uIXb29Sn1cuJ2f+NKaVFZKfQ98Qg6VoemQLG79IzAxAgqhr4nHoF4bNQ2J0UNqxWnl4Y+B3wUyJSXXAW8W0R2i8gPRGTctRoRud/eZ/e5c+cKMiLed5Lk5Ys1EShO4WtugXiM2BSN2OP9p3E3zEO8vhJZVh04IXaXHLSVR82MoGIoh6hhNeKYIxCR24Czqjq2A0gdEFHVjcA/A18Y73hVfVxVN6rqxvnz5xdkSypQXEuOwJvuXzx55lD8vEkdHQ8nxO5MjKDyKIeoYTXi5IzgZuB2ETkKPAm0i8i/ASeAVLTm28D1DtoA2D0IXC7qll/t9FAlI9tagnh/r0kdHQcnxO4SA/1GcK7CKIeoYTXimCNQ1YdUdYmqrgDuBrar6nuA7wBb7N1uBY44ZUOKaPc+fItW46qrd3qokuGevQDxB6eeEfSfxjPPzAjGMkrsDsDlZsEDnykogJi4fMEIzlUY5RA1rEbKUVnxaeBrIvIh4DLwfqcHjPbsJ3DNm5wepqSICL6mFZOqkFotKs+bpaEJSIndXfzRlzn7zw8RWLW+oPMZwbnKpByihtVGSRyBqj4DPGPfv4iVSVQS4pfOE+/vran4QApv88q0oup4JC5YCVnGEUxOcMOIOJlv8eq8z2MJzhlHYKg+ar6yOF1RXAMaQ2PxpVJIx6THpUjXEMwxjmAyvAuW4luyhlDntql3ngRrRmBSRw3Vx7RxBHUrrimzJcXH29wCyQSxc8fHfT5ewU3rK41gWztDB14gGQ7lfY7E5QsmddRQldS8I4j0dOFZsBT3jNnlNqXo+KboX5yWlzDB4ikJtm2FeD79WLYAAA/eSURBVIyhfT/L63hVNTECQ9VS844g2rMff5V3JJuIqWoJ4v29iLcOl6l0nZLA2k24AjMIde7I6/jk0AAkE2ZpyFCV1KwjGNj5FN1/uJFYbzdD+56rSaEpd8M8XPUzJ6wlqPQWlZWEeH3UX7+ZUOc2VDXn4xOpqmIzIzBUITXpCAZ2PsWZxx5Ml5EnhwY489iDNecMRMRWIZ14acjEB7InuGEL8b5TDGch5jcWIzhnqGZq0hFYgmLhUdtqVWjK12wcQbGoT6eR5p49ZOQlDNVMTTqC6SQ05W1uIdZ3Ao0Nj9puWlTmjndeM3Ur1qWbnedCWnDOxAgMVUhNOoLpJDTla2qBZJLY2ddHbU9evogOR4zOUI4EN2wlfOjFnLuWmRmBoZqpSUcwnYSmvBOkkKb7EMw1fQhyIdjWDskEQy/vzOk4IzhnqGZq0hFMJ6Ep3wSN7E2Lyvzwr7kRV3BWznECS17CCM4ZqpNyiM6VhOkiNOWaORdXcBbDp8c4gvOpFpVmaSgXxO0huP5WQp070GQScWX3WykxeMEsCxmqlpqcEUwnRMQKGI+pJUjNCNxmaShngm1bSVw8S/ToxIJ+YzGCc4ZqxjiCGsDX1HJljKD/NO6Gubi8dWWyqnqp32C1y8gleygx0G90hgxVi3EENYC3ucXqy5zRjN3qTGbiA/ngmdVI3eobCHXm4AjspjQGQzViHEEN4GteCarEzoykkFo1BCY+kC/BDVuIvNKRTgudDCM4Z6h2jCOoAbzpzKGROIEpJiuM4IatkEwS2vvslPuOCM4ZR2CoThx3BCLiFpFOEfnumO1/JyKXnR5/OjBWjlrjMRKX+nDPMYHifPGvWo+7YW5WcYKUzpBZGjJUK6WYEfwJcDBzg4hsBMx/TZFwz5iNa+YcYnYK6UgxmVkayhdxu6m/YQtDe3agicSk+6aUR43gnKFacdQRiMgSrP7E/5KxzQ08CnzUybGnG77mlekZgWlIUxyCbe0kBvqJvLZ30v2MvISh2nF6RvA5rC/8ZMa2PwKeVtVeh8eeVlhy1FaMIOUIvCZGUBDB9beCyzVlL+O0IzAzAkOV4pgjEJHbgLOq+lLGtkXAu4C/z+L4+0Vkt4jsPnfunFNm1gy+5hbi53tJRoeMvESRcM+ci/+qtinjBGnlUdMJzlClODkjuBm4XUSOAk8C7cB+YDXwqr29XkReHe9gVX1cVTeq6sb58+c7aGZtkM4cOn1spEWlWaoomGDbVqKv7SV+ceIfI0ZwzlDtOOYIVPUhVV2iqiuAu4HtqjpHVZtUdYW9fUhVVztlw3TCZ/cvHu7tIX7+NJ45C40AWhEIpprV7Jm4l3FKXsK83oZqxdQR1AiZtQSmhqB41LVci3v2gknVSC3BObMsZKheSuIIVPUZVb1tnO0zSjH+dMBdPxP3rEaGT/cQv3DGOIIiISIEN2xhaO9ONBEfdx8jOGeodsyMoIbw2v2L4/29uI0jKBrBtq0kQ5eIHHlp3OeN4Jyh2jGOoIbwNbcQ7elCo2EzIygi9ddvBpd7wuwhMyMwVDvGEdQQ3qaVJMOWaodxBMXDHWwg0HrTuPUEqmpiBIaqxziCGiKlOQRGXqLYBNvaiR49QOz86DpIIzhnqAWMI6ghvE0r0veNvERxCbZtBWBoTI+CtOCciREYqhjjCGqISPe+9P0TH/8dBnY+VUZragvf0rV4GhddESdIC86ZpSFDFWMcQY0wsPMpzn3h/0k/jved4sxjDxpnUCSsNNKthF7eicaG09uN4JyhFjCOoEboe+IRdDg8apsOh+l74pEyWVR7BNva0UiI8KEX09uM4JyhFjCOoEaInz+V03ZD7tRfewvi8Y2qMh5pSmMcgaF6MY6gRvDMW5TTdkPuuAJBAuveQKhzRHcoOXjBEpwLmCJ5Q/ViHEGN0HjvQ4gvMGqb+AI03vtQmSyqTYIbtjJ84gixs8cBIzhnqA2MI6gRGjbfycIHHsXTuBhE8DQuZuEDj9Kw+c5ym1ZTBNtsNVI7jdTISxhqAU+5DTAUj4bNd5ovfofxLlqFd+FyQh3bmP1r7yVx+YJpSGOoesyMwGDIAREh2NbO0L7nSA5HzIzAUBMYR2Aw5Ehww1Z0OEL4wAtGcM5QExhHYDDkSOCaNyE+P6GXfmoE5ww1gXEEBkOOuOoC1F97M4PP/5cRnDPUBMYRGAx5ENzQTsJuaG9iBIZqx3FHICJuEekUke/aj78mIodFpEtEviAiXqdtMBiKTTIeS98/9+VPGk0nQ1VTihnBnwAHMx5/DWgFrgMCwPtLYIPBUDQGdj7F+a//r/TjxMB5I/BnqGocdQQisgR4O/AvqW2q+n21AV4Eljhpg8FQbIzAn6HWcHpG8Dngo0By7BP2ktDvAj8c70ARuV9EdovI7nPnzjlrpcGQA0bgz1BrOOYIROQ24KyqvjTBLv8A7FTVn433pKo+rqobVXXj/PnznTLTYMgZI/BnqDWcnBHcDNwuIkeBJ4F2Efk3ABH5ODAf+LCD4xsMjmAE/gy1hmOOQFUfUtUlqroCuBvYrqrvEZH3A78G3KOqVywZGQyVjhH4M9Qa5RCdeww4BjxvS/c+paqfKoMdBkPeGIE/Qy1REkegqs8Az9j3jeKpwWAwVBCmsthgMBimOcYRGAwGwzTHOAKDwWCY5hhHYDAYDNMcsZQeKhsROYeVaZQPjUBfEc2pBsw1Tw/MNU8PCrnm5ao6ZUVuVTiCQhCR3aq6sdx2lBJzzdMDc83Tg1Jcs1kaMhgMhmmOcQQGg8EwzZkOjuDxchtQBsw1Tw/MNU8PHL/mmo8RGAwGg2FypsOMwGAwGAyTYByBwWAwTHNqxhGIyK+LyGEReVVEPjbO8+8TkXMisse+VX2v5Kmu2d7nLhE5ICL7ReSJUttYbLJ4n/93xnt8REQulsPOYpLFNS8TkR0i0ikiL4vIb5bDzmKRxfUuF5Ft9rU+Y7fErWpE5AsiclZEuiZ4XkTk7+zX5GURaSuqAapa9TfADbwGrAR8wF5g3Zh93gd8vty2lviarwI6gTn24wXlttvpax6z/x8DXyi33SV4nx8HPmDfXwccLbfdDl/vvwPvte+3A18tt91FuO7NQBvQNcHzvwn8ABDgjcAvizl+rcwIbgJeVdVuVR3G6oh2R5ltcppsrvkPgP+jqhcAVPVsiW0sNrm+z/cAXy+JZc6RzTUr0GDfnwVUc/PkbK53HbDdvr9jnOerDlXdCfRPsssdwFfU4gVgtog0F2v8WnEEi4HjGY9P2NvG8jv2tOpbIrK0NKY5RjbXvAZYIyI/F5EXROTXS2adM2T7PiMiy4EWRr4wqpVsrvkTwHtE5ATwfayZULWSzfXuBVJdgX4bmCki80pgWznJ+rOfD7XiCLLhv4AVqno98BPgy2W2pxR4sJaH3or16/ifRWR2WS0qHXcD31LVRLkNKQH3AF9S1SVYSwhfFZFa/t/+U+BWEekEbgVOAtPhfXaMWvmwnAQyf+EvsbelUdXzqhq1H/4LcGOJbHOKKa8Z61fD06oaU9Ue4AiWY6hWsrnmFHdT/ctCkN01/1/ANwFU9XnAjyVUVo1k8798SlXvVNUNwF/Y26o+KWAKcvns50ytOIJdwFUi0iIiPqwvgaczdxiznnY7cLCE9jnBlNcMfAdrNoCINGItFXWX0sgik801IyKtwBzg+RLb5wTZXPPrwFb+//bONcSqKorjv39lpo416fTSD02NRQ+JgQpEywxioIKayIIwTYMIstQok4iKRFLxS9SXHmBG+KhMaYjwEfggNc0mvaMpKDYfJCGRECcpMlcf9po4M94ZruPNOzNn/eBw1z17n33WOnPmrHv2Pue/AUk3kxLB0fPqZfko5X+5JnPH8yqw+Dz7WAmagCn+9NAY4LiZHSlX4/1i/mAzOyXpeWAt6amDxWa2V9JcYKeZNQEzJD0EnCINykytmMNloMSY1wINkn4m3TrPNrNjlfP63CgxZkgXjxXmj1v0ZUqM+SVSt9+LpIHjqX019hLjnQDMl2TAZmB6xRwuE5KWk+Kq8bGeN4EBAGb2Pmns5wHgIHASmFbW/ffR8yUIgiAoE/2laygIgiDoIZEIgiAIck4kgiAIgpwTiSAIgiDnRCIIgiDIOZEIgoogqa2EOrMkDS7jPhsl3VLG9raew7Zt/jlC0spu6lVLeq6n+wmCUohEEPRmZgFnlQgkXdhNcSNJsKwsmNnYMrTxq5lN7KZKNRCJIPhfiUQQVBRJE1xTfqWk/ZKW+tuTM4ARwAZJG7xug6RtkpolfSGpyte3SlooqRl4TNIzkn6QtFvSl5IGSxpLeqN8kc9VUCep3sX4CpJWS7rc29uoNK/BTkn7JN0paZWkA5LmZXxvy9hzJLX4PhcUifM6972lUxu17Rr0km6VtMP9K0i6AVgA1Pm6RZKqlLT4m72thzPt7JP0kdLcE+skDfKyUZK+dd+aJdX5+tl+nAqS3irrHzboW1RahzuWfC5Am39OAI6TtFMuIMlC3OVlrUCN2zWkt0iH+Pc5wBuZeq9k2h6esecBL7i9BJiYKSsA97g9F3jH7Y3AQrdnkmSdrwEGkvSbhneK4X5gKzDYvw8rEm8TMMXt6Zlta3ENeuA9YJLbFwODsuW+/iLg0swxOUjSqK8lvTVf72WfA0+6vR14xO1LSHdZDaR5DOTH/WtgfKXPi1gqs/QLiYmgz7PDzA4DSNpFuqh916nOGFK3zhZJkC6UWS2hzzL2aP/VXQ1UkeQKOiDpMqDazDb5qk9IE5600y5X0QLsNdd1kXSIJP6Vleq4D/jYzE4CmFkxXflxwKNufwosLFJnG/Ca0oxbq8zsgMfawXXgbUnjgdMkKeKrvOwXM9vl9o9AraShwEgzW+2+/elxNJCSwU9ev4okSLi5iF9BPycSQdAb+Ctj/0Px81LAejN7oos2/sjYS4BGM9staSouvNdDn0538u90F/6VQrd6Lma2TNJ24EHgG0nPcqZI4CTgCuB2M/tbUivpV37WZ0jHcVA3uxMw38w+OAv/g35KjBEEvZkTwFC3vwfGSRoFIGmIpBu72G4ocETSANKF84z2zOw48Luku71sMrCJnrEemNb+hJOkYUXqbCGJ4dHJp/+QdD1wyMzeBb4CbqPjMYA0A9lvngTuBa7tzjEzOwEcltTo+xjofq4Fns6Ms4yUdGVJ0Qb9jkgEQW/mQ2CNpA1mdpSkGLtcUoHUjXJTF9u9TuoX3wLsz6xfAcxWmuS9DniKNHhcAOpJ4wRnjZmtIXUl7fSurZeLVJsJTJfUQtczSz0O7PE2RpOmJjxG6g7bI2kRsBS4w9uZ0im+rphMUt8tkMYyrjazdcAyYJu3tZKOCSfIEaE+GgRBkHPijiAIgiDnRCIIgiDIOZEIgiAIck4kgiAIgpwTiSAIgiDnRCIIgiDIOZEIgiAIcs6/EhPNGI/f+6gAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, - "execution_count": 4, "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXmYXGWV/z+nqrp6qaSXpLuzdUIgZGEnIcEFDCRxdEYRGFQI6AyiIwM644b4E3VEUMSRGWVGZwYZB0RkcwFFXFAIEFmUhISdpAMh0N0JpJeku9Nbbef3x723Ut2p7q7t1nL7/TxPPV1113Orqu+p97znfI+oKgaDwWCYuviKbYDBYDAYiotxBAaDwTDFMY7AYDAYpjjGERgMBsMUxzgCg8FgmOIYR2AwGAxTHOMIDAaDYYpjHIHBs4jILhF5Z5HOPUtENopIv4j8ewHP+yMR+YZLx/6QiPzBjWMbiotxBFMUEfm9iFydYvlZIvKGiATs128XkQ32Da1XRO4VkWVJ258uInEROTDm8bZCXk8JcjHQBdSq6mXFNiZTRGShiKjzPQBQ1dtU9V3FtMvgDsYRTF1uAT4sIjJm+d8Bt6lq1L6Z/wH4FTAXOBx4FnhMRBYm7bNbVaeNeTzh/iUUhuSbYQYcBryopnTfUAYYRzB1+SUwE3iHs0BEGoAzgB/bi74N/FhV/0NV+1W1R1W/AjwJXJnNSe1wzedF5Fl7hHGXiFTZ6z4iIo+O2V5F5Ej7+Y9E5L9F5Hf2qOMxEZktIteLyD4R2SYiy8eccpWIvGivv9k5l328M0TkaRHZLyKPi8jxY+z8fyLyLDCQyhnYo6VN9nVsEpG3O3YCFwJfsO08JDwlIpUi8m8i8rqIvCkiN4hItb3uJRE5I2nbgIh0isgK+/XP7FFbrx1+Omac93qy9/O9IrJVRPpEpE1Evpa06Ub7735nhDf2eONdv73uYRH5uv0Z9YvIH0Sk0V5XJSI/EZFu+73fJCKzUl2DoTAYRzBFUdUh4KfA3yctPhfYpqrPiEgN8HbgZyl2/ymQS4jgXOCvsUYYxwMfyXDfrwCNwAjwBLDFfv1z4Dtjtv8Q8G5gEbDE3hfbYdwE/COWQ/wBcK+IVCbtez7wXqBeVaPJBxWRGcBvgP+09/8O8BsRmamqHwFuA75tj44eSHEd37LtORE4EpgHfNVed4d9bod3A12qusV+/TtgMdBsX/ttqd+qSRnA+vzr7eu8VETOttettv/WpxrhTXT9SZtdAFxk2xkEPm8vvxCoA+bb+14CDGV5DYY8YBzB1OYW4ANJv5L/3l4GMAPr+7EnxX57gKak13PtX3bJj9AE5/1PVd2tqj3Ar7Fuhulyj6o+parDwD3AsKr+WFVjwF3A2BHB91W1zT7XNRy8wV4M/EBV/6KqMVW9BcuxvHWMnW220xzLe4EdqnqrqkZV9Q5gG/C+yS7ADsddDHzWHmX1A98E1tub3A6caTtjsG6odzj7q+pN9ghtBPgacIKI1E123rGo6sOq+pyqxlX1Wfscp6W5ezrXf7Oqtib96HA+5wiWAzjSfu+fUtW+TO035A/jCKYwqvoo1oTm2SKyCDgZ6yYEsA+IA3NS7DrH3s9ht6rWj3kMTHDqN5KeDwLTMjD7zaTnQylejz1WW9Lz17DmOsCK4V+W7LywfqHOHWffscy1j5fMa1i/7CejCagBnko69+/t5ajqy8BLwPtsZ3Am9uciIn4R+ZaIvCIifcAu+5iNaZx3FCLyFhF5yA479WL9Mk/3OOlc/3if863A/cCdIrJbRL4tIhWZ2m/IH8YRGH6MNRL4MHC/qr4JYN/InwA+mGKfc4GHXbBlAOsGCYCIzM7DMecnPV8A7LaftwHXjHFeNfYvW4eJJnp3YzmTZBYAHWnY1IXltI5JOnedqiY7MSc8dBbWpPPL9vIL7GXvxAqvLLSXj530h8nfz9uBe4H5qloH3JB0nMkmubO+flWNqOpVqno0VvjxDEaHKA0FxjgCw4+xbiof52BYyOGLwIUi8ikRmS4iDWLlqL8DK5SRb54BjhGRE+1w1dfycMxPikiLHdP+Mlb4COB/gUvsX8UiIiF78nR6msf9LbBERC6wJ3PPA44G7ptsR1WN2+f/rog0A4jIPBF5d9Jmd2LNw1zKwVEawHSsEFY31k1+os9hsvdzOtCjqsMicjKWk3HoxBoRHjHOsbO+fhFZIyLHiYgf6MMKFcUn28/gHsYRTHFUdRfwOBDC+nWYvO5RrInKc7DmBXqwJvrWqerzSZvOlUPrCN6fhS2twNXAA8AO4NGJ90iL27FSYHcCrwDfsM+1Gcv5fR8rDPYyGUxaq2o31i/Zy7Buyl8AzlDVrgl3PMj/s8/5ZzvE8wCwNOn4e7BGZG/noPMCy3G/hvXL+0XgzxPYONn7+QngahHpx5qo/mnSvoNYcyqP2eGr5LmTXK9/NtbEfh9WCOwRrHCRoUiISXM2pItY6ZUPAReo6v3FtsdgMOQHMyIwpI2dWXI2cJxkV2RlMBhKEDMiMBgMhimOGREYDAbDFKcshveNjY26cOHCYpthMBgMZcVTTz3VpapNk21XFo5g4cKFbN68udhmGAwGQ1khImOL/lJiQkMGg8EwxTGOwGAwGKY4xhEYDAbDFKcs5ghSEYlEaG9vZ3h4uNimuEJVVRUtLS1UVBgtLoPB4C5l6wja29uZPn06CxcuRA5pslXeqCrd3d20t7dz+OGHF9scg8Hgcco2NDQ8PMzMmTM95wQARISZM2d6drRjgL6Nd7PzklW0fnAeOy9ZRd/Gu4ttkmEKU7YjAsCTTsDBy9c21enbeDdv3nA5Grb63US7OnjzhssBqF19TjFNM0xRynZEYDCUK123X5twAg4aHqLr9muLZJFhqmMcQZasWbOG++8fLcB5/fXXc+mll/LCCy+wdu1ali5dyqJFi7jyyiuJxy259R/96Ec0NTVx4oknJh4vvvhiMS7BUCSi3bszWm4wuM2UcQT5jsmef/753HnnnaOW3Xnnnaxfv54zzzyTL37xi2zfvp3nnnuOJ598kv/4j/9IbHfeeefx9NNPJx5HH310TrYYyovAzLkZLTcY3GZKOAInJhvt6gDVREw2F2fwgQ98gN/85jeEw2EAdu3axe7du3n55Zc55ZRTeNe73gVATU0N3//+97nuuuvyci2G8qfxgisgMDotWILV1nKDoQiU9WSxw96bv8rIqy+Mu3649Sk0Gh61TMNDvPnfn6P3gdtS7lN5+DE0X3T1uMecMWMGJ598Mr/73e8466yzuPPOOzn33HN54YUXOOmkk0Ztu2jRIoaGhti/fz8Ad911F48+erBZ1BNPPEF1dfWk12nwBrWrz2Fg6wb6/2T9EAk0zqPxgivMRLGhaEyJEcFYJzDZ8nRJDg/deeednH/++WntNzY0ZJzA1KOieT4ANce/gyNu2GScgKGoeGJEMNEvd4Cdl6yywkJjCDTOY/7Vv8j6vGeddRaf/exn2bJlC4ODg5x00kls3bqVjRs3jj7/zp3MnDmT+vr6rM9l8Bax/n0ARPftLbIlBsMUGRE0XnAFEhz9qzsfMdlp06axZs0aPvrRjyZGAx/60Id49NFHeeCBBwAYGhriU5/6FFdddVVO5zJ4i1hfD2AcgaE0mBKOoHb1Ocy65DoCjfNAhEDjPGZdcl1ehuPnn38+zzzzTMIRVFdXc++993LNNdewZMkSGhsbOeWUU/jQhz6U2Oeuu+4alT76+OOP52yHobyI9VuOIH5gH/HISJGtMUx1yqJn8cqVK3VsY5qXXnqJo446qkgWpc8vf/lLPve5z/HQQw9x2GGHZbRvuVyjIXN2fW4d4ddfAuDw/3mSiqaWIltk8CIi8pSqrpxsuykxIigmZ599Njt37szYCRi8Tay/B399M2DCQ4bi46ojEJFdIvKciDwtIpuTlv+ziGwTkRdE5Ntu2mAwlBqqSqy/h8oFSwGI7TeOwIuUk7BgIbKG1qhql/NCRNYAZwEnqOqIiDRne2BV9aw4WzmE7AzZER86ANEIwfnLGHz2T2ZE4EHKTViwGKGhS4FvqeoIgKpm9V9QVVVFd3e3J2+YTj+CqqqqYpticIG4nTpaOX8JiBDd/2aRLTLkm3ITFnR7RKDAH0REgR+o6o3AEuAdInINMAx8XlU3jd1RRC4GLgZYsGDBIQduaWmhvb2dzs5ON+0vGk6HMoP3cDKG/PVN+GtnEtvvze/wVKbchAXddgSnqmqHHf75o4hss885A3grsAr4qYgcoWN+2ttO40awsobGHriiosJ07zKUJU4NgX/6DPz1zUT3mRGB1wjMnJu6iHXmnCJYMzmuhoZUtcP+uxe4BzgZaAfuVosngTjQ6KYdBkMpETtghYb8tTMINDQTNSMCz5GqiBWAQJBob9ehy4uMa45AREIiMt15DrwLeB74JbDGXr4ECAKl984YDC6RGBFMayBQ30zMjAg8R+3qc5jxwc8mXgca51H33n8g1vMGbV96H+GOl4to3aG4GRqaBdxjZ/UEgNtV9fciEgRuEpHngTBw4diwkMHgZWL9PeDz4QvV4bdHBBqPIz5T1uMl/KE6ABZ+71GCc44AoPaUs9n9rQt5/ctnMvcLN1Fz9FuLaWIC1755qrpTVU+wH8eo6jX28rCqflhVj1XVFaq6wS0bDIZSJNbXg39aA+LzEahvhliUuB0uMniHoW2b8Nc1UjH74Fxm9ZIVzL/2PgJ1jXRcvZ6+P5VGbYH5CWIwFJhY/z78tTMACDSY6mKvMrx9E9VLVx1S6xScdRjzr7mXqqUreeM//onun19f9DR44wgMhgIT67dGBAD++lkAJnPIY0T37SXy5mtULVuVcr1/Wj3zvnIb01e/n+47v82b/3MZGo0U2MqDeKIfgcFQTsT6e6iYvRA4OCIwtQTeYmi7VRpVPY4jAPBVVDL7n/+TilkL6PnZd4l2dTDnsv/FH6otlJkHbSn4GQ2GKU6sfx/+6XZoKCE8Z0YEXmLopSeRYBVVhx834XYiQuN5lzPrn65n8IUnaPvKWUQ62wtk5UGMIzAYCogjOOefboWGfNUhpCpkagk8xtD2TVQtOgGpCKa1fd3p59LylduJdu/h9SvOYPiVZ122cDTGERgMBcQRnHNGBACBhlmmlsBDxEcGGXn1+XHnB8aj5rhTmX/NvUhFkLav/i17b/lawdRLjSMwGAqIIzjnZA0BBOqbiBopas8wvONpiEWpXpqZIwBLiHDBN+/DV9fI/l/faMlUqCbUS91yBsYRGAwFJCE4lzQisIrKjCPwComJ4qWTNgZLSaChGYnFDlnupnqpcQQGQwE5KDjXkFhmyUwYR+AVhrZtItiyZNRnnCnRnj2pl7ukXmocgcFQQBIjguTQUEMz8aEDxIcHi2WWIU9oPM5w61MTpo2mQ2Dm3IyW54pxBAZDAYk5cwSjQkN2UZkJD5U94fZW4gO9GU8UjyWVeqkEq2m84IqcjjsexhEYDAUkIThXc7BoyKklMJlD5c/QS08CZDVRnEzt6nOYdcl1BBrngQiBxnnMuuQ619pcmspig6GAJAvOORwsKjMjgnJnaLsjNLcw52PVrj6nYP2NzYjAYCggyYJzDiY05B2Gt6UWmit1jCMwGApIsuCcg396A/gDJnOozInue5PI3tdznh8oBsYRGAwFJNbfg2/MiEB8PgJ1pqis3Bna5gjNnVxkSzLHOAKDoYDE+npGZQw5+OubzBxBmTO0bZMtNHdssU3JGOMIDIYCoarEDhw6RwBWLUFsv8kaKmeGtm+i6sgT0xaaKyVcdQQisktEnhORp0Vk85h1l4mIikijmzYYDKVCQnBu2qEVp4GGWZ5WIO3beHfBBNSKgSM0l2vaaLEoRProGlXtSl4gIvOBdwGvF+D8BkNJkKqq2MFf30SstwuNRRG/t7K6+zbezZs3XI6GhwASAmpAwdIj3cYRmivHiWIoXmjou8AXgOI26jQYCkg8RVWxQ6BhFqgS6+06ZF2503X7tQkn4OCmgFoxGNpmF5ItOanIlmSH245AgT+IyFMicjGAiJwFdKjqMxPtKCIXi8hmEdnc2endIbNh6pBKcM4h0cTeg5lD4wmluSWgVgzyITRXTNx2BKeq6grgb4BPishq4EvAVyfbUVVvVNWVqrqyqanJZTMNBveZODTk3eri8YTSpLIGTSG3XG7kS2iumLjqCFS1w/67F7gHOA04HHhGRHYBLcAWEZntph0GQymQSnDOIWBXF3tRbyiVgBr+ADo8wO7rPlb2qqvhtu3EB/vKsn7AwTVHICIhEZnuPMeaHN6kqs2qulBVFwLtwApVfcMtOwyGUsESnPOPEpxz8Ndbo14vZg45AmpSUQlAoHEesz95PU0f+wYDWx6g7cr3l/VIyCkkK9eJYnA3a2gWcI+tuREAblfV37t4PoOhpLEE5+pHCc45+Coq8U2rJ+rBEQFYzqD7ruuoWrycOZ/578TyiqYW9nz3Ul7/0hnM+9KtVM5fWkQrs2No+yb89U1UzDqs2KZkjWsjAlXdqaon2I9jVPWaFNssHJtaajB4lVh/T8r5AYdAfTMxD44IwIqjR7v3HDJfMG3lu5h/9T1oJEzbl89i8LlHi2Rh9pSr0FwyprLYYCgQsf59KecHHPz1zZ4dEcR6u9BomIrGeYesq1p0PAuuvY/AzDm0f+MCeh/+aREszI5ozxtE9r5e1hPFYByBwVAwYv09+CZILwx4uIl9pKsDgEBj6gyiiqYW5n/jV9Qc8zbe/P5n6LrrOlRLv8woMT9QphXFDsYRGAwFYjzBOQdLb6izLG6AmeLUDARSjAgc/KFa5n3pJ9SuOY+en32XN773aTQSLpSJWTG0vXyF5pLxVi27wVCiTCQ45+Cvb0bDw8QH+/CH6gponftEO60RQcU4IwIHCVQw6xPfoWL2Qrrv+Fei3buZe/kP8U+rL4SZGTO0rXyF5pIxIwKDoQAkBOcmGRGAN4vKIt27kcpqfCkE98YiIsx8/6eZ/anvM7x9M21fPpOeX99YcqJ18WFbaK6M6wccjCMwGApAoqp4wjkCu6jMg/ME0a4OKhrnZZRZU7v6HOb9yx2EuzrouuVrRLs6QDUhWldsZzD88laIx8q6fsDBOAKDoQAc1BmaODQEeDJzKNq1e1ypiYmoOeZt+FMU4JWCaF2iI1mZCs0lYxyBwVAAEsqjE9UR2KEhL9YSRLo6CDSNP1E8EeONkIotWje0bRPB+UtLdv4iE4wjMBgKQDqhIV9NLRKs8tyIIB4ZIbZ/LxVZjAhgfNG6bEYY+UJjsbIXmkvGOAKDoQCkExoSEU/2Lo72WFJiE6WOTkQq0ToJVtN4wRU525YtCaG5Mq8fcDDpowZDAYgd2Deu4FwylsyExxxB58TFZJPhdDHr/Mk3iPW8gS9US/PHvlnU7mZD28tfaC4ZMyIwGAqAVUzWkFJwLplAfbP3RgR2LD+VvES61K4+h0U3bqFy4dFUHnZM0VtcDm0rf6G5ZIwjMBgKQKy/J63uVX4Pykwk5CXyENMPLV/H0LYniQ305XysXBjavonqZSeXtdBcMsYRGAwFYDLBOYdAwyziB/YTj4wUwKrCEO3ajb92Br7K6sk3noTQirUQjzH43J/yYFl2RHveILq3zTPzA2AcgcFQEKwRQRqOwG5Q46UU0khXR9YTxWOpWnISvlAdA1sezMvxssELjWjGYhyBwVAAYn0TK486+O3qYi+lkEa7sysmS4X4A4ROOI2BLRuKJs7nFaG5ZIwjMBhcRlUnbUrjcLCozDvzBI68RL4IrVhHbP9eRl59Pm/HzARLaG45EqgoyvndwFVHICK7ROQ5EXlaRDbby64TkW0i8qyI3CMiJVeW17fx7pITuDKUL/GhAxCLphka8pbwXGygj/hgf9apo6moOfF0AAa2bsjbMdPloNCcd8JCUJgRwRpVPVFVV9qv/wgcq6rHA61A8apCUtC38W7evOHykhO4MpQviariNEYE/rpGEPFM5lA+UkfHEqhvonLRCUWZJxjescUzQnPJFDw0pKp/UNWo/fLPQEuhbZiIrtuvRcNDo5aVgsCVoXxJVBWnI8HsD+CvnUnMIyOCfKaOJhNasZbhHVsSTrZQeEloLhm3HYECfxCRp0Tk4hTrPwr8LtWOInKxiGwWkc2dnYXLoBhPyKrYAleG8iUdwblkAg3e6V0c7bI7k2UpODceoeXrIB5n4JlH8nrcyRjavonggmWeEJpLxm1HcKqqrgD+BvikiKx2VojIl4EocFuqHVX1RlVdqaorm5qaXDbzIKUocGUobw4KzqXnCPz1s4h6JH002tUBPj+B+ll5PW7VohPw185gYEvh5gkSQnMeqh9wcNURqGqH/XcvcA9wMoCIfAQ4A/iQlliD1lQCV/j8RRW4MpQ3BwXnJg8NAQQamjwUGtpNYMZsxO/P63HF76fmxDUMPv0QGovl9djjYQnN9XtuohhcdAQiEhKR6c5z4F3A8yLy18AXgDNVddCt82dL7epzaL7k22CXjvuqp0E8RnDuEUW2zFCuxPp70hKccwjUzyLa24nG4y5b5j75Th1NJrRiLbG+HoZfecaV44/Fa0Jzybg5IpgFPCoizwBPAr9R1d8D3wemA3+000pvcNGGrAgddyqo0vTRr3P4D57CX9fI3pu/WrQCFkN5Y8lLTC445+BvaIZYlJg9t1DORLt35zV1NJnQCaeBz1ewNFJLaK6ZiuYFBTlfIXHNEajqTlU9wX4co6rX2MuPVNX5dkrpiap6iVs2ZEu4rRWAyvlL8ddMp/GCKxjevpn+x35ZZMsM5Ui68hIOTi1BrMwnjDUeJ9K9O2/yEmPxT59B1eIVhXME2zdRvWyVZ4TmkjGVxSkYadsOQLBlCQC1a86j8ojj6Lr1G8SHSy6aZShxHAnqdHGqi8u9liDW2wnRSNadydIhtGIdIy8/7frkeqR7j+eE5pJJyxGIyCIRqbSfny4inyrFiuB8EW7fgW9aPX5bAEx8Ppovuppo9x56fvVfRbbOUG7EDqSnPOqQ0Bsqc0cQcSl1NJnQ8jUADD79sGvnABj28PwApD8i+AUQE5EjgRuB+cDtrllVZMLtrQRbFo8aAlYf9Ramn3IW+371P0Q624tonaHciPWlpzPk4JXQUNQuJnNrshigcuGx+OubXa8yHtrmPaG5ZNJ1BHG7Gvhvge+p6uXAHPfMKh6qykhbK5V2WCiZxg9/GYDOW79eaLMMZYojOJeO8qiDr6oGX/W0sq8lSBSTuRgaEp+P0PI1DDzzCBqLTr5Dlgxt20TV4hWeEppLJl1HEBGR84ELgfvsZZ58R2K9XcQP7CM4f+kh6yqaWphx9ic58PivGXzxL0WwzjCWUhcIjA/2py04l4y/vvyriyNdHUhVDT6Xq3BDK9YRH+hluPWpvB+7b+Pd7PzHlYzsfJaRnc+V3PcrX6TrCC4C3gZco6qvisjhwK3umVU8wu1WxlCwZXHK9Q1nXUqgcS6dN/9LwQpZDKkpB4HA2IHM5CUcAg3NZV9UFu3eTcXMua5n2dQcvxp8/rxXGSe+X7a8THyov+S+X/kiLUegqi+q6qdU9Q779auq+q/umlYcnNTRYIrQEICvsobGD3+FkVefp++hOwtpmmEM5SAQmIngXDKB+uayDw3lszPZRPhDtVQvO5mBrfmdJyiH71e+SDdr6BQR+aOItIrIThF5VUR2um1cMRhpb8VXM53AjNnjbjP9lLOoWraKrtu/VfQm2lOZchAIzESCOhm/B4Tnol3uFZONJbRiLSO7XiTSvSdvxyyH71e+SDc09H/Ad4BTgVXASvuv5wi37yDYsmTC4ayI0HzR14n199Dz8+8W0DpDMuUgEJhQHs1wjiBQ34wODxAfGnDDLNeJR0aI7d/rasZQMqEV6wAYzGNxWTl8v/JFuo6gV1V/p6p7VbXbebhqWZEIt20nOD91WCiZqkXHU7t2Pft++3+Ed79SAMsMY2m84ArwB0Ytk2B1SQkEJkJDGc8RlHctQdT+ZV6om2Zw/lICjXPzOk/QcNYnD1lWat+vfJGuI3jIbjH5NhFZ4TxctawIRHu7ifV1p0wdTUXj+V/EF6yi85arXLbMkIra1efgnzkXfJaypS9Uz6xLrqN29TlFtuwgmQrOOTjFjOXastJJHS3UiEBECC1fx+Bzf0Ij4bwcc+TVZ0F8VoGfCIHGeSX3/coXgck3AeAt9t+VScsUWJtfc4pLuGMHMP5E8VgC9U3M+MBn6Lr1GwxsfShR5WgoDNH9ncT2vs7M8y5n/x9vpebot5bcP2lCcC7DzBlnRFCuTeydYjI3q4rHElqxlt4/3srQ9k3UHHtKTscafuVZ+h66i4b3/SNNf//VPFlYuqTlCFR1StzhEhlDaYSGHOrf8zF6/3gbnT+6kprjTvVswUkp4sgKhE5ax8jr2xja9mRxDUpBpoJzDgm9oTKdMI7YE6qBGYWrO6059lQkEGRgy4M5OQJVZe/N/4K/diYz3v+ZPFpYuqSbNVQnIt9xWkeKyL+LSJ3bxhWacPt2pCqUUVzTV1FJ00euJNzxMvvvv8VF6wxjGdjyIP76ZioXHkv1slVEu3YneuSWCpkKzjn4pjWAP1C+cwRdHfhrZ+KrrJ584zzhqw5RffRbcp4n6H/sVwxv20TjBV/EH8ospFeupDtHcBPQD5xrP/qAm90yqliMtO2gcpKMoVSETvorao5fTfdd/0a015Nz6CWHxqIMPPMIoeVrEJ+P6mUnAwebi5cK2Y4IxOcjUN9UtqGhSAFTR5MJLV9HuL2VyN62rPaPjwzSdevXqTz8WGpPPy/P1pUu6TqCRap6pd1jYKeqXgV4rmVXuL2V4PzUFcUTISI0XXQV8eEBuu+6zgXLDGMZbn2K+EBvIm2wcuHRSFVNQiWyVIj178s4Y8jBkpkoT0cQLVAx2VhCK6xpy2x7FPT88r+Jdu+h6aKv5729ZimTriMYEpFTnRcicgowNMH2ZUesfx+x/XsJthyqMZQOlfOXUv/uC+l94CeM7Hoxz9YZxjKwZQP4/Ja8ACD+AFVHriipEYEjOJfNiACseYJydgRu9iEYj4q5i6iYdVhWaqSRznb2/eq/mf72M6k5+i2T7+Ah0nUElwKObmstAAAgAElEQVT/JSK7ROQ1rHaTk3YWs7d/zm5JudleNsOuUt5h/808gOoCCY2hDCaKxzLz3Mvw1dSx+/pLsxZCK5aIWqmLt41lYOuDVC87eVQMt3rZSkZee5H40IEiWnYQR3AuE+XRZAINs8oyNBQb6CM+dKAoIwIRIbRiLYPPPUo8PJzRvl0/uQaAxr/7ihumlTTpag09raonAMcDx6nqclVNt2P0GrslpZN6+kXgQVVdDDxovy46I+1W6mi6NQSp8E9vILTynUTad2QlhFYsEbVyEG9LJtK9h5FdLybCAA7Vy06GeJyhHVuKZNloshWcc/DXNxHr63ZVXtkNEn0ICpg6mkxo+To0PMzQi39Oe5/BF/9C/2O/ouGsT1DR1OKidaXJhOmjIvJhVf2JiHxuzHIAVPU7WZzzLOB0+/ktwMPA/8viOHkl3N6KVFbn/Ctm6PnHD1mm4SE6b/laIiVwPDpv+dq4Ildu5sdPJK5Vann5AINPPwRAaPloR1C1eAWIMPTSk4TskFExSVQVZxsaqp9lOeb9nVTMLJ/2H4nU0SJJMVQf8zYkWMXAlgcJnXj6pNtrLEbnzf9CYOYcZpz9CfcNLEEmqyMI2X+np1inaRxfgT+IiAI/UNUbgVmq6ihDvQHMSrWjiFwMXAywYMGCNE6VG+G2VoLzFiO+3No4jydIFevtov2qc/N6zHxRbuJaA1s2EJg5h+CCZaOW+0O1BBccVTITxgnBuaxDQ3ansjJzBNFOu5isCKEhAF9lNTXHnmLNI3108iZSfQ/fxcirzzP7M/+Fr7KmABaWHhM6AlX9gf30AVV9LHmdPWE8GaeqaoeINAN/FJFtY46vtpNIde4bsdpisnLlynScTk6E23dQc9ypk284CYGZcxND42T8dU3MuewHKfY4yJ5//0er4XeKY7rJeDaXoriWRsIMPruR6aeenTLNt3rZKvoe+TkaiyL+dAvn3SGe44jAX1+eRWXR7t3gDyRabhaD0PK1DGx5kPCenQTnjJ/gGBvsp+v2b1G1bBXTTzm7gBaWFun+/P1emstGoaod9t+9wD3AycCbIjIHwP5b9Nmw2EAv0Z494zajyYTGC65AgqOLaCRYTdOFV1Jz9FsnfDRdeGXKfd0WuRrP5lIU1xravon40IFDwkIO1ctWocMDjLz2UoEtO5RYf25zBAdHBEX/F8mISFcHgRmzi5p+WeOkkU5SXNbzi+uJ9XXTfNHXXW+gU8pM6AhskbnLgCYR+VzS42vAhJ+yiIREZLrzHHgX8DxwL1bLS+y/v8rxGnImbE8U55Ix5FC7+hxmXXKdNSzOUKjK2dcXsoq2AzPnFETkqnb1OTR/fHSzjYazLi3J+YGBLQ9CoIKa496Rcn2isKwEwkPZCs45lKvwXLRrd1FSR5MJzjqMirmLJqwnCO/Zyb7f/JDaNedRtej4AlpXekw2dg4C0+ztkucJ+oAPTLLvLOAe28sGgNtV9fcisgn4qYh8DHgNq1K5qBxsT5m7IwDrxprtTbR29Tn4a2fQ8Y0LmP3p/6Lm6LfmxabJqDryRACaP/4tOn98FdGeNwpy3kwZ2LKBmqPfiq86lHJ9oHEegRlzGN62Cf7mowW2bjRWDUHmgnMOvopKfNMayk5mItrVQdWSk4ptBqEV6+i9/xbiw4P4qg6N/XfechW+ikoazy+JxMWiMtkcwSPAIyLyI1V9LZMDq+pO4IQUy7uBdRlZ6TLh9h1IsIqKpvnFNgU42C853NZaMEfgOMOqxcuZ/vb30f/Yr2j+yFXj3nCLQWRvG+H2VurWXTDuNiJC1bKVJTIi2Jf1/IBDufUu1nicSM8ephVBXmIsoRVr2X/fjQw+/xjTVv7VqHUDTz/MwOY/0vh3X5k0m28qkO4cwaDdj+C3IrLBebhqWQEZadtOcN6RJVNSHpg5F1/1NMLt2wt2znDbdhAhOG8RdWvPR4cH6P/zfQU7fzo4w/yx9QNjqV5qC9B1thfCrHGJ9fVkPT/gEKhvKqsRQay3E6KRgvUhmIjqo96CVNUcEh7SaITOH11JxeyF1L/nY0WyrrRI1xHcBmwDDgeuAnYBxf/JlSfC7a15CwvlAxEh2LKEkbYdBTvnSHsrFc0L8FXWULXsZCrmHkHfg3cU7PzpMLDlQSrs2O9ElMo8Qay/J+Om9WPxN8wqq6yhSJFTR5PxVVRSc9w7GNjyIKoHEw/3338L4fYdNF14Jb6KyiJaWDqk6whmqur/ARFVfURVP4pHmtLEBvuJdu0uKUcAVnjICdcUAqtXsxWSEhHq1qxnaNuTJdOGMx4eZvD5xwitWDtpzN0RoCu27lAugnMOgYZmYvs7R93IShmn9qSiBEJDYM0TRDvbEwkhsb5uun/679Qcv5rQyncV2brSIV1HELH/7hGR94rIciC3b3iJEO54GYDKPGQM5ZNgyxJi+/cmUhDdRGNRwrtfITj/oOBe7ekfBJ+f3g13un7+dBh68c/oyBA146SNJiP+ANWLV1gTxkUiV8E5h0B9MxoZIT7QmyfL3CXRmawERgRAomugI0LXdde/ER86QNNFV03pdNGxpOsIvmE3orkM+DzwQ+CzrllVQMJtVhw+H6mj+cSxpxCjgsgbr0I0MkpnKdAwi9CKtfQ9/LOS0LoZ2LoBCVZRc8zb0tq+atkqRl5/qWgCdI7gXK4jAn+iU1l5zBNEunYjVTWJFOhiU9E4j+CCoxjYuoGR116i94+3Uv/uC6mcn53KsFdJV3TuPlXtVdXnVXWNqp6kqve6bVwhCLe3IhWVVDS7L2ORCc4X1RHDcxNnLmJseKxu7fnE9u/NWts9nwxs2UD1MW9PWwKgeukqS4Cu9SmXLUuNIy+RrfKoQ6C+vHoXR7s6qGicV1K/tgNNLQw9/xivXbYOlFEjX4NFWjX4InIzKbSF7LmCsibcvoOKuYuKLkcwlsDMuUhVTUFGBIk6inlHjloeWrEOf30TvRvuZFoR46nhPTuJ7NlJ/XvS/7pVLTkJfD6Gtm0idMJpLlqXmkRVcc7po+VVVBbp3l1S0iR9G+9m6NmNBxdonM4ffQ1fVagkCyaLRbqhofuA39iPB4FaoDRE33NkpL215OYHwGpVGJy3mHBbYRxBoHn+ITUDEqig9rQPMPDUA0T3H6qBVCgcmQCnG1k6+GumU7lgWdEE6A4KzuUYGrJHBOWSQlqszmTj0XX7tWhkZNQyR1nXcJB0Q0O/SHrchlUNvHKy/Uqd+PAg0b1tJZcx5FDZsiSR7eAmI22t4/ZhqFu7HmJR+h75uet2jMfA1g1UzF1EcNZhGe1XtXQVQ61bijLHcVBwLrfQkK9mOhKsIlYGKaTxyIillFoiGUNQfsq6xSJbzeXFQNmX4yU0hkrUEQRbFhPt2UPMxYwRjUWJ7H5lXMG94LzFVC1dSd+GO4qSwhgfHmTohScyGg04HBSgK3zr0FwF5xxEhECZ9C6Odlvq8qU0IhgvTFVK4atSIC1HICL9ItLn/AV+TQk0k8kVJzZemUXD+kLgTGq5OSqI7H0djYxM6Azr1p5PuONlhrdvds2O8Rh8/jE0MjJpNXEqEoVlRUgjzVVwLhl/Q3NRQ3PpkuhMVkKOoJyUdYtJuqGh6apam/R3iar+wm3j3GakvRUCFVTMWlhsU1JSiBRSZw5iokyK6W9/H1JVQ+9Dha8pGNi6AamqofqozJuJVzS1EJg5pyj1BLF+S14iH9kzgfpmYvtLPzQU7bI7k5VQaCgXNeCpxGStKldMtF5VS6M5bJaE21sJzl2EBCqKbUpKKhpbkGCVqyOCEdsRVE7Qi8FXPY3pbz+T/sfupfkjVxdMiE5VGdi6gZpjT81aCqB66aqiSE3E+nKXl3DwNzQTff6xyTcsMhGnmGxGaXVTy0UNeKowWc7kv0+wTilzmYlwWyuVJaxDLn4/wXlHMtLmnvhcuL2VQKMlcjcRdWvX07fhTvqf+LU1gVwAwh0vE93bxoyz/ynrY1QtW0X/4/cS6WwvaFPyfMhLOAQaZhEf6CUeHsYXrMrLMd0g2r0bf+1MfJXVk29sKCkmk6FeUyhDCk18ZJDI3tepPW2ytgrFJTh/KUMvPuHa8dMV3KtauoqKuYvo3XBHwRyBIwvgyARkQ/WyVYAlQFdYR9BDcBJxvHQJ2A1qYvs78TWXhlR6KiKdpZU6akiftLOGRORYETlXRP7eebhpmNuEO14B1ZLNGHKobFlCtGs3scH+vB9bYzHCHS+nVW4vItStXc/wtk0JfSa3GdiygeCCZTndwCsPK44AndOUJh/4G8qjlsCqISid+QFD+qSbNXQlVo/i7wFrgG8DZ7pol+scbE9Z2uXmiSY1Ltx8I13taHg47V7NtacVToguNtjP0La/jNubOF0OCtA9mSfLJscSnMu9KY1DoAxaVqoqEVtewlB+pDsi+ABWV7E3VPUirM5jpaEqlSXhtu3gDxCcvbDYpkyIm5lDCcG9NEdFgYZmQivW0ffIz9BoZPIdcmDwuUchGsmqfmAsVctOZuT1ba6MqlKRL8E5h4A9IijlorL4YB86PGBCQ2VKuo5gSFXjQFREaoG9QFrBShHxi8hWEbnPfr1ORLaIyNMi8qiIHDnZMdxgpL2V4JzDkYpgMU6fNhXNhyEVlYmbdj5JpI6mOSIAqFt3PrH9na4L0Q1seRBfzXSql+ZewF69zBKgGy6QAF2+BOcc/LWN4POVdGjISR0tpapiQ/qk6wg2i0g98L/AU8AWIN0ZzE8DLyW9/h/gQ6p6InA78JU0j5NXrEYspT0/AE7m0CJXUkjD7Tvwz5iNPwPJ4NDytQkhOrdQVQa3PkTN8aflJbW32hGgK1Aaab4E5xzE78dfO7OkQ0OREutDYMiMdAvKPqGq+1X1BuCvgAvtENGEiEgL8F6s/gWJw2GJ1oEVXiq46Ec8PEzkzV0l14NgPIItS6zitzwz0j6+xtB4WEJ0H7SE6Fy6MYVfe4loz56sqolT4aueRuWCowpWWJYvwblkAvWl3cQ+UUxmpBvKknQni+8VkQtEJKSqu1T12TSPfz3wBSCetOwfgN+KSDvwd8C3xjnnxSKyWUQ2d3bmt7w+snsnxOMZ3wSLRbBlCdG9bcSHB/N2TI3HrdTRLJxh3dr1EI/Rt9EdIbqBrbmnjY6latkqhnYURoAuITiXpzkCsHsXl3RoqAP8AQL1ZS9BNiVJNzT078CpwIsi8nMR+YCITFjZIiJnAHtVdWxg9rPAe1S1BbgZ+E6q/VX1RlVdqaorm5qa0jQzPUbaM5skLTaOnfkMD0W7OtCRoazeg+C8I6latoreB90RohvYsoHKw49NTJLmA0uAbrAgAnQHRwT5mSMAK3OolB1BpHs3gRmzEb+/2KYYsiDd0NAjqvoJ4AjgB1gy1JN9K08BzhSRXcCdwFoR+Q1wgqr+xd7mLuDt2RieC+G2HeDzUzH3iEKfOisqXcgcckJNE0lLTETd2vOJ7H4l70J0sQP7Gdq+OS/ZQslUL7ULywoQHor178ub4JxDoGGW1cQ+FsvbMfNJ1KSOljWZFJRVA+8HLgFWAbdMtL2qXqGqLaq6EFgPbADOAupExPkZ+leMnkguCOH2VipmL8xav6bQVMxeCIGKvM4THMwYym5UNP1t70OqQvRuuCNvNgEMPrsR4rGc6wfG4gjQDRWgniCfgnMO/oZmiMeIHdiXt2Pmk0hXh5kfKGPSnSP4KdYNey3wfWCRqv5zpidT1SjwceAXIvIM1hzB5ZkeJ1fCWUySFhPxBwjOXZTXEUG4fTv++uaswxe+6hDTTzmT/sfvJT40kDe7BrZswDetgarFE+odZkX1spMZ3rbZ9b4K+RScc3Bi76VYS6CxGNGeNwg0mRFBuZLuiOD/sG7+l6jqQ3ZNQdqo6sOqeob9/B5VPU5VT1DV01V1Z6ZG50I8MkJ4z6tlkzHkEGzJb9vKcFvu6bN1a9ajw4P0P35vXmzSeJyBrRsInXiaK7HmqmWriPbsSejmu0U+BeccAg2WIyjFvgSx3k6IRkxoqIyZ0BGIyBcAVPV+4Jwx677pol2uEdnzKsRjGRVRlQKV85cS2fs68ZHcM4dU1e7VnNt7ULV0JcF5R+YtPDSy8zlivV15nx9wODhP4G54yNIZyq8j8NsjgmgJjggiJnW07JlsRJAsMzm2pc9f59mWguCEV8olY8gh2LIEVC2xvByJdu9GhwcItuSmsyQi1K5dz/D2zYQ7cs9oGtj6IIhQc8LpOR8rFZWHHYVUhVyfMHbmCPKJMyIoxVqCUuxMZsiMyRyBjPM81euyYKStFXy+vEkEF4p8ppAe7EqWuzPMpxDdwNaHqDpyOYG6mTkfKxXiD1C9ZAXDLlYYJwTn8jxH4KuswVczvSRTSJ1G8EZ5tHyZzBHoOM9TvS4Lwm2tVDQfVnbNM4KzF4I/kJcJ43COqaPJBOqbCJ30Tvoe+XlOQnSxvm6Gd2zJWzXxeFQtXeWqAF2+BeeS8dc3laTMRKSrA6kK4ctAqsRQWkzmCE5wmtYDx9vPndfHFcC+vGM1Yimv+QEAqQgSnHNEXrqVjbS34q+dib82P7+8K2YfRmx/JzvWH8bOS1bRt/HujPbv23g3r356Naiy//4fZ7x/JrgtQOeGvIRDoH5WzllDfRvvZuclq2j94LysPqtURLt2U9E4N6/psobCMqEjUFV/UtP6gP3ceV2ajX4nQKMRwnt2ll3GkEOwZUneQkP56sPQt/Fueu+/NfE62tXBmzdcnvYNpm/j3bx5w+XEbaG22P69Ge2fKQkBOpcmjGN9+VUeTSbQ0JxT1pDzXke7OkA1489qPCJdpjNZuTNZz2JPEX5jF8SiaXXkKkWC8xdz4Mnf5tS7VlUJt7cy/R35aebddfu1aHho9DnCQ7z5P5fR98jPJt1/6MU/o5GRQ/bvuv1aVxqO+6qnUXnY0Qxty29FtINT8OXGiMBf30x0f/YjgvE+q1zf62hXB1WHH5v1/obik3ZlsRc4mDFUfqEhsNpWEo9bonlZEu15g/hgf94K6pyJwrFoZIT40IFJH2OdwGTHzQfVy1Yx/LI7AnRuCM45BBqa0eFB4kMHstp/vPc0l/c6Hh4m1ttlUkfLnKk1ImjbDiIE5xWlF07OOJlDI+3bqVx4dFbHSDjDPIXHAjPnpizQCjTOY8E3fz3p/jsvWZV6fxdvLFVLV7H/dzczsutFqhYdn9djuzpHkNS7OFg9LfP9x/uscnivo917rGOYquKyZmqNCNpaqWiaj6+yptimZEXF3CPA57dE87Ik0as5TyOCxguuQIKjM7AkWE3jBWPLTtzZPxuql7lXWBbr3wf+AL6a6Xk/tj/H3sXT3v6+Q5bl+l47o4kKMyIoa6aUIxhp31G2E8UAvopKKmYvzCmFNNy2Hd/0Bvx1jXmxqXb1Ocy65DprslCEQOM8Zl1yXdox51z3z4aKxnkEGue60rHMqipucCWDJtG7OItaAo2EGdj8B3z1zaMmdmee9/mc3mvTmcwbTJnQkMaiRHa/ktdmJ8WgsmVJTo7A6UqWzxtV7epzcrqZ5Lp/NlQvXcXgS39BVfP6XsT68i8v4RDIYUSw//c3E9m9k3lf+gmhFWuJ7nuTnf+4Mmc104OdyebkdBxDcZkyI4LIG7vQaLisRwRgxfbDe15FI+GM97UyhsqjV7PbVC1bRaznDaKd7Xk9rjMicAPf9BkQqMhYbyja20X3z75DaMW6RMFeoGEWoRVr6Xv4ZzlNmke7OvDXNWadxWYoDaaMIxixY+PlJD+diuD8JRCPEd6TeeZQbH8n8QP7yzZrKp9ULzsZyH+jmlj/PtdGBCJCoL6JWIa1BN13/CvxkSGaLrxy1PK6teuJ7XuTga0PZW2T6UPgDaaMI0hky8wr75tgZUv23coS0hJlWkeRTyoXHIWvelre5wncEJxLxl/fnNGIYHjnc/Q+eDv1f/PRQ7LlQiveib+uMSf1WKuq2MwPlDtTxxG0tRJoasFXHSq2KTlRMecI8Pks8bwMceQpyj08lg/E76dq8Yq8jggSgnMujQjAalCT7hyBqtJ581fxT29g5gc/e8h6CVRQe9oHGHjqgawqllXVGhGY1NGyZ+o4gvbtnoiN+yqrqWg+LCupiXD7DnyhuoS2/VSnetkqwq+/RGygLy/HSwjOuTRHAE7v4vQcwYEn7mPopb8w8/wv4h9HEK5u3fkQi9L3yM8ztiU+2IcOD5jQkAdw3RGIiF9EtorIffZrEZFrRKRVRF4SkU+5bYPGYoQ7XsmL2mYpEJy/xCqOyxBHcM+Ig1nEIiOgyisXLsuLAJubxWQO/vomYn3dkyq9xkeG6Pzx1VQuPJq6teePu11w3mKqlq6kb8MdGbfwjHaaPgReoRAjgk8zukH9R4D5wDJVPQrIXch+EiJ7X0cjI54YEYCdQrpnZ8ayz+H2VjM/YNO38W56f/PDxOt8CLAlBOdcnCNIVBf3dk243b57byDa1UHTRV+ftO1n3dr1hDtezliRNWL6EHgGVx2BiLQA7wV+mLT4UuBqp++xqrousH5QVsEbN8Hg/CUQi1oiemkS7e0i1tfjGWeYK5YA2/CoZY4AW7YkRgR5bkqTjFNLMFGnskhXBz33fI9pbz2DmmPeNukxp7/9TKSqJuNJY9OZzDu4PSK4HvgCkNzsfhFwnohsFpHfiUjKeI2IXGxvs7mzM7eG3eUuNjcW5zoyyRxKdCXzyHuQK64IsNlS2q5mDSX0hsbPHOr6yTdBlaa//5e0jumrnsb0t72P/sfuJT40kLYt0a7d4A/gr2tKex9DaeKaIxCRM4C9qjp2vFkJDKvqSuB/gZtS7a+qN6rqSlVd2dSU2xdtpK2VwMw5+F3QfykGwXlHgkhG8wT5Fpsrd8ab4Mxl4rMQcwRO7+LovtQ/joa2baL/0XtoOPNSKprnp33cunXno8MD9D8xuVCgg1VDMGfS0JOh9HFzRHAKcKaI7MKaB1grIj8B2gEnEHsPkF/5xxRYk6TeuQH6KmuoaF6Q+JWfDiPtrfhqphOYYaQAwB2xu1hfj2uCcw4B+9d3LMWIQONx9t78VQIz5jDjb/8po+NWLV1FxdxF9GXQezra1WHCQh7BNUegqleoaouqLgTWAxtU9cPALwFH8Oc0IPcmvBPZEY9bsgoemR9wCLYsTlRLp0O4zXKGJmPIYpTYHYDPT/Ml385J8yh2YJ9rgnMOUhHEN70hZS1B3yM/Y+SVZ2j88JfwVWWmsCsi1K1dz9C2Jwl3vJzWPpHu3SZ11CMUo47gW8D7ReQ54FrgH9w8WbSzHQ0PeyZ11CHYsoTI7lfS1okp117NblK7+hyOuGETzR+/FuIxqhedkNPx3BScSybQMIvomFqC2GA/Xbd9k6olJzH91L/N6ri1p30QfH56H7pr0m01FiPavceMCDxCQRyBqj6sqmfYz/er6ntV9ThVfZuqPuPmuRPVtB4KDYEV69domMibr026bayvm1hvl+feg3wRWm4JsQ1s2ZDTcSzBuQI4gvqmQ7KGeu7+T2L7O2m66GrEl92/daChmdCKdWkJ0cV6OyEWNamjHsHzlcVenSStbLFCXelITYy0v2zv4633IF9UNM8n2LKEga0P5nQca0TgXuqog79+1ii9ofCeV9l/3/9Se/q5VC9entOx69adT2z/Xga2TPxemD4E3mIKOIId+GfMHrfEvlxxBMTSSSENG42hSQmtWMvgi3/OKH1yLLED+1xNHXUINDQT29+ZqATu/PHVEKig8UO5d3ULLV+Lv76J3kkmjZ0+BKYzmTfwvCOwGrF4Lzbuqw4RaGpJK3Mo3N6KVIXMr7cJCK1YB9EIg8/9Kav9VbVwcwT1zWg0TPzAfgae3cjApvuZec6nElXHuWAJ0X3QEqKbpGgNTK9ir+BpR2BlDHkrdTSZYJrdyozG0ORUL12Fr3pa1tr88cE+iMcKExpyagm699B585VUNC+g/oyP5+34dWvPg3iMvo3jC9FFu3cjVSF8NbV5O6+heHjWEfRtvJudl6xEhwfp2/iLnAXFSpHK+UsI734FjcUm3G6kfYeZH5gEqQhSc/xqBrY+mLH4GthN63G3mMxh5PVtALz2+XcSbttOzap35bVDWHDeYqqWraL3wfGF6KKdVg2B+XHhDTzpCPo23s2bN1xOrOcNAOIH9ucsKFaKBFuWoOFhIntfH3eb2IH9xPa9aeYH0iC0fA3Rrt1ZKbsWQnAOrO/2/l//YPSyP96W9+923Zr1RHa/wvD2zSnXR7o6TKjRQ3jSEViCYkOjluUqKFaKBNPoVnZQZ8k4gsmoSaSRZp49VAh5CbC/25GRUcvc+G5bQnShcYXoot27qTCpo57Bk47ADUGxUiQd8bmRNm/0ai4EFTPnULnw6KzqCRKCcy7PERTqu+2rDjH9lDPpf/xe4kMHRq2Lh4eJ9XaZEYGH8KQjcENQrBTx10wnMHNO4mafinB7K1JZTaCppYCWlS+h5esY2vZkxl3LCjUiKOR3u27NenR4kP7HRwvRRbv3WOc0IwLP4ElH4IagWKkSnL+UcPv4Me1w23aC8xZnXW061QitWAvxGIPPbsxov0IIzkFhv9tVS1cSnHfkIeEh04fAe3jy7jBKUEyEQOM8Zl1yXU6CYqWKlUK6A43HU64Pt+8w8wMZULXkJHyhuoznCSx5CXcF56Cw320RoXbteoa3bybccXDUmehM5rER9lQmUGwD3KJ29TmevPGPpbJlMRoeJtrZTsWsBaPWxQb6iPbsoXK+9wrq3EL8AUInnMbA1ofQeDztkVSsf19BUkehsN/t2tM+SNdt19K74U6a/s5qdOP0Kg7MNJLmXsGTI4KphPNrfyTFhLHzK86MCDIjtGIdsf17Gdn1fNr7FEpwrtAE6psInfRO+h75eaJHdqSrA399U15rFwzFxTiCMsepD0iV+55oT+mxXgxuU7PcapeRSfZQrK+nIDpDxcASoutMhMuipg+B5zCOoMzxh3PVSb4AAA5hSURBVOrwz5hNOEWTmnB7KxKsoqIp/ZaFBgjUNVJ55IkMbM3AEdhNabyIJUTXnBCiM53JvIdxBB6gsmVxytDQSFsrwbmLTE/ZLAgtX8Pwji2JtNCJKKTgXDEQf4Da0z/IwJYHie57k0jXbpM66jGMI/AAjvjcWF0YLwvuuU1o+TqIxxl45pFJtz0oOOdNRwBQt3Y9xGPs++3/ocMDZkTgMVx3BCLiF5GtInLfmOX/KSIHxtvPkD7B+UvR4cFEfjdAfOgA0a4OozGUJVWLTsBfOyOteQJHZ8iroSGA4NxFVC87mf2/uwkwqaNeoxAjgk8DLyUvEJGVgHf/awqM028huTeB09i+0jiCrBC/n5oT1zD49EOTqrs6yqNuC84Vm4r5i9HhQQD23vQVz4k4TmVcdQQi0gK8F/hh0jI/cB3wBTfPPZVwNIeS5wmM2FzuhFasJdbXw/ArE7fVLpS8RDHp23g3/Y/8IvE6tr/Tk4q+UxW3RwTXY93wk8te/wm4V1X3uHzuKYN/+gz89U2jxOfC7a1IIEjFrMOKaFl5EzrhNPD5Ju1lnHAEHh4RWIq+w6OWeVHRd6rimiMQkTOAvar6VNKyucAHge+lsf/FIrJZRDZ3dna6ZaZncKQmHMJtO6iYuwjxe7Z43HX802dQtXjFpPMECeXRad6Ndk4VRd+pipsjglOAM0VkF3AnsBZ4ATgSeNleXiMiL6faWVVvVNWVqrqyqanJRTO9QeX80ZlDI+3bzfxAHgitWMfIK88Q3T/+j5FCCc4Vk6mi6DtVcc0RqOoVqtqiqguB9cAGVW1Q1dmqutBePqiqR7plw1Qi2LKE+GA/0Z49xIcHie5tM/MDeSDkNKt5evxexo68hJfbNk4lRd+piKkj8AiJbmVtrYQ7rEGWSR3NncrDj8Vf3zyhGqklOOfdsBBMLUXfqUhBAsiq+jDwcIrl0wpx/qnAwbaVOxI3JTMiyB0RIbR8DQee/D0ai6acc/Gq4NxYpoqi71TEjAg8QqBuJv7amYy0bWekbTsEKgjOXlhsszxBaMU64gO9DLc+lXK9lwXnDFMD4wg8hCM1EW5vJTjnCCRQUWyTPEHN8avB5x83e2iqjAgM3sU4Ag8RnG+lkIbbjMZQPvGHaqlednLKegJVnRJzBAZvYxyBhwi2LCY+0EvkzdcS1caG/BBasZaRXS8S6R5dBzkVBOcM3sc4Ag9RmdSAptI0o8kroRXrABgc06MgIThn5ggMZYxxBB5iJKmyeO/NXzU6MHkkOH8pgca5h8wTJATnTGjIUMYYR+AR+jbeTdePv554Hdv3phEFyyNWGuk6Bp7diEbCieVTQXDO4H2MI/AIlijY0KhlRhQsv4RWrEWHBxja9mRi2VQQnDN4H+MIPIIRBXOfmmNPRQLBUVXGB5vSGEdgKF+MI/AIRhTMfXzVIaqPfgsDWw/qDsX791mCc9WmSN5QvhhH4BGMKFhhCC1fR7i9lcjeNmBqCM4ZvI9xBB7BiIIVhtAKW43UTiM18hIGL2C6lngIIwrmPhVzF1Ex6zAGtjxI/bsvJHZgn6cb0himBmZEYDBkgIgQWrGWweceJR4eNiMCgycwjsBgyJDQ8nVoeJihF/9sBOcMnsA4AoMhQ6qPeRsSrGLgqQeM4JzBExhHYDBkiK+ymppjT6H/iV8bwTmDJzCOwGDIgtDytcTshvZmjsBQ7rjuCETELyJbReQ++/VtIrJdRJ4XkZtExHRPMZQd8Wgk8bzzlquMppOhrCnEiODTwEtJr28DlgHHAdXAPxTABoMhb/RtvJvuO/418TrW120E/gxljauOQERagPcCP3SWqepv1QZ4Emhx0waDId8YgT+D13B7RHA98AUgPnaFHRL6O+D3qXYUkYtFZLOIbO7s7HTXSoMhA4zAn8FruOYIROQMYK+qPjXOJv8NbFTVP6Vaqao3qupKVV3Z1NTklpkGQ8YYgT+D13BzRHAKcKaI7ALuBNaKyE8ARORKoAn4nIvnNxhcwQj8GbyGa45AVa9Q1RZVXQisBzao6odF5B+AdwPnq+ohISODodQxAn8Gr1EM0bkbgNeAJ2zp3rtV9eoi2GEwZI0R+DN4iYI4AlV9GHjYfm4UTw0Gg6GEMJXFBoPBMMUxjsBgMBimOMYRGAwGwxTHOAKDwWCY4oil9FDaiEgnVqZRNjQCXXk0pxww1zw1MNc8Ncjlmg9T1UkrcsvCEeSCiGxW1ZXFtqOQmGueGphrnhoU4ppNaMhgMBimOMYRGAwGwxRnKjiCG4ttQBEw1zw1MNc8NXD9mj0/R2AwGAyGiZkKIwKDwWAwTIBxBAaDwTDF8YwjEJG/FpHtIvKyiHwxxfqPiEiniDxtP8q+V/Jk12xvc66IvCgiL4jI7YW2Md+k8Tl/N+kzbhWR/cWwM5+kcc0LROQhEdkqIs+KyHuKYWe+SON6DxORB+1rfdhuiVvWiMhNIrJXRJ4fZ72IyH/a78mzIrIirwaoatk/AD/wCnAEEASeAY4es81HgO8X29YCX/NiYCvQYL9uLrbdbl/zmO3/Gbip2HYX4HO+EbjUfn40sKvYdrt8vT8DLrSfrwVuLbbdebju1cAK4Plx1r8H+B0gwFuBv+Tz/F4ZEZwMvKyqO1U1jNUR7awi2+Q26Vzzx4H/UtV9AKq6t8A25ptMP+fzgTsKYpl7pHPNCtTaz+uAcm6enM71Hg1ssJ8/lGJ92aGqG4GeCTY5C/ixWvwZqBeROfk6v1ccwTygLel1u71sLO+3h1U/F5H5hTHNNdK55iXAEhF5TET+LCJ/XTDr3CHdzxkROQw4nIM3jHIlnWv+GvBhEWkHfos1EipX0rneZwCnK9DfAtNFZGYBbCsmaX/3s8ErjiAdfg0sVNXjgT8CtxTZnkIQwAoPnY716/h/RaS+qBYVjvXAz1U1VmxDCsD5wI9UtQUrhHCriHj5f/vzwGkishU4DegApsLn7Bpe+bJ0AMm/8FvsZQlUtVtVR+yXPwROKpBtbjHpNWP9arhXVSOq+irQiuUYypV0rtlhPeUfFoL0rvljwE8BVPUJoApLqKwcSed/ebeqnqOqy4Ev28vKPilgEjL57meMVxzBJmCxiBwuIkGsm8C9yRuMiaedCbxUQPvcYNJrBn6JNRpARBqxQkU7C2lknknnmhGRZUAD8ESB7XODdK75dWAdgIgcheUIOgtqZf5I53+5MWnEcwVwU4FtLAb3An9vZw+9FehV1T35Orgn+geralRE/gm4Hyvr4CZVfUFErgY2q+q9wKdE5EwgijUp85GiGZwH0rzm+4F3iciLWEPny1W1u3hW50aa1wzWzeNOtdMtypk0r/kyrLDfZ7Emjj9Srtee5vWeDlwrIgpsBD5ZNIPzhIjcgXVdjfZcz5VABYCq3oA19/Me4GVgELgor+cv0++LwWAwGPKEV0JDBoPBYMgS4wgMBoNhimMcgcFgMExxjCMwGAyGKY5xBAaDwTDFMY7AUBRE5EAa23xGRGryeM6zReToPB7v8Rz2PWD/nSsiP59gu3oR+US25zEY0sE4AkMp8xkgI0cgIv4JVp+NJViWF1T17Xk4xm5V/cAEm9QDxhEY/n97ZxdiVRXF8d8vKlPHMrVPH5oaiyAJoYLIMoMQooeMPiBM+4DoQcqXzIcoKKQUX6KeqoeM0L5MKSJMAzUy02zSO4aCYT4IQREhWhSRq4e9J86Md8SkGJ27fnCYdffeZ52191zOunfve/77fyUTQTKsqDOrpvwqdY+6oj49+ThwMbBB3VDbzlK3qL3qe2pXLd+vLlV7gXvUR9Sv1J3q++oY9QbKE+XL6l4FPeq0KsbXUteo51Z/Gy37GmxXd6vXqavVveriRuyHG/Yita9ec0mbfl5aY+8b5KO7X4NevUrdVuNrqZcDS4CeWrZM7bJo8fdWX3c0/OxWX7PsPbFOHV3rpqif1th61Z5avrCOU0t99j/9xyanFsOtw51HZx7A4fp3JnCQop1yGkUW4sZatx+YVO1JlKdIx9bXi4BnGu2ebPie2LAXA49Vezlwd6OuBdxc7eeAF6u9EVha7QUUWeeLgFEU/aaJg/pwG/AFMKa+ntCmvx8C86o9v3FuN1WDHngZmFPtM4HRzfpafjpwdmNMvqNo1HdTnpqfVuveBe6v9lbgzmqfRfmWNYuyj4F13D8CZgz3+yKP4TlGhMREcsqzLSIOAKg7KDe1zwe1uZ4yrbNZhXKjbGoJvdOwp9ZP3eOBLopcwQDUc4DxEbGpFr1B2fCkn365ij7g26i6Luo+ivhXU6rjVuD1iPgNICLa6cpPB+6q9pvA0jZttgBPWXbcWh0Re2tfB4QOPK/OAI5QpIgvqHXfR8SOan8NdKvjgMkRsabG9nvtxyxKMvimtu+iCBJ+1iauZISTiSA5GfijYf9F+/elwPqIuG8IH7827OXA7IjYqT5IFd47wZiODIrvyBDxHQ/H1HOJiJXqVuB24GP1UY4WCZwDnAdcExF/qvspn/KbMUMZx9HHuJzACxHxyr+IPxmh5BpBcjJzCBhX7S+B6eoUAHWsesUQ540DflDPoNw4j/IXEQeBX9Sbat1cYBMnxnrgof5fOKkT2rTZTBHDY1BM/6BeBuyLiJeAD4CrGTgGUHYg+7EmgVuAS44VWEQcAg6os+s1RtU4PwEebqyzTFbPP67eJiOOTATJycyrwFp1Q0T8RFGMfUttUaZRrhzivKcp8+KbgT2N8reBhZZN3nuAByiLxy1gGmWd4F8TEWspU0nb69TWE22aLQDmq30MvbPUvcCu6mMqZWvCnynTYbvUZcAK4NrqZ96g/g3FXIr6bouylnFhRKwDVgJbqq9VDEw4SQeR6qNJkiQdTn4jSJIk6XAyESRJknQ4mQiSJEk6nEwESZIkHU4mgiRJkg4nE0GSJEmHk4kgSZKkw/kb8WuVvUxQg0cAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, "output_type": "display_data" } ], @@ -207,7 +171,7 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Evaluations')\n", "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { @@ -234,7 +198,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_var_forms.ipynb b/community/aqua/chemistry/h2_var_forms.ipynb index 9f5aefd11..f386f756f 100644 --- a/community/aqua/chemistry/h2_var_forms.ipynb +++ b/community/aqua/chemistry/h2_var_forms.ipynb @@ -10,7 +10,7 @@ "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here. \n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "This notebook has been written to use the PYSCF chemistry driver." ] }, { @@ -22,8 +22,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "Hartree-Fock energy: -1.1173432691225826\n", - "FCI energy: -1.1372213770723034\n" + "Hartree-Fock energy: -1.1173432691225829\n", + "FCI energy: -1.1372213770723014\n" ] } ], @@ -67,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "scrolled": true }, @@ -76,7 +76,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step __\b\b 0" + "Processing step 7 --- complete\n", + "Depths: [3, 4, 5, 6, 7, 8, 9, 10]\n", + "Energies: [[[-1.11734306 -1.13720243 -1.13720372 -1.13722021 -1.13722135\n", + " -1.13722136 -1.13722136 -1.13722136]\n", + " [-1.13722127 -1.13722069 -1.13722133 -1.13711301 -1.13715782\n", + " -1.13717939 -1.13722016 -1.13717511]]\n", + "\n", + " [[-1.13722034 -1.13722128 -1.13722094 -1.13722098 -1.13722135\n", + " -1.13722136 -1.13722137 -1.13722136]\n", + " [-1.1372213 -1.13722138 -1.13722136 -1.13722137 -1.13722137\n", + " -1.13722137 -1.13722137 -1.13722137]]]\n", + "Num evaluations: [[[ 8011. 10000. 10000. 10000. 4405. 3554. 3410. 3097.]\n", + " [ 5603. 10000. 5328. 10000. 10000. 10000. 10000. 10000.]]\n", + "\n", + " [[ 7455. 2840. 4351. 3553. 1145. 1944. 1053. 1052.]\n", + " [ 1956. 380. 1052. 841. 1024. 1016. 675. 702.]]]\n" ] } ], @@ -107,9 +122,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4FUXbh+8nnd57Db0TujQFBAGlKSJFFAQBRcTyva8dxYq+NkBQREBAEAURKWIDjfTee0IP0gLS0zPfH7MJh5BykpyWk7mva69kd2dnnt2zu7+deWaeEaUUBoPBYDDYi4+7DTAYDAZDzsIIh8FgMBgyhREOg8FgMGQKIxwGg8FgyBRGOAwGg8GQKYxwGAwGgyFTGOHIxYjIYBFZ4247DCAi10SkivV/HhFZKiKXRWSBte0dEYkUkTPutTTriEhrEQmzzrWXu+3JLCLypIictewv5m573IkRDgsROSYiHVNsS36xikigiEwXkeMiclVEdohI1wzyLCMiX4nIP9bNdkREZopILWeei6MQkaEicsA637MislxEClj7ZorIO5nIK1siZR2fYF1H26VsVvN0BSLSTkQSbeyNEJH5ItLMNp1SKr9S6oi1+iBQCiimlOojIhWB/wPqKKVKu/gUHMlbwCTrXH9ydeHWMx5l/Q5nrHs4v53H+gOfAPdY9l9wrrWejREO+/EDTgJ3AYWA14D5IlI5tcTWF8k6IC/QFigANAb+BjqlcYyfo43OKiJyF/Ae0F8pVQCoDXzvXqtYbz20tss/jizASb/BP0qp/Oh74A7gALBaRO5OI30l4JBSKt5arwhcUEqdy2zBovGU57wSsDe1HS60s7v1W4QAjYCX7TyuFBBEGvZnhIj4ZuU4j0UpZRY9ev4Y0DHFtsHAmnSO2QX0TmPfO8BOwCed4ysDChgKnABWWdt7oG/QS0AoUNvmGAVUs1mfCbxj/d8OiEB/nZ4DTgOP2aQtBiwBrgCbgLfTOj/gP8BPaewbDsQBscA1YKm1/SXgMHAV2Afcb22vDUQDCVb6S9b2QOAj69zPAlOAPGmUmdFvccyyeRdwGS1yQTb7uwE7rGu6DmiQ4tgXrWNj0B8JjYHt1rkssPJLus570C+gpOP9gUigUSp2tQMiUtk+CdiS8ncF3rSua5x1rUYAUUCitT7TSn+HdR6XrPusnU1eocC7wFrr2Groj53p1j1xCn1/+tpeW+u3+Bc4CnS1ya8o8DXwj7X/J3uua4rzPWydQ5R1HoFp2FkWfY9eBMKBYTZ5jLV+iznW77IbqIF++Z9Df9jdY+8zDvwP+NlmPdX70SrjuvUbXQP+tNLXAv6wbD0IPJTiufwCWG4d2zGt/O18dvMAHwPH0ff3Gptj07wXnPa+dHYBOWVJeVPZPlBppC+FfhnWSmP/BmBsBmVWtm7G2UC+FDdpJ/QL6QXrAQqwjslIOOLRTQL+wL3ADaCItf87YL5VVj30CySt82uLfpjfBFoDgSn2J5drs60P+sH3Afpa51EmrWsJfIp+SRRFf40vBcalYU+av4XN77fJKr8osB94wtrXyHoYWwC+wCArfaDNsTuACtZvEGA9oM9Y1/EB9Ms86Tq/AHxvU3ZPYHcadrUjdeHogH6R5kv5u6JfkHPSygMoB1ywfl8f6165AJSw9oeiX0510SLoDywCvrR++5LWtRphc23jgGHW9XkSLRJi7f8ZLZxFrLzusue6ZvSMpWHnKuBz9Nd9CHAe6GBzXaKBzlb62WiRe9U6dhhw1J5nHCiPFp4J9tyP3HxW/az1fGihesyypRH646GOzfNxGf3s+Fjnk17+7Uj/2Z1sXa9y1rVuhRaidO8Fp70vnZl5Tlqsm+oaWrWTlhuk8rKyftgVwJfp5BeO9eKy1ntYeV4Ffk9xM1axSTcGmG+z7oN+wbez1jMSjqikm9vadg79ReKLfjnUstn3XmrnZ7O/q3VzX7KuzSfc/EpNLjed43cAPa3/B9uWBQhaWKrabGtJGg++dXx8it/ncIrfb6DN+v+AKdb/XwBvp8jvIDdfgMeAITb77rSuudhsW2Nznctav2NBa/0H4IU07G5H6sJRy/oty6X8XclYOF4EvkmR32/AIOv/UOAtm32l0DWpPDbb+gN/2VzbcJt9eS17SgNl0AJXJJVzSPe6pvGMpRQOWzsroGulBWy2jeNmLWss8IfNvu7o+zLpnixg2V04g2f8qpVuZVJaMrgfuV04+gKrU+T/JfCGzfMx2977nfSfXR9rX8NUzinde8FZi8e0qXsIvZRSK5JWRGQw8LhtAqsd9hv0F+iodPK6gH7oAFBKLQEKi8jjwMAUaU/a/F8W/bWbdFyiiJxEf1nYwwV1s20ctPjlB0pw00+TxHHSQSn1C/CLdc7t0c0EB9EPyG2IyKPA8+iHDKvc4mlkXwL9gtoqIslZoAUuLTYopdqks9+2x9EN9LUE3bY+SESettkfYLMfbv8NTinrKUy5Xyn1j4isBXqLyCK0wD6Tjl2pUQ79IrqUyeNAn08fEelus80f+Cs1e630/sBpm2vtkyJN8rVTSt2w0uVHfx1fVEr9m4YdGV3XjEh53S8qpa7abDsONLVZP2vzfxQQqZRKsFlPsjut69pLKbXC8uF9i74/L5H5+7ES0EJEbMvxQ78bUjs3e/JP69ktjq6xHE7DjozuBYdjhCMTiP7Fp6O/4O5VSsWlk3wl0EtE3lRKJWaQte0L6h+gfooyK6C/gEHfTHlt0pdGt41mxHn0F3sFtHMWtNM1Qyz7V4rIn+gmrpQ2IyKVgK+Au9FO7AQR2YF+OG5Lj67WRwF1lVKncC4ngXeVUu+mk8bWvtNAORERG/GowK0P7iz0R4Uf+nwzew73A9uUUtczeRzo8/lGKTUsnTQpRS8GKJ7ixWRvWUVFpLBSKuXL2J7rmhEp7/2iIlLARjwqcvPedxhKqb9FZCba59CLzN+PJ4G/lVKpdnRJKsbm/+zc75HoJrqqaB9GSjsyuhccjqf0tsgpfIF29HZXSkVlkPYTdJvwNyJS1eo1UgDdbpse84H7RORuqwvg/6Ef+nXW/h3AABHxFZEu6F5eGWJ9lf0IjBWRvCJSB90mnSoi0lNE+olIEcv25lZZG6wkZ4EqNofkQz8o563jH+OmyCSlLy8iAZY9iWih+VRESlrHlBORzvacTyb5CnhCRFpY55JPRO5L6lqcCuvRTSajRMRPRHoCzVOk+QntQH8G3daeIVbZ5UTkDbTovJKls9HO4e4i0tm6D4Ksbr/lU0uslDoN/A58LCIFRcTHuiczvHesY38BPrfuBX8RudPandnrmlFZJ9H3+TjrnBqgO47MyUp+djAe6CQiDbNwPy4DaojII9Y18ReRZiJSO7XE2bnfrWNnAJ+ISFnrN28pIoFk8l5wFEY47MT6oh6BfvGfkZv98h9OLb1SKhLdPhmNbh+/in7pF0A7H1NFKXUQ3ZT1GfpLoztaqGKtJM9Y2y4BD6NfYPYyCl31PYNug/06nbT/op2NYeheWHOAD5VSc63904E6InJJRH5SSu1D9/pYjxaJ+ujeMkn8ie4pdkZEIq1tL6J9QRtE5Arab1QzHZtayu3jOJqlkx4ApdQW61wmWecVjm7XTyt9LNohPhR9nQeiXxQxNmmigIVAMFqQ06OsiFxDt69vRl+bdkqp3zOyPQ37TqId8q+ghfok8F/Sf54fRTcj7UNfgx+waUrNgEfQ/rED6Hb3Zy07MnVd7aQ/uqnzH7RD/w3b5mNHopQ6jxb9161Ndt+PVo3oHqCfZesZ4AO0wzotMnu/2/IftDN/M7oX1wfoHptZuReyTVKvCYPBkA4ishHtbP/aZtvrQA2lVEqflcHg1Zgah8GQCiJyl4iUtpqqBgENgF9t9hdF10imustGg8FdGOEwGFKnJtoReQntZ3rQau9HRIahmwR+UUqtcp+JBoN7ME1VBoPBYMgUpsZhMBgMhkzhleM4ihcvripXruxuMwwGgyFHsXXr1kilVImM0nmlcFSuXJktW7a42wyDwWDIUYhIutEkkvCqpioR6S4iUy9fvuxuUwwGg8Fr8SrhUEotVUoNL1SokLtNMRgMBq/Fq4TDYDAYDM7Hq3wcVoTI7tWqVXO3KQZDriUuLo6IiAiio6PdbYohDYKCgihfvjz+/v5ZOt4rx3E0bdpUGee4weAejh49SoECBShWrBg2IcQNHoJSigsXLnD16lWCg4Nv2SciW5VSTdM4NBnTVGUwGBxKdHS0EQ0PRkQoVqxYtmqERjgMBoPDMaLh2WT39zHCYcOqQ+eZtvqIu80wGAwGj8arhCO74zj+2HeWD349wMmLNxxsmcFgcCW+vr6EhIRQr149unfvzqVLl4iOjqZWrVrs3r07Od2HH37IiBEjOHbsGHny5CEkJIQ6derw6KOPEhenJ/h89dVXCQkJSV5q1KiBr68v165dy5aNq1evpm7duoSEhBAVlfa8cO3atUse0Fy5cmUiIyPTTOsqvEo4sjuOY2T7qogIk/8Kd7BlBoPBleTJk4cdO3awZ88eihYtyuTJkwkKCmL8+PGMHDkSpRSnTp1iypQpvP/++wBUrVqVHTt2sHv3biIiIpg/fz4A7777Ljt27EhemjVrxssvv0z+/PnTLH/s2LHMnDkzXRvnzp3Lyy+/zI4dO8iTJ4/Dzt0VeJVwZJcyhfIwoHlFFmyN4PiFrEwFbTAYPI2WLVty6pSe5rtLly6UKVOG2bNn89xzzzF27FiKFClyS3pfX1+aN2+efIwtc+bMITw8nLFjx2bLpmnTpjF//nzGjBnDww8/TGhoKN26dUveP2rUqAyFx5141TgORzCyXVXmbTrBxJXhfPxQQ3ebYzDkaN5cupd9/1xxaJ51yhbkje517UqbkJDAypUrGTp0aPK28ePH07x5c6pXr84jjzxy2zHR0dFs3LiRCRMm3LL92LFjvPTSS4SGhuLnl71X5+OPP86aNWvo1q0bDz74IKGhodnKz9WYGkcKShYM4pE7KrFoewRHzmevDdNgMLiHqKgoQkJCKF26NGfPnqVTp07J+8qWLUuHDh148sknbznm8OHDhISEUKpUKcqUKUODBg2S9yUkJDBw4EDefvtt0hpgvHv37mQ/yJQpU3j99deT1y9cuOCcE3UTOaLGISK9gPuAgsB0pdTvzizviXZVmbvxBBNXhjG+XyNnFmUweDX21gwcTZKP48aNG3Tu3JnJkyczevTo5P0+Pj74+Nz63Zzk44iMjKR169YsWbKEHj16APDOO+9QpkwZHnvssTTLrF+/Pjt27AC0j6Ny5coMHjzYLnv9/PxITExMXvf0UfdOr3GIyAwROScie1Js7yIiB0UkXEReSi8PpdRPSqlhwBNAX2faC1A8fyCDWlVm8c5/CD931dnFGQwGJ5E3b14mTpzIxx9/THx8vF3HFC9enPfff59x48YBsGHDBmbOnMnUqc6bXr5SpUrs27ePmJgYLl26xMqVK51WliNwRVPVTKCL7QYR8QUmA12BOkB/EakjIvVFZFmKpaTNoa9Zxzmd4XdWIa+/L+NXhLmiOIPB4CQaNWpEgwYNmDdvnt3H9OrVixs3brB69WreeOMNbty4Qfv27W/plnv48GGH2VihQgUeeugh6tWrx0MPPUSjRp7d0uGSWFUiUhlYppSqZ623BMYqpTpb6y8DKKXGpXG8AO8DfyilVmRUnqNiVX3020Em/RXOr8+2pVbpgtnOz2DIDezfv5/atWu72wxDBqT2O3l6rKpywEmb9QhrW1o8DXQEHhSRJ1JLICLDRWSLiGw5f/68Q4x8vG0wBQL9GP+HqXUYDAZDEjnCOa6UmghMzCDNVBE5DXQPCAho4ohyC+cNYEibYCasDGPPqcvUK2cmiDIYDAZ31ThOARVs1stb2zyOIW2CKRjkZ3wdBoPBYOEu4dgMVBeRYBEJAPoBS7KbqTOmji2Ux5/hd1Zhxf6z7Iq45LB8DQaDIafiiu6484D1QE0RiRCRoUqpeGAU8BuwH5ivlNrrgLKyFeQwLQa3DqZwXn8+/eOQQ/M1GAyGnIjThUMp1V8pVUYp5a+UKq+Umm5tX66UqqGUqqqUetdBZTm8xgGQP9CPEXdW5a+D59l24l+H5m0wGAw5Da8KOeKsGgfAoy0rUSxfgKl1GAw5gJwQVt02XPq9997LpUs5pyncq4TDWTUOgHyBfjxxV1VWh0Wy6ehFh+dvMBgcR04Iq27L8uXLKVy4cLbOOT3sHTVvL14lHM6scQAMvKMSxfMHmlqHwZCD8MSw6ilJmqDp2LFj1K5dm2HDhlG3bl3uueee5EmeDh8+TJcuXWjSpAlt27blwIEDACxdupQWLVrQqFEjOnbsyNmzZwEtXo888gitW7dONQpwdsgR4zjsRSm1FFjatGnTYc7IP0+ALyPbVeWtZftYdziSVlWLO6MYg8F7+OUlOLM743SZoXR96Pq+XUk9Nax6eoSFhTFv3jy++uorHnroIRYuXMjAgQMZPnw4U6ZMoXr16mzcuJGRI0fy559/0qZNGzZs2ICIMG3aNP73v//x8ccfA7Bv3z7WrFnj8ImivEo4XMGAFhX5ctVhxv8RRssqxbI96bvBYHA8SWHVT506Re3atVMNq247cRLcDKt+9OhR7rvvviyFVU8SojNnzhAQEMD48eMBWLlyJcWKFbPL9uDgYEJCQgBo0qQJx44d49q1a6xbt44+ffokp4uJiQEgIiKCvn37cvr0aWJjYwkODk5O06NHD6fMLuhVwiEi3YHuaf2wjiDI35dR7asxZvFe1oZfoE11U+swGNLEzpqBo8lpYdVtCQwMTP7f19eXqKgoEhMTKVy4cHL+tjz99NM8//zz9OjRg9DQ0Fua0fLly5fp8u3Bq3wcznSO2/JQswqULRTEx38cxBVBIg0GQ9bIKWHVM6JgwYIEBwezYMECAJRS7Ny5E4DLly9TrpwO9Tdr1iyX2ONVwuEqAv18GdWhOttPXCL0kGMCKhoMBueQE8Kq28PcuXOZPn06DRs2pG7duixevBjQtZs+ffrQpEkTihd3TQuIS8KquwqbpqphYWHOjS0VG59Ih49DKZovgMVPtTa+DoPBwoRVzxnkxLDqTsFVTVUAAX4+jO5QnV0Rl1m5/5zTyzMYDAZPwauEw9Xc37gclYrl5ZM/Dhlfh8FgyDUY4cgG/r4+PHN3dfadvsJve8+62xyDwWBwCUY4skmPhmWpUiIfn/5xiMREU+swGAzej1cJh7NDjqSGn1XrOHj2Ksv3nHZZuQaDweAuvEo4XOkct6Vbg7JUL5mf8SvCSDC1DoPB4OV4lXC4C18f4dmONQg/d41lu/5xtzkGQ64ns2HVs8P58+eTgwyuXr06zXRjx47lo48+AmDw4MH88MMP2SrXnRjhcBBd65WmVukCTFgRRnxCorvNMRhyNVkJq54aoaGhGYYNWblyJfXr12f79u20bdvWwWfimRjhcBA+PsJznWpwJPI6i3eYWofB4ClkNqx6ZtixYwcvvPACixcvJiQkhKioqFvm6fjhhx+yFK/K0/GqIIfu5p46pahbtiAT/wyjR0hZ/H2NLhtyNx9s+oADFw84NM9aRWvxYvMX7UqblbDqmSEkJIS33nqLLVu2MGnSpGzllZPweOEQkdrAM0BxYKVS6gs3m5QmIsLznWowdNYWftwWQd9mFd1tksGQK8lKWHVbWrRoQUxMDNeuXePixYvJYc4/+OADOnfu7HT7PR2nCoeIzAC6AeeUUvVstncBJgC+wDSlVJqNjEqp/cATIuIDzAY8VjgAOtQqScPyhZi4Mpz7G5UnwM/UOgy5F3trBo4mK2HVbdm4cSOgfRwzZ87M1DSwtnHroqOjM298DsDZb7WZQBfbDSLiC0wGugJ1gP4iUkdE6ovIshRLSeuYHsDPwHIn25ttRLSv49SlKBZsPelucwyGXE1Wwqpnl1KlSrF//34SExNZtGiRS8p0NU4VDqXUKuBiis3NgXCl1BGlVCzwHdBTKbVbKdUtxXLOymeJUqor8HBaZYnIcBHZIiJbzp93b6jzu2qUoHHFwkz6M5yY+AS32mIw5HayElY9O7z//vt069aNVq1aUaZMGZeU6WqcHlZdRCoDy5KaqkTkQaCLUupxa/0RoIVSalQax7cDHgACgV1KqcnplOWysOoZsSYskoHTN/JWz7o82rKyW20xGFyJCaueM/DqsOpKqVCl1Gil1Ij0RMNK65aR46nRuloxmgcXZfJf4UTHmVqHwWDwHtwhHKeACjbr5a1t2cYdsarSsYXnO9Xg7JUY5m484W5zDAaDwWG4Qzg2A9VFJFhEAoB+wBI32OF07qhSjFZVi/FFaDg3Yl3jmDMYDAZn41ThEJF5wHqgpohEiMhQpVQ8MAr4DdgPzFdK7XVEeZ7UVJXEc51qEHktljkbjrvbFIPBYHAITh3HoZTqn8b25Tiha62Nc9zRWWeZZpWL0rZ6cab8fYSHW1QiX6DHj7k0GAyGdPF453hm8MQaB8DznWpw8Xoss9Yfc7cpBoPBkG28Sjg8lUYVi9ChVkmmrjrC1eg4d5tjMHg9rgyrbhsu/fXXX2fFihXZyi8n4FXC4Um9qlLyXMcaXLoRx9drj7nbFIPB63FlWHVb3nrrLTp27OiAM0gdV41+zwivEg5PbaoCqF++EJ3qlOKr1Ue4HGVqHQaDq3BmWPWU2E7QVLlyZd544w0aN25M/fr1OXBARwm+fv06Q4YMoXnz5jRq1IjFixcDcOzYMdq2bUvjxo1p3Lgx69atA7R4tW3blh49elCnTh2H2ZodvMpT64nOcVue7Vid+yaeZfqaozzfqYa7zTEYnM6Z994jZr9jw6oH1q5F6VdesSuts8OqZ0Tx4sXZtm0bn3/+OR999BHTpk3j3XffpUOHDsyYMYNLly7RvHlzOnbsSMmSJfnjjz8ICgoiLCyM/v37s2XLFgC2bdvGnj17CA4Odqq99uJVwqGUWgosbdq06TB325IadcsWomu90sxYc5QhrStTOG+Au00yGLwSTwmr/sADDwDQpEkTfvzxRwB+//13lixZkuwXiY6O5sSJE5QtW5ZRo0axY8cOfH19OXToUHI+zZs39xjRAC8TjpzAsx1r8OveM3y1+gj/7VzL3eYYDE7F3pqBo3FnWHVbAgMDAe2sT/JPKKVYuHAhNWvWvCXt2LFjKVWqFDt37iQxMZGgoKDkffny5ctS+c7Cq3wcOYGapQtwX/0yfL32GBevx7rbHIPBq3FHWPWM6Ny5M5999hlJAWa3b98OwOXLlylTpgw+Pj588803JCR4bow7rxIOT+5VZcuzHWsQHZfAl6sOu9sUg8HrcXVY9YwYM2YMcXFxNGjQgLp16zJmzBgARo4cyaxZs2jYsCEHDhzwuFqGLU4Pq+4OmjZtqpKcSp7Kc9/v4Nc9Z1j1QntKFAh0tzkGg8MwYdVzBl4dVt1bGX13dWITEpnyt6l1GAyGnIURDjcRXDwf9zcqx5wNxzl7xTvnJTYYDN5JhsIhmoEi8rq1XlFEmjvfNO9ndIfqxCcqvgg1tQ6Dd+GNTeDeRHZ/H3tqHJ8DLYGkSLdXgXRn4nMXOcU5nkTFYnnp06Q83248wenLUe42x2BwCEFBQVy4cMGIh4eilOLChQu3dPfNLBk6x0Vkm1KqsYhsV0o1srbtVEo1zHKpTiYnOMeTiPj3Bu0/CqVvswq806u+u80xGLJNXFwcERERREebJlhPJSgoiPLly+Pv73/Ldnud4/YMAIwTEV9AWRmXABKzYqzhdsoXyUvfZhX4fvNJnrirKuWL5HW3SQZDtvD39/eoUc4Gx2NPU9VEYBFQUkTeBdYA7znVqlzGU+2rIQiT/gx3tykGg8GQIRkKh1JqLvACMA44DfRSSi1wtmG5iTKF8jCgRUUWbI3g+IXr7jbHYDAY0sWeXlV3AKeUUpOVUpOAUyLSwvmm3WJDPhHZIiJpRyXL4TzZrip+PsJnptZhMBg8HHuaqr4ArtmsX7O2ZYiIzBCRcyKyJ8X2LiJyUETCReQlO7J6EZhvT5k5lVIFgxh4RyV+3BbB0UhT63AriYmwawEc/BUiwyHBzJ9iMNhij3NclE3XK6VUoojYG1V3JjAJmJ2cmXa0TwY6ARHAZhFZAviim8NsGQI0BPYBWe87lkN44q6qfLvxBBNXhvFp3xB3m5N72bcIfnz85rqPHxQJhmLVoHg1KFbd+r865CsBIu6z1WBwA/YIwBERGc3NWsZI4Ig9mSulVolI5RSbmwPhSqkjACLyHdBTKTUOuK0pSkTaAfmAOkCUiCxXSt3Wq0tEhgPDASpWrGiPeR5HiQKBPNqqEl+tOsJT7atSrWQBd5uU+1AK1k7QwtDrC7gQDpFh+u+FcDj8JyTE3EwfWAiKVdUiUqzaTUEpWhUCTA85g3dij3A8ge5Z9Rq6S+5KrBd0FikHnLRZjwDS9JkopV4FEJHBQGRqomGlmwpMBT2OIxv2uZURd1ZlzvrjjF8RxqQBjd1tTu7jSCic3gndJ0KF5nqxJTEBLkfAhTC4cNgSlTA4vg52fX9r2oLlbUSl+s0aS6EK4OPrslMyGBxNhsKhlDoH9HOBLRnZMTOjNJ4+daw9FM0XwODWlfk89DCjzlyhVumC7jYpd7F2AuQvBQ3TuOV9fKFIJb1U63jrvtgbcPGwVUuxaigXwrS/JMYmmoFvIBStcnuzV7FqkLeo887NYHAQGQqHNeBvGFDZNr1SakgWyzwFVLBZL29tM1gMa1uFWeuOM2FFGF8MbOJuc3IPp3fCkb+g41jwy0Ko+4C8ULq+XmxRCq5HahGxbfY6f1A74BNtnO95it7e7FWsmhaarNhkMDgBe5qqFgOrgRWAI6ak2gxUF5FgtGD0AwY4IF+Pn3PcXgrnDWBIm2Amrgxj7z+XqVu2kLtNyh2snQgBBaDJY47NVwTyl9BLpVa37kuIh0vHb/elhK+EHXNt8vDRTVzJzV42TWAFyxoHvcGl2CMceZVSL2YlcxGZB7QDiotIBPCGUmq6iIwCfkP3pJqhlNqblfxTKS/HN1UlMbRNMF+vPcr4FWF89WiGoWMM2eXfY7D3R2g5CvIUdl25vn5aBIpVhRqdb90Xc/X2Zq8L4XC6dn+lAAAgAElEQVR8PcTZdNn2z6t7fRUqb7NUuPl/gTK6HIPBQdgT5PAdYJ1SarlrTMo+OSnIYXpMXBnGJ38cYumoNtQvb2odTmX5f2HL1/DsLv0F78koBVdP31pL+fc4XD6pHfdRF29NLz5QoGwKYUkhLkGFTK3FYHeQQ3uE4yq6O2ystQiglFIe57W1qXEMCwsLc7c52eZqdBxt//cXjSoU5uvHzBQoTuP6Bfi0LtTrDb08csaAzBF7HS6fuikkyYu1fuUUJMTeekxAgfSFpWBZ8PVPvTyD1+Cw6LhKqRwzmMBbfBxJFAjyZ/idVfjfrwfZduJfGlcs4m6TvJNNUyE+ClqPdrcljiEgH5SooZfUSEyE6+dvFRPb///ZDjciUxwkuskrLWEpVB7yFDG1Fndz/QLkK+b0YuypcQjwMBCslHpbRCoAZZRSm5xuXSbxthoHwPWYeNr+7y/qli3IN0NdGiIsdxB7HT6tBxXvgP7z3G2N5xB7A678k3at5XLErQMhAfzzpS8sBcuBX4B7zic3cGA5LHwcBnwHwXdmKQtHzsfxOXr+jQ7A2+hYVZOBZlmyzIl4W40DIF+gH0/cVYX3lh9g87GLNKts+vk7lO1ztU+g9TPutsSzCMirx5kUT6OjSVIX47SE5cxuuH4uxUGix8gUqwpd3ocyDZx+GrmGsBWwYBCUqgdlnD/Hnj3C0SJpBkAApdS/ImI+G1zII3dUZuqqo3z6xyG+HXaHu83xHhLiYf1nUKGFrnEY7Me2i3G5NCIcxEVrf0pKYQlfAbN7wKNLjHg4giOh8N0AKFETHvlRd3RwMl41A6A3dce1JU+AL0+2q8rby/ax/vAFWlZ1fhtmrmDfT3DpBHT5wN2WeCf+QTe7Gtty8SjM7GbEwxEcWwvf9tPX+JHF2s/kArxqBkCl1FKl1PBChbyv6+rDLSpSqmAgn/5xiIz8UgY7UArWjofiNaBGF3dbk7soGgyDl2mfyOweulnLkHlOboJvH4LCFeDRxS5xiidhZgDMIQT5+/JU+2psOnaRteEX3G1Ozufwn/qF1Wo0+Njz/WRwKLbiMau7EY/McmobzOkN+UvqWlv+ki4tPt0nRkR8ReSAUupA0gyASqn9rjIus4hIdxGZevny5YwT50D6NqtAmUJBfPLHQVPryC5rJ+jupQ0ecrcluZeiwTB4qRGPzHJ6F3xzv45wMGgpFCzjchPSFQ6lVAJwUERyxAQX3txUBRDo58uoDtXYduISfx86725zci7/bIejf8MdT5rAge6maBVLPPLCLNNslSFn98E3vfRYnUFLdTdnN2BPHb0IsFdEVorIkqTF2YYZUqdPkwqUK5zH+Dqyw9oJEFgQmgx2tyUGsMRjGfjnMeKRHpFhMLsn+Phr0ShS2W2m2CMcY9Az870FfGyzGNxAgJ8Po++uxs6Iy/x5IGU/eUOGXDwC+xZD0yEu6bZosJPbxGOPuy3yLC4e0c15KBi05Paeai7GHuf438AxwN/6fzOwzcl2GdLhgcblqVg0L5+YWkfmWT9ZzyHe4gl3W2JISdEq+kvaP4/l8zDiAegu47N6QHyM7j1Voqa7LbIr5Mgw9FSxRZVSVUWkOjBFKXW3KwzMDN4YciQtFm6N4P8W7CTA1wc/X8HPRwjw88HPR6/7+/rg5yP4+frgb+338/WxSW9t9/XB30f0Nut/f18fm+OS8ktxTBr7k8pOKt/fKs/fx4eSBQMJ8nfjlKnXzsP4elC/D/Sc5D47DOlz4bAWjrgoLSSl67nbIvdx+RR83RWiL+neU2VDnFqcI6Pj7gCaAxuVUo2sbbuVUvXTPdCNeEtY9fRISFTM23SCk//eID5BEZ+QSFyi/hufoJL/j0tQxCfqbbEJiXp/otLbk//X++MTE5O3xyUo4hITcWSFpnj+QD7r38h9Axj/fBdWfQijNutJkAyey4XDepBgQox+YeZG8bh6Br6+F66d0zWN8s6fDdSRsapilFKxYkW9FBE/rFHkBvfh6yMMvKOS08tJSBKWVIQozkZ4bAUntf0x8YlM+fswD0/bwH8712LEnVXw8XFhJNWYazoKbq37jGjkBIpV1T6PpBHmg5ZCqbrutsp1XI/UjvCrZ3QYEReIRmawRzj+FpFXgDwi0gkYCSx1rlkGT8HXR/D1cUzz0r31y/Diwl188OsBth6/yMd9QiiU10VzPGyfo6v7JphhzsFWPGZ1zz3iceOiFo1/j8PDCzwyjpo9vapeAs4Du4ERwHLgNWcaZfBO8gf6Mal/I8Z2r8Pfh87TbdJq9pxywWDNhDhYPwkqtoIKZkKsHEWSePgGavE465BZpj2XqEt6nEZkGPT/FoLbutuiVElTOERkpfXvOKXUV0qpPkqpB63/XdZUJSLtRGS1iEwRkXauKtfgHESEwa2D+X5ES+ITFA98sY5vN55wbu+wvYt0VFZT28iZ3CYe+9xtkXOIuarDiJzdB32/gaod3G1RmqRX4ygjIq2AHiLSSEQa2y72ZC4iM0TknIjsSbG9i4gcFJFwEXkpg2wUeg6QICDCnnINnk/jikX4eXRbWgQX5ZVFu/m/BTuJik1wfEFK6QF/JWpB9Xscn7/BNSSLRwDM6uZ94hF7Heb20VEN+nwNNTq726J0SbNXlYg8CAwF2gApuygppVSGcigid6Jf+rOVUvWsbb7AIaATWgg2A/0BX3QgRVuGAJFKqUQRKQV8opR6OKNyc0OvKm8hIVExcWUYE/8Mo0bJAnwxsDFVSuR3XAFhK2Bub+j1BYQMcFy+Bvdw4TDMvE/PmT5oGZSq426Lsk9clI5ye2wN9J4O9R5wmyn29qpKr8ZxWinVFfhQKdU+xWJXHUoptQq4mGJzcyBcKXVEKRULfAf0VErtVkp1S7GcU0olzf3xL2ACC3kZvj7Cc51qMPOx5py7Gk2PSWtZvvu04wpYOx4KlIV6DzouT4P7KFYVBv9s1Ty8oNkqLhq+exiOroZeU9wqGpkhPeGYaP3t5eAyywEnbdYjrG2pIiIPiMiXwDdAmqO2RGS4iGwRkS3nz5sAgDmNu2qU4OfRbalWMj8j527jraX7iEvI5nxhp7bCsdXQcqSZ69qbKFZV1zZ8/XO2eMTHwoLBcHgl9JgIDfu62yK7Sa87bpyITAXKicjElDuVUqOdZ9Yt5fwI/GhHuqkichroHhAQ4Fmdng12UbZwHuaPaMl7y/czY+1RdkZcYtKARpQplCdrGa6dAIGFoPEgxxpqcD/Fq2nxmHmfFo/By6BkbXdbZT8J8bBwKBz6Be79CBo/6m6LMkV6NY5uwJ9ANLA1lSWrnAIq2KyXt7YZDAT4+TC2R10+69+IA6evcN/ENawJi8x8RhcOw74l0GwoBBV0vKEG91O8mm628vHTYz3OeexUQbeSmACLhsP+JdB5HDQf5m6LMo09IUcaKqV2ZrkAkcrAMhvnuB/aOX43WjA2AwOUUg7roG2c495B+LlrjJy7lbBz13iuYw1Gta9m/2jzZc/pQX/P7oECpZxrqMG9RIbrmodK0IMEPbnmkZgIi5+Cnd9Cx7HQ5jl3W3QL2XaOi8gL1r+Pi8jElIudRswD1gM1RSRCRIYqpeKBUcBvwH5gvqNEw9tnAMxtVCuZn5+eak3PhmX55I9DDJm1mX+vx2Z84LVzsH0uNOxvRCM3kFTzEF/dbOWpNQ+lYNmzWjTaveJxopEZ0uuO210ptVREUm0gVkrNcqpl2cDUOLwLpRRzN57graX7KFEgkMkPNyakQuG0D1j5Nqz+GEZt0S8VQ+4gMkw3WakE7f8oWcvdFt1EKfjlBR0vre3/QYcxIC6M1WYnDouOm5PITWHVcyO7Ii7x5JxtnLsazevd6jDwjkpIyocv5hp8WgeC74S+c9xjqMF9eKJ4KAW/v6bD3rQcBfe845GiAQ4QDhFZSjpRcJVSPbJunnMxNQ7v5dKNWJ77fgd/HTxPj4ZlGfdAffIF2nQOXD8ZfnsFHl8J5TO8/w3eSGSY5fNIdL94KAV/WjXg5sOh6/88VjTAMQMAP0JPEXsUiAK+spZrwGFHGOlojI/D+ymcN4Dpg5rx3841WbbrH3pOXkv4uat6Z0KcFo5KbYxo5GaKV7d8Hj6Wz+OA+2xZ9aEWjcaDoMsHHi0amcGeXlVbUipQats8CVPjyB2sDY9k9LztRMUlMO6B+vSU1bBoBAxYADVMXKpcT3LNQ1m9rVxc81gzHla8AQ0HQM/J4GNPMHL34ogaRxL5RKSKTcbBQL7sGGcwOILW1Yrz8+i21ClTkGe+287ZXz4gsURtqN7J3aYZPIHi1XVTlYiueZw/6Lqy13+uRaNebz1NcQ4Qjcxgz9k8B4SKSKiI/A38BXhkfGrTVJX7KF0oiHnD72BcvTOUij7ChOh7ibgU5W6zDJ5CiRo3xWNmN9eIx+Zp8NvLULs73P8lOGgiNE/Crl5VIhIIJNXzDiilYpxqVTYxTVW5kK/vI+rcYVrd+Bjl68/4viG0q1nS3VYZPIXzh3SzFejwJCVqOqecbbNhydNQoys8NDvHxUhzZFMVSqkYpdROa/Fo0TDkQiK2wPE15LnzaX58uh2lCwbx2MzNfPL7QRISvae7uSEblKihHeZg1TwOOb6Mnd/DktFQ9W54aFaOE43M4FUNb6apKpeydjwEFYbGgwguno9FI1vTu3F5Jv4ZzqAZm7hwzXzrGEghHvc5Vjz2/Ag/PQGV20C/ueDn3TNAeJVwKKWWKqWGFypUyN2mGFxFZDjsXwbNHodAPQFUngBfPurTkA9612fTsYvcN3ENW4+nnBbGkCspUUM3VYGeSdAR4rF/GSx8HCq0gAHfg38WoznnIDIUDhH5UUTuExGvEhmDl7D+Mz2pT4sRt+3q26wiPz7ZigA/H/p+uYHpa446d25zQ86gRE0tHkplXzwO/abn1CjbCAbMh4Dc0eHUHjH4HBgAhInI+yLiJK+SwZBJrp6FHfOg0cOQP3VHeL1yhVj6dBva1yrJ28v28dS327gaHediQw0eR4maemxHdsTj8J/w/SNQqi4MXJirwvdnKBxKqRXWPN+NgWPAChFZJyKPiYi/sw00GNJk4xQ993TLUekmK5THn6mPNOHlrrX4be9Zek5ay4EzV1xkpMFjKVnLEo9ELR6RmYhvd2wNzBugx4o8sgjypBN00wuxq/lJRIoBg4HHge3ABLSQ/OE0y7KAcY7nImKuwubpUKeHnko0A0SEEXdV5dvHW3A1Jp5ek9eycGuECww1eDQla+lxHipRO8ztEY8TG2DuQ1CkEjzyE+Qt6nw7PQx7fByLgNVAXqC7UqqHUup7pdTTQH5nG5gZjHM8F7F1JsRchtaZG4vaokoxfh7dhpAKhfm/BTt5+cfdRMclOMdGQ87gFvHIoOYRsRXmPAgFSsOjiyF/CdfZ6UHYU+OYqJSqo5Qap5Q6bbvDk+NVGbyY+Fgd0qFyWyiX+enlSxYIYs7QFjzZrirzNp3gwSnrOHnxhhMMNeQYksUjIW3xOL0T5twP+YrpJq4CpV1vp4dgj3AUEZEHUix3i4gZlmtwD3t+gKv/QOtns5yFn68PL3apxbRHm3Liwg3um7iaFfvOOtBIQ44j2eeRinic3Quze0FgQZ2mUDn32ekB2CMcQ4FpwMPW8hXwIrBWRB5xom0Gw+0kJsLaCVCqHlS7O9vZdaxTimVPt6Visbw8PnsLH/x6gPiERAcYasiRlKythSEx3hKPcN3janZPPahv0BIoXNHdVrode4TDH6itlOqtlOoN1EFP8NQCLSAGg+sI+x3OH9C+DQfNbVCxWF5+eKIV/ZtX4IvQwwycvpFzV6MdkrchB1Kyth7nkRivHeazugOiBaVolQwPzw3YIxzllVK2dfhzQAWl1EXA6R3iRcRHRN4Vkc/Smv/ckItYOwEKVYC69zs02yB/X8Y90ICP+jRkx8lL3DdxDftPmy67uRZb8UiM0zWN4tXdbZXHYI9whIrIMhEZZL24F1vb8gGX0jtQRGaIyDkR2ZNiexcROSgi4SLyUgbl9wTKo0XKqf0nD186zI5zO5xZhCE7nNwEJ9ZBy6fA1zlDiB5sUp6fnmqNn48waMYm4zTPzZSsDSPXw5Pr9P+GZOwRjqeAr4EQa5kNPKWUuq6Uap/BsTOBLrYbRMQXmAx0RTd79ReROiJS3xIo26UkUBNYp5R6HngyMyeXWT7b/hmP/vIoH23+iOh401ThcaydAHmKQONHnVpMrdIFmTWkOdFxCSZIYm4nf8lc3XsqLdIVDusl/6dSaqFS6jlr+UHZGfBHKbUKSBldrjkQrpQ6opSKBb4DeiqldiuluqVYzqFrGf9ax6bZ4V5EhovIFhHZcv78eXvMu413Wr9Dnxp9mLVvFn2W9mH7ue1ZysfgBM4fggM/Q7NhLokHVKNUAWYMbsapS1EMmbWF6zHxTi/TYMgppCscSqkEIFFEHDmirhxw0mY9wtqWFj8CnUXkM2BVWomUUlOBN4FtAQFZi4OfPyA/Y1qOYdo904hLjGPQL4P4YNMHRMWbGeXczrqJuldL8+EuK7Jp5aJMGtCY3RGXeHLuNuJMbyuDAbCvqeoasFtEpovIxKTF2YYloZS6oZQaqpR6Wik1OYO0Dhk53qJMC37s8SN9a/Zlzv459F7Smy1nzIyCbuPKadj1PTQa6PKRup3qlGLcA/VZdeg8L/ywi0QzMZTBYJdw/AiMQX/tb7VZssopoILNenlrW7ZxZKyqvP55efWOV5nReQZKKR777THGbRzHjTgPcpZejtDjGrydjVN075aWT7ml+L7NKvKfe2qwaPsp3v/1gFtsMBg8Cb+MEiilZolIHqCiUsoRM71vBqqLSDBaMPqhw7Z7JM1KN2Nhj4VM3D6Rufvn8nfE37zV6i2al2nuPqPO7oUVb0LYb1CtE/T6wntj5kRfhi0zoE5Pt/ahf6p9Nc5fjWHqqiOUyB/IsDtNf35D7sWeIIfdgR3Ar9Z6iIgssSdzEZkHrAdqikiEiAxVSsUDo4DfgP3AfKXU3qyegC3OCnKY1z8vLzV/iZldZuIrvgz9fSjvbHjH9bWPf4/DjyPgi9Y6QmfjQXB0FUxpDUdCXWuLq9g6E2KuZDqYoaMREV7vXpf76pfh3eX7WbTdRNY15F4kow5SIrIV6ACEKqUaWdv2KKXqucC+TGGJXPdq1aoNCwvLRGz9TBAVH8Vn2z9jzr45lMlXhjdbv8kdZe5wSlnJXI+EVR/B5mng46sdxG2e0+Gcz+yBH4ZA5CFo+zy0ewV8M6xI5gziY2BCQyheQw/A8gBi4hN47OvNbDp6kemDm3FXDS+t6RlyJSKy1Z7gtfb4OOKUUimdBh7ZsO6KsOp5/PLwQrMXmN11NgG+AQz7fRhvrX+La7HXHF9YzFUIfV+/PDd9CQ37wdPb4J63b84BULoeDP9LO45Xfwwz74VLJxxvizvYvQCunnZ7bcOWQD9fvnykCTVKFeDJOVvZeTLdMbAGg1dij3DsFZEBgK+IVLe6xa5zsl1ZwpUTOYWUDGFB9wUMrjuYhWELuX/J/aw75aDLEh8LG7+ECSEQOg6qtIORG6DnpNSjcgbk0/t6T4ez+2BKG9i32DG2uIukYIal60PVDu625hYKBPkzc0gziuUP4LGZmzly3gkfDQaDB2NPU1Ve4FXgHkDQvom3lVIeO7S6adOmassW13Wf3Xl+J2PWjuHo5aM8UP0B/tP0PxQIKJD5jBITdcjwP9+BS8f1fBMdx0L5TEx7cvEoLBwKp7ZC0yHQ+T3wz5N5WxzIldgrLD28lLB/w/D38SfAN0AvPgH4+/oT4BOQvC15/+ndBKz6kIC2/8W/Wsfk9Lels7aLgwIeZoZjkdfp/cU68gT48uOTrShZMMjlNhgMjsTepqoMhSMn4mrhAIhJiOHzHZ8zc+9MSuQpwRst36Bt+bb2HawUhK/QPaXO7oZS9bVgVLs7axFg42Phz7f1oLmSdeDBGW6JtXPw4kHmHZjH8qPLiYqPomhQURJUArEJscQlxBGvHDca28/H76awJAmSjdhkJFgpt+UPyE/Xyl3JH5D+JJe7Iy7Tb+p6KhTNy/wnWlIwyDkxtAwGV+Aw4RCRGsB/gMrYdN9VSnlW+wGucY5nxO7zuxmzdgyHLx+mZ9We/LfZfykUmI7P5eRmWDEWjq+BwpWgwxio1xt87JoOPn3CV8CiJyDmGnT9QMd4cvKXeVxCHL8f/53vD37P9nPbCfIN4t4q99K3Zl/qFKtzS9pElUhsQiyxibHJYhKbGEtsxBZifxpBXMunia3VNXl/bKKVxvaYRGs9nW3J+Sak2J+y3IRYFDefh+BCwUxoP4HgQsHpnvPqsPMMmbmZxhWLMGtIc4L8fZ1ybQ0GZ+NI4dgJTEEP+kuOFaWUys4gQKfijhqHLbEJsUzZOYUZe2ZQLKgYr7d8nbsq3HVrovMHYeVbcGAZ5CsBd74ATQaDX9bCpaTJ1bOwaLjurlv3fug+AYIc33ngzPUzzD84n4VhC7kYfZGKBSryUM2H6FWtV/rCmRrz+uvuxs/tcUlcqiSUUsSreOIS4thxfgcvrXqJuMQ4xrUdR7sK7dI9dvGOUzzz3Q661ivNpAGN8fVxfdOZwZBdHCkcW5VSmZ/Y2Y24WziS2HthL6+teY3wS+F0r9KdF5u/SKFoq6fUjrngnw9aPa1HRAem3ySSLRITYd0EWPm2dq4/+HXm/CZpoJRiw+kNfHfgO0IjQlFKcVf5u+hXqx8ty7bER7JQazp/ECY3h7tegvYvZ9vG7HD62mme+esZ9l/cz8iGIxnRcES65zR9zVHeXraPgXdU5O2e9dzidzEYsoMjhWMsevKmRUByfGlrIiePxFOEA3TTzZe7vmT67mkUFj/GnD1Lh6hoaPY4tP0/yFfcdcac3AwLh8CVf6DDa9DqmSw1iV2JvcKS8CV8f/B7jl05RpHAIjxQ/QH61OxDufzZnIv5p6dgz0J4bi/kK5a9vBxAdHw0b61/i6VHltKuQjvGtRmXrt9j3C/7+fLvIzzfqQaj7zYT/xhyFo4UjqOpbFZKKY+LueAJPo7biL0BG79g/4bPGFMokIOBAdxb7i5ebvMOhYMKu96eqEuw9BnY9xNUaQ8PTNVzDtjBwYsH+e7gd/x85Gei4qNoUKIB/Wr2457K9xDoG5h92678A+MbQNPH4N4Ps5+fg1BK8e2Bb/lw84dUKFCBCR0mUKVQ6re/Uor/LNjFwm0RvHd/fQa0MPNTG3IOpleVu2scCXGw/RsI/QCunYEaXYhr/wrTzq1j6s6pFAwsyJg7xtCxUkfX26aUDuXx60sQWBDun6J7cKVCXEIcfxz/g+8Ofsf2c9sJ9A3k3uB76Ver323O7mzz+xhYPwlGb4cilR2btwPYfGYz//n7P8QkxDCuzTjaV0x9HrO4hESGz97C34fO88XAJnSuayYCMuQMsi0cIvKCUup/1v99lFILbPa9p5R6xWHWOhi3CodS+mt+5dtw8TBUaAEd34RKLZOTHLx4kDFrx7D/4n66VO7Cyy1epmhQUdfbem4/LHgMzu/Xo7M7jEmektWhzm57iLoEn9aDGvfo7sMeyulrp3k29Fn2XdjHkw2f5ImGT6Tq97gRG8+Arzay7/QV5gxtQfNgN/y+BkMmcYRwbFNKNU75f2rrnobbhOPwX7pr7ekdUKI2dHwDanRJtQtsXGIcM3bPYMquKRQMKMgrLV6hc+XOrrc5Lgp+ewW2zECVa8KGu0bzXcRfjnN228uaT/W1G7EKyjR0XjkOIDo+mrc3vM2Sw0toV74d77V9L9UBnxevx/LglHVEXo1h/hMtqVW6oBusNRjsxxHCsd0mqGHy/6mtexouF45/tuuX3pFQKFQB2r8CDfrqgIQZEPZvGK+tfY19F/bRqVInXm3xKsXyuNYpfCX2CkvWvMv3R5ZyzN+XIn55eaBWf8c4u+0hPgbG19eDFR/9yfnlOQClFPMOzOPDzR9SvkB5JrSfQJXCt/s9Iv69Qe8vdCiahU+2onyRvK421WCwG0cEOVRp/J/aukfgylhVAFw4DAsGw9R2cHqXDu8xaguEDLBLNACqF6nO3Hvn8kzjZwg9GUqvxb345egvuML3dPDiQd5c/yYdF3Tkg5PLKViyDu/FF+KP8AM8e+ow5QKKON0GAHZ+B9fOelQww4wQEQbUHsBX93zFldgrDFg+gJUnVt6WrnyRvMwa0pwbsQk8OmMTF6/HusFag8GxpFfjSACuo+NT5QGSJp8QIEgp5bGxFZxe47h6Bv7+ALbNBt8APQ6j1dPZHlh3+NJhxqwdw+7I3dxd8W5eu+M1iudxbHfdtJzdfWv1pW6xutqp/9d7uumoRE3tbyhV16E23EJiIkxupgf6Df/b6SPbncGZ62d47q/n2HNhDyMajGBkyMjbmvU2Hb3IwOkbqVOmIN8Oa0HeAC8JfW/wKkyvKmcIR/RlHbF1wxeQEKtHet/5AhQo5bAi4hPjmb1vNpO3TyaPfx5eav4S9wXfl+3BZCmd3RUKVKBvzb5pO7sP/wWLRuhz7vyeDpjojJf6/mXw/cNaoOr1dnz+LiImIYa317/N4sOLubP8nYxrO46CAbf6NH7be4Yn52zlrholmPpoU/x9negzMhiygBEORwpHXDRs/krPdxH1r37BtX8VilV1XBkpOHL5CGPWjmHX+V20K9+OMS3HUDKvfeMtkkga2f39we/56+Rfyc7uvrX60qpsq4yd3dfOw09P6JhXtXtAj4mQx4HNV0rB9E5w7ZyeZySHT0CllOL7g9/zwaYPKFegHBPaT6Bq4VvvkW83nuCVRbvp3bg8H/VpYEaXGzwKIxyOEI6EeNg5T8+JceUUVL1b95RyUa+fhMQE5uyfw2fbPyPAN4CXmr9E9yrdM3zZOHRkd2IibJisnf8FykDvaVDRQTMeHl8HX3eFez+C5sMck6cHsPXsVp4PfZ7o+Gjea/Med1e6dYzMhNBBQxoAACAASURBVBVhfLriEE/cVZWXutZyk5UGw+14jXCISFvgYXRk3jpKqVYZHZNt4VAKDvysgxBGHoRyTXSY8+A7s55nNjh2+Rivr3ud7ee207ZcW95o+Qal8t3ePHbbyO7iDehXy0Eju09t1VPUXjqpe421ec7uDgBp8m1fiNgMz+6BAO/qbXTm+hmeD32e3ZG7Gd5gOCMbjsTXul5KKcYs3sOcDScY060OQ9ukH33XYHAVHiEcIjID6Aacs52jXES6ABMAX2CaUup9O/LqBZRSSn2ZUdpsCcextfrrOmITFKsGd7+um2nc3KSQkJjAvAPzmLBtAv4+/vy32X/pVa0X8Ynx6Tu7HUn0FVj2nJ5sKvhOuH8qFCyTtbzO7YfP79BzpLd70bF2eggxCTG8u+FdFoUvom25trx/5/vJfo+ERMWob7fxy54zTOgXQs8QF3R7NhgywFOE407gGjA7SThExBc4BHQCIoDNQH+0iIxLkcUQpdQ567j5wFCl1NWMys2ycCx7DrbM0E0y7V6CkIEe1+5+4soJxqwdw7Zz2wgpEcKJqyfsc3Y7CqV0ZN/l/9UzC97/JVTvlPl8Fj2pR9g/t/fm/OleiFKK+Qfn8/6m9ymbvywT2k+gWpFqAETHJTBoxia2nfiXGYOb0bZ6CTdba8jteIRwWIZUBpbZCEdLYKxSqrO1/jKAUiqlaNjmUREYo5RKsyFcRIYDwwEqVqzY5Pjx45k3du9P8O9RaD7Co5tOElUi3x34jmm7p1GnWB361epnn7PbkZw/qJuuzu6BlqPg7jfsn0vk8imY0EBHCO76gXPt9BC2nd3G86HPcyP+Bu+2eZdOlbTYXomO46Ep6zl58QbfDW9J/fJOFH2DIQM8WTgeBLoopR631h8BWiilRqWTx5vAb0qpdfaU6RFBDnMDcdHw+2u6x1nZRtB7un09zX57VXdpHr0dilRyvp0ewtnrZ3k+9Hl2Re5iWP1hPBXyFL4+vpy9Ek3vL9YRFZvAD0+2Iri46yavMhhsccTIcY9BKfWGPaKR3ZHjV//6i/MTJ7pk1LZX4B8E930EfefCxaPw5V2wa0H6x0T9qyPz1uudq0QDoFS+Unzd5Wt6V+/NV7u/YtSfo7gcc5lSBYOYPaQ5Cnh0xkbOXY12t6kGQ7q4QzhOARVs1stb29zO9TVrifz8CyInf+5uU3IWtbvBE2ugdD348XH4aaSe5zw1tsyA2GvQerRrbfQQAnwDeKPlG4y5YwwbTm+g/8/9Cfs3jCol8jNjcDMuXItl8IzNXI2Oc7epBkOauEM4NgPVRSRYRAKAfsASR2SslFqqlBpeqFDW2olLvfoKhe6/n8hJk4ic+pUjTMo9FK4Ag5bBXS/Cjm9vxu+yJS4aNkzR42FK13eLmZ6AiPBQzYeY0XkGUfFRPLz8YX4/9jshFQrzxcAmHDp7lRHfbCUmPsHdphoMqeJU4RCRecB6oKaIRIjIUKVUPDAK+A3YD8xXSu11UHnZaqoSHx/KvPP2/7d37uFxVfXe//xmz0zSTDJpcyu9pSlKQS4i4IstN6m8QCkJN/GAHrACgoCKtQWOcM5bih4oUiz1ipTeaFVE8YA0KBcV0CNSWku5FIQCvSTNfdLmMpPLXH7vH3unmaRJm7RJ9iRZn+fZz157zey1vns/yf7OWmuv3yJYXEzt0qWE1qwZCFmjB8trz/GY+7TdqlhxDmxYbr+JBfZkynANnDHPXZ0pwkkFJ/F48eMcNe4oFry8gGX/XMYZH89hyRc+ySsfhpj/+BvEE6bb1JB6pPwEwEPhcAfHNRZj94JbaXruOcYv/H/kfOlLA6hulBAOwe9vhvefhaMvtMOVrDwP0oNw/Yuuz4tJJdrj7dy74V5+t+13nD7xdL5/1vf5zYYQ9/zhXebOnMqii44zoUkMQ8KIGhzvKwMVVl28XiY9sITMz32O6u9+jz2/PciAr2F/ArnwxV/D7Ptg2/Pwo5PsFRFP/5YxjW74LT+LTlvEwpkL2VC1gStLr+SzJ8S4/sxpPPqPnfzspQ/dlmgwdGFEGcfhjnEkIz4fk5Y9SODMM6laeBd7nxoeCwylFCIw4yb46p8gkA/5x9iz8A098oXpX2D1+atpi7dx1R+u4uRP7OLSkyax5Ln3eHzjLrflGQz7GFFdVSJSApR8/OMfv37btm0DUmaitZWym24isuE1Jj2whOCcOQNS7qgjHrND0afwxMpUoSZSw/yX5vNG7Rt85bhr2PLmafx9W4iHr/405x47cCH8DYbujMquqoFscXTgSU9nyk9/ypiTT2L3bbfT+MILA1b2qMLyGtPoIwUZBaw+fzVfmP4F1mxdTdqkVRw7ycs3frWZTTvq3ZZnMIws4xgsPBkZTPn5w4w5/nh2z19A04svui3JMMLxWT4WzlzIXTPvYnPNJtrHP0hBbj3XPbqJ96sPGq7NYBhURpRxDOaa41ZmgCmPLCd9+nR23/Itmv/37wNeh8HQncunX87q2auJaTst+cuwsrYwd9VrVOxtcVuaYRQzooxjMLqqkrGCQQpXrsD/sY9R/vWvE97w2qDUYzAkc2L+iTxe/DjH5n6CaO46mjOe4upV/2BvpN1taYZRyogyjqHAGjuWwlUr8RdOsQfNN292W5JhFJCfkc/K81ZyxdFXwNiXqBrzE+aueZGWdjO73DD0jCjjGMyuqmS8OTkUrlqFr6CAsutvoOWNNwa1PoMB7HGP/5rxX9x92t34Ajv4wHcP1/7qKWLxhNvSDKOMEWUcg91VlYw3P5/CR9dg5eSw66vX07J1QKKmGAwH5bKjLmPtBWsIZghv6T185bcPm4jOhiFlRM3j6GAo1+OI7t7NjquvRsMRCteuJf3o6UNSr8FQ11LHlU/dTHX7u4zlBCZmHkFBYCwTgzlMGZvDuPRssvxZBP1Bgv4gWf4ssvxZpFlpJoSJoUdSZiEnNxjqhZzay8rYedXVaDTK1HVrSftYHxYzMhgGgPZYO1c9uYh3GzaQkBbE04J4Ygc8x+fx7TOSZEPpftzTd4L+ID7LN0RXZxhqjHEM8QqAbdu3s/PqLyMiTF23Fn9R0ZDWbzDsjbSzvS7Mtto9bKut48P6Wsr2hqhq3ENLImybitWKx2ohMyNKRnoUn68Ny9tKnAhtiTDhaBMxPbDxpFvp+xlOr0aT5uT57H2mPxOvxztEd8TQX0alcQxGyJH+0LZtGzu/PBdJS2PqL9bhnzx5yDUYDN1RVULhdnbUhdnubDtCYbbXRdhRF6Yl2vlmlt8SJud4mZwnHDFWyQ3GGRuIERgTw+NtpTnaRGNbI03RJpram2hsb6SpvWs6oQcerM/0ZTIlawpTg1OZGpxKUXYRRUF7y/RnDvbtMByAUWkcHbi55njrv/7FzrlfwcrMZOq6tfgmTnRFh8HQF1SVmqa2TkNJMpYdoQjtsU4TSPd5KMoN2FtegGl5GRTlBpiWHyA/0x43UVUisUgXI+luNHtb97KraRc7GnZQEa7oYjS56bldjKTDWCZnTcbnMV1kg40xDpeMA6Dl7a3suuYarHHjmLpuHb7xBa5pSQUS4TChNWuIVlYSPP98AjNnIl7TXZHqJBJKZWMr22vDbA/ZprKjzk6X1UeIxjufHQG/RVGeYyj7jMXexmX4eh2Mb4+3U9ZUxo7GHexs3MmOBmffuIP61s64XJZYTM6abBuJYyjTsqcxNTiV/DH5ZrB/gDDG4aJxALRs2cKua6/De8QRTF37KN68PFf1uIEmEjQ8/TS1Sx8kVlODJxAgEQ5j5eYSvOACskuKSf/kJ80//TAkFk+we2/LvlbKjlBkX0ulrD5C8sKFwXQv0xxTKcoNMDU3gwy/hdfjwWsJfsuD17LTPo8Hn1fwejy0xZuoaimnqqWM3c272B3eRVnTTsqadtEab91XfoY3Y5+hFGUXden+CvgCLtyd4YsxDpeNAyCyaRO7rr8B/+TJFK59FO+4cW5LGjIim1+nevFiWt96i/QTTmD8nXeQftxxNL/8Mo3rS2l+6SW0vR1fYSHZxcUEi4tJO3Ka27INA0B7LEHZnkjXbq8621gqGlo4/EdOAo+vEV96CG9aLZ60EOKrAV8datWDdFZgJbLx63jSGc8YjiBDJpDpmUCmVYDf68Pr8eB3jMprCT7Lg8+yj32W4LU8WCIkVFHsVZAVtffq7MH+3EmjSiL5e87nOGnt+Lx7WUnlJ9Ru8cVpJZpooV0jxBKtRGklpi1JWytRWoirk08Ld50xn7OPPOGQ7uyIMQ4RKQR+BNQD76vqfQc7J1WMAyD86quUfe1G/EceydQ1q7GGYHKim0QrKqj5wVIan3kGb0EBBQvmEywpQTxd55rGm5poev55GkpLiby6AVRJP+44giXFBOfMwVcwurv3Riqt0Ti797bQFk0QSySIxhNE40osrkQTCXsft/NjcSWWSNAeV2LOcTSRIBpT51w7PxpPEE3Y6bZYG43xKprjlYS1knCiilaqaJMq4hLuFKIePPE8PLECNJqHtueRaMsn2pZLrD2T2CFPxk8gVjseTytitSOeNjxWG+JxtqQ0SXt7a7X30ta5lz48n1UQTUc0DdF0Fs64m8uOO+2Q1KeEcYjIKqAYqFHV45PyZwM/BCxgxYHMQEQuBMap6i9E5HFVveJg9aaScQA0/+1/Kb/5ZtKOOYbCVSuxsrLcljTgJCIRQitWElq1ClTJve5acq+7Dk/g4F0F0eoaGv/wBxrXr6f1nXfA4yEw4zMEi0vIOu9crEzzpo3h8NnburdzLMXZb2/Yzq7GXbQnOgNGBnwBpganUphVxJTMQjK8AVpiESKxCOFYmEg0TCQWIRINO8cRwtFmwrEwrbHWAyjoxOvxEvAFCHgDBPzO3tf/LcObwRjvmAHr7k0V4zgLaAbWdhiHiFjA+8C5QDmwEfgitoks7lbEtUAceAK7lbdOVVcfrN5UMw6Apr+8SPkttzDmhBOY8sgjWJkjo+9VEwkaS0up+cFSYtXVBOdcQMGCBfgmTTqk8to+/JCG0lIa15cSLS9H0tLInDWL7JJiMs88E/H7B/gKDKOdhCaoDFeys2En2xu3dxmkrwxXYnciQZqVtu9hnenPJMObQcAXINOXSYavf2m/lZp/xylhHI6QIqA0yThmAotU9Xzn+A4AVe1uGh3n3wq8pqp/FZEnVPXyg9WZisYB0Pjc8+yeP5+Mk09myvKH8YwZ47akw6JlyxaqFi+m9Y03ST/+eMbfeQcZJ588IGWrKi1bttC4vpTGP/6R+J49eLKzCZ5/PtklxYw55ZT9ur8MhoGmNdZKW7yNDF/GqHgdOJWN43Jgtqp+1Tm+GviMqn6jl/OPBxYBdUCzqt7ay/duAG4AKCwsPGXnzp0DeyEDREPpM1TcfjuBGZ9h8kMP4UlLc1tSv4lWVdnjGOvX483PJ3/+fLIvvmjQHuQajRJ+5RUa1pfS9Oc/oy0teCdOIPvCCwkWl5j4YAbDANFX40j5l+lV9W3goK0MVV0uIpVAid/vP2XwlR0a2cUXotEolXfeSfkttzD5xz/GM0y6XxItLYRWriK0YgUkEuTe+DXyrr++T+MYh4P4fGR+9rNkfvazJMJhmv7yFxrWrye0ajWhR1aQNn06weJisosvNBMuDYYhwA3j2A1MSTqe7OSNGsZeegkabadq4V3s/vZ8Ji97EPGlbjNYVWksfYaaH/yAWFUVWRfMpmDBrfgnH9o4xuHgCQTILikhu6SEWChE4x+fpbG0lNqlS6ldupQxnz6F7OISgrPPxxo7dsj1GQyjATe6qrzYg+PnYBvGRuBLqjpgC1qk6hhHd+p/8Uuq//u/yZo9m0kPLEnJ2dQtb75J9b2LadmyhfRjj7XHMT590JbskNNeVkZjaSkN60tp/+gj8PnIPPNMe1B91iw86eluSzQYUp6UGOMQkceAs4E8oBq4S1VXisgcYBn2m1SrVPWeAarP1SCHh0Jo1Wpq7r+fYEkJE+9bjFiW25IAiFZXU7t0KQ2/fxorP4+Ced8m+9JLUn5AWlVpfecde1D9mWeI1dbiCQTIOvdcgiXFBGbMSJl7PJJQVRINDcTq6uyt1tnX1RLvclxHvKEBKzMTKy8Pb04OVm6us8/Bm5vn7HP3febJzDTRBYaIlDAOtxguLY4O6n7+MLXLlpH9+cuY8L3vufpwTrS2Elq1itAjKyAeJ+crXyH3hhuG5evDGo8Tee01e1D9+edJNDdj5eeRPWeOPah+/HHmgXQQEpFINzOoJR4KdTGCjo1odL/zxe/Hm5eHlZ+HNy/fTmdnk2huIhaqt8sKhYjV15PoZcln8fu7mktO7j6T8ebmYOXk2vvcXLzjxplXtg+DUWkcw7HF0UHtj35M3c9+xtgvXskRCxcO+QNNVWn64x+pfuABYhWVZJ13HgW33zZiQsMnWltpfullGkrXE375r2g0ir+oiGBJMdnFxfinTnVb4pCh0Six+vpOI9ivleDk19aRiET2L8DjsR/cefl2yyAvD29+nm0KeY5BOMeerKw+/y1rezuxPXuJ14eI1YXsfah+3z5WHyJeZ5tMvK4O7cGoADzZ2V1MxpuX22kuyfu83H7pGw2MSuPoYLi1OMB+cNcuXUrokRWM+/LVjL/jjiH7g255622qFy+mZfNm0j7xCcbf8R0Cp546JHW7QbyhgcbnnqNxfSmRjRsBSD/xk/ag+pwL8Obmuqyw/2giQbyhgVjtAYzAyYvv3dtjGZ5g0DaBji0/yQiSzWHcONe7+1SVRDjc2WIJhYh3mEuo3jl2TCYU6vWa8fm6mkxurt1ySTIZb0EBvgkT8ASDI95kRqVxDOcWB9j/DNWLF7Nn7Tpyv3od+QsWDOofarS6htply2h48kms3FwKvj2P7Esvdf2hMJREKytpfOYZGtaX0vbee2BZBE47jeDs2VjjxqLxOMTjaCwO8Rgai6PxGCQS3fKcdDxhf56cF4ujifj+eR1lx+Ndz4nF0MTBy0n+PBGJQGz/lfskLQ1vfn43I0hqFTgtBisvb1jOKeorGo0S27OHeL1jKh37HkwmFgqhbW37leEJBPBNnIB3wgR8EyfimzAR38SO9AS8BQUp+YJLfxiVxtHBcGxxdKCqVH33u+x97Nfk3Xwz+bd8c8DrSLS2Ur/mUeqWL4dolJy5Xyb3xhtHfUyo1vffp3F9KQ3PlBKrqDz0gjwe23wty957vUhy2uMBr4VY3i6fY3mS8pI+33eu1fVzT2eeJyNj/y6j/Hw8gcCI/5U80Nitmci+LrNYTQ3RykqiFRVEKyuIVdjp/VoxloV3fIFtKB3mkmwsEyam/FihMY5hahxgdztULlxIwxO/I3/ePPJu/NrAlKtK03PPUXP/EqIVFWSdey4Ft92Kv7BwQMofKWgiQdu2D9BoFPFaXR/elrczr8MEkvMsK+XfPDMMDIlIhGhVFdHdtqFEKyuJVVQQrai0jaaqar9WoCc72zaVZGNx0t4JE/Hm57n69zNiZo73h6SuKrelHBbi8TDh7rvR9nZqly1D/H5yr73msMps2brVHsfY9E87Su+99xKY8ZkBUjyyEI/HhDExHBRPRgZpRx5J2pFH9vi5xuPE6ur2GUuso9XitFgimzaRaGrqepLPh++II7oYS5eusQlHpESMO9PiSGE0FmP3rbfR9OyzjP/P/yTn6qv6XUastpaaB51xjHHjyJ/3LcZ+/vOjahzDYEhV4k1N+7rBbGPp6BJz8mpqINF1cRArJ6d3Y5k4ASsn55C7J0dli2OkIV4vk5bcT3ksSvU99yB+P+Ou+Lc+nZtoa6N+zaOEHn6YRDRKzrXXkHfjjSNyLRCDYbhiZWVhZWWRPr3nFq5Go/YYyz4z6TSWtu0f0fz3v6PdXpkuXLWSwGmHtpBTXxlRxjFSuqqSEZ+PSUuXUv7Nb1K1aBHi9zP20kt6/b6q0vT8C9QsWUK0vJzMc85h/O23jap5CgbDSEF8PnyTJvW6vk3HjP1oUjdYWi8mNKC6TFfV8CDR1kb5TTcRfnUDE++/n+ziC/f7Tus771C9+D4iGzeSNn26PR9j5kwX1BoMhuGI6aoaYXjS0pj8059SdsPXqPiP/0B8PoLnnwdArK6O2h/+kL1P/A5r7FiOWLSIsZd/fti/U24wGFIT82QZRnjGjGHKzx9i11evZ/eCBaAPEC0vo+6hn5NoayNn7lzybr4JKxh0W6rBYBjBGOMYZngCAaYsf5hd117H7nnzAMicNYuC228jbdo0l9UZDIbRwIgyjpE4ON4TVlYWhSseofbHPyFz1tlknn6625IMBsMowgyOGwwGgwHo++C4iY1gMBgMhn5hjMNgMBgM/cIYh8FgMBj6hTEOg8FgMPSLlDcOETlWRH4jIg+JyOVu6zEYDIbRzqAah4isEpEaEXm7W/5sEXlPRD4Qke8cpJgLgB+r6k3AlwdNrMFgMBj6xGDP41gD/ARY25EhIhbwU+BcoBzYKCJPAxawuNv51wLrgLtE5CJg+C0GbTAYDCOMQTUOVf2riBR1yz4V+EBVPwIQkV8DF6vqYqC4l6K+7hjO//RWl4jcANwAUGhWtDMYDIZBw42Z45OAsqTjcqDXpegc47kTCABLevueqi4XkUqgZNeuXUeJyLZD1JcH1B3iuW4wnPQOJ60wvPQOJ60wvPSOJq19Wn8h5UOOqOoOnJZEH767Hljf1+/3hIhs6svMyVRhOOkdTlpheOkdTlpheOk1WvfHjbeqdgNTko4nO3kGg8FgGAa4YRwbgaNEZJqI+IErgadd0GEwGAyGQ2CwX8d9DPgHcLSIlIvIdaoaA74BPAe8C/xGVbcOpo5+stxtAf1kOOkdTlpheOkdTlpheOk1WrsxIqPjGgwGg2HwSPmZ4waDwWBILYxxGAwGg6FfGONwEJF0EXlNRN4Qka0icrfbmg6GiFgi8rqIlLqt5WCIyA4ReUtEtohISq+yJSJjReQJEfmXiLwrIjPd1tQbInK0c087tkYRmee2rt4QkW87/19vi8hjIpLutqbeEJFvOTq3puI97Smkk4jkiMgLIrLN2Y8bjLqNcXTSBnxOVU8EPgXMFpEZLms6GN/CfsFguDBLVT81DN6J/yHwrKoeA5xICt9jVX3PuaefAk4BIsCTLsvqERGZBNwCfFpVj8cOM3Slu6p6RkSOB67HjnRxIlAsIqm2JvUaYHa3vO8Af1bVo4A/O8cDjjEOB7Vpdg59zpaybw6IyGTgQmCF21pGEiKSDZwFrARQ1XZV3euuqj5zDvChqu50W8gB8AJjRMQLZAAVLuvpjU8AG1Q14rwJ+jJwmcuauqCqfwXqu2VfDDzqpB8FLhmMuo1xJOF0/WwBaoAXVHWD25oOwDLgdiDhtpA+osDzIvJPJ65YqjINqAVWO92AK0Qk4LaoPnIl8JjbInpDVXcDDwC7gEqgQVWfd1dVr7wNnCkiuSKSAcyh68TlVGW8qlY66Spg/GBUYowjCVWNO03+ycCpTnM15RCRYqBGVf/ptpZ+cIaqnowdJv/rInKW24J6wQucDDykqicBYQapuT+QOJNpLwJ+67aW3nD62y/GNueJQEBErnJXVc+o6rvA94HngWeBLUDcVVH9RO25FoPSa2KMowecrokX2b//MFU4HbhIRHYAvwY+JyK/cFfSgXF+baKqNdh98Ke6q6hXyoHypNbmE9hGkupcAGxW1Wq3hRyA/wtsV9VaVY1iR7s+zWVNvaKqK1X1FFU9C9gDvO+2pj5QLSITAJx9zWBUYozDQUTyRWSskx6DvV7Iv9xV1TOqeoeqTlbVIuzuib+oakr+cgMQkYCIZHWkgfOwuwJSDlWtAspE5Ggn6xzgHRcl9ZUvksLdVA67gBkikiEign1vU/bFAxEpcPaF2OMbv3JXUZ94GpjrpOcCvx+MSlI+Ou4QMgF41Fn3w4MdCiXlX3MdJowHnrSfFXiBX6nqs+5KOiDfBH7pdP98BFzjsp4D4pjxucDX3NZyIFR1g4g8AWwGYsDrpHY4j9+JSC4QBb6eai9JOCGdzgbyRKQcuAu4D/iNiFwH7AT+bVDqNiFHDAaDwdAfTFeVwWAwGPqFMQ6DwWAw9AtjHAaDwWDoF8Y4DAaDwdAvjHEYDAaDoV8Y4zCkFCLyooic3y1vnog81M9y/tAxL+cA37mz2/Er/amjjzrWiMjlPeQf40SzfV1EPjbQ9fZXTx/PPVtETks6PuSyDMMbYxyGVOMx9o+Y2ucYTGLjUdU5fXjvvotxqOpQzmK+BHhCVU9S1Q8P9uWO6xoCXQfibFJ4prdh6HD7D9Fg6M4TwIXO5DtEpAg7rtHfRCRTRP4sIpudtT0u7viOiLwnImuxZ6RPcdb/yHM+f8oJrri1I8CiiNyHHaV1i4j80slrdvYiIkuctRjeEpErnPyzReQl6Vyr45fODGhEZKGIbHTOWd6R3xMiMgeYB9wkIi86efOdc98WZ+2HXq6r2dG2VUT+JCKnOpo+EpGLeqhLROQnTjl/AgqSPjtFRF527s1zSaEqXhKRHzr35m2njiLgRuDbTv6ZTjFnicgrTv2m9TFaUFWzmS2lNqAUuNhJfwd4wEl7gaCTzgM+AAQowo4SPCOpjB1AnpPOcfZjsB/Auc5xc7d6m53954EXsNeLGI8dKmMC9i/uBuwgmB7gH9jBG/fV4aTXASVOeg1weQ/XuAi41UmfArwFBIBMYCtwUi/XpcAFTvpJ7CB8Puw1I7b0UM9lSdcyEdgLXO6c8wqQ73zvCmCVk34JeMRJnwW83V1z0rX91rkXxwIfuP23Y7ah2UyLw5CKJHdXJXdTCXCviLwJ/AmYRGfY6J2q+mov5d0iIm8Ar2KHxj7qIPWfATymdrTkauy1GP6P89lrqlquqgnsiKlFTv4sEdkgIm8BnwOO69ul7qvvSVUNq70mzP8AHb/ou19XO3a0VrDN5mW1Awa+laQlmbOSrqUC+IuTfzRwPPCC2EsJ/Be2IXbw33ZfvQAAAeJJREFUGOxb8yF4gPGip1Q1oarvMEghvA2ph4lVZUhFfg88KCInAxnaGT7+34F84BRVjYodHbhj6dFwTwWJyNnYUVlnqmpERF5KOudQaEtKxwGv2Muf/gx7ZbsyEVl0mHUk0/26oqraESco0aFHVRNiL47UVwTYqqq9LYvbPRZRb7GJku9Hr91zhpGFaXEYUg7nV/eLwCq6DopnY69DEhWRWcDUPhSXDexxTOMYIHk54KiI+Ho452/AFWIv7JWP/av9tQPU0WESdSKSid0V1B/+BlwidtTYAHCpkzcQ/JXOa5kAzHLy3wPyxVlPXUR8IpLcSuoY1zkDe8GlBqAJyBogXYZhjGlxGFKVx7D78JPfsPolsN7pDtpE38LePwvcKCLvYj8sk7t9lgNvishmVf33pPwngZnAG9i/tG9X1SrHePZDVfeKyCPY4ydVwMa+XGDS+ZtFZA2d5rRCVV93BqQPlyexu87ewR6r+YdTZ7szmP0jsZfL9WKvKrnVOa9VRF7HHgu51slbDzzhvJTwzQHQZhimmOi4BoOhC0533q2qusltLYbUxHRVGQwGg6FfmBaHwWAwGPqFaXEYDAaDoV8Y4zAYDAZDvzDGYTAYDIZ+YYzDYDAYDP3CGIfBYDAY+sX/B/IvA2FuLud6AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for k in range(len(var_forms)):\n", " for j in range(len(entanglements)):\n", @@ -118,14 +144,32 @@ "pylab.ylabel('Energy difference')\n", "pylab.yscale('log')\n", "pylab.title('H2 Ground State Energy Difference from Reference')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The above plot shows how close the ground state energy result from VQE was to the reference. The next plot shows how many evaluations (calls to the objective/cost function) were needed by the optimizer before it stopped and returned. Note that the optimzer was configured with a maximum number of iterations of 10,000. The COBYLA optimizer makes one evaluation per iteration and it can be seen that for some points that the iteration limit was reached which caused the optimizer to return." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXdYlMfah+9hqSKKgkpVsSuKCIhRY5oeTezHiGkmmp54ountOzHhJPGkmsSYoml2TSyJJSYxiYnHXkCxd0WlKYqgIHWZ74/3RQEpC+yyuzD3de21u/NO+e2i+7wzz8zzCCklCoVCoVCYAwdrC1AoFApF3UEZFYVCoVCYDWVUFAqFQmE2lFFRKBQKhdlQRkWhUCgUZkMZFYVCoVCYDWVUFAqFQmE2lFFRKCpBCBEvhBhgpbFbCCHWCyEuCyGm1uK4s4UQb1uo7/uEEL9bom+F9VFGRVEjhBC/CSHeLKN8hBAiRQjhqL/vI4T4S/9xzBBCrBRCdCpW/xYhRKEQIrPUo3dtfh4b5DHgPNBISvm8tcVUFSFEayGELPp3ACClXCClHGhNXQrLoYyKoqbMAcYKIUSp8vuBBVLKAt0w/A6sAPyAIGAPsEkI0bpYmyQpZcNSjy2W/wi1Q/Ef1irQCjggVegLhZ2gjIqipiwHvIB+RQVCiCbAUGCuXvQ+MFdKOU1KeVlKmSalfA3YDrxRnUH1JakXhBB79JnPD0IIV/3aeCHExlL1pRCinf56thDiCyHEr/psaJMQwkcI8YkQ4qIQ4pAQokepIXsKIQ7o12cVjaX3N1QIESeESBdCbBZChJTS+bIQYg+QVZZh0WdxO/TPsUMI0adIJzAOeEnXed0SnBDCRQjxoRDitBDirBBihhDCTb92UAgxtFhdRyFEqhAiTH+/RJ9NZuhLbMHlfNeVfZ9DhBC7hBCXhBBnhBDRxaqu15/Ti2aepfsr7/Pr19YJId7S/0aXhRC/CyG89WuuQoj5QogL+ne/QwjRoqzPoKg9lFFR1AgpZTawGHigWPEY4JCUcrcQogHQB1hSRvPFQE2WQcYAt6PNfEKA8VVs+xrgDeQCW4Cd+vulwEel6t8HDALaAh30tujG5zvgcTTjOhNYKYRwKdb2HmAI4CmlLCjeqRCiKbAa+FRv/xGwWgjhJaUcDywA3tdnbX+W8Tne1fWEAu0Af+B1/doifewiBgHnpZQ79fe/Au2B5vpnX1D2V1UpWWh/f0/9cz4phBipX7tJf/Ysa+ZZ0ecvVu1e4EFdpzPwgl4+DmgMBOptnwCyq/kZFGZCGRWFOZgDjC529/6AXgbQFO3fWXIZ7ZKBZsXe++l3nMUf7hWM+6mUMklKmQasQvthNZWfpJSxUsoc4CcgR0o5V0ppBH4ASs9UPpNSntHHmsK1H+vHgJlSym1SSqOUcg6akbqhlM4zugEuzRDgqJRynpSyQEq5CDgEDKvsA+hLjo8Bz+qzv8vAf4G79SoLgeG6YQftx3lRUXsp5Xf6zDEXiAa6CyEaVzZuaaSU66SUe6WUhVLKPfoYN5vY3JTPP0tKeaTYDUzR3zkfzZi007/7WCnlparqV5gXZVQUNUZKuRHNmTxSCNEWiET7QQO4CBQCvmU09dXbFZEkpfQs9ciqYOiUYq+vAA2rIPtssdfZZbwv3deZYq9PofmGQPN5PF/cEKLdOfuV07Y0fnp/xTmFNuOojGZAAyC22Ni/6eVIKY8BB4FhumEZjv53EUIYhBDvCiGOCyEuAfF6n94mjFsCIUQvIcTf+tJaBtqMwdR+TPn85f2d5wFrgO+FEElCiPeFEE5V1a8wL8qoKMzFXLQZylhgjZTyLIBuFLYAUWW0GQOss4CWLLQfWwCEED5m6DOw2OuWQJL++gwwpZQhbKDfcRdRkZM9Cc0wFaclkGiCpvNoBjC42NiNpZTFDWLREtgINIf/Mb38Xr1sANoSUmu9vPSGC6j8+1wIrAQCpZSNgRnF+qlsg0G1P7+UMl9K+R8pZRe0JdahlFyGVVgBZVQU5mIu2g/Uo1xb+iriFWCcEGKSEMJDCNFEaGcg+qEt15ib3UCwECJUX5KLNkOf/xJCBOg+gH+jLZEBfA08od+tCyGEu+649jCx31+ADkKIe3VH+l1AF+DnyhpKKQv18T8WQjQHEEL4CyEGFav2PZrf6kmuzR4BPNCW6S6gGYyK/g6VfZ8eQJqUMkcIEYlmsIpIRZuptimn72p/fiHErUKIbkIIA3AJbTmssLJ2CsuijIrCLEgp44HNgDvaXWvxaxvRnMSj0PwoaWhO1v5Syn3FqvqJ68+p3FkNLUeAN4E/gaPAxopbmMRCtG3RJ4DjwNv6WDFohvQztKW+Y1Rhw4CU8gLaHfbzaD/wLwFDpZTnK2x4jZf1Mbfqy1h/Ah2L9Z+MNlPswzVDCNpNwCm0GcEBYGsFGiv7PicAbwohLqNtElhcrO0VNB/UJn2Jrrivqaaf3wdtU8UltGW+/6EtiSmsiFDb3xW1jdC23P4N3CulXGNtPQqFwnyomYqi1tF3CI0EuonqHQhUKBQ2ipqpKBQKhcJsqJmKQqFQKMxGvVt68Pb2lq1bt7a2DIVCobAbYmNjz0spm1Vesx4aldatWxMTE2NtGQqFQmE3CCFKH1AtF7X8pVAoFAqzoYyKQqFQKMyGMioKhUKhMBv1zqeiUCisR35+PgkJCeTk5FhbiqIMXF1dCQgIwMmp+nE5lVFRKBS1RkJCAh4eHrRu3RpxXbJQhTWRUnLhwgUSEhIICgqqdj8WMypCiO/QYvqck1J21cuaosUfao0WanuMlPKinhdiGjAYLbT1+KJEQkKIcegJkYC39XwVCCHCgdmAG1pQuqdVylXYsXImgTs/oLlM5ZxoxpmwF+k5/HFryyqX5bsS+WDNYZLSs/HzdOPFQR0Z2cOUqO+1j719t+xZDGvfhIwEaBwA/V+HkDFWlZSTk1O2QbmSBpeTwZgHBmfw8IUGTa0j0hTsSa+JWoUQeHl5kZqaWqPhLOlTmY2Wla84rwBrpZTtgbX6e4A70DLQtUdLOvQlXDVCbwC90HJ0vCG0VLXodR4t1q70WPWOHStn0jX2NXxIxUGAD6l0jX2NHStnWltamSzflcirP+4lMT0bCSSmZ/Pqj3tZvsuUqO+1i719t+xZDKsmQcYZQGrPqyZp5VamTIOScUb70QPtOeOMVm6L2JPeKmo1x+zRYjMVKeV6IUTrUsUjgFv013PQcmm8rJfP1WcaW4UQnkIIX73uH3q2PYQQfwC3CyHWAY2klFv18rlosaR+tdTnsQcCd36Am8grUeYm8vCPfZ+PXG+xjqgKmLUpnux8Y4my7Hwjk5fv40RqppVUlc3dse+X+d123hkNDU0NKFyLbJsB+aUSTeZnw+rn4fxR62gCaNIfLpVKApqVCrJUxHpZqM2wCnJrT5up2JPe8rReTrbYzKq2fSot9FDcoGVza6G/9qdkdrwEvayi8oQyystECPEY2gyIli1b1kC+bdNcppaZYsmHC0z/+9j1F6xMeYuVl3MLbE7vM85lGw53eQXWf1DLakyhnC8395J19Q6KgMyUyusBSKPpdauAITCCbp3aUWA0EhTox7xP38bVxZnQgfewZOZ7dOvcHoAPvpzDsZNneHXiQ3S+5U46tmlFXn4+ESFd+Hbq6zg5OfHvdz9j9dprmQCuZOdw/FQCGYfW09C9QXkSKmXDtp088cp/cXJ0ZMvK2bi5uZZZ75bRj/Lh5GeJ6N6F1r2GEPPrfLybNimzbgmMeZXXqSZWc9RLKaUQolZ8IFLKr4CvACIiIuqs3+Ws8MaX63/8zglvTr4zxAqKKqbvu3+RmH592nZ/Tzc2vXKbFRSVT0p0M3y4fq35rGiGT7RtGUAAPu6qL32VonEgPLvv+vLa4uBB8Otcsuzs/rJ/5AzOLE/yNLvPzc3Njbj9hwEYN24cn/+4gX//+9988tmXTIiewvr160lKSmLGwlXExMSQkZFB27btiNu3D6PRyD9u7sPiVX9w36jBTHnlKaa88tRVvfc991/G3BtEw/Z9yx0/Ojqa1q1bM378+HLrLFgzk1cn/4exY8dW/GGcG0KzjuDXQ/OX+ISAd7FMzhV8t5aits+pnNWXtdCfz+nliZRM1xqgl1VUHlBGeb1lw9FU3i+4iwJZ8k+aI504E/ailVRVzIuDOuLmZChR5uZk4MVBHctpYT3OhL143XebLZ1t9rul/+vg5FayzMlNK7c1PHxBlPopEg4sj3e0uM+td+/eJCZq/d1+++34+voyd+5cnn32WaKjo2nSpORdv8FgILLXDSSmlLrBEA7M/3kDx44dIzo6ukaavvnmGxYvXszkyZO57777WLduHUOHDr16/amnnmL27NmmdVbOd4uHb400VkRtz1RWomX8e1d/XlGs/CkhxPdoTvkMKWWyEGIN8N9izvmBwKtSyjQhxCU9i9w2tLzU02vzg9gSv+1LYdKiXdzo1R2HS4Vk4kYDmY0QkNGsp83uUCq647SH3V89bx1B4c5XyMIVN5lLkvQitv1TjLDR7/bqLi8b2/1VnP+s2s+BpEvam8ICMOZqa6JCgMGFXQlJ5BlL+gOy8428tHQPi7afLrPPLn6NeGNYsEnjG41G1q5dy8MPP3y17JNPPiEyMpL27dtz//33X9cmJyeHbTv3MO3dN7W7fX1HVXxaPq+88Tbr1q3D0bFmP6uPPPIIGzduZOjQoYwePZp169ZVv7Miv0kt7lSz5JbiRWiOdm8hRALaLq53gcVCiIfRUpkW/Qv/BW078TG0LcUPAujG4y1gh17vzSKnPVoK09loW4p/pZ466ZfGJvDS0t2EBnoyo8UqHA640PCZ3eDRApZPoMX+n7SdHja63XFkD3+bNCLXsf0rHJC4T9xMTqPWDJ7yJ7c4NmeEtXVVRMgYmzIiFeLgqD2KUdqgVFZuKtnZ2YSGhpKYmEjnzp35xz/+cfWan58ft912W4mZAcDx48cJDQ3l5MmTDBkyhJBe/a5eMxqNjL3zZt566y3atWtX5ph79+69aqRSUlJwdnbmk08+AWDt2rV4eXnV6DNVSIOmtfr/35K7v+4p51L/MupK4F/l9PMd8F0Z5TFA15potHfmbI7njZX7ubGdN18Nb4HzjB8g/EHNoAD0/hfELYCY7+CmF6wr1p7JzYQd30LnoeDVFldgRKg/i2POkJGdT2O36p8+rs9UNqOoyOf2w+O9qz2um5sbcXFxXLlyhUGDBvH5558zadKkq9cdHBxwcCi5ZNS2bVvi4uI4f/48ffv2ZeXKlQwfPhyAt99+G19fXx588MFyx+zWrRtxcXGAaT6V4jg6OlJYeM2Q2no0AhX7yw6RUvLZX0d5Y+V+BnZpwTfjImgQ87l2se/T1yq2CIa2/WHbTNvb6mhPxC2AnHToc+2HZ3R4ALkFhfy8J8mKwuo2lva5NWjQgE8//ZSpU6dSUFBgUhtvb2/effdd3nnnHQC2bt3K7Nmz+eqrr8yiqSxatWrFgQMHyM3NJT09nbVr11psLHOgjIqdIaXknV8P8eHvRxjVw58v7gvDNfcC7JwL3e8Gz8CSDfpMhKxzNnHozS4xFsCWzyGwFwRGXi0OCWhMhxYNWRKTUEFjRU0Y2cOfd0Z1w9/TDYE2Q3lnVDezLpf26NGDkJAQFi1aZLqukSO5cuUKGzZs4I033uDKlSvceuuthIaGXn0cP37cbBoDAwMZM2YMXbt2ZcyYMfTo0cNsfVuCepejPiIiQtprki5joeS15ftYtP00D/RuRfSwYBwcBPzxOmyeDk/FgFfbko2khBn9NCfdhK3goO4jqsT+n2DJeLhrPnQeVuLS1+tPMOWXg/z53E20a+5hHX12xsGDB+ncuXPlFRVWo6y/kRAiVkoZYUp79QtjJ+QbC3nmhzgWbT/Nv25ty3+G6wblSpq23h/8z+sNCmg7afpMhPOH4diftS/cnpESNn0KTdtAx8HXXR7Zwx+Dg1CzFYWiGMqo2AE5+UYenxfLqt1JvHJHJ14c1OlajJ5tMyEvE/o9X34HXUeBhx9s/rR2BNcVTm+BpJ3ahgcHw3WXm3m4cGvH5vy4K5GCGu5IUijqCsqo2DiXc/IZ9912/j58jin/7MoTNxebjeRe1mI8dRyiOeXLw+AENzwJ8RsgaZflRdcVNk8Ht6bQ/d5yq0RFBJB6OZf/HalZZFeFoq6gjIoNczErj7HfbCPm1EU+uSuU+3q1Kllhx7farqSbKpilFBE+Dpw9YPNnlhFb1zh/FA7/ApGPgnP5MZxu7dicpu7OLI1VS2AKBSijYrOcvZTDmJlbOJhymZljwxkRWmrHS362tiupza3gH155h66NNcOy/ydILyMmlKIkWz4Hgwv0fLTCas6ODowM9efPg2dJy7JckD6Fwl5QRsUGOZN2hagZW0hKz2b2gz0Z0KXF9ZV2ztO2ClflUOMNT2qO+20zzCe2LpKZCrsXQeg90LBZpdWjIgLIN0pWxNXr8HMKBaCMis1x9OxlRs/YTEZ2PgsevYE+bb2vr1SQB5s+gcAboFX50VCvo3EABI+C2NmQnW42zXWOHd9AQQ70fsqk6p19G9HVv5HaBWYnGAwGQkND6dq1K8OGDSM9PZ2cnBw6derE3r17r9b74IMPePzxx4mPj8fNzY3Q0FC6dOnCAw88QH5+PgD//ve/S5xP6dChAwaDgczMmuUDuuWWWyg6+jB48GDS0+3n/6syKjbE3oQMxszcQqGExY/3JjTQs+yKe76HS4lw04vazKMq9HlK2y22c07NBddF8q7Ajq+1LcTe7U1uFhUeyIHkS+xPyrCguHrInsVaGP9oT+3ZDId4i8K07Nu3j6ZNm/L555/j6urKJ598woQJE5BSkpiYyIwZM3j33XeBa2Fa9u7dS0JCAosXazqmTJlCXFzc1UfPnj159dVXadiwYbnjR0dHmx5lGPjll1/w9Cznt8AMmBpNwFSUUbERtp24wD1fb8XdxZGlT/Smo085h+mMBbDxY/ANhXbXhVGrHN/uEHQzbJ2hzXgUJdm9CK5cMHmWUsTw7n44GxyUw96c1EJK5GqFvo+MvNqmOPPnzzdL6PvStG7dmvPnzxMfH0/nzp159NFHCQ4OZuDAgWRna7HRjh8/zu233054eDj9+vXj0KFDAKxatYpevXrRo0cPBgwYwNmzZwHNsN1///307du3zGjMNcFqSboU1/j78DmemBdLQBM35j/SC9/GbuVXPrAc0k7AmHlVn6UU0WcSLLgT9v+ohXZRaBQaNQe9Xxi06lOlpk3cnRnQpTkr4pJ49Y7OODuq+7VK+fUVSNlb/vWEHVo4/OLkZ8OKpyC2nJm2Tze4412Thq926Ptt25g2bVqJ8vj4eF555RWzhL6viKNHj7Jo0SK+/vprxowZw7Jlyxg7diyPPfYYM2bMoH379mzbto0JEybw119/ceONN7J161aEEHzzzTe8//77TJ06FYADBw6wceNG3Nwq+L2pBsqoWJmf9yTxzPdxdPL1YM6DkXg1dCm/cmEhbJgKzTpBp6Hl16uMdv2heRftHEbIXdU3TnWNw79C2nEYPata30lUeCC/7E3hr0Nnub2r5ZIg1RtKG5TKyk3ELKHvQ0KuyTEaGTt2bK2Evg8KCiI0NBSA8PBw4uPjyczMZPPmzURFRV2tl5urfUcJCQncddddJCcnk5eXR1BQ0NU6w4cPN7tBAWVUrMoPO07z6o97CW/VhG/H96SRayUh1I/8CucOwD+/qlkMLyG05Z0VE+DE39DWtlL3Wo3N08GzJXQeXq3m/dp709zDhSUxCcqomEJlM4qKUiI/uLraw9pb6PviuLhcu+k0GAxkZ2dTWFiIp6fn1f6LM3HiRJ577jmGDx/OunXrSizNubu7V3l8U1BzdCvxzYYTvLxsL/3aN2PuQ70qNyhSwvoPoElr6HpnzQV0Gw0NfbQfUgWc2Q5ntsIN/wJD9e61HA0OjAoLYN2RVM5dtu2cF3aBhVMi20vo+8po1KgRQUFBLFmyBNAime/evRuAjIwM/P21M25z5tTO5hxlVGoZKSUf/XGEt1cfZHA3H75+IAI35+vjSl3H8b+0ECs3PlvtH70SOLpAr8e0flP21bw/e2fzdO2AaI+xNepmdHgAxkLJTzvVmZUaEzIGhn2qzUwQ2vOwT82azdIeQt+bwoIFC/j222/p3r07wcHBrFihZWqPjo4mKiqK8PBwvL3LOJ5gAVTo+1qksFDy1uoDzNoUz5iIAN4ZFYLBwcS1+1mDIe0kPB2nGQRzcCVNW2LoMhz+WY8PRKadgE/DNIM94I0ad/fPLzaRmVPA78/edC3wpwJQoe/tARX63k4oMBby8rI9zNoUz0N9g3i3Kgbl1BY4tQn6TjKfQQEtb3XY/bB3CWTU4zvrLV9o+dF7PW6W7qLCAzl6LpPdCerMiqL+oYxKLZBbYGTiol0siU3gmQHtmTy0s5YLxVQ2fAgNvCFsnPnF3fAkyELYPtP8fdsDV9Jg13xtF5yHj1m6HNrdF1cnB5bEqBhrivqHMioWJjvPyKNzY/l1XwqTh3bhmQEdqrYkkrhTS67V+18VRsutNk1aQ5cREDMLci6Zv39bZ8e3UJCtRRowE41cnbg92IeVu5PIyTearV+Fwh5QRsWCXMrJ54HvtrHxaCrv3xnCwzcGVd6oNBumag7kno+YX2ARfSZC7iXYNc9yY9gi+TnaDK3dP6C5edf5oyICuZxTwJr9KWbtV6GwdZRRsRAXMnO556utxJ1JZ/o9YYzpGVj1Ts4dhEM/Q+Tj4NrI/CKL8A/XAlNu/RKM+ZYbx9bY8wNkpWpG1cz0buOFv6ebCtuiqHcoo2IBkjOyGTNzC8dTM/n6gQiGhFTzINyGj8DJXfN7WJo+E7WDZgdWWH4sW6CwELZ8Bj4hEHST2bt3cBDcGebPxmPnSUrPNnv/CoWtooyKmYk/n8XoL7dw9lIucx/qxS0dm1evo7QTsG8pRDyo7dKyNO0HgVd7LY99fdhmfvR3OH9Ei4NmoW2/o8MDkRJ+3KlmK7ZEVUPf14TU1NSrAR03bNhQbr3o6Gg+/PBDAMaPH8/SpUtrNK41UUbFjBxKuUTUzC1cyStg0aM3EBlUA2Ow8WNwcLLI0kyZODhozurk3Vou+7rO5unQKACCR1psiJZeDegV1JSlsQnUt/Ng5mL1idUMXDqQkDkhDFw6kNUnqh+epYjqhL4vi3Xr1lUaamXt2rV069aNXbt20a9fvxprtweUUTETcWfSuWvmVhyElgulW0Dj6neWkQBxi7QzJGba5moSIXeDe7O6n8c+cSec2qgtKxoqCY9TQ6IiAom/cIUd8RctOk5dZPWJ1URvjiY5KxmJJDkrmejN0WYxLEVUNfR9VYiLi+Oll15ixYoVhIaGkp2dXSLPytKlS6sV/8vWUQElzcDm4+d5dE4MXg1dWPBILwKb1nDr7+bpgIS+T5tFn8k4uULkY/D3FDh3CJp3qt3xa4stn4FLIwh7wOJDDe7mwxsr9rEk5kzNZq51kPe2v8ehtEPlXt+Tuoe8wpI5f3KMOby+6XWWHil7eahT0068HPmySeNXJ/R9VQgNDeXNN98kJiaGzz6r4zdqxVAzlRry54GzjJ+1A/8mbix5onfNDUpmqpYrIuQuLWJubRPxMDi6aT+8dZGLp2D/cggfb9kddToNnB0Z3M2X1XuTyco1b4a9uk5pg1JZuakUhb738fHh7NmzZYa+f/LJ8jfH9OrVi9DQUB555BFWrlx5Nd7XmjVraqSrrqBmKjVgRVwizy3eTVe/Rsx+MJIm7s4173Tr51p+9BufrXlf1cHdC3rcBzvnwm2TwaOFdXRYim0zNMd8rydqbcioiECWxCbw674URocH1Nq4tk5lM4qBSweSnJV8Xbmvuy+zbp9V7XGrE/q+ONu2bQM0n8rs2bOrlBq4+MHnnJy6GclazVSqyfytp3jmhzgiWjVhwaM3mMegZF+E7d9A8D+rlB/d7NwwQTuvst164bwtQvZFbRbY9U5o7F9rw/Zs3YTWXg1U2JYq8nTY07gaXEuUuRpceTrMPMvC1Ql9X1NatGjBwYMHKSws5KeffqqVMWsbZVSqwZfrjvPa8n3c2rE5cx6KpKGLmSZ8276CvMvQ73nz9FddvNpC56Gw4xvIy7KuFnMSOxvys6qcf76mCCEYHR7AtpNpnL5wpVbHtmeGtBlCdJ9ofN19EQh83X2J7hPNkDZDzDZGdULf14R3332XoUOH0qdPH3x962YiN6uEvhdCPAs8AkhgL/Ag4At8D3gBscD9Uso8IYQLMBcIBy4Ad0kp4/V+XgUeBozAJCllpYua1Ql9v3xXIh+sOUxSejbuLo5k5hYwrLsfH43pjpPBTHY5NxM+6QqBN8C935unz5pwZjt8+w+44wMt74q9U5AHn3TTNh88UPsHPJPSs+n73l9MvLUdzw3sWOvj2woq9L3tY3eh74UQ/sAkIEJK2RUwAHcD7wEfSynbARfRjAX680W9/GO9HkKILnq7YOB24AshhAnZrqrG8l2JvPrjXhLTs5FAZm4BBgfBrR2amc+gAMR8py3P3PSC+fqsCYGREBCpOewL60BQxH1LITOl9s79lMLP040b23mzbGcihYXqzIqi7mKt5S9HwE0I4Qg0AJKB24CifYJzgKJTaSP09+jX+wvN2zUC+F5KmSulPAkcAyLNLfSDNYfJLhVp1lgomfrHEfMNkp+t/XgH3QwBJt0M1A59JkL6KTi4ytpKaoaU2jbt5l2gbX+ryRgdHkBiejZbTlywmgaFwtLUulGRUiYCHwKn0YxJBtpyV7qUsshblgAUeVL9gTN62wK9vlfx8jLalEAI8ZgQIkYIEZOamlolveXFbTJrPKdd8yHzLNz0ovn6NAedhkCTIPsP3XJ8LZw7oBlJK2ZiHBTsg4ero3LYK+o01lj+aoI2ywgC/AB3tOUriyGl/EpKGSGljGjWrFmV2vp5ulWpvMoY82HTNAjsBa1vNE+f5sLBoOVxSYyF01utrab6bJ4OHr7QdbRVZbg6GRje3Y9f96VwKaceRYNW1Cussfw1ADgppUyVUuYDPwJ9AU99OQwgACjKb5sIBALo1xujOeyvlpfRxmy8OKjAqoPkAAAgAElEQVQjbk4lXTVuTgZeHGQmZ+ueH7TowP1esOpddLmE3gduTfVT/nZI8h44sU5LFexohm3fNSQqIpDcgkJ+3n39+QuFoi5gDaNyGrhBCNFA9430Bw4AfwNFt5LjgKItOiv19+jX/5LalrWVwN1CCBchRBDQHthubrEje/jzzqhu+Hu6IQB/TzfeGdWNkT3McM6h0KiFt/cJgfb/qLy+NXBuoCUIO/wLnD9qbTVVZ8tn4NwQwh+0thIAugc0pn3zhiyJVUtgirqJNXwq29Ac7jvRthM7AF8BLwPPCSGOoflMvtWbfAt46eXPAa/o/ewHFqMZpN+Af0kpLbJNaWQPfza9chsn3x3CplduM49BATiwHNKOa+dSbHGWUkTko2Bwhi2fW1tJ1chIgH3LtBhfbp7WVgNoZ1aiIgLYdTqdY+cyrS2nXlKboe+Lh7R//fXX+fPPP2vUnz1gld1fUso3pJSdpJRdpZT36zu4TkgpI6WU7aSUUVLKXL1ujv6+nX79RLF+pkgp20opO0opf7XGZ6k2hYWwfip4d4TOw62tpmIaNofud8PuRVpsMnth2wxtg0EthmQxhZE9/DE4CJUV0gQyVq3i6G39Odi5C0dv60/GqprvRKzN0PfFefPNNxkwYECN9ZdHbUUFqAx1ot5aHPkNzu2Hfs9puUxsnd5PaTHJdnxjbSWmkZMBMbO1fClNWllbTQmae7hyS4dm/LgzgQJjobXl2CwZq1aRPPl1CpKSQEoKkpJInvy6WQxLEZYMfV+a4sm3WrduzRtvvEFYWBjdunXj0CEtWnNWVhYPPfQQkZGR9OjRgxUrNC9AfHw8/fr1IywsjLCwMDZv3gxohq1fv34MHz6cLl26mE1rTVABJa2BlLDhQ/BsZfUdSSbTrAN0uAN2fK2F5HeuYTRmS7NzrhbyppZDsphKVEQAaw+dY8PR89zaqZrZQe2clP/+l9yD5Ye+z969G5lXMiKxzMkh+d+vkb54SZltXDp3wuf//s+k8S0d+r4yvL292blzJ1988QUffvgh33zzDVOmTOG2227ju+++Iz09ncjISAYMGEDz5s35448/cHV15ejRo9xzzz0URQbZuXMn+/btIygoyKJ6TUUZFWtwYp22TXfox2Cwoz9Bn4kwe7C2DNbz4crrWwtjPmz9Elr3A/8wa6spk9s6taCpuzNLYs/UW6NSGaUNSmXlplIU+j4xMZHOnTuXGfp+6NCh5bbv1asXubm5ZGZmkpaWRmhoKADvvfcegwYNMlnHqFGjAAgPD+fHH38E4Pfff2flypVX/TA5OTmcPn0aPz8/nnrqKeLi4jAYDBw5cu3wdWRkpM0YFFBGxSRWn1jNtJ3TSMlKwcfdh6fDnq5ZULsNU7VzE6H3mU9kbdCqD/iFaQ778Adtd9lu/09wKVEz2jaKs6MDI0L9WLD1NBez8swT5drOqGxGcfS2/trSVykc/fxoNW9utce1Zuj74ri4uADaxoEif4iUkmXLltGxY8kjC9HR0bRo0YLdu3dTWFiIq+u16M3u7u7VGt9S2Oivgu1g9pSmp7dqOeD7TAJHF/OKtTRCaLOVtONwxEb3RRSFZPHuCO1sdJu2TlR4IHnGQlbuvv6HUwHNn30G4Voy9L1wdaX5s8+YpX9rhL6vjEGDBjF9+nSKAv3u2rULgIyMDHx9fXFwcGDevHkYjbYbj08ZlUqYtnMaOcaSyXRyjDlM2zmteh2u/xAaeEH4uMrr2iKdh2sZKW31MOTJ9ZCyB/o8ZbszKZ0ufo3o4ttInVkph8bDhuH71ps4+vmBEDj6+eH71ps0HjbMbGPUduj7ypg8eTL5+fmEhIQQHBzM5MmTAZgwYQJz5syhe/fuHDp0yOZmJ8WxSuh7a1LV0Pchc0KQXP8dCQR7xu2p2uBJcfDVzVpGRVuJRlwdts6A316Gh/+EwJ7WVlOS+aMhOQ6e2QdOrpXXtzKzNp3kP6sO8OvT/ejsa/n0xtZGhb63fewu9L294ePuU6XyCtkwFVwaa4cJ7ZkeY8G1MWyxsdnK2QNw7A+IfNwuDArAiFB/nAyCJTHqzIqibqCMSiWYLaVp6mEthHzko9oPsj3j0hAiHtY+T9qJyuvXFls+B0c3296ZVoqm7s4M6NyC5XGJ5BWoMysK+0cZlUoontK0iAEtB1R999eGj8DJTcv/XheIfAyEQdu6awtcTtGCc/YYCw2aWltNlYiKCCAtK4+/D5+ztpRaob4tudsT5vjbKKNiAkPaDOH30b+zd9xewpqHEXsulvzCKoQuTzsJe5dAxEPg7mU5obVJI18IGaPlgrmSZm01sG0mFBZAb/sz2je1b0YzD5d6sQTm6urKhQsXlGGxQaSUXLhwocR25eqgzqlUkQe7PsjEvybye/zvps9WNn2i5yaxzdPd1ab3UxC3AGK+tW6CsdxMTUPnYdC0jfV0VBNHgwOjevjzzcaTpF7OpZmHnW01rwIBAQEkJCRQ1WR5itrB1dWVgICAGvWhjEoVuSngJto0bsOsfbMYHDQYUVl04UtJELdQW5Zp5FtxXXujRRdoNwC2fQW9J1rPOb5rvhbrq8+kyuvaKFERAcxcf4LluxJ59Cb7M4ym4uTkZFOnvxXmRy1/VREH4cD44PEcvniYLclbKm+webqWN6VvFR379kKfiZB1DvYuts74xgLY+jkE3mB725urQLvmHoQGerIk9oxaGlLYNcqoVIMhbYbQzK0Zs/bNqrhi1nmImQUhd0GT1rWirdYJuhl8usHmz7Rw/rXNwZWQflozbnZOVEQAR85msjcxw9pSFIpqo4xKNXA2OHNf5/vYmryVgxcOll9xy+dauPh+z9WeuNpGCG3Z6fxh7YxIbVIUkqVpW+h4R+2ObQGGhvjh4uhQLxz2irqLMirVJKpjFA0cGzB7/+yyK2Sna7lHuowA7/a1qq3WCf4nNPKv/dAtpzZD0k7o/S9tI4Sd09jNiUHBPqyISyQn33ZjOykUFaGMSjVp5NyIqA5RrIlfQ1JmGQEBt38NuZe0VMF1HYMT3PCkFigzcWftjbt5uhZHrfs9tTemhYmKCOBSTgF/HDhrbSkKRbVQRqUGjO0yFoFg3oF5JS/kZsLWL6D9IPANsY642iZsHLg0gi2f1c54qUe0SMk9H7X9hGFVoE9bb/wau7JEpRpW2CnKqNQAH3cf7gi6g2VHl5GRW8y5GjsbstPsO2hkVXFtpEVe3r8cLp6y/HhbPgNHV+j5iOXHqkUMDoI7wwPYeDSVlIycyhsoFDaGMio1ZHzX8WQXZPPD4R+0gvwc2PwpBN0EgZHWFVfb9HpCc9xvm2HZcTLPwe7vtWWvhs0sO5YVGB0eQKGEZTvVbEVhfyijUkM6NOlAX/++LDi4gFxjLsTNh8yz0K8ezVKKaBwAXe/U8sNnp1tunO1fgzFPc9DXQVp5uRMZ1JSlsQnqzIrC7lBGxQw8FPwQaTlprDz6E2ycBgE9tZlKfaT3U5CXqS0BWoK8K9quuo6D6/SuutHhAZw8n0XsqYvWlqJQVAllVMxAT5+edPHqwty4LynMOK3NUioL31JX8Q2BNrdoS2AFeebvf/dCzV9VBw47VsSQbr40cDaoMysKu0MZFTMghODBLuOIz03jb79O0GGQtSVZlz4T4XIy7Ftm3n4LjdqBUv8IaHmDefu2MdxdHBnczZef9yRxJc828qcrFKagjIqZGJCVhX9+AbOaetXfWUoRbftD8y7aORJz+gQO/6IlBevzVL34jqPCA8jKM/LbvhRrS1EoTMYkoyKEaCuEcNFf3yKEmCSE8LSsNDtCShw3TuOBAld2Z51h17ld1lZkXYTQfCvn9sPxv8zX7+bp4NkKOg0zX582TGRQU1p5NVBLYAq7wtSZyjLAKIRoB3wFBAILLabK3jiyBs7uZWTPp2ns0rjyQJP1gW6joaGP+UK3nN4GZ7ZpO74M9SNjgxCC0WEBbDlxgTNpV6wtR6EwCVONSqGUsgD4JzBdSvkiUMeSg1QTKWHDh+DZkgah93FPp3v4+8zfnMiwodzt1sDRBXo9Dif+hpS9Ne9vy3Rw9YTQ+2relx0xKjwAIWCpOmGvsBNMNSr5Qoh7gHHAz3qZk2Uk2Rkn10PCDuj7DBicuKfTPbgYXJi7f661lVmfiAfByV0Li18TLhyHgz9Dz4fBpaF5tNkJ/p5u9G3rzdLYBAoL1ZkVhe1jqlF5EOgNTJFSnhRCBAHzKmlTP1j/gbbMo99BN3Vtysh2I1l5fCWpV+p5ylS3JhD2AOxbChmJ1e9n6xda0MrIx8ynzY6IigggMT2brScvWFuKQlEpJhkVKeUBKeUkKeUi/f1JKeV7lpVmB5zZrkXm7VMyle4DXR6goLCAhYeU24kbngRZWP3QLVkXYNcCCBkDHj7m1WYnDAr2wcPVkaXKYa+wA0zd/dVXCPGHEOKIEOKEEOKkEKLaTgMhhKcQYqkQ4pAQ4qAQorcQoqk+xlH9uYleVwghPhVCHBNC7BFChBXrZ5xe/6gQYlx19VSb9R+CW1NtmacYLRu1ZECrAfxw+Aey8rNqXZZN0aQVdBmpnbDPuVT19jHfQkG2tpusnuLqZGBYdz9+2ZfM5Zx8a8tRKCrE1OWvb4GPgBuBnkCE/lxdpgG/SSk7Ad2Bg8ArwFopZXtgrf4e4A6gvf54DPgSQAjRFHgD6AVEAm8UGaJaIXkPHF0DN0wAZ/frLo8PHs/lvMssO2LmA4D2SJ+JWm6ZnVX0M+XnwLaZ0H4gNO9sGW12wujwAHLyC1m9J9naUhSKCjHVqGRIKX+VUp6TUl4oelRnQCFEY+AmNEOFlDJPSpkOjADm6NXmACP11yOAuVJjK+AphPAFBgF/SCnTpJQXgT+A26ujqVpsmKrlD4l8tMzLIc1CCG8RzryD88gvrOd3l/5h0OpG2PolGKvwXez5Hq6cr/MhWUyhR6AnbZu5qzwrCpvHVKPytxDiA32ZKqzoUc0xg4BUYJYQYpcQ4hshhDvQQkpZdBuWArTQX/sDZ4q1T9DLyiu/DiHEY0KIGCFETGqqGZznqUfgwArNoLiVfwb0oa4PkZKVwpr4NTUf097pMxEuJWj5VkyhsFDbNebbHVr3s6w2O0AIQVREILGnLnI8NdPachSKcjHVqPRCW/L6LzBVf3xYzTEdgTDgSyllDyCLa0tdAEgt3rfZ9k9KKb+SUkZIKSOaNTND/o2NH4GTm7b0VQE3+t9I28ZtmbVvlgph3n4geHfQcs2Y8l0cXQMXjkKfSfUiJIspjOrhj8FBsEzNVhQ2jKm7v24t43FbNcdMABKklNv090vRjMxZfVkL/fmcfj0R7QR/EQF6WXnlluViPOxZDOHjwd27wqoOwoFxweM4cvEIW5K2WFyaTePgoDnbU/ZoZ3sqY/N0aBwIXUZYXpud0LyRKzd3aMaPOxMxqjMrChvF1N1fjYUQHxUtIQkhpuq+kSojpUwBzgghOupF/YEDwEq0w5Xozyv01yuBB/RdYDeg+XeSgTXAQCFEE91BP1AvsyybpoGDweR1/iFthtDcrTnf7f/OwsLsgJC7wL1Z5aFbEmLh1CZtO7JBnbEtTlR4ACmXcthwtJ6fgVLYLKYuf30HXAbG6I9LQE0CXE0EFggh9gChaMtq7wL/EEIcBQbo7wF+AU4Ax4CvgQkAUso04C1gh/54Uy+zHJeSYdd87aBjIz+TmjgbnLmvy31sS97GgQsHLCrP5nFyhcjH4dgfcLaC72LLdHBprB2cVJTgts7N8WzgpBz2CpvFVKPSVkr5hpTyhP74D9CmuoNKKeN0H0eIlHKklPKivqOsv5SyvZRyQJGB0Hd9/UtK2VZK2U1KGVOsn++klO30h+WjOG75TMvpceMzVWoW1SEKdyd3Zu+fbRld9kTPh8HRTcuLUhYX47VNEBHjwcWjNpXZBS6OBkaG+vPH/rOkX7FAEjSFooaYalSyhRA3Fr0RQvQFsi0jyQbZsxg+6qwZFUcX7SR9FfBw9iCqQxS/x/9OYqbl3T42TYOm0GMs7F0Ml8vIE7J1BggH6PVE7WuzE0aHB5BnLGTV7iRrS1EorsNUo/Ik8LkQIl4IcQr4DKgf/+v3LIZVk+CS/h84/4r2fs/iKnVzX+f7EAjmHVAh0+g9QTuvsv2rkuXZF7UDkt2iTF5erI909W9MZ99GaglMYZOYuvsrTkrZHQgBukkpe0gpd1tWmo2w9k3ILzUpy8/WyquAj7sPg9sM5sejP5Kek25GgXZI0zbQeSjs+BZyi525iJkF+VlazhRFhUSFB7AnIYPDKZetLUWhKEGFRkUIMVZ/fk4I8RzwCPBIsfd1n4xy7gbLK6+A8cHjyS7I5ofDP9RQVB2gzyTISYe4Bdr7glwtJEubW8Gnm3W12QEje/jjZBAsiTlTeWWFohapbKZSFNTKo4xH/Uhs0TigauUV0L5Je270v5GFhxaSU5BTQ2F2TmAkBPbSHPbGAti7FDJTVEgWE2nq7sxtnZqzPC6RfGOhteUoFFep0KhIKWfqL/+UUv6n+AMt6GPdp//r2un54ji5aeXV4KGuD5GWk8bK4yvNIM7O6TMR0k/B1A6wYgI4OMEVlTPEVKLCAzmfmcffh85VXlmhqCVMddSXdVrNTMnHbZyQMTDsU+10N0J7HvapVl4NIlpEEOwVzNwDczEWGs2r1d7IywLENUNSmF+tTRD1lVs6NsO7oYtKNaywKRwruiiE6A30AZqV8qE0AgyWFGZThIypthEpjRCC8V3H8+L/XmTdmXX0b9XfLP3aJX+9zXUh3oo2QZjp+67LOBocGBXmz3cbT3I+Mxfvhi7WlqRQVDpTcUbznThS0p9yCRhtWWl1lwEtBxDQMIDv9n9XvwNNmnETRH1ldHgABYWS5bvq+fknhc1QmU/lf7r/5IZSPpWPpJRHa0ljncPRwZEHgh9gT+oedp3bZW051sOMmyDqKx1aeNA9oDFLYxPq9w2KwmYw1adyRc+n8osQ4q+ih0WV1XFGthuJp4sns/ZbPrqMzWLmTRD1ldERgRxKucy+xGqka1YozIypRmUBcAgtwdZ/gHi0II6KauLm6MY9ne5h3Zl1nEg/YW051sHMmyDqK8ND/HB2dGBprDqzorA+phoVLynlt0C+viT2EFDdfCoKnbs73Y2LwYU5B+ZUXrmuEjIGnt0H0enaszIoVaZxAycGBfuwYncSuQX1fEehwuqYalSKEosnCyGGCCF6AE0tpKne0NS1KSPbjWTV8VWkXlH5MRTVJyo8gPQr+fx5QJ1ZUVgXU43K23pSrueBF4BvgGctpqoeMa7LOIzSyIKDC6wtRWHH9G3njW9jV5aoJTCFlTE1oOTPUsoMKeU+PZVwuJRSHQk3A4GNAunfsj+LDy8mKz/L2nIUdorBQTAqzJ/1R1JJyajnIYAUVsXUdMKzhBDflX5YWlx94aGuD3E5/zJLjyy1thSFHTM6PJBCCT/uUud8FNbD1OWvn4HV+mMt2on6zApbKEymq3dXIlpEMP/gfPIL8ytvoFCUQZC3Oz1bN1FnVhRWxdTlr2XFHgvQ8tRHWFZa/eLBrg+SkpXCbyd/s7YUhR0TFR7IidQsdp6u5zl7FFbD1JlKadoDzc0ppL7Tz78f7TzbMWv/LHWXqag2g0N8cXMyqDMrCqthqk/lshDiUtEzsAp42bLS6hdCCMYFj+PoxaNsTtpsbTkKO6WhiyODu/myancy2XnqzIqi9jF1+ctDStmo2HMHKeUyS4urbwwJGkJzt+bM2lePQ7coaszo8AAycwv4bX+ytaUo6iGVpRMOq+hRWyLrC04GJ8Z2Gcu2lG0cuHDA2nIUdkqvoKYENnVTeVYUVqHCfCrA1AquSVSoFrMzusNoZu6Zyex9s3n/5vetLUdhhzg4CEaHBfLJ2iMkXLxCQJMG1pakqEdUaFSklLfWlhCFhoezB2M6jGHOgTlMujyJAA8VBl5Rde4M9+fjP49wx7QNZOYU4OfpxouDOjKyh7+1pSnqOCbv/hJCdBVCjBFCPFD0sKSw+sx9ne/DQTgw78A8a0uxOKtPrGbg0oGEzAlh4NKBrD6x2tqS6gQx8RdxEHA5pwAJJKZn8+qPe1UyL4XFMXX31xtoOemnA7cC7wPDLairXtPCvQVDgobw07GfSM+pu+cNVp9YTfTmaJKzkpFIkrOSid4crQyLGfhgzWEKS+1Mz8438sGaw9YRpKg3mDpTGQ30B1KklA8C3YHGFlOlYHzweLILsvn+8PfWlmIxpu2cRo6xZJyqHGMO03ZOs5KiukNSenaVyhUKc2GqUcmWUhYCBUKIRsA5INByshTtmrSjn38/Fh1aRE5B3QwQmJKVUqVyhen4ebqVWS6BJ+bFsv5IKoWlpzIKhRkw1ajECCE8ga+BWGAnsMViqhSAFrolLSeNlcfrXkDoDQkbEIgyr0kkE9dOZO2pteQbVSy06vDioI64ORlKlLk4OnBrx2Zsj0/jge+2c/OHf/P538dIvZxrJZWKuoioakgQIURroJGUco8lBFmaiIgIGRMTY20ZJiGl5N7V93Ip7xIrR67E4GCovJGNk2vM5ePYj1lwcAEtGrQgPTedXOO1HzUXgwu9fHtx4MIBzmefp4lLE4a0GcKIdiPo1LSTFZXbH8t3JfLBmsMkpWeX2P2VW2Dkt30pLNx2mm0n03B0EAwMbsG9ka3o09YLB4eyjb2i/iKEiJVSmhTv0SSjIoRYCXwPrJBS2nXSD3syKgC/x//O8/97no9v+ZgBrQZYW06NOHrxKC9veJmjF48ytvNYngl/hj9P/cm0ndNIyUrBx92Hp8OeZkibIRQUFrA5aTPLjy1n3Zl15Bfm06lpJ0a0HcGQNkNo4trE2h+nTnDsXCbfbz/N0p0JpF/Jp7VXA+6ObElUeABeDV2sLU9hI1jCqNwM3AUMAXagGZifpZTVXuwXQhiAGCBRSjlUCBGk9+uFtsR2v5QyTwjhAswFwoELwF1Syni9j1eBhwEjMElKuaayce3NqBgLjQxbPowmLk2YP3g+QtjfXaSUkkWHFjE1Zioezh681fct+gX0M7l9ek46v5z8hRXHV3DgwgEcHRy5JeAWRrQbQV//vjg5OFlQff0gJ//a7GV7fBpOBsGgYB/u7dWS3m287PLfncJ8mN2oFOvYgHaK/lHgdillo+pJBCHEc2jh8xvpRmUx8KOU8nshxAxgt5TySyHEBCBESvmEEOJu4J9SyruEEF2ARUAk4Af8CXSQUlYYRc/ejArA94e+Z8q2Kcy+fTbhLcKtLadKXMi+wORNk9mQuIF+/v14q+9beLl5Vbu/IxePsOLYCn4+8TNpOWl4uXoxtM1QRrYbSbsm7cyovP5y9OxlFm4/zbLYBC7lFNDG2517IltyZ3gATd2drS1PYQUsYlSEEG7AMLQZSxjaTGViNQUGAHOAKcBzer+pgI+UskAI0RuIllIOEkKs0V9vEUI4AilAM+AVACnlO3qfV+tVNLY9GpXsgmwGLR1E92bdmd5/urXlmMyGhA28tuk1svKzeD7iee7ueLfZ7njzC/PZmLCR5ceWsz5hPQWygGCvYEa2G8kdQXfQ2EXteK8pOflGVu9JZuH208SeuoizwYE7uvlwb2RLIoOaqtlLPaIqRqWy2F9FHS5GmxH8BnwG/E/fYlxdPgFeAjz0915AupSyQH+fABTFk/AHzgDoBidDr+8PbC3WZ/E2dQo3Rzfu6XQPX+z+guPpx2nr2dbakiqkuDO+fZP2fDvwW7PPIpwcnLi15a3c2vJW0nLSWH1iNcuPLWfKtim8v+N9bmt5GyPajqCPX586scHBGrg6GbgzPIA7wwM4nHKZhdtO8eOuRFbEJdGueUNt9hLmj2cDNXtRXMNUn8og4M/KlpZMGlCIocBgKeUEIcQtwAvAeGCrlLKdXicQ+FVK2VUIsQ9tqS1Bv3Yc6AVE623m6+Xf6m2uS/QuhHgMeAygZcuW4adOnarpx6h1LuZcZODSgdwRdAdv9n3T2nLK5ejFo7y0/iWOpR+76ox3MdSew/fghYOsOL6C1SdWk56bTnO35gxtqy2PBTUOqjUddZXsPCOr9iSxcNtp4s6k4+zowNBuvtzbqyXhrZqo2UsdxWzLX0KIl6SU7+uvo6SUS4pd+6+U8v+qIe4d4H6gAHBFy3f/EzAItfxVIVO2TmHp0aWsuXMNzRvYVuJNKSULDy3ko5iP8HD24O0b3+ZG/xutpifPmMf6hPUsP7acjYkbMUoj3Zt1Z0S7Edze+nY8nD0q70RRIQeSLrFw+ymW70oiM7eADi0acm9kS/7ZI4DGDdTmibqEOY3KTillWOnXZb2vptBbgBd0R/0SYFkxR/0eKeUXQoh/Ad2KOepHSSnHCCGCgYVcc9SvBdrXRUd9EWcun2HoT0MZHzyeZ8Oftbacq5zPPs/rm15nQ+IGbgq4iTf7vFkjZ7y5OZ99np+P/8zyY8s5nnEcF4ML/Vv2Z2S7kfTy7YWDqG5WbQVAVm4Bq3YnsWj7aXYnZODq5MCQbn7c26slYS091eylDmBOo7JLStmj9Ouy3ldT6C1cMypt0LYUNwV2AWOllLlCCFdgHtADSAPullKe0Nv/G3gIbdbzjJTy18rGtGejAvDC/15gc+Jmfh/9Ow2dG1pbDusT1jN502SLOOPNjZSS/Rf2s/zYcn45+QuX8y7j4+7D8LbDGdF2BC0btbS2RLtnX2IGC7efZsWuRLLyjHTy8eDeXi0Z2cOfRq5q9mKv2M1MxRrYu1HZf34/d6++mxciXmBc8Dir6cg15vJRzEcsPLSQ9k3a836/9+1qS2+uMZe/z/zN8mPL2ZK0hUJZSFjzMEa2G8nA1gNxd3K3tkS7JjO3gJVxSSzcfop9iZdwczIwrLsv9/ZqRfeAxjZ746EoG3MaFSOQBQjADbhSdAlwlVLa3a2HvRsVgIfWPMTpS6f59c5frXLwz9rOeHNzNussq06sYsWxFUBPLD8AACAASURBVMRfisfN0Y1/tPoHI9uNJLxFuFoeqyF7EtJZuO00K3cncSXPSBffRldnLw1dTNqAqrAyFjv8WBeoC0ZlQ8IGJqydwH9v/C/D2g6rtXFtzRlvbqSU7E7dzfJjy1kTv4bM/Ez8G/ozou0IhrcbTty5uDJDyihM43JOPsvjtJ1jB5Mv0cDZwIhQP+6NbMXx1Mwy45QpbANlVCqgLhgVKSWjVo5CCMGyYctqZSnhfPZ5Jm+azMbEjdwccDP/6fMfm3LGm5vsgmzWnl7LimMr2Ja8DYnEAQcKuXY8y9XgSnSfaGVYqoiUkrgz2uxl1Z4kcvILEQKK/xS5ORl4Z1Q3ZVhsBGVUKqAuGBWAFcdW8Nqm1/hywJcWny3YkzPeEiRnJnPnyju5nH/5umu+7r78Pvp3K6iqG2Rk53PT+3+TkX19igNHB0FooCeeDZxo5OaEp5szjd2caOzmiGcD/XUDJ71MezgZ1FKlJTD7iXqF7TE4aDCf7vqUWftmWcyo5BTk8HHsxyw8tJAOTTpY5GS8PeDb0JfM/Mwyr6mEYjWjsZsTl8owKAAFhRIngwNJ6TkcTL5MRnY+mbkFZdYtwt3ZgGcDZ90IXTM2Vw2TboSuGSjNMHm4OFYp5H95aQUUyqjYLU4GJ+7vfD9TY6ey/8J+gr2Czdr/kYtHeHn9y3XGGV9TfNx9SM5Kvq68RYMWVlBTt/DzdCOxjDTH/p5uLHrshhJl+cZCLmXnk5GdT7r+fCk7n/Qrepn+nJGdR0Z2PifOZ5J+RaubV1B+ZCkHAY2KDJCb07XXpYxQIzcn9iWm8/WGk+Tq/SWmZ/Pqj3sBlGFBGRW7ZnSH0czcM5PZ+2bzwc0fmKXP0s742lhesweeDnua6M3R5BhLZnvwdvOmUBaqHWI14MVBHXn1x71k5187t+zmZODFQR2vq+tkcMCroUu1cr3k5BtLGZ580q/kXX19rUx7TriYfbXMWEnq5ex8I68t30dOvpEgb3eCmrnTrKFLvVomLkIZFTumoXNDojpGMWf/HCZdnkSgR2CN+ivtjH+z75s0dW1qJrX2TZEzvvjur7DmYaw+uZoPYz7kpZ4vWVmh/VJ0d2/p5SRXJwOuTgZaNHKtUjspJZm5BVcNztDpG8usl5lbwCv6jAWgoYsjrb0bEOTdkCBvd9p4uxPk7U5rb3cau9ndaQyTUY56O+fclXMMWjaIqA5R/F+vKodiu0pxZ/wLES9wV8e76uVdVlV5b/t7zD84n5d7vszYLmOtLUdRC/R9968yl+v8PF354bHenDyfdfVx4nwWJ89nkngxm+KTHe+GzrT2cr86q9EMTkNaeTXA1cn2omorR309onmD5gxtM5Sfjv7Ek92frHKa3ZyCHD6K/YhFhxbVa2d8dXkh4gVSslJ4f8f7tHD///buPD6q6nz8+OfJTHbWrCQBWRIEcUOquGABIeAuaX9apMrPn9r2q9IWsO7aSm21roD92tJfv2ql1WKVKhQRZRO1YLWIWlYlCWsWE5IAWcwyM+f7x72BCWSFmdyZ5Hm/XvOae8/c5ZmBzDP3nHPPSWXSwElOh6SCrKXqunsuHc6AhDgGJMQx9tTkJvvUebzsK68hv7Rpwln3VSmvf7r/yHYikN471ko2SU2TTkafWNxh0LtNr1S6gLyDeeQszeGOkXdw+9m3t3s//8b46SOmM3PUzG7dGH+iaj21/HDlD9levp3nJz/PyJSRToekgiyQvb8qaxvYU1ZjXdWUWlc2jUmnsvZob7dIl3BKQpxfwrGr1ZLjSenZcvtNIGLV+1Ra0RWTCsCMNTPYXLqZldeuJMbdep3xsY3xj178KGMyxnRSpF1TRW0F01dM51DdIf5y+V8Y1HuQ0yGpMGeMoby63q8arTHpVLOrrLpJb7a4KJdVnZZ8tO1mcFI824sO86u3th93VdXRG0s1qbSiqyaVjcUbufndm3no/IeYOnxqi9sd+OYAD61/iPUF67UxPsD2Hd7HjStuJM4dx8tXvNylRxxQzvL5DEWHa49c2eT7tePsK6+hjc5qZPSJZf19E9p9Pk0qreiqScUYww1v38DBuoMsy1nW7BS62hgffJtLN3PLu7eQ1SeLFy59gbjIOKdDUt1MvcfHvooadpVW84M/N/9dJ8Cux9s/vFBHkkrot/qodhERbj7jZvZV7mPtvrVNXqv11PLYx48xY80MkmKTePXKV7l+ePcaaqWznJl8Jk+Ne4pt5du494N78fhavwNcqUCLckeQmdyD7BGpZPSJbXab9BbKA0GTShcyYcAEEqITuPeDezlr4VlMXjyZ5zc/z7Tl01i0YxHTR0xn0ZWLtHdXkI0fMJ4HRj/Auv3rePyTx+lutQEqdNx96TBij+mi3NKNpYGiXYq7kHd2v0NlQyUNPmsspaLqIp7d9Cw9Invwh+w/aGN8J5o6fCqF1YW8uOVF0uLTuPXMW50OSXVDnXVjqT9NKl3Is5uePZJQ/MVHxmtCccDMUTMpqi5i/qb59Ivvp0PkK0fknJPRqWOSaVLpQloaMbekpqSTI1EAERLBr8f8+kiPu5S4FM7rd57TYSkVVNqm0oX0i+/XoXIVfFGuKOZfMp+BPQcyc+1McitynQ5JqaDSpNKFzBw1kxhX0xsfY1wxzBw106GIFECvqF4syF5AjDuG29fcrleOqkvTpNKFXDnkSuZcNIe0+DQEIS0+Tae7DRFpPdL4ffbvOVx3mBlrZlDdUO10SEoFhd78qFQnWl+wnhlrZnB+2vk8N/E5IiO67hDoquvQmx+VClFjMsbw8IUPs6FwA4989Ijew6K6HO39pVQn+87Q71BYXcgfvvgD6fHp3D6y/SNLKxXqNKko5YA7zr6Doqoifv/F7+kX34/vDP2O0yEpFRCaVJRygIjw8EUPU1JTwiMfPUJqXCoXZVzkdFhKnTRtU1HKIZERkcwdP5fMPpnMXjebHeU7nA5JqZOmSUUpB/WI6sHvJv6OnlE9uWO1VSWmVDjTpKKUw1LjU1mQvYBaTy13rLmDw/WHnQ5JqROmSUWpEDC071DmXzKf3Yd3M+u9WdR7650OSakToklFqRAxOm00vxrzK/5d/G9+vv7n+Iyv7Z2UCjGdnlREZICIvCci20Rkq4jMtMsTRGSViOy0n/va5SIivxWRXBH5j4iM8jvWTfb2O0Xkps5+L0oF2lVDrmLmqJm8vettfrvpt06Ho1SHOXGl4gF+ZowZAVwAzBCREcB9wBpjzFBgjb0OcDkw1H78CFgAVhICHgbOB0YDDzcmIqXC2a1n3Mp1p17HC1te4LUvX3M6HKU6pNOTijGmyBizyV6uBLYDGcAUYKG92UIgx16eAvzZWP4F9BGRNOBSYJUxptwYUwGsAi4LRsyHli1j54SJbD9tBDsnTOTQsmXBOI1SgHUPywPnP8C4/uN49ONHWbdvndMhBd3y/OVMXjz5yDTYy/OXOx2SOkGOtqmIyCDgHOBjINUY09ifshhItZczgH1+u+23y1oqD6hDy5ZR9PNf4CksBGPwFBZS9PNfaGJRQeWOcPPk2Cc5LeE07vngHrYc2OJ0SEGzPH85czbMoai6CIOhqLqIORvmaGIJU44lFRHpAfwdmGWMadKH0lij7AVspD0R+ZGIbBSRjaWlpR3at2TefExtbZMyU1tLybz5gQpPqWbFRcbx3MTnSIhJYMaaGeyr3Nf2TmFo/qfzqfU2/Rur9dby7KZnHYpInQxHkoqIRGIllFeMMW/YxV/b1VrYz40zGRUAA/x272+XtVR+HGPMH40x5xpjzk1OTu5QrJ6i5m9Ga6lcqUBKik1iQfYCvMbLHavv4GDtQadDCgif8fFJ0Sc8+M8HKa5pfhrsouoiPi/5XEdyDjNO9P4S4AVguzFmrt9L/wAae3DdBCz1K/+/di+wC4BDdjXZu8BkEelrN9BPtssCyp2W1vz7iInBW6UTLangG9x7MP894b8prCrkJ2t/Qq2ntu2dQlRBVQELPl/AFW9cwa0rb2Xt3rXEueOa3VYQpq+YztS3pvLmzjfD+n13J50+SZeIXAx8CGwGGjviP4DVrvIacAqwB/ieMabcTkLPYTXC1wA3G2M22se6xd4X4FFjzJ/aOn9HJ+lqbFNpUgXmdoPHQ9SgQWTMm0vMaae1+3hKnaiVu1dy1/t3kT0wm6fHPU2EhMdtZjUNNazZu4YluUv4pPgTBOH8tPPJycph4ikTWbN3DXM2zGlSBRbjiuH+0ffjMR4W7VhE7sFcekf35rtZ3+V7w75H/579HXxH3U9HJunSmR/b4dCyZZTMm4+nqAh3Whops2fhTk2l8K678R48SOr999Hn+uux8p9SwfPnrX/mqY1PMX3EdO457x6nw2mRMYbPSz9nSe4S3t39LtUN1QzoOYApmVO4JvMa0no0rQFYnr+cZzc9S3F1Mf3i+zFz1Mwj02AbY9j49UYW7VjE2r1r8Rkf4/qPY9rwaVyQfkHYJNdwpkmlFYGcTthTXk7hvfdR/eGH9Lz8MtIeeQRXz54BObZSLXnikyd4efvL3Hvevdw44kanw2miuLqYZXnLWJq3lD2H9xDrjuXSQZeSk5XDqJRRJ/3Dq7i6mNe/ep3FXy2mvLacgb0Gcv2w65mSNYWeUfq3FyyaVFoR6Dnqjc9H2QsvUDr/WSLT08mYO5fYM88I2PGVOpbX5+Wu9+9izd41PDP+GSYNnORoPHXeOtbuXcuS3CV8VPgRBsO5qeeSk5XDpIGTiItsvs3kZNR761m1ZxWLdizii9IviHXHcvWQq7l++PUM7Ts04Ofr7jSptCLQSaVRzaZNFNz5MzxlZaTefTd9p9+o1WEqaGo9tfxg5Q/YUb6D5yc/z8iUkZ16fmMMWw5sYUnuElbsXkFlfSVp8WlMyZrCNUOuYUCvAW0fJEC2lm3l1R2vsmLXCuq8dZybei7Thk/jklMuITIistPi6Mo0qbQiWEkFwFNRQdH9D1C1bh09sieS/uijuHr3Dsq5lKqorWD6iukcqjvEXy7/C4N6Dwr6OQ98c8Cq3spdSt6hPGJcMWQPzGZK1hRG9xvtaPvGwdqDvJn7Jn/78m8UVBWQEpfCdadex7WnXktSbJJjcXUFmlRaEcykAtYvuPKXFlLyzDNEpqSQMW8usWefHbTzqe5t3+F93LjiRuLccbx8xcskxiYG/BwN3gbW7V/H0tyl/LPgn3iNl5HJI5mSNYVLB10acm0ZXp+Xfxb8k0U7FrG+cD3uCDeTB05m2vBpnJ18ttYgnABNKq0IdlJp9M0XX1Aw+04aSkpIufNOEv7fTUiE9lJRgbe5dDO3vHsLWX2yeOHSFwLWhrG9bDtL85ayPH85B+sOkhKbwtWZVzMlawqDew8OyDmCbfeh3fzty7+xJHcJVQ1VnJZwGtOGT+PywZcT445xOrywoUmlFZ2VVAC8hw5R9NBDVK5aTY9x40h7/De4++pAyirw3tv7HrPWzWJsxljmXTIPd4T7hI5TXlvO2/lvsyR3CV9WfElkRCQTTplATlYOF6ZdiCvCFeDIO0dNQw1v5b+l97ycIE0qrejMpAJWdVjFK3+l5IkncCUmkjH3GeJGjWp7R6U66NUdr/Lox48yddhUHjz/wXZX8zT4GlhfsJ4luUt4f//7eHweTk88nZysHC4ffDm9o7tOu2Bz97yM7T+WacOncWH6hXrPSws0qbSis5NKo2+2bKXgzjtpKCgg+ac/JfGHP9DqMBVwcz+dy5+2/IlZo2Zx65m3trptbkUuS3KX8Fb+W5TVlpEQk8DVQ6zqre7QLbe4upjFXy3m9a9eb3LPyzVZ19ArqpfT4YUUTSqtcCqpAHgrKyn6xS+oXPEO8WPGkP7kE7gTA9+wqrovn/Fx3wf3sWL3CqYOm8oH+z9ocpf6xRkXs2LXCpbkLmFr2Vbc4mbcgHHkZOUwJmNMt+yC29w9L1cNuYrrh1/PqX1PdTq8kKBJpRVOJhWwLr8P/u01vn7sMVy9e5P+9NPEnz/asXhU11Pvrefaf1zLrsO7mpRHSAQY8OFjWN9h5GTlcMWQK0iISXAo0tCzrWwbr+54lbd3va33vPjRpNIKp5NKo9odOyiYNZv6vXtJmnEHSbfdhrjCsxH0ZDQ3rlrvq692Oqywl/16Nl/XfH1ceZw7jpcue4nTEnUQ1NYcd89LbArXDTt6z0trY5WFmkDEqkmlFaGSVAC8VdUU//KXHF62jLgLLiDjqSdxd3C+l3DW3AjQEhND2q8e0cRyks5aeBYXbfXw/XWGxMNQ1gv+Ol7YcLqb/9z0H6fDO06o/rho7p6X0xNOZ3v5dup99Ue2i3HFMOeiOSGXWBpn1Tx2BOiOxqpJpRWhlFTAqg479MYbFP/q10TEx5Px1JPEX3SR02F1ip2XTGh2sjNXQgKnvPQn3MnJuPr00ZvVTsD9D43he0vKifEcLatzw9+v6sOch1YjAogcfXB0XTjmtcbyIP07hMuPi8Z7Xl7Z/gqmmYlpY1wxjO0/tklZa5+Z/Ul3+DV7g3btu3bv2uNm1QRIi09j5bUrWz+H/zE1qbQs1JJKo7qdO9k/ezb1efkk/tePSP7xjxH3id1rEMp81dVUffghlatWc3h523OQS2Qk7uRk3CkpLT+ndJ/kYxoa8JRX4C0vw1NW3vT5QBme8jK8ZeV8s20r4gvS33ZzCedEyu3XvIcPg8933Gki+vRmwIIFRGdm4uoVOr2xzlp4VrNJBWBI7yFHllvaBjip2Sw7cty9lXub3U6QDl2xdiSpdL1vrTAVPXQog197jeJfP0rZH/4/32z8lPRnniYyNdXp0E6ap6KCqrXvUbl6NdXr12Pq63H17YvExWJqvjlue1dSIv0efBBPaSmekhIaSkrwlJZSl59P9ccf4zt8+Lh9JDISV3ISkclWknEf+5ySgjsl5aSSTzCqaIwx+Cor8ZSV4S0vx3Og7PiEUVaGp9x69h461OxxJDISV2Ii7oQEXEmJrSaUlLvvBgzYX0DGGDBY68Ycec00rh/zWkvlR/fxK2+yz7HlAIaKvy5qNk7fwUPsmfZ9AFzJSURnZhE9ZAhRmUOs5cwhuJKSOv3HRL/4fhRVH3+FnRafxtKcpc3s4ZzJiyc3G2u/+H5BO6deqYSgQ0uXUvTLR4iIjib9icfpMXZs2zuFmIaiIipXr6Fy9WpqNm4Erxd3eho9s7PpmZ1N3KhRHF6x4oSqPXy1tUcSTnPPVhI6gK+5L+DISNzJSbiTk4ls5erH1adPk/uIOlJF46uvtxLBsVcSjQmi7OgVhae8HBoamn2frj59jiaKI88JuBMTrXW/1yJ69Gjy5bpzwkQ8hYXHHdOdns7QtWta/Gyd0GKsKSn0mzOH+vw86nLzqMvPpz4vD1/10Wm8I3r1shJNVibRQzKJzhxCVGYWkelpQbsPLFDtFJ1B21Q6QTgkFYC6/HwKZs2m7quvSPzBrSTPnIlEhnaXxrr8fCpXraZy9WpqN28GICor004kk4g5fcRxvyqD2UDrq63Fc+CAlWxKGpOOvVzamIBKm08+breVYJKTcackU73hI0xNzXGbSVwcPcZc1OSKwldZ2Ww8Eh19NCE0JorExKOJIsHvuW/fk/r3Dpd2CuhYrMYYPCUl1OXmUp+XT11+nv2cj7es7Oj+sbFEDR5kJZqsTKKGDCE6M5OoU04JyN+R9v5qZVtNKqHLV1vL14/9hoOvvUbsOeeQ8czTRKanOx3WEcYYardspXK1lUjq8/IAiDnrrCNXJNFDQn/gQV9dnX2l0/LVT93OnS3uHz00C1dikl+iSGiaIJKs1yQurlOrakK1R1VzAhGrp6KC+vx86vLsRJOXR11+Hp5Cv+oft5uogQOPq0aLGjyYiNjYAL+r0BCIz1aTSivCKak0OrR8OcU//wVERpL+m8foOWGCY7EYj4eaTzdZiWTNausP1uUi7rzz7EQykch+wauvdUo4VSeppnzV1dTt2k19Xi51flc39Xv3gtdrbSRCZHr6MdVomS12EgiXhB2oK1ZNKq0Ix6QCUL97N/vvvJO6bdtJuOkmUn52JxIV1Snn9tXVUb1hA5WrV1O19j28FRVIdDTxY8bQMzubHpeM7/KjL4dTdZJqH1NfT/2ePUcTTWO7za5dmLq6I9u5kpPsRJNJVOYQGr4uoWLhwibbNPd/wRhj9WrzejE+H8bjBZ8X4/VCk3Wf9ey/7vUcLT9u3e8YXq91/OOOaa2XzJvfbPVuR38MaVJpRbgmFbC+3EuefIqKV14h5swzyZg3l6j+wRm221tVRdX771s9tt7/AF9NDRE9etBj/HgrkXz7YiLi44Ny7lAVLr9O1ckxXi8NhYVWu01+PnV5VgeBurw8fFVVLe8ogkRHH0kiR66CQpEIp23f1oHNNam0KJyTSqPD766k6KGHAEh79Nf0mjw5IMf1lJVRuXYtlatWUfPRvzANDbiSkug5YQI9J2UTf/75nXZ1pFSosToJlJI7blyL2yTccgviioAIlzXskivCfnYhEfZ6hAvcfusut98+EdDautsFEfYxj1k/ep4I69nlYte11+H5+vjheoJ5paL3qYShXpdOJmbEaRTc+TMKfjqTmhtuIOWeu4mIju7wsRoKCqhcvZrDq1bxzabPwOcjsn9/+t5wAz0nZRM7cmS3HJNMqWOJCJGpKbjT01tsX0u9524HImtZyl0/a7baNmX2rKCdU5NKmIoaMIBBr7xMyTNzKV+4kJrPNtF/3jyiBg5sdT9jDPW5uUcSSd227QBEn3oqSbfdRs/Jk4geNqxb3J2u1IlImT2r07+oT1Rj9WxnVttq9VcXULl2LYX3PwAeD72mXEPVuveb/AfqdeWV1G7ebPXYWrmK+j17AIgdOZKek6yuv20lI6XUUd2tfU3bVFrRFZMKWNVYe26+hYa9x4z143IhcXGYykpwu4kfPZqek7LpMWEikakpzgSrlAor2qbSDUVmZGCaG+7D64WGBmu4l/HjcfXuOvONK6VCjyaVLsRTXNxsuamro/eUKZ0cjVKqOwrOiGvKEe60tA6VK6VUoGlS6UJSZs9CYmKalIVqrxSlVNek1V9diBPdB5VSyp8mlS6m99VXaxJRSjkm7Ku/ROQyEflSRHJF5D6n41FKqe4srJOKiLiA3wGXAyOAaSIywtmolFKq+wrrpAKMBnKNMfnGmHrgVUD7ziqllEPCPalkAPv81vfbZU2IyI9EZKOIbCwtLe204JRSqrsJ96TSLsaYPxpjzjXGnJucnOx0OEop1WWFe++vAmCA33p/u6xFn3766QER2XOC50sCDpzgvp0tnGKF8Io3nGKF8Io3nGKF8Ir3ZGJt94izYT2gpIi4ga+AiVjJ5N/A940xW4N0vo3tHVTNaeEUK4RXvOEUK4RXvOEUK4RXvJ0Va1hfqRhjPCLyY+BdwAW8GKyEopRSqm1hnVQAjDFvA287HYdSSqlu0lAfQH90OoAOCKdYIbziDadYIbziDadYIbzi7ZRYw7pNRSmlVGjRKxWllFIBo0lFKaVUwGhSaYOIxIjIJyLyhYhsFZFfOh1Te4iIS0Q+E5G3nI6lNSKyW0Q2i8jnIrLR6XjaIiJ9RGSxiOwQke0icqHTMTVHRIbZn2nj47CIhPTEOiIy2/4b2yIii0Qkpu29nCEiM+04t4bi5yoiL4pIiYhs8StLEJFVIrLTfu4bjHNrUmlbHTDBGHM2MBK4TEQucDim9pgJbHc6iHa6xBgzMkz6+z8LvGOMGQ6cTYh+xsaYL+3PdCTwLaAGeNPhsFokIhnAT4FzjTFnYN0icL2zUTVPRM4Afog19uDZwFUikuVsVMd5CbjsmLL7gDXGmKHAGns94DSptMFYquzVSPsR0r0bRKQ/cCXwvNOxdCUi0hsYC7wAYIypN8YcdDaqdpkI5BljTnQkic7iBmLtm5rjgEKH42nJacDHxpgaY4wHeB/4rsMxNWGM+QAoP6Z4CrDQXl4I5ATj3JpU2sGuSvocKAFWGWM+djqmNswH7gF8TgfSDgZYKSKfisiPnA6mDYOBUuBPdtXi8yIS73RQ7XA9sMjpIFpjjCkAngb2AkXAIWPMSmejatEW4NsikigiccAVNB0uKlSlGmOK7OViIDUYJ9Gk0g7GGK9djdAfGG1f/oYkEbkKKDHGfOp0LO10sTFmFNacODNEZKzTAbXCDYwCFhhjzgGqCVIVQqCISBRwDfC607G0xq7fn4KVuNOBeBG50dmommeM2Q48AawE3gE+B7yOBtVBxrqXJCg1LppUOsCu6niP4+sqQ8kY4BoR2Y01v8wEEXnZ2ZBaZv9CxRhTglXnP9rZiFq1H9jvd6W6GCvJhLLLgU3GmK+dDqQN2cAuY0ypMaYBeAO4yOGYWmSMecEY8y1jzFigAmsMwlD3tYikAdjPJcE4iSaVNohIsoj0sZdjgUnADmejapkx5n5jTH9jzCCsao+1xpiQ/MUnIvEi0rNxGZiMVbUQkowxxcA+ERlmF00EtjkYUntMI8Srvmx7gQtEJE5EBOuzDclOEAAikmI/n4LVnvJXZyNql38AN9nLNwFLg3GSsB/7qxOkAQvtqYsjgNeMMSHdTTeMpAJvWt8huIG/GmPecTakNv0EeMWuVsoHbnY4nhbZiXoS8F9Ox9IWY8zHIrIY2AR4gM8I7SFQ/i4iiUADMCPUOmyIyCJgPJAkIvuBh4HHgddE5FZgD/C9oJxbh2lRSikVKFr9pZRSKmA0qSillAoYTSpKKaUCRpOKUkqpgNGkopRSKmA0qaiwISLvicilx5TNEpEFHTzO2433HrWyzQPHrG/oyDnaGcdLInJtM+XD7ZGFPxORzECft6PxtHPf8SJykd/6CR9LhTdNKiqcLOL4kWvbPa6VWCKMMVe0476CJknFGNOZd3fnAIuNMecYY/La2rjxfXVCXK0ZTwjfAa86j9P/EZXqiMXAlfaNh4jIIKxxoj4UkR4iskZENtnzs0xp3EZE3vaYXAAAA8NJREFUvhSRP2PdrT/AnsMlyX59iT2Y5dbGAS1F5HGs0XI/F5FX7LIq+1lE5Cl7Lo3NIjLVLh8vIuvk6Fwrr9h3hiMivxCRf9v7/LGxvDkicgUwC7hdRN6zy+60990i9twdLbyvKju2rSKyWkRG2zHli8g1zZxLROQ5+zirgRS/174lIu/bn827fsN7rBORZ+3PZot9jkHAbcBsu/zb9mHGisgG+/x61dJdGGP0oY+weQBvAVPs5fuAp+1lN9DLXk4CcgEBBmGN1nyB3zF2A0n2coL9HIv15Zxor1cdc94q+/n/AKuw5vtIxRpeJA3rl/ohrEFHI4CPsAbLPHIOe/kvwNX28kvAtc28xznAXfbyt4DNQDzQA9gKnNPC+zLA5fbym1gDHkZizfnxeTPn+a7fe0kHDgLX2vtsAJLt7aYCL9rL64D/sZfHAluOjdnvvb1ufxYjgFyn/+/oo3MeeqWiwo1/FZh/1ZcAj4nIf4DVQAZHh/beY4z5VwvH+6mIfAH8C2v48qFtnP9iYJGxRq7+GmsujfPs1z4xxuw3xviwRq4dZJdfIiIfi8hmYAJwevve6pHzvWmMqTbWvD5vAI1XAse+r3qsUXPBSkTvG2twxs1+sfgb6/deCoG1dvkw4AxglVhTPjyElSwbLYIjc3b0aqV9aokxxmeM2UaQhllXoUfH/lLhZikwT0RGAXHm6BD/NwDJwLeMMQ1ijdLcOB1tdXMHEpHxWKPjXmiMqRGRdX77nIg6v2Uv4BZrStzfY81ouE9E5pzkOfwd+74ajDGN4y75GuMxxvjEmviqvQTYaoxpaarkY8d2ammsJ//Po8UqP9W16JWKCiv2r/X3gBdp2kDfG2semQYRuQQY2I7D9QYq7IQyHPCfJrpBRCKb2edDYKpYE7clY/3a/6SVczQmkAMi0gOreqkjPgRyxBq9Nx74jl0WCB9w9L2kAZfY5V8CySJyIYCIRIqI/9VVYzvSxViTaR0CKoGeAYpLhTG9UlHhaBFWm4F/T7BXgGV2FdNG2jc9wTvAbSKyHeuL1L8q6Y/Af0RkkzHmBr/yN4ELgS+wfqHfY4wptpPScYwxB0Xkf7Daa4qBf7fnDfrtv0lEXuJo4nreGPOZ3Th+st7Eqo7bhtU29JF9znq7Yf23Yk2h7MaaTXSrvV+tiHyG1fZyi122DFhsd5D4SQBiU2FKRylWSrWbXUV4lzFmo9OxqNCk1V9KKaUCRq9UlFJKBYxeqSillAoYTSpKKaUCRpOKUkqpgNGkopRSKmA0qSillAqY/wVsUWjTml1TcgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for k in range(len(var_forms)):\n", " for j in range(len(entanglements)):\n", @@ -133,7 +177,7 @@ "pylab.xlabel('Variational form depth')\n", "pylab.ylabel('Evaluations')\n", "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { @@ -160,7 +204,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_vqe_initial_point.ipynb b/community/aqua/chemistry/h2_vqe_initial_point.ipynb index e74286c0b..2e83c3549 100644 --- a/community/aqua/chemistry/h2_vqe_initial_point.ipynb +++ b/community/aqua/chemistry/h2_vqe_initial_point.ipynb @@ -15,16 +15,40 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Processing step 16" + "Processing step 20 --- complete\n", + "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", + " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", + "Energies: [[-1.05515974 -1.07591361 -1.09262987 -1.10591801 -1.11628598 -1.12416089\n", + " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", + " -1.13414767 -1.1315512 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", + " -1.11133942 -1.10634212 -1.10115033]\n", + " [-1.05515974 -1.07591361 -1.09262987 -1.10591801 -1.11628598 -1.12416089\n", + " -1.12990476 -1.1338262 -1.13618944 -1.13722135 -1.13711706 -1.13604436\n", + " -1.13414767 -1.1315512 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", + " -1.11133942 -1.10634212 -1.10115033]\n", + " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", + " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", + " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", + " -1.11133943 -1.10634212 -1.10115034]]\n", + "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", + " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", + " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", + " -1.07963694 -1.07300677 -1.06610866]\n", + "VQE num evaluations: [[377 418 377 357 374 380 361 376 365 353 350 353 351 360 378 342 345 365\n", + " 344 341 349]\n", + " [377 300 262 263 281 293 286 273 292 259 288 266 265 241 301 280 283 273\n", + " 296 291 266]\n", + " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0]]\n" ] } ], @@ -87,11 +111,29 @@ "print('VQE num evaluations:', eval_counts)\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The plot of ground energies from VQE, whether starting from a random initial point or the optimal solution from the prior point are indistinguisable here." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xdc1dX/wPHXYQkogiAqQ8WJqEwRB7lX5QpzpFaO0szSsm3fMlvfX8PMTFuaq8yR5bY0K3MPVFQEcaKCCIiyZMP5/XEvfNEYF7iXyzjPx+M+vPfzOZ/zed+Lj/u+5zPeR0gpURRFUZSKMjF2AIqiKErNoBKKoiiKohcqoSiKoih6oRKKoiiKohcqoSiKoih6oRKKoiiKohcqoSiKgQghJgoh9hs7DkWpLCqhKJVCCBEphOh/37KCL1whRB0hxPdCiKtCiBQhRIgQ4qFS+nQSQiwRQtwQQqQKIS4LIVYIIdoZ8r3oixDiKSHEOe37jRVC7BBC2GjXrRBCfFCGviqUvLTb52o/x8IP5/L2qdQ+KqEoVYUZcB3oBdgCbwHrhRBuRTUWQjgABwFroAdgA/gB/wADitnGTN9Bl5cQohfwX2CslNIG8ADWGTcqDkkp6933uKHPHVSlv4GifyqhKFWClPKulHKulDJSSpknpdwGXAE6FbPJLCAZeEJKeUlqJEopl0spvwQQQrgJIaR2JHAN+Eu7fJgQ4qwQIlEIsUcI4ZHfqbZ960KvC0YKQojeQogoIcTLQog4IUSMEGJSobYOQogtQohkIcRRoFUJb7kzmi/wk9r3f1tKuVJKmSKEmAqMB17TjhK2avt/QwhxSTuiCRNCBGmXewDfAN207RO1y+sIIeYJIa5pR0DfCCGsdP6jFKIdYb4ihDgthEgSQqwTQlgWWj9EO6pMFEIcFEJ43bft60KI08BdIYSZEMJPCHFS+15+1vaX/zmHCiGGFtreXAhxSwjhW57YlcqjEopSJQkhGgNtgbPFNOkPbJRS5unQXS80I4BBQoi2wBrgRcAR2AFsFUJY6BhaEzQjKBfgKWCxEKKBdt1iIANwAiZrH8U5oo3nXSFEoBCiTv4KKeV3wGrgE+0oIf/L9RKa0Zgt8C7woxDCSUoZDkzjfyMMO237j9B8hj5Aa23Mc3R8n0UZDTwItAC8gIkA2i/6ZcAzgAPwLbCl8HsCxgKDATs03zsbgRWAPZq/R1ChtquAxwu9fhiIyU++StWlEopSmTZpf8Eman9Ff1VUIyGEOZov1JVSynPF9NUQuFlom2HaflOEELvuaztXOwJKB8YA26WUf0gps4F5gBXQXcf3kA28J6XMllLuAFIBdyGEKfAoMEe7r1BgZXGdSCn3ASPQHKbbDiQIIeZr+ylum5+llDe0I7h1wAUgoKi2QggBTAVmaUc/KWgOsT1WwnvrWvjvI4S4dN/6hdr93wa2oklUaPfzrZTyiJQyV0q5EsgEut637XXt36ArmkOcC7Wf46/A0UJtfwQeFkLU175+AvihhLiVKkIlFKUyPSKltMt/ANPvbyCEMEHz5ZEFPF9CXwloRgIASCm3aPucBdw/2rhe6LkzcLXQdnna9S46vocEKWVOoddpQD00o53880D5rlICKeVv2tGHPTAczS/+p4trL4R4stBhpUSgI5rEWhRHNOeXjhdq/7t2eXEOF/77SCnvP2R3s9Dz/PcN0Bx4+b4fC03RfNb57v8bRMt7K9MWrNeetzkAPCqEsAMeQvMDQ6niVEJRqgztr+rvgcbAo9oRRHH+BB7RJqDSFP7iuoHmC7DwPpsC0dpFaWi+iPM10aF/gHggR9tXvma6bKgdcfyJ5hxPxyJiRgjRHFiCJsk6aJNnKCCKag/cAtKBDoUShK2Ush76dx348L5kZC2lXFOoTeH4YgAX7Wefr/DnBprR3ePAKDSH8qJRqjyVUJSq5Gs05zqGag+NlGQ+0AD4QQjRSmjY8L/DMMVZDwwWQvTTHlp7Gc3hmYPa9SHAOCGEqRDiQTTnX0olpcwFfgXmCiGshRDtgQnFtRdCDBdCPCaEaKCNPUC7r8PaJrFAy0Kb1EXzpRyv3X4S/0s++e1d888FaUdeS4DPhRCNtNu4CCEG6fJ+ymgJME0I0UX7XuoKIQZr/x5FOQTkAs9rT9AP59+H7jahORz4AppzKko1oBKKUiVof4E/gyYh3BT/uw9ifFHtpZS30ByLzwD2AylokoEN8Gxx+5FSRqD55fslml/xQ9EksCxtkxe0yxLRXGm1qQxv43k0h4FuojnhvLyEtneAKWjOgySjOW/wqZQy/9DO90B77SGkTVLKMOAzNF/GsYAnmsNC+f5CcwHDTSHELe2y14GLwGEhRDKwG3AvIaZu4t/3oXQu7U1LKYO172WR9n1dRHvCvpj2WWjOHz2F5nN+HNiGJrHnt0kHfkFzAcCvpcWgVA1CTbClKIqxCSGOAN9IKZcXWjYHaCulfLz4LZWqRI1QFEWpdEKIXkKIJtpDXhPQXIb8e6H19mhGMN8ZK0al7FRCURTFGNyBU2gOeb0MjJRSxgAIIaagOdH/m5Ryr/FCVMpKHfJSFEVR9EKNUBRFURS9qFWF2ho2bCjd3NyMHYaiKEq1cvz48VtSypJuigWMmFCEEKOAuWjuOwjQXnpYVLsHgS8AU2CplPKj+9YvBCbrcsOWm5sbwcFF7kZRFEUphhCixKoP+Yx5yCsUzbXoxZ5009Y1Woym9EJ7YKz2hrH89f5obm5TFEVRjMxoCUVKGa69yawkAcBFKeVl7c1Qa9HUPMpPNp8Crxk2UkVRFEUXVf2kvAv3FpWL4n9F/J4HtuRfalgcIcRUIUSwECI4Pj7eQGEqiqIoBj2HIoTYTdHF9f4jpdxcgX6d0RSN611aW+3cEt8B+Pv7q2ukFaUY2dnZREVFkZGRYexQFCOxtLTE1dUVc3Pzcm1v0IQipexfeqsSRXNvFVJX7TJfNBMGXdQWLLUWQlyUUrb+dxeKougiKioKGxsb3NzcuLcQsFIbSClJSEggKiqKFi1alKuPqn7I6xjQRgjRQltF9TE0h7m2SymbSCndpJRuQJpKJopSMRkZGTg4OKhkUksJIXBwcKjQCNVoCUUIESSEiAK6AduFEDu1y52FEDsAtBMZPQ/sBMKB9VLK4qaEVRSlglQyqd0q+vc32n0oUsqNaOaVvn/5DTRzSOe/3oFm3u+S+jLEpEEF9p6PJ/RGEtN7q0GQoihKcar6Ia8q4cDFW8zfdZ7bd7NKb6woSrnVq3fvb8MVK1bw/PMlzQT9byEhIezYUeJv0ApZsWIFjo6O+Pj44OPjw5NPPlnmPvbs2cOQIUMMEJ1xqYSig0d8XcjJk2w7fcPYoSiKUoKcnJwSE0pOTo5e9jNmzBhCQkIICQlh1So1oWQ+lVB04OFUn3ZNbNh4Uk1rrSjGsnXrVrp06YKvry/9+/cnNjYWgLlz5/LEE08QGBjIE088wZw5c1i3bh0+Pj6sW7fuX+tzc3N59dVX6dy5M15eXnz77bcF+/j0008Llr/zzjtlii8kJISuXbvi5eVFUFAQd+7cAeDixYv0798fb29v/Pz8uHTp0j3bHTt2DF9f338tr45qVXHIigjydeH/fjvHlVt3adGwrrHDURSDenfrWcJuJOu1z/bO9XlnaIcS26Snp+Pj41Pw+vbt2wwbNgyABx54gMOHDyOEYOnSpXzyySd89tlnAISFhbF//36srKxYsWIFwcHBLFq0CNAknMLrv/vuO2xtbTl27BiZmZkEBgYycOBALly4wIULFzh69ChSSoYNG8bevXvp2bPnv+Jct24d+/fvB+CFF15g0qRJPPnkk3z55Zf06tWLOXPm8O6777JgwQLGjx/PG2+8QVBQEBkZGeTl5XH9uuZ+7YMHDzJjxgw2b95Ms2bNKv4hG5lKKDoa7uPCR7+fY9PJaGYNaGvscBSlRrKysiIkJKTgdX5yAM19MmPGjCEmJoasrKx77pUYNmwYVlZWxfZbeP2uXbs4ffo0GzZsACApKYkLFy6wa9cudu3aha+vLwCpqalcuHChyIQyZsyYgoSV30diYiK9evUCYMKECYwaNYqUlBSio6MJCgoCNDcO5gsPD2fq1Kns2rULZ2fnsn1QVZRKKDpqYmtJ91YObAqJ5sX+bdTllUqNVtpIwhhmzJjBSy+9xLBhw9izZw9z584tWFe3bslHDQqvl1Ly5ZdfMmjQoHva7Ny5k9mzZ/PMM8/cs3zx4sUsWbIEQK8n+52cnMjIyODkyZM1JqGocyhlEOTrytWENE5cu2PsUBSl1klKSsLFRVPKb+XKlcW2s7GxISUlpdj1gwYN4uuvvyY7OxuA8+fPc/fuXQYNGsSyZctITU0FIDo6mri4OJ577rmCE/DFffHb2trSoEED9u3bB8APP/xAr169sLGxwdXVlU2bNgGQmZlJWloaAHZ2dmzfvp3Zs2ezZ8+esn0YVZRKKGXwYMcmWJqbqJPzimIEc+fOZdSoUXTq1ImGDRsW265Pnz6EhYUVnJS/39NPP0379u3x8/OjY8eOPPPMM+Tk5DBw4EDGjRtHt27d8PT0ZOTIkSUmpvutXLmSV199FS8vL0JCQpgzZw6gSS4LFy7Ey8uL7t27c/PmzYJtGjduzLZt23juuec4cuRIGT6NqqlWzSnv7+8vKzrB1sw1J9l7IZ6jb/bHwkzlY6XmCA8Px8PDw9hhKEZW1P8DIcRxKaV/aduqb8QyCvJzITEtmz0RccYORVEUpUpRCaWMerRuSMN6Fuqwl6Ioyn1UQikjM1MThno782d4HEnp2cYOR1EUpcpQCaUcgnxdyMrNY8eZEieLVBRFqVVUQikHTxdbWjnWZeMJddhLURQln0oo5SCEIMjXhaORt7l+O83Y4SiKolQJKqGU03AfzQ1Wm0PUKEVR9KFPnz7s3LnznmULFizg2WefBeDs2bP07dsXd3d3WrVqxTvvvENeXh7w75LyPj4+hIWF/Wsfpqam+Pj40LFjR4YOHUpiYqJeYo+MjKRjx4566auwiIgIevfujY+PDx4eHkydOlUv/c6dO5d58+bppa/CVEIpp6b21gS0sGfjyWhq0708imIoY8eOZe3atfcsW7t2LWPHjiU9PZ1hw4bxxhtvEBERwZkzZzh69ChffPFFQdvCJeVDQkJo3779v/aRXyssNDQUe3t7Fi9ebPD3VREzZ85k1qxZhISEEB4ezowZM4wdUolUQqmAIF8XLsXf5Ux0krFDUZRqb+TIkWzfvp2sLM1EdpGRkdy4cYMePXrw008/FVQFBrC2tmbRokV8+umn5d5ft27diI7WHGFITU2lX79++Pn54enpyebNmwti8PDwYMqUKXTo0IGBAweSnp4OwPHjx/H29sbb2/uexJSRkcGkSZPw9PTE19eXv//+G9CMoh555BEGDBiAm5sbixYtYv78+fj6+tK1a1du3779rxhjYmJwdXUteO3p6QlQrhL8H374IW3btuWBBx4gIiKi3J9bSVRxyAp42NOJdzafZePJaLxc7YwdjqLoz29vwM0z+u2ziSc89FGxq+3t7QkICOC3335j+PDhrF27ltGjRyOE4OzZs3Tq1Ome9q1atSI9Pb3gsFXhkvIAhw4dKrYCcW5uLn/++SdPPfUUoKkCvHHjRurXr8+tW7fo2rVrQdn8CxcusGbNGpYsWcLo0aP55ZdfePzxx5k0aRKLFi2iZ8+evPrqqwV9L168GCEEZ86c4dy5cwwcOJDz588DEBoaysmTJ8nIyKB169Z8/PHHnDx5klmzZrFq1SpefPHFe+KcNWsWffv2pXv37gwcOJBJkyZhZ2fH999/X6YS/HXr1mXt2rWEhISQk5ODn5/fvz5PfVAjlAqwtTKnn0cjtp66QU5unrHDUZRqr/Bhr/zDXbq6/5BXUckkf76VJk2aEBsby4ABAwBNBeI333wTLy8v+vfvT3R0dMEEXi1atCiYo6VTp05ERkaSmJhIYmJiQWn7J554omAf+/fv5/HHHwegXbt2NG/evCCh9OnTBxsbGxwdHbG1tWXo0KGAZuQRGRn5r3gnTZpEeHg4o0aNYs+ePXTt2pXMzEx27drFqlWr8PHxoUuXLiQkJPyrBL+fnx/nzp3jwoUL7Nu3j6CgIKytralfv35BstQ3NUKpoCBfF34Lvcm+C7fo066RscNRFP0oYSRhSMOHD2fWrFmcOHGCtLS0gl/R7du3Z+/evfe0vXz5Mg4ODtjZ6X50IP8cSlpaGoMGDWLx4sXMnDmT1atXEx8fz/HjxzE3N8fNzY2MjAwA6tSpU7C9qalpwSGv8ijcl4mJScFrExOTYqcndnZ2ZvLkyUyePJmOHTsSGhpa5hL8CxYsKHfMZaFGKBXU270RdtbmqhSLouhBvXr16NOnD5MnT75ndDJ+/Hj279/P7t27Ac1IY+bMmbz77rvl2o+1tTULFy7ks88+Iycnh6SkJBo1aoS5uTl///03V69eLXF7Ozs77OzsCg6xrV69umBdjx49Cl6fP3+ea9eu4e7uXq44f//994Iy+zdv3iQhIQEXF5cyl+Dv2bMnmzZtIj09nZSUFLZu3VqueEqjRigVZGFmwhAvJzYcjyI1M4d6ddRHqigVMXbsWIKCgu654svKyootW7YwY8YMpk+fTnR0NG+99Rbjx48vaHP/OZSvvvqK7t27F7sfX19fvLy8WLNmDePHj2fo0KF4enri7+9Pu3btSo1z+fLlTJ48GSFEwcUCANOnT+fZZ5/F09MTMzMzVqxYcc/IpCx27drFCy+8UDDT46effkqTJk14+umniYyMxM/PDykljo6ObNq0iYEDBxIeHk63bt0ATYL+8ccf8fPzY8yYMXh7e9OoUSM6d+5crnhKo8rX68Hxq7d59OtDzBvlzchOrqVvoChVUHUqX79p0yZeeukl/v77b5o3b27scGoUVb6+EiRGhRe7zq9ZA5o7WLPxZFQlRqQotdcjjzzC5cuXVTKpYlRC0cG2JwMIfXQEebm5Ra4XQvCIjwsHLyVwMymjkqNTFEWpGlRC0UHddq1xSILQzZ8X2+YRXxekVKVYFEWpvVRC0UGnSe+RZQrXNm8otk2LhnXxbWanrvZSFKXWUglFB/WdWhPVxoKGoUlkp6cW2y7I14VzN1MIj0muxOgURVGqBpVQdGTbpyu2d+Hk2g+KbTPEyxkzE6FGKYqi1EoqoejI78l3SbOAuJ1/FNvGvq4Fvd0d2RwSTW5e7bkcW1H0oTLK15eFLiXeg4ODmTlzJgB79uzh4MGDBeu++eYbVq1aVa59zJ07FxcXl4JS+1u2bCmxH132FRISwo4dO0psU1EqoejIukETYjyscApLIz0prth2Qb6uxCZncuhSQiVGpyjVX2WUr8+3Z88eJk6cWOGY/f39WbhwYUGfhRPKtGnTePLJJ8vdd37Z+p9//pnJkycXJM+i6LIvlVCqmEYD+2OdBSdWvVNsm34ejbCpY6YOeylKGVV2+fqy6N27N6+//joBAQG0bduWffv2AZokMmTIECIjI/nmm2/4/PPP8fHxYd++ffeMPpYsWULnzp3x9vbm0UcfJS1N95lePTw8MDMz49atW0RGRtK3b1+8vLzo168f165dA+4d6RQVa1ZWFnPmzGHdunX4+Piwbt06PX9CGkapEyKEGAXMBTyAACllkbevCyEeBL4ATIGlUsqPtMsF8AEwCsgFvpZSLjR03L7j5nBi8VYS/zwIxcxzY2luysOeTmw7fYMPHumIlYWpocNSFL37+OjHnLt9Tq99trNvx+sBrxe7vjLL15dHTk4OR48eZceOHbz77rsFdcUA3NzcmDZtGvXq1eOVV14B4M8//yxYP2LECKZMmQLAW2+9xffff6/zZFlHjhzBxMQER0dHhg0bxoQJE5gwYQLLli1j5syZbNq0SadY33vvPYKDg1m0aFFFPoYSGWuEEgqMAPYW10AIYQosBh4C2gNjhRD5Y9iJQFOgnZTSA1hbZCd6Zm5Vj/iONrhezCI55mKx7YL8XLiblcuusJuVEZai1BiGLl/fpUsXfHx8ePrpp9myZUvB+Zb7z90UZcSIEcD/StiXRWhoKD169MDT05PVq1dz9uzZUrfJH+288sorrFu3DiEEhw4dYty4cYCmZH7hBKqvWCvCKCMUKWU4aO4wL0EAcFFKeVnbdi0wHAgDngXGSSnztP0Vf1JDz5oOG4HF0ZUcXz6XPm/+WGSbADd7XOys2HgyumDueUWpTkoaSRiSocvXHzlyBNAcqlqxYgUrVqzQedv8Ao+mpqbFlpovzsSJE9m0aRPe3t6sWLGCPXv2lLrNrFmzCkY7ZVWRWCuiKp9DcQGuF3odpV0G0AoYI4QIFkL8JoRoU1wnQoip2nbB8fHxFQ7KM+hVbteHjP0hxbYxMREM93Fm34VbxKdkVnifilJbVFb5ekOwsbEhJSWlyHUpKSk4OTmRnZ19T6n7surevXvBCG716tX06NFDL/Hpi8ESihBitxAitIjHcD10XwfI0Fa/XAIsK66hlPI7KaW/lNLf0dGxwjs2MTUl0achTa/kcuvS8WLbBfm6kJsn2XrqRoX3qSi1ydixYzl16tQ9CSW/fH3+vOgNGzYkMDDwX+XrC182XPiKq8owdOhQNm7cWHBSvrD333+fLl26EBgYqFNp/OJ8+eWXLF++HC8vL3744Yd7rnIrTZ8+fQgLCzPoSXmklEZ7AHsA/2LWdQN2Fno9G5itfX4OaKF9LoAkXfbXqVMnqQ/hO7+TYe7t5K7/DC+x3eCFe+WQhfv0sk9FMbSwsDBjh6CzjRs3yhYtWsjIyEhjh1LjFPX/AAiWOnzHVuVDXseANkKIFkIIC+AxIP/unk1AH+3zXsD5ygysbb/JxDYEefhCie0e8XHhTHQSF+MMO8xUlNpGla+vmoySUIQQQUKIKDSjkO1CiJ3a5c5CiB0AUsoc4HlgJxAOrJdS5l8a8RHwqBDiDPB/wNOVGb+JqSnpnZxpGpVH1Infi203zMcZE4G6J0VRlFrBKAlFSrlRSukqpawjpWwspRykXX5DSvlwoXY7pJRtpZStpJQfFlqeKKUcLKX0lFJ2k1Kequz30H68ptxC6I/zi23TyMaSB9o4sunkDfJUKRZFUWq4qnzIq0prHjCcKCeBRXDJszQ+6udCdGI6/1yo+BVmiqIoVZlKKBUgu7bCKU5y8e/ii7I91NGJJvUtWbrvciVGpiiKUvlUQqkAnwmzyRMQsf77YttYmJkwKdCNAxcTCI1OqsToFEVRKpdKKBXQqF13rjc3pf7JuGLnmwcY26UZ9eqYsUSNUhSlRKampvfcS/LRRx/pre/7q+0WV/L+xo0bjBw5Um/7LY/IyEg6duxo1BjKwyilV2oSi8AONFx9mrNbF+L5yKwi29S3NOexzk1ZfjCS1x5sh4ud/grWKUpNYmVlRUhI8VUoKiIkJITg4GAefrjguh/GjBlTZLHEDRuKn+67OsnJycHMrPK+5tUIpYL8Js0l2xSubir5ztNJD7QAYPn+K5URlqLUGElJSbi7uxMREQFo7qRfsmQJAM8++yz+/v506NCBd97537QSx44do3v37nh7exMQEEBSUpLO5dsLjw7S0tIYPXo07du3JygoiC5duhAcrCmOvmvXLrp164afnx+jRo0iNVUzPbibmxvvvPMOfn5+eHp6cu6cpmrzP//8UzAS8vX1JSUlBSklr776Kh07dsTT07PIuLp27XpPMcnevXsTHBzM3bt3mTx5MgEBAfj6+rJ582ZAM/IaNmwYffv2pV+/fgBk5RQ/l4o+qRFKBdm5enCwlTkNzySRk5mOWZ2iRx8udlYM8XJizdFrzOjXBlsr80qOVFF0d/O//yUzXL/l6+t4tKPJm2+W2CY9PR0fH5+C17Nnzy4YRUycOJEXXniBO3fuFJSC//DDD7G3tyc3N5d+/fpx+vRp2rVrx5gxY1i3bh2dO3cmOTkZa2vrf5VvX7FiRZEl7wv76quvaNCgAWFhYYSGhhbEduvWLT744AN2795N3bp1+fjjj5k/fz5z5swBoGHDhpw4cYKvvvqKefPmsXTpUubNm8fixYsJDAwkNTUVS0tLfv31V0JCQjh16hS3bt2ic+fO9OzZ854YxowZw/r163n33XeJiYkhJiYGf39/3nzzTfr27cuyZctITEwkICCA/v37A3DixAlOnz6Nvb09iWlZXL+TTnN7a+ob+HtHjVD0oF6fLtjehZD1H5bYbkqPltzNymXt0WuVFJmiVC/5h7zyH2PGjAFgwIABeHp68txzz7F06dKC9uvXr8fPzw9fX1/Onj1LWFgYERERODk50blzZwDq169f7GGf0kre79+/n8ceewyAjh074uXlBcDhw4cJCwsjMDAQHx8fVq5cydWrVwu2K6p8fGBgIC+99BILFy4kMTERMzMz9u/fz9ixYzE1NaVx48b06tWLY8eO3RPD6NGjCw7BrV+/vuD8zq5du/joo4/w8fGhd+/eZGRkFEy4NWDAAOzt7bl9N4vrt9OwNjelbh3Dz82kRih64D/xfc4t78PNHb/BEx8U266jiy2BrR1YfiCSSYEtsDBT+VypmkobSVS2vLw8wsPDsba25s6dO7i6unLlyhXmzZvHsWPHaNCgARMnTiQjI6NS4pFSMmDAANasWVPk+qLKx7/xxhsMHjyYHTt2EBgYqNMcLAAuLi44ODhw+vRp1q1bxzfffFMQwy+//IK7u/s97Y8cOULdunW5lZrJjcR06tUxw82hLiYmJU4XohfqG00PrBs04Ya7FU3C0shMKXku+Sk9WnIzOUNVIVaUMvj888/x8PDgp59+YtKkSWRnZ5OcnEzdunWxtbUlNjaW3377DQB3d3diYmIKfumnpKSQk5NTrvLtgYGBrF+/HoCwsDDOnDkDaM5rHDhwgIsXNRPt3b17l/PnSy4peOnSJTw9PXn99dfp3Lkz586do0ePHqxbt47c3Fzi4+PZu3cvAQEB/9p2zJgxfPLJJyQlJRWMkgYNGsSXX36ZXzyXkydPFrRPz8rhRmI6tlbmuDWsnGQCKqHoTcOBfaibCcGr5pTYrldbR9wb27Bk3+WC/wiKomjkn0PJf7zxxhtERESwdOlSPvs1qywDAAAgAElEQVTsM3r06EHPnj354IMP8Pb2xtfXl3bt2jFu3DgCAwMBsLCwYN26dcyYMQNvb28GDBhARkZGkeXbSyt5P336dOLj42nfvj1vvfUWHTp0wNbWFkdHR1asWMHYsWPx8vKiW7duBSffi7NgwYKCw2bm5uY89NBDBAUF4eXlhbe3N3379uWTTz6hSZMm/9p25MiRBVMi53v77bfJzs7Gy8uLDh068PbbbyOlJCkti7tZudhZW9DM3hqTkicy1CtRm77U/P39Zf4VGvqWlZZESGBX4lvUYfCvJV/2+HPwdV7dcJpVkwPo2bbic7Qoij6Eh4fj4eFh7DCqlNzcXLKzs7G0tOTSpUv079+fiIgILCwsjB3av0gpiUnK4FZqJvZ1LXCxsyptVtwiFfX/QAhxXGrmnyqRGqHoiYW1LXEdbHA5n0lqXGSJbYf5ONPIpo660VFRqri0tDQeeOABvL29CQoK4quvvqqyySTqTjq3UjNpWK9OuZNJRamEokeuQ4dTJweCl79TYrs6ZqZMDHRj34VbhN1IrqToFEUpKxsbG4KDgzl16hSnT5/moYceMnZI/5InJddup3EnLYvG9S1xsrU0SjIBlVD0ynPEq9y2gfS9J0ptOz6gOdYWpqpopFKl1KZD4DVBXp7kWkIaSenZONla0bh+xZJJRf/+KqHokam5BYk+DrheySHhcslJxdbanMc6N2PLqRvEJKVXUoSKUjxLS0sSEhJUUqkmcvMkkQl3Sc7IxsXOCkebOhXqT0pJQkIClpaW5e5D3YeiZy1HPA77vuDk8g/o//6vJbadFOjGykORLD8QyZsPq5OhinG5uroSFRVFfLyau6eqy5OShNQssnLyaFDXnLgUM+L00K+lpSWurq7l3l4lFD1zHziFvQ5fkHs4otS2Te2tedjTiZ+OXOP5vq2pb6nKsSjGY25uTosWLYwdhlKKhNRMnvj+KBfiUvhyrC+dOjoZO6QC6pCXnpmYmpLm50yz63ncOLW71PZTerQgNTOHdUevV0J0iqJUZzeTMhjz3WEuxaey5El/HqxCyQRUQjGI9uOeA+D0D5+V2tbL1Y6uLe1ZduAK2bmVUxFUUZTq5/rtNEZ9e5CYxHRWTg6gt3sjY4f0LyqhGIBbtxFEOwnMj10tvTEwtWdLYpIy2H46xsCRKYpSHV2MS2XUN4dITs9h9ZSudG3pYOyQiqQSioHkBrTAOVZyce9Ppbbt3bYRrRvV47u9qhyLoij3CrmeyKhvDpKTl8faqV3xaWpn7JCKpRKKgXg/+Tp5wPm135Xa1sREMLVHS8Jikjl4qeTikoqi1B57z8czbslhbCzN+eXZ7ng41Td2SCVSCcVAmnToyfXmptQ7GVvifPP5hvs607BeHb7dq250VBQFtpy6wVMrj9HcoS4bpnWjuUNdY4dUKpVQDMi8e3sc70D4jsWltq1jZsqkQDf2no8nPEaVY1GU2mzlwUheWHsS32YNWDu1K43ql/9mw8qkEooB+U1+hxwTuLJxrU7tx3dphpW5KUv3qXnnFaU2klIy/4/zvLPlLP09GrNqckC1mi5cJRQDatC0A9dbmeNw+g45maWXV7GztmBM56ZsORXNzaTKmXlOUZSqITdP8tamUBb+eYHR/q58Pd4PS3PDT9urTyqhGFi9vl2wS4XgFbpNqTo5sAW5eZIVByMNG5iiKFVGZk4uM9acYPWRazzbuxUfP+qFmWn1+3qufhFXM12fmUdiPUjc+IdO7Zs5WPNQRydWH7lKamaOgaNTFMXYUjNzmLT8GDvO3OStwR68/mA7o5WfryiVUAzMwtqWxEBnmkfmcvHvVTptM7VnS1Iyclh3TJVjUZSa7FZqJmO/O8yRK7eZP9qbp3u0NHZIFaISSiXoPPMTskzh3NIvdWrv3dSOgBb2LNuvyrEoSk11/XYao745xIW4FJY82YkRfuWv8ltVqIRSCRq26sR1T2tcT6Vy5+oZnbaZ2qMl0Ynp7DijyrEoSk1z7mYyj359kITUTFY/3YW+7RobOyS9UAmlkrSePI06OXDki1d0at+3XSNaOtZlyT5VjkVRapLgyNuM/uYQQsDP07rTqbm9sUPSG6MlFCHEKCHEWSFEnhDCv4R2DwohIoQQF4UQbxRa3k8IcUIIESKE2C+EaF05kZdPu4FTuNbMBJt918hOTy21vYmJYEqPloRGJ7P/4q1KiFBRFEP7MzyW8UuP0LBeHX55tjvuTWyMHZJeGXOEEgqMAPYW10AIYQosBh4C2gNjhRDttau/BsZLKX2An4C3DBtuxdUb3hv7FDj87Us6tQ/ydcG1gRUfbg8nR51LUZRq7efg60z94TjuTWz4eVo3XBtYGzskvTNaQpFShkspS5vWMAC4KKW8LKXMAtYCw/O7APIrpdkCNwwTqf50eXoeCbaQvu2ATu0tzU35z8MenLuZwhp1xZeiVEtSShbsPs+rG07TraUDP03pikO9is3/XlVV9XMoLkDhb9Io7TKAp4EdQogo4Ango6I6EEJMFUIECyGCjT1XtlkdK+72bknTqDzCtpde3wvgwY5N6NrSnvm7IkhMyzJwhIqi6FNWTh6vbjjNgt0XGNnJlWUTO1OvTs2ded2gCUUIsVsIEVrEY3jpW5dqFvCwlNIVWA7ML6qRlPI7KaW/lNLf0dFRD7utmK4vzCfdAi6v/F6n9kII5gzpQFJ6Ngt2XzBwdIqi6EtyRjaTVhxlw/EoZvVvy6cjvbAwq+q/4SvGoKlSStm/gl1EA00LvXYFooUQjoC3lPKIdvk64PcK7qtS2Dq7c8OnPs2OJxN3/jCN2nYtdZv2zvUZG9CMHw5fZVyXZrRtXLNO5ClKTROdmM6k5Ue5HH+XeaO8Gdmp+t9joouqni6PAW2EEC2EEBbAY8AW4A5gK4Roq203AAg3Uoxl1n7qy5jnQvDC2Tpv8/JAd+pamPL+tjB1GbGiVGGh0UkELT5ATGIGKycH1JpkAsa9bDhIe/6jG7BdCLFTu9xZCLEDQEqZAzwP7ESTMNZLKc9ql08BfhFCnEJzDuVVY7yP8mj5wGgiW5lhf+gmmSm6zdBoX9eCWQPasu/CLXaHxxk4QkVRyuPviDhGf3sIMxPBhme7E9i6obFDqlSiNv3a9ff3l8HBwcYOA4Cjy17H5pMt3HyyE33e/FGnbbJz83j4i31k5eaxa1ZP6phVr9LWilKT/XTkGm9vDqVdExuWTexM42oyKZYuhBDHpZTF3i+YT6cRihDiVyHEYCFEVT9EVm34T/gvsQ6Qt/OETlMEA5ibmjBnaHuuJqSxbH+kYQNUFEUneXmSj38/x5sbz9CzTUPWP9OtRiWTstA1QXwFjAMuCCE+EkK4GzCmWsHE1JScvh44x0pObyjyiuci9WjjSH+Pxiz66wJxyWoSLkUxpsycXF5YF8LXey4xrkszljzpT90afFlwaXRKKFLK3VLK8YAfEAnsFkIcFEJMEkJUn/kpq5iuL37BXUuIXrO+TNu9NdiDrNw8Pv69tPtCFUUxlMS0LJ5YepStp27wxkPt+PCRjtVyUix90vndCyEcgIlobig8CXyBJsHoNnOU8i/1HJoS29mB5hFZRJ/cqfN2bg3rMvmBFvxyIoqQ64kGjFBRlKJcS0hjxNcHCbmeyMKxvkzr1araToqlT7qeQ9kI7AOsgaFSymFSynVSyhlAPUMGWNP5TH8bgJCv3i/TdjP6tsHRpg5zt5wlL6/2XFihKMYWcj2RoK8OkJCaxY9Pd2GYt7OxQ6oydB2hLJRStpdS/p+U8p4JOnQ5868Uz8V3EFfdLWh8LIHUBN3rddWrY8Zrg9wJuZ7IppBoA0aoKEq+nWdv8th3h7CuY8qv07sT0KLmlJ7XB10TSgMhxIj7Hv2EEI0MGl0t4TJ2NHUz4PDCF8u03aN+rni72vLRb+e4q+afVxSDkVKy+O+LTPvxOO5N6rNxeiCtHNXBmfvpmlCeApYC47WPJcDrwAEhxBMGiq3W8Br5BjcaC8x2h+l8CTFo5kyZM7QDcSmZfLXnogEjVJTaKz0rl5lrQ/h0ZwRDvZxZN7UrDWtoteCK0jWhmAMeUspHpZSPopmbRAJd0CQWpQJMTE0xGeRH4wQIXvWfMm3bqXkDgnxdWLLvCtcS0gwUoaLUTjFJ6Yz+9hDbTt/gtQfd+eIxHyzN1Q3FxdE1obhKKWMLvY4DmkopbwPZ+g+r9uk+4wuS6kLCL9vLvO3rD7bDzETw4Y4wA0SmKLXTiWt3GLboAJfjU1nyhD/Te7dWV3KVQteEskcIsU0IMUEIMQHYrF1WF1DXrepBHRsHbndtjNvFHK4c3FCmbZvYWvJcn9bsPBvLATVdsKJU2IbjUTz27WGszE3Z+Fwg/ds3NnZI1YKuCeU5NHOO+Ggfq4DnpJR3pZR9DBVcbeM/47/kmMDZb+eVedunHmiBawMr3tsapqYLVpRyys2TfLg9jFd+PkWn5g3Y/Fygmi6iDEpNKNp53f+SUv4ipZylfWyQtamqZCVp1K47Vzta4XwyiaQbZbsL3tLclLcGexARm8JPR68ZKEJFqbmS0rOZvOIYS/ZdYUK35qx6KoAGdS2MHVa1UmpCkVLmAnlCCNtKiKfWaznhKayy4PAXL5V520EdmtCtpQOf7TrPnbtqumBF0dWl+FSCFh/gwMVb/DfIk3eHd8S8lpdRKQ9dP7FU4IwQ4nshxML8hyEDq63aD36O664m1N1zmZzM9DJtK4TgnWHtScnIZsHu8waKUFFqln/Ox/PI4gMkpmez+ukujOvSzNghVVu6JpRfgbeBvcDxQg/FAKyGBOKQBEeWvlLmbds1qc/4Ls358cg1Im6mGCA6RakZpJQs3XeZScuP4mJnxebnAunS0sHYYVVrOk+wJYSwAppJKattiduqNMFWSbLTUznaqzOpdiYM2nW2zNvfuZtF73l76OBcn9VPd1GXOirKfTJzcvnPxlA2HI9iUIfGzB/tU6vLzpdG3xNsDQVCgN+1r32EEFsqFqJSHHOreqQ80Ixm1/I4t2tJmbdvUNeClwa05eClBH4PvWmACBWl+opLyWDsd4fZcDyKmf3a8PX4TiqZ6Imuh7zmAgFo7zmRUoYALQ0UkwJ0eWEemWZwcfk35dp+fJdmeDjV582NZ7iRWLZzMYpSUx2/eofhiw4QFpPM4nF+vDSgLSYmagSvL7omlGwpZdJ9y9TNDgbUoLknUd71aHomjYTLJ8q8vZmpCYvH+ZKVk8fzP50gW92botRiUkqW7b/CmG8PYWoi2DCtO4O9nIwdVo2ja0I5K4QYB5gKIdoIIb4EDhowLgVoN/VFzHLg8Eczy7V9S8d6fDzSixPXEvn4t3N6jk5RqoeUjGymrz7Be9vC6O3eiO0zetDRRd0FYQi6JpQZQAcgE1gDJANlq7WulFnrXuO54mmJ68EEbpzaXa4+hng5M6Fbc5buv6LOpyi1TnhMMsMWHWBXWCyzH2rHkic7YWutZi03FF3nlE+TUv5HStlZSumvfZ5h6OAU8Jn9fwgJJ/5b/qLObw72wMvVllc3nFIViZVaY33wdR5ZfIC7mTn89HQXnlHT9Bqcrld5tRVCfCeE2CWE+Cv/YejgFHD1e5Dr3expcSqNiN3fl6uPOmamLB7nhwCm/3ScjGzd51xRlOomIzuX1zac4rUNp/Fr1oDtM3uo+0sqia6HvH4GTgJvAa8WeiiVoPs735FuCZfnLyh3H03trflstA+h0cl8sF2VuVdqpiu37vLI4gOsD47i+T6t+fHpLjjaqMmwKouuCSVHSvm1lPKolPJ4/sOgkSkFGjTtwK3+brhdzuHYyrJNwFXYgPaNeaZnS348fI3Nah56pYb57UwMQ7/cz83kDJZP6swrg9wxVZcEVypdE8pWIcR0IYSTEMI+/2HQyJR79Hp7JbfrQ/KyjeRml7/w4yuD3PFv3oDZv57hYlyqHiNUFOPIysnjva1hPLv6BK0a1WP7zB70cW9k7LBqJV0TygQ0h7gO8r86XlW/hkkNYmXbiKwRnXGOlexf8Ey5+zE3NeHLcb5YmpsyffVx0rPU+RSl+rqRmM5j3x1i2YErTOzuxs/PdMPFzsrYYdVaul7l1aKIh7pTvpL1fHkpMY0EphsOk5mSUO5+nGytWDDGhwtxqby9OVSPESpK5fnnfDyDF+4j4mYKi8b5MndYByzMVMl5Yyrx0xdCvFbo+aj71v3XUEEpRTM1t6DepGE4JMGeD56sUF892zoyo28bNhyPYv2x63qKUFEMLzdPMv+P80xcfpRGNpZsmfEAQ7ycjR2WQukjlMcKPZ9937oH9RyLooOASR9xtYUp9jsvkxgVXqG+XujXhsDWDry9OZTwmGQ9RagohnP9dhpjvj3Ewj8vMMLXlU3PBdLKsZ6xw1K0SksoopjnRb1WKknzmc9jnQEH3ptSoX5MTQQLxvhia2XO9NUnSMnI1lOEiqJfUkrWB1/nwQV7ibiZwvzR3swb5YWVhamxQ1MKKS2hyGKeF/VaqSQeD03jipcVrgcSiD65s0J9OdrU4cuxvlxNuMvsX8+g6/w4ilJZElIzmfbjcV7bcJqOLrb89mIPRvi5qrveq6DSEoq3ECJZCJECeGmf57/2LO9OhRCjhBBnhRB5QohiJ20RQiwTQsQJIULvW24vhPhDCHFB+2+D8sZSXfnO/j8ATn50/5HIsuvS0oFXBrmz7XQMPxy+WuH+FEVf/joXy6AF+/j7XDxvPtyOn6Z0xbWBtbHDUopRYkKRUppKKetLKW2klGba5/mvK1JhLRQYgWZK4ZKsoOhzNW8Af0op2wB/al/XKi6+g4jqZk+LU+mc2/ldhfub1rMVfds14v1tYZy6nqiHCBWl/NKycvjPxjNMXhFMw3oWbH4+kKk9W6kbFas4o1xjJ6UM12UqYSnlXuB2EauGAyu1z1cCj+gxvGojvyTLlS8WVrgvExPBZ6O8aWRjyXM/nSApTZ1PUYzj5LU7DF64n5+OXmNqz5Zsei4QD6f6xg5L0UF1vWi7sZQyRvv8JtC4uIZCiKlCiGAhRHB8fHzlRFdJGjTtQMLAFrhdzuXYyjcr3l9dCxaN8yU2OYOXfz6lzqcolSo7N4/P/zjPyG8OkZWTx09Pd+XNhz2wNFcn3qsLgyUUIcRuIURoEY/h+tyP1HzrFfvNJ6X8Tlty39/R0VGfu64Ser/9g7Yky6YKlWTJ59usAbMf8mB3eCxf/3NJDxEqSukuxacy8uuDfPHnBYZ7O/Pbiz3o1kpVCNaHxKhwtk3sSnLMRYPvy2AJRUrZX0rZsYjHZj10HyuEcALQ/hunhz6rpTo2DmQ/GoBzrGTf/IpdRpxvUqAbQ7yc+OT3CL7ff0UvfSpKUaSU/HD4KoMX7iMyIY3F4/yYP8aH+pZqEix9OLn2A86OGEHzo0mEbqr4ofHSmBl8D4axBU19sY+0/+ojSVVbPV5awp4dPlj+cpTM6QnUsanYLzshBPNH+5CbJ3l/WxiZOblM791aT9EqikZccgav/XKaPRHx9GjTkE9HetPE1tLYYdUIWWlJ/PHyMNz2xJFiC+L/nqH7cMNPsmuUcyhCiCAhRBTQDdguhNipXe4shNhRqN0a4BDgLoSIEkI8pV31ETBACHEB6K99XWuZmltQf3IQ9smw5/0n9NKnhZkJX471ZbiPM5/8HsHnf5xX51QUvZBSsjkkmkEL9nLoUgLvDuvAqskBKpnoydWjm/lnSDda/h3HFS9rfDdvp2MlJBMAUZu+JPz9/WVwcM0tkvzbQx1xjMml1dYNNGjaQS995uZJ3vjlND8fj2Jar1a8/qC7uqFMKbfIW3d5e3Mo+y7cwsvVlvmjvWndyMbYYdUIebm57P10IvV/CkYKuDshkJ4vLdVL30KI41LKYu8ZzFddD3kpRWjx4kxyX/icg+9OZfDSA3rp09RE8PGjXliYmfDNP5fIzMllzpD2KqkoZZKZk8t3/1zmy78vYmFqwtyh7Xmim5u6r0RPkm5EsG/GGFqdzeS6qwkdPp2Pi++gSo9DJZQapN2gqWzz/oamh24TfXKn3v5DmZgIPnikI3XMTFl24ApZOXm8P7wjJurLQNHB4csJ/GfjGS7F32WwpxNvD2mvDm/pUcj6/+PuvFW4pUDkQGcGfLoNszrGmRNGJZQaxu/NT4gfN4OT/zcbl/X6+4UihODtIR7UMTfh6z2XyMzJ4+NHvdQvTKVYt+9m8eH2cH45EYVrAyuWT+xMn3ZqJkV9yU5P5Y9XhtD8r1jybCHvw6d4aMQrRo1JJZQaxtm7Pye7O9BiXwLhv32Dx0PT9Na3EILXBrljaWbK57vPk5WTx/zR3piZVtf7YxVDyMuTbDgexX9/Cyc1I4fpvVsxo28bVRlYj64d28q5N96gRXQel7ys6PnFeuo7Gf9KTJVQaqDAd5ZwYcgIEhYu0mtCAU1SeaF/GyzMTPj493Nk5eSxcKyvmilPAeB8bApvbQzlaORtOrs14MMgT9o2Vifd9WnPxxOwWX0UByDuqa4MeXW5sUMqoL4FaiA7Vw9uD2pJ8yu5HF1umLqZz/ZuxZwh7fn97E2m/XicjGw1N31tlp6Vyye/n+PhL/ZxPi6FTx71Yt3UbiqZ6FFyzEW2jfKl8fKjJDQyodHyefSqQskE1GXDNVZmSgJHBzwAgM/m7dg0bmmQ/fx4+CpvbQqlR5uGfPeEvzqsUQv9HRHHnM2hXL+dzqN+rrz5cDsc6tUxdlg1yqkNH5Hy6UrskuFaPycGfLoFc6vKm6lS18uG1Qilhqpj44DNS09inwT/vDDKYPt5vGtzPh3pxf6Lt5i04ih3M3MMti+laolNzuC51SeYtPwYFqYmrJnSlc9Ge6tkokeZKQlsn9oDs7c1xdVz35/Aw4v+qtRkUhYqodRgPqNnE9nLkVYhaRxYNN1g+xnl35QFY3w4FnmHJ5cdJVlNJVyjJaVn88nv5+j16d/8ER7LywPasuMFVcxR387tWsKBh3vQcu8trvjUxXvLdrxHVu2pn9QhrxouKzWRfYO7Uz9Z0mz1Ehq3f8Bg+/o9NIYZa07i4VSfVZMDsLO2MNi+lMqXnpXLioORfL3nIimZOQzzdublAe40c1AzKOpTTmY6u2c/gvPOa6RZgpwykG7TvjBqTLoe8lIJpRa4+M9q7j73ATeamTFoawgmpoY7z/FneCzP/niCFg3rsnCsL+5N1EnZ6i47N491x66z8M8LxKVk0rddI14Z6E57ZzXplb5dPbKRiP+8RdOoPK64WxAwfxkNW3UydlgqoRSltiYUgF3/GU7TX84TNdKdAR9sMui+Dly8xcw1J0nJyOGF/m14pmdLda9KNZSXJ9l6+gbz/zjP1YQ0/Js34PWH2tHZzd7YodU4ebm5/PXeGBx+PUueCSSP7UyvV5cb9MdfWaiEUoTanFDycnPZOcQbp+u52Hz9Dq16PGbQ/d2+m8WczaFsOx2Dl6st80Z5q0tIqwkpJXvOx/PJ7xGExyTTrokNrz3oTh/3RqqGmwHEhu3nxKvP4nYph6vNTfH6ZAHO3v2NHdY9VEIpQm1OKAA3z+7l+vhnSLIT9NxxCAtrW4Pvc8eZGN7eFKpGK9VEcORtPvk9gqORt2lmb83LA9sy1MtZ1W0zkL2fT8Fq5X4sciB2aGv6vfcLpuZV79yjSihFqO0JBWD/F9Nw+PofLvdpxOCv/6mUfSakZjJn81m2n4nBWztaaaNGK1VKeEwy83ZG8Oe5OBxt6jCzXxvG+DdVFRAM5M71sxyY9TitQjOIbiJwe+8tWvccZ+ywiqUSShFUQtHYNqYTLU6nkfP+hEq9DHH76Rje3hxKakYOLw5ow9QearRibNcS0vh893k2hURTr44Z03q1YlKgG9YWqiqToRxd/gY5izdT/y5c69eE/p9sqpSjBRWhEkoRVELRSI65yOlHhiKFYe+iL8qt1EzmbA5lx5mbarRiJFJKDl1OYOXBSP4Ii8Xc1IRJgS2Y1qulutTbgO4m3ODvWUG0OppMnD00nP0sHYbONHZYOlEJpQgqofxPyLoPMZ/7I1d8rBmy5nil73/b6RvM2XyW1IwcZg1oy5QeLdRoxcDSsnLYeDKaVQevEhGbQgNrcx4LaMbE7m40rq/mJzGkE2veJ/WLn3BMhEvd7Og7fyPWDZoYOyydqYRSBJVQ7rX9mR60/OcWt5/vQ+DzX1X6/m+lZvL2plB+C72Jd1M7PhvlpaaDNYBrCWmsOhTJ+uDrJGfk0N6pPhO7uzHMxxlL86pxWWpNlRJ7mX9eeYxWx1JIsAWrGaPo9Ph7xg6rzFRCKYJKKPfKv4veJlnituZ7GrXrXukxSCnZdjqGOZtDuZuVy0sD2jKlR0s1cVcFSSnZd+EWKw9G8ldEHCZC8GDHJkzs7oZ/8wbq8t9KcHTZ62R/swW7ZLjS1Zben/1MPYemxg6rXFRCKYJKKP9WmXfRlyQ+RTNa+f2sZrQyo09r+rRrpBJLGaVm5vDL8ShWHorkcvxdGtazYGxAM8Z3aa6m3a0kiVHh7H/lcVqFpBFnD3YvVe7FL4agEkoRVEIp2q7Zw2i68QJRo9ox4P2NRotDSsnW0zF8sC2MuJRMXOysGNelGaP9m+JooyrYluRyfCqrDl1lw/EoUjNz8Ha1ZUJ3NwZ7OVHHTB3WqiwHv5qBWLYbm7twtUdD+n76C1a21X/aY5VQiqASStFys7PYNcyv0u6iL012bh5/hMXy4+GrHLyUgLmpYFCHJjzetTldWtirwzVa8SmZ/HUulm2nY9h34RbmpoLBnk5M6O6Gb7MGxg6vVkm4fIJDrz1Fq9AMbjoKGr02rdpcwaULlVCKoBJK8YxxF70uLsWnsvrwNTYc15xQbtOoHuO7NGNEJ1fqW5obO7xKJaXkQlwqf4TFsjs8lpDriUgJLnZWjPJ3ZVyXZjSyUYe1KlNebi77F06jzg/7sc6A632b0P+jjVjUszN2aHqlEkoRVDBVkhQAABhPSURBVEIp2f4vnsHh671c6duYh7/aY+xw7pGelcvW0zdYffgqp6KSsDI35RFfZ8Z3aU5Hl6qR/AwhOzePY5G32R0Wx+7wWK7dTgPAy9WW/h6N6e/RGA8nGzVqM4K4cwcJfn0aLSKyiW4iaPrWy7j3f8rYYRmESihFUAmldNvG+NHidDo5H0zC+9HXjB1OkU5HJfLj4atsOXWDjOw8fJra8XjX5gzxcqoRl8EmZ2TzT0Q8u8Nj+ftcHMkZOViYmRDYyoH+7RvTr11jdYLdiPJyc/nn4wnYrD+OeTbEDGpGvw9/qbKzKOqDSihFUAmldMa8i76sktKy+eVEFD8eucrl+LvYWZsz0s+VXu6OtHeqX62mor1+O40/w2PZHR7H4csJ5ORJ7Ota0LddI/p7NKZHm4bUraPKoRjbjVO7OTV7Fm6Xc7juYkKruW8b/ZxjZVAJpQgqoejm5NoPsJi7miueVjy89liVmZOhOPmlRFYfvsbOszfJydP8n25S35L2zvXp4Fyf9k716eBsS1N7K6MdHpJScis1iwtxKVyMS+VCbGrB81upWQC0dKzLAI/G9G/fGL9mDdRl01VEdnoqf80dg+NvlzGREDekNX3nrsesjpWxQ6sUKqEUQSUU3e14vg8tdt/kcq+GDP52n7HD0VlS2v+3d+dxVZX5A8c/34tAICSKghIKiltaam6ZmlqaW1baMi2a6VQztm9jTVnj1NSvGmtabJvKskUrx2kzNbcs08zEDUXNUEEFERcUUGS5PL8/ztFBu+hV7+Vw4ft+ve6L557zcM73ufdyv5zznPM8JazLOsD6rDxSsw6wfmceaTkF2DmGyNBanHs0wZxNm7izaRET6dNRdY0x5OQXHU0Yv+UUkGaXcw+VHK0XGVqLFrERtIiJpFXDSHq3akBSg+p72iRQrf3iRXa/NIlGOYb0ZrVo8/enSeh6ldNhVSpNKB5oQvFemdvNrJHdSFpRwLYrmzLgn7OcDum0HS5x82t2PqlZeazfeYDUrDw27synsMQNQHCQ0CImkrZxZ1Pfw/0unv5EDL9fuP9gydEEkn+49OjyOmHBtIyNoHlMJC1iImgRG0HL2EhiIkO1M70Ky92eypJHR9E0uYADEVB2cy+63/1GlT9i9wdNKB5oQjk1pUWFzLm+G802FpM98gIueWyq0yH5jLvMsHXPQdbvtI9ksvLYsDOPvMLS31eu4Dv/+MWRZ9WieYx1xNEiNuJouX5EiCaOAFLmdvPDhNGET1tO7UJIvyiK3s9OqdL9if6mCcUDTSinrih/Lwuv6018hpu8e/rR/c6JToeklN+kLZrK5qefocm2MnY0EuIfvpdzB41xOizHeZtQdLxwdUKhkdH0/PAbshsKtV+fz4qpTzodklI+dyg3m5ljelE45h9E7yoj8/o2XDp3tSaTU+RIQhGR60QkVUTKRKTCrCci74lIjoisO275BBHZKCIpIvKFiFSv21KrmIiYRC6Y9DG5UcBzn7JhduUPda+Uv/z89oOsHHgJzb7fTUbbMBKmf0C/J6vm3O5VnVNHKOuAq4FFJ6k3GRjoYfk84DxjTDtgE/CoT6NTvxPdrCMt33yNw2dB3riJbP1putMhKXVGslIWMHNoe+r8azbuIDj0+HUM+c9KGrTo6nRoAcuRhGKM2WCM+dWLeouAfR6WzzXGHOk9/RmI93GIyoO4dn1p+OJ4xEDmA0+QnXqy/weUqnpKCguY88jlZI+4m/i0YtIHnsNFc5cG5MRXVU116EP5IzC7opUi8icRSRaR5N27d1diWNVT0sU3UPupOwgvhA1/HkNuxlqnQ1LKayumPsmPA7rS5Kst7IqvRdR7zzHo5fnVbjBHp/gtoYjIfBFZ5+HhszuCRGQcUApMqaiOMeZtY0xnY0znBg0a+GrXNVrbK+6lbOw1ROcakkffQMHe7U6HpNQJpS/9nFlXtSP8qU8JLTTsGXMxA2asrnE3KPqb3wYHMsb089e2AURkFDAE6Gtq0rXPVUTnm59m8b49xL31Az/ePIi+0xbrf3mqytm/YwNLxt9Kk6W5NAqC9AFx9P77FMLrNnQ6tGopIE95ichA4GHgSmPMIafjqal63vcW2TeeT+IWN/NG9sFdUux0SEoBVj/JvMeHsumKq0lckktGu3DiPnuHQa8s0GTiR05dNjxMRHYAFwEzRWSOvTxORGaVq/cJsBRoJSI7ROTIZAOvAZHAPBFZLSJvVXITlK3v36aRMbgJzdYXMfvWnpS53U6HpGq4XyY9zJJ+XYif/iu5DVy4XrqHIZ+uILZNT6dDq/b0TnnlEzNv60GzxfvY2q8hg19b6HQ4qgZK+2EKvz3/HIlbStkTBa4Rl3DRHRNr5NhbvqZ3yqtKNejfi9jcIZym87OZO047OlXl2btlJd+M7MrhMU8Tk1nKtisS6TpvMT1q6ECOTtKEonzCFRTEgPd/YGvLYBr/dxPf/3OU0yGpaq64YD9zHh7M1mHDSVyeT3rnSBI+/5gBE2YTGhntdHg1kiYU5TPBYRFc8tF8tjV20eD9ZXz70EDtU1E+V+Z2s+T1u/i530U0+Xoru+OCCH39rwz56BfqJ3VyOrwaTROK8qmwOjH0mDKT9NYhJMzMYPa1HSnISXc6LFUNlLndLP/gMRZc1o56E7+jLAjy/jKEQbPX0eLSW5wOT6EJRflBREwig6avJOPyBBI3FpM8bJCO/aXOyMop45k/oB0Rz35BeH4Zmde3pcf85Vx42wSnQ1PlaEJRfuEKCmLgi99y6K/DqH0I9o15gqVv3ed0WCrArP7sGeb0b0vYP6YRub+MHde0pPN3i+n35HSCw3S65KpGLxtWfrd9xUw2PTiWuF2GrX1jGfDyXB0aXJ1QyucvkPXOZBK2ujlQG/IuS6LnI+/qTYkO0cuGVZXRuNPlXPTld2xuH0bTBbuYM6wT+3dscDosVQWlzniV2ZefT/Bjk6iX7WbbFYmcP3cB/Z/7RpNJANCEoipFeN2GDJ66nB3XtKTxllJSrr2aTfPfdzosVUVsmP0Ws65oh2vsm9TPLCV9UGPazJnNgAmzqR0d53R4ykuaUFSlcQUFcdkzX+EeP4KQEjj4wD9Z9K/bnA5LOWjT/PeZObQ9PPAKMdtKSO8fR6vZMxj00lwiYhKdDk+dIu1DUY7ITl1Eyr130DizjC0969F/4hztZK1Bfp0/ibQ3JpK4vojDIbDr4li6P/omUfHnOh2a8sDbPhRNKMoxxQX7mTumP0nJ+WQkBtHljQ+JbtbR6bCUn7hLivll0lgOfLmAhHQ3h4Mhq0cDuj/6OnUTznc6PHUC2imvqryQiCiGfPwLO0e0p9F2NxtvGE7qNxOdDkv5WEFOOvPGXcWSXu2JenkuZ+9xkzG4MYnfTOPytxZpMqlG9AhFVQmpM15l/1NvEnEI9t7YgT6PfqwD+wW4rDXzWTVxPLHL91G7CDIbCSGXd6PbnS8REl7H6fDUKdBTXh5oQqna9mxeQfKdt5CQ4SYjMYjGd/+ZtkPucTosdYpSPn+B7R9/TMKGIgRIbx1C/IjhnD/0If0nIUBpQvFAE0rVV1JYwMKnbiTq2zQiC2FLm1DOe2Q8CRcOczo0dQIlhQUsfeM+imYuJT7LcCgUsrvUo/2dTxDfcaDT4akzpAnFA00ogSNvZxo/PnUr5yzOIcgNGV3qcOHjr9KgRVenQ1Pl5G5PZdlLDxL54zbq5cPuKDjctyXd73tFL/utRjSheKAJJfDsWr+Y5c88QOLKAoqDIbtXI3r97T39snKQu6SYNdOfJ2vGV8SvPUhoCWxr4iJyWF8uvO0FHVanGtKE4oEmlMC1+cdP2fjiszTbWMyB2pA/uDW9H52snbuV6LfvPmDTZ+8StWoP9fKgKBh2tAknadTtnDtojNPhKT/ShOKBJpTAl/L5C2S/8T6Nd5Sxuy7I9RfT4543tbPXT7JTF7Fm8rMEL8ugUY7BLbC9aS3Cenek8+gn9UixhtCE4oEmlOqhzO1m2TsPUvTxXGL3WJej1r39ejrdNN7p0KqFvJ1pJE96nOLF62ic7saF9RqXdUuiw+hxxLTs5nSIqpJpQvFAE0r1UlpUyKIJoznrqzXUzYf0pFo0e+B+WvW71enQAk5xwX6SP3yC3Pk/Er+piJBS2BMF+Z1iOXf43TTtfq3TISoHaULxQBNK9XQoN5tFT4+i/vwMwopge2IQQV1a0H74WGJad3c6vCqruGA/a79+hZ2zZhK7Lp+Iw5AfBjnnn02Toddx3lUP6KlEBWhC8UgTSvWWm7GWpc/fQ8SqXTTIhTIgM94FnZty3o33E9e+n9MhOspdUsym+e+SsWAGZv12Gm53c1YJFNWCHa1CqT/gUjqOGK8XOqjf0YTigSaUmqHM7SZt4YekffkhYat30XCP9Rnf0Uhwd0qgzfV30qTLFQ5H6X9lbjcZy75g8+ypFK3dTExGMRGF1rqcepDfPJK6XTrR7g9jiYxt5mywqkrThOKBJpSaacviafw6/R1CVmUSt8v6vGfFCsUXxNHymttIuvgGhyP0nezURWyY8S4HV6VSd8sh6uVby/dFQm6zcCIuaEOrIbfS6Lw+jsapAosmFA80oahty2ew/rM3CFqZQXyW9dnPri8Uto+h+bBbaH7JyIDpNygu2M+2lbPIXvUD+1esJmJzHrF7rXUFZ0FOYgih5yeRNOgmEi4cFjDtUlWPJhQPNKGo8rJSFrDuk5cxyVuI316GC+uLeH9doSg6FFfDKMIbNyG6ZTviO/Z3ZJh1d0kxO9d+R9aa7zmQtoGizF0E5RwkYl8p9Q6Ay/7zLQqGnY2DkDaNSeh7BS373aZ3rCuf0YTigSYUVZGcjT+R8sm/OLw5g1p7Conc5yYq79gJgw7ayeZwdCiumDqENbGSzTkdLqVuQvtTOgIoc7txFxdSVlpESfEhDu3NJGv1QvZtWkPhtkxkVx5he0uot98QUvq/3zscDPvqCYejQ5CGUYQ1aUL91hfQqt9oQiKifPeCKFWOJhQPNKGoU1GUv5ftK78lZ/0y8remUZK1h1p7DhGR66bugeOSTSgcrA1SZh01uMr+Vw6yy0H2cpddrkipC/ZFwcHoYExsJKHnNKJey7bEdehLTOseeupKVTpvE0qtyghGqUAUGhlN897Dad57+O/WFeXvZfuqOeSk/kx++mZKMncjB4swLgGXC4IERKyfLhe4BAlyQZALXC7E5YKgICRIEFcQrtBQzm7WgkbtehLX7jKCwyIcaLFSZ0YTilKnITQymua9bqJ5r5ucDkWpKkPnlFdKKeUTjiQUEblORFJFpExEKjwvJyLviUiOiKyrYP1DImJEpL7/olVKKeUNp45Q1gFXA4tOUm8y4HH+UBFpDPQHtvk0MqWUUqfFkYRijNlgjPnVi3qLgH0VrH4JeBioOZepKaVUFRaQfSgichWQaYxZ40XdP4lIsogk7969uxKiU0qpmslvV3mJyHygoYdV44wxX53BdsOBx7BOd52UMeZt4G2w7kM53f0qpZQ6Mb8lFGOMv8YKTwKaAmtEBCAeWCkiXY0x2X7ap1JKqZMIuPtQjDFrgZgjz0UkHehsjNnjWFBKKaWcGXpFRIYBE4EGwH5gtTFmgIjEAe8aYwbb9T4B+gD1gV3AeGPMpOO2lY6XCUVEdgMZpxl2faCmJS1tc82gba4ZzqTNCcaYBierVKPG8joTIpLszVg21Ym2uWbQNtcMldHmgLzKSymlVNWjCUUppZRPaELx3ttOB+AAbXPNoG2uGfzeZu1DUUop5RN6hKKUUsonNKEopZTyCU0oxxGRgSLyq4ikichfPawfJSK7RWS1/bjNiTh96WRttuv8QUTW29MOTK3sGH3Ni/f5pXLv8SYR2e9EnL7kRZubiMhCEVklIikiMtiJOH3Fi/YmiMgCu63fi0i8E3H6khdTfoiIvGq/Jiki0tGnARhj9GE/gCBgM9AMCAHWAG2OqzMKeM3pWCu5zS2AVUBd+3mM03H7u83H1b8HeM/puCvhfX4buMMutwHSnY7bz+39D3CLXb4U+MjpuH3Q7l5AR2BdBesHA7MBAboBy3y5fz1COVZXIM0Ys8UYUwx8ClzlcEz+5k2bbwdeN8bkAhhjcio5Rl871ff5RuCTSonMf7xpswHOtst1gKxKjM/XvGlvG+A7u7zQw/qAY0485QdYbfzQWH4GokSkka/2rwnlWOcA28s932EvO9419uHidHuir0DmTZtbAi1FZImI/CwiHic9CyDevs+ISALWYKTfeVofQLxp89+BESKyA5iFdWQWqLxp7xqsif4AhgGRIhJdCbE5yevP/unQhHLqZgCJxph2wDzgA4fjqQy1sE579cH6b/0dEYlyNKLKcwMw3RjjdjqQSnAjMNkYE491auQjEanO3xF/AXqLyCqgN5AJ1IT32W+q84fldGQC5Y844u1lRxlj9hpjiuyn7wKdKik2fzlpm7H+i/naGFNijNkKbMJKMIHKmzYfcQOBf7oLvGvzrcA0AGPMUuAsrAEFA5E3f8tZxpirjTEXAOPsZQF/8cVJnMpn/5RpQjnWcqCFiDQVkRCsL5Ovy1c47nzjlcCGSozPH07aZuBLrKMTRKQ+1imwLZUZpI9502ZEpDVQF1hayfH5gzdt3gb0BRCRc7ESSqBOc+rN33L9ckdgjwLvVXKMTvgaGGlf7dUNOGCM2emrjQfcfCj+ZIwpFZG7gTlYV4m8Z4xJFZGngGRjzNfAvSJyJVCK1fk1yrGAfcDLNs8B+ovIeqxTAmONMXudi/rMeNlmsL6EPjX25TGBzMs2P4R1OvMBrA76UYHadi/b2wd4VkQMsAi4y7GAfaT8lB92X9h4IBjAGPMWVt/YYCANOASM9un+A/TzopRSqorRU15KKaV8QhOKUkopn9CEopRSyic0oSillPIJTShKKaV8QhOKCmgiUuBFnftFJNyH+xwqIm18uL2fzuB3C+yfcSIy/QT1okTkztPdj1Le0ISiaoL7gVNKKCISdILVQ7EGFvQJY0x3H2wjyxhz7QmqRAGaUJRfaUJR1YKI9LHntJguIhtFZIp9N/C9QBywUEQW2nX7i8hSEVkpIv8RkQh7ebqIPC8iK4HrROR2EVkuImtE5L8iEi4i3bFGSJhgz5WSJCId7EEzU0TkCxGpa2/ve7HmVUkWkQ0i0kVEPheR30Tk6XKxF5QrPyIia+19PuehnU3t2Ncet43EI3NgiEhbEfnFji9FRFoAzwFJ9rIJIhIh1lwgK+1tXVVuOxtE5B2x5r6ZKyJh9rrmIjLfjm2liCTZy8far1OKiDzp0zdWBRanx+/Xhz7O5AEU2D/7AAewxiZyYQ2X0tNelw7Ut8v1se6Krm0/fwT4W7l6D5fbdnS58tPAPXZ5MnBtuXUpQG+7/BTwsl3+HnjeLt+HNRx8IyAUa3y06OPaMAj4CQi3n9fz0N6vgZF2+a5yv5uIPQcGMBEYbpdDgLDy6+3ltYCzy70maVhzZCRijQLRwV43DRhhl5cBw+zyWVhHff2x5lER+3X/Bujl9OdCH848dOgVVZ38YozZASAiq7G+HBcfV6cb1umqJSIC1hdu+bG6PitXPs8+CogCIrCG8TiGiNQBoowxP9iLPsCauOmII8O4rAVSjT1ukohswRqkr/wQNv2A940xhwCMMZ7mtegBXGOXPwKe91BnKTBOrBkIPzfG/Ga39ZjQgf8TkV5AGdYQ5rH2uq3GmNV2eQWQKCKRwDnGmC/s2A7b7eiPlVRW2fUjsAYOXeQhLlXNaUJR1UlRubIbz59vAeYZY26sYBsHy5UnA0ONMWtEZBT2AJmnGVPZcfGVVRCfN044XpIxZqqILAMuB2aJyJ/5/WCew4EGQCdjTImIpGMddZSPGazXMewEuxPgWWPMv08hflVNaR+KqgnygUi7/DPQQ0SaA4hIbRFpWcHvRQI7RSQY6wv4d9szxhwAckXkYnvdzcAPnJ55wOgjV6SJSD0PdZZgDVrJcTEdJSLNgC3GmFeBr4B2HPsagDUjY46dTC4BEk4UmDEmH9ghIkPtfYTacc4B/liuH+ocEYnxqrWq2tGEomqCt4FvRWShMWY31gjRn4hICtbpodYV/N4TWP0GS4CN5ZZ/CowVkVV2x/QtWJ30KUAHrH6UU2aM+RbrFFmyfcruLx6q3QfcJSJrqXimvT8A6+xtnIc15eterNN860RkAjAF6GxvZ+Rx7avIzVijbadg9fU0NMbMBaYCS+1tTefYxKVqEB1tWCmllE/oEYpSSimf0ISilFLKJzShKKWU8glNKEoppXxCE4pSSimf0ISilFLKJzShKKWU8on/B75JSh191qMkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -99,14 +141,25 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFX6+PHPQ2gBIh0poUSa9GIAUbor2Gg2YFlBRRAVcPGnK+z6VXR1bevaYFFRRBEBRaqCsIqodAKEGiBITQApAaQkkPL8/rg3cYgpA5PJpDzv12te3Ln33HOfOzPMk3vOnXNEVTHGGGOuVJFAB2CMMSZ/s0RijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonE+JWIjBORz9zlWiJyVkSC3OdXi8hPInJGRN4Qx8ciclJE1gY28isnIn1F5KB7rq0CHU9ek/5zkNd4fmaNdyyR5FEisk9E4t3/cKmP8YGOyxeqekBVy6hqsrtqGHAcuEpV/x/QAbgZCFXVtoGKMwf8GxjhnuvG3D64iKiInEv32fmbH493v4gsT7duiohcTBfDJsjwc2DyuaKBDsBkqaeqfufPA4hIUVVN8ucxslAb2K6//yq2NrBPVc9dbkUBPo/0agPbMtqQi3G2UNXduXCcrLymqs8EOIY8Q0SCCmrytCuSfCj1L0AR+bfbDLRXRG712F5WRD4SkcMiEisiL3o0J90vIitE5E0ROQGME5Egt2npuFvXCPev2qIico+IrE93/CdEZF4msYWJyI9uc9X/gEoe2+p41DsFGAz8zf1r9WHgQ6C9+/x5d587RCRSRE6JyEoRae5R3z4ReVpENgPn3Hqri8hXInLMPZdRHuXHicgXIvKpG982EQn32F5TRGa7+57wvAIUkQdFJMp9vReLSO0Mzr2EiJwFgoBNIvJLFnE2EpFl7nltE5FeHvVMEZH/isgi97VYISJVReQt9/g7rrTJTEQWisgbHs9niMhkd7muiCx1z/24iEwTkXJZvT4i0gh4z+N9O+VFDGmfA/d5mPzexPmdiEwQj6YlEbnefe9PicgmEenisW2ZiPzTfY3OiMgSEankbispIp+5sZ4SkXUicrW7rbqIzBeROBHZLSJDM4l1kYiMSLduk4jc6S5fKyL/c+vZKSL3epSbIiIT3df8HNA1u9cm31JVe+TBB7AP+FMm2+4HEoGhOF9ajwCHAHG3zwHeB0oDVYC1wMMe+yYBI3GuSIOB4cB2IBQoD3wHqLu9BBAHNPI4/kbgrkxiWwX8x92vE3AG+MzdVie1Xvf5FODFdOe13ON5K+Ao0M49z8Hu61LC4zWKBGq651EEWA88CxQHrgH2AD3c8uOABOA2t76XgdXutiBgE/Cm+7qVBDq423oDu4FG7mvyDLAyi/dOgXrp3kvPOIu59f3djbOb+zo19HhdjgPXuXEsBfYCg9w4XwR+8Pb46bZVdV/TbsBA9/UJcbfVw2laLAFUBn4C3vLi9bnkfcvovU23Lf3nYBVOc2BxnObN3/j9M1MDOOG+Z0Xc+E4Ald3ty4BfgAbua7sMeMXd9jCwACjlxn8dTjMq7rn91z2PlsAxoJvH5yT1+IOAFR6xNwZOua9RaeAg8ID7uWjlvm+NPV6D08CNbuwlA/294rfvq0AHYI9M3hjny+es+6FNfQx1t90P7PYoW8r9j1kVuBq4AAR7bB+Q+sXj7nsg3bGW4iYa9/mf0v1Hnwi85C43AU7ifpmnq6cWTpIq7bHuc648kUwE/pnuGDuBzh6v0YMe29plcG5jgY/d5XHAdx7bGgPx7nJ798ukaAbntQgY4vG8CHAeqJ3Je5dRIvGMsyNwBCjisW46MM7jdZnksW0kEOXxvBlwKovPjuJ8GXt+dnp4bL8L5wvwOG4yyKSePsBGL16fS943j3NISBfDJ+k/Bx6fmVIe+37m8Zl5Gpiaru7FwGB3eRnwjMe2R4Fv3eUHgZVA83T71wSScROou+5lYIrH5yT1+CHAudT3GngJmOwu9wN+Tlf3+8BzHq/Bp758D+SXhzVt5W19VLWcx2OSx7YjqQuqet5dLIPTPl8MOOxezp/C+XBX8dj3YLrjVE+3Lv32T4A/i4gA9wFfqOqFDOKtDpzUS/s49md9ilmqDfy/1PNwz6Wme5yMYq0NVE9X/u84yTXVEY/l80BJt4mlJrBfM+6/qA287VFnHCA4fy17yzPO6sBBVU3xWLc/XX2/eizHZ/C8TDbHa53us7PYY9sCnL/Qd6pqWie5OHfRzRCnOfQ3nC/01KbJrF6fzPw7XQyDMyhTHYjz+AzDH9/Te9K9px2Aah5l0r+nqa/NVJykM0NEDonIayJSzOOYZzz2S//6A+CW+Qbo764aAEzziK1dutgG4vxBl9G5FFjW2V7wHMS5IqmUxX/69EM+H8Zp1kpV85LCqqtF5CLOX9J/dh8ZOQyUF5HSHsmkVgbH89ZBnCuhl7Io41n3QWCvqta/wmPVkow7w1PjmJbBft7yjPMQUFNEingkk1rALh/qvxwvAVFAmIgMUNXp7vp/uXE2U9U4EekDpPYTZfX6+DKE+GGggoiU8kgmnp+/gzhXJBn2YWRFVROB54HnRaQOsBDninaJe8wQj2RSC4jNpKrpwHMi8hNOU9gPHrH9qKo3ZxXG5cadH9kVSQGjqodx/qO8ISJXiUgRtxO1cxa7fQE8LiI13M7VpzMo8ynOl0qi51+x6Y69H4jA+Y9bXEQ6AD19OJ1JwHARaSeO0iJyu4iEZFJ+LXBGnI7tYHFuImgqIm28ONZanC+1V9zjlBSRG91t7wFjRaQJpN3McI8P57UG5y/nv4lIMbfzuCcww4c6vSIinXDa9Afh9Dm9KyKpf4mH4DSnnnbXPeWxa1avz69AqIgUv9x4PD4z49zPTHsu/cx8BvQUkR7u+1lSRLqISGiGFV56rl1FpJk4N5r8htOvmKKqB3GavF5262sODHGPlZGFOFcfLwAzPZL/10ADEbnPfR+LiUgbcW5AKFQskeRtC+TS+/DneLnfIJyOy+04/RmzuLQpIL1JOMlnM05H+kKcdmvPWxWnAk3J/D9bqj/j9FXEAc/hJKAroqoRODcUjMc5j9047fGZlU8G7sDpPN2L0wfwIVDWi2Ml43yB1QMOADE4beCo6hzgVZwmkt+ArcCtmVSVLVW96B7rVjfG/wKDVHXHldaZgU3pPjtvichVOO/HCFWNVdWfgY+Aj91my+eB1jgdxN8Asz1izvT1welj2wYcEZHjHjH8LV0Mnts8DcTpgzmBcyPBTJyratwv/d44TZTHcK4CnsK7766qOJ/933CuwH7E+RyD00RVB+fqcA5Ov0aGt9q7zbizcfoOP/dYfwbojtPsdQinie1VnI74QiX1Lh9j0ohzK/F7qlrbY10wzt0+rVU1OmDBmQJPRGYCO1T1uUDHYrxjVyQGtxnoNnF+31AD50oi/dXPI8A6SyImp7nNQXXdZthbcK5A5gY6LuM962w34NyB9DxOk0I8TrPGs2kbRfa5ZfoEIjhT4FXFaTqqiNNk9ogGYGgZc+WsacsYY4xPrGnLGGOMTwpF01alSpW0Tp06gQ7DGGPyjUqVKrF48eLFqnpLdmULRSKpU6cOERERgQ7DGGPyFXEHwMyONW0ZY4zxiSUSY4wxPrFEYowxxieFoo8kI4mJicTExJCQkBDoUEwAlCxZktDQUIoVKxboUIzJ9wptIomJiSEkJIQ6dergDDNkCgtV5cSJE8TExBAWFhbocIzJ9/zatCUit4gz/eRuERmTwfYSIjLT3b7GHeoZEWkrzvSqkeJMa9nXY599IrLF3XbFt2IlJCRQsWJFSyKFkIhQsWJFuxo1Jof47YrEHbp5As7UmDHAOhGZr6rbPYoNwZkIqZ6I9McZObMfzuiq4aqaJCLVcEYyXeAxD0JXVc1sJNHLidHXKkw+Ze+9MTnHn1ckbXGmg93jDps9A2cwNk+9cWbfA2e455tERFT1vEfSKEkhmRzGGGNyyq6Tu3hr/VvkxjBY/kwkNbh0mskY/jiVZVoZN3Gcxhm4DXcyo23AFmC4R2JRYImIrBeRYZkdXESGiUiEiEQcO3YsR04oJ3Xt2pXFixdfsu6tt97ikUceAWDbtm1069aNhg0bUrduXZ577jlSUpz5dKZMmULlypVp2bJl2mP79u1/OEZQUBAtW7akadOm9OzZk1OnTuVI7Pv27aNp06Y5UpennTt30qVLF1q2bEmjRo0YNizTt/eyjBs3jn//+985UpcxeV1CUgLvbHiHfgv6MTt6Nr+e/zX7nXyUZ2//VdU1qtoEaIMzO11Jd1MHVW2NMynQY+6Mbxnt/4GqhqtqeOXKlXMpau8NGDCAGTMunRBvxowZDBgwgPj4eHr16sWYMWPYuXMnW7ZsYe3atbz99ttpZfv160dkZGTao3Hjxn84RnBwMJGRkWzdupUKFSowYcIEv5+XL0aNGsXo0aOJjIwkKiqKkSNHBjokY/KV1YdXc9f8u5i0ZRK3XXMb8/rMo2rpqtnv6CN/JpJYLp17OZQ/zomcVkZEiuLMZHfCs4CqRuFM/9nUfR7r/nsUZ86Mtn6I3e/uvvtuvvnmGy5evAg4f+UfOnSIjh078vnnn3PjjTfSvXt3AEqVKsX48eN5/fXXr/h47du3JzbWefnPnj3LTTfdROvWrWnWrBnz5s1Li6FRo0YMHTqUJk2a0L17d+Lj4wFYv349LVq0oEWLFpckpISEBB544AGaNWtGq1at+OEHZzrrKVOm0KdPH26++Wbq1KnD+PHj+c9//kOrVq24/vrriYuL+0OMhw8fJjT09xlUmzVrBkBycjJPPfUUbdq0oXnz5rz//vtpZV5//fW09c899/s8SC+99BINGjSgQ4cO7Ny584pfN2Pyg5MJJ/nH8n8wdIkztf2k7pN4qcNLlC9ZPleO78/bf9cB9UUkDCdh9MeZhtXTfJx5o1cBdwNLVVXdfQ66ne21gWuBfSJSGiiiqmfc5e448yj75PkF29h+6Ddfq7lE4+pX8VzPJplur1ChAm3btmXRokX07t2bGTNmcO+99yIibNu2jeuuu+6S8nXr1iU+Pj6teWrmzJksX/771OmrVq0iODg4w2MlJyfz/fffM2TIEMD5DcWcOXO46qqrOH78ONdffz29evUCIDo6munTpzNp0iTuvfdevvrqK/7yl7/wwAMPMH78eDp16sRTT/0+lfeECRMQEbZs2cKOHTvo3r07u3btAmDr1q1s3LiRhIQE6tWrx6uvvsrGjRsZPXo0n376KX/9618viXP06NF069aNG264ge7du/PAAw9Qrlw5PvroI8qWLcu6deu4cOFCWpKNjo4mOjqatWvXoqr06tWLn376idKlSzNjxgwiIyNJSkqidevWf3g9jSkIVJWv93zN6+te58zFMwxtNpRhzYdRsmjJ7HfOQX5LJG4SGAEsBoKAyaq6TUReACJUdT7OfNFTRWQ3zhzf/d3dOwBjRCQRSAEeVdXjInINMMe946Yo8Lmqfuuvc/C31Oat1ETy0Ucfeb1vv379GD9+fJZl4uPjadmyJbGxsTRq1Iibb74ZcD58f//73/npp58oUqQIsbGx/Pqr044aFhZGy5YtAbjuuuvYt28fp06d4tSpU3Tq5LQi3nfffSxatAiA5cuXpzVBXXvttdSuXTstkXTt2pWQkBBCQkIoW7YsPXv2BJwrjc2bN/8h3gceeIAePXrw7bffMm/ePN5//302bdrEkiVL2Lx5M7NmzQLg9OnTREdHs2TJEpYsWUKrVq0A50orOjqaM2fO0LdvX0qVKgWQliSNKUgOnjnIP1f9k1WHV9G8UnOeu+E5GpRvEJBY/PqDRFVdCCxMt+5Zj+UE4J4M9psKTM1g/R6gRU7HmdWVgz/17t2b0aNHs2HDBs6fP5/2V3Pjxo356aefLim7Z88eKlasSLly5byuP7WP5Pz58/To0YMJEyYwatQopk2bxrFjx1i/fj3FihWjTp06ab+pKFGiRNr+QUFBaU1bV8KzriJFiqQ9L1KkCElJSRnuU716dR588EEefPBBmjZtytatW1FV3n33XXr06HFJ2cWLFzN27FgefvjhS9a/9dZbVxyzMXldYkoiU7dPZWLkRIKKBPH3dn/n3gb3ElQkKGAx5dnO9sKgTJkydO3alQcffJABAwakrR84cCDLly/nu+++A5wri1GjRvH8889f0XFKlSrFO++8wxtvvEFSUhKnT5+mSpUqFCtWjB9++IH9+/dnuX+5cuUoV65cWlPatGnT0rZ17Ngx7fmuXbs4cOAADRs2vKI4v/32WxITEwE4cuQIJ06coEaNGvTo0YOJEyembdu1axfnzp2jR48eTJ48mbNnzwIQGxvL0aNH6dSpE3PnziU+Pp4zZ86wYMGCK4rHmLxm6/GtDPh6AG+uf5Mbqt/A3N5zGXDtgIAmESjEQ6TkFQMGDKBv376X3MEVHBzM/PnzGTlyJI8++iixsbE888wzDBw4MK1M+j6S//73v9xwww2ZHqdVq1Y0b96c6dOnM3DgQHr27EmzZs0IDw/n2muvzTbOjz/+mAcffBARSbsJAODRRx/lkUceoVmzZhQtWpQpU6ZcciVyOZYsWcLjjz9OyZJO++7rr79O1apVeeihh9i3bx+tW7dGValcuTJz586le/fuREVF0b59e8BJzJ999hmtW7emX79+tGjRgipVqtCmTZsriseYvOJc4jnGbxzPtKhpVA6uzFtd3uKm2jcFOqw0hWLO9vDwcE0/sVVUVBSNGjUKUESXZ+7cuTzxxBP88MMP1K5dO9DhFBj56TNgCq9lB5fx0pqX+PXcr9zb8F4eb/04IcVDcuXYIrJeVcOzK2dXJPlAnz596NOnT6DDMMbkoiPnjvDautf43/7/Ua9cPV6/9XVaVmkZ6LAyZInEGGPykMTkRKZGTeW9Te+hqoxqNYr7m9xPsaC8O+WBJRJjjMkj1h5ey0trXmLP6T10qdmFMW3HUKNM+pGl8h5LJMYYE2DHzh/j9YjXWbR3ETXK1GB8t/F0rtk50GF5zRKJMcYESFJKEtN3TGdC5AQuJl/k4eYP81Czh3L9l+m+skRijDEBsPHoRl5c/SK7Tu7ixuo3MrbdWGpflT/vyrQfJAZIbgwjfzm8GWo9IiKCUaNGAbBs2TJWrlyZtu29997j008/vaJjjBs3jho1aqQNeT9//vws6/HmWJGRkSxcuDDLMsYEQlxCHP+34v8YtGgQpy+c5j9d/sPEP03Mt0kE7IokYFLH2fIc9mPGjBm89tpracPIT5w4ke7du3P+/Hnuuusu3n77bUaPHg14N9ZWqmXLljFlyhSmTJniU8zh4eGEh4en1VmmTJm0H0EOHz7cp7pHjx7Nk08+SVRUFB07duTo0aMUKZLx3zneHCsyMpKIiAhuu+02n+IyJqckpyTzVfRXvL3hbc4nnueBpg8wvPlwShUrFejQfGZXJAGS28PIX44uXbrw9NNP07ZtWxo0aMDPP/8MOMnjjjvuYN++fbz33nu8+eabtGzZkp9//vmSq41JkybRpk0bWrRowV133cX58+e9PnajRo0oWrQox48fZ9++fXTr1o3mzZtz0003ceDAAeDSK5uMYr148SLPPvssM2fOpGXLlsycOTOHXyFjLs/W41sZuHAg/1z9TxpWaMisXrN44ronCkQSAbsicSwaA0e25GydVZvBra9kujk3h5G/EklJSaxdu5aFCxfy/PPPp437BVCnTh2GDx9OmTJlePLJJwH4/vvv07bfeeedDB3qzIvwzDPP8NFHH3k9SdWaNWsoUqQIlStXplevXgwePJjBgwczefJkRo0axdy5c72K9YUXXiAiIsLrqzZj/OFkwkne3fgus3bNomJwRV7p+Aq3hd2GO4J5gWGJJID8PYx8u3btuHDhAmfPniUuLi5tePhXX331DyPppnfnnXcCvw8lfzm2bt3KM888w6lTpzh79my2xwJ48803+eyzzwgJCWHmzJmICKtWrWL27NmAM3T93/72txyP1Rh/SExJZOaOmfx30385n3iegY0G8mjLR3NtaJPcZokEsrxy8Cd/DyO/Zs0a4Mr6SFIHXgwKCsp0yPfM3H///cydO5cWLVowZcoUli1blu0+qX0kV8KXWI3JaStjV/LqulfZc3oP7au15+m2T1O3XN1Ah+VX1kcSQLk1jLw/hISEcObMmQy3nTlzhmrVqpGYmHjJkPOX64YbbkgbFXnatGl07NgxR+Izxh/2/7afkd+P5OHvHiYxJZF3ur7D+ze/X+CTCFgiCbgBAwawadOmSxJJ6jDyqfOOV6pUiRtvvPEPw8h73v7reStubujZsydz5sxJ62z39M9//pN27dpx4403ejVEfWbeffddPv74Y5o3b87UqVN5++23vd63a9eubN++3Trbjd+dvXiW/6z/D33m9WHtkbWMvm40c3vPpWutrgWuLyQzNox8PmDDyPtHfvoMmLwnRVOYt3seb294mxMJJ+hTrw+Pt36cSsGVAh1ajrFh5AsQG0bemLwl8mgkL699me0nttO8cnPG3zSeppWaBjqsgLFEYowxXjpy7ghvrn+ThXsXUiW4Ci93fJnbw24vNE1YmfFrH4mI3CIiO0Vkt4iMyWB7CRGZ6W5fIyJ13PVtRSTSfWwSkb7e1mmMMTktISmB9ze9T6+5vfhu/3cMbTaUBX0XcMc1dxT6JAJ+vCIRkSBgAnAzEAOsE5H5quo5KNQQ4KSq1hOR/sCrQD9gKxCuqkkiUg3YJCILAPWiTmOMyREpmsK3e7/l7Q1vc+jcIW6ufTNPXPcEoSGhgQ4tT/Fn01ZbYLeq7gEQkRlAb8DzS783MM5dngWMFxFRVc8xNUriJBBv6zTGGJ9FHIngjYg32HpiKw3LN+TDGz+kXbV2gQ4rT/JnIqkBHPR4HgOkfxfSyrhXH6eBisBxEWkHTAZqA/e5272pEwARGQYMA6hVq5bvZ2OMKRT2nd7Hm+vfZOnBpVQpVYUXb3yRO665g6AiQYEOLc/Ks78jUdU1qtoEaAOMFZHLmulFVT9Q1XBVDa9cubJ/gvRRmTJlLnk+ZcoURowYcVl1+Hu49PRD1g8aNOiy60gd7NGYvCwuIY5/rfkXfef1ZfXh1YxsNZKv+35N73q9LYlkw59XJLFATY/noe66jMrEiEhRoCxwwrOAqkaJyFmgqZd1FhpJSUlZDpeelJRE0aK+v8WXM2S9MflNQlICn0V9xkdbPiI+KZ67G9zN8BbDC9TvQfzNn4lkHVBfRMJwvuz7A39OV2Y+MBhYBdwNLFVVdfc56DZn1QauBfYBp7yos0BYsGABL774IhcvXqRixYpMmzaNq6++mnHjxvHLL7+wZ88eatWqxYoVK4iPj2f58uWMHTuWqKioS7Z/9tlnjBkzhmXLlnHhwgUee+wxHn74YQBef/11vvjiCy5cuEDfvn0vawiWyMhIhg8fzvnz56lbty6TJ0+mfPny7N69m+HDh3Ps2DGCgoL48ssvL9lv3bp1DBs2jFmzZlG3bsEfOsLkXSmawjd7vuGdje9w5NwRuoR2YfR1o7mm3DWBDi3f8VsicZPACGAxEARMVtVtIvICEKGq84GPgKkishuIw0kMAB2AMSKSCKQAj6rqcYCM6vQ11lfXvsqOuB2+VnOJaytcy9Ntn86yTHx8fNqIvABxcXH06tULgA4dOrB69WpEhA8//JDXXnuNN954A4Dt27ezfPlygoODmTJlyiXDpY8bN+6S7R988AFly5Zl3bp1XLhwIW2ek+joaKKjo1m7di2qSq9evfjpp5/o1KnTH+L0HLL+8ccf54EHHmDQoEG8++67dO7cmWeffZbnn3+et956i4EDBzJmzBj69u1LQkICKSkpHDzodGutXLmSkSNHMm/ePOu3MgG19vBa/h3xb6LiomhcsTH/6vAv2lRtE+iw8i2//iBRVRcCC9Ote9ZjOQG4J4P9pgJTva0zvwoODiYyMjLteWpSAIiJiaFfv34cPnyYixcvEhYWllauV69eWc494rl9yZIlbN68mVmzZgFw+vRpoqOjWbJkCUuWLKFVq1YAnD17lujo6AwTSfqmrdOnT3Pq1Ck6d+4MwODBg7nnnns4c+YMsbGx9O3r/OynZMnfu7WioqIYNmwYS5YsoXr16pf3QhmTQ/ac2sN/1v+HH2N+pFrparzc8WVuC7uNIpJnu4vzBftlO2R75RAII0eO5IknnqBXr14sW7aMcePGpW0rXbp0lvt6bldV3n333T/MCbJ48WLGjh2b1syVasKECUyaNAkgRzvxq1WrRkJCAhs3brREYnLdsfPHeG/Te3wV/RXBRYP5a+u/MrDRQEoWvax7eEwmLA3nUadPn6ZGjRoAfPLJJ5mWy2649B49ejBx4kQSExMB2LVrF+fOnaNHjx5MnjyZs2fPAhAbG8vRo0d57LHHiIyMJDIyMtMv/LJly1K+fPm0UX+nTp1K586dCQkJITQ0NG0WwwsXLqRNs1uuXDm++eYbxo4d69X8JMbkhN8u/sbbG97m9jm3Mzt6Nv0a9uObO79hSLMhlkRykF2R5FHjxo3jnnvuoXz58nTr1o29e/dmWK5r16688sortGzZkrFjx/5h+0MPPcS+ffto3bo1qkrlypWZO3cu3bt3Jyoqivbt2wPOrcifffYZVapU8Sq+Tz75JK2z/ZprruHjjz8GnKTy8MMP8+yzz1KsWLFLOtuvvvpqvv76a2699VYmT55Mu3b24y7jH/FJ8UzfMZ2PtnzEbxd/49awWxnRcgS1rrK+OX+wYeRNoWWfgYInMSWROdFzeG/TexyLP0bHGh0Z1XoU11a48nlxCjMbRt4YU2ikaAqL9y1m/MbxHDhzgFZVWvF659e57urrAh1aoWCJxBiTb6kqy2OX887Gd9gRt4P65eszvtt4OoV2slF5c1GhTiSqah+2QqowNOkWdJFHI3lrw1us/3U9NcrU4OWOL3NrnVttOJMAKLSJpGTJkpw4cYKKFStaMilkVJUTJ05c8jsXk3/sOrmLdze8y7KYZVQsWZF/tPsHd9W/i2JBxQIdWqFVaBNJaGgoMTExHDt2LNChmAAoWbIkoaE2p0StFz0QAAAgAElEQVR+cvDMQSZGTuTrPV9TplgZRrUaxcBGAylVrFSgQyv0Cm0iKVas2CW/FjfG5E2xZ2OZtHkS83bPI6hIEPc3vZ8hTYdQtkTZQIdmXIU2kRhj8rbDZw8zacsk5uyegyDc2/BehjQbQpVS3v3WyeQeSyTGmDzlyLkjfLjlQ2ZHz0ZR7qp/Fw81e4iqpasGOjSTCUskxpg84dj5Y3y45UNm7ZpFiqbQt35fhjYbSrUy1QIdmsmGJRJjTEAdjz/O5K2T+WLnFySlJNGnXh+GNh9KjTI1Ah2a8ZIlEmNMQMQlxPHx1o+ZsWMGiSmJ3HHNHTzc/GFqXlUz+51NnmKJxBiTq04mnGTKtilM3zGdC8kXuD3sdh5u8TC1r6od6NDMFbJEYozJFXEJcUzdPpXPoz4nPimeW8NuZXiL4YSVtdvw8ztLJMYYvzp6/iifbPuEL3d9SUJSAj3q9GB4i+HULVc30KGZHGKJxBjjF4fOHmLy1snMiZ5DsiZz+zW3M6TZEK4pe02gQzM5zK+JRERuAd4GgoAPVfWVdNtLAJ8C1wEngH6quk9EbgZeAYoDF4GnVHWpu88yoBoQ71bTXVWP+vM8jDHe2//bfj7c8iFf//I1CPSp14cHmz5IzRDrRC+o/JZIRCQImADcDMQA60Rkvqpu9yg2BDipqvVEpD/wKtAPOA70VNVDItIUWAx43gs4UFUvnanKGBNQ0SejmbRlEov3LaZYkWL0u7Yf9ze5335IWAj484qkLbBbVfcAiMgMoDfgmUh6A+Pc5VnAeBERVd3oUWYbECwiJVT1gh/jNcZcgW0ntjFp8yS+P/A9pYqWYnCTwQxqPIhKwZUCHZrJJf5MJDWAgx7PY4D0k3SnlVHVJBE5DVTEuSJJdRewIV0S+VhEkoGvgBc1g8klRGQYMAygVi2bp9mYnBZ5NJL3N7/P8tjlhBQPYXiL4Qy8diDlSpYLdGgml+XpznYRaYLT3NXdY/VAVY0VkRCcRHIfTj/LJVT1A+ADcOZsz4VwjSnwVJU1R9YwafMk1h5ZS/kS5Xm89eP0a9iPkOIhgQ7PBIg/E0ks4Nm7Fuquy6hMjIgUBcridLojIqHAHGCQqv6SuoOqxrr/nhGRz3Ga0P6QSIwxOSc5JZnvDnzHx1s/ZtuJbVQOrsxT4U9xd4O7bT4Q49dEsg6oLyJhOAmjP/DndGXmA4OBVcDdwFJVVREpB3wDjFHVFamF3WRTTlWPi0gx4A7gOz+egzGFWkJSAvN/mc+UbVM4eOYgta+qzbPtn6VX3V6UCCoR6PBMHuG3ROL2eYzAueMqCJisqttE5AUgQlXnAx8BU0VkNxCHk2wARgD1gGdF5Fl3XXfgHLDYTSJBOElkkr/OwZjC6vSF08zcOZNpUdOIS4ijWaVmPHHdE3St2dXmRDd/IBn0Uxc44eHhGhFhdwsbk50j547w6fZPmbVrFvFJ8XSo0YEHmz5I+NXhiEigwzO5TETWq2p4duXydGe7MSZ3RJ+MZsq2KSzcsxBFuTXsVu5vcj8NKzQMdGgmH7BEYkwhpaqs/3U9k7dO5ufYnwkuGkz/a/tzX+P7qF6meqDDM/mIJRJjCpnklGSWHVzG5K2T2Xx8MxVKVmBEyxH0a9jPfgNiroglEmMKiXOJ55i7ey7ToqZx8MxBQsuE8ky7Z+hdrzcli5YMdHgmH7NEYkwBd/jsYT7f8Tlf7fqKM4lnaFG5BY+3fpybat1E0SL2FWB8Z58iYwqoTcc2MXX7VL7b7/zU6ubaN3Nf4/toXrl5gCMzBY0lEmMKkKSUJL4/8D2fbv+Uzcc2E1IshEGNBzHg2gFUK1Mt0OGZAsoSiTEFwJmLZ5gdPZvPoz7n0LlD1AypyZi2Y+hbr68NYWL8zhKJMfnYwd8OMm3HNOZEz+F80nnCrw7n6bZP0zm0s/0C3eQaSyTG5DOqSsSvEUyLmsbSA0sJkiBuCbuF+xrfR+OKjQMdnimELJEYk0+cTzzP13u+ZvqO6ew+tZuyJcryULOH6H9tf6qUqhLo8EwhZonEmDxu/2/7mbFjBvN2z+NM4hkaVWjECze8wK1ht9rvP0yeYInEmDwoOSWZFYdW8PmOz1kRu4KiRYrSvXZ3Blw7gBaVW9gAiiZPsURiTB5y+sJp5u6ey4wdM4g5G0OV4Co81vIx7m5wt82BbvIsSyTG5AE743Yyfcd0vtnzDQnJCbSu0prHr3N+fV6sSLFAh2dMliyRGBMgiSmJfL//e6bvmM6GoxsoGVSS26+5nQHXDrDh202+YonEmFwWcyaGr6K/Yk70HE4knCC0TChPhj9Jn3p9KFuibKDDM+ayWSIxJhckpSTxY8yPfLnrS1bGrkRE6FSjE/c0vIcONTpQRIoEOkRjrpglEmP86PDZw2lXH0fjj1IluAoPt3iYu+rfRdXSVQMdnjE5wq+JRERuAd4GgoAPVfWVdNtLAJ8C1wEngH6quk9EbgZeAYoDF4GnVHWpu891wBQgGFgIPK6FYeJ5k28kpySzPHY5X+76kp9jf0ZVubHGjfyjwT/oFNrJhm43BY7fPtEiEgRMAG4GYoB1IjJfVbd7FBsCnFTVeiLSH3gV6AccB3qq6iERaQosBmq4+0wEhgJrcBLJLcAif52HMd46ev4os6NnMzt6NofPHaZScCWGNB3CXQ3uokaZGtlXYEw+5VUiEZHZwEfAIlVN8bLutsBuVd3j1jED6A14JpLewDh3eRYwXkREVTd6lNkGBLtXLxWAq1R1tVvnp0AfLJGYAEnRFFYdWsUXO7/gx5gfSdZk2ldrz1NtnqJLzS52664pFLy9Ivkv8ADwjoh8CXysqjuz2acGcNDjeQzQLrMyqpokIqeBijhXJKnuAjao6gURqeHW41lnhn/qicgwYBhArVq1sgnVmMtz+Oxh5v4yl3m75xF7NpYKJSswqMkg7q5/N7Wuss+bKVy8SiSq+h3wnYiUBQa4yweBScBnqproj+BEpAlOc1f3y91XVT8APgAIDw+3PhTjs4vJF1l6YClzds9h1aFVKMr11a5Pm7a2eFDxQIdoTEB43UciIhWBvwD3ARuBaUAHYDDQJYNdYoGaHs9D3XUZlYkRkaJAWZxOd0QkFJgDDFLVXzzKh2ZTpzE5amfcTmZHz+abvd9w+sJpqpWuxvAWw+ldr7f1fRiD930kc4CGwFScTvDD7qaZIhKRyW7rgPoiEobzZd8f+HO6MvNxEtEq4G5gqaqqiJQDvgHGqOqK1MKqelhEfhOR63E62wcB73pzDsZcjtMXTrNo7yJmR88mKi6KYkWKcVOtm+hbvy/tqrazSaOM8eDtFck7qvpDRhtUNTyT9UkiMgLnjqsgYLKqbhORF4AIVZ2P04E/VUR2A3E4yQZgBFAPeFZEnnXXdVfVo8Cj/H777yKso93kkBRNYe2RtcyOns33+7/nYspFGpZvyJi2Y7jjmjvsV+fGZEK8+QmGiNyZwerTwBb3yz1PCw8P14iIzC6cTGGXvuM8pHgIt4fdTt/6fW3GQVOoicj6zC4WPHl7RTIEaA+kXpV0AdYDYSLygqpOvaIojQmQc4nn+N/+//H1L1+z9shaFKVdtXaMajWKbrW62YRRxlwGbxNJMaCRqv4KICJX4/wivR3wE07fiTF5WnJKMmsOr2H+nvl8v/97EpITqBlSk0daPEKver2s49yYK+RtIglNTSKuo0BNVY0TEb/c+mtMTok+Gc2CXxbwzZ5vOBp/lJDiIfSs25NedXvZbIPG5ABvE8kyEfka+NJ9fpe7rjRwyi+RGeOD4/HHWbR3EQt+WUBUXBRFpSgdanTg6bpP07lmZ0oElQh0iMYUGN4mkseAO3F+NwJOs9ZX7mCJXf0RmDGXKyEpgWUxy1jwywJWxK4gWZNpUrEJY9qO4ZY6t1AxuGKgQzSmQMo2kbiDL36nql2Br/wfkjHeS9EU1v+6nm/2fMOSfUs4k3iGKqWqcH+T++lZtyd1y9UNdIjGFHjZJhJVTRaRFBEpq6qncyMoY7Kiqmw/sZ2Fexfy7d5vORp/lOCiwdxc+2Z61u1Jm6vb2A8GjclF3jZtnQW2iMj/gHOpK1V1lF+iMiYDe07vYdHeRSzau4j9v+2naBGn3+PJsCfpHNqZUsVKBTpEYwolbxPJbPdhTK46cu5IWvKIiotCENpWbcsDTR7gT7X/ZL82NyYP8Hb0309EJBio5cXw8cb45GTCSZbsW8LCvQvZcHQDAE0rNuVvbf5Gjzo9qFKqSoAjNMZ48nbQxp7Av3Gmvg0TkZbAC6ray5/BmcLjXOI5lh5YyqK9i1h1aBVJmkRY2TAea/kYt4XdZnN8GJOHedu0NQ5nxsNlAKoaKSLX+CkmU0icSzzHsoPLWLxvMStiV3Ax5SLVSlfjvib3cVvYbTQs39B+LGhMPuBtIklU1dPp/lN7O+WuMWnOXjzLsphlLNm3JC15VAmuwj0N76F77e60rNKSIlIk0GEaYy6Dt4lkm4j8GQgSkfrAKGCl/8IyBcnZi2f54eAPLNm/hJWxKy9JHj3q9KBF5RaWPIzJx7xNJCOBfwAXgOk4c4z8019BmfzPM3msiF1BYkoiVYKrcG/De+lep7slD2MKEG/v2jqPk0j+4d9wTH525uIZlh10m60OucmjVBX6NexnycOYAszbu7YaAE8CdTz3UdVu/gnL5BfH44+z9MBSlh5Yypoja0hKSUpLHj3q9KB55eaWPIwp4Lxt2voSeA/4EEj2XzgmPzj420G+P/A93x/4nk3HNqEooWVCGXjtQP5U+0+WPIwpZLxNJEmqOtGvkZg8S1XZeXJnWvKIPhkNQMPyDXmkxSN0q9WNBuUb2K26xhRS3iaSBSLyKDAHp8MdAFWNy2onEbkFeBsIAj5U1VfSbS+BMyT9dcAJoJ+q7hORisAsoA0wRVVHeOyzDKgGxLuruueHeePzm+SUZDYd25SWPGLPxiIIraq04snwJ7mp1k2EhoQGOkxjTB7gbSIZ7P77lMc6BTL9UaI7/PwE4GYgBlgnIvNVdbtHsSHASVWtJyL9gVeBfkAC8H9AU/eR3kBVjfAyduOlC8kXWHN4DUsPLOWHgz8QlxBHsSLFuL7a9QxtNpTONTtTKbhSoMM0xuQx3t61FXYFdbcFdqvqHgARmQH0BjwTSW+cX82DcwUyXkREVc8By0Wk3hUc11yG4/HH+SnmJ5YdXMbqw6uJT4qnVNFSdArtxE21bqJDjQ6UKV4m0GEaY/KwLBOJiPxNVV9zl+9R1S89tv1LVf+exe41gIMez2OAdpmVUdUkETkNVASOZxP3xyKSjDPR1ovuTI3pYx8GDAOoVcvGaUqV2t/x48Ef+THmR7Yc3wJA1dJV6VW3F11qdqFN1TY2Fa0xxmvZXZH0B15zl8fy+5ztALcAWSUSfxmoqrEiEoKTSO7D6We5hKp+AHwAEB4e/odEU5hcSL7A2sNr+THGSR5Hzh1BEJpVasaIliPoUrOLdZYbY65YdolEMlnO6Hl6sUBNj+eh7rqMysSISFGgLE6ne6ZUNdb994yIfI7ThPaHRFLYHY8/zs8xP7Ps4DJWHV5FfFI8wUWDaV+tPY+2eJSOoR2tv8MYkyOySySayXJGz9NbB9QXkTCchNEf+HO6MvNxOvJXAXcDSzNqpkrlJptyqnpcRIoBdwDfZRNHoZCiKWw7vo3lsctZHrucLce3oGhak1Xn0M60rdbWmqyMMTkuu0TSQkR+w7n6CHaXcZ+XzGpHt89jBM64XEHAZFXdJiIvABGqOh/4CJgqIruBOJxk4xxAZB9wFVBcRPoA3YH9wGI3iQThJJFJl3PCBUlcQhwrYlew4tAKVsau5OSFk2lNVo+1fMyarIwxuUKyuAAoMMLDwzUiIv/fLZyckszWE1udq46Y5Ww7sQ1FqVCyAjdWv5Eba9zIDdVvoHzJ8oEO1RhTAIjIelUNz66ct78jMQFyIv4EKw+t5OfYn1l1aBWnLpyiiBShWaVmPNryUTrW6Eijio1sSBJjTMBYIsljElMS2XJsCysPrWR5rHPVAVChZAU6hXaiQ40OtK/WnnIlywU4UmOMcVgiCTBVZe9ve1l1aBWrD61m3a/rOJd4jiJShOaVmjOi5Qg6hHagUQW76jDG5E2WSAIgLiGO1YdWs+rwKlYfXs2Rc0cACC0Tym1ht9G+envaVm1L2RJlAxypMcZkzxJJLkhISmDD0Q1pyWNH3A4AQoqHpI1j1b56e2qG1MymJmOMyXsskfhBckoyO0/uZM3hNaw6tIoNRzdwIfkCRYsUpWXlloxsNZL21drTuGJjgooEBTpcY4zxiSWSHJCiKew+tZt1R9ax9vBaIn6N4LeLzk9u6pWrxz0N7qF99faEXx1OqWKlAhytMcbkLEskVyC1g3zd4XWsPbKWdUfWcfLCScDp5/hT7T/Rpmob2lZtS5VSVQIcrTHG+JclEi+oKjFnYlh7ZG1a4jgWfwyAq0tdTcfQjmmJo3qZ6gGO1hhjcpclkiws+GUBqw+vZu2RtWl3VlUsWZG2VdvStlpb2lZtS82QmjYEiTGmULNEkoVPt3/KkXNHaFO1DQ82fZB2VdsRVjbMEocxxniwRJKFiX+aSIWSFeyHgMYYkwVLJFmw+TqMMSZ79qe2McYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSY4wxPvFrIhGRW0Rkp4jsFpExGWwvISIz3e1rRKSOu76iiPwgImdFZHy6fa4TkS3uPu+I/TrQGGMCym+JRESCgAnArUBjYICINE5XbAhwUlXrAW8Cr7rrE4D/A57MoOqJwFCgvvu4JeejN8YY4y1/XpG0BXar6h5VvQjMAHqnK9Mb+MRdngXcJCKiqudUdTlOQkkjItWAq1R1taoq8CnQx4/nYIwxJhv+TCQ1gIMez2PcdRmWUdUk4DRQMZs6Y7Kp0xhjTC4qsJ3tIjJMRCJEJOLYsWOBDscYYwosfyaSWMBzEvJQd12GZUSkKFAWOJFNnaHZ1AmAqn6gquGqGl65cuXLDN0YY4y3/JlI1gH1RSRMRIoD/YH56crMBwa7y3cDS92+jwyp6mHgNxG53r1baxAwL+dDN8YY4y2/jf6rqkkiMgJYDAQBk1V1m4i8AESo6nzgI2CqiOwG4nCSDQAisg+4CiguIn2A7qq6HXgUmAIEA4vchzHGmACRLC4ACozw8HCNiIgIdBjGGJOviMh6VQ3PrlyB7Ww3xhiTOyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ35NJCJyi4jsFJHdIjImg+0lRGSmu32NiNTx2DbWXb9TRHp4rN8nIltEJFJEIvwZvzHGmOwV9VfFIhIETABuBmKAdSIyX1W3exQbApxU1Xoi0h94FegnIo2B/kAToDrwnYg0UNVkd7+uqnrcX7EbY4zxnj+vSNoCu1V1j6peBGYAvdOV6Q184i7PAm4SEXHXz1DVC6q6F9jt1meMMSaP8WciqQEc9Hge467LsIyqJgGngYrZ7KvAEhFZLyLDMju4iAwTkQgRiTh27JhPJ2KMMSZz+bGzvYOqtgZuBR4TkU4ZFVLVD1Q1XFXDK1eunLsRGmNMIeLPRBIL1PR4Huquy7CMiBQFygInstpXVVP/PQrMwZq8jDEmoPyZSNYB9UUkTESK43Sez09XZj4w2F2+G1iqququ7+/e1RUG1AfWikhpEQkBEJHSQHdgqx/PwRhjTDb8dteWqiaJyAhgMRAETFbVbSLyAhChqvOBj4CpIrIbiMNJNrjlvgC2A0nAY6qaLCJXA3Oc/niKAp+r6rf+OgdjjDHZE+cCoGALDw/XiAj7yYkxxlwOEVmvquHZlcuPne3GGGPyEEskxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xP/JpIROQWEdkpIrtFZEwG20uIyEx3+xoRqeOxbay7fqeI9PC2TmOMMbnLb4lERIKACcCtQGNggIg0TldsCHBSVesBbwKvuvs2BvoDTYBbgP+KSJCXdRpjjMlFRf1Yd1tgt6ruARCRGUBvYLtHmd7AOHd5FjBeRMRdP0NVLwB7RWS3Wx9e1JljVv93KCGnovxRtTHG+N2Zco24/tFJfj+OP5u2agAHPZ7HuOsyLKOqScBpoGIW+3pTJwAiMkxEIkQk4tixYz6chjHGmKz484okoFT1A+ADgPDwcL2SOnIjkxtjTH7nzyuSWKCmx/NQd12GZUSkKFAWOJHFvt7UaYwxJhf5M5GsA+qLSJiIFMfpPJ+frsx8YLC7fDewVFXVXd/fvasrDKgPrPWyTmOMMbnIb01bqpokIiOAxUAQMFlVt4nIC0CEqs4HPgKmup3pcTiJAbfcFzid6EnAY6qaDJBRnf46B2OMMdkT5wKgYAsPD9eIiIhAh2GMMfmKiKxX1fDsytkv240xxvjEEokxxhifWCIxxhjjE0skxhhjfFIoOttF5Biw/wp3rwQcz8Fw8gM758KhsJ1zYTtf8O2cjwOo6i3ZFSwUicQXIhLhzV0LBYmdc+FQ2M65sJ0v5N45W9OWMcYYn1giMcYY4xNLJNn7INABBICdc+FQ2M65sJ0v5NI5Wx+JMcYYn9gViTHGGJ9YIjHGGOMTSyQuEblFRHaKyG4RGZPB9vtF5JiIRLqPhwIRZ07J7nzdMveKyHYR2SYin+d2jDnNi/f4TY/3d5eInApEnDnJi3OuJSI/iMhGEdksIrcFIs6c5MU51xaR793zXSYioYGIM6eIyGQROSoiWzPZLiLyjvt6bBaR1jkehKoW+gfOkPS/ANcAxYFNQON0Ze4Hxgc61lw83/rARqC8+7xKoOP29zmnKz8SZ5qCgMfu5/f5A+ARd7kxsC/QcefCOX8JDHaXuwFTAx23j+fcCWgNbM1k+23AIkCA64E1OR2DXZE42gK7VXWPql4EZgC9AxyTP3lzvkOBCap6EkBVj+ZyjDntct/jAcD0XInMf7w5ZwWucpfLAodyMT5/8OacGwNL3eUfMtier6jqTzjzOWWmN/CpOlYD5USkWk7GYInEUQM46PE8xl2X3l3upeEsEamZwfb8wpvzbQA0EJEVIrJaRLIdJiGP8/Y9RkRqA2H8/mWTX3lzzuOAv4hIDLAQ50osP/PmnDcBd7rLfYEQEamYC7EFitef/StlicR7C4A6qtoc+B/wSYDj8beiOM1bXXD+Op8kIuUCGlHu6Q/MUndWzgJuADBFVUNxmkCmikhB/154EugsIhuBzkAsUBjea78p6B8Yb8UCnlcYoe66NKp6QlUvuE8/BK7Lpdj8IdvzxfmrZb6qJqrqXmAXTmLJr7w551T9yf/NWuDdOQ8BvgBQ1VVASZyB/vIrb/4vH1LVO1W1FfAPd12+v7EiC5fz2b8ilkgc64D6IhImIsVxvkjmexZI16bYC4jKxfhyWrbnC8zFuRpBRCrhNHXtyc0gc5g354yIXAuUB1blcnz+4M05HwBuAhCRRjiJ5FiuRpmzvPm/XMnjqmssMDmXY8xt84FB7t1b1wOnVfVwTh6gaE5Wll+papKIjAAW49z1MVlVt4nIC0CEqs4HRolILyAJp2Pr/oAF7CMvz3cx0F1EtuNc9j+lqicCF7VvvDxncL54Zqh7u0t+5uU5/z+cZsvROB3v9+fnc/fynLsAL4uIAj8BjwUs4BwgItNxzqmS29f1HFAMQFXfw+n7ug3YDZwHHsjxGPLxZ8YYY0weYE1bxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZITL4kIme9KPNXESmVg8fsIyKNc7C+lT7se9b9t7qIzMqiXDkRefRKj2OMNyyRmILsr8BlJRIRCcpicx+cAf9yhKrekAN1HFLVu7MoUg6wRGL8yhKJyddEpIs7p8QsEdkhItPcX/COAqoDP4jID27Z7iKySkQ2iMiXIlLGXb9PRF4VkQ3APSIyVETWicgmEflKREqJyA04Ixq87s5XUldEWroDWm4WkTkiUt6tb5k4c5tEiEiUiLQRkdkiEi0iL3rEftZj+WkR2eIe85UMzjPMjX1LujrqpM5DISJNRGStG99mEakPvALUdde9LiJlxJmLY4NbV2+PeqJEZJI4888sEZFgd1s9EfnOjW2DiNR11z/lvk6bReT5HH1jTf4S6LH07WGPK3kAZ91/uwCnccYPKoIztEkHd9s+oJK7XAnnV8yl3edPA896lPubR90VPZZfBEa6y1OAuz22bQY6u8svAG+5y8uAV93lx3GGZq8GlMAZw6xiunO4FVgJlHKfV8jgfOcDg9zlxzz2rYM7DwXwLjDQXS4OBHtud9cXBa7yeE1248xTUQdn1IaW7rYvgL+4y2uAvu5ySZyrvO44c5mI+7p/DXQK9OfCHoF52BAppiD4/+3dT4iNURjH8e9vIclMJuVPzYIkWUxSLNREKdnYTCkljX8bCwsbVrIl2dmxQTIokY2GWWhkGkQz7oxSalhMKZI0Ecl9LM4ZvffOvdPMvLvr91md7j3vuc/7dnuf+55ze86LiJgEkDRKuik+reuzjTQtNSQJ0o22WE/rdqHdlX/1dwBtpHIbNSQtAzoiYjC/dI20YdK06ZIrY8CbyLWNJE2QCugVy83sAq5ExA+AiGi0t0Q3sDe3rwPnG/QZBk4r7fh3NyLe5XOtCR04K2kHUCWVE1+V33sfEaO5/QpYK6kd6IyIezm2n/k8dpOSyUju30Yq6vmkQVzW4pxIrFifYfMAAAF7SURBVBX8KrT/0Ph7LWAgIvY3GeN7oX0V6ImI15IOk4tXLjCmal181SbxzcWs9Ywiok/Sc2AP8EDSMWYW2jwArAC2RMRvSR9ITxnFmCFdxyWzfJyAcxFxaR7xW4vyGom1simgPbefAd2S1gNIWippQ5Pj2oGPkhaRbrwzxouIb8BXSdvze73AIAszAByZ/oeZpOUN+gyRCkpSF9M/ktYBExFxEbgPbKL2GkDaBfFTTiI7gTWzBRYRU8CkpJ78GYtznA+Bo4V1pk5JK+d0ttZynEislV0G+iU9jojPpIrNNyVVSNNAG5scd4a0LjAEvC28fgs4JWkkLzgfIi2+V4DNpHWSeYuIftJU2Ms8NXeyQbcTwHFJYzTf3W4fMJ7H6CJtr/qFNJ03LukCcAPYmsc5WHd+zfSSql9XSGs5qyPiEdAHDOex7lCbsOw/4uq/ZmZWip9IzMysFCcSMzMrxYnEzMxKcSIxM7NSnEjMzKwUJxIzMyvFicTMzEr5C2IAadLMCf1XAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for i in range(2):\n", " pylab.plot(distances, np.subtract(energies[i], energies[2]), label=titles[i])\n", @@ -114,21 +167,96 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets plot the difference of the VQE ground state energies from the ExactEigensolver. They are both in the same ballpark and both very small." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4VGXa/z/PpPdGQoCEJBAglEDoCNIURFfBgmVVXAV73WXVVXff17Lu7m/3taxrr2tbC2tDVERsKCjSg9KSUNJIIT2Tnsk8vz+emUlhkmlnkgDnc125BmbOOfNMO/e52/cWUkp0dHR0dHScxdDXC9DR0dHRObHQDYeOjo6OjkvohkNHR0dHxyV0w6Gjo6Oj4xK64dDR0dHRcQndcOjo6OjouIRuOHR0PEQIcY0QYlNfr0NHp7fQDYeOpgghcoUQC7rcZzuxCiEChBCvCCHyhBBGIUSmEOIcB8ccJIR4SQhRJISoE0IcFkK8JoRI8+Zr0QohxLVCiAOW11sqhFgrhAizPPaaEOIvLhzLIyNl2b/N8j52/Bvs7jF1Tj10w6HT2/gCBcBcIAL4H+C/QohkexsLIWKAH4FgYDYQBkwCvgMWdrOPr9aLdhchxFzgb8DlUsowYDSwqm9XxWYpZWiXvyItn6A/fQY62qMbDp1eRUpZL6V8UEqZK6U0Syk/BY4Ak7vZZSVQC1wlpTwkFdVSylellE8BCCGShRDScmWfD3xjuX+JEGKvEKJaCLFBCDHaelDL9qkd/m+78hdCzBNCFAoh7hRCHBNCFAshlnfYNkYIsUYIUSuE2AoM7+ElT0WdqHdZXn+llPJ1KaVRCHEDcCXwB8tV/yeW498rhDhk8VD2CSEutNw/GngeOM2yfbXl/gAhxKNCiHyLR/O8ECLI6Q+lAxaP8S4hxM9CiBohxCohRGCHx8+zeInVQogfhRDju+x7jxDiZ6BeCOErhJgkhNhleS3vWY5nfZ/3CCEWd9jfTwhRLoSY6M7adXoP3XDo9ClCiIHASGBvN5ssAD6SUpqdONxc1BX9IiHESOAd4HdALLAW+EQI4e/k0uJRHtEQ4FrgGSFElOWxZ4AmYBCwwvLXHVss63lICDFLCBFgfUBK+SLwFvB/lqt+60n0EMq7igAeAv4jhBgkpdwP3ES7xxBp2f7vqPcwA0i1rPl+J1+nPS4FzgZSgPHANQCWE/q/gRuBGOAFYE3H1wRcDpwLRKLOLx8BrwHRqM/jwg7bvgEs6/D/XwHFViOr03/RDYeON1htuSKttlwVP2tvIyGEH+rE+bqU8kA3xxoAlHTYZ4nluEYhxPou2z5o8WgagcuAz6SUX0opW4FHgSBgppOvoRX4s5SyVUq5FqgDRgkhfIClwP2W59oDvN7dQaSUG4GLUOG1z4AKIcTjluN0t897Usoii0e2CsgBptnbVgghgBuAlRZvxogKjf26h9c2o+PnI4Q41OXxJy3PXwl8gjJIWJ7nBSnlFillm5TydaAZmNFl3wLLZzADFZp80vI+fghs7bDtf4BfCSHCLf+/Cnizh3Xr9BN0w6HjDS6QUkZa/4Bbum4ghDCgThItwG09HKsCdWUPgJRyjeWYK4Gu3kNBh38PBvI67Ge2PD7EyddQIaU0dfh/AxCK8l6seRorefSAlPJzizcRDZyPuoK/rrvthRC/6RAOqgbGoQyoPWJR+Z8dHbZfZ7m/O37q+PlIKbuG2ko6/Nv6ugGSgDu7XBQkot5rK10/g6Oys5Kq7XFLXuUHYKkQIhI4B3UhodPP0Q2HTq9juUp+BRgILLV4BN3xNXCBxdA4ouMJqgh1ouv4nInAUctdDagTrpV4J44PUAaYLMeyMtSZHS0exNeoHMw4O2tGCJEEvIQypjEWI7kHEPa2B8qBRmBsB0MQIaUMRXsKgL92MTrBUsp3OmzTcX3FwBDLe2+l4/sGyltbBlyCCsEdRaffoxsOnb7gOVQuYrElpNETjwNRwJtCiOFCEUZ7+KQ7/gucK4Q40xISuxMVVvnR8ngmcIUQwkcIcTYqP+IQKWUb8CHwoBAiWAgxBri6u+2FEOcLIX4thIiyrH2a5bl+smxSCgzrsEsI6uRbZtl/Oe1Gxrp9gjVXY/GkXgL+KYSIs+wzRAixyJnX4yIvATcJIaZbXkuIEOJcy+dhj81AG3CbJVF+PseH3Fajwni/ReU8dE4AdMOh06tYrqhvRJ34S0R7H8GV9raXUpajYuVNwCbAiDrphwE3d/c8Usos1JXsU6ir8sUoQ9Vi2eS3lvuqUZVNq114GbehwjclqMTvqz1sWwVcj8pT1KLi+o9IKa0hmVeAMZbQz2op5T7gMdRJtxRIR4VzrHyDKiQoEUKUW+67BzgI/CSEqAW+Akb1sKbTxPF9HFMdvWgp5XbLa3na8roOYkmcd7N9Cyq/cy3qfV4GfIoy4NZtGoEPUIn4Dx2tQad/IPRBTjo6Or2FEGIL8LyU8tUO990PjJRSLut+T53+hO5x6OjoeA0hxFwhRLwlVHU1qrx3XYfHo1EeyYt9tUYd19ENh46OjjcZBexGharuBC6WUhYDCCGuRyXcP5dSft93S9RxFT1UpaOjo6PjErrHoaOjo6PjEielENmAAQNkcnJyXy9DR0dH54Rix44d5VLKnppHgZPUcCQnJ7N9+/a+XoaOjo7OCYUQokcVBCt6qEpHR0dHxyV0w6Gjo6Oj4xK64dDR0dHRcYmTMseho6PTPa2trRQWFtLU1NTXS9HpIwIDA0lISMDPz8+t/U8qw2GZJrY4NTXV4bY6OqcqhYWFhIWFkZycTGfhWp1TASklFRUVFBYWkpKS4tYxTqpQlZTyEynlDREREX29FB2dfktTUxMxMTG60ThFEUIQExPjkcd5UhkOHR0d59CNxqmNp5+/bjh03Kd0H2R93ter0NHR6WV0w6HjHns+hJfOgHcuB2OJ4+11dCzMnz+fL774otN9TzzxBDffrMar7N27lzPOOINRo0YxfPhwHnjgAcxmMwCvvfYasbGxZGRk2P727dt33HP4+PiQkZHBuHHjWLx4MdXV1ZqsPTc3l3Hjxjne0EWysrKYN28eGRkZjB49mhtuuEGT4z744IM8+uijmhyrI7rh0HENsxm++Qu8vxxihgMS9n3c16vSOYG4/PLLeffddzvd9+6773L55ZfT2NjIkiVLuPfee8nKyuKXX35h69at/Otf/7Jte9lll5GZmWn7GzNmzHHPERQURGZmJnv27CE6OppnnnnG66/LE+644w5WrlxJZmYm+/fv5/bbb+/rJfWIbjh0nKe5Dv57FXz/CExcBtd/A3FjlPeho+MkF198MZ999hktLWoYY25uLkVFRcyePZu3336bWbNmcdZZZwEQHBzM008/zSOPPOL285122mkcPapGmdfV1XHmmWcyadIk0tPT+fjjj21rGD16NNdffz1jx47lrLPOorFRTTXesWMHEyZMYMKECZ0MUFNTE8uXLyc9PZ2JEyfy7bffAsoruuCCC1i4cCHJyck8/fTTPP7440ycOJEZM2ZQWVl53BqLi4tJSEiw/T89PR2AtrY27r77bqZOncr48eN54YUXbNs88sgjtvsfeOAB2/1//etfGTlyJKeffjpZWVluv289cVKV4+p4kapceOcKKNsPZ/8dpt8EQsC4i5QHUlMIEQkOD6PTv3jok73sK6rV9JhjBofzwOKx3T4eHR3NtGnT+Pzzzzn//PN59913ufTSSxFCsHfvXiZPntxp++HDh9PY2GgLN61atYpNmzbZHt+8eTNBQUF2n6utrY2vv/6aa6+9FlD9Cx999BHh4eGUl5czY8YMlixZAkBOTg7vvPMOL730EpdeeikffPABy5YtY/ny5Tz99NPMmTOHu+++23bsZ555BiEEv/zyCwcOHOCss84iOzsbgD179rBr1y6amppITU3lH//4B7t27WLlypW88cYb/O53v+u0zpUrV3LGGWcwc+ZMzjrrLJYvX05kZCSvvPIKERERbNu2jebmZptRzcnJIScnh61btyKlZMmSJXz//feEhITw7rvvkpmZiclkYtKkSce9n1qgexw6jjmyEV6cD7WFcOX7MONmZTQAxl6kbvd+1Hfr601++BesvhX0OTYe0TFcZQ1TOUvXUJU9o9HY2EhGRgbx8fGUlpaycOFCQPUw/PGPf2T8+PEsWLCAo0ePUlpaCkBKSgoZGRkATJ48mdzcXKqrq6murmbOnDkAXHXVVbbn2LRpE8uWqWm3aWlpJCUl2QzH/PnzCQsLIzY2loiICBYvXgwoTyI3N/e49S5fvpz9+/dzySWXsGHDBmbMmEFzczPr16/njTfeICMjg+nTp1NRUUFOTg7r169n/fr1TJw4kUmTJnHgwAFycnLYuHEjF154IcHBwYSHh9uMotboHodOz2x7BT7/A0QPg8vfteQ1OhAzHAZNUOGqmf07LusxZjNsfhbqSmDchZC6oK9X5DE9eQbe5Pzzz2flypXs3LmThoYG21XxmDFj+P77zsMADx8+TExMDJGRkU4f35rjaGhoYNGiRTzzzDPccccdvPXWW5SVlbFjxw78/PxITk629TMEBATY9vfx8bGFqtyh47EMBoPt/waDAZPJZHefwYMHs2LFClasWMG4cePYs2cPUkqeeuopFi1a1GnbL774gvvuu48bb7yx0/1PPPGE22t2Bd3j0LFPWyt8did89nsYfgZc99XxRsPKuKVQtBMqj/TuGnub4kxlNIQPfPkAmNv6ekUnLKGhocyfP58VK1Z08jauvPJKNm3axFdffQUoz+GOO+7goYcecut5goODefLJJ3nssccwmUzU1NQQFxeHn58f3377LXl5PauIR0ZGEhkZaQuNvfXWW7bHZs+ebft/dnY2+fn5jBo1yq11rlu3jtbWVgBKSkqoqKhgyJAhLFq0iOeee872WHZ2NvX19SxatIh///vf1NXVAXD06FGOHTvGnDlzWL16NY2NjRiNRj755BO31uOIk8pwCCEWCyFerKmp6eulnNjUV8CbF8K2l2HWb5WnEdhDN/7YC9Xt3t5LkvfJyOPsdSAMcM4/oHQP/Lyq99dwEnH55Zeze/fuToYjKCiINWvW2BK8AwYMYNasWVx55ZW2bVatWtWpHPfHH3/s8XkmTpzI+PHjeeedd7jyyivZvn076enpvPHGG6SlpTlc56uvvsqtt95KRkZGp+/dLbfcgtlsJj09ncsuu4zXXnutk6fhCuvXr2fcuHFMmDCBRYsW8cgjjxAfH891113HmDFjmDRpEuPGjePGG2/EZDJx1llnccUVV3DaaaeRnp7OxRdfjNFoZNKkSVx22WVMmDCBc845h6lTp7q1HkeclDPHp0yZIvVBTm5Sug/e+bXqzVjyFEy4zLn9Xl4ArU1w8ybH27rBMWMT23Or2Hqkku15lWSX1PHibyYzb1ScV57PLs/PBv8QuGYtvHwm1JXC7TvAz35itr+yf/9+Ro8e3dfLcIrVq1fz+9//nm+//ZakpKS+Xs5Jhb3vgRBih5RyiqN99RyHTjsH1sKH14N/KCxfCwkOvz/tjFsK6+6FsmyIHenRMqSUHCmvV4Yit5LtuZXkVjQAEOhnICMxErOUbDlS2XuGo+YolPwMCx4CgwEW/hlePw+2PA+nr+ydNZyCXHDBBVxwwQV9vQydLuiGox/Q2mYms6Ca9CERBPr59P4CpISNj6my2sEZ8Ou3IXywa8cYcwGsu0+Fq+bd69KupjYz+4pr2ZZbxTaLR1Fep2r8o4L9mJIczRXThzI1OZqxgyPw9zWw4PHvOHiszrU1ekL2OnU76hx1mzIbRp4NGx+Hib+BkJjeW4uOTh+jG44+xGyWfPJzEY+tzya/soG4sABuOyOVX08dir9vL6WfWhrg41vVCT/9EhWecif0Ej4Ikmaq6qq597SX63ZDdUMLb27OY8uRSnbmV9HQohLNidFBzBkRy5TkaKalRDFsQCgGw/HHSo0NJbvU6Po63SXrc4hKgQEdvKkFD8JzM2Hjo3D2/+u9tejo9DG64egDpJR8c+AYj3yRxYESI2nxYfztwnRW7zrK/R/v5YXvDvPbBSO4aOIQfH28bEDW3K56MBY8CLN+5/CE3yPjLlKVWMf2wcDuyzx35ldx+9u7KKppJC0+nIsnJzA1OZopyVEMinDOaKXGhfLl/lJaTGbvG9mWejjyPUy9tvP7EzdaddBvfQmm3whRyd5dh45OP0E3HL3MlsMVPPJFFtvzqkiKCeZfv85g8fjBGAyCy6cl8n1OOY+tz+IP7//M8xsO8buFIzkvfZDdq25NyPsRxl+qTZx+9Pmw9m7Y84FdwyGl5JVNR/j75wcYFBnIx7fOYnyC87X5HRkxMJQ2syS3op6RA8M8XXnPHPoW2ppVaKor8/4IP78HXz8MF7/i3XXo6PQTTqpy3P7M3qIarnl1K5e9+BP5lQ389cJxfPX7uZyfMcRmFIQQzB0Zy8e3zuKFqybj52Pgjnd28asnN/LlvlLtS1CbjWAsglj3as+PIzQWUuaocFWXtdY0tHLDmzv4y2f7OXN0HJ/ePtttowEwPDYUoHfyHNmfQ0CECsV1JXwQnHYr7Hkfju70/lp0dPoBuuHwMkfK67nt7Z2c++QmduVXc+85aXx393yunJ6EXzdhKCEEi8bGs/a3s/nXrzNoam3j+je2c8GzP7Ixp0w7A1Keo24HeFYF1YlxS6HqiGqWs7C7oJpzn9rItweO8b/njeH5ZZOJCHJv1rGV4bGhCNELhsNshuz1kHom+HSz5lm/heAY+PJ+XYrECXpDVt0VnJEe3759O3fccQcAGzZs6NQ78vzzz/PGG2+49RwPPvggQ4YMsUnAr1mzpsfjOPNcmZmZrF27tsdtPEU3HF6ipKaJ+z78hQWPf8fX+49x6/zhfP+H+dw0dzhB/s5VTvkYBOdnDOHL38/lH0vTKatt4qpXtvLrF39ie+7xCpsuU3FQ3WppONLOA4Mv7PkQKSWv/nCEi5//ESnhvZtO49rTUzSZPhfk78OQyCDvG46inVB/rL2ayh6B4TD3XsjdCDlfenc9JwG9IatuZcOGDVxzzTUer3nKlCk8+eSTtmN2NBw33XQTv/nNb9w+tlVO/b333mPFihU2I2kPZ55LNxwnIFX1Lfxt7X7mPvIt7+8oYNn0oXz3h3ncvSjN7atsPx8Dl00dyrd3z+PBxWM4VFbPxc9v5up/b+WXQg+65MuzlXxGlHsD6+0SHA3Dz8C850Nu+c8OHvpkH3NHxvLZHaczcWiUds+DSpDneNtwZH2u3iNHulSTr1F6Xl/er0uROKC3ZdVdYd68edxzzz1MmzaNkSNHsnHjRkAZi/POO4/c3Fyef/55/vnPf5KRkcHGjRs7eRMvvfQSU6dOZcKECSxdupSGhgann3v06NH4+vpSXl5Obm4uZ5xxBuPHj+fMM88kPz8f6Oy52FtrS0sL999/v627ftUq76gb6MlxjWgxmXnhu0O8+P1h6lpMXDhxCCsXjCQxOtjxzlLCwa+UJpShe28kwNeHa2alcNnUoby+OZfnvzvE4qc3cfbYeP74q9EMjXHiuTpSnqMqgXz9XdvPAYVDziEhZz1lFZv406+WcN1sbbyMrqTGhrL5UAVtZomPt4oHstfB0NOUQewJX3848wF472rIfBsmXdXz9v2Fz++Fkl+0PWZ8Opzzd0D16LRJSYBv+/e6N2XV3cFkMrF161bWrl3LQw89ZNPNAkhOTuamm24iNDSUu+66C4Cvv/7a9vhFF13E9ddfD8D//M//8Morrzg9lGnLli0YDAZiY2NZsmQJV199NVdffTX//ve/ueOOO1i9erVTa/3zn//M9u3befrppz15G3pE9zg0YtX2Ah77Mpvpw2JY99s5PH5phnNGAyB/M7x1MRz4zKnNg/x9uGmuCn39bsEINh0s59ynNrJ+r4sjXMtzYMAI1/bpASklb27OZfGXETTjxzMTcrl+zjCvGA1QHkezyczRKvdVTHukOl9pUo2yU01ljzHnw5Ap8O3fVH/MKU5jaxs5x+o4XFZ/3GPellWfPn06GRkZXHfddaxZs8aWD+maW7HHRRepUQFWaXVX2LNnD7NnzyY9PZ233nqLvXv3OtzH6r3cddddrFq1CiEEmzdv5oorrgCUlHtHQ6nVWj1B9zg04pfCagaE+vPy1S7IdFgptOhqle6FMc7r54cH+vG7BSNZOimBW97ayQ1v7uDGucO4+6xRjvs/zG0qx5F6huvrtYOxqZV7P/yFz34uZv6oRITfQgbmfw7mx3r0ojwhNc5SWVVmdN3bcoZsy0lmZA/5jY4IAWc9DK+eA1ueg9l3ar8mrbF4BlpT19RKXkUDbZZigTazGR9D+3fS27LqW7ZsAVSI6bXXXuO1115zel+rUKGPj0+3Eujdcc0117B69WomTJjAa6+9xoYNGxzus3LlSpv34iqerNUTTiqPoy/VcbNK69zvJ7BWIJUdcGv3xOhg3rvpNK6YPpQXvjvMsle2cMzY1PNONQWqN0GDxPjeohoWP7WJdXtKuOfsNF65eir+GRcrCfL8zR4fvztshsNbeY6stRCTCgNSnd8naSaM+hVs/CfUl3tnXf2cqvoWjpQ34OdrsDV0tpg6V5v1lqy6NwgLC8NotK9aYDQaGTRoEK2trZ0k2F1l5syZNo/srbfeYvbs2ZqsTytOKsMhpfxESnlDREQPEuBewGyW5JQaGRXvpuEo2qVu3TQcAIF+PvztwnQeu2QCmQXVnPfkJrYe6aHyylqKG+N+qEpKyVtb8rjw2R9pbG3j3RtmcPO84aovZeTZ4Bfs1XnkkcH+DAgN8I7haDZC7ib7TX+OWPAgtNar2eynEFJKSmubKKhqICTAh2GxIYQEKG+zpe34SqHeklXXmsWLF/PRRx/ZkuMdefjhh5k+fTqzZs1ySrK9O5566ileffVVxo8fz5tvvtmpqswR8+fPZ9++fV5NjiOlPOn+Jk+eLHuTvPJ6mXTPp/KdLXmu79xQJeUD4VL+JV7Kh6KlNLV4vJ79xTVy3iPfymH3fSZf/O6QNJvNx2/04zPqeevKXT6+2WyWPxwsk5e/uFkm3fOpvOqVLbLc2HT8hv+9Wsp/DJPS1Or6i3CSy174UV74zCbtD7x3tXp/jmx0b/81d6jPs/ygtuvSgH379ml+zDazWRZU1svdBVUyv6Jetlm+c62mNrm7oEoeq7Xz/XCCjz76SKakpMjc3Fwtl6sj7X8PgO3SiXPsSeVx9BUHSmoB3PM4iner29FLwGyCikMeryctPpyPb5vFwtED+eva/dz8n53UNrV23qg8G4KiXFJ1lVLy1b5SLnruR654aQs5x+q4/7wxvHbNVGJC7QywGbcUGsoh9/vjH9MIa0mu1LrxLmsdBEZC4gz39p93H/j4wzcPa7uufkibWZJX0UBlfQtxYYEkRAVhsBRE+BgEPkLQasfjcIYLLriAw4cP67M4+hm64dAAq0rrCHdyHNb8hnVgkgfhqo6EB/rx3LJJ/M+5o/lyfylLntrE/uLa9g3Kc5zOb7SZJWt2F3HOvzZy3RvbKTM28/AF49j4h/msOD2lex2t1IXgH+bVcFVqbCjGJhNlxmbtDmpug5wvYMRC8HGzfiQsXs1g3/sRFO7Qbm39jNY2M4fL6qhrMjEkKoj4iMBOVXRCCPx8DbSY3DMcOv0T3XBowIESI4nRQYQGuHGSKdoFEYmWK1uhmeEA9aO9bvYw3rl+Bg0tbVz47A98sKNQPVjhuBS3xWRm1bZ8znxsA3e8s4vWNjOPXTKBb++ax1UzkhzPDvELhLRfwf41YGrR6FV1JjVOGWtN8xyF26Ghwr38Rkdm3g4hsf1SikQLD62ptY1Dx+poNplJGhBMTIj9san+Pga7OQ6dvsPTz183HBqQXWpklLsVVUWZaniSf7BqxtPQcFiZlhLNp3ecTkZiJHe+t5uH3vtRjT3tJjHe2NLGqz8cYe4j33LPB78QGujL88sm8eXKuSydnNCtxpZdxi2Fpho4/K1Gr6Yz7SW5GhqO7M+VbIqjbnFHBISp2SR5m9pLe/sBgYGBVFRUeHTyqGtq5VBZHWZgeGwI4YHdqyL4WzwOzcOJOm4hpaSiooLAwEC3j6H3cXhIi8nM4bJ6Fo4Z6PrOjVVKEHDiMvX/2DQ4pr3hAIgLC+Q/107n0fXZ/PT9FxAAZYFJxHbYpraplTc35/HvTUeoqG9hWnI0f186njkjBrjfxDdsvsoV7PkQRi7S5LV0ZGB4AGEBvtp6HFnrVFltkPvqvTYmXwM/PQdfPaAMkbuhLw1JSEigsLCQsrIyt/ZvaDFR1dCKr0EQE+pPbnXPFxJ1TSaqG1sR1YHeGw+g4xKBgYEkJCS4vX/ff4tPcA6X12EyS/d6OKyJ8cET1W1cmpIeaWvtXonVA3x9DNx7Thp75AbYCtd+Ws3K0GOMT4jg3z8c4Y0f8zA2m5g7MpZb56cyLcWBzIZTT+oPo8+DvR9Da5MKX2mIEILhcaHaGY7KI1C2Hya5L1rXCR8/VZ7736sg8y2YfLU2x/UAPz8/UlJc1yeTUvLshkM88sVhZgyL5oVlU4gIdvw9/WJvCTeu2sGa22Yx1gMpfZ2eMZslQuA1pYaO6KEqD8kqUYnxtPhw13cusiTGrYYjNg3Mrerk5UXG+ZciDb6YI5NZ/to2Zv79G57dcIjZIwfw6e2n8/qKadoYDStjL4IWIxz0jnJsqpaGwzZb3MP8RkdGL4aEaRYpkuPlN04ETG1m/rR6D498kcX5GYN5fcU0p4wGQGKU6uov9JY0jA4AW3MrGXP/F9ooZztANxweklVixNcgSBkQ4vrORbsgcmi7gF6spWGobL92C7RHRQ4iehjv3zqHa2Ymc37GYL5cOYdnr5zMuCFeaJ5MmavmVXipuio1LpRjxmZqGlsdb+yIrM9hwCildKsVVimSuhLY/Kx2x+0l6ptNXP/Gdt7eks8t84bzz0szOokWOiIhWnWPF1Tq+l3epKCygcbWNgbYK43XGD1U5SFZJUaGx4a6N/e6OBMGZbT/f8BIVGVVlmbrs0t5DsSMINDPhweXdD8bXDN8fJUA4O531RW3vxtGtgdSO0wDnJzkgXR7Uw3k/aAyXTVtAAAgAElEQVQm+mnN0BlqVsnGR5VXedqtENi7CgfusnJVJt9ll/HXC8dx5XTX+ynCA/2ICPLTPQ4vU1DViBAwOFI7peDu0D0OD8kqNTLSnca/hkqoym0PU4GlsioJjnnR42izNBlqqIrrFGMvgtaG9lCQhlgrqw55Gq46+LVqwnRW1NBVzn1cFQh89w94Yjxs+me/D101m9rYkF3G1TOT3TIaVhKigiio0j0Ob1JY2cCg8ED3LmJdRDccHlDXbKKwqpE0TzrGB2d0vj82zbseR3WeuuLVcuqfMyTNhNB4r4SrEqOD8fc1eF6Sm70OgqIhcZo2C+tK2EC49A244TtImApfPQj/yoAtL4BJwwZGDdlbVEuLycx0D3NeiVHBusfhZQqqGkhwdpSDh+iGwwOsHeNuVVRZhQ0H2TEcFTnKM/AGtjnjvexxGHxg7AVqtGpTrePtXcDHIBg2IMSzBHmbCXLWw4izvCYDb2NwBix7H5avU5/D53+ApybDzje7/dxbTGbe217gtnSHu+zIrQJgkichQJTHUVjVoPdyeJGCykZbIYK30Q2HB7RXVLkpNRKZdPxkudg0aGtR/R3eoMKqiuuCVLhWjL1ISblnaT8P2ePKqsKtqq9Gy2oqRySdBtd8Bss+hJABsOY2eHY6/PI+dJk7/faWPO5+/2fW7XFxWJeH7MirYmh0MHFhnpVRJ0YH09RqprzOOwoCpzrNpjZKjU0kRns/vwG64fCIrBIjwf4+DHEnGVW0q3N+w0rsKHXrrTxHeTYED3A8CtUbJExV8ipeCFelxoVSUNVAU6ub876zPgeDHww/U9uFOUIISD0Trv8WLntLCSN+cC28MFutSUpa28y8tFFdSPQola8xUkq251UxxUNvA5THATif5yjdB5/fA68v1txDPRk5WtWIlOgex4lAVomRkQPDXO+GbahUY0m75jeg3XB4K8/hgrih5hgMKlx16Bv1HmhIalwoUsIhd/Mc2esg+XQIdKMfRwuEUI2SN22Ci15WSfN3fg0vL2Dzlx9ytLqRqGA/tvVCjb6VgspGyuuaPQ5TAbYxyj3mOZrrYOcb8PICeO402PoiHPleNcWeSFTna6Jy7QoFlvfV6XHVHqIbDg9wW6PKmt+w53H4h6jeDm/1cmg8Z9xlxl6kkvMHPtX0sB5NA6w4pDyxUV6qpnIFgw+MvwRu2waL/4U0FjPnp2tZHfp3/phu5ECJkeqG3gn3bM9TRmpKsoYeR9deDinh6A745Lfw2ChYc7sqiz7rr3BnlpKrOdEMx8e3wX97VyHA+r72VqjqpOrjEEIsBhanpno/fl9mbKaivsXNGRyWjvFBE+w/HjvaOx5HQ6Waj9GXhmPwRIhKUeEqrWQ9gJQBIRiEmyW5WZ+rW0/VcLXExw8mX8PXfvP5YdUj3BOwlozdKzjocznbcqe4p43mItvzqggL8GVknJsCnh0I9vclJsSfQmuoqrEafnkPdrwOpb+AbxCMvVBJsiROVx4YwPAzlOGQsv2+/ozZrC4MW+qhtRH8eudEXlDVgL+PgYEe5qKc5aTyOGQvjo61VlS5ZTiKdqmTZ1A3V3Kxo9QVsNaVVRUH1W1fhapA/fjHXaRCEHXuiezZI8DXh6HRwe6V5Gavg7gxqoemHyGl5OmNhXwVcRG+v8ukbcyF3Of3DgGb/q9XZNp35lUxMSlKM2HChKgggku2woc3Ku9i7V3q+3DuY3DnAbjwOdUo2dFAjFiolJxLftFkDV6n6gg014Js824/VhcKKhsYEhXUayKSJ5Xh6E0OlHhiOHbbz29YiRttqazKdW9x3VGerW77oqKqI2MvUj+s/R9reli3KqsaqyDvx/7lbVjYfLiCzIJqbpgzHN+gcHwufoVvgxYyp+hl1QPiReNR09hKVqlRk8Q49eXww5O8UHMT/3vsTjjwGWRcATdsgJs2wtTrulcithYreEnnTHOs/VkAJT/32tMWVDbawoG9gW443CS7xEhMiL/rujD1FVCTbz+/YcWWINdYYr08W1XtRPbxlfXAsUoPas9Hmh52eFwoR8rrMbnS63Dwa2XE+kN+owvPbTjEgNAALplskb82+LBjwsO81bYAfnhCVR2ZvdPXkVlQjZR4JuECsOsteCwNvvxfTAFR3Gu6EfPvD8B5/+z5N2AlbCDEj4ecEyTPUbxbVef5h/Wql1RQ1dBriXE4yXIcvcmBUqOb+Y1uGv86MsBqOParShutKD8I0cP7fiaENVy14e/wzAxVyRQYAQGW2+P+H3n8fX5Bx8W8R8SF0domya9sYJhFv8ohWZ+r8uQhk73wQt3nl8IaNuaUc8/ZaZ0mLU4bNoDfbFjOvLEJDNn6Apia4LwnVMWahuzIrcQgICPRQxn0Q9+o0u/ffMyGw8G8u3oPv232YZArofgRC2HTEyovosWMFG9SvBsGjgG/kF4zHMamVqobWnutFBd0w+EWZrMkp9TIpVMSXd+5yEFiHCAgFCKGap8gL89WMz/6A1NWgLFEjWhtqoH6MpWDaapRdftmB0q3voEweTmc8Sc1aY/OlVVOGY62VhUCSTvP+93iLvL8d4cIC/DlyhlDO90/KSkKH4OBd6Nu5s7ZMbDxMSVXcv4zml4Q7MivYvSgcELcGYfcEWOJuliJG01itcppFVY1MijChbBK6kL1Og9vUOXc/RUpleEYfR74BSslAHOb179bBZXWUtzeC1XphsMNCqsaaWhpc69jvGiXkux2dOUUp/E0wLZWlbgbs0S7Y3pCaBwsfsL+Y1KqipTm2nZD0lQDTdXt95VlwZbnYf8ncO6jMOochscq1d2cY3Wc5Yzob/5P6lj9LL9xuKyOtXuKuXnu8ONGsoYG+DJucDhbcqvgxvuV5/XNX8DUqPo/fP09fn5Tm5ld+dXtITJPqCuB+HSgc0nu1GQXGlATpiov8+CX/dtw1BRCY6W6KPQNhNZ6NVtngHdzitamSt3j6OdkWTWq3BU3TJjqeLvYUXD4O+2uWKpylfJrN3PG+xVCKKVg/2AIi+9+uykrVP3/O7+GMecTds7/ER8e6HxJbvY6lfMZfoY269aIF747jL+PgeWz7E/pm5YSzeub82g2tREw525Vyrr+T2BqgUte83jK4oESIw0tbZo0/mEsVR4D2BQWXBY79PFVI4gPft2/y3JtZfYZ7RM8S3Z733BYejiG9mKOQ0+Ou0FWiZJAcFncsL4cagqcSwrGpildJ60qq6wVVX1Ziqs1idOU0uyZ96s54U9P5YbgDRw65oREhZRKMytljgoN9hNKapr4cFchl05JJDbMfuHF1ORoWkxmfi6sUXfMvE2VtGZ/roxoi2fy5TvylLDhFFe8Ans016nJj2Gq5yTQz4e4sAD3BjqlLgBjMZTu9WxN3qR4NwgfVfwRO1olyXshz1FY1UhogC+RTk5k1ALdcLhBVmkdCVFBhLoa/7WNiu0hMW4ldrS61aqyyqaK28eluFrj6w+z74RbNsPgDFZUP8mD5XciS/f1vF95DlQe7ndhqpc3HsYs4YY53U8gtIZ5OulWTb1O5TkOb4C3LoFmo9tr2J5XxaCIQPc02DpSV6puwwbZ7kqMdlNePXWBuu3PZbnFu9UFn1+Q+l7GpkGx90tyCyobSIgK6pVZ41Z0w+EGWSW17uc3oOfEuJVYi2egVRNReQ6EDjxhps65TMxw+M0afkj/C0kUwQtzVOy/tcn+9tn9r1u8qr6Ft7fms2TC4B5LK6NC/Bk1MIwtXQUPJy6DpS9D/mZ480JVheQGO/OqNApTWZR8Q9u73N0e6BQ+CAam9++y3OLdnX/bg8b3isfR26W4oBsOl2kxmTlcVu/eDI7iTFVh4szJOyBMKclqVVlVnn1yhansIQSGjCs4s/lRjiWdB98/As/NVF3qXclap05EkW5UxnmJNzbn0dDSxk1zhzvcdlpKNDtyK4/vWUm/GC59XXm3ry9WfUMuUFzTyNHqRm0a/+oshqNDnioxKpjimibXem2sjFgABT/1T7VcY4nysDoajvh0qD+m8jxeQkrZq3M4rOiGw0UOl9dhMkv3pUacyW9YiR2ljdihlBbDcQIkxj1kxMBQqgjns+EPwFWrQZrVCXT1Le2KvA2V6gTUm7M3HNDQYuK1H4+wYHScU9+taSnR1Le0sa/Yzkl09GK4/B31mb9+HtQdc3od1vyGx41/0O5xdDAcCVFBtJklxTXdeII9kbpQFXgc3uD52rTG2jHe1XCAVzvIK+pbaGxt69VSXNANh8tkuSs1UncMao86l9+wEpumQkxmN2dMWGmoUKWsJ0JFlYfEhPgTGexHzrE6GD5f5T5O/z38vAqengK7V6kphNLsvdnibvDu1gKqGlq5eZ5jbwOU4YAe5nOMWAhX/FcVV7x6DtQcdeq423OrCPLzYfQgDeTljSXgE6AaOC1YQypuhasSp6kG0P6ollu8GxAQP679vl4wHDZVXN3j6N9klRjxNQiGDXCxEseWGHfF40hTncGeVlbZEuMneagKEEKQGhvaXpLrFwQLHoAbv1f9Mx/dAJ+uVHF3Vz4LL9JiMvPSxsNMS4lmcpJzlUwDwwNJignuebDTsLlquqCx1GnjsTO/igmJEfj5aHBqqCtVFVUdkrbWXg63EuQ+fuo1WdVy+xPFu5UGXECHC8rACCXv48UEeac5HMZS2Pi40xcJnqAbDhfJLjUyLDYEf18X3zprjXf8eOf3ibNWVnmY57CV4p5kFVXdkBoXerxK7sCxsOIL+NWjIAwwbqnmMh3usjrzKMU1TdzipLdhZVpyNNtyKzGbeziJJp0GV3+sysB3vtHj8RpaTOwtqmWKk8bLIcbiThVVAIMjgzAIKHSnJBdUuKr2aK8qzzpF18S4FS8nyK0eR0JUEORuhK8fUnkVL9M/fjknEAdKjIyKd8ONL9qlQkWuTJizegie5jnKs1Una0T/SQR7k9S4UCrrW6is7zLwyOAD066HPxyChQ/3zeK6YDZLnv/uEGMGhTN3ZKxL+05LiaaqodWxlPyQycrDqi3scbPMgmrazJLJGgxuAtQVcGjnuSF+PgYGRQS553FA/yzLra9Qhtme4Ygfr8q+PSiP7onCqgZiQvyVNEz+ZvAPVUUfXkY3HC5Q12yisKqRUQPdaBgrynQtvwHKyIQneO5xVBxUbnQ/02PyFsMdTQP0Deh7oUcL6/eVcLisnpvnDXe5Dn96SgzA8WW59ggbBLXFPW6y05IYn5SokeGoK7Hb+T/E3ZJcgIghEDdW5an6CyV2EuNW4scD0muNiwWVjSRYS3Hzf1KqFL3w3dYNhwu0D29y0eMwloKxyL2Yeuwoz5sAy7P7fgZHL5Ia68EY2V5ESsmzGw6RFBPMr9IHOd6hC4nRQcSHB/ac57ASPhhqi3rcZHteFSMHhhKhRQdya6PSAQs9flJhYpSbTYBWRixQJ0kvXcW7jK2iyk4Y2pYg9064qqCqgcSoINWzU7oXhp7mlefpim44XCDbWlHlag9HRw0bV4lNg7Js9+cumCyyJadAYtzKkMgggvx8+r3h+PFQBT8X1nDjnOH4uDG5TQjB1JRoth2pRDpKFocNUhcv3WA2S3bmVWlThgsdSnGPN4gJUUGU1DbRbHKzWjB1gVJPttef0xcUZaokuL2JnuGDISi684AnjWgzS45WNarEeMFWQKoJir2Abjhc4ECJkWB/H9cnbRXtAoT9KxJHxKUp5dPqPNf3BaXOKc2nRA+HFYNBMDwuhJxj/eSKtBue3XCQuLAAlk4e4vYxpqVEU1LbZJPW7pbwwcoDaKm3+/DBsjpqm0xOV3U5xCY3YsfjiA5WCuTVbvRyACTOULH8/hKu6i4xDqqizEsJ8uKaRkxmqUpx8zeDwRcSpmj+PPbQDYcLZJcaGTEwzPW5vkWZ6sQd4EbTYKxlfoa74SpbRdWpYziAziW5/ZDdBdX8cLCC62anEODrfu5puqWfY8sRBx3i4YPVbTd5Dk0b/6CD3MjxOQ6bvLq7eQ5ffxg2r3+U5TZWq3EFPckIxafDsX1qtIGGdJrDkf+TWoN/iKbP0R264XCBrBIjae5KjbjbM+DpGNkKSw/HKdD815HUuFCKapqobzb19VLs8tyGQ4QH+nLFdM/G+KbGhhIV7Oc4z2ENGXUTrtqeW0VMiD/JMRo1kvUQqrI2AXqU50hdoCqZtB525ipWT6Knwpf4CdDW0n4RpxG2ORzhPnB0R6/lN0A3HE5TXtdMRX2L6zM4jCWqnt2d/AaoJqKwwe4PdSrPUfv3I+nw3sA6DfCQo1LVPuDgsTq+2FfC1TOTXVdY7oLBIJiaHM3WXAeGI9wSDuvW46hkUlKUdgqrdSVKVjz4+NBXfHggvgbhnry6lRFqxkefl+VacxfxDjwO0DxcVVjZgBAwpOGAGsGgG47+h1VqxGVVXHc6xrsSl+ZZqOoUC1NB5zGy/Y0XvjtEgK+Ba2Yma3K8aSnR5FU0UFrbQ84g3HLlX3t8V3F5XTO5FQ3aCBtasfZw2DFEPgbB4EgPejkAIhLU6IG+znMU71ZGObSHHpwBI9SwLY07yAuqGhkUHojf0S3qjl5KjMNJZjiEEIuFEC/W1NRofmyr4XBZFdeaGI/3oCknNk0ZAFcrq6SE8oOnpOFIignB1yD6neEoqm7ko11H+fXUocSE2h/U5CoOdatAxb4DIpT324X2wU0aGo66EruJcStuy6t3JPVMlRRu7sPPuKfEuBWDDwwco7lmVUFlg+rhyNusqiZDBmh6/J44qQyHlPITKeUNERHaz5zIKjESE+Lf7VS2binOVHkKT0JFsWnQ2gA1+a7tV3cMmmtOqVJcK34+BpJigvud4Xhp42EArpttfyysO4wZFE6Iv4/jPEc3vRw786rw9zEwdrCGvxtjid38hhWPezlAhavaWpTURl/QUq8u6JyZrxOfrgyHhsn8gqoGkqICldJzL3obcJIZDm+SVWp0bwZH0S738xtWrJVVruY5rInxU9DjABgRF9avDEdlfQvvbi1gScZgEjRUM/X1MTA5OdoJwzHIruHYnldFekIEgX4aKgsYS+w2/1lJiAqizNhMU6sHys9DTwO/kL4LV5XsAaSThmO8KoeuKdDkqZta2yitbWZCQIk6bi/mN0A3HE5hNkuyS42uS6nXFqt6dlelRrribmWVtYrjFKuospIaF0peZQMtJjebJzVk86EKrnjpJ5pMbdzsxKAmV5meEk1WqZGqrvpcHQkbfFyoqtnUxi+FNdqV4YJqOm2stCs3YqW9ssqDcJVvgEUt98u+Kcu1N4OjO6zipholyI9WK29trMkiZaIbjv7H0epGGlraXDcc1lGxnsp3B0Uqt99lw5EDfsHtFTWnGKlxobSZJbkV9pveeoOi6kZufXsnl7/0E8YmEy9eNYUR7niuDrDmObb1VF0VPlhdyLS1lyjvOVpDS5tZW8Nha/7r3nC093J4GK5KXQDV+e2jA3qT4t0QEttjSM7GwLFKlVmjBLm1Im1o/c+qVyYqWZPjOotuOJzggLvDm4oz1ZfFk8S4FXc0q8pzLOKGp+bH3JeVVU2tbTz1dQ5nPLaBr/aVsnLBSL6+cy4Lx3QfvvGE8QkR+PsaHBiOQUpFoK59lKk1MT5pqMYVVWC3+c+KzePwpCQXvKaWe82rW7nvw597DqVZE+POlDD7B6vfokYeh9XgRpbtUPkNrcqonaR/SIT2c6zihm5VVA0YpU03Z+xoNU/BbHbeEJRn95oEQX9kWKx633vTcEgp+XJfKQ9/to+CykbOGRfPn84drWlOwx4Bvj5kJEb2nOcIs3SPG4uVyiyq8S85Jtj1oo+esM0a795IxoYG4O9r8DxBHpWkij8OfgWn3erZsSwUVjWwIasMgH3FRl68ajIDwwM7b9TapMYdjDzL+QPHp1s0pTRYY2UDSb6V+BgLIekOTY7pCqfmpaiLHCgxkhAV5FqzlpTuSal3R+woaK13PrnW2qRc+FOwospKsL8vQyKDes1wHDxWx9WvbuOGN3cQ6OvDW9dN57llk71uNKxMT4lmT1Etdd11y9tkR1SCXErJjrwqJmkZpoIe5UasGAyChEgNSnJBDXfK/QFaNDgW7eG+3y8cSU6pkcVPbWJXflXnjY7tVfPPnclvWIkfr36/DU6oGTugoKqBhSGqQq+3K6pANxxOkV1idF0Rt7ZITeLSajypq9MAKw8B8pSSU7dHalyo1w2HsamVv63dz9lPfM+u/CruP28Ma387m1mpvVdXDyrP0WZRubVLeAePA8iraKCivkW7iX9WjCUgfBz2FSREa1CSC0pmva1Zs7LcrUeqCAv05db5qXx4y0wC/Axc9sJPvL+jwyAsVxLjVjTsIC+obOQ0vxzwD4OB4xzvoDG64XBAi8nMobI69/Ib4HkprhVbZZWT0wBt4oanrscBynAcKqujrafxqm5iNkve31HI/Ee/46WNh1k6KYFv75rHitNTtJnZ7SKThkbhYxDdh6uCY8DH39Y9vt0bjX+gQlWhcQ4HhyVEBXkmO2IlaZYqAtGoLHdbbiVTktR7mRYfzppbT2dKchR3vbebhz/dh6nNrAxHYKSSU3cWDSurCqoaVEVV4rQ+GdCm5zgccKS8HpNZuldRpVViHJTWf2i88x5H+UF1e4p7HCPiQmk2mTla1chQrQT8gJ8Lq3lgzV525VeTkRjJK1dPYUJipGbHd4eQAF/GDYnoXrdKCFXpZNGr2pFXRXigr23wlWbYGRlrj8SoYKoaWqlrNnmm2eUbAClz2styPUgUV9Q1c/BYHRdNaq9EjArx5/UV0/jrZ/t5ZdMRskuNvNqaia+ziXEroZYKLA8Nh7GpFXNDFfHmwzD0Co+O5S66x+GAAyW1gBsVVUWZqnHPX8P4duwoOOaCxxGRqO3zn4DYKqvKtJnNUVnfwr0f/Mz5z/xAQWUjj14ygQ9vntnnRsPKtOQoMguqu68GCh9iC1VZhQ1dHhPgCAdd41asJbke9XJYSV2gBpZVHPLoMNtylRc2Lblz+M7Px8CDS8byj6XpbD9cirlkD5URo11/gvjxHkuPFFQ2MtlgKT9O6t3+DSu64XBAdqkRX4Ng2AAXrsqkVB6HVvkNK3GjlcfhTLPTKSpu2BUtS3LNZsm1r2/j/R2FXHd6Ct/eNZeLJydof+L1gGkpMbSYzPxc2I1eW9ggqD1KTWMr2aV1TNayDNeKA50qK+0luRrkOWxluV95dJhtuZX4+xpIT7Avv3LZ1KF8cHE0/pj4205/vtxXane7bolPV7/hVjeHWKHCVNMMBzAb/GDwJLeP4wm64XBAVomRYbEh+Pu68FbVHoWGcu3yG1acraySEioOnrId4x2JDPZnQKi/Jobjg52F7Mqv5u9Lx/Onc8cQFqjBbG6NmWrJV2ztbrBT+GCoLWZnngpnTdY6v9HWCvXlPVZUWfF4oFNHolNUWNbDfo5tuZVkJEb2OFxrDLkAGKPHccOb23n6mxzHo3utxKeDbFODndykoLKBKYYszAMn9FlEQTccDnBLo0oLKXV7xDpZWWUshpY63eOwMDzW88qq2qZW/rEui4lDI7loYv/txI8M9ictPowt3SXIwweDqZE9h/LxMQgytA6x1R0DpFMeR0yIP0F+PtpUVoGlLHcTtLp3vPpmE3uLam1TFbuleDf4h/KvWy5iyYTBPLo+m9ve3kVDixNDwwZ5niAvLq9igjiMT8pMt4/hKbrh6IG6ZhMFlY1uzODYpcoR4zUuk7NWVjnKc1jlF07xiior1pJcp68K7fDU1zlU1Dfz0JKx/So0ZY9pKdHszKtS1T9dseQeCnIPMmZQOMH+GtfH1HU/+a8rQgjtKqtAleWampTxcIOd+VW0mSVTk50wHPHjCfT344nLMrjvnDTW7ilm6XObHedrIpNVCa0HhsO3dDf+woToZX2qjuiGowdy3O0YL85U+Qi/IG0XFBwNIXGOPY5TdM54d6TGhVLbZKKsrtmt/Q8eM/LqD7lcNiWR8Qn9IwneE9NSoqlvaWNfce3xD1p6OapK8rTVp7JikxtxTlolMTrYc70qK0mnq4FJbpblbjtSiUHQc0OkuU2d9C39G0IIbpw7nFevmUphVQNLnv6BLYd7mP9uMLRLrLtJXNVO9Y8+aPyzohuOHmif+hfu/E7WxLjW+Q0rcWmOeznKc8A/1DnxtVMAW4K81PVwlZSShz7ZR5C/D3cvGqX10ryCtSLIbj+HxXBEmcu9YzhsHofjHAeoPIcmVVUAfoGQMtvtPMfW3ErGDo7ouTS44qCajdOl8W/eqDhW3zqLyGA/rnx5Cx/uLOzmAFgMxx7XB7Ohvo8jmn7hWGCK3bG8vYVuOHogq9RIsL+PLYnnFDWF0FChndRIV2LTHFdWVVjEDXtZ+Ky/MiJOeYwH3Zg//uW+UjbmlPP7hSM1m9jnbeLCA0mOCbaf57AkrQdRqX3jH1jkRoTyjJ0gMSoYY5OJmoZWbZ4/dQFUHna5LLfFZGZXfrXjMJU1f2mnY3x4bCirb53F2CERPPpFD1GB+HRV5FJ52KU1ApTXNpJBNlUxfVNNZcUpwyGE+FAIca4Q4pQyNFklRkYMDHMtpq2VlHp3xKapxLed2dE2ynP0/EYHBoYHEBrg63KCvKm1jYc/28fIgaEsm+FCh3A/YFpKNNtyKzF37Zj39afWJ4phAbUMitA4lArKcITEgo9zuRNNK6ugQ1nu1y7t9svRGppNZqalODCmxbvBN7Db31d4oB8XZAymqKbJNjPjOGwJctfDVeVHMgkXDbQOme7yvlrirCF4FrgCyBFC/F0IcWL47B6SXWpk1EAXu2qLM8Hgq/T3vYGjaYAtDapcVzccNoQQDHdDs+ql7w9TUNnIg4vH9omEiCdMS4mhuqGVHDuvucgcRWqQNg2Rx1FX6lRFlRVNBjp1JGY4RA9zOVxlFTac4kxifOC4Hg2j1WvZ3l0Hf2yaOke4kSBvPfwDAEGps13eV0uc+jVIKW3cpxMAACAASURBVL+SUl4JTAJyga+EED8KIZYLIfpfMbsGlNc1U17XwihX8hugPI5YLyTGrdjEDrsxHBUWqZEBp7bUSFdSXSzJLapu5JkNB/lVejwze1msUAusJaVd5UeOVjdSYIpkkPBcodUuxmKXcmvt3eMaJchBleUe2ehSk922I5UMiw1hQE/hSLNZeQkOhA3T4sMI9vexzTo5Dt8AdY5ww+MILN5GsYxmUFLfFr44fRklhIgBrgGuA3YB/0IZkj4a+Otdsq3Dm1ypqNJaSt0ewdEqFNBdglwXN7RLalwox4zN1DY5F0v/61r1/v7xV27ISvQDEqKCiA8PPC5BviOvilIZRXhrmXee2EmdKisRQX6EBfhqV5ILMGIhmBohz7myXLNZsi238jiZkeOoOgLNtQ5/374+BiYNjbLJl9glPt11j0NKBlbt5GfDaIID+vZ63dkcx0fARiAYWCylXCKlXCWlvB3QWCGtf+DW1L/qfDVr2ZuGA9oT5PaoOAgIiNZ+rvWJjCvSI5sPVfDZz8XcPDe112ZpaI0Qgmkp0Ww9UtGpf2VHbiUVhgH4Nld5JHthF3ObGiXgZEWVdZ1DooK09TiSZoFPAOQ4Jz+SVWqktsnkXP8GOCWlPiU5iqyS2u4vVAaNV2E9owuSJdX5RJjKyA0Z7/w+XsJZj+NJKeUYKeX/k1J2mnYvpTwpR8xllxqJDlFyFU5jk1L3UmLcSk+VVeXZEDlUlSbq2HC2JNfUZuahT/YyJDKIG+cO642leY1pKdGU1jaT3+Fqfkd+FQHRCeo/xiJtn7C+XI2mdcHjAGsvh4Yeh38wJJ/udJ7Dmt+Y5kzHuMGvXcGhB6YkRWOWsCu/2v4G7szmyP8JgKqYyc7v4yWcNRxRQoiLuvydKYRwrubuBOSAZXiTcKWktWiXdxPjVuLSlMtca+eHr1dU2SUxKgh/H4PDkty3tuRzoMTI/543mkC/3p9zoCXWPIe1LLe+2cT+YiMDBierDWqLu9nTTSyqu672DyVYPA5POvuPY8RC5X1XHnG46dYjlcSHBzouuy/eDQPHgK/ji8mMoZH4GAQ7ukuQW4cvlex2eCwr5vzN1MpgfOLHOL2Pt3DWcFwLvAxcafl7CbgH+EEIcZWX1tZnmM2SnFKje1LqcaO9f7Vvrazqmucwm9WPRe8YPw5fHwPDYkN6DFVV1rfw2PosTk8dwKKxzodb+iupcaFEh/izzWI4dhdU02aWDE22hDGNGhuOOkvYxYVQFahejoaWNirrW7RbywjLLPDt/+5xMylVfmNqSnTPF4lSKsPh5MS/0ABfRg8K6z7PEWQZAuWCx9F25Ad2mEeQEOPieckLOGs4/IDRUsqlUsqlwBhAAtNRBuSk4mh1I/Utba4ZDm9JqdvDZji65Dlqj6quVt1w2MVRSe6j67Oob2njgcVjXPM0+ylCCKYmR9kqq7bnVSEEjBppCbX01AvkDrZZ466HqkDjyqqY4ZCxDH56rl27zQ4FlY2U1jY7DlPVFKr8pQujYqckRZNZUE2rPc0wcC1B3lCJX2U228yjSOwHeTdnDUeClLJjFucYkCilrAQ0avnsP1ilRlzSqKrOg6Zq70mNdCRkAAQPOF7ssEIXN+yJ1NhQCqoa7A452nO0hne25nP1acmMcFWbrB8zNTmavIoGSmqa2JFXxci4MCIio5UkjeahKvcMh+ZNgFYWPKDK4j+/p1ulBatRdVhRZUuMO//7npIcRWNrG/uK7GiGgTJCFYeg2Yky8YItAGwzp5EY7aVSfxdw1nBsEEJ8KoS4WghxNfCx5b4QoJvsz4lLlk3c0IWCMWunam94HGC/ssp6ZaXP4bBLalwoUsLhsvpO90speWDNXmJC/PndwpPrvZueEgPAliMV7Myvap+/ETZI++R4XYmaa+5EDqAjNsOhxUCnjoTGwbz74NDXkLXW7ibbjlQSEeTHiDgHv/XiTKV47UL+ckqSpRGwu36O+HRAQulexwfL+xGT8OMXhjE48sQxHLcCrwIZlr83gFullPVSyvneWlxfkVViZEhkkHODesxm+P4R+OxONRZSqxnjjohLU02AHa+kyrMhIEL9YHSOo32MbOcrvI8zi9iRV8UfFqUR3g+HM3nC6EFhhAb48p+f8jA2mdon/lkGOmmKsdSpAU5dCQv0IzLYT7vu8Y5Mu15dZK27z+6cjm25lUxNdmJ8bvFuNdbAhcbe+AiVcO+2gzzeBemR/J8oCBxFTEREv1AxcLgCIYQP8I2U8gMp5UrL3/tS0xKI/kVWidG5GRxNNbBqGXzzFxi3FFasA59eOvHEWiqrOiY4y3NUx/hJEJ/3BikDQjAIOFjaLrdR12zib2v3MyEhgosnJ/Th6ryDr4+ByUntzWg2YcPwwfar8jzByZGx9kiM0lBevSM+fnDO/6lQ8g9PdnqozNjM4fJ6x/0b4FJivCNTk6PZnldlv2IsfDAERTs2HK2NULSLTDHaNcFVL+LQcEgp2wCzEML+EN6TjBaTmUNldYx0ZDiO7YcX50P2Ojj777D0ZfAP6Z1FQgfNqg55Dr0Ut0cC/XxIjA7u5HE8/c1BjhmbefAEGNDkLtbE74BQf4ZaEtGEDVInejekvbvFWOK2lL+m8updGTYXxlwAmx5XTboWrJ7AVEeJcWOJqhhzw3BMToqizNi5l8aGEM4lyI/uAHMrG5tTbYUEfY2zPk8d8IsQ4hUhxJPWP28urK84Ul6PySx79jj2fAgvnQnNRrj6E5hxc+9f5XetrGo2qpi1XlHVIx01q46U1/PKpsNcPDmBiUO9IDHeT7D2c0xOimqvFgsfDGYT1GskPWI2q5Ori4lxK4nRwRRWNR6v5qsVZ/0FEPDFn2x3bTlSSaCfgXGDHVwTu9Ax3pV2wcNu8hyDxkPpPjWrvTvyNwPwdX1Kv6ioAucNx4fA/wLfAzs6/J10ZPU09a/NpL547y9XSbIbv4PkWb28QguhsSoRaRU7tIob6onxHkkdGKouDtrM/PmTvQT6+nDP2Wl9vSyvkp4QQWJ0EAvHdMg/WAY6aVaS21ipDJGLPRxWEqKCaDGZKXdzSqNDIhNh9p2wfw0c3gCo/MbExCj8fR2cBot3A8Kt/OWIuFDCA33ZntdDnqOtuceSYfI20xydRg2h/aKiCsAp0Xwp5etCiCBgqJTSwdzSE5usklp8DYLhsV2qLOrKlMHI3QhTr4NF/8/l6hHNiU1rNxz6nHGnSI0NpbVN8tqPuXybVcb/nDua2LATY0CTuwT4+rDxD2d0vtMaUtKqCdDWNe6e4bBeSRdUNRAX7qUG2pm3Q+Z/YO0fMC7fwP7iWm47w4kLreLdajBagOtl2gaDYHJSVPceR8cE+UA7HeHmNijYSvnQ86CIEytUJYRYDGQC6yz/zxBCrPHmwvqKrJI6UgaEdL4KKdwOL86Fwm1wwfNw7mN9bzSg3XBIqQyHMEB0Sl+vql9jraz6x7oDDI8N4TenJfftgvqK8CHqVqsEuW3WuPseB2jcBNgVv0B1wVeeRelXT2GWTvRvgNuJcStTkqPJ+f/t3Xt0XOV57/Hvo7tkz+hiy7ZkWZYBE+5gLBMSlwCFZgFtEtIkXXCSEJo09ELS0tWQtM1pm+a0uRy61mmbdLWhPSQpbcgJNG1JF20IhIQ0OLENGHMxcQjIlm1JNpZsS5Ys6/KeP969pZE0I89lj2ak+X3W0vKema0975ZkPXpvz3N4iGPDSXbGrzjHF4ZKNc/R9yKcHuTVWh9gFttQ1aeAKwj2bDjndgGLOwNcCj/pOzG9Y9w52Pll+PKNUFYOH3oULru1sA1M1HyeX9k12OuX4jZ2+Fz/ktLZQeAYm3B86u0XnnmYYqla1uzzqkUVOKZqjWc3xxFmIY40vXoyb7gRzrmedbv/itVlx9nU3jD/+SeP+sJouQSOoLZ70voc5RWw6oLpeZTZgvmN58rOp6qijFVF0jtO93/NmHPu+KznIlyOURxOjo7T3T/ia3CMnYKHPwL/cRd0XAV3fD+nH568aA4KMR55OchRpWGqM4nXVHJW8zJuvGgNV21sLnRzCqeszPcOoh6qyrLHUVtVzsrlVfntcYBfxHLD5ymfGOUzsYdYVn2G0fre7CfGQ5eua6Cy3FLnrWq5xPc4ki3Z3b8N4m28eDJOW0Nt0az8SzdwvGhm/wMoN7ONZvYF4Kk8tqsg9gYT45fGTsCXb4Bn/wmu+hi890FfQKnYhNUAD7/kA8cKVf1Lx7/duZW/umWBdvgXsyj3cgz2QU1DTgk+2xojTq+ewmjDBu6bvInrRh+H7u3znzy1oir7Ghg1leVctLaep1NOkF/s0xUdPzDzeed8KvX1b6J7YJi2IpnfgPQDx0eBC4FR4AHgBHBXvhpVKHv7Btla9jxbv/sun0Pmlq/BdX/kh6mK0bJmqG2En34Hxk+px5GmeE1l6Q5RJYq3RDtUleXEeKgt6oJOKew+cJy/PH0zp2pWwSN3+wnoVHqe81lsa3Nbrt25vpHnDhxndDzJe60JejOzNwIOdPmeXPuVdPeP0F4kK6og/Zrjw865TzrntjjnOoPjiMuHJWdmF5jZN8zsb83s3fl8r8ZdX+IfKz9HWWw1fPgJOO8X8/l2uTPzRWW6fuAfK3BIJmKtEQ5VZb+HI7SuqY5Dx0aYyNdejsD21/oZpobx6z7tc1A9e3/qkw/timSIurOjidPjk7xwcPaIP8FqKps7QR4UbhpavYXjI2NFMzEO6a+qOtfM7jWzR83su+FHGp93n5kdNrMXZj1/g5n9xMxeMbPfP8NlbgS+4Jz7TeC2dNqbrWWVxq7Y1divPe5TdywGzW/w6+dBm/8kM/EWOD0Ep1Jkb81EDrvGQ22NtYxNOHpP5Pdv0h1d/WxctZzlnbdA+5vh8U/DSJL5h5Fjvs54BIFjczBBnnSeo2qZ/7/bM6vHsX8b1NSzr7wdKJ6luJDmPg7gQeDv8MWc5unXzfEV4Iv4pIjAVO6rvwF+ATgA7AiW9pYDn531+R8E7gf+xMzeDqzI4L0ztvUD/ytsZD7fJlrhPEdto98QKJKuxCW5NfHsr+NcTnmqQuFf1Af6h1mbpwywE5OOp7sGeNtlrf7/+U3/G770FnjiM3DTPTNPDnsAEZRKWLm8mrNWLvP7Oa5OcsKai6F7x8zn9m+DdVfSPeA3RRZTjyPdwDHunPvbTC/unHvSzDpmPX0F8Ipz7lUAM/s68A7n3GeBX0pxqTuDgPPNVO9lZncAdwC0t7dn2tTwItl9XiGFK6tWbFyc7ZfCmdoEeMhnW87WyABMnM56RVUo/Iu6e2CEN+Z0pdRe7j3B4Oj49P6NNRdD5wdhxz/A5bfN3B0ewcR4os3rG3lsTx/OubmFwtZcDC/8i/9a1jb6+u2v74VLb53K4VUsu8Yh/cnxb5nZb5lZi5k1hR9ZvudaoDvh8YHguaTMrMPM7sX3Wu5JdZ5z7t5g/qWzubmEllk2Bz0OzW9IpuJB4Mg1vXpYwCnHyfHWhhrMyF+yQ/z8BsxKbHjtJ/2KsEc+PnNJbM9zfh4oojIFWzqaGBge42ez6sEACTvIg15OULiJ9W+mu3+YWHUF9bXFk/I/3cDxAeBu/BLcME/Vznw1KpFzrss5d4dz7r3Ouf9eiPdcVJavgovfAxfeXOiWyGITC/NV5biyaiiawFFdUc7qWE30BZ0S7OjqZ21D7cyhsLomuO6PYf9T/q/+UI47xmcLi2glrc8xO3DsewrKq6F1E90DI7Q11RVVOeN0V1VtSPKR7c7xg8C6hMdtwXOSDTOf0n3jLxS6JbLYVNb4ehC5VgKcSjeS2xwH5De9unOO7a8NsKUjydLay2/zQeLR/+lLuZ4+6YeKIgwcZ61cRtOyquQVAZc3+6HDcIJ8/49g7eVQUU13/zDriqQOR2jewGFmH084fs+s1z6T5XvuADaa2QYzqwJuAZZk3iuRohdFJcCIehwwnV49H7qODvP60Gjy+htl5XDTX/jlyT/4C+h9AXDQmvvEeMgsTHg4z0bA3ufh9LBfJtz+JpxzdA8MF9WKKjhzj+OWhOM/mPXaDWe6uJk9AGwD3mBmB8zsQ865ceAjwLeBPcA3nHNpFN0VkcjFW3NPrT7YC9XxSAqZtTXW0nN8hLGJ6DMa7QjmN1ImNlx3BVx6Kzz1xekhq4jTDG3paKTr6DBHBpOkj19ziU8ftO8pv8S+/U0cGRrl1Njk4upxAJbiONnjOZxztzrnWpxzlc65Nufc/w2ef8Q5d65z7mzn3J9n2GYRiUqsJfdNgIO9kQxTgV9yOumg51j0ezm2d/XTWFc5lSE5qev/1Ger3f4ln5khx70ps21e74NW0vQjay4GNwE77wMM1l0xNd+z2HocLsVxsscFZ2ZvM7N7jx9PsjtTROaKt/oqgONJUn6na6gvkmEqSEyvHv08x46ufrZ0NM0/yRxbDdd8wh+3XBr5EveL1saprihLXp8jXAq89z99objahoSluIsrcFxqZifMbBC4JDgOH2deDivPnHPfcs7dUV9fEuXRRXIXVgIM5ymyMdgTWeCY3ssRbeA4fOIU+44OT9Vfn9cbfwPOvg4ufGekbQC/cuzStgZ2JJsgb9wAVTFwk9B+JTCdZr5tMQ1VOefKnXNx51zMOVcRHIePi2dRsYhkJ9cluc5FkqcqtKa+hjKLvqDT9mBCeks6hZvKK+H934RN74u0DaHOjkZePHickdOzknCUlcGai/xx+5sA6O4fYeXyKuqq0t2rvTCUIlSklE1tAswycIyegPGRyHocleVltNTXRl7Qacdr/dRVlXNhaw6pVSLS2dHI+KRjV/exuS+G+znCwDEwPFXkqpgocIiUsnCoKtsJ8hxLxibT1lhLd+Q9jgEub2+korzwv/I2t88zQf7GX/fLgut9Mo1iXIoLChwipa2mASpqs+9xhAEnoh4HhHs5outxHB8Z4+XeE+kNUy2A+rpKzl29PHmm3BVnwxUfBmB8YpJDx04V3VJcUOAQKW1muRV0Ggp6HBEGjrbGWvpOjHJqLJNE3Kk9va8f52DLhtyKMUWps6OJZ/YPzFt7pOf4KSYmnXoc+abluCJZyKWgU5jgMKLJcZhOH37oWDTDVdtfG6Cy3Ni0rogCx/pGBk+NT5WrTiZcWVZM6dRDSypwaDmuSBZy2T0+2AuVy6A6FllzwqWnUc1z7Ojq56K19dRWFU8J6HDYLGneqsCBYPNfu3ocIlJ04i0+ALgs9vSGBZwi3CgXDs1EMc9xamyC3QeOpU4zUiBtjbWsilWnzluF73GUGbQ01Cxgy9KjwCFS6mKtvhDT8NHMP3ewL9IVVQCr4zVUllsk6dV3dR9jbMIVzcR4yMzY0tGUfAd5oLt/mJb6WiqLYCXYbMXXIhFZWOGS3GyGqwZ7ci4ZO1t5mdHaEE169TCxYWeyVOoFtnl9IwePjaScy+keGCmqqn+JFDhESt1U4MhignyoL/JEgOAnhKOY49je1c95a2I01FVF0KponWmew9fhKL75DVDgEJHE2uOZGB2C00ORrqgKtTXWcjDHHsf4xCTP7BsoumGq0PktMeqqynk6yTzHqbEJDg+OFuVSXFDgEJHlq8HKMt/LkYc9HKF1TXW8PnSa4dPjWV9jT88gJ09PJC/cVAQqysvY1N6QdCNgmKtLQ1UiUpzKK3zwyHSoKg+7xkPhktyDOQxXhYkNi21FVaLN65t4ufcEg6fGZjxfzHs4YIkFDm0AFMlSrCXzoaqpzX/5CBy5p1ff/tpR1jXVsqa++JazhrZ0NDLp4Nn9MxMehkkeNVS1ALQBUCRL8dYchqqin+NYN1XQKbseh3OOnV3FO78R2tTeSJnNnSDv7h+mqqKM5uXVBWrZ/IorybuIFEa8FV77QWafM9gD5dU+UWLEmmPVVFeUZZRefXR8gh+/2s/je/p4bM9hjp48zdazV0betigtr67g/Jb4nI2A3f0jtDXWUlYWbQXCqChwiIgfqho97ldKVc9TkzvRYFAyNuLyquA3yK1trD3jJsCBk6d54ieHeWxPH0/ufZ2h0XFqKsu4amMzd12/kXduWht526LWub6RB58+wNjE5NRmv+6B4l2KCwocIgIQD37BDvZA9cb0PmeoNy8T46F1jXUcODa3x/GzI0O+V/HSYXbu62fSwapYNW+7tJXrz1/F1nNWUlNZPHmpzqSzo4mvbtvHnp4TXNLme2/d/cNsao++JxcVBQ4RmVkJcGWagWOwD5rfkLcmtTXWsqv7GOMTkzy9b4DHXz7MYy/18errJwE4vyXOR649h+svWM1FrfVFO6xzJuGu9p1dA1zS1sDxkTFOnBpXj0NEilwsi0qAg71w1jX5aA3gVxQdHxmj888f49jwGJXlxpVnreD2rR38/HmrirKkajZa6mtZ21DLzn39fPDnNhT9iipQ4BARyLz2+NiInxPJw4qq0JVnraBjRR2Xtzdy/QWruWrjSmI1lXl7v0Lq7Ghk28+O4pybytGlHoeIFLeqZVBTn37gyOMejtBl6xr43t3X5u36xaSzo4l/33WI7v6RqQUBxbprHJbYPg4RyUEmlQDDwJHHyfFS0rk+mOfY10/3wDCx6grqa4u3d7WkAod2jovkIJPa40MKHFE6d3WMWE0FO7oG6O4fpq2pDsvDMueoLKnAoZ3jIjnIZPf4YLBrPI9DVaWkvMy4vL2Rp/f10z0wQnsRD1PBEgscIpKDWCucPAwTaWSkHeqFskqoK+6UHovJlo5G9vYNsf9ocW/+AwUOEQnFW8BNTuegms9gb952jZeqzet9ED49MVnUS3FBgUNEQuHu8XSGqwZ781LAqZRdtq6BimATYzGvqAIFDhEJZVIJcKhPE+MRq60q58K1fn5WQ1UisjhkUnt8sEeBIw/euKGJijIr+l3x2gAoIl7dCiivghMH5z9vfBRGBrSiKg/uvOYcrj9/NbVVxZ2kUT0OEfHMgkqAZ+hx5LGAU6mrr6vkiiKtkZ5IgUNEpsVbzzxUtQDpRqS4KXCIyLR465mHqpRupOQtqcChlCMiOQqHqpxLfc7UUJUCR6laUoFDKUdEchRvhfFTfvI7lcFesHKoK+563pI/SypwiEiOYmnU5Qg3/5Xp10ep0ndeRKYl1h5PZahXK6pKnAKHiExLpxLgYJ9WVJU4BQ4RmRYGhHkDR496HCVOgUNEplVUwbJVqfNVTYzB8OvTcyFSkhQ4RGSmeEvqTYBDh/2/yoxb0hQ4RGSm+WqPq2SsoMAhIrPNt3tcu8YFBQ4RmS3e4jcAjo3MfU15qgQFDhGZLRbU5Ug2XDXUBxgsa17QJklxUeAQkZmmCjolWVk12OODRrlK+ZQyBQ4RmWm+SoCDKhkrSyxwKDuuSATmqz0+1KvAIUsrcCg7rkgEauJQFUsxVNWnPRyytAKHiEQk3jI3cExOwMnD2jUuChwikkSy2uMnj4CbVJ4qUeAQkSTirXN7HNrDIQEFDhGZK97qA8XkxPRzU7vGNVRV6hQ4RGSuWAu4CT88FZrKU6WhqlKnwCEic03t5UjIWTXY5/9dtmrh2yNFRYFDROZKtglwsAfqVviaHVLSFDhEZK5k+aqG+jS/IYACh4gks6wZyipmDVX1avOfAAocIpJMWZnvXZyY3ePQUlxR4BCRVGIt0/mqJicVOGSKAoeIJJeYdmT4KEyOa/OfAAocIpJKfK0fqnJOezhkBgUOEUku1gJjJ2H0hNKNyAwKHCKSXOJejql0IwocosAhIqkk7h4Ph6q0HFdYYoFDFQBFIjRVCbDHpxupaYDKmsK2SYrCkgocqgAoEqEwcJzo8cFDu8YlsKQCh4hEqLIGapuCoao+raiSKQocIpJafO30UJVWVElAgUNEUou3TE+Oq8chAQUOEUkt1gJH9sLEac1xyBQFDhFJLb4WJkb9sZbiSkCBQ0RSiyf0MrT5TwIKHCKSWljQCRQ4ZIoCh4ikFk8IHFpVJQEFDhFJLRyqqo5DVV1h2yJFQ4FDRFKraYCKWg1TyQwKHCKSmpkfrtKKKklQUegGiEiRu/YP/VCVSECBQ0Tmd/G7C90CKTIaqhIRkYwocIiISEYUOEREJCMKHCIikhEFDhERyYgCh4iIZESBQ0REMqLAISIiGTHnXKHbEDkzOwLsy/LTVwKvR9icxUD3XBp0z0tfrve73jnXfKaTlmTgyIWZ7XTOdRa6HQtJ91wadM9L30Ldr4aqREQkIwocIiKSEQWOue4tdAMKQPdcGnTPS9+C3K/mOEREJCPqcYiISEYUOEREJCMlGzjM7AYz+4mZvWJmv5/k9dvN7IiZ7Qo+fq0Q7YzSme45OOdXzOwlM3vRzL620G2MWhrf5/+T8D3ea2bHCtHOqKRxv+1m9oSZPWtmu83spkK0M0pp3PN6M3s8uN/vmVlbIdoZJTO7z8wOm9kLKV43M/vr4Guy28wuj7QBzrmS+wDKgZ8BZwFVwHPABbPOuR34YqHbusD3vBF4FmgMHq8qdLvzfc+zzv8ocF+h253n7/G9wG8GxxcAXYVu9wLc84PAB4LjnwfuL3S7I7jvtwCXAy+keP0m4D8BA64Efhzl+5dqj+MK4BXn3KvOudPA14F3FLhN+ZbOPX8Y+Bvn3ACAc+7wArcxapl+n28FHliQluVHOvfrgLCAeD1waAHblw/p3PMFwHeD4yeSvL7oOOeeBPrnOeUdwD8670dAg5m1RPX+pRo41gLdCY8PBM/N9q6gm/eQma1bmKblTTr3fC5wrpn90Mx+ZGY3LFjr8iPd7zNmth7YwPQvmMUonfv9FPA+MzsAPILvZS1m6dzzc8AvB8fvBGJmtmIB2lZIaf/sZ6NUA0c6vgV0OOcuAb4DfLXA7VkIFfjhqmvwf33/vZk1FLRFC+cW4CHn3EShG5JntwJfcc614Ycz7jezpf574GPA1Wb2LHA1cBBY6t/nvFrqPzCpHAQSexBtwXNTnHNHnXOjwcN/ADYvUNvy5Yz3jP+rn8JQIAAABX5JREFU5GHn3Jhz7jVgLz6QLFbp3HPoFhb3MBWkd78fAr4B4JzbBtTgE+MtVun8Xz7knPtl59wm4JPBc4t6EUQaMvnZz1ipBo4dwEYz22BmVfhfGg8nnjBrPPDtwJ4FbF8+nPGegX/D9zYws5X4oatXF7KREUvnnjGz84BGYNsCty9q6dzvfuA6ADM7Hx84jixoK6OVzv/llQm9qj8A7lvgNhbCw8BtweqqK4HjzrmeqC5eEdWFFhPn3LiZfQT4Nn5Vxn3OuRfN7NPATufcw8Bvm9nbgXH8JNTtBWtwBNK8528DbzWzl/Bd+budc0cL1+rcpHnP4H/ZfN0Fy1EWqzTv9/fwQ5C/i58ov30x33ea93wN8Fkzc8CTwJ0Fa3BEzOwB/H2tDOar/gSoBHDO/R1+/uom4BVgGPjVSN9/Ef/MiIhIAZTqUJWIiGRJgUNERDKiwCEiIhlR4BARkYwocIiISEYUOGRRMLOhNM65y8zqInzPm83sggiv91QOnzsU/NtqZg/Nc16Dmf1Wtu8jkg4FDllK7gIyChxmVj7PyzfjE+RFwjn35giuccg59+55TmkAFDgkrxQ4ZFExs2uCmgoPmdnLZvbPwe7Y3wZagSfM7Ing3Lea2TYze8bMHjSz5cHzXWb2eTN7BniPmX3YzHaY2XNm9i9mVmdmb8ZnDLgnqNVxtpldFiR/3G1m/2pmjcH1vme+rsdOM9tjZlvM7Jtm9lMz+7OEtg8lHH/CzJ4P3vNzSe5zQ9D252ddoyOswWBmF5rZ9qB9u81sI/A54OzguXvMbLn5WhTPBNd6R8J19pjZ35uvvfKomdUGr51jZo8FbXvGzM4Onr87+DrtNrM/jfQbK4tLofPK60Mf6XwAQ8G/1wDH8bl3yvBpQn4ueK0LWBkcr8TvEl4WPP4E8McJ53084dorEo7/DPhocPwV4N0Jr+0Grg6OPw38ZXD8PeDzwfHv4FOVtwDV+PxfK2bdw43AU0Bd8Lgpyf0+DNwWHN+Z8LkdBDUYgC8A7w2Oq4DaxNeD5yuAeMLX5BV8jYYOfFaEy4LXvgG8Lzj+MfDO4LgG34t7K76WhwVf9/8A3lLonwt9FOajJFOOyKK33Tl3AMDMduF/Cf73rHOuxA8z/dDMwP9iTcxF9f8Sji8K/qpvAJbj01fMYGb1QINz7vvBU1/FFwgKhelLngdedEFeIDN7FZ9sLjF1y/XAl51zwwDOuWR1FbYC7wqO7wc+n+ScbcAnzVe0+6Zz7qfBvc5oOvAZM3sLMIlPrb06eO0159yu4PhpoMPMYsBa59y/Bm07FdzHW/HB49ng/OX4BJhPJmmXLHEKHLIYjSYcT5D859iA7zjnbk1xjZMJx18BbnbOPWdmtxMkesyyTZOz2jeZon3pmDcfkHPua2b2Y+AXgUfM7NeZm5TyvUAzsNk5N2ZmXfheRGKbwX8da+d5OwM+65z7UgbtlyVKcxyylAwCseD4R8BWMzsHwMyWmdm5KT4vBvSYWSX+F+2c6znnjgMDZnZV8Nr7ge+Tne8AvxquADOzpiTn/BCffJFZbZpiZmcBrzrn/hr4d+ASZn4NwFf5OxwEjWuB9fM1zDk3CBwws5uD96gO2vlt4IMJ80RrzWxVWncrS44Chywl9wL/ZWZPOOeO4DMaP2Bmu/HDOuel+Lw/wo/r/xB4OeH5rwN3m9mzwQTxB/CT5buBy/DzHBlzzv0XfmhrZzDU9rEkp/0OcKeZPU/qym2/ArwQXOMifKnQo/jhuRfM7B7gn4HO4Dq3zbq/VN6Pzw69Gz8Xs8Y59yjwNWBbcK2HmBmgpIQoO66IiGREPQ4REcmIAoeIiGREgUNERDKiwCEiIhlR4BARkYwocIiISEYUOEREJCP/H68jv1tS/Bk/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for i in range(len(algorithms)-1):\n", + " pylab.plot(distances, np.subtract(energies[i], energies[2]), label=titles[i])\n", + "pylab.xlabel('Interatomic distance')\n", + "pylab.ylabel('Energy')\n", + "pylab.yscale('log')\n", + "pylab.title('H2 Ground State Energy')\n", + "pylab.legend(loc='upper right');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally lets plot the number of evaluations taken at each point. Both start out at the same number since we start them the same. But we can see, as we step along small distances, that the prior solution is a better guess as the starting point for the next step leading to fewer evaluations." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4lMXWwH8nhSRASAQSCAQI0ktCQlNElKKiUsQGIjasqJ94UVG81yuo13v1Yhe7IHpFQTrSLSCgSA2ELoiBEEInoSUhZb4/5t2wSTbJJtnNbsL8nmef3XfeeWfOtvfMnHPmjCilMBgMBoOhID6eFsBgMBgM3olREAaDwWBwiFEQBoPBYHCIURAGg8FgcIhREAaDwWBwiFEQBoPBYHCIURAGg8FgcIhREIaLDhFJFJFrPNR3PRFZISKnReTNCux3soj8y01tDxORpe5o2+BZjIIw5ENEFovIyw7KbxKRQyLiZx1fISI/Wze6NBGZJyKt7er3FJFcETlT4NGtIt+PF/IwcAyopZR62tPClBYRiRIRZfsdACilpiilrvOkXAb3YBSEoSBfAneJiBQovxuYopTKtm7yS4G5QAOgKZAA/CoiUXbXHFRK1SzwWO3+t1Ax2N8kS0ETYLsyKQwMlQCjIAwFmQPUAXrYCkTkEqA/8JVV9F/gK6XUu0qp00qpE0qpF4C1wNiydGqZfZ4RkQRrRjJNRAKtc/eJyKoC9ZWINLdeTxaRD0VkkTVL+VVE6ovIOyJyUkR2ikhcgS67iMh26/wXtr6s9vqLyCYRSRWR30QkpoCcz4lIAnDWkZKwZlfrrPexTkSusMkJ3As8a8lZyMwlIgEi8oaI7BeRwyLysYgEWed2iEh/u7p+InJURDpax9OtWV6aZcZqV8RnXdLn2U9E4kXklIgkicg4u6orrOdU24ywYHtFvX/r3HIRecX6jk6LyFIRqWudCxSRr0XkuPXZrxOReo7eg6FiMArCkA+lVDrwHXCPXfFgYKdSarOIVAeuAKY7uPw7oDymhsHA9egZSQxwXymvfQGoC2QCq4GN1vEM4K0C9YcBfYFmQEvrWixFMgl4BK0oPwHmiUiA3bVDgX5AqFIq275REakNLADes65/C1ggInWUUvcBU4D/WrOpHx28j9cseWKB5kBD4EXr3LdW3zb6AseUUhut40VACyDceu9THH9UJXIW/f2HWu/zUREZZJ27ynoOdTQjLO7921W7ExhuyVkNeMYqvxcIARpZ144A0sv4HgwuwCgIgyO+BG6zG1XfY5UB1Eb/blIcXJcChNkdN7BGgvaPGsX0+55S6qBS6gTwPfom6SyzlVIblFIZwGwgQyn1lVIqB5gGFJxBTFBKJVl9vcqFG+/DwCdKqTVKqRyl1JdohXN5ATmTLGVakH7AbqXU/5RS2Uqpb4GdwICS3oBl1nsYGGXNyk4D/wbusKp8Awy0lDToG+23tuuVUpOsGV0mMA7oICIhJfVbEKXUcqXUFqVUrlIqwerjaicvd+b9f6GU+sNuMGL7nrPQiqG59dlvUEqdKq38BtdhFIShEEqpVWhH6iARaQZ0Rd+cAE4CuUCEg0sjrOtsHFRKhRZ4nC2m60N2r88BNUsh9mG71+kOjgu2lWT3eh/alwLaR/C0vVJDj2gbFHFtQRpY7dmzDz0TKIkwoDqwwa7vxVY5Sqk9wA5ggKUkBmJ9LyLiKyKvicifInIKSLTarOtEv/kQkctEZJllvkpDj+SdbceZ91/U9/w/YAkwVUQOish/RcS/tPIbXIdREIai+Ao9c7gLWKKUOgxg3eBXA7c7uGYwsNwNspxF3zgBEJH6Lmizkd3rxsBB63US8GoBpVbdGgnbKM7BfBCtZOxpDCQ7IdMxtDJrZ9d3iFLKXrnZzEw3oZ3de6zyO62ya9BmmiirvGCwAZT8eX4DzAMaKaVCgI/t2inJuV7m96+UylJKvaSUaos2Y/Ynv6nTUMEYBWEoiq/QN5uHuGBesjEGuFdERopIsIhcIjrGvgfaJOJqNgPtRCTWMnuNc0Gbj4tIpGUz/wfaDAXwGTDCGkWLiNSwnLbBTra7EGgpIndaTuQhQFtgfkkXKqVyrf7fFpFwABFpKCJ97apNRft5HuXCrA4gGG0KO46++Rf3PZT0eQYDJ5RSGSLSFa18bBxFzyAvLaLtMr9/EeklItEi4gucQpuccku6zuA+jIIwOEQplQj8BtRAjybtz61CO0hvQfsdTqAdjH2UUlvtqjaQwusgbi2DLH8ALwM/AruBVcVf4RTfoEN19wJ/Av+y+lqPVooT0Oa0PZTCWa6UOo4e+T6Nvlk/C/RXSh0r9sILPGf1+btlKvoRaGXXfgp6BncFF5QaaIW+Dz1S3w78XoyMJX2ejwEvi8hptIP8O7trz6F9Nr9aZjB730x53399dEDBKbQp7Re02cngIcSEYxvKi+gw0GXAnUqpJZ6Wx2AwuAYzgzCUGyvSZRAQLWVbPGYwGLwQM4MwGAwGg0PcPoOwwu/iRWS+dTxFRHaJyFYRmWQLYxOduydN9ArWTSLyYvEtGwwGg8GdVIQ54Em0w6mWdTwFHToJ2lH4IPCRdbxSKdUfJ6lbt66KiopykZgGg8FwcbBhw4ZjSqmwkuq5VUGISCR6ZeWrwFMASqmFdufXApFlbT8qKor169eXV0yDwWC4qBCRgosZHeJuE9M76DC3QrHMlmnpbvRKURvdRGSz6KRrRSUae1hE1ovI+qNHj7pFaIPBYDC4UUGIzjp5RCm1oYgqHwIrlFIrreONQBOlVAfgfXRW0UIopT5VSnVWSnUOCytxhmQwGAyGMuLOGUR3dGKxRPTqz94i8jWAiIxF55d5ylZZKXVKKXXGer0Q8LelATYYDAZDxeM2BaGUel4pFamUikJno/xZKXWXiDyIXoU71EotAOh8MFY2S6zl/T7olZgGg8Fg8ACeWNT0MTolwGpLH8xSSr0M3IbOO5+NTlh2h9l1y2AwGDxHhSgIpdRyrCyfSimHfSqlJqDz33g1c+KTGb9kFwdT02kQGsTovq0YFOdMJmeDwWCoXJi0CKVgTnwyz8/aQnpWDgDJqek8P2sLgFESBoOhymFyMZWC8Ut25SkHG+lZOYxfsstDEhkMBoP7MAqiFBxMdbw9blHlBoPBUJkxCqIUNAgNKlW5wWAwVGaMgigFo/u2Qgps4Bjk78vovq0cX2AwGAyVGKMgSkGXprVRCoIDtW8/yN+X/9wSbRzUBoOhSmIURClYtCUFgPlPXMntnSLx8xFuiC6437vBYDBUDYyCKAULtqTQrkEtmtSpwY0xEZzOzGbVbme3GjYYDIbKhVEQTpKcmk78/lRujI4AoHuzutQK9GOBNaswGAyGqoZREE5iMy/1sxRENT8frmtXnx+2HSYzO6e4Sw0Gg6FSYhSEkyzYkkLbiFpE1a2RV9Yv2piZDAZD1cUoCCc4aJmX+sVE5Cvv3tyYmQwGQ9XFKAgnWGgpAJv/wUY1Px+ubVufH7YbM5PBYKh6GAXhBAu3pNAmohZN7cxLNvrHRHA6I5tf9xgzk8FgqFoYBVECB1PT2bg/lf4FzEs28sxMCYcqWDKDwWBwL0ZBlMCirfrGX9C8ZOOCmekQ57NzHdYxGAyGyohRECVQnHnJRr+Y+pwyZiaDwVDFMAqiGFLS0tmw7yT9SkincWXzMIJNNJPBYKhiGAVRDIu2FG9esqHNTPVYus2YmQwGQ9XB7QpCRHxFJF5E5lvHTUVkjYjsEZFpIlLNKg+wjvdY56PcLVtJLNySQuv6wVwaVrPEuv2iI4yZyWAwVCkqYgbxJLDD7vh14G2lVHPgJPCAVf4AcNIqf9uq5zFS0tJZv+9kXmqNkriyRV2CA4yZyWAwVB3cqiBEJBLoB3xuHQvQG5hhVfkSGGS9vsk6xjrfx6rvEfLMS0WEtxYkwM/XmJkMBkOVwt0ziHeAZwHbHbMOkKqUyraODwC23XYaAkkA1vk0q34+RORhEVkvIuuPHj3qNsFt5qVmTpiXbNxoMzP9acxMBoOh8uM2BSEi/YEjSqkNrmxXKfWpUqqzUqpzWFiYK5vO41BaBuv3nSzROV2QHi21mWlhgjEzGQyGyo87ZxDdgYEikghMRZuW3gVCRcTPqhMJJFuvk4FGANb5EOC4G+UrkkVbHedeKok8M9P2w2TlGDOTwWCo3LhNQSilnldKRSqlooA7gJ+VUsOAZcBtVrV7gbnW63nWMdb5n5VSyl3yFcfCLSm0qhdM83DnzUs2boyOIC09y0QzGQyGSo8n1kE8BzwlInvQPoaJVvlEoI5V/hQwxgOycfhU2cxLNvLMTCaayWAwVHL8Sq5SfpRSy4Hl1uu9QFcHdTKA2ytCnuJYtCUFpXT6jLIQ4OfLNZaZ6dWcXPx9zVpEg8FQOTF3rwIs3HLIMi8Fl7mNG6MjSD2XxW9/esSFYjAYDC7BKAg7Dp/KYN2+E2U2L9no0aIuNQP8WJBw0EWSGQwGQ8VjFIQd5TUv2Qj09+WaNuEmmslgMFRqjIKwY+GWQ7SsV7Nc5iUbxsxkMBgqO0ZBWBxxkXnJxlUtw6hpFs0ZDIZKjFEQFou2HtLmJRcpiEB/X/q0CWfJ9kPGzGQwGColRkFYLNiSQovwmrSoV37zkg2bmWm1MTMZDIZKiFEQWOalRNeZl2xc3TKMGtV8zaI5g8FQKTEKAli8zTIvOZna21kC/fWiuSXbjJnJYDBUPoyCABYkpNA8vCYtXWhesnFjdAQnz2Xx+15jZjIYDJWLi15BHDmdwVo3mJdsGDOTwWCorFz0CmKJi6OXCqKjmeqxeKsxMxkMhsrFRa8g5ueZl0qf2ttZjJnJYDBURi5qBWFvXnLn9tc9Wxkzk8FgqHxc1ArC3eYlG4H+vvRuU48l2w6TXQnNTHPik+n+2s80HbOA7q/9zJz45JIvMhgMlZ6LWkEs2JJCs7AabjUv2egXXZ8TZ8/z+94Tbu/LlcyJT+b5WVtITk1HAcmp6Tw/a4tREgbDRcBFqyCOns5k7V8n6Odm85KNnq3CqV7NlwWVzMz06sIdpGfl5CtLz8ph/JJdHpLI4I2YWWbVpEJ2lPM21s37hIYb/8ueasc4/Ftd1mU8S5eBj7i1z0B/X1rWq8m0dfuZunY/DUKDGN23FYPiGrq137KQk6v4YfshJq76i6OnMx3WOZiaXsFSGbwV2yzTNpCwzTIBr/x9G5znolMQ6+Z9QvsNLxAk50EggmOEbniBdeBWJTEnPpntB0+Rq/SxN/6JTmdkMW1dEpN/S+TAyXQa1Q4iJMiPtPTsQnUbhAa5XZ458cmMX7KLg6npXq1QL3bGL9lV5CzTfF+VG7eZmEQkUETWishmEdkmIi9Z5StFZJP1OCgic6zyniKSZnfuRXfI1WjjeK0c7AiS8zTaON4d3eUxfskuzueofGXeYqrZf/wcL3+/nW7/+Zl/LdhBREggH9/VkeXP9OKlge0J8vfNV9/XRxjdt5VbZTK+j8pDUbNJM8us/LhzBpEJ9FZKnRERf2CViCxSSvWwVRCRmcBcu2tWKqX6u1EmwtVRcOByCFfH3NmtR/9EjkbiN8U2YO1fJ5j061/8sP0wPiL0j4ng/iubEhMZmnetbQRou756gC9nM3MIDnTv5NOMSisPNQJ8OZOZU6i8ImaZBvfitn+5UkoBZ6xDf+uRN4QWkVpAb2C4u2RwxBEJoz5HHZTXpXwbjRZPg9Agkh0oA3f/iRzZh0fP2MwbS3ZyIDWD0Or+jLi6Gfd0i6J+SKDDNgbFNcy7KWdm5zDog98YPSOBxU/2ILyW42vKixmVVg6WbjvEmcwcfH2EnNwLM+Qgf1+3zzIN7setUUwi4isim4AjwA9KqTV2pwcBPymlTtmVdbNMUotEpF0RbT4sIutFZP3Ro4Vv9CWR1HE06apavrJ0VY2kjqNL3VZpGN23lUdMNY5G4lk5ikOnMnn15vasHtOHZ69vXaRyKEiAny/vD43l3Plsnp6+mdxcVfJFZaBuzQCH5eG1HJcbKp6kE+d4ZvpmohuG8Pot0TQM1b+har4+/OeWaDPTqwK4VUEopXKUUrFAJNBVRNrbnR4KfGt3vBFoopTqALwPzCmizU+VUp2VUp3DwsJKLVOXgY+wtdO/OEcgSsEhwtja6V9uj2IaFNeQ/9wSTcPQIAQ9Lc/JVYQHu/eGV9SIOydXMeyyJgRV83V4vjiahwfzz/5tWbn7GJN+/au8IhZiz5HTnMnMcmQJ5HR6Fr/tca850FAymdk5PP7NRhTw4bCO3Na5Eb+O6cPovq04n5NLbKPQEtsweD8Vsg5CKZUKLAOuBxCRukBXYIFdnVNKqTPW64WAv1XP5XQZ+AjVr38JEaj/9Cq3Kwcbg+Ia8uuY3vz1Wj/W/+NaLq1bg9EzEjidkeW2PosyYZXXtHVn18Zc17Yery/eydbktHK1ZU9KWjr3TFxLjQB/XujXJk+hNgwN4h83tqHhJdW5e9JaJq76C23FNHiCfy/YQcKBNN64vQONalfPK7+1YyQ+AjM2HPCgdAZX4c4opjARCbVeBwHXAjut07cB85VSGXb164u1Yk1EulqyuS+7Xb22+vnwNrd1URxB1Xx5Y3AHUtLSeWX+drf1c1Nsg8J9u8A+LCK8fmsMtWtU48mp8Zw7XzgUtrSknjvPPRPXcjojmy/v78IDPS7NU6i/junNQ1ddyuzHu9O7dTivzN/OM9MTyMgq7Bw1uJf5CQf5cvU+HryyKX3b5ffc1Q8J5MoWYczceCCfT8JQOXHnDCICWCYiCcA6tA9ivnXuDvKbl0Arja0ishl4D7hDuXOIGG65OI647+ZcEh0bX8KIq5vx3foD/LTjsMvbTzpxjm/X7qdecAARIYF5I3FX2YcvqVGNtwbHsvfYWV6Zv6NcbaWfz+GBL9ez7/g5Pr2nM+0ahDisVzPAj0/u6sTfrmnBzI0HGPLJalLSjOO6ovjr2FnGzNxCx8ahPHdDa4d1bu8USUpaBr8aU2Clx51RTAlAXBHnejoomwBMcJc8hahRB2rWh8OeUxAAT17Tgp93HmHMrC0s/dslXFKjWskXOUH6+Rwe+d8GsnMVsx7rRtO6NVzSbkG6N6/Lw1ddyie/7OXqlmFc3770sWBZObn83zcb2bj/JB/e2ZFuzeoUW9/HR/jbNS1pE1GLp6ZtYsD7v/LxXR3pHFW7rG/D4AQZWTk8NmUj/r7ChDs74u/reHx5bdt61Ar0Y/qGA1zVsvR+QoP3cNHmYgK0menwVo+KEODny1uDY0k9d55/znWNLEopnpuZwI5Dp3hvaJzblIONp69tRXTDEMbMSij1aF4pxfOztvDTziO8clN7bihFZt2+7eoz+/Hu1AzwZehnv/PNmv2lFd1QCl76fhs7Uk7x1pDYYn1Ygf6+3BTbkCXbDpGW7j7/msH9XOQKoh0c3QU55befl4e2DWrxZJ8WzE9I4fvNB8vd3ucr/2Le5oM8c10rerUKd4GExVPNz4d374glMyuXp6ZtLpXt+fXFu5ix4QB/u6YFd13epNR9t6wXzNzHr+SKZnX5++wt/GP2Fs5nV76U6t7OrI0H+HZtEo/1bObUb+r2zpGcz851ye/Z4DkubgUR3g5yMuHEXk9Lwoirm9GhUSj/nLuVI6cySr6gCFbuPsp/Fu3gxuj6PNazmQslLJ5Lw2ry0sB2rN57nE9XOPd5fr5yLx//8id3Xd6YJ/u0KHPfIdX9mXRfF0Zc3Ywpa/Yz7PPf+Wp1osku6iJ2Hz7NP2ZvpWvT2jx1bUunroluGEKresFM9+JoJpOBtmQubgWRF8nkWTMTgJ+vD2/e3oH08zk8P2tLmUI4k06c44lv42kRHsz42zpUSBpze27vHEm/6AjeXLqLzUmpxdadE5/MvxZoRfbSwPblltXXRxhzQ2veGxpH/P6TvDh3m8nj5ALOnc/msSkbqRHgy/tD4/Arwu9QEBHh9s6RbE5KZffh026WsvSYXF/OcXEriLqtQHw9GslkT/Pwmjx3fWt+2nmk1COvc+ezeeir9eTmKj69pxM1Aio+Ua+I8O+bowkPDuDJqfGczXRsulu+6wjPTN9Mt0vr8PaQWHx9XKfIBnZowCU1Ci8+9JbEiJUJpRQvzN7KnqNnePeOOOqVMq3KoLiG+PmIV84iisv1ZbjAxa0g/AOhTnOPRzLZc98VUVzWtDYvf7+dAyfPOXWNUopnZyTwx+HTvH9nR5rUca9TujhCqvvz9pBY9p04x7h5hdeYxO8/yaNfb6RlvWA+vacTAX6lX8ldEsfMHhYu4bv1ScyKT+ZvfVrSvXnp16zWrRlAr9bhzNqYTJaXbbVrcn05x8WtIMArIpns8fER3ri9Q95N35lcR5+s2Mv8hBRG923N1V4QVnjZpXV4vGdzpm84wPyEC07KPUfOcP/kdYQFBzD5/i4EB/q7pf+iImwiQt2TWLAqsv3gKV6cu40rm9fl/3o3L3M7t3eK5NiZTH7ZVfq8ae7EXRkGqhpGQYS3g9R9kOk9dtJGtavzz/5t+e3P43y1OrHYuiv+OMp/F++kX0wEI66+tELkc4Ynr2lBbKNQnv5uE5f9+0eajllA37dXkJWTy/8e6Ep4sPtu1o4SIwIEB/hxpgizl+ECpzOyePybjYQE+fPOHeUzAfZqHU6dGtWYviHJhRKWn/uvjCpU5lcByTMrG0ZB1LOtqN5ZfL0KZkiXRvRsFcZri3ey9+gZh3X2HT/LE9/G07JeMONvi6lwp3Rx+Pv6MCAmgsxsxeFTmSggRymychTx+4t3YJeXgokRG4YGMaRLJHuOnmXwx6s5XI4osaqKfURP11d/JPHYWd4fGldkVl1n8ff1YVBcQ37acYTjZxyb/iqa3FzFj9uPUM1XqFcrAEGnn1FK0a5BLU+L51UYBWGLZDrimZxMRWHLdRTg58vT0wuvLTh3PptH/rcBgE/v7kz1at63e+ykXxMLlWVm51aII9A+MeKvY3rz+q0d+PzeziQeP8stH/7mlZE1nqJgRE96Vi6+PkJKmmsU6e2dI8nOVczd5B1rIr5cncjqvcd5+ab2rPn7Nfz1Wj9WPteLWkH+PDszweSQssMoiJDGUK2mx5L2FUe9WoG8fFM74ven8smKP/PKlVKMnq6d0hPujKNxnerFtOI5vM0R2KtVON890o3zObnc+tFv/L7XfbkgKxOOInqyc5XLFHnr+rWIbhjiFdFMfx49w2uLdtKrVRhDujTKK69bM4CxA/R/7cvfEj0noJdhFISPD4S39apIJnsGdmhAv+gI3liyi66valt+h5eWsmBLCs9d35oeLTzvlC4Kb3QEtm8YwqxHryC8ViD3TFzLPLPSt0IU+e2dI9mRcsqlqeFLS3ZOLs9M30ygvy+v3VrYJHtTbAN6tQpj/JJdJJ1wLoKwqmMUBGgz05Ft4IX7C4gI3ZrVIVfBkdPaln8qIxtfEbdvNlReHDmLvWEryka1qzNjRDdiG4Uy8tt4Pl3x50W7t8SiLSkU5bpypSIf2KEB1Xx9PLpPxCcr9hK/P5VXBrV3uKZDRHj15mh8hDIvVq1qGAUBOpIp/SScTvG0JA75aPmfhcpylOKNpX94QBrnceQs9patKEOrV+OrB7rSLyaCfy/cybh52y4q2/OxM5k8PmUjj07ZSIOQQAL88t8KXK3IQ6tX49p29ZizKZnM7Irfw2NHyine+fEP+kVHMCCm6ISQDUKDGHNjG1btOeYVJjFP432eTU+Ql3JjO9QqvMGOp/E2W35pGBTX0CsUgiMC/X15/444GoQE8tnKv0hJy+DdO+LKtA1rZUEpxfyEFMbO28aZjGxG923Fw1ddyoKEFMYv2cXB1HQahAYxum8rl39vt3eKZEFCCj/tOMKNpcjaW17OZ+fy1HebCQmqxiuDSk7rMqxrY77fdJB/zd9Oz5ZhhJdyBXlVwswgQPsgwOsimWx4oy2/quDjI/yjX1vGDmjLDzsOc+fnv3Pi7HlPi+UWjpzOYMTXG3ji23gaXRLE/JFX8niv5nmhqPZRX+5Q6j1ahFG/ViDT11fsmoj3ftrNjpRTvHZLNLWd2G/Fx0d47dZoMrJzeXGud94TKgozgwCoXhuCG3hlJBNoW/7zs7bkizTxBlt+VWJ496ZEhATy5NRN3PrRbwy7rDFf/Jro1hG1I+bEJ7t8JK+UYs6mZMbN2056Vg5jbmjNg1c2dTrxnqvw9RFu6diQj3/5k8OnMkqd26ksxO8/yYfL93B7p0iuaVvP6esuDavJqGta8vrinSzcklKhMx5vwswgbNTz3kgmb7blVyWubx/BNw9dxuG0dP61YEeFZ/p0R4bRQ2kZPPjlekZN20yzsBosHNmDEVc3q3DlYOO2TpHkKpi10f1ZU9PP5/D0d5upXyuQfw5oW+rrH+rRlPYNa/Hi3K2knquas8qSMDMIG/XawV8rICcLfN2TI6g8eLMtvyrRqUltagb6cy4r/6rf9KwcXl+80y3fQU6u4o/Dpxk3b5vDDKPj5m0jPDiApmE1qBcciE8RqS/yzz4C6dEyjAUJKWTl5PJCvzYM797UpZlzy8KlYTXp1OQSZmxIYsTVl7p19f/4JbvYe+wsUx68jFplyPvl5+vDf2/twMAJq3hl/g7eHNzBDVJ6N04pCBFpBhxQSmWKSE8gBvhKKVVkzgQRCQRWAAFWPzOUUmNFZDJwNWALiL5PKbVJ9C/lXeBG4JxVvrFsb6sMhLeDnPNw/E8Id7wZu+Hi4GgR2WBT0jK45q1f6Ng4lLjGlxDXOJQW4cGFbrolmYmOn8lkU1IqG/efJH5/KpuTUjl7vujIntT0LO78fA2gTYtN6lTn0rAaRNWpQdO6+rHz0CleXbCD9CydNTU5NYOpa5O4tG4NJt3XhSg3bztbGm7vFMmYWVuIT0qlY+NL3NLH6j+PM+nXv7i3W5MyZaK10bZBLUZc3YwJy/YwMLaBVyTDrEicnUHMBDqLSHPgU2Au8A36Zl4UmUBvpdQZEfEHVonIIuvcaKXUjAL1bwBaWI/LgI+s54rBfvMgoyAuahqEBpHsIEKsVqAfTWpX54fth/luvQ6BrBngR4dGIcQ1uoSOTUI5mJph3aj1DT85NZ3nZiawcvdRcpW2iSce14uwfH2ENhHB3NrXj28BAAAgAElEQVQpkrjGoby2aCeHTxVWTvVqBfDW4Fj2HjtL4rGz/HXsLDtSTrN022GySwjNzcjO8SrlANAvJoJx329j+voDblEQZzKzeWb6ZqLqVOe5G8r/X/6/3s1ZtDWFv8/awpJRV1HTA3ut2OMOP1VROPtOc5VS2SJyM/C+Uup9EYkv7gKlV5nYssz5W4/ifs03oWclCvhdREJFJEIpVTGLE+q2BB8/r9k8yOA5igoKePmm9gyKa4hSin3Hz+XNAOKTTvLRL38WuY4iMzuXmRuTCQsOoGPjUO7o2pi4RqHERIbmC6kVxGG/z9/Qhu7N6xYaCWfl5HLgZDqJx84yfPI6h32npHpfYsLgQH9ubB/B/M0HebF/W5eHFf9r/nZS0tKZPqKbS3KUBfr78vqtMdz+yWreWLKLcQPbuUDKsmHzU9kPQJ6ftQXALUrC2U8vS0SGAvcCA6yyEo16IuILbACaAx8opdaIyKPAqyLyIvATMEYplQk0BOzj3w5YZSkF2nwYeBigcePGTorvBH4BUKeF1zqqDRWH7Y9W1ChNRIiqW4OoujW4pWMkoJMnbjmQxpBPf3fYpgBr/96nWJt7Sf0WxN/XJ8/E1LCIWY+3hkLf1jmSWfHJLNl2yKU3tmU7jzB1XRIjrm5Gpya1XdZu56ja3Nstii9XJ9I/JoLOUa5ruzQUtxOeJxXEcGAE8KpS6i8RaQr8r6SLlFI5QKyIhAKzRaQ98DxwCKiGNlc9B7zsrMBKqU+t6+jcubNrl77WawtJjkdihouL0gYFVK/mx2WX1in2Ru2MQ7aswQiVLRT68qZ1iLwkiOkbklx2Y0s9d57nZibQql4wo65t4ZI27RndtxU/bD/MszMTWDiyB4EO9hxxNxW9aNapWDel1Hal1Eil1LfW8V9Kqded7cRyZi8DrldKpShNJvAF0NWqlgw0srss0iqrOMLbQtp+yDhVod0aqg6eyj9V2UKhfXyE2zpF8tufx53eWrckXpy7jRNnz/Pm4A5u2cq2RoAf/74lmr1Hz/L+z7td3n5xpJ3LYty8bUXa6N01U3Q2iqk7MA5oYl0jaDdDkVuYiUgYkKWUShWRIOBa4HWbX8GKWhoE2Pb7nAf8n4hMRTun0yrM/2CjXnv9fGQHNK44/7ih6lBaM5Gr+/ZWheCIWztG8s6Pu5m5IZknrynbiN/msLXN2m5sX5/2DUNcKWY+rm4Zxq0dI/n4l73cGB1Buwbu6wt0CPR365MYv2QXqefO071ZHTbsP0lG1oU9vt05AHHWxDQRGIX2JzibaSsC+NLyQ/gA3yml5ovIz5byEGAT2nQFsBAdFbUHHeY63Ml+XId9JJNREIYyUtlu1J6iUe3qXNGsDjM2JvFE7+ZFru8oioIOW4Cfdx1hTnyyWz//f/Zvw5JtKQz64Feyc5TbBgEb9p1g3LztbElOo2tUbcYObEu7BiFeGcWUppRaVHK1CyilEoA4B+W9i6ivgMdL04fLCWkEAbVMJJPBUEHc1imSp77bzNrEE1x+aR2nrsnIymHbwVOMnbe1kMM2IyvXbQ5bG8t3HeV8di5ZOdrg4+pIoiOnMnht0U5mxSdTv1Yg7w2NY0BMRJ4PqyIHIM4qiGUiMh6YhV7fAECFLmSrCES8evMgg6GqcUP7CJ6fmcDwL9aRkZVTaESslCI5NZ2N+1OJt8KKtx88xfmc3CLbdHeW4/FLdnE+J783ID0rh1cX7OCG6Ppl9n9kZufwxa+JvP/TbrJyFP/XqzmP9Wrm0e2Ene3ZZm/pbFemAIezAU+SlZXFgQMHyMgoY/x33Itw/hzs2OFawQwVRmBgIJGRkfj7e1/KFEN+lmw7RLaCHLu4/mdnJvDTjsOcz8ll4/7UvJXtgf4+xESGMvzKKOIaXcK4eds4dKrw/9zdob1FKaCjZzKJHruUdg1r5S2cjGt8CQ1CAgtFsBU0E/WLqc8P24/w17GzXNOmHv/s34YmdTy/wNEpBaGU6uVuQVzFgQMHCA4OJioqqmx5Xs4ehbQDEN4M/EpODWzwLpRSHD9+nAMHDtC0aVNPi2MogfFLdhVaYHg+O5fvE1KIqlOdK5vXzUtt0qp+MP52SQYzsnI8Etpb1Er72jX8ub1TI+L3pzJlzT4m/foXoFfCxzXSqVk6NrmExGNneXHutnyL3T5d8RdhNasxeXgXerYKd6v8pcHZKKYQYCxwlVX0C/CyUspzG8wWQUZGRtmVA4CfNfrITjcKohIiItSpU4ejR496WhSDExQ1Ghdg+ejix6Weihgras3Ji/3b5fWdlZPLzpTT1mr7k8QnpbJ426Fi2/X39fEq5QDOm5gmocNRB1vHd6PXMNziDqHKS7kyRPpbOeqzMiDQvSFsBvfgzgyhBtdS1GjcWTORJyLGnFFM/r4+REeGEB0Zwr1XRAF6m9dN+1N58Kv1DttNSfO+tCjOJoVvppQaq5Taaz1eAopcA1Gp8fEDH389gygDvXr1YsmSJfnK3nnnHR599FEAtm3bRu/evWnVqhXNmjVj7Nix5OZqh9vkyZMJCwsjNjY277F9e2GHua+vL7GxsbRv354BAwaQmlpkUt1SkZiYSPv27V3Slj27du2iZ8+exMbG0qZNGx5++GGXtDtu3DjeeOMNl7Rl8AyeWlhYXsqyA1/dmgFc07YeDSvRDpHOKoh0EbnSdmAtnPP+DZGdYE58Mt1f+5mmYxbQ/bWf9eYs/kGQVba3N3ToUKZOnZqvbOrUqQwdOpT09HQGDhzImDFj2LVrF1u2bGHt2rW8++67eXWHDBnCpk2b8h5t2xbe6CQoKIhNmzaxdetWateuzQcffFAmWSuKkSNHMmrUKDZt2sSOHTt44oknPC2SwUuobCvAXUFlUorOKohHgQ9EJFFE9gETuLDArdJS5A5eu9IhOxNU0aF0RXHbbbexYMECzp/XO1AlJiZy8OBBevTowTfffEP37t257rrrAKhevToTJkxg/PjxZX4P3bp1IzlZZyQ5c+YMffr0oWPHjkRHRzN37tw8Gdq0acNDDz1Eu3btuO6660hP1wpww4YNdOjQgQ4dOuRTNBkZGQwfPpzo6Gji4uJYtmwZoGc5gwYN4tprryUqKooJEybw1ltvERcXx+WXX86JEycKyZiSkkJkZGTecXR0NAA5OTmMHj2aLl26EBMTwyeffJJXZ/z48XnlY8eOzSt/9dVXadmyJVdeeSW7du0q8+dm8B4qYj9sb6IyKUVno5g2AR1EpJZ1XCmSFb30/Ta2Hyxa1Pj9qYXiqdOzcnh2wX6+re8P/qtB8uvQtg1qMXZA0el+a9euTdeuXVm0aBE33XQTU6dOZfDgwYgI27Zto1OnTvnqN2vWjPT09Dwz0bRp01i1alXe+dWrVxMU5HjqmZOTw08//cQDDzwA6PDO2bNnU6tWLY4dO8bll1/OwIEDAdi9ezfffvstn332GYMHD2bmzJncddddDB8+nAkTJnDVVVcxevTovLY/+OADRIQtW7awc+dOrrvuOv744w8Atm7dSnx8PBkZGTRv3pzXX3+d+Ph4Ro0axVdffcXf/va3fHKOGjWK3r17c8UVV3DdddcxfPhwQkNDmThxIiEhIaxbt47MzMw85bl79252797N2rVrUUoxcOBAVqxYQY0aNZg6dSqbNm0iOzubjh07Fvo8DYbKQGVZbV+sghCRu5RSX4vIUwXKAVBKveVG2dxOUYtt8hbBqNxCCsIZbGYmm4KYOHGi09cOGTKECRMmFFsnPT2d2NhYkpOTadOmDddee60WVyn+/ve/s2LFCnx8fEhOTubw4cMANG3alNjYWAA6depEYmIiqamppKamctVVOjjt7rvvZtEivWB+1apVeaag1q1b06RJkzwF0atXL4KDgwkODiYkJIQBA3QG+OjoaBISEgrJO3z4cPr27cvixYuZO3cun3zyCZs3b2bp0qUkJCQwY4beOyotLY3du3ezdOlSli5dSlycXoh/5swZdu/ezenTp7n55pupXr06QJ7yMxgM7qGkGYRtpUawg3OuTbXtBoob6QN0f+1nhxEUDUMDmXZrHagZDrUalLrfm266iVGjRrFx40bOnTuXN8pt27YtK1asyFd379691KlTh9DQUKfbt/kgzp07R9++ffnggw8YOXIkU6ZM4ejRo2zYsAF/f3+ioqLyFgwGBATkXe/r65tnYioL9m35+PjkHfv4+JCdne3wmgYNGnD//fdz//330759e7Zu3YpSivfff5++ffvmq7tkyRKef/55HnnkkXzl77zzTpllNhgMpafY4bFSymYU/lEp9ZL9A73ZT6WmaGdRa72BUBkd1TVr1qRXr17cf//9DB06NK982LBhrFq1ih9//BHQM4GRI0fy0ksvlamf6tWr89577/Hmm2+SnZ1NWloa4eHh+Pv7s2zZMvbt21fs9aGhoYSGhuaZtKZMmZJ3rkePHnnHf/zxB/v376dVq7I50RYvXkxWVhYAhw4d4vjx4zRs2JC+ffvy0Ucf5Z37448/OHv2LH379mXSpEmcOaM3JExOTubIkSNcddVVzJkzh/T0dE6fPs33339fJnkMBoNzOLsO4n2goxNllYpi45lPZkHmmRJaKJqhQ4dy880354toCgoKYt68eTzxxBM89thjJCcn88ILLzBs2LC8OgV9EB9++CFXXHFFkf3ExcURExPDt99+y7BhwxgwYADR0dF07tyZ1q1L3o/3iy++4P7770dE8pznAI899hiPPvoo0dHR+Pn5MXny5Hwzh9KwdOlSnnzySQID9RqT8ePHU79+fR588EESExPp2LEjSinCwsKYM2cO1113HTt27KBbt26AVrhff/01HTt2ZMiQIXTo0IHw8HC6dOlSJnkMBoNziE6iWsRJkW7AFcDfgLftTtUCblZKdXCveMXTuXNntX59/kUnO3bsoE2bNuVv/PRhOH0Q6kfrtRFuYM6cOTz11FMsW7aMJk2auKWPixWX/Q4MhiqIiGxQSnUuqV5JHthqQE30TCPY7nEKuK28Qno19iuq3cSgQYPYu3evUQ4Gg8ErKXZorJT6BfhFRCYrpYo3aFc17HMyBdT0rCwGg8HgAZy1nZyz9oNoBwTaCova/KdK4OsP4uvWGYTBYDB4M84G+U8BdgJNgZeARGCdm2TyDkS0mamMkUwGg8FQ2XFWQdRRSk0EspRSvyil7scLNwtyOX5BkJ0BxTjyDQaDoarirILIsp5TRKSfiMQBtYu7QEQCRWStiGwWkW0i8pJVPkVEdonIVhGZJCL+VnlPEUkTkU3W48UyvytX4R8IKgdyzntaEoPBYKhwnFUQ/7I2DXoaeAb4HBhVwjWZQG8rFDYWuF5ELkebq1oD0UAQ8KDdNSuVUrHW4+VSvA/3kOeodt4PURHpvkuDMymx169fz8iRIwFYvnw5v/32W965jz/+mK+++qpMfYwbN46GDRvmpSafN29ese0409emTZtYuHBhsXUMBoNrcEpBKKXmK6XSlFJblVK9lFKdlFLF/tuVxrbSzN96KKXUQuucAtYCkUU2UhEkfAdvt4dxofo54bsL5/wtBVEKP0RFpPu2sXz5cu677z6nZSuKzp0789577+W1aa8gRowYwT333FPmtm1pvqdPn87999+fpwwd4UxfRkEYDBWHUwpCRL6wzEH5Hk5c5ysim4AjwA9KqTV25/zRO9Mttrukm2WSWiQiDhMpicjDIrJeRNaXe1vJhO/g+5GQlgQo/fz9yAtKwscXfKuVKpKpotN9l4aePXvy3HPP0bVrV1q2bMnKlSsBrRT69+9PYmIiH3/8MW+//TaxsbGsXLky3+zgs88+o0uXLnTo0IFbb72Vc+fOOd13mzZt8PPz49ixYyQmJtK7d29iYmLo06cP+/fvB/LPRBzJev78eV588UWmTZtGbGws06ZNc/EnZDAY7HE2zHW+3etA4GbgYEkXKaVygFgRCQVmi0h7pdRW6/SHwAql1ErreCPQRCl1RkRuBOYALRy0+SnwKeiV1MUKsGgMHNpS9PkD6yAnM39ZVjrM/T/Y8KU+zk7XWV39rbyF9aPhhteKbLIi032XhezsbNauXcvChQt56aWX8vJCAURFRTFixAhq1qzJM888A8BPP11IuXXLLbfw0EMPAfDCCy8wceJEpzf/WbNmDT4+PoSFhTFw4EDuvfde7r33XiZNmsTIkSOZM2eOU7K+/PLLrF+/vsSMtwaDofw4ux/ETPtjEfkWWFVEdUfXp4rIMuB6YKuIjAXCgEfs6pyye71QRD4UkbpKqWPO9lNqCioHR+XiA7k56OS1zu117O5035dddhmZmZmcOXOGEydO5KXxfv311wtlRi3ILbfobcRtKb9Lw9atW3nhhRdITU3lzJkzJfYF8Pbbb/P1118THBzMtGnTEBFWr17NrFmzAJ1i/Nlnn3W5rAaDofyUNclQCyC8uAoiEoYOi00VkSDgWuB1EXkQ6Av0UerClm0iUh84rJRSItIVbf46Xkb5NMWM9AHtc0hLKlwe0giGL9Cvz52A1H0Q1gr8qzvVrbvTfa9Zoy11y5cvZ/LkyUyePNnpa20J93x9fYtMzV0U9913H3PmzKFDhw5MnjyZ5cuXl3jNqFGj8mYjpaU8shoMhvLjrA/itIicsj0D3wPPlXBZBLBMRBLQi+p+UErNBz4G6gGrC4Sz3oaeXWwG3gPuUMVlEnQFfV684Ii24R+ky+2PoVR+iIpK9+0OgoODOX36tMNzp0+fJiIigqysrHypwUvLFVdckefInzJlCj169HCJfAaDwbU4G8UUrJSqZffcsqDZycE1CUqpOKVUjFKqvS1sVSnlp5RqVjCcVSk1QSnVTinVQSl1uVLqt+Ladwkxg2HAe3rGgOjnAe/pcht+AfpcdulWVA8dOpTNmzfnUxC2dN+2fZXr1q1L9+7dC6X7tg9ztY8oqggGDBjA7Nmz85zU9rzyyitcdtlldO/e3alU4kXx/vvv88UXXxATE8P//ve/fFFcJdGrVy+2b99unNQGQwVQUrrvYvd7UEptdLlEpcCt6b7tObITfP2gTnOXNmvSfbsPk+7bYCgaZ9N9l+SDeLOYc4qLId0G6BXV5dg8qCgGDRrEoEGDXN6uwWAwuIKS0n33qihBvBr/IEg/CbnZbts8yGAwGLwNp+92ItIeaEv+dN/F50WoKvjZOarN3hAGg+EiwSkFYa1b6IlWEAuBG9DrILxSQSilEHFuzYJT5O0uZzYPqgy4O/jNYLhYcDZZ321AH+CQUmo40AEIcZtU5SAwMJDjx4+79ibhY20eVMpIJkPFo5Ti+PHjBAYGllzZYDAUi7MmpnSlVK6IZItILXRupUZulKvMREZGcuDAAcqdp6kgZ06COgHBZ13brsHlBAYGEhnp2RyQBkNVwFkFsd7Kp/QZsAE4A6x2m1TlwN/fn6ZNm7q+4YWTYNM3MCYJfJydeBkMBkPlxdlcTI9ZLz8WkcVALaVUgvvE8kLqtYPzZyBtP1wS5WlpDAaDwe04m2pjnojcKSI1lFKJF51yAAi3so8fLt8GPgaDwVBZcNZW8iZwJbBdRGaIyG0icnF5AcOt1BKHt3lWDoPBYKggnDUx/QL8IiK+6NXTDwGTgFpulM27CAiG0CZwxCgIg8FwcVCahXJBwABgCNAR+NJdQnkt9dobE5PBYLhocNYH8R2wAz17mAA0U0o5t5VYVaJeWzi+p1Spvw0Gg6Gy4uwMYiIw1NpC9OIlvC2oHDi2CyI6eFoag8FgcCvFziBE5FkApdQS4JYC5/7tRrm8k3rt9bMxMxkMhouAkkxMd9i9fr7AuetdLIv3U/tS8A0wjmqDwXBRUJKCkCJeOzqu+vj66b2pTairwWC4CChJQagiXjs6vjgwkUwGQ2ESvoO328O4UP2c8J2nJTK4gJIURAcROSUip4EY67XtOLq4C0UkUETWishmEdkmIi9Z5U1FZI2I7BGRaSJSzSoPsI73WOejXPD+XE/OeThzyPwRDAYbCd/B9yMhLQlQ+vn7kea/UQUoVkEopXyVUrWUUsFKKT/rte3Yv4S2M4HeSqkOQCxwvYhcDrwOvK2Uag6cBB6w6j8AnLTK37bqeRcJ38GO760D80cwGAD46WW9V4o9Wem63FCpcVtaUqWxbeTsbz1s+1jPsMq/BGybMt/EhcV3M4A+4tJdf1zATy9DTmb+MvNHMFzspB0oXbmh0uDWvNUi4isim9D7R/wA/AmkKqWyrSoHgIbW64ZAEoB1Pg2o46DNh0VkvYisd/meDyVh/ggGQ2FCith7o6hyQ6XBrQpCKZWjlIoFIoGuQGsXtPmpUqqzUqpzWFhYuWUsFeaPYDAUps+LIAVuJX4BuryqcpE45Stk5xulVCqwDOgGhIqIbQV3JJBsvU7G2qXOOh8CHK8I+Zymz4vgH5S/zD+oav8RDIaSaDsIEKgWrJ/FB6qHQbubPS2Ze7iInPJuUxAiEmbtQmdL9HctOp/TMvQe1wD3AnOt1/OsY6zzPytv230+ZjAMeA9CrN1Wffz1ccxgz8plMHiSQwk6Bc2gD2BcKgz+Ck4dgN/e97Rk7uEicsq7cwYRASwTkQRgHfCDUmo+8BzwlIjsQfsYJlr1JwJ1rPKngDFulK3sxAyGUVvh+tcgNwvqx3haIoPBsySt0c+RXfVzmwHQ9iZY/hoc2+05udxFcb5ILxvTlhd3RjElKKXilFIxSqn2SqmXrfK9SqmuSqnmSqnblVKZVnmGddzcOr/XXbK5hPa3gvjClqo3rSzERWJvNZSRpDUQ2hhqRVwou2G8Nr/OewJycz0nmzso0ueo4MNusOodOHWwQkVyFxXig6iS1AyHZr0gYXrV+wPYU1ntrUapVQxKwf410Oiy/OXB9eD6/8D+1bB+ouNrKyt9XtSDQ3v8giB2GATWgh/Hwltt4aubYPNUyDzjuJ1KgFEQ5SF6MKTtvzDFropURntrZVVqlZHU/TqzQEEFAdBhKDTrDT+O0/WqCnVbaJ9LtZqAaJ/kwPdg0IfwwFJ4YiNc/Syc+AtmPwJvtITZI2Dvcsi1dkyoJAMYp3eUMzigdT/wrw4J06BJN09L4x4q49qP4pSaCShwLUlr9bMjBSEC/d/RZpf5o2DYDF1WmcnNhYWjoUYYPLEBAkMK16nTDHr9HXo+D/t/h83fwLY5sPlbqNUQ6kdrZZFtbTxmG8CA1/0+zQyiPATUhNb9YdtsyM4suX5lY/0kis3JuOzfkJFWYeI4TWVUapWVpDV6JB3e1vH5S5rANWNhz496IFXZSZgKB9bBNS85Vg72iOiB48D34Zk/4LYvdLLPPxZfUA42vHRWbhREeYkZAhmpsPsHT0viOpTSP9b5o/QP2q/A2g+/QGgQB7+8Du/EwIo3vMvOGtKwiPIKWtBYScwHLiFpDTTspFPhF0WXB/UMY/EYOHOk4mRzNRlp8MOLENlFm89Kg38QtL8Fhn1HkTsleOEAxiiI8nJpTz3drAqjI4Ds89puuvJN6HgvPPyLtq+GNOKCvfV9eHgZPLICGl8OP78C78bouPeCph1P4Mjc4RdYMQsaLyb/R+YZOLzV8edtj4+v/s2cPwuLnq0Y2dzB8tfg7DG4cTz4lOPWWYkyMhgFUV58/XTI6x9LID3V09KUj4w0mHKbVna9X4AB7+r3Z1v7MS5VP9vspBEd4M5p8OBPej3I0hfg3VhY86nnTG4H42H7XGjQ8YJSA2hyZcXYdyujU7+sJG8AlVuyggC90dbVz2lz7I757pfN1RzZAWs+gU736tlzeahEGRmMgnAFMYN1ltcd8zwtSdlJS4ZJN8C+X+HmT+Cq0c47FCM7wz1z4L6F2kG3aDS81xE2TIZN31acuSXzDMx4AGrWg7tmXlBq7W/VduPzZ93Xt42Lyf+RtAYQ/f07Q/cnoV40LHgK0k+6VTSXopR2TAcEQ28X3MTzZWSw/mPtbvE6BzUYBeEaGnSEOs0rrxnh8Db4/BodijhsBnS4o+RrHBHVHe5bAHfPgeD68P2TMOfRijO3LB4DJ/bCLZ9C9doXyrs8CJlpsHWme/q1pxKZD8pN0hoIbwNBoc7V9/WHmyZoM83Sf7pXNleybTYkroQ+/4QahRJMlw3brHzsSWh8hfZhepMfz8IoCFcgop3ViSshNcnT0pSOvb/ApOsBBfcv0ov/yoOIbuPBH6F6XQpFQbnL3LJtDsT/D3o8BVFX5j/XuBuEtYF1n7s/FcIVTxQu8/NO80G5yM2FpHXQqGvprmsQqz+j+P/pUE9v5/xZbTqtHw2dhru+fRG49mU4ewRWT3B9++XEKAhXEX27ft46o/h63sTmafD1rXp0++CP+k/gKkTgXBHJeF1tbkk7oGcmDTvp2HNHsnR5AFI2Q/JG1/ZdkNT9gEBwBHnmg2a9vdJ8UC6O7dKzMmf8DwXpOQZqN4N5I8tv9nN3xNjKN+FUMtz4hna2u4NGXXTuql/fg9OH3dNHGTEKwlXUbqqTlSVM97QkJaOU/uHPflhHIQ1f5B4TSFFt1mrguj5yc2DWw/r51s+1GcMRMUN0vP66z13Xd0HOnYD1X2hl8PRO7f+IGQK7l8LRP9zXryewZQ8oi4LwD9JRTan74OdXyy6DuyPGjv+pI/Ni7tD/E3fSZ6z2Y/7ymnv7KSVGQbiSmMFwZBsc2uppSfKTb5TVTueI+ellnSrkrpnO25BLi6NoDdAKylUjpVVvacf6jW9A7UuLrhdYS38/W2fqG7k7WPc5ZJ3Vzlgb170K1arrNSVVKdNn0lqoXqf4z7w4orpD5wfg9w+1qaq05GRp0487I8YWPw++AXDtS65przjqNNMmrA1felUGXKMgXEm7W8DHz7vWRBQaZR2Av36BljfoaCW/APf1XTBaI6QRXPmUDqf94oby+2sOrIdl/9FRSs441js/oEdpm6aUr19HnD8Lv38ELa+Heu0ulNcM06tu963SiduqCklWgr7ypM64ZpyeTX53t53frWQAABhSSURBVB64FGcmOpWiw5eXvqB9Zv+JhDNFDDJcYcLctRh2L4Gez+mAi4rg6uf0gOrHcRXTnxOYXEyupEYdaH4tbJmhf/zuslmWBkdx+aAXOJVnsY+zxAwubH9veT1MuV0riXvm6tFTack4BTMf0Llt+r3l3I2qfnvtsF43ES5/3LXvf+P/IP0EXDmq8LmO98Kmb2DpP6Bl3/wRVpWRs8fg+B6Iu7t87QTWgna3wur3LpTZzETH/9Tnk9bqgcAp66bvWw0iYrWyT5jq2M8VdImerZVVeWVlwOLnoG5L6PpI2dooCzXD9Oxz2as6Q27jMpjvXIyZQbiamMFw+iAkrvK0JBpvjMtvfBncO0+Pur+4EY7sLH0bi57VDuFbPyudiazLg3DyL9j7c+n7LIqcLG2rbnyFY1u1jw/0f1svpPxxrOv69RTFJegrLdtnFy7LSte2+CV/10EFjbrqDboe/AmePwAP/gDX/1uXFTRhio9W1LMehszTZZNp9ftwMhFueB38qpWtjbLS7XG9jueHf3qFSdIoCFfT6ga9N6+3bCTkrXH5DWJh+EJA6ZnEwU3OX5swXWfGvOrZ0jsP2wzQ4bfrJpXuuuLYMkOPcB3NHmzUb6///Bu/gn2rXde3J0hao7fbbRBb/raKG6g8vQtGbYHbv4DLH9UL8uxNoo5MmIM+gl4v6GjCT67SK+tLQ2oSrHgT2gzU0WcVTbUaOhIvaQ3sXFDx/RfAKAhX4x8EbQfC9nnekZfIUXiltyzrD2+jI6iq1YAvB14YmRbHyUS9ErfRZXq1d2nxC4CO98Afi1yzZiU3F1a9DeHtoMW1xdftOUbfxOaP0rOOykrSWp1mxVEAQmkpcgDTyDnbf8E0MB3ugKtH6wWb2Znw+bWw+gPnR+NLX9DPfcsRXVVe4u7W5q0fx0FOtufkwCgI9xAzGDJP6bS+nuT0YYj/GmrU07Z62yhrwHveE5dfp5lWEjXqwFeD9MK9osjJ1qYDgFs+Kz6DaHF0Hq5vGBsml+16e/5YpNcEXDmqZJt3tRo60dvRHV65KMopss/DwY2uMS+B+/ISNbkCRqyCFtdpU9U3Q+BsEetybOxdDtvn6MWWoY3L13958PXTPszjuyH+K8/JgRsVhIg0EpFlIrJdRLaJyJNW+TQR2WQ9EkVkk1UeJSLpduc+dpdsbieqh14o5cnUG7k52ombcQrumQ1PbS+cbM9bCG2klURoY+28/mOJ43orxuupd/+39T4DZe6vsXYWb/xS3/DKilKw8i0IbQLtbnbumlY36D1Elr+uZ0OVjUNb9F4GpV1BXRSOzESuGsBUrw13TNH7Y+9dBh93h79WOq6bkwULn4VLouCKkeXvu7y0ulEHVCz7j0dTcLhzBpENPK2UagtcDjwuIm2VUkOUUrFKqVhgJjDL7po/beeUUiPcKJt78fGF6Nv0Ail3xdyXxPLXdOqPfm/kD7v0VoLra7NAeGuYOkynzrBn/++w4r960VL0beXvr8uDcPYo7Py+7G0kroLk9dB9ZOlmMze8rn8jC0d7hSOyVJRngVxRFJUt2BWIwGUPawd3tRrw5QC90VVB083aT/VMsO9/wD/Qdf2XFS9JweE2BaGUSlFKbbRenwZ2AHk7uYiIAIOBb90lg0eJHgy52TrRV0Wz5yc92o4dBnF3VXz/ZaVGHbj3e2jYEWYMh+//dmGB3xc3QlBtbaJxBc366JH/uollb2PV23ovkNhhpbsuJFJvSbl7aeXLAJy0Rs/AakV4WpLSERGj9zbpMFRvdPXlAPj94wu/ryX/gPD2eobnLTTqqp3lv77nsY2WKsQHISJRQBywxq64B3BYKWW/bLCpiMSLyC8i0qOIth4WkfUisv7o0aNuk7nc1I/WCeIq2sx06iDMekg7gG98o2L7dgWBIXD3bKjTEjZ8cWGBn8rRYYuu8uv4+Oj8TPt+hcPbS399ymb48ye4/LGyOWu7PqJ/I4ueK3s4ZkWj1IUFcpWRgJpw80dw86d6L4vFz134faHgxB7Y4mWpcvqM1Sa95Z5JweF2BSEiNdGmpL8ppU7ZnRpK/tlDCtBYKRUHPAV8I/L/7d15mBT1ncfx90dAFFCQw4shoghB9EHUMSFho3gb3Mf7XC9iNMZoIhuPRJNVgxpjiIlrEo26eMT1Rl2Ji7coj8jhCDqIeKAYBsQFuQREzu/+8auRZqyZ6Zmpqp7u/r6ep5+pqaqu/v16eurbVfWr71fb1t2emd1hZpVmVtmjR480m94yUjhUrpkMS+Zk85ob1sGYc8KNPifdG1I8FKMtO8LamPOuG9Ykmwl20BkhlUJVM4a8vnoztN82BJnmaNMW/vVmWPFpy/IRZWl5DaxYULwBotbep8TfrLj+y9ZX2Kn77mFQxRv3FCQFR6oBQlI7QnC438wez5nfFjge+ConhZmtMbPF0fQbwIdAvzTbl7raDK8zMsrw+tK1MHdSqATXo7jfOj6fHz8/yRv8OnYLF5ffeqhp3+IXfxhGu1Se03jh+oZUVIZtTL29afeBFMpXN8gldIG6kFZ8Gj+/NRZ2qk3B8WIGOaHqSHMUk4DRwCwz+2OdxYcC75rZvJz1e0hqE03vBvQFPkqrfZno0iuUuqx+OP2Lke89AxP/MyT8GnhSuq+Vhaxu8Nv/XFi7ommnAl+7JdwoNvgnLX/9Q64KN+49NSKMPGvNaqZAu47hno9i11pvII3TafswsmrWP/K7VyhBaR5BDAHOBA7OGbo6LFp2Kl+/OH0AUB0Nex0D/NjMCjQEKEEDTwrjmRek+A1x2Vx4IjqnfWTrShfcbFnV7a2oDO/b66PzC+IrPg15lfY5HbbZoeWvv3UXOPKGcMdvc051ZalmClTs1/z7T1qTIqoLDYS78DtuHyrxZTjyLc1RTK+amcxsYM7Q1XHRsuFm9rc66z9mZntG6+1rZi0Yf9iKDDgmJBhL62L1+rXw6PBQPP6ke1vHEL0kpDk+PpcUjiIWztw0hLMhk/4aRqfFVY5rrr1OgN0OCue/P1+Q3HaTtGZlSGPfK+W6CFnJ6vOVlPad4KArwjXN98Zl9rKyYhuHnaOystKqqqoK3YzGPXxGyM7481nJf/t6+pcw5TY4+e8hGLmmW7sKbuofbp47oYGCQquXhmGR/Y6AExP+tr/4Q7j1O9D/qJB7qLWZMyEMDT39Meh7aKFbU542rIdbB4cvNRdMatG+RNIbZlbZ2HqeaiMLA08JN7zMeTnZ7b7zZAgO3/6xB4eW2LIjDPq3cHPeygaGTr8+OoyuGjIi+TZ06wMHXAozH4dRfdIrodlcc6Ojq4pG9ykuLbUpOD57H/6weyafEQ8QWeh7eBjtkmQ50iUfwZMXhTrMh12b3HbLVeU5sHEdTL8vfvnaL0JBoN0PCzddpaFzBaBQb6E5JTTTrM9cMyXc15NW9UGXn3VfRCnNl5JKmdU6PEBkoW17GHBsGIXQ0iLtEO5zeOTs8EE58e7sc9aXoh7fDDm0qu6OH0305v3wxWcNp/RuqfG/Jdy0lWPdavjfS2DKHeELxuwXQo2EpR+HPFu1p4jTrM+8cSPMm1oaw1uL3Ysjw/XGXEmWWa2jBIYjFImBp4TkcO+Oa94w1OpHwodg+bxwA9zaVXDawy1LWuc2t/+58OjZ8MHz8M0jN83fsC6kO6j4VsgSmpb6xuCv+Ryerie1+RZtQwW11UvDxfNctTuOll54/ez9UCa22G+QKwUZFwDzAJGVb3wn5BIae1FIhdG5Igypy+eft/bbYW19ibWrwo5hzecNP881Tf+joNOOUDV68wAx8wlYPheG/b5lNZgb07kiOgKImf+jV0Lix9VLop9Lc6aX1J+6PIkdR+3orqYWZ3LJa+gzkgIPEFl5e0zYodd+y6s9BQDxQcIsfGtbvSTUMq5bfGjj+mS+HbpN2rSD/c6GV34f0qN03XVTQaAee0DfI9J9/UOu2vyLAERj86+Gjt3Doz6zX0xvx1EzFTp0g667tXxbrmXq/Yykc/+GB4isvDgy/hTAUz8PhUq+9u1waUhQ15DWmBag2O17Nkz4Q0gUeNjIkHF14Ttw3O0hwV+aaoN97anEphxlxu042rRLZsdRm6AvzaMnl5+WfEaawQNEVurbma9dEaqoddgunILaYc+QSGzrrpt+PvfrcIG0rtaYFqDYde4J/YfBtPtg6JXh6KHzN8LNbFkYeHLz/tnr7jjatIO2W4XCMy2xanHIBLBPE1Oau/Q09zPSDB4gslLvucNeoUhKQ7Zok+lhZdmr/GEYcTZqt3C9Z6su4TpEaz+dl7vjqHkdRh8KE2+Gg3/d/G3Oq03Q5xeoy5EPc81KS3K/FFtagGK3ciGgTUOSv1yW6ljzVPTaP2QTfu3PsCzmi0m+aqaEARE775Nc21zR8COIrLT03GGGh5Vl76Vrib0fodgGBRxydTgSeuEaOLGZlfNqpsJOezevKJIreh4gsuQ7+eKQ8Vjz1HTpFZIKThgF3z6/6Te6bVgXKq9VNrMokit6forJubqKqVZAY4aMCPd2PHNFGLLbFJ9Whyprfgd12fIA4VxdxVYroCHtO4V2z6+Ctx9r2nNr/AJ1ufMA4VxdpTYoYO/TwnWEF64OSQfzNXdyGOK77U7ptc21an4Nwrk4pXS9aIst4Igb4J5hMOkvcODljT/HLIxg2mVI+u1zrZYfQThXDnoPgT2ODjf+5VO1bvk8WLHATy+VOQ8QzpWLw0ZuyuHVmK8S9HmAKGepBQhJvSSNl/SOpJmSLo7mXyNpvqQ3o8ewnOdcIWm2pPckpZwZzbky03VXGHwBvPUAfDK94XVrpkK7jrD9ntm0zbVKaR5BrAcuMbMBwGDgQkkDomV/MrNB0WMcQLTsVGBP4EjgVkltUmyfc+Xne5dCh+5h2GtD9ehrpkDFfsnXUHdFJbUAYWYLzGxaNL0CmAX0bOApxwAPmdkaM5sDzAZ8ALZzSdpq25Cbae6kUNM8ztpV8OkMv/7gsrkGIak3sA8QndjkIknVku6StF00ryeQmzRmHjEBRdKPJFVJqlq0qIEC8865ePueFU4dPX9VKF9b1/xpIdW8B4iyl3qAkNQJeAwYYWafA7cBfYBBwALgpqZsz8zuMLNKM6vs0aNH4u11ruRt0QaOuB6W/ROm3Pb15TWTw8+Kymzb5VqdVAOEpHaE4HC/mT0OYGb/Z2YbzGwjcCebTiPNB3rlPL0imuecS1qfg6Df92HCTVH22hw1U6FH/1Dr2pW1NEcxCRgNzDKzP+bMz70t8zigthjCWOBUSe0l7Qr0Baam1T7nyt7h18H61TD++k3zNm4MAcJPLznSvZN6CHAmMEPSm9G8K4HTJA0i5FP+GDgfwMxmSnoEeIcwAupCs8Zqbjrnmq377rD/eTD19vBzx71C9bgvl3mAcECKAcLMXgXiitiOa+A51wPX17fcOZewAy+H6ofg2SvhrCc33SDnAcLhd1I7V946dIWhV8CcV+C9p0OA2LordOtT6Ja5VsADhHPlrvKcUDPikTNh+n/Dui9gxqOFbpVrBTxAOFfuZj4Bq5eEPE0QigQVWw1ulwoPEM6VuxdHwoa1m8+rrcHtypoHCOfKXanU4HaJ8wDhXLkrpRrcLlEeIJwrd6VUg9slygOEc+Wu1Gpwu8R4snfnXGnV4HaJ8SMI55xzsTxAOOeci+UBwjnnXCwPEM4552J5gHDOORdLZlboNjSbpEXAP1uwie7AZwk1pxiUW3/B+1wuvM9Ns4uZNVqzuagDREtJqjKzsim8W279Be9zufA+p8NPMTnnnIvlAcI551yscg8QdxS6ARkrt/6C97lceJ9TUNbXIJxzztWv3I8gnHPO1cMDhHPOuVglHyAkHSnpPUmzJf0yZvlwSYskvRk9zi1EO5PUWJ+jdU6W9I6kmZIeyLqNScvj7/ynnL/x+5KWFaKdScqjz9+QNF7SdEnVkoYVop1JyqPPu0h6Mervy5KKuuqRpLskLZT0dj3LJemW6P2olrRvog0ws5J9AG2AD4HdgC2Bt4ABddYZDvyl0G3NuM99genAdtHv2xe63Wn3uc76PwXuKnS7M/g73wFcEE0PAD4udLsz6POjwNnR9MHAfYVudwv7fACwL/B2PcuHAU8DAgYDU5J8/VI/gvgWMNvMPjKztcBDwDEFblPa8unzecBfzWwpgJktzLiNSWvq3/k04MFMWpaefPpswLbRdGfgkwzbl4Z8+jwAeCmaHh+zvKiY2QRgSQOrHAP83YLJQBdJOyX1+qUeIHoCNTm/z4vm1XVCdHg2RlKvbJqWmnz63A/oJ2mipMmSjsysdenI9++MpF2AXdm0EylW+fT5GuAMSfOAcYQjp2KWT5/fAo6Ppo8DtpHULYO2FUren/3mKPUAkY9/AL3NbCDwPHBvgduThbaE00xDCd+m75TUpaAtys6pwBgz21DohmTgNOAeM6sgnIq4T1Kp/89fChwoaTpwIDAfKIe/dSpK/cMyH8g9IqiI5n3FzBab2Zro1/8C9suobWlptM+EbxljzWydmc0B3icEjGKVT59rnUrxn16C/Pr8Q+ARADObBGxFSPBWrPL5f/7EzI43s32AX0Xzin5AQgOa8tlvslIPEK8DfSXtKmlLws5hbO4Kdc7XHQ3MyrB9aWi0z8D/EI4ekNSdcMrpoywbmbB8+oyk/sB2wKSM25eGfPo8FzgEQNIehACxKNNWJiuf/+fuOUdJVwB3ZdzGrI0FzopGMw0GlpvZgqQ23japDbVGZrZe0kXAs4QREHeZ2UxJI4EqMxsL/EzS0cB6wsWg4QVrcALy7POzwOGS3iEcfl9mZosL1+qWybPPEHYoD1k0/KOY5dnnSwinD/+dcMF6eDH3Pc8+DwVukGTABODCgjU4AZIeJPSpe3Qt6WqgHYCZ/Y1wbWkYMBv4AvhBoq9fxJ8X55xzKSr1U0zOOeeayQOEc865WB4gnHPOxfIA4ZxzLpYHCOecc7E8QLhWRdLKPNYZIalDgq95rKQBCW7vtRY8d2X0c2dJYxpYr4uknzT3dZzLhwcIV4xGAE0KEJLaNLD4WEKSt0SY2XcT2MYnZnZiA6t0ATxAuFR5gHCtkqShUT7/MZLelXR/dLfoz4CdgfGSxkfrHi5pkqRpkh6V1Cma/7GkGyVNA06SdJ6k1yW9JekxSR0kfZdwB/2oqFZEH0mDoiSG1ZKekLRdtL2XFepKVEmaJWl/SY9L+kDSdTltX5kz/QtJM6LX/F1MP3eN2j6jzjZ619YAkLSnpKlR+6ol9QV+B/SJ5o2S1EmhDsK0aFvH5GxnlqQ7FWp/PCdp62jZ7pJeiNo2TVKfaP5l0ftULek3if5hXXEpdL5zf/gj9wGsjH4OBZYTcstsQUiP8S/Rso+B7tF0d8Idsx2j338BXJWz3uU52+6WM30d8NNo+h7gxJxl1cCB0fRI4OZo+mXgxmj6YkL67J2A9oT8Vt3q9OH7wGtAh+j3rjH9HQucFU1fmPPc3kQ1AIA/A6dH01sCW+cuj+a3BbbNeU9mE2oE9CZkCRgULXsEOCOangIcF01vRTgqO5xQR0LR+/4UcEChPxf+KMyjpFNtuKI31czmAUh6k7Cze7XOOoMJp4cmSoKwA83NtfRwzvRe0bf0LkAnQsqGzUjqDHQxs1eiWfcSitDUqk3bMQOYaVHeG0kfEZKm5aYsORS428y+ADCzuLz+Q4AToun7gBtj1pkE/EqhOtrjZvZB1NfNmg78VtIBwEZCyucdomVzzOzNaPoNoLekbYCeZvZE1LYvo34cTggS06P1OxESOU6IaZcrcR4gXGu2Jmd6A/GfVwHPm9lp9WxjVc70PcCxZvaWpOFECQub2aaNddq3sZ725aPBfDdm9oCkKcBRwDhJ5/P15IqnAz2A/cxsnaSPCUcFuW2G8D5u3cDLCbjBzG5vQvtdifJrEK4YrQC2iaYnA0Mk7Q4gqaOkfvU8bxtggaR2hB3q17ZnZsuBpZK+Fy07E3iF5nke+EHtiCtJXWPWmUhIIkidNn1F0m7AR2Z2C/AkMJDN3wMIFeMWRsHhIGCXhhpmZiuAeZKOjV6jfdTOZ4Fzcq7j9JS0fV69dSXHA4QrRncAz0gab2aLCBl4H5RUTTgd07+e5/0H4bz7RODdnPkPAZdJmh5dqD2bcNG6GhhEuA7RZGb2DOGUVFV0iuzSmNUuBi6UNIP6K4GdDLwdbWMvQonJxYTTam9LGgXcD1RG2zmrTv/qcyYhm3E14VrJjmb2HPAAMCna1hg2D0SujHg2V+ecc7H8CMI551wsDxDOOedieYBwzjkXywOEc865WB4gnHPOxfIA4ZxzLpYHCOecc7H+H/wFOpZqnsaXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for i in range(2):\n", " pylab.plot(distances, eval_counts[i], '-o', label=titles[i])\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Evaluations')\n", "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='center left')" + "pylab.legend(loc='center left');" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total evaluations for 'VQE Random Seed' = 7616\n", + "Total evaluations for 'VQE + Initial Point' = 5936\n", + "\n", + "Total evaluations for 'VQE + Initial Point' are 77.94% of 'VQE Random Seed'\n" + ] + } + ], + "source": [ + "for i in range(2):\n", + " print(\"Total evaluations for '{}' = {}\".format(titles[i], np.sum(eval_counts[i])))\n", + "\n", + "percent = np.sum(eval_counts[1])*100/np.sum(eval_counts[0])\n", + "print(\"\\nTotal evaluations for '{}' are {:.2f}% of '{}'\".format(titles[1], percent, titles[0]))" ] }, { @@ -155,7 +283,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2_vqe_spsa.ipynb b/community/aqua/chemistry/h2_vqe_spsa.ipynb index 880884406..a8538f625 100644 --- a/community/aqua/chemistry/h2_vqe_spsa.ipynb +++ b/community/aqua/chemistry/h2_vqe_spsa.ipynb @@ -10,7 +10,7 @@ "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the qiskit.chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "This notebook has been written to use the PYSCF chemistry driver." ] }, { @@ -25,10 +25,10 @@ "Processing step 20 --- complete\n", "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.04791876 -1.07420635 -1.08779346 -1.10880279 -1.11899652 -1.12671817\n", - " -1.13457894 -1.13277581 -1.1344774 -1.1347043 -1.13293985 -1.14356835\n", - " -1.14347015 -1.12904676 -1.14013816 -1.12672765 -1.12100335 -1.1174054\n", - " -1.1043725 -1.10428366 -1.09728721]\n", + "Energies: [[-1.06086904 -1.07138175 -1.09113875 -1.10744489 -1.11953674 -1.13116184\n", + " -1.13320145 -1.13667867 -1.13892688 -1.13662612 -1.13536438 -1.13603326\n", + " -1.13339153 -1.1308772 -1.12739979 -1.12469779 -1.12047399 -1.11336415\n", + " -1.11008319 -1.10846154 -1.10181643]\n", " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601 -1.12416092\n", " -1.12990478 -1.13382622 -1.13618945 -1.13722138 -1.13711707 -1.13604436\n", " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", @@ -47,19 +47,20 @@ "\n", "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "qiskit_chemistry_dict = {\n", + " 'problem': {'random_seed': 750},\n", " 'driver': {'name': 'PYSCF'},\n", " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", " 'operator': {'name': 'hamiltonian', 'transformation': 'full', \n", " 'qubit_mapping': 'parity', 'two_qubit_reduction': True},\n", - " 'algorithm': {'name': 'VQE'},\n", - " 'optimizer': {'name': 'SPSA', 'max_trials': 350},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'}\n", + " 'algorithm': {},\n", "}\n", "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "algorithms = ['VQE', 'ExactEigensolver']\n", - "backends = [{'name': 'qasm_simulator', 'shots': 1024},\n", - " None\n", - " ]\n", + "algorithms = [{'name': 'VQE', 'operator_mode': 'paulis'},\n", + " {'name': 'ExactEigensolver'}\n", + " ]\n", + "optimizer = {'name': 'SPSA', 'max_trials': 200}\n", + "variational_form = {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'}\n", + "backend = {'provider': 'qiskit.BasicAer', 'name': 'qasm_simulator', 'shots': 1024}\n", "\n", "start = 0.5 # Start distance\n", "by = 0.5 # How much to increase distance by\n", @@ -74,10 +75,14 @@ " d = start + i*by/steps\n", " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j]\n", - " if backends[j] is not None:\n", - " qiskit_chemistry_dict['backend'] = backends[j]\n", + " qiskit_chemistry_dict['algorithm'] = algorithms[j]\n", + " if algorithms[j]['name'] == 'VQE':\n", + " qiskit_chemistry_dict['optimizer'] = optimizer\n", + " qiskit_chemistry_dict['variational_form'] = variational_form\n", + " qiskit_chemistry_dict['backend'] = backend\n", " else:\n", + " qiskit_chemistry_dict.pop('optimizer')\n", + " qiskit_chemistry_dict.pop('variational_form')\n", " qiskit_chemistry_dict.pop('backend')\n", " solver = QiskitChemistry()\n", " result = solver.run(qiskit_chemistry_dict)\n", @@ -100,19 +105,9 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VNXWwOHfSgglEEKvAUIoIQGSkER6VZCOEqSJgAgiiqByLei9F/GzXAtiA0GKghSJShVQEAQF6SX00HuvSSCFlPX9MZMYIGVIJoVkv88zj+TMPuesmcRZc/Y+e21RVQzDMAwjsxxyOgDDMAwjbzAJxTAMw7ALk1AMwzAMuzAJxTAMw7ALk1AMwzAMuzAJxTAMw7ALk1AMI4uIyNMisj6n4zCM7GISipEtROSEiLS9a1vSB66IFBKR6SJyUkQiRCRERDqmc8yKIjJVRM6JyE0ROSYiM0SkTla+FnsRkcEiEmp9vRdFZLmIuFifmyEi793HsTKVvKz7x1vfx+SPShk9ppH/mIRi5BYFgNNAK8AV+A/wo4i4p9RYREoDGwBnoAXgAvgDfwLtUtmngL2DzigRaQV8APRVVRfACwjO2ajYqKrF7nqcs+cJctPvwLA/k1CMXEFVb6nqWFU9oaoJqroUOA4EpLLLK0A40F9Vj6rFDVX9TlW/AhARdxFR65XAKeAP6/ZuIrJPRG6IyFoR8Uo8qLV9zWQ/J10piEhrETkjIv8SkUsicl5EBiVrW1pElohIuIhsAWqk8ZIfwvIBvtP6+q+p6kxVjRCRoUA/4HXrVcIv1uOPFpGj1iua/SLS3brdC5gMNLG2v2HdXkhExonIKesV0GQRKWLzLyUZ6xXmqyKyW0TCRCRYRAone76L9aryhohsEBGfu/Z9Q0R2A7dEpICI+IvITutr+cl6vMT3ea+IdE22v5OIXBGRBhmJ3cg+JqEYuZKIlAdqA/tSadIWWKiqCTYcrhWWK4D2IlIb+AF4GSgLLAd+EZGCNoZWAcsVVGVgMDBRREpan5sIRAMVgWesj9Rstsbzjog0E5FCiU+o6hRgDvCx9Soh8cP1KJarMVfgHWC2iFRU1QPAMP65wihhbf8hlvfQD6hpjXmMja8zJb2ADkB1wAd4GsD6Qf8t8BxQGvgGWJL8NQF9gc5ACSyfOwuBGUApLL+P7snafg88leznTsD5xORr5F4moRjZaZH1G+wN67for1NqJCJOWD5QZ6pqaCrHKgNcSLZPN+txI0Rk5V1tx1qvgKKA3sAyVf1dVWOBcUARoKmNryEW+D9VjVXV5cBNwFNEHIEewBjrufYCM1M7iKquA4KwdNMtA66KyHjrcVLb5ydVPWe9ggsGDgMNU2orIgIMBV6xXv1EYOli65PGa2uc/PcjIkfvev5L6/mvAb9gSVRYz/ONqm5W1XhVnQnEAI3v2ve09XfQGEsX55fW93EBsCVZ29lAJxEpbv25PzArjbiNXMIkFCM7Pa6qJRIfwAt3NxARBywfHreBF9M41lUsVwIAqOoS6zFfAe6+2jid7N+VgJPJ9kuwPl/ZxtdwVVXjkv0cCRTDcrWTOA6U6CRpUNVfrVcfpYDHsHzjH5JaexEZkKxb6QZQD0tiTUlZLONL25O1/826PTWbkv9+VPXuLrsLyf6d+LoBqgH/uuvLQhUs73Wiu38HZ/XOyrRJz1vHbf4GeohICaAjli8YRi5nEoqRa1i/VU8HygM9rFcQqVkNPG5NQOlJ/sF1DssHYPJzVgHOWjdFYvkgTlTBhuMDXAbirMdKVNWWHa1XHKuxjPHUSyFmRKQaMBVLki1tTZ57AUmpPXAFiALqJksQrqpaDPs7Dbx/VzJyVtUfkrVJHt95oLL1vU+U/H0Dy9XdU0BPLF15ZzFyPZNQjNxkEpaxjq7WrpG0jAdKArNEpIZYuPBPN0xqfgQ6i8gj1q61f2HpntlgfT4EeFJEHEWkA5bxl3SpajywABgrIs4i4g0MTK29iDwmIn1EpKQ19obWc22yNrkIeCTbpSiWD+XL1v0H8U/ySWzvljgWZL3ymgp8JiLlrPtUFpH2trye+zQVGCYijayvpaiIdLb+PlKyEYgHXrQO0D/GvV13i7B0B76EZUzFeACYhGLkCtZv4M9hSQgX5J95EP1Saq+qV7D0xUcD64EILMnABXg+tfOo6kEs33y/wvItviuWBHbb2uQl67YbWO60WnQfL+NFLN1AF7AMOH+XRtvrwLNYxkHCsYwbfKKqiV070wFvaxfSIlXdD3yK5cP4IlAfS7dQoj+w3MBwQUSuWLe9ARwBNolIOLAK8EwjpiZy7zyUh9J70aq6zfpaJlhf1xGsA/aptL+NZfxoMJb3+SlgKZbEntgmCpiP5QaABenFYOQOYhbYMgwjp4nIZmCyqn6XbNsYoLaqPpX6nkZuYq5QDMPIdiLSSkQqWLu8BmK5Dfm3ZM+XwnIFMyWnYjTun0kohmHkBE9gF5Yur38BT6jqeQAReRbLQP+vqvpXzoVo3C/T5WUYhmHYhblCMQzDMOwiXxVqK1OmjLq7u+d0GIZhGA+U7du3X1HVtCbFAjmYUESkJzAWy7yDhtZbD1Nq1wH4AnAEpqnqh3c9/yXwjC0Tttzd3dm2LcXTGIZhGKkQkTSrPiTKyS6vvVjuRU910M1a12giltIL3kBf64SxxOcDsUxuMwzDMHJYjiUUVT1gnWSWlobAEVU9Zp0MNQ9LzaPEZPMJ8HrWRmoYhmHYIrcPylfmzqJyZ/iniN+LwJLEWw1TIyJDRWSbiGy7fPlyFoVpGIZhZOkYioisIuXiev9W1cWZOG4lLEXjWqfX1rq2xBSAwMBAc4+0HcXGxnLmzBmio6NzOhTDMOygcOHCuLm54eTklKH9szShqGrb9Ful6Sx3ViF1s25rgGXBoCPWgqXOInJEVWveewgjq5w5cwYXFxfc3d25s3CsYRgPGlXl6tWrnDlzhurVq2foGLm9y2srUEtEqlurqPbB0s21TFUrqKq7qroDkSaZZL/o6GhKly5tkolh5AEiQunSpTPV45BjCUVEuovIGaAJsExEVli3VxKR5QDWhYxeBFYAB4AfVTW1JWGNHGCSiWHkHZn9/znH5qGo6kIs60rfvf0cljWkE39ejmXd77SOlRWLBiVZd/gye86G8UJrcxFkGIaRmtze5ZUrrD98hfErD3H1Zkz6jY1sVazYnd8lZsyYwYsvprVy8L1CQkJYvjzN7yyZMmPGDMqWLYufnx9+fn4MGDDgvo+xdu1aunTpkgXRGYb9mIRigyB/N+ISlCW7zuV0KIadxcXFpZlQ4uLiUtx+v3r37k1ISAghISF8/71ZgNDIm0xCsYFnBRfqVS7Ogh1mWesHyS+//EKjRo1o0KABbdu25eLFiwCMHTuW/v3706xZM/r378+YMWMIDg7Gz8+P4ODge56Pj4/ntdde46GHHsLHx4dvvvkm6RyffPJJ0va33377vuILCQmhcePG+Pj40L17d65fvw7AkSNHaNu2Lb6+vvj7+3P06NE79tu6dSsNGjS4Z7th5LR8VRwyM4IauPF/S/dz6GIEtcuntlR2/vXOL/vYfy7crsf0rlSct7vWTbNNVFQUfn7/LCN/7do1unXrBkDz5s3ZtGkTIsK0adP4+OOP+fTTTwHYv38/69evp0iRIsyYMYNt27YxYcIEwJJwkj8/ZcoUXF1d2bp1KzExMTRr1oxHH32Uw4cPc/jwYbZs2YKq0q1bN/766y9atmx5T5zBwcGsX78egJdeeolBgwYxYMAAvvrqK1q1asWYMWN45513+Pzzz+nXrx+jR4+me/fuREdHk5CQwOnTlvm9GzZsYMSIESxevJiqVatm/k02DDsyCcVG3fwq8f7yAyzYcZbRHevkdDiGVZEiRQgJCUn6OTE5gGWeTO/evTl//jy3b9++4976bt26UaRIkVSPm/z5lStXsnv3bn7++WcAwsLCOHz4MCtXrmTlypU0aNAAgJs3b3L48OEUE0rv3r2TElbiMW7cuEGrVq0AGDhwID179iQiIoKzZ8/SvXt3wDLRLNGBAwcYOnQoK1eupFKlSvf3RhlGNjAJxUZlihWide2yLNp5ltfae+LoYG6XTS69K4mcMGLECEaNGkW3bt1Yu3YtY8eOTXquaNGiae6b/HlV5auvvqJ9+/Z3tFmxYgVvvvkmzz333B3bJ06cyNSpUwHsOthfsWJFoqOj2blzp0koRq5kxlDuQ48ANy6ER7Ph6JWcDsWwQVhYGJUrW0q/zZw5M9V2Li4uREREpPp8+/btmTRpErGxsQAcOnSIW7du0b59e7799ltu3rwJwNmzZ7l06RLDhw9PGoBP7YPf1dWVkiVLsm7dOgBmzZpFq1atcHFxwc3NjUWLFgEQExNDZGQkACVKlGDZsmW8+eabrF279v7eDMPIBiah3IeH65SjeOECZnD+ATF27Fh69uxJQEAAZcqUSbVdmzZt2L9/f9Kg/N2GDBmCt7c3/v7+1KtXj+eee464uDgeffRRnnzySZo0aUL9+vV54okn0kxMd5s5cyavvfYaPj4+hISEMGbMGMCSXL788kt8fHxo2rQpFy5cSNqnfPnyLF26lOHDh7N58+b7eDcMI+vlqzXlAwMDNbMLbL21cA8Ld5xl63/aUqxQ/u4xPHDgAF5eXjkdhmEYdpTS/9cisl1VA9Pb11yh3Kce/pWJio3nt70X0m9sGIaRj5iEcp/8q5bEvbQz87efyelQDMMwchWTUO6TiBDk78bGY1c5cz0yp8MxDMPINUxCyYDuDSx3Di0OMaVYDMMwEpmEkgFVSjnTsHop5u84Q366qcEwDCMtJqFkUA//yhy7fItdZ8JyOhTDMIxcwSSUDOpYvyKFCjiYwXnDMAwrk1AyqHhhJ9rXrcAvu88RExef0+HkawkJCXTp0oX69esnFVF8+umnc2w2+dixY5kxY0aabdauXcvTTz/NiRMncHNzIyEh4Y7n/fz8kiYuTpkyhTp16lCnTh0CAwPveF2tW7fG09Mzaa2VJ554wuYYZsyYcUc5muz2wQcf5Ni509K6dWvSm6/WunVrTpw4kWYbW34HGeHu7s6VK5ZqHU2bNk23baJRo0bh5eXFmjVr7B5TIpNQMiHIvzI3ImNZE3o5p0PJ1/bs2cOlS5fYs2cPVapUyelw7ou7uztVq1ZNKsECEBoaSkREBI0aNWLp0qV88803rF+/ntDQUKZMmcJTTz3F2bP/VGuYM2dOUqmXxAKWuUF6a8ncb0JR1XsSb363YcMGm9uOHz+et99+m2+//TbL4jEJJROa1yxDWZdCLNhhur34dTR819m+j19H23TqGzduUK5cuTu2ubq6UrBgQcDyof3222/j7+9P/fr1CQ0NBWDLli00adKEBg0a0LRpUw4ePAhYvrk//vjjtGvXDnd3dyZMmMD48eNp0KABjRs35tq1awAcPXqUDh06EBAQQIsWLZKOW6xYsTQrGQMULFgQV1dXAPr27cu8efOSnps3bx59+vQB4KOPPuKTTz5JKh3j7+/PoEGDmDhxYprHtyWGIkWKJK14eeLECR5++GF8fHx45JFHOHXqFGC50hs2bBiBgYHUrl2bpUuXAqS6RszatWtp0aIF3bp1w9vbG4DHH3+cgIAA6taty5QpUwAYPXp00tID/fr1AywfePXq1aNevXp8/vnnSXF5enoyYMAA6tWrl3QFmtLrfe2116hbty5t27Zly5YttG7dGg8PD5YsWQJAdHQ0gwYNon79+jRo0CDpm3pUVBR9+vTBy8uL7t27ExUVlXTclStX0qRJE/z9/enZs2dS3bZSpUrh6Oho8++gdevWvPTSS/j5+VGvXj22bNkCpP03mHzl0S5duqR4xZ34+zt//jwtW7ZMOn7iF5SyZcve0b5ChQrcuHEjzbgzRVXzzSMgIEDt7b2l+7TmW8v06s0Yux87t9u/f/8/Pyx/Q/XbTvZ9LH/DpjhWr16tXbt2TfX5atWq6ZdffqmqqhMnTtTBgwerqmpYWJjGxsaqqurvv/+uQUFBqqr63XffaY0aNTQ8PFwvXbqkxYsX10mTJqmq6ssvv6yfffaZqqo+/PDDeujQIVVV3bRpk7Zp0+aec0+aNClp39RcuHBBK1SokBRLnTp1dM+ePaqqWrJkSb1x48Yd7RctWqSPPfaYqqq2atVKa9eurb6+vurr66uvvvpqmudKTZcuXXTGjBmqqjp9+vSk4w8cOFDbt2+v8fHxeujQIa1cubJGRUXpN998o++++66qqkZHR2tAQIAeO3ZM16xZo87Oznrs2LGkY1+9elVVVSMjI7Vu3bp65coVVVUtWrRoUptt27ZpvXr19ObNmxoREaHe3t66Y8cOPX78uIqIbty4Mc34AV2+fLmqqj7++OParl07vX37toaEhKivr6+qqo4bN04HDRqkqqoHDhzQKlWqaFRUlH766adJ23ft2qWOjo66detWvXz5srZo0UJv3rypqqoffvihvvPOO/ece/Dgwbp169Y042vVqpUOGTJEVVX//PNPrVu3rqqm/Tc4fPjwpP07d+6sa9asUVXL3/Ply5fveA/HjRun7733nqqqxsXFaXh4eIpx/Pnnn9qxY8c0Y73j/2srYJva8Bmbv4tR2UGQvxtT1x3nl13nGNjUPafDyTkdP8yxU4eEhODm5pZmm6CgIAACAgJYsGABYKlGPHDgQA4fPoyIJFUTBkvBSBcXF1xcXHB1daVr164A1K9fn927d3Pz5k02bNhAz549k/aJiYm557zDhg1LN/7y5ctTr149Vq9eTfny5SlQoAD16tVL/4VbzZkzh8DAdMsspWnjxo1J70v//v15/fXXk57r1asXDg4O1KpVCw8PD0JDQ1NdI6ZgwYI0bNjwjrVnvvzySxYuXAjA6dOnOXz4MKVLl77j/OvXr6d79+5JywYEBQWxbt06unXrRrVq1WjcuHGa8RcsWJAOHToAlt9RoUKFcHJyon79+kljHevXr2fEiBEA1KlTh2rVqnHo0CH++usvRo4cCYCPjw8+Pj4AbNq0if3799OsWTMAbt++TZMmTe4597Rp09J7ewHLlShAy5YtCQ8P58aNG0RERKT6N3g/HnroIZ555hliY2N5/PHH71h0LrnKlStz6NAhoqOj71hrx15MQskkr4rF8a5YnAU7zuTvhJJDnnzySZYuXZruAHyhQoUAcHR0TOrb/+9//0ubNm1YuHAhJ06coHXr1ve0B3BwcEj62cHBgbi4OBISEihRosQdi3tlRmK3V/ny5ZM+eAC8vb3Zvn07Dz/8cNK27du3ZzqB3A8RuednTWWNmLVr196xlszatWtZtWoVGzduxNnZmdatWxMdHX1f509v7RoAJyenpDhT+n1lhKrSrl07fvjhhwztf7eU3sfU/gYLFChwx3hReu9Zy5Yt+euvv1i2bBlPP/00o0aNYsCAAfe0q1GjBt7e3lStWpXVq1dTv379zL+wZMwYih0E+Vdm15kwjlyyvXS5YR9z587lk08+Sepzvx/J10u537txihcvTvXq1fnpp58Ay4fPrl277juGREFBQSxfvpzg4OCk8ROA119/nTfeeIOrV68ClquxhQsX3rOoV1omTJhwx2qRKWnatGnSOM6cOXNo0aJF0nM//fQTCQkJHD16lGPHjuHp6ZnqGjF3CwsLo2TJkjg7OxMaGsqmTZuSnnNyckrav0WLFixatIjIyEhu3brFwoUL74jBHlq0aMGcOXOS4j116hSenp60bNmSuXPnArB37152794NQOPGjfn77785cuQIALdu3eLQoUMZPn/i0gjr16/H1dUVV1fXVP8G3d3dCQkJSVr+OXHMJTUnT56kfPnyPPvsswwZMoQdO3ak2G7Xrl0cO3aMs2fP2j2ZgEkodtHNrxKODmLWSckhnp6eSQPl9+P111/nzTffpEGDBhn6FjtnzhymT5+Or68vdevWZfHixfe0mTx5MpMnT073WCVKlKBJkyaUL18eDw+PpO3dunVj8ODBNGvWjJo1a9K8eXMWLVp0x2Brv379km4bbtu27T3HDg0NvaeL6W5fffUV3333HT4+PsyaNYsvvvgi6bmqVavSsGFDOnbsyOTJkylcuHCqa8TcrUOHDsTFxeHl5cXo0aPv6LoaOnQoPj4+9OvXD39/f55++mkaNmxIo0aNGDJkSNLSyvbywgsvkJCQQP369enduzczZsygUKFCPP/889y8eRMvLy/GjBlDQEAAYBnQnjFjBn379sXHx4cmTZok3XiR3JAhQ9K9zRgsyzk3aNCAYcOGMX36dCD1v8FmzZpRvXp1vL29GTlyJP7+/mkee+3atfj6+tKgQQOCg4N56aWXUmx3/fp13N3dcXJySjfeDLFloCWvPDI6KL/z4k794cAPabZ5+tvN2viDVRofn5ChczyIUhq8ywmbN2/Whg0bakJC3n7vY2Nj9amnntInn3zyvl5r586dNSYmYzeNDBw4UH/66acM7Wv8o1WrVukO3GeH4OBg7dWrV5ptMjMob65QbLDixAo+3voxYTGpl1kJ8nfjfFg0G49dzcbIDLBMAqxSpQp+fn6p3laaFxQoUIBZs2YxZ86ce/rj07J06dKkW6iN/GvUqFF8/PHHDBkyJMvOYQblbdDZozOzD8xm1clV9KjdI8U27bzL41K4APN3nKFZzdSXmzXsr2DBgrlqQl9ekhUzvTOjUaNG99xNN2vWrCwZD7CnnKrakNz48eOz/Bwmodigbum6VCtejWXHl6WaUAo7OdLFpyKLQ87x7mNxFM3nywMbRlZILEdj5E6my8sGIkLn6p3ZdmEbF26lvvRvkL8bkbfjWbHPLA9sGEb+YxKKjTp7dEZRfj3+a6ptAquVpEqpIuZuL8Mw8iWTUGxUtXhVfMr4sOzYslTbiAhBDdz4++gVzt2ISrWdYRhGXmQSyn3o5NGJg9cPcuT6kVTb9PB3QxUWhZirlOzyIJevB8vAd9myZZPmkvj5+bF//367xTNjxgzOnftnuerUSt5PnjyZ77//3m7nzYixY8cybtw4ux0r8fewZs0avLy8eOWVV+xybCNlOZJQRKSniOwTkQQRSbWGhIh0EJGDInJEREYn2y4i8r6IHBKRAyIyMjvi7uDeAUdxZNnx1K9SqpZ25iH3kizYcRbL7dtGVnuQy9cn6t27d1IJ+pCQkKRKvfZwd0KBlEveDxs2LMVyHQ+iuydZtmnTht27d/Pdd99luF6Wkb6cukLZCwQBf6XWQEQcgYlAR8Ab6Csiif+XPQ1UAeqoqhcwL8WD2FnpIqVpXKkxy44tI0FTX5chyN+NI5dusuesWR44Ozzo5etTs3DhQh555BFUlfPnz1O7dm0uXLjAiRMnaNGiBf7+/vj7+9+xJsZHH31E/fr18fX1ZfTo0fz8889s27YtaTZ98tLsd0t+dbB161Z8fHzw8/PjtddeSypWmVbZ+tatW/PEE09Qp04d+vXrl/SFavTo0Xh7e+Pj48Orr74KpF4uP1FoaCgNGzZM+vnEiRNJtwZv376dVq1aERAQQPv27Tl//jxgufJ6+eWXCQwM5Isvvrjn9+Dk5ESJEiUIDw9P8303Mi5H7m1V1QNwb7G0uzQEjqjqMWvbecBjwH7geeBJVcunuqpeytKAk+lcvTNvrX+LnZd2ElA+IMU2nepX5O0l+5i//Qw+biWyK7Qc9dGWjwi9dm9ZisyoU6oObzR8I9128fHxODjc+d0oeekQgDJlyrBjxw6+/vprxo0bx7Rp06hTpw7r1q2jQIECrFq1irfeeov58+cDlppOO3fuJDo6mpo1a/LRRx+xc+dOXnnlFb7//ntefvllhg4dyuTJk6lVqxabN2/mhRde4I8//kj60ASSyq7cXXW4adOmd6y2FxwczPr165N+3rhxI927d2f+/PlMnDiR3377jXfeeYcKFSoQGRnJ77//TuHChTl8+DB9+/Zl27Zt/PrrryxevJjNmzfj7OzMtWvXKFWqFBMmTGDcuHF3FJTs169f0odtu3bt+OSTT+6Ib9CgQUydOpUmTZowevQ/69JMnz4dV1dXtm7dSkxMDM2aNePRRx8FYOfOnezbt49KlSrRrFkz/v77b7y8vFi4cCGhoaGISNJaHCNGjGDgwIEMHDiQb7/9lpEjR7Jo0aKk89SpU4fbt29z/PhxqlevTnBwML179yY2NpYRI0awePFiypYtS3BwMP/+97+TFo26fft2mmVQHBwciI83K6xmldw8WaIykHza8xmgkfXfNYDeItIduAyMVNXDKR1ERIYCQ8FSkyizHqn6CEUKFGHZsWWpJhTXIk608y7Pkl3n+HdnbwoWMENVWelBL18Pli6vlAo4fvXVV9SrV4/GjRsnVSGOjY3lxRdfJCQkBEdHx6SChatWrWLQoEE4OzsDlkWgUpNWyfvEsuqJpdoTKzoD6ZatT/w9+Pn5ceLECRo3bkzhwoUZPHgwXbp0oUuXLkDa5fIT9erVi+DgYEaPHk1wcDDBwcEcPHiQvXv30q5dO8DyZaJixYp3vI9pqVy5Mrt3706x5pmReVmWUERkFVAhhaf+rar3VtG7P4WAaFUNFJEg4FsgxdKkqjoFmAIQGBiYsUGNXfPg6BroPhlnJ2daV2nNypMrebPhmzg5plxk7Ql/N5btPs/ag5d4tG5Kb0PeYsuVRFbIK+XrU3PmzBkcHBy4ePEiCQkJODg48Nlnn1G+fHl27dpFQkJClqxrkRpNo2x98vcs8X0uUKAAW7ZsYfXq1fz8889MmDCBP/74w6Zz9e7dm549exIUFISIUKtWLfbs2UPdunXZuHFjivukV+p+5MiRdO3alTfffJMxY8bYFIdhuyz76qyqbVW1XgoPW5PJWSzjJIncrNvAcrWywPrvhYCPfaJOxa3LsHse7JwNQBePLoTFhLH+7PpUd2lRqwxlihU0c1KyWF4pX5+SuLg4nnnmGX744Qe8vLySSmeEhYVRsWJFHBwcmDVrVlIXTrt27fjuu++IjIwESBrrcXFxISLC9qUVSpQogYuLS9Ks9OTLE9tatj7RzZs3CQsLo1OnTnz22WdJ71Fa5fIT1ahRA0dHR959992kKw9PT08uX76clFBiY2PZt2+fza8We5ooAAAgAElEQVTtgw8+4I8//jDJJIvk5r6YrUAtEakuIgWBPsAS63OLgDbWf7cCMr5IgS0aDwf3FvDrG3DtGE0qNaFkoZJp3u1VwNGBx/wqszr0Ijcib2dpePldXihfHxwcfMdtwxs2bOCDDz6gRYsWNG/enPHjxzNt2jQOHDjACy+8wMyZM/H19SU0NDTpW3mHDh3o1q0bgYGB+Pn5JQ2wJ64Ln3xQPr2S99OnT+fZZ5/Fz8+PW7duJd1AYGvZ+kQRERF06dIFHx+fpNcBaZfLT653797Mnj2bXr16Af/UbXvjjTfw9fVNeq9sdf36dWrVqmVze+M+2VKS2N4PoDuWq4wY4CKwwrq9ErA8WbtOWJLFUSxdZYnbSwDLgD3ARsDXlvNmak35G6dV/1dFdeojqnGx+u7GdzVgVoBGxESkusvesze02htL9fsNxzN+3lzMlK/PuyIi/vm7/t///qcjR47MwWjsIyYmRkuWLKm3bt3K6VBytQeufL2qLlRVN1UtpKrlVbW9dfs5Ve2UrN1yVa2tqjVU9f1k22+oamdVra+qTVTVvn0NKXF1gy6fwZmtsO5Tunh0ISY+htWnVqe6i3fF4tSp4MJ80+2VpfJL+frstGzZMvz8/KhXrx7r1q3jP//5T06HlClr1qwhMDCQp59+OummBcP+cvNdXrlPvR5w8Df48yN8azxM5WKVWXZsGY/VfCzF5iJCD3833l9+gNAL4dSpUDybA84fTPl6++vdu3e6d0w9SBInNhpZKzePoeROnT6B4pWQhUPpVLUdmy9s5krUlVSb9wx0o4iTI1P+OpaNQWYfNdUADCPPyOz/zyah3K8iJaD7ZLh2nC5nD5CgCWlWIC7hXJA+DauwJORcnisYWbhwYa5evWqSimHkAarK1atXM3Ubuunyygj35tDsJTz+/hyvuk1YdmwZ/b37p9p8cPPqfL/xJNPXH+e/XexXoymnubm5cebMGS5fvpzToRiGYQeFCxdOd5JwWkxCyag2/4ajq+l88RjjXApxPOw41V2rp9jUraQz3Xwr8cOWU4x8uBauzilPhnzQODk5Ub16yq/ZMIz8x3R5ZVSBghA0jY7hEQikuU4KwNCWHkTejmf25pPZE59hGIZV1O3sqV9mEkpmlKtDuUfeoWFUNMsOzEtzLMGrYnFa1S7Ld38fJzrWFKczDCN7bDl+jRYfr2HzsatZfi6TUDKr4bN0dq7Kmdgwdh9J+yrluVYeXLl5m/k7zmRTcIZh5GdrQi/Rf/pmihcpQJVSWT//xiSUzBKhbedvKKjKsr/GQnzqi/c08SiNr5srU/86RnyCuTPKMIys88uuczz7/TZqlivGj881oVKJtNfosQeTUOzApXRNWpWqzwqJJHbNB6m2ExGea1WDE1cjWbnvQjZGaBhGfjJ38ylGztuJf9WS/DC0MWWKFUp/JzswCcVOOvsN4ZqjI5t2TIaTKZfWBmhftwLVSjsz+c+jZv6GYRh2N2ntUd5auIfWtcsy85mGFC+cfXeVmoRiJy0qt8DFyYVlJcvAwqEQnfIyo44OwrMtPNh1JoxNx+6/Qq5hGEZKVJWPfgvlo99C6epbiW/6B1KkoGO2xmASip0UdCzIo+6P8keRQkSGn7WUuk/FEwFulClWkG/+OpqNERqGkVfFJyj/WbSXSWuP8mSjqnze2y9HVoo1CcWOOnt0Jio+hjX+T8CuubBvUYrtCjs58nRTd9YevMyB8ylfyRiGYdgiNj6Bl4NDmLP5FM+3rsH7j9fD0UFyJBaTUOwooHwAFYpWYFkhR6jkD0tfhvBzKbZ9qnE1nAs6MjWPFo00DCPrRd2OZ+j32/hl1zne6FCHNzrUQSRnkgmYhGJXDuJAp+qd2HB+I9c6j4O4GFj0AiQk3NO2hHNB+jxUlSW7znE2jxWNNAwj64VHxzLw2y2sPXSZ97vX4/nWNXI6JJNQ7K2zR2fiNZ4VEYeg/QdwbA1s+SbFtoNbWOpgTV93PDtDNAzjAXf1ZgxPTt3EjlPX+aJPA/o1qpbTIQEmodhd7ZK1qVWyFkuPLYWAp6F2R/j9bQi7d9XGyiWK0M23EvO2njLrzhuGYZNzN6Lo9c1GDl+8ydQBgXTzrZTTISWxKaGISEkRqSsiHiJiklA6OlfvzO7LuzkdcQY6fADxMbB7Xopth7ayFI2ctdEUjTQMI23Hr9yi5+SNXAqPYdbgRrSpUy6nQ7pDqslBRFxF5C0R2QNsAr4BfgROishPItImu4J80HSq3gmAZceXQSkPqNYMQuZCChMZ61QoTmvPsszYcMIUjTQMI1X7z4XTc/IGomPj+WFoYxpWL5XTId0jrauNn4HTQAtV9VTV5qoaqKpVgA+Bx0RkcLZE+YCpWKwiAeUDWHZsmWU2vG9fuHoEzmxLsf2wVjW4eus2P283RSMNw7jXthPX6D1lIwUdHfhxWBPqVXbN6ZBSlGpCUdV2qjpLVW+k8Nx2VX1ZVadnbXgPrs4enTkRfoL91/ZD3cfByRlC5qTYtlH1UvhWKcHUdaZopGEYd1qx7wL9pm2mbLFC/PR8U2qULZbTIaUq3fEQsXhKRMZYf64qIg2zPrQH26PVHqWAQwHLwluFXMCrG+xdALH33iIsIgxr6cHJq5H8ttcUjTQMw2LO5pM8P3s7XhWL8/PzTamcDRWDM8OWAfavgSZAX+vPEcDELIsoj3At5EqLyi347fhvxCfEg19fiAmDg8tTbP9o3QpUL1PUFI00DANVZfzvh/j3wr20ql2Wuc82olTRgjkdVrpsSSiNVHU4EA2gqteB3P/KcoHOHp25HHWZLRe2gHtLKO5mGZxPQWLRyD1nw9iYDSurGYaRO8XFJ/Dmgj18ufowvQLdmDogEOeCBXI6LJvYklBiRcQRUAARKQvcO/XbuEcrt1YUdSpq6fZycLBcpRz9A8LPp9g+yL+ypWjkn6Yci2HkR1G34xk2ezvztp5mxMM1+aiHDwUcH5yZGrZE+iWwECgvIu8D64HUV5EykhQuUJi2Vduy6tQqouKiLHd7aQLsDk65vZMjg5pV589Dl9l/zhSNNIz85Pqt2/SbtonVoZd497G6/OtRzxyty5UR6SYUVZ0DvI4liZwHHlfVn7I6sLzisZqPcSv2luUqpXQNqNI41TkpAE81qkbRgo5MMaXtDSPfOHM9kh6TN7D3XDiT+vnTv4l7ToeUIbZeS5UBIlV1AnBFRKpnYUx5SmD5QOqUqsPs/bMtg+1+T8KVg3B2R4rtXZ2d6NuwKr/sPs+Z65HZHK1hGNntwPlwgr7ewJWIGGYPbkSHehVzOqQMs+W24beBN4A3rZucgNlZGVReIiL09+7P0bCjbDi3wTInpUBhy3opqXimeXUEmGaKRhpGnrbx6FV6Td6Igwg/DWuaK2e/3w9brlC6A92AWwCqeg5wycqg8pqO7h0pU6QMs/bPgsKu4NUV9vwMsdEptq9Uogjd/CoRvPU012+ZopGGkRct232egd9uoYJrYRa80BTPCg/+x6otCeW2WiZGJN7lVTRrQ8p7nByd6OPZh7/P/c3RG0ct3V7RN+DQr6nu81zLGkTFxjNrkykaaRh5zYy/j/PiDzvwreLKT8OaUCmXT1i0lS0J5UcR+QYoISLPAquAqZk9sYj0FJF9IpIgIoFptOsgIgdF5IiIjE62/RER2SEiISKyXkRqZjamrNTLsxeFHAtZrlKqt4LilSHkh1Tbe1Zw4eE65UzRSMPIQ1SVj34LZewv+2nnVZ5ZgxtRwjnvTOuz5S6vcVgKRc4HPIExqvqVHc69FwgC/kqtgXX+y0SgI+AN9BURb+vTk4B+quoHzAX+Y4eYskzJwiXpWqMrvxz9hWu3w8CnNxxZBRGpl1p5rqUH127dZuaGE9kXqGEYWSI2PoF//bSLSWuP8mSjqkx6KoDCTo45HZZdpZlQRMRRRNao6u+q+pqqvqqqv9vjxKp6QFUPptOsIXBEVY+p6m1gHvBY4iGA4tZ/uwIpL96ei/T36s/thNv8ePBHS7eXxsPuH1Nt38ijNA/XKceXqw9zKTzl8RbDMHK/8OhYnpmxlQU7zjKqXW3ef7wejg4P1hwTW6SZUFQ1HkgQkZyqlVwZSwn9RGes2wCGAMtF5AzQH0tJ/XuIyFAR2SYi2y5fvpylwabHo4QHzSo3Y17oPG6XrAZuDdOckwIwpos3sfHKh7+GZmOkhmHYy5nrkTwxaQMbj17lox71GflIrQduwqKtbBlDuQnsEZHpIvJl4sOWg4vIKhHZm8LjsfT3TtcrQCdVdQO+A8an1EhVp1jXcQksW7asHU6bOQO8BnA1+iq/Hv/VUorl8gE4H5Jqe/cyRRnSojoLdp5l+8lr2RipYRiZFXL6Bo9P3MD5sGhmPtOQ3g9VzemQspQtCWUB8F8sYx3brY+UV4q6i6q2VdV6KTwW2xjfWaBKsp/dgLPWemK+qrrZuj0YaGrjMXNUk0pNqFmiJrP2z0K9u4NjoVQLRiYa3qYmFYoXZszifWa9FMN4QPy65zx9pmykSEEHFr7QlGY1y+R0SFnOloRSQlVnJn8AJbM6MKutQC0RqS4iBYE+wBLgOuAqIrWt7doBB7IppkwREZ7yeoqD1w+yNewweHWBPT9BXEyq+xQtVIC3Onux71w487aeysZoDcO4X6rK5D+P8vycHXhXLM7CF5pRs9yDP8fEFrYklIEpbHs6sycWke7W8Y8mwDIRWWHdXklElgOoahzwIrACS8L4UVX3Wbc/C8wXkV1YxlBey2xM2aWzR2dKFippuYXY90mIug6HVqS5T1efijSqXopxKw5yI9JMdjSM3CjWWnr+w19D6eJTkbnPNqZMsUI5HVa2STWhiEhfEfkF8BCRJckea4BMd+ar6kJVdVPVQqpaXlXbW7efU9VOydotV9XaqlpDVd+/a//6quqrqq1V9YGp+V64QGF6efbizzN/crKsB7hUTLfbS0QY260uYVGxfLryUDZFahiGrcKiYhn03VbmbT3N8DY1+LJPgzx3W3B60rpC2QB8iuXK4NNkj38B7bM+tLytT50+FHAowOzQHyxzUg6vhJuX0tzHq2Jx+jeuxpzNJ015e8PIRU5fs9zJtfn4VT55wofX2tfBIQ/eFpyeVBOKqp4E1gHRqvpnsscOa5eTkQllipShU/VOLD66mDDvrpY5KXvSXxVgVDtPSjgXZOySfWapYMPIBXacuk73r//mYng03z/TiJ6BVdLfKY/K7fNQ8rT+3v2Jiovi52u7oHIA7JyT5pwUsJS3f629J1tOXGPJrlw/l9Mw8rRlu8/Td8omnAsWYOHwZjSpUTqnQ8pRWToPxUibZylPGlVoxNzQucT69oZL++DC7nT36xVYhfqVXflg+QFuxZiLRcPIbqrKxDVHGD53B/Uqu7LwhabUKFssp8PKcRmdh7I9K4PKT/p79+dS5CV+L14SHAumWTAykaOD8M5jdbkYHsNXfxzJhigNw0h0Oy6BN+bv5pMVB+nmW4k5QxpROh/dyZWWAuk1sM47MbJIC7cWuBd3Z9aRhXSs3RHZ8yO0+z8okHYFUv+qJenh78b09cfoFeiGh/l2ZBhZLiwylufnbGfD0auMfLgmr7SrnWfLqGSELSs21hKRn0Vkv4gcS3xkR3D5gYM40M+rH3uv7iWkRjOIvGq548sGb3T0pFABR/5v6X4zQG8YWezo5Zt0n/Q3W09c49Oevox61NMkk7vY0uX1HZZS8XFAG+B7zBLAdtWtRjeKFyzOrIgDUKw87Eq/2wugnEthXm5bi7UHL7P6QNq3HBuGkXF/hF7k8Ql/cyMyltmDG9EjwC2nQ8qVbEkoRVR1NSCqelJVxwKdszas/MXZyZknaj/B6tNrOOPdGQ79Breu2LTvwKbu1CxXjP9but8sxGUYdqaqTPjjMINnbqNqaWd+GdGcRh75+06utNiSUGJExAE4LCIvikh3wHTY21nfOn1xwIG5zoUgIc6mOSkATo4OjO1al1PXIpm2zvREGoa93IqJY/jcHYxbeYiuPpX4eVhTKueRpXqzii0J5SXAGRgJBGCpm5VSfS8jEyoUrcCj7o+y4NxablbyTbcUS3LNa5WhQ90KTFxzlHM3orIuSMPIJ05djaTHpA38tvcC/+7kxRd9/ChSMH+VUckIW5YA3qqqN1X1jKoOUtUgVd2UHcHlNwO8B3Ar9hYLqtS1zEe5sMfmff/d2YsEVd5f/kAUXTaMXGv94St0nbCe82HRzBjUkGdbepjBdxuletuwtTBkqrcOqWq3LIkoH6tbpi7+5fyZe/MI/RyccAz5ATrUt2nfKqWceb51DT5fdZh+ja7QtEbeX3vBMOxJVZm+/jgfLD9ArXIuTBkQQLXSRXM6rAdKWlco47AUgxwPeHFngchPsz60/Km/d3/ORl7gj5pNYM+PEB9r877DWtXArWQR3lmyn7j4hCyM0jDylujYeEb9uIv3lh3gUe8KLHihqUkmGZBWccjEYpBrgZt3FYj8M/tCzF/aVGlD5WKVmVUYuHUZjqyyed/CTo78p7M3By9GMGvTyawL0jDykLM3onhi8gYW7jzLv9rV5ut+/hQtlO6cbyMFtgzKQxpdX4Z9OTo40s+rHzsjTrDXtRyEzLmv/dvXLU+LWmUY//shrtxMfRVIwzBgy/FrdPtqPSeuRDJtQCAjHqmVL8vO20taC2yVSnwAjiJS8q5tRhbpXrM7RZ2K8n2lGnDwN4i0fT0zEeHtrnWJuh3PJ78dzMIoDePBparM2nSSJ6duwrWIE4uGN6Otd/mcDuuBl9YVynZgm/W/xYEd/FMYclvWh5Z/FStYjKBaQfwec4ELkgA7768wQc1yxXimeXV+3H6akNM3sihKw3gwxcTF8+aCPfx30V5a1CrDwuHNqFnOTK2zh7TGUKqrqof1v3c/PLIzyPyon1c/ElDmVvGCzZPva3AeYMTDNSnnUohRwSFERN/fvoaRV50Pi6LvlE3M23qaF9vUZNrAh3At4pTTYeUZaXV5uae1o1iYgjZZpHKxyjxS9RF+LhBLZMQ52LfwvvZ3KezEl30acPJaJG/M322KRxr53pqDl+j0xToOXohg4pP+vNreE0czXmJXaXV5fSIi80VkgIjUFZFyIlJVRB4WkXeBv7HcTmxkkQHeA4iIjyK4ogds+DLd1Rzv1sijNG908GT5ngtMX388i6I0jNwtNj6BD38NZdB3WylfvDC/jGhOZ5+KOR1WnpTqvXGq2lNEvIF+wDNARSASOAAsB95X1ehsiTKf8ivnR/PKzZl6fivdj++jxPE/waP1fR3j2RYe7Dh5g//9GoqPWwkaVjf3Uxj5x/mwKEbM3cm2k9fp27Aqb3f1prCTKaGSVSQ/dYUEBgbqtm0P1v0ER64foccvPXjy1m3ecPGGp+bf9zHCo2N5bMLf3IqJY+nI5pRzKZwFkRpG7rLm4CVGBYdwOy6BD4Lq85hf5ZwO6YElIttVNTC9drbOQzFySM2SNQmqFcQ8ZydOnlgLF/ff9zGKF3Zi0lP+hEfHMmLuTjOL3sjT7u7iWjKiuUkm2cQklAfAcL/hODkW5vPSpWHjhAwdo06F4nzQvT6bj19j3MpDdo7QMHKHxLu4Jv95lL4Nq7JoeDNqmOWxs41JKA+AMkXK8Ez9Z1jlXIgdBxdC+PkMHSfI341+jaoy+c+jrNh3wc5RGkbOSryL68D5cL7o48f/guqb8ZJsZsua8gtEpLN1kS0jhwysO5ByhUsxrmRxdPPkDB9nTFdvfNxcefXHXZy4csuOERpGzoiLT+Cj30wXV25gS5L4GngSy4qNH4qIZxbHZKSgSIEijAh4hT2FCvLbvtkQE5Gh4xQq4MjX/fxxdBSGzd5O1G2zbLDx4DofFkWfKZuYtNZ0ceUGtiywtUpV+wH+wAlglYhsEJFBImKmmGajrh5d8SxWhc+LFSRm+4wMH8etpDOf9/bj4MUI/rNor5n0aDyQEru49p8P5/PeposrN7CpG0tESgNPA0OAncAXWBLM71kWmXEPRwdHXm06hnNOBfhh1xSIj8vwsVp7lmPkw7WYv+MM87aetmOUhpG1Yu/q4vplRHMeb2C6uHIDW8ZQFgLrsKwr31VVu6lqsKqOAMy1ZTZrXLExLUp4MqVQAjf2/JCpY418pBYta5fl7cX72H3GFJE0cr8jlyLoMWmDtYuriuniymVsuUL5UlW9VfV/qnrH7UW2THQx7G9Uiw+45eDA5O33X44lOUcH4fPefpR1KcTzs3dwI/K2HaM0DPtJSFCmrTtGpy/Xc/paJF/38+d/QT6miyuXsSWhlBSRoLsej4hIuSyPzkhRzVK1CSpVn2DHKE4euL+ikXcrVbQgX/fz53JEDC8Hh5CQYMZTjNzl9LVI+k7dxHvLDtCiZhlWvNKSTvVNLa7cyJaEMhiYhqWmVz9gKvAG8LeI9M/ISUWkp4jsE5EEEUn1KkdEvhWRSyKy967tpUTkdxE5bP1vyYzE8SAb3vojCip8vm1cpo/lW6UEY7p6s/bgZSasOWKH6Awj81SV4K2n6PD5X+w7F87HPXyYNjDQlA7KxWxJKE6Al6r2UNUegDeWJYEbYUksGbEXCAL+SqfdDKBDCttHA6tVtRaw2vpzvlKmeBWeKenLKo1g+8FFmT5ev0ZV6d6gMp+tOsRfhy7bIULDyLhL4dEMnrmNN+bvob6bK7++1IJeD1VBxJSbz81sSShuqnox2c+XgCqqeg3I0MpNqnpAVdNdn1ZV/wJSWv/2MWCm9d8zgcczEseDbkCbjygXF8+4rR+ToJmrzyUivN+9HrXLufDSvJ2cvRFlpygN4/4s3X2ORz//i7+PXGFMF2/mDmlMlVLOOR2WYQNbEspaEVkqIgNFZCCw2LqtKJBTtwaVT3aDwAUg1cWgRWSoiGwTkW2XL+etb95FXN0Y6VqfvfERrAj9MdPHcy5YgElP+RMbr7wwZwcxcWbSo5F9bkTeZsQPO3lx7k6qlXJm2cgWPNO8Og5mEawHhi0JZTjwHeBnfXwPDFfVW6raJrWdRGSViOxN4fGYfUK3UMusvFRHklV1iqoGqmpg2bJl7XnqXKFLq/+jTsxtPt/+GTHxMZk+nkfZYozr6cOu0zcYs2ifGaQ3ssWag5d49LO/+HXPeUa1q83855uadd7t5FjYMYasHMKFW1lfvy/VBbYARMQRWGVNHPe1EIeqts1MYOm4KCIVVfW8iFTE0g2XLzmW9eRfxTx5NvY4c/fOYJDvc5k+Zod6FXmxTU0mrDlCgiof9vAxS6UaWeJWTBzvLTvAD1tOUatcMb59+iHqVXbN6bDyBFVl3sF5jN82nsIIZ8JPUaFohSw9Z5pXKKoaDySISG77DS8BBlr/ndgNl281bv4WLSOjmLp7Ctejr9vlmP96tDYjH6nFT9vP8NK8ncSaNVQMO9t64hodv1jHvK2neK6lB7+MaG6SiZ1cibrCC6tf4IPNHxBAYRYcP0zg1ayviGFLl9dNYI+ITBeRLxMfmTmpiHQXkTNAE2CZiKywbq8kIsuTtfsB2Ah4isgZERlsfepDoJ2IHAbaWn/Ov6o0YpSTG7fib/PNrkl2OaSIMKpdbd7sWIelu88zbNZ2omPNmIqReRHRsYxdso9e32wEIHhoE97s5GUmKdrJH6f+IGhxEFsvbOEtKcukI7sp2+otqBuU5edOdwlg60D8PVR1Zkrbc7MHcQlgm+1fzP+tfomFrq4sfGwx7q7udjv0rE0n+e+ivTStUZqpAwIpWijNnlLDSJGqsmTXOd5bdoArN2N4qlE1RnesY/6e7CQyNpKPt37M/MPz8SpRkw8vXcbj3H7o+jn4D8jUsW1dAtimNeVFpAhQ1ZZbfXOzPJ1QEuK5MqEBnYtDk2oP83mbz+16+Pnbz/Daz7vwq1KC7wY1xLWIKTRt2O7IpZuMWbyXDUev4uPmyruP1cO3SomcDivP2H15N2+ue5PTEad5pmYQw7cvwin8AvScAZ4pTeW7P3ZbU15EugIhwG/Wn/1EZEmmIzTsy8GRMo1HMPj6dVafWs32i9vtevgeAW5MfNKfPWfDeHLqJq7ezPwdZUbeF3U7nk9WhNLxi7/YezaMdx+vx8IXmplkYidxCXFMCpnEgF8HEJsQy7eBb/Hyhtk4Rd2AgUvskkzuhy1jKGOBhljnnKhqCOCRhTEZGeX3JP1vO1IOJ8ZtHZfpyY5361i/IlMHBHLk0k16T9nEhbBoux7fyFtW7b9I2/F/MnHNUbr5VuaPV1vTv3E1c8egnZwKP8XAXwfy9a6v6Vi9I/Prv0zg4n9BgcLwzAqo0jDbY7IlocSqathd28wtP7lRwaIUeWgIIy9fYO/Vvfx2/De7n6K1ZzlmPtOQ8zei6PXNRk5fi7T7OYwH2+lrkQyZuZUh32+jaCFHgoc25tNevpQpViinQ8sTVJUFhxfwxC9PcDz8OJ+0/IT/lQjAJXgAlKgKg1dC2ZxZWNeWhLJPRJ4EHEWkloh8BWzI4riMjHroWbpGxVLH0YUvdnxhl8mOd2vsUZrZQxpxI/I2PSdv5Ojlm3Y/h/HgiYmLZ+KaI7T77E82HL3KW53qsGxkCxp5lM7p0PKM69HXeXnNy7y94W18yviwoNsCOlw4CvMHW65IBv0KxSvlWHy2JJQRQF0gBvgBCAdezsqgjExwKY+DT29ePX+Kc7fOMXNf1tyM16BqSYKfa0JcQgK9v9nI/nPhWXIe48Hw95ErdPxiHZ+sOEgbz3KsGtWKoS1r4ORo06Kwhg3WnVlH0JIg1p1dx6uBrzKl7WQq/D0RVrwFXl3hqQVQJGfHpmy6yyuvyNN3eSV3KRS+bsSous1ZE32OOZ3m4F3aO0tOdfTyTZ6atplbMXHMfKYhDarmu5UE8rVL4dG8t+wAS3ado1ppZ97pVpfWnmapJHuKjI1k/PbxBB8MpmaJmnzY4kM8XT1g8XDYHQwPDYGOH4ND1s3jsdttwyJSG/bDaI4AACAASURBVHgVcCdZqRZVfTiTMWa7fJNQAOb0IuzcdoKquePs5Exwl2CcnbKmYuvpa5H0m7aZqzdjmDbwIZrUMF0ceV10bDyzNp7ki9WHuR2fwAutazCsVQ0zOdHOtl3Yxn///i9nb56lv3d/RvqPpFBcLPw4AI6uhof/Ay1ehSwu62/PhLILmAxsB5KmSquqfe9LzQb5KqEcXwczu7C59Ss8e3IBT9R+gjFNxmTZ6S6GR9Nv2mZOX4tkcv8A2phvqXlSbHwCP247zVerj3AhPJrWnmUZ27Uu7mWK5nRoeUp0XDRf7vyS2ftnU7lYZd5r/h4B5QPg5mWY2xPO77bLhEVb2TOhbFfVALtFloPyVUJRhW/bw9WjjG85mO8O/sDnbT7nkaqPZNkpr96MYcC3Wzh0MYIv+jQwy7TmIfEJyuKQs3y+6jCnrkUSUK0krz7qaa5Gs8Duy7v59/p/cyL8BL09ezMqYJSld+HacZgdBOHn7TZh0Vb2TChjsVTzXYhlYB4A6wJbD5R8lVDA8i1mSiti/QfQj/Ocv3We+d3mU845664ewqJieWbGVrafvM5TjasyuqPX/7d33uFRVOsf/7zpCSmQQEJISKETFAEhgIAgAaUoIhaa7RZsiOK9du7Pfq9yFStibyhSRL0ionRUakBKKKFDQgiQkEYKSTa75/fHjBhwAwE2u9nkfJ5nnj0z5+yZ98zszndOew+B2rWG26KU4qdtR3l18W72ZBXRoVkwD1/dln5tm+jVEx1MubWcaZun8cn2T4gIiOC5Xs/Ro/FlcGQLHEqG1W+CrQLGzHH6HBNHCsoBO4eVUsrtJjfWO0EB+OkJWPsO+0d/zsj1z9E5vDPvDnwXD6m50Tcny61MWbSLj1YdoFmIP/8ZcSl929S9tWjqMkopft6dzZRFu9l6uICWTRrwz6vbMqhDU73gVQ2wI2cHk1ZOYm/+XkaEdeIRGhOYuQmObjVEBCC8A9z8iUvmmDjUl1ddoV4KSukJeDsRAsOZ03c8z697gYe7PswdHez6/HQov6Xl8ejcLezLLubmy6P519AEQgK0D7DaTvKBXF5euJP1B/OIbuTPxAFtuKFzlJ7h7mjKCrFkbODDbR/xfv4WGlltPJN9nCtPloJ3A4jqAtHd/tgCXfdSdtGCIiKPKqX+a4ZvVkp9VSnuP0qpJx1mrZOol4ICsO0bmPsX1KD/8mDJdlYeXsmXQ7+kXWi7Gj91qcXKW8v28O7P+wlr4MO/b7iUgQlVrtiscSEpGfm8smg3v+zOJjzIlwn9WzGyWww+XnouiUMoPAp7l0JGMmRsYE/ebiY1DiXV14ehFg+eCE0kJKanIR5N2oNn7WkqdoSgbFRKdTkzbG/fXai3gqIUfH4DHP6NvHFLuXHZPQT5BDHr2ln4e/k7xYRthwt4+Kst7DxayLDLmvH0dQmEaVcctYLdxwqZsmgXC7cfo1GAN/f2a8ltPeLw99FDgB3CkS2wZhps+xpsFqy+IXwa1YK3VR5BXgE8lfgYSa2Hu9rKs+IIQdmklOp8ZtjevrtQbwUF4PheeKcnJAxndc+/cPfiuxnZdiT/6vEvp5lQXmHjnRX7mLp8D0F+3jw7rAPXdozUnbsuQCnF5kP5fLLqIN+nZNLAx4txfVrw195xBPnpZsmLxmaDPQthzdtw8FejCavLbRxsO4BJqZ+ScjyFgbED+VePfxHqF+pqa89JdQXlbHUqVUXY3r6mttO4FfR+CH6ezBWdb+X2hNuZvmM6faL60Ld5X6eY4OPlwYMDWnPNJRE8OjeFCTM3MT8lk+evv4TwYD+n2FDfKbVYmbclk8/XpLH1cAGBvl7cdWUL7rmyJY0a+LjaPPenvBi2zDRqJLn7IDgKBj6HtdOtzDj4A2+tfhIfTx8m95nM4PjBde5l6mw1FCtQDAjgD/zuVlYAP6WU273G1OsaCoDlJEzrAR7elN+1gjEL7ySrJItvrv+Gxv6NnWpKhdXGhysP8Ori3fh7e/LUtQmM6BJV5/5gtYX0nBK+WJfGnA2HyC+x0Do8kNt7xnJDl2g9rNsRnDgCye/Dho+hNB+adYGe4yHhenafOMAzq59h6/Gt9Ivux1M9n6JJgHuNetSjvOxQ7wUFYM9imHETJD3FvkuHM3L+SLpGdGXagGk1OpS4KvZlF/Ho3BR+S8ujX9sm/OeGS2nW0Dn9OnUdm80Y+jt9zUFW7M7GQ4RrOkRwW484erQI1eLtCE7rH6mA9tdCz/uheXfKbRbeS3mPj7d+TLBvMI8nPs6guEFued21oNhBC4rJ7NsMYRm/llnH1vLvdf/m8cTHGdt+rEvMsdoU09cc5L8/7cLTQ3h8cDtGdmuuPdVeIPkl5czZcIgv1qaTnltCkyBfRifGMCYxhqYhumnxojmzf8QnEDrfBt3vhtB4ADZlbeLp1U9zoOAAw1oO45Guj9DQz31XqdSCYgctKCYFGTA1EeKvRI2eyYRlE1iTuYaZ186kTaM2LjMrPaeEx75OYc3+HMKDfBnZrTkjuzUnulHNOLWsa2w7XMD0NQf5bnMmZRU2EuNCua1nLNd0aKqH/jqKlDmw4iWzfyTaEJEut59yG19sKeb1315n9q7ZRDaI5KmeT9ErqpeLjb54tKDYQQtKJVa/BYv+BaNmkhPbnRvn3Ugjv0bMHDoTPy/XvcUqpViamsWMdWms2J0NwFVtwxmTGMNV7cL15LozOFFqYcmOY3y+No1N6fn4e3syvHMUt/eMpX1ksKvNq1v88gosex4iO0GvB6D9MPD8oyv5l4xfeH7t8xwrPsbY9mOZ0HlCjXn4djZaUOygBaUSVgu8dyWUFcL4dazM3sS9S+5lbPuxPJ74uKutAyAjr4TZ6w8xa/0hsgvLiAzxY2S35ozqVr+bbg4eL2bpziyWph4j+UAuFTZFi8YNuLVHLDdeHk2Iv9uNl6ndKAXLXoBfX4GOI+H6aadNOswtzWVy8mQWHFhAq4ateOaKZ7isyWUuNNjxaEGxgxaUM0hbA58MMoYTD3iGycmT+SL1C6YlTaNPdB9XW3cKi9XG0tRjzFiXzq97juPpIfRvF86Y7jFc2bpJna+1VFht/JaWx7KdWSxJPca+7GIAWocHktQ+gqT24Vwe00j72KoJlDJq8mumQpc74NrXwcPDjFLM3z+f/67/L0WWIu669C7+funf8fase4KuBcUOWlDs8L/xkDIL7llFWVg8o+aPIrc0l2+GfUOYf+1zTZ6eU8LM9el8teEQx4vKiWroz5juMdzcNZrwoLpTayk4aeHn3dksSz3Git3Z5JdY8PYUuseHkdQ+nKR2EcSE1Y3mlFqLzQYLHoYNH0Hi3TB48qmFrDKLMnl+7fOsPLySjk068mzPZ2nVqJWLDa45tKDYQQuKHYqPw1uXQ9NL4Y7v2ZO/l1HzR9GjWQ+m9p9aa4c4llfYWLTjKF+uS2f1vhy8PISBCRGM6R5DjxZhbjlC7MDxYpamHmNpahbrDxpNWaENfLiqbThJ7cPp07qxnsXuLGxWmDcBNs+AXg/CgGdBBKvNyqxds3hj4xsAPNjlQUa1HYVnDS6/WxvQgmIHLShVsOETmD8RbngfLhvJjNQZvJT8Ek8kPsGY9mNcbd052Z9dxKz1h/hqwyHySiz4eHrQKjyQhGbBtI8MJsHcaounY4vVRlpOCXuzitiXXcSeY4WkZBSw/7jRlNU2IsiohbQPp1PzRnW+Sa/WYbXAN3fB9m+g3xPQ9zEQITUnlRfWvUBKdgq9onrxVI+naBbYzNXWOgUtKHbQglIFNht8NBDy0+D+DSi/EO5fdj+rDq/i1X6v0j+mv6strBalFivLd2axOSOf1COF7Mg8wfGiU2vCEdXQ3xCYZsEkRAaREBlCdCP/Gut7KLVY2ZddxN6s07eDOcVYrH/875qF+NG2aRD92obTv104zUN1U5bLqCiDuX+FnfONWknviZwoP8HUTVOZvWs2DX0b8nDXh7m2xbW1tvZeE2hBsYMWlLNwZAu83w+6/hWGTqHYUsy4RePYmbuTaQOm0SOyh6stvCCyCktPiUvqkRPsOHKC/dlF2MyffaCvF+0jg0iINGozje14QLb3D7H3v8kvsbDXFJA9WYVk5J3k92QeArFhDWgVHmhsTQJpHRFIyyaBNNCuT2oHlpMw+1bYuwQGv4xKHMf8/fOZsmEKeWV53NLmFiZ0mUCwT/0bjq0FxQ5aUM7Bj4/Buvdg3DKI6kJBWQF3/nQnh4sO8+HVH9KxSUdXW+gQTpZb2X2skB1HTpwSmtQjJygut1503j6eHrRoUkk4wgNpHR5EXOMAfL3qdju7W1NWBDNHwcGVcN0b7GlxBS+sfYGNWRvp2Lgjk3pMIiEswdVWugwtKHbQgnIOSk/A1G4QHAl/XwoenmSXZHP7j7dzovwEnwz6xKUz6WsSm02RnltCYWnFn+Kq27IR6OtF89AA3efhbpQWwIxbIGM9xcPeYFrFUWakziDIJ4iJXSZyQ+sbXOLnrjahBcUOWlCqwda58PXfYMgrkDgOgIzCDO748Q6sysr0wdOJCY5xsZEajYMoyYUvRqCObuWnqybyypEVZJ/MZkTrEUzsMtGt/W85kuoKiktkV0RuFpHtImITkSqNFJGPRSRLRLadcfxlEdkpIiki8q2I6LvuKC65EVr0g6XPQ1EWANFB0bx/9ftYlZVxi8ZxtPioS03UaBxCUTZ8dh37c3YxrmNfHt0/hzD/ML4Y8gXPXPGMFpMLwFX1uG3ACOCXc6T7FBhk5/hi4BKlVEdgN/CEQ62rz4jAkClQcdKYIWzSsmFL3h34LgXlBdy1+C5yS3NdaKRGc5GcOELJp4N5veIoN0ZFsOPkUSZ1n8TMoTPrTF+hK3CJoCilUpVSu6qR7hfgT08updQipdTvjd1rgWgHm1i/+X11x5TZsHfpqcMdwjowtf9UMosyuWfxPRSWF7rQSI3mwlB5aSz5YhDX+5fwUXAAQ1tcy/fDv2dUu7o/QbGmqQs9TX8FfqwqUkTuEpENIrIhOzvbiWa5Ob3/AWGtYf5DUF5y6nDXpl15td+r7Mnbw/1L7+dkxUkXGqnRnAdKsX/TJ9w7dygPNbAR3DCOzwZ9xgu9X6iVbobckRoTFBFZIiLb7GzXO/Ack4AKYEZVaZRS7yuluiqlujZp4l7LbroUbz+47g1jsuOKF0+LujL6Sl7s8yKbsjbxjxX/wGK1uMhIjaZ6HE9byfPTezFiyxRSvIVH297K7Bvm0SWii6tNq1PU2IwqpdSAmsobQETuBK4FklR9GqrmTOJ6GR5W17wNl94EkX+45B4UP4giSxHPrnmWJ1Y+weQ+k3VzgabWUVqQwecL7+ej4j2UiXBL6GXcm/Q6jRrol8uawC2n6IrIIOBRoK9SquRc6TUXwcDnYPdPMO8BY25KpXUgbmpzE0XlRUz5bQqB3oE83fPpeuWOQlN7sVlK+WHpI7yRuYxjnh5c5RfJQ/2nEB9Rt9YpqW24atjwDSKSAfQEfhCRhebxZiKyoFK6mcAaoK2IZIjI38yoqUAQsFhENovIu04uQv3Bv6HhtvvIZlj358t85yV3Mu7ScXy952umbJhi1yWJRuM0lGJ98puM+rwbTx5bQZhnAB93f443Ry/RYuIEXFJDUUp9C3xr53gmMKTS/ugqvl93Fx6ojSQMhzaDYfm/of210CjutOgJnSdQWF7IZzs+I9g3mLs63uUaOzX1mv37FvHayv9jBSU0FeHF1mMZ0vORej/L3Zm4ZZOXxsmIwNBX4O3u8MM/Yezc0/yRiAhPdH+CIksRb216i0DvQLdwe6+pG+Tm7mXaognMLT2En4IHI3pxa9IU/HwDXW1avUMLiqZ6hERD0lPw46OGe5aON58W7SEePN/reYotxbyY/CKBPoEMaznMRcZq6gNlZYV8sXgiH2av46TATQFx3DvgDcJCW7ratHqL9uWlqT42K3x0NeQdhPvXQ0Don5KUWcsYv3Q8yUeSufeye7n7srt1k4PGodhsVn5c/RJv7JnFEQ/oJ4E81OfftIh3j3V73JFa7ctL46Z4eMKwN6E0HxZOspvE19OXt/q/xXUtr2PalmmMXzqegrICJxuqqYvYcvax6If7uPHTTjy+bxYNlfBhh/t46/Y1WkxqCbqGojl/lj4Hv06B278zHEnaQSnFV7u/4sXkF4kIiODVfq/W6/UkNBfIyXxs275hydbPeMd6lL0+PsThxT0xQxnc5//w8Przgmgax6Pd19tBC4qDsJTCO1eAssF9a8Dbv8qkKdkp/GPFP8grzWNSj0mMaD3CiYZq3BKrBfYuwbZ5JosPLefdkABDSLxDuKfj3QxKGKMn0ToZLSh20ILiQA78Ap9dB70mwsBnz5o0tzSXx355jLVH1jKi9Qie7P4kvp76zVJTCaUgcxOkzMa2dS6LKebdsDD2enkQ3yCSe7o8yDVxg7SQuIjqCooe5aW5MOKvhM63wuq3DLcsTS+tMmmoXyjvDniXtze/zQdbPyA1J5XXrnqNqMAoJxqsqZUUZEDKHNgyC9vxXSwODObdpk3ZqwKID45j8mX3ck3cNVpI3ARdQ9FcOCW58HYihDSHvy8xOu3PwfL05UxaOQkPDw9e6vMSvaN6O8FQTa3CZoXU72HDR3DgV2woFsd04t0AYW9ZDvEh8dzT8R4tJLUIPcpLU/MEhMKglyBzI6x7r1pfuSrmKmZdO4uIgAjuW3If72x+B5uy1bChmlpBRRlsnG68hHx1B7b8NBZ2G8ONHXvzsGcuVr9gJveZzLfDvmVIiyFaTNwQXUPRXBxKwZe3wMFVMH4tNKzeevMnK07ywtoXmLdvHr2jevNSn5cI8Q2pYWM1LqGsCH771PBaXZhJeWRHFrZP4uPczewt2KdrJG6A7pS3gxaUGiI/Hd7uYbi7HzPnNLcsZ0MPLa7jFOdA8ntG7bU0n+NxVzAnpgNzsjeQU5pDi5AW3N3xbi0kboAWFDtoQalB1kyDhU/AjR8ZnfTngR5aXMcoyIDVU2HjZ2ApYXub/nwR2oSfstdTYaugT1QfxrYfS89mPbUXBTdBC4odtKDUIDYrfJhkPEzGJ9t1y3I2zhxa/HDXhwnyCaohYzU1QvZuWPU6pMzGAixt148vfGFL/m4CvAIY3mo4o9uNJi4kztWWas4TLSh20IJSwxzdCu/1hU6j4fq3z/vrVpv11NDiEN8Qxl06jpFtR+Ln5VcDxmocxuHf4NdXYecP5Pr483XrK5hlyyGrNIfmQc0Z024M17e6Xr8guDFaUOygBcUJLH7aeEu943tjrsoFsCNnB29ufJNVmauM0WCd7mNYy2F4eehpU7WGinLYtxTWvgMHfmZXYCNmxHXkh5MZlNss9Ijswa3tb6V3VG/dP1IH0IJiBy0oTqC8BN7pabhn6TQGWiVBdCJ4+Zx3VslHknlj4xukHE8hLjiOB7o8wICYAXqZYVdhrYADP8O2b2Dn91hLC1gRGskXETFsKD2Cn6cf17W8jrHtx9KyoXYhX5fQgmIHLShO4vBGWPgkHEoGZQWfQIjrY4hLy/4Q2uK8RoItO7SMNze+yf6C/XQI68CDXR6kZ7OeNVwIDWD0jaWtMkQkdR6qJIcdDRqyIKotP1FMluUEkQ0iGd1uNCNaj9BDv+soWlDsoAXFyZQWwIFfjaaRvUshP8043jDWFJckiO8Dfud+CFltVr7f/z3TNk/jSPERukd2Z2KXiVzS+JIaLkQ9xGaDjGTY9jXs+A6KjpHmH8iC5pewwLOcg6XH8fLwok9UH4a1HEa/5v10c2QdRwuKHbSguBClIHc/7FtmiMvBX6G8CMQTmica4tKyPzTrdFYXLmXWMubsmsMHKR+QV5bHwNiB3N/5flqEtHBiYeogShk1y+3fwPZv4cRhsnz8+Sn2Mhb4wPaSTAShW9NuDIkfwoDYAbo2Uo/QgmIHLSi1iIpy4y1471JDZI5sNo77NzLEJXEcxPSo8utF5UVM3zGdz7Z/Rqm1lOGthnPvZffStEFTJxWgDqCUMTJv29eGiOSnccLThyXxnVng70tyURoKRUJYAkPihzAobhARDSJcbbXGBWhBsYMWlFpM8XHYt9wQl90/wsk8iLkCej8ErQdW2eeSW5rLBykfMHvXbARhVLtRjG43muigaCcXwI3IT4etXxlefrN3Uurhyc9xl7MgKIhfiw5isVmIDY5lSPwQBscPJj4k3tUWa1yMFhQ7aEFxE8qLYePnhmv8ExkQcYkhLAnDwdN+W31mUSbTNk/j+/3fY1M22oW2IykmiYGxA2kR0kKPDCvJNfpDUuZA+moyvTxZ16wDaxtF8HPJIYorSmji34RB8YMYGj+UhLAEfc00p9CCYgctKG6G1WK8Sa98HY7vgkZxcMUD0GkseNuf7JhRmMHS9KUsSVvC5myjGS0uOI6kmCQGxA6gQ1iH+vOgtJTC7p9g61dk71tMso8n6xtGsC7An4yKIsBYq6ZvdF+GthhK14iues6Ixi5aUOygBcVNsdlg1wJY+aoxK7tBOPS8D7r+DfyCq/xaVkkWy9OXsyR9CeuPrseqrDRt0JSkmCSSYpLoEt6ldjxAywqh8Cj4hxp9SB4X4d/KZoO0leRvnsH6g4tJ9rKRHNCA/V5GnkE+QXSL6EZiZCLdm3anZcOW9UdgNReMFhQ7aEFxc5QyRof9+irsXw6+IZD4d+h+LwQ2OetXC8oKWHFoBUvSl7Amcw1l1jJC/UK5qvlVJMUk0T2yOz6e5z/58rywlMLx3ZCVClk7jM/sVKNP43c8vKBBE2MLDDfEM7AJBEb8EW4QbsT5h54Sn6KMZDZu/IB1matJ9qhgl483SgR/Dx8ub9qN7pE9SIxMpG2jtrVDRDVuhRYUO2hBqUNkboKVr8GOeeDlC51vgysmQKPYc361xFLCysMrWZK+hF8yfqHYUkygdyBXRl/J5RGXExMcQ0xQDBEBERf28LVaIGefIRaVxSN3P/y+mJiHNzRuA+HtILy9serlyTwoyoLiLCjKNj/NzWYBoFiEdG8v0ry9SfP2Id2/Afu8PNnpqbCK4IPQOSiOxPhrSIzqRYfGHfD28D7/Mmg0ldCCYgctKHWQ43sN32FbZhkP60tuNNa6j70CPM/9IC23lrP2yFqWpi9lefpy8sryTsV5e3gTFRh1SmCaBzUnJtj4bBbY7I8HdcFho0kufa0hHMd3nxIAxMPwDBDeHsIToEk74zOsZZX2naw4yaHCQ6SfSOfgiYOkn0gnLX8f6YXpHC/LPy1tuPgQJz50Dk0gMWE0l8X0wdfT98KupUZTBVpQ7KAFpQ5zItNYEXDDJ2ApNprDWg+EtoOh1QDwb3jOLGzKRlZJFukn0kkvNLaMwoxT+ycrTp5K6ykeRHoGEFNeRvOiXJpbKgjzCcEWEoU1OJKKwKbYgiKoCAjDKoJN2ahQFVhtVrvhEksJhwoPkXYijWMlx06zK8wvjNjgWGKCY4gNjjXCQTHEBMfg7+Xv8Eup0ZyJFhQ7aEGpB5QXw/4VRo1h109Qctzol4jtBW2HQNtBxmix80RZK8jZt4RDu/5HesYa0svyOOTtxaGAENK8PCi0lZ9XfoLg6eGJl3jhIR74efkRHRRNbNCfhSPQJ/C87dVoHIkWFDtoQaln2KzGqLBdC2DXj5C90zge3sGoubQdAs06Vz2qynLSEKedPxjfLzkOnj6GW/52Q6HNYAiOBIxO/7zSvNNE4lTYwwMv8cLTw9M4Lp56pUKNW6EFxQ5aUOo5OfuMeRm7foS01YYn5MAIaDPIEJcWfQ0R2bMIds433MJYSsA3GFpfbYhIqwFnHaqs0dRFarWgiMjNwDNAeyBRKWX3KS8iHwPXAllKqT+5lRWRfwKvAE2UUsfPdV4tKJpTlOTC3iVG7WXPEigvBC9/sJYbQhMUaQhIu6EQ2/uC1nPRaOoK1RUUV/mc3gaMAN47R7pPganA9DMjRKQ5cDWQfmacRnNOAkKh4y3GVlEOaSthz2Lw9jdEJPIsTWEajcYuLhEUpVQqcM4ZukqpX0Qkroro14BHge8caZumHuLlY7jOb9nf1ZZoNG6NW76Cicj1wGGl1JZqpL1LRDaIyIbs7GwnWKfRaDT1kxqroYjIEsDe4hSTlFIXXKsQkQDgSYzmrnOilHofeB+MPpQLPa9Go9Fozk6NCYpSakANZd0SiAe2mE1m0cBGEUlUSh2toXNqNBqN5hy43ULQSqmtQPjv+yJyEOhanVFeGo1Go6k5XNKHIiI3iEgG0BP4QUQWmsebiciCSulmAmuAtiKSISJ/c4W9Go1Gozk3rhrl9S3wrZ3jmcCQSvujq5FXnEON02g0Gs0F4ZajvDQajUZT+9CCotFoNBqHUK98eYlINpB2gV9vDNS3jn9d5vqBLnP94GLKHKuUOvuyqNQzQbkYRGRDdXzZ1CV0mesHusz1A2eUWTd5aTQajcYhaEHRaDQajUPQglJ93ne1AS5Al7l+oMtcP6jxMus+FI1Go9E4BF1D0Wg0Go1D0IKi0Wg0GoegBeUMRGSQiOwSkb0i8rid+DtFJFtENpvb311hpyM5V5nNNLeIyA4R2S4iXzrbRkdTjfv8WqV7vFtE8l1hpyOpRpljRGS5iGwSkRQRGWIvH3ehGuWNFZGlZllXiEi0K+x0JCLysYhkici2KuJFRN40r0mKiHRxqAFKKb2ZG+AJ7ANaAD7AFiDhjDR3AlNdbauTy9wa2AQ0MvfDXW13TZf5jPQTgI9dbbcT7vP7wL1mOAE46Gq7a7i8XwF3mOH+wOeuttsB5b4S6AJsqyJ+CPAjIEAPYJ0jz69rKKeTCOxVSu1XSpUDs4DrXWxTTVOdMo8D3lZK5QEopbKcbKOjOd/7PBqY6RTLao7qlFkBwWY4BMh0on2OpjrlTQCWmeHlduLdDqXUL0DuWZJcD0xXBmuBhiIS6ajza0E5nSjgUKX9DPPYmdxoVhfnikhz55hWwN2OPgAACGdJREFUY1SnzG2ANiKySkTWisggp1lXM1T3PiMisRgLui2zF+9GVKfMzwC3mktLLMCombkr1SnvFmCEGb4BCBKRMCfY5kqq/du/ELSgnD/fA3FKqY7AYuAzF9vjDLwwmr36YbytfyAiDV1qkfMYBcxVSlldbYgTGA18qpSKxmga+VxE6vIz4mGgr4hsAvoCh4H6cJ9rjLr8Y7kQDgOVaxzR5rFTKKVylFJl5u6HwOVOsq2mOGeZMd5i5imlLEqpA8BuDIFxV6pT5t8Zhfs3d0H1yvw3YA6AUmoN4IfhUNAdqc5/OVMpNUIp1RmYZB5z+8EX5+B8fvvnjRaU01kPtBaReBHxwXiYzKuc4Iz2xmFAqhPtqwnOWWbgfxi1E0SkMUYT2H5nGulgqlNmRKQd0Ahj1VB3pzplTgeSAESkPYagZDvVSsdRnf9y40o1sCeAj51soyuYB9xujvbqARQopY44KnO3W1O+JlFKVYjI/cBCjFEiHyultovIc8AGpdQ84AERGQZUYHR+3ekygx1ANcu8ELhaRHZgNAk8opTKcZ3VF0c1ywzGQ2iWMofHuDPVLPM/MZozH8LooL/TXctezfL2A14UEQX8Aox3mcEOwlw2vR/Q2OwLexrwBlBKvYvRNzYE2AuUAH9x6Pnd9Pei0Wg0mlqGbvLSaDQajUPQgqLRaDQah6AFRaPRaDQOQQuKRqPRaByCFhSNRqPROAQtKBqHICJF1UgzUUQCHHjO4SKS4MD8Vl/Ed4vMz2YiMvcs6RqKyH0Xep6LxZx/sExEgisdGy4iypx34+jzxYnIGEfnWyn/+0XkrzWVv+b80IKicSYTgfMSFBHxPEv0cAwHfw5BKXWFA/LIVErddJYkDQGXCQrGHIQtSqkTlY6NBlaan44mDrArKCLiiHlwH+PePsfqFFpQNA5FRPqZa0vMFZGdIjLDfCt+AGgGLBeR5Wbaq0VkjYhsFJGvRCTQPH5QRCaLyEbgZhEZJyLrRWSLiHwtIgEicgWGp4KXxVizpKWIdDKdV6aIyLci0sjMb4UY65tsEJFUEekmIt+IyB4ReaGS7UWVwo+JyFbznC/ZKWe8afvWM/KIE3MtChHpICLJpn0pItIaeAloaR57WUQCxViTY6OZ1/WV8kkVkQ/EWINmkYj4m3GtRGSJadtGEWlpHn/EvE4pIvJsFbdoLPBdJXsDgd4YbldGnes+mnFDzGO/ibG2xnzzeF/5Yw2ZTSISZJa3j3nsITHWE5onIsuApeZv42UR2WaWf2Sl8/8sIt+JyH4ReUlExprXc+vvZVZKlQAHRSTxbL9LjZNwtf9+vdWNDSgyP/sBBRg+gjww3Jb0NuMOAo3NcGOM2ckNzP3HgKcqpXu0Ut5hlcIvABPM8KfATZXiUoC+Zvg54HUzvAKYbIYfxHDLHgn4YvgpCzujDIOB1UCAuR9qp7zzgNvN8PhK343DXIsCeAsYa4Z9AP/K8eZxLyC40jXZi7FWRRyGN4ZOZtwc4FYzvA64wQz7YdT6rsZYz0TM6z4fuNKO3WlAUKX9scBHZng1cPnZ7qN5vkNAvJluJjDfDH8P9DLDgWbZ+v0ebx6/07zmoeb+jRhOVj2BCAz3L5Hm9/Ir3afDwLOV7uHrlfKcBPzT1f8Bven1UDQ1Q7JSKkMpZQM2Yzwcz6QHRnPVKhHZDNwBxFaKn10pfImI/CoiWzEegB3OzExEQoCGSqmfzUOfYSw29Du/u1PZCmxXSh1RhpPP/ZzuLA9gAPCJMt5+UUrZW1+iF384jfzcTjwYD+EnReQxIFYpddJOGgH+IyIpwBIMV+IRZtwBpdRmM/wbEGe+9Ucppb41bSs17bza3DYBG4F22HfgGaqUKqy0PxpjrRDMz8rNXvbuYztgvzKchMLpjjNXAa+atdGGSqmKKq7L4krXtDcwUyllVUodA34Guplx6yvdp33AIvP4Vk7/TWVh1H41Lkb78tLUBGWVwlbs/84E48FSVbt9caXwp8BwpdQWEbkT01HlBdpkO8M+WxX2VYez+i1SSn0pIuuAocACEbmbPzvVHAs0wagZWETkIEYtoLLNYFxH/7OcToAXlVLvncPmChHxUErZRCQUY6XCS8XwZ+UJKBF5pIrzn/U6KaVeEpEfMPppVonINVUkLa7i+JmceZ8q38PKtvgB9sRa42R0DUXjTAqBIDO8FuglIq0ARKSBiLSp4ntBwBER8cZ4AP8pP6VUAZAnIn3MuNsw3nYvhMXAX8QckWY+eM9kFX/0OYy1E4+ItMB4m38To9+iI6dfAzBWRswyxeQqTq+l/QmzdpEhIsPNc/iadi4E/ip/9ENFiUi4nSx2YSyLC3ATxrK3sUqpOKVUc+AA0MfO9077vojEmfsjK5W3pVJqq1JqMoa333Z2ynsmvwIjRcRTRJpg1CqTz5LeHm0Au2uoa5yLFhSNM3kf+ElEliulsjHa02eazT1rMB5A9vg/jH6DVcDOSsdnAY+YHcAtMZrNXjbz64TRj3LeKKV+wmgi22A2xz1sJ9mDwHizGa6qFe9uAbaZeVyCsfRqDsbb+zYReRmYAXQ187n9jPJVxW0YXq9TMPo9miqlFgFfAmvMvOZi/0H+A3/U8EYD354R/zVnGe1lNtvdh3Eff8MQjAIzeqJZrhTAgrF2eQpgNQcQPGQny2/NNFswVsV8VCl19GyFt0MvjJcAjYvR3oY1mnqEGOv5TFdKDbyIPAKVUkXmqK+3gT1KqdccZuT52dIZ+IdS6jZXnF9zOrqGotHUI5SxmNIHUmli4wUwzqx1bcdosjtXv01N0hijBqupBegaikaj0Wgcgq6haDQajcYhaEHRaDQajUPQgqLRaDQah6AFRaPRaDQOQQuKRqPRaBzC/wNIgMoxefwvhQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlYVGX7wPHvzSYqiAKugLuigiCCK+67maDlkltpWb2l1Ztvlm2m/bK3bHmt1ErN1DaxMndzqdxX3FBxQ0XFfWVRdp7fHzMQGssgMwzI87muuWTOec4598zU3POcZxOlFJqmaZpWWDbWDkDTNE17MOiEommappmFTiiapmmaWeiEommappmFTiiapmmaWeiEommappmFTiiaZiEiMlJEtlg7Dk0rKjqhaEVCRKJFpNs927K+cEWkjIh8IyJnRCReRPaLSO98zlldRGaLyAURSRCRUyIyT0QaWfK1mIuIPCUiR42v97KIrBIRZ+O+eSLyXgHOVajkZTw+3fg+Zn/UuN9zaqWPTihacWEHnAM6Ai7AW8AiEamdU2ERcQO2AeWA9oAz0BzYCHTP5Rg7cwd9v0SkI/A+MEQp5Qw0BsKsGxXblVJO9zwumPMCxekz0MxPJxStWFBK3VZKTVJKRSulMpRSK4DTQGAuh7wMxAEjlFInlcEtpdS3SqkvAESktogoY03gLPCncXuIiBwWkVsiskFEGmee1Fi+frbnWTUFEekkIjEi8h8RuSIiF0VkVLaybiKyTETiRGQXUC+Pl9wCwxf4PuPrv6GUmq+UiheRZ4BhwKvGWsJy4/kniMhJY40mUkT6G7c3Br4C2hjL3zJuLyMiH4vIWWMN6CsRKWvyh5KNsYb5iohEiEisiISJiGO2/Q8ba5W3RGSbiPjdc+xrIhIB3BYROxFpLiL7jK/lZ+P5Mt/nQyLSN9vx9iJyTUQC7id2rejohKIVSyJSFWgIHM6lSDfgN6VUhgmn64ihBtBTRBoCPwH/BioDq4DlIuJgYmjVMNSgPICngBkiUsm4bwaQBFQHnjQ+crPTGM9kEQkWkTKZO5RSs4AfgKnGWkLml+tJDLUxF2Ay8L2IVFdKHQH+xd81jIrG8h9geA+bAfWNMU808XXmZBDQC6gD+AEjAYxf9HOBZwE34GtgWfbXBAwB+gAVMXzv/AbMA1wxfB79s5VdAAzP9vwh4GJm8tWKL51QtKK0xPgL9pbxV/TMnAqJiD2GL9T5SqmjuZzLHbiU7ZgQ43njRWTtPWUnGWtAicBgYKVSap1SKhX4GCgLtDXxNaQC7yqlUpVSq4AEwFtEbIFHgYnGax0C5ud2EqXUZuARDLfpVgLXReRT43lyO+ZnpdQFYw0uDDgBtMyprIgI8AzwsrH2E4/hFttjeby21tk/HxE5ec/+z43XvwEsx5CoMF7na6XUTqVUulJqPpAMtL7n2HPGz6A1hlucnxvfx8XArmxlvwceEpEKxucjgO/yiFsrJnRC0YpSP6VUxcwH8Py9BUTEBsOXRwowNo9zXcdQEwBAKbXMeM6XgXtrG+ey/V0DOJPtuAzjfg8TX8N1pVRatud3ACcMtZ3MdqBMZ8iDUmq1sfbhCoRi+MU/OrfyIvJ4tttKtwBfDIk1J5UxtC/tyVb+d+P23OzI/vkope69ZXcp29+ZrxugFvCfe34seGF4rzPd+xmcV3fPTJu139husxV4VEQqAr0x/MDQijmdULRiw/ir+hugKvCosQaRmz+AfsYElJ/sX1wXMHwBZr+mF3DeuOkOhi/iTNVMOD/AVSDNeK5MNU050Fjj+ANDG49vDjEjIrWA2RiSrJsxeR4CJKfywDUgEfDJliBclFJOmN85YMo9yaicUuqnbGWyx3cR8DC+95myv29gqN0NBwZiuJV3Hq3Y0wlFK06+xNDW0dd4ayQvnwKVgO9EpJ4YOPP3bZjcLAL6iEhX4621/2C4PbPNuH8/MFREbEWkF4b2l3wppdKBxcAkESknIk2AJ3IrLyKhIvKYiFQyxt7SeK0dxiKXgbrZDimP4Uv5qvH4UfydfDLLe2a2BRlrXrOB/4lIFeMxHiLS05TXU0CzgX+JSCvjaykvIn2Mn0dOtgPpwFhjA30o/7x1twTD7cCXMLSpaCWATihasWD8Bf4shoRwSf4eBzEsp/JKqWsY7sUnAVuAeAzJwBl4LrfrKKWOYfjl+wWGX/F9MSSwFGORl4zbbmHoabWkAC9jLIbbQJcwNDh/m0fZm8DTGNpB4jC0G3yklMq8tfMN0MR4C2mJUioS+ATDl/FloCmG20KZ/sTQgeGSiFwzbnsNiAJ2iEgcsB7wziOmNvLPcSgt8nvRSqlw42uZbnxdURgb7HMpn4Kh/egpDO/zcGAFhsSeWSYR+BVDB4DF+cWgFQ+iF9jSNM3aRGQn8JVS6tts2yYCDZVSw3M/UitOdA1F07QiJyIdRaSa8ZbXExi6If+ebb8rhhrMLGvFqBWcTiiaplmDN3AAwy2v/wADlFIXAUTkaQwN/auVUpusF6JWUPqWl6ZpmmYWuoaiaZqmmUWpmqjN3d1d1a5d29phaJqmlSh79uy5ppTKa1AsYMWEIiIDgUkYxh20NHY9zKlcL+AzwBaYo5T64J79nwNPmjJgq3bt2oSH53gZTdM0LRcikuesD5msecvrEIa+6Lk2uhnnNZqBYeqFJsAQ44CxzP1BGAa3aZqmaVZmtYSilDpiHGSWl5ZAlFLqlHEw1EIMcx5lJpuPgFctG6mmaZpmiuLeKO/B3ZPKxfD3JH5jgWWZXQ1zIyLPiEi4iIRfvXrVQmFqmqZpFm1DEZH15Dy53ptKqaWFOG8NDJPGdcqvrHFtiVkAQUFBuo+0pt2n1NRUYmJiSEpKsnYomoU4Ojri6emJvb39fR1v0YSilOqWf6k8nefuWUg9jdsCMCwYFGWcsLSciEQpper/8xSapplDTEwMzs7O1K5dm7snCtYeBEoprl+/TkxMDHXq1LmvcxT3W167gQYiUsc4i+pjGG5zrVRKVVNK1VZK1Qbu6GSiaZaVlJSEm5ubTiYPKBHBzc2tUDVQqyUUEekvIjFAG2CliKwxbq8hIqsAjAsZjQXWAEeARUqp3JaE1TTNwnQyebAV9vO12jgUpdRvGNaVvnf7BQxrSGc+X4Vh3e+8zmWJRYOybD5xlYPnY3m+k64EaZqm5aa43/IqFracuMana49zNT45/8KaplmMk9Pdvx3nzZvH2LF5rRT9T/v372fVqjx/oxbKvHnzqFy5Ms2aNaNZs2Y8/vjjBT7Hhg0bePjhhy0QnWXphGKCgUFepGUoFu+NsXYomqYVQlpaWp4JJS0tzSzXGTx4MPv372f//v0sWFB6FpzUCcUE9as4EVSrEmHh59CzM2ta8bR8+XJatWpFQEAA3bp14/LlywBMmjSJESNGEBwczIgRI5g4cSJhYWE0a9aMsLCwf+xPT09n/PjxtGjRAj8/P77++uusa3z00UdZ2995550Cxbd//35at26Nn58f/fv35+bNmwBERUXRrVs3/P39ad68OSdPnrzruN27dxMQEPCP7cVRqZocsjAGBXnx6q8R7D17k8BartYOR9OsavLyw0ReiDPrOZvUqMA7fX3yLJOYmEizZs2ynt+4cYOQkBAA2rVrx44dOxAR5syZw9SpU/nkk08AiIyMZMuWLZQtW5Z58+YRHh7O9OnTAUPCyb5/1qxZuLi4sHv3bpKTkwkODqZHjx6cOHGCEydOsGvXLpRShISEsGnTJjp06PCPOMPCwtiyZQsAL730EqNGjeLxxx/niy++oGPHjkycOJHJkyczbdo0hg0bxoQJE+jfvz9JSUlkZGRw7pxhPPe2bdt44YUXWLp0KTVr1iz8m2xhOqGYqI9fdSYvP0zY7nM6oWialZQtW5b9+/dnPc9MDmAYJzN48GAuXrxISkrKXWMpQkJCKFu2bK7nzb5/7dq1RERE8MsvvwAQGxvLiRMnWLt2LWvXriUgIACAhIQETpw4kWNCGTx4cFbCyjzHrVu36NixIwBPPPEEAwcOJD4+nvPnz9O/f3/AMLAw05EjR3jmmWdYu3YtNWrUKNgbZSU6oZiofBk7HvarwfKIC0zs64NTGf3WaaVXfjUJa3jhhRcYN24cISEhbNiwgUmTJmXtK1++fJ7HZt+vlOKLL76gZ8+ed5VZs2YNr7/+Os8+++xd22fMmMHs2bMBzNrYX716dZKSkti3b1+JSSi6DaUABrXw4k5KOisjLlg7FE3T7hEbG4uHh2Gqv/nz5+daztnZmfj4+Fz39+zZky+//JLU1FQAjh8/zu3bt+nZsydz584lISEBgPPnz3PlyhXGjBmT1QCf2xe/i4sLlSpVYvPmzQB89913dOzYEWdnZzw9PVmyZAkAycnJ3LlzB4CKFSuycuVKXn/9dTZs2FCwN8NKdEIpgOY1K1K/ihNhu8/lX1jTtCI1adIkBg4cSGBgIO7u7rmW69y5M5GRkVmN8vcaPXo0TZo0oXnz5vj6+vLss8+SlpZGjx49GDp0KG3atKFp06YMGDAgz8R0r/nz5zN+/Hj8/PzYv38/EydOBAzJ5fPPP8fPz4+2bdty6dKlrGOqVq3KihUrGDNmDDt37izAu2EdpWpN+aCgIHXfC2wpBSLM2nSS91cdZf24DtSv4mzeADWtGDty5AiNGze2dhiaheX0OYvIHqVUUH7H6hqKKTZOhbmG+6mPNPfEzkZYFK7HpGiapmWnE4op7MvBuZ1w6yzuTmXo2rgKi/fGkJqeYe3INE3Tig2dUEzRsJfh3+NrABjcwotrCSn8ceSKFYPSNE0rXnRCMYV7fXCtm5VQOjSoTBXnMvwcrhvnNU3TMumEYqqGvSB6M6Tcwc7WhgGBnvx17AqX4/TqdZqmaaATiuka9IC0JDi9CTBMxZKh4Jc9unFe0zQNdEIxXa1gcHCC478DUNu9PK3quPKznjBS04pE586dWbNmzV3bpk2bxnPPPcfhw4fp0qUL3t7e1KtXj3feeYeMDEOnmXunk2/WrBmRkZHWeAkPPJ1QTGXnAPU6w4m1hjEpGBrno6/fYefpG1YOTtMefEOGDGHhwoV3bVu4cCGPPfYYISEhTJgwgWPHjnHw4EF27drFZ599llUu+3Ty+/fvp0mTJkUdfqmgE0pBNOgJcefh8iEAevtWx7mMHYt047ymWdyAAQNYuXIlKSkpAERHR3PhwgWioqKyZgQGKFeuHNOnT+ejjz6yZrilkp7hsCAaGP6D5fgaqNaUsg629G1Wg8V7Y5gU4kMFR3vrxqdpRWX1BLh00LznrNYUen+Q625XV1datmzJ6tWrCQ0NZeHChQwaNIjDhw8TGBh4V9l69eqRmJjIrVu3gLunkwfYvn17nrMPa/dH11AKwrkq1Agw3PYyGhzkRVJqBssP6AkjNc3Sst/2WrhwIUOGDDHpuHtveelkYhm6hlJQDXrCxg/h9nUo74afpwuNqjmzaPc5hrWqZe3oNK1o5FGTsKTQ0FBefvll9u7dy507dwgMDGTfvn1s2rTprnKnTp3Czc2NihUrWiXO0krXUAqqYU9AQdR6AESEQUFeHIiJ5egl865gp2na3ZycnOjcuTNPPvlkVu1k2LBhbNmyhfXrDf9PJiYm8uKLLzJ58mRrhloq6YRSUNWbQfkqWd2HAfoFeGBvKyzarcekaJqlDRkyhAMHDmQllLJly7Js2TKmTJlCw4YNcXd3Jzg4mGHDhmUdk7mGfOZj27Zt1gr/gaanrzfB79G/c/DqQca3GG/YsHQMHFkO40+CraEhfswPe9l28ho73uhKGTtbc4atacVCSZm+fsmSJYwbN46//vqLWrX0beiC0tPXW9jJWyf5LvI7Lt02LnzToCckxRpmIDYa1MKLm3dSWR+pJ4zUNGvq168fp06d0snECnRCMUFI3RAUihWnVhg21OsMNvZZk0UCtKvvTg0XR8L0mBRN00opnVBM4FXBi+ZVmrM0aqlhmpUyzlA7+K7uw7Y2woBATzafuMqFW4lWjFbTNM06dEIxUWj9UKLjoom4FmHY0KAnXD0KN6OzygwM8kLpCSM1TSuldEIxUY9aPXC0dWRZ1DLDhoaGJYE5/nctxcu1HMH13VgUfo6MjNLT2UHTNA10QjGZk4MTXWt1ZXX0apLTk8GtHrjVv6v7MBimtY+5mcj2U9etFKmmaZp16IRSAKH1QolPieevc38ZNjToCdFbIOV2VpmePtWo4KgnjNQ0S7C1tb1rPMkHH5hvxP7+/ftZtWpV1vPcpr2/cOECAwYMMNt170d0dDS+vr5WjSEnVkkoIjJQRA6LSIaI5Nq3WUR6icgxEYkSkQnZtouITBGR4yJyREReLIq4W1ZrSdVyVVkatdSwoWFPSE+GUxuzyjja29IvwIPVhy4Reye1KMLStFKjbNmyd83JNWHChPwPMtG9CQVynva+Ro0a/PLLL2a7rjWlpaWZ9XzWqqEcAh4BNuVWQERsgRlAb6AJMEREMhcxGAl4AY2UUo2BhTmexMxsbWwJqRfCtgvbuHrnKtRsAw7OOd72SknLYOmB80URlqaVarGxsXh7e3Ps2DHAMJJ+9uzZADz33HMEBQXh4+PDO++8k3XM7t27adu2Lf7+/rRs2ZLY2FgmTpyYNaI+LCws1+tlrx3cuXOHQYMG0aRJE/r370+rVq3IHDy9du1a2rRpQ/PmzRk4cCAJCQkA1K5dm3feeYfmzZvTtGlTjh49CsDGjRuzakIBAQHEx8ejlGL8+PH4+vrStGnTHONq3bo1hw8fznreqVMnwsPDuX37Nk8++SQtW7YkICCApUsNP4TnzZtHSEgIXbp0oWvXrvf9vufEKpNDKqWOgGEerDy0BKKUUqeMZRcCoUAk8BwwVCmVYTxfkY0m7FuvL7MPzmbFqRWM8h0F9bv8veiW8fX4erjgU6MCYbvP8Xib2kUVmqYVmQ93fcjRG0fNes5Gro14reVreZZJTEykWbNmWc9ff/11Bg8ezPTp0xk5ciQvvfQSN2/e5OmnnwZgypQpuLq6kp6eTteuXYmIiKBRo0YMHjyYsLAwWrRoQVxcHOXKlePdd98lPDyc6dOnA4Yv3pymvc9u5syZVKpUicjISA4dOpQV27Vr13jvvfdYv3495cuX58MPP+TTTz9l4sSJALi7u7N3715mzpzJxx9/zJw5c/j444+ZMWMGwcHBJCQk4OjoyOLFi9m/fz8HDhzg2rVrtGjRgg4dOtwVw+DBg1m0aBGTJ0/m4sWLXLx4kaCgIN544w26dOnC3LlzuXXrFi1btqRbt24A7N27l4iICFxdXe/no8pVcW5D8QCyN0TEGLcB1AMGi0i4iKwWkQa5nUREnjGWC7969Wqhg6rjUgf/yv4sO7nMMCalQU+IvwiXIu4qN7iFF4cvxHHofGyhr6lpmsG9t7wGDx4MQPfu3WnatCljxoxhzpw5WeUXLVpE8+bNCQgI4PDhw0RGRnLs2DGqV69OixYtAKhQoQJ2djn/ts5v2vstW7bw2GOPAeDr64ufnx8AO3bsIDIykuDgYJo1a8b8+fM5c+ZM1nGPPPIIAIGBgURHRwMQHBzMuHHj+Pzzz7l16xZ2dnZs2bKFIUOGYGtrS9WqVenYsSO7d+++K4ZBgwZl3YJbtGhRVvvO2rVr+eCDD2jWrBmdOnUiKSmJs2fPZr1f5k4mYMEaioisB6rlsOtNpdTSQp6+DJCklAoSkUeAuUD7nAoqpWYBs8Awl1chrwtASL0Q/m/H/xF5PRKfBt0NG4+vher+WWVC/T14b+URfg4/h6+Hizkuq2nFRn41iaKWkZHBkSNHKFeuHDdv3sTT05PTp0/z8ccfs3v3bipVqsTIkSNJSkoqkniUUnTv3p2ffvopx/1lypQBDJ0MMtsxJkyYQJ8+fVi1ahXBwcGsWbMmx2Pv5eHhgZubGxEREYSFhfHVV19lxfDrr7/i7e19V/mdO3dSvnz5+31pebJYDUUp1U0p5ZvDw9Rkch5DO0kmT+M2MNRWFhv//g3wM0/UpulVpxcONg4sPbkUnKqARyCcuPvDdylnTy+faizZf4Gk1PSiDE/TSp3//e9/NG7cmB9//JFRo0aRmppKXFwc5cuXx8XFhcuXL7N69WoAvL29uXjxYtYv/fj4eNLS0nB2diY+Pr5A1w0ODmbRokUAREZGcvCgYRXL1q1bs3XrVqKiogC4ffs2x48fz/NcJ0+epGnTprz22mu0aNGCo0eP0r59e8LCwkhPT+fq1ats2rSJli1b/uPYwYMHM3XqVGJjY7NqST179uSLL74gcwLgffv2Fei13Y/ifMtrN9BAROqIiAPwGGAcVcgSoLPx745A3p+UmVVwqECXml1YdXoVKekphtteMeFw+9pd5Qa38CI2MZU1hy8VZXia9sDKbEPJfEyYMIFjx44xZ84cPvnkE9q3b0+HDh1477338Pf3JyAggEaNGjF06FCCg4MBcHBwICwsjBdeeAF/f3+6d+9OUlISnTt3JjIy8q5G+fymvX/++ee5evUqTZo04a233sLHxwcXFxcqV67MvHnzGDJkCH5+frRp0yar8T0306ZNy7ptZm9vT+/evenfvz9+fn74+/vTpUsXpk6dSrVq/7zxM2DAgKwlkTO9/fbbpKam4ufnh4+PD2+//XZh3/78KaWK/AH0x1DLSAYuA2uM22sAq7KVewhDsjiJ4VZZ5vaKwErgILAd8DfluoGBgcpcNsdsVr7zfNW66HVKnd+n1DsVlNr3411l0tMzVLsP/1BDZ28323U1zVoiIyOtHUKxk5aWphITE5VSSkVFRanatWur5ORkK0dVODl9zkC4MuE71lq9vH7DcKvq3u0XMCSRzOergFU5lLsF9LFkjPlpU70NlctWZmnUUrp1+Rycqhm6Dzf7e41rGxthYKAXn647zulrt6njbpn7lpqmWcedO3fo3LkzqampKKWYOXMmDg4O1g7LaorzLa9izdbGlofrPczm85u5lnQdGnSHk39C+t2DGYe0rEkZOxu+3BBlpUg1TbMUZ2dnwsPDOXDgABEREfTu3dvaIVmVTiiFEFovlHSVzqpTq6BhL0iOg7N391Ov7FyGIS1rsnjveWJu3rFSpJpmHqoUrfBaGhX289UJpRDqVayHr5svy04ug7qdwNbhrkW3Mj3bsS4i8PXGU0Ueo6aZi6OjI9evX9dJ5QGllOL69es4Ojre9zms0obyIAmtH8qUnVM4ejuGRrXbGUbN95xyV5nqLmUZEOhFWPg5xnapT9UK9/+BaZq1eHp6EhMTgzkGCGvFk6OjI56envd9vE4ohdS7Tm+m7p7K0qilNGrQE35/DW6cAte6d5V7rmM9FoWfY/amU7z1cJNczqZpxZe9vT116tSxdhjafTh5NYF6lZ0sfh19y6uQXMq40MmrE6tOryK1fhfDxmyLbmWq6VaO0GY1+GHnWa4nJBdxlJqmlVYLtkfT/dON/H7I8uPhdEIxg9B6odxIusGWO+fBveE/Zh/O9Hyn+iSlpTN36+kijlDTtNJGKcXU348ycelhujSqSseGlS1+TZ1QzKCtR1vcHN0MU7E06AFntkJywj/K1a/ixENNqzN/2xm9VoqmaRaTkpbBf34+wMwNJxnWqiZfDW9OWQdbi19XJxQzsLexp0/dPmyM2cjNOu0gPQVObcix7NjO9UlITmP+9uiiDFHTtFIiITmNp+bvZvHe87zSoyHv9fPFzrZovup1QjGTkHohpGWksSr1GpRxyfW2V+PqFejWuCpzt54mIdm8q6Vpmla6XYlPYvDX29l28jofDfBjbJcG+a07ZVY6oZiJt6s3jV0bs+z0CqjXGU6sg4yMHMuO7VKfW3dS+WHHmRz3a5qmFdTJqwk8MnMbp6/dZs4TQQwM8sr/IDPTCcWMQuuHEnk9khNezSHhElw6kGO5Zl4Vad/AndmbT+mp7TVNK7S9Z28y4MttJKWms/CZ1nT2rmKVOHRCMaPedXpjJ3YsIx6QHLsPZxrbuT7XElJYuOts0QWoadoDZ13kZYbO3oFLWXt+fa4tfp4VrRaLTihm5OroSgfPDiw/u540z38uupVdq7putKztytebTpGcpmspmqYV3A87z/Dsd+F4V3Xml+faUsvNujOa64RiZiH1Q7iedJ1tHr5wfg8kXMm17Ngu9bkYm8TivedzLaNpmnYvpRSfrj3Gm78domPDyvz0TGvcncpYOyydUMytg0cHKpWpxFIxjkM5sS7Xsu0buOPv6cKXG06Slp5zA76maVp2qekZvPpLBJ//GcXgIC9mPx5EOYfiMYuWTihmZm9rz0N1H+Kvq/uIrVA91+7DACLC2C4NOHvjDssjLhRhlJqmlUS3k9N4ekE4P++J4aWuDfjg0aZFNsbEFMUnkgdIaL1QUjNS+d3LB07+BWkpuZbt2qgKjao5M/3PKDIy9LTgmqbl7FpCMkNm72DT8av895GmvNy9YZGOMTGFTigW0Mi1EQ0qNWCZJEJK/D8W3crOxkYY26U+J6/e5vfDlp+8TdO0kuf0tds8+uU2jl+OZ9aIIIa0rGntkHJkUkIRkUoi4iMidUVEJ6F8iAih9UKJuH2OU2XK5bjoVna9fatTt3J5vvgzSi9epGnaXXadvkH/mVuJS0zlx6db061JVWuHlKtck4OIuIjIGyJyENgBfA0sAs6IyM8i0rmogiyJ+tTtg63YsqxGgzy7DwPY2ghjOtXnyMU4/jyae68wTdNKl9/2xTB8zk5cyznw2/PBNK9Zydoh5Smv2sYvwDmgvVLKWynVTikVpJTyAj4AQkXkqSKJsgRyL+tOO492LLdLIf16FMSE51k+pFkNvFzL6lqKpmkopfjfuuO8HHaA5rUqsvj5ttR2t+4YE1PkmlCUUt2VUt8ppW7lsG+PUurfSqlvLBteyRZSL4QrabfZWakarHkD8kgU9rY2PNexPvvP3WJr1PUijFLTtOIkOS2dcYsO8NkfJ3i0uScLnmxFxXIO1g7LJPm2h4jBcBGZaHxeU0RaWj60kq+TVycqOFRgSS1/OLcTDi/Os/yjgR5Uq+DIF3+eKKIINU0rTm7eTmHEnF38ts8w9fzHA/1wsCs5zdamRDoTaAMMMT6PB2ZYLKIHiIOtA73MG/ipAAAgAElEQVTr9ObPhFPEVvOFde9AamKu5cvY2fJsx7rsPH2DXadvFGGkmqZZ26mrCfSfuZX9Mbf4fEhAkU89bw6mJJRWSqkxQBKAUuomUDLqX8XAwIYDSU5P5ufGnSH2HGyfnmf5x1rUxN3Jgel/RRVRhJqmWdvOU9d55MttxCWl8dPTrQjxr2HtkO6LKQklVURsAQUgIpUBPU+IibxdvQmuEcz3l7aQ7P0QbP4fxF3MtXxZB1tGt6/LpuNXOXDuH81XmqY9YBbvjWH4NztxLe/Ab8+3JbCWq7VDum+mJJTPgd+AqiIyBdgCvG/RqB4wo3xHcT3pOssbdTQsD/zn/+VZfnjrWriUtde1FE17gCml+HTdccYtOkBQLVd+ey7Y6rMFF1a+CUUp9QPwKoYkchHop5T62dKBPUhaVmuJj5sP86JXkN7qX7D/R7iwL9fyTmXseDK4DusiL3PkYlwRRqppWlFISk3n32H7+fyPEwwM9GT+ky1xKWdv7bAKzdTuA+7AHaXUdOCaiNSxYEwPHBFhlO8ozsSd4c+6LaCcG/yedzfikW1r41TGjhm6lqJpD5Qbt1MYPmcnS/dfYHxPb6YOKFk9ufJiSrfhd4DXgNeNm+yB7wt7YREZKCKHRSRDRILyKNdLRI6JSJSITMi2vauI7BWR/SKyRUTqFzYmS+pWsxs1nWsy99hCVOc34ew2iFyaa3mXcvY83qYWKw9eJOpKfBFGqmmapZw09uSKOB/LF0MCGNO5fonryZUXU9JifyAEuA2glLoAOJvh2oeAR4BNuRUwdgaYAfQGmgBDRKSJcfeXwDClVDPgR+AtM8RkMbY2tjzh8wSHrh8i3KMJVPWFdW9DalKuxzzVrg5ODnZMXh6pR89rWgm3/eR1Hpm5jYSkNH56ujV9S2hPrryYklBSlOHbLLOXl1lajZRSR5RSx/Ip1hKIUkqdUkqlAAuB0MxTABWMf7sAxX5BkZB6Ibg6ujI3cj70nAK3zsKOmbmWd3Mqwys9vdl84hrLI3LvGaZpWvH23Y4zjPhmJ+5Ohjm5AmsV7zm57pcpCWWRiHwNVBSRp4H1wGzLhpXFA8N8YplijNsARgOrRCQGGIFhfrF/EJFnRCRcRMKvXr1q0WDz42jnyPDGw9lyfgvHKlYH74dg8ycQfznXY4a3roWfpwvvLo8kNjG1CKPVNK2wUtIyeOO3g7y95BDtG7jz25hgarqVs3ZYFmNKL6+PMUwU+SvgDUxUSn1hyslFZL2IHMrhEZr/0fl6GXhIKeUJfAt8mkv8s4yTWgZVrlzZDJctnEHegyhnV45vD38LPd6DtOQ8uxHb2ghT+jXlxu1kPl6TX4VO07Ti4lpCMsPn7OTHnWf5V8d6zHmiBRUcS35PrrzkuRCxsQ1jvVKqM5D74ui5UEp1u9/AjM4DXtmeewLnjYMr/ZVSO43bw4Dc19otRlzKuDCg4QB+OPIDLwa8SI1Wz8L2GdDyaajun+MxTT1deLxNbeZvj+bRQE+aeVUs2qA1TSuQwxdieWbBHq4lJPPZY80IbeaR/0EPgDxrKEqpdCBDRFyKKJ577QYaiEgdEXEAHgOWATcBFxFpaCzXHThipRgLbESTEQjCgsgF0GE8lK2Ubzfi//RoSBXnMryx+CBp6XqiAk0rrlZEXODRL7eRoRS//KttqUkmYFobSgJwUES+EZHPMx+FvbCI9De2f7QBVorIGuP2GiKyCkAplQaMBdZgSBiLlFKHjdufBn4VkQMY2lDGFzamolKtfDUeqvsQi08s5pYAXd6EM1vg6Ipcj3F2tOedvj5EXoxj/vYzRRespmkmychQfLzmGGN/3IdPDReWjg2mqae1fotbh+TXHVVEnshhs1JKLbBMSJYTFBSkwsPzXuiqqETdjKL/sv483+x5nvN9Gr5qB2mJMGYX2JXJ8RilFKPm7Wb36Rus/09HqruULeKoNU3LSXxSKi+HHWD9kcsMCvLk//r5UsbO1tphmY2I7FFK5TpeMJMpNZSKSqn52R/Ag9nnrQjVr1Sfjp4d+enITySqVOj1PtyMhp1f5XqMiPBuiC9pGYp3l0cWXbCapuXqzPXbPDJzG38du8Kkvk348FG/ByqZFIQpCSWnGspIM8dRKj3p+yQ3k2+yJGoJ1OsCDXrCxo8gIfd15Wu6lePFrg1YfegSfx7NvbuxpmmWt+XENUKmb+VqQjILnmzJyOA6D9TI94LKNaGIyBARWQ7UFZFl2R5/AXr1JzMIqBKAf2V/5h+eT1pGmrEbcSL8NSXP455uX5f6VZx4e8lhElPSiyhaTdMyKaWYu+U0T3y7i6oVyrB0TDDB9d2tHZbV5VVD2QZ8gqEx/JNsj/8APS0f2oNPRHjS90nOJ5xn3Zl1ULkhtHga9i6ASwdzPc7BzoYp/Xw5fyuRz/VywZpWpJLT0nn1lwjeXRFJl0ZVWPx8yZ923lxyTShKqTPAZiBJKbUx22OvsZeVZgadvDpRx6UOcw/NNczX1fFVcHSBNXl3I25V142BgZ7M3nSKY5f05JGaVhSuxCcxZNYOft4Tw4td6vP18ECcyuQ5nK9UKe7jUB54NmLDKJ9RHL1xlO0Xt0M5V+j0BpzeBMdW53ns6w81xsnRjreWHCQjQ08eqWmWFB59g75fbOHIxXhmDG3OuB7e2NiU3vaSnFhtHIr2tz51+1ClbBXmHppr2BA0Cty9Ye2bkJaS63Gu5R14o3djdkff5Jc9MUUUraaVLkop5mw+xWOzduBob8uvz7Wlj191a4dVLJmSUBYDb2OYZn5PtodmJg62DgxvMpydF3dy+PphsLWHnu/DjVOwa1aexw4I9KRlbVfeX32E6wnJRRSxppUO8UmpjPlxL++tPEKXRlVYNrYdTWpUyP/AUsqUySHn5/QoiuBKk4ENB+Jk78S3h741bGjQDep3h41T4fa1XI+zsRHe6+9LQlIa/119tIii1bQH39FLcYRO38qaw5d5vXcjvh4RiEvZB3tyx8IyZcXGBiLyi4hEisipzEdRBFeaODk4Mch7EOvOrONcnHHG/h7vQXIshH+b57ENqzrzdIe6/LInhh2nrhdBtJr2YFu8N4Z+M7YSn5zGj6Nb8WzHeqV6fImpTLnl9S2G1RHTgM7AAsywBLD2T8MbD8dWbJkfaawAVmkEtYIhYmGePb4AXuzSAM9KZXlrySFS0vTkkZp2P5JS03njt4OMW3QAf8+KrHyxHa3qulk7rBLDlIRSVin1B4Z5v84opSYBfSwbVulUuVxlQuqFsCRqCdcTjTUN/yFwPQpi8p6DrKyDLf8X6kvUlQRmb9YVSE0rqHM37jDwq+1Z65f8MLoVVZwdrR1WiWJKQkkWERvghIiMFZH+gJOF4yq1RvqMJCU9hR+P/mjY0CQU7BzhwE/5Htu5URV6+1bj8z9OcPb6HQtHqmkPjj+PXubhL7YQff02s0YEMqF3I+xsTfl61LIz5R17CSgHvAgEYpgqPqf5vTQzqO1Sm641u7Lw6ELupN4BxwrQ6GE49Kthdcd8vNPXBzsb4e2lh8hvJmlNK+3SjVPOPzkvHI+KZVnxQjt6+FSzdlgllim9vHYrpRKUUjFKqVFKqUeUUjuKIrjSapTvKOJS4vj1xK+GDc2GQNItOJ7/opTVXBz5Tw9vNh6/yqqDlywcqaaVXNcSknl87k6m/xXF4CAvFj/fVk+hUki5zhlgnBgy15+4SqkQi0Sk4VfZj6CqQSyIXMBjjR7Dvk4ncKoGBxYaboHl4/E2tVi8L4bJyw/ToaE7zg/4OtaaVlB7ztxgzA/7uHknhakD/BgU5JX/QVq+8qqhfIxhMshPgcbcPUHkJ5YPrXQb5TuKS7cvsfr0arC1A7+BcGJtnmNSMtnZ2jClX1OuJiQzeXmkvvWlaUZKKb7ZcprBX++gjL0Ni59vq5OJGeU1OWTmZJAbgIR7JojcWHQhlk7tPdpTv2J9vj30rSEh+A+FjDQ4+ItJx/t7VeSFzvX5ZU8MC/SSwZrGtYRknpofzv+tiKSzcdS7Tw09TaE5mdqNQf/ELWKZU9tH3Yriz3N/QtUmUM3PpN5emf7drSHdGlfh3RWRbD+pBzxqpdeGY1foNW0zW6KuMalvE2bpUe8WkdcCW66ZD8BWRCrds02zsF51elHHpQ6fhH9CSnqKYUzKxf1w5YhJx9vYCP8b3Iw67uUZ8+Nezt3QXYm10iUpNZ13l0cy8tvduJV3YNnY4FK/qqIl5VVD2QOEG/+tAOzl74kh8x5lp5mFvY09E1pM4Fz8Ob6L/A6aDgSxLVAtxdnRnlkjAklNz+CZ7/ZwJ0UvZaOVDicux9Nvxlbmbj3NyLa1WTo2mEbV9MSOlpRXG0odpVRd47/3PuoWZZClWVuPtnTy6sSsiFlctQEadIeIRZBh+tK/dSs78cWQAI5dimP8LxG6kV57oCml+G57NA9/sYWr8cl8O7IFk0J8cLS3tXZoD7y8bnnVzutAMfA0d0DaP70a9CqpGalM2zsN/B+D+ItwumD9Ijp5V+HVXo1YGXGRmRtOWihSTbOu6wnJPL0gnLeXHqZ1XTdW/7s9nRtVsXZYpUZet7w+EpFfReRxEfERkSoiUlNEuojI/wFbMXQn1izMq4IXjzd5nGUnl3HA1dOwRPB+0297ZXq2Q11C/Gvw8dpj/Hn0sgUi1TTr2XT8Kr0+28ym49eY+HATvh3ZQs/FVcQkr9sfItIEGAYEA9WBO8ARYBXwi1IqqSiCNJegoCAVHl4ym39up96m7299qVquKj9kVMEmIgzGn4AyzgU6T2JKOgO+2sbZ63dYMjaYepX1tGxayZacls7U34/xzZbTNKjixOdDAmhcXbeVmJOI7FFKBeVXLr815SOVUm8qpToppbyVUgFKqaFKqe9LWjIp6crbl+flwJc5dP0QS6vWhLREiFxW4POUdbBl1uNBONjZ8PSCcOKSUi0QraYVjagr8fSbsY1vtpzm8Ta1WP5CO51MrEhPp1mC9KnbB//K/nwWvZwE1zoF6u2VnUfFsswc1pyz1+/w74X7Sc/QjfRayaKU4vsdZ3j4iy1cjkvimyeCeDfUVze85ya9aHp36oRSgtiIDa+3fJ0bSTf42ssbojfDrbP3da5Wdd14J8SHP49e4ZO1x8wcqaZZzrWEZJ75bg9vLTlEi9qu/P5Se7o2rmrtsIqviwdgRkvDvxamE0oJ4+PuQ7/6/fg+/jjRdnYQEXbf5xreqiZDWnoxc8NJVkRcMGOUmmZ+SimW7DtP9083svHYVd7q05j5o1pSpYJueM/VqY3wbR/D0hd2ln+fTFlTfrGI9DEusqUVAy82fxFHO0emetY19Pa6z3ElIsLkEF+CalVi/M8RHL4Qa+ZINc08LsYm8tT8cP4dtp9abuVZ+WI7Rrevi42NHvGeq0OL4YcB4OIJT62Fyt4Wv6QpSWImMBTDio0fiEihoxKRgSJyWEQyRCTXngMiMldErojIoXu2u4rIOhE5Yfy3UmFjKkncy7rzL/9/sVmS2JR4Pt/lgfPiYGfDzOHNcSlrzzML9nA9If9FvDStqCil+GnXWXp8uoltJ6/xVp/G/PpcWxpULVjvxlJn5yz45UnwCIQnV4OLR5Fc1pQFttYrpYYBzYFoYL2IbBORUSJyv7OrHQIeATblU24e0CuH7ROAP5RSDYA/jM9LlaGNhlLbuSZT3VxJ3f9Doc5VxdmRWY8Hci0hmTE/7iU1PcNMUWra/Tt7/Q7D5uzk9cUH8fVwYc2/OzC6fV1sda0kd0rBH+/C6vHg/RCM+A3KFt3vbZNuY4mIGzASGA3sAz7DkGDW3c9FlVJHlFL5tgQrpTYBN3LYFQrMN/49H+h3P3GUZPa29rzW6nXO2NvxffRKk5YHzoufZ0U+eLQpO07d4L0VkWaKUtMKLj3DsGZJz2mbiIiJ5f3+TflhdCu9mmJ+0tNg2VjY/AkEjoRBC8C+bJGGkOuKjZlE5DfAG/gO6KuUumjcFSYi1holWDVbHJeAXLt4iMgzwDMANWvWLILQik47j3Z0rNSErzMO0ffwz7j7Dy/U+foHeHL4fBxztpzGp4YLg1rohYe0ohV1JZ5Xf4lg79lbdPauzJT+TalRsWi/FEuklDuGW1zHV0PH16DT62CFGZVNqaF8rpRqopT6b7YvcQDyGjkpIutF5FAOj/zXsC0AZRjqn9dSxbOUUkFKqaDKlSub89LFwvgO/yVZhGkRX5vlfBN6N6J9A3feWnKIPWdumuWcmpaf1PQMZvwVxUOfbeHUtdv8b7A/c0e20MnEFHduwIJQOP479PkEOr9xVzJRSrH9wvYimRTWlIRSSUQeuefRVUTynHFNKdVNKeWbw2OpGeK+LCLVAYz/XjHDOUukWhXrMsKpIUszbnHw3OZCn8/O1oYvhgRQvaIjT87bzZ4zOd1x1DTzOXQ+ltDpW/lozTG6N6nKupc70j/AU69ZYorYGJjby7BO0qD50GL0XbuvJ17nPxv/wzPrnmFN9BqLh2NKQnkKmINhTq9hwGzgNWCriIywYGx5WQY8Yfz7CcAcSarEerbNm7inpfPfbZPIUIVvUK9YzoHvn2qFa3kHhs3ZyfpIPZGkZn5Jqel8tOYooTO2ciU+ma+GN2fGsOZUdi5j7dBKhitH4JsehtnHR/wGTe6++bMmeg39l/Znw7kNvNT8JbrV6mbxkExJKPZAY6XUo0qpR4EmGG4xtcKQWApMRPqLSAzQBlgpImuM22uIyKps5X4CtgPeIhIjIk8Zd30AdBeRE0A34/NSq7xHIC9nOHMw6QrLTy43yzm9XMvxy7/a0LCqM89+v4dF4efMcl5NA9h1+gYPf7GFGX+dpF8zD9aP60Av3+rWDqvkOLvDUDPJSINRq6B2u6xdN5NuMn7jeF7Z+ArVnaqz6OFFjG46GjubfJvMCy3P2YYBRCRSKdUk23MBDiulmojIPqVUgKWDNJeSPNtwfjK2z2RExDQuuFRlxaO/U97ePD1ibien8a/v97D5xDVe7eXNcx3r6VsR2n27cCuR91cdYUXERTwqlmVKf186eev1Sgrk6Cr4ZZRhwOLwxVCpVtauP878wbs73iUuJY7n/Z9nlO8osyQSU2cbNuVKG0RkBfCz8fmjxm3lgVuFiFEzI5umA5mw8V2GOpbh64ivGRc4ziznLV/Gjm+eaMErPx9g6u/HuBafwlt9GusRylqBJKWm8/XGU3y5MQql4MWuDXiuYz3KOujJHAtk7wJY/hLUCIChi6C8OwC3km7x/q73WX16NY1dGzOr+yy8XS0/Mv5epiSUMRgGIWbWqRYAvxp7V3W2VGBaATlVpmnNToTGH+S7yO94tMGj1KpQK//jTOBgZ8O0wc1wc3Jg7tbTXEtI5uOB/jjY6dl4tLwppVh18BLvrzrC+VuJ9GlandcfaoRnpXLWDq34y8gAlQ4qw7Dk944Z8Od7UK+rYYxJGcNaRn+e/ZN3t79LbHIszzd7ntFNR2Nvc79jzgsnz4QiIrbAeqVUZ+DXoglJu2/+j/HvxWtYX6ceH+3+iOldp5vt1DY2wsSHm1DZuQxTfz/GzTspfDk8EKcylr8vq5VMkRfimLz8MDtP36Bx9Qp8Msif1nXdrB2W9WybDju/NrR7qHRDklDpfyeOrOfGf3PiNxhCZ4CtPbHJsXyw6wNWnFqBdyVvvur+FY1cGxXta7pHnt8GSql043xbLkopPXNgcdewF+72zjxrW5VPYzayOWYz7T3bm+30IsLznerj7lSG1xcfZOjsHXw7sgVuTrpXjva3G7dT+GTtMX7adRaXsva818+XIS1rlu4pU64cgXUTwaM5VG4ENrYgtn//KzZgY3P3tqx/jdsr1ADfAWBjw8ZzG5m8fTI3k27ynP9zPN30aextrVMryc6Un5cJwEERWQfcztyolHrRYlFp98feEXwfZfj+n1jcJJCpu6fSunprs/+HNijIC7fyDoz5cS8DvtrOgidb4uWqb2GUdqnpGXy/4wz/W3ec2ynpPN6mNi93a4hLOet/0VmVUrBqPDhWMLR7lHO971PFpcTx4a4PWXZyGQ0qNWB61+k0cWuS/4FFxJSb4IuBtzFM5Lgn20MrjvyHYJ+WyHi3lkTHRTM/cn7+x9yHro2r8sPoVty4ncIjX24j8kKcRa6jlQybT1zloc82M3l5JH6eFVn9UnsmhfjoZAJw+DfDYnhd3i5UMtkcs5n+S/uz8tRKnvF7hrA+YcUqmYAJ3YYBRKQsUNOUCR2Lswe523AWpeCLQKhQg3G1G/LX2b+Y13se/pX9LXK545fjefybXdxOTmP2E0Gl+x55KXTm+m3eW3mEdZGXqelajrf6NKZ7k6q6a3mm5ATDaonl3OCZDYbbWAUUmxzL1N1TWXZyGfVc6jGl3RR83H3MHmpeTO02bMoCW32B/cDvxufNRGRZ4UPULEIE/IdA9GYm+YymavmqvLrxVWKTLdME1rCqM78+35aqLo48PncXvx+6mP9BWol3LSGZ91cdofunm9gadY3xPb1Z+3IHevhU08kku80fQ9x5eOjjAicTpRRrotcQsiSEladWMrrpaBb1XVTkyaQgTLnlNQloiXHMiVJqP1DXgjFpheU3CIAKkSv5qMNHXEm8wttb37bY5HAeFcvy87Nt8KlRged/2MsPO89Y5Dqa9V2NT2bKykjaf/gXczaf4mH/6vz1SifGdK6Po70eU3KXa1GGnl3+Q6FmqwIdeuXOFV766yVe2fgKVctVZeHDC3mp+Us42DpYKFjzMKVRPlUpFXvPrw69AlNxVqkW1GoHB36iaYdXGBc4jqm7p/L9ke8Z0cQy069VKu/AD6NbMeaHvbz52yEuxyXzUtcGpbtnzwPkSnwSX288xQ87z5CSlkFoMw/GdqlPvcpO1g6teFIKVr9qWI+k2ySTD8tQGfx64lc+Df+U1IxUxgWOY0STEUUybYo5mBLlYREZCtiKSAPgRWCbZcPSCq3ZEFg6BmLCGd54OLsv7ebTPZ8SUCUAX3dfi1yynIMdsx4PYsKvB/n8jxP8dfQK/32kKb4eLha5nmZ5V+KS+MqYSFLTM+gX4MHYzvWpqxNJ3o6tgpN/QM//gnOuyzXd5WzcWSZtn8TuS7tpUa0Fk9pMomaFkrWGkylzeZUD3gR6AAKsAf5PKZVk+fDMq1Q0ymdKioNPvA2Txg0JIzY1noHLB2IjNizqu4gKDhUsdmmlFCsiLjJ5eSQ3biczKrgO47o3pLweBFliXI5L4ssNJ/lp11nSMhT9jDWSOu561cR8pSYaGuIdnODZzWCb93/3aRlpLIhcwMz9M3GwcWBc0DgebfBosWqLMrVR3qReXg+KUpVQwDAqd/Wr0P1dCH6JA1cPMHL1SDp5deLTTp9a/D/Y2MRUpv5+lB92nqWGiyOTQ33p3sS0X2uadVyKTeLLDVH8tPsc6RmKRwIMiUQvv1sAGz6ADf+FJ1ZAnbwHFh+9cZSJWydy5MYRunh14c3Wb1KlXPGbLNNsCUVEGgKvALXJdotMKdWlkDEWuVKXUJSCn0fCkeUwcgXUasu8Q/P4ZM8nvN7ydYY2HlokYew5c4M3Fh/i2OV4evlUY1KID9VcHIvk2pppLsYm8uWGkyzcdY4MpXi0uSdjOtenppsesFogN6NhRito1AcGzM21WHJ6Ml8d+IpvD32LSxkX3mz1Jt1rdS9WtZLszJlQDgBfYRjMmDXBjFKqxA1uLHUJBQy3vmZ1NFTDn91MRnk3XvzzRbZd2MZ3D32Hj1vRdEFMTc9g9uZTfLb+BPa2NrzSoyEj2tTWjfZWdv5WIl9uiGLR7hgylGJgkCfPd6qvZz64XwuHwcm/YOxucPHIsciey3uYtG0S0XHRhNYLZXyL8biUKd7tjOZMKHuUUoFmi8yKSmVCAbh0EOZ0g5qtYfhibqXEM3DFQOzEjkV9F+Hs4FxkoZy9foc3lxxk84lr+Hu68P4jTfGpUbz/Z3rQpGcoNh2/yo+7zvLn0SvYCAwI9OL5TvV0IimME+vhh0cNvbravfyP3QkpCUzbO42wY2F4OHkwsc1E2tZoW+Rh3g9zJpRJGNZs/w1IztyulCpxi42X2oQChnUUlr0AnV6HThPYf2U/I38fSdeaXfm448dFWtVWSrE84iLvLj/MzTupPBlcm3930432lnYpNolF4ecI232O87cScXdyYECgF8Nb19TTyRdWWjLMbGMYWPzcNrD7e8JUpRRrz6xl6q6pXE28yrDGw3gh4AXK2Zec99ycC2xlrt0+Pts2hR7cWLIEjIAz2wwNhl6taFavMy8EvMC0vdNYdGwRgxsNLrJQRIQQ/xp0bFCZD34/yuzNp1l18BLvhvrQtbFutDen9AzFxuNX+HHnOf48epkMBe3qu/Nmn8Z0a1xVr2ljLjtmwo2TMPzXu5LJubhzTNk5ha0XttLYtTHTOk+jaeWmVgzUsnQvr9Ik5TbM7gq3r8K/NpPhXI0xf4xh18VdfP/Q9zR2a2yVsHZH3+CNxQc5cSWBh5pW452+PlStoBvtC+NibCJhu8+xaPc5LsQm4e7kwMAgLx5r4aV7bJlb7HmY3gLqdYbHfgAgJT2Fbw59w5yIOdjb2vNCwAsM9h5cYgYo3qvQt7xE5FWl1FTj3wOVUj9n2/e+UuoNs0VbREp9QgG4egxmdYbqfvDECm6kxjFw+UAcbR0JezgMJwfrDFhLSTM22v9xAnsboX9zDwYH1cTXo0Kx7flS3KRnKDYcu8JPxraRDAXtG7gztGVNuuraiOX8PMowkHHMTqhUmx0XdzBlxxSi46LpWbsnr7Z4tVh2BS4IcySUvUqp5vf+ndPzkkInFKOIn2HxaAh+Cbq/y57Le3hqzVP0qNWDDzt8aNUv8Ohrt5m2/jirD10iOS2DRtWcGdzCi37NPKhUvnjPY2QtF24ZayPh57gYm0Rl5zIMCvJkcFBN3e3X0k5vgvl9odPrXGs1mo92f8Sq06vwcvbizdmZPhgAACAASURBVFZvEuwRbO0IzcIcbSiSy985PddKEr+BcHYbbP0MarYh0Ls3Y5qN4fN9n9OiegsGNhxotdBqu5dn2mMBTE5MZdmBC/wcfo7JyyP576qjdPepyqAgr/9v78zDo6iyPvyebCRkAUISAiQhrAFBQHZFEARBUQREFHdAAQG3UdEZnRmZcXRU5tNRxFFZZEQGBAQFUUAERAGBsC8SlrAkrAGy70nf749bQgc6pCGddELu+zz1pLrurVvndnXqV3c7h5ubhFTp6caFNsW2hGRWxyWxOi6JncdSEYFuTUN5rX9LerUIw9vTtEbKnMJ8+O4lCmtGMTe0HpMW3k1OYQ5PtnmSx1s9jq9X1eu2NS2Uqkp+DkzvA8lHYPQabDUjGbNiDJtPbWZWv1nEBMe428Lz7DmexrzNCSzceoyUrHzq1fDl3vYRDOkQWWWmuSal5/LTviRWx53m5/1nSM3Ox0OgXVQtesSEMqBt/SrzXVQY1n/E7lWv8XqzDuzOTKRL3S682vlVomtEu9syl+OKLq9CdMhfAfyArN+TAF+lVKULxWYE5SLOHYJPboHajWHEUs7mZzBk8RD8vf358q4vK9y0xtyCQlbsOc2XsQn8vD8JpeCmxrW5v2MkfVuGX1Pu0x21QgBCAqrRIyaUHjGhdGsSaiIiuon0cweZNPsO5gRUo7ZfCOM7jOeOhndcs+N9xpeXA4ygOOC3xfDlw9BpNPR7h00nN/HE8ifo17Afb978ZoX9Bzmeks38zYnMjU0gMTmbIF8vBrStz30dIivtQH5JrZAeMWFcVzcIjyrc3edulFJ8f+h7Jv7yZ87a8hgafSdP3/Tncl0c7A6MoDjACEoxLHsV1n8IQ2ZAy0F8vP1jJm+bzIQbJzC42WB3W3dZbDbFr/FnmRubcH4gP9DXi+bhgcSEB9I8POj8fqBvxXibLyi0kZiczcGkDOKTMjmYlMGu46nsOpYGmFZIRWV/8n7e3vQ2G05s4LrcXP4acQct+73vbrPKBSMoDjCCUgyF+fBZPzj9G4xaTWFwQ8asGMPGkxv5v1v+j14NernbQqdIzc5n6a4T7DyWyt4T6cSdTCc9t+B8ev2afrSoq8UlJjyIFuGBNAzxx6uMBrBTs/I5eOaCaMQnZXAwKZMjZzPJL7zwfxfs70PTsAC6NQ0xrZAKSEpOCpO3TWbevnlU967O0xkF3JeWjudTm6Ba1YgLYwTFAUZQLkNqInzcDYLqwRMryMTGqB9GsefMHt7t8S49o3q628IrRinFsZRs4k6ms9fa4k6mcTApk0Kb/t37eHrQJCzgfCumdkA1h+VccszB9VKz8ok/o0UjPimDMxl559O8PIQGtavTKDSAxqEBNAr1p3GoP41CAsx06ApKvi2fuXFz+WjbR2TkZ3Bfs/sYZwuk5vK/aE/CrSp2692VGEFxgBGUEti/AmbdCzc8DAM+JD0vnVHLR7E3eS/v93yf7hHd3W2hS8gtKOTg6Uz2nkyzE5s0TqXllnxyCQT7+9AoxP+8aGgB8ScyuLqZyluJWHd8He9sfIeDqQfpXLczL9XvS7Pt82HfUojuBo8t1n67qghGUBxgBMUJVv4D1kyEgf+Btg+SlpfGyOUj2Z+8n0m3TrpmFmo5IiUrj/ScgpIzWlz8PPH38TKtjUrOkbQj/GvTv1iduJqIgAjG172Vnr8tRxI2gl8wdH4SujwJvlXLQ3aFFhQRGQJMAFoAnZRSDp/yIjIduAs4rZRqZXd8ItAfyAMOAsOVUiklXdcIihPYCuHzAZAYCyNXQp3rSM1N5YnlTxCfEs+HvT7kxno3uttKg8GlZORl8OmOT5n520x8PHwYHdKJhw9swCcpDmpGwY1P65a7T8WaSl9eOCso7mqD7wLuAdaUkG8GcLuD4z8ArZRSrYF9wJ9cal1VxsMTBk8D3yCYPRRSEqhRrQaf3vYpDWo04JmVz7DxxEZ3W2kwuIRCWyEL9i/gzoV3MmP3DO4KaMyS0+mMWP85Ph7ecM9UeHordB5VZcXkSnCLoCilflNKxTmRbw1wSdwVpdRypdTvfRO/AhEuNrFqE1gHHpgN2Skw405IOUot31pM7TOViMAInlr5FLEnTUvPULnZfGozDyx5gNfWvUaUTZh9Jp3Xt/9ASK1G8NBX8OQv2k2RZ+X0EOwOroVRwhHA9+424pqjfnt4dGERUQn2DWZKnymE+4cz9sexbD291d1WGgxXzImME4z/aTzDlg7jXEo875xJ5fO4bbSM6ApP/AjDvoWmvavUoLurKDNBEZEVIrLLwTbAhdd4FSgAZl0mzygRiRWR2KSkJFddumpQvz08+jVkp54XlRC/EKb1mUad6nUYs2IM25O2u9tKg8EpUnJSeDf2XfovvJPVh5czJiWNxUeOcEfTAchTm+D+LyCixGECw2Vw6ywvEVkNvFjcoLyVJxr41n5Q3jo+DBgN9FJKZV165qWYQfmr5NgWmDlQz2x57Fuo1YBTmacYvmw4yTnJTOkzhVYhrUoux2BwA1n5WXzx2xd8tuszMvMz6J+eyVOZ+dRtNxw6j4Gguu42scJT0QflS4WI3A68BNztrJgYSkH9dvDoN5CTCjPuguQj1PGvw/S+06lRrQajfhjF7rO73W2lwVCE/MJ8Zu+dTb8F/Zi0dRId8wr4KvEEb0TcQd1ndsJtfzdi4mLcIigiMkhEEoEbgSUissw6Xk9EvrPLNxtYD8SISKKIPG4lfQgEAj+IyDYR+bicq1D1qHeDFpXcC6IS7h/O9L7TCfQO1Asgz+11t5UGAzZl49v4b+n/dX/e3PAm0d5BzDybyQfHj9O0/0cwcDL41XS3mdckZmGj4co4vhU+HwjVgvTgZa0GJKQnMGLZCHIKcpjWdxrNajVzt5WGKohSip+P/cz7W95nX/I+mteK4VlVg65b5yPhrbXz09qN3W1mpeSa7vIyuJHzLZU0PVCffJjIwEim9ZmGj4cPI5eP5EDyAXdbaahibDm1hWFLhzHux3FkF2TzTrsX+PJkEjdvnY90Gg1PrDBiUg6YForh6ji+Ta+orxao/RoFN+Rw6mGGLxuOUorpt0+nUY1G7rbScI0Tdy6OSVsn8VPiT4T4hTCmzRgG5YH34ufBwwMGTIYW/d1tZqXHtFAMZUu9tlZLJR3+2x/OHSK6RjTT+k4DYPjS4Ww4scHNRhquVRLSE/jjz39kyOIhbDm9hefaPcd3/Rdw3761eH81EsJa6IWJRkzKFdNCMZSOE9t1S8XbX4+pBDckPiWeZ1c9y5G0IzzZ5klGtx6Np8e1E57X4D6OpB1h+q7pLDq4CC/x4qEWDzG81XBqpJ6A+cPh9B64+Q/Q81XwNIHJXEWFdg7pLoyglBFFRGUxBDciKz+LNza8waKDi+gY3pG3ur1FWPUwd1tqqKTEnYtj6s6pLD+yHG8PbwY1GcTI1iMJ8wuFrV/Ad+PBxx/u+QSa9Ha3udccRlAcYASlDDmxAz6/G7yrWy0VPX7yzYFveGPDG/h6+vJmtze5uf7NbjbUUJnYdnobU3ZOYU3iGvy9/RkaM5SHr3uYEL8Q3d367fOwcy407A73TIHAcHebfE1iBMUBRlDKmGJEJT4lnhfXvMj+5P2MaDWCp254Cm8P0x1hcIxSivXH1zNl5xRiT8VSs1pNHrnuEYY2H0qQT5DOdGI7zBsOyYegx5+g2wvaU7ahTDCC4gAjKOXAyZ16kP4iUckpyOGdTe8wb9882oS24Z3u71AvoJ6bjTVUJGzKxsqjK5mycwp7zu4hrHoYw1oOY3DTwVT3tnMdf/RX/RurHgKDp0L0tRv0raJgBMUBRlDKifOi4g/Dl0Ct6PNJSw8tZcL6CXiKJ693fZ1bo251n52GCkG+LZ/vD33PtJ3TiE+NJyowihGtRtC/cX98PC+KgGkrhE9ugZwUGPUT+Nd2j9FVDDNt2OA+wq/XU4rzrCnFKUfPJ93e8Hbm3TWPiMAInl31LG9vfJu8wjw3GmtwFzkFOczZO4e7FtzFq7+8ipeHFxO7T2TRwEUMbjb4UjEB2PI5nNoJfV43YlIBMS0UQ9lxbIt201K9FgxbAjUuxEHLK8zjvc3v8cVvX9AiuAX/uuVfRAVFudFYQ3mRlJXEV/u/Ys7eOZzNOUub0DaMaj2KbvW7IZeLQZKdApPaQUgMDP/OxCspR0yXlwOMoLiBxM3a9b1/iBaVoKLjJiuPruQva/9CoSpkwo0TuL2ho4jPhgpJ8hFQNghuWGJWpRSbTm7iy7gvWXl0JQWqgK71uvL49Y/ToU6HywvJ7yx9BX79CEb/BHXbuKACBmcxguIAIyhuImEjzBykp3QOW3LJ1M4TGScYv2Y825O2c2+ze3m548v4evm6yViDU+Rnw6T2UJADY9brsNEOSMtLY/HBxcyNm0t8ajxBPkEMajKIITFDaBDUwPnrndkPH3WBtg/B3R+4qBIGZzGC4gAjKG7k6K8w8x6oUV+LSkDRRY75tnwmb53MtF3TaFKzCS93epnO4Z2de3M1lD9rP4Af/gIeXtD4VnhwbpEuqD1n9zA3bi7fHfqO7IJsrg+5nvtj7qdvdN+re1mYNUT/hp7eAgGhLqyIwRmMoDjACIqbObwWZt0LNaN05EcHD4Zfjv3ChHUTOJV1ivZ12jOu7Tg6hnd0g7GGYslOgffb6HC5TW6DpS/DXe+R0/ZBlh1exty4uew4swNfT1/ubHQn98Xcx3W1r7v66+1bDv8bAn3egJuecl09DE5jBMUBRlAqAId+1m+bwY20l2IHM3VyC3P5at9XTN05laTsJDqFd2Js27G0r9PeDQYbLmHFBPjlPRj9M9RpxdGZ/Zmbvpevg8NIzc8gOiiaoc2H0r9x/wsLEa+Wgjz4z02A0l1rXg5mfhnKHCMoDjCCUkGIXw3/ux9qN4XHFkH1YIfZcgpymL9vPlN3TuVszlm61O3CuLbjaBvWtnztNVwg7Th80I7s5v1Y0+F+FuxfwLrj6/BSip6qGkP7TKJjvRtd11W5fjIse0V3qTXr65oyDVeMERQHGEGpQBz4EWY/AKExWlT8ahWbNbsgm7lxc5m+azrncs7RtV5XxrYdS+vQ1uVosCGnIIdfvh7OstOb+CmoJtmFuYRVD2NIsyEMtvkR+s0zcMsfoeefXHPBzDPwQTuI7AgPzTfThN2IERQHGEGpYOz/AeY8CHVawiNflxjnOys/izlxc/hs12ek5KbQPaI7Y9uOpWXtlhcyFRaAp1cZG151yCnIYe2xtSw7vIzVCavILswhWHzo3XQgfaP70r5O+wuhCRaMgp3z4fHlenyltCx+DrbOhDHr9IuHwW0YQXGAEZQKSNxS+PJhqNsaHlkIvjVKPCUzP5PZe2fz2a7PSMtLo0fN5oz1CKXFiT3aQWVguH6gRXTUW9224F0BpyGnn4SEDXpaddZZ6PcvqBbgbqvILcy1E5HVZBVkUataLXoVCH1PHabDyA14BTnw6puTCv/pCp4+8OTP2p381XJiB3zSHbqMgdv/efXlGFyCERQHGEGpoOxdAnMfhXrt4JEFOqywI2w2OLsfjq6Ho7+ScXQ9s9Q5/hsURLqnB72UH2NCuxCTnQmJmyDliD7Pw1u7g/ldYCI7Qs0G5duFYivUwZ8SNsDRDfrv7/Z5VoPCPGj7IAz8qPxssiOvMI+1x9ay/MhyViWsIjM/k5rVatIrqhd9o/vSscADr+l9oMcr0OPl4gs6/AvMuAvaD4P+/746Y5TSZST9Bk9vvmx3qKF8MILiACMoFZg9i2DeMIjspPvLqwVAQS4c32oJyAZI+BWyk3X+6iEQ1QWiupBWtw2zknfw+d5ZZORn0Ca0DT0je9Kzdmsapp5CjsVCYiwc2wz5Wfp8/1BLYDpARCeod4NrWwc5aVrUEjZq8UiM1b7NAALqQGRnbX9kZwhvDWsmwpp34J6p0HqI6+y4DKm5qcSeiuXHIz+yKmEVGfkZBPkE0btBb/o26EvHuh11mIHfH/Bn4uCZbSV/T8v/DOsmXf1A+u6vYd5jcOe70PHxq6ucwaUYQXGAEZQKzu6FMP9xPabiXV2LSWGuTqvdFKI6Q9SNENkFaje+pIWRmpvK3Li5rDi6gj1n9wAQFRhFj8ge9IjswQ21r8frzD79oE+MhcSNcPaAPlk8IKylXiPj5QNevrrrxsv3wmevaro1YX/MPk/mWS16CRvh1G5AXSg3qrMWj8hOjltHhQUw40593pNrzrv9dyVns8+y5fQWYk/GEnsqlv3J+1EognyCzrdEOtXtdGmsmv0/6PVDd0yEzqNKvlBBLky5FTJOw9j12u2Os+Rnw+ROUC0IRq8xMU4qCEZQHGAEpRKwc76eJlozynqD162QK3ooASczT7ImcQ2rElax4cQG8m35BPkE0T2iOz0je9K1flf8vf0h65xuuSRu0ltGknYnUpirH4zntxzAif8Vn0DdpRZpCUj99uDr5FqMlKPw8c0Q3BhGLCv1movTWaeJPRnL5lObiT0VS3xqPAB+Xn60CW1D+zrt6VCnA21C2+BdXPx1mw0+6QZ5GTBuk/M2ndoNn/bQCx+HznK+e3HNRFj5D71GqWF3584xlDlGUBxgBKVqkpmfyfrj61mVsIo1iWtIyU3B28ObTuGdzrdewv1LCB2rFNgKLghMoSUyBXmWAOWBT4CejVSat+o93+jxpK7Pwm1/v6JTj2ccJ/aUJSAnYzmarsMG+Hv7c0PYDXSo04H2ddrTsnbL4gXkYrZ/CQtHweBpcP29V1aXdZN099fdk6DdoyXnTzuu/YM16Q33z7yyaxnKFCMoDjCCYii0FbItaRurE1azKmEVR9L0wHiL4Bb0jOxJ27C2RARGEO4f7r4wxYufg82fwcMLoEmvS5JTc1NJSE8gIT2Bo2lHOZR2iK2ntnI88zgAQT5BtKvTjg51OtAhvAMxtWLw8riKqdQFufBhB/CtqYNZeVxh+CSbTYeEPrYFxvxScjfeglF6/OSpjUWCshncjxEUBxhBMVzModRDrE5YzeqE1Ww9vRVldWt5iifh/uFEBEYQGRhJREAEEYHWFhBBjWolT2++WlReFmem9uBoXgoJvf/M0bwUEtMTOZp+lIT0BNLy0orkD6seVqQLq2mtpniIC2Ln/fqx9tNVjLA5RUqCnkoc1hyGfVf8GqGEjTDtNh0bvtdfr95mQ5lgBMUBRlAMlyM5J5kDKQdITE8kMSOxyN9zOeeK5A30CbxEZGr71qZQFV7YbIXYlI0CVYDNZjt/3KZsFNgKLqQpG1n5WSSmJ5KQkUBieiLZBdnnr+UpntT1r0tkYCRRQVFEBkae3yICI/Dz8nP9l5GTBh+0hTqtdPTN0kyx3jEXFoyEW/8M3cdfmm6zwdReusvr6c0VYi2OoSjOCopZUmwwWNTyrUXH8I4OvRtn5mcWFRprf3/yflYnrCbfll+qa1fzrEb9gPpEBUbRObyzFo4Tu4la+x/q9vwr3l2fLVX5V8z6D/Viy94TSr9e5/ohEPc9rH5Lj4/Uu6Fo+o4v4fgWGPSJEZNKjhEUg8EJ/L39iQmOISb4UhcgNmXjdNZpUnJT8BRPvXl44iEeeIkXHuKBp4c+7iEeeHlYx+TCMYfOFGMUnDoEP74O0d2gfrtyqCl6uu+6D6HlINdcUwTuelfHM1kwSo/H+FTXabnp2ntx/Q5w/X2lv5bBrRhBMRhKiYd4EO4fXvJMsStFRM+Q+rgbzB+h3ZkU50XAlfz0jp7FdutfXFemXy3tBWDmQFjxGvSbqI///C5knNRTi6900N9Q4XDLHRSRISKyW0RsIlJsv5yITBeR0yKyq5j0F0REiciVLVIwGCoL1YNh8BTtpmXJC2V/vbMH9Qyzdo/pxaOupHFP6DwGNn4KB1bAuUO6a631UNc4kzS4HXe9EuwC7gHWlJBvBnC7owQRiQT6AEddapnBUNFocBPc8rIea9g+p2yvteoNvfr/lsv46yoNvV+D0Obw9ThY8rz2s9b7tbK5lqHccYugKKV+U0rFOZFvDXCumOT3gJdwavmywVDJ6T4eGnSFb5/XrYiy4Pg22PUV3DgOAuuUzTW8/eCeT/WA/8GV0O15CKpXNtcylDuVstNSRAYAx5RS253IO0pEYkUkNikpqRysMxjKAA9P/SD29Ib5w/UKfVezYgL4BcNNz7i+bHvqtoE73oZGPeBGEyP+WqLMBEVEVojILgfbgFKWWx14BXBq9ZNS6lOlVAelVIfQ0NDSXNpgcC81ImDAZDixHX78m2vLPrgK4ldB9xed9z1WGjo+rte3VMQ4NYarpsxmeSmlepdR0Y2BhsB2a6plBLBFRDoppU6W0TUNhopBi7ug4xN6MLtRD2h6W+nLtNl066RGlC7bYLhKKl2Xl1Jqp1IqTCkVrZSKBhKBdkZMDFWGPv/QLvEXPqmjPpaWPV/DiW3Q8xXtot9guErcNW14kIgkAjcCS0RkmXW8noh8Z5dvNrAeiBGRRBEx0XYMBm8/uHc65GXCwtG6hXG1FObDyte1QLU2CwsNpcMtCxuVUguBhQ6OHwf62X1+wImyol1qnMFQGQhrDne8BYufhXXvw81/uLLzlQJlg80z4Fy8jq5oglkZSolZKW8wVFbaPaan3v74OmyZCapQt1ZUoY5hbyso/piya9U06ApN+7ivHoZrBiMoBkNlRQT6fwDVQyA7WbcwPLxAPLUbk/P7nhf+nt/30vue3tDmgdI7gDQYMIJiMFRu/Gpqx4sGQwWg0s3yMhgMBkPFxAiKwWAwGFyCERSDwWAwuAQjKAaDwWBwCUZQDAaDweASjKAYDAaDwSUYQTEYDAaDSzCCYjAYDAaXIEpVnYCHIpIEHLnK00OAMy40pzJg6lw1MHWuGpSmzg2UUiUGlKpSglIaRCRWKdXB3XaUJ6bOVQNT56pBedTZdHkZDAaDwSUYQTEYDAaDSzCC4jyfutsAN2DqXDUwda4alHmdzRiKwWAwGFyCaaEYDAaDwSUYQTEYDAaDSzCCchEicruIxInIARH5o4P0YSKSJCLbrO0Jd9jpSkqqs5XnPhHZIyK7ReR/5W2jq3HiPr9nd4/3iUiKO+x0JU7UOUpEVonIVhHZISL93GGnq3Civg1E5EerrqtFJMIddroSEZkuIqdFZFcx6SIiH1jfyQ4RaedSA5RSZrM2wBM4CDQCfIDtwHUX5RkGfOhuW8u5zk2BrUAt63OYu+0u6zpflP9pYLq77S6H+/wpMMbavw447G67y7i+84DHrP1bgZnuttsF9e4OtAN2FZPeD/geEKALsMGV1zctlKJ0Ag4opeKVUnnAHGCAm20qa5yp80hgslIqGUApdbqcbXQ1V3qfHwBml4tlZYczdVZAkLVfAzhejva5Gmfqex2w0tpf5SC90qGUWgOcu0yWAcDnSvMrUFNE6rrq+kZQilIfSLD7nGgdu5jBVnNxvohElo9pZYYzdW4GNBORtSLyq4jcXm7WlQ3O3mdEpAHQkAsPnsqKM3WeADwsIonAd+iWWWXFmfpuB+6x9gcBgSJSuxxscydO//avBiMoV85iIFop1Rr4Afivm+0pD7zQ3V490G/rU0SkplstKj+GAvOVUoXuNqQceACYoZSKQHeNzBSRa/kZ8SJwi4hsBW4BjgFV4T6XGdfyj+VqOAbYtzgirGPnUUqdVUrlWh+nAu3LybayosQ6o99iFiml8pVSh4B9aIGprDhT598ZSuXv7gLn6vw4MBdAKbUe8EU7FKyMOPO/fFwpdY9S6gbgVetYpZ98UQJX8tu/YoygFGUT0FREGoqID/phssg+w0X9jXcDv5WjfWVBiXUGvka3ThCREHQXWHx5GulinKkzItIcqAWsL2f7ygJn6nwU6AUgIi3QgpJUrla6Dmf+l0PsWmB/AqaXs43uYBHwqDXbqwuQqpQ64arCvVxV0LWAUqpARJ4ClqFniUxXSu0Wkb8DsUqpRcAzInI3UIAe/BrmNoNdgJN1Xgb0EZE96C6B8Uqps+6zunQ4WWfQD6E5ypoeU5lxss4voLsz/4AeoB9WWevuZH17AP8UEQWsAca5zWAXISKz0fUKscbCXgO8AZRSH6PHxvoBB4AsYLhLr19Jfy8Gg8FgqGCYLi+DwWAwuAQjKAaDwWBwCUZQDAaDweASjKAYDAaDwSUYQTEYDAaDSzCCYnAJIpLhRJ7nRKS6C685UESuc2F560pxbob1t56IzL9MvpoiMvZqr1NarPUHK0UkyO7YQBFR1robV18vWkQedHW5duU/JSIjyqp8w5VhBMVQnjwHXJGgiIjnZZIHoh38uQSl1E0uKOO4Uurey2SpCbhNUNBrELYrpdLsjj0A/GL9dTXRgENBERFXrIObTuX2OXZNYQTF4FJEpIcVW2K+iOwVkVnWW/EzQD1glYissvL2EZH1IrJFROaJSIB1/LCIvC0iW4AhIjJSRDaJyHYR+UpEqovITWhPBRNFxyxpLCJtLeeVO0RkoYjUsspbLTq+SayI/CYiHUVkgYjsF5F/2NmeYbf/sojstK75loN6NrRs33lRGdFixaIQkZYistGyb4eINAXeAhpbxyaKSIDomBxbrLIG2JXzm4hMER2DZrmI+FlpTURkhWXbFhFpbB0fb31PO0Tkb8XcooeAb+zsDQBuRrtdGVrSfbTS+lnHNouOrfGtdfwWuRBDZquIBFr17WYd+4PoeEKLRGQl8KP125goIrus+t9vd/2fROQbEYkXkbdE5CHr+9z5e52VUlnAYRHpdLnfpaGccLf/frNdGxuQYf3tAaSifQR5oN2W3GylHQZCrP0Q9Opkf+vzy8Bf7fK9ZFd2bbv9fwBPW/szgHvt0nYAt1j7fwf+be2vBt629p9Fu2WvC1RD+ymrfVEd7gDWAdWtz8EO6rsIeNTaH2d3bjRWLApgEvCQte8D+NmnW8e9gCC77+QAOlZFNNobQ1srbS7wsLW/ARhk7fuiW3190PFMxPrevwW6ZalNmwAAA+hJREFUO7D7CBBo9/khYJq1vw5of7n7aF0vAWho5ZsNfGvtLwa6WvsBVt16/J5uHR9mfefB1ufBaCernkAdtPuXutZ5KXb36RjwN7t7+G+7Ml8FXnD3/4DZTDwUQ9mwUSmVqJSyAdvQD8eL6YLurlorItuAx4AGdulf2u23EpGfRWQn+gHY8uLCRKQGUFMp9ZN16L/oYEO/87s7lZ3AbqXUCaWdfMZT1FkeQG/gM6XfflFKOYov0ZULTiNnOkgH/RB+RUReBhoopbId5BHgTRHZAaxAuxKvY6UdUkpts/Y3A9HWW399pdRCy7Ycy84+1rYV2AI0x7EDz2ClVLrd5wfQsUKw/tp3ezm6j82BeKWdhEJRx5lrgXet1mhNpVRBMd/LD3bf6c3AbKVUoVLqFPAT0NFK22R3nw4Cy63jOyn6mzqNbv0a3Izx5WUoC3Lt9gtx/DsT9IOluH77TLv9GcBApdR2ERmG5ajyKm2yXWSfrRj7nOGyfouUUv8TkQ3AncB3IjKaS51qPgSEolsG+SJyGN0KsLcZ9Pfod5nLCfBPpdQnJdhcICIeSimbiASjIxVeL9qflSegRGR8Mde/7PeklHpLRJagx2nWikjfYrJmFnP8Yi6+T/b30N4WX8CRWBvKGdNCMZQn6UCgtf8r0FVEmgCIiL+INCvmvEDghIh4ox/Al5SnlEoFkkWkm5X2CPpt92r4ARgu1ow068F7MWu5MObwkIN0RKQR+m3+A/S4RWuKfgegIyOetsSkJ0VbaZdgtS4SRWSgdY1qlp3LgBFyYRyqvoiEOSgiDh0WF+BedNjbBkqpaKVUJHAI6ObgvCLni0i09fl+u/o2VkrtVEq9jfb229xBfS/mZ+B+EfEUkVB0q3LjZfI7ohngMIa6oXwxgmIoTz4FlorIKqVUEro/fbbV3bMe/QByxF/Q4wZrgb12x+cA460B4MbobrOJVnlt0eMoV4xSaim6iyzW6o570UG2Z4FxVjdccRHv7gN2WWW0QodePYt+e98lIhOBWUAHq5xHL6pfcTyC9nq9Az3uEa6UWg78D1hvlTUfxw/yJVxo4T0ALLwo/SsuM9vL6rYbi76Pm9GCkWolP2fVaweQj45dvgMotCYQ/MFBkQutPNvRUTFfUkqdvFzlHdAV/RJgcDPG27DBUIUQHc/nc6XUbaUoI0AplWHN+poM7FdKvecyI6/MlhuA55VSj7jj+oaimBaKwVCFUDqY0hSxW9h4FYy0Wl270V12JY3blCUh6BasoQJgWigGg8FgcAmmhWIwGAwGl2AExWAwGAwuwQiKwWAwGFyCERSDwWAwuAQjKAaDwWBwCf8P625HzHvJC4cAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -126,7 +121,7 @@ "pylab.xlabel('Interatomic distance (Angstrom)')\n", "pylab.ylabel('Energy (Hartree)')\n", "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { @@ -136,19 +131,9 @@ "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4lFX2wPHvSaeEEFqoIfQOAQKISBUEFRFQFGGlqGtZ2667tv3tKu6iq2vvHbGgIq4oICqCFOlNmvQSCDWQkEAI6ff3x30TJzFlAplMyvk8zzyZmbedeWcyZ2557xVjDEoppVRhfLwdgFJKqbJPk4VSSqkiabJQSilVJE0WSimliqTJQimlVJE0WSillCqSJgtVIkRkioh84twPF5EkEfF1HoeJyDIROSsiz4v1gYicFpG13o38wonIKBGJcV5rV2/HU9bk/RyUNa6fWVU0TRZeJiLRInLe+afKvr3m7bguhjHmkDGmujEm03nqduAUUMMY81fgMmAI0NgY09NbcZaA54B7nNf6S2kfXESMiJzL89l5yIPHmyQiy/M8N11E0vLEsBny/RyocszP2wEoAK4xxiz05AFExM8Yk+HJYxSiKbDd/HYFaFMg2hhzrrg78vLryKsp8Gt+C0oxzi7GmL2lcJzC/NcY8w8vx1BmiIhvRUyQWrIow7J/yYnIc06VzQERudJleYiIvC8ix0TkiIhMdan6mSQiK0TkRRGJA6aIiK9TDXTK2dc9zq9TPxEZIyIb8hz/ARH5poDYmonIUqdq6UegjsuyCJf9TgcmAg85vzrvAN4DejuPn3C2GS4im0QkQURWikhnl/1Fi8jDIrIFOOfst6GI/E9ETjqv5T6X9aeIyBci8pET368iEuWyvImIfOVsG+dakhORW0Rkh3O+fxCRpvm89kARSQJ8gc0isq+QONuJyBLndf0qIiNc9jNdRN4Qke+cc7FCROqLyEvO8XdeaPWWiMwXkeddHn8uItOc+y1E5CfntZ8SkRkiUrOw8yMi7YC3XN63BDdiyPkcOI+byW/VkQtF5HVxqQYSkUuc9z5BRDaLyACXZUtE5N/OOTorIgtEpI6zLEhEPnFiTRCRdSIS5ixrKCJzRCReRPaKyB8LiPU7Ebknz3ObRWS0c7+tiPzo7GeXiNzgst50EXnTOefngIFFnZtyyRijNy/egGhgcAHLJgHpwB+xX0x3AUcBcZbPBt4GqgH1gLXAHS7bZgD3YkuQVYA7ge1AYyAUWAgYZ3kgEA+0czn+L8B1BcS2CnjB2a4fcBb4xFkWkb1f5/F0YGqe17Xc5XFXIBbo5bzOic55CXQ5R5uAJs7r8AE2AI8BAUBzYD8w1Fl/CpACXOXs7z/AameZL7AZeNE5b0HAZc6ya4G9QDvnnPwDWFnIe2eAlnneS9c4/Z39/d2Jc5Bzntq4nJdTQHcnjp+AA8AEJ86pwGJ3j59nWX3nnA4CxjvnJ9hZ1hJbDRgI1AWWAS+5cX5yvW/5vbd5luX9HKzCVt0FYKsiz/DbZ6YREOe8Zz5OfHFAXWf5EmAf0No5t0uAp51ldwBzgapO/N2xVZ44r+0N53VEAieBQS6fk+zjTwBWuMTeHkhwzlE1IAaY7HwuujrvW3uXc5AI9HFiD/L294pHvqu8HUBlvzlfMEnOBzP79kdn2SRgr8u6VZ1/vvpAGJAKVHFZflP2l4uz7aE8x/oJJ5k4jwfn+Wd+E3jSud8BOI3zhZ1nP+HYRFTN5blPufBk8Sbw7zzH2AX0dzlHt7gs65XPa3sU+MC5PwVY6LKsPXDeud/b+cLwy+d1fQfc6vLYB0gGmhbw3uWXLFzj7AscB3xcnvsMmOJyXt51WXYvsMPlcScgoZDPjsF+4bp+doa6LL8O+yV3CucLv4D9jAR+ceP85HrfXF5DSp4YPsz7OXD5zFR12fYTl8/Mw8DHefb9AzDRub8E+IfLsj8B3zv3bwFWAp3zbN8EyMRJks5z/wGmu3xOso8fDJzLfq+BJ4Fpzv0bgZ/z7Ptt4HGXc/DRxXwPlIebVkOVDSONMTVdbu+6LDuefccYk+zcrY6tL/cHjjlF7wTsB7iey7YxeY7TMM9zeZd/CIwTEQFuBr4wxqTmE29D4LTJ3eZwsPCXWKimwF+zX4fzWpo4x8kv1qZAwzzr/x2bQLMdd7mfDAQ51SFNgIMm//aEpsDLLvuMBwT7q9ddrnE2BGKMMVkuzx3Ms78TLvfP5/O4ehHH65bns/ODy7K52F/au4wxOQ3TYnunfS626vIM9ks7uxqxsPNTkOfyxDAxn3UaAvEun2H4/Xs6Js97ehnQwGWdvO9p9rn5GJtYPheRoyLyXxHxdznmWZft8p5/AJx1vgXGOk/dBMxwia1XntjGY3+05fdaKiRt4C6/YrAlizqF/GPnHVL4GLYKKluTXCsbs1pE0rC/iMc5t/wcA0JFpJpLwgjP53juisGWaJ4sZB3XfccAB4wxrS7wWOGSfwN0dhwz8tnOXa5xHgWaiIiPS8IIB3ZfxP6L40lgB9BMRG4yxnzmPP+UE2cnY0y8iIwEstttCjs/FzNE9TGglohUdUkYrp+/GGzJIt82hcIYY9KBJ4AnRCQCmI8tmS5wjhnskjDCgSMF7Ooz4HERWYattlrsEttSY8yQwsIobtzljZYsyiljzDHsP8PzIlJDRHychsv+hWz2BXC/iDRyGjQfzmedj7BfHOmuv0bzHPsgsB77zxkgIpcB11zEy3kXuFNEeolVTUSuFpHgAtZfC5wV25hcRWzDfUcR6eHGsdZiv7iedo4TJCJ9nGVvAY+KSAfI6UAw5iJe1xrsL+CHRMTfabC9Bvj8IvbpFhHph61jn4BtA3pVRLJ/UQdjqz4TnecedNm0sPNzAmgsIgHFjcflMzPF+cz0Jvdn5hPgGhEZ6ryfQSIyQEQa57vD3K91oIh0Etu54wy2nS/LGBODrZ76j7O/zsCtzrHyMx9bivgXMNMlwc8DWovIzc776C8iPcQ2+lcamizKhrmSu5/6bDe3m4BtLNyObV/4ktzF9rzexSaYLdjG6/nYemTXbn4fAx0p+B8q2zhs20E88Dg2yVwQY8x6bCP+a9jXsRdbP17Q+pnAcGyD5QFsnfx7QIgbx8rEfkm1BA4Bh7F10hhjZgPPYKszzgDbgCsL2FWRjDFpzrGudGJ8A5hgjNl5ofvMx+Y8n52XRKQG9v24xxhzxBjzM/A+8IFTxfgE0A3bKPst8JVLzAWeH2yb16/AcRE55RLDQ3licF3majy2TSQO23g/E1s6xvlivxZbnXgS+2v+Qdz7jqqP/eyfwZaklmI/x2CrkyKwpbzZ2HaGfLupO1WuX2Hb8j51ef4scAW2iuootjrsGWzjd6WR3atGVUJiu+G+ZYxp6vJcFWwvmm7GmD1eC05VeCIyE9hpjHnc27GoomnJohJxqmyuEtv/vxG2RJC3FHMXsE4ThSppTtVNC6fKdBi2JPG1t+NS7tEG7soluwpiJranzbfYaxXsQpFoZ52R3ghOVXj1sdU8tbHVW3cZLwyToi6MVkMppZQqklZDKaWUKlKFqYaqU6eOiYiI8HYYSilVrmzYsOGUMaZuUetVmGQRERHB+vXrvR2GUkqVKyLi1ugLWg2llFKqSJoslFJKFUmThVJKqSJVmDaL/KSnp3P48GFSUlK8HYpSqgQEBQXRuHFj/P39vR1KpVOhk8Xhw4cJDg4mIiICOySOUqq8MsYQFxfH4cOHadasmbfDqXQqdDVUSkoKtWvX1kShVAUgItSuXVtrCrykQicLQBOFUhWI/j97T4VPFkopVVFlZGbx2dpD/PDr8aJXvkiaLDysevXcs2JOnz6de+65p1j72LRpE/Pnzy/JsHKZPn06devWJTIyksjISCZMmFDsfSxZsoThw4d7IDqlVF5ZWYa5m48y5MVlPPrVVuZuPurxY1boBu6KICMjg02bNrF+/XquuuqqfJf7+V3823jjjTfy2muvFb2iUsprjDEs2X2SZ7/fxfZjZ2gTFsy7E6IY3K6ex4+tycKL5s6dy9SpU0lLS6N27drMmDGDsLAwpkyZwr59+9i/fz/h4eGsWLGC8+fPs3z5ch599FF27NiRa/knn3zCI488wpIlS0hNTeXuu+/mjjvuAODZZ5/liy++IDU1lVGjRvHEE0+4Hd+mTZu48847SU5OpkWLFkybNo3Q0FD27t3LnXfeycmTJ/H19WXWrFm5tlu3bh233347X375JS1atCjRc6ZUZbU+Op7/fr+LtdHxNKlVhRdv7MKILo3w9SmddpxKkyyemPsr24+eKdF9tm9Yg8ev6VDoOufPnycyMjLncXx8PCNGjADgsssuY/Xq1YgI7733Hv/97395/vnnAdi+fTvLly+nSpUqTJ8+nfXr1+f88p8yZUqu5e+88w4hISGsW7eO1NRU+vTpwxVXXMGePXvYs2cPa9euxRjDiBEjWLZsGf369ftdnDNnzmT5cjvl9v3338/kyZOZMGECr776Kv379+exxx7jiSee4KWXXmL8+PE88sgjjBo1ipSUFLKysoiJiQFg5cqV3HvvvXzzzTeEh4df/ElWqpLbfvQMzy3YxU87Y6kbHMi/r+3AjT3CCfAr3VaESpMsvKVKlSps2rQp53H2Fz/Y60BuvPFGjh07RlpaWq6+4yNGjKBKlSoF7td1+YIFC9iyZQtffvklAImJiezZs4cFCxawYMECunbtCkBSUhJ79uzJN1nkrYZKTEwkISGB/v37AzBx4kTGjBnD2bNnOXLkCKNGjQLsRVLZduzYwe23386CBQto2LBh8U6UUiqX6FPneOHH3czZfJQaQX48NKwNky6NoGqAd762K02yKKoE4A333nsvDzzwACNGjGDJkiVMmTIlZ1m1atUK3dZ1uTGGV199laFDh+Za54cffuDRRx/NqZLK9vrrr/Puu+8ClGjDeYMGDUhJSeGXX37RZKHUBTqemMIrP+3hi3Ux+Pv68KcBLbijXwtCqnr3qnXtDeVFiYmJNGrUCIAPP/ywwPWCg4M5e/ZsgcuHDh3Km2++SXp6OgC7d+/m3LlzDB06lGnTppGUlATAkSNHiI2N5e6772bTpk1s2rSpwC/1kJAQQkND+fnnnwH4+OOP6d+/P8HBwTRu3Jivv7ZTJ6emppKcnAxAzZo1+fbbb3n00UdZsmRJ8U6GUpXc6XNp/Gf+Dvo/u5hZ62MY1yucpQ8N4KFhbb2eKKASlSzKoilTpjBmzBhCQ0MZNGgQBw4cyHe9gQMH8vTTTxMZGcmjjz76u+W33XYb0dHRdOvWDWMMdevW5euvv+aKK65gx44d9O7dG7DdeD/55BPq1XOv58SHH36Y08DdvHlzPvjgA8AmjjvuuIPHHnsMf3//XA3cYWFhzJs3jyuvvJJp06bRq1ev4p4WpSqVsynpTF8RzTvL9pOUlsGoyEb8ZUhrmtSq6u3Qcqkwc3BHRUWZvJMf7dixg3bt2nkpIqWUJ1SU/+uk1Aw+XBnNuz/vJyE5nSHtw/jbFW1oUz+4VOMQkQ3GmKii1tOShVJKlaJzqRl8tOog7yzbx+nkdAa1rcefB7eic+Oa3g6tUJoslFKqFCSnZfDxqoO8vWw/8efS6N+6Ln8Z0prIJmU7SWTTZKGUUh50Pi2TT1Yf5O1l+ziVlEbfVnX48+DWdG8a6u3QikWThVJKeUBKeiYz1hzizSX7OJWUymUt6/CXIa3o3rSWt0O7IJoslFKqBKWkZ/LZWpskYs+m0rt5bd4Y342ezcpnksimyUIppUpASnomM9fF8MaSvZw4k0qvZrV45aauXNK8trdDKxGaLJRS6iKkpGfy+dpDvLV0P8fPpNAzohYv3hjJpS3qeDu0EqVXcJeCrKwshg8fTqdOnXIG3Js0aZLXrnKeMmUK06dPL3SdJUuWMGnSJKKjo2ncuDFZWVm5lkdGRrJmzRoA3nnnHdq2bUvbtm2JiorK9boGDBhAmzZtcubKuP76692OYfr06bmGQCltTz31lNeOXZgBAwaQ95qi/NaJjo4udB133oMLERERwalTpwC49NJLi1w32wMPPEC7du1YvHhxicfkCUmpGby1dB+XPfMTU+Zup0mtKnxyay9m3nFJhUsUoCWLUrF161ZiY2PZunWrt0MptoiICMLDw/n5559zBhXcuXMnZ8+epVevXsybN4+3336b5cuXU6dOHTZu3MiIESNYs2ZNzlAmM2bMICqqyGt+Sl1Rc4E89dRT/P3vf3d7f8YYjDH4+OhvsGwrV650e90XXniBnj17Mm3aNAYOHOjBqC5OYnI6H6w8wAcrokk8n07fVnW4Z2BLelWQ6qaCVJ5P9XePwAdXl+ztu0fcOnRCQsLvhtgICQkhICAAsF/Ijz/+ON26daNTp07s3LkTgLVr19K7d2+6du3KpZdeyq5duwD7i3vkyJEMGTKEiIgIXnvtNV544QW6du3KJZdcQnx8PAD79u1j2LBhdO/enb59++bst3r16oWOaAsQEBBASEgIADfddBOff/55zrLPP/+csWPHAvDMM8/w7LPPUqeO/SXVrVs3Jk+ezOuvv17o/t2JoUqVKjkzDUZHRzNo0CA6d+7M5ZdfzqFDhwBbQrvzzjuJioqidevWzJs3D4DMzEwefPBBevToQefOnXn77bcBW2Lq27cvI0aMoH379gCMHDmS7t2706FDB9555x0AHnnkkZzh5cePHw/YL7OOHTvSsWNHXnrppZy42rRpw4QJE+jYsWNOyTG/1/vggw/SoUMHBg8ezNq1axkwYADNmzdnzpw5AKSkpDB58mQ6depE165dc35hnz9/nrFjx9KuXTtGjRrF+fPnc/a7YMECevfuTbdu3RgzZkzOOGC1atXC19fX7fdgwIAB3H///URGRtKxY0fWrl0LFP4ZdJ3xcfjw4fmWlLPfv2PHjtGvX7+c/WePOVa3bt1c69evX5+EhIRC4/aWU0mpPP3dTvo88xMvLdxDj4hafH13Hz6+tVeFTxTAb7+Gyvute/fuJq/t27f/9mD+w8ZMu6pkb/Mf/t0x87No0SJzzTXXFLi8adOm5pVXXjHGGPP666+bW2+91RhjTGJioklPTzfGGPPjjz+a0aNHG2OM+eCDD0yLFi3MmTNnTGxsrKlRo4Z58803jTHG/PnPfzYvvviiMcaYQYMGmd27dxtjjFm9erUZOHDg74795ptv5mxbkOPHj5v69evnxNK2bVuzdetWY4wxoaGhJiEhIdf6X3/9tbn22muNMcb079/ftG7d2nTp0sV06dLF/O1vfyv0WAUZPny4mT59ujHGmPfffz9n/xMnTjRDhw41mZmZZvfu3aZRo0bm/Pnz5u233zb//ve/jTHGpKSkmO7du5v9+/ebxYsXm6pVq5r9+/fn7DsuLs4YY0xycrLp0KGDOXXqlDHGmGrVquWss379etOxY0eTlJRkzp49a9q3b282btxoDhw4YETErFq1qtD4ATN//nxjjDEjR440Q4YMMWlpaWbTpk2mS5cuxhhjnnvuOTN58mRjjDE7duwwTZo0MefPnzfPP/98zvObN282vr6+Zt26debkyZOmb9++JikpyRhjzNNPP22eeOKJ3x371ltvNevWrSs0vv79+5vbbrvNGGPM0qVLTYcOHYwxhX8G77777pztr776arN48WJjjP08nzx5Mtc5fO6558zUqVONMcZkZGSYM2fO5BvH0qVLzZVXXllorLn+r0vB0YRk8/g320ybf8w3EY/MM3fP2GC2H00s1Rg8CVhv3PiOrTzVUFc+7bVDb9q0icaNGxe6zujRowHo3r07X331FWBHpZ04cSJ79uxBRHJGlQU7uGBwcDDBwcGEhIRwzTXXANCpUye2bNlCUlISK1euZMyYMTnbpKam/u64d955Z5Hxh4WF0bFjRxYtWkRYWBh+fn507Nix6BfuKIlqqFWrVuWcl5tvvpmHHnooZ9kNN9yAj48PrVq1onnz5uzcubPAOT4CAgLo2bNnrrlDXnnlFWbPng1ATEwMe/bsoXbt3L8Uly9fzqhRo3KGhh89ejQ///wzI0aMoGnTplxyySWFxh8QEMCwYcMA+x4FBgbi7+9Pp06dctoWli9fzr333gtA27Ztadq0Kbt372bZsmXcd999AHTu3JnOnTsDsHr1arZv306fPn0ASEtLyxk00tV7771X1OkFbAkSoF+/fpw5c4aEhATOnj1b4GewOHr06MEtt9xCeno6I0eOzDUhmKtGjRqxe/duUlJScs2V4g2H4pJ5c+k+vtwQgzEwsmsj7hrQghZ1q3s1Lm/xaLIQkWHAy4Av8J4x5uk8ywOBj4DuQBxwozEmWkR6Au9krwZMMcbM9mSsnjJu3DjmzZtXZGN2YGAgAL6+vmRkZADwz3/+k4EDBzJ79myio6MZMGDA79YH8PHxyXns4+NDRkYGWVlZ1KxZM9fESxcjuyoqLCws50sFoH379mzYsIFBgwblPLdhw4ZSbaMQkd89NgXM8bFkyZJcc4EsWbKEhQsXsmrVKqpWrcqAAQNISUkp1vGLmnsEwN/fPyfO/N6vC2GMYciQIXz22WcXtH1e+Z3Hgj6Dfn5+uTo9FHXO+vXrx7Jly/j222+ZNGkSDzzwABMmTPjdei1atKB9+/aEh4ezaNEiOnXqdPEvrJj2xp7ljcX7+GbzUXxFuLFHE+7o16LMjQJb2jzWZiEivsDrwJVAe+AmEWmfZ7VbgdPGmJbAi8AzzvPbgChjTCQwDHhbRMplKejTTz/l2WefzanjLg7X+S6K22ulRo0aNGvWLGf4cGMMmzdvLnYM2UaPHs38+fOZOXNmTnsFwEMPPcTDDz9MXFwcYEtRs2fP/t2ES4V57bXXcs3Sl59LL700p91kxowZ9O3bN2fZrFmzyMrKypmXvE2bNgXO8ZFXYmIioaGhVK1alZ07d7J69eqcZf7+/jnb9+3bl6+//prk5GTOnTvH7Nmzc8VQEvr27cuMGTNy4j106BBt2rShX79+fPrppwBs27aNLVu2AHDJJZewYsUK9u7dC8C5c+fYvXv3BR9/5syZgC3hhISEEBISUuBnMCIigk2bNuVMqZvdxlGQgwcPEhYWxh//+Eduu+02Nm7cmO96mzdvZv/+/Rw5cqTUE8W2I4n8acYGhry4jO+2HWfypRH8/PBApo7sVOkTBXi2ZNET2GuM2Q8gIp8D1wLbXda5Fpji3P8SeE1ExBiT7LJOEFCux1Fv06YNc+fOLfZ2Dz30EBMnTmTq1KlcffXVxd5+xowZ3HXXXUydOpX09HTGjh1Lly5dcq3z1ltvAUVXR9WsWZPevXtz/PhxmjdvnvP8iBEjOHr0KH369CEjI4Pjx4+zefPmXA2X48ePz2lIrVOnDgsXLsy17507d+ZUpRTk1VdfZfLkyTz77LPUrVs3Z24NgPDwcHr27MmZM2d46623CAoKKnCOj7yGDRvGW2+9Rbt27WjTpk2u6qTbb7+dzp07061bN2bMmMGkSZPo2bMnYOcQ6dq1a5HdU4vjT3/6E3fddRedOnXCz8+P6dOnExgYyF133cXkyZNp164d7dq1o3v37oBtHJ4+fTo33XRTThXj1KlTad26da793nbbbTmdAAoTFBRE165dSU9PZ9q0aUDBn8E+ffrQrFkz2rdvT7t27ejWrVuh+16yZAnPPvss/v7+VK9enY8++ijf9U6fPk1ERAT+/qUz2Y8xhuV7T/H20v0s33uK4EA/7h7Qklsua0atagGlEkO54U7DxoXcgOuxVU/Zj28GXsuzzjagscvjfUAd534v4FcgCRhVwDFuB9YD68PDw3/XcFPaDWEFWbNmjenZs6fJysrydigelZ6ebv7whz+YcePGFeu1Xn311SY1NfWCjjlx4kQza9asC9pW/aZ///5FNoKXhpkzZ5obbrih0HVK4v86PSPTfP3LYXPlS8tM04fnmR5TfzRvLdlrEs+nXfS+yxvKewO3MWYN0EFE2gEfish3xpiUPOu8g9O2ERUVVWZLH5GRkTRp0oTIyEjmzZtHkyZNvB2SR/j5+fHxxx8Xe7vs7q6qcnvggQdYtmwZ//nPfzx2jOS0DGatP8y7P+/n8OnztKhbjf9e15lruzYk0K/wrsaVnSeTxRHA9VuxsfNcfuscdtokQrAN3TmMMTtEJAnoiC1FlDsBAQE5vXJUyfLEFcgXo1evXr/rdfbxxx97paG2OMrCnOkvvPCCx/Ydl5TKR6sO8tGqaE4npxPVNJTHr+nA5W3r4eMjRW6vPJss1gGtRKQZNimMBcblWWcOMBFYha22+skYY5xtYowxGSLSFGgLRF9IEMaY3/XyUMpTsodAUZ5hijkN9KG4ZN5bvp8v1seQkp7F4HZh3Nm/OVER5XsEWG/wWLJwvujvAX7Adp2dZoz5VUT+ha0jmwO8D3wsInuBeGxCAbgMeERE0oEs4E/GmFPFjSEoKIi4uDhq166tCUOpcs4YQ1xcnFvXX2w7kshbS/cxf+sxfH2EUV0bcXu/5rSsV7rzW1ckUtxMXVZFRUWZvIOrpaenc/jw4WL3m1dKlU1BQUE0btw4395SxhiW7TnFu8t+69k07pJwbunTjLAa3r3ArywTkQ3GmCIvjCqzDdwlwd/fP9eVukqpiiclPZOvfznC+8sPsCc2iXrBgTxyZVvG9QqnRlDpdMGtDCp0slBKVVyxZ1P4ZNVBPllziPhzabRvUIPnx3RheJcG2rPJAzRZKKXKle1Hz/D+8gPM3XyU9KwsLm8bxq2XNeOS5rW0bdKDNFkopcq8rCzDTztjeX/5AVbtj6NqgC839WzCpD7NaFan6LG51MXTZKGUKrOS0zL4csNhPlgRzYFT52gYEsSjV7ZlbI9wQqpqe0Rp0mShlCpzjiac58NV0Xy25hBnUjKIbFKTV2/qyrCO9fH3rTxztpUlmiyUUmWCMYYNB0/z4aqDzN96DGMMV3ZswC2XNaN701Bvh1fpabJQSnlVSnom32w6wocrD7L92BmCg/y4pU8EEy+NoHGoDg1eVmiyUEp5RUx8Mp+sPsjM9TEkJKfTtn4wT43qxMiuDakaoF9NZY2+I0qpUpOVZeeP+GhVNIt2xuIjwrAO9ZnQuyk9m2nX17JMk4VSyuOvEIcHAAAgAElEQVTOpKTzvw2H+XjVQfafOked6gHcO7Al43o1pX6IDsVRHmiyUEp5zO4TZ/loVTRfbTxCclom3cJr8vLYSIZ1rK9XWZczmiyUUiUqPTOLRTtO8OHKg6zaH0eAnw/XdmnIhN4RdGoc4u3w1AXSZKGUKhFHEs7z+dpDzFwXQ+zZVBrVrMLDw9pyY48mOp91BaDJQil1wTKzDIt3xvLp2kMs2RWLAQa0rsuTvZoyqG09fHUWugpDk4VSqtiOJ6Ywc10MM9cd4mhiCvWCA7l7YEtu7NFEr42ooDRZKKXckpVlWLbnJDPWHOKnnbFkZhn6tqrDY9e05/J2YToMRwWnyUIpVajYsynMWn+Yz9Ye4vDp89SuFsAf+zbnpp5NaFpbR3ytLDRZKKV+JyvLsHJfHJ+uPciCX0+QkWXo3bw2j1zZliva1yfAT0sRlY0mC6VUjqMJ5/lyw2FmbYghJv48oVX9mdwngpt6htO8bnVvh6e8SJOFUpVcakYmC7fH8sX6GJbtOYkxcGmL2vztijYM7VCfIH+9eE5pslCq0tp1/Cwz18Uw+5fDnE5Op0FIEPcObMmYqCY0qaU9mlRumiyUqkTOpKQzd/NRvlgXw+bDifj7Cle0r8+YqMb0bVVXr4tQBdJkoVQFZ4xhzYF4vlgXw/xtx0hJz6JNWDD/HN6eUV0b6dXVyi2aLJSqoI4npvC/jYeZtT6G6LhkggP9GN2tMTdGNaFz4xAdDlwViyYLpSqQ5LQMfvj1OF9tPMLyvacwBi5pXov7Lm/FlR0bUCVAG6vVhdFkoVQ5l5VlWH0gjq82HuG7rcc4l5ZJ49Aq3DuoFaO7NiKijl44py6eJgulyql9J5OYvfEIs385wpGE81QP9GN454aM7taIHhG18NHGalWCNFkoVY4kJKcxd/NR/rfxCJtiEvAR6NuqLg9f2ZYh7cK0mkl5jFvJQkRCgYbAeSDaGJPl0aiUUjnSMrJYsiuWrzYeYdHOE6RnGtrWD+b/rmrHtZENqVdDpyVVnldgshCREOBu4CYgADgJBAFhIrIaeMMYs7hUolSqkjHGsPFQAnM2HWHulmPEn0ujTvUAJvSOYHS3RrRvUEN7M6lSVVjJ4kvgI6CvMSbBdYGIdAduFpHmxpj3PRmgUpXJnhNn+XrTEeZsPkpM/HkC/XwY3C6M67o3om+rujoMuPKaApOFMWZIIcs2ABs8EpFSlcyRhPPM3XyUbzYdZcexM/gIXNaqLn++vDVXdAgjOMjf2yEqVXSbhdiy7niguTHmXyISDtQ3xqz1eHRKVVDx59KYv/UYczYdZW10PABdw2sy5Zr2XN25IXWDA70coVK5udPA/QaQBQwC/gWcBf4H9PBgXEpVOMlpGfy4/QTfbDrKst0nycgytKxXnb9d0ZoRXRoRXlsH71NllzvJopcxppuI/AJgjDktIjqYjFJuSMvI4uc9J5mz+SgLfj3B+fRMGoYEcWvfZlzbpRHtGgRrQ7UqF9xJFuki4gsYABGpiy1pKKXykZaRxYp9p/h2yzF++PU4Z1MyqFnVn9HdGnFtZCOimobqBXOq3HEnWbwCzMZ2mX0SuB74h0ejUqqcSc/MYuW+OL7dcpQffj1B4vl0goP8uKJ9fa7uXJ/LWtbVqUhVuVZksjDGzBCRDcDlgAAjjTE73Nm5iAwDXgZ8gfeMMU/nWR6I7Z7bHYgDbjTGRIvIEOBp7PUdacCDxpif3H9ZSnleRmYWq/bH8e2WY3z/63ESktMJDvRjSPswru7cgMta1SHQT6+oVhWDu8N91AGSjTEfiEhdEWlmjDlQ2AZO1dXrwBDgMLBOROYYY7a7rHYrcNoY01JExgLPADcCp4BrjDFHRaQj8APQqHgvTamSl5GZxZoD8czbcozvtx3jdHI61QJ8nQTRkL6t6ug0pKpCcqfr7ONAFNAG+ADwBz4B+hSxaU9grzFmv7Ofz4FrAddkcS0wxbn/JfCaiIgx5heXdX4FqohIoDEmtchXpFQJy8jMYm10vC1BbDtO3Lk0qgb4MridLUH0b11XE4Sq8NwpWYwCugIbAZxf+8FubNcIiHF5fBjoVdA6xpgMEUkEamNLFtmuAzbmlyhE5HbgdoDw8HA3QlLKPakZmazcG8f3247z444TxJ9Lo4q/L5e3q8fwzg0Y0KaeJghVqbiTLNKMMUZEsntDldrg+CLSAVs1dUV+y40x7wDvAERFRZnSiktVTOdSM1i6+yTfbzvOTztjSUrNoHqgH5e3q8fQDvUZ2KaejuqqKi13ksUXIvI2UFNE/gjcArzrxnZHgCYujxs7z+W3zmER8QNCsA3diEhjbC+sCcaYfW4cT6liS0xOZ9HOE3y/7ThLd58kNSOLWtUCuLpTA4Z1rM+lLWtrI7VSuNcb6jmnd9IZbLvFY8aYH93Y9zqglYg0wyaFscC4POvMASYCq7Bdcn9ySjE1gW+BR4wxK9x+NUq5IfZsCj9utwli1b44MrIM9WsEcVPPcIZ2qE+PiFD8dMA+pXIpNFk4PZoWGmMGAu4kiBxOG8Q92J5MvsA0Y8yvIvIvYL0xZg7wPvCxiOwF4rEJBeAeoCXwmIg85jx3hTEmtjgxKJUtJj6ZBdtP8MO246w7GI8xEFG7Krf1bc6wjvXp3ChEL5RTqhBiTOFV/SKyCBhtjEksnZAuTFRUlFm/fr23w1BlRFaWYcuRRBZuP8HCHSfYefwsAO0a1GBYh/oM61if1mHVdagNVemJyAZjTFRR67nTZpEEbBWRH4Fz2U8aY+67iPiUKnEp6Zms3HeKH7fHsmjHCWLPpuLrI/SICOUfV7djSPswmtYutf4ZSlUo7iSLr5ybK+15pMqEuKRUftoZy4/bT/DznlOcT8+keqAf/VvXZXD7egxsU4+aVXXcS6UuljvJoqYx5mXXJ0Tkfg/Fo1SR9p1M4sftJ1i4/QQbDp3GGGgQEsT13RszpH0YvZrX0h5MSpUwd5LFROz4Tq4m5fOcUh6RlpHF+uh4Fu+KZdGOWPafsrWhHRrW4P7LWzG4XRgdGuqc1Ep5UoHJQkRuwnZ1bS4ic1wWBWN7LinlMbFnUliy6yQ/7Yxl+d5TJKVmEODrQ6/mtZjcJ4LL24XRsGYVb4epVKVRWMliJXAMO4jg8y7PnwW2eDIoVflkZhk2H05gyc5YftoVy7YjZwCoXyOIa7o0ZGCbuvRpWYdqge6OfamUKkkF/ucZYw6KyGEgxRiztBRjUpVEQnIay/acYvHOWJbuPkn8uTR8BLo3DeXBoW0Y1LYebevrTHJKlQWF/kwzxmSKSJaIhJT16yxU2WeMYcexsyzZHcvinbFsOHiaLAOhVf0Z0KYeA9vWo1+rOtp7SakySK+zUB4Vl5TK8r2nWLr7JD/vOcXJs3bw4I6NanD3wJYMbFuPLo1r4qtXTytVpl3odRZK5Ss9M4uNB0+zbM9Jlu0+xbajiRgDNav6c1nLOvRrXZf+resSViPI26EqpYrBnYEEPyyNQFT5dSgumaV7TrJs90lW7YsjKTUDXx+hW3hNHhjcmn6t69KxUYiWHpQqx9yZKa8V8B+gPZDzc9AY09yDcaky7FxqBqv2xTmlh5NExyUD0Di0CiMiG9KvVV0ubVmbGkH+Xo5UKVVS3KmG+gB4HHgRGAhMBnT85kokPTOLTTEJrNh7ihV7T/HLoQQysgxV/H3p3aI2ky6NoF/rujSrU017LilVQbmTLKoYYxY5c2MfBKaIyAbgsaI2VOWTMYZdJ86yfM8pVu6LY83+OM6lZSICnRqFcFvf5vRrVYfuEaE6rIZSlYQ7ySJVRHyAPc78FEeA6p4NS5W2w6eTnZJDHCv3neJUUhoAzetUY1S3RlzWsg6XNK+t3VqVqqTcSRb3A1WB+4B/A4Ow40Wpcuz0uTRW7otjxT5btXTQaXeoGxxI31Z1ubRFbfq0rKNDaiilAPd6Q61z7iZh2ytUOZSQnMaaA/Gs3h/H6v3x7Dx+BmOgeqAflzS37Q6XtaxDy3o6IZBS6vcKG0hwLoXMW2GMGeGRiFSJKCg5BPn7ENW0Fg8Mbk2fVnXo3ChE55tWShWpsJLFc85fAd4FbvN8OOpCJSSnsfZAPKv32wSxI09y+OuQ1lzSvDadG9ckwE+Tg1KqeAobSDBn8EARSdLBBMuW0+fSWBf9++QQ6OdDVEQoDwxuzSUtatO5cYj2WFJKXTR3x3vWaVS97EjCedYdiGdtdDzrDsSzJzYJ0OSglCodhbVZ1HJ56CsiodgqKQCMMToBkodkZRn2nkxi7YF41jnJ4WhiCgDBgX50axrKyK6N6BFRiy5NNDkopTyvsJLFBmyJIjtBbHRZZgAd7qOEpGVkse1oIuuc5LD+4GkSktMB25W1Z0Qtbo8IpUezWrStX0PHWFJKlbrC2iyalWYglUlicjobY06z8eBp1kXHsykmgZT0LACa1anGFe3DiIqoRc+IWjStXVW7siqlvK6waqgIY0x0IcsFaGSMOeyJwCqKrCzD/lNJbDh4mo0HE9hw6DR7nfYGH4F2DWowtkc4PZvVIioilHrBOnS3UqrsKawa6llnmI9vsFVSJ7GjzrbEDih4OXaAQU0WLpJSM9gck8DGg6fZcMiWHs6kZAB2Todu4aGMjGxIt6ahdGlcU+eUVkqVC4VVQ40RkfbAeOAWoAGQDOwA5gNPGmNSSiXKMsoYw6H4ZDYeOs2Gg6fZcDCBXcfPkOX0HWsdVp2rOjWgW9NQuoWH0rxONXy0vUEpVQ4VNQf3duD/SimWMi/+XBqbYxLY5Nw2H07IaYiuHuhH1/CaDBnUiu5NQ4lsUpOQKjqfg1KqYtA6kAKkpGfy69EzNik4yeFQvB1sz0egdVgwQ9vXp0uTmnRrWpNW9YK1l5JSqsLSZMFvjdC/HLKlhU0xCew8dpYMpz6pYUgQXZrUZFyvcCKb1KRToxBta1BKVSqV/htv46HTTHx/LWdTbSN0cKAfnZuEcHu/5kQ2qUlkk5rUq6E9lJRSlZs7c3B/BbwPfGeMyfJ8SKUronY1ru3akMgmoUQ2CaF5neraCK2UUnm4U7J4AzuPxSsiMgv4wBizy7NhlZ5a1QKYOrKTt8NQSqkyrcixqo0xC40x44FuQDSwUERWishkEdHuPkopVQm4NbGBiNQGJmHntPgFeBmbPH70WGRKKaXKDHfaLGYDbYCPgWuMMcecRTNFZL0ng1NKKVU2uNNm8YoxZnF+C4wxUSUcj1JKqTLInWQRKiKj8zyXCGw1xsR6ICallFJljDttFrcC72HHiBqPnY/7YWCFiNxc2IYiMkxEdonIXhF5JJ/lgSIy01m+RkQinOdri8hiEUkSkdeK+ZqUUkqVMHeShT/QzhhznTHmOqA9dvKjXtikkS8R8QVeB650trnJGZjQ1a3AaWNMS+BF4Bnn+RTgn8DfivFalFJKeYg7yaKxMeaEy+NYoIkzrWp6Idv1BPYaY/YbY9KAz4Fr86xzLfChc/9L4HIREWPMOWPMcmzSUEop5WXutFksEZF5wCzn8XXOc9WAhEK2awTEuDw+jC2N5LuOMSZDRBKB2sApN+JCRG4HbgcIDw93ZxOllFIXwJ1kcTcwGrjMefwR8D9jjMFOguQ1xph3gHcAoqKijDdjUUqpiqzQZOG0Oyw0xgwE/lfMfR8Bmrg8buw8l986h0XEDwgB4op5HKWUUh5WaJuFMSYTyBKRkAvY9zqglYg0E5EAYCwwJ886c4CJzv3rgZ+cEotSSqkyxJ1qqCRgq4j8CJzLftIYc19hGzltEPcAPwC+wDRjzK8i8i9gvTFmDnY0249FZC8Qj00oAIhINFADCBCRkcAVzsx9SimlSpk7yeIr51Zsxpj52Pm6XZ97zOV+CjCmgG0jLuSYSimlSl6RycIY86GIVAHCK9LQ5EoppdxX5HUWInINsAn43nkcKSJ52x6UUkpVYO5clDcFe4FdAoAxZhPQ3IMxKaWUKmPcSRbpxpjEPM9VuOlVlVJKFcydBu5fRWQc4CsirYD7gJWeDUsppVRZ4k7J4l6gA5AKfAacAf7syaCUUkqVLe70hkoG/s+5KaWUqoTcmVa1NXao8AjX9Y0xgzwXllJKqbLEnTaLWcBb2AmQMj0bjlJKqbLInWSRYYx50+ORKKWUKrPcaeCeKyJ/EpEGIlIr++bxyJRSSpUZ7pQsskeFfdDlOYNemKeUUpWGO72hmpVGIEoppcquAquhROQhl/tj8ix7ypNBKaWUKlsKa7MY63L/0TzLhnkgFqWUUmVUYclCCrif32OllFIVWGHJwhRwP7/HSimlKrDCGri7iMgZbCmiinMf53GQxyNTSilVZhSYLIwxvqUZSLllDIjWyimlKjZ3LspTBclIhVe7w9d/gsx0b0ejlFIe485FeaogB5ZB/D57O58A108Df62hU0pVPFqyuBg75kJAdbjiSdj1LXw6BlKTvB2VUkqVOE0WFyorE3bNh1ZD4NJ7YNTbEL0CProWkuO9HZ1SSpUoTRYX6vA6OHcS2g63j7uMhRs+guNbYPpwOHvCu/EppVQJ0mRxoXbMBd8AaHXFb8+1Gw7jvoDT0fDBMEg45LXwlFKqJGmyuBDGwM550Kw/BNXIvazFQJjwNSTHwbRhcHK3d2JUSqkSpMniQpz41ZYe2g3Pf3mTnjDpW8hMgw+uhGObSzU8pZQqaZosLsTOeYBAm6sKXqd+J7jlB/CvAtOvgUOrSy08pdQFiFkHi5/S6uMCaLK4EDvmQZNeUL1e4evVbgGTv4PqdeGjkbB3YenEp5Qqno0f2VqApc/Ay5Hw5a1aI5CHJoviOh0NJ7YWXAWVV80mMPl7qNMSPh0L27/xaHhKqWLIzID5D8GceyHiMrhzBVxyF+z+Ad7uBx+OsD/yjI6dqsmiuHbMs3/bupkswJYsJs6DRt1g1iT4ZYZHQlNKFUNyPHwyCta+DZfcDeO/hPodYeiT8JdtMPgJOLUbPrkO3uwDmz6DjDRvR+01miyKa+c8COsItYo522yVmnDzbGg+AL75E6x+0xPRKaXccWI7vDvQtiVe+wYMewp8XUY/qlITLvsz3L8FRr4JGPj6Tni5C6x4GVISvRa6t2iyKI6kWPvhKk6pwlVANbjpc2h3DXz/CCx5Rou3FVVWlr2if8598Fwb+Hy8dqMuK3Z+C+8PgfTzttdi1/EFr+sXAJHj4K6VMP5/tjr5x8fghQ6w4B+QeKT04vYyHUiwOHbNB4z77RX58QuE66fD3PtgyVP2F8rQJ3WY84rixHbY+gVs/RISY8C/mi1N7l9iPz9db4YBj0CNhl4OtBIyBn5+Dn6aCg27wthP3X8fRKDVYHs7+gusfBVWvWFrCDpeD5fea6uwKjAxFeSXbVRUlFm/fr1nDzJjDJzcBfdvvvgv96ws+OFRWPMWRP4Brnk5dzFYlR+JR2Dbl7Bllu38IL7Q8nLofCO0udKWKJNO2i+qde+Dj69tRO3zZ1vdoTwv7ZydSmD719DpBhjxiu3WfjFOH7TJYuNHkH4OWg62VVrBYSUTcykRkQ3GmKgi19Nk4aaUM/BsC+h5uy0JlARjbFe9Jf+xVVPXvW9LHqrsS0mE7XNgy0yIXg4YaBRlE0SHUbZTQ37iD9i+/Fu/gKCa0O9v0OOPFWNo+6xMOHfKjpmWkmCvNQoK8XZU9rqJz8fB8W0weAr0ub9kS/LJ8bDhA1j2HIRG2KqtqrVKbv8epsmipG37H3x5i+0G27R3ye579Zu2DaP5ALhxBgRWL9n9q5KRkQZ7f7QJYtf3kJkKtVpA5xug0xh7XY27jm2GhU/AvkVQozEM/LsdjNKnhCaozMqCkzsgIQZ8/e04Zn6Bzv1A53GAc9/fWRYAPn65v0gzUu2Xf1Kskwhinfsnf/ubfT85DnD5PvHxs91R21xlS1g1w0vmtRXHwZUw82Y7msJ170PrK4re5kLtX2prH+q1hQlzyk2pUZNFSZs1GaJ/hr/uKrl/aFebPoVv7rHda8d9Ua5+mVR45xNg0b/sD4aUBKhaBzpdb6szGnW7uF+p+5fCwsdtPXjddvaXb+uhxd9n2jk4vB5i1kLMans1cuqF9NiR3xILQOqZ/FcLqA7V6kC1evbi1Gp17S37fkA1+/+ycz7E7bHbhHWySaPNldAgEnw83L9mw3T49m8Q2hTGfgZ1W3v2eAC7F9hSTMOutvdjOfjhVyaShYgMA14GfIH3jDFP51keCHwEdAfigBuNMdHOskeBW4FM4D5jzA+FHcujySIjFf7bAjqOtnWdnrJjHnw5GWq3tB+04PqeO5ZyT8oZ+HiULQl0GGWrmZoPKNn2JWNsXfqif0H8fgjvbfv4h/cqeJszR23PvJg19u/xrWAyAYF67ewIA+GXQO1WkJVhS0GZabZ0lOlyy0i1UwJnprosc54zWTYxVq9rk0K1ur/dD6jq/us7tQd2fWdvMavtfoMbQOthttTRrF/JVsNlpsP3j8K6d6HF5XYGy9L8lb/9G/vjsumlMH7WxbeNeJjXk4WI+AK7gSHAYWAdcJMxZrvLOn8COhtj7hSRscAoY8yNItIe+AzoCTQEFgKtjTGZBR3Po8li9wI7C974L+1kR560fwl8Ns7+U074xtaBKu9IO2cvyDq8zs5V0vZqzx4vMx02fmi7VJ+LtV20L3/M/niI3e6SHNZAojN+kV8VaBz1W3Jo3KNsV3+ci4M9C2zPsL2LbMOwfzVoOcgmjlZDoVpt9/eXlQUZKfaWft6WhOY/aEs1ve+BIf/yTE1AUbZ8AV/dbhu9x84o022RZSFZ9AamGGOGOo8fBTDG/MdlnR+cdVaJiB9wHKgLPOK6rut6BR3Po8lizr2wbTY8tK903vTDG2DGdbY+ecLX9peiKl3p5+HTG2zj9fXTbKmitKQm2XasFS//9mWadtYuq17fljiaXGL/1u9s2xzKo/QUe353fWtLHWePgfjYxBfc4LcE8Lu/qZBx3m6fmfr7/foG2t6FkTeV/mtytWE6zL3fJv0xH5bZ3o7uJgtPRt8IiHF5fBjIW67OWccYkyEiiUBt5/nVebZtlPcAInI7cDtAeLiHGs+yMm29a6shpffroHF3mDTfVn98cKW9GKhx99I5trJfQp+PhwM/w+h3SjdRgK3n7v8gRE22/flTz/yWHGo2rTjX5PgH/XbtwtUvwLFNNmns/sHOOOlXxa7jF2SrwPyDXJ5z+esXaKt6/ILs34bdSqd9oijdJ9nP0vcP26u/R73tnVJOCSmbqc5Nxph3gHfAliw8cpCYNZB86uIuxLsQYe3hlu/h45Hw0Qh7AVHz/qUbQ2WUkWbH79q3CEa8Zns6eUu1OjDkCe8dvzSJ2Ebhhl1tz7CK4pI7IT0ZFj1hE9nwlz3fsO8hnoz6CNDE5XFj57l813GqoUKwDd3ubFs6dsyzvUNaeritIj+1mtk5MWqGw4zrfxvEUHlGZgb871bY/Z39pdvtZm9HpCqCvg9AvwftxXvfP1KyQ/ycPWGvSN8wveT2WQBPJot1QCsRaSYiAcBYYE6edeYAE5371wM/GduIMgcYKyKBItIMaAWs9WCs+TMGds61vV/yTp9aWoLr24t86neGLybYkS9VycvKhNl3wI45MOxp6HGrtyNSFcnA/7MN7mvfhoVTLj5hxO6Ab+6GlzraiwGPby2RMAvjsWoopw3iHuAHbNfZacaYX0XkX8B6Y8wc4H3gYxHZC8RjEwrOel8A24EM4O7CekJ5zPGt9urPvn8r9UPnUrWW7Rk1c7yt+0xJsMNFqJKRleV0YvjSdlnVc6tKmghcMdVWSa14yV6H0v+h4u3DGNtbctVrdo4Nvyp2rLHedxfvgtAL5NE2C2PMfGB+nucec7mfAowpYNsngRIaV+MC7fzW9s4obPrU0hJY3V6s979bbVH2fIIdkK6iNHZ6izHw7V9g0wwY8Hc7LLVSniACVz1ve3QtftK2YVx6b9HbZaTZHzKrXocT2+x1LoP+AVG3lurFu+W6gdvjds6zvVAKGuentOWMWHs/LH0akk7YBtCyMP5OeWQMfPewre/t+9fi/9JTqrh8fGzHifTzdohz/yrQ47b8180ec2rNO5B03F7hf+3rdmgZL1y3ocmiIPEHbBYf+pS3I8nN1w9GvApVQ223yu1f2y+6ijIYXWkxBn78p61D7n0PDPqnltJU6fD1g9Hv2utFvv0r+Fe1c2Zki99vr7P55RNbbdV8IIx83V6N7sXPqCaLguy8gOlTS4uPj63/7HidHSJiwT/sh2vAo9DlpjJ78U+Z8tNUm2x7/NGeS00UqjT5BcCY6fDZWNtQ7RdoB5Rc9art9ejjZ0sQve8uM/Nk6ECCBXl/qL169s7lJbdPT9m/1PbjPrIB6rSBy/9pk5x+AeZv6bOweCp0m1Cu+72rCiDtHHxyPRxaaR8H1YSoW+xUCDUalEoIZeEK7vIrKdZejDfgEW9H4p7m/aHZItgxF376N8z8g51bYfAUaNbX29GVLStetomi81hNFMr7AqrBuJm2diCso53iNaCat6PKlyaL/Oz8FjBlswqqICLQfoTtubX5Mzuh0ofDbT3n4MehQRdvR+h9q9+y8yd3GG0bCjVRqLIgqIZnR7MuIZos8rNznh3tNayDtyMpPl8/e+VxpzF2iOafn4e3+9n2jYH/Vyr9sUtcZoadz/r0ATs9afYgcvn+Pe8y6FyeZfH77Q+A0e9ou45SxaT/MXmlJNo2gF53lO86f/8g24e72wRY8QqsfsOOs99tAvR/uOzNlZGWDKejbUKI3297o50+YP8mxtg5GQriG1jwIHNBIXYEU78gmzD7PVR+R2lVyos0WeS150fISrdzYlcEQSG2wbvn7bDsWdtve9NntpfFgEdL/xd2wiE7m1u8kxSyE0LS8d/HHdoMGkbaSadCm9mxsqrXt4nAv6pNAH5BWp2kVCnQZJHXjrn2CsnGPb0dSckKDoOrn4Pef4LFT8HPz9k5k4e/WGLyVxIAAA1qSURBVHolqKOb4IOrbC8zgOCGNgG0HAy1In5LCKHNdFpZpcoYTRau0lPsmCudrq+4v1ZrNYfr3oOQxrD8Rfvl3Od+zx834ZCdTKhqbRj7HdRpXeanm1RK/UaThasDSyEtCdpWkCqowgx6DE4ftL2DajaFDiM9d6zzCTBjjE3GE+ZAvbaeO5ZSyiM0WbjaMRcCa9gJ5Cs6Hx8Y+SacOWKH5q7RCJr0KPnjZKTa6z7i9sHNszVRKFVOVdC6lguQlWmndGx1hb0UvzLwD4Kxn9neQp+NtQ3NJckYO/R39M82MekFgkqVW5ossh1a7Z3pU72tWm0Y/yWYTFtVlBxfcvte/CRsmWkH6euc70j0SqlyQpNFtp3zbH/9loO9HUnpq9PSzvGdcBBm3myrji7Whg9tV91uE+2ouEqpck2TBdjqkh3z7PSpgcHejsY7ml4K174BB5fDnPsubtrHPQth3l9s4r36hfJ9caNSCtBkYR3fAomHKl8VVF6dx8DAf8CWz2HpMxe2j2NbYNZECGtvh2DWYTWUqhD0PxlsqaKsTJ/qbf3+Zq+qXvIfOz5Wl7Hub5sQY9s9gmrCuFmVt5SmVAWkyQJse0V4b6hWx9uReJ8IDH/Jjsf0zT22S607vZhyrqVIhlt+KLWx+JVSpUOroeL2Qez28jUcuaf5BcANH9urvWeOh5O7C18/Iw2+uBni9sKNn9gqKKVUhaLJAiDyD9pekVeVmjB+FvgGwIzr7dDg+cm+luLAMrj2NTsR0/+3d+dBUpRnHMe/P8EbkEuNirKIUojGEq8yooImQUMqiooHWVE0MamIZxRNYiVGyygUVdEysSqRBA9KQUWJeMQb1AAeyLGAeCBiRE0gRoloYgSe/PG+ZJtxdrsXeqbdnedTNbXvdPe8/TzTs/1OH/O+zrk2xxuLbr3DYOid9yg6ki+fLj1h+N1h5MDJw8M4EaVmXB8uiB99ZcuubzjnWhVvLFzzehwEJ4+HFXPg/h/A+vWN8+ZODHdN9T8DjhpdXIzOuYrzxsKl2+c7MPhaWDINnrwqTFv6FDx4EfQ+JlwQ999SONem+d1QLpuvjQq31M6KYwXPuRV22gdOud1HnnOuBnhj4bKR4LixYVyKWTeFW2rr7w2DzTvn2jxvLFx27drDsFvDRe3+I6DTrkVH5JyrEm8sXMts3QGO/VXRUTjnqswvcDvnnEvljYVzzrlU3lg455xL5Y2Fc865VN5YOOecS+WNhXPOuVTeWDjnnEvljYVzzrlUMrOiY8iFpFXA25tRRXfgHzmF0xrUWr7gOdcKz7lleprZjmkLtZnGYnNJmmNmBxcdR7XUWr7gOdcKz7ky/DSUc865VN5YOOecS+WNRaNbig6gymotX/Cca4XnXAF+zcI551wqP7JwzjmXyhsL55xzqWqqsZB0nKTXJC2V9JMy80dKWiVpfnx8v4g485SWc1zmVEmvSFos6a5qx5i3DNv5hsQ2fl3SR0XEmacMOe8habqkeZIaJA0pIs48Zci5p6SnYr4zJPUoIs68SJogaaWkRU3Ml6Sb4vvRIOnAXAMws5p4AO2AN4E9ga2ABUC/kmVGAr8tOtYq57w3MA/oEp/vVHTclc65ZPkLgAlFx12F7XwL8KNY7gcsLzruKuR8L3BWLB8DTCw67s3M+SjgQGBRE/OHAH8GBBwGvJDn+mvpyOJQYKmZLTOz/wKTgRMKjqnSsuR8LnCzmX0IYGYrqxxj3lq6nYcDk6oSWeVkydmATrG8A/BeFeOrhCw59wOejuXpZea3Kmb2LPDPZhY5AbjDgueBzpJ2yWv9tdRY7Aa8k3i+Ik4rdXI8hJsiaffqhFYxWXLuA/SRNFPS85KOq1p0lZF1OyOpJ9CLxh1Ka5Ul518CZ0haATxCOKJqzbLkvAA4KZZPBDpK6laF2IqS+bO/KWqpscjiQaDOzPYHngBuLzieamhPOBU1iPAte7ykzoVGVD2nA1PMbF3RgVTBcOA2M+tBOF0xUVJb//+/DBgoaR4wEHgXqIVtXRFt/cOS9C6QPFLoEaf9n5l9YGafxad/AA6qUmyVkpoz4dvHNDP73MzeAl4nNB6tVZacNzid1n8KCrLl/D3gHgAzmw1sQ+h8rrXK8v/8npmdZGb9gSvjtFZ/M0MzWvLZb7FaaixeAvaW1EvSVoQdxbTkAiXn944HllQxvkpIzRn4E+GoAkndCaelllUzyJxlyRlJfYEuwOwqx1cJWXL+K/B1AEn7EBqLVVWNMl9Z/p+7J46efgpMqHKM1TYNODPeFXUYsNrM3s+r8vZ5VfRlZ2ZrJZ0PPEa4k2KCmS2WdA0wx8ymARdKOh5YS7iQNLKwgHOQMefHgMGSXiEcoo82sw+Ki3rzZMwZws5lssXbSFqzjDlfSjjFeAnhYvfI1px7xpwHAddLMuBZYFRhAedA0iRCTt3jtaergC0BzOx3hGtRQ4ClwKfA2bmuvxV/XpxzzlVJLZ2Gcs45t4m8sXDOOZfKGwvnnHOpvLFwzjmXyhsL55xzqbyxcJlIWpNhmYslbZfjOodK6pdjfbM247Vr4t9dJU1pZrnOks7b1PVsrniP/dOSOiWmDZVk8bclea+vTtJ38643Uf/5ks6pVP0uO28sXJ4uBlrUWEhq18zsoYTO4HJhZofnUMd7ZjasmUU6A4U1FoT77BeY2b8S04YDf4l/81YHlG0sJOXxO64JtP5+rNoEbyxci0gaFMcGmCLpVUl3xm+zFwK7AtMlTY/LDpY0W9JcSfdK6hCnL5c0VtJc4BRJ50p6SdICSfdJ2k7S4YRf0Y9TGHeit6QDYmeHDZKmSuoS65uhMEbFHElLJB0i6X5Jb0i6NhH7mkT5CkkL4zrHlMmzV4x9YUkddYrjCUjaV9KLMb4GSXsDY4Decdo4SR0UxlSYG+s6IVHPEknjFcYReVzStnHeXpKejLHNldQ7Th8d36cGSVc3sYnqgQcS8XYAjiB093F62naM84bEaS8rjI/wUJw+UI3jgMyT1DHme2ScdonCmDDTJD0NPBU/G+MkLYr5n5ZY/zOSHpC0TNIYSfXx/Vy4IWcz+xRYLunQ5j6XrgqK7qPdH63jAayJfwcBqwn9zmxB6C7jiDhvOdA9lrsTfjW7fXx+BfCLxHKXJ+rulihfC1wQy7cBwxLzGoCBsXwNcGMszwDGxvJFhO63dwG2JvR91a0kh28Bs4Dt4vOuZfKdBpwZy6MSr60jjicA/Aaoj+WtgG2T8+P09kCnxHuylDDeQB2hp4AD4rx7gDNi+QXgxFjehnC0NpgwJoXi+/4QcFSZuN8GOiae1wN/jOVZwEHNbce4vneAXnG5ScBDsfwgMCCWO8TcBm2YH6ePjO951/j8ZEKnnO2AnQndjuwSX/dRYju9C1yd2IY3Juq8Eri06P+BWn/4kYXbFC+a2QozWw/MJ+z4Sh1GOIU0U9J84CygZ2L+3YnyfpKek7SQsHPbt7QySTsAnc3smTjpdsJgMBts6MZjIbDYzN630CnkMjbuXA3gG8CtFr61YmblxggYQGMngxPLzIewg/2ZpCuAnmb27zLLCLhOUgPwJKHL6J3jvLfMbH4svwzUxW/ru5nZ1Bjbf2Kcg+NjHjAX6Ev5Dh+7mtnHiefDCWM9EP8mT0WV2459gWUWOpWEjTtanAn8Oh5FdjaztU28L08k3tMjgElmts7M/g48AxwS572U2E5vAo/H6QvZ+DO1knDU6gpUM31DuVx9liivo/znSISdRlPnyT9JlG8DhprZAkkjiR0bbmJM60viW99EfFk02xeOmd0l6QXg28Ajkn7IFzthrAd2JHyj/1zScsK392TMEN7HbZtZnYDrzez3KTGvlbSFma2X1JUwQtxXFfpHageYpNFNrL/Z98nMxkh6mHBdZKakY5tY9JMmppcq3U7JbZiMZRugXEPsqsiPLFyePgY6xvLzwABJewFI2l5SnyZe1xF4X9KWhJ3rF+ozs9XAh5KOjPNGEL6lboongLMV79yKO9VSM2k8x19fZj6S9iR8C7+JcJ1gfzZ+DyCMSrcyNhRHs/HR1RfEo4IVkobGdWwd43wMOEeN1312k7RTmSpeIww1CjCMMJRoTzOrM7PdgbeAI8u8bqPXS6qLz09L5NvbzBaa2VhCr699y+Rb6jngNEntJO1IOBp8sZnly+kDlB132lWPNxYuT7cAj0qabmarCOevJ8VTMLMJO5dyfk44Tz8TeDUxfTIwOl5M7U04lTUu1ncA4bpFi5nZo4TTVnPiKbLLyix2ETAqnhprarSxU4FFsY79CENafkD41r1I0jjgTuDgWM+ZJfk1ZQShB+QGwnWGr5jZ48BdwOxY1xTK76QfpvHIbDgwtWT+fTRzV1Q8lXYeYTu+TGgMVsfZF8e8GoDPCeM9NwDr4sX4S8pUOTUus4AwIuHlZva35pIvYwChgXcF8l5nnWtDFMZkucPMvrkZdXQwszXx7qibgTfM7IbcgmxZLP2BH5vZiCLW7xr5kYVzbYiFwW7GK/GjvE1wbjxaWkw4jZZ2naSSuhOOPF3B/MjCOedcKj+ycM45l8obC+ecc6m8sXDOOZfKGwvnnHOpvLFwzjmX6n8V9Nusa8mJDwAAAABJRU5ErkJggg==\n", "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VGXWwPHfSQiEEkgIEEoqvUiPgAIiiCColFVUdO27dnZf3Sb7uoru+tq2WFB3LYhiQcWyqCCIgnQhdCmhBpLQQgIBEtKf94/nBoeYhIHMZGaS8/185pOZuXfunDszmTNPF2MMSimlVFUF+ToApZRSNYMmFKWUUh6hCUUppZRHaEJRSinlEZpQlFJKeYQmFKWUUh6hCUVVCxGZIiLvOtdjReSkiAQ7t6NEZLGInBCRf4j1logcFZFVvo38/InIeBFJdc61t6/j8TdlPwf+xvUzq9yjCcXPiUiKiJxy/vFKL1N9HVdVGGP2GWMaGWOKnbvuAo4AjY0xvwMGAZcD0caYfr6K0wP+DjzgnOu66n5yETEiklPms/NHLz7fbSKytMx900WkoEwMG6Dcz4EKcHV8HYByy9XGmAXefAIRqWOMKfLmc1QiDthifhplGwekGGNyzvVAPj6PsuKAzeVtqMY4expjdlbD81TmWWPMIz6OwW+ISHBNTaJaQglgpb8IReTvTvXQHhEZ5bK9iYi8KSIHRCRdRP7mUs10m4gsE5F/iUgmMEVEgp0qpyPOsR5wfuXWEZEJIrKmzPM/JCL/rSC2BBH53qnG+gZo5rIt3uW404FbgT86v17vBt4ALnJuP+485ioRWS8ix0RkuYj0cDleioj8SUQ2AjnOcVuLyCcikuGcy29c9p8iIh+JyDtOfJtFJNFle4yIfOo8NtO1RCgid4jIVuf1niciceWcez0ROQkEAxtEZFclcXYRkUXOeW0WkTEux5kuIq+IyFzntVgmIi1F5Hnn+bedb1WaiMwRkX+43J4pItOc6+1E5Dvn3I+IyHsiEl7Z6yMiXYB/u7xvx9yI4fTnwLmdID9VfS4QkZfFpcpJRAY47/0xEdkgIpe6bFskIn91XqMTIjJfRJo520JF5F0n1mMislpEopxtrUVktohkichOEfl1BbHOFZEHyty3QUR+4VzvLCLfOMdJFpHrXPabLiKvOq95DjD0bK9NwDLG6MWPL0AKMLyCbbcBhcCvsV9e9wL7AXG2fwb8B2gItABWAXe7PLYImIQtqdYH7gG2ANFABLAAMM72ekAW0MXl+dcB11QQ2wrgn87jLgFOAO862+JLj+vcng78rcx5LXW53Rs4DPR3zvNW53Wp5/IarQdinPMIAtYAjwJ1gbbAbmCks/8UIA8Y7RzvKWClsy0Y2AD8y3ndQoFBzraxwE6gi/OaPAIsr+S9M0D7Mu+la5whzvH+7MQ5zHmdOrm8LkeAvk4c3wF7gFucOP8GLHT3+ctsa+m8psOAm5zXJ8zZ1h5b5VgPaA4sBp534/U5430r770ts63s52AFtpqwLrba8zg/fWbaAJnOexbkxJcJNHe2LwJ2AR2d13YR8LSz7W7gC6CBE39fbPUqzrm94pxHLyADGObyOSl9/luAZS6xdwWOOa9RQyAVuN35XPR23reuLq9BNjDQiT3U198rXvu+8nUAejnLG2S/hE46H97Sy6+dbbcBO132beD8g7YEooB8oL7L9omlX0DOY/eVea7vcBKOc3t4mX/4V4EnnevdgKM4X+pljhOLTVYNXe57n/NPKK8Cfy3zHMnAEJfX6A6Xbf3LObfJwFvO9SnAApdtXYFTzvWLnC+VOuWc11zgTpfbQUAuEFfBe1deQnGNczBwEAhyue8DYIrL6/K6y7ZJwFaX292BY5V8dgz2S9n1szPSZfs12C/CIzhJoYLjjAPWufH6nPG+uZxDXpkY3i77OXD5zDRweey7Lp+ZPwEzyhx7HnCrc30R8IjLtvuAr53rdwDLgR5lHh8DFOMkUue+p4DpLp+T0ucPA3JK32vgSWCac/16YEmZY/8HeMzlNXinKt8DgXLRKq/AMM4YE+5yed1l28HSK8aYXOdqI2z9fQhwwCnmH8N+yFu4PDa1zPO0LnNf2e1vAzeKiAA3Ax8ZY/LLibc1cNSc2Qayt/JTrFQc8LvS83DOJcZ5nvJijQNal9n/z9gkW+qgy/VcINSpeokB9pry2zfigBdcjpkFCPbXs7tc42wNpBpjSlzu21vmeIdcrp8q53ajszxfnzKfnXku277A/mJPNsacbkwX2+tupthq0uPYL/bSKsvKXp+K/L1MDLeWs09rIMvlMww/f08nlHlPBwGtXPYp+56WvjYzsMlnpojsF5FnRSTE5TlPuDyu7OsPgLPPV8ANzl0TgfdcYutfJrabsD/syjuXGksb5WuuVGwJpVkl//xlp5o+gK3uKhVzxs7GrBSRAuwv6xudS3kOABEi0tAlqcSW83zuSsWWjJ6sZB/XY6cCe4wxHc7zuWKl/Ebz0jjeK+dx7nKNcz8QIyJBLkklFtheheOfiyeBrUCCiEw0xnzg3P9/TpzdjTFZIjIOKG1Hquz1qcrU5QeApiLSwCWpuH7+UrEllHLbOCpjjCkEHgceF5F4YA62hDvfec4wl6QSC6RXcKgPgMdEZDG2imyhS2zfG2MuryyMc407EGkJpYYyxhzA/sP8Q0Qai0iQ09g6pJKHfQT8VkTaOI2wfypnn3ewXy6Frr9qyzz3XiAJ+w9cV0QGAVdX4XReB+4Rkf5iNRSRK0UkrIL9VwEnxDaA1xfb2eACEbnQjedahf1ye9p5nlARGehs+zcwWUS6welODxOqcF4/YH9J/1FEQpxG5quBmVU4pltE5BJsnf8t2Dapl0Sk9Jd5GLaaNdu57w8uD63s9TkERItI3XONx+UzM8X5zFzEmZ+Zd4GrRWSk836GisilIhJd7gHPPNehItJdbIeU49h2xxJjTCq2Kuwp53g9gDud5yrPHGxp5AngQ5cfAV8CHUXkZud9DBGRC8V2VKhVNKEEhi/kzH78n7n5uFuwDZxbsO0dsziziqCs17FJaCO2wX0Otl7btYvjDOACKv6nK3Ujti0jC3gMm4jOizEmCdvxYCr2PHZi6+sr2r8YuArbyLoH20bwBtDEjecqxn6RtQf2AWnYOnKMMZ8Bz2CrTo4DPwKjKjjUWRljCpznGuXE+ApwizFm2/kesxwbynx2nheRxtj34wFjTLoxZgnwJvCWU535ONAH25D8FfCpS8wVvj7YNrjNwEEROeISwx/LxOC6zdVN2DaaTGyHgw+xpWycL/+x2KrLDGyp4A+49x3WEvvZP44tkX2P/RyDrbqKx5YWP8O2e5TbRd+p3v0U27b4vsv9J4AR2Oqw/diqt2ewDfa1SmlvIKV+RmwX5H8bY+Jc7quP7R3Uxxizw2fBqRpPRD4EthljHvN1LMo9WkJRpznVQ6PFjo9ogy1ZlC0N3Qus1mSiPM2pJmrnVM9egS2RfO7ruJT7tFFeuSqt7vgQ24PoK+xYDrtRJMXZZ5wvglM1XktslVIktirtXuODKWvU+dMqL6WUUh6hVV5KKaU8olZVeTVr1szEx8f7OgyllAoYzZo1Y968efOMMVecbd9alVDi4+NJSkrydRhKKRVQxJlo82y0yksppZRHaEJRSinlEZpQlFJKeUStakMpT2FhIWlpaeTl5fk6lFovNDSU6OhoQkJCfB2KUuo81PqEkpaWRlhYGPHx8dhpjJQvGGPIzMwkLS2NhIQEX4ejlDoPtb7KKy8vj8jISE0mPiYiREZGaklRqQBW6xMKoMnET+j7oFRg04SilFI12Np9R3n2a0+uiFAxTSh+oFGjM1dxnT59Og888MA5HWP9+vXMmTPHk2GdYfr06TRv3pxevXrRq1cvbrnllnM+xqJFi7jqqqu8EJ1SypUxhsXbM7jhtRX84pXlvL9qHwezvV+dXOsb5WuCoqIi1q9fT1JSEqNHjy53e506VX+rr7/+eqZOnXr2HZVSPlFSYpi3+SCvLNrFpvRsohrX45EruzCxXywN63n/614Tip/74osv+Nvf/kZBQQGRkZG89957REVFMWXKFHbt2sXu3buJjY1l2bJlnDp1iqVLlzJ58mS2bt16xvZ3332Xhx9+mEWLFpGfn8/999/P3XffDcBzzz3HRx99RH5+PuPHj+fxxx93O77169dzzz33kJubS7t27Zg2bRoRERHs3LmTe+65h4yMDIKDg/n444/PeNzq1au56667mDVrFu3atfPoa6ZUbVNQVMLn69P59/e72J2RQ3xkA57+RXfG92lDvTrB1RaHJhQXj3+xmS37j3v0mF1bN+axq7tVus+pU6fo1avX6dtZWVmMGTMGgEGDBrFy5UpEhDfeeINnn32Wf/zjHwBs2bKFpUuXUr9+faZPn05SUtLpEsSUKVPO2P7aa6/RpEkTVq9eTX5+PgMHDmTEiBHs2LGDHTt2sGrVKowxjBkzhsWLF3PJJZf8LM4PP/yQpUvtMvK//e1vuf3227nlllt46aWXGDJkCI8++iiPP/44zz//PDfddBMPP/ww48ePJy8vj5KSElJTUwFYvnw5kyZN4r///S+xsbFVf5GVqqVyC4qYuSqVN5bsZn92Hl1bNWbqjb0ZdUErgoOqv5OLJhQ/UL9+fdavX3/6dmlyADtO5vrrr+fAgQMUFBScMUZjzJgx1K9fv8Ljum6fP38+GzduZNasWQBkZ2ezY8cO5s+fz/z58+nduzcAJ0+eZMeOHeUmlLJVXtnZ2Rw7dowhQ4YAcOuttzJhwgROnDhBeno648ePB+yAxVJbt27lrrvuYv78+bRu3frcXiilFADZuYW8syKFt5ankJVTQL/4pjz5i+5c2rG5T3tLakJxcbaShC9MmjSJhx56iDFjxrBo0SKmTJlyelvDhg0rfazrdmMML730EiNHjjxjn3nz5jF58uTT1V+lXn75ZV5//XUAjzb2t2rViry8PNatW6cJRalzdPh4Hm8u3cO7K/eSU1DMsM4tuO/SdiTGN/V1aID28vJ72dnZtGnTBoC33367wv3CwsI4ceJEhdtHjhzJq6++SmFhIQDbt28nJyeHkSNHMm3aNE6ePAlAeno6hw8f5v7772f9+vWsX7++wi/+Jk2aEBERwZIlSwCYMWMGQ4YMISwsjOjoaD7/3C4Hnp+fT25uLgDh4eF89dVXTJ48mUWLFp3bi6FULbU3M4c/f7aJQc8u5PUlu7msSxRzfzuYabdd6DfJBLSE4vemTJnChAkTiIiIYNiwYezZs6fc/YYOHcrTTz9Nr169mDx58s+2/+pXvyIlJYU+ffpgjKF58+Z8/vnnjBgxgq1bt3LRRRcBtgvzu+++S4sWLdyK7+233z7dKN+2bVveeustwCaXu+++m0cffZSQkJAzGuWjoqL48ssvGTVqFNOmTaN///7n+rIoVSus3XeU1xfv5uvNBwkJCuKavtHcfUlb4ptVXjvhK7VqTfnExERTdoGtrVu30qVLFx9FpMrS90PVdsUlhgVbD/H64t0k7T1K49A6/HJAHLdeHE9U49CzH8ALRGSNMSbxbPtpCUUppfxAXmExs9ak8ebSPew5kkN0RH0eu7or1yXGVMsYEk8IjCiVUqqGyjyZzzsr9jJj5V6ycgroEd2EqTf25opuLakTHFjN3JpQlFLKB3ZnnOSNpXv4ZE0a+UUlDO/Sgl8Pbku/hKYBO1GqJhSllKomxhiS9h7ltcW7WbD1ECHBQVzTpw13DmpL+xaNzn4AP6cJRSmlvKyouIR5mw/x+pLdrE89RniDECYNbc/NF8XTPKyer8PzGE0oSinlJcdyC/hgVSozVqSwPzuPuMgG/HVsN67tG0P9utU3x1Z1CawWnxpo6NChzJs374z7nn/+ee699142b97MsGHD6NSpE+3ateOxxx6jpKQE+Pl08r169WLLli2+OAWlVBnbD51g8qebGPDUtzzz9TbiIhvy2s19+e53l3LzRfE1MpmAllB8buLEicycOfOMKVFmzpzJM888w5gxY3j11VcZMWIEubm5XHPNNbzwwgs8+OCDgE4nr5Q/KSkxLEw+zFvLUli68wj16gQxrlcbbhsYT5dWjX0dXrXQhOJj1157LY888ggFBQXUrVuXlJQU9u/fz86dO0/PCAzQoEEDpk6dyuDBg08nFKWU753IK2TWmjTeXp5CSmYuLRuH8oeRnZjYL5amDev6Orxq5dOEIiJXAC8AwcAbxpiny2yvB7wD9AUygeuNMSki0g94rXQ3YIox5rMqBzT3YTi4qcqHOUPL7jDq6Qo3N23alH79+jF37lzGjh3LzJkzue6669i8eTN9+/Y9Y9927dpx6tQpjh07Bpw5nTzAihUrKp19WCnlOXszc5i+PIWPk9I4mV9E79hwHhrRiVEXtCQkwMaPeIrPEoqIBAMvA5cDacBqEZltjHFtCLgTOGqMaS8iNwDPANcDPwKJxpgiEWkFbBCRL4wxRdV8Gh5RWu1VmlDefPNN3nvvvbM+Tqu8lKpexhiW78rkrWV7+HbbYYJFuLJHK24fmECvmHBfh+dzviyh9AN2GmN2A4jITGAs4JpQxgJTnOuzgKkiIsaYXJd9QgHPTEhWSUnCm8aOHcuDDz7I2rVryc3NpW/fvqxbt47Fixefsd/u3buJjIwkPFw/uEpVp5P5RXy2Lp0ZK1LYfugkkQ3r8sDQ9vxyQJzP5tfyR75MKG2AVJfbaUDZaWdP7+OURrKBSOCIiPQHpgFxwM2BWjoBO8Pv0KFDueOOO5g4cSIAN910E//3f//HggULGD58OKdOneI3v/nNOS3Pq5Sqmu2HTjBjxV4+XZtGTkEx3Vo35tlrezCmZ2tCQ2pmT62qCNhGeWPMD0A3EekCvC0ic40xeWX3E5G7gLsAv15uduLEiYwfP56ZM2cCdhXH2bNnM2nSJO677z7S09N55JFHuOmmm04/pmwbyiuvvMLFF19c7bErVZMUFJUwf8tBZqzYyw97sqhbJ4irerTi5gFx9IoJD9hpUaqDz6avF5GLsI3pI53bkwGMMU+57DPP2WeFiNQBDgLNTZmgReQ74I/GmDPnpi8jkKev//zzz3nooYdYuHAhcXFxvg7HawLl/VA1z4HsU3zwwz4+WJ1Kxol8YprW56b+cVyXGFPremuVFQjT168GOohIApAO3ADcWGaf2cCtwArgWuA7Y4xxHpPqVIPFAZ2BlGqL3AfGjRvHuHHjfB2GUjWKMYZlOzOZsTKFBVsPU2IMQzu14OYBcVzSsTnBQVoaORc+SyhOMngAmIftNjzNGLNZRJ4Akowxs4E3gRkishPIwiYdgEHAwyJSCJQA9xljjlT/WSilAlH2qUI+WZPGuyv3svtIDhENQvj14Lbc1D+WmKYNfB1ewPJpG4oxZg4wp8x9j7pczwMmlPO4GcAMD8ah9aJ+oDatHqqqnzGGTenZvP/DPj5fn05eYQl9YsP51/U9GXVBK21k94CAbZT3lNDQUDIzM4mMjNSk4kPGGDIzMwkN1S6YyrOO5xXy3/X7+eCHfWw5cJzQEDslyi8HxHFBmya+Dq9GqfUJJTo6mrS0NDIyMnwdSq0XGhpKdHS0r8NQNYAxhrX7jjFz1T6+3HiAU4XFdG3VmL+O7cbY3m1oHBri6xBrpFqfUEJCQkhISPB1GEopDziWW8Bn69L5YNU+th86ScO6wYzr3ZqJ/WLp3qaJ1kJ4Wa1PKEqpwGaMYdWeLGauTuWrTQcoKCqhZ3QTnvpFd67u2ZpG9fRrrrroK62UCkhZOQV8siaND1bvY3dGDmH16nB9Ygw39IuhW2ttG/EFTShKqYBRUmInZ5y5eh/zNx+ioLiEvnERPHdtO67s0YoGdfUrzZf01VdK+b29mTl8siaNT9amk37sFE3qh3DTgFgm9oulY1SYr8NTDk0oSim/lFtQxJxNB/k4KZUf9mQhAoM7NOfhUZ25vGuUjhvxQ5pQlFJ+wxhD0t6jfJyUylcbD5BTUEx8ZAP+MLITv+jThlZNdAE5f6YJRSnlcweyT/Hp2nRmrUljz5EcGtYN5soerZiQGENiXIR29w0QmlCUUj6RV1jMN1sO8fGaNJbuyKDEQL+Eptx3aTtGd29FQ+3uG3D0HVNKVZvSEeyfrUvjiw0HyD5VSOsmodw/tD3X9o0mLrKhr0NUVaAJRSnldXszc/hsXTqfr0snJTOXenWCGNmtJRMSo7m4XTOdJr6G0ISilPKKozkFfLnpAJ+vS2fN3qOIwEVtI7lvaHtGXdCSMJ1Pq8bRhKKU8pj8omIWbjvMp2vTWZh8mMJiQ8eoRvzpis6M7dWa1uHaS6sm04SilKqS0q6+n65N56uN+zmeV0TzsHrcelE84/u0oWurxtpLq5bQhKKUOi+7M07y+bp0PlufTmrWKeqHBHPFBS0Z37sNA9tru0htpAlFKeW2/cdO8eXG/czesJ8f048TJDCwfTMeurwjI7q21K6+tZy++0qpSh05mc/cTQeYvWE/q1OOAtAzJpy/XNWVq3q0IqqxrrKpLE0oSqmfyT5VyPzNB5m9YT/Ld2VSXGLoFBXGH0Z24qoerXS8iCqXJhSlFACnCopZsPUQX2zYz6LkDAqKS4ht2oB7h7Tj6p6t6dRSZ/VVldOEolQtVlBUwuLtGXyxcT/fbDlEbkExUY3rcfNFcVzdszU9o3XZXOU+TShK1TIFRSUs23mEOZsOMH/LIbJPFRLRIIRxvdtwdY/W9Etoqj201HnRhKJULZBfVMzSHUf4atMBvtlyiBN5RYSF1uHyLlFc3bM1gzo0IyQ4yNdhqgCnCUWpGiqvsJglO2xJZMGWQ5zIL6JxaB1GdmvJ6O4tGdi+GfXq6CJVynM0oShVg+QVFvP99gzmbDrAt1sPczK/iCb1Q7jigpaM7tGKge2aUbeOlkSUd2hCUSrA5RUWsyj5MF9tOsh3Ww+RU1BMeIMQruzeitE9WnFxu0itzlLVQhOKUgHoeF4hC7cdZt7mgyxKziC3oJimDesypldrRndvxYC2mkRU9dOEolSAOHwij2+2HGLe5kOs2HWEwmJD87B6jOvdhiu7t6J/QlPqaBJRPqQJRSk/lnIkh3mbDzJv80HWpR7DGIiLbMDtAxMY2S2K3jERBGkXX+UnNKEo5UeMMWzef5z5mw8yb/Mhkg+dAKBb68Y8OLwjI7u1pGNUIx1sqPySJhSlfKy4xJCUksW8zYeYv+UgaUdPESSQGN+Uv1zVlRFdo4hp2sDXYSp1Vm4lFBGJAFoDp4AUY0yJV6NSqoY7kVfIkh1HWLD1EAu3HeZobiF16wQxuH0zJg1rz/AuUUQ2qufrMJU6JxUmFBFpAtwPTATqAhlAKBAlIiuBV4wxC6slSqVqgNSsXL7deohvtx1m5e5MCosN4Q1CGNqpBcO7RDGkU3Ma6XoiKoBV9umdBbwDDDbGHHPdICJ9gZtFpK0x5s3zfXIRuQJ4AQgG3jDGPF1mez0nhr5AJnC9MSZFRC4HnsYmugLgD8aY7843DqW8oaTEsCHtGAu2HuLbrYfZdtC2h7Rt3pDbByYwvEsUfWLDtWeWqjEqTCjGmMsr2bYGWFOVJxaRYOBl4HIgDVgtIrONMVtcdrsTOGqMaS8iNwDPANcDR4CrjTH7ReQCYB7QpirxKOUJuQVFLNlxhG+3HuK7bRkcOZlPcJCQGBfBI1d24bIuUSQ007VEVM101vK12O4kNwFtjTFPiEgs0NIYs6qKz90P2GmM2e08z0xgLOCaUMYCU5zrs4CpIiLGmHUu+2wG6otIPWNMfhVjUuqcpR3NZVFyBt9uPcSyXZkUFJUQFlqHSzu1YHiXFgzp2JzwBnV9HaZSXudOhe0rQAkwDHgCOAF8AlxYxeduA6S63E4D+le0jzGmSESygUhsCaXUNcDaipKJiNwF3AUQGxtbxZCVstO/J+3NYlFyBgu3HWbH4ZMAxDZtwC/7xzG8SwsuTGiqI9VVreNOQulvjOkjIusAjDFHRcQvfm6JSDdsNdiIivYxxrwGvAaQmJhoqik0VcMczM5jUfJhFiYfZumOI+QUFBMSLPRPiOT6C2MY2rkFbZs11PEhqlZzJ6EUOu0dBkBEmmNLLFWVDsS43I527itvnzQRqQM0wTbOIyLRwGfALcaYXR6IR6nTiopLWLvvGAuTD7Nw208N6q2bhDK2dxuGdmrBxe0iaai9spQ6zZ3/hhexX9xRIvIkcC3wiAeeezXQQUQSsInjBuDGMvvMBm4FVjjP+50xxohIOPAV8LAxZpkHYlGKwyfy+D45g0XJGSzekcGJvCLqBAmJ8RFMHtWZoZ1b0KGFjlJXqiJnTSjGmPdEZA1wGSDAOGPM1qo+sdMm8gC2h1YwMM0Ys1lEngCSjDGzgTeBGSKyE8jCJh2AB4D2wKMi8qhz3whjzOGqxqVqj7zCYpJSjrJkRwaLdxxh64HjALQIq8foC1pxaafmDOzQjMahIT6OVKnAIMacvVlBRAYBHYwxbzlVXo2MMXu8Hp2HJSYmmqSkJF+HoXzEGMOOwydZvD2DJTuO8MOeTPIKSwgJFvrGRTC4Q3Mu7dScrq0aaylEKRcissYYk3i2/dzpNvwYkAh0At4CQoB3gYFVDVIpb8vKKWDpziMscZLIweN5gB1ceMOFsVzSsRn9E7QtRClPcOe/aDzQG1gL4AwmDPNqVEqdp4KiEtbus9VYS3YcYVN6NsZA49A6DOrQjEs6NGdQh2ZER+hki0p5mjsJpcBpCC/t5aXDfJXfKCkxbDt4guW7jrBs5xFW7ckip6CY4CChd0w4Dw7vyOAOzegRHU6wrhuilFe5k1A+EpH/AOEi8mvgDuB174alVPmMMezLymXZzkyW7TrCil2ZZOUUANC2WUPG92nD4A7NuahdpDamK1XN3Onl9XdnMsbj2HaUR40x33g9MqUch0/ksWJXJst2HmHZzkzSj50CIKpxPS7t2JyL2zfj4naRtA6v7+NIlardKk0ozoDGBcaYoYAmEVUtjucVsnJXJsudJFI6tUnj0Dpc1C6Su4e05eJ2zWjXXEemK+VPKk0oxphiESkRkSbGmOzqCkrVLsfzCklKyeKH3Vms3J3JpvRsSgyEhgQ43tfFAAAgAElEQVRxYXxTrukbzcB2zejaurG2gyjlx9xpQzkJbBKRb4Cc0juNMb/xWlSqRjueV8jqPVn8sMcmkB+dBFI3OIheMeE8MLQ9F7dvRu/YcOrVCfZ1uEopN7mTUD51Lq50kkXltuxTtgSycncmK3dnsXm/SwKJDeeBYR0Y0LYpfWIjCA3RBKJUoHInoYQbY15wvUNEfuuleFQNkJ1byOrSBLInk837j2MM1K0TRO+YcCYN68CAtpH0jg3XBKJUDeJOQrkVu0yvq9vKuU/VUvuPnWJ1SharU7JISjlK8qETpxNIn9hwfnuZTSC9YjSBKFWTVZhQRGQidvbftiIy22VTGHaiRlULlZQYdmWcZFVKFqv3ZLE65ejpbrwN6wbTJy6CK7u34sKEpppAlKplKiuhLAcOAM2Af7jcfwLY6M2glP8oKCrhx/3Zp5NH0t4sjuUWAtCsUT36JURw56AE+iU0pXPLMOroKoVK1VoVJhRjzF4RSQPyjDHfV2NMyoeycwtZm3qUtXuPsjoli/Wpx8grtOupJTRryIiuUSTGN6VffFPiIhvoOBCl1Gk6DqUWKykx7D5ykjV7j7J27zHW7DvKTmcQYZBAt9ZNmNgvln7xTUmMb0rzsHo+jlgp5c90HEotcjK/iA2px1i79yhr9tlSyPG8IgDCG4TQJzaC8b3b0Ds2nJ7R4Tqlu1LqnJzvOBTl50onUVy77yhr9h5lzd5jJB88TokBEejQohFX9mhF79gI+sZF0LaZTmOilKoadyaHfLs6AlFVczSngA1px1ifai8bUo9x1Gk8b1SvDr1jw7l8WAf6xkXQKyacJvV1Jl6llGe5s2JjB+ApoCsQWnq/MaatF+NSlcgrLGbLgeNscEkeKZm5wE+lj8u7RtEzJpw+sRF0jArTObCUUl7nTpXXW8BjwL+AocDtgPYNrSYlJYY9mTlnJI8tB45TWGxnv4lqXI9eMeFcf2EsPWOa0CM6nEba9qGU8gF3vnnqG2O+FRExxuwFpojIGuBRL8dW6xhjSDt6ik3p2WxMy+bH9Gw2ph073XDesG4w3aObcOegtvSKaUKvmAhaNgk9y1GVUqp6uJNQ8kUkCNghIg8A6UAj74ZV8xlj2J+dx6a0Y6cTyKb07NODBkOChU4tw7iyR+vTyaN9i0ZadaWU8lvuJJTfAg2A3wB/BYZh5/dSbjLGcPB4HpucpFFa+sh0lq6tEyR0jArjim4tuaBNE3pEN6FTyzCdul0pFVDc6eW12rl6Ett+oipRUmJIPZrL5v3H2bw/m837j/Nj+nGOnMwHIDhI6NCiEcM6t6BHdBO6R4fTuWWYznmllAp4lU0O+QWVrHtijBnjlYgCSGFxCTsOnTydOLbsP87WA8c5kW/bPEqTxyUdm9GjjU0eXVs1pn5dTR5KqZqnshLK352/ArwO/Mr74fivnPwith44fkbJY8ehkxQU23mu6ocE06VVGON6t6Fb68Z0bd2YjlFa8lBK1R6VTQ55ekJIETlZmyeInPDv5STtPYpxymtNG9alW+vG3D4onm6tm9C1VWMSmjXUBnOlVK3m7oCFWr3k76D2zRncofnpkkfLxqE6TYlSSpVRWRtKU5ebwSISga3+AsAYU2sW2frt8A6+DkEppfxeZSWUNdiSSWkSWeuyzQA69YpSSqnTKmtDSajOQJRSSgW2CufkEpH4yh4oVrSnA1JKKRWYKqvyes6ZcuW/2OqvDOxsw+2xk0Rehp00Ms3bQSqllPJ/FZZQjDETgL8AnYCXgSXY5PIrIBkYZoz5pipPLiJXiEiyiOwUkYfL2V5PRD50tv9QWmoSkUgRWSgiJ0VkalViUEop5RlnW1N+C/C/3nhiEQnGJqrLsaWc1SIy23nOUncCR40x7UXkBuAZ4HogD5vsLnAuSimlfMyX65r0A3YaY3YbYwqAmcDYMvuMBUpXjJwFXOZMo59jjFmKTSxKKaX8gC8TShsg1eV2mnNfufsYY4qAbCDyXJ5ERO4SkSQRScrIyKhCuEoppSpT41deNMa8ZoxJNMYkNm/e3NfhKKVUjXXWhCIin4rIlU6PL09KB2Jcbkc795W7j4jUAZoAmR6OQymllAe4kyReAW7Ertj4tIh08tBzrwY6iEiCiNQFbgBml9lnNj8t5nUt8J0xplbPK6aUUv7KnQW2FgALRKQJMNG5noqd0v5dY0zh+TyxMabIWVJ4HhAMTDPGbBaRJ4AkY8xs4E1ghojsBLKwSQcAEUkBGgN1RWQcMKJMDzGllFLVSNz5wS8ikcAvgZuB/cB7wCCguzHmUm8G6EmJiYkmKSnJ12EopVRAEZE1xpjEs+131hKKiHyGHdw4A7jaGHPA2fShiOi3s1JKKcC99VBeNMYsLG+DOxlLKaVU7eBOQokQkV+UuS8b2GSMOeyFmJRSSgUgdxLKncBFQGkp5VLsZJEJIvKEMWaGl2JTSikVQNxJKCFAF2PMIQARiQLeAfoDi7FtKzXbyQwoLoAmZQfyK6WUKuXOOJTo0mTiOAzEOEsAn1eX4YBSXAhvXAb/vQ90CIxSSlXInYSySES+FJFbReRW7BT2i0SkIXDMu+H5geAQGPgb2L0I1r3r62iUUoGopARmjIeF/+frSLzKnYRyP/AW0Mu5vAPc78z4O9SbwfmNvndA3ECY979w/MDZ91dKKVc7F8Cu7+D7Z2DbHF9H4zWVJhRnzZLvjDGfGGMedC6zat30J0FBMOYlKM6Hr36nVV9KqXOz8hUIawWtetrq8+yaudBtpQnFGFMMlDjTrtRuke1g6J8h+SvY/Jmvo1FKBYrDW2H3QrjwV3DtW7Zd9pNfQ3GRryPzOHeqvE4Cm0TkTRF5sfTi7cD80oD7oXVvmPMHyNFJj5VSbvjh31AnFPrebn+YXvUv2LccFj/r68g8zp2E8il2ud3F2PEnpZfaJ7gOjH0Z8rLh64d9HY1Syt/lZsGGD6HHddDQWRuwx3XQ6yb4/lnYs9i38XnYWROKMeZt4CNgpTHm7dKL90PzU1HdYPDvYNNHsH2er6NRSvmzNdOh6BT0v+fM+0c9C5Ht4dO7IOeIT0LzBncW2LoaWA987dzuJSJl1y2pXQb/Dlp0hS8fhLzjvo5GKeWPigth9RuQMMT+EHVVrxFcO82WYD6/t8Z09HGnymsK0A9nzIkxZj3Q1osx+b86dWHMVDhxAL551NfRKKX80dbZcDwdBtxb/vZWPWDkk7Bjvu0FVgO4k1AKjTHZZe4r8UYwASW6Lwy4D9a8BXuWeP74xsDiv8PL/eGkzsGpVMBZ+W+ISIAOIyve58JfQeer4JvHIH1t9cXmJe4klM0iciMQLCIdROQlYLmX4woMQ/8XmraF2ZOgINdzxy0uhNkPwHd/hYxttpeIUipwpK2BtFW27SSokq9ZETvGrVEUzLoj4KvQ3Ukok4BuQD7wAXAc+B9vBhUw6jaAq1+Eo3tg4ZOeOWZeNrw3wU7zMuRP0OVqWPVGwH/QVCUKcuz7rmqOH16Feo2h901n37dBU7j2TTi2z7bLBnB7iju9vHKNMf9rjLnQGJPoXM+rjuACQsJg27985Sv2V0lVZKfBtFGQssR2Tx76Zxj0IORn294iqmY5fsBWdfyjM7xxeUB/kSgXx/fbwc+9fwn1wtx7TOwAGDoZfpwF69/zfEzF1TOPrzu9vDqKyGsiMl9Eviu9VEdwAePyJ+y0Cv+9H4ryz+8YBzbA65dBdircNMt+GAHa9IWES2DFy+d/bOVfMpLtZ+X57rD8RQiPgyPJcHiLryNTnrD6TSgphn53ndvjBj1k/9fn/MF+RjzhxEGY+zBMTYRC75cD3Kny+hhYBzwC/MHlokqFNoarnoeMrbDkn+f++O3zbckkqA7cMQ/alZlzc9CDcPIgbPzQM/Eq39i3Ej6YCC/3g02fQN/bYNJa+OUsu70GTxpYaxSegqRp0Gk0NE04t8cGBcP41yCkgW1PKTx1/nGUJpIXesKq1yB+EBR6sJ23Au4ssFVkjHnV65EEuo4joMf1sOTv0HXMz/udV2T1mzDn99CyO0z8EBq3+vk+bYdCyx6w7AU7wjYo2LOxK+8pKYHtc+17l/oD1G8KQx6Gfr+Ghs1+2q9NIiTPgSH6Wy2gbfoYTmVV3FX4bBq3gvH/hveuhfmPwJX/OLfHnzgIS5+3vU+LC6HXRBj8+3NPbufJnRLKFyJyn4i0EpGmpRevRxaIRj4FoeG2OuNsE7+VlMD8v8BXD0H74XDbnPKTCdieIIMehMydsO0rz8etPK8oH9a8bUsjM2+0Y5ZGPQcP/mjryl2TCUDn0bB/rS6PEMiMgZWvQtQFtkRwvjpcDhdPsoMit7g5hvzEQfh68k8lku7XwqQ1ti22mpIJuFdCudX56/rTyVDbBzeWp2EkjH4OZt0OK1+Ggb8tf7/CU/DZPbDlc0i8w37RBJ/lreg61vZpX/ov2/NLxPPxq6o7dcxWefzwbzh5yJYsr3kTuo6r/D3udCV8+4QtpVx4Z/XFqzxnz2LbDjZmatX/P4c9CinL7PCB1r0gPLb8/U4ctKXfpGm2RNJzIlzyOzucwQfOmlCMMdWX3mqCbuPhx0/symydr7Kzi7rKyYSZE231x+V/tb9E3PnwBQXblSO/fND2Aku4xDvxq3NnjO06vvpN2xuv4KStphz/H2h7qXvvb/NO9ksgkBJK4SkIrlf5OIva5Id/Q4NI6D6h6seqU9dOzfKfS2DWnXD7HLt6bCk/SySlKvwkiMgfXa5PKLOtZq9jWRUitt4zuJ4d8FjiMqlA5i54czjsXw8TptsEcS6/ZHreCA1b2FKK8p3CPNj3Ayx7ET78pe32+2JvW93RaRTcvRhu+dx2rnD3/RWxDbl7FkP+Ce/G7wmFp+BfF9SYKUOqLGs3JM+1NQ4hoZ45ZtMEuPp5O0By0VP2PteqrR/+AxdcC5OSYNzLPk8mUHkJ5QagdML+ydjeXqWuAP7sraACXlhLO0fP7AdgzTQ7vUJpDx+AW7+A2P7nftyQUNvY9+3jtptxq56ejVuVLzvd/lOnOpcDG6DE6dcfHmfHIkX3g44jISLu/J+n02hYMdUuF9ttvGdi95bd30PuEdj+NVz8gK+j8b0fXrO9NBM9XLq84BrYvcj2Hs1Ogy3/dUokN9hJasvWgPhYZQlFKrhe3m1VVu9f2qqvbx6zDfTfPApN2tgxJlX5ECTeYT9cS5+HCW95Ll5lFRXAwY22SjJ1FaStthP8gV0kqXVvm9Rj+tkkEhblueeO6W97gW2b4/8JJdnp4py6ypbYPPWrPBDlHbczW3QbX3HHmqq44hn7Om+a5beJpFRlCcVUcL2826osEbj6BXjlIvj6TxAzAG54/6dFds5X/XC48A5Y/hJk/cUvirkBqyAHDm2BQ5vg4I9wcJMtfRQ7A0ibxNgv+Zh+9hLV3dZte0twHeh4hV1murjwzDpzf1JSYksmDVtAzmFbeqvNbXrr34OCE+ffVfhs6jaA2+faasYmbbzzHB5SWULpKSLHsaWR+s51nNu1+OfIOYiIg/Gv2vr2yx713K+4AffZ+vrlL9nlRFXljLHVBYd+tImjNIFk7eb0b6N6je3YoX6//qn04Y1fm2fTeTRseB/2rfDfL+n962wPttF/h7l/hJSl/hurt5UU28b4mP7Qpo/3nqdBYIzUqDChGGN09JwndB1rL54U1tL26lj3Hlw6GRq18OzxA1lhnp2x4OCPLgnkR8g79tM+EQnQ8gI7ELXlBXbcQHisf3TFbjfMVq1tm+O/X9LJc0CCbf3++vft8g1Dz/6wGmn7PDiaAsOn+DgQ/+DOOBTljy7+Dax9x5ZUhj/m62j8w66FtuNDkTNlRUhDiOpq67ZbXmCrrKK6uj9hny/UbWi7Gid/BVc85R9JrqzkuRB3sf3VHD/IfgYLcm3VTG2z8hVoHA2dr/Z1JH5BE0qgatbeTvGy+k07ij60sa8j8q2CHPjiN7aOedhf7FQ2EQmBOUai0yjbRnFos02E/uRoChzeDCOdkQMJl9gJLtNW2URYmxz80Y4JG/742Qcm1xI+/W8TkStEJFlEdorIw+VsryciHzrbfxCReJdtk537k0WkkiXRarCB/+NMba+9vVj0tF1P4uoXods42wsmEJMJQMdRgPzUk8qfJH9t/3YaZf/GDrDVX95YtdTf/fAq1KkPfW7xdSR+w2f/cSISDLwMjAK6AhNFpGuZ3e4Ejhpj2gP/Ap5xHtsVO06mG3ZMzCvO8WqXNn0gYQiseKV2T21/YKOd3r/PLRA/0NfRVF1YFEQn+ue8bclzoHnnn3oX1guzXalTlvo2ruqWcwQ2fmwnXwyQBvPq4MufcP2AncaY3caYAmAmULb1eizwtnN9FnCZiIhz/0xjTL4xZg+w0zle7TPof+zU9htm+joS3ygphi9+a/+pL3/C19F4TqfRcGC9HVTpL04dg73LfiqdlEoYDOlrbLVjbZH0lu1e3v8eX0fiV3yZUNoAqS6305z7yt3HGFMEZAORbj4WABG5S0SSRCQpIyPDQ6H7kbZD7Yj55S/aL9faZtXrdpbeK56G+hG+jsZzOl9p/26f69s4XO1cACVFNtm5ih9kZw7Yt9I3cVW3ogI7E3C7y+wcbOq0AK1kdp8x5jVn6eLE5s2b+zoczztjavsvfR1N9cpOg+/+av+xL7jG19F4VrOO0LSdfy26lTwXGja3q4i6ihlgpx3x92qv4kJbTfXZPbB8qi1VnW2ZifJs+dzWCnhrIGMA82XXhHQgxuV2tHNfefukiUgdoAmQ6eZja48uY2yd9tLn7XV/7GrqDXP+aEtlV/2z5p2ziB3kuPLfdmoPX/fiKy6EHd9A16t/vsBbvUY2yaT4acP8qWOw9m07meLxdKjXBDZ8YLfVbQTRF0LcQIi7yJ5HSP2Kj2WM7Soc2d7+kFFn8GVCWQ10EJEEbDK4AbixzD6zseuxrACuBb4zxhgRmQ28LyL/BFoDHYBV1Ra5vwkKtuNSvvwfO1tt2yG+jsj7tn5hx2pc/gRExPs6Gu/oNNrOhrBzAVzwC9/GsneZ7VFYtrqrVPwg+4Mm/4T/jPM5mmIT8roZdkmB+MF2Zon2l9uR/vuWw97lsHcFLPybfUxwXZtUYi+ySSam35nJPHWVnSlg9N8DtxehF/ksoRhjikTkAWAeEAxMM8ZsFpEngCRjzGzgTWCGiOwEsrBJB2e/j4AtQBFwvzGmFjYguOg50a7Bsuz5mp9Q8o7DnD/YgYoD7vN1NN4T09+ur5E8x/cJJXmuHcHf9tLyt8cPhiX/sNMMdRhenZH9XOpqWPGS/dEhQXaK94vuO3N27satbDVpaVVpbpadEHTvMptglr8IS/9pH9+yO8RebAdzbphpSzg9J/rm3PycT0fjGGPmAHPK3Peoy/U8oNzVaowxTwJPejXAQBISav9pFkyx66207uXriLzn2yfsuhDXv+e/Eyh6QlCwnSxy25e+nSzSGJvU2l5qR/KXJ6Y/BIVAymLfJJSSYvs6LZ9qB1mGNrErpva7Cxq3PvvjGzS1vddKe7AV5NiZpvc6pZg1b9lxJ2AXxavXyHvnEsB0eGdNUjq1/bIXau7U9qmrbQ+bfndBdN+z7x/oOo22s9nuXea7keiHt9hBo4N/V/E+dRvYsTPV3TCff8LOabfyFTi211Z/jnoWet1UtS/90ilw2l5qbxcV2G7cBzZ4ZkXGGkoTSk0S2sQmleUv1syp7YsL7ZiTsFYw7BFfR1M92g21VU3Jc32XUEpH7He8ovL9Squ9qqMTQXY6rPoPJE23bTsxA2DE32x367KdBjyhTt2fljFQFdJWpZpmwL22C+fyl3wdieetmGrnkRr9nO97PVWXug3tWKNtc2zVky8kz7UN1WEtK98vfhCYYjv1vjdtmAkv9LCf8fbD4Fffwp3z7Nx23kgmym2aUGqasJbQ60ZbDXDikK+j8Zys3bDoGeh8FXS5ytfRVK9OoyB7n52Gv7qdOGjHa5QdHV+emH62l5Q3uw8bA4v/Di26wG/Ww4TptqpN+QWt8qqJLv4NrHnbLvxzrlPbl5RAYY5tlCy9FOa6/M21f09fzynz19m3RVcY8qeqr1AJ9kvky4dsyWv0c1U/XqDpNAq+EFtKadm9ep97e+lkkBV0F3YVUt+O6fDmRJHpayBzB4x5yS5gp/yKJpSaKLKdXdRr9Ru2xFJw8qfkkH/SuV1630nnvtLkcY7zMQWF2AbZkIbO3wa2zn/1G7DxQ9vW0ff2qk3vvelj2L0QRj3nXo+dmqZRC/tFnfwVXPqn6n3u5Ll28bEWZedtrUD8YFj8rB1MWD/c8/Gsf99+vrqO8/yxVZVpQqmpBj9k++HP/aO9LcG210vdRrZevvRvk5gzb9dt5OzX8MwkUbdhmb/O/RV1ZT281T73nN/Dmukw6hlbx36ucrPg68nQJhEuvPO8X46A13m07RKenQZNoqvnOQtyYPci6Hub+zMRJAyG75+27SjuVJOdi6J8+PETW+1ZW9rQAowmlJqqVU/4/Q7A2CRRp171Tk/SogvcMhu2zoZ5/wvTr4Ruv4ARfz23L8Rv/gKnjsIt/63dDa6drrQJJXmuXfe+OuxeBEV555YY2iRCcD1b7eXphJI81y7l3EsHFforbZSvyRpGQsNmdtCjL+a6ErFVb/evgiEP2+6nUy+Exc/Ztd/PZs8SWPeuHUjmbysXVrfmHe38UdW56FbyHDsqPO4c1pgJCbWN895omN/wge0y3ra2LmDv/zShKO+r2wCGTraJpf1w+O5v8HI/u4BURV1hC/Ps3GThcbZxX9mG8T1LIC/b+89VUmxXZ+xw+bmP0E+4BA5ustWVnnLysJ2cssd1tbuk6uc0oajqExEH18+Amz+3Daszb4R3r4GM7T/fd+k/7ZT8V/3LJiRlE0pJoZ0s0tvS10DukfOrtoofBBg7ZYmnbPrYjnHpWXb+WOVPNKGo6tduKNy7DEY+ZedLevUimP+IHWENkJFsp5DpPgHa6xThp8X0gwbNqmeNlOQ5tpt2+/OYl6tNX7vWuienYVn/gV1quEVnzx1TeZwmFOUbwSF2MstJa+3Mrcunwkt9bbfQL/7H9iYb+ZSvo/QvpZNF7vjGTkPjTclzbdvJ+XT9rVPPs+0oBzfBoU1aOgkAmlCUbzVqDmOnwq+/teMdPr/XrlMx4m92mzpT59F27ipvTsKYuQsytrk3mLEiCYPtyH5PtKNsmGnHO3W/turHUl6lCUX5hzZ94c5vYNyrcMkfoPcvfR2Rf2o71FYnebO31+nR8WeZDLIy8ZfYv1VNfMVFsPEj6DjSTjGv/JomFOU/goLsPGTDHql5S/p6St0Gtg3Km5NFJs+FFt2qthJm69524GtVq712fQs5h+3nQvk9TShKBZpOo+F4mm1b8LTcLNs7q6qDEuvUhdgBVS+hrH/frlrZ/vKqHUdVC00oSgWajiMB8U61184FtntuVdpPSsUPsotz5Rw5v8efOmrPsfsEm6CU39OEolSgadTC9qLa9pXnj508BxpF2SqrqjrdjnKe1V4/fgrFBbp+ewDRhKJUIOo0Gg5uhGOpnjtmUQHsWGC7Jgd54KuhdS87j9z5Vntt+MDOctyqZ9VjUdVCE4pSgajzlfZv8lzPHXPvUig44ZnqLrBjjWIHnN/6KEd22EGvPSdqB40AoglFqUDUrANEdrBrpHhK8lzbJbntEM8dM34wHEm2c3Gdiw0fgATZubtUwNCEolSg6jzaViedOlb1YxljE0q7YXblRU+JH2z/nks7SkkJbPjQxnK2deyVX9GEolSg6jQaSoo8M1nkoR8hO9Xza5i06gl1w86t2itlse0WrY3xAUcTilKBKvpCO1mkJ7oPJ88FxOmS7EHBdSDu4nNrmF//gV2HpbSdSAUMTShKBaqgYDs9yvb59lKVkfPJc2yCatTCc/GVih8EmTvg+IGz75t/wq7y2W2cZ6veVLXQhKJUIBtwPzSIgPcnwOvDzi+xHN8P+9d5vrqrVEJpO4obpZStX0Bhrk61EqA0oSgVyKK62iUAxrxkF8R6fwK8PhS2z3M/sZyeDNJD3YXLatnDVmG50zC//n1o2hZi+nsnFuVVmlCUCnTBIdDnFpfEkgnvX+d+YkmeCxEJ0LyTd+ILCnbaUc6SUI7ts/vo2JOApQlFqZrijMQy1U70WJpYkr8uP7Hkn4Td39vSiTe/xBMGQ9ZuyE6veJ8NH9q/Pa73XhzKqzShKFXTBIdAn5th0pqfEssH18Nrl/48sexeCMX53ms/KRU/yP6tqB3FGDuYMX4wRMR5NxblNZpQlKqpXBPL2Jch75hLYpn702DG0HA7RYo3RXW3z5OyuPztqasga5eOPQlwdXwdgFLKy4JD7AqYPa6HjR/C4ufggxvsoMOje6HDCLuPNwUF2VJKRSWUDe/bBbm6jvFuHMqrfFJCEZGmIvKNiOxw/kZUsN+tzj47RORWl/ufFJFUETlZfVErFeBKE8sDSTD2FcjLtqWWLldVz/PHD4KjKT+fIbnwFPz4GXQZA/XCqicW5RW+qvJ6GPjWGNMB+Na5fQYRaQo8BvQH+gGPuSSeL5z7lFLnKjgEet9kE8uvvrNf5NWhonm9kudAfjb00uquQOerhDIWeNu5/jYwrpx9RgLfGGOyjDFHgW+AKwCMMSuNMW4Mu1VKVSg4BKL7Vl8X3RZdoX7Tn1d7rf8AGrf5KeGogOWrhBLlkhAOAlHl7NMGcC0bpzn3nRMRuUtEkkQkKSMj49wjVUp5RlAQxA88c6LIEwdh17e2fSco2HexKY/wWkIRkQUi8mM5l7Gu+xljDFCFSYgqZ4x5zRiTaIxJbN68ubeeRinljvhLIHuf7QwAsPEjMCU61UoN4bVeXsaY4RVtE5FDItLKGHNARFoB5a2+kw5c6nI7Gljk0SCVUtXr9HiUJRAea8eetEm0C4apgOerKq/ZQGmvrVuB/5azzzxghHZNcPIAAAtESURBVIhEOI3xI5z7lFKBqkUXaBBpq70OboTDW7QxvgbxVUJ5GrhcRHYAw53biEiiiLwBYIzJAv4KrHYuTzj3ISLPikga0EBE0kRkig/OQSl1rkR+Go+y/gMIrgvdfuHrqJSHiKnKGgoBJjEx0SQlJfk6DKVqt1Wvw5zfQ0hD6DAcrnvH1xGpsxCRNcaYxLPtp1OvKKWqV8Il9m9hDvTUxviaRKdeUUpVr2YdoWELwED7y3wdjfIgTShKqeolAiOftO0n3p5DTFUrTShKqerX4zpfR6C8QNtQlFJKeYQmFKWUUh6hCUUppZRHaEJRSinlEZpQlFJKeYQmFKWUUh6hCUUppZRHaEJRSinlEbVqckgRyQD2nufDmwFHPBhOINBzrh1q2znXtvOFqp3zEQBjzBVn27FWJZSqEJEkd2bbrEn0nGuH2nbOte18ofrOWau8lFJKeYQmFKWUUh6hCcV9r/k6AB/Qc64dats517bzhWo6Z21DUUop5RFaQlFKKeURmlCUUkp5hCaUMkTkChFJFpGdIvJwOdtvE5EMEVnvXH7lizg95Wzn6+xznYhsEZHNIvJ+dcfoaW68x/9yeX+3i8gxX8TpSW6cc6yILBSRdSKyUURG+yJOT3LjnONE5FvnfBeJSLQv4vQUEZkmIodF5McKtouIvOi8HhtFpI/HgzDG6MW5AMHALqAtUBfYAHQts89twFRfx1qN59sBWAdEOLdb+Dpub59zmf0nAdN8HXc1vM+vAfc617sCKb6OuxrO+WPgVuf6MGCGr+Ou4jlfAvQBfqxg+2hgLiDAAOAHT8egJZQz9QN2GmN2G2MKgJnAWB/H5E3unO+vgZeNMUcBjDGHqzlGTzvX93gi8EG1ROY97pyzARo715sA+6sxPm9w55y7At851xeWsz2gGGMWA1mV7DIWeMdYK4FwEWnlyRg0oZypDZDqcjvNua+sa5wi4ywRiame0LzCnfPtCHQUkWUislJEzjr9gp9z9z1GROKABH760glU7pzzFOCXIpIGzMGWzAKZO+e8AfiFc308ECYikdUQm6+4/dk/X5pQzt0XQLwxpgfwDfC2j+PxtjrYaq9Lsb/WXxeRcJ9GVH1uAGYZY4p9HUg1mAhMN8ZEY6tGZohITf9++D0wRETWAUOAdKA2vNdeU9M/MOcqHXAtcUQ7951mjMk0xuQ7N98A+lZTbN7w/+2df6xXdRnHX2/xByAY4jVT17iEOkpruLI5gaRVtHQzKgrpBqHNtYkpZMjKVdO5hLGVq7VVLjKbYoaRN2yCJpIByS/hXghLAyqT0rkir1bjx9Mfz8M498u5X74XDt/r1ee1fff9nM/ncz6f5znnfM9zPp/P+T7PYfXFn2LazWyPme0A/ogbmP5KIzof4Er6/3QXNKbz54D7AcxsDTAQdyjYX2nkt/y8mX3czC4Ebo68fv8CRh16c+0fEWlQurMOOFfSSEkn4jeU9mKFmjnHK4BtTZSvag6rL/ALfHSCpBZ8Cmx7M4WsmEZ0RtJo4FRgTZPlOxY0ovNfgA8ASHo7blBebKqU1dLIb7mlMAr7MrCwyTI2m3ZgerztdTGw28x2VdnB8VU21t8xs72SrgOW4W+JLDSzrZJuBdabWTtwvaQrgL34AtiMPhP4KGlQ32XAREm/x6cD5pjZS30n9dHRoM7gN6D7LF6P6c80qPON+HTmbHyBfkZ/1r1BnScAt0sy4DfAzD4TuAIkLcJ1aom1sK8DJwCY2ffwtbHLgGeBV4GrKpehH18zSZIkyWuInPJKkiRJKiENSpIkSVIJaVCSJEmSSkiDkiRJklRCGpQkSZKkEtKgJJUgqauBOrMkDa6wz0mS3lFhe6uPYt+u+D5L0uI69YZJuvZI+zla4j8Ij0k6pZA3SZLFf2+q7q9V0qerbrfQ/nWSrj5W7Se9Iw1K0kxmAb0yKJIG1CmehDv4qwQzu6SCNp43s8l1qgwD+syg4P9D2Gxm/y7kTQV+G99V0wqUGhRJVfwPbiH93+/Y64Y0KEmlSJoQsSUWS3pa0j3xVHw9cBawQtKKqDtR0hpJGyX9TNKQyN8pab6kjcAnJV0jaZ2kzZIekDRY0iW4p4IF8rgloySNCQeWHZKWSDo12ntcHuNkvaRtki6S9HNJz0i6rSB7VyE9V1Jn9DmvRM+RIXtnTRutingUks6XtDbk65B0LjAPGBV5CyQNkcfk2BhtfbTQzjZJd8rj0CyXNCjKzpH0aMi2UdKoyJ8Tx6lD0i09nKI24MGCvEOAcbjrlSsPdx6j7LLI2yCPr7E08i/VwTgyT0kaGvqOj7zZ8nhC7ZIeA34d18YCSVtC/ymF/ldKelDSdknzJLXF8ew8oLOZvQrslPTeetdl0iT62od/fl4fH6ArvicAu3E/QcfhrkvGRdlOoCXSLfi/k0+O7bnA1wr1biq0fVohfRvwhUjfBUwulHUAl0b6VuCOSD8OzI/0Dbhr9jOBk3BfZafV6PARYDUwOLaHl+jbDkyP9MzCvq1EPArgO0BbpE8EBhXLI/944JTCMXkWj1fRintjGBNl9wOfifSTwMciPRAf9U3EY5oojvtS4H0lcv8ZGFrYbgN+GOnVwLvrncfo76/AyKi3CFga6V8CYyM9JHSbcKA88mfEMR8e25/AnawOAM7AXcCcGfv9q3Ce/gbcUjiHdxTavBm4sa9/A/nJeCjJsWGtmT1nZvuBTfjNsZaL8emqVZI2AZ8FRhTKf1pIXyDpCUmd+A3w/NrGJL0JGGZmKyPrx3jAoQMccKnSCWw1s13mTj63091hHsAHgR+ZP/1iZmUxJsZy0HHkT0rKwW/CX5E0FxhhZv8pqSPgG5I6gEdxd+JnRNkOM9sU6Q1Aazz1n21mS0K2/4acE+PzFLARGE25E8/hZvZyYXsqHiuE+C5Oe5Wdx9HAdnNHodDdeeYq4JsxGh1mZnt7OC6PFI7pOGCRme0zs38AK4GLomxd4Tz9CVge+Z10v6ZewEe/SR+TvrySY8H/Cul9lF9nwm8sPc3bv1JI3wVMMrPNkmYQziqPUKb9NfLt70G+Rqjrt8jM7pX0JHA58CtJn+dQx5ptwOn4yGCPpJ34KKAoM/hxHFSnOwG3m9n3DyPzXknHmdl+ScPxSIXvlPuzGgCYpDk99F/3OJnZPEkP4es0qyR9uIeqr/SQX0vteSqew6IsA4EyY500mRyhJM3kZWBopH8HjJV0DoCkkyWd18N+Q4Fdkk7Ab8CHtGdmu4F/ShofZdPwp90j4RHgKsUbaXHjrWUVB9cc2krKkfQ2/Gn+2/i6xbvofgzAoyO+EMbk/XQfpR1CjC6ekzQp+jgp5FwGXK2D61BnS3pzSRN/wMPiAkzGw96OMLNWM3srsAMYX7Jft/0ltcb2lIK+o8ys08zm495+R5foW8sTwBRJAySdjo8q19apX8Z5QGkc9aS5pEFJmskPgIclrTCzF/H59EUx3bMGvwGV8VV83WAV8HQh/z5gTiwAj8KnzRZEe2PwdZReY2YP41Nk62M67ksl1W4AZsY0XE9R7z4FbIk2LsDDr76EP71vkbQAuAd4T7QzvUa/npiGe73uwNc93mJmy4F7gTXR1mLKb+QPcXCENxVYUlP+AHXe9oppu2vx87gBNxi7o3hW6NUB7MHjl3cA++IFgtklTS6JOpvxyJg3mdnf6ylfwlj8ISDpY9LbcJK8gZDH87nbzD50FG0MMbOueOvru8AzZvatyoTsnSwXAl80s2l90X/SnRyhJMkbCPOASneq8MfGI+CaGHVtxafsDrducyxpwUewyWuAHKEkSZIklZAjlCRJkqQS0qAkSZIklZAGJUmSJKmENChJkiRJJaRBSZIkSSrh/xawEddNVm+tAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -161,24 +146,22 @@ "pylab.xlabel('Interatomic distance (Angstrom)')\n", "pylab.ylabel('Energy (Hartree)')\n", "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Quantum", + "display_name": "Python 3", "language": "python", - "name": "quantum" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -190,7 +173,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/h2o.ipynb b/community/aqua/chemistry/h2o.ipynb index c2c25e0d1..f028e74d7 100644 --- a/community/aqua/chemistry/h2o.ipynb +++ b/community/aqua/chemistry/h2o.ipynb @@ -8,40 +8,63 @@ "\n", "This notebook demonstrates how to use Qiskit Chemistry to compute the ground state energy of a water (H2O) molecule using VQE and UCCSD.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "While the molecule has been input below to the driver in xyz format, the Z-matrix format is also support. H2O in Z-matrix format would look like this \n", + "```\n", + "H; O 1 1.08; H 2 1.08 1 104.5\n", + "```\n", + "and is convenient when the goal is to change bond angle, or plot the energy changing distance(s) while preserving the angle.\n", + "\n", + "This notebook has been written to use the PYSCF chemistry driver. " ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ + "# imports needed by declarative approach here. List is short as classes are dynamically\n", + "# loaded based on dictionary names which are registered to our pluggable framework.\n", + "# The name of a given algorithm or component can be found in its CONFIGURATION dictonary\n", "from qiskit.chemistry import QiskitChemistry\n", "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'problem': {'random_seed': 50},\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': 'O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0', 'basis': 'sto-3g'},\n", - " 'operator': {'name': 'hamiltonian', 'freeze_core': True},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}" + "# imports needed by programmatic approach\n", + "from qiskit import BasicAer\n", + "\n", + "from qiskit.aqua import Operator, QuantumInstance\n", + "from qiskit.aqua.algorithms.adaptive import VQE\n", + "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import SLSQP\n", + "\n", + "from qiskit.chemistry.drivers import PySCFDriver, UnitsType\n", + "from qiskit.chemistry.core import Hamiltonian, TransformationType, QubitMappingType \n", + "from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD\n", + "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "With the above input problem dictionary for water we now create an `QiskitChemistry` object and call `run` on it passing in the dictionary to get a result. We use ExactEigensolver first as a reference." + "#### Using a declarative dictionary approach with QiskitChemistry\n", + "\n", + "Lets format up a dictionary and run the experiment this way. The operator will default to `parity` mapping and `two_qubit_reduction` of True.\n", + "\n", + "With the input problem dictionary for water we now create an QiskitChemistry object and call run on it passing in the dictionary to get a result. We use ExactEigensolver first as a reference." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ + "qiskit_chemistry_dict = {\n", + " 'driver': {'name': 'PYSCF'},\n", + " 'PYSCF': {'atom': 'O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0', 'basis': 'sto-3g'},\n", + " 'operator': {'name': 'hamiltonian', 'freeze_core': True},\n", + " 'algorithm': {'name': 'ExactEigensolver'}\n", + "}\n", "solver = QiskitChemistry()\n", "result = solver.run(qiskit_chemistry_dict)" ] @@ -55,14 +78,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Ground state energy: -75.01235928580498\n" + "Ground state energy: -75.0123592858051\n" ] } ], @@ -79,26 +102,32 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "* Electronic ground state energy: -84.20627244642836\n", - " - computed part: -23.544497240436005\n", - " - frozen energy part: -60.661775205992356\n", + "=== GROUND STATE ENERGY ===\n", + " \n", + "* Electronic ground state energy (Hartree): -84.206272446428\n", + " - computed part: -23.544497240436\n", + " - frozen energy part: -60.661775205992\n", " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy: 9.193913160623385\n", - "> Total ground state energy: -75.01235928580498\n", + "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", + "> Total ground state energy (Hartree): -75.012359285805\n", " Measured:: Num particles: 8.000, S: 0.000, M: 0.00000\n", - "* Electronic dipole moment: [0. 1.57867263 0. ]\n", - " - computed part: [0. 1.57778798 0. ]\n", - " - frozen energy part: [0. 0.00088465 0. ]\n", - " - particle hole part: [0. 0. 0.]\n", - "~ Nuclear dipole moment: [0. 2.21475902 0. ]\n", - "> Dipole moment: [0. 0.63608639 0. ] Total: 0.6360863875724845\n" + " \n", + "=== DIPOLE MOMENT ===\n", + " \n", + "* Electronic dipole moment (a.u.): [0.0 1.57867263 0.0]\n", + " - computed part: [0.0 1.57778798 0.0]\n", + " - frozen energy part: [0.0 0.00088465 0.0]\n", + " - particle hole part: [0.0 0.0 0.0]\n", + "~ Nuclear dipole moment (a.u.): [0.0 2.21475902 0.0]\n", + "> Dipole moment (a.u.): [0.0 0.63608639 0.0] Total: 0.63608639\n", + " (debye): [0.0 1.61677018 0.0] Total: 1.61677018\n" ] } ], @@ -111,38 +140,166 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We update the dictionary, for VQE with UCCSD, and run the computation again." + "#### Lets do the same programmatically\n", + "\n", + "First we create and run a driver to produce our molecule object. The molecule object holds data from the drivers in a common way so it can then be used independently of which specific driver created it.\n", + "\n", + "And let's print some of fields it has. You can refer to qiskit.aqua.qmolecule.py for more information or look at the API documentation." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Hartree-Fock energy: -74.96294665653834\n", + "Nuclear repulsion energy: 9.193913160623385\n", + "Number of molecular orbitals: 7\n", + "Number of alpha electrons: 5\n", + "Number of beta electrons: 5\n" + ] + } + ], + "source": [ + "driver = PySCFDriver(atom='O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0',\n", + " unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g')\n", + "molecule = driver.run()\n", + "\n", + "print('Hartree-Fock energy: {}'.format(molecule.hf_energy))\n", + "print('Nuclear repulsion energy: {}'.format(molecule.nuclear_repulsion_energy))\n", + "print('Number of molecular orbitals: {}'.format(molecule.num_orbitals))\n", + "print('Number of alpha electrons: {}'.format(molecule.num_alpha))\n", + "print('Number of beta electrons: {}'.format(molecule.num_beta))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now need to create a qubit operator as input to compute the ground state energy. The Hamilitonian object can be used. This wraps a `FermionicOperator` class, which can be used directly but entails more steps. Other tutorials here show FermionicOperator being used.\n", + "\n", + "The Hamiltonian class not only gives us a qubit operator for the main Hamiltonian but also auxilliary operators including dipole operators and others to measure spin and num particles. The algorithm, if it supports aux_ops, which ExactEignesolver and VQE both do, will evaluate these at the ground state where the minimum energy is found." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Ground state energy: -75.01136277625662\n", - "* Electronic ground state energy: -84.20527593688\n", - " - computed part: -23.543500730887647\n", - " - frozen energy part: -60.661775205992356\n", + "Representation: paulis, qubits: 10, size: 551\n" + ] + } + ], + "source": [ + "core = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, \n", + " two_qubit_reduction=True, freeze_core=True)\n", + "qubit_op, aux_ops = core.run(molecule)\n", + "\n", + "print(qubit_op)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now pass these to the ExactEigensolver and run it to produce a result. This result will include the computed electronic part of the ground state energy. We can pass this result back to the Hamiltonian object from above and it will combine it with values it stored such as the frozen core energy to form a complete result for the molecule. As can be seen this matches the result from the declarative approach above.\n", + "\n", + "Note: the num particles printed here is that which is observed from the spin operator that is in the aux_ops. It says 8 which matches what we expect; the molecule has 10 (5 alpha and 5 beta) but the operator was left with 8 after we took away 2 from freezing the core. The molecule has a core_orbitals property which lists the orbitals comprising the core ones that can be frozen so we can easily figure how many electrons that is (2 per orbital in that list)." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "=== GROUND STATE ENERGY ===\n", + " \n", + "* Electronic ground state energy (Hartree): -84.206272446429\n", + " - computed part: -23.544497240436\n", + " - frozen energy part: -60.661775205992\n", " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy: 9.193913160623385\n", - "> Total ground state energy: -75.01136277625662\n", - " Measured:: Num particles: 8.000, S: 0.002, M: 0.00000\n", - "* Electronic dipole moment: [-3.30862414e-06 1.57868676e+00 -1.64045876e-05]\n", - " - computed part: [-3.30862414e-06 1.57780210e+00 -1.64045876e-05]\n", - " - frozen energy part: [0. 0.00088465 0. ]\n", - " - particle hole part: [0. 0. 0.]\n", - "~ Nuclear dipole moment: [0. 2.21475902 0. ]\n", - "> Dipole moment: [3.30862414e-06 6.36072265e-01 1.64045876e-05] Total: 0.6360722651436584\n" + "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", + "> Total ground state energy (Hartree): -75.012359285805\n", + " Measured:: Num particles: 8.000, S: 0.000, M: 0.00000\n", + " \n", + "=== DIPOLE MOMENT ===\n", + " \n", + "* Electronic dipole moment (a.u.): [0.0 1.57867263 0.0]\n", + " - computed part: [0.0 1.57778798 0.0]\n", + " - frozen energy part: [0.0 0.00088465 0.0]\n", + " - particle hole part: [0.0 0.0 0.0]\n", + "~ Nuclear dipole moment (a.u.): [0.0 2.21475902 0.0]\n", + "> Dipole moment (a.u.): [0.0 0.63608639 0.0] Total: 0.63608639\n", + " (debye): [0.0 1.61677018 0.0] Total: 1.61677018\n" + ] + } + ], + "source": [ + "ee = ExactEigensolver(qubit_op, aux_operators=aux_ops)\n", + "algo_result = ee.run()\n", + "result = core.process_algorithm_result(algo_result)\n", + "for line in result[0]:\n", + " print(line)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Using VQE. First declaratively with the dictionary.\n", + "\n", + "We update the dictionary, for VQE with UCCSD, and run the computation again. By default, if a backend is not explicitly provided, as is the case here, it will use the `statevector_simulator` from `BasicAer`. \n", + "\n", + "_*Please note that with 10 qubits the simulation can take a while.*_" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ground state energy: -75.0122585919439\n", + "=== GROUND STATE ENERGY ===\n", + " \n", + "* Electronic ground state energy (Hartree): -84.206171752567\n", + " - computed part: -23.544396546575\n", + " - frozen energy part: -60.661775205992\n", + " - particle hole part: 0.0\n", + "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", + "> Total ground state energy (Hartree): -75.012258591944\n", + " Measured:: Num particles: 8.000, S: 0.000, M: 0.00000\n", + " \n", + "=== DIPOLE MOMENT ===\n", + " \n", + "* Electronic dipole moment (a.u.): [-0.00000112 1.57887918 0.00000014]\n", + " - computed part: [-0.00000112 1.57799453 0.00000014]\n", + " - frozen energy part: [0.0 0.00088465 0.0]\n", + " - particle hole part: [0.0 0.0 0.0]\n", + "~ Nuclear dipole moment (a.u.): [0.0 2.21475902 0.0]\n", + "> Dipole moment (a.u.): [0.00000112 0.63587984 -0.00000014] Total: 0.63587984\n", + " (debye): [0.00000284 1.61624518 -0.00000036] Total: 1.61624518\n" ] } ], "source": [ "qiskit_chemistry_dict['algorithm']['name'] = 'VQE'\n", - "qiskit_chemistry_dict['optimizer'] = {'name': 'COBYLA', 'maxiter': 25000}\n", + "qiskit_chemistry_dict['optimizer'] = {'name': 'SLSQP', 'maxiter': 2500}\n", "qiskit_chemistry_dict['variational_form'] = {'name': 'UCCSD'}\n", "qiskit_chemistry_dict['initial_state'] = {'name': 'HartreeFock'}\n", "\n", @@ -157,14 +314,14 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Actual VQE evaluations taken: 2422\n" + "Actual VQE evaluations taken: 666\n" ] } ], @@ -172,6 +329,157 @@ "print('Actual VQE evaluations taken: {}'.format(result['algorithm_retvals']['eval_count']))" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Using VQE, programmatically\n", + "\n", + "The solver above, with the complete dictionary, will recompute the molecule internally again with the driver. Here we will start with the qubit operator that we computed above. We need to setup an optimizer, variational form and initial state for use with VQE.\n", + "\n", + "The variational form and UCCSD are a little more complex since they need information about numbers of orbitals and numbers of electrons, as well as what qubit mapping etc was used for the qubit operator. However we have some help from the Hamiltonian class that we can use (which internally is what the declarative form takes advantage of too). \n", + "\n", + "Note: If you use FermionicOperator directly to make a qubit operator then you need to keep track of electrons removed etc. The molecule object from the driver has the original values but if you freeze out orbitals then the electrons remaining in the operator is what is required." + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ground state energy: -75.0122585919439\n", + "=== GROUND STATE ENERGY ===\n", + " \n", + "* Electronic ground state energy (Hartree): -84.206171752567\n", + " - computed part: -23.544396546575\n", + " - frozen energy part: -60.661775205992\n", + " - particle hole part: 0.0\n", + "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", + "> Total ground state energy (Hartree): -75.012258591944\n" + ] + } + ], + "source": [ + "init_state = HartreeFock(num_qubits=qubit_op.num_qubits, \n", + " num_orbitals=core._molecule_info['num_orbitals'],\n", + " num_particles=core._molecule_info['num_particles'],\n", + " qubit_mapping=core._qubit_mapping,\n", + " two_qubit_reduction=core._two_qubit_reduction)\n", + "\n", + "var_form = UCCSD(num_qubits=qubit_op.num_qubits,\n", + " depth=1,\n", + " num_orbitals=core._molecule_info['num_orbitals'], \n", + " num_particles=core._molecule_info['num_particles'],\n", + " qubit_mapping=core._qubit_mapping,\n", + " two_qubit_reduction=core._two_qubit_reduction, \n", + " initial_state=init_state)\n", + "\n", + "optimizer = SLSQP(maxiter=2500)\n", + "\n", + "# setup backend on which we will run\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "quantum_instance = QuantumInstance(backend=backend)\n", + "\n", + "vqe = VQE(qubit_op, var_form, optimizer, 'matrix')\n", + "algo_result = vqe.run(quantum_instance)\n", + "lines, result = core.process_algorithm_result(algo_result)\n", + "\n", + "print('Ground state energy: {}'.format(result['energy']))\n", + "\n", + "for line in lines:\n", + " print(line)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Internally the core, when processing the algorithm result, stores the result dictionary from the algorithm under the `algorithm_retvals` key. We used this above in declarative approach, to get the eval count, and since we process the result the same way here, using the core, we can do this here too. But here we have direct access to the algorithm result since we ran it. Hence we can access the count directly from the above algo_result. To show these are the same they are both printed below." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Actual VQE evaluations taken: 666\n", + "Actual VQE evaluations taken: 666\n" + ] + } + ], + "source": [ + "print('Actual VQE evaluations taken: {}'.format(result['algorithm_retvals']['eval_count']))\n", + "\n", + "print('Actual VQE evaluations taken: {}'.format(algo_result['eval_count']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Z-matrix format\n", + "\n", + "Z-matrix was mentioned in the introduction. Lets show it in use in a quick final example here. We'll use ExactEigensolver as the goal here is just to show the technique. We will keep the bond angle between the Hydrogen atoms and Oxygen constant while varying the interatomic distance of one the Hydrogen atoms. This is simple to do in Z-matrix format, though can of course be done using xyz format but that needs more work to compute the coordinates each time." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pylab\n", + "\n", + "h2o = 'H; O 1 1.08; H 2 {} 1 104.5'\n", + "qiskit_chemistry_dict = {\n", + " 'driver': {'name': 'PYSCF'},\n", + " 'PYSCF': {'atom': '', 'basis': 'sto-3g'},\n", + " 'operator': {'name': 'hamiltonian', 'freeze_core': True},\n", + " 'algorithm': {'name': 'ExactEigensolver'}\n", + "}\n", + "\n", + "distances = [x * 0.01 + 1.00 for x in range(17)]\n", + "energies = np.empty(len(distances))\n", + "\n", + "for i, distance in enumerate(distances):\n", + " qiskit_chemistry_dict['PYSCF']['atom'] = h2o.format(distance)\n", + " solver = QiskitChemistry()\n", + " result = solver.run(qiskit_chemistry_dict)\n", + " energies[i] = result['energy']" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8leX9//HXm4S9l2wEVESWjABqXVW0rlbcoyoqrtY6+qutWNvv16/Val1Vayu1DnAh7lUXuKoVhYQpIBtkBAhECCshJJ/fH/cVPcZMSHJnfJ6Px3nkPte9Pvc5J+dz7uu67uuWmeGcc87FoV7cATjnnKu7PAk555yLjSch55xzsfEk5JxzLjaehJxzzsXGk5BzzrnYeBJysZFkkvavxO33CPtIrqx9uJJJuljSpwnPt0nqFWdM1cXevBaV/b9TlTwJ1VCSVkgaWajs2394SQ0lPSZppaStkmZJOrHQ8q0kPSxpnaQdkuZKuqQqj8N9n6Txkm4rVLbHyVTS0ZJWV1yEe8fMmpnZspKWqW4xV5ayvBZ1gf9CrL2SgVXAUcDXwEnA85IGmNkKSQ2AKcAG4FBgNXAsMEFSazO7L6a4navVJCWb2e6446gu/EyoljKz7WZ2i5mtMLN8M3sTWA4MDYtcCHQHzjKz5WaWa2bvANcCt0pqUdR2wy/yX0paHM6w/iRpP0mfScqS9HxIcAXLXy5piaRMSa9L6lzMdhtKukfS15LWSxonqXHC/FPD2VyWpKWSTgjl3zsjlHSLpKeL2UfLcHaYLmmNpNskJZXl9ZTUOcSfGY7n8kL7fF7Sk+E1mScppdC6L0nKkLRc0rVl2WdZSbpE0oKw72WSrgzlTYG3gc6h6mdbiKWhpPslrQ2P+yU1DOscLWm1pN9J2hBeq1GSTpK0KBz/70uIpW14nbIkTQP2KzT/22qksM35Ie41km4oIebhkqZK2hxieqjQ58wkXRU+l5sl/V2SEuZfnvAazZc0JJSX6b2RNEJRjUFSQtlpkuaE6bLEd7WkxcDiIl6L0j7/vw3bXSvp0pI/ETWMmfmjBj6AFcDIQmUXA58Ws3wHIBvoE54/B0woYrlkYDfwk2K2Y8BrQAugH5ADvA/0AloC84HRYdljgI3AEKAh8DfgP4W2tX+Y/ivwOtAGaA68AdwR5g0HtgDHEf1w6pJwHN97HYBbgKfDdI+wj+Tw/BXgn0BTYB9gGnBlGV/v/wD/ABoBg4AM4JiEfWYTnW0mAXcAn4d59YA04H+ABuF1WlbC6zseuK1Q2feOo4h1Tib6shfRme8OYEiYdzSwutDytwKfh9egPfAZ8KeE5XeHeOsDl4djfTa8L/2AnUDPYmJ5Dng+vMb9gTUkfCYLvefpwBFhunUpMQ8FDiH6fPYAFgDXF9rum0Aroh9XGcAJYd5ZIY5h4TXaH9h3D96bpcBxCc9fAMaWI77JRJ/vxuX8/J8ArA+vZ9PwXny7bk1/xB6AP/bwjYu+fLcBmxMeOygiCYUvkynAPxPKpgB3FrPtdcDPi5lnwI8SnqcBNyY8vxe4P0w/BtyVMK8ZkAv0SNjW/uGLYTuwX8KyhwLLw/Q/gb+W8DqUmoSIknBOwRdAmH8e8GEZXutuQB7QPKHsDmB8wj6nJMzrC+wM0yOArwtt7ybgiWL2NZ4ooSW+r1mUkISK2MarwHVh+mh++IW+FDgp4flPgBUJy+8EksLz5mHfIwq956OK2G9SeH/7JJT9meKT0NfAlUCLQtv5QcxF7Ot64JVC2z084fnzfJcg3i14PQpto7zvzW3A4wmvy3Zg33LEd0wR/0tl+fw/TsL/KtCbWpSEvDquZhtlZq0KHsAvCy8gqR7wFLAL+FXCrI1ApyKWTwbahfnFWZ8wvbOI583CdGdgZcEMM9sGbCI6k0nUHmgCpIXqjM3AO6EcoiSwtIR4ymJfomScnrCPfxKdDZSmM5BpZlsTylby/eNYlzC9A2gUXst9iaqWNifs9/dESbE49xR6XweWFJykEyV9HqrKNhOdkbUr5XhWJjxfGcoKbDKzvDC9M/wt7j1O1J7v2iITt12cM0KsKyV9LOnQ4haU1FvSm6FKLIsouRU+xsLvQUGMxX1+yvvePAucHqouTwdmmNnKcsS3iqKV9vnvTNlf0xrHk1AtFurEHyP6pzrDzHITZk8BTgx18InOIDpj+LwCQlhL9I9eEE9ToC1R1UiijURfbP0SvnxbmlnBl8gqCrUtJNhO9A9coGMxy60iOq52CftoYWb9yngcbSQ1TyjrXsRxFLff5YlJxcyam9lJZVi3VOEL8SXgHqBDSFpvEf26hugXc2Hfe1+IjmVtBYSTQVSV163QtotkZtPN7FSiHwKvEp29QNExPwx8BRxgZi2IkoWKWK4oxX1+yvXemNl8ogRwInA+UVIqT3zF3bKgtM9/OmV8TWsiT0K128PAQcBPzWxnoXlPEfWIe0FRF+D6kn4CPAjcYmZbKmD/E4FLJA0KX5Z/Br4wsxWJC5lZPvAv4K+S9gGQ1CXEA1EivUTSsZLqhXl9wrxZwLkh/hTgzKICMbN04D3gXkktwnb2k3RU2F9BN+geRay7iqjd5A5JjSQNBMYARXaAKGQasFXSjZIaS0qS1F/SsDKsWxYNiNrbMoDdirrhH58wfz3QVlLLhLKJwB8ktZfUjqhNpCzHUqJw9vQycIukJpL6AqOLWlZSA0k/l9Qy/DjKAvJLiLl5WGZbeO9/UY7QHgVukDRUkf0l7cuevTfPAtcBRxK1Ce11fGX4/D8PXCypr6QmwP+Wdds1gSehWir8k11J1Ii+Tt/1NPo5gJnlACOJfg1+QfQPdB9ws5ndXRExmNkU4I9Ev9TTiX6NnlvM4jcCS4DPQ3XGFODAsJ1pwCVEjbdbgI/57pf8H8N2vwH+j+//Oi3sIqIv7flh+Rf5rkqyG9Gv3OLObs4jamNaS9TB4X/D8ZUofDGfQvQ+LCf61fsoUSeOvRaqCK8l+qL6hugX+usJ878iSjrLQlVPZ6K2jVRgDjAXmBHKKsKviKrB1hG1bz1RwrIXAivC+30VUPDZLCrmG8KxbSX6wp5U1oDM7AXgdqLPxlais642e/jeTCTq/PGBmSVWWe9xfEFJn/+3gfuBD8IyH5Rz29WaQkOXc3WapD8AGWb2z7hjca4u8STknHMuNrFUx0mapOjCw1mKLjacFcp7SNqZMG9cMeu3kTRZ0YVpkyW1DuWS9KCiiwnnKFyQFuZ1l/SeogvW5hdV9++cc65qxTJsj5mdUzAt6V6iev4CS81sUCmbGAu8b2Z3Shobnt9I1GvlgPAYQdQwPyKs8yRwu5lNltSM7xpBnXPOxSTWjgmhC/HZRI195XEqMCFMTwBGJZQ/aZHPgVaSOoVeOslmNhmi61XMbMfeH4Fzzrm9EfcApkcA681scUJZT0kziXpr/cHMPilivQ6hyy1EvXAKLi7rwvcv6lodyroCmyW9DPQk6nkyNuGCvGK1a9fOevToUY5Dcs65ui0tLW2jmbUvfclKTEKSplD0hYM3m9lrYfo8vn8WlA50N7NNkoYCr0rqZ2ZZxe3HzExSab0rkokS3mCioUImEY2z9lgxsV8BXAHQvXt3UlNTS9m8c865ApLKPKpDpSUhMxtZ0nxFQ5qcznejOhdcu5ITptMkLSUaJ6lwFlgvqZOZpUvqRHQ7Aoiu8Ui8srhrKEsGZlm4d4ekV4kGGywyCZnZI8AjACkpKd590DnnKkmcbUIjga/M7NubV4UruJPCdC+iDgZF3fTpdb67Ens00ajOBeUXhV5yhwBbQrXddKL2oYLTw2OILlh0zjkXoziT0Ln8sEPCkcCc0GX7ReAqM8sEkPSovrtHy53AcYruzTEyPIdozKxlRFcV/4swoGdo+7kBeF/SXKIxnf5VWQfmnHOubPxi1VKkpKSYtwk551zZSUozs5TSl/Sx45xzzsXIk5BzzrnYeBJyzjkXG09Czjnnvmfa8kwe+3Q5VdFnwJOQc865b23clsM1E2fw9Ocr2Zlb6qAye82TkHPOOQDy841fT5rFNzty+fv5Q2jSoPJHdvMk5JxzDoCHP17KJ4s3cstP+9G3c4sq2acnIeecc3y+bBP3vreQnx3cmfOGdyt9hQriScg55+q4jdtyuHbiTHq0bcqfTx9AdJedqhH3rRycc87FqKAdaMvOXCZcOpxmDas2LXgScs65OuzvHy7hk8UbueP0ARzUqWragRJ5dZxzztVRU5du4q9TFjFqUGfOHVZ17UCJPAk551wdlLE1h2ufm0mPdk25/bSqbQdK5NVxzjlXx+SFdqCsnbk8eelwmlZxO1AiT0LOOVfH/P3DJXy6ZCN/OSOedqBEXh3nnHN1yGdLN3L/lEWcNrgLZ6fE0w6UyJOQc87VERlbc7juuVn0bNeU20b1j60dKJFXxznnXB2Ql29cP2kmW7NzeXrMiFjbgRJVjyicc85Vqoc+WMJ/l2zirjMGcmDH5nGH8y2vjnPOuVrusyUbuf/9RZw+uAtnpXSNO5zv8STknHO12Iat2Vz73Cz2a9+M206rHu1Aibw6zjnnaqm8fOP652axLSeXZy4bUSX3Byqv6heRc865CvG3Dxbz2dJN3HVm9WoHSuTVcc45Vwv9d8lGHnh/MWcM6Votrgcqjich55yrZTZszea60A70p1H94g6nRLElIUmTJM0KjxWSZoXyHpJ2JswbV8z6bSRNlrQ4/G0dyiXpQUlLJM2RNCRhnbskzZO0ICxTvVronHNuL+XlG9dNnMX2nN384+dDqmU7UKLYkpCZnWNmg8xsEPAS8HLC7KUF88zsqmI2MRZ438wOAN4PzwFOBA4IjyuAhwEkHQb8CBgI9AeGAUdV8GE551ysHnh/MVOXbeJPo/rTu0P1bAdKFHt1XDgbORuYWM5VTwUmhOkJwKiE8ict8jnQSlInwIBGQAOgIVAfWL+X4TvnXLXx6eKN/O2DxZw5tCtnDq1e1wMVJ/YkBBwBrDezxQllPSXNlPSxpCOKWa+DmaWH6XVAhzDdBViVsNxqoIuZTQU+BNLD410zW1DUhiVdISlVUmpGRsYeHpZzzlWdDVnZXD9pJvu3b8atp1bvdqBElVpZKGkK0LGIWTeb2Wth+jy+fxaUDnQ3s02ShgKvSupnZlnF7cfMTJKVEsv+wEFAwc+DyZKOMLNPitjeI8AjACkpKSVu1znn4pabl8+vnp3J9pw8Jl5e/duBElVqpGY2sqT5kpKB04GhCevkADlhOk3SUqA3kFpo9fWSOplZeqhu2xDK1wCJ/RG7hrILgM/NbFvY99vAocAPkpBzztUkf35rAdNWZPLAuYM4oAa0AyWKuzpuJPCVma0uKJDUXlJSmO5F1MFgWRHrvg6MDtOjgdcSyi8KveQOAbaEaruvgaMkJUuqT9QpocjqOOecqylenbmGJ/67gkt/1JNTB3WJO5xyizsJncsPOyQcCcwJXbZfBK4ys0wASY9KSgnL3QkcJ2kxUTK7M5S/RZS0lgD/An4Zyl8ElgJzgdnAbDN7o1KOyjnnqsC8tVsY+/IcRvRsw00n9Yk7nD0iM2/yKElKSoqlphauCXTOuXht3rGLnz70Kbm7jTeuOZz2zRvGHdK3JKWZWUrpS/rYcc45V+Pk5RvXPjeL9VtymHTlIdUqAZWXJyHnnKth7p+yiP8syuDPpw1gcPfWcYezV+JuE3LOOVcO785bx98+WMK5w7px/ojucYez1zwJOedcDbE0Yxu/eX42B3dtyS0/qzkXpJbEk5BzztUA23J2c+VTaTRMrsfDFwylUf2kuEOqEN4m5Jxz1ZyZ8dsXZrN843aeGjOczq0axx1ShfEzIeecq+bGfbyMt79cx00n9uGw/drFHU6F8iTknHPV2CeLM7j73a/46cGdGXN4z7jDqXCehJxzrppalbmDayfO5IB9mvOXMwZQG+/D6UnIOeeqoezcPK56Oo3d+cY/Lxxao0bGLo/aeVTOOVeDmRm/f2Uu89OzeGx0Cj3aNY07pErjZ0LOOVfNPP35Sl6esYbrj+3NMX06lL5CDeZJyDnnqpHUFZn83xvzObbPPlxzzP5xh1PpPAk551w1sSErm188M4OurRtz3zmDqFev9nVEKMzbhJxzrhrYtTufXz4zg+05u3l6zAhaNq4fd0hVwpOQc85VA7f/ez6pK7/hofMHc2DHmnWL7r3h1XHOORezl9JWM2HqSq44shenDOwcdzhVypOQc87F6Ms1W/j9K3M5bL+2/O4nB8YdTpXzJOScczH5ZvsurnwqjbZNG/C38waTnFT3vpK9Tcg552KQm5fP1c/OIGNbDi9edShtm9XcW3TvjbqXdp1zLmZmxv++Po/Plm7ijtMGMLBrq7hDio0nIeecq2ITPlvBs198zS+O3o8zhnaNO5xYeRJyzrkq9NHCDdz65nyO79uB3x5f9zoiFOZJyDnnqsji9Vu55tmZ9OnYgr/WkRERSuNJyDnnqkDm9l2MmZBKowZJPDo6haYNvV8YxJSEJE2SNCs8VkiaFcp7SNqZMG9cMeu3kTRZ0uLwt3Uo7yNpqqQcSTcUWucESQslLZE0tvKP0jnnIrt253PVU2msz8rmXxel0LlV47hDqjZiScVmdk7BtKR7gS0Js5ea2aBSNjEWeN/M7gwJZSxwI5AJXAuMSlxYUhLwd+A4YDUwXdLrZjZ/rw/GOedKYGbc/Mpcpq3I5MHzBjOoW93tCVeUWKvjFN2r9mxgYjlXPRWYEKYnEJKOmW0ws+lAbqHlhwNLzGyZme0CngvbcM65SvWvT5bxQtpqrj32AH52cN0akqcs4m4TOgJYb2aLE8p6Spop6WNJRxSzXgczSw/T64DS7vrUBViV8Hx1KCuSpCskpUpKzcjIKGXTzjlXtCnz13PH219x8sBOXH/sAXGHUy1VWnWcpClAxyJm3Wxmr4Xp8/j+WVA60N3MNkkaCrwqqZ+ZZRW3HzMzSVZhgUfbfAR4BCAlJaVCt+2cqxsWpGdx3XMzGdClJfecebD3hCtGpSUhMxtZ0nxJycDpwNCEdXKAnDCdJmkp0BtILbT6ekmdzCxdUidgQynhrAG6JTzvGsqcc67CZWzN4bIJqTRrlMy/LkqhcYOkuEOqtuKsjhsJfGVmqwsKJLUPnQiQ1As4AFhWxLqvA6PD9GjgtSKWSTQdOEBST0kNgHPDNpxzrkJl5+Zx5VOpbNqew6MXDaNDi0Zxh1StxdlR/Vx+2CHhSOBWSblAPnCVmWUCSHoUGGdmqcCdwPOSxgAriTo3IKkj0VlTCyBf0vVAXzPLkvQr4F0gCXjczOZV+hE65+oUM+Oml+cy4+vNPPzzIQzo2jLukKo9mXmTR0lSUlIsNbVwbaBzzv3Q3z9cwt3vLuSG43vzq2PqbkcESWlmllKWZePuHeecc7XCO1+mc/e7Cxk1qDNX/3j/uMOpMTwJOefcXvpyzRZ+PWk2g7u34s4zBhJdAunKwpOQc87thfVZ2Vw2IZXWTerzyIUpNKrvPeHKw0fQc865PbRzVx6XP5lKVnYuL/3iMNo3r5t3R90bnoScc24P5OcbN7w4m7lrtvDIhSkc1KlF3CHVSF4d55xze+CB9xfz7znpjD2hD8f1LW3kMFccT0LOOVdOr89eywPvL+asoV254shecYdTo3kScs65cpi1ajO/fWE2w3u04bbT+ntPuL3kScg558poxcbtjBk/nX1aNOThC4bQMNl7wu0tT0LOOVcGG7flMPqJaeSbMf6S4bRt5j3hKoL3jnPOuVJsz9nNpeOnsz4rm4mXH8J+7ZvFHVKt4UnIOedKkJuXzy+emcG8tVk8cuFQBndvHXdItYpXxznnXDHMjBtfmsN/FmVw+6j+HHuQd8WuaJ6EnHOuGHe9u5CXZ6zh1yN7c+7w7nGHUyt5EnLOuSJM+GwFD3+0lPNHdOfaY31U7MriScg55wp5a246t7wxj+P6duBPp/q1QJXJk5BzziX4Ytkmrp80iyHdW/O38waTVM8TUGXyJOScc8HCdVu57MlUurVuzGOj/bYMVcGTkHPOAWs372T049No0iCJCZcOp1WTBnGHVCd4EnLO1Xmbd+xi9OPT2J6zm/GXDKdr6yZxh1RnlCkJSXpZ0smSPGk552qV7NzoxnQrN+3gkYv8vkBVraxJ5R/A+cBiSXdKOrASY3LOuSqRl29c99xMUld+w33nHMyh+7WNO6Q6p0xJyMymmNnPgSHACmCKpM8kXSKpfmUG6JxzlcHMuOX1ebw7bz1/PLkvpwzsHHdIdVKZq9cktQUuBi4DZgIPECWlyZUSmXPOVaJ/fLSUpz5fyZVH9uLSw3vGHU6dVaYBTCW9AhwIPAX81MzSw6xJklIrKzjnnKsML6Su4u53F3La4C7ceEKfuMOp08p6JvSgmfU1szsSEhAAZpZS3p1KmiRpVniskDQrlPeQtDNh3rhi1m8jabKkxeFv61DeR9JUSTmSbkhYvpukDyXNlzRP0nXljdk5Vzt8uHADY1+eyxEHtOMvZwyknl+MGquy3sqhtaTTC5VtAeaa2Yby7tTMzimYlnRv2FaBpWY2qJRNjAXeN7M7JY0Nz28EMoFrgVGFlt8N/MbMZkhqDqRJmmxm88sbu3Ou5pq1ajO/fHoGB3VqzsMXDKVBsnf4jVtZk9AY4FDgw/D8aCAN6CnpVjN7ak92rmhAprOBY8q56qkhBoAJwEfAjSEhbpB0cuLC4ewtPUxvlbQA6AJ4EnKujli+cTuXjp9Ou+YNePziYTRr6LdTqw7K+jOgPnCQmZ1hZmcAfQEDRhCdgeypI4D1ZrY4oaynpJmSPpZ0RDHrdUioFlwHlPkmH5J6AIOBL0pY5gpJqZJSMzIyyrpp51w1lbE1h4sej/7ln7x0BPs0bxRzRK5AWX8KdDWz9QnPNwDdzCxTUm5RK0iaAnQsYtbNZvZamD4PmJgwLx3obmabJA0FXpXUz8yyigvMzEySleUgJDUDXgKuL2WbjwCPAKSkpJRp28656qlgNISNW3cx8YpD6NmuadwhuQRlTUIfSXoTeCE8PyOUNQU2F7WCmY0saYOSkoHTgaEJ6+QAOWE6TdJSoDdQuAfeekmdzCxdUieipFiicD3TS8AzZvZyacs752q+rOxcRj8+jSUbtvHo6BQGdWsVd0iukLJWx10NPAEMCo8ngavNbLuZ/XgP9z0S+MrMVhcUSGovKSlM9wIOAJYVse7rwOgwPRp4rYhlvhXanh4DFpjZfXsYr3OuBtmes5tLn5jOvLVZPHzBEI7s3T7ukFwRSj0TCklhSkg2L1Xgvs/l+1VxAEcCt4YqvnzgKjPLDHE8Cowzs1TgTuB5SWOAlUSdG5DUkeisqQWQL+l6ovargcCFwNyC7uDA783srQo8HudcNbFzVx5jJkxn5qrNPHTeYI49qMzNxq6Kyaz0Jg9J7wOnm9mWUheuZVJSUiw11a/Hda6myNmdx2UTUvl0yUbuP2cQpw7qEndIdY6ktLJeQ1rWNqFtRGcRk4HtBYVmdu0exOecc5Vi1+58rn5mBp8s3shdZw70BFQDlDUJvRwezjlXLe3Oy+f6STOZsmADfxrVn7NTusUdkiuDMiUhM5sgqTFR9+mFlRyTc86VS16+ccMLs3lr7jr+cPJBXHjIvnGH5MqorDe1+ykwC3gnPB8k6fXKDMw558oiP9/4/ctzeXXWWn77kwO57IhecYfkyqGsXbRvAYYTrgkys1mAv9POuViZGbe8MY9Jqau49pj9ufrH+8cdkiunsiah3CJ6xuVXdDDOOVdWZsaf31rAk1OjewL9+rjecYfk9kBZOybMk3Q+kCTpAKKRqj+rvLCcc65k901exL8+Wc7Fh/Vg7Il9iK5JdzVNWc+ErgH6EQ2pMxHIAq6vrKCcc64kD32wmL99sITzhnfjf07p6wmoBitr77gdwM3h4ZxzsfnXf5Zxz3uLOH1wF24fNcBvSlfDlfX23r2BG4AeieuYWXnvA+Scc3vsyakruP2tBZw8sBN3nel3Ra0Nytom9AIwDngUyKu8cJxzrmjPTfua/3ltHsf17cD95wwiOcnviloblDUJ7Tazhys1EuecK8YrM1dz0ytzOap3ex46fzD1PQHVGmV9J9+Q9EtJnSS1KXhUamTOOQf8e046v3l+Nof2ass/LxxKw+SkuENyFaisZ0IF9+75bUKZ4ResOucq0eT567nuuZkM3bc1j45OoVF9T0C1TVl7x/Ws7ECccy7RRws3cPUzM+jXpSWPXzyMJg3K+pvZ1SQlVsdJ+l3C9FmF5v25soJyztVt73y5jiueTGP/fZrx5CXDad6oftwhuUpSWpvQuQnTNxWad0IFx+Kcc7wyczVXPzuDfl1aMPHyQ2jZxBNQbVZaElIx00U9d865vfLU5yv59aTZjOjZhqfHjPAEVAeUVslqxUwX9dw55/bYwx8t5S/vfMXIg/bhofOHeCeEOqK0JHSwpCyis57GYZrwvFGlRuacqxPMjHveW8jfP1zKzw7uzL1nH+zXAdUhJSYhM/OfIs65SpOfb/zfG/OYMHUl5w3vxm2jBpDkQ/HUKd7n0TkXi915+dz40lxemrGay4/oye9POshHw66DPAk556pczu48rn9uFm9/uY7/d1xvrjlmf09AdZQnIedcldq5K48rn07jP4sy+OMpfRlzuF8LX5d5EnLOVZms7FwuG5/K9JWZ/OWMAZwzrHvcIbmYxdIFRdIkSbPCY4WkWaG8h6SdCfPGFbN+G0mTJS0Of1uH8j6SpkrKkXRDEeslSZop6c3KPULnXGGZ23fx8399wYyvv+HBcwd7AnJATGdCZnZOwbSke4EtCbOXmtmgUjYxFnjfzO6UNDY8vxHIBK4FRhWz3nXAAqDFnsbunCu/9VnZXPDoF3yduYNHLhrKMX06xB2SqyZi7YyvqCXybGBiOVc9FZgQpicQko6ZbTCz6UBuEfvqCpxMdGM+51wVWZW5g7PGTWXt5p2Mv2S4JyD3PXFfEXYEsN7MFieU9QxVZh9LOqKY9TqYWXqYXgeU5VN9P/A7IL+0BSVdISlVUmpGRkYZNu2cK8qSDds4a9xUtuzM5ZnLD+HQ/drGHZKrZiqtOk7SFKBjEbNuNrPXwvR5fP8sKB3mYNvSAAAamklEQVTobmabJA0FXpXUz8yyfrCVwMxMUolDCEk6BdhgZmmSji4tdjN7BHgEICUlxYcncm4PfLlmCxc9Po16EpOuPIQ+Hb0W3P1QpSUhMxtZ0nxJycDpwNCEdXKAnDCdJmkp0BtILbT6ekmdzCxdUidgQynh/Aj4maSTiIYbaiHpaTO7oFwH5Zwrk9QVmVwyfjotGtXn6ctG0LNd07hDctVUnNVxI4GvzGx1QYGk9pKSwnQv4ABgWRHrvs53d3sdDbxWxDLfMrObzKyrmfUguj3FB56AnKscnyzO4MLHptGuWUOev+pQT0CuRHFeJ3QuP+yQcCRwq6Rcorabq8wsE0DSo8A4M0sF7gSelzQGWEnUuQFJHYnOmloA+ZKuB/qWVJ3nnKs473y5jmsnzqRX+6Y8NWYE7Zs3jDskV83JzJs8SpKSkmKpqYVrA51zicyMRz9Zzp/fXsCgbq0Yf/FwvxdQHSYpzcxSyrKsj5jgnNsruXn5/M9r85g47WtOGtCRe88aROMGPgC/KxtPQs65PbZlZy6/fCaN/y7ZxNU/3o/fHHcg9fxWDK4cPAk55/bIyk3buXT8dL7O3ME9Zx3MmUO7xh2Sq4E8CTnnym36ikyueDIVA54aM4JDevlFqG7PeBJyzpXLKzNXc+OLc+naujGPXTzMu2C7veJJyDlXJmbGXycv4sEPlnBIrzaMu2AorZo0iDssV8N5EnLOlSo7N4/fvjiHN2av5eyUrtw2agANkuMeetLVBp6EnHMlytiawxVPpTLz682MPbEPVx7Zy2/F7SqMJyHnXLEWrtvKpeOns2l7DuMuGMIJ/TvFHZKrZTwJOeeK9PGiDK5+ZgZNGiTx/JWHMrBrq7hDcrWQJyHn3A88NXUFt7wxn94dmvP4xSl0atk47pBcLeVJyDn3rbx847Z/z+eJ/67g2D778OB5g2na0L8mXOXxT5dzDoBtObu5duJMPvhqA2MO78nvTzqIJB+Cx1UyT0LOOdZs3smY8dNZvGEbt43qzwWH7Bt3SK6O8CTkXB03a9VmLpuQSs7uPMZfMowjDmgfd0iuDvEk5FwdZWZM+GwFf37rKzq0bMjEy0dwQIfmcYfl6hhPQs7VQVt25PK7l2bz7rz1jDxoH+4+82BaN/UheFzV8yTkXB0za9VmfvXsDNZtyeYPJx/EmMN7+ggILjaehJyrI8yMxz5dzp1vf0WHFo144apDGdy9ddxhuTrOk5BzdcDmHbu44YXZTFmwgeP7duDuMw+mZZP6cYflnCch52q7tJWZXPPsTDZu28UtP+3L6MN6ePWbqzY8CTlXS+XnG498soy7311Il1aNeekXhzGga8u4w3LuezwJOVcLbdqWw29emM1HCzM4eUAn7jhjAC0aefWbq348CTlXy0xbnsk1E2fwzY5c/jSqPxeM6O7Vb67a8iTkXC2Rn2/846Ml3Dd5Efu2bcrjFw+jX2evfnPVWyz355U0SdKs8FghaVYo7yFpZ8K8ccWs30bSZEmLw9/WobyPpKmSciTdUGidVpJelPSVpAWSDq38I3WuamRszWH0E9O4571FnDKwM29cc7gnIFcjxHImZGbnFExLuhfYkjB7qZkNKmUTY4H3zexOSWPD8xuBTOBaYFQR6zwAvGNmZ0pqADTZm2Nwrrr4bOlGrntuFlk7c7nz9AGcM6ybV7+5GiPW6jhF/ylnA8eUc9VTgaPD9ATgI+BGM9sAbJB0cqH9tASOBC4GMLNdwK49jdu56iAv3/jbB4t58P3F9GzXlKfGDKdPxxZxh+VcucTdJnQEsN7MFieU9ZQ0E8gC/mBmnxSxXgczSw/T64AOpeynJ5ABPCHpYCANuM7Mthe1sKQrgCsAunfvXuaDca6qbMjK5rrnZjF12SZOH9KFP53a328+52qkSvvUSpoCdCxi1s1m9lqYPg+YmDAvHehuZpskDQVeldTPzLKK24+ZmSQrJZxkYAhwjZl9IekBoiq8PxazzUeARwBSUlJK27ZzVcbMeDFtNbe/tYDs3DzuPnMgZ6V0izss5/ZYpSUhMxtZ0nxJycDpwNCEdXKAnDCdJmkp0BtILbT6ekmdzCxdUidgQynhrAZWm9kX4fmLREnIuRpjxcbt/P6VuXy2dBPDerTmjtMHsv8+zeIOy7m9Euf5+0jgKzNbXVAgqT2QaWZ5knoBBwDLilj3dWA0cGf4+1oRy3zLzNZJWiXpQDNbCBwLzK+g43CuUuXm5fPIf5bx4PuLaZBUj9tP6895w7pTz2+97WqBOJPQuXy/Kg6izgO3SsoF8oGrzCwTQNKjwDgzSyVKPs9LGgOsJOrcgKSORGdNLYB8SdcDfUN13jXAM6Fn3DLgkso+QOf21syvv+Gml+fy1bqtnNi/I7f8rB8dWjSKOyznKozMvMmjJCkpKZaaWrg20LnKtS1nN/e8u5AJU1fQoXkjbj21H8f3K6qJ1bnqR1KamaWUZVnvTuNcNfP+gvX88dUvSc/K5qJD9uWGnxxIcx/3zdVSnoScqyY2bM3m/96Yz7/npNO7QzNePP8whu7rN51ztZsnIedilp9vPJ+6ij+/tYDs3fnccHxvrjhyPxokxzKqlnNVypOQczFamrGNm16ey7TlmYzo2YY7Th9Ar/be7drVHZ6EnIvBrt35jPt4KQ99sIRG9evxlzMGcHaKj/nm6h5PQs5VsbSV33DTy3NYtH4bpwzsxP/8tC/7NPdu165u8iTkXBXZmp3LXe8s5OkvVtK5ZWMevziFY/qUNuyhc7WbJyHnKll2bh7PfPE1D3+0hMztu7jksJ785vjePuCoc3gScq7S7Nqdz/Opq3jogyWsy8rmR/u35cYT+jCwa6u4Q3Ou2vAk5FwF252Xz6uz1vLA+4tYlbmTofu25r5zDuaw/drFHZpz1Y4nIecqSH6+8e+56fx1yiKWZWynf5cW3HpJf47u3d57vTlXDE9Czu0lM2PKgg3c+95Cvlq3ld4dmjHugqH8pF8HTz7OlcKTkHN7yMz4dMlG7nlvEbNXbaZH2yY8cO4gThnYmSS/zYJzZeJJyLk9MG15Jve8t5BpyzPp0qoxd50xkNOHdCE5yYfaca48PAk5Vw6zV23m3smL+M+iDNo3b8itp/bjnGHdaJicFHdoztVInoScK4MF6VncN3kRk+evp3WT+vz+pD5ceEgPGjfw5OPc3vAk5FwJFq/fyoMfLOHNOWtp1jCZ3xzXm0sO70kzv9DUuQrh/0nOFbJzVx7/npvOpOlfM33FNzRpkMQvj96Py4/oRasmDeIOz7laxZOQc0Q93b5ck8Vz07/m9Vlr2Zqzm57tmjL2xD6cNbQrbZs1jDtE52olT0KV5NqJM+nbuQWnDe5ChxY+QnJ1tWVHLq/NXsNz01YxPz2Lhsn1OHlAJ84Z1o3hPdv4dT7OVTJPQpVge85u1m7eyeuz13LXO19xVO/2nJXSjWMP2sd7UVUDZsYXyzOZNH0Vb81NJ2d3Pv06t+BPo/rzs4M707Jx/bhDdK7OkJnFHUO1lpKSYqmpqXu07vKN23kxbRUvpa1hXVY2rZrU59SDO3Pm0G7079LCf2VXsQ1bs3kpbQ3Pp65i+cbtNG+UzKhBXThnWDf6d2kZd3jO1RqS0swspUzLehIq2d4koQJ5+cZ/l2zkhbTVvDtvHbt259OnY3POHNqVUYO70M7bGyrN7rx8/rM4g+emreL9rzaQl28M79mGc4d148T+nbyLtXOVwJNQBaqIJJRoy45c3pizlhfSVjN71WaS64kf99mHs4Z25cd99qG+X3FfIVZl7uD51FW8kLqadVnZtGvWgDOGduXslG7s175Z3OE5V6t5EqpAFZ2EEi1av5WX0lbz8sw1ZGzNoW3TBowa3IUzh3bloE4tKmWftVXO7jxmfb2Zz5Zu4rOlG5m+4hvqCY7q3Z5zhnXjmD4daJDsCd65qlDtk5CkScCB4WkrYLOZDZLUA1gALAzzPjezq4pYvw0wCegBrADONrNvJPUBngCGADeb2T0J6/wauAwwYC5wiZlllxZrZSahArvz8vl4UQYvpq1myoL15OYZ/bu04Kyh3fjZwZ1p3dSvTSlsd14+c9ZsYerSTUxduonUlZlk5+YjQf/OLRl5UAfOSulK51aN4w7VuTqn2ieh7wUg3QtsMbNbQxJ608z6l7LOXUCmmd0paSzQ2sxulLQPsC8wCvimIAlJ6gJ8CvQ1s52SngfeMrPxpcVXFUkoUeb2Xbw2aw0vpq1m3tosGiTVY2TfffjxgftwcLdW7Ne+WZ0coTkv31iQnsVnSzcydekmpi3PZPuuPAD6dGzOofu15dBebRnRsy0tm3jvNufiVJ4kFGsXbUXdw84GjinnqqcCR4fpCcBHwI1mtgHYIOnkItZJBhpLygWaAGv3JObK1qZpAy75UU8u+VFP5q/N4sW01bw6aw1vzV0HQOP6SfTv0oIBXVoxsGtLBnZtSY+2TalXyxKTmbFo/bZvk87nyzaRlb0bgF7tm3LakC4ctl87RvRs4xeSOleDxXomJOlI4L6CjBnOhOYBi4As4A9m9kkR6202s1ZhWkRnPa0S5t8CbCtUHXcdcDuwE3jPzH5eQlxXAFcAdO/efejKlSv37kD3Un6+sWzjduas3syc1VuYu2YL89ZuITs3H4DmDZPp3yVKSAO6tuTgrq3o2rpxjeoCbmYs37idz5ZuYuqyTXy+dBObtu8CoHubJhzaq210trNfW7/417lqrlqcCUmaAnQsYtbNZvZamD4PmJgwLx3obmabJA0FXpXUz8yyituPmZmkEjOppNZEZ089gc3AC5IuMLOni9nmI8AjEFXHlbTtqlCvnth/n2bsv08zTh/SFYjaRBZv2Mbc1VuYs2Yzc1dv4Yn/rmBXXpSYWjWpz4CCxNSlFQd3a0nHFo1iS0zZuXmkb8kmffPO6O+Wnazdks26Ldms3byTtZt3fnum07FFI47q3Z5DQhVbtzZNYonZOVf5Ki0JmdnIkuZLSgZOB4YmrJMD5ITpNElLgd5A4UaZ9ZI6mVm6pE7AhlLCGQksN7OMsO+XgcOAIpNQTZCcVI+DOrXgoE4tOHtYNyDqIbZo3bZvk9Ls1VsY9/Ey8vKjPNquWUMGdm1Jx5aNaFI/icYNwqN+Ek0aJNGofhJNGiTTOMxrkjivQRJN6icVedO27Nw81mdls3ZzlFwKkkyUYKLpb3bk/mC9Nk0b0KllI7q2bkxKj9Yc1KkFh+3Xjh5tm9Soszjn3J6Ls01oJPCVma0uKJDUnqjDQZ6kXsABwLIi1n0dGA3cGf6+VsQyib4GDpHUhKg67lh+mNhqvIbJSQwIVXKMiMqyc/OYn54VktJmvlyzhTmrN7NjVx47c/Mob21s/SR9m6Qa109ia/bub6vNErVqUp9OLRvTqWUjBndvRedWjenYohGdWjWic8vGdGzZiEb1/UJR5+q6OJPQuXy/Kg7gSODW0HkgH7jKzDIBJD0KjDOzVKLk87ykMcBKos4NSOpIlFxaAPmSrifqEfeFpBeBGcBuYCahuq22a1Q/iSHdWzOke+sfzDMzcnbns3NXHjty89i5Kzxy89ixazfZuXnfJquCeTsKTTdrmEznlo3o2LIRnVtFSadjy0Y0aeDDEjrnShd7F+3qrqq7aDvnXE1Xno4Jfgm5c8652HgScs45FxtPQs4552LjScg551xsPAk555yLjSch55xzsfEk5JxzLjaehJxzzsXGL1YthaQMolEZ9kQ7YGMFhlNRPK7y8bjKx+Mqn9oY175m1r4sC3oSqkSSUst61XBV8rjKx+MqH4+rfOp6XF4d55xzLjaehJxzzsXGk1Dlqq4jdXtc5eNxlY/HVT51Oi5vE3LOORcbPxNyzjkXG09CzjnnYuNJaA9IelzSBklfFjNfkh6UtETSHElDEuaNlrQ4PEZXh7gkDZI0VdK8UH5OdYgrYX4LSaslPVRd4pLUXdJ7khZImi+pRzWJ667wPi4Iy6gK4+oTPkc5km4oNO8ESQtDzGMrKqa9iUtSN0kfhvdvnqTrqkNcCfOTJM2U9GZ1iUtSK0kvSvoqfMYO3euAzMwf5XwQ3YZ8CPBlMfNPAt4GBBwCfBHK2wDLwt/WYbp1NYirN3BAmO4MpAOt4o4rYf4DwLPAQ9XhfQzzPgKOC9PNgCZxxwUcBvwXSAqPqcDRVRjXPsAw4HbghoTyJGAp0AtoAMwG+laDuDoBQ8J0c2BRdYgrYf7/C5/7Nysqpr2NC5gAXBamG1TE94SfCe0BM/sPkFnCIqcCT1rkc6CVpE7AT4DJZpZpZt8Ak4ET4o7LzBaZ2eKwjbXABqBMVztXZlwAkoYCHYD3KiqevY1LUl8g2cwmh+1sM7MdcccFGNCI6MuhIVAfWF9VcZnZBjObDuQWmjUcWGJmy8xsF/BcOIZY4zKzdDObEaa3AguALnHHBSCpK3Ay8GhFxbO3cUlqSZTAHgvL7TKzzXsbjyehytEFWJXwfHUoK6487ri+JWk40ZfY0rjjklQPuBf4QVVFFSnu9eoNbJb0cqguuVtSUtxxmdlU4EOiM9l04F0zW1CFcRUn7s99qUJ16mDgi3gj+db9wO+A/LgDSdATyACeCJ/7RyU13duNehJy3wq/pp8CLjGz6vDh/yXwlpmtjjuQQpKBI4iS4zCiaqaL4wwIQNL+wEFAV6Iv+WMkHRFvVNWfpGbAS8D1ZpZVDeI5BdhgZmlxx1JIMlE13sNmNhjYDux1+54nocqxBuiW8LxrKCuuPO64kNQC+Ddwc6jiqUrFxXUo8CtJK4B7gIsk3VkN4loNzArVS7uBV4n+OeOO6zTg81A9uI2o3WjvG473Xtyf+2JJqk+UgJ4xs5fjjif4EfCz8Ll/jujHxNPxhgREn/vVZlZwtvgiFfC59yRUOV4n+sKUpEOALWaWDrwLHC+ptaTWwPGhLNa4JDUAXiFqZ3ixCuMpMS4z+7mZdTezHkRnHU+aWYX2rNqTuIDpRO0wBe1mxwDzq0FcXwNHSUoOX65HEbVzxG06cICknuGzdi7RMcQq9Bx8DFhgZvfFHU8BM7vJzLqGz/25wAdmdkHMYWFm64BVkg4MRcdSEZ/7ve3ZUBcfwESiOvdcol8HY4CrgKvCfAF/J2pXmQukJKx7KbAkPC6pDnEBF4R1ZiU8BsUdV6FtXEzF947bm/fxOGBOKB8PNIg7LqJeaP8kSjzzgfuq+PXqGMqzgM1hukWYdxJR77OlRGfbsccFHE7UmWNOwuf+pLjjKrSNo6n43nF78z4OAlLDa/YqFdC714ftcc45FxuvjnPOORcbT0LOOedi40nIOedcbDwJOeeci40nIeecc7HxJORqDEl5kmaFEY9nS/pNGNoHSSmSHixh3R6Szq+6aMtG0rVhNOJnCpUfXXj0ZEnjJZ1Zjm1frAoeebyiKRrB/aS443DxSY47AOfKYaeZDQKQtA/RCMMtgP81s1Si6xeK0wM4P6xTnfwSGGlVODSRpGSLRnqoDgYBKcBbcQfi4uFnQq5GMrMNwBVEw/oo8cxB0lHhjGlWGGixOXAncEQo+3U4M/pE0ozwOCyse7SkjxLumfJMuLIeScMkfRbOwqZJaq7oni93S5qu6N4+VxYVr6T/J+nL8Lg+lI0jGnfubUm/LuuxSzpG0qsJz4+T9EqYvkTSIknTiIZ/KVhmvKRxkr4A7pLURtKrIebPJQ0My7WXNDmcbT4qaaWkdmHeBeG4Z0n6p8KgrZK2Sbo9vC6fS+pQRMzDFd2jZmZ4DQ8MoyfcCpwTtnlOCXHdImlCeM9WSjpd0b2T5kp6J4wQ4WqiirwS1x/+qMwHsK2Iss1Et3o4mnBlOfAG8KMw3YzojP/b+aG8CdAoTB8ApIbpo4EtROOb1SO6J8/hRCOLLwOGheVahO1eAfwhlDUkOhvrWSjGoUQjGzQN8cwDBod5K4B2RRxXQRyJo1hkAmcSjZjwFdA+LPss8FOi++N8TXQbjgZE9xZ6KCwzHngTSArP/0Z0BgnRsEOzwvRDwE1h+gSiEQXaEQ2M+gZQP8z7B3BRmDbgp2H6roLXo9DxtCC6/QXASOClMH0xCSNhlBDXLcCnRLenOBjYAZwY5r0CjIr78+mPPXt4dZyrjf4L3BfaWV42s9X64Q1G6wMPSRoE5BHdnqHANAvVY5JmEVXlbQHSLbrPChZGW5Z0PDAwoa2mJVFSW56wvcOBV8xse1jnZaJRuGeWchyfmNkpBU8kjQ/7NklPARdIeoJokNKLgFOAj8wsIyw/qdBxvWBmeQkxnRG294GktooGsT2caCBUzOwdSd+E5Y8lSqbTw2vZmOi+UwC7iBIcQBrRkEaFtQQmSDqAKGkVd+ZSXFwAb5tZrqS5REMUvRPK5xK9R64G8iTkaixJvYgSyAaiX+oAmNmdkv5NNF7ZfyX9pIjVf010w7eDic54shPm5SRM51Hy/4mAa8ysKgeiBXiC6Mwkmyi57C4i0Ra2fS/2J2CCmd1UxLxcMysY/6u41+tPwIdmdpqie/d8tAcx5ACYWb6kxH3mF7NPVwN4m5CrkRSNYD2OqCrHCs3bz8zmmtlfiEZw7gNsJbqFc4GWRGc2+cCFRL+sS7IQ6CRpWNhHc0nJRKOg/6KgTUJSb/3wRl+fAKMkNQnzTgtle8yiO+CuBf5AlJAguiHbUeHsoT5wVgmb+AT4eYj5aGBjOLv7L3B2KD+e6Db0AO8DZyrqEEJou9m3HCG35LvbN1ycUF74fSkuLldL+a8HV5M0DtVj9YHdRDfgK2oI/usl/ZjoF/I8ovvq5AN5kmYTtY/8A3hJ0kVE1TolniWY2S5J5wB/k9QY2EnUtvEoUVXQjNCBIQMYVWjdGaEqbVooetTMSquKK4tniNqFFoT9pEu6hagdazNRO1JxbgEelzSHqH1ldCj/P2CipAvDdtYBW81so6Q/AO8p6hafC1wNrCxjrHcRVcf9gei+VQU+BMaG9/WOEuJytZSPou1cDaXoGqCZZvZYBW6zIZAXqvcOJbqL5qCK2r5zhfmZkHM1kKQ0orO331TwprsDz4eznV3A5RW8fee+x8+EnHPOxcY7JjjnnIuNJyHnnHOx8STknHMuNp6EnHPOxcaTkHPOudj8fwwalvxAKpX4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pylab.plot(distances, energies)\n", + "pylab.xlabel('Distance of Hydrogen atom')\n", + "pylab.ylabel('Energy')\n", + "pylab.title('H2O molecule, one H atom distance varied');" + ] + }, { "cell_type": "code", "execution_count": null, @@ -196,7 +504,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/lih_dissoc.ipynb b/community/aqua/chemistry/lih_dissoc.ipynb index 45b6c4804..9dc711a73 100644 --- a/community/aqua/chemistry/lih_dissoc.ipynb +++ b/community/aqua/chemistry/lih_dissoc.ipynb @@ -12,8 +12,7 @@ "\n", "This notebook populates a dictionary, which is a progammatic representation of an input file, in order to drive the qiskit.chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", " \n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires.\n", - " " + "This notebook has been written to use the PYSCF chemistry driver. " ] }, { @@ -36,23 +35,24 @@ "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", "# Note: In order to allow this to run reasonably quickly it takes advantage\n", "# of the ability to freeze core orbitals and remove unoccupied virtual\n", - "# orbitals to reduce the size of the problem. The result without this\n", - "# will be more accurate but it takes rather longer to run.\n", + "# orbitals to reduce the size of the problem.\n", "\n", - "# qiskit_chemistry_dict_eigen uses classical approach to produce the reference ground state energy.\n", + "# dict using a classical approach to produce the reference ground state energy.\n", "qiskit_chemistry_dict_eigen = {\n", " 'driver': {'name': 'PYSCF'},\n", " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", " 'algorithm': {'name': 'ExactEigensolver'},\n", - " 'operator': {'name':'hamiltonian','freeze_core': True, 'orbital_reduction': [-3, -2], 'qubit_mapping': 'parity', 'two_qubit_reduction': True},\n", + " 'operator': {'name':'hamiltonian','freeze_core': True, 'orbital_reduction': [-3, -2],\n", + " 'qubit_mapping': 'parity', 'two_qubit_reduction': True},\n", "}\n", "\n", - "# qiskit_chemistry_dict_vqe uses quantum approach to evaluate the ground state energy.\n", + "# dict using a quantum approach to evaluate the ground state energy.\n", "qiskit_chemistry_dict_vqe = {\n", " 'driver': {'name': 'PYSCF'},\n", " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", " 'algorithm': {'name': 'VQE', 'operator_mode': 'matrix'},\n", - " 'operator': {'name':'hamiltonian','freeze_core': True, 'orbital_reduction': [-3, -2], 'qubit_mapping': 'parity', 'two_qubit_reduction': True},\n", + " 'operator': {'name':'hamiltonian','freeze_core': True, 'orbital_reduction': [-3, -2],\n", + " 'qubit_mapping': 'parity', 'two_qubit_reduction': True},\n", " 'optimizer': {'name': 'COBYLA', 'maxiter': 20000},\n", " 'variational_form': {'name': 'RYRZ', 'depth': 10},\n", " 'backend': {'name': 'statevector_simulator'}\n", @@ -95,7 +95,7 @@ "Dipole moments: [5.3479565 5.05436846 4.89154649 4.80824206 4.76423166 4.73775921\n", " 4.71893511 4.70394304 4.69125691 4.67959192 4.66694467 4.65022445\n", " 4.62517401 4.5864183 4.52758314 4.24518851 3.69244462 2.8795465\n", - " 1.99991673 1.27228084 0.76878114 0.45190607 0.26134837]\n" + " 1.99991673 1.27228084 0.76878114 0.45190607 0.26134836]\n" ] } ], @@ -134,21 +134,11 @@ "scrolled": true }, "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VOX1+PHPyZ5A2BIghC0JhB0MsohFBBRBkaK1FlC7ULW4dbGtbW37bWs3q+3Pau1OXbDVWlwrdRcFFQQRkE3ZIUASskIIW9Y5vz/uDQxhEiaQyZ0k5/16zWvuNnfOXMKceZb7PKKqGGOMMcGK8DoAY4wxLYslDmOMMY1iicMYY0yjWOIwxhjTKJY4jDHGNIolDmOMMY1iicOElIhMEJGtXscRaiKiItLf6ziMaQ6WOEyTEJFsEZlSd7uqvq+qAxs6TkTmisiyBs4tIvJ1EdkgIsdEJF9ElorInKb9FKEhIkNF5E0ROSAipSKyRkSmu/smiUhOI893TknKff1RETni9/j+2Z7PtD1RXgdgTBAeBq4AbgOWAZXAhcDNwH/qHiwiAoiq+pozyAb8D/grMMNdHwOId+EAcJ6q7gjlG4hIlKpWh/I9jDesxGFC6mx+Udd5/QDgdmCOqr6lqsdVtUZVl6nqXL/jlorIr0VkOXAMyBCRVBFZ5P7S3yEiX/M7foGI/Kq+ON2S0V1uKeeQiCwUkTi//d8Tkf0ikiciNzYQfzKQDvxDVSvdx3JVXSYi7YDXgFS/X/6pIjJWRFa4pZP9IvInEYlxz/eee+r17vGz3e0zRGSd+5oPRGTEWV7ve0TkGRH5p4gcFpFPRGS03/5UEXleRIpEZLeIfLPOa58TkSdFpAyYKyLxIvKEiBwUkc0i8v3a6+xew+frvP/DIvKHs4ndNB9LHCbcXQLsU9XVQRz7JWAekAjswSmN5ACpwLXAvSJySSPeexZwOc4X/whgLoCIXA7cBVwGZAKnVdH5KQF2AE+KyNUi0r12h6oexSlJ5alqe/eRB9QA3waScUpWl+IkT1T1Yvfl57nHLxSRkcBjwC1AEvB3YJGIxDbis/qbiXPtOgGLgD+5nzsCp/S0HujpxnWniEzze+1VwHPua58CfgakARk41+uLfsc+CVwuIp3c80cBc4B/nmXcpplY4jBe+K/7y7hUREqBvzRwbDKQ779BRHLc15aLSF+/XQtU9RO3eiQFGA/8QFXLVXUd8Ajw5UbE+bCq5qnqAZwvzCx3+yzgcVXd5H7531PfCdQZDG4ykA08AOwXkfdEJLOB16xR1ZWqWq2q2TiJYGIDcc4D/q6qH7qlsSeACmBcA69Z6/9vUOfLf5mqvqqqNcC/gPPc7WOArqr6C7fktAv4B86Xfa0VqvpfVfWp6nGca3Wvqh5U1Rycasfaz7kfeA/4grvpcqBYVdc0ELcJA5Y4jBeuVtVOtQ/cX9P1KAF6+G9Q1V44CSWWU9sK9vktpwIHVPWw37Y9OL+Ug+WfsI4B7f3O7f9eexo6iarmqOrXVbUf0Bc4SgO/qkVkgIi87HYCKAPuxfm89ekLfLdOMu7txlmf8/3/DVT1Db99dT93nFsa6ItTreb/Pj8Cuvsd739d4PRrVXf/E5wshXwRJ1GZMGeJw4S7d4Be/vXsDfAf6jkP6CIiiX7b+gC57vJRIMFvX0ojYtqP88Xsf96gqOo+4M/AsNpNAQ77K7AFyFTVDjhfzg01pu8Dfl0nESSo6tPBxhWkfcDuOu+TqKrT/Y6p+3n2A7381nvX2f9fYISIDMPpPPBUE8dsQsASh2lK0SIS5/c45157qroVp6rmPyJymdvYGgl85gyv2wd8APzGjWUEcBNOvTrAOmC6iHQRkRTgzkaE9QxOw+8QEUnAqccPSEQ6i8jPRaS/iES4jeU3AivdQwqAJBHp6PeyRKAMOCIig3B6k/krwGkzqPUP4FYRuUAc7UTkyjpJsymsAg6LyA9q/x1EZJiIjGngNc8AP3SvQ0/g6/47VbUcp03k38AqVd3bxDGbELDEYZrSq8Bxv8c9TXTeO3Dqxn8PHMBp8P4lMBto6IvmOpyG2TzgReBnqrrY3fcvnEbebOBNYGGwwajqa8BDOKWhHe5zfSrdGBbjJINNOO0Pc91zbQGeBna51T+pOA3v1wOHcZJC3djuAZ5wj5/ldhz4Gk4j9kE3prln+Bi1vbJqHw8F8blrcEoFWcBuoBin3ahjAy/7Bc6/1273Gjznfn5/TwDDsWqqFkNsIidjTHMRkdtwulZP9NvWB6dqLkVVyzwLzgTNShzGmJARkR4iMt6tphsIfBen9Fe7PwL4DvAfSxoth905bowJpRicNqp0oBTn/pC/AIhzA2QBTq+0y70K0DSeVVUZY4xpFKuqMsYY0yitsqoqOTlZ09LSvA7DGGNajDVr1hSratdgjm2ViSMtLY3Vq4MZ2sgYYwyAiDQ4AoI/q6oyxhjTKJY4jDHGNIolDmOMMY3SKts4jDEtX1VVFTk5OZSXl3sdSqsSFxdHr169iI6OPutzWOIwxoSlnJwcEhMTSUtLQ8TrmXZbB1WlpKSEnJwc0tPTz/o8nlRViTMN5zr3kS0i6wIcEyciq0RkvTt95c+9iNUY443y8nKSkpIsaTQhESEpKemcS3GelDhUdXbtsog8ABwKcFgFcImqHhGRaGCZiLymqisDHGuMaYUsaTS9primnjaOi/MJZuEMK30KdRxxV6PdR8jGR6nxKX9esoP3thWF6i2MMaZV8LpX1QSgQFW3B9rpThSzDigE3lLVD+s7kYjME5HVIrK6qKjxX/6REcL893bx5qf5Zz7YGNMmtG/f/pT1BQsW8PWvO3NR3XPPPfTs2ZOsrCyysrK4++67vQjREyGrqhKRxQSejvPHqvqSu3wdAUobtdyJY7JEpBPwoogMU9VN9Rw7H5gPMHr06LMqmaQlJbCn5NjZvNQY0wZ9+9vf5q677vI6jGYXssShqlMa2u9OK3oNMCqIc5WKyBKcoZcDJo6m0DepHR/vOxiq0xtjTKvgZXfcKcAWVc0JtFNEugJVbtKIBy4D7g9lQGlJCby8IY/Kah8xUV7X4hljav38f5/waV7TzvM0JLUDP/vs0AaPOX78OFlZWSfWDxw4wMyZM0+sP/jggzz5pDON/f3338+0adOaNMZw5WXimEOdaip3vuVHVHU60ANnXuVInLaYZ1T15ZBF46vhK5u/xpGIEeQcnEhG1/Znfo0xplWLj49n3bqTdwssWLDglAFUraqqmanq3ADb8oDp7vIGYGSzBRQRSWJFIUMi9rCn5JglDmPCyJlKBqZ5WX2MH0nKoK/ks7v4qNehGGNM2LLE4ScquR/pUsCeEkscxhhTHxuryo8kZZAsh8gvKvY6FGNMGDhy5Mgp63PnzmXu3LmAcx9HW2UlDn+dnUG/aop3ehyIMcaEL0sc/rpkABB3eC9VNT6PgzHGmPBkicNfF6fE0Zt88kqPexyMMcaEJ0sc/mITqYpLtp5VxhjTAEscdWiXDNIiCmzMKmOMqYcljjqiu/YjTQrIti65xhgTkCWOOqRLP1LkAPuLDngdijHGY/n5+cyZM4d+/foxatQopk+fzrZt25o9jnvvvbfRr/EfAr6pWeKoy20gryze5XEgxhgvqSqf+9znmDRpEjt37mTNmjX85je/oaCgoNljOZvEEUqWOOpyu+TGlmVTbV1yjWmzlixZQnR0NLfeeuuJbeeddx4XXXQR3/ve9xg2bBjDhw9n4cKFACxdupSJEydy1VVXkZGRwd13381TTz3F2LFjGT58ODt3OveHzZ07l1tvvZXRo0czYMAAXn7ZGbu1bglhxowZLF26lLvvvvvEKL033HADAE8++SRjx44lKyuLW265hZqaGgAef/xxBgwYwNixY1m+fHnIro3dOV6XW+LopfnsP1RO7y4JHgdkjOG1uyF/Y9OeM2U4XHFfvbs3bdrEqFGnTxf0wgsvsG7dOtavX09xcTFjxozh4osvBmD9+vVs3ryZLl26kJGRwc0338yqVav4wx/+wB//+EceeughALKzs1m1ahU7d+5k8uTJ7Nixo9447rvvPv70pz+dGKV38+bNLFy4kOXLlxMdHc3tt9/OU089xWWXXcbPfvYz1qxZQ8eOHZk8eTIjR4ZmnFhLHHXFd6YqtjNp1U4DuSUOY4y/ZcuWcd111xEZGUn37t2ZOHEiH330ER06dGDMmDH06NEDgH79+jF16lQAhg8fzpIlS06cY9asWURERJCZmUlGRgZbtmwJ+v3ffvtt1qxZw5gxYwBnzpBu3brx4YcfMmnSJLp27QrA7NmzQ9YeY4kjAO2cTp9jBWSXHGNCptfRGGMaKhmEytChQ3nuueca9ZrY2NgTyxERESfWIyIiqK6uPrFPRE55nYgQFRWFz3eyery8vDzge6gqX/nKV/jNb35zyvb//ve/jYr1XFgbRwDRXfuTHlHAHrsJ0Jg265JLLqGiooL58+ef2LZhwwY6derEwoULqampoaioiPfee4+xY8c26tzPPvssPp+PnTt3smvXLgYOHEhaWhrr1q3D5/Oxb98+Vq1adeL46OhoqqqqALj00kt57rnnKCwsBJxZCffs2cMFF1zAu+++S0lJCVVVVTz77LNNcBUCsxJHANIlgx7yHDnFpV6HYozxiIjw4osvcuedd3L//fcTFxdHWloaDz30EEeOHOG8885DRPjtb39LSkpKo6qb+vTpw9ixYykrK+Nvf/sbcXFxjB8/nvT0dIYMGcLgwYM5//zzTxw/b948RowYwfnnn89TTz3Fr371K6ZOnYrP5yM6Opo///nPjBs3jnvuuYcLL7yQTp06nTLlbVMTVQ3Zyb0yevRo9Z/esdHWL4QX5zG33V9Y8L0bmi4wY0zQNm/ezODBg70Oo8nNnTuXGTNmcO2113oWQ6BrKyJrVHV0MK+3qqpA3C65MYeyqfG1vsRqjDHnwqqqAnG75PbU/eSXldOzU7zHARljWosFCxZ4HcI5sxJHIAlJVEe3p69YA7kxXmqNVelea4praokjEBF8nTPcwQ5tlFxjvBAXF0dJSYkljyakqpSUlBAXF3dO57GqqnpEJ/cjrWAFK2yUXGM80atXL3JycigqKvI6lFYlLi6OXr16ndM5LHHUQ5Iy6CWL2Ft0yOtQjGmToqOjSU9P9zoME4BVVdWnSwZR1HC8aI/XkRhjTFjxpMQhIguBge5qJ6BUVQPerSIikcBqIFdVZzRTiCe65EYd2o3Pp0REyBleYIwxbYMniUNVZ9cui8gDQEP1Qd8CNgMdQh3XKdzE0cO3n8LDFaR0PLfGJGOMaS08raoSZ6SvWcDT9ezvBVwJPNKccQHQvjs1kfE2jawxxtThdRvHBKBAVbfXs/8h4PvAGWdUEpF5IrJaRFY3SS8MEWo6p9NX8tljicMYY04IWeIQkcUisinA4yq/w66j/tLGDKBQVdcE836qOl9VR6vq6Nrx6M9VVHI/0iMK2F1s93IYY0ytkLVxqOqUhvaLSBRwDXD6FFuO8cBMEZkOxAEdRORJVf1i00Zav4ikDHrLa+wtLmuutzTGmLDnZVXVFGCLquYE2qmqP1TVXqqaBswB3mnOpAFAlwxiqOZo0b5mfVtjjAlnXiaOOdSpphKRVBF51aN4Tuf2rIos3WXDHhhjjMuzO8dVdW6AbXnA9ADblwJLQx5UXW7i6F6zn6IjFXRLtC65xhjjda+q8JaYii8ixhkl1wY7NMYYwBJHwyIiqO7YlzQpYLcNr26MMYAljjOKSu5Hmt3LYYwxJ1jiOIOIpH6kRRSQbSUOY4wBLHGcWZd04qjkcLF1yTXGGLDEcWZuz6qIA7utS64xxmCJ48zcxNG1Oo+So5UeB2OMMd6zxHEmHXvjkyhrIDfGGJcljjOJjKK6Q2/6SgHZNtihMcZY4giG0yW3wEocxhiDJY6gRCQ5w6tbl1xjjLHEEZwuGbTjOKXFeV5HYowxnrPEEQy3Z5UesFFyjTHGEkcwarvkVuZSeqzK42CMMcZbljiC0akPKhH0jSgg2xrIjTFtnCWOYETFUJ3Yy+1ZZV1yjTFtmyWOIEUkZZAm+VbiMMa0eZY4ghSZlEF6RKGVOIwxbZ4ljmB1yaADRygqzPc6EmOM8ZQljmD5dck1xpi2zBJHsNzEkVSRyyHrkmuMacMscQSrcxoAfSWfPQesgdwY03ZZ4ghWdDxV7Xo408haA7kxpg2zxNEIEUn96CsF7Co64nUoxhjjGUscjRCZnEFGZAGbcsu8DsUYYzwT5cWbishCYKC72gkoVdWsAMdlA4eBGqBaVUc3W5CBdMmgix5iV46NkmuMabs8SRyqOrt2WUQeAA41cPhkVS0OfVRBcHtWxR/ZR2FZOd06xHkckDHGND9Pq6pERIBZwNNexhE0N3H0lXw25jaU64wxpvXyuo1jAlCgqtvr2a/AmyKyRkTmNXQiEZknIqtFZHVRUVGTBwpA53QAMiLy2ZBjicMY0zaFrKpKRBYDKQF2/VhVX3KXr6Ph0sZFqporIt2At0Rki6q+F+hAVZ0PzAcYPXp0aGZbim0PndO44HAOj1uJwxjTRoUscajqlIb2i0gUcA0wqoFz5LrPhSLyIjAWCJg4mk3qSIZuW8GGnEOoKk5tmzHGtB1eVlVNAbaoak6gnSLSTkQSa5eBqcCmZowvsNSRdKnKp+ZIEfll5V5HY4wxzc7LxDGHOtVUIpIqIq+6q92BZSKyHlgFvKKqrzdzjKdLHQnA8Ijd1s5hjGmTPOmOC6CqcwNsywOmu8u7gPOaOawz6+GEdF7EbjbmHGLa0EDNOMYY03p53auq5YnrCEn9uTB+LxusgdwY0wZZ4jgbqSMZorvYmFOKamg6cBljTLiyxHE2emTRqbqQyGPF5Bw87nU0xhjTrCxxnA23gXxYxC67g9wY0+ZY4jgbPUagCCMjrWeVMabtscRxNmITkeQBjIvby8bcUq+jMcaYZmWJ42yljmSw7jxxB7kxxrQVljjOVupIOlSXEF9exB6bStYY04ZY4jhbbgP5CGsgN8a0MZY4zlbKcFQiyIrabYnDGNOmBJU4ROQFEblSRCzR1IpJQLoOYlzcPjbkWAO5MabtCDYR/AW4HtguIveJyMAzvaBNSB3JIN8ONuUewuezBnJjTNsQVOJQ1cWqegNwPpANLBaRD0TkqyISHcoAw1rqSNpXHySxopDdJUe9jsYYY5pF0FVPIpIEzAVuBj4G/oCTSN4KSWQtgX8Dud0IaIxpI4Jt43gReB9IAD6rqjNVdaGqfgNoH8oAw1r3oWhEFCOj7A5yY0zbEex8HA+r6pJAO1R1dBPG07JExyNdBzPu4F5+bXeQG2PaiGATR2cRuabOtkPARlUtbOKYWpbULAYUL2JT7iFqfEpkhM1Bboxp3YJt47gJeAS4wX38A/gBsFxEvhSi2FqG1JEk1BwiqbqAnUVHvI7GGGNCLtjEEQ0MVtXPq+rngSGAAhfgJJC2q3YOctll7RzGmDYh2MTRS1UL/NYLgd6qegCoavqwWpDuQ9GIaEZFZ7PRbgQ0xrQBwbZxLBWRl4Fn3fXPu9vaAW372zIqFuk+lLEle3jFhh4xxrQBwSaOO4BrgIvc9X8Cz6sznvjkUATWoqSOJLPwOT7NO0R1jY+oSBuZxRjTep0xcYhIJLBYVScDz4c+pBYoNYv4NY/TvSaf7YVHGNyjg9cRGWNMyJzxp7Gq1gA+EenYDPG0TLV3kIvdQW6Maf2Crao6AmwUkbeAE4Myqeo3QxJVS9N1MBoZy6jobDbkljJrTG+vIzLGmJAJNnG84D6ahIgsBGpH2O0ElKpqVoDjOuHcPzIMp/vvjaq6oqniaDJRMUjKMMYW7eG/VuIwxrRyQSUOVX1CROKBPqq69VzfVFVn1y6LyAM4d6EH8gfgdVW9VkRicMbKCk+pI+m//99s2X+IymofMVHWQG6MaZ2CHeTws8A64HV3PUtEFp3rm4uIALOApwPs6whcDDwKoKqVqhq+XX9TRxLrO0ZPXx7bCg57HY0xxoRMsD+L7wHG4t6zoarrgIwmeP8JQIGqbg+wLx0oAh4XkY9F5BH3vpGARGSeiKwWkdVFRUVNEFojuQ3kw8RGyjXGtG7BJo4qVa37behr6AUislhENgV4XOV32HUEKG24onDm+/irqo7EaZS/u773U9X5qjpaVUd37dr1zJ+oqSUPRKPiGROTzUYbKdcY04oF2zj+iYhcD0SKSCbwTeCDhl6gqlMa2i8iUTg3FY6q55AcIEdVP3TXn6OBxOG5yCgkZThjivbwHytxGGNasWBLHN8AhgIVOCWEMuDOc3zvKcAWVc0JtFNV84F9fvObXwp8eo7vGVqpI8mo2sn2/EOUV9V4HY0xxoREsHOOH1PVH6vqGLc66MeqWn6O7z2HOtVUIpIqIq/6bfoG8JSIbACygHvP8T1DK3UkMb7j9NFctuRbA7kxpnUKqqpKRAYAdwFp/q9R1UvO9o1VdW6AbXnAdL/1dUDLmWHQ7w7ydXsPktW7k8cBGWNM0wu2jeNZ4G84N+NZHUx9kjPR6HZ8JiqHV7cXM3d8utcRGWNMkws2cVSr6l9DGklrEBGJ9BjB2JI9/N/OYsqraoiLjvQ6KmNMG+HzKRHNMH11sInjfyJyO/AiTgM5AO5ETsZf6kh65j5GVVUVK3aWMHlQN68jMsa0UuVVNazbV8rKXSWs3FXC4fJqXvnmhJC/b7CJ4yvu8/f8tilNcxNg65I6ksiacoZG5/POlkJLHMaYJlM3UazdW0pltQ8RGJragQszkqjxKZEhLnUEO1aVVdYHy20g/1z3Ah7dWoiq4oysYowxjXOmRPHlcX0Zl5HEmPQudIyPbra4GkwcIvJ9Vf2tu/wFVX3Wb9+9qvqjUAfY4nTpB+26MTn6E35+8Hx2FB4hs3ui11EZY1qAiuoa1u0tZeWuA26iOEhFGCSKus5U4pgD/NZd/iEn5xwHuBywxFFXRARkXkafzS8TyfW8s6XQEocxJqAzJYov1SaKtC50TPAuUdR1psQh9SwHWje1MqcSse4prk7O5Z0tXbllYj+vIzLGhIHqGh8f7yvlgx0lpyWKIT068EU3UYwNs0RR15kSh9azHGjd1Oo3GSKi+EKHT7khuy+Hjld5Wqw0xninrLyKd7cW8fbmApZuK6L0WFWLSxR1nSlxnCciZTili3h3GXc9LqSRtWRxHaHPhYwo/ZAa3+W8v72IGSNSvY7KGNNMsouP8vaWQt7eXMCq3Qeo9imdE6K5ZFA3Lh3UnYv6J7eoRFFXg4lDVe3utbM1YBoJb/4fg+JLeWdLoSUOY1qx6hofa/eW8vbmAhZvLmBn0VEABnRvz80TMpgyuBsj+3QOeTfZ5hLsfRymsTKnwZv/x43dtnP/1m7NdkenMaZ5BKqCio4ULkhP4ovj+nLpoO70SQrf2a7PhSWOUEnOhM5pXMxavn90DOtzShnZp7PXURljzkF28VEWby7gnS2Fp1VBTRncnQmZySTGtdwqqGBZ4ggVEcicRve1/yRevsqSLYWWOIxpYRqqgvraxRlcOqh1VUEFyxJHKA2Yhqz6O1/svod3tibznakDz/waY4ynKqt9vLutiFc25LW5KqhgWeIIpbSLILodMxM28Y9dmRSWldOtg3VGMybc+HzKh7sPsGh9Lq9uzOfQ8ao2WQUVLEscoRQVCxmTGJT7AXA1S7cWMWtMb6+jMsYAqsoneWUsWp/HonV55JeVkxATybShKczMSuWi/slERwY7u3bbYokj1AZMJXrrK4xPLOSdLYWWOIzxWHbxURatz+OldbnsLDpKVIQwaWBXfnTlYKYM7kZCjH0tnoldoVDLnArAl5K3cteOnlRW+4iJsl8xxjSnwsPlvLJhP/9dl8f6faUAXJDehZsuyuCKYSl0bhfjcYQtiyWOUOuQCinDuaBqNUcqLuaj7AOM75/sdVTGtHpl5VW8sSmfRevzWL6jGJ86Awf+aPogZoxIJbVTvNchtliWOJpD5jQ6LXuQ5KhjvLOl0BKHMSFSXlXD0q2FvLQuj7e3FFJZ7aNPlwTumNyfq7JS6d/NRqpuCpY4msOAacj7/4+vdt/F81u68pMZQ7yOyJhWo8anrNxVwkvrcnltUz6Hy6tJbh/D9WP7cFVWKlm9O9lkak3MEkdz6DkKEpK4PGY9v8sdRnbxUdKS23kdlTEt2q6iI/zno328+HEuRYcraB8bxeXDUrgqK5ULM5KIsh5RIWOJozlEREL/KaRte5MIruOdLYXceJHNxmtMY1VU1/DGJwU8/eFeVuwqISpCuGRQN64e2ZNLBnUjLtrGZW0OljiaS+ZUIjcs5MouuSzZ2s0ShzGNkF18lKdX7eXZNTkcOFpJ7y7xfG/aQL4wuhfdEu2m2ubmSeIQkYVA7fgbnYBSVc2qc8xAYKHfpgzgp6r6UPNE2cT6XwoSyeyOm7lxV1+OVlTTLtbytjH1qaz28danBfx71R6W7yghMkKYMrgb11/Qlwn9k220aQ958s2lqrNrl0XkAeBQgGO2AlnuMZFALvBic8XY5OI7Q+8LyDq8isqaqSzfUczUoSleR2VM2NlTcpSnV+3juTX7KD5SSc9O8dw1dQCzRve2IXvChKc/ecXp6jALuOQMh14K7FTVPaGPKoQGTKX94nvoF1vGkq2FljiMcVXV+Fj8aQH/XrWX97cXE+m2XVx/QR8uzuza5kafDXde15VMAApUdfsZjpsDPN3QASIyD5gH0KdPn6aJrqllToPF93Bj9238cUs3VNW6CZo2bd+BYzy9ai/PrM6h+EgFqR3j+M5lTukipaOVLsJVyBKHiCwGAv2k/rGqvuQuX8eZE0IMMBP4YUPHqep8YD7A6NGjtdEBN4dug6FjbybJOn5cNppP95cxNLWj11EZ06yqany8vbnQLV0UIXCidDFxQDcrXbQAIUscqjqlof0iEgVcA4w6w6muANaqakFTxeYZEcicSur6p4mPmMuidXmWOEybkXPwGP9ZtY9nVu+j8HAFKR3i+OYlmcwe09uG/2hhvKyqmgJsUdWcMxx3xlJJizJgGrL6UW5Py+eRj+K5c8oA4mOs77lpnVSV97cX8/jy3SzdVgTA5IE4/IofAAAd/ElEQVTduG5sHyYP7Go36bVQXiaO09otRCQVeERVp7vr7YDLgFuaP7wQSZsAUXF8oeOnPLCrF/9dl8t1Y8O0TcaYs1ReVcNL63J5dNluthUcIbl9LN+Y3J/ZY/vQ00oXLZ5niUNV5wbYlgdM91s/CiQ1Y1ihF5MA6RfTPf9dhqR8nic+yGbOmN7WSG5ahaLDFTy5cg9PrtxDydFKBvfowP/7wnl89rwexEZZybq18LpXVds0YBqy/U2+MRFue+MwK3cd4MJ+rSs/mrZla/5hHl22i/9+nEdljY9LB3XjpgnpXJiRZD+KWiFLHF7InAZ8lym6nM4Jo3jig2xLHKbF8fmUd7cX8diy3by/vZi46AhmjenFV8en069re6/DMyFkicMLnXpD/ylEr13A9aNn8Nf395Jbetzqfk2LUF5Vwwtrc3ls+W52FB6he4dYvjdtINeP7WMz6bURlji8csGt8NS13JS0ib/SgX+t2MPdVwzyOipj6lV4uJx/rdjDUx/u5cDRSob17MBDs7OYPryHTYfcxlji8Eq/S6FLP7psfIxpQ+/jPx/t5c4pmTYstAk7n+aV8eiy3Sxan0u1T5kyuDs3X5TO2PQu1n7RRlni8EpEBIydB6//gNunH+K1TVW8tC6X2WOsa67xns+nLNlayKPLdvPBzhISYiK5fmwfvjo+3SYhM5Y4PJV1PbzzS4bl/IdBKV9kwQd7mDXauuYa7xyrrOb5tbk8vmw3u4qP0qNjHHdfMYjrxvShY0K01+GZMGGJw0txHSDrBmTN49wy6Va+/cp+Vu0+wAUZ1sPKNK+SIxUs+CCbf63cQ+mxKs7r1ZGHrxvJFcNSiLa7u00dlji8NnYerPo7M6re5J7483liRbYlDtNs9h04xiPv72Lh6n1UVPuYOqQ7X5uQwai+na3ka+plicNryf3drrmPc/3o6cxfnkNe6XEb9M2E1Nb8w/zt3Z0sWp9HhMDnRvZk3sX96N/N7r8wZ2aJIxy4XXNvTtrI37UTT67cw/cvt665pumtzj7AX5fu5O0thSTERPLVz6Rx04R0enS0HyomeJY4woHbNTdp0wKmDP4NT6/ayzcvta65pmmoKku3FvGXpTv4KPsgnROi+c5lA/jyhX3plGA37JnGs8QRDvy65n79ijJmflrFovV5zBrd2+vITAtWXePjlY37+evSnWzJP0zPTvHc89khzBrTm4QY+69vzp799YQLt2vu8Nz/MLD7F3nig2y+MKqXNVCaRiuvquHZ1fv4+3u7yDl4nMxu7fn9rPP47Hmp1kPKNAlLHOGitmvu6se4ZdKtfOfV/azec5AxaV28jsy0EIeOV/Hkyj08tmw3JUcrOb9PJ+757FAuGdSNCJuO1TQhSxzhpLZrbvWb3BM3kgUfZFviMGdUUFbOY8t289SHezlSUc2kgV25bWI/GxLEhIwljnDids2NWfs41426gkdW5LL/0HHr8WIC2l18lPnv7eT5NblU+3zMGJHKrRP7MSS1g9ehmVbOEke4cbvmzkvexGPSmd++vpUHZ2d5HZUJI5tyD/HXpTt5ddN+oiOdOTDmTehHn6QEr0MzbYQljnBT2zX3k8e5bdJfePjt7Vw9sicTB3T1OjLjIVVl5a4D/GXpDt7fXkxibBS3TezHV8en0zUx1uvwTBtjiSPc+HXNveOyQ7y8oR0/fnEjb377YutC2Qb5fMrizQX8ZelO1u0rJbl9LD+4fBA3jOtDhzgbdNB4w/rmhaOs6yGmPbFrHuG+a0aQc/A4D761zeuoTDOqqvHxwtocLv/De8z71xpKjlbwy6uHsewHk7ltUj9LGsZT9hM2HLldc1n9GGMv+wXXje3Do8t2M/O8ngzv1dHr6EwIHa+s4ZnV+5j/3i5yS48zKCWRP8zJ4srhPYiyezBMmLDEEa7GzoOPHoElv+buKx7g7c0F3P3CBl66Y7x9gbRCde/BGNW3M7+4yrkHw7rUthC+Gqg67jyqj0NVOVQdg+ry07fXVEBNNdRUgq8KamofleCr9lsOtK/SWfdfrqlyjo3rBF97O+Qf1RJHuEruDxfeDh/8kY4jZvHzmUO57am1PLpsN7dM7Od1dKaJFB4u59Flu3lq5cl7MG6f1J+x6Xb/TkhVV0B5GZQfch4Vh04u126vKPP7wg/w5X8iKbjLvqpzjysyBiKiIbL2EQMRUXWWY07uj05w16Oc1yU0z9+NJY5wNulH8Oki+N+3uPzWZVw2pDsPLt7GFcN6WNfLFm5vyTH+/t5Onl2TQ3WNj+nDe3DbpH4MTbWqyKBVHIHD+XCspOEEcGKf33p1ecPnlgiITXS+mKPinOdo9zkh+eRyVBxExzuPqPh6tgc4JjL21C/8yBiIiIQWUrr0JHGIyEJgoLvaCShV1dNuVhCRbwM3AwpsBL6qqmf4F29FYhLgsw/Bvz6HvP8Av7zqLqb8/l1+9OJG/nXTWKvCaIE27y/jb+/u5H/r84iKiODzo3pxy8UZNo+3v8qjTkI4vN99dpePFJy6vfJI/eeIjIG4jicfsR2gYy93vYP73OnkvhPHussx7VvMl7gXPEkcqjq7dllEHgAO1T1GRHoC3wSGqOpxEXkGmAMsaK44w0K/S2DEHFj2IClDr+EHlw/kJy99wgtrc/n8qF5eR2eCtDr7AH9ZupN3thTSLiaSr03I4MaL0uneIc7r0JrPiYSQD0f8EsLhglOTROXh018bFQeJKZDYA7oPg/6XuespTgkgvtOpCSC6DV1XD3haVSXOT+ZZwCX1HBIFxItIFZAA5DVXbGFl2r2w4y343ze5Ye7rvPhxLr965VMmDexKUnu7+Stc1Z0Ho0u7GL572QC+fGEaHRNaaXfa6ko4uBuKt0HxdvexDUq2O1VEdUXG+iWEodD/0pPr7bs7z4kpTjKwEkDY8LqNYwJQoKrb6+5Q1VwR+X/AXuA48KaqvlnfiURkHjAPoE+fPiEK1yPtkmDab+DFeUSseYz7Pn8dVz78Pr98+VMemjPS6+hMHZXVPl7ekMc/3t/N5v1lpHaM42efHcLs1jQPxrEDJ5NC8TYo2eE8H9gNWnPyuMQekJwJw651qooSe0Cif0LoZAmhBRJVDc2JRRYDKQF2/VhVX3KP+SuwQ1UfCPD6zsDzwGygFHgWeE5VnzzTe48ePVpXr159LuGHH1V48vOw70O440N+/+FRHn5nB0/cONaGIwkTJUcq+PeHe/nnyj0UHa4gs1t7bpnYj6uyWug8GL4aKN1zaoIodhPEseKTx0XGQJd+ToJIHuA+MiGpv9NmYFoEEVmjqqODOjZUieOMbywSBeQCo1Q1J8D+LwCXq+pN7vqXgXGqevuZzt0qEwfAwWz4y4WQPpHya59k+h+XUVnt4407L6ZdbCv5JdsCbc0/zOPLd/Pix7lUVPuYOKArN12UzoTM5JbTgaFsP+R8BPvXnyxBlOxw7hOolZB0Min4J4hOfZ0eQaZFa0zi8PLbZgqwJVDScO0FxolIAk5V1aVAK8wGjdA5DSb/CN78P+K2/4/7rpnInPkr+No/V/PY3DE2R3kz8vmUd7cX8diy3by/vZi4aKeH1I3j0+jfLdHr8BpWXeEkiJyP3MdqOLTP2SeRzt9Z8gDoP+XUBNFM9wiY8OdliWMBsFJV/+a3LRV4RFWnu+s/x6mqqgY+Bm5W1YoznbvVljjAudv0kUuhLA++vooXNh/lu8+u56L+yfzjy6MteYTY8coanl+bw+PLd7Oz6CjdEmP5ymfSuH5sHzq3i/E6vNOpOklh3yonQeR8BPkbTpYkOvaGXmNOPlKGW4+kNqpFVFWFUqtOHOD8Wpw/GUbeADP/yDMf7eP7z29g8sCu/O1Lo4iNsuTR1PIPlfPEimyeXrWX0mNVDO/ZkZsuSmf68B7ERIVR+0XlUchbBzl+ieJIgbMvKh5SR0JvN0n0HA0dengbrwkbLaWqypytHufBhXfABw/DiNnMGnMR1T7lRy9u5Ov//pi/3HB+y2yMDUPr95Xy2PLdvLJhPz5Vpg5J4aYJ6Yzu29n79gtVOLDLSQ77VjnPBZ+c7NXUJQMyJp0sTXQf6gxTYcw5shJHS1V5DP56oVMnfdtyiI7nnyuy+elLn3DFsBQevm6kJY+zVF3j461PC3h02W5W7zlI+9goZo/pzdzPpNG7i4dDvfh8sH8d7FoCe1c6ieL4QWdfTCL0PB96jz1ZmmiX5F2spsWxEkdbEJMAMx6Cf10Nz34VZv2TL1+YRnWN8ouXP+XbC9fx0OwsG0m3EcrKq3jmo308vjyb3NLj9O4Sz09nDOELo3uR6NX8F4dyYOcS2PkO7FoKxw8425MHwqAroZebKLoOtJ5NptlY4mjJ+k2GKx+AV74Lz98E1z7OjRelU+3zce+rW4iKEB6YlUVkRAvpEuqRPSVHeXx5Ns+u3sfRyhrGpnfhJzOGcNmQ7s1/7SqOwJ7lTqLY+Y7TNRagfQoMuNwZgiZjIrTv1rxxGePHEkdLN+ZmZ5iHN34IL94C18xn3sX9qKpRfvfGVqIiI/jt50cQYcnjFFU1Pt7eXMgzq/exZGshURHCjBGp3Dg+vXkny/KvftrpVkH5qpyxmfqOh/O/4iSLboPtDmsTNixxtAYX3u5MDLP4HoiKhZl/4o7J/amuUR5cvI2oCOHXnxtuJQ9gR+ERnlm9jxfW5lB8pJJuibF8fXJ/vjiub/MNOFhf9VPKcOffMmMy9LnQusWasGWJo7W46NtOyWPpvU7PmRkP8c1L+1NV4+NPS3bw6f4y7v3ccIb1bHvzPRytqOaVjft55qN9rN5zkKgI4ZJB3Zg9pjcTB3QNfTvQieonN1kUb3W2t+8OA6a51U+TrPrJtBiWOFqTid93Sh7vPwCRscgV9/PdqQMYkJLIL/73KTP/tIyvfCaN704dSPtWPkSJz6es2XuQF9bmsGhdHkcra8jo2o4fXjGIa87vRdfEEI4qrAoFm2D7m/VUP33ZaZ/qNsSqn0yL1Lq/PdoaEbjkJ86QEiv+BFExyGW/ZOZ5qUwc0JXfvbGFBR9k89rGfO6ZOYRpQ1O8vxehCakqa/eW8sqG/by6cT/5ZeXER0dy5YgezB7TO7T3XlQcdqqdtr8J299y5pcA6D4cxt3mlCqs+sm0EnYfR2ukCq99H1bNhwl3waU/ObHr470H+dGLm9i8v4xLB3XjnplDvb034RypKhtyDvHKxv28smE/uaXHiYmMYOLArswY0YNLB3cPTelK1RkEcNsbTrLY84FTqojt4JQmMqc6Yz0lBhog2pjwY0OOtPXEAU5vnZfvhLVPwOQfO9VYruoaH48vz+bBxdtQhW9NyeSmi9JbzA2D1TU+1ueU8tanhbyyMY99B44THSlMyHSSxZQh3ekQivsuqo5D9nLY7iaLg9nO9q6DIfMyJ1n0GWd3Z5sWyRKHJQ6Hzwcv3QHr/w1DPwdX/PaUBtjc0uPcs+gT3vq0gAHd2zNnTB8uH5ZCaqd4D4M+naqSXXKMZduLeH97MSt2lnC4opqoCGF8/2SuHNGDaUNSQjOrXuleJ0lsexN2vwfVx50xnzImOsmi/2XQuW/Tv68xzcwShyWOk3w1sOxBePe3EB0P034NWTec0ij75if5/P6tbWzJd+Z6zurdiSuGpXDFsB70SfKmGqv0WCXLd5SwbEcR720rJrf0OAC9OsczITOZi/p3ZXz/JDolNPGItDVVTmP29jectoqiLc72zmmQOc0pVaSNd66lMa2IJQ5LHKcr3g7/+5bTLTT9YvjsH5xB8PzsKjrCa5vyeX1TPhtznfmhh6Z2YPrwHlw+LIV+Xds3eVg+n5JbepzN+8vYmn+YLfmH2Zxfxu7io6hCYmwUF/ZLYkJmMhMyu9I3KaHpG7gP58OOxU57xa6lUFEGEdFOgsic6jyS+lsPKNOqWeKwxBGYz+e0ebz1U2c+hsk/gnF3QOTpjcf7Dhzj9U35vLppPx/vLQUgI7kdacnt6N4hjh4d40jpEEdKx5OPxNioE1/qqkpFtY+y8ioOl1dzpLzaea6oouhwBVvcJLE1/zBHKqpPvG/fpAQGpSQyNLUj4/sncV6vTk1/n0XVcdi7wukqu2sJ5G90tiemnmyryJgIsWE+IZMxTcgShyWOhpXlwavfgy0vQ8oImPlHSM2q9/D9h47z+qZ8lu8oJq+0nIKyckqOVp52XEJMJJ0TYjhW6SSJal/9f1sd4qIY1KMDg1MSGZjSgUE9EhnYPTE0U+D6fM7kRf7DetRUOKWKPuOcm+8GTIPuw6xUYdosSxyWOILz6SJ49S44WuwMdXHBbdCxZ1AvraiuobCsgvyycvYfKqfgUDn5ZeUcPFZJu5goEuOiaB8XRWJcNImx7nqss96lXQzdO8SG7p4Kn8+5O3vvCtj9Pux+F46VOPu6DXGG9Og3Gfp+BmLahSYGY1oYSxyWOIJ3/CC89TOnCguBtItgxGwYMhPiWsjwJNUVzqx3e1e4j5VQ7lSv0T7FKVH0m+w8230VxgRkicMSR+OV7ISNz8KGZ+DAToiMhYGXO0mk/2UQFSbzaas6908UbIK8j50kkbsGqsud/Un9nTu0+1zoVEN1ybDqJ2OCYInDEsfZU4XctbBhIWx6Ho4VQ3xnGHI1DLvGGcE1vnPzxFJ5FAo3O43XBZsgf5MzNWql020YiXSm0e37GSdJ9B4H7bs2T2zGtDKWOCxxNI2aKqd76oaFsPll5+Y3gHZdISkTkvu7z5nOc+e+wd81repUk5XlOeM6leVCmft8eL9TqijZCbh/nzGJzpzZKcOcRuyU4U57RUzLHS7FmHBiU8eaphEZ7XZPvcwZGjz7fWdGuuLtzjhNW151SiS1IqKgQ0/nGdwqIvFbxlmvqXDunaitXjpBnKTUoQd0HQTDrj2ZKDr1hYiWMSSKMa2dJQ4TnNj2MPAK5+Hv+EEo3gEl252EcigH1AeoU6oATpQaatcjopxG6g49nSSRmAodUp1tNs6TMWHPEoc5N/GdofcY52GMaROs7G+MMaZRPEkcIrJQRNa5j2wRWVfPcd8SkU0i8omI3NnccRpjjDmdJ1VVqjq7dllEHgAO1T1GRIYBXwPGApXA6yLysqruaLZAjTHGnMbTqipxxpyYBTwdYPdg4ENVPaaq1cC7wDXNGZ8xxpjTed3GMQEoUNXtAfZtAiaISJKIJADTgd71nUhE5onIahFZXVRUFKJwjTHGhKyqSkQWA4EGBvqxqr7kLl9H4NIGqrpZRO4H3gSOAuuAmvreT1XnA/PBuQHwHEI3xhjTgJAlDlWd0tB+EYnCqXoa1cA5HgUedY+/F8hpyhiNMcY0npf3cUwBtqhqvclARLqpaqGI9MFJMuOaLTpjjDEBeTZWlYgsAFaq6t/8tqUCj6jqdHf9fSAJqAK+o6pvB3nuImBPgF3JQHGA7eGspcXc0uIFi7m5tLSYW1q8cG4x91XVoEYJbZWDHNZHRFYHO4hXuGhpMbe0eMFibi4tLeaWFi80X8xe96oyxhjTwljiMMYY0yhtLXHM9zqAs9DSYm5p8YLF3FxaWswtLV5oppjbVBuHMcaYc9fWShzGGGPOkSUOY4wxjdIqE4eIXC4iW0Vkh4jcHWD/XBEp8hva/WYv4vSL5zERKRSRTfXsFxF52P08G0Tk/OaOsU48Z4p3kogc8ru+P23uGAPE1FtElojIp+4w/d8KcEy4XedgYg6bay0icSKySkTWu/H+PMAxse60CjtE5EMRSWv+SE+JJ5iYw+r7opaIRIrIxyLycoB9ob3OqtqqHkAksBPIAGKA9cCQOsfMBf7kdax+8VwMnA9sqmf/dOA1nAm8x+GMGhzO8U4CXvb6utaJqQdwvrucCGwL8HcRbtc5mJjD5lq71629uxwNfAiMq3PM7cDf3OU5wMIWEHNYfV/4xfUd4N+B/v1DfZ1bY4ljLLBDVXepaiXwH+Aqj2NqkKq+Bxxo4JCrgH+qYyXQSUR6NE90pwsi3rCjqvtVda27fBjYDPSsc1i4XedgYg4b7nU74q5Gu4+6vW+uAp5wl58DLnWnV/BEkDGHHRHpBVwJPFLPISG9zq0xcfQE9vmt5xD4P9vn3eqI50Sk3uHaw0SwnymcXOgW/18TkaFeB+PPLbaPxPl16S9sr3MDMUMYXWu3+mQdUAi8par1XmN15tk5hDOskGeCiBnC7/viIeD7gK+e/SG9zq0xcQTjf0Caqo4A3uJkZjZNYy3OuDfnAX8E/utxPCeISHvgeeBOVS3zOp5gnCHmsLrWqlqjqllAL2CsODN5hrUgYg6r7wsRmQEUquoar2JojYkjl1MnfOrlbjtBVUtUtcJdfYQGhnYPE2f8TOFEVctqi/+q+ioQLSLJHoeFiETjfAE/paovBDgk7K7zmWIO12utqqXAEuDyOrtOXGNxplboCJQ0b3SB1RdzGH5fjAdmikg2TlX8JSLyZJ1jQnqdW2Pi+AjIFJF0EYnBaRha5H9AnXrrmTh1x+FsEfBlt9fPOOCQqu73Oqj6iEhKbX2qiIzF+Tvz9MvBjedRYLOq/r6ew8LqOgcTczhdaxHpKiKd3OV44DJgS53DFgFfcZevBd5RtwXXC8HEHG7fF6r6Q1XtpappON9v76jqF+scFtLr7OV8HCGhqtUi8nXgDZweVo+p6ici8gtgtaouAr4pIjOBapxG3rmeBQyIyNM4vWOSRSQH+BlOIx3qDDv/Kk6Pnx3AMeCr3kTqCCLea4HbRKQaOA7M8fLLwTUe+BKw0a3PBvgR0AfC8zoTXMzhdK17AE+ISCROAntGVV+u83/vUeBfIrID5//eHI9irRVMzGH1fVGf5rzONuSIMcaYRmmNVVXGGGNCyBKHMcaYRrHEYYwxplEscRhjjGkUSxzGGGMaxRKHCXsiciSIY+4UkYQmfM+rRWRIE57vg3N47RH3OVVEnmvguE4icvvZvo8xwbLEYVqLO4FGJQ637359rgaaLHGo6mea4Bx5qnptA4d0whkV1ZiQssRhWgxx5p5Y6g40t0VEnnLv8v4mkAosEZEl7rFTRWSFiKwVkWfd8Z4QkWwRuV9E1gJfEJGvichH7iCBz4tIgoh8BucO4d+JM/9CPxHJEpGV7kB3L4pIZ/d8S0XkQRFZLSKbRWSMiLwgIttF5Fd+sR/xW/6BiGx03/O+AJ8z3Y19Y51zpIk7B4qIDBVnHol1bkyZwH1AP3fb70SkvYi87V6DjSJyld95NovIP8SZg+JN965pRKS/iCx2Y1srIv3c7d9zr9MGCTBnhWljmnKMdnvYIxQP4Ij7PAlnlM9eOD96VgAXufuygWR3ORl4D2jnrv8A+Knfcd/3O3eS3/KvgG+4ywuAa/32bQAmusu/AB5yl5cC97vL3wLycO5GjsUZXTepzme4AvgASHDXuwT4vIuAL7vLd/i9Ng13DhScAQ1vcJdjgHj//e72KKCD3zXZgTP/RBrOXdBZ7r5ngC+6yx8Cn3OX43BKcVOB+e5rI4CXgYu9/ruwh3ePVjfkiGn1VqlqDoA7DEcasKzOMeNwqpmWu8M4xeAkmVoL/ZaHub/qOwHtcYaqOYWIdAQ6qeq77qYngGf9DqkdC20j8Im641uJyC6cgeb8x46aAjyuqscAVDXQvCbjgc+7y/8C7g9wzArgx+LMy/CCqm6X06dbEOBeEbkYZ/jtnkB3d99uVa0dxmQNkCYiiUBPVX3Rja3c/RxTcZLHx+7x7YFMnORs2iBLHKalqfBbriHw37DgzKtwXT3nOOq3vAC4WlXXi8hcnFLN2cbkqxOfr574gtHgWECq+m8R+RBnMp9XReQWYFedw24AugKjVLVKnNFU4+rEDM51jG/g7QT4jar+vRHxm1bM2jhMa3EYZ3pVgJXAeBHpDyAi7URkQD2vSwT2izN8+Q2Bzqeqh4CDIjLB3fcl4F3OzlvAV2t7gIlIlwDHLOfkoHQ3BNiPiGQAu1T1YeAlYASnXgNwhtIudJPGZKBvQ4GpM8tgjohc7b5HrBvnG8CNfu1EPUWkW1Cf1rRKljhMazEfeF1ElqhqEc4Ipk+LyAacap1B9bzuJzj1+ss5dTjt/wDfE5GP3Qbir+A0lm8AsnDaORpNVV/Hqdpa7Va13RXgsG8Bd4jIRuqfgXAWsMk9xzCcKW9LcKrnNonI74CngNHueb7M6UOcB/IlnNFgN+C0xaSo6ps4c1uvcM/1HKcmKNPG2Oi4xhhjGsVKHMYYYxrFEocxxphGscRhjDGmUSxxGGOMaRRLHMYYYxrFEocxxphGscRhjDGmUf4/HDHDArSCu9YAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -161,7 +151,7 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('LiH Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { @@ -169,21 +159,11 @@ "execution_count": 6, "metadata": {}, "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5,1,'LiH Dipole Moment')" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8VvX5//HXlUUmAcIIOyxFtoiIuHDUrVi1inVUq2LVKtp+q7VDq11af47a2hbU1oGzjrpQ60Bx4GAPRTaVIWEIJEASkly/P+4DxpiEO5A7507u9/PxOI+c+z4n57xzINd98jnnfD7m7oiISPOXFHYAERFpHCr4IiIJQgVfRCRBqOCLiCQIFXwRkQShgi8ikiBU8CWmzOwwM/u8Efbzipn9oAG28xszm9gQmUTijQq+NAgzW25mx1R/393fdfd961rPzC40s/fq2Lab2VYzKzazDWb2ppmdXW0/J7j7Qw3xs+yp4GcrM7O21d6fGfwMBeEkq5mZPWhmvws7hzQeFXxpKga7ezawL/Ag8FczuyncSDVaBpyz84WZDQQyw4sj8jUVfIkpMxtlZisbanvuvt7dHwEuB24ws7xgP2+b2SXB/IVm9r6Z/dXMNpvZAjM7ukqmTmb2gpltNLPFZnZpHflHmNkHZrbJzGab2ajdRHwEuKDK6x8AD1fbZq6ZPWxm68xshZn9ysySqmW/K9jnUjMbGbz/hZkVVm26MrMWZvb/zOx/ZrbWzP5hZhnBslFmttLMfhp83xozuyhYNhY4F7gu+Mvpxd38XNIMqOBLU/U8kAIMr2X5QcASoC1wE/CsmbUJlj0BrAQ6AWcCfzCzo6pvwMw6Ay8DvwPaAP8HPGNm7erI9SHQ0sz2M7NkYAxQ/ZrAX4BcoCdwBJEPiIuqZZ8D5AGPBXkPBHoD5xH56yY7WPdWYB9gSLC8M3BjlW3lB/vqDFwM3Gtmrd19AvAo8Cd3z3b3U+r4maSZUMGXMPwnOHvdZGabgL/VdwPuvgNYT6QQ16QQuNvdd7j7k8DnwElm1hU4BLje3UvcfRZwP988K9/pPGCSu09y90p3fx2YBpy4m3g7z/K/A3wGrNq5oMqHwA3uXuTuy4E7gPOrfP8yd/+Xu1cATwJdgVvcvdTd/wuUAb3NzICxwLXuvtHdi4A/BNvfaUfwvTvcfRJQTKRZTBJQStgBJCGd5u5v7HxhZhcCl9RnA2aWCrQDNtayyir/Zs+AK4ic0XcCdhbHqsuG1bCN7sD3zKzq2W8qMHk38R4BpgA9qNacQ+QvjtRgn1X337nK67VV5rcDuHv197KJ/PyZwPRI7QfAgOQq625w9/Iqr7cF3ysJSGf40lSNBsqBj2tZ3tmqVEGgG7A6mNqYWU61Zav4ti+AR9y9VZUpy91vrSuYu68gcvH2RODZaovXEznr7h7F/ndnPZHi379Kvtzg4nY01FVuglHBl4aUambpVaYG/wvSzNqY2bnAvcBt7r6hllXbA1ebWaqZfQ/Yj0jzzBfAB8Afg4yDiLRt13Tv/UTgFDM7zsySg/VHmVmXKKJeDBzl7lurvhk00zwF/N7McsysO/CTWvZfJ3evBO4D7jKz9hC57mBmx0W5ibVEriNIglDBl4Y0icgZ587pNw247dlmVgwsJtL8c62731jH+h8BfYicBf8eOLPKh8M5QAGRs/3ngJuqNjHtFHw4jAZ+Aawjcsb/M6L4vXH3Je4+rZbFVwFbgaXAe0QuzP5zd9usxfVEjsmHZrYFeIPo2+gfAPoF11L+s4f7lybENACKNDc7rwm4+6FhZxGJJzrDFxFJECr4IiIJQk06IiIJQmf4IiIJIq4evGrbtq0XFBSEHUNEpMmYPn36enevq7uPXeKq4BcUFDBtWm13somISHVmtmL3a0WoSUdEJEGo4IuIJAgVfBGRBKGCLyKSIFTwRUQShAq+iEiCUMEXEUkQTb7gV1Y6905ezNyVm8OOIiIS15p8wS8qKefRD1fwo4nT+WprWdhxRETiVpMv+LmZqfz9vANYV1TK1U/MpKJSncGJiNSkyRd8gMFdW3Hz6P68u2g9d72+MOw4IiJxqVkUfIBzhnfj7GFd+evkxfx3/pdhxxERiTvNpuAD3Dy6P4O65PLTp2azdF1x2HFEROJKsyr46anJ/O3coaQkGz+aOJ1tZeVhRxIRiRvNquADdGmdyT3n7M/iwmKuf2YuGtFLRCSi2RV8gMP6tOOnx+7Li7NX88/3l4cdR0QkLjTLgg9wxaheHNuvA3+Y9BkfLd0QdhwRkdA124JvZtxx1mC6t8nkysdmsnZLSdiRRERC1WwLPkBOeirjzz+AbWXlXPHoDMrKK8OOJCISmpgWfDNbbmZzzWyWmYUyWG2fDjncfuZgpq/4ih8++InO9EUkYTXGGf6R7j7E3Yc1wr5qdNKgjtx2xkCmr/iK4+6ewqvz1oQVRUQkNM26Saeqsw/sxktXH0q3Npn8aOIMrnt6NltLdZ++iCSOWBd8B/5rZtPNbGxNK5jZWDObZmbT1q1bF9Mwvdpl88zlI7nyyF78e/pKTrznXWb+76uY7lNEJF5YLB9MMrPO7r7KzNoDrwNXufuU2tYfNmyYT5vWOE39Hy/byLVPzuLLLSVcfVQfrjyyFynJCfMHj4g0E2Y2Pdom85hWOHdfFXwtBJ4Dhsdyf/UxvEcbXrnmME4Z1JG73ljIWeOn8r8N28KOJSISMzEr+GaWZWY5O+eBY4F5sdrfnmiZnsrdY/bnz2OGsKiwmBP+PIVbX1nAwrVFYUcTEWlwKTHcdgfgOTPbuZ/H3P3VGO5vj40e0pkDurfm5hc/5b53l/KPd5bQr2NLTh/amVMHd6J9y/SwI4qI7LWYtuHXV2O24ddmXVEpL81ZzXMzVzFn5WaSDA7t047v7t+J4/rnk5kWy89IEZH6qU8bvgp+HRYXFvOfmat4buYqVm3aTmZaMsf1z2dEzzb075RLnw7ZtEhJDjumiCQwFfwGVlnpTFvxFc/NXMWkuWvYvH0HAKnJRu/2OfTv1DKYctmvYw456akhJxaRRKGCH0OVlc6Kjdv4dPUW5q/ezPzVW5i/egvri0t3rdM9L5NubTLplJtBx1bpdGqV8fV8bgYZafqrQEQaRn0Kvhqk6ykpyejRNosebbM4aVDHXe8XbikJiv9mPvuyiJVfbefzLwtZV1xK9c/U1pmpdMzNIC87jbysNNpktSAvO402WZEpb9fXFuSkp5CUZI38U4pIc6SC30Dat0ynfct0juzb/hvvl5VXsnZLCas3bWf15u2s3hSZ/3JzCeu3lrF8w1Y2Fpextayixu2aQU6LFFpmpJIbTC3Tg/nMVFqmp5CTnkp2ixSy01PICb5+/TqV9NQkgrulRCSBqeDHWFpKEl3bZNK1TWad65XsqGDj1jI2bi1jw9YyNm4tZUNxGVtKytmyfQebt+/Y9XXp+mI2B/MlO3bf5XNykpGVlkx2ixSydk3JZKWl7Hpv54dEzs4PiyofGFWXpaeqOUqkqVLBjxPpqcmRtv5WGfX6vtLyCraWVlBcUk5R6Q6KS8opLo1MRSU7v+6IrFNaztZg2bayCjYUb/vGezsqdn89Jz01idaZabTKTKNVRiqts1LJzUijdWYqrTPTaJ2VRsfcdPJz08lvmU5WC/0XE4kX+m1s4lqkJNMiJZk2WWl7va3S8opdHxhFJV9/YBQHHyRbSsrZtK2MTdt28NW2HWzaVsbCtcW73iuv/PYHRk56SvABkEHHlpEPgs6tM+jTPps+HXLI1geCSKPRb5vs0iIlmRbZyeRlt6j397o7xaXlbCgu48stJXy5uWTX1zWbI9csFqzZ8q2L2J1bZdCnQzb7dMihT/ts9s3PoXf7bD3gJhID+q2SBmFm5KSnkpOeSkHbrFrX21FRyaqvtrNwbRGLCotZuLaIhWuL+WDxBsoqvr4e0bNtFgf1zGNkrzxG9MyjXU79P4RE5Jt0H77EhfKKSlZs3Mai4ANg9heb+HjZRoqCQWr6tM9mZK88Du6Vx0E98mjdAE1YIs2BHrySZqG8opL5q7fwwZINTF26gU+WbWT7jgrMYL/8lhyzX3t+MLJgj5qgRJoLFXxplsrKK5mzchNTl2zggyUb+HDZBtJTkjlvRDcuPbwn7XPUq6kkHhV8SQiLC4u4d/ISnp+1itTkJM4Z3o0fHdGL/FwVfkkcKviSUJat38rfJi/m2ZmrSDbjrAO7cPmo3nSu5zMNIk2RCr4kpC82buNvby/h6elfAHDG0C5cMao33fLqfspZpClTwZeEtmrTdsa/s4QnPv6CCndOG9KZK4/sRc922WFHE2lwKvgiwNotJYx/ZymPfrSCHRWVnDK4Ez8+sjd9OuSEHU2kwajgi1RRWFTC/e8u45GpKygpr+DEgR256qje9M1vGXY0kb2mgi9Sgw3FpTzw3jIenrqC4tJyjuvfgauO6sOAzrlhRxPZYyr4InXYtK2Mf76/nH+9v4yiknKO7tueq47uw5CurcKOJlJvKvgiUdhSsoOH3l/O/e8tY/P2HRy+TzvGHd2bA7q3CTuaSNRU8EXqobi0nEemruC+d5eycWsZh/TO4/YzB9d7bAKRMNSn4CfFOoxIvMtukcLlo3rx3vVH8quT9mP2F5s5a/xU/rdhW9jRRBqUCr5IIDMthUsO68mjlxxEUUk5Z42fyuLC4rBjiTQYFXyRagZ3bcUTY0dQXlnJmAlTWfDllrAjiTQIFXyRGuzXsSVPjD2Y5CRjzIQPmbNyU9iRRPaaCr5ILXq3z+bfl40ku0UK5973EdOWbww7ksheUcEXqUO3vEyeuuxg2ua04PwHPuaDxevDjiSyx2Je8M0s2cxmmtlLsd6XSCx0apXBk5eNoGubDC568BMmf14YdiSRPdIYZ/jjgM8aYT8iMdM+J50nxh5Mnw7ZjH14Gq/OWxN2JJF6i2nBN7MuwEnA/bHcj0hjaJOVxqOXjGBg51yufGwmz89aFXYkkXqJ9Rn+3cB1QGWM9yPSKHIzUnnk4oM4sKA11zw5iyc/+V/YkUSiFrOCb2YnA4XuPn036401s2lmNm3dunWxiiPSYLJapPCvC4dzWJ92XP/MXB58f1nYkUSiEssz/EOAU81sOfAEcJSZTay+krtPcPdh7j6sXbt2MYwj0nAy0pK574IDOLZfB37z4qf8/e0lYUcS2a2YFXx3v8Hdu7h7ATAGeMvdz4vV/kQaW4uUZO49dyinDO7Eba8u4M7XFxJPnRGKVJcSdgCRpiw1OYm7zx5CRmoS97y5iJIdFdxwQl/MLOxoIt/SKAXf3d8G3m6MfYk0tuQk49bTB5GemsyEKUvZXlbBzaf2JylJRV/ii87wRRpAUpJx86n9yUhNZvyUpWzfUcFtZwwiWUVf4ogKvkgDMTN+fkJfMtKSufuNSPPOXWcPITVZPZhIfFDBF2lAZsY1x+xDRmoyf3xlAaXllfz1+/vTIiU57Ggi6jxNJBYuO6IXN5/an9c/XculD09ne1lF2JFEVPBFYuUHIwv40xmDeHfROi568GOKS8vDjiQJTgVfJIbOOrArd589hE+Wf8X5D3zE5u07wo4kCWy3Bd/M9jGzN81sXvB6kJn9KvbRRJqH0UM6c+/3hzJv1WYunzidyko9nCXhiOYM/z7gBmAHgLvPIfLkrIhE6fgB+fx29AA+WLKB+99bGnYcSVDRFPxMd/+42ntqjBSpp7MP7Mqx/Tpw+2ufM3/15rDjSAKKpuCvN7NegAOY2ZmARn8QqScz49YzBtE6M41xT8zSnTvS6KIp+FcC44G+ZrYKuAb4UUxTiTRTbbLSuOOswSwuLOaPr2ggOGlc0RT8Fe5+DNAO6Ovuh7r7ihjnEmm2DuvTjh8e0oOHp65g8gKNjyuNJ5qCv8jMbge6uXtRrAOJJILrjt+Xvvk5/Ozp2awvLg07jiSIaAr+YGAh8ICZfRiMUNUyxrlEmrX01GT+PGZ/tpSUc93Tc9SPvjSK3RZ8dy9y9/vcfSRwPXATsMbMHjKz3jFPKNJM7Zufw8+P78tbCwqZ+JHGxpXYi+bBq2QzO9XMniMyKPkdQE/gRWBSjPOJNGsXjizg8H3a8fuXP2VxoVpMJbaiasMHRgO3u/v+7n6nu69196eBV2MbT6R5S0oy/t+Zg8hMS2HcE7MoK68MO5I0Y9EU/EHufrG7f1B9gbtfHYNMIgmlfct0bj19IPNXb+GO1z8PO440Y9EU/PZm9qKZrTezQjN73sx6xjyZSAI5tn8+5wzvxoQpS/lgyfqw40gzFU3Bfwx4CsgHOgH/Bh6PZSiRRPTrk/ejR14WP31qNpu3qVdNaXjR9qXziLuXB9NEID3WwUQSTWZaCnePGcK6olJ+8dxc3aopDa7Wgm9mbcysDfCKmf3czArMrLuZXYfuzhGJiUFdWnHtd/bh5blreGbGqrDjSDNT15i204l0mGbB68uqLHMiXSaLSAP70RG9eGfhOm56fh7DC9rQLS8z7EjSTNR6hu/uPdy9Z/C1+qSLtiIxkpxk3HnWYJKSjGuenEl5hW7VlIYRzYNXmWb2KzObELzuY2Ynxz6aSOLq0jqT3502gBn/28RfJy8OO440E9FctP0XUAaMDF6vAn4Xs0QiAkSGRjxtSCf+8tZiZvzvq7DjSDMQTcHv5e5/4ushDrfxdbu+iMTQLacNIL9lOtc8MYviUg00J3snmoJfZmYZfD3iVS9A/bmKNIKW6ancdfYQVn61jd+8MD/sONLERVPwbyLSZ05XM3sUeBO4LqapRGSX4T3acMWo3jw9fSWT5mp0Udlzdd2WCYC7v25mM4ARRJpyxrm7nv0WaUTjjunDu4vWccOzc9m/Wys65maEHUmaoLoevBq6cwK6Exm4fDXQLXivTmaWbmYfm9lsM5tvZjc3XGyRxJKanMTdY/anrLySnz41m8pKPYUr9VfXGf4dwdd0YBgwm8gZ/iBgGnDwbrZdChzl7sVmlgq8Z2avuPuHe5lZJCH1aJvFTaf04+fPzuX+95Yy9vBeYUeSJqauB6+OdPcjiZzZD3X3Ye5+ALA/kVsz6+QRxcHL1GDSaYnIXjj7wK4c268Dt7/2OfNXbw47jjQx0Vy03dfd5+584e7zgP2i2XgwWtYsoBB43d0/qmGdsWY2zcymrVu3LtrcIgnJzLj1jEG0zkxj3BOz2F5WEXYkaUKiKfhzzOx+MxsVTPcBc6LZuLtXuPsQoAsw3MwG1LDOhOCvh2Ht2rWrX3qRBNQmK407zhrM4sJi/vjKZ2HHkSYkmoJ/ETAfGBdMnwbvRc3dNwGTgePrG1BEvu2wPu344SE9eHjqCiYvKAw7jjQRuy347l7i7ne5+3eD6S53L9nd95lZOzNrFcxnAN8BFux9ZBEBuO74fembn8PPnp7N+mI9Cym7F80Z/p7qCEw2sznAJ0Ta8F+K4f5EEkp6ajJ/HrM/W0rKue7pORowRXYrZgXf3ee4+/7uPsjdB7j7LbHal0ii2jc/h+uP78tbCwo1YIrsVjTdI38vmvdEJBwXjSxgWPfW3PLifAq37La1VRJYNGf4NY1spdGuROJEUpJx25mDKCmv5Ff/maemHalVrU/amtkJwIlAZzO7p8qiloD6aRWJI73aZXPtMftw26sLeHnuGk4e1CnsSBKH6jrDX02kC4USIuPb7pxeAI6LfTQRqY9LD+vBwM653PT8fDZuLQs7jsShurpWmO3uDwG93f2hKtOz7q7hd0TiTEpyErd/bxBbSnZw84vqO1++LZo2/OFm9rqZLTSzpWa2zMyWxjyZiNRb3/yWXDGqN8/PWs0bn64NO47EmWgK/gPAncChwIFEes48MJahRGTPXXlkb/btkMMv/zOXzdt3hB1H4kg0BX+zu7/i7oXuvmHnFPNkIrJH0lIiTTvrikr5w8vqa0e+Fk3Bn2xmt5vZwdUGRRGRODWoSysuPbwnT077gncXqRdaidjtEIfAQcHXYVXec+Coho8jIg3l2mP24fX5a/n5M3P577WHk9Uiml93ac6i6TztyBomFXuROJeemsxtZw5i9ebt3P7a52HHkTgQTdcKHczsATN7JXjdz8wujn00EdlbBxa04QcHF/DgB8v5eNnGsONIyKJpw38QeA3Y+ejeQuCaWAUSkYb1s+P2pUvrDK5/Zg4lOzRCViKLpuC3dfengEoAdy8H9L9GpInIapHCracPYtn6rdz1xsKw40iIoin4W80sj2AAcjMbAWj0ZJEm5NA+bRlzYFfum7KU2V9sCjuOhCSagv8TIv3n9DKz94GHgatimkpEGtwvTtqP9jnpXPf0HMrKK8OOIyGI5i6dGcARwEjgMqC/u0c1iLmIxI+W6an8/rsD+HxtEfdOXhx2HAlBNHfpJBPpJvlo4FjgKjP7SayDiUjDO3q/Dpw2pBP3Tl7MZ2u2hB1HGlk0TTovAhcCeUBOlUlEmqAbT+lPbkYq1z09h/IKNe0kkmgevevi7oNinkREGkWbrDRuGT2AKx+bwX3vLuPyUb3CjiSNJJoz/FfM7NiYJxGRRnPiwHyO75/PXW8sZMm64rDjSCOJpuB/CDxnZtvNbIuZFZmZGv9EmjAz45bT+pORmsz1T8+hslLj4CaCaAr+ncDBQKa7t3T3HHdvGeNcIhJj7XPSufHkfkxb8RUPT10edhxpBNEU/C+Aee6uUwCRZub0oZ0ZtW87bnv1c77YuC3sOBJj0RT8pcDbZnaDmf1k5xTrYCISe2bGH747kOQk4+fPzkHndc1bNAV/GfAmkIZuyxRpdjq1yuCGE/vy/uINPPnJF2HHkRja7W2Z7n4zgJllB691SV+kmTnnwG68OHs1v3/5M47Ytx0dczPCjiQxEM2TtgPMbCYwH5hvZtPNrH/so4lIY0lKMm47YxA7Kiv51XPz1LTTTEXTpDMB+Im7d3f37sBPgftiG0tEGlv3vCx+dlxf3lxQyPOzVocdR2IgmoKf5e6Td75w97eBrJglEpHQXDiygKHdWvGbF+ezrqg07DjSwKK6S8fMfm1mBcH0KyJ37tTJzLqa2WQz+9TM5pvZuL2PKyKxlJxk/OnMQWwrreA3L8wPO440sGgK/g+BdsCzwdQueG93yoGfuns/YARwpZn129OgItI4erfPYdwxfXh57hpenbcm7DjSgKK5S+cr4Or6btjd1wBrgvkiM/sM6Ax8Wt9tiUjjGnt4TybNXcOv/jOfET3zaJWZFnYkaQBW29V4M3uhrm9091Oj3olZATAFGODuW6otGwuMBejWrdsBK1asiHazIhJD81dv5rR73+fQ3m154AcHkpRkYUeSGpjZdHcfFs26dZ3hH0ykW4XHgY+APfrXDu7ffwa4pnqxB3D3CUTuBGLYsGG6F0wkTvTvlMuNJ/fj18/P589vLuLa7+wTdiTZS3UV/HzgO8A5wPeBl4HH3T3qKzlmlkqk2D/q7s/uTVARaXznjejO7JWb+fObixjYOZdj+nUIO5LshVov2rp7hbu/6u4/IHLRdTGRPnV+HM2GzcyAB4DP3P3OBkkrIo3KzPjdaQMY0Lkl1z45i2Xrt4YdSfZCnXfpmFkLMzsdmAhcCdwDPBfltg8BzgeOMrNZwXTiXqUVkUaXnprMP847gJRkY+zD09haWh52JNlDtRZ8M3sYmAoMBW529wPd/bfuviqaDbv7e+5u7j7I3YcE06QGyi0ijahL60z+cs5Qlqwr5mdPz1bXC01UXWf45wF9gHHAB8FoVxrxSiRBHdqnLdcf35dJc79kwpTdPnspcajWi7buHs1DWSKSQMYe3pM5Kzdz26sL6N8pl0P7tA07ktSDirqIRM0s0vVC7/bZXPX4DI2S1cSo4ItIvWS1SGH8+cMor3Quf3Q6JTsqwo4kUVLBF5F669E2i7vPHsK8VVv4pfrPbzJU8EVkjxy9XwfGHd2HZ2asZOKH6hKlKVDBF5E9Nu7oPhzdtz03v/gp05ZvDDuO7IYKvojssaQk486zh9CldQaXPzqDtVtKwo4kdVDBF5G9kpuRyvjzh7G1tJwrHp1BWXll2JGkFir4IrLX9s3P4U9nDmL6iq/47Usa8iJe7XYAFBGRaJw8qBNzVm5mwpSlDOqSy/eGdQ07klSjM3wRaTDXHbcvh/TO45f/mcfclZvDjiPVqOCLSINJSU7injH70y67BT+aOJ0NxaVhR5IqVPBFpEHlZbfgH+cdwLriUq5+YiblFbqIGy9U8EWkwQ3sksvvTxvA+4s3cPtrn4cdRwIq+CISE98b1pXzRnRj/JSlvDRnddhxBBV8EYmhG0/uzwHdW3Pd03P4/MuisOMkPBV8EYmZtJQk/nbuULJapHDZI9PYvH1H2JESmgq+iMRUh5bp/O3coaz8ajs/eXIWlZXqWTMsKvgiEnMHFrThxlP68eaCQu55a1HYcRKWCr6INIrzR3TnjKFduPuNRbz52dqw4yQkFXwRaRRmxu+/O4ABnVtyzZOzWLZ+a9iREo4Kvog0mvTUZP5x3gGkJBkX/PMjlq4rDjtSQlHBF5FG1aV1Jv+6aDjbSis4/e8faOCURqSCLyKNbkjXVjx7xUhaZ6bx/fs/4uU5a8KOlBBU8EUkFN3zsnjm8pEM7JzLlY/N4L4pSzUYeoyp4ItIaNpkpfHoJQdx4sB8fj/pM37zwnwqdJ9+zKjgi0io0lOT+es5Q7n0sB48NHUFP5o4ne1lFWHHapZU8EUkdElJxi9P6sdvTunHG5+tZcx9H7Jefek3OBV8EYkbFx7Sg/HnHcDnX27hu397nyW6bbNBxazgm9k/zazQzObFah8i0vwc2z+fJ8YezLbSCs74+wd8ots2G0wsz/AfBI6P4fZFpJka0rUVz11xCG0y0zhXt202mJgVfHefAuijWUT2SLe8TJ65fCSDgts2J0xZots291LobfhmNtbMppnZtHXr1oUdR0TiSOusNCZechAnDezIHyYt4CbdtrlXQi/47j7B3Ye5+7B27dqFHUdE4kx6ajJ/OWd/xh7ek4enruCyR6axraw87FhNUugFX0Rkd5KSjF+cuB+3jO7PWwsKOWfCh6wr0m2b9aWCLyJNxgUHFzD+/GF8vraI0/+u2zbrK5a3ZT4OTAX2NbOVZnZxrPYlIonjO/068MTYg9leVsFvE1IrAAAMZElEQVTpf/uAj5fp3pBoxfIunXPcvaO7p7p7F3d/IFb7EpHEMqRrK569/BDystM47/6PeHH26rAjNQlq0hGRJqlbXibPXj6SwV1zuerxmYx/R7dt7o4Kvog0Wa0y03jk4oM4eVBH/vjKAm58fj7lFZVhx4pbKWEHEBHZG+mpydwzZn86t85g/DtLWbVpO7eePpD2LdPDjhZ3dIYvIk1eUpJxwwn78dvR/Xl30TqOuP1t7nx9IVtLdb9+VSr4ItJsnH9wAW/85AiO6tuee95cxBG3v82jH61QM09ABV9EmpXueVnce+5QnrtiJD3aZvLL5+Zx3N1TeP3TtQl/UVcFX0Sapf27teapyw5m/PkH4A6XPjyNsyd8yOwvNoUdLTQq+CLSbJkZx/XP57VrD+e3o/uzpLCY0fe+z1WPz+SLjdvCjtfoLJ7+xBk2bJhPmzYt7Bgi0kwVlexg/DtLuf+9pVRWwgUHd+fHR/WmVWZa2NH2mJlNd/dhUa2rgi8iiebLzSXc+frn/Hv6SnJapPDjo3pzwcEFpKcmhx2t3upT8NWkIyIJJz83nT+dOZhXxh3G/t1a84dJCzj6jnd4ftYqKptxf/sq+CKSsPrmt+ShHw5n4sUHkZuRyrgnZjH63veZumRD2NFiQgVfRBLeoX3a8tJVh3LH9wazobiUc+77kIsf/IRFa4vCjtagVPBFRIg8rXvGAV146/9Gcf3xffl42UaOu3sKNzw7h8ItJWHHaxC6aCsiUoONW8u4581FTPxwBWkpSVx6WE9+eEgPcjNTw472DbpLR0SkgSxfv5U/vbaASXO/JDXZOKR3W04c2JFj+3WIi9s5VfBFRBrY/NWbeWHWal6eu4aVX20nJckY2bstJw3M59h++bTOCqf4q+CLiMSIuzNv1RZenruGSXPX8L+N20hOMkb2yuPEgR05rn8+bRqx+Kvgi4g0Andn/uotTAqK//INkeI/omebXcW/bXaLmGZQwRcRaWTuzqdrtvDK3C+ZNHcNS9dvJcngoB55nDioI8f3z6ddTsMXfxV8EZEQuTsLvixi0tw1vDx3DUvXRYr/8B6RM//jB+TTPqdhRuRSwRcRiRPuzsK1xbva/BcXFmMGBxa04cQB+ZwwsCMd9mI4RhV8EZE4tWht0a7iv3BtpPgPL2jDxEsOIjW5/s/C1qfgaxBzEZFG1KdDDtd0yOGaY/ZhcWERk+Z+yepN2/eo2NeXCr6ISEh6t8/h6qNzGm1/6ktHRCRBqOCLiCQIFXwRkQShgi8ikiBU8EVEEkRMC76ZHW9mn5vZYjP7eSz3JSIidYtZwTezZOBe4ASgH3COmfWL1f5ERKRusTzDHw4sdvel7l4GPAGMjuH+RESkDrF88Koz8EWV1yuBg6qvZGZjgbHBy2Iz+7yGbbUF1jd4wthqapmbWl5Q5sbS1DI3tbywd5m7R7ti6E/auvsEYEJd65jZtGj7iogXTS1zU8sLytxYmlrmppYXGi9zLJt0VgFdq7zuErwnIiIhiGXB/wToY2Y9zCwNGAO8EMP9iYhIHWLWpOPu5Wb2Y+A1IBn4p7vP38PN1dnkE6eaWuamlheUubE0tcxNLS80Uua46g9fRERiR0/aiogkCBV8EZEEEVcFf3ddMZjZhWa2zsxmBdMlYeSskuefZlZoZvNqWW5mdk/w88wxs6GNnbFant3lHWVmm6sc3xsbO2MNmbqa2WQz+9TM5pvZuBrWibfjHE3muDnWZpZuZh+b2ewg7801rNPCzJ4MjvFHZlbQ+Em/kSeazHFVL3Yys2Qzm2lmL9WwLLbH2d3jYiJyYXcJ0BNIA2YD/aqtcyHw17CzVslzODAUmFfL8hOBVwADRgAfxXneUcBLYR/Xapk6AkOD+RxgYQ3/L+LtOEeTOW6OdXDcsoP5VOAjYES1da4A/hHMjwGebAKZ46peVMn1E+Cxmv79Y32c4+kMv8l1xeDuU4CNdawyGnjYIz4EWplZx8ZJ921R5I077r7G3WcE80XAZ0Se4q4q3o5zNJnjRnDcioOXqcFU/W6O0cBDwfzTwNFmZo0U8VuizBx3zKwLcBJwfy2rxPQ4x1PBr6krhpp+Sc4I/mx/2sy61rA8nkT7M8WTg4M/k18xs/5hh6kq+PN2fyJnc1XF7XGuIzPE0bEOmhlmAYXA6+5e6zF293JgM5DXuCm/KYrMEH/14m7gOqCyluUxPc7xVPCj8SJQ4O6DgNf5+pNQGsYMoLu7Dwb+Avwn5Dy7mFk28AxwjbtvCTtPNHaTOa6OtbtXuPsQIk/EDzezAWHmiUYUmeOqXpjZyUChu08PK0M8FfzddsXg7hvcvTR4eT9wQCNl21NNqnsJd9+y889kd58EpJpZ25BjYWapRArno+7+bA2rxN1x3l3meD3W7r4JmAwcX23RrmNsZilALrChcdPVrLbMcVgvDgFONbPlRJqsjzKzidXWielxjqeCv9uuGKq1y55KpG00nr0AXBDcRTIC2Ozua8IOVRszy9/ZXmhmw4n8/wj1lzrI8wDwmbvfWctqcXWco8kcT8fazNqZWatgPgP4DrCg2movAD8I5s8E3vLgymIYoskcb/XC3W9w9y7uXkCkvr3l7udVWy2mxzn03jJ38lq6YjCzW4Bp7v4CcLWZnQqUE7n4eGFogQEze5zI3RZtzWwlcBORi0e4+z+ASUTuIFkMbAMuCidpRBR5zwQuN7NyYDswJsxf6sAhwPnA3KC9FuAXQDeIz+NMdJnj6Vh3BB6yyKBFScBT7v5Std+9B4BHzGwxkd+9MSFl3SmazHFVL2rTmMdZXSuIiCSIeGrSERGRGFLBFxFJECr4IiIJQgVfRCRBqOCLiCQIFXyJGTMrjmKda8wsswH3eZqZ9WvA7X2wF99bHHztZGZP17FeKzO7Yk/3IxItFXwJ2zVAvQp+cO91bU4DGqzgu/vIBtjGanc/s45VWhHpJVEkplTwJeYs0vf720EHVgvM7NHgqdirgU7AZDObHKx7rJlNNbMZZvbvoD8azGy5md1mZjOA75nZpWb2SdD52DNmlmlmI4k8UXm7Rfo/72VmQ8zsw6ADrefMrHWwvbfN7C4zm2Zmn5nZgWb2rJktMrPfVcleXGX+ejObG+zz1hp+zh5B9rnVtlFgwRgEZtbfIv24zwoy9QFuBXoF791uZtlm9mZwDOaa2egq2/nMzO6zSB/w/w2eMsXMepvZG0G2GWbWK3j/Z8FxmmM19BkvCaYh+1rWpKnqBBQHX0cR6fWvC5GTjKnAocGy5UDbYL4tMAXICl5fD9xYZb3rqmw7r8r874CrgvkHgTOrLJsDHBHM3wLcHcy/DdwWzI8DVhN5erMFkd4286r9DCcAHwCZwes2Nfy8LwAXBPNXVvneAoIxCIh0lHZuMJ8GZFRdHryfArSsckwWE+n/vYDIU6NDgmVPAecF8x8B3w3m04n81XQskcGxLTjuLwGHh/3/QlN4U9x0rSDN3sfuvhIg6G6gAHiv2jojiDTHvB90M5NG5MNhpyerzA8IzqJbAdlEuuT4BjPLBVq5+zvBWw8B/66yys6+muYC8z3of8fMlhLpwKpq3zbHAP9y920A7l7TuAKHAGcE848At9WwzlTglxbpF/1Zd19k3+7u3IA/mNnhRLrR7Qx0CJYtc/ed3TVMBwrMLAfo7O7PBdlKgp/jWCJFf2awfjbQh8iHqiQgFXxpLKVV5iuo+f+eEenX/JxatrG1yvyDwGnuPtvMLiTyV8SeZqqslq+ylnzRqLOvEnd/zMw+IjIIxiQzuwxYWm21c4F2wAHuvsMivSumV8sMkeOYUcfuDPiju4+vR35pxtSGL2ErIjIMIMCHwCFm1hvAzLLMbJ9avi8HWGORbojPrWl77r4Z+MrMDguWnQ+8w555Hbho5x1FZtamhnXe5+vOrs6tYTlm1hNY6u73AM8Dg/jmMYBIl7iFQbE/EuheVzCPjKq10sxOC/bRIsj5GvDDKtdBOptZ+6h+WmmWVPAlbBOAV81ssruvI9Kj4eNmNodI80ffWr7v10Tard/nm93iPgH8zCKDRPci0tXs7cH2hhBpx683d3+VSBPQtKBJ6v9qWG0ccKWZzaX2EbfOAuYF2xhAZGjGDUSaseaZ2e3Ao8CwYDsX8O2uimtyPpHeIecQudaQ7+7/JTJ26tRgW0/zzQ8WSTDqLVNEJEHoDF9EJEGo4IuIJAgVfBGRBKGCLyKSIFTwRUQShAq+iEiCUMEXEUkQ/x9wqnx3v5ezdgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -194,7 +174,7 @@ "pylab.plot(distances, dipoles)\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Moment debye')\n", - "pylab.title('LiH Dipole Moment')" + "pylab.title('LiH Dipole Moment');" ] }, { @@ -221,7 +201,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/chemistry/lih_uccsd.ipynb b/community/aqua/chemistry/lih_uccsd.ipynb index 66b200343..c5b8cbd1b 100644 --- a/community/aqua/chemistry/lih_uccsd.ipynb +++ b/community/aqua/chemistry/lih_uccsd.ipynb @@ -10,12 +10,12 @@ "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "This notebook has been written to use the PYSCF chemistry driver." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "scrolled": true }, @@ -24,7 +24,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step __\b\b 0" + "Processing step 22 --- complete\n", + "Distances: [0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9\n", + " 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. ]\n", + "Energies: [[-7.3133458 -7.50092206 -7.63097823 -7.7208124 -7.78224239 -7.82359927\n", + " -7.85069837 -7.86756328 -7.87700148 -7.8810157 -7.88107203 -7.87826815\n", + " -7.87344011 -7.86723367 -7.86015319 -7.84104235 -7.82307636 -7.80861236\n", + " -7.79836328 -7.79175303 -7.78771683 -7.7853196 -7.78391829]\n", + " [-7.31334583 -7.50092209 -7.63097825 -7.72081241 -7.7822424 -7.82359928\n", + " -7.85069838 -7.86756329 -7.87700149 -7.88101572 -7.88107204 -7.87826817\n", + " -7.87344029 -7.86723396 -7.86015321 -7.84104271 -7.82307664 -7.8086124\n", + " -7.79836343 -7.79175325 -7.78771697 -7.78531972 -7.78391847]]\n", + "Hartree-Fock energies: [-7.29954105 -7.48594487 -7.61577016 -7.70575334 -7.76736214 -7.80874318\n", + " -7.83561583 -7.85195386 -7.86053866 -7.86335762 -7.86186477 -7.85714496\n", + " -7.8500187 -7.84111204 -7.83090558 -7.80193896 -7.77087367 -7.74000074\n", + " -7.7108299 -7.68437642 -7.6612016 -7.64145387 -7.62497563]\n", + "VQE num evaluations: [71. 62. 71. 71. 71. 71. 71. 71. 71. 71. 71. 62. 60. 60. 61. 60. 70. 71.\n", + " 70. 80. 90. 90. 90.]\n" ] } ], @@ -41,7 +57,7 @@ " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'parity',\n", " 'two_qubit_reduction': True, 'freeze_core': True, 'orbital_reduction': [-3, -2]},\n", " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", + " 'optimizer': {'name': 'SLSQP', 'maxiter': 1000},\n", " 'variational_form': {'name': 'UCCSD'},\n", " 'initial_state': {'name': 'HartreeFock'}\n", "}\n", @@ -86,11 +102,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd81fX1+PHXO3uHkB2SkLAChBEgIBCGDAFRcVSJSKs4irXU2tpaR39V7Ff7tVZbay36dSDWBSgqqKiIihCGECAECIEAScjee997378/7oWGmIQAubkZ5/l43HLvZ557Y++576201gghhBAdZWfrAIQQQvQskjiEEEJcFEkcQgghLookDiGEEBdFEocQQoiLIolDCCHERZHEIaxKKTVdKXXc1nFYm1JKK6WG2DoOIbqCJA7RKZRSGUqpuS23a613aK2j2jtOKbVMKZXQzrWVUupXSqlkpVStUipfKbVNKXVr574L61BKRSultiilSpVS5Uqp/UqphZZ9Vyqlsi/yepeVpCzn1yilqps9/nCp1xN9j4OtAxCiA14ErgbuAxKARmAKcA+wtuXBSikFKK21qSuDbMenwMvAtZbXEwFlu3AAGKu1PmnNGyilHLTWBmveQ9iGlDiEVV3KL+oW5w8DfgncqrX+Wmtdp7U2aq0TtNbLmh23TSn1tFJqJ1ALDFJKhSilNll+6Z9USv282fFrlFJPtRWnpWT0e0spp0IptU4p5dJs/0NKqTylVK5S6q524vcDIoHXtNaNlsdOrXWCUsod+AIIafbLP0QpNUkptdtSOslTSr2klHKyXG+75dKHLMfHW7Zfq5RKspyzSyk15hI/75VKqfVKqf8opaqUUkeVUrHN9ocopTYopYqUUulKqV+3OPdDpdQ7SqlKYJlSylUp9ZZSqkwpdUwp9Yezn7PlM9zQ4v4vKqX+eSmxi64jiUN0d7OBLK11YgeO/RmwHPAEMjGXRrKBEOBm4C9KqdkXce/FwALMX/xjgGUASqkFwO+Bq4ChwI+q6JopAU4C7yilblBKBZ7dobWuwVySytVae1geuYAR+C3gh7lkNQdz8kRrPcNy+ljL8euUUuOA1cC9gC/wf8AmpZTzRbzX5hZh/uz6AZuAlyzv2w5z6ekQMMAS12+UUvObnXs98KHl3HeBJ4AIYBDmz+unzY59B1iglOpnub4DcCvwn0uMW3QRSRzCFj6x/DIuV0qVA6vaOdYPyG++QSmVbTm3Xik1sNmuNVrro5bqkSAgDnhYa12vtU4CXgduv4g4X9Ra52qtSzF/YcZYti8G3tRaH7F8+a9s6wLaPBncLCADeB7IU0ptV0oNbeec/VrrPVprg9Y6A3MimNlOnMuB/9Na/2Apjb0FNACT2znnQPO/QYsv/wSt9WattRF4Gxhr2T4R8Nda/9lScjoNvIb5y/6s3VrrT7TWJq11HebP6i9a6zKtdTbmasez7zMP2A7cYtm0ACjWWu9vJ27RDUjiELZwg9a639kHll/TbSgBgptv0FqHYk4ozpzfVpDV7HkIUKq1rmq2LRPzL+WOap6wagGPZtdufq/M9i6itc7WWv9Kaz0YGAjU0M6vaqXUMKXUZ5ZOAJXAXzC/37YMBH7XIhmHWeJsy/jmfwOt9VfN9rV83y6W0sBAzNVqze/zGBDY7Pjmnwv8+LNquf8t/lsK+SnmRCW6OUkcorv7FghtXs/ejuZTPecC/ZVSns22hQM5luc1gFuzfUEXEVMe5i/m5tftEK11FvBvYNTZTa0c9jKQCgzVWnth/nJurzE9C3i6RSJw01q/39G4OigLSG9xH0+t9cJmx7R8P3lAaLPXYS32fwKMUUqNwtx54N1OjllYgSQO0ZkclVIuzR6X3WtPa30cc1XNWqXUVZbGVntg6gXOywJ2Af9riWUMcDfmenWAJGChUqq/UioI+M1FhLUec8PvSKWUG+Z6/FYppXyUUk8qpYYopewsjeV3AXsshxQAvkop72aneQKVQLVSajjm3mTNFWBuMzjrNeAXSqkrlJm7UuqaFkmzM+wFqpRSD5/9OyilRimlJrZzznrgUcvnMAD4VfOdWut6zG0i7wF7tdZnOjlmYQWSOERn2gzUNXus7KTrrsBcN/53oBRzg/f/APFAe180SzA3zOYCHwNPaK23Wva9jbmRNwPYAqzraDBa6y+AFzCXhk5a/m1LoyWGrZiTwRHM7Q/LLNdKBd4HTluqf0IwN7zfBlRhTgotY1sJvGU5frGl48DPMTdil1liWnaBt3G2V9bZxwsdeN9GzKWCGCAdKMbcbuTdzml/xvz3Srd8Bh9a3n9zbwGjkWqqHkPJQk5CiK6ilLoPc9fqmc22hWOumgvSWlfaLDjRYVLiEEJYjVIqWCkVZ6mmiwJ+h7n0d3a/HfAgsFaSRs8hI8eFENbkhLmNKhIoxzw+ZBWAMg+ALMDcK22BrQIUF0+qqoQQQlwUqaoSQghxUXplVZWfn5+OiIiwdRhCCNFj7N+/v1hr7d+RY3tl4oiIiCAxsSNTGwkhhABQSrU7A0JzUlUlhBDiokjiEEIIcVEkcQghhLgovbKNQwhx6ZqamsjOzqa+vt7WoQgrcHFxITQ0FEdHx0u+hiQOIcR5srOz8fT0JCIiAqVsvcKt6Exaa0pKSsjOziYyMvKSr2OTqiplXoYzyfLIUEoltXKMi1Jqr1LqkGX5yidtEasQfU19fT2+vr6SNHohpRS+vr6XXZq0SYlDax1/9rlS6nmgopXDGoDZWutqpZQjkKCU+kJrvaeVY4UQnUiSRu/VGX9bmzaOK/M7WIx5WunzaLNqy0tHy8Nq86MYTZp/f3eS7SeKrHULIYToFWzdq2o6UKC1Tmttp2WhmCSgEPhaa/1DWxdSSi1XSiUqpRKLii7+y9/eTvHq9tNsScm/8MFCCKvy8PA47/WaNWv41a9+1cbRrUtKSmLz5s2dGdZ51qxZg7+/PzExMcTExHD77ReznL3Ztm3buPbaa60QnXVZrapKKbWV1pfj/KPWeqPl+RJaKW2cZVk4JkYp1Q/4WCk1Smt9pI1jXwVeBYiNjb2kkkmErxuZJbWXcqoQohsxGAwkJSWRmJjIwoULW93v4HD5X3/x8fG89NJLl32dnsZqiUNrPbe9/ZZlRW8CJnTgWuVKqe8wT73cauLoDAN93TmYVWatywshOsGnn37KU089RWNjI76+vrz77rsEBgaycuVKTp06xenTpwkPD2fnzp3U1dWRkJDAo48+yrFjx87b/8477/DII4+wbds2GhoaWLFiBffeey8Af/vb31i/fj0NDQ3ceOONPPlkx/vmJCUl8Ytf/ILa2loGDx7M6tWr8fHx4eTJk/ziF7+gqKgIe3t7Pvjgg/PO27dvH8uXL+fDDz9k8ODBnfqZdTZbdsedC6RqrbNb26mU8geaLEnDFbgK+Ks1A4rwdeOz5FwaDSacHGxdiyeE7T356VFScjt3faWRIV48cV10u8fU1dURExNz7nVpaSmLFi0CYNq0aezZswelFK+//jrPPvsszz//PAApKSkkJCTg6urKmjVrSExMPFciWLly5Xn7X331Vby9vdm3bx8NDQ3ExcUxb9480tLSSEtLY+/evWitWbRoEdu3b2fGjBk/inPdunUkJCQA8MADD3DnnXdy++23869//YuZM2fy+OOP8+STT/LCCy+wdOlSHnnkEW688Ubq6+sxmUxkZWUBsGvXLu6//342btxIeHj45X/IVmbLxHErLaqpLOstv661XggEY15X2R5zW8x6rfVn1grGaGjkh6x4pvaPILtsJoP8PS58khDCKlxdXUlK+m8v/bNJAMzjTOLj48nLy6OxsfG88QiLFi3C1dW1zes2379lyxaSk5P58MMPAaioqCAtLY0tW7awZcsWxo0bB0B1dTVpaWmtJo6WVVUVFRWUl5czc6Z5Zdw77riDW265haqqKnJycrjxxhsB8yC8s44dO8by5cvZsmULISEhF/dB2YjNEofWelkr23KBhZbnycC4rorH3sGJEmUgyCWfzJJaSRxCwAVLBrZw//338+CDD7Jo0SK2bdvGypUrz+1zd3dv99zm+7XW/Otf/2L+/PnnHfPVV1/x6KOPnqu2Ouvf//43r732GkCnNroHBwdTX1/PwYMHe0zikPqYZsKUCzWOtaQX19g6FCFEGyoqKhgwYAAAb731VpvHeXp6UlVV1eb++fPn8/LLL9PU1ATAiRMnqKmpYf78+axevZrqavNogJycHAoLC1mxYgVJSUkkJSW1+QXv7e2Nj48PO3bsAODtt99m5syZeHp6EhoayieffAJAQ0MDtbXmjjj9+vXj888/59FHH2Xbtm0X92HYiCSOZsJd+lPiaCSzRBKHEN3VypUrueWWW5gwYQJ+fn5tHjdr1ixSUlKIiYlh3bp1P9p/zz33MHLkSMaPH8+oUaO49957MRgMzJs3j9tuu40pU6YwevRobr755nYTUEtvvfUWDz30EGPGjCEpKYnHH38cMCeRF198kTFjxjB16lTy8//b9T8wMJDPPvuMFStW8MMPbY466DZ65ZrjsbGx+lIWcnrj0zt5oTSRK5r+xuv3LLBCZEJ0f8eOHWPEiBG2DkNYUWt/Y6XUfq11bEfOlxJHM2H9zF3gasoP2jgSIYToviRxNBMeMAYAU9MpmowmG0cjhBDdkySOZsIGTALAyTGP3PI6G0cjhBDdkySOZtw9gvA1arRTmfSsEkKINkjiaCFUOVHnVCNzVgkhRBskcbQw0NmHUkcDGdIlVwghWiWJo4Vw9xCKHezILpLp1YWwhVmzZvHVV1+dt+2FF17gvvvu4+jRo8yePZuoqCgGDx7ME088gclk7sjScprzmJgYUlJSbPEWej1JHC2EW7rkVpVJl1whbGHJkiWsXbv2vG1r167l1ltvZdGiRTzyyCMcP36cw4cPs3fvXv75z3+eOy4+Pv7c6O6kpCRGjhzZ1eH3CZI4WggPGA2AqfEEBumSK0SXu/nmm/n8889pbGwEICMjg9zcXE6ePHluBlsANzc3XnrpJf72t7/ZMtw+yZaz43ZLoSETAXB2zCOvop6w/m42jkgIG/riEcg/3LnXDBoNVz/T5u7+/fszadIkvvjiC66//nrWrl3L4sWLOXr0KBMmnL98z+DBg6mrq6O8vBw4f5pzgN27d7c7W664NFLiaMHbO5x+RhM4lUoDuRA20ry6au3atSxZsqRD57WsqpKkYR1S4mhFqHKi3rGGjJJapg+1dTRC2FA7JQNruv766/ntb3/LgQMHqK2tZcKECRw8eJDt27efd9zp06fx9fWlX79+Nomzr5ISRysGOvWjzLGJTBkEKIRNeHh4MGvWLO66665zpY2lS5eSkJDA1q1bAfMqgb/+9a8vallX0TkkcbQi3C2IIgfFmeIiW4ciRJ+1ZMkSDh06dC5xuLq6smnTJp5++mmGDRuGn58fcXFxLF269Nw569atO6877q5du2wVfq8mVVWtCOs3GFPlESpLDgEzbR2OEH3SDTfcQMtlH0aNGsV3330HwCeffMKDDz7IbbfdxsCBA1m2bBnLli2zQaR9j5Q4WhHuPwoAY/1xjKbet16JEL3BDTfcwOnTpxk4cKCtQ+lzJHG0IizEvJaJs2MO+ZX1No5GCCG6F0kcrfDpNwgPkwnlVCIN5EII0YIkjlYoOztCtSMNjtVkyCy5QghxHkkcbRjo5EW5UxOZMghQCCHOI4mjDeFugRQ5QEZRia1DEUKIbkUSRxvCvCMxKEVlSSfP0yOEuCB7e/vzxmM880znjWBPSkpi8+bN5163NR17bm4uN998c6fd91JkZGQwatQom8bQGpuM41BKrQOiLC/7AeVa65g2jrUHEoEcrfW1XRQi4X7RkP0FTQ3HMJk0dnaqq24tRJ/n6upKUlKSVa6dlJREYmIiCxcuPLctPj6el1566UfHfvjhh1aJoasZDAYcHDrv694mJQ6tdbzWOsaSLDYAH7Vz+APAsa6J7L/Cgy1dcu1zKKxq6OrbCyFaqKioICoqiuPHjwPmkeWvvfYaAPfddx+xsbFER0fzxBNPnDtn3759TJ06lbFjxzJp0iQqKip4/PHHz40wX7duXZv3a/5rv7a2lsWLFzNy5EhuvPFGrrjiChITEwHYsmULU6ZMYfz48dxyyy1UV1cDEBERwRNPPMH48eMZPXo0qampAHz//ffnSjbjxo2jqqoKrTUPPfQQo0aNYvTo0a3GNXnyZI4ePXru9ZVXXkliYiI1NTXcddddTJo0iXHjxrFx40bAXJJatGgRs2fPZs6cOZf8ubfGpiPHlVIKWAzMbmN/KHAN8DTwYBeGhp/fCFxMGnunYjJKagjydunK2wvRLfx1719JLU3t1GsO7z+chyc93O4xdXV1xMT8txLi0UcfPVcqWLZsGQ888ABlZWX8/Oc/B+Dpp5+mf//+GI1G5syZQ3JyMsOHDyc+Pp5169YxceJEKisrcXNz489//jOJiYnnShhr1qxpdTr25latWoWPjw8pKSkcOXLkXGzFxcU89dRTbN26FXd3d/7617/y97//nccffxwAPz8/Dhw4wKpVq3juued4/fXXee655/j3v/9NXFwc1dXVuLi48NFHH5GUlMShQ4coLi5m4sSJzJgx47wY4uPjWb9+PU8++SR5eXnk5eURGxvLY489xuzZs1m9ejXl5eVMmjSJuXPnAnDgwAGSk5Pp37//pfyp2mTrKUemAwVa67Q29r8A/AHwvNCFlFLLgeUA4eHhlx2YsrMjTNvT4FRFZkkNkwf5XvY1hRAd01ZV1VVXXcUHH3zAihUrOHTo0Lnt69ev59VXX8VgMJCXl0dKSgpKKYKDg5k40bzGjpeXV5v3a6uq6qyEhAQeeOABwDztyZgxYwDYs2cPKSkpxMXFAdDY2MiUKVPOnXfTTTcBMGHCBD76yFyxEhcXx4MPPsjSpUu56aabCA0NJSEhgSVLlmBvb09gYCAzZ85k37595+4DsHjxYubNm8eTTz7J+vXrz7W/bNmyhU2bNvHcc88BUF9fz5kzZ859Xp2dNMCKiUMptRUIamXXH7XWGy3PlwDvt3H+tUCh1nq/UurKC91Pa/0q8CpAbGxsp8wTEu7oyXFjOenFMpZD9E0XKhl0NZPJxLFjx3Bzc6OsrIzQ0FDS09N57rnn2LdvHz4+Pixbtoz6+q6Z8UFrzVVXXcX777f6NYazszNgbuw3GAwAPPLII1xzzTVs3ryZuLi4H62v3pYBAwbg6+tLcnIy69at45VXXjkXw4YNG4iKijrv+B9++AF3d/dLfWvtslobh9Z6rtZ6VCuPjQBKKQfgJqCtSsY4YJFSKgNYC8xWSr1jrXhbE+4WQIEjZBaVd+VthRBt+Mc//sGIESN47733uPPOO2lqaqKyshJ3d3e8vb0pKCjgiy++ACAqKoq8vDz27dsHQFVVFQaDAU9PT6qqqi7qvnFxcaxfvx6AlJQUDh8297acPHkyO3fu5OTJkwDU1NRw4sSJdq916tQpRo8ezcMPP8zEiRNJTU1l+vTprFu3DqPRSFFREdu3b2fSpEk/Ojc+Pp5nn32WioqKc6WR+fPn869//evchJAHDx68qPd2KWxZVTUXSNVaZ7e2U2v9KPAogKXE8Xut9U+7LjwI94qgqTqNstKjwOSuvLUQfVrLNo4FCxZw55138vrrr7N37148PT2ZMWMGTz31FE8++STjxo1j+PDhhIWFnas2cnJyYt26ddx///3U1dXh6urK1q1bmTVrFs888wwxMTE8+uijwI+XnF21ahUhISHnXv/yl7/kjjvuYOTIkQwfPpzo6Gi8vb3x9/dnzZo1LFmyhIYGcyeap556imHDhrX53l544QW+++477OzsiI6O5uqrr8bJyYndu3czduxYlFI8++yzBAUFkZGRcd65N998Mw888AB/+tOfzm3705/+xG9+8xvGjBmDyWQiMjKSzz777NI//A5QLact7ipKqTXAHq31K822hQCva60Xtjj2SsyJo0PdcWNjY/XZHg+XY+/B17k7+Z9E5V7FB488j7ktX4je7dixY4wYMcLWYXQrRqORpqYmXFxcOHXqFHPnzuX48eM4OTnZOrRL0trfWCm1X2sd25HzbVbi0Fova2VbLrCwle3bgG1WD6qF8KAJkAxO9tkUVTcQ4Ck9q4Toi2pra5k1axZNTU1orVm1alWPTRqdwda9qrq1gIDROGmNg2MxmSW1kjiE6KM8PT3pjFqM3kKmHGmHnb0DA0x2NDlVki7Tq4s+xFZV2ML6OuNvK4njAsId3Kl0rJdZckWf4eLiQklJiSSPXkhrTUlJCS4ul1d7IlVVFxDuGsAeYxXpRdW2DkWILhEaGkp2djZFRUW2DkVYgYuLC6GhoZd1DUkcFxDuGU5D7WnKSlOADnU4EKJHc3R0JDIy0tZhiG5MqqouINx3OACNNUel6C6EEEjiuKCwoPEAONmdoaSm0cbRCCGE7UniuIDgoHE4aI2jU6E0kAshBJI4LsjB0YUQk8LgWEmGTHYohBCSODoi3N6NKifpkiuEECCJo0PCXf0pdDRJl1whhEASR4eEe4ZRa2dHcWlb600JIUTfIYmjA8L6m7vkNlQfli65Qog+TxJHB4QHmtcFcFIZlNc22TgaIYSwLUkcHTAgOBY7rXFyKiJDGsiFEH2cJI4OcHR2J9ikMDqVk1kiXXKFEH2bJI4OCrN3pdqxTkocQog+TxJHB4U796fI0SQlDiFEnyeJo4PCPcOosrcjr/C0rUMRQgibksTRQWE+QwFoqE62cSRCCGFbkjg66FyXXNKpkC65Qog+TBJHB4WGTATA2amAzFJpIBdC9F2SODrIxdWHQKPG5FROhjSQCyH6MEkcFyHMzoUax1pOy2SHQog+TBLHRRjo3J8SJyNHciptHYoQQtiMgy1uqpRaB0RZXvYDyrXWMa0clwFUAUbAoLWO7bIgWxHmMYCyxjxO5pwGbBqKEELYjE0Sh9Y6/uxzpdTzQEU7h8/SWhdbP6oLC/cZCqWJODYeo7CyngAvF1uHJIQQXc6mVVVKKQUsBt63ZRwdFR4wBoB+Tpkczmkv1wkhRO9l6zaO6UCB1rqtFZI0sEUptV8ptby9CymlliulEpVSiUVFRZ0eKEBYyCQAXJ3zSc6WxCGE6JusVlWllNoKBLWy649a642W50tov7QxTWudo5QKAL5WSqVqrbe3dqDW+lXgVYDY2FirrLbk5hFAqBFwK5YShxCiz7Ja4tBaz21vv1LKAbgJmNDONXIs/xYqpT4GJgGtJo6uEu3kwyFdSll2BVprzLVtQgjRd9iyqmoukKq1zm5tp1LKXSnlefY5MA840oXxtSq631DyHRSGukzyK+ttHY4QQnQ5WyaOW2lRTaWUClFKbba8DAQSlFKHgL3A51rrL7s4xh+JHjAFgAjXJGnnEEL0STbpjgugtV7WyrZcYKHl+WlgbBeHdUEjBl8Nyf/Ey/UUh7MrmB/dWjOOEEL0XrbuVdXjeHoNIMII2r2IZGkgF0L0QZI4LsFIZ19yHes4nF2O1lbpwCWEEN2WJI5LMLLfMAodFHYNmWSX1dk6HCGE6FKSOC5B9ICpAIS7HZTxHEKIPkcSxyUYMWQBSmu8XE9LzyohRJ8jieMSuHsEEWmyw+hWzOGccluHI4QQXUoSxyWKdvYj26mOZMsIciGE6CskcVyi6P5RlNjb4WI4TaYsJSuE6EMkcVyi6NBpAIS7HpIGciFEnyKJ4xJFDb4aO63xcDstiUMI0ad0KHEopT5SSl2jlJJEY+Hq1p9B2h6DWwnJ2dJALoToOzqaCFYBtwFpSqlnlFJRFzqhL4h29ifLsZ4jOeWYTNJALoToGzqUOLTWW7XWS4HxQAawVSm1Syl1p1LK0ZoBdmfR/YdTZm+Hu/EU6SU1tg5HCCG6RIernpRSvsAy4B7gIPBPzInka6tE1gNEh00HIMztEIdlIKAQoo/oaBvHx8AOwA24Tmu9SGu9Tmt9P+BhzQC7s2GD5uGgNR5u6TKCXAjRZ3R0PY4XtdbftbZDax3bifH0KC6uPgzW9jS6lsoIciFEn9HRxOGjlLqpxbYK4LDWurCTY+pRol0C+EbnUpJejtGksbeTNciFEL1bR9s47gZeB5ZaHq8BDwM7lVI/s1JsPUJ0/5FU2Nvho9I4VVRt63CEEMLqOpo4HIERWuufaK1/AowENHAF5gTSZ0WHzwBggEuytHMIIfqEjiaOUK11QbPXhUCY1roUaOr8sHqOoZYGcnf3DA7LQEAhRB/Q0TaObUqpz4APLK9/YtnmDvTpb0snZ0+GaQfqXUplDXIhRJ/Q0cSxArgJmGZ5/R9ggzbPJz7LGoH1JNGuQXxJFiWnyjEYTTjYy8wsQoje64KJQyllD2zVWs8CNlg/pJ5npO9IPsjNwc/uOGmF0xkR7GXrkIQQwmou+NNYa20ETEop7y6Ip0eKDp8JwADXwzKCXAjR63W0TqUaOKyUekMp9eLZhzUD60mGRMzFSWvc3DJJloGAQoherqNtHB9ZHp1CKbUOODvDbj+gXGsd08px/TCPHxmFufvvXVrr3Z0VR2dxdHYnSjtS51omJQ4hRK/XocShtX5LKeUKhGutj1/uTbXW8WefK6WexzwKvTX/BL7UWt+slHLCPFdWtzTSLZjPajMpyyyj0WDCyUEayIUQvVNHJzm8DkgCvrS8jlFKbbrcmyulFLAYeL+Vfd7ADOANAK11o9a629YDRfuNosbOjkCHY5woqLJ1OEIIYTUd/Vm8EpiEZcyG1joJGNQJ958OFGit01rZFwkUAW8qpQ4qpV63jBtplVJquVIqUSmVWFRU1AmhXZzogeZeycEuR2QEuRCiV+to4mjSWrf8NjS1d4JSaqtS6kgrj+ubHbaEVkobFg6Y1/t4WWs9DqgBHmnrflrrV7XWsVrrWH9//wu/o042aOAsXEwaN/czMlOuEKJX62jj+FGl1G2AvVJqKPBrYFd7J2it57a3XynlgHlQ4YQ2DskGsrXWP1hef0g7icPWHBxdiMKJGpdyKXEIIXq1jpY47geigQbMJYRK4DeXee+5QKrWOru1nVrrfCCr2frmc4CUy7ynVUW7h5DhaCAtv4xY08DOAAAgAElEQVT6JqOtwxFCCKvo6JrjtVrrP2qtJ1qqg/6ota6/zHvfSotqKqVUiFJqc7NN9wPvKqWSgRjgL5d5T6uK9htDnZ0ixPEoqfnSQC6E6J06VFWllBoG/B6IaH6O1nr2pd5Ya72slW25wMJmr5OAHrPCYPTAWZD1KUGuR0g6U0ZMWD9bhySEEJ2uo20cHwCvYB6MJ3UwbYgYOBPX7Rp3jxy2pxWzLC7S1iEJIUSn62jiMGitX7ZqJL2AvYMTI5QzVc7lJJ8qpr7JiIujva3DEkL0ESaTxq4Llq/uaOL4VCn1S+BjzA3kAFgWchLNjHQfwIfVp2lqqmf3qRJmDQ+wdUhCiF6qvslIUlY5e06XsOd0CVX1Bj7/9XSr37ejieMOy78PNdum6ZxBgL1KtP9Y3qlNZ6j7Mb5NHSqJQwjRaVomigNnymk0mFAKokO8mDLIF6NJY2/lUkdH56qSyvoOio6YA5mfEO2fxnfHC9FaY55ZRQghLs6FEsXtkwcyeZAvEyP74+3q2GVxtZs4lFJ/0Fo/a3l+i9b6g2b7/qK1fszaAfY0A8Om4WvU1DudILusjpOF1QwN9LR1WEKIHqDBYCTpTDl7TpdaEkUZDd0gUbR0oRLHrcCzlueP8t81xwEWAJI4WrCzd2CaSxDfNuRjTyPfphZK4hBCtOpCieJnZxNFRH+83WyXKFq6UOJQbTxv7bWwmBF2JRtPr2Nm8AG+TQ3i3pmDbR2SEKIbMBhNHMwqZ9fJkh8lipHBXvzUkigmdbNE0dKFEodu43lrr4XFlLF34nBqLb4e+/n+1BQq6ppsWqwUQthOZX0T3x8v4ptjBWw7UUR5bVOPSxQtXShxjFVKVWIuXbhanmN57WLVyHowT68BjMeFNJWN0aTZkVbEtWNCbB2WEKKLZBTX8E1qId8cK2BveikGk8bHzZHZwwOYMzyQaUP8elSiaKndxKG1ltFrl2iG/zieK97DEI9Mvk0dIIlDiF7MYDRx4Ew53xwrYOuxAk4V1QAwLNCDe6YPYu6IAMaF+1i9m2xX6eg4DnGRpo9cwnPb9zA+cDffHB/aZSM6hRBdo7UqKEd7xRWRvvx08kDmDA8k3LfbrnZ9WSRxWEnkwCsJNUKp/XFKaho5lF3OuHAfW4clhLgMGcU1bD1WwLephT+qgpo7IpDpQ/3wdOm5VVAdJYnDSpSdHTM8BvJRTQaudjV8l1ooiUOIHqa9KqifzxjEnOG9qwqqoyRxWNHMyKt5L+UVZof8wLfHg3lwXtSFTxJC2FSjwcT3J4r4PDm3z1VBdZQkDiuKHXM7rkdextktiSMnZlNYWU+Al3RGE6K7MZk0P6SXsulQDpsP51NR19Qnq6A6ShKHFTk5ezLZ3pvDhgLAxLbjRSyeGGbrsIQQgNaao7mVbDqUy6akXPIr63Fzsmd+dBCLYkKYNsQPR/uOrq7dt0jisLIZwVfwXe7XTPA5xrepIZI4hLCxjOIaNh3KZWNSDqeKanCwU1wZ5c9j14xg7ogA3Jzka/FC5BOysuljlkHu1wzx3cvnJ8fSaDDh5CC/YoToSoVV9XyenMcnSbkcyioH4IrI/tw9bRBXjwrCx93JxhH2LJI4rCwwcAzDTXZkq9NUNxjYl1FK3BA/W4clRK9XWd/EV0fy2XQol50nizFp88SBjy0czrVjQgjp52rrEHssSRxdYLp3FKsrU/B1KuHb1EJJHEJYSX2TkW3HC9mYlMs3qYU0GkyE93djxawhXB8TwpAAmam6M0ji6AIzht3Aa/uPMSt4N9+lhvOna0faOiQheg2jSbPndAkbk3L44kg+VfUG/DycuG1SONfHhBAT1k8WU+tkkji6wOjhN+Oz7y80OR/hdOa1ZBTXEOHnbuuwhOjRThdVs3ZfFh8fzKGoqgEPZwcWjAri+pgQpgzyxUF6RFmNJI4uYO/gRJyTPwmNhdhh4NvUQu6aJqvxCnGxGgxGvjpawPs/nGH36RIc7BSzhwdww7gBzB4egIujzMvaFSRxdJEZoTP5LGMD0wIP8t3xIEkcQlyEjOIa3t97hg/2Z1Na00hYf1cemh/FLbGhBHjKoNquZpPEoZRaB5ydf6MfUK61jmlxTBSwrtmmQcDjWusXuibKzjU15i7s0z8k0CuRjaevoKbBgLuz5G0h2tJoMPF1SgHv7c1k58kS7O0Uc0cEcNsVA5k+xE9mm7Yhm3xzaa3jzz5XSj0PVLRyzHEgxnKMPZADfNxVMXY2b+9wxuLMKbJoNJrYebKYedFBtg5LiG4ns6SG9/dm8eH+LIqrGxnQz5XfzxvG4tgwmbKnm7DpT15l7uqwGJh9gUPnAKe01pnWj8p6ZviO4YXSRCLccvjueJgkDiEsmowmtqYU8N7eM+xIK8be0nZx2xXhzBjq3+dmn+3ubF1XMh0o0FqnXeC4W4H32ztAKbUcWA4QHh7eOdF1shkj4nlhZyITg3byXepgtNbSTVD0aVmltby/9wzrE7Mprm4gxNuFB68yly6CvKV00V1ZLXEopbYCrf2k/qPWeqPl+RIunBCcgEXAo+0dp7V+FXgVIDY2Vl90wF1gyKB5BG//PRX2x8mvrCclr5LoEG9bhyVEl2oymvjmWKGldFGEgnOli5nDAqR00QNYLXForee2t18p5QDcBEy4wKWuBg5orQs6KzZbUXZ2zHALY1NdFq729WxKypXEIfqM7LJa1u7NYn1iFoVVDQR5ufDr2UOJnxgm03/0MLasqpoLpGqtsy9w3AVLJT3JjMh5rEtdzaKIA6zd58lv5g7D1Un6noveSWvNjrRi3tyZzrYTRQDMigpgyaRwZkX5yyC9HsqWieNH7RZKqRDgda31Qstrd+Aq4N6uD886Jo6+A+eUN3ByPUBF3VQ+ScphyaTu2SYjxKWqbzKyMSmHNxLSOVFQjZ+HM/fPGkL8pHAGSOmix7NZ4tBaL2tlWy6wsNnrGsC3C8OyOle3/kyy92B/YzYjgjx4a1cGt04Mk0Zy0SsUVTXwzp5M3tmTSUlNIyOCvXjulrFcNzYYZwcpWfcWtu5V1SfNDJzEjvzv+P3IQp741o09p0uZMrhX5UfRxxzPr+KNhNN8cjCXRqOJOcMDuHt6JFMG+cqPol5IEocNzBh9B+R/R3XNx/i4LeOtXRmSOESPYzJpvk8rYnVCOjvSinFxtGPxxFDujItksL+HrcMTViSJwwaCQyYQhxsbypKJn+DPqwm55JTXSd2v6BHqm4x8dCCH1TvTOVlYTaCXMw/Nj+K2SeGykl4fIYnDRpaOWMovj73GYKcNwBTe3p3JI1cPt3VYQrSpsKqet3dn8u4PZyitaWTUAC9eiI9h4ehgWQ65j1Fad8uxcpclNjZWJyYm2jqMdpmMBha9NY5+yhFPx9fYfbqEPY/OkWmhRbeTklvJGwnpbDqUg8GkmTsikHumRTIpsr+0X/QiSqn9WuvYjhwrJQ4bsbN3YEnwNJ4pTOB/wpL54kgAG5NyiJ8oXXOF7ZlMmu+OF/JGQjq7TpXg5mTPbZPCuTMuUhYhE1LisKXqqjzmfHgVs538OVj0JEopNv96mvyKEzZT22hgw4Ec3kxI53RxDcHeLtwxNYIlE8PxdnO0dXjCiqTE0UN4eAZzg3sEH9Rm8NuxRv70VS1700u5YpD0sBJdq6S6gTW7Mnh7TybltU2MDfXmxSXjuHpUEI4yulu0IInDxpZMeoj3vv8VVeWv4+16B2/tzpDEIbpMVmktr+84zbrELBoMJuaNDOTn0wcxYaCPlHxFmyRx2FhExEzivnfjw7JDxE/w441d+eSW18mkb8KqjudX8cr3p9h0KBc7BTeOG8DyGYMZEiDjL8SFSeLoBs52zR3itAGtp/LOnkz+sEC65orOl5hRysvbTvFNaiFuTvbcOTWCu6dHEuwtP1REx0njeDfQvGuum/2r7MsoZbd0zRWdRGvNtuNFrNp2kn0ZZfi4OXJnXCS3TxlIPzcZsCfMpHG8h2neNffP4YfZkhLApkO5LI4Ns3VoogczGE18fjiPl7edIjW/igH9XFl53UgWTwzDzUn+ry8unXSX6Caun/Y4bibN3pz/EBXoyVu7MuiNpUFhffVNRt7encGVz23jgbVJGE2avy8ey7aHrmRZXKQkDXHZ5L+gbuJs19z1tRn8NsbI41/VkphZxsSI/rYOTfQQFXVNvLMnk9UJ6ZTUNDI+vB8rr4tm9vAA7GQ5VtGJJHF0I8275nq53M6aXRmSOMQFFVTWszohnXd/OEN1g4Ero/y5b+ZgmRJEWI0kjm7kbNfcDWWHWDzejzf35JNXUSc9XkSr0otreHX7KTbsz8FgMnHtmBB+MXMwI0O8bB2a6OUkcXQzZ7vmDnP+CDsVx7NfHucf8TG2Dkt0I0dyKnh52yk2H8nD0d68Bsby6YMJ93WzdWiij5DE0c3ETfglA4+8xsbcL7jvyjt48Zs0bhg3gJnD/G0dmrAhrTV7TpeyattJdqQV4+nswH0zB3NnXCT+ns62Dk/0MZI4upnmXXN/F5TEZ/4B/PHjw2z57QzpDdMHmUyarccKWLXtFElZ5fh5OPPwguEsnRyOl4tMOihsQ7rjdkNnu+Z+mPwKz9w0huyyOv7x9QlbhyW6UJPRxEcHslnwz+0sf3s/JTUN/M8No0h4eBb3XTlYkoawKfkJ2w0175r7oEcBSyaF80ZCOovGDmB0qLetwxNWVNdoZH1iFq9uP01OeR3Dgzz5560xXDM6GAeZpVZ0EzLlSDeVkfE9N2xbwQ3OIfz2hs+56u/f4+/pzMYVcfIF0gu1HIMxYaAPv7xyMLOHB0iX2h7CaGikob6cuvpyGhorqW8wPxoaq6lvqqa+sZqGphrqm2ppNDZgMDXRZGwy/2tqwmAynPvXoI00mQwYtIEmk9H8WhsxaNO5fw1omlr866UcePfOg5cUv0w50gtERMzkZx5DWVNzkmuOv82Ti67mvncP8EZCOvfOHGzr8EQnKayq542EdN7d898xGL+8cgiTImX8jjU1NlRRVZVHVXUeVTWFVNUVUVVXQlV9GdUNlVQ2VlLdVEODqZE6YyMN2kCDyUCdNtCgjTRoE3VoGtA0KKhTYOiEBO+oNQ4aHDF/OTtqcECZXys7HFE4oszPlR2uygFHZY+DssNB2eHt2DWzG0uJoxurqy3lxrUzcQQ+uG0H968/yY60Irb8ZqZ0vezhzpTU8n/bT/HB/mwMRhMLRwdz35WDiQ6RqsiOqq0upLD4GOVV2VTWFlNVV0J1QzlVDRVUNlVR3VRLlaGWKmMDVaZGqrSRKkxUKWi4wEh6O61x1+CqwRmFi7LDBTtclD3OygEXOwdc7BxxtnPExd4ZF3tnnO2dcXFwwcXBFRcHV5wd3XBxdMfF0R1nJw9cnD1xcfTE2dkTJ0cPHB1dcXBwwcHBFUdHN+ztnVB2tqtNuJgSh00Sh1JqHRBledkPKNda/2iwglLqt8A9gAYOA3dqresvdP3ekjgAdiWu4t6jL7PcayS3zH6LuX//npiwfrx99ySpwuiBjuVV8sr3p/j0UC4Odnb8ZEIo984YJOt4N1NbW0xR0TEKy9IorjhDYXUuRbWFFDWWU9RUTZGpgUKlqW3ny99Razw1eGmFp3LAw84RT3tnPO1d8XR0x9PJA08nbzxdfMwPVz883QPwdA/E0zMYN7cAm36J20K3r6rSWseffa6Ueh6oaHmMUmoA8GtgpNa6Tim1HrgVWNNVcXYHU2N/yXXHP2R1xVEWFG3j4QXD+dPGo3x0IIefTAi1dXiigxIzSlm17RTfphbi7mTPz6cP4q5pkQR6udg6tC5TW1tMcXEqhaUnKa7MpLA6h6LaIooayilqqqLQ1EiRMlHTSkJwNmn8tSLAzolhTv2Y5tQPf1d//D2C8XEPwss9AA83f7w8gvH0DMHZRUpu1mTTNg5l/sm8GJjdxiEOgKtSqglwA3K7Krbu5KGrXyNh4/Ws3PEYa5bu5uODOTz1eQpXRvnj6yGDv7qrlutg9Hd34ndXDeP2KRF4u/XO7rRNDTVk5e4hPXcf6aWppFdlkdFQSjpNVLWSEJy0xt90NiF4E+fUD39XPwI8QvDzCiOg32D8/Ybj6Tmgz5UAujNbN45PBwq01mktd2itc5RSzwFngDpgi9Z6S1sXUkotB5YDhIeHWylc2/DpP5iHIm7gsTMb+eDbB3nmJ89wzYs7+J/PUnjh1nG2Dk+00Ggw8VlyLq/tSOdYXiUh3i48cd1I4nvROhgV5RmkZ+0kvSCJ9PKTpNcWkGGoIstOY2xWhRpg1ETau7LQOYgg90AC3EPw8wolwGcI/n7D8fIMlYTQA1mtjUMptRUIamXXH7XWGy3HvAyc1Fo/38r5PsAGIB4oBz4APtRav3Ohe/emNo6ztMnEfW9P4aCpho0L3ua9w268+O1J3rprkkxH0k2UVDfw3g9n+M+eTIqqGhga4MG9MwdzfUwIjj2wC7XR0Ehu3j7Sc/eSXpxCemUm6Q0lZOgGSpuVHhy1ZqDJjkhHLyLcQ4j0GcagoHEMDJ2Kh2ewDd+BuBjdvnEcQCnlAOQAE7TW2a3svwVYoLW+2/L6dmCy1vqXF7p2b0wcANnZe7jp63u4wt6LZ+O/55qXdtJoMPHVb2bg7tw7fsn2RMfzq3hzZzofH8yhwWBi5jB/7p4WyfShfj2mA0NhwRGS0z4lpfAgGTW5pBuqyFRGmprF72PSRCpnIp19ifQaSKTfSCJDJhESPBF7B1mCtqfr9o3jFnOB1NaShsUZYLJSyg1zVdUcoPdlg4sQGjqZFQFTeK54D9v3PsMzN63g1ld38/P/JLJ62URZo7wLmUya79OKWJ2Qzo60YlwczT2k7oqLYEiAp63Da1djQxUpaZ+SfGYbyaWpJDeWkmdvThD2WhNqUkQ6eDLdLZDIfkOIDIwhInQq/XwibRy56C5sWeJYA+zRWr/SbFsI8LrWeqHl9ZOYq6oMwEHgHq11w4Wu3VtLHACGpnqWvjOZAm1g4082880pO373wSGmDfHjtdtjJXlYWV2jkQ0HsnlzZzqnimoI8HTmjqkR3DYpHB/37verW5tM5OUf4FDaZyQX7Ce5JptjqulcSSLYqBnr1J8x/UcwJnwWw4dcLT2S+qgeUVVlTb05cQAcO76RJbv/yA3OIaxcsoX1+7L4w4ZkZkX588rPJuDsIMmjs+VX1PPW7gze33uG8tomRg/w5u5pkSwcHYyTQ/dpv6itLSblxGccyvqe5PITJDdVUGwpTbiYNCOVM2M9BzI2aBKjh1xLQOAoG0csuoueUlUlLtGIqOu5/fAa3qw5yTVJq1k88S4MJs1jHx/mV+8dZNXS8T2yMbY7OpRVzuqd6XyenIdJa+aNDOLu6ZHEDvSxefuFNpk4k7WT5NNfcqjgAMl1eZxQhnO9msKNMNnZn7G+oxgTMYehg+fh6CgzDojLJyWOHqqutpSb1s7EHvhwyXZcXH34z+4MHt94lKtHBfHiknGSPC6RwWji65QC3khIJzGzDA9nB+InhrFsagRh/W33xWsyGjh2YiO70zZxoPw4ycZqKiy9m9xNmlF2roz1GsTYkMmMHroIn/4yp5noOKmq6gOJA2D3/ldYfuTfXKk8+Xv81zg6u7M6IZ0/f5bCtWOCeSE+RmbSvQiV9U2s35fFmzszyCmvI6y/K3dOjeSW2FA8bbT+RX7eQXYffY9d+T+wp6mUckuiGGRUjHUNYKzfWMZEXsWgiNnSs0lcFqmq6iOmTPgF/684hafyv+Ph9fN59tat3DUtEoPJxF82p+Jgp3h+cQz2F5jQra/LLKnhzZ0ZfJCYRU2jkUmR/fnTtSO5amRgl392tdWFJB59l12Z37KrOpN0e/MPO3+jZoZLIFND4rhi1G34+Q3v0riEaE4SRw8XP/9FGjffy7NFu3hs3Xz+99avWT5jME1Gzd++Oo6DvR3P/mQMdpI8ztNkNPHNsULWJ2bx3fFCHOwU144J4a64yC5dLKt59dOu0qMcpB6DUjibNLH27vzEbyxTo25iyKB5MsJadBuSOHqBny38Pxo/vZMXShNxWr+QP8d/yYpZQzAYNf/YegIHO8XTN46WkgdwsrCa9YlZfHQgm+LqRgI8nfnVrCH8dPLALptwsK3qp+Hajp95DWNKxDzGRy+RbrGi25LE0Uvcfd2bNH6ylFUVyTh+cA2PL/6CX88ZQpPRxEvfnSQlr5K/3DiaUQP63pdRTYOBzw/nsX5fFomZZTjYKWYPDyB+Yhgzh/lbvR3obPXTbkv102lL9ZOfUTPDJYApIXFMHrVUqp9EjyGN472INpn41yfxvFaVym2uA3nk5k2gFJ8m5/HnT1MorWngjqkR/G5eFB69fIoSk0mz/0wZHx3IZlNSLjWNRgb5uxMfG8ZN40Px97TerMLaZOLEyc3sSP3gx9VPdu5M8RvLlKgbGTpovlQ/iW5DelX10cQB5i+t5zbcyH9qT7PMfQgP3rQBZWdHRV0Tf/sqlXd/OEOgpwsrF41kfnSQzccidCatNQfOlPN5ch6bD+eRX1mPq6M914wJJn5imFXHXtRU57Pn0Bp2nPmWHXW5FFoG3UWZ7JjqOYgpkfOl+kl0a5I4+nDiAHPy+N8PruP9+jP83HMEv75p/bl9B8+U8djHRziWV8mc4QGsXBRt07EJl0trTXJ2BZ8fzuPz5DxyyutwsrdjZpQ/144JZs6IQKuUrrTJRMaZ7Ww/+h47ig+yX9dhUAoPk2aKgw/TQ6YwbfQd+AdEd/q9hbAGSRx9PHGAubfOn9cvZENjHiv6jeUX1/93NnqD0cSbOzP4x9YTaA0PzB3K3dMie8yAQYPRxKHscr5OKeTzw7lkldbhaK+YPtScLOaODMTLCuMu6uvKSDz8DtvTv2RHzRmyLTO7DDEqpnsNZvrga4kZtURGZ4seSRKHJA7AnDz+tG4+m5oKmW/vwyMLXj2vATanvI6Vm47ydUoBwwI9uHViOAtGBRHSz9WGUf+Y1pqMkloS0orYkVbM7lMlVDUYcLBTxA3x45oxwcwfGWSVVfVycxPZcfg/bC/Yx15jFfV2CheT5gp7T6YHTmTaqJ8yYMCkTr+vEF1NEockjnOMhkZWb76HV0oP4KLh9+ELuWHWM+c1ym45ms/fvz5Ban4VADFh/bh6VBBXjwom3Nc2v57LaxvZebKEhJNFbD9RTE55HQChPq5MH+rHtCH+xA3xpZ9b546WbmqqJenI+2w/9Rk7Kk9xytIDKtQIMzwGMj1iPrGjf4qLq0+n3lcIW5PEIYnjR9IztvHktt+zXzVwBS48MfsFwsLizjvmdFE1XxzJ58sj+RzOqQAgOsSLhaODWTAqiMH+Hp0el8mkySmv41heJcfzq0jNr+JYfiXpxTVoDZ7ODkwZ7Mv0oX5MH+rPQF+3Tm/gLio8SsLht9iRu4vdhnKq7RQOWhOr3JjuH8P0kbcRET5DekCJXk0ShySOVpmMBjZ88xB/z/maJmCF/xX8bP6/cXD88cC3rNJavjySz+YjeRw8Uw7AID93IvzcCfRyIdjbhSAvF4K8//vwdHY496WutabBYKKyvomqegPV9Qbzvw1NFFU1kGpJEsfzq6huMJy770BfN4YHeRId4k3cEF/Ghvbr9HEW9XVlHDj6PnsyvmZ31WlS7UyAeX3s6a4hTB84h8lj7sDdo7WVj4XonSRxSOJoV0FBMn/Zch/fmioZYbJn5ZSVjBx+Q5vH51XU8eWRfHaeLCa3vJ6CynpKahp/dJybkz0+bk7UNpqThMHU9n9bXi4ODA/2YkSQJ1FBXgwP9iQq0NMqS+CajAZS0z5jd9pGdpce4aCuo1GZSxXjcGFK/5HMGL6YYUMWSqlC9FmSOCRxdMjWhP/l6RPvUmYHP/MYytJpTxAUFNOhcxsMRgorG8ivrCevop6CinryK+spq23E3ckBTxcHPFwc8HRxxNPZ8trZ/Lq/uxOBXs5WG1NhMho4nfEtB05tZl/hAX5oKqXMMq3HEJMdUzwimDJwDhNG3Yabm59VYhCip5HEIYmjwyoqzvCPzfewoTEPpTUTceHa0FnMnfQbPL0G2Dq8DmlsqCLlxCYOZHzDgbJjHDRWUWlJFP5GzWTnAKaETGFy9G0yrkKINkjikMRx0c6cSeDzA6v4vPQwmfbgpDUz7X24dvB1TJ+wAkdnd1uHCJgH3mXn/MCJM99ztGA/ByrTOaLrabAkiggjjHcNYlzAeMYPvY6w0KlS/SREB0jikMRxybTJxJFjG/js6Ft8WZNBqZ3C26SZ5xrKgqibiRo0D2/v8C6Jpba2mJPp33A8Zw/Hy45zoq6AE7qBGkuSsNeaEdqR8R7hjA+ZQkzUTfj6DeuS2ITobSRxSOLoFE1Ntew5+DqfpX3Et43F1Fu+sPubNBHKmUhnXyI8w4nwG0FEUCwDBkzs8KhpbTJRUZFJQXEKhWWnKKjIoLA6j4L6YgoaK8kx1pJpp9Hqv0ujDlPODHMNJMoniqgBkxkaeRWubv2t9v6F6EskcUji6HS11YXsPfI26cUpZFSdIaOhlAzdQGmzNT4ctCbQpM7N1a9+9L/mfxvRFCl9rnrpLKU1/U0QoBwIcXBnmEc4UQFjGRY+kwEhE7Gz790z+gphS7J0rOh0bh4BXDn5d1zZYntFxRkysnaRUfj/2zv7YKvKKg4/P5FviKt8qSBeQRo/GCUthiTMihyjBijJcFDEJmvSEsZJrZxschyTcSrH+sNITDNEFDGJQQQVtRBQRD7D4kY0kUwQGYrmB7D6432v7nvY53IO956z9zmsZ2bPffd513n3b697zl5nv3vvtday7bUmdry9mwMWnoswLP6lxXoHjqJf52Po370//XoOpH/DYPr3PpU+fU/zPE+OUwN44HDaRK9egzir1yDOYlLWUhzHqRJ+u4njOI5TFpkEDklzJa2NyzZJa4vYTZO0UdImSdOrrdNxHMc5mEymqszsK81tSV/hsYUAAAkDSURBVD8B9hTaSBoGXAmMAN4FFktaaGZNVRPqOI7jHESmU1UKOScuBuakdJ8GrDKzt8xsH/As8KVq6nMcx3EOJutrHKOBf5nZlpS+jcBoSb0ldQPGAicWG0jS1yWtlrR6165dFZLrOI7jVGyqStKTQFpe6hvN7LHYvoT0sw3MbLOkGcAS4E1gLbC/2PbMbCYwE8JzHG2Q7jiO47RCxQKHmY1prV/S0YSpp3NaGWMWMCva3wpsb0+NjuM4Tvlk+RzHGOAVMysaDCT1M7OdkgYRgszIqqlzHMdxUsks5Yike4GVZnZX4rUTgLvNbGxc/wPQG3gPuNbMnipx7F3A31O6+gD/bqP0alNrmmtNL7jmalFrmmtNL7RN80lm1rcUw7rMVVUMSatLzcWSF2pNc63pBddcLWpNc63pheppzvquKsdxHKfG8MDhOI7jlMWRFjhmZi3gMKg1zbWmF1xztag1zbWmF6qk+Yi6xuE4juO0nSPtjMNxHMdpIx44HMdxnLKoy8Ah6UJJf5bUJOm7Kf1TJe1KpHb/WhY6E3rukbRT0sYi/ZJ0Z9yf9ZLOrrbGAj2H0nu+pD0J/95UbY0pmk6UtEzSn2Ka/mkpNnnzcymac+NrSV0kvSBpXdT7oxSbzrGsQpOkVZIaq6+0hZ5SNOfqeNGMpA6SXpa0MKWvsn42s7pagA7AX4HBQCdgHXB6gc1U4BdZa03oOQ84G9hYpH8s8DihZPdIQtbgPOs9H1iYtV8LNB0PnB3bPYG/pHwu8ubnUjTnxtfRbz1iuyOwChhZYHMVcFdsTwLm1oDmXB0vErquBR5I+/9X2s/1eMYxAmgys61m9i7wIDA+Y02tYmbPAf9pxWQ88BsLrAQaJB1fHXUHU4Le3GFmO8xsTWy/AWwGBhSY5c3PpWjODdFve+Nqx7gU3n0zHrgvtucBn4nlFTKhRM25Q9JA4PPA3UVMKurnegwcA4B/JNa3k/5luyhOR8yTVDRde04odZ/yxMfj6f/jks7IWkySeNr+EcKvyyS59XMrmiFHvo7TJ2uBncBSMyvqYwt1dvYQ0gplRgmaIX/HizuA64EDRfor6ud6DByl8Hug0czOBJbyQWR22oc1hLw3ZwE/B36XsZ73kdQDeASYbmavZ62nFA6hOVe+NrP9ZjYcGAiMUKjkmWtK0Jyr44WkLwA7zeylrDTUY+D4Jy0LPg2Mr72Pme02s3fi6t20kto9Jxxyn/KEmb3efPpvZouAjpL6ZCwLSR0JB+DZZjY/xSR3fj6U5rz62sz+CywDLizoet/HCqUVegG7q6sunWKac3i8GAWMk7SNMBX/aUm/LbCpqJ/rMXC8CAyVdLKkToQLQwuSBgXz1uMIc8d5ZgEwJd71MxLYY2Y7shZVDEnHNc+nShpB+JxlenCIemYBm83sp0XMcuXnUjTnydeS+kpqiO2uwGeBVwrMFgCXx/ZE4GmLV3CzoBTNeTtemNn3zGygmTUSjm9Pm9mlBWYV9XOW9Tgqgpntk/Qt4AnCHVb3mNkmSTcDq81sAXCNpHHAPsJF3qmZCQYkzSHcHdNH0nbgh4SLdFhIO7+IcMdPE/AWcEU2SgMl6J0IfFPSPuB/wKQsDw6RUcBlwIY4nw3wfWAQ5NPPlKY5T74+HrhPUgdCAHvIzBYWfPdmAfdLaiJ89yZlpLWZUjTn6nhRjGr62VOOOI7jOGVRj1NVjuM4TgXxwOE4juOUhQcOx3Ecpyw8cDiO4zhl4YHDcRzHKQsPHE7ukbS3BJvpkrq14zYnSDq9Hcd7vg3v3Rv/niBpXit2DZKuOtztOE6peOBw6oXpQFmBI967X4wJQLsFDjM7tx3GeNXMJrZi0kDIiuo4FcUDh1MzKNSeeCYmmntF0uz4lPc1wAnAMknLou0FklZIWiPp4ZjvCUnbJM2QtAb4sqQrJb0YkwQ+IqmbpHMJTwjfrlB/YYik4ZJWxkR3j0o6Jo73jKSfSVotabOkj0maL2mLpFsS2vcm2jdI2hC3eVvKfp4ctW8oGKNRsQaKpDMU6kisjZqGArcBQ+Jrt0vqIemp6IMNksYnxtks6VcKNSiWxKemkXSKpCejtjWShsTXr4t+Wq+UmhXOEUZ75mj3xZdKLMDe+Pd8QpbPgYQfPSuAT8S+bUCf2O4DPAd0j+s3ADcl7K5PjN070b4F+HZs3wtMTPStBz4Z2zcDd8T2M8CM2J4GvEp4GrkzIbtu74J9+BzwPNAtrh+bsr8LgCmxfXXivY3EGiiEhIaTY7sT0DXZH18/GvhQwidNhPoTjYSnoIfHvoeAS2N7FfDF2O5COIu7AJgZ33sUsBA4L+vPhS/ZLXWXcsSpe14ws+0AMQ1HI/DHApuRhGmm5TGNUydCkGlmbqI9LP6qbwB6EFLVtEBSL6DBzJ6NL90HPJwwac6FtgHYZDG/laSthERzydxRY4Bfm9lbAGaWVtdkFHBRbN8PzEixWQHcqFCXYb6ZbdHB5RYE3CrpPEL67QFA/9j3NzNrTmPyEtAoqScwwMwejdrejvtxASF4vBztewBDCcHZOQLxwOHUGu8k2vtJ/wyLUFfhkiJjvJlo3wtMMLN1kqYSzmoOV9OBAn0HiugrhVZzAZnZA5JWEYr5LJL0DWBrgdlkoC9wjpm9p5BNtUuBZgh+7NrK5gT82Mx+WYZ+p47xaxxOvfAGobwqwEpglKRTACR1l/ThIu/rCexQSF8+OW08M9sDvCZpdOy7DHiWw2MpcEXzHWCSjk2xWc4HSekmp/QjaTCw1czuBB4DzqSlDyCk0t4Zg8angJNaE2ahyuB2SRPiNjpHnU8AX01cJxogqV9Je+vUJR44nHphJrBY0jIz20XIYDpH0nrCtM6pRd73A8K8/nJaptN+ELhO0svxAvHlhIvl64HhhOscZWNmiwlTW6vjVNt3UsymAVdL2kDxCoQXAxvjGMMIJW93E6bnNkq6HZgNfDSOM4WDU5yncRkhG+x6wrWY48xsCaG29Yo41jxaBijnCMOz4zqO4zhl4WccjuM4Tll44HAcx3HKwgOH4ziOUxYeOBzHcZyy8MDhOI7jlIUHDsdxHKcsPHA4juM4ZfF/G284OAnJc3YAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -98,48 +125,81 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('LiH Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VNX5x/HPNwkQ9l2UHQERFGQJi2Ldat0FbVFBZBEtaN1af9Xqr/0p2s3WLtalVUQWcQGlaqmiqFW0KluAAAIiAVHCvu9Lluf3x73BYUxIgExmkjzv12teuXPvufc+c2cyz9xz7j1HZoZzzjl3JEnxDsA551zi82ThnHOuSJ4snHPOFcmThXPOuSJ5snDOOVckTxbOOeeK5MnClQhJIyW9EE43l7RbUnL4vJGkjyXtkvRnBcZK2iZpdnwjP3aSrpa0OnytXeIdT6KJ/hwkmsjPrCuaJ4s4k7RK0r7wnyr/8WS84zoeZvaNmdUws9xw1nBgM1DLzP4HOBv4AdDUzHrEK84S8Cfg9vC1zi/tnUsySXuiPjv3xnB/QyV9EjVvnKSDUTEsgAI/B64MS4l3AA6AK83s/VjuQFKKmeXEch9H0AJYYt/eAdoCWGVme452Q3F+HdFaAIsLWlCKcZ5hZpmlsJ8j+aOZ/SrOMSQMScnlMUH6mUUCy/8lJ+lPYZXNV5IujVheW9JzktZJWiPpNxFVP0MlfSrpr5K2ACMlJYfVQJvDbd0e/jpNkXSNpLlR+79b0r8Kia2VpI/CqqX3gAYRy1pGbHccMAS4N/zVOQIYDZwZPn8oXOcKSRmStkv6TFKniO2tkvQLSQuBPeF2G0v6p6RN4Wu5M6L8SEmvSHo+jG+xpLSI5c0kvRauuyXyTE7SMElLw+M9TVKLAl57FUm7gWRggaQVR4izvaTp4etaLKlPxHbGSfq7pLfDY/GppBMlPRbu/4tjrd6SNFXSnyOeT5Q0JpxuLemD8LVvlvSipDpHOj6S2gNPR7xv24sRw6HPQfi8lb6tjnxf0lOKqAaS1Ct877dLWiDpvIhl0yX9OjxGuyS9K6lBuCxV0gthrNslzZHUKFzWWNIUSVslZUr6cSGxvi3p9qh5CyT9MJw+VdJ74XaWSbo2otw4Sf8Ij/ke4Pyijk2ZZGb+iOMDWAVcWMiyoUA28GOCL6ZbgbWAwuWvA88A1YETgNnAiIh1c4A7CM4gqwK3AEuApkBd4H3AwuVVgK1A+4j9zwd+VEhsM4C/hOudA+wCXgiXtczfbvh8HPCbqNf1ScTzLsBGoGf4OoeEx6VKxDHKAJqFryMJmAs8AFQGTgZWAheH5UcC+4HLwu39HpgZLksGFgB/DY9bKnB2uKwvkAm0D4/Jr4DPjvDeGdAm6r2MjLNSuL3/DeO8IDxO7SKOy2agWxjHB8BXwOAwzt8AHxZ3/1HLTgyP6QXAwPD41AyXtSGoBqwCNAQ+Bh4rxvE57H0r6L2NWhb9OZhBUHVXmaAqcifffmaaAFvC9ywpjG8L0DBcPh1YAZwSHtvpwCPhshHAv4FqYfzdCKo8CV/b38PX0RnYBFwQ8TnJ3/9g4NOI2DsA28NjVB1YDdwYfi66hO9bh4hjsAPoHcaeGu/vlZh8V8U7gIr+CL9gdocfzPzHj8NlQ4HMiLLVwn++E4FGwAGgasTyAflfLuG630Tt6wPCZBI+vzDqn/kfwG/D6dOAbYRf2FHbaU6QiKpHzHuJY08W/wB+HbWPZcC5EcdoWMSyngW8tvuBseH0SOD9iGUdgH3h9JnhF0ZKAa/rbeCmiOdJwF6gRSHvXUHJIjLO7wHrgaSIeS8DIyOOy7MRy+4AlkY87whsP8Jnxwi+cCM/OxdHLP8RwZfcZsIv/EK2cxUwvxjH57D3LeI17I+KYXz05yDiM1MtYt0XIj4zvwAmRG17GjAknJ4O/Cpi2U+Ad8LpYcBnQKeo9ZsBuYRJMpz3e2BcxOckf/81gT357zXwW2BMOH0d8N+obT8DPBhxDJ4/nu+BsvDwaqjEcJWZ1Yl4PBuxbH3+hJntDSdrENSXVwLWhafe2wk+wCdErLs6aj+No+ZFLx8PXC9JwCDgFTM7UEC8jYFtdnibw9dHfolH1AL4n/zXEb6WZuF+Coq1BdA4qvz/EiTQfOsjpvcCqWF1SDPgayu4PaEF8LeIbW4FRPCrt7gi42wMrDazvIh5X0dtb0PE9L4CntcoYn9doz470yKW/Zvgl/YyMzvUMK3g6rSJCqoudxJ8aedXIx7p+BTmT1ExDCmgTGNga8RnGL77nl4T9Z6eDZwUUSb6Pc0/NhMIEstESWsl/VFSpYh97opYL/r4AxCWeQvoH84aALwYEVvPqNgGEvxoK+i1lEvewF12rSY4s2hwhH/s6C6F1xFUQeVrdlhhs5mSDhL8Ir4+fBRkHVBXUvWIhNG8gP0V12qCM5rfHqFM5LZXA1+ZWdtj3FdzFdwAnR/HiwWsV1yRca4FmklKikgYzYEvj2P7R+O3wFKglaQBZvZyOP93YZwdzWyrpKuA/HabIx2f4+mieh1QT1K1iIQR+flbTXBmUWCbwpGYWTbwEPCQpJbAVIIz03fDfdaMSBjNgTWFbOpl4EFJHxNUW30YEdtHZvaDI4VxtHGXNX5mUUaZ2TqCf4Y/S6olKSlsuDz3CKu9AtwlqUnYoPmLAso8T/DFkR35azRq318D6QT/nJUlnQ1ceRwv51ngFkk9Fagu6XJJNQspPxvYpaAxuaqChvvTJXUvxr5mE3xxPRLuJ1VS73DZ08D9kk6DQxcQXHMcr2sWwS/geyVVChtsrwQmHsc2i0XSOQR17IMJ2oCekJT/i7omQdXnjnDePRGrHun4bACaSqp8tPFEfGZGhp+ZMzn8M/MCcKWki8P3M1XSeZKaFrjBw1/r+ZI6Kri4YydBO1+ema0mqJ76fbi9TsBN4b4KMpXgLOJhYFJEgn8TOEXSoPB9rCSpu4JG/wrDk0Vi+LcOv0799WKuN5igsXAJQfvCZA4/bY/2LEGCWUjQeD2VoB458jK/CcDpFP4Ple96graDrcCDBEnmmJhZOkEj/pMEryOToH68sPK5wBUEDZZfEdTJjwZqF2NfuQRfUm2Ab4AsgjppzOx14A8E1Rk7gc+BSwvZVJHM7GC4r0vDGP8ODDazL451mwVYEPXZeUxSLYL343YzW2Nm/wWeA8aGVYwPAV0JGmXfAl6LiLnQ40PQ5rUYWC9pc0QM90bFELks0kCCNpEtBI33kwjOjgm/2PsSVCduIvg1fw/F+446keCzv5PgTOojgs8xBNVJLQnO8l4naGco8DL1sMr1NYK2vJci5u8CLiKoolpLUB32B4LG7woj/6oaVwEpuAz3aTNrETGvKsFVNF3NbHncgnPlnqRJwBdm9mC8Y3FF8zOLCiSssrlMwfX/TQjOCKLPYm4F5niicCUtrLppHVaZXkJwJvFGvONyxeMN3BVLfhXEJIIrbd4iuFchWCitCstcFY/gXLl3IkE1T32C6q1bLQ7dpLhj49VQzjnniuTVUM4554pUbqqhGjRoYC1btox3GM45V6bMnTt3s5k1LKpcuUkWLVu2JD09Pd5hOOdcmSKpWL0veDWUc865InmycM45VyRPFs4554pUbtosCpKdnU1WVhb79++PdygOSE1NpWnTplSqVCneoTjnjlJMk0V4l+bfCLpJHm1mj0QtPwd4DOgE9DezyRHLmhP099OMoEfHy8xs1dHsPysri5o1a9KyZUuCLnFcvJgZW7ZsISsri1atWsU7HOfcUYpZNVTYA+RTBJ2odQAGSOoQVewbgg7jXuK7ngceNbP2QA+C/oqOyv79+6lfv74nigQgifr16/tZnnNlVCzPLHoQjPK2EoIxgAn6glmSXyD/TEFS5OAwhEklxczeC8vtPtYgPFEkDn8vnCu7YtnA3YTDR4/Kovgjjp0CbFcwaPx8SY+GZyqHkTRcUrqk9E2bNpVAyM45V7a8t2QDr6bHfqC+RL0aKoVgtLafA92BkylgfAMzG2VmaWaW1rBhkTcgxkWNGoePijlu3Dhuv/32o9pGRkYGU6dOLcmwDjNu3DgaNmxI586d6dy5M4MHDz7qbUyfPp0rrrgiBtE55wpiZjzz0QqGT0jn5dnfkJsX237+YlkNtYbDh01sSuHDGUbLAjIiqrDeAHoRDOBSoeTk5JCRkUF6ejqXXXZZgctTUo7/bbzuuut48skniy7onIu7gzl5/PL1Rbw6N4vLO57En645g+Sk2FbzxvLMYg7QVlKrcBjG/sCUo1i3jqT804ULiGjrKC/+/e9/07NnT7p06cKFF17Ihg0bABg5ciSDBg2id+/eDBo0iAceeIBJkybRuXNnJk2a9J3lubm53HPPPXTv3p1OnTrxzDPPHNrHo48+emj+gw8e3RgzGRkZ9OrVi06dOnH11Vezbds2ADIzM7nwwgs544wz6Nq1KytWrDhsvTlz5tClS5fvzHfOHb+tew5yw+hZvDo3i7u+35YnBnShauXv1NKXuJidWZhZjqTbgWkEl86OMbPFkh4G0s1sSjhm8utAXYLxdx8ys9PMLFfSz4H/hMNAziUYEvSYPfTvxSxZu/P4XlSUDo1r8eCVpx2xzL59++jcufOh51u3bqVPnz4AnH322cycORNJjB49mj/+8Y/8+c9/BmDJkiV88sknVK1alXHjxpGenn7ol//IkSMPWz5q1Chq167NnDlzOHDgAL179+aiiy5i+fLlLF++nNmzZ2Nm9OnTh48//phzzjnnO3FOmjSJTz4Jhty+6667uPHGGxk8eDBPPPEE5557Lg888AAPPfQQjz32GAMHDuS+++7j6quvZv/+/eTl5bF6dVBn+tlnn3HHHXfwr3/9i+bNmx//QXbOHbJ8wy5uGp/O+p37eXxAF/qc0bjU9h3T+yzMbCrBOM+R8x6ImJ5DUD1V0LrvEdx/UaZVrVqVjIyMQ8/zv/ghuA/kuuuuY926dRw8ePCw+w/69OlD1apVC91u5PJ3332XhQsXMnlycJvKjh07WL58Oe+++y7vvvsuXbp0AWD37t0sX768wGQRXQ21Y8cOtm/fzrnnngvAkCFDuOaaa9i1axdr1qzh6quvBoIb7fItXbqU4cOH8+6779K4cel9iJ2rCKYv28gdL82nSqVkJg3vRZfmdUt1/+X6Du5IRZ0BxMMdd9zB3XffTZ8+fZg+fTojR448tKx69epHXDdyuZnxxBNPcPHFFx9WZtq0adx///2MGDHisPlPPfUUzz4bnKiVZMP5SSedxP79+5k/f74nC+dKiJkx/rNVPPzmEtqdWIvnhqTRuE7hPyRjJVGvhqoQduzYQZMmwdXE48ePL7RczZo12bVrV6HLL774Yv7xj3+QnZ0NwJdffsmePXu4+OKLGTNmDLt3B7eprFmzho0bN3LbbbeRkZFBRkZGoV/qtWvXpm7duvz3v/8FYMKECZx77rnUrFmTpk2b8sYbwdDJBw4cYO/evQDUqVOHt956i/vvv5/p06cf3cFwzn1Hdm4ev3rjc0b+ewnfb9+IybecGZdEAZ4s4mrkyJFcc801dOvWjQYNGhRa7vzzz2fJkiWHGrij3XzzzXTo0IGuXbty+umnM2LECHJycrjooou4/vrrOfPMM+nYsSP9+vU7YtKJNn78eO655x46depERkYGDzwQ1CBOmDCBxx9/nE6dOnHWWWexfv36Q+s0atSIN998k9tuu41Zs2YdxdFwzkXasTeboWNn8+Ksb7j1vNY8c0M3qleJX2VQuRmDOy0tzaIHP1q6dCnt27ePU0SuIP6eOFe0rzbv4aZxc1i9bS+//2En+nUrsGm3REiaa2ZpRZWrMG0WzjlXFnyWuZlbX5xHcpJ46ce96N6yXrxDAjxZOOdcwnhp1jc88K/POblhdZ4b0p1m9arFO6RDPFk451yc5eTm8dupSxn76SrOb9eQxwd0oWZqYo374snCOefiaOf+bO58eT7Tl23iprNb8b+XtY951x3HwpOFc87FyTdb9nLT+Dl8tXkPv/9hRwb0SNxeDzxZOOdcHMz+aiu3vDCX3Dzj+Zt6cFbrwi+fTwR+n0WMnX/++UybNu2weY899hi33norixcv5oILLqBdu3a0bt2aBx98kLy8YByo6G7DO3fuzJIl5a4vRecqpFfTVzNw9EzqVK3EG7f1TvhEAZ4sYm7AgAFMnDjxsHkTJ06kf//+9OnTh/vuu49ly5axaNEiZs+ezd/+9rdD5a677rpDd1pnZGTQoUP0qLTOubIkL8/4/dtLuWfyQnq2qs/rP+lNqwZH7tonUXiyiLF+/frx1ltvcfDgQQBWrVrF2rVryczMPNQ7LEC1atV48sknefTRR+MZrnMuRvYcyGHEC3N55qOVDOrVgrE3dqd2tcS64ulIKk6bxdv3wfpFJbvNEzvCpY8csUi9evXo0aMHb7/9Nn379mXixIlce+21LF68mG7duh1WtnXr1uzbt4/t27cDh3cbDjBjxowj9kTrnEtMG3ftZ8iYOXy5YRcP9z2NwWe2jHdIR83PLEpBZFXUxIkTGTBgQLHWi66G8kThXNmzbsc++j8zk6+37GHM0O5lMlFARTqzKOIMIJb69u3Lz372M+bNm8fevXvp1q0b8+fP5+OPPz6s3MqVK6lfvz516tSJU6TOuZK0euterh89k+17splwUw+6tUiMrjuORUzPLCRdImmZpExJ9xWw/BxJ8yTlSOpXwPJakrIklenBoWvUqMH555/PsGHDDp1VDBw4kE8++YT3338fCEbUu/POO3nooYfiGapzroR8tXkP1z4zg537cnjxxz3LdKKAGCYLScnAU8ClQAdggKToy3m+AYYCLxWymV8DHxeyrEwZMGAACxYsOJQsqlatypQpU/jtb3/LKaecQoMGDejduzcDBw48tE7+uNv5j88++yxe4TvnjsLyDbu49pkZHMzJY+LwXnRqWvZrC2JZDdUDyDSzlQCSJgJ9gUM3C5jZqnBZXvTKkroBjYB3gCK7z010V111FdHdwZ9++ul8+OGHALzxxhvcfffdXH/99bRo0YKhQ4cydOjQOETqnDsei9fuYNBzs0lJEpNG9KLNCTXjHVKJiGU1VBNgdcTzrHBekSQlAX8Gfl5EueGS0iWlb9q06ZgDTQRXXXUVK1eupEWLFvEOxTl3jDJWb2fAqJlUrZTMKyPOLDeJAhL3aqifAFPNLOtIhcxslJmlmVlaw4YNSyk055z7rjmrtnLD6FnUqVaZSSN60bKM3GxXXLGshloDNIt43jScVxxnAt+T9BOgBlBZ0m4z+04jeVHMDCnxenCsiMrLqIzORfs0czM3j0+ncZ1UXry5FyfWTo13SCUulsliDtBWUiuCJNEfuL44K5rZoVZeSUOBtGNJFKmpqWzZsoX69et7wogzM2PLli2kppa/fyJXsX34xUZGvDCXkxtUZ8JNPWlYs0q8Q4qJmCULM8uRdDswDUgGxpjZYkkPA+lmNkVSd+B1oC5wpaSHzOy0koqhadOmZGVlUdbbM8qL1NRUmjaN3VjCzpW2dz5fzx0vz6PdiTWZMKwndatXjndIMaPyUjWQlpZm6enp8Q7DOVdBTFmwlp9NyuCMprUZe2MPalctO/08RZI018yKvOK04tzB7ZxzJeTV9NXc+8+F9GhZj+eGdqdGlfL/VVr+X6FzzpWgCTO/5v/e+JzvtW3AqEFpVK2cHO+QSoUnC+ecK6bR/13Jb95ayoXtT+DJ67uSWqliJArwZOGcc8Xy1IeZPDptGZd1PJHHrutC5ZREvU0tNjxZOOfcEZgZf3nvS574IJOruzTh0X6dSEmuWIkCPFk451yhzIzfTV3Ks//9iv7dm/G7qzuSlFQx79nyZOGccwXIyzMenLKYCTO/ZuhZLXngig4VNlGAJwvnnPuO3Dzj/tcW8kp6FiPOPZn7Ljm1wvcC4cnCOeciZOfm8T+vLGDKgrXc9f22/PTCthU+UYAnC+ecO+RgTh53vDyPaYs38ItLTuXW81rHO6SE4cnCOeeAnNxvE8WDV3bgxt6t4h1SQql4138551yUvDzj3n8u9ERxBJ4snHMVmpnx8JtLeG3eGu7+wSmeKArhycI5V6H95b0vGffZKm4+uxV3XNAm3uEkLE8WzrkKa9THK3jig0z6d2/GLy9v71c9HYEnC+dchfTSrG/43dQvuKLTSfz26o6eKIoQ02Qh6RJJyyRlSvrOsKiSzpE0T1KOpH4R8ztLmiFpsaSFkq6LZZzOuYplyoK1/PKNRZzfriF/ubYzyRX4zuziilmykJQMPAVcCnQABkjqEFXsG2Ao8FLU/L3A4HCI1UuAxyTViVWszrmK44MvNnD3pAy6t6zH3wd2q3C9xx6rWN5n0QPINLOVAJImAn2BJfkFzGxVuCwvckUz+zJieq2kjUBDYHsM43XOlXMzVmzh1hfm0aFxLZ4bUnEGLioJsUypTYDVEc+zwnlHRVIPoDKwooBlwyWlS0rftGnTMQfqnCv/Fqzezs3j59C8XjXG3diDmqllc8zseEno8y9JJwETgBvNLC96uZmNMrM0M0tr2LBh6QfonCsTlq3fxZCxs6lXozIv3NyTetUrxzukMieWyWIN0CziedNwXrFIqgW8BfzSzGaWcGzOuQri6y17uOG5WVRJSeLFm3rRqFZqvEMqk2KZLOYAbSW1klQZ6A9MKc6KYfnXgefNbHIMY3TOlWPrduxj4OhZ5OTm8cJNPWlev1q8QyqzYpYszCwHuB2YBiwFXjGzxZIeltQHQFJ3SVnANcAzkhaHq18LnAMMlZQRPjrHKlbnXPmzZfcBbhg9i+17sxk/rAdtG9WMd0hlmsws3jGUiLS0NEtPT493GM65BLBzfzbXPzuT5Rt28/ywHvQ8uX68Q0pYkuaaWVpR5RK6gds5547WvoO53DRuDl+s28XTN3TzRFFCfDwL51y5cTAnj1temEv619t4vH8Xzj/1hHiHVG74mYVzrlzIzTN+NimDj77cxO+v7siVZzSOd0jliicL51yZl5dn3P/aQt5atI5fXd6e/j2axzukcseThXOuTDMzfvPWUl5Jz+LO77fl5u+dHO+QyiVPFs65Mu1v/1nOmE+/YuhZLfnZhW3jHU655cnCOVdmPffJVzz2/nL6dWvKA1d08DEpYsiThXOuTHplzmp+/eYSLj39RB75YUeSfEyKmPJk4Zwrc95auI77XlvI99o24LH+nUlJ9q+yWPMj7JwrUz5ZvpmfTppP1+Z1eWZQN6qk+JgUpcGThXOuzFiUtYMRE9Jp3bAGzw3tTrXKfl9xafFk4ZwrE77avIehY2dTp1plxg/rQe2qPnhRafJk4ZxLeBt37WfwmFnkmfH8TT18TIo48HM451xC27k/myFj5rB510FeHt6L1g1rxDukCsnPLJxzCWt/di7Dn09n+YZdPD2oG52b1Yl3SBVWTJOFpEskLZOUKem+ApafI2mepBxJ/aKWDZG0PHwMiWWczrnEk5tn3P1KBjNXbuVP15zBuac0jHdIFVrMkoWkZOAp4FKgAzBAUoeoYt8AQ4GXotatBzwI9AR6AA9KqhurWJ1zicXMGDllMVMXredXl7fnqi5N4h1ShRfLM4seQKaZrTSzg8BEoG9kATNbZWYLgbyodS8G3jOzrWa2DXgPuCSGsTrnEsjj/8lkwsyvGXHuyd4xYIKIZbJoAqyOeJ4Vzov1us65MuzFWV/z1/e/5Eddm3LfJafGOxwXKtMN3JKGS0qXlL5p06Z4h+OcO07vfL6O/3vjc85v15BHftTROwZMILFMFmuAZhHPm4bzSmxdMxtlZmlmltawoTd+OVeWzVy5hTsnZnBGszo8NbArlby/p4QSy3djDtBWUitJlYH+wJRirjsNuEhS3bBh+6JwnnOuHFqydic/Hp9O83rVGDPEu/FIRDFLFmaWA9xO8CW/FHjFzBZLelhSHwBJ3SVlAdcAz0haHK67Ffg1QcKZAzwcznPOlTOrt+5lyNjZ1EhN4flhPahbvXK8Q3IFkJnFO4YSkZaWZunp6fEOwzl3FLbsPkC/p2ewdc9BXr3lTE5pVDPeIVU4kuaaWVpR5bxS0DkXF3sO5HDjuDms27GPMUPTPFEkOK8YdM6VuoM5edzywlwWr93JqEHd6NaiXrxDckXwMwvnXKnKyzN+/uoC/rt8M4/8sCPfb98o3iG5YvBk4ZwrNWbGr99awpQFa/nFJadyTVqzoldyCcGThXOu1Dz90UrGfrqKYb1bccu53o1HWVKsZCHpNUmXS/Lk4pw7Jq+kr+YP73xBnzMa86vL2/vd2WVMcb/8/w5cDyyX9IikdjGMyTlXzvxn6Qbuf20R32vbgD9dcwZJSZ4oyppiJQsze9/MBgJdgVXA+5I+k3SjJB8I1zlXqLlfb+W2l+ZxWuNa/OOGblRO8QqKsqjY75qk+gRjT9wMzAf+RpA83otJZM65Mm/5hl0MG5fOSbWrMnZod2pU8av1y6pivXOSXgfaAROAK81sXbhokiS/bdo59x1rtu9j8JjZVElJ4vlhPahfo0q8Q3LHobhp/nEz+7CgBcW5Tdw5V7Fs3Lmfgc/OZM+BHCYOP5Nm9arFOyR3nIqbLOpK+mHUvB3AIjPbWMIxOefKsG17DnLDc7PYuOsAL9zckw6Na8U7JFcCipssbgLOBPLPLs4D5gKtJD1sZhNiEJtzrozZuT+bwWNm8/WWvYy9sTtdm9eNd0iuhBQ3WVQC2pvZBgBJjYDngZ7AxwRtGc65CmzvwRxuGjeHpet2MmpwN85q3SDeIbkSVNyroZrmJ4rQRqBZOMZEdsmH5ZwrS/Zn5zJiwlzmfr2Nv/XvwgWnen9P5U1xzyymS3oTeDV8/qNwXnVge0wic86VCdm5edzx8nz+u3wzf7rmDC7vdFK8Q3IxUNwzi9uAsUDn8PE8cJuZ7TGz8wtbSdIlkpZJypR0XwHLq0iaFC6fJallOL+SpPGSFklaKun+o31hzrnYyw17kH1vyQYe7nsa/bo1jXdILkaKPLOQlAy8HyaFfxZ3w+F6TwE/ALKAOZKmmNmSiGI3AdvMrI2k/sAfgOsIhlmtYmYdJVUDlkh62cxWFXf/zrnYMjN++foi/pUR9CBOPM4bAAAb10lEQVQ7+MyW8Q7JxVCRZxZmlgvkSap9lNvuAWSa2UozOwhMBPpGlekLjA+nJwPfV9C7mAHVJaUAVYGDwM6j3L9zLkbMjF+/uZSJc1Zz+/ltuPW81vEOycVYcdssdgOLJL0H7MmfaWZ3HmGdJsDqiOdZBFdPFVjGzHIk7QDqEySOvsA6oBrws7Ax/TCShgPDAZo3b17Ml+KcO15/fe9Lxnz6FTf2bsn/XHRKvMNxpaC4yeK18FFaegC5QGOgLvBfSe+b2crIQmY2ChgFkJaWZqUYn3MV1tMfreDxDzK5Lq0ZD1zRwbsaryCKlSzMbLykqkBzM1tWzG2vASKHwWoaziuoTFZY5VQb2ELQHfo7ZpYNbJT0KZAGrMQ5FzcTZqzikbe/4MozGvO7H3b0RFGBFHfwoyuBDOCd8HlnSVOKWG0O0FZSK0mVgf5A9DpTgCHhdD/gAzMz4BvggnBf1YFewBfFidU5FxuT52bxf/9azIXtG/GXa88g2cekqFCKe+nsSIKqoe0AZpYBHHFMRDPLAW4HpgFLgVfMbLGkhyX1CYs9B9SXlAncDeRfXvsUUEPSYoKkM9bMFhb7VTnnStTUReu4d/ICzm7TgCev70KlZB+ToqIpbptFtpntiDrlzCtqJTObCkyNmvdAxPR+gstko9fbXdB851zp+/CLjdw1cT5dm9dl1OBupFZKjndILg6KmywWS7oeSJbUFrgT+Cx2YTnnEsGMFVu45YW5tDuxJmNu7E61yj54UUVV3HPJO4DTgAPAywT3PPw0VkE55+Jv/jfbuHn8HJrXq8bzw3pSK9VHUK7Iins11F7gl+HDOVfOLVm7kyFjZtOgZhVevLkn9apXjndILs6KO6zqKcDPgZaR65jZBbEJyzkXL5kbdzPouVnUqJLCizf35IRaqfEOySWA4lZAvgo8DYwmuFnOOVcOrd66lxtGz0ISL9zck6Z1fThUFyhussgxs3/ENBLnXFyt37Gf60fPZF92LpNG9OLkhjXiHZJLIMVt4P63pJ9IOklSvfxHTCNzzpWaLbsPMHD0TLbtyeb5YT049UQfN9sdrrhnFvl3Wd8TMc8o4sY851zi27Evm0HPzWbN9n2Mv7EHZzSrE++QXAIq7tVQrWIdiHOu9G3adYAbx80mc+Nunh2SRs+T68c7JJegjlgNJeneiOlropb9LlZBOedib/XWvVzz9GdkbtzNM4O7ce4pDeMdkktgRbVZ9I+Yjh7a9JISjsU5V0qWrN3JD//xGdv2ZvPizb04v90J8Q7JJbiiqqFUyHRBz51zZcCslVu4eXw6NVJTeOmWM2nbqGa8Q3JlQFHJwgqZLui5cy7Bvbt4Pbe/PJ9mdasy4aaeNK5TNd4huTKiqGRxhqSdBGcRVcNpwud+W6dzZcikOd9w/2uL6NS0DmOHdqeud+HhjsIRk4WZeV/EzpVxZsbfp6/g0WnLOOeUhjx9Q1fvPdYdNf/EOFeO5eUZv35rCWM/XUXfzo15tN8ZVE7xgYvc0Yvpp0bSJZKWScqUdF8By6tImhQunyWpZcSyTpJmSFosaZEkr/Zy7igczMnjZ69kMPbTVQzr3Yq/XtvZE4U7ZjE7s5CUTDA86g+ALGCOpClmtiSi2E3ANjNrI6k/8AfgOkkpwAvAIDNbIKk+kB2rWJ0rb/YezOGWF+bx8ZebuPeSdtx6bmuiRrp07qjE8mdGDyDTzFaa2UFgItA3qkxfYHw4PRn4voJP9EXAQjNbAGBmW8zMe7t1rhi27TnI9c/O4pPlm3jkhx35yXltPFG44xbLZNEEWB3xPCucV2AZM8sBdgD1gVMAkzRN0rzIO8kjSRouKV1S+qZNm0r8BThX1qzZvo9+T3/GknU7+ccN3ejfo3m8Q3LlRKI2cKcAZwPdgb3AfyTNNbP/RBYys1HAKIC0tDS/78NVaMs37GLwmNnsPpDDhGE9vJ8nV6JieWaxBmgW8bxpOK/AMmE7RW1gC8FZyMdmtjkc0nUq0DWGsTpXps39ehv9np5BTp7xyogzPVG4EhfLZDEHaCuplaTKBP1MTYkqM4Vvuz/vB3xgZgZMAzpKqhYmkXOBJTjnvuPDZRsZOHomdatV4rVbz6L9ST4WhSt5MauGMrMcSbcTfPEnA2PMbLGkh4F0M5sCPAdMkJQJbCXsuNDMtkn6C0HCMWCqmb0Vq1idK6ten5/FPa8upN2JNRl3Yw8a1qwS75BcOaXgh3zZl5aWZunp6fEOw7lSM/q/K/nNW0s5q3V9nhnUjZqpleIdkiuDwvbgtKLKJWoDt3OuEGbGI+98wTMfreSyjify1+s6UyXFe+ZxseXJwrkyJCc3j/tfW8Src7MY2LM5D/c9neQkv4fCxZ4nC+fKiP3Zudz+0jzeX7qRu77flp9e2NZvtnOlxpOFc2XA+h37ue2lecz7Zhu/7nsag85sGe+QXAXjycK5BPfekg3cM3kBB3PyeHJAVy7vdFK8Q3IVkCcL5xLU/uxcfj91KeNnfM1pjWvx+IAutG5YI95huQrKk4VzCShz4y5uf2k+X6zfxbDerfjFpe38iicXV54snEsgZsYr6asZOWUJVSsnM2ZoGhec2ijeYTnnycK5RLFjXza/fH0Rby5cx1mt6/PX6zrTqJaP+eUSgycL5xLA3K+3cdfE+azbsZ97L2nHiHNa+/0TLqF4snAujnLzjKc/WsFf3vuSk2qn8uotZ9K1ed14h+Xcd3iycC5ONuzcz88mZfDZii1c0ekkfvfDjtTy/p1cgvJk4Vwc/GfpBn7+6gL2Z+fxxx914pq0pn43tktoniycK0UHcnL5/dQvGPfZKtqfVIsnBnShzQl+74RLfJ4snCslKzbt5o6X5rNk3U6GntWS+y49ldRKfu+EKxs8WTgXY2bGq3OzePBfi0mtlMTowWlc2MHvnXBlSyyHVUXSJZKWScqUdF8By6tImhQunyWpZdTy5pJ2S/p5LON0LlZ27s/mzokZ3Dt5IWc0q83bd53jicKVSTE7s5CUDDwF/ADIAuZImmJmkWNp3wRsM7M2kvoDfwCui1j+F+DtWMXoXCzN/2Ybd06cz9rt+/n5Radw63lt/N4JV2bFshqqB5BpZisBJE0E+gKRyaIvMDKcngw8KUlmZpKuAr4C9sQwRudKXF6e8fTHK/jLu1/SqFYqr4zoRbcW9eIdlnPHJZbJogmwOuJ5FtCzsDJmliNpB1Bf0n7gFwRnJYVWQUkaDgwHaN68eclF7twxWr11L/e/tohPMjdzecfg3onaVf3eCVf2JWoD90jgr2a2+0jXnpvZKGAUQFpampVOaM591/a9B3nqw0zGf/Y1SUnwyA87cl33Zn7vhCs3Ypks1gDNIp43DecVVCZLUgpQG9hCcAbST9IfgTpAnqT9ZvZkDON17qjtz87l+RmrePKDTHYdyKFf16bcfdEpnFS7arxDc65ExTJZzAHaSmpFkBT6A9dHlZkCDAFmAP2AD8zMgO/lF5A0EtjticIlkrw8418L1vCnaV+yZvs+zmvXkPsuPZVTT6wV79Cci4mYJYuwDeJ2YBqQDIwxs8WSHgbSzWwK8BwwQVImsJUgoTiX0D7N3Mzvpi5l8dqdnN6kFn/s14nebRrEOyznYkrBD/myLy0tzdLT0+MdhivHlq7bySNvf8FHX26iSZ2q3HNxO/qc0ZgkvxzWlWGS5ppZWlHlErWB27mEsW7HPv787pf8c14WNauk8MvL2jPozBbeVYerUDxZOFeInfuzeXr6Cp775CvM4MffO5mfnNeaOtUqxzs050qdJwvnohzMyePFWV/z+H+Ws21vNld1bsz/XNSOZvWqxTs05+LGk4VzITNj6qL1/HHaF3y9ZS9nta7P/17WntOb1I53aM7FnScL54DZX23ld1OXkrF6O+0a1WTsjd0575SGflOdcyFPFq5Cy9y4m0fe/oL3l27gxFqp/LFfJ37Utal3+OdcFE8WrkLauHM/j/1nOZPmrKZqpWTuubgdw3q3omplv8LJuYJ4snAVyqKsHYz99Cv+vXAtZjCoVwvuuKAN9WtUiXdoziU0Txau3MvJzePdJRsY++lXzFm1jWqVk7m+R3OGnd2KFvWrxzs858oETxau3Nq+9yAT56xmwoyvWbN9H83qVeVXl7fn2u7NqJXq3YY7dzQ8WbhyZ9n6XTw/YxWvzVvDvuxcep1cjwev7MD32zfyhmvnjpEnC1cubNtzkCkL1jJ5bhaL1uygckoSV3VuzNCzWtGhsfcE69zx8mThyqyc3Dw++nITk+dm8f7SDWTnGqc1rsUDV3Tgqi5NqFfdu+VwrqR4snBlzrL1u5g8dzWvz1/L5t0HqFe9MoN6taRft6Z+FuFcjHiycAnPzFi2YRfvfL6edz5fzxfrd5GSJC449QT6dWvKee1OoHJKUrzDdK5c82ThElJenpGRtZ1pn69n2uL1rNqyFwnSWtTlgSs60LdzY783wrlSFNNkIekS4G8EI+WNNrNHopZXAZ4HuhGMvX2dma2S9APgEaAycBC4x8w+iGWsLv6yc/OY89VW3lkcJIgNOw+QkiTOatOA4ee05sIOJ3BCzdR4h+lchRSzZCEpGXgK+AGQBcyRNMXMlkQUuwnYZmZtJPUH/gBcB2wGrjSztZJOJxiatUmsYnXxYWZkbtzNJ5mb+TRzMzNXbmX3gRxSKyVx3ikncPHpjbjg1EbUrur3RDgXb7E8s+gBZJrZSgBJE4G+QGSy6AuMDKcnA09KkpnNjyizGKgqqYqZHYhhvK4UbNi5n08zNx9KEBt2Bm9py/rV6Nu5Md9r25BzT2nofTQ5l2BimSyaAKsjnmcBPQsrY2Y5knYA9QnOLPL9CJhXUKKQNBwYDtC8efOSi9yViLw8Y8Wm3cxfvZ2M1duZ89VWlm/cDUC96pU5q3V9zm7TgN5tGvjAQs4luIRu4JZ0GkHV1EUFLTezUcAogLS0NCvF0FwBNu06QMbq7WSs3kbG6u0sXL2DXQdyAKiZmkKX5nW5Jq0pvds0oP2JtUjyu6mdKzNimSzWAM0injcN5xVUJktSClCboKEbSU2B14HBZrYihnG6o7Q/O5cVm3azfMNulm/cxZcbdrN03U6ytu0DIDlJnHpiTfp0bkyX5nXp3KwOJzeo7snBuTIslsliDtBWUiuCpNAfuD6qzBRgCDAD6Ad8YGYmqQ7wFnCfmX0awxhdIfLyjI27DrBm+z6+2bqH5Rt28+WG3WRu3MU3W/eSF57HpSSJlg2qc0azOgw5syWdm9fh9Ma1vc3BuXImZskibIO4neBKpmRgjJktlvQwkG5mU4DngAmSMoGtBAkF4HagDfCApAfCeReZ2cZYxVtRmBn7snPZtjebbXsOsmXPQdZt38ea/Me2fazdsY/1O/aTnfttzV5KkmjVoDqnNa5N385NOKVRTdo2qkHL+tX9hjjnKgCZlY+q/rS0NEtPTy/RbeblGWu27yNz425WbNrNngO5HMjJ5UBOXvA3O4/9OXkcyA7mHczJIzlJpCSLlKQkKqcEf1OSRaWkJCql5M9PonJyEpWSg+lKyTpsXqWUJARIIBT+DQRDQgfPDuZ+u+8DOXnsz46KLTuXbXsPsn1vNtv3ZgfT+7I5mJP3ndeaJDixVipN6lalcZ2qNKnz7d+mdavSwpOCc+WSpLlmllZUuYRu4C4tObl5fLN1L8s37iYzfCzfuIsVG/ewLzv3sLIpSaJKShKplZKpkpJElYi/lZPFgRwjJ8/IzjWyc/PIyc0jO9fIycs7NC87nJebF5tEXSUl6VCMdapVok61yrRsUI3OVetQp3ol6larTN1qlahdtTL1a1SmcZ2qNKpZhZRkTwbOuYJV+GSxdvs+znt0Ogdzv/213bh2Km0a1aRHj/q0bVSDtifU4OSGNaiVmlKiX6i5eUHyOJgbnJVkR/w1A4Pwb5BUzA5/XiUlP1ElUSUlmdRKwdmJ5A3JzrmSVeGTRaNaqQw7uxVtTgiSQusTalCjSukcluQkkZyUTGolbwx2ziW2Cp8skpPEfZeeGu8wnHMuoXkltXPOuSJ5snDOOVckTxbOOeeK5MnCOedckTxZOOecK5InC+ecc0XyZOGcc65Iniycc84VyZOFc865InmycM45VyRPFs4554rkycI551yRYposJF0iaZmkTEn3FbC8iqRJ4fJZklpGLLs/nL9M0sWxjNM559yRxSxZSEoGngIuBToAAyR1iCp2E7DNzNoAfwX+EK7bgWCI1dOAS4C/h9tzzjkXB7HsorwHkGlmKwEkTQT6AksiyvQFRobTk4EnFYzc0xeYaGYHgK/CMbp7ADNKPMq9W2HspSW+WRdD5WQo4GPiA1u5gjQ6DfqNiekuYpksmgCrI55nAT0LK2NmOZJ2APXD+TOj1m0SvQNJw4HhAM2bNz+2KJOSoWG7Y1vXxdHxfmlaCWyjtFXgJOmOrE6LmO+iTA9+ZGajgFEAaWlpx/aflFobrn2+JMNyzrlyJ5YN3GuAZhHPm4bzCiwjKQWoDWwp5rrOOedKSSyTxRygraRWkioTNFhPiSozBRgSTvcDPjAzC+f3D6+WagW0BWbHMFbnnHNHELNqqLAN4nZgGpAMjDGzxZIeBtLNbArwHDAhbMDeSpBQCMu9QtAYngPcZma5sYrVOefckcnKyZUlaWlplp6eHu8wnHOuTJE018zSiirnd3A755wrkicL55xzRfJk4ZxzrkieLJxzzhWp3DRwS9oEfF3I4gbA5lIM53iVtXjBYy4tHnPslbV44fhibmFmDYsqVG6SxZFISi9Oa3+iKGvxgsdcWjzm2Ctr8ULpxOzVUM4554rkycI551yRKkqyGBXvAI5SWYsXPObS4jHHXlmLF0oh5grRZuGcc+74VJQzC+ecc8fBk4VzzrkilZtkIekSScskZUq6r4DlQyVtkpQRPm6OR5xRMY2RtFHS54Usl6THw9e0UFLX0o4xKp6i4j1P0o6IY/xAacdYQEzNJH0oaYmkxZLuKqBMoh3n4sScMMdaUqqk2ZIWhPE+VECZKpImhcd4lqSWpR/pYfEUJ+aE+84AkJQsab6kNwtYFrvjbGZl/kHQBfoK4GSgMrAA6BBVZijwZLxjjYrpHKAr8Hkhyy8D3iYY/7MXMCvB4z0PeDPexzUqppOAruF0TeDLAj4biXacixNzwhzr8LjVCKcrAbOAXlFlfgI8HU73ByaVgZgT7jsjjOtu4KWC3v9YHufycmbRA8g0s5VmdhCYCPSNc0xFMrOPCcbxKExf4HkLzATqSDqpdKL7rmLEm3DMbJ2ZzQundwFL+e547ol2nIsTc8IIj9vu8Gml8BF95UxfYHw4PRn4vqS4DYJezJgTjqSmwOXA6EKKxOw4l5dk0QRYHfE8i4L/uX4UVjNMltSsgOWJprivK5GcGZ7avy3ptHgHEyk8Je9C8CsyUsIe5yPEDAl0rMOqkQxgI/CemRV6jM0sB9gB1C/dKA9XjJgh8b4zHgPuBfIKWR6z41xekkVx/BtoaWadgPf4Nvu6kjOPoJ+ZM4AngDfiHM8hkmoA/wR+amY74x1PcRQRc0IdazPLNbPOQFOgh6TT4xlPcRQj5oT6zpB0BbDRzObGY//lJVmsASKzftNw3iFmtsXMDoRPRwPdSim241Hk60okZrYz/9TezKYClSQ1iHNYSKpE8KX7opm9VkCRhDvORcWcqMfazLYDHwKXRC06dIwlpQC1gS2lG13BCos5Ab8zegN9JK0iqGq/QNILUWVidpzLS7KYA7SV1EpSZYKGnSmRBaLqoPsQ1AMnuinA4PBqnV7ADjNbF++gCiPpxPz6UUk9CD5fcf1CCON5DlhqZn8ppFhCHefixJxIx1pSQ0l1wumqwA+AL6KKTQGGhNP9gA8sbIWNh+LEnGjfGWZ2v5k1NbOWBN9xH5jZDVHFYnacU0piI/FmZjmSbgemEVwZNcbMFkt6GEg3synAnZL6ADkEjbRD4xZwSNLLBFe1NJCUBTxI0NCGmT0NTCW4UicT2AvcGJ9IA8WItx9wq6QcYB/QP55fCKHewCBgUVg/DfC/QHNIzONM8WJOpGN9EjBeUjJB0nrFzN6M+v97DpggKZPg/69/nGLNV5yYE+47oyCldZy9uw/nnHNFKi/VUM4552LIk4VzzrkiebJwzjlXJE8WzjnniuTJwjnnXJE8WbiEJWl3Mcr8VFK1EtznVZI6lOD2PjuOdXeHfxtLmnyEcnUk/eRY9+NccXiycGXdT4GjShbhtfWFuQoosWRhZmeVwDbWmlm/IxSpQ9DbqHMx48nCJTwFYzdMDztz+0LSi+Hd1ncCjYEPJX0Ylr1I0gxJ8yS9GvavhKRVkv4gaR5wjaQfS5oTdsT3T0nVJJ1FcKfuowrGL2gtqbOkmWFncq9Lqhtub7qkv0pKl7RUUndJr0laLuk3EbHvjpj+haRF4T4fKeB1tgpjXxS1jZYKxxCRdJqCcRgywpjaAo8ArcN5j0qqIek/4TFYJKlvxHaWSnpWwRgO74Z3LyOpjaT3w9jmSWodzr8nPE4LVcCYD64CKam+zv3hj5J+ALvDv+cR9J7ZlOAHzgzg7HDZKqBBON0A+BioHj7/BfBARLl7I7ZdP2L6N8Ad4fQ4oF/EsoXAueH0w8Bj4fR04A/h9F3AWoK7gqsQ9FpbP+o1XAp8BlQLn9cr4PVOAQaH07dFrNuScAwRgk4DB4bTlYGqkcvD+SlArYhjkkkwfkNLgruRO4fLXgFuCKdnAVeH06kEZ2sXAaPCdZOAN4Fz4v258Ed8HuWiuw9XIcw2syyAsAuMlsAnUWV6EVQhfRp2m1SZILHkmxQxfXr4670OUIOgq5jDSKoN1DGzj8JZ44FXI4rk9z+2CFhsYX9SklYSdOYW2VfThcBYM9sLYGYFjQvSG/hROD0B+EMBZWYAv1QwrsFrZrZc3x2uQMDvJJ1D0JV1E6BRuOwrM8vvQmQu0FJSTaCJmb0exrY/fB0XESSM+WH5GkBbgoTsKhhPFq6sOBAxnUvBn10RjEswoJBt7ImYHgdcZWYLJA0lOHs51pjyouLLKyS+4jhi/ztm9pKkWQQD4EyVNAJYGVVsINAQ6GZm2Qp6KU2NihmC41j1CLsT8Hsze+Yo4nfllLdZuLJuF8HQowAzgd6S2gBIqi7plELWqwmsU9AV+MCCtmdmO4Btkr4XLhsEfMSxeQ+4Mf/KLUn1CijzKd92/DawgOVIOhlYaWaPA/8COnH4MYCgW+qNYaI4H2hxpMAsGI0vS9JV4T6qhHFOA4ZFtPs0kXRCsV6tK3c8WbiybhTwjqQPzWwTQc+gL0taSFBlc2oh6/0fQT39pxzeNfVE4B5J88NG3iEEDd4Lgc4E7RZHzczeIai2Sg+r0X5eQLG7gNskLaLwkfquBT4Pt3E6wXCwWwiq3j6X9CjwIpAWbmcw3+0uvCCDCHpZXUjQtnKimb1LMNbzjHBbkzk8KbkKxHuddc45VyQ/s3DOOVckTxbOOeeK5MnCOedckTxZOOecK5InC+ecc0XyZOGcc65Iniycc84V6f8BFDmpPK/ufxUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4FOXax/Hvnd4DCaGGjtKbBAQRpShiQ0UUEQvisR9EOfbXcvSox4Ll2I4iKmIjqKioYEFBLLQAAaRJh0CEUJIQEki73z924QRMwgaymU32/lzXXNndmZ357UDuzD7zzDOiqhhjjKn5ApwOYIwxpmpYwTfGGD9hBd8YY/yEFXxjjPETVvCNMcZPWME3xhg/YQXfeJWI9BGRNVWwnRkicm0lrOefIvJ+ZWQyxtdYwTeVQkQ2ichZR7+uqj+rauvylhORkSLySznrVhHZLyI5IrJbRH4QkWFHbedcVX23Mj7L8XJ/tnwRqXPU60vcn6GZM8lKJyITReRxp3OYqmMF31QXnVU1CmgNTAReEZFHnI1Uqo3A8ENPRKQjEOFcHGP+xwq+8SoR6SsiaZW1PlXdparvAbcA94tIvHs7s0Xkb+7HI0XkVxF5RUSyRGS1iAwokamhiEwTkT0isk5Ebignf08R+U1EMkVkqYj0PUbE94BrSjy/Fph01DpjRWSSiGSIyGYReVBEAo7K/oJ7mxtE5DT361tFZGfJpisRCRWRcSKyRUR2iMjrIhLuntdXRNJE5B/u96WLyHXueTcCI4B73N+cvjzG5zI1gBV8U119AQQBPcqYfyqwHqgDPAJMFZE497zJQBrQEBgKPCki/Y9egYg0Ar4GHgfigLuAT0UkoZxc84AYEWkrIoHAFcDR5wReBmKBFsCZuP5AXHdU9mVAPPChO293oBVwFa5vN1HuZZ8CTga6uOc3Ah4usa767m01Aq4HXhWR2qo6HvgAeEZVo1T1wnI+k6khrOAbJ3zuPnrNFJFM4LWKrkBVC4BduApxaXYCL6pqgaomA2uA80WkMdAbuFdVD6hqKjCBI4/KD7kKmK6q01W1WFW/B1KA844R79BR/tnAKmDboRkl/gjcr6r7VHUT8BxwdYn3b1TVd1S1CEgGGgOPqepBVf0OyAdaiYgANwJ3quoeVd0HPOle/yEF7vcWqOp0IAdXs5jxQ0FOBzB+6WJVnXnoiYiMBP5WkRWISDCQAOwpY5FteuTIgJtxHdE3BA4Vx5LzkkpZR1PgMhEpefQbDMw6Rrz3gDlAc45qzsH1jSPYvc2S229U4vmOEo/zAFT16NeicH3+CGCRq/YDIEBgiWV3q2phiee57vcaP2RH+Ka6uggoBBaUMb+RlKiCQBNgu3uKE5Hoo+Zt46+2Au+paq0SU6SqPlVeMFXdjOvk7XnA1KNm78J11N3Ug+0fyy5cxb99iXyx7pPbnrChcv2MFXxTmYJFJKzEVOnfIEUkTkRGAK8CT6vq7jIWrQvcLiLBInIZ0BZX88xW4Dfg3+6MnXC1bZfW9/594EIROUdEAt3L9xWRRA+iXg/0V9X9JV90N9NMAZ4QkWgRaQqMLWP75VLVYuBN4AURqQuu8w4ico6Hq9iB6zyC8RNW8E1lmo7riPPQ9M9KXPdSEckB1uFq/rlTVR8uZ/n5wEm4joKfAIaW+OMwHGiG62j/M+CRkk1Mh7j/OFwEPABk4DrivxsPfm9Udb2qppQxezSwH9gA/ILrxOzbx1pnGe7FtU/miUg2MBPP2+jfAtq5z6V8fpzbN9WI2A1QTE1z6JyAqp7udBZjfIkd4RtjjJ+wgm+MMX7CmnSMMcZP2BG+Mcb4CZ+68KpOnTrarFkzp2MYY0y1sWjRol2qWt5wH4f5VMFv1qwZKSll9WQzxhhzNBHZfOylXKxJxxhj/IQVfGOM8RNW8I0xxk/4VBu+Meb4FRQUkJaWxoEDB5yOYrwgLCyMxMREgoODj3sdVvCNqSHS0tKIjo6mWbNmHDlQqKnuVJXdu3eTlpZG8+bNj3s91qRjTA1x4MAB4uPjrdjXQCJCfHz8CX97s4JvTA1ixb7mqox/22pf8LW4iAXvPsD6pT87HcUYY3xatS/42Zm7abIxmYjPryN7945jv8EY4zWBgYF06dLl8PTUU+XeHKxCUlNTmT59+uHnEydOJCEh4YjtrVy5ku3btzN06NBK2+7x2LRpEx06dHA0Q2mq/Unb2Li6pF/4Fi2mXcofb15Bu7u+JyCo2n8sY6ql8PBwUlNTvbLu1NRUUlJSOO+8/91DftiwYbzyyit/WfaTTz7xSoaqVlhYSFAl1rNqf4QP0KZbXxZ1eIAOBxazcOJdTscxxpSQlZVF69atWbNmDQDDhw/nzTffBOCWW24hKSmJ9u3b88gjjxx+z8KFCznttNPo3LkzPXr0ICsri4cffpjk5GS6dOlCcnJymdsreXSdm5vL5ZdfTrt27bjkkks49dRTDw/f8t1339GrVy9OOeUULrvsMnJycgDXEC+PPPIIp5xyCh07dmT16tUA/PTTT4e/SXTt2pV9+/ahqtx999106NCBjh07lpqrZ8+erFix4vDzvn37kpKSwv79+xk1ahQ9evSga9eufPHFF4Drm8vgwYPp378/AwYMOO79Xpoacyjcc+hY5m9bxKlp77BsZnc6nTXC6UjGOObRL1ewcnt2pa6zXcMYHrmwfbnL5OXl0aVLl8PP77///sNH4SNHjmTMmDHs3buXG264AYAnnniCuLg4ioqKGDBgAMuWLaNNmzYMGzaM5ORkunfvTnZ2NhERETz22GOkpKQcPqKfOHEiycnJ/PLLL4e3N3fu3CPyvPbaa9SuXZuVK1fy+++/H862a9cuHn/8cWbOnElkZCRPP/00zz//PA8/7LprZp06dVi8eDGvvfYa48aNY8KECYwbN45XX32V3r17k5OTQ1hYGFOnTiU1NZWlS5eya9cuunfvzhlnnHFEhmHDhjFlyhQeffRR0tPTSU9PJykpiQceeID+/fvz9ttvk5mZSY8ePTjrrLMAWLx4McuWLSMuLu54/qnKVGMKvojQ+aY3+WPcmTT/5R9sa9aRRq06OR3LGL9SVpPO2Wefzccff8xtt93G0qVLD78+ZcoUxo8fT2FhIenp6axcuRIRoUGDBnTv3h2AmJiYMrdXVpPOIb/88gtjxowBoEOHDnTq5KoJ8+bNY+XKlfTu3RuA/Px8evXqdfh9Q4YMAaBbt25MnToVgN69ezN27FhGjBjBkCFDSExM5JdffmH48OEEBgZSr149zjzzTBYuXHh4OwCXX345AwcO5NFHH2XKlCmHzy989913TJs2jXHjxgGubrVbtmw5vL8qu9hDDSr4AGHhkURd/QGFEwdQ8OEI8sb+QnhUrNOxjKlyxzoSr2rFxcWsWrWKiIgI9u7dS2JiIhs3bmTcuHEsXLiQ2rVrM3LkyCq7SlhVOfvss/noo49KnR8aGgq4TkIXFhYCcN9993H++eczffp0evfuzbfffuvRtho1akR8fDzLli0jOTmZ119//XCGTz/9lNatj7zn/Pz584mMjDzej1auGtGGX1LDZq3Z2v8VGhdtZdUb16LFxU5HMsbvvfDCC7Rt25YPP/yQ6667joKCArKzs4mMjCQ2NpYdO3YwY8YMAFq3bk16ejoLFy4EYN++fRQWFhIdHc2+ffsqtN3evXszZcoUAFauXMny5csBV7v6r7/+yrp16wDYv38/f/zxR7nrWr9+PR07duTee++le/furF69mj59+pCcnExRUREZGRnMmTOHHj16/OW9w4YN45lnniErK+vw0f8555zDyy+/zKG7Di5ZsqRCn+141LiCD9DpjIuZ3/w2Ttk3iwWTH3c6jjF+41Ab/qHpvvvuY82aNUyYMIHnnnuOPn36cMYZZ/D444/TuXNnunbtSps2bbjyyisPN6+EhISQnJzM6NGj6dy5M2effTYHDhygX79+rFy58oiTtodO4h6afvvttyPy3HrrrWRkZNCuXTsefPBB2rdvT2xsLAkJCUycOJHhw4fTqVMnevXqdfjkbFlefPHFw81CwcHBnHvuuVxyySV06tSJzp07079/f5555hnq16//l/cOHTqUyZMnc/nllx9+7aGHHqKgoIBOnTrRvn17HnrooRPd/cfkU/e0TUpK0sq6AUpxUTGpz11Ip/2/se7cD2jT87xjv8mYamzVqlW0bdvW6Rg+paioiIKCAsLCwli/fj1nnXUWa9asISQkxOlox6W0f2MRWaSqSZ68v0a14ZcUEBhAq5veY/uLp5Pwzc3savwTdRod/6BDxpjqJzc3l379+lFQUICq8tprr1XbYl8ZamzBB4iJjWP3Ze8RlnwuaROvIOaunwgJDXM6ljGmikRHR9ttU0vwahu+iGwSkeUikioijuz15u26serUp2ldsJo/nh/Erm0bnYhhjDGOq4qTtv1UtYunbUzekHTedczr+BgtDqwk6M3TSf32XaeiGGOMY2pkL53S9Lx0DBkjZrIzsAFd5t5Oyn+Gsz97r9OxjDGmyni74CvwnYgsEpEbS1tARG4UkRQRScnIyPBqmKYnd6LZPb/yW6Pr6LpnBpkv9OSPRT96dZvGGOMrvF3wT1fVU4BzgdtE5IyjF1DV8aqapKpJCQkJXo4DIaGhnHbDi6weNJkALaLFtEuZ9/bdFBbke33bxtRk/fr1+8vVpy+++CK33HILK1asoH///rRu3ZqWLVvyyCOPUOy+KLKsYY5N5fNqwVfVbe6fO4HPgL9eguaQ9r0GEXHHfJbEDqDnlvGse+YMtm9c5XQsY6qt4cOHM3ny5CNemzx5MldccQWDBw8+fBHW8uXLWbBgAf/5z38OLzds2DBSU1MPT+3atavq+H7BawVfRCJFJPrQY2Ag8Lu3tnc8YmvF033sJ6QkjaNh/mZiJ/Zl3vjRbF5l3biMqaihQ4fy9ddfk5/v+ra8adMmtm/fzrp16+jduzcDBw4EICIigldeeYVnn33Wybh+yZv98OsBn7nvwxgEfKiq33hxe8ct6YIbSO94JunJd5C07X2CkiexPrAFGS0uplX/kdRp0NTpiMZUzIz74M/llbvO+h3h3LLvYBUXF0ePHj2YMWMGF1100eGhBFasWEG3bt2OWLZly5bk5eWRmZkJUOowx+Hh4ZWb33jvCF9VN6hqZ/fUXlWf8Na2KkODpidzyj3Tybx1OfNOvocigui59nlqv96ZZU8NIGXaf8nNyXI6pjE+rWSzzuTJkxk+fLhH7zu6SceKvXfU6Cttj0edeonUufL/gP9j85olbJvzLs22f03DxfeRu+gRUmLPQJueTu1WSTRp3Y2QMPuPaXxQOUfi3nTRRRdx5513snjxYnJzc+nWrRtLlixhzpw5Ryy3YcMG4uPjqVWrliM5/ZUV/HI0bd2Vpq27Ulz0HCsWfE/Owg9os+cHYpd/D8uhQANZH9SEPdGtKa7XkZhm3UhsdyrRsZV/4wJjqoOoqCj69evHqFGjDh/djxgxgieffJKZM2dy1llnkZeXx+23386jjz7qcFr/YwXfAwGBgbTvNQh6DaK4qIgtG1aQsTaF/LRUIvaspHnmPOpkfgNrgG9hm9Rjb0hD8sIbUhTdkMDajQmv05SY+s1IaNiC8Kiy7+BjTHU3fPhwLrnkksNNO+Hh4UybNo3Ro0dz6623sm3bNh588EFGjPjfbUiPbsN/7bXXOO2006o8e01XY4dHrkqqyq70LWxfPY/czUsI2b2K6APbqV2YQbxmEiBH7uNMotgdmEBuUG0OhsZRGBYHEXUIiKpDcExdwmPrElm7HrHxDYmKjSOgEu9ab2qu6jI88ueff87YsWOZNWsWTZtah4iKsOGRfYCIkNCwKQkNmwLDjph38GAeu7ZtJnPHRvIyNlGwdysB2dsIzf2TiII9xO/bRmxWFpFS9q3dsolgv0SSGxDNgcBo8oOjKQiOoTg0Fg2LRcJiCQyPITA8lpCIGEIiaxEWXYuIqNpExNQiPDwKCfCbUTSMj7v44ou5+OKLnY7hl6zge1loaDiNWrShUYs25S53IG8/mbvSydmzg9zMHRzM2knhvgw4kIUcyCQwP4vg/GxCC/dRO28LEftziNYcwuXYVwgXagC5Ek4u4RwICOdgQAQFgeEUBEZSGBxJUXAkGhwNYdFIaAyBYTEERsYSEh5LaFQsoZG1CI+pRXRMPGHhEZW1a4wxVcwKvo8IC4+kfuNW0LhVhd538EAuufuyyN2XyYGcvRzcn0V+bhaFuVkU5WWjB7LRg9kE5OcQULCfwIL9BBXtJ6Qol8iCvYTl5RKueURqHsFSdMzt5Woo2RJNTmAMeYEx5IfEUhBSi+LwOCS8NgFRCe7zFS2o07AZURHWi6kqqSrua19MDVMZze9W8Ku50LAIQsMiqJ3Q4MRWpMrBg7nsz9pDXk4mefsyyc/NomC/+4/HgWyK8zKRvL0EHswkOD+TsIIsYnPXEZ2zjxjdR+BR5yqKVdhBbXYF1WVfSD0ORDakOCaR4Lim1G7WiaYt2xAdHnpiuc1hYWFh7N69m/j4eCv6NYyqsnv3bsLCTuwGTlbwjYsIoWGRhIZFQr3GFX67FheRsy+TrIw0sv/cxIHdmynau5XA7DTC89Jpkr+WOnm/ErKrEDYAKZCnIawJaMTu8BYcrN2K4AbtiG/WiSYt2xEZbncmq6jExETS0tLw9qizxhlhYWEkJiae0Dqsl46pOsXFFO7bya4tq9iz+Xfy01cRmvkH8XmbqFv8vyJ1UIPYFNiEnbWTCG51Ji27DyShTl0HgxvjuyrSS8cKvvEJRXnZ/LlhOXs2LSM/fSURu5bR4sAKQimgSIV1gS3IiO9B6Eln0jJpIHFx8U5HNsYnWME3NUJRfh6blv7E3hU/EJU+jxYHVhIiha4/AEGt2NWgH20uGkv8iZ6/MKYas4JvaqSCA/vZkDqb7JU/Ev3nXNrkr2C/hrKs/hBOuuh+6jS0i3iM/7GCb/zCltWLyJjxb7pkzqSQIJYlXEDTwfdTt0lrp6MZU2UqUvDt8ktTbTVp041ud37Cn9f+SmrcIDpnTKP2W71Y9J8rSF+/zOl4xvgcK/im2mvUoj2njnmf3dcvYEHCENrt+YF6k85g6fMXs331fKfjGeMzrOCbGqNBk1b0/vsEsm9exK/1r6Zl1jwaTh7IinGDSFv+k9PxjHGcFXxT49Rr0IQ+t7xM3m2pzG54A432LSfx08GseaYfWxd9Az503sqYqmQF39RYCXXr0/fGcRSOWcaPTW4nbv8GGn85jA1PncbmuZ9a4Td+xwq+qfHqxMXTf9S/CBq7nJkt7iH0QAZNvx3Fln93Y/Oc96H42IPGGVMTWLdM43eycnKZ/8UbnLR2PM3ZTnpQYw72vJ1m/a6DwGCn4xlTIdYP3xgP7Ms9wG9fvU2zlW/Qmk1kBNYjp9utND/7Zgi2wdtM9WAF35gKyD1YwM9ff0CDZa/SiT/YExBH4dBJ1G3Xx+loxhyTXXhlTAVEhAZzzpCRnPzAXL7pNp6c4mAip1xG+vLZTkczplJZwTfGLSwkiEEXDiP3yi/ZRS1iPh3G1iUznY5lTKWxgm/MUdqc3JrCa74igzjivxjBxpRvnY5kTKWwgm9MKVq2aEXAddPZIXWo/9VVrJ33tdORjDlhVvCNKUOTps0J/dsM0qU+jWdcy6pfPnc6kjEnxAq+MeVo2KgJkTfOYHtgQ1p8/zeWz/7U6UjGHDevF3wRCRSRJSLylbe3ZYw31GuQSOzN35AW1JiTZ93Ekh+SnY5kzHGpiiP8McCqKtiOMV4TX7chdW79hq1BTWg/51bmf/OB05GMqTCvFnwRSQTOByZ4czvGVIXY+HrUG/0tW4Kb03XuaH79epLTkYypEG8f4b8I3AMUe3k7xlSJ6FoJNLz9W7aEnkSPBXcw+/O3nI5kjMe8VvBF5AJgp6ouOsZyN4pIioikZGRkeCuOMZUmIiaexNHfsDmsNacvuYuZn7zhdCRjPOLNI/zewGAR2QRMBvqLyPtHL6Sq41U1SVWTEhISvBjHmMoTFl2bJrd/w+bwdvRdfh8zPnoFXxqXypjSeK3gq+r9qpqoqs2AK4AfVfUqb23PmKoWEhlL0zEz2BzZkYGrH+TL9/9jRd/4NOuHb8wJCAqPofnt09kc1YXz1/2Tzyc+R3GxFX3jmzwq+CLSVETOcj8OF5HoimxEVWer6gXHE9AYXxcQFkXzMV+zOaYbF216nE/feooiK/rGBx2z4IvIDcAnwKEzU4mAXWNuTAkSEknz0V+ypXYPLk17minjH6egyDqnGd/iyRH+bbhOwGYDqOpaoK43QxlTHUlIBM1um8bWuF4M/3Mcyf99lIOFdr9c4zs8KfgHVTX/0BMRCQLs+6oxpQkOo+mtn7GlTh+u2vUiya8+zIECK/rGN3hS8H8SkQeAcBE5G/gY+NK7sYypxoLDaHLzp6TV7cs1e19h8sv/x/6DhU6nMsajgn8fkAEsB24CpgMPejOUMdVeUCiJN37M9voDGJn9X5Jfvo+svAKnUxk/50nBPx94S1UvU9WhqvqmWmdjY44tKISGNyTzZ6OBjMp5k09evoe9+/OP/T5jvMSTgj8MWCsiz4hIG28HMqZGCQym/qgP2dH4PK7PfZvPX3/Iumwaxxyz4Luvju0KrAcmishc9/g3FeqLb4zfCgym3sj32F6vH1dlv8mnX9mtIYwzPLrwSlWzcfXFnww0AC4BFovIaC9mM6bmCAyiwbVvkxMcR9Kiu1m+cbvTiYwf8uTCq8Ei8hkwGwgGeqjquUBn4B/ejWdMzSERcQQPfZNm8iebP7id3HzruWOqlidH+JcCL6hqR1V9VlV3AqhqLnC9V9MZU8NEtelHevubuKDwe6Z+8JrTcYyf8aQN/1rgD/eR/oUiUr/EvB+8ms6YGqjRJf8iPbItF2x6ip8WLnE6jvEjnjTpXA8sAIYAQ4F5IjLK28GMqbGCQoi/9j1CpYiIr29jR+Z+pxMZP+FJk849QFdVHek+2u8G3OvdWMbUbCF1TyK735N0ZwWz33nQhlQ2VcKTgr8b2Ffi+T73a8aYE1DvjFFsrj+QIZnv8uUM66ppvK/Mgi8iY0VkLLAOmC8i/xSRR4B5wB9VFdCYGkuEJteMJzsojs4L7mL1lnSnE5karrwj/Gj3tB7X+PeHvnN+AWz0ci5j/IJE1CZo6Js0kR1sfu/vNrKm8aqgsmao6qMln4tIhLsrpjGmEsW27cfm9jdzzor/MuXD17j8Wrue0XiHJ710eonISmC1+3lnEbEOxMZUoqZD/kVaRHvO2fAkcxenOh3H1FCenLR9ETgH94laVV0KnOHNUMb4ncBgEkZOIliUkGm3sDvbvkybyufpWDpbj3rJGhqNqWShdVuR2fcJurGSn975P2wUclPZPCn4W0XkNEBFJFhE7gJWeTmXMX6p4ZmjWF93IIP3TOTb76yrpqlcnhT8m3HdyLwRsA3o4n5ujKlsIjQfOZ7MoDq0+20s69P+dDqRqUE8GUtnl6qOUNV6qlpXVa9SVbvwyhgvCYioTcDQCTSSDDa+dyv5hcVORzI1RJndMkXkZf7X9/4vVPV2ryQyxhDX9kzWtb2Fs1a9xheTX+Wiq6yrpjlx5R3hpwCLgDDgFGCte+oChHg/mjH+rdXQf7E5vD391j7JoqXLnI5jaoAyC76qvquq7wKdgL6q+rKqvgwMwFX0jTHeFBhEwrWTCBQl8PMbycrJczqRqeY8OWlbG4gp8TzK/Zoxxssi6rdi15lP0kVX8fM791tXTXNCPCn4TwFLRGSiiLwLLAae9G4sY8whTfuNYk3CIAbtepeffvja6TimGvOkl847wKnAZ8BUoJe7qccYU0VaXfcGe4ISaPnznaSl73A6jqmmPL3S9k9V/cI9edQxWETCRGSBiCwVkRUi8uix32WMKU1gRC0YMp6GZLDu3VsoLLKumqbiPCr4x+kg0F9VO+M6yTtIRHp6cXvG1Gh12/dlbZtb6HvgB2Ymv+p0HFMNea3gq0uO+2mwe7IzTsacgDaX/4sN4R3oveYJfl9hXTVNxXhU8EUkUEQaikiTQ1MF3pcK7AS+V9X5pSxzo4ikiEhKRkZGxdIb428Cg6hz7SREBP30BnLyDjidyFQjnoyHPxrYAXwPfO2ePBrVSVWLVLULkAj0EJEOpSwzXlWTVDUpISGhQuGN8Ucx9Vuyo8+TdCxezW9v3+d0HFONeHKEPwZorartVbWje+pUkY2oaiYwCxh0PCGNMUdqOeA6VtQZxICdE5k7y7pqGs94NDwykFXRFYtIgojUcj8OB87GfdcsY8yJO3nUG2QE1qXJT2P4c6d11TTH5knB3wDMFpH7RWTsocmD9zUAZonIMmAhrjZ8G+DbmEoSHFGLokvGU093s/6dmygutj4RpnyeFPwtuNrvQ4DoElO5VHWZqnZV1U6q2kFVHzuxqMaYozXq2JeVJ91M77xZzJn2ttNxjI8TXxqbIykpSVNSUpyOYUy1ooX5bHq6F9H5GeTf9BsNGyY6HclUIRFZpKpJnixb5hG+iLzo/vmliEw7eqqssMaYEyNBIYQP/S+x5LDh/TE2wJopU5k3QAHec/8cVxVBjDHHr37rHixteT2nbxjPz9M/oM/5Vzkdyfgga9IxpoYozj9A2jM9CC3ch9w2n7oJdZ2OZKpApTTpGGOql4CQMAIvfo06upfVk+6wph3zF1bwjalBGnU4neVNr+GMfV8zb+anTscxPsaToRUu8+Q1Y4xv6HDlv9kW2Iimv97H7j27nY5jfIgnR/j3e/iaMcYHBIVFUnTBK9TXXfw+6R9OxzE+pMxeOiJyLnAe0EhEXioxKwYo9HYwY8zxa9K1P0sWDOPM9MksmD2UHn0vcDqS8QHlHeFvB1KAA8CiEtM04BzvRzPGnIj2V48jPaAe9Wf/g6ysCg+HZWqgMgu+qi5137u2laq+W2Kaqqp7qzCjMeY4hEREkzfoRZrwJ0sm3eN0HOMDPGnD7yEi34vIHyKyQUQ2isgGryczxpywFj3OI7XuJfTZlczi3753Oo5xmCcF/y3geeB0oDuQ5P5pjKkG2lzzArsD4qj9/Z3k7N/vdBzjIE8KfpaqzlDVnaq6+9A8jVJfAAAVyElEQVTk9WTGmEoRFlWbrLPG0Vy3kjLJOtj5M08K/iwReVZEeonIKYcmryczxlSak3oPITX+PE7/8z2WLZzjdBzjkPIGTzvkVPfPkmM1KNC/8uMYY7zl5GteIuuF7kTMGE1eh/mEh4c5HclUsWMe4atqv1ImK/bGVDMRsQlknPkkrYo3Mf/9h5yOYxzgydAK9UTkLRGZ4X7eTkSu9340Y0xla9PvSpbWGsBpaW+xcul8p+OYKuZJG/5E4Fugofv5H8Ad3gpkjPGulte8yn6JJOCL2ziYf9DpOKYKeVLw66jqFKAYQFULgSKvpjLGeE1UXAO2n/YYbYrXMu+Dfzkdx1QhTwr+fhGJx3WiFhHpCdh12sZUY+3PHsny6NPpuel1/lix2Ok4pop4UvDH4ho/p6WI/ApMAkZ7NZUxxrtEaHL1fzkoIRRMvY2CQhsP0R940ktnMXAmcBpwE9BeVZd5O5gxxrti6zZhU9JDtC9aydzJTzkdx1QBT3rpBOIaJnkAMBAYLSJjvR3MGON9nc6/mRURp5K09iU2rl3hdBzjZZ406XwJjATigegSkzGmuhOhwVWvUywB7JtyC0VFxU4nMl7kyZW2iarayetJjDGOiGvYgtQu99Il9Z/8/PFz9LnibqcjGS/x5Ah/hogM9HoSY4xjOg8ew6qwrnRd9RxbN/7hdBzjJZ4U/HnAZyKSJyLZIrJPRLK9HcwYU3UkIIA6w18nQIrZNflWiq1pp0bypOA/D/QCIlQ1RlWjVTXGy7mMMVUsoWkbVre7k64HFzL381edjmO8wJOCvxX4XVXV22GMMc7qOvQe1oS0p8Oyf5O+bZPTcUwl86TgbwBmi8j9IjL20HSsN4lIYxGZJSIrRWSFiIw58bjGGG+SgEBihr1BKPlse/9WtNiadmoSTwr+RuAHIISKdcssBP6hqu2AnsBtItLueIMaY6pGg5YdWdH67yTl/cq8ryY4HcdUIvG0pUZEogBUNee4NiTyBfCKqpZ5J+WkpCRNSUk5ntUbYypRcWEBG54+jbiCdApvnkfd+olORzJlEJFFqpp07CU9u9K2g4gsAVYAK0RkkYi0r2CgZkBX4C8DcIvIjSKSIiIpGRkZFVmtMcZLAoKCCRv6OlGaR/rbV1NQUOB0JFMJPGnSGQ+MVdWmqtoU+AfwpqcbcH8z+BS4Q1X/0p1TVcerapKqJiUkJHi6WmOMlyW27saKrg/TOX8x8ybYaCo1gScFP1JVZx16oqqzgUhPVi4iwbiK/QeqOvW4EhpjHNP14jEsqnMRfXZMYt5X7zgdx5wgj3rpiMhDItLMPT2Iq+dOuUREgLeAVar6/IkGNcY4o/MNb7AuuDUdF97H2t/tHFt15knBHwUkAFPdU4L7tWPpDVwN9BeRVPd03nEnNcY4Iig0nLhRyRyUEEI+vYa9e3Y7HckcJ4976VQF66VjjO9au+Abmn89nNSInnS96ysCAwOdjmSoWC+dMkfLFJFp5b1RVQdXNJgxpvo6qccglmy6i6SVz/DTO//HmX+zm6ZUN+UNj9wL17AKH+HqTilVksgY47O6XvYAS/+zmD5bX2fh96fQ/ezLnY5kKqC8Nvz6wANAB+A/wNnALlX9SVV/qopwxhgfI0KbG99hc3AzTv7lDrtLVjVTZsFX1SJV/UZVr8U1NMI6XGPq/L3K0hljfE5oRAxRV09GBAo/GkH2viynIxkPldtLR0RCRWQI8D5wG/AS8FlVBDPG+K6Epm1IH/AKLYs2seL1UTZ+fjVRZsEXkUnAXOAU4FFV7a6q/1LVbVWWzhjjs1r3GUJqq1votX8mcz54wuk4xgPlHeFfBZwEjAF+c9/tyu54ZYw5rOuIx/k9qje917/AojlfOR3HHEN5bfgB7rtbRbvvdHVosjteGWMA1/j5rW76gJ2B9Wj6461s3bTe6UimHJ5caWuMMWUKi65NwPAPieAA+967kv25uU5HMmWwgm+MOWENTurK5tOfpV3Raha9cRO+dAW/+R8r+MaYStH2rGtZ0vgazsiaxpzkF52OY0phBd8YU2m6jHye1eGn0HPVEyydP+vYbzBVygq+MabSSGAwiTd+RGZALerO+Bvp6WlORzIlWME3xlSqqNr1KRj6LnGaxY63r+TAwYNORzJuVvCNMZUusX1v1vV4jC4FS5k7foydxPURVvCNMV7R/vxbSa1/Kf12f8ScLyY4HcdgBd8Y40Wdrv8v60LakrTk/1ixdL7TcfyeFXxjjNcEBIdS9/opHAgIJ+qza8nI2Ol0JL9mBd8Y41Ux9Zqwf/BbNNSdbJpwNfkFhU5H8ltW8I0xXtek61ms6XIf3Q/O4+e373M6jt+ygm+MqRIdLr6b5fGD6Ld9Ar9M/8jpOH7JCr4xpmqI0PaGt9gS0pyO8//BmpVLnU7kd6zgG2OqTFBYFLHXTkZECJ9yOSt+T3U6kl+xgm+MqVK1E1uTc+mHxLCf+h9fyLyfv3M6kt+wgm+MqXINO56JjvqOgsAIOs8cwczP3nE6kl+wgm+McUTtJu2IHf0Tf4Y1p1/qncx4+zGKi20IBm+ygm+McUx47fo0ufNH1tbqzblbnmPmSzdxIL/A6Vg1lhV8Y4yjAsOiaDNmGisTL2dgZjIpzw1hd2aW07FqJCv4xhjnBQTS7vrxrO54N6cfnMPWl85lS5qNpV/ZrOAbY3yDCG0ufZCNfV+iXfEaCicMZPnvy5xOVaN4reCLyNsislNEfvfWNowxNU/zvtey+5IpJJBJ/Y8v4Nc53zsdqcbw5hH+RGCQF9dvjKmhGnQeQNGo79DAULr8MIJvP5/kdKQawWsFX1XnAHu8tX5jTM1Wq0kHYv4+m91hTRiwZAxfvv0ERdZt84Q43oYvIjeKSIqIpGRkZDgdxxjjQ8LiGpF45yw21erJhVue4duXbiXvoA2vfLwcL/iqOl5Vk1Q1KSEhwek4xhgfExAWTavbv2RNoyGcl/kh854fyq6sfU7HqpYcL/jGGHNMgUG0/tvbrO1wJ/0OzmLLf85lY9o2p1NVO1bwjTHVgwgnDf0nm898gY7FqyiacA5LV1gnwIrwZrfMj4C5QGsRSROR6721LWOM/2jabxR7Lv6I+uym/pQL+HnOj05Hqja82UtnuKo2UNVgVU1U1be8tS1jjH+p12UgRSNnEBgYSJcfruTrz95H1XrwHIs16RhjqqXYZl2Ium02WaENGJh6O5+/84x12zwGK/jGmGorLL4xDe+cTVpsNy7Z8iRfvzSa3IM22mZZrOAbY6q1gPBYmo+ZzrqGgxmc+R5znx/G6k3bnY7lk6zgG2Oqv8BgWt0wiQ3t/s6Agz9Q551T+fT1f7J9d7bTyXyKFXxjTM0gQovLnyDnmu/YH9OSS/98gYMv9WDqh6+TnZfvdDqfYAXfGFOjRLU4laZjZ7HrwkmEh4Yw5I97Wf/06Xz19efkFxY7Hc9RVvCNMTWPCHW6XUT9exezrc9TNAvI4IKF1/Lbv89n9tx5ftuF0wq+MabmCgyi0YBbqHXvMjZ2uJ1TixbT+5vzmP7MNaSuXut0uipnBd8YU+NJaDTNh/6LkLFL2dx0COfkfUWLj/rw2Utj2ZjuP6P0WsE3xviNwJj6tBo1gYIbf2FXfHcu2fMWYa/3YOpbT7MrO9fpeF5nBd8Y43fCG7anxe1fkjnsCwoj6zFk65Psfq4n0z6ZRF5+kdPxvMYKvjHGb9Vq25fGd8/lz4GvERecz+DfR7Ps3/34bub3NXKYBiv4xhj/JkL900aQcN9SNnd/iLZs4KyfL+PHfw9h7uLUGtWjxwq+McYABIXS9Py7iL5nORtaj+KMgp855Yuz+PL5G1m5cavT6SqFFXxjjClBwmvT6srnkdGL2NrgHC7Y9zH1J/bks/8+yJq0ndX6iF98KXxSUpKmpKQ4HcMYYw7bt2kRu6beQ/PsFHI0jPnBPchpcT4nn34JbRrXRUQczScii1Q1yaNlreAbY8wxqJK1ahY7f3ufettnElOcRa6GsiA4iazm53FS7yG0bdrAkeJvBd8YY7ylqJCsNbPZMW8KddO+o1bxXg5oMAuCupHZ7Dxa9r6Uds0bVVnxt4JvjDFVobiI7D9+5s+5ydRJ+5a4ot0c1CAWBnVlb9NzaX7aUNq3bOLV4m8F3xhjqlpxMdnrfiN9bjJ1tswgviiDfA1kUWBndjc5hyanXUbHk1pUevG3gm+MMU5SJWfDArb99hFxm2eQUPgnhRrA4oAOZDQZRGKvy+l4cisCAk68+FvBN8YYX6HKvs2L2fbrZGpt/Jr6hdsoUiE1oD07Es+hYa/L6dSm9XEXfyv4xhjji1TJ2bqMtF8/ImbDdBoWbKZYhaWBbelw32yCQ0IrvMqKFPygCq/dGGPM8REhqkln2jTpDDzF/m2/s+XnyYRkbj2uYl9RVvCNMcYhkY060PaKx6tseza0gjHG+Akr+MYY4yes4BtjjJ+wgm+MMX7CCr4xxvgJrxZ8ERkkImtEZJ2I3OfNbRljjCmf1wq+iAQCrwLnAu2A4SLSzlvbM8YYUz5vHuH3ANap6gZVzQcmAxd5cXvGGGPK4c0LrxoBJW8EmQacevRCInIjcKP7aY6IrCllXXWAXZWe0LuqW+bqlhcsc1WpbpmrW144scxNPV3Q8SttVXU8ML68ZUQkxdOxInxFdctc3fKCZa4q1S1zdcsLVZfZm00624DGJZ4nul8zxhjjAG8W/IXASSLSXERCgCuAaV7cnjHGmHJ4rUlHVQtF5O/At0Ag8LaqrjjO1ZXb5OOjqlvm6pYXLHNVqW6Zq1teqKLMPjUevjHGGO+xK22NMcZPWME3xhg/4VMF/1hDMYjISBHJEJFU9/Q3J3KWyPO2iOwUkd/LmC8i8pL78ywTkVOqOuNReY6Vt6+IZJXYvw9XdcZSMjUWkVkislJEVojImFKW8bX97Elmn9nXIhImIgtEZKk776OlLBMqIsnufTxfRJpVfdIj8niS2afqxSEiEigiS0Tkq1LmeXc/q6pPTLhO7K4HWgAhwFKg3VHLjARecTpriTxnAKcAv5cx/zxgBiBAT2C+j+ftC3zl9H49KlMD4BT342jgj1L+X/jafvYks8/sa/d+i3I/DgbmAz2PWuZW4HX34yuA5GqQ2afqRYlcY4EPS/v39/Z+9qUj/Go3FIOqzgH2lLPIRcAkdZkH1BKRBlWT7q88yOtzVDVdVRe7H+8DVuG6irskX9vPnmT2Ge79luN+Guyeju7NcRHwrvvxJ8AAEZEqivgXHmb2OSKSCJwPTChjEa/uZ18q+KUNxVDaL8ml7q/tn4hI41Lm+xJPP5Mv6eX+mjxDRNo7HaYk99fbrriO5kry2f1cTmbwoX3tbmZIBXYC36tqmftYVQuBLCC+alMeyYPM4Hv14kXgHqC4jPle3c++VPA98SXQTFU7Ad/zv7+EpnIsBpqqamfgZeBzh/McJiJRwKfAHaqa7XQeTxwjs0/ta1UtUtUuuK6I7yEiHZzM4wkPMvtUvRCRC4CdqrrIqQy+VPCPORSDqu5W1YPupxOAblWU7XhVq+ElVDX70NdkVZ0OBItIHYdjISLBuArnB6o6tZRFfG4/Hyuzr+5rVc0EZgGDjpp1eB+LSBAQC+yu2nSlKyuzD9aL3sBgEdmEq8m6v4i8f9QyXt3PvlTwjzkUw1HtsoNxtY36smnANe5eJD2BLFVNdzpUWUSk/qH2QhHpgev/h6O/1O48bwGrVPX5Mhbzqf3sSWZf2tcikiAitdyPw4GzgdVHLTYNuNb9eCjwo7rPLDrBk8y+Vi9U9X5VTVTVZrjq24+qetVRi3l1Pzs+WuYhWsZQDCLyGJCiqtOA20VkMFCI6+TjSMcCAyLyEa7eFnVEJA14BNfJI1T1dWA6rh4k64Bc4Dpnkrp4kHcocIuIFAJ5wBVO/lK79QauBpa722sBHgCagG/uZzzL7Ev7ugHwrrhuWhQATFHVr4763XsLeE9E1uH63bvCoayHeJLZp+pFWapyP9vQCsYY4yd8qUnHGGOMF1nBN8YYP2EF3xhj/IQVfGOM8RNW8I0xxk9YwTdeIyI5Hixzh4hEVOI2LxaRdpW4vt9O4L057p8NReSTcparJSK3Hu92jPGUFXzjtDuAChV8d9/rslwMVFrBV9XTKmEd21V1aDmL1MI1SqIxXmUF33iduMZ+n+0ewGq1iHzgvir2dqAhMEtEZrmXHSgic0VksYh87B6PBhHZJCJPi8hi4DIRuUFEFroHH/tURCJE5DRcV1Q+K67xz1uKSBcRmeceQOszEantXt9sEXlBRFJEZJWIdBeRqSKyVkQeL5E9p8Tje0VkuXubT5XyOZu7sy8/ah3NxH0PAhFpL65x3FPdmU4CngJaul97VkSiROQH9z5YLiIXlVjPKhF5U1xjwH/nvsoUEWklIjPd2RaLSEv363e799MyKWXMeONnKnOsZZtsKjkBOe6ffXGN+peI6yBjLnC6e94moI77cR1gDhDpfn4v8HCJ5e4pse74Eo8fB0a7H08EhpaYtww40/34MeBF9+PZwNPux2OA7biu3gzFNdpm/FGf4VzgNyDC/TyulM87DbjG/fi2Eu9thvseBLgGShvhfhwChJec7349CIgpsU/W4Rr/vRmuq0a7uOdNAa5yP54PXOJ+HIbrW9NAXDfHFvd+/wo4w+n/FzY5N/nM0AqmxlugqmkA7uEGmgG/HLVMT1zNMb+6h5kJwfXH4ZDkEo87uI+iawFRuIbkOIKIxAK1VPUn90vvAh+XWOTQWE3LgRXqHn9HRDbgGsCq5Ng2ZwHvqGougKqWdl+B3sCl7sfvAU+Xssxc4P/ENS76VFVdK38d7lyAJ0XkDFzD6DYC6rnnbVTVQ8M1LAKaiUg00EhVP3NnO+D+HANxFf0l7uWjgJNw/VE1fsgKvqkqB0s8LqL0/3uCa1zz4WWsY3+JxxOBi1V1qYiMxPUt4ngzFR+Vr7iMfJ4od6wSVf1QRObjugnGdBG5Cdhw1GIjgASgm6oWiGt0xbCjMoNrP4aXszkB/q2qb1Qgv6nBrA3fOG0frtsAAswDeotIKwARiRSRk8t4XzSQLq5hiEeUtj5VzQL2ikgf97yrgZ84Pt8D1x3qUSQicaUs8yv/G+xqRCnzEZEWwAZVfQn4AujEkfsAXEPi7nQX+35A0/KCqeuuWmkicrF7G6HunN8Co0qcB2kkInU9+rSmRrKCb5w2HvhGRGapagauEQ0/EpFluJo/2pTxvodwtVv/ypHD4k4G7hbXTaJb4hpq9ln3+rrgasevMFX9BlcTUIq7SequUhYbA9wmIssp+45blwO/u9fRAdetGXfjasb6XUSeBT4AktzruYa/DlVcmqtxjQ65DNe5hvqq+h2ue6fOda/rE478w2L8jI2WaYwxfsKO8I0xxk9YwTfGGD9hBd8YY/yEFXxjjPETVvCNMcZPWME3xhg/YQXfGGP8xP8DIcKLYC5W7lgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for j in reversed(range(len(algorithms))):\n", " pylab.plot(distances, dipoles[j], label=algorithms[j])\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Moment in debye')\n", "pylab.title('LiH Dipole Moment')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xt8HGW9+PHPN8nmnjYlSS9JKW0DFQGh0FKgHJC7okgRkSMF5XIU6w1FRcDfOaIIAuJdzhFRFFDKRaw23G8ClaQU2lKupUBDoW3SNuktm/tu9vv7YybtNt0km2Qns5fv+/XKK7OzM898d9LOd+d5nnkeUVWMMcZkriy/AzDGGOMvSwTGGJPhLBEYY0yGs0RgjDEZzhKBMcZkOEsExhiT4SwRGGNMhrNEYNKWiKwTkVN8OvYEEVkiIkER+fkoHvcOEbnOo7LPF5EnvCjb+MsSQYYSkcdE5NoY6+eJyCYRyXFfzxWRf7kXtJ0iUiMiB0Ztf4KIRESktc/PMaP5eZLQpUAzMEZVv+N3MEMlIlNFRHv/HQCo6t2qepqfcRlvWCLIXHcCF4iI9Fn/eeBuVQ27F/MngMVAJTANeBWoFZGpUfs0qGpxn5+l3n+E0RF9MRyC/YA31R7dNynAEkHm+idQBhzXu0JExgFnAHe5q34K3KWqv1bVoKpuU9X/Bl4ErhnOQd3qmu+KyKvuHcZ9IpLvvneRiDzfZ3sVkf3d5TtE5P9E5FH3rqNWRCaKyK9EZLuIvCUih/c55JEi8qb7/p97j+WWd4aIrBKRHSJSJyKH9onzShF5FWiLlQzcu6WX3M/xkojM7Y0TuBD4nhvnXtVTIpInIj8TkQ9EZLOI3CoiBe57q0XkjKhtc0SkSUSOcF//zb1r2+lWPx3cz7ke7Hx+UkReFpEWEVkvIj+M2nSJ+3tH7x1e3/L6+/zue8+KyI/dv1FQRJ4QkXL3vXwR+auIbHXP/UsiMiHWZzCjwxJBhlLVDuB+4AtRq88F3lLVV0SkEJgL/C3G7vcDI6kiOBf4OM4dxqHARUPc97+BcqALWAqsdF8/APyiz/bnAx8DqoEZ7r64CeNPwJdxEuLvgRoRyYva9zzgk0CpqoajCxWRfYCHgd+4+/8CeFhEylT1IuBu4Kfu3dFTMT7HjW48M4H9gSrgB+5797jH7vUxoFlVV7qvHwUOAMa7n/3u2KdqUG04f/9S93N+RUTOct873v1dGusOb6DPH7XZfOBiN85c4Lvu+guBscC+7r4LgI5hfgaTAJYIMtudwDlR35K/4K4D2Afn30djjP0agYqo15XuN7von6IBjvsbVW1Q1W3AgzgXw3j9Q1VXqGon8A+gU1XvUtUe4D6g7x3BLaq63j3W9ey+wF4K/F5Vl6lqj6reiZNYju4T53o3afb1SeAdVf2LqoZV9R7gLeBTg30AtzruUuBy9y4rCPwE+Jy7yULgTDcZg3NBvad3f1X9k3uH1gX8EDhMRMYOdty+VPVZVX1NVSOq+qp7jI/GuXs8n//Pqvp21JeO3r9zCCcB7O+e+xWq2jLU+E3iWCLIYKr6PE6D5lkiUg3MwbkIAWwHIsCkGLtOcvfr1aCqpX1+2gY49Kao5XageAhhb45a7ojxum9Z66OW38dp6wCnDv870ckL5xtqZT/79lXplhftfZxv9oOpAAqBFVHHfsxdj6q+C6wGPuUmgzNx/y4iki0iN4rIWhFpAda5ZZbHcdw9iMhRIvKMW+20E+ebebzlxPP5+/s7/wV4HLhXRBpE5KciEhhq/CZxLBGYu3DuBC4AHlfVzQDuhXwp8NkY+5wLPOtBLG04F0gARGRiAsrcN2p5CtDgLq8Hru+TvArdb7a9BmrobcBJJtGmABvjiKkZJ2kdHHXssaoancR6q4fm4TQ6v+uun++uOwWnemWqu75voz8Mfj4XAjXAvqo6Frg1qpzBGrmH/flVNaSqP1LVg3CqH89gzypKM8osEZi7cC4qX2J3tVCvq4ALReQyESkRkXHi9FE/DqcqI9FeAQ4WkZluddUPE1Dm10Rkslun/f9wqo8A/gAscL8Vi4gUuY2nJXGW+wgwQ0Tmu425/wkcBDw02I6qGnGP/0sRGQ8gIlUi8rGoze7FaYf5Crvv0gBKcKqwtuJc5Af6Owx2PkuAbaraKSJzcJJMryacO8Lp/ZQ97M8vIieKyEdEJBtowakqigy2n/GOJYIMp6rrgDqgCOfbYfR7z+M0VJ6N0y6wDaeh72RVfT1q00rZ+zmCzwwjlreBa4GngHeA5wfeIy4LcbrA1gNrgevcYy3HSX634FSDvcsQGq1VdSvON9nv4FyUvwecoarNA+6425XuMV9wq3ieAj4UVX4jzh3ZXHYnL3AS9/s437zfBF4YIMbBzudXgWtFJIjTUH1/1L7tOG0qtW71VXTbyUg//0Schv0WnCqw53Cqi4xPxLo5m3iJ073yGWC+qj7udzzGmMSwOwITN7dnyVnAR2R4D1kZY5KQ3REYY0yGszsCY4zJcClxe19eXq5Tp071OwxjjEkpK1asaFbVisG2S4lEMHXqVJYvX+53GMYYk1JEpO9DfzFZ1ZAxxmQ4SwTGGJPhLBEYY0yGS4k2glhCoRAbNmygs7PT71A8kZ+fz+TJkwkEbCwuY4y3UjYRbNiwgZKSEqZOnYrsNclWalNVtm7dyoYNG5g2bZrf4Rhj0pynVUMi8k0ReV1E3hCRb7nr9hGRJ0XkHff3uOGU3dnZSVlZWdolAQARoaysLG3vdowZbS1LFlG/4Eje/mwV9QuOpGXJoqQu1+uy+/IsEYjIITiDes0BDgPOcKfIuwp4WlUPAJ52Xw/3GIkINSml82czZjS1LFnE5luvINy8EVQJN29k861XjPjC6lW5Xpcdi5dVQx8GlrmjGCIiz+GMYjkPOMHd5k6cce2v9DAOY0wGa154A9q95yRz2t3Blj9eTXfDu/3sNbgdj9zuSbkDld288AbGHH/2iMqOxctE8DpwvTuHaQfwCWA5MMEdYhecGYxiTlotIpfiTOfHlClTPAxzeE488USuuuoqPvax3UPI/+pXv2LNmjV8/etf5xvf+AYbN24kHA5zwQUXcM0115CVlcUdd9zBFVdcQVXV7omcFi5cyEEHHeTHxzAm7YW3NsRcH2kPsu3vvx5+wf2M0zbicgcou7/PMlKeJQJVXS0iN+GMBd8GrAJ6+myjIhLzE6vqbcBtALNnzx7xyHgtSxbRvPAGwlsbyCmrpHz+1SPKrOeddx733nvvHong3nvv5aabbuLMM8/kd7/7Haeddhrt7e185jOf4de//jWXX345AP/5n//JLbfcMtKPZIyJQ05ZpVPF0nd9eRXTb31p2OXWLzjSk3IHLLusMsbWI+dpY7Gq3q6qs1T1eJzJP94GNovIJAD39xYvYwBv6tvOOeccHn74Ybq7uwFYt24dDQ0NvPvuuxx77LGcdtppABQWFnLLLbdw8803J+SzGGOGpnz+1dCnzU1yC5z1IyxXcgsSXq7XZcfiafdRERmvqltEZApO+8DRwDScWa5udH8vHulxtvz5B3S990a/73e+vQINd++xTrs72Px/32bnU3fH3Cdv2sGMv/jafsvcZ599mDNnDo8++ijz5s3j3nvv5dxzz+WNN95g1qxZe2xbXV1NR0cHO3bsAOC+++7j+ed3Txa1dOlSCgr2/KMbYxIj/0OzQJWsorFE2lsSUiMA7No/kTUNo1F2LF4/R/B3t40gBHxNVXeIyI3A/SLyXzhT7p3rcQx7JYHB1sert3qoNxHcfvvt3H137MQSzaqGjBk9rXXODKz7/exJAhWTE1r2mOPP9uzi7GXZfXmaCFT1uBjrtgInJ/I4A31zh4Hr8va99u/DPu68efO4/PLLWblyJe3t7cyaNYuXX36ZJUuW7Hn8+nrKysooLS0d9rGMMcMTrK0hf8ashCeBdJIRYw15Vd9WXFzMiSeeyCWXXMJ5550HwPnnn8/zzz/PU089BUBHRweXXXYZP/rRj0Z0LGPM0HU3rKVr3RuUzD3T71CSWkYkgjHHn82EBTeTU14FIuSUVzFhwc0Jue0677zzeOWVV3YlgoKCAmpqarj++uuZMWMG5eXlHHvssZx//vm79rnvvvuYOXPmrp+6uroRx2GM2VuwtgZEKD7mDL9DSWopMWfx7Nmzte/ENKtXr+bDH/6wTxHF75///Cff/va3eeaZZ9hvv/2GtG+qfEZjktW6y08ku7iUfX/8D79D8YWIrFDV2YNtlxF3BH4666yzqK+vH3ISMMaMTNf6NXSvX2PVQnGwRGCMSUvB2sWQlWXVQnFI6USQCtVaw5XOn80Yr6kqwboaCg6aS07poHO3Z7yUTQT5+fls3bo1LS+YvfMR5Ofn+x2KMSmp+/03CTXUU3KsVQvFI2Unppk8eTIbNmygqanJ71A80TtDmTFm6IK1NZCVTclRp/sdSkpI2UQQCARs9i5jzF56q4UKDz2O7DFlfoeTElK2asgYY2LpWvsqoc3vU3LMp/wOJWVYIjDGpJVg3WLICVBs1UJxs0RgjEkbTrXQgxQd+lGyi21sr3hZIjDGpI3Ot1cQbt5ovYWGyBKBMSZtBOtqkEAeRUd+bPCNzS6WCIwxaUEjEYJLH6Lw8BPJLizxO5yUYonAGJMWOt56kZ5tm2xsoWGwRGCMSQvB2sVIbj7Fs071O5SUY4nAGJPytCdM6wsPUzTrVLIKivwOJ+VYIjDGpLyON5bSs7PZegsNkyUCY0zKC9bVIPlFFB1+kt+hpCRLBMaYlKbhEMEXHqF49mlk5RUMvoPZiyUCY0xKa3/teSKt261aaAQsERhjUlqwbjFZhWMonHmC36GkLEsExpiUFQl10brsMYrnfJysQJ7f4aQsTxOBiFwuIm+IyOsico+I5IvIHSLynoiscn9mehmDMSZ9tb/yHJH2FnuIbIQ8m5hGRKqAy4CDVLVDRO4HPue+fYWqPuDVsY0xmSFY9yBZxeMoPPQ4v0NJaV5XDeUABSKSAxQCDR4fzxiTISLdnbS99DjFR52O5AT8DieleZYIVHUj8DPgA6AR2KmqT7hvXy8ir4rIL0UkZsWeiFwqIstFZHm6zktsjBm+tpefIdLRar2FEsCzRCAi44B5wDSgEigSkQuAq4EDgSOBfYArY+2vqrep6mxVnV1RUeFVmMaYFNVau5jsMWUUHjzX71BSnpdVQ6cA76lqk6qGgEXAXFVtVEcX8GdgjocxGGPSUKSzndYVT1J89CeRbM+aOjOGl4ngA+BoESkUEQFOBlaLyCQAd91ZwOsexmCMSUNtK59Cuzqst1CCeJZKVXWZiDwArATCwMvAbcCjIlIBCLAKWOBVDMaY9BSsrSG7dDwFHz7K71DSgqf3VKp6DXBNn9U2KpQxZtgiHa20vfwvxp48H8nO9juctGBPFhtjUkrrS0+g3Z3WWyiBLBEYY1JKsG4xOWWTyJ8x2+9Q0oYlAmNMyuhp20nbqmcpmXsmkmWXr0SxM2mMSRmtLz4G4RDF1lsooSwRGGNSRrC2hsD4KeTvb2NVJpIlAmNMSugJbqP9tX9TPPdTOI8hmUSxRGCMSQnBFx6FnrA9ROYBSwTGmJTQWreYwKTp5E07xO9Q0o4lAmNM0gvvaKL9jTqnt5BVCyWcJQJjTNJrfeFhiETsITKPWCIwxiS9YF0NuZNnkDflQL9DSUuWCIwxSS28bRMdq5fZ3YCHLBEYY5JacOlDoGq9hTxkicAYk9SCdTXkTT2I3Kr9/Q4lbVkiMMYkrVDzRjrXLKdk7jy/Q0lrlgiMMUkrWPcgAMVzP+VzJOnNEoExJmkF62rIm34ouROn+h1KWrNEYIxJSt2b36fr3VXWW2gUWCIwxiSl1roaAOstNAosERhjklKwtob8GbMIVEz2O5S0Z4nAGJN0uhvW0rXuDbsbGCWWCIwxSSdYWwMiFB9zht+hZARLBMaYpBOsq6HgwDkEyib5HUpGsERgjEkqXevX0L1+jVULjaIcLwsXkcuBLwIKvAZcDEwC7gXKgBXA51W128s4jDHJr2XJIpoX3kC4eSMAavMOjBrP7ghEpAq4DJitqocA2cDngJuAX6rq/sB24L+8isEYkxpalixi861X7EoCAM13/ZiWJYt8jCpzeF01lAMUiEgOUAg0AicBD7jv3wmc5XEMxpgk17zwBrS7Y4912t1B88IbfIoos3iWCFR1I/Az4AOcBLATpypoh6qG3c02AFWx9heRS0VkuYgsb2pq8ipMY0wSCG9tGNJ6k1heVg2NA+YB04BKoAj4eLz7q+ptqjpbVWdXVFR4FKUxJhnklFUOab1JLC+rhk4B3lPVJlUNAYuAY4FSt6oIYDKwsb8CjDGZoXz+1Uggb491kltA+fyrfYoos3iZCD4AjhaRQhER4GTgTeAZ4Bx3mwuBxR7GYIxJAWOOP5uCj/yH+0rIKa9iwoKbGXP82b7GlSk86z6qqstE5AFgJRAGXgZuAx4G7hWR69x1t3sVgzEmNagq3R+8RdGsU6i6+i6/w8k4nj5HoKrXANf0WV0PzPHyuMaY1NL59grCzRspn3+V36FkJHuy2Bjju2BdDRLIo2j2aX6HkpHiSgQiUi0iee7yCSJymYiUehuaMSYTaCRCcOlDFB1+EtmFJX6Hk5HivSP4O9AjIvvj1PPvCyz0LCpjTMboeOtFerZtsnmJfRRvIoi4D4F9Gvitql6BM2aQMcaMSLB2MZKbT/GsU/0OJWPFmwhCInIeTnfPh9x1AW9CMsZkCu0J0/rCwxTNOpWsgiK/w8lY8SaCi4FjgOtV9T0RmQb8xbuwjDGZoOONpfTsbLYJ6n0WV/dRVX0TZyTR3tfv4Ywiaowxwxasq0Hyiyg6/CS/Q8locSUCETkW+CGwn7uPAKqq070LzRiTzjQcIvjCIxTPPo2svAK/w8lo8T5QdjtwOc7ooT3ehWOMyRTtrz1PpHW7VQslgXgTwU5VfdTTSIwxGSVYt5iswjEUzjzB71AyXryJ4BkRuRlnBNGu3pWqutKTqIwxaS0S6qJ12WMUz/k4WX1GHTWjL95EcJT7e3bUOsWZbcwYY4ak/ZXniLS32AT1SSLeXkMneh2IMSZzBGtryCoeR+Ghx/kdiiH+sYbGisgveqeOFJGfi8hYr4MzxqSfSFcHrS89TvFRpyM59lxqMoj3gbI/AUHgXPenBfizV0EZY9JX28vPoJ1t1lsoicTbRlCtqp+Jev0jEVnlRUDGmPQWrFtM9pgyCg+e63coxhXvHUGHiPTOI9f7gFmHNyEZY9JVpLOdthVPUXzMGUi2p/NimSGI9y/xFeBOt11AgG3ARV4FZYxJT20rnkS7Oqy3UJKJt9fQKuAwERnjvm7xNCpjTFoK1taQPW4CBQfabLXJZMBEICIXqOpfReTbfdYDoKq/8DA2Y0waiXS00vbyvxh76gVIdrbf4Zgog90R9A4QHmv+OE1wLMaYNNb60hNoqMuqhZLQgIlAVX/vLj6lqrXR77kNxsYYE5dg3WJyyiaRP2OW36GYPuLtNfTbONcZY8xeetp20rbqWUrmnolkxXvZMaNlsDaCY4C5QEWfdoIxgFXyGWPi0vriYxAOUWzVQklpsDaCXKDY3S66naAFOGegHUXkQ8B9UaumAz8ASoEvAU3u+u+r6iNDiNkYk2KCtTUExk8hf/+ZfodiYhisjeA54DkRuUNV3x9Kwaq6BpgJICLZwEbgHzjzH/9SVX82vJCNMamkJ7iN9tf+zbhPfXlXj0OTXOJ9oKzdnY/gYCC/d6WqxjsM9cnAWlV93/4hGJNZgi88Cj1h6y2UxOJttbkbeAuYBvwIWAe8NITjfA64J+r110XkVRH5k4iMi7WDiFzaO9ppU1NTrE2MMSmgtW4xgUnTyZt2iN+hmH7EmwjKVPV2IKSqz6nqJcQ5KY2I5AJnAn9zV/0OqMapNmoEfh5rP1W9TVVnq+rsioqKOMM0xiST8I4m2t+oc3oLWW1A0oq3aijk/m4UkU8CDcA+ce57OrBSVTcD9P4GEJE/AA/FWY4xJsW0vvAwRCI25HSSizcRXOcOOPcdnOcHxgCXx7nveURVC4nIJFVtdF9+Gng9znKMMSkmWFdD7uQZ5E050O9QzADiHXSu91v7TiDuaStFpAg4Ffhy1OqfishMnCEq1vV5zxiTJsLbNtGxehll537H71DMIOJKBCLyZ2KMLeS2FfRLVduAsj7rPj+UAI0xqSm49CFQtd5CKSDeqqHoevx8nCqdhsSHY4xJF8HaxeRNPYjcqv39DsUMIt6qob9HvxaRe4DnPYnIGJPyQk0b6Hx7BeXzr/Y7FBOH4Y7+dAAwPpGBGGPSR7DuQQCKrbdQSoi3jSCI00Yg7u9NwJUexmWMSWHBuhryqg8jd8J+fodi4hBv1VCsiWmMMWYv3ZvW0bX2Fco//z9+h2LiNNgw1EcM9L6qrkxsOMaYVNfqVguVzP2Uz5GYeA12RxBz+AeXEucwE8aYzBGsW0z+jFkEKib7HYqJ02DDUMf98JgxxnRvfJeudW9ScdGP/A7FDEG8zxEgIocAB7HnMNR3eRGUMSY1BeseBBGKjznD71DMEMTba+ga4AScRPAIzkByzwOWCIwxuwTraig4cA6Bskl+h2KGIN7nCM7BmVxmk6peDBwGjPUsKmNMyulav4bu9WtsSIkUFG8i6FDVCBAWkTHAFmBf78IyxqSaYO1iyMqyaqEUFG8bwXIRKQX+AKwAWoGlnkVljEkpqupUCx00l5xSm0gq1cT7QNlX3cVbReQxYIyqvupdWMaYVNK17g1CDfWM+9QCv0MxwxBX1ZCI1IjIfBEpUtV1lgSMMdGCdTWQlU3JUaf7HYoZhnjbCH4O/Afwpog8ICLniEj+YDsZY9KfqtJaW0PhoceRPaZs8B1M0okrEbgT1n8VmA78HjgXp8HYGJPhuta+QmjLB9ZbKIXFPQy1iBQAnwEWAEcCd3oVVCK0LFlE/YIjefuzVdQvOJKWJYs8K8e2Gfl5Nok3Wn+bYO1iyAlQPOfjnpRvvBfvA2X3A3OAx4BbgOfc7qRJqWXJIjbfegXa3QFAuHkjm2+9AoAxx5+d0HJsm5GfZ5N4o/W30UiE4NIHKTrso2QXlyasXDO64u0+ejtwnqr2eBlMojQvvGHXf4Be2t1B88IbhvSfoL9ymu64hqz8AgCa7rjGtumzzVDPs0m8RP0fGEzn2ysINzfYTGQpTlT3mpN+95si31PVn7rLn1XVv0W99xNV/f4oxMjs2bN1+fLlcW//9merINbnEmHG3zaOvBwzsCGeZ5M43Zvfp23FUzT9qb+5AIQD7l+PZA13csI9bfnT/7Dzyb8y/fZXyS60aUuSjYisUNXZg2032L+Gz0Ut9035SVshmFNWOaT1Qy0nu3Q8U25+gik3P0F2aewZOzN5m6GeZzN8Gg7R/nodTXddy7pvfZR1XzvGSQLZ/d3sK/WXHs6m//0WwRcepqc9OPxj9/QQXPoQRYefZEkgxQ2WCKSf5Vivk0b5/KuR3II91kluwZBvX/srp+ILPyB/2iHkTzuEii/8wLbps41VE3grvHMrLc/+jYZffJm1l3yEDT88h+2P3E7OPhOpuPhapv62lolf+1WMv00+Yz52IYUHz6X1xcdp/NmXWHvJIaz/4blsf/A2uhvWDimOjrdepGf7ZkpsXuKUN1gbgfazHOt10uitA236y3X0bN9EVnEp4y+5bsh1o2OOP5vw9s00/+XHAOSUV1E+/+o9yuldbl54A+GtDeSUVWbcNptv+x7a2R7z/JiRU1W61r1B24qnaFv5NJ3vrARVskvHU3z0JyiadSpFhx5HVkHxrn1yJ00D+v/7aU+YjjXLd5XZdOcPabrzhwQmTqNo1ikUzTqZwg8fjQRy+40rWFeD5BVQNOtUb0+A8dxgbQQ9QBvOt/8CoL33LSBfVQMD7Psh4L6oVdOBH+AMXX0fMBVYB5yrqtsHCnKobQS9tKeHdy/Yn9JPXELFMOdPbV3+BA03XsS+P3mQghmzhlVGutv2z/+l+a/XU33narKLbFDaoWhZsijmxTrS2U77a/92L9T/IrytEYC8/WdSfMTJFB1xCnnTP5Kwuv7QlvW0rXiK1pVP0/F6LRrqQvKLKDrsoxQdcTJFR5xMzrjxe8bcvBHJK2DCl2+25J+k4m0jGGyGsuzhBqCqa4CZbjDZwEbgH8BVwNOqeqOIXOW+vnK4xxmIZGcTmDiV7o1Du+WN1rtv7qTpiQor7eRWVgPQ3VBPwQGH+xxN6ojVxXPT/17O1n/+L+HG+j0vxrOuoOjwk3ZdjBMtMH5fSk+/mNLTL3aS0OvPO0loxdO0LnsEgLzqw8gpq6T95X+hoS4AtKvDugyngbhnKBuhk4G1qvq+iMzDmeQGnIfSnsWjRADORap7w9vD3j/UWE/2mH3ILhmXwKjSS8BNBKFGSwRDEauLJz0hQhveofT0iymedQoFHz5qwOoZL2TlF1I8+zSKZ5+2u1pq5dNOYnjx0b22ty7DqW+0EsHngHvc5Qmq2ugubwImxNpBRC4FLgWYMmXKsA8cqJxO64on0Z4w0m9Piv51N6zddaEzseVO2A+yskd055WJwlsbYr+hPYy/ODnm/BWRXZ0Dyj7zTd4+p4pYzYP9fhaTEhJTwTgAEckFzgT+1vc9dRooYjZSqOptqjpbVWdXVAx/fPPcymoIhwht+WBY+3c3rN1V9WFik0AugfFThtzrJNMlqpvzaMopT72YzeA8TwQ48xuvVNXN7uvNIjIJwP3t6eB10fXXQ9XT1kLPjiZrH4hDbuV0Qo2WCIaifP7VkLNnf4tk736bqK7ZJrmMRiI4j93VQgA1wIXu8oXAYi8PnlvpXMRDw/i2Gmp0kkduld0RDCZQWU13Qz0aSdohqJLOmOPPJjCpGrKyQYSc8iomLEjuHjhjjj+bCQtuJqe8KmViNoPztI1ARIqAU4EvR62+EbhfRP4LeB9nSGvPZJfsQ1bJuGHdEfRWdQQq9090WGknt7Ia7e4kvLWBQMVkv8NJCeGdWwltfIdx875CxfmjMlpLQow5/my78KcZTxOBqrYBZX3WbcXpRTRqciurh1V/3d2wFrKyCEwYfmN1pui98+purLeq1mpSAAAV0klEQVREEKfWZY9ApMfG8Te+G42qId/lVk4fdiIIjJ9CViDPg6jSS29bTMh6DsUtWFdDoHI6eVMP9jsUk+EyJBFU07N9M5GO1iHtF7IeQ3HLHjcByS+ynkNxCm/fQsebSymZeyYiSTtsl8kQGZEIApOG3nNIIxG6G98jYD2G4iIizp1X49DbYjJR8IWHIBKh5Nh5fodiTGYkgt5eP90N78a9T3hbI9rVYXcEQzDctphM1FpbQ+6+HyJv3w/5HYoxmZEIAhOngsiQ7gh6L2jWdTR+uZXVhJs2EOnqGHzjDBba2kDHWy9aI7FJGhmRCLICeQQq9h3SswQhN2lY1VD8ApXTQZXQ5vf9DiWptdY9BGDj+JukkRGJAHofeIo/EXQ3rEXyC8nZZ6KHUaWX3U9xW/XQQIJ1NeRNPdiqHU3SyJhEkFtVTXdjPQPNvxCtu2EtuZOmW4+OIegdiiM0jIf3MkVoy3o631lpdwMmqWROIpg0He1sJ7xtU1zbhxrq7RvbEGUVFJO9z0S7IxhAcOmDABRb+4BJIpmTCHofeIrjIhXp7iTUtN6Gnx4G6zk0sGBtDXnVhzlDdxuTJDImEQSq4n+WILT5fVDdNWyCiV/upOnDGtcpE3Q3vkdX/avWW8gknYxJBDnjJiJ5BXF9W901PaUNNjdkuZXVRFq309Oy1e9Qkk6wzqkWKpn7KZ8jMWZPGZMIJCvL/bY6eCLorT6yO4Kh233nZdVDfQXrasifMcsG5TNJJ2MSATjfVkNxDIHQ3biW7HETyCooHoWo0ktvzyGrHtpT98Z36H7/TRtSwiSljEoEgcrphLZ8QCTUNeB23RttsLnhCozfF3ICdkfQR7C2BkQoOeYMv0MxZi8ZlQhyK/eHSITQpoGffO22rqPDJtk55E6caokgiqoSrKuh4MNH2QOKJillWCJwH3gaYG7dnuA2Iq3brX1gBAKTpttDZVG6P3iL7g3vWG8hk7QyKhH0PhfQPcDkKb3v2TMEw5dbWU1o0zq0p8fvUJJCsK4GsrIoPvqTfodiTEwZlQiyC0vILh0/YLXFrlFHLREMW25lNRruJtS03u9QfKeqBGtrKDx4LjmlFX6HY0xMGZUIgEEnT+lurIecgNPoaYZlVxWcVQ/R9d5rhDa9R/Fc6y1kklcGJoLqAYeZCG1cS+6E/ZDsnFGMKr0E3AfxrMHY7S2UnUPJ0af7HYox/cq4RBCorKanZRs9we0x3+9uWGtzEIxQ9ph9yCoam/HTVqoqwaUPUviR48gu2cfvcIzpV8Ylgt5qi1gXKe3pIbRpnc1KNkLO/MXVAzbKZ4LOd14mvGW9DTltkl4GJoL+h0AINW9Aw93WUJwAg1XBZYJgXQ2Sk0vxnI/7HYoxA/I0EYhIqYg8ICJvichqETlGRH4oIhtFZJX78wkvY+grMH4KZOfEbMgM9XYdnWSJYKQCldMJb2sk0tHmdyi+0EiE1roHKZz5UbKLxvodjjED8vqO4NfAY6p6IHAYsNpd/0tVnen+POJxDHuQnACBCVNi3hH0VhdZ1dDI7brzytB2gs41LxHe1kiJ9RYyKcCzRCAiY4HjgdsBVLVbVXd4dbyh6G/ylO6GtWQVjSV7TJkPUaWXTJ+/OFhXg+TmU3zkaX6HYsygvLwjmAY0AX8WkZdF5I8iUuS+93UReVVE/iQi42LtLCKXishyEVne1NSU0MByJ00n1PgeGonssT5k8xQnTGDiVBCJa7TXdKM9PQSXPkzR4SfZCLYmJXiZCHKAI4DfqerhQBtwFfA7oBqYCTQCP4+1s6repqqzVXV2RUVin8gMVO6PhroIN2/cY313w1obWiJBsvIKyCmvysieQx2rX6BnxxabgMakDC8TwQZgg6ouc18/AByhqptVtUdVI8AfgDkexhBTbozJUyKd7YS3Nlr7QAJl6vzFwdoaJK+Aolmn+h2KMXHxLBGo6iZgvYh8yF11MvCmiEyK2uzTwOtexdCf3ZOn7L5I7WootofJEia3cjqhxnpU1e9QRo32hGld9jBFs04hK7/Q73CMiYvX4yh8A7hbRHKBeuBi4DciMhNQYB3wZY9j2Et2aQVZhSV7JIKQDTaXcIHKaiIdrfTs2ELOuAl+hzMq2l+vpadlm/UWMinF00SgqquA2X1Wf97LY8ZDRAj0eeCpNykEJk3zK6y0s7vnUH3GJIJgXQ2SX0TR4Sf6HYoxccu4J4t7ORPZ7+7R0t1QT055FVl5BT5GlV4yrQuphrppXfYoxUd+zP4dmZSSuYmgsppw80YiXe2Ac7GyaqHEyimrRHLzM2aoibbX/k2kdYeNLWRSTuYmArd3UKjxPVTVeYbAegwllGRlEZg0PWPuCFpra8gqHEPhYR/1OxRjhiRjE0FgV8+henp2NBHpaLXhpz3QtwouXUW6O2l96TGKj/o4WYE8v8MxZkgyNhFEdyG16Sm9k1tVTWjz+2io2+9QPNW+6lki7UHrLWRSUsYmgqz8QnLKJlki8FjupOkQ6SG05QO/Q/FUsK6GrJJxFH7kP/wOxZghy9hEAL1j5tcTaliL5OaTU17ld0hpJ5ABPYciXe20Ln+CkqM+geQE/A7HmCHL6EQQcIdA6G5YS2DiNCQro0+HJ3bNCJfGiaBt5b/QznZK5lpvIZOaMvrKl1tZTaS9hY41K3ZdsExiZReXkj2mLK0bjIO1NWSPLafg4GP8DsWYYcn4RAAQad1u7QMeSudpKyMdbbStfIrioz+JZHs9Yosx3rBEEGPZJFagKn1HIW1d8QTa3UnJsdZbyKSujE4E7atf3LXc9NfraFmyyMdo0leks52enc28fU4V9QuOTKvzHKytIXufiRQcOOqjqRuTMBmbCFqWLGLLbVfuet2zo4nNt16RVhepZNCyZBFtyx51Xynh5o1pc5572lpof/kZSo45wzoamJSWsf96mxfegHZ37LFOuztoXniDTxGlp+aFN6DhPR8mS5fz3PbS42i423oLmZSXsYkgvLVhSOvN8KTzeQ7W1ZBTXkX+jFl+h2LMiGRsIsgpqxzSejM86Xqee4LbaXvlOadaSMTvcIwZkYxNBOXzr0Zy9xwzXnILKJ9/tU8RpadY55nsQMqf59YXH4WesPUWMmkhYzs+jzn+bMCpww5vbSCnrJLy+VfvWm8So+95lpxcNNJD/gEzE36sliWLRu3vGaytITBhP/KqD/OkfGNGk6TCxOKzZ8/W5cuX+x2GSYDQ1kbe//ZJ5E4+gH2v/QeSnZ2QcluWLGLzrVfs0QFAcguYsODmhCeD8M6t1H9pJuPmfYWK87+f0LKNSSQRWaGqfacL3kvGVg0ZfwTKJjH+v66nc81ytj/0+4SVO5q9wFqXPQKRHustZNKGJQIz6kqO+zTFR32Crff8lK71axJSZr+9k5o30rbqWSLdnQk5Dji9hQKV08mbenDCyjTGT5YIzKgTEcZfeiNZhSVs+u1laDg0ovJUlayisf2+v/G6+ay9+GA23nQxO568m9DWxmEfK7x9Cx1vLqVk7pnWW8ikjYxtLDb+yhlbzvhLb6LxZ19k26LfUHbud4ZVTk/bTjbf+j0irTtAskAju96T3AIqvng9OaUVtK14yvl56XEA8qYdQtERp1A062Tyq2fG3VYRfOEhiESst5BJK9ZYbHzV+OuvE6yrYcpPHiK/+tAh7dvx9koaf/UVwlsbKT/vSrLHTWTrPTf222tIVelev2ZXUuh4ezlEImSPKaPo8JMomnUyhYedQHbRmH6Puf6/z6KnbSdTf/nMsD+zMaMl3sZiTxOBiJQCfwQOARS4BFgD3AdMBdYB56rq9oHKsUSQvnpad7Du2ycBIFnZA3b9jO4emlU4hkh7CzkVk5n0rf+jYBhP9/YEt9O26hnaVjzttCO0bofsHAoOnEPRrFMonnUygcr9ERFaliyi6a/X0bNtE1mFYxj/xZ9YV2OT9JIlEdwJ/FtV/ygiuUAh8H1gm6reKCJXAeNU9cqByrFEkN623PVjdtT8bo91fbt+xuoeSlY24790A6WnXjDiGLQnTOfbK2hd+TRtK56m+4PVAAQm7EfOxKl0vrkUDe0eM8mrrqnGJJLviUBExgKrgOkadRARWQOcoKqNIjIJeFZVPzRQWZYI0lv9giMJN2/c+43sHHInuVNdNtZDT3ivTXLKq5h+60sJjynUtIG2lU871Ugrn465jVfHNiZRkuE5gmlAE/BnEXlZRP4oIkXABFXt7baxCZgQa2cRuVRElovI8qamJg/DNH7rdwC6njC5k2eQO3lGzCQw4L4jFKiYTOnHLqTq+38BYvcOSoeB84wBbxNBDnAE8DtVPRxoA66K3sC9U4h5S6Kqt6nqbFWdXVFR4WGYxm/9DkxXXkXld2+j8ru3kVNeNaR9EymnPD0HzjOml5eJYAOwQVWXua8fwEkMm90qIdzfWzyMwaSAeAYA9HOQQBug0KQ7zxKBqm4C1otIb/3/ycCbQA1wobvuQmCxVzGY1DDm+LOZsOBm51u/CDnlVXs1xMazjZ/xGZPKvO41NBOn+2guUA9cjJN87gemAO/jdB/dNlA51lhsjDFDF29jsadPFqvqKiBWECd7eVxjjDHxs7GGjDEmw1kiMMaYDGeJwBhjMpwlAmOMyXApMfqoiDTh9DDqqxxoHuVwRspi9l6qxQsW82jJtJj3U9VBn8hNiUTQHxFZHk/XqGRiMXsv1eIFi3m0WMyxWdWQMcZkOEsExhiT4VI9EdzmdwDDYDF7L9XiBYt5tFjMMaR0G4ExxpiRS/U7AmOMMSNkicAYYzJcSiQCEfm4iKwRkXfdeY77vn+RiDSJyCr354t+xBkVz59EZIuIvN7P+yIiv3E/z6sicsRoxxgjpsFiPkFEdkad4x+Mdox94tlXRJ4RkTdF5A0R+WaMbZLqPMcZc7Kd53wReVFEXnFj/lGMbfJE5D73PC8TkamjH+ke8cQTc1JdM9yYst3ZHB+K8Z6351hVk/oHyAbWAtNxhrN+BTiozzYXAbf4HWtUPMfjTMLzej/vfwJ4FGcOxKOBZSkQ8wnAQ37HGRXPJOAId7kEeDvGv4ukOs9xxpxs51mAYnc5ACwDju6zzVeBW93lzwH3pUDMSXXNcGP6NrAw1t/f63OcCncEc4B3VbVeVbuBe4F5Psc0IFVdAgw0x8I84C51vACU9s7a5pc4Yk4qqtqoqivd5SCwGug7n2VSnec4Y04q7rlrdV8G3J++PUzmAXe6yw8AJ4tI7ImeR0GcMScVEZkMfBJn/pZYPD3HqZAIqoD1Ua83EPs/z2fc2/8HRGTf0Qlt2OL9TMnmGPd2+1EROdjvYHq5t8mH43zzi5a053mAmCHJzrNbZbEKZ1rZJ3X39LO9dp1nVQ0DO4Gy0Y1yT3HEDMl1zfgV8D0g0s/7np7jVEgE8XgQmKqqhwJPsjtzmsRZiTNuyWHAb4F/+hwPACJSDPwd+JaqtvgdTzwGiTnpzrOq9qjqTGAyMEdEDvE7psHEEXPSXDNE5Axgi6qu8CuGVEgEG4HobD3ZXbeLqm5V1S735R+BWaMU23AN+pmSjaq29N5uq+ojQEBEyv2MSUQCOBfUu1V1UYxNku48DxZzMp7nXqq6A3gG+Hift3adZxHJAcYCW0c3utj6iznJrhnHAmeKyDqcqu+TROSvfbbx9BynQiJ4CThARKaJSC5OQ0lN9AZ96n3PxKl7TWY1wBfcXi1HAztVtdHvoAYiIhN76yRFZA7Ovx3f/rO7sdwOrFbVX/SzWVKd53hiTsLzXCEipe5yAXAq8FafzWqAC93lc4B/qduq6Yd4Yk6ma4aqXq2qk1V1Ks717V+qekGfzTw9x57OWZwIqhoWka8Dj+P0IPqTqr4hItcCy1W1BrhMRM4EwjgNnhf5FjAgIvfg9P4oF5ENwDU4DVao6q3AIzg9Wt4F2oGL/Yl0tzhiPgf4ioiEgQ7gc37+Z8f5FvV54DW3Lhjg+8AUSNrzHE/MyXaeJwF3ikg2TlK6X1Uf6vP/73bgLyLyLs7/v8/5Fy4QX8xJdc2IZTTPsQ0xYYwxGS4VqoaMMcZ4yBKBMcZkOEsExhiT4SwRGGNMhrNEYIwxGc4SgfGFiLTGsc23RKQwgcc8S0QOSmB5dSPYt9X9XSkiDwywXamIfHW4xzEmHpYITDL7FjCkROD2He/PWUDCEoGqzk1AGQ2qes4Am5TijDxpjGcsERhfiTP+/rPuwF9vicjd7pPAlwGVwDMi8oy77WkislREVorI39wxexCRdSJyk4isBD4rIl8SkZfcgdv+LiKFIjIX5wnSm8UZf75aRGaKyAvuwGP/EJFxbnnPisgvRWS5iKwWkSNFZJGIvCMi10XF3hq1fKWIvOYe88YYn3OaG/trfcqYKu4cECJysDjj6K9yYzoAuBGodtfdLCLFIvK0ew5eE5F5UeWsFpE/iDMG/xPuU7WIyP4i8pQb20oRqXbXX+Gep1clxpj9JoMkckxr+7GfeH+AVvf3CTgjKU7G+WKyFPgP9711QLm7XA4sAYrc11cCP4ja7ntRZZdFLV8HfMNdvgM4J+q9V4GPusvXAr9yl58FbnKXvwk04DytmoczgmlZn89wOlAHFLqv94nxeWuAL7jLX4vadyruHBA4g8yd7y7nAgXR77vrc4AxUefkXZzx96fiPCU7033vfuACd3kZ8Gl3OR/nLus0nEnRxT3vDwHH+/3vwn78+Un6ISZMRnhRVTcAuEMvTAWe77PN0TjVOrXuUDy5OEmj131Ry4e437pLgWKc4Un2ICJjgVJVfc5ddSfwt6hNesezeg14Q90xikSkHmfwr+jxf04B/qyq7QCqGmteh2OBz7jLfwFuirHNUuD/iTM2/SJVfUf2HnJegJ+IyPE4QxZXARPc995T1d6hK1YAU0WkBKhS1X+4sXW6n+M0nGTwsrt9MXAATrI1GcYSgUkGXVHLPcT+dyk448qf108ZbVHLdwBnqeorInIRzl3HcGOK9Ikv0k988RhwPBdVXSgiy3AmKHlERL4M1PfZ7HygApilqiFxRqzM7xMzOOexYIDDCXCDqv5+CPGbNGVtBCaZBXGmdAR4AThWRPYHEJEiEZnRz34lQKM4Qz6fH6s8Vd0JbBeR49z3Pg88x/A8CVzc28NJRPaJsU0tuwcKOz/G+4jIdKBeVX8DLAYOZc9zAM7ww1vcJHAisN9AgakzE9oGETnLPUaeG+fjwCVR7SxVIjI+rk9r0o4lApPMbgMeE5FnVLUJZ4TIe0TkVZxqlAP72e9/cOrFa9lz+OF7gSvEmSC8GmdY35vd8mbitBMMmao+hlOVtNyt2vpujM2+CXxNRF6j/1nSzgVed8s4BGeaza041WGvi8jNwN3AbLecL7D3kNCxfB5ntM1XcdoyJqrqEzjz4y51y3qAPROOySA2+qgxxmQ4uyMwxpgMZ4nAGGMynCUCY4zJcJYIjDEmw1kiMMaYDGeJwBhjMpwlAmOMyXD/H+tAxni817S3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Evaluations')\n", "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { @@ -166,7 +226,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, From 219890dd05e265636934ff2b6d55a91537bdc227 Mon Sep 17 00:00:00 2001 From: woodsp Date: Sun, 28 Apr 2019 13:45:33 -0400 Subject: [PATCH 084/116] Update chemistry notebooks --- community/aqua/chemistry/nah_uccsd.ipynb | 109 +++++++++++++++++++---- 1 file changed, 91 insertions(+), 18 deletions(-) diff --git a/community/aqua/chemistry/nah_uccsd.ipynb b/community/aqua/chemistry/nah_uccsd.ipynb index ce3c7da82..f0ce1246e 100644 --- a/community/aqua/chemistry/nah_uccsd.ipynb +++ b/community/aqua/chemistry/nah_uccsd.ipynb @@ -6,16 +6,18 @@ "source": [ "## _*NaH dissociation curve using VQE with UCCSD*_\n", "\n", - "This notebook demonstrates using the Qiskit Chemistry to plot graphs of the ground state energy of the Sodium Hydride (NaH) molecule over a range of inter-atomic distances using VQE and UCCSD. It is compared to the same energies as computed by the ExactEigensolver\n", + "This notebook demonstrates using the Qiskit Chemistry to plot graphs of the ground state energy of the Sodium Hydride (NaH) molecule over a range of inter-atomic distances using VQE and UCCSD. It is compared to the same energies as computed by the ExactEigensolver.\n", "\n", "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." + "_*Note: this molecule is larger than the similar LiH and this notebook can take a while to run.*_\n", + "\n", + "This notebook has been written to use the PYSCF chemistry driver." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "scrolled": false }, @@ -24,7 +26,34 @@ "name": "stdout", "output_type": "stream", "text": [ - "Processing step __\b\b 0" + "Processing step 23 --- complete\n", + "Distances: [1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3\n", + " 2.4 2.5 2.75 3. 3.25 3.5 3.75 4. 4.25 4.5 ]\n", + "Energies: [[-160.05849063 -160.15699836 -160.22568735 -160.27202139 -160.30172252\n", + " -160.31895083 -160.32675432 -160.32741528 -160.32269878 -160.31400273\n", + " -160.30245852 -160.28899051 -160.27435538 -160.2591661 -160.2439109\n", + " -160.2289718 -160.19475711 -160.16708758 -160.14746338 -160.13627128\n", + " -160.13114984 -160.12788151 -160.12587996 -160.06078205]\n", + " [-160.05849084 -160.15699856 -160.22568741 -160.2720216 -160.30172261\n", + " -160.31895199 -160.32675458 -160.32741545 -160.32269886 -160.31400297\n", + " -160.30245861 -160.28899063 -160.27435552 -160.25916618 -160.24391112\n", + " -160.22897222 -160.19475719 -160.16708762 -160.14746354 -160.13627173\n", + " -160.13150727 -160.12988489 -160.12941537 -160.12738873]]\n", + "Hartree-Fock energies: [-160.04320295 -160.14360744 -160.21336733 -160.26022033 -160.29007462\n", + " -160.30721237 -160.31476208 -160.31507193 -160.30995602 -160.30085169\n", + " -160.28891892 -160.2751014 -160.26016389 -160.24471683 -160.2292359\n", + " -160.21408033 -160.17913095 -160.14978812 -160.12634274 -160.10810649\n", + " -160.09400858 -160.08298959 -160.07419396 -160.0607817 ]\n", + "Dipoles: [[ 2.97124996 3.47605491 3.89545827 4.26391121 4.59602643 4.90977845\n", + " 5.21848651 5.52130528 5.82181265 6.11915269 6.41401426 6.70106614\n", + " 6.97515248 7.2256667 7.44609665 7.6264232 7.7960656 7.18509199\n", + " 5.30076748 2.68452589 1.70805451 1.77404721 1.76460865 21.57731566]\n", + " [ 2.97335246 3.47789485 3.89561999 4.26006188 4.59374084 4.91025573\n", + " 5.21772576 5.52078168 5.82151088 6.11992744 6.41423476 6.70095324\n", + " 6.97491033 7.22906568 7.45413201 7.63797444 7.80073442 7.19343854\n", + " 5.31627389 2.65735429 0.91782198 0.26885135 0.07470177 0.0219034 ]]\n", + "VQE num evaluations: [211. 211. 186. 185. 160. 159. 211. 236. 212. 186. 186. 184. 184. 186.\n", + " 211. 211. 236. 262. 286. 338. 391. 339. 364. 28.]\n" ] } ], @@ -41,7 +70,7 @@ " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'parity',\n", " 'two_qubit_reduction': True, 'freeze_core': True, 'orbital_reduction': []},\n", " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", + " 'optimizer': {'name': 'SLSQP', 'maxiter': 2500 },\n", " 'variational_form': {'name': 'UCCSD'},\n", " 'initial_state': {'name': 'HartreeFock'}\n", "}\n", @@ -87,9 +116,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VFX6wPHvOzPpnSSUJCIIJNTQAoKgiKKoKEUFRBbFhm1dy8++Flx118XexcIiuiuggg0QdHcRAemEFrq0hATS26TNzPn9cW/YECYhQCaTkPN5nnmYuffce9+ZkHlzyj1HlFJomqZpmjdYvB2Apmma1nzpJKRpmqZ5jU5CmqZpmtfoJKRpmqZ5jU5CmqZpmtfoJKRpmqZ5jU5CmtaIichMEXnB23FomqfoJKQ1CiKyX0SOikhQlW23i8jSOh4/VUQ+d7NdiUjHWo5LEpEfRCRXRPJEJEVEXhSRiNN6Iw1IRHxF5FURSRWRIvMzfKPK/v0iMuwUzndGCc88vtyMpfKx6XTPpzUPOglpjYkVuL+hLiYiFwBLgRVAZ6VUOHAF4AB61nCMraHiq4MngCSgPxACXAxs8GZAwDSlVHCVh9vP8Uw0sp+BdoZ0EtIak5eBh0Uk3N1OEXlTRA6JSIGIrBeRC8/wetOAfyil/qaUOgKglDqolHpWKbXUvOZkEVkhIq+LSDYwVUQsIvKUiBwwa2+zRCTMLH+xiKRWi/tYjcSssc01jykUkW0iklSlbG8R2WDumwP41xJ/P2C+UuqwMuxXSs0yz/MZ0Bb43qyRPGpu/1JEMkQkX0SWiUg3c/sUYCLwqFn+e3N7jIh8LSKZIrJPRP50Oh+0iLQza6U3i8hBEckSkT9X2W8RkcdFZK+IZJufUYtqx94mIgeB/5jbbzJ/Btki8nTl5ywirUXELiKRVc7fx3wPPqcTv+Y5Oglpjck6jJrJwzXsXwv0AloA/wK+FJHavqRrZDb7DQS+rkPx84HfgVbAi8Bk8zEUOA8IBt45hcuPBGYD4cB3lceKiC/wDfAZxnv8EriulvOsAh4SkXtEpIeISOUOpdQk4CBwjVkjmWbuWgR0Alpi1Jr+aZb/0HxeWZO5RkQswPfAJiAWuBR4QESGn8J7rW4wkGCe6xkR6WJuvw8YDQwBYoBc4N1qxw4BugDDRaQr8B5G4mwDhJkxopTKwPh/NK7KsZOA2UqpijOIXfMEpZR+6IfXH8B+YBjQHcgHooHbgaW1HJML9DSfTwXKgbxqDwV0dHNsnLmvc5Vt08xjioGnzG2TgYPVjv03cE+V1wlABWDDaBJLdffeqsT5c5V9XYES8/lFwGFAquxfCbxQw/u3AvdiNCeWmcfe7O66NRwfbn4GYebrmVWvhZF8q7/3JzBqj+7ONxMorfb5f2rua2deK65K+TXADebz7cClVfa1qfKZVh57XpX9zwBfVHkdaP78Kz/n8cCKKp9TBtDf2//P9ePEh64JaY2KUmor8APwePV9IvKwiGw3m5LyMP76japSZK5SKrzqo5ZL5QIujC+7yms/ah4zH+PLr9KhasfGAAeqvD5glm918ncIGF+IleyAv9nPEQOkKfObs8q53VJKOZVS7yqlBmEklBeBGVVqF8cREauIvGQ2eRVgJCk4/jOs6lwgxhywkWd+5k9S+/t8pdrP4OZq+6u/9+Aq15pf5TrbAWe1a1X9OcRUfa2UsgPZVfZ/C3QVkfbAZUC+UmpNLXFrXqKTkNYYPQvcgdm8AmD2/zyK0cQSYSaLfEDcnuEklFLFwGrg2roUr/b6MMaXZqW2GIMZjmDUogKrxG3FqNXVRToQW7VZzTz3yQNUqkQp9S5Gcu1aQ9w3AqMwapxhGDUM+N9nWL38IWBftaQSopS6qk7v5tQcAq6sdi1/pVRalTJV40vHqM0ab0AkADjWB6SUKgXmAn/AaIr7zAMxa/VAJyGt0VFK7QHmAFU7wUMwvugzAZuIPAOEnuGlHgVuNTvEWwKISBzQ/iTHfQE8KCLtRSQY+CswRynlAHZh1GxGmJ3gTwF+dYznN4z3+CcR8RGRazFGvrklIg+YAyECRMQmIjdjfE4bzSJHMPqsKoVgNNtlYyTKv1Y7ZfXya4BCEXnMvIZVRLqLSL86vp9T8QHwooicCyAi0SIyqpbyXwHXiMgFZl/aVE78g2QWRnPqSHQSarR0EtIaq78AQVVeLwZ+xPiSP4DR91C9meyUKKWWA5dg9MXsMpuBfsTo1H67lkNnYHypLQP2mbHcZ54zH7gH+BhIw6gZpbo/zQnxlGPUzCYDORj9GvNqOcQOvIrRxJWF0T90nVLqd3P/34CnzCauhzG+lA+YcaVgDGyo6hOMJqw8EflGKeUErsYYDLLPvMbHGLWomlSOrqt8ZNXlvQNvYgzSWCIihWZs59dUWCm1DeMzn41RKyoCjmIk2coyKzCaXDcopWps1tS8S45vftY0TWt6zBppHtBJKbWvyvb/AP9SSn3steC0WumakKZpTZKIXCMigeZw+1eALfxvsAVms2EfjKZdrZHSSUjTtKZqFMYgkcMY9z7dUDmyUEQ+BX4GHlBKFXovRO1kdHOcpmma5jW6JqRpmqZ5jZ4I8CSioqJUu3btvB2Gpmlak7F+/fospVSd7o/TSegk2rVrx7p167wdhqZpWpMhInUeEq+b4zRN0zSv0UlI0zRN8xqdhDRN0zSv0X1CmqZ5TEVFBampqZSWlno7FM0D/P39iYuLw8fn9NcK1ElI0zSPSU1NJSQkhHbt2nH85OBaU6eUIjs7m9TUVNq3P9mcvzXTzXGapnlMaWkpkZGROgGdhUSEyMjIM67l6iSkaZpH6QR09qqPn61OQh7gdCne/e8elu3K9HYomqZpjZpOQh5gtQjTf9nLz9uPeDsUTWvWgoODj3s9c+ZM/vjHP57SOZKTk1m4cGF9hnWcmTNnEh0dTa9evejVqxc33XTTKZ9j6dKlXH311R6IzvP0wAQPiYsIJDW3xNthaJp2BhwOB8nJyaxbt46rrjpxVXOHw4HNduZfo+PHj+edd9454/M0RV6pCYnIWBHZJiIuEUmqti9RRH4z928REX9ze1/z9R4ReUvcNEaK4S2zzGYR6VNln1NEks3Hd55+j3ERAaTm2j19GU3TTtP333/P+eefT+/evRk2bBhHjhgtF1OnTmXSpEkMGjSISZMm8cwzzzBnzhx69erFnDlzTtjvdDp55JFH6NevH4mJiUyfPv3YNV5++eVj25999tlTii85OZkBAwaQmJjImDFjyM3NBWDPnj0MGzaMnj170qdPH/bu3XvccWvXrqV3794nbG+svFUT2oqxjPH0qhtFxAZ8DkxSSm0SkUigwtz9PnAHsBpYCFwBLKp23isx1hXphLE08Pv8b4ngEqVUr/p/K+7FRQSyfE8WSindMatpwHPfbyPlcEG9nrNrTCjPXtOtxv0lJSX06vW/X/ucnBxGjhwJwODBg1m1ahUiwscff8y0adN49dVXAUhJSWH58uUEBAQwc+ZM1q1bd6ymMnXq1OP2f/jhh4SFhbF27VrKysoYNGgQl19+Obt372b37t2sWbMGpRQjR45k2bJlXHTRRSfEOWfOHJYvXw7A/fffzy233MJNN93E22+/zZAhQ3jmmWd47rnneOONN5g4cSKPP/44Y8aMobS0FJfLxaFDxkr3K1eu5L777uPbb7+lbdu29fMhe5hXkpBSaju4HVlxObBZKbXJLJdtlmsDhCqlVpmvZwGjOTEJjQJmmQtbrRKRcBFpo5RK99ibqUFcRAD2cie59gpaBPk29OU1TQMCAgJITk4+9royoYBxD9P48eNJT0+nvLz8uHtdRo4cSUBAQI3nrbp/yZIlbN68ma+++gqA/Px8du/ezZIlS1iyZAm9e/cGoKioiN27d7tNQtWb4/Lz88nLy2PIkCEA3HzzzYwdO5bCwkLS0tIYM2YMYNwsWmn79u1MmTKFJUuWEBMTc2oflBc1tj6heECJyGIgGpitlJoGxAKpVcqlmtuqiwUOuSmXDviLyDrAAbyklPqmpiBEZAowBTjtvybiIoz/oKm5dp2ENA1qrbF4w3333cdDDz3EyJEjWbp0KVOnTj22LygoqNZjq+5XSvH2228zfPjw48osXryYJ554gjvvvPO47e+++y4fffQRQL0OeGjTpg2lpaVs3LixSSUhj/UJicjPIrLVzWNULYfZgMHARPPfMSJyaT2FdK5SKgm4EXhDRDrUVFAp9aFSKkkplRQdXaclMU4QFxEIoAcnaFojlZ+fT2ys8bfsp59+WmO5kJAQCgtrXiF8+PDhvP/++1RUGD0Hu3btori4mOHDhzNjxgyKiooASEtL4+jRo9x7770kJyeTnJxcY7IICwsjIiKCX3/9FYDPPvuMIUOGEBISQlxcHN98Y/wNXVZWht1u9D2Hh4ezYMECnnjiCZYuXXpqH4YXeSwJKaWGKaW6u3l8W8thqcAypVSWUsqO0ffTB0gD4qqUizO3VZcGnOOunFKq8t/fgaVA79N8a3USW6UmpGla4zN16lTGjh1L3759iYqKqrHc0KFDSUlJOTYwobrbb7+drl270qdPH7p3786dd96Jw+Hg8ssv58Ybb2TgwIH06NGD66+/vtZkVt2nn37KI488QmJiIsnJyTzzzDOAkZDeeustEhMTueCCC8jIyDh2TKtWrfjhhx+49957Wb169Sl8Gl6klPLaAyMZJFV5HQFsAAIxakU/AyPMfWuAAYBg9AVd5eZ8I8x9YpZdU+W8fubzKGA30LUuMfbt21edru7P/qie+WbLaR+vaU1dSkqKt0PQPMzdzxhYp+qYB7zSJyQiY4C3Mfp9FohIslJquFIqV0ReA9YCCliolFpgHnYPMBMIwEg0i8xz3QWglPoAo+Z0FbAHsAO3mMd2AaaLiAuj9veSUirF0+9T3yukaZpWO2+NjpsPzK9h3+cYw7Srb18HdHez/YMqzxVwr5syK4EeZxDyKXE6yrl2VhIJfh3YnvtgQ11W0zStydHT9niA1eZLMS7KrFmk5tormwo1TdOaBEeZneKi+r2nqyY6CXlIrMWPfCmmuNxJnr3i5AdomqZ5mb3cwcEcO/asQ/gV7MPlcnr8mo3tPqGzRqxPGGtdRwFjmHaEvldI07RGyKUUBSUVZBWVYy93ECgVhIodR1ArLBarx6+va0IeEhPYkqMWsFGmh2lrmtboVDhdHCkoZUdGIQdz7DhdipjwAM4LKAKxYAtp2SBx6CTkIbGhbXGJ0NJ3vx4hp2leMnToUBYvXnzctjfeeIO7776bbdu2cckll5CQkECHDh149tlncblcwInLK/Tq1YuUFI8PqG0Q9nIHh3Ls7Mgo5EhBKQE+VtpHBRHfKpgoP4WlNA+CosDSMA1lOgl5SGyLeOPfgDTS8nQS0jRvmDBhArNnzz5u2+zZs7nhhhsYOXIkjz/+ODt37mTLli2sWbOGN99881i58ePHH5vZIDk5ma5duzZ0+PXGpRR59nL2HC1iz9Ei8ksqiAzyJaFVCO2jggjx9zHm8iw+AggENUwtCHQS8pjYlokARAUd1c1xmuYl119/PQsWLKC8vByA/fv3c/jwYfbs2XNstmuAwMBA3nnnHV5++WVvhlvvKpvcdlZrcuvSJoSY8AD8fKr0+TjKwZ5r1IKsPg0Wox6Y4CGtWiZiVQof32z26eY4TYNFj0PGlvo9Z+secOVLNe5u0aIF/fv3Z9GiRYwaNYrZs2czbtw4tm3bRt++fY8r26FDB0pKSsjLywOOX14B4Lfffqt1Zu3GxF7uILuonLySCpRShPj7EBsRQIifrealZYrNlaAbsBYEuibkMTYff1q7hHJrPqm5JfpeIU3zkqpNcrNnz2bChAl1Oq56c1xjT0DumtxaBPkSbza5hVY2ubnjrIDibAiMAFvDjuTVNSEPirH4kecqpqjMQX5JBeGBepi21ozVUmPxpFGjRvHggw+yYcMG7HY7ffv2ZePGjSxbtuy4cr///juRkZGEh4d7Jc7TVeF0kVNcTk5xORVOF342CzHhAUQE+mC11LGeUXwUUBDcyqOxuqNrQh4U6xvOUYsD0Es6aJq3BAcHM3ToUG699dZjtaCJEyeyfPlyfv75Z8BYgfVPf/oTzz33nDdDrROlFKUVTjILy/g9s+jYKDd/HyvtIoOIbxVCVLBf3ROQ0wHFWeAfATb/k5evZzoJeVBMYCsyrYKfFOvBCZrmRRMmTGDTpk3HklBAQADfffcdL774IvHx8URFRTFo0CAmTpx47Jg5c+YcN0R75cqV3gofp8tFfkk5qbnG0OpdRwpJzy/B4VREVW1yC6ilya0m9kxQLghp+FoQ6OY4j4oLawf5m2nlc4DU3CRvh6Npzdbo0aNP6Jft3r07//3vfwH45ptveOihh7jxxhs599xzmTx5MpMnT/ZCpIbK2k5hqYPCMgf2MicKhVWEYH8bwf5+hPj54Gs7w3qEywlFmeAXBj7e6fPSSciDYlrEw0FoHZiqm+M0rREbPXo0o0eP9moMDqeLojKHkXhKHTjMG2cDfKxEh/gS7O9DoK8Vy6nWdGpjzwLl9FotCHQS8qjYVj0BiAzM1ElI07TjKKWwlzspLHNQVOrAXm70H9ssQrCfDyH+NoL9bfhYPdRr4nJB0VHwDQHfIM9cow50EvKg6Kiu2JTC5pvNPt0npGnNXoXTZdZ0Kigqc+B0KQQI8LXRKtSfEH8bAT7WU+/XOR0l2eByeLUWBDoJeZTV5kuMSyizFpBm3ivUIP+5NE1rNModTvJKKsizV1BaYSyN4GO1EOpv1nb8bNg8VdupiTJrQT5B4BvcsNeuRichD4uxBpDrslNY5qCgxEFYYMNNh6Fpmnc4nC7yzcRTbDazBfraaB3mT4ifD/4+Fu/+QVqSC85yCIsDL/9hrJOQh8X6hrPLeRiAQ7l2wgLDvByRpmme4HQpCkqNxFNU6kCh8LdZaR3qT1igD342z6/NUydKQeERsAWAX6i3o9H3CXlabFBrcqxCgBTowQma1sCsVutx9/q89FL9zdqQnJzMDwsWUFBSwcFsO3978306nBPDlUMGcsOVF/KHERdTkX0QR1EOE28YX2/XPR379++ne/fuxovSPHCWGX1BjaB7QNeEPCwmtB3kbqSV7359w6qmNbCAgACSk5Pr9ZyVo9r+u2I1a9etp23PQVgtQqCvlbHjxvHBe++e0NT21Vdf1WsMp62yFmT1A/9Tn57I4XBgs9Vv2tA1IQ+LjeoMQKuAVL2ukKY1Avn5+SQkJLBz507AmE3ho48+AuDuu+8mKSmJbt268eyzzx47Zs2aNQwYOJBu3RPp2SeJ5L1pTPvrCyz+fj5/uGoIm5ctokWQHz7WE/t6qtZC7HY748aNo2vXrowZM4bzzz+fdevWAbBkyRIGDhxInz59GDt2LEVFRQC0a9eOZ599lj59+tCjRw927NgBwC+//HKshte7d28KCwtRSvHII4/QvXt3evTowZw5c45/82UFDLhiLNsO5R6rBV188cWsW7eO4uJibr31Vvr370/v3r359ttvAWOBv5EjR3LJJZdw6aWX1uePAtA1IY+LbWncKxQRmKWb47Rm7e9r/s6OnB31es7OLTrzWP/HatxfUlJCr169jr1+4oknGD9+PO+88w6TJ0/m/vvvJzc3lzvuuAOAF198kRYtWuB0Orn00ktZv2Ejrdp24Lqx4/n7u5/Qo1dfVIWdNpFhvPj8X9iwYT3vvPMOYHxZu1v+oar33nuPiIgIUlJS2Lp167HYsrKyeOGFF/j5558JCgri73//O6+99hrPPPMMAFFRUWzYsIH33nuPV155hY8//phXXnmFd999l0GDBlFUVIS/vz/z5s0jOTmZTZs2kZWVRb9+/bjooov+F0BhBuNHX8Xc7xbzXNIg0tPTSU9PJykpiSeffJJLLrmEGTNmkJeXR//+/Rk2bBgAGzZsYPPmzbRo0eIMflru6STkYVFRXfBzKWy+ORzQSUjTGlRNzXGXXXYZX375Jffeey+bNm06tn3u3LlM//BDyssrSM9I5+ffNtAx207LVq0YfvEgwgJ8sFmNwUUWy4n9KZUJribLly/n/vvvB4xpgxITjcUvV61aRUpKCoMGDQKgvLycgQMHHjvu2muvBaBv377MmzcPgEGDBvHQQw8xceJErr32WuLi4li+fDkTJkzAarXSqlUrhgwZwtq1a43rKBdU2Bk3YSKXj57Ac3/5C3PnzuX6668HjJrYd999xyuvvAJAaWkpBw8ePPZ5eSIBgU5CHicWC22UhRJroe4T0pq12mosDc3lcrF9+3YCAwPJzc0lLi6OHbv28NK0l/nn9/8hJCyMqf93LwFWF+2jgvD3sRIZ7OexeJRSXHbZZXzxxRdu9/v5Gde2Wq04HMaQ78cff5wRI0awcOFCBg0axOLFi2u/iMsBFh9iO3QlMjKSzZs3M2fOHD744INjMXz99dckJCQcd9jq1asJCvLcjAq6T6gBxFoDyLWUUFhqrCukaZp3vf7663Tp0oV//vOf3Dx5MrvT89iyPx0//wDOaR1JqLKzYunPhPr70L1bV9LT01m7di0AhYWFOBwOQkJCKCwsPKXrDho0iLlz5wKQkpLCli3GSrMDBgxgxYoV7NmzB4Di4mJ27dpV67n27t1Ljx49eOyxx+jXrx87duzgwgsvZM6cOTidTjIzM1m2bBn9+/eHcrtREwqOBouF8ePHM23aNPLz84/VxoYPH87bb799bKLXjRs3ntJ7O11eSUIiMlZEtomIS0SSqu1LFJHfzP1bRMTf3N7XfL1HRN4SN3d6iUhn89gyEXm42r4rRGSnefzjnn2Hx4v1i6iyrpCuDWlaQ6nsE6p8PP744+zcuZOPP/6Yp5//G20SetOtzwBef/klLhrQj/P79WXYwD7cNnnSsaYxX19f5syZw3333UfPnj257LLLKC0tZejQoaSkpNCrV69jAwBOtvzDPffcQ2ZmJl27duWpp56iW7duhIWFER0dzcyZM5kwYQKJiYkMHDjw2ACEmrzxxhvHmvR8fHy48sorGTNmDImJifTs2ZNLLrmEadOm0bp1ayjONA4KjALg+uuvP7bUeaWnn36aiooKEhMT6datG08//XR9/RhqJd5YdlpEugAuYDrwsFJqnbndBmwAJimlNolIJJCnlHKKyBrgT8BqYCHwllJqUbXztgTOBUYDuUqpV8ztVmAXcBmQCqwFJiilUk4Wa1JSkqocvXK6Znx/K6/nrEXtfIxXJw5jeLfWZ3Q+TWsqtm/fTpcuXbwdxjFOl4uc4gqyi8ood7rws1mJCvYlItDXbR9PvV/f6aSiogJ/f3/27t3LsGHD2LlzJ76+Hlx1ucIOmTshpA2E1P93j7ufsYisV0rVaf0ar/QJKaW2A+6mrbgc2KyU2mSWyzbLtQFClVKrzNezMBLNcUlIKXUUOCoiI6qdtz+wRyn1u3n8bGAUcNIkVB9iwtpBzlpa+e7TI+Q0zQvKHS6yi8vIKSrHqRRBfjZiwgMI8bc16PQ5drudoUOHUlFRgVKK9957z7MJCIz7gsQCQVGevc5pamwDE+IBJSKLgWhgtlJqGhCLUYOplGpuq6tY4FC148+vqbCITAGmALRt2/YULuNeXFQX2AfR/mmk6SSkaQ2mpNxBZlE5+XajLzYswEZUiB+Bvt756gsJCeFMW1ZOSUWpMUNCcCuwNLave4PHohKRnwF3db8/K6W+rSWewUA/wA78W0TWA/meidI9pdSHwIdgNMed6fliWvcGIDwwS/cJac1OQ88er5SisMxBVmEZRWUOLCJEBvsSFeyLb2OZv62hFB0BBIKiPXL6+ujO8VgSUkoNO43DUoFlSqksABFZCPQBPgfiqpSLA9JO4bxpwDlncPwZiQg/jwCXwuKby0FdE9KaEX9/f7Kzs4mMjPR4InK5FHkl5WQVllPqcOJjtdA6zJ8WQb7YLM1wILCjzJgtOygKrPU/e79SiuzsbPz9/c/oPI2tfrYYeFREAoFyYAjwulIqXUQKRGQAxsCEm4C3T+G8a4FOItIeI/ncANxYv6HXTCwWYvW9QlozFBcXR2pqKpmZmR67hsulKCp3UFzmxOlS+FqFYH8bNh8r2XlCtseu3MiV5EJZEYRa4fCpDSWvK39/f+Li4k5esBZeSUIiMgYjiUQDC0QkWSk1XCmVKyKvYSQNBSxUSi0wD7sHmAkEYAxIWGSe6y4ApdQHItIaWAeEAi4ReQDoqpQqEJE/YiQ5KzBDKbWtgd4uALG2IFJVMQXmvUJhAXpdIe3s5+PjQ/v27T1y7rS8Ej5Yupcv1x+itMLFkPhoplx0Hhd08Hytq9ErPAJvDIHEcTCw5hkcGgNvjY6bD8yvYd/nGM1v1bevA7q72f5BlecZHN9sV7XcQoyh3V4R49eC9c4CwEVabolOQpp2mkrKnUxftpf3l+5FKRjVK4bbLzyPhNYh3g6t8fjtHXBVwOAHvR3JSTW25rizVmxwLEWlBwm1ZJOaa6drjPcXk9K0pkQpxcItGfx14XbS8kq4OrENT1zVhdjwAG+H1rjYc2DdDOh2LUR28HY0J6WTUAOJDWsPWb/pe4U07TRsTy/gue+3ser3HLq0CeW1cT05/7xIb4fVOK2eDuVFcOH/eTuSOtFJqIHERneFvRDpf1ivK6RpdZRbXM5rP+3in6sPEBbgwwujuzOhf1usDTC7QZNUVgirP4CEEdCqq7ejqROdhBqIvldI0+rO4XTxxZqDvPrTLgpLHUwacC4PXhZPeKCHZxdo6tZ+YtycelHTqAWBTkINJiysLSEuhfjmcUg3x2lajX7bm81z329jR0YhF3SI5NlruulBB3VRUQK/vQvnDYXYvt6Ops50EmpAMVixW4t0n5CmuZGaa+dvC3ewYEs6seEBvD+xD1d0b62HW9fVhs+g+Chc9A9vR3JKdBJqQLG2YH53FZBfUkFBaQWh/nqYtqaVVjj54BdjyLUIPDgsnjuHnIe/TzObYudMOMphxZtwzvlw7iBvR3NKdBJqQDH+kax05FN5r1BoG52EtOZLKcWirRm8uEAPuT5jW+ZCQSpc/To0sZqjTkINKC44llL7PlpYM0jNLaFLG30GV3xaAAAgAElEQVSvkNY87cgoYOp3xpDrzq1DmD1lAAP0kOvT43LCr69B60TodJm3ozllOgk1oJjwDnB0OdG++/UIOa1ZyrMbQ64/X3WA0AAfnh/dnQn9zsFmbYYTjNaXlG8gZy+M/bTJ1YJAJ6EGFRvdDXZBC//Del0hrVlxuhT/WnOQV5fspKCkQg+5ri9KGbWgqHjoMtLb0ZwWnYQaUKx5r1BoYI4eIac1G1vT8nn4y03syChk4HmRPDuyK51b66boY5QyZjgoyYPSfOM+n9J841FS5Xnl9urbyotg9AfQRJer0EmoAQUFtybcpRCfPFLzdHOcdnZTSvHP1Qf5yw8pRAT68N7EPlzZHIZcK2XM31Z4GArSobDKoyTXfWJRrtrP6RcK/uHgH2Y8WrQ3n4cb88MljnN7mNPlpLC8kMLyQgrKC457FJYXUlBWcGxf1TKF5YUE2AL48bofPfABHU8noQYWg41iaxGpR3VNSDt7FZZW8MS8LfywOZ2L4qN5fVxPIoP9vB3WmasoMZJJ1eRSkF4t4WSAswwnYBeh2GKh2CLYA1pQERCK0zcIZ2AwzvBonL6BOHwCcfoEmA9/nDY/nDZ/HDZfnFZf47Vy4VROnMqJw+UwnruM1+XOLIp+m2oklAojsVQmkqKKolrfjk1shPqFEuobSohvCKG+ocQFxxHiG0JUYFSDfKQ6CTWwWFsIO1x55NkrKCytIETfK6SdZbam5fPHf23gUG4Jj16RwF0XdcDSFOZ6UwryUyk5soWcrB0UF6ZjL06nqDiT4pIc7KW5FDlLjYQiRmIpsliwW20U+/hTZPXB3sKP4si2FCsnJcrh5iLlxsOVC6UYj9NkExtWixWbxUaIb8ixJNImuA0JvgmE+hrJJdTvfwmm8t/K5wG2AK/XTHUSamCxAVH84sxFcJCWV0Ln1joJaWeH6s1vX9wxgP7tW3g7rBO5XLhy95GRtob9GevZl7ub/cWH2V9RyH6bkGFz87XoD/gHYKypCX4WH4JsAQT6BBPsG0qgTyBRPkEE+wQT6BNIkE+Q24ePxQerWLFarFjFSCCVr21iwyKWY8+rl7GI5bjn3k4e9UUnoQYWGxxHefEeomyHSc0p0R202lmhUTa/OR0UHU1hf+oK9mVuZn/ePvaXHGW/q4SDNgulVTryg61CO78okoLa0C4inpYRHQgKbkOQX+gJiSTQJxAfi/7jsb7oJNTAYiI6wpGlRPke0PcKaWcFbze/OctLOJy2mn2HV7MvO4X9hQfZX5bLfsrJsv5v6h+rUsTafGnnF8uAkHNoF9mFdm360b5lDyL99ZLg3qKTUAOLa9kddkCEX7peV0hr0rzV/KZcLjanzGHBts9ZU3yIgxYXFVUSSLgL2tkCGOwfS7vw82gX3YP2sQM5J7IzPlZdg2lsdBJqYG1aGfcKhQRk63uFtCbLG81vBw4sY8GG9/khdyuHrODnUgywhTAkOJZ2EfG0b92bdnGDCQ9p49E4tPqlk1ADCwhsQaRToXzzdRLSmqSGbH7LztrJj2vfYEHGKrZYHIhSnG8NYErcJQzr/wDBOuE0eToJeUGs+FBsLSb1qO4T0pqOhmp+s9uz+M+aN1lwYAm/qWKcInTGwsNRA7gi6T5atUqs92tq3qOTkBfE+oSyyZVNrr2CojIHwX76x6A1bp5ufnNUlLJq40cs2D2Pf5dnUmIR2jgVt4R1ZkSvKXTscHm9XUtrXPS3nxfEBETzkyMbCw5Sc+16mLbWqHmq+U25XGzb8TU/bJ3FouJ95FiEEJdiREAsV3eeQO8ef8Bi1V9RZzv9E/aC2JBzcBTtpKXtIPsyi3US0holTzW/HTq0gh/Wv8fCnM3st4KPUlxsC2dEh2u4sO89+PqF1EP0WlPhlSQkImOBqUAXoL9Sal2VfYnAdCAUcAH9lFKlItIXmIlxy/JC4H6llKp23s7AP4A+wJ+VUq9U2bcfKAScgEMpleSp93cysREdIf1novwOsD2jkCt76M5VrXGp7+a3nJw9LF7zBgvSV7LJUgFAP4sfk2OGcFn/BwgNO6e+QteaGG/VhLYC12Ikm2NExAZ8DkxSSm0SkUigwtz9PnAHsBojCV0BLKp23hzgT8DoGq47VCmVVS/v4AzEtkyEFIgJzWRHeoG3w9G049Rn81uJPYcPFt3BrMKdOEToiIUHWiRxVd8/0iambz1HrjVFXklCSqntgLs7lC8HNiulNpnlss1ybYBQpdQq8/UsjERzXBJSSh0FjorICI++gTPUpnUvRCmC/HNZn1Ho7XA07Zh/rT7I1O+31Uvz24q17/D8lumkWWGUb2sm9XuQhE6N+ldT84LG1icUDygRWQxEA7OVUtOAWCC1SrlUc9upUMASEVHAdKXUh/UR8Onw9Qsh2gUV1jwO5tj1CDnN65RSvLpkF+/8d88ZN79lZe1g2o93ssiZQzuEGT0foF+vW+s5Yu1s4bFvPhH5GWjtZteflVLf1hLPYKAfYAf+LSLrgfx6CGmwUipNRFoCP4nIDqXUshpinwJMAWjbtm09XPpEsRY/8jHW+tiZUUjfcyM8ch1NOxmXSzH1+23M+u0AE/qfwwuje2A9jeY3l9PBvP88ymupSygVuDusB7df9aEeaKDVymNJSCk17DQOSwWWVfbbiMhCjEEGnwNxVcrFAWmnGE+a+e9REZkP9AfcJiGzlvQhQFJSknJX5kzF+oSyriwT0ElI8x6H08UjX21m/sY0plx0Hk9c2fm0JvLcu/cn/vLr42yQcpLEn6eHTOO89pd4IGLtbNPYFiVfDPQQkUBzkMIQIEUplQ4UiMgAMX5DbgJqqk2dQESCRCSk8jlG39PW+g+/7mICW3LUAmF+TnZk6MEJWsMrrXBy9z83MH9jGg9fHn9aCaisNJ+354/n+l8fZI8q4y+xVzDjpjU6AWl15q0h2mOAtzH6fRaISLJSarhSKldEXgPWYvThLFRKLTAPu4f/DdFeZD4QkbsAlFIfiEhrYB3m8G4ReQDoCkQB881fMBvwL6WU5xdPr0VcSFtcBSkkRR9hR3q0N0PRmqHiMgdTPlvHij3ZPDeyGzdf0O6Uz7F6w4c8n/w2B6xwtU80Dw+fTmRUfP0Hq53VvDU6bj4wv4Z9n2M0v1Xfvg7o7mb7B1WeZ3B8s12lAqDn6cbrCXGRnSHtR84NOcTX+9qilNLrmWgNIs9ezi0z17I5NZ9Xx/bkur7ufmVqlpuzl1d+nMJ3FUc5B5je7W4uSLrHM8FqZz09JMtLOp57MWx+A5t1D4Wl53M4v5TY8ABvh6Wd5Y4WlnLTJ2v4PbOY9yb2YXg3d2OH3FMuF98tfZJXDvxAkcAdoV2YcuWH+Afo/kzt9Okk5CURLTrQ0qnIMcdX7Egv0ElI86jUXDt/+Hg1RwrKmDG5H4M7RdX52AMHlvH8f/+P1VJKL/HlmcF/pVPHKzwYrdZc6CTkRfHWYA448wDYkVHIpV1aeTki7Wy152gRkz5ZTXGZg89vP7/OozEryoqY8eNdfJibjJ+Cp2OGcf2lr+iJRbV6o/8neVF8cCyrCndybjhs19P3aB6yNS2fm2esQQRmTxlI15i6TZi7YdMsnlv/Cr9bFcNtLXjs8veJbtnNw9FqzU2dkpCIzAM+ARYppVyeDan5SIjqjqNoF32i9rIlI9jb4WhnobX7c7j1H2sJDfDh89vPp31U0EmPyc87wOuL7uDr8nRigHc7385F59/v+WC1Zqmu9wm9B9wI7BaRl0QkwYMxNRsJcYMBiPTdyb6sYkornF6OSDub/LIrk0mfrCY6xI+5dw2sUwL6cdlzjJo3gm/KDnNLUEfm3/BfnYA0j6pTTUgp9TPws4iEARPM54eAj4DPlVIVtZ5Ac+vcthfiqxRlsh+nS7HnaBHdY8O8HZZ2Fli4JZ37Z2+kU8sQZt3Wn6iTzAOnXC7enD+OT4p20l18+GDgc3ROGNlA0WrNWZ1nTDCXVZgM3A5sBN7EmFLnJ49E1gzYfPzpoGwcdh4FjMEJmnam5q49xB//tYHEuHC+mDLgpAmooqyYJ7+4lE+KdnKdbxs++8NvOgFpDaaufULzgQTgM+AacxodgDkisq7mI7WTifeL4teyDPxsFr22kHbGPlm+j+d/SOHCTlFMn9SXQN/af8WLCtN5cN4oVlHCfRG9uOPqTxFLY5vNSzub1XV03FtKqf+62+HNFUrPBgnhHfg28wh9WuWyI+PMl07WmielFG/+ezdv/LybK7u35o0beuFns9Z6zNEjW7l74UR+FycvtL2aUZe81EDRatr/1DUJRYjItdW25QNbzIXktNOU0KYfZK6kQ3AKP6bpOeS0U+dyKV5YsJ0ZK/Zxfd84Xrq2BzZr7bWZPXuXcPcvD1Eg8G63u7mg370NFK2mHa+u9e7bgI+BiebjI+AxYIWITPJQbM1CfLtLAfC17iWrqJzMwjIvR6Q1JQ6ni8e+3syMFfu4ZVA7pl2XeNIEtDZ5BjctewgHMPOCF3UC0ryqrjUhH6CLUuoIgIi0AmYB52OsyfOZZ8I7+4VHtKelU5FrPQzAjowCokN0jUg7uTKHkwdmJ7Noawb3X9qJB4Z1OukkuD8u+wtP/j6XOGXh/eEfExvbv4Gi1TT36loTiqtMQKajwDlKqRxAD88+Qwm2YA44cwHYka5HyGknZy93cMes9SzamsFTI7rw4GXxJ01AsxZO4ZF9X9IDPz679judgLRGoa41oaUi8gPwpfn6OnNbEJDnkciakfigOH4r3EGbYJcepq2dVGmFk1tnrmXNvhymXZfIuH7n1Fre5XTw8rxr+dy+j8ssYfxt7AL8/PX9aFrjUNckdC9wLTDYfD0L+FoppYChngisOTGm79lJ3+i97MgI93Y4WiPmdCkempvMqt9zeGN8L0b3jq21fFlpPk98eTU/ufKYGNCOR679GqvNt4Gi1bSTO2kSEhEr8LNSaijwtedDan7i4wbB/q+J9t/JkoMJOJyuk3Yua82PUornf0hh4RajCe5kCSg/bz9/+uY6Nkg5D0cN4KYrp+t7gLRG56T/I5VSToylsnX93UMqp+8p5wDlThf7soq9HZLWCH3wy+/MXLmf2we35/YLz6u17OHD67hp3ki2UMa0dtdx84iPdALSGqW6NscVAVtE5Cfg2DekUupPHomqmbH5+NNR2UhXmQBszyikU6sQL0elNSbzNqTy9x93MLJnDE9e1aXWsjt2fsc9K56kVGB6zwfp1/u2BopS005dXZPQPPOheUi8XxTLyjKwWYQd6QWM7Bnj7ZC0RuKXXZk8+tVmLugQyctjE7FYah4Ft3Ldezy05T2CgVkXvUbHDpc3XKCadhrqOov2pyISALRVSu30cEzNUkJER745eoRe0TnsyND3CWmGLan53P35ejq1CmH6pL61TsXz3X+e5NmD39EeK++P+IxWrRIbMFJNOz11aiQWkWuAZOBH83UvEfnOk4E1N/GtjSn4OoWm6IlMNQAOZBdzy8w1RAT68ukt/Qjx93FbTrlcfPTdTfz50Pf0lQA+vW6hTkBak1HXnsqpQH/Me4KUUslA7T2j2ilJaD8MAD/b7xzOLyXfru8Bbs6yisq4ecYaHC7FrNv60zLU3205R0UpL8y9irdyNzLCFsX7NywlJLT2UXOa1pjUNQlVKKXyq23Ty3zXo7DwdrRyKvKUMX3PziP6ptXmqrjMwW0z15JRUMonN/ejQ7T7pd9L7Dk8+MUlzC1L47bgBP56w0/4+J189VRNa0zqmoS2iciNgFVEOonI28BKD8bVLMXbgjngMiag2JGhm+Saowqni3v/tYEtafm8PaEPfc+NcFsuJ2cPt8+5lF9cBTzZaggPXPcVFmtdxxlpWuNR1yR0H9ANKAO+AAqABzwVVHOVEBTHfouLqAAH2/Uccs2OUoon5m1h6c5MXhzTg8u6tnJbLi93H7d+cy07qeD1+ElMuOKdBo5U0+pPnZKQUsqulPqzUqqfUirJfF56uhcVkbEisk1EXCKSVG1fooj8Zu7fIiL+5va+5us9IvKWuJmtUUQmishms9xKEelZZd8VIrLTPP7x043dk+KjuuMQoV/LPbom1Ay9umQXX61P5f5LOzGhf1u3Zez2LO795loOWVy83+tBLr3gsQaOUtPqV11Hx8WLyIciskRE/lP5OIPrbsWYi25ZtevYgM+Bu5RS3YCL+d8s3e8DdwCdzMcVbs67DxiilOoBPA98aJ7XCrwLXAl0BSaISNcziN8jEtpeCEBL/z3szCjE5VJejkhrKJ+tOsA7/93DDf3O4YFhndyWqaiw89CXI9gqFUyLn6RvQtXOCnVtRP4S+ABjYTvnmV5UKbUdcDf1/OXAZqXUJrNctlmuDRCqlFplvp4FjAYWVTtv1X6qVUCc+bw/sEcp9bt5/GxgFJBypu+lPrWNG4SfS1Fh2Y+93MmhXDvnRuqO5rPdj1szeObbrVzauSUvjO7udkkGl9PB03NHsAI7U2OH6xqQdtaoaxJyKKXe92gkhnhAichiIBqYrZSaBsQCqVXKpZrbanMb/0tSscChasefX9OBIjIFmALQtq37ZhFPsPn40wEbGa4sALanF+okdJZbuz+HP83eSM+4cN6+sbfbiWuVy8XLX49hgSOL+yP6cN1lr3ohUk3zjLoOTPheRO4RkTYi0qLyUdsBIvKziGx18xhVy2E2jOUiJpr/jhGRS+sYY9VrD8VIQqf156JS6kOz7yspOrphZy9I8I9iDyWIuHS/0Flu95FCbpu5lrjwAGZM7kegr/u/CT/54RY+L9nPHwLbc9vV/2jgKDXNs+paE7rZ/PeRKtsUtdywqpQadhrxpALLlFJZACKyEOiD0U8UV6VcHJDm7gQikojRbHhlZXOeWbbqyl81Hu9t8eEdmX/0CImROXqV1bNYen4JN89Yg5+PlU9v7U+LIPdr/Hz90//xZu4GRtiieOTaeXombO2sU9fRce3dPDwxY8JioIeIBJqDFIYAKUqpdKBARAaYo+JuAr6tfrCItMWYaHWSUmpXlV1rgU4i0l5EfIEbgEY57VBC634AxIft1DesnqXySyqYPGMtBaUO/jG5H+e0CHRb7t8rXuIvaYsZTBDPj1ug7wPSzkq1JiERebTK87HV9v31dC8qImNEJBUYCCww+4BQSuUCr2EkjWRgg1JqgXnYPRg1nD3AXsz+HhG5S0TuMss8A0QC74lIsoisM8/rAP6IkeS2A3OVUttON35Pim9vtD4G+Oxlf3Yx9nKHlyPS6lNphZMps9bxe1YRH/yhL91j3S/TtTZ5Bo/u/pzuypdXx/6Aj4/7RKVpTZ0YK3TXsFNkg1KqT/Xn7l6frZKSktS6desa9JrDZnSnm0Tw7c7H+ebeQfQ6Ry/5fTZwuRT3fbGRBVvSefOGXozq5X5szY6d33HLyidpqSx8OuZbwiPaN3CkmnZmRGS9Uirp5CVP3hwnNTx391qrJwm2EA6YU/XpGbXPDkop/vJDCgu2pPPkVZ1rTECHDq3grhVPEqxg+pWf6gSknfVOloRUDc/dvdbqSUJwHAcsLsJ8y9mRofuFzgbTlxlLc986qD131LA0d1bmdqb8dBdOgelD36J1m94NHKWmNbyT9XT2FJECjFpPgPkc87X7ueW1MxYf1R1H4Q4GtNzD9vTW3g5HO0PzNqTy0qIdXJ3YhqdGdHF7M2phQRp3/XAD2aL4pP+znNf+Ei9EqmkNr9aakFLKqpQKVUqFKKVs5vPK1+5X2NLOWPw5xvQ9rQL3kJJegFNP39NkLd+dxaNfbWbgeZG8Oq6n26W5y0rzuW/eKPaKkze6302PbmPdnEnTzk76poNGqG3cBfi5FMp6iMJSB9sOV1/KSWsKfs8s4p5/rqdDdDDTb3K/NLejopRHv7yKDZTyYvvruKDfvV6IVNO8RyehRsjm409HbGSoTACW78nyckTaqcovqeD2T9dhs1r4+OYkQt0sza1cLp7/6hr+4yrgsVYXcdWQ57wQqaZ5l05CjVSCfzS7VQkJrYJYoZNQk+Jwurjvi40czLHz/sQ+Nd6M+tb8ccwrz2BKaFcmXvleA0epaY2DTkKNVHx4R3ItwpBzClm7P5fSijOevFxrIH9btINluzJ5fnR3zj8v0m2ZzxbeycdFO7neL4Y/jvqigSPUtMZDJ6FGKr6NMX1PXOA2yh0u1u7P8XJEWl3MXXuIT5bvY/IF7WpcmO6HpU8zLXMlwyxhPHX993o+OK1Z0//7G6n49sb8r2WOnfhYRfcLNQFr9+fw52+2MLhjFE+N6OK2zK9r3uLp/fPpr/x4aewCrDb3E5dqWnOhk1AjFRbWltZOxZ7CffRpG8Hy3ToJNWapuXbu+mw9cRGBvHtjH7frAiVv/RcPbfuQTsrGm9d9j5+/+3njNK050UmoEUuwhbCrLIfBHaPYdriAnOJyb4ekuVFc5uCOWespd7r46KYkwgJPHAm3Z+8S7l37V1oq4b1rZhMc0sYLkWpa46OTUCPWNaQdv1tcJMWUAbByr64NNTYul+L/5m5iZ0YBb0/oTceWwSeUST+8njt/eQhfBdMv/4ioqM5eiFTTGiedhBqxAeddiUuEgqxvCfG36Sa5RuiNf+/mx20ZPHlVFy5OaHnC/tycvUz58RZKBD648O/ExQ3wQpSa1njpJNSI9eh6PUEuxeq0Xxl4XiS/7s6itqU3tIa1cEs6b/17N9f3jeO2wSfOdl1eVsj9343jsMXFW70fJqHTCC9EqWmNm05CjZiPTyD9rKH8Zk9jcKco0vJKOJhj93ZYGrA9vYD/m7uJ3m3DeXFM9xMmJVUuF899PYqNUs6L540jqddk7wSqaY2cTkKN3IDoXqRaISHkdwB+1U1yXpdbXM6Uz9YR4m/jgz+4nxPuHwtu57uKTO4J68EVFz3jhSg1rWnQSaiRG9j5egAOHP6OmDB/PYWPlzmcLv74xQaO5JcxfVJfWoWeuKLJv1f+nTey13CltQV3jfzcC1FqWtOhk1Aj1/7ci2nlVKw6so5BHaNYuTdbL+3gRX9btIMVe7J5YUx3ereNOGH/jp3f8cTOz+imfPjLdd/o2RA07ST0b0gjJxYLA/1bs9qRxwUdQskvqWBrml7awRu+Xp96bEqecUnnnLA/K3M79614khAFb434HP+AE5OUpmnH00moCRgYO4gCi9BS/QbopR28YdOhPJ6Yv4UB57Xgz26m5CktyeX+H24kX+CdQS8S3bKbF6LUtKZHJ6EmYECPSQBsS1tE59Yhul+ogWUWlnHnZ+uJDvbj3Rv74FNtSh7lcvHM16PZbHHwt/g/0CVhlJci1bSmRyehJqBFi450cVn5LWc7F3aKYt3+XErK9dIODaHc4eLuz9eTV1LOhzf1JTLY74QyH35/M4ucOdwf0YdLBz3uhSg1renSSaiJGBB6HsmU0j8Oyp16aYeGMvX7baw7kMvL1/ekW8yJE44u+fUF3slL5mpbFLdd/Q8vRKhpTZtOQk3EwHaX4xBBihfha7XoJrkG8M/VB/jX6oPcNaQD1/SMOWF/yo5v+POe2fRSPkzVI+E07bTo35omok+3Cfi5FOtTl9Ln3HB906qHrd2fw7PfbmNIfDSPDE84YX9W5nb+tPIpwhW8fvW/9LIMmnaavJKERGSsiGwTEZeIJFXblygiv5n7t4iIv7m9r/l6j4i8JdXnSTHKTBSRzWa5lSLSs8q+/eb2ZBFZ5/l3Wb/8/MPoYwnkt6IDDO4YRUp6AdlFZd4O66x0OK+Euz9fT1xEAG/d0Bur5fj/auVlhTzww0QKBN4e9Fc9K7amnQFv1YS2AtcCy6puFBEb8Dlwl1KqG3AxUGHufh+4A+hkPq5wc959wBClVA/geeDDavuHKqV6KaWSTjy08RsY2YO9VkVi5FEAVu7N9nJEZ5/SCid3frae0gr3awMpl4vnvx7DJksFz3ccT+eEkV6KVNPODl5JQkqp7UqpnW52XQ5sVkptMstlK6WcItIGCFVKrVLGNNKzgNFuzrtSKZVrvlwFxHnoLXjFwE7G0N/srO/10g4eoJTiiXlb2JKWz+vje9GpVcgJZf65+B6+qTjCnaHdGH7h016IUtPOLo2tTygeUCKyWEQ2iMij5vZYILVKuVRzW21uAxZVea2AJSKyXkSm1HagiEwRkXUisi4zM/MU34LnxHe8ihYuxeqM1VzQIZLle/TSDvXp41/3MX9jGg9dFs9lXVudsH/l2nd5+chyLrGEco+eE07T6oXNUycWkZ+B1m52/Vkp9W0t8QwG+gF24N8ish44pXlqRGQoRhIaXGXzYKVUmoi0BH4SkR1KqWXujldKfYjZlJeUlNRovuUtVhvn+0SyqiyTWxNasHjbEQ5k22kXFeTt0Jq8Zbsy+dui7VzRrTV/HNrxhP0HDvzKw1vfpwNW/jZmPharx351NK1Z8VhNSCk1TCnV3c2jpgQERg1nmVIqSyllBxYCfYA0jm9aizO3nUBEEoGPgVFKqWOdJkqpNPPfo8B8oP+ZvD9vGdjmfLKtQnv/jYCewqc+HMgu5r4vNtKpZQivjuuJpdpAhMKCNO77971Ygbcum05g8IkrqGqadnoaW3PcYqCHiASagxSGAClKqXSgQEQGmKPibgJOSGYi0haYB0xSSu2qsj1IREIqn2P0PW31/NupfwO73QjA3vRFxIYH6H6hM1RU5uCOWesQgY9uSiLI7/gajtNRzmPfXMchi4vXej2ol+fWtHrmrSHaY0QkFRgILBCRxQDmoILXgLXA/7d33/FRVekfxz9POgmQEIj0EKQoRQgYIBS7IlhCb0sTlV1XV0Fxda2sriu6/nQBdUUWC4hIr4IgCoLSA4QSaaH3AIFACKlzfn/MhQ3JBAIkuTPJ83695pWbe8/c+c6B8DD3npwTB2wwxsy3nvY0zk84CcBurPs9IvKUiDxltXkTqAj8J9dQ7MrAbyKyCVgLzDfGLCzq91kUqlSJpHa2sPrUFr5t3ygAABj7SURBVNrWrcjK3Sd1aYfr5HAYhk2NIyExhU/6NCe8YmCeNqPm9OZXc56/Vb2XFs2esCGlUiWbLRe2jTGzcF4Sc3VsIs5h2rn3xwKNXewfk2P7SeBJF232AE1z7/dUrcuGM+P8Pl6t5c/U2Cy2Hk6mac0Qu2N5nNFLdrEo/jivP9yAdvUq5Tn+/S9v8FXKLnr6V6fXg6NtSKhUyedul+NUAbQOv4d0LyE462dA7wtdj0Xxxxj50y66Nq/OE+1q5zm+JX4aw/fN4nbjz9+6zLAhoVKlgxYhD9SicV98jGHzkSU0rRnCnLjDOlT7GsQfSeb5KXE0rRHMu11uI/fkG8ePb2bImrcIcwj/jpmCr7+OPlSqqGgR8kBBZavQBH9Wnd1N35bh7Dyewpq9Oqt2QSSeS2Pw+FjKB/jy3wFRBPh6X3Y87cJphi4YyHmB0Xf+iwqhdWxKqlTpoEXIQ7Wu0IDtksUd4WkEl/Flwqp9dkdye2mZ2fxxwnpOp2YybmAUN5UPuOy4cTgYPrMLW72yGHHLAOrX7WhTUqVKDy1CHqp1nUcwImzaMYleLWqyKP44x5LT7I7ltowxvDR9M3EHz/DvXk1pXD3vrNdfzH+cBVmneLZCJPe2ecnFWZRShU2LkIdqdEtnyjkMqw7/Rr9WtXAYw6S1B+yO5bY+WZLA3E1H+OuDt9ChcdU8x39Z/SGjT8XS0TuUwY+MtyGhUqWTFiEP5eMbQEufYFZdOErNCgHcXT+M79YeICPLYXc0t7Ngy1E+XLyTLs2q8/Tdee/xJOz+kZe3fUUD48NbXWfp4nRKFSP9afNgrW+6naPewv4DvzKgdQQnzqWzKP6Y3bHcypZDybwwNY7m4SGM6Jp3JNyZ03t5dtkwAg2M6vg1ZQJDbUqqVOmkRciDtW7QE4BV26dxV/0wwkMDdYBCDseS03hywjoqBvnzef+8I+EyM1N5YU4PEr0MI1u+TpUqkTYlVar00iLkwWrWaEPNbFh8bDVeXkL/6Fqs23eabUfP2h3Ndhcyshk8IZaUtCzGDYwirJx/njbvz+jGOklneHgMTRv3tiGlUkqLkAcTLy+6hUWxTtJJ2P0jPaJq4O/jxYRV++2OZiuHwzBsWhxbjyQzqnczGlQtn6fNlEXPMSX9EI8F1SXm3ndtSKmUAi1CHq9r29fxM4bJsSMJCfSjU2Q1Zm88TPKFzKs/uYR6f9F2Fmw5xisdb+V+F4vTrVj3CSOOLuEOCWJo5yk2JFRKXaRFyMNVCK1DB7/KzE09wLmzhxnQOoILmdnMWH/o6k8ugcb9uofPl+2hf3QtBt9xc57juxIWMmzrGOoYbz7oOhtvHz8bUiqlLtIiVAL8odnTXPAS5q74J42rB9M8PISJq/fjKGVLPMzeeJh35m/joduq8PeYRnlGwp08sY1nlr9IoIFPO3xNUFlXC/8qpYqTFqESoFGDbjRx+DD56G8Yh4MBrSPYc/J8qZpde/nOE7w4bRPRN4fyUc9IvHOtjnohNYlnv/8DZwQ+bvM2Vao2sympUionLUIlRO+Ih9nnbVi9cSwdb6tCxSC/UjNAYdPBMzw1cT31KpdjrItJSR3ZWbw2I4Z4yeS9WwbQ6NauNiVVSuWmRaiEeLDNy4Q6DN/Ff4O/jze9W9ZkyfbjHDqdane0IrXnRAqDvl5HaJAf4we1oHyAb542o2b3YrEjmWFhbXROOKXcjBahEsLPvxzdghuwzJHM4cNr6duqFgDfrim588klnk1jwJdrEeCbJ1rlmRUbYMbiYXyZspMe/tUZ0HFM3pMopWylRagE6dn6VQCmrn6faiFleKBhZaasO0haZrbNyQrf2bRMBny5lqTzGXw1qAW1K+VdeG71+s955/Ai2lCGV7rN1DnhlHJD+lNZglSp2ox7vUOYeXYH6WnJDGgdQdL5DOZvPmp3tEKVlpnN4PGxJCSmMKbf7TSpEZKnzZ69P/PC5o+JcHjxf11m4esbaENSpdTVaBEqYXo3GsAZL2HhyhG0qVOROmFBTFhdcgYoZGY7GDo5jjV7k/iwZ1PurB+Wp82pkzt5eulQfIFPO3xJufLViz+oUqpAtAiVMC0jn+TmbGHS/oVgDP2ja7Hp4BnW7fP85b/Ts7J5+tsNLIw/xpuPNKRTZN7icu7sYZ6a14NTYvi45RtUqxZlQ1KlVEFpESphxMuLPtXu4nevbLZsm0b3qJpUCw7gxWmbOJfmuVP5XMjI5snxsSz+/ThvxTTi8Xa187ZJTeIvM2NIkGz+3ehPNGnUy4akSqlroUWoBHq03WsEOQyT4z6nrL8Po/o042BSKm/M3ooxnjeLwrm0TAZ+uZYVCSf5V/cmDGwTkadNZmYqL05/mI2kM+LmHrRr+WzxB1VKXTMtQiVQUNkqxATWYmFmIqdO7qRFRChD76/P7LgjzNxw2O541+RMagb9xq1hw4HTjOrdjJ5RNfO0cWRn8frUh1huUni96n10uHO4DUmVUtdDi1AJ1bvlMDJFmLnyHQCeuacurWqH8sacrew5kWJzuoI5cS6d3mNXs+3oOT7rdzuPNq2Wp41xOBgxPYYFWacYUqE5PR8cZUNSpdT1sq0IiUgPEYkXEYeIROU61kREVlnHt4hIgLX/duv7BBEZLblnqHS26SQim0UkTkRiRaRdjmMDRWSX9RhY9O/SPjfXvpdoyjD15AayMtPw9hJG9o7Ez8eLZ7/bSHqWe//u0NHkC/Qau4r9p1L58rEWPOBiSQaA/8zpy+S0gwwMrMMTj3xVzCmVUjfKzk9CW4GuwPKcO0XEB5gIPGWMaQTcDVy8o/4ZMBioZz06uDjvz0BTY0wk8DgwzjpvKDAcaAW0BIaLSIXCfUvupU+97hzzFpatHQlA1eAyfNC9KfFHzvL+DztsTpe/A6dS6TFmFYln05nwREva1avkst03C/7EmLNb6eJXmWH6y6hKeSTbfmqNMduMMa7+JWwPbDbGbLLanTLGZItIVaC8MWa1cd5dnwB0dnHeFPO/u+9BwMXtB4HFxpgkY8xpYDGui1iJcVfLoVTNNnyXMOPSvgcaVuaxNhF8uWIvS7YftzGdawmJ5+j5+SpS0rOYNLgVLSJCXbabu+RV/nViJfd7BfNm9++1ACnlodzxJ7c+YERkkYhsEJGLM05WB3Ku1HbI2peHiHQRke3AfJyfhi4+/2ABn/9H61Je7IkTJ27grdjL28ePnmFRrCGNHbvmX9r/t4630qBqeV6ctpnjZ9NsTHi52RsP0+mTFWQ5DJP/GO1yJgSAJSv/xZsH5tKKAN7v+QM+vnnnjFNKeYYiLUIi8pOIbHXx6HSFp/kA7YC+1tcuInLftbyuMWaWMeZWnJ+U/nGtuY0xY40xUcaYqLCwvL+R70m6txtOiMPw+m+vkpF+DoAAX28+7tOMCxnZPD8ljmybF79LSc/ihalxDJ0SR8Nq5Znzl7bcWqW8y7Y//TaCF3dOoKHxZVS3efj5lyvmtEqpwlSkRcgYc78xprGLx5wrPO0QsNwYc9IYkwosAJoDh4EaOdrVsPZd6fWXAzeLSCWrbc7xvVd9fkkQUqE2/2gwiO1eDkbO7Xtpf92byvJWTCNW7j7FmGW7bcu35VAyj378G7M3HmbIffX4bnA01UPKuGw7Y/EwhiV8S0Pjx2ddZunKqEqVAO54OW4RcJuIBFqDFO4CfjfGHAXOiki0NSpuAJCnmIlI3Yuj5kSkOeAPnLLO215EKlgDEtpb+0q8u6OH0ScgnG9S97J8zf+GMPeIqsEjTary0eKdrN9/ulgzORyGcb/uoetnK0jLzGbS4Gief6A+Pt6u/0p+MW8Qfz/yI60liLG9fiQ4JKJY8yqlioadQ7S7iMghoDUwX0QWAViDBj4C1gFxwAZjzMUbGk/jHO2WAOwGfrDO9ZSIPGW16QZsFZE44FOgl3FKwnlpbp31eNvaVyoM6zSJeg4v3vj9v5xIjAdARHi3621UCwngmW83sHxn8dz/OpmSzuPj1/HO/G3cfctNLHjuDqJvruiyrXE4+Gh6F0YmxdLRO5SPey8hMND1aDmllOcRT5zGpThFRUWZ2NhYu2MUit27F9N7+fNEegXyeb+VeHn7ABB/JJm/TNrI3pPneei2KrzxSEOqBru+JHajft11guenbOJsWiZvPNyAftG1cPHrXgBkZabx9vRHmJVxnF4BNXml22y8ffyKJJdSqvCIyHpjTIFmD3bHy3GqiNSp8wAv12jPai4wfsEfL+1vVC2YhUPvYNgD9fl5WyL3fbiMMct2k5HlKJTXdTgMv+xIZPCEWPp/sZaQQF/m/qUt/VtH5FuA0tOSGTb5PmZlHOep8o15rcf3WoCUKoH0k9BVlKRPQuC8vDXs27tYmn2ab1oOp3HDHpcdP5iUylvzfuenbcepe1NZ3u7UiDZ1ru/y16mUdKatP8SkNQc4kJRKxSA/+rQM55l76lLGzzvf56WcO8qQGY+yVtL5203t6Nvxs+t6faWUPa7lk5AWoasoaUUIIDn5AD1mPIQPwtQeP1K2XNU8bX7edpy/z4vnYNIFYppW47WHG1C5/NV/H8cYQ+z+00xcvZ8fthwjI9tBy9qh9IuuxYONKuPvk3/xAUhKSuDPc7qzQ7L4R63OPHrPO9f9PpVS9tAiVIhKYhEC2Lh5Io9teI+HfMMY0XepyzZpmdl89stuPlu2Gz9vL9o3rIy/rzd+3oKvtxd+Pl6Xvvp5e5GR7WBu3BF2HD9HOX8fujavTt/oWtSvXLDf5Vm7cRyvbRzJaYEPGzzOXdEvFOZbVkoVEy1ChaikFiGAMXP68emZTbwbHsOj9/wz33b7Tp7n3QXbiD9yloxsBxlZDjKzLz4u//vTuHp5+rWqRUxkNQL9fAqUIz0tmdHzBjAhdQ+1suG96DfzXCZUSnkOLUKFqCQXoeysDJ6Y2IZtJo1p940hPLzd1Z+Ui8NhyHQ4i1F2tqF8GZ98Bxu4sn3HXF5Z8ToJ3oZeATV54dEJOgRbKQ+no+NUgXj7+PHeg//FBxj28zMcOrT6ms/h5SX4+3hT1t+H4EDfAheg7KwMvpg3iD6rXuUMDv7TYDCv91qgBUipUkaLUClXpWozRjQczAGy6bL4Sb6YN4jMzNQifc3Dh9fy+MTWjEyK5R7vEGZ1mccdLZ8r0tdUSrknLUKKO1sNYU7HibT1CWZkUiy9JrYmbsukQn8d43Aw++eX6fbj4+w06bwbHsOHfZcTUqF2ob+WUsoz6D2hqyjJ94RcWbLyA0ZsH88xb6GHf3WGdBxLcHD4DZ0z8fhW5q39kDkn1rPX2xBl/Pln+zFUq1agS8ZKKQ+jAxMKUWkrQgCpKYl8+sNgJp7fTQUHvFSnGx3vGH5NC8elpyWzdO0o5uxdwEqTgkOE5saPruEP8Ohd71yaMkgpVfJoESpEpbEIXfT7jtm8vfIt4r2yaEMZ+jfoT/mgmwgKCCUoKIyyQZUJDAy7VFCMw8HvO2Yxa/MX/JB6gLNeQuVsQ0xIQzpHPXddo++UUp5Hi1AhKs1FCJyj2Kb89Dyjjy7jvJfrkW+BDkOQAQESvQV/h+E+v0p0uqUnrSKf1DnflCplrqUI6TURdUXePn78ocOndEzazd6DK0hJO01q+hlS0pM5n5HC+YxznM9K5XzWBS44Mrg9LJIOrYZRPrjm1U+ulCr1tAipAqkQWocKoXXsjqGUKmF0iLZSSinbaBFSSillGy1CSimlbKNFSCmllG20CCmllLKNFiGllFK20SKklFLKNlqElFJK2Uan7bkKETkB7L/Op1cCThZinKLkSVnBs/J6UlbwrLyelBU8K++NZK1ljAkrSEMtQkVIRGILOn+S3TwpK3hWXk/KCp6V15OygmflLa6sejlOKaWUbbQIKaWUso0WoaI11u4A18CTsoJn5fWkrOBZeT0pK3hW3mLJqveElFJK2UY/CSmllLKNFiGllFK20SJ0g0TkSxFJFJGt+RwXERktIgkisllEmhd3xhxZrpb1bhFJFpE46/FmcWfMlaemiCwVkd9FJF5Ehrho4xb9W8CsbtO/IhIgImtFZJOV9y0XbfxFZIrVt2tEJKL4kxY462MiciJH3z5pR9YcebxFZKOIfO/imFv0a65MV8pbtH1rjNHHDTyAO4HmwNZ8jj8E/AAIEA2sceOsdwPf292nOfJUBZpb2+WAnUBDd+zfAmZ1m/61+quste0LrAGic7V5GhhjbfcGprhx1seAT+zu1xx5XgAmufrzdpd+vYa8Rdq3+knoBhljlgNJV2jSCZhgnFYDISJStXjSXa4AWd2KMeaoMWaDtX0O2AZUz9XMLfq3gFndhtVfKda3vtYj9yilTsB4a3s6cJ+ISDFFvKSAWd2GiNQAHgbG5dPELfr1ogLkLVJahIpedeBgju8P4cb/OAGtrcseP4hII7vDXGRdsmiG83/BObld/14hK7hR/1qXYOKARGCxMSbfvjXGZAHJQMXiTelUgKwA3axLstNFpGYxR8xpJPAS4MjnuNv0q+VqeaEI+1aLkMppA845n5oCHwOzbc4DgIiUBWYAQ40xZ+3OcyVXyepW/WuMyTbGRAI1gJYi0tjOPFdSgKzzgAhjTBNgMf/7pFGsROQRINEYs96O179WBcxbpH2rRajoHQZy/s+hhrXP7Rhjzl687GGMWQD4ikglOzOJiC/Of9S/NcbMdNHEbfr3alndsX+tLGeApUCHXIcu9a2I+ADBwKniTXe5/LIaY04ZY9Ktb8cBtxd3NktbIEZE9gGTgXtFZGKuNu7Ur1fNW9R9q0Wo6M0FBlijuKKBZGPMUbtDuSIiVS5emxaRljj/ftj2j46V5QtgmzHmo3yauUX/FiSrO/WviISJSIi1XQZ4ANieq9lcYKC13R1YYqw71cWpIFlz3QeMwXlPrtgZY14xxtQwxkTgHHSwxBjTL1czt+hXKFjeou5bn8I8WWkkIt/hHPVUSUQOAcNx3jjFGDMGWIBzBFcCkAoMsidpgbJ2B/4sIlnABaC3XT8clrZAf2CLdT8A4FUgHNyufwuS1Z36tyowXkS8cRbDqcaY70XkbSDWGDMXZ1H9RkQScA5o6e3GWZ8TkRggy8r6mE1ZXXLTfs1XcfatTtujlFLKNno5TimllG20CCmllLKNFiGllFK20SKklFLKNlqElFJK2UaLkCpVRCSlAG2GikhgIb5mZxFpWIjnW3kDz02xvlYTkelXaBciIk9f7+soVVBahJTKayhwTUXI+h2W/HQGCq0IGWPaFMI5jhhjul+hSQjO2Z6VKlJahFSpJM61fX6xJmTcLiLfWrMuPAdUA5aKyFKrbXsRWSUiG0RkmjU/HCKyT0TeF5ENQA8RGSwi66wJSmeISKCItMH5W+YfiHMtljoiEikiq60JIWeJSAXrfL+IyL9FJFZEtolICxGZKSK7ROSdHNlTcmy/LCJbrNd8z8X7rG1l35LrHBFirSslIo3EuV5PnJWpHvAeUMfa94GIlBWRn60+2CIinXKcZ5uI/Feca/38aM1qgIjUFZGfrGwbRKSOtf+vVj9tFhdrA6lSpqjWiNCHPtzxAaRYX+/GOXtxDZz/GVsFtLOO7QMqWduVgOVAkPX9y8CbOdq9lOPcFXNsvwM8a21/DXTPcWwzcJe1/TYw0tr+BXjf2h4CHME5W4A/ztnBK+Z6Dx2BlUCg9X2oi/c7FxhgbT+T47kRWOtK4ZxMta+17QeUyXnc2u8DlM/RJwk41/mJwPmb9JHWsalAP2t7DdDF2g7A+emyPTDWeq4X8D1wp91/L/Rh30On7VGl2VpjzCEAa6qdCOC3XG2icV5KW2FN++aHs2BdNCXHdmPr00YIUBZYlPsFRSQYCDHGLLN2jQem5Wgy1/q6BYg31jx4IrIH56SXOeeaux/4yhiTCmCMcbVWVFugm7X9DfC+izargNfEua7MTGPMLsm7vI0A74rInTin/K8OVLaO7TXGXJyqaD0QISLlgOrGmFlWtjTrfbTHWYg2Wu3LAvVwFnpVCmkRUqVZeo7tbFz/PAjO9Wv65HOO8zm2vwY6G2M2ichjOD9tXW8mR658jnzyFcQV5+YyxkwSkTU4FzZbICJ/AvbkatYXCANuN8ZkinPW5YBcmcHZj2Wu8HICjDDGfH4N+VUJpveElMrrHM4lugFWA21FpC6AiASJSP18nlcOOCrOJR36ujqfMSYZOC0id1jH+gPLuD6LgUEXR/KJSKiLNiv43wSZfV0cR0RuBvYYY0YDc4AmXN4H4FxuINEqQPcAta4UzDhXlz0kIp2t1/C3ci4CHs9xX626iNxUoHerSiQtQkrlNRZYKCJLjTEncM4a/J2IbMZ56erWfJ73Bs77ICu4fKmBycBfRWSjdXN+IM6BCpuBSJz3ha6ZMWYhzst3sdblxBddNBsCPCMiW8h/xdmewFbrHI1xLpd+CuclyK0i8gHwLRBlnWcAeZd9cKU/zhmYN+O8d1XFGPMjMAlYZZ1rOpcXO1XK6CzaSimlbKOfhJRSStlGi5BSSinbaBFSSillGy1CSimlbKNFSCmllG20CCmllLKNFiGllFK2+X8IyKONen8mUgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", "for j in range(len(algorithms)):\n", @@ -97,48 +137,81 @@ "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('NaH Ground State Energy')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8FPX9+PHXOzch4QrhDJccIpccEbSg1vtoy1FRLsGzHvXq136t2G+raLX1qNUqHvUE8QCLR1GxUH9KvYEA4RaJCCThDrC5yP3+/TETXNZNskA2u5u8n4/HPjI785mZ985u9r3z+cznM6KqGGOMMbWJCnUAxhhjwp8lC2OMMXWyZGGMMaZOliyMMcbUyZKFMcaYOlmyMMYYUydLFqZeiMgMEXnVne4qIoUiEu0+by8in4pIgYg8Ko6XReSAiCwLbeTHTkTGiUi2+1qHhDqecOP7OQg33p9ZUzdLFiEmIltF5JD7T1X9mBnquI6Hqm5X1SRVrXRnXQfsA1qo6m+BUcB5QJqqDg9VnPXgr8DN7mtd1dA7FxEVkSKfz87vgri/K0Xkc595s0SkzCeG1eD3c2AiWEyoAzAA/EJVPwrmDkQkRlUrgrmPWnQDNugPPUC7AVtVtehoNxTi1+GrG7De34IGjPNkVc1qgP3U5mFV/UOIYwgbIhLdGBOknVmEsepfciLyV7fK5nsRuchreUsReVFEdopIrojc71X1c6WIfCEij4lIHjBDRKLdaqB97rZudn+dxojIpSKywmf/t4vIv2qIrYeI/NetWvoP0NZrWXev7c4CrgB+5/7qvB54ATjNfX6vu87PRSRTRA6KyJciMshre1tF5E4RWQMUudvtJCJviche97Xc6lV+hoi8KSKvuPGtF5F0r+VdRORtd9087zM5EblaRDa6x3uRiHTz89rjRaQQiAZWi8h3tcR5kogscV/XehEZ7bWdWSLytIh86B6LL0Skg4g87u7/m2Ot3hKRhSLyqNfzuSLykjvdU0Q+dl/7PhF5TURa1XZ8ROQk4Fmv9+1gADEc/hy4z3vID9WRH4nIU+JVDSQip7rv/UERWS0iP/VatkRE/uQeowIRWSwibd1lCSLyqhvrQRFZLiLt3WWdRGSBiOwXkSwR+VUNsX4oIjf7zFstIr90p/uKyH/c7WwSkcu8ys0SkWfcY14EnFXXsYlIqmqPED6ArcC5NSy7EigHfoXzxXQjsAMQd/k7wD+A5kA7YBlwvde6FcAtOGeQzYAbgA1AGtAa+AhQd3k8sB84yWv/q4BLaojtK+Bv7npnAAXAq+6y7tXbdZ/PAu73eV2fez0fAuwBRriv8wr3uMR7HaNMoIv7OqKAFcDdQBxwArAFuMAtPwMoAS52t/cX4Gt3WTSwGnjMPW4JwCh32RggCzjJPSZ/AL6s5b1ToJfPe+kdZ6y7vd+7cZ7tHqcTvY7LPmCYG8fHwPfANDfO+4FPAt2/z7IO7jE9G5jiHp9kd1kvnGrAeCAV+BR4PIDjc8T75u+99Vnm+zn4CqfqLg6nKjKfHz4znYE89z2LcuPLA1Ld5UuA74A+7rFdAjzoLrseeA9IdOMfhlPlifvannZfx2BgL3C21+ekev/TgC+8Yu8HHHSPUXMgG7jK/VwMcd+3fl7HwAOMdGNPCPX3SlC+q0IdQFN/uF8whe4Hs/rxK3fZlUCWV9lE95+vA9AeKAWaeS2fVP3l4q673WdfH+MmE/f5uT7/zM8AD7jT/YEDuF/YPtvpipOImnvNe51jTxbPAH/y2ccm4EyvY3S117IRfl7bXcDL7vQM4COvZf2AQ+70ae4XRoyf1/UhcI3X8yigGOhWw3vnL1l4x3k6sAuI8pr3BjDD67g877XsFmCj1/OBwMFaPjuK84Xr/dm5wGv5JThfcvtwv/Br2M5YYFUAx+eI983rNZT4xDDb93Pg9ZlJ9Fr3Va/PzJ3AHJ9tLwKucKeXAH/wWvZr4N/u9NXAl8Agn/W7AJW4SdKd9xdgltfnpHr/yUBR9XsNPAC85E5PAD7z2fY/gHu8jsErx/M9EAkPq4YKD2NVtZXX43mvZbuqJ1S12J1MwqkvjwV2uqfeB3E+wO281s322U8nn3m+y2cDk0VEgKnAm6pa6ifeTsABPbLNYVvtL7FW3YDfVr8O97V0cffjL9ZuQCef8r/HSaDVdnlNFwMJbnVIF2Cb+m9P6Ab83Wub+wHB+dUbKO84OwHZqlrlNW+bz/Z2e00f8vM8qY79DfX57CzyWvYezi/tTap6uGFanKvT5opTdZmP86VdXY1Y2/GpyV99YrjCT5lOwH6vzzD8+D291Oc9HQV09Crj+55WH5s5OIllrojsEJGHRSTWa58FXuv5Hn8A3DIfABPdWZOA17xiG+ET2xScH23+XkujZA3ckSsb58yibS3/2L5DCu/EqYKq1uWIwqpfi0gZzi/iye7Dn51AaxFp7pUwuvrZX6Cycc5oHqiljPe2s4HvVbX3Me6rq/hvgK6O4zU/6wXKO84dQBcRifJKGF2Bb49j+0fjAWAj0ENEJqnqG+78P7txDlTV/SIyFqhut6nt+BzPENU7gTYikuiVMLw/f9k4ZxZ+2xRqo6rlwL3AvSLSHViIc2a62N1nslfC6Ark1rCpN4B7RORTnGqrT7xi+6+qnldbGEcbd6SxM4sIpao7cf4ZHhWRFiIS5TZcnlnLam8Ct4lIZ7dB804/ZV7B+eIo9/416rPvbUAGzj9nnIiMAn5xHC/neeAGERkhjuYi8jMRSa6h/DKgQJzG5GbiNNwPEJFTAtjXMpwvrgfd/SSIyEh32bPAXSLSHw5fQHDpcbyupTi/gH8nIrFug+0vgLnHsc2AiMgZOHXs03DagJ4Ukepf1Mk4VZ8ed94dXqvWdnx2A2kiEne08Xh9Zma4n5nTOPIz8yrwCxG5wH0/E0TkpyKS5neDR77Ws0RkoDgXd+TjtPNVqWo2TvXUX9ztDQKucfflz0Kcs4j7gHleCf59oI+ITHXfx1gROUWcRv8mw5JFeHhPjrxO/Z0A15uG01i4Aad9YT5Hnrb7eh4nwazBabxeiFOP7H2Z3xxgADX/Q1WbjNN2sB+4ByfJHBNVzcBpxJ+J8zqycOrHaypfCfwcp8Hye5w6+ReAlgHsqxLnS6oXsB3IwamTRlXfAR7Cqc7IB9YBF9WwqTqpapm7r4vcGJ8GpqnqN8e6TT9W+3x2HheRFjjvx82qmquqnwEvAi+7VYz3AkNxGmU/AN72irnG44PT5rUe2CUi+7xi+J1PDN7LvE3BaRPJw2m8n4dzdoz7xT4GpzpxL86v+TsI7DuqA85nPx/nTOq/OJ9jcKqTuuOc5b2D087g9zJ1t8r1bZy2vNe95hcA5+NUUe3AqQ57CKfxu8movqrGNEHiXIb7rKp285rXDOcqmqGqujlkwZlGT0TmAd+o6j2hjsXUzc4smhC3yuZica7/74xzRuB7FnMjsNwShalvbtVNT7fK9EKcM4l3Qx2XCUxQk4WIXChOB5YsEZnuZ3m8iMxzly91G6cQkSnidNCqflSJyOBgxtpEVFdBHMCphtqI01fBWSiyFbgN+G0ogjONXgecS2ALgSeAGzUEw6SYYxO0aii3selbnM41OcByYJKqbvAq82uca6NvEJGJwDhVneCznYHAu6raMyiBGmOMqVMwzyyG43Qo2+I29M3FOe30Ngbn2n5wGqjOcRvgvE2iAa4eMcYYU7Ng9rPozJEdVXJwrp7xW0ZVK0TEA6TgXDlSbQI/TjIAiMh1OCOa0rx582F9+/atn8iNMaaJWLFixT5VTa2rXFh3yhOREUCxqq7zt1xVnwOeA0hPT9eMjIyGDM8YYyKeiAQ0+kIwq6FyObKHZho/7jl5uIw4QzG0xLkGu9pEnF6VxhhjQiiYyWI50FucYYnjcL74F/iUWYDTuxRgPPCxui3uIhIFXIa1VxhjTMgFrRrKbYO4GWeAr2icERzXi8h9QIaqLsDpVTpHRLJwegJP9NrEGTiDsG0JVozGGGMC02h6cPtrsygvLycnJ4eSkpIQRWW8JSQkkJaWRmxsbKhDMca4RGSFqqbXVS6sG7iPV05ODsnJyXTv3p0fX5FrGpKqkpeXR05ODj169Ah1OMaYo9Soh/soKSkhJSXFEkUYEBFSUlLsLM+YCNWokwVgiSKM2HthTORq9MnCGGMas6VvPMDG/3fMdwgImCWLIEtKOvKumLNmzeLmm28+qm1kZmaycOHC+gzrCLNmzSI1NZXBgwczePBgpk2bdtTbWLJkCT//+c+DEJ0xpibf7Mon7ZuXKFzzftD31agbuBuDiooKMjMzycjI4OKLL/a7PCbm+N/GCRMmMHPmzLoLGmPCQmWVctf8TP4p+2lzUr+g78/OLELovffeY8SIEQwZMoRzzz2X3bt3AzBjxgymTp3KyJEjmTp1KnfffTfz5s1j8ODBzJs370fLKysrueOOOzjllFMYNGgQ//jHPw7v45FHHjk8/557ju4eM5mZmZx66qkMGjSIcePGceDAAQCysrI499xzOfnkkxk6dCjffffdEestX76cIUOG/Gi+Mab+zPpyKztzthJDFc3adqt7hePUZM4s7n1vPRt25NfrNvt1asE9v+hfa5lDhw4xePAPt+LYv38/o0ePBmDUqFF8/fXXiAgvvPACDz/8MI8++igAGzZs4PPPP6dZs2bMmjWLjIyMw7/8Z8yYccTy5557jpYtW7J8+XJKS0sZOXIk559/Pps3b2bz5s0sW7YMVWX06NF8+umnnHHGGT+Kc968eXz+uXPL7dtuu42rrrqKadOm8eSTT3LmmWdy9913c++99/L4448zZcoUpk+fzrhx4ygpKaGqqorsbGfMyC+//JJbbrmFf/3rX3Tt2vX4D7Ix5key9xfz10WbuLx7lXOT15Zd6lzneDWZZBEqzZo1IzMz8/Dz6i9+cPqBTJgwgZ07d1JWVnZE/4PRo0fTrFmzGrfrvXzx4sWsWbOG+fPnA+DxeNi8eTOLFy9m8eLFDBkyBIDCwkI2b97sN1n4VkN5PB4OHjzImWeeCcAVV1zBpZdeSkFBAbm5uYwbNw5wOtpV27hxI9dddx2LFy+mU6dOR3egjDEBUVV+/85aoqOEG4fEw4dAy85B32+TSRZ1nQGEwi233MLtt9/O6NGjWbJkCTNmzDi8rHnz5rWu671cVXnyySe54IILjiizaNEi7rrrLq6//voj5j/11FM8//zzAPXacN6xY0dKSkpYtWqVJQtjguTtlbl8tnkffxrTnzbl7l1pWwQ/WVibRQh5PB46d3be5NmzZ9dYLjk5mYKCghqXX3DBBTzzzDOUl5cD8O2331JUVMQFF1zASy+9RGFhIQC5ubns2bOHm266iczMTDIzM2v8Um/ZsiWtW7fms88+A2DOnDmceeaZJCcnk5aWxrvvOh/S0tJSiouLAWjVqhUffPABd911F0uWLDm6g2GMqdO+wlL+9MEG0ru1ZsqIbpCfCwktIaFF0PdtySKEZsyYwaWXXsqwYcNo27ZtjeXOOussNmzYcLiB29e1115Lv379GDp0KAMGDOD666+noqKC888/n8mTJ3PaaacxcOBAxo8fX2vS8TV79mzuuOMOBg0aRGZmJnff7dyue86cOTzxxBMMGjSIn/zkJ+zatevwOu3bt+f999/npptuYunSpUdxNIwxdZmxYD3FpZU8eMkgoqIEPDkN0l4BjXwgwY0bN3LSSSeFKCLjj70nxhybjzbs5tpXMvjteX245ZzezsxnR0FyJ5jy5jFvN9CBBO3MwhhjwlxBSTl/eHcdfTskc/2ZPX9Y4MmBlmkNEkOTaeA2xphI9dC/v2FPQQnPTh1GXIz7G7+sCA4daLBkYWcWxhgTxpZ9v59Xv97OVSN7MLhLqx8WeNy7VDdQm4UlC2OMCVMl5ZVMf3sNXdo047fn9zlyocfpCNsQfSzAqqGMMSZszfw4iy17i5hzzXAS43y+rvOrzyysGsoYY5qsjTvzefa/33HJ0DRO75364wKeHJAoSO7YIPFYsgiis846i0WLFh0x7/HHH+fGG29k/fr1nH322Zx44on07NmTe+65h6qqKuDHQ4YPHjyYDRs2hOIlGGNCoKKyijvfWkOrxFj++PMaLjX35DiJIrph7mlvySKIJk2axNy5c4+YN3fuXCZOnMjo0aOZPn06mzZtYu3atSxbtoy///3vh8tNmDDhcC/rzMxM+vUL/hDExpjwMOvLrazJ8TBjdH9aJcb5L+TJbpBhPqoFNVmIyIUisklEskRkup/l8SIyz12+VES6ey0bJCJfich6EVkrIgm+64e78ePH88EHH1BWVgbA1q1b2bFjB1lZWYdHhgVITExk5syZPPLII6EM1xgTBrbnFfPXxZs496R2/GxgLVVMntwGa6+AIDZwi0g08BRwHpADLBeRBarqXZ9yDXBAVXuJyETgIWCCiMQArwJTVXW1iKQA5ccV0IfTYdfa49rEj3QYCBc9WOPiNm3aMHz4cD788EPGjBnD3Llzueyyy1i/fj3Dhg07omzPnj05dOgQBw8eBI4cMhzgq6++qnUUWmNM5KseUTYmKoo/jR1Q833rVZ1qqL4/a7DYgnlmMRzIUtUtqloGzAXG+JQZA1SPoDcfOEeco3M+sEZVVwOoap6qVgYx1qDxroqaO3cukyZNCmg932ooSxTGNH7zV+TwedY+pl/Ul44ta/mfL9oHlaUN1scCgnvpbGcg2+t5DjCipjKqWiEiHiAF6AOoiCwCUoG5qvqw7w5E5DrgOqDuG+3UcgYQTGPGjOF//ud/WLlyJcXFxQwbNoxVq1bx6aefHlFuy5YtpKSk0KpVqxq2ZIxpzPYWlHL/BxsZ3r0Nk4fX8X3WwH0sIHwbuGOAUcAU9+84ETnHt5CqPqeq6aqanprq59KyMJCUlMRZZ53F1VdfffisYsqUKXz++ed89NFHgHM3vVtvvZV77703lKEaY0JoxoL1HCqv5C+XDHRGlK1NA/exgOAmi1zA+xwpzZ3nt4zbTtESyMM5C/lUVfepajGwEBgaxFiDatKkSaxevfpwsmjWrBkLFizggQceoE+fPrRt25aRI0cyZcqUw+tU33O7+vHll1+GKnxjTJAtXr+LD9bu5LZzetMzNanuFTw5zt9GUg21HOgtIj1wksJEYLJPmQXAFcBXwHjgY1Wtrn76nYgkAmXAmcBjQYw1qMaOHYvvUPADBgzgk08+AeDdd9/l9ttvZ/LkyXTr1o0rr7ySK6+8MgSRGmMaWn5JOX/8lzOi7HVnnBDYSp4ciGkGzVoHNzgvQUsWbhvEzcAiIBp4SVXXi8h9QIaqLgBeBOaISBawHyehoKoHRORvOAlHgYWq+kGwYg21sWPHMnbs2FCHYYwJgQc//Ia9BaU8Py2d2OgAK3s82U4VVE1XSwVBUMeGUtWFOFVI3vPu9pouAS6tYd1XcS6fNcaYRunrLXm8vnQ7vzq9B4PSjuLilgbuYwHh28BdbxrLnQAbA3svjPlBSXkld729lq5tErn9vBOPbuUGvOlRtUadLBISEsjLy7MvqTCgquTl5ZGQEHEd8Y0Jiif+32a+31fEn8cNpFlcdOArVpRC4a4GTxaNeojytLQ0cnJy2Lt3b6hDMTjJOy2tYT/gxoSj9Ts8/OPTLVw6LI1Rvdse3cr5O5y/lizqT2xsLD169Ah1GMYYc1hFZRXT31pL68Q4/vCzYxggNAR9LKCRJwtjjAk3L33xPWtzPTw9ZSgtE49hePEQ9LGARt5mYYwx4WRbXhF/+8+3nNevPRcN6HBsG6ke6qNFp/oLLACWLIwxpgGoKne9vZbYqCj+NKaWEWXr4smFxLYQ27CDi1qyMMaYBvDa0u18+V0ed118Eh1aHsdVgSG4bBYsWRhjTNB9tnkvMxas5/TebZl4ynG2NViyMMaYxmfDjnxufHUlvdol8dSUoXWPKFsXSxbGGNO47Dh4iKtmLSMpPoaXrzqFFgnHcPWTtxIPlBVYsjDGmMbCc6icK19eRnFpJbOuPqX2O98FvNHqy2YbPllYPwtjjKlnpRWV3DBnBd/vK2L2VcPp26FF/Wy4Olm0sGRhjDERTVW5c/4avtqSx2MTTuYnvY5yOI/aHL6dqlVDGWNMRHtk0SbezdzBHRecyLgh9fyl7smFqFhIal+/2w2AJQtjjKknr369jaeXfMfkEV359U971v8OPDlOz+2ohv/qtmRhjDH14KMNu7n7X+s4p2877hvd/9h7aNcmRJfNgiULY4w5bquzD3LLG6sY0LklT04eQkygt0c9WpYsjDEmMm3PK+aa2ctpmxzHi1ecQmJckK4bqqqEgh2WLIwxJtLsLyrjipeXUVGlzLpqOKnJ8cHbWeFuqKponMlCRC4UkU0ikiUi0/0sjxeRee7ypSLS3Z3fXUQOiUim+3g2mHEaY8zRKimv5NrZy8k9eIgXpqXTMzUpuDsMYR8LCGI/CxGJBp4CzgNygOUiskBVN3gVuwY4oKq9RGQi8BAwwV32naoODlZ8xhhzrCqrlN/MzWRV9kGenjyU9O5tgr/TEPbehuCeWQwHslR1i6qWAXOBMT5lxgCz3en5wDkSlEsIjDGm/tz/wQb+vX4Xf/hZPy4a2LFhdtqIk0VnINvreY47z28ZVa0APECKu6yHiKwSkf+KyOlBjNMYYwL2wmdbePmLrVw9sgfXjOrRcDv25EB8S0iop6FDjlK4DvexE+iqqnkiMgx4V0T6q2q+dyERuQ64DqBr164hCNMY05R8sGYn93+wkYsHduAPPzupYXfuyYGWvr+3G04wzyxyAe+7fKS58/yWEZEYoCWQp6qlqpoHoKorgO+APr47UNXnVDVdVdNTU1OD8BKMMcaxfOt+/ufNTNK7teZvlw0+/vtSHK380PWxgOAmi+VAbxHpISJxwERggU+ZBcAV7vR44GNVVRFJdRvIEZETgN7AliDGaowxNcraU8i1szNIa92M56elkxAb3fBBhLBDHgSxGkpVK0TkZmAREA28pKrrReQ+IENVFwAvAnNEJAvYj5NQAM4A7hORcqAKuEFV9wcrVmOMqcmeghKufHkZsdHC7KuG07p5XMMHUVYMxXmNM1kAqOpCYKHPvLu9pkuAS/2s9xbwVjBjM8aYuhSVVnD1rOXkFZYx7/pT6dImMTSB5Ls1+CHqYwHWg9sYY/yqqKzi5tdXsmFHPk9NGcKgtFahCybEl81C+F4NZYwxIaOq/PFf6/hk017+PG4gZ/dt+PtHHCEMkoWdWRhjjI+nPsnijWXZ3HRWTyaPCIPL8j05gDj3sggRSxbGGOPlvdU7+Ovibxk3pDP/e/6JoQ7H4cmB5A4QHRuyECxZGGOM69vdBdz51hqGdWvNQ5cMCs4NjI5FiPtYgCULY4wBoKCknBvmrCAxLoanpwwlLiaMvh5D3McCLFkYYwyqyh3/XMO2/cXMnDyE9i0SQh3SD1Tde2+HbqgPsGRhjDE89+kW/r1+F9Mv7MupJ6TUvUJDKs6DihJo2aXuskFkycIY06R9+d0+Hvr3N1w8sAPXnt6Ao8gGKgwumwVLFsaYJmyn5xC3vL6KHm2b8/D4k8OnQdubJQtjjAmdsooqfv3aSkrKK/nH1GEkxYdpH+UwSRZhenSMMSa4HvhgA6u2H+SpyUPp1S451OHULD8HYhIgMbRtKXZmYYxpct5dlcvsr7Zx7age/GxQA90W9VhVXzYb4ioySxbGmCZl4858pr+9huE92nDnRX1DHU7dwqCPBViyMMY0IZ5D5dz46gpaJMQyc/IQYqMj4CvQkxPSocmrWZuFMaZJqKpSfvvmanIOHOKN606lXXIYdbyrSWU5FOyyMwtjjGkoz/z3Oz7auJvfX3wSp3RvE+pwApO/A1BLFsYY0xA+37yPRxdv4hcnd+Kqkd1DHU7gDl82G9qhPsCShTGmkcs9eIhb566iZ2oSD/5yYHh2vKvJ4WQR2qE+wJKFMaYRK62o5NevrqCsoopnpw6jebh2vKtJvpssQjyIIFgDtzGmEbvvvQ2szvHw7OXD6JmaFOpwjp4nx+mMF5cY6kiCe2YhIheKyCYRyRKR6X6Wx4vIPHf5UhHp7rO8q4gUisj/BjNOY0zj88+MbF5bup3rzzyBCwd0CHU4xyYMhiavFrRkISLRwFPARUA/YJKI9PMpdg1wQFV7AY8BD/ks/xvwYbBiNMY0Tut3ePjDu+s47YQU7giXW6MeC09OWLRXQHDPLIYDWaq6RVXLgLnAGJ8yY4DZ7vR84BxxW59EZCzwPbA+iDEaYxoZT3E5N7y6gtaJcTw5eQgxkdDxriae3LC4bBaCmyw6A9lez3PceX7LqGoF4AFSRCQJuBO4t7YdiMh1IpIhIhl79+6tt8CNMZGpqkr5zbxV7PKU8NSUobRNig91SMeuxAOlniaRLI7HDOAxVS2srZCqPqeq6aqanpqa2jCRGWPC1sxPsvhk017++PN+DOvWOtThHB9PrvM3DPpYQHCvhsoFvCvb0tx5/srkiEgM0BLIA0YA40XkYaAVUCUiJao6M4jxGmMi2JJNe3jso28ZN6QzU0/tFupwjl9+dbIIjzaLYCaL5UBvEemBkxQmApN9yiwArgC+AsYDH6uqAqdXFxCRGUChJQpjTE2y9xdz29xMTmyfzJ/HRVjHu5p43Fr8MKmGClqyUNUKEbkZWAREAy+p6noRuQ/IUNUFwIvAHBHJAvbjJBRjjAlYSXklN762gipVnr18GM3iokMdUv3w5EBUDCS1D3UkQIDJQkTexvli/1BVqwLduKouBBb6zLvba7oEuLSObcwIdH/GmKbnnn+tZ11uPs9PS6d72+ahDqf+eHIguRNEhUfyC7SB+2mcKqTNIvKgiETwhcvGmMZi7rLtzMvI5qazenJev/D4BV5vwuiyWQgwWajqR6o6BRgKbAU+EpEvReQqEYkNZoDGGOPPmpyD3L1gPaN6teX28xrh71dPduQlCwARSQGuBK4FVgF/x0ke/wlKZMYYU4P9RWXc+OpKUpPieWLSEKKjGkGDtreqSudeFmGULAJts3gHOBGYA/xCVXe6i+aJSEawgjPGGF+VVcqtb6xib2Ep8284jTbN40IdUv0r3ANV5WHTxwK843biAAAgAElEQVQCvxrqCVX9xN8CVU2vx3iMMaZWjy7exOdZ+3jokoEMSmsV6nCCI8z6WEDgyaK1iPzSZ54HWKuqe+o5JmOM8WvR+l08veQ7Jp7ShQmndA11OMETZn0sIPBkcQ1wGlB9dvFTYAXQQ0TuU9U5QYjNGGMO+25vIb99czWD0loyY3T/UIcTXJ7wuelRtUCTRSxwkqruBhCR9sArOMNyfIrTlmGMMUFRVFrBDXNWEBcTxTOXDyMhNjz6HgSNJwfikiGhZagjOSzQq6HSqhOFaw/QRVX3A+X1H5YxxjhUld/NX8N3ewt5ctIQOrdqFuqQgs+T41RBhdGwJYGeWSwRkfeBf7rPL3HnNQcOBiUyY4wBXvjsez5Yu5M7L+zLyF5tQx1Ow6hOFmEk0GRxE/BLYJT7/BXgLXfQv7OCEZgxxnz1XR4P/vsbLuzfgRvOPCHU4TQcTw50GhzqKI5QZ7Jwb4/6kaqeBbwV/JCMMQZ2eg5x8+sr6Z6SyCOXDmocI8kGovwQFO8LuzOLOtssVLUS534S4dPSYoxp1EorKrnx1ZWUlFfyj6nDSE5oQqMK5e9w/oZRHwsIvBqqEFgrIv8BiqpnquqtQYnKGNOk3ffeBjKzD/L0lKH0apcc6nAaVhj2sYDAk8Xb7sMYY4LqnxnZvLZ0O9efcQIXD+wY6nAaXhj2sYAAk4WqzhaRZkBXVd0U5JiMMU3UulwP//fuOk47IYU7LmiEI8kGwpMLCLToFOpIjhBQPwsR+QWQCfzbfT5YRBYEMzBjTNNyoKiM6+esIKV5HE9OHkJMdMCDYjcunmzn7ngx8aGO5AiBvhszgOG4fSpUNRNoQtexGWOCqbJKuXXuKvYWlPLM5cNomxReX5QNKgz7WEDgyaJcVT0+8wK+vaoxxtTmsf98y2eb9zFjdH8Gd2mkI8kGypMTVkOTVws0WawXkclAtIj0FpEngS+DGJcxpon4z4bdzPwki8vS05g0PLwuF21wqs7w5GF22SwEnixuAfoDpcAbQD7wm2AFZYxpGr7fV8Tt8zIZ2Lkl940Z0HQ63tXk0AEoL47caihVLVbV/1PVU1Q13Z0uqWs9EblQRDaJSJaITPezPF5E5rnLl4pId3f+cBHJdB+rRWTc0b4wY0x4Ky5zRpKNiRaeuXxo4x9JNhDVfSzC7LJZCPy2qn2A/wW6e6+jqmfXsk408BRwHpADLBeRBaq6wavYNcABVe0lIhOBh4AJwDogXVUrRKQjsFpE3lPViqN6dcaYsKSq3PnWWr7dU8ArVw8nrXViqEMKD9V9LMLwzCLQTnn/BJ4FXgAqA1xnOJClqlsARGQuMAbwThZjcK60ApgPzBQRUdVirzIJgAa4T2NMBHjpi628t3oHd1xwIqf3Tg11OOHDE363U60WaLKoUNVnjnLbnYFsr+c5ODdL8lvGPYvwACnAPhEZAbwEdAOm+jurEJHrgOsAunZtxLdYNKYRWboljz8v3Mh5/dpz45k9Qx1OePFkQ3Q8NA+/odgDbeB+T0R+LSIdRaRN9SOYganqUlXtD5wC3CUiCX7KPOe2oaSnptqvE2PC3e78Em56fRXd2iTy6GUnExXVxBu0fVVfNhuGDf2Bnllc4f69w2ueUnvHvFzA+1wqzZ3nr0yOiMQALYE87wKqulFECoEBQEaA8RpjwkxZRRU3vrqC4rIKXv/VCFo0pZFkAxWmHfIg8LGhehzDtpcDvUWkB05SmAhM9imzACcRfQWMBz5WVXXXyXarproBfYGtxxCDMSZM3P/BBlZuP8jMyUPo076JjSQbqPxcOOGnoY7Cr1qroUTkd17Tl/os+3Nt67ptDDcDi4CNwJuqul5E7hOR0W6xF4EUEckCbgeqL68dhXMFVCbwDvBrVd0X+MsyxoSTt1bk8MpX27h2VA9+Pii8BsgLG5XlULAzYs8sJgIPu9N38cM9uAEuBH5f28qquhBY6DPvbq/pEuBSP+vNAebUEZsxJgK8t3oHd761hlNPaMP0i/qGOpzwVbATtCos+1hA3Q3cUsO0v+fGGHOE+StyuG3uKoZ2bc3z09Kb7kiygTh82WxknlloDdP+nhtjzGFzvt7GH99dx6hebXlu2jAS4wK9nqaJOtwhL/z6WEDdyeJkEcnHOYto5k7jPv/RpazGGAPwwmdbuP+DjZzdtx1PT7GhPAJy+Haq4VkNVWuyUFV7h40xR2Xmx5v56+JvuXhgBx6fMIS4GKt6CognB5q1hrjmoY7ELzsvNMbUC1Xlr4s38dQn3zFuSGceGT/I2iiORn5u2LZXgCULY0w9UFX+9P5GXvrieyYN78IDYwda7+yj5cmBVuE7bJGlfWPMcamqUv7v3XW89MX3XPmT7vx5nCWKY+LJDtvLZsHOLIwxx6GisorfvbWGt1fmcsOZPbnzwhPtBkbHorQASjxWDWWMaXzKK6v4zbxMPlizk9vP68MtZ/eyRHGswryPBViyMMYcg9KKSm56bRUfbdzN7y/uy3Vn2FDjxyXM+1iAJQtjzFE6VFbJdXMy+GzzPu4b059pp3UPdUiRL8z7WIAlC2PMUSgsreCaWctZtnU/D18yiMtOCd9fwhHFkwMSDUkdQh1JjSxZGGMC4jlUzpUvL2NNjofHJwxmzODw/RUccfJzoUUniA7fr+TwjcwYEzb2F5Ux9cWlfLu7gKcmD+HCAR1DHVLjEsY3Papm/SyMMbXaU1DCpOe+JmtPIc9NTbdEEQxh3scCLFkYY2qx03OIif/4mu37i3n5ylM4q2+7UIfU+FRVOZfOhvmZhVVDGWP8yt5fzKTnv+ZgcTlzrhlOevc2oQ6pcSraC1XlliyMMZFny95CJj+/lEPllbx27QhO7tIq1CE1XhHQxwIsWRhjfGzaVcCUF5aiqrzxq1Pp16lFqENq3CKgjwVYsjDGePkyax83vb6SuJgoXrv2VHq1Sw51SI1ffvgP9QFBbuAWkQtFZJOIZInIdD/L40Vknrt8qYh0d+efJyIrRGSt+/fsYMZpTFO3OvsgU19cyuQXlpKUEMOb159miaKheHIgLgkSwruqL2hnFiISDTwFnAfkAMtFZIGqbvAqdg1wQFV7ichE4CFgArAP+IWq7hCRAcAiILzP0YyJQN/uLuDRxZtYtH43bZrH8YefncTlp3az26A2JE+2c1YR5oMwBrMaajiQpapbAERkLjAG8E4WY4AZ7vR8YKaIiKqu8iqzHuf+3/GqWhrEeI1pMrblFfH4R5t5NzOXpLgYbj+vD1eP6kFSvNVMNzhPTtj3sYDgJovOQLbX8xxgRE1lVLVCRDxACs6ZRbVLgJWWKIw5frs8JTzx8WbeXJ5NTLRw/Rk9uf6ME2jdPC7UoTVdnlzoMCjUUdQprH9GiEh/nKqp82tYfh1wHUDXruF7O0JjQi2vsJRnlnzHK19vQ1WZMqIrN53Vi3YtEkIdWtNWXgJFe8L+slkIbrLIBbyPQJo7z1+ZHBGJAVoCeQAikga8A0xT1e/87UBVnwOeA0hPT9d6jd6YRiC/pJwXPt3Ci59/z6HySi4Zmsat5/SmS5vEUIdmwOtKqKZdDbUc6C0iPXCSwkRgsk+ZBcAVwFfAeOBjVVURaQV8AExX1S+CGKMxjVJxWQWzv9zGs//9Ds+hcn42sCP/c14ferVLCnVoxtvhDnnhfdksBDFZuG0QN+NcyRQNvKSq60XkPiBDVRcALwJzRCQL2I+TUABuBnoBd4vI3e6881V1T7DiNaYxKK2oZO6ybGZ+ksXeglLOOjGV355/IgM6twx1aMafCOljAUFus1DVhcBCn3l3e02XAJf6We9+4P5gxmZMY1JRWcXbq3L5+0ebyT14iOE92vDMlKE2nlO4qz6zaOJXQxljgqyqSlm4bid/+8+3bNlbxKC0lvzllwM5vXdbJMyv2zc4fSyat4OY+FBHUidLFsZEoPLKKj79di+PLv6WDTvz6dM+iWcvH8YF/dtbkogkEXDTo2qWLIyJAAeLy1i1/SAZ2/azYtsBVmd7OFReSdc2iTw24WRGn9yZ6ChLEhHHkwupJ4Y6ioBYsjAmzKgq3+8rYsW2A4cfm/cUAhAdJfTv1IIJp3RheI82nNevPbHRdg+ziKTqnFn0OjfUkQTEkoUxIVZSXsnaXA8rth0gY+sBVm4/wP6iMgBaJMQwrFtrxgzuxLBubTi5S0sS4+zftlE4dADKiyKijwVYsjCmwe0pKGGle8aQse0A63I9lFc6fUpPaNucs/u2I71ba4Z1a03P1CSirHqpcYqgy2bBkoUxQVNVpeQVlbHTc4g1OZ7DVUrb9xcDEBcTxclpLbl6VA/Su7VhaNdWpCSF/1Uxpp5EUIc8sGQBwOeb9zGyV4pdRWICUp0EdueXsLeglN35JezOL2VPgfN3b/XfwlIqq34YhaZtUjzp3Voz9dRuDOvemv6dWhAfY0OBN1kRcjvVak0+WXy+eR+Xv7iU03u35c/jBtqYOU1YdRLYU1DCnnwnCewp+OHvHjcp7CsspaLqx0ORtWkeR7vkeNq1SKBP+2TatYinfYsE2iXH069jS7q0aWY/SMwPPNkQHQeJbUMdSUCafLL4Sc8U/jR2AA8u3Mj5j33KHRecyBU/6W6XIUa4sooqDhaXsb+4jP1FZRwsLnf/lnGguJwDxc4877+eQ+Won+EoWyfG0r5FAqnJ8fRun0z7FvG0S05w/rrJIDU53s4SzNHx5Do9t6Mi42q2Jp8soqKEqad24+y+7fjDO2u57/0NvLdmBw9fMoje7e22kuGivLKK/UVl7CssZV9hGXmFzi/8vMIy9rp/DxS7j6JyCksratxWYlw0rRPjaJUYS+vEODq3akbrxDhaJ8bSpnkcHVomkOomA0sCJmgiqEMeWLI4rHOrZrx05SksWL2DGQvWc/ETn3HzWb258ac9iYuJjMwfibzr/3fnl7DLrerZ7Slhd0EJuzxOFVD1paS+4qKjaJsUR0pSPG2ax9EzNYlWibG0SYyjdfM4Jwk0d5JAdYKwL38TFjw50OP0UEcRMEsWXkSEMYM7M6pXW+59bwOPffQtC9fu5KHxgxjcJbxvph6uSsor2ekpYcfBQ+QeOETuQeexw/2782AJZZVVR6wj4jQGt28RT1rrZgzp2pp2yfG0TY6nbfM4529SPClJcSTHx1g7gIk8lRVQsMPOLCJdSlI8T0wawpjBnfi/d9bxy6e/4PJTuzH11G5WNeVDVdlbUMr2/cVHPLLdv7vzj7wbrgi0T06gU6sEBqW14sIBCXRq2Yz2LRLo0NKt+kmKJ8Z6JZvGrHAXaJUli8binJPac0qPNjz04Te8tnQ7r3y1jQGdW/DLIWmMHtyJtk3kmviKyip2HCxha14R2/YXs21fEVvzitm+v4jt+4spKf/hzEAEOrRIoEubRE7vnUqX1omktW5Gp1bNSGvtJAWr1jNNXoT1sQAQ9Xf5RwRKT0/XjIyMoG1/b0Ep763ewdurcliXm090lHBmn1TGDenMef3akxAb2fXgh8oq2b6/mG15RYfPDrblOc9zDhw64lLRhNgourVpTteURLqnJNK1TSJpbZy/nVs1i/hjYUzQrZ0Pb10Dv14K7fqGNBQRWaGq6XWVszOLAKUmx3P1qB5cPaoH3+4u4O2Vuby7KpePv9lDcnwMFw/syNkntaNvh2S6tE4MuyEayiur2OUpcdoM3LaDbe7Zwba8YvYUHFldlBwfQ9eURPp3asnFAzvSPaU53VIS6ZbSnHbJ8WH3+oyJKJ5s52+EjAsFliyOSZ/2yUy/qC93XHAiX2/J462VOby3ZgfzMpwPQGJcNH3aJ3NSx2RObJ9M344t6NshmVaJcfUei6qSf6iCfUXO5aPVl5Tu8JSQe+CHhuTd+SX49iPr0CKBrm0SOaNPKt3aJNLVTQbd2iTSKjHWGo6NCRZPLiS0gvjIaQO1ZHEcoqOEkb3aMrJXWx4YW8k3u/L5ZlcBm3YV8M2ufD5ct4s3lmUfLt8uOZ6UpHiS4qNpHh9Dkvvwnk6IjaK0osrrUUlpudd0RRUFJRXkuX0L8opKDw9C5y0mSujYKoHOrZrxk55t6dwqgc6tm9G5VSKdWiXQyaqLjAkdT07EDPNRzZJFPWkWF82Qrq0Z0rX14Xmqyp6CUr7ZVcA3O/PZvKcQz6Fyikor2F9Uxvb9xRSWVFBUWkFRWaXf7cbHRDmP2OjD00nxMXRokUD/Ti1ISYonpXkcqcnxpDR3LidNae70O7Be6MaEKU9ORFVBgSWLoBIR2rdIoH2LBM7sk1pr2aoqpaisgpLyKuJjnaQQFx1lVUHGNEaebOg6ItRRHJWgXsMoIheKyCYRyRKR6X6Wx4vIPHf5UhHp7s5PEZFPRKRQRGYGM8ZwERUlJCfEkpocT4sEp5exJQpjGqHSQig5GFGXzUIQk4WIRANPARcB/YBJItLPp9g1wAFV7QU8Bjzkzi8B/gj8b7DiM8aYkDh806PIarMI5pnFcCBLVbeoahkwFxjjU2YMMNudng+cIyKiqkWq+jlO0jDGmMaj+rLZFpHVZhHMZNEZyPZ6nuPO81tGVSsAD5AS6A5E5DoRyRCRjL179x5nuMYY0wA8kXU71WoRPe6Cqj6nqumqmp6aWnsDsjHGhAVPDkgUJHcMdSRHJZjJIhfwrpRLc+f5LSMiMUBLIC+IMRljTGh5ciC5E0RH1sWowUwWy4HeItJDROKAicACnzILgCvc6fHAx9pYBqsyxhh/PNkR18cCgtjPQlUrRORmYBEQDbykqutF5D4gQ1UXAC8Cc0QkC9iPk1AAEJGtQAsgTkTGAuer6oZgxWuMMQ0iPxc6DQl1FEctqOdBqroQWOgz726v6RLg0hrW7R7M2IwxpsFVVTkN3Cf9ItSRHLWIbuA2xpiIUrwPKkuhRWRdCQWWLIwxpuEcHprckoUxxpiaRGgfC7BkYYwxDScCb6dazZKFMcY0FE8OxCZCs9Z1lw0zliyMMaaheLKds4oIHFHakoUxxjSU/NyIrIICSxbGGNNwPDmWLIwxxtSiohQKd0dkHwuwZGGMMQ0jf4fz184sjDHG1CiCL5sFSxbGGNMwLFkYY4ypVUUp7FrrTEfY7VSrRdbdN4wxJtxVVUHeZshdCbkrnMfudVBZBq26QmxCqCM8JpYsjDHmWKk6fSdyV/yQHHauhtJ8Z3lcEnQcDCNugM5Doduo0MZ7HCxZGGNMoIr3w46VbmJwk0PRHmdZVCx0GAADL4XOw5zk0LYPREWHNuZ6YsnCGGP8KSuGXWt+qErKXQkHvncXCrTtDb3OgU5DneTQYQDExIc05GCyZGGMMaqwfwtkL4PspZCTAXs2gFY6y1ukQechMOwKJzl0GgwJLUMbcwOzZGGMaXrKip3qpOxlziNnGRTnOcviW0BaOpx4u3PG0GkoJLcPbbxhwJKFMaZxU3VGe61ODNlLnauTqiqc5Sm9oc+F0GU4pA2H1L4QZb0KfFmyMMY0LhWlzhVJ2Ut/SBCFu5xlsYnO2cLI26DLCEg7BRLbhDbeCBHUZCEiFwJ/B6KBF1T1QZ/l8cArwDAgD5igqlvdZXcB1wCVwK2quiiYsRpjIlT+TqcaqTox7Mx0+jQAtOoGPc5wzhq6DId2/SHafiMfi6AdNRGJBp4CzgNygOUiskBVN3gVuwY4oKq9RGQi8BAwQUT6AROB/kAn4CMR6aNa3dpkjIlolRVQVghlRe7fQij1eV5W5M6r5XmJxxnJFSA6HjoNcfo0VFcpWVtDvQlmih0OZKnqFgARmQuMAbyTxRhghjs9H5gpIuLOn6uqpcD3IpLlbu+reo9y93r451X1vlnjpSHuCqYa/H0cj2Acg3B/zUdQp3qoOhlUlAS+amyi07ktrjnEJznTiW2ds4b4JOdsoctw6DAIYuKC9xKauGAmi85AttfzHGBETWVUtUJEPECKO/9rn3V/NKCKiFwHXAfQtWvXY4syJgHanXRs6x5Bgfr4Qqiv7dSH+oilIb/QwuW4+QrmMQjX1+xHTLzzhR/nfuHHJ9X+PK6582gkndoiXURX3qnqc8BzAOnp6cf2H5nSEy6bXZ9hGWNMoxPM68NygS5ez9PceX7LiEgM0BKnoTuQdY0xxjSQYCaL5UBvEekhInE4DdYLfMosAK5wp8cDH6uquvMniki8iPQAegPLghirMcaYWgStGsptg7gZWIRz6exLqrpeRO4DMlR1AfAiMMdtwN6Pk1Bwy72J0xheAdxkV0IZY0zoiEbUFRU1S09P14yMjFCHYYwxEUVEVqhqel3lrE+7McaYOlmyMMYYUydLFsYYY+pkycIYY0ydGk0Dt4jsBbYdxybaAvvqKZxgi6RYIbLitViDJ5LijaRY4fji7aaqqXUVajTJ4niJSEYgVwSEg0iKFSIrXos1eCIp3kiKFRomXquGMsYYUydLFsYYY+pkyeIHz4U6gKMQSbFCZMVrsQZPJMUbSbFCA8RrbRbGGGPqZGcWxhhj6mTJwhhjTJ2aVLIQkZdEZI+IrKthuYjIEyKSJSJrRGRoQ8foFUtdsf5URDwikuk+7m7oGL1i6SIin4jIBhFZLyK3+SkTTsc2kHjD4viKSIKILBOR1W6s9/opEy8i89xju1REujd8pIdjCSTeK0Vkr9exvTYUsXrFEy0iq0TkfT/LwubYuvHUFmtwj6uqNpkHcAYwFFhXw/KLgQ9x7lV5KrA0jGP9KfB+qI+pG0tHYKg7nQx8C/QL42MbSLxhcXzd45XkTscCS4FTfcr8GnjWnZ4IzAvzeK8EZob62HrFczvwur/3O5yObQCxBvW4NqkzC1X9FOe+GTUZA7yijq+BViLSsWGiO1IAsYYNVd2pqivd6QJgIz++Z3o4HdtA4g0L7vEqdJ/Gug/fq1LGANX3Bp4PnCMiIbk5d4Dxhg0RSQN+BrxQQ5GwObYBxBpUTSpZBKAzkO31PIcw/RJxneae7n8oIv1DHQyAe5o+BOcXpbewPLa1xAthcnzdqodMYA/wH1Wt8diqagXgAVIaNsofBBAvwCVudeR8EeniZ3lDeRz4HVBVw/JwOrZ1xQpBPK6WLCLXSpwxXU4GngTeDXE8iEgS8BbwG1XND3U8dakj3rA5vqpaqaqDce5FP1xEBoQqlkAEEO97QHdVHQT8hx9+uTcoEfk5sEdVV4Ri/0cjwFiDelwtWRwpF/DOxmnuvLCjqvnVp/uquhCIFZG2oYpHRGJxvnhfU9W3/RQJq2NbV7zhdnzdOA4CnwAX+iw6fGxFJAZoCeQ1bHQ/VlO8qpqnqqXu0xeAYQ0dm2skMFpEtgJzgbNF5FWfMuFybOuMNdjH1ZLFkRYA09wrd04FPKq6M9RB+SMiHarrTkVkOM57GZIvCDeOF4GNqvq3GoqFzbENJN5wOb4ikioirdzpZsB5wDc+xRYAV7jT44GP1W3xbGiBxOvTVjUap82owanqXaqapqrdcRqvP1bVy32KhcWxDSTWYB/XmPrcWLgTkTdwrnJpKyI5wD04DXCo6rPAQpyrdrKAYuCq0EQaUKzjgRtFpAI4BEwM1RcEzq+eqcBat64a4PdAVwi/Y0tg8YbL8e0IzBaRaJyE9aaqvi8i9wEZqroAJ/HNEZEsnIsiJoYgzmqBxHuriIwGKnDivTJk0foRxsf2RxryuNpwH8YYY+pk1VDGGGPqZMnCGGNMnSxZGGOMqZMlC2OMMXWyZGGMMaZOlixM2BKRwgDK/EZEEutxn2NFpF89bu/L41i30P3bSUTm11KulYj8+lj3Y0wgLFmYSPcb4KiShdsHoCZjgXpLFqr6k3rYxg5VHV9LkVY4o6MaEzSWLEzYE+feEkvcwdG+EZHX3J7gtwKdgE9E5BO37Pki8pWIrBSRf7rjPyEiW0XkIRFZCVwqIr8SkeXuQIFviUiiiPwEp+frI+LcD6CniAwWka/dwdneEZHW7vaWiMhjIpIhIhtF5BQReVtENovI/V6xF3pN3ykia919PujndfZwY1/rs43u4t7XRET6i3O/iEw3pt7Ag0BPd94jIpIkIv/PPQZrRWSM13Y2isjz4txrYrHbyxoR6SUiH7mxrRSRnu78O9zjtEb83JvCNCHBGvvcHvY43gdQ6P79Kc5on2k4P3C+Aka5y7YCbd3ptsCnQHP3+Z3A3V7lfue17RSv6fuBW9zpWcB4r2VrgDPd6fuAx93pJcBD7vRtwA6c3svxOCPqpvi8houAL4FE93kbP693ATDNnb7Ja93uuPc1wRnUcIo7HQc0817uzo8BWngdkyyc+0x0x+ndO9hd9iZwuTu9FBjnTifgnK2dDzznrhsFvA+cEerPhT1C82hSw32YiLZMVXMA3CE6ugOf+5Q5FacK6Qt3WKc4nMRSbZ7X9AD313srIAlY5LtDEWkJtFLV/7qzZgP/9CqywP27Fliv7lhXIrIFZ/A577GkzgVeVtViAFX1d6+SkcAl7vQc4CE/Zb4C/k+cexu8raqb5ce3VxDgzyJyBs5w1p2B9u6y71W1eoiTFUB3EUkGOqvqO25sJe7rOB8nYaxyyycBvXESsmliLFmYSFHqNV2J/8+u4Nw/YVIN2yjymp4FjFXV1SJyJc7Zy7HGVOUTX1UN8QWi1vF3VPV1EVmKcxOchSJyPbDFp9gUIBUYpqrl4oxUmuATMzjHsVktuxPgL6r6j6OI3zRS1mZhIl0Bzq1RAb4GRopILwARaS4ifWpYLxnYKc5Q5VP8bU9VPcABETndXTYV+C/H5j/AVdVXbolIGz9lvuCHgeqm+FmOiJwAbFHVJ4B/AYM48hiAM4z2HjdRnAV0qy0wde4WmCMiY919xLtxLgKu9mr36Swi7QJ6tabRsWRhIt1zwL9F5BNV3Ysz0uYbIrIGp8qmbw3r/RGnnv4LjhxCey5wh4ischt5r8Bp8F4DDMZptzhqqvpvnGqrDLca7X/9FLsNuElE1lLzXQQvA9a52xiAc6vaPJyqt3Ui8gjwGpDubmcaP3B4wSoAAABaSURBVB7S3J+pOKOWrsFpW+mgqotx7vf8lbut+RyZlEwTYqPOGmOMqZOdWRhjjKmTJQtjjDF1smRhjDGmTpYsjDHG1MmShTHGmDpZsjDGGFMnSxbGGGPq9P8BPTvSOIHcgkQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Energy')\n", "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8VfX9+PHXO4vsQEhkBQx7Q4CASARBBTc4EKRYZ7VVqzhq1f6+6he/2lq1jtZaRa1oqwIqKioqYkH2CHsPEUggQBi5GSQh4/P745ykISThEnJz7ng/H4/7uOee+b4HzfuezxRjDEoppQJXkNMBKKWUcpYmAqWUCnCaCJRSKsBpIlBKqQCniUAppQKcJgKllApwmghUwBCRiSIypwHOkywiRkRCGiIupZymiUA1OBHZLSKHRCSqyrpfich8N4//XxH5dw3rjYh0quWYqSJyQkTy7NdGEfmTiMRV7GOM+cAYM6oeX6nB2N/NiMikausn2ev/16HQaiQiw0Uk0+k4lGdpIlCeEgxMOu1eDet5Y0wMkAjcBgwGFldNSF5iO3BztXW32OuVanSaCJSnvAD8TkSa1rRRRF4VkQwRyRWRVSIytKEubIwpMsasBEYDzbGSAiJyq4gsqhKDEZH7RWSXiBwWkRdEJMjeFiQi/yMie+ynm/erPl1U+y5xIvKOiGSJyD4ReUZEgusIcSUQKSI97eN7AuH2+qrnvVNEdorIURGZJSKtq8V+j4jssJ+A/k9EOorIEvuezhCRsCr7XyUia0Ukx96nT5Vtu0XkdyKyXkRcIjJdRMLtBPoN0FpE8u1Xa5Tf0USgPCUdmA/8rpbtK4EUIB74EPhYRMIbMgBjTB7wPVBXkrkWSAX6A2OA2+31t9qvEUAHIBp4rZZzTAVKgU5AP2AU8KvThPcv/vtUcIv9uZKIXAT8CRgHtAL2ANOqneNSYADWk8/vgSnATUBboBcwwT5XP+CfwK+xEuObwCwRaVLlXOOAy4D2QB/gVmNMAXA5sN8YE22/9p/meykfpIlAedKTwH0iklh9gzHm38aYI8aYUmPMX4AmQNcqu4yzf71WvuoZw36sZFObPxtjjhpj9gKvYP/xBCYCLxljdhlj8oHHgRurVxCLSAvgCuABY0yBMeYQ8DJw42ni+jcwQURC7X2r14lMBP5pjFltjCm2r3++iCRX2ed5Y0yuMWYTsBGYY8frwvol38/e7y7gTWPMcmNMmTHmPaAYK4FU+KsxZr8x5ijwJVaSVgFCE4HyGGPMRuAr4LHq2+yiiC12UUQOEAckVNllhjGmadVXPcNoAxytY3tGleU9QEXRR2v7c9VtIUCLasefC4QCWVUS1pvAOXUFZSeencAfgR3GmIxqu5x0fTsZHbG/T4WDVZYLa/gcXSXGh6sl1bZVvivAgSrLx6scqwKAJgLlaU8Bd1LlD5hdH/B7rOKIZvYfeRcgDXlhEYkGLgEW1rFb2yrL7bCeILDfz622rZST/9iClUiKgYQqSSvWGNPTjRDfBx6236s76fp2eX1zYJ8b560uA3i2WmKNNMZ85MaxOjxxANBEoDzKGLMTmA7cX2V1DNYf1WwgRESeBGIb6poi0kREBgCfA8eAd+vY/RERaSYibbFaOU23138EPCgi7e2E8kdgujGmtOrBxpgsYA7wFxGJtSuZO4rIhW6EOh2rPmFGDds+Am4TkRS7LP+PwHJjzG43zlvdW8BvROQ8sUSJyJUiEuPGsQeB5rVVlCv/oIlANYangapNOL8DvsVqLrkHKOLkIpr6+r2I5GEVobwPrAKG2JWetfnC3m8t8DXwjr3+n1gVuAuAn+0Y76vlHDcDYcBmrMTzCVYFb52MMYXGmLnGmMIats0FngA+BbKAjpy+3qG266RjPZW9Zse3E6si3J1jt2IlpV12sZK2GvJDohPTqEAlIgbobD+1KBWw9IlAKaUCnCYCpZQKcFo0pJRSAU6fCJRSKsD5xDC6CQkJJjk52ekwlFLKp6xateqwMeaUnv3V+UQiSE5OJj093ekwlFLKp4jIntPvpUVDSikV8DQRKKVUgNNEoJRSAc4n6giUUvVXUlJCZmYmRUVFToeiPCQ8PJykpCRCQ0PrdbwmAqX8XGZmJjExMSQnJyPSoAO8Ki9gjOHIkSNkZmbSvn37ep1Di4aU8nNFRUU0b95ck4CfEhGaN29+Vk98mgiUCgCaBPzb2f77aiJQSilvVFYCufuhxPN1O5oIlFIeFxwcTEpKSuXrueeea7Bzr127ltmzZ1d+njp1KomJiSddb/Pmzezfv5+xY8c22HXrY/fu3fTq1cu9nUuLIP8glJd4Nii0slgp1QgiIiJYu3atR869du1a0tPTueKKKyrXjR8/ntdee+2UfT/55BOPxOARZSes9+CwUzaVlpYSEtJwf771iUAp5QiXy0XXrl3Ztm0bABMmTOCtt94C4O677yY1NZWePXvy1FNPVR6zcuVKhgwZQt++fRk0aBAul4snn3yS6dOnk5KSwvTp02u8Fpz8a/z48eOMGzeOHj16cO2113LeeedVDmMzZ84czj//fPr3788NN9xAfn4+YA1189RTT9G/f3969+7N1q1bAfjxxx8rnzz69etHXl4exhgeeeQRevXqRe/evWuMa/DgwWzatKny8/Dhw0lPT6egoIDbb7+dQUMvod+oCXzxlfW0M3XqVEaPHs1FF13ExRdfXO/7XhN9IlAqgEz+chOb9+c26Dl7tI7lqat71rlPYWEhKSkplZ8ff/zxyl/tt956K5MmTeLYsWPceeedADz77LPEx8dTVlbGxRdfzPr16+nWrRvjx49n+vTpDBw4kNzcXCIjI3n66adJT0+vfAKYOnUq06dPZ9GiRZXXW7p06UnxvP766zRr1ozNmzezcePGytgOHz7MM888w9y5c4mKiuLPf/4zL730Ek8++SQACQkJrF69mtdff50XX3yRt99+mxdffJG///3vpKWlkZ+fT3h4ODNnzmTt2rWsW7eOw4cPM3DgQIYNG3ZSDOPHj2fGjBlMnjyZrKwssrKySE1N5Q9/+AMXXXQR//zLU+Qc2segq2/lkpGjAFi9ejXr168nPj6+Pv9UtdJEoJTyuNqKhkaOHMnHH3/Mvffey7p16yrXz5gxgylTplBaWkpWVhabN29GRGjVqhUDBw4EIDY2ttbr1VY0VGHRokVMmjQJgF69etGnTx8Ali1bxubNm0lLSwPgxIkTnH/++ZXHXXfddQAMGDCAmTNnApCWlsZDDz3ExIkTue6660hKSmLRokVMmDCB4OBgWrRowYUXXsjKlSsrrwMwbtw4Ro0axeTJk5kxY0Zl/cWcOXOYNWsWLz73LGA1/927d2/l/WroJACaCJQKKKf75d7YysvL2bJlC5GRkRw7doykpCR+/vlnXnzxRVauXEmzZs249dZbG61XtDGGkSNH8tFHH9W4vUmTJoBV+V1aWgrAY489xpVXXsns2bNJS0vju+++c+tabdq0oXnz5qxfv57p06fzxhtvVMbw6aef0rVpGYRGQLzVSWz58uVERUWd7VeskdYRKKUc8/LLL9O9e3c+/PBDbrvtNkpKSsjNzSUqKoq4uDgOHjzIN998A0DXrl3Jyspi5cqVAOTl5VFaWkpMTAx5eXlndN20tDRmzJgBwObNm9mwYQNgldsvXryYnTt3AlBQUMD27dvrPNdPP/1E7969efTRRxk4cCBbt25l6NChTJ8+nbKyMrKzs1mwYAGDBg065djx48fz/PPP43K5Kp8WLr30Uv72179iSoshOIw1a9ac0XerD30iUEp5XPU6gssuu4zbbruNt99+mxUrVhATE8OwYcN45plnmDx5Mv369aNbt260bdu2spgmLCyM6dOnc99991FYWEhERARz585lxIgRPPfcc6SkpPD4448DnFJH8Prrr9O6devKz/fccw+33HILPXr0oFu3bvTs2ZO4uDgSExOZOnUqEyZMoLi4GIBnnnmGLl261PrdXnnlFebNm0dQUBA9e/bk8ssvJywsjKVLl9K3b19EhOeff56WLVuye/fuk44dO3YskyZN4oknnqhc98QTT/DApPvpc8k4ygmmfcdOfPXVV/W/+W7wiTmLU1NTjU5Mo1T9bNmyhe7duzsdhlcpKyujpKSE8PBwfvrpJy655BK2bdtGWNipTTUdcaIADm+H+A4QHufWITX9O4vIKmNM6umO1ScCpVTAOX78OCNGjKCkpARjDK+//rr3JAGosw+BJ2giUEoFnJiYGO+e/rYyEdRvWOkzpZXFSinlbcpOgARDUOP8VvdYIhCRtiIyT0Q2i8gmEZlkr48Xke9FZIf93sxTMSillE8qPdFoTwPg2SeCUuBhY0wPYDBwr4j0AB4DfjDGdAZ+sD8rpZSqUFbSaPUD4MFEYIzJMsastpfzgC1AG2AM8J6923vANZ6KQSmlfFLZCf9IBFWJSDLQD1gOtDDGZNmbDgAtajnmLhFJF5H07OzsxghTKeUBI0aMOKW37SuvvMLdd9/Npk2buOiii+jatSsdO3bkqaeeory8HKh9OGm/V14Gpsy/EoGIRAOfAg8YY04a7cpYnRhq7MhgjJlijEk1xqQmJiZ6OkyllIdMmDCBadOmnbRu2rRp3HjjjYwePZrHHnuMbdu2sWHDBlasWMGrr75aud/48eNZu3Zt5atHjx6NHX7ja+QWQ+DhRCAioVhJ4ANjzEx79UERaWVvbwUc8mQMSilnjR07lq+//poTJ6w/cLt372b//v3s3LmTtLQ0Ro2yRtaMjIzktdde44UXXnAyXOdVJIKQJo12SY+1TRJrEs13gC3GmJeqbJoF3AI8Z79/4akYlFLVfPMYHNjQsOds2Rsur33Gsfj4eAYNGsQ333zDmDFjmDZtGuPGjWPTpk0MGDDgpH07duxIYWEhOTk5wKlDRSxdupSIiIiGjd/b+NkTQRrwS+AiEVlrv67ASgAjRWQHcIn9WSnlx6oWD02bNo0JEya4dVz1oiG/TwJgJwKBoMZLBB57IjDGLAKkls0NO72OUso9dfxy96QxY8bw4IMPsnr1ao4fP86AAQNYs2YNCxYsOGm/Xbt20bx5c5o2bepInF6htMR6GpDa/nw2PO1ZrJTyuOjoaEaMGMHtt99e+TQwceJEFi1axNy5cwFrhNL777+fyZMnOxmq8xq56ShoIlBKNZIJEyawbt26ykQQERHBrFmzePbZZ+nSpQsJCQmkpaUxceLEymMq5iKueC1ZssSp8BuPA4lAh6FWys/5yjDUn3/+OQ899BDz5s3j3HPPdTocZ5hyyFoH0S0httUZHXo2w1DrE4FSyitcc8017Nq1K3CTAFhDS0CjthgCTQRKKeU9GnkeggqaCJQKAL5QBKyo0pnszBLB2f77aiJQys+Fh4dz5MgRTQa+oKJoKMj9RGCM4ciRI4SHh9f7sjpDmVJ+LikpiczMTHTwRh9w/CiUFIJr2xkdFh4eTlJSUr0vq4lAKT8XGhpK+/btnQ5DueP9MVCcB3f+p1Evq0VDSinlLVyZEFf/X/b1pYlAKaW8gTF2Imjb6JfWRKCUUt6g4DCUFmkiUEqpgOXaa7031USglFKBKSfDetcnAqWUClCuTOtdK4uVUipAuTIgLBoimjX6pTURKKWUN8jJsIqFGnFCmgqaCJRSyhu4MhwpFgJNBEop5R1cGY60GAJNBEop5bzifCg8pk8ESikVsCpbDLVz5PKaCJRSymkuuw+BFg0ppVSAqkgEWjSklFIBKicDgkIg5swmrG8omgiUUspprgyIbQ1BwY5cXhOBUko5zaHhpytoIlBKKadV9Cp2iCYCpZRyUlkJ5O13rMUQaCJQSiln5WWBKXesxRBoIlBKKWc5OA9BBU0ESinlpMpexZoIlFIqMFVMUalFQ0opFaByMiAyAcIiHQtBE4FSSjnJleno0wBoIlBKKWc5OA9BBU0ESinlFGPszmTODD9dwa1EICLnisgl9nKEiMS4ccw/ReSQiGyssu5/RWSfiKy1X1fUP3SllPJxx49CaaH3Fw2JyJ3AJ8Cb9qok4HM3zj0VuKyG9S8bY1Ls12x3A1VKKb9T0WLIB4qG7gXSgFwAY8wO4JzTHWSMWQAcPavolFLKn3lBHwJwLxEUG2NOVHwQkRDAnMU1fysi6+2io2ZncR6llPJtXtCrGNxLBD+KyB+ACBEZCXwMfFnP6/0D6AikAFnAX2rbUUTuEpF0EUnPzs6u5+WUUsqLuTIgNBIi4x0Nw51E8BiQDWwAfg3MBv6nPhczxhw0xpQZY8qBt4BBdew7xRiTaoxJTUxMrM/llFLKu7kyrIpiEUfDCHFjnyuBd4wxb53txUSklTEmy/54LbCxrv2VUsqvOTwPQQV3ngjGAztE5HkR6ebuiUXkI2Ap0FVEMkXkDuB5EdkgIuuBEcCD9YpaKaX8gRd0JgM3ngiMMTeJSCwwAZgqIgZ4F/jIGJNXx3ETalj9Tr0jVUopf3LiOBw/4ngfAnCzQ5kxJherL8E0oBVWsc5qEbnPg7EppZT/qmw66myvYnCvQ9loEfkMmA+EAoOMMZcDfYGHPRueUkr5KS/pTAbuVRZfj9UbeEHVlcaY43a5v1JKqTNV+UTgfNGQO3UEt4hISxEZjdWRbKUx5oC97QdPB6iUUn4pJwMkGGJaOx2JW0VDdwArgOuAscAyEbnd04EppZRfc2VCbGsIdqdgxrPcieD3QD9jzBEAEWkOLAH+6cnAlFLKr1V0JvMC7rQaOgJUbSaaZ69TSilVX17SmQzqeCIQkYfsxZ3AchH5AquOYAywvhFiU0op/1ReBrn7vOaJoK6ioYrJZ36yXxW+8Fw4SikVAPKywJR5RdNRqCMRGGMmV/0sIpHGmOOeD0kppfxc5fDTzncmA/daDZ0vIpuBrfbnviLyuscjU0opf+VFfQjAvcriV4BLsSuIjTHrgGGeDEoppfyaF/UqBvfHGsqotqrMA7EopVRgcGVCRDyERTkdCeBeP4IMERkCGBEJBSYBWzwbllJK+bEc7+lDAO49EfwGawL7NsA+rGkm7/VkUEop5ddcGdDUOyqKwb2xhg4DExshFqWU8n/GWEVDHUY4HUmlujqU/Q2rA1mNjDH3eyQipZTyZ4XH4ES+zxQNpQOrgHCgP7DDfqUAYZ4PTSml/JDLbnvjJS2GoO4OZe8BiMjdwAXGmFL78xvAwsYJTyml/IyX9SEA9yqLmwGxVT5H2+uUUkqdKS/rVQzuNR99DlgjIvMAwepM9r+eDEoppfyWKwNCwiEqwelIKrnTauhdEfkGOM9e9WjFDGVKKaXOUMU8BCJOR1LJralx7D/8OuqoUkqdLS+ah6CCW0NMKKWUaiCuTK9qMQSaCJRSqvGUFEHBIa97InCraEhEgoEWVfc3xuz1VFBKKeWXKpuO+lgiEJH7gKeAg0C5vdoAfTwYl1JK+R8v7EwG7j0RTAK6GmN0wnqllDobFYnAizqTgXt1BBmAy9OBKKWU38vJAARi2zgdyUnceSLYBcwXka+B4oqVxpiXPBaVUkr5I1cmxLSC4FCnIzmJO4lgr/0KQwebU0qp+nNleF39ALjXs3hyYwSilFJ+z5UBbVKdjuIUdc1H8Iox5gER+ZIa5iUwxoz2aGRKKeVPysvBtQ96XON0JKeo64ngX/b7i40RiFJK+bX8A1Be4ltFQ8aYVfb7j40XjlJK+anKzmTeM/x0BR1iQimlGkOOPRiDl/UhAE0ESinVOLy0VzG4kQhE5AZ31tWwzz9F5JCIbKyyLl5EvheRHfa7znSmlAoMrkwIbwpNYpyO5BTuPBE87ua66qYCl1Vb9xjwgzGmM/CD/VkppfyfF85DUKGu5qOXA1cAbUTkr1U2xQKlpzuxMWaBiCRXWz0GGG4vvwfMBx51O1qllPJVrgxolux0FDWq64lgP5AOFAGrqrxmAZfW83otjDFZ9vIBrKGtayQid4lIuoikZ2dn1/NySinlJVyZXllRDHU3H10HrBORD40xJQ19YWOMEZFTOqpV2T4FmAKQmppa635KKeX1CnOgONdri4bcqSMYZFfsbheRXSLys4jsquf1DopIKwD7/VA9z6OUUr6jog+BF7YYAvcGnXsHeBCrWKjsLK83C7gFeM5+/+Isz6eUUt6vch4C300ELmPMN2d6YhH5CKtiOEFEMrFmOXsOmCEidwB7gHFnel6llPI5Ob6fCOaJyAvATE6ej2B1XQcZYybUsuli98NTSik/4MqA4CYQleh0JDVyJxGcZ79XHTvVABc1fDhKKeWHXBkQ1waCvHMwB3fmIxjRGIEopZTf8uLOZODeEBMtROQdEfnG/tzDLuNXSinlDlem17YYAveaj04FvgNa25+3Aw94KiCllPIrpcXWXAS+/EQAJBhjZgDlAMaYUs6+GalSSgWG3H3Wu48nggIRaY49XaWIDAZcHo1KKaX8RWXTUe8cXgLcazX0EFZHsI4ishhIBMZ6NCqllPIXXjwPQQV3Wg2tFpELga6AANs8MfaQUkr5JVcmIBDbxulIanXaRCAiwVjDUSfb+48SEYwxL3k4NqWU8n05GRDdAkKaOB1JrdwpGvoSayjqDdgVxkoppdzk2uvVxULgXiJIMsb08XgkSinlj1yZ0CrF6Sjq5E6roW9EZJTHI1FKKX9TXu7VE9JUcOeJYBnwmYgEASVYFcbGGBPr0ciUUsrXFRyCshPQtJ3TkdTJnUTwEnA+sMEYozOFqYBnjOF40QlcriOY0lJat2mLiDgdlvJGFRPSeHFnMnAvEWQAGzUJKH9TUlaO63gxuccOc9x1mMLcbEryjlCSf4TygmNI4VGCinMIPeGiSUkOEaW5RJXnEWPyiaOAKHum1b20JKPpQKT9MNr1v4w2SZoYlC1nr/XuB0VDu4D59qBzVecj0Oajyqtl5+Sxe+sqcnetQg5tJqz4KE1KXESW5RJdnkcs+cRTQELtU2eTRxT5QTEcD46lOLwpx8LOJbtJU4hohkTGY8pKCdu3jL45PxC95ktY8wg/STv2NxtISMfhtE8dRcsWLRvxWyuv4uVTVFZwJxH8bL/C7JdSXsUYw/6Dh8jcupKCPasJzd7IOQXbaV++l4FiDYtVRBiu4HgKg2MpbtKUvLBkXOFN2RvRjKDIeEKi4wmLSSAiNoHIpolEN00kJLIZMcEhxLgTQ1kJGZuXcWj990RkLib16JdEHP2UshXC1uCOHGw+iCadR9Ax9RIS4+M9e0OU93BlQJNYCI9zOpI6ibslPiISDWCMyfdoRDVITU016enpjX1Z5aVKS8vYuW0dBzf+SHDmMpLy1pPM/srtORLHgcguFCf0JLJdP1p1G0R0q64QFNxoMZafKGLvhoUc2TiX6KwldCjcRKiUUWKC2RrSlSOJg4noOoKuA0bQNNadVKN80oc3WsVD9yxx5PIissoYk3ra/U6XCESkF/AvoOJnzGHgZmPMprOO0k2aCAJbYWEhO9YtwrV1IREHVtK+cCPNJRcAFzFkRveipNUAYpL707rbICLik8DLyuhLi/LZvXYeuZt/IO7AEpKLtxMshiITytbQHhxrMZiY7hfTtf8wYiIjnA5XNZR/XGDNTPaL6Y5c3t1E4E7R0BTgIWPMPPvEw4G3gCFnFaFStSgtKWHHukUc3fA9MVmL6VK8iT5iDW+1P6gVe5sPIbPd+bTuM4LE5N7Eeen0f1WFhEfTafDVMPhqAE7kH+OnNd9TsOU/xB9aRsq+N2Hfm+R9H8HKJr043uVahl57N0HB3v/dVB1ce6Hdeaffz2HuJIKoiiQAYIyZLyJRHoxJBRhTXk7GTxvYv+pbwvYuoFPBGrpLAQA/B7dnQ6vriOh4Ae1SLqJ1YlLlDEm+LCy6GV2GjoOh4wAoyjnInlXfUbh9HknZS2m18Q8s2rOAvr9+m5hoLTrySUW5UOTy+qaj4GarIRF5Aqt4COAmrJZEStWb61g2Py39krLtc2iXs4J2HKEdcEAS2dZ8BCGdhtNh4OW0T0yivdPBNoLwpi3oevHNcPHNmLJS1v77MS74+S22vjSC8IkfkNyxq9MhqjPlIy2GwL1EcDswGZhpf15or1PKbaa8nJ83r+TgqlnE7ZtPl+LN9JdyXETxU3Qqe84dRlL/y2ndoQctvax8v7FJcAgpt7zI9vkDSJr/IMXvX8Ly4a9x3ogxToemzkTFPAT+8ERgjDkG3N8IsSg/k597jB3LvqZk67ckH11MB47SAdgZ3JGVSbfQrO+VdOp3If1DtVVyTboMn0B2ux4Uf/ALBsy/lR92T2L4zU8SrPUGvsEfEoGIzKrrQGPM6IYPR/m6A3t3sGfpp0T8PIduhevoJ6XkmQi2Rw9kd8eRtB88hk6tz6WT04H6iMQOfSl+aBHb3ryJi/e8zOK/rKPHXe/SrGlTp0NTp5OTAUGh1lwEXq6uJ4LzsYaX+AhYjjXYnFInKS8rY+e6RRxZ/QXnZP2HjmU/0xLYK61Z1fIGYvpcRZfUkQxo4r2Tcni7JlHN6PnAl6yf9gTnb/s7O18dTvaN/6ZL115Oh6bq4sqwmo76Qqu2Ora1BEYCE4BfAF8DHzVm/wHlnYoKC9i65EuKN31Nh6ML6cIxyoywLawny9o/QOtB19KuSwrePd6ijwkKos8vnuWnxQNo9f29lH14KYuHvELapTc4HZmqjSvTJ4qFoI5EYIwpA74FvhWRJlgJYb6ITDbGvNZYASrvkHP4IDsWfUrQjtl0y19BihSTbyLYHjOIPV0uo9OQ6+iRoGPqeFrHtOs40rY7Be/fyOAld/L93tUMv+0ZQkMar9e0clNOBnQY7nQUbqmzsthOAFdiJYFk4K/AZ54PS3mD/bu3sWfJJ8Ts/o5uxRsYKOUcIp6NCZcT2Xs0XQdfQf9w7QXb2Jq3607swwvZOuUWRu57nSUvbqTznVNJbN7c6dBUhdITkJflE01Hoe7K4veBXsBsYLIxZmOjRaUcYcrL+WnTCg6t+JRz9s+lU9kuWgO7g9qSnnQz8QOupVPfoZwTrL8+nRYaEUvP+2ey8eP/47xNL/Hza8M5dP379OzVz+nQFEDefsD4ftEQVsexAmAScH+V8dV1hjI/UlZayraV35O75nPaZc+jkzlIByNsD+uj9ekSAAAXWElEQVTOsvYPkjT4epI79SbZ6UDVqUToNe5J9qzoT+LsX8PHVzL/5+cZfvVNTkemciqajnr3PAQV6qoj8P6qblUvRcfz2brkS05snEXnnEX0IJcTJoQtkf3Z1+k3dLjgBrq18I1fMgrOHXQVuUnzOfbueIal/5Y5mWsYdsdzhIeFOh1a4KroQ+DlU1RWcKdnsfIDuTmH2bHwE2Tb13TLW06KFFvt++OGQLer6XrBNfSNbeZ0mKqeYlt3Jup3C9n61u2MOvg2y17cyLl3/ItWLc5xOrTAVDG8RGwbZ+NwkyYCP3b4wF52LZxBxE+z6Vq4lgFSxmGasiHhciL6jKHb4CsY0CTc6TBVAwluEkWPe6ex5fPnSV37HJn/uJA1o9+jX/9BTocWeHL2QtQ5EOob/39pIvAz+3/ewt7F02m65zu6nNhCghgypSWrWt1IswHX0aX/CBK0std/idD92kfZl5xC3Kw7af7FaL7f/SyXXHu7zqPcmFyZPtNiCDQR+DxTXs7uLekcXP4xifu+p2PZz7QGfgruwPJz76TFoLG07zGQJB/o3agaTpt+l5LfZgHZ74xj5PqH+G7fGobd+RIR4TquU6NwZUAL3+n5rYnAB5nyMnas+ZGj6Z+SdOAH2psszjXCtrAeLGv/EG2HjKdjh250dDpQ5ajoc5KJfPhHNr9zF5ce/BcrXtxM69v/TVJrf5jRwYsZYz0RdLnM6Ujc5kgiEJHdQB5QBpS6M5VaoCsrLWHrsm8pWPcZ7bPn0YWjlJhgtkT0Y1+HX9Fx6Di6t/KNFgqq8QSFRdDjN++z/etX6Zf+NDvfvprse+do5zNPKjgMpUU+02IInH0iGGGMOezg9b3eieIiti79iqL1n9H56AJ6kkuhCWNL1CB2d72KLkPH0ic+0ekwlbcToctVD7CrWRKd59zJ+jeuJ+LB2URHRjodmX9y7bXefaQPAWjRkNcpKixg66IvKNn4OV1di+hDAQUmnC2xaQT1HE23C66lf3Sc02EqH9QhbSxbXIfov+JxFr92E4MemkFoiP4JaHA5vjMPQQWn/iswwBwRMcCbxpgp1XcQkbuAuwDatfOdR6z6KCzIY8vCmZRv+pzuuUtIkSJyiWJb3FBCe19Dt7TRpEboNNHq7HW/4h7WuQ6Qtu1V5r/+Gy787RREGxI0LB+aorKCU4ngAmPMPhE5B/heRLYaYxZU3cFODlMAUlNTjRNBelJRQS5bFn5K+cbP6Z63lP5SzDFi2dR8JBF9rqXbkCsZGOYbbZCVb+l742TWvHWI4fs/Yv7UFgy//VmnQ/IvrgwIi4Zw35k8yJFEYIzZZ78fEpHPgEHAgrqP8n1FBS62LvgUs+lzuuYto58Uc5RYNiRcRlTK9XQbfDmDdNpG5WkipPzq76z9azbD977G4k9akDZWZ6NtMBXzEPhQv41GTwQiEgUEGWPy7OVRwNONHUdjKSk+ztYFn1C2/mO65i4jRU5wmKasT7ic6H5j6XbeZZwXqmPCqMYlQcH0uucDNr90OedteIpVcecwYOSNToflH3L2+lSxEDjzRNAC+Mzu5RgCfGiM+daBODymvLSE7ctnU5A+jS7H5tGbQo4Qx9qEq4juP5bug0YxWP/4K4eFhIXT/t7P2P3qxfRYdB+b4xLpMehip8Pyfa4MSPKtFvGNngiMMbuAvo19XU8z5eXsXreAw8s+oMPBOXQjhzwTweamFxLWbzw9h1zF+WFa7KO8S0RMU5rfNYsj/7iY1rNvZk/sl5zbrb/TYfmu4nwoPOZTLYZAm4+etcOZO/l57hTa7PmC9uYArU0oG6IG81OvsfQaPpbzIqOdDlGpOjU7pw2FN39G6XuX0WTaDWTf+T2JbTo4HZZvqmwx5FstHTUR1ENJcSGb5k0jZN2/6HF8NfHAhiYp7O56L91H/ILU+ASnQ1TqjLRu352d131Ey0+v48g7o8m97z/ENtMhrM+Yy7cmpKmgieAM7N2aTta8t+h68GtSyCOLBJYk3UG7i+6kb8duToen1Fnp1GcI61xT6D73Nnb94xqaPPgdTSJinA7Lt7h8rzMZaCI4rcKCPDZ8+w5xWz6ia+lWWppg1kdfQPCAm+k9dAyttNJX+ZG+Q0ezzPU8g1Y+zKbXxtHzwVkEheh/427LyYCgEIhp6XQkZ0QTQS0O7dvDztkv033fJwwij91BbVna6WE6j7yD1Ba+MeuQUvUx+Ko7WODKZtiOP7H2jdtIufdfPtUm3lGuDIhtDUG+NeeHJoJqtq9dRM5/XiXF9QODKWdddBpZF/yW7uddSrJ2xVcBYugvHmX+mwcYfuBd1r73MCm3vuR0SL7BlQlxvlVRDJoIACgrLWXtD9MIT3+DniUbKDDhrGlxPW0ve5B+HXo4HZ5SjU5EGHrnSyx8NZuhu99h48wW9LruUafD8n45GZB8gdNRnLGATgRFRYWs/vyvtN32LgNMFgckkeWdHqTHVb/lvKba8kcFtuDgIAbe+y7LXxrDwHV/YntsC7pccqvTYXmvslLI2+9zvYohQBNBWVkZ6V9OIWndywwxB9ke2pW1/X9P75G/pKVWjClVKbxJGN3uncHGVy+l+6KH2Ns0kXapVzodlnfK2w+m3OdaDEGAJQJTXs6a/3xM3JI/cl75bnYFd2DjsHfpNexarQxTqhZxsTEk3DmTPW+OotVXt5Md8wWJXQc7HZb3yfHNPgQAAVP7uXHZd2z+0wX0X3QX4aaINYP+Qvv/l06vC6/TJKDUabRu2RJu+oQcE0PItHHkZW51OiTv46O9iiEAEsHOjctZ8+dL6fXtOFqU7CO95//Q4vF19LviV4iPNfFSykmdOnbh4DUfYcrLOf7uGIqO7Xc6JO/ig1NUVvDrRLDkrQfo8PGldCpcx4r29xL9yAZSb3iEEJ3wRal66d9vIJuGv0106TGy37iaskKX0yF5j5wMiEyA0AinIzljfp0IItqmkN5mIub+dQy65Y+ER8U6HZJSPm/oiMtY0O8lWhb9zN6/X4MpKXI6JO/gyvTJFkPg54mg32W3MuiuvxMb38LpUJTyK5dfcxNfd3yC9vmr2TVlIpSecDok57kyfLJYCPw8ESilPGf0TQ8wM/FeOmbPpeDPXSn/fvJ/W84EGmN8tlcxaCJQStVTUJBw5a//jzfb/YUlRe1h8SuYV/vAhzfCjrlQXu50iI3n+FEoOa5FQ0qpwNMkJJhf3/4r8q97n1Hlf+Ntcw3Fe1bAB9fD3/rBoleg4IjTYXqeD7cYAk0ESqkGcG2/JN66/1q+aH47vVwv83Hy05THtIG5T8FL3WHmXZCxwipC8UcVfQh8sFcxaCJQSjWQ9glRfHr3EH6Z1plHtnbi6vzHybjxPzDgFtg6G94ZCW8MhfR3rbl9/UlF3YgPdiYDTQRKqQbUJCSYJ6/uwds3p7I/p5BLP8zm0xaT4OGtcNUr1k5fPQB/6QZf/w4ObXE24IbiyoDQSIho5nQk9aKJQCnV4C7p0YLZk4bSq00cD3+8joc+30l+71/CbxbCHd9Dtytg9Xvw+mB49wrY+KlvN0F1ZVjFQj46XI0mAqWUR7SKi+CjOwfzwCWd+XztPq7+2yI27s+FtoPguinw0Ba4ZLJVvv7J7fByT/jhad9sgpqT4bMthgDE+EDlTWpqqklPT3c6DKVUPS3fdYRJ09ZytOAEj13ejdvSkpGKX8/l5fDTD7DyHdjxnbWu86XQe6w15WNpsfUqO2G/F1tPDxXvpUWnrqtrmykDxP71XtM7p9lew/vhHdBvIlz9aiPf2bqJyCpjTOpp99NEoJRqDMcKTvDIJ+uYu+UQl3Q/h+fH9iU+KuzknXL2wqqpsPp9KMiu+4RBoRDSxHoFN4GQsGrvtWwLCrFbL5mT32ta5+67CAy533ra8SKaCJRSXscYw9Qlu/nT7K3ER4Xxyo0pDO7Q/NQdS09A9lbrj3ZNf9CDw0DnED8tdxOB3kmlVKMREW5La8/Me4YQERbML95axitzt1NWXu0HaUgYtOoDLXpA845WR63oRAiPg9BwTQINTO+mUqrR9WoTx5f3XcA1KW14Ze4OfvHWMrJchU6HFbA0ESilHBHdJISXxqfwlxv6smGfiyteXcgPWw46HVZA0kSglHLU9QOS+Oq+C2gVF8Ed76Uz+ctNFJeWOR1WQNFEoJRyXIfEaD67dwi3Dknm3cW7ue71Jfx8uMDpsAKGthpSSnmVOZsO8PtP15NfVEr/ds0Y1iWBoZ0T6dUmjuAg3+y56xRtPqqU8llZrkLeX7qHhTuy2bgvF4CmkaGkdUpgWGcrMbRu6ntzAzc2TQRKKb9wJL+YRTsPs3DHYRbuyOZgbjEAHROjGNo5kQu7JHJeh3giw0IcjtT7aCJQSvkdYww7DuWzYHs2C3YcZvmuIxSXlhMaLKSeG8/QLgkM65xIj1axBGkxkiYCpZT/KyopI333MRbusBLDliyrGCk+KowLOiUw1C5GahkX7nCkztBEoJQKOIfyili88zALtx9mwY7DHM63ipG6tIhmaOdEhnVJpG9SHHERof8d9M6PeXUiEJHLgFeBYOBtY8xzde2viUApdabKyw1bD+SxcEc2C3ccZsXuo5woLQcgJEhoFhVG86gw4u2XtdyE+KhQ+z2M5tHWtmaRYT7ZYslrE4GIBAPbgZFAJrASmGCM2VzbMZoIlFJnq/BEGSt2H2XHwTyOFpzgaMEJjtjvFS9XYUmNx4pA04hQO2FYSSI++uREEhkWQmiwEBYcREhwEKHBQmhwkP2qthwSZO0XJAQHiceeTtxNBE5Usw8CdhpjdgGIyDRgDFBrIlBKqbMVERbMhV2sVka1KSkr59hxOzHk/zdRWO/F1nL+CX7Kzmfl7hMcO36C6uPlnSkRrAQRZCWI6st/vLY3g9rHn91FTsOJRNAGqDoFUSZwXvWdROQu4C6Adu18c0JopZRvCQ0O4pyYcM6Jca9yuazc4Cos4WhBMUUl5ZwoK6e0zFBSZi2XlJZTWm5/rrZcUmYoLSu397XWl1ZZLrHPFdUk2MPf2plE4BZjzBRgClhFQw6Ho5RSpwgOksqiIV/mxFhD+4Cqk3sm2euUUko5wIlEsBLoLCLtRSQMuBGY5UAcSimlcKBoyBhTKiK/Bb7Daj76T2PMpsaOQymllMWROgJjzGxgthPXVkopdTKdj0AppQKcJgKllApwmgiUUirAaSJQSqkA5xOjj4pINrCnnocnAIcbMBxP86V4fSlW8K14fSlW8K14fSlWOLt4zzXG1D6mhs0nEsHZEJF0dwZd8ha+FK8vxQq+Fa8vxQq+Fa8vxQqNE68WDSmlVIDTRKCUUgEuEBLBFKcDOEO+FK8vxQq+Fa8vxQq+Fa8vxQqNEK/f1xEopZSqWyA8ESillKqDJgKllApwfpEIROSfInJIRDbWsl1E5K8islNE1otI/8aOsVo8p4t3uIi4RGSt/XqysWOsEktbEZknIptFZJOITKphH6+4v27G6k33NlxEVojIOjveyTXs00REptv3drmIJDd+pG7HequIZFe5t79yItZqMQWLyBoR+aqGbV5xb6vEU1esnr23xhiffwHDgP7Axlq2XwF8AwgwGFju5fEOB75y+r7asbQC+tvLMcB2oIc33l83Y/WmeytAtL0cCiwHBlfb5x7gDXv5RmC6F8d6K/Ca0/e1WkwPAR/W9G/uLffWzVg9em/94onAGLMAOFrHLmOA941lGdBURFo1TnSnciNer2GMyTLGrLaX84AtWPNOV+UV99fNWL2Gfb/y7Y+h9qt6640xwHv28ifAxSIijRRiJTdj9SoikgRcCbxdyy5ecW/BrVg9yi8SgRvaABlVPmfixX8gbOfbj+HfiEhPp4MBsB+d+2H9GqzK6+5vHbGCF91buzhgLXAI+N4YU+u9NcaUAi6geeNGaXEjVoDr7eLBT0SkbQ3bG9MrwO+B8lq2e8295fSxggfvbaAkAl+zGmuMkL7A34DPHY4HEYkGPgUeMMbkOh1PXU4Tq1fdW2NMmTEmBWvu7kEi0svJeOriRqxfAsnGmD7A9/z313ajE5GrgEPGmFVOxeAuN2P16L0NlESwD6iaQZPsdV7JGJNb8RhurNncQkUkwal4RCQU6w/rB8aYmTXs4jX393Sxetu9rWCMyQHmAZdV21R5b0UkBIgDjjRudCerLVZjzBFjTLH98W1gQGPHVkUaMFpEdgPTgItE5N/V9vGWe3vaWD19bwMlEcwCbrZbtwwGXMaYLKeDqo2ItKwoqxSRQVj/To78z2/H8Q6wxRjzUi27ecX9dSdWL7u3iSLS1F6OAEYCW6vtNgu4xV4eC/zH2LWHjcmdWKvVC43GqqNxhDHmcWNMkjEmGasi+D/GmJuq7eYV99adWD19bx2Zs7ihichHWK1BEkQkE3gKqzILY8wbWPMjXwHsBI4DtzkTqcWNeMcCd4tIKVAI3OjEf6C2NOCXwAa7fBjgD0A78Lr7606s3nRvWwHviUgwVkKaYYz5SkSeBtKNMbOwEtu/RGQnVgODG7041vtFZDRQasd6q0Ox1spL722NGvPe6hATSikV4AKlaEgppVQtNBEopVSA00SglFIBThOBUkoFOE0ESikV4DQRKEeISL4b+zwgIpENeM1rRKRHA55vyVkcm2+/txaRT+rYr6mI3FPf6yjlDk0Eyps9AJxRIrDbudfmGqDBEoExZkgDnGO/MWZsHbs0xRolUymP0USgHCXW/ADz7YG0torIB3YP5fuB1sA8EZln7ztKRJaKyGoR+dgeUwgR2S0ifxaR1cANInKniKy0B5b7VEQiRWQIVo/MF8Qaz72jiKSIyDJ7IK/PRKSZfb75IvKyiKSLyBYRGSgiM0Vkh4g8UyX2/CrLj4rIBvuaz9XwPdvbsW+odo5kseelEJGeYo35v9aOqTPwHNDRXveCiESLyA/2PdggImOqnGeLiLwl1nwBc+wewIhIJxGZa8e2WkQ62usfse/TeqlhfgEVQDw1vrW+9FXXC8i334djjfqYhPXDZClwgb1tN5BgLycAC4Ao+/OjwJNV9vt9lXM3r7L8DHCfvTwVGFtl23rgQnv5aeAVe3k+8Gd7eRKwH6tnbROskVWbV/sOlwNLgEj7c3wN33cWcLO9fG+VY5Ox56XAGgRvor0cBkRU3W6vDwFiq9yTnVhzBSRj9TpNsbfNAG6yl5cD19rL4VhPWaOwJkUX+75/BQxz+r8LfTnz8oshJpTPW2GMyQSwh4ZIBhZV22cwVrHOYnuooDCspFFhepXlXvav7qZANPBd9QuKSBzQ1Bjzo73qPeDjKrvMst83AJuMPXaSiOzCGqis6vhElwDvGmOOAxhjapprIg243l7+F/DnGvZZCvw/scamn2mM2SGnDo8vwB9FZBjWkMVtgBb2tp+NMRVDa6wCkkUkBmhjjPnMjq3I/h6jsJLBGnv/aKAzVrJVAUYTgfIGxVWWy6j5v0vBGgN/Qi3nKKiyPBW4xhizTkRuxXrqqG9M5dXiK68lPnfUOZ6LMeZDEVmONUHJbBH5NbCr2m4TgURggDGmRKwRK8OrxQzWfYyo43IC/MkY8+YZxK/8lNYRKG+WhzXlJMAyIE1EOgGISJSIdKnluBggS6whqSfWdD5jjAs4JiJD7W2/BH6kfr4Hbqto4SQi8TXss5j/Dmo2sYbtiEgHYJcx5q/AF0AfTr4HYA2VfMhOAiOAc+sKzFgztWWKyDX2NZrYcX4H3F6lnqWNiJzj1rdVfkcTgfJmU4BvRWSeMSYba8TFj0RkPVYxSrdajnsCq1x8MScPlTwNeESsCcI7Yg1B/IJ9vhSseoIzZoz5FqsoKd0u2vpdDbtNAu4VkQ3UPnvbOGCjfY5eWNN/HsEqDtsoIi8AHwCp9nlu5tRhq2vyS6zRK9dj1WW0NMbMwZofd6l9rk84OeGoAKKjjyqlVIDTJwKllApwmgiUUirAaSJQSqkAp4lAKaUCnCYCpZQKcJoIlFIqwGkiUEqpAPf/Abvf+eArUPFjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "for j in reversed(range(len(algorithms))):\n", " pylab.plot(distances, dipoles[j], label=algorithms[j])\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Moment in debye')\n", "pylab.title('NaH Dipole Moment')\n", - "pylab.legend(loc='upper right')" + "pylab.legend(loc='upper right');" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VOX1wPHvSWZCCAECmSGQBMXiUpcqVbQqSl1aa20rLtS6tKLVIlardRdrcfm5lrpbRawoWhCsRUWrxQ2l7oIi7ooIZc0GZCF75vz+uDdhEibJJGTmzkzO53nm4c5dz73RnNz3vve8oqoYY4wxbaV5HYAxxpjEZAnCGGNMRJYgjDHGRGQJwhhjTESWIIwxxkRkCcIYY0xEliCMMcZEZAnC9DoislJEfuTRsfNEZJGIVIrIbXE87iMickOM9n2aiLwYi30bb1mCMK2IyH9E5PoI88eJyAYR8bnfDxaRV91fdOUiMl9Evhu2/mEiEhKRqjafg+J5PgloIlAKDFDVS7wOpqtEZISIaPN/BwCqOktVj/IyLhMbliBMWzOBX4uItJn/G2CWqja6v+RfBJ4B8oGdgGXAmyIyImybdaqa3ebzduxPIT7Cf0l2wY7AZ2olDEwSsARh2noayAUObZ4hIoOAnwOPurP+AjyqqnepaqWqblTVq4H3gGu6c1C32edSEVnm3pHMFZFMd9kZIvJGm/VVRHZ2px8RkftE5AX3LuVNERkqIneKyCYR+UJEvt/mkPuLyGfu8oebj+Xu7+cislRENovIWyKyd5s4rxCRZcCWSEnCvbt63z2P90Xk4OY4gQnA5W6c2zRziUgfEfmriPxPRIpEZJqI9HWXfS4iPw9b1yciJSKyr/v9n+5dXrnbjLVnO9e6s+v5MxH5UEQqRGS1iFwbtuoi99/NzXeEbffX3vm7y14Tkf9zf0aVIvKiiATcZZki8g8RKXOv/fsikhfpHEx8WIIwrahqDfAEcHrY7JOAL1T1IxHJAg4G/hlh8yeA7WlqOAk4GueOZG/gjC5uezUQAOqAt4EP3O9PAre3Wf804CfASGBXd1vcRDIDOAcnUT4AzBeRPmHbngL8DMhR1cbwnYrIYODfwN3u9rcD/xaRXFU9A5gF/MW9m3o5wnnc4sYzCtgZKACmuMsed4/d7CdAqap+4H5/AdgFGOKe+6zIl6pTW3B+/jnueZ4rIse5y8a6/+ZEuiPs6PzDVjsVONONMwO41J0/ARgIDHe3nQTUdPMcTA+wBGEimQmMD/ur+nR3HsBgnP9u1kfYbj0QDPue7/4lGP7p18Fx71bVdaq6EXgW55dktJ5S1SWqWgs8BdSq6qOq2gTMBdreQdyrqqvdY93I1l+8E4EHVPVdVW1S1Zk4CefANnGudpNpWz8DvlbVx1S1UVUfB74AftHZCbjNehOBi9y7skrgJuBkd5XZwLFukgbnF+3jzdur6gz3jq4OuBbYR0QGdnbctlT1NVX9WFVDqrrMPcYPo9w8mvN/WFW/CvtjpPnn3ICTGHZ2r/0SVa3oavym51iCMNtQ1TdwHqQeJyIjgQNwfjkBbAJCwLAImw5zt2u2TlVz2ny2dHDoDWHT1UB2F8IuCpuuifC97b5Wh02vwnmWAs4zgkvCkxrOX7T57WzbVr67v3CrcO4EOhMEsoAlYcf+jzsfVV0OfA78wk0Sx+L+XEQkXURuEZFvRKQCWOnuMxDFcVsRkR+IyEK3+aoc5y/5aPcTzfm393N+DFgAzBGRdSLyFxHxdzV+03MsQZj2PIpz5/BrYIGqFgG4v+DfBn4ZYZuTgNdiEMsWnF+cAIjI0B7Y5/Cw6R2Ade70auDGNkkty/1LuFlHD5jX4SSZcDsAa6OIqRQnme0ZduyBqhqe3JqbmcbhPOxe7s4/1Z33I5xmmhHu/LadDaDz6zkbmA8MV9WBwLSw/XT2cL3b56+qDap6narugdOM+XNaN3WaOLMEYdrzKM4vm9+xtXmp2ZXABBG5QET6i8ggcfrYH4rTJNLTPgL2FJFRbrPXtT2wz/NEpNBtM/8TTjMUwIPAJPevaBGRfu5D2/5R7vd5YFcROdV9iPwrYA/guc42VNWQe/w7RGQIgIgUiMhPwlabg/Oc51y23tUB9MdpCivD+eXf0c+hs+vZH9ioqrUicgBO8mlWgnMH+Z129t3t8xeRw0XkeyKSDlTgNDmFOtvOxI4lCBORqq4E3gL64fw1Gb7sDZwHpCfgPHfYiPOA8UhV/SRs1XzZ9j2IE7sRy1fA9cDLwNfAGx1vEZXZOF11VwDfADe4x1qMkxTvxWlOW04XHparahnOX76X4Pyyvhz4uaqWdrjhVle4x3zHbSp6GdgtbP/rce7gDmZrUgMnoa/C+Uv9M+CdDmLs7Hr+HrheRCpxHpA/EbZtNc4zmzfdZrDwZzPbe/5DcToUVOA0pb2O0+xkPCLWHdtsL3G6gS4ETlXVBV7HY4zpGXYHYbab29PlOOB70r2Xx4wxCcjuIIwxxkRkdxDGGGMiSurmgEAgoCNGjPA6DGOMSSpLliwpVdVgZ+sldYIYMWIEixcv9joMY4xJKiLS9mXGiGLexOS+4fmhiDznft9JRN4VkeXiFGTLcOf3cb8vd5ePiHVsxhhj2hePZxAX4vRpbnYrcIeq7ozTz/wsd/5ZwCZ3/h3uesYYYzwS0wQhIoU4xbv+7n4X4Aicl2HAeUO3uUrkOLa+sfskcKS7vjHGGA/E+hnEnThvUjaXKcgFNoeVSF7D1iJeBbhF0NxBacrd9Vu9gSkiE3EqXrLDDjtsc8CGhgbWrFlDbW1tz55JgsjMzKSwsBC/32qYGWNiK2YJQpyBTYpVdYmIHNZT+1XV6cB0gNGjR2/zEseaNWvo378/I0aMINVuQFSVsrIy1qxZw0477eR1OMaYFBfLJqYxOLXrV+IUGDsCuAvICXvbtpCtVR7X4lbYdJcPxKnl0iW1tbXk5uamXHIAEBFyc3NT9u7ImM5ULJrHikn789UvC1gxaX8qFs3zOqSUFrMEoaqTVbVQVUfgDHjyqqqehlOzZ7y72gSccY3BKQg3wZ0e767frde8UzE5NEvlczOmIxWL5lE07TIaS9eCKo2laymadpkliRjy4k3qK4CLRWQ5zjOGh9z5DwG57vyLcUpKG2MMAKWzb0brWw/ip/U1lM6+2aOIUl9cEoQ7hOHP3ekVqnqAqu6sqr90h0dEVWvd7zu7y1fEI7aedvjhh7NgQeuCpnfeeSfnnnsun376KUcccQS77bYbI0eO5JprriEUcsrdP/LIIwSDQUaNGtXy+eyzz7w4BWMSUmPZui7NN9uv19di6uk2zVNOOYU5c+a0mjdnzhxOPvlkjj32WK688kq+/PJLPv74Y9577z3uuuuulvV+9atfsXTp0pbPHnvssV2xGJNK0rIHRZzvy82PON9sv16dIGLRpjl+/Hj+/e9/U19fD8DKlStZt24dy5cvZ8yYMRx11FEAZGVlce+99zJ16tQeORdjUln9+m8J1W6BNs/gxJ9B4NTJHkWV+pK6FlNnih+eQt23n7a7vParJWhjfat5Wl9D0X0XU/7yrIjb9NlpT4aceX27+xw8eDAHHHAAL7zwAuPGjWPOnDmcdNJJfPrpp+y3336t1h05ciQ1NTVs3rwZgLlz5/LGG1sH93r77bfp27dvp+dpTCoL1dey/raJpPXpy+Bf/4nNzz5AY+k6SE8HXwZZex3sdYgpq1ffQbRNDp3Nj1Z4M9OcOXM45ZRTotqubROTJQdjoOSRa6lb+SlDz7+TwT87m+9Me59dn1zLjn99CUJNrL99EtrY4HWYKSml7yA6+ksfYMWk/Z3mpTZ8gQKGX/+vbh933LhxXHTRRXzwwQdUV1ez33778eGHH7Jo0aLWx1+xgtzcXHJycrp9LGNSWcUbT1P+4qMMOnYS2aOParWsz/DdyJs0lQ13nU/p7JsJnj7FoyhTV6++gwicOhnJaP1XumT03e42zezsbA4//HB++9vfttw9nHbaabzxxhu8/PLLANTU1HDBBRdw3XXXbdexjElV9eu+oWjaZWTuNrrd/ycHHHoCA38ygU3zp1H57gtxjjD19eoEMWDsCeRNmoovUAAi+AIF5E2ayoCxJ2z3vk855RQ++uijlgTRt29f5s+fz4033siuu+5KIBBgzJgxnHbaaS3bzJ07t1U317feemu74zAmGYXqalh32zmIP4NhF92P+NqvPRY841r6jNyHor/9kfr138YxytSX1GNSjx49WtsOGPT555+z++67exRR9J5++mkuvvhiFi5cyI477tilbZPlHI3prqJpl1H+8iwKrvoH/fY9otP1G4pXs+ryn+AP5DP8xmdJ62PP7zoiIktUdXRn6/XqOwgvHXfccaxYsaLLycGYVFexaB7lL89i0PHnR5UcAPxDhjP0gnuoW/kZxQ/9KcYR9h6WIIwxCaN+7dcUTb+cvrv/gMDJl3dp2+x9j2TwiRdS8eocyl95PEYR9i4pmSCSudmsM6l8bqZ3C9VVs+62c0jLyGToH+9D0rveyTL3pEvJ+t4hFD/0J2q//SQGUfYuKZcgMjMzKSsrS8lfpM3jQWRmZnodijE9rvihq6lf/SVDL7gXf+6wbu1D0tMZ+sf7SMvOYf1tE2naUt7DUUYvFUqTp9x7EIWFhaxZs4aSkhKvQ4mJ5hHljEklFa/9k4pX5zD4xAvpN+qw7dqXb2CA/Iunsfqa8Wz420XkX/ZQ3MvkN5fxaa4+21zGB+iRXpLxknIJwu/322hrxiSRutVfUfTglfTd4yByT7qkR/bZ97sHEPz11ZTMvJZN86cxeNy5PbLfaHVUmjyZEkTKNTEZY5JHqLbaqbOU2Y9hF3XvuUN7cn7+O7IP/Bmls26i+rN3e2y/nVG38GckyVaa3BKEMcYTqkrxg5OpX/s1wy78G75BeT26fxEh7/e348/bkfV3TKJxU3GP7j+S+g0rWXvDqe0uT7bS5JYgjDGeqFg4l4rX/8ng8ReRtfehMTlGelZ/8i99kNCWctbfdR7a1BiT42hjAxufuodVFx9B7VdL6P/D8TEp4xNvliCMMXFX978vKP77VfTd6xByx18U02P12XF3hky8hZpP3qRsTs+Pv1LzxfusuvwnlM66mX77HsmOd77OsD/cTd6kqaQPyAUgPSfYY2V84ilmD6lFJBNYBPRxj/Okql4jIo8APwSa+5+doapLxelmcBdwDFDtzv8gVvEZY7wRqtniPHfI6s+wC+9F0tNjfsyBh51E7Rfvs/Gpe8jcbTTZo3+83fts2lJO6aybKX/xUXyBfPKvfKRVxdkBY0+gz467s+qSIxny2/+j/8HHbvcx4y2WvZjqgCNUtUpE/MAbItJcbvEyVX2yzfo/BXZxPz8A7nf/NcakCFWlaPoV1K9fQeGUufgGDYnbsYO//T9qv/mIDfdcwI5/WYA/b4du7UdVqXprPsUPT6GpooxBvziH3JMuJa1vv23W9QWdLukNJZEfWie6mDUxqaPK/ep3Px29vTYOeNTd7h0gR0S697aMMSYhlb88m8r/ziP3l5eQtdeYuB47LSOTYZc+CKqsu+13hOpru7yPhqL/sfbGX7P+jnPx5eazwy3PE5xwTcTkAM4zkLSsATSWrtne8D0R02cQIpIuIkuBYuAlVW3ua3ajiCwTkTtEpI87rwBYHbb5GneeMSYF1K38lJIZV5O191gGn3CBJzFk5O3I0D/cRd2Kjyl5+Jqot9PGBjY+/TdWXnQYNV+8R/DM69nhpufI/M7enW7rCxbaHUQkqtqkqqOAQuAAEdkLmAx8F9gfGAxc0ZV9ishEEVksIotT9W1pY1JNqKbKqbPUfxBD4/TcoT3Z+/+EQcedR/lLj1HxetuW7m3VfLWEVZcfTek/biRr1GGMuPM1Bv3s7KjPwR/ItzuIjqjqZmAhcLSqrnebkeqAh4ED3NXWAsPDNit057Xd13RVHa2qo4PBYKxDN8ZsJ1WlaNplNBStZNgf78M3MOB1SAROuYK+exxE0QOXU/e/LyKu07SlgqIHJ7P6T8cS2rKZ/MsfouDyGfgDXWvY8AUKaChNrhfkmsUsQYhIUERy3Om+wI+BL5qfK7i9lo4DmksuzgdOF8eBQLmqro9VfMaY+Ch/8TEq33yG3F9dTtYeB3odDgCS7mPYRfeTljWAdX89m1BNVcsyVaXyrWdZeeFYyl96jJxjzmLEna+TfcBPu3Usf7CQUNXmVsdIFrHsxTQMmCki6TiJ6AlVfU5EXhWRICDAUmCSu/7zOF1cl+N0cz0zhrEZY2KoYtE8SmffTGPpOkDx77A7g48/3+uwWvENGsKwi6exZsqJfHPWPmhDLemD8kjvP5j6VZ/R5zvfo+DKmWTuvM/2Hce942goXUuf4bv1ROhxE7MEoarLgO9HmB9xiCh16nOfF6t4jDHx0baSKUDjhm+pfOPphHtRrLF0HaSnt8TatHEDTRs30P/QExh6/p09UhvK73Z1bSxJvgRhb1IbY3pU5EqmtZTOvtmjiNpXOvtmiFB+o+bzd3uscGDLHURJ8j2otgRhjOlR7VUsTcRKpvGI1ZczBNJ97VZ4TWSWIIwxPSq9nV5KiVjJtL2YejJWSU/Hn5tPgyUIY0xv1lheRqihHqcPylaJWsk0cOrkuFRd9QUKaLQmJmNMb6VNTWy46zyor2XwyZc7be8i+AIFCVvJdMDYE8ibNDXmsfqDhUl5B5FyQ44aY7xR9uTtVC9bRN6kqQz80WkExl/odUhRGTD2hJgnL1+ggMaNG9Cmxh4dNS/W7A7CGLPdtny4kI1P3smAw05iwJHtj6jWW/mDBRBqonHjBq9D6RJLEMaY7dJQsob1d51PxvDvMuR3N+EUSTDhtnZ1Ta5mJksQxphu04Z61t92DjQ1kH/pdNL6ZHkdUkLyB50EkWxdXZOnMcwYk3BKHr2O2uUfMuzSv5ORP9LrcBJW8x1EsiUIu4MwxnRLxRtPs/mFhxn0i3Pof+AxXoeT0NL6ZJE+YHDSvU1tCcIY02V1a76maNqlZH53fwKnXeV1OEnBF0i+rq6WIIwxXRKq2cL6v55NWkZfhl00DfH5vQ4pKfiT8GU5SxDGmKipKkUPXEb9um8Y9sf78OfasPHR8gULaChdi1O4OjlYgjDGRK18wUwq33ia3F9dRtbeh3odTlLxBwrR2i2EtpR7HUrULEEYY6JS8/WHFD9yDf32PZLBx//B63CSji+YfGW/LUEYYzrVVLmR9bdNxDcoj6F/uBtJs18dXeUPuAMHJdGDansPwhjTIQ2FWH/3BTRtLmH4DU+T3n+Q1yElpWS8g7AEYYzp0MZ5d1P94asM+d3NZO48yutwklb6gFwkIzOp7iBidp8oIpki8p6IfCQin4rIde78nUTkXRFZLiJzRSTDnd/H/b7cXT4iVrEZY6KzZdkiyuZOpf8hxzPwqNO9DiepiQi+QH5S1WOKZUNiHXCEqu4DjAKOFpEDgVuBO1R1Z2ATcJa7/lnAJnf+He56xhiPNJStY8OdvyejYBfyzvmLFeHrAf5Agd1BAKijyv3qdz8KHAE86c6fCRznTo9zv+MuP1Lsv0hjPKGNDay/fRKh+lqGXfogaX37eR1SSvAl2cBBMe2KICLpIrIUKAZeAr4BNqtqo7vKGqDAnS4AVgO4y8uB3Aj7nCgii0VkcUlJSSzDN6bXKvnHjdR+uZih595Gn8JdvA4nZfgDBTRtKiLUUOd1KFGJaYJQ1SZVHQUUAgcA3+2BfU5X1dGqOjoYDG53jMaY1irffo7Nz00n56e/pf+YcV6Hk1J8Qbera9l6jyOJTlw6M6vqZmAhcBCQIyLNvacKgeb7rbXAcAB3+UCgLB7xGWMc9eu+oei+i8ncZV+Cp0/xOpyU428u+50kXV1j2YspKCI57nRf4MfA5ziJYry72gTgGXd6vvsdd/mrmkxFS4xJcqG6atb9dSL4/Ay7eBriz/A6pJTTMrJckjyHiOV7EMOAmSKSjpOInlDV50TkM2COiNwAfAg85K7/EPCYiCwHNgInxzA2YwxQsWgepbNvprFsHZLRF62rpuDq2fjdphDTs3y5w0AkaXoyxSxBqOoy4PsR5q/AeR7Rdn4t8MtYxWOMaa1i0TyKpl2G1tcAoHXVkO6jqWKjx5GlrjR/H9JzhiTN29RWUMWYXqp09s0tyaFFUyOls2/2JqBewh8sTJo7CEsQxvRSjaXrIs8vizzf9IxkepvaEoQxvYyqUvX+AminIqsvNz/OEfUuzXcQydAHx4r1GdOL1G9YScmMKWz54GXSBw0lVLURbahvWS4ZfQmcOtnDCFOfL1CANtTRVF6KLyex3+WyOwhjeoFQXQ2lc6ey6qLDqf7sbQKnT+E7979L3rm3O10vRfAFCsibNJUBY0/wOtyU1vIuRBI8h7A7CGNSXNXiFymZMYWG4v/Rf8w4AqdPaRlLesDYEywhxFlzF+KG0rUJXz7dEoQxKaq+aBUlM/7MliUvk1G4C4XX/pOsvcZ4HVav50uit6ktQRiTYkJ1NWx65j42PnUvpKcT+M2fGXTMWfZmdIJI6zeQtL7ZSfE2tSUIY1JI1ZKXKZnxZxqKVtH/4GMJTJiC33olJRRxn/ckw8tyliCMSQENRf+j+OEpbFn8IhkFO1M4ZS5Zex/qdVimHb4kGTjIEoQxSSxUX7u1OSktjcBvrmbQMWdbc1KC8wcLqftmqddhdMoShDFJILyoni83n8Cpk0nPzqF4xtU0bFhJ9sG/IDjhGmtOShL+QAFNFRsJ1VaTlpnldTjtsgRhTIJrW1SvsXQtG+69AEIh/PkjKZgyh357j/U4StMVvqDbk6lsLRkFiTtinyUIYxJcxKJ6oRBpWQMYcdsr1pyUhJpflmsoSewEYW9SG5Pg2iueF6qptOSQpJqHHk30on2WIIxJYKHaaiSzX8RlVlQvefkG5UFaOo2lid3V1RKEMQmqetl/WXXxEWhNFaSlt1pmRfWSm6T78A0emhp3ECIyUkT6uNOHicgFzeNNG2N6VtOWcjbcfylrrv8VpPsovH4eQ8+/y4rqpZhkGDgo2ofU/wJGi8jOwHTgGWA2cEx7G4jIcOBRIA9QYLqq3iUi1wK/A0rcVa9S1efdbSYDZwFNwAWquqDLZ2RMEqt6fwFFD06maXMxg8b9ntyTLiGtT18ASwgpxhcooObL970Oo0PRJoiQqjaKyPHAPap6j4h82Mk2jcAlqvqBiPQHlojIS+6yO1T1r+Eri8gewMnAnkA+8LKI7KqqTdGfjjHJqbG8jJIZV1P55jNk7LgHBZc/TObO+3gdlokhf7CQyrfmo01NSHp65xt4INoE0SAipwATgF+48/wdbaCq64H17nSliHwOFHSwyThgjqrWAd+KyHLgAODtKGM0JumoKpVvPk3JjD/TVF1J7q8uY/Bx51nvpF7AFyiApkYaNxcl7AuO0T6kPhM4CLhRVb8VkZ2Ax6I9iIiMAL4PvOvOOl9ElonIDBEZ5M4rAFaHbbaGCAlFRCaKyGIRWVxSUtJ2sTFJo6FsPetumcCGO8/DnzeCHae+SO4vL7Lk0Eu0DByUwA+qo0oQqvqZql6gqo+7379V1Vuj2VZEsnGeYfxRVSuA+4GRwCicO4zbuhKwqk5X1dGqOjoYTOzh+oyJRFXZ/NIsVl10GNUfv0FwwrUMv+EZ+gzfzevQTBz5wgYOSlRRNTGJyBjgWmBHdxsBVFW/08l2fpzkMEtV5+FsVBS2/EHgOffrWmB42OaF7jxjUkb9hpUUTbuMmk/epO9eY8ibNJWMoSO8Dst4wJ8EAwdF+wziIeAiYAlOD6NOiYi4232uqreHzR/mPp8AOB74xJ2eD8wWkdtxHlLvArwXZXzGJDRtamLz83+n9PFbEZ+fIedMZeCPTsX538T0Rml9+5GWPSj57yCAclV9oYv7HgP8BvhYRJrr2l4FnCIio3C6vq4EzgFQ1U9F5AngM5weUOdZDyaTCupWf0nRfZdQ+/UH9NvvRwyZeEvCPpQ08eUP5Cf0M4hoE8RCEZkKzAPqmmeq6gftbaCqb+A0RbX1fAfb3AjcGGVMJkqRSkVbn/rYabnepetIy+pPqKaKtOyBDL3wXvofcrzdNZgWvmAhDUX/8zqMdkWbIH7g/js6bJ4CR/RsOKanRSoVXTTtMsBevIqFttc7VF0Baenk/upyBhxq19u05g8UUPPpW16H0a5oezEdHuFjySEJRCoVrfU1lM6+2aOIUlvprJsilOZuYtPT93oTkElovkABoepKmrZUeB1KRNHWYhooIrc3v38gIreJyMBYB2e2X3ulotubb7qvavGLdr1Nl/jdrq6JWpMp2hflZgCVwEnupwJ4OFZBmZ7TXkloKxXdcxrK1rNu6tmsu+UMSI/camvX20Tiaxk4KDG7ukb7DGKkqp4Y9v26sJ5JJoH13fMgKl9/cpv5OT/7nQfRpBZtamLzizMpm30L2tTojBM9KI/iBye3amay0tymPYl+BxFtgqgRkUPcnknNL87VdLKN8VhD6Vqq3n0B/w67o9UVNJatI31QHk2Vm9iy+EUG/exsJM2GBOmO2m8/ofiBK6hd/iFZe49lyMRbWl54k3Sf9RozUUkfGEB8GUl/B3EuMNN97iDARuCMWAVltp+qUvzgZNAQhVc8jD9vh5Zl5a88TtH9l1D+4qPkHH2Gd0EmoVBtNWVP/JVNzz1Iev9BEbuuDhh7giUEExVJS8MXyE/uOwhVXQrsIyID3O+J+cjdtKh6az5blrxMcMI1rZIDwIAjTqby7Wcp+ccN9Pv+EdssN5FVffAKxQ9OprFkDQOOPJXgr/9Eev9BnW9oTAd8gcKEfZu6wwQhIr9W1X+IyMVt5gMQXkLDJI6myk0Uz/gzfUbuQ84xZ22zXETImzSVVRcfwYb7LqbwmiesqakDjZuKKJ4xhaq3nyWjcBcKr3+KrD1+0PmGxkTBH8yn+qP/eh1GRJ39VmgeLb1/hE92DOMy26Hk0etpqtzE0HP/irTTq8YfKCA44RpqPn2L8peirtzeq2goxOYFM1l54Vi2LH6R3JMvZ8epL1lyMD3KFyikcdMGtLHB61C20eEdhKo+4E6+rKpvhi9zH1SbBFO97L9ULJwYH/zNAAAbcElEQVTLoOPPp8+IPTtcd8ARp1D51rOUPPZ/9Bt1uDU1halb+RlF06+g9qslZH3vEOch9LAOixcb0y3+QAGo0li2PuH+H4y2XeGeKOcZD4XqqimafgX+oTuRO/6iTtdvbmoSSWPD/ZegoVAcokxsobpqSv5xI6uuOJqGDd8y9IJ7KJgy15KDiRlf0H0XIgGfQ3T2DOIg4GAg2OY5xAAgMQdR7UQ0heuSrbjd1uJwzn9gg064oGWg+874g4UEJ1xD0bTL+Oa3exHaUp4U59yZ7vycs8eMo+rtZ2ksXs2AI04m+JurSe8/2KMzML1Fy7sQCdjVtbNeTBk4zxp8OM8dmlUA42MVVKxEU7gu2YrbtY0XYPNzD9KncNfo483IBEkjVLUZSPxz7kx3f86bn7mPtJwhFF73L7L2PMib4E2v0/yWfdLdQajq68DrIvKIqq6KU0wx017huuK/X0VDkXN6m559oN3idon4y7KjYnzRxls2+xbQ1s1LiXzOnenuzxkgzee35GDiKi0jk/ScYEK+CxHti3LV7ngQewKZzTOTraJrewXTQtUVlM2d2q1tvdYTxeFSrcBcKv6cTWrzBQoS8m3qaB9SzwK+AHYCrsMZCe79GMUUM+0WrgsUsMvc1ewyd3VL8axot/VaTxTjS7WCfqn4czapzR8oTMg7iGgTRK6qPgQ0qOrrqvpbknCwoMCpk5GM1g9vmwupSXo6kp4ecR3S/QlbbC331CtpO3BfV4vDRTzntPSEPefODPzx6dvMi+bnbEX1jFf8QecOQlW9DqWVaBNE8xsc60XkZyLyfaDD7h0iMlxEForIZyLyqYhc6M4fLCIvicjX7r+D3PkiIneLyHIRWSYi+3b7rNoxYOwJ5E2a6vz1KIIvUEDepKmt2tnbriP+PiDQd/cDejqcHtFn+G6AkpY9qN1z6sw255zZD0JNZBTsHLvAY0Sbmqh6/wUksx++3GFR/5y7c92M6Sm+QAFaX0uocqPXobSmqp1+gJ8DA4G9gIXAEuDYTrYZBuzrTvcHvgL2AP4CXOnOvxK41Z0+BngB58/hA4F3O4trv/3201irL16tX502UlffcJqGQqGYH6+rSp+4Tb8cn68Nm4p7bJ+NVeW6/Kx9dOXlR2uosbHH9hsPG5+drl+eOEzL//uU16EYE7XKd5/XL08cpjXffBSX4wGLNYrf/dEOOfqcqpar6ifqDDe6n6rO72Sb9ar6gTtdCXwOFADjgJnuajOB49zpccCjbvzvADkiMiya+GLJHywkcMqVVH/4KpVvPu11ONuoen8Bmbvuhy8n2GP7TO83gOAZ11L3zUdJVYajoXg1pXNupd++R9J/zDivwzEmalsHDkqs5xDRDjn6sIjMaPuJ9iAiMgL4PvAukKeq691FG4A8d7oAWB222Rp3Xtt9TWwe+rSkpCTaELZLztFnkrnz9ymZMYWmBLoFbChdS92Kj8kefVSP77v/mHFk7X0opbNvoXFTcY/vv6epKkXTrwRgyO9ublV+25hEl6gDB0X7DOI54N/u5xWcN6mrotlQRLKBfwF/1DZlwt1bnS49lVHV6ao6WlVHB4M991dzRyQ9nbxz/0rTlnJKZl4fl2NGY8vilwDIPuAnPb5vEWHI2Teh9bWUzLyux/ff0yrfeIrqpQsJnHJly/9sxiSLtOxBSJ++CdfVNdompn+FfWbhjEs9urPtRMSPkxxmqeo8d3ZRc9OR+2/zn6drgeFhmxe68xJCnx13Z/Bx51Hx2hNs+eh1r8MBnOYlf/53yCjYJSb7z8gfyaDjz3N++S5LzHLEAE0VZZQ8PIXMXfYl5+gzvQ7HmC4TEfyBgqS9g2hrF2BIRyuIc4//EPC5th43Yj4wwZ2eADwTNv90tzfTgUB5WFNUQhh84oX4879D8QNXEKqr9jSWpupKqj99KybNS+EGH/8H/ENHUPT3yYQa6mJ6rO4qfuQ6mrZUOIUH05OyRJgx+IKFyXkHISKVIlLR/C/wLHBFJ5uNAX4DHCEiS93PMcAtwI9F5GvgR+53gOeBFcBy4EHg910/ndhKy8gk75ypNBT/j7K5f/U0luqlC6Gxgez9e755KVxaRiZDzr6JhnUr2PTM/TE9VndsWfoalYueZPBx59Nnx929DseYbkvEO4hohxzt3/la22zzBm3f4NrqyAjrK3BeV48Tb1l7HsTAH53GpvnTqFg0j6byEk+qwla9t4D0AYPJ3LXTlr7t1m/UYWQf/AvKnriNzQtm0rS5OOL5xKsK7tbqtesgLY20nCEMPvGCHj+OMfHkCxbSVF5KqK4m6mrMsdbhHYSI7NvRJ15BJpo+I/cBoGlzsTPQh1sttGLRvJZ1mquFNpaubXed7tLGBrZ8+Cr99vtR3JpU+u7+Awg10bSpKOL5RHu+FYvmsWLS/nz1ywJWTNo/4vXoaJ1Wx0Eh1IRuKafqnedjev7GxJrf7eqaSPXAOruDuK2DZUoSltvoCRv/ddc287S+hqIHLqPmy/dJ7zeQzQtmxqwqbM3n7xLaUh7z5qVwkZqXtL6GDfdeSOmcW52/5kNN2ywv/vtVoCF8weHUfvsxZbNu7nq59fsvpW71F2QMHUHJI9dte10b6pK28qwxzXxu77uG0rVk5I/0OBpHZ+W+D49XIMmkvQyvdTVUvf0sTVXl2/yy7Gzbrqh6fwGSkUnW3j/c7n1Fq924Q01k7X4gFa//M/Li6go23NN+84/W17DhvovY/PxDANSu/ATajM2rDbVseure7sVnTJJouYNIoAfVUfdiEpG9ROQkETm9+RPLwBJZR9VCR874hF3m/i9mFVJVlarFL5L1vUNIy8zarn11RUfnPPQPd7VfHTWQz4i7/0vB1bPb33ljA2nZOaRl52yTHLYSdvrbO1aF1aQs3+ChkJaWUAMHRduL6RqcMajvAQ7Hqad0bAzjSmidVQIVEQKnXRWTaqH1qz6nsXg1/UbHr3kJOj/n9pdfRUb+SPqNOqyDJFJA4dWzKLx6VoeJxp+3g1VhNSlLfH58g/ISqidTtHcQ43F6Hm1Q1TOBfXCK9/VKXa4K6+p/+C+3u528avGLIEL26B9v1366qrNzjuaaRPPLvbN1rAqrSWXOwEGJkyBEo6g/LiLvqeoBIrIE5w6iEucFuO/GOsCOjB49WhcvXuxlCFHRpiZW//k46tevYMSdi/ANzO32vlZd8VMk3ccONz3bgxHGTzRdYePVXdaYRLP+zt9Tu3wpO937VkyPIyJLVLXTPvLRDjm6WERycF5gW4JTh+nt7YivV2mu5bTqsqMomXktwy64p1v7aShbT903HyV1c8qAsSd0+ss+mnWMSUW+QAGN7zyPhkJIWncLXfScaGsx/V5VN6vqNODHwAS3qclEqc/w3Rh8/PlULvoXW5a+1q19NBfn6xfH7q3GmPjxBwrQxnqayuNTqboz0T6kni8ip4pIP1VdqarLYh1YKhp8wgVkFOxM0QOXE6rZ0uXtq95fgH/oCDIKY1OczxjjrZZ3IRKkq2u09zC3AYcAn4nIkyIyXkQyYxhXSkrz9yFv0lQaS9ZQOndql7YN1VRR88mbZO//ExvrwJgU1fIuRIL0ZIq2iel1Vf098B3gAZxy34k/ikwC6rv7Dxj4kwlsfv7v1C5fGvV2W5a+hjbWW/OSMSls6x1EEiUIABHpC5wITAL2Z+uwoaaLAqdOJj1nCBvuvxRt98Ww1qreX0Ba9iD67hb74nzGGG+kZ/UnLWsAjaVJ1MQkIk/gjCl9BHAvMFJV/xDLwFJZer8B5J19E/WrPuOb336vw8J14Bbn++AVsvf7EZIebcczY0wycsaFSK47iIdwksIkVV2oqqFYBtUbhGqrIS2dUHVF59VPz9mPUNVmqj58pUeqwRpjEpc/kJ8wdxAd/jkqIper6l9UdYGI/BL4Z9iym1T1qphHmKJKZ98cufrpg5Np3FxMer8B1K76nIqXHkMb6gEIVWzcpvqpMSa1+AIF1HyZGC8Ad3YHcXLYdNu3s47u4Vh6lfaqj4ZqKil99HqK7r+U8ucfakkOzZpLhhtjUpM/WEioajOhmiqvQ+k0QUg705G+my7osCLso1+y0/3v0d4lttLWxqSu5vptiVDVtbMEoe1MR/reiojMEJFiEfkkbN61IrK2zRjVzcsmi8hyEflSRFK+L2dHRenSs/rjDxbiC8SmZLgxJnH53a6ujQnwoLqzBLGPiFSISCWwtzvd/P17nWz7CJGboe5Q1VHu53kAEdkDpzlrT3eb+0QkPmNpeqSnqp8aY1JLyx1EArxN3dmIct3+Ja2qi0RkRJSrjwPmqGod8K2ILAcOIMULAnZWlK55mVU2Nab38OUMgXRfQrxN7UWn+vPd0egWA5eo6iagAHgnbJ017rxtiMhEYCLADjvsEONQvWeVTY3pXSQ9HX9ufkLcQcS7nuz9wEhgFLAep8ZTl6jqdFUdraqjg8FgT8dnjDGe8wUKEuIOIq4JQlWLVLXJfdHuQZxmJIC1wPCwVQvdecYY0+v4g4VJ0YupR4nIsLCvxwPNPZzmAyeLSB8R2QnYBXgvnrEZY0yi8AUKaNy4AW1q9DaOWO1YRB4HDgMCIrIGuAY4TERG4XSRXQmcA6Cqn7r1nj4DGoHzVLUp0n6NMSbV+YMFEGqiceOGlm6vXohZglDVUyLMfqiD9W8EboxVPMYYkyy2dnVd62mC8H7QU2OMMa34g4kxcJAlCGOMSTC+BBlZzhKEMcYkmLQ+WaQPGOz5uxCWIIwxJgH5At53dbUEYYwxCcgfKKDR7iCMMca05QsW0FC6FtUOC2fHlCUIY4xJQP5AIVq7hVDVZs9isARhjDEJyBf0fuAgSxDGGJOA/AF34CBLEMYYY8K13EF4+KDaEoQxxiSg9AG5SEam3UEYY4xpTUTwBfJp8HBsaksQxhiToPweDxxkCcIYYxKUz+OBgyxBGGNMgvIHCmjaVESooc6T41uCMMaYBOVzx4JoLFvvyfEtQRhjTILyN5f99qirqyUIY4xJUC0jy3n0HMIShDHGJChf7jAQSb07CBGZISLFIvJJ2LzBIvKSiHzt/jvInS8icreILBeRZSKyb6ziMsaYZJHm70N6zpCUvIN4BDi6zbwrgVdUdRfgFfc7wE+BXdzPROD+GMZljDFJwx8s9OxdiJglCFVdBGxsM3scMNOdngkcFzb/UXW8A+SIyLBYxWaMMcnCy7ep4/0MIk9Vm/trbQDy3OkCYHXYemvcedsQkYkislhEFpeUlMQuUmOMSQDNb1N7MXCQZw+p1TnbLp+xqk5X1dGqOjoYDMYgMmOMSRy+YCHaUEdTeWncjx3vBFHU3HTk/lvszl8LDA9br9CdZ4wxvVrLuxAePIeId4KYD0xwpycAz4TNP93tzXQgUB7WFGWMMb2W332b2oueTL5Y7VhEHgcOAwIisga4BrgFeEJEzgJWASe5qz8PHAMsB6qBM2MVlzHGJBOfh29TxyxBqOop7Sw6MsK6CpwXq1iMMSZZpfUbSFrfbE/uIOxNamOMSWDOwEEFngw9agnCGGMSnM+jgYMsQRhjTILzBwvtDsIYY8y2/IECQpWbCNVWx/W4liCMMSbB+YJuT6ay+DYzWYIwxpgE1/yyXLxrMlmCMMaYBOezBGGMMSYS3+ChkJZOY2l8H1RbgjDGmAQn6T58g4faHYQxxphteTFwkCUIY4xJAr5AAQ3WxGSMMaYtf7CQxrL1aFNT3I5pCcIYY5KAL1AATY00bi6K2zEtQRhjTBJoGTgojg+qLUEYY0wS8LUMHBS/5xCWIIwxJgnYHYQxxpiI0vr2Iy17UFwHDrIEYYwxScIfyI/rHUTMhhztiIisBCqBJqBRVUeLyGBgLjACWAmcpKqbvIjPGGMSkS9QQEPx6rgdz8s7iMNVdZSqjna/Xwm8oqq7AK+4340xxrict6l750PqccBMd3omcJyHsRhjTMLxBQoIVVfStKUiLsfzKkEo8KKILBGRie68PFVd705vAPIibSgiE0VksYgsLikpiUesxhiTEPxuV9d41WTyKkEcoqr7Aj8FzhORseELVVVxksg2VHW6qo5W1dHBYDAOoRpjTGLYOi5EfJqZPEkQqrrW/bcYeAo4ACgSkWEA7r/FXsRmjDGJKuXvIESkn4j0b54GjgI+AeYDE9zVJgDPxDs2Y4xJZOkDA4gvI253EF50c80DnhKR5uPPVtX/iMj7wBMichawCjjJg9iMMSZhSVoavkB+3O4g4p4gVHUFsE+E+WXAkfGOxxhjkokvUJjazyCMMcZ0jz+YT2PpurgcyxKEMcYkEV+gkMZNG9DGhpgfyxKEMcYkEX+gAFRpLFvf+crbyRKEMcYkkboN3wLw7XkHsWLS/lQsmhezY1mCMMaYJFGxaB7lzz3oflMaS9dSNO2ymCUJSxDGGJMkSmffjDbUtZqn9TWUzr45JsezBGGMMUmisSxy76X25m8vSxDGGJMkfLn5XZq/vSxBGGNMkgicOhnJ6NtqnmT0JXDq5Jgcz5MR5YwxxnTdgLEnAM6ziMaydfhy8wmcOrllfk+zBGGMMUlkwNgTYpYQ2rImJmOMMRFZgjDGGBORJQhjjDERWYIwxhgTkSUIY4wxEYmqeh1Dt4lICc7oc90RAEp7MJxYS6Z4kylWSK54kylWSK54kylW2L54d1TVYGcrJXWC2B4islhVR3sdR7SSKd5kihWSK95kihWSK95kihXiE681MRljjInIEoQxxpiIenOCmO51AF2UTPEmU6yQXPEmU6yQXPEmU6wQh3h77TMIY4wxHevNdxDGGGM6YAnCGGNMRCmfIERkhogUi8gn7SwXEblbRJaLyDIR2TfeMYbF0lmsh4lIuYgsdT9T4h1jWCzDRWShiHwmIp+KyIUR1kmkaxtNvAlxfUUkU0TeE5GP3Fivi7BOHxGZ617bd0VkRPwjbYklmnjPEJGSsGt7thexhsWTLiIfishzEZYlzLV14+ko1theV1VN6Q8wFtgX+KSd5ccALwACHAi8m8CxHgY85/U1dWMZBuzrTvcHvgL2SOBrG028CXF93euV7U77gXeBA9us83tgmjt9MjA3weM9A7jX62sbFs/FwOxIP+9EurZRxBrT65rydxCqugjY2MEq44BH1fEOkCMiw+ITXWtRxJowVHW9qn7gTlcCnwMFbVZLpGsbTbwJwb1eVe5Xv/tp25tkHDDTnX4SOFJEJE4hthJlvAlDRAqBnwF/b2eVhLm2UcQaUymfIKJQAKwO+76GBP3F4TrIvZV/QUT29DoYAPcW/Ps4fzmGS8hr20G8kCDX121WWAoUAy+parvXVlUbgXIgN75RbhVFvAAnuk2NT4rI8DiHGO5O4HIg1M7yRLq2ncUKMbyuliCSywc4NVT2Ae4BnvY4HkQkG/gX8EdVrfA6ns50Em/CXF9VbVLVUUAhcICI7OVVLNGIIt5ngRGqujfwElv/Qo8rEfk5UKyqS7w4fldEGWtMr6slCFgLhGfdQndewlHViuZbeVV9HvCLSMCreETEj/PLdpaqzouwSkJd287iTbTr68axGVgIHN1mUcu1FREfMBAoi29022ovXlUtU9U69+vfgf3iHZtrDHCsiKwE5gBHiMg/2qyTKNe201hjfV0tQcB84HS3x82BQLmqrvc6qEhEZGhzW6iIHIDz8/Pkl4Ibx0PA56p6ezurJcy1jSbeRLm+IhIUkRx3ui/wY+CLNqvNBya40+OBV9V9ahlv0cTb5tnTsTjPgOJOVSeraqGqjsB5AP2qqv66zWoJcW2jiTXW19XXkztLRCLyOE7vlICIrAGuwXmIhqpOA57H6W2zHKgGzvQm0qhiHQ+cKyKNQA1wsle/FHD+uvkN8LHb9gxwFbADJN61Jbp4E+X6DgNmikg6TpJ6QlWfE5HrgcWqOh8n2T0mIstxOjac7EGczaKJ9wIRORZoxIn3DM+ijSCBr+024nldrdSGMcaYiKyJyRhjTESWIIwxxkRkCcIYY0xEliCMMcZEZAnCGGNMRJYgTEIRkaoo1vmjiGT14DGPE5E9enB/b23HtlXuv/ki8mQH6+WIyO+7exxjomEJwiSjPwJdShBuH/32HAf0WIJQ1YN7YB/rVHV8B6vk4FQdNSZmLEGYhCTO2AyvuQXIvhCRWe4b2RcA+cBCEVnornuUiLwtIh+IyD/dekuIyEoRuVVEPgB+KSK/E5H33WJ8/xKRLBE5GOcN1Kni1NMfKSKjROQdtwDaUyIyyN3fayJyh4gsFpHPRWR/EZknIl+LyA1hsVeFTV8hIh+7x7wlwnnu5Mb+cZt9jBB3XBAR2VOc8RaWujHtAtwCjHTnTRWRbBF5xb0GH4vIuLD9fC4iD4ozVsOL7tvOiMjOIvKyG9sHIjLSnX+Ze52WSYSxHUwvEqs64vaxT3c+QJX772E4VTQLcf6QeRs4xF22Egi40wFgEdDP/X4FMCVsvcvD9p0bNn0D8Ad3+hFgfNiyZcAP3enrgTvd6deAW93pC4F1OG8R98GpVJvb5hx+CrwFZLnfB0c43/nA6e70eWHbjsAdFwSncOBp7nQG0Dd8uTvfBwwIuybLccZpGIHzlu0od9kTwK/d6XeB493pTJy7sqOA6e62acBzwFiv/7uwjzeflC+1YZLae6q6BsAtjzECeKPNOgfiNA+96ZZRysBJJs3mhk3v5f6VngNkAwvaHlBEBgI5qvq6O2sm8M+wVea7/34MfKpubSkRWYFT4C28dtOPgIdVtRpAVSON9TEGONGdfgy4NcI6bwN/EmdsgHmq+rVsOzyBADeJyFic0tAFQJ677FtVbS4vsgQYISL9gQJVfcqNrdY9j6NwksSH7vrZwC44Sdj0MpYgTCKrC5tuIvJ/r4Iz/sAp7exjS9j0I8BxqvqRiJyBc5fS3ZhCbeILtRNfNDqsd6Oqs0XkXZyBY54XkXOAFW1WOw0IAvupaoM4FUAz28QMznXs28HhBLhZVR/oQvwmRdkzCJOMKnGGDQV4BxgjIjsDiEg/Edm1ne36A+vFKft9WqT9qWo5sElEDnWX/QZ4ne55CTizuceViAyOsM6bbC0Gd1qE5YjId4AVqno38AywN62vATglqYvd5HA4sGNHgakzqt4aETnOPUYfN84FwG/DnuMUiMiQqM7WpBxLECYZTQf+IyILVbUEp4Ll4yKyDKc55rvtbPdnnHb3N2ldjnoOcJk4A8OPxCn1PNXd3yic5xBdpqr/wWmSWuw2kV0aYbULgfNE5GPaH23vJOATdx974QzjWobTrPaJiEwFZgGj3f2czrblwSP5DU410GU4z0qGquqLOOMfv+3u60laJyLTi1g1V2OMMRHZHYQxxpiILEEYY4yJyBKEMcaYiCxBGGOMicgShDHGmIgsQRhjjInIEoQxxpiI/h/c9ES0QJXV3QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", "pylab.xlabel('Interatomic distance')\n", "pylab.ylabel('Evaluations')\n", "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left')" + "pylab.legend(loc='upper left');" ] }, { @@ -165,7 +238,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, From 20c4217e84eace8fc83bcf8b599507728636df34 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Sun, 28 Apr 2019 14:41:17 -0400 Subject: [PATCH 085/116] more updates for vqc refactor --- .../{qsvm_kernel.json => qsvm.json} | 6 +- .../input_files/svm_classical.json | 4 +- .../{qsvm_variational.json => vqc.json} | 6 +- .../qsvm_directly.ipynb | 2 +- .../svm_classical.ipynb | 37 +- .../svm_classical_multiclass.ipynb | 8 +- .../aqua/artificial_intelligence/vqc.ipynb | 30 +- community/aqua/index.ipynb | 6 +- .../.ipynb_checkpoints/w8_02-checkpoint.ipynb | 338 ++++++++++++++++++ .../exercises/w8_02.ipynb | 18 +- .../latex/main.tex | 14 +- .../aqua/artificial_intelligence/index.ipynb | 8 +- .../qsvm_classification.ipynb | 4 +- 13 files changed, 413 insertions(+), 68 deletions(-) rename community/aqua/artificial_intelligence/input_files/{qsvm_kernel.json => qsvm.json} (97%) rename community/aqua/artificial_intelligence/input_files/{qsvm_variational.json => vqc.json} (97%) create mode 100644 community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_02-checkpoint.ipynb diff --git a/community/aqua/artificial_intelligence/input_files/qsvm_kernel.json b/community/aqua/artificial_intelligence/input_files/qsvm.json similarity index 97% rename from community/aqua/artificial_intelligence/input_files/qsvm_kernel.json rename to community/aqua/artificial_intelligence/input_files/qsvm.json index a0dc7592c..5673fc17c 100644 --- a/community/aqua/artificial_intelligence/input_files/qsvm_kernel.json +++ b/community/aqua/artificial_intelligence/input_files/qsvm.json @@ -1,11 +1,11 @@ { "algorithm": { - "name": "QSVM.Kernel"}, - "problem": {"name": "svm_classification"}, + "name": "QSVM"}, + "problem": {"name": "classification"}, "backend": {"provider": "qiskit.BasicAer", "name": "qasm_simulator", "shots":1000}, "input": { - "name": "SVMInput", + "name": "ClassificationInput", "training_dataset": {"A": [[6.220353454107791, 4.1469023027385274], [3.204424506661589, 4.335397861953915], [3.5185837720205684, 3.7699111843077513], [2.4504422698000385, 5.717698629533423], [4.39822971502571, 2.324778563656447], [2.9530970943744057, 1.8221237390820801], [2.8902652413026093, 4.838052686528282], [3.015928947446201, 4.1469023027385274], [1.4451326206513047, 2.827433388230814], [0.0, 4.335397861953915], [3.5185837720205684, 2.4504422698000385], [1.7592918860102842, 2.6389378290154264], [5.717698629533423, 1.9477874452256716], [3.330088212805181, 1.2566370614359172], [1.382300767579509, 0.6911503837897545], [3.015928947446201, 2.324778563656447], [5.780530482605219, 0.9424777960769378], [0.06283185307179587, 5.0893800988154645], [2.9530970943744057, 4.9637163926718735], [3.7699111843077513, 4.084070449666731]], "B": [[1.4451326206513047, 5.277875658030853], [1.5079644737231006, 5.0893800988154645], [0.8168140899333463, 5.277875658030853], [1.0053096491487339, 0.25132741228718347], [0.3141592653589793, 6.220353454107791], [4.335397861953915, 3.4557519189487724], [3.4557519189487724, 6.031857894892402], [5.592034923389832, 0.5026548245743669], [0.3141592653589793, 5.654866776461628], [0.5654866776461628, 1.5079644737231006], [5.277875658030853, 3.141592653589793], [4.272566008882119, 0.5026548245743669], [2.0106192982974678, 4.461061568097507], [4.0212385965949355, 4.71238898038469], [1.4451326206513047, 4.900884539600077], [1.8849555921538756, 3.204424506661589], [5.592034923389832, 1.4451326206513047], [2.3876104167282426, 4.335397861953915], [4.084070449666731, 2.3876104167282426], [4.084070449666731, 4.649557127312894]]}, "test_dataset": diff --git a/community/aqua/artificial_intelligence/input_files/svm_classical.json b/community/aqua/artificial_intelligence/input_files/svm_classical.json index febf4bb4e..de6744777 100644 --- a/community/aqua/artificial_intelligence/input_files/svm_classical.json +++ b/community/aqua/artificial_intelligence/input_files/svm_classical.json @@ -2,9 +2,9 @@ "algorithm": { "name": "SVM" }, - "problem": {"name": "svm_classification"}, + "problem": {"name": "classification"}, "input": { - "name": "SVMInput", + "name": "ClassificationInput", "training_dataset": {"A": [[6.220353454107791, 4.1469023027385274], [3.204424506661589, 4.335397861953915], [3.5185837720205684, 3.7699111843077513], [2.4504422698000385, 5.717698629533423], [4.39822971502571, 2.324778563656447], [2.9530970943744057, 1.8221237390820801], [2.8902652413026093, 4.838052686528282], [3.015928947446201, 4.1469023027385274], [1.4451326206513047, 2.827433388230814], [0.0, 4.335397861953915], [3.5185837720205684, 2.4504422698000385], [1.7592918860102842, 2.6389378290154264], [5.717698629533423, 1.9477874452256716], [3.330088212805181, 1.2566370614359172], [1.382300767579509, 0.6911503837897545], [3.015928947446201, 2.324778563656447], [5.780530482605219, 0.9424777960769378], [0.06283185307179587, 5.0893800988154645], [2.9530970943744057, 4.9637163926718735], [3.7699111843077513, 4.084070449666731]], "B": [[1.4451326206513047, 5.277875658030853], [1.5079644737231006, 5.0893800988154645], [0.8168140899333463, 5.277875658030853], [1.0053096491487339, 0.25132741228718347], [0.3141592653589793, 6.220353454107791], [4.335397861953915, 3.4557519189487724], [3.4557519189487724, 6.031857894892402], [5.592034923389832, 0.5026548245743669], [0.3141592653589793, 5.654866776461628], [0.5654866776461628, 1.5079644737231006], [5.277875658030853, 3.141592653589793], [4.272566008882119, 0.5026548245743669], [2.0106192982974678, 4.461061568097507], [4.0212385965949355, 4.71238898038469], [1.4451326206513047, 4.900884539600077], [1.8849555921538756, 3.204424506661589], [5.592034923389832, 1.4451326206513047], [2.3876104167282426, 4.335397861953915], [4.084070449666731, 2.3876104167282426], [4.084070449666731, 4.649557127312894]]}, "test_dataset": diff --git a/community/aqua/artificial_intelligence/input_files/qsvm_variational.json b/community/aqua/artificial_intelligence/input_files/vqc.json similarity index 97% rename from community/aqua/artificial_intelligence/input_files/qsvm_variational.json rename to community/aqua/artificial_intelligence/input_files/vqc.json index 36ee9663a..e7eb30e9d 100644 --- a/community/aqua/artificial_intelligence/input_files/qsvm_variational.json +++ b/community/aqua/artificial_intelligence/input_files/vqc.json @@ -1,12 +1,12 @@ { "algorithm": { - "name": "QSVM.Variational" + "name": "VQC" }, - "problem": {"name": "svm_classification"}, + "problem": {"name": "classification"}, "backend": {"provider": "qiskit.BasicAer", "name": "qasm_simulator", "shots": 1000}, "optimizer": {"name": "SPSA", "max_trials": 100, "save_steps": 10}, "input": { - "name": "SVMInput", + "name": "ClassificationInput", "training_dataset": {"A": [[6.220353454107791, 4.1469023027385274], [3.204424506661589, 4.335397861953915], [3.5185837720205684, 3.7699111843077513], [2.4504422698000385, 5.717698629533423], [4.39822971502571, 2.324778563656447], [2.9530970943744057, 1.8221237390820801], [2.8902652413026093, 4.838052686528282], [3.015928947446201, 4.1469023027385274], [1.4451326206513047, 2.827433388230814], [0.0, 4.335397861953915], [3.5185837720205684, 2.4504422698000385], [1.7592918860102842, 2.6389378290154264], [5.717698629533423, 1.9477874452256716], [3.330088212805181, 1.2566370614359172], [1.382300767579509, 0.6911503837897545], [3.015928947446201, 2.324778563656447], [5.780530482605219, 0.9424777960769378], [0.06283185307179587, 5.0893800988154645], [2.9530970943744057, 4.9637163926718735], [3.7699111843077513, 4.084070449666731]], "B": [[1.4451326206513047, 5.277875658030853], [1.5079644737231006, 5.0893800988154645], [0.8168140899333463, 5.277875658030853], [1.0053096491487339, 0.25132741228718347], [0.3141592653589793, 6.220353454107791], [4.335397861953915, 3.4557519189487724], [3.4557519189487724, 6.031857894892402], [5.592034923389832, 0.5026548245743669], [0.3141592653589793, 5.654866776461628], [0.5654866776461628, 1.5079644737231006], [5.277875658030853, 3.141592653589793], [4.272566008882119, 0.5026548245743669], [2.0106192982974678, 4.461061568097507], [4.0212385965949355, 4.71238898038469], [1.4451326206513047, 4.900884539600077], [1.8849555921538756, 3.204424506661589], [5.592034923389832, 1.4451326206513047], [2.3876104167282426, 4.335397861953915], [4.084070449666731, 2.3876104167282426], [4.084070449666731, 4.649557127312894]]}, "test_dataset": {"A": [[4.900884539600077, 5.780530482605219], [1.6336281798666925, 2.199114857512855], [6.094689747964199, 0.6283185307179586], [5.340707511102648, 3.8327430373795477], [3.015928947446201, 0.6911503837897545], [0.6911503837897545, 4.71238898038469], [3.267256359733385, 0.8796459430051421], [0.18849555921538758, 5.403539364174444], [0.18849555921538758, 0.8168140899333463], [3.4557519189487724, 1.4451326206513047]], "B": [[0.6911503837897545, 5.215043804959057], [1.9477874452256716, 1.3194689145077132], [2.6389378290154264, 3.204424506661589], [1.5079644737231006, 0.8168140899333463], [2.701769682087222, 3.3929200658769765], [4.523893421169302, 3.5185837720205684], [2.261946710584651, 4.39822971502571], [4.71238898038469, 2.827433388230814], [2.199114857512855, 1.1938052083641213], [2.764601535159018, 3.707079331235956]]}, diff --git a/community/aqua/artificial_intelligence/qsvm_directly.ipynb b/community/aqua/artificial_intelligence/qsvm_directly.ipynb index 3fe700da2..adf51dcb2 100644 --- a/community/aqua/artificial_intelligence/qsvm_directly.ipynb +++ b/community/aqua/artificial_intelligence/qsvm_directly.ipynb @@ -8,7 +8,7 @@ "\n", "### Introduction\n", "\n", - "Please refer to [this file](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/artificial_intelligence/qsvm_kernel_classification.ipynb) for introduction.\n", + "Please refer to [this file](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb) for introduction.\n", "\n", "In this file, we show two ways for using the quantum kernel method: (1) the declarative approach and (2) the programmatic approach. \n" ] diff --git a/community/aqua/artificial_intelligence/svm_classical.ipynb b/community/aqua/artificial_intelligence/svm_classical.ipynb index 3e5e40ed2..293a30ab9 100644 --- a/community/aqua/artificial_intelligence/svm_classical.ipynb +++ b/community/aqua/artificial_intelligence/svm_classical.ipynb @@ -6,7 +6,7 @@ "source": [ "## _*SVM with a classical RBF kernel*_\n", "\n", - "We have shown here a QSVM_Kernel notebook with the classification problem solved using a quantum algorithm. By comparison this shows the problem solved classically.\n", + "We have shown here a QSVM notebook with the classification problem solved using a quantum algorithm. By comparison this shows the problem solved classically.\n", "\n", "**This notebook shows the SVM implementation based on the classical RBF kernel.**" ] @@ -19,7 +19,7 @@ "source": [ "from datasets import *\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua.input import ClassificationInput\n", "from qiskit.aqua import run_algorithm" ] }, @@ -39,7 +39,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFkZJREFUeJztnV+sZVV9x79fhrEDM1dIuNN2cCiDaWMwk1TwhqbBMFRTQy0RH3yQRB4uDvNSCcY0Rps0ZB5M2hcjD5OmlxkmGFFjQEJDjMVEHAqp6B3ECgwSQyAMaIZbQ7y30Yj468M9uz3dPWfvtfde//Y6309yM/fM3Wev39p7r/39/db6rbVoZhBClMl5qQ0QQoRDDVyIglEDF6Jg1MCFKBg1cCEKRg1ciIJRAxeiYNTAhSgYNXAhCub8ECdd2rXTLlna1XjM8vKS8/k2NjYBAC9vbDl/5/LlPc7lVOev6FJOvbyKLvWbZ4erLUPKnlXmPNrOO32uEPeq7/WZV17FkHvVp559y56u/39u/hqbv36Tbd8J0sAvWdqFO296b+Mxq4cPOZ/v5PFTAIBbT5xy/k5Vvks51fkrupRTL6+iS/3m2eFqy5CyZ5U5j7bzTp8rxL3qe33mlVcx5F71qWffsqfrf/Sh007fCdLAfdDlwZvmnk9sX7BYD0tVXkWfh6VEquvS55qOgVn3ua2u03+vrk/1HLo8N9UxXdqGYnAhCiY7Be+j3HUV7UqOKpOjTaVQXds+KtpEjl6LFFyIglEDF6JgnFx0khcDOA7gIAADcKuZ/fu841/e2MKtJ041us51t6jJNZ/n8sw6f5/ONR8sQueaL1c21flDMG1rZb+Lqz4kTFg9fAjHnnjByT7XGPwuAN8ys4+SfBuACx2/J4RICNuWbCJ5EYCnAbzTHNd3ImnA8M4vV2KNdU/jc3jMl/fSx5YhHk29nD71ANyvpa+hzbbym2xwoc+z1vV5Wlm9G+tnXmtNdHGJwa8A8DqAkyR/SPI4yd31g0geIblOct3hnEKICLi46OcDuBrA7Wb2JMm7AHwWwN9PH2RmawDWgP9V8Bzwrdx1xhQvujDr+szzFrqofz0ujeXd9WVIf0C9Xyl0TN6Ei4KfBXDWzJ6cfL4f2w1eCJE5rQpuZj8n+QrJd5nZTwB8AMBz4U1rJ7Z6plCdLmWOwZsYcg1n9Vj7oMmrqJcz5BpPn9/Vk5wuv0/Zrr3otwO4b9KD/iKA1c4lCSGi49TAzexpACshDOjSE9sFn294372sFaHG5H0TK27uc019pofOmgxSx5eiz7PbxZvoUqYy2YQomCCTTS5f3jN3PnjoODGkcve1PUelDj26sCjMurfVc9JnemdFm5K7LtQhBReiYNTAhSiYKPPBQ09O6IJLp4wP1zxHt3woOSWpDHF/XRhS1yEJQPPs6GuLFFyIggmq4LEmPfQhlAqlUO4xJLiEJsfVVLrQJ53VBSm4EAUTRMGXl5ecVSXnWDVHD0RqLbp4KVJwIQom+qqq85Su/lZyiTOa1MznQgZNLKJy++5NH1K3PlMzYxO6x78JKbgQBRNFwX0vtdNlF4gmG7qcz5U+y/M0kZNy+6C0+kzTVjeX6a6+PRApuBAFowYuRMG0rqrah5UrL7X1k7f1cs2Hdq7FwsdsrNh19R0q5RRquHbe9mVeXYfWq63jrcl+M/OyqqoQYqQE6WTb2NjEyeOnshqq8EHMYY4cvJR55DDZpE7KoaghhLZbCi5EwQSJwfusi55z7N13xw5XQq35VuHb/pxi7zqx75Xv+nWxXzG4EAtO9FTVOrHjuaY1tFyOFfHwnZzkI4lk3g4kfW2q4zsml4ILUTDJFDxWHOfyJixVqUPHo02MafXcsdDHA5GCC1EwTgpO8iUAmwDeAvBbM+u0y0nMOHtMb/bQPbK+yXH8uw8hYnHA346g0+cY+jx3cdH/wsw2BpUmhIiKXHQhCsZVwQ3AI5MEln82s7Wmg5u2LmrD9xrkfVaKGTuhJ17MI/cQo45PV336fCFc9enz3vOJQzj60Gmn77s28PeZ2askfx/At0k+b2aPTR9A8giAIwBwye7fczytECIkrtsHvzr59xzJBwFcA+Cx2jFrANYA4MDepdZU1VBDX21v45x254hFaZN+fDPrWehzzeYlwaT0bFpjcJK7SS5VvwP4IIBnQhsmhBhO62QTku8E8ODk4/kAvmJmn2/6TrXgg298xpa+FbyLDaGGx1ItelCR0x50vvC5IIbP+3z0odN46fXN1skmrS66mb0I4E+9WCaEiEryySbzCJVmmTL2jl12rNh7bL3nXRjS0x5qYsrq4UM49sQLTsdqHFyIgslGwV3irNTjuE02Nr3pQy3Y52LXotBndKTL2vk+lXy6rNDejxRciIJRAxeiYJK56EPWg+5Dk+vm6iZ12XomJbETW3JI6KgYksg0y/76ffbhqk+fJ/S1k4ILUTBBFbxL508o1QndwdUHH2X73qWkNFyU3EU9583LHjpRJVZaqxRciIIJurPJLEKrTKp0yljkPCTme4XRnGhTciDPCSpScCEKJoiCv7yxFTUezHlXlEWlrnSprv+snus6XVSzaa20UGmt9bK7IAUXomCy2ZusC77GOIcwJBYOvSxVKHyM8Yde497lWvjw+EKnVrflbays3o31M69pbzIhFplRKXhq5fbVgz1WBa/wna3nej18q+YYlHyaaXtdF3yQggtRMGrgQhRMNvPBm0g9gSNlcknOiS2+8Jnc4WOt82nabOsyAWmoTX2+LwUXomCyU/DUaj1NKPXMaXrlmHBRyy50mVrq454NTWvtgxRciILJZpgslHJ3eeP6XIRiyNpgLrbMYkwJL03onrlhZhomE2KRia7gsWJsHwkKFTnsnNKF1FNyh+I7EagilJr7oM89k4ILseA4KzjJHQDWAbxqZjc2HXtg75L13R88J2Lt6RWK2MtgDSXUUlZ1fE1I8UkOCn4HgDOdrRBCJMNJwUnuB3AvgM8D+HRXBW96M+eYqRVzyeYYjKU+sScGjV3JfSr4FwF8BsDv5h1A8gjJdZLrW7960/G0QoiQtDZwkjcCOGdmp5uOM7M1M1sxs5U9F+z0ZqAQoj8uqarXAvgwyQ8B2AXg7SS/bGYfn/eF5eWlzruF5OCq57Su+Lzr1+c6zXIzx1DX0PiemOID3za1KriZfc7M9pvZAQAfA/CdpsYthMiHTokuJK8H8LdtnWwrV15q6ydvczpnDspdkdOwks90zSZiJ3/EVmtfCU05DnW6dLJ1mk1mZt8F8N0u3xFCpCNIqmqTguek2HV8KnjK9eN8K/oYlXsWPtQ8pxRkpaoKseBE35tMhGfIyESqFVPHQl1FYyp6fVVVF6TgQhRMkBi8abJJqN0eQhI6pTG0yqXwpnJU7tALMsR8PrUuuhBCDVyIkgm6qqrvxJFUQxepZ4MNJad04JLpskprLKTgQhRMEAV/eWMragK/yybvOZJjR9QQSqsP8P+fp5wmprggBReiYIIo+OXLe3DnTe8d3dtOiDbG5CECUnAhiia7vcn6EGtix9Be6NQxqu+9vUT+SMGFKJigCh56SRwX5fapmqkVeCiLrtqLmA8gBReiYKLE4EMX/Ru666MQ0+S8bJRvpOBCFIwauBAFk2yYrJR1voRow+U5DeXGS8GFKJhsE12kzv5YpGGhsVJ/3n3dMym4EAWTjYJLsf2RSrGny9X9HMas69fnvrrsLrqL5PdJ/ojksySPdi5FCJGE1lVVSRLAbjPbIrkTwOMA7jCz7837TtOqqnX0pvdHjrG27m8YVlbvxvqZ14bvTWbbb4Ctycedkx//ay0LIbzjFIOT3AHgNIA/BnDMzJ4MalVAQqtcLMXKUa1nUdkpJU+DUy+6mb1lZu8BsB/ANSQP1o8heYTkOsn1rV+96dtOIUQPOg2TmdkbAB4FcMOMv62Z2YqZrey5YKcv+4QQA3DpZNsL4E0ze4PkBQAeAfCPZvZww3cMiD9fexY5uLI+65hDfYYgV90P3jrZAOwDcO8kDj8PwNebGrcQIh9cetH/A8BVoQzw3QnjqnBDV5npMllGHU3l4fKc5XC/laoqRMFE3z64jdCrnaZcH64ixYquuZGDurng87r7rLNrDC4FF6JgsplsUhFKqULvstJlZ0nF5HkS2kuadf7Qz4AUXIiCyU7Bx45vJfehKi7ey9j23PJBDv0afW3Y2Nh0Ok4KLkTBBFHw5eUlrB4+lMUbsiL0Lit1uuxZniI2q9PF8xg7OT2XoZGCC1EwauBCFEzQTrbQnUclk+r6hHbVF2nboFB0CTOl4EIUTJBU1ZUrL7X1k7f1+m6KN27ojrdUHVe+6hXC/lBKPuT5mXW9Unc6Nt1DM1OqqhCLTHaJLik2aQ89hDb2Iagx2N/neYk1ZJoSKbgQBZOdglf42tmhC3WFGvsb3rdnMgYld2EM99WXjVJwIQomiIJvbGxGiaFDL5wgBZyNj3r42sesxHFun0jBhSgYNXAhCiZIoku1LnpFaJd0aNJErJVY68Ry1XNP5Inlog+5DrHDKhdblegixIITRcGH0uftGWvl0pxVIfZwUAolj72ibk73TAouxIIzCgWvE1rRS1HylAkdOXpdIa5HynvnRcFJXkbyUZLPkXyW5B2ONgohEuOyu+g+APvM7CmSSwBOA/iImT3X8J2gCl7Ht1rEWsm0okQFrwi940uFyz2LdT1i9Lgffeg0Xnp9c7iCm9nPzOypye+bAM4AeMdwE4UQoekUg5M8AOAxAAfN7JcNx0VV8FnknA46T0l82ZyDctcJvVd8TgpeEfIZdFVw51x0knsAPADgU7MaN8kjAI50slIIERSnBk5yJ7Yb931m9o1Zx5jZGoA1YNjuorPo8+bNeWJHyTF3KlIsFDIGXHrRCeAEgDNm9oXwJgkhfOGS6HItgFsAvJ/k05OfDwW2SwjhgVYX3cweB9AazIekzaVtck3rf8vRZe/DIrvjfYm1fVVOz5hSVYUomKCbD1bEXkttmvrbOse1r7sg5c6LFM/O6uFDOPbEC07HSsGFKJjsdjZxwffuFRVD3sYuSRo+PZmxKHnoBJd5hEp8yWXxkpXVu7F+5jVNFxVikcl2XfQmhkwUmfUGjqWGdbuHKPp0Pcai5rmRixqHRAouRMGMMgZ3IXbKoo+39VCbc1LyNnWMpW6hn4NUKq0YXAihBi5EyQRx0euzyXLobBibqxZqKDAW81z0lM/CkGuawzM8jVx0IUTYVVWbOlpSvREXQclTKXiqpBZX+lzL3JS7QgouhIi/Lnr9LV+akoeqzxiUPEePbRYu1zIne2chBRdCpNvZJBcln8anqi+Skucee9cZu4KfPH7K37roQojxknxvstKVHAhfpzZ7Uyp4Dvezost9zcXueTZLwYUQ6RW8IkcVkJK7keO9qxh6D3N89qr7qP3BhVhw1MCFKJhRuOgVObpLfUjlqvt20Ut2zevkeM/kogux4GSj4BVScn+4dNQMIUcFj7WSj6/6DfG2vCg4yXtIniP5TGuJQoisaFVwktcB2ALwJTM76HLSasGH0OtOz3qLznsj5jCNs42Y6a2hFbyilLXXXOhSVx/9JF4U3MweA/AL51KFENngbV10kkcAHAGAP/rDi+a+zdreUNXfXdShy1u7OjZ1724Ts+oTyt5YO23OI2ZdK9rqGnqd9BRehrdedDNbM7MVM1vZe/GFvk4rhBiAUy86yQMAHnaNwevroveJAcey68SYem19x+K+79GQOvoe+/e5T12XZyR6DC6EGC+tMTjJrwK4HsAyybMA7jSzE10KmbVXeP0N2SX29sH0WzXnuDxnYt+zWYTyoFLVzXffSGsDN7ObvZQkhIiOXHQhCib69sGVO1x3rXJw8/q46vPq45tQw3yph8tCUVp9+iIFF6Jggu5N5qI2OaQYzsNH6mEo+ih5ysknTeQ0PDYP32m5rs+LposKIeYSNAZ3SUeMFcP2oUvc66MeXSbPDD3/vD4Qxa5xcE2Gmec5HH3otFM5UnAhCiaIgr+8sYVbT5ya+fapv6mqN1kXBWxS1BCeQMqJKvOuS46JOtPq3xaz5mLzUHKvhxRciIIJGoPPiufqb/a6Og59I/aJhefFnfNsbSq3D0Nj/HlekSiT1cOHcOyJF5yOlYILUTBq4EIUTPRU1XmzdHx3ZPkYtqq77k0dRzkN8w25lqGHy8YWPsy752OphxRciIKJruAVOSm5q2p1GQbqYlsocvIqRBqk4EIUTBAFv3x5D1zXRY+1cobvlNgu8XndBjFecriHJ4+fwsbGptOxUnAhCiZoDN6lR7au5KFSMZuUfEgP8lg9kVjkoHxdqN/HmLvO+EQKLkTBJOtF78IYdiWpyGGlUR82TH/X1aOJWedYCz2EIpYHJgUXomCiKHgXNWhSH59KXuLiB3V7c/AmxsSs6+TTa+yys4yveyYFF6Jg1MCFKBgnF53kDQDuArADwHEz+4e+BfpIC42Vzupj2Gz6PKk6C1O66rHq6nsTxVCbPVbECv9aFZzkDgDHAPwVgHcDuJnku0MbJoQYjouCXwPgp2b2IgCQ/BqAmwA8N6TgIUkwFTlOMc2ZvpNl2u5Vig0jcyanITyXGPwdAF6Z+nx28n9CiMxp3dmE5EcB3GBmhyefbwHwZ2b2ydpxRwAcmXw8COAZ/+Z2ZhnARmojJuRiSy52ALJlFq52XG5me9sOcnHRXwVw2dTn/ZP/+z+Y2RqANQAguW5mKw7nDkoudgD52JKLHYBsiWGHi4v+AwB/QvIKkm8D8DEA/+LLACFEOFoV3Mx+S/KTAP4V28Nk95jZs8EtE0IMxmkc3My+CeCbHc671s8c7+RiB5CPLbnYAciWWXi1I8j2wUKIPFCqqhAF47WBk7yB5E9I/pTkZ32eu6Md95A8RzLpUB3Jy0g+SvI5ks+SvCOhLbtIfp/kjya2HE1ly8SeHSR/SPLhxHa8RPLHJJ8muZ7YlotJ3k/yeZJnSP754HP6ctEnKa0vAPhLbCfD/ADAzWY2KOOtpy3XAdgC8CUzOxi7/Ck79gHYZ2ZPkVwCcBrARxJdEwLYbWZbJHcCeBzAHWb2vdi2TOz5NIAVAG83sxtT2DCx4yUAK2aWfAyc5L0A/s3Mjk9GrC40szeGnNOngv9PSquZ/QZAldIaHTN7DMAvUpRds+NnZvbU5PdNAGeQKAvQttmafNw5+UnSAUNyP4C/BnA8Rfk5QvIiANcBOAEAZvaboY0b8NvAldLaAMkDAK4C8GRCG3aQfBrAOQDfNrNUtnwRwGcA/C5R+dMYgEdInp5kY6biCgCvAzg5CV2Ok9w99KTqZIsAyT0AHgDwKTP7ZSo7zOwtM3sPtrMRryEZPXwheSOAc2Z2OnbZc3ifmV2N7dmSfzMJ71JwPoCrAfyTmV0F4L8ADO7H8tnAnVJaF41JvPsAgPvM7Bup7QGAiev3KIAbEhR/LYAPT2LfrwF4P8kvJ7ADAGBmr07+PQfgQWyHmik4C+DslFd1P7Yb/CB8NnCltNaYdGydAHDGzL6Q2Ja9JC+e/H4BtjtDn49th5l9zsz2m9kBbD8j3zGzj8e2AwBI7p50fmLiDn8QiSZJmdnPAbxC8l2T//oABk7JBjwuuphTSivJrwK4HsAyybMA7jSzEwlMuRbALQB+PIl9AeDvJpmBsdkH4N7JaMd5AL5uZkmHqDLgDwA8uP0exvkAvmJm30poz+0A7psI5IsAVoeeUJlsQhSMOtmEKBg1cCEKRg1ciIJRAxeiYNTAhSgYNXAhCkYNXIiCUQMXomD+G/wNjDLv4+CtAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFiFJREFUeJztnV/MZkV9x79fljUr7Cskvlu7uJTFtDGYTSrwhqbBgMVoqBLxwgtJ5GIF9qYajBemNmnoXjRpk8bIxabpun+CETUGJDTGUk1EqKSg7yJWYJEYAmFRs/vWbHi3xPrv14v3Oc3D8TnnzDkzc2bOPN9PsmGf5Tzn/M7MM/P9zW9+M0MzgxCiTM5LbYAQIh5q4EIUjBq4EAWjBi5EwaiBC1EwauBCFIwauBAFowYuRMGogQtRMOfHuOnKju325pUdvb7z0sa5132+bHVn53dWV1d6PQMANjY2O5/tg4vdFUPsr1j0HhUu79PHzhCEqCvfehryzj51VOHzm2uy+b83f4nNX/6aXd+P0sDfvLIDd918da/vfOzoI6/77PL9/bdf3+sZAHD8yCO/92/1Z/vQ572H2F+x6D0qXN6nb/34EqKufOtpyDv71FGFz2+uyeaDD55w+n6UBj6EY7f5F2QOVBWX+/uMbWf1Iw/RYIbS1KjayiCE3dV35xt6/ZlNti369z51pjG4EAWTjYLHJrS7J+JTV7555QpZfy4qGVLJ5+9Xf57Le/V5dym4EAWjBi5EwdBlwweSFwM4AmAfAAPwMTP7z6br9+5asfno3yK3pi0K7IqLu5TKNW8LhMSKnlcMecexg4J9yqDPbyVW/TaVj2/QsOndXN7DzIJNk90N4CEz+zDJNwC4wPF7QoiEdCo4yYsAPAXgbea4v9PaFZfY+vE7nAxwUdh67zlV5a4YYn8fSlPwiiFlErreY3lmFX1+ty4K7jIGvxzAGQDHSf6A5BGSF9YvInmA5DrJ9TNnX3O4rRAiNi4KvgbgcQDXmtkTJO8G8KqZ/W3Td1wUvE9P1UfBXe/b1hP79Pp9lHBRAkQIxrLfhboti+7vqny+5RRCzYfU7xBcst9CKfgpAKfM7InZ5/sAXOXwPSFEYjqDbGb2c5Ivk3y7mf0YwHsAPBvKgBC9ap9c31hjzSH3Da3cFX2SJnwY4oH4pMi2JYqMRR/76zb2UfS29NY+9eoaRf8EgHtnEfQXAOx3foIQIhlO8+B9aRuDVz1Sn16oq7d0uZdLj5vT2DUEsd6nSYl8PamQc+Nt3kVIz2ZovfvOIhx88ARePLMZZAwuhJgooyw2me95XHvPUIobW1lzVO5ULBojN40b5z+HLMO6MvaxaUyGLF4ZEvOQggtRMGrgQhRMFBd9Y2NzkFsOpHHNtTY8D2Lv+tK0vnyKrvqhx553ulYKLkTBRA2y5aDc9Z4xVIKEgmvt9AkIhdwfzkURc1byilBejBRciIKJouAvbZwbdTrMJWlimfZkm/q7jbUDa9uebxWpyjJUGUjBhSiYZLuqxko/7erxSktHnQou49z6WNxHxfp8ty1ekLrO520aUg5ScCEKZnQF91HuIRvfpVpWOE+fxRmpCa1YITa1CPXdLgXMYTlqG0M8Gim4EAWjBi5EwYziog9x+3x3rww5Lea7+0jXNaHcwSkEEHNIKnEhVoJUEy57183b0nZ89DxScCEKJsqOLiQNiBewcWHIzjEVLke7dr3bWPt+zzP2brBDyGH/vNgny7jgmwimHV2EEHHG4Jet7sT82WRDGNrLDulhY+4oMvS7Y53HlTqRY96GEONyl7GsTwJNyrH5kLqSggtRMMlSVevEGhf5KFTukd5UhFDAsdJC2xQwxIKOMZNjhiyrlYILUTDJFDzGSYwpCb20sWuOPAfvYqxlnVMh1llzdfrUvRRciIJxmgcn+SKATQC/BfAbM1tru37vrhWbj6KH7uGH9JA+52hVxD4behGxFTyHGYQYihd60dIQ+mxXNQSX00X7uOh/YWYbg60RQoyOXHQhCsZVwQ3AN2cpqP9iZofbLl5dXYkaeAkxrdHmPuUQwJoii8o0VQBuSPKM7+4pdVx+a7EX37g28HeZ2Ssk/wDAt0g+Z2aPzl9A8gCAAwDwR394UWAzhRBD6L3YhOTfAThnZv/UdE3b8cG50EfBXQJRYwVoYvX0Y6Ws5r77Tp2cg6cuQbbOMTjJC0muVH8H8D4ATztbIYRIhouL/hYAD5Csrv+SmT0U1aqI5KgSy0Rb+adYYut6/7ESmdo8qSHeW2cDN7MXAPxp7zsLIZITZcOHnMfgsc/KirVoJnZkP4dloxU5bMjQROxZAVf7teGDEGJ5FNwnbdBX3bp6/Zzm5EOPAV3u20TOSl4x5jz//DtJwYUQauBClEyxLvoQF23IMcWxKS1tdmxXfZ6pB+DmWdv/eayf/KlcdCGWmVEUPPfkkhx3JS1NuevEDly2UUIATgouhIij4PUdXXIktEJq99bh+JRdjumtLviquxRcCLE8Cj6WSvZRo2VX7joh4hlDTp7NCVdll4ILIfJRcKmZqMhp4UuuKFVVCDH+ySZS6nh0Kd9Uyn7IlllTJXadSMGFKBg1cCEKZpQg21Rcwynh67aWUieluO9D6iPIrqpCiOkSRcFnJ6CICIRSrFIUvA8xgpApFxtJwYVYcopQ8JLTQ0tdjqo660+9HKTgQiw5k1bw0pZoLsOWUKXVWRt93rVpkUnTwhilqgoh3FNVSW4DsA7gFTO7KZ5JzYRUuPl7uSpDDnOufTYKyGlZZA5lNzYhUm6b6vvQY887fb+Pgt8J4GSP64UQiXFScJJ7AHwAwN8D+FRUixYQu/fPWV1ib8VbvfvUxrdTZL6M67+5urcVqt5dFfxzAD4N4HdNF5A8QHKd5HoQy4QQ3nQ2cJI3AThtZifarjOzw2a2ZmZrwawTQnjh4qJfC+CDJN8PYAeAN5H8opl9NIZBObvLsYjlhjcdMj8mU6jPITb6Dmm6AnBVnfn+NjoV3Mw+Y2Z7zGwvgI8A+Hasxi2ECMvoO7o0MYWevo0xz6WKQYhg29Tq0Mdel+/2Kcvq2q7gG9Dvt9argZvZdwB8p893hBDpSJaqOrXeHpiuSueU8DKEWFN4MVNJu/BNrlKqqhBinDH4FNUamK5iV0xduXOg6zcw9CSVpjZRV/a25BgXpOBCFEzUMbiUOy1TV/CczpML/ZtwrZu2MtCGD0IsOWrgQhRMlCDbZas70ffwwRwOcpdrLsbCNY14yL4F80jBhSiY0VNVQ6qkz2Hvpaj1PFLueIRa/OHDkHRiKbgQBRNVwXNQyRxsiMGYau1ThvIq0iIFF6JgoiS6rF1xia0fvyP4fcV4ipgqsWMROSw2qQhVLr71qMUmQoh8NnwQ7Ux9LOuzfdQipR17L/vQHs1Y22lJwYUomCgKvrGxieNHHik2gr0MzCtLjvUYeyHTWO8cW8ml4EIUjBq4EAUTNcjmuyNkKlzcpSm8RyhCHquTw17tdUquSym4EAUz+jSZa8+dU6KFeD0hFvD4LBQaythKncNvTgouRMFESVXdu2vF+m74MAVyGKvloAp9yKHMfMi1vIOlqpLcQfJ7JH9I8hmSB8OYKISIjcsY/H8B3GBm50huB/Bdkv9mZo9Htk0sIMcodBs5bJTQRcqyjL1zbGcDty0f/tzs4/bZn/B+vRAiOE5RdJLbAJwA8McADpnZE23Xr66uvK7H7tNDxu7RprpXuwhHCMUea892X5yi6Gb2WzN7J4A9AK4hua9+DckDJNdJrp85+1poO4UQA+g1TWZmZwE8DODGBf/vsJmtmdnarosvCGWfEMKDThed5C4AvzazsyTfCOC9AP6xz0OGuusxaDpo3YXcV1iJ8EzFFW/CZQy+G8A9s3H4eQC+amZfj2uWECIELlH0/wJwZagHdk3zDNn7eQi+x7KmIrYH1Kfcp1RuQHfZTV2tF6FUVSEKJtmebPUxbL13bVOHED1tTuqTOi4BDCtTn3jGWLSVbYmKXUcKLkTBZLOrap8UzFSK4Rs5z0Gp65SmYi5lPPY7x/i9HnzwhNN1UnAhCibqrqqlUKJyl0ZTGaf0UHKITUjBhSiYbMbgOaEstfzJeU7bR7ldf3uHHnve6TopuBAFowYuRMFEcdFf2jgX1EUaK1ixTK75FJOFck9aGcM174sUXIiCmUSQrat3DqUkU9g/bJnIXbGBPKbC2pCCC1Ewk1DwLlx68z49bWgln9pOqF30Kcs+ZZjz1FdF7opdRwouRMFEOdmE5KS2VXbtlUMpek5KHnuDh6Yyy2mn3UXkvqBpbf/nsX7yp/4nmwghposUfAEuvXcINc9ByZvU0VfBusonh2WdUxtPzxPsbDIhxHRRAxeiYKK66ClcoLFTZEtx1UPgUhYpXfOu+gxl/xjIRRdCxFHwvbtW7K6brx703ZCJEcB4iyqWWcmnVmchU5FT1ZkUXAgx7VTVtp646lnrPXnO+3/ndIbb1BjLy2q7Z4511qngJC8l+TDJZ0k+Q/LOMQwTQvjTOQYnuRvAbjN7kuQKgBMAPmRmzzZ9x2cMXjFmWqirqqdQiRxVoWLIu4ZKUQ0REQ9NyLpy+U2amf8Y3Mx+ZmZPzv6+CeAkgLc62CiESEyvKDrJvQAeBbDPzF5tum7tikts/fgdwdUndqQ6xMYSYylHDsru866x7M9hs44h7zYkNhREwStI7gRwP4BPLmrcJA+QXCe5fubsa/0sFUJEwSmKTnI7thr3vWb2tUXXmNlhAIeBLQUHFvemPj13/buhe+spLT5wmUEQ45LjEliXKDoBHAVw0sw+G98kIUQoXFz0awHcCuAGkk/N/rw/sl1CiABESVWtgmxtxHYjQ6xHjvn8MZjKO4a0c+xyT7l4JmiQTQgxPbJNVfXdK0yBpuns5lpX3ZwDsTkG0tqQggtRMFGXi/osoPft/XKa8ko9Hp/KWLxO7p5HnbEU+9ht12u5qBAi8hjc54SQeQXOeYmnC7HHhSHJodympNy57/wqBReiYLKNoociB0Wqk+MppnUlmv+cU9k1MVY956DY+2+/Hocee97pflJwIQpGDVyIghllV9Wc9sv2WdNd4nRTyMMHfe2PcXxwaJc9tIveZF9XWerwQSHEOEG2+Z65qWdySausertUKYCh17cLN3JI+Yyt3LG8Nym4EAWT3TRZ7AUSLtMpfaax+thbV4G6DS6eTihyUMWK0r2gsU5ZWYQUXIiCGV3BXdWx7cSIEKeVhGaI59HmTYRIhslZGVNulDAWocfZ82W2sbHp9B0puBAFk/x88BxOpgw5vxt63/WQCh57Ce7U8h0qXLwvn3yB0F5YZYu2bBJiyYk6Bu8Tsa7wHacMmSvvsjNWVL3JjjZbciaHMb+P1xj6pNBYyt0HKbgQBaMGLkTBRA2ytTGWCxprgYJP4M3FphCBmlBBtrGHC8tYZ0OepyCbEEtOMgWvyFnJK0KlGla99JApl9hq4GLDWOSwhNW1rnynNn3qKoiCkzxG8jTJp52fLITIgk4FJ3kdgHMAvmBm+5xu2kPBK5ZBycca14VQ8ClO080TImYBNJfdEOX2nfqaf2awfdHN7FEAv3C2QgiRDcESXUgeAHBg6PfH2hXTZ9OIRd8JnRIp8iDkQpchyt3lLbruqhqsgZvZYQCHgWEuuhAiPNlt+DA16j1xn3TWpnss+n9jjYmHxBly8khCjb2bcImJ+MRAQi8x1Ty4EAXTqeAkvwzg3QBWSZ4CcJeZHW37zmWrO3HXzVdnfaaY79lnTcQ+taTP/UO9V04nsMSkrbxiKXfszRc7G7iZ3RL0iUKI0ZCLLkTBKMgWiCFDiz7BtrFZBrfcJbjWVZ9Dk1e0L7oQwpuoCp76JJKUhN7jPHbwcZlSU5uUu08ZhEpeGZLeCmhXVSEENAYHENbT8FHaPlN3Y56C0sUypOA2vaPv1Fqd0GUoBReiYEZR8FhJJaFJFTPwVcCuMWWf90ntDcRkSPkOqZuQyu27wEkKLkTBjD4GX8bIesj01bEXnyw7Xco9dBMQnwUpfa6VggtRMGrgQhRMFBd9dXUF+2+/vtW96XLVUx7js0zDiNJd/RRTd33Wzcf+jUnBhSiYqEE2lzWzdQVZ1KOlCiyVouQ5vUefxBAXcprW61LuUPu9K8gmhACQYJqsK3GgTW1CKHmfqYs2m4bY0Ge6LIbqphxvj+09xB57x5oCC11HUnAhCibZYhNXJQd+vwesfw7V6/WxKTUpZxlyINXYOwflPnbb9Tj44Amna6XgQhRM8uWiIZYahlazWMsf+6hODhFvV9rKKeR7pFhu2fXskOeNxUAKLkTBRFHwjY3N3hsStKlmn4jyFBdjxPYUpr4RQ6jxdoiNMStinDfWdf8hSMGFKBg1cCEKxslFJ3kjgLsBbANwxMz+oc9D+rjrObnqbbb0uX/qdEqXlOGuf09ByPXzoZ4d4niitvvX/79vfXQqOMltAA4B+EsA7wBwC8l3eD1VCDEKLgp+DYCfmNkLAEDyKwBuBvDskAc29Uh9emsfJQ99OOAUg3pA3juhhjgCeIhyx0picbl/LFzG4G8F8PLc51OzfxNCZA7NrP0C8sMAbjSz22efbwXwZ2b28dp1BwAcmH3cB+Dp8Ob2ZhXARmojZuRiSy52ALJlEa52XGZmu7oucnHRXwFw6dznPbN/ex1mdhjAYQAguW5maw73jkoudgD52JKLHYBsGcMOFxf9+wD+hOTlJN8A4CMA/jWUAUKIeHQquJn9huTHAfw7tqbJjpnZM9EtE0J44zQPbmbfAPCNHvc9PMyc4ORiB5CPLbnYAciWRQS1ozPIJoSYLkpVFaJggjZwkjeS/DHJn5D865D37mnHMZKnSSadqiN5KcmHST5L8hmSdya0ZQfJ75H84cyWg6lsmdmzjeQPSH49sR0vkvwRyadIrie25WKS95F8juRJkn/ufc9QLvospfV5AO/FVjLM9wHcYmaDMt48bbkOwDkAXzCzfWM/f86O3QB2m9mTJFcAnADwoURlQgAXmtk5ktsBfBfAnWb2+Ni2zOz5FIA1AG8ys5tS2DCz40UAa2aWfA6c5D0A/sPMjsxmrC4ws7M+9wyp4P+f0mpmvwJQpbSOjpk9CuAXKZ5ds+NnZvbk7O+bAE4iURagbXFu9nH77E+SAAzJPQA+AOBIiufnCMmLAFwH4CgAmNmvfBs3ELaBK6W1BZJ7AVwJ4ImENmwj+RSA0wC+ZWapbPkcgE8D+F2i589jAL5J8sQsGzMVlwM4A+D4bOhyhOSFvjdVkG0ESO4EcD+AT5rZq6nsMLPfmtk7sZWNeA3J0YcvJG8CcNrM3LYFjc+7zOwqbK2W/KvZ8C4F5wO4CsA/m9mVAP4HgHccK2QDd0ppXTZm4937AdxrZl9LbQ8AzFy/hwHcmODx1wL44Gzs+xUAN5D8YgI7AABm9srsv6cBPICtoWYKTgE4NedV3YetBu9FyAaulNYas8DWUQAnzeyziW3ZRfLi2d/fiK1g6HNj22FmnzGzPWa2F1u/kW+b2UfHtgMASF44C35i5g6/D4kWSZnZzwG8TPLts396DwYuyZ4n2KaLOaW0kvwygHcDWCV5CsBdZnY0gSnXArgVwI9mY18A+JtZZuDY7AZwz2y24zwAXzWzpFNUGfAWAA9s9cM4H8CXzOyhhPZ8AsC9M4F8AcB+3xsqk02IglGQTYiCUQMXomDUwIUoGDVwIQpGDVyIglEDF6Jg1MCFKBg1cCEK5v8A/OOsfIHX+8gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -51,7 +51,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF9tJREFUeJzt3X+QXXV9xvH347LWK2BWZeuQTTC0Y9PSBIlzS0djGWuqwQqapjPU37/+yHSqotaJA/4RkamGaaZiaa2dlB/aitpUQ6YINTqAWh1FNgQTBFKRYpONNKuyAXQrS/z0j3Mu2V12c8/Zveeec+59XjM7d+/Zu2c/d27y3O/9nO/5HkUEZmZWH08ruwAzM8vHwW1mVjMObjOzmnFwm5nVjIPbzKxmHNxmZjXj4LZKkfQ2Sd88wc8/JemvulmTWdU4uK0rJH1N0sOSfq3sWtpJ3zyOSXos/fpvSddJ+q0c+/AbjBXGwW2Fk7QC+AMggNeUWkx2346IU4AlwB8Bk8AeSavKLcvMwW3d8RbgO8CngLdO/4Gk50r6d0mPSPou8JsZ9vdsSTdJelTS7ZKe/B1JL5F0h6Sj6e1Lpv3sOenI+XA6+t/V7g9FxLGI+GFE/AXwdeCyafv7N0kPpX/rG5J+N92+CXgj8IF0xH5juv0SST9M675H0p9keK5mT+Hgtm54C3B9+rVe0vOm/ewTwP8BpwPvSL/aeR3wYeDZwP3ARyAJZuAm4CrgucDHgJskPTf9vX8Bngn8LvDrwJU5n8dOkk8OLf8BvCDd153p8yMitqff/3VEnBIRF6aP/2H6+0vS+j8j6fScNZg5uK1Ykl4KPB/YERF7SMLrDenPBoA/BbZExM8j4m7g0xl2e0NEfDciniAJyHPS7a8GfhAR/xIRT0TE54D7gAvTgHwV8OcR8XBETEXE13M+ncPAc1p3IuLaiHg0In5JMhJ/oaQl8/1yRPxbRByOiF9FxL8CPwDOzVmDmYPbCvdW4CsR8ZP0/mc53i4ZBk4CDk57/I9a30j64LQDhP847TEPTfv+F8Ap6fdLp//+tP2NAMuBn0XEw4t4LiPAz9LaBiRdkbY+HgEeTB9z2ny/LOktku6SNCFpAlh1osebzeeksguw3iWpAVwEDEhqhe2vAUOSXgjcDTxBEqr3pT8/o/X7EfFR4KM5/uRhktH9dGcAXyZ5c3iOpKGImMj7XFJ/Avxn+v0bgNeSHLh8kKT98TCg9Oczlt2U9Hzgn4B1JAc+j0m6a9rjzTLziNuKtAE4BpxF0s44B/gdkvB7S0QcI+kbXybpmZLOYtbBy5xuBn5L0hsknSTpz9K//aWI+DFJT/ofJD1b0qCk89rtMB1Znynp74CXkfSmAU4Ffgn8lKRvPvsN5n+B35h2/2SSMB9P9/t2khG3WW4ObivSW4HrIuJ/IuKh1hfw98AbJZ0EvIuk1fEQyayT6xb6xyLip8AFwPtJAvUDwAXT2jRvBqZIRvdHgPeeYHcvlvQY8AjwNeBZwO9FxP705/9M0oYZA+4hmTUz3TXAWWlbZFdE3AP8DfBtklBfDXxroc/V+pt8IQUzs3rxiNvMrGYc3GZmNePgNjOrGQe3mVnNFDKP+7TTTosVK1YUsWszs560Z8+en0TEcJbHFhLcK1asYHR0tIhdm5n1JEmzz/qdl1slZmY14+A2M6sZB7eZWc04uM3MasbBbWZWMw5uM7OacXCbmdWMg9vMrGYc3GZF27cDrlwFlw0lt/t2lF2R1ZwvXWZWpH074MaLYWoyuX/0YHIf4OyLyqvLas0jbrMi3XL58dBumZpMtpstkIPbrEhHD+XbbpaBg9usSEuW5dtuloGD26xI67bAYGPmtsFGst1sgRzcZkU6+yK48CpYshxQcnvhVdU/MOmZMJWWaVaJpCHgamAVEMA7IuLbRRZm1jPOvqj6QT2dZ8JUXtYR998CX46I3wZeCNxbXElmVirPhKm8tiNuSUuA84C3AUTE48DjxZZlZqXxTJjKyzLiPhMYB66TtFfS1ZJOnv0gSZskjUoaHR8f73ihfcu9Rus2z4SpvCzBfRLwIuCTEbEG+DlwyewHRcT2iGhGRHN4ONP1Lq2dVq/x6EEgjvcaHd5WJM+EqbwswX0IOBQRt6f3v0AS5FY09xqtDHWdCdNH2va4I+IhSQclrYyIA8A64J7iSzP3Gq00dZsJ02eyLjL1buB6SU8HHgDeXlxJ9qQly9I2yRzbre/s2jvGtt0HODwxydKhBpvXr2TDmpH8O9q3I/nUdvRQ8m9p3RaHdM1kCu6IuAtoFlyLzbZuy8z5tOBeY5/atXeMS3fuZ3LqGABjE5NcunM/QL7w9hztnuAzJ6vMvUZLbdt94MnQbpmcOsa23Qfy7cjHTXqC1+OuOvcaDTg8MZlr+7x83KQneMRtVgNLhxq5ts/Lc7R7goPbrAY2r19JY3BgxrbG4ACb16/MtyPP0e4JbpWY1UDrAOSiZ5W02m6eVVJrioiO77TZbMbo6GjH92tm1qsk7YmITLP33CoxM6sZt0qs0jp20olZD3FwW2V17KQTsx7jVolVVsdOOjHrMQ5uq6yOnXRi1mPcKuky92yzWzrUYGyOkM590gl4YSXrKR5xd1GrZzs2MUlwvGe7a+9Y2aVVUsdOOvEFKazHOLi7yD3bfDasGWHrxtWMDDUQMDLUYOvG1fk/oXhhJesxbpV0kXu2+W1YM7L4VpIXVrIe4xF3F3VsoSDLxwsrWY9xcHdRx3q2ls8LXplvu1nFuVXSRR1bKKhHdG2GzQ++km+7WcU5uLusIz3bHtDVsyLd47Ye41aJlaKrM2zc47Ye4+C2UnR1ho0vHmA9xsFtpejqDBtfdNl6TKYet6QHgUeBY8ATWRf7NpvP5vUrZ/S4oeAZNr7osvWQPAcn/zAiflJYJdZXPMPGbOE8q8RK4xk2ZguTtccdwFck7ZG0aa4HSNokaVTS6Pj4eOcqNDOzGbIG90sj4kXAq4B3Sjpv9gMiYntENCOiOTw83NEizczsuEzBHRFj6e0R4Abg3CKLMjOz+bUNbkknSzq19T3wSuDuogszM7O5ZTk4+TzgBkmtx382Ir5caFVmZfGVcqwG2gZ3RDwAvLALtZiVq3WlnNZFF1pXygGHt1WKpwOatZzoSjkZgtvXE7VucXCbtSxiFcGurnZofc9rlVh97NsBV66Cy4aS205f7HcRqwj26/VEd+0dY+0Vt3LmJTex9opbfeHrLnFwWz1040rti1hFsB+vJ9r6lDE2MUlw/FOGw7t4Dm6rh25cqX0Rqwj24/VE+/VTRhW4x2310K2r2CxwFcGur3ZYAf34KaMqPOK2eqj4VWw2rBlh68bVjAw1EDAy1GDrxtU9fWCyHz9lVIVH3FYP67bMnGMNx/vPFTlppt9WO+zHTxlV4eC2emgF8eyABp80UxKvqV4eRUTHd9psNmN0dHThO6jICMpq4MpV6UyTWZYsh/d5SR2rD0l7sl5drHojbp92bHl066ClWYVU7+BkN6Z9We+o+EFLsyJUL7g9grI8FnHSjFldVS+45x0pRTGnOVu9LeKkGbO6ql6Pe65pXy3ud9tcFnjSjFldVW/EPWMENQf3u82sz1UvuCEJ7/fdDWjun7vfbWZ9rJrB3eIZA2ZWZUUvNTyPage3ZwyYWVV1Y6nheVQ7uD1jwMyqqsRzTqo3q2Q2zxgwsyoq8ZyTzCNuSQOS9kr6UpEFmZnVQonH4PK0St4D3FtUIWZmtVLiMbhMwS1pGfBq4OpiyzEzq4kSj8Fl7XF/HPgAcGqBtZiZ1UtJx+DajrglXQAciYg9bR63SdKopNHx8fGOFWhmZjNlaZWsBV4j6UHg88DLJX1m9oMiYntENCOiOTw83OEyzcyspW1wR8SlEbEsIlYArwNujYg3FV6ZmZnNqdon4JiZ2VPkOgEnIr4GfK2QSszMLBOPuM3MasbBbWZWMw5uM7OacXCbmdWMg9vMrGYc3GZmNePgNjOrGQe3mVnNOLjNzGrGwW1mVjMObjOzmnFwm5nVjIMbYN8OuHIVXDaU3O7bUXZFZmbzyrU6YE/atwNuvBimJpP7Rw8m96GUSxKZmbXj4L7l8uOh3TI1mWwvKbh37R1j2+4DHJ6YZOlQg83rV7JhzUgptVj3+fW3dhzcRw/l216wXXvHuHTnfianjgEwNjHJpTv3A/g/bx/w629ZuMe9ZFm+7QXbtvvAk/9pWyanjrFt94FS6rHu8utvWTi4122BwcbMbYONZHsJDk9M5tpuvcWvv2Xh4D77IrjwKliyHFBye+FVpfW3lw41cm233uLX37JwcEMS0u+7Gy6bSG5LnE2yef1KGoMDM7Y1BgfYvH5lSRVZN/n1tyx8cLJiWgegPKugP/XK6++ZMcVSRHR8p81mM0ZHRzu+XzOrvtkzYyD51LB142qH9wlI2hMRzSyPbdsqkfQMSd+V9D1J35f04cWXaGa9yjNjipelVfJL4OUR8ZikQeCbkv4jIr5TcG1mVkOeGVO8tsEdSS/lsfTuYPrV+f6KmXVUWX3mpUMNxuYIac+M6ZxMs0okDUi6CzgCfDUibp/jMZskjUoaHR8f73SdZpZDq888NjFJcPwMzF17xwr/254ZU7xMwR0RxyLiHGAZcK6kVXM8ZntENCOiOTw83Ok6zSyHMvvMG9aMsHXjakaGGggYGWr4wGSH5ZoOGBETkm4DzgfuLqYkM1ussvvMG9aMOKgLlGVWybCkofT7BvAK4L6iCzOzhfMZmL0tS6vkdOA2SfuAO0h63F8qtiwzWwz3mXtbllkl+4A1XajFzDqkV87AtLn5lHezHuU+c+/yIlNmZjXj4DYzqxkHt5lZzTi4zcxqxsFtZlYzDm4zs5pxcJuZ1YyD28ysZhzcZmY14+A2M6sZB7eZWc04uA327YArV8FlQ8ntvh1lV2RmJ+BFpvrdvh1w48UwlS6wf/Rgch/g7IvKq8vM5uURd7+75fLjod0yNZlsN7NKcnD3u6MH8203s9I5uPudBvJtN7PSObj7XRzLt93MSufg7ndLlufbbmalc3D3u3VbYHDWlb8HG8l2M6skB3e/O/siuPCqdISt5PbCqzwV0KzCPI/bkpB2UJvVRtsRt6Tlkm6TdI+k70t6TzcK6xifFWhmPSbLiPsJ4P0RcaekU4E9kr4aEfcUXNvi+axAM+tBbUfcEfHjiLgz/f5R4F5gpOjCOsJnBZpZD8p1cFLSCmANcPscP9skaVTS6Pj4eGeqW6yjh/JtNzOrgczBLekU4IvAeyPikdk/j4jtEdGMiObw8HAna1y4Jcvybc/KffPq8mtjfSBTcEsaJAnt6yNiZ7EldVARc5RbffOjB4E43jd3QJTPr431iSyzSgRcA9wbER8rvqQOKmKOsvvm1eXXxvpEllkla4E3A/sl3ZVu+2BE3FxcWR3U6TnK7ptXl18b6xNtgzsivgmoC7XUw5Jlcy95uti+uS2eXxvrEz7lPS+v7VFdfm2sTzi48/LaHtXl18b6hCKi4zttNpsxOjra8f2amfUqSXsiopnlsR5xm5nVjIPbzKxmKrOs6669Y2zbfYDDE5MsHWqwef1KNqypx5IoZmbdVIng3rV3jEt37mdyKrnO4djEJJfu3A/g8DYzm6USrZJtuw88Gdotk1PH2Lb7QEkVmc3iNVCsQiox4j48MZlru1lXeV13q5hKjLiXDjVybS/brr1jrL3iVs685CbWXnEru/aOlV2SFclroFjFVCK4N69fSWNwYMa2xuAAm9evLKmi+bX68WMTkwTH+/EO7x7mNVCsYioR3BvWjLB142pGhhoIGBlqsHXj6koemHQ/vg8Vta672QJVoscNSXhXMahncz++D63bMrPHDV4DpQSeMnxcJUbcdVK3frx1gNdAKZ1blDNVZsRdF5vXr5wx5xyq24+3Dur0uu6Wy4lalP046nZw59T6R+KPbGbd4xblTA7uBahLP96sVywdajA2R0j3a4vSPW4zq7w6TRnuBge3mVXe7CnDQ41BnjH4NN73r3f15UlwDm4zq4UNa0b41iUv58o/O4dfPvErHv7FVN/OMHFwm1mt+CQ4B7eZ1YxnmGSYVSLpWuAC4EhErCq+JOt3PkPOTsQzTLKNuD8FnF9wHWaAz5Cz9jzDJENwR8Q3gJ91oRYz9y+trTotSleUjp2AI2kTsAngjDPO6NRurc+4f2lZ9PtJcB07OBkR2yOiGRHN4eHhTu3W+owX8TJrz7NKrFLcvzRrz2uVWKV4ES+z9rJMB/wc8DLgNEmHgA9FxDVFF2b9q9/7l2bttA3uiHh9Nwoxm4vndJs9lVslVlmtOd2t6YGtOd2Aw9v6mg9OWmV5TrfZ3BzcVlme0202Nwe3VZbndJvNzcFtleU53WZz88FJqyzP6Tabm4PbKs1zus2eysFtVmGex25zcXCbVZTnsdt8fHDSrKI8j93m4+A2qyjPY7f5OLjNKsrz2G0+Dm6zivI8dpuPD06aVZTnsdt8HNxmFeZ57DYXt0rMzGrGwW1mVjMObjOzmnGP28wqxaf5t+fgNrPK8Gn+2Ti4T8Dv/GbddaLT/P1/7zgH9zz8zm/WfT7NP5tMByclnS/pgKT7JV1SdFFV4AV+stm1d4y1V9zKmZfcxNorbmXX3rHO/oF9O+DKVXDZUHK7b0dn92+V4tP8s2kb3JIGgE8ArwLOAl4v6ayiCyub3/nba30qGZuYJDj+qaRj4b1vB9x4MRw9CERye+PFDu8e5tP8s8ky4j4XuD8iHoiIx4HPA68ttqzy+Z2/vcI/ldxyOUzNeqOcmky2W0/asGaErRtXMzLUQMDIUIOtG1e7PTlLlh73CHBw2v1DwO/PfpCkTcAmgDPOOKMjxZVp8/qVM3rc4Hf+2Qr/VHL0UL7t1hN8mn97HTsBJyK2R0QzIprDw8Od2m1p/M7fXuGfSpYsy7fdrE9kGXGPAcun3V+Wbut5fuc/scI/lazbkvS0p7dLBhvJdrM+liW47wBeIOlMksB+HfCGQquyWih82dGzL0pub7k8aY8sWZaEdmu7WZ9SRLR/kPTHwMeBAeDaiPjIiR7fbDZjdHS0MxWamfUBSXsiopnlsZlOwImIm4GbF1WVmZl1hFcHNDOrGQe3mVnNOLjNzGrGwW1mVjMObjOzmnFwm5nVjIPbzKxmMp2Ak3un0jjwowX++mnATzpYThnq/hzqXj/U/zm4/vJ1+zk8PyIyLfRUSHAvhqTRrGcPVVXdn0Pd64f6PwfXX74qPwe3SszMasbBbWZWM1UM7u1lF9ABdX8Oda8f6v8cXH/5KvscKtfjNjOzE6viiNvMzE7AwW1mVjOVCm5J50s6IOl+SZeUXU9ekq6VdETS3WXXshCSlku6TdI9kr4v6T1l15SHpGdI+q6k76X1f7jsmhZC0oCkvZK+VHYtCyHpQUn7Jd0lqXZXVJE0JOkLku6TdK+kF5dd02yV6XFLGgD+C3gFyZXk7wBeHxH3lFpYDpLOAx4D/jkiVpVdT16STgdOj4g7JZ0K7AE21OU1kCTg5Ih4TNIg8E3gPRHxnZJLy0XSXwJN4FkRcUHZ9eQl6UGgGRG1PAFH0qeB/4yIqyU9HXhmREyUXdd0VRpxnwvcHxEPRMTjwOeB15ZcUy4R8Q3gZ2XXsVAR8eOIuDP9/lHgXqA2V0uOxGPp3cH0qxojk4wkLQNeDVxddi39SNIS4DzgGoCIeLxqoQ3VCu4R4OC0+4eoUWj0GkkrgDXA7eVWkk/aZrgLOAJ8NSJqVT/JtV0/APyq7EIWIYCvSNojaVPZxeR0JjAOXJe2q66WdHLZRc1WpeC2ipB0CvBF4L0R8UjZ9eQREcci4hxgGXCupNq0rCRdAByJiD1l17JIL42IFwGvAt6ZthDr4iTgRcAnI2IN8HOgcsfbqhTcY8DyafeXpdusi9Le8BeB6yNiZ9n1LFT68fY24Pyya8lhLfCatEf8eeDlkj5Tbkn5RcRYensEuIGkDVoXh4BD0z6pfYEkyCulSsF9B/ACSWemBwReB/x7yTX1lfTg3jXAvRHxsbLryUvSsKSh9PsGyYHu+8qtKruIuDQilkXECpJ//7dGxJtKLisXSSenB7ZJWwyvBGozyyoiHgIOSlqZbloHVO7g/EllF9ASEU9IehewGxgAro2I75dcVi6SPge8DDhN0iHgQxFxTblV5bIWeDOwP+0TA3wwIm4usaY8Tgc+nc5QehqwIyJqOaWuxp4H3JCMATgJ+GxEfLncknJ7N3B9OoB8AHh7yfU8RWWmA5qZWTZVapWYmVkGDm4zs5pxcJuZ1YyD28ysZhzcZmY14+A2M6sZB7eZWc38P/YbJjAbl8BkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF2VJREFUeJzt3X1sXXd9x/HPB9fApQUbqIdaJyXdxKxBGgjyKkFYxcggIFoI3ZQxxsMepGjaoLChoJY/Sldta7dodOvGmLKW8lQespJGlAIBtUBhgoLTdE7XNhuwbolDFwN12jIP3PDdH+fcxg6277n2ufc8vV9SZPv4+vp7Xffj3/me3/n9HBECAFTHE4ouAADQHYIbACqG4AaAiiG4AaBiCG4AqBiCGwAqhuBGqdj+HdtfW+bzH7T9Z/2sCSgbght9YfvLth+y/aSia+kk/eNxwvaj6b//tH2D7V/s4jn4A4OeIbjRc7bXSfoVSSHpNYUWk93XI+IMSUOSfk3SrKT9ttcXWxZAcKM/3izpG5I+KOkt8z9h+5m2P237YdvflPQLGZ7v6bZvtf2I7TttP/41tl9s+1u2j6dvXzzvc89IR85H09H/3k7fKCJORMR3IuIPJX1F0hXznu+fbT+Yfq87bD8vPb5d0m9Lelc6Yr8lPX6p7e+kdd9r+3UZXivwMwhu9MObJd2Y/tti+1nzPvc+Sf8n6SxJv5f+6+T1kv5U0tMlfVvSn0tJMEu6VdK1kp4p6b2SbrX9zPTrPiLpKZKeJ+nnJF3T5evYo+TMoe1zkp6TPtdd6etTROxK3/+riDgjIi5KH/+d9OuH0vo/avusLmsACG70lu2XSHq2pN0RsV9JeL0h/dyApF+XdHlE/Cgi7pH0oQxPe3NEfDMiHlMSkC9Ij79a0n9ExEci4rGI+Lik+yVdlAbkqyT9QUQ8FBFzEfGVLl/OUUnPaH8QER+IiEci4sdKRuLPtz201BdHxD9HxNGI+GlEfFLSf0g6v8saAIIbPfcWSV+IiO+nH39MJ9slI5JOk3R43uP/q/2O7XfPu0D4j/Me8+C89/9X0hnp+2fP//p5zzcqaa2kH0bEQ6t4LaOSfpjWNmD76rT18bCkB9LHnLnUF9t+s+27bc/YnpG0frnHA0s5regCUF+2W5K2SRqw3Q7bJ0katv18SfdIekxJqN6ffv6c9tdHxF9I+osuvuVRJaP7+c6R9HklfxyeYXs4Ima6fS2p10n6avr+GyS9VsmFyweUtD8ekuT08wuW3bT9bEn/JGmzkgufJ2zfPe/xQGaMuNFLWyWdkPRcJe2MF0j6JSXh9+aIOKGkb3yF7afYfq5OuXjZpc9K+kXbb7B9mu3fTL/3ZyLie0p60v9g++m2B21f0OkJ05H1ubb/TtJLlfSmJempkn4s6QdK+uan/oH5H0k/P+/j05WE+XT6vL+rZMQNdI3gRi+9RdINEfHfEfFg+5+kv5f027ZPk/RWJa2OB5XMOrlhpd8sIn4g6UJJ71QSqO+SdOG8Ns2bJM0pGd0fk/SOZZ7uRbYflfSwpC9LepqkX46Ig+nnP6ykDTMl6V4ls2bmu17Sc9O2yN6IuFfSX0v6upJQP0/Sv6z0taLZzEYKAFAtjLgBoGIIbgCoGIIbACqG4AaAiunJPO4zzzwz1q1b14unBoBa2r9///cjYiTLY3sS3OvWrdPExEQvnhoAasn2qXf9LolWCQBUDMENABVDcANAxRDcAFAxBDcAVEym4LY9bPsm2/fbvs/2i3pdGABgcVmnA/6tpM9HxG/YfqKSZSwBAAXoGNzpVkwXSPodSYqIn0j6SW/LAgAsJUur5Fwli7/fYPuA7etsn37qg2xvtz1he2J6ejr3QrsyuVu6Zr10xXDydnJ3sfWgPPjdQA1kCe7TJL1Q0vsjYqOkH0m69NQHRcSuiBiPiPGRkUx3bfbG5G7plkuk44clRfL2lkv4HxT8bqA2sgT3EUlHIuLO9OOblAR5Od12pTQ3u/DY3GxyHM3G7wZqomNwp1tNHbY9lh7arGSrpnI6fqS742gOfjdQE1nncb9N0o22J5Vs+NrNztv9NbSmu+NoDn43UBOZgjsi7k771xsiYmtEPNTrwlZs8+XSYGvhscFWchzNxu8GaqIny7oWasO25O1tVyanwENrkv8x28fRXPxu9Nfk7lr/rPcemNLOfYd0dGZWZw+3tGPLmLZuHO3L9+7JLu/j4+PBetxAg7Vn8My/GDzYki66thbhvffAlC7bc1CzcyceP9YaHNBVF5+34vC2vT8ixrM8lrVKAOSv5jN4du47tCC0JWl27oR27jvUl+9PcAPIX81n8Bydme3qeN4IbgD5q/kMnrOHW10dzxvBDSB/NZ/Bs2PLmFqDAwuOtQYHtGPL2BJfka/6zSoBULyaz+BpX4BkVgkANBizSgCgxgjuorHMKIAu0eMu0qk3KbSXGZVq0wsEkD+Cu0jL3aRAcFdSkbdBozkI7iLV/CaFpjn1NuipmVldtuegJBHeyBU97iLV/CaFpin6Nmg0B8FdpJrfpNA0Rd8GjeYguIu0YVuyWtrQWklO3tZk9bQmKvo2aDQHPe6ibdhGUNfEji1jiy712a/boNEcBDeQk6Jvg0ZzENxAjrZuHCWo0XP0uAGgYghuAKgYghsAKobgBoCKIbgBoGIyzSqx/YCkRySdkPRY1sW+AQD562Y64K9GxPd7VgkAIBNaJQBQMVmDOyR9wfZ+29sXe4Dt7bYnbE9MT0/nVyEAYIGswf2SiHihpFdJ+iPbF5z6gIjYFRHjETE+MjKSa5EAgJMy9bgjYip9e8z2zZLOl3RHLwsD0GzsJrS0jiNu26fbfmr7fUmvkHRPrwsD0Fzt3YSmZmYVOrmb0N4DU0WXVgpZRtzPknSz7fbjPxYRn+9pVSgdRj/op+V2E+L3LkNwR8R3JT2/D7WgpNhLEf3GbkLLYzogOmIvRfQbuwktj+BGR1NLjHKWOg6s1o4tY2oNDiw4xm5CJ7GRAjoasHUiYtHjQC+wm9DyCG50tFhoL3ccyAO7CS2NVgk6Gl2ir7jUcQC9RXCjI/qNQLnQKkFH9BuBciG4kQn9RqA8aJUAQMUQ3ABQMQQ3AFQMwQ0AFUNwA0DFENx1NLlbuma9dMVw8nZyd9EVFacfPwt+3ugzpgPWzeRu6ZZLpLl0Aajjh5OPJWnDtuLqKkI/fhb8vFEARtx1c9uVJ0OkbW42Od40/fhZ8PNGAQjuujl+pLvjddaPnwU/bxSA4K6Ldp9VS6zYN7Smr+WUwlKvOc+fRT++B3AKgrsO2n3W44cX//xgS9p8eX9rKoPNlyevfb68fxb9+B7AKQjuOlisz9o2tFa66NpmXijbsC157UNrJbk3P4t+fA/gFI4eLIY/Pj4eExMTuT8vlnDFsBZvkVi6Yqbf1QBYAdv7I2I8y2MZcdcBfVagUQjuOqDPCjQKwV0H9FmBRsl856TtAUkTkqYi4sLelYQV2bCNoAYaopsR99sl3derQgAA2WQKbttrJL1a0nW9LQcA0EnWEfffSHqXpJ8u9QDb221P2J6Ynp7OpTgAwM/qGNy2L5R0LCL2L/e4iNgVEeMRMT4yMpJbgQCAhbKMuDdJeo3tByR9QtLLbH+0p1UBAJbUMbgj4rKIWBMR6yS9XtLtEfHGnlcGAFgU87iBOmJXnlrrageciPiypC/3pBIA+WBXntpj6zKgbpbbladmwb33wJR27jukozOzOnu4pR1bxrR142jRZfUcwQ3UTUN25dl7YEqX7Tmo2bkTkqSpmVldtuegJNU+vOlxA3XTkNUid+479Hhot83OndDOfYcKqqh/CO6a23tgSpuuvl3nXnqrNl19u/YemCq6JPRaQ1aLPDqz+OYhSx2vE4K7xtqnklMzswqdPJUkvGuuIatFnj3c6up4ndDjrrHlTiXr3gNsvAasFrljy9iCHrcktQYHtGPLWIFV9QfBXWNNPpVE/bUHH8wqQa2cPdzS1CIh3YRTSTTD1o2jjwd1e2rgH3/y7tqHOD3uGtuxZUytwYEFx5pyKolmadr1HIK7xrZuHNVVF5+n0eGWLGl0uKWrLj6vtqMQNFfTpgbSKqm5+aeSQF017XoOwQ3kqKm3YBetaddzaJUAOWlan7VMmnY9hxF3DTHqKwbz5ovTtKmBBHfNNHnhnaI1rc9aNk26nkOrpGaadnW917pZ66XJt2CjvwjummHUl59ue9ZN67OiOAR3zTDqy0+3Zy/Mm0e/0OOumSYvvJO3lZy9NKnPiuIw4q4ZRn354ewFZcWIu4YY9eWDsxeUFcENLKFpc4NRHQQ3sAzOXlBGBHdDcXclUF0dg9v2kyXdIelJ6eNvioj39Low9A53VwLVlmXE/WNJL4uIR20PSvqa7c9FxDfyLIQRYP+wpgZQbR2DOyJC0qPph4Ppv8izCEaA/cXdlUC1ZZrHbXvA9t2Sjkn6YkTcuchjttuesD0xPT3dVRGsr9FfzE8Gqi1TcEfEiYh4gaQ1ks63vX6Rx+yKiPGIGB8ZGemqCEaA/cWaGkC1dXXnZETMSPqSpFfmWUTtR4CTu6Vr1ktXDCdvJ3cXWg53VwLVlmVWyYikuYiYsd2S9HJJf5lnEbW+Q21yt3TLJdJcevZw/HDysSRt2FZYWcxPBqory4j7LElfsj0p6VtKetyfybOIWo8Ab7vyZGi3zc0mxwFgBbLMKpmUtLHXhdR2BHj8SHfHAaADVgfstaE13R0HgA4I7l7bfLk0eMpF1sFWchwAVoDg7rUN26SLrpWG1kpy8vaiawu9MAmg2lhkqh82bCOoAeSGETcAVAzBDQAVQ3ADQMVUK7hLdus4ABShOhcnS3rrOAD0W3VG3Nw6DgCSqhTc3DoOAJKqFNzcOo6suBaCmqtOcHPrOLJoXws5flhSnLwWQnijRqpzcbJ9AfK2K5P2yNCaJLS5MIn5lrsWwu8KeqTfm51XJ7glbh1HZ1wLQZ8Vsdl5OVsl9CixUlwLQZ8Vsdl5+YKbHiVWg2sh6LMiNjsvX3AzXxurwTK66LMiNjsvX4+bHiVWi2sh6KMiNjsvX3APrUnbJIscB4CSaV+AbPasks2XL1yTRKJHCaDU+r3Zefl63PQoAWBZ5RtxS/QoAWAZHYPb9lpJH5b0LEkhaVdE/G2vCwOqqN930KGZsoy4H5P0zoi4y/ZTJe23/cWIuLfHtQGVUsQddGimjj3uiPheRNyVvv+IpPskNfq3cO+BKW26+nade+mt2nT17dp7YKroklACRdxBh2bqqsdte52kjZLu7EUxVcCoCksp4g46NFPmWSW2z5D0KUnviIiHF/n8dtsTtiemp6fzrLFUGFVhKUXcQYdmyhTctgeVhPaNEbFnscdExK6IGI+I8ZGRkTxrLBVGVVjKji1jag0OLDjW6zvo0Ewdg9u2JV0v6b6IeG/vSyo3RlVYytaNo7rq4vM0OtySJY0Ot3TVxefRQkPusvS4N0l6k6SDtu9Oj707Ij7bu7LKq4h1CVAd/b6DDs3UMbgj4muS3IdaKqGIdQkAYL5y3jlZcoyqABSpfGuVAACWRXADQMUQ3ABQMQQ3AFQMwQ0AFUNwA0DFENwAUDEENwBUDMENABVDcANAxRDcAFAxBDcAVAzBDQAVQ3ADQMUQ3ABQMQQ30FSTu6Vr1ktXDCdvJ3cXXREyYiMFoIkmd0u3XCLNpZtcHz+cfCxJG7YVVxcyYcQNNNFtV54M7ba52eQ4So/gBpro+JHujqNUCG6giYbWdHccpUJwA020+XJpsLXw2GArOY7S4+IkSmPvgSnt3HdIR2dmdfZwSzu2jGnrxtGiy6qn9gXI265M2iNDa5LQ5sJkJRDcKIW9B6Z02Z6Dmp07IUmampnVZXsOShLh3SsbthHUFdWxVWL7A7aP2b6nHwWhmXbuO/R4aLfNzp3Qzn2HCqoIKK8sPe4PSnplj+tAwx2dme3qONBkHYM7Iu6Q9MM+1IIGO3u41dVxoMmYVYJS2LFlTK3BgQXHWoMD2rFlrKCKgPLK7eKk7e2StkvSOeeck9fToiHaFyCZVQJ05ojo/CB7naTPRMT6LE86Pj4eExMTq6sMKze5m2leQMXY3h8R41key3TAumHxIKD2skwH/Likr0sas33E9u/3viysGIsHoaxYRjY3HUfcEfFb/SgEOWHxIJQRZ4K5qtasEv5id8biQSgjzgRzVZ3gbv/FPn5YUpz8i014L8TiQSgjzgRzVZ3g5i92Nhu2SRddKw2tleTk7UXXruh0dO+BKW26+nade+mt2nT17dp7YCr/etEMnAnmqjqzSviLnV0Oiwex6BNytfnyhT1uiTPBVajOiLubv9j0wleNRZ+QqxzPBFGlEXfWv9hcvc4Fiz4hdywjm5vqjLiz/sWmF54LFn0Cyqs6I24p219seuG52LFlbEGPW2LRJ6AsqhXcWQytSacMLnIcmbHoE1Be9Qturl7nZuvGUYIaKKHq9Liz4uo1gJqr34hb4uo1gFqr34i7SZivDjRSPUfcTcB8daCxGHFXFfPVgcYiuKuK+epAYxHcp6pK35jV1oDGIrjnq9Ka36y7DTQWwT1flfrGzFcHGotZJfNVrW/MfHWgkRhxz0ffGEAFENzz0TcGUAG1b5XsPTCVfYW7dtvhtiuT9sjQmiS0aUcAKJFaB/eK9k2kbwyg5DK1Smy/0vYh29+2fWmvi8oL+ybmhx3fgfLoOOK2PSDpfZJeLumIpG/Z/nRE3Nvr4laLfRPzwY7vQLlkGXGfL+nbEfHdiPiJpE9Iem1vy8oH+ybmgzMXoFyyBPeopPl7gR1Jjy1ge7vtCdsT09PTedW3Kju2jKk1OLDgGPsmdo8zF6BccpsOGBG7ImI8IsZHRkbyetpV2bpxVFddfJ5Gh1uypNHhlq66+DxO77vEmQtQLllmlUxJWjvv4zXpsUpg38TVY8d3oFyyBPe3JD3H9rlKAvv1kt7Q06pQKuz4DpRLx+COiMdsv1XSPkkDkj4QEf/W88pQKpy5AOWR6QaciPispM/2uBYAQAasVQIAFUNwA0DFENwAUDEENwBUDMENABXjiMj/Se1pSf+1wi8/U9L3cyynCLyGcqj6a6h6/RKvoRvPjohMt533JLhXw/ZERIwXXcdq8BrKoeqvoer1S7yGXqFVAgAVQ3ADQMWUMbh3FV1ADngN5VD111D1+iVeQ0+UrscNAFheGUfcAIBlENwAUDGlCu6q7ibfZvsDto/ZvqfoWlbC9lrbX7J9r+1/s/32omvqlu0n2/6m7X9NX8OfFl3TStkesH3A9meKrmUlbD9g+6Dtu21PFF3PStgetn2T7ftt32f7RUXXJJWox53uJv/vmrebvKTfqsJu8m22L5D0qKQPR8T6ouvplu2zJJ0VEXfZfqqk/ZK2Vuy/gSWdHhGP2h6U9DVJb4+IbxRcWtds/4mkcUlPi4gLi66nW7YfkDQeEZW9Acf2hyR9NSKus/1ESU+JiJmi6yrTiLuyu8m3RcQdkn5YdB0rFRHfi4i70vcfkXSfFtkYuswi8Wj64WD6rxyjky7YXiPp1ZKuK7qWprI9JOkCSddLUkT8pAyhLZUruDPtJo/+sL1O0kZJdxZbSffSFsPdko5J+mJEVO41SPobSe+S9NOiC1mFkPQF2/ttby+6mBU4V9K0pBvSltV1tk8vuiipXMGNkrB9hqRPSXpHRDxcdD3diogTEfECJRtbn2+7Um0r2xdKOhYR+4uuZZVeEhEvlPQqSX+UthKr5DRJL5T0/ojYKOlHkkpx7a1MwV3p3eTrIu0Lf0rSjRGxp+h6ViM9rf2SpFcWXUuXNkl6Tdoj/oSkl9n+aLEldS8iptK3xyTdrKQdWiVHJB2Zd8Z2k5IgL1yZgvvx3eTTiwCvl/TpgmtqlPTC3vWS7ouI9xZdz0rYHrE9nL7fUnKx+/5iq+pORFwWEWsiYp2S/w9uj4g3FlxWV2yfnl7gVtpeeIWkSs22iogHJR22PZYe2iypFBfqM20W3A912E3e9sclvVTSmbaPSHpPRFxfbFVd2STpTZIOpj1iSXp3ull0VZwl6UPpLKUnSNodEZWcTldxz5J0czIW0GmSPhYRny+2pBV5m6Qb08HkdyX9bsH1SCrRdEAAQDZlapUAADIguAGgYghuAKgYghsAKobgBoCKIbgBoGIIbgComP8HxGg/2CnGMNMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -74,10 +74,11 @@ "training_dataset_size = 20\n", "testing_dataset_size = 10\n", "\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(training_size=training_dataset_size, \n", - " test_size=testing_dataset_size, \n", - " n=feature_dim, gap=0.3, PLOT_DATA=True)\n", - "\n", + "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", + " training_size=training_dataset_size, \n", + " test_size=testing_dataset_size, \n", + " n=feature_dim, gap=0.3, PLOT_DATA=True\n", + ")\n", "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", "print(class_to_label)" ] @@ -98,13 +99,13 @@ "outputs": [], "source": [ "params = {\n", - " 'problem': {'name': 'svm_classification'},\n", + " 'problem': {'name': 'classification'},\n", " 'algorithm': {\n", " 'name': 'SVM'\n", " }\n", "}\n", "\n", - "algo_input = SVMInput(training_input, test_input, datapoints[0])" + "algo_input = ClassificationInput(training_input, test_input, datapoints[0])" ] }, { @@ -132,7 +133,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl0VFXW9p8tMwFEJAIyiAIyD0IYBVEUBRsbbXBEBZrl0IriPGC/bdtot+IACq8Dfo2ArSCKCtLaoIigNlMIgwwigyggkCBDEAEZzvtHivVR2fvAvamkQrjPby1Wqh72rTo17FRq332eLc45EEKixymFvQBCSOHA5CckojD5CYkoTH5CIgqTn5CIwuQnJKIw+QmJKEx+QiJKQskvIt1EZJWIrBGRR/JrUYSQgkfy2uEnIsUAfAegK4CNABYAuN45t+IYx6g7a9WqVZ7uP68cOnxYaZt+yjJja1Q/Q2kHDh1SWubWn83jTymmf7dWPK2CGZtSqpTSsnbuMmP37dmntJrVq5ixibJy5WqlNWxYL+HbXbVqndLq1qttxmZt189D1cqnBb7d+vXPCbyuHXv2KO20lBQzdsWK75TWsNG5ge/Ll3s/Z+9W2sZ1a83YFuedF3f9h/XrsW3bNgly/8WDBHloA2CNc24dAIjIBAA9AXiT3yI9PT2BJYQne+9epT3215fN2KFD7lLaTzt3Km3ES2+bx5ctX1ZpPXt1MWPb1q2rtFcmf2LGrpyzUmkvPX2fGZsorVtfrrR58/9txp4igd5zAIALLrhGaVP+M8aMHfXOVKU91F8fDwCdO1+ntJlfjFeab62TFixQWq/Wrc3Yli0vVdrcefZrZnHg4EFTf3P6F0q77zr78c6dNy/ueru2bQPffyJ/9lcHsOGo6xtjGiGkCJDIJ38gRORWALcW9P0QQsKRSPJvAlDzqOs1YloczrlRAEYB9nd+QkjhkEjBrzhyCn4XIyfpFwC4wTm33HdMWlqay/0dXzzfvVZv2aK0dz78zIx9cMC1SquQYhfW9u3/1bc8xW/Gd7LixYopLcx33b2//Wbq1m34npuSxfXv7P0HDpixva66W2kTJw03Y1dv3aq05rVqmbEW7dpdobS5cz8KfHxB0afvY0p7fdRfzNiyRuH1h23bzNizKldW2t2PvGDGdrm6s9KuzIdi9ydLlsTf/w03YPXy5QVb8HPOHRSRgQCmASgGYPSxEp8QcmKR0Hd+59zHAD7Op7UQQpIIO/wIiShMfkIiCpOfkIhS4Of5j4dV1QeAelWrKs13ZuK9+fOVtnLj+oTWBSRe2bcoU7JkQsf7KFWihKlfcduVSrMq2gAw/fN5SmveT1f7D3teh1Hv2p2Shc24N4YobcmPP5qxLWvXVtpa4ywIYFf7n39qkBm7Z//+Y6ww73SsXz/uevnSpQMfy09+QiIKk5+QiMLkJySiMPkJiSiFXvDztexaxT1fu6sVO3KS3gYKAAN79Qi8Nqu4Z7XR+optFtZ+cQD4KH2h0q7t0N6Mte5vzIwvzNimDfRe9idGjDVjH7+rr6nnxlf0/HSWLrw2u7GmEZlcHnh8hNKGDbELcxZdGjcOHDtt6VJT79qkSeDbCEOpXK3eYcrR/OQnJKIw+QmJKEx+QiIKk5+QiMLkJySi5NnMIy9YZh6WYQYATMnIUFrvNm3MWOsswD6PaUaYyvz6LO3qWzs1NfDxJwJhzk50767d1j75ZJTSvly1yjz+/HO1c63PZCTRNmff+8YyOrFo0MA2uvz2W93i3LOnNkQBgMmTX1Ka5Q4NAKs2b1Zao+qJW17mvt1e3bph2ZIlgYr+/OQnJKIw+QmJKEx+QiIKk5+QiJJQe6+IrAewG8AhAAedc2lhb8Pnsmvtx/e17FrFvdKeglKYAmdqhfJKswo6xU4J/jt09z49agsAShreAQcP69FgAJBSSu/Z9hXABt47VGkjhz1kxg4efr+p56ZDPXtcV58bBytt/Fv/CHSbYQla2AOAHj3+pLS5GTMDHz9k5IOBY/9w1T2m3vWmrkpr1Dvxgt+shfHtxLt/1ROpfORHb/9Fzjnb25gQcsLCP/sJiSiJJr8DMF1EFsbGcilE5FYRSReR9CzjvDkhpHBINPk7OudaAugO4E4RuSB3gHNulHMuzTmXllrEGmQIOZlJKPmdc5tiPzMBfICcsd2EkCJAIrP6UgCc4pzbHbv8KYC/Oef+4zvmvJYt3ayvv47TKpQpk6f7zytWK/CzYyaasT26nq+0BmeeqTRfS2eYswBhsIw7+l18YYHcV8b69UpL8bj/1q9WTWmvfTTNjG3VWJ8x6NP9OjN21SptEuI781OnrjYP6d68uRmbKOnr1ikt7RxtngLYjsc+UxRrnmNmdrYZW6NSpbjrbdu0QXp6esHO6gNQBcAHsWQqDuDtYyU+IeTEIpFBnesAFMyvVEJIgcNTfYREFCY/IRElqfv5z6ha013bN779ccQzwVpK84vnxr6rtAf7XWPG/rhNNy5Wz1VgAYD3Fywwj+/coIHSTi1b1oy12lWzPEWeujV0UWlXdsE0WXbs2Etp02e8bcZaY8D27LfbmZs37qC0AQ/bbbS/795JabVT9agsAGjSQJ9w+v5721HXYsuuXUqreuqpZuw55+hvvWvWLjZjraJwCaOlGwDGzZqttLF/e92M/c/0MXHX27Vti4UBC3785CckojD5CYkoTH5CIgqTn5CIwuQnJKIktdrfslUr9/WcOXGarwW2uFEJ9bVDWi67lhEHAGz4ebvSfO2qtSrrinKiz1eYVuBf9+83Yx30GiyDj7D8d/VqpZU2nH7vuO4u8/i5cz9SmlW5BoCr27dTmu+5tc4ifLRIuzsDQK3T9Wt2btWqSpsw+2ulAUD/Sy5Smq+VuH+PS5S2ZZd9hmb4828qLcyZLt+Mx4cffTHu+gfv/C+ytm5itZ8Q4ofJT0hEYfITElGY/IRElKQW/Jq2aOE+nD49Tjvb4+5jFfd8o5+s8VNhCmvWXmvfGiw/AN+63p71ldKG3qUdbgFgxLu6fXP0ULuN9s0xTypt2caNZmyzmnp/+4FDtiuw1W6689dflVbR06IcBmsNvnbXMCPHrL3w23bvVlrN009PeF2WY/LOX+3CXOXy2qX6X7O/NGNv7qwMsczHAACVypWLu96mdevA+/n5yU9IRGHyExJRmPyERBQmPyER5bg2XiIyGkAPAJnOuSYxrRKAdwDUBrAewDXOuR3Hu63MrT9jxEvxRazhT9rjjSx8RR4LX+egVQj8ID3djO3dRu8ND1N8+vsoXbBbvNTueLP287d+9c9m7PC3P1DafX3+YMZa+ApYFnPXrFFat2bNAh/v445BTyvtpRfs/fxVU/VYq1277BkQny1fprQrzmsZeF1NGrVXmmUgCgD3P/ai0sJ07fVu19bU69RpobQb7xpkxj5xT//A95ebIJ/8YwB0y6U9AmCGc64egBmx64SQIsRxk985NxtA7ob4ngDGxi6PBXBlPq+LEFLA5PU7fxXn3ObY5S3IsfE2OXpc117POVBCSPJJuODncrqEvJ1CR4/rKlM2JdG7I4TkE3lN/q0iUg0AYj8z829JhJBkkNehHVMA9AXwdOzn5CAHnVLsFJQtn3hraCJYZwEsl10fVsuuVdUHgMG33qC0Fm0ambHWSKmpGYvM2Ot/1+VYS8xXUsvbvgiJ0n+QdkwuU7KkGTtg0P8Evt16VfTe/TDcMtg+42DRu9/lCd3XK+/aPgHjp09S2or1GxK6L4vjfvKLyHgAcwDUF5GNIjIAOUnfVURWA7gkdp0QUoQ47ie/c+56z39dnM9rIYQkEXb4ERJRmPyERJSk7udv2LSpG/NBfGtqs1q1zFir+OMzMTwtRZ9C3L3PHhNVvrQ2urT2ZQN2cbBpk45K87Xszli+XGmXt9CtmwCwYO1apf2+46Vm7IaN3yltvTFaDADqnHGG0sLs51+1ebPS6lerZh4fBmvfva/gZ70+Vjs0YI/bmm89ty3tll+r/dvXKm69x2atXGnGXmAUlbf/8osZaxnHrt261YytkmuUWOfzz8eijAzu5yeE+GHyExJRmPyERBQmPyERhclPSETJa3tvnkgpVQpt69aN03zOtxYfpS80dcvttGQIwwpf5djCctn1HW+17FpVfQBoXaeO0n72OLZa1ecG1bVLLwAcOKBHfj0y5GUz9vm/6jFcYSr7YSrlvsq+RZjXp2qu6jcA1PY4RFv41mthnTmyqvoAUKFMGaX5ngPLNbqeMXLMIsz6+clPSERh8hMSUZj8hEQUJj8hESWpBb+snbvwyuRP4rQBv+sa+PhrO2hnVR8HD9strKWgnXazsu2Z6inGXHhrhJbPZdfaj//A1TebsVZx73TPXvpdxgitnb/otlYfVmHPx7hZunXZKrAC4YpNG7fntoUEalSqZMZabbRWsQ0APjdaqsOsK0wr8Rqj5fabDfa++/b16ul1GYU9AKhotKtPmm87COcuMPpaty34yU9IRGHyExJRmPyERBQmPyERJYiH32gRyRSRZUdpfxWRTSKyOPYvMSdDQkjSCVLtHwNgJIBxufRhzrnnwtzZvj37sHJOvNlByZ7dAx8fZlZfSim7GjxmxhdKG3RVbzP2p6yNSntzzJNKs2bnAbbLrmXEAdgVaauqDwCnltUOyAVlyjJt9DSl9emkDU0A+zH4qs9N62gX48HDRpixzVvpltmLGtkuyE/cMURps2ZNMGMtvtuizUua1LBbp9s3aa20rKwfzdjDxutjtfECwOBnRilt8Sy7tf2af78adz3MHMa8jusihBRxEvnOP1BElsa+FpyWbysihCSFvCb/KwDqAGgBYDOA532BnNVHyIlJnpLfObfVOXfIOXcYwOsA9CD7/x/LWX2EnIAEcu8VkdoApjrnmsSuVzsypVdE7gXQ1jl33fFuJy0tzaWnp8dpvv38VnHPKtYBQL+LL1Saz5E3zN5wi6VG+2azmnZByGJtpj3W0NqP72vZtYqZ4ikeWa9vn76PmbFvjX3K1IMSZj9/Mlm9ZYvSgu6PD8ue/bZrtPWaWc8XkNhzlpaWhvT09EDuvcfNhNi4rgsBVBaRjQAeB3ChiLRAznTe9QBuy/NqCSGFQl7Hdf2zANZCCEkihf83GSGkUGDyExJRmPyERJSkmnlY9LrqblO/4rYrlda0wTlmrHXGYOC9Q83Y10fale6ghKnsW1iz8wDbZTcMvrM21lmAg56W2yU/6tbU5p5Ziha1atZX2qZNqwMfX1BYM/GsWYGA7aibmW2fdTmjgnYK/j4ry4w9vZw2ZqlWsaIZG4bca/O9thb85CckojD5CYkoTH5CIgqTn5CIUugFv4mThpt6WcM594kRY83YDndpZ9SRwx5KbGEerP3pYfZQ+/a3WyO0wrjs+lp2rQJQcc96E/UE+HbtNwkdX1CcfYYe1xVmXJhV2PNRv9qZph7mPRKG3GvzvbYW/OQnJKIw+QmJKEx+QiIKk5+QiMLkJySiFHq1f7Ux7wwApn8+T2mP39XXjO3e/ValDR5+vxnbqb5uQfXx39W6NbWDMXMtDL6qb5jKvoXPiMNq2Q3TCmzFzlmzxjy+rtG6XNrjuJxo9TuMEUaZkvrMUcuWl5rHZ2RMV1pqqt3SnZWljV02GTMIAeCt9/XtPnZbHzM2DEPfmBh3fcu2HYGP5Sc/IRGFyU9IRGHyExJRgozrqikiM0VkhYgsF5FBMb2SiHwqIqtjP+ndT0gR4rjuvSJSDUA151yGiJQHsBDAlQD6AdjunHtaRB4BcJpz7uFj3VZKyqmuUaPz47QFCz5OYPnhyVi/Xml332gXB1/6lx5HcI5R1JrrKYClltd7uMuVtseI1a9WTWnjZs02Y60RWok67/qwioDZe/easeWNx+ZzUb6q50ClvfD/HjdjrRblc43nCwBSymh7+L379Ngzn0NuVna20k43XkcA6Hj+H5Q27fPxZuwB43momGJb2aevW6e0KztdZsYu+TYj7nrXzp2xeNGiQO69QcZ1bXbOZcQu7wawEkB1AD0BHGm2H4ucXwiEkCJCqO/8Mf/+8wDMA1DliHc/gC0AquTrygghBUrg5BeRcgAmAbjHORf3t5HL+e5gfn84elzXwYO2dRIhJPkESn4RKYGcxH/LOfd+TN4aqwccqQuYo2iOHtdVvHjwbZSEkIIlyMQeQc6QjpXOuReO+q8pAPoCeDr2c/Lxbqthw3qYN//fgRYWZp75l6tWKc3XiZdi+ARMn/G2Gdulc2+lzZ37kdK6NWtmHp8oN3e+wNT7dOpYIPdnde5Zxb0KZcqYx1vF49vvtAuRH019RWm+0W3W3vsHnhhpxv6cvVNpVnHvyZf/ZR7/5ztuVNrI9/RrDgBfff2+0qzCHgBM/0Z7HfRq3dqMbVOnjtI2bPzOjH13XnwnbPY+e1yYRZD23vMB3ATgGxFZHNMGIyfpJ4rIAAA/ALgm8L0SQgqdIOO6vgLgO3Vwcf4uhxCSLNjhR0hEYfITElGY/IRElOO29+YnaWlpLj09PU5r1+4KM3bUu9rN9tNZ883Ye/voNss+Nw42Y8e/9Y/jLbNQsPan+1pQgx4P2CO0fC67+4wRVqkVKgReQ1A/gGQzYc4cpV3dtq0Zaz3nv+63R6lZDtM+r4N6VXQPXGVP23AYduzZE3e9S6dOWJSRkT/tvYSQkxMmPyERhclPSERh8hMSUQq94JcfWLPWfeOYXvtI74W/8dLOZuykubrA6Gu5TSaJjgwLc7thWnZHv6b341tFQMAuUK7essWMtbwOTjnFfrx79ul2ZOu9sHmnbgMGgGoVKypt56/aDwCw25x9Lehh3qMWVrs7oIu0HTt0QMbChSz4EUL8MPkJiShMfkIiCpOfkIjC5CckoiR1XNeqVetwwQXx2/5nz57oiQ5OmKppq8ba5KN54w5m7Dcr5irNqojfMehp8/j+g7TFwXlnnWXGWo9ho2f0U9M6jZS2Y4ddKQ+Ddcbgd7+7XWmWEYePMGO1pi1dasZO+3KB0g4esk0zOrTvqbS5c6cozarqA8CHCxcq7cpWrcxY64zD4cP6/QEApYyxZb4K/i13Pqm0WdM/MGO/Wx2/Xt/ZBgt+8hMSUZj8hEQUJj8hESWRcV1/FZFNIrI49u/ygl8uISS/SGRc1zUAfnHOPRf0zs5r2dLN/OqrOK1i2bKhF50I9eu3UVq/B+41YwfdrH0CrD3cVusmEK4QGYZnx7yrtAf7XV0g97Vq82al1Tr9dDPWerzW8QDww7ZtSrvM44Jsjev69qefzNjtufa3A0Cn+trTwEcY1+iZK1Yo7aJGuhgblszsXUrb+5vtbHxW5cpx19PS0pCenh6o6hfEwHMzgM2xy7tF5Mi4LkJIESaRcV0AMFBElorIaE7pJaRokci4rlcA1AHQAjl/GeiRtogf17XN+FOPEFI45Hlcl3Nuq3PukHPuMIDXAegv04gf11U51/cTQkjhEaTab47rOjKnL8ZVAJbl//IIIQVFIuO6rheRFsiZzrsewG3Hu6Gs7bsw6p2pcdpD/ZM75WvVKm3QsXzjRjPWquxb8+Sqptr1zwGD/kdpT//lDjO2ZHH9Uuz2zF1r3qqBqRcEVqU9zFkMy4gD8LXs2q2xxY22Y99ZqmUbNwRem0X5crrtd88eXX0HgG9X/6C0MNX+rOxsU7/p6vuUdu0DfczYP3btEvj+cpPIuK6P83yvhJBChx1+hEQUJj8hEYXJT0hEOSnce387qPd2WwU0ABg5aarS+ve4xIz93GjfvOK8liFXl/8UlHuvtffeand99El7P/9zjw9Ums9l19qPv3LTJjO2cY0aSvO5Alsjx6y99Nt/+cU8vlK5ckrzjesqbRQ+fa3AYd6jFr69/wdy3W6Hdu2wkO69hJBjweQnJKIw+QmJKEx+QiIKk5+QiJJ0997Ona+L02bNmpDw7YapmtapW1NpTRqYe5Lw4Sx9ZsAy7vhsub2toV6VqkqrmJJixlY99VSlfb58uRn7xB1DlJYfz6PlqFumZGml/Zxtz7mzsGbnAbbL7rNjnzVjrZZdq6oP2BV46yyGVdUHbCONMyro1wYAGjc6X2kZS74wY/eHqPZbJiE3XXqVGbvsu0Vx131nBSz4yU9IRGHyExJRmPyERBQmPyERJentvfMXxO/jvqnfn83YcW/ootYDj48wY4cNGaS0Hj3+ZMZODTFqyirubdu9W2k1PW62FlMyMky9dmqq0nZ4WlA7N2yotNVb7HFdVhvr2Wfo+wKAMiW1f0FZo4BmFQYBYMKcOUq7rn17M7agsApe1np93gFW7J79tq9CSildDK1Tp4UZ+8z4UUrr3cYuNFv4Cnm5308P3HQT1qxYwfZeQogfJj8hEYXJT0hECWLgWVpE5ovIkti4ridi+tkiMk9E1ojIOyJSMONpCCEFQpDWuP0AujjnfolZeH8lIp8AuA/AMOfcBBF5FcAA5Hj5H5Pc+51fH/UXM27Jjz8qzSrsAUCDBm2VNjdj5vGWclwmzP5aaf0vuSih2/x9y4LxA6hXVXcTAnbR0mfA2bLlpUrLyJiutCdf/pd5/KO336C0zTvtbsBqFbVRZhjC7Me3inuWKShgG4OeXdMe95WZqQ08Fy+fa8ZO+Hy2qQfF5xOQlbk97vrBA7qT0HubxwtwORx5pkvE/jkAXQC8F9PHImd+HyGkiBB0aEexmG13JoBPAawFsNM5d+TXzEZwfh8hRYpAyR+bzNMCQA3kTOYJbBx/9LiurKysPC6TEJLfhKr2O+d2ApgJoD2AiiJypGZQA4BpwHb0uK5Uo5GFEFI4BKn2p4pIxdjlMgC6AliJnF8CvWNhfQFMLqhFEkLyn+O294pIM+QU9Ioh55fFROfc30TkHAATAFQCsAjAjc452+Y0Rp2GDd3QcePitF6tW+d99fnEll32OCZrj73lnNukkd3CesvgB5V27029zFirrdRyfAWA77Zs1muooX0K8gNrpFRqhQoJ3+6HCxcqzXcmJMwIrTD78S0sV2BfjnyyZInSujdvHvi+fGcsbun7uNLu+futZmyn+vFnItLS0pCenh6ovTfIuK6lAM4z9HXwTOYlhJz4sMOPkIjC5CckojD5CYkohT6u64dt28zYtVu3Kq1L48ZmbM+edyttyEhdbAOAZjWDF8as0V4De/UIfPyJQJgCWGqqfm62Zuo265eN5wUA/niFbg/+zbNvvmLZsqYeFN8IrbKltCeBtR8/TMuubzSYlTtrjPctALzw7FilvfzcQ2ZsGO56+Pm46++MHY7MLRu4n58Q4ofJT0hEYfITElGY/IREFCY/IRElqdX+smUruAYN2sVplllEQZK+bp3SrrnEHoX0zcp5SitRTDdF3v/Yi+bxvftdrrSWZ59txpYvrZ1gfZXj9k10S3RWlq7K5wcdOujn5quv3zdjLcMJn+tsceN5nLHsGzP229W6An/b77uZsU0bd1Ta8hXalMVHmJbdMK3AYcZo3f+Xl5Q2/vXhZuxPm+Pfz21atw7c3stPfkIiCpOfkIjC5CckojD5CYkoSS34tUpLc3PnxRfRfMWy55/STr3Tli41Y62CzB+uuseMnTxZF1N8xZjvDdux8qV1+2iY/eJTFy0y9QsaaGe0GcuXm7FXpaUpzTdSynoM9audacZu2r5daaeXL6+0kh7n24wfdGGufd26ZmxBsf/AAaU1aqALpD6X3TCF17pVqijN1wr8p/ufUVqY9l7LRwIA7hscXwhkey8h5Lgw+QmJKEx+QiIKk5+QiJLIrL4xIvK9iCyO/bMHkxNCTkiCuPcKgJSjZ/UBGATgdgBTnXPvHfMGjsKq9v978WIz9sKGDZVWpkQJM3ZtZqbSPp+TYcbeYZhxHDp82IzNXUkFgBefvk9pvjlqFtl795p6hTJllOZzFT7DcM/1rcGaleebk/fUa28p7U99eipt5sqV5vGdjTMWKYa5BgCUMl7LMM+jz9l4n1Htn/6Nbhvesc2eIXjL5dqQ5I4HhpqxI5/VhjEDH3zWjH3l+YeVFuZMm+/xWs+jcy7f3HsdAGtWHyGkCJOnWX3OuSMf30+JyFIRGSYi5q/4o8d1beO4LkJOGPI0q09EmgB4FDkz+1ojZ3CH/rsG8eO6KnNcFyEnDHmd1dfNObc5Nr57P4A3wAEehBQpghT8UgEccM7tjM3qmw7gGQALnXObYwXBYQD2OeceOdZttWzVyn313//GaZbb6onMuFmzlda7XVsz9pV3tcttr8suMGOrV6qktJ179pix1rgsX9HSGgMWBqv1OUxhLj9ut6BGhllYI7QqlStnxib63Phaga3X0vf6lsjVap2v47oAVAMwVkSOntU3VUQ+j/1iEACLkVP9J4QUERKZ1delQFZECEkK7PAjJKIw+QmJKEx+QiJKkIJfvvFz9m68Of2LOO22Ky5L5hKw97fflPbuHNvY4ebOujJvaXXq2Nsaxk+fpLRalSubsVaVuGJKihk7+JlRSvv7w7easYliuR23qVMn4du95c4nlfaPp/XMRQC46WrdUj1t2j/N2JkrVijtokaNgq+r7+NKmzTpeSPSdtkdNkSb0PgIc4bm1Sn/MWMTyR9+8hMSUZj8hEQUJj8hEYXJT0hESap7b7FixVzp0vGtknv22HvWC4oftm1T2h+vvdeMfW/Kq0qzijQj/mlbGpzdVI/mOr+x3vMOAPWqVlXahDlzzNhxQ8Yo7eOPXzNjE+XMM7X77oaN35mxVqHK54x8br1WSpsx1x7dNmORdm3ud8lFZmytmvr5/XHDt0rzteF+uWqV0jrVr2/GVq2qX98Nm9aYsVae+dp7R3/8mdJu94wny+1W3L5tWyxcuJDuvYQQP0x+QiIKk5+QiMLkJySiMPkJiSiFPqvvs2XLzNiORoW1VHG7G9maRzdroT3Xb8DlXZXmq0jfea+er/bqi48qraDce3/ascOMrWq47/rWkJmtz6b4ZgsOfWOi0vr30lVm3wzBy5o1U5rvNStdsqTSwjyP1kw+ANhr6F8YbsNZmXouIQDc0l2/P+562G7vtZycBz3yghk7cugDSits915+8hMSUZj8hEQUJj8hEYXJT0hESWrBT0SyAPwQu1oZgO61LfrwcRU9TqbHdpZzLtCdKjCNAAACx0lEQVSAjKQmf9wdi6Q759IK5c4LED6uosfJ/NiOBf/sJySiMPkJiSiFmfzaiO7kgI+r6HEyPzYvhfadnxBSuPDPfkIiStKTX0S6icgqEVkjIscc7HmiIyKjRSRTRJYdpVUSkU9FZHXs52mFuca8ICI1RWSmiKwQkeUiMiimF+nHJiKlRWS+iCyJPa4nYvrZIjIv9p58R0T0xoOTkKQmf2zY5/8C6A6gEYDrRSS4qfqJxxgAuXe+PAJghnOuHoAZsetFjYMA7nfONQLQDsCdsdepqD+2/QC6OOeaA2gBoJuItEPO1Olhzrm6AHYAGFCIa0wayf7kbwNgjXNunXPuNwATAPRM8hryDefcbAC5t4f1BDA2dnksgCuTuqh8wDm32TmXEbu8G8BKANVRxB+by+HIDO4SsX8OQBcAR4wYi9zjyivJTv7qADYcdX1jTDuZqOKc2xy7vAVAlcJcTKKISG3kTGmeh5PgsYlIMRFZDCATwKcA1gLY6Zw7smf2ZHxPmrDgV4C4nFMpRfZ0ioiUAzAJwD3Oueyj/6+oPjbn3CHnXAsANZDzl6htpxwBkp38mwDUPOp6jZh2MrFVRKoBQOxnZiGvJ0+ISAnkJP5bzrn3Y/JJ8dgAwDm3E8BMAO0BVBSRI64jJ+N70iTZyb8AQL1YdbUkgOsATEnyGgqaKQD6xi73BTC5ENeSJyTHUP6fAFY65462pinSj01EUkWkYuxyGQBdkVPPmAmgdyysyD2uvJL0Jh8RuRzAcADFAIx2zj2V1AXkIyIyHsCFyNkVthXA4wA+BDARQC3k7GC8xjlne0adoIhIRwBfAvgGwJEpJYOR872/yD42EWmGnIJeMeR88E10zv1NRM5BTvG5EoBFAG50zu0vvJUmB3b4ERJRWPAjJKIw+QmJKEx+QiIKk5+QiMLkJySiMPkJiShMfkIiCpOfkIjyfxl1Tn4CZPYVAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4VFW2xdcGgsxDmCTMSBBpRIRSBocWWwXaBkSUFltF29eOiAoOPOehtbVF8Tk8bW1p7dc8FAWnfggOKAoqECDMAgEZwjzKJFM4748UfqnsdZJbqaSScPfv+/hIrexbdW5V7VSy7z5ri3MOhmGEjwqlvQDDMEoHS37DCCmW/IYRUiz5DSOkWPIbRkix5DeMkGLJbxghxZLfMEJKQskvIr1FZJmIZInIyOJalGEYJY8UtcNPRCoCWA7gQgDZAGYDGOycW1LAMerBunTpEvgxfSuVwPcALFmyXGnt27f1xC4jsScr7UhODj2+UsWKgdd1lLwOFST4mf20fz/Va1WrprTdntjKlSoprWrlykrzne+Bw4eVdtgTW5usK57zTZRFi/jb9JT27ZRWsQL/jNyyc5fSalSrSmOrkOdxwfyFNLZTp45UD8Lq1auxbdu2QE+kfrWDcyaALOfcKgAQkbcB9AfgTX5GRkZG4FjfGykljiTr1Ol8pc2c9TmNPZ3EZmR8pbQtu3+ix9evWUtpvjf4/oMHlVbthBNoLOPjeXOp3rvjaUqbsmABjW3VoIHS2qWlKW373j30+BWbNitt00/8ubno1FOVVrNKFRpbErRp05nq02bMUFqtqjyhXxj/kdJ6RDrQ2FOa6OexeVprGhtPTuQnEokEjk3k1/4mANbluZ0d1QzDKAck8skfCBG5AcANJf04hmHERyLJvx5Aszy3m0a1GJxzrwF4DeB/8xuGUTokUvCrhNyC32+Qm/SzAVzpnFvsOyYSibj8f8+I52/gW+9+Rml33T2ExrJaQPqJJ/qWkTS+y8pS2q+a8L+M2N+Vf5/MaxE3971YaYcP65pBvOz++WelsYJfPDWWeFicnU31ZvXqKc33d3iihVNWe3ngib/R2OceG6a0Q0eO0FhWTC0OftiwIeb2ZX36YNH8+SVb8HPOHRGRoQCmAKgIYExBiW8YRtkioR9HzrlJACYV01oMw0gi1uFnGCHFkt8wQoolv2GElBK/zl8YrKoPAC8/c7fS/vzILTT28b++obRnHh5KYxNtIY2nmty0bl2lfU+uAAC84+3KnufQ2M0vjSloiUWmBumwS2bL7WZPN2C9mjWV5qv2szbnutWrB14D66ps3bFV4ONLqqrv496bn4q5nb1mU+Bj7ZPfMEKKJb9hhBRLfsMIKZb8hhFSitzeWxS6RCLu+5kzY7T1O3bQ2DqkSOMr3LBzmPPjj3wNrYIXb9h21DVbtyptwfJV9PjbLh2gtMVr+boy16xRWr/OfNvphp07lda4Th0a++GcOUq7vGtXGvvQc7pw+uDt1ypt+9699PgTa9emelCuv+VxqqdUTlHazcOvpLHpjRop7YQUfbxvjz57ze+753kaO+ZvDytt4MARNPbd90YpLefoURrL2qfnr11LY9vnaxfv1rUr5mRkBKrS2ie/YYQUS37DCCmW/IYRUiz5DSOkWPIbRkhJarWfmXms2MTbEV999V2lPfvIbTSWGYIk87zigRlmAP52VQar9qeRVuLyRnEYtLIKuq+yHxRm8AHEZ7BaUtwy/OmY2++NfRFbNmdbtd8wDD+W/IYRUiz5DSOkWPIbRkhJaPOxiKwGsAdADoAjzrng40Ki+Fx22X58X8suK+75XIFZbDyOq+x+P5k/nx7fLDVVaZmrdRsvAOzdqVtmb+zbi8ay4p6vVfTuR15SGnOdBYJ7FawmLc4A0JJM/PHBHmvMJO5WPH3idKWtWJpJY6+7X79vMqfOU9oro4OPlmRjyABe8PMVdKuTWF8hctnGjUrr3/MSGrt4yXcxt2d9rQvlPorDeaCnc25bMdyPYRhJxH7tN4yQkmjyOwCfisic6FguhYjcICIZIpKx1fPromEYySfR5D/bOdcZQB8At4rIufkDnHOvOecizrlIgzj+JjQMo2RJKPmdc+uj/28B8D5yx3YbhlEOSGRWX3UAFZxze6JffwbgMefcZN8x1arVcm3bxl4QyMycWqTHLyrxtALf8YA2cXj+z3cozVdpT7StNB6YCQXADTYmzJ5NYy/soGfLsyq1j6zNm5W2ZfduGtsjPV1pyXy+OnY8j+ozMz5VGptXCAAvvfex0q65+AIay5yRrxh8L40d//ZfqR6ESCSCjIBmHolU+xsBeD+aTJUA/G9BiW8YRtkikUGdqwCcVoxrMQwjidilPsMIKZb8hhFSkr6ff+asWTFaSRV5Em3ZBXgh7zC53wxP2/FZbdsWtMQYPp43V2l9T+fuvYwnXv0X1Xv+Rjv1ntG6NY0Num/eN2LtnnuvU1o1T7HswnN1u2o8xd8l69dTPb+bLcDfC773XTzvx4Ok7beS5zlsknaS0lat+YHGppD3qM/lOn9LdTwFP/vkN4yQYslvGCHFkt8wQoolv2GEFEt+wwgpSa32V6tW07Vp0yVGW7Dgq8DHx9PC6oO17D73+O00llV+2fPFzBcAPj/P59K7c98+pflmEzLmrl5N9VPS0pT286FDNPb18f+ntBt+/zulHfRcSTmBVKl9sank3NiVGIAbf/hg5iOMB5/VcwkBoE8/tTcN3dq0obErSTvzxEnTaOyd1wxU2uDf8/beCROepXoQrNpvGEahWPIbRkix5DeMkGLJbxghpdTHdflgRZ7ZK1fS2K6kIBOPey9r0wSAE1JSAt3v+55zakWci5Z62lK3rNMWZ8MG9aOxDJ+nwG33jFLaf4+6J/B9sKIn27cPAG0aNSpoiTGw1/dvH/Ed4dMnfKO0pYv4cz70ae3Km/mFdvp94anhhS3xF7bt2UP1+jVrKm3X/v00lvki+Nqp2fPbqwd3cl6+IrYtvOuZZ1rBzzCMgrHkN4yQYslvGCHFkt8wQkqhNl4iMgbA7wBscc51iGqpAN4B0BLAagCDnHN6aHw+juTkYMvu2C69hrV4dx7r1FqwfBWNZQU/3wgtVtTy7cdnBR1W3BsQ4VPKPl24UGkDz+QGx/V76WLZsEHBByG9MlF35wHAV5M+UNrRZ+6msUs36GJkh6bNlHbNgJv4Y8UxKmpRdrbSLurehUQCrVrpPfpTP2xKY6+9oKfS9p7dXWn7Dx6kx1ch/gOs8Avw99Lo196hsd16am+Gto0b09jWDRsq7boRd9HYRPwwghz5JoDe+bSRAL5wzqUD+CJ62zCMckShye+c+xpAfhuR/gDein79FgA+RdAwjDJLUX9naOScO7abZRNybbwpecd1bd++vYgPZxhGcZNwwc/lds14O4XyjuuqV69eog9nGEYxUdTk3ywijQEg+v+W4luSYRjJoKhDOz4CMATAU9H/Pwz0YBUron7NWjHad1lZNLZp3bpKu+3SATT2Twf0Xvhmqak0llVHfS67u3/+WWkHSCswq+oDwEWnnqq0+WvX0tgvMmcpzdd2vHDdOqXdMlDvuweALp1OUZpvz/ukz75T2snXaD+AKVPH0eN9+/EZnVu2VNqAAXfS2AbNdJv0fz74HzR2H6nis1FZvueAeUZcdvEfaez06ROUtns7H0/W5zQ938bnU8DW9ofLL6Kx+b0Z4vI+KCxARMYB+A7AySKSLSLXIzfpLxSRFQAuiN42DKMcUeiPaufcYM+3flPMazEMI4lYh59hhBRLfsMIKYmM6C4S+YsZvyLjlQDge1IIXLyWt+Gywlzm6jU09ldNeVsog5ltsv34vpZdVtw7rXlzGsuKe74CGjsHXwGrQxzne891gwLFBR3rFS91G2rDUwCoVa+W0tj+eAD4dQ/tgfDpNF2YY63bADeDvf/lh2gsY9SjtwWO9b1mrGhXqQJ/zl95998xt7fu5Ca39PEDRxqGcVxhyW8YIcWS3zBCiiW/YYQUS37DCClJrfYfdU6ZKPjGV7HW2AmzZ9PYgWecobS9O/cGXtfH8+ZS/ey2JyuNuewyIw4gvpZdZhjhc1auSgwn/jntaxp782/7Km3fPl4Rzm+0AnCzlW7d9H0CwIxvA3V5AwDmkfFi9z3GTUJYO/M1g0bQ2JmzP1Ha+h35d6QDtatVo8ezKxm/bteOxrKq/LgZ39LYGtX0+9x3v6wd+Z5h2oUZAMaN/UvM7f8d/SSNY9gnv2GEFEt+wwgplvyGEVIs+Q0jpJT6uK6/T/6cxl7Z8xylpXjaXUuq3TRRWHHP5wTL8I0c+/Or/1La/Tf+IfjCPOw7eEBpmWt0i7LP/yBR4tnfXlKwluy0OrztuEEt3XZc2ucQiURsXJdhGAVjyW8YIcWS3zBCiiW/YYSUIB5+Y0Rki4gsyqM9IiLrRSQz+u+3JbtMwzCKmyDtvW8CeAnAP/Ppo51zvOcwDm7uezHVN780RmlXDexFY1m1P424/yYb1pbqMxNhLbusqg8AD9x0ldKKo9p/6EiO0iKtWiV8v0FZs023TgNAI9JiXM1j5pEoLerXV9pzr3K34seGX6+0Izn6OQTiczaOhw07Y0dkHvY8PqOo47oMwyjnJPI3/1ARWRD9s6D0P2YNw4iLoib/KwBOAtAJwEYAz/oC887q27qV/1pnGEbyKVLyO+c2O+dynHNHAbwOgDtYInZWX4MGevKKYRilQ5GqECLSOM+U3gEAFhUUf4yf9u9Xe+cPH9bjlXwcOnKE6qyYknP0KI3dumeP0t4Y9zGN7dP7bKUx991XJv4fPZ6N0PK1ebL9+L4iHtN9rcDfrlihtIqeWHZurB25b99b6PHnXHqefqwU3nr96f9MUtqUKW/QWNYyu428joDflTc/H8yZQ/VLunRRGivsAcD7+VrVAeD0Fi1o7C1DHlDaWf3PpbHs9WUO1YAubMfT6l5o8kfHdZ0HoL6IZAN4GMB5ItIJudN5VwO4MfAjGoZRJijquC7+I9owjHKDdfgZRkix5DeMkGLJbxghJalmHl0iEff9zJkxWjzVyXfzHXuMy7t2Vdrwh16gsc89NkxprCIO8MrtiPueV9pXkz6gx7/xUf6OaP/svBPraQdgn8su4zsy2xAAeqSnK833mu/av19pdYjL7VXX6so1APzzH48XtMQY1m7bpjRfBX/Wgh+U9uyI+2jswiX6PZJJDDq6tWlDj2dXY/Yc0CYnAFCTuOxOXrCAxqZWr64039xGdqWqR9c+NDYzc2rMbTPzMAyjUCz5DSOkWPIbRkix5DeMkJLUgl96+/Zu9NixMdrvTj89aY8P8JFf/Tp3prF7SEtlao0aSittx1YAmLVyJdXPPOkkpflagYO+F3xt1md176e07dvX09hps6cqrVm9eoEevzi44/7RVH/+iTsD30f16tpnwFek3blvn9Le/twzYq0/L+4FwQp+hmEUiiW/YYQUS37DCCmW/IYRUiz5DSOklIylqIfKlSqhVT43H59JQQ3SOvnIaO3oC3CzBV8F/sIOHZTmazF+fbw26bjr2suVtnQDr2hP+uw7pd1z3SAau2W3rhJX9zjUMpddX6soa9n1VfXZVYCvf9CttV1atqTHz56tDTriYdNPvFJeqYL+jKpN2o6B4O3iTz7EDUmGjXxOaVdc35fGssr+GWdwF3v23PQ9R7el+/CZ01Qkz01Q7JPfMEKKJb9hhBRLfsMIKUHGdTUTkS9FZImILBaR26N6qoh8JiIrov+bd79hlCMKbe8VkcYAGjvn5opITQBzAFwC4FoAO5xzT4nISAB1nXP3FnRfkUjEzZw1K0bzFeZY4cY3iigeTwBWOPEVTVhLZl2yL9sHW288a52xfDnV2Qgt5rIbL98sW6a0c9u1U1oyW8KTTefOFyltdsZkGsveN/sO8r3/1U/QBeySoFjbe51zG51zc6Nf7wGwFEATAP0BvBUNewu5PxAMwygnxPU3v4i0BHA6gJkAGuXx7t8EQFvRGIZRZgmc/CJSA8AEAHc453bn/Z7L/T2Q/i5o47oMo2wSKPlFJAW5iT/WOTcxKm+O1gOO1QW2sGNtXJdhlE2CTOwR5A7pWOqcy9v+9BGAIQCeiv7/YWH3dSQnB9v3xpo0NiSz131s37uX6ifW1vex2vNbBtszfuvdz9DYBx+4QWlZmzcr7ZoBN9Hjp0zVc919Bb9u3XQX2fff8zFiDN8Irdr1UpU25u+P0FjWuceKez4/gPU79CT3Cp5i6qjn/0dpT97Pn8d9B/VIt7GTv6SxQ8mItP3k+EOe4vHcuZ9Sna9LF/cWZ/Nuz2cfeE1pDz4zlMa2b6JNXsd+M53GXn3uOQUtsUCCtPeeBeBqAAtFJDOq3YfcpB8vItcDWAOA960ahlEmCTKuazoA36WD3xTvcgzDSBbW4WcYIcWS3zBCiiW/YYSUpLr3tuvQwb0xcWKMdlbbtkl7fABYtnGj0qp4WmNrVa2qNNbe63OzrVwpuF1CPG3HjL/+YzzVmf9A1zMvprFB9+Nv2LmT6k1S9ZWFlBTuSfDiBH1x6Ma+vQI9fnHw/Dg+Yu2OwcEbVVkrcMacKTR28vz5Slu3Tl85AhJ7Hsy91zCMQrHkN4yQYslvGCHFkt8wQkpSDTwP5+R4TRqTxZbdu5XWrnFjGnvQU8gri1RMCe4T4BuhFRRfyy4r7h0+rFtrAaB2/VoJrSFRNmRtSPg+Nm1aFTi2DikUz9uwLeE1JIJ98htGSLHkN4yQYslvGCHFkt8wQoolv2GElKS293bu0sVNmzEjRqtJxnIVBz5XYHa+XTpfQGNnZWhjh0rEjCNzzRp6fGfPWCtGxipdOY60bh34+F699MgyAPjbv55Smq9tmBmdMO569CWqp3dOV5qvqj+4Rw+lxfNeZGPIAKCOZ4xXfnZ4jGFSa9QIvIYVmzYpraXHrapmdf08LF77I409qWFDpTFDEgColm+km7X3GoZRKJb8hhFSLPkNI6QkMq7rERFZLyKZ0X98NrFhGGWSIO29RwCMyDuuS0Q+i35vtHNuVNAHqyCiCnyLs7Np7GbSBjz25YkkEnj1xfuUNmbS5zSW7ZXOzJxKYxmvfPiJ0i7q3oXGDhhwp9LqNqxDY+97TDvX+oqWa7ZpZ+IpU96gsfEUElnrNXNG9rnsxuNfcEUcrsBpaW2U9uE3fN/8sg3ar6FfRL8+vsIee84vHXAHjf3gg/9S2qLsdTT2wAE9+i0e5nmKyjXy5dPPhw4Fvs8gBp4bAWyMfr1HRI6N6zIMoxyTyLguABgqIgtEZIxN6TWM8kUi47peAXASgE7I/c3gWc9xNq7LMMogRR7X5Zzb7JzLcc4dBfA6gDPZsTauyzDKJkGq/XRc17E5fVEGAFhU/MszDKOkSGRc12AR6YTc6byrAdxYlAX4Wkrr1ayptJTK3GWXzb+bPpHPNovHGZVVfqdP+EZprVrx+meDZvo3nVr1eLvrwnW6StymEZ963ojMN/RdGZi14Ael+ar9lQK6BbPZeUB81X4Gq+oDwIYNWUr7NoN/1tRM1e8bZuDiayuvQK44dO+nW5F9HDh0OHCsD/ZazpiRSSKBP17WJ+Z2ShyvQSLjuoL5PBuGUSaxDj/DCCmW/IYRUiz5DSOkJHU/fyQScRkZGUU+fv7atVQ/rXlzpXXr1pfGfv/9x0pbsp672bZLS1NapIsuGF4wgI94uvmmy5RW/QQ+vuqaQSOUNnny32ksY9uePVTv2ukcpa1cyYtHh3NylMaKqS9N+Dc9fujA3xW0xBjYfvwssj8e4MW923/fn8au37FDaa//6yOlPXzbkMKW+Au+ltmqlSsrbeOuXTT2CHlufcVu5hNwchovKh89Gnu/tp/fMIxCseQ3jJBiyW8YIcWS3zBCiiW/YYSUpM7qY/jaUn8i1eB0T7trztGjSrvu/qGB19C+SXB7gqFPj1TatRf0pLGsDfbXPfrR2JmztUlIPNQn7dAAsHDJTKozWGWfEU9V3wdz2WVGHABv2WVVfQBokpqqtJlZuj04Hg4c5i27rNrfuA43a4mH5uQqwPKNfLbgtytWxNze62m9Ztgnv2GEFEt+wwgplvyGEVIs+Q0jpJR6wY/tnwaAutWrK40V9gA+fipz6jz+gGQ//6EjR2go25+e+YVujd17dnd6fH5nVQD4dNoEGssKWL7RT/GQSVqie6TrsVrxEHR0VLwwl12A78dnLbsAL+51baN9AuJpa2fvxXhhhW3fe//qq+9XWov2LWjsMw/dGnO7RhyvgX3yG0ZIseQ3jJBiyW8YISWIgWcVEZklIvOj47oejeqtRGSmiGSJyDsiojseDMMosxS6nz/q3lvdObc3auE9HcDtAIYDmOice1tEXgUw3zn3SkH3VaVKNde0absYLStrbiLrj5uOHc9T2jzPuK5HRv9DaY+PuF5pxVEAC7qX3scHc+ZQvV/nzkob/sDzNPbJh25RGjsHthcfAN788FOlbcjinWkj77xGab4RWiWBbzQY23fPCsoA0KfPDUobN4E/t6y41z69E43Nzl5G9SAU635+l8ve6M2U6D8H4HwA70X1twBwRwvDMMokQYd2VIzadm8B8BmAlQB2OeeOXSPLhs3vM4xyRaDkj07m6QSgKXIn87Qr5JBfyDuuKyeHX083DCP5xFXtd87tAvAlgO4A6ojIsS6YpgCoEV7ecV0VK5Z6T5FhGFGCVPsbiEid6NdVAVwIYClyfwgcc6gcAuDDklqkYRjFT5Bqf0fkFvQqIveHxXjn3GMi0hrA2wBSAcwDcJVzrsDNxKd37uymzZgRo/lGRLEq86affqKxJ9bW46t8MCdWti8b0HulAd4a6/MkYG2p8azV51bcon59pbH98fEybORzSpv+6WSlzZ2rq/rFge959LXBJoKvVbwSucLCvCUAoFbVqkqbsXw5jT2rbVulxdNWHpR4qv1BxnUtAHA60VfBM5nXMIyyj3X4GUZIseQ3jJBiyW8YISWp194qVqigiiTDH3qBxrbu2Eppcz/jrcAvvaBNNX2mi/G0kHYj+8DZWKwTUlLo8Zdd/Eel3f/yQzT21+1060SaxwzyuVfHKe2x4brtGAD2HDigNN9s+iuu1yPORj95B40tCS4dwB+re78eSht21QAay153th/f17LLinu1PcVUViyv4LlfRjyFPd/IsB+3bo257XvfM+yT3zBCiiW/YYQUS37DCCmW/IYRUiz5DSOkFNreW5w0P6mNu+svsS2kwwbx8VUlxUvvfay0P/XvTWPXbt+utPQTT1RaPK7CPuJxd2W8n5FB9QGRiNKqV+ctxvv28fZpFXdQX0EAgHO669dy06ZVNHba3OlKY89tScGMOADgk09eC3wfzBDE915grd5Pj3qTxo5+/PbAa8hPsZp5GIZxfGLJbxghxZLfMEKKJb9hhJSktvfWqFYVPSIdYrR49jQPHDiCxk6Y8KzSdv/8M4295uILlMb2cAPAxEnTlHbjFaQF9rV36PG7t+siz6hHb6Ox42Z8q7Qrzz6LxjKH2dNb8HFOkxcsUJqvsHfGGb9V2lfTJyptcTY1bULGnClUZ7DC2KLsdTT2wCHdstokNZXGNva0ROfH57LL9uP7WnbZOfiKvAdJ2+21f+Ityowtu/lr1rBWcH+I/Ngnv2GEFEt+wwgplvyGEVIs+Q0jpCQyq+9NEflRRDKj//jsIcMwyiRBqv0HAZyfd1afiHwS/d7dzrn3Cjg2hiqVK+OUJmkxWjyGBu++NypwbHXPnDzWkpnWuDWNXZut3XvZ8d166nl4ANDntNMKWmIMNappJ1hfey97zm4Z8gCNfeTFe5S2c98+Gjt79qSClvgLzz7AW2CH3DtYaXWIkQYAnH+q/qw4cICvi7GOtF77iKd1mrns+mBu0qyqD3DDl7XbtgV+LEHxOxgHce91ANisPsMwyjFFmtXnnJsZ/dYTIrJAREaLCP2ozTuua1s+yyHDMEqPIs3qE5EOAP4TuTP7zkDu4I57Pcf+Mq6rfoMGxbRswzASpaiz+no75zZGx3cfBPAP2AAPwyhXFPo3v4g0AHDYObcrz6y+p0WksXNuo+RWwC4BsKiw+1owfyGap8UW17Zv3xB4sb690hVIe66vzXLQFboAtmrNDzR28O/1LzOslbht48b0+HgKTcy9Nx7O6n8u1U9r3lxpYyZ9TmP7ntNVaU1JG+2Dzwylx8+Yt0Rp8zbwotbitT9SPSjN6tULHMue8/bp/OLUqtWLleYrSrP9+L6WXVbca07GrgHcFbhBrVo0NhGClNobA3hLRPLO6vu3iEyN/mAQAJkAbir21RmGUWIkMqvv/BJZkWEYScE6/AwjpFjyG0ZIseQ3jJCSVPfeSCTiMjwus8XNso0bqX4yqcwfJuYYAJBCriJkbd6stNYNG9LjWZWZXQEA+JUM9vjxsv/gQaVV87Q+B8V3DvG4DSf6eCvJ6wAAzclVgKuvvl9p49/+a+ILKyFYC/middzo5FdNm8bcNvdewzAKxZLfMEKKJb9hhBRLfsMIKUl1702U+WvXUp21sPbveQmN/eGHmUpbv2MHjW1JNiL16tFLadeNuIse/4fLL1JapQq8iHfPMO1VMG7sX2gsw+dWfG73i5WWmTmVxgZ1ox37jR61BQBXn3tOQUuMgRUi561ZQ2NnzMhU2sjrtXcAACzfqNvFW7TnzsZB+fnQIapXrVxZaT6XXbYf39eyy4p7HZo1o7GJFOztk98wQoolv2GEFEt+wwgplvyGEVIs+Q0jpJR6e+8PG7iZx703P6W09yaOprG3360r5S+OupvG+kw+ghLPfDZWJX7l3X/T2OF/uDTwGjbs3Km0tLp1Ax9fVvFdzWlCzq1+zZo09tsV2nG5R3p6Qutasp7PJmzfpElC91scsFZg55y19xqG4ceS3zBCiiW/YYQUS37DCClJLfiJyFYAx3o46wMIPq+o/GDnVf44ns6thXMu0ICMpCZ/zAOLZDjnIqXy4CWInVf543g+t4KwX/sNI6RY8htGSCnN5Odznss/dl7lj+P53LyU2t/8hmGULvZrv2GElKQnv4j0FpFlIpIlIiOT/fjFiYiMEZEtIrIoj5YqIp+JyIro/+Wu6V5EmonIlyKyRET6HIuhAAACVUlEQVQWi8jtUb1cn5uIVBGRWSIyP3pej0b1ViIyM/qefEdEtEXPcUhSkz867PNlAH0AtAcwWETaJ3MNxcybAHrn00YC+MI5lw7gi+jt8sYRACOcc+0BdANwa/R1Ku/ndhDA+c650wB0AtBbRLoBeBrAaOdcGwA7AVxfimtMGsn+5D8TQJZzbpVz7hCAtwH0T/Iaig3n3NcA8hsA9gfwVvTrt5A7vrxc4Zzb6JybG/16D4ClAJqgnJ+by2Vv9GZK9J8DcD6A96J6uTuvopLs5G8CIK87YXZUO55o5Jw7Ni5oE4BGpbmYRBGRlsid0jwTx8G5iUhFEckEsAXAZwBWAtjlnDsSDTke35MUK/iVIC73Ukq5vZwiIjUATABwh3Nud97vlddzc87lOOc6AWiK3N9E25XykkqNZCf/egB5PYibRrXjic0i0hgAov9vKeX1FAkRSUFu4o91zk2MysfFuQGAc24XgC8BdAdQR0SO2dgfj+9JSrKTfzaA9Gh1tTKAKwB8lOQ1lDQfARgS/XoIgA9LcS1FQnLtYd4AsNQ591yeb5XrcxORBiJSJ/p1VQAXIree8SWAy6Jh5e68ikrSm3xE5LcAngdQEcAY59wTSV1AMSIi4wCch9xdYZsBPAzgAwDjATRH7g7GQc45PhWkjCIiZwP4BsBCAMd8y+5D7t/95fbcRKQjcgt6FZH7wTfeOfeYiLRGbvE5FcA8AFc55/RUkeMM6/AzjJBiBT/DCCmW/IYRUiz5DSOkWPIbRkix5DeMkGLJbxghxZLfMEKKJb9hhJT/B9AREC/lM5RbAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -146,8 +147,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "testing success ratio: 0.7\n", - "predicted classes: ['A', 'B', 'A', 'A', 'A', 'B', 'B', 'A', 'A', 'A', 'B', 'B', 'B', 'A', 'B', 'A', 'A', 'B', 'B', 'B']\n" + "testing success ratio: 0.6\n", + "predicted classes: ['A', 'B', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'B', 'A', 'A', 'A', 'B', 'B', 'B', 'A', 'B', 'B', 'A']\n" ] } ], @@ -155,7 +156,7 @@ "result = run_algorithm(params, algo_input)\n", "print(\"kernel matrix during the training:\")\n", "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", + "img = plt.imshow(np.asmatrix(kernel_matrix), interpolation='nearest', origin='upper', cmap='bone_r')\n", "plt.show()\n", "\n", "print(\"testing success ratio: \", result['testing_accuracy'])\n", @@ -196,7 +197,9 @@ } ], "source": [ - "sample_Total, training_input, test_input, class_labels = Breast_cancer(training_size=20, test_size=10, n=2, PLOT_DATA=True)\n", + "sample_Total, training_input, test_input, class_labels = Breast_cancer(\n", + " training_size=20, test_size=10, n=2, PLOT_DATA=True\n", + ")\n", "# n =2 is the dimension of each data point\n", "\n", "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", @@ -239,7 +242,7 @@ } ], "source": [ - "algo_input = SVMInput(training_input, test_input, datapoints[0])\n", + "algo_input = ClassificationInput(training_input, test_input, datapoints[0])\n", "result = run_algorithm(params, algo_input)\n", "# print(result)\n", "print(\"kernel matrix during the training:\")\n", @@ -270,7 +273,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb b/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb index 717ea81e1..1a5cb2b7a 100644 --- a/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb +++ b/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb @@ -25,7 +25,7 @@ "source": [ "from datasets import *\n", "from qiskit.aqua.utils import split_dataset_to_data_and_labels\n", - "from qiskit.aqua.input import SVMInput\n", + "from qiskit.aqua.input import ClassificationInput\n", "from qiskit.aqua import run_algorithm\n", "import numpy as np" ] @@ -106,14 +106,14 @@ ], "source": [ "aqua_dict = {\n", - " 'problem': {'name': 'svm_classification'},\n", + " 'problem': {'name': 'classification'},\n", " 'algorithm': {\n", " 'name': 'SVM'\n", " },\n", " 'multiclass_extension': {'name': 'OneAgainstRest'}\n", "}\n", "\n", - "algo_input = SVMInput(training_input, test_input, total_array)\n", + "algo_input = ClassificationInput(training_input, test_input, total_array)\n", "\n", "extensions = [\n", " {'name': 'OneAgainstRest'},\n", @@ -146,7 +146,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/artificial_intelligence/vqc.ipynb b/community/aqua/artificial_intelligence/vqc.ipynb index b2a569dcd..aa8929e6e 100644 --- a/community/aqua/artificial_intelligence/vqc.ipynb +++ b/community/aqua/artificial_intelligence/vqc.ipynb @@ -21,7 +21,7 @@ "metadata": {}, "source": [ "### Part I: declarative approach.\n", - "In the declarative approach, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " + "In the declarative approach, we config a json-like configuration, which defines how the vqc instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the vqc instance) and the processed results. " ] }, { @@ -106,7 +106,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we create the svm in the declarative approach.\n", + "Now we create the vqc in the declarative approach.\n", "In the following json, we config:\n", "- the algorithm name \n", "- the variational form\n", @@ -129,7 +129,7 @@ " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2}\n", "}\n", "\n", - "svm_input = ClassificationInput(training_input, test_input, datapoints[0])\n", + "classification_input = ClassificationInput(training_input, test_input, datapoints[0])\n", "backend = BasicAer.get_backend('qasm_simulator')" ] }, @@ -159,7 +159,7 @@ } ], "source": [ - "result = run_algorithm(params, svm_input, backend=backend)\n", + "result = run_algorithm(params, classification_input, backend=backend)\n", "print(\"testing success ratio: \", result['testing_accuracy'])\n", "print(\"predicted classes:\", result['predicted_classes'])" ] @@ -169,18 +169,18 @@ "metadata": {}, "source": [ "### Part II: programmatic approach.\n", - "We construct the svm instance directly from the classes. The programmatic approach offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. " + "We construct the vqc instance directly from the classes. The programmatic approach offers the users better accessibility, e.g., the users can access the internal state of vqc instance or invoke the methods of the instance. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Now we create the svm in the programmatic approach.\n", - "- we build the optimizer instance (required by the svm instance) by instantiating the class SPSA.\n", - "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion.\n", - "- We build the varitional form instance (required by the svm instance) by instantiating the class RYRZ.\n", - "- We build the svm instance by instantiating the class VQC. \n" + "Now we create the vqc in the programmatic approach.\n", + "- we build the optimizer instance (required by the vqc instance) by instantiating the class SPSA.\n", + "- We build the feature map instance (required by the vqc instance) by instantiating the class SecondOrderExpansion.\n", + "- We build the varitional form instance (required by the vqc instance) by instantiating the class RYRZ.\n", + "- We build the vqc instance by instantiating the class VQC. \n" ] }, { @@ -194,7 +194,7 @@ "optimizer.set_options(save_steps=1)\n", "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2)\n", "var_form = RYRZ(num_qubits=feature_dim, depth=3)\n", - "svm = VQC(optimizer, feature_map, var_form, training_input, test_input)\n", + "vqc = VQC(optimizer, feature_map, var_form, training_input, test_input)\n", "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)" ] }, @@ -219,7 +219,7 @@ } ], "source": [ - "result = svm.run(quantum_instance)\n", + "result = vqc.run(quantum_instance)\n", "print(\"testing success ratio: \", result['testing_accuracy'])" ] }, @@ -227,7 +227,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Different from the declarative approach, the programmatic approach allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", + "Different from the declarative approach, the programmatic approach allows the users to invoke APIs upon the vqc instance directly. In the following, we invoke the API \"predict\" upon the trained vqc instance to predict the labels for the newly provided data input.\n", "\n", "Use the trained model to evaluate data directly, and we store a label_to_class and class_to_label for helping converting between label and class name" ] @@ -246,8 +246,8 @@ } ], "source": [ - "predicted_probs, predicted_labels = svm.predict(datapoints[0])\n", - "predicted_classes = map_label_to_class_name(predicted_labels, svm.label_to_class)\n", + "predicted_probs, predicted_labels = vqc.predict(datapoints[0])\n", + "predicted_classes = map_label_to_class_name(predicted_labels, vqc.label_to_class)\n", "print(\"prediction: {}\".format(predicted_labels))" ] } diff --git a/community/aqua/index.ipynb b/community/aqua/index.ipynb index 4f74d1ecd..415db6024 100644 --- a/community/aqua/index.ipynb +++ b/community/aqua/index.ipynb @@ -60,8 +60,8 @@ "\n", "Qiskit Aqua Artificial Intelligence is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve artificial intelligence problems. \n", "\n", - "* [Quantum SVM kernel algorithm: multiclass classifier extension](artificial_intelligence/qsvm_kernel_multiclass.ipynb)\n", - "* [Quantum SVM (variational method)](artificial_intelligence/qsvm_variational.ipynb)\n", + "* [Quantum SVM algorithm: multiclass classifier extension](artificial_intelligence/qsvm_multiclass.ipynb)\n", + "* [Variational Quantum Classifier (vqc)](artificial_intelligence/vqc.ipynb)\n", "\n", "The repository here may be viewed for the\n", "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/artificial_intelligence).\n", @@ -116,7 +116,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_02-checkpoint.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_02-checkpoint.ipynb new file mode 100644 index 000000000..3b9c29e80 --- /dev/null +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_02-checkpoint.ipynb @@ -0,0 +1,338 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Experiment with classification problem with quantum-enhanced support vector machines*_\n", + "\n", + "This notebook is based on an official notebook by Qiskit team, available at https://github.com/qiskit/qiskit-tutorial under the [Apache License 2.0](https://github.com/Qiskit/qiskit-tutorial/blob/master/LICENSE) license. \n", + "The original notebook was developed by Vojtech Havlicek[1], Kristan Temme[1], Antonio Córcoles[1], Peng Liu[1], Richard Chen[1], Marco Pistoia[1] and Jay Gambetta[1] ([1]IBMQ)\n", + "\n", + "Your **TASK** is to execute every step of this notebook while learning to use qiskit-aqua and also understanding how this SVM implementation can be used for classifying breast cancer analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "Classification algorithms and methods for machine learning are essential for pattern recognition and data mining applications. Well known techniques such as support vector machines and neural networks have blossomed over the last two decades as a result of the spectacular advances in classical hardware computational capabilities and speed. This progress in computer power made it possible to apply techniques, that were theoretically developed towards the middle of the 20th century, on classification problems that were becoming increasingly challenging.\n", + "\n", + "A key concept in classification methods is that of a kernel. Data cannot typically be separated by a hyperplane in its original space. A common technique used to find such a hyperplane consists on applying a non-linear transformation function to the data. This function is called a feature map, as it transforms the raw features, or measurable properties, of the phenomenon or subject under study. Classifying in this new feature space -and, as a matter of fact, also in any other space, including the raw original one- is nothing more than seeing how close data points are to each other. This is the same as computing the inner product for each pair of data in the set. So, in fact we do not need to compute the non-linear feature map for each datum, but only the inner product of each pair of data points in the new feature space. This collection of inner products is called the kernel and it is perfectly possible to have feature maps that are hard to compute but whose kernels are not.\n", + "\n", + "In this notebook we provide an example of a classification problem that requires a feature map for which computing the kernel is not efficient classically -this means that the required computational resources are expected to scale exponentially with the size of the problem. We show how this can be solved in a quantum processor by a direct estimation of the kernel in the feature space. The method we used falls in the category of what is called supervised learning, consisting of a training phase (where the kernel is calculated and the support vectors obtained) and a test or classification phase (where new unlabelled data is classified according to the solution found in the training phase).\n", + "\n", + "References and additional details:\n", + "\n", + "[1] Vojtech Havlicek, Antonio D. C´orcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta1, \"Supervised learning with quantum enhanced feature spaces,\" [arXiv: 1804.11326](https://arxiv.org/pdf/1804.11326.pdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from qsvm_datasets import *\n", + "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", + "from qiskit.aqua.input import get_input_instance\n", + "from qiskit.aqua import run_algorithm\n", + "\n", + "# setup aqua logging\n", + "import logging\n", + "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", + "# set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Setup token to run the experiment on a real device\n", + "If you would like to run the experiement on a real device, you need to setup your account first.\n", + "\n", + "Note: If you do not store your token yet, use `IBMQ.save_accounts()` to store it first." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit import IBMQ\n", + "IBMQ.load_accounts()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", + "\n", + "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFcVJREFUeJztnW+oZVd5xp8nk5FJZm4c8E41OjFTaRElUJNcAiWQWLU2raHphxYMGOjEOF/aELEgWijDfChtv4iBhtLrTKaRRkUSQ0qQaECTNKWO3omxJpkoEhIyHWVyK4MzVckf336456Qn23P2Xnuvv3ud5wchc2b2Wfs9a++1nne9611r0cwghKiT83IbIISIhxq4EBWjBi5ExaiBC1ExauBCVIwauBAVowYuRMWogQtRMWrgQlTM+TEKXdmx3d60ssOrjNXVlc5rNjfPDv7+7Hef3zz3un+7dHVXFJtyldenjCG0/Q6Xe7va3XxOwOJn1Vb2kPoI8axcynAt63/O/hJnf/kyu8qJ0sDftLIDB2+40quM/bdc23nN0cOPDP7+7HdvPvL6chbZ7mtTrvL6lDGEtt/hcm9Xu5vPCVj8rNrKHlIfIZ6VSxmuZR26/7hTOVEauA+pGva8lyWWTUPKE/9fT211O32Od3709XXaVscu5Q6hq9zZv0/1DmgMLkTFFKfgbfj0uC7fbarA2IntmrsQSy1D0Me26TUuyutSbqr6kIILUTFq4EJUjJOLTnI3gMMALgNgAG42s/+MaVifwEqfgEXo4FpshriRqenjvvp8f3YI1ec5dpEr6JYC1zH47QAeNLM/JfkGABdGtEkIEYjOBk7yIgDXAPhzADCzlwC8FMugeb1ds7fuEwxzmRbrM8WSi6ZNJQatYpFKCWfruJb6dRmDvwPAiwCOkvwuycMkdzYvInmA5AbJjXO/eDm4oUKI/ri46OcDuALArWZ2jOTtAD4F4G9mLzKzdQDrALBvz4r3To4uY6wSlXYZWJRc0pbI0WfqaMhzbdrkGxcI6TEN8UBCxRhcFPwkgJNmdmzy+R5sNXghROF0KriZ/YTkCyTfaWY/APB+AE+HNsSlxwo59p5X1jJ7BEMUa5GS+9JU33m2TO8ZMpreRoh3I8cY3zWKfiuAuycR9GcB7I9nkhAiFE4N3MyeALDWt/BYvavv6qU+5XVRS7S1SR+1ia3kNdI1Lg/loSiTTYiKibLY5PnNc0HVO2TGWm0LSlIwJAq8KIqdOrsrxxLNPsTOb5CCC1ExauBCVEyx68GHTIn1wdddC7E2vUSX0YVFAaDZz7mGQrECfqloDmF8F9hIwYWomOIU3DcBJWZwzWUJa8j79bVhTLRNw8WaXh2T5zQvGDlk6kwKLkTFFKPgQ5ZsploK2ke5XRiDgoSiRNUs0aZFzPN07vzotc7bJkvBhaiY7AoeS7mblKDcY6dPkkqfaPaiyLFPHbvcf0xKDgxLEpKCC1Ex2RTcR7mHlO+C66IKX8amHLUztuex/5Zrccd//NDpWim4EBWjBi5ExSR30UO45qGnxRa55kNc8rGmSMZ2U13Kz72P+Lz75torINRzkIILUTFRFdwn7bTt/O4Q93HZf70PY1Xu2Pgs/gg5XTbUhlwBuFDehBRciIqJouCXru7CwRuufO1zn56nTxLL2JV7bNMzTWLtbJp7LD6PEp7VbH1sbp51+o4UXIiKiToGDx0hnxI7Eu9C6jF3SWrmwxAlTL0HehslKHkfpOBCVEy2VNUxKvdYIuWpNp8Q7QxZnNPGkOcoBReiYpwUnORzAM4CeBXAK2bWesrJ6uqK88kYfXquIdH4Pvfpun+phBybjm2MmYs+9eSi5IviDL7vXh8X/ffMbNPrbkKIpMhFF6JiXBXcAHydpAH4ZzNbd/nSENfcd1fV2lzzMUyPpUp48d0jPAZ9jkZyGbaGfudcG/jVZnaK5G8AeIjkM2b26OwFJA8AOAAAb3/LG4MaKYQYhuvxwacm/z9N8j4AVwF4tHHNOoB1ANi3Z8VclWdRj+Wj2sA4lNsnkJVTwUKkkpZ+KOAQhgTemt8NTecYnOROkivTPwP4IIAno1gjhAiKi4K/GcB9JKfXf8HMHvS9cYj9yudR+yYNpYw955FyjFxS+moIYi2w6WzgZvYsgN8JelchRBKy74ueekucsah1iJ48529Nde8uJe9jR6idfX2ShUIruebBhaiYbAoeS7nHoNBDfnuqsWYtEe1Y9FHYEpRcCi5ExaiBC1ExyV10uYCLyZmWWkJAyOc+zaHZkCHN0LTTtnJmP/vU8bxyXZCCC1Ex2afJhhDaC0ilnIvsznlMcS6PKvZ9fYOtoVQ3JDo+WAjxOkap4KIdF/UKqTJ9lMXnvr7j0SGUuMONjg8WQgBIpOAl9X45KCWxJfZzSPmcU59+0rzPWN5pKbgQFZP9ZJNaCbVwQbQTUsn7nDsf+izxWEjBhagYmlnwQtfe9VbbOPqx4OXGJoQK+G41NSXGxhUlKkxoQnlFrvXfVucx63tt/+ewceIUu66TggtRMWrgQlSMXPQ5DHHzQrjmsY40XgbXvA99nm/IoVLI5yAXXQihVNV5uEy9SBXHS59FP0OWoQ5R/VjvkxRciIqRgrcglV4uXDZx8NlYYt610/JipcJKwYWoGCl4QmJFz8Xiug2lhIvOEpsXMR+i6rFSYaXgQlSM8zw4yW0ANgD8t5ld33bt2OfBY5F6/rtJTTEFn5TUWPXQZZPLc3Z9lofuP47nXjwbdB78NgAnelwvhMiM0xic5F4AHwLwtwA+EdWiCill7D22M7ljLaeNFbHuml/PceqOq4J/FsAnAfxq0QUkD5DcILnx4pmfBzFOCOFHZwMneT2A02Z2vO06M1s3szUzW9uz+8JgBgohhtMZZCP5dwBuAvAKgB0ALgLwFTP7yKLv7NuzYgdvuNLLsDG4kG2k3Os8hOtXUn2XsNNN7Prw/Y3Bgmxm9mkz22tm+wB8GMA32hq3EKIcik10GcueV01ynlLiQwm7hoZU7j51Pc8DSpU4E9tb6dXAzexhAA9HsUQIEZwoGz6QXFioz3ixRAV36YFjK3eq6ZdcCSJ9KDG+EYMYiS5CiJGRXMGnDOkZS1LwEGmJPuRUlhJPdy0xvtHnGQ2x38yk4EIsM8mj6KWOaVwoYbxdAiEi7iXMdcemhHdBCi5ExaiBC1ExUYJsIVJVXUgVdCvJNS95iFPjgYsluNmLUJBNiCVn1Ao+JWcCRs3TYT702Xt8zORUeCm4EEtOsYtNlpGcar1od8+hjEmpfab52uqrhPG7FFyIihm1gpeQujrtwUOeQpmSpt2hlXzKon3FcxDivQn97sVSeym4EBUzSgUvQbmblKDGJbLoWc37+zGN213o47X0fX8O3d+6ReJrSMGFqJhRKXiJyh2SPr+vdLUb8qxSjdOn5aZ+n3J4LVJwISpGDVyIihmFi16bax5rmmaIu1dycDC2y57LVU+JFFyIiilWwce+L/csNSvELLF/Z6wg1Vj34HdBCi5ExYxquWiIXjXV9FJOBcg1hVaC6sX+7aXsDR9sX3SSO0h+m+T3SD5F8lAvS4QQ2XA5XZQAdprZOZLbATwG4DYz+9ai76Te8KEkSlCxKcvgrTRJ7b3k2iPeVcE7g2y21QOcm3zcPvkvvF8vhAiOUxSd5DYAxwH8FoA7zOxYVKsCkGv55jLMrZZMqlM7p8zeJ2R+Qyj7naLoZvaqmb0HwF4AV5G8rHkNyQMkN0hunPvFy0GME0L40WuazMzOYOv44Ovm/Nu6ma2Z2dquC7YHMk8I4UOni05yD4CXzewMyQsAfADAP4Q2pIT9q5o2lJzG6UJsd1XDkPLrwGUMfjGAuybj8PMAfNnMHohrlhAiBC5R9P8CcHkCW4oj1v5kqUkdeFoGxrIXv1JVhaiY4lJVSxiLTwml3CWP03xUvcTfFdpLif0b+9jbbBs62USIJSeKgpNcWKiPKo7pBM8S1a0PYx+vl17/XfXr8q5LwYVYcpIr+JRYkencJ4yUrhw+jEHVS67/0BFyKbgQS062LZtizTGnnrMuWTFCIeUeL1JwISpGDVyIiil2V9VZfA5oj4Vcwn70CR6NPTXYB5/jqOchBReiYrIreKoD56eMIWBUAz4K1OedqNWT6vrtOj5YCJEv0WURbT1XKXtSA/Uqx5QhdRJq3LgMyu3rSQbbF10IMV6KU/ApY1HyKWNXlCk5lXvKMii4L2v7P4eNE6ek4EIsM1E3fEjVs+c6XaKNsSqMzwYEvnQp91jrNAZScCGEGrgQNRM10WWeyxUiAaJZfokHuJdoUxslJwDlSFUu+Vn1QQouRMUUs6tq7CSJPj3yMh276/Nb9czycPTwI0p0EUJEUvC1d73VNo5+rPWaELtKujCGpYc5VCGE4vk8o1CJTLljB7mSroIpOMlLSH6T5AmST5G8rYedQoiMuETRXwHwV2b2OMkVAMdJPmRmT/vceEjPN0QxxnBi6LS3LmF8F4vQ6ae5lXvKrB0lbkzSqeBm9mMze3zy57MATgB4W1SrhBBB6DUPTnIftk4aPRbDmFlcesMQig6UqeoxCK0WLtsLhVTuUlQ7BKl+i3MUneQuAPcC+LiZ/WzOvx8guUFy48UzPw9poxBiIE5RdJLbATwA4Gtm9pmu69vmwUOOM+f1giGi77XurV6SAo5xvD2PWL+jy9MMGUUngCMATrg0biFEObi46FcDuAnA+0g+MfnvjyLbJYQIQGeQzcweA9DpCriyyE0Z4qZOvzNbZoh9pWPt9JqLElzc2qYAQ7vmi95X33dQqapCVEz2fdGnNHu5Pj1kqim1VHu310RtvzGVcodCCi5ExWRX8EXjXd8UwOb4PPSZT+LXqU2tZwmh3DnOZ5OCC1Ex2RW8qazzei6fxRghlXz2O7VE2F2oWZm7SK3coZGCC1Ex2RV8iosixlBywL2HlWovDz4LYIYodqx3SwouRMWogQtRMcXsqjoEHzeyLQkh1S4wqd3gtt88Bpc8ZcptV32kcs3n2aFdVYUQADIqeLNnSn10rxZg1EHI59j2PGInr/R9F3T4oBAi/TTZop7KpQfzWZAilpM+yUmhF4eEVOyhSMGFqJgoCr66uhKlh0qt2LE3fliG/dBzMU9pfZ6nj3LnfL5ScCEqpphU1ZJo9tZDev5l3n89BakWdnSVN++ZluSRScGFqBgpeA9KXS6qsXx4hmyCWGL9S8GFqBg1cCEqRi76QIYsSAk57TYvyFS7q95ngdAQ+gRGQ6dHx3pmUnAhKmZpFXy2xwyxYMFHQfoor4uttSv5LKGOkG4SQrldnlXsZ+Ry+OCdJE+TfDKqJUKI4Lgo+L8A+EcAn49ryvJQ29lnsYm9tDfU1FcJS5CbdCq4mT0K4KcJbBFCBCbYGJzkAQAHAODtb3ljqGKzoFNQhuF7Gk0fQjybEMrtsnVTqHTW2Xttbp51+k6wKLqZrZvZmpmt7dl9YahihRAeRImib26exdHDjyxFFLcEFilGqmh6rDn50GPaIRscLmJqW5sn4bNsNNRv1zy4EBXTqeAkvwjgvQBWSZ4EcNDMjrgUvkzzsUMYezS9xKhxE5e6Da3cIcoPRWcDN7Mbg95RCJEMuehCVEyUINvzm+dw85FHfi3YA8hdD0Wbi+jj+s9zEUPuYT/Uhr7kdM2n9w6VeuyDFFyIiom62GSekowp8DYk4cUnSSaWp+NS521KkiqYJuV2o8+7JQUXomKSLBedt5dZSUo+tcGnV20qx+znrh4353TZGKa65jGkrmIo96wdPieSxnr2UnAhKiaKgl+6ugsHb7jSaaxQkpIPwaXnDbl4ZV49LSq3qQ6lqnVMu2IlmQwZb/vulT/k/ZGCC1ExUcfg85Rr0ZijZCXX8tHwxPYmfJW7a1/00Mq9KNfA952TggtRMWrgQlRMkmmyUFMAsd34PtNlfdYWT8vr4+qXPGRxYZHdpbvmTYas6V7kXrvs7BLKNZ8iBReiYkaxL3qzp21+TqVyQ9Mgm57BIiUv9XDDkgl9wsiUXModGim4EBUzCgXvYizLUUOkxA7BJR1yyFlrTWLHRnwZUu9D0k+nDPECXBe1HLr/eOd1gBRciKoZhYL3Ub4Q0edUSuuTQNMnZbUEYqhnrPu63LvPwhGXZbqxnp0UXIiKSbJlUw5KnkfONRYvidgzBqk8hrbfEVq5h9STFFyIikm+ZVMXbcq7SPnakvlLVvIpqTydeWoTInoemtSnofhkv4U6d2wR88rXlk1CCABq4EJUjZOLTvI6ALcD2AbgsJn9vcv3fNy9tuQVlyDVGI4FKiHYlrp+Yk0HpXbNh5Q3W0afvd7m/VuwRBeS2wDcAeAPAbwbwI0k3+1UuhAiKy4KfhWAH5nZswBA8ksAbgDwdEhDfII9bTuYNj/36bXbFDZV0K5PkDD2zjM+iRwlsUwBV5cx+NsAvDDz+eTk74QQhUMza7+A/DMAf2Bmt0w+3wTgKjO7tXHdAQAHJh8vA/BkeHN7swpgM7cRE0qxpRQ7ANkyD1c7LjWzPV0XubjoJwFcMvN5L4BTzYvMbB3AOgCQ3DCzNYeyo1KKHUA5tpRiByBbUtjh4qJ/B8Bvk/xNkm8A8GEA/xbKACFEPDoV3MxeIfmXAL6GrWmyO83sqeiWCSG8cZoHN7OvAvhqj3LXh5kTnFLsAMqxpRQ7ANkyj6B2dAbZhBDjRamqQlRM0AZO8jqSPyD5I5KfCll2TzvuJHmaZNapOpKXkPwmyRMknyJ5W0ZbdpD8NsnvTWw5lMuWiT3bSH6X5AOZ7XiO5PdJPkFyI7Mtu0neQ/KZyTvzu95lhnLRJymtPwTw+9iaWvsOgBvNLGjGm6Mt1wA4B+DzZnZZ6vvP2HExgIvN7HGSKwCOA/iTTHVCADvN7BzJ7QAeA3CbmX0rtS0Tez4BYA3ARWZ2fQ4bJnY8B2DNzLLPgZO8C8C/m9nhyYzVhWZ2xqfMkAr+Wkqrmb0EYJrSmhwzexTAT3Pcu2HHj83s8cmfzwI4gUxZgLbFucnH7ZP/sgRgSO4F8CEAh3Pcv0RIXgTgGgBHAMDMXvJt3EDYBq6U1hZI7gNwOYBjGW3YRvIJAKcBPGRmuWz5LIBPAvhVpvvPYgC+TvL4JBszF+8A8CKAo5Ohy2GSO30LDdnAOefvFKIHQHIXgHsBfNzMfpbLDjN71czeg61sxKtIJh++kLwewGkzc1vvGJ+rzewKbK2W/IvJ8C4H5wO4AsA/mdnlAP4XgHccK2QDd0ppXTYm4917AdxtZl/JbQ8ATFy/hwFcl+H2VwP448nY90sA3kfyXzPYAQAws1OT/58GcB+2hpo5OAng5IxXdQ+2GrwXIRu4UlobTAJbRwCcMLPPZLZlD8ndkz9fAOADAJ5JbYeZfdrM9prZPmy9I98ws4+ktgMASO6cBD8xcYc/iEyLpMzsJwBeIPnOyV+9HwGWZAfbdLGklFaSXwTwXgCrJE8COGhmRzKYcjWAmwB8fzL2BYC/nmQGpuZiAHdNZjvOA/BlM8s6RVUAbwZw31Y/jPMBfMHMHsxoz60A7p4I5LMA9vsWqEw2ISpGmWxCVIwauBAVowYuRMWogQtRMWrgQlSMGrgQFaMGLkTFqIELUTH/B0aFQF+h+KscAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF3RJREFUeJzt3X2QXXV9x/HPx81WrzxkQVaHbILBjmaKSSTOlhlNy1BjDVaiMe2kgoLamWY6rYIPE4b4R0SmCtNMxdJaO5EHUVG7YsgIKJEBEXEU2CWYACE+UGyykWYRNoDdyhK//eOcJXc3+3Du7r33nHPv+zWzc3fPvXvzPXDvZ3/393QcEQIAlMdL8i4AAFAbghsASobgBoCSIbgBoGQIbgAoGYIbAEqG4Eah2P6A7Xumuf9Ltv+xmTUBRUNwoyls32X7adsvzbuWmaR/PA7bfi79+i/b19l+XQ3PwR8YNAzBjYazvVjSn0oKSe/MtZjsfhwRx0qaL+mtkkYkDdhemm9ZAMGN5rhA0k8kfUnS+6vvsP0K29+2/Yzt+yT9YYbnO8H2rbaftX2v7Rd/x/abbd9v+1B6++aq+05MW84H0tb/9pn+oYg4HBG/jIi/l/QDSZdWPd83bT+R/lt32359enyDpPdKujhtsd+cHr/E9i/Tuh+x/e4M5wocheBGM1wg6Yb0a7XtV1Xd93lJ/yfpZEl/k37N5FxJn5J0gqRfSPq0lASzpFslXSXpFZI+K+lW269If+8rkl4u6fWSXinpyhrPY5uSTw5jvivptelzPZCenyJia/r9P0XEsRGxJn38L9Pfn5/W/1XbJ9dYA0Bwo7Fs/4mkV0vqi4gBJeF1Xnpfh6S/lLQ5In4bEQ9Juj7D026LiPsi4gUlAXl6evwdkn4eEV+JiBci4uuSHpW0Jg3It0v6u4h4OiJGI+IHNZ7OAUknjv0QEddGxLMR8TslLfE32J4/1S9HxDcj4kBE/D4i/lPSzyWdUWMNAMGNhnu/pO9FxJPpz1/Tke6SbknzJO2revyvxr6x/YmqAcL/qHrME1Xf/6+kY9PvF1T/ftXz9UhaJOmpiHh6DufSI+mptLYO21ekXR/PSHo8fcxJU/2y7QtsP2h72PawpKXTPR6Yyry8C0Drsl2RtF5Sh+2xsH2ppC7bb5D0kKQXlITqo+n9p4z9fkR8RtJnavgnDyhp3Vc7RdJtSv44nGi7KyKGaz2X1Lsl/TD9/jxJ71IycPm4ku6PpyU5vX/ctpu2Xy3pi5JWKRn4PGz7warHA5nR4kYjrZV0WNJpSrozTpf0R0rC74KIOKyk3/hS2y+3fZomDF7W6DuSXmf7PNvzbP91+m/fEhG/VtIn/e+2T7DdafvMmZ4wbVmfavtfJZ2lpG9ako6T9DtJv1HSbz7xD8z/SHpN1c/HKAnzofR5P6ikxQ3UjOBGI71f0nUR8d8R8cTYl6R/k/Re2/MkfUhJV8cTSmadXDfbfywifiPpHEkfVxKoF0s6p6qb5nxJo0pa9wclfWSap3uT7eckPSPpLknHS/rjiNid3v9lJd0wg5IeUTJrpto1kk5Lu0W2R8Qjkv5Z0o+VhPoyST+a7bmivZkLKQBAudDiBoCSIbgBoGQIbgAoGYIbAEqmIfO4TzrppFi8eHEjnhoAWtLAwMCTEdGd5bENCe7Fixerv7+/EU8NAC3J9sRVv1PK1FViu8v2jbYftb3H9ptmXx4AYC6ytrj/RdJtEfFXtv9AyUoxAEAOZgxu28dLOlPSByQpIp6X9HxjywIATCVLV8lrlOyvcJ3tnbavtn3MxAfZ3mC733b/0NBQ3QsFACSyBPc8SW+U9IWIWCHpt5IumfigiNgaEb0R0dvdnWlgFAAwC1mCe7+k/RFxb/rzjUqCHACQgxn7uCPiCdv7bC+JiL1K9hN+pPGlYba27xzUlh17dWB4RAu6Ktq4eonWrujJuywAdZJ1VsmHJd2Qzih5TNIHG1cS5mL7zkFt2rZbI6OHJUmDwyPatC3ZiZTwBlpDpuCOiAcl9Ta4lkIoe2t1y469L4b2mJHRw9qyY2+pzgOtrezvs7xx6bIqrdBaPTA8UtNxoNla4X2WNzaZqjJda7UsFnRVajoONFsrvM/yRnBXaYXW6sbVS1Tp7Bh3rNLZoY2rl+RUETBeK7zP8kZwV2mF1uraFT26fN0y9XRVZEk9XRVdvm4ZH0FRGK3wPssbfdxVNq5eMq7vTSpna3Xtih6CGoXVKu+zPBHcVcbCjtFuoHF4n81dQ67y3tvbG03dj3tXn3THZdKh/dL8hdKqzdLy9c379wFgjmwPRESmadflb3Hv6pNuvlAaTQc2Du1LfpYIbwAtqfyDk3dcdiS0x4yOJMcBoAWVP7gP7a/tOACUXPmDe/7C2o63o1190pVLpUu7kttdfXlXBGAOyh/cqzZLnRPmf3ZWkuM4MgZwaJ+kODIGQHgDpVX+4F6+XlpzlTR/kSQnt2uuYmByDGMAQMsp/6wSKQlpgnpyjAEALaclgpstIqcxf2HaTTLJcQClVPqukrEtIgeHRxQ6skXk9p2DeZdWDIwBAC2n9MHNFpEzYAwAaDml7yphi8gMGAMAWkrpW9xsEQmg3ZS+xd3WW0SyuRYarfo1VjkhOTbyNK+3nJU+uNt2i0g210KjTXyNjTx15D5eb7lqjW1d29GVS6eY5rdI+uhDza8HrWeq11g1Xm91U8u2rqXv425bLKxBo2V5LfF6ywXBXVZsroVGy/Ja4vWWC4K7rFhYg0ab7DVWjddbbgjusmJhDRpt4muscmLyxestd5kGJ20/LulZSYclvTBTBzqDkwBQm0Zdc/LPIuLJWdYEAKgTukoAoGSyBndI+p7tAdsbJnuA7Q22+233Dw0N1a9CAMA4WbtKVkbEAduvlHS77Ucj4u7qB0TEVklbpaSPu851ApiAfejbV6YWd0QcSG8PSrpJ0hmNLArA9NiHvr3NGNy2j7F93Nj3kt4miTWuteAq66gz9qFvb1m6Sl4l6SbbY4//WkTc1tCqWgmbQaEB2Ie+vc0Y3BHxmKQ3NKGW1jTdVdYJ7sIqev/xgq6KBicJafahbw9MB2w0NoMqnTL0H29cvUSVzo5xx9pmH3qUfz/u6RSi1cRV1ktnuv7jorS623Yfekhq4eAeazWNvQHHWk2SmvviXrV5fB+3xOY8BVeW/uO1K3oI6jbVsl0lhRl1ZzOo0uE6pii6lm1x19JqaniXCldZL5W2vo4pSqFlgzvrqHthulRQGPQfo+haNriztprKMBCF5qP/GEXWssGdtdVUloEoABjTssEtZWs1sZABQNm07KySrFjIAKBsWrrFnUU9B6IKseAHQMtr++CW6jMQxewUAM3S9l0l9VKYBT8AWh7BXSfMTgHQLAR3nbBMGkCzENx1wuwUAM3C4GSdsEwaQLMQ3HXEMmkAzUBXCQCUDMENACVDcANAydDHPUcscwfQbAT3HLDMHUAe6CqZA5a5A8gDwT0HLHOv0a4+6cql0qVdye2uvrwrAkqJ4J4DlrnXYFefdPOF0qF9kiK5vflCwhuYhczBbbvD9k7btzSyoDJhmXsN7rhMGp3wSWR0JDkOoCa1DE5eJGmPpOMbVEvpsMy9Bof213YcwJQyBbfthZLeIenTkj7W0IpKhmXuGc1fmHaTTHIcQE2ydpV8TtLFkn7fwFrQylZtljon9P13VpLjAGoyY4vb9jmSDkbEgO2zpnncBkkbJOmUU06pW4EooV19Sd/1of1Ji3rVZmn5+uS+qY4DyMwRMf0D7MslnS/pBUkvU9LHvS0i3jfV7/T29kZ/f38960RZjM0eqR6I7KxIa64ipIFp2B6IiN4sj52xqyQiNkXEwohYLOk9ku6cLrTR5pg9AjQc87hRX8weARqupuCOiLsi4pxGFYMWMNUsEWaPAHVDi3uOtu8c1Mor7tSpl9yqlVfcqe07B/MuKV/MHgEajt0B54DdASfB7BGg4QjuOZhud8C2DW4pCWmCGmgYukrmgN0BAeSB4J4DdgcEJsi6dW/Rt/gteH0E9xywOyBQJevWvUXf4rfo9YngnpO1K3p0+bpl6umqyJJ6uiq6fN2y9u7fRvvKuviq6Iu0il6fGJycM3YHBFJZF18VfZFW0esTLW4A9ZJ18VXRF2kVvT4R3ADqJeviq6Iv0ip6fSK4AdTL8vXJLpDzF0lycjvZrpBZH5eXotenDNu6zgbbugJAbeq6rSsAoFgIbgAoGYIbAEqG4AaAkiG4AaBkWDkJoPC27xzUlh17dWB4RAu6Ktq4eklbr1gmuAEUGhcsORpdJQAKbboLlrQrghtAoXHBkqMR3AAKjQuWHI3gBlBoXLDkaAxOAii0sQFIZpUcQXADKDwuWDIeXSUAUDIzBrftl9m+z/ZPbT9s+1PNKAwAMLksXSW/k/SWiHjOdqeke2x/NyJ+0uDaAACTmDG4I7nSwnPpj53pV/2vvgAAyCRTH7ftDtsPSjoo6faIuLexZQEAppIpuCPicEScLmmhpDNsL534GNsbbPfb7h8aGqp3nQCAVE2zSiJiWNJdks6e5L6tEdEbEb3d3d11Kg8AMFGWWSXdtrvS7yuS3irp0UYXBgCYXJZZJSdLut52h5Kg74uIWxpbFgBgKllmleyStKIJtQAAMmDlZD3t6pOuXCpd2pXc7urLuyIALYi9SuplV59084XSaLpH8KF9yc+StHx9fnUBaDm0uOvljsuOhPaY0ZHkOADUEcFdL4f213YcAGaJ4K6X+QtrOw4As0Rw18uqzVLnhEspdVaS4wBQRwR3vSxfL625Spq/SJKT2zVXMTAJoO6YVVJPy9cT1AAajhY3AJQMLW4cZfvOQS7MChQYwY1xtu8c1KZtuzUyeliSNDg8ok3bdksS4Q0URPG7SlhG3lRbdux9MbTHjIwe1pYde3OqCMBExW5xs4y86Q4Mj9R0HEDzFbPFPdbK3va3LCNvsgVdlZqOA2i+4gX3WCv70L6pH8My8obZuHqJKp0d445VOju0cfWSnCoCMFHxukom26xpIpaRN8zYACSzSoDiKl5wz9SaZhl5w61d0UNQAwVWvK6S6VrTLCMHgAIG91SbNa37ovTRhwhtAG2veMHNZk0AMK3i9XFLbNYEANMoXosbADAtghsASobgBoCSIbgBoGQIbgAoGYIbAEpmxuC2vcj2923vsf2w7YuaURgAYHJZ5nG/IOnjEfGA7eMkDdi+PSIeaXBtAIBJzNjijohfR8QD6ffPStojiR2IACAnNfVx214saYWkeye5b4Ptftv9Q0ND9akOAHCUzMFt+1hJ35L0kYh4ZuL9EbE1Inojore7u7ueNQIAqmQKbtudSkL7hojY1tiSAADTyTKrxJKukbQnIj7b+JIAANPJ0uJeKel8SW+x/WD69RcNrgsAMIUZpwNGxD2S3IRaAAAZsHISAEqG4AaAkiG4AaBkCG4AKBmCGwBKhuAGgJIhuAGgZAhuACgZghsASobgBoCSIbgBoGQIbgAomSzXnATQZNt3DmrLjr06MDyiBV0VbVy9RGtXcMVAJAhuoGC27xzUpm27NTJ6WJI0ODyiTdt2SxLhDUl0lQCFs2XH3hdDe8zI6GFt2bE3p4pQNAQ3UDAHhkdqOo72Q3ADBbOgq1LTcbQfghsomI2rl6jS2THuWKWzQxtXL8mpIhQNg5NAwYwNQDKrBFMhuIECWruih6DGlOgqAYCSIbgBoGQIbgAoGYIbAEqmtIOT7OUAoF2VMrjZywFAO5uxq8T2tbYP2n6oGQVlwV4OKKLtOwe18oo7deolt2rlFXdq+87BvEtCi8rSx/0lSWc3uI6asJcDimbsU+Dg8IhCRz4FEt5ohBmDOyLulvRUE2rJrK33ctjVJ125VLq0K7nd1Zd3RRCfAtFcdZtVYnuD7X7b/UNDQ/V62km17V4Ou/qkmy+UDu2TFMntzRcS3gXAp0A0U92COyK2RkRvRPR2d3fX62kntXZFjy5ft0w9XRVZUk9XRZevW9b6A5N3XCaNTgiC0ZHkOHLV1p8C0XSlnFUiteleDof213YcTbNx9ZJxM52kNvkUiFyUNrgbpdDzw+cvTLtJJjmOXLGjH5ppxuC2/XVJZ0k6yfZ+SZ+MiGsaXVgeCj8/fNXmpE+7uruks5IcR+7a8lMgcjFjcEfEuc0opAimmxlQiDfk8vXJ7R2XJd0j8xcmoT12HEBboKukSilmBixfT1Cjve3qa/vGC5tMVWFmAFBwTImVRHCP07bzw4GyYEqsJLpKxmFmAFBwTImVRHAfhZkBQIExJVYSXSUAymTV5mQKbLU2nBJLixt1V+hFTCieWmaJMCVWEsGNOiv8IiYUy9gskbEBx7FZItL04d1mQT1R8btK2Ma0VNjeFDUp6CyRol8Uo9gt7tn8NUauSrGICcVRwFkiZfjUWOwWd0H/GmNqLGJCTaaaDZLjLJEyfGosdnAX8K8xpsciJtSkQLNExrpHBrN+asyxG7fYXSXM2SwdFjGhJgWZJTKxe2Qy4z415tyN64io+5P29vZGf3//3J9o4n8cKflrvOYq+rgB1M10LW0p+dQ47ipbVy6dolG5SProQ7OqwfZARPRmeWyxW9wF+WsMoLVNN3jeM9mnxpy7cYsd3BJzNtsZ23eiSRZ0VSZtcfd0VfSjS95y9C/k3I1b7MFJtC+270QT1TyonvOgKsGNYmIqKJpo7YoeXb5umXq6KrKSlva4Pu2Jlq9PxtrmL5Lk5LaJY2/F7ypBe2IqKJqs5p1Bc+zGpcWNYirgwgygKAhuFFOBFmYARUNwo5hy7kMEiow+bhQXU0GBSdHiBoCSIbgBoGQIbgAomUzBbfts23tt/8L2JY0uCgAwtRmD23aHpM9Leruk0ySda/u0RhcGAJhclhb3GZJ+ERGPRcTzkr4h6V2NLQsAMJUswd0jqXobrP3psXFsb7Ddb7t/aGioXvUBACbIEtye5NhRV1+IiK0R0RsRvd3d3XOvDAAwqSwLcPZLWlT180JJB6b7hYGBgSdt/2oW9Zwk6clZ/F7RcB7F0QrnILXGebTCOUiNO49XZ33gjJcusz1P0s8krZI0KOl+SedFxMNzqXCKf6s/66V7iozzKI5WOAepNc6jFc5BKsZ5zNjijogXbH9I0g5JHZKubURoAwCyybRXSUR8R9J3GlwLACCDoq2c3Jp3AXXCeRRHK5yD1Brn0QrnIBXgPGbs4wYAFEvRWtwAgBkQ3ABQMoUJ7lbYyMr2tbYP2n4o71pmy/Yi29+3vcf2w7Yvyrum2bD9Mtv32f5peh6fyrum2bLdYXun7VvyrmW2bD9ue7ftB233513PbNjusn2j7UfT98ebcqulCH3c6UZWP5P050oW/Nwv6dyIeCTXwmpk+0xJz0n6ckQszbue2bB9sqSTI+IB28dJGpC0toT/LyzpmIh4znanpHskXRQRP8m5tJrZ/pikXknHR8Q5edczG7Yfl9QbEaVdgGP7ekk/jIirbf+BpJdHxHAetRSlxd0SG1lFxN2Snsq7jrmIiF9HxAPp989K2qNJ9qYpukg8l/7YmX7l30qpke2Fkt4h6eq8a2lnto+XdKakayQpIp7PK7Sl4gR3po2s0Fy2F0taIenefCuZnbSL4UFJByXdHhFlPI/PSbpY0u/zLmSOQtL3bA/Y3pB3MbPwGklDkq5Lu62utn1MXsUUJbgzbWSF5rF9rKRvSfpIRDyTdz2zERGHI+J0JfvrnGG7VN1Xts+RdDAiBvKupQ5WRsQblezr/w9pt2KZzJP0RklfiIgVkn4rKbexuKIEd80bWaFx0j7hb0m6ISK25V3PXKUfae+SdHbOpdRqpaR3pv3D35D0Fttfzbek2YmIA+ntQUk3KekeLZP9kvZXfWq7UUmQ56IowX2/pNfaPjXt9H+PpG/nXFNbSgf1rpG0JyI+m3c9s2W723ZX+n1F0lslPZpvVbWJiE0RsTAiFit5T9wZEe/Luaya2T4mHehW2r3wNkmlmnkVEU9I2md7SXpolaTcBuwz7VXSaK2ykZXtr0s6S9JJtvdL+mREXJNvVTVbKel8SbvT/mFJ+kS6X02ZnCzp+nTG0ksk9UVEaafTldyrJN2UtAk0T9LXIuK2fEualQ9LuiFtXD4m6YN5FVKI6YAAgOyK0lUCAMiI4AaAkiG4AaBkCG4AKBmCGwBKhuAGgJIhuAGgZP4fa2w2P8qJYkwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'A': 0, 'B': 1}\n" + ] + } + ], + "source": [ + "feature_dim=2 # we support feature_dim 2 or 3\n", + "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", + " training_size=20, test_size=10, n=feature_dim, gap=0.3, PLOT_DATA=True\n", + ")\n", + "\n", + "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", + "print(class_to_label)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the dataset ready we initialize the necessary inputs for the algorithm:\n", + "- the input dictionary (params) \n", + "- the input object containing the dataset info (algo_input)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "params = {\n", + " 'problem': {'name': 'classification', 'random_seed': 10598},\n", + " 'algorithm': {\n", + " 'name': 'QSVM'\n", + " },\n", + " 'backend': {'name': 'qasm_simulator', 'shots': 1024},\n", + " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", + "}\n", + "\n", + "algo_input = get_input_instance('ClassificationInput')\n", + "algo_input.training_dataset = training_input\n", + "algo_input.test_dataset = test_input\n", + "algo_input.datapoints = datapoints[0] # 0 is data, 1 is labels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With everything setup, we can now run the algorithm.\n", + "\n", + "For the testing, the result includes the details and the success ratio.\n", + "\n", + "For the prediction, the result includes the predicted labels. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 1.0\n", + "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" + ] + } + ], + "source": [ + "result = run_algorithm(params, algo_input)\n", + "print(\"testing success ratio: \", result['testing_accuracy'])\n", + "print(\"predicted classes:\", result['predicted_classes'])" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kernel matrix during the training:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4VfX17t+VOYEEkgAhJECYZAqSyGC0VAFBkaLRKqJW6/Rcrba/ap2q3g5W2vvrzwG11w5qRdCiAuKAFC0zFBFknkQGIYSQhCkECYGEJN/7R056OVnvlkjgQNzr8zw8yXlZ+5x99jkr+5y11/dd4pyDYRj+I+xs74BhGGcHS37D8CmW/IbhUyz5DcOnWPIbhk+x5DcMn2LJbxg+xZLfMHxKo5JfREaIyGYR2SYij52unTIM48wjp9rhJyLhALYAGA6gAMByADc55774hm3Ug3Xo0o3GRkdHKi0yPNzrfpWWv6OAxqZnpCktNlI/FgCUlpcrLSE2VmnVNTV0e7a/ew4cpLFtkhOVVnK4jMbGRkcpLS46msbqIwPkF+yhsUmtWigthhybsooKun3LuDilVVZV0djIiAilVVVX09jwMH2O8opl93uc7AN7zwBABHms8spKGhsbpV+H4177Rd4LYR77wI5Zpcf9Nq/3uufl5WH//v38juuhj1TDGQhgm3NuOwCIyDsAcgF4Jj/j8XF/onqXzulKa5OQQGPZG/S+Wx6lsc+N/73SerZrR2M/Wr1aaZf36aO0Q+SPBACktNDJNG7CuzT257deq7S3Fyymsb26dFRa/06daCx7gz3w+PM09sa7rlJat7YpSlu67Su6/ajsbKXl799PY9OSkpS27+uvaWw8+YNbeuQIjW3bsqXSCg/qP7heJ5Lk5s2VtjY/n8b2Ttcnkr0ez6FVvH7vxsfE0Ni8ffuUVlhaSmNzunYNuj1wwAAax2jMx/40ALtOuF0Q0AzDaAI05szPPlqoj/UicjeAuxvxOIZhnAEak/wFANqfcDsdQGH9IOfcKwBeAfh3fsMwzg6NSf7lALqJSCcAuwHcCODmb9qgQ5du6jv+vblX0lhW9Fi/axeJBApKSpR27X1jaOyKTVuV5vWdPbFZM6VtKSpSWonH98+VeXlKm/XWDBrbd0BPpX3w0jQae+jGYUqLJoUuANiwU39fjSTFVADo3KaN0sordLHronrfM+uYu3Gj0rwKyvkHDiiNFVMB/l5g9RQA+GTdWqUN7tlLaX94fgLd/jcP3qG0Dq1a0ditxbpwWuPxfGcsWKq0zN78OKaTesj8eZ/T2H4ZGUG3v00B/5ST3zlXJSI/A/AvAOEAxjvn9KtvGMY5SWPO/HDOzQQw8zTti2EYIcQ6/AzDp1jyG4ZPseQ3DJ/SqO/835bo6EjVuefV/hlFqtejxzxCY1M66i40pgHA/kLdcfbxqx/T2Lad2ypt8+r1Sis5oK8AAEBGJ90N+PJbz9LYe25+WGmT3nuJxo596mWlhXt0rEXF6hbUJx7RFW0A+PEYvQ9PvfRLpc1ZqSvqAHDd9y9S2rHjx2nsih3blcauNgDAbnI1Z+F6XlvO6dldaZt271ba0FHfo9tPmrtQabmDLqSxLeL01YmDR/iVo2YtdefghV260NhFmzcrLTk1mcbW7yj0ai9m2JnfMHyKJb9h+BRLfsPwKZb8huFTQlrwiwwPV8tyvVp2WXFv6uRnaGyHDrp989kp42ls2nl64WGzBN3GCwC9Ltb3W1OlCyoivRu8fbe2uogIAAOHD1Ka1xLm9B7tlbZg8gIa2zNHtw1jKA1Ffr5ejd0rTR+vLUXF/A4IXx89SvWcLrq1NcKjaLl+W57ShvXrS2O/IMW9y3rr12f2hg10+9TU1kqbuVwv7QaA3By9fDYynKdUYiJ/LRk9UlOVVuPhGVF/uTPzPvDCzvyG4VMs+Q3Dp1jyG4ZPseQ3DJ9iyW8YPiWk1X4RUWabzIgD4O25rKoP8Cr1+R060NjZn67Q+xXGzU6HZuoq8ao5q5TmariBQlSMbq31amdm7blesXHx2iX34tyLaey0v72ptLvv1GahAFBaqs0pWHtuaqI2yQS4qYnX69s1Rb++q4n5CQBcmpWpNNb+DfCrKczRt097fcUE4FdYVnnsFzs2Xk7O2R216WpZxTEaW3TokNK83s/1TUCt2m8Yxkmx5DcMn2LJbxg+xZLfMHzKKY/rAgARyQNwGEA1gCrnXP9vik9ISHYDBowM0rxcdkv36Akl3fvx0V6sGNLDYwrPrXf+Wmk5V+XQ2OUzlyut3xX9lFb0FV/Pn5iiC2MtWnPX2f27tZtt/4u0HwAAvPBLvc7/jt/eSWMv7dFDaU+/oIuAADA0V7cY158IAwAfLtXHBQAuv0C33LJpOwBwmLT9tvZoZ161Y4fSMtvriU4AcKhc3y9z+vUqjM0jDsQVHoVXth6/sJSPY+uVpve37Bgv+Hk5MTPqFzMHDhiAFStWnPFxXXUMcc7xmUyGYZyz2Md+w/ApjU1+B2CWiKwMjOVSiMjdIrJCRFZUVvLproZhhJ7Gfuz/nnOuUETaAJgtIl865xadGHDiuK6EhGQb12UY5wiNOvM75woDP/cCeB+1Y7sNw2gCnPKZX0SaAQhzzh0O/H45gKe+aZv0jDQ8N/73QRqbnQdwl11mxAHwll1W1QeAN8ePVdqB4nto7PBbRiht8bTFSvMyWijZr00v3pj6Io2940btnHvvj3Jp7Pz5byntnrF8EPIrb03X+1XMW273HiCVajJOLi2Fz67bSebveTnUMkfdMI8KfGx0tNJKyvh8xENHtXsum7noOUOweJ/SBmUSQxTwqwARYdyQZGuxfi/Ub3Wvo0Wcbt+ODOfHJqwmWP82H60b87E/BcD7IlJ3P2855z5pxP0ZhhFCGjOoczsA7qVkGMY5j13qMwyfYslvGD4lpOv5YyMj0bNe2+2hcj7eiI3Q8nLZZevxvVp2WXFv5kw9/goAMnrpYtXUyXrcVnq6HhEFABERuqBT41FoWrLkfaWVHvkjjc3JuVpp+dt1AQ0AWrZJVNrNP82msYtmf660FzfkKe2LJdo/AQA69tJr1otH8lFXzFG3/uipOli763Pj3qCxT/3qJ0p7c9Z8pY0eoluZASA8UhfsOiTzUVljX5yotPLD/P388AO3Ku31KXy6fUSkfr4jhulRaACwubAw6HYp8VTwws78huFTLPkNw6dY8huGT7HkNwyfYslvGD4lpNX+0vJyfLQ6eO4Za70EgLadtQsrm30HcJfdJx7lbbSsZZdV9QHgL88+qrTb/9eTSsv/ahvdPiZGP7eJU/VVDAC49FJtajLzU26aceHl31fatjVf0dixpPq9i7ThAkDWIG0esnyudivulJlBt08gRiVpifpqAwAs375daS1JWysAbNujXYXFoxU4krgg7yvQLbsHysro9vt26dg1O3fSWHaViTk2A/yqlvNoC49L0MfhSAVfEbtm4bqg2+WH+WxEhp35DcOnWPIbhk+x5DcMn2LJbxg+JaQFv4TYWFzeJ7iotKWIO99uXr1eaTVV1TSWjdBiLrsAX4/PWnYBXtyb8KrWUlN5wbBZM+3e+/cxvGX3jw//l9L+9sYfaOzdr3yotO/lXkJjJ81aoLT+mefR2MUzPlNaQrJ21F0xa53SACB7iG4bLiajpwDgst66eFtUymPZaK1Fx/5NY9ka+6RU3Z6bEBujNABo3b610rLIqC0AmEFatY+W8YIbW7sf7uHSW1Kk/RbCs7ghb/bg4IW1ca9zt2SGnfkNw6dY8huGT7HkNwyfYslvGD7lpAU/ERkPYBSAvc65zICWBGAygAwAeQBucM7xOUUnUF1Tozqd2Ex3ACg5oAuBIrqTDwBcjS68eI3QYmabXuvxWeceK+4VFfHuunbttPvljn26gwwAKit1oehrMtIKAKqqKpV2vELPigeAPTtJd1wf/nyLt+tjltRWd+i17ZhKt2/fQxfmDpbyNfqsuJe/nw9+6pmmjVsjo7n5JesSTGyjC6/xMbwwlpKoYyNI1yDAi6FenYfNY3SBMSUjhcZ+uXST0pKaN6exh+uN/IrweHxGQyInAKjfE/sYgLnOuW4A5gZuG4bRhDhp8geGcNS/9pALoM7GZCKAa07zfhmGcYY51e/8Kc65IgAI/GzjFXjiuK4SjwUlhmGEnjNe8HPOveKc6++c65/k4YVmGEboOdXk3yMiqQAQ+Ln39O2SYRih4FTbe6cDuA3AHwM/db8pITI8HCktgtd8r8zLo7EZnfTacq/1/GwN9dcHeJWZjdBiLrsAX4/PWnZZVR8ACgv11YLAhCNFdLSuUh+v5u3MFRV6bbhXW2mrdnq01sIlq0kk0OeS85UWRsZE9cjpQbePjNavQ+skfbwAYFOhdhsuOchfs2ZkXNexsmMkEjhaqa+EHNqv79drffzmL3corXsqv7oR00xX8GOa86sIzD/A670QFUue73H9vABgZ2Hw1ZyK47q92YuTnvlF5G0AnwHoLiIFInIXapN+uIhsBTA8cNswjCbESc/8zrmbPP7rstO8L4ZhhBDr8DMMn2LJbxg+JaTr+fccOIhxE94N0ma9NYPGvvyWXmPfra029QSASrKGe+KseTT2jana2NNrhBYz22Tr8b1adllB5+Ju3Wjs2vx8pV3QqTONXZOnzS+92lVbx8cr7YMVK2nstQP6K23+F3o0l9fr8NHcJUpLTtItsABwrFK3I3dNb0cigQs6dVJaqyfupLHTV2lvhzGXacPTyXO5H8B9141SWpVH4ZUV91ok6uMNAPM+X6O0kmK9bh8AhozQo+aWbdxCY3N6B7dqN4vRxUIv7MxvGD7Fkt8wfIolv2H4FEt+w/AplvyG4VNCWu1vk5yIn996bZDWd0BPGnvPzQ8rbeDwQTQ2nJgtNE/k5gd33Kjvd8mS92ksG6HFXHaZEQfAW3ZZVR8A+nbooDQvZ+O7bvi50kbc0vBV1X0G8Pbcx3/3Z6W1aK3bc6dtKaDbdx+gTUJYVR8AeqenK22Ph9NvPlkN+tzTE2jsS888orTXPpmjtFsuv5Ru/84S7WB8w0W6+g4Ae/J0q3jehjwae//dNyht8uxFNHbOjE+VdtuPr6Kx63ftCrp97Dg/3gw78xuGT7HkNwyfYslvGD7Fkt8wfIo4j9bWM0HGed3dr//vX4K0D16aRmNfefP/KK1NAm8VZe29i7fwdsgBnXXLbKmHg/DMT5cr7epLdPHHy2WXrcfv15mP9tpUsEtp53msI9+xV3uneK0NT09KUhprgQWAUdl63NaM1Xrtv9f69rff+URpfb+vfRkAgL3v6ns91HERaYkuKOGWcHNX6lFi119ysdKmzOPtvXeNHK409v4CgNem/0tpLYhTMAAc2luqtJ1f8OLv0Fxd2N5XorcHgMxOwaPEbrn6anyxbh1/M9TDzvyG4VMs+Q3Dp1jyG4ZPseQ3DJ/SEA+/8SKyV0Q2nKA9KSK7RWRN4N/IM7ubhmGcbk5a7ReRSwCUAXjjhFl9TwIoc85px41voGefPm78+8GttJ8t09VZANi2cqvS0sksOACIi9dttLP/oSvPADB//ltKy8m5msZeeLk2gVi7SFfK2ew8gLvs/nkSP2T33fyQ0t6YptttAaBTGz0j5bl/8Ksm7Ngs/WgpjR10na4y5148UGmz129QGgCkJem5fjldubNxMWnlZcYjALBih3bUbZ+sr2IAwIHD2iX3fNI67dUG+96SZUob2IMbsERHatdnrytHzIE43GOuXityHLxioyOCO/QvzsnBypUrT0+132Ncl2EYTZzGfOf/mYisC3wt0H/yDcM4pznV5P8rgC4AsgAUAXjOK/DEWX0HS+wDhGGcK5xS8jvn9jjnqp1zNQBeBaC/GP7/2P/M6ksk3WaGYZwdTmk9v4ik1k3pBXAtAF4BqkdcdDT613NirV+wqIOt0V8weQGNvThXt2/e8Vvu7nrP2LuVlr9dj44CgG1rvlLa93IvUdrxCl48YiO0vFx22Xp8r5ZdVtx76JbraOzHa9cqLeO/fkhjly7QxczVaSlKi4rkr1kkeS3DPApVic30KLSYKD3uCwAWzPlcae09ir/DsvXIsfEz9Xr+dul8sPTefN06vSlB7ysAxMfocV1J5HkBwMFyMmLNY2TY4WN6FFmBx6fmtZ9tDLpdvK/hn65PmvyBcV2DAbQSkQIAvwUwWESyADgAeQDuafAjGoZxTnCq47peOwP7YhhGCLEOP8PwKZb8huFTLPkNw6eE1L1XAITVq2Bv2MkNDaJideW3Zw53+p32tzeV9tGsf9DYV96arrSWbXiP0thf/URpk2YtUNqenXvo9q3atVKaVwsrgxlxALxll1X1AeDKvn2VtmK7nvUHAHOmfKS0+26/VmlREbqtFdCvLQBMXarbZQGgbUtt3LF+/TYae9P1lysthrTWAkAsuWJw6xWDlVZewVuyLyLtyBsKuFtxdkaG0mpqamhsizj9mnmZhMzZqC+e/SAri8YO6dUr6Pb741+gcQw78xuGT7HkNwyfYslvGD7Fkt8wfEpI3XvbtG3vxtz2QJAWGc0LN088ckeD77eMtEP++a9TaGxJsW5/vPmnvN01taV2Yi0nLZlebbgLl2jn27YZbWlsfJxuFa2q5sWjD1+eobQbPVp2WYGxP3EwBvhziyBt1l5ry6tJsYu9NgB3PD7k5YJMCmPstQGAg2Q9fVJzPbqtqJS74bLt48hafIAXB2s88ml1Xp7S+tVrda+DeR14jW7LrDf2bOgll2DNqlXm3msYhjeW/IbhUyz5DcOnWPIbhk+x5DcMnxLS9t6kVi1w411XBWmdiRMtAPx4zMNKy8//gsaWlur22lf/OZXG7j1wUGmLZmuzCADIGqTnzC2e8ZnSirfzSmyfS7SxxLUD+tPYx3+nnXqfeernNPbAdbpSzYw4AN6yy6r6AK9q5+/frzTmpgsAV/TRx2vpNt6yOywzU2kHyrTzLgB0SE5W2k6yX4BHyy2pwHtdLWCxW4uLaSwz2DhayduGmYOwV+zCTZuUdhWZowhoA5QIjysxDDvzG4ZPseQ3DJ9iyW8YPqUh47rai8h8EdkkIhtF5P6AniQis0Vka+CnefcbRhOiIeO6UgGkOudWiUg8gJUArgFwO4AS59wfReQxAInOuV9+031lZWe7WQsXBGle66r3Hz6stF5paTSWjV7yarllvPgaLw5WHtX7Fh2ni2IRkboFFgAio/Xa8szs82jssgW6FZgVHAFg0Hn6Plbv3EljszrqQlNiM93uCgDFpOW1QyvtSdC//5V0+9JS7XybmspbiX8x7lGl/Xv6Ehr76EO3Ka17Bz4GbPYqPYrslitvVNrUOXy8WSRpZ2ZjuQCgdwfdnivCz6fLt+pi9ahB/DgyT4Cp87QPBQDcO/reoNtfbl6G8vKvT9u4riLn3KrA74cBbAKQBiAXwMRA2ETU/kEwDKOJ8K2+84tIBoBsAMsApNR59wd+8mt2hmGckzQ4+UWkOYBpAB5wzn39Lbb7z7iuAwcOnMo+GoZxBmhQ8otIJGoTf5Jz7r2AvCdQD6irC+gvfAge15VMmjUMwzg7NGRij6B2SMcm59y4E/5rOoDbAPwx8PPDk91XWUUFlm4LHoHF1kQDwJyV2pBySxHvtEpN1N1aO4vo3yKkpegC1hdLeOdgp8wMpa2YtU5pbTum0u175PRQWre2fD3/tC3aJHLMaG1cCQCz12uDR68RWsxs02s9PuvcY8W9FSs+ptv363eF0rIHXURjc/v1U1qLWD7KLI6YcmZnD6OxCeQ+Bo/QJqR92vNxXzv27VNaO49uwK5dL1BaSYnXunv9eB076i5HAGjRorXeh0R+MW3kj8YE3S56cSuNYzSkvfd7AG4FsF5E1gS0J1Cb9FNE5C4A+QBGN/hRDcM46zRkXNdi1LpuMy47vbtjGEaosA4/w/AplvyG4VMs+Q3Dp4R0PX/LuDiMqrcuee7GjTT2uu/zKjGjhDiudk/lFfidpNegY6+ONDahtR4plT1Er6tu34NXjll770dzeQtr9wHdlfb2O5/Q2GEjL9aPFcFfSjZCi7nsAnw9/qOkZZdV9QFg5cp/KS0zO4fG7iKvQ2GJ9loAgITeuoIfH8+r33lknf/Rw9oVmDkCA0BqC/2as2MIALvy9br7qGg9lgsASsvLlbZ48bs09ppr7ldae4/L5FtWbAm6XXGEuyUz7MxvGD7Fkt8wfIolv2H4FEt+w/ApIS34VVZVKUNILz8BtkafjXgCuJHiwC5daOyFRC8eeSGNTSMtlWyU0sFSvs6pdZJuC01OSqCxxyob7kmQQ1qiwzxadqcuXaa0K7P60lhmtsnW43u17LLi3sS//47GRkTpt978T/ga+4SpryktJq4ZjZ3y1w+UlkHatN9dxk1bMzvo4u20aXNobPYFw5UWHs5T6r1Ptc/AD6//BY1dOF+Pmlu27V4SCVw4Kvi9+9nn/Bgy7MxvGD7Fkt8wfIolv2H4FEt+w/AplvyG4VNCWu2PjIhAWlJSkJbvYe21Ysd2peV04cYfXVNSlLaHVOUBYNPu3Uq7rHdvGrt8u96Hy3r3UlpRqcdjFerHYlV9AOidnq60jQXa4APgVxwSm/Hqd9uWul3V66oJG6F1jLjsMiMOgLfssqo+ALz2l18rrXfvQTT2uV88rbSHntf7BQAPjblbaS/e83eljXt4nNIAfvWprIy3HT/7xnNKS2zG23tvvep2pU2cPoHGDpw7UGkvPzOJxo6+L9g3NyY2hsYx7MxvGD7Fkt8wfIolv2H4lMaM63pSRHaLyJrAv5FnfncNwzhdNKTgVwXgoRPHdYnI7MD/Pe+ce7ahD1ZVXY19Xwe3wjK3VQDo3EbPAIkgo5QAYHVentL6duRr9Fkb7N6veXtuyzhdvGHFPTbDHgBKDur77ZrejsayAmUKWVsOAK3j45VWf057HevX65bdVgm8xfhAWZnS2AgtL5ddth7fq2WXFfc2blxMY3/x6xeVtnT2Chp7/vmXKm3rl3qU2fCbf0C3ryivUNri6Qto7II5ukU4Np4fm9w7blXanEXLaewHr76ttAdfeJzG5uUVBt2u9Bh/x2iIgWcRgLrJPIdFpG5cl2EYTZjGjOsCgJ+JyDoRGW9Teg2jadGYcV1/BdAFQBZqPxnoi56oN67L4+OxYRih55THdTnn9jjnqp1zNQBeBaA7E1BvXBcZ92wYxtmhIdV+Oq6rbk5fgGsB6BlShmGcszRmXNdNIpIFwAHIA3DPye4oPCwM8fUqxZUeLqq7iUHH+m15NPbSLN2WuorMnQOA2OhopUV7ON9u27NHaWzGW880Xv9sRh7rgk6daCxrc+7g4dj62VY9j41VngHgpuv1vD+v9l72eI8+dJvS2Ow8gLvsMiMOgLfssqo+ADw/VrvZriCt1wDw+FxtmtGspW59nvHae0oDgOXL9RzCqChewf/4E9027GXAMuoHP1HazJkv09jRI/QVi8cfep7GDhwZ/IHbyxyH0ZhxXTMb/CiGYZxzWIefYfgUS37D8CmW/IbhU0K6nr+quhql9UZrebWwLlyvx3gN68ddZ6NIwa5donbOBYCSMj3a67lxb9BYIa3Ai479W2mR0ZF0+2NlenRSqyfupLHPPT1BaY/88nYa2z45SWseI8NiIvW+sUIkAOwkfRiXZWtn4+zsYXR7NkLLy2WXrcf3atllxb3+nbWrMMA9BQb0HqC0SXOm0+2/PvZzpfVsx1uye/XUbsXV1byA/cbHk5U2fLgupgLA9u3rlPbk63+isU//9FdBt/cV6iK1F3bmNwyfYslvGD7Fkt8wfIolv2H4FEt+w/Ap8m3aARtLv/793dJlwbPjPlm3lsae1zZVaV+RdlsA6Na2rdK8KtolR7RhRYdkvuAokpiHVJB2ZGb6AQBHK7WxwvRVq2js6At1VX38v+bS2KzzdKXb66pJLGnF9XI27kGq2itJm7SXAUseuVrAZucBwL9JtZ0ZcQDA4cPaJGT8O9xDpj1pUd6+V79v7hitW4YBIDUtQ2k7d3xJY3/zNz2H0Ot9d/c1tyvtv//xEo0tKdGvz7IZeuYiADz2q7uCbl89/HKsX7OG9xjXw878huFTLPkNw6dY8huGT7HkNwyfEtL23uNVVSg8GFy8GdxTj78Cvt1YrUjS3utVyGRjrd6cNZ/G7ivYp7SkVF1QSmzDW4kP7dfuvWMu+z6Nfe2TOUobfen3aCxbTz9+pt4eAG69YrDSkpo3p7E15JjdcuWNShs84lq6/dHD2icgIzODxrIRWsxlF+Dr8VnLLsCLe53b6HFuf/1Qr9sHgLKDh5V2xwU309hnHtRFx+rqaho7dqL2Kpj6J+4pUHFEt4X3HZJFY7O6BudEWVkpjWPYmd8wfIolv2H4FEt+w/ApDTHwjBGRz0VkbWBc1+8CeicRWSYiW0VksohwYzfDMM5JGlLwqwAw1DlXFrDwXiwiHwN4ELXjut4Rkb8BuAu1Xv6eiIjqmvvD8xNo7NBRutg1ewM3CGammh09bMJZIXD0ED4Xno2vSiDzz+NjeMfbkQo9+mnyXO0HAAC3XK672ybNXkhjb7zsEqW1S9fjzQCgnIxvKirlRaHUlrpwOXWOHrfFjjdQW9Ctz7vLuLHouIfHKc1rhBYz2/Raj88691hx797cK+n2w4ffobStq/TIMwCY/P6flVZVwwt+GW31Mdt/UBeUAWBTYaHSBp/fj8a+MuufQbf/953cL4Jx0jO/q6UuCyID/xyAoQDeDegTAVzT4Ec1DOOs09ChHeEB2+69AGYD+ApAqXOu7k99AWx+n2E0KRqU/IHJPFkA0lE7macnC2Pb2rguwzg3+VbVfudcKYAFAHIAtBSRuppBOgD9RQU2rsswzlUaUu1vLSItA7/HAhgGYBOA+QCuD4TdBuDDM7WThmGcfhpS7U8FMFFEwlH7x2KKc26GiHwB4B0R+T2A1aid5/fNDxYWhuR6raW/eVBXVwFg0lxd6U5NbU1j2yQkKG3eRu3+CwD5xbrCGh6p1+0DwL5dOrZ1e70PKR5OwZu/1Gvh77tuFI19Z8lnSrtr5HAa++b8RUrbm7+Xxl7UtavSDh7RDsYAb+9lngY79vE3KovMAAAKf0lEQVQqdSrxFMjswK8MsKsuFeX66gjAR2gxl12Ar8dnLbusqg8As2e/rrQLDuiRZwAQGfELpUU4/l4aNOh6pbG2dAAqRwDgihG8il+wuSDoduUxfXXHi4aM61oHIJvo2+ExmdcwjHMf6/AzDJ9iyW8YPsWS3zB8SkjX85dXVmJtfn6Q1sHj8l/uIG1oOXP5ahq7Ki9PacxoEwAGZeoWBTaXHgDW7NTry7M6dlRaBCmKAUD3VG1CWuWx3vuGi/Top0qP5zCwRzelbUrgY7E2FBQoLc7DZHJrcbHSosm4r3akDRgAwshs+mnTuM9AWZk25Vw8fQGNjYrS7dNeI7SY2SZbj+/VssuKe6tWzaKxRyt1gTImki9xSe+SoTTW/g3w1yznKv3+AIC0bsG9dVExDV9iY2d+w/AplvyG4VMs+Q3Dp1jyG4ZPseQ3DJ8S0mp/bFQUeqcHVye3FvMRXC3idIU3N4c7th47flxp0R6tk+wqwNgXJ9JYCdPV6xmkLTUhWbcXA0BMM238EdOcG3/sydOV9hat+AiuKy/RV0LiY/RjAUB2RobSvMaLFZSUKK1rO92e27XrBXT7Xfmb9ONfwFuUn33jOaUtmMONPz7+RDv99urJq98vTtWxzGWXGXEAvGWXVfUBIKWFvuoREcGr7fn79Pu8bRJvV2/fXl+R+nwNN3YZnXtv0O39u3mbN8PO/IbhUyz5DcOnWPIbhk+x5DcMnxLacV3V1dj7dfAIK7aGHAAOHilXWmQ4393qmhqlHSjTa7gBICJMt+KWH9aPBfBWyaNleiSVhPG/oay41yIxnsbmbchTWodeupUYAErJevwkMoYMAGrIsfE65kcr9VpwEf3cSkqK6PZR0bqQGO7xmiU207Gx8bwYKqRtuLqatz43I63LbISWl8suW4/v1bLLintVVXw9PfNFaNmSOy5HROiW6rJjeoQXAMTFBReFw8j72ws78xuGT7HkNwyfYslvGD7Fkt8wfEpjZvVNEJEdIrIm8I8PEDcM45ykMbP6AOAR59y737BtEJHh4WgVH9wKO2PBUhrbrKV2ME1M5G202cRgo1daOo1lhhUPP3ArjT1Urq8CxBBzi+YerbVs1t+8z9fQ2PvvvkFpk2fxls5mXbso7SDZVwBoQVp5VxPzEwA4v0MHpS3f+oXSMtO5I28p2Yf3PuWv761X3a603Dv46zDqBz9R2hsfT6axd139Y6WNnfii0tjsPIC77DIjDoC37LKqPgC0Jg7ThQe1oQkAbNuj73dA7/409vV/fRB0e9PN82gcoyHuvQ4Am9VnGEYT5pRm9TnnlgX+6w8isk5EnhcR6g114riu/R5+74ZhhJ5TmtUnIpkAHgfQA8AAAEkAfumx7X/GdbVqzVcxGYYRek51Vt8I51xRYHx3BYDXYQM8DKNJcdLv/CLSGsBx51zpCbP6/kdEUp1zRVLbe3kNgA0nu68wEbXuPLO3HicFABd20UUtL8oqdOujVzskK9i9PmUmjXWkNTac+ASkZKTQ7VlbakmxXjMPAJNn6xFcO7/IJ5FA+CDta3DUwwmWOQD369SJxrL23lGDrlRax46ZdPvFi3Xt94fX6/XxADBx+gSlzVm0nMbOnPmy0oYPv43G/vc/XlLa1D+9p7T9B/lXUDZCy8tll63H92rZZcW9domJNHbIkB8pbXfhVzT2+useCrq9v7Dhk7AbM6tvXuAPgwBYA0CXZA3DOGdpzKy+oWdkjwzDCAnW4WcYPsWS3zB8iiW/YfiUkJp5VFZVIa9eo096UhKNXbR5s9J6kNl3AFB06JDSLiAtvwBvd42I5IchLkHHlhTpav2XS7VrLQBExeq+pyEjuOvsnBmfKm1o7iAa2ypeG4Ic9ri6MWejvggzoDO/krJwk34ezAykRQver3HNNffr+5w/hcYOnKuvDH/w6ts0dvSIS5W2ffs6GltSot8LFUf0sdlUWEi3T26u28rZ7DyAu+wyIw6At+yyqj4AzJ8/SWlrdo6lsfVn9UV+ZrP6DMM4CZb8huFTLPkNw6dY8huGTwltwa+6GoWlpUHa/Hl8RFNyarLSWPEJ4OvQvYgM13/vRgy7iMayts7wLN2ym0SKRABw7Lhul122cQuNve3HV+nYL3lsOHELZqO2AOAHWdpj5dMt/H6vyla9XMiYN11pXm2p7ZP1a7Zs270kEnj5GV3UevCFx2ns4w89r7QnX/8TjV08bbHS+g7Rx2Dw+f3o9leMuFNpOVfxIi0boeXVVs7W43u17LLiXv/OnWns+NnB6/dnfMBHsTHszG8YPsWS3zB8iiW/YfgUS37D8CmW/IbhU0Ja7W8eHY2crsHmHf0yMmhs/Zl+ABAfy2e51TcIAbiRBgCE1ei/d5s9Wj3XLNQtpNmD+yrNq7V2Z6Fu6czp3Z3Grt+1S2mZnXiLcjQxnFj72UYaO6RXL32/6dzZOCZKt4beO1pX60f+aAzdfssKfRXhwlEX0tjR912jtLw8/joMHKlbgZ/+6a9o7PR5U5WW1bW30l6Z9U+6fcFm3cpbv4W2jtG5+tjUn51XR32XXUAbcXzT49Wv6tdx5/BTX1lvZ37D8CmW/IbhUyz5DcOnWPIbhk+R2oE8IXowkX0AdgZutgLQcKvRpoM9r6bHd+m5dXTONWhARkiTP+iBRVY45/gAsiaMPa+mx3f5uX0T9rHfMHyKJb9h+JSzmfyvnMXHPpPY82p6fJefmydn7Tu/YRhnF/vYbxg+JeTJLyIjRGSziGwTkcdC/finExEZLyJ7RWTDCVqSiMwWka2Bn9z25hxGRNqLyHwR2SQiG0Xk/oDepJ+biMSIyOcisjbwvH4X0DuJyLLA85osIg33v27ChDT5A8M+/wzgSgC9ANwkInrlSdNhAoAR9bTHAMx1znUDMDdwu6lRBeAh51xPADkAfhp4nZr6c6sAMNQ51xdAFoARIpID4H8APB94XgcB3HUW9zFkhPrMPxDANufcdudcJYB3AOSGeB9OG865RQDqm+flApgY+H0iaseXNymcc0XOuVWB3w8D2AQgDU38ublaygI3IwP/HIChAOrmize553WqhDr50wCcuHa1IKB9l0hxzhUBtUkEgA9sbyKISAZqpzQvw3fguYlIuIisAbAXwGwAXwEodc5VBUK+i+9JSqiTny2yt8sN5ygi0hzANAAPOOe0wUITxDlX7ZzLApCO2k+ieuaWT96ToU7+AgDtT7idDoA7ODRd9ohIKgAEfu49y/tzSohIJGoTf5Jz7r2A/J14bgDgnCsFsAC1NY2WIlLnkPJdfE9SQp38ywF0C1RXowDcCEAbwzdtpgO4LfD7bQA+PIv7ckpIrQ3SawA2OefGnfBfTfq5iUhrEWkZ+D0WwDDU1jPmA7g+ENbkntepEvImHxEZCeAFAOEAxjvn/hDSHTiNiMjbAAajdlXYHgC/BfABgCkAOgDIBzDaOccnapyjiMggAP8GsB5A3aSUJ1D7vb/JPjcROR+1Bb1w1J74pjjnnhKRzqgtPicBWA3gFuecntjyHcM6/AzDp1iHn2H4FEt+w/AplvyG4VMs+Q3Dp1jyG4ZPseQ3DJ9iyW8YPsWS3zB8yv8DpSvMK75QJgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"kernel matrix during the training:\")\n", + "kernel_matrix = result['kernel_matrix_training']\n", + "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The breast cancer dataset\n", + "Now we run our algorithm with the real-world dataset: the breast cancer dataset, we use the first two principal components as features." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH7ZJREFUeJzt3X+4XFV97/H3J8kJHAVyEn6ZnCQGFRAELpQjYlFBA4XaR5Oi4q/aYLXUclv7Q5FQLbXofYimiperrUapos/1lmjjIYo2QBBtuaQSbjARMYKoJIcQwo+gqUcJ4Xv/2GvIZDIzZ86ZX/vM/rye5zxnZu81e39nZs93r1lrzV6KCMzMrFimdDsAMzPrPCd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAnLy70GSQtIL0u1PS/rbbsdUjaSzJG3t8D4XpNdnWif3a/vze9FdTv5tIOlnkkYl7ZK0XdLnJR1Utv5cSd+V9EtJOyR9R9JrK7ZxVvpgvK+ZWCLiXRHxoWa2USQV793jkm6QNK8LcVwo6T86vd+86lRFoRsVkm5x8m+f10TEQcBvAS8GPgAg6fXAV4AvAnOBI4HLgddUPH4J8Fj6n3s9VnsrvXezge3A/6pVUNLUjkU1ifTY8dCbIsJ/Lf4DfgacXXZ/OfANQMADwCVjPP5ZwC+BNwFPAkNjlL8E2AY8CPwREMAL0rovAB9Ot88CtgLvAx5Oj1kMvBr4MdnJ5m/G+TwvBTYCvwGmAXOAfwV2AD8F3l1Wvj/F8zjwwxT31rL1z8RdGXu6vwi4C/gF8BPgvLR8BnBNej4jwIeBqWndVOAfgEeA+4H/nvYzrcH37tXAjyti+ifgm8B/AWcDB6R9PEB2svg00J/Kz0zv/Y70vL8BzC3b3oUprl+m1+utwHHAr4E9wC5gZ41YZwGfT+/748Bwg/u8FfgQcFva743AYWXrXwb8X2AnsAW4MC2v9zzPIju2LgUeAr5UJd667wXwduCeFNP9wJ+k5c8GRoGn0+uxi+w4Ow24PcW5DfgkMD09RsBVZMf5E2TH6An1nket/XQ7n7QtT3U7gF78K08gwDzg7vRhe2E62I8a4/FvSwfzVODrwNV1yp6XDuAT0sH7Zeon/6fIvmn0AX+cEsSXgYOBF5ElneeN43nelZ5jP9k3yTvT9qcDz0sf4nNT+WXAv5MlrXnAD2gw+acP+hPAOWk/g8AL07ph4DPp+R8BfK8scbwL+FHa3yzg2zSY/MlOwtcCX6yI6QngjBTHgcAngNVp+wen9+zKVP5Q4HVpWweTfesrJelnk53Ijk33ZwMvSrcvBP5jjNf/BuA6smTfB5w51j7T+lvJTp7HpPftVmBZWjefLPm+OW3zUODktK7e8zyL7Nj6CFly7a8Sb933Avg94PlkiftM4FfAb5Vtf2vF9k4FTierdCwgO3H8ZVp3LtmxOJC2dxwwu8HnsbXe694rf10PoBf/UgLZRVYj+Tnwj+lDdkY62A8c4/E3A59It99MlqD7apT959IHN90/hvrJf5S9teKDU9mXlD3+TmDxOJ7nH5XdfwnwQEWZy4DPp9v3k2rr6f5FNJ78PwNcVSWGI8m+dfSXLXsz8O10+xbgXWXrfoexk3/pvXuKrFZ9YkVM5ScDkX0DeH7ZspcCP62x/ZOBx9PtZ6f9vI6KZMkYyZ/sRPE0MLOB9+mZfab7twIfKLt/MfBvZe/X16pso+7zTMfWk9Q5tifwXgwDf1G2/bpJGfjLUuzAq8i+zZ4OTBnn8yhE8ne7XPssjoibyxdIejTdnE32FX8/qXPxlWQfQoDrgRVktaLhKg+ZQ5awS34+RlyPRsSedHs0/d9etn4UOIjGbSm7/VxgjqSdZcumktX2S7GWlx8r1nLzyJpaKj2XrIa6TVJp2ZSy/Uxkn4sj4ubUnr8I+I6k4yPiobS+fHuHk9Ww7yzbv8ieN5KeRdb8cB5ZDR3gYElTI+K/JL0ReC9wjaTbgPdExI8aiHEe8FhEPF65Yox9lt77h8oe8iv2vufzyL4VVKr7PJMdEfHrOjHXfS8k/S7wd2QVmClpf5tqbUzSMcDHgaFUdhrpsxARt0j6JPApYL6kr5G9zgc28DwKwR2+nbWZ7OB/XZ0ybyN7X74u6SGy2vKBwB/WKL+N7ANbMr8FcY5HlN3eQlaDGij7OzgiXp3WjxXrr8g+mCXPqdj286vsfwtZzf+wsn0eEhEvanCfNUXEnohYRdb2/rLyVWW3HyE7Yb6obP8zIuswBngPcCzZt6tDgFek5Ur7WBMR55BVCH4EfLbKPqrZAsySNFBlXd19NrDdaq/zWM+zkZhrvheSDiDrK/oH4MiIGCA72ZdirrbtfyJ7zY5Oz/NvysoTEVdHxKlkzZnHkPUxjfU8xnoOPcPJv4Mi+17518DfSnq7pEMkTZH0MkkrUrE/BP6e7Kt66e91wO9JOrTKZlcCF0o6PtX4/q79z6Sm7wG/kHSppH5JUyWdIOnFaf1K4DJJMyXNBf684vF3AW9JjzuPrN235Brg7ZIWptdsUNILI2IbWYflx8pez+dLKj12JfBuSXMlzQSWNvpklFlEVnu+p1qZiHiaLGFfJemI9LhBSeemIgeTJZudkmZR9v5IOlLSayU9m+wEtovsRAPZt7G5kqbX2O824FvAP6bXs09SKcnX3GcD/jdwtqQLJE2TdKikkxt4no2o915MJ+sr2AE8lb4F/E7Z+u3AoZJmlC07mKzPZJekFwJ/Wloh6cWSXiKpj6yZ59fAngaeR7X99CQn/w6LiK8CbyQblfMg2cH2YeB6SaeTdVx9KiIeKvtbDdxH1pZdub1vkXVg3ZLK3NKqWCW9VdLdjZZPTQqvITth/ZSslvU5stE4kJ3Ufp7W3Qh8qWITf5Eev5Ns1MszzVwR8T2y0SBXkXW4foesyQeyE+Z0shFEjwNfJatJQ/ZBXwN8H/h/wKoGnsrXJe0iSyz/A1gSEfVeh0vJXvt1kn5B1mdzbFr3CbL+nkeAdcC/lT1uClkt/UGykVZnkrW/Q/Y+3g08JOmRGvt9G7CbrPb7MFmb91j7rCsiHiAb4fSeFNNdwH9r4Hk2ouZ7ERG/BN5NdoJ4HHgLWadsaf2PgP8D3C9pp6Q5ZM04byHroP4sWed3ySFp2eNkx9yjZN8q6j6PGvvpSUqdHGZmViCu+ZuZFZCTv5lZATn5m5kVkJO/mVkB5fZHXocddlgsWLCg22GYmU0qd9555yMRcfhY5XKb/BcsWMD69eu7HYaZ2aQiqaFfzrvZx8ysgJz8zcwKyMnfzKyAnPzNzArIyd/MrICc/M3MCsjJ38ysgJz8zcwKqCXJX9J5kjZLuk/SfpNlSDpA0nVp/X9KWtCK/ZpNFsMbRjhj2S0ctfQGzlh2C8MbRrodkhVc08k/zXP6KeB3geOBN0s6vqLYO8gmkH4B2WQcH2l2v2aTxfCGES5btYmRnaMEMLJzlMtWbfIJwLqqFTX/04D7IuL+iHgS+BeySa/LLQKuTbe/CixU2ezJZr1s+ZrNjO7es8+y0d17WL5mc5ciMmtN8h8km/S5ZGtaVrVMRDxFNg3ffvPRSrpI0npJ63fs2NGC0My678Gdo+NabtYJrUj+1WrwlXNDNlKGiFgREUMRMXT44WNelM5sUpgz0D+u5Wad0IrkvxWYV3Z/LtmE1FXLSJpGNqH3Yy3Yt1nuXXLusfT3Td1nWX/fVC45dzxzn5u1ViuS/x3A0ZKOkjQdeBOwuqLMamBJuv164JbwzPFWEItPGeTK809kcKAfAYMD/Vx5/oksPqWyddSsc5q+nn9EPCXpz4A1wFTgnyPibklXAOsjYjVwDfAlSfeR1fjf1Ox+zSaTxacMOtlbTcMbRli+ZjMP7hxlzkA/l5x7bNuPl5ZM5hIR3wS+WbHs8rLbvwbe0Ip9mZn1ktJQ4NKIsNJQYKCtJwD/wtfMrIu6NRTYyd/MrIu6NRTYyd/MrIu6NRTYyd/MrIu6NRS4JR2+ZmY2MaVO3Uk52sfMzCauG0OBnfzNOqwbY7rNKjn5m3VQt8Z0m1Vyh69ZB/nyzpYXTv5mHeTLO1teOPmbdZAv72x54eRv1kG+vLPlhTt8zTqoW2O6zSo5+Zt1mC/vbHngZh8zswJy8jczKyAnfzOzAnKbv5n1NF9Oozonf6vJHxqb7Hw5jdrc7GNVlT40IztHCfZ+aIY3jHQ7NLOG+XIatTn5W1X+0Fgv8OU0anPyt6r8obFe4Mtp1Obkb1X5Q2O9wJfTqM3J36ryh8Z6weJTBrny/BMZHOhHwOBAP1eef2LhO3vBo32sBl+DxnqFL6dRnZO/1eQPjVnvcrOPmVkBOfnn0caVcNUJ8MGB7P/Gld2OyMx6jJt98mbjSvj6u2F3GlL5xJbsPsBJF3QvLjPrKa75583aK/Ym/pLdo9lyM7MWcfLPmye2jm+5mdkEOPnnzYy541tuZjYBTv4T0c4O2YWXQ1/Fr2j7+rPlBTK8YYQzlt3CUUtv4Ixlt/iCcmYt5g7f8Wp3h2xpG2uvyJp6ZszNEn8vd/ZuXLnP873j+X/OZXc815fhNWsjRUS3Y6hqaGgo1q9f3+0w9nfVCVnCrzRjHvzVDzofT0XinHQnisqTKTDKAVz65DtY/fTL9ik6ONDPbUtf1ekIzSYVSXdGxNBY5dzsM1556pAtJc4ntgCx91vIZPpdQJXRTf38hvdN2/85+IqiZq3j5D9eeeqQ7YVhoTVOmnP06P7LfEVRs5Zx8h+vPHXI5ulbyETVOGlu49B97vf3TeWVLzzcncBmLdJU8pc0S9JNku5N/2dWKXOypNsl3S1po6Q3NrPPrjvpAnjN1VkbP8r+v+bq7rSz5+lbyETVOJk+eOr79rkM7+tOHeRf7xzxtJJmLdJUh6+kjwKPRcQySUuBmRFxaUWZY4CIiHslzQHuBI6LiJ31tp3bDt88qdJZSl9/905GE9VAp/UZy25hpEqbvzuBzfbVaIdvs0M9FwFnpdvXArcC+yT/iPhx2e0HJT0MHA7UTf7WgF4ZFnrSBWPG7GklzVqr2eR/ZERsA4iIbZKOqFdY0mnAdOAnNdZfBFwEMH/+/CZDK4gGEmcvmDPQX7Xm705gs4kZs81f0s2SflDlb9F4diRpNvAl4O0R8XS1MhGxIiKGImLo8MMPH8/mrcd5Wkmz1hqz5h8RZ9daJ2m7pNmp1j8beLhGuUOAG4APRMS6CUdrheVpJc1aq9lmn9XAEmBZ+n99ZQFJ04GvAV+MiK80uT8rME8radY6zSb/ZcBKSe8AHgDeACBpCHhXRLwTuAB4BXCopAvT4y6MiLua3Lfl3PCGEdfUzXLK1/axthjeMMJlqzY9c3E2yNrorzz/RJ8AzNrI1/axrlq+ZvM+iR9gdPcelq/Z3KWIzKyck7+1hcflm+Wbk7+1Ra3x9x6Xb5YPTv7WFh6Xb5ZvnsnL2sLj8s3yzcm/nsk+S1aXeVy+WX45+dfS7rl6zcy6yG3+tfTCLFlmZjU4+dfSC7NkmZnV4ORfSy/MkmVmVoOTfy15mqvXzKzFnPxrydNcvWZmLebRPvUUZJYsMyse1/zr2bgSrjoBPjiQ/d+4cnJt38ysBtf8a2n3OH//jsDMusg1/1raPc7fvyMwsy5yzb+Wdo/zz+nvCDz7llkxuOZfS7vH+efwdwSl2bdGdo4SwMjOUS5btYnhDSNdi8nM2sPJv5Z2j/PP4e8IPPuWWXE4+dfS7nH+OfwdgWffMisOt/nX0+5x/jn7HcGcgX5GqiR6z75l1ntc87dnePYts+Jwzb8ZPTbZi2ffMisOJ/+J6tEfaXn2LbNicLPPRPlHWmY2iTn5T1ROf6RlZtYIJ/+JyuGPtMzMGuXkP1ELL4cpffsum9LnyV7MbFJw8m+GVP++mVlOOflP1NorYM+T+y7b8+T4O3x9TX8z6wIP9ZyoVnT49uhwUTPLP9f8J6rRDt96NXsPFzWzLnHyn6hGrspZqtk/sQWIvTX70gnAw0XNrEuc/CeqkatyjlWz93BRM+sSt/k3Y6yrco5Vs194+b5t/tD1a/qbWTE4+bfTjLmpyafKcth74sjhxeE8naNZb3Pyb6dGavY5u6Y/7J3OsTSrV2k6R8AnALMe4Tb/dprobF1dHvvv6RzNel9TNX9Js4DrgAXAz4ALIuLxGmUPAe4BvhYRf9bMfieV8dbsczD239M5mvW+Zmv+S4G1EXE0sDbdr+VDwHea3F/vy8HY/1rTNno6R7Pe0WzyXwRcm25fCyyuVkjSqcCRwI1N7q/35WDsv6dzNOt9zSb/IyNiG0D6f0RlAUlTgI8Bl4y1MUkXSVovaf2OHTuaDK2Lmmmzz8HY/8WnDHLl+ScyONCPgMGBfq48/0R39pr1kDHb/CXdDDynyqr3N7iPi4FvRsQWjXHVy4hYAawAGBoaiga3333lc/n2z4Qnd+296Nt42+xzMvbf0zma9bYxk39EnF1rnaTtkmZHxDZJs4GHqxR7KfBySRcDBwHTJe2KiHr9A5NHZQft6GP7lym12TeS/HM89t/Mekez4/xXA0uAZen/9ZUFIuKtpduSLgSGeibxQ/UO2mrG02afw7H/ZtZbmm3zXwacI+le4Jx0H0lDkj7XbHCTQqNJ3dfrMbMcaarmHxGPAgurLF8PvLPK8i8AX2hmn7lT6xIO5Xy9HjPLGf/Ct1nVLu08pQ/6ZzGuX/WamXWQr+3TLHfQmtkk5OTfCu6gNbNJxs0+ZmYF5Jq/WRd4vgTrNid/sw7zfAmWB272Meswz5dgeeDkb9Zhni/B8sDJ36zDPF+C5YGTv1mHeb4EywN3+FrhdXrkTWnbHu1j3eTkb4XWrZE3ni/Bus3NPlZoHnljReXkb4XmkTdWVG72sa7q9i9d5wz0M1Il0XvkjfU61/yta0rt7SM7Rwn2trcPbxjpWAweeWNF5eTfbhtXwlUnwAcHsv8bV7bnMZNQHtrbF58yyJXnn8jgQD8CBgf6ufL8E90Zaz1PEdHtGKoaGhqK9evXdzuM5lRO7g7ZxC/1JneZyGMmqaOW3kCto2/Qwx/NJkTSnRExNFY51/zbqdrk7rtHs+WtfMwkVa9dvRtNQGZF4uTfauVNNrXm9q036XutdY1OFD+JVGtvL+chl2bt49E+rVStyaaaGXPrr6t20qj3mEmq/Jeu1UbcgIdcmrWLa/6tVK3JplJffzbHby3VJoQf6zGT2OJTBrlt6asY9MXOzDrKyb+V6jbNCGbMG7vj9qQLsjIz5jX+mB7gIZdmneVmn1aq2WQzD/7qB41vp4ATwvtiZ2ad5eTfSgsvh+GL4ende5dN6dvbZLNxZdY09MTW7ESx8PLCJfl6fLEzs85x8m81qfr9ys7gJ7Zk98EnADPrOCf/Vlp7Bex5ct9le57cO0a/1vh9J38z6zAn/1aayBj9Hhy/b2b559E+rVRrLP6MufXXmZl1mJN/K9Ubo1+w8ftmlm9u9mmlUtt9vRE9Hu1jZjngq3qamfUQX9XTzMxq6t3kX5AJUczMJqI32/z9gyozs7p6s+ZfoAlRzMwmojeTf4EmRDEzm4jebPYp0IQoeTC8YcRX4zSbZJqq+UuaJekmSfem/zNrlJsv6UZJ90j6oaQFzex3TP5BVccMbxjhslWbGNk5SuC5d80mi2abfZYCayPiaGBtul/NF4HlEXEccBrwcJP7ra+gE6J0w/I1mxndvWefZZ571yz/mm32WQSclW5fC9wKXFpeQNLxwLSIuAkgInY1uc/GFHBClG6oNceu5941y7dma/5HRsQ2gPT/iCpljgF2SlolaYOk5ZKmVilnk1CtOXY9965Zvo2Z/CXdLOkHVf4WNbiPacDLgfcCLwaeB1xYY18XSVovaf2OHTsa3Lx1k+feNZucxmz2iYiza62TtF3S7IjYJmk21dvytwIbIuL+9Jhh4HTgmir7WgGsgOzaPo09Besmz71rNjk12+a/GlgCLEv/r69S5g5gpqTDI2IH8CrAV2zrIZ5712zyabbNfxlwjqR7gXPSfSQNSfocQETsIWvyWStpEyDgs03u18zMmtBUzT8iHgUWVlm+Hnhn2f2bgJOa2ZeZmbVOb17ewczM6nLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAmr2ev5mVmF4w4gnt7Hcc/I3a6HhDSNctmoTo7v3ADCyc5TLVm0C8AnAcsXNPmYttHzN5mcSf8no7j0sX7O5SxGZVefkb9ZCD+4cHddys25x8jdroTkD/eNabtYtTv5mLXTJucfS3zd1n2X9fVO55NxjuxSRWXXu8DVroVKnrkf7WN45+Zu12OJTBp3sLfec/C33PG7erPWc/C3XPG7erD3c4Wu55nHzZu3h5G+55nHzZu3h5G+55nHzZu3h5G+55nHzZu3hDl/LNY+bN2sPJ3/LPY+bN2s9N/uYmRWQk7+ZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkBOfmbmRWQk7+ZWQH5R15mVpPnUuhdTv5mVpXnUuhtTTX7SJol6SZJ96b/M2uU+6ikuyXdI+lqSWpmv2bWfp5Lobc12+a/FFgbEUcDa9P9fUj6beAM4CTgBODFwJlN7tfM2sxzKfS2ZpP/IuDadPtaYHGVMgEcCEwHDgD6gO1N7tfM2mxGf1/V5Z5LoTc02+Z/ZERsA4iIbZKOqCwQEbdL+jawDRDwyYi4p9rGJF0EXAQwf/78JkMzs4ka3jDCfz351H7L+6aoq3MpuAO6dcZM/pJuBp5TZdX7G9mBpBcAxwFz06KbJL0iIr5bWTYiVgArAIaGhqKR7ZtZ6y1fs5nde/b/CB504LSuJVt3QLfWmMk/Is6utU7SdkmzU61/NvBwlWK/D6yLiF3pMd8CTgf2S/5mlg+12vV3/mp3hyPZq14HtJP/+DXb5r8aWJJuLwGur1LmAeBMSdMk9ZF19lZt9jGzfMjj3MnugG6tZpP/MuAcSfcC56T7SBqS9LlU5qvAT4BNwPeB70fE15vcr5m1UR7nTs7jCWkya6rDNyIeBRZWWb4eeGe6vQf4k2b2Y2adlce5ky8599h92vyh+yekycy/8DWzqvI2d3IeT0iTmZO/mU0aeTshTWa+qqeZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkBOfmbmRWQk7+ZWQE5+ZuZFZAi8nnlZEk7gJ+nu4cBj3QxnFoc1/jlNTbHNT6Oa3w6GddzI+LwsQrlNvmXk7Q+Ioa6HUclxzV+eY3NcY2P4xqfPMblZh8zswJy8jczK6DJkvxXdDuAGhzX+OU1Nsc1Po5rfHIX16Ro8zczs9aaLDV/MzNrISd/M7MCymXyl/QGSXdLelpSzeFRks6TtFnSfZKWdiCuWZJuknRv+j+zRrmPpvjvkXS1JOUkrvmSbkxx/VDSgnbGNZ7YUtlDJI1I+mQe4pJ0sqTb03u5UdIb2xhP3WNZ0gGSrkvr/7MT712Dcf11OpY2Slor6bl5iKus3OslRb080um4JF2QXrO7JX25E3FVFRG5+wOOA44FbgWGapSZSjYx/POA6WSTwx/f5rg+CixNt5cCH6lS5reB21J8U4HbgbO6HVdadytwTrp9EPCsDryXDcWW1v9P4MvAJ/MQF3AMcHS6PQfYBgy0IZYxj2XgYuDT6fabgOs68Bo1EtcrS8cR8Kd5iSuVOxj4LrCuVh7pwut1NLABmJnuH9HuuGr95bLmHxH3RMTmMYqdBtwXEfdHxJPAvwCL2hzaIuDadPtaYHGVMgEcSPbmHwD0Adu7HZek44FpEXETQETsiohftTmuhmJL8Z0KHAnc2IGYGoorIn4cEfem2w8CDwNj/nJyAho5lsvj/SqwsN3fKBuJKyK+XXYcrQPmtjmmhuJKPkR2kv91B2JqNK4/Bj4VEY8DRMTDHYptP7lM/g0aBLaU3d+alrXTkRGxDSD9P6KyQETcDnybrJa4DVgTEfd0Oy6yWuxOSaskbZC0XNLUNsfVUGySpgAfAy7pQDwNx1VO0mlkJ/SftCGWRo7lZ8pExFPAE8ChbYhlvHGVewfwrbZGlBkzLkmnAPMi4hsdiKfhuMg+h8dIuk3SOknndSy6Cl2bwF3SzcBzqqx6f0Rc38gmqixretxqvbgafPwLyJqtSjWgmyS9IiK+2824yN7rlwOnAA8A1wEXAtc0E1eLYrsY+GZEbGllZbYFcZW2Mxv4ErAkIp5uRWyVu6iyrPJYbsvxPoaG9ynpD4Ah4My2RpR2V2XZM3GlysRVZMd3JzXyek0ja/o5iyxH/LukEyJiZ5tj20/Xkn9EnN3kJrYC88ruzwUebHKbdeOStF3S7IjYlhJCta9svw+si4hd6THfAk4na3vsZlxbgQ0RcX96zHCKq+nk34LYXgq8XNLFZH0R0yXtioimOvFbEBeSDgFuAD4QEeuaiaeORo7lUpmtkqYBM4DH2hTPeOJC0tlkJ9QzI+I3bY6pkbgOBk4Abk2ViecAqyW9NiLWdzGuUpl1EbEb+KmkzWQngzvaGFdVk7nZ5w7gaElHSZpO1gm2us37XA0sSbeXANW+oTwAnClpmqQ+sppQu5t9GonrDmCmpFKb9auAH7Y5roZii4i3RsT8iFgAvBf4YrOJvxVxpePqaymer7QxlkaO5fJ4Xw/cEqnHsJtxpeaVzwCv7WD7dd24IuKJiDgsIhakY2pdiq+diX/MuJJhsk5yJB1G1gx0f5vjqq5bPc31/shqz1uB35B1lq5Jy+eQNQ+Uyr0a+DFZO+z7OxDXocBa4N70f1ZaPgR8Lvb2+H+GLOH/EPh4HuJK988BNgKbgC8A0/MSW1n5C+nMaJ9G3ss/AHYDd5X9ndymePY7loEryJIWZIMIvgLcB3wPeF67X6MG47o5fUZLr8/qPMRVUfZWOjDap8HXS8DHU27YBLypE3FV+/PlHczMCmgyN/uYmdkEOfmbmRWQk7+ZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkB/X870a/jZks+DgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'A': 0, 'B': 1} {0: 'A', 1: 'B'}\n" + ] + } + ], + "source": [ + "sample_Total, training_input, test_input, class_labels = Breast_cancer(\n", + " training_size=20, test_size=10, n=2, PLOT_DATA=True\n", + ")\n", + "# n =2 is the dimension of each data point\n", + "\n", + "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", + "label_to_class = {label:class_name for class_name, label in class_to_label.items()}\n", + "print(class_to_label, label_to_class)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "testing success ratio: 0.95\n", + "ground truth: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n", + "predicted: ['A', 'B', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" + ] + } + ], + "source": [ + "algo_input = get_input_instance('ClassificationInput')\n", + "algo_input.training_dataset = training_input\n", + "algo_input.test_dataset = test_input\n", + "algo_input.datapoints = datapoints[0]\n", + "result = run_algorithm(params, algo_input)\n", + "print(\"testing success ratio: \", result['testing_accuracy'])\n", + "print(\"ground truth: {}\".format(map_label_to_class_name(datapoints[1], label_to_class)))\n", + "print(\"predicted: {}\".format(result['predicted_classes']))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kernel matrix during the training:\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4FfX1xt9vQjYSIAl7QiCsASUYQBZBKIuoLO4iiLZoqVYrlbq0VVt/FK2t1rVaW7VuVFGgkU1cEAVBVIgsIUDCFgghJJAAIfue7++PXPpwc96BQCAQ53yexwfu65l7ZyZzmNwz5/seY62Foijuw+d874CiKOcHTX5FcSma/IriUjT5FcWlaPIrikvR5FcUl6LJryguRZNfUVxKvZLfGHO1MWaHMWa3MeaRs7VTiqKce8yZdvgZY3wB7AQwBkAGgB8A3GqtTT7JNuLDAgKa0tjgkOZCa9O+FY3NTD8otMDgIBpblJ8vtPA2/H39AvyEVl5WIbTi/CK6fYtWLYRmjKGxTM87nFfn2IqKShobEOQvtJLCYhrbpIk83oDgQKHZan7NsGvJ6fqqqqySn+/ny9+XfN7pXLbslPsFyPMCAGUlZULz8eE/M3ZsTj/fspJyoQWScwvwc+N0Hmt/XkF+LkpLivhO1KJJXYIcGAhgt7V2j2cn5gK4DoBj8jOionpRfdDQq4X26z/eQWNn3f+s0GL6X0Rj1365UmiTZ9xJY9tFtxVa5p4soa1ftp5uP+6ucUILdLjofMhF88k7n9NYP3/5Y8vJOExjO8d2FlrStxtpbMs28nh7DOghtIpS+Q8gAFSWS72inP+jxP5hC28XTmMryPtWOrwvw7eJ/EclsnskjU1NTBWaU5Ky/fInNwwA2Lt1r9B6DuLXfl62PDfsswCgiZ/3tbBg7qs0jlGfX/sjAew/4XWGR1MUpRFQnzs/+9VC/G5ijLkbwN31+BxFUc4B9Un+DABRJ7zuACCzdpC19g0AbwD8O7+iKOeH+iT/DwC6G2M6AzgAYDKAKSfbICCgqfiOv3v3Bho79ib5VuVVshACAH5+AULr1rcbj/WX38kuG9Cbxm7eIb//9by4i9CcClXHso8JbdywATQ2O08WIm+6+xoauyc1Q2i7N+2msZ37yO/8KQlbaeyQ64cIzce37t8MS4tKhcbqEwBQXSXvA01b8OJvcZ4sUFaUyQIaAPj6yc9j+xDUjH8WK7YFtwimsfmH5c+sRWtZqAaAyO4dhNa0Od+H3NBcoTVxOI8hYSFerz9bygvdjDNOfmttpTFmOoBlAHwBvG2t3Xam76coSsNSnzs/rLWfAvj0LO2LoigNiHb4KYpL0eRXFJeiya8oLqVe3/lPl+CQ5qJzj1X1AeCVZx4S2oTbxtDYZZ+/KbTk5O9obL9LRwutYyve3rvjgHhyiUFduwpt1459dPvmrWTlt5xUkwGgVXMZm3oom8YezToqtH+/OJPGRkR0F1pGxg4aO+Z22VU56557hRYb+xO6/dat3wht+PCbaWxkD1n9Xrl0MY2NGzBcaB3I9gBQmFsotLRk2V03cvIouj1ro33v2ddo7OQZ04T21lMv0diJ98rYdR+spbGXkacu5aQ9GABem/mM1+ucTNnq7oTe+RXFpWjyK4pL0eRXFJeiya8oLuWM1/OfCb1iY+27Cxd6aU4tuyXlssBxVZ8+NPbjjXKJamxUFIkEisrkeu19h/ly2BsGXia0BetkIbF7u3Z0ez9f2fa7eitf8ewXKJf69nB435BAucR0R5ZcagwA/aKjhZa4jxcoe0ZECK2wVLbsRoaF0e1zCgqEFuEQy667H/bsobGDu8lW7arqahrr6yPvZyz2UB73SmgeJNtjfch7AkBJubyWAv34ku3ySrkEOSyYtw1nE88Jdi0BwLYM71bvGVOmYFdycp3W8+udX1Fciia/orgUTX5FcSma/IriUjT5FcWlNGi1v0WL1nbo0Bu9NGbEAfCW3fi139LYa/r1E1rfuCtobNcecUJ7690naOz8VfLzbh15udDeXLiMbt+sZTOhjel3CY1lTz2cqvJJ30ozjtf+OovGRkTIduTExBU09u/zZHvtP/74pNCio7n5yc6dPwhtwKCxNLZdtHySkbJhM43t0FkaqER0k08mAKDgqHzisH9HutB+cssIun3+EVlpXz5vCY0dP1W2Li9+60Mae82dk4S2eSU/3r6j+wqtqoI/FftszgLv99y8EoWFuVrtVxTFGU1+RXEpmvyK4lI0+RXFpdRrPb8xJg1AAYAqAJXW2ktPFh8YHCQm6Ti57LL1+E4tu6y4tynxSxrbb4hcix7ox6esXDtEOu0G+csCpdPEnpumXy+0lUncOZdNsMnaw9dmszFiffrwNfZffvme0JyKoQmfJgittFSOIlu7lhfAysqky+6qlfNpbFiYnA40evxNNHZp/GyhRWyRhUwAyM8/IrSsLNk2PGDsQLr9D8vkGvvvv+c+A117ysJnQsInNLZXn/5CW7N6AYkEmreU3g5HMuVxAUDsAO/j2Llb/gydOBtmHiOttbw5XlGUCxb9tV9RXEp9k98C+MIYs8EzlktgjLnbGLPeGLO+pEhaLCmKcn6o76/9Q621mcaYNgCWG2O2W2tXnxhw4riuthEddVyXolwg1OvOb63N9PyZDWAhasZ2K4rSCDjj9l5jTDAAH2ttgefvywE8Ya3lQ+UBhISE2tjYEV7asHFX0th9ybK1deZz99PYmQ9Kx9QWrVrQ2Lf++bjQVqWk0Fhm/NG6mWzZvfvme+j2z773otCWLVhFY7v1ldXrtZ+so7GL5v1LaDExg2jsJYMGCy1nfw6N3b9/u9CGXiV/Psbw7tHKcmlY4TRT72DaIaEVFPCKdueeMUIrypNPIWr2TWpNm0vTjPXf8hbnVq2kK3CXi3rS2O2JiUK7uL9sNQeATz76j9CumXQnjd30rXzS5evLf0mv/TRm27Y1KCrKq1N7b31+7W8LYKHnQmgC4IOTJb6iKBcW9RnUuQcAX6WiKMoFjz7qUxSXosmvKC6lQdfzd+zSzT70l+e9tMsG8LXhbITWprQ0Gju0Rw+hObXsrt29W2g/6dWLxn6dLJ12R/WOFdrKbbxlt4Ks0W8ZEkJju7RpI7QHH36eRAK//aMc/XS0iBfABnaRa+ELiCMvAGzcK8daxXXqJLRwh2NgDrVOxcG8YtkKvJ58PgCMuugioTldt9V1vJ6ZOzQA+DWR34SbOLj3sn1g7sEAsIFcu2z0GwCUVsh9q6jibsVrdniPXnvgttvUvVdRlJOjya8oLkWTX1Fciia/orgUTX5FcSlnYz1/nfEL8EO7aG8Th807UmnsjgOZQrtrzFU09h+LpbkEM+IAeMsuq+oDwAhSZf5qq6zsdyJPJgAgr6REaFvT99PYYlJ9fnQmXSiJjCOyDXb7bulQCwDdyFOEJd9Ll10AuKK/7NlKI3MMg/z5PDo287BH+/Y0ls2pyz6SS2P9SQWePUkBAD+HanttEtP5+eraprXQQgLkbEQAOJQvDVhahsj2bwBo20K2mzs9Cck4Ks9DcAB3uT6UfdTrdUUlPy8MvfMrikvR5FcUl6LJryguRZNfUVxKgxb8yssqkLkny0vrebFsPwV46+OCdXKdMwD8pJdcb81cdgG+Hn9Qd9keDPDi3ujesh157a5ddHtW8BtxEW8lbkoKOk899w6NffD+24TWshlvuW3dXDrBTh4xlMYm7pNFsL6kvdep4Ne9nRzBVVXN21JZe22ndrI4CfC2Yaf23kpSCGQtt5d27lyv7QEgMiy8zrG7DkonZutQKO7cWhYdK6rkOQCALlHeBdUAf97WztA7v6K4FE1+RXEpmvyK4lI0+RXFpZyy4GeMeRvABADZ1treHi0cwDwA0QDSANxireXtWSdQnF8kRls18fOlsbt2SAPPscO5OfCbC5cJzWmE1rbN0hTTaT0+69xjxb3B3bvT7b8kBcNXXufjq3ZtkO+be1SaXALA6LlzhPaLPzxMY19Y/bbQeg+XngQA8NDtct78y/MXCW3j8k10+6hecpxawjJepE1Pl12VDzw/i8bOvPcJoeXn8SFRPr7yegoPl12GzZvLYh0AbN4sDVadRqFtT5GjveIGjKCxc99/RmgTJvyKxqamyvNbViaLxwAw/UlvQ9qSYu7VwKjLnf9dAFfX0h4B8JW1tjuArzyvFUVpRJwy+T1DOI7Wkq8DcHx64mwAciKloigXNGf6nb+ttTYLADx/8ge08B7XVVoqrZsURTk/nPOCn7X2DWvtpdbaSwMDm57rj1MUpY6cafIfMsa0BwDPn9lnb5cURWkI6uTea4yJBrD0hGr/swCOWGufNsY8AiDcWvu7U71Pl5497ZNvvuWlHcs+RmObt5JtqcNIGy8ArEjcIrTwcD6uq1kgX5vNYK2xB4/J/XVq6byCtALn5OfTWOYzsCMri0RyZ+LMXP6whbkgJ6fKJykA0KaNrIC3Iu3QkWFhdPuUTOnBENNetvwCQKCfbBFOPnCAxsYQT4CmDi3G5aQ9lzkFRzgcA3PqTXJY+983Olpoifv4uWXuypd07Ehj2TmvdmiTXl3Lvfe+SZOwc9u2s+Pea4z5EMD3AGKMMRnGmGkAngYwxhizC8AYz2tFURoRp3zOb6291eF/jT7L+6IoSgOiHX6K4lI0+RXFpTToen5jDAIDvAs144Zxo81yYkS4eis32hzTTxpPrkziLbvffSrbe6f8bDyNZWabbD2+U8suK+6xIiIA/Onld4WWuVsW0ACgRStZzLzmFv4tbHuaPIbxgy+lsX97frbQxtwkW1sT1m+j23eJkQWsDxYsp7FpW9KEdvmN3GdgzQrZqp2XI80zAcDPX17SoW1lce/jd/jPLCJC+kuMnDKKxv714VeENnbaOBq7PWG70DZGyXX7ALB6wQqh+fjwNvibH5jk9bq8gq/7Z+idX1Fciia/orgUTX5FcSma/IriUjT5FcWlNHi136fWiKLsPN7u2opUxf0CT6Ol8zCvBnfrK12Bu5CRVgAfocVcdpkRB8BbdllVHwD+dP8dQnv9489pbE5GjtCc2mg3b5X7VlohjwsADuyS7bXs3Hz9MTfo6NErWmjJ3/EnNAW58uc+eRiv9k96eaHQsrL4mLeQEFnZ79Stm9Am3DGRbr9szmKhZafzpSsFBbVXugOHM7nJyJFMOWItex83a2Et95WVFTR20vAhXq//4eDizNA7v6K4FE1+RXEpmvyK4lI0+RXFpTRowS/vcB4+ece7iHXT3dfQ2NRDssgSE8FnvbM11Fl75HgkADiYJvWEz/i8+kdn3i00NkLLyWWXrcd3atllxb1fXlPbN7WG3z7xqtA+37SZxublSP+BLfszaGx6mmxB3UzWsoe35863u3fK2M6xfCxWZqo8D/HrEmjsxUOkL0Ksbx8aW15GipnVsoDWLIwXxvoOu0xoZSWycAsAA66QBcqyIu6em5Mpr7thN4ygsXmHpQtywdECGjtvtXfx9WhBIY1j6J1fUVyKJr+iuBRNfkVxKZr8iuJS6uLh97YxJtsYs/UE7U/GmAPGmETPf3wRs6IoFyx1qfa/C+AfAP5TS3/RWvvc6XyYMUaYLexJ5ZXno1mydbJ/F145TvpWGnf4BUiHWwBYNO9fQvt+20Yam3FEtmQ+eP9tQmOz8wDussuMOADessuq+gDw7P/dJ7Rpv3qSxnaOjRbaDyv5rL1yMg/uEGltrSLt1ABQXior7dVV3HXWVskK/Dfx39DY4NBgoR3O4G207OfepqNsUX718afo9l279hXagKsG09hVC6VRyeiJY2lsUtJK+b5X8vdd98VqoQUGynMAADn7va+bfIe2dsaZjutSFKWRU5/v/NONMUmerwXcBF1RlAuWM03+fwHoCiAOQBaA550CT5zVV1IiBxcoinJ+OKPkt9YestZWWWurAfwbwMCTxP5vVl9QEP/eoihKw3Om47raH5/Sa4x5AMAga+3kU71PWHg7O3r07V5aVE/ZyggA/35xptA+WC1dTQHgrrE3Cq1PH+k6CwCFhbIg8sJ7vG6ZlCLXjA/te5HQvljF24Mjush25Mhw3hrL1uM7teyuni8LQm/983EaO2bMnULbsmUVjX342b8J7bVZfxXasFG8JXvD2q+FNvq6G2hscAt5I3jt6Vk0dtqDjwkttHUoja0ok+veaxfFACAohI9ta9FGvu/G5bwg3G9MP6Gt/1w6DQNA78svFlpxgSywAkBYW7kPltdN8dxjD3q9LizMRWVlRZ3GdZ2y2u8Z1zUCQCtjTAaAmQBGGGPiAFgAaQB+WZcPUxTlwuFMx3W9RTRFURoR2uGnKC5Fk19RXIomv6K4lAY18wgI8hfmDp378JbdiIjuQusXHe0QKx15v/zyPRr7yxl/EdrALnI+GwB0I861bNbeC6vfptsPHhgrNDY7D+Auu8yIA+Atu6yqDwDLl0vzkX79rqSx276VM/gKC3OF9uF/+NORqipZac/M3E1jw8Plk5CJU6fT2Dn//LvQIiOlIy8A5OfLlmy2Dw89xVtT1iyST0KWLeMlrsDgR4S2aJHcVwBo20m2Ey/44DUaO/7GnwvtiIMr8JRfPOz1Ov79l2kcQ+/8iuJSNPkVxaVo8iuKS9HkVxSX0qAFv5LCYiR9690qmZIg1+IDQEbGDqExl14ASEyUbb99466gsazVs6CUO64u+V627U4eIR1bew+XhT0ASE6V+zt+8KU0lo3QcnLZZevxnVp2WXFv48YvaOzU30ufgLWrpKtwnz4j6Pa7d8s22P4DxtDY9qT1OWV9Eo0dffUkuX1X7uRcmCvda9kYshAH995BY4cIjY3lAoCLh8qW3cE7r6WxHUgb+8jRvCO+ez9Z7I6+OJrGfvXfT7xelxQV0ziG3vkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXEqdzDzOFi1btrdXjfNuQx1yvayuAkBVhXSIHT+Su51+umqd0BI+5XPfdibLSvnT70gTCwDo2rat0DKOysrv5TE96faLN0hjh5ULuUMtq0iz2XkAd9m97aF7aCxr2Y0bGUdjZ0y6Tmgvz18stIRPuXlJh5gOQtuwYi2NTUuTT3keefUZGjv7z68LrSCfV+CNj7yfhYbKNu32UZ3o9hvWfSW07t35E5p9++QxxPQaQGMXLZBtt1deyVuyDxzYKbTSUl7Fv+/Pf/B6/bffPYD01F11MvPQO7+iuBRNfkVxKZr8iuJS6jKuK8oYs9IYk2KM2WaMmeHRw40xy40xuzx/qne/ojQiTlnwM8a0B9DeWrvRGNMMwAYA1wO4A8BRa+3TxphHAIRZa39/sveK6NjZ3v2wtysvG6UEADPvkp6gy9evobG3jLlZaKWlfEbATVPl+z7++2k0Nu2wXEPds71sK31ryTK6ff+4XkI7VsT3qwvxDticnk5j2QitV/7wBI1l6/HDwmQhEwDunSXXp99/iywCOrX37twpC5zDhk2kse2iZHFw5zY+RqxDhx5Ci+rVkcbmHpTHu2+39EoYN/V6un3+kXyhxb/5Jo2dMv1XQnv3Be4TcN8T/ye0z2cvpbHDrx8ltNJi3oK+arH3tZeY+BUKCo6enYKftTbLWrvR8/cCACkAIgFcB2C2J2w2av5BUBSlkXBa3/k9/v19AawD0Pa4d7/nT34LVxTlgqTOyW+MCQHwEYDfWGvl70bO2/1vXFdxYcGZ7KOiKOeAOiW/McYPNYk/x1q7wCMf8tQDjtcF5BdReI/rahrS7Gzss6IoZ4G6TOwxqBnSkWKtfeGE/7UEwFQAT3v+lK1gtbDVFhWl0uSRERsrx21FhvEHCtHRvYW2du0SGltzON6Eh/C13UH+/nXSNi7nhaprR8ruxYT1suMOAL7++Du5X+35aK+qKtn96DRCi5ltOhXsWOcei01K+ppuHxEhTTVXrOBGqi1bRgrt/iekySUAPPXAvUJrlSALhgBQXCzHseXmHhLa4KuG0+2XzYsXGvMpAIAV8dLrID09hcZuXb1Fbu9wbhjHjsljAIAJP/P2Otizj48LY9TFzGMogJ8C2GKMSfRoj6Em6ecbY6YBSAfAy7qKolyQ1GVc1xoATo8ORp/d3VEUpaHQDj9FcSma/IriUjT5FcWlNKh7r7UWleXe1f7SIt62uHWrXPeeU8D7BHbulFXqsjK+/rmyvFJo5ZVSA4B9pL23e7t2QovqJZ1ZASAlM1NoXWJ4W2qPXtFC272Tt/eWl0qn3w1rv6axbISWU/W638iBQoufK6vHrKoP8LFYvXpdRmPbtpVj2jav3Exj2ROHyEjpcAtwp93U1EShObWVX3aFdDvemyYr9QAwcLR0ct64gbd6t+8aIbSYmEE0tv8oqedl89FtW9d4ewqUFEqvByf0zq8oLkWTX1Fciia/orgUTX5FcSkNXvCrqFVw8/PnuzB8uFyjH+HQ3jtg0FihrVo5n8ZWlMliGWv5BYAeZO1+VXW10BKWydZcALjz9glC+2DBchqb/F2y0DrHyqIYAFRXyX0Yfd0NNJYV4ZxGaDGzTbYe36ktlRX3UlK+p7F798oi2jOz59DY30yWa+SbNeOtzyUlsihcQUahpafwYuqn8fLYnLwhPv/vf4VWVc2Lx9u+k2afycnf0tigeNlunpcni88AcM/MR71ef5/wEY1j6J1fUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaU0aLW/qrIKeYe9zRaqq7h7cGQPadbg5DTcLlq23Do51B5Mk6YIecW8FTgsOFhoJeWkcpwuK/UAEOgnjT/StqTR2IJc6YyWmSrbgwHAknPGRmUBQHi4fGLRvovUACBx40qhDR4mn6QwIw6At+yyqj4AlJYWCs3Hhz918SPnkVX1AaCqSlbbmzaVDlL7t++n2x8+nCG08HB5fQHAwYN7hRYWxs9tGmkRDg5u4fC+e4TmOJ5MPKmqk3EvAL3zK4pr0eRXFJeiya8oLqU+47r+ZIw5YIxJ9Pw37tzvrqIoZ4u6FPwqATx04rguY8zxHtUXrbXSHtbpw/x8Ed7Ouy2zaYumNHblUmkGPP7WK2hsyga5Dnz0+Jto7M4k6Z67fq8s3ABA9hE5+qlTO7kO/IHnZ9Htkw8cENrlN8o14AAweZjU49cl0Nhv4qXXwWtP832YOHW60FLWJ9HYR159RmhvPP6i0Jxcdtl6fKeWXVbc+/XEa2nsG59+ITT/AD8aW7t9HAAKc2VxsfY6+OM8O+cDoTkVXtt2kkXlg3sP0timzeV1HtaWt6uXFZcJzceXF/JmTPJu67ZWtn47URcDzywAxyfzFBhjjo/rUhSlEVOfcV0AMN0Yk2SMeVun9CpK46I+47r+BaArgDjU/GZAx5N6jesqkr9+KYpyfjjjcV3W2kPW2ipb8yXj3wCkARxqjesK5pNxFEVpeOpS7afjuo7P6fNwAwBeQVEU5YKkPuO6bjXGxAGwANIA/PJUb2SrLSpqufcW5/HW2rgBcpba4G7cNbZD5y5CWxo/m8Zede1tQht10UU01r+JPD3M6XfmvU/Q7d9f8KrQ1qzgs9QmvbxQaBcPkTMIASA4VLYdT3vwMRo7559/F9roqyeRSGD2n18XWocOPYTGZucB3GWXGXEAvGWXVfUB4O5x0lE3wD+IxpZXyEo5M2v55Qz+xGLmXfcIrbJStnQDQGiorPYz92AAiIuTw62+/JJfozEx8pdop/d9aa73dfPcow/SOEZ9xnV9WudPURTlgkM7/BTFpWjyK4pL0eRXFJfSwO69clwWc9MFgA5kPT9zzgWAiG5yFFLElq40tihPOrE6+QRUVFXVKTbfwVm1qb8sauXl5JFIICsrVWixvn1o7OEM+Xm9BveisZGRskjavitfc560XrrJ9hs+RGitErh3ABuhdTouu04tu6y4V1bOx1IZI+9nzNPg0L5sun1urmzP7dq1L41lzshRUT1p7JEjstXb6dzk5Ehn4ZIS3iPjH+h9jbHjd0Lv/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUGr/QxfP74LzIDB14f/W1VwVFaO8/OP0Fg2lq/aodrvRz6vkjwB8PH1pduXk1in2YQhIXJFdLnDkxA/UhWvKKsgkfw8sHMLAIYcb+5BaWhSXMyfWLAW1NNx2WVGHIBTyy6/FpiZRWHhMaExcw0ACAiQOtseAIKC5EK1oiJ+btjPt8xhBiB7ClDt8KSrsla7vNOTK4be+RXFpWjyK4pL0eRXFJeiya8oLqVBC37GAL5NvItjTgWwtGTpqOvU3rt/h2yHzMqSI48AYGjz8afazZPCio6sfRTgY8BCHRxbOzGvgmpevGnTUToI5+zPobGsBfXALtlqCgChofJ99+3eJbTcXDnyDABSUxOFVlHBi5ZshJZjIZJUaZ3OOSvOsdFgraNa0+3btZPeEPv2cZ+a2NifCG3r1tV1jmWFTACIipKt2seO8XNelO99jVVX1d29V+/8iuJSNPkVxaVo8iuKS6mLgWegMSbBGLPZM65rlkfvbIxZZ4zZZYyZZ4yR61cVRblgMafqCPK49wZbaws9Ft5rAMwA8CCABdbaucaY1wBsttb+62Tv1SG6q71/5l+9tJYRLWls/hE5r37siEE09rOv1wmtuIAbg8a/9rbQvvpGjgYDgB0H5druSzvLGfS3Tvod3f6d96VJ5FWjbqWxE+6YKLRmYdzq/NXH5fted/tUGhsSJgtrIQ7vu+GLDUK7ZMQlQjt6kJtJskJkeoosxgLA/u37hRbaJpTGsnX+TuvxWeceK+69+OQMuv3AgbIgfNXkG2ns/Nel4emt9/2Kxq6I/0xofS/n1/Mn8+WIs5CQFjS270Bvo9slC17H4ZxMPturFqe889sajpdL/Tz/WQCjAMR79NkArq/LByqKcmFQ16Edvh7b7mwAywGkAjhmrT3ejJ0Bnd+nKI2KOiW/ZzJPHIAOqJnMwzyj6PeHE8d1FRXKX+UVRTk/nFa131p7DMDXAAYDCDXGHO/Q6QCAzjE+cVxXcEjz+uyroihnkbpU+1sbY0I9fw8CcAWAFAArAdzsCZsKgFfNFEW5IKlLe297ALONMb6o+cdivrV2qTEmGcBcY8yfAWxCzTy/k1JWUobURG+X2qpKueYd4OuZmG/QAAALEElEQVSSmwfxEU3sycAPy9bS2FatpPOsHxnLBQBd28gqMVvPv3nzKrp9E9IKHBEh20cBYNkc+W9n32GX8f0ibrItHCrlaxbJfRs0VjryAsCGdV8JrXOsfLqxbF680ADgsivkWK1P49+jsYcPZwjt2Tkf0Fg2Qou57AJ8PT5r2WVVfQBISPhEaE2a8KfYO3fK0Wusqg8Ahw7JdvUlH6bQ2PT0ZKFVkesOAKb+7tder5cv5z4FjLqM60oCIK42a+0eOEzmVRTlwkc7/BTFpWjyK4pL0eRXFJfSoOv5fXwMAoMDvbTgFnLWPAC89+xrQvv5JF6kWT5vidC+/54/fPjF9CeFxgpzABASECg0tp6/Tx+5VhsAktJla+vIKaNobHa6bFctK+HrvQdcNVhoG5dvpLHLlsk6rNOs9+7dLxVa/JtvCm33bv5Ze9O2CK3UwaQyPLyd0DJT6dNiVFZKTwCnEVpsPT9bj3/rr3gbLivufffdQho7YcK9Qlu6lHe4T57yiNA++fgNh/eV++bkoVD7uqlt6Hky9M6vKC5Fk19RXIomv6K4FE1+RXEpmvyK4lIatNpvrUVFrWpk/mG+0m/yjGlCKynn1e/xU28WWteevWns9kTpMOtkaHIoX45eigyTo5S2p/BW4r7Rzwjtrw+/QmNZBX7AFUNp7KqFy4U25lb+JCQwWFaZLx56MY2d+w9ZfZ4yXVaeV8R/TrcfOFru7+f//S+NPXhQtru27dSWxoaGSp25EgN8hBZzzmVGHABv2WVVfYBX9m+66UEau2nDCqF16SKNUgBg8eKXheY0nuyaad7XfhOH8XcMvfMrikvR5FcUl6LJryguRZNfUVxKA4/rMsKJtUVr7u7z1lMvCW3KhNE0dvFbHwqNrcsGgHt+8xehsZZdAGgZIp1vWWzcgBF0+8R9+4Q2dto4Gns487DQyopKaezoiWOFtv5zWagCgEWL/i60wTuvpbExvQYI7d0Xnhdaejpfh75xwzKhVVVXkkggLEyO2zq4l6/RZ8XQqKieNLaoSBZp2Qitx56T7eMAX4/v1LLLinsfffQCjb39jj8KbckCvg833/Kw0HKP8PbenAzvMW0V5fx8M/TOryguRZNfUVyKJr+iuBRNfkVxKfWZ1feuMWavMSbR81/cud9dRVHOFnWp9pcBGHXirD5jzPGS6G+ttdzKlb1RSTn2bvVu64zsLt10AWDivbK9t7ySVzKvuXOS0Hr16U9jP/noP0K7/V4+i61tCzkfbReZ3zf3fdnGCwA/fUju1/aE7TT2SOYRoeVk8up3UtJKoU17SLbxAkDbTnKuX4eeUTR21q/lOX/6Hemou3W1NO0AgPZdI4S27TtppAEAacT4g83ZA4C4OPmU58iRAzQ2JCRMaKy993RcdpkRB8BbdllVHwDef/fPQmNVfQDYslk+naiurqaxQ4JGeL328anTmD4AdXPvtQDYrD5FURoxZzSrz1p7fCzuU8aYJGPMi8aYAIdt/zeuq7y85CzttqIo9eWMZvUZY3oDeBRATwADAIQD+L3Dtv8b1+Xvz4duKIrS8JzprL6rrbVZnvHdZQDegQ7wUJRGxSm/8xtjWgOosNYeO2FW3zPGmPbW2ixjjAFwPQBe2TmBwOBA9BzkPeDXqciz7gO5Rv7XP+OFuc0rNwttzeoFNPbG2+Xop0Fdu9LYmkPzxrZqJTTmtgoAl3TsKLSNUXIEGABk75Ptm8NuGEFjB1wp3XuL84tp7IIPZAvpyNGTaeyVV94ptM9nLxXaihV8BFdMzCChJSd/S2ODg2UxNaytLNYBwJdfzhZas2bSVwEAyohbcHmF9IG4/9Hn6PZshJaTyy5bj386Lbvx8/k+9O9/ldDy82VBGJDnzPc01vPXZ1bfCs8/DAZAIgCZVYqiXLDUZ1YfN6BXFKVRoB1+iuJSNPkVxaVo8iuKS2lQM4+qyirkZXubLeSG5tLYy64fIrTsfO7023e0nNvWvCU3Cdn07XdCK62YTmMzjsp969xaVutTUzfR7Vs1k2YgqxfIllCAOwjnHeZtuOu+kO2fYyZz997xN/5caN37daex8/8p5/LddJd8AuBE/1Gy2h8UL910AeDgwT1CKyvm7swxMfIpck6OnIMI8KcAUVG9hPbJ/Dl0+/T0ZKE5Pc1hLrun07LLqvoAsIGYovj4+NLY2ufMOrQBM/TOryguRZNfUVyKJr+iuBRNfkVxKed9XFcTf74L5SXlQvPz5UWPqooqobH18QDg6ys/r6KKF0mCA+RCxYoq6SlQVsZXK7I12E6Fm8rKCqEVHC2gsYGBwUKzDnWeI8QVOPriaBpbWipbhEuLpYPwsWPcSTYv+5jU8uTnA0BBvnTk9fHla9GZe29JSSGJ5Oec7W9IiGwvBoCqKnkt5eby42UjtJxcdtl+ObXssmukulruFwD4NqkVS1rSndA7v6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pLMayt9FzRum0He+Pk+7y02OGxNPa1mdIR92/vv0Jjn7rvCaHFDuDGQhu/+0Zo//e6dFYFgEPZssrcJUrOmEtK2kW3v6i3NAnZn5VNYycNl+3M81bLVmQA+OxN6Ty7fJk0vACAKb+Q7abbfthAYyfe/1O5Dy/J9x0z6Rq6/dY10s9l0ATZ8gtwo5SHfzqRxr40d6HQ/AP9aWxluXxqUkSMTnas4y7KfUZIg47sdP4zC28vW4lrz847TkCQfHLkZF7C2pxFVd/D7+68RWjW2jqV/PXOryguRZNfUVyKJr+iuBRNfkVxKQ1a8DPG5ADY53nZCgDv/Wzc6HE1Pn5Mx9bJWsstomvRoMnv9cHGrLfWXnpePvwcosfV+PgxH9vJ0F/7FcWlaPIriks5n8nPx6A0fvS4Gh8/5mNz5Lx951cU5fyiv/Yriktp8OQ3xlxtjNlhjNltjHmkoT//bGKMedsYk22M2XqCFm6MWW6M2eX5kzdwX8AYY6KMMSuNMSnGmG3GmBkevVEfmzEm0BiTYIzZ7DmuWR69szFmnee45hlj+MKBHxkNmvyeYZ+vAhgL4CIAtxpjLmrIfTjLvAvg6lraIwC+stZ2B/CV53VjoxLAQ9baXgAGA7jP83Nq7MdWBmCUtfYSAHEArjbGDAbwDIAXPceVC2DaedzHBqOh7/wDAey21u6x1pYDmAvgugbeh7OGtXY1gNpL/64DcHwp3GzUjC9vVFhrs6y1Gz1/LwCQAiASjfzYbA3Hzf/8PP9ZAKMAxHv0RndcZ0pDJ38kgP0nvM7waD8m2lprs4CaJALQ5jzvT70wxkSjZkrzOvwIjs0Y42uMSQSQDWA5gFQAx6y1x51Zf4zXJKWhk5+tM9bHDRcoxpgQAB8B+I21ls9Ka2RYa6ustXEAOqDmN1E5y8sl12RDJ38GgBMH0HUAkNnA+3CuOWSMaQ8Anj+5E8QFjjHGDzWJP8dau8Aj/yiODQCstccAfI2amkaoMea4p/uP8ZqkNHTy/wCgu6e66g9gMoAlDbwP55olAKZ6/j4VwOLzuC9nhKmx2XkLQIq19oUT/lejPjZjTGtjTKjn70EArkBNPWMlgJs9YY3uuM6UBm/yMcaMA/ASAF8Ab1trn2rQHTiLGGM+BDACNavCDgGYCWARgPkAOgJIBzDRWiv9wC5gjDGXA/gGwBYAx6dNPIaa7/2N9tiMMX1QU9DzRc2Nb7619gljTBfUFJ/DAWwCcLu1lo8M/hGhHX6K4lK0w09RXIomv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLuX/AYBIBVDfVG/XAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"kernel matrix during the training:\")\n", + "kernel_matrix = result['kernel_matrix_training']\n", + "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb index 73058409b..3b9c29e80 100644 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_02.ipynb @@ -116,7 +116,9 @@ ], "source": [ "feature_dim=2 # we support feature_dim 2 or 3\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(training_size=20, test_size=10, n=feature_dim, gap=0.3, PLOT_DATA=True)\n", + "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", + " training_size=20, test_size=10, n=feature_dim, gap=0.3, PLOT_DATA=True\n", + ")\n", "\n", "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", "print(class_to_label)" @@ -138,15 +140,15 @@ "outputs": [], "source": [ "params = {\n", - " 'problem': {'name': 'svm_classification', 'random_seed': 10598},\n", + " 'problem': {'name': 'classification', 'random_seed': 10598},\n", " 'algorithm': {\n", - " 'name': 'QSVM.Kernel'\n", + " 'name': 'QSVM'\n", " },\n", " 'backend': {'name': 'qasm_simulator', 'shots': 1024},\n", " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", "}\n", "\n", - "algo_input = get_input_instance('SVMInput')\n", + "algo_input = get_input_instance('ClassificationInput')\n", "algo_input.training_dataset = training_input\n", "algo_input.test_dataset = test_input\n", "algo_input.datapoints = datapoints[0] # 0 is data, 1 is labels" @@ -245,7 +247,9 @@ } ], "source": [ - "sample_Total, training_input, test_input, class_labels = Breast_cancer(training_size=20, test_size=10, n=2, PLOT_DATA=True)\n", + "sample_Total, training_input, test_input, class_labels = Breast_cancer(\n", + " training_size=20, test_size=10, n=2, PLOT_DATA=True\n", + ")\n", "# n =2 is the dimension of each data point\n", "\n", "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", @@ -269,7 +273,7 @@ } ], "source": [ - "algo_input = get_input_instance('SVMInput')\n", + "algo_input = get_input_instance('ClassificationInput')\n", "algo_input.training_dataset = training_input\n", "algo_input.test_dataset = test_input\n", "algo_input.datapoints = datapoints[0]\n", @@ -326,7 +330,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex index b5b20e31a..ada7f3810 100755 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/latex/main.tex @@ -15,14 +15,14 @@ \begin{document} \begin{frame} - \titlepage + \titlepage \end{frame} \begin{frame}{Table of contents} - \begin{card} - \tableofcontents - \end{card} + \begin{card} + \tableofcontents + \end{card} \end{frame} @@ -172,14 +172,14 @@ \section{\ai} \end{frame} \begin{frame}[fragile]{\ai (SVM)} -\small{Here's an example of a configuration for an SVM classification model:}\begin{minted}{python} +\small{Here's an example of a configuration for an classification model:}\begin{minted}{python} params = { 'problem': { - 'name': 'svm_classification', + 'name': 'classification', 'random_seed': 1219 # same seed ensures reproducibility }, 'algorithm': { - 'name': 'QSVM.Kernel' + 'name': 'QSVM' }, 'backend': { 'name': 'qasm_simulator', diff --git a/qiskit/aqua/artificial_intelligence/index.ipynb b/qiskit/aqua/artificial_intelligence/index.ipynb index b0c063914..5537442db 100644 --- a/qiskit/aqua/artificial_intelligence/index.ipynb +++ b/qiskit/aqua/artificial_intelligence/index.ipynb @@ -12,7 +12,7 @@ "\n", "## Contents\n", "\n", - "* [Quantum SVM for Classification](qsvm_kernel_classification.ipynb)\n", + "* [Quantum SVM for Classification](qsvm_classification.ipynb)\n", "* More examples can be found in [commuity/aqua/artificial_intelligence](../../../community/aqua/artificial_intelligence)" ] }, @@ -28,9 +28,9 @@ ], "metadata": { "kernelspec": { - "display_name": "quantum-dev", + "display_name": "Python 3", "language": "python", - "name": "quantum-dev" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -42,7 +42,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb b/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb index 92b21d66a..7f6620745 100644 --- a/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb +++ b/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb @@ -190,7 +190,7 @@ " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'qasm_simulator', 'shots': 1024},\n", " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", "}\n", - "algo_input = SVMInput(training_input, test_input, datapoints[0])\n", + "algo_input = ClassificationInput(training_input, test_input, datapoints[0])\n", "result = run_algorithm(params, algo_input)\n", "\"\"\"\n", "\n", @@ -292,7 +292,7 @@ "result = qsvm.run(quantum_instance)\n", "\n", "\"\"\"declarative approach, re-use the params above\n", - "algo_input = SVMInput(training_input, test_input)\n", + "algo_input = ClassificationInput(training_input, test_input)\n", "result = run_algorithm(params, algo_input)\n", "\"\"\"\n", "print(\"testing success ratio: \", result['testing_accuracy'])" From 3f4a76c48b3dbde678f412d7681f3391c267dfa4 Mon Sep 17 00:00:00 2001 From: woodsp Date: Sun, 28 Apr 2019 17:07:55 -0400 Subject: [PATCH 086/116] Update optimization notebooks --- community/aqua/optimization/clique.ipynb | 141 +++++++++++----- community/aqua/optimization/exact_cover.ipynb | 152 ++++++++++++------ .../aqua/optimization/graph_partition.ipynb | 133 +++++++++------ community/aqua/optimization/set_packing.ipynb | 148 +++++++++++------ .../aqua/optimization/vertex_cover.ipynb | 145 +++++++++++------ 5 files changed, 478 insertions(+), 241 deletions(-) diff --git a/community/aqua/optimization/clique.ipynb b/community/aqua/optimization/clique.ipynb index e43a53568..802bbeb8e 100644 --- a/community/aqua/optimization/clique.ipynb +++ b/community/aqua/optimization/clique.ipynb @@ -10,8 +10,10 @@ "\n", "The problem is defined as follows. A clique in a graph $G$ is a complete subgraph of $G$. That is, it is a subset $K$ of the vertices such that every two vertices in $K$ are the two endpoints of an edge in $G$. A maximal clique is a clique to which no more vertices can be added. A maximum clique is a clique that includes the largest possible number of vertices. \n", "\n", - "We will go through three examples to show (1) how to run the optimization in the non-programming way, (2) how to run the optimization in the programming way, (3) how to run the optimization with the VQE.\n", - "We will omit the details for the support of CPLEX, which are explained in other notebooks such as maxcut.\n", + "We will go through three examples to show:\n", + "1. How to run the optimization using the declarative approach\n", + "2. How to run the optimization using the programmatic approach\n", + "3. How how to run the optimization with the VQE.\n", "\n", "Note that the solution may not be unique." ] @@ -20,7 +22,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### The problem and a brute-force method." + "#### The problem and a brute-force method." ] }, { @@ -31,7 +33,7 @@ "source": [ "import numpy as np\n", "\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", @@ -87,7 +89,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [1, 0, 0, 1, 1]\n" + "Solution is [1, 0, 0, 1, 1]\n" ] } ], @@ -111,16 +113,22 @@ "\n", "has_sol, sol = brute_force()\n", "if has_sol:\n", - " print(\"solution is \", sol)\n", + " print(\"Solution is \", sol)\n", "else:\n", - " print(\"no solution found for K=\", K)" + " print(\"No solution found for K=\", K)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part I: run the optimization in the non-programming way" + "#### Part I: Run the optimization using the declarative approach\n", + "\n", + "Here the steps are:\n", + "* Create the qubit operator i.e. Ising Hamiltonian, using clique ising translator\n", + "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", + "* Run the algorithm and get the result\n", + "* Use the result with the clique object to determine a solution" ] }, { @@ -132,31 +140,35 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [1. 0. 1. 1. 0.]\n" + "Solution is [1. 0. 1. 1. 0.]\n" ] } ], "source": [ "qubit_op, offset = clique.get_clique_qubitops(w, K)\n", + "\n", "algo_input = EnergyInput(qubit_op)\n", "params = {\n", " 'problem': {'name': 'ising'},\n", " 'algorithm': {'name': 'ExactEigensolver'}\n", "}\n", "result = run_algorithm(params, algo_input)\n", + "\n", "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", "ising_sol = clique.get_graph_solution(x)\n", "if clique.satisfy_or_not(ising_sol, w, K):\n", - " print(\"solution is\", ising_sol)\n", + " print(\"Solution is\", ising_sol)\n", "else:\n", - " print(\"no solution found for K=\", K)" + " print(\"No solution found for K=\", K)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part II: run the optimization in the programming way" + "#### Part II: Run the optimization using the programmatic approach\n", + "\n", + "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." ] }, { @@ -168,27 +180,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [1. 0. 1. 1. 0.]\n" + "Solution is [1. 0. 1. 1. 0.]\n" ] } ], "source": [ + "# We will use the qubit_op and offset from above and not re-compute them here\n", "\n", - "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", + "algo = ExactEigensolver(qubit_op)\n", "result = algo.run()\n", + "\n", "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", "ising_sol = clique.get_graph_solution(x)\n", "if clique.satisfy_or_not(ising_sol, w, K):\n", - " print(\"solution is\", ising_sol)\n", + " print(\"Solution is\", ising_sol)\n", "else:\n", - " print(\"no solution found for K=\", K) " + " print(\"No solution found for K=\", K) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part III: run the optimization with the VQE" + "#### Part III: Run the optimization with the VQE\n", + "\n", + "##### Declarative\n", + "\n", + "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." ] }, { @@ -200,49 +218,88 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [1. 0. 1. 1. 0.]\n" + "Solution is [1. 0. 1. 1. 0.]\n" ] } ], "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'COBYLA'\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RY',\n", - " 'depth': 5,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", "params = {\n", " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", + " 'algorithm': {'name': 'VQE'},\n", + " 'optimizer': {'name': 'COBYLA'},\n", + " 'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}\n", "}\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", + "\n", "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", "ising_sol = clique.get_graph_solution(x)\n", "\n", "if clique.satisfy_or_not(ising_sol, w, K):\n", - " print(\"solution is\", ising_sol)\n", + " print(\"Solution is\", ising_sol)\n", "else:\n", - " print(\"no solution found for K=\", K)" + " print(\"No solution found for K=\", K)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Programmatic\n", + "\n", + "We can create the objects directly ourselves too and run VQE for the result" ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solution is [1. 0. 1. 1. 0.]\n" + ] + } + ], + "source": [ + "from qiskit.aqua import aqua_globals\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "aqua_globals.random_seed = 10598\n", + "\n", + "optimizer = COBYLA()\n", + "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubit_op, var_form, optimizer)\n", + "\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "result = vqe.run(backend)\n", + "\n", + "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", + "ising_sol = clique.get_graph_solution(x)\n", + "\n", + "if clique.satisfy_or_not(ising_sol, w, K):\n", + " print(\"Solution is\", ising_sol)\n", + "else:\n", + " print(\"No solution found for K=\", K)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "mykernel", + "display_name": "Python 3", "language": "python", - "name": "mykernel" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -254,7 +311,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/optimization/exact_cover.ipynb b/community/aqua/optimization/exact_cover.ipynb index aa8b5b169..23473db08 100644 --- a/community/aqua/optimization/exact_cover.ipynb +++ b/community/aqua/optimization/exact_cover.ipynb @@ -9,22 +9,19 @@ "In mathematics, given a collection $S$ of subsets of a set $X$.\n", "An exact cover is a subcollection $S_{ec} \\subseteq S$ such that each element in $X$ is contained in exactly one subset $\\in S_{ec}$. \n", "\n", - "We will go through three examples to show (1) how to run the optimization in the non-programming way, (2) how to run the optimization in the programming way, (3) how to run the optimization with the VQE.\n", - "We will omit the details for the support of CPLEX, which are explained in other notebooks such as maxcut." + "We will go through three examples to show:\n", + "1. How to run the optimization using the declarative approach\n", + "2. How to run the optimization using the programmatic approach\n", + "3. How how to run the optimization with the VQE." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### The problem and the brute-force method." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "first, let us take a look at the list of subsets." + "#### The problem and the brute-force method.\n", + "\n", + "First, let us take a look at the list of subsets." ] }, { @@ -43,7 +40,8 @@ "source": [ "import numpy as np\n", "import json\n", - "from qiskit import Aer\n", + "\n", + "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", "from qiskit.aqua.translators.ising import exactcover\n", @@ -52,9 +50,7 @@ "input_file = 'sample.exactcover'\n", "with open(input_file) as f:\n", " list_of_subsets = json.load(f)\n", - " print(list_of_subsets)\n", - " qubitOp, offset = exactcover.get_exactcover_qubitops(list_of_subsets)\n", - " algo_input = EnergyInput(qubitOp)" + " print(list_of_subsets)" ] }, { @@ -73,7 +69,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [0, 1, 1, 0]\n" + "Solution is [0, 1, 1, 0]\n" ] } ], @@ -98,16 +94,22 @@ "\n", "has_sol, cur = brute_force()\n", "if has_sol:\n", - " print(\"solution is\", cur)\n", + " print(\"Solution is\", cur)\n", "else:\n", - " print(\"no solution is found\")" + " print(\"No solution is found\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part I: run the optimization in the non-programming way" + "#### Part I: Run the optimization using the declarative approach\n", + "\n", + "Here the steps are:\n", + "* Create the qubit operator i.e. Ising Hamiltonian, using exactcover ising translator\n", + "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", + "* Run the algorithm and get the result\n", + "* Use the result with the exactcover object to determine a solution" ] }, { @@ -119,30 +121,36 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [0. 1. 1. 0.]\n" + "Solution is [0. 1. 1. 0.]\n" ] } ], "source": [ + "qubit_op, offset = exactcover.get_exactcover_qubitops(list_of_subsets)\n", + "algo_input = EnergyInput(qubit_op)\n", + "\n", "params = {\n", " 'problem': {'name': 'ising'},\n", " 'algorithm': {'name': 'ExactEigensolver'}\n", "}\n", "result = run_algorithm(params, algo_input)\n", + "\n", "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", "ising_sol = exactcover.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1, 0])\n", "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", - " print(\"solution is\", ising_sol)\n", + " print(\"Solution is\", ising_sol)\n", "else:\n", - " print(\"no solution is found\")" + " print(\"No solution is found\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part II: run the optimization in the programming way" + "#### Part II: Run the optimization using the programmatic approach\n", + "\n", + "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." ] }, { @@ -154,28 +162,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [0. 1. 1. 0.]\n" + "Solution is [0. 1. 1. 0.]\n" ] } ], "source": [ "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", "result = algo.run()\n", + "\n", "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", "ising_sol = exactcover.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1, 0])\n", "\n", "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", - " print(\"solution is\", ising_sol)\n", + " print(\"Solution is\", ising_sol)\n", "else:\n", - " print(\"no solution is found\")" + " print(\"No solution is found\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part III: run the optimization with VQE" + "#### Part III: Run the optimization with the VQE\n", + "\n", + "##### Declarative\n", + "\n", + "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." ] }, { @@ -187,47 +200,86 @@ "name": "stdout", "output_type": "stream", "text": [ - "solution is [0. 1. 1. 0.]\n" + "Solution is [0. 1. 1. 0.]\n" ] } ], "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'COBYLA'\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RYRZ',\n", - " 'depth': 5\n", - "}\n", - "\n", "params = {\n", " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", + " 'algorithm': {'name': 'VQE'},\n", + " 'optimizer': {'name': 'COBYLA'},\n", + " 'variational_form': {'name': 'RYRZ', 'depth': 5}\n", "}\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", + "\n", "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", "ising_sol = exactcover.get_solution(x)\n", "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", - " print(\"solution is\", ising_sol)\n", + " print(\"Solution is\", ising_sol)\n", "else:\n", - " print(\"no solution is found\")" + " print(\"No solution is found\")" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Programmatic\n", + "\n", + "We can create the objects directly ourselves too and run VQE for the result" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Solution is [0. 1. 1. 0.]\n" + ] + } + ], + "source": [ + "from qiskit.aqua import aqua_globals\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "aqua_globals.random_seed = 10598\n", + "\n", + "optimizer = COBYLA()\n", + "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubit_op, var_form, optimizer)\n", + "\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "result = vqe.run(backend)\n", + "\n", + "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = exactcover.get_solution(x)\n", + "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", + " print(\"Solution is\", ising_sol)\n", + "else:\n", + " print(\"No solution is found\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "mykernel", + "display_name": "Python 3", "language": "python", - "name": "mykernel" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -239,7 +291,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/optimization/graph_partition.ipynb b/community/aqua/optimization/graph_partition.ipynb index 9fe476ba5..81500f48b 100644 --- a/community/aqua/optimization/graph_partition.ipynb +++ b/community/aqua/optimization/graph_partition.ipynb @@ -11,8 +11,10 @@ "The objective of graph partition is to partition $G$ into two sets of the same size (let us assume we have even number of vertices), \n", "while minimizing the capacity of the edges across the two sets.\n", "\n", - "We will go through three examples to show (1) how to run the optimization in the non-programming way, (2) how to run the optimization in the programming way, (3) how to run the optimization with the VQE.\n", - "We will omit the details for the support of CPLEX, which are explained in other notebooks such as maxcut.\n", + "We will go through three examples to show:\n", + "1. How to run the optimization using the declarative approach\n", + "2. How to run the optimization using the programmatic approach\n", + "3. How how to run the optimization with the VQE.\n", "\n", "Note the objective_value below is defined as the the number of crossing edges. The goal is to minimize this value.\n" ] @@ -21,14 +23,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### The problem and the brute-force method" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "the graph involved in our example is as follows. The graph is in the adjacent matrix form." + "#### The problem and the brute-force method\n", + "\n", + "The graph involved in our example is as follows. The graph is in the adjacent matrix form." ] }, { @@ -49,7 +46,7 @@ ], "source": [ "import numpy as np\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", "from qiskit.aqua.translators.ising import graphpartition\n", @@ -65,7 +62,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "the brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is in the first partition) or 1 (meaning the vertex is in the second partition). We print the binary assignment that satisfies the definition of the graph partition and corresponds to the minimial number of crossing edges." + "The brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is in the first partition) or 1 (meaning the vertex is in the second partition). We print the binary assignment that satisfies the definition of the graph partition and corresponds to the minimial number of crossing edges." ] }, { @@ -77,7 +74,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "objective value computed by the brute-force method is 3\n" + "Objective value computed by the brute-force method is 3\n" ] } ], @@ -104,14 +101,14 @@ " return minimal_v\n", "\n", "sol = brute_force()\n", - "print(\"objective value computed by the brute-force method is\", sol)" + "print(\"Objective value computed by the brute-force method is\", sol)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part I: run the optimization in the non-programming way" + "#### Part I: Run the optimization using the declarative approach" ] }, { @@ -123,7 +120,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "objective value computed by ExactEigensolver is 3.0\n" + "Objective value computed by ExactEigensolver is 3.0\n" ] } ], @@ -136,18 +133,19 @@ " 'algorithm': {'name': 'ExactEigensolver'}\n", "}\n", "result = run_algorithm(params, algo_input)\n", + "\n", "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", "# check against the oracle\n", "ising_sol = graphpartition.get_graph_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 0, 1])\n", - "print(\"objective value computed by ExactEigensolver is\", graphpartition.objective_value(x, w))" + "print(\"Objective value computed by ExactEigensolver is\", graphpartition.objective_value(x, w))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part II: run the optimization in the programming way" + "#### Part II: Run the optimization using the programmatic approach" ] }, { @@ -159,25 +157,30 @@ "name": "stdout", "output_type": "stream", "text": [ - "objective value computed by the ExactEigensolver is 3.0\n" + "Objective value computed by the ExactEigensolver is 3.0\n" ] } ], "source": [ "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", "result = algo.run()\n", + "\n", "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", "# check against the oracle\n", "ising_sol = graphpartition.get_graph_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 0, 1])\n", - "print(\"objective value computed by the ExactEigensolver is\", graphpartition.objective_value(x, w))" + "print(\"Objective value computed by the ExactEigensolver is\", graphpartition.objective_value(x, w))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part III: run the optimization with VQE" + "#### Part III: Run the optimization with the VQE\n", + "\n", + "##### Declarative\n", + "\n", + "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." ] }, { @@ -189,48 +192,84 @@ "name": "stdout", "output_type": "stream", "text": [ - "objective value computed by VQE is 3.0\n" + "Objective value computed by VQE is 3.0\n" ] } ], "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'SPSA',\n", - " 'max_trials': 300\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RY',\n", - " 'depth': 5,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", "params = {\n", " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", + " 'algorithm': {'name': 'VQE'},\n", + " 'optimizer': {'name': 'COBYLA'},\n", + " 'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}\n", "}\n", - "backend = Aer.get_backend('statevector_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", + "\n", + "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", + "# check against the oracle\n", + "ising_sol = graphpartition.get_graph_solution(x)\n", + "np.testing.assert_array_equal(ising_sol, [1, 0, 1, 0])\n", + "print(\"Objective value computed by VQE is\", graphpartition.objective_value(x, w))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Programmatic\n", + "\n", + "We can create the objects directly ourselves too and run VQE for the result." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Objective value computed by VQE is 3.0\n" + ] + } + ], + "source": [ + "from qiskit.aqua import aqua_globals\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "aqua_globals.random_seed = 10598\n", + "\n", + "optimizer = COBYLA()\n", + "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubit_op, var_form, optimizer)\n", + "\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "result = vqe.run(backend)\n", + "\n", "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", "# check against the oracle\n", "ising_sol = graphpartition.get_graph_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [1, 0, 0, 1])\n", - "print(\"objective value computed by VQE is\", graphpartition.objective_value(x, w))" + "np.testing.assert_array_equal(ising_sol, [1, 0, 1, 0])\n", + "print(\"Objective value computed by VQE is\", graphpartition.objective_value(x, w))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "mykernel", + "display_name": "Python 3", "language": "python", - "name": "mykernel" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -242,7 +281,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/optimization/set_packing.ipynb b/community/aqua/optimization/set_packing.ipynb index b2d539e74..f73752c6b 100644 --- a/community/aqua/optimization/set_packing.ipynb +++ b/community/aqua/optimization/set_packing.ipynb @@ -8,23 +8,19 @@ "\n", "Given a collection $S$ of subsets of a set $X$, the set packing problem tries to find the subsets that are pairwise disjoint (in other words, no two of them share an element). The goal is to maximize the number of such subsets.\n", "\n", - "We will go through three examples to show (1) how to run the optimization in the non-programming way, (2) how to run the optimization in the programming way, (3) how to run the optimization with the VQE.\n", - "We will omit the details for the support of CPLEX, which are explained in other notebooks such as maxcut.\n", - "\n" + "We will go through three examples to show:\n", + "1. How to run the optimization using the declarative approach\n", + "2. How to run the optimization using the programmatic approach\n", + "3. How how to run the optimization with the VQE." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### The problem and the brute-force method." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "the problem is as follows. First, let us print the list of subsets." + "#### The problem and the brute-force method.\n", + "\n", + "The problem is as follows. First, let us print the list of subsets." ] }, { @@ -44,7 +40,7 @@ "import numpy as np\n", "import json\n", "\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", @@ -55,16 +51,14 @@ "input_file = 'sample.setpacking'\n", "with open(input_file) as f:\n", " list_of_subsets = json.load(f)\n", - " print(list_of_subsets)\n", - " qubitOp, offset = setpacking.get_setpacking_qubitops(list_of_subsets)\n", - " algo_input = EnergyInput(qubitOp)" + " print(list_of_subsets)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "the brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a subset is either 0 (meaning the subset is not taken) or 1 (meaning the subset is taken). We print the binary assignment that satisfies the definition of the set packing. " + "The brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a subset is either 0 (meaning the subset is not taken) or 1 (meaning the subset is taken). We print the binary assignment that satisfies the definition of the set packing. " ] }, { @@ -76,7 +70,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of set packing 2\n" + "Size of set packing 2\n" ] } ], @@ -99,14 +93,20 @@ " return max_v\n", "\n", "size = brute_force()\n", - "print(\"size of set packing\", size)" + "print(\"Size of set packing\", size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part I: run the optimization in the non-programming way" + "#### Part I: Run the optimization using the declarative approach\n", + "\n", + "Here the steps are:\n", + "* Create the qubit operator i.e. Ising Hamiltonian, using setpacking ising translator\n", + "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", + "* Run the algorithm and get the result\n", + "* Use the result with the setpacking object to determine a solution" ] }, { @@ -118,27 +118,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of set packing 2\n" + "Size of set packing 2\n" ] } ], "source": [ + "qubit_op, offset = setpacking.get_setpacking_qubitops(list_of_subsets)\n", + "\n", + "algo_input = EnergyInput(qubit_op)\n", "params = {\n", " 'problem': {'name': 'ising'},\n", " 'algorithm': {'name': 'ExactEigensolver'}\n", "}\n", "result = run_algorithm(params, algo_input)\n", + "\n", "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", "ising_sol = setpacking.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1])\n", - "print(\"size of set packing\", np.count_nonzero(ising_sol))" + "print(\"Size of set packing\", np.count_nonzero(ising_sol))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part II: run the optimization in the programming way" + "#### Part II: Run the optimization using the programmatic approach\n", + "\n", + "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." ] }, { @@ -150,25 +156,30 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of set packing 2\n" + "Size of set packing 2\n" ] } ], "source": [ - "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", + "algo = ExactEigensolver(qubit_op)\n", "result = algo.run()\n", + "\n", "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", "ising_sol = setpacking.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1])\n", "oracle = brute_force()\n", - "print(\"size of set packing\", np.count_nonzero(ising_sol))" + "print(\"Size of set packing\", np.count_nonzero(ising_sol))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part III: run the optimization with VQE" + "#### Part III: Run the optimization with the VQE\n", + "\n", + "##### Declarative\n", + "\n", + "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." ] }, { @@ -180,47 +191,80 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of set packing 2\n" + "Size of set packing 2\n" ] } ], "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'paulis'\n", - "\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'SPSA',\n", - " 'max_trials': 200\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RY',\n", - " 'depth': 5,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", "params = {\n", " 'problem': {'name': 'ising', 'random_seed': 100},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", + " 'algorithm': {'name': 'VQE'},\n", + " 'optimizer': {'name': 'COBYLA'},\n", + " 'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}\n", "}\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", + "\n", "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", "ising_sol = setpacking.get_solution(x)\n", - "print(\"size of set packing\", np.count_nonzero(ising_sol))" + "print(\"Size of set packing\", np.count_nonzero(ising_sol))" ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Programmatic\n", + "\n", + "We can create the objects directly ourselves too and run VQE for the result" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of set packing 2\n" + ] + } + ], + "source": [ + "from qiskit.aqua import aqua_globals\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "\n", + "aqua_globals.random_seed = 100\n", + "\n", + "optimizer = COBYLA()\n", + "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubit_op, var_form, optimizer)\n", + "\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "result = vqe.run(backend)\n", + "\n", + "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = setpacking.get_solution(x)\n", + "print(\"Size of set packing\", np.count_nonzero(ising_sol))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "mykernel", + "display_name": "Python 3", "language": "python", - "name": "mykernel" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -232,7 +276,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/optimization/vertex_cover.ipynb b/community/aqua/optimization/vertex_cover.ipynb index 31e0869cd..951af3f08 100644 --- a/community/aqua/optimization/vertex_cover.ipynb +++ b/community/aqua/optimization/vertex_cover.ipynb @@ -8,23 +8,19 @@ "\n", "A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The goal of NPC problem is to minimize the size of the vertex cover. \n", "\n", - "\n", - "We will go through three examples to show (1) how to run the optimization in the non-programming way, (2) how to run the optimization in the programming way, (3) how to run the optimization with the VQE.\n", - "We will omit the details for the support of CPLEX, which are explained in other notebooks such as maxcut.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The problem and the brute-force method" + "We will go through three examples to show:\n", + "1. How to run the optimization using the declarative approach\n", + "2. How to run the optimization using the programmatic approach\n", + "3. How how to run the optimization with the VQE." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "the problem is as follows. the graph is in the adjacent matrix form." + "#### The problem and the brute-force method\n", + "\n", + "The problem is as follows. the graph is in the adjacent matrix form." ] }, { @@ -44,7 +40,7 @@ ], "source": [ "import numpy as np\n", - "from qiskit import Aer\n", + "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", "from qiskit.aqua.translators.ising import vertexcover\n", @@ -53,16 +49,14 @@ "np.random.seed(100)\n", "num_nodes = 3\n", "w = vertexcover.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", - "print(w)\n", - "qubit_op, offset = vertexcover.get_vertexcover_qubitops(w)\n", - "algo_input = EnergyInput(qubit_op)" + "print(w)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "the brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is not in the cover) or 1 (meaning the vertex is in the cover). We print the binary assignment that satisfies the definition of the vertex cover and corresponds to the minimial size. " + "The brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is not in the cover) or 1 (meaning the vertex is in the cover). We print the binary assignment that satisfies the definition of the vertex cover and corresponds to the minimial size. " ] }, { @@ -74,7 +68,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of the vertex cover 2\n" + "Size of the vertex cover 2\n" ] } ], @@ -100,14 +94,20 @@ " return minimal_v\n", "\n", "size = brute_force()\n", - "print('size of the vertex cover', size)" + "print('Size of the vertex cover', size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part I: run the optimization in the non-programming way" + "#### Part I: Run the optimization using the declarative approach\n", + "\n", + "Here the steps are:\n", + "* Create the qubit operator i.e. Ising Hamiltonian, using vertexcover ising translator\n", + "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", + "* Run the algorithm and get the result\n", + "* Use the result with the vertexcover object to determine a solution" ] }, { @@ -119,11 +119,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of the vertex cover 2\n" + "Size of the vertex cover 2\n" ] } ], "source": [ + "qubit_op, offset = vertexcover.get_vertexcover_qubitops(w)\n", + "\n", + "algo_input = EnergyInput(qubit_op)\n", "params = {\n", " 'problem': {'name': 'ising'},\n", " 'algorithm': {'name': 'ExactEigensolver'}\n", @@ -133,14 +136,16 @@ "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", "sol = vertexcover.get_graph_solution(x)\n", "np.testing.assert_array_equal(sol, [0, 1, 1])\n", - "print('size of the vertex cover', np.count_nonzero(sol))" + "print('Size of the vertex cover', np.count_nonzero(sol))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part II: run the optimization in the programming way" + "#### Part II: Run the optimization using the programmatic approach\n", + "\n", + "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." ] }, { @@ -152,24 +157,29 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of the vertex cover 2\n" + "Size of the vertex cover 2\n" ] } ], "source": [ - "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", + "algo = ExactEigensolver(qubit_op)\n", "result = algo.run()\n", + "\n", "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", "sol = vertexcover.get_graph_solution(x)\n", "np.testing.assert_array_equal(sol, [0, 1, 1])\n", - "print('size of the vertex cover', np.count_nonzero(sol))" + "print('Size of the vertex cover', np.count_nonzero(sol))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Part III: run the optimization with VQE" + "#### Part III: Run the optimization with the VQE\n", + "\n", + "##### Declarative\n", + "\n", + "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." ] }, { @@ -181,45 +191,80 @@ "name": "stdout", "output_type": "stream", "text": [ - "size of the vertex cover 2\n" + "Size of the vertex cover 2\n" ] } ], "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'paulis'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'SPSA',\n", - " 'max_trials': 200\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RYRZ',\n", - " 'depth': 3,\n", - "}\n", - "\n", "params = {\n", " 'problem': {'name': 'ising', 'random_seed': 100},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", + " 'algorithm': {'name': 'VQE', 'operator_mode': 'paulis'},\n", + " 'optimizer': {'name': 'SPSA', 'max_trials': 200},\n", + " 'variational_form': {'name': 'RYRZ', 'depth': 3}\n", "}\n", - "backend = Aer.get_backend('qasm_simulator')\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", + "\n", + "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", + "sol = vertexcover.get_graph_solution(x)\n", + "print('Size of the vertex cover', np.count_nonzero(sol))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "##### Programmatic\n", + "\n", + "We can create the objects directly ourselves too and run VQE for the result" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of the vertex cover 2\n" + ] + } + ], + "source": [ + "from qiskit.aqua import aqua_globals\n", + "from qiskit.aqua.algorithms import VQE\n", + "from qiskit.aqua.components.optimizers import SPSA\n", + "from qiskit.aqua.components.variational_forms import RYRZ\n", + "\n", + "aqua_globals.random_seed = 100\n", + "\n", + "optimizer = SPSA(max_trials=200)\n", + "var_form = RYRZ(qubit_op.num_qubits, depth=3)\n", + "vqe = VQE(qubit_op, var_form, optimizer, operator_mode='paulis')\n", + "\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "result = vqe.run(backend)\n", + "\n", "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", "sol = vertexcover.get_graph_solution(x)\n", - "print('size of the vertex cover', np.count_nonzero(sol))" + "print('Size of the vertex cover', np.count_nonzero(sol))" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "mykernel", + "display_name": "Python 3", "language": "python", - "name": "mykernel" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -231,7 +276,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.1" } }, "nbformat": 4, From bbfc55ff334e2af0c108cd5212786d4c7bce2539 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Mon, 29 Apr 2019 10:29:43 +0200 Subject: [PATCH 087/116] adjust tutorials index --- index.ipynb | 9 +++++++-- qiskit/finance/{qiskit_finance.ipynb => index.ipynb} | 0 2 files changed, 7 insertions(+), 2 deletions(-) rename qiskit/finance/{qiskit_finance.ipynb => index.ipynb} (100%) diff --git a/index.ipynb b/index.ipynb index d03034999..3a9fc0911 100644 --- a/index.ipynb +++ b/index.ipynb @@ -79,7 +79,12 @@ " * [Chemistry](qiskit/aqua/chemistry/index.ipynb) - using variational quantum eigensolver to experiment with molecular ground-state energy on a quantum computer\n", " * [Optimization](qiskit/aqua/optimization/index.ipynb) - using variational quantum eigensolver to experiment with optimization problems (maxcut and traveling salesman problem) on a quantum computer \n", " * [Artificial Intelligence](qiskit/aqua/artificial_intelligence/index.ipynb) - using quantum-enhanced support vector machine to experiment with classification problems on a quantum computer\n", - " * [Finance](qiskit/aqua/finance/index.ipynb) - using variational quantum eigensolver to optimize portfolio on a quantum computer \n", + "\n", + "#### 1.7 Qiskit Finance\n", + "\n", + "[Qiskit Finance]() provides a colleaction of applications of quantum algorithms to use cases relevant in finance.\n", + "This includes use cases like portfolio management, derivative pricing, or credit risk analysis.\n", + "\n", "\n", "### 2. Community Notebooks\n", "\n", @@ -245,7 +250,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/qiskit/finance/qiskit_finance.ipynb b/qiskit/finance/index.ipynb similarity index 100% rename from qiskit/finance/qiskit_finance.ipynb rename to qiskit/finance/index.ipynb From 3e8c4940b86c21e4f7a40d0e12496da22b98d1e3 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Mon, 29 Apr 2019 11:20:03 -0400 Subject: [PATCH 088/116] along with https://github.com/Qiskit/qiskit-aqua/pull/496 --- community/aqua/general/vqe2iqpe.ipynb | 20 +- community/aqua/index.ipynb | 2 +- community/aqua/optimization/exact_cover.ipynb | 36 +- .../aqua/optimization/graph_partition.ipynb | 41 +- .../{maxcut.ipynb => max_cut.ipynb} | 54 +- community/aqua/optimization/set_packing.ipynb | 35 +- .../{stableset.ipynb => stable_set.ipynb} | 30 +- .../aqua/optimization/vertex_cover.ipynb | 39 +- .../.ipynb_checkpoints/w8_03-checkpoint.ipynb | 504 ++++++++ .../.ipynb_checkpoints/w8_04-checkpoint.ipynb | 478 ++++++++ .../exercises/w8_03.ipynb | 111 +- .../exercises/w8_04.ipynb | 14 +- .../08_Sampling a Thermal State.ipynb | 27 +- ...timization and Unsupervised Learning.ipynb | 22 +- index.ipynb | 4 +- qiskit/aqua/optimization/docplex.ipynb | 8 +- qiskit/aqua/optimization/index.ipynb | 8 +- .../aqua/optimization/max_cut_and_tsp.ipynb | 1060 +++++++++++++++++ qiskit/aqua/optimization/maxcut_and_tsp.ipynb | 1022 ---------------- 19 files changed, 2260 insertions(+), 1255 deletions(-) rename community/aqua/optimization/{maxcut.ipynb => max_cut.ipynb} (81%) rename community/aqua/optimization/{stableset.ipynb => stable_set.ipynb} (90%) create mode 100644 community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_03-checkpoint.ipynb create mode 100644 community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_04-checkpoint.ipynb create mode 100644 qiskit/aqua/optimization/max_cut_and_tsp.ipynb delete mode 100644 qiskit/aqua/optimization/maxcut_and_tsp.ipynb diff --git a/community/aqua/general/vqe2iqpe.ipynb b/community/aqua/general/vqe2iqpe.ipynb index 9367a2235..3949bb4b0 100644 --- a/community/aqua/general/vqe2iqpe.ipynb +++ b/community/aqua/general/vqe2iqpe.ipynb @@ -26,7 +26,7 @@ "from qiskit.aqua.algorithms import IQPE\n", "from qiskit.aqua.components.variational_forms import RYRZ\n", "from qiskit.aqua.components.optimizers import SPSA\n", - "from qiskit.aqua.components.initial_states.varformbased import VarFormBased" + "from qiskit.aqua.components.initial_states.var_form_based import VarFormBased" ] }, { @@ -70,7 +70,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "The reference ground energy level is -1.8572750302023793.\n" + "The reference ground energy level is -1.857275030202379.\n" ] } ], @@ -137,7 +137,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -153,9 +153,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Continuing with VQE's result, IQPE estimated the ground energy to be -1.8531516030612387.\n" + ] + } + ], "source": [ "num_time_slices = 50\n", "num_iterations = 11\n", @@ -193,7 +201,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/index.ipynb b/community/aqua/index.ipynb index 415db6024..6e9a52e53 100644 --- a/community/aqua/index.ipynb +++ b/community/aqua/index.ipynb @@ -72,7 +72,7 @@ "\n", "* [Using Grover Search for 3SAT problems](optimization/grover.ipynb)\n", "* [Using Aqua for partition problems](optimization/partition.ipynb)\n", - "* [Using Aqua for stableset problems](optimization/stableset.ipynb)\n", + "* [Using Aqua for stable-set problems](optimization/stable_set.ipynb)\n", "\n", "The repository here may be viewed for the\n", "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/aqua/optimization).\n", diff --git a/community/aqua/optimization/exact_cover.ipynb b/community/aqua/optimization/exact_cover.ipynb index 23473db08..172b6110a 100644 --- a/community/aqua/optimization/exact_cover.ipynb +++ b/community/aqua/optimization/exact_cover.ipynb @@ -44,7 +44,7 @@ "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import exactcover\n", + "from qiskit.aqua.translators.ising import exact_cover\n", "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "input_file = 'sample.exactcover'\n", @@ -86,7 +86,7 @@ " max = 2**L\n", " for i in range(max):\n", " cur = bitfield(i, L)\n", - " cur_v = exactcover.check_solution_satisfiability(cur, list_of_subsets)\n", + " cur_v = exact_cover.check_solution_satisfiability(cur, list_of_subsets)\n", " if cur_v:\n", " has_sol = True\n", " break\n", @@ -106,10 +106,10 @@ "#### Part I: Run the optimization using the declarative approach\n", "\n", "Here the steps are:\n", - "* Create the qubit operator i.e. Ising Hamiltonian, using exactcover ising translator\n", + "* Create the qubit operator i.e. Ising Hamiltonian, using `exact_cover` ising translator\n", "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", "* Run the algorithm and get the result\n", - "* Use the result with the exactcover object to determine a solution" + "* Use the result with the `exact_cover` object to determine a solution" ] }, { @@ -126,7 +126,7 @@ } ], "source": [ - "qubit_op, offset = exactcover.get_exactcover_qubitops(list_of_subsets)\n", + "qubit_op, offset = exact_cover.get_exact_cover_qubitops(list_of_subsets)\n", "algo_input = EnergyInput(qubit_op)\n", "\n", "params = {\n", @@ -135,10 +135,10 @@ "}\n", "result = run_algorithm(params, algo_input)\n", "\n", - "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exactcover.get_solution(x)\n", + "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = exact_cover.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1, 0])\n", - "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", + "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", " print(\"Solution is\", ising_sol)\n", "else:\n", " print(\"No solution is found\")" @@ -170,11 +170,11 @@ "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", "result = algo.run()\n", "\n", - "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exactcover.get_solution(x)\n", + "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = exact_cover.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1, 0])\n", "\n", - "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", + "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", " print(\"Solution is\", ising_sol)\n", "else:\n", " print(\"No solution is found\")" @@ -214,9 +214,9 @@ "backend = BasicAer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", "\n", - "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exactcover.get_solution(x)\n", - "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", + "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = exact_cover.get_solution(x)\n", + "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", " print(\"Solution is\", ising_sol)\n", "else:\n", " print(\"No solution is found\")" @@ -259,9 +259,9 @@ "backend = BasicAer.get_backend('statevector_simulator')\n", "result = vqe.run(backend)\n", "\n", - "x = exactcover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exactcover.get_solution(x)\n", - "if exactcover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", + "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = exact_cover.get_solution(x)\n", + "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", " print(\"Solution is\", ising_sol)\n", "else:\n", " print(\"No solution is found\")" @@ -291,7 +291,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/optimization/graph_partition.ipynb b/community/aqua/optimization/graph_partition.ipynb index 81500f48b..e64c44514 100644 --- a/community/aqua/optimization/graph_partition.ipynb +++ b/community/aqua/optimization/graph_partition.ipynb @@ -49,12 +49,12 @@ "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import graphpartition\n", + "from qiskit.aqua.translators.ising import graph_partition\n", "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "np.random.seed(100)\n", "num_nodes = 4\n", - "w = graphpartition.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", + "w = graph_partition.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", "print(w)" ] }, @@ -95,7 +95,7 @@ " if how_many_nonzero * 2 != L: # not balanced\n", " continue\n", "\n", - " cur_v = graphpartition.objective_value(np.array(cur), w)\n", + " cur_v = graph_partition.objective_value(np.array(cur), w)\n", " if cur_v < minimal_v:\n", " minimal_v = cur_v\n", " return minimal_v\n", @@ -125,7 +125,7 @@ } ], "source": [ - "qubit_op, offset = graphpartition.get_graphpartition_qubitops(w)\n", + "qubit_op, offset = graph_partition.get_graph_partition_qubitops(w)\n", "algo_input = EnergyInput(qubit_op)\n", "\n", "params = {\n", @@ -134,11 +134,11 @@ "}\n", "result = run_algorithm(params, algo_input)\n", "\n", - "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", + "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", "# check against the oracle\n", - "ising_sol = graphpartition.get_graph_solution(x)\n", + "ising_sol = graph_partition.get_graph_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 0, 1])\n", - "print(\"Objective value computed by ExactEigensolver is\", graphpartition.objective_value(x, w))" + "print(\"Objective value computed by ExactEigensolver is\", graph_partition.objective_value(x, w))" ] }, { @@ -165,11 +165,11 @@ "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", "result = algo.run()\n", "\n", - "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", + "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", "# check against the oracle\n", - "ising_sol = graphpartition.get_graph_solution(x)\n", + "ising_sol = graph_partition.get_graph_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 0, 1])\n", - "print(\"Objective value computed by the ExactEigensolver is\", graphpartition.objective_value(x, w))" + "print(\"Objective value computed by the ExactEigensolver is\", graph_partition.objective_value(x, w))" ] }, { @@ -206,11 +206,11 @@ "backend = BasicAer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", "\n", - "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", + "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", "# check against the oracle\n", - "ising_sol = graphpartition.get_graph_solution(x)\n", + "ising_sol = graph_partition.get_graph_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [1, 0, 1, 0])\n", - "print(\"Objective value computed by VQE is\", graphpartition.objective_value(x, w))" + "print(\"Objective value computed by VQE is\", graph_partition.objective_value(x, w))" ] }, { @@ -250,19 +250,12 @@ "backend = BasicAer.get_backend('statevector_simulator')\n", "result = vqe.run(backend)\n", "\n", - "x = graphpartition.sample_most_likely(result['eigvecs'][0])\n", + "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", "# check against the oracle\n", - "ising_sol = graphpartition.get_graph_solution(x)\n", + "ising_sol = graph_partition.get_graph_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [1, 0, 1, 0])\n", - "print(\"Objective value computed by VQE is\", graphpartition.objective_value(x, w))" + "print(\"Objective value computed by VQE is\", graph_partition.objective_value(x, w))" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -281,7 +274,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/optimization/maxcut.ipynb b/community/aqua/optimization/max_cut.ipynb similarity index 81% rename from community/aqua/optimization/maxcut.ipynb rename to community/aqua/optimization/max_cut.ipynb index daa003ba2..fcc88a02c 100644 --- a/community/aqua/optimization/maxcut.ipynb +++ b/community/aqua/optimization/max_cut.ipynb @@ -6,7 +6,7 @@ "collapsed": true }, "source": [ - "## _*Using Qiskit Aqua for maxcut problems*_\n", + "## _*Using Qiskit Aqua for max-cut problems*_\n", "\n", "This Qiskit Aqua Optimization notebook demonstrates how to use the VQE quantum algorithm to compute the max cut of a given graph. \n", "\n", @@ -25,7 +25,7 @@ "\n", "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import maxcut\n", + "from qiskit.aqua.translators.ising import max_cut\n", "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", "from qiskit import Aer" ] @@ -34,7 +34,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here an Operator instance is created for our Hamiltonian. In this case the paulis are from an Ising Hamiltonian translated from the max cut problem. We load a small sample instance of the maxcut problem." + "Here an Operator instance is created for our Hamiltonian. In this case the paulis are from an Ising Hamiltonian translated from the max-cut problem. We load a small sample instance of the max-cut problem." ] }, { @@ -43,8 +43,8 @@ "metadata": {}, "outputs": [], "source": [ - "w = maxcut.parse_gset_format('sample.maxcut')\n", - "qubitOp, offset = maxcut.get_maxcut_qubitops(w)\n", + "w = max_cut.parse_gset_format('sample.maxcut')\n", + "qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", "algo_input = EnergyInput(qubitOp)" ] }, @@ -74,8 +74,8 @@ "source": [ "if True:\n", " np.random.seed(8123179)\n", - " w = maxcut.random_graph(4, edge_prob=0.5, weight_range=10)\n", - " qubitOp, offset = maxcut.get_maxcut_qubitops(w)\n", + " w = max_cut.random_graph(4, edge_prob=0.5, weight_range=10)\n", + " qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", " algo_input.qubit_op = qubitOp\n", "print(w)" ] @@ -84,7 +84,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Here we test for the presence of algorithms we want to use in this notebook. If Aqua is installed correctly `ExactEigensolver` and `VQE` will always be found. `CPLEX.Ising` is dependent on IBM CPLEX being installed (see introduction above). CPLEX is *not required* but if installed then this notebook will demonstrate the `CPLEX.Ising` algorithm , that uses CPLEX, to compute maxcut as well." + "Here we test for the presence of algorithms we want to use in this notebook. If Aqua is installed correctly `ExactEigensolver` and `VQE` will always be found. `CPLEX.Ising` is dependent on IBM CPLEX being installed (see introduction above). CPLEX is *not required* but if installed then this notebook will demonstrate the `CPLEX.Ising` algorithm , that uses CPLEX, to compute max-cut as well." ] }, { @@ -122,7 +122,7 @@ "output_type": "stream", "text": [ "energy: -20.5\n", - "maxcut objective: -24.0\n", + "max-cut objective: -24.0\n", "solution: [1. 0. 1. 1.]\n", "solution objective: 24.0\n" ] @@ -138,12 +138,12 @@ " 'algorithm': algorithm_cfg\n", "}\n", "result = run_algorithm(params,algo_input)\n", - "# print('objective function:', maxcut.maxcut_obj(result, offset))\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", + "# print('objective function:', max_cut.max_cut_obj(result, offset))\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", "print('energy:', result['energy'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))" + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))" ] }, { @@ -154,7 +154,7 @@ "\n", "We change the configuration parameters to solve it with the CPLEX backend. The CPLEX backend can deal with a particular type of Hamiltonian called Ising Hamiltonian, which consists of only Pauli Z at most second order and often for combinatorial optimization problems that can be formulated as quadratic unconstrained binary optimization problems, such as the max-cut problem.\n", "\n", - "Note that for a maxcut problem, since we are computing a bipartition of the graph, every binary vector $x$ and its complement (i.e., the vector $y$ such that $y_j = 1 - x_j$ for all $j$) represent exactly the same solution, and will have the same objective function value. Different solution methods may return solutions that look different, but in fact have the same objective function value." + "Note that for a max-cut problem, since we are computing a bipartition of the graph, every binary vector $x$ and its complement (i.e., the vector $y$ such that $y_j = 1 - x_j$ for all $j$) represent exactly the same solution, and will have the same objective function value. Different solution methods may return solutions that look different, but in fact have the same objective function value." ] }, { @@ -174,7 +174,7 @@ "CPXPARAM_MIP_Display 0\n", "energy: -20.5\n", "time: 0.026632682000126806\n", - "maxcut objective: -24.0\n", + "max-cut objective: -24.0\n", "solution: [1 0 1 1]\n", "solution objective: 24.0\n" ] @@ -204,10 +204,10 @@ " x_dict = result['x_sol']\n", " print('energy:', result['energy'])\n", " print('time:', result['eval_time'])\n", - " print('maxcut objective:', result['energy'] + offset)\n", + " print('max-cut objective:', result['energy'] + offset)\n", " x = np.array([x_dict[i] for i in sorted(x_dict.keys())])\n", - " print('solution:', maxcut.get_graph_solution(x))\n", - " print('solution objective:', maxcut.maxcut_value(x, w))" + " print('solution:', max_cut.get_graph_solution(x))\n", + " print('solution objective:', max_cut.max_cut_value(x, w))" ] }, { @@ -226,9 +226,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -20.499999999996096\n", - "time: 48.52856922149658\n", - "maxcut objective: -23.999999999996096\n", + "energy: -20.499999999997623\n", + "time: 12.321285724639893\n", + "max-cut objective: -23.999999999997623\n", "solution: [1. 0. 1. 1.]\n", "solution objective: 24.0\n" ] @@ -261,12 +261,12 @@ "backend = Aer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", "\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", "print('energy:', result['energy'])\n", "print('time:', result['eval_time'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))" + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))" ] } ], @@ -286,7 +286,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/optimization/set_packing.ipynb b/community/aqua/optimization/set_packing.ipynb index f73752c6b..4d435e1e2 100644 --- a/community/aqua/optimization/set_packing.ipynb +++ b/community/aqua/optimization/set_packing.ipynb @@ -44,7 +44,7 @@ "\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import setpacking\n", + "from qiskit.aqua.translators.ising import set_packing\n", "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "\n", @@ -86,7 +86,7 @@ " max_v = -np.inf\n", " for i in range(max):\n", " cur = bitfield(i, L)\n", - " cur_v = setpacking.check_disjoint(cur, list_of_subsets)\n", + " cur_v = set_packing.check_disjoint(cur, list_of_subsets)\n", " if cur_v:\n", " if np.count_nonzero(cur) > max_v:\n", " max_v = np.count_nonzero(cur)\n", @@ -103,10 +103,10 @@ "#### Part I: Run the optimization using the declarative approach\n", "\n", "Here the steps are:\n", - "* Create the qubit operator i.e. Ising Hamiltonian, using setpacking ising translator\n", + "* Create the qubit operator i.e. Ising Hamiltonian, using `set_packing` ising translator\n", "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", "* Run the algorithm and get the result\n", - "* Use the result with the setpacking object to determine a solution" + "* Use the result with the `set_packing` object to determine a solution" ] }, { @@ -123,7 +123,7 @@ } ], "source": [ - "qubit_op, offset = setpacking.get_setpacking_qubitops(list_of_subsets)\n", + "qubit_op, offset = set_packing.get_set_packing_qubitops(list_of_subsets)\n", "\n", "algo_input = EnergyInput(qubit_op)\n", "params = {\n", @@ -132,8 +132,8 @@ "}\n", "result = run_algorithm(params, algo_input)\n", "\n", - "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = setpacking.get_solution(x)\n", + "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = set_packing.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1])\n", "print(\"Size of set packing\", np.count_nonzero(ising_sol))" ] @@ -164,8 +164,8 @@ "algo = ExactEigensolver(qubit_op)\n", "result = algo.run()\n", "\n", - "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = setpacking.get_solution(x)\n", + "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = set_packing.get_solution(x)\n", "np.testing.assert_array_equal(ising_sol, [0, 1, 1])\n", "oracle = brute_force()\n", "print(\"Size of set packing\", np.count_nonzero(ising_sol))" @@ -205,8 +205,8 @@ "backend = BasicAer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", "\n", - "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = setpacking.get_solution(x)\n", + "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = set_packing.get_solution(x)\n", "print(\"Size of set packing\", np.count_nonzero(ising_sol))" ] }, @@ -247,17 +247,10 @@ "backend = BasicAer.get_backend('statevector_simulator')\n", "result = vqe.run(backend)\n", "\n", - "x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = setpacking.get_solution(x)\n", + "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", + "ising_sol = set_packing.get_solution(x)\n", "print(\"Size of set packing\", np.count_nonzero(ising_sol))" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -276,7 +269,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/optimization/stableset.ipynb b/community/aqua/optimization/stable_set.ipynb similarity index 90% rename from community/aqua/optimization/stableset.ipynb rename to community/aqua/optimization/stable_set.ipynb index c2229f33a..dfe91fa4f 100644 --- a/community/aqua/optimization/stableset.ipynb +++ b/community/aqua/optimization/stable_set.ipynb @@ -6,7 +6,7 @@ "collapsed": true }, "source": [ - "## _*Using Qiskit Aqua for stableset problems*_\n", + "## _*Using Qiskit Aqua for stable-set problems*_\n", "\n", "This Qiskit Aqua Optimization notebook demonstrates how to use the VQE algorithm to compute the maximum stable set of a given graph. \n", "\n", @@ -24,7 +24,7 @@ "import numpy as np\n", "\n", "from qiskit.aqua import Operator, run_algorithm\n", - "from qiskit.aqua.translators.ising import stableset\n", + "from qiskit.aqua.translators.ising import stable_set\n", "from qiskit.aqua.input import EnergyInput\n", "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", "from qiskit import Aer" @@ -43,8 +43,8 @@ "metadata": {}, "outputs": [], "source": [ - "w = stableset.parse_gset_format('sample.maxcut')\n", - "qubitOp, offset = stableset.get_stableset_qubitops(w)\n", + "w = stable_set.parse_gset_format('sample.maxcut')\n", + "qubitOp, offset = stable_set.get_stable_set_qubitops(w)\n", "algo_input = EnergyInput(qubitOp)" ] }, @@ -75,8 +75,8 @@ "source": [ "if True:\n", " np.random.seed(8123179)\n", - " w = stableset.random_graph(5, edge_prob=0.5)\n", - " qubitOp, offset = stableset.get_stableset_qubitops(w)\n", + " w = stable_set.random_graph(5, edge_prob=0.5)\n", + " qubitOp, offset = stable_set.get_stable_set_qubitops(w)\n", " algo_input.qubit_op = qubitOp\n", "print(w)" ] @@ -140,11 +140,11 @@ "}\n", "result = run_algorithm(params,algo_input)\n", "\n", - "x = stableset.sample_most_likely(result['eigvecs'][0])\n", + "x = stable_set.sample_most_likely(result['eigvecs'][0])\n", "print('energy:', result['energy'])\n", "print('stable set objective:', result['energy'] + offset)\n", - "print('solution:', stableset.get_graph_solution(x))\n", - "print('solution objective and feasibility:', stableset.stableset_value(x, w))" + "print('solution:', stable_set.get_graph_solution(x))\n", + "print('solution objective and feasibility:', stable_set.stable_set_value(x, w))" ] }, { @@ -205,8 +205,8 @@ " print('time:', result['eval_time'])\n", " print('stable set objective:', result['energy'] + offset)\n", " x = np.array([x_dict[i] for i in sorted(x_dict.keys())])\n", - " print('solution:', stableset.get_graph_solution(x))\n", - " print('solution objective and feasibility:', stableset.stableset_value(x, w))" + " print('solution:', stable_set.get_graph_solution(x))\n", + " print('solution objective and feasibility:', stable_set.stable_set_value(x, w))" ] }, { @@ -260,12 +260,12 @@ "backend = Aer.get_backend('statevector_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", "\n", - "x = stableset.sample_most_likely(result['eigvecs'][0])\n", + "x = stable_set.sample_most_likely(result['eigvecs'][0])\n", "print('energy:', result['energy'])\n", "print('time:', result['eval_time'])\n", "print('stable set objective:', result['energy'] + offset)\n", - "print('solution:', stableset.get_graph_solution(x))\n", - "print('solution objective and feasibility:', stableset.stableset_value(x, w))" + "print('solution:', stable_set.get_graph_solution(x))\n", + "print('solution objective and feasibility:', stable_set.stable_set_value(x, w))" ] } ], @@ -285,7 +285,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/aqua/optimization/vertex_cover.ipynb b/community/aqua/optimization/vertex_cover.ipynb index 951af3f08..00aec67c9 100644 --- a/community/aqua/optimization/vertex_cover.ipynb +++ b/community/aqua/optimization/vertex_cover.ipynb @@ -4,7 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## _*Using Qiskit Aqua for the vertex cover problems*_\n", + "## _*Using Qiskit Aqua for the vertex-cover problems*_\n", "\n", "A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The goal of NPC problem is to minimize the size of the vertex cover. \n", "\n", @@ -43,12 +43,12 @@ "from qiskit import BasicAer\n", "from qiskit.aqua import run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import vertexcover\n", + "from qiskit.aqua.translators.ising import vertex_cover\n", "from qiskit.aqua.algorithms import ExactEigensolver\n", "\n", "np.random.seed(100)\n", "num_nodes = 3\n", - "w = vertexcover.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", + "w = vertex_cover.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", "print(w)" ] }, @@ -85,7 +85,7 @@ " for i in range(max):\n", " cur = bitfield(i, L)\n", "\n", - " cur_v = vertexcover.check_full_edge_coverage(np.array(cur), w)\n", + " cur_v = vertex_cover.check_full_edge_coverage(np.array(cur), w)\n", " if cur_v:\n", " nonzerocount = np.count_nonzero(cur)\n", " if nonzerocount < minimal_v:\n", @@ -104,10 +104,10 @@ "#### Part I: Run the optimization using the declarative approach\n", "\n", "Here the steps are:\n", - "* Create the qubit operator i.e. Ising Hamiltonian, using vertexcover ising translator\n", + "* Create the qubit operator i.e. Ising Hamiltonian, using `vertex_cover` ising translator\n", "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", "* Run the algorithm and get the result\n", - "* Use the result with the vertexcover object to determine a solution" + "* Use the result with the `vertex_cover` object to determine a solution" ] }, { @@ -124,7 +124,7 @@ } ], "source": [ - "qubit_op, offset = vertexcover.get_vertexcover_qubitops(w)\n", + "qubit_op, offset = vertex_cover.get_vertex_cover_qubitops(w)\n", "\n", "algo_input = EnergyInput(qubit_op)\n", "params = {\n", @@ -133,8 +133,8 @@ "}\n", "result = run_algorithm(params, algo_input)\n", "\n", - "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertexcover.get_graph_solution(x)\n", + "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", + "sol = vertex_cover.get_graph_solution(x)\n", "np.testing.assert_array_equal(sol, [0, 1, 1])\n", "print('Size of the vertex cover', np.count_nonzero(sol))" ] @@ -165,8 +165,8 @@ "algo = ExactEigensolver(qubit_op)\n", "result = algo.run()\n", "\n", - "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertexcover.get_graph_solution(x)\n", + "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", + "sol = vertex_cover.get_graph_solution(x)\n", "np.testing.assert_array_equal(sol, [0, 1, 1])\n", "print('Size of the vertex cover', np.count_nonzero(sol))" ] @@ -205,8 +205,8 @@ "backend = BasicAer.get_backend('qasm_simulator')\n", "result = run_algorithm(params, algo_input, backend=backend)\n", "\n", - "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertexcover.get_graph_solution(x)\n", + "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", + "sol = vertex_cover.get_graph_solution(x)\n", "print('Size of the vertex cover', np.count_nonzero(sol))" ] }, @@ -247,17 +247,10 @@ "backend = BasicAer.get_backend('qasm_simulator')\n", "result = vqe.run(backend)\n", "\n", - "x = vertexcover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertexcover.get_graph_solution(x)\n", + "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", + "sol = vertex_cover.get_graph_solution(x)\n", "print('Size of the vertex cover', np.count_nonzero(sol))" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -276,7 +269,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_03-checkpoint.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_03-checkpoint.ipynb new file mode 100644 index 000000000..7e4bf44be --- /dev/null +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_03-checkpoint.ipynb @@ -0,0 +1,504 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Experimenting with Max-Cut problem with variational quantum eigensolver*_ \n", + "\n", + "\n", + "This notebook is based on an official notebook by Qiskit team, available at https://github.com/qiskit/qiskit-tutorial under the [Apache License 2.0](https://github.com/Qiskit/qiskit-tutorial/blob/master/LICENSE) license. \n", + "The original notebook was developed by Antonio Mezzacapo[1], Jay Gambetta[1], Kristan Temme[1], Ramis Movassagh[1], Albert Frisch[1], Takashi Imamichi[1], Giacomo Nannicni[1], Richard Chen[1], Marco Pistoia[1], Stephen Wood[1]([1]IBMQ)\n", + "\n", + "Your **TASK** is to execute every step of this notebook while learning to use qiskit-aqua and also how to leverage general problem modeling into know problems that qiskit-aqua can solve, namely the [Maximum Cut problem](https://en.wikipedia.org/wiki/Maximum_cut) problem." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "\n", + "Many problems in quantitative fields such as finance and engineering are optimization problems. Optimization problems lay at the core of complex decision-making and definition of strategies. \n", + "\n", + "Optimization (or combinatorial optimization) means searching for an optimal solution in a finite or countably infinite set of potential solutions. Optimality is defined with respect to some criterion function, which is to be minimized or maximized. This is typically called cost function or objective function. \n", + "\n", + "**Typical optimization problems**\n", + "\n", + "Minimization: cost, distance, length of a traversal, weight, processing time, material, energy consumption, number of objects\n", + "\n", + "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", + "\n", + "We consider here max-cut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", + "\n", + "\n", + "### Weighted Max-Cut\n", + "\n", + "Max-Cut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given Max-Cut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", + "\n", + "The formal definition of this problem is the following:\n", + "\n", + "Consider an $n$-node undirected graph *G = (V, E)* where *|V| = n* with edge weights $w_{ij}>0$, $w_{ij}=w_{ji}$, for $(i, j)\\in E$. A cut is defined as a partition of the original set V into two subsets. The cost function to be optimized is in this case the sum of weights of edges connecting points in the two different subsets, *crossing* the cut. By assigning $x_i=0$ or $x_i=1$ to each node $i$, one tries to maximize the global profit function (here and in the following summations run over indices 0,1,...n-1)\n", + "\n", + "$$\\tilde{C}(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j).$$\n", + "\n", + "In our simple marketing model, $w_{ij}$ represents the probability that the person $j$ will buy a product after $i$ gets a free one. Note that the weights $w_{ij}$ can in principle be greater than $1$, corresponding to the case where the individual $j$ will buy more than one product. Maximizing the total buying probability corresponds to maximizing the total future revenues. In the case where the profit probability will be greater than the cost of the initial free samples, the strategy is a convenient one. An extension to this model has the nodes themselves carry weights, which can be regarded, in our marketing model, as the likelihood that a person granted with a free sample of the product will buy it again in the future. With this additional information in our model, the objective function to maximize becomes \n", + "\n", + "$$C(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j)+\\sum_i w_i x_i. $$\n", + " \n", + "In order to find a solution to this problem on a quantum computer, one needs first to map it to an Ising Hamiltonian. This can be done with the assignment $x_i\\rightarrow (1-Z_i)/2$, where $Z_i$ is the Pauli Z operator that has eigenvalues $\\pm 1$. Doing this we find that \n", + "\n", + "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Generating a graph of 4 nodes \n", + "\n", + "n=4 # Number of nodes in graph\n", + "G=nx.Graph()\n", + "G.add_nodes_from(np.arange(0,n,1))\n", + "elist=[(0,1,1.0),(0,2,1.0),(0,3,1.0),(1,2,1.0),(2,3,1.0)]\n", + "# tuple is (i,j,weight) where (i,j) is the edge\n", + "G.add_weighted_edges_from(elist)\n", + "\n", + "colors = ['r' for node in G.nodes()]\n", + "pos = nx.spring_layout(G)\n", + "default_axes = plt.axes(frameon=True)\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0. 1. 1. 1.]\n", + " [1. 0. 1. 0.]\n", + " [1. 1. 0. 1.]\n", + " [1. 0. 1. 0.]]\n" + ] + } + ], + "source": [ + "# Computing the weight matrix from the random graph\n", + "w = np.zeros([n,n])\n", + "for i in range(n):\n", + " for j in range(n):\n", + " temp = G.get_edge_data(i,j,default=0)\n", + " if temp != 0:\n", + " w[i,j] = temp['weight'] \n", + "print(w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Brute force approach\n", + "\n", + "Try all possible $2^n$ combinations. For $n = 4$, as in this example, one deals with only 16 combinations, but for n = 1000, one has 1.071509e+30 combinations, which is impractical to deal with by using a brute force approach. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "case = [0, 0, 0, 0] cost = 0.0\n", + "case = [1, 0, 0, 0] cost = 3.0\n", + "case = [0, 1, 0, 0] cost = 2.0\n", + "case = [1, 1, 0, 0] cost = 3.0\n", + "case = [0, 0, 1, 0] cost = 3.0\n", + "case = [1, 0, 1, 0] cost = 4.0\n", + "case = [0, 1, 1, 0] cost = 3.0\n", + "case = [1, 1, 1, 0] cost = 2.0\n", + "case = [0, 0, 0, 1] cost = 2.0\n", + "case = [1, 0, 0, 1] cost = 3.0\n", + "case = [0, 1, 0, 1] cost = 4.0\n", + "case = [1, 1, 0, 1] cost = 3.0\n", + "case = [0, 0, 1, 1] cost = 3.0\n", + "case = [1, 0, 1, 1] cost = 2.0\n", + "case = [0, 1, 1, 1] cost = 3.0\n", + "case = [1, 1, 1, 1] cost = 0.0\n", + "\n", + "Best solution = [1, 0, 1, 0] cost = 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb3IYAbCDBAh7CwqVkGGUpYY4t4oWKnWOtqqrV/8tnVVUVtHhTpoHXUgKqvfGlqrrS2/JIQ9RBIIZEASkpCE7Jzr98ed3CaYcSAn5z4n5/N8PPIg4859fwjhfd3nuq77upTWGiGEEJ7Fy+oChBBCOJ+EvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAeS8BdCCA8k4S+EEB5Iwl8IITyQj9UFtKdv3756+PDhVpchhBBuZfv27cVa636dHeey4T98+HAyMjKsLkMIIdyKUirHnuNcNvwdTmsoKIDSUuP90FAYPBi8pOdLCOF5enb419XB55/D22/Djh1QWws+Pkb422zg7Q3jxsH118MPfgCBgVZXLIQQTqFcdVXPhIQEfd7dPlrDp5/C//4vnDljfC4oyAj+lhoboarKaAj8/OCBB+DWW+XVgBDCbSmltmutEzo7ruelXGkpLF1qBHl9vdG9Exr63eAH486/Vy8ICzPef/xxSE6G/Hzn1y2EEE7Us8K/uBhSUuDLLyE8HAIC7P9ePz/je/bsgcWLIceuMRMhhHBLPSf86+rg5puN0I6IAKXO/RxKGd9bWgrXXgtlZY6vUwghXEDPCf/f/x6+/trowumqsDAoLITHHuv6uYQQwgX1jPA/dAhWrzb678/njr8tYWGwaRN89ZVjzieEEC6kZ0z1fP11Y8ZOW4O6LTyal0daVRXVNht9fXy4uU8fFoeHt32wl5fRkLz8Mlx0UTcULYQQ1nH/8C8vN6Z19urV6aG39e3Lo76++Hl5cbS2luU5OVzg78/Y9ub39+oFaWnGOMKwYQ4uXAghrOOQbh+l1BtKqUKl1N52vq6UUr9XSh1WSu1WSsU54roA7Nxp/NnJXT9AtL8/fk1z+JVRF7n19e1/Q/Pdf1qaAwoVQgjX4ag+/7XA3A6+/gNgdNPbcuAPDrou7NtnzPSx01MnTnDRwYMsyc6mr48PF4WEdPwNNhvIGkNCiB7GId0+WusvlVLDOzjkCuDP2niceJtSKlwpNVBrXdDli+/bZzygZaeHIiP52YAB7K6uZntVFX6dDRD7+8OBA10sUgghXIuzZvtEAcdbfJzb9LlWlFLLlVIZSqmMoqIi+85cXX1OM3xq6+o4dOgQ/cvKyKmo4L3i4o6/QSljTSAhhOhBXGqqp9Z6jdY6QWud0K9fp8tRGwIDjbV87OSlFFpr/AMCqKqtZffJk2RlZVFw4gTlFRU0NjaeXZTx9K8QQvQgzgr/PGBIi48HN32u68aMgYaGTg8raWjgs/Jy6r29CQoOJqOujm3A/GHDGBQVhZ+vL2VlZXxz+DDZR45wsrCQyspKGmtqYOxYh5QqhBCuwllTPTcAdyul3gOmAqcd0t8PMGGC0S/fCQWsKy3liYIC6hsbCW9s5IHBg5neNEU0MCCAPn36YNOamupqzlRVUXzqFN6VlWzOyECtXk1iYiLjx4/HT14JCCHcnEPCXyn1F2AG0FcplQusBHwBtNavAluAecBhoAq4zRHXBWDyZKNrprGxw4HfCB8f1jTN1dfA4cOHGdzG/H4vpQgKCiIoKIh+ffpgKytj6o9+xL/z83nhhRc4evQoEydOJDExkcTERMaMGYOXLAEthHAzPWM9/wcegE8+MRZls1NxcTF19fUMGjiw/YPKy2HSJPjwwxafKiczM5O0tDQyMjIoLi4mLi6OpKQkEhISGDFiBMpRS0wIIcQ5snc9/54R/vv3wxVXQEiI3dM+GxoayMrKYtTo0Xi3dedusxnh/9prMGNGu+cpLi4mIyODtLQ00tPTqaurIzEx0WwMBg0aZN/fQQghHMCzwh+MjVjefNNYk99Oubm5BAUH07utVwxlZTBnDrzyyjlNJc3LyyM9Pd18ZRAYGNiqMejdu7fd5xJCiHPleeFfXQ0LFsCxY3Yv63zmzBlOnDxJdHQ0reK9vNw4x9/+Bl0Ia6012dnZZmOQmZnJgAEDSEpKIjExkbi4OEI6e8JYCCHOgeeFP8DJk8ZOXvn5xiuATu7YNZCVlcWgQYMIan5e4PRpY0G3Dz6A0aPP/y/QhsbGRg4ePGh2Ee3du5cRI0aYjcGkSZPwt2PmkhBCtMczwx+gqAjuuQfS041N2zsJ0+JTp6itrSWqXz+orDQCf/Vqp6ziWVdXx549e8zG4JtvviE2NtZsDGJjY/GxY8E6IYRo5rnhD8Zg7fvvG+MAtbXG6pxBQd8dDLbZaDhzhhPHjjFwyBC8f/xjuPNO8PXt+l/gPFRVVbFjxw6zMcjLy2PKlCnmtNJRo0bJtFIhRIc8O/ybVVfDZ5/Bn/5kLAAHRkMA3z4bMHo0H/j6ohYt4qrbb+/a9RysrKyM7du3m41BeXk5CQkJZmMwZMgQmVYqhGhFwv9sjY3GpiylpcYrg7AwGDECfH3JzMzkiSee4MMPP3TpMD158iTp6enmm1LKbAgSExPp37+/1SUKISwm4X8OtNZcffXVPPzww8TFOW6fme6kteb48ePmq4KMjAzCw8PNaaXx8fGEOWIzeyGEW5HwP0fvvvsu+/bt4/HHH3faNR3JZrNx+PBhszHYuXMngwcPNhuDyZMnExQUZHWZQohuJuF/jsrLy1m0aBGffPIJ4efwoJiramhoYN++feYzBgcOHCAmJsZsDGSBOiF6Jgn/87By5UpGjRrFTTfd5NTrOkNNTQ27du0yG4OjR48yYcIEszGQBeqE6Bkk/M/D7t27WblyJR999FGPD8KKigoyMzPNxqCoqMhcoC4xMVEWqBPCTdkb/vIEUQsTJkzA39+fjIwMkpKSrC6nW/Xq1Yvp06czffp0AE6dOkVGRgbp6em888471NTUmK8KEhMTZYE6IXoYufM/ywcffMD27dt5+umnnX5tV5Kfn2++KkhPTycgIKDVAnV9+vSxukQhRBuk2+c8VVZWsnDhQtatWycB10RrzZEjR1otUNevXz+zMYiLi6NX045oQghrSfh3wa9//WsGDx7Mbbc5bsOxnsRms3Hw4EGzMdizZw/Dhw9vtUBdQECA1WUK4ZEk/Ltg//79PPTQQ3zyySc9fuDXEerq6ti7d6/ZGBw6dIixY8eajcG4ceNkgTohnETCv4tuvPFGVqxYwbRp0yyrwV1VVVWxc+dOc7zg+PHjTJ482WwMRo8eLY2qEN1EZvt0UXJyMuvXr5fwPw9BQUFMmzbN/NmdPn3aXKDu448/pqysjPj4eJKSkkhKSpIF6oSwgNz5t6OqqooFCxbw3nvvyYJpDlZYWGjue5yWlgZgLk6XlJQkP28hukC6fRzgySefpG/fvixbtszSOnqy5gXqmhuDjIwMQkNDzcYgISGhRyy3IYSzSPg7wKFDh/jJT37Cxo0b8T57IxjRLZoXqGtetnrHjh1ERUWZjUFcXJwsUCdEByT8HeTWW29l6dKlXHLJJVaX4pEaGhrYv3+/2Rjs27eP0aNHm11EEyZMkAXqhGhBwt9BNmzYwD/+8Q9eeOEFq0sRQG1trblAXXp6OtnZ2YwfP77VAnXyKk14Mgl/B6mpqWHevHm88847DBw40OpyxFkqKytbLVBXWFjIlClTzGml0dHRMpNIeBQJfwd65plnCAkJ4a677rK6FNGJkpISc4G6tLQ0qqurSUhIMBuDqKgoq0sUoltJ+DtQdnY2K1asYNOmTfKkqpvJz89v1Rj4+/ubjUFCQgJ9+/a1ukQhHErC38HuuOMOrr/+embOnGl1KeI8aa05evSoOV6wfft2+vbtazYGcXFxhIaGWl2mEF0i4e9gW7ZsYcuWLbz00ktWlyIcxGaz8fXXX5uvCnbv3s3w4cPNaaWTJ0+WBeqE25Hwd7C6ujrmzZvH2rVrGTx4sNXliG7QvEBd8wNnX3/9NWPHjjUbg3HjxuHr62t1mUJ0SMK/Gzz//PP4+Phwzz33WF2KcILmBeqaG4Njx44xefJkszGIiYmRBeqEy5Hw7wY5OTksW7aMzZs3yx2gByovLycjI8NsDEpKSkhISDCfMRg6dKhMKxWWk1U9u8GwYcOIjo7m888/57LLLrO6HOFkoaGhzJw50xz0LyoqMgeP165di81ma7VA3YABAyyuWIj2yZ3/Ofrss89Yv349r776qtWlCBeitSY3N9dsDNLT0+nVq1erBeoiIiKsLlN4AOn26Sb19fXMnz+fP/7xjwwbNszqcoSLstlsZGVlmQ1BZmYmgwYNarVAXXBwsNVlih5Iwr8bvfjiizQ0NHDfffdZXYpwE42Njd9ZoG7kyJFmF9HEiRNlgTrhEE4Nf6XUXOB3gDfwmtb6qbO+fivwDJDX9KmXtNavdXROVw7/3Nxcbr31VrZs2SL/YcV5qa2tZffu3WZjkJWVxfjx480HzsaOHSsL1Inz4rQBX6WUN/AyMAfIBdKVUhu01vvPOvR9rfXdXb2eKxg8eDBjxoxh69atzJs3z+pyhBvy9/c3u4AAzpw5Yy5Q9/jjj1NQUEBcXJzZGERHR8u0UuFQjpjtkwQc1lpnAyil3gOuAM4O/x4lOTmZd999V8JfOERwcDAXX3wxF198MWAsULd9+3bS09P58MMPqaysNAeOk5KSiIqKkmmlokscEf5RwPEWH+cCU9s4bolS6hLgEHCf1vp4G8e4jUsuuYTf/va3ZGdnEx0dbXU5oofp3bs3c+bMYc6cOQAUFBSYC9StWbMGHx8fc6XShIQE+vXrZ3HFwt10uc9fKZUCzNVa39H08U3A1JZdPEqpPkCl1rpWKXUncI3W+jsrpCmllgPLAYYOHRqfk5PTpdq62x/+8AcqKyv56U9/anUpwoNorcnJyTH3PM7IyKBPnz5mN1J8fLwsUOfBnDbgq5S6EHhMa31508cPA2itn2zneG+gRGsd1tF5XXnAt1lBQQE33HADW7ZskQXAhGVsNhuHDh0yG4OdO3cybNiwVgvUBQYGWl2mcBJnPuGbDoxWSo3AmM1zLXD9WcUM1FoXNH24CDjggOtabuDAgUycOJHPPvuMRYsWWV2O8FBeXl6MGTOGMWPGcPPNN1NfX8++fftIS0vjzTff5MCBA4wZM8ZsDMaPH+82y5NoDSdOQF4eNDRAQACMGAFhHd46Cns4aqrnPOAFjKmeb2itH1dK/QrI0FpvUEo9iRH6DUAJcJfW+mBH53SHO3+AL7/8kjfeeIO1a9daXYoQbaqurmbXrl2kpaWRnp5OTk4OkyZNMhuDCy64wKVmEtlskJEBa9fCv/8N1dXQcg+lujro2xd+8AO48UYYNcqyUl2SPOTlJDabjYULF/L8888TExNjdTlCdKq8vNycSZSens6pU6eIj483G4Phw4dbNpNo9264/37IyTHu+oODjeBvWY7WRgNQVWV8/vvfhyefBNli2yDh70R//OMfKS4u5uGHH7a6FCHOWXFxcas1iRoaGlpNK42MjOz2Gmw2WLUKVq8GLy/o1at14LdHazh9Gvz94emnYcGCbi/V5Un4O1FhYSHXXnstmzZtIigoyOpyhDhvWmvy8/PNLqKMjAyCgoLMPY8TEhLo3bu3Q69ps8EDD8CGDUbon8822bW1xiuBlSvh5psdWp7bkfB3sgcffJBp06aRnJxsdSlCOIzWmuzsbLMxyMzMJDIy0mwM4uPju7xA3RNPwOuvG4O4XRl6qK+HM2fglVfAk1dcl/B3sv/85z+8/PLLvP322/LkpeixGhsbOXDggNlFtHfvXqKjo83GYNKkSfj7+9t9vu3b4ZprjDt+Ryxl1Dw4/I9/QJ8+XT+fO5LwdzKbzcbixYt56qmniI2NtbocIZyirq6u1QJ1hw8fZty4cebgcWxsbLsL1DU2wowZUFhohL+jlJXB/Pnwu9857pzuRMLfAm+++Sa5ubk8+uijVpcihCWqqqrMBerS09PJz89nypQpZmMwcuRIc1rpP/8Jy5dDZw8jNzaWU1DwKyort+HjE06/fncTFja3g+OhshK++gr693fgX85NSPhb4NSpU6SkpLBx40ZCQkKsLkcIy5WVlZl7HmdkZFBRUWHue/z225ezZ08QYWEdd5Pm5T0CaAYOfJSamkMcP34vw4e/ib9/+2tqlZYag8grVjj4L+QGZA9fC/Tp04epU6eyZcsWrr76aqvLEcJy4eHhzJ49m9mzZwNw8uRJ0tPT2bYtg7/9bSo+PgWcORNEcHAwwcFB+Pi0fvLYZqumouIfREd/gJdXEEFBk+nVazqnT2+mf/972r2unx+kpnpm+NvLdR7r6yGSk5NZv349rvqKSggrDRgwgAULFnDzzY8RFTWIYcOGEBgYQEVFBdnZ2WRlZXHiRAEVFeU0NjZSV3cM8MbPb6h5Dn//0dTWZnd4nYAAOHDAmEYq2iZ3/g6WkJBAXV0de/bsYeLEiVaXI4RLys0FLy+Fn58/fn7+RET0BjQ1NbVUVZ2hrKyM/Px8vLy+oaHBl8rKSoKCAvHy8sbLKwSb7UyH5/f2Nvr+T50CWe26bXLn72BeXl5ceeWVfPTRR1aXIoTLqqszns5tTREQEEDv3n0YMmQoMTEX0Lv3IBobKzl69ChZWVlobcNmO4OXV+fPFnh5GXP/Rdsk/LvBwoUL+eKLLygvL7e6FCFckp9f+8s3NDTUU1JyipycHIqLfVDKRlSUN35+/lRUVFBbe6jDwd5mNptxHdE2Cf9uEB4ezve//302bdpkdSlCuKThw1vf+TcH/tGjR8nOzqamppa+ffsSEzOBPn3mUlX1FuHhARQVfUVFxReEhc3v8PwNDeDr67kPetlDwr+byMCvEO0bPhwaGhooLv5u4I8ePZpBgwYREhKCUl5ERj6EzVZLQcESKit/S58+D3R6519TA+PG2bc4nKeSAd9uMmXKFJRS7Nixg7i4OKvLEcIlFBYWsnXrVrZu3UpV1RLq6r5Hv359CQ4OQqm270W9vUMZMmQVAEVFRTQ0NHR6nYYGmNv+c2ACufPvNkopkpOTZeBXeLyTJ0/y7rvvsnTpUq699loOHz7MHXfcwfvvX07v3n0IDg5pN/jPFhERTnl5OTZbY7vHNDYag71XXumov0HPJHf+3Wj+/PmsXr2a0tJSIiIirC5HCKc5efIkf//739m6dStHjx5lxowZ3HHHHSQmJppbSNpsMGwYHDvW+RIPzXx8fAkKCqK8vJzw8Lb/T5WXw9VXg4NXnu5xJPy7UWhoKDNmzGDjxo3c7OmLjIserznwU1NTycnJaTPwW/LyMhZfW7zY6Kaxdx3/iIgICgsLCQ8PB1p36ldVQXg4yL5KnZPw72bJycmsXLmSG2+80aX2SRXCEdoK/GXLlrUb+GcbNw5+/GN44QX71/MPDg6msdFGdXU1gYHfbp5UV2fM6//jH+1/JeHJJPy72YQJEwgICCAjI4OkpCSryxGiy06cOGF26bQM/KSkJHzOYxuuu+82nsR96y0ICTGmaHZMERERTmlpqRn+VVVG+K9aBRdddO5/J08k4d/NWg78SvgLd9Uy8I8dO8b06dO7FPgtKWVsvzh4MPz2t0aQh4Z2PE0zPDycw4ezqK9v5MwZb3r1gldfhUsu6VIpHkWWdHaCyspKFi5cyLp16+gjT50IN9Ec+KmpqRw/fpzp06czZ84cEhMTuxz47Tl8GH7+c9i92xgQDgr67tPANpsxj//EiVP4+fly3XWh/M//gMypMMh6/i7mN7/5DYMGDWLp0qVWlyJEu84O/BkzZjB79uxuDfy2HDgAb78NX3wBBQVGV5BSRvA3NkJ0NEyZkseePY+yadNrMp7Wgqzn72KSk5N56KGHuPXWW+UXVbiUgoICs0unOfDvvPNOpwd+S2PHwuOPG+9XVkJ+vjEjKCDA6B7y8wOtB3HddVUynnaeJPydJDY2lrCwMLZt28a0adOsLkd4OFcM/PaEhEBMzHc/r5QiJSWFdevWSfifB9f6V+7hmgd+JfyFFZoDPzU1ldzcXGbMmMEPf/hDEhISXC7w7TVv3jxefvllCgsL6e+JG/Z2gXv+i7upyy+/nBdffFF+UYXTnB34l156KXfddZdbB35LQUFBXHbZZXz66acsW7bM6nLcivv/67uR5l/UTz75hOXLl1tdjuihCgoKzMXTemLgny0lJYV7772XpUuX4u3tbXU5bqPn/Sa4uOTkZH7yk59w++23yy+qcJj8/HyzDz8vL48ZM2b06MBvafTo0URGRvKvf/2LGTNmWF2O2+jZvxUuKCYmhgEDBvDVV19xiTyRIrqgOfBTU1PJz89nxowZrFixgvj4+B4f+GdrHviV8LefZ/2GuIjmgV8Jf3Guzg78Sy+9lB/96EceGfgtzZ49m+eee47jx48zZMgQq8txC57722KhOXPm8Pzzz1NQUMDAgQOtLke4uPz8fLMPXwK/bX5+fixcuJD169dz7733Wl2OW5AnfC3y7LPPEhwczF133WV1KcIFtRX4s2fPlsDvwPHjx1m6dCmbN2/Gz4N3bpcnfF1ccnIyK1asYNmyZfKfWQBtB/7dd99NfHy8TA6ww5AhQ7jgggvYunUr8+bNs7oclyepY5Ho6GiGDBnCl19+ycyZM60uR1jk7MCfOXOmBH4XLFmyhLfeekvC3w4S/hZqHviV8PcsEvjd55JLLuGZZ57hm2++YfTo0VaX49Ik/C00a9YsVq1aRW5uLoMHD7a6HNGNWgZ+QUGBdOl0E29vbxYvXsy6det4WPZy7JAM+FrshRdewNvbm3vuucfqUoSDNQd+amoqJ06caDVoK4HffQoLC7n22mvZtGkTQUFBnX9DD+PUAV+l1Fzgd4A38JrW+qmzvu4P/BmIB04B12itjzri2u4uOTmZO+64gx/+8Id27XkqXFtbgX/PPfdI4DtR//79SUhI4K9//StLliyxuhyX1eXwV0p5Ay8Dc4BcIF0ptUFrvb/FYbcDpVrrUUqpa4GngWu6eu2eYOjQoYwcOZLPP/+cyy67zOpyxHnIy8szu3Qk8F1DSkoKzz//PMnJyaiO9oP0YI64808CDmutswGUUu8BVwAtw/8K4LGm99cBLymllHbVPicnS05OZt26dRL+bkQC37UlJCRQU1PDnj17mDhxotXluCRHhH8UcLzFx7nA1PaO0Vo3KKVOA32AYgdc3+3NmDGDZ555hpycHIYNG2Z1OaIdzYGfmprKyZMnufTSS/nxj39MXFycBL6L8fLyYsmSJaxbt07Cvx0uNdtHKbUcWA5Gd4in8PX1ZdGiRaxfv5777rvP6nJECy0Dv7CwkEsvvZR7771XAt8NLFy4kCuuuIKysjLCw8OtLsflOCL884CWKykNbvpcW8fkKqV8gDCMgd9WtNZrgDVgzPZxQG1u48orr+SWW27hRz/6kUc/mu4KcnNzzS4dCXz3FRYWxvTp09m4cSM33XST1eW4HEeEfzowWik1AiPkrwWuP+uYDcAtwH+BFOAf0t/fWlRUFGPHjpVH0y0igd8zpaSk8Oijj3LDDTfg5eVldTkupcvh39SHfzfwN4ypnm9orfcppX4FZGitNwCvA28ppQ4DJRgNhDhLcnIyb7/9toS/kzQHfmpqKkVFRVx66aX85Cc/IS4uToKihxg/fjxBQUGkpaXxve99z+pyXIo85OVCGhoaWLBgAa+88grR0dFWl9MjnR34M2fOZPbs2RL4Pdj69ev5z3/+w7PPPmt1KU4hq3q6IR8fHxYvXsxHH33ET3/6U6vL6TGOHz9uduk0B/59990nge8h5s6dy0svvURhYSH9+/e3uhyXIXf+LubEiRNcf/31bNmyhYCAAKvLcVttBb7c4Xuup59+mvDwcO68806rS+l2cufvpiIjI5k4cSKfffYZixYtsroct9Ic+KmpqRQXFzNz5kzuv/9+pkyZIoHv4VJSUrj77ru5/fbbZf+MJvJTcEFLlizh9ddfl/C3w9mBP2vWLB544AEJfNHKyJEjiYqKkv0zWpDwd0EXXXQRTz31FIcOHSImJsbqclzOsWPHzC4dCXxhr+YnfiX8DRL+LsjLy4srr7ySjz76SNYkbyKBL7pq1qxZPPfccxw7dsyjVhBojwz4uqiioiKuvvpqNm/e7JFrkkPbgT9nzhwmT54sgS/Oy+9//3saGxt79DIqMuDr5vr160d8fDz/93//R3JystXlOM3ZgT979mwefPBBCXzhEEuWLOHmm29mxYoV+Pv7W12OpST8XdiSJUt46aWXuPLKK3v0muQS+MJZoqKiGDduHFu3bmX+/PlWl2MpCX8XNnXqVJ588kkOHDhAbGys1eU4VMvAP3XqFLNmzZLAF06RkpLCm2++KeFvdQGifV5eXiQnJ/PRRx/1iPBvDvzU1FRKSkok8IUlZDadQQZ8XVxJSQlLlixh48aNhISEWF3OOWsr8GfPni2BLyz12muvUVhYyCOPPGJ1KQ4nA749RO/evZk6dSpbtmzh6quvtrocu+Tk5JhdOs2B/9Of/lQCX7iMxYsXc9VVV3HvvfcSHBxsdTmWkPB3A0uWLGHVqlXMnn0Ve/Yo9u6Fb76BujoIDoYJEyA21vjTqgkMLQO/tLSUmTNnSuALl9W3b1+SkpLYsmULV111ldXlWELC3w34+CSQlnYTU6bUERjoT20t+PiAUmCzwfr14OtrvN14I9x0Ewwa1P11NQd+amoqZWVlzJw5k5/97GdMmjRJAl+4vJSUFJ599llSUlJ69Gy69kj4u7CKCnj8cVi3TnHmzMUodYp+/QbRXtd/XR2sWQNvvgm//CVcfz04OoPPDvxZs2bx85//XAJfuJ2EhATq6+vZtWsXkydPtrocp5Pwd1FHjsANN8DJkxAWBr16BXH4cAGNjY3tbivo52e81dXBypWQmgp/+AN09QHho0ePml06Eviip1BKkZKSwrp16yT8hWs4dgxSUow7/4iI5s/6EBISwunTZfTu3afD7/fzM7qA/v1vWLoU/vSncx8LkMAXnmDBggWsWbOG0tJSIr79z+YRJPwm3X5kAAAZzklEQVRdTF0d3H47nD4N4eGtvxYREUFBQQG9e/cGOu6jVMr4/rQ0eOop45VAZ5oDPzU1lfLycmbOnMlDDz3ExIkTJfBFjxQaGsqll17Khg0buOWWW6wux6kk/F3MSy8ZXT5hYd/9WlBQIEpBVVUVQUGdT09TyjjPW2/BvHmQmPjdY84O/FmzZvHwww9L4AuPkZKSwsMPP8xNN93kUb/zEv4upKgIVq+GkBAjuL9LER4eQWlpmV3hD+Dtbbw9+ij89a/GeY8cOWJ26UjgC08XGxtLaGgo27ZtY9q0aVaX4zQS/i7kww+hocGYxtmeXr0Cyct7jKqqLGy2Cnx9B9O//92EhLT/SxsSAgcP1vPYYxs4ePADCXwhWlBKmRu9SPgLS7z1FgQGdnyMtzcEBg6mV6/l9O8fS2XlV+TlPcSIEe/h59d6cn9tbS0VFeWUl5dTUxPEV18NYtWqR5gwYYIEvhAtzJ07lxdffJETJ04QGRlpdTlOIQngIkpLobCw81k5Xl6BREXdTWVlAEopevW6GF/fQdTUHASMwC8uLiI7O4tjx3JobGxk4MCBjBgRiVIXymwdIdoQGBjI3Llz+fjjj60uxWkkBVzEwYPG9Ex7HjQMDAxEKS/OnKmioaGEmpoczpwJ+07gjx49mgEDIgkMDMLfX3HkiDGbSAjxXSkpKXzyySc0NDRYXYpTSLePiygpMZZqsI8iIiKc3Nwc6uoeR6kL8fKKYuDAUAIDA2lrGqiXl9GwVFRAn44fExDCI0VHRzNs2DC++OILZs2aZXU53U7u/F3Eua6sHRYWis32CjabF35+y7DZbNTV1Xd61+KiK3gL4RKan/j1BBL+LiI01P51eLTWnDjxOEFB9UyY8EeGDYsmICCAiopysrOzyc7O4sSJE1RUVGCzNTZ9j/HKwg23BBDCaWbMmEFWVhY5OTlWl9LtpNvHRcTEGNM8te683//EiSepqzvC0KGv4OUVgL8/+Pv7ExHRG9DU1NRw5swZSktLyM/Pw8/PHz+/UCIjfVHKH/DsjauFaI+fnx+LFi3io48+4v7777e6nG4lO3m5CK1hyhTj7tzPr/3j6usLOHx4IUr5odS3C7xFRj5CWNgP2jivjerqaoqKGujffxu9e/+GcePGkZSURGJiIrGxse0uFCeEJ8rPz+emm25i8+bNBAQEWF3OOZOdvNyMUnD11fD66x2Hv6/vQMaOtb9RVMqLoKBgIiJgzZrLmTz5+2RmZpKens4TTzxBQUEBU6ZMITExkaSkJEaOHOmRa5sL0WzQoEGMHz+e1NRUFi5caHU53Ubu/F1ITg7MmnVu/f/2qKoyFnn797+/e96SkhIyMjJIT08nLS2N6upqEhISSEpKIikpiUHO2BVGCBfzr3/9i9dee40//elPVpdyzuy985fwdzEPPgiffPLdFT3Pl81mrBD64ovG4m6dyc/PNxuC9PR0AgICzIYgISGhaUVRIXo2m83GokWLePbZZxkzZozV5ZwTCX83VV4OM2dCZaVjZuaUlMDs2caCcefam6O1Jjs722wIMjMziYyMNBuC+Ph4j938WvR8b7zxBvn5+fzyl7+0upRzIuHvxjIzjV28lOraLlynT0NUFHz8cctNYc5fY2MjBw4cMBuDvXv3MmrUKHO8YOLEifh1NGAhhBs5deoUKSkpbNy4kRA3miMt4e/m0tLgttugttZYk/9c7tobG41XEMOHw1/+Av37d0+NtbW17Nq1y+wmOnLkCOPHjze7icaMGSPrCAm39vDDDzN58mSuueYaq0uxm4R/D5CTA/ffD7t2Gev+BAV13AjYbEboA1x3HTz0EDizV6aiooLMzEzzlUFRURHx8fFmN9GIESNkJpFwK9u3b+fpp5/m/fffd5vfXQn/HsJmMwaAX3nFaAwaG41lnf38jIbAZjNeHShlvF10EdxzD8THW105FBcXk56ebr7V19eTmJhodhN5ytK5wn1prbnqqqt45JFHiIuLs7ocuzgl/JVSvYH3geHAUeBqrXVpG8c1AnuaPjymtV7U2bkl/FvTGvbsgYwMo0soO9t4IjgwEMaPh4QEmDbN6ON3RVpr8vLyzFcF6enp9OrVy2wIEhISCHfUFCchHOgvf/kLe/bs4YknnrC6FLs4K/x/C5RorZ9SSj0ERGitf97GcZVa63MaMZHw79lsNhuHDx82xwt27txJVFSUOV4wefJkgroy2i2Eg1RUVJhLPrjDVGdnhf/XwAytdYFSaiDwT631BW0cJ+EvOtTQ0MC+ffvMVwYHDhwgJibGXIZiwoQJ+Pr6Wl2m8FC/+tWvGDJkCLfddpvVpXTKWeFfprUOb3pfAaXNH591XAOwE2gAntJaf9LZuSX8PVt1dTU7d+40u4hycnKYNGmS2U0UExMjM4mE0+zfv5+f//znfPrppy7/e+ewtX2UUluBtkbmftHyA621Vkq115IM01rnKaWigX8opfZorbPauNZyYDnA0KFDOytN9GCBgYFceOGFXHjhhQCUl5eby1D84he/oLS0tNUyFEOGDHGb2RjC/cTGxhIREcF///tfLrroIqvLcQindPuc9T1rgU1a6w53TJA7f9GRwsLCVstQAK2WoejfXQ83CI+1YcMGPv/8c55//nmrS+mQs7p9ngFOtRjw7a21/tlZx0QAVVrrWqVUX+C/wBVa6/0dnVvCX9hLa82xY8fMhiAjI4OIiAhzvCAhIYHQ0FCryxRurrq6mvnz5/POO+8wcOBAq8tpl7PCvw/wATAUyMGY6lmilEoAfqi1vkMpNQ1YDdgwdg57QWv9emfnlvAX58tms3Ho0CGzMdi1axfDhg0zxwsmT57sluu0C+s9++yzBAUFsWLFCqtLaZc85CVEk7q6Ovbu3Wt2Ex06dIixY8ea3USxsbH4+MjWFqJzR44c4c4772Tz5s0uO/tMwl+IdlRVVbFjxw7zlUFeXh5Tpkwxu4lGjhzp8jM6hHXuvPNOUlJSmDNnjtWltEl28hKiHUFBQVx00UXmrI3S0lK2b99OWloaH374IZWVlSQkJJjdRFFRUTKTSJhSUlJYt26dy4a/veTOX4izFBQUmM8XpKWl4efnZzYEiYmJ9OnTx+oShYXq6+tZsGABr776KiNGjLC6nO+Qbh8hHEBrzZEjR8yGIDMzk379+pnjBXFxcW611rtwjFdeeYWqqioefPBBq0v5Dgl/IbpBY2MjBw8ebLWhTXR0tLla6eTJk2VDGw9QUFDADTfcwObNmwkMDLS6nFYk/IVwgrq6Onbv3m02BllZWYwbN87sJho7dize3t5Wlym6wX333ceMGTO44oorrC6lFQl/ISxQWVlJZmam2U108uRJ4uLizG4i2dCm5/jqq69YvXo1f/7zn60upRUJfyFcQElJSatlKGpra80uosTERAYNGmR1ieI82Ww2Fi9ezFNPPUVsbKzV5Zgk/IVwQS03tMnIyCAwMNCcRZSYmEhERITVJYpzsHbtWo4dO8b//M//WF2KScJfCBentSYrK8tsDDIzMxk0aJA5XhAXFycb2ri4kpISlixZwqeffuoy60dJ+AvhZhoaGti/f7/ZTbR//35Gjx5tjheMHz9eZhK5oEceeYQJEyZw3XXXWV0KIOEvhNurqalh165d5iuDo0ePMmHCBLObaMyYMbIMhQvIzMzkiSee4MMPP3SJwXxZ3kEINxcQEMDUqVOZOnUqYGxos337dtLT01m5ciWnTp0iPj7e7CYaNmyYS4SPp5kyZQpeXl5kZmYSHx9vdTl2kzt/IdxUUVFRq2UobDab2RAkJSXJhjZO9MEHH7Bjxw6efPJJq0uRbh8hPInWmuPHj5sNQUZGBmFhYWZDEB8fT1hYmNVl9liVlZUsXLiQdevWWb72k4S/EB7MZrPxzTffmOMFO3fuZMiQIeZ4wZQpU1xuWQJ395vf/IZBgwaxdOlSS+uQ8BdCmOrr69m3b5/ZGBw8eJAxY8aY3UTjx4+XDW266ODBgzz44INs2LDB0oF4CX8hRLuqq6vZsWOH2U10/PhxJk+ebHYTjRo1SmYSnYdbbrmFO+64g4svvtiyGmS2jxCiXYGBgUybNo1p06YBcPr0aTIyMkhLS2P9+vWUl5eTkJBAUlISCQkJDBkyRGYS2aF5oxcrw99ecucvhPiOkydPtlqTyNvb21yCIikpib59+1pdokuqra1l3rx5vPXWW5at2yTdPkIIh9Bak5OTYzYE27dvp0+fPmZDEB8fT69evawu02U899xz+Pn5cffdd1tyfQl/IUS3sNlsHDx40HxlsGfPHoYPH26OF0yaNAl/f3+ry7RMTk4Oy5YtY9OmTZYsxyHhL4Rwirq6Ovbs2WO+Mvjmm2+IjY01p5WOGzfO4za0ueuuu1i8eDGXX365068t4S+EsERVVRWZmZlmY1BQUMCUKVPMbqKRI0f2+MHjv//977z//vusWbPG6deW8BdCuISSkhIyMjLMbqLq6mpzJlFSUlKP3NCmoaGBBQsW8MorrxAdHe3Ua0v4CyFcUn5+fquZRAEBAeargsTERHr37m11iQ7x6quvUl5ezs9+9jOnXlfCXwjh8rTWZGdnm41BZmYmAwYMMBuC+Ph4goODrS7zvJw8eZLrrruOTZs2OXVTHgl/IYTbaWxs5MCBA+argr179zJq1CjzlcHEiRPdakOb+++/n4svvpgrr7zSadeU8BdCuL3a2lp27dplvjI4cuQI48ePN8cLXH1Dm//85z+8/PLLvP32298OcldUQHU1+PhAeDg4uH4JfyFEj1NRUdFqJlFRURFxcXFmN9GIESNcaiaRzWbjmoULWTVnDkN37YJdu+D0aSPwtTYagNhYmDkTUlIgMrLL15TwF0L0eMXFxeaaROnp6dTX17dahiLSAWF63mpr4eWXKVu1isaaGmOd/4AA8PWF5gaqsRFqaqCuzvjc7NmwciUMHHjel5XwF0J4FK01eXl5ZkOQnp5Or169zIYgISGB8PBw5xSzbx/86Edw/DgNgYFk5eQwatSojh92s9mgvBz8/eHXv4bk5PO6tIS/EMKj2Ww2Dh8+bI4X7Ny5k6ioqFYb2nTLLJxt2+C224y7+tBQAPLy8ggIDKSPPdNYa2uhqgruuQfuvffbVwl2kvAXQogWGhoa2Ldvn9kYHDhwgJiYGLMxmDBhAr6+vl27yL59Rt+9UtCiYamqqiK/oMB4utm+Yo2B4UcfhVtvPacSJPyFEKIDNTU17Ny50+wmysnJYdKkSWY3UUxMzLnNJKqthblzIS/PvONvpoHs7GwiBwyw/7mF+npjVtDmzTB6tN1lSPgLIcQ5KC8vb7UMRWlpaatlKDrd0Ob55+GllyAios0vl5SWUnXmDIMHD7a/qNOnISYGNm60e0qohL8QQnRBYWFhq2UoALOLKDExkf79+397cFUVJCYaUzfb6TpqtNl4cf9+0oOCyK6r4/LQUB7rbF0jrY1B4HfegaQku+qWbRyFEKIL+vfvz/z585k/fz5aa44fP05aWhpffPEFq1atIiIiwmwMvpeXR1BdHQQGtns+by8vokJCGO7jw4HAQGrtufFWymgAXnvN7vC3V5fCXyl1FfAYMBZI0lq3eauulJoL/A7wBl7TWj/VlesKIYQzKaUYOnQoQ4cOJSUlBZvNxqFDh0hLS+Pjjz+m5sMPmVJVhVdtLcHBwQQFBeHVRhfRwshIjh8/Tl5YGEUNDfZdvFcv+OILY/aQA/dF6Oqd/14gGVjd3gFKKW/gZWAOkAukK6U2aK33d/HaQghhCS8vL8aMGcOYMWO4+eabsX31FTUVFZypq6O4qIia2loCAgIIDg4mODiYwIAAlFIEBATg4+tLbW2t/UHefNzRozBypMP+Dl0Kf631AaCzx6mTgMNa6+ymY98DrgAk/IUQ7q+yEq/TpwkKDydIKfr160ejzUZ1VRVnzpzhxIkT1NXVERQURHBwMCHBwVSVlBh39PZSCrKyXCf87RQFHG/xcS4w1QnXFUKI7lddbczEaXET7O3lRUhICCEhIQA0NDZSdeYMZ5re6urrUecy2cZmM5aBcKBOw18ptRVoa4GMX2itP3VkMUqp5cBygKFDhzry1EII0T18fIxB2Y4O8fYmNDSU0Kb5/wMKC+3v8wejYfFx7L16p2fTWs/u4jXygCEtPh7c9Lm2rrUGWAPGVM8uXlcIIbpfWJgxvdOOAdlGrWnUGg3YgDqbDW+l8O5sCQelICrKYSUDOGMh7HRgtFJqhFLKD7gW2OCE6wohRPfz8oKxY43un068XlzMtK+/Zu2pU2w5fZppX3/N68XFHX+T1sbTvjExDirY0NWpnlcCLwL9gM1KqZ1a68uVUoMwpnTO01o3KKXuBv6GMdXzDa31vi5XLoQQrmLWLGOt/k4s79eP5f36ndu5z5wxGpcOniE4H12689daf6y1Hqy19tdaD9BaX970+Xyt9bwWx23RWsdorUdqrR/vatFCCOFSliwxXgHYbI4/d2MjLF/u8NO67v5nQgjhLiIjjY1YTp927HmrqyEkBC67zLHnRcJfCCEcY+VKY6eu2lrHnK95eufTTxvndTAJfyGEcITISHj8cWORt3OZxtkWrY1XEfPmwZw5jqnvLBL+QgjhKIsXG7tvlZcbM3TOh80GZWXGKqHPPHPOO3nZS8JfCCEc6cc/hsceM/rrT5/u9AGwVpq/Z948WLu2W7p7mkn4CyGEo918M2zZAhdcYLwKKCszZu20RWuorDRC388PXn0VXnyxW4MfZD1/IYToHqNGGTtwpafDG2/A558bn1fK6NpRynirr4fYWFi2zJjV082h30zCXwghuotSxiYsSUlG4B89aqzOWV1tLAkRFWU8ueukwG9Jwl8IIZzBywuio403FyB9/kII4YFcdgN3pVQRkNPGl/oCnayEZClXrw9cv0ZXrw9cv0apr+tcvcb26humte50ASGXDf/2KKUy7NmZ3iquXh+4fo2uXh+4fo1SX9e5eo1drU+6fYQQwgNJ+AshhAdyx/BfY3UBnXD1+sD1a3T1+sD1a5T6us7Va+xSfW7X5y+EEKLr3PHOXwghRBe5fPgrpXorpVKVUt80/RnRznG/VUrtU0odUEr9XqluWgrv/OsbqpT6rKm+/Uqp4c6o71xqbDo2VCmVq5R6yZXqU0pNVkr9t+nfeLdS6hon1DVXKfW1UuqwUuqhNr7ur5R6v+nr/8+Z/6bnUOP9Tb9vu5VSf1dKDXOl+loct0QppZVSTp9dY0+NSqmrm36O+5RS77pSfU3Z8rlSakfTv/O8ts7zHVprl34Dfgs81PT+Q8DTbRwzDfgKY49gb+C/wAxXqa/pa/8E5jS9HwIEudLPsMWxvwPeBV5ypfqAGGB00/uDgAIgvBtr8gaygGjAD9gFxJ51zArg1ab3rwXed9bP7BxqvLT5dw24y5k12lNf03G9gC+BbUCCC/4MRwM7gIimj/u7WH1rgLua3o8Fjtpzbpe/8weuAP7U9P6fgMVtHKOBAIwfjj/gC5x0SnV21KeUigV8tNapAFrrSq11lZPqA/t+hiil4oEBwGdOqqtZp/VprQ9prb9pej8fKATOcSfsc5IEHNZaZ2ut64D3mupsqWXd64BZznrFaW+NWuvPW/yubQMGu1J9TX4NPA3UOLG2ZvbUuAx4WWtdCqC1LnSx+jQQ2vR+GJBvz4ndIfwHaK0Lmt4/gRFOrWit/wt8jnE3WAD8TWt9wFXqw7hrLVNKrW96afaMUsrbSfWBHTUqpbyAVcCDTqyrmT0/Q5NSKgmjoc/qxpqigOMtPs5t+lybx2itG4DTQJ9urOls9tTY0u3AX7u1otY6rU8pFQcM0VpvdmJdLdnzM4wBYpRSXymltiml5jqtOvvqewy4USmVC2wB7rHnxC6xsJtSaisQ2caXftHyA621Vkp9Z3qSUmoUMJZv72pSlVIXa63/5Qr1YfycLwamAMeA94FbgdcdUZ+DalwBbNFa53bHzasD6ms+z0DgLeAWrbXNsVX2XEqpG4EEYLrVtTRruuF4DuP/givzwej6mYGRMV8qpSZorcssrepb1wFrtdarlFIXAm8ppcZ39v/DJcJfaz27va8ppU4qpQZqrQua/uO39ZLrSmCb1rqy6Xv+ClwIOCT8HVBfLrBTa53d9D2fAN/DgeHvgBovBC5WSq3AGJPwU0pVaq3bHaRzcn0opUKBzcAvtNbbHFFXB/KAIS0+Htz0ubaOyVVK+WC85D7VzXW1df1mbdWIUmo2RiM7XWvtoN3F7dJZfb2A8cA/m244IoENSqlFWusMF6kRjP+//09rXQ8cUUodwmgM0l2kvtuBuWD0giilAjDW/emwe8odun02ALc0vX8L8GkbxxwDpiulfJRSvhh3N87q9rGnvnQgXCnV3Ec9E9jvhNqadVqj1voGrfVQrfVwjK6fPzsq+B1Rn1LKD/i4qa51TqgpHRitlBrRdO1rm+psqWXdKcA/dNOom5N0WqNSagqwGljk5L7qTuvTWp/WWvfVWg9v+r3b1lSns4K/0xqbfIJx149Sqi9GN1C2C9V3DJjVVN9YjPHPok7P7KxR6y6MdvcB/g58A2wFejd9PgF4TX87Ir4aI/D3A8+5Un1NH88BdgN7gLWAn6vV2OL4W3HubB97/o1vBOqBnS3eJndzXfOAQxhjC79o+tyvMAKKpv9kHwKHgTQg2lk/s3OocSvG5Ifmn9kGV6rvrGP/iZNn+9j5M1QY3VP7m/7/Xuti9cVizHbc1fRvfJk955UnfIUQwgO5Q7ePEEIIB5PwF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgP9f+ESC91ZCoRCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "best_cost_brute = 0\n", + "for b in range(2**n):\n", + " x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))]\n", + " cost = 0\n", + " for i in range(n):\n", + " for j in range(n):\n", + " cost = cost + w[i,j]*x[i]*(1-x[j])\n", + " if best_cost_brute < cost:\n", + " best_cost_brute = cost\n", + " xbest_brute = x \n", + " print('case = ' + str(x)+ ' cost = ' + str(cost))\n", + "\n", + "colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)\n", + "print('\\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute)) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mapping to the Ising problem" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", + "algo_input = EnergyInput(qubitOp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking that the full Hamiltonian gives the right cost " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.5\n", + "max-cut objective: -4.0\n", + "solution: [0. 1. 0. 1.]\n", + "solution objective: 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb1JCDNhBogQdhYVqyJDKUsMcW8UrFRrHW3V1i9+27qqqK2jSh20jjoQFYF+a2ittrb8khD2ECEQyIAkJCF7nuv3x53cJpBxICfnPifn83w88iDjzrk/hPC+7vu6rvu6lNYaIYQQnsXL6gKEEEI4n4S/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHkjCXwghPJCP1QV0pF+/fnrEiBFWlyGEEG5l69atxVrr/l0d57LhP2LECDIzM60uQwgh3IpSKsee41w2/B1NaygogNJS4/2wMBgyBLyk40sI4YF6dfjX18MXX8Dbb8O2bVBXBz4+RvjbbODtDePHw3XXwQ9+AIGBVlcshBDOoVx1Vc/ExER9rt0+WsOnn8L//i9UVRmfCwoygr+1piaorjYaAj8/uP9+uOUWuRsQQrgvpdRWrXViV8f1upgrLYWlS40gb2gwunfCws4MfjCu/ENDoU8f4/3HHoOUFMjPd37dQgjhTL0q/IuLITUVvvoKwsMhIMD+7/XzM75n1y5YvBhy7BoyEUII99Rrwr++Hm66yQjtiAhQ6uxfQynje0tL4ZproKzM8XUKIYQr6DXh//vfwzffGF043dWnDxQWwqOPdv+1hBDCFfWK8D9wAF591ei/P5cr/vb06QMbNsDXXzvm9YQQwpX0iqmer79uzNhpb1C3tby8R6iuTsdmq8HHpx+RkTcRHr643WO9vIyG5KWX4IILeqBoIYSwkNuHf3m5Ma0zNLTrY/v1uxVf30fw8vKjru4IOTnL8fc/j8DAce0eHxoK6enGOMLw4Q4uXAghLOSQbh+l1BtKqUKl1O4Ovq6UUr9XSh1USu1USsU74rwA27cbf3Z11Q/g7x+Dl5dfS1UopWhoyO3w+Jar//T07tcphBCuxFF9/muAuZ18/QfAmOa35cAfHHRe9uwxZvrY6/jxJ9m//wKys5fg49OPkJDO+3RsNpAlhoQQvY1Dun201l8ppUZ0csjlwJ+18TjxFqVUuFJqsNa6oLvn3rPHeEDLXoMGPcjAgT+jpmYn1dVbUcqv0+P9/WHfvm4WKYQQLsZZs32igWOtPs5t/lwbSqnlSqlMpVRmUVGRXS9cU3N2M3zq6+s4cOAAZWUDqKjIobj4vU6PV8pYE0gIIXoTl5rqqbVerbVO1Fon9u/f5XLUgLEY29ksT6SUF1prAgL8qaur5sSJnRw6dIjjxwuoqCinqanptJqMp3+FEKI3cVb45wFDW308pPlz3TZ2LDQ2dn1cY2MJ5eWf4+3dQHBwEPX1mcAWhg+fT3R0FL6+fpSVlXHw4LccPpxNYeEJKisrqa1tYlz7k4GEEMJtOWuq53rgLqXUe8A04JQj+vsBJk40+uW7pigtXUtBweM0NTXQ1BTOkCH3Exp6MQABAYFERkaitY2amlqqq6s4ebKYykpvMjM38uqriqSkJCZMmICf3AoIIdycQ8JfKfUXYAbQTymVC6wEfAG01q8Am4B5wEGgGrjVEecFmDLF6Jppaup84NfHJ4Lhw1c3f6Q5ePAggYFD2vm7eBEUFERQUBCRkf0pK7Pxox9NIz//3zz//PMcOXKESZMmkZSURFJSEmPHjsVL1oAWQriZXrGe//33wyefGIuy2au4uJiGhnoGD47q8Jjycpg8GT78sPXnysnKyiI9PZ3MzEyKi4uJj48nOTmZxMRERo4ciXLUGhNCCHGW7F3Pv1eE/969cPnlEBJi/7TPxsZGDh06xJgxo/HyOvObbDYj/F97DWbM6Ph1iouLyczMJD09nYyMDOrr60lKSjIbg6iojhsXIYRwNI8KfzA2YnnzTWNNfnvl5uYSHBxERETfM75WVgZz5sDLL5/dVNK8vDwyMjLMO4PAwMA2jUHfvmeeSwghHMXjwr+mBhYsgKNH7V/WuaqqihMnjhMTEwN8l/Dl5cZr/O1v0J2s1lqTnZ1tNgZZWVkMHDiQ5ORkkpKSiI+PJyQk5NxPIIQQp/G48Ac4ccLYySs/37gD6PqKXXPo0CGioqIIDAxCazh1yljQ7YMPYMyYcy6/XU1NTezfv9/sItq9ezcjR440G4PJkyfjb9/UJSGEaJdHhj9AURHcfTdkZBibtneVpSdPFlNXV0f//tFUVhqB/+qrzlnFs76+nl27dpmNwbfffktcXJzZGMTFxeFjz4p1QgjRzGPDH4zB2vffN8YB6uqM1TmDgs4cDLbZoKqqkaNHjzN06GB+/GNv7rgDfH0d8Bc4B9XV1Wzbts1sDPLy8pg6dao5rXT06NEyrVQI0SmPDv8WNTXw+efwpz8ZC8CB0RDAd88GjBkDvr4fsGiR4rbbruxm1Y5VVlbG1q1bzcagvLycxMREszEYOnSoTCsVQrQh4X+apiZjU5bSUuOKv08fGDnSuMrPysri8ccf58MPP3TpMD1x4gQZGRnmm1LKbAiSkpIYMGCA1SUKISwm4X8WtNZcddVVPPTQQ8THO2yfmR6ltebYsWPmXUFmZibh4eHmtNKEhAT6OGI3eyGEW5HwP0vvvvsue/bs4bHHHnPaOR3JZrNx8OBBszHYvn07Q4YMMRuDKVOmEBQUZHWZQogeJuF/lsrLy1m0aBGffPIJ4WfzpJiLamxsZM+ePeYzBvv27SM2NtZsDGSBOiF6Jwn/c7By5UpGjx7NjTfe6NTzOkNtbS07duwwG4MjR44wceJEszGQBeqE6B0k/M/Bzp07WblyJR999FGvD8KKigqysrLMxqCoqMhcoC4pKUkWqBPCTdkb/vIEUSsTJ07E39+fzMxMkpOTrS6nR4WGhnLxxRdz8cXGfgYnT54kMzOTjIwM3nnnHWpra827gqSkJFmgToheRq78T/PBBx+wdetWnnrqKaef25Xk5+ebdwUZGRkEBAS0WaAuMjLS6hKFEO2Qbp9zVFlZycKFC1m7dq0EXDOtNYcPH26zQF3//v3NxiA+Pp7Q0FCryxRCIOHfLb/+9a8ZMmQIt97qsA3HehWbzcb+/fvNxmDXrl2MGDGizQJ1AQEBVpcphEeS8O+GvXv38uCDD/LJJ5/0+oFfR6ivr2f37t1mY3DgwAHGjRtnNgbjx4+XBeqEcBIJ/2664YYbWLFiBdOnT7esBndVXV3N9u3bzfGCY8eOMWXKFLMxGDNmjDSqQvQQme3TTSkpKaxbt07C/xwEBQUxffp082d36tQpc4G6jz/+mLKyMhISEkhOTiY5OVkWqBPCAnLl34Hq6moWLFjAe++9JwumOVhhYaG573F6ejqAuThdcnKy/LyF6Abp9nGAJ554gn79+rFs2TJL6+jNWhaoa2kMMjMzCQsLMxuDxMTEXrHchhDOIuHvAAcOHOAnP/kJn332Gd6n7wQjekTLAnUty1Zv27aN6OhoszGIj4+XBeqE6ISEv4PccsstLF26lIsuusjqUjxSY2Mje/fuNRuDPXv2MGbMGLOLaOLEibJAnRCtSPg7yPr16/nHP/7B888/b3UpAqirqzMXqMvIyCA7O5sJEya0WaBO7tKEJ5Pwd5Da2lrmzZvHO++8w+DBg60uR5ymsrKyzQJ1hYWFTJ061ZxWGhMTIzOJhEeR8Hegp59+mpCQEO68806rSxFdKCkpMReoS09Pp6amhsTERLMxiI6OtrpEIXqUhL8DZWdns2LFCjZs2CBPqrqZ/Pz8No2Bv7+/2RgkJibSr18/q0sUwqEk/B3s9ttv57rrrmPmzJlWlyLOkdaaI0eOmOMFW7dupV+/fmZjEB8fT1hYmNVlCtEtEv4OtmnTJjZt2sSLL75odSnCQWw2G9988415V7Bz505GjBhhTiudMmWKLFAn3I6Ev4PV19czb9481qxZw5AhQ6wuR/SAlgXqWh44++abbxg3bpzZGIwfPx5fX1+ryxSiUxL+PeC5557Dx8eHu+++2+pShBO0LFDX0hgcPXqUKVOmmI1BbGysLFAnXI6Efw/Iyclh2bJlbNy4Ua4APVB5eTmZmZlmY1BSUkJiYqL5jMGwYcNkWqmwnKzq2QOGDx9OTEwMX3zxBZdeeqnV5QgnCwsLY+bMmeagf1FRkTl4vGbNGmw2W5sF6gYOHGhxxUJ0TK78z9Lnn3/OunXreOWVV6wuRbgQrTW5ublmY5CRkUFoaGibBeoiIiKsLlN4AOn26SENDQ3Mnz+fP/7xjwwfPtzqcoSLstlsHDp0yGwIsrKyiIqKarNAXXBwsNVlil5Iwr8HvfDCCzQ2NnLvvfdaXYpwE01NTWcsUDdq1Cizi2jSpEmyQJ1wCKeGv1JqLvA7wBt4TWv95GlfvwV4Gshr/tSLWuvXOntNVw7/3NxcbrnlFjZt2iT/YcU5qaurY+fOnWZjcOjQISZMmGA+cDZu3DhZoE6cE6cN+CqlvIGXgDlALpChlFqvtd572qHva63v6u75XMGQIUMYO3YsmzdvZt68eVaXI9yQv7+/2QUEUFVVZS5Q99hjj1FQUEB8fLzZGMTExMi0UuFQjpjtkwwc1FpnAyil3gMuB04P/14lJSWFd999V8JfOERwcDAXXnghF154IWAsULd161YyMjL48MMPqaysNAeOk5OTiY6OlmmlolscEf7RwLFWH+cC09o5bolS6iLgAHCv1vpYO8e4jYsuuojf/va3ZGdnExMTY3U5opfp27cvc+bMYc6cOQAUFBSYC9StXr0aHx8fc6XSxMRE+vfvb3HFwt10u89fKZUKzNVa39788Y3AtNZdPEqpSKBSa12nlLoDuFprfcYKaUqp5cBygGHDhiXk5OR0q7ae9oc//IHKykp++tOfWl2K8CBaa3Jycsw9jzMzM4mMjDS7kRISEmSBOg/mtAFfpdT5wKNa68uaP34IQGv9RAfHewMlWus+nb2uKw/4tigoKOD6669n06ZNsgCYsIzNZuPAgQNmY7B9+3aGDx/eZoG6wMBAq8sUTuLMJ3wzgDFKqZEYs3muAa47rZjBWuuC5g8XAfsccF7LDR48mEmTJvH555+zaNEiq8sRHsrLy4uxY8cyduxYbrrpJhoaGtizZw/p6em8+eab7Nu3j7Fjx5qNwYQJE9xneRKt4fhxyMuDxkYICICRI6FPp9eOwg6Omuo5D3geY6rnG1rrx5RSvwIytdbrlVJPYIR+I1AC3Km13t/Za7rDlT/AV199xRtvvMGaNWusLkWIdtXU1LBjxw7S09PJyMggJyeHyZMnm43Beeed51oziWw2yMyENWvg3/+GmhpovYlSfT306wc/+AHccAOMHm1Zqa5IHvJyEpvNxsKFC3nuueeIjY21uhwhulReXm7OJMrIyODkyZMkJCSYjcGIESOsm0m0cyfcdx/k5BhX/cHBRvC3rkdrowGorjY+//3vwxNPgOyxDUj4O9Uf//hHiouLeeihh6wuRYizVlxc3GZNosbGxjbTSgcNGtTzRdhssGoVvPoqeHlBaGjbwO+I1nDqFPj7w1NPwYIFPV+ri5Pwd6LCwkKuueYaNmzYQFBQkNXlCHHOtNbk5+ebXUSZmZkEBQWZex4nJibSt29fx57UZoP774f1643QP5d9suvqjDuBlSvhppscW5+bkfB3sgceeIDp06eTkpJidSlCOIzWmuzsbLMxyMrKYtCgQWZjkJCQ0P0F6h5/HF5/3RjE7c7YQ0MDVFXByy+DBy+5LuHvZP/5z3946aWXePvtt+XJS9FrNTU1sW/fPrOLaPfu3cTExJiNweTJk/H397f/BbduhauvNq74HbGWUcvg8D/+AZGR3X89NyTh72Q2m43Fixfz5JNPEhcXZ3U5QjhFfX19mwXqDh48yPjx483B47i4uI4XqGtqghkzoLDQCH9HKSuD+fPhd79z3Gu6EQl/C7z55pvk5ubyyCOPWF2KEJaorq42F6jLyMggPz+fqVOnmo3BqFGjvptW+s9/wvLl0MXTyOVNTfyqoIAtlZWE+/hwV//+zO1snn9TE1RWwtdfw4ABjvvLuQkJfwucPHmS1NRUPvvsM0JCQqwuRwjLlZWVmXseZ2ZmUlFRYe57fNnbbxO0axeqiwe2Hs7LQwOPDB7Mgdpa7jl2jDdHjCCms+6l0lJjEHnFCsf+hdyA7OFrgcjISKZNm8amTZu46qqrrC5HCMuFh4cze/ZsZs+eDcCJEyeMWURbtjDtb3+jwMeHoKoqgoODCQoOxve0mT41Nhv/qKjgg5gYgry8mBIUxMWhoWw8dYq7O7uq9/ODtDSPDH97udBjfb1DSkoK69atw1XvqISw0sCBA1mwYAGP3nQTUdHRDB0+nIDAQCoqKsjOzubQoUMUHD9OeUUFTU1NHK2vxxsY1mrTpDH+/mTX1XV+ooAA2LfPmEYq2iVX/g6WmJhIfX09u3btYtKkSVaXI4Rrys1FeXnh7+eHv58ffSMi0EBdbS1V1dWUlZWRn5/Pt15e+DY2UllZSWBQEN5eXoR4eVHVVah7ext9/ydPgix33S658ncwLy8vrrjiCj766COrSxHCddXXG0/ntqKAgIAAIvv2ZdjQoZwXG0tU375UNjVx5MgRDh06hE1rqmw2gu15HsDLy5j7L9ol4d8DFi5cyJdffkl5ebnVpQjhmvz8Oly+oaGxkZMlJeTk5OBTXIxNKbyjo/H386OiooIDdXWdD/a2sNmM84h2Sfj3gPDwcL7//e+zYcMGq0sRwjWNGNHmyr8l8I8cOUJ2djZ1tbX069ePibGxzI2M5K3qagLCw/m6qIgvKyqY39WSzo2N4OvrsQ962UPCv4fIwK8QnRgxgsbGRk4WF58R+GPGjCEqKoqQkBC8lOLBQYOos9lYUlDAbysruT8ysusr/9paGD/evsXhPJQM+PaQqVOnopRi27ZtxMfHW12OEC6hsLCQzZs3s3nzZpZUV/O9+nr69e9PUHAwXh0EdZi3N6uGDgWgqKiIxsbGrk/U2Ahz5zqy9F5Hrvx7iFKKlJQUGfgVHu/EiRO8++67LF26lGuuuYaDBw9y++23c9n77xPZty8hnQT/6cIjIigvL6eps9k+TU3GYO8VVzjob9A7yZV/D5o/fz6vvvoqpaWlREREWF2OEE5z4sQJ/v73v7N582aOHDnCjBkzuP3220lKSvpuC0mbDYYPh6NHu1zioYWvjw9BQUGUl5cTER7e/kHl5XDVVeDopad7GQn/HhQWFsaMGTP47LPPuMnD1xgXvV9L4KelpZGTk9N+4Lfm5WUsvrZ4sdFNY+c6/hERERQWFhIeHs4Z9wvV1RAeDrKxUpck/HtYSkoKK1eu5IYbbnCtfVKFcID2An/ZsmUdB/7pxo+HH/8Ynn/e7vX8g4ODsTU1UVNTQ1Bg4HdfqK835vX/8Y9230l4Mgn/HjZx4kQCAgLIzMwkOTnZ6nKE6Lbjx4+bXTqtAz85ORmfc9mF6667jCdx33oLQkKMKZqdUBh9/6Wlpd+Ff3W1Ef6rVsEFF5x9DR5Iwr+HtR74lfAX7qp14B89epSLL764e4HfmlLG9otDhsBvf2sEeVhYp9M0w8PDOXTwIE0NDXhXVRn7AbzyClx0Ufdq8SCypLMTVFZWsnDhQtauXUukPHQi3ERL4KelpXHs2DEuvvhi5syZQ1JSUvcDvyMHD8LPfw47dxoDwkFBZz4NbLNBbS0njx/H18+PsGuvhf/5H5BJFYCs5+9yfvOb3xAVFcXSpUutLkWIDp0e+DNmzGD27Nk9G/jt2bcP3n4bvvwSCgqMriCljOBvaoKYGPKmTuWRXbt4bcMGGU9rRdbzdzEpKSk8+OCD3HLLLfKLKlxKQUGB2aXTEvh33HGH8wO/tXHj4LHHjPcrKyE/35gRFBBgdA/5+RGlNdXXXivjaedIwt9J4uLi6NOnD1u2bGH69OlWlyM8nEsGfkdCQiA29oxPK6VITU1l7dq1Ev7nwMX+lXu3loFfCX9hhZbAT0tLIzc3lxkzZvDDH/6QxMRE1wt8O82bN4+XXnqJwsJCBnjgfr3d4Z7/4m7qsssu44UXXpBfVOE0pwf+JZdcwp133unWgd9aUFAQl156KZ9++inLli2zuhy34v7/+m6k5Rf1k08+Yfny5VaXI3qpgoICc/G03hj4p0tNTeWee+5h6dKleHt7W12O2+h9vwkuLiUlhZ/85Cfcdttt8osqHCY/P9/sw8/Ly2PGjBm9OvBbGzNmDIMGDeJf//oXM2bMsLoct9G7fytcUGxsLAMHDuTrr7/mInkgRXRDS+CnpaWRn5/PjBkzWLFiBQkJCb0+8E/XMvAr4W8/z/oNcREtA78S/uJsnR74l1xyCT/60Y88MvBbmz17Ns8++yzHjh1jaPPa/6JznvvbYqE5c+bw3HPPUVBQwODBg60uR7i4/Px8sw9fAr99fn5+LFy4kHXr1nHPPfdYXY5bkCd8LfLMM88QHBzMnXfeaXUpwgW1F/izZ8+WwO/EsWPHWLp0KRs3bsTPgzdulyd8XVxKSgorVqxg2bJl8p9ZAO0H/l133UVCQoJMDrDD0KFDOe+889i8eTPz5s2zuhyXJ6ljkZiYGIYOHcpXX33FzJkzrS5HWOT0wJ85c6YEfjcsWbKEt956S8LfDhL+FmoZ+JXw9ywS+D3noosu4umnn+bbb79lzJgxVpfj0iT8LTRr1ixWrVpFbm4uQ4YMsboc0YNaB35BQYF06fQQb29vFi9ezNq1a3lItnLslAz4Wuz555/H29ubu+++2+pShIO1BH5aWhrHjx9vM2grgd9zCgsLueaaa9iwYQNBQUFWl+N0Th3wVUrNBX4HeAOvaa2fPO3r/sCfgQTgJHC11vqII87t7lJSUrj99tv54Q9/aN+ep8KltRf4d999twS+Ew0YMIDExET++te/smTJEqvLcVndDn+llDfwEjAHyAUylFLrtdZ7Wx12G1CqtR6tlLoGeAq4urvn7g2GDRvGqFGj+OKLL7j00kutLkecg7y8PLNLRwLfNaSmpvLcc8+RkpKC6mQ7SE/miCv/ZOCg1jobQCn1HnA50Dr8LwcebX5/LfCiUkppV+1zcrKUlBTWrl0r4e9GJPBdW2JiIrW1tezatYtJkyZZXY5LckT4RwPHWn2cC0zr6BitdaNS6hQQCRQ74Pxub8aMGTz99NPk5OQwfPhwq8sRHWgJ/LS0NE6cOMEll1zCj3/8Y+Lj4yXwXYyXlxdLlixh7dq1Ev4dcKnZPkqp5cByMLpDPIWvry+LFi1i3bp13HvvvVaXI1ppHfiFhYVccskl3HPPPRL4bmDhwoVcfvnllJWVER4ebnU5LscR4Z8HtF5JaUjz59o7Jlcp5QP0wRj4bUNrvRpYDcZsHwfU5jauuOIKbr75Zn70ox959KPpriA3N9fs0pHAd199+vTh4osv5rPPPuPGG2+0uhyX44jwzwDGKKVGYoT8NcB1px2zHrgZ+C+QCvxD+vvbio6OZty4cfJoukUk8Hun1NRUHnnkEa6//nq8vLysLseldDv8m/vw7wL+hjHV8w2t9R6l1K+ATK31euB14C2l1EGgBKOBEKdJSUnh7bfflvB3kpbAT0tLo6ioiEsuuYSf/OQnxMfHS1D0EhMmTCAoKIj09HS+973vWV2OS5GHvFxIY2MjCxYs4OWXXyYmJsbqcnql0wN/5syZzJ49WwK/F1u3bh3/+c9/eOaZZ6wuxSlkVU835OPjw+LFi/noo4/46U9/anU5vcaxY8fMLp2WwL/33nsl8D3E3LlzefHFFyksLGTAgAFWl+My5MrfxRw/fpzrrruOTZs2ERAQYHU5bqu9wJcrfM/11FNPER4ezh133GF1KT1Orvzd1KBBg5g0aRKff/45ixYtsroct9IS+GlpaRQXFzNz5kzuu+8+pk6dKoHv4VJTU7nrrru47bbbZP+MZvJTcEFLlizh9ddfl/C3w+mBP2vWLO6//34JfNHGqFGjiI6Olv0zWpHwd0EXXHABTz75JAcOHCA2NtbqclzO0aNHzS4dCXxhr5YnfiX8DRL+LsjLy4srrriCjz76SNYkbyaBL7pr1qxZPPvssxw9etSjVhDoiAz4uqiioiKuuuoqNm7c6JFrkkP7gT9nzhymTJkigS/Oye9//3uampp69TIqMuDr5vr3709CQgL/93//R0pKitXlOM3pgT979mweeOABCXzhEEuWLOGmm25ixYoV+Pv7W12OpST8XdiSJUt48cUXueKKK3r1muQS+MJZoqOjGT9+PJs3b2b+/PlWl2MpCX8XNm3aNJ544gn27dtHXFyc1eU4VOvAP3nyJLNmzZLAF06RmprKm2++KeFvdQGiY15eXqSkpPDRRx/1ivBvCfy0tDRKSkok8IUlZDadQQZ8XVxJSQlLlizhs88+IyQkxOpyzlp7gT979mwJfGGp1157jcLCQh5++GGrS3E4GfDtJfr27cu0adPYtGkTV111ldXl2CUnJ8fs0mkJ/J/+9KcS+MJlLF68mCuvvJJ77rmH4OBgq8uxhIS/G1iyZAmrVq3iytmzUbt2we7d8O23UF8PwcEwcSLExRl/WjSDoXXgl5aWMnPmTAl84bL69etHcnIymzZt4sorr7S6HEtI+LuBRB8fbkxPp37qVPwDA6GuDnx8QCmw2WDdOvD1Nd5uuAFuvBGionq8rpbAT0tLo6ysjJkzZ/Kzn/2MyZMnS+ALl5eamsozzzxDampqr55N1xEJf1dWUQGPPYZau5YLq6o4qRRR/ftDR33/9fWwejW8+Sb88pdw3XXg4BA+PfBnzZrFz3/+cwl84XYSExNpaGhgx44dTJkyxepynE7C31UdPgzXXw8nTkCfPgSFhlJw8CBNTU0dbyvo52e81dfDypWQlgZ/+AN08wnhI0eOmF06Eviit1BKkZqaytq1ayX8hYs4ehRSU40r/4gIwPiHCgkJoezUKSL79u38+/38jC6gf/8bli6FP/3prMcCJPCFJ1iwYAGrV6+mtLSUiOb/a55Cwt/V1NfDbbfBqVMQHt7DaNuAAAAZx0lEQVTmSxERERQUFNC3b1+67KFUyvj+9HR48knjTqALLYGflpZGeXk5M2fO5MEHH2TSpEkS+KJXCgsL45JLLmH9+vXcfPPNVpfjVBL+rubFF40unz59zvhSYFAQKEV1dTXB9nTlKGW8zltvwbx5kJR0xiGnB/6sWbN46KGHJPCFx0hNTeWhhx7ixhtv9KjfeQl/V1JUBK++agzotjP7QAER4eGUlZbaF/4A3t7G2yOPwF//Ckpx+PBhs0tHAl94uri4OMLCwtiyZQvTp0+3uhynkfB3JR9+CI2NxjTODgSGhvJoXh6HqqupsNkY4uvLXQMGML2zp39DQmjYv5/1jz7KB/v3S+AL0YpSytzoRcJfWOOttyAwsPNjvL0ZEhjI8tBQ4gYM4OvKSh7My+O9kSOJ8vNrc2hdXR3lFRWUl5cTVFtL1Ndf8/CqVUycOFECX4hW5s6dywsvvMDx48cZNGiQ1eU4hSSAqygthcLCLmflBHp5cVd0NAGVlSiluDA0lChfX/bX1gJG4BcVF3MoO5uco0dpampi8ODBDBo5kvOVktk6QrQjMDCQuXPn8vHHH1tditNICriK/fuN6Zl2PGkYGBiIl1JUV1VR0thITm0tfaqqzgj8MWPGMGjgQIICA1H+/sZAcn29E/4yQrif1NRUPvnkExobG60uxSmk28dVlJQYSzXYQQHhERHk5ObyWH095ytFtJcXYYMHExgY2P40UC8vo2GpqIDISEdWLkSvEBMTw/Dhw/nyyy+ZNWuW1eX0OLnydxVnubR2WJ8+vGyz4WWzsczPD5vNRkN9fddXLS66hLcQrqDliV9PIOHvKsLC7F6HR2vNY8eP0xAUxB8nTiRm+HACAgIor6ggOzubQ9nZHD9+nIqKCppa7ia0Nu4s3HBPACGcZcaMGRw6dIicnByrS+lx0u3jKmJjjWmeWnfZ7//E8eMcrq/n5WHDCPDyAn9//P396RsRgQZqa2upqqqipLSUvPx8/P38CPPzw3fQIPyVwrO3rRaiY35+fixatIiPPvqI++67z+pyepTs5OUqtIapU42r89OmbLZW0NDAwoMH8VMK71aNxMODBvGDdp4KtmlNTU0NjUVFbBkwgN/07cv48eNJTk4mKSmJuLi4jheKE8ID5efnc+ONN7Jx40YCAgKsLuesyU5e7kYpuOoqeP31TsN/sK8vmePG2f2yXkoZTwNHRHDZ6tV8f8oUsrKyyMjI4PHHH6egoICpU6eSlJREcnIyo0aN8si1zYVoERUVxYQJE0hLS2PhwoVWl9Nj5MrfleTkwKxZZ9X/b5fqamORt3//+4zXLSkpITMzk4yMDNLT06mpqSExMZHk5GSSk5OJcsKmMEK4mn/961+89tpr/OlPf7K6lLNm75W/hL+reeAB+OSTM1b0PGc2m7FC6AsvGIu7dSE/P99sCDIyMggICDAbgsTERPp2tZy0EL2AzWZj0aJFPPPMM4wdO9bqcs6KhL+7Ki+HmTOhstIxM3NKSmD2bGPBuLPsztFak52dbTYEWVlZDBo0yGwIEhISPHbza9H7vfHGG+Tn5/PLX/7S6lLOioS/O8vKMnbxUqp7u3CdOgXR0fDxx+amMN3R1NTEvn37zMZg9+7djB492hwvmDRpEn6djFcI4U5OnjxJamoqn332GSFuNEVawt/dpafDrbcam7X36XN2V+1NTcYdxIgR8Je/wIABPVJiXV0dO3bsMLuJDh8+zIQJE8xuorFjx8o6QsKtPfTQQ0yZMoWrr77a6lLsJuHfG+TkwH33wY4dxro/zZu5dMhmM0If4Npr4cEHwYndMhUVFWRlZZl3BkVFRSQkJJjdRCNHjpSZRMKtbN26laeeeor333/fbX53Jfx7C5vNGAB++WWjMWhqMjZn8fMzGgKbzbg7UMp4u+ACuPtuSEiwunKKi4vJyMgw3xoaGkhKSjK7iTxl6VzhvrTWXHnllTz88MPEx8dbXY5dnBL+Sqm+wPvACOAIcJXWurSd45qAXc0fHtVaL+rqtSX8T6M17NoFmZlGl1B2tvFEcGAgTJgAiYkwfbrRx++CtNbk5eWZdwUZGRmEhoaaDUFiYiLhjprhJIQD/eUvf2HXrl08/vjjVpdiF2eF/2+BEq31k0qpB4EIrfXP2zmuUmt9ViMmEv69m81m4+DBg+Z4wfbt24mOjjbHC6ZMmUJQdwa7hXCQiooKc8kHd5jq7Kzw/waYobUuUEoNBv6ptT6vneMk/EWnGhsb2bNnj3lnsG/fPmJjY81lKCZOnIivr6/VZQoP9atf/YqhQ4dy6623Wl1Kl5wV/mVa6/Dm9xVQ2vLxacc1AtuBRuBJrfUnXb22hL9nq6mpYfv27WYXUU5ODpMnTza7iWJjY2UmkXCavXv38vOf/5xPP/3U5X/vHLa2j1JqM9DeyNwvWn+gtdZKqY5akuFa6zylVAzwD6XULq31oXbOtRxYDjBs2LCuShO9WGBgIOeffz7nn38+AOXl5eYyFL/4xS8oLS1tswzF0KFD3WY2hnA/cXFxRERE8N///pcLLrjA6nIcwindPqd9zxpgg9a60x0T5MpfdKawsLDNMhRAm2UoBvTQsw3Cc61fv54vvviC5557zupSOuWsbp+ngZOtBnz7aq1/dtoxEUC11rpOKdUP+C9wudZ6b2evLeEv7KW15ujRo2ZDkJmZSUREhDlekJiYSFhYmNVlCjdXU1PD/Pnzeeeddxg8eLDV5XTIWeEfCXwADANyMKZ6liilEoEfaq1vV0pNB14FbBg7hz2vtX69q9eW8BfnymazceDAAbMx2LFjB8OHDzfHC6ZMmeKW67QL6z3zzDMEBQWxYsUKq0vpkDzkJUSz+vp6du/ebXYTHThwgHHjxpndRHFxcfj4yNYWomuHDx/mjjvuYOPGjS47+0zCX4gOVFdXs23bNvPOIC8vj6lTp5rdRKNGjXL5GR3COnfccQepqanMmTPH6lLaJTt5CdGBoKAgLrjgAnPWRmlpKVu3biU9PZ0PP/yQyspKEhMTzW6i6OhomUkkTKmpqaxdu9Zlw99ecuUvxGkKCgrM5wvS09Px8/MzG4KkpCQiIyOtLlFYqKGhgQULFvDKK68wcuRIq8s5g3T7COEAWmsOHz5sNgRZWVn079/fHC+Ij493q7XehWO8/PLLVFdX88ADD1hdyhkk/IXoAU1NTezfv7/NhjYxMTHmaqVTpkyRDW08QEFBAddffz0bN24kMDDQ6nLakPAXwgnq6+vZuXOn2RgcOnSI8ePHm91E48aNw9vb2+oyRQ+49957mTFjBpdffrnVpbQh4S+EBSorK8nKyjK7iU6cOEF8fLzZTSQb2vQeX3/9Na+++ip//vOfrS6lDQl/IVxASUlJm2Uo6urqzC6ipKQkoqKirC5RnCObzcbixYt58skniYuLs7ock4S/EC6o9YY2mZmZBAYGmrOIkpKSiIiIsLpEcRbWrFnD0aNH+Z//+R+rSzFJ+Avh4rTWHDp0yGwMsrKyiIqKMscL4uPjZUMbF1dSUsKSJUv49NNPXWb9KAl/IdxMY2Mje/fuNbuJ9u7dy5gxY8zxggkTJshMIhf08MMPM3HiRK699lqrSwEk/IVwe7W1tezYscO8Mzhy5AgTJ040u4nGjh0ry1C4gKysLB5//HE+/PBDlxjMl+UdhHBzAQEBTJs2jWnTpgHGhjZbt24lIyODlStXcvLkSRISEsxuouHDh7tE+HiaqVOn4uXlRVZWFgkJCVaXYze58hfCTRUVFbVZhsJms5kNQXJysmxo40QffPAB27Zt44knnrC6FOn2EcKTaK05duyY2RBkZmbSp08fsyFISEigT58+VpfZa1VWVrJw4ULWrl1r+dpPEv5CeDCbzca3335rjhds376doUOHmuMFU6dOdbllCdzdb37zG6Kioli6dKmldUj4CyFMDQ0N7Nmzx2wM9u/fz9ixY81uogkTJsiGNt20f/9+HnjgAdavX2/pQLyEvxCiQzU1NWzbts3sJjp27BhTpkwxu4lGjx4tM4nOwc0338ztt9/OhRdeaFkNMttHCNGhwMBApk+fzvTp0wE4deoUmZmZpKens27dOsrLy0lMTCQ5OZnExESGDh0qM4ns0LLRi5Xhby+58hdCnOHEiRNt1iTy9vY2l6BITk6mX79+Vpfokurq6pg3bx5vvfWWZes2SbePEMIhtNbk5OSYDcHWrVuJjIw0G4KEhARCQ0OtLtNlPPvss/j5+XHXXXdZcn4JfyFEj7DZbOzfv9+8M9i1axcjRowwxwsmT56Mv7+/1WVaJicnh2XLlrFhwwZLluOQ8BdCOEV9fT27du0y7wy+/fZb4uLizGml48eP97gNbe68804WL17MZZdd5vRzS/gLISxRXV1NVlaW2RgUFBQwdepUs5to1KhRvX7w+O9//zvvv/8+q1evdvq5JfyFEC6hpKSEzMxMs5uopqbGnEmUnJzcKze0aWxsZMGCBbz88svExMQ49dwS/kIIl5Sfn99mJlFAQIB5V5CUlETfvn2tLtEhXnnlFcrLy/nZz37m1PNK+AshXJ7WmuzsbLMxyMrKYuDAgWZDkJCQQHBwsNVlnpMTJ05w7bXXsmHDBqduyiPhL4RwO01NTezbt8+8K9i9ezejR4827wwmTZrkVhva3HfffVx44YVcccUVTjunhL8Qwu3V1dWxY8cO887g8OHDTJgwwRwvcPUNbf7zn//w0ksv8fbbb5uD3BUVUFMDPj4QHg6OLl/CXwjR61RUVLSZSVRUVER8fLzZTTRy5EiXmklks9lYuPBq5sxZxY4dw9ixA06dMgJfa6MBiIuDmTMhNRUGDer+OSX8hRC9XnFxsbkmUUZGBg0NDW2WoRjkiDQ9R3V18NJLsGpVGbW1TURGRhIQAL6+0NI+NTVBbS3U1xufmz0bVq6EwYPP/bwS/kIIj6K1Ji8vz2wIMjIyCA0NNRuCxMREwsPDnVLLnj3wox/BsWMQGNhITs4hRo8e3enDbjYblJeDvz/8+teQknJu55bwF0J4NJvNxsGDB83xgu3btxMdHd1mQ5uemIWzZQvceqtxVR8WZnwuLy+PwMAA+vbtepevujqoroa774Z77vnuLsFeEv5CCNFKY2Mje/bsMRuDffv2ERsbazYGEydOxNfXt1vn2LPH6LtXClq3K9XV1RQU5DNq1Cig6zRvbDQGhh95BG655exqkPAXQohO1NbWsn37drObKCcnh8mTJ5vdRLGxsWc1k6iuDubOhby87674v2M8zzBw4CC7n1toaDBmBW3cCGPG2P/3kvAXQoizUF5e3mYZitLS0jbLUHS1oc1zz8GLL0JERPtfLy0toaqqmiFDhthd06lTEBsLn31m/5RQCX8hhOiGwsLCNstQAGYXUVJSEgMGDDCPra6GpCRj6mZHPUc2WxN7975AUFAG9fXZhIVdRlTUo53WoLUxCPzOO5CcbF/dso2jEEJ0w4ABA5g/fz7z589Ha82xY8dIT0/nyy+/ZNWqVURERJiNQV7e96ivDyIwsOPX8/LyJiQkGh+fEQQG7kPrui5rUMpoAF57zf7wt1e3wl8pdSXwKDAOSNZat3uprpSaC/wO8AZe01o/2Z3zCiGEMymlGDZsGMOGDSM1NRWbzcaBAwdIT0/n448/5sMPa6munkpdnRfBwcEEBQWh1Jn9NIMGLeTYsWP06ZNHY2ORXecODYUvvzRmDzlyW4TuXvnvBlKAVzs6QCnlDbwEzAFygQyl1Hqt9d5unlsIISzh5eXF2LFjGTt2LDfddBNff22joqKW+voqioqKqaurJSAggODgYIKDgwkICEQpRUBAAL6+PtTV1dkd5C3HHTkCo0Y57u/QrfDXWu8DunqcOhk4qLXObj72PeByQMJfCOH2Kivh1CkvwsODUCqI/v37Y7M1UV1dQ1VVFcePH6e+vp6goKDmxiCEkpJqzmbbY6Xg0CEXCn87RQPHWn2cC0xzwnmFEKLH1dQYM3FaXwMb/fshhISEANDU1EhVVTVVVVVUVVXR0FCP1vY/vWWzGctAOFKX4a+U2gy0t0DGL7TWnzqyGKXUcmA5wLBhwxz50kII0SN8fIxB2c54e/sQFhZGWPMDAIWFA+3u8wejYfFx8KV6ly+ntZ7dzXPkAUNbfTyk+XPtnWs1sBqMqZ7dPK8QQvS4Pn2M6Z32DMhq3YTWTYAGbNhs9SjljTE02jGlIDraYSUD4IyFsDOAMUqpkUopP+AaYL0TziuEED3OywvGjTO6f7pSXPw633wznZMn13Dq1Ca++WY6xcWvd/o9WhtP+8bGOqjgZt2d6nkF8ALQH9iolNqutb5MKRWFMaVznta6USl1F/A3jKmeb2it93S7ciGEcBGzZsGOHV0f17//cvr3X35Wr11VZTQunT1DcC66deWvtf5Yaz1Ea+2vtR6otb6s+fP5Wut5rY7bpLWO1VqP0lo/1t2ihRDClSxZYtwB2GyOf+2mJlh+du2FXVx3/zMhhHATgwYZG7GcOuXY162pgZAQuPRSx74uSPgLIYRDrFwJAQHG6p6O0DK986mnjNd1NAl/IYRwgEGD4LHHjEXeGhu791paG3cR8+bBnDmOqe90Ev5CCOEgixcbu2+VlxszdM6FzQZlZcYqoU8/ffY7edlLwl8IIRzoxz+GRx81+utPner6AbDWWr5n3jxYs6ZnuntaSPgLIYSD3XQTbNoE551n3AWUlRmzdtqjdcv6QODnB6+8Ai+80LPBD7KevxBC9IjRo40duDIy4I034IsvjM8rZXTtKGW8NTRAXBwsW2bM6unp0G8h4S+EED1EKWMTluRkI/CPHDFW56ypMZaEiI42ntx1VuC3JuEvhBBO4OUFMTHGmyuQPn8hhPBALruBu1KqCMhp50v9gGInl3M2XL0+cP0aXb0+cP0apb7uc/UaO6pvuNa6f1ff7LLh3xGlVKY9O9NbxdXrA9ev0dXrA9evUerrPlevsbv1SbePEEJ4IAl/IYTwQO4Y/qutLqALrl4fuH6Nrl4fuH6NUl/3uXqN3arP7fr8hRBCdJ87XvkLIYToJpcPf6VUX6VUmlLq2+Y/Izo47rdKqT1KqX1Kqd8r1VNr4Z1zfcOUUp8317dXKTXCGfWdTY3Nx4YppXKVUi+6Un1KqSlKqf82/xvvVEpd7YS65iqlvlFKHVRKPdjO1/2VUu83f/3/OfPf9CxqvK/5922nUurvSqnhrlRfq+OWKKW0Usrps2vsqVEpdVXzz3GPUupdV6qvOVu+UEpta/53ntfe65xBa+3Sb8BvgQeb338QeKqdY6YDX2PsEewN/BeY4Sr1NX/tn8Cc5vdDgCBX+hm2OvZ3wLvAi65UHxALjGl+PwooAMJ7sCZv4BAQA/gBO4C4045ZAbzS/P41wPvO+pmdRY2XtPyuAXc6s0Z76ms+LhT4CtgCJLrgz3AMsA2IaP54gIvVtxq4s/n9OOCIPa/t8lf+wOXAn5rf/xOwuJ1jNBCA8cPxB3yBE06pzo76lFJxgI/WOg1Aa12pta52Un1g388QpVQCMBD43El1teiyPq31Aa31t83v5wOFQJcPsnRDMnBQa52tta4H3muus7XWda8FZjnrjtPeGrXWX7T6XdsCDHGl+pr9GngKqHVibS3sqXEZ8JLWuhRAa13oYvVpIKz5/T5Avj0v7A7hP1BrXdD8/nGMcGpDa/1f4AuMq8EC4G9a632uUh/GVWuZUmpd863Z00opbyfVB3bUqJTyAlYBDzixrhb2/AxNSqlkjIb+UA/WFA0ca/VxbvPn2j1Ga90InAIie7Cm09lTY2u3AX/t0Yra6rI+pVQ8MFRrvdGJdbVmz88wFohVSn2tlNqilJrrtOrsq+9R4AalVC6wCbjbnhd2iYXdlFKbgUHtfOkXrT/QWmul1BnTk5RSo4FxfHdVk6aUulBr/S9XqA/j53whMBU4CrwP3AK87oj6HFTjCmCT1jq3Jy5eHVBfy+sMBt4CbtZa2xxbZe+llLoBSAQutrqWFs0XHM9i/F9wZT4YXT8zMDLmK6XURK11maVVfedaYI3WepVS6nzgLaXUhK7+f7hE+GutZ3f0NaXUCaXUYK11QfN//PZuua4AtmitK5u/56/A+YBDwt8B9eUC27XW2c3f8wnwPRwY/g6o8XzgQqXUCowxCT+lVKXWusNBOifXh1IqDNgI/EJrvcURdXUiDxja6uMhzZ9r75hcpZQPxi33yR6uq73zt2ivRpRSszEa2Yu11g7aXtwuXdUXCkwA/tl8wTEIWK+UWqS1znSRGsH4//v/tNYNwGGl1AGMxiDDReq7DZgLRi+IUioAY92fTrun3KHbZz1wc/P7NwOftnPMUeBipZSPUsoX4+rGWd0+9tSXAYQrpVr6qGcCe51QW4sua9RaX6+1Hqa1HoHR9fNnRwW/I+pTSvkBHzfXtdYJNWUAY5RSI5vPfU1zna21rjsV+IduHnVzki5rVEpNBV4FFjm5r7rL+rTWp7TW/bTWI5p/77Y01+ms4O+yxmafYFz1o5Tqh9ENlO1C9R0FZjXXNw5j/LOoy1d21qh1N0a7I4G/A98Cm4G+zZ9PBF7T342Iv4oR+HuBZ12pvuaP5wA7gV3AGsDP1WpsdfwtOHe2jz3/xjcADcD2Vm9TeriuecABjLGFXzR/7lcYAUXzf7IPgYNAOhDjrJ/ZWdS4GWPyQ8vPbL0r1Xfasf/EybN97PwZKozuqb3N/3+vcbH64jBmO+5o/je+1J7XlSd8hRDCA7lDt48QQggHk/AXQggPJOEvhBAeSMJfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA/1//BgL3R1ssYIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "\n", + "algorithm_cfg = {\n", + " 'name': 'ExactEigensolver',\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising'},\n", + " 'algorithm': algorithm_cfg\n", + "}\n", + "result = run_algorithm(params,algo_input)\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", + "\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running it on quantum computer\n", + "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.4995485513056617\n", + "time: 8.994375944137573\n", + "max-cut objective: -3.9995485513056614\n", + "solution: [0. 1. 0. 1.]\n", + "solution objective: 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb1JCDNhBogQdhYVqyJDKUsMcW8UrFRrHW3V1i9+27qqqK2jSh20jjoQFYF+a2ittrb8khD2ECEQyIAkJCF7nuv3x53cJpBxICfnPifn83w88iDjzrk/hPC+7vu6rvu6lNYaIYQQnsXL6gKEEEI4n4S/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHkjCXwghPJCP1QV0pF+/fnrEiBFWlyGEEG5l69atxVrr/l0d57LhP2LECDIzM60uQwgh3IpSKsee41w2/B1NaygogNJS4/2wMBgyBLyk40sI4YF6dfjX18MXX8Dbb8O2bVBXBz4+RvjbbODtDePHw3XXwQ9+AIGBVlcshBDOoVx1Vc/ExER9rt0+WsOnn8L//i9UVRmfCwoygr+1piaorjYaAj8/uP9+uOUWuRsQQrgvpdRWrXViV8f1upgrLYWlS40gb2gwunfCws4MfjCu/ENDoU8f4/3HHoOUFMjPd37dQgjhTL0q/IuLITUVvvoKwsMhIMD+7/XzM75n1y5YvBhy7BoyEUII99Rrwr++Hm66yQjtiAhQ6uxfQynje0tL4ZproKzM8XUKIYQr6DXh//vfwzffGF043dWnDxQWwqOPdv+1hBDCFfWK8D9wAF591ei/P5cr/vb06QMbNsDXXzvm9YQQwpX0iqmer79uzNhpb1C3tby8R6iuTsdmq8HHpx+RkTcRHr643WO9vIyG5KWX4IILeqBoIYSwkNuHf3m5Ma0zNLTrY/v1uxVf30fw8vKjru4IOTnL8fc/j8DAce0eHxoK6enGOMLw4Q4uXAghLOSQbh+l1BtKqUKl1O4Ovq6UUr9XSh1USu1USsU74rwA27cbf3Z11Q/g7x+Dl5dfS1UopWhoyO3w+Jar//T07tcphBCuxFF9/muAuZ18/QfAmOa35cAfHHRe9uwxZvrY6/jxJ9m//wKys5fg49OPkJDO+3RsNpAlhoQQvY1Dun201l8ppUZ0csjlwJ+18TjxFqVUuFJqsNa6oLvn3rPHeEDLXoMGPcjAgT+jpmYn1dVbUcqv0+P9/WHfvm4WKYQQLsZZs32igWOtPs5t/lwbSqnlSqlMpVRmUVGRXS9cU3N2M3zq6+s4cOAAZWUDqKjIobj4vU6PV8pYE0gIIXoTl5rqqbVerbVO1Fon9u/f5XLUgLEY29ksT6SUF1prAgL8qaur5sSJnRw6dIjjxwuoqCinqanptJqMp3+FEKI3cVb45wFDW308pPlz3TZ2LDQ2dn1cY2MJ5eWf4+3dQHBwEPX1mcAWhg+fT3R0FL6+fpSVlXHw4LccPpxNYeEJKisrqa1tYlz7k4GEEMJtOWuq53rgLqXUe8A04JQj+vsBJk40+uW7pigtXUtBweM0NTXQ1BTOkCH3Exp6MQABAYFERkaitY2amlqqq6s4ebKYykpvMjM38uqriqSkJCZMmICf3AoIIdycQ8JfKfUXYAbQTymVC6wEfAG01q8Am4B5wEGgGrjVEecFmDLF6Jppaup84NfHJ4Lhw1c3f6Q5ePAggYFD2vm7eBEUFERQUBCRkf0pK7Pxox9NIz//3zz//PMcOXKESZMmkZSURFJSEmPHjsVL1oAWQriZXrGe//33wyefGIuy2au4uJiGhnoGD47q8Jjycpg8GT78sPXnysnKyiI9PZ3MzEyKi4uJj48nOTmZxMRERo4ciXLUGhNCCHGW7F3Pv1eE/969cPnlEBJi/7TPxsZGDh06xJgxo/HyOvObbDYj/F97DWbM6Ph1iouLyczMJD09nYyMDOrr60lKSjIbg6iojhsXIYRwNI8KfzA2YnnzTWNNfnvl5uYSHBxERETfM75WVgZz5sDLL5/dVNK8vDwyMjLMO4PAwMA2jUHfvmeeSwghHMXjwr+mBhYsgKNH7V/WuaqqihMnjhMTEwN8l/Dl5cZr/O1v0J2s1lqTnZ1tNgZZWVkMHDiQ5ORkkpKSiI+PJyQk5NxPIIQQp/G48Ac4ccLYySs/37gD6PqKXXPo0CGioqIIDAxCazh1yljQ7YMPYMyYcy6/XU1NTezfv9/sItq9ezcjR440G4PJkyfjb9/UJSGEaJdHhj9AURHcfTdkZBibtneVpSdPFlNXV0f//tFUVhqB/+qrzlnFs76+nl27dpmNwbfffktcXJzZGMTFxeFjz4p1QgjRzGPDH4zB2vffN8YB6uqM1TmDgs4cDLbZoKqqkaNHjzN06GB+/GNv7rgDfH0d8Bc4B9XV1Wzbts1sDPLy8pg6dao5rXT06NEyrVQI0SmPDv8WNTXw+efwpz8ZC8CB0RDAd88GjBkDvr4fsGiR4rbbruxm1Y5VVlbG1q1bzcagvLycxMREszEYOnSoTCsVQrQh4X+apiZjU5bSUuOKv08fGDnSuMrPysri8ccf58MPP3TpMD1x4gQZGRnmm1LKbAiSkpIYMGCA1SUKISwm4X8WtNZcddVVPPTQQ8THO2yfmR6ltebYsWPmXUFmZibh4eHmtNKEhAT6OGI3eyGEW5HwP0vvvvsue/bs4bHHHnPaOR3JZrNx8OBBszHYvn07Q4YMMRuDKVOmEBQUZHWZQogeJuF/lsrLy1m0aBGffPIJ4WfzpJiLamxsZM+ePeYzBvv27SM2NtZsDGSBOiF6Jwn/c7By5UpGjx7NjTfe6NTzOkNtbS07duwwG4MjR44wceJEszGQBeqE6B0k/M/Bzp07WblyJR999FGvD8KKigqysrLMxqCoqMhcoC4pKUkWqBPCTdkb/vIEUSsTJ07E39+fzMxMkpOTrS6nR4WGhnLxxRdz8cXGfgYnT54kMzOTjIwM3nnnHWpra827gqSkJFmgToheRq78T/PBBx+wdetWnnrqKaef25Xk5+ebdwUZGRkEBAS0WaAuMjLS6hKFEO2Qbp9zVFlZycKFC1m7dq0EXDOtNYcPH26zQF3//v3NxiA+Pp7Q0FCryxRCIOHfLb/+9a8ZMmQIt97qsA3HehWbzcb+/fvNxmDXrl2MGDGizQJ1AQEBVpcphEeS8O+GvXv38uCDD/LJJ5/0+oFfR6ivr2f37t1mY3DgwAHGjRtnNgbjx4+XBeqEcBIJ/2664YYbWLFiBdOnT7esBndVXV3N9u3bzfGCY8eOMWXKFLMxGDNmjDSqQvQQme3TTSkpKaxbt07C/xwEBQUxffp082d36tQpc4G6jz/+mLKyMhISEkhOTiY5OVkWqBPCAnLl34Hq6moWLFjAe++9JwumOVhhYaG573F6ejqAuThdcnKy/LyF6Abp9nGAJ554gn79+rFs2TJL6+jNWhaoa2kMMjMzCQsLMxuDxMTEXrHchhDOIuHvAAcOHOAnP/kJn332Gd6n7wQjekTLAnUty1Zv27aN6OhoszGIj4+XBeqE6ISEv4PccsstLF26lIsuusjqUjxSY2Mje/fuNRuDPXv2MGbMGLOLaOLEibJAnRCtSPg7yPr16/nHP/7B888/b3UpAqirqzMXqMvIyCA7O5sJEya0WaBO7tKEJ5Pwd5Da2lrmzZvHO++8w+DBg60uR5ymsrKyzQJ1hYWFTJ061ZxWGhMTIzOJhEeR8Hegp59+mpCQEO68806rSxFdKCkpMReoS09Pp6amhsTERLMxiI6OtrpEIXqUhL8DZWdns2LFCjZs2CBPqrqZ/Pz8No2Bv7+/2RgkJibSr18/q0sUwqEk/B3s9ttv57rrrmPmzJlWlyLOkdaaI0eOmOMFW7dupV+/fmZjEB8fT1hYmNVlCtEtEv4OtmnTJjZt2sSLL75odSnCQWw2G9988415V7Bz505GjBhhTiudMmWKLFAn3I6Ev4PV19czb9481qxZw5AhQ6wuR/SAlgXqWh44++abbxg3bpzZGIwfPx5fX1+ryxSiUxL+PeC5557Dx8eHu+++2+pShBO0LFDX0hgcPXqUKVOmmI1BbGysLFAnXI6Efw/Iyclh2bJlbNy4Ua4APVB5eTmZmZlmY1BSUkJiYqL5jMGwYcNkWqmwnKzq2QOGDx9OTEwMX3zxBZdeeqnV5QgnCwsLY+bMmeagf1FRkTl4vGbNGmw2W5sF6gYOHGhxxUJ0TK78z9Lnn3/OunXreOWVV6wuRbgQrTW5ublmY5CRkUFoaGibBeoiIiKsLlN4AOn26SENDQ3Mnz+fP/7xjwwfPtzqcoSLstlsHDp0yGwIsrKyiIqKarNAXXBwsNVlil5Iwr8HvfDCCzQ2NnLvvfdaXYpwE01NTWcsUDdq1Cizi2jSpEmyQJ1wCKeGv1JqLvA7wBt4TWv95GlfvwV4Gshr/tSLWuvXOntNVw7/3NxcbrnlFjZt2iT/YcU5qaurY+fOnWZjcOjQISZMmGA+cDZu3DhZoE6cE6cN+CqlvIGXgDlALpChlFqvtd572qHva63v6u75XMGQIUMYO3YsmzdvZt68eVaXI9yQv7+/2QUEUFVVZS5Q99hjj1FQUEB8fLzZGMTExMi0UuFQjpjtkwwc1FpnAyil3gMuB04P/14lJSWFd999V8JfOERwcDAXXnghF154IWAsULd161YyMjL48MMPqaysNAeOk5OTiY6OlmmlolscEf7RwLFWH+cC09o5bolS6iLgAHCv1vpYO8e4jYsuuojf/va3ZGdnExMTY3U5opfp27cvc+bMYc6cOQAUFBSYC9StXr0aHx8fc6XSxMRE+vfvb3HFwt10u89fKZUKzNVa39788Y3AtNZdPEqpSKBSa12nlLoDuFprfcYKaUqp5cBygGHDhiXk5OR0q7ae9oc//IHKykp++tOfWl2K8CBaa3Jycsw9jzMzM4mMjDS7kRISEmSBOg/mtAFfpdT5wKNa68uaP34IQGv9RAfHewMlWus+nb2uKw/4tigoKOD6669n06ZNsgCYsIzNZuPAgQNmY7B9+3aGDx/eZoG6wMBAq8sUTuLMJ3wzgDFKqZEYs3muAa47rZjBWuuC5g8XAfsccF7LDR48mEmTJvH555+zaNEiq8sRHsrLy4uxY8cyduxYbrrpJhoaGtizZw/p6em8+eab7Nu3j7Fjx5qNwYQJE9xneRKt4fhxyMuDxkYICICRI6FPp9eOwg6Omuo5D3geY6rnG1rrx5RSvwIytdbrlVJPYIR+I1AC3Km13t/Za7rDlT/AV199xRtvvMGaNWusLkWIdtXU1LBjxw7S09PJyMggJyeHyZMnm43Beeed51oziWw2yMyENWvg3/+GmhpovYlSfT306wc/+AHccAOMHm1Zqa5IHvJyEpvNxsKFC3nuueeIjY21uhwhulReXm7OJMrIyODkyZMkJCSYjcGIESOsm0m0cyfcdx/k5BhX/cHBRvC3rkdrowGorjY+//3vwxNPgOyxDUj4O9Uf//hHiouLeeihh6wuRYizVlxc3GZNosbGxjbTSgcNGtTzRdhssGoVvPoqeHlBaGjbwO+I1nDqFPj7w1NPwYIFPV+ri5Pwd6LCwkKuueYaNmzYQFBQkNXlCHHOtNbk5+ebXUSZmZkEBQWZex4nJibSt29fx57UZoP774f1643QP5d9suvqjDuBlSvhppscW5+bkfB3sgceeIDp06eTkpJidSlCOIzWmuzsbLMxyMrKYtCgQWZjkJCQ0P0F6h5/HF5/3RjE7c7YQ0MDVFXByy+DBy+5LuHvZP/5z3946aWXePvtt+XJS9FrNTU1sW/fPrOLaPfu3cTExJiNweTJk/H397f/BbduhauvNq74HbGWUcvg8D/+AZGR3X89NyTh72Q2m43Fixfz5JNPEhcXZ3U5QjhFfX19mwXqDh48yPjx483B47i4uI4XqGtqghkzoLDQCH9HKSuD+fPhd79z3Gu6EQl/C7z55pvk5ubyyCOPWF2KEJaorq42F6jLyMggPz+fqVOnmo3BqFGjvptW+s9/wvLl0MXTyOVNTfyqoIAtlZWE+/hwV//+zO1snn9TE1RWwtdfw4ABjvvLuQkJfwucPHmS1NRUPvvsM0JCQqwuRwjLlZWVmXseZ2ZmUlFRYe57fNnbbxO0axeqiwe2Hs7LQwOPDB7Mgdpa7jl2jDdHjCCms+6l0lJjEHnFCsf+hdyA7OFrgcjISKZNm8amTZu46qqrrC5HCMuFh4cze/ZsZs+eDcCJEyeMWURbtjDtb3+jwMeHoKoqgoODCQoOxve0mT41Nhv/qKjgg5gYgry8mBIUxMWhoWw8dYq7O7uq9/ODtDSPDH97udBjfb1DSkoK69atw1XvqISw0sCBA1mwYAGP3nQTUdHRDB0+nIDAQCoqKsjOzubQoUMUHD9OeUUFTU1NHK2vxxsY1mrTpDH+/mTX1XV+ooAA2LfPmEYq2iVX/g6WmJhIfX09u3btYtKkSVaXI4Rrys1FeXnh7+eHv58ffSMi0EBdbS1V1dWUlZWRn5/Pt15e+DY2UllZSWBQEN5eXoR4eVHVVah7ext9/ydPgix33S658ncwLy8vrrjiCj766COrSxHCddXXG0/ntqKAgIAAIvv2ZdjQoZwXG0tU375UNjVx5MgRDh06hE1rqmw2gu15HsDLy5j7L9ol4d8DFi5cyJdffkl5ebnVpQjhmvz8Oly+oaGxkZMlJeTk5OBTXIxNKbyjo/H386OiooIDdXWdD/a2sNmM84h2Sfj3gPDwcL7//e+zYcMGq0sRwjWNGNHmyr8l8I8cOUJ2djZ1tbX069ePibGxzI2M5K3qagLCw/m6qIgvKyqY39WSzo2N4OvrsQ962UPCv4fIwK8QnRgxgsbGRk4WF58R+GPGjCEqKoqQkBC8lOLBQYOos9lYUlDAbysruT8ysusr/9paGD/evsXhPJQM+PaQqVOnopRi27ZtxMfHW12OEC6hsLCQzZs3s3nzZpZUV/O9+nr69e9PUHAwXh0EdZi3N6uGDgWgqKiIxsbGrk/U2Ahz5zqy9F5Hrvx7iFKKlJQUGfgVHu/EiRO8++67LF26lGuuuYaDBw9y++23c9n77xPZty8hnQT/6cIjIigvL6eps9k+TU3GYO8VVzjob9A7yZV/D5o/fz6vvvoqpaWlREREWF2OEE5z4sQJ/v73v7N582aOHDnCjBkzuP3220lKSvpuC0mbDYYPh6NHu1zioYWvjw9BQUGUl5cTER7e/kHl5XDVVeDopad7GQn/HhQWFsaMGTP47LPPuMnD1xgXvV9L4KelpZGTk9N+4Lfm5WUsvrZ4sdFNY+c6/hERERQWFhIeHs4Z9wvV1RAeDrKxUpck/HtYSkoKK1eu5IYbbnCtfVKFcID2An/ZsmUdB/7pxo+HH/8Ynn/e7vX8g4ODsTU1UVNTQ1Bg4HdfqK835vX/8Y9230l4Mgn/HjZx4kQCAgLIzMwkOTnZ6nKE6Lbjx4+bXTqtAz85ORmfc9mF6667jCdx33oLQkKMKZqdUBh9/6Wlpd+Ff3W1Ef6rVsEFF5x9DR5Iwr+HtR74lfAX7qp14B89epSLL764e4HfmlLG9otDhsBvf2sEeVhYp9M0w8PDOXTwIE0NDXhXVRn7AbzyClx0Ufdq8SCypLMTVFZWsnDhQtauXUukPHQi3ERL4KelpXHs2DEuvvhi5syZQ1JSUvcDvyMHD8LPfw47dxoDwkFBZz4NbLNBbS0njx/H18+PsGuvhf/5H5BJFYCs5+9yfvOb3xAVFcXSpUutLkWIDp0e+DNmzGD27Nk9G/jt2bcP3n4bvvwSCgqMriCljOBvaoKYGPKmTuWRXbt4bcMGGU9rRdbzdzEpKSk8+OCD3HLLLfKLKlxKQUGB2aXTEvh33HGH8wO/tXHj4LHHjPcrKyE/35gRFBBgdA/5+RGlNdXXXivjaedIwt9J4uLi6NOnD1u2bGH69OlWlyM8nEsGfkdCQiA29oxPK6VITU1l7dq1Ev7nwMX+lXu3loFfCX9hhZbAT0tLIzc3lxkzZvDDH/6QxMRE1wt8O82bN4+XXnqJwsJCBnjgfr3d4Z7/4m7qsssu44UXXpBfVOE0pwf+JZdcwp133unWgd9aUFAQl156KZ9++inLli2zuhy34v7/+m6k5Rf1k08+Yfny5VaXI3qpgoICc/G03hj4p0tNTeWee+5h6dKleHt7W12O2+h9vwkuLiUlhZ/85Cfcdttt8osqHCY/P9/sw8/Ly2PGjBm9OvBbGzNmDIMGDeJf//oXM2bMsLoct9G7fytcUGxsLAMHDuTrr7/mInkgRXRDS+CnpaWRn5/PjBkzWLFiBQkJCb0+8E/XMvAr4W8/z/oNcREtA78S/uJsnR74l1xyCT/60Y88MvBbmz17Ns8++yzHjh1jaPPa/6JznvvbYqE5c+bw3HPPUVBQwODBg60uR7i4/Px8sw9fAr99fn5+LFy4kHXr1nHPPfdYXY5bkCd8LfLMM88QHBzMnXfeaXUpwgW1F/izZ8+WwO/EsWPHWLp0KRs3bsTPgzdulyd8XVxKSgorVqxg2bJl8p9ZAO0H/l133UVCQoJMDrDD0KFDOe+889i8eTPz5s2zuhyXJ6ljkZiYGIYOHcpXX33FzJkzrS5HWOT0wJ85c6YEfjcsWbKEt956S8LfDhL+FmoZ+JXw9ywS+D3noosu4umnn+bbb79lzJgxVpfj0iT8LTRr1ixWrVpFbm4uQ4YMsboc0YNaB35BQYF06fQQb29vFi9ezNq1a3lItnLslAz4Wuz555/H29ubu+++2+pShIO1BH5aWhrHjx9vM2grgd9zCgsLueaaa9iwYQNBQUFWl+N0Th3wVUrNBX4HeAOvaa2fPO3r/sCfgQTgJHC11vqII87t7lJSUrj99tv54Q9/aN+ep8KltRf4d999twS+Ew0YMIDExET++te/smTJEqvLcVndDn+llDfwEjAHyAUylFLrtdZ7Wx12G1CqtR6tlLoGeAq4urvn7g2GDRvGqFGj+OKLL7j00kutLkecg7y8PLNLRwLfNaSmpvLcc8+RkpKC6mQ7SE/miCv/ZOCg1jobQCn1HnA50Dr8LwcebX5/LfCiUkppV+1zcrKUlBTWrl0r4e9GJPBdW2JiIrW1tezatYtJkyZZXY5LckT4RwPHWn2cC0zr6BitdaNS6hQQCRQ74Pxub8aMGTz99NPk5OQwfPhwq8sRHWgJ/LS0NE6cOMEll1zCj3/8Y+Lj4yXwXYyXlxdLlixh7dq1Ev4dcKnZPkqp5cByMLpDPIWvry+LFi1i3bp13HvvvVaXI1ppHfiFhYVccskl3HPPPRL4bmDhwoVcfvnllJWVER4ebnU5LscR4Z8HtF5JaUjz59o7Jlcp5QP0wRj4bUNrvRpYDcZsHwfU5jauuOIKbr75Zn70ox959KPpriA3N9fs0pHAd199+vTh4osv5rPPPuPGG2+0uhyX44jwzwDGKKVGYoT8NcB1px2zHrgZ+C+QCvxD+vvbio6OZty4cfJoukUk8Hun1NRUHnnkEa6//nq8vLysLseldDv8m/vw7wL+hjHV8w2t9R6l1K+ATK31euB14C2l1EGgBKOBEKdJSUnh7bfflvB3kpbAT0tLo6ioiEsuuYSf/OQnxMfHS1D0EhMmTCAoKIj09HS+973vWV2OS5GHvFxIY2MjCxYs4OWXXyYmJsbqcnql0wN/5syZzJ49WwK/F1u3bh3/+c9/eOaZZ6wuxSlkVU835OPjw+LFi/noo4/46U9/anU5vcaxY8fMLp2WwL/33nsl8D3E3LlzefHFFyksLGTAgAFWl+My5MrfxRw/fpzrrruOTZs2ERAQYHU5bqu9wJcrfM/11FNPER4ezh133GF1KT1Orvzd1KBBg5g0aRKff/45ixYtsroct9IS+GlpaRQXFzNz5kzuu+8+pk6dKoHv4VJTU7nrrru47bbbZP+MZvJTcEFLlizh9ddfl/C3w+mBP2vWLO6//34JfNHGqFGjiI6Olv0zWpHwd0EXXHABTz75JAcOHCA2NtbqclzO0aNHzS4dCXxhr5YnfiX8DRL+LsjLy4srrriCjz76SNYkbyaBL7pr1qxZPPvssxw9etSjVhDoiAz4uqiioiKuuuoqNm7c6JFrkkP7gT9nzhymTJkigS/Oye9//3uampp69TIqMuDr5vr3709CQgL/93//R0pKitXlOM3pgT979mweeOABCXzhEEuWLOGmm25ixYoV+Pv7W12OpST8XdiSJUt48cUXueKKK3r1muQS+MJZoqOjGT9+PJs3b2b+/PlWl2MpCX8XNm3aNJ544gn27dtHXFyc1eU4VOvAP3nyJLNmzZLAF06RmprKm2++KeFvdQGiY15eXqSkpPDRRx/1ivBvCfy0tDRKSkok8IUlZDadQQZ8XVxJSQlLlizhs88+IyQkxOpyzlp7gT979mwJfGGp1157jcLCQh5++GGrS3E4GfDtJfr27cu0adPYtGkTV111ldXl2CUnJ8fs0mkJ/J/+9KcS+MJlLF68mCuvvJJ77rmH4OBgq8uxhIS/G1iyZAmrVq3iytmzUbt2we7d8O23UF8PwcEwcSLExRl/WjSDoXXgl5aWMnPmTAl84bL69etHcnIymzZt4sorr7S6HEtI+LuBRB8fbkxPp37qVPwDA6GuDnx8QCmw2WDdOvD1Nd5uuAFuvBGionq8rpbAT0tLo6ysjJkzZ/Kzn/2MyZMnS+ALl5eamsozzzxDampqr55N1xEJf1dWUQGPPYZau5YLq6o4qRRR/ftDR33/9fWwejW8+Sb88pdw3XXg4BA+PfBnzZrFz3/+cwl84XYSExNpaGhgx44dTJkyxepynE7C31UdPgzXXw8nTkCfPgSFhlJw8CBNTU0dbyvo52e81dfDypWQlgZ/+AN08wnhI0eOmF06Eviit1BKkZqaytq1ayX8hYs4ehRSU40r/4gIwPiHCgkJoezUKSL79u38+/38jC6gf/8bli6FP/3prMcCJPCFJ1iwYAGrV6+mtLSUiOb/a55Cwt/V1NfDbbfBqVMQHt7DaNuAAAAZx0lEQVTmSxERERQUFNC3b1+67KFUyvj+9HR48knjTqALLYGflpZGeXk5M2fO5MEHH2TSpEkS+KJXCgsL45JLLmH9+vXcfPPNVpfjVBL+rubFF40unz59zvhSYFAQKEV1dTXB9nTlKGW8zltvwbx5kJR0xiGnB/6sWbN46KGHJPCFx0hNTeWhhx7ixhtv9KjfeQl/V1JUBK++agzotjP7QAER4eGUlZbaF/4A3t7G2yOPwF//Ckpx+PBhs0tHAl94uri4OMLCwtiyZQvTp0+3uhynkfB3JR9+CI2NxjTODgSGhvJoXh6HqqupsNkY4uvLXQMGML2zp39DQmjYv5/1jz7KB/v3S+AL0YpSytzoRcJfWOOttyAwsPNjvL0ZEhjI8tBQ4gYM4OvKSh7My+O9kSOJ8vNrc2hdXR3lFRWUl5cTVFtL1Ndf8/CqVUycOFECX4hW5s6dywsvvMDx48cZNGiQ1eU4hSSAqygthcLCLmflBHp5cVd0NAGVlSiluDA0lChfX/bX1gJG4BcVF3MoO5uco0dpampi8ODBDBo5kvOVktk6QrQjMDCQuXPn8vHHH1tditNICriK/fuN6Zl2PGkYGBiIl1JUV1VR0thITm0tfaqqzgj8MWPGMGjgQIICA1H+/sZAcn29E/4yQrif1NRUPvnkExobG60uxSmk28dVlJQYSzXYQQHhERHk5ObyWH095ytFtJcXYYMHExgY2P40UC8vo2GpqIDISEdWLkSvEBMTw/Dhw/nyyy+ZNWuW1eX0OLnydxVnubR2WJ8+vGyz4WWzsczPD5vNRkN9fddXLS66hLcQrqDliV9PIOHvKsLC7F6HR2vNY8eP0xAUxB8nTiRm+HACAgIor6ggOzubQ9nZHD9+nIqKCppa7ia0Nu4s3HBPACGcZcaMGRw6dIicnByrS+lx0u3jKmJjjWmeWnfZ7//E8eMcrq/n5WHDCPDyAn9//P396RsRgQZqa2upqqqipLSUvPx8/P38CPPzw3fQIPyVwrO3rRaiY35+fixatIiPPvqI++67z+pyepTs5OUqtIapU42r89OmbLZW0NDAwoMH8VMK71aNxMODBvGDdp4KtmlNTU0NjUVFbBkwgN/07cv48eNJTk4mKSmJuLi4jheKE8ID5efnc+ONN7Jx40YCAgKsLuesyU5e7kYpuOoqeP31TsN/sK8vmePG2f2yXkoZTwNHRHDZ6tV8f8oUsrKyyMjI4PHHH6egoICpU6eSlJREcnIyo0aN8si1zYVoERUVxYQJE0hLS2PhwoVWl9Nj5MrfleTkwKxZZ9X/b5fqamORt3//+4zXLSkpITMzk4yMDNLT06mpqSExMZHk5GSSk5OJcsKmMEK4mn/961+89tpr/OlPf7K6lLNm75W/hL+reeAB+OSTM1b0PGc2m7FC6AsvGIu7dSE/P99sCDIyMggICDAbgsTERPp2tZy0EL2AzWZj0aJFPPPMM4wdO9bqcs6KhL+7Ki+HmTOhstIxM3NKSmD2bGPBuLPsztFak52dbTYEWVlZDBo0yGwIEhISPHbza9H7vfHGG+Tn5/PLX/7S6lLOioS/O8vKMnbxUqp7u3CdOgXR0fDxx+amMN3R1NTEvn37zMZg9+7djB492hwvmDRpEn6djFcI4U5OnjxJamoqn332GSFuNEVawt/dpafDrbcam7X36XN2V+1NTcYdxIgR8Je/wIABPVJiXV0dO3bsMLuJDh8+zIQJE8xuorFjx8o6QsKtPfTQQ0yZMoWrr77a6lLsJuHfG+TkwH33wY4dxro/zZu5dMhmM0If4Npr4cEHwYndMhUVFWRlZZl3BkVFRSQkJJjdRCNHjpSZRMKtbN26laeeeor333/fbX53Jfx7C5vNGAB++WWjMWhqMjZn8fMzGgKbzbg7UMp4u+ACuPtuSEiwunKKi4vJyMgw3xoaGkhKSjK7iTxl6VzhvrTWXHnllTz88MPEx8dbXY5dnBL+Sqm+wPvACOAIcJXWurSd45qAXc0fHtVaL+rqtSX8T6M17NoFmZlGl1B2tvFEcGAgTJgAiYkwfbrRx++CtNbk5eWZdwUZGRmEhoaaDUFiYiLhjprhJIQD/eUvf2HXrl08/vjjVpdiF2eF/2+BEq31k0qpB4EIrfXP2zmuUmt9ViMmEv69m81m4+DBg+Z4wfbt24mOjjbHC6ZMmUJQdwa7hXCQiooKc8kHd5jq7Kzw/waYobUuUEoNBv6ptT6vneMk/EWnGhsb2bNnj3lnsG/fPmJjY81lKCZOnIivr6/VZQoP9atf/YqhQ4dy6623Wl1Kl5wV/mVa6/Dm9xVQ2vLxacc1AtuBRuBJrfUnXb22hL9nq6mpYfv27WYXUU5ODpMnTza7iWJjY2UmkXCavXv38vOf/5xPP/3U5X/vHLa2j1JqM9DeyNwvWn+gtdZKqY5akuFa6zylVAzwD6XULq31oXbOtRxYDjBs2LCuShO9WGBgIOeffz7nn38+AOXl5eYyFL/4xS8oLS1tswzF0KFD3WY2hnA/cXFxRERE8N///pcLLrjA6nIcwindPqd9zxpgg9a60x0T5MpfdKawsLDNMhRAm2UoBvTQsw3Cc61fv54vvviC5557zupSOuWsbp+ngZOtBnz7aq1/dtoxEUC11rpOKdUP+C9wudZ6b2evLeEv7KW15ujRo2ZDkJmZSUREhDlekJiYSFhYmNVlCjdXU1PD/Pnzeeeddxg8eLDV5XTIWeEfCXwADANyMKZ6liilEoEfaq1vV0pNB14FbBg7hz2vtX69q9eW8BfnymazceDAAbMx2LFjB8OHDzfHC6ZMmeKW67QL6z3zzDMEBQWxYsUKq0vpkDzkJUSz+vp6du/ebXYTHThwgHHjxpndRHFxcfj4yNYWomuHDx/mjjvuYOPGjS47+0zCX4gOVFdXs23bNvPOIC8vj6lTp5rdRKNGjXL5GR3COnfccQepqanMmTPH6lLaJTt5CdGBoKAgLrjgAnPWRmlpKVu3biU9PZ0PP/yQyspKEhMTzW6i6OhomUkkTKmpqaxdu9Zlw99ecuUvxGkKCgrM5wvS09Px8/MzG4KkpCQiIyOtLlFYqKGhgQULFvDKK68wcuRIq8s5g3T7COEAWmsOHz5sNgRZWVn079/fHC+Ij493q7XehWO8/PLLVFdX88ADD1hdyhkk/IXoAU1NTezfv7/NhjYxMTHmaqVTpkyRDW08QEFBAddffz0bN24kMDDQ6nLakPAXwgnq6+vZuXOn2RgcOnSI8ePHm91E48aNw9vb2+oyRQ+49957mTFjBpdffrnVpbQh4S+EBSorK8nKyjK7iU6cOEF8fLzZTSQb2vQeX3/9Na+++ip//vOfrS6lDQl/IVxASUlJm2Uo6urqzC6ipKQkoqKirC5RnCObzcbixYt58skniYuLs7ock4S/EC6o9YY2mZmZBAYGmrOIkpKSiIiIsLpEcRbWrFnD0aNH+Z//+R+rSzFJ+Avh4rTWHDp0yGwMsrKyiIqKMscL4uPjZUMbF1dSUsKSJUv49NNPXWb9KAl/IdxMY2Mje/fuNbuJ9u7dy5gxY8zxggkTJshMIhf08MMPM3HiRK699lqrSwEk/IVwe7W1tezYscO8Mzhy5AgTJ040u4nGjh0ry1C4gKysLB5//HE+/PBDlxjMl+UdhHBzAQEBTJs2jWnTpgHGhjZbt24lIyODlStXcvLkSRISEsxuouHDh7tE+HiaqVOn4uXlRVZWFgkJCVaXYze58hfCTRUVFbVZhsJms5kNQXJysmxo40QffPAB27Zt44knnrC6FOn2EcKTaK05duyY2RBkZmbSp08fsyFISEigT58+VpfZa1VWVrJw4ULWrl1r+dpPEv5CeDCbzca3335rjhds376doUOHmuMFU6dOdbllCdzdb37zG6Kioli6dKmldUj4CyFMDQ0N7Nmzx2wM9u/fz9ixY81uogkTJsiGNt20f/9+HnjgAdavX2/pQLyEvxCiQzU1NWzbts3sJjp27BhTpkwxu4lGjx4tM4nOwc0338ztt9/OhRdeaFkNMttHCNGhwMBApk+fzvTp0wE4deoUmZmZpKens27dOsrLy0lMTCQ5OZnExESGDh0qM4ns0LLRi5Xhby+58hdCnOHEiRNt1iTy9vY2l6BITk6mX79+Vpfokurq6pg3bx5vvfWWZes2SbePEMIhtNbk5OSYDcHWrVuJjIw0G4KEhARCQ0OtLtNlPPvss/j5+XHXXXdZcn4JfyFEj7DZbOzfv9+8M9i1axcjRowwxwsmT56Mv7+/1WVaJicnh2XLlrFhwwZLluOQ8BdCOEV9fT27du0y7wy+/fZb4uLizGml48eP97gNbe68804WL17MZZdd5vRzS/gLISxRXV1NVlaW2RgUFBQwdepUs5to1KhRvX7w+O9//zvvv/8+q1evdvq5JfyFEC6hpKSEzMxMs5uopqbGnEmUnJzcKze0aWxsZMGCBbz88svExMQ49dwS/kIIl5Sfn99mJlFAQIB5V5CUlETfvn2tLtEhXnnlFcrLy/nZz37m1PNK+AshXJ7WmuzsbLMxyMrKYuDAgWZDkJCQQHBwsNVlnpMTJ05w7bXXsmHDBqduyiPhL4RwO01NTezbt8+8K9i9ezejR4827wwmTZrkVhva3HfffVx44YVcccUVTjunhL8Qwu3V1dWxY8cO887g8OHDTJgwwRwvcPUNbf7zn//w0ksv8fbbb5uD3BUVUFMDPj4QHg6OLl/CXwjR61RUVLSZSVRUVER8fLzZTTRy5EiXmklks9lYuPBq5sxZxY4dw9ixA06dMgJfa6MBiIuDmTMhNRUGDer+OSX8hRC9XnFxsbkmUUZGBg0NDW2WoRjkiDQ9R3V18NJLsGpVGbW1TURGRhIQAL6+0NI+NTVBbS3U1xufmz0bVq6EwYPP/bwS/kIIj6K1Ji8vz2wIMjIyCA0NNRuCxMREwsPDnVLLnj3wox/BsWMQGNhITs4hRo8e3enDbjYblJeDvz/8+teQknJu55bwF0J4NJvNxsGDB83xgu3btxMdHd1mQ5uemIWzZQvceqtxVR8WZnwuLy+PwMAA+vbtepevujqoroa774Z77vnuLsFeEv5CCNFKY2Mje/bsMRuDffv2ERsbazYGEydOxNfXt1vn2LPH6LtXClq3K9XV1RQU5DNq1Cig6zRvbDQGhh95BG655exqkPAXQohO1NbWsn37drObKCcnh8mTJ5vdRLGxsWc1k6iuDubOhby87674v2M8zzBw4CC7n1toaDBmBW3cCGPG2P/3kvAXQoizUF5e3mYZitLS0jbLUHS1oc1zz8GLL0JERPtfLy0toaqqmiFDhthd06lTEBsLn31m/5RQCX8hhOiGwsLCNstQAGYXUVJSEgMGDDCPra6GpCRj6mZHPUc2WxN7975AUFAG9fXZhIVdRlTUo53WoLUxCPzOO5CcbF/dso2jEEJ0w4ABA5g/fz7z589Ha82xY8dIT0/nyy+/ZNWqVURERJiNQV7e96ivDyIwsOPX8/LyJiQkGh+fEQQG7kPrui5rUMpoAF57zf7wt1e3wl8pdSXwKDAOSNZat3uprpSaC/wO8AZe01o/2Z3zCiGEMymlGDZsGMOGDSM1NRWbzcaBAwdIT0/n448/5sMPa6munkpdnRfBwcEEBQWh1Jn9NIMGLeTYsWP06ZNHY2ORXecODYUvvzRmDzlyW4TuXvnvBlKAVzs6QCnlDbwEzAFygQyl1Hqt9d5unlsIISzh5eXF2LFjGTt2LDfddBNff22joqKW+voqioqKqaurJSAggODgYIKDgwkICEQpRUBAAL6+PtTV1dkd5C3HHTkCo0Y57u/QrfDXWu8DunqcOhk4qLXObj72PeByQMJfCOH2Kivh1CkvwsODUCqI/v37Y7M1UV1dQ1VVFcePH6e+vp6goKDmxiCEkpJqzmbbY6Xg0CEXCn87RQPHWn2cC0xzwnmFEKLH1dQYM3FaXwMb/fshhISEANDU1EhVVTVVVVVUVVXR0FCP1vY/vWWzGctAOFKX4a+U2gy0t0DGL7TWnzqyGKXUcmA5wLBhwxz50kII0SN8fIxB2c54e/sQFhZGWPMDAIWFA+3u8wejYfFx8KV6ly+ntZ7dzXPkAUNbfTyk+XPtnWs1sBqMqZ7dPK8QQvS4Pn2M6Z32DMhq3YTWTYAGbNhs9SjljTE02jGlIDraYSUD4IyFsDOAMUqpkUopP+AaYL0TziuEED3OywvGjTO6f7pSXPw633wznZMn13Dq1Ca++WY6xcWvd/o9WhtP+8bGOqjgZt2d6nkF8ALQH9iolNqutb5MKRWFMaVznta6USl1F/A3jKmeb2it93S7ciGEcBGzZsGOHV0f17//cvr3X35Wr11VZTQunT1DcC66deWvtf5Yaz1Ea+2vtR6otb6s+fP5Wut5rY7bpLWO1VqP0lo/1t2ihRDClSxZYtwB2GyOf+2mJlh+du2FXVx3/zMhhHATgwYZG7GcOuXY162pgZAQuPRSx74uSPgLIYRDrFwJAQHG6p6O0DK986mnjNd1NAl/IYRwgEGD4LHHjEXeGhu791paG3cR8+bBnDmOqe90Ev5CCOEgixcbu2+VlxszdM6FzQZlZcYqoU8/ffY7edlLwl8IIRzoxz+GRx81+utPner6AbDWWr5n3jxYs6ZnuntaSPgLIYSD3XQTbNoE551n3AWUlRmzdtqjdcv6QODnB6+8Ai+80LPBD7KevxBC9IjRo40duDIy4I034IsvjM8rZXTtKGW8NTRAXBwsW2bM6unp0G8h4S+EED1EKWMTluRkI/CPHDFW56ypMZaEiI42ntx1VuC3JuEvhBBO4OUFMTHGmyuQPn8hhPBALruBu1KqCMhp50v9gGInl3M2XL0+cP0aXb0+cP0apb7uc/UaO6pvuNa6f1ff7LLh3xGlVKY9O9NbxdXrA9ev0dXrA9evUerrPlevsbv1SbePEEJ4IAl/IYTwQO4Y/qutLqALrl4fuH6Nrl4fuH6NUl/3uXqN3arP7fr8hRBCdJ87XvkLIYToJpcPf6VUX6VUmlLq2+Y/Izo47rdKqT1KqX1Kqd8r1VNr4Z1zfcOUUp8317dXKTXCGfWdTY3Nx4YppXKVUi+6Un1KqSlKqf82/xvvVEpd7YS65iqlvlFKHVRKPdjO1/2VUu83f/3/OfPf9CxqvK/5922nUurvSqnhrlRfq+OWKKW0Usrps2vsqVEpdVXzz3GPUupdV6qvOVu+UEpta/53ntfe65xBa+3Sb8BvgQeb338QeKqdY6YDX2PsEewN/BeY4Sr1NX/tn8Cc5vdDgCBX+hm2OvZ3wLvAi65UHxALjGl+PwooAMJ7sCZv4BAQA/gBO4C4045ZAbzS/P41wPvO+pmdRY2XtPyuAXc6s0Z76ms+LhT4CtgCJLrgz3AMsA2IaP54gIvVtxq4s/n9OOCIPa/t8lf+wOXAn5rf/xOwuJ1jNBCA8cPxB3yBE06pzo76lFJxgI/WOg1Aa12pta52Un1g388QpVQCMBD43El1teiyPq31Aa31t83v5wOFQJcPsnRDMnBQa52tta4H3muus7XWda8FZjnrjtPeGrXWX7T6XdsCDHGl+pr9GngKqHVibS3sqXEZ8JLWuhRAa13oYvVpIKz5/T5Avj0v7A7hP1BrXdD8/nGMcGpDa/1f4AuMq8EC4G9a632uUh/GVWuZUmpd863Z00opbyfVB3bUqJTyAlYBDzixrhb2/AxNSqlkjIb+UA/WFA0ca/VxbvPn2j1Ga90InAIie7Cm09lTY2u3AX/t0Yra6rI+pVQ8MFRrvdGJdbVmz88wFohVSn2tlNqilJrrtOrsq+9R4AalVC6wCbjbnhd2iYXdlFKbgUHtfOkXrT/QWmul1BnTk5RSo4FxfHdVk6aUulBr/S9XqA/j53whMBU4CrwP3AK87oj6HFTjCmCT1jq3Jy5eHVBfy+sMBt4CbtZa2xxbZe+llLoBSAQutrqWFs0XHM9i/F9wZT4YXT8zMDLmK6XURK11maVVfedaYI3WepVS6nzgLaXUhK7+f7hE+GutZ3f0NaXUCaXUYK11QfN//PZuua4AtmitK5u/56/A+YBDwt8B9eUC27XW2c3f8wnwPRwY/g6o8XzgQqXUCowxCT+lVKXWusNBOifXh1IqDNgI/EJrvcURdXUiDxja6uMhzZ9r75hcpZQPxi33yR6uq73zt2ivRpRSszEa2Yu11g7aXtwuXdUXCkwA/tl8wTEIWK+UWqS1znSRGsH4//v/tNYNwGGl1AGMxiDDReq7DZgLRi+IUioAY92fTrun3KHbZz1wc/P7NwOftnPMUeBipZSPUsoX4+rGWd0+9tSXAYQrpVr6qGcCe51QW4sua9RaX6+1Hqa1HoHR9fNnRwW/I+pTSvkBHzfXtdYJNWUAY5RSI5vPfU1zna21rjsV+IduHnVzki5rVEpNBV4FFjm5r7rL+rTWp7TW/bTWI5p/77Y01+ms4O+yxmafYFz1o5Tqh9ENlO1C9R0FZjXXNw5j/LOoy1d21qh1N0a7I4G/A98Cm4G+zZ9PBF7T342Iv4oR+HuBZ12pvuaP5wA7gV3AGsDP1WpsdfwtOHe2jz3/xjcADcD2Vm9TeriuecABjLGFXzR/7lcYAUXzf7IPgYNAOhDjrJ/ZWdS4GWPyQ8vPbL0r1Xfasf/EybN97PwZKozuqb3N/3+vcbH64jBmO+5o/je+1J7XlSd8hRDCA7lDt48QQggHk/AXQggPJOEvhBAeSMJfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA/1//BgL3R1ssYIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "algorithm_cfg = {\n", + " 'name': 'VQE',\n", + " 'operator_mode': 'matrix'\n", + "}\n", + "\n", + "optimizer_cfg = {\n", + " 'name': 'SPSA',\n", + " 'max_trials': 300\n", + "}\n", + "\n", + "var_form_cfg = {\n", + " 'name': 'RY',\n", + " 'depth': 5,\n", + " 'entanglement': 'linear'\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising', 'random_seed': 10598},\n", + " 'algorithm': algorithm_cfg,\n", + " 'optimizer': optimizer_cfg,\n", + " 'variational_form': var_form_cfg,\n", + " 'backend': {'name': 'statevector_simulator'}\n", + "}\n", + "\n", + "result = run_algorithm(params, algo_input)\n", + "\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", + "\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.5\n", + "time: 18.19207787513733\n", + "max-cut objective: -4.0\n", + "solution: [1 0 1 0]\n", + "solution objective: 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb3IYAbCDBAh7CwqVkGGUpYY4t4oWKnWOtqqrV/8tnVVUVtHhTpoHXUgKqvfGlqrrS2/JIQ9RBIIZEASkpCE7Jzr98ed3CaYcSAn5z4n5/N8PPIg4859fwjhfd3nuq77upTWGiGEEJ7Fy+oChBBCOJ+EvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAeS8BdCCA8k4S+EEB5Iwl8IITyQj9UFtKdv3756+PDhVpchhBBuZfv27cVa636dHeey4T98+HAyMjKsLkMIIdyKUirHnuNcNvwdTmsoKIDSUuP90FAYPBi8pOdLCOF5enb419XB55/D22/Djh1QWws+Pkb422zg7Q3jxsH118MPfgCBgVZXLIQQTqFcdVXPhIQEfd7dPlrDp5/C//4vnDljfC4oyAj+lhoboarKaAj8/OCBB+DWW+XVgBDCbSmltmutEzo7ruelXGkpLF1qBHl9vdG9Exr63eAH486/Vy8ICzPef/xxSE6G/Hzn1y2EEE7Us8K/uBhSUuDLLyE8HAIC7P9ePz/je/bsgcWLIceuMRMhhHBLPSf86+rg5puN0I6IAKXO/RxKGd9bWgrXXgtlZY6vUwghXEDPCf/f/x6+/trowumqsDAoLITHHuv6uYQQwgX1jPA/dAhWrzb678/njr8tYWGwaRN89ZVjzieEEC6kZ0z1fP11Y8ZOW4O6LTyal0daVRXVNht9fXy4uU8fFoeHt32wl5fRkLz8Mlx0UTcULYQQ1nH/8C8vN6Z19urV6aG39e3Lo76++Hl5cbS2luU5OVzg78/Y9ub39+oFaWnGOMKwYQ4uXAghrOOQbh+l1BtKqUKl1N52vq6UUr9XSh1WSu1WSsU54roA7Nxp/NnJXT9AtL8/fk1z+JVRF7n19e1/Q/Pdf1qaAwoVQgjX4ag+/7XA3A6+/gNgdNPbcuAPDrou7NtnzPSx01MnTnDRwYMsyc6mr48PF4WEdPwNNhvIGkNCiB7GId0+WusvlVLDOzjkCuDP2niceJtSKlwpNVBrXdDli+/bZzygZaeHIiP52YAB7K6uZntVFX6dDRD7+8OBA10sUgghXIuzZvtEAcdbfJzb9LlWlFLLlVIZSqmMoqIi+85cXX1OM3xq6+o4dOgQ/cvKyKmo4L3i4o6/QSljTSAhhOhBXGqqp9Z6jdY6QWud0K9fp8tRGwIDjbV87OSlFFpr/AMCqKqtZffJk2RlZVFw4gTlFRU0NjaeXZTx9K8QQvQgzgr/PGBIi48HN32u68aMgYaGTg8raWjgs/Jy6r29CQoOJqOujm3A/GHDGBQVhZ+vL2VlZXxz+DDZR45wsrCQyspKGmtqYOxYh5QqhBCuwllTPTcAdyul3gOmAqcd0t8PMGGC0S/fCQWsKy3liYIC6hsbCW9s5IHBg5neNEU0MCCAPn36YNOamupqzlRVUXzqFN6VlWzOyECtXk1iYiLjx4/HT14JCCHcnEPCXyn1F2AG0FcplQusBHwBtNavAluAecBhoAq4zRHXBWDyZKNrprGxw4HfCB8f1jTN1dfA4cOHGdzG/H4vpQgKCiIoKIh+ffpgKytj6o9+xL/z83nhhRc4evQoEydOJDExkcTERMaMGYOXLAEthHAzPWM9/wcegE8+MRZls1NxcTF19fUMGjiw/YPKy2HSJPjwwxafKiczM5O0tDQyMjIoLi4mLi6OpKQkEhISGDFiBMpRS0wIIcQ5snc9/54R/vv3wxVXQEiI3dM+GxoayMrKYtTo0Xi3dedusxnh/9prMGNGu+cpLi4mIyODtLQ00tPTqaurIzEx0WwMBg0aZN/fQQghHMCzwh+MjVjefNNYk99Oubm5BAUH07utVwxlZTBnDrzyyjlNJc3LyyM9Pd18ZRAYGNiqMejdu7fd5xJCiHPleeFfXQ0LFsCxY3Yv63zmzBlOnDxJdHQ0reK9vNw4x9/+Bl0Ia6012dnZZmOQmZnJgAEDSEpKIjExkbi4OEI6e8JYCCHOgeeFP8DJk8ZOXvn5xiuATu7YNZCVlcWgQYMIan5e4PRpY0G3Dz6A0aPP/y/QhsbGRg4ePGh2Ee3du5cRI0aYjcGkSZPwt2PmkhBCtMczwx+gqAjuuQfS041N2zsJ0+JTp6itrSWqXz+orDQCf/Vqp6ziWVdXx549e8zG4JtvviE2NtZsDGJjY/GxY8E6IYRo5rnhD8Zg7fvvG+MAtbXG6pxBQd8dDLbZaDhzhhPHjjFwyBC8f/xjuPNO8PXt+l/gPFRVVbFjxw6zMcjLy2PKlCnmtNJRo0bJtFIhRIc8O/ybVVfDZ5/Bn/5kLAAHRkMA3z4bMHo0H/j6ohYt4qrbb+/a9RysrKyM7du3m41BeXk5CQkJZmMwZMgQmVYqhGhFwv9sjY3GpiylpcYrg7AwGDECfH3JzMzkiSee4MMPP3TpMD158iTp6enmm1LKbAgSExPp37+/1SUKISwm4X8OtNZcffXVPPzww8TFOW6fme6kteb48ePmq4KMjAzCw8PNaaXx8fGEOWIzeyGEW5HwP0fvvvsu+/bt4/HHH3faNR3JZrNx+PBhszHYuXMngwcPNhuDyZMnExQUZHWZQohuJuF/jsrLy1m0aBGffPIJ4efwoJiramhoYN++feYzBgcOHCAmJsZsDGSBOiF6Jgn/87By5UpGjRrFTTfd5NTrOkNNTQ27du0yG4OjR48yYcIEszGQBeqE6Bkk/M/D7t27WblyJR999FGPD8KKigoyMzPNxqCoqMhcoC4xMVEWqBPCTdkb/vIEUQsTJkzA39+fjIwMkpKSrC6nW/Xq1Yvp06czffp0AE6dOkVGRgbp6em888471NTUmK8KEhMTZYE6IXoYufM/ywcffMD27dt5+umnnX5tV5Kfn2++KkhPTycgIKDVAnV9+vSxukQhRBuk2+c8VVZWsnDhQtatWycB10RrzZEjR1otUNevXz+zMYiLi6NX045oQghrSfh3wa9//WsGDx7Mbbc5bsOxnsRms3Hw4EGzMdizZw/Dhw9vtUBdQECA1WUK4ZEk/Ltg//79PPTQQ3zyySc9fuDXEerq6ti7d6/ZGBw6dIixY8eajcG4ceNkgTohnETCv4tuvPFGVqxYwbRp0yyrwV1VVVWxc+dOc7zg+PHjTJ482WwMRo8eLY2qEN1EZvt0UXJyMuvXr5fwPw9BQUFMmzbN/NmdPn3aXKDu448/pqysjPj4eJKSkkhKSpIF6oSwgNz5t6OqqooFCxbw3nvvyYJpDlZYWGjue5yWlgZgLk6XlJQkP28hukC6fRzgySefpG/fvixbtszSOnqy5gXqmhuDjIwMQkNDzcYgISGhRyy3IYSzSPg7wKFDh/jJT37Cxo0b8T57IxjRLZoXqGtetnrHjh1ERUWZjUFcXJwsUCdEByT8HeTWW29l6dKlXHLJJVaX4pEaGhrYv3+/2Rjs27eP0aNHm11EEyZMkAXqhGhBwt9BNmzYwD/+8Q9eeOEFq0sRQG1trblAXXp6OtnZ2YwfP77VAnXyKk14Mgl/B6mpqWHevHm88847DBw40OpyxFkqKytbLVBXWFjIlClTzGml0dHRMpNIeBQJfwd65plnCAkJ4a677rK6FNGJkpISc4G6tLQ0qqurSUhIMBuDqKgoq0sUoltJ+DtQdnY2K1asYNOmTfKkqpvJz89v1Rj4+/ubjUFCQgJ9+/a1ukQhHErC38HuuOMOrr/+embOnGl1KeI8aa05evSoOV6wfft2+vbtazYGcXFxhIaGWl2mEF0i4e9gW7ZsYcuWLbz00ktWlyIcxGaz8fXXX5uvCnbv3s3w4cPNaaWTJ0+WBeqE25Hwd7C6ujrmzZvH2rVrGTx4sNXliG7QvEBd8wNnX3/9NWPHjjUbg3HjxuHr62t1mUJ0SMK/Gzz//PP4+Phwzz33WF2KcILmBeqaG4Njx44xefJkszGIiYmRBeqEy5Hw7wY5OTksW7aMzZs3yx2gByovLycjI8NsDEpKSkhISDCfMRg6dKhMKxWWk1U9u8GwYcOIjo7m888/57LLLrO6HOFkoaGhzJw50xz0LyoqMgeP165di81ma7VA3YABAyyuWIj2yZ3/Ofrss89Yv349r776qtWlCBeitSY3N9dsDNLT0+nVq1erBeoiIiKsLlN4AOn26Sb19fXMnz+fP/7xjwwbNszqcoSLstlsZGVlmQ1BZmYmgwYNarVAXXBwsNVlih5Iwr8bvfjiizQ0NHDfffdZXYpwE42Njd9ZoG7kyJFmF9HEiRNlgTrhEE4Nf6XUXOB3gDfwmtb6qbO+fivwDJDX9KmXtNavdXROVw7/3Nxcbr31VrZs2SL/YcV5qa2tZffu3WZjkJWVxfjx480HzsaOHSsL1Inz4rQBX6WUN/AyMAfIBdKVUhu01vvPOvR9rfXdXb2eKxg8eDBjxoxh69atzJs3z+pyhBvy9/c3u4AAzpw5Yy5Q9/jjj1NQUEBcXJzZGERHR8u0UuFQjpjtkwQc1lpnAyil3gOuAM4O/x4lOTmZd999V8JfOERwcDAXX3wxF198MWAsULd9+3bS09P58MMPqaysNAeOk5KSiIqKkmmlokscEf5RwPEWH+cCU9s4bolS6hLgEHCf1vp4G8e4jUsuuYTf/va3ZGdnEx0dbXU5oofp3bs3c+bMYc6cOQAUFBSYC9StWbMGHx8fc6XShIQE+vXrZ3HFwt10uc9fKZUCzNVa39H08U3A1JZdPEqpPkCl1rpWKXUncI3W+jsrpCmllgPLAYYOHRqfk5PTpdq62x/+8AcqKyv56U9/anUpwoNorcnJyTH3PM7IyKBPnz5mN1J8fLwsUOfBnDbgq5S6EHhMa31508cPA2itn2zneG+gRGsd1tF5XXnAt1lBQQE33HADW7ZskQXAhGVsNhuHDh0yG4OdO3cybNiwVgvUBQYGWl2mcBJnPuGbDoxWSo3AmM1zLXD9WcUM1FoXNH24CDjggOtabuDAgUycOJHPPvuMRYsWWV2O8FBeXl6MGTOGMWPGcPPNN1NfX8++fftIS0vjzTff5MCBA4wZM8ZsDMaPH+82y5NoDSdOQF4eNDRAQACMGAFhHd46Cns4aqrnPOAFjKmeb2itH1dK/QrI0FpvUEo9iRH6DUAJcJfW+mBH53SHO3+AL7/8kjfeeIO1a9daXYoQbaqurmbXrl2kpaWRnp5OTk4OkyZNMhuDCy64wKVmEtlskJEBa9fCv/8N1dXQcg+lujro2xd+8AO48UYYNcqyUl2SPOTlJDabjYULF/L8888TExNjdTlCdKq8vNycSZSens6pU6eIj483G4Phw4dbNpNo9264/37IyTHu+oODjeBvWY7WRgNQVWV8/vvfhyefBNli2yDh70R//OMfKS4u5uGHH7a6FCHOWXFxcas1iRoaGlpNK42MjOz2Gmw2WLUKVq8GLy/o1at14LdHazh9Gvz94emnYcGCbi/V5Un4O1FhYSHXXnstmzZtIigoyOpyhDhvWmvy8/PNLqKMjAyCgoLMPY8TEhLo3bu3Q69ps8EDD8CGDUbon8822bW1xiuBlSvh5psdWp7bkfB3sgcffJBp06aRnJxsdSlCOIzWmuzsbLMxyMzMJDIy0mwM4uPju7xA3RNPwOuvG4O4XRl6qK+HM2fglVfAk1dcl/B3sv/85z+8/PLLvP322/LkpeixGhsbOXDggNlFtHfvXqKjo83GYNKkSfj7+9t9vu3b4ZprjDt+Ryxl1Dw4/I9/QJ8+XT+fO5LwdzKbzcbixYt56qmniI2NtbocIZyirq6u1QJ1hw8fZty4cebgcWxsbLsL1DU2wowZUFhohL+jlJXB/Pnwu9857pzuRMLfAm+++Sa5ubk8+uijVpcihCWqqqrMBerS09PJz89nypQpZmMwcuRIc1rpP/8Jy5dDZw8jNzaWU1DwKyort+HjE06/fncTFja3g+OhshK++gr693fgX85NSPhb4NSpU6SkpLBx40ZCQkKsLkcIy5WVlZl7HmdkZFBRUWHue/z225ezZ08QYWEdd5Pm5T0CaAYOfJSamkMcP34vw4e/ib9/+2tqlZYag8grVjj4L+QGZA9fC/Tp04epU6eyZcsWrr76aqvLEcJy4eHhzJ49m9mzZwNw8uRJ0tPT2bYtg7/9bSo+PgWcORNEcHAwwcFB+Pi0fvLYZqumouIfREd/gJdXEEFBk+nVazqnT2+mf/972r2unx+kpnpm+NvLdR7r6yGSk5NZv349rvqKSggrDRgwgAULFnDzzY8RFTWIYcOGEBgYQEVFBdnZ2WRlZXHiRAEVFeU0NjZSV3cM8MbPb6h5Dn//0dTWZnd4nYAAOHDAmEYq2iZ3/g6WkJBAXV0de/bsYeLEiVaXI4RLys0FLy+Fn58/fn7+RET0BjQ1NbVUVZ2hrKyM/Px8vLy+oaHBl8rKSoKCAvHy8sbLKwSb7UyH5/f2Nvr+T50CWe26bXLn72BeXl5ceeWVfPTRR1aXIoTLqqszns5tTREQEEDv3n0YMmQoMTEX0Lv3IBobKzl69ChZWVlobcNmO4OXV+fPFnh5GXP/Rdsk/LvBwoUL+eKLLygvL7e6FCFckp9f+8s3NDTUU1JyipycHIqLfVDKRlSUN35+/lRUVFBbe6jDwd5mNptxHdE2Cf9uEB4ezve//302bdpkdSlCuKThw1vf+TcH/tGjR8nOzqamppa+ffsSEzOBPn3mUlX1FuHhARQVfUVFxReEhc3v8PwNDeDr67kPetlDwr+byMCvEO0bPhwaGhooLv5u4I8ePZpBgwYREhKCUl5ERj6EzVZLQcESKit/S58+D3R6519TA+PG2bc4nKeSAd9uMmXKFJRS7Nixg7i4OKvLEcIlFBYWsnXrVrZu3UpV1RLq6r5Hv359CQ4OQqm270W9vUMZMmQVAEVFRTQ0NHR6nYYGmNv+c2ACufPvNkopkpOTZeBXeLyTJ0/y7rvvsnTpUq699loOHz7MHXfcwfvvX07v3n0IDg5pN/jPFhERTnl5OTZbY7vHNDYag71XXumov0HPJHf+3Wj+/PmsXr2a0tJSIiIirC5HCKc5efIkf//739m6dStHjx5lxowZ3HHHHSQmJppbSNpsMGwYHDvW+RIPzXx8fAkKCqK8vJzw8Lb/T5WXw9VXg4NXnu5xJPy7UWhoKDNmzGDjxo3c7OmLjIserznwU1NTycnJaTPwW/LyMhZfW7zY6Kaxdx3/iIgICgsLCQ8PB1p36ldVQXg4yL5KnZPw72bJycmsXLmSG2+80aX2SRXCEdoK/GXLlrUb+GcbNw5+/GN44QX71/MPDg6msdFGdXU1gYHfbp5UV2fM6//jH+1/JeHJJPy72YQJEwgICCAjI4OkpCSryxGiy06cOGF26bQM/KSkJHzOYxuuu+82nsR96y0ICTGmaHZMERERTmlpqRn+VVVG+K9aBRdddO5/J08k4d/NWg78SvgLd9Uy8I8dO8b06dO7FPgtKWVsvzh4MPz2t0aQh4Z2PE0zPDycw4ezqK9v5MwZb3r1gldfhUsu6VIpHkWWdHaCyspKFi5cyLp16+gjT50IN9Ec+KmpqRw/fpzp06czZ84cEhMTuxz47Tl8GH7+c9i92xgQDgr67tPANpsxj//EiVP4+fly3XWh/M//gMypMMh6/i7mN7/5DYMGDWLp0qVWlyJEu84O/BkzZjB79uxuDfy2HDgAb78NX3wBBQVGV5BSRvA3NkJ0NEyZkseePY+yadNrMp7Wgqzn72KSk5N56KGHuPXWW+UXVbiUgoICs0unOfDvvPNOpwd+S2PHwuOPG+9XVkJ+vjEjKCDA6B7y8wOtB3HddVUynnaeJPydJDY2lrCwMLZt28a0adOsLkd4OFcM/PaEhEBMzHc/r5QiJSWFdevWSfifB9f6V+7hmgd+JfyFFZoDPzU1ldzcXGbMmMEPf/hDEhISXC7w7TVv3jxefvllCgsL6e+JG/Z2gXv+i7upyy+/nBdffFF+UYXTnB34l156KXfddZdbB35LQUFBXHbZZXz66acsW7bM6nLcivv/67uR5l/UTz75hOXLl1tdjuihCgoKzMXTemLgny0lJYV7772XpUuX4u3tbXU5bqPn/Sa4uOTkZH7yk59w++23yy+qcJj8/HyzDz8vL48ZM2b06MBvafTo0URGRvKvf/2LGTNmWF2O2+jZvxUuKCYmhgEDBvDVV19xiTyRIrqgOfBTU1PJz89nxowZrFixgvj4+B4f+GdrHviV8LefZ/2GuIjmgV8Jf3Guzg78Sy+9lB/96EceGfgtzZ49m+eee47jx48zZMgQq8txC57722KhOXPm8Pzzz1NQUMDAgQOtLke4uPz8fLMPXwK/bX5+fixcuJD169dz7733Wl2OW5AnfC3y7LPPEhwczF133WV1KcIFtRX4s2fPlsDvwPHjx1m6dCmbN2/Gz4N3bpcnfF1ccnIyK1asYNmyZfKfWQBtB/7dd99NfHy8TA6ww5AhQ7jgggvYunUr8+bNs7oclyepY5Ho6GiGDBnCl19+ycyZM60uR1jk7MCfOXOmBH4XLFmyhLfeekvC3w4S/hZqHviV8PcsEvjd55JLLuGZZ57hm2++YfTo0VaX49Ik/C00a9YsVq1aRW5uLoMHD7a6HNGNWgZ+QUGBdOl0E29vbxYvXsy6det4WPZy7JAM+FrshRdewNvbm3vuucfqUoSDNQd+amoqJ06caDVoK4HffQoLC7n22mvZtGkTQUFBnX9DD+PUAV+l1Fzgd4A38JrW+qmzvu4P/BmIB04B12itjzri2u4uOTmZO+64gx/+8Id27XkqXFtbgX/PPfdI4DtR//79SUhI4K9//StLliyxuhyX1eXwV0p5Ay8Dc4BcIF0ptUFrvb/FYbcDpVrrUUqpa4GngWu6eu2eYOjQoYwcOZLPP/+cyy67zOpyxHnIy8szu3Qk8F1DSkoKzz//PMnJyaiO9oP0YI64808CDmutswGUUu8BVwAtw/8K4LGm99cBLymllHbVPicnS05OZt26dRL+bkQC37UlJCRQU1PDnj17mDhxotXluCRHhH8UcLzFx7nA1PaO0Vo3KKVOA32AYgdc3+3NmDGDZ555hpycHIYNG2Z1OaIdzYGfmprKyZMnufTSS/nxj39MXFycBL6L8fLyYsmSJaxbt07Cvx0uNdtHKbUcWA5Gd4in8PX1ZdGiRaxfv5777rvP6nJECy0Dv7CwkEsvvZR7771XAt8NLFy4kCuuuIKysjLCw8OtLsflOCL884CWKykNbvpcW8fkKqV8gDCMgd9WtNZrgDVgzPZxQG1u48orr+SWW27hRz/6kUc/mu4KcnNzzS4dCXz3FRYWxvTp09m4cSM33XST1eW4HEeEfzowWik1AiPkrwWuP+uYDcAtwH+BFOAf0t/fWlRUFGPHjpVH0y0igd8zpaSk8Oijj3LDDTfg5eVldTkupcvh39SHfzfwN4ypnm9orfcppX4FZGitNwCvA28ppQ4DJRgNhDhLcnIyb7/9toS/kzQHfmpqKkVFRVx66aX85Cc/IS4uToKihxg/fjxBQUGkpaXxve99z+pyXIo85OVCGhoaWLBgAa+88grR0dFWl9MjnR34M2fOZPbs2RL4Pdj69ev5z3/+w7PPPmt1KU4hq3q6IR8fHxYvXsxHH33ET3/6U6vL6TGOHz9uduk0B/59990nge8h5s6dy0svvURhYSH9+/e3uhyXIXf+LubEiRNcf/31bNmyhYCAAKvLcVttBb7c4Xuup59+mvDwcO68806rS+l2cufvpiIjI5k4cSKfffYZixYtsroct9Ic+KmpqRQXFzNz5kzuv/9+pkyZIoHv4VJSUrj77ru5/fbbZf+MJvJTcEFLlizh9ddfl/C3w9mBP2vWLB544AEJfNHKyJEjiYqKkv0zWpDwd0EXXXQRTz31FIcOHSImJsbqclzOsWPHzC4dCXxhr+YnfiX8DRL+LsjLy4srr7ySjz76SNYkbyKBL7pq1qxZPPfccxw7dsyjVhBojwz4uqiioiKuvvpqNm/e7JFrkkPbgT9nzhwmT54sgS/Oy+9//3saGxt79DIqMuDr5vr160d8fDz/93//R3JystXlOM3ZgT979mwefPBBCXzhEEuWLOHmm29mxYoV+Pv7W12OpST8XdiSJUt46aWXuPLKK3v0muQS+MJZoqKiGDduHFu3bmX+/PlWl2MpCX8XNnXqVJ588kkOHDhAbGys1eU4VMvAP3XqFLNmzZLAF06RkpLCm2++KeFvdQGifV5eXiQnJ/PRRx/1iPBvDvzU1FRKSkok8IUlZDadQQZ8XVxJSQlLlixh48aNhISEWF3OOWsr8GfPni2BLyz12muvUVhYyCOPPGJ1KQ4nA749RO/evZk6dSpbtmzh6quvtrocu+Tk5JhdOs2B/9Of/lQCX7iMxYsXc9VVV3HvvfcSHBxsdTmWkPB3A0uWLGHVqlXMnn0Ve/Yo9u6Fb76BujoIDoYJEyA21vjTqgkMLQO/tLSUmTNnSuALl9W3b1+SkpLYsmULV111ldXlWELC3w34+CSQlnYTU6bUERjoT20t+PiAUmCzwfr14OtrvN14I9x0Ewwa1P11NQd+amoqZWVlzJw5k5/97GdMmjRJAl+4vJSUFJ599llSUlJ69Gy69kj4u7CKCnj8cVi3TnHmzMUodYp+/QbRXtd/XR2sWQNvvgm//CVcfz04OoPPDvxZs2bx85//XAJfuJ2EhATq6+vZtWsXkydPtrocp5Pwd1FHjsANN8DJkxAWBr16BXH4cAGNjY3tbivo52e81dXBypWQmgp/+AN09QHho0ePml06Eviip1BKkZKSwrp16yT8hWs4dgxSUow7/4iI5s/6EBISwunTZfTu3afD7/fzM7qA/v1vWLoU/vSncx8LkMAXnmDBggWsWbOG0tJSIr79z+YRJPwm3X5kAAAZzklEQVRdTF0d3H47nD4N4eGtvxYREUFBQQG9e/cGOu6jVMr4/rQ0eOop45VAZ5oDPzU1lfLycmbOnMlDDz3ExIkTJfBFjxQaGsqll17Khg0buOWWW6wux6kk/F3MSy8ZXT5hYd/9WlBQIEpBVVUVQUGdT09TyjjPW2/BvHmQmPjdY84O/FmzZvHwww9L4AuPkZKSwsMPP8xNN93kUb/zEv4upKgIVq+GkBAjuL9LER4eQWlpmV3hD+Dtbbw9+ij89a/GeY8cOWJ26UjgC08XGxtLaGgo27ZtY9q0aVaX4zQS/i7kww+hocGYxtmeXr0Cyct7jKqqLGy2Cnx9B9O//92EhLT/SxsSAgcP1vPYYxs4ePADCXwhWlBKmRu9SPgLS7z1FgQGdnyMtzcEBg6mV6/l9O8fS2XlV+TlPcSIEe/h59d6cn9tbS0VFeWUl5dTUxPEV18NYtWqR5gwYYIEvhAtzJ07lxdffJETJ04QGRlpdTlOIQngIkpLobCw81k5Xl6BREXdTWVlAEopevW6GF/fQdTUHASMwC8uLiI7O4tjx3JobGxk4MCBjBgRiVIXymwdIdoQGBjI3Llz+fjjj60uxWkkBVzEwYPG9Ex7HjQMDAxEKS/OnKmioaGEmpoczpwJ+07gjx49mgEDIgkMDMLfX3HkiDGbSAjxXSkpKXzyySc0NDRYXYpTSLePiygpMZZqsI8iIiKc3Nwc6uoeR6kL8fKKYuDAUAIDA2lrGqiXl9GwVFRAn44fExDCI0VHRzNs2DC++OILZs2aZXU53U7u/F3Eua6sHRYWis32CjabF35+y7DZbNTV1Xd61+KiK3gL4RKan/j1BBL+LiI01P51eLTWnDjxOEFB9UyY8EeGDYsmICCAiopysrOzyc7O4sSJE1RUVGCzNTZ9j/HKwg23BBDCaWbMmEFWVhY5OTlWl9LtpNvHRcTEGNM8te683//EiSepqzvC0KGv4OUVgL8/+Pv7ExHRG9DU1NRw5swZSktLyM/Pw8/PHz+/UCIjfVHKH/DsjauFaI+fnx+LFi3io48+4v7777e6nG4lO3m5CK1hyhTj7tzPr/3j6usLOHx4IUr5odS3C7xFRj5CWNgP2jivjerqaoqKGujffxu9e/+GcePGkZSURGJiIrGxse0uFCeEJ8rPz+emm25i8+bNBAQEWF3OOZOdvNyMUnD11fD66x2Hv6/vQMaOtb9RVMqLoKBgIiJgzZrLmTz5+2RmZpKens4TTzxBQUEBU6ZMITExkaSkJEaOHOmRa5sL0WzQoEGMHz+e1NRUFi5caHU53Ubu/F1ITg7MmnVu/f/2qKoyFnn797+/e96SkhIyMjJIT08nLS2N6upqEhISSEpKIikpiUHO2BVGCBfzr3/9i9dee40//elPVpdyzuy985fwdzEPPgiffPLdFT3Pl81mrBD64ovG4m6dyc/PNxuC9PR0AgICzIYgISGhaUVRIXo2m83GokWLePbZZxkzZozV5ZwTCX83VV4OM2dCZaVjZuaUlMDs2caCcefam6O1Jjs722wIMjMziYyMNBuC+Ph4j938WvR8b7zxBvn5+fzyl7+0upRzIuHvxjIzjV28lOraLlynT0NUFHz8cctNYc5fY2MjBw4cMBuDvXv3MmrUKHO8YOLEifh1NGAhhBs5deoUKSkpbNy4kRA3miMt4e/m0tLgttugttZYk/9c7tobG41XEMOHw1/+Av37d0+NtbW17Nq1y+wmOnLkCOPHjze7icaMGSPrCAm39vDDDzN58mSuueYaq0uxm4R/D5CTA/ffD7t2Gev+BAV13AjYbEboA1x3HTz0EDizV6aiooLMzEzzlUFRURHx8fFmN9GIESNkJpFwK9u3b+fpp5/m/fffd5vfXQn/HsJmMwaAX3nFaAwaG41lnf38jIbAZjNeHShlvF10EdxzD8THW105FBcXk56ebr7V19eTmJhodhN5ytK5wn1prbnqqqt45JFHiIuLs7ocuzgl/JVSvYH3geHAUeBqrXVpG8c1AnuaPjymtV7U2bkl/FvTGvbsgYwMo0soO9t4IjgwEMaPh4QEmDbN6ON3RVpr8vLyzFcF6enp9OrVy2wIEhISCHfUFCchHOgvf/kLe/bs4YknnrC6FLs4K/x/C5RorZ9SSj0ERGitf97GcZVa63MaMZHw79lsNhuHDx82xwt27txJVFSUOV4wefJkgroy2i2Eg1RUVJhLPrjDVGdnhf/XwAytdYFSaiDwT631BW0cJ+EvOtTQ0MC+ffvMVwYHDhwgJibGXIZiwoQJ+Pr6Wl2m8FC/+tWvGDJkCLfddpvVpXTKWeFfprUOb3pfAaXNH591XAOwE2gAntJaf9LZuSX8PVt1dTU7d+40u4hycnKYNGmS2U0UExMjM4mE0+zfv5+f//znfPrppy7/e+ewtX2UUluBtkbmftHyA621Vkq115IM01rnKaWigX8opfZorbPauNZyYDnA0KFDOytN9GCBgYFceOGFXHjhhQCUl5eby1D84he/oLS0tNUyFEOGDHGb2RjC/cTGxhIREcF///tfLrroIqvLcQindPuc9T1rgU1a6w53TJA7f9GRwsLCVstQAK2WoejfXQ83CI+1YcMGPv/8c55//nmrS+mQs7p9ngFOtRjw7a21/tlZx0QAVVrrWqVUX+C/wBVa6/0dnVvCX9hLa82xY8fMhiAjI4OIiAhzvCAhIYHQ0FCryxRurrq6mvnz5/POO+8wcOBAq8tpl7PCvw/wATAUyMGY6lmilEoAfqi1vkMpNQ1YDdgwdg57QWv9emfnlvAX58tms3Ho0CGzMdi1axfDhg0zxwsmT57sluu0C+s9++yzBAUFsWLFCqtLaZc85CVEk7q6Ovbu3Wt2Ex06dIixY8ea3USxsbH4+MjWFqJzR44c4c4772Tz5s0uO/tMwl+IdlRVVbFjxw7zlUFeXh5Tpkwxu4lGjhzp8jM6hHXuvPNOUlJSmDNnjtWltEl28hKiHUFBQVx00UXmrI3S0lK2b99OWloaH374IZWVlSQkJJjdRFFRUTKTSJhSUlJYt26dy4a/veTOX4izFBQUmM8XpKWl4efnZzYEiYmJ9OnTx+oShYXq6+tZsGABr776KiNGjLC6nO+Qbh8hHEBrzZEjR8yGIDMzk379+pnjBXFxcW611rtwjFdeeYWqqioefPBBq0v5Dgl/IbpBY2MjBw8ebLWhTXR0tLla6eTJk2VDGw9QUFDADTfcwObNmwkMDLS6nFYk/IVwgrq6Onbv3m02BllZWYwbN87sJho7dize3t5Wlym6wX333ceMGTO44oorrC6lFQl/ISxQWVlJZmam2U108uRJ4uLizG4i2dCm5/jqq69YvXo1f/7zn60upRUJfyFcQElJSatlKGpra80uosTERAYNGmR1ieI82Ww2Fi9ezFNPPUVsbKzV5Zgk/IVwQS03tMnIyCAwMNCcRZSYmEhERITVJYpzsHbtWo4dO8b//M//WF2KScJfCBentSYrK8tsDDIzMxk0aJA5XhAXFycb2ri4kpISlixZwqeffuoy60dJ+AvhZhoaGti/f7/ZTbR//35Gjx5tjheMHz9eZhK5oEceeYQJEyZw3XXXWV0KIOEvhNurqalh165d5iuDo0ePMmHCBLObaMyYMbIMhQvIzMzkiSee4MMPP3SJwXxZ3kEINxcQEMDUqVOZOnUqYGxos337dtLT01m5ciWnTp0iPj7e7CYaNmyYS4SPp5kyZQpeXl5kZmYSHx9vdTl2kzt/IdxUUVFRq2UobDab2RAkJSXJhjZO9MEHH7Bjxw6efPJJq0uRbh8hPInWmuPHj5sNQUZGBmFhYWZDEB8fT1hYmNVl9liVlZUsXLiQdevWWb72k4S/EB7MZrPxzTffmOMFO3fuZMiQIeZ4wZQpU1xuWQJ395vf/IZBgwaxdOlSS+uQ8BdCmOrr69m3b5/ZGBw8eJAxY8aY3UTjx4+XDW266ODBgzz44INs2LDB0oF4CX8hRLuqq6vZsWOH2U10/PhxJk+ebHYTjRo1SmYSnYdbbrmFO+64g4svvtiyGmS2jxCiXYGBgUybNo1p06YBcPr0aTIyMkhLS2P9+vWUl5eTkJBAUlISCQkJDBkyRGYS2aF5oxcrw99ecucvhPiOkydPtlqTyNvb21yCIikpib59+1pdokuqra1l3rx5vPXWW5at2yTdPkIIh9Bak5OTYzYE27dvp0+fPmZDEB8fT69evawu02U899xz+Pn5cffdd1tyfQl/IUS3sNlsHDx40HxlsGfPHoYPH26OF0yaNAl/f3+ry7RMTk4Oy5YtY9OmTZYsxyHhL4Rwirq6Ovbs2WO+Mvjmm2+IjY01p5WOGzfO4za0ueuuu1i8eDGXX365068t4S+EsERVVRWZmZlmY1BQUMCUKVPMbqKRI0f2+MHjv//977z//vusWbPG6deW8BdCuISSkhIyMjLMbqLq6mpzJlFSUlKP3NCmoaGBBQsW8MorrxAdHe3Ua0v4CyFcUn5+fquZRAEBAeargsTERHr37m11iQ7x6quvUl5ezs9+9jOnXlfCXwjh8rTWZGdnm41BZmYmAwYMMBuC+Ph4goODrS7zvJw8eZLrrruOTZs2OXVTHgl/IYTbaWxs5MCBA+argr179zJq1CjzlcHEiRPdakOb+++/n4svvpgrr7zSadeU8BdCuL3a2lp27dplvjI4cuQI48ePN8cLXH1Dm//85z+8/PLLvP32298OcldUQHU1+PhAeDg4uH4JfyFEj1NRUdFqJlFRURFxcXFmN9GIESNcaiaRzWbjmoULWTVnDkN37YJdu+D0aSPwtTYagNhYmDkTUlIgMrLL15TwF0L0eMXFxeaaROnp6dTX17dahiLSAWF63mpr4eWXKVu1isaaGmOd/4AA8PWF5gaqsRFqaqCuzvjc7NmwciUMHHjel5XwF0J4FK01eXl5ZkOQnp5Or169zIYgISGB8PBw5xSzbx/86Edw/DgNgYFk5eQwatSojh92s9mgvBz8/eHXv4bk5PO6tIS/EMKj2Ww2Dh8+bI4X7Ny5k6ioqFYb2nTLLJxt2+C224y7+tBQAPLy8ggIDKSPPdNYa2uhqgruuQfuvffbVwl2kvAXQogWGhoa2Ldvn9kYHDhwgJiYGLMxmDBhAr6+vl27yL59Rt+9UtCiYamqqiK/oMB4utm+Yo2B4UcfhVtvPacSJPyFEKIDNTU17Ny50+wmysnJYdKkSWY3UUxMzLnNJKqthblzIS/PvONvpoHs7GwiBwyw/7mF+npjVtDmzTB6tN1lSPgLIcQ5KC8vb7UMRWlpaatlKDrd0Ob55+GllyAios0vl5SWUnXmDIMHD7a/qNOnISYGNm60e0qohL8QQnRBYWFhq2UoALOLKDExkf79+397cFUVJCYaUzfb6TpqtNl4cf9+0oOCyK6r4/LQUB7rbF0jrY1B4HfegaQku+qWbRyFEKIL+vfvz/z585k/fz5aa44fP05aWhpffPEFq1atIiIiwmwMvpeXR1BdHQQGtns+by8vokJCGO7jw4HAQGrtufFWymgAXnvN7vC3V5fCXyl1FfAYMBZI0lq3eauulJoL/A7wBl7TWj/VlesKIYQzKaUYOnQoQ4cOJSUlBZvNxqFDh0hLS+Pjjz+m5sMPmVJVhVdtLcHBwQQFBeHVRhfRwshIjh8/Tl5YGEUNDfZdvFcv+OILY/aQA/dF6Oqd/14gGVjd3gFKKW/gZWAOkAukK6U2aK33d/HaQghhCS8vL8aMGcOYMWO4+eabsX31FTUVFZypq6O4qIia2loCAgIIDg4mODiYwIAAlFIEBATg4+tLbW2t/UHefNzRozBypMP+Dl0Kf631AaCzx6mTgMNa6+ymY98DrgAk/IUQ7q+yEq/TpwkKDydIKfr160ejzUZ1VRVnzpzhxIkT1NXVERQURHBwMCHBwVSVlBh39PZSCrKyXCf87RQFHG/xcS4w1QnXFUKI7lddbczEaXET7O3lRUhICCEhIQA0NDZSdeYMZ5re6urrUecy2cZmM5aBcKBOw18ptRVoa4GMX2itP3VkMUqp5cBygKFDhzry1EII0T18fIxB2Y4O8fYmNDSU0Kb5/wMKC+3v8wejYfFx7L16p2fTWs/u4jXygCEtPh7c9Lm2rrUGWAPGVM8uXlcIIbpfWJgxvdOOAdlGrWnUGg3YgDqbDW+l8O5sCQelICrKYSUDOGMh7HRgtFJqhFLKD7gW2OCE6wohRPfz8oKxY43un068XlzMtK+/Zu2pU2w5fZppX3/N68XFHX+T1sbTvjExDirY0NWpnlcCLwL9gM1KqZ1a68uVUoMwpnTO01o3KKXuBv6GMdXzDa31vi5XLoQQrmLWLGOt/k4s79eP5f36ndu5z5wxGpcOniE4H12689daf6y1Hqy19tdaD9BaX970+Xyt9bwWx23RWsdorUdqrR/vatFCCOFSliwxXgHYbI4/d2MjLF/u8NO67v5nQgjhLiIjjY1YTp927HmrqyEkBC67zLHnRcJfCCEcY+VKY6eu2lrHnK95eufTTxvndTAJfyGEcITISHj8cWORt3OZxtkWrY1XEfPmwZw5jqnvLBL+QgjhKIsXG7tvlZcbM3TOh80GZWXGKqHPPHPOO3nZS8JfCCEc6cc/hsceM/rrT5/u9AGwVpq/Z948WLu2W7p7mkn4CyGEo918M2zZAhdcYLwKKCszZu20RWuorDRC388PXn0VXnyxW4MfZD1/IYToHqNGGTtwpafDG2/A558bn1fK6NpRynirr4fYWFi2zJjV082h30zCXwghuotSxiYsSUlG4B89aqzOWV1tLAkRFWU8ueukwG9Jwl8IIZzBywuio403FyB9/kII4YFcdgN3pVQRkNPGl/oCnayEZClXrw9cv0ZXrw9cv0apr+tcvcb26humte50ASGXDf/2KKUy7NmZ3iquXh+4fo2uXh+4fo1SX9e5eo1drU+6fYQQwgNJ+AshhAdyx/BfY3UBnXD1+sD1a3T1+sD1a5T6us7Va+xSfW7X5y+EEKLr3PHOXwghRBe5fPgrpXorpVKVUt80/RnRznG/VUrtU0odUEr9XqluWgrv/OsbqpT6rKm+/Uqp4c6o71xqbDo2VCmVq5R6yZXqU0pNVkr9t+nfeLdS6hon1DVXKfW1UuqwUuqhNr7ur5R6v+nr/8+Z/6bnUOP9Tb9vu5VSf1dKDXOl+loct0QppZVSTp9dY0+NSqmrm36O+5RS77pSfU3Z8rlSakfTv/O8ts7zHVprl34Dfgs81PT+Q8DTbRwzDfgKY49gb+C/wAxXqa/pa/8E5jS9HwIEudLPsMWxvwPeBV5ypfqAGGB00/uDgAIgvBtr8gaygGjAD9gFxJ51zArg1ab3rwXed9bP7BxqvLT5dw24y5k12lNf03G9gC+BbUCCC/4MRwM7gIimj/u7WH1rgLua3o8Fjtpzbpe/8weuAP7U9P6fgMVtHKOBAIwfjj/gC5x0SnV21KeUigV8tNapAFrrSq11lZPqA/t+hiil4oEBwGdOqqtZp/VprQ9prb9pej8fKATOcSfsc5IEHNZaZ2ut64D3mupsqWXd64BZznrFaW+NWuvPW/yubQMGu1J9TX4NPA3UOLG2ZvbUuAx4WWtdCqC1LnSx+jQQ2vR+GJBvz4ndIfwHaK0Lmt4/gRFOrWit/wt8jnE3WAD8TWt9wFXqw7hrLVNKrW96afaMUsrbSfWBHTUqpbyAVcCDTqyrmT0/Q5NSKgmjoc/qxpqigOMtPs5t+lybx2itG4DTQJ9urOls9tTY0u3AX7u1otY6rU8pFQcM0VpvdmJdLdnzM4wBYpRSXymltiml5jqtOvvqewy4USmVC2wB7rHnxC6xsJtSaisQ2caXftHyA621Vkp9Z3qSUmoUMJZv72pSlVIXa63/5Qr1YfycLwamAMeA94FbgdcdUZ+DalwBbNFa53bHzasD6ms+z0DgLeAWrbXNsVX2XEqpG4EEYLrVtTRruuF4DuP/givzwej6mYGRMV8qpSZorcssrepb1wFrtdarlFIXAm8ppcZ39v/DJcJfaz27va8ppU4qpQZqrQua/uO39ZLrSmCb1rqy6Xv+ClwIOCT8HVBfLrBTa53d9D2fAN/DgeHvgBovBC5WSq3AGJPwU0pVaq3bHaRzcn0opUKBzcAvtNbbHFFXB/KAIS0+Htz0ubaOyVVK+WC85D7VzXW1df1mbdWIUmo2RiM7XWvtoN3F7dJZfb2A8cA/m244IoENSqlFWusMF6kRjP+//09rXQ8cUUodwmgM0l2kvtuBuWD0giilAjDW/emwe8odun02ALc0vX8L8GkbxxwDpiulfJRSvhh3N87q9rGnvnQgXCnV3Ec9E9jvhNqadVqj1voGrfVQrfVwjK6fPzsq+B1Rn1LKD/i4qa51TqgpHRitlBrRdO1rm+psqWXdKcA/dNOom5N0WqNSagqwGljk5L7qTuvTWp/WWvfVWg9v+r3b1lSns4K/0xqbfIJx149Sqi9GN1C2C9V3DJjVVN9YjPHPok7P7KxR6y6MdvcB/g58A2wFejd9PgF4TX87Ir4aI/D3A8+5Un1NH88BdgN7gLWAn6vV2OL4W3HubB97/o1vBOqBnS3eJndzXfOAQxhjC79o+tyvMAKKpv9kHwKHgTQg2lk/s3OocSvG5Ifmn9kGV6rvrGP/iZNn+9j5M1QY3VP7m/7/Xuti9cVizHbc1fRvfJk955UnfIUQwgO5Q7ePEEIIB5PwF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgP9f+ESC91ZCoRCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# run quantum algorithm with shots\n", + "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", + "params['backend']['name'] = 'qasm_simulator'\n", + "params['backend']['shots'] = 1024\n", + "\n", + "result = run_algorithm(params, algo_input)\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", + "plot_histogram(result['eigvecs'][0])\n", + "\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_04-checkpoint.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_04-checkpoint.ipynb new file mode 100644 index 000000000..dc0b353e9 --- /dev/null +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/.ipynb_checkpoints/w8_04-checkpoint.ipynb @@ -0,0 +1,478 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Experimenting with Traveling Salesman problem with variational quantum eigensolver*_ \n", + "\n", + "\n", + "This notebook is based on an official notebook by Qiskit team, available at https://github.com/qiskit/qiskit-tutorial under the [Apache License 2.0](https://github.com/Qiskit/qiskit-tutorial/blob/master/LICENSE) license. \n", + "The original notebook was developed by Antonio Mezzacapo[1], Jay Gambetta[1], Kristan Temme[1], Ramis Movassagh[1], Albert Frisch[1], Takashi Imamichi[1], Giacomo Nannicni[1], Richard Chen[1], Marco Pistoia[1], Stephen Wood[1]([1]IBMQ)\n", + "\n", + "Your **TASK** is to execute every step of this notebook while learning to use qiskit-aqua and also how to leverage general problem modeling into know problems that qiskit-aqua can solve, namely the [Travelling salesman problem](https://en.wikipedia.org/wiki/Travelling_salesman_problem)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "\n", + "Many problems in quantitative fields such as finance and engineering are optimization problems. Optimization problems lay at the core of complex decision-making and definition of strategies. \n", + "\n", + "Optimization (or combinatorial optimization) means searching for an optimal solution in a finite or countably infinite set of potential solutions. Optimality is defined with respect to some criterion function, which is to be minimized or maximized. This is typically called cost function or objective function. \n", + "\n", + "**Typical optimization problems**\n", + "\n", + "Minimization: cost, distance, length of a traversal, weight, processing time, material, energy consumption, number of objects\n", + "\n", + "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", + "\n", + "We consider here max-cut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", + "\n", + "\n", + "### Weighted Max-Cut\n", + "\n", + "Max-Cut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given Max-Cut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", + "\n", + "The formal definition of this problem is the following:\n", + "\n", + "Consider an $n$-node undirected graph *G = (V, E)* where *|V| = n* with edge weights $w_{ij}>0$, $w_{ij}=w_{ji}$, for $(i, j)\\in E$. A cut is defined as a partition of the original set V into two subsets. The cost function to be optimized is in this case the sum of weights of edges connecting points in the two different subsets, *crossing* the cut. By assigning $x_i=0$ or $x_i=1$ to each node $i$, one tries to maximize the global profit function (here and in the following summations run over indices 0,1,...n-1)\n", + "\n", + "$$\\tilde{C}(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j).$$\n", + "\n", + "In our simple marketing model, $w_{ij}$ represents the probability that the person $j$ will buy a product after $i$ gets a free one. Note that the weights $w_{ij}$ can in principle be greater than $1$, corresponding to the case where the individual $j$ will buy more than one product. Maximizing the total buying probability corresponds to maximizing the total future revenues. In the case where the profit probability will be greater than the cost of the initial free samples, the strategy is a convenient one. An extension to this model has the nodes themselves carry weights, which can be regarded, in our marketing model, as the likelihood that a person granted with a free sample of the product will buy it again in the future. With this additional information in our model, the objective function to maximize becomes \n", + "\n", + "$$C(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j)+\\sum_i w_i x_i. $$\n", + " \n", + "In order to find a solution to this problem on a quantum computer, one needs first to map it to an Ising Hamiltonian. This can be done with the assignment $x_i\\rightarrow (1-Z_i)/2$, where $Z_i$ is the Pauli Z operator that has eigenvalues $\\pm 1$. Doing this we find that \n", + "\n", + "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i0,$$ \n", + "\n", + "where it is assumed the boundary condition of the Hamiltonian cycle $(p=N)\\equiv (p=0)$. However, here it will be assumed a fully connected graph and not include this term. The distance that needs to be minimized is \n", + "\n", + "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}.$$\n", + "\n", + "Putting this all together in a single objective function to be minimized, we get the following:\n", + "\n", + "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}+ A\\sum_p\\left(1- \\sum_i x_{i,p}\\right)^2+A\\sum_i\\left(1- \\sum_p x_{i,p}\\right)^2,$$\n", + "\n", + "where $A$ is a free parameter. One needs to ensure that $A$ is large enough so that these constraints are respected. One way to do this is to choose $A$ such that $A > \\mathrm{max}(w_{ij})$.\n", + "\n", + "Once again, it is easy to map the problem in this form to a quantum computer, and the solution will be found by minimizing a Ising Hamiltonian. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distance\n", + " [[ 0. 91. 55.]\n", + " [91. 0. 39.]\n", + " [55. 39. 0.]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGBdJREFUeJzt3X2QXXWd5/H3t7vTCZ0nEtIhQcggFqiUVQS2zYi46JBhEKQAq2REV40pxliWjIC6IzpbPuzCiLtxUcsqNCBMalVUGFgZdUDE56oxawciII8OBMgTNEIeyFMnfb/7x7nRNnb63tt9m9t9+v2qunX7nnvOud+cOv25J9/+nXMiM5EklVNbqwuQJI0dQ16SSsyQl6QSM+QlqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKrGOemaKiMuBvwMSuB9YDiwEvgXMBe4B3p2Z/cOtZ968eXnssceOpl5JGn+efx42bSp+bmuDiNrLZEKlAu3tsGgRTJ9+yFnXrl37XGZ2j6S0qHVZg4h4GfBL4MTM3B0R3wF+AJwD3JqZ34qIrwC/ycxrh1tXT09P9vb2jqROSRp/MmHlSvjKV4qQ7uxsfB07d8L+/fDFL8I55ww5S0SszcyekZRYb7umAzgsIjqALmAzcAZwS/X91cAFIylAkiasG28sAn7WrJEFPBRfDtOmwaWXwr//e3Pro46Qz8yNwErgKYpw3wasBbZm5v7qbBuAlw21fESsiIjeiOjt6+trTtWS1GqPPQZXXw0zZhQtl9GYOhU6OuBDH4Lt25tTX1XNkI+IOcD5wMuBo4DpwNlDzDpk3yczV2VmT2b2dHePqKUkSeNLJlx+efE8ZUpz1jl9etHb/9znmrO+qnraNX8NPJGZfZm5D7gVeD1weLV9A3A0sKmplUnSeLV2LTzySNGmGcZ3nn+edz/xBKc+/DCf3lRHRM6aBTffDC+80KRC6wv5p4DXRURXRASwFHgQ+Anwtuo8y4DvNq0qSRrPbrihGBlTYxTNvI4OLp43j/Nmz65vve3txXpvu60JRRbq6cmvofgD6z0UwyfbgFXAx4APR8TvgCOArzWtKkkaryoV+OlPYebMmrOeMWsWb5o5k9mN9Ow7OuAHPxh5fQevrp6ZMvNTwKcOmvw4sKRplUjSRLBhQzHksatrbNY/bRr89rfFl0nb6M9X9YxXSWrE+vWjH00znI4O2LcPnnuuKasz5CWpEXv2FKNqxlJ7O+zd25RVGfKS1IhmDZkcThOHZhryktSIY46p+0h+IJP+SoUKUAH6KxUGai07MFA8N+m8orr+8CpJqnr5y4vngYGavfmvPfccqwb11n+wbRsr5s1jxXABvncvnHBC0/r+hrwkNaK9HV77WlizBmqMf1/R3T18oA9l715YunQUBf4p2zWS1KiLL67vcsKNOnCC1dvf3rRVGvKS1KjTTy965i++2Nz1bt9eHMUfdVTTVmnIS1Kj2tvhmmuKk6IO/KF0tPbsKa5G+ZnPNGd9VYa8JI3EkiXwnvcUR9+jHTe/fz/s3g1XXQULFjSnvipDXpJG6h//Ed78Zti6deRH9P39xRfFRz8KFzT/3kuGvCSNVHs7fOlLsGwZ7NjRWI8+s/hy6O+HK6+ED3xgTEo05CVpNNrb4ZOfhJtuKv4Yu307bNs29JF9ZnFdmhdeKOY7+WS480545zvHrDzHyUtSM7z2tfCzn8Evf1lcb/5Xv/rTK0lGFAHf1VW0Zd77XnjNa8ZmKOYghrwkNUtbWzG88vTTi4B/6qni0sT79hUjZ447Do48csyDfTBDXpLGQlsbHHts8WhlGS39dEnSmDLkJanEDHlJKjFDXpJKrOYfXiPilcC3B006DvgkcDjwPqCvOv0Tmdm8W4xLkkatZshn5iPAYoCIaAc2ArcBy4FrMnPlmFYoSRqxRts1S4H/yMwnx6IYSVJzNRryFwE3DXp9SUTcFxE3RMScJtYlSWqCukM+IjqB84Cbq5OuBV5B0crZDHz+EMutiIjeiOjt6+sbahZJ0hhp5Ej+bOCezHwGIDOfycyBzKwA1wFLhlooM1dlZk9m9nQ36e7jkqT6NBLy72BQqyYiFg56763AA80qSpLUHHVduyYiuoAzgfcPmvw/I2IxkMD6g96TJI0DdYV8Zu4Cjjho2rvHpCJJUtN4xqsklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVmCEvSSVmyEtSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVWM2Qj4hXRsS6QY/tEXFZRMyNiLsi4rHq85yXomBJUv1qhnxmPpKZizNzMfCfgF3AbcAVwN2ZeTxwd/W1JGkcabRdsxT4j8x8EjgfWF2dvhq4oJmFSZJGr9GQvwi4qfrzkZm5GaD6PL+ZhUmSRq/ukI+ITuA84OZGPiAiVkREb0T09vX1NVqfJGkUGjmSPxu4JzOfqb5+JiIWAlSfnx1qocxclZk9mdnT3d09umolSQ1pJOTfwR9bNQC3A8uqPy8DvtusoiRJzVFXyEdEF3AmcOugyVcDZ0bEY9X3rm5+eZKk0eioZ6bM3AUccdC031OMtpEkjVOe8SpJJWbIS1KJGfKSVGKGvCSVmCEvSSVmyEtSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVmCEvSSVmyEtSiRnyklRihrwklVhdIR8Rh0fELRHxcEQ8FBGnRsSnI2JjRKyrPs4Z62IlSY3pqHO+LwJ3ZObbIqIT6ALOAq7JzJVjVp0kaVRqhnxEzAJOB94LkJn9QH9EjG1lkqRRq6ddcxzQB9wYEfdGxPURMb363iURcV9E3BARc8auTEnSSNQT8h3AKcC1mXkysBO4ArgWeAWwGNgMfH6ohSNiRUT0RkRvX19fc6qWJNWlnpDfAGzIzDXV17cAp2TmM5k5kJkV4DpgyVALZ+aqzOzJzJ7u7u7mVC1JqkvNkM/MLcDTEfHK6qSlwIMRsXDQbG8FHhiD+iRJo1Dv6Jq/B75RHVnzOLAc+FJELAYSWA+8f0wqlCSNWF0hn5nrgJ6DJr+7+eVIkprJM14lqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxAx5SSoxQ16SSsyQl6QSM+QlqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxOoK+Yg4PCJuiYiHI+KhiDg1IuZGxF0R8Vj1ec5YFytJaky9R/JfBO7IzFcBJwEPAVcAd2fm8cDd1deSpHGkZshHxCzgdOBrAJnZn5lbgfOB1dXZVgMXjFWRkqSRqedI/jigD7gxIu6NiOsjYjpwZGZuBqg+zx/DOiVJI1BPyHcApwDXZubJwE4aaM1ExIqI6I2I3r6+vhGWKUkaiXpCfgOwITPXVF/fQhH6z0TEQoDq87NDLZyZqzKzJzN7uru7m1GzJKlONUM+M7cAT0fEK6uTlgIPArcDy6rTlgHfHZMKJUkj1lHnfH8PfCMiOoHHgeUUXxDfiYiLgaeAC8emREnSSNUV8pm5DugZ4q2lzS1HktRMnvEqSSVmyEtSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVWL1XoZT0Utu6FR56CB59FJ5/HiJg/nx41auKR1dXqyvUBGDIS+NJpQK/+AVcdx386lfQ0QH9/cV0gPZ2mDIFBgbg7LPhve+Fk08uvgCkIRjy0njxxBNw2WXw4IPF61mzoO0QHdWBAfj+9+Hf/g2WLoWrroIjjnjpatWEYU9eGg9uvx3e/Gb47W+LcJ89+9ABD8UR/Zw5MHMm/OhHRdCvXfvS1asJw5CXWu3WW+Hyy6GzEw4/vLHWS1tbsczevfCud0Fv79jVqQnJkJdaad06+NjHYPp0mDp15OuZPr34cli+HLZsaV59mvAMealV9uyBSy8tjsY7O0e/vq4u2L0brrgCMke/PpWCIS+1yte/Dhs2FH31Zpk9G375S/j5z5u3Tk1ojq6RWqFSgVWr4LDDhp2tv1Lh6i1b+H+7drF9YICjp0zhkvnzef2MGUMvEFE8rrsO3vjGMShcE01dR/IRsT4i7o+IdRHRW5326YjYWJ22LiLOGdtSpRJZs6Y42WnatGFnGwAWTJnCqkWL+OkJJ/CB7m6u2LiRTf39h15o5sxi/fbmRWNH8n+Vmc8dNO2azFzZzIKkSeHee2H//pqzHdbWxoru7j+8/s8zZ3LUlCk8vGcPRx2qj9/WVjzuvx8WLGhWxZqg7MlLrbBmTXE2a4Oe37+fp/r7Oa7WSJz+frjvvhEWpzKpN+QT+GFErI2IFYOmXxIR90XEDRExZ6gFI2JFRPRGRG9fX9+oC5ZKYePGhkfU7M/kv23axLmzZ3NsrZDv6IAnnxxFgSqLekP+tMw8BTgb+GBEnA5cC7wCWAxsBj4/1IKZuSozezKzp3vQfzulSe3AtWjqnT2TT27aRAfwD/W2YAYGGq9LpVNXyGfmpurzs8BtwJLMfCYzBzKzAlwHLBm7MqWSmTGj7hDOTP7H5s38fv9+/tfRR9NRzxmxlUpxJqwmvZohHxHTI2LmgZ+BvwEeiIiFg2Z7K/DA2JQoldAppxSXIqjDZ7ds4Yn+fq455himDnc9m8Ei4KSTRlGgyqKev/wcCdwWxdFDB/DNzLwjIv5PRCym6NevB94/ZlVKZXPKKfDNb9acbfO+fdy6dSudEZz12GN/mP6JBQs4e/bsQy/Y3g6vfnUzKtUEVzPkM/Nx4M8OCTLz3WNSkTQZvOENxfPAQBHIh7BwyhR6Gw3rPXuKM19PPHEUBaosHEIptcLcuXDOObBtW/PXvXs3vO99w355aPIw5KVW+eAHi6GO+/Y1b527dhXXo7/wwuatUxOaIS+1yvHHF1ehfPHF5lw1slIp/pi7cqUja/QHhrzUSu9/P/zlXxbXsRlN0FcqRevnne8s7hIlVRnyUit1dMD118OSJfDCC3Vdz+bP7N1bBPyFF8JnPtP8GjWhGfJSq3V1werVRY9+587iqL6eM2IHBv74xXDVVfBP/zT8fWE1KblHSONBZyd85CNw221w2mmwfTs8/3zx3N9fBPrAQDE8cuvWItx37oRzz4W77oKLLjLgNSRvGiKNJ695TXFU//TTcOedxdUq77sPduwozmKdM6c4kerUU+Gss4qhmNIwIl/Ce0H29PRkr3eTl6SGRMTazOwZybL+/06SSsyQl6QSM+QlqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxOq6QFlErAd2AAPA/szsiYi5wLeBY4H1wN9m5gtjU6YkaSQaOZL/q8xcPOgiOVcAd2fm8cDd1deSpHFkNO2a84HV1Z9XAxeMvhxJUjPVG/IJ/DAi1kbEiuq0IzNzM0D1ef5YFChJGrl6bxpyWmZuioj5wF0R8XC9H1D9UlgBsGjRohGUKEkaqbqO5DNzU/X5WeA2YAnwTEQsBKg+P3uIZVdlZk9m9nR3dzenaklSXWqGfERMj4iZB34G/gZ4ALgdWFadbRnw3bEqUpI0MvW0a44EbouIA/N/MzPviIhfA9+JiIuBp4ALx65MSdJI1Az5zHwcOGmI6b8Hlo5FUZKk5vCMV0kqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxOq9QFnr7N0Lzz4LAwNw2GEwfz4UZ99KkmoYnyH/yCNw003w85/Dk09Ce3sR7JUKdHbCiSfC+efDeefBrFmtrlaSxq3xFfKPPgof/zj85jeQCdOmwezZ0Daoq7R/P9x/P6xbB1deCcuXw6WXFvNKkv7E+OjJVypw7bVw7rlw331FsM+ZU7Rn2g4qsaMDZswo5pk2Da67Ds46Cx54oDW1S9I41vqQr1SKo/eVK4tQnz27/p57Rwccfjhs3gwXXghr1oxtrZI0wbQ+5D/3Obj55iLcp0wZ2TpmzSq+GJYvL/r5kiSg1SH/61/D9df/ed99JLq6in79JZdAf39z6pOkCa51Id/fD5ddVhy9t7c3Z50zZ8LjjxdfHJKkFob8j39cjH+fMWPY2bYPDPDRDRt4w8MPc+7vfscd27YdeuYImD4dvvpVj+YliVaG/Fe/WleL5uotW5gSwQ9POIErjzqKz27ZwuN79x56gc5O2L0bfvSjJhYrSRNTa0L+xReLsfA1juJ3Vyr8eMcOPtDdTVdbG4u7unjjzJl8f7ijeShG7Nx5ZxMLlqSJqTUh/8gjMHVqzaGST/X30wYs6uz8w7Tjp04d/kgeivHz99zThEIlaWJrTcivX1+MhKlhV6XCjINaOjPa2thZqQy/4NSpsGFDcUQvSZNY3SEfEe0RcW9EfK/6+p8j4omIWFd9LK77U/furSuAu4YI9J2VCtNr9fIP/A/BP75KmuQauXbNpcBDwOArgv3XzLyl8U/tqOus1kWdnQxQtG0OtGwe3buX46ZOHX7BzOIx0pOrJKkk6jqSj4ijgbcAzRmAfvTRRdDXcFhbG2fMnMlX+vrYXanwm127+NmOHbxl9uzhF9y3D448snnj7yVpgqq3XfMF4B+Ag3ssV0XEfRFxTUTUOLwe5NWvLoI4s+asVyxYwN5KhTMffZRPbNzIxxcsqH0kv3s3nHRS3eVIUlnVPJyOiHOBZzNzbUS8adBbHwe2AJ3AKuBjwH8fYvkVwAqARYsWFRPnzIG/+IviwmLTpw/7+bPa2/n8McfU82/5U2ec0fgyklQy9RzJnwacFxHrgW8BZ0TE1zNzcxb2AjcCS4ZaODNXZWZPZvZ0d3f/8Y0VK+oaYdOw/fuLNs1b3tL8dUvSBFMz5DPz45l5dGYeC1wE/Dgz3xURCwEiIoALgMYu6H7uucWlhffsabzq4ezYARddVFzHRpImudGMk/9GRNwP3A/MA65saOkZM+Czny3653X05uuycyfMnQsf/nBz1idJE1xDt//LzJ8CP63+PPqm9znnwL/+K9x1V3Hzj9HcoLu/v2jVfOEL3vdVkqpaez35CLjmGujpga1bR36G6p49sGtX8T+D005rbo2SNIG1/s5Qhx0Gq1cXPfpt24qwrldm8eWQCV/+MrztbWNXpyRNQJHN6ofX82ERfcCTL9kHNt884LlWFzFOuW2G5/Y5NLfN8OYB0zOzu+acQ3hJQ36ii4jezOxpdR3jkdtmeG6fQ3PbDG+026f17RpJ0pgx5CWpxAz5xqxqdQHjmNtmeG6fQ3PbDG9U28eevCSVmEfyklRihvwQIuKYiPhJRDwUEb+NiEur0+dGxF0R8Vj1eU6ra22VIe4U9vKIWFPdNt+OiM5a6yiriDg8Im6JiIer+9Cp7juFiLi8+jv1QETcFBHTJvO+ExE3RMSzEfHAoGlD7itR+FJE/K56ifdT6vkMQ35o+4GPZOargdcBH4yIE4ErgLsz83jg7urryerAncIO+BxwTXXbvABc3JKqxocvAndk5quAkyi206TfdyLiZcCHgJ7MfA3QTnHRw8m87/wz8OaDph1qXzkbOL76WAFcW9cnZKaPGg/gu8CZwCPAwuq0hcAjra6tRdvj6OrOdwbwPSAoTmbpqL5/KnBnq+ts0baZBTxB9e9dg6ZP+n0HeBnwNDCX4rpZ3wPOmuz7DnAs8ECtfQX4KvCOoeYb7uGRfA0RcSxwMrAGODIzNwNUn+e3rrKWOvhOYUcAWzPzwA0CNlD8Qk9GxwF9wI3Vdtb1ETEd9x0ycyOwEngK2AxsA9bivnOwQ+0rB74kD6hrWxnyw4iIGcC/AJdl5vZW1zMeDL5T2ODJQ8w6WYdtdQCnANdm5snATiZha2Yo1d7y+cDLgaOA6RQtiINN1n2nlhH9nhnyhxARUygC/huZeWt18jODbpayEHi2VfW10J/dKYziyP7wiDhw6eqjgU2tKa/lNgAbMnNN9fUtFKHvvgN/DTyRmX2ZuQ+4FXg97jsHO9S+sgEYfC/UuraVIT+E6t2uvgY8lJn/e9BbtwPLqj8vo+jVTyo59J3C/gvwE+DAZUAn5bYByMwtwNMR8crqpKXAg7jvQNGmeV1EdFV/xw5sG/edP3WofeV24D3VUTavA7YdaOsMx5OhhhARbwB+QXHXqwN9509Q9OW/Ayyi2GEvzMznW1LkOFC9sftHM/PciDiO4sh+LnAv8K4s7v876UTEYuB6ipvcPw4spzigmvT7TkR8Bng7xQi2e4G/o+grT8p9JyJuAt5EcaXJZ4BPAf+XIfaV6hfjlylG4+wClmdmb83PMOQlqbxs10hSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJfb/Ab7czTnyX6ZBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Generating a graph of 3 nodes\n", + "\n", + "n = 3\n", + "num_qubits = n ** 2\n", + "ins = tsp.random_tsp(n)\n", + "G = nx.Graph()\n", + "G.add_nodes_from(np.arange(0, n, 1))\n", + "colors = ['r' for node in G.nodes()]\n", + "pos = {k: v for k, v in enumerate(ins.coord)}\n", + "default_axes = plt.axes(frameon=True)\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", + "print('distance\\n', ins.w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Brute force approach" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "order = (0, 1, 2) Distance = 185.0\n", + "Best order from brute force = (0, 1, 2) with total distance = 185.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xtc1FX+x/HXEVRERPNOXvOu66YZ2xpjVpaVtVn9yhtuaTe77Jb+TBAtWwVUVPKWpeIdvACWdjG3bNdfGeIlNTPTNG8pooAiIiAMMOf3x4ysayiDzPCdGT7Px4MHzJeZ+X4Yv77nzPme7zlKa40QQgjPVM3oAoQQQjiPhLwQQngwCXkhhPBgEvJCCOHBJOSFEMKDScgLIYQHk5AXQggPJiEvhBAeTEJeCCE8mLc9d1JK/S/wEqCBn4DngQAgHqgP7AGe1Vqbb/Q8DRs21K1bt65IvUII4XoyMyE11fpztWqgVNmP0RosFvDygpYtoXbt69519+7d57TWjW6mNFXWtAZKqWZAEtBFa31ZKZUIbAQeBdZpreOVUguAH7XW82/0XIGBgXrXrl03U6cQQrgerSE6GhYssIZ0jRrlf47cXCgqgjlz4NFHS72LUmq31jrwZkq0t7vGG6illPIGfIEzQB/gI9vvVwBP3kwBQgjhtpYtswa8v//NBTxY3xx8fGDkSNi2zbH1YUfIa61PA9HASazhfhHYDWRprYtsd0sBmpX2eKXUCKXULqXUroyMDMdULYQQRvv1V4iKAj8/a5dLRdSsCd7e8OabkJ3tmPpsygx5pdQtwBPAbcCtQG2gXyl3LbXfR2sdo7UO1FoHNmp0U11KQgjhWrSG//1f6/fq1R3znLVrW/v2p01zzPPZ2NNd8yBwXGudobUuBNYBQUA9W/cNQHMg1aGVCSGEq9q9Gw4dsnbT3EBiZibPHj/O3b/8wsRUOyLS3x/WroULFxxUqH0hfxLoqZTyVUop4AHgAPB/wDO2+wwDPnVYVUII4cqWLrWOjCljFE1Db29ebNiQ/nXr2ve8Xl7W512/3gFFWtnTJ78D6wnWPViHT1YDYoCxwGil1BGgAbDEYVUJIYSrsljgm2+gTp0y79rH35/76tShbnn67L29YePGm6/v2qez505a638A/7hm8zHgLodVIoQQ7iAlxTrk0dfXOc/v4wM//2x9M6lW8etV5YpXIYQojxMnKj6a5ka8vaGwEM6dc8jTScgLIUR55OdbR9XYQQNnz57lYnmHRXp5QUFB+WsrhV3dNUIIIWzsHDKZX1BA6unT5OTk4O3vT7ki24FDMyXkhRCiPFq0uGFL3qI158+dI/PCBSxA/SZNqKUUl4qKMFsseCmF141G5RQXW7876LoiCXkhhCiP226zfi8u/l3f/OXLl0k9c4Ya1avjX6cOy7Oz+Tgzs+T3Gy9eZETDhoy4UYAXFECHDg7r95eQF0KI8vDygj/9CXbsANv4d4vFQnpGBtkXL9KkaVMUkJaeTki7dowrb1gXFMADDzisXDnxKoQQ5fXiiyUXQuXm5nL02DGKi4tp07YtPjVrcubsWZo3b453eQP+ygVWgwY5rFRpyQshRHn17k1R/fpcOHqULLOZgIAA/Pz8KLZYOJWSQpMmTajl41P+583Otrbib73VYaVKS14IIcrpm+++4y2l8LZYaNO6NX5+fmggNTWV2rVrU8/eaQyulp9vnY1y0iSH1ioteSGEsFNmZibTp0/n8OHDvPPBB9yyYQOsWAH16nH+/HmKiopo1qzUWddvrKgILl+G996Dpk0dWrO05IUQogxaazZs2MDgwYNp3rw5a9asoUePHvD22/DII+SnpXEhM5PmzZtTzZ6l/65mNlu7acaMgScdv/aStOSFEOIGUlNTmTJlCpmZmbz//vt07NjxP7/08iI1LIyvv/ySQXXrUj0/37qIiD20hosXrdMYREZCcLBT6peWvBBClMJisZCQkMCzzz5LYGAgsbGx/x3wQEFBASFhYVSPiMBn3TrrBUzZ2dbwvnJR09W0ts5Lc+GC9X533AFffeW0gAdpyQshxO8cP36ciIgIqlWrxtKlS2nVqtXv7qO1ZurUqbRq1YohQ4ZYhz5++y0kJVnnm9++/b9nklTKGvC+vtZumeHDoWvXMuekrygJeSGEsCkqKmLFihWsXr2aV199laeffppq15nu9+OPP+bgwYMsX74cdSWoq1WD3r2tXxYLnDxpnZq4sNA6cqZNG2jSxOnBfjUJeSGEAA4cOEBERASNGjVi1apVNL3BKJd9+/axcOFCli5dSq1atUq/U7Vq0Lq19ctAEvJCiCotPz+fmJgYNmzYwKhRo+jXr99/WualOH/+PGFhYbz77ru0aNGiEiu9ORLyQogqa/fu3URGRtK5c2fi4+OpX7/+De9fVFTEuHHjePLJJ7nnnnsqqcqKkZAXQlQ5OTk5zJ07l6SkJMLCwujdu7ddj5s7dy61atXipZdecnKFjiNDKIUQVcqWLVsYOHAgAImJiXYH/FdffcWWLVtKRt24izJb8kqpjkDCVZvaAO8C9YCXgQzb9vFaa8ctMS6EEA6UmZlJdHR0yQnWO++80+7HHjlyhBkzZjB//nz8/f2dWKXjlfl2pLU+pLXurrXuDtwJ5AHrbb+edeV3EvBCCFekteaf//wngwcPpmnTpsTHx5cr4C9dusSYMWN46623aN++vRMrdY7y9sk/ABzVWv92o7PPQgjhCtLS0pgyZQppaWnMnj2bLl26lOvxFouFd999l169etGvXz8nVelc5e1YGgysuer235VS+5RSS5VStziwLiGEuGkWi4W1a9cydOhQbr/9duLi4sod8ABLliwhJyeHUaNGOaHKymF3S14pVQPoD4yzbZoPRADa9v094IVSHjcCGAHQsmXLCpYrhBA39ttvvxEZGUlxcTGLFi3ititrspbT1q1bWb9+PXFxcXh7u+9AxPK05PsBe7TWaQBa6zStdbHW2gIsAu4q7UFa6xitdaDWOrCRg1YfF0KIaxUVFbF8+XJeeOEFHnzwQRYvXnzTAZ+SksKkSZOIioqiQYMGDq60cpXn7WkIV3XVKKUCtNZnbDefAvY7sjAhhLDXoUOHmDRpEvXr1ycuLo5bK7B8Xn5+PiEhIbz00kvcfvvtDqzSGHaFvFLKF+gLvHLV5ulKqe5Yu2tOXPM7IYRwuoKCAhYtWsSnn37KyJEjeeyxx244JUFZtNZERkbSoUMHBgwY4MBKjWNXyGut84AG12x71ikVCSGEHX744QciIiJo37498fHxDulWSUhI4NixYyxbtqxCbxauxH3PJgghqqTc3FzmzZvHN998Q2hoKPfff79DnveHH35g6dKlLF++nJo1azrkOV2B+1ybK4So8rZu3cqgQYMwm80kJCQ4LOAzMjIYP348kyZNqlB/viuSlrwQwuVlZWXx3nvv8eOPP/Luu+9y112lDua7KYWFhYwdO5YBAwZw9913O+x5XYW05IUQLktrzaZNmxg4cCD169cnISHBoQEPMGvWLOrVq8fw4cMd+ryuQlryQgiXlJ6eTlRUFCkpKcycOZOuXbs6fB9ffPEF27dvJzY21q1mliwPz/yrhBBuy2KxsG7dOoKDg+nUqROrVq1ySsAfOnSIWbNmER0djZ+fn8Of31VIS14I4TJOnTpFZGQk+fn5LFy4kLZt2zplPxcvXiQkJISxY8fSpk0bp+zDVUjICyEMV1xczKpVq1ixYgUvvvgigwcPdlr3icVi4Z133qFPnz707dvXKftwJRLyQghDHT58mIiICOrUqUNsbCzNmjVz6v4WLFiA2WzmjTfecOp+XIWEvBDCEGazmSVLlrBu3TreeOMNHn/8cadfZfrtt9/yxRdfEBcXh5eXl1P35Sok5IUQlW7fvn2Eh4fTunVrVq9eTWXMUHvy5EkiIyOZNWsW9evXd/r+XIWEvBCi0uTl5fHBBx/w73//m5CQEPr06VMpc8Tk5eUxZswYXnvtNaeM1HFlMoRSCFEptm3bxqBBg8jLyyMxMZEHHnigUgJea014eDh//OMfeeqpp5y+P1cjLXkhhFNlZ2czc+ZM9uzZw9tvv03Pnj0rdf+rVq0iNTWVxYsXe8zMkuUhLXkhhFNorfnXv/7FgAED8PPzIz4+vtIDfteuXcTGxjJ9+nRq1KhRqft2FdKSF0I4XEZGBtOmTePEiRPMmDHDkBWW0tLSePvtt4mMjKRp06aVvn9XIS15IYTDaK359NNPCQ4Opl27dqxevdqQgDebzYSGhjJ06FCHT2jmbqQlL4RwiNOnTxMZGUlOTg4ffvgh7du3N6yW6OhomjRpwrPPygJ2EvJCiAqxWCzEx8ezZMkShg8fTnBwsKEXGn366afs2bOH2NjYKnmi9VoS8kKIm3b06FHCw8Px8fFh+fLltGjRwtB6Dhw4wLx581i0aBG+vr6G1uIqJOSFEOVmNptZvnw5iYmJ/O1vf+OJJ54wfD72CxcuEBoayvjx42ndurWhtbiSMkNeKdURSLhqUxvgXSDWtr01cAIYqLW+4PgShRCuZP/+/YSHh9O8eXNWr15N48aNjS6J4uJi3n77bR555BGHrfvqKcoMea31IaA7gFLKCzgNrAfCgH9rraOUUmG222OdWKsQwkCXL19m/vz5fPXVV7z11lv07dvXZfq8P/jgAwBef/11gytxPeX9fPUAcFRr/RvwBLDCtn0F8KQjCxNCuI6dO3cyaNAgsrKySEhI4KGHHnKZgN+8eTNff/01U6ZMMbzLyBWVt09+MLDG9nMTrfUZAK31GaWU8Z/ZhBAOlZ2dzezZs9mxYwfjx4/HZDIZXdJ/OX78OFOmTOH999+nXr16Rpfjkux+21NK1QD6A2vLswOl1Ail1C6l1K6MjIzy1ieEMMjmzZsZNGgQPj4+rF271uUCPjc3lzFjxvDmm2/SuXNno8txWeVpyfcD9mit02y305RSAbZWfACQXtqDtNYxQAxAYGCgrlC1QginO3/+PNOmTePIkSNMmTKFO+64w+iSfkdrzcSJEwkMDKR///5Gl+PSytOBNYT/dNUAfAYMs/08DPjUUUUJISqf1prPP/+cwYMH06pVK+Lj410y4AFWrFhBRkYGb731ltGluDy7WvJKKV+gL/DKVZujgESl1IvASWCA48sTQlSG1NRUJk+eTFZWFvPmzaNjx45Gl3RdO3bsID4+ntjY2Co7s2R52BXyWus8oME1285jHW0jhHBTFouFxMREFi1axHPPPcfQoUPx9nbdayRTU1OZMGECUVFRLjE+3x247r+mEMKpjh07RmRkJF5eXixdupRWrVoZXdINFRQUEBoayvDhw+nRo4fR5bgNCXkhqpjCwkJiY2NZs2YNr776Kv/zP//j8uPLtdZERUXRsmVLhgwZYnQ5bkVCXogq5MCBA4SHh9OkSRNWrVpFkyZNjC7JLuvWrePAgQMsX77cZS7CchcS8kJUAfn5+SxcuJAvvviC0aNH8/DDD7tNWP70008sWLCAJUuWUKtWLaPLcTuu/RlNCFFhu3btYvDgwaSnp5OQkMAjjzziNgGfmZnJ2LFjeffdd2nZsqXR5bglackL4aFycnKYO3cuSUlJhIWF0bt3b6NLKpeioiLCwsJ44oknuOeee4wux21JS14ID7RlyxYGDhwIQGJiotsFPMDcuXPx8fHh5ZdfNroUtyYteSE8SGZmJtHR0Rw8eJDIyEi3HWq4adMmvv32W+Li4lx+5I+rk1dPCA+gtWbjxo0MHjyYpk2bEh8f77YBf+TIEaZPn86MGTPw9/c3uhy3Jy15Idzc2bNnmTJlChkZGcyePZsuXboYXdJNu3TpEiEhIYwePZoOHToYXY5HkJa8EG7qypQEQ4cOpXv37sTFxbl1wFssFt59912CgoJ49NFHjS7HY0hLXgg39NtvvxEREYHFYmHx4sXcdtttRpdUYUuXLuXSpUuMGjXK6FI8ioS8EG6kqKiIuLg4Vq5cySuvvMIzzzzjEScmk5OTWbduHbGxsVSvXt3ocjyKhLwQbuKXX34hPDycBg0asHLlSgICAowuySFSUlKYOHEiM2bMoGHDhkaX43Ek5IVwcQUFBcTExPD5558zcuRIHn30Ube5YrUs+fn5hIaG8tJLL9GtWzejy/FIEvJCuLA9e/YQGRlJx44diY+Pp379+kaX5DBaayZPnky7du0YMEDWHHIWCXkhXFBubi7vv/8+W7ZsITQ0lPvuu8/okhwuMTGRo0ePsnTpUo/5ZOKK3P+MjRAeJikpiYEDB1JUVERCQoJHBvzevXtZsmQJM2bMwMfHx+hyPJq05IVwERcuXOC9997jp59+4h//+Ad33XWX0SU5RUZGBuPGjWPixIk0a9bM6HI8nrTkhTCY1pqvvvqKQYMG0aBBA+Lj4z024AsLCxk7dizPPPMMQUFBRpdTJdjVkldK1QMWA10BDbwAPAy8DGTY7jZea73RGUUK4anS09OZOnUqqampzJo1iz/84Q9Gl+RUs2bNol69ejz//PNGl1Jl2NuSnwN8qbXuBHQDDtq2z9Jad7d9ScALYSeLxcLHH39McHAwXbp0YeXKlR4f8Bs3bmT79u2Eh4d7xAVc7qLMlrxSyh/oDQwH0FqbAbOcDRfi5pw8eZLIyEjMZjMxMTG0adPG6JKc7tChQ8ycOZOFCxfi5+dndDlVij1vp22wdsksU0r9oJRarJSqbfvd35VS+5RSS5VStzivTCHcX3FxMbGxsTz//PPcd999LF26tEoEfHZ2NiEhIYSGhtK2bVujy6ly7Al5b6AHMF9rfQeQC4QB84G2QHfgDPBeaQ9WSo1QSu1SSu3KyMgo7S5CeLzDhw8zbNgwtm/fTlxcHMHBwVWiy8JisfD2229z//3389BDDxldTpVkz4nXFCBFa73DdvsjIExrnXblDkqpRcCG0h6stY4BYgACAwN1xcoVwr2YzWYWL17M+vXreeONN3j88cer1IU/CxcuxGw28+abbxpdSpVVZshrrc8qpU4ppTpqrQ8BDwAHlFIBWusztrs9Bex3ZqFCuJsff/yRiIgI2rRpw5o1a6rc5Ftbtmxhw4YNxMXF4eXlZXQ5VZa9F0O9AaxSStUAjgHPA3OVUt2xDqk8AbzilAqFcDN5eXnMmzePzZs3ExoaSp8+fYwuqdKdPHmSiIgIZs2a5VHz7bgju0Jea70XCLxm87OOL0cI95acnMzUqVP505/+RGJiYpVcozQvL48xY8bw2muv0bVrV6PLqfJkWgMhHODixYvMnDmTH374gbfffpuePXsaXZIhtNZERETQtWtXnnrqKaPLEci0BkJUiNaaf/3rXwwcOBB/f3/i4+OrbMADrF69mpSUFMLCwqrUCWZXJi15IW5SRkYGUVFRnDx5khkzZnD77bcbXZKhdu/ezYoVK1ixYgU1atQwuhxhIy15IcpJa80nn3xCcHAw7du3Z9WqVVU+4NPT0xk/fjyRkZEesyyhp5CWvBDlkJKSwuTJk8nNzeXDDz+kffv2RpdkOLPZTEhICMHBwR47e6Y7k5AXwg4Wi4XVq1ezbNkynn/+eYYMGSJjv22io6Np0qQJzz33nNGliFJIyAtRhiNHjhAeHk6tWrVYvnw5LVq0MLokl/HZZ5+xZ88eVqxYISdaXZSEvBDXYTabWbZsGWvXruVvf/sbTz75pATZVQ4cOMD777/PokWLqF27dtkPEIaQkBeiFD/99BMRERE0b96c1atX07hxY6NLcilZWVmMHTuWcePG0bp1a6PLETcgIS/EVS5fvsz8+fP56quvGDNmDA8++KC03q9RXFzM+PHjeeihh6rklA3uRoZQCmGzc+dOBg0aRFZWFomJifTt21cCvhQffvghAK+//rrBlQh7SEteVHnZ2dnMnj2bnTt3Mn78eFlg+gY2b97Mpk2bZGZJNyIteVGlbd68mUGDBuHj40NiYqIE/A0cP36cKVOmMG3aNOrVq2d0OcJO0pIXVdL58+eZNm0aR48eZerUqXTv3t3oklxabm4uISEhvPnmm3Tp0sXockQ5SEteVClaaz7//HMGDx5M69atWbNmjQR8GbTWTJo0iR49etC/f3+jyxHlJC15UWWkpqYyefJkLl68yAcffECHDh2MLsktxMbGkp6eTmRkpNGliJsgIS88nsViISEhgcWLFzNs2DCGDh0qJw3ttHPnTtasWUNsbKzMLOmmJOSFRzt27BgRERFUr16dZcuW0bJlS6NLchtnzpzhnXfeYerUqXIxmBuTkBceqbCwkOXLl5OQkMBrr73GU089RbVqcgrKXmazmdDQUIYNG8add95pdDmiAiTkhcc5cOAAkyZNIiAggFWrVtGkSROjS3IrWmuioqJo0aIFwcHBRpcjKkhCXniM/Px8FixYwMaNGxk9ejQPP/ywXLF6E9avX8/+/ftZvny5vH4ewK7Pr0qpekqpj5RSvyilDiql7lZK1VdKfa2U+tX2/RZnFyvE9ezatYvBgwdz7tw5EhISeOSRRySgbsJPP/3E/PnziY6OxtfX1+hyhAPY25KfA3yptX5GKVUD8AXGA//WWkcppcKAMGCsk+oUolSXLl1izpw5bNu2jbCwMO655x6jS3JbmZmZjB07lgkTJsgJag9SZkteKeUP9AaWAGitzVrrLOAJYIXtbiuAJ51VpBCl+fbbbxk0aBBeXl4kJiZKwFdAcXExYWFh9O/fn969extdjnAge1rybYAMYJlSqhuwGxgJNNFanwHQWp9RSskYK1EpMjMzmTFjBocOHSIyMpIePXoYXZLbmzt3Lj4+PowYMcLoUoSD2dMn7w30AOZrre8AcrF2zdhFKTVCKbVLKbUrIyPjJssUwjrqY+PGjQwePJhbb72VNWvWSMA7wKZNm/jmm2+IjIyUYaYeyJ6WfAqQorXeYbv9EdaQT1NKBdha8QFAemkP1lrHADEAgYGB2gE1iyrozJkzTJ06lXPnzjFnzhw6d+5sdEke4ejRo0yfPp0PP/wQf39/o8sRTlDm27bW+ixwSinV0bbpAeAA8BkwzLZtGPCpUyoUVZrFYiExMZFnn32W7t27ExsbKwHvIJcuXSIkJITRo0fLPD4ezN7RNW8Aq2wja44Bz2N9g0hUSr0InAQGOKdEUVWdOHGCiIgIABYvXixriTqQxWLhH//4Bz179uTRRx81uhzhRHaFvNZ6LxBYyq8ecGw5QkBRURGxsbGsWrWKV155hWeeeUb6ih1s2bJlXLx4kWnTphldinAyueJVuJSDBw8SERFBw4YNWblyJQEBAUaX5HGSk5P56KOPiIuLo3r16kaXI5xMQl64hIKCAhYuXMiGDRsYNWoU/fr1kytWneD06dNMnDiR6dOn07BhQ6PLEZVAQl4Ybs+ePURGRtKxY0fi4+OpX7++0SV5pPz8fEJCQnjxxRdlNawqREJeGCY3N5e5c+fy3XffERoayn333Wd0SR5La82UKVNo164dAwcONLocUYnkbJYwxHfffcfAgQNLVm2SgHeutWvXcuTIEcaPHy/dYFWMtORFpbpw4QLR0dHs37+fiRMn8qc//cnokjze3r17Wbx4McuWLcPHx8fockQlk5a8qBRaa7788ksGDRpEo0aNSEhIkICvBOfOnWPcuHFMnDiRZs2aGV2OMIC05IXTpaWlMXXqVM6ePcvs2bPp0qWL0SVVCYWFhYwdO5ann36aoKAgo8sRBpGWvHAai8XCxx9/zNChQ+natStxcXES8JVo9uzZ1K1blxdeeMHoUoSBpCUvnOLkyZNERkZSWFhITEwMbdq0MbqkKmXjxo0kJycTGxsrVwtXcRLywqGKi4tZtWoVK1as4KWXXmLQoEESMpXs8OHDzJw5k4ULF1KnTh2jyxEGk5AXDnP48GHCw8OpW7cucXFx3HrrrUaXVOVkZ2cTEhJCaGgobdu2Nboc4QIk5EWFmc1mFi9ezPr163nzzTf5y1/+ImOxHSErCw4ehMOHITMTlILGjaFTJ+vXNQttWywW3nnnHe69914eeughg4oWrkZCXlTI3r17iYiIoG3btsTHx9OgQQOjS3JvFgt89x0sWgTbt4O3N5jN1u0AXl5QvToUF0O/fjB8ONxxByhFTEwM+fn5vPnmm4b+CcK1SMiLm5KXl8e8efPYvHkzoaGh9OnTx+iS3N/x4zBqFBw4YL3t7w/XO59RXAxffAH//Cc88ADJjz3GZ599xsqVK/H2lv/W4j/kjJgot+TkZAYOHEh+fj6JiYkS8I7w2WfwyCPw88/WcK9b9/oBD9YW/S23QJ06FH75JU2Cg5kzbJhM7iZ+R97yhd0uXrzIe++9x969e5kwYQJ//vOfjS7JM6xbByEh1j72mjXL9dBi4GR2No3q1sV/4kRo2xYCS1vfR1RV0pIXZdJas2nTJgYOHEi9evVISEiQgHeUvXth7FioXbvcAa+xLnBeq1Yt6jRtaj0x+/zzcPasc2oVbkla8uKG0tPTiYqKIiUlhejoaP74xz8aXZLnyM+HkSOt3TI1apT74ZmZmZjNZlq3bo0C6yeBrCwIC4Nly6yhL6o8acmLUmmtWb9+PcHBwXTs2JGVK1dKwDvaypWQkgI3ccFSbl4e58+do3nz5lS7Oszr1oWkJNiyxYGFCncmLXnxO6dOnWLy5Mnk5eWxYMEC2rVrZ3RJnsdigZgYqFXrhnczWyxEnT3Lzrw8souLaV69Oq82aEDT9HRubdaMGteu0aqU9WvRIrj3Xif+AcJd2NWSV0qdUEr9pJTaq5TaZds2USl12rZtr1LqUeeWKpytuLiYlStXMnz4cO655x6WL18uAe8sO3ZYu1bKmN+9GGhavToxLVvyTYcOvNKoEWNOnMDs749f7dqlP6hOHevzS9+8oHwt+fu11ueu2TZLax3tyIKEMY4cOUJ4eDi+vr6sWLGC5s2bG12SZ/vhBygqKvNutapVY0SjRiW3O+Tm0tTLi7Rateh6vQdVq2b9+uknaNrUMfUKtyXdNVWc2Wxm6dKlfPzxx/z973+nf//+MiVBZdixw3o1azlkZWVx+tIlMry9aVvWSByzGfbtg759K1Ck8AT2nnjVwCal1G6l1Iirtv9dKbVPKbVUKXVLaQ9USo1QSu1SSu3KyMix7nN+AAAWD0lEQVSocMHCcfbt28fQoUP59ddfWb16NU888YQEfGU5fdruETUauHTpEqfT0ljk7c3jdevSuqyQ9/aG336reJ3C7dnblDBprVOVUo2Br5VSvwDzgQisx2AE8B7wu9UJtNYxQAxAYGCgdkjVokLy8vKYP38+mzZtIiQkhAceeEDCvbJdmYvmOoqLi8nNzSUnJ4ecnByUlxfLa9akZrVqhNrbBVNc7IBChbuzK+S11qm27+lKqfXAXVrrkjFaSqlFwAbnlCgcafv27UyZMoU77riDxMRE6tata3RJVZOfH5w5U3JTAwX5+dZQz80lPz8fX19f/Pz8aNCwIVHnzpFdWMjc5s3xtucN2WKBevWcV79wG2WGvFKqNlBNa33J9vNDQLhSKkBrfeUofQrY78Q6RQVlZ2cza9Ysvv/+e8aPHy9rfhqtRw8s+/aRY7GUtNarVauGn58fDRs2xNfXt2T8+5QzZzhuNvNhy5bUtHcBFqWgWzcn/gHCXdjTkm8CrLd9nPcGVmutv1RKxSmlumNthJwAXnFalaJCNm/ezPTp0+nTpw+JiYn4XjMPuagcWmuOHj1KcnIyl7Zto39aGto2FLJBgwbULKWP/kxhIeuysqihFA//+mvJ9vFNm9LvRp/CvLygc2dn/BnCzZQZ8lrrY8DvmgRa62edUpFwmHPnzjF9+nSOHTvGtGnT6CYtu0qXl5fHzp072bp1K1u3bsXb25tevXrRe+RImh09SrU6dayBfB0B1auzq7xhnZ9vvfJVFk0XyBBKj6S15vPPP+f999/nqaeeIjIykho3MTeKKD+tNcePHyc5OZmtW7fy888/07VrV3r16sVf//pXWrZs+Z+T3Js2WacYdvT0wJcvW+fEucGbh6g6JOQ9zOnTp5k8eTLZ2dl88MEHdOjQweiSPN7ly5f5/vvvS4Jda43JZGLIkCEEBgZev3vsb3+DjRuhsNC62pMj5OVZ56MfMMAxzyfcnoS8h7BYLMTHx7NkyRKGDRvG0KFD8ZKWnFNorTl16hRJSUkkJyezb98+unTpgslkYs6cOdx22232DUlt397a4p450zoSpqLDWC0WKCiA99+XkTWihIS8Bzh27Bjh4eHUqFGDZcuW0bJlS6NL8jgFBQXs3r2bpKQktm7dSmFhIUFBQTz99NNMmzaN2tebR6Ysr7wCW7dar4CtSNBbLHDxIgQHwwMP3NxzCI8kIe/GCgsLWb58OQkJCbz++us8+eSTVLN3iJ0oU0pKSskJ071799KpUydMJhPR0dG0a9fOMReQeXvD4sXw4ovWoPf3L/d0BxQUWLtpBgyASZMqXpPwKBLyburnn38mPDycW2+9ldWrV9O4cWOjS3J7ZrOZPXv2lAR7bm4uJpOJJ554gsmTJ1PnJuZ9t4uvL6xYYe1mWbAAtL7xIt5XFBdDdrZ1eoTJk2HgwLIfI6ocpXXlzTQQGBiod+3aVWn780SXL19mwYIF/POf/2TMmDH07dtXpiSogNTUVLZu3UpycjK7d++mffv2mEwmTCYT7du3r/xPRvv3w4wZ1i4ci8Xaqvfx+c9ImcJC6xBJra3b+vWzrg8rs4Z6NKXUbq31TS3eKyHvRr7//nsiIyO5/fbbeeutt6gnJ9fKzWw2s3fv3pJgz8rKIigoCJPJRM+ePfH39ze6RKtTp+Crr6xdOPv2waVL1v76W26BHj3g7rvh4YcdP/xSuCQJeQ936dIl5syZw7Zt2xg3bhy9evUyuiS3kpaWVtIFs2vXLtq0aVMS7J06dZLzGMLlVSTkpU/exX3zzTdMmzaNe++9l8TExJsfxVGFFBUV8eOPP5YE+7lz5wgKCuLBBx9kwoQJ8glIVCkS8i4qMzOT6dOnc/jwYSZPnkyPHj2MLsmlZWRklFyMtHPnTlq2bInJZGLChAl06dJFWuuiypKQdzFaazZu3MicOXN4/PHHmTRpEjXLWiCiCiouLmbfvn0lwX727Fl69uzJvffeS1hYGPWlr1oIQELepaSmpjJlyhQyMzOZO3cunTp1Mrokl3L+/Pn/aq0HBARgMpkYO3YsXbt2lSt8hSiFhLwLsFgsrF27lpiYGP7617/y7LPP4l3eC2I8kMViYf/+/SV966dPn+auu+7CZDIxZswYGjZsaHSJQrg8SRKDHT9+nIiICJRSLFmyhNatWxtdkqEuXLjAtm3b2Lp1K9u2baNJkyaYTCZGjx7N7bffLm9+QpST/I8xSFFREbGxsaxatYpXX32Vp59+ukqeHLRYLBw8eLCktX7ixImS1vrIkSPlSl4hKkhC3gAHDx4kPDycRo0asWrVKprauzCzh7h48SLbtm0jOTmZ5ORk6tevj8lk4o033qBbt25Ud9S0u0IICfnKVFBQwMKFC9mwYQOjRo2iX79+VWJKAovFwqFDh0quMj1y5AiBgYGYTCZee+01AgICjC5RCI8lIV9Jdu/eTWRkJJ07dyY+Pt7jh/hlZ2ezY8eOkmD39/cnKCiIV199le7du8tKVUJUEgl5J8vJyWHu3LkkJSURFhZG7969jS7JKbTW/PrrryV964cPH6ZHjx4EBQXx8ssv06xZM6NLFKJKsivklVIngEtAMVCktQ5UStUHEoDWwAlgoNb6gnPKdE9btmwhKiqKXr16kZiYiJ+fn9ElOVROTg47d+4kKSmJbdu24ePjg8lk4oUXXuDOO++Ui7iEcAHlacnfr7U+d9XtMODfWusopVSY7fZYh1bnpi5cuEB0dHTJnO+BgTc1r5DL0Vpz9OhRkpOTSUpK4pdffqF79+4EBQUxfPhwWZFKCBdUke6aJ4D7bD+vAL6hioe81povv/ySWbNm8dhjjzFhwgR8fHyMLqtC8vLy2LlzZ0mwe3t706tXL5577jkCAwPd/u8TwtPZG/Ia2KSU0sBCrXUM0ERrfQZAa31GKVWlBzSnpaUxZcoU0tLSmD17Nl26dDG6pJuiteb48eMl0wf8/PPPdO3alV69ehEcHEyrVq2qxIggITyFvSFv0lqn2oL8a6XUL/buQCk1AhgBeOTHeYvFwrp161iwYAFDhgzhueeec7tx3pcvX+b7778vCXatNUFBQQwZMoTAwEB8fX2NLlEIcZPsCnmtdarte7pSaj1wF5CmlAqwteIDgPTrPDYGiAHroiGOKds1/Pbbb0RGRlJcXExMTAxt2rQxuiS7aK05deoUSUlJJCcns2/fPrp06YLJZGLOnDncdttt0loXwkOUGfJKqdpANa31JdvPDwHhwGfAMCDK9v1TZxbqSoqKili5ciVxcXG8/PLLDBw40OWnJCgoKGD37t0kJSWxdetWCgsLCQoK4umnn2batGmyGIkQHsqelnwTYL2tZecNrNZaf6mU+h5IVEq9CJwEBjivTNdx6NAhwsPDqVevHnFxcdx6661Gl3RdKSkpJePW9+7dS6dOnQgKCiI6Opp27dpJa12IKkDWeLWT2Wxm0aJFfPLJJ4wcOZLHHnvM5ULSbDazZ8+ekmDPzc3FZDJhMpm46667qFOnjtElCiFugqzx6mR79+4lPDyc9u3bEx8fT4MGDYwuqURqamrJCdPdu3fTvn17TCYTU6dOpX379i7fjSSEcC4J+RvIzc1l3rx5fPPNN4SGhnL//fcbXRJms5m9e/eWzAmTlZVFUFAQ/fr1Y9KkSfj7+xtdohDChUjIX8fWrVuZOnUqf/7zn0lISDA0PNPS0kq6YHbt2sVtt92GyWRi0qRJdOrUSVrrQojrkpC/RlZWFjNnzmTv3r28++673HXXXZVeQ1FRET/++GNJsJ87d467776bBx98kAkTJlCvXr1Kr0kI4Z4k5G201nz99de89957PPzwwyQkJFCrVq1K239GRsZ/LVLdsmVLTCYT77zzDn/4wx+ktS6EuCkS8kB6ejpRUVGkpKQQHR3NH//4R6fvs7i4mH379pUE+9mzZ+nZsyf33nsvYWFhHj/fvBCiclTpkLdYLHzyySd8+OGHDBw4kKioKKcuZnH+/Pn/aq0HBARgMpkYO3YsXbt2xcvLy2n7FkJUTVU25E+dOkVkZCT5+fksXLiQtm3bOnwfFouF/fv3l/Stnz59umSR6jFjxtCwYUOH71MIIa7m+iFfUADp6VBcDLVqQePGUIGLkIqLi1m1ahUrVqzgxRdfZPDgwQ7t775w4QLbtm1j69atbN++ncaNGxMUFMTo0aO5/fbb8fZ2/ZdcCOE5XDNxDh2CNWtgyxb47Tfw8rIGu8UCNWpAly7wxBPQvz+UY2jj4cOHiYiIwM/Pj9jYWIcsSWexWDh48GBJa/3EiRMlrfWRI0fSuHGVnoFZCGEw15rW4PBhGDcOfvwRtAYfH6hZE65uaRcVQX6+tWXv5QXPPw8jR1rvex1ms5klS5bw8ccf88Ybb9C/f/8KTUlw8eJFtm3bRnJyMsnJydSvX79k+oBu3bq53VTDQgjX5v7TGlgssHAhzJplDfe6da/fJePtDVfWSi0qgkWLYONG+OAD6Nr1d3fft28fERERtGrVijVr1tCoUaObKM/CoUOHSq4yPXLkCIGBgZhMJl577TUCAgLK/ZxCCFEZjA95i8Xaev/oI2t4l6cV7O0N9erBmTMwYAAsXw5//jNgXbbuww8/5F//+hchISH06dOnXK337OxsduzYURLsderUwWQy8eqrr9K9e3enjsIRQghHMT7kp02DtWutYX2zJ0D9/SEvz9p1s3492y9cYMqUKfTo0YOEhATq1q1b5lNorfn1119L+tYPHz5Mjx49CAoK4uWXX3ZI/70QQlQ2Y0P+++9h8WJr90xFR7j4+lJ84QInHn2UaZ06Me6dd7j77rtv+JCcnBx27txJUlIS27Ztw8fHB5PJxAsvvMCdd95JzZo1K1aTEEIYzLiQN5th1Chr90wFLwLSwKVLlzibkUGj6tWJ79uXmqUEvNaao0ePkpycTFJSEr/88gvdunXDZDIxfPhwj1yDVghRtRkX8ps3W8e/l9GVkl1cTPiZM2zPyaGetzd/b9SIR656TGFREWfPnsVcUEDzFi3w9fKCZcvg9dehRg3y8vLYuXNnSbB7e3tjMpl47rnnCAwMxOcGo3KEEMLdGRfyCxfa1UUTdfYs1ZViU4cOHM7PZ+SpU3Tw8eG2mjW5mJVFeno69W65hWbNmlFNKTRQeO4cSePHszY3l59//pmuXbvSq1cvgoODadWqlcut6CSEEM5iTMjn5FjHwt9yyw3vdtliYfOlSyS2aYNvtWp09/Xl3jp1+DQzk/8pLKS4uJiWLVtSo0YNcnNzycnJIScnh9qFhfglJzMkKorAwEB8fX0r6Q8TQgjXYkzIHzpkvcipjBb1SbOZakBL23BFDQQUFrLj4kWCmzTBu3p10tPTybt8mVo+Pvj5+dGyRQtqaM2tXl7Qu7fz/xYhhHBhxoT8iRPWC5nKkGex4Gfr0rmcn8+pU6coys/nMnAxOxs/Pz9rV03z5nhd3fWjNaSkWMfgyzzsQogqzO6QV0p5AbuA01rrvyillgP3Ahdtdxmutd5r15MVFFgDuAy+1aqRa7vf8ePH8fbywrtOHRoD7Vu35rqfA658QjCbbzjdgRBCeLrytORHAgeBq2cEC9Faf1T+vXrbNZNkyxo1KMbabdO5c2cUsDI1lQ7e3tcPeLC25LUu39WzQgjhgezqy1BKNQceAxY7ZK/Nm1uDvgy1qlWjT506LMjIIN9i4ce8PL69dInHyrqCtbAQmjSp8Ph7IYRwd/Z2WM8GQoFr+1gmK6X2KaVmKaXsvzy0c2drENsxA2ZY06YUWCz0PXyY8adPM65pU9qUdSXq5cvQrZvd5QghhKcqszmtlPoLkK613q2Uuu+qX40DzgI1gBhgLBBeyuNHACOA/1xResst0KqVdWKx2rVvuH9/Ly/ea9HCnr/lv/XpU/7HCCGEh7GnJW8C+iulTgDxQB+l1Eqt9RltVQAsA+4q7cFa6xitdaDWOvC/pvkdMcKuETblVlRk7aZ57DHHP7cQQriZMkNeaz1Oa91ca90aGAxs1lr/VSkVAKCsl48+Cewv157/8hfrcn75+eWv+kYuXYLBg6FOHcc+rxBCuKGKDCJfpZT6CfgJaAhEluvRfn4wdaq1/9xRq1Pl5kL9+jB6tGOeTwgh3Fy5LobSWn8DfGP7ueKd3o8+Cp9/Dl9/bZ1PviJzypjN1q6a2bPLte6rEEJ4MmMvB1XKuuRfYCBkZdl1gVSp8vOti4ZMnQomk2NrFEIIN2b8Nf+1asGKFdY++osXrWFtL62tbw5aw7x58MwzzqtTCCHckNKO6g+3Z2dKZQC/VdoOHa8hcM7oIlyUvDY3Jq/P9clrc2MNgdpa60Zl3rMUlRry7k4ptUtrHWh0Ha5IXpsbk9fn+uS1ubGKvj7Gd9cIIYRwGgl5IYTwYBLy5RNjdAEuTF6bG5PX5/rktbmxCr0+0icvhBAeTFryQgjhwSTkS6GUaqGU+j+l1EGl1M9KqZG27fWVUl8rpX61fb/xSuQeTCnlpZT6QSm1wXb7NqXUDttrk6CUqmF0jUZRStVTSn2klPrFdgzdLceOlVLqf23/p/YrpdYopXyq8rGjlFqqlEpXSu2/alupx4qymquUOmKb4r2HPfuQkC9dEfCW1roz0BP4m1KqCxAG/Ftr3R74t+12VXVlpbArpgGzbK/NBeBFQ6pyDXOAL7XWnYBuWF+nKn/sKKWaAW8CgVrrroAX1kkPq/Kxsxx45Jpt1ztW+gHtbV8jgPl27UFrLV9lfAGfAn2BQ0CAbVsAcMjo2gx6PZrbDr4+wAZAYb2Yxdv2+7uBr4yu06DXxh84ju1811Xbq/yxAzQDTgH1sc6btQF4uKofO0BrYH9ZxwqwEBhS2v1u9CUt+TIopVoDdwA7gCZa6zMAtu+NjavMUNeuFNYAyNJaX1kgIAXrf+iqqA2QASyzdWctVkrVRo4dtNangWjgJHAGuAjsRo6da13vWLnyJnmFXa+VhPwNKKX8gI+BUVrrbKPrcQVXrxR29eZS7lpVh215Az2A+VrrO4BcqmDXTGlsfctPALcBtwK1sXZBXKuqHjtluan/ZxLy16GUqo414FdprdfZNqddtVhKAJBuVH0G+t1KYVhb9vWUUlemrm4OpBpTnuFSgBSt9Q7b7Y+whr4cO/AgcFxrnaG1LgTWAUHIsXOt6x0rKcDVa6Ha9VpJyJfCttrVEuCg1nrmVb/6DBhm+3kY1r76KkWXvlLYUOD/gCvTgFbJ1wZAa30WOKWU6mjb9ABwADl2wNpN01Mp5Wv7P3bltZFj579d71j5DHjONsqmJ3DxSrfOjcjFUKVQSvUCvsO66tWVfufxWPvlE4GWWA/YAVrrTEOKdAG2hd3HaK3/opRqg7VlXx/4Afirtq7/W+UopboDi7Eucn8MeB5rg6rKHztKqUnAIKwj2H4AXsLar1wljx2l1BrgPqwzTaYB/wA+oZRjxfbGOA/raJw84Hmt9a4y9yEhL4QQnku6a4QQwoNJyAshhAeTkBdCCA8mIS+EEB5MQl4IITyYhLwQQngwCXkhhPBgEvJCCOHB/h/hWxXMyOiL5wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from itertools import permutations\n", + "\n", + "def brute_force_tsp(w, N):\n", + " a=list(permutations(range(1,N)))\n", + " last_best_distance = 1e10\n", + " for i in a:\n", + " distance = 0\n", + " pre_j = 0\n", + " for j in i:\n", + " distance = distance + w[j,pre_j]\n", + " pre_j = j\n", + " distance = distance + w[pre_j,0]\n", + " order = (0,) + i\n", + " if distance < last_best_distance:\n", + " best_order = order\n", + " last_best_distance = distance\n", + " print('order = ' + str(order) + ' Distance = ' + str(distance))\n", + " return last_best_distance, best_order\n", + " \n", + "best_distance, best_order = brute_force_tsp(ins.w, ins.dim)\n", + "print('Best order from brute force = ' + str(best_order) + ' with total distance = ' + str(best_distance))\n", + "\n", + "def draw_tsp_solution(G, order, colors, pos):\n", + " G2 = G.copy()\n", + " n = len(order)\n", + " for i in range(n):\n", + " j = (i + 1) % n\n", + " G2.add_edge(order[i], order[j])\n", + " default_axes = plt.axes(frameon=True)\n", + " nx.draw_networkx(G2, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", + "\n", + "draw_tsp_solution(G, best_order, colors, pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mapping to the Ising problem" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp, offset = tsp.get_tsp_qubitops(ins)\n", + "algo_input = get_input_instance('EnergyInput')\n", + "algo_input.qubit_op = qubitOp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking that the full Hamiltonian gives the right cost " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -600092.5\n", + "feasible: True\n", + "solution: [0, 1, 2]\n", + "solution objective: 185.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xtc1FX+x/HXEVRERPNOXvOu66YZ2xpjVpaVtVn9yhtuaTe77Jb+TBAtWwVUVPKWpeIdvACWdjG3bNdfGeIlNTPTNG8pooAiIiAMMOf3x4ysayiDzPCdGT7Px4MHzJeZ+X4Yv77nzPme7zlKa40QQgjPVM3oAoQQQjiPhLwQQngwCXkhhPBgEvJCCOHBJOSFEMKDScgLIYQHk5AXQggPJiEvhBAeTEJeCCE8mLc9d1JK/S/wEqCBn4DngQAgHqgP7AGe1Vqbb/Q8DRs21K1bt65IvUII4XoyMyE11fpztWqgVNmP0RosFvDygpYtoXbt69519+7d57TWjW6mNFXWtAZKqWZAEtBFa31ZKZUIbAQeBdZpreOVUguAH7XW82/0XIGBgXrXrl03U6cQQrgerSE6GhYssIZ0jRrlf47cXCgqgjlz4NFHS72LUmq31jrwZkq0t7vGG6illPIGfIEzQB/gI9vvVwBP3kwBQgjhtpYtswa8v//NBTxY3xx8fGDkSNi2zbH1YUfIa61PA9HASazhfhHYDWRprYtsd0sBmpX2eKXUCKXULqXUroyMDMdULYQQRvv1V4iKAj8/a5dLRdSsCd7e8OabkJ3tmPpsygx5pdQtwBPAbcCtQG2gXyl3LbXfR2sdo7UO1FoHNmp0U11KQgjhWrSG//1f6/fq1R3znLVrW/v2p01zzPPZ2NNd8yBwXGudobUuBNYBQUA9W/cNQHMg1aGVCSGEq9q9Gw4dsnbT3EBiZibPHj/O3b/8wsRUOyLS3x/WroULFxxUqH0hfxLoqZTyVUop4AHgAPB/wDO2+wwDPnVYVUII4cqWLrWOjCljFE1Db29ebNiQ/nXr2ve8Xl7W512/3gFFWtnTJ78D6wnWPViHT1YDYoCxwGil1BGgAbDEYVUJIYSrsljgm2+gTp0y79rH35/76tShbnn67L29YePGm6/v2qez505a638A/7hm8zHgLodVIoQQ7iAlxTrk0dfXOc/v4wM//2x9M6lW8etV5YpXIYQojxMnKj6a5ka8vaGwEM6dc8jTScgLIUR55OdbR9XYQQNnz57lYnmHRXp5QUFB+WsrhV3dNUIIIWzsHDKZX1BA6unT5OTk4O3vT7ki24FDMyXkhRCiPFq0uGFL3qI158+dI/PCBSxA/SZNqKUUl4qKMFsseCmF141G5RQXW7876LoiCXkhhCiP226zfi8u/l3f/OXLl0k9c4Ya1avjX6cOy7Oz+Tgzs+T3Gy9eZETDhoy4UYAXFECHDg7r95eQF0KI8vDygj/9CXbsANv4d4vFQnpGBtkXL9KkaVMUkJaeTki7dowrb1gXFMADDzisXDnxKoQQ5fXiiyUXQuXm5nL02DGKi4tp07YtPjVrcubsWZo3b453eQP+ygVWgwY5rFRpyQshRHn17k1R/fpcOHqULLOZgIAA/Pz8KLZYOJWSQpMmTajl41P+583Otrbib73VYaVKS14IIcrpm+++4y2l8LZYaNO6NX5+fmggNTWV2rVrU8/eaQyulp9vnY1y0iSH1ioteSGEsFNmZibTp0/n8OHDvPPBB9yyYQOsWAH16nH+/HmKiopo1qzUWddvrKgILl+G996Dpk0dWrO05IUQogxaazZs2MDgwYNp3rw5a9asoUePHvD22/DII+SnpXEhM5PmzZtTzZ6l/65mNlu7acaMgScdv/aStOSFEOIGUlNTmTJlCpmZmbz//vt07NjxP7/08iI1LIyvv/ySQXXrUj0/37qIiD20hosXrdMYREZCcLBT6peWvBBClMJisZCQkMCzzz5LYGAgsbGx/x3wQEFBASFhYVSPiMBn3TrrBUzZ2dbwvnJR09W0ts5Lc+GC9X533AFffeW0gAdpyQshxO8cP36ciIgIqlWrxtKlS2nVqtXv7qO1ZurUqbRq1YohQ4ZYhz5++y0kJVnnm9++/b9nklTKGvC+vtZumeHDoWvXMuekrygJeSGEsCkqKmLFihWsXr2aV199laeffppq15nu9+OPP+bgwYMsX74cdSWoq1WD3r2tXxYLnDxpnZq4sNA6cqZNG2jSxOnBfjUJeSGEAA4cOEBERASNGjVi1apVNL3BKJd9+/axcOFCli5dSq1atUq/U7Vq0Lq19ctAEvJCiCotPz+fmJgYNmzYwKhRo+jXr99/WualOH/+PGFhYbz77ru0aNGiEiu9ORLyQogqa/fu3URGRtK5c2fi4+OpX7/+De9fVFTEuHHjePLJJ7nnnnsqqcqKkZAXQlQ5OTk5zJ07l6SkJMLCwujdu7ddj5s7dy61atXipZdecnKFjiNDKIUQVcqWLVsYOHAgAImJiXYH/FdffcWWLVtKRt24izJb8kqpjkDCVZvaAO8C9YCXgQzb9vFaa8ctMS6EEA6UmZlJdHR0yQnWO++80+7HHjlyhBkzZjB//nz8/f2dWKXjlfl2pLU+pLXurrXuDtwJ5AHrbb+edeV3EvBCCFekteaf//wngwcPpmnTpsTHx5cr4C9dusSYMWN46623aN++vRMrdY7y9sk/ABzVWv92o7PPQgjhCtLS0pgyZQppaWnMnj2bLl26lOvxFouFd999l169etGvXz8nVelc5e1YGgysuer235VS+5RSS5VStziwLiGEuGkWi4W1a9cydOhQbr/9duLi4sod8ABLliwhJyeHUaNGOaHKymF3S14pVQPoD4yzbZoPRADa9v094IVSHjcCGAHQsmXLCpYrhBA39ttvvxEZGUlxcTGLFi3ititrspbT1q1bWb9+PXFxcXh7u+9AxPK05PsBe7TWaQBa6zStdbHW2gIsAu4q7UFa6xitdaDWOrCRg1YfF0KIaxUVFbF8+XJeeOEFHnzwQRYvXnzTAZ+SksKkSZOIioqiQYMGDq60cpXn7WkIV3XVKKUCtNZnbDefAvY7sjAhhLDXoUOHmDRpEvXr1ycuLo5bK7B8Xn5+PiEhIbz00kvcfvvtDqzSGHaFvFLKF+gLvHLV5ulKqe5Yu2tOXPM7IYRwuoKCAhYtWsSnn37KyJEjeeyxx244JUFZtNZERkbSoUMHBgwY4MBKjWNXyGut84AG12x71ikVCSGEHX744QciIiJo37498fHxDulWSUhI4NixYyxbtqxCbxauxH3PJgghqqTc3FzmzZvHN998Q2hoKPfff79DnveHH35g6dKlLF++nJo1azrkOV2B+1ybK4So8rZu3cqgQYMwm80kJCQ4LOAzMjIYP348kyZNqlB/viuSlrwQwuVlZWXx3nvv8eOPP/Luu+9y112lDua7KYWFhYwdO5YBAwZw9913O+x5XYW05IUQLktrzaZNmxg4cCD169cnISHBoQEPMGvWLOrVq8fw4cMd+ryuQlryQgiXlJ6eTlRUFCkpKcycOZOuXbs6fB9ffPEF27dvJzY21q1mliwPz/yrhBBuy2KxsG7dOoKDg+nUqROrVq1ySsAfOnSIWbNmER0djZ+fn8Of31VIS14I4TJOnTpFZGQk+fn5LFy4kLZt2zplPxcvXiQkJISxY8fSpk0bp+zDVUjICyEMV1xczKpVq1ixYgUvvvgigwcPdlr3icVi4Z133qFPnz707dvXKftwJRLyQghDHT58mIiICOrUqUNsbCzNmjVz6v4WLFiA2WzmjTfecOp+XIWEvBDCEGazmSVLlrBu3TreeOMNHn/8cadfZfrtt9/yxRdfEBcXh5eXl1P35Sok5IUQlW7fvn2Eh4fTunVrVq9eTWXMUHvy5EkiIyOZNWsW9evXd/r+XIWEvBCi0uTl5fHBBx/w73//m5CQEPr06VMpc8Tk5eUxZswYXnvtNaeM1HFlMoRSCFEptm3bxqBBg8jLyyMxMZEHHnigUgJea014eDh//OMfeeqpp5y+P1cjLXkhhFNlZ2czc+ZM9uzZw9tvv03Pnj0rdf+rVq0iNTWVxYsXe8zMkuUhLXkhhFNorfnXv/7FgAED8PPzIz4+vtIDfteuXcTGxjJ9+nRq1KhRqft2FdKSF0I4XEZGBtOmTePEiRPMmDHDkBWW0tLSePvtt4mMjKRp06aVvn9XIS15IYTDaK359NNPCQ4Opl27dqxevdqQgDebzYSGhjJ06FCHT2jmbqQlL4RwiNOnTxMZGUlOTg4ffvgh7du3N6yW6OhomjRpwrPPygJ2EvJCiAqxWCzEx8ezZMkShg8fTnBwsKEXGn366afs2bOH2NjYKnmi9VoS8kKIm3b06FHCw8Px8fFh+fLltGjRwtB6Dhw4wLx581i0aBG+vr6G1uIqJOSFEOVmNptZvnw5iYmJ/O1vf+OJJ54wfD72CxcuEBoayvjx42ndurWhtbiSMkNeKdURSLhqUxvgXSDWtr01cAIYqLW+4PgShRCuZP/+/YSHh9O8eXNWr15N48aNjS6J4uJi3n77bR555BGHrfvqKcoMea31IaA7gFLKCzgNrAfCgH9rraOUUmG222OdWKsQwkCXL19m/vz5fPXVV7z11lv07dvXZfq8P/jgAwBef/11gytxPeX9fPUAcFRr/RvwBLDCtn0F8KQjCxNCuI6dO3cyaNAgsrKySEhI4KGHHnKZgN+8eTNff/01U6ZMMbzLyBWVt09+MLDG9nMTrfUZAK31GaWU8Z/ZhBAOlZ2dzezZs9mxYwfjx4/HZDIZXdJ/OX78OFOmTOH999+nXr16Rpfjkux+21NK1QD6A2vLswOl1Ail1C6l1K6MjIzy1ieEMMjmzZsZNGgQPj4+rF271uUCPjc3lzFjxvDmm2/SuXNno8txWeVpyfcD9mit02y305RSAbZWfACQXtqDtNYxQAxAYGCgrlC1QginO3/+PNOmTePIkSNMmTKFO+64w+iSfkdrzcSJEwkMDKR///5Gl+PSytOBNYT/dNUAfAYMs/08DPjUUUUJISqf1prPP/+cwYMH06pVK+Lj410y4AFWrFhBRkYGb731ltGluDy7WvJKKV+gL/DKVZujgESl1IvASWCA48sTQlSG1NRUJk+eTFZWFvPmzaNjx45Gl3RdO3bsID4+ntjY2Co7s2R52BXyWus8oME1285jHW0jhHBTFouFxMREFi1axHPPPcfQoUPx9nbdayRTU1OZMGECUVFRLjE+3x247r+mEMKpjh07RmRkJF5eXixdupRWrVoZXdINFRQUEBoayvDhw+nRo4fR5bgNCXkhqpjCwkJiY2NZs2YNr776Kv/zP//j8uPLtdZERUXRsmVLhgwZYnQ5bkVCXogq5MCBA4SHh9OkSRNWrVpFkyZNjC7JLuvWrePAgQMsX77cZS7CchcS8kJUAfn5+SxcuJAvvviC0aNH8/DDD7tNWP70008sWLCAJUuWUKtWLaPLcTuu/RlNCFFhu3btYvDgwaSnp5OQkMAjjzziNgGfmZnJ2LFjeffdd2nZsqXR5bglackL4aFycnKYO3cuSUlJhIWF0bt3b6NLKpeioiLCwsJ44oknuOeee4wux21JS14ID7RlyxYGDhwIQGJiotsFPMDcuXPx8fHh5ZdfNroUtyYteSE8SGZmJtHR0Rw8eJDIyEi3HWq4adMmvv32W+Li4lx+5I+rk1dPCA+gtWbjxo0MHjyYpk2bEh8f77YBf+TIEaZPn86MGTPw9/c3uhy3Jy15Idzc2bNnmTJlChkZGcyePZsuXboYXdJNu3TpEiEhIYwePZoOHToYXY5HkJa8EG7qypQEQ4cOpXv37sTFxbl1wFssFt59912CgoJ49NFHjS7HY0hLXgg39NtvvxEREYHFYmHx4sXcdtttRpdUYUuXLuXSpUuMGjXK6FI8ioS8EG6kqKiIuLg4Vq5cySuvvMIzzzzjEScmk5OTWbduHbGxsVSvXt3ocjyKhLwQbuKXX34hPDycBg0asHLlSgICAowuySFSUlKYOHEiM2bMoGHDhkaX43Ek5IVwcQUFBcTExPD5558zcuRIHn30Ube5YrUs+fn5hIaG8tJLL9GtWzejy/FIEvJCuLA9e/YQGRlJx44diY+Pp379+kaX5DBaayZPnky7du0YMEDWHHIWCXkhXFBubi7vv/8+W7ZsITQ0lPvuu8/okhwuMTGRo0ePsnTpUo/5ZOKK3P+MjRAeJikpiYEDB1JUVERCQoJHBvzevXtZsmQJM2bMwMfHx+hyPJq05IVwERcuXOC9997jp59+4h//+Ad33XWX0SU5RUZGBuPGjWPixIk0a9bM6HI8nrTkhTCY1pqvvvqKQYMG0aBBA+Lj4z024AsLCxk7dizPPPMMQUFBRpdTJdjVkldK1QMWA10BDbwAPAy8DGTY7jZea73RGUUK4anS09OZOnUqqampzJo1iz/84Q9Gl+RUs2bNol69ejz//PNGl1Jl2NuSnwN8qbXuBHQDDtq2z9Jad7d9ScALYSeLxcLHH39McHAwXbp0YeXKlR4f8Bs3bmT79u2Eh4d7xAVc7qLMlrxSyh/oDQwH0FqbAbOcDRfi5pw8eZLIyEjMZjMxMTG0adPG6JKc7tChQ8ycOZOFCxfi5+dndDlVij1vp22wdsksU0r9oJRarJSqbfvd35VS+5RSS5VStzivTCHcX3FxMbGxsTz//PPcd999LF26tEoEfHZ2NiEhIYSGhtK2bVujy6ly7Al5b6AHMF9rfQeQC4QB84G2QHfgDPBeaQ9WSo1QSu1SSu3KyMgo7S5CeLzDhw8zbNgwtm/fTlxcHMHBwVWiy8JisfD2229z//3389BDDxldTpVkz4nXFCBFa73DdvsjIExrnXblDkqpRcCG0h6stY4BYgACAwN1xcoVwr2YzWYWL17M+vXreeONN3j88cer1IU/CxcuxGw28+abbxpdSpVVZshrrc8qpU4ppTpqrQ8BDwAHlFIBWusztrs9Bex3ZqFCuJsff/yRiIgI2rRpw5o1a6rc5Ftbtmxhw4YNxMXF4eXlZXQ5VZa9F0O9AaxSStUAjgHPA3OVUt2xDqk8AbzilAqFcDN5eXnMmzePzZs3ExoaSp8+fYwuqdKdPHmSiIgIZs2a5VHz7bgju0Jea70XCLxm87OOL0cI95acnMzUqVP505/+RGJiYpVcozQvL48xY8bw2muv0bVrV6PLqfJkWgMhHODixYvMnDmTH374gbfffpuePXsaXZIhtNZERETQtWtXnnrqKaPLEci0BkJUiNaaf/3rXwwcOBB/f3/i4+OrbMADrF69mpSUFMLCwqrUCWZXJi15IW5SRkYGUVFRnDx5khkzZnD77bcbXZKhdu/ezYoVK1ixYgU1atQwuhxhIy15IcpJa80nn3xCcHAw7du3Z9WqVVU+4NPT0xk/fjyRkZEesyyhp5CWvBDlkJKSwuTJk8nNzeXDDz+kffv2RpdkOLPZTEhICMHBwR47e6Y7k5AXwg4Wi4XVq1ezbNkynn/+eYYMGSJjv22io6Np0qQJzz33nNGliFJIyAtRhiNHjhAeHk6tWrVYvnw5LVq0MLokl/HZZ5+xZ88eVqxYISdaXZSEvBDXYTabWbZsGWvXruVvf/sbTz75pATZVQ4cOMD777/PokWLqF27dtkPEIaQkBeiFD/99BMRERE0b96c1atX07hxY6NLcilZWVmMHTuWcePG0bp1a6PLETcgIS/EVS5fvsz8+fP56quvGDNmDA8++KC03q9RXFzM+PHjeeihh6rklA3uRoZQCmGzc+dOBg0aRFZWFomJifTt21cCvhQffvghAK+//rrBlQh7SEteVHnZ2dnMnj2bnTt3Mn78eFlg+gY2b97Mpk2bZGZJNyIteVGlbd68mUGDBuHj40NiYqIE/A0cP36cKVOmMG3aNOrVq2d0OcJO0pIXVdL58+eZNm0aR48eZerUqXTv3t3oklxabm4uISEhvPnmm3Tp0sXockQ5SEteVClaaz7//HMGDx5M69atWbNmjQR8GbTWTJo0iR49etC/f3+jyxHlJC15UWWkpqYyefJkLl68yAcffECHDh2MLsktxMbGkp6eTmRkpNGliJsgIS88nsViISEhgcWLFzNs2DCGDh0qJw3ttHPnTtasWUNsbKzMLOmmJOSFRzt27BgRERFUr16dZcuW0bJlS6NLchtnzpzhnXfeYerUqXIxmBuTkBceqbCwkOXLl5OQkMBrr73GU089RbVqcgrKXmazmdDQUIYNG8add95pdDmiAiTkhcc5cOAAkyZNIiAggFWrVtGkSROjS3IrWmuioqJo0aIFwcHBRpcjKkhCXniM/Px8FixYwMaNGxk9ejQPP/ywXLF6E9avX8/+/ftZvny5vH4ewK7Pr0qpekqpj5RSvyilDiql7lZK1VdKfa2U+tX2/RZnFyvE9ezatYvBgwdz7tw5EhISeOSRRySgbsJPP/3E/PnziY6OxtfX1+hyhAPY25KfA3yptX5GKVUD8AXGA//WWkcppcKAMGCsk+oUolSXLl1izpw5bNu2jbCwMO655x6jS3JbmZmZjB07lgkTJsgJag9SZkteKeUP9AaWAGitzVrrLOAJYIXtbiuAJ51VpBCl+fbbbxk0aBBeXl4kJiZKwFdAcXExYWFh9O/fn969extdjnAge1rybYAMYJlSqhuwGxgJNNFanwHQWp9RSskYK1EpMjMzmTFjBocOHSIyMpIePXoYXZLbmzt3Lj4+PowYMcLoUoSD2dMn7w30AOZrre8AcrF2zdhFKTVCKbVLKbUrIyPjJssUwjrqY+PGjQwePJhbb72VNWvWSMA7wKZNm/jmm2+IjIyUYaYeyJ6WfAqQorXeYbv9EdaQT1NKBdha8QFAemkP1lrHADEAgYGB2gE1iyrozJkzTJ06lXPnzjFnzhw6d+5sdEke4ejRo0yfPp0PP/wQf39/o8sRTlDm27bW+ixwSinV0bbpAeAA8BkwzLZtGPCpUyoUVZrFYiExMZFnn32W7t27ExsbKwHvIJcuXSIkJITRo0fLPD4ezN7RNW8Aq2wja44Bz2N9g0hUSr0InAQGOKdEUVWdOHGCiIgIABYvXixriTqQxWLhH//4Bz179uTRRx81uhzhRHaFvNZ6LxBYyq8ecGw5QkBRURGxsbGsWrWKV155hWeeeUb6ih1s2bJlXLx4kWnTphldinAyueJVuJSDBw8SERFBw4YNWblyJQEBAUaX5HGSk5P56KOPiIuLo3r16kaXI5xMQl64hIKCAhYuXMiGDRsYNWoU/fr1kytWneD06dNMnDiR6dOn07BhQ6PLEZVAQl4Ybs+ePURGRtKxY0fi4+OpX7++0SV5pPz8fEJCQnjxxRdlNawqREJeGCY3N5e5c+fy3XffERoayn333Wd0SR5La82UKVNo164dAwcONLocUYnkbJYwxHfffcfAgQNLVm2SgHeutWvXcuTIEcaPHy/dYFWMtORFpbpw4QLR0dHs37+fiRMn8qc//cnokjze3r17Wbx4McuWLcPHx8fockQlk5a8qBRaa7788ksGDRpEo0aNSEhIkICvBOfOnWPcuHFMnDiRZs2aGV2OMIC05IXTpaWlMXXqVM6ePcvs2bPp0qWL0SVVCYWFhYwdO5ann36aoKAgo8sRBpGWvHAai8XCxx9/zNChQ+natStxcXES8JVo9uzZ1K1blxdeeMHoUoSBpCUvnOLkyZNERkZSWFhITEwMbdq0MbqkKmXjxo0kJycTGxsrVwtXcRLywqGKi4tZtWoVK1as4KWXXmLQoEESMpXs8OHDzJw5k4ULF1KnTh2jyxEGk5AXDnP48GHCw8OpW7cucXFx3HrrrUaXVOVkZ2cTEhJCaGgobdu2Nboc4QIk5EWFmc1mFi9ezPr163nzzTf5y1/+ImOxHSErCw4ehMOHITMTlILGjaFTJ+vXNQttWywW3nnnHe69914eeughg4oWrkZCXlTI3r17iYiIoG3btsTHx9OgQQOjS3JvFgt89x0sWgTbt4O3N5jN1u0AXl5QvToUF0O/fjB8ONxxByhFTEwM+fn5vPnmm4b+CcK1SMiLm5KXl8e8efPYvHkzoaGh9OnTx+iS3N/x4zBqFBw4YL3t7w/XO59RXAxffAH//Cc88ADJjz3GZ599xsqVK/H2lv/W4j/kjJgot+TkZAYOHEh+fj6JiYkS8I7w2WfwyCPw88/WcK9b9/oBD9YW/S23QJ06FH75JU2Cg5kzbJhM7iZ+R97yhd0uXrzIe++9x969e5kwYQJ//vOfjS7JM6xbByEh1j72mjXL9dBi4GR2No3q1sV/4kRo2xYCS1vfR1RV0pIXZdJas2nTJgYOHEi9evVISEiQgHeUvXth7FioXbvcAa+xLnBeq1Yt6jRtaj0x+/zzcPasc2oVbkla8uKG0tPTiYqKIiUlhejoaP74xz8aXZLnyM+HkSOt3TI1apT74ZmZmZjNZlq3bo0C6yeBrCwIC4Nly6yhL6o8acmLUmmtWb9+PcHBwXTs2JGVK1dKwDvaypWQkgI3ccFSbl4e58+do3nz5lS7Oszr1oWkJNiyxYGFCncmLXnxO6dOnWLy5Mnk5eWxYMEC2rVrZ3RJnsdigZgYqFXrhnczWyxEnT3Lzrw8souLaV69Oq82aEDT9HRubdaMGteu0aqU9WvRIrj3Xif+AcJd2NWSV0qdUEr9pJTaq5TaZds2USl12rZtr1LqUeeWKpytuLiYlStXMnz4cO655x6WL18uAe8sO3ZYu1bKmN+9GGhavToxLVvyTYcOvNKoEWNOnMDs749f7dqlP6hOHevzS9+8oHwt+fu11ueu2TZLax3tyIKEMY4cOUJ4eDi+vr6sWLGC5s2bG12SZ/vhBygqKvNutapVY0SjRiW3O+Tm0tTLi7Rateh6vQdVq2b9+uknaNrUMfUKtyXdNVWc2Wxm6dKlfPzxx/z973+nf//+MiVBZdixw3o1azlkZWVx+tIlMry9aVvWSByzGfbtg759K1Ck8AT2nnjVwCal1G6l1Iirtv9dKbVPKbVUKXVLaQ9USo1QSu1SSu3KyMix7nN+AAAWD0lEQVSocMHCcfbt28fQoUP59ddfWb16NU888YQEfGU5fdruETUauHTpEqfT0ljk7c3jdevSuqyQ9/aG336reJ3C7dnblDBprVOVUo2Br5VSvwDzgQisx2AE8B7wu9UJtNYxQAxAYGCgdkjVokLy8vKYP38+mzZtIiQkhAceeEDCvbJdmYvmOoqLi8nNzSUnJ4ecnByUlxfLa9akZrVqhNrbBVNc7IBChbuzK+S11qm27+lKqfXAXVrrkjFaSqlFwAbnlCgcafv27UyZMoU77riDxMRE6tata3RJVZOfH5w5U3JTAwX5+dZQz80lPz8fX19f/Pz8aNCwIVHnzpFdWMjc5s3xtucN2WKBevWcV79wG2WGvFKqNlBNa33J9vNDQLhSKkBrfeUofQrY78Q6RQVlZ2cza9Ysvv/+e8aPHy9rfhqtRw8s+/aRY7GUtNarVauGn58fDRs2xNfXt2T8+5QzZzhuNvNhy5bUtHcBFqWgWzcn/gHCXdjTkm8CrLd9nPcGVmutv1RKxSmlumNthJwAXnFalaJCNm/ezPTp0+nTpw+JiYn4XjMPuagcWmuOHj1KcnIyl7Zto39aGto2FLJBgwbULKWP/kxhIeuysqihFA//+mvJ9vFNm9LvRp/CvLygc2dn/BnCzZQZ8lrrY8DvmgRa62edUpFwmHPnzjF9+nSOHTvGtGnT6CYtu0qXl5fHzp072bp1K1u3bsXb25tevXrRe+RImh09SrU6dayBfB0B1auzq7xhnZ9vvfJVFk0XyBBKj6S15vPPP+f999/nqaeeIjIykho3MTeKKD+tNcePHyc5OZmtW7fy888/07VrV3r16sVf//pXWrZs+Z+T3Js2WacYdvT0wJcvW+fEucGbh6g6JOQ9zOnTp5k8eTLZ2dl88MEHdOjQweiSPN7ly5f5/vvvS4Jda43JZGLIkCEEBgZev3vsb3+DjRuhsNC62pMj5OVZ56MfMMAxzyfcnoS8h7BYLMTHx7NkyRKGDRvG0KFD8ZKWnFNorTl16hRJSUkkJyezb98+unTpgslkYs6cOdx22232DUlt397a4p450zoSpqLDWC0WKCiA99+XkTWihIS8Bzh27Bjh4eHUqFGDZcuW0bJlS6NL8jgFBQXs3r2bpKQktm7dSmFhIUFBQTz99NNMmzaN2tebR6Ysr7wCW7dar4CtSNBbLHDxIgQHwwMP3NxzCI8kIe/GCgsLWb58OQkJCbz++us8+eSTVLN3iJ0oU0pKSskJ071799KpUydMJhPR0dG0a9fOMReQeXvD4sXw4ovWoPf3L/d0BxQUWLtpBgyASZMqXpPwKBLyburnn38mPDycW2+9ldWrV9O4cWOjS3J7ZrOZPXv2lAR7bm4uJpOJJ554gsmTJ1PnJuZ9t4uvL6xYYe1mWbAAtL7xIt5XFBdDdrZ1eoTJk2HgwLIfI6ocpXXlzTQQGBiod+3aVWn780SXL19mwYIF/POf/2TMmDH07dtXpiSogNTUVLZu3UpycjK7d++mffv2mEwmTCYT7du3r/xPRvv3w4wZ1i4ci8Xaqvfx+c9ImcJC6xBJra3b+vWzrg8rs4Z6NKXUbq31TS3eKyHvRr7//nsiIyO5/fbbeeutt6gnJ9fKzWw2s3fv3pJgz8rKIigoCJPJRM+ePfH39ze6RKtTp+Crr6xdOPv2waVL1v76W26BHj3g7rvh4YcdP/xSuCQJeQ936dIl5syZw7Zt2xg3bhy9evUyuiS3kpaWVtIFs2vXLtq0aVMS7J06dZLzGMLlVSTkpU/exX3zzTdMmzaNe++9l8TExJsfxVGFFBUV8eOPP5YE+7lz5wgKCuLBBx9kwoQJ8glIVCkS8i4qMzOT6dOnc/jwYSZPnkyPHj2MLsmlZWRklFyMtHPnTlq2bInJZGLChAl06dJFWuuiypKQdzFaazZu3MicOXN4/PHHmTRpEjXLWiCiCiouLmbfvn0lwX727Fl69uzJvffeS1hYGPWlr1oIQELepaSmpjJlyhQyMzOZO3cunTp1Mrokl3L+/Pn/aq0HBARgMpkYO3YsXbt2lSt8hSiFhLwLsFgsrF27lpiYGP7617/y7LPP4l3eC2I8kMViYf/+/SV966dPn+auu+7CZDIxZswYGjZsaHSJQrg8SRKDHT9+nIiICJRSLFmyhNatWxtdkqEuXLjAtm3b2Lp1K9u2baNJkyaYTCZGjx7N7bffLm9+QpST/I8xSFFREbGxsaxatYpXX32Vp59+ukqeHLRYLBw8eLCktX7ixImS1vrIkSPlSl4hKkhC3gAHDx4kPDycRo0asWrVKprauzCzh7h48SLbtm0jOTmZ5ORk6tevj8lk4o033qBbt25Ud9S0u0IICfnKVFBQwMKFC9mwYQOjRo2iX79+VWJKAovFwqFDh0quMj1y5AiBgYGYTCZee+01AgICjC5RCI8lIV9Jdu/eTWRkJJ07dyY+Pt7jh/hlZ2ezY8eOkmD39/cnKCiIV199le7du8tKVUJUEgl5J8vJyWHu3LkkJSURFhZG7969jS7JKbTW/PrrryV964cPH6ZHjx4EBQXx8ssv06xZM6NLFKJKsivklVIngEtAMVCktQ5UStUHEoDWwAlgoNb6gnPKdE9btmwhKiqKXr16kZiYiJ+fn9ElOVROTg47d+4kKSmJbdu24ePjg8lk4oUXXuDOO++Ui7iEcAHlacnfr7U+d9XtMODfWusopVSY7fZYh1bnpi5cuEB0dHTJnO+BgTc1r5DL0Vpz9OhRkpOTSUpK4pdffqF79+4EBQUxfPhwWZFKCBdUke6aJ4D7bD+vAL6hioe81povv/ySWbNm8dhjjzFhwgR8fHyMLqtC8vLy2LlzZ0mwe3t706tXL5577jkCAwPd/u8TwtPZG/Ia2KSU0sBCrXUM0ERrfQZAa31GKVWlBzSnpaUxZcoU0tLSmD17Nl26dDG6pJuiteb48eMl0wf8/PPPdO3alV69ehEcHEyrVq2qxIggITyFvSFv0lqn2oL8a6XUL/buQCk1AhgBeOTHeYvFwrp161iwYAFDhgzhueeec7tx3pcvX+b7778vCXatNUFBQQwZMoTAwEB8fX2NLlEIcZPsCnmtdarte7pSaj1wF5CmlAqwteIDgPTrPDYGiAHroiGOKds1/Pbbb0RGRlJcXExMTAxt2rQxuiS7aK05deoUSUlJJCcns2/fPrp06YLJZGLOnDncdttt0loXwkOUGfJKqdpANa31JdvPDwHhwGfAMCDK9v1TZxbqSoqKili5ciVxcXG8/PLLDBw40OWnJCgoKGD37t0kJSWxdetWCgsLCQoK4umnn2batGmyGIkQHsqelnwTYL2tZecNrNZaf6mU+h5IVEq9CJwEBjivTNdx6NAhwsPDqVevHnFxcdx6661Gl3RdKSkpJePW9+7dS6dOnQgKCiI6Opp27dpJa12IKkDWeLWT2Wxm0aJFfPLJJ4wcOZLHHnvM5ULSbDazZ8+ekmDPzc3FZDJhMpm46667qFOnjtElCiFugqzx6mR79+4lPDyc9u3bEx8fT4MGDYwuqURqamrJCdPdu3fTvn17TCYTU6dOpX379i7fjSSEcC4J+RvIzc1l3rx5fPPNN4SGhnL//fcbXRJms5m9e/eWzAmTlZVFUFAQ/fr1Y9KkSfj7+xtdohDChUjIX8fWrVuZOnUqf/7zn0lISDA0PNPS0kq6YHbt2sVtt92GyWRi0qRJdOrUSVrrQojrkpC/RlZWFjNnzmTv3r28++673HXXXZVeQ1FRET/++GNJsJ87d467776bBx98kAkTJlCvXr1Kr0kI4Z4k5G201nz99de89957PPzwwyQkJFCrVq1K239GRsZ/LVLdsmVLTCYT77zzDn/4wx+ktS6EuCkS8kB6ejpRUVGkpKQQHR3NH//4R6fvs7i4mH379pUE+9mzZ+nZsyf33nsvYWFhHj/fvBCiclTpkLdYLHzyySd8+OGHDBw4kKioKKcuZnH+/Pn/aq0HBARgMpkYO3YsXbt2xcvLy2n7FkJUTVU25E+dOkVkZCT5+fksXLiQtm3bOnwfFouF/fv3l/Stnz59umSR6jFjxtCwYUOH71MIIa7m+iFfUADp6VBcDLVqQePGUIGLkIqLi1m1ahUrVqzgxRdfZPDgwQ7t775w4QLbtm1j69atbN++ncaNGxMUFMTo0aO5/fbb8fZ2/ZdcCOE5XDNxDh2CNWtgyxb47Tfw8rIGu8UCNWpAly7wxBPQvz+UY2jj4cOHiYiIwM/Pj9jYWIcsSWexWDh48GBJa/3EiRMlrfWRI0fSuHGVnoFZCGEw15rW4PBhGDcOfvwRtAYfH6hZE65uaRcVQX6+tWXv5QXPPw8jR1rvex1ms5klS5bw8ccf88Ybb9C/f/8KTUlw8eJFtm3bRnJyMsnJydSvX79k+oBu3bq53VTDQgjX5v7TGlgssHAhzJplDfe6da/fJePtDVfWSi0qgkWLYONG+OAD6Nr1d3fft28fERERtGrVijVr1tCoUaObKM/CoUOHSq4yPXLkCIGBgZhMJl577TUCAgLK/ZxCCFEZjA95i8Xaev/oI2t4l6cV7O0N9erBmTMwYAAsXw5//jNgXbbuww8/5F//+hchISH06dOnXK337OxsduzYURLsderUwWQy8eqrr9K9e3enjsIRQghHMT7kp02DtWutYX2zJ0D9/SEvz9p1s3492y9cYMqUKfTo0YOEhATq1q1b5lNorfn1119L+tYPHz5Mjx49CAoK4uWXX3ZI/70QQlQ2Y0P+++9h8WJr90xFR7j4+lJ84QInHn2UaZ06Me6dd7j77rtv+JCcnBx27txJUlIS27Ztw8fHB5PJxAsvvMCdd95JzZo1K1aTEEIYzLiQN5th1Chr90wFLwLSwKVLlzibkUGj6tWJ79uXmqUEvNaao0ePkpycTFJSEr/88gvdunXDZDIxfPhwj1yDVghRtRkX8ps3W8e/l9GVkl1cTPiZM2zPyaGetzd/b9SIR656TGFREWfPnsVcUEDzFi3w9fKCZcvg9dehRg3y8vLYuXNnSbB7e3tjMpl47rnnCAwMxOcGo3KEEMLdGRfyCxfa1UUTdfYs1ZViU4cOHM7PZ+SpU3Tw8eG2mjW5mJVFeno69W65hWbNmlFNKTRQeO4cSePHszY3l59//pmuXbvSq1cvgoODadWqlcut6CSEEM5iTMjn5FjHwt9yyw3vdtliYfOlSyS2aYNvtWp09/Xl3jp1+DQzk/8pLKS4uJiWLVtSo0YNcnNzycnJIScnh9qFhfglJzMkKorAwEB8fX0r6Q8TQgjXYkzIHzpkvcipjBb1SbOZakBL23BFDQQUFrLj4kWCmzTBu3p10tPTybt8mVo+Pvj5+dGyRQtqaM2tXl7Qu7fz/xYhhHBhxoT8iRPWC5nKkGex4Gfr0rmcn8+pU6coys/nMnAxOxs/Pz9rV03z5nhd3fWjNaSkWMfgyzzsQogqzO6QV0p5AbuA01rrvyillgP3Ahdtdxmutd5r15MVFFgDuAy+1aqRa7vf8ePH8fbywrtOHRoD7Vu35rqfA658QjCbbzjdgRBCeLrytORHAgeBq2cEC9Faf1T+vXrbNZNkyxo1KMbabdO5c2cUsDI1lQ7e3tcPeLC25LUu39WzQgjhgezqy1BKNQceAxY7ZK/Nm1uDvgy1qlWjT506LMjIIN9i4ce8PL69dInHyrqCtbAQmjSp8Ph7IYRwd/Z2WM8GQoFr+1gmK6X2KaVmKaXsvzy0c2drENsxA2ZY06YUWCz0PXyY8adPM65pU9qUdSXq5cvQrZvd5QghhKcqszmtlPoLkK613q2Uuu+qX40DzgI1gBhgLBBeyuNHACOA/1xResst0KqVdWKx2rVvuH9/Ly/ea9HCnr/lv/XpU/7HCCGEh7GnJW8C+iulTgDxQB+l1Eqt9RltVQAsA+4q7cFa6xitdaDWOvC/pvkdMcKuETblVlRk7aZ57DHHP7cQQriZMkNeaz1Oa91ca90aGAxs1lr/VSkVAKCsl48+Cewv157/8hfrcn75+eWv+kYuXYLBg6FOHcc+rxBCuKGKDCJfpZT6CfgJaAhEluvRfn4wdaq1/9xRq1Pl5kL9+jB6tGOeTwgh3Fy5LobSWn8DfGP7ueKd3o8+Cp9/Dl9/bZ1PviJzypjN1q6a2bPLte6rEEJ4MmMvB1XKuuRfYCBkZdl1gVSp8vOti4ZMnQomk2NrFEIIN2b8Nf+1asGKFdY++osXrWFtL62tbw5aw7x58MwzzqtTCCHckNKO6g+3Z2dKZQC/VdoOHa8hcM7oIlyUvDY3Jq/P9clrc2MNgdpa60Zl3rMUlRry7k4ptUtrHWh0Ha5IXpsbk9fn+uS1ubGKvj7Gd9cIIYRwGgl5IYTwYBLy5RNjdAEuTF6bG5PX5/rktbmxCr0+0icvhBAeTFryQgjhwSTkS6GUaqGU+j+l1EGl1M9KqZG27fWVUl8rpX61fb/xSuQeTCnlpZT6QSm1wXb7NqXUDttrk6CUqmF0jUZRStVTSn2klPrFdgzdLceOlVLqf23/p/YrpdYopXyq8rGjlFqqlEpXSu2/alupx4qymquUOmKb4r2HPfuQkC9dEfCW1roz0BP4m1KqCxAG/Ftr3R74t+12VXVlpbArpgGzbK/NBeBFQ6pyDXOAL7XWnYBuWF+nKn/sKKWaAW8CgVrrroAX1kkPq/Kxsxx45Jpt1ztW+gHtbV8jgPl27UFrLV9lfAGfAn2BQ0CAbVsAcMjo2gx6PZrbDr4+wAZAYb2Yxdv2+7uBr4yu06DXxh84ju1811Xbq/yxAzQDTgH1sc6btQF4uKofO0BrYH9ZxwqwEBhS2v1u9CUt+TIopVoDdwA7gCZa6zMAtu+NjavMUNeuFNYAyNJaX1kgIAXrf+iqqA2QASyzdWctVkrVRo4dtNangWjgJHAGuAjsRo6da13vWLnyJnmFXa+VhPwNKKX8gI+BUVrrbKPrcQVXrxR29eZS7lpVh215Az2A+VrrO4BcqmDXTGlsfctPALcBtwK1sXZBXKuqHjtluan/ZxLy16GUqo414FdprdfZNqddtVhKAJBuVH0G+t1KYVhb9vWUUlemrm4OpBpTnuFSgBSt9Q7b7Y+whr4cO/AgcFxrnaG1LgTWAUHIsXOt6x0rKcDVa6Ha9VpJyJfCttrVEuCg1nrmVb/6DBhm+3kY1r76KkWXvlLYUOD/gCvTgFbJ1wZAa30WOKWU6mjb9ABwADl2wNpN01Mp5Wv7P3bltZFj579d71j5DHjONsqmJ3DxSrfOjcjFUKVQSvUCvsO66tWVfufxWPvlE4GWWA/YAVrrTEOKdAG2hd3HaK3/opRqg7VlXx/4Afirtq7/W+UopboDi7Eucn8MeB5rg6rKHztKqUnAIKwj2H4AXsLar1wljx2l1BrgPqwzTaYB/wA+oZRjxfbGOA/raJw84Hmt9a4y9yEhL4QQnku6a4QQwoNJyAshhAeTkBdCCA8mIS+EEB5MQl4IITyYhLwQQngwCXkhhPBgEvJCCOHB/h/hWxXMyOiL5wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "\n", + "algorithm_cfg = {\n", + " 'name': 'ExactEigensolver',\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising'},\n", + " 'algorithm': algorithm_cfg\n", + "}\n", + "\n", + "result = run_algorithm(params,algo_input)\n", + "print('energy:', result['energy'])\n", + "#print('tsp objective:', result['energy'] + offset)\n", + "x = tsp.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running it on quantum computer\n", + "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -598732.7787240263\n", + "time: 88.01577425003052\n", + "feasible: True\n", + "solution: [1, 2, 0]\n", + "solution objective: 185.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xtc1FX+x/HXEVRERPNOXvOu66YZ2xpjVpaVtVn9yhtuaTe77Jb+TBAtWwVUVPKWpeIdvACWdjG3bNdfGeIlNTPTNG8pooAiIiAMMOf3x4ysayiDzPCdGT7Px4MHzJeZ+X4Yv77nzPme7zlKa40QQgjPVM3oAoQQQjiPhLwQQngwCXkhhPBgEvJCCOHBJOSFEMKDScgLIYQHk5AXQggPJiEvhBAeTEJeCCE8mLc9d1JK/S/wEqCBn4DngQAgHqgP7AGe1Vqbb/Q8DRs21K1bt65IvUII4XoyMyE11fpztWqgVNmP0RosFvDygpYtoXbt69519+7d57TWjW6mNFXWtAZKqWZAEtBFa31ZKZUIbAQeBdZpreOVUguAH7XW82/0XIGBgXrXrl03U6cQQrgerSE6GhYssIZ0jRrlf47cXCgqgjlz4NFHS72LUmq31jrwZkq0t7vGG6illPIGfIEzQB/gI9vvVwBP3kwBQgjhtpYtswa8v//NBTxY3xx8fGDkSNi2zbH1YUfIa61PA9HASazhfhHYDWRprYtsd0sBmpX2eKXUCKXULqXUroyMDMdULYQQRvv1V4iKAj8/a5dLRdSsCd7e8OabkJ3tmPpsygx5pdQtwBPAbcCtQG2gXyl3LbXfR2sdo7UO1FoHNmp0U11KQgjhWrSG//1f6/fq1R3znLVrW/v2p01zzPPZ2NNd8yBwXGudobUuBNYBQUA9W/cNQHMg1aGVCSGEq9q9Gw4dsnbT3EBiZibPHj/O3b/8wsRUOyLS3x/WroULFxxUqH0hfxLoqZTyVUop4AHgAPB/wDO2+wwDPnVYVUII4cqWLrWOjCljFE1Db29ebNiQ/nXr2ve8Xl7W512/3gFFWtnTJ78D6wnWPViHT1YDYoCxwGil1BGgAbDEYVUJIYSrsljgm2+gTp0y79rH35/76tShbnn67L29YePGm6/v2qez505a638A/7hm8zHgLodVIoQQ7iAlxTrk0dfXOc/v4wM//2x9M6lW8etV5YpXIYQojxMnKj6a5ka8vaGwEM6dc8jTScgLIUR55OdbR9XYQQNnz57lYnmHRXp5QUFB+WsrhV3dNUIIIWzsHDKZX1BA6unT5OTk4O3vT7ki24FDMyXkhRCiPFq0uGFL3qI158+dI/PCBSxA/SZNqKUUl4qKMFsseCmF141G5RQXW7876LoiCXkhhCiP226zfi8u/l3f/OXLl0k9c4Ya1avjX6cOy7Oz+Tgzs+T3Gy9eZETDhoy4UYAXFECHDg7r95eQF0KI8vDygj/9CXbsANv4d4vFQnpGBtkXL9KkaVMUkJaeTki7dowrb1gXFMADDzisXDnxKoQQ5fXiiyUXQuXm5nL02DGKi4tp07YtPjVrcubsWZo3b453eQP+ygVWgwY5rFRpyQshRHn17k1R/fpcOHqULLOZgIAA/Pz8KLZYOJWSQpMmTajl41P+583Otrbib73VYaVKS14IIcrpm+++4y2l8LZYaNO6NX5+fmggNTWV2rVrU8/eaQyulp9vnY1y0iSH1ioteSGEsFNmZibTp0/n8OHDvPPBB9yyYQOsWAH16nH+/HmKiopo1qzUWddvrKgILl+G996Dpk0dWrO05IUQogxaazZs2MDgwYNp3rw5a9asoUePHvD22/DII+SnpXEhM5PmzZtTzZ6l/65mNlu7acaMgScdv/aStOSFEOIGUlNTmTJlCpmZmbz//vt07NjxP7/08iI1LIyvv/ySQXXrUj0/37qIiD20hosXrdMYREZCcLBT6peWvBBClMJisZCQkMCzzz5LYGAgsbGx/x3wQEFBASFhYVSPiMBn3TrrBUzZ2dbwvnJR09W0ts5Lc+GC9X533AFffeW0gAdpyQshxO8cP36ciIgIqlWrxtKlS2nVqtXv7qO1ZurUqbRq1YohQ4ZYhz5++y0kJVnnm9++/b9nklTKGvC+vtZumeHDoWvXMuekrygJeSGEsCkqKmLFihWsXr2aV199laeffppq15nu9+OPP+bgwYMsX74cdSWoq1WD3r2tXxYLnDxpnZq4sNA6cqZNG2jSxOnBfjUJeSGEAA4cOEBERASNGjVi1apVNL3BKJd9+/axcOFCli5dSq1atUq/U7Vq0Lq19ctAEvJCiCotPz+fmJgYNmzYwKhRo+jXr99/WualOH/+PGFhYbz77ru0aNGiEiu9ORLyQogqa/fu3URGRtK5c2fi4+OpX7/+De9fVFTEuHHjePLJJ7nnnnsqqcqKkZAXQlQ5OTk5zJ07l6SkJMLCwujdu7ddj5s7dy61atXipZdecnKFjiNDKIUQVcqWLVsYOHAgAImJiXYH/FdffcWWLVtKRt24izJb8kqpjkDCVZvaAO8C9YCXgQzb9vFaa8ctMS6EEA6UmZlJdHR0yQnWO++80+7HHjlyhBkzZjB//nz8/f2dWKXjlfl2pLU+pLXurrXuDtwJ5AHrbb+edeV3EvBCCFekteaf//wngwcPpmnTpsTHx5cr4C9dusSYMWN46623aN++vRMrdY7y9sk/ABzVWv92o7PPQgjhCtLS0pgyZQppaWnMnj2bLl26lOvxFouFd999l169etGvXz8nVelc5e1YGgysuer235VS+5RSS5VStziwLiGEuGkWi4W1a9cydOhQbr/9duLi4sod8ABLliwhJyeHUaNGOaHKymF3S14pVQPoD4yzbZoPRADa9v094IVSHjcCGAHQsmXLCpYrhBA39ttvvxEZGUlxcTGLFi3ititrspbT1q1bWb9+PXFxcXh7u+9AxPK05PsBe7TWaQBa6zStdbHW2gIsAu4q7UFa6xitdaDWOrCRg1YfF0KIaxUVFbF8+XJeeOEFHnzwQRYvXnzTAZ+SksKkSZOIioqiQYMGDq60cpXn7WkIV3XVKKUCtNZnbDefAvY7sjAhhLDXoUOHmDRpEvXr1ycuLo5bK7B8Xn5+PiEhIbz00kvcfvvtDqzSGHaFvFLKF+gLvHLV5ulKqe5Yu2tOXPM7IYRwuoKCAhYtWsSnn37KyJEjeeyxx244JUFZtNZERkbSoUMHBgwY4MBKjWNXyGut84AG12x71ikVCSGEHX744QciIiJo37498fHxDulWSUhI4NixYyxbtqxCbxauxH3PJgghqqTc3FzmzZvHN998Q2hoKPfff79DnveHH35g6dKlLF++nJo1azrkOV2B+1ybK4So8rZu3cqgQYMwm80kJCQ4LOAzMjIYP348kyZNqlB/viuSlrwQwuVlZWXx3nvv8eOPP/Luu+9y112lDua7KYWFhYwdO5YBAwZw9913O+x5XYW05IUQLktrzaZNmxg4cCD169cnISHBoQEPMGvWLOrVq8fw4cMd+ryuQlryQgiXlJ6eTlRUFCkpKcycOZOuXbs6fB9ffPEF27dvJzY21q1mliwPz/yrhBBuy2KxsG7dOoKDg+nUqROrVq1ySsAfOnSIWbNmER0djZ+fn8Of31VIS14I4TJOnTpFZGQk+fn5LFy4kLZt2zplPxcvXiQkJISxY8fSpk0bp+zDVUjICyEMV1xczKpVq1ixYgUvvvgigwcPdlr3icVi4Z133qFPnz707dvXKftwJRLyQghDHT58mIiICOrUqUNsbCzNmjVz6v4WLFiA2WzmjTfecOp+XIWEvBDCEGazmSVLlrBu3TreeOMNHn/8cadfZfrtt9/yxRdfEBcXh5eXl1P35Sok5IUQlW7fvn2Eh4fTunVrVq9eTWXMUHvy5EkiIyOZNWsW9evXd/r+XIWEvBCi0uTl5fHBBx/w73//m5CQEPr06VMpc8Tk5eUxZswYXnvtNaeM1HFlMoRSCFEptm3bxqBBg8jLyyMxMZEHHnigUgJea014eDh//OMfeeqpp5y+P1cjLXkhhFNlZ2czc+ZM9uzZw9tvv03Pnj0rdf+rVq0iNTWVxYsXe8zMkuUhLXkhhFNorfnXv/7FgAED8PPzIz4+vtIDfteuXcTGxjJ9+nRq1KhRqft2FdKSF0I4XEZGBtOmTePEiRPMmDHDkBWW0tLSePvtt4mMjKRp06aVvn9XIS15IYTDaK359NNPCQ4Opl27dqxevdqQgDebzYSGhjJ06FCHT2jmbqQlL4RwiNOnTxMZGUlOTg4ffvgh7du3N6yW6OhomjRpwrPPygJ2EvJCiAqxWCzEx8ezZMkShg8fTnBwsKEXGn366afs2bOH2NjYKnmi9VoS8kKIm3b06FHCw8Px8fFh+fLltGjRwtB6Dhw4wLx581i0aBG+vr6G1uIqJOSFEOVmNptZvnw5iYmJ/O1vf+OJJ54wfD72CxcuEBoayvjx42ndurWhtbiSMkNeKdURSLhqUxvgXSDWtr01cAIYqLW+4PgShRCuZP/+/YSHh9O8eXNWr15N48aNjS6J4uJi3n77bR555BGHrfvqKcoMea31IaA7gFLKCzgNrAfCgH9rraOUUmG222OdWKsQwkCXL19m/vz5fPXVV7z11lv07dvXZfq8P/jgAwBef/11gytxPeX9fPUAcFRr/RvwBLDCtn0F8KQjCxNCuI6dO3cyaNAgsrKySEhI4KGHHnKZgN+8eTNff/01U6ZMMbzLyBWVt09+MLDG9nMTrfUZAK31GaWU8Z/ZhBAOlZ2dzezZs9mxYwfjx4/HZDIZXdJ/OX78OFOmTOH999+nXr16Rpfjkux+21NK1QD6A2vLswOl1Ail1C6l1K6MjIzy1ieEMMjmzZsZNGgQPj4+rF271uUCPjc3lzFjxvDmm2/SuXNno8txWeVpyfcD9mit02y305RSAbZWfACQXtqDtNYxQAxAYGCgrlC1QginO3/+PNOmTePIkSNMmTKFO+64w+iSfkdrzcSJEwkMDKR///5Gl+PSytOBNYT/dNUAfAYMs/08DPjUUUUJISqf1prPP/+cwYMH06pVK+Lj410y4AFWrFhBRkYGb731ltGluDy7WvJKKV+gL/DKVZujgESl1IvASWCA48sTQlSG1NRUJk+eTFZWFvPmzaNjx45Gl3RdO3bsID4+ntjY2Co7s2R52BXyWus8oME1285jHW0jhHBTFouFxMREFi1axHPPPcfQoUPx9nbdayRTU1OZMGECUVFRLjE+3x247r+mEMKpjh07RmRkJF5eXixdupRWrVoZXdINFRQUEBoayvDhw+nRo4fR5bgNCXkhqpjCwkJiY2NZs2YNr776Kv/zP//j8uPLtdZERUXRsmVLhgwZYnQ5bkVCXogq5MCBA4SHh9OkSRNWrVpFkyZNjC7JLuvWrePAgQMsX77cZS7CchcS8kJUAfn5+SxcuJAvvviC0aNH8/DDD7tNWP70008sWLCAJUuWUKtWLaPLcTuu/RlNCFFhu3btYvDgwaSnp5OQkMAjjzziNgGfmZnJ2LFjeffdd2nZsqXR5bglackL4aFycnKYO3cuSUlJhIWF0bt3b6NLKpeioiLCwsJ44oknuOeee4wux21JS14ID7RlyxYGDhwIQGJiotsFPMDcuXPx8fHh5ZdfNroUtyYteSE8SGZmJtHR0Rw8eJDIyEi3HWq4adMmvv32W+Li4lx+5I+rk1dPCA+gtWbjxo0MHjyYpk2bEh8f77YBf+TIEaZPn86MGTPw9/c3uhy3Jy15Idzc2bNnmTJlChkZGcyePZsuXboYXdJNu3TpEiEhIYwePZoOHToYXY5HkJa8EG7qypQEQ4cOpXv37sTFxbl1wFssFt59912CgoJ49NFHjS7HY0hLXgg39NtvvxEREYHFYmHx4sXcdtttRpdUYUuXLuXSpUuMGjXK6FI8ioS8EG6kqKiIuLg4Vq5cySuvvMIzzzzjEScmk5OTWbduHbGxsVSvXt3ocjyKhLwQbuKXX34hPDycBg0asHLlSgICAowuySFSUlKYOHEiM2bMoGHDhkaX43Ek5IVwcQUFBcTExPD5558zcuRIHn30Ube5YrUs+fn5hIaG8tJLL9GtWzejy/FIEvJCuLA9e/YQGRlJx44diY+Pp379+kaX5DBaayZPnky7du0YMEDWHHIWCXkhXFBubi7vv/8+W7ZsITQ0lPvuu8/okhwuMTGRo0ePsnTpUo/5ZOKK3P+MjRAeJikpiYEDB1JUVERCQoJHBvzevXtZsmQJM2bMwMfHx+hyPJq05IVwERcuXOC9997jp59+4h//+Ad33XWX0SU5RUZGBuPGjWPixIk0a9bM6HI8nrTkhTCY1pqvvvqKQYMG0aBBA+Lj4z024AsLCxk7dizPPPMMQUFBRpdTJdjVkldK1QMWA10BDbwAPAy8DGTY7jZea73RGUUK4anS09OZOnUqqampzJo1iz/84Q9Gl+RUs2bNol69ejz//PNGl1Jl2NuSnwN8qbXuBHQDDtq2z9Jad7d9ScALYSeLxcLHH39McHAwXbp0YeXKlR4f8Bs3bmT79u2Eh4d7xAVc7qLMlrxSyh/oDQwH0FqbAbOcDRfi5pw8eZLIyEjMZjMxMTG0adPG6JKc7tChQ8ycOZOFCxfi5+dndDlVij1vp22wdsksU0r9oJRarJSqbfvd35VS+5RSS5VStzivTCHcX3FxMbGxsTz//PPcd999LF26tEoEfHZ2NiEhIYSGhtK2bVujy6ly7Al5b6AHMF9rfQeQC4QB84G2QHfgDPBeaQ9WSo1QSu1SSu3KyMgo7S5CeLzDhw8zbNgwtm/fTlxcHMHBwVWiy8JisfD2229z//3389BDDxldTpVkz4nXFCBFa73DdvsjIExrnXblDkqpRcCG0h6stY4BYgACAwN1xcoVwr2YzWYWL17M+vXreeONN3j88cer1IU/CxcuxGw28+abbxpdSpVVZshrrc8qpU4ppTpqrQ8BDwAHlFIBWusztrs9Bex3ZqFCuJsff/yRiIgI2rRpw5o1a6rc5Ftbtmxhw4YNxMXF4eXlZXQ5VZa9F0O9AaxSStUAjgHPA3OVUt2xDqk8AbzilAqFcDN5eXnMmzePzZs3ExoaSp8+fYwuqdKdPHmSiIgIZs2a5VHz7bgju0Jea70XCLxm87OOL0cI95acnMzUqVP505/+RGJiYpVcozQvL48xY8bw2muv0bVrV6PLqfJkWgMhHODixYvMnDmTH374gbfffpuePXsaXZIhtNZERETQtWtXnnrqKaPLEci0BkJUiNaaf/3rXwwcOBB/f3/i4+OrbMADrF69mpSUFMLCwqrUCWZXJi15IW5SRkYGUVFRnDx5khkzZnD77bcbXZKhdu/ezYoVK1ixYgU1atQwuhxhIy15IcpJa80nn3xCcHAw7du3Z9WqVVU+4NPT0xk/fjyRkZEesyyhp5CWvBDlkJKSwuTJk8nNzeXDDz+kffv2RpdkOLPZTEhICMHBwR47e6Y7k5AXwg4Wi4XVq1ezbNkynn/+eYYMGSJjv22io6Np0qQJzz33nNGliFJIyAtRhiNHjhAeHk6tWrVYvnw5LVq0MLokl/HZZ5+xZ88eVqxYISdaXZSEvBDXYTabWbZsGWvXruVvf/sbTz75pATZVQ4cOMD777/PokWLqF27dtkPEIaQkBeiFD/99BMRERE0b96c1atX07hxY6NLcilZWVmMHTuWcePG0bp1a6PLETcgIS/EVS5fvsz8+fP56quvGDNmDA8++KC03q9RXFzM+PHjeeihh6rklA3uRoZQCmGzc+dOBg0aRFZWFomJifTt21cCvhQffvghAK+//rrBlQh7SEteVHnZ2dnMnj2bnTt3Mn78eFlg+gY2b97Mpk2bZGZJNyIteVGlbd68mUGDBuHj40NiYqIE/A0cP36cKVOmMG3aNOrVq2d0OcJO0pIXVdL58+eZNm0aR48eZerUqXTv3t3oklxabm4uISEhvPnmm3Tp0sXockQ5SEteVClaaz7//HMGDx5M69atWbNmjQR8GbTWTJo0iR49etC/f3+jyxHlJC15UWWkpqYyefJkLl68yAcffECHDh2MLsktxMbGkp6eTmRkpNGliJsgIS88nsViISEhgcWLFzNs2DCGDh0qJw3ttHPnTtasWUNsbKzMLOmmJOSFRzt27BgRERFUr16dZcuW0bJlS6NLchtnzpzhnXfeYerUqXIxmBuTkBceqbCwkOXLl5OQkMBrr73GU089RbVqcgrKXmazmdDQUIYNG8add95pdDmiAiTkhcc5cOAAkyZNIiAggFWrVtGkSROjS3IrWmuioqJo0aIFwcHBRpcjKkhCXniM/Px8FixYwMaNGxk9ejQPP/ywXLF6E9avX8/+/ftZvny5vH4ewK7Pr0qpekqpj5RSvyilDiql7lZK1VdKfa2U+tX2/RZnFyvE9ezatYvBgwdz7tw5EhISeOSRRySgbsJPP/3E/PnziY6OxtfX1+hyhAPY25KfA3yptX5GKVUD8AXGA//WWkcppcKAMGCsk+oUolSXLl1izpw5bNu2jbCwMO655x6jS3JbmZmZjB07lgkTJsgJag9SZkteKeUP9AaWAGitzVrrLOAJYIXtbiuAJ51VpBCl+fbbbxk0aBBeXl4kJiZKwFdAcXExYWFh9O/fn969extdjnAge1rybYAMYJlSqhuwGxgJNNFanwHQWp9RSskYK1EpMjMzmTFjBocOHSIyMpIePXoYXZLbmzt3Lj4+PowYMcLoUoSD2dMn7w30AOZrre8AcrF2zdhFKTVCKbVLKbUrIyPjJssUwjrqY+PGjQwePJhbb72VNWvWSMA7wKZNm/jmm2+IjIyUYaYeyJ6WfAqQorXeYbv9EdaQT1NKBdha8QFAemkP1lrHADEAgYGB2gE1iyrozJkzTJ06lXPnzjFnzhw6d+5sdEke4ejRo0yfPp0PP/wQf39/o8sRTlDm27bW+ixwSinV0bbpAeAA8BkwzLZtGPCpUyoUVZrFYiExMZFnn32W7t27ExsbKwHvIJcuXSIkJITRo0fLPD4ezN7RNW8Aq2wja44Bz2N9g0hUSr0InAQGOKdEUVWdOHGCiIgIABYvXixriTqQxWLhH//4Bz179uTRRx81uhzhRHaFvNZ6LxBYyq8ecGw5QkBRURGxsbGsWrWKV155hWeeeUb6ih1s2bJlXLx4kWnTphldinAyueJVuJSDBw8SERFBw4YNWblyJQEBAUaX5HGSk5P56KOPiIuLo3r16kaXI5xMQl64hIKCAhYuXMiGDRsYNWoU/fr1kytWneD06dNMnDiR6dOn07BhQ6PLEZVAQl4Ybs+ePURGRtKxY0fi4+OpX7++0SV5pPz8fEJCQnjxxRdlNawqREJeGCY3N5e5c+fy3XffERoayn333Wd0SR5La82UKVNo164dAwcONLocUYnkbJYwxHfffcfAgQNLVm2SgHeutWvXcuTIEcaPHy/dYFWMtORFpbpw4QLR0dHs37+fiRMn8qc//cnokjze3r17Wbx4McuWLcPHx8fockQlk5a8qBRaa7788ksGDRpEo0aNSEhIkICvBOfOnWPcuHFMnDiRZs2aGV2OMIC05IXTpaWlMXXqVM6ePcvs2bPp0qWL0SVVCYWFhYwdO5ann36aoKAgo8sRBpGWvHAai8XCxx9/zNChQ+natStxcXES8JVo9uzZ1K1blxdeeMHoUoSBpCUvnOLkyZNERkZSWFhITEwMbdq0MbqkKmXjxo0kJycTGxsrVwtXcRLywqGKi4tZtWoVK1as4KWXXmLQoEESMpXs8OHDzJw5k4ULF1KnTh2jyxEGk5AXDnP48GHCw8OpW7cucXFx3HrrrUaXVOVkZ2cTEhJCaGgobdu2Nboc4QIk5EWFmc1mFi9ezPr163nzzTf5y1/+ImOxHSErCw4ehMOHITMTlILGjaFTJ+vXNQttWywW3nnnHe69914eeughg4oWrkZCXlTI3r17iYiIoG3btsTHx9OgQQOjS3JvFgt89x0sWgTbt4O3N5jN1u0AXl5QvToUF0O/fjB8ONxxByhFTEwM+fn5vPnmm4b+CcK1SMiLm5KXl8e8efPYvHkzoaGh9OnTx+iS3N/x4zBqFBw4YL3t7w/XO59RXAxffAH//Cc88ADJjz3GZ599xsqVK/H2lv/W4j/kjJgot+TkZAYOHEh+fj6JiYkS8I7w2WfwyCPw88/WcK9b9/oBD9YW/S23QJ06FH75JU2Cg5kzbJhM7iZ+R97yhd0uXrzIe++9x969e5kwYQJ//vOfjS7JM6xbByEh1j72mjXL9dBi4GR2No3q1sV/4kRo2xYCS1vfR1RV0pIXZdJas2nTJgYOHEi9evVISEiQgHeUvXth7FioXbvcAa+xLnBeq1Yt6jRtaj0x+/zzcPasc2oVbkla8uKG0tPTiYqKIiUlhejoaP74xz8aXZLnyM+HkSOt3TI1apT74ZmZmZjNZlq3bo0C6yeBrCwIC4Nly6yhL6o8acmLUmmtWb9+PcHBwXTs2JGVK1dKwDvaypWQkgI3ccFSbl4e58+do3nz5lS7Oszr1oWkJNiyxYGFCncmLXnxO6dOnWLy5Mnk5eWxYMEC2rVrZ3RJnsdigZgYqFXrhnczWyxEnT3Lzrw8souLaV69Oq82aEDT9HRubdaMGteu0aqU9WvRIrj3Xif+AcJd2NWSV0qdUEr9pJTaq5TaZds2USl12rZtr1LqUeeWKpytuLiYlStXMnz4cO655x6WL18uAe8sO3ZYu1bKmN+9GGhavToxLVvyTYcOvNKoEWNOnMDs749f7dqlP6hOHevzS9+8oHwt+fu11ueu2TZLax3tyIKEMY4cOUJ4eDi+vr6sWLGC5s2bG12SZ/vhBygqKvNutapVY0SjRiW3O+Tm0tTLi7Rateh6vQdVq2b9+uknaNrUMfUKtyXdNVWc2Wxm6dKlfPzxx/z973+nf//+MiVBZdixw3o1azlkZWVx+tIlMry9aVvWSByzGfbtg759K1Ck8AT2nnjVwCal1G6l1Iirtv9dKbVPKbVUKXVLaQ9USo1QSu1SSu3KyMix7nN+AAAWD0lEQVSocMHCcfbt28fQoUP59ddfWb16NU888YQEfGU5fdruETUauHTpEqfT0ljk7c3jdevSuqyQ9/aG336reJ3C7dnblDBprVOVUo2Br5VSvwDzgQisx2AE8B7wu9UJtNYxQAxAYGCgdkjVokLy8vKYP38+mzZtIiQkhAceeEDCvbJdmYvmOoqLi8nNzSUnJ4ecnByUlxfLa9akZrVqhNrbBVNc7IBChbuzK+S11qm27+lKqfXAXVrrkjFaSqlFwAbnlCgcafv27UyZMoU77riDxMRE6tata3RJVZOfH5w5U3JTAwX5+dZQz80lPz8fX19f/Pz8aNCwIVHnzpFdWMjc5s3xtucN2WKBevWcV79wG2WGvFKqNlBNa33J9vNDQLhSKkBrfeUofQrY78Q6RQVlZ2cza9Ysvv/+e8aPHy9rfhqtRw8s+/aRY7GUtNarVauGn58fDRs2xNfXt2T8+5QzZzhuNvNhy5bUtHcBFqWgWzcn/gHCXdjTkm8CrLd9nPcGVmutv1RKxSmlumNthJwAXnFalaJCNm/ezPTp0+nTpw+JiYn4XjMPuagcWmuOHj1KcnIyl7Zto39aGto2FLJBgwbULKWP/kxhIeuysqihFA//+mvJ9vFNm9LvRp/CvLygc2dn/BnCzZQZ8lrrY8DvmgRa62edUpFwmHPnzjF9+nSOHTvGtGnT6CYtu0qXl5fHzp072bp1K1u3bsXb25tevXrRe+RImh09SrU6dayBfB0B1auzq7xhnZ9vvfJVFk0XyBBKj6S15vPPP+f999/nqaeeIjIykho3MTeKKD+tNcePHyc5OZmtW7fy888/07VrV3r16sVf//pXWrZs+Z+T3Js2WacYdvT0wJcvW+fEucGbh6g6JOQ9zOnTp5k8eTLZ2dl88MEHdOjQweiSPN7ly5f5/vvvS4Jda43JZGLIkCEEBgZev3vsb3+DjRuhsNC62pMj5OVZ56MfMMAxzyfcnoS8h7BYLMTHx7NkyRKGDRvG0KFD8ZKWnFNorTl16hRJSUkkJyezb98+unTpgslkYs6cOdx22232DUlt397a4p450zoSpqLDWC0WKCiA99+XkTWihIS8Bzh27Bjh4eHUqFGDZcuW0bJlS6NL8jgFBQXs3r2bpKQktm7dSmFhIUFBQTz99NNMmzaN2tebR6Ysr7wCW7dar4CtSNBbLHDxIgQHwwMP3NxzCI8kIe/GCgsLWb58OQkJCbz++us8+eSTVLN3iJ0oU0pKSskJ071799KpUydMJhPR0dG0a9fOMReQeXvD4sXw4ovWoPf3L/d0BxQUWLtpBgyASZMqXpPwKBLyburnn38mPDycW2+9ldWrV9O4cWOjS3J7ZrOZPXv2lAR7bm4uJpOJJ554gsmTJ1PnJuZ9t4uvL6xYYe1mWbAAtL7xIt5XFBdDdrZ1eoTJk2HgwLIfI6ocpXXlzTQQGBiod+3aVWn780SXL19mwYIF/POf/2TMmDH07dtXpiSogNTUVLZu3UpycjK7d++mffv2mEwmTCYT7du3r/xPRvv3w4wZ1i4ci8Xaqvfx+c9ImcJC6xBJra3b+vWzrg8rs4Z6NKXUbq31TS3eKyHvRr7//nsiIyO5/fbbeeutt6gnJ9fKzWw2s3fv3pJgz8rKIigoCJPJRM+ePfH39ze6RKtTp+Crr6xdOPv2waVL1v76W26BHj3g7rvh4YcdP/xSuCQJeQ936dIl5syZw7Zt2xg3bhy9evUyuiS3kpaWVtIFs2vXLtq0aVMS7J06dZLzGMLlVSTkpU/exX3zzTdMmzaNe++9l8TExJsfxVGFFBUV8eOPP5YE+7lz5wgKCuLBBx9kwoQJ8glIVCkS8i4qMzOT6dOnc/jwYSZPnkyPHj2MLsmlZWRklFyMtHPnTlq2bInJZGLChAl06dJFWuuiypKQdzFaazZu3MicOXN4/PHHmTRpEjXLWiCiCiouLmbfvn0lwX727Fl69uzJvffeS1hYGPWlr1oIQELepaSmpjJlyhQyMzOZO3cunTp1Mrokl3L+/Pn/aq0HBARgMpkYO3YsXbt2lSt8hSiFhLwLsFgsrF27lpiYGP7617/y7LPP4l3eC2I8kMViYf/+/SV966dPn+auu+7CZDIxZswYGjZsaHSJQrg8SRKDHT9+nIiICJRSLFmyhNatWxtdkqEuXLjAtm3b2Lp1K9u2baNJkyaYTCZGjx7N7bffLm9+QpST/I8xSFFREbGxsaxatYpXX32Vp59+ukqeHLRYLBw8eLCktX7ixImS1vrIkSPlSl4hKkhC3gAHDx4kPDycRo0asWrVKprauzCzh7h48SLbtm0jOTmZ5ORk6tevj8lk4o033qBbt25Ud9S0u0IICfnKVFBQwMKFC9mwYQOjRo2iX79+VWJKAovFwqFDh0quMj1y5AiBgYGYTCZee+01AgICjC5RCI8lIV9Jdu/eTWRkJJ07dyY+Pt7jh/hlZ2ezY8eOkmD39/cnKCiIV199le7du8tKVUJUEgl5J8vJyWHu3LkkJSURFhZG7969jS7JKbTW/PrrryV964cPH6ZHjx4EBQXx8ssv06xZM6NLFKJKsivklVIngEtAMVCktQ5UStUHEoDWwAlgoNb6gnPKdE9btmwhKiqKXr16kZiYiJ+fn9ElOVROTg47d+4kKSmJbdu24ePjg8lk4oUXXuDOO++Ui7iEcAHlacnfr7U+d9XtMODfWusopVSY7fZYh1bnpi5cuEB0dHTJnO+BgTc1r5DL0Vpz9OhRkpOTSUpK4pdffqF79+4EBQUxfPhwWZFKCBdUke6aJ4D7bD+vAL6hioe81povv/ySWbNm8dhjjzFhwgR8fHyMLqtC8vLy2LlzZ0mwe3t706tXL5577jkCAwPd/u8TwtPZG/Ia2KSU0sBCrXUM0ERrfQZAa31GKVWlBzSnpaUxZcoU0tLSmD17Nl26dDG6pJuiteb48eMl0wf8/PPPdO3alV69ehEcHEyrVq2qxIggITyFvSFv0lqn2oL8a6XUL/buQCk1AhgBeOTHeYvFwrp161iwYAFDhgzhueeec7tx3pcvX+b7778vCXatNUFBQQwZMoTAwEB8fX2NLlEIcZPsCnmtdarte7pSaj1wF5CmlAqwteIDgPTrPDYGiAHroiGOKds1/Pbbb0RGRlJcXExMTAxt2rQxuiS7aK05deoUSUlJJCcns2/fPrp06YLJZGLOnDncdttt0loXwkOUGfJKqdpANa31JdvPDwHhwGfAMCDK9v1TZxbqSoqKili5ciVxcXG8/PLLDBw40OWnJCgoKGD37t0kJSWxdetWCgsLCQoK4umnn2batGmyGIkQHsqelnwTYL2tZecNrNZaf6mU+h5IVEq9CJwEBjivTNdx6NAhwsPDqVevHnFxcdx6661Gl3RdKSkpJePW9+7dS6dOnQgKCiI6Opp27dpJa12IKkDWeLWT2Wxm0aJFfPLJJ4wcOZLHHnvM5ULSbDazZ8+ekmDPzc3FZDJhMpm46667qFOnjtElCiFugqzx6mR79+4lPDyc9u3bEx8fT4MGDYwuqURqamrJCdPdu3fTvn17TCYTU6dOpX379i7fjSSEcC4J+RvIzc1l3rx5fPPNN4SGhnL//fcbXRJms5m9e/eWzAmTlZVFUFAQ/fr1Y9KkSfj7+xtdohDChUjIX8fWrVuZOnUqf/7zn0lISDA0PNPS0kq6YHbt2sVtt92GyWRi0qRJdOrUSVrrQojrkpC/RlZWFjNnzmTv3r28++673HXXXZVeQ1FRET/++GNJsJ87d467776bBx98kAkTJlCvXr1Kr0kI4Z4k5G201nz99de89957PPzwwyQkJFCrVq1K239GRsZ/LVLdsmVLTCYT77zzDn/4wx+ktS6EuCkS8kB6ejpRUVGkpKQQHR3NH//4R6fvs7i4mH379pUE+9mzZ+nZsyf33nsvYWFhHj/fvBCiclTpkLdYLHzyySd8+OGHDBw4kKioKKcuZnH+/Pn/aq0HBARgMpkYO3YsXbt2xcvLy2n7FkJUTVU25E+dOkVkZCT5+fksXLiQtm3bOnwfFouF/fv3l/Stnz59umSR6jFjxtCwYUOH71MIIa7m+iFfUADp6VBcDLVqQePGUIGLkIqLi1m1ahUrVqzgxRdfZPDgwQ7t775w4QLbtm1j69atbN++ncaNGxMUFMTo0aO5/fbb8fZ2/ZdcCOE5XDNxDh2CNWtgyxb47Tfw8rIGu8UCNWpAly7wxBPQvz+UY2jj4cOHiYiIwM/Pj9jYWIcsSWexWDh48GBJa/3EiRMlrfWRI0fSuHGVnoFZCGEw15rW4PBhGDcOfvwRtAYfH6hZE65uaRcVQX6+tWXv5QXPPw8jR1rvex1ms5klS5bw8ccf88Ybb9C/f/8KTUlw8eJFtm3bRnJyMsnJydSvX79k+oBu3bq53VTDQgjX5v7TGlgssHAhzJplDfe6da/fJePtDVfWSi0qgkWLYONG+OAD6Nr1d3fft28fERERtGrVijVr1tCoUaObKM/CoUOHSq4yPXLkCIGBgZhMJl577TUCAgLK/ZxCCFEZjA95i8Xaev/oI2t4l6cV7O0N9erBmTMwYAAsXw5//jNgXbbuww8/5F//+hchISH06dOnXK337OxsduzYURLsderUwWQy8eqrr9K9e3enjsIRQghHMT7kp02DtWutYX2zJ0D9/SEvz9p1s3492y9cYMqUKfTo0YOEhATq1q1b5lNorfn1119L+tYPHz5Mjx49CAoK4uWXX3ZI/70QQlQ2Y0P+++9h8WJr90xFR7j4+lJ84QInHn2UaZ06Me6dd7j77rtv+JCcnBx27txJUlIS27Ztw8fHB5PJxAsvvMCdd95JzZo1K1aTEEIYzLiQN5th1Chr90wFLwLSwKVLlzibkUGj6tWJ79uXmqUEvNaao0ePkpycTFJSEr/88gvdunXDZDIxfPhwj1yDVghRtRkX8ps3W8e/l9GVkl1cTPiZM2zPyaGetzd/b9SIR656TGFREWfPnsVcUEDzFi3w9fKCZcvg9dehRg3y8vLYuXNnSbB7e3tjMpl47rnnCAwMxOcGo3KEEMLdGRfyCxfa1UUTdfYs1ZViU4cOHM7PZ+SpU3Tw8eG2mjW5mJVFeno69W65hWbNmlFNKTRQeO4cSePHszY3l59//pmuXbvSq1cvgoODadWqlcut6CSEEM5iTMjn5FjHwt9yyw3vdtliYfOlSyS2aYNvtWp09/Xl3jp1+DQzk/8pLKS4uJiWLVtSo0YNcnNzycnJIScnh9qFhfglJzMkKorAwEB8fX0r6Q8TQgjXYkzIHzpkvcipjBb1SbOZakBL23BFDQQUFrLj4kWCmzTBu3p10tPTybt8mVo+Pvj5+dGyRQtqaM2tXl7Qu7fz/xYhhHBhxoT8iRPWC5nKkGex4Gfr0rmcn8+pU6coys/nMnAxOxs/Pz9rV03z5nhd3fWjNaSkWMfgyzzsQogqzO6QV0p5AbuA01rrvyillgP3Ahdtdxmutd5r15MVFFgDuAy+1aqRa7vf8ePH8fbywrtOHRoD7Vu35rqfA658QjCbbzjdgRBCeLrytORHAgeBq2cEC9Faf1T+vXrbNZNkyxo1KMbabdO5c2cUsDI1lQ7e3tcPeLC25LUu39WzQgjhgezqy1BKNQceAxY7ZK/Nm1uDvgy1qlWjT506LMjIIN9i4ce8PL69dInHyrqCtbAQmjSp8Ph7IYRwd/Z2WM8GQoFr+1gmK6X2KaVmKaXsvzy0c2drENsxA2ZY06YUWCz0PXyY8adPM65pU9qUdSXq5cvQrZvd5QghhKcqszmtlPoLkK613q2Uuu+qX40DzgI1gBhgLBBeyuNHACOA/1xResst0KqVdWKx2rVvuH9/Ly/ea9HCnr/lv/XpU/7HCCGEh7GnJW8C+iulTgDxQB+l1Eqt9RltVQAsA+4q7cFa6xitdaDWOvC/pvkdMcKuETblVlRk7aZ57DHHP7cQQriZMkNeaz1Oa91ca90aGAxs1lr/VSkVAKCsl48+Cewv157/8hfrcn75+eWv+kYuXYLBg6FOHcc+rxBCuKGKDCJfpZT6CfgJaAhEluvRfn4wdaq1/9xRq1Pl5kL9+jB6tGOeTwgh3Fy5LobSWn8DfGP7ueKd3o8+Cp9/Dl9/bZ1PviJzypjN1q6a2bPLte6rEEJ4MmMvB1XKuuRfYCBkZdl1gVSp8vOti4ZMnQomk2NrFEIIN2b8Nf+1asGKFdY++osXrWFtL62tbw5aw7x58MwzzqtTCCHckNKO6g+3Z2dKZQC/VdoOHa8hcM7oIlyUvDY3Jq/P9clrc2MNgdpa60Zl3rMUlRry7k4ptUtrHWh0Ha5IXpsbk9fn+uS1ubGKvj7Gd9cIIYRwGgl5IYTwYBLy5RNjdAEuTF6bG5PX5/rktbmxCr0+0icvhBAeTFryQgjhwSTkS6GUaqGU+j+l1EGl1M9KqZG27fWVUl8rpX61fb/xSuQeTCnlpZT6QSm1wXb7NqXUDttrk6CUqmF0jUZRStVTSn2klPrFdgzdLceOlVLqf23/p/YrpdYopXyq8rGjlFqqlEpXSu2/alupx4qymquUOmKb4r2HPfuQkC9dEfCW1roz0BP4m1KqCxAG/Ftr3R74t+12VXVlpbArpgGzbK/NBeBFQ6pyDXOAL7XWnYBuWF+nKn/sKKWaAW8CgVrrroAX1kkPq/Kxsxx45Jpt1ztW+gHtbV8jgPl27UFrLV9lfAGfAn2BQ0CAbVsAcMjo2gx6PZrbDr4+wAZAYb2Yxdv2+7uBr4yu06DXxh84ju1811Xbq/yxAzQDTgH1sc6btQF4uKofO0BrYH9ZxwqwEBhS2v1u9CUt+TIopVoDdwA7gCZa6zMAtu+NjavMUNeuFNYAyNJaX1kgIAXrf+iqqA2QASyzdWctVkrVRo4dtNangWjgJHAGuAjsRo6da13vWLnyJnmFXa+VhPwNKKX8gI+BUVrrbKPrcQVXrxR29eZS7lpVh215Az2A+VrrO4BcqmDXTGlsfctPALcBtwK1sXZBXKuqHjtluan/ZxLy16GUqo414FdprdfZNqddtVhKAJBuVH0G+t1KYVhb9vWUUlemrm4OpBpTnuFSgBSt9Q7b7Y+whr4cO/AgcFxrnaG1LgTWAUHIsXOt6x0rKcDVa6Ha9VpJyJfCttrVEuCg1nrmVb/6DBhm+3kY1r76KkWXvlLYUOD/gCvTgFbJ1wZAa30WOKWU6mjb9ABwADl2wNpN01Mp5Wv7P3bltZFj579d71j5DHjONsqmJ3DxSrfOjcjFUKVQSvUCvsO66tWVfufxWPvlE4GWWA/YAVrrTEOKdAG2hd3HaK3/opRqg7VlXx/4Afirtq7/W+UopboDi7Eucn8MeB5rg6rKHztKqUnAIKwj2H4AXsLar1wljx2l1BrgPqwzTaYB/wA+oZRjxfbGOA/raJw84Hmt9a4y9yEhL4QQnku6a4QQwoNJyAshhAeTkBdCCA8mIS+EEB5MQl4IITyYhLwQQngwCXkhhPBgEvJCCOHB/h/hWxXMyOiL5wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "algorithm_cfg = {\n", + " 'name': 'VQE',\n", + " 'operator_mode': 'matrix'\n", + "}\n", + "\n", + "optimizer_cfg = {\n", + " 'name': 'SPSA',\n", + " 'max_trials': 300\n", + "}\n", + "\n", + "var_form_cfg = {\n", + " 'name': 'RY',\n", + " 'depth': 5,\n", + " 'entanglement': 'linear'\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising', 'random_seed': 10598},\n", + " 'algorithm': algorithm_cfg,\n", + " 'optimizer': optimizer_cfg,\n", + " 'variational_form': var_form_cfg,\n", + " 'backend': {'name': 'statevector_simulator'}\n", + "}\n", + "\n", + "result = run_algorithm(params,algo_input)\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "#print('tsp objective:', result['energy'] + offset)\n", + "x = tsp.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# run quantum algorithm with shots\n", + "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", + "params['backend']['name'] = 'qasm_simulator'\n", + "params['backend']['shots'] = 1024\n", + "result = run_algorithm(params,algo_input)\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "#print('tsp objective:', result['energy'] + offset)\n", + "x = tsp.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "plot_histogram(result['eigvecs'][0])\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb index 6c6b8ba22..7e4bf44be 100644 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_03.ipynb @@ -11,7 +11,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# _*Qiskit Aqua: Experimenting with MaxCut problem with variational quantum eigensolver*_ \n", + "# _*Qiskit Aqua: Experimenting with Max-Cut problem with variational quantum eigensolver*_ \n", "\n", "\n", "This notebook is based on an official notebook by Qiskit team, available at https://github.com/qiskit/qiskit-tutorial under the [Apache License 2.0](https://github.com/Qiskit/qiskit-tutorial/blob/master/LICENSE) license. \n", @@ -36,12 +36,12 @@ "\n", "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", "\n", - "We consider here maxcut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", + "We consider here max-cut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", "\n", "\n", - "### Weighted MaxCut\n", + "### Weighted Max-Cut\n", "\n", - "MaxCut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given MaxCut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", + "Max-Cut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given Max-Cut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", "\n", "The formal definition of this problem is the following:\n", "\n", @@ -57,7 +57,7 @@ "\n", "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -248,12 +250,14 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX9//HXyUoICUvYCWERRahSiiyFWi1FKMoWYjAhyVQURFRaWVRUBFEsKCqiIF9k6xdnwiJbQYn1awHpDxALoiKg7ItsGsi+TiZzfn/cYCOErJO5yczn+XjkQSZzZ+ZzjXnPmXPOPUdprRFCCOFdfMwuQAghhPtJ+AshhBeS8BdCCC8k4S+EEF5Iwl8IIbyQhL8QQnghCX8hhPBCEv5CCOGFJPyFEMIL+ZldwI00btxYt23b1uwyhBCiVvnyyy8va62blHVcjQ3/tm3bsm/fPrPLEEKIWkUpdaY8x9XY8BcepLAQzp6FzEzw8YGwMGjeHJQyuzIhvJaEv6gemZmweTOsWQPff28EvU/REJPDAXXqQPfuYLHAXXeBn/yvKIQ7yV+ccC27HRYuhEWLjJD394fgYPD1/eVxBQWwcyfs2gUNGsDf/gb9+5tTsxBeSGb7CNc5cQIGDYL58yEw0Aj1koIfjDeF+vUhNBSysmDcOBg/3vheCFHtJPyFaxw+DFFRcPq0Efr+/uV/bN26xhtBUhLExkJGRrWVKYQwSPiLqrt4EeLiIC/PCPHKDOT6+EDDhvDddzBmjDFILISoNhL+omq0hqefNrprQkKq9lxKGZ8avvwSVqxwTX1CiBJJ+Iuq+egj+Pxzo8XvCkoZ4wRz5sCFC655TiHEdST8ReVpbQzuBgSU2tXzQUoKllOn6P3998woT6AHBBizgRITXVisEKI4CX9Red9+C6dOGQO2pWjs58foxo0ZWpFPB8HBYLUaU0eFEC7nkvBXSi1XSv2klDp4g/uVUuodpdRxpdQBpVQ3V7yuMNnu3cZc/jIGeP8YGsofQkKoX9KUzxsJCDCC/8iRKhYphCiJq1r+/wsMLOX+e4Gbi77GAv/jotcVZvrii4pN6awoh8OY/SOEcDmXhL/W+t9ASimHDAPe14Y9QAOlVAtXvLYw0bFjxsVc1cXpNJaGEEK4nLv6/FsBPxS7fa7oZ6I2y88v95x+p9akpqeTlpZGZlYWujwPUgpyc6tUohCiZO4K/5IS4rq/f6XUWKXUPqXUvuTkZDeUJaokMNCY8VMGDZw/dw4F1KlTh+TkZE6eOEFqWhrO0h6vNQQFuaxcIcR/uSv8zwGti90OB66b86e1Xqy17q617t6kSZl7EQiz3XST0fovhQbOXbhAvtNJSGgoAXXq0KpNG5o0a0ZmZibHjx8n+fJlHCVd0evjAx07Vk/tQng5d4X/ZuDPRbN+fguka60vuum1RXXp1csYlC1FcnIy1vR0YrOzWZGSQlJ6Or87coTVublEtG5Nm4gICgoKOHHiBJcuXcJefGqnnx906lTNJyGEd3LJks5KqVXAH4DGSqlzwIuAP4DWehGQBNwHHAdygIdc8brCZL17Gyt2al1i339KaioZGRk8c8stPH+DaZ6BgYG0bNGCgiZNSE1N5dTp0wTXrUtYaChBAQFw663VfRZCeCWXhL/WemQZ92vgCVe8lqhBunaFiAhjGYbg4F/clZGRwZXLl2nTti1+5Zjf7+/nR9MmTQgLCyM9PZ208+f5qFMnmuzezV133YWPj1yPKIQryV+UqDyl4C9/MZZiKDZwm52dzaVLl2gdEUFABa8D8PXxoVG9ejQPD6f55MksX76c6Oho1q9fT15enqvPQAivJeEvqmboUGM7xvR0APLy8jh//jytwsOpU5lrALSGrCzU5Mn8fuRIVqxYwbRp09i1axdDhw7lvffeIyWltEtKhBDloXQ5puqZoXv37nrfvn1mlyHK4/x5uO8+CrKzOZWcTPPmzQmtzPLOWkNaGvz617B27XU7gJ05c4bExEQ+/fRT+vfvT3x8PG3atHHRSQjhGZRSX2qtu5d5nIS/cIX0//f/SBs0iEbBwYS0qsT1e1eD/5ZbYPXqUpeITklJYe3ataxbt47bb78di8VC165dUZXZREYIDyPhL9wmJyeHRx99lEE330zs9u1w9qyxsYtfOecT5OYau4D98Y/w5pvGvr7lkJeXx5YtW7DZbISGhmKxWOjbty++FVlATggPI+Ev3KKgoIAnn3yS8PBwnnvuOZTdDu+8A0uXGlsxBgRAnTrGBVvFORyQk2N8HxwMr7wC991XqS0gnU4n//73v7FarSQnJxMfH8+QIUOoW8ZS00J4Igl/Ue2cTifTpk0jPz+fOXPm/HI6Zloa/OMfsGoVnDhh9N9fvb+w0LjdtSuMGgV9+xpvEi5w4MABbDYb+/fvJyoqigceeIDGjRu75LmFqA0k/EW10lozd+5cvv/+exYsWEBgaTN77HY4fRoyM403gLAwCA+//tOAC/3www+sWrWKf/7zn/zhD38gISGB9u3bV9vrCVFTSPiLarVixQo+/vhjlixZQkhVN26vRunp6axbt441a9Zw6623YrFY6N69uwwOC48l4S+qzYcffsjixYtZvnw5tWUBPrvdTlJSEjabjcDAQCwWC/fccw9+5R2UFqKWkPAX1WLnzp28/PLLLF68mLZt25pdToU5nU527dqF1Wrl/PnzxMXFERkZSfA1y1MIUVtJ+AuX+/bbb5k0aRJvvfUWt912m9nlVNnhw4ex2Wzs2bOHyMhIYmNjadq0qdllCVEl5Q1/Wd5BlMupU6eYPHkyL730kkcEP0Dnzp2ZNWsWNpsNh8NBbGws06dP5+jRo2aXJkS1k5a/KNNPP/3E6NGjGTduHIMGDTK7nGqTkZHBxo0bWb16Ne3bt8disdCrVy8ZHBa1inT7CJfIyMhgzJgxDB48mD//+c9ml+MWBQUFfPLJJ1itVpRSWCwWBgwYgH8FVygVwgwS/qLK8vPzeeKJJ+jcuTMTJ070uhaw1po9e/ZgtVo5ffo0MTExREVF1eiprUKUN/xlnpsoUWFhIc899xzNmzdnwoQJXhf8AEopevfuTe/evTl69Cg2m41hw4YxePBgRo4cSYsWLcwuUYhKkwFfcR2tNbNnz8Zut/Piiy/KLlrALbfcwssvv8yqVavw9fUlPj6e559/nu+++87s0oSoFOn2EddZtGgRu3fvZtGiRbI42g1kZWXxj3/8g5UrV9K6dWssFgt9+vSRN0phOunzF5Wydu1aVq1axdKlS2nUqJHZ5dR4DoeDTz/9FKvVSkFBAQkJCdx7770EuGihOiEqSsJfVNjWrVt54403WLZsGS1btjS7nFpFa82+ffuwWq0cOXKEmJgY7r//fuqXsimNENVBBnxFhezbt49XX32Vd999V4K/EpRS9OjRgx49enDixAkSExMZPnw4AwcOJC4ujvDwcLNLFOIXpINScPToUZ577jleffVVbrnlFrPLqfVuuukmpk+fzpo1awgODubBBx/kmWee4dtvvzW7NCF+Jt0+Xu78+fOMGTOGp556in79+pldjkfKyclh8+bNrFy5kiZNmmCxWLjrrrtkcFhUC+nzF2VKSUlh9OjRxMXFMWLECLPL8XiFhYVs27YNq9VKVlYW8fHxDB48uPSNcISoIAl/UaqcnBzGjRtHnz59GDdunNnleBWtNV999RU2m42DBw8SHR1NdHS0zK4SLiEDvuKGCgoKePrpp+nYsSOPPvqo2eV4HaUU3bp1o1u3bpw+fZrExETuv/9++vfvT3x8PG3atDG7ROEFpOXvZZxOJ9OnTyc3N5c5c+bg6+trdkkCowtu7dq1rFu3ji5dumCxWPj1r3/tlctqiKqRbh9xHa01b731FocPH+bdd9+VvuYaKC8vj48++ojExETq16+PxWKhb9++Mjgsyk3CX1zn/fffZ8uWLSxZsoTQ0FCzyxGlcDqd7NixA6vVyuXLl4mPj2fIkCGy3IYok4S/+IUtW7awaNEili1bJlsV1jIHDhzAZrOxf/9+oqKieOCBB2jcuLHZZYkaSrZxFD/btWsXb7/9NvPnz5fgr4W6dOnCnDlz+Pvf/05mZiYjRozg5Zdf5uTJk2aXJmoxafl7uKubrs+dO5fbb7/d7HKEC6SlpbFu3To++OADOnXqhMVi4Y477pDBYQFIt48ATp8+zdixY5k+fTp33nmn2eUIF7Pb7WzZsgWbzUZQUBAWi4V+/frh5yczuL2ZhL+Xu7rp+qOPPsrgwYPNLkdUI6fTya5du7BarVy4cIG4uDgiIyNlcNhLSfh7sYyMDB555BEGDRrkNZuuC8Phw4ex2Wzs2bOHyMhIYmNjZZzHy8iAr5fKz89n8uTJ9OrVC4vFYnY5ws06d+7MrFmzsNlsFBQUEBsby/Tp0zl69KjZpYkaRlr+HqSwsJApU6YQGBjIzJkz5cIgQUZGBhs2bGD16tXcdNNNWCwWevXqJYPDHsytLX+l1ECl1BGl1HGl1LMl3D9KKZWslPq66GuMK15X/JfWmtdee43c3FxmzJghwS8ACA0NZdSoUWzevJmBAwcyd+5cRo4cyZYtWygoKDC7PGGiKrf8lVK+wFGgP3AO2AuM1FofLnbMKKC71np8eZ9XWv4V895777Fz507ee+89GegTN6S15vPPP8dms3H69GliY2MZPnw4ISEhZpcmXMSdq3r2BI5rrU8WvfBqYBhwuNRHCZdZt24d//znP1m2bJkEvyiVUoo+ffrQp08fjhw5gs1mY9iwYQwePJiRI0fSokULs0sUbuKKvoFWwA/Fbp8r+tm17ldKHVBKrVNKtS7piZRSY5VS+5RS+5KTk11QmufbunUry5YtY8GCBbIevKiQjh07MnPmTFatWoWPjw/x8fFMnTqV7777zuzShBu4IvxLGjm6ti/pQ6Ct1roL8C9gRUlPpLVerLXurrXu3qRJExeU5tm+/PJLXn31VebNm0erViW93wpRtmbNmjFhwgQ2b95Mp06dmDx5MuPGjWPXrl04nU6zyxPVxBXhfw4o3pIPBy4UP0BrfUVrnV90cwlwhwte16sdPXqUZ599llmzZtGxY0ezyxEeoF69eiQkJLB582aGDRvGu+++S0xMDJs2bcJut5tdnnAxV4T/XuBmpVQ7pVQAEAtsLn6AUqp4R+JQQD5XVsGFCxeYMGECU6ZMoUePHmaXIzyMn58f9957L4mJiTz99NNs3bqVIUOGsHz5ctLT080uT7hIlQd8tdYOpdR44BPAF1iutT6klHoZ2Ke13gz8VSk1FHAAKcCoqr6ut0pNTWX8+PGMGjWKe+65x+xyhAdTStGzZ0969uzJ8ePHSUxMJDIyknvvvZf4+Hjpaqzl5CKvWuTqpuu9e/fmscceM7sc4YWSk5NZs2YNGzdupHv37lgsFm677TazyxLFyNo+HqagoICJEyfSvHlzpk6dKldoClPl5OSwadMmVq5cSbNmzbBYLPz+97+XiwtrAAl/D+J0OnnxxRfJzs7m9ddfl03XRY1RWFjItm3bsFqtZGVlkZCQwKBBg2R/aBNJ+HuQefPm8e2337Jw4UL5oxI1ktaar776CpvNxsGDB4mOjmbEiBE0bNjQ7NK8jjuv8BXVyGq1snv3bpYuXSrBL2ospRTdunWjW7dunDp1ipUrVxIVFUX//v1JSEggIiLC7BLFNaSDrgZLSkpizZo1LFiwgNDQULPLEaJc2rVrx9SpU1m/fj2NGjXi4YcfZvLkyXz99dfU1J4GbyTdPjXU7t27mTFjBu+99x7t2rUzuxwhKi03N5ePPvqIxMREGjRogMVioW/fvjI4XE2kz78WO3jwIBMnTuTNN9+kS5cuZpcjhEs4nU4+++wzbDYbV65cIT4+niFDhhAUFGR2aR5Fwr+WOnPmDGPHjmXatGmy6brwWAcOHMBms7F//36ioqKIiYkhLCzM7LI8gmzjWAslJyfzl7/8hfHjx0vwC4/WpUsX5syZw/Lly8nMzCQ6OpqZM2dy8uRJs0vzGtLyryEyMzN55JFHGDhwIKNGjTK7HCHcKi0tjXXr1vHBBx/QuXNnLBYL3bp1k4sZK0G6fWoRu93O+PHj6dixI5MmTZL/4YXXys/PJykpCZvNRlBQEBaLhX79+uHnJ7PSy0vCv5ZwOp1MmTIFf39/XnnlFZkBIQTG38XOnTux2WxcuHCBuLg4IiMjZae6cpDwrwW01syePZtz584xb948AgICzC5JiBrn0KFD2Gw2vvjiCyIjI4mNjaVp06Zml1VjyYBvLbBkyRIOHz7MG2+8IcEvxA386le/Yvbs2dhsNux2O7Gxsbz44oscO3bM7NJqNWn5m2T9+vVYrVaWL18ue+8KUQEZGRmsX7+eNWvW0KFDBywWCz179pSxsiLS7VODbdu2jTlz5rB06VLCw8PNLkeIWslut/PJJ59gtVrx9fXFYrHQv39//P39zS7NVBL+NdT+/fuZMmUKCxYskL13hXABrTWff/45NpuN06dPExsbS1RUFPXq1TO7NFPIqp410LFjx5gyZYpsui6ECyml6NOnD3369OHIkSPYbDaGDh3K4MGDGTlyJC1atCj7SbyQDPi6yYULF3jyySd55plnZNN1IapJx44dmTlzJitXrsTHx4f4+HimTp3K999/b3ZpNY50+7hBamoqo0ePJiYmhpiYGLPLEcJrZGVlsXHjRlatWkVERAQWi4XevXt79PU00udfQ+Tk5PDYY4/Rq1cvHn/8cbPLEcIrFRQU8Omnn2Kz2XA4HCQkJDBw4ECPnGIt4V8DOBwOJk6cSJMmTZg2bZpMRRPCZFpr9u7di9Vq5ejRo8TExBAdHe3yzZLsdvjySzh0yPg3NRV8faFVK+jeHW67DTp1guqIBAl/kzmdTmbMmEFWVpZsui5EDXTs2DESExPZsWMH9913H3FxcbRq1apKz3nlCqxYAe+/D7m5UFBghP7VP/+CAiPwlYKICHjsMRg2DFw5O1XC32Rvv/0233zzDQsXLqROnTpmlyOEuIHk5GTWrFnDxo0b6dGjBwkJCdx2220Veg6tISkJnnsOsrMhOBhK61HSGnJyjE8It9wCb79t/OsKEv4mstlsbN68maVLl8reu0LUEjk5OWzatImVK1fSrFkzLBYLv//978scHC4shBdegA8+gDp1oCIbk2kNmZnGJ4E334TBg6t4Ekj4myYpKYmFCxeybNkymjVrZnY5QogKKiwsZOvWrVitVrKzs0lISGDQoEEEBgZed6zWRmt/7VqoXx8qO4koP9/oJnrnHbjvvqrVL+Fvgqubri9atIj27dubXY4Qogq01nz11VdYrVYOHTpEdHQ0I0aMoGHDhj8f88EHRvhXJfivys83xgQ+/hjatav880j4u9mhQ4eYMGGCbLouhAc6deoUiYmJbN26lQEDBhAfH4+fXwT33GMM5pbwoaBS0tKMmUDr1/93kLiiZElnNzp79iyTJk1i2rRpEvxCeKB27drxwgsvsG7dOho0aMDDDz9MZOQ2MjLyCQx0XQO6fn04eBC2b3fZU96QtPyrKDk5mdGjRzNmzBiGDh1qdjlCCDf48cdcfvObArKzL+PvrwgLCyMkJAS4fuJ+YWEGFy++TFbWHvz8GtCkyXjq1x94w+fOyICuXY0upcqQhd3cICsri7/+9a8MHz5cgl8IL/L550EEBwfRsmUImZmZXLlyhR9//ImwsEbUr9/gFzOELl16FaX8ueWW/yMv7yg//PAkdercQmBgyeOCISGwfz/89BNU54Zl0u1TSXa7nUmTJtGtWzdGjRpldjlCCDfau9eY4gmKkJBQ2rZtR6tWLcnOzub48WMkJ/+Ew+HA6cwlM3MbTZo8ho9PXerW7UpIyN2kp2+54XMrBX5+xtXB1UnCvxKcTicvvPACYWFhTJ48WZZtEMLLfPmlMae/uKCguoSHt6Zt27YUFhZy4sQJzp/fi9OpCAiI+Pm4wMCbyc8/Werz5+dL+Nc4Wmtee+01srKyeOmllzx6dUAhRMlSUozWOYDWTgoLHRQU2MnPz6OwsJCQkBCaNWuG3Z5Ffr7i2LGjgDG+6uNTD6czu9Tn9/Exun2qk/T5V9DSpUs5ePAgixcv9sgVAYXwdAUFBeTm5pKdnU1OTs7P/xb/Kuu+o0dn4nD4AAVoDb6+Pijlg6+vDz4+//3y96+Hj4+d/Px8nE4nPj6+OJ3Z+PgEl1lndc/F8brw1xp++AG++w4OHzbewa+utverX0HnztCgQcmP3bBhA1u2bGH58uUEB5f9yxNCVJ3D4fg5dKsa2jk5ORQWFhIcHEzdunUJDg4mKCjo59tXf3b1+0aNGl13X1BQEJcuRfDjj34EB/sUdfuW3PWbnR3MlSsO2rULwMfHmLifn3/0hoO9Vzmd1TvYC14U/nl5sGULvPcenDplfKyy241/r77DBgQYgzh//COMHg09evx3ydXt27ezePFili5dSqNGjcw7ESFquMLCwl+Eb1VD2+FwXBfMxQO5+H0NGza8YaBf/VlAQECVx+l+9ztYs6b0JZnt9nzOn79Mgwb3kJm5gnr1ppGXd5TMzB20bfv3Up8/IMBojFYnl4S/Umog8DbgCyzVWr96zf2BwPvAHcAVIEZrfdoVr10e+/fDk0/CxYvG0qmhoTf+pTmdsHWr8dWvH8yaBWfO7GfWrFnMnz+f8PBwd5UthFsUFhZeF8JVCe3iYV1WaDdo0KDMVrgrwtrVunc31vO5EYejgLNnz9K0aVNCQqZz4cJLHD3aH1/f+jRv/lypLX+tjUZo587VUHgxVQ5/pZQv8C7QHzgH7FVKbdZaHy522GggVWvdQSkVC7wGVPt+hlrD//wPzJ1rdO3cqDunOB8f47irbwJ33plP/fpLeOedv3HrrbdWd8lClMnpdF4XxFUJbYfDUWpLuXhoN2jQoMxADwwMrHFh7Wr9+hlZ4XD8d+D3KqezkLNnz9KgQUMaFIVO69Zvlvu5MzPhN7+B5s1dWfH1XNHy7wkc11qfBFBKrQaGAcXDfxgwo+j7dcACpZTS1Xx58dtvw/z5xkUT1/6CyuLjA8HBdk6c+JHs7Nfx969XPUUKj+d0OksM6cqGdkFBAUFBQSX2UV8b2i1atCizFe4NYe1q9evD0KGwYQMUW+cNrZ388MMPBAcH07hxWIWfV2uj4fnIIy4s9gZcEf6tgB+K3T4H9LrRMVprh1IqHQgDLrvg9Uv06aeVD36AwkJH0ce2RgQG1uOhh4xPAmEV/32KWsbpdP4ihKsa2na7nTp16pRrkLFZs2ZlBnqdOnUkrGuAJ5+Ejz4y5uQbC7tpzp8/j5+fX9Fy7hX/HaWnG909/fq5utrruSL8SzrDa1v05TkGpdRYYCxARETEdQ8or5QUePpp4yKMygS/02m8e4eEhP48uJuWBlOnGt1I8ndXsxQPa1eE9tWwLqmlfG1oXw3r0lrhderUketBPFB4OEyfbmzk4u+v+fHHSzidTlq3bk1lgj8/3+ienjev8it6VoQrwv8c0LrY7XDgwg2OOaeU8gPqAynXPpHWejGwGIyF3Spb0IIFxuJIlZmUo7Xm/PlzBAYG0rRpk59/HhpqtPy//NIY7BGV53Q6ycvL+0XoViW08/PzfxHWpfVJN23atMxAl7AW5RUTYyz1YLVmUFiYR9u2EShV8f93rm7mMncuuGsrEFeE/17gZqVUO+A8EAvEXXPMZuBB4HMgGthWXf39OTmwerXR3VMap9POpUuvkpPzHwoLM/D3D6dp0yfIyGgLKFq0aEHxd28fH6Mvbvly7wv/q2Fd0mBhZUI7Ly+PwMDAUqfsXf23SZMmN7zvamhLWAuz+PjAb3+7gc2bFQ7HUOx23+uWfSjN1W0cAd54wxhHcJcqh39RH/544BOMqZ7LtdaHlFIvA/u01puBZYBVKXUco8UfW9XXvZFt24zdcOrWLevIQvz9mxMRsRh//+ZkZe3i9OmnqFt3Hu3a9aCkj22hocZYQkaG8X1NpbUmNze3UhfAlBToxcO6rEHGxo0blxnoEtbCU2zbto3lyxezfftSvvzSlxdegNTU8m3gnptrXGvUrp0xOaW6p3ZeyyXz/LXWSUDSNT+bXuz7PGCEK16rLF98cXW1vdL5+ATRpMnYn28XFHTG6QyjUaOMG35s8/U1vr77DnpdO6RdBVrrn1vWlb1qsXho5+XlERAQUGLL+trQbtSoEa1bty61FR4UFCRhLcQ19u/fz+zZs5k/fz6tW4fTujX06QP/+79gtRot+oICY9zxah9+QQFFy0FAixbw6KMQHV36G0V18bgrfPftu361vbKkp6dz+fJJ/P2vEBR0c6nHFhTAwYOaLl3yXHKp+bVhXdYgY/GwLq0VLmEtRPU5duwYU6ZM4W9/++X1P02bwjPPGDOBvvjCWJlz3z5jwsjVwO/Vy9iq8fbbzZ084nE7ed1xh3Hhhb9/+Y7PzMzkzJkT+PnNw9+/FSEhf8XpdOJ0OiksdP78/dWv/Py6NG68mTZtbGV2b5S2Zsi1tyWshagdLly4wJgxY5g4cSL9+/c3u5zreO1OXhV/L3NSULAAp7OQkJCx+Pr64u/vj4+P7y9W5/PxMVbsS0/35cEHH2XGjMeqo3whRA2WmprK+PHjefDBB2tk8FeEx4V/SAhcuVK+lr/WmszMeTRs6ENIyGukpGTjcEBYWCPq1avHjebqyoVeQnifnJwcnnzySe655x5iYqp9dZpq53F9DbffbqzgWR6XLs3Gbj9FRMQ8wsJa0qFDBxo2bEBycjInT54kLS0NrZ2/eExgoPtH5YUQ5nI4HEyZMoUOHTrw2GOe8anf41r+v/0tfPxx2ccVFFwkLW0DSgVw7Niffv558+bP067dQLKzc0hJuUJy8k80bNiIhg0b4OPjh8MBnTpV4wkIIWoUp9PJyy+/jJ+fH1OnTvWYpTU8Lvz/+Ed46SXjgqzSxlD9/VvQqdONB5SDg4MJDg4mPz+PlJQUTpw4QWBgY7p0qUvLlkHVULkQoiaaP38+586dY+HChfi6Y90FN/G4bp+WLeGuu4wLsVwhMLAOLVq0pH379oAvly/PYsqUKRw8eNA1LyCEqLGsViu7du1i3rx51KnoHPIazuNrSUjaAAAYGUlEQVTCH2DyZGP+rMPhuufMyfHnttsasGPHc3Tr1o3nn3+eMWPGsGPHDpxOZ9lPIISoVZKSklizZg3z588ntCZf0l9JHhn+nTvDuHHGFXauuIyhoMDoRnr7bWjQoC4xMTFs3LiR2NhYli1bRnR0NBs2bCA/P7/qLyaEMN3u3buZN28e77zzTtHyzJ7H4y7yuspuB4vFWHGvYcPKX0nncBhdSM8/D2PGXH+/1pqvv/4aq9XKwYMHiY6OZsSIETQsvsODEKLWOHjwIBMmTGDu3Ll06dLF7HIqrLwXeXlkyx+MtTKWLzc2YU9NrVwXUE4OZGXBU08ZG7qXRCnFb37zG+bOncvixYu5fPkyUVFRzJo1i7Nnz1btJIQQbnXmzBkmTZrE9OnTa2XwV4THtvyvstuN9f3/53+MLqDQ0NJnAV19THa2sVXbm29C374Ve82UlBTWrl3LunXr6NKlCxaLhV//+tceM0VMCE+UnJzM6NGjGTNmDEPdubayi5W35e/x4X/V4cPw1luwfbvxJqCUsQCcr69xu6DAuDjM39/41BAfD48/brwBVFZeXh4fffQRiYmJ1K9fH4vFQt++fWUdHyFqmMzMTB555BH+9Kc/8dBDD5ldTpVI+N/ApUvGmv9798LXXxuDwr6+xmp8PXoYX337Vnxl0NI4nU527NiB1WrlypUrxMfHM2TIEIKC5HoBIcxmt9sZP348t9xyC5MnT671n9Al/GuoAwcOYLPZ2L9/P1FRUcTExBAmiwUJYQqn08mUKVPw9/fnlVde8YhP5V4/4FtTdenShTlz5vD3v/+dzMxMoqOjmTlzJidPnjS7NCG8itaaV199lezsbGbMmOERwV8R3nW2NUjr1q2ZMmUKGzdupEWLFowbN44JEybw5ZdfUlM/jQnhSZYsWcKhQ4d4/fXXCTBjKy2TSbdPDWG320lKSsJmsxEUFITFYqFfv34etZaIEDXF+vXrsVqtLF++nEaNGpldjktJn38t5XQ62bVrF1arlYsXLzJy5EgiIyOpW/aO9EKIcti2bRtz5sxh6dKlhIeHm12Oy0n4e4DDhw9js9n44osvGDZsGLGxsTRt2tTssoSotfbv38+UKVOYP3/+L/be9SQy4OsBOnfuzKxZs7BarRQUFBAbG8uLL77IsWPHzC5NiFrnRpuueytp+dciGRkZbNiwgdWrV9OhQwcsFgs9e/as9fOShahuVzddnzBhAgMGDDC7nGol3T4ezG6388knn2C1WvH19cVisdC/f3/8y7NxsRBeJjU1ldGjRxMTE+MRe++WRcLfC2it+fzzz7HZbJw+fZrY2FiioqKKNp8XQuTk5PDYY4/Rq1cvHn/8cbPLcYvyhr/HbePoTZRS9OnThz59+nDkyBFsNhtDhw5lyJAhjBw5kubNm5tdohCmubrp+k033eQxm667kgz4eoiOHTsyc+ZMVq1ahVKKuLg4XnjhBb7//nuzSxPC7Tx103VXkm4fD5WVlcU//vEPVq5cSZs2bbBYLPTu3Vv+CIRXePvtt/nmm29YuHChx+29Wxbp8xeA8dH3008/xWq14nA4SEhIYODAgV55ObvwDjabjc2bN7N06VKP3Hu3LBL+4he01uzduxebzcbRo0eJiYnh/vvv98o/DuG5kpKSWLhwIcuWLfPYvXfLIgO+4heUUvTs2ZOePXty/PhxEhMTiYyM5L777iMuLo6WLVuaXaIQVXJ10/VFixZ5bfBXhAz4eqEOHTrw4osvsmbNGurUqYPFYuHZZ5/l0KFDZpcmRKUcOnSI6dOn88Ybb9C+fXuzy6kVpNtHkJOTw6ZNm1i5ciXNmzfHYrFw5513et365qJ2OnPmDGPHjmXq1KncddddZpdjOunzFxVWWFjI1q1bsVqtZGdnk5CQwKBBgwgMDDS7NCFK5CmbrruShL+oNK01X331FVarlUOHDjFixAhGjBhBgwYNzC5NiJ9lZmYyduxYBgwYUOs3XXclGfAVlaaUolu3bnTr1o1Tp06RmJhIVFQUAwYMIC4ujoiICLNLFF7ObrczefJkunXrxqhRo8wup1aSlr8ol5SUFD744APWr19P165dsVgsdOnSxeyyhBdyOp08++yz+Pr68re//U3Gpq4h3T6iWuTm5vLRRx+RmJhIw4YNsVgs/OEPf5A/QOEWWmtmz57NuXPnmDdvnlysWAK3hL9SqhGwBmgLnAYe0FqnlnBcIfBt0c2zWusyR2Yk/Gs2p9PJZ599htVqJTU1lbi4OIYMGUJQUJDZpQkPtnjxYnbs2MHixYsJDg42u5wayV3hPwdI0Vq/qpR6FmiotZ5SwnFZWusKrTMs4V97HDhwAKvVytdff01UVBQxMTEetym2MN+GDRt4//33PXLTdVdy1zaOw4AVRd+vACKr+HyiFurSpQuvv/46y5YtIz09nfvvv59XXnmFU6dOmV2a8BDbtm1j8eLFLFiwQILfRaoa/s201hcBiv690e7idZRS+5RSe5RS8gbhoSIiInj22WfZsGEDzZo149FHH2XixIns37+fmjq2JGq+/fv3M3v2bObNm0d4eLjZ5XiMMrt9lFL/AkraFWQqsEJr3aDYsala64YlPEdLrfUFpVR7YBvQT2t9ooTjxgJjASIiIu44c+ZMhU5G1Cz5+fls2bIFm81GvXr1SEhIoF+/fvj6+ppdmqgljh07xhNPPMErr7xCz549zS6nVnBXn/8R4A9a64tKqRbAZ1rrjmU85n+Bj7TW60o7Tvr8PYfT6WTnzp1YrVYuXbpEXFwcw4YNo27dumaXJmowb9p03ZXc1ee/GXiw6PsHgU0lFNJQKRVY9H1j4HfA4Sq+rqhFfHx8uOuuu1iyZAmzZ8/mm2++YciQISxYsIDk5GSzyxM1UFpaGuPHj+fBBx+U4K8mVW35hwEfABHAWWCE1jpFKdUdGKe1HqOU6gO8Bzgx3mzmaa2XlfXc0vL3bOfPn2flypV8/PHH3H333SQkJHDTTTeZXZaoAbxx03VXkou8RK2QkZHBunXrWLNmDR07diQhIYEePXrIdpNeyuFwMHHiRJo0acK0adPk/4NKkPAXtYrdbuef//wnNpsNPz8/EhISGDBgAH5+svyUt3A6ncyYMYPMzEzeeOMNmRhQSRL+olZyOp3s2bMHq9XKmTNnGDlyJMOHD6devQpdIyhqIW/edN2VZFVPUSv5+PjQp08f+vTpw/fff4/NZmPo0KEMHTqUkSNHyvZ8Hspms7Fz506WLVsmwe8mshqXqLFuvfVWXnnlFVauXInWmpEjRzJt2jSOHDlidmnChZKSkli9ejULFiwgNDTU7HK8hnT7iFojMzOTjRs3snr1atq2bUtCQgK9e/eWQcFabPfu3cyYMYNFixbJ3rsuIn3+wmMVFBTw6aefYrVacTqdJCQk8Kc//UmW961lDh06xIQJE3jzzTdlbwgXkvAXHk9rzX/+8x+sVisnTpwgJiaGqKgo6TqoBWTT9eojA77C4yml6NWrF7169eLYsWPYbDYiIyMZNGgQI0eOpGXLlmaXKEqQnJzMX/7yF5544gkJfhPJgK/wCDfffDMvvfQSq1evxt/fn4SEBJ5//nkOH5aVRGqSzMxM/vrXvzJ8+HCGDi1zTydRjaTbR3ik7OxsNm3axMqVK2nZsiUWi4Xf/e53st2kiex2O+PHj+fmm2/mqaeekoH6aiJ9/kJgLBewdetWrFYreXl5xMfHM2jQIBkcdjPZdN19JPyFKEZrzf79+7FarRw+fJgHHniA6OhoGjRoUPaDRZXIpuvuJQO+QhSjlOKOO+7gjjvu4OTJkyQmJjJ8+HAGDhxIXFwcrVu3NrtEj7VkyRIOHTrE4sWLJfhrEPnsJbxO+/btmTZtGuvWrSMkJISHHnqIZ555hgMHDphdmsfZsGEDSUlJzJ8/n+DgYLPLEcVIt4/werm5uXz44YfYbDYaN26MxWLh7rvvln7pKtq+fTuvvfYaS5culb133Uj6/IWoIKfTyfbt23n//ffJyMggPj6ewYMHy0JjlbB//36mTJnC/PnzufXWW80ux6tI+AtRSVprvvnmG6xWKwcOHCA6OpoRI0bQqFEjs0urFWTTdXPJgK8QlaSUomvXrnTt2pUzZ86QmJjI/fffT//+/YmPj6dNmzZml1hjXbhwgSeffJKnnnpKgr+Gk5a/EOWQkpLCunXrWLt2LbfffjsWi4WuXbvKhUrFpKWl8fDDDxMTE0NMTIzZ5Xgt6fYRohrk5eWxZcsWEhMTCQkJwWKx0LdvX6/fcjA3N5dx48bJpus1gIS/ENXI6XTy73//G6vVSnJyMnFxcQwdOpS6deuaXZrbORwOJk2aROPGjWXT9RpAwl8IN/n222+x2Wzs27ePqKgoYmJiaNy4sdlluYVsul7zlDf8ZSKzEFV0++2389prr7FixQqys7N54IEHePnllzl58qTZpVW7+fPnc+7cOWbPni3BX8tIy18IF0tPT2f9+vWsWbOGjh07YrFY6N69u8d1h9hsNjZt2sSyZctkA50aRLp9hDCZ3W7n448/xmq1EhgYiMVi4Z577sHPr/bPsE5KSmLhwoUsW7aMZs2amV2OKEbCX4gawul0snv3bqxWK+fOnSMuLo7IyMhau9bN559/zosvviibrtdQEv5C1ECHDx/GZrOxZ88eIiMjiY2NpWnTpmaXVW6y6XrNJwO+QtRAnTt3ZtasWdhsNhwOB7GxsUyfPp2jR4+aXVqZzp49y6RJk5g2bZoEvweQlr8QJsrIyGDjxo2sXr2a9u3bY7FY6NWrV/UPDufmQk4O+PhAaCiUMVMnOTmZ0aNHM2bMGNl7t4aTbh8hapGCggI++eQTrFYrSiksFgsDBgzA39/fNS/gcMC//w0bN8L+/XDxohH4WhtvADffDHfeCQ88ADfd9IuHZmVl8cgjjzBgwAAeeugh19Qjqo2EvxC1kNaaPXv2YLVaOX36NLGxsQwfPpyQkJDKPaHTCWvXwuuvQ3q6EfZBQRAQAFc/XTidkJdnfPn4QLduMHMmdOwom67XQhL+QtRyR48exWazsXPnTgYPHszIkSNp0aJF+Z/g4kWYOBH27jUCvzz7EmgNGRmgFM6//IXnzp7Fx89PNl2vRST8hfAQP/74I6tXr2bTpk389re/xWKx0KlTp9IfdOoUxMTAlSvQoMF/W/nlpAsKSPvhB75u1Yrf/ec/BAQFVeEMhDvJbB8hPESzZs148skn+fDDD/nVr37FU089xaOPPsrOnTtxOp3XPyA52Qj+tDRo2LDCwQ9wOT2dVODurCwCXnqp6ichahxp+QtRyzgcDv71r3/x/vvvU1BQQEJCAvfeey8BAQFGt80jj8D27UbwV0JqWhpXLl+mbdu2+Pn4GGMFS5bAH//o4jMR1UG6fYTwcFpr9u3bh9Vq5ciRI8YmKvXrEzxlCtSvX6kWf0ZmJpcuXaJtmzbGmwkYU0IDA43ZQpUdeBZuI9s4CuHhlFL06NGDHj16cOLECRJtNg4/9RTt/fwIqVv3v+Fdgmnnz/OfnBxynU4a+/nx57Aw+gcEcOniRVpHRPzysXXrGl1ImzdDfLwbzky4g7T8hfAUBw7giIwkpaCA1PR0guvWJSwsjKASBmtP5ucT7u9PgI8Pp/PzGXPqFJO15q6IiJLXHMrJgcaNYceOSn2iEO7jlgFfpdQIpdQhpZRTKXXDF1NKDVRKHVFKHVdKPVuV1xRC3MBnn+GnNU2bNaNDhw7UrVuXc+fPc/rMGTIzMynezGsfGEhA0dTNAoeD/Lw88hs0uPFic0FBxtTRH36o/vMQblHVbp+DQBTw3o0OUEr5Au8C/YFzwF6l1Gat9eEqvrYQorgvvjAu3gJ8fXxo1KgRDRs1IjMjg8uXL/PjTz8RFhZG/fr18VGKVy9dYnNaGpl5edwaFMSA0pZmVsq4Ivj77yEiwk0nJKpTlcJfa/0dUNZVfz2B41rrk0XHrgaGARL+QrjSkSPGwGwxCggNDSUkNJScnBxSrlwh+aefaNiwIZPCwhiRm8uZevU4VacOAWV15+TlwbFjMGBA9Z2DcBt3zPNvBRT/rHiu6GdCCFe6ujxDCRQQXLcurVu3pk3btjgcDk6fPk3dOnXoGx7OjwUFrEtNLf35lYLMTNfXLUxRZstfKfUvoHkJd03VWm8qx2uU1JwocZRZKTUWGAsQIR8thagYPz9jnn8ZAgMCaNGiBc357x9nIXDObi/9gVpf98lC1F5lhr/W+p4qvsY5oHWx2+HAhRu81mJgMRizfar4ukJ4l/BwOHkSylgJNMXhYF9ODnfWq0cdpfgiO5tP0tP5W6syPpD7+0ObNi4sWJjJHfP89wI3K6XaAeeBWCDODa8rhHfp2RMOHTLm5ZdCAetSU5l18SJOoIW/P5ObNePusi7g8vWFW291WbnCXFUKf6XUcGA+0ATYopT6Wmv9J6VUS2Cp1vo+rbVDKTUe+ATwBZZrrQ9VuXIhxC/17g02W5mHNfTzY3FFW/B2u9Gt1KFDJYsTNU1VZ/tsBDaW8PMLwH3FbicBSVV5LSFEGe6+22j15+e7vm8+OxvGjPl5Kqmo/WRVTyE8RUAAjB5tbNHoSg6H0eUjSzt4FAl/ITzJI49Ay5aum5KptfFcjz8uF3d5GAl/ITxJnTrwzjtGaOfnV/35MjKM/X0ff7zqzyVqFAl/ITxN164wd67R/VPZLiCtjZU8mzeH99+Xvn4PJOEvhCcaPBjee8+44jc1tVwXf/3MbjeC/7bbYMMGaNq0+uoUppHwF8JT9esHW7cas4DS0403AYej5GO1Nj4lpKUZ4T91qhH8TZq4t2bhNrKZixCerGlTWL4cDh82um82bzbW5vfxgav7//r6GoHfqhU8/DBERhqbvguPJpu5COFNnE44fx6OHjXm7vv4GK37Tp0gNNTs6oQLyDaOQojr+fhA69bGl/Bq0ucvhBBeqMZ2+yilkoEzZtdRCY2By2YX4WZyzt5Bzrl2aKO1LnOkvsaGf22llNpXnv42TyLn7B3knD2LdPsIIYQXkvAXQggvJOHveovNLsAEcs7eQc7Zg0ifvxBCeCFp+QshhBeS8K8ipVQjpdSnSqljRf82LOXYUKXUeaXUAnfW6GrlOWelVFel1OdKqUNKqQNKqRgzaq0qpdRApdQRpdRxpdSzJdwfqJRaU3T/F0qptu6v0rXKcc6TlFKHi36vW5VStX5X97LOudhx0UoprZSq9TOAJPyr7llgq9b6ZmBr0e0bmQnscEtV1as855wD/Flr/StgIDBPKVWrFoxRSvkC7wL3Ap2BkUqpztccNhpI1Vp3AN4CXnNvla5VznP+Cuiute4CrAPmuLdK1yrnOaOUCgH+Cnzh3gqrh4R/1Q0DVhR9vwKILOkgpdQdQDPg/9xUV3Uq85y11ke11seKvr8A/ATUtiUiewLHtdYntdZ2YDXGuRdX/L/FOqCfUkq5sUZXK/OctdbbtdY5RTf3AOFurtHVyvN7BqPxNgfIc2dx1UXCv+qaaa0vAhT9e93i50opH+BN4Gk311Zdyjzn4pRSPYEA4IQbanOlVsAPxW6fK/pZicdorR1AOhDmluqqR3nOubjRwMfVWlH1K/OclVK/AVprrT9yZ2HVSRZ2Kwel1L+A5iXcNbWcT/E4kKS1/qG2NApdcM5Xn6cFYAUe1Fo7XVGbG5X0y7p2elx5jqlNyn0+SqkEoDtwd7VWVP1KPeeixttbwCh3FeQOEv7loLW+50b3KaV+VEq10FpfLAq6n0o4rDfwe6XU40A9IEAplaW1Lm18wFQuOGeUUqHAFuAFrfWeaiq1Op0Dii9/GQ5cuMEx55RSfkB9IMU95VWL8pwzSql7MBoCd2utXbBZsKnKOucQ4Dbgs6LGW3Ngs1JqqNa61q47L90+VbcZeLDo+weBTdceoLWO11pHaK3bAk8B79fk4C+HMs9ZKRUAbMQ417VurM2V9gI3K6XaFZ1PLMa5F1f8v0U0sE3X7otnyjznoi6Q94ChWusS3/hrmVLPWWudrrVurLVuW/Q3vAfj3Gtt8IOEvyu8CvRXSh0D+hfdRinVXSm11NTKqk95zvkB4C5glFLq66KvruaUWzlFffjjgU+A74APtNaHlFIvK6WGFh22DAhTSh0HJlH6bK8ar5zn/DrGJ9i1Rb/Xa98Qa5VynrPHkSt8hRDCC0nLXwghvJCEvxBCeCEJfyGE8EIS/kII4YUk/IUQwgtJ+AshhBeS8BdCCC8k4S+EEF7o/wNvZ1OwAvKlGAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb3IYAbCDBAh7CwqVkGGUpYY4t4oWKnWOtqqrV/8tnVVUVtHhTpoHXUgKqvfGlqrrS2/JIQ9RBIIZEASkpCE7Jzr98ed3CaYcSAn5z4n5/N8PPIg4859fwjhfd3nuq77upTWGiGEEJ7Fy+oChBBCOJ+EvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAeS8BdCCA8k4S+EEB5Iwl8IITyQj9UFtKdv3756+PDhVpchhBBuZfv27cVa636dHeey4T98+HAyMjKsLkMIIdyKUirHnuNcNvwdTmsoKIDSUuP90FAYPBi8pOdLCOF5enb419XB55/D22/Djh1QWws+Pkb422zg7Q3jxsH118MPfgCBgVZXLIQQTqFcdVXPhIQEfd7dPlrDp5/C//4vnDljfC4oyAj+lhoboarKaAj8/OCBB+DWW+XVgBDCbSmltmutEzo7ruelXGkpLF1qBHl9vdG9Exr63eAH486/Vy8ICzPef/xxSE6G/Hzn1y2EEE7Us8K/uBhSUuDLLyE8HAIC7P9ePz/je/bsgcWLIceuMRMhhHBLPSf86+rg5puN0I6IAKXO/RxKGd9bWgrXXgtlZY6vUwghXEDPCf/f/x6+/trowumqsDAoLITHHuv6uYQQwgX1jPA/dAhWrzb678/njr8tYWGwaRN89ZVjzieEEC6kZ0z1fP11Y8ZOW4O6LTyal0daVRXVNht9fXy4uU8fFoeHt32wl5fRkLz8Mlx0UTcULYQQ1nH/8C8vN6Z19urV6aG39e3Lo76++Hl5cbS2luU5OVzg78/Y9ub39+oFaWnGOMKwYQ4uXAghrOOQbh+l1BtKqUKl1N52vq6UUr9XSh1WSu1WSsU54roA7Nxp/NnJXT9AtL8/fk1z+JVRF7n19e1/Q/Pdf1qaAwoVQgjX4ag+/7XA3A6+/gNgdNPbcuAPDrou7NtnzPSx01MnTnDRwYMsyc6mr48PF4WEdPwNNhvIGkNCiB7GId0+WusvlVLDOzjkCuDP2niceJtSKlwpNVBrXdDli+/bZzygZaeHIiP52YAB7K6uZntVFX6dDRD7+8OBA10sUgghXIuzZvtEAcdbfJzb9LlWlFLLlVIZSqmMoqIi+85cXX1OM3xq6+o4dOgQ/cvKyKmo4L3i4o6/QSljTSAhhOhBXGqqp9Z6jdY6QWud0K9fp8tRGwIDjbV87OSlFFpr/AMCqKqtZffJk2RlZVFw4gTlFRU0NjaeXZTx9K8QQvQgzgr/PGBIi48HN32u68aMgYaGTg8raWjgs/Jy6r29CQoOJqOujm3A/GHDGBQVhZ+vL2VlZXxz+DDZR45wsrCQyspKGmtqYOxYh5QqhBCuwllTPTcAdyul3gOmAqcd0t8PMGGC0S/fCQWsKy3liYIC6hsbCW9s5IHBg5neNEU0MCCAPn36YNOamupqzlRVUXzqFN6VlWzOyECtXk1iYiLjx4/HT14JCCHcnEPCXyn1F2AG0FcplQusBHwBtNavAluAecBhoAq4zRHXBWDyZKNrprGxw4HfCB8f1jTN1dfA4cOHGdzG/H4vpQgKCiIoKIh+ffpgKytj6o9+xL/z83nhhRc4evQoEydOJDExkcTERMaMGYOXLAEthHAzPWM9/wcegE8+MRZls1NxcTF19fUMGjiw/YPKy2HSJPjwwxafKiczM5O0tDQyMjIoLi4mLi6OpKQkEhISGDFiBMpRS0wIIcQ5snc9/54R/vv3wxVXQEiI3dM+GxoayMrKYtTo0Xi3dedusxnh/9prMGNGu+cpLi4mIyODtLQ00tPTqaurIzEx0WwMBg0aZN/fQQghHMCzwh+MjVjefNNYk99Oubm5BAUH07utVwxlZTBnDrzyyjlNJc3LyyM9Pd18ZRAYGNiqMejdu7fd5xJCiHPleeFfXQ0LFsCxY3Yv63zmzBlOnDxJdHQ0reK9vNw4x9/+Bl0Ia6012dnZZmOQmZnJgAEDSEpKIjExkbi4OEI6e8JYCCHOgeeFP8DJk8ZOXvn5xiuATu7YNZCVlcWgQYMIan5e4PRpY0G3Dz6A0aPP/y/QhsbGRg4ePGh2Ee3du5cRI0aYjcGkSZPwt2PmkhBCtMczwx+gqAjuuQfS041N2zsJ0+JTp6itrSWqXz+orDQCf/Vqp6ziWVdXx549e8zG4JtvviE2NtZsDGJjY/GxY8E6IYRo5rnhD8Zg7fvvG+MAtbXG6pxBQd8dDLbZaDhzhhPHjjFwyBC8f/xjuPNO8PXt+l/gPFRVVbFjxw6zMcjLy2PKlCnmtNJRo0bJtFIhRIc8O/ybVVfDZ5/Bn/5kLAAHRkMA3z4bMHo0H/j6ohYt4qrbb+/a9RysrKyM7du3m41BeXk5CQkJZmMwZMgQmVYqhGhFwv9sjY3GpiylpcYrg7AwGDECfH3JzMzkiSee4MMPP3TpMD158iTp6enmm1LKbAgSExPp37+/1SUKISwm4X8OtNZcffXVPPzww8TFOW6fme6kteb48ePmq4KMjAzCw8PNaaXx8fGEOWIzeyGEW5HwP0fvvvsu+/bt4/HHH3faNR3JZrNx+PBhszHYuXMngwcPNhuDyZMnExQUZHWZQohuJuF/jsrLy1m0aBGffPIJ4efwoJiramhoYN++feYzBgcOHCAmJsZsDGSBOiF6Jgn/87By5UpGjRrFTTfd5NTrOkNNTQ27du0yG4OjR48yYcIEszGQBeqE6Bkk/M/D7t27WblyJR999FGPD8KKigoyMzPNxqCoqMhcoC4xMVEWqBPCTdkb/vIEUQsTJkzA39+fjIwMkpKSrC6nW/Xq1Yvp06czffp0AE6dOkVGRgbp6em888471NTUmK8KEhMTZYE6IXoYufM/ywcffMD27dt5+umnnX5tV5Kfn2++KkhPTycgIKDVAnV9+vSxukQhRBuk2+c8VVZWsnDhQtatWycB10RrzZEjR1otUNevXz+zMYiLi6NX045oQghrSfh3wa9//WsGDx7Mbbc5bsOxnsRms3Hw4EGzMdizZw/Dhw9vtUBdQECA1WUK4ZEk/Ltg//79PPTQQ3zyySc9fuDXEerq6ti7d6/ZGBw6dIixY8eajcG4ceNkgTohnETCv4tuvPFGVqxYwbRp0yyrwV1VVVWxc+dOc7zg+PHjTJ482WwMRo8eLY2qEN1EZvt0UXJyMuvXr5fwPw9BQUFMmzbN/NmdPn3aXKDu448/pqysjPj4eJKSkkhKSpIF6oSwgNz5t6OqqooFCxbw3nvvyYJpDlZYWGjue5yWlgZgLk6XlJQkP28hukC6fRzgySefpG/fvixbtszSOnqy5gXqmhuDjIwMQkNDzcYgISGhRyy3IYSzSPg7wKFDh/jJT37Cxo0b8T57IxjRLZoXqGtetnrHjh1ERUWZjUFcXJwsUCdEByT8HeTWW29l6dKlXHLJJVaX4pEaGhrYv3+/2Rjs27eP0aNHm11EEyZMkAXqhGhBwt9BNmzYwD/+8Q9eeOEFq0sRQG1trblAXXp6OtnZ2YwfP77VAnXyKk14Mgl/B6mpqWHevHm88847DBw40OpyxFkqKytbLVBXWFjIlClTzGml0dHRMpNIeBQJfwd65plnCAkJ4a677rK6FNGJkpISc4G6tLQ0qqurSUhIMBuDqKgoq0sUoltJ+DtQdnY2K1asYNOmTfKkqpvJz89v1Rj4+/ubjUFCQgJ9+/a1ukQhHErC38HuuOMOrr/+embOnGl1KeI8aa05evSoOV6wfft2+vbtazYGcXFxhIaGWl2mEF0i4e9gW7ZsYcuWLbz00ktWlyIcxGaz8fXXX5uvCnbv3s3w4cPNaaWTJ0+WBeqE25Hwd7C6ujrmzZvH2rVrGTx4sNXliG7QvEBd8wNnX3/9NWPHjjUbg3HjxuHr62t1mUJ0SMK/Gzz//PP4+Phwzz33WF2KcILmBeqaG4Njx44xefJkszGIiYmRBeqEy5Hw7wY5OTksW7aMzZs3yx2gByovLycjI8NsDEpKSkhISDCfMRg6dKhMKxWWk1U9u8GwYcOIjo7m888/57LLLrO6HOFkoaGhzJw50xz0LyoqMgeP165di81ma7VA3YABAyyuWIj2yZ3/Ofrss89Yv349r776qtWlCBeitSY3N9dsDNLT0+nVq1erBeoiIiKsLlN4AOn26Sb19fXMnz+fP/7xjwwbNszqcoSLstlsZGVlmQ1BZmYmgwYNarVAXXBwsNVlih5Iwr8bvfjiizQ0NHDfffdZXYpwE42Njd9ZoG7kyJFmF9HEiRNlgTrhEE4Nf6XUXOB3gDfwmtb6qbO+fivwDJDX9KmXtNavdXROVw7/3Nxcbr31VrZs2SL/YcV5qa2tZffu3WZjkJWVxfjx480HzsaOHSsL1Inz4rQBX6WUN/AyMAfIBdKVUhu01vvPOvR9rfXdXb2eKxg8eDBjxoxh69atzJs3z+pyhBvy9/c3u4AAzpw5Yy5Q9/jjj1NQUEBcXJzZGERHR8u0UuFQjpjtkwQc1lpnAyil3gOuAM4O/x4lOTmZd999V8JfOERwcDAXX3wxF198MWAsULd9+3bS09P58MMPqaysNAeOk5KSiIqKkmmlokscEf5RwPEWH+cCU9s4bolS6hLgEHCf1vp4G8e4jUsuuYTf/va3ZGdnEx0dbXU5oofp3bs3c+bMYc6cOQAUFBSYC9StWbMGHx8fc6XShIQE+vXrZ3HFwt10uc9fKZUCzNVa39H08U3A1JZdPEqpPkCl1rpWKXUncI3W+jsrpCmllgPLAYYOHRqfk5PTpdq62x/+8AcqKyv56U9/anUpwoNorcnJyTH3PM7IyKBPnz5mN1J8fLwsUOfBnDbgq5S6EHhMa31508cPA2itn2zneG+gRGsd1tF5XXnAt1lBQQE33HADW7ZskQXAhGVsNhuHDh0yG4OdO3cybNiwVgvUBQYGWl2mcBJnPuGbDoxWSo3AmM1zLXD9WcUM1FoXNH24CDjggOtabuDAgUycOJHPPvuMRYsWWV2O8FBeXl6MGTOGMWPGcPPNN1NfX8++fftIS0vjzTff5MCBA4wZM8ZsDMaPH+82y5NoDSdOQF4eNDRAQACMGAFhHd46Cns4aqrnPOAFjKmeb2itH1dK/QrI0FpvUEo9iRH6DUAJcJfW+mBH53SHO3+AL7/8kjfeeIO1a9daXYoQbaqurmbXrl2kpaWRnp5OTk4OkyZNMhuDCy64wKVmEtlskJEBa9fCv/8N1dXQcg+lujro2xd+8AO48UYYNcqyUl2SPOTlJDabjYULF/L8888TExNjdTlCdKq8vNycSZSens6pU6eIj483G4Phw4dbNpNo9264/37IyTHu+oODjeBvWY7WRgNQVWV8/vvfhyefBNli2yDh70R//OMfKS4u5uGHH7a6FCHOWXFxcas1iRoaGlpNK42MjOz2Gmw2WLUKVq8GLy/o1at14LdHazh9Gvz94emnYcGCbi/V5Un4O1FhYSHXXnstmzZtIigoyOpyhDhvWmvy8/PNLqKMjAyCgoLMPY8TEhLo3bu3Q69ps8EDD8CGDUbon8822bW1xiuBlSvh5psdWp7bkfB3sgcffJBp06aRnJxsdSlCOIzWmuzsbLMxyMzMJDIy0mwM4uPju7xA3RNPwOuvG4O4XRl6qK+HM2fglVfAk1dcl/B3sv/85z+8/PLLvP322/LkpeixGhsbOXDggNlFtHfvXqKjo83GYNKkSfj7+9t9vu3b4ZprjDt+Ryxl1Dw4/I9/QJ8+XT+fO5LwdzKbzcbixYt56qmniI2NtbocIZyirq6u1QJ1hw8fZty4cebgcWxsbLsL1DU2wowZUFhohL+jlJXB/Pnwu9857pzuRMLfAm+++Sa5ubk8+uijVpcihCWqqqrMBerS09PJz89nypQpZmMwcuRIc1rpP/8Jy5dDZw8jNzaWU1DwKyort+HjE06/fncTFja3g+OhshK++gr693fgX85NSPhb4NSpU6SkpLBx40ZCQkKsLkcIy5WVlZl7HmdkZFBRUWHue/z225ezZ08QYWEdd5Pm5T0CaAYOfJSamkMcP34vw4e/ib9/+2tqlZYag8grVjj4L+QGZA9fC/Tp04epU6eyZcsWrr76aqvLEcJy4eHhzJ49m9mzZwNw8uRJ0tPT2bYtg7/9bSo+PgWcORNEcHAwwcFB+Pi0fvLYZqumouIfREd/gJdXEEFBk+nVazqnT2+mf/972r2unx+kpnpm+NvLdR7r6yGSk5NZv349rvqKSggrDRgwgAULFnDzzY8RFTWIYcOGEBgYQEVFBdnZ2WRlZXHiRAEVFeU0NjZSV3cM8MbPb6h5Dn//0dTWZnd4nYAAOHDAmEYq2iZ3/g6WkJBAXV0de/bsYeLEiVaXI4RLys0FLy+Fn58/fn7+RET0BjQ1NbVUVZ2hrKyM/Px8vLy+oaHBl8rKSoKCAvHy8sbLKwSb7UyH5/f2Nvr+T50CWe26bXLn72BeXl5ceeWVfPTRR1aXIoTLqqszns5tTREQEEDv3n0YMmQoMTEX0Lv3IBobKzl69ChZWVlobcNmO4OXV+fPFnh5GXP/Rdsk/LvBwoUL+eKLLygvL7e6FCFckp9f+8s3NDTUU1JyipycHIqLfVDKRlSUN35+/lRUVFBbe6jDwd5mNptxHdE2Cf9uEB4ezve//302bdpkdSlCuKThw1vf+TcH/tGjR8nOzqamppa+ffsSEzOBPn3mUlX1FuHhARQVfUVFxReEhc3v8PwNDeDr67kPetlDwr+byMCvEO0bPhwaGhooLv5u4I8ePZpBgwYREhKCUl5ERj6EzVZLQcESKit/S58+D3R6519TA+PG2bc4nKeSAd9uMmXKFJRS7Nixg7i4OKvLEcIlFBYWsnXrVrZu3UpV1RLq6r5Hv359CQ4OQqm270W9vUMZMmQVAEVFRTQ0NHR6nYYGmNv+c2ACufPvNkopkpOTZeBXeLyTJ0/y7rvvsnTpUq699loOHz7MHXfcwfvvX07v3n0IDg5pN/jPFhERTnl5OTZbY7vHNDYag71XXumov0HPJHf+3Wj+/PmsXr2a0tJSIiIirC5HCKc5efIkf//739m6dStHjx5lxowZ3HHHHSQmJppbSNpsMGwYHDvW+RIPzXx8fAkKCqK8vJzw8Lb/T5WXw9VXg4NXnu5xJPy7UWhoKDNmzGDjxo3c7OmLjIserznwU1NTycnJaTPwW/LyMhZfW7zY6Kaxdx3/iIgICgsLCQ8PB1p36ldVQXg4yL5KnZPw72bJycmsXLmSG2+80aX2SRXCEdoK/GXLlrUb+GcbNw5+/GN44QX71/MPDg6msdFGdXU1gYHfbp5UV2fM6//jH+1/JeHJJPy72YQJEwgICCAjI4OkpCSryxGiy06cOGF26bQM/KSkJHzOYxuuu+82nsR96y0ICTGmaHZMERERTmlpqRn+VVVG+K9aBRdddO5/J08k4d/NWg78SvgLd9Uy8I8dO8b06dO7FPgtKWVsvzh4MPz2t0aQh4Z2PE0zPDycw4ezqK9v5MwZb3r1gldfhUsu6VIpHkWWdHaCyspKFi5cyLp16+gjT50IN9Ec+KmpqRw/fpzp06czZ84cEhMTuxz47Tl8GH7+c9i92xgQDgr67tPANpsxj//EiVP4+fly3XWh/M//gMypMMh6/i7mN7/5DYMGDWLp0qVWlyJEu84O/BkzZjB79uxuDfy2HDgAb78NX3wBBQVGV5BSRvA3NkJ0NEyZkseePY+yadNrMp7Wgqzn72KSk5N56KGHuPXWW+UXVbiUgoICs0unOfDvvPNOpwd+S2PHwuOPG+9XVkJ+vjEjKCDA6B7y8wOtB3HddVUynnaeJPydJDY2lrCwMLZt28a0adOsLkd4OFcM/PaEhEBMzHc/r5QiJSWFdevWSfifB9f6V+7hmgd+JfyFFZoDPzU1ldzcXGbMmMEPf/hDEhISXC7w7TVv3jxefvllCgsL6e+JG/Z2gXv+i7upyy+/nBdffFF+UYXTnB34l156KXfddZdbB35LQUFBXHbZZXz66acsW7bM6nLcivv/67uR5l/UTz75hOXLl1tdjuihCgoKzMXTemLgny0lJYV7772XpUuX4u3tbXU5bqPn/Sa4uOTkZH7yk59w++23yy+qcJj8/HyzDz8vL48ZM2b06MBvafTo0URGRvKvf/2LGTNmWF2O2+jZvxUuKCYmhgEDBvDVV19xiTyRIrqgOfBTU1PJz89nxowZrFixgvj4+B4f+GdrHviV8LefZ/2GuIjmgV8Jf3Guzg78Sy+9lB/96EceGfgtzZ49m+eee47jx48zZMgQq8txC57722KhOXPm8Pzzz1NQUMDAgQOtLke4uPz8fLMPXwK/bX5+fixcuJD169dz7733Wl2OW5AnfC3y7LPPEhwczF133WV1KcIFtRX4s2fPlsDvwPHjx1m6dCmbN2/Gz4N3bpcnfF1ccnIyK1asYNmyZfKfWQBtB/7dd99NfHy8TA6ww5AhQ7jgggvYunUr8+bNs7oclyepY5Ho6GiGDBnCl19+ycyZM60uR1jk7MCfOXOmBH4XLFmyhLfeekvC3w4S/hZqHviV8PcsEvjd55JLLuGZZ57hm2++YfTo0VaX49Ik/C00a9YsVq1aRW5uLoMHD7a6HNGNWgZ+QUGBdOl0E29vbxYvXsy6det4WPZy7JAM+FrshRdewNvbm3vuucfqUoSDNQd+amoqJ06caDVoK4HffQoLC7n22mvZtGkTQUFBnX9DD+PUAV+l1Fzgd4A38JrW+qmzvu4P/BmIB04B12itjzri2u4uOTmZO+64gx/+8Id27XkqXFtbgX/PPfdI4DtR//79SUhI4K9//StLliyxuhyX1eXwV0p5Ay8Dc4BcIF0ptUFrvb/FYbcDpVrrUUqpa4GngWu6eu2eYOjQoYwcOZLPP/+cyy67zOpyxHnIy8szu3Qk8F1DSkoKzz//PMnJyaiO9oP0YI64808CDmutswGUUu8BVwAtw/8K4LGm99cBLymllHbVPicnS05OZt26dRL+bkQC37UlJCRQU1PDnj17mDhxotXluCRHhH8UcLzFx7nA1PaO0Vo3KKVOA32AYgdc3+3NmDGDZ555hpycHIYNG2Z1OaIdzYGfmprKyZMnufTSS/nxj39MXFycBL6L8fLyYsmSJaxbt07Cvx0uNdtHKbUcWA5Gd4in8PX1ZdGiRaxfv5777rvP6nJECy0Dv7CwkEsvvZR7771XAt8NLFy4kCuuuIKysjLCw8OtLsflOCL884CWKykNbvpcW8fkKqV8gDCMgd9WtNZrgDVgzPZxQG1u48orr+SWW27hRz/6kUc/mu4KcnNzzS4dCXz3FRYWxvTp09m4cSM33XST1eW4HEeEfzowWik1AiPkrwWuP+uYDcAtwH+BFOAf0t/fWlRUFGPHjpVH0y0igd8zpaSk8Oijj3LDDTfg5eVldTkupcvh39SHfzfwN4ypnm9orfcppX4FZGitNwCvA28ppQ4DJRgNhDhLcnIyb7/9toS/kzQHfmpqKkVFRVx66aX85Cc/IS4uToKihxg/fjxBQUGkpaXxve99z+pyXIo85OVCGhoaWLBgAa+88grR0dFWl9MjnR34M2fOZPbs2RL4Pdj69ev5z3/+w7PPPmt1KU4hq3q6IR8fHxYvXsxHH33ET3/6U6vL6TGOHz9uduk0B/59990nge8h5s6dy0svvURhYSH9+/e3uhyXIXf+LubEiRNcf/31bNmyhYCAAKvLcVttBb7c4Xuup59+mvDwcO68806rS+l2cufvpiIjI5k4cSKfffYZixYtsroct9Ic+KmpqRQXFzNz5kzuv/9+pkyZIoHv4VJSUrj77ru5/fbbZf+MJvJTcEFLlizh9ddfl/C3w9mBP2vWLB544AEJfNHKyJEjiYqKkv0zWpDwd0EXXXQRTz31FIcOHSImJsbqclzOsWPHzC4dCXxhr+YnfiX8DRL+LsjLy4srr7ySjz76SNYkbyKBL7pq1qxZPPfccxw7dsyjVhBojwz4uqiioiKuvvpqNm/e7JFrkkPbgT9nzhwmT54sgS/Oy+9//3saGxt79DIqMuDr5vr160d8fDz/93//R3JystXlOM3ZgT979mwefPBBCXzhEEuWLOHmm29mxYoV+Pv7W12OpST8XdiSJUt46aWXuPLKK3v0muQS+MJZoqKiGDduHFu3bmX+/PlWl2MpCX8XNnXqVJ588kkOHDhAbGys1eU4VMvAP3XqFLNmzZLAF06RkpLCm2++KeFvdQGifV5eXiQnJ/PRRx/1iPBvDvzU1FRKSkok8IUlZDadQQZ8XVxJSQlLlixh48aNhISEWF3OOWsr8GfPni2BLyz12muvUVhYyCOPPGJ1KQ4nA749RO/evZk6dSpbtmzh6quvtrocu+Tk5JhdOs2B/9Of/lQCX7iMxYsXc9VVV3HvvfcSHBxsdTmWkPB3A0uWLGHVqlXMnn0Ve/Yo9u6Fb76BujoIDoYJEyA21vjTqgkMLQO/tLSUmTNnSuALl9W3b1+SkpLYsmULV111ldXlWELC3w34+CSQlnYTU6bUERjoT20t+PiAUmCzwfr14OtrvN14I9x0Ewwa1P11NQd+amoqZWVlzJw5k5/97GdMmjRJAl+4vJSUFJ599llSUlJ69Gy69kj4u7CKCnj8cVi3TnHmzMUodYp+/QbRXtd/XR2sWQNvvgm//CVcfz04OoPPDvxZs2bx85//XAJfuJ2EhATq6+vZtWsXkydPtrocp5Pwd1FHjsANN8DJkxAWBr16BXH4cAGNjY3tbivo52e81dXBypWQmgp/+AN09QHho0ePml06Eviip1BKkZKSwrp16yT8hWs4dgxSUow7/4iI5s/6EBISwunTZfTu3afD7/fzM7qA/v1vWLoU/vSncx8LkMAXnmDBggWsWbOG0tJSIr79z+YRJPwm3X5kAAAZzklEQVRdTF0d3H47nD4N4eGtvxYREUFBQQG9e/cGOu6jVMr4/rQ0eOop45VAZ5oDPzU1lfLycmbOnMlDDz3ExIkTJfBFjxQaGsqll17Khg0buOWWW6wux6kk/F3MSy8ZXT5hYd/9WlBQIEpBVVUVQUGdT09TyjjPW2/BvHmQmPjdY84O/FmzZvHwww9L4AuPkZKSwsMPP8xNN93kUb/zEv4upKgIVq+GkBAjuL9LER4eQWlpmV3hD+Dtbbw9+ij89a/GeY8cOWJ26UjgC08XGxtLaGgo27ZtY9q0aVaX4zQS/i7kww+hocGYxtmeXr0Cyct7jKqqLGy2Cnx9B9O//92EhLT/SxsSAgcP1vPYYxs4ePADCXwhWlBKmRu9SPgLS7z1FgQGdnyMtzcEBg6mV6/l9O8fS2XlV+TlPcSIEe/h59d6cn9tbS0VFeWUl5dTUxPEV18NYtWqR5gwYYIEvhAtzJ07lxdffJETJ04QGRlpdTlOIQngIkpLobCw81k5Xl6BREXdTWVlAEopevW6GF/fQdTUHASMwC8uLiI7O4tjx3JobGxk4MCBjBgRiVIXymwdIdoQGBjI3Llz+fjjj60uxWkkBVzEwYPG9Ex7HjQMDAxEKS/OnKmioaGEmpoczpwJ+07gjx49mgEDIgkMDMLfX3HkiDGbSAjxXSkpKXzyySc0NDRYXYpTSLePiygpMZZqsI8iIiKc3Nwc6uoeR6kL8fKKYuDAUAIDA2lrGqiXl9GwVFRAn44fExDCI0VHRzNs2DC++OILZs2aZXU53U7u/F3Eua6sHRYWis32CjabF35+y7DZbNTV1Xd61+KiK3gL4RKan/j1BBL+LiI01P51eLTWnDjxOEFB9UyY8EeGDYsmICCAiopysrOzyc7O4sSJE1RUVGCzNTZ9j/HKwg23BBDCaWbMmEFWVhY5OTlWl9LtpNvHRcTEGNM8te683//EiSepqzvC0KGv4OUVgL8/+Pv7ExHRG9DU1NRw5swZSktLyM/Pw8/PHz+/UCIjfVHKH/DsjauFaI+fnx+LFi3io48+4v7777e6nG4lO3m5CK1hyhTj7tzPr/3j6usLOHx4IUr5odS3C7xFRj5CWNgP2jivjerqaoqKGujffxu9e/+GcePGkZSURGJiIrGxse0uFCeEJ8rPz+emm25i8+bNBAQEWF3OOZOdvNyMUnD11fD66x2Hv6/vQMaOtb9RVMqLoKBgIiJgzZrLmTz5+2RmZpKens4TTzxBQUEBU6ZMITExkaSkJEaOHOmRa5sL0WzQoEGMHz+e1NRUFi5caHU53Ubu/F1ITg7MmnVu/f/2qKoyFnn797+/e96SkhIyMjJIT08nLS2N6upqEhISSEpKIikpiUHO2BVGCBfzr3/9i9dee40//elPVpdyzuy985fwdzEPPgiffPLdFT3Pl81mrBD64ovG4m6dyc/PNxuC9PR0AgICzIYgISGhaUVRIXo2m83GokWLePbZZxkzZozV5ZwTCX83VV4OM2dCZaVjZuaUlMDs2caCcefam6O1Jjs722wIMjMziYyMNBuC+Ph4j938WvR8b7zxBvn5+fzyl7+0upRzIuHvxjIzjV28lOraLlynT0NUFHz8cctNYc5fY2MjBw4cMBuDvXv3MmrUKHO8YOLEifh1NGAhhBs5deoUKSkpbNy4kRA3miMt4e/m0tLgttugttZYk/9c7tobG41XEMOHw1/+Av37d0+NtbW17Nq1y+wmOnLkCOPHjze7icaMGSPrCAm39vDDDzN58mSuueYaq0uxm4R/D5CTA/ffD7t2Gev+BAV13AjYbEboA1x3HTz0EDizV6aiooLMzEzzlUFRURHx8fFmN9GIESNkJpFwK9u3b+fpp5/m/fffd5vfXQn/HsJmMwaAX3nFaAwaG41lnf38jIbAZjNeHShlvF10EdxzD8THW105FBcXk56ebr7V19eTmJhodhN5ytK5wn1prbnqqqt45JFHiIuLs7ocuzgl/JVSvYH3geHAUeBqrXVpG8c1AnuaPjymtV7U2bkl/FvTGvbsgYwMo0soO9t4IjgwEMaPh4QEmDbN6ON3RVpr8vLyzFcF6enp9OrVy2wIEhISCHfUFCchHOgvf/kLe/bs4YknnrC6FLs4K/x/C5RorZ9SSj0ERGitf97GcZVa63MaMZHw79lsNhuHDx82xwt27txJVFSUOV4wefJkgroy2i2Eg1RUVJhLPrjDVGdnhf/XwAytdYFSaiDwT631BW0cJ+EvOtTQ0MC+ffvMVwYHDhwgJibGXIZiwoQJ+Pr6Wl2m8FC/+tWvGDJkCLfddpvVpXTKWeFfprUOb3pfAaXNH591XAOwE2gAntJaf9LZuSX8PVt1dTU7d+40u4hycnKYNGmS2U0UExMjM4mE0+zfv5+f//znfPrppy7/e+ewtX2UUluBtkbmftHyA621Vkq115IM01rnKaWigX8opfZorbPauNZyYDnA0KFDOytN9GCBgYFceOGFXHjhhQCUl5eby1D84he/oLS0tNUyFEOGDHGb2RjC/cTGxhIREcF///tfLrroIqvLcQindPuc9T1rgU1a6w53TJA7f9GRwsLCVstQAK2WoejfXQ83CI+1YcMGPv/8c55//nmrS+mQs7p9ngFOtRjw7a21/tlZx0QAVVrrWqVUX+C/wBVa6/0dnVvCX9hLa82xY8fMhiAjI4OIiAhzvCAhIYHQ0FCryxRurrq6mvnz5/POO+8wcOBAq8tpl7PCvw/wATAUyMGY6lmilEoAfqi1vkMpNQ1YDdgwdg57QWv9emfnlvAX58tms3Ho0CGzMdi1axfDhg0zxwsmT57sluu0C+s9++yzBAUFsWLFCqtLaZc85CVEk7q6Ovbu3Wt2Ex06dIixY8ea3USxsbH4+MjWFqJzR44c4c4772Tz5s0uO/tMwl+IdlRVVbFjxw7zlUFeXh5Tpkwxu4lGjhzp8jM6hHXuvPNOUlJSmDNnjtWltEl28hKiHUFBQVx00UXmrI3S0lK2b99OWloaH374IZWVlSQkJJjdRFFRUTKTSJhSUlJYt26dy4a/veTOX4izFBQUmM8XpKWl4efnZzYEiYmJ9OnTx+oShYXq6+tZsGABr776KiNGjLC6nO+Qbh8hHEBrzZEjR8yGIDMzk379+pnjBXFxcW611rtwjFdeeYWqqioefPBBq0v5Dgl/IbpBY2MjBw8ebLWhTXR0tLla6eTJk2VDGw9QUFDADTfcwObNmwkMDLS6nFYk/IVwgrq6Onbv3m02BllZWYwbN87sJho7dize3t5Wlym6wX333ceMGTO44oorrC6lFQl/ISxQWVlJZmam2U108uRJ4uLizG4i2dCm5/jqq69YvXo1f/7zn60upRUJfyFcQElJSatlKGpra80uosTERAYNGmR1ieI82Ww2Fi9ezFNPPUVsbKzV5Zgk/IVwQS03tMnIyCAwMNCcRZSYmEhERITVJYpzsHbtWo4dO8b//M//WF2KScJfCBentSYrK8tsDDIzMxk0aJA5XhAXFycb2ri4kpISlixZwqeffuoy60dJ+AvhZhoaGti/f7/ZTbR//35Gjx5tjheMHz9eZhK5oEceeYQJEyZw3XXXWV0KIOEvhNurqalh165d5iuDo0ePMmHCBLObaMyYMbIMhQvIzMzkiSee4MMPP3SJwXxZ3kEINxcQEMDUqVOZOnUqYGxos337dtLT01m5ciWnTp0iPj7e7CYaNmyYS4SPp5kyZQpeXl5kZmYSHx9vdTl2kzt/IdxUUVFRq2UobDab2RAkJSXJhjZO9MEHH7Bjxw6efPJJq0uRbh8hPInWmuPHj5sNQUZGBmFhYWZDEB8fT1hYmNVl9liVlZUsXLiQdevWWb72k4S/EB7MZrPxzTffmOMFO3fuZMiQIeZ4wZQpU1xuWQJ395vf/IZBgwaxdOlSS+uQ8BdCmOrr69m3b5/ZGBw8eJAxY8aY3UTjx4+XDW266ODBgzz44INs2LDB0oF4CX8hRLuqq6vZsWOH2U10/PhxJk+ebHYTjRo1SmYSnYdbbrmFO+64g4svvtiyGmS2jxCiXYGBgUybNo1p06YBcPr0aTIyMkhLS2P9+vWUl5eTkJBAUlISCQkJDBkyRGYS2aF5oxcrw99ecucvhPiOkydPtlqTyNvb21yCIikpib59+1pdokuqra1l3rx5vPXWW5at2yTdPkIIh9Bak5OTYzYE27dvp0+fPmZDEB8fT69evawu02U899xz+Pn5cffdd1tyfQl/IUS3sNlsHDx40HxlsGfPHoYPH26OF0yaNAl/f3+ry7RMTk4Oy5YtY9OmTZYsxyHhL4Rwirq6Ovbs2WO+Mvjmm2+IjY01p5WOGzfO4za0ueuuu1i8eDGXX365068t4S+EsERVVRWZmZlmY1BQUMCUKVPMbqKRI0f2+MHjv//977z//vusWbPG6deW8BdCuISSkhIyMjLMbqLq6mpzJlFSUlKP3NCmoaGBBQsW8MorrxAdHe3Ua0v4CyFcUn5+fquZRAEBAeargsTERHr37m11iQ7x6quvUl5ezs9+9jOnXlfCXwjh8rTWZGdnm41BZmYmAwYMMBuC+Ph4goODrS7zvJw8eZLrrruOTZs2OXVTHgl/IYTbaWxs5MCBA+argr179zJq1CjzlcHEiRPdakOb+++/n4svvpgrr7zSadeU8BdCuL3a2lp27dplvjI4cuQI48ePN8cLXH1Dm//85z+8/PLLvP32298OcldUQHU1+PhAeDg4uH4JfyFEj1NRUdFqJlFRURFxcXFmN9GIESNcaiaRzWbjmoULWTVnDkN37YJdu+D0aSPwtTYagNhYmDkTUlIgMrLL15TwF0L0eMXFxeaaROnp6dTX17dahiLSAWF63mpr4eWXKVu1isaaGmOd/4AA8PWF5gaqsRFqaqCuzvjc7NmwciUMHHjel5XwF0J4FK01eXl5ZkOQnp5Or169zIYgISGB8PBw5xSzbx/86Edw/DgNgYFk5eQwatSojh92s9mgvBz8/eHXv4bk5PO6tIS/EMKj2Ww2Dh8+bI4X7Ny5k6ioqFYb2nTLLJxt2+C224y7+tBQAPLy8ggIDKSPPdNYa2uhqgruuQfuvffbVwl2kvAXQogWGhoa2Ldvn9kYHDhwgJiYGLMxmDBhAr6+vl27yL59Rt+9UtCiYamqqiK/oMB4utm+Yo2B4UcfhVtvPacSJPyFEKIDNTU17Ny50+wmysnJYdKkSWY3UUxMzLnNJKqthblzIS/PvONvpoHs7GwiBwyw/7mF+npjVtDmzTB6tN1lSPgLIcQ5KC8vb7UMRWlpaatlKDrd0Ob55+GllyAios0vl5SWUnXmDIMHD7a/qNOnISYGNm60e0qohL8QQnRBYWFhq2UoALOLKDExkf79+397cFUVJCYaUzfb6TpqtNl4cf9+0oOCyK6r4/LQUB7rbF0jrY1B4HfegaQku+qWbRyFEKIL+vfvz/z585k/fz5aa44fP05aWhpffPEFq1atIiIiwmwMvpeXR1BdHQQGtns+by8vokJCGO7jw4HAQGrtufFWymgAXnvN7vC3V5fCXyl1FfAYMBZI0lq3eauulJoL/A7wBl7TWj/VlesKIYQzKaUYOnQoQ4cOJSUlBZvNxqFDh0hLS+Pjjz+m5sMPmVJVhVdtLcHBwQQFBeHVRhfRwshIjh8/Tl5YGEUNDfZdvFcv+OILY/aQA/dF6Oqd/14gGVjd3gFKKW/gZWAOkAukK6U2aK33d/HaQghhCS8vL8aMGcOYMWO4+eabsX31FTUVFZypq6O4qIia2loCAgIIDg4mODiYwIAAlFIEBATg4+tLbW2t/UHefNzRozBypMP+Dl0Kf631AaCzx6mTgMNa6+ymY98DrgAk/IUQ7q+yEq/TpwkKDydIKfr160ejzUZ1VRVnzpzhxIkT1NXVERQURHBwMCHBwVSVlBh39PZSCrKyXCf87RQFHG/xcS4w1QnXFUKI7lddbczEaXET7O3lRUhICCEhIQA0NDZSdeYMZ5re6urrUecy2cZmM5aBcKBOw18ptRVoa4GMX2itP3VkMUqp5cBygKFDhzry1EII0T18fIxB2Y4O8fYmNDSU0Kb5/wMKC+3v8wejYfFx7L16p2fTWs/u4jXygCEtPh7c9Lm2rrUGWAPGVM8uXlcIIbpfWJgxvdOOAdlGrWnUGg3YgDqbDW+l8O5sCQelICrKYSUDOGMh7HRgtFJqhFLKD7gW2OCE6wohRPfz8oKxY43un068XlzMtK+/Zu2pU2w5fZppX3/N68XFHX+T1sbTvjExDirY0NWpnlcCLwL9gM1KqZ1a68uVUoMwpnTO01o3KKXuBv6GMdXzDa31vi5XLoQQrmLWLGOt/k4s79eP5f36ndu5z5wxGpcOniE4H12689daf6y1Hqy19tdaD9BaX970+Xyt9bwWx23RWsdorUdqrR/vatFCCOFSliwxXgHYbI4/d2MjLF/u8NO67v5nQgjhLiIjjY1YTp927HmrqyEkBC67zLHnRcJfCCEcY+VKY6eu2lrHnK95eufTTxvndTAJfyGEcITISHj8cWORt3OZxtkWrY1XEfPmwZw5jqnvLBL+QgjhKIsXG7tvlZcbM3TOh80GZWXGKqHPPHPOO3nZS8JfCCEc6cc/hsceM/rrT5/u9AGwVpq/Z948WLu2W7p7mkn4CyGEo918M2zZAhdcYLwKKCszZu20RWuorDRC388PXn0VXnyxW4MfZD1/IYToHqNGGTtwpafDG2/A558bn1fK6NpRynirr4fYWFi2zJjV082h30zCXwghuotSxiYsSUlG4B89aqzOWV1tLAkRFWU8ueukwG9Jwl8IIZzBywuio403FyB9/kII4YFcdgN3pVQRkNPGl/oCnayEZClXrw9cv0ZXrw9cv0apr+tcvcb26humte50ASGXDf/2KKUy7NmZ3iquXh+4fo2uXh+4fo1SX9e5eo1drU+6fYQQwgNJ+AshhAdyx/BfY3UBnXD1+sD1a3T1+sD1a5T6us7Va+xSfW7X5y+EEKLr3PHOXwghRBe5fPgrpXorpVKVUt80/RnRznG/VUrtU0odUEr9XqluWgrv/OsbqpT6rKm+/Uqp4c6o71xqbDo2VCmVq5R6yZXqU0pNVkr9t+nfeLdS6hon1DVXKfW1UuqwUuqhNr7ur5R6v+nr/8+Z/6bnUOP9Tb9vu5VSf1dKDXOl+loct0QppZVSTp9dY0+NSqmrm36O+5RS77pSfU3Z8rlSakfTv/O8ts7zHVprl34Dfgs81PT+Q8DTbRwzDfgKY49gb+C/wAxXqa/pa/8E5jS9HwIEudLPsMWxvwPeBV5ypfqAGGB00/uDgAIgvBtr8gaygGjAD9gFxJ51zArg1ab3rwXed9bP7BxqvLT5dw24y5k12lNf03G9gC+BbUCCC/4MRwM7gIimj/u7WH1rgLua3o8Fjtpzbpe/8weuAP7U9P6fgMVtHKOBAIwfjj/gC5x0SnV21KeUigV8tNapAFrrSq11lZPqA/t+hiil4oEBwGdOqqtZp/VprQ9prb9pej8fKATOcSfsc5IEHNZaZ2ut64D3mupsqWXd64BZznrFaW+NWuvPW/yubQMGu1J9TX4NPA3UOLG2ZvbUuAx4WWtdCqC1LnSx+jQQ2vR+GJBvz4ndIfwHaK0Lmt4/gRFOrWit/wt8jnE3WAD8TWt9wFXqw7hrLVNKrW96afaMUsrbSfWBHTUqpbyAVcCDTqyrmT0/Q5NSKgmjoc/qxpqigOMtPs5t+lybx2itG4DTQJ9urOls9tTY0u3AX7u1otY6rU8pFQcM0VpvdmJdLdnzM4wBYpRSXymltiml5jqtOvvqewy4USmVC2wB7rHnxC6xsJtSaisQ2caXftHyA621Vkp9Z3qSUmoUMJZv72pSlVIXa63/5Qr1YfycLwamAMeA94FbgdcdUZ+DalwBbNFa53bHzasD6ms+z0DgLeAWrbXNsVX2XEqpG4EEYLrVtTRruuF4DuP/givzwej6mYGRMV8qpSZorcssrepb1wFrtdarlFIXAm8ppcZ39v/DJcJfaz27va8ppU4qpQZqrQua/uO39ZLrSmCb1rqy6Xv+ClwIOCT8HVBfLrBTa53d9D2fAN/DgeHvgBovBC5WSq3AGJPwU0pVaq3bHaRzcn0opUKBzcAvtNbbHFFXB/KAIS0+Htz0ubaOyVVK+WC85D7VzXW1df1mbdWIUmo2RiM7XWvtoN3F7dJZfb2A8cA/m244IoENSqlFWusMF6kRjP+//09rXQ8cUUodwmgM0l2kvtuBuWD0giilAjDW/emwe8odun02ALc0vX8L8GkbxxwDpiulfJRSvhh3N87q9rGnvnQgXCnV3Ec9E9jvhNqadVqj1voGrfVQrfVwjK6fPzsq+B1Rn1LKD/i4qa51TqgpHRitlBrRdO1rm+psqWXdKcA/dNOom5N0WqNSagqwGljk5L7qTuvTWp/WWvfVWg9v+r3b1lSns4K/0xqbfIJx149Sqi9GN1C2C9V3DJjVVN9YjPHPok7P7KxR6y6MdvcB/g58A2wFejd9PgF4TX87Ir4aI/D3A8+5Un1NH88BdgN7gLWAn6vV2OL4W3HubB97/o1vBOqBnS3eJndzXfOAQxhjC79o+tyvMAKKpv9kHwKHgTQg2lk/s3OocSvG5Ifmn9kGV6rvrGP/iZNn+9j5M1QY3VP7m/7/Xuti9cVizHbc1fRvfJk955UnfIUQwgO5Q7ePEEIIB5PwF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgP9f+ESC91ZCoRCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -288,9 +292,8 @@ "metadata": {}, "outputs": [], "source": [ - "qubitOp, offset = maxcut.get_maxcut_qubitops(w)\n", - "algo_input = get_input_instance('EnergyInput')\n", - "algo_input.qubit_op = qubitOp" + "qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", + "algo_input = EnergyInput(qubitOp)" ] }, { @@ -310,19 +313,21 @@ "output_type": "stream", "text": [ "energy: -1.5\n", - "maxcut objective: -4.0\n", + "max-cut objective: -4.0\n", "solution: [0. 1. 0. 1.]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX9//HXyUoICUuAsIZFFKVKKbIUarUUoShbiMGEJFNREFFpZVFREUSxoKgUBfkiW784ExbZCkqsXwtKf4BYEBUBZd8XDWRfJ5M5vz9u0AAh62RuMvN5Ph55JJPc3PlcMe85c8655yitNUIIIbyLj9kFCCGEcD8JfyGE8EIS/kII4YUk/IUQwgtJ+AshhBeS8BdCCC8k4S+EEF5Iwl8IIbyQhL8QQnghP7MLuJHGjRvrtm3bml2GEELUKl999dUlrXWTso6rseHftm1b9uzZY3YZQghRqyilTpXnuBob/sJzFBbC6dOQmQk+PhAWBs2agVJmVyaE95LwF9UiMxM2bYLVq+GHH4yg9ykaYXI4oE4d6NYNLBa4+27wk/8ThXAr+ZMTLmW3w4IFsHChEfL+/hAcDL6+Vx9XUADbt8OOHdCgAfztb9Cvnzk1C+GNZLaPcJljx2DgQJg3DwIDjVAvKfjBeFGoXx9CQyErC8aOhXHjjK+FENVPwl+4xMGDEBUFJ08aoe/vX/7frVvXeCFISoLYWMjIqLYyhRBFJPxFlV24AHFxkJdnhHhlBnJ9fKBhQ/j+exg92hgkFkJUHwl/USVawzPPGN01ISFVO5dSxruGr76C5ctdU58QomQS/qJKPvoIvvjCaPG7glLGOMHs2XD+vGvOKYS4noS/qDStjcHdgIDSu3pSUj7gxAkLP/zQi/Pnp5d53oAAYzZQYqLrahVCXE3CX1Tad9/BiRPGgG1p/Pwa07jxKOrXH1LucwcHg9VqTB0VQrieS8JfKbVMKfWTUmr/DX6ulFLvKKWOKqX2KaW6uuJ5hbl27jTm8pc1wBsa+kdCQv6Ar2/5+4YCAozgP3SoikUKIUrkqpb//wIDSvn5fcDNRR9jgP9x0fMKE335ZcWmdFaUw2HM/hFCuJ5Lwl9r/R8gpZRDhgLva8MuoIFSqrkrnluY58gR42au6uJ0GktDCCFcz119/i2BM8Ueny36nqjF8vPLP6dfayfp6amkpaWRlZUJ6DJ/RynIza1ajUKIkrkr/EuKiOv++pVSY5RSe5RSe5KTk91QlqiKwEBjxk/ZNGfPngMUderUITk5mWPHjpOWlorWzhv/loagIFdVK4Qozl3hfxZoXexxK+C6Wdxa60Va625a625NmpS5F4Ew2U03Ga3/0mnOnz+L05lPaGgIdeoE0KZNS8LDm5CZmcnRo0e5dCmZwkLHdb/p4wMdO1ZL6UJ4PXeF/ybgz0Wzfn4LpGutL7jpuUU16dnTGJQtTXJyMunpVrKzY0lJWU56ehKHDv2O3NxVtG4dQUREGwoKCjh27BgXL17EXmxup58f3HZbNV+EEF7KJUs6K6VWAn8AGiulzgIvAf4AWuuFQBJwP3AUyAEedsXzCnP16mWs2Kl1yX3/qakpZGRkcMstz+Lr+0KJ5wgMDKR58xY0aVJAamoqJ0+eoG7dYEJDwwgICOLWW6v5IoTwUi4Jf631iDJ+roEnXfFcoubo0gUiIoxlGIKDr/5ZRkYGly5dpm3bNvj6lv2/mZ+fP02aNCUsLIz09HTOnUvjtts+YufOJtx99934+Mj9iEK4kvxFiUpTCv7yF2MphuIDv9nZ2Vy8eJGIiNb4+wdU6Jw+Pr7Uq9eIVq2aMWlSM5YtW0Z0dDTr1q0jLy/PxVcghPeS8BdVMmSIsR1jerrxOC8vj3PnztGqVUsCA+tU+HxaGyuETpqkGDHi9yxfvpypU6eyY8cOhgwZwnvvvUdKSmm3lAghykPp8s3Vc7tu3brpPXv2mF2GKIdz5+D++yE7u4Dk5BM0a9aMkJDQCp9Ha0hLg1//GtasuX4HsFOnTpGYmMinn35Kv379iI+Pp02bNi66CiE8g1LqK611tzKPk/AXrvD//l86AwemERzciJYtK76w/5Xgv+UWWLWq9CWiU1JSWLNmDWvXruWOO+7AYrHQpUsXVGV2kRHCw0j4C7fJycnhscce4+abB/LZZ7GcPm1s7OJXzukEubnGLmB//CO89Zaxr2955OXlsXnzZmw2G6GhoVgsFvr06YNvSZsGC+ElJPyFWxQUFPDUU0/RqlUrnn/+eex2xTvvwJIlxlaMAQFQp45xw1ZxDgfk5BhfBwfDq68aXUeVabw7nU7+85//YLVaSU5OJj4+nsGDB1O3rLWmhfBAEv6i2jmdTqZOnUp+fj6zZ8++ajpmWhr885+wciUcO2b031/5cWGh8bhLFxg5Evr0MV4kXGHfvn3YbDb27t1LVFQUDz74II0bN3bNyYWoBST8RbXSWjNnzhx++OEH5s+fT2Apy3va7XDyJGRmGi8AYWHQqtX17wZc6cyZM6xcuZJ//etf/OEPfyAhIYH27dtX3xMKUUNI+ItqtXz5cj7++GMWL15MSFV3bq9G6enprF27ltWrV3PrrbdisVjo1q2bDA4LjyXhL6rNhx9+yKJFi1i2bBm1ZQE+u91OUlISNpuNwMBALBYL9957L37lHZUWopaQ8BfVYvv27bzyyissWrSItm3bml1OhTmdTnbs2IHVauXcuXPExcURGRlJ8LXrUwhRS0n4C5f77rvvmDhxIn//+9+5/fbbzS6nyg4ePIjNZmPXrl1ERkYSGxtL06ZNzS5LiCopb/jL8g6iXE6cOMGkSZN4+eWXPSL4ATp16sTMmTOx2Ww4HA5iY2OZNm0ahw8fNrs0IaqdtPxFmX766SdGjRrF2LFjGThwoNnlVJuMjAw2bNjAqlWraN++PRaLhZ49e8rgsKhVpNtHuERGRgajR49m0KBB/PnPfza7HLcoKCjgk08+wWq1opTCYrHQv39//P39zS5NiDJJ+Isqy8/P58knn6RTp05MmDDB61rAWmt27dqF1Wrl5MmTxMTEEBUVVaOntgpR3vCXeW6iRIWFhTz//PM0a9aM8ePHe13wAyil6NWrF7169eLw4cPYbDaGDh3KoEGDGDFiBM2bNze7RCEqTQZ8xXW01syaNQu73c5LL70ku2gBt9xyC6+88gorV67E19eX+Ph4XnjhBb7//nuzSxOiUqTbR1xn4cKF7Ny5k4ULF8riaDeQlZXFP//5T1asWEHr1q2xWCz07t1bXiiF6aTPX1TKmjVrWLlyJUuWLKFRo0Zml1PjORwOPv30U6xWKwUFBSQkJHDfffcR4KqV6oSoIAl/UWFbtmzhzTffZOnSpbRo0cLscmoVrTV79uzBarVy6NAhYmJieOCBB6hf2q40QlQDGfAVFbJnzx5ee+013n33XQn+SlBK0b17d7p3786xY8dITExk2LBhDBgwgLi4OFq1amV2iUJcRTooBYcPH+b555/ntdde45ZbbjG7nFrvpptuYtq0aaxevZrg4GAeeughnn32Wb777juzSxPiZ9Lt4+XOnTvH6NGjefrpp+nbt6/Z5XiknJwcNm3axIoVK2jSpAkWi4W7775bBodFtZA+f1GmlJQURo0aRVxcHMOHDze7HI9XWFjI1q1bsVqtZGVlER8fz6BBg0rdCEeIipLwF6XKyclh7Nix9O7dm7Fjx5pdjlfRWvP1119js9nYv38/0dHRREdHy+wq4RIy4CtuqKCggGeeeYaOHTvy2GOPmV2O11FK0bVrV7p27crJkydJTEzkgQceoF+/fsTHx9OmTRuzSxReQFr+XsbpdDJt2jRyc3OZPXs2vr6+ZpckMLrg1qxZw9q1a+ncuTMWi4Vf//rXXrmshqga6fYR19Fa8/e//52DBw/y7rvvSl9zDZSXl8dHH31EYmIi9evXx2Kx0KdPHxkcFuUm4S+u8/7777N582YWL15MaGio2eWIUjidTrZt24bVauXSpUvEx8czePBgWW5DlEnCX1xl8+bNLFy4kKVLl8pWhbXMvn37sNls7N27l6ioKB588EEaN25sdlmihpJtHMXPduzYwdtvv828efMk+Guhzp07M3v2bP7xj3+QmZnJ8OHDeeWVVzh+/LjZpYlaTFr+Hu7Kputz5szhjjvuMLsc4QJpaWmsXbuWDz74gNtuuw2LxcKdd94pg8MCkG4fAZw8eZIxY8Ywbdo07rrrLrPLES5mt9vZvHkzNpuNoKAgLBYLffv2xc9PZnB7Mwl/L3dl0/XHHnuMQYMGmV2OqEZOp5MdO3ZgtVo5f/48cXFxREZGyuCwl5Lw92IZGRk8+uijDBw40Gs2XReGgwcPYrPZ2LVrF5GRkcTGxso4j5eRAV8vlZ+fz6RJk+jZsycWi8XscoSbderUiZkzZ2Kz2SgoKCA2NpZp06Zx+PBhs0sTNYy0/D1IYWEhkydPJjAwkBkzZsiNQYKMjAzWr1/PqlWruOmmm7BYLPTs2VMGhz2YW1v+SqkBSqlDSqmjSqnnSvj5SKVUslLqm6KP0a54XvELrTWvv/46ubm5TJ8+XYJfABAaGsrIkSPZtGkTAwYMYM6cOYwYMYLNmzdTUFBgdnnCRFVu+SulfIHDQD/gLLAbGKG1PljsmJFAN631uPKeV1r+FfPee++xfft23nvvPRnoEzekteaLL77AZrNx8uRJYmNjGTZsGCEhIWaXJlzEnat69gCOaq2PFz3xKmAocLDU3xIus3btWv71r3+xdOlSCX5RKqUUvXv3pnfv3hw6dAibzcbQoUMZNGgQI0aMoHnz5maXKNzEFX0DLYEzxR6fLfretR5QSu1TSq1VSrUu6URKqTFKqT1KqT3JyckuKM3zbdmyhaVLlzJ//nxZD15USMeOHZkxYwYrV67Ex8eH+Ph4pkyZwvfff292acINXBH+JY0cXduX9CHQVmvdGfg3sLykE2mtF2mtu2mtuzVp0sQFpXm2r776itdee425c+fSsmVJr7dClC08PJzx48ezadMmbrvtNiZNmsTYsWPZsWMHTqfT7PJENXFF+J8FirfkWwHnix+gtb6stc4vergYuNMFz+vVDh8+zHPPPcfMmTPp2LGj2eUID1CvXj0SEhLYtGkTQ4cO5d133yUmJoaNGzdit9vNLk+4mCvCfzdws1KqnVIqAIgFNhU/QClVvCNxCCDvK6vg/PnzjB8/nsmTJ9O9e3ezyxEexs/Pj/vuu4/ExESeeeYZtmzZwuDBg1m2bBnp6elmlydcpMoDvlprh1JqHPAJ4Ass01ofUEq9AuzRWm8C/qqUGgI4gBRgZFWf11ulpqYybtw4Ro4cyb333mt2OcKDKaXo0aMHPXr04OjRoyQmJhIZGcl9991HfHy8dDXWcnKTVy1yZdP1Xr168fjjj5tdjvBCycnJrF69mg0bNtCtWzcsFgu333672WWJYmRtHw9TUFDAhAkTaNasGVOmTJE7NIWpcnJy2LhxIytWrCA8PByLxcLvf/97ubmwBpDw9yBOp5OXXnqJ7Oxs3njjDdl0XdQYhYWFbN26FavVSlZWFgkJCQwcOFD2hzaRhL8HmTt3Lt999x0LFiyQPypRI2mt+frrr7HZbOzfv5/o6GiGDx9Ow4YNzS7N67jzDl9RjaxWKzt37mTJkiUS/KLGUkrRtWtXunbtyokTJ1ixYgVRUVH069ePhIQEIiIizC5RXEM66GqwpKQkVq9ezfz58wkNDTW7HCHKpV27dkyZMoV169bRqFEjHnnkESZNmsQ333xDTe1p8EbS7VND7dy5k+nTp/Pee+/Rrl07s8sRotJyc3P56KOPSExMpEGDBlgsFvr06SODw9VE+vxrsf379zNhwgTeeustOnfubHY5QriE0+nk888/x2azcfnyZeLj4xk8eDBBQUFml+ZRJPxrqVOnTjFmzBimTp0qm64Lj7Vv3z5sNht79+4lKiqKmJgYwsLCzC7LI8g2jrVQcnIyf/nLXxg3bpwEv/BonTt3Zvbs2SxbtozMzEyio6OZMWMGx48fN7s0ryEt/xoiMzOTRx99lAEDBjBy5EizyxHCrdLS0li7di0ffPABnTp1wmKx0LVrV7mZsRKk26cWsdvtjBs3jo4dOzJx4kT5H154rfz8fJKSkrDZbAQFBWGxWOjbty9+fjIrvbwk/GsJp9PJ5MmT8ff359VXX5UZEEJg/F1s374dm83G+fPniYuLIzIyUnaqKwcJ/1pAa82sWbM4e/Ysc+fOJSAgwOyShKhxDhw4gM1m48svvyQyMpLY2FiaNm1qdlk1lgz41gKLFy/m4MGDvPnmmxL8QtzAr371K2bNmoXNZsNutxMbG8tLL73EkSNHzC6tVpOWv0nWrVuH1Wpl2bJlsveuEBWQkZHBunXrWL16NR06dMBisdCjRw8ZKysi3T412NatW5k9ezZLliyhVatWZpcjRK1kt9v55JNPsFqt+Pr6YrFY6NevH/7+/maXZioJ/xpq7969TJ48mfnz58veu0K4gNaaL774ApvNxsmTJ4mNjSUqKop69eqZXZopZFXPGujIkSNMnjxZNl0XwoWUUvTu3ZvevXtz6NAhbDYbQ4YMYdCgQYwYMYLmzZuXfRIvJAO+bnL+/Hmeeuopnn32Wdl0XYhq0rFjR2bMmMGKFSvw8fEhPj6eKVOm8MMPP5hdWo0j3T5ukJqayqhRo4iJiSEmJsbscoTwGllZWWzYsIGVK1cSERGBxWKhV69eHn0/jfT51xA5OTk8/vjj9OzZkyeeeMLscoTwSgUFBXz66afYbDYcDgcJCQkMGDDAI6dYS/jXAA6HgwkTJtCkSROmTp0qU9GEMJnWmt27d2O1Wjl8+DAxMTFER0e7frMkux2++goOHDA+p6aCry+0bAndusHtt8Ntt0E1ZIKEv8mcTifTp08nKytLNl0XogY6cuQIiYmJbNu2jfvvv5+4uDhatmxZtZNevgzLl8P770NuLhQUGKF/5e+/oMAIfKUgIgIefxyGDgUXTk+V8DfZ22+/zbfffsuCBQuoU6eO2eUIIW4gOTmZ1atXs2HDBrp3705CQgK33357xU6iNSQlwfPPQ3Y2BAdDaV1KWkNOjvEO4ZZb4O23jc8uIOFvIpvNxqZNm1iyZInsvStELZGTk8PGjRtZsWIF4eHhWCwWfv/735c9OFxYCC++CB98AHXqQEV2JtMaMjONdwJvvQWDBlXtIpDwN01SUhILFixg6dKlhIeHm12OEKKCCgsL2bJlC1arlezsbBISEhg4cCCBgYHXH6y10dpfswbq14fKziLKzze6id55B+6/v0r1S/ib4Mqm6wsXLqR9+/ZmlyOEqAKtNV9//TVWq5UDBw4QHR3N8OHDadiw4S8HffCBEf5VCf4r8vONMYGPP4Z27Sp9Ggl/Nztw4ADjx4+XTdeF8EAnTpwgMTGRLVu20L9/f+Lj44nw84N77zUGc0t6V1AZaWnGTKB1634ZJK4gWdLZjU6fPs3EiROZOnWqBL8QHqhdu3a8+OKLrF27lgYNGvDII4+wNTKS/IwMtKuCH4x3EPv3w2efue6cNyAt/ypKTk5m1KhRjB49miFDhphdjhDCDXJ//JGC3/yGS9nZKH9/wsLCCAkJoaRZ+xmFhbxy4QK7srJo4OfHuCZNGFC//o1PnpEBXboYXUqVIAu7uUFWVhZ//etfGTZsmAS/EF4k6IsvCAoOJqRFCzIzM7l8+TI//fgjjcLCaFC//lUzhF67eBF/pfi/W27hcF4eT505wy116tD+Ru8YQkJg71746Seoxh3LpNunkux2OxMnTqRr166MHDnS7HKEEO60ezcUFqKA0JAQ2rVtS4uWLcnOzubI0aP8lJyMw+Eg1+lka2YmjzdpQl0fH7rUrcs9ISFsTk+/8bmVAj8/4+7gaiThXwlOp5MXX3yRsLAwJk2aJMs2COFtvvrKmNNfTN2gIFq3akXbtm0pLCzk2LFj7D53DuV0ElHshq+bAwM5np9f+vnz8yX8axqtNa+//jpZWVm8/PLLHr06oBDiBlJSjNY54NQaR2Eh9oIC8vLzKSwsJCQkhPDwcLLsdlR+PoePHOHK6Go9Hx+ync7Sz+/jY3T7VCPp86+gJUuWsH//fhYtWuSRKwIK4ekKCgrIzc0lOzubnJycnz8X/yjrZzMOH8bH4aAAQGt8fH3xUcr47OPz80c9f3/sPj7k5+fjdDrxLQr+4PI0Gqt5Mo73hb/WcOYMfP89HDxovIJfWW3vV7+CTp2gQYMSf3X9+vVs3ryZZcuWERwc7ObChfBODofj59Ctamjn5ORQWFhIcHAwdevWJTg4mKCgoJ8fX/nela8bNWp03c+CgoKIuHgRvx9/xCc4GKVUibN8AIKzs3FcvkxAu3b4FgX+4fz8Gw/2XuF0VutgL3hT+OflwebN8N57cOKE8bbKbjc+X3mFDQgw1un44x9h1Cjo3v3nJVc/++wzFi1axJIlS2jUqJGJFyJEzVZYWHhV+FY1tB0Ox3XBXDyQi/+sYcOGNwz0K98LCAio+jjd734Hq1eXuiRzvt3OpXPnuLdBA5ZnZjK1Xj0O5+WxLTOTf7RtW/r5AwKMxmg1ckn4K6UGAG8DvsASrfVr1/w8EHgfuBO4DMRorU+64rnLZe9eeOopuHDBWDo1NPTG/2hOJ2zZYnz07QszZ7L31ClmzpzJvHnzaNWqldvKFsIdCgsLrwvhqoR28bAuK7QbNGhQZivcJWHtat26Gev53ECBw8Hp06dp2rQp00JCePn8efodPkx9X1+eb9as9Ja/1kYjtFOnaij8F1UOf6WUL/Au0A84C+xWSm3SWh8sdtgoIFVr3UEpFQu8DlT/foZaw//8D8yZY3Tt3KA75yo+PsZxRS8C+XfdxeL69fnbO+9w6623VnvJQpTF6XReF8RVCW2Hw1FqS7l4aDdo0KDMQA8MDKx5Ye1qffsaWeFw/Dzwe0Wh08np06dp2KABDYoy563Wrct/7sxM+M1voFkzV1Z8HVe0/HsAR7XWxwGUUquAoUDx8B8KTC/6ei0wXymldHXfXvz22zBvnnHThF8FL9XHB3twMD8eO8Yb2dnUc+FmC8K7OJ3OEkO6sqFdUFBAUFBQiX3U14Z28+bNy2yFe0VYu1r9+jBkCKxfD8UWenNqzZkzZwgODiasceOKn1dro+H56KMuLLZkrgj/lsCZYo/PAj1vdIzW2qGUSgfCgEsueP6Sffpp5YMfcBQWcvr0aRo1bUq9wEB4+GGjKygsrBqKFTWJ0+m8KoSrGtp2u506deqUa5AxPDy8zECvU6eOhHVN8NRT8NFHxpz8wEA0cO7cOfz8/AgPD7/hIHCp0tON7p6+fV1c7PVcEf4lXeO1LfryHINSagwwBiAiIqLyFaWkwDPPGDdhVCL4nU4nZ86cITQk5JfB3bQ0mDLF6EaSP7wapXhYuyK0r4R1SS3la0P7SliX1gqvU6eO3A/iiVq1gmnT4MUX0f7+XPzxR5xOJ61bt65c8OfnG93Tc+dWekXPinBF+J8FindotQLO3+CYs0opP6A+kHLtibTWi4BFYCzsVumK5s83FkeqxKwcrTVnz50jMDCQJsWnWoWGGi3/r74yBntEpTmdTvLy8q4K3aqEdn5+/lVhXVqfdNOmTcsMdAlrUW4xMbB7NxlWK3mFhUS0bYtPZRqHVzZzmTMH3LQXiCvCfzdws1KqHXAOiAXirjlmE/AQ8AUQDWyttv7+nBxYtcro7imF3enktYsX+W9ODhmFhbTy9+fJpk1pm5GBApo3b371q7ePj9EXt2yZ14X/lbAuabCwMqGdl5dHYGBgqVP2rnxu0qTJDX92JbQlrIVpfHxY/9vfojZtYojDga/dft2yD6W6so0jwJtvGuMIblLl8C/qwx8HfIIx1XOZ1vqAUuoVYI/WehOwFLAqpY5itPhjq/q8N7R1q7EbTt26pR5WCDTz92dRRATN/P3ZkZXF0ydPMrduXbq3a1fy27bQUGMsISPD+LqG0lqTm5tbqRtgSgr04mFd1iBj48aNywx0CWvhKbZu3cqiZctY8tln+H71lbGXb2pq+TZwz8017jVq186YnFLNUzuv5ZJ5/lrrJCDpmu9NK/Z1HjDcFc9Vpi+/NObIliHIx4cxTZr8/LhTQQFhTicZjRrd+G2br6/x8f330PPaMe3K01r/3LKu7F2LxUM7Ly+PgICAElvW14Z2o0aNaN26damt8KCgIAlrIa6xd+9eZs2aZdz/07o1tG4NvXvD//4vWK1Gi76gwBh3vNKHX1BgBL+vLzRvDo89BtHRpb9QVBPPu8N3z56Kve0C0tPTOX7pEpf9/bk5KKj0gwsK0Pv3k9e5s0tuNb82rMsaZCwe1qW1wiWshag+R44cYfLkyfztb3+7+v6fpk3h2WeNmUBffmmszLlnjzFh5Erg9+xpbNV4xx2mTh7xvJ287rzTuPGinPPyMzMzOXbqFHP9/Gjp789fQ0JwOp3GR2HhL18XfdTNz2dT48bY2rQps3ujtDVDrn0sYS1E7XD+/HlGjx7NhAkT6Nevn9nlXMd7d/Kq4IuZE5hfUECh08mYkBB8fX3x9/fHt9jKfD9/+Prim57OYw89xOPTp1dL+UKImis1NZVx48bx0EMP1cjgrwjPC/+QELh8uVwtf601czMz8WnYkNdDQshOSQGHg0ZhYdSrV+/Gc3XlRi8hvE5OTg5PPfUU9957LzEx1b86TXXzvL6GO+4wVvAsh1kXL3LCbmduRAQtwsLo0KEDDRo2JDk5mePHj5OWlobz2ncSgYFuH5UXQpjL4XAwefJkOnTowOOPP252OS7heS3/3/4WPv64zMMuFBSwPi2NAKX405EjP3//hWbNGNCuHTnZ2VxOSeGn5GQaNWxIg4YN8buykNNtt1XnFQghahCn08krr7yCn58fU6ZM8ZilNTwv/P/4R3j5ZeOGrFIGUZv7+7OnlBAPDg4mODiYvPx8UlJSOHbsGI0DA6nbuTNBLVpUR+VCiBpo3rx5nD17lgULFuDrhmUX3MXzun1atIC77zZuxHKBOoGBtGjenPbt2+MLzLx0icmTJ7N//36XnF8IUXNZrVZ27NjB3LlzqVPBKeQ1neeFP8CkScb8WYdqVpMJAAAYGElEQVTDZaf0z8mhwe238/y2bXTt2pUXXniB0aNHs23bNpxlbcYshKh1kpKSWL16NfPmzSO0Bt/RX1meGf6dOsHYscYddq64j6GgwOhGevtt6jZoQExMDBs2bCA2NpalS5cSHR3N+vXryc/Pr/pzCSFMt3PnTubOncs777xDeHi42eVUC8+7yesKux0sFti929hsobKDNA6H0YX0wgswevR1P9Za880332C1Wtm/fz/R0dEMHz6chsU2eBBC1B779+9n/PjxzJkzh86dO5tdToWV9yYvz2z5g7FWxrJlxibsqamV6wLKyYGsLHj6aWND9xIopfjNb37DnDlzWLRoEZcuXSIqKoqZM2dy+vTpKl6EEMKdTp06xcSJE5k2bVqtDP6K8NyW/xV2u7G+///8j9EFFBpa6iygn38nO9vYqu2tt6BPnwo9ZUpKCmvWrGHt2rV07twZi8XCr3/9a4+ZIiaEJ0pOTmbUqFGMHj2aIW5cWtnVytvy9/zwv+LgQfj73+Gzz4wXAaWMBeB8fY3HBQXGzWH+/sa7hvh4eOIJ4wWgkvLy8vjoo49ITEykfv36WCwW+vTpI+v4CFHDZGZm8uijj/KnP/2Jhx9+2OxyqkTC/0YuXjTW/N+9G775xhgU9vU1VuPr3t346NOnwiuDlsbpdLJt2zasViuXL18mPj6ewYMHE1TWCqJCiGpnt9sZN24ct9xyC5MmTar179Al/Guoffv2YbPZ2Lt3L1FRUcTExBAmawUJYQqn08nkyZPx9/fn1Vdf9Yh35TLgW0N17tyZ2bNn849//IPMzEyio6OZMWMGx48fN7s0IbyK1prXXnuN7Oxspk+f7hHBXxHedbU1SOvWrZk8eTIbNmygefPmjB07lvHjx/PVV19RU9+NCeFJFi9ezIEDB3jjjTcIMGEnLbNJt08NYbfbSUpKwmazERQUhMVioW/fvh61logQNcW6deuwWq0sW7aMRo0amV2OS0mffy3ldDrZsWMHVquVCxcuMGLECCIjI6lbxob0Qojy2bp1K7Nnz2bJkiW0atXK7HJcTsLfAxw8eBCbzcaXX37J0KFDiY2NpWnTpmaXJUSttXfvXiZPnsy8efOu3nvXg8iArwfo1KkTM2fOxGq1UlBQQGxsLC+99BJHiu0/IIQonxtuuu6lpOVfi2RkZLB+/XpWrVpFhw4dsFgs9OjRo9bPSxaiul3ZdH38+PH079/f7HKqlXT7eDC73c4nn3yC1WrF19cXi8VCv3798C/HvsVCeJvU1FRGjRpFTEyMR+y9WxYJfy+gteaLL77AZrNx8uRJYmNjiYqKol69emaXJkSNkJOTw+OPP07Pnj154oknzC7HLcob/p63jaMXUUrRu3dvevfuzaFDh7DZbAwZMoTBgwczYsQImjVrZnaJQpjmyqbrN910k8dsuu5KMuDrITp27MiMGTNYuXIlSini4uJ48cUX+eGHH8wuTQi389RN111Jun08VFZWFv/85z9ZsWIFbdq0wWKx0KtXL/kjEF7h7bff5ttvv2XBggUet/duWaTPXwDGW99PP/0Uq9WKw+EgISGBAQMGeOXt7MI72Gw2Nm3axJIlSzxy792ySPiLq2it2b17NzabjcOHDxMTE8MDDzzglX8cwnMlJSWxYMECli5d6rF775ZFBnzFVZRS9OjRgx49enD06FESExOJjIzk/vvvJy4ujhYtWphdohBVcmXT9YULF3pt8FeEDPh6oQ4dOvDSSy+xevVq6tSpg8Vi4bnnnuPAgQNmlyZEpRw4cIBp06bx5ptv0r59e7PLqRWk20eQk5PDxo0bWbFiBc2aNcNisXDXXXd53frmonY6deoUY8aMYcqUKdx9991ml2M66fMXFVZYWMiWLVuwWq1kZ2eTkJDAwIEDCQwMNLs0IUrkKZuuu5KEv6g0rTVff/01VquVAwcOMHz4cIYPH06DBg3MLk2In2VmZjJmzBj69+9f6zdddyUZ8BWVppSia9eudO3alRMnTpCYmEhUVBT9+/cnLi6OiIgIs0sUXs5utzNp0iS6du3KyJEjzS6nVpKWvyiXlJQUPvjgA9atW0eXLl2wWCx07tzZ7LKEF3I6nTz33HP4+vryt7/9TcamriHdPqJa5Obm8tFHH5GYmEjDhg2xWCz84Q9/kD9A4RZaa2bNmsXZs2eZO3eu3KxYAreEv1KqEbAaaAucBB7UWqeWcFwh8F3Rw9Na6zJHZiT8azan08nnn3+O1WolNTWVuLg4Bg8eTFBQkNmlCQ+2aNEitm3bxqJFiwgODja7nBrJXeE/G0jRWr+mlHoOaKi1nlzCcVla6wqtMyzhX3vs27cPq9XKN998Q1RUFDExMR63KbYw3/r163n//fc9ctN1V3LXNo5DgeVFXy8HIqt4PlELde7cmTfeeIOlS5eSnp7OAw88wKuvvsqJEyfMLk14iK1bt7Jo0SLmz58vwe8iVQ3/cK31BYCizzfaXbyOUmqPUmqXUkpeIDxUREQEzz33HOvXryc8PJzHHnuMCRMmsHfvXmrq2JKo+fbu3cusWbOYO3curVq1Mrscj1Fmt49S6t9ASbuCTAGWa60bFDs2VWvdsIRztNBan1dKtQe2An211sdKOG4MMAYgIiLizlOnTlXoYkTNkp+fz+bNm7HZbNSrV4+EhAT69u2Lr6+v2aWJWuLIkSM8+eSTvPrqq/To0cPscmoFd/X5HwL+oLW+oJRqDnyute5Yxu/8L/CR1nptacdJn7/ncDqdbN++HavVysWLF4mLi2Po0KHUrVvX7NJEDeZNm667krv6/DcBDxV9/RCwsYRCGiqlAou+bgz8DjhYxecVtYiPjw933303ixcvZtasWXz77bcMHjyY+fPnk5ycbHZ5ogZKS0tj3LhxPPTQQxL81aSqLf8w4AMgAjgNDNdapyilugFjtdajlVK9gfcAJ8aLzVyt9dKyzi0tf8927tw5VqxYwccff8w999xDQkICN910k9lliRrAGzdddyW5yUvUChkZGaxdu5bVq1fTsWNHEhIS6N69u2w36aUcDgcTJkygSZMmTJ06Vf4/qAQJf1Gr2O12/vWvf2Gz2fDz8yMhIYH+/fvj5yfLT3kLp9PJ9OnTyczM5M0335SJAZUk4S9qJafTya5du7BarZw6dYoRI0YwbNgw6tWr0D2Cohby5k3XXUlW9RS1ko+PD71796Z379788MMP2Gw2hgwZwpAhQxgxYoRsz+ehbDYb27dvZ+nSpRL8biKrcYka69Zbb+XVV19lxYoVaK0ZMWIEU6dO5dChQ2aXJlwoKSmJVatWMX/+fEJDQ80ux2tIt4+oNTIzM9mwYQOrVq2ibdu2JCQk0KtXLxkUrMV27tzJ9OnTWbhwoey96yLS5y88VkFBAZ9++ilWqxWn00lCQgJ/+tOfZHnfWubAgQOMHz+et956S/aGcCEJf+HxtNb897//xWq1cuzYMWJiYoiKipKug1pANl2vPjLgKzyeUoqePXvSs2dPjhw5gs1mIzIykoEDBzJixAhatGhhdomiBMnJyfzlL3/hySeflOA3kQz4Co9w88038/LLL7Nq1Sr8/f1JSEjghRde4OBBWUmkJsnMzOSvf/0rw4YNY8iQMvd0EtVIun2ER8rOzmbjxo2sWLGCFi1aYLFY+N3vfifbTZrIbrczbtw4br75Zp5++mkZqK8m0ucvBMZyAVu2bMFqtZKXl0d8fDwDBw6UwWE3k03X3UfCX4hitNbs3bsXq9XKwYMHefDBB4mOjqZBgwZl/7KoEtl03b1kwFeIYpRS3Hnnndx5550cP36cxMREhg0bxoABA4iLi6N169Zml+ixFi9ezIEDB1i0aJEEfw0i772E12nfvj1Tp05l7dq1hISE8PDDD/Pss8+yb98+s0vzOOvXrycpKYl58+YRHBxsdjmiGOn2EV4vNzeXDz/8EJvNRuPGjbFYLNxzzz3SL11Fn332Ga+//jpLliyRvXfdSPr8haggp9PJZ599xvvvv09GRgbx8fEMGjRIFhqrhL179zJ58mTmzZvHrbfeanY5XkXCX4hK0lrz7bffYrVa2bdvH9HR0QwfPpxGjRqZXVqtIJuum0sGfIWoJKUUXbp0oUuXLpw6dYrExEQeeOAB+vXrR3x8PG3atDG7xBrr/PnzPPXUUzz99NMS/DWctPyFKIeUlBTWrl3LmjVruOOOO7BYLHTp0kVuVComLS2NRx55hJiYGGJiYswux2tJt48Q1SAvL4/NmzeTmJhISEgIFouFPn36eP2Wg7m5uYwdO1Y2Xa8BJPyFqEZOp5P//Oc/WK1WkpOTiYuLY8iQIdStW9fs0tzO4XAwceJEGjduLJuu1wAS/kK4yXfffYfNZmPPnj1ERUURExND48aNzS7LLWTT9ZqnvOEvE5mFqKI77riD119/neXLl5Odnc2DDz7IK6+8wvHjx80urdrNmzePs2fPMmvWLAn+WkZa/kK4WHp6OuvWrWP16tV07NgRi8VCt27dPK47xGazsXHjRpYuXSob6NQg0u0jhMnsdjsff/wxVquVwMBALBYL9957L35+tX+GdVJSEgsWLGDp0qWEh4ebXY4oRsJfiBrC6XSyc+dOrFYrZ8+eJS4ujsjIyFq71s0XX3zBSy+9JJuu11AS/kLUQAcPHsRms7Fr1y4iIyOJjY2ladOmZpdVbrLpes0nA75C1ECdOnVi5syZ2Gw2HA4HsbGxTJs2jcOHD5tdWplOnz7NxIkTmTp1qgS/B5CWvxAmysjIYMOGDaxatYr27dtjsVjo2bNntQ8O5+ZCTg74+EBoKJQ1USc5OZlRo0YxevRo2Xu3hpNuHyFqkYKCAj755BOsVitKKSwWC/3798ff398l53c44D//gQ0bYO9euHDBCHytjReAm2+Gu+6CBx+Em266+nezsrJ49NFH6d+/Pw8//LBL6hHVR8JfiFpIa82uXbuwWq2cPHmS2NhYhg0bRkhISKXO53TCmjXwxhuQnm6EfVAQBATAlTcXTifk5RkfPj7QtSvMmAEdO8qm67WRhL8Qtdzhw4ex2Wxs376dQYMGMWLECJo3b17u379wASZMgN27jcAvz7YEWkNGhvHC8Je/ODl9+nn8/Hxk0/VaRMJfCA/x448/smrVKjZu3Mhvf/tbLBYLt912W6m/c+IExMTA5cvQoMEvrfzyKijQnDmTRsuW3/Df//6OoCDZe7e2kNk+QniI8PBwnnrqKT788EN+9atf8fTTT/PYY4+xfft2nE7ndccnJxvBn5YGDRtWPPgB0tMvAalkZd3Dyy9L8HsiafkLUcs4HA7+/e9/8/7771NQUEBCQgL33XcfAQEBaA2PPgqffWYEf2WkpaVy6dJl2rZti4+PH+npsHgx/PGPrr0OUT2k20cID6e1Zs+ePVitVg4dOkRMTAz168cweXIw9etXrsWfmZnBxYsXadOmLQEBRos/JwcCA43ZQpUcdxZuJNs4CuHhlFJ0796d7t27c+zYMWy2RJ5++iB+fu2pWzfk5/AuyblzU8nJ+S9OZy5+fo0JC/szAQH9uHDhIhERra/63bp1jS6kTZsgPt4dVybcQVr+QniIffsgMtJBQUEK6emp1K0bTFhYGEFBQdcdm59/HH//Vvj4BJCff5ITJ0aj9SQiIu4ucc2hnBxo3Bi2bavcOwrhPm4Z8FVKDVdKHVBKOZVSN3wypdQApdQhpdRRpdRzVXlOIUTJPv8ctPYjPLwpHTp0oG7dupw7d5ZTp06SmZkJ/NLQCwxsj4+P0bp3OArIy8unQYP8Gy42FxRkTB09c8YNFyLcoqrdPvuBKOC9Gx2glPIF3gX6AWeB3UqpTVrrg1V8biFEMV9+ady8BeDj40ujRo1o1KghGRmZXLp0iZ9++pGwsDDq16+PUj5cvPgaaWmbyMvLJCjoVsLD+9/w3EoZdwT/8ANERLjpgkS1qlL4a62/B8q6668HcFRrfbzo2FXAUEDCXwgXOnTIGJi9miI0NJTQ0BBycnK4fDmFn35KpmHDhoSFTSQ3dzj16p2iTp0TKFX6lM68PDhyBPrf+DVC1CLumOffEij+ZvFs0feEEC50ZXmGkinq1g2mdevWtG3bBofDwcmTJ6lTpy6tWvWhoOBHUlPXlnp+pSAz0+VlC5OU2fJXSv0baFbCj6ZorTeW4zlKeltQ4iizUmoMMAYgQt5bClEhfn7G8gxlCQgILFomohm//HkWYrefLfX3tC7pnYWorcoMf631vVV8jrNA62KPWwHnb/Bci4BFYMz2qeLzCuFVWrWC48ehrIVAHY4UcnL2UK/eXShVh+zsL0lP/4SWLf9W6u/5+0ObNi4sWJjKHfP8dwM3K6XaAeeAWCDODc8rhFfp0QMOHDDm5ZdOkZq6lgsXZgJO/P2bEx4+iZCQe0r9LV9fuPVWV1UrzFal8FdKDQPmAU2AzUqpb7TWf1JKtQCWaK3v11o7lFLjgE8AX2CZ1vpAlSsXQlylVy+w2co+zs+vIW3aLKrQue12o1upQ4dKFidqnKrO9tkAbCjh++eB+4s9TgKSqvJcQojS3XOP0erPz3d933x2Nowe/ctUUlH7yaqeQniIgAAYNcrYotGVHA6jy0eWdvAsEv5CeJBHH4UWLVw3JVNr41xPPCE3d3kaCX8hPEidOvDOO0Zo5+dX/XwZGcb+vk88UfVziZpFwl8ID9OlC8yZY3T/VLYLSGtjJc9mzeD996Wv3xNJ+AvhgQYNgvfeM+74TU0t381fV9jtRvDffjusXw9Nm1ZfncI8Ev5CeKi+fWHLFmMWUHq68SLgcJR8rNbGu4S0NCP8p0wxgr9JE/fWLNxHNnMRwoM1bQrLlsHBg0b3zaZNxtr8Pj5wZftfX18j8Fu2hEcegchIY9N34dlkMxchvIjTCefOweHDxtx9Hx+jdX/bbRAaanZ1whVkG0chxHV8fKB1a+NDeDfp8xdCCC9UY7t9lFLJwCmz66iExsAls4twM7lm7yDXXDu00VqXOVRfY8O/tlJK7SlPf5snkWv2DnLNnkW6fYQQwgtJ+AshhBeS8He9ii2U7hnkmr2DXLMHkT5/IYTwQtLyF0IILyThX0VKqUZKqU+VUkeKPjcs5dhQpdQ5pdR8d9boauW5ZqVUF6XUF0qpA0qpfUqpGDNqrSql1ACl1CGl1FGl1HMl/DxQKbW66OdfKqXaur9K1yrHNU9USh0s+nfdopSq9du6l3XNxY6LVkpppVStnwEk4V91zwFbtNY3A1uKHt/IDGCbW6qqXuW55hzgz1rrXwEDgLlKqVq1YoxSyhd4F7gP6ASMUEp1uuawUUCq1roD8HfgdfdW6VrlvOavgW5a687AWmC2e6t0rXJeM0qpEOCvwJfurbB6SPhX3VBgedHXy4HIkg5SSt0JhAP/56a6qlOZ16y1Pqy1PlL09XngJ6C2rRHZAziqtT6utbYDqzCuvbji/y3WAn2VUsqNNbpamdestf5Ma51T9HAX0MrNNbpaef6dwWi8zQby3FlcdZHwr7pwrfUFgKLP161+rpTyAd4CnnFzbdWlzGsuTinVAwgAjrmhNldqCZwp9vhs0fdKPEZr7QDSgTC3VFc9ynPNxY0CPq7WiqpfmdeslPoN0Fpr/ZE7C6tOsrBbOSil/g00K+FHU8p5iieAJK31mdrSKHTBNV85T3PACjyktXa6ojY3Kukf69rpceU5pjYp9/UopRKAbsA91VpR9Sv1mosab38HRrqrIHeQ8C8HrfW9N/qZUupHpVRzrfWFoqD7qYTDegG/V0o9AdQDApRSWVrr0sYHTOWCa0YpFQpsBl7UWu+qplKr01mg+PqXrYDzNzjmrFLKD6gPpLinvGpRnmtGKXUvRkPgHq21C3YLNlVZ1xwC3A58XtR4awZsUkoN0VrX2nXnpdun6jYBDxV9/RCw8doDtNbxWusIrXVb4Gng/Zoc/OVQ5jUrpQKADRjXusaNtbnSbuBmpVS7ouuJxbj24or/t4gGturaffNMmddc1AXyHjBEa13iC38tU+o1a63TtdaNtdZti/6Gd2Fce60NfpDwd4XXgH5KqSNAv6LHKKW6KaWWmFpZ9SnPNT8I3A2MVEp9U/TRxZxyK6eoD38c8AnwPfCB1vqAUuoVpdSQosOWAmFKqaPAREqf7VXjlfOa38B4B7um6N/12hfEWqWc1+xx5A5fIYTwQtLyF0IILyThL4QQXkjCXwghvJCEvxBCeCEJfyGE8EIS/kII4YUk/IUQwgtJ+AshhBf6/3cLU7DDOJKsAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb1JCDNhBogQdhYVqyJDKUsMcW8UrFRrHW3V1i9+27qqqK2jSh20jjoQFYF+a2ittrb8khD2ECEQyIAkJCF7nuv3x53cJpBxICfnPifn83w88iDjzrk/hPC+7vu6rvu6lNYaIYQQnsXL6gKEEEI4n4S/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHkjCXwghPJCP1QV0pF+/fnrEiBFWlyGEEG5l69atxVrr/l0d57LhP2LECDIzM60uQwgh3IpSKsee41w2/B1NaygogNJS4/2wMBgyBLyk40sI4YF6dfjX18MXX8Dbb8O2bVBXBz4+RvjbbODtDePHw3XXwQ9+AIGBVlcshBDOoVx1Vc/ExER9rt0+WsOnn8L//i9UVRmfCwoygr+1piaorjYaAj8/uP9+uOUWuRsQQrgvpdRWrXViV8f1upgrLYWlS40gb2gwunfCws4MfjCu/ENDoU8f4/3HHoOUFMjPd37dQgjhTL0q/IuLITUVvvoKwsMhIMD+7/XzM75n1y5YvBhy7BoyEUII99Rrwr++Hm66yQjtiAhQ6uxfQynje0tL4ZproKzM8XUKIYQr6DXh//vfwzffGF043dWnDxQWwqOPdv+1hBDCFfWK8D9wAF591ei/P5cr/vb06QMbNsDXXzvm9YQQwpX0iqmer79uzNhpb1C3tby8R6iuTsdmq8HHpx+RkTcRHr643WO9vIyG5KWX4IILeqBoIYSwkNuHf3m5Ma0zNLTrY/v1uxVf30fw8vKjru4IOTnL8fc/j8DAce0eHxoK6enGOMLw4Q4uXAghLOSQbh+l1BtKqUKl1O4Ovq6UUr9XSh1USu1USsU74rwA27cbf3Z11Q/g7x+Dl5dfS1UopWhoyO3w+Jar//T07tcphBCuxFF9/muAuZ18/QfAmOa35cAfHHRe9uwxZvrY6/jxJ9m//wKys5fg49OPkJDO+3RsNpAlhoQQvY1Dun201l8ppUZ0csjlwJ+18TjxFqVUuFJqsNa6oLvn3rPHeEDLXoMGPcjAgT+jpmYn1dVbUcqv0+P9/WHfvm4WKYQQLsZZs32igWOtPs5t/lwbSqnlSqlMpVRmUVGRXS9cU3N2M3zq6+s4cOAAZWUDqKjIobj4vU6PV8pYE0gIIXoTl5rqqbVerbVO1Fon9u/f5XLUgLEY29ksT6SUF1prAgL8qaur5sSJnRw6dIjjxwuoqCinqanptJqMp3+FEKI3cVb45wFDW308pPlz3TZ2LDQ2dn1cY2MJ5eWf4+3dQHBwEPX1mcAWhg+fT3R0FL6+fpSVlXHw4LccPpxNYeEJKisrqa1tYlz7k4GEEMJtOWuq53rgLqXUe8A04JQj+vsBJk40+uW7pigtXUtBweM0NTXQ1BTOkCH3Exp6MQABAYFERkaitY2amlqqq6s4ebKYykpvMjM38uqriqSkJCZMmICf3AoIIdycQ8JfKfUXYAbQTymVC6wEfAG01q8Am4B5wEGgGrjVEecFmDLF6Jppaup84NfHJ4Lhw1c3f6Q5ePAggYFD2vm7eBEUFERQUBCRkf0pK7Pxox9NIz//3zz//PMcOXKESZMmkZSURFJSEmPHjsVL1oAWQriZXrGe//33wyefGIuy2au4uJiGhnoGD47q8Jjycpg8GT78sPXnysnKyiI9PZ3MzEyKi4uJj48nOTmZxMRERo4ciXLUGhNCCHGW7F3Pv1eE/969cPnlEBJi/7TPxsZGDh06xJgxo/HyOvObbDYj/F97DWbM6Ph1iouLyczMJD09nYyMDOrr60lKSjIbg6iojhsXIYRwNI8KfzA2YnnzTWNNfnvl5uYSHBxERETfM75WVgZz5sDLL5/dVNK8vDwyMjLMO4PAwMA2jUHfvmeeSwghHMXjwr+mBhYsgKNH7V/WuaqqihMnjhMTEwN8l/Dl5cZr/O1v0J2s1lqTnZ1tNgZZWVkMHDiQ5ORkkpKSiI+PJyQk5NxPIIQQp/G48Ac4ccLYySs/37gD6PqKXXPo0CGioqIIDAxCazh1yljQ7YMPYMyYcy6/XU1NTezfv9/sItq9ezcjR440G4PJkyfjb9/UJSGEaJdHhj9AURHcfTdkZBibtneVpSdPFlNXV0f//tFUVhqB/+qrzlnFs76+nl27dpmNwbfffktcXJzZGMTFxeFjz4p1QgjRzGPDH4zB2vffN8YB6uqM1TmDgs4cDLbZoKqqkaNHjzN06GB+/GNv7rgDfH0d8Bc4B9XV1Wzbts1sDPLy8pg6dao5rXT06NEyrVQI0SmPDv8WNTXw+efwpz8ZC8CB0RDAd88GjBkDvr4fsGiR4rbbruxm1Y5VVlbG1q1bzcagvLycxMREszEYOnSoTCsVQrQh4X+apiZjU5bSUuOKv08fGDnSuMrPysri8ccf58MPP3TpMD1x4gQZGRnmm1LKbAiSkpIYMGCA1SUKISwm4X8WtNZcddVVPPTQQ8THO2yfmR6ltebYsWPmXUFmZibh4eHmtNKEhAT6OGI3eyGEW5HwP0vvvvsue/bs4bHHHnPaOR3JZrNx8OBBszHYvn07Q4YMMRuDKVOmEBQUZHWZQogeJuF/lsrLy1m0aBGffPIJ4WfzpJiLamxsZM+ePeYzBvv27SM2NtZsDGSBOiF6Jwn/c7By5UpGjx7NjTfe6NTzOkNtbS07duwwG4MjR44wceJEszGQBeqE6B0k/M/Bzp07WblyJR999FGvD8KKigqysrLMxqCoqMhcoC4pKUkWqBPCTdkb/vIEUSsTJ07E39+fzMxMkpOTrS6nR4WGhnLxxRdz8cXGfgYnT54kMzOTjIwM3nnnHWpra827gqSkJFmgToheRq78T/PBBx+wdetWnnrqKaef25Xk5+ebdwUZGRkEBAS0WaAuMjLS6hKFEO2Qbp9zVFlZycKFC1m7dq0EXDOtNYcPH26zQF3//v3NxiA+Pp7Q0FCryxRCIOHfLb/+9a8ZMmQIt97qsA3HehWbzcb+/fvNxmDXrl2MGDGizQJ1AQEBVpcphEeS8O+GvXv38uCDD/LJJ5/0+oFfR6ivr2f37t1mY3DgwAHGjRtnNgbjx4+XBeqEcBIJ/2664YYbWLFiBdOnT7esBndVXV3N9u3bzfGCY8eOMWXKFLMxGDNmjDSqQvQQme3TTSkpKaxbt07C/xwEBQUxffp082d36tQpc4G6jz/+mLKyMhISEkhOTiY5OVkWqBPCAnLl34Hq6moWLFjAe++9JwumOVhhYaG573F6ejqAuThdcnKy/LyF6Abp9nGAJ554gn79+rFs2TJL6+jNWhaoa2kMMjMzCQsLMxuDxMTEXrHchhDOIuHvAAcOHOAnP/kJn332Gd6n7wQjekTLAnUty1Zv27aN6OhoszGIj4+XBeqE6ISEv4PccsstLF26lIsuusjqUjxSY2Mje/fuNRuDPXv2MGbMGLOLaOLEibJAnRCtSPg7yPr16/nHP/7B888/b3UpAqirqzMXqMvIyCA7O5sJEya0WaBO7tKEJ5Pwd5Da2lrmzZvHO++8w+DBg60uR5ymsrKyzQJ1hYWFTJ061ZxWGhMTIzOJhEeR8Hegp59+mpCQEO68806rSxFdKCkpMReoS09Pp6amhsTERLMxiI6OtrpEIXqUhL8DZWdns2LFCjZs2CBPqrqZ/Pz8No2Bv7+/2RgkJibSr18/q0sUwqEk/B3s9ttv57rrrmPmzJlWlyLOkdaaI0eOmOMFW7dupV+/fmZjEB8fT1hYmNVlCtEtEv4OtmnTJjZt2sSLL75odSnCQWw2G9988415V7Bz505GjBhhTiudMmWKLFAn3I6Ev4PV19czb9481qxZw5AhQ6wuR/SAlgXqWh44++abbxg3bpzZGIwfPx5fX1+ryxSiUxL+PeC5557Dx8eHu+++2+pShBO0LFDX0hgcPXqUKVOmmI1BbGysLFAnXI6Efw/Iyclh2bJlbNy4Ua4APVB5eTmZmZlmY1BSUkJiYqL5jMGwYcNkWqmwnKzq2QOGDx9OTEwMX3zxBZdeeqnV5QgnCwsLY+bMmeagf1FRkTl4vGbNGmw2W5sF6gYOHGhxxUJ0TK78z9Lnn3/OunXreOWVV6wuRbgQrTW5ublmY5CRkUFoaGibBeoiIiKsLlN4AOn26SENDQ3Mnz+fP/7xjwwfPtzqcoSLstlsHDp0yGwIsrKyiIqKarNAXXBwsNVlil5Iwr8HvfDCCzQ2NnLvvfdaXYpwE01NTWcsUDdq1Cizi2jSpEmyQJ1wCKeGv1JqLvA7wBt4TWv95GlfvwV4Gshr/tSLWuvXOntNVw7/3NxcbrnlFjZt2iT/YcU5qaurY+fOnWZjcOjQISZMmGA+cDZu3DhZoE6cE6cN+CqlvIGXgDlALpChlFqvtd572qHva63v6u75XMGQIUMYO3YsmzdvZt68eVaXI9yQv7+/2QUEUFVVZS5Q99hjj1FQUEB8fLzZGMTExMi0UuFQjpjtkwwc1FpnAyil3gMuB04P/14lJSWFd999V8JfOERwcDAXXnghF154IWAsULd161YyMjL48MMPqaysNAeOk5OTiY6OlmmlolscEf7RwLFWH+cC09o5bolS6iLgAHCv1vpYO8e4jYsuuojf/va3ZGdnExMTY3U5opfp27cvc+bMYc6cOQAUFBSYC9StXr0aHx8fc6XSxMRE+vfvb3HFwt10u89fKZUKzNVa39788Y3AtNZdPEqpSKBSa12nlLoDuFprfcYKaUqp5cBygGHDhiXk5OR0q7ae9oc//IHKykp++tOfWl2K8CBaa3Jycsw9jzMzM4mMjDS7kRISEmSBOg/mtAFfpdT5wKNa68uaP34IQGv9RAfHewMlWus+nb2uKw/4tigoKOD6669n06ZNsgCYsIzNZuPAgQNmY7B9+3aGDx/eZoG6wMBAq8sUTuLMJ3wzgDFKqZEYs3muAa47rZjBWuuC5g8XAfsccF7LDR48mEmTJvH555+zaNEiq8sRHsrLy4uxY8cyduxYbrrpJhoaGtizZw/p6em8+eab7Nu3j7Fjx5qNwYQJE9xneRKt4fhxyMuDxkYICICRI6FPp9eOwg6Omuo5D3geY6rnG1rrx5RSvwIytdbrlVJPYIR+I1AC3Km13t/Za7rDlT/AV199xRtvvMGaNWusLkWIdtXU1LBjxw7S09PJyMggJyeHyZMnm43Beeed51oziWw2yMyENWvg3/+GmhpovYlSfT306wc/+AHccAOMHm1Zqa5IHvJyEpvNxsKFC3nuueeIjY21uhwhulReXm7OJMrIyODkyZMkJCSYjcGIESOsm0m0cyfcdx/k5BhX/cHBRvC3rkdrowGorjY+//3vwxNPgOyxDUj4O9Uf//hHiouLeeihh6wuRYizVlxc3GZNosbGxjbTSgcNGtTzRdhssGoVvPoqeHlBaGjbwO+I1nDqFPj7w1NPwYIFPV+ri5Pwd6LCwkKuueYaNmzYQFBQkNXlCHHOtNbk5+ebXUSZmZkEBQWZex4nJibSt29fx57UZoP774f1643QP5d9suvqjDuBlSvhppscW5+bkfB3sgceeIDp06eTkpJidSlCOIzWmuzsbLMxyMrKYtCgQWZjkJCQ0P0F6h5/HF5/3RjE7c7YQ0MDVFXByy+DBy+5LuHvZP/5z3946aWXePvtt+XJS9FrNTU1sW/fPrOLaPfu3cTExJiNweTJk/H397f/BbduhauvNq74HbGWUcvg8D/+AZGR3X89NyTh72Q2m43Fixfz5JNPEhcXZ3U5QjhFfX19mwXqDh48yPjx483B47i4uI4XqGtqghkzoLDQCH9HKSuD+fPhd79z3Gu6EQl/C7z55pvk5ubyyCOPWF2KEJaorq42F6jLyMggPz+fqVOnmo3BqFGjvptW+s9/wvLl0MXTyOVNTfyqoIAtlZWE+/hwV//+zO1snn9TE1RWwtdfw4ABjvvLuQkJfwucPHmS1NRUPvvsM0JCQqwuRwjLlZWVmXseZ2ZmUlFRYe57fNnbbxO0axeqiwe2Hs7LQwOPDB7Mgdpa7jl2jDdHjCCms+6l0lJjEHnFCsf+hdyA7OFrgcjISKZNm8amTZu46qqrrC5HCMuFh4cze/ZsZs+eDcCJEyeMWURbtjDtb3+jwMeHoKoqgoODCQoOxve0mT41Nhv/qKjgg5gYgry8mBIUxMWhoWw8dYq7O7uq9/ODtDSPDH97udBjfb1DSkoK69atw1XvqISw0sCBA1mwYAGP3nQTUdHRDB0+nIDAQCoqKsjOzubQoUMUHD9OeUUFTU1NHK2vxxsY1mrTpDH+/mTX1XV+ooAA2LfPmEYq2iVX/g6WmJhIfX09u3btYtKkSVaXI4Rrys1FeXnh7+eHv58ffSMi0EBdbS1V1dWUlZWRn5/Pt15e+DY2UllZSWBQEN5eXoR4eVHVVah7ext9/ydPgix33S658ncwLy8vrrjiCj766COrSxHCddXXG0/ntqKAgIAAIvv2ZdjQoZwXG0tU375UNjVx5MgRDh06hE1rqmw2gu15HsDLy5j7L9ol4d8DFi5cyJdffkl5ebnVpQjhmvz8Oly+oaGxkZMlJeTk5OBTXIxNKbyjo/H386OiooIDdXWdD/a2sNmM84h2Sfj3gPDwcL7//e+zYcMGq0sRwjWNGNHmyr8l8I8cOUJ2djZ1tbX069ePibGxzI2M5K3qagLCw/m6qIgvKyqY39WSzo2N4OvrsQ962UPCv4fIwK8QnRgxgsbGRk4WF58R+GPGjCEqKoqQkBC8lOLBQYOos9lYUlDAbysruT8ysusr/9paGD/evsXhPJQM+PaQqVOnopRi27ZtxMfHW12OEC6hsLCQzZs3s3nzZpZUV/O9+nr69e9PUHAwXh0EdZi3N6uGDgWgqKiIxsbGrk/U2Ahz5zqy9F5Hrvx7iFKKlJQUGfgVHu/EiRO8++67LF26lGuuuYaDBw9y++23c9n77xPZty8hnQT/6cIjIigvL6eps9k+TU3GYO8VVzjob9A7yZV/D5o/fz6vvvoqpaWlREREWF2OEE5z4sQJ/v73v7N582aOHDnCjBkzuP3220lKSvpuC0mbDYYPh6NHu1zioYWvjw9BQUGUl5cTER7e/kHl5XDVVeDopad7GQn/HhQWFsaMGTP47LPPuMnD1xgXvV9L4KelpZGTk9N+4Lfm5WUsvrZ4sdFNY+c6/hERERQWFhIeHs4Z9wvV1RAeDrKxUpck/HtYSkoKK1eu5IYbbnCtfVKFcID2An/ZsmUdB/7pxo+HH/8Ynn/e7vX8g4ODsTU1UVNTQ1Bg4HdfqK835vX/8Y9230l4Mgn/HjZx4kQCAgLIzMwkOTnZ6nKE6Lbjx4+bXTqtAz85ORmfc9mF6667jCdx33oLQkKMKZqdUBh9/6Wlpd+Ff3W1Ef6rVsEFF5x9DR5Iwr+HtR74lfAX7qp14B89epSLL764e4HfmlLG9otDhsBvf2sEeVhYp9M0w8PDOXTwIE0NDXhXVRn7AbzyClx0Ufdq8SCypLMTVFZWsnDhQtauXUukPHQi3ERL4KelpXHs2DEuvvhi5syZQ1JSUvcDvyMHD8LPfw47dxoDwkFBZz4NbLNBbS0njx/H18+PsGuvhf/5H5BJFYCs5+9yfvOb3xAVFcXSpUutLkWIDp0e+DNmzGD27Nk9G/jt2bcP3n4bvvwSCgqMriCljOBvaoKYGPKmTuWRXbt4bcMGGU9rRdbzdzEpKSk8+OCD3HLLLfKLKlxKQUGB2aXTEvh33HGH8wO/tXHj4LHHjPcrKyE/35gRFBBgdA/5+RGlNdXXXivjaedIwt9J4uLi6NOnD1u2bGH69OlWlyM8nEsGfkdCQiA29oxPK6VITU1l7dq1Ev7nwMX+lXu3loFfCX9hhZbAT0tLIzc3lxkzZvDDH/6QxMRE1wt8O82bN4+XXnqJwsJCBnjgfr3d4Z7/4m7qsssu44UXXpBfVOE0pwf+JZdcwp133unWgd9aUFAQl156KZ9++inLli2zuhy34v7/+m6k5Rf1k08+Yfny5VaXI3qpgoICc/G03hj4p0tNTeWee+5h6dKleHt7W12O2+h9vwkuLiUlhZ/85Cfcdttt8osqHCY/P9/sw8/Ly2PGjBm9OvBbGzNmDIMGDeJf//oXM2bMsLoct9G7fytcUGxsLAMHDuTrr7/mInkgRXRDS+CnpaWRn5/PjBkzWLFiBQkJCb0+8E/XMvAr4W8/z/oNcREtA78S/uJsnR74l1xyCT/60Y88MvBbmz17Ns8++yzHjh1jaPPa/6JznvvbYqE5c+bw3HPPUVBQwODBg60uR7i4/Px8sw9fAr99fn5+LFy4kHXr1nHPPfdYXY5bkCd8LfLMM88QHBzMnXfeaXUpwgW1F/izZ8+WwO/EsWPHWLp0KRs3bsTPgzdulyd8XVxKSgorVqxg2bJl8p9ZAO0H/l133UVCQoJMDrDD0KFDOe+889i8eTPz5s2zuhyXJ6ljkZiYGIYOHcpXX33FzJkzrS5HWOT0wJ85c6YEfjcsWbKEt956S8LfDhL+FmoZ+JXw9ywS+D3noosu4umnn+bbb79lzJgxVpfj0iT8LTRr1ixWrVpFbm4uQ4YMsboc0YNaB35BQYF06fQQb29vFi9ezNq1a3lItnLslAz4Wuz555/H29ubu+++2+pShIO1BH5aWhrHjx9vM2grgd9zCgsLueaaa9iwYQNBQUFWl+N0Th3wVUrNBX4HeAOvaa2fPO3r/sCfgQTgJHC11vqII87t7lJSUrj99tv54Q9/aN+ep8KltRf4d999twS+Ew0YMIDExET++te/smTJEqvLcVndDn+llDfwEjAHyAUylFLrtdZ7Wx12G1CqtR6tlLoGeAq4urvn7g2GDRvGqFGj+OKLL7j00kutLkecg7y8PLNLRwLfNaSmpvLcc8+RkpKC6mQ7SE/miCv/ZOCg1jobQCn1HnA50Dr8LwcebX5/LfCiUkppV+1zcrKUlBTWrl0r4e9GJPBdW2JiIrW1tezatYtJkyZZXY5LckT4RwPHWn2cC0zr6BitdaNS6hQQCRQ74Pxub8aMGTz99NPk5OQwfPhwq8sRHWgJ/LS0NE6cOMEll1zCj3/8Y+Lj4yXwXYyXlxdLlixh7dq1Ev4dcKnZPkqp5cByMLpDPIWvry+LFi1i3bp13HvvvVaXI1ppHfiFhYVccskl3HPPPRL4bmDhwoVcfvnllJWVER4ebnU5LscR4Z8HtF5JaUjz59o7Jlcp5QP0wRj4bUNrvRpYDcZsHwfU5jauuOIKbr75Zn70ox959KPpriA3N9fs0pHAd199+vTh4osv5rPPPuPGG2+0uhyX44jwzwDGKKVGYoT8NcB1px2zHrgZ+C+QCvxD+vvbio6OZty4cfJoukUk8Hun1NRUHnnkEa6//nq8vLysLseldDv8m/vw7wL+hjHV8w2t9R6l1K+ATK31euB14C2l1EGgBKOBEKdJSUnh7bfflvB3kpbAT0tLo6ioiEsuuYSf/OQnxMfHS1D0EhMmTCAoKIj09HS+973vWV2OS5GHvFxIY2MjCxYs4OWXXyYmJsbqcnql0wN/5syZzJ49WwK/F1u3bh3/+c9/eOaZZ6wuxSlkVU835OPjw+LFi/noo4/46U9/anU5vcaxY8fMLp2WwL/33nsl8D3E3LlzefHFFyksLGTAgAFWl+My5MrfxRw/fpzrrruOTZs2ERAQYHU5bqu9wJcrfM/11FNPER4ezh133GF1KT1Orvzd1KBBg5g0aRKff/45ixYtsroct9IS+GlpaRQXFzNz5kzuu+8+pk6dKoHv4VJTU7nrrru47bbbZP+MZvJTcEFLlizh9ddfl/C3w+mBP2vWLO6//34JfNHGqFGjiI6Olv0zWpHwd0EXXHABTz75JAcOHCA2NtbqclzO0aNHzS4dCXxhr5YnfiX8DRL+LsjLy4srrriCjz76SNYkbyaBL7pr1qxZPPvssxw9etSjVhDoiAz4uqiioiKuuuoqNm7c6JFrkkP7gT9nzhymTJkigS/Oye9//3uampp69TIqMuDr5vr3709CQgL/93//R0pKitXlOM3pgT979mweeOABCXzhEEuWLOGmm25ixYoV+Pv7W12OpST8XdiSJUt48cUXueKKK3r1muQS+MJZoqOjGT9+PJs3b2b+/PlWl2MpCX8XNm3aNJ544gn27dtHXFyc1eU4VOvAP3nyJLNmzZLAF06RmprKm2++KeFvdQGiY15eXqSkpPDRRx/1ivBvCfy0tDRKSkok8IUlZDadQQZ8XVxJSQlLlizhs88+IyQkxOpyzlp7gT979mwJfGGp1157jcLCQh5++GGrS3E4GfDtJfr27cu0adPYtGkTV111ldXl2CUnJ8fs0mkJ/J/+9KcS+MJlLF68mCuvvJJ77rmH4OBgq8uxhIS/G1iyZAmrVq3iytmzUbt2we7d8O23UF8PwcEwcSLExRl/WjSDoXXgl5aWMnPmTAl84bL69etHcnIymzZt4sorr7S6HEtI+LuBRB8fbkxPp37qVPwDA6GuDnx8QCmw2WDdOvD1Nd5uuAFuvBGionq8rpbAT0tLo6ysjJkzZ/Kzn/2MyZMnS+ALl5eamsozzzxDampqr55N1xEJf1dWUQGPPYZau5YLq6o4qRRR/ftDR33/9fWwejW8+Sb88pdw3XXg4BA+PfBnzZrFz3/+cwl84XYSExNpaGhgx44dTJkyxepynE7C31UdPgzXXw8nTkCfPgSFhlJw8CBNTU0dbyvo52e81dfDypWQlgZ/+AN08wnhI0eOmF06Eviit1BKkZqaytq1ayX8hYs4ehRSU40r/4gIwPiHCgkJoezUKSL79u38+/38jC6gf/8bli6FP/3prMcCJPCFJ1iwYAGrV6+mtLSUiOb/a55Cwt/V1NfDbbfBqVMQHt7DaNuAAAAZx0lEQVTmSxERERQUFNC3b1+67KFUyvj+9HR48knjTqALLYGflpZGeXk5M2fO5MEHH2TSpEkS+KJXCgsL45JLLmH9+vXcfPPNVpfjVBL+rubFF40unz59zvhSYFAQKEV1dTXB9nTlKGW8zltvwbx5kJR0xiGnB/6sWbN46KGHJPCFx0hNTeWhhx7ixhtv9KjfeQl/V1JUBK++agzotjP7QAER4eGUlZbaF/4A3t7G2yOPwF//Ckpx+PBhs0tHAl94uri4OMLCwtiyZQvTp0+3uhynkfB3JR9+CI2NxjTODgSGhvJoXh6HqqupsNkY4uvLXQMGML2zp39DQmjYv5/1jz7KB/v3S+AL0YpSytzoRcJfWOOttyAwsPNjvL0ZEhjI8tBQ4gYM4OvKSh7My+O9kSOJ8vNrc2hdXR3lFRWUl5cTVFtL1Ndf8/CqVUycOFECX4hW5s6dywsvvMDx48cZNGiQ1eU4hSSAqygthcLCLmflBHp5cVd0NAGVlSiluDA0lChfX/bX1gJG4BcVF3MoO5uco0dpampi8ODBDBo5kvOVktk6QrQjMDCQuXPn8vHHH1tditNICriK/fuN6Zl2PGkYGBiIl1JUV1VR0thITm0tfaqqzgj8MWPGMGjgQIICA1H+/sZAcn29E/4yQrif1NRUPvnkExobG60uxSmk28dVlJQYSzXYQQHhERHk5ObyWH095ytFtJcXYYMHExgY2P40UC8vo2GpqIDISEdWLkSvEBMTw/Dhw/nyyy+ZNWuW1eX0OLnydxVnubR2WJ8+vGyz4WWzsczPD5vNRkN9fddXLS66hLcQrqDliV9PIOHvKsLC7F6HR2vNY8eP0xAUxB8nTiRm+HACAgIor6ggOzubQ9nZHD9+nIqKCppa7ia0Nu4s3HBPACGcZcaMGRw6dIicnByrS+lx0u3jKmJjjWmeWnfZ7//E8eMcrq/n5WHDCPDyAn9//P396RsRgQZqa2upqqqipLSUvPx8/P38CPPzw3fQIPyVwrO3rRaiY35+fixatIiPPvqI++67z+pyepTs5OUqtIapU42r89OmbLZW0NDAwoMH8VMK71aNxMODBvGDdp4KtmlNTU0NjUVFbBkwgN/07cv48eNJTk4mKSmJuLi4jheKE8ID5efnc+ONN7Jx40YCAgKsLuesyU5e7kYpuOoqeP31TsN/sK8vmePG2f2yXkoZTwNHRHDZ6tV8f8oUsrKyyMjI4PHHH6egoICpU6eSlJREcnIyo0aN8si1zYVoERUVxYQJE0hLS2PhwoVWl9Nj5MrfleTkwKxZZ9X/b5fqamORt3//+4zXLSkpITMzk4yMDNLT06mpqSExMZHk5GSSk5OJcsKmMEK4mn/961+89tpr/OlPf7K6lLNm75W/hL+reeAB+OSTM1b0PGc2m7FC6AsvGIu7dSE/P99sCDIyMggICDAbgsTERPp2tZy0EL2AzWZj0aJFPPPMM4wdO9bqcs6KhL+7Ki+HmTOhstIxM3NKSmD2bGPBuLPsztFak52dbTYEWVlZDBo0yGwIEhISPHbza9H7vfHGG+Tn5/PLX/7S6lLOioS/O8vKMnbxUqp7u3CdOgXR0fDxx+amMN3R1NTEvn37zMZg9+7djB492hwvmDRpEn6djFcI4U5OnjxJamoqn332GSFuNEVawt/dpafDrbcam7X36XN2V+1NTcYdxIgR8Je/wIABPVJiXV0dO3bsMLuJDh8+zIQJE8xuorFjx8o6QsKtPfTQQ0yZMoWrr77a6lLsJuHfG+TkwH33wY4dxro/zZu5dMhmM0If4Npr4cEHwYndMhUVFWRlZZl3BkVFRSQkJJjdRCNHjpSZRMKtbN26laeeeor333/fbX53Jfx7C5vNGAB++WWjMWhqMjZn8fMzGgKbzbg7UMp4u+ACuPtuSEiwunKKi4vJyMgw3xoaGkhKSjK7iTxl6VzhvrTWXHnllTz88MPEx8dbXY5dnBL+Sqm+wPvACOAIcJXWurSd45qAXc0fHtVaL+rqtSX8T6M17NoFmZlGl1B2tvFEcGAgTJgAiYkwfbrRx++CtNbk5eWZdwUZGRmEhoaaDUFiYiLhjprhJIQD/eUvf2HXrl08/vjjVpdiF2eF/2+BEq31k0qpB4EIrfXP2zmuUmt9ViMmEv69m81m4+DBg+Z4wfbt24mOjjbHC6ZMmUJQdwa7hXCQiooKc8kHd5jq7Kzw/waYobUuUEoNBv6ptT6vneMk/EWnGhsb2bNnj3lnsG/fPmJjY81lKCZOnIivr6/VZQoP9atf/YqhQ4dy6623Wl1Kl5wV/mVa6/Dm9xVQ2vLxacc1AtuBRuBJrfUnXb22hL9nq6mpYfv27WYXUU5ODpMnTza7iWJjY2UmkXCavXv38vOf/5xPP/3U5X/vHLa2j1JqM9DeyNwvWn+gtdZKqY5akuFa6zylVAzwD6XULq31oXbOtRxYDjBs2LCuShO9WGBgIOeffz7nn38+AOXl5eYyFL/4xS8oLS1tswzF0KFD3WY2hnA/cXFxRERE8N///pcLLrjA6nIcwindPqd9zxpgg9a60x0T5MpfdKawsLDNMhRAm2UoBvTQsw3Cc61fv54vvviC5557zupSOuWsbp+ngZOtBnz7aq1/dtoxEUC11rpOKdUP+C9wudZ6b2evLeEv7KW15ujRo2ZDkJmZSUREhDlekJiYSFhYmNVlCjdXU1PD/Pnzeeeddxg8eLDV5XTIWeEfCXwADANyMKZ6liilEoEfaq1vV0pNB14FbBg7hz2vtX69q9eW8BfnymazceDAAbMx2LFjB8OHDzfHC6ZMmeKW67QL6z3zzDMEBQWxYsUKq0vpkDzkJUSz+vp6du/ebXYTHThwgHHjxpndRHFxcfj4yNYWomuHDx/mjjvuYOPGjS47+0zCX4gOVFdXs23bNvPOIC8vj6lTp5rdRKNGjXL5GR3COnfccQepqanMmTPH6lLaJTt5CdGBoKAgLrjgAnPWRmlpKVu3biU9PZ0PP/yQyspKEhMTzW6i6OhomUkkTKmpqaxdu9Zlw99ecuUvxGkKCgrM5wvS09Px8/MzG4KkpCQiIyOtLlFYqKGhgQULFvDKK68wcuRIq8s5g3T7COEAWmsOHz5sNgRZWVn079/fHC+Ij493q7XehWO8/PLLVFdX88ADD1hdyhkk/IXoAU1NTezfv7/NhjYxMTHmaqVTpkyRDW08QEFBAddffz0bN24kMDDQ6nLakPAXwgnq6+vZuXOn2RgcOnSI8ePHm91E48aNw9vb2+oyRQ+49957mTFjBpdffrnVpbQh4S+EBSorK8nKyjK7iU6cOEF8fLzZTSQb2vQeX3/9Na+++ip//vOfrS6lDQl/IVxASUlJm2Uo6urqzC6ipKQkoqKirC5RnCObzcbixYt58skniYuLs7ock4S/EC6o9YY2mZmZBAYGmrOIkpKSiIiIsLpEcRbWrFnD0aNH+Z//+R+rSzFJ+Avh4rTWHDp0yGwMsrKyiIqKMscL4uPjZUMbF1dSUsKSJUv49NNPXWb9KAl/IdxMY2Mje/fuNbuJ9u7dy5gxY8zxggkTJshMIhf08MMPM3HiRK699lqrSwEk/IVwe7W1tezYscO8Mzhy5AgTJ040u4nGjh0ry1C4gKysLB5//HE+/PBDlxjMl+UdhHBzAQEBTJs2jWnTpgHGhjZbt24lIyODlStXcvLkSRISEsxuouHDh7tE+HiaqVOn4uXlRVZWFgkJCVaXYze58hfCTRUVFbVZhsJms5kNQXJysmxo40QffPAB27Zt44knnrC6FOn2EcKTaK05duyY2RBkZmbSp08fsyFISEigT58+VpfZa1VWVrJw4ULWrl1r+dpPEv5CeDCbzca3335rjhds376doUOHmuMFU6dOdbllCdzdb37zG6Kioli6dKmldUj4CyFMDQ0N7Nmzx2wM9u/fz9ixY81uogkTJsiGNt20f/9+HnjgAdavX2/pQLyEvxCiQzU1NWzbts3sJjp27BhTpkwxu4lGjx4tM4nOwc0338ztt9/OhRdeaFkNMttHCNGhwMBApk+fzvTp0wE4deoUmZmZpKens27dOsrLy0lMTCQ5OZnExESGDh0qM4ns0LLRi5Xhby+58hdCnOHEiRNt1iTy9vY2l6BITk6mX79+Vpfokurq6pg3bx5vvfWWZes2SbePEMIhtNbk5OSYDcHWrVuJjIw0G4KEhARCQ0OtLtNlPPvss/j5+XHXXXdZcn4JfyFEj7DZbOzfv9+8M9i1axcjRowwxwsmT56Mv7+/1WVaJicnh2XLlrFhwwZLluOQ8BdCOEV9fT27du0y7wy+/fZb4uLizGml48eP97gNbe68804WL17MZZdd5vRzS/gLISxRXV1NVlaW2RgUFBQwdepUs5to1KhRvX7w+O9//zvvv/8+q1evdvq5JfyFEC6hpKSEzMxMs5uopqbGnEmUnJzcKze0aWxsZMGCBbz88svExMQ49dwS/kIIl5Sfn99mJlFAQIB5V5CUlETfvn2tLtEhXnnlFcrLy/nZz37m1PNK+AshXJ7WmuzsbLMxyMrKYuDAgWZDkJCQQHBwsNVlnpMTJ05w7bXXsmHDBqduyiPhL4RwO01NTezbt8+8K9i9ezejR4827wwmTZrkVhva3HfffVx44YVcccUVTjunhL8Qwu3V1dWxY8cO887g8OHDTJgwwRwvcPUNbf7zn//w0ksv8fbbb5uD3BUVUFMDPj4QHg6OLl/CXwjR61RUVLSZSVRUVER8fLzZTTRy5EiXmklks9lYuPBq5sxZxY4dw9ixA06dMgJfa6MBiIuDmTMhNRUGDer+OSX8hRC9XnFxsbkmUUZGBg0NDW2WoRjkiDQ9R3V18NJLsGpVGbW1TURGRhIQAL6+0NI+NTVBbS3U1xufmz0bVq6EwYPP/bwS/kIIj6K1Ji8vz2wIMjIyCA0NNRuCxMREwsPDnVLLnj3wox/BsWMQGNhITs4hRo8e3enDbjYblJeDvz/8+teQknJu55bwF0J4NJvNxsGDB83xgu3btxMdHd1mQ5uemIWzZQvceqtxVR8WZnwuLy+PwMAA+vbtepevujqoroa774Z77vnuLsFeEv5CCNFKY2Mje/bsMRuDffv2ERsbazYGEydOxNfXt1vn2LPH6LtXClq3K9XV1RQU5DNq1Cig6zRvbDQGhh95BG655exqkPAXQohO1NbWsn37drObKCcnh8mTJ5vdRLGxsWc1k6iuDubOhby87674v2M8zzBw4CC7n1toaDBmBW3cCGPG2P/3kvAXQoizUF5e3mYZitLS0jbLUHS1oc1zz8GLL0JERPtfLy0toaqqmiFDhthd06lTEBsLn31m/5RQCX8hhOiGwsLCNstQAGYXUVJSEgMGDDCPra6GpCRj6mZHPUc2WxN7975AUFAG9fXZhIVdRlTUo53WoLUxCPzOO5CcbF/dso2jEEJ0w4ABA5g/fz7z589Ha82xY8dIT0/nyy+/ZNWqVURERJiNQV7e96ivDyIwsOPX8/LyJiQkGh+fEQQG7kPrui5rUMpoAF57zf7wt1e3wl8pdSXwKDAOSNZat3uprpSaC/wO8AZe01o/2Z3zCiGEMymlGDZsGMOGDSM1NRWbzcaBAwdIT0/n448/5sMPa6munkpdnRfBwcEEBQWh1Jn9NIMGLeTYsWP06ZNHY2ORXecODYUvvzRmDzlyW4TuXvnvBlKAVzs6QCnlDbwEzAFygQyl1Hqt9d5unlsIISzh5eXF2LFjGTt2LDfddBNff22joqKW+voqioqKqaurJSAggODgYIKDgwkICEQpRUBAAL6+PtTV1dkd5C3HHTkCo0Y57u/QrfDXWu8DunqcOhk4qLXObj72PeByQMJfCOH2Kivh1CkvwsODUCqI/v37Y7M1UV1dQ1VVFcePH6e+vp6goKDmxiCEkpJqzmbbY6Xg0CEXCn87RQPHWn2cC0xzwnmFEKLH1dQYM3FaXwMb/fshhISEANDU1EhVVTVVVVVUVVXR0FCP1vY/vWWzGctAOFKX4a+U2gy0t0DGL7TWnzqyGKXUcmA5wLBhwxz50kII0SN8fIxB2c54e/sQFhZGWPMDAIWFA+3u8wejYfFx8KV6ly+ntZ7dzXPkAUNbfTyk+XPtnWs1sBqMqZ7dPK8QQvS4Pn2M6Z32DMhq3YTWTYAGbNhs9SjljTE02jGlIDraYSUD4IyFsDOAMUqpkUopP+AaYL0TziuEED3OywvGjTO6f7pSXPw633wznZMn13Dq1Ca++WY6xcWvd/o9WhtP+8bGOqjgZt2d6nkF8ALQH9iolNqutb5MKRWFMaVznta6USl1F/A3jKmeb2it93S7ciGEcBGzZsGOHV0f17//cvr3X35Wr11VZTQunT1DcC66deWvtf5Yaz1Ea+2vtR6otb6s+fP5Wut5rY7bpLWO1VqP0lo/1t2ihRDClSxZYtwB2GyOf+2mJlh+du2FXVx3/zMhhHATgwYZG7GcOuXY162pgZAQuPRSx74uSPgLIYRDrFwJAQHG6p6O0DK986mnjNd1NAl/IYRwgEGD4LHHjEXeGhu791paG3cR8+bBnDmOqe90Ev5CCOEgixcbu2+VlxszdM6FzQZlZcYqoU8/ffY7edlLwl8IIRzoxz+GRx81+utPner6AbDWWr5n3jxYs6ZnuntaSPgLIYSD3XQTbNoE551n3AWUlRmzdtqjdcv6QODnB6+8Ai+80LPBD7KevxBC9IjRo40duDIy4I034IsvjM8rZXTtKGW8NTRAXBwsW2bM6unp0G8h4S+EED1EKWMTluRkI/CPHDFW56ypMZaEiI42ntx1VuC3JuEvhBBO4OUFMTHGmyuQPn8hhPBALruBu1KqCMhp50v9gGInl3M2XL0+cP0aXb0+cP0apb7uc/UaO6pvuNa6f1ff7LLh3xGlVKY9O9NbxdXrA9ev0dXrA9evUerrPlevsbv1SbePEEJ4IAl/IYTwQO4Y/qutLqALrl4fuH6Nrl4fuH6NUl/3uXqN3arP7fr8hRBCdJ87XvkLIYToJpcPf6VUX6VUmlLq2+Y/Izo47rdKqT1KqX1Kqd8r1VNr4Z1zfcOUUp8317dXKTXCGfWdTY3Nx4YppXKVUi+6Un1KqSlKqf82/xvvVEpd7YS65iqlvlFKHVRKPdjO1/2VUu83f/3/OfPf9CxqvK/5922nUurvSqnhrlRfq+OWKKW0Usrps2vsqVEpdVXzz3GPUupdV6qvOVu+UEpta/53ntfe65xBa+3Sb8BvgQeb338QeKqdY6YDX2PsEewN/BeY4Sr1NX/tn8Cc5vdDgCBX+hm2OvZ3wLvAi65UHxALjGl+PwooAMJ7sCZv4BAQA/gBO4C4045ZAbzS/P41wPvO+pmdRY2XtPyuAXc6s0Z76ms+LhT4CtgCJLrgz3AMsA2IaP54gIvVtxq4s/n9OOCIPa/t8lf+wOXAn5rf/xOwuJ1jNBCA8cPxB3yBE06pzo76lFJxgI/WOg1Aa12pta52Un1g388QpVQCMBD43El1teiyPq31Aa31t83v5wOFQJcPsnRDMnBQa52tta4H3muus7XWda8FZjnrjtPeGrXWX7T6XdsCDHGl+pr9GngKqHVibS3sqXEZ8JLWuhRAa13oYvVpIKz5/T5Avj0v7A7hP1BrXdD8/nGMcGpDa/1f4AuMq8EC4G9a632uUh/GVWuZUmpd863Z00opbyfVB3bUqJTyAlYBDzixrhb2/AxNSqlkjIb+UA/WFA0ca/VxbvPn2j1Ga90InAIie7Cm09lTY2u3AX/t0Yra6rI+pVQ8MFRrvdGJdbVmz88wFohVSn2tlNqilJrrtOrsq+9R4AalVC6wCbjbnhd2iYXdlFKbgUHtfOkXrT/QWmul1BnTk5RSo4FxfHdVk6aUulBr/S9XqA/j53whMBU4CrwP3AK87oj6HFTjCmCT1jq3Jy5eHVBfy+sMBt4CbtZa2xxbZe+llLoBSAQutrqWFs0XHM9i/F9wZT4YXT8zMDLmK6XURK11maVVfedaYI3WepVS6nzgLaXUhK7+f7hE+GutZ3f0NaXUCaXUYK11QfN//PZuua4AtmitK5u/56/A+YBDwt8B9eUC27XW2c3f8wnwPRwY/g6o8XzgQqXUCowxCT+lVKXWusNBOifXh1IqDNgI/EJrvcURdXUiDxja6uMhzZ9r75hcpZQPxi33yR6uq73zt2ivRpRSszEa2Yu11g7aXtwuXdUXCkwA/tl8wTEIWK+UWqS1znSRGsH4//v/tNYNwGGl1AGMxiDDReq7DZgLRi+IUioAY92fTrun3KHbZz1wc/P7NwOftnPMUeBipZSPUsoX4+rGWd0+9tSXAYQrpVr6qGcCe51QW4sua9RaX6+1Hqa1HoHR9fNnRwW/I+pTSvkBHzfXtdYJNWUAY5RSI5vPfU1zna21rjsV+IduHnVzki5rVEpNBV4FFjm5r7rL+rTWp7TW/bTWI5p/77Y01+ms4O+yxmafYFz1o5Tqh9ENlO1C9R0FZjXXNw5j/LOoy1d21qh1N0a7I4G/A98Cm4G+zZ9PBF7T342Iv4oR+HuBZ12pvuaP5wA7gV3AGsDP1WpsdfwtOHe2jz3/xjcADcD2Vm9TeriuecABjLGFXzR/7lcYAUXzf7IPgYNAOhDjrJ/ZWdS4GWPyQ8vPbL0r1Xfasf/EybN97PwZKozuqb3N/3+vcbH64jBmO+5o/je+1J7XlSd8hRDCA7lDt48QQggHk/AXQggPJOEvhBAeSMJfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA/1//BgL3R1ssYIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -338,13 +343,13 @@ " 'algorithm': algorithm_cfg\n", "}\n", "result = run_algorithm(params,algo_input)\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", "print('energy:', result['energy'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", "\n", - "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" ] }, @@ -367,21 +372,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -1.4998924230468886\n", - "time: 45.33000445365906\n", - "maxcut objective: -3.9998924230468886\n", - "solution: [1. 0. 1. 0.]\n", + "energy: -1.4995485513056617\n", + "time: 8.994375944137573\n", + "max-cut objective: -3.9995485513056614\n", + "solution: [0. 1. 0. 1.]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX9//HXyUoICUvYCWERRahSiiyFWi1FKMoWYjAhyVQURFRaWVRUBFEsKCqiIF9k6xdnwiJbQYn1awHpDxALoiKg7ItsGsi+TiZzfn/cYCOErJO5yczn+XjkQSZzZ+ZzjXnPmXPOPUdprRFCCOFdfMwuQAghhPtJ+AshhBeS8BdCCC8k4S+EEF5Iwl8IIbyQhL8QQnghCX8hhPBCEv5CCOGFJPyFEMIL+ZldwI00btxYt23b1uwyhBCiVvnyyy8va62blHVcjQ3/tm3bsm/fPrPLEEKIWkUpdaY8x9XY8BcepLAQzp6FzEzw8YGwMGjeHJQyuzIhvJaEv6gemZmweTOsWQPff28EvU/REJPDAXXqQPfuYLHAXXeBn/yvKIQ7yV+ccC27HRYuhEWLjJD394fgYPD1/eVxBQWwcyfs2gUNGsDf/gb9+5tTsxBeSGb7CNc5cQIGDYL58yEw0Aj1koIfjDeF+vUhNBSysmDcOBg/3vheCFHtJPyFaxw+DFFRcPq0Efr+/uV/bN26xhtBUhLExkJGRrWVKYQwSPiLqrt4EeLiIC/PCPHKDOT6+EDDhvDddzBmjDFILISoNhL+omq0hqefNrprQkKq9lxKGZ8avvwSVqxwTX1CiBJJ+Iuq+egj+Pxzo8XvCkoZ4wRz5sCFC655TiHEdST8ReVpbQzuBgSU2tXzQUoKllOn6P3998woT6AHBBizgRITXVisEKI4CX9Red9+C6dOGQO2pWjs58foxo0ZWpFPB8HBYLUaU0eFEC7nkvBXSi1XSv2klDp4g/uVUuodpdRxpdQBpVQ3V7yuMNnu3cZc/jIGeP8YGsofQkKoX9KUzxsJCDCC/8iRKhYphCiJq1r+/wsMLOX+e4Gbi77GAv/jotcVZvrii4pN6awoh8OY/SOEcDmXhL/W+t9ASimHDAPe14Y9QAOlVAtXvLYw0bFjxsVc1cXpNJaGEEK4nLv6/FsBPxS7fa7oZ6I2y88v95x+p9akpqeTlpZGZlYWujwPUgpyc6tUohCiZO4K/5IS4rq/f6XUWKXUPqXUvuTkZDeUJaokMNCY8VMGDZw/dw4F1KlTh+TkZE6eOEFqWhrO0h6vNQQFuaxcIcR/uSv8zwGti90OB66b86e1Xqy17q617t6kSZl7EQiz3XST0fovhQbOXbhAvtNJSGgoAXXq0KpNG5o0a0ZmZibHjx8n+fJlHCVd0evjAx07Vk/tQng5d4X/ZuDPRbN+fguka60vuum1RXXp1csYlC1FcnIy1vR0YrOzWZGSQlJ6Or87coTVublEtG5Nm4gICgoKOHHiBJcuXcJefGqnnx906lTNJyGEd3LJks5KqVXAH4DGSqlzwIuAP4DWehGQBNwHHAdygIdc8brCZL17Gyt2al1i339KaioZGRk8c8stPH+DaZ6BgYG0bNGCgiZNSE1N5dTp0wTXrUtYaChBAQFw663VfRZCeCWXhL/WemQZ92vgCVe8lqhBunaFiAhjGYbg4F/clZGRwZXLl2nTti1+5Zjf7+/nR9MmTQgLCyM9PZ208+f5qFMnmuzezV133YWPj1yPKIQryV+UqDyl4C9/MZZiKDZwm52dzaVLl2gdEUFABa8D8PXxoVG9ejQPD6f55MksX76c6Oho1q9fT15enqvPQAivJeEvqmboUGM7xvR0APLy8jh//jytwsOpU5lrALSGrCzU5Mn8fuRIVqxYwbRp09i1axdDhw7lvffeIyWltEtKhBDloXQ5puqZoXv37nrfvn1mlyHK4/x5uO8+CrKzOZWcTPPmzQmtzPLOWkNaGvz617B27XU7gJ05c4bExEQ+/fRT+vfvT3x8PG3atHHRSQjhGZRSX2qtu5d5nIS/cIX0//f/SBs0iEbBwYS0qsT1e1eD/5ZbYPXqUpeITklJYe3ataxbt47bb78di8VC165dUZXZREYIDyPhL9wmJyeHRx99lEE330zs9u1w9qyxsYtfOecT5OYau4D98Y/w5pvGvr7lkJeXx5YtW7DZbISGhmKxWOjbty++FVlATggPI+Ev3KKgoIAnn3yS8PBwnnvuOZTdDu+8A0uXGlsxBgRAnTrGBVvFORyQk2N8HxwMr7wC991XqS0gnU4n//73v7FarSQnJxMfH8+QIUOoW8ZS00J4Igl/Ue2cTifTpk0jPz+fOXPm/HI6Zloa/OMfsGoVnDhh9N9fvb+w0LjdtSuMGgV9+xpvEi5w4MABbDYb+/fvJyoqigceeIDGjRu75LmFqA0k/EW10lozd+5cvv/+exYsWEBgaTN77HY4fRoyM403gLAwCA+//tOAC/3www+sWrWKf/7zn/zhD38gISGB9u3bV9vrCVFTSPiLarVixQo+/vhjlixZQkhVN26vRunp6axbt441a9Zw6623YrFY6N69uwwOC48l4S+qzYcffsjixYtZvnw5tWUBPrvdTlJSEjabjcDAQCwWC/fccw9+5R2UFqKWkPAX1WLnzp28/PLLLF68mLZt25pdToU5nU527dqF1Wrl/PnzxMXFERkZSfA1y1MIUVtJ+AuX+/bbb5k0aRJvvfUWt912m9nlVNnhw4ex2Wzs2bOHyMhIYmNjadq0qdllCVEl5Q1/Wd5BlMupU6eYPHkyL730kkcEP0Dnzp2ZNWsWNpsNh8NBbGws06dP5+jRo2aXJkS1k5a/KNNPP/3E6NGjGTduHIMGDTK7nGqTkZHBxo0bWb16Ne3bt8disdCrVy8ZHBa1inT7CJfIyMhgzJgxDB48mD//+c9ml+MWBQUFfPLJJ1itVpRSWCwWBgwYgH8FVygVwgwS/qLK8vPzeeKJJ+jcuTMTJ070uhaw1po9e/ZgtVo5ffo0MTExREVF1eiprUKUN/xlnpsoUWFhIc899xzNmzdnwoQJXhf8AEopevfuTe/evTl69Cg2m41hw4YxePBgRo4cSYsWLcwuUYhKkwFfcR2tNbNnz8Zut/Piiy/KLlrALbfcwssvv8yqVavw9fUlPj6e559/nu+++87s0oSoFOn2EddZtGgRu3fvZtGiRbI42g1kZWXxj3/8g5UrV9K6dWssFgt9+vSRN0phOunzF5Wydu1aVq1axdKlS2nUqJHZ5dR4DoeDTz/9FKvVSkFBAQkJCdx7770EuGihOiEqSsJfVNjWrVt54403WLZsGS1btjS7nFpFa82+ffuwWq0cOXKEmJgY7r//fuqXsimNENVBBnxFhezbt49XX32Vd999V4K/EpRS9OjRgx49enDixAkSExMZPnw4AwcOJC4ujvDwcLNLFOIXpINScPToUZ577jleffVVbrnlFrPLqfVuuukmpk+fzpo1awgODubBBx/kmWee4dtvvzW7NCF+Jt0+Xu78+fOMGTOGp556in79+pldjkfKyclh8+bNrFy5kiZNmmCxWLjrrrtkcFhUC+nzF2VKSUlh9OjRxMXFMWLECLPL8XiFhYVs27YNq9VKVlYW8fHxDB48uPSNcISoIAl/UaqcnBzGjRtHnz59GDdunNnleBWtNV999RU2m42DBw8SHR1NdHS0zK4SLiEDvuKGCgoKePrpp+nYsSOPPvqo2eV4HaUU3bp1o1u3bpw+fZrExETuv/9++vfvT3x8PG3atDG7ROEFpOXvZZxOJ9OnTyc3N5c5c+bg6+trdkkCowtu7dq1rFu3ji5dumCxWPj1r3/tlctqiKqRbh9xHa01b731FocPH+bdd9+VvuYaKC8vj48++ojExETq16+PxWKhb9++Mjgsyk3CX1zn/fffZ8uWLSxZsoTQ0FCzyxGlcDqd7NixA6vVyuXLl4mPj2fIkCGy3IYok4S/+IUtW7awaNEili1bJlsV1jIHDhzAZrOxf/9+oqKieOCBB2jcuLHZZYkaSrZxFD/btWsXb7/9NvPnz5fgr4W6dOnCnDlz+Pvf/05mZiYjRozg5Zdf5uTJk2aXJmoxafl7uKubrs+dO5fbb7/d7HKEC6SlpbFu3To++OADOnXqhMVi4Y477pDBYQFIt48ATp8+zdixY5k+fTp33nmn2eUIF7Pb7WzZsgWbzUZQUBAWi4V+/frh5yczuL2ZhL+Xu7rp+qOPPsrgwYPNLkdUI6fTya5du7BarVy4cIG4uDgiIyNlcNhLSfh7sYyMDB555BEGDRrkNZuuC8Phw4ex2Wzs2bOHyMhIYmNjZZzHy8iAr5fKz89n8uTJ9OrVC4vFYnY5ws06d+7MrFmzsNlsFBQUEBsby/Tp0zl69KjZpYkaRlr+HqSwsJApU6YQGBjIzJkz5cIgQUZGBhs2bGD16tXcdNNNWCwWevXqJYPDHsytLX+l1ECl1BGl1HGl1LMl3D9KKZWslPq66GuMK15X/JfWmtdee43c3FxmzJghwS8ACA0NZdSoUWzevJmBAwcyd+5cRo4cyZYtWygoKDC7PGGiKrf8lVK+wFGgP3AO2AuM1FofLnbMKKC71np8eZ9XWv4V895777Fz507ee+89GegTN6S15vPPP8dms3H69GliY2MZPnw4ISEhZpcmXMSdq3r2BI5rrU8WvfBqYBhwuNRHCZdZt24d//znP1m2bJkEvyiVUoo+ffrQp08fjhw5gs1mY9iwYQwePJiRI0fSokULs0sUbuKKvoFWwA/Fbp8r+tm17ldKHVBKrVNKtS7piZRSY5VS+5RS+5KTk11QmufbunUry5YtY8GCBbIevKiQjh07MnPmTFatWoWPjw/x8fFMnTqV7777zuzShBu4IvxLGjm6ti/pQ6Ct1roL8C9gRUlPpLVerLXurrXu3qRJExeU5tm+/PJLXn31VebNm0erViW93wpRtmbNmjFhwgQ2b95Mp06dmDx5MuPGjWPXrl04nU6zyxPVxBXhfw4o3pIPBy4UP0BrfUVrnV90cwlwhwte16sdPXqUZ599llmzZtGxY0ezyxEeoF69eiQkJLB582aGDRvGu+++S0xMDJs2bcJut5tdnnAxV4T/XuBmpVQ7pVQAEAtsLn6AUqp4R+JQQD5XVsGFCxeYMGECU6ZMoUePHmaXIzyMn58f9957L4mJiTz99NNs3bqVIUOGsHz5ctLT080uT7hIlQd8tdYOpdR44BPAF1iutT6klHoZ2Ke13gz8VSk1FHAAKcCoqr6ut0pNTWX8+PGMGjWKe+65x+xyhAdTStGzZ0969uzJ8ePHSUxMJDIyknvvvZf4+Hjpaqzl5CKvWuTqpuu9e/fmscceM7sc4YWSk5NZs2YNGzdupHv37lgsFm677TazyxLFyNo+HqagoICJEyfSvHlzpk6dKldoClPl5OSwadMmVq5cSbNmzbBYLPz+97+XiwtrAAl/D+J0OnnxxRfJzs7m9ddfl03XRY1RWFjItm3bsFqtZGVlkZCQwKBBg2R/aBNJ+HuQefPm8e2337Jw4UL5oxI1ktaar776CpvNxsGDB4mOjmbEiBE0bNjQ7NK8jjuv8BXVyGq1snv3bpYuXSrBL2ospRTdunWjW7dunDp1ipUrVxIVFUX//v1JSEggIiLC7BLFNaSDrgZLSkpizZo1LFiwgNDQULPLEaJc2rVrx9SpU1m/fj2NGjXi4YcfZvLkyXz99dfU1J4GbyTdPjXU7t27mTFjBu+99x7t2rUzuxwhKi03N5ePPvqIxMREGjRogMVioW/fvjI4XE2kz78WO3jwIBMnTuTNN9+kS5cuZpcjhEs4nU4+++wzbDYbV65cIT4+niFDhhAUFGR2aR5Fwr+WOnPmDGPHjmXatGmy6brwWAcOHMBms7F//36ioqKIiYkhLCzM7LI8gmzjWAslJyfzl7/8hfHjx0vwC4/WpUsX5syZw/Lly8nMzCQ6OpqZM2dy8uRJs0vzGtLyryEyMzN55JFHGDhwIKNGjTK7HCHcKi0tjXXr1vHBBx/QuXNnLBYL3bp1k4sZK0G6fWoRu93O+PHj6dixI5MmTZL/4YXXys/PJykpCZvNRlBQEBaLhX79+uHnJ7PSy0vCv5ZwOp1MmTIFf39/XnnlFZkBIQTG38XOnTux2WxcuHCBuLg4IiMjZae6cpDwrwW01syePZtz584xb948AgICzC5JiBrn0KFD2Gw2vvjiCyIjI4mNjaVp06Zml1VjyYBvLbBkyRIOHz7MG2+8IcEvxA386le/Yvbs2dhsNux2O7Gxsbz44oscO3bM7NJqNWn5m2T9+vVYrVaWL18ue+8KUQEZGRmsX7+eNWvW0KFDBywWCz179pSxsiLS7VODbdu2jTlz5rB06VLCw8PNLkeIWslut/PJJ59gtVrx9fXFYrHQv39//P39zS7NVBL+NdT+/fuZMmUKCxYskL13hXABrTWff/45NpuN06dPExsbS1RUFPXq1TO7NFPIqp410LFjx5gyZYpsui6ECyml6NOnD3369OHIkSPYbDaGDh3K4MGDGTlyJC1atCj7SbyQDPi6yYULF3jyySd55plnZNN1IapJx44dmTlzJitXrsTHx4f4+HimTp3K999/b3ZpNY50+7hBamoqo0ePJiYmhpiYGLPLEcJrZGVlsXHjRlatWkVERAQWi4XevXt79PU00udfQ+Tk5PDYY4/Rq1cvHn/8cbPLEcIrFRQU8Omnn2Kz2XA4HCQkJDBw4ECPnGIt4V8DOBwOJk6cSJMmTZg2bZpMRRPCZFpr9u7di9Vq5ejRo8TExBAdHe3yzZLsdvjySzh0yPg3NRV8faFVK+jeHW67DTp1guqIBAl/kzmdTmbMmEFWVpZsui5EDXTs2DESExPZsWMH9913H3FxcbRq1apKz3nlCqxYAe+/D7m5UFBghP7VP/+CAiPwlYKICHjsMRg2DFw5O1XC32Rvv/0233zzDQsXLqROnTpmlyOEuIHk5GTWrFnDxo0b6dGjBwkJCdx2220Veg6tISkJnnsOsrMhOBhK61HSGnJyjE8It9wCb79t/OsKEv4mstlsbN68maVLl8reu0LUEjk5OWzatImVK1fSrFkzLBYLv//978scHC4shBdegA8+gDp1oCIbk2kNmZnGJ4E334TBg6t4Ekj4myYpKYmFCxeybNkymjVrZnY5QogKKiwsZOvWrVitVrKzs0lISGDQoEEEBgZed6zWRmt/7VqoXx8qO4koP9/oJnrnHbjvvqrVL+Fvgqubri9atIj27dubXY4Qogq01nz11VdYrVYOHTpEdHQ0I0aMoGHDhj8f88EHRvhXJfivys83xgQ+/hjatav880j4u9mhQ4eYMGGCbLouhAc6deoUiYmJbN26lQEDBhAfH4+fXwT33GMM5pbwoaBS0tKMmUDr1/93kLiiZElnNzp79iyTJk1i2rRpEvxCeKB27drxwgsvsG7dOho0aMDDDz9MZOQ2MjLyCQx0XQO6fn04eBC2b3fZU96QtPyrKDk5mdGjRzNmzBiGDh1qdjlCCDf48cdcfvObArKzL+PvrwgLCyMkJAS4fuJ+YWEGFy++TFbWHvz8GtCkyXjq1x94w+fOyICuXY0upcqQhd3cICsri7/+9a8MHz5cgl8IL/L550EEBwfRsmUImZmZXLlyhR9//ImwsEbUr9/gFzOELl16FaX8ueWW/yMv7yg//PAkdercQmBgyeOCISGwfz/89BNU54Zl0u1TSXa7nUmTJtGtWzdGjRpldjlCCDfau9eY4gmKkJBQ2rZtR6tWLcnOzub48WMkJ/+Ew+HA6cwlM3MbTZo8ho9PXerW7UpIyN2kp2+54XMrBX5+xtXB1UnCvxKcTicvvPACYWFhTJ48WZZtEMLLfPmlMae/uKCguoSHt6Zt27YUFhZy4sQJzp/fi9OpCAiI+Pm4wMCbyc8/Werz5+dL+Nc4Wmtee+01srKyeOmllzx6dUAhRMlSUozWOYDWTgoLHRQU2MnPz6OwsJCQkBCaNWuG3Z5Ffr7i2LGjgDG+6uNTD6czu9Tn9/Exun2qk/T5V9DSpUs5ePAgixcv9sgVAYXwdAUFBeTm5pKdnU1OTs7P/xb/Kuu+o0dn4nD4AAVoDb6+Pijlg6+vDz4+//3y96+Hj4+d/Px8nE4nPj6+OJ3Z+PgEl1lndc/F8brw1xp++AG++w4OHzbewa+utverX0HnztCgQcmP3bBhA1u2bGH58uUEB5f9yxNCVJ3D4fg5dKsa2jk5ORQWFhIcHEzdunUJDg4mKCjo59tXf3b1+0aNGl13X1BQEJcuRfDjj34EB/sUdfuW3PWbnR3MlSsO2rULwMfHmLifn3/0hoO9Vzmd1TvYC14U/nl5sGULvPcenDplfKyy241/r77DBgQYgzh//COMHg09evx3ydXt27ezePFili5dSqNGjcw7ESFquMLCwl+Eb1VD2+FwXBfMxQO5+H0NGza8YaBf/VlAQECVx+l+9ztYs6b0JZnt9nzOn79Mgwb3kJm5gnr1ppGXd5TMzB20bfv3Up8/IMBojFYnl4S/Umog8DbgCyzVWr96zf2BwPvAHcAVIEZrfdoVr10e+/fDk0/CxYvG0qmhoTf+pTmdsHWr8dWvH8yaBWfO7GfWrFnMnz+f8PBwd5UthFsUFhZeF8JVCe3iYV1WaDdo0KDMVrgrwtrVunc31vO5EYejgLNnz9K0aVNCQqZz4cJLHD3aH1/f+jRv/lypLX+tjUZo587VUHgxVQ5/pZQv8C7QHzgH7FVKbdZaHy522GggVWvdQSkVC7wGVPt+hlrD//wPzJ1rdO3cqDunOB8f47irbwJ33plP/fpLeOedv3HrrbdWd8lClMnpdF4XxFUJbYfDUWpLuXhoN2jQoMxADwwMrHFh7Wr9+hlZ4XD8d+D3KqezkLNnz9KgQUMaFIVO69Zvlvu5MzPhN7+B5s1dWfH1XNHy7wkc11qfBFBKrQaGAcXDfxgwo+j7dcACpZTS1Xx58dtvw/z5xkUT1/6CyuLjA8HBdk6c+JHs7Nfx969XPUUKj+d0OksM6cqGdkFBAUFBQSX2UV8b2i1atCizFe4NYe1q9evD0KGwYQMUW+cNrZ388MMPBAcH07hxWIWfV2uj4fnIIy4s9gZcEf6tgB+K3T4H9LrRMVprh1IqHQgDLrvg9Uv06aeVD36AwkJH0ce2RgQG1uOhh4xPAmEV/32KWsbpdP4ihKsa2na7nTp16pRrkLFZs2ZlBnqdOnUkrGuAJ5+Ejz4y5uQbC7tpzp8/j5+fX9Fy7hX/HaWnG909/fq5utrruSL8SzrDa1v05TkGpdRYYCxARETEdQ8or5QUePpp4yKMygS/02m8e4eEhP48uJuWBlOnGt1I8ndXsxQPa1eE9tWwLqmlfG1oXw3r0lrhderUketBPFB4OEyfbmzk4u+v+fHHSzidTlq3bk1lgj8/3+ienjev8it6VoQrwv8c0LrY7XDgwg2OOaeU8gPqAynXPpHWejGwGIyF3Spb0IIFxuJIlZmUo7Xm/PlzBAYG0rRpk59/HhpqtPy//NIY7BGV53Q6ycvL+0XoViW08/PzfxHWpfVJN23atMxAl7AW5RUTYyz1YLVmUFiYR9u2EShV8f93rm7mMncuuGsrEFeE/17gZqVUO+A8EAvEXXPMZuBB4HMgGthWXf39OTmwerXR3VMap9POpUuvkpPzHwoLM/D3D6dp0yfIyGgLKFq0aEHxd28fH6Mvbvly7wv/q2Fd0mBhZUI7Ly+PwMDAUqfsXf23SZMmN7zvamhLWAuz+PjAb3+7gc2bFQ7HUOx23+uWfSjN1W0cAd54wxhHcJcqh39RH/544BOMqZ7LtdaHlFIvA/u01puBZYBVKXUco8UfW9XXvZFt24zdcOrWLevIQvz9mxMRsRh//+ZkZe3i9OmnqFt3Hu3a9aCkj22hocZYQkaG8X1NpbUmNze3UhfAlBToxcO6rEHGxo0blxnoEtbCU2zbto3lyxezfftSvvzSlxdegNTU8m3gnptrXGvUrp0xOaW6p3ZeyyXz/LXWSUDSNT+bXuz7PGCEK16rLF98cXW1vdL5+ATRpMnYn28XFHTG6QyjUaOMG35s8/U1vr77DnpdO6RdBVrrn1vWlb1qsXho5+XlERAQUGLL+trQbtSoEa1bty61FR4UFCRhLcQ19u/fz+zZs5k/fz6tW4fTujX06QP/+79gtRot+oICY9zxah9+QQFFy0FAixbw6KMQHV36G0V18bgrfPftu361vbKkp6dz+fJJ/P2vEBR0c6nHFhTAwYOaLl3yXHKp+bVhXdYgY/GwLq0VLmEtRPU5duwYU6ZM4W9/++X1P02bwjPPGDOBvvjCWJlz3z5jwsjVwO/Vy9iq8fbbzZ084nE7ed1xh3Hhhb9/+Y7PzMzkzJkT+PnNw9+/FSEhf8XpdOJ0OiksdP78/dWv/Py6NG68mTZtbGV2b5S2Zsi1tyWshagdLly4wJgxY5g4cSL9+/c3u5zreO1OXhV/L3NSULAAp7OQkJCx+Pr64u/vj4+P7y9W5/PxMVbsS0/35cEHH2XGjMeqo3whRA2WmprK+PHjefDBB2tk8FeEx4V/SAhcuVK+lr/WmszMeTRs6ENIyGukpGTjcEBYWCPq1avHjebqyoVeQnifnJwcnnzySe655x5iYqp9dZpq53F9DbffbqzgWR6XLs3Gbj9FRMQ8wsJa0qFDBxo2bEBycjInT54kLS0NrZ2/eExgoPtH5YUQ5nI4HEyZMoUOHTrw2GOe8anf41r+v/0tfPxx2ccVFFwkLW0DSgVw7Niffv558+bP067dQLKzc0hJuUJy8k80bNiIhg0b4OPjh8MBnTpV4wkIIWoUp9PJyy+/jJ+fH1OnTvWYpTU8Lvz/+Ed46SXjgqzSxlD9/VvQqdONB5SDg4MJDg4mPz+PlJQUTpw4QWBgY7p0qUvLlkHVULkQoiaaP38+586dY+HChfi6Y90FN/G4bp+WLeGuu4wLsVwhMLAOLVq0pH379oAvly/PYsqUKRw8eNA1LyCEqLGsViu7du1i3rx51KnoHPIazuNrSUjaAAAYGUlEQVTCH2DyZGP+rMPhuufMyfHnttsasGPHc3Tr1o3nn3+eMWPGsGPHDpxOZ9lPIISoVZKSklizZg3z588ntCZf0l9JHhn+nTvDuHHGFXauuIyhoMDoRnr7bWjQoC4xMTFs3LiR2NhYli1bRnR0NBs2bCA/P7/qLyaEMN3u3buZN28e77zzTtHyzJ7H4y7yuspuB4vFWHGvYcPKX0nncBhdSM8/D2PGXH+/1pqvv/4aq9XKwYMHiY6OZsSIETQsvsODEKLWOHjwIBMmTGDu3Ll06dLF7HIqrLwXeXlkyx+MtTKWLzc2YU9NrVwXUE4OZGXBU08ZG7qXRCnFb37zG+bOncvixYu5fPkyUVFRzJo1i7Nnz1btJIQQbnXmzBkmTZrE9OnTa2XwV4THtvyvstuN9f3/53+MLqDQ0NJnAV19THa2sVXbm29C374Ve82UlBTWrl3LunXr6NKlCxaLhV//+tceM0VMCE+UnJzM6NGjGTNmDEPdubayi5W35e/x4X/V4cPw1luwfbvxJqCUsQCcr69xu6DAuDjM39/41BAfD48/brwBVFZeXh4fffQRiYmJ1K9fH4vFQt++fWUdHyFqmMzMTB555BH+9Kc/8dBDD5ldTpVI+N/ApUvGmv9798LXXxuDwr6+xmp8PXoYX337Vnxl0NI4nU527NiB1WrlypUrxMfHM2TIEIKC5HoBIcxmt9sZP348t9xyC5MnT671n9Al/GuoAwcOYLPZ2L9/P1FRUcTExBAmiwUJYQqn08mUKVPw9/fnlVde8YhP5V4/4FtTdenShTlz5vD3v/+dzMxMoqOjmTlzJidPnjS7NCG8itaaV199lezsbGbMmOERwV8R3nW2NUjr1q2ZMmUKGzdupEWLFowbN44JEybw5ZdfUlM/jQnhSZYsWcKhQ4d4/fXXCTBjKy2TSbdPDWG320lKSsJmsxEUFITFYqFfv34etZaIEDXF+vXrsVqtLF++nEaNGpldjktJn38t5XQ62bVrF1arlYsXLzJy5EgiIyOpW/aO9EKIcti2bRtz5sxh6dKlhIeHm12Oy0n4e4DDhw9js9n44osvGDZsGLGxsTRt2tTssoSotfbv38+UKVOYP3/+L/be9SQy4OsBOnfuzKxZs7BarRQUFBAbG8uLL77IsWPHzC5NiFrnRpuueytp+dciGRkZbNiwgdWrV9OhQwcsFgs9e/as9fOShahuVzddnzBhAgMGDDC7nGol3T4ezG6388knn2C1WvH19cVisdC/f3/8y7NxsRBeJjU1ldGjRxMTE+MRe++WRcLfC2it+fzzz7HZbJw+fZrY2FiioqKKNp8XQuTk5PDYY4/Rq1cvHn/8cbPLcYvyhr/HbePoTZRS9OnThz59+nDkyBFsNhtDhw5lyJAhjBw5kubNm5tdohCmubrp+k033eQxm667kgz4eoiOHTsyc+ZMVq1ahVKKuLg4XnjhBb7//nuzSxPC7Tx103VXkm4fD5WVlcU//vEPVq5cSZs2bbBYLPTu3Vv+CIRXePvtt/nmm29YuHChx+29Wxbp8xeA8dH3008/xWq14nA4SEhIYODAgV55ObvwDjabjc2bN7N06VKP3Hu3LBL+4he01uzduxebzcbRo0eJiYnh/vvv98o/DuG5kpKSWLhwIcuWLfPYvXfLIgO+4heUUvTs2ZOePXty/PhxEhMTiYyM5L777iMuLo6WLVuaXaIQVXJ10/VFixZ5bfBXhAz4eqEOHTrw4osvsmbNGurUqYPFYuHZZ5/l0KFDZpcmRKUcOnSI6dOn88Ybb9C+fXuzy6kVpNtHkJOTw6ZNm1i5ciXNmzfHYrFw5513et365qJ2OnPmDGPHjmXq1KncddddZpdjOunzFxVWWFjI1q1bsVqtZGdnk5CQwKBBgwgMDDS7NCFK5CmbrruShL+oNK01X331FVarlUOHDjFixAhGjBhBgwYNzC5NiJ9lZmYyduxYBgwYUOs3XXclGfAVlaaUolu3bnTr1o1Tp06RmJhIVFQUAwYMIC4ujoiICLNLFF7ObrczefJkunXrxqhRo8wup1aSlr8ol5SUFD744APWr19P165dsVgsdOnSxeyyhBdyOp08++yz+Pr68re//U3Gpq4h3T6iWuTm5vLRRx+RmJhIw4YNsVgs/OEPf5A/QOEWWmtmz57NuXPnmDdvnlysWAK3hL9SqhGwBmgLnAYe0FqnlnBcIfBt0c2zWusyR2Yk/Gs2p9PJZ599htVqJTU1lbi4OIYMGUJQUJDZpQkPtnjxYnbs2MHixYsJDg42u5wayV3hPwdI0Vq/qpR6FmiotZ5SwnFZWusKrTMs4V97HDhwAKvVytdff01UVBQxMTEetym2MN+GDRt4//33PXLTdVdy1zaOw4AVRd+vACKr+HyiFurSpQuvv/46y5YtIz09nfvvv59XXnmFU6dOmV2a8BDbtm1j8eLFLFiwQILfRaoa/s201hcBiv690e7idZRS+5RSe5RS8gbhoSIiInj22WfZsGEDzZo149FHH2XixIns37+fmjq2JGq+/fv3M3v2bObNm0d4eLjZ5XiMMrt9lFL/AkraFWQqsEJr3aDYsala64YlPEdLrfUFpVR7YBvQT2t9ooTjxgJjASIiIu44c+ZMhU5G1Cz5+fls2bIFm81GvXr1SEhIoF+/fvj6+ppdmqgljh07xhNPPMErr7xCz549zS6nVnBXn/8R4A9a64tKqRbAZ1rrjmU85n+Bj7TW60o7Tvr8PYfT6WTnzp1YrVYuXbpEXFwcw4YNo27dumaXJmowb9p03ZXc1ee/GXiw6PsHgU0lFNJQKRVY9H1j4HfA4Sq+rqhFfHx8uOuuu1iyZAmzZ8/mm2++YciQISxYsIDk5GSzyxM1UFpaGuPHj+fBBx+U4K8mVW35hwEfABHAWWCE1jpFKdUdGKe1HqOU6gO8Bzgx3mzmaa2XlfXc0vL3bOfPn2flypV8/PHH3H333SQkJHDTTTeZXZaoAbxx03VXkou8RK2QkZHBunXrWLNmDR07diQhIYEePXrIdpNeyuFwMHHiRJo0acK0adPk/4NKkPAXtYrdbuef//wnNpsNPz8/EhISGDBgAH5+svyUt3A6ncyYMYPMzEzeeOMNmRhQSRL+olZyOp3s2bMHq9XKmTNnGDlyJMOHD6devQpdIyhqIW/edN2VZFVPUSv5+PjQp08f+vTpw/fff4/NZmPo0KEMHTqUkSNHyvZ8Hspms7Fz506WLVsmwe8mshqXqLFuvfVWXnnlFVauXInWmpEjRzJt2jSOHDlidmnChZKSkli9ejULFiwgNDTU7HK8hnT7iFojMzOTjRs3snr1atq2bUtCQgK9e/eWQcFabPfu3cyYMYNFixbJ3rsuIn3+wmMVFBTw6aefYrVacTqdJCQk8Kc//UmW961lDh06xIQJE3jzzTdlbwgXkvAXHk9rzX/+8x+sVisnTpwgJiaGqKgo6TqoBWTT9eojA77C4yml6NWrF7169eLYsWPYbDYiIyMZNGgQI0eOpGXLlmaXKEqQnJzMX/7yF5544gkJfhPJgK/wCDfffDMvvfQSq1evxt/fn4SEBJ5//nkOH5aVRGqSzMxM/vrXvzJ8+HCGDi1zTydRjaTbR3ik7OxsNm3axMqVK2nZsiUWi4Xf/e53st2kiex2O+PHj+fmm2/mqaeekoH6aiJ9/kJgLBewdetWrFYreXl5xMfHM2jQIBkcdjPZdN19JPyFKEZrzf79+7FarRw+fJgHHniA6OhoGjRoUPaDRZXIpuvuJQO+QhSjlOKOO+7gjjvu4OTJkyQmJjJ8+HAGDhxIXFwcrVu3NrtEj7VkyRIOHTrE4sWLJfhrEPnsJbxO+/btmTZtGuvWrSMkJISHHnqIZ555hgMHDphdmsfZsGEDSUlJzJ8/n+DgYLPLEcVIt4/werm5uXz44YfYbDYaN26MxWLh7rvvln7pKtq+fTuvvfYaS5culb133Uj6/IWoIKfTyfbt23n//ffJyMggPj6ewYMHy0JjlbB//36mTJnC/PnzufXWW80ux6tI+AtRSVprvvnmG6xWKwcOHCA6OpoRI0bQqFEjs0urFWTTdXPJgK8QlaSUomvXrnTt2pUzZ86QmJjI/fffT//+/YmPj6dNmzZml1hjXbhwgSeffJKnnnpKgr+Gk5a/EOWQkpLCunXrWLt2LbfffjsWi4WuXbvKhUrFpKWl8fDDDxMTE0NMTIzZ5Xgt6fYRohrk5eWxZcsWEhMTCQkJwWKx0LdvX6/fcjA3N5dx48bJpus1gIS/ENXI6XTy73//G6vVSnJyMnFxcQwdOpS6deuaXZrbORwOJk2aROPGjWXT9RpAwl8IN/n222+x2Wzs27ePqKgoYmJiaNy4sdlluYVsul7zlDf8ZSKzEFV0++2389prr7FixQqys7N54IEHePnllzl58qTZpVW7+fPnc+7cOWbPni3BX8tIy18IF0tPT2f9+vWsWbOGjh07YrFY6N69u8d1h9hsNjZt2sSyZctkA50aRLp9hDCZ3W7n448/xmq1EhgYiMVi4Z577sHPr/bPsE5KSmLhwoUsW7aMZs2amV2OKEbCX4gawul0snv3bqxWK+fOnSMuLo7IyMhau9bN559/zosvviibrtdQEv5C1ECHDx/GZrOxZ88eIiMjiY2NpWnTpmaXVW6y6XrNJwO+QtRAnTt3ZtasWdhsNhwOB7GxsUyfPp2jR4+aXVqZzp49y6RJk5g2bZoEvweQlr8QJsrIyGDjxo2sXr2a9u3bY7FY6NWrV/UPDufmQk4O+PhAaCiUMVMnOTmZ0aNHM2bMGNl7t4aTbh8hapGCggI++eQTrFYrSiksFgsDBgzA39/fNS/gcMC//w0bN8L+/XDxohH4WhtvADffDHfeCQ88ADfd9IuHZmVl8cgjjzBgwAAeeugh19Qjqo2EvxC1kNaaPXv2YLVaOX36NLGxsQwfPpyQkJDKPaHTCWvXwuuvQ3q6EfZBQRAQAFc/XTidkJdnfPn4QLduMHMmdOwom67XQhL+QtRyR48exWazsXPnTgYPHszIkSNp0aJF+Z/g4kWYOBH27jUCvzz7EmgNGRmgFM6//IXnzp7Fx89PNl2vRST8hfAQP/74I6tXr2bTpk389re/xWKx0KlTp9IfdOoUxMTAlSvQoMF/W/nlpAsKSPvhB75u1Yrf/ec/BAQFVeEMhDvJbB8hPESzZs148skn+fDDD/nVr37FU089xaOPPsrOnTtxOp3XPyA52Qj+tDRo2LDCwQ9wOT2dVODurCwCXnqp6ichahxp+QtRyzgcDv71r3/x/vvvU1BQQEJCAvfeey8BAQFGt80jj8D27UbwV0JqWhpXLl+mbdu2+Pn4GGMFS5bAH//o4jMR1UG6fYTwcFpr9u3bh9Vq5ciRI8YmKvXrEzxlCtSvX6kWf0ZmJpcuXaJtmzbGmwkYU0IDA43ZQpUdeBZuI9s4CuHhlFL06NGDHj16cOLECRJtNg4/9RTt/fwIqVv3v+Fdgmnnz/OfnBxynU4a+/nx57Aw+gcEcOniRVpHRPzysXXrGl1ImzdDfLwbzky4g7T8hfAUBw7giIwkpaCA1PR0guvWJSwsjKASBmtP5ucT7u9PgI8Pp/PzGXPqFJO15q6IiJLXHMrJgcaNYceOSn2iEO7jlgFfpdQIpdQhpZRTKXXDF1NKDVRKHVFKHVdKPVuV1xRC3MBnn+GnNU2bNaNDhw7UrVuXc+fPc/rMGTIzMynezGsfGEhA0dTNAoeD/Lw88hs0uPFic0FBxtTRH36o/vMQblHVbp+DQBTw3o0OUEr5Au8C/YFzwF6l1Gat9eEqvrYQorgvvjAu3gJ8fXxo1KgRDRs1IjMjg8uXL/PjTz8RFhZG/fr18VGKVy9dYnNaGpl5edwaFMSA0pZmVsq4Ivj77yEiwk0nJKpTlcJfa/0dUNZVfz2B41rrk0XHrgaGARL+QrjSkSPGwGwxCggNDSUkNJScnBxSrlwh+aefaNiwIZPCwhiRm8uZevU4VacOAWV15+TlwbFjMGBA9Z2DcBt3zPNvBRT/rHiu6GdCCFe6ujxDCRQQXLcurVu3pk3btjgcDk6fPk3dOnXoGx7OjwUFrEtNLf35lYLMTNfXLUxRZstfKfUvoHkJd03VWm8qx2uU1JwocZRZKTUWGAsQIR8thagYPz9jnn8ZAgMCaNGiBc357x9nIXDObi/9gVpf98lC1F5lhr/W+p4qvsY5oHWx2+HAhRu81mJgMRizfar4ukJ4l/BwOHkSylgJNMXhYF9ODnfWq0cdpfgiO5tP0tP5W6syPpD7+0ObNi4sWJjJHfP89wI3K6XaAeeBWCDODa8rhHfp2RMOHTLm5ZdCAetSU5l18SJOoIW/P5ObNePusi7g8vWFW291WbnCXFUKf6XUcGA+0ATYopT6Wmv9J6VUS2Cp1vo+rbVDKTUe+ATwBZZrrQ9VuXIhxC/17g02W5mHNfTzY3FFW/B2u9Gt1KFDJYsTNU1VZ/tsBDaW8PMLwH3FbicBSVV5LSFEGe6+22j15+e7vm8+OxvGjPl5Kqmo/WRVTyE8RUAAjB5tbNHoSg6H0eUjSzt4FAl/ITzJI49Ay5aum5KptfFcjz8uF3d5GAl/ITxJnTrwzjtGaOfnV/35MjKM/X0ff7zqzyVqFAl/ITxN164wd67R/VPZLiCtjZU8mzeH99+Xvn4PJOEvhCcaPBjee8+44jc1tVwXf/3MbjeC/7bbYMMGaNq0+uoUppHwF8JT9esHW7cas4DS0403AYej5GO1Nj4lpKUZ4T91qhH8TZq4t2bhNrKZixCerGlTWL4cDh82um82bzbW5vfxgav7//r6GoHfqhU8/DBERhqbvguPJpu5COFNnE44fx6OHjXm7vv4GK37Tp0gNNTs6oQLyDaOQojr+fhA69bGl/Bq0ucvhBBeqMZ2+yilkoEzZtdRCY2By2YX4WZyzt5Bzrl2aKO1LnOkvsaGf22llNpXnv42TyLn7B3knD2LdPsIIYQXkvAXQggvJOHveovNLsAEcs7eQc7Zg0ifvxBCeCFp+QshhBeS8K8ipVQjpdSnSqljRf82LOXYUKXUeaXUAnfW6GrlOWelVFel1OdKqUNKqQNKqRgzaq0qpdRApdQRpdRxpdSzJdwfqJRaU3T/F0qptu6v0rXKcc6TlFKHi36vW5VStX5X97LOudhx0UoprZSq9TOAJPyr7llgq9b6ZmBr0e0bmQnscEtV1as855wD/Flr/StgIDBPKVWrFoxRSvkC7wL3Ap2BkUqpztccNhpI1Vp3AN4CXnNvla5VznP+Cuiute4CrAPmuLdK1yrnOaOUCgH+Cnzh3gqrh4R/1Q0DVhR9vwKILOkgpdQdQDPg/9xUV3Uq85y11ke11seKvr8A/ATUtiUiewLHtdYntdZ2YDXGuRdX/L/FOqCfUkq5sUZXK/OctdbbtdY5RTf3AOFurtHVyvN7BqPxNgfIc2dx1UXCv+qaaa0vAhT9e93i50opH+BN4Gk311Zdyjzn4pRSPYEA4IQbanOlVsAPxW6fK/pZicdorR1AOhDmluqqR3nOubjRwMfVWlH1K/OclVK/AVprrT9yZ2HVSRZ2Kwel1L+A5iXcNbWcT/E4kKS1/qG2NApdcM5Xn6cFYAUe1Fo7XVGbG5X0y7p2elx5jqlNyn0+SqkEoDtwd7VWVP1KPeeixttbwCh3FeQOEv7loLW+50b3KaV+VEq10FpfLAq6n0o4rDfwe6XU40A9IEAplaW1Lm18wFQuOGeUUqHAFuAFrfWeaiq1Op0Dii9/GQ5cuMEx55RSfkB9IMU95VWL8pwzSql7MBoCd2utXbBZsKnKOucQ4Dbgs6LGW3Ngs1JqqNa61q47L90+VbcZeLDo+weBTdceoLWO11pHaK3bAk8B79fk4C+HMs9ZKRUAbMQ417VurM2V9gI3K6XaFZ1PLMa5F1f8v0U0sE3X7otnyjznoi6Q94ChWusS3/hrmVLPWWudrrVurLVuW/Q3vAfj3Gtt8IOEvyu8CvRXSh0D+hfdRinVXSm11NTKqk95zvkB4C5glFLq66KvruaUWzlFffjjgU+A74APtNaHlFIvK6WGFh22DAhTSh0HJlH6bK8ar5zn/DrGJ9i1Rb/Xa98Qa5VynrPHkSt8hRDCC0nLXwghvJCEvxBCeCEJfyGE8EIS/kII4YUk/IUQwgtJ+AshhBeS8BdCCC8k4S+EEF7o/wNvZ1OwAvKlGAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb1JCDNhBogQdhYVqyJDKUsMcW8UrFRrHW3V1i9+27qqqK2jSh20jjoQFYF+a2ittrb8khD2ECEQyIAkJCF7nuv3x53cJpBxICfnPifn83w88iDjzrk/hPC+7vu6rvu6lNYaIYQQnsXL6gKEEEI4n4S/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHkjCXwghPJCP1QV0pF+/fnrEiBFWlyGEEG5l69atxVrr/l0d57LhP2LECDIzM60uQwgh3IpSKsee41w2/B1NaygogNJS4/2wMBgyBLyk40sI4YF6dfjX18MXX8Dbb8O2bVBXBz4+RvjbbODtDePHw3XXwQ9+AIGBVlcshBDOoVx1Vc/ExER9rt0+WsOnn8L//i9UVRmfCwoygr+1piaorjYaAj8/uP9+uOUWuRsQQrgvpdRWrXViV8f1upgrLYWlS40gb2gwunfCws4MfjCu/ENDoU8f4/3HHoOUFMjPd37dQgjhTL0q/IuLITUVvvoKwsMhIMD+7/XzM75n1y5YvBhy7BoyEUII99Rrwr++Hm66yQjtiAhQ6uxfQynje0tL4ZproKzM8XUKIYQr6DXh//vfwzffGF043dWnDxQWwqOPdv+1hBDCFfWK8D9wAF591ei/P5cr/vb06QMbNsDXXzvm9YQQwpX0iqmer79uzNhpb1C3tby8R6iuTsdmq8HHpx+RkTcRHr643WO9vIyG5KWX4IILeqBoIYSwkNuHf3m5Ma0zNLTrY/v1uxVf30fw8vKjru4IOTnL8fc/j8DAce0eHxoK6enGOMLw4Q4uXAghLOSQbh+l1BtKqUKl1O4Ovq6UUr9XSh1USu1USsU74rwA27cbf3Z11Q/g7x+Dl5dfS1UopWhoyO3w+Jar//T07tcphBCuxFF9/muAuZ18/QfAmOa35cAfHHRe9uwxZvrY6/jxJ9m//wKys5fg49OPkJDO+3RsNpAlhoQQvY1Dun201l8ppUZ0csjlwJ+18TjxFqVUuFJqsNa6oLvn3rPHeEDLXoMGPcjAgT+jpmYn1dVbUcqv0+P9/WHfvm4WKYQQLsZZs32igWOtPs5t/lwbSqnlSqlMpVRmUVGRXS9cU3N2M3zq6+s4cOAAZWUDqKjIobj4vU6PV8pYE0gIIXoTl5rqqbVerbVO1Fon9u/f5XLUgLEY29ksT6SUF1prAgL8qaur5sSJnRw6dIjjxwuoqCinqanptJqMp3+FEKI3cVb45wFDW308pPlz3TZ2LDQ2dn1cY2MJ5eWf4+3dQHBwEPX1mcAWhg+fT3R0FL6+fpSVlXHw4LccPpxNYeEJKisrqa1tYlz7k4GEEMJtOWuq53rgLqXUe8A04JQj+vsBJk40+uW7pigtXUtBweM0NTXQ1BTOkCH3Exp6MQABAYFERkaitY2amlqqq6s4ebKYykpvMjM38uqriqSkJCZMmICf3AoIIdycQ8JfKfUXYAbQTymVC6wEfAG01q8Am4B5wEGgGrjVEecFmDLF6Jppaup84NfHJ4Lhw1c3f6Q5ePAggYFD2vm7eBEUFERQUBCRkf0pK7Pxox9NIz//3zz//PMcOXKESZMmkZSURFJSEmPHjsVL1oAWQriZXrGe//33wyefGIuy2au4uJiGhnoGD47q8Jjycpg8GT78sPXnysnKyiI9PZ3MzEyKi4uJj48nOTmZxMRERo4ciXLUGhNCCHGW7F3Pv1eE/969cPnlEBJi/7TPxsZGDh06xJgxo/HyOvObbDYj/F97DWbM6Ph1iouLyczMJD09nYyMDOrr60lKSjIbg6iojhsXIYRwNI8KfzA2YnnzTWNNfnvl5uYSHBxERETfM75WVgZz5sDLL5/dVNK8vDwyMjLMO4PAwMA2jUHfvmeeSwghHMXjwr+mBhYsgKNH7V/WuaqqihMnjhMTEwN8l/Dl5cZr/O1v0J2s1lqTnZ1tNgZZWVkMHDiQ5ORkkpKSiI+PJyQk5NxPIIQQp/G48Ac4ccLYySs/37gD6PqKXXPo0CGioqIIDAxCazh1yljQ7YMPYMyYcy6/XU1NTezfv9/sItq9ezcjR440G4PJkyfjb9/UJSGEaJdHhj9AURHcfTdkZBibtneVpSdPFlNXV0f//tFUVhqB/+qrzlnFs76+nl27dpmNwbfffktcXJzZGMTFxeFjz4p1QgjRzGPDH4zB2vffN8YB6uqM1TmDgs4cDLbZoKqqkaNHjzN06GB+/GNv7rgDfH0d8Bc4B9XV1Wzbts1sDPLy8pg6dao5rXT06NEyrVQI0SmPDv8WNTXw+efwpz8ZC8CB0RDAd88GjBkDvr4fsGiR4rbbruxm1Y5VVlbG1q1bzcagvLycxMREszEYOnSoTCsVQrQh4X+apiZjU5bSUuOKv08fGDnSuMrPysri8ccf58MPP3TpMD1x4gQZGRnmm1LKbAiSkpIYMGCA1SUKISwm4X8WtNZcddVVPPTQQ8THO2yfmR6ltebYsWPmXUFmZibh4eHmtNKEhAT6OGI3eyGEW5HwP0vvvvsue/bs4bHHHnPaOR3JZrNx8OBBszHYvn07Q4YMMRuDKVOmEBQUZHWZQogeJuF/lsrLy1m0aBGffPIJ4WfzpJiLamxsZM+ePeYzBvv27SM2NtZsDGSBOiF6Jwn/c7By5UpGjx7NjTfe6NTzOkNtbS07duwwG4MjR44wceJEszGQBeqE6B0k/M/Bzp07WblyJR999FGvD8KKigqysrLMxqCoqMhcoC4pKUkWqBPCTdkb/vIEUSsTJ07E39+fzMxMkpOTrS6nR4WGhnLxxRdz8cXGfgYnT54kMzOTjIwM3nnnHWpra827gqSkJFmgToheRq78T/PBBx+wdetWnnrqKaef25Xk5+ebdwUZGRkEBAS0WaAuMjLS6hKFEO2Qbp9zVFlZycKFC1m7dq0EXDOtNYcPH26zQF3//v3NxiA+Pp7Q0FCryxRCIOHfLb/+9a8ZMmQIt97qsA3HehWbzcb+/fvNxmDXrl2MGDGizQJ1AQEBVpcphEeS8O+GvXv38uCDD/LJJ5/0+oFfR6ivr2f37t1mY3DgwAHGjRtnNgbjx4+XBeqEcBIJ/2664YYbWLFiBdOnT7esBndVXV3N9u3bzfGCY8eOMWXKFLMxGDNmjDSqQvQQme3TTSkpKaxbt07C/xwEBQUxffp082d36tQpc4G6jz/+mLKyMhISEkhOTiY5OVkWqBPCAnLl34Hq6moWLFjAe++9JwumOVhhYaG573F6ejqAuThdcnKy/LyF6Abp9nGAJ554gn79+rFs2TJL6+jNWhaoa2kMMjMzCQsLMxuDxMTEXrHchhDOIuHvAAcOHOAnP/kJn332Gd6n7wQjekTLAnUty1Zv27aN6OhoszGIj4+XBeqE6ISEv4PccsstLF26lIsuusjqUjxSY2Mje/fuNRuDPXv2MGbMGLOLaOLEibJAnRCtSPg7yPr16/nHP/7B888/b3UpAqirqzMXqMvIyCA7O5sJEya0WaBO7tKEJ5Pwd5Da2lrmzZvHO++8w+DBg60uR5ymsrKyzQJ1hYWFTJ061ZxWGhMTIzOJhEeR8Hegp59+mpCQEO68806rSxFdKCkpMReoS09Pp6amhsTERLMxiI6OtrpEIXqUhL8DZWdns2LFCjZs2CBPqrqZ/Pz8No2Bv7+/2RgkJibSr18/q0sUwqEk/B3s9ttv57rrrmPmzJlWlyLOkdaaI0eOmOMFW7dupV+/fmZjEB8fT1hYmNVlCtEtEv4OtmnTJjZt2sSLL75odSnCQWw2G9988415V7Bz505GjBhhTiudMmWKLFAn3I6Ev4PV19czb9481qxZw5AhQ6wuR/SAlgXqWh44++abbxg3bpzZGIwfPx5fX1+ryxSiUxL+PeC5557Dx8eHu+++2+pShBO0LFDX0hgcPXqUKVOmmI1BbGysLFAnXI6Efw/Iyclh2bJlbNy4Ua4APVB5eTmZmZlmY1BSUkJiYqL5jMGwYcNkWqmwnKzq2QOGDx9OTEwMX3zxBZdeeqnV5QgnCwsLY+bMmeagf1FRkTl4vGbNGmw2W5sF6gYOHGhxxUJ0TK78z9Lnn3/OunXreOWVV6wuRbgQrTW5ublmY5CRkUFoaGibBeoiIiKsLlN4AOn26SENDQ3Mnz+fP/7xjwwfPtzqcoSLstlsHDp0yGwIsrKyiIqKarNAXXBwsNVlil5Iwr8HvfDCCzQ2NnLvvfdaXYpwE01NTWcsUDdq1Cizi2jSpEmyQJ1wCKeGv1JqLvA7wBt4TWv95GlfvwV4Gshr/tSLWuvXOntNVw7/3NxcbrnlFjZt2iT/YcU5qaurY+fOnWZjcOjQISZMmGA+cDZu3DhZoE6cE6cN+CqlvIGXgDlALpChlFqvtd572qHva63v6u75XMGQIUMYO3YsmzdvZt68eVaXI9yQv7+/2QUEUFVVZS5Q99hjj1FQUEB8fLzZGMTExMi0UuFQjpjtkwwc1FpnAyil3gMuB04P/14lJSWFd999V8JfOERwcDAXXnghF154IWAsULd161YyMjL48MMPqaysNAeOk5OTiY6OlmmlolscEf7RwLFWH+cC09o5bolS6iLgAHCv1vpYO8e4jYsuuojf/va3ZGdnExMTY3U5opfp27cvc+bMYc6cOQAUFBSYC9StXr0aHx8fc6XSxMRE+vfvb3HFwt10u89fKZUKzNVa39788Y3AtNZdPEqpSKBSa12nlLoDuFprfcYKaUqp5cBygGHDhiXk5OR0q7ae9oc//IHKykp++tOfWl2K8CBaa3Jycsw9jzMzM4mMjDS7kRISEmSBOg/mtAFfpdT5wKNa68uaP34IQGv9RAfHewMlWus+nb2uKw/4tigoKOD6669n06ZNsgCYsIzNZuPAgQNmY7B9+3aGDx/eZoG6wMBAq8sUTuLMJ3wzgDFKqZEYs3muAa47rZjBWuuC5g8XAfsccF7LDR48mEmTJvH555+zaNEiq8sRHsrLy4uxY8cyduxYbrrpJhoaGtizZw/p6em8+eab7Nu3j7Fjx5qNwYQJE9xneRKt4fhxyMuDxkYICICRI6FPp9eOwg6Omuo5D3geY6rnG1rrx5RSvwIytdbrlVJPYIR+I1AC3Km13t/Za7rDlT/AV199xRtvvMGaNWusLkWIdtXU1LBjxw7S09PJyMggJyeHyZMnm43Beeed51oziWw2yMyENWvg3/+GmhpovYlSfT306wc/+AHccAOMHm1Zqa5IHvJyEpvNxsKFC3nuueeIjY21uhwhulReXm7OJMrIyODkyZMkJCSYjcGIESOsm0m0cyfcdx/k5BhX/cHBRvC3rkdrowGorjY+//3vwxNPgOyxDUj4O9Uf//hHiouLeeihh6wuRYizVlxc3GZNosbGxjbTSgcNGtTzRdhssGoVvPoqeHlBaGjbwO+I1nDqFPj7w1NPwYIFPV+ri5Pwd6LCwkKuueYaNmzYQFBQkNXlCHHOtNbk5+ebXUSZmZkEBQWZex4nJibSt29fx57UZoP774f1643QP5d9suvqjDuBlSvhppscW5+bkfB3sgceeIDp06eTkpJidSlCOIzWmuzsbLMxyMrKYtCgQWZjkJCQ0P0F6h5/HF5/3RjE7c7YQ0MDVFXByy+DBy+5LuHvZP/5z3946aWXePvtt+XJS9FrNTU1sW/fPrOLaPfu3cTExJiNweTJk/H397f/BbduhauvNq74HbGWUcvg8D/+AZGR3X89NyTh72Q2m43Fixfz5JNPEhcXZ3U5QjhFfX19mwXqDh48yPjx483B47i4uI4XqGtqghkzoLDQCH9HKSuD+fPhd79z3Gu6EQl/C7z55pvk5ubyyCOPWF2KEJaorq42F6jLyMggPz+fqVOnmo3BqFGjvptW+s9/wvLl0MXTyOVNTfyqoIAtlZWE+/hwV//+zO1snn9TE1RWwtdfw4ABjvvLuQkJfwucPHmS1NRUPvvsM0JCQqwuRwjLlZWVmXseZ2ZmUlFRYe57fNnbbxO0axeqiwe2Hs7LQwOPDB7Mgdpa7jl2jDdHjCCms+6l0lJjEHnFCsf+hdyA7OFrgcjISKZNm8amTZu46qqrrC5HCMuFh4cze/ZsZs+eDcCJEyeMWURbtjDtb3+jwMeHoKoqgoODCQoOxve0mT41Nhv/qKjgg5gYgry8mBIUxMWhoWw8dYq7O7uq9/ODtDSPDH97udBjfb1DSkoK69atw1XvqISw0sCBA1mwYAGP3nQTUdHRDB0+nIDAQCoqKsjOzubQoUMUHD9OeUUFTU1NHK2vxxsY1mrTpDH+/mTX1XV+ooAA2LfPmEYq2iVX/g6WmJhIfX09u3btYtKkSVaXI4Rrys1FeXnh7+eHv58ffSMi0EBdbS1V1dWUlZWRn5/Pt15e+DY2UllZSWBQEN5eXoR4eVHVVah7ext9/ydPgix33S658ncwLy8vrrjiCj766COrSxHCddXXG0/ntqKAgIAAIvv2ZdjQoZwXG0tU375UNjVx5MgRDh06hE1rqmw2gu15HsDLy5j7L9ol4d8DFi5cyJdffkl5ebnVpQjhmvz8Oly+oaGxkZMlJeTk5OBTXIxNKbyjo/H386OiooIDdXWdD/a2sNmM84h2Sfj3gPDwcL7//e+zYcMGq0sRwjWNGNHmyr8l8I8cOUJ2djZ1tbX069ePibGxzI2M5K3qagLCw/m6qIgvKyqY39WSzo2N4OvrsQ962UPCv4fIwK8QnRgxgsbGRk4WF58R+GPGjCEqKoqQkBC8lOLBQYOos9lYUlDAbysruT8ysusr/9paGD/evsXhPJQM+PaQqVOnopRi27ZtxMfHW12OEC6hsLCQzZs3s3nzZpZUV/O9+nr69e9PUHAwXh0EdZi3N6uGDgWgqKiIxsbGrk/U2Ahz5zqy9F5Hrvx7iFKKlJQUGfgVHu/EiRO8++67LF26lGuuuYaDBw9y++23c9n77xPZty8hnQT/6cIjIigvL6eps9k+TU3GYO8VVzjob9A7yZV/D5o/fz6vvvoqpaWlREREWF2OEE5z4sQJ/v73v7N582aOHDnCjBkzuP3220lKSvpuC0mbDYYPh6NHu1zioYWvjw9BQUGUl5cTER7e/kHl5XDVVeDopad7GQn/HhQWFsaMGTP47LPPuMnD1xgXvV9L4KelpZGTk9N+4Lfm5WUsvrZ4sdFNY+c6/hERERQWFhIeHs4Z9wvV1RAeDrKxUpck/HtYSkoKK1eu5IYbbnCtfVKFcID2An/ZsmUdB/7pxo+HH/8Ynn/e7vX8g4ODsTU1UVNTQ1Bg4HdfqK835vX/8Y9230l4Mgn/HjZx4kQCAgLIzMwkOTnZ6nKE6Lbjx4+bXTqtAz85ORmfc9mF6667jCdx33oLQkKMKZqdUBh9/6Wlpd+Ff3W1Ef6rVsEFF5x9DR5Iwr+HtR74lfAX7qp14B89epSLL764e4HfmlLG9otDhsBvf2sEeVhYp9M0w8PDOXTwIE0NDXhXVRn7AbzyClx0Ufdq8SCypLMTVFZWsnDhQtauXUukPHQi3ERL4KelpXHs2DEuvvhi5syZQ1JSUvcDvyMHD8LPfw47dxoDwkFBZz4NbLNBbS0njx/H18+PsGuvhf/5H5BJFYCs5+9yfvOb3xAVFcXSpUutLkWIDp0e+DNmzGD27Nk9G/jt2bcP3n4bvvwSCgqMriCljOBvaoKYGPKmTuWRXbt4bcMGGU9rRdbzdzEpKSk8+OCD3HLLLfKLKlxKQUGB2aXTEvh33HGH8wO/tXHj4LHHjPcrKyE/35gRFBBgdA/5+RGlNdXXXivjaedIwt9J4uLi6NOnD1u2bGH69OlWlyM8nEsGfkdCQiA29oxPK6VITU1l7dq1Ev7nwMX+lXu3loFfCX9hhZbAT0tLIzc3lxkzZvDDH/6QxMRE1wt8O82bN4+XXnqJwsJCBnjgfr3d4Z7/4m7qsssu44UXXpBfVOE0pwf+JZdcwp133unWgd9aUFAQl156KZ9++inLli2zuhy34v7/+m6k5Rf1k08+Yfny5VaXI3qpgoICc/G03hj4p0tNTeWee+5h6dKleHt7W12O2+h9vwkuLiUlhZ/85Cfcdttt8osqHCY/P9/sw8/Ly2PGjBm9OvBbGzNmDIMGDeJf//oXM2bMsLoct9G7fytcUGxsLAMHDuTrr7/mInkgRXRDS+CnpaWRn5/PjBkzWLFiBQkJCb0+8E/XMvAr4W8/z/oNcREtA78S/uJsnR74l1xyCT/60Y88MvBbmz17Ns8++yzHjh1jaPPa/6JznvvbYqE5c+bw3HPPUVBQwODBg60uR7i4/Px8sw9fAr99fn5+LFy4kHXr1nHPPfdYXY5bkCd8LfLMM88QHBzMnXfeaXUpwgW1F/izZ8+WwO/EsWPHWLp0KRs3bsTPgzdulyd8XVxKSgorVqxg2bJl8p9ZAO0H/l133UVCQoJMDrDD0KFDOe+889i8eTPz5s2zuhyXJ6ljkZiYGIYOHcpXX33FzJkzrS5HWOT0wJ85c6YEfjcsWbKEt956S8LfDhL+FmoZ+JXw9ywS+D3noosu4umnn+bbb79lzJgxVpfj0iT8LTRr1ixWrVpFbm4uQ4YMsboc0YNaB35BQYF06fQQb29vFi9ezNq1a3lItnLslAz4Wuz555/H29ubu+++2+pShIO1BH5aWhrHjx9vM2grgd9zCgsLueaaa9iwYQNBQUFWl+N0Th3wVUrNBX4HeAOvaa2fPO3r/sCfgQTgJHC11vqII87t7lJSUrj99tv54Q9/aN+ep8KltRf4d999twS+Ew0YMIDExET++te/smTJEqvLcVndDn+llDfwEjAHyAUylFLrtdZ7Wx12G1CqtR6tlLoGeAq4urvn7g2GDRvGqFGj+OKLL7j00kutLkecg7y8PLNLRwLfNaSmpvLcc8+RkpKC6mQ7SE/miCv/ZOCg1jobQCn1HnA50Dr8LwcebX5/LfCiUkppV+1zcrKUlBTWrl0r4e9GJPBdW2JiIrW1tezatYtJkyZZXY5LckT4RwPHWn2cC0zr6BitdaNS6hQQCRQ74Pxub8aMGTz99NPk5OQwfPhwq8sRHWgJ/LS0NE6cOMEll1zCj3/8Y+Lj4yXwXYyXlxdLlixh7dq1Ev4dcKnZPkqp5cByMLpDPIWvry+LFi1i3bp13HvvvVaXI1ppHfiFhYVccskl3HPPPRL4bmDhwoVcfvnllJWVER4ebnU5LscR4Z8HtF5JaUjz59o7Jlcp5QP0wRj4bUNrvRpYDcZsHwfU5jauuOIKbr75Zn70ox959KPpriA3N9fs0pHAd199+vTh4osv5rPPPuPGG2+0uhyX44jwzwDGKKVGYoT8NcB1px2zHrgZ+C+QCvxD+vvbio6OZty4cfJoukUk8Hun1NRUHnnkEa6//nq8vLysLseldDv8m/vw7wL+hjHV8w2t9R6l1K+ATK31euB14C2l1EGgBKOBEKdJSUnh7bfflvB3kpbAT0tLo6ioiEsuuYSf/OQnxMfHS1D0EhMmTCAoKIj09HS+973vWV2OS5GHvFxIY2MjCxYs4OWXXyYmJsbqcnql0wN/5syZzJ49WwK/F1u3bh3/+c9/eOaZZ6wuxSlkVU835OPjw+LFi/noo4/46U9/anU5vcaxY8fMLp2WwL/33nsl8D3E3LlzefHFFyksLGTAgAFWl+My5MrfxRw/fpzrrruOTZs2ERAQYHU5bqu9wJcrfM/11FNPER4ezh133GF1KT1Orvzd1KBBg5g0aRKff/45ixYtsroct9IS+GlpaRQXFzNz5kzuu+8+pk6dKoHv4VJTU7nrrru47bbbZP+MZvJTcEFLlizh9ddfl/C3w+mBP2vWLO6//34JfNHGqFGjiI6Olv0zWpHwd0EXXHABTz75JAcOHCA2NtbqclzO0aNHzS4dCXxhr5YnfiX8DRL+LsjLy4srrriCjz76SNYkbyaBL7pr1qxZPPvssxw9etSjVhDoiAz4uqiioiKuuuoqNm7c6JFrkkP7gT9nzhymTJkigS/Oye9//3uampp69TIqMuDr5vr3709CQgL/93//R0pKitXlOM3pgT979mweeOABCXzhEEuWLOGmm25ixYoV+Pv7W12OpST8XdiSJUt48cUXueKKK3r1muQS+MJZoqOjGT9+PJs3b2b+/PlWl2MpCX8XNm3aNJ544gn27dtHXFyc1eU4VOvAP3nyJLNmzZLAF06RmprKm2++KeFvdQGiY15eXqSkpPDRRx/1ivBvCfy0tDRKSkok8IUlZDadQQZ8XVxJSQlLlizhs88+IyQkxOpyzlp7gT979mwJfGGp1157jcLCQh5++GGrS3E4GfDtJfr27cu0adPYtGkTV111ldXl2CUnJ8fs0mkJ/J/+9KcS+MJlLF68mCuvvJJ77rmH4OBgq8uxhIS/G1iyZAmrVq3iytmzUbt2we7d8O23UF8PwcEwcSLExRl/WjSDoXXgl5aWMnPmTAl84bL69etHcnIymzZt4sorr7S6HEtI+LuBRB8fbkxPp37qVPwDA6GuDnx8QCmw2WDdOvD1Nd5uuAFuvBGionq8rpbAT0tLo6ysjJkzZ/Kzn/2MyZMnS+ALl5eamsozzzxDampqr55N1xEJf1dWUQGPPYZau5YLq6o4qRRR/ftDR33/9fWwejW8+Sb88pdw3XXg4BA+PfBnzZrFz3/+cwl84XYSExNpaGhgx44dTJkyxepynE7C31UdPgzXXw8nTkCfPgSFhlJw8CBNTU0dbyvo52e81dfDypWQlgZ/+AN08wnhI0eOmF06Eviit1BKkZqaytq1ayX8hYs4ehRSU40r/4gIwPiHCgkJoezUKSL79u38+/38jC6gf/8bli6FP/3prMcCJPCFJ1iwYAGrV6+mtLSUiOb/a55Cwt/V1NfDbbfBqVMQHt7DaNuAAAAZx0lEQVTmSxERERQUFNC3b1+67KFUyvj+9HR48knjTqALLYGflpZGeXk5M2fO5MEHH2TSpEkS+KJXCgsL45JLLmH9+vXcfPPNVpfjVBL+rubFF40unz59zvhSYFAQKEV1dTXB9nTlKGW8zltvwbx5kJR0xiGnB/6sWbN46KGHJPCFx0hNTeWhhx7ixhtv9KjfeQl/V1JUBK++agzotjP7QAER4eGUlZbaF/4A3t7G2yOPwF//Ckpx+PBhs0tHAl94uri4OMLCwtiyZQvTp0+3uhynkfB3JR9+CI2NxjTODgSGhvJoXh6HqqupsNkY4uvLXQMGML2zp39DQmjYv5/1jz7KB/v3S+AL0YpSytzoRcJfWOOttyAwsPNjvL0ZEhjI8tBQ4gYM4OvKSh7My+O9kSOJ8vNrc2hdXR3lFRWUl5cTVFtL1Ndf8/CqVUycOFECX4hW5s6dywsvvMDx48cZNGiQ1eU4hSSAqygthcLCLmflBHp5cVd0NAGVlSiluDA0lChfX/bX1gJG4BcVF3MoO5uco0dpampi8ODBDBo5kvOVktk6QrQjMDCQuXPn8vHHH1tditNICriK/fuN6Zl2PGkYGBiIl1JUV1VR0thITm0tfaqqzgj8MWPGMGjgQIICA1H+/sZAcn29E/4yQrif1NRUPvnkExobG60uxSmk28dVlJQYSzXYQQHhERHk5ObyWH095ytFtJcXYYMHExgY2P40UC8vo2GpqIDISEdWLkSvEBMTw/Dhw/nyyy+ZNWuW1eX0OLnydxVnubR2WJ8+vGyz4WWzsczPD5vNRkN9fddXLS66hLcQrqDliV9PIOHvKsLC7F6HR2vNY8eP0xAUxB8nTiRm+HACAgIor6ggOzubQ9nZHD9+nIqKCppa7ia0Nu4s3HBPACGcZcaMGRw6dIicnByrS+lx0u3jKmJjjWmeWnfZ7//E8eMcrq/n5WHDCPDyAn9//P396RsRgQZqa2upqqqipLSUvPx8/P38CPPzw3fQIPyVwrO3rRaiY35+fixatIiPPvqI++67z+pyepTs5OUqtIapU42r89OmbLZW0NDAwoMH8VMK71aNxMODBvGDdp4KtmlNTU0NjUVFbBkwgN/07cv48eNJTk4mKSmJuLi4jheKE8ID5efnc+ONN7Jx40YCAgKsLuesyU5e7kYpuOoqeP31TsN/sK8vmePG2f2yXkoZTwNHRHDZ6tV8f8oUsrKyyMjI4PHHH6egoICpU6eSlJREcnIyo0aN8si1zYVoERUVxYQJE0hLS2PhwoVWl9Nj5MrfleTkwKxZZ9X/b5fqamORt3//+4zXLSkpITMzk4yMDNLT06mpqSExMZHk5GSSk5OJcsKmMEK4mn/961+89tpr/OlPf7K6lLNm75W/hL+reeAB+OSTM1b0PGc2m7FC6AsvGIu7dSE/P99sCDIyMggICDAbgsTERPp2tZy0EL2AzWZj0aJFPPPMM4wdO9bqcs6KhL+7Ki+HmTOhstIxM3NKSmD2bGPBuLPsztFak52dbTYEWVlZDBo0yGwIEhISPHbza9H7vfHGG+Tn5/PLX/7S6lLOioS/O8vKMnbxUqp7u3CdOgXR0fDxx+amMN3R1NTEvn37zMZg9+7djB492hwvmDRpEn6djFcI4U5OnjxJamoqn332GSFuNEVawt/dpafDrbcam7X36XN2V+1NTcYdxIgR8Je/wIABPVJiXV0dO3bsMLuJDh8+zIQJE8xuorFjx8o6QsKtPfTQQ0yZMoWrr77a6lLsJuHfG+TkwH33wY4dxro/zZu5dMhmM0If4Npr4cEHwYndMhUVFWRlZZl3BkVFRSQkJJjdRCNHjpSZRMKtbN26laeeeor333/fbX53Jfx7C5vNGAB++WWjMWhqMjZn8fMzGgKbzbg7UMp4u+ACuPtuSEiwunKKi4vJyMgw3xoaGkhKSjK7iTxl6VzhvrTWXHnllTz88MPEx8dbXY5dnBL+Sqm+wPvACOAIcJXWurSd45qAXc0fHtVaL+rqtSX8T6M17NoFmZlGl1B2tvFEcGAgTJgAiYkwfbrRx++CtNbk5eWZdwUZGRmEhoaaDUFiYiLhjprhJIQD/eUvf2HXrl08/vjjVpdiF2eF/2+BEq31k0qpB4EIrfXP2zmuUmt9ViMmEv69m81m4+DBg+Z4wfbt24mOjjbHC6ZMmUJQdwa7hXCQiooKc8kHd5jq7Kzw/waYobUuUEoNBv6ptT6vneMk/EWnGhsb2bNnj3lnsG/fPmJjY81lKCZOnIivr6/VZQoP9atf/YqhQ4dy6623Wl1Kl5wV/mVa6/Dm9xVQ2vLxacc1AtuBRuBJrfUnXb22hL9nq6mpYfv27WYXUU5ODpMnTza7iWJjY2UmkXCavXv38vOf/5xPP/3U5X/vHLa2j1JqM9DeyNwvWn+gtdZKqY5akuFa6zylVAzwD6XULq31oXbOtRxYDjBs2LCuShO9WGBgIOeffz7nn38+AOXl5eYyFL/4xS8oLS1tswzF0KFD3WY2hnA/cXFxRERE8N///pcLLrjA6nIcwindPqd9zxpgg9a60x0T5MpfdKawsLDNMhRAm2UoBvTQsw3Cc61fv54vvviC5557zupSOuWsbp+ngZOtBnz7aq1/dtoxEUC11rpOKdUP+C9wudZ6b2evLeEv7KW15ujRo2ZDkJmZSUREhDlekJiYSFhYmNVlCjdXU1PD/Pnzeeeddxg8eLDV5XTIWeEfCXwADANyMKZ6liilEoEfaq1vV0pNB14FbBg7hz2vtX69q9eW8BfnymazceDAAbMx2LFjB8OHDzfHC6ZMmeKW67QL6z3zzDMEBQWxYsUKq0vpkDzkJUSz+vp6du/ebXYTHThwgHHjxpndRHFxcfj4yNYWomuHDx/mjjvuYOPGjS47+0zCX4gOVFdXs23bNvPOIC8vj6lTp5rdRKNGjXL5GR3COnfccQepqanMmTPH6lLaJTt5CdGBoKAgLrjgAnPWRmlpKVu3biU9PZ0PP/yQyspKEhMTzW6i6OhomUkkTKmpqaxdu9Zlw99ecuUvxGkKCgrM5wvS09Px8/MzG4KkpCQiIyOtLlFYqKGhgQULFvDKK68wcuRIq8s5g3T7COEAWmsOHz5sNgRZWVn079/fHC+Ij493q7XehWO8/PLLVFdX88ADD1hdyhkk/IXoAU1NTezfv7/NhjYxMTHmaqVTpkyRDW08QEFBAddffz0bN24kMDDQ6nLakPAXwgnq6+vZuXOn2RgcOnSI8ePHm91E48aNw9vb2+oyRQ+49957mTFjBpdffrnVpbQh4S+EBSorK8nKyjK7iU6cOEF8fLzZTSQb2vQeX3/9Na+++ip//vOfrS6lDQl/IVxASUlJm2Uo6urqzC6ipKQkoqKirC5RnCObzcbixYt58skniYuLs7ock4S/EC6o9YY2mZmZBAYGmrOIkpKSiIiIsLpEcRbWrFnD0aNH+Z//+R+rSzFJ+Avh4rTWHDp0yGwMsrKyiIqKMscL4uPjZUMbF1dSUsKSJUv49NNPXWb9KAl/IdxMY2Mje/fuNbuJ9u7dy5gxY8zxggkTJshMIhf08MMPM3HiRK699lqrSwEk/IVwe7W1tezYscO8Mzhy5AgTJ040u4nGjh0ry1C4gKysLB5//HE+/PBDlxjMl+UdhHBzAQEBTJs2jWnTpgHGhjZbt24lIyODlStXcvLkSRISEsxuouHDh7tE+HiaqVOn4uXlRVZWFgkJCVaXYze58hfCTRUVFbVZhsJms5kNQXJysmxo40QffPAB27Zt44knnrC6FOn2EcKTaK05duyY2RBkZmbSp08fsyFISEigT58+VpfZa1VWVrJw4ULWrl1r+dpPEv5CeDCbzca3335rjhds376doUOHmuMFU6dOdbllCdzdb37zG6Kioli6dKmldUj4CyFMDQ0N7Nmzx2wM9u/fz9ixY81uogkTJsiGNt20f/9+HnjgAdavX2/pQLyEvxCiQzU1NWzbts3sJjp27BhTpkwxu4lGjx4tM4nOwc0338ztt9/OhRdeaFkNMttHCNGhwMBApk+fzvTp0wE4deoUmZmZpKens27dOsrLy0lMTCQ5OZnExESGDh0qM4ns0LLRi5Xhby+58hdCnOHEiRNt1iTy9vY2l6BITk6mX79+Vpfokurq6pg3bx5vvfWWZes2SbePEMIhtNbk5OSYDcHWrVuJjIw0G4KEhARCQ0OtLtNlPPvss/j5+XHXXXdZcn4JfyFEj7DZbOzfv9+8M9i1axcjRowwxwsmT56Mv7+/1WVaJicnh2XLlrFhwwZLluOQ8BdCOEV9fT27du0y7wy+/fZb4uLizGml48eP97gNbe68804WL17MZZdd5vRzS/gLISxRXV1NVlaW2RgUFBQwdepUs5to1KhRvX7w+O9//zvvv/8+q1evdvq5JfyFEC6hpKSEzMxMs5uopqbGnEmUnJzcKze0aWxsZMGCBbz88svExMQ49dwS/kIIl5Sfn99mJlFAQIB5V5CUlETfvn2tLtEhXnnlFcrLy/nZz37m1PNK+AshXJ7WmuzsbLMxyMrKYuDAgWZDkJCQQHBwsNVlnpMTJ05w7bXXsmHDBqduyiPhL4RwO01NTezbt8+8K9i9ezejR4827wwmTZrkVhva3HfffVx44YVcccUVTjunhL8Qwu3V1dWxY8cO887g8OHDTJgwwRwvcPUNbf7zn//w0ksv8fbbb5uD3BUVUFMDPj4QHg6OLl/CXwjR61RUVLSZSVRUVER8fLzZTTRy5EiXmklks9lYuPBq5sxZxY4dw9ixA06dMgJfa6MBiIuDmTMhNRUGDer+OSX8hRC9XnFxsbkmUUZGBg0NDW2WoRjkiDQ9R3V18NJLsGpVGbW1TURGRhIQAL6+0NI+NTVBbS3U1xufmz0bVq6EwYPP/bwS/kIIj6K1Ji8vz2wIMjIyCA0NNRuCxMREwsPDnVLLnj3wox/BsWMQGNhITs4hRo8e3enDbjYblJeDvz/8+teQknJu55bwF0J4NJvNxsGDB83xgu3btxMdHd1mQ5uemIWzZQvceqtxVR8WZnwuLy+PwMAA+vbtepevujqoroa774Z77vnuLsFeEv5CCNFKY2Mje/bsMRuDffv2ERsbazYGEydOxNfXt1vn2LPH6LtXClq3K9XV1RQU5DNq1Cig6zRvbDQGhh95BG655exqkPAXQohO1NbWsn37drObKCcnh8mTJ5vdRLGxsWc1k6iuDubOhby87674v2M8zzBw4CC7n1toaDBmBW3cCGPG2P/3kvAXQoizUF5e3mYZitLS0jbLUHS1oc1zz8GLL0JERPtfLy0toaqqmiFDhthd06lTEBsLn31m/5RQCX8hhOiGwsLCNstQAGYXUVJSEgMGDDCPra6GpCRj6mZHPUc2WxN7975AUFAG9fXZhIVdRlTUo53WoLUxCPzOO5CcbF/dso2jEEJ0w4ABA5g/fz7z589Ha82xY8dIT0/nyy+/ZNWqVURERJiNQV7e96ivDyIwsOPX8/LyJiQkGh+fEQQG7kPrui5rUMpoAF57zf7wt1e3wl8pdSXwKDAOSNZat3uprpSaC/wO8AZe01o/2Z3zCiGEMymlGDZsGMOGDSM1NRWbzcaBAwdIT0/n448/5sMPa6munkpdnRfBwcEEBQWh1Jn9NIMGLeTYsWP06ZNHY2ORXecODYUvvzRmDzlyW4TuXvnvBlKAVzs6QCnlDbwEzAFygQyl1Hqt9d5unlsIISzh5eXF2LFjGTt2LDfddBNff22joqKW+voqioqKqaurJSAggODgYIKDgwkICEQpRUBAAL6+PtTV1dkd5C3HHTkCo0Y57u/QrfDXWu8DunqcOhk4qLXObj72PeByQMJfCOH2Kivh1CkvwsODUCqI/v37Y7M1UV1dQ1VVFcePH6e+vp6goKDmxiCEkpJqzmbbY6Xg0CEXCn87RQPHWn2cC0xzwnmFEKLH1dQYM3FaXwMb/fshhISEANDU1EhVVTVVVVVUVVXR0FCP1vY/vWWzGctAOFKX4a+U2gy0t0DGL7TWnzqyGKXUcmA5wLBhwxz50kII0SN8fIxB2c54e/sQFhZGWPMDAIWFA+3u8wejYfFx8KV6ly+ntZ7dzXPkAUNbfTyk+XPtnWs1sBqMqZ7dPK8QQvS4Pn2M6Z32DMhq3YTWTYAGbNhs9SjljTE02jGlIDraYSUD4IyFsDOAMUqpkUopP+AaYL0TziuEED3OywvGjTO6f7pSXPw633wznZMn13Dq1Ca++WY6xcWvd/o9WhtP+8bGOqjgZt2d6nkF8ALQH9iolNqutb5MKRWFMaVznta6USl1F/A3jKmeb2it93S7ciGEcBGzZsGOHV0f17//cvr3X35Wr11VZTQunT1DcC66deWvtf5Yaz1Ea+2vtR6otb6s+fP5Wut5rY7bpLWO1VqP0lo/1t2ihRDClSxZYtwB2GyOf+2mJlh+du2FXVx3/zMhhHATgwYZG7GcOuXY162pgZAQuPRSx74uSPgLIYRDrFwJAQHG6p6O0DK986mnjNd1NAl/IYRwgEGD4LHHjEXeGhu791paG3cR8+bBnDmOqe90Ev5CCOEgixcbu2+VlxszdM6FzQZlZcYqoU8/ffY7edlLwl8IIRzoxz+GRx81+utPner6AbDWWr5n3jxYs6ZnuntaSPgLIYSD3XQTbNoE551n3AWUlRmzdtqjdcv6QODnB6+8Ai+80LPBD7KevxBC9IjRo40duDIy4I034IsvjM8rZXTtKGW8NTRAXBwsW2bM6unp0G8h4S+EED1EKWMTluRkI/CPHDFW56ypMZaEiI42ntx1VuC3JuEvhBBO4OUFMTHGmyuQPn8hhPBALruBu1KqCMhp50v9gGInl3M2XL0+cP0aXb0+cP0apb7uc/UaO6pvuNa6f1ff7LLh3xGlVKY9O9NbxdXrA9ev0dXrA9evUerrPlevsbv1SbePEEJ4IAl/IYTwQO4Y/qutLqALrl4fuH6Nrl4fuH6NUl/3uXqN3arP7fr8hRBCdJ87XvkLIYToJpcPf6VUX6VUmlLq2+Y/Izo47rdKqT1KqX1Kqd8r1VNr4Z1zfcOUUp8317dXKTXCGfWdTY3Nx4YppXKVUi+6Un1KqSlKqf82/xvvVEpd7YS65iqlvlFKHVRKPdjO1/2VUu83f/3/OfPf9CxqvK/5922nUurvSqnhrlRfq+OWKKW0Usrps2vsqVEpdVXzz3GPUupdV6qvOVu+UEpta/53ntfe65xBa+3Sb8BvgQeb338QeKqdY6YDX2PsEewN/BeY4Sr1NX/tn8Cc5vdDgCBX+hm2OvZ3wLvAi65UHxALjGl+PwooAMJ7sCZv4BAQA/gBO4C4045ZAbzS/P41wPvO+pmdRY2XtPyuAXc6s0Z76ms+LhT4CtgCJLrgz3AMsA2IaP54gIvVtxq4s/n9OOCIPa/t8lf+wOXAn5rf/xOwuJ1jNBCA8cPxB3yBE06pzo76lFJxgI/WOg1Aa12pta52Un1g388QpVQCMBD43El1teiyPq31Aa31t83v5wOFQJcPsnRDMnBQa52tta4H3muus7XWda8FZjnrjtPeGrXWX7T6XdsCDHGl+pr9GngKqHVibS3sqXEZ8JLWuhRAa13oYvVpIKz5/T5Avj0v7A7hP1BrXdD8/nGMcGpDa/1f4AuMq8EC4G9a632uUh/GVWuZUmpd863Z00opbyfVB3bUqJTyAlYBDzixrhb2/AxNSqlkjIb+UA/WFA0ca/VxbvPn2j1Ga90InAIie7Cm09lTY2u3AX/t0Yra6rI+pVQ8MFRrvdGJdbVmz88wFohVSn2tlNqilJrrtOrsq+9R4AalVC6wCbjbnhd2iYXdlFKbgUHtfOkXrT/QWmul1BnTk5RSo4FxfHdVk6aUulBr/S9XqA/j53whMBU4CrwP3AK87oj6HFTjCmCT1jq3Jy5eHVBfy+sMBt4CbtZa2xxbZe+llLoBSAQutrqWFs0XHM9i/F9wZT4YXT8zMDLmK6XURK11maVVfedaYI3WepVS6nzgLaXUhK7+f7hE+GutZ3f0NaXUCaXUYK11QfN//PZuua4AtmitK5u/56/A+YBDwt8B9eUC27XW2c3f8wnwPRwY/g6o8XzgQqXUCowxCT+lVKXWusNBOifXh1IqDNgI/EJrvcURdXUiDxja6uMhzZ9r75hcpZQPxi33yR6uq73zt2ivRpRSszEa2Yu11g7aXtwuXdUXCkwA/tl8wTEIWK+UWqS1znSRGsH4//v/tNYNwGGl1AGMxiDDReq7DZgLRi+IUioAY92fTrun3KHbZz1wc/P7NwOftnPMUeBipZSPUsoX4+rGWd0+9tSXAYQrpVr6qGcCe51QW4sua9RaX6+1Hqa1HoHR9fNnRwW/I+pTSvkBHzfXtdYJNWUAY5RSI5vPfU1zna21rjsV+IduHnVzki5rVEpNBV4FFjm5r7rL+rTWp7TW/bTWI5p/77Y01+ms4O+yxmafYFz1o5Tqh9ENlO1C9R0FZjXXNw5j/LOoy1d21qh1N0a7I4G/A98Cm4G+zZ9PBF7T342Iv4oR+HuBZ12pvuaP5wA7gV3AGsDP1WpsdfwtOHe2jz3/xjcADcD2Vm9TeriuecABjLGFXzR/7lcYAUXzf7IPgYNAOhDjrJ/ZWdS4GWPyQ8vPbL0r1Xfasf/EybN97PwZKozuqb3N/3+vcbH64jBmO+5o/je+1J7XlSd8hRDCA7lDt48QQggHk/AXQggPJOEvhBAeSMJfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA/1//BgL3R1ssYIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -412,14 +419,14 @@ "\n", "result = run_algorithm(params, algo_input)\n", "\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", "print('energy:', result['energy'])\n", "print('time:', result['eval_time'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", "\n", - "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" ] }, @@ -432,31 +439,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "energy: -1.4970703125\n", - "time: 52.9637291431427\n", - "maxcut objective: -3.9970703125\n", + "energy: -1.5\n", + "time: 18.19207787513733\n", + "max-cut objective: -4.0\n", "solution: [1 0 1 0]\n", "solution objective: 4.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAETCAYAAAAs4pGmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X2cVWW99/HPVxBMUUoZH2AwwFECzPA4+HDsKJqGho1xMoVzKh9SToXWbeXTOUoe7b4lu1Mz7E5Tbx9KR8UHxkR4mUplqTAkqeBNTDLGACaaD5kFgr/7j7WGNsMaZm9mZu2Z3ff9evlir2tde+/frBfynbWua11LEYGZmVlb25W7ADMz65kcEGZmlskBYWZmmRwQZmaWyQFhZmaZHBBmZpbJAWFmZpkcEGZmlskBYWZmmfqWu4DOGDRoUAwbNqzcZZiZ9SqLFi16NSKqOurXqwNi2LBhNDY2lrsMM7NeRdJLxfTzJSYzM8vkgDAzs0wOCDMzy+SAMDOzTA4IMzPL5IAwM7NMDggzM8vkgDAzs0wOCDMzy+SAMDOzTA4IMzPL5IAwM7NMDggzM8vkgDAzs0wOCDMzy+SAMDOzTA4IM7NOmjt3LiNHjqSmpoYZM2Zssf+WW26hqqqKsWPHMnbsWG688UYAHn/88U1tY8eOZYcdduCBBx7Y7L3nnHMOAwYMyOXnaKtXP1HOzKzcNm7cyLRp03jkkUeorq5m3Lhx1NXVMXr06M36nXLKKcycOXOztqOOOorFixcD8Kc//Ymamho+/vGPb9rf2NjIG2+80f0/RDt8BmFm1gkLFiygpqaGESNG0K9fPyZPnszs2bNL/pxZs2Zx/PHHs+OOOwJJ8Jx33nlceeWVXV1y0RwQZmadsGrVKoYOHbppu7q6mlWrVm3R79577+WAAw7gpJNOYuXKlVvsr6+vZ8qUKZu2Z86cSV1dHXvttVf3FF4EB4SZWSdExBZtkjbb/uQnP0lzczPPPvssxxxzDKeeeupm+9esWcNzzz3HhAkTAFi9ejX33HMP55xzTvcVXgQHhJlZJ1RXV292RtDS0sLgwYM367PbbrvRv39/AM466ywWLVq02f67776bSZMmsf322wPwzDPP0NTURE1NDcOGDeOdd96hpqamm3+SLTkgzMw6Ydy4cSxfvpwVK1awfv166uvrqaur26zPmjVrNr1uaGhg1KhRm+2/8847N7u8NHHiRF5++WWam5tpbm5mxx13pKmpqXt/kAy5zWKSdBzwPaAPcGNEbDEXTNLJwKVAAL+NiH/Lqz4zs23Rt29fZs6cyYQJE9i4cSNnnHEGY8aMYfr06dTW1lJXV8e1115LQ0MDffv2Zdddd+WWW27Z9P7m5mZWrlzJkUceWb4foh3Kun7W5V8i9QF+BxwLtAALgSkRsbSgz77A3cDREfG6pN0j4pWtfW5tbW00NjZ2Y+VmZpVH0qKIqO2oX16XmA4GmiLixYhYD9QDJ7bpcxZwXUS8DtBROJiZWffKKyCGAIXzulrStkL7AftJ+pWkp9JLUmZmViZ5jUEoo63tta2+wL7AeKAa+KWk/SNis9sIJU0FpgLsvffeXV+pmZkB+Z1BtABDC7argdUZfWZHxLsRsQJYRhIYm4mIGyKiNiJqq6qquq1gM7N/dHkFxEJgX0nDJfUDJgMNbfo8ABwFIGkQySWnF3Oqz8zM2sglICJiA3A2MA94Abg7IpZIukxS64ThecBrkpYCjwPnRcRredRnZmZbymWaa3fxNFczs9L1tGmuZmbWyzggzMwskwPCzMwy+YlyZmbbYNiFD5X1+5tnTOz27/AZhJmZZXJAmJlZJgeEmZllckCYmVkmB4SZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllckCYmVkmB4SZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllckCYmVkmB4SZmWVyQJiZWabcAkLScZKWSWqSdGHG/tMkrZW0OP3vzLxqMzOzLeXyTGpJfYDrgGOBFmChpIaIWNqm610RcXYeNZmZ2dbldQZxMNAUES9GxHqgHjgxp+82M7NtkFdADAFWFmy3pG1tfVrSs5JmSRqaT2lmZpYlr4BQRlu02X4QGBYRBwA/A27N/CBpqqRGSY1r167t4jLNzKxVXgHRAhSeEVQDqws7RMRrEbEu3fwRcFDWB0XEDRFRGxG1VVVV3VKsmZnlFxALgX0lDZfUD5gMNBR2kLRXwWYd8EJOtZmZWYZcZjFFxAZJZwPzgD7AzRGxRNJlQGNENABfkVQHbAD+BJyWR21mZpYtl4AAiIg5wJw2bdMLXl8EXJRXPWZmtnW+k9rMzDI5IMzMLJMDwszMMjkgzCrU3LlzGTlyJDU1NcyYMaPdfrNmzUISjY2NADzyyCMcdNBBfPjDH+aggw7iscce2+I9dXV17L///t1Wu/UMuQ1Sm1l+Nm7cyLRp03jkkUeorq5m3Lhx1NXVMXr06M36/fnPf+baa6/lkEMO2dQ2aNAgHnzwQQYPHszzzz/PhAkTWLVq1ab99913HwMGDMjtZ7Hy8RmEWQVasGABNTU1jBgxgn79+jF58mRmz569Rb9LLrmE888/nx122GFT24EHHsjgwYMBGDNmDH/7299Yty65h/Xtt9/mqquu4uKLL87nB7GyckCYVaBVq1YxdOjfFy+orq7e7CwA4JlnnmHlypWccMIJ7X7Ovffey4EHHkj//v2BJFC+/vWvs+OOO3ZP4dajOCDMKlBE26XOQPr7kmjvvfce5557Lt/97nfb/YwlS5ZwwQUXcP311wOwePFimpqamDRpUtcXbD2SA8KsAlVXV7Ny5d8XUG5padl02QiSsYfnn3+e8ePHM2zYMJ566inq6uo2DVS3tLQwadIkbrvtNvbZZx8AnnzySRYtWsSwYcP46Ec/yu9+9zvGjx+f689l+XJAmFWgcePGsXz5clasWMH69eupr6+nrq5u0/6BAwfy6quv0tzcTHNzM4ceeigNDQ3U1tbyxhtvMHHiRK644goOP/zwTe/50pe+xOrVq2lubuaJJ55gv/32Y/78+WX46SwvRQeEpCpJA9LXfSSdLunzkhwyZj1M3759mTlzJhMmTGDUqFGcfPLJjBkzhunTp9PQ0LDV986cOZOmpiYuv/xyxo4dy9ixY3nllVdyqtx6EmVdq8zsKD0NfDEinpE0A/gk8C7weESc2401tqu2tjZaT4nNzPI07MKHyvr9zTMmbvN7JS2KiNqO+pVyH8R+wOL09WeBfwbeBpYAZQkIMzPrPqUExEagn6T9gDcj4g/p5SXfMWNmVoFKCYiHgbuB3YD6tG00sKrdd5iZWa9VSkCcCZxKMu5we9o2CLi0i2syM7MeoOiASJ8XfUN6WWkPYE1EzO+uwszMrLxKmeb6fkl3AH8DmtK2Oknf6q7izMysfEq5h+GHwJvAB4H1aduTwCldXZSZmZVfKWMQHwMGR8S7kgIgItZK2r17SjOzUvXmufnW85RyBvEmyaD0JpL2BtZ0aUVmZtYjlBIQNwL3SjoK2E7SYcCtJJeezMyswpRyienbJAPU1wHbAzcD1wPf64a6zMyszIo+g4jENRExOiJ2iohR6XZRizlJOk7SMklNki7cSr+TJIWkDtcJMTOz7rPVMwhJR0TEL9LXR7fXLyK2fKr55p/Th+TM41igBVgoqSEilrbptzPwFeDp4so3M7Pu0tElph8A+6evb2qnTwAjOvicg4GmiHgRQFI9cCKwtE2/y4ErgW908HlmZtbNthoQEbF/wevhnfieIcDKgu0W4JDCDpIOBIZGxE8lOSDMzMqslDupZ7fTfl8xb89o2zR2kS7fcTXw9SLqmCqpUVLj2rVri/hqMzPbFqVMcz2qnfbxRby3BRhasF0NrC7Y3pnkUtZ8Sc3AoUBD1kB1RNwQEbURUVtVVVVM3WZmtg06nOYq6bL0Zb+C161GAC8V8T0LgX0lDSdZHnwy8G+tOyNis5vwJM0HvhERflycmVmZFHMfROtv/tux+VlAkIwrXNrRB0TEBklnA/OAPsDNEbEkDZzGiNj6Q3LNzCx3HQZERJwOIOnXEfGjbf2iiJgDzGnTNr2dvuO39XvMzKxrdHQfxLCIaE43H5WUOZ21dfqqmZlVjo7OIJ4jGUCG5BkQwZYzkoLkspGZmVWQju6D2LngdSkznszMrJfzP/pmZpapozGIX1JwQ1t7IuKILqvIzMx6hI7GIG7MpQozM+txOhqDuDWvQszMrGfp6BLT5yLi9vT1Ge31i4ibu7owMzMrr44uMU0Bbk9ff66dPkHydDkzM6sgHV1i+kTB6/YW6zMzswpUyjOpkfR+YCIwmGQ11oci4o3uKMzMzMqrlOdBHA00kzwSdBxwDtAs6WPdU5qZmZVTKWcQM4GpEXF3a4Okz5A8a/pDXV2YmZmVVyl3Ug8G7m3Tdj+wZ9eVY2ZmPUUpAXEbMK1N25fSdjMzqzClLLWxHfAlSeeTPBVuCLAH8FS3VmhmZmVR6lIb2/zAIDMz61281IaZmWUq9T6IPYCDgUEUPDjIS22YmVWeogNC0qeAHwPLgTHAEmB/4Am81IaZWcUpZRbTt4DTI+JA4C/pn1OBRd1SmZmZlVUpAbF3RNzTpu1W4PNdWI+ZmfUQpQTEK+kYBCRLbBwG7AP0KebNko6TtExSk6QLM/Z/UdJzkhZLekLS6BJqMzOzLlZKQPwI+Gj6+mrgceC3wA86eqOkPiRLchwPjAamZATAHRHx4YgYC1wJXFVCbWZm1sWKHqSOiG8XvL5N0nxgp4h4oYi3Hww0RcSLAJLqgROBpQWf+VZB/50o4lnYZmbWfUqd5toHOJS/L/dd7F3UQ4CVBdstwCEZnz8N+BrQDzi6lNrMzKxrlbLc9wEkU1zvAc5L/1wu6SPFvD2jbYszhIi4LiL2AS4ALm6njqmSGiU1rl27ttjyzcysRKWMQdxMMo4wJCIOJjkrmElx90C0AEMLtqtJzkDaUw98KmtHRNwQEbURUVtVVVVU4WZmVrpSAmI/4JqICID0z+8B+xbx3oXAvpKGS+oHTAYaCjtIKvyciSRnK2ZmVialjEHMAepIngHR6pPAQx29MSI2SDobmEcyLfbmiFgi6TKgMSIagLMlHQO8C7wOnFpCbWZm1sU6Wu77dv4+VtAHqJe0iGTAeShwEDC7mC+KiDkkIVPYNr3g9VeLL9vMzLpbR2cQTW22ny94vZTkjMDMzCpQR8t9/3dehZiZWc9S6n0QRwGfI5nBtAr4cUQ81h2FmZlZeZVyH8SZwF3Ay8B9wBrgDklndVNtZmZWRqWcQZwPHBsRv21tkHQXcC9+FKmZWcUp5T6I3ShYOym1DNi168oxM7OeopSAeAK4StKOAJJ2Ar4D/Lo7CjMzs/IqJSC+CHwYeFPSH4E3gI8A/9EdhZmZWXkVNQYhScD7gGOAPUlXc42Ilm6szczMyqiogIiIkPQcsHMaCg4GM7MKV8olpmdIFuwzM7N/AKVMc50PzJV0C8laTJue5xARxSz5bWZmvUgpAXE4sAI4sk17UNwzIczMrBfpMCDSaa0XA28DvwH+V0Ss6+7CzMysvIoZg5hJ8tyHF4BPA/+7WysyM7MeoZiAOB74eEScn74+oXtLMjOznqCYgNgpItYARMRKYGD3lmRmZj1BMYPUfdNlvtXONl7y28ys8hQTEK+w+Syl19psBzCiK4syM7Py6zAgImJYDnWYmVkPU8qd1GZm9g/EAWFmZpkcEGZmlim3gJB0nKRlkpokXZix/2uSlkp6VtKjkj6YV21mZralXAJCUh/gOpIb7UYDUySNbtPtGaA2Ig4AZgFX5lGbmZlly+sM4mCgKSJejIj1QD1wYmGHiHg8It5JN58CqnOqzczMMuQVEENIlghv1ZK2tecLwMPdWpGZmW1VKct9d4Yy2iKjDUmfBWrZclnx1v1TgakAe++9d1fVZ2ZmbeR1BtECDC3YrgZWt+0k6Rjgv4C69pYUj4gbIqI2Imqrqqq6pVgzM8svIBYC+0oaLqkfMBloKOwg6UDgepJweCWnuszMrB25BEREbADOBuaRPFfi7ohYIukySXVpt+8AA4B7JC2W1NDOx5mZWQ7yGoMgIuYAc9q0TS94fUxetZiZWcd8J7WZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllckCYmVkmB4SZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllckCYmVkmB4SZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllckCYmVkmB4SZmWVyQJiZWSYHhJmZZXJAmJlZJgeEmZllyi0gJB0naZmkJkkXZuw/QtJvJG2QdFJedZmZWbZcAkJSH+A64HhgNDBF0ug23f4AnAbckUdNZma2dX1z+p6DgaaIeBFAUj1wIrC0tUNENKf73supJjMz24q8LjENAVYWbLekbSWTNFVSo6TGtWvXdklxZma2pbwCQhltsS0fFBE3RERtRNRWVVV1siwzM2tPXgHRAgwt2K4GVuf03WZmtg3yCoiFwL6ShkvqB0wGGnL6bjMz2wa5BEREbADOBuYBLwB3R8QSSZdJqgOQNE5SC/AZ4HpJS/KozczMsuU1i4mImAPMadM2veD1QpJLT2Zm1gP4TmozM8vkgDAzs0wOCDMzy+SAMDOzTA4IMzPL5IAwM7NMDggzM8vkgDAzs0wOCDMzy+SAMDOzTA4IMzPL5IAwM7NMDggzM8vkgDAzs0wOCDMzy+SAMDOzTA6I1Ny5cxk5ciQ1NTXMmDFji/3r1q3jlFNOoaamhkMOOYTm5uZN+6644gpqamoYOXIk8+bN29R+xhlnsPvuu7P//vvn8SP0Cj7OZr2HAwLYuHEj06ZN4+GHH2bp0qXceeedLF26dLM+N910Ex/4wAdoamri3HPP5YILLgBg6dKl1NfXs2TJEubOncuXv/xlNm7cCMBpp53G3Llzc/95eiofZ7PexQEBLFiwgJqaGkaMGEG/fv2YPHkys2fP3qzP7NmzOfXUUwE46aSTePTRR4kIZs+ezeTJk+nfvz/Dhw+npqaGBQsWAHDEEUew66675v7z9FQ+zma9iwMCWLVqFUOHDt20XV1dzapVq9rt07dvXwYOHMhrr71W1Hst4eNs1rs4IICI2KJNUlF9inmvJXyczXoXBwTJb6MrV67ctN3S0sLgwYPb7bNhwwbefPNNdt1116LeawkfZ7PeJbeAkHScpGWSmiRdmLG/v6S70v1PSxqWV23jxo1j+fLlrFixgvXr11NfX09dXd1mferq6rj11lsBmDVrFkcffTSSqKuro76+nnXr1rFixQqWL1/OwQcfnFfpvYqPs1nvkktASOoDXAccD4wGpkga3abbF4DXI6IGuBr4dh61QXKte+bMmUyYMIFRo0Zx8sknM2bMGKZPn05DQ0NS3Be+wGuvvUZNTQ1XXXXVpimaY8aM4eSTT2b06NEcd9xxXHfddfTp0weAKVOmcNhhh7Fs2TKqq6u56aab8vqReiQfZ7PeRVnXdrv8S6TDgEsjYkK6fRFARFxR0Gde2udJSX2Bl4Gq2EqBtbW10djY2L3Fm/Uiwy58qKzf3zxjYlm/P0+9+VhLWhQRtR31y+sS0xBgZcF2S9qW2SciNgBvArvlUp2ZmW2hb07fkzXdpO2ZQTF9kDQVmJpuvi1pWSdr21aDgFfL9N3/aHys89OpY63cLgxXhHIe6w8W0ymvgGgBhhZsVwOr2+nTkl5iGgj8qe0HRcQNwA3dVGfRJDUWc4pmnedjnR8f6/z0hmOd1yWmhcC+koZL6gdMBhra9GkATk1fnwQ8trXxBzMz6165nEFExAZJZwPzgD7AzRGxRNJlQGNENAA3AbdLaiI5c5icR21mZpYtr0tMRMQcYE6btukFr/8GfCaverpA2S9z/QPxsc6Pj3V+evyxzmWaq5mZ9T5easPMzDI5IMzMLJMDwszMMjkgrEeT1/S2CtUb/m57kNp6PEn7AGuB/sA7EfGXMpdk1i0kqSfd/+WAKJGkPhGxsYM+20XEe3nVVKnSFX+nApNI7qz/BfA08POIeKKctVUaSTsC2wNv9aR/oCpV+jiDvUiWE1oH/D4i3ipnTVkcECWSdA2wO3A98MvWIGgNBYdD15H0U5K1amYA7wH/ChwJDCe5p+Y/0/tnrJMk/QDYG/gJSQivLjy26QoIG/x3u/MknQ8cCxwEvAQ0pX8+Bszr6BfQPDkgSpA+1+JN4HngIyR3fN8J/N+IWJL2uQH4Q0R8q2yFVoD0WK8GaiNiZZt944GZwG0RcWUZyqso6bF+BXgK2BfYCMwnWf7m+YhYmf69fiUiLi5boRUgXWfuDeATEfELSaOAI4DDgVHAAxHxP3vKpSYPUpfmcGAxMCEi3gecn7Y9J+lZSdOAfwd+VcYaK8V2wEPAuW13RMR84KvAJElVOddViQ4FXgDOjIj9gPOAKpI7fe+TdAnJOmmPlK/EinEM0JyGw3YR8UJEXB8RnwcuB86SNKEnhAP4DKIkknYFDgNeiIgXC9oHAVOAy4C16f9k1kmSPg5cBSwCHgQWRsRL6b7xwI8jorp8FVaG9LfaQ0kuKxX+vd4FmAhcCmwXEfuWp8LKkf4bcj9wb0Rcm7H/PGBcRJyce3EZHBCdIKk/sDF9wBGSZgNNEfH18lZWOSQdQRK+ewJ/JhmLGAi8H3g8Ii4rY3kVJ5162fr3+t207V6Sy6ZbnM1Z6SSdCVwEPEtyGe/nrcEs6X5gRUR8rYwlbuKAKJGk9wN9I+LVgrbtSBY+bAKOiYjflau+SpEe04iIkPQB4KPA/sAOwGDgDuCJ1n/EbNulv+iMIJnBtKqgvQ/J6suPAZ8vPLuwzpH0z8CngBpgV2AX4B2S8Z9/j4iWMpa3iQOiSJJOBL5BMjAdwOskM2keioh3yllbpZG0U3v3Okjq23rGZp2XPqHxLOA1kkf8vg3cBdzRE6dd9nZp6L5X8IvPGGAPkjPifsBPetJxd0AUQdJBwAPAFcBfgR1JZnuMBP4A/HdEtH1Cnm0DSTXA94Ffktz3sCAi1rfpU91TfsPqzSTVklzi+ArJ5bs+wDjgYyS/zX4zIp4uX4WVQ9JOJGfEveqXSQdEESRdDQyMiDMK2nYHaklu5NoJ+HRPSv7eStL3SU6955LMpHkd+A3Jddpn00tP9wCTfXmpcyRdAewZEacXtPUn+eVnKvBPwKSIWFumEiuGpG+R3PA5F/hpRDzeZv/OwO4R8fty1NceT3Mtzu+BPSQNbG2IiFfShyD9ByCSWSDWebsB3wGuIQmCtSTjD5dJmgE8DAx1OHSJ54DRkvZvbYiIdRHxPHAB8BbJtEzrvM8DvwYGAJdKmifpYklj0/2nkFzC7lFye6JcL1dPMpOmXtI3I2JB646I+KOkD5KcRVgnpL+93ge8nt54uETSfSSD0+OAD5LcgVpXvioryr0kx/IaSd+LiAdh06oAf03XwHIQd1J6HBuB20l+2RxFcnZ2EHCcpJdIAuKzZSuyHb7E1IHWQVFJw0nGIMaTLP8wh+SmuY8B/+J7H7qOpP4Rsa7t3aTplNf5EeEz304qWBqmCrgYOB1YTzImsQz4F2BIRBxYxjIrQnrvwzhgaeuqAJJ2AIaRLG/yGZJLeYPKVmQ7HBBFkLRL6/hCejp+JPBpYBBwNzA3IhrLWGLFkLRzRPy5TVtrSJ8BHBQR08pUXsVKF+s7HjiZZCrxwyRh/P/KWlgFaW+dNkl3Af0j4lNlKGurHBBbka6TcgIwmWQa2oMkyz/80ovEda02x3oXkn+gfgr8qnXKq6Rq4O2IeKNshVaYdNAfL8LXfSTtRnKD57vA9hHxetqudLrrNSTriv2mnHVmcUBshaT5wB9J5oXvTPLb1YFp22URcX8xy39bxzKO9Ukk12hfBqZHxE/LV11lSf9BepVkqZLmgvbtPfjftSR9gWSc5xhgOcn07SeBRyPij2mf3SLitfJV2T4HRDvSaawvRsSANu27kMw2mAycEX4uQaf5WOdH0h7AGuBFkmXTFwA3AvcV/GZ7B3BPRNxftkIrgKTBJCs/n0NyN/p4kkkWHyG5IfGSiPhF2Qosggf72rcDsFDSCYWNEfFWREwHZgFnStq+LNVVFh/r/BxNsirrfiSzwuaTrCK6WtL9kupIAvn5slVYOU4BFkXETyJiTUTcmd5L9QmSCS7/R9Ke5S1x6xwQ7VtJsmz3NyV9WdIYSe8r2L8EGO1T8i7hY52fhcBtwKCIaImIiyJiMHAUySW+B0jGfZaXs8gK8TQwoOBeByCZGh8RXyX5e/25slRWJN8H0Y508OibJINLRwAfAtZI+ivJaqKfAH5cxhIrho91fiKiSdKLJOv+FLY/BTyVLr9RX5biKs9iYAXww/R+np+RTHVtneBSTbKcTI/lMYgMkvYjWWpgIMlZ1j4kSyC3kAzujQF+QHKd1gPUneBjnR9JI4EzSZYw2Y7kLvW5wM/SkN4tbdslIt4uX6WVIz0Tnkay0sIGkrGH1tWfx5FM2+6x6zM5IDJIeoFktsFbJGsBfQAYSvJw8Rs8WNp1fKzzU3Cs3yB5dO4wkmW+m4GrImKJpB08hbvrSRpH8rCx3UmmzL8N/LBwFllP5IBoQ9IE4LqIqEm3+wJDSKZcTiT5x+s0r97aeT7W+ck41n2AvUiWfPhXkuN+ulfJ7bw0DP4HycylJyJiWcG+1lUC+kfEurIVWSQPUm9pJ+CPkoYCRMSGiHgpIu4DLiF5FsSEchZYQXys89P2WG9MB6kbgP8kGf85tpwFVpCLSFZ6Pgq4QtLVkk6RNCQNhz2Bq8tbYnEcEFu6n+TmrO9LGlG4I/1N9vd45dau4mOdHx/rHKRnZgOAK4EfAj8H3kcy5fVqSV8jWZ6nR09vbeVZTG2kg3X/CXwXWCzptyTz8B8jWYOpjuQuX+skH+v8+Fjnph9wK8mNn08CT6RnDAeSXM77EMny9ePKV2LxPAaxFZL+CTiR5BrtXiT/M82NiJvLWlgF8rHOj4919ytYLbftisRTgSsiYrcyllc0B0SR0ulq/SLizXLXUul8rPPjY52PgoX5Lge2i4j/KndNxXBAmJnlRNIg4C8R8ddy11IMB4SZmWXyLCYzM8vkgDAzs0wYXJdoAAAAHElEQVQOCDMzy+SAMDOzTA4IMzPL5IAwM7NM/x/LfXlVzEWKfwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb3IYAbCDBAh7CwqVkGGUpYY4t4oWKnWOtqqrV/8tnVVUVtHhTpoHXUgKqvfGlqrrS2/JIQ9RBIIZEASkpCE7Jzr98ed3CaYcSAn5z4n5/N8PPIg4859fwjhfd3nuq77upTWGiGEEJ7Fy+oChBBCOJ+EvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAeS8BdCCA8k4S+EEB5Iwl8IITyQj9UFtKdv3756+PDhVpchhBBuZfv27cVa636dHeey4T98+HAyMjKsLkMIIdyKUirHnuNcNvwdTmsoKIDSUuP90FAYPBi8pOdLCOF5enb419XB55/D22/Djh1QWws+Pkb422zg7Q3jxsH118MPfgCBgVZXLIQQTqFcdVXPhIQEfd7dPlrDp5/C//4vnDljfC4oyAj+lhoboarKaAj8/OCBB+DWW+XVgBDCbSmltmutEzo7ruelXGkpLF1qBHl9vdG9Exr63eAH486/Vy8ICzPef/xxSE6G/Hzn1y2EEE7Us8K/uBhSUuDLLyE8HAIC7P9ePz/je/bsgcWLIceuMRMhhHBLPSf86+rg5puN0I6IAKXO/RxKGd9bWgrXXgtlZY6vUwghXEDPCf/f/x6+/trowumqsDAoLITHHuv6uYQQwgX1jPA/dAhWrzb678/njr8tYWGwaRN89ZVjzieEEC6kZ0z1fP11Y8ZOW4O6LTyal0daVRXVNht9fXy4uU8fFoeHt32wl5fRkLz8Mlx0UTcULYQQ1nH/8C8vN6Z19urV6aG39e3Lo76++Hl5cbS2luU5OVzg78/Y9ub39+oFaWnGOMKwYQ4uXAghrOOQbh+l1BtKqUKl1N52vq6UUr9XSh1WSu1WSsU54roA7Nxp/NnJXT9AtL8/fk1z+JVRF7n19e1/Q/Pdf1qaAwoVQgjX4ag+/7XA3A6+/gNgdNPbcuAPDrou7NtnzPSx01MnTnDRwYMsyc6mr48PF4WEdPwNNhvIGkNCiB7GId0+WusvlVLDOzjkCuDP2niceJtSKlwpNVBrXdDli+/bZzygZaeHIiP52YAB7K6uZntVFX6dDRD7+8OBA10sUgghXIuzZvtEAcdbfJzb9LlWlFLLlVIZSqmMoqIi+85cXX1OM3xq6+o4dOgQ/cvKyKmo4L3i4o6/QSljTSAhhOhBXGqqp9Z6jdY6QWud0K9fp8tRGwIDjbV87OSlFFpr/AMCqKqtZffJk2RlZVFw4gTlFRU0NjaeXZTx9K8QQvQgzgr/PGBIi48HN32u68aMgYaGTg8raWjgs/Jy6r29CQoOJqOujm3A/GHDGBQVhZ+vL2VlZXxz+DDZR45wsrCQyspKGmtqYOxYh5QqhBCuwllTPTcAdyul3gOmAqcd0t8PMGGC0S/fCQWsKy3liYIC6hsbCW9s5IHBg5neNEU0MCCAPn36YNOamupqzlRVUXzqFN6VlWzOyECtXk1iYiLjx4/HT14JCCHcnEPCXyn1F2AG0FcplQusBHwBtNavAluAecBhoAq4zRHXBWDyZKNrprGxw4HfCB8f1jTN1dfA4cOHGdzG/H4vpQgKCiIoKIh+ffpgKytj6o9+xL/z83nhhRc4evQoEydOJDExkcTERMaMGYOXLAEthHAzPWM9/wcegE8+MRZls1NxcTF19fUMGjiw/YPKy2HSJPjwwxafKiczM5O0tDQyMjIoLi4mLi6OpKQkEhISGDFiBMpRS0wIIcQ5snc9/54R/vv3wxVXQEiI3dM+GxoayMrKYtTo0Xi3dedusxnh/9prMGNGu+cpLi4mIyODtLQ00tPTqaurIzEx0WwMBg0aZN/fQQghHMCzwh+MjVjefNNYk99Oubm5BAUH07utVwxlZTBnDrzyyjlNJc3LyyM9Pd18ZRAYGNiqMejdu7fd5xJCiHPleeFfXQ0LFsCxY3Yv63zmzBlOnDxJdHQ0reK9vNw4x9/+Bl0Ia6012dnZZmOQmZnJgAEDSEpKIjExkbi4OEI6e8JYCCHOgeeFP8DJk8ZOXvn5xiuATu7YNZCVlcWgQYMIan5e4PRpY0G3Dz6A0aPP/y/QhsbGRg4ePGh2Ee3du5cRI0aYjcGkSZPwt2PmkhBCtMczwx+gqAjuuQfS041N2zsJ0+JTp6itrSWqXz+orDQCf/Vqp6ziWVdXx549e8zG4JtvviE2NtZsDGJjY/GxY8E6IYRo5rnhD8Zg7fvvG+MAtbXG6pxBQd8dDLbZaDhzhhPHjjFwyBC8f/xjuPNO8PXt+l/gPFRVVbFjxw6zMcjLy2PKlCnmtNJRo0bJtFIhRIc8O/ybVVfDZ5/Bn/5kLAAHRkMA3z4bMHo0H/j6ohYt4qrbb+/a9RysrKyM7du3m41BeXk5CQkJZmMwZMgQmVYqhGhFwv9sjY3GpiylpcYrg7AwGDECfH3JzMzkiSee4MMPP3TpMD158iTp6enmm1LKbAgSExPp37+/1SUKISwm4X8OtNZcffXVPPzww8TFOW6fme6kteb48ePmq4KMjAzCw8PNaaXx8fGEOWIzeyGEW5HwP0fvvvsu+/bt4/HHH3faNR3JZrNx+PBhszHYuXMngwcPNhuDyZMnExQUZHWZQohuJuF/jsrLy1m0aBGffPIJ4efwoJiramhoYN++feYzBgcOHCAmJsZsDGSBOiF6Jgn/87By5UpGjRrFTTfd5NTrOkNNTQ27du0yG4OjR48yYcIEszGQBeqE6Bkk/M/D7t27WblyJR999FGPD8KKigoyMzPNxqCoqMhcoC4xMVEWqBPCTdkb/vIEUQsTJkzA39+fjIwMkpKSrC6nW/Xq1Yvp06czffp0AE6dOkVGRgbp6em888471NTUmK8KEhMTZYE6IXoYufM/ywcffMD27dt5+umnnX5tV5Kfn2++KkhPTycgIKDVAnV9+vSxukQhRBuk2+c8VVZWsnDhQtatWycB10RrzZEjR1otUNevXz+zMYiLi6NX045oQghrSfh3wa9//WsGDx7Mbbc5bsOxnsRms3Hw4EGzMdizZw/Dhw9vtUBdQECA1WUK4ZEk/Ltg//79PPTQQ3zyySc9fuDXEerq6ti7d6/ZGBw6dIixY8eajcG4ceNkgTohnETCv4tuvPFGVqxYwbRp0yyrwV1VVVWxc+dOc7zg+PHjTJ482WwMRo8eLY2qEN1EZvt0UXJyMuvXr5fwPw9BQUFMmzbN/NmdPn3aXKDu448/pqysjPj4eJKSkkhKSpIF6oSwgNz5t6OqqooFCxbw3nvvyYJpDlZYWGjue5yWlgZgLk6XlJQkP28hukC6fRzgySefpG/fvixbtszSOnqy5gXqmhuDjIwMQkNDzcYgISGhRyy3IYSzSPg7wKFDh/jJT37Cxo0b8T57IxjRLZoXqGtetnrHjh1ERUWZjUFcXJwsUCdEByT8HeTWW29l6dKlXHLJJVaX4pEaGhrYv3+/2Rjs27eP0aNHm11EEyZMkAXqhGhBwt9BNmzYwD/+8Q9eeOEFq0sRQG1trblAXXp6OtnZ2YwfP77VAnXyKk14Mgl/B6mpqWHevHm88847DBw40OpyxFkqKytbLVBXWFjIlClTzGml0dHRMpNIeBQJfwd65plnCAkJ4a677rK6FNGJkpISc4G6tLQ0qqurSUhIMBuDqKgoq0sUoltJ+DtQdnY2K1asYNOmTfKkqpvJz89v1Rj4+/ubjUFCQgJ9+/a1ukQhHErC38HuuOMOrr/+embOnGl1KeI8aa05evSoOV6wfft2+vbtazYGcXFxhIaGWl2mEF0i4e9gW7ZsYcuWLbz00ktWlyIcxGaz8fXXX5uvCnbv3s3w4cPNaaWTJ0+WBeqE25Hwd7C6ujrmzZvH2rVrGTx4sNXliG7QvEBd8wNnX3/9NWPHjjUbg3HjxuHr62t1mUJ0SMK/Gzz//PP4+Phwzz33WF2KcILmBeqaG4Njx44xefJkszGIiYmRBeqEy5Hw7wY5OTksW7aMzZs3yx2gByovLycjI8NsDEpKSkhISDCfMRg6dKhMKxWWk1U9u8GwYcOIjo7m888/57LLLrO6HOFkoaGhzJw50xz0LyoqMgeP165di81ma7VA3YABAyyuWIj2yZ3/Ofrss89Yv349r776qtWlCBeitSY3N9dsDNLT0+nVq1erBeoiIiKsLlN4AOn26Sb19fXMnz+fP/7xjwwbNszqcoSLstlsZGVlmQ1BZmYmgwYNarVAXXBwsNVlih5Iwr8bvfjiizQ0NHDfffdZXYpwE42Njd9ZoG7kyJFmF9HEiRNlgTrhEE4Nf6XUXOB3gDfwmtb6qbO+fivwDJDX9KmXtNavdXROVw7/3Nxcbr31VrZs2SL/YcV5qa2tZffu3WZjkJWVxfjx480HzsaOHSsL1Inz4rQBX6WUN/AyMAfIBdKVUhu01vvPOvR9rfXdXb2eKxg8eDBjxoxh69atzJs3z+pyhBvy9/c3u4AAzpw5Yy5Q9/jjj1NQUEBcXJzZGERHR8u0UuFQjpjtkwQc1lpnAyil3gOuAM4O/x4lOTmZd999V8JfOERwcDAXX3wxF198MWAsULd9+3bS09P58MMPqaysNAeOk5KSiIqKkmmlokscEf5RwPEWH+cCU9s4bolS6hLgEHCf1vp4G8e4jUsuuYTf/va3ZGdnEx0dbXU5oofp3bs3c+bMYc6cOQAUFBSYC9StWbMGHx8fc6XShIQE+vXrZ3HFwt10uc9fKZUCzNVa39H08U3A1JZdPEqpPkCl1rpWKXUncI3W+jsrpCmllgPLAYYOHRqfk5PTpdq62x/+8AcqKyv56U9/anUpwoNorcnJyTH3PM7IyKBPnz5mN1J8fLwsUOfBnDbgq5S6EHhMa31508cPA2itn2zneG+gRGsd1tF5XXnAt1lBQQE33HADW7ZskQXAhGVsNhuHDh0yG4OdO3cybNiwVgvUBQYGWl2mcBJnPuGbDoxWSo3AmM1zLXD9WcUM1FoXNH24CDjggOtabuDAgUycOJHPPvuMRYsWWV2O8FBeXl6MGTOGMWPGcPPNN1NfX8++fftIS0vjzTff5MCBA4wZM8ZsDMaPH+82y5NoDSdOQF4eNDRAQACMGAFhHd46Cns4aqrnPOAFjKmeb2itH1dK/QrI0FpvUEo9iRH6DUAJcJfW+mBH53SHO3+AL7/8kjfeeIO1a9daXYoQbaqurmbXrl2kpaWRnp5OTk4OkyZNMhuDCy64wKVmEtlskJEBa9fCv/8N1dXQcg+lujro2xd+8AO48UYYNcqyUl2SPOTlJDabjYULF/L8888TExNjdTlCdKq8vNycSZSens6pU6eIj483G4Phw4dbNpNo9264/37IyTHu+oODjeBvWY7WRgNQVWV8/vvfhyefBNli2yDh70R//OMfKS4u5uGHH7a6FCHOWXFxcas1iRoaGlpNK42MjOz2Gmw2WLUKVq8GLy/o1at14LdHazh9Gvz94emnYcGCbi/V5Un4O1FhYSHXXnstmzZtIigoyOpyhDhvWmvy8/PNLqKMjAyCgoLMPY8TEhLo3bu3Q69ps8EDD8CGDUbon8822bW1xiuBlSvh5psdWp7bkfB3sgcffJBp06aRnJxsdSlCOIzWmuzsbLMxyMzMJDIy0mwM4uPju7xA3RNPwOuvG4O4XRl6qK+HM2fglVfAk1dcl/B3sv/85z+8/PLLvP322/LkpeixGhsbOXDggNlFtHfvXqKjo83GYNKkSfj7+9t9vu3b4ZprjDt+Ryxl1Dw4/I9/QJ8+XT+fO5LwdzKbzcbixYt56qmniI2NtbocIZyirq6u1QJ1hw8fZty4cebgcWxsbLsL1DU2wowZUFhohL+jlJXB/Pnwu9857pzuRMLfAm+++Sa5ubk8+uijVpcihCWqqqrMBerS09PJz89nypQpZmMwcuRIc1rpP/8Jy5dDZw8jNzaWU1DwKyort+HjE06/fncTFja3g+OhshK++gr693fgX85NSPhb4NSpU6SkpLBx40ZCQkKsLkcIy5WVlZl7HmdkZFBRUWHue/z225ezZ08QYWEdd5Pm5T0CaAYOfJSamkMcP34vw4e/ib9/+2tqlZYag8grVjj4L+QGZA9fC/Tp04epU6eyZcsWrr76aqvLEcJy4eHhzJ49m9mzZwNw8uRJ0tPT2bYtg7/9bSo+PgWcORNEcHAwwcFB+Pi0fvLYZqumouIfREd/gJdXEEFBk+nVazqnT2+mf/972r2unx+kpnpm+NvLdR7r6yGSk5NZv349rvqKSggrDRgwgAULFnDzzY8RFTWIYcOGEBgYQEVFBdnZ2WRlZXHiRAEVFeU0NjZSV3cM8MbPb6h5Dn//0dTWZnd4nYAAOHDAmEYq2iZ3/g6WkJBAXV0de/bsYeLEiVaXI4RLys0FLy+Fn58/fn7+RET0BjQ1NbVUVZ2hrKyM/Px8vLy+oaHBl8rKSoKCAvHy8sbLKwSb7UyH5/f2Nvr+T50CWe26bXLn72BeXl5ceeWVfPTRR1aXIoTLqqszns5tTREQEEDv3n0YMmQoMTEX0Lv3IBobKzl69ChZWVlobcNmO4OXV+fPFnh5GXP/Rdsk/LvBwoUL+eKLLygvL7e6FCFckp9f+8s3NDTUU1JyipycHIqLfVDKRlSUN35+/lRUVFBbe6jDwd5mNptxHdE2Cf9uEB4ezve//302bdpkdSlCuKThw1vf+TcH/tGjR8nOzqamppa+ffsSEzOBPn3mUlX1FuHhARQVfUVFxReEhc3v8PwNDeDr67kPetlDwr+byMCvEO0bPhwaGhooLv5u4I8ePZpBgwYREhKCUl5ERj6EzVZLQcESKit/S58+D3R6519TA+PG2bc4nKeSAd9uMmXKFJRS7Nixg7i4OKvLEcIlFBYWsnXrVrZu3UpV1RLq6r5Hv359CQ4OQqm270W9vUMZMmQVAEVFRTQ0NHR6nYYGmNv+c2ACufPvNkopkpOTZeBXeLyTJ0/y7rvvsnTpUq699loOHz7MHXfcwfvvX07v3n0IDg5pN/jPFhERTnl5OTZbY7vHNDYag71XXumov0HPJHf+3Wj+/PmsXr2a0tJSIiIirC5HCKc5efIkf//739m6dStHjx5lxowZ3HHHHSQmJppbSNpsMGwYHDvW+RIPzXx8fAkKCqK8vJzw8Lb/T5WXw9VXg4NXnu5xJPy7UWhoKDNmzGDjxo3c7OmLjIserznwU1NTycnJaTPwW/LyMhZfW7zY6Kaxdx3/iIgICgsLCQ8PB1p36ldVQXg4yL5KnZPw72bJycmsXLmSG2+80aX2SRXCEdoK/GXLlrUb+GcbNw5+/GN44QX71/MPDg6msdFGdXU1gYHfbp5UV2fM6//jH+1/JeHJJPy72YQJEwgICCAjI4OkpCSryxGiy06cOGF26bQM/KSkJHzOYxuuu+82nsR96y0ICTGmaHZMERERTmlpqRn+VVVG+K9aBRdddO5/J08k4d/NWg78SvgLd9Uy8I8dO8b06dO7FPgtKWVsvzh4MPz2t0aQh4Z2PE0zPDycw4ezqK9v5MwZb3r1gldfhUsu6VIpHkWWdHaCyspKFi5cyLp16+gjT50IN9Ec+KmpqRw/fpzp06czZ84cEhMTuxz47Tl8GH7+c9i92xgQDgr67tPANpsxj//EiVP4+fly3XWh/M//gMypMMh6/i7mN7/5DYMGDWLp0qVWlyJEu84O/BkzZjB79uxuDfy2HDgAb78NX3wBBQVGV5BSRvA3NkJ0NEyZkseePY+yadNrMp7Wgqzn72KSk5N56KGHuPXWW+UXVbiUgoICs0unOfDvvPNOpwd+S2PHwuOPG+9XVkJ+vjEjKCDA6B7y8wOtB3HddVUynnaeJPydJDY2lrCwMLZt28a0adOsLkd4OFcM/PaEhEBMzHc/r5QiJSWFdevWSfifB9f6V+7hmgd+JfyFFZoDPzU1ldzcXGbMmMEPf/hDEhISXC7w7TVv3jxefvllCgsL6e+JG/Z2gXv+i7upyy+/nBdffFF+UYXTnB34l156KXfddZdbB35LQUFBXHbZZXz66acsW7bM6nLcivv/67uR5l/UTz75hOXLl1tdjuihCgoKzMXTemLgny0lJYV7772XpUuX4u3tbXU5bqPn/Sa4uOTkZH7yk59w++23yy+qcJj8/HyzDz8vL48ZM2b06MBvafTo0URGRvKvf/2LGTNmWF2O2+jZvxUuKCYmhgEDBvDVV19xiTyRIrqgOfBTU1PJz89nxowZrFixgvj4+B4f+GdrHviV8LefZ/2GuIjmgV8Jf3Guzg78Sy+9lB/96EceGfgtzZ49m+eee47jx48zZMgQq8txC57722KhOXPm8Pzzz1NQUMDAgQOtLke4uPz8fLMPXwK/bX5+fixcuJD169dz7733Wl2OW5AnfC3y7LPPEhwczF133WV1KcIFtRX4s2fPlsDvwPHjx1m6dCmbN2/Gz4N3bpcnfF1ccnIyK1asYNmyZfKfWQBtB/7dd99NfHy8TA6ww5AhQ7jgggvYunUr8+bNs7oclyepY5Ho6GiGDBnCl19+ycyZM60uR1jk7MCfOXOmBH4XLFmyhLfeekvC3w4S/hZqHviV8PcsEvjd55JLLuGZZ57hm2++YfTo0VaX49Ik/C00a9YsVq1aRW5uLoMHD7a6HNGNWgZ+QUGBdOl0E29vbxYvXsy6det4WPZy7JAM+FrshRdewNvbm3vuucfqUoSDNQd+amoqJ06caDVoK4HffQoLC7n22mvZtGkTQUFBnX9DD+PUAV+l1Fzgd4A38JrW+qmzvu4P/BmIB04B12itjzri2u4uOTmZO+64gx/+8Id27XkqXFtbgX/PPfdI4DtR//79SUhI4K9//StLliyxuhyX1eXwV0p5Ay8Dc4BcIF0ptUFrvb/FYbcDpVrrUUqpa4GngWu6eu2eYOjQoYwcOZLPP/+cyy67zOpyxHnIy8szu3Qk8F1DSkoKzz//PMnJyaiO9oP0YI64808CDmutswGUUu8BVwAtw/8K4LGm99cBLymllHbVPicnS05OZt26dRL+bkQC37UlJCRQU1PDnj17mDhxotXluCRHhH8UcLzFx7nA1PaO0Vo3KKVOA32AYgdc3+3NmDGDZ555hpycHIYNG2Z1OaIdzYGfmprKyZMnufTSS/nxj39MXFycBL6L8fLyYsmSJaxbt07Cvx0uNdtHKbUcWA5Gd4in8PX1ZdGiRaxfv5777rvP6nJECy0Dv7CwkEsvvZR7771XAt8NLFy4kCuuuIKysjLCw8OtLsflOCL884CWKykNbvpcW8fkKqV8gDCMgd9WtNZrgDVgzPZxQG1u48orr+SWW27hRz/6kUc/mu4KcnNzzS4dCXz3FRYWxvTp09m4cSM33XST1eW4HEeEfzowWik1AiPkrwWuP+uYDcAtwH+BFOAf0t/fWlRUFGPHjpVH0y0igd8zpaSk8Oijj3LDDTfg5eVldTkupcvh39SHfzfwN4ypnm9orfcppX4FZGitNwCvA28ppQ4DJRgNhDhLcnIyb7/9toS/kzQHfmpqKkVFRVx66aX85Cc/IS4uToKihxg/fjxBQUGkpaXxve99z+pyXIo85OVCGhoaWLBgAa+88grR0dFWl9MjnR34M2fOZPbs2RL4Pdj69ev5z3/+w7PPPmt1KU4hq3q6IR8fHxYvXsxHH33ET3/6U6vL6TGOHz9uduk0B/59990nge8h5s6dy0svvURhYSH9+/e3uhyXIXf+LubEiRNcf/31bNmyhYCAAKvLcVttBb7c4Xuup59+mvDwcO68806rS+l2cufvpiIjI5k4cSKfffYZixYtsroct9Ic+KmpqRQXFzNz5kzuv/9+pkyZIoHv4VJSUrj77ru5/fbbZf+MJvJTcEFLlizh9ddfl/C3w9mBP2vWLB544AEJfNHKyJEjiYqKkv0zWpDwd0EXXXQRTz31FIcOHSImJsbqclzOsWPHzC4dCXxhr+YnfiX8DRL+LsjLy4srr7ySjz76SNYkbyKBL7pq1qxZPPfccxw7dsyjVhBojwz4uqiioiKuvvpqNm/e7JFrkkPbgT9nzhwmT54sgS/Oy+9//3saGxt79DIqMuDr5vr160d8fDz/93//R3JystXlOM3ZgT979mwefPBBCXzhEEuWLOHmm29mxYoV+Pv7W12OpST8XdiSJUt46aWXuPLKK3v0muQS+MJZoqKiGDduHFu3bmX+/PlWl2MpCX8XNnXqVJ588kkOHDhAbGys1eU4VMvAP3XqFLNmzZLAF06RkpLCm2++KeFvdQGifV5eXiQnJ/PRRx/1iPBvDvzU1FRKSkok8IUlZDadQQZ8XVxJSQlLlixh48aNhISEWF3OOWsr8GfPni2BLyz12muvUVhYyCOPPGJ1KQ4nA749RO/evZk6dSpbtmzh6quvtrocu+Tk5JhdOs2B/9Of/lQCX7iMxYsXc9VVV3HvvfcSHBxsdTmWkPB3A0uWLGHVqlXMnn0Ve/Yo9u6Fb76BujoIDoYJEyA21vjTqgkMLQO/tLSUmTNnSuALl9W3b1+SkpLYsmULV111ldXlWELC3w34+CSQlnYTU6bUERjoT20t+PiAUmCzwfr14OtrvN14I9x0Ewwa1P11NQd+amoqZWVlzJw5k5/97GdMmjRJAl+4vJSUFJ599llSUlJ69Gy69kj4u7CKCnj8cVi3TnHmzMUodYp+/QbRXtd/XR2sWQNvvgm//CVcfz04OoPPDvxZs2bx85//XAJfuJ2EhATq6+vZtWsXkydPtrocp5Pwd1FHjsANN8DJkxAWBr16BXH4cAGNjY3tbivo52e81dXBypWQmgp/+AN09QHho0ePml06Eviip1BKkZKSwrp16yT8hWs4dgxSUow7/4iI5s/6EBISwunTZfTu3afD7/fzM7qA/v1vWLoU/vSncx8LkMAXnmDBggWsWbOG0tJSIr79z+YRJPwm3X5kAAAZzklEQVRdTF0d3H47nD4N4eGtvxYREUFBQQG9e/cGOu6jVMr4/rQ0eOop45VAZ5oDPzU1lfLycmbOnMlDDz3ExIkTJfBFjxQaGsqll17Khg0buOWWW6wux6kk/F3MSy8ZXT5hYd/9WlBQIEpBVVUVQUGdT09TyjjPW2/BvHmQmPjdY84O/FmzZvHwww9L4AuPkZKSwsMPP8xNN93kUb/zEv4upKgIVq+GkBAjuL9LER4eQWlpmV3hD+Dtbbw9+ij89a/GeY8cOWJ26UjgC08XGxtLaGgo27ZtY9q0aVaX4zQS/i7kww+hocGYxtmeXr0Cyct7jKqqLGy2Cnx9B9O//92EhLT/SxsSAgcP1vPYYxs4ePADCXwhWlBKmRu9SPgLS7z1FgQGdnyMtzcEBg6mV6/l9O8fS2XlV+TlPcSIEe/h59d6cn9tbS0VFeWUl5dTUxPEV18NYtWqR5gwYYIEvhAtzJ07lxdffJETJ04QGRlpdTlOIQngIkpLobCw81k5Xl6BREXdTWVlAEopevW6GF/fQdTUHASMwC8uLiI7O4tjx3JobGxk4MCBjBgRiVIXymwdIdoQGBjI3Llz+fjjj60uxWkkBVzEwYPG9Ex7HjQMDAxEKS/OnKmioaGEmpoczpwJ+07gjx49mgEDIgkMDMLfX3HkiDGbSAjxXSkpKXzyySc0NDRYXYpTSLePiygpMZZqsI8iIiKc3Nwc6uoeR6kL8fKKYuDAUAIDA2lrGqiXl9GwVFRAn44fExDCI0VHRzNs2DC++OILZs2aZXU53U7u/F3Eua6sHRYWis32CjabF35+y7DZbNTV1Xd61+KiK3gL4RKan/j1BBL+LiI01P51eLTWnDjxOEFB9UyY8EeGDYsmICCAiopysrOzyc7O4sSJE1RUVGCzNTZ9j/HKwg23BBDCaWbMmEFWVhY5OTlWl9LtpNvHRcTEGNM8te683//EiSepqzvC0KGv4OUVgL8/+Pv7ExHRG9DU1NRw5swZSktLyM/Pw8/PHz+/UCIjfVHKH/DsjauFaI+fnx+LFi3io48+4v7777e6nG4lO3m5CK1hyhTj7tzPr/3j6usLOHx4IUr5odS3C7xFRj5CWNgP2jivjerqaoqKGujffxu9e/+GcePGkZSURGJiIrGxse0uFCeEJ8rPz+emm25i8+bNBAQEWF3OOZOdvNyMUnD11fD66x2Hv6/vQMaOtb9RVMqLoKBgIiJgzZrLmTz5+2RmZpKens4TTzxBQUEBU6ZMITExkaSkJEaOHOmRa5sL0WzQoEGMHz+e1NRUFi5caHU53Ubu/F1ITg7MmnVu/f/2qKoyFnn797+/e96SkhIyMjJIT08nLS2N6upqEhISSEpKIikpiUHO2BVGCBfzr3/9i9dee40//elPVpdyzuy985fwdzEPPgiffPLdFT3Pl81mrBD64ovG4m6dyc/PNxuC9PR0AgICzIYgISGhaUVRIXo2m83GokWLePbZZxkzZozV5ZwTCX83VV4OM2dCZaVjZuaUlMDs2caCcefam6O1Jjs722wIMjMziYyMNBuC+Ph4j938WvR8b7zxBvn5+fzyl7+0upRzIuHvxjIzjV28lOraLlynT0NUFHz8cctNYc5fY2MjBw4cMBuDvXv3MmrUKHO8YOLEifh1NGAhhBs5deoUKSkpbNy4kRA3miMt4e/m0tLgttugttZYk/9c7tobG41XEMOHw1/+Av37d0+NtbW17Nq1y+wmOnLkCOPHjze7icaMGSPrCAm39vDDDzN58mSuueYaq0uxm4R/D5CTA/ffD7t2Gev+BAV13AjYbEboA1x3HTz0EDizV6aiooLMzEzzlUFRURHx8fFmN9GIESNkJpFwK9u3b+fpp5/m/fffd5vfXQn/HsJmMwaAX3nFaAwaG41lnf38jIbAZjNeHShlvF10EdxzD8THW105FBcXk56ebr7V19eTmJhodhN5ytK5wn1prbnqqqt45JFHiIuLs7ocuzgl/JVSvYH3geHAUeBqrXVpG8c1AnuaPjymtV7U2bkl/FvTGvbsgYwMo0soO9t4IjgwEMaPh4QEmDbN6ON3RVpr8vLyzFcF6enp9OrVy2wIEhISCHfUFCchHOgvf/kLe/bs4YknnrC6FLs4K/x/C5RorZ9SSj0ERGitf97GcZVa63MaMZHw79lsNhuHDx82xwt27txJVFSUOV4wefJkgroy2i2Eg1RUVJhLPrjDVGdnhf/XwAytdYFSaiDwT631BW0cJ+EvOtTQ0MC+ffvMVwYHDhwgJibGXIZiwoQJ+Pr6Wl2m8FC/+tWvGDJkCLfddpvVpXTKWeFfprUOb3pfAaXNH591XAOwE2gAntJaf9LZuSX8PVt1dTU7d+40u4hycnKYNGmS2U0UExMjM4mE0+zfv5+f//znfPrppy7/e+ewtX2UUluBtkbmftHyA621Vkq115IM01rnKaWigX8opfZorbPauNZyYDnA0KFDOytN9GCBgYFceOGFXHjhhQCUl5eby1D84he/oLS0tNUyFEOGDHGb2RjC/cTGxhIREcF///tfLrroIqvLcQindPuc9T1rgU1a6w53TJA7f9GRwsLCVstQAK2WoejfXQ83CI+1YcMGPv/8c55//nmrS+mQs7p9ngFOtRjw7a21/tlZx0QAVVrrWqVUX+C/wBVa6/0dnVvCX9hLa82xY8fMhiAjI4OIiAhzvCAhIYHQ0FCryxRurrq6mvnz5/POO+8wcOBAq8tpl7PCvw/wATAUyMGY6lmilEoAfqi1vkMpNQ1YDdgwdg57QWv9emfnlvAX58tms3Ho0CGzMdi1axfDhg0zxwsmT57sluu0C+s9++yzBAUFsWLFCqtLaZc85CVEk7q6Ovbu3Wt2Ex06dIixY8ea3USxsbH4+MjWFqJzR44c4c4772Tz5s0uO/tMwl+IdlRVVbFjxw7zlUFeXh5Tpkwxu4lGjhzp8jM6hHXuvPNOUlJSmDNnjtWltEl28hKiHUFBQVx00UXmrI3S0lK2b99OWloaH374IZWVlSQkJJjdRFFRUTKTSJhSUlJYt26dy4a/veTOX4izFBQUmM8XpKWl4efnZzYEiYmJ9OnTx+oShYXq6+tZsGABr776KiNGjLC6nO+Qbh8hHEBrzZEjR8yGIDMzk379+pnjBXFxcW611rtwjFdeeYWqqioefPBBq0v5Dgl/IbpBY2MjBw8ebLWhTXR0tLla6eTJk2VDGw9QUFDADTfcwObNmwkMDLS6nFYk/IVwgrq6Onbv3m02BllZWYwbN87sJho7dize3t5Wlym6wX333ceMGTO44oorrC6lFQl/ISxQWVlJZmam2U108uRJ4uLizG4i2dCm5/jqq69YvXo1f/7zn60upRUJfyFcQElJSatlKGpra80uosTERAYNGmR1ieI82Ww2Fi9ezFNPPUVsbKzV5Zgk/IVwQS03tMnIyCAwMNCcRZSYmEhERITVJYpzsHbtWo4dO8b//M//WF2KScJfCBentSYrK8tsDDIzMxk0aJA5XhAXFycb2ri4kpISlixZwqeffuoy60dJ+AvhZhoaGti/f7/ZTbR//35Gjx5tjheMHz9eZhK5oEceeYQJEyZw3XXXWV0KIOEvhNurqalh165d5iuDo0ePMmHCBLObaMyYMbIMhQvIzMzkiSee4MMPP3SJwXxZ3kEINxcQEMDUqVOZOnUqYGxos337dtLT01m5ciWnTp0iPj7e7CYaNmyYS4SPp5kyZQpeXl5kZmYSHx9vdTl2kzt/IdxUUVFRq2UobDab2RAkJSXJhjZO9MEHH7Bjxw6efPJJq0uRbh8hPInWmuPHj5sNQUZGBmFhYWZDEB8fT1hYmNVl9liVlZUsXLiQdevWWb72k4S/EB7MZrPxzTffmOMFO3fuZMiQIeZ4wZQpU1xuWQJ395vf/IZBgwaxdOlSS+uQ8BdCmOrr69m3b5/ZGBw8eJAxY8aY3UTjx4+XDW266ODBgzz44INs2LDB0oF4CX8hRLuqq6vZsWOH2U10/PhxJk+ebHYTjRo1SmYSnYdbbrmFO+64g4svvtiyGmS2jxCiXYGBgUybNo1p06YBcPr0aTIyMkhLS2P9+vWUl5eTkJBAUlISCQkJDBkyRGYS2aF5oxcrw99ecucvhPiOkydPtlqTyNvb21yCIikpib59+1pdokuqra1l3rx5vPXWW5at2yTdPkIIh9Bak5OTYzYE27dvp0+fPmZDEB8fT69evawu02U899xz+Pn5cffdd1tyfQl/IUS3sNlsHDx40HxlsGfPHoYPH26OF0yaNAl/f3+ry7RMTk4Oy5YtY9OmTZYsxyHhL4Rwirq6Ovbs2WO+Mvjmm2+IjY01p5WOGzfO4za0ueuuu1i8eDGXX365068t4S+EsERVVRWZmZlmY1BQUMCUKVPMbqKRI0f2+MHjv//977z//vusWbPG6deW8BdCuISSkhIyMjLMbqLq6mpzJlFSUlKP3NCmoaGBBQsW8MorrxAdHe3Ua0v4CyFcUn5+fquZRAEBAeargsTERHr37m11iQ7x6quvUl5ezs9+9jOnXlfCXwjh8rTWZGdnm41BZmYmAwYMMBuC+Ph4goODrS7zvJw8eZLrrruOTZs2OXVTHgl/IYTbaWxs5MCBA+argr179zJq1CjzlcHEiRPdakOb+++/n4svvpgrr7zSadeU8BdCuL3a2lp27dplvjI4cuQI48ePN8cLXH1Dm//85z+8/PLLvP32298OcldUQHU1+PhAeDg4uH4JfyFEj1NRUdFqJlFRURFxcXFmN9GIESNcaiaRzWbjmoULWTVnDkN37YJdu+D0aSPwtTYagNhYmDkTUlIgMrLL15TwF0L0eMXFxeaaROnp6dTX17dahiLSAWF63mpr4eWXKVu1isaaGmOd/4AA8PWF5gaqsRFqaqCuzvjc7NmwciUMHHjel5XwF0J4FK01eXl5ZkOQnp5Or169zIYgISGB8PBw5xSzbx/86Edw/DgNgYFk5eQwatSojh92s9mgvBz8/eHXv4bk5PO6tIS/EMKj2Ww2Dh8+bI4X7Ny5k6ioqFYb2nTLLJxt2+C224y7+tBQAPLy8ggIDKSPPdNYa2uhqgruuQfuvffbVwl2kvAXQogWGhoa2Ldvn9kYHDhwgJiYGLMxmDBhAr6+vl27yL59Rt+9UtCiYamqqiK/oMB4utm+Yo2B4UcfhVtvPacSJPyFEKIDNTU17Ny50+wmysnJYdKkSWY3UUxMzLnNJKqthblzIS/PvONvpoHs7GwiBwyw/7mF+npjVtDmzTB6tN1lSPgLIcQ5KC8vb7UMRWlpaatlKDrd0Ob55+GllyAios0vl5SWUnXmDIMHD7a/qNOnISYGNm60e0qohL8QQnRBYWFhq2UoALOLKDExkf79+397cFUVJCYaUzfb6TpqtNl4cf9+0oOCyK6r4/LQUB7rbF0jrY1B4HfegaQku+qWbRyFEKIL+vfvz/z585k/fz5aa44fP05aWhpffPEFq1atIiIiwmwMvpeXR1BdHQQGtns+by8vokJCGO7jw4HAQGrtufFWymgAXnvN7vC3V5fCXyl1FfAYMBZI0lq3eauulJoL/A7wBl7TWj/VlesKIYQzKaUYOnQoQ4cOJSUlBZvNxqFDh0hLS+Pjjz+m5sMPmVJVhVdtLcHBwQQFBeHVRhfRwshIjh8/Tl5YGEUNDfZdvFcv+OILY/aQA/dF6Oqd/14gGVjd3gFKKW/gZWAOkAukK6U2aK33d/HaQghhCS8vL8aMGcOYMWO4+eabsX31FTUVFZypq6O4qIia2loCAgIIDg4mODiYwIAAlFIEBATg4+tLbW2t/UHefNzRozBypMP+Dl0Kf631AaCzx6mTgMNa6+ymY98DrgAk/IUQ7q+yEq/TpwkKDydIKfr160ejzUZ1VRVnzpzhxIkT1NXVERQURHBwMCHBwVSVlBh39PZSCrKyXCf87RQFHG/xcS4w1QnXFUKI7lddbczEaXET7O3lRUhICCEhIQA0NDZSdeYMZ5re6urrUecy2cZmM5aBcKBOw18ptRVoa4GMX2itP3VkMUqp5cBygKFDhzry1EII0T18fIxB2Y4O8fYmNDSU0Kb5/wMKC+3v8wejYfFx7L16p2fTWs/u4jXygCEtPh7c9Lm2rrUGWAPGVM8uXlcIIbpfWJgxvdOOAdlGrWnUGg3YgDqbDW+l8O5sCQelICrKYSUDOGMh7HRgtFJqhFLKD7gW2OCE6wohRPfz8oKxY43un068XlzMtK+/Zu2pU2w5fZppX3/N68XFHX+T1sbTvjExDirY0NWpnlcCLwL9gM1KqZ1a68uVUoMwpnTO01o3KKXuBv6GMdXzDa31vi5XLoQQrmLWLGOt/k4s79eP5f36ndu5z5wxGpcOniE4H12689daf6y1Hqy19tdaD9BaX970+Xyt9bwWx23RWsdorUdqrR/vatFCCOFSliwxXgHYbI4/d2MjLF/u8NO67v5nQgjhLiIjjY1YTp927HmrqyEkBC67zLHnRcJfCCEcY+VKY6eu2lrHnK95eufTTxvndTAJfyGEcITISHj8cWORt3OZxtkWrY1XEfPmwZw5jqnvLBL+QgjhKIsXG7tvlZcbM3TOh80GZWXGKqHPPHPOO3nZS8JfCCEc6cc/hsceM/rrT5/u9AGwVpq/Z948WLu2W7p7mkn4CyGEo918M2zZAhdcYLwKKCszZu20RWuorDRC388PXn0VXnyxW4MfZD1/IYToHqNGGTtwpafDG2/A558bn1fK6NpRynirr4fYWFi2zJjV082h30zCXwghuotSxiYsSUlG4B89aqzOWV1tLAkRFWU8ueukwG9Jwl8IIZzBywuio403FyB9/kII4YFcdgN3pVQRkNPGl/oCnayEZClXrw9cv0ZXrw9cv0apr+tcvcb26humte50ASGXDf/2KKUy7NmZ3iquXh+4fo2uXh+4fo1SX9e5eo1drU+6fYQQwgNJ+AshhAdyx/BfY3UBnXD1+sD1a3T1+sD1a5T6us7Va+xSfW7X5y+EEKLr3PHOXwghRBe5fPgrpXorpVKVUt80/RnRznG/VUrtU0odUEr9XqluWgrv/OsbqpT6rKm+/Uqp4c6o71xqbDo2VCmVq5R6yZXqU0pNVkr9t+nfeLdS6hon1DVXKfW1UuqwUuqhNr7ur5R6v+nr/8+Z/6bnUOP9Tb9vu5VSf1dKDXOl+loct0QppZVSTp9dY0+NSqmrm36O+5RS77pSfU3Z8rlSakfTv/O8ts7zHVprl34Dfgs81PT+Q8DTbRwzDfgKY49gb+C/wAxXqa/pa/8E5jS9HwIEudLPsMWxvwPeBV5ypfqAGGB00/uDgAIgvBtr8gaygGjAD9gFxJ51zArg1ab3rwXed9bP7BxqvLT5dw24y5k12lNf03G9gC+BbUCCC/4MRwM7gIimj/u7WH1rgLua3o8Fjtpzbpe/8weuAP7U9P6fgMVtHKOBAIwfjj/gC5x0SnV21KeUigV8tNapAFrrSq11lZPqA/t+hiil4oEBwGdOqqtZp/VprQ9prb9pej8fKATOcSfsc5IEHNZaZ2ut64D3mupsqWXd64BZznrFaW+NWuvPW/yubQMGu1J9TX4NPA3UOLG2ZvbUuAx4WWtdCqC1LnSx+jQQ2vR+GJBvz4ndIfwHaK0Lmt4/gRFOrWit/wt8jnE3WAD8TWt9wFXqw7hrLVNKrW96afaMUsrbSfWBHTUqpbyAVcCDTqyrmT0/Q5NSKgmjoc/qxpqigOMtPs5t+lybx2itG4DTQJ9urOls9tTY0u3AX7u1otY6rU8pFQcM0VpvdmJdLdnzM4wBYpRSXymltiml5jqtOvvqewy4USmVC2wB7rHnxC6xsJtSaisQ2caXftHyA621Vkp9Z3qSUmoUMJZv72pSlVIXa63/5Qr1YfycLwamAMeA94FbgdcdUZ+DalwBbNFa53bHzasD6ms+z0DgLeAWrbXNsVX2XEqpG4EEYLrVtTRruuF4DuP/givzwej6mYGRMV8qpSZorcssrepb1wFrtdarlFIXAm8ppcZ39v/DJcJfaz27va8ppU4qpQZqrQua/uO39ZLrSmCb1rqy6Xv+ClwIOCT8HVBfLrBTa53d9D2fAN/DgeHvgBovBC5WSq3AGJPwU0pVaq3bHaRzcn0opUKBzcAvtNbbHFFXB/KAIS0+Htz0ubaOyVVK+WC85D7VzXW1df1mbdWIUmo2RiM7XWvtoN3F7dJZfb2A8cA/m244IoENSqlFWusMF6kRjP+//09rXQ8cUUodwmgM0l2kvtuBuWD0giilAjDW/emwe8odun02ALc0vX8L8GkbxxwDpiulfJRSvhh3N87q9rGnvnQgXCnV3Ec9E9jvhNqadVqj1voGrfVQrfVwjK6fPzsq+B1Rn1LKD/i4qa51TqgpHRitlBrRdO1rm+psqWXdKcA/dNOom5N0WqNSagqwGljk5L7qTuvTWp/WWvfVWg9v+r3b1lSns4K/0xqbfIJx149Sqi9GN1C2C9V3DJjVVN9YjPHPok7P7KxR6y6MdvcB/g58A2wFejd9PgF4TX87Ir4aI/D3A8+5Un1NH88BdgN7gLWAn6vV2OL4W3HubB97/o1vBOqBnS3eJndzXfOAQxhjC79o+tyvMAKKpv9kHwKHgTQg2lk/s3OocSvG5Ifmn9kGV6rvrGP/iZNn+9j5M1QY3VP7m/7/Xuti9cVizHbc1fRvfJk955UnfIUQwgO5Q7ePEEIIB5PwF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgP9f+ESC91ZCoRCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VNX9//HXyUoICUvYCWERRahSiiyFWi1FKMoWYjAhyVQURFRaWVRUBFEsKCqiIF9k6xdnwiJbQYn1awHpDxALoiKg7ItsGsi+TiZzfn/cYCOErJO5yczn+XjkQSZzZ+ZzjXnPmXPOPUdprRFCCOFdfMwuQAghhPtJ+AshhBeS8BdCCC8k4S+EEF5Iwl8IIbyQhL8QQnghCX8hhPBCEv5CCOGFJPyFEMIL+ZldwI00btxYt23b1uwyhBCiVvnyyy8va62blHVcjQ3/tm3bsm/fPrPLEEKIWkUpdaY8x9XY8BcepLAQzp6FzEzw8YGwMGjeHJQyuzIhvJaEv6gemZmweTOsWQPff28EvU/REJPDAXXqQPfuYLHAXXeBn/yvKIQ7yV+ccC27HRYuhEWLjJD394fgYPD1/eVxBQWwcyfs2gUNGsDf/gb9+5tTsxBeSGb7CNc5cQIGDYL58yEw0Aj1koIfjDeF+vUhNBSysmDcOBg/3vheCFHtJPyFaxw+DFFRcPq0Efr+/uV/bN26xhtBUhLExkJGRrWVKYQwSPiLqrt4EeLiIC/PCPHKDOT6+EDDhvDddzBmjDFILISoNhL+omq0hqefNrprQkKq9lxKGZ8avvwSVqxwTX1CiBJJ+Iuq+egj+Pxzo8XvCkoZ4wRz5sCFC655TiHEdST8ReVpbQzuBgSU2tXzQUoKllOn6P3998woT6AHBBizgRITXVisEKI4CX9Red9+C6dOGQO2pWjs58foxo0ZWpFPB8HBYLUaU0eFEC7nkvBXSi1XSv2klDp4g/uVUuodpdRxpdQBpVQ3V7yuMNnu3cZc/jIGeP8YGsofQkKoX9KUzxsJCDCC/8iRKhYphCiJq1r+/wsMLOX+e4Gbi77GAv/jotcVZvrii4pN6awoh8OY/SOEcDmXhL/W+t9ASimHDAPe14Y9QAOlVAtXvLYw0bFjxsVc1cXpNJaGEEK4nLv6/FsBPxS7fa7oZ6I2y88v95x+p9akpqeTlpZGZlYWujwPUgpyc6tUohCiZO4K/5IS4rq/f6XUWKXUPqXUvuTkZDeUJaokMNCY8VMGDZw/dw4F1KlTh+TkZE6eOEFqWhrO0h6vNQQFuaxcIcR/uSv8zwGti90OB66b86e1Xqy17q617t6kSZl7EQiz3XST0fovhQbOXbhAvtNJSGgoAXXq0KpNG5o0a0ZmZibHjx8n+fJlHCVd0evjAx07Vk/tQng5d4X/ZuDPRbN+fguka60vuum1RXXp1csYlC1FcnIy1vR0YrOzWZGSQlJ6Or87coTVublEtG5Nm4gICgoKOHHiBJcuXcJefGqnnx906lTNJyGEd3LJks5KqVXAH4DGSqlzwIuAP4DWehGQBNwHHAdygIdc8brCZL17Gyt2al1i339KaioZGRk8c8stPH+DaZ6BgYG0bNGCgiZNSE1N5dTp0wTXrUtYaChBAQFw663VfRZCeCWXhL/WemQZ92vgCVe8lqhBunaFiAhjGYbg4F/clZGRwZXLl2nTti1+5Zjf7+/nR9MmTQgLCyM9PZ208+f5qFMnmuzezV133YWPj1yPKIQryV+UqDyl4C9/MZZiKDZwm52dzaVLl2gdEUFABa8D8PXxoVG9ejQPD6f55MksX76c6Oho1q9fT15enqvPQAivJeEvqmboUGM7xvR0APLy8jh//jytwsOpU5lrALSGrCzU5Mn8fuRIVqxYwbRp09i1axdDhw7lvffeIyWltEtKhBDloXQ5puqZoXv37nrfvn1mlyHK4/x5uO8+CrKzOZWcTPPmzQmtzPLOWkNaGvz617B27XU7gJ05c4bExEQ+/fRT+vfvT3x8PG3atHHRSQjhGZRSX2qtu5d5nIS/cIX0//f/SBs0iEbBwYS0qsT1e1eD/5ZbYPXqUpeITklJYe3ataxbt47bb78di8VC165dUZXZREYIDyPhL9wmJyeHRx99lEE330zs9u1w9qyxsYtfOecT5OYau4D98Y/w5pvGvr7lkJeXx5YtW7DZbISGhmKxWOjbty++FVlATggPI+Ev3KKgoIAnn3yS8PBwnnvuOZTdDu+8A0uXGlsxBgRAnTrGBVvFORyQk2N8HxwMr7wC991XqS0gnU4n//73v7FarSQnJxMfH8+QIUOoW8ZS00J4Igl/Ue2cTifTpk0jPz+fOXPm/HI6Zloa/OMfsGoVnDhh9N9fvb+w0LjdtSuMGgV9+xpvEi5w4MABbDYb+/fvJyoqigceeIDGjRu75LmFqA0k/EW10lozd+5cvv/+exYsWEBgaTN77HY4fRoyM403gLAwCA+//tOAC/3www+sWrWKf/7zn/zhD38gISGB9u3bV9vrCVFTSPiLarVixQo+/vhjlixZQkhVN26vRunp6axbt441a9Zw6623YrFY6N69uwwOC48l4S+qzYcffsjixYtZvnw5tWUBPrvdTlJSEjabjcDAQCwWC/fccw9+5R2UFqKWkPAX1WLnzp28/PLLLF68mLZt25pdToU5nU527dqF1Wrl/PnzxMXFERkZSfA1y1MIUVtJ+AuX+/bbb5k0aRJvvfUWt912m9nlVNnhw4ex2Wzs2bOHyMhIYmNjadq0qdllCVEl5Q1/Wd5BlMupU6eYPHkyL730kkcEP0Dnzp2ZNWsWNpsNh8NBbGws06dP5+jRo2aXJkS1k5a/KNNPP/3E6NGjGTduHIMGDTK7nGqTkZHBxo0bWb16Ne3bt8disdCrVy8ZHBa1inT7CJfIyMhgzJgxDB48mD//+c9ml+MWBQUFfPLJJ1itVpRSWCwWBgwYgH8FVygVwgwS/qLK8vPzeeKJJ+jcuTMTJ070uhaw1po9e/ZgtVo5ffo0MTExREVF1eiprUKUN/xlnpsoUWFhIc899xzNmzdnwoQJXhf8AEopevfuTe/evTl69Cg2m41hw4YxePBgRo4cSYsWLcwuUYhKkwFfcR2tNbNnz8Zut/Piiy/KLlrALbfcwssvv8yqVavw9fUlPj6e559/nu+++87s0oSoFOn2EddZtGgRu3fvZtGiRbI42g1kZWXxj3/8g5UrV9K6dWssFgt9+vSRN0phOunzF5Wydu1aVq1axdKlS2nUqJHZ5dR4DoeDTz/9FKvVSkFBAQkJCdx7770EuGihOiEqSsJfVNjWrVt54403WLZsGS1btjS7nFpFa82+ffuwWq0cOXKEmJgY7r//fuqXsimNENVBBnxFhezbt49XX32Vd999V4K/EpRS9OjRgx49enDixAkSExMZPnw4AwcOJC4ujvDwcLNLFOIXpINScPToUZ577jleffVVbrnlFrPLqfVuuukmpk+fzpo1awgODubBBx/kmWee4dtvvzW7NCF+Jt0+Xu78+fOMGTOGp556in79+pldjkfKyclh8+bNrFy5kiZNmmCxWLjrrrtkcFhUC+nzF2VKSUlh9OjRxMXFMWLECLPL8XiFhYVs27YNq9VKVlYW8fHxDB48uPSNcISoIAl/UaqcnBzGjRtHnz59GDdunNnleBWtNV999RU2m42DBw8SHR1NdHS0zK4SLiEDvuKGCgoKePrpp+nYsSOPPvqo2eV4HaUU3bp1o1u3bpw+fZrExETuv/9++vfvT3x8PG3atDG7ROEFpOXvZZxOJ9OnTyc3N5c5c+bg6+trdkkCowtu7dq1rFu3ji5dumCxWPj1r3/tlctqiKqRbh9xHa01b731FocPH+bdd9+VvuYaKC8vj48++ojExETq16+PxWKhb9++Mjgsyk3CX1zn/fffZ8uWLSxZsoTQ0FCzyxGlcDqd7NixA6vVyuXLl4mPj2fIkCGy3IYok4S/+IUtW7awaNEili1bJlsV1jIHDhzAZrOxf/9+oqKieOCBB2jcuLHZZYkaSrZxFD/btWsXb7/9NvPnz5fgr4W6dOnCnDlz+Pvf/05mZiYjRozg5Zdf5uTJk2aXJmoxafl7uKubrs+dO5fbb7/d7HKEC6SlpbFu3To++OADOnXqhMVi4Y477pDBYQFIt48ATp8+zdixY5k+fTp33nmn2eUIF7Pb7WzZsgWbzUZQUBAWi4V+/frh5yczuL2ZhL+Xu7rp+qOPPsrgwYPNLkdUI6fTya5du7BarVy4cIG4uDgiIyNlcNhLSfh7sYyMDB555BEGDRrkNZuuC8Phw4ex2Wzs2bOHyMhIYmNjZZzHy8iAr5fKz89n8uTJ9OrVC4vFYnY5ws06d+7MrFmzsNlsFBQUEBsby/Tp0zl69KjZpYkaRlr+HqSwsJApU6YQGBjIzJkz5cIgQUZGBhs2bGD16tXcdNNNWCwWevXqJYPDHsytLX+l1ECl1BGl1HGl1LMl3D9KKZWslPq66GuMK15X/JfWmtdee43c3FxmzJghwS8ACA0NZdSoUWzevJmBAwcyd+5cRo4cyZYtWygoKDC7PGGiKrf8lVK+wFGgP3AO2AuM1FofLnbMKKC71np8eZ9XWv4V895777Fz507ee+89GegTN6S15vPPP8dms3H69GliY2MZPnw4ISEhZpcmXMSdq3r2BI5rrU8WvfBqYBhwuNRHCZdZt24d//znP1m2bJkEvyiVUoo+ffrQp08fjhw5gs1mY9iwYQwePJiRI0fSokULs0sUbuKKvoFWwA/Fbp8r+tm17ldKHVBKrVNKtS7piZRSY5VS+5RS+5KTk11QmufbunUry5YtY8GCBbIevKiQjh07MnPmTFatWoWPjw/x8fFMnTqV7777zuzShBu4IvxLGjm6ti/pQ6Ct1roL8C9gRUlPpLVerLXurrXu3qRJExeU5tm+/PJLXn31VebNm0erViW93wpRtmbNmjFhwgQ2b95Mp06dmDx5MuPGjWPXrl04nU6zyxPVxBXhfw4o3pIPBy4UP0BrfUVrnV90cwlwhwte16sdPXqUZ599llmzZtGxY0ezyxEeoF69eiQkJLB582aGDRvGu+++S0xMDJs2bcJut5tdnnAxV4T/XuBmpVQ7pVQAEAtsLn6AUqp4R+JQQD5XVsGFCxeYMGECU6ZMoUePHmaXIzyMn58f9957L4mJiTz99NNs3bqVIUOGsHz5ctLT080uT7hIlQd8tdYOpdR44BPAF1iutT6klHoZ2Ke13gz8VSk1FHAAKcCoqr6ut0pNTWX8+PGMGjWKe+65x+xyhAdTStGzZ0969uzJ8ePHSUxMJDIyknvvvZf4+Hjpaqzl5CKvWuTqpuu9e/fmscceM7sc4YWSk5NZs2YNGzdupHv37lgsFm677TazyxLFyNo+HqagoICJEyfSvHlzpk6dKldoClPl5OSwadMmVq5cSbNmzbBYLPz+97+XiwtrAAl/D+J0OnnxxRfJzs7m9ddfl03XRY1RWFjItm3bsFqtZGVlkZCQwKBBg2R/aBNJ+HuQefPm8e2337Jw4UL5oxI1ktaar776CpvNxsGDB4mOjmbEiBE0bNjQ7NK8jjuv8BXVyGq1snv3bpYuXSrBL2ospRTdunWjW7dunDp1ipUrVxIVFUX//v1JSEggIiLC7BLFNaSDrgZLSkpizZo1LFiwgNDQULPLEaJc2rVrx9SpU1m/fj2NGjXi4YcfZvLkyXz99dfU1J4GbyTdPjXU7t27mTFjBu+99x7t2rUzuxwhKi03N5ePPvqIxMREGjRogMVioW/fvjI4XE2kz78WO3jwIBMnTuTNN9+kS5cuZpcjhEs4nU4+++wzbDYbV65cIT4+niFDhhAUFGR2aR5Fwr+WOnPmDGPHjmXatGmy6brwWAcOHMBms7F//36ioqKIiYkhLCzM7LI8gmzjWAslJyfzl7/8hfHjx0vwC4/WpUsX5syZw/Lly8nMzCQ6OpqZM2dy8uRJs0vzGtLyryEyMzN55JFHGDhwIKNGjTK7HCHcKi0tjXXr1vHBBx/QuXNnLBYL3bp1k4sZK0G6fWoRu93O+PHj6dixI5MmTZL/4YXXys/PJykpCZvNRlBQEBaLhX79+uHnJ7PSy0vCv5ZwOp1MmTIFf39/XnnlFZkBIQTG38XOnTux2WxcuHCBuLg4IiMjZae6cpDwrwW01syePZtz584xb948AgICzC5JiBrn0KFD2Gw2vvjiCyIjI4mNjaVp06Zml1VjyYBvLbBkyRIOHz7MG2+8IcEvxA386le/Yvbs2dhsNux2O7Gxsbz44oscO3bM7NJqNWn5m2T9+vVYrVaWL18ue+8KUQEZGRmsX7+eNWvW0KFDBywWCz179pSxsiLS7VODbdu2jTlz5rB06VLCw8PNLkeIWslut/PJJ59gtVrx9fXFYrHQv39//P39zS7NVBL+NdT+/fuZMmUKCxYskL13hXABrTWff/45NpuN06dPExsbS1RUFPXq1TO7NFPIqp410LFjx5gyZYpsui6ECyml6NOnD3369OHIkSPYbDaGDh3K4MGDGTlyJC1atCj7SbyQDPi6yYULF3jyySd55plnZNN1IapJx44dmTlzJitXrsTHx4f4+HimTp3K999/b3ZpNY50+7hBamoqo0ePJiYmhpiYGLPLEcJrZGVlsXHjRlatWkVERAQWi4XevXt79PU00udfQ+Tk5PDYY4/Rq1cvHn/8cbPLEcIrFRQU8Omnn2Kz2XA4HCQkJDBw4ECPnGIt4V8DOBwOJk6cSJMmTZg2bZpMRRPCZFpr9u7di9Vq5ejRo8TExBAdHe3yzZLsdvjySzh0yPg3NRV8faFVK+jeHW67DTp1guqIBAl/kzmdTmbMmEFWVpZsui5EDXTs2DESExPZsWMH9913H3FxcbRq1apKz3nlCqxYAe+/D7m5UFBghP7VP/+CAiPwlYKICHjsMRg2DFw5O1XC32Rvv/0233zzDQsXLqROnTpmlyOEuIHk5GTWrFnDxo0b6dGjBwkJCdx2220Veg6tISkJnnsOsrMhOBhK61HSGnJyjE8It9wCb79t/OsKEv4mstlsbN68maVLl8reu0LUEjk5OWzatImVK1fSrFkzLBYLv//978scHC4shBdegA8+gDp1oCIbk2kNmZnGJ4E334TBg6t4Ekj4myYpKYmFCxeybNkymjVrZnY5QogKKiwsZOvWrVitVrKzs0lISGDQoEEEBgZed6zWRmt/7VqoXx8qO4koP9/oJnrnHbjvvqrVL+Fvgqubri9atIj27dubXY4Qogq01nz11VdYrVYOHTpEdHQ0I0aMoGHDhj8f88EHRvhXJfivys83xgQ+/hjatav880j4u9mhQ4eYMGGCbLouhAc6deoUiYmJbN26lQEDBhAfH4+fXwT33GMM5pbwoaBS0tKMmUDr1/93kLiiZElnNzp79iyTJk1i2rRpEvxCeKB27drxwgsvsG7dOho0aMDDDz9MZOQ2MjLyCQx0XQO6fn04eBC2b3fZU96QtPyrKDk5mdGjRzNmzBiGDh1qdjlCCDf48cdcfvObArKzL+PvrwgLCyMkJAS4fuJ+YWEGFy++TFbWHvz8GtCkyXjq1x94w+fOyICuXY0upcqQhd3cICsri7/+9a8MHz5cgl8IL/L550EEBwfRsmUImZmZXLlyhR9//ImwsEbUr9/gFzOELl16FaX8ueWW/yMv7yg//PAkdercQmBgyeOCISGwfz/89BNU54Zl0u1TSXa7nUmTJtGtWzdGjRpldjlCCDfau9eY4gmKkJBQ2rZtR6tWLcnOzub48WMkJ/+Ew+HA6cwlM3MbTZo8ho9PXerW7UpIyN2kp2+54XMrBX5+xtXB1UnCvxKcTicvvPACYWFhTJ48WZZtEMLLfPmlMae/uKCguoSHt6Zt27YUFhZy4sQJzp/fi9OpCAiI+Pm4wMCbyc8/Werz5+dL+Nc4Wmtee+01srKyeOmllzx6dUAhRMlSUozWOYDWTgoLHRQU2MnPz6OwsJCQkBCaNWuG3Z5Ffr7i2LGjgDG+6uNTD6czu9Tn9/Exun2qk/T5V9DSpUs5ePAgixcv9sgVAYXwdAUFBeTm5pKdnU1OTs7P/xb/Kuu+o0dn4nD4AAVoDb6+Pijlg6+vDz4+//3y96+Hj4+d/Px8nE4nPj6+OJ3Z+PgEl1lndc/F8brw1xp++AG++w4OHzbewa+utverX0HnztCgQcmP3bBhA1u2bGH58uUEB5f9yxNCVJ3D4fg5dKsa2jk5ORQWFhIcHEzdunUJDg4mKCjo59tXf3b1+0aNGl13X1BQEJcuRfDjj34EB/sUdfuW3PWbnR3MlSsO2rULwMfHmLifn3/0hoO9Vzmd1TvYC14U/nl5sGULvPcenDplfKyy241/r77DBgQYgzh//COMHg09evx3ydXt27ezePFili5dSqNGjcw7ESFquMLCwl+Eb1VD2+FwXBfMxQO5+H0NGza8YaBf/VlAQECVx+l+9ztYs6b0JZnt9nzOn79Mgwb3kJm5gnr1ppGXd5TMzB20bfv3Up8/IMBojFYnl4S/Umog8DbgCyzVWr96zf2BwPvAHcAVIEZrfdoVr10e+/fDk0/CxYvG0qmhoTf+pTmdsHWr8dWvH8yaBWfO7GfWrFnMnz+f8PBwd5UthFsUFhZeF8JVCe3iYV1WaDdo0KDMVrgrwtrVunc31vO5EYejgLNnz9K0aVNCQqZz4cJLHD3aH1/f+jRv/lypLX+tjUZo587VUHgxVQ5/pZQv8C7QHzgH7FVKbdZaHy522GggVWvdQSkVC7wGVPt+hlrD//wPzJ1rdO3cqDunOB8f47irbwJ33plP/fpLeOedv3HrrbdWd8lClMnpdF4XxFUJbYfDUWpLuXhoN2jQoMxADwwMrHFh7Wr9+hlZ4XD8d+D3KqezkLNnz9KgQUMaFIVO69Zvlvu5MzPhN7+B5s1dWfH1XNHy7wkc11qfBFBKrQaGAcXDfxgwo+j7dcACpZTS1Xx58dtvw/z5xkUT1/6CyuLjA8HBdk6c+JHs7Nfx969XPUUKj+d0OksM6cqGdkFBAUFBQSX2UV8b2i1atCizFe4NYe1q9evD0KGwYQMUW+cNrZ388MMPBAcH07hxWIWfV2uj4fnIIy4s9gZcEf6tgB+K3T4H9LrRMVprh1IqHQgDLrvg9Uv06aeVD36AwkJH0ce2RgQG1uOhh4xPAmEV/32KWsbpdP4ihKsa2na7nTp16pRrkLFZs2ZlBnqdOnUkrGuAJ5+Ejz4y5uQbC7tpzp8/j5+fX9Fy7hX/HaWnG909/fq5utrruSL8SzrDa1v05TkGpdRYYCxARETEdQ8or5QUePpp4yKMygS/02m8e4eEhP48uJuWBlOnGt1I8ndXsxQPa1eE9tWwLqmlfG1oXw3r0lrhderUketBPFB4OEyfbmzk4u+v+fHHSzidTlq3bk1lgj8/3+ienjev8it6VoQrwv8c0LrY7XDgwg2OOaeU8gPqAynXPpHWejGwGIyF3Spb0IIFxuJIlZmUo7Xm/PlzBAYG0rRpk59/HhpqtPy//NIY7BGV53Q6ycvL+0XoViW08/PzfxHWpfVJN23atMxAl7AW5RUTYyz1YLVmUFiYR9u2EShV8f93rm7mMncuuGsrEFeE/17gZqVUO+A8EAvEXXPMZuBB4HMgGthWXf39OTmwerXR3VMap9POpUuvkpPzHwoLM/D3D6dp0yfIyGgLKFq0aEHxd28fH6Mvbvly7wv/q2Fd0mBhZUI7Ly+PwMDAUqfsXf23SZMmN7zvamhLWAuz+PjAb3+7gc2bFQ7HUOx23+uWfSjN1W0cAd54wxhHcJcqh39RH/544BOMqZ7LtdaHlFIvA/u01puBZYBVKXUco8UfW9XXvZFt24zdcOrWLevIQvz9mxMRsRh//+ZkZe3i9OmnqFt3Hu3a9aCkj22hocZYQkaG8X1NpbUmNze3UhfAlBToxcO6rEHGxo0blxnoEtbCU2zbto3lyxezfftSvvzSlxdegNTU8m3gnptrXGvUrp0xOaW6p3ZeyyXz/LXWSUDSNT+bXuz7PGCEK16rLF98cXW1vdL5+ATRpMnYn28XFHTG6QyjUaOMG35s8/U1vr77DnpdO6RdBVrrn1vWlb1qsXho5+XlERAQUGLL+trQbtSoEa1bty61FR4UFCRhLcQ19u/fz+zZs5k/fz6tW4fTujX06QP/+79gtRot+oICY9zxah9+QQFFy0FAixbw6KMQHV36G0V18bgrfPftu361vbKkp6dz+fJJ/P2vEBR0c6nHFhTAwYOaLl3yXHKp+bVhXdYgY/GwLq0VLmEtRPU5duwYU6ZM4W9/++X1P02bwjPPGDOBvvjCWJlz3z5jwsjVwO/Vy9iq8fbbzZ084nE7ed1xh3Hhhb9/+Y7PzMzkzJkT+PnNw9+/FSEhf8XpdOJ0OiksdP78/dWv/Py6NG68mTZtbGV2b5S2Zsi1tyWshagdLly4wJgxY5g4cSL9+/c3u5zreO1OXhV/L3NSULAAp7OQkJCx+Pr64u/vj4+P7y9W5/PxMVbsS0/35cEHH2XGjMeqo3whRA2WmprK+PHjefDBB2tk8FeEx4V/SAhcuVK+lr/WmszMeTRs6ENIyGukpGTjcEBYWCPq1avHjebqyoVeQnifnJwcnnzySe655x5iYqp9dZpq53F9DbffbqzgWR6XLs3Gbj9FRMQ8wsJa0qFDBxo2bEBycjInT54kLS0NrZ2/eExgoPtH5YUQ5nI4HEyZMoUOHTrw2GOe8anf41r+v/0tfPxx2ccVFFwkLW0DSgVw7Niffv558+bP067dQLKzc0hJuUJy8k80bNiIhg0b4OPjh8MBnTpV4wkIIWoUp9PJyy+/jJ+fH1OnTvWYpTU8Lvz/+Ed46SXjgqzSxlD9/VvQqdONB5SDg4MJDg4mPz+PlJQUTpw4QWBgY7p0qUvLlkHVULkQoiaaP38+586dY+HChfi6Y90FN/G4bp+WLeGuu4wLsVwhMLAOLVq0pH379oAvly/PYsqUKRw8eNA1LyCEqLGsViu7du1i3rx51KnoHPIazuNrSUjaAAAYGUlEQVTCH2DyZGP+rMPhuufMyfHnttsasGPHc3Tr1o3nn3+eMWPGsGPHDpxOZ9lPIISoVZKSklizZg3z588ntCZf0l9JHhn+nTvDuHHGFXauuIyhoMDoRnr7bWjQoC4xMTFs3LiR2NhYli1bRnR0NBs2bCA/P7/qLyaEMN3u3buZN28e77zzTtHyzJ7H4y7yuspuB4vFWHGvYcPKX0nncBhdSM8/D2PGXH+/1pqvv/4aq9XKwYMHiY6OZsSIETQsvsODEKLWOHjwIBMmTGDu3Ll06dLF7HIqrLwXeXlkyx+MtTKWLzc2YU9NrVwXUE4OZGXBU08ZG7qXRCnFb37zG+bOncvixYu5fPkyUVFRzJo1i7Nnz1btJIQQbnXmzBkmTZrE9OnTa2XwV4THtvyvstuN9f3/53+MLqDQ0NJnAV19THa2sVXbm29C374Ve82UlBTWrl3LunXr6NKlCxaLhV//+tceM0VMCE+UnJzM6NGjGTNmDEPdubayi5W35e/x4X/V4cPw1luwfbvxJqCUsQCcr69xu6DAuDjM39/41BAfD48/brwBVFZeXh4fffQRiYmJ1K9fH4vFQt++fWUdHyFqmMzMTB555BH+9Kc/8dBDD5ldTpVI+N/ApUvGmv9798LXXxuDwr6+xmp8PXoYX337Vnxl0NI4nU527NiB1WrlypUrxMfHM2TIEIKC5HoBIcxmt9sZP348t9xyC5MnT671n9Al/GuoAwcOYLPZ2L9/P1FRUcTExBAmiwUJYQqn08mUKVPw9/fnlVde8YhP5V4/4FtTdenShTlz5vD3v/+dzMxMoqOjmTlzJidPnjS7NCG8itaaV199lezsbGbMmOERwV8R3nW2NUjr1q2ZMmUKGzdupEWLFowbN44JEybw5ZdfUlM/jQnhSZYsWcKhQ4d4/fXXCTBjKy2TSbdPDWG320lKSsJmsxEUFITFYqFfv34etZaIEDXF+vXrsVqtLF++nEaNGpldjktJn38t5XQ62bVrF1arlYsXLzJy5EgiIyOpW/aO9EKIcti2bRtz5sxh6dKlhIeHm12Oy0n4e4DDhw9js9n44osvGDZsGLGxsTRt2tTssoSotfbv38+UKVOYP3/+L/be9SQy4OsBOnfuzKxZs7BarRQUFBAbG8uLL77IsWPHzC5NiFrnRpuueytp+dciGRkZbNiwgdWrV9OhQwcsFgs9e/as9fOShahuVzddnzBhAgMGDDC7nGol3T4ezG6388knn2C1WvH19cVisdC/f3/8y7NxsRBeJjU1ldGjRxMTE+MRe++WRcLfC2it+fzzz7HZbJw+fZrY2FiioqKKNp8XQuTk5PDYY4/Rq1cvHn/8cbPLcYvyhr/HbePoTZRS9OnThz59+nDkyBFsNhtDhw5lyJAhjBw5kubNm5tdohCmubrp+k033eQxm667kgz4eoiOHTsyc+ZMVq1ahVKKuLg4XnjhBb7//nuzSxPC7Tx103VXkm4fD5WVlcU//vEPVq5cSZs2bbBYLPTu3Vv+CIRXePvtt/nmm29YuHChx+29Wxbp8xeA8dH3008/xWq14nA4SEhIYODAgV55ObvwDjabjc2bN7N06VKP3Hu3LBL+4he01uzduxebzcbRo0eJiYnh/vvv98o/DuG5kpKSWLhwIcuWLfPYvXfLIgO+4heUUvTs2ZOePXty/PhxEhMTiYyM5L777iMuLo6WLVuaXaIQVXJ10/VFixZ5bfBXhAz4eqEOHTrw4osvsmbNGurUqYPFYuHZZ5/l0KFDZpcmRKUcOnSI6dOn88Ybb9C+fXuzy6kVpNtHkJOTw6ZNm1i5ciXNmzfHYrFw5513et365qJ2OnPmDGPHjmXq1KncddddZpdjOunzFxVWWFjI1q1bsVqtZGdnk5CQwKBBgwgMDDS7NCFK5CmbrruShL+oNK01X331FVarlUOHDjFixAhGjBhBgwYNzC5NiJ9lZmYyduxYBgwYUOs3XXclGfAVlaaUolu3bnTr1o1Tp06RmJhIVFQUAwYMIC4ujoiICLNLFF7ObrczefJkunXrxqhRo8wup1aSlr8ol5SUFD744APWr19P165dsVgsdOnSxeyyhBdyOp08++yz+Pr68re//U3Gpq4h3T6iWuTm5vLRRx+RmJhIw4YNsVgs/OEPf5A/QOEWWmtmz57NuXPnmDdvnlysWAK3hL9SqhGwBmgLnAYe0FqnlnBcIfBt0c2zWusyR2Yk/Gs2p9PJZ599htVqJTU1lbi4OIYMGUJQUJDZpQkPtnjxYnbs2MHixYsJDg42u5wayV3hPwdI0Vq/qpR6FmiotZ5SwnFZWusKrTMs4V97HDhwAKvVytdff01UVBQxMTEetym2MN+GDRt4//33PXLTdVdy1zaOw4AVRd+vACKr+HyiFurSpQuvv/46y5YtIz09nfvvv59XXnmFU6dOmV2a8BDbtm1j8eLFLFiwQILfRaoa/s201hcBiv690e7idZRS+5RSe5RS8gbhoSIiInj22WfZsGEDzZo149FHH2XixIns37+fmjq2JGq+/fv3M3v2bObNm0d4eLjZ5XiMMrt9lFL/AkraFWQqsEJr3aDYsala64YlPEdLrfUFpVR7YBvQT2t9ooTjxgJjASIiIu44c+ZMhU5G1Cz5+fls2bIFm81GvXr1SEhIoF+/fvj6+ppdmqgljh07xhNPPMErr7xCz549zS6nVnBXn/8R4A9a64tKqRbAZ1rrjmU85n+Bj7TW60o7Tvr8PYfT6WTnzp1YrVYuXbpEXFwcw4YNo27dumaXJmowb9p03ZXc1ee/GXiw6PsHgU0lFNJQKRVY9H1j4HfA4Sq+rqhFfHx8uOuuu1iyZAmzZ8/mm2++YciQISxYsIDk5GSzyxM1UFpaGuPHj+fBBx+U4K8mVW35hwEfABHAWWCE1jpFKdUdGKe1HqOU6gO8Bzgx3mzmaa2XlfXc0vL3bOfPn2flypV8/PHH3H333SQkJHDTTTeZXZaoAbxx03VXkou8RK2QkZHBunXrWLNmDR07diQhIYEePXrIdpNeyuFwMHHiRJo0acK0adPk/4NKkPAXtYrdbuef//wnNpsNPz8/EhISGDBgAH5+svyUt3A6ncyYMYPMzEzeeOMNmRhQSRL+olZyOp3s2bMHq9XKmTNnGDlyJMOHD6devQpdIyhqIW/edN2VZFVPUSv5+PjQp08f+vTpw/fff4/NZmPo0KEMHTqUkSNHyvZ8Hspms7Fz506WLVsmwe8mshqXqLFuvfVWXnnlFVauXInWmpEjRzJt2jSOHDlidmnChZKSkli9ejULFiwgNDTU7HK8hnT7iFojMzOTjRs3snr1atq2bUtCQgK9e/eWQcFabPfu3cyYMYNFixbJ3rsuIn3+wmMVFBTw6aefYrVacTqdJCQk8Kc//UmW961lDh06xIQJE3jzzTdlbwgXkvAXHk9rzX/+8x+sVisnTpwgJiaGqKgo6TqoBWTT9eojA77C4yml6NWrF7169eLYsWPYbDYiIyMZNGgQI0eOpGXLlmaXKEqQnJzMX/7yF5544gkJfhPJgK/wCDfffDMvvfQSq1evxt/fn4SEBJ5//nkOH5aVRGqSzMxM/vrXvzJ8+HCGDi1zTydRjaTbR3ik7OxsNm3axMqVK2nZsiUWi4Xf/e53st2kiex2O+PHj+fmm2/mqaeekoH6aiJ9/kJgLBewdetWrFYreXl5xMfHM2jQIBkcdjPZdN19JPyFKEZrzf79+7FarRw+fJgHHniA6OhoGjRoUPaDRZXIpuvuJQO+QhSjlOKOO+7gjjvu4OTJkyQmJjJ8+HAGDhxIXFwcrVu3NrtEj7VkyRIOHTrE4sWLJfhrEPnsJbxO+/btmTZtGuvWrSMkJISHHnqIZ555hgMHDphdmsfZsGEDSUlJzJ8/n+DgYLPLEcVIt4/werm5uXz44YfYbDYaN26MxWLh7rvvln7pKtq+fTuvvfYaS5culb133Uj6/IWoIKfTyfbt23n//ffJyMggPj6ewYMHy0JjlbB//36mTJnC/PnzufXWW80ux6tI+AtRSVprvvnmG6xWKwcOHCA6OpoRI0bQqFEjs0urFWTTdXPJgK8QlaSUomvXrnTt2pUzZ86QmJjI/fffT//+/YmPj6dNmzZml1hjXbhwgSeffJKnnnpKgr+Gk5a/EOWQkpLCunXrWLt2LbfffjsWi4WuXbvKhUrFpKWl8fDDDxMTE0NMTIzZ5Xgt6fYRohrk5eWxZcsWEhMTCQkJwWKx0LdvX6/fcjA3N5dx48bJpus1gIS/ENXI6XTy73//G6vVSnJyMnFxcQwdOpS6deuaXZrbORwOJk2aROPGjWXT9RpAwl8IN/n222+x2Wzs27ePqKgoYmJiaNy4sdlluYVsul7zlDf8ZSKzEFV0++2389prr7FixQqys7N54IEHePnllzl58qTZpVW7+fPnc+7cOWbPni3BX8tIy18IF0tPT2f9+vWsWbOGjh07YrFY6N69u8d1h9hsNjZt2sSyZctkA50aRLp9hDCZ3W7n448/xmq1EhgYiMVi4Z577sHPr/bPsE5KSmLhwoUsW7aMZs2amV2OKEbCX4gawul0snv3bqxWK+fOnSMuLo7IyMhau9bN559/zosvviibrtdQEv5C1ECHDx/GZrOxZ88eIiMjiY2NpWnTpmaXVW6y6XrNJwO+QtRAnTt3ZtasWdhsNhwOB7GxsUyfPp2jR4+aXVqZzp49y6RJk5g2bZoEvweQlr8QJsrIyGDjxo2sXr2a9u3bY7FY6NWrV/UPDufmQk4O+PhAaCiUMVMnOTmZ0aNHM2bMGNl7t4aTbh8hapGCggI++eQTrFYrSiksFgsDBgzA39/fNS/gcMC//w0bN8L+/XDxohH4WhtvADffDHfeCQ88ADfd9IuHZmVl8cgjjzBgwAAeeugh19Qjqo2EvxC1kNaaPXv2YLVaOX36NLGxsQwfPpyQkJDKPaHTCWvXwuuvQ3q6EfZBQRAQAFc/XTidkJdnfPn4QLduMHMmdOwom67XQhL+QtRyR48exWazsXPnTgYPHszIkSNp0aJF+Z/g4kWYOBH27jUCvzz7EmgNGRmgFM6//IXnzp7Fx89PNl2vRST8hfAQP/74I6tXr2bTpk389re/xWKx0KlTp9IfdOoUxMTAlSvQoMF/W/nlpAsKSPvhB75u1Yrf/ec/BAQFVeEMhDvJbB8hPESzZs148skn+fDDD/nVr37FU089xaOPPsrOnTtxOp3XPyA52Qj+tDRo2LDCwQ9wOT2dVODurCwCXnqp6ichahxp+QtRyzgcDv71r3/x/vvvU1BQQEJCAvfeey8BAQFGt80jj8D27UbwV0JqWhpXLl+mbdu2+Pn4GGMFS5bAH//o4jMR1UG6fYTwcFpr9u3bh9Vq5ciRI8YmKvXrEzxlCtSvX6kWf0ZmJpcuXaJtmzbGmwkYU0IDA43ZQpUdeBZuI9s4CuHhlFL06NGDHj16cOLECRJtNg4/9RTt/fwIqVv3v+Fdgmnnz/OfnBxynU4a+/nx57Aw+gcEcOniRVpHRPzysXXrGl1ImzdDfLwbzky4g7T8hfAUBw7giIwkpaCA1PR0guvWJSwsjKASBmtP5ucT7u9PgI8Pp/PzGXPqFJO15q6IiJLXHMrJgcaNYceOSn2iEO7jlgFfpdQIpdQhpZRTKXXDF1NKDVRKHVFKHVdKPVuV1xRC3MBnn+GnNU2bNaNDhw7UrVuXc+fPc/rMGTIzMynezGsfGEhA0dTNAoeD/Lw88hs0uPFic0FBxtTRH36o/vMQblHVbp+DQBTw3o0OUEr5Au8C/YFzwF6l1Gat9eEqvrYQorgvvjAu3gJ8fXxo1KgRDRs1IjMjg8uXL/PjTz8RFhZG/fr18VGKVy9dYnNaGpl5edwaFMSA0pZmVsq4Ivj77yEiwk0nJKpTlcJfa/0dUNZVfz2B41rrk0XHrgaGARL+QrjSkSPGwGwxCggNDSUkNJScnBxSrlwh+aefaNiwIZPCwhiRm8uZevU4VacOAWV15+TlwbFjMGBA9Z2DcBt3zPNvBRT/rHiu6GdCCFe6ujxDCRQQXLcurVu3pk3btjgcDk6fPk3dOnXoGx7OjwUFrEtNLf35lYLMTNfXLUxRZstfKfUvoHkJd03VWm8qx2uU1JwocZRZKTUWGAsQIR8thagYPz9jnn8ZAgMCaNGiBc357x9nIXDObi/9gVpf98lC1F5lhr/W+p4qvsY5oHWx2+HAhRu81mJgMRizfar4ukJ4l/BwOHkSylgJNMXhYF9ODnfWq0cdpfgiO5tP0tP5W6syPpD7+0ObNi4sWJjJHfP89wI3K6XaAeeBWCDODa8rhHfp2RMOHTLm5ZdCAetSU5l18SJOoIW/P5ObNePusi7g8vWFW291WbnCXFUKf6XUcGA+0ATYopT6Wmv9J6VUS2Cp1vo+rbVDKTUe+ATwBZZrrQ9VuXIhxC/17g02W5mHNfTzY3FFW/B2u9Gt1KFDJYsTNU1VZ/tsBDaW8PMLwH3FbicBSVV5LSFEGe6+22j15+e7vm8+OxvGjPl5Kqmo/WRVTyE8RUAAjB5tbNHoSg6H0eUjSzt4FAl/ITzJI49Ay5aum5KptfFcjz8uF3d5GAl/ITxJnTrwzjtGaOfnV/35MjKM/X0ff7zqzyVqFAl/ITxN164wd67R/VPZLiCtjZU8mzeH99+Xvn4PJOEvhCcaPBjee8+44jc1tVwXf/3MbjeC/7bbYMMGaNq0+uoUppHwF8JT9esHW7cas4DS0403AYej5GO1Nj4lpKUZ4T91qhH8TZq4t2bhNrKZixCerGlTWL4cDh82um82bzbW5vfxgav7//r6GoHfqhU8/DBERhqbvguPJpu5COFNnE44fx6OHjXm7vv4GK37Tp0gNNTs6oQLyDaOQojr+fhA69bGl/Bq0ucvhBBeqMZ2+yilkoEzZtdRCY2By2YX4WZyzt5Bzrl2aKO1LnOkvsaGf22llNpXnv42TyLn7B3knD2LdPsIIYQXkvAXQggvJOHveovNLsAEcs7eQc7Zg0ifvxBCeCFp+QshhBeS8K8ipVQjpdSnSqljRf82LOXYUKXUeaXUAnfW6GrlOWelVFel1OdKqUNKqQNKqRgzaq0qpdRApdQRpdRxpdSzJdwfqJRaU3T/F0qptu6v0rXKcc6TlFKHi36vW5VStX5X97LOudhx0UoprZSq9TOAJPyr7llgq9b6ZmBr0e0bmQnscEtV1as855wD/Flr/StgIDBPKVWrFoxRSvkC7wL3Ap2BkUqpztccNhpI1Vp3AN4CXnNvla5VznP+Cuiute4CrAPmuLdK1yrnOaOUCgH+Cnzh3gqrh4R/1Q0DVhR9vwKILOkgpdQdQDPg/9xUV3Uq85y11ke11seKvr8A/ATUtiUiewLHtdYntdZ2YDXGuRdX/L/FOqCfUkq5sUZXK/OctdbbtdY5RTf3AOFurtHVyvN7BqPxNgfIc2dx1UXCv+qaaa0vAhT9e93i50opH+BN4Gk311Zdyjzn4pRSPYEA4IQbanOlVsAPxW6fK/pZicdorR1AOhDmluqqR3nOubjRwMfVWlH1K/OclVK/AVprrT9yZ2HVSRZ2Kwel1L+A5iXcNbWcT/E4kKS1/qG2NApdcM5Xn6cFYAUe1Fo7XVGbG5X0y7p2elx5jqlNyn0+SqkEoDtwd7VWVP1KPeeixttbwCh3FeQOEv7loLW+50b3KaV+VEq10FpfLAq6n0o4rDfwe6XU40A9IEAplaW1Lm18wFQuOGeUUqHAFuAFrfWeaiq1Op0Dii9/GQ5cuMEx55RSfkB9IMU95VWL8pwzSql7MBoCd2utXbBZsKnKOucQ4Dbgs6LGW3Ngs1JqqNa61q47L90+VbcZeLDo+weBTdceoLWO11pHaK3bAk8B79fk4C+HMs9ZKRUAbMQ417VurM2V9gI3K6XaFZ1PLMa5F1f8v0U0sE3X7otnyjznoi6Q94ChWusS3/hrmVLPWWudrrVurLVuW/Q3vAfj3Gtt8IOEvyu8CvRXSh0D+hfdRinVXSm11NTKqk95zvkB4C5glFLq66KvruaUWzlFffjjgU+A74APtNaHlFIvK6WGFh22DAhTSh0HJlH6bK8ar5zn/DrGJ9i1Rb/Xa98Qa5VynrPHkSt8hRDCC0nLXwghvJCEvxBCeCEJfyGE8EIS/kII4YUk/IUQwgtJ+AshhBeS8BdCCC8k4S+EEF7o/wNvZ1OwAvKlGAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] + "metadata": { + "needs_background": "light" }, - "metadata": {}, "output_type": "display_data" } ], @@ -467,15 +466,15 @@ "params['backend']['shots'] = 1024\n", "\n", "result = run_algorithm(params, algo_input)\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", "print('energy:', result['energy'])\n", "print('time:', result['eval_time'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", "plot_histogram(result['eigvecs'][0])\n", "\n", - "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" ] } @@ -497,7 +496,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb index f687a4973..dc0b353e9 100644 --- a/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb +++ b/community/awards/teach_me_quantum_2018/TeachMeQ/Week_8-High_Level_Quantum_Programming/exercises/w8_04.ipynb @@ -36,12 +36,12 @@ "\n", "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", "\n", - "We consider here maxcut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", + "We consider here max-cut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", "\n", "\n", - "### Weighted MaxCut\n", + "### Weighted Max-Cut\n", "\n", - "MaxCut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given MaxCut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", + "Max-Cut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given Max-Cut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", "\n", "The formal definition of this problem is the following:\n", "\n", @@ -57,7 +57,7 @@ "\n", "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i" ] @@ -191,7 +191,7 @@ "from qiskit.aqua.operator import Operator\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "from qiskit.aqua.algorithms import VQE\n", - "from qiskit.aqua.algorithms.adaptive.qaoa.varform import QAOAVarForm" + "from qiskit.aqua.algorithms.adaptive.qaoa.var_form import QAOAVarForm" ] }, { @@ -463,17 +463,16 @@ "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_thermal_state\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m\u001b[0m in \u001b[0;36mget_thermal_state\u001b[0;34m(weights, p)\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mbackend\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mAer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_backend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'statevector_simulator'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mquantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumInstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshots\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 9\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mqaoa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mquantum_instance\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 10\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Results of QAOA\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/quantum_algorithm.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, quantum_instance, **kwargs)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 304\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcircuit_summary\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 305\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 306\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_solve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 307\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_ground_state_energy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 308\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_aux_ops\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_solve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 221\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_solve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 223\u001b[0;31m \u001b[0mopt_params\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mopt_val\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind_minimum_eigenvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 224\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'eigvals'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mopt_val\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'opt_params'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopt_params\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36mfind_minimum_eigenvalue\u001b[0;34m(self, initial_point)\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Starting optimizer bounds={}\\ninitial point={}'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbounds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 400\u001b[0m sol, opt, nfev = self._optimizer.optimize(self._var_form.num_parameters, self._energy_evaluation,\n\u001b[0;32m--> 401\u001b[0;31m variable_bounds=bounds, initial_point=initial_point)\n\u001b[0m\u001b[1;32m 402\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnfev\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 403\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mnfev\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mnfev\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/components/optimizers/cobyla.py\u001b[0m in \u001b[0;36moptimize\u001b[0;34m(self, num_vars, objective_function, gradient_function, variable_bounds, initial_point)\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnum_vars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobjective_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariable_bounds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 94\u001b[0;31m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mminimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobjective_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtol\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"COBYLA\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_options\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 95\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnfev\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/scipy/optimize/_minimize.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)\u001b[0m\n\u001b[1;32m 606\u001b[0m **options)\n\u001b[1;32m 607\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'cobyla'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 608\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_minimize_cobyla\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 609\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'slsqp'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 610\u001b[0m return _minimize_slsqp(fun, x0, args, jac, bounds,\n", - "\u001b[0;32m~/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/scipy/optimize/cobyla.py\u001b[0m in \u001b[0;36m_minimize_cobyla\u001b[0;34m(fun, x0, args, constraints, rhobeg, tol, maxiter, disp, catol, **unknown_options)\u001b[0m\n\u001b[1;32m 250\u001b[0m xopt, info = _cobyla.minimize(calcfc, m=m, x=np.copy(x0), rhobeg=rhobeg,\n\u001b[1;32m 251\u001b[0m \u001b[0mrhoend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrhoend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0miprint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0miprint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmaxfun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmaxfun\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 252\u001b[0;31m dinfo=info)\n\u001b[0m\u001b[1;32m 253\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mcatol\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/envs/QISKitenv/lib/python3.6/site-packages/scipy/optimize/cobyla.py\u001b[0m in \u001b[0;36mcalcfc\u001b[0;34m(x, con)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 241\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcalcfc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcon\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 242\u001b[0;31m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 243\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mizip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcons_lengths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_energy_evaluation\u001b[0;34m(self, parameters)\u001b[0m\n\u001b[1;32m 330\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter_sets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 331\u001b[0m \u001b[0mparameter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparameter_sets\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 332\u001b[0;31m \u001b[0mcircuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_use_simulator_operator_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 333\u001b[0m \u001b[0mcircuits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcircuit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 334\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36mconstruct_circuit\u001b[0;34m(self, parameter, backend, use_simulator_operator_mode)\u001b[0m\n\u001b[1;32m 204\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mgenerated\u001b[0m \u001b[0mcircuits\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mHamiltonian\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 205\u001b[0m \"\"\"\n\u001b[0;32m--> 206\u001b[0;31m \u001b[0minput_circuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_var_form\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 207\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbackend\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 208\u001b[0m \u001b[0mwarning_msg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Circuits used in VQE depends on the backend type, \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/Documents/Quantum/qiskit-aqua/qiskit/aqua/algorithms/adaptive/qaoa/varform.py\u001b[0m in \u001b[0;36mconstruct_circuit\u001b[0;34m(self, angles)\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0mcircuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_state\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 54\u001b[0;31m \u001b[0mcircuit\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_state\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'circuit'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 55\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcircuit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mqregs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0mq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumRegister\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cost_operator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_qubits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'q'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/qiskit/aqua/qiskit/aqua/algorithms/quantum_algorithm.py\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, quantum_instance, **kwargs)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_config\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mquantum_instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 67\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_run\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/qiskit/aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 283\u001b[0m \u001b[0mvar_form\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvar_form\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 284\u001b[0m \u001b[0mcost_fn\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_energy_evaluation\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 285\u001b[0;31m optimizer=self.optimizer)\n\u001b[0m\u001b[1;32m 286\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'num_optimizer_evals'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_eval_count\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_ret\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'num_optimizer_evals'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/qiskit/aqua/qiskit/aqua/algorithms/adaptive/vq_algorithm.py\u001b[0m in \u001b[0;36mfind_minimum\u001b[0;34m(self, initial_point, var_form, cost_fn, optimizer, gradient_fn)\u001b[0m\n\u001b[1;32m 119\u001b[0m \u001b[0mvariable_bounds\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mbounds\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitial_point\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 121\u001b[0;31m gradient_function=gradient_fn)\n\u001b[0m\u001b[1;32m 122\u001b[0m \u001b[0meval_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[0mret\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/qiskit/aqua/qiskit/aqua/components/optimizers/cobyla.py\u001b[0m in \u001b[0;36moptimize\u001b[0;34m(self, num_vars, objective_function, gradient_function, variable_bounds, initial_point)\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnum_vars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobjective_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgradient_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariable_bounds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 94\u001b[0;31m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mminimize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobjective_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minitial_point\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtol\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_tol\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"COBYLA\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moptions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_options\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 95\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnfev\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/aqua/lib/python3.7/site-packages/scipy/optimize/_minimize.py\u001b[0m in \u001b[0;36mminimize\u001b[0;34m(fun, x0, args, method, jac, hess, hessp, bounds, constraints, tol, callback, options)\u001b[0m\n\u001b[1;32m 604\u001b[0m **options)\n\u001b[1;32m 605\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'cobyla'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 606\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_minimize_cobyla\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 607\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmeth\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'slsqp'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 608\u001b[0m return _minimize_slsqp(fun, x0, args, jac, bounds,\n", + "\u001b[0;32m~/.virtualenvs/aqua/lib/python3.7/site-packages/scipy/optimize/cobyla.py\u001b[0m in \u001b[0;36m_minimize_cobyla\u001b[0;34m(fun, x0, args, constraints, rhobeg, tol, maxiter, disp, catol, **unknown_options)\u001b[0m\n\u001b[1;32m 250\u001b[0m xopt, info = _cobyla.minimize(calcfc, m=m, x=np.copy(x0), rhobeg=rhobeg,\n\u001b[1;32m 251\u001b[0m \u001b[0mrhoend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrhoend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0miprint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0miprint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmaxfun\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmaxfun\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 252\u001b[0;31m dinfo=info)\n\u001b[0m\u001b[1;32m 253\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0mcatol\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.virtualenvs/aqua/lib/python3.7/site-packages/scipy/optimize/cobyla.py\u001b[0m in \u001b[0;36mcalcfc\u001b[0;34m(x, con)\u001b[0m\n\u001b[1;32m 240\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 241\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcalcfc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcon\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 242\u001b[0;31m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 243\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 244\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mc\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mizip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcons_lengths\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconstraints\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/qiskit/aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36m_energy_evaluation\u001b[0;34m(self, parameters)\u001b[0m\n\u001b[1;32m 317\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter_sets\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 318\u001b[0m \u001b[0mparameter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparameter_sets\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 319\u001b[0;31m \u001b[0mcircuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_quantum_instance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_use_simulator_operator_mode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 320\u001b[0m \u001b[0mcircuits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcircuit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/qiskit/aqua/qiskit/aqua/algorithms/adaptive/vqe/vqe.py\u001b[0m in \u001b[0;36mconstruct_circuit\u001b[0;34m(self, parameter, backend, use_simulator_operator_mode)\u001b[0m\n\u001b[1;32m 201\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mgenerated\u001b[0m \u001b[0mcircuits\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mHamiltonian\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 202\u001b[0m \"\"\"\n\u001b[0;32m--> 203\u001b[0;31m \u001b[0minput_circuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_var_form\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparameter\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 204\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mbackend\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 205\u001b[0m \u001b[0mwarning_msg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"Circuits used in VQE depends on the backend type, \"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/qiskit/aqua/qiskit/aqua/algorithms/adaptive/qaoa/var_form.py\u001b[0m in \u001b[0;36mconstruct_circuit\u001b[0;34m(self, angles)\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0mcircuit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumCircuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_state\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 60\u001b[0;31m \u001b[0mcircuit\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initial_state\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstruct_circuit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'circuit'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 61\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcircuit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mqregs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0mq\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mQuantumRegister\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cost_operator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_qubits\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'q'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mTypeError\u001b[0m: construct_circuit() missing 1 required positional argument: 'qr'" ] } @@ -610,7 +609,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb index f19f08a76..e30ad729f 100644 --- a/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb +++ b/community/awards/teach_me_quantum_2018/qml_mooc/10_Discrete Optimization and Unsupervised Learning.ipynb @@ -23,7 +23,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGvhJREFUeJzt3XtsVvX9B/D3eS692T5taUuFQpGucr/YGxm/Zb8latnUbBKzBXWLicZ/yLg42IKiU1ADjIGC0+BlzAaNMheMPw0RY2DMuElbbikToUFAKlAKhfZpaZ/bOd/fH/U5Pi29PE/79JzzPef9SoxCaf0Afd799Pv9fr5HEUKAiIiM4TK7ACIiJ2HoEhEZiKFLRGQghi4RkYEYukREBvIM8XYebSAiSpwy0BvY6RIRGYihS0RkIIYuEZGBGLpERAZi6BIRGYihS0RkIIYuEZGBGLpERAZi6BIRGYihS0RkIIYuEZGBGLpERAZi6BIRGWioW8aIBiSEgKZpCAaDiEQi8Hg8cLlccLvdcLlccLlcUJQBL1siciRliAdT8mpHuoEQAqqqIhKJ9Prv6NtigzYawtF/GMbkEAN+gjN0KW59w1ZRFCiKgkgkgkgkApfLdcOvj/2HYUwOMuAnMpcXaEhCCEQiEaiqqodn34DtTzSU+/t4ABCJRBAOh3u9jWFMdsfQpQFFwza6dBBv2A4lGqB9g7RvGMd2x4qiwO126+vG0XBmGJNsGLp0A03Teq3TDtSxRiUr+IYK475LG0KIQTtjBjJZEUOXdJqm6csIwNBha5R4w7jv+7hcLng8HoYxWQpD1+Gim1zhcBiapgGwTtgOZagwjh5n6/s+0e44dqlClt8zyY+h61DRM7aRSES6sB3KQGEMfP/7VlUVoVCo19tilymi3bFd/kzIOhi6DtM3bKOh4pRgGexERTSM+x5v62/NmCcqaLgYug4x0BlbBkeP4YQxj7fRcHA4wuYGCttkUlUV4XA4KcfJZMHBDxoChyOcZrgDDRQfDn7QcDF0bWa0BhoGw9D4XryDH7Gi4cvBD2dg6NpEogMNZCwOflAUQ1dyVh1ooPhw8MN5GLoSknmggeLDwQ/7YuhKxM4DDRQfDn7Ij6ErAacPNFB8EjlrHP03Bz+Mx9C1MA40UDJw8MNaOBxhQUYMNCSTpmkIh8OWrpHix8GPpODjemTQ30CDDJ/MDF1niGZFNIxjMYxvwNC1sv4GGmT6ZNU0DaFQiBNvDjVUGA90vM3mOAZsRXYaaJC1bhq5kQx+xB5tc8qJCoauCew20CBz7TR6OPjRP4auQTjQQNTD6YMfXNMdZU4YaBBCIBQK2er3RNYSe5qir9gNvGhT4/P5TKiylwFfDNz5GCXRY1+hUAihUKjX9YoMJ6LExHa6fU9JRDdyu7u7sXv3bmzYsMHscgfF5YUkk2qgIRAALl8GfD4gO9vsaogS1ve11d7ejmyLfy4zdJOkv7C19BGqM2fgWb8e6OgAFAXqww9DVFebXRXRiLS3tyMnJ8fsMgZl4VSQQ3RzLBgM6pdTW34JQQh4Nm+GUFWICRMg8vPh3r4daGoyuzKiEWlvb0dubq7ZZQyKoTtM0bANBAL6sRfLh21UMAi0tABjxvT8ODUVUBQoly+bWxfRCLHTtaHoyGs0bKXcHEtNBQoKgKtXe34cCgFCQBQUmFsXOZqqqfAH/f2eUIiX3+9n6NpFdIc0GAzKG7ZRioLIypVQXC4o334LpaUF6iOPABMnml0ZOdTh5sNYuGshFu5aiEUfLMKpa6eG9XH8fr/lN9J4TncQth9oCAR6lhl8PmAE3QHP6dJIXAtcw4P/9yA8Lg8yUzJxLXANmd5MvHvvu/C6vQl9rHvvvRc7d+7E2LFjR6nauPGcbiJiz9gGg0H94nBpO9uBpKUBxcUjClyikWryNyGiRZCZkgkAyE3LxbXgNbR2tyb8sWRY0+WRsRjRsFVVlU9oIDJIXnoeNKEhrIXhdXkRiATgVtzwpSY+VaaqKrzexLpjo7HTxfdXK0aPfVl+qIHIRoqyivDI3EfQ2t2Ky12X0RHqwKofrkKGNyOhjzOSDTgjObrTlW6ggcimfj3z15hfNB8t11sw0TcRRVlFCX+MaOhavVFyZOj2d2k4w3ZkrP6JTtZXklOCkpySYb9/IBBARkZi3bEZHBW6sj+hgYgG1tbWZoXbxYbkiNC10xMaiKh/MpxcAGweunZ7QoOV9X1qLJHRZLhhDLBh6Np+oIGI+tXW1sZO10hOeEKD1bHbJTNxecEgHGgwX/TPW5ZzkmRPMlx2A0g8HMGBBiKKxU53lHCggYj6I0voSpdWqqrK84QGIjKMLKErXacbfd49EVEshi4RGa7uQh1eOvgSOsOd+Nnkn+HR2x6Fx+WMl7nf77f889EAhi6RbZxsPYnf7f0dvC4vvG4v/nbsb1Ch4rflvzW7NEPI0ulK930613CJ+nfgwgGE1TB8qT6ke9KRk5qDPV/vMbssw4TDYaSmpppdxpCkC12yJn4xNF+GJ6PXQ2LCWjjhO2llJdMZcelCly9uov5VT67G+MzxaO5sxqXrlxBUg1hasdTssgwlQz5IuabL6SeiG+Wk5aDmnhrsOb0HneFOzB8/HzMLZppdliECgYAUSwuApKFLRP3LScvB/TPuN7sMw8lywxjA0CWyveNXjqPJ34S89DxU3FwhxbfgiZLl5AIgaehyeYEoPh82fog3j72p/7h6cjUWly22XfD6/X5pOl3pNtKIKD5d4S689eVbGHfTOBT7ijEhawL2nt2Lb/zfmF1a0rW1tTF0R5PdvkoTjYbuSDc0aPpEmktxwe1yozvcbXJlySfT8oKUoUvWwy+E1pOblouS7BJcvH4RYTWMy12XkenNxETfRLNLSzpZnhoBSBq6fIGTnQkh8NqR13D7O7dj4a6FONx8eFgfx6W48MT8J3Bb4W3oCHWgOLsYa368BpkpmUmu2Hyy3LsASLqRRmRnm+s2Y1PtJnRFugD0jPfuf3A/puVNS/hjjUkfgyf/58lkl2g5XF4gR+KJkuR4/ejreuACQHe4G++deM/EiqxPlkf1AJKGrq2XF4QAurp6/k2O1PfzW1EUuOE2qRo5yDQcIWXo2pVy4gQ8Dz8MzwMPwLN4MfCN/Y720NAeq3ys5/IaAAoUZHgy8MDMB0yuytra29u5pjuabNnpdnTAvXYt4PEAEycCV67A89xziGzbBni9ZldHBlpcvhhj0sfg71/9Hb4UHx6f/zhKckrMLsvSGLqUMOXiRSAUAvLyen4iPx+4cAG4ehUoLDS3ODLcoumLsGj6IrPLkEYwGER6errZZcSFywsWIbKzAVUFvnvoJgIBQFGArCxzC4uTLb/7ICnItoErZeja8gVeWAjtoYeA5mbg/HmgtRXqkiVAhjMuoSYaKVlyQdrlBTteeqPddx+0sjIoV65AjB8PFBWZXRI5lCY01DTU4KNTHyHDm4Hllcsxb/w8s8vqVzgchleifQ8pO11bmzwZoqqKgUum+uvRv2LLwS240HkBJ1pPYPEni/HVla/MLqtf7e3t8Pl8ZpcRN2lDV5ZvJYhk9H7j+8jwZCDdk46slCyE1BD2fbPP7LL6JdM0GiBx6BLR6El1p0IVqv5jAYE0T5qJFQ1MpsEIQOLQZadLNHqWVS5DRIvgavdVtHa3Ij89Hz8v/bnZZfVLphvGAIk30oho9Nxxyx144643sPfsXtyUchN+OfWXGHvTWLPL6pdMgxEAQ5eShN952E/luEpUjqs0u4wh+f1+bqQZgS9yIgLk63SlDV0iIkC+NV1pQ5edLhEBct2lC0gcukREAM/pEhEZimu6BuHyAhEBcj2UEpA4dMl6+IWQzNDV1SXNXbqAxKHLFzgRRW8adLnkiTJ5Ku0Hg9da7HbVJslDpiyQOnTJWmT6xCd7iEQicLvlelIyQ5eSgoFLZpBtBBiQPHT5QidyNtnO6AKShy4ROZtsd+kCkocuO10iZ2PoEhEZiMsLBmOnS+RsDF0iIgO1tbVJNQIMMHSJSGKyXesISB66XF4gcja/38+NNCIio3BN12DsdImcTba7dAHJQ5eInI2hS0RkoM7OTmRmZppdRkKkDl0uL1iLpmlml0AOIuNdugDgMbuAkVIUhfe4mkwIAU3TIIRAOBzWf97lckFRFOleFCQX2Zov6UOXzBMN22iH6/V6ewVw9L9VVdV/vdvt1l8kDGMaCU3TpAtcwAahy07XeH2DVVGUXp/8sZdKRwM5Gs7R9wWgh3H0/dkVUyI6OjqQlZVldhkJkz50yTjRL26qquphO1RIRt/e99fFBjCDmIajra1NujO6gA1CV8ZvL2QUu5QQG4jDFQ3Svl1x7P+HQUyDkXEwArBB6NLo6rtuO9KwHcxQQRzbEUcikV5rw1wndh4Z79IFGLo0ACPDdjADBTHw/TJH3+UJIQRcLteASxtkD+x0TcLlheQaapPMCvoL0/427GLXngEuT9iNjJfdADYIXUqO4WySWQk37Jynra0NBQUFZpeRMOlD12pdmIySvUlmJdywsy+/34/S0lKzy0iY9KFLw2eVdVujJbJhFw3i6Ptxw846ZLzsBmDoOpJTw3Yw3LCTDzfSTOL0sEiEDJtkVjLUhl3fMWcuTxiLnS6Z4/p1KPX1wOXLwM03Q1RVAWlpN/yyvrv5DIPhGc6GXbQjZhAnF08vmMTRnVokAmXPHijt7YDPB5w8Cfj9EHffDXz358KlBGMMZ8Mu+n4M4uHp6Ohg6JrFsZfe+P1QWluBoqKeH6enQzl/HqKrCyIjg2Frsng27HgT2/Bpmtbrz1YWtghdx4p+wmka4HIB330rqwLQIhEADFur4YZdcsjcZNkidB3b6fp8EDNmQGlogEhJgQgGoVVWQktJYdhKZLB1Ym7Y9S/6epfxc9wWoetYigLxox9BTJgA9do1iJwcYMIEx70A7Sq2u43ihl2Pzs5OKe/SBRi6UtM3aYqKgKIidrcOMNLBDrsEcXt7O3w+n9llDIstQtdpQcMTCRTLiRt2sl7rCNgkdJ2CYUvxGmzDbqhHJ8mwYSfrUyMAm4Su3YNHCAEtEoG4fBkAoOTnQ5HwqAyZK54Nu+gQDWDtDTtZR4ABm4SunQkhoHZ3w/Xee/A0NvZsnpWUQH3gASA11ezyyAZk3LBj6FLSxS4luOrq4D55Epg0CVAUKF9/Dde//w3t9tvNLpNsyuobdgxdk9lpeaG/dVtXSwuQmamP9iIrC2huNrFKciIrbdj5/X7ccsstSflYRrPGAg3pa2mRSES/TFy/v3XCBKCjo2fyTAigvb3n54hM5nK54Ha74fV6kZKSgtTUVKSkpCAlJQUejwdut1v/3FZVFeFwGOFwGJFIBKqq6s1FotjpmkzmTjee6xa1igrg/Hm4jh7teZ+5c6HNn29GuURDMuLRSX6/n6FLiYv7ukWPB9p990G7886eH2dlfb/UQCSJZD46Sda7dAGbhK5sne6wz9tKOoFDNJDhbthdunSJnS4NjcMNREMbbLAjEAjghRdeQFNTE1IlPTJpm400K4fXoJtkRDQkl8uFhoYG3HXXXUhPT8eZM2d49wLdKPYIDZ9JRjQ8wWAQGzduxP79+7F9+3bMmTPH7JJGhJ3uKIk9JgOAnS3RMBw5cgTV1dXIysrCZ599Jn3gAux0k47rtkQjFwwGsWHDBnz++eeoqanBrFmzzC4padjpJgnXbYmS49ChQ7jzzjuRm5uLf/3rX7YKXICd7oixsyVKjkAggPXr1+OLL77Ajh07MHPmTLNLGhW26XSNFjtjzs6WaGTq6+tRXV2NgoIC7N+/37aBC9io0zUy7OKeJCOiQXV3d2PdunWor6/H22+/jenTp5td0qhjWiQgdt2WR8CIRqa2thYLFizA+PHjsW/fPkcELsBONy5ctyVKnu7ubjz//PM4fPgw3nnnHUydOtXskgzFTncQPJFAlFxffPEFqqurUVxcjH379jkucAF2uv3iJBlRcnV1deHZZ59FQ0MDdu7ciSlTpphdkmnY6fbBSTKi5BFC4D//+Q+qq6tRWlqKvXv3OjpwARt1uiM14LqtEFAaGuA6exYiPx/aD38I8Em8REO6fv061q5di+PHj+Mf//gHSktLzS7JEmwTusPtRofaJHN/+CHcO3b0BK2qQps/H5EVKwAeEyPqlxACn3/+OVatWoVHH30UW7du7XVNo9PZJnSBnsAUQsT1a+M6kRAMwv3uuxBFRYDXCwgBV20tlNOnIfhVm+gGnZ2deOaZZ9DY2Ihdu3bhBz/4gdklWY7j2rWEJslCoZ6HQXq++9qkKD0dbzBobNFEFieEwGeffYYFCxZg9uzZ+PTTTxm4A3BUp5vwJFlmJsTs2VAaGiAKCqD4/UB2NsSkSUmunEheHR0dePrpp3H69Gl88MEH0j4a3SiO6HSHPUmmKAg/9hjU//1fKEJAmzoV4WeeATIzR79oIosTQmD//v1YsGABysrK8MknnzBw46AMsQYa3wKpRYTDYX2NFuAkGdFo6ejowFNPPYVz587h9ddfxyR+99fXgEFjq043GqicJCMaHUII/POf/8SCBQswb948fPzxxwzcBNlqTTe2s+UkGVFy+f1+PPXUUzh//jw++ugjFBcXm12SlGzV6a5evVp/gF1nZ6fZ5RDZghACe/fuxYIFCzB//nzs3r2bgTsCtlrTPXnyJA4cOIDa2locPnwYoVAIs2bNQkVFBaqqqjBz5kx4vV6zyySSRnt7O1avXo2Wlha8+uqrmDhxotklyWLAb7FtFbp9BQIBHD16FAcOHEB9fT2+/PJLZGRkoKKiApWVlaisrMSkSZN4CTlRH0IIfPrpp3j66aexYsUKPPTQQ3ydJMaZoduXEAJXr15FfX29HsTffPMNJkyYgKqqKj2Mc3NzuRZMjtXW1oYnnngCV69exauvvoqioiKzS5IRQ3cgmqbh7NmzqK2tRW1tLQ4ePIiOjg5Mnz5dD+G5c+ciLS3N7FKJRpUQAp988gnWrFmD3//+9/jNb37D7nb4GLqJCIfDOHbsmB7EDQ0N8Hg8KC8vR3l5OSorK3HrrbfyEg+yjWvXruHxxx+H3+/Htm3bMH78eLNLkh1DdySEEOjo6MDBgwdRW1uLuro6nDp1CmPHju21PlxYWMhlCZKKEAIff/wx1q5di1WrVuHBBx9kd5scDN1kE0LgwoULejdcV1eHK1eu4NZbb0VlZSUqKipQXl6OjIwMBjFZ0tWrV7Fq1Sp0d3fjlVdewbhx48wuyU4YukZQVRVfffUVamtrUV9fj8OHD0NVVcyZM0fvhqdPnw6Px1YzKSQZIQR2796N5557DqtXr8b999/PxiD5GLpmEEKgu7sbhw4dQl1dHWpra3HixAlkZ2frZ4crKytRVFTEb+nIEK2trfjDH/6ASCSCV155BYWFhWaXZFcMXasQQuDKlSu9liXOnz+PW265Re+Gy8vLkZ2dze6DkkYIgQ8//BDr1q3Dk08+iUWLFvHza3QxdK1M0zScOnVKD+FDhw6hq6sLM2fO1IN41qxZSE1NNbtUktCVK1ewcuVKKIqCl19+GWPHjjW7JCdg6MomFArh6NGjehD/97//RVpaGsrKyvQgLikp4bIEDUgIgQ8++AAbNmzAH//4R/zqV79id2schq7shBBoa2tDfX29vlF3+vRpFBUVoby8XJ+oy8/P5wuL0NLSgpUrV8Lr9eIvf/kLCgoKzC7JaRi6dqRpGpqamnDgwAHU1dWhvr4ebW1tmDp1qr5RN3fuXKSnpzOIHUIIgffffx8bN27EmjVrcN999/Hv3hwMXaeIRCL48ssv9bsljh49CkVRcNttt+mDHFOnTuU0nQ1dunQJK1euRHp6OrZu3Yr8/HyzS3Iyhq5TCSHQ2dmJQ4cO6csSjY2NyMvLQ0VFBSoqKjBv3jzcfPPN7IgkpWkadu3ahU2bNuHZZ5/FwoUL+XdpPoYufU8IgebmZtTV1ekdcXNzM0pLS/VlibKyMmRmZvLFa3HNzc1YsWIFsrKysGXLFuTl5ZldEvVg6NLgVFVFY2Ojvj585MgRhEIhzJ49Ww/iGTNm8BJ4i9A0De+99x5efPFFPP/88/jFL37BL5DWwtClxAUCARw5cqTXJfCZmZm9LvkpLi7msTWDNTc3Y/ny5RgzZgxefPFFjBkzxuyS6EYMXRo5IQRaW1t7XQJ/7tw5FBcX65f8VFRU8BL4UaJpGnbu3ImXXnoJ69atwz333MM/Z+ti6NLo0DQNZ86c6XUJfGdnJ2bMmKF3xHPmzOEl8CN08eJFLF++HAUFBXjhhReQm5trdkk0OIYuGScUCvW6BP7YsWPwer0oKyvT14dLS0u5LBEHTdPwzjvv4OWXX8b69etx9913s7uVA0OXzCOEgN/v73UJ/Ndff43CwsJe68Njx45loMS4cOECli1bhnHjxmHz5s3IyckxuySKH0OXrEUIgfPnz6O2tlZfH25tbcWUKVP09eGysjJHXgKvaRrefvttbNu2DX/605/w05/+1HF/BjbA0CXrU1UVx48f17vhI0eOQAjR6xL4adOm2foS+G+//RbLli3DxIkTsWnTJmRnZ5tdEg0PQ5fkI4RAV1dXr0vgT548idzcXP2kRFVVFYqKiqTvBDVNw44dO/Daa6/hz3/+M6qrq6X/PTkcQ5fsQQiBy5cv97oE/sKFC5g8eXKvS+B9Pp80odXU1ISlS5eipKQEGzduhM/nM7skGjmGLtlX9BL46DTdoUOHEAgEbrgEPiUlxexSe9E0DTU1NXjjjTewefNm3HHHHdJ8oaAhMXTJWYLBoH4JfH19vX4JfHl5uR7EkydPNu3Y2rlz57BkyRJMmTIFGzduRGZmpil10Khh6JKzRS+Bj64N19fX48yZMygqKtJDuKKiAnl5eaPabWqahu3bt+PNN9/E5s2bcfvtt7O7tSeGLlFfmqbh3LlzvS6Bb29vx7Rp0264BD4Zzp49iyVLlmDGjBnYsGEDu1t7Y+gSxSMcDt9wCbzL5dKn6SorKzFlypSELoFXVRXbt29HTU0NtmzZgp/85Cfsbu2PoUs0HLGXwEeDuLGxEQUFBXoIV1VVobCwsN8gPXPmDJYuXYrZs2dj3bp1uOmmm0z4XZAJGLpEySKEwMWLF3tdAt/S0qJfAl9ZWYm5c+fi3XffxVtvvYWtW7fixz/+MbtbZ2HoEo0mVVVx8uRJ/fzwnj17MG/ePNTU1CAjI8Ps8sh4DF0iIwkh2Nk624B/+bxbj2gUMHBpIAxdIiIDMXSJiAzE0CUiMhBDl4jIQAxdIiIDMXSJiAzE0CUiMhBDl4jIQAxdIiIDMXSJiAzE0CUiMpBniLdzgJyIKInY6RIRGYihS0RkIIYuEZGBGLpERAZi6BIRGYihS0RkoP8H7gbrU9fyTBwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGptJREFUeJzt3XtwVPXZB/DvOZvNnZAEkhgil2AIl3AxF3hfZ/R1ak061Bnt+E5H7bT6R2e0nfEyFVsqUhWkgaKgtDJqfRl5KVpaq4NWxiqjRrBCEgMISiVFgkFCBALZTUiyl3N+7x95d92EbDabbM45v3O+nxlHNCQ8QPabJ8/vchQhBIiIyBiq2QUQETkJQ5eIyEAMXSIiAzF0iYgMxNAlIjJQUoy3c2sDEVH8lGhvYKdLRGQghi4RkYEYukREBmLoEhEZiKFLRGQghi4RkYEYukREBmLoEhEZiKFLRGQghi4RkYEYukREBmLoEhEZiKFLRGSgWLeMEUUlhICu6/D5fAgGg0hKSoKqqnC5XFBVFaqqQlGiXrZE5EhKjAdT8mpHuowQApqmIRgMDvhx6G2RQRsK4dA/DGNyiKif4AxdGrHBYasoChRFQTAYRDAYhKqql/38yH8YxuQgUT+ROV6gmIQQCAaD0DQtHJ6DA3YooVAe6uMBQDAYRCAQGPA2hjHZHUOXogqFbWh0MNKwjSUUoIODdHAYR3bHiqLA5XKF58ahcGYYk2wYunQZXdcHzGmjdawhiQq+WGE8eLQhhBi2M2YgkxUxdClM1/XwGAGIHbZGGWkYD34fVVWRlJTEMCZLYeg6XGiRKxAIQNd1ANYJ21hihXFoO9vg9wl1x5GjCll+zyQ/hq5DhfbYBoNB6cI2lmhhDHz7+9Y0DX6/f8DbIscUoe7YLn8mZB0MXYcZHLahUHFKsAy3oyIUxoO3tw01M+aOChothq5DRNtjy+DoN5ow5vY2Gg0ejrC5aGGbSJqmIRAIJGQ7mSx48INi4OEIpxntgQYaGR78oNFi6NrMeB1oGA5D41sjPfgRKRS+PPjhDAxdm4j3QAMZiwc/KIShKzmrHmigkeHBD+dh6EpI5gMNNDI8+GFfDF2J2PlAA40MD37Ij6ErAacfaKCRiWevcejfPPhhPIauhfFAAyUCD35YCw9HWJARBxoSSdd1BAIBS9dII8eDHwnBx/XIYKgDDTJ8MjN0nSGUFaEwjsQwvgxD18qGOtAg0yerruvw+/088eZQscI42vY2m+MxYCuy04EGWeumsRvLwY/IrW1O2VHB0DWB3Q40yFw7jR8e/BgaQ9cgPNBA1M/pBz840x1nTjjQIISA3++31e+JrCVyN8VgkQt4oaYmKyvLhCoHiPpi4MrHOAlt+/L7/fD7/QOuV2Q4EcUnstMdvEsitJDb29uLXbt2Yd26dWaXOyyOFxKMBxqIjDP4teXxeDBx4kQTK4qNoZsgQ4Utt1ARGcvj8SA7O9vsMobFVBij0OKYz+cLX07NEQKROTweD3JycswuY1jsdEfJjCc0ENHwZOh0GbpxstOBBiK78Xq9DF27sNuBBiI78nq9XEiTGQ80EMmFM11JOeFAA5EdcaYrmdC2L03T+IQGIglpmga32212GcNi6IIHGojsIMaVBpbh6NDlgQYi+wiFrtWbJUeGLvfYJp7VP9HJ/vr6+pCenm52GTE5KnRlf0IDEUXX2dlphdvFYnJEexd6hldfXx+CwSBv+yLL6wv24aH3H8KC/1mAJf+7BK8fe93skixPhp0LgM1DN3Tlm8/nY9iOM1kWMWTx249/i7eOv4VkVzL8mh8r96xEfVu92WVZmgw3jAE2DN3QHlufzwefzwdN0xi2JJ0PvvoAqUmpcKkuJLuSEdSD2Pf1PrPLsrTOzk52ukaKvDTc5/OF99kybI3DbjdxclJzENAD4f9WFAU5adY+aWU2jhcMEloc4xMazMMFycR77NrHkKQkocvXhS5/F2Zmz8Sts281uyxLk+GyG0Di3Qs80EB2VlVYhZ3/vRP72vYhIykDNxbfiAx3htllWZrH40FhYaHZZcQkXejyQAM5RXF2MYqzi80uQxocL4wTTdP4hAYiuowsoStdpxt63j0RUSRZQpfpRUS24PV6LX+XLsDQJSKbYKc7TjjDJaKhBAIBpKSkmF1GTNKFLlkTvxiSmWQ6mCNd6PLFTUTRyJAP0oUuIMcfLBEZp6+vT4rRAiBp6BIRRZLlhjGAoUtENiDLzgVA0tDleIGIInm9Xna6RERG6ezsZOiOJ3a6RBSJ4wVyHH4hJDPJ8tQIQNLQ5QuciCLJcu8CIGnoEhFF4niBHEmmo5hkL7I8qgeQNHQ5XiCKjy509AZ6zS5j3Mh0OEK6S8yJKD51rXVYu28t+gJ9mDNpDtZcvwZ56Xlml5VQHo+HM93xxE6XaGROek5i9UerkeJKQUFGAZovNOOxvY+N6WMKIfDx1x/jyfonsblpM77yfJWgakdPptBlp0tkY8cvHgcApCWlAQDy0vPw2bnPoOkaXKprVB9zz6k9ePHQi8hOzYZf8+PTs59i9XWrcUXmFQmrO14+nw9paWmm/frxkLLTJevhdx/WlJuaC13o0IUOALgUuISc1JxRBy4AvNvyLianT0ZOag4KMgrgC/pw8JuDiSo5brIt4ErZ6fIFThTby5+/jBcPvYhzPefQ5e9Cdko2VEXFqutWjenjuhTXgKATEHApow/xRJElF6QMXaD/D1i2r3BERtl2ZBt+9cGv0BPsAQCkuFJwz3/dg5tn3TzmMcAts27Bpk82oSfYg6AexMSUiagsrExE2aMSCATgdrtN+/XjJW3oElF0mw9sDgcuAPg0H5q+acLd5XeP+WNXFlZi+X8uR+OZRqS703HD9BswKW3SmD/uaHk8HmRlZZn268dL2tBlp0sU3VDf7icpiXu5l+WVoSyvLGEfbyxkOo0GcCGNyJYe+o+HwjsWACA9KR33lN9jYkXjR6aDEYDknS4RDe3W2bcizZ2Glw6/hFRXKn6x5BdYmL/Q7LLGhUw3jAEShy4RDW/pzKVYOnOp2WWMO5kORgAcL1CC8DsPMovX65VqIU3a0OWLnIgAdrpERIaSbaYrbeiy0yUiQK67dAGJQ5eICOA+XSIiQ3GmaxCOF4gIkOuhlIDEoUvWwy+EZIaenh5p7tIFJA5dvsCJKHT/iqrKE2XyVDoEBq+18AIiMotMWSB16JK1yPSJT/YQDAbhcpl/gXo8GLqUEAxcMoNsR4AByUOXL3QiZ5Ntjy4geegSkbPJdpcuIPnVjqZ0un4/1O3boXz2GURJCfS77gIyMoyvg4gYurYnBFyPPAK1rg5ISwM++ghqUxOCL7wAJPGPkshoHC8YzPBO99w5qHv3AgUFQHY2UFAA5ehRKP/+t7F1EBEAhq79hfahcgGPyBI6OzulOgIMMHTjk58P/ZprgPZ2wOMBzp6FKC2FmDXL7MqIHEm2ax0ByWe6ho8XFAXa2rUQ27ZBPXIE+lVXQf/pTznPJTKJ1+vlQprtpaZCv/tu6GbXQUSc6RqNhyOInE22u3QByUOXiJyNoUtEZKDu7m5kZmaaXUZcpJ7pWmq84PdDffVVKEePQhQXQ7/jDsedVNN1Xbobn0heMt6lC0geukB/8Jp+j6sQcNXWQt27FyI9Her+/VAOH4a2caMjdjYIIaDrOoQQCAQC4f+vqioURZHuRUFysVTzNQL2TwQjdHRA+ec/IaZMAVQVIicH6hdfQG9psfUe3lDY6nr/Xg632z0ggEM/1jQt/PNdLlf4RcIwprHQdV26wAVsELqW6HQl/Isfi8HBqijKgE/+yBFDKJBD4Rx6XwDhMA69P7tiikdXVxcmTJhgdhlxkz50LSE3F+Laa6F++CFERgaUnh7oZWUQxcXm1tXdDaWhAejoAKZOhaioAJKTR/3hQl/cNE0Lh22skAy9ffDPiwxgBjGNRmdnp3R7dAEbhK4lvr1QFGgPPwxRWgrl6FHoM2ZAv/12c+e5fj+UXbug9PYCmZnAp58C3d0QN944qg8XOUqIDMTRCgXp4K448tdhENNwZDwYAdggdC0jObl/x4JVXLwIxeMBior6/7uoCEpLC4TfH1e3O3huO9awHU6sII7siIPB4IDZMOfEziPjXboAQ9e+XC5A1/tvRlMUQNP6/z3CUDIybIcTLYiBb8ccg8cTQgioqhp1tEH2wE7XJJYYL1jRpEkQs2ZBaW7u72z9fohrr4058oi1SGYFQ4XpUAt2kbNngOMJu5HxshvABqFLUSgKxHe+A1FcDKW7GyI3F7jyyqg/fTSLZFbCBTvn6ezsRF5entllxE360LVaF2YpqgrMnIlYG+oSvUhmJVywsy+v14uSkhKzy4ib9KFLo2eVua3R4lmwCwVx6P24YGcdMl52AzB0HcmpYTscLtjJhwtpJnF6WMRDhkUyK4m1YDf4mDPHE8Zip0uWNng1n2EwOqNZsAt1xAzixOLuBZOwUxseRwnGGM2CXej9GMSj09XVxdA1iyUuvbEYhq35RrJgx5vYRk/W+5ttEbr0LYattXHBLjFkbrJsEbrsdLlIJrPh5sRcsBta6PUu4+e4LULX6bhIZk+R3W0IF+z6dXd3S3mXLsDQlRpHCc4z1oMddglij8eDrKwss8sYFVuErtOChmFLkZy4YCfrtY6ATULXKRi2NFLDLdjFenSSDAt2sj41ArBJ6EoVPB0dQF8fkJ8PuN0jehcuklEijGTBLrQ+AFh7wU7WI8CATUJXCkJAffllqG+80X/tYmEhtJUrgRhX03GRjCK1dbWhO9CNvPQ85KQm5gisjAt2DF2KSfn0U6ivvw4xdSrgckFpa4PrhRf6g3cIHCXQYO+eeBd1rXVQoUJVVPxkwU8wK3fWuPxaVl+wkzl0bdE2yRBGSnt7/+Ny/v+TWEyeDOXLLy/7eaHONhgMhu+3jbxSkJzpTPcZ1H1Vhyszr8TUrKnITs3GX47+xdD96aqqwuVywe12Izk5GampqUhOTobb7YbL5YKqquHP30AggEAgAL/fD03TBjQQieD1eqUNXXa6BhEFBf3PK9O0/uDt6ICYN+/bt7OzpWFcClyCqqhwqf1ftDPcGejo7YBf8yMlKcW0usayYDeW8YTMna4tQleGcBJXXw39llugvvVW/xMd8vMRvOceLpLRiExOm4wkNQnd/m5kJmfizKUzmJo11dTAjcaIRyex06XYFAX6nXdCX7q0f/fCFVdAuN1cJKMRyU7Nxl0L78KOozvQ6m3FtKxpuG3ebWaXFZdEPjpJ1rt0AUCJMROS5kIDn89ndgkjxlECjZYQAkE9CLdrZNsNZRStI45000034c0337TygymjvqDZ6RqIYUtjpSiKrQMXGH5O3NfXh40bN+LUqVNISbHeaGUkbPP9rJXDizsSiMZGVVUcPnwYS5cuRVpaGlpaWnj3Al0u8sw7F8mIRsfn82H9+vWoq6vDli1bsHDhQrNLGhN2uuMk1N2GFgTY2RLF7+DBg6iursaECROwZ88e6QMXYKebcJzbEo2dz+fDunXr8NFHH2Hr1q2YP3++2SUlDDvdBOHcligxmpqacOONNyInJwcffvihrQIXYKc7ZuxsiRKjr68Pa9euxb59+7Bt2zaUlZWZXdK4sE2na7TIS6HZ2RKNTWNjI6qrq5GXl4e6ujrbBi5go07XyLDjdYtEidHb24va2lo0NjZi+/btmDt3rtkljTumRRwi57bcAkY0NvX19aipqcGUKVPw/vvvOyJwAXa6I8K5LVHi9Pb2Ys2aNThw4ABeeeUVzJ492+ySDMVOdxjckUCUWPv27UN1dTWmTZuG999/33GBC7DTHRJPkhElVk9PD1avXo3Dhw9jx44dKC0tNbsk07DTHYQnyYgSRwiBjz/+GNXV1SgpKcF7773n6MAFbNTpjhXntkSJdenSJaxatQpHjx7Fq6++ipKSErNLsgTbdLqjDUjObYkSSwiBvXv3orq6GnPmzMHu3bsZuBFs1ekqijLiB/WxsyVKvO7ubjz22GNobm7Ga6+9hquuusrskizHNp3uSPEkGVHiCSGwZ88e1NTUYMGCBdi9ezcDNwpHdbpWOUmmnDgBpa0NorAQgp+YJLmuri48+uijOHHiBHbu3IkZM2aYXZKlOaLTtdJJMtcbbyD5Zz+D+4knkPzzn8P1t7+ZUgfRWAkhUFdXh5qaGpSXl+Odd95h4I6AbR5MCQCBQGDAQ+wsN7e9eBEpd9wBkZMDJCcDgQCUjg74Xn4ZmDzZvLqI4tTV1YWVK1eitbUVf/zjHzF9+nSzS7KaqEFjq043FKhW3ZGgeL39P0hO7v+32w0oChSPx7yiiOIghMAHH3yAmpoaLFmyBG+//TYDN062mulGdrZmjxGGIvLzIbKygAsXgNxcoLMTIjMTorDQ7NKIYvJ6vVi5ciVOnz6Nv//975g2bZrZJUnJVp3uihUrwg+w6+7uNrucy6WlIbB2LZCdDeX0aSAzE4HaWiA93ezKiKISQuC9995DTU0NrrnmGuzatYuBOwa2mukeO3YM+/fvR319PQ4cOAC/34/58+ejsrISixcvRllZGdxut9llAkIAPh+QkgJYqBMnGszj8WDFihU4e/Ysnn/+eUydOtXskmQR9YVtq9AdrK+vD4cOHcL+/fvR2NiIzz//HOnp6aisrERVVRWqqqowffp0XkJONIgQArt378ajjz6KBx98EHfeeSdfJ/FxZugOJoTAhQsX0NjYGA7ir776CldeeSUWL14cDuOcnBxLzYKJjNTZ2YmHH34YFy5cwPPPP4+ioiKzS5IRQzcaXddx8uRJ1NfXo76+Hp988gm6urowd+7ccAgvWrQIqampZpdKNK6EEHjnnXfw+OOP46GHHsKPf/xjdrejx9CNRyAQwJEjR8JBfPjwYSQlJaGiogIVFRWoqqrCrFmz4HK5zC6VKCEuXryIX//61/B6vXjuuecwZcoUs0uSHUN3LIQQ6OrqwieffIL6+no0NDTg+PHjyM/PHzAfLigo4FiCpCKEwNtvv41Vq1Zh+fLl+NGPfsTuNjEYuokmhEBbW1u4G25oaMD58+cxa9YsVFVVobKyEhUVFUhPT2cQkyVduHABy5cvR29vLzZv3oxC7hdPJIauETRNw7/+9S/U19ejsbERBw4cgKZpWLhwYbgbnjt3LpKSbHUmhSQjhMCuXbvwxBNPYMWKFbj99tvZGCQeQ9cMQgj09vaiqakJDQ0NqK+vxxdffIGJEyeG9w5XVVWhqKiI39KRITo6OvDLX/4SwWAQmzdvRkFBgdkl2RVD1yqEEDh//vyAscTp06cxY8aMcDdcUVGBiRMnsvughBFC4M0330RtbS0eeeQR3Hbbbfz8Gl8MXSvTdR3Hjx8Ph3BTUxN6enpQVlYWDuL58+cjJSXF7FJJQufPn8eyZcugKAqeffZZ5Ofnm12SEzB0ZeP3+3Ho0KFwEH/22WdITU1FeXl5OIhnzpzJsQRFJYTAzp07sW7dOvzmN7/BD3/4Q3a3xmHoyk4Igc7OTjQ2NoYX6k6cOIGioiJUVFSET9RNnjyZLyzC2bNnsWzZMrjdbvzhD39AXl6e2SU5DUPXjnRdx6lTp7B//340NDSgsbERnZ2dmD17dnihbtGiRUhLS2MQO4QQAq+//jrWr1+Pxx9/HLfeeiv/7s3B0HWKYDCIzz//PHy3xKFDh6AoCq6++urwQY7Zs2fzNJ0NffPNN1i2bBnS0tKwadMmTObTSMzE0HUqIQS6u7vR1NQUHks0Nzdj0qRJqKysRGVlJZYsWYIrrriCHZGkdF3Ha6+9hqeeegqrV6/GD37wA/5dmo+hS98SQqC9vR0NDQ3hjri9vR0lJSXhsUR5eTkyMzP54rW49vZ2PPjgg5gwYQKeeeYZTJo0yeySqB9Dl4anaRqam5vD8+GDBw/C7/djwYIF4SCeN2+eNS6BJ+i6jr/+9a94+umnsWbNGtx88838AmktDF2KX19fHw4ePDjgEvjMzMwBl/xMmzaN29YM1t7ejgceeAC5ubl4+umnkZuba3ZJdDmGLo2dEAIdHR0DLoFvbW3FtGnTwpf8VFZW8hL4caLrOnbs2IHf//73qK2txU033cQ/Z+ti6NL40HUdLS0tAy6B7+7uxrx588Id8cKFC3kJ/BidOXMGDzzwAPLy8rBx40bk5OSYXRINj6FLxvH7/QMugT9y5AjcbjfKy8vD8+GSkhKOJUZA13W88sorePbZZ7F27Vp8//vfZ3crB4YumUcIAa/XO+AS+C+//BIFBQUD5sP5+fkMlAhtbW24//77UVhYiA0bNiA7O9vskmjkGLpkLUIInD59GvX19eH5cEdHB0pLS8Pz4fLyckdeAq/rOrZv347nnnsOv/vd7/C9733PcX8GNsDQJevTNA1Hjx4Nd8MHDx6EEGLAJfBz5syx9SXwX3/9Ne6//35MnToVTz31FCZOnGh2STQ6DF2SjxACPT09Ay6BP3bsGHJycsI7JRYvXoyioiLpO0Fd17Ft2za88MILePLJJ1FdXS3978nhGLpkD0IInDt3bsAl8G1tbSguLh5wCXxWVpY0oXXq1Cncd999mDlzJtavX4+srCyzS6KxY+iSfYUugQ+dpmtqakJfX99ll8AnJyebXeoAuq5j69atePHFF7FhwwZ897vfleYLBcXE0CVn8fl84UvgGxsbw5fAV1RUhIO4uLjYtG1rra2tuPfee1FaWor169cjMzPTlDpo3DB0ydlCl8CHZsONjY1oaWlBUVFROIQrKysxadKkce02dV3Hli1b8NJLL2HDhg244YYb2N3aE0OXaDBd19Ha2jrgEniPx4M5c+Zcdgl8Ipw8eRL33nsv5s2bh3Xr1rG7tTeGLtFIBAKByy6BV1U1fJquqqoKpaWlcV0Cr2katmzZgq1bt+KZZ57B9ddfz+7W/hi6RKMReQl8KIibm5uRl5cXDuHFixejoKBgyCBtaWnBfffdhwULFqC2thYZGRkm/C7IBAxdokQRQuDMmTMDLoE/e/Zs+BL4qqoqLFq0CH/+85/xpz/9CZs2bcJ1113H7tZZGLpE40nTNBw7diy8f/gf//gHlixZgq1btyI9Pd3s8sh4DF0iIwkh2Nk6W9S/fN6tRzQOGLgUDUOXiMhADF0iIgMxdImIDMTQJSIyEEOXiMhADF0iIgMxdImIDMTQJSIyEEOXiMhADF0iIgMxdImIDJQU4+08QE5ElEDsdImIDMTQJSIyEEOXiMhADF0iIgMxdImIDMTQJSIy0P8Bc3LgDlWBk1kAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -101,7 +101,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Solving the max-cut problem by QAOA\n", + "# Solving the Max-Cut problem by QAOA\n", "\n", "Most quantum computing frameworks have convenience functions defined for common graph optimization algorithms, and max-cut is a staple. This reduces our task to importing the relevant functions:" ] @@ -121,7 +121,7 @@ "from qiskit.aqua import QuantumInstance\n", "from qiskit.aqua.algorithms import QAOA\n", "from qiskit.aqua.components.optimizers import COBYLA\n", - "from qiskit.aqua.translators.ising import maxcut" + "from qiskit.aqua.translators.ising import max_cut" ] }, { @@ -142,7 +142,7 @@ }, "outputs": [], "source": [ - "qubit_operators, offset = maxcut.get_maxcut_qubitops(w)\n", + "qubit_operators, offset = max_cut.get_max_cut_qubitops(w)\n", "p = 1\n", "optimizer = COBYLA()\n", "qaoa = QAOA(qubit_operators, optimizer, p, operator_mode='matrix')" @@ -169,12 +169,12 @@ "backend = Aer.get_backend('statevector_simulator')\n", "quantum_instance = QuantumInstance(backend, shots=100)\n", "result = qaoa.run(quantum_instance)\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", - "graph_solution = maxcut.get_graph_solution(x)\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", + "graph_solution = max_cut.get_graph_solution(x)\n", "print('energy:', result['energy'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))" + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))" ] }, { @@ -188,7 +188,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Solving the max-cut problem by annealing\n", + "# Solving the Max-Cut problem by annealing\n", "\n", "Naturally, the same problem can be solved on an annealer. Our only task is to translate the couplings and the on-site fields to match the programming interface:" ] @@ -254,7 +254,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/index.ipynb b/index.ipynb index d03034999..6ab2b93ce 100644 --- a/index.ipynb +++ b/index.ipynb @@ -77,7 +77,7 @@ "#### 1.6 Qiskit Aqua\n", "Aqua, the ‘water’ element, is the element of life. To make quantum computing live up to its expectations, we need to find real-world applications. Aqua is where algorithms for NISQ computers are built. These algorithms can be used to build applications for quantum computing. Aqua is accessible to domain experts in chemistry, optimization, AI or finance, who want to explore the benefits of using quantum computers as accelerators for specific computational tasks, without needing to worry about how to translate the problem into the language of quantum machines.\n", " * [Chemistry](qiskit/aqua/chemistry/index.ipynb) - using variational quantum eigensolver to experiment with molecular ground-state energy on a quantum computer\n", - " * [Optimization](qiskit/aqua/optimization/index.ipynb) - using variational quantum eigensolver to experiment with optimization problems (maxcut and traveling salesman problem) on a quantum computer \n", + " * [Optimization](qiskit/aqua/optimization/index.ipynb) - using variational quantum eigensolver to experiment with optimization problems (max-cut and traveling salesman problem) on a quantum computer \n", " * [Artificial Intelligence](qiskit/aqua/artificial_intelligence/index.ipynb) - using quantum-enhanced support vector machine to experiment with classification problems on a quantum computer\n", " * [Finance](qiskit/aqua/finance/index.ipynb) - using variational quantum eigensolver to optimize portfolio on a quantum computer \n", "\n", @@ -245,7 +245,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/qiskit/aqua/optimization/docplex.ipynb b/qiskit/aqua/optimization/docplex.ipynb index 7e77e94ad..c68b2b27a 100644 --- a/qiskit/aqua/optimization/docplex.ipynb +++ b/qiskit/aqua/optimization/docplex.ipynb @@ -47,9 +47,9 @@ "\n", "Input models are validated before transformation. If the model contains elements that are not from the supported set, an error will be raised.\n", "\n", - "Even though there are restrictions, this type of optimization model can handle optimization problems such as maxcut, traveling salesman etc.\n", - "These are typical optimization problems. Examples of the translator being used for Maxcut and TSP problems can be found in the following tutorial:\n", - "- [Qiskit Aqua: Experimenting with MaxCut problem and Traveling Salesman problem with variational quantum eigensolver](maxcut_and_tsp.ipynb)" + "Even though there are restrictions, this type of optimization model can handle optimization problems such as max-cut, traveling salesman etc.\n", + "These are typical optimization problems. Examples of the translator being used for Max-Cut and TSP problems can be found in the following tutorial:\n", + "- [Qiskit Aqua: Experimenting with Max-Cut problem and Traveling Salesman problem with variational quantum eigensolver](max_cut_and_tsp.ipynb)" ] }, { @@ -287,7 +287,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/qiskit/aqua/optimization/index.ipynb b/qiskit/aqua/optimization/index.ipynb index 7ccbbf418..b7364e211 100644 --- a/qiskit/aqua/optimization/index.ipynb +++ b/qiskit/aqua/optimization/index.ipynb @@ -12,7 +12,7 @@ "\n", "## Contents\n", "\n", - "* [Solve classical optimization](maxcut_and_tsp.ipynb) (MaxCut and Traveling Salesman Problem)\n", + "* [Solve classical optimization](max_cut_and_tsp.ipynb) (Max-Cut and Traveling Salesman Problem)\n", "* More examples can be found in [commuity/aqua/optimization](../../../community/aqua/optimization)" ] }, @@ -28,9 +28,9 @@ ], "metadata": { "kernelspec": { - "display_name": "quantum-dev", + "display_name": "Python 3", "language": "python", - "name": "quantum-dev" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -42,7 +42,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/qiskit/aqua/optimization/max_cut_and_tsp.ipynb b/qiskit/aqua/optimization/max_cut_and_tsp.ipynb new file mode 100644 index 000000000..f63da6233 --- /dev/null +++ b/qiskit/aqua/optimization/max_cut_and_tsp.ipynb @@ -0,0 +1,1060 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Aqua: Experimenting with Max-Cut problem and Traveling Salesman problem with variational quantum eigensolver*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorial.\n", + "\n", + "***\n", + "### Contributors\n", + "Antonio Mezzacapo[1], Jay Gambetta[1], Kristan Temme[1], Ramis Movassagh[1], Albert Frisch[1], Takashi Imamichi[1], Giacomo Nannicni[1], Richard Chen[1], Marco Pistoia[1], Stephen Wood[1]\n", + "### Affiliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "\n", + "Many problems in quantitative fields such as finance and engineering are optimization problems. Optimization problems lay at the core of complex decision-making and definition of strategies. \n", + "\n", + "Optimization (or combinatorial optimization) means searching for an optimal solution in a finite or countably infinite set of potential solutions. Optimality is defined with respect to some criterion function, which is to be minimized or maximized. This is typically called cost function or objective function. \n", + "\n", + "**Typical optimization problems**\n", + "\n", + "Minimization: cost, distance, length of a traversal, weight, processing time, material, energy consumption, number of objects\n", + "\n", + "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", + "\n", + "We consider here max-cut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", + "\n", + "\n", + "### Weighted Max-Cut\n", + "\n", + "Max-Cut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given Max-Cut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", + "\n", + "The formal definition of this problem is the following:\n", + "\n", + "Consider an $n$-node undirected graph *G = (V, E)* where *|V| = n* with edge weights $w_{ij}>0$, $w_{ij}=w_{ji}$, for $(i, j)\\in E$. A cut is defined as a partition of the original set V into two subsets. The cost function to be optimized is in this case the sum of weights of edges connecting points in the two different subsets, *crossing* the cut. By assigning $x_i=0$ or $x_i=1$ to each node $i$, one tries to maximize the global profit function (here and in the following summations run over indices 0,1,...n-1)\n", + "\n", + "$$\\tilde{C}(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j).$$\n", + "\n", + "In our simple marketing model, $w_{ij}$ represents the probability that the person $j$ will buy a product after $i$ gets a free one. Note that the weights $w_{ij}$ can in principle be greater than $1$, corresponding to the case where the individual $j$ will buy more than one product. Maximizing the total buying probability corresponds to maximizing the total future revenues. In the case where the profit probability will be greater than the cost of the initial free samples, the strategy is a convenient one. An extension to this model has the nodes themselves carry weights, which can be regarded, in our marketing model, as the likelihood that a person granted with a free sample of the product will buy it again in the future. With this additional information in our model, the objective function to maximize becomes \n", + "\n", + "$$C(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j)+\\sum_i w_i x_i. $$\n", + " \n", + "In order to find a solution to this problem on a quantum computer, one needs first to map it to an Ising Hamiltonian. This can be done with the assignment $x_i\\rightarrow (1-Z_i)/2$, where $Z_i$ is the Pauli Z operator that has eigenvalues $\\pm 1$. Doing this we find that \n", + "\n", + "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Generating a graph of 4 nodes \n", + "\n", + "n=4 # Number of nodes in graph\n", + "G=nx.Graph()\n", + "G.add_nodes_from(np.arange(0,n,1))\n", + "elist=[(0,1,1.0),(0,2,1.0),(0,3,1.0),(1,2,1.0),(2,3,1.0)]\n", + "# tuple is (i,j,weight) where (i,j) is the edge\n", + "G.add_weighted_edges_from(elist)\n", + "\n", + "colors = ['r' for node in G.nodes()]\n", + "pos = nx.spring_layout(G)\n", + "default_axes = plt.axes(frameon=True)\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0. 1. 1. 1.]\n", + " [1. 0. 1. 0.]\n", + " [1. 1. 0. 1.]\n", + " [1. 0. 1. 0.]]\n" + ] + } + ], + "source": [ + "# Computing the weight matrix from the random graph\n", + "w = np.zeros([n,n])\n", + "for i in range(n):\n", + " for j in range(n):\n", + " temp = G.get_edge_data(i,j,default=0)\n", + " if temp != 0:\n", + " w[i,j] = temp['weight'] \n", + "print(w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Brute force approach\n", + "\n", + "Try all possible $2^n$ combinations. For $n = 4$, as in this example, one deals with only 16 combinations, but for n = 1000, one has 1.071509e+30 combinations, which is impractical to deal with by using a brute force approach. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "case = [0, 0, 0, 0] cost = 0.0\n", + "case = [1, 0, 0, 0] cost = 3.0\n", + "case = [0, 1, 0, 0] cost = 2.0\n", + "case = [1, 1, 0, 0] cost = 3.0\n", + "case = [0, 0, 1, 0] cost = 3.0\n", + "case = [1, 0, 1, 0] cost = 4.0\n", + "case = [0, 1, 1, 0] cost = 3.0\n", + "case = [1, 1, 1, 0] cost = 2.0\n", + "case = [0, 0, 0, 1] cost = 2.0\n", + "case = [1, 0, 0, 1] cost = 3.0\n", + "case = [0, 1, 0, 1] cost = 4.0\n", + "case = [1, 1, 0, 1] cost = 3.0\n", + "case = [0, 0, 1, 1] cost = 3.0\n", + "case = [1, 0, 1, 1] cost = 2.0\n", + "case = [0, 1, 1, 1] cost = 3.0\n", + "case = [1, 1, 1, 1] cost = 0.0\n", + "\n", + "Best solution = [1, 0, 1, 0] cost = 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOX1+PHPk2USEkgISdgSQhYEQUAgqUtdKO7f/ixqrVatW6siWBfCjqAo+yIQrfsCorZaVGqpO4pr1QoICiIImQQSIEDIvs0kmef3x01iQhISkpm5s5z36zUvJjN35p4Mk3Pvfe55zlVaa4QQQviXALMDEEII4X6S/IUQwg9J8hdCCD8kyV8IIfyQJH8hhPBDkvyFEMIPSfIXQgg/JMlfCCH8kCR/IYTwQ0FmB9CamJgYnZiYaHYYQgjhVbZs2ZKvtY5tazmPTf6JiYls3rzZ7DCEEMKrKKX2tWc5GfYRQgg/JMlfCCH8kCR/IYTwQ5L8hRDCD0nyF0IIPyTJXwgh/JDHlnoKcTLKy+Hzz2HbNti0CQoLjcd79oQzzoARI+DccyEkxNw4hfAUkvyFVzt0CJ56Ct54A2pqoLoaQkMhMPCX57/9FoKDjcR/881w++0QFWVu3EKYTYZ9hFfSGl5/HS66CF55BSwWiIiA6GgIDzc2AKGh0LWr8VhEBChlbCguuAA2bjT7NxDCXJL8hdeprYWpU2HGDAgIgB49IKgdx7AWi7GszQZ33AHLlxsbESH8kQz7CK+iNUyfDv/6F0RGGsn/ZIWFGUNATz5pDA9NnOj8OIXwdLLnL7zKunWdS/z1AgOhWzd4/HH4+mvnxSeEt5DkL7zG4cPw4IPGnntnEn+9oCDjRPDEiUa1kBD+RJK/8BrPPgtVVc4t1wwPh/x8o1pICH8iyV94hYoKeO01o3qnLbW1JeTmTmHXrnPZu/dyiovfP+HyoaHwzDPgcDgpWCG8gCR/4RW++sqo4w8ObnvZvLzFKBXMwIEf0rfvfPLyFmGzWVtdPjQUjh2DnTudGLAQHk6Sv/AK338PdnvbyzkclZSWbiQ2dgIBAWGEhY2gW7fRFBe/0+prlDLKRyX5C38iyV94hU2b2jfWb7fvBwKxWBIaHgsJOeWEe/5glJBu3drJIIXwIlLnL7xCUdEvLRtOxOGoICAgnMrKSkpKiunSpQu1tRZqa8tO+LrAQGPoRwh/Iclf+JSAgDBqakqxWjOxWCxUV9dQWpqL3W5n7969hISEEBJiqfs3BIvFQkBAO7YqQvgYSf7CK/TuDVYrdOly4uWU6o3NVkl8vIOSkgDi4+M5eLCYwMBUoqL6YbPZsNlslJWVU1BQgM1mJzAwEK2j2L//Z9atyyM5OZmkpCQiIyPd88sJYQJJ/sIrnHGG0bL5RByOWg4cyKdbtzHY7a9SU3MdpaWbKS39jMTE1VgsIVgsIXTr1vhVmurqagoKajj11Cq2b9/O+vXrsVqthIaGkpSURFJSEsnJySQmJpKcnEx0dDRKKVf+ukK4nCR/4RVOP72tMk/NgQMH6NIljJ49H+LgwbnYbLeTm9uDvn1nEhKS3MrrFEFBFkJDLdxzzwWkpFxgvJvWHD16lKysLLKysti7dy8bNmzAarVSW1vbcHTQeMPQu3dvApwx9VgIN5DkL7zCmWcaE7xstparfg4fPozWmt69e6OUol+/5YSHH8NmsxMZ2eeE711eDqecAsmNtg9KKXr27EnPnj0588wzmyxfWFjYsFHIysriq6++Ijs7m9LSUvr3799swxAXF0dge85WC+FGkvyFVwgKgttuM9owH5/8i4oKKSsrIzExqclwTFhYOIX1l/RqhdbG5LHx4416//aIiooiKiqKUaNGNXm8rKysyUbhrbfewmq1kp+fT79+/Ro2BvUbhoSEBCwWS/tWKoSTSfIXXuPmm2HNGigpMXryAFRUlHPkyFESE/s327sODQ2htraWmppqgoJaHjMqKYFBg+C3v+18fF27dmXYsGEMGzasyeNVVVXs27ePrKwsrFYrH374IVlZWRw8eJDevXs3Gz5KTEwkLCys8wEJcQJKe+jVLNLS0vTmzZvNDkN4mK+/hptuMpK/1jays/cRFxdHeP3W4Dg5OTlERkYQEdG8csdmM2YNv/22MezjbtXV1eTk5DQcKVitVrKzs9m3bx89evRo2Cg03jBERES4P1DhVZRSW7TWaW0t55Q9f6XUZcCjQCDwvNZ6cSvLXQ28AfxKay2ZXZy0s882LuaycKGDgoKDxMbGtpr4AcLDw6ioqGiW/G02qKyEjAxzEj9AcHAwycnJJCc3PRntcDg4cOBAw0Zh27ZtrFu3juzsbLp06dJs+Cg5OZmoqCipQBInpdN7/kqpQOBn4GIgF9gEXK+13nncct2AdwALcHdbyV/2/EVrampquPjiV9m+/XKio6OOK91sqqqqkoMHD5KcnAIYY/wlJcb1AJYvh8svd1PQTqC15siRI1it1ibnFqxWo3VF441B/f1evXrJRsHPuHPP/wxgr9baWrfi14ArgOPbZM0DlgBTnbBO4ceWL1/O0KG5PPLIDaSnw8GDRhloWFjzk7ahoaFUV9dQXV1DVVUQtbUweLCxx5+SYk78HaWUolevXvTq1Yuzzz674XGtdUMFUv2G4YsvviArK4uKigoSExObbRji4uKkLNXPOSP5xwE5jX7OBZrUximlRgH9tNbvKKUk+YsOW7t2LZs3b2b16tV07RrIhx/Cf/4DTz8NOXXfwpqaX/oA1dQogoKiyM+3k5YWxLhxcNll7esT5C2UUvTo0YMePXqQmpra5LnS0tImRwlvvPEGWVlZHDt2jP79+zc7r9CvXz+C29M3W3g9l1f7KKUCgBXAre1YdhwwDiAhIaGNpYW/+eabb3j++edZtWoVXeuu6hIaCtdcA3/4A2RmGm2Zt20zrs6lFPTpA/n52wkO3s2iRXeZ/Bu4X7du3Rg+fDjDhw9v8nhlZSXZ2dkNG4X3338fq9VKXl4effr0aTJ0lJSURGJiIqGhoSb9FsIVnDHmfzbwkNb60rqfZwJorRfV/RwJZAL1bRV7AwXA2BON+8uYv2gsOzubO+64gyVLljSrr2/Lzp07eeihh1i7dq2LovMddrudnJycZucV9u/fT0xMTIvnFbq25/Jqwm3cOea/CThFKZUEHACuA26of1JrXQzENArsU2CKVPuI9iouLmbixIncc889J534AQYNGsThw4cpLCwkKirKBRH6DovFQkpKCinHnRCpra1tqECyWq1s3ryZ119/nezsbLp27dps+CgpKUk+6xMpLjY6FVZVGTMY4+KMw1Q3npzvdPLXWtcope4GPsAo9Vyltf5RKTUX2Ky1Xt/ZdQj/VV1dzdSpUxkzZgxjx47t0HsEBgYyYsQItm7dygUXXODkCP1DYGAgCQkJJCQkMHr06IbHHQ4Hhw8fbjhC+Omnn3j33XfJysoiICCg2fBRcnIysbGx/lmBZLXCK6/AO+8Y45KNZ3fX1BhT13/9a7j1VjjrLKMkzYVkkpfwWFpr5s+fT0FBAcuXL+9UdcpLL71EXl4e06ZNc2KEojVaawoKClosS62qqmo2dJSUlETfvn19swLpyBG4/3749FOj1jgszEj8x28Aa2qgrMx4PC4OVqyADhzpunWSlxCu8Oqrr/Ljjz+yatWqTieF1NRU5s2b56TIRFuUUkRHRxMdHc2vfvWrJs+VlJQ0KUvdtGkTWVlZFBYWNlQgNd4w9OvXj6AgL01V770HU6cawzuRkSce1gkKgu7djQ3EoUNw7bXw5z/DjBkuKU/z0k9U+Lovv/ySl156idWrVzulz82pp57KwYMHKSoqonv37k6IUHRUREQEp59+OqeffnqTxysqKhoqkKxWK2+//TZZWVkcPnyYuLi4ZsNH/fv3J6Q9F3Y2y2uvwaxZxhWITuY7pxR06wa1tfDCC3DgADz2mLFxcCIZ9hEeJzMzkzvvvJMVK1Y0K1HsjHvvvZerrrqKMWPGOO09hevZ7faGxniNh49yc3OJjY1tNnyUlJR0wpYfbvHZZ0Yb2vohno7SGgoL4cYbYe7cdr2kvcM+kvyFRykoKODWW29l/Pjx/NYZrTYbefHFF8nPz2fKlClOfV9hjpqaGg4cONDkvILVamXfvn1ERES0eF7BLUd9RUUwZozRQMoZ3Vlra6G0FF5+2Whu1QYZ8xdex263M3XqVC677DKnJ34wxv0XLVrk9PcV5ggKCqJ///7079+/ydGcw+EgLy+vYWOwY8cO/vOf/5CVlUVwcHCLcxViYmKcV4G0eLHRQMpZpa6BgUb/kvR0+OKLti5p126S/IVH0FqzYMECoqOjGT9+vEvWMXjwYHJzcykpKZHWyD4sICCAvn370rdvX84555yGx7XW5OfnNzlK+Pjjj8nKysJutzfrlJqUlHTyl+YsKIB166Ad368HDhzg24oKKh0OYoKCuDk6mitbOzIJDzfe+5NP4JJL2h/PCUjyFx5hzZo1ZGZm8txzz7ms3C8oKIjhw4ezdevWJrXqwj8opYiNjSU2NpYzzjijyXNFRUVNzil88803ZGVlUVJS0uzSnElJScTHx7dcgfTWW+BwtKs6588xMTwQHIwlIIBsm41x+/YxKCSEwV26tP6i556T5C98xyeffMLatWt58cUX6XKiL74TjBo1ii1btkjyF010796dkSNHMnLkyCaPl5eXk52d3XBeYf369WRlZXHkyBHi4+ObX1vh/ffbfb3m5EaVSgpj45RbXd168u/aFbZuNa5A5ITLf0ryF6bavXs3CxYs4LHHHqNnz54uX19aWhpLlixx+XqEbwgPD+e0007jtNNOa/K4zWZrcmnOjz76iCyrlcXvvosKDia4qAhLSAghdTeLxUJgC0e0i/Py+E9RETatGRQayjkn6pMUEGCUe+7ZA8fF0xGS/IVp8vPzmTRpEtOnT2fIkCFuWefgwYPJycmRcX/RKSEhIQwcOJCBAwf+8mBJCXrkSOxhYdjsdmw2G+VlZRQUFGC32QgMDDQ2BPUbBYuFqbGxTOvVix8qK9lSUYGlrZPOWsO+fZL8hfey2WxMnjyZK6+8kosvvtht6w0ODmbo0KFs27aN888/323rFX7AbkcFBDTs7Te+xJzG6FNls9mw2WxUVlRQUFBAbW0tp5xyCiPCwni3uJg3Cgu5rkeP1tehtdEGwgl8sJGG8HRaax5++GHi4uK4/fbb3b7+1NRUtmzZ4vb1Ch9nsRgne1uYO6UAS3Aw3bp2JSY6ml69ewMYJaZ1y9QCuXb7idehlFPG+0GSvzDB888/z4EDB5gzZ44p3R1TU1P57rvv3L5e4eO6dTNubeyZa+DH/fvZFBBAaGQkDq35uqyMD4qLOaM9M5MTE50Srgz7CLfasGEDb731FmvWrDGtL8uQIUPIzs6mrKxMLkQinEcpGDoUNm1qdSKWBvLy8lBK8THw9J49OIA+wcFM7tWL8xsNFTXjcBg3J118WpK/cJudO3eyZMkSnnjiCWJiYtp+gYtYLJaGcf9zzz3XtDiED7rsMvjmm1afLigooKKigiGJiTx3svNZSkvhzDOdNsNXhn2EWxw5coQpU6Ywe/ZsBg0aZHY4DfX+QjjV2LFGOWYLQz+lZWUcO3aMfv36tVj22Sal4I47nBCkQZK/cLnKykomTZrEtddey29+8xuzwwHkpK9wkYgIuP5646IsjVTZbBw6eJD4+HgsHdlzLy01LvPoxCNVSf7CpRwOB3PmzCElJYVbbrnF7HAaDB06lKysLMrLy80ORfiayZMhOhrqvls1NTXk5OTQq3dvwjoyg7221rg9+qhTL+oiyV+41NNPP82xY8eYNWuWR1231WKxMGTIEL7//nuzQxG+pmtX+NvfoKYGR1UVObm5dO/enciOTCp0OIwOoXfeCSNGODVMSf7CZd59913ef/99li1bhsVJtcnOlJqailwzQrjEGWfgyMig4MABwpXqWIFDdbVxbYA//tE4mnAySf7CJX744QdWrFjBypUr6XGiGYsmknp/4UrP7N/PM7/+NTH9+qGKioyhm/bQGoqLobLSuP7v/PlGXx8nk+QvnO7QoUNMmzaNhx56iBQn1SS7wtChQ8nMzKSiosLsUISPeffdd3nvvfeY8PLLBHz6KVx1lXESuLAQKiqM4ZzGtDau/FVYaAzznHYavP02TJjgksQPkvyFk1VUVJCens5NN93k8TX0ISEhDB48WMb9hVNt27aNlStXkpGRYRz1RkTAsmXw3//CpEmQkGBU75SWGieFy8qM4Z3ISLj2Wvj3v43rAjRuGucCMslLOI3D4WDWrFkMHTqUG264wexw2qW+3v/sdlwbVYi2HDhwgOnTpzN37lySk5ObPtmzJ/z1r8atuhpyc42hneBgo4zTzbPNJfkLp3n88ccpLy9n6dKlHlXZcyKpqak89dRTZochfEBpaSn33Xcft99+e9s7E8HBkJTknsBaIclfOMX69evZuHEja9asIdhJ08/dYdiwYezZs4fKykqXX0VM+K6amhqmT5/OWWedxTXXXGN2OO0iY/6i07777jv+9re/kZGRQWRkpNnhnJTQ0FAGDRrEDz/8YHYowktprVm6dCnBwcFMmjTJ7HDaTZK/6JTc3FxmzJjBvHnzSHRSq1l3kz4/ojNeffVVfvjhBxYtWkSAiypzXMF7IhUep6ysjPT0dG6//XbOOusss8PpsLS0NEn+okO++OILXn75ZVauXElYWJjZ4ZwUpyR/pdRlSqndSqm9SqkZLTw/SSm1Uyn1g1LqY6VUf2esV5intraWmTNnkpaWxrXXXmt2OJ0ybNgwdu/eTVVVldmhCC/y888/M3fuXJYtW0afPn3MDuekdTr5K6UCgSeA/wOGANcrpY6/GvdWIE1rPRx4A1ja2fUKc61cuZLa2lomu2Daubt16dKFgQMHyri/aLf8/HwmTZrEtGnTGDp0qNnhdIgz9vzPAPZqra1aazvwGnBF4wW01p9oreunUX4DxDthvcIkb775Jl9//TWLFy8mKMg3CsakxbNor6qqKiZNmsSVV17JxRdfbHY4HeaM5B8H5DT6ObfusdbcBrznhPUKE2zatIlnnnmGlStXEtGRLoUeSvr8iPaob1GemJjIbbfdZnY4neLW3Tal1I1AGjC6lefHAeMAEhIS3BiZaI/9+/cza9YsFi5c6HP/P8OHD2fXrl3YbDbTri0sPN/TTz9Nfn4+Tz31lNdMZGyNM/b8DwD9Gv0cX/dYE0qpi4BZwFitta2lN9JaP6u1TtNap8XGxjohNOEsJSUlTJw4kQkTJpCWlmZ2OE4XFhbGgAED2L59u9mhCA/1zjvv8MEHH/DII494ZIvyk+WM5L8JOEUplaSUsgDXAesbL6CUGgk8g5H4jzhhncKN6mcvnnvuuVx11VVmh+MyUu8vWrN161YyMjJYuXIlUVFRZofjFJ1O/lrrGuBu4APgJ2Ct1vpHpdRcpdTYusWWAV2B15VS25RS61t5O+Fh6mcvWiwWJk6caHY4LiUnfUVLcnJymD59OvPnz2/erM2LOWXMX2v9LvDucY892Oj+Rc5Yj3C/tWvXsm3bNlavXu1Vsxc7YsSIEfz000/Y7XafOKwXnVc/3HnnnXdy5plnmh2OU/n2X7PolK+++opVq1aRkZFBeHi42eG4XFhYGMnJyezYscPsUIQHqKmpYcaMGZxzzjlcffXVZofjdJL8RYusVitz5sxhyZIl9O3b1+xw3Eau6yvAP4Y7JfmLZoqKikhPT+e+++5jxIgRZofjVlLvL8Bo1rZ9+3YWLlzos8OdvvlbiQ6rrq5m6tSpXHTRRVx++eVmh+N2I0aM4Mcff8Rut5sdijDJ559/7rXN2k6GJH/RQGvNokWLiIiI4K9//avZ4ZgiPDycpKQkfvzxR7NDESb4+eefmTdvHo888gi9e/c2OxyXkuQvGrzyyivs2rWLefPm+eyhbntIvb9/ys/PJz09nenTp3PaaaeZHY7L+e9fuGji888/5x//+AcrVqzw6UPd9pBxf/9T36zt6quv5qKL/KMyXZK/YM+ePcydO5elS5f6/KFue4wYMYIdO3ZQXV1tdijCDRwOBw8++CCJiYn8+c9/Njsct5Hk7+cKCgqYNGkSU6dOZdiwYWaH4xG6detGQkICO3fuNDsU4QZPPfUUBQUFzJ492+ubtZ0MSf5+zG63M2XKFP7f//t/XHrppWaH41Fk3N8/vP3222zYsMFnmrWdDEn+fkprzbx584iNjWXcuHFmh+Nx5Lq+vu+7777jscceY+XKlXTv3t3scNxOkr+fWr16NdnZ2Tz88MN+XdnTmhEjRrB9+3ZqamrMDkW4QE5ODjNmzGD+/PkkJSWZHY4p5K/eD23cuJE33niD5cuXExoaanY4HikiIoL4+HgZ9/dB9c3axo8fzxlnnGF2OKaR5O9ndu3axcKFC1m+fDk9e/Y0OxyPJi2efU/9tSnOOeccfv/735sdjqkk+fuRo0ePMmnSJGbOnMngwYPNDsfjSb2/b9Fas2TJEkJDQ322WdvJkOTvJ6qqqpg8eTJXX301F154odnheIWRI0fy/fffy7i/j/j73//Ojh07WLBggZznQpK/X3A4HDz88MMkJCTwl7/8xexwvEZkZCRxcXHs2rXL7FBEJ3322Wf8/e9/JyMjw+9nsNeT5O8Hnn/+eQ4dOsSDDz7oV5NYnEHq/b3f7t27mT9/PsuXL6dXr15mh+MxJPn7uA8//JD169ezfPlyv5vE4gxy0te71Z/nmjFjBkOGDDE7HI8iyd+H7dixg6VLl7JixQqio6PNDscrjRo1iu+//57a2lqzQxEnqbKysqFZm5znak6Sv486fPgwU6dO5cEHH2TgwIFmh+O1unfvTu/evdm9e7fZoYiT4HA4mDNnDikpKX7VrO1kSPL3QRUVFaSnp3P99ddz/vnnmx2O15Pr+nqfJ598ksLCQu6//345z9UKSf4+pr497aBBg7jpppvMDscnSL2/d1m/fj0fffQRy5Ytk/NcJyDJ38c8+eSTFBcXM3PmTNnjcZKRI0eybds2HA6H2aGINnz33Xc8/vjjZGRk+GWztpMhyd+HvPPOO3z44YcsXbpU9nicqEePHvTs2VPG/T3c/v37G5q1JSYmmh2Ox5Pk7yO+//57MjIyyMjIICoqyuxwfI7U+3u2+mZtEyZM8OtmbSdDkr8POHjwINOmTePhhx8mOTnZ7HB8koz7e67q6mqmTZvGeeedx1VXXWV2OF5Dkr+XKy8vJz09nVtvvZVf//rXZofjs0aNGsXWrVtl3N/DaK1ZvHgxYWFh3HfffWaH41Uk+Xsxh8PBrFmzOP3007nuuuvMDsenRUdHEx0dzZ49e8wORTTyyiuv8NNPPzF//nxp1naSnPJpKaUuU0rtVkrtVUrNaOH5EKXUP+ue/59SKtEZ6/V3jz76KDabjWnTpklljxvIuL9n+fTTT3n11VdZuXKlNGvrgE4nf6VUIPAE8H/AEOB6pdTxTTRuAwq11gOAlcCSzq7X37311lt88cUXLFmyhKCgILPD8QtyXV/PsWvXLubPn88jjzwizdo6yBl7/mcAe7XWVq21HXgNuOK4Za4A1tTdfwO4UMmuaodt2bKFJ598kpUrVxIREWF2OH5Dxv09w5EjR5g0aRL333+/NGvrBGck/zggp9HPuXWPtbiM1roGKAak01gH5OTkMHPmTObPn0///v3NDsevxMTE0L17d/bu3Wt2KH6rvlnbtddeywUXXGB2OF7No86QKKXGKaU2K6U2Hz161OxwPE5paSnp6emMGzdOaplNIi2ezeNwOHjggQcYMGAAt9xyi9nheD1nJP8DQL9GP8fXPdbiMkqpICASOHb8G2mtn9Vap2mt02JjY50Qmu+ora1l5syZnHnmmfzhD38wOxy/JfX+5nn88ccpKSlh1qxZUuDgBM5I/puAU5RSSUopC3AdsP64ZdYD9ZvqPwAbtdbaCev2G8uXLwdg0qRJJkfi30aNGsV3330n4/5utn79ej755BOWLVtGcHCw2eH4hE6XiWita5RSdwMfAIHAKq31j0qpucBmrfV64AXgZaXUXqAAYwMh2un111/n22+/ZfXq1QQGBpodjl/r2bMnERERWK1WBgwYYHY4fmHLli08/vjjPPfcc0RGRpodjs9wSo2g1vpd4N3jHnuw0f0q4BpnrMvf/O9//+O5555j1apVdOvWzexwBL/U+0vyd739+/czc+ZMFixYIAUOTuZRJ3xFU9nZ2cyePZvFixcTHx9vdjiijpz0dY/6Zm133XUXv/rVr8wOx+dI8vdQxcXFpKenc/fddzNq1CizwxGN1J/0lXF/16murmbq1KmMHj2aK6+80uxwfJIkfw9U36Vw9OjRXHHF8fPlhNl69epFeHg4WVlZZofik7TWLFq0iPDwcO655x6zw/FZkvw9jNaapUuXEhYWxr333mt2OKIVMvTjOi+//HJD+wZp1uY68sl6mFdffZUffviBBQsWyBffg0nyd41PPvmE1157jYyMDGnW5mKSXTzIf//7X9asWSNdCr1Afb2/TFdxnl27drFgwQKWL19Oz549zQ7H50ny9xCZmZk89NBDLFu2jL59+5odjmhDnz596NKli4z7O0njZm2DBw82Oxy/IMnfAxQWFpKenk56ejrDhw83OxzRTvV7/6JzKisrSU9P549//KM0a3MjSf4ms9vtTJ06lUsvvZTf/va3ZocjToKM+3defbO2QYMGcfPNN5sdjl+R5G8irTULFy4kKiqKCRMmmB2OOEn1yV/G/TuuvlnbzJkzpVmbm8kloEz08ssv8/PPP/PCCy9IZY8X6tOnDxaLhX379pGYmGh2OF7nrbfe4tNPP2X16tXSrM0EknFM8tlnnzWUtHXp0sXscEQHKKVk3L+DNm/ezJNPPklGRoY0azOJJH8T/Pzzz8ybN49ly5ZJSZuXS0tLY/PmzWaH4VX279/P/fffz8KFC0lISDA7HL8lyd/Njh07xqRJk5g2bRqnnXaa2eGITpJ6/5NTXFzMfffdx1//+lfS0tLMDsevSfJ3I5vNxuTJkxk7diyXXHKJ2eEIJ4iLiyMgIICcnJx9mhS4AAAZpUlEQVS2F/Zz9c3axowZIz2rPIAkfzfRWjN37lz69u3LHXfcYXY4wkmUUlLy2Q71zdoiIiK4++67zQ5HIMnfbVatWkVOTg5z5syRkjYfI8m/bS+99BK7d+9m3rx5UtnmIeR/wQ0++ugj1q1bx4oVKwgJCTE7HOFkMu5/Yhs3buSf//wnK1eulMo2DyLJ38V27tzJ4sWLWbFiBTExMWaHI1ygX79+aK3Jzc01OxSP89NPP7Fw4UJWrFghlW0eRpK/Cx05coQpU6Ywa9YsBg0aZHY4wkWk3r9lR44cYfLkycyePZtTTz3V7HDEcST5u0hVVRWTJ0/mmmuuYcyYMWaHI1xMxv2bqqioYOLEiVx33XX85je/MTsc0QJJ/i7gcDiYM2cOSUlJ3HrrrWaHI9xA+vz8wuFwNOzt33TTTWaHI1ohyd8FnnnmGY4ePcrs2bOlssdPJCQkUFNTw8GDB80OxXR/+9vfqKiokGZtHk4auznZ+++/z3vvvceLL76IxWIxOxzhJo3r/ePi4swOxzRvvfUWn332GS+++KI0a/NwsufvRNu3b+eRRx5hxYoV9OjRw+xwhJv5+7j/t99+29CsLSIiwuxwRBsk+TtJXl4eU6dOZc6cOQwYMMDscIQJ/LniZ9++fcyePZtFixZJszYvIcnfCSoqKkhPT+fGG2/kvPPOMzscYZLExERsNpvfjfsXFxczceJE7r77blJTU80OR7STJP9Oqq9sGDJkCH/605/MDkeYyB/r/esvQzpmzBjGjh1rdjjiJEjy76THH3+csrIyZsyYIZUNwq/G/esvQxoZGSnN2rxQp5K/UqqHUmqDUmpP3b9RLSwzQin1tVLqR6XUD0qpP3ZmnZ7kP//5Dxs3bmTp0qVS2SAA/0r+a9asYe/evcydO1eatXmhzv6PzQA+1lqfAnxc9/PxKoCbtdanAZcBGUqp7p1cr+m2bt3KY489xsqVK+ne3et/HeEkSUlJVFRUkJeXZ3YoLrVx40bWrl0rzdq8WGeT/xXAmrr7a4Arj19Aa/2z1npP3f2DwBEgtpPrNdWBAweYPn06c+fOJSkpyexwhAfxh3H/nTt3NjRri4316j9lv9bZ5N9La32o7n4e0OtECyulzgAsQGYn12ua8vJy0tPTuf322zn77LPNDkd4IF++ru/hw4eZMmUKDzzwgDRr83JtzvBVSn0E9G7hqVmNf9Baa6VUq41NlFJ9gJeBW7TWjlaWGQeMAzyyVri2tpaZM2cyatQorrnmGrPDER5q1KhR/OMf/zA7DKerL2m+/vrrGT16tNnhiE5qM/lrrS9q7Tml1GGlVB+t9aG65H6kleUigHeAWVrrb06wrmeBZwHS0tI8rkPWo48+Sk1NDVOmTJHKHtGq5ORkSktLOXLkiM/0sG9c0nzjjTeaHY5wgs4O+6wHbqm7fwvw7+MXUEpZgH8BL2mt3+jk+kyzbt06vvzySxYvXkxQkLREEq0LCAjwuaqfRx99lIqKCqZPny47Pj6is8l/MXCxUmoPcFHdzyil0pRSz9ctcy1wPnCrUmpb3W1EJ9frVps2beLpp5+WniWi3UaNGuUzyX/dunV88cUXUtLsYzq1C6u1PgZc2MLjm4Hb6+6/ArzSmfWYaf/+/cyaNYuFCxd65HkI4ZlSU1NZu3at2WF02rfffsvTTz/N888/Lzs+PkZmZpxASUkJEydOZPz48aSlpZkdjvAiKSkpFBUVcfToUbND6bDs7Gxmz57N4sWLZcfHB0nyb0VNTQ0zZszgnHPO4fe//73Z4QgvExAQ4NX1/kVFRUycOJF77rmHUaNGmR2OcAFJ/q1Yvnw5QUFBTJw40exQhJfy1nH/+mZtF110Eb/73e/MDke4iCT/Fqxdu5YtW7awcOFCAgMDzQ5HeKm0tDSvS/5aaxYsWEBUVBR33XWX2eEIF/LdmsWSEti4Eb79FrZsgWPHjMcjI2HECDjzTLjwQoiObvKyb775hhdeeIFVq1bRtWtXEwIXvmLAgAEUFhaSn59PTEyM2eG0y+rVq7FarTz33HPSrM3H+V7yz8uDxx6Ddeugtta4hYZCfYlaXh689Rb8+98QEACXXQYTJ0JyMllZWTzwwAMsXbrUr6/DKpwjICCAESNG8N1333HJJZeYHU6bPv74Y958801efPFFQkNDzQ5HuJjvJH+t4V//ggcegMpKiIiAliZjBQdDfRfC2lp4+2344AMq7r6byR99xL333svIkSPdG7vwWfWTvTw9+e/cuZPFixfzxBNPSLM2P+Ebx3UOB8yZA1OnGnvzPXq0nPiPFxgIPXrgsFgonzWLh/Pz+d2ll7o+XuE3UlNTPb7iJy8vj8mTJ/PAAw8wcOBAs8MRbuIbyX/+fPj7343x/JCQk3qpBvIKCqgKDWXooUNw773GxkQIJxg4cCBHjx6loKDA7FBaVN+s7U9/+hPnn3++2eEIN/L+5L9xI6xZYwzzdOAEVUFBAVWVlfSNj0d17w4ffgg+2JFRmCMgIICRI0d65N6/w+Fg1qxZDB06VK4/7Ye8O/kXF8PkycbefgdKMkvLyjh27Bj9+vUjMCDA2Hh07WocSeTkuCBg4Y88td4/IyODqqoqadbmp7w7+b/2mlHSGRZ20i+tstk4ePAg8fHxTZtVWSxQXQ3PPuvEQIU/88QOn+vWreO///0vS5YskS61fsp7k39tLTz//C+VOyewtqCAm7KyOHvXLh46eJCamhpycnLo3bs3YS29vls3eOMNKCtzQeDC3wwaNIjDhw9TWFhodijAL83apEutf/Pe5L99u7HX34565JigIG6LiWFsZCRaa3Jzc4mMjCSytS9+UJBx0ve//3Vy0MIfBQYGMmLECLZu3Wp2KGRlZTU0a+vXr5/Z4QgTeW/y37kTamrategFERH8pls3IgIDKS0rIygoqO1aZrsdfvjBCYEKYQz9mH1d3/pmbffee680axNenPy3bTvpl5SXl1NbU0PfuDjaPL0VEgI+ehFu4X5m1/vb7XamTJnCJZdcwuWXX25aHMJzeG/yLyg4qQqf6upqSktKsISEUFlZSU1t7YlfEBhoVBMJ4QSnnnoqBw8epKioyO3r1lozf/58oqOjmTBhgtvXLzyT957mP8ma/qDgYCIiI6mw2Th65Ag2mw2lFCGhoYRYLMa/ISGEhIQYZZ8dWIcQrWk87j9mzBi3rnv16tVkZ2fz7LPPSrM20cB7k3+/fkZJZjspIDwsjG4WC4l9+6IxLthis9mw2WxUVlZSVFSEzWYjICCA7kpxpGtXrOvXk5ycTHJyMmEdKCkVol59vb87k/+GDRt48803WbNmjTRrE014b/IfMeKXTp1tqNWaWq1xAA7A7nAQqBTBQUEEBwXRNTy8YVmNMURUe/Qoe4cMYfPmzaxdu5bs7GyioqJITk4mJSWFlJQUkpOTSUpKkj8q0S6pqaksWrTIbevbsWMHS5cu5YknnvCaltLCfbw3+Q8fbnTy1BramJ34Qn4+z+bnN/z8bnEx42JiGNdCxY8CLMHB0K0bv54wgV+fcQZgTIU/cOAAVquVzMxMvvrqK1555RX27dtHz549SU5OZsCAAQ1HCYmJiVgsFqf+ysK7DR48mNzcXEpKSlxeX5+Xl8fUqVOlWZtoldJamx1Di9LS0nSbpXFXXgk//WRMynKmykrjPb/6qs1x/9raWnJycrBarezduxer1YrVaiU3N5c+ffo0OUpISUkhISFBZlT6sbvvvptrrrmG0aNHu2wdFRUV/OUvf2Hs2LHccMMNLluP8ExKqS1a67S2lvPuLDRunNGFsx17/yelqgomTWrXCd/AwEASExNJTEzkggsuaHi8urqa/fv3k5mZSWZmJh9++CGZmZnk5eURHx/fcJRQv3GIj4+Xk3F+oH7c31XJ3+FwcP/99zN8+HCuv/56l6xD+AbvTv6XXWYM//zwA3Tv7pz3LC2Fvn2hk3tMwcHBDYm9MZvNRnZ2NpmZmVitVtavX09mZibHjh2jf//+TY4SUlJS6NOnj2wUfEhaWhpLlixx2ftnZGRgt9uZNm2aNGsTJ+TdyT8gAFauNDYClZXt6vNzQna70dbhscc6/16tCAkJYdCgQQwaNKjJ4xUVFQ0bhczMTN544w0yMzMpKSkhKSmp2YnmXr16yR+3Fxo8eDA5OTkuGfd/8803+eqrr1i9erUMLYo2ef83pH9/eOopuOMO4+eOJm27HcrLYeFCMOEyjmFhYQwZMoQhQ4Y0ebysrKzhPEJmZiZff/01mZmZVFVVNWwQGm8YoqOjZaPgwYKDgxk6dCjbtm1z6sVTvvnmG5555hlWrVpFN2efAxM+ybtP+Db22WcwYYKRxCMj238OQGujQVxAACxYAH/4Q8cCdrOSkpKGo4T6DUNmZiYOh6PZUUJKSgpRUVFmhyzqvPDCC5SUlJCenu6U97Nardx5550sXbpUrj8t/OSEb2OjR8OGDTBlCmzaZDx2oqt7aW2M72sNAwbAo4+CF5XERUREMHLkyGZ/7AUFBQ0bhL179/LBBx9gtVoJCgpqdpSQnJwsLX1NkJqayvLly53yXoWFhUycOJGJEydK4hcnxXf2/Os5HPDll0av/6++Mnr02O2/HAlobVywpbbWOFl8551w4YXtu+C7l9Jak5+f32SjUD+UFBYW1uwoITk5mfBGE9+Ec9ntdi688ELee+89unbt2qn3mTBhAqmpqdx1111OjFB4M7fs+SulegD/BBKBbOBarXWLV6xQSkUAO4G3tNZ3d2a9JxQQAOefb9yOHTPmAfz4Ixw+bGwYYmNhyBDj1quXy8LwJEopYmNjiY2N5ayzzmp4XGtNXl5ew7DR1q1befPNN8nKyqJ79+4tzmbu4qIT4f7EYrE0jPufe+65HXqP+mZtMTExjB8/3skRCn/QqT1/pdRSoEBrvVgpNQOI0lpPb2XZR4HYuuXbTP4d3vMXneZwODh48GCzo4Ts7GxiY2ObHSnIbOaT99xzz1FRUcF9993Xode/8MILfPbZZzz77LPSXkQ04a4x/yuA39TdXwN8CjRL/kqpVKAX8D7QZlDCXAEBAcTHxxMfH9+kIqW2tpbc3NyGk8uff/45q1evJjc3l969e7c4mzm4nf2X/E1qaioZGRkdeu2GDRv417/+Jc3aRKd0Nvn30lofqrufh5Hgm1BKBQDLgRuBizq5PmGiwMBA+vfvT//+/VudzWy1WtmwYQNPP/10w2zm4080x8fHE3gS12LwRUOHDmXPnqNs3FjJoUNdqKgwTk/17QuDBxtNa1uqVahv1vbkk08SHR3t/sCFz2gz+SulPgJ6t/DUrMY/aK21UqqlMaS7gHe11rlt1Z8rpcYB4wASEhLaCk14iNZmM9vt9iYT195++20yMzM5evRok9nM9a0u+vbt6/Ozme12+OgjePZZCz/++BJ//rMmKMioP1DKqEXQGsLD4c9/hj/+8ZdTU4cOHWLKlCk8+OCDnHLKKeb+IsLrdXbMfzfwG631IaVUH+BTrfWg45b5O3AeRjflroAFeFJrPeNE7y1j/r6rsrKSrKysJvMTrFYrRUVFLc5m7t27t09MXPvuO7jvPsjLM/bqKyuPAg569mxeeGCzGZPWAwONNlPXXVfOuHF/4YorrpBmbeKE2jvm39nkvww41uiEbw+t9bQTLH8rkCYnfEVLysvLGzYIjTcMFRUVDa2yG7fNjo2N9YqNgtaQkQFPPGEk8/oJuBUV5Rw5coTExKRWX1tdDWVlGq13cMMNHzNv3n1e8TsL87jrhO9iYK1S6jZgH3Bt3crTgPFa69s7+f7Cj4SHhzNs2DCGDRvW5PGSkpImG4PPPvsMq9VKTU1Ni7OZe/ToYdJv0JzWMG8erFljJP3G00m6dOmCzWbD4aglIKDlcyDBwWCzHaa0tBdffHEvBQUKGeoXzuB7k7yE3ygoKGjS96j+iCEgIKDZUUJKSgqRkZFuj/G112DWLGOyeUvnuPftyyYmJobw8JYnexUWFlBYWEhiYiIlJYEMGwZvvimXlxatc8uwjytJ8hcdUT+b+fgNQmZmJl26dGlxNnNnZtmeSG4uXHyxsffe2jSIo0ePoDX07Nmz2XPl5WUcPHiQxMREgoMtaA1FRcbG5C9/cUnIwgdI8heiEa01hw8fbjZxzWq1EhER0eQoYcCAAU6ZzXznnUZlz4l66pWXl3P06FESExObPG6z2di3bx/x8fGEhYU1PG63G7evvgIPGt0SHkSSvxDt4HA4OHToULOjhH379hEdHd1sjkJiYiIhISFtvu+hQ3DeeSfuLQhQW1vFzp1TCQ214nCUEhwcT3T0eI4e7UNsbM8Wh6oKC2HmTLhdzqiJFvhfV08hOiAgIIC4uDji4uKazWY+cOBAw1HCl19+yYsvvtgwm/n4E839+/dvMpv5X/8yTva2NTavlMZi6UNs7L1ERqZQVvYFVusUevZ8vtVzFKGhsGqVJH/ROZL8hWhBYGAgCQkJJCQkNJvNnJOT03CU8NFHH5GZmcmhQ4eIi4tr2Ci8/vpYoAcQDLRemhkQ0IUePW6nutpowFdSMoCgoN6Ehx9t9TWhoUafwmPHkMof0WGS/IU4CcHBwQ3nBhqrn81snFPIZPt2jd2ey+HDNiwWCyEhoYSEhDTcLJZfNgphYeEcPXoUpfKx2Y4QGJhPSEhKC2s3KGWcRN650xhaEqIjJPkL4QQWi4WBAwcycOBAqqpg+XJjr1xrBzabreFWVFSIzWajpqaWkBBL3YbAQmlpKXZ7JRbLM0RGXk5ISOIJ11dbC0eOuOd3E75Jkr8QTlZb+8tYv1IBhIZ2ITS0aeWQw1GLzWav2yhUERkZgdaPo5SF3r1bnSTfQGtjPUJ0lCR/IZwsJMRIzlq3finpgIBAunTpQpcuXdBac+jQXKqrS4iPfwyl2v6zDAyERhWgQpw0mScohJMFBUFCgtGcrT3y8hZht2fRr99KAgLaLiOtJ409RWdI8hfCBdLSjK6cbamuPkRR0Tqqqn5mz55L2b37PHbvPo/i4vdafY3DYdyOO+csxEmRYR8hXOB3v4P169teLji4D4MHn9xkxpISuOgio+JHiI6SPX8hXODcc6F7d6iqcu771p9HkN4+orMk+QvhAoGBMHmyMfTjzA4qJSUwdCj86lfOe0/hnyT5C+Ei11xjJOniYue8n91ulJCuXNl6FZEQ7SXJXwgXCQiAFSuM4Z+Sks69V3U1lJfD/PlwXANQITpEkr8QLtS3L/zzn0Z3z6Kijg0BVVQYif/BB42jCSGcQZK/EC6WkgJvvw1nnWVsACoq2rcRqKkx2jd36QIvvAC33OL6WIX/kOQvhBv07g0vvwyPPAIxMVBaanTlLC832jRobdTuV1UZG4jiYmOS2I03wsaNMHq02b+B8DVS5y+EmygFV10FV1wBmzbBhx8a//78s5HoAwOhTx8YNQrOPx8uvRRcdIVJIST5C+FuAQFw5pnGTQizyLCPEEL4IUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CFJ/kII4Yck+QshhB9S2pn9Zp1IKXUU2OfEt4wB8p34fr5KPqe2yWfUPvI5tY+zP6f+WuvYthby2OTvbEqpzVrrNLPj8HTyObVNPqP2kc+pfcz6nGTYRwgh/JAkfyGE8EP+lPyfNTsALyGfU9vkM2of+Zzax5TPyW/G/IUQQvzCn/b8hRBC1PHZ5K+UukYp9aNSyqGUavVMulLqMqXUbqXUXqXUDHfG6AmUUj2UUhuUUnvq/o1qZblapdS2utt6d8dphra+G0qpEKXUP+ue/59SKtH9UZqvHZ/TrUqpo42+P7ebEaeZlFKrlFJHlFI7WnleKaUeq/sMf1BKjXJ1TD6b/IEdwO+Bz1tbQCkVCDwB/B8wBLheKTXEPeF5jBnAx1rrU4CP635uSaXWekTdbaz7wjNHO78btwGFWusBwEpgiXujNN9J/A39s9H353m3BukZXgQuO8Hz/wecUncbBzzl6oB8NvlrrX/SWu9uY7EzgL1aa6vW2g68Blzh+ug8yhXAmrr7a4ArTYzFk7Tnu9H4s3sDuFAppdwYoyeQv6F20Fp/DhScYJErgJe04Rugu1Kqjytj8tnk305xQE6jn3PrHvMnvbTWh+ru5wG9WlkuVCm1WSn1jVLKHzYQ7fluNCyjta4BioFot0TnOdr7N3R13XDGG0qpfu4Jzau4PRd59WUclVIfAb1beGqW1vrf7o7HU53oc2r8g9ZaK6VaK//qr7U+oJRKBjYqpbZrrTOdHavwSf8BXtVa25RSd2IcLV1gckx+z6uTv9b6ok6+xQGg8V5IfN1jPuVEn5NS6rBSqo/W+lDdYeaRVt7jQN2/VqXUp8BIwJeTf3u+G/XL5CqlgoBI4Jh7wvMYbX5OWuvGn8nzwFI3xOVt3J6L/H3YZxNwilIqSSllAa4D/KKSpZH1wC11928Bmh0xKaWilFIhdfdjgHOAnW6L0Bzt+W40/uz+AGzU/jdxps3P6bix67HAT26Mz1usB26uq/o5CyhuNBzrGlprn7wBV2GMm9mAw8AHdY/3Bd5ttNxvgZ8x9mJnmR23CZ9TNEaVzx7gI6BH3eNpwPN1938NbAe+r/v3NrPjdtNn0+y7AcwFxtbdDwVeB/YC3wLJZsfsoZ/TIuDHuu/PJ8CpZsdswmf0KnAIqK7LS7cB44Hxdc8rjKqpzLq/sTRXxyQzfIUQwg/5+7CPEEL4JUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CFJ/kII4Yck+QshhB+S5C+EEH7o/wNFo2AX2TB09QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "best_cost_brute = 0\n", + "for b in range(2**n):\n", + " x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))]\n", + " cost = 0\n", + " for i in range(n):\n", + " for j in range(n):\n", + " cost = cost + w[i,j]*x[i]*(1-x[j])\n", + " if best_cost_brute < cost:\n", + " best_cost_brute = cost\n", + " xbest_brute = x \n", + " print('case = ' + str(x)+ ' cost = ' + str(cost))\n", + "\n", + "colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)\n", + "print('\\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute)) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mapping to the Ising problem" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", + "algo_input = EnergyInput(qubitOp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Using DOcplex for mapping to the Ising problem\n", + "Using ```docplex.get_qubitops``` is a different way to create an Ising Hamiltonian of Max-Cut. ```docplex.get_qubitops``` can create a corresponding Ising Hamiltonian from an optimization model of Max-Cut. An example of using ```docplex.get_qubitops``` is as below. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from docplex.mp.model import Model\n", + "from qiskit.aqua.translators.ising import docplex\n", + "\n", + "# Create an instance of a model and variables.\n", + "mdl = Model(name='max_cut')\n", + "x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)}\n", + "\n", + "# Object function\n", + "max_cut_func = mdl.sum(w[i,j]* x[i] * ( 1 - x[j] ) for i in range(n) for j in range(n))\n", + "mdl.maximize(max_cut_func)\n", + "\n", + "# No constraints for Max-Cut problems." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking that the full Hamiltonian gives the right cost " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.5\n", + "max-cut objective: -4.0\n", + "solution: [0. 1. 0. 1.]\n", + "solution objective: 4.0\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/shu/.virtualenvs/aqua/lib/python3.7/site-packages/networkx/drawing/nx_pylab.py:611: MatplotlibDeprecationWarning: isinstance(..., numbers.Number)\n", + " if cb.is_numlike(alpha):\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOX1+PHPM0kmGySEJGwJIQkIgoBAUpe6UNy//VnUWq22Wm1VBOtC2BEUZV8EonVfQNRWi0otdQdxrVoBQUEEIZNAAgQIScg+Web5/XGTmJCdzMyd5bxfr3kxmbkz92SYnHvvc89zrtJaI4QQwr9YzA5ACCGE+0nyF0IIPyTJXwgh/JAkfyGE8EOS/IUQwg9J8hdCCD8kyV8IIfyQJH8hhPBDkvyFEMIPBZodQEtiYmJ0YmKi2WEIIYRX2bp1a57WOrat5Tw2+ScmJrJlyxazwxBCCK+ilNrfnuVk2EcIIfyQJH8hhPBDkvyFEMIPSfIXQgg/JMlfCCH8kCR/IYTwQx5b6ilEh5SWwmefwfbtsHkzFBQYj/foAWedBSNGwPnnQ3CwuXEK4SEk+QvvdvgwPPUUvPEGVFdDVRWEhEBAwM/Pf/MNBAUZif9Pf4Lbb4eoKHPjFsJkMuwjvJPW8PrrcMkl8MorYLVCRARER0N4uLEBCAmBLl2MxyIiQCljQ3HRRbBpk9m/gRCmkuQvvE9NDUydCjNmgMUC3btDYDsOYq1WY1m7He64A5YvNzYiQvghGfYR3kVrmD4d/vUviIw0kn9HhYUZQ0BPPmkMD02c6Pw4hfBwsucvvMu6dZ1L/HUCAqBrV3j8cfjqK+fFJ4SXkOQvvMeRI/Dgg8aee2cSf53AQONE8MSJRrWQEH5Ekr/wHs8+CxUVzi3XDA+HvDyjWkgIPyLJX3iHsjJ47TWjeqcNRTU1TMnJ4fzdu7ly3z7eP3Gi9ReEhMAzz4DD4aRghfB8kvyFd/jyS6OOPyiozUUX5+YSpBQfDhzI/D59WJSbi81ub/kFISFw/Djs2uXEgIXwbJL8hXf47juorGxzsXKHg03FxUyIjSXMYmFEWBiju3blndb2/pUyykcl+Qs/IslfeIfNm9s11n+gspIAIMFqrX/stODg1vf8wSgh3batk0EK4T2kzl94h8LCn1s2tKLM4SDcYqG8vJwTRUWEhoZiramhpKam9RcGBBhDP0L4CUn+wqeEWSwUV1eTYbNhtVqprqoip7iYyspK9u3bR3BwMNbgYIJrb1arlQBnlI0K4WUk+Qvv0KsX2GwQGtr6YkpRbrfjiI/HUlREfHw8Jw4dIiUggL5RUdjtdux2O6UlJeTn51NptxMQEECU1vx04AC569aRnJxMUlISkZGRbvrlhHA/Sf7CO5x1ltGyuRU1Dgd5Bw8ypmtXXq2s5IbqarYUF/NpcTGrExMJtloJtlqNmb21NFBVVUV1fj4Vp5/Ojh07WL9+PTabjZCQEJKSkkhKSiI5OZnExESSk5OJjo5GKeXiX1gI15LkL7zDmWe2WuapgYMHDxIWGspDPXow99Ahbrfb6Z6Tw8w+fUhu4WSxAqyBgVhDQrjonnu4qH9/4/205tixY2RmZpKZmcm+ffvYsGEDNpuNmpqa+qODhhuGXr16YZEhJOElJPkL73D22cYEL7u92aqfI0eOoLWmV69eKKVY3rcvx8PDqbTb6d3W8E1pKZx2GiQn1z+klKJHjx706NGDs88+u9HiBQUF9RuFzMxMvvzyS7KysiguLqZfv35NNgxxcXEEtONktRDuJMlfeIfAQLjtNqMN80nJv6CwkJKSEpISExsNx4SHhVFQd0WvlmhtTB4bP96o92+HqKgooqKiGDVqVKPHS0pKGm0U3nrrLWw2G3l5efTt27d+Y1C3YUhISMDaoCRVCHeS5C+8x5/+BGvWQFGR0ZMHKC0r49jRo/RLTGyydx0cEkJNTQ1V1dUEtdTvv6gIBg2CX/+60+F16dKFYcOGMWzYsEaPV1RUsH//fjIzM7HZbHz44YdkZmZy6NAhevXq1WT4KDExkbCwsE7HI0RrlPbQi1mkpqbqLVu2mB2G8DRffQU33wzh4di1Zn9WFnFxcYTXbgxOlp2dTURkJJEREU2ftNuNWcNvv20M+7hZVVUV2dnZ9UcKNpuNrKws9u/fT/fu3es3Cg03DBHN/R5CNKCU2qq1Tm1rOafs+SulrgAeBQKA57XWi1tY7lrgDeAXWmvJ7KLjzj0Xpk/HsXAhh/LziY2NbTHxA4SFh1NWVtY0+dvtUF4O6emmJH6AoKAgkpOTSW5wrgHA4XBw8ODB+o3C9u3bWbduHVlZWYSGhjYZPkpOTiYqKkoqkESHdHrPXykVAPwEXArkAJuBG7XWu05arivwDmAF7m4r+cuev2hJdXU1r156KVfu2EFUdHSj0s2TlVdUcOjQIfrXJVitjaEei8U4f3DllW6KuvO01hw9ehSbzdbo3ILNZgNotDGou9+zZ0/ZKPgZd+75nwXs01rbalf8GnAVcHKXrHnAEmCqE9Yp/Njy5cvJGTqUPzzyCKSlwaFDRhloWFiTk7YhISFUV1VRXVVFYEWF0cBt8GBjj7+2rNNbKKXo2bMnPXv25Nxzz61/XGtdX4FUt2H4/PPPyczMpKysjMTExCYbhri4OClL9XPOSP5xQHaDn3OARrVxSqlRQF+t9TtKKUn+4pStXbuWLVu2sHr1agK6dIEPP4T//Aeefhqya7+G1dX1fYBUdTVRgYFU5uURmJoK48bBFVe0q0+Qt1BK0b17d7p3705KSkqj54qLixsdJbzxxhtkZmZy/Phx+vXr1+S8Qt++fQlqR9ts4f1cXu2jlLIAK4Bb27HsOGAcQEJCgmsDE17n66+/5vnnn2fVqlV0qbuoS0gIXHcd/O53kJFhtGXevt24OpdS0Ls3O/Ly2BMUxF2LFpn7C5iga9euDB8+nOHDhzd6vLy8nKysrPqNwvvvv4/NZiM3N5fevXs3GjpKSkoiMTGRkJAQk34L4QrOGPM/F3hIa3157c8zAbTWi2p/jgQygJLal/QC8oGxrY37y5i/aCgrK4s77riDJUuWNKmvb8uuXbt46KGHWLt2rYui8x2VlZVkZ2c3Oa9w4MABYmJimj2v0KUdV1cT7uPOMf/NwGlKqSTgIHAD8Ie6J7XWJ4CYBoF9AkyRah/RXidOnGDixIncc889HU78AIMGDeLIkSMUFBQQFRXlggh9h9VqpX///vQ/6XxITU1NfQWSzWZjy5YtvP7662RlZdGlS5cmw0dJSUnyWbfixAmjT2FFhTF/MS4Oevdu9zxDp+h08tdaVyul7gY+wCj1XKW1/kEpNRfYorVe39l1CP9VVVXF1KlTGTNmDGPHjj2l9wgICGDEiBFs27aNiy66yMkR+oeAgAASEhJISEhg9OjR9Y87HA6OHDlSf4Tw448/8u6775KZmYnFYmkyfJScnExsbKxfViDZbPDKK/DOO8aoZMPJ3dXVxsT1X/4Sbr0VzjnHKEhzJZnkJTyW1pr58+eTn5/P8uXLO1Wd8tJLL5Gbm8u0adOcGKFoidaa/Pz8ZstSKyoqmgwdJSUl0adPH5+sQDp6FO6/Hz75xKg0DgszEv/J27/qaigpMR6Pi4MVK+AUDnTdO8lLCFd49dVX+eGHH1i1alWnk0JKSgrz5s1zUmSiLUopoqOjiY6O5he/+EWj54qKihqVpW7evJnMzEwKCgrqK5Aabhj69u1LYEvtOTzce+/B1KnG8E5kZOvDOoGB0K2bsYE4fBiuvx7+/GeYMcM1xWne+YkKn/fFF1/w0ksvsXr1aqf0uTn99NM5dOgQhYWFdOvWzQkRilMVERHBmWeeyZlnntno8bKysvoKJJvNxttvv01mZiZHjhwhLi6uyfBRv379CG7HdZ3N8tprMGuWcf2hjnzllDLmLdbUwAsvwMGD8NhjxsbBmWTYR3icjIwM7rzzTlasWNGkRLEz7r33Xq655hrGjBnjtPcUrldZWVnfGK/h8FFOTg6xsbFNho+SkpJabfnhDp9+ajShrRviOVVaQ0EB3HQTzJ3bvte0d9hHkr/wKPn5+dx6662MHz+eXzuh02ZDL774Inl5eUyZMsWp7yvMUV1dzcGDBxudV7DZbOzfv5+IiIhmzyu446ivsBDGjDHaRzmjOWtNDRQXw8svG62t2iJj/sLrVFZWMnXqVK644gqnJ34wxv0X+eFEL18VGBhIv3796NevX6OjOYfDQW5ubv3GYOfOnfznP/8hMzOToKCgZucqxMTEOK0CafFio32UsypdAwKM7iVpafD5561e0K5DJPkLj6C1ZsGCBURHRzN+/HiXrGPw4MHk5ORQVFQkrZF9mMVioU+fPvTp04fzzjuv/nGtNXl5eY2OEj766CMyMzOprKxs0ik1KSmpw5fmzM+HdeugPV+vgwcfoKzsGxyOcgIDY4iO/hPdul3d7LLh4cZ7f/wxXHZZu8NplSR/4RHWrFlDRkYGzz33nMvK/QIDAxk+fDjbtm1rVKsu/INSitjYWGJjYznrrLMaPVdYWNjonMLXX39NZmYmRUVFTS7NmZSURHx8fLMVSG+9BQ5H+6pzYmL+TFDQA1gsVuz2LPbvH0dw8CBCQwe3+JrnnpPkL3zIxx9/zNq1a3nxxRcJDQ116bpGjRrF1q1bJfmLRrp168bIkSMZOXJko8dLS0vJysqqP6+wfv16MjMzOXr0KPHx8U2Gj95/P7nd12sODm54HQeFUoqqqpwWk3+XLrBtm3H9IWdc/VOSvzDVnj17WLBgAY899hg9evRw+fpSU1NZsmSJy9cjfEN4eDhnnHEGZ5xxRqPH7XZ7o0tzbty4EZstk3ffXUxQkKKwMIjgYCvBwcEEBwdjtVqxWJpuFHJzF1NY+B+0thMSMoguXc5rskwdi8Uo99y7F04K55RI8hemycvLY9KkSUyfPp0hQ4a4ZZ2DBw8mOztbxv1FpwQHBzNw4EAGDhxY/1hREYwcqQkLq6Sy0o7dbqekpJT8/Hzs9koCAgJqNwbW2g1CMLGxU+nZcxrl5d9TVrYVpVrfpdca9u+X5C+8mN1uZ/LkyVx99dVceumlbltvUFAQQ4cOZfv27Vx44YVuW6/wfZWVYLGo+r39xheY01RVVWG3GxuFsrJy8vPzqamp4bTTTiMsbAQnTrxLQcEbdO9+Q4vr0NpoA+EMvtdIQ3g8rTUPP/wwcXFx3H777W5ff0pKClu3bnX7eoVvs1qNk73NT51SBAVZ6dKlK9HRMfTq1ROAmJgYoK7EtIbKypxW16GUc8b7QZK/MMHzzz/PwYMHmTNnjindHVNSUvj222/dvl7h27p2NW5t75lrDhz4AYtlM5GRIWjtoKTkK06c+IDw8LPaejGJic6IVoZ9hJtt2LCBt956izVr1pjWl2XIkCFkZWVRUlIiFyIRTqMUDB0Kmze3NhFLk5ubW7vT8xF79z4NOAgK6k3PnpPp2rXloUiHw7g569LTkvyF2+zatYslS5bwxBNP1B7umsNqtdaP+59//vmmxSF8zxVXwNdft/x8fn4+ZWVlJCYOwWJ5rkPvXVwMZ5/tvBm+Muwj3OLo0aNMmTKF2bNnM2jQILPDqa/3F8KZxo41yjGbG/opKSnm+PHj9O3bt9myz7YoBXfc4YQga0nyFy5XXl7OpEmTuP766/nVr35ldjiAnPQVrhERATfeaFyUpSG7vYJDhw4THx9PUFDHz9gWFxuXeXTmgaokf+FSDoeDOXPm0L9/f2655Razw6k3dOhQMjMzKS0tNTsU4WMmT4boaKj7alVXV5OdnU2vXj0JDe14m8+aGuP26KPOvaiLJH/hUk8//TTHjx9n1qxZHnXdVqvVypAhQ/juu+/MDkX4mC5d4G9/M4Z+Kioc5ORk061bNyIiIjv8Xg6HMXnszjthxAjnxinJX7jMu+++y/vvv8+yZcuwOqs42YlSUlKQa0YIVzjrLEhPd3DwYD5KhZ9SgUNVlXFtgN//3jiacDZJ/sIlvv/+e1asWMHKlSvp3r272eE0S+r9hSsdOPAMv/zlM/TtG0NhoaKmpn2v0xpOnIDycuP6v/PnG319nE2Sv3C6w4cPM23aNB566CH6O6so2QWGDh1KRkYGZWVlZocifMy7777Le++9x8svT+CTTyxcc41xErigAMrKjOGchrQ2rvxVUGAM85xxBrz9NkyY4JrED5L8hZOVlZWRlpbGzTff7PE19MHBwQwePFjG/YVTbd++nZUrV5Kenk737t2JiIBly+C//4VJkyAhwajeKS42TgqXlBjDO5GRcP318O9/G9cFaNAzziVkkpdwGofDwaxZsxg6dCh/+MMfzA6nXerq/c9tz8VRhWjDwYMHmT59OnPnziU5ObnRcz16wF//atyqqiAnxxjaCQoyyjjdPdlckr9wmscff5zS0lKWLl3qUZU9rUlJSeGpp54yOwzhA4qLi7nvvvu4/fbb29yZCAqCpCQ3BdYCSf7CKdavX8+mTZtYs2YNQc6af+4Gw4YNY+/evZSXl7v8KmLCd1VXVzN9+nTOOeccrrvuOrPDaRcZ8xed9u233/K3v/2N9PR0IiM7XstsppCQEAYNGsT3339vdijCS2mtWbp0KUFBQUyaNMnscNpNkr/olJycHGbMmMG8efNIdFavWTeTPj+iM1599VW+//57Fi1ahMVVpTku4D2RCo9TUlJCWloat99+O+ecc47Z4Zyy1NRUSf7ilHz++ee8/PLLrFy5krCwjrduMJNTkr9S6gql1B6l1D6l1Ixmnp+klNqllPpeKfWRUqqfM9YrzFNTU8PMmTNJTU3l+uuvNzucThk2bBh79uyhoqLC7FCEF/npp5+YO3cuy5Yto3fv3maH02GdTv5KqQDgCeD/gCHAjUqpk6/GvQ1I1VoPB94AlnZ2vcJcK1eupKamhsmumHfuZqGhoQwcOFDG/UW75eXlMWnSJKZNm8bQoUPNDueUOGPP/yxgn9baprWuBF4Drmq4gNb6Y6113TTKr4F4J6xXmOTNN9/kq6++YvHixQQG+kbBmLR4Fu1VUVHBpEmTuPrqq7n00kvNDueUOSP5xwHZDX7OqX2sJbcB7zlhvcIEmzdv5plnnmHlypVERESYHY7TSJ8f0R51LcoTExO57bbbzA6nU9y626aUuglIBUa38Pw4YBxAQkKCGyMT7XHgwAFmzZrFwoULfe7/Z/jw4ezevRu73W7atYWF53v66afJy8vjqaee8pqJjC1xxp7/QaBvg5/jax9rRCl1CTALGKu1tjf3RlrrZ7XWqVrr1NjYWCeEJpylqKiIiRMnMmHCBFJTU80Ox+nCwsIYMGAAO3bsMDsU4aHeeecdPvjgAx555BGPbFHeUc5I/puB05RSSUopK3ADsL7hAkqpkcAzGIn/qBPWKdyobvbi+eefzzXXXGN2OC4j9f6iJdu2bSM9PZ2VK1cSFRVldjhO0enkr7WuBu4GPgB+BNZqrX9QSs1VSo2tXWwZ0AV4XSm1XSm1voW3Ex6mbvai1Wpl4sSJZofjUnLSVzQnOzub6dOnM3/+/CbN2ryZU8b8tdbvAu+e9NiDDe5f4oz1CPdbu3Yt27dvZ/Xq1V41e/FUjBgxgh9//JHKykqfOKwXnVc33HnnnXdy9tlnmx2OU/n2X7PolC+//JJVq1aRnp5OeHi42eG4XFhYGMnJyezcudPsUIQHqK6uZsaMGZx33nlce+21ZofjdJL8RbNsNhtz5sxhyZIl9OnTx+xw3Eau6yvAP4Y7JfmLJgoLC0lLS+O+++5jxIgRZofjVlLvL8Bo1rZjxw4WLlzos8OdvvlbiVNWVVXF1KlTueSSS7jyyivNDsftRowYwQ8//EBlZaXZoQiTfPbZZ17brK0jJPmLelprFi1aREREBH/961/NDscU4eHhJCUl8cMPP5gdijDBTz/9xLx583jkkUfo1auX2eG4lCR/Ue+VV15h9+7dzJs3z2cPddtD6v39U15eHmlpaUyfPp0zzjjD7HBczn//wkUjn332Gf/4xz9YsWKFTx/qtoeM+/ufumZt1157LZdc4h+V6ZL8BXv37mXu3LksXbrU5w9122PEiBHs3LmTqqoqs0MRbuBwOHjwwQdJTEzkz3/+s9nhuI0kfz+Xn5/PpEmTmDp1KsOGDTM7HI/QtWtXEhIS2LVrl9mhCDd46qmnyM/PZ/bs2V7frK0jJPn7scrKSqZMmcL/+3//j8svv9zscDyKjPv7h7fffpsNGzb4TLO2jpDk76e01sybN4/Y2FjGjRtndjgeR67r6/u+/fZbHnvsMVauXEm3bt3MDsftJPn7qdWrV5OVlcXDDz/s15U9LRkxYgQ7duygurra7FCEC2RnZzNjxgzmz59PUlKS2eGYQv7q/dCmTZt44403WL58OSEhIWaH45EiIiKIj4+XcX8fVNesbfz48Zx11llmh2MaSf5+Zvfu3SxcuJDly5fTo0cPs8PxaNLi2ffUXZvivPPO47e//a3Z4ZhKkr8fOXbsGJMmTWLmzJkMHjzY7HA8ntT7+xatNUuWLCEkJMRnm7V1hCR/P1FRUcHkyZO59tprufjii80OxyuMHDmS7777Tsb9fcTf//53du7cyYIFC+Q8F5L8/YLD4eDhhx8mISGBv/zlL2aH4zUiIyOJi4tj9+7dZociOunTTz/l73//O+np6X4/g72OJH8/8Pzzz3P48GEefPBBv5rE4gxS7+/99uzZw/z581m+fDk9e/Y0OxyPIcnfx3344YesX7+e5cuX+90kFmeQk77ere4814wZMxgyZIjZ4XgUSf4+bOfOnSxdupQVK1YQHR1tdjheadSoUXz33XfU1NSYHYrooPLy8vpmbXKeqylJ/j7qyJEjTJ06lQcffJCBAweaHY7X6tatG7169WLPnj1mhyI6wOFwMGfOHPr37+9Xzdo6QpK/DyorKyMtLY0bb7yRCy+80OxwvJ5c19f7PPnkkxQUFHD//ffLea4WSPL3MXXtaQcNGsTNN99sdjg+Qer9vcv69evZuHEjy5Ytk/NcrZDk72OefPJJTpw4wcyZM2WPx0lGjhzJ9u3bcTgcZoci2vDtt9/y+OOPk56e7pfN2jpCkr8Peeedd/jwww9ZunSp7PE4Uffu3enRo4eM+3u4AwcO1DdrS0xMNDscjyfJ30d89913pKenk56eTlRUlNnh+Byp9/dsdc3aJkyY4NfN2jpCkr8POHToENOmTePhhx8mOTnZ7HB8koz7e66qqiqmTZvGBRdcwDXXXGN2OF5Dkr+XKy0tJS0tjVtvvZVf/vKXZofjs0aNGsW2bdtk3N/DaK1ZvHgxYWFh3HfffWaH41Uk+Xsxh8PBrFmzOPPMM7nhhhvMDsenRUdHEx0dzd69e80ORTTwyiuv8OOPPzJ//nxp1tZBTvm0lFJXKKX2KKX2KaVmNPN8sFLqn7XP/08pleiM9fq7Rx99FLvdzrRp06Syxw1k3N+zfPLJJ7z66qusXLlSmrWdgk4nf6VUAPAE8H/AEOBGpdTJTTRuAwq01gOAlcCSzq7X37311lt8/vnnLFmyhMDAQLPD8QtyXV/PsXv3bubPn88jjzwizdpOkTP2/M8C9mmtbVrrSuA14KqTlrkKWFN7/w3gYiW7qqds69atPPnkk6xcuZKIiAizw/EbMu7vGY4ePcqkSZO4//77pVlbJzgj+ccB2Q1+zql9rNlltNbVwAlAOo2dguzsbGbOnMn8+fPp16+f2eH4lZiYGLp168a+ffvMDsVv1TVru/7667nooovMDseredQZEqXUOKXUFqXUlmPHjpkdjscpLi4mLS2NcePGSS2zSaTFs3kcDgcPPPAAAwYM4JZbbjE7HK/njOR/EOjb4Of42seaXUYpFQhEAsdPfiOt9bNa61StdWpsbKwTQvMdNTU1zJw5k7PPPpvf/e53Zofjt6Te3zyPP/44RUVFzJo1SwocnMAZyX8zcJpSKkkpZQVuANaftMx6oG5T/Ttgk9ZaO2HdfmP58uUATJo0yeRI/NuoUaP49ttvZdzfzdavX8/HH3/MsmXLCAoKMjscn9DpMhGtdbVS6m7gAyAAWKW1/kEpNRfYorVeD7wAvKyU2gfkY2wgRDu9/vrrfPPNN6xevZqAgACzw/FrPXr0ICIiApvNxoABA8wOxy9s3bqVxx9/nOeee47IyEizw/EZTqkR1Fq/C7x70mMPNrhfAVznjHX5m//9738899xzrFq1iq5du5odjuDnen9J/q534MABZs6cyYIFC6TAwck86oSvaCwrK4vZs2ezePFi4uPjzQ5H1JKTvu5R16ztrrvu4he/+IXZ4fgcSf4e6sSJE6SlpXH33XczatQos8MRDdSd9JVxf9epqqpi6tSpjB49mquvvtrscHySJH8PVNelcPTo0Vx11cnz5YTZevbsSXh4OJmZmWaH4pO01ixatIjw8HDuueces8PxWZL8PYzWmqVLlxIWFsa9995rdjiiBTL04zovv/xyffsGadbmOvLJephXX32V77//ngULFsgX34NJ8neNjz/+mNdee4309HRp1uZikl08yH//+1/WrFkjXQq9QF29v0xXcZ7du3ezYMECli9fTo8ePcwOx+dJ8vcQGRkZPPTQQyxbtow+ffqYHY5oQ+/evQkNDZVxfydp2Kxt8ODBZofjFyT5e4CCggLS0tJIS0tj+PDhZocj2qlu7190Tnl5OWlpafz+97+XZm1uJMnfZJWVlUydOpXLL7+cX//612aHIzpAxv07r65Z26BBg/jTn/5kdjh+RZK/ibTWLFy4kKioKCZMmGB2OKKD6pK/jPufurpmbTNnzpRmbW4ml4Ay0csvv8xPP/3ECy+8IJU9Xqh3795YrVb2799PYmKi2eF4nbfeeotPPvmE1atXS7M2E0jGMcmnn35aX9IWGhpqdjjiFCilZNz/FG3ZsoUnn3yS9PR0adZmEkn+Jvjpp5+YN28ey5Ytk5I2L5eamsqWLVvMDsOrHDhwgPvvv5+FCxeSkJBgdjh+S5K/mx0/fpxJkyYxbdo0zjjjDLPDEZ0k9f4dc+LECe677z7++te/kpqaanY4fk2SvxvZ7XYmT57M2LFjueyyy8wORzhBXFwcFou7tw5jAAAZnklEQVSF7Ozsthf2c3XN2saMGSM9qzyAJH830Vozd+5c+vTpwx133GF2OMJJlFJS8tkOdc3aIiIiuPvuu80ORyDJ321WrVpFdnY2c+bMkZI2HyPJv20vvfQSe/bsYd68eVLZ5iHkf8ENNm7cyLp161ixYgXBwcFmhyOcTMb9W7dp0yb++c9/snLlSqls8yCS/F1s165dLF68mBUrVhATE2N2OMIF+vbti9aanJwcs0PxOD/++CMLFy5kxYoVUtnmYST5u9DRo0eZMmUKs2bNYtCgQWaHI1xE6v2bd/ToUSZPnszs2bM5/fTTzQ5HnESSv4tUVFQwefJkrrvuOsaMGWN2OMLFZNy/sbKyMiZOnMgNN9zAr371K7PDEc2Q5O8CDoeDOXPmkJSUxK233mp2OMINpM/PzxwOR/3e/s0332x2OKIFkvxd4JlnnuHYsWPMnj1bKnv8REJCAtXV1Rw6dMjsUEz3t7/9jbKyMmnW5uGksZuTvf/++7z33nu8+OKLWK1Ws8MRbtKw3j8uLs7scEzz1ltv8emnn/Liiy9KszYPJ3v+TrRjxw4eeeQRVqxYQffu3c0OR7iZv4/7f/PNN/XN2iIiIswOR7RBkr+T5ObmMnXqVObMmcOAAQPMDkeYwJ8rfvbv38/s2bNZtGiRNGvzEpL8naCsrIy0tDRuuukmLrjgArPDESZJTEzEbrf73bj/iRMnmDhxInfffTcpKSlmhyPaSZJ/J9VVNgwZMoQ//vGPZocjTOSP9f51lyEdM2YMY8eONTsc0QGS/Dvp8ccfp6SkhBkzZkhlg/Crcf+6y5BGRkZKszYv1Knkr5TqrpTaoJTaW/tvVDPLjFBKfaWU+kEp9b1S6vedWacn+c9//sOmTZtYunSpVDYIwL+S/5o1a9i3bx9z586VZm1eqLP/YzOAj7TWpwEf1f58sjLgT1rrM4ArgHSlVLdOrtd027Zt47HHHmPlypV06+b1v45wkqSkJMrKysjNzTU7FJfatGkTa9eulWZtXqyzyf8qYE3t/TXA1ScvoLX+SWu9t/b+IeAoENvJ9Zrq4MGDTJ8+nblz55KUlGR2OMKD+MO4/65du+qbtcXGevWfsl/rbPLvqbU+XHs/F+jZ2sJKqbMAK5DRyfWaprS0lLS0NG6//XbOPfdcs8MRHsiXr+t75MgRpkyZwgMPPCDN2rxcmzN8lVIbgV7NPDWr4Q9aa62UarGxiVKqN/AycIvW2tHCMuOAcYBH1grX1NQwc+ZMRo0axXXXXWd2OMJDjRo1in/84x9mh+F0dSXNN954I6NHjzY7HNFJbSZ/rfUlLT2nlDqilOqttT5cm9yPtrBcBPAOMEtr/XUr63oWeBYgNTXV4zpkPfroo1RXVzNlyhSp7BEtSk5Opri4mKNHj/pMD/uGJc033XST2eEIJ+jssM964Jba+7cA/z55AaWUFfgX8JLW+o1Ors8069at44svvmDx4sUEBkpLJNEyi8Xic1U/jz76KGVlZUyfPl12fHxEZ5P/YuBSpdRe4JLan1FKpSqlnq9d5nrgQuBWpdT22tuITq7XrTZv3szTTz8tPUtEu40aNcpnkv+6dev4/PPPpaTZx3RqF1ZrfRy4uJnHtwC3195/BXilM+sx04EDB5g1axYLFy70yPMQwjOlpKSwdu1as8PotG+++Yann36a559/XnZ8fIzMzGhFUVEREydOZPz48aSmppodjvAi/fv3p7CwkGPHjpkdyinLyspi9uzZLF68WHZ8fJAk/xZUV1czY8YMzjvvPH7729+aHY7wMhaLxavr/QsLC5k4cSL33HMPo0aNMjsc4QKS/FuwfPlyAgMDmThxotmhCC/lreP+dc3aLrnkEn7zm9+YHY5wEUn+zVi7di1bt25l4cKFBAQEmB2O8FKpqalel/y11ixYsICoqCjuuusus8MRLuSzNYtFRbBpE3zzDWzdCsePG49HRsKIEXD22XDxxRAd3fh1X3/9NS+88AKrVq2iS5cu7g9c+IwBAwZQUFBAXl4eMTExZofTLqtXr8Zms/Hcc89JszYf53PJPzcXHnsM1q2DmhrjFhICdRVqubnw1lvw73+DxQJXXAETJ0JyMmRmZvLAAw+wdOlSv74Oq3AOi8XCiBEj+Pbbb7nsssvMDqdNH330EW+++SYvvvgiISEhZocjXMxnkr/W8K9/wQMPQHk5RERAc3OxgoKgrglhTQ28/TZ88AHcfXcZGzdO5t5772XkyJHuDV74rLrJXp6e/Hft2sXixYt54oknpFmbn/CJ4zqHA+bMgalTjb357t2bT/wnCwgwlrVaHcyaVUpe3sNcfrmc4BLOk5KS4vEVP7m5uUyePJkHHniAgQMHmh2OcBOfSP7z58Pf/26M5wcHd/TVmvz8XEJCKjh8eCj33mtsTIRwhoEDB3Ls2DHy8/PNDqVZdc3a/vjHP3LhhReaHY5wI69P/ps2wZo1xjDPqZyfys/Pp7y8gvj4PnTrpvjwQ/DBhozCJBaLhZEjR3rk3r/D4WDWrFkMHTpUrj/th7w6+Z84AZMnG3v7p1KRWVJSzPHjx+nbty8WSwAWC3TpYhxJZGc7P17hnzy13j89PZ2Kigpp1uanvDr5v/aaUdIZFtbx19rtFRw6dIj4+PhGzaqsVqiqgmefdWKgwq95YofPdevW8d///pclS5ZIl1o/5bXJv6YGnn/+58qd1uTnryUz82Z27z6XQ4ceorq6muzsbHr16kVoaNMtR9eu8MYbUFLigsCF3xk0aBBHjhyhoKDA7FCAn5u1SZda/+a1yX/HDmOvvz3lyIGBMcTE3EZk5Fi01uTk5BAZGUlERGQLyxsnff/7XycHLfxSQEAAI0aMYNu2bWaHQmZmZn2ztr59+5odjjCR1yb/Xbugurp9y0ZEXETXrr8iICCCkpJiAgMD26xlrqyE7793QqBCYAz9mH1d37pmbffee680axPem/y3b+/4a0pLS6muriEurg/Q+gmu4GDw0WtwCxOYXe9fWVnJlClTuOyyy7jyyitNi0N4Dq9N/vn5HavwqaqqoqiomOBgK+Xl5dTUtH7YEBBgVBMJ4Qynn346hw4dorCw0O3r1lozf/58oqOjmTBhgtvXLzyT157m72hNf1BQIJGREdjtZRw9egy73Y5SipCQYKzWYEJCggkONm4WS8AprUOIljQc9x8zZoxb17169WqysrJ49tlnpVmbqOe1yb9vX6Mks/0UYWHhWK1d6dMnEdBUV1djt9ux2+2Ul5dTWFiI3W7HYrGgVDe6dDnK+vU2kpOTSU5OJuxUakqFqFVX7+/O5L9hwwbefPNN1qxZI83aRCNem/xHjPi5U2dbtK5B6xrAAThwOCpRKoDAwCACA4MID2/YullTVVXFsWM1DBmyjy1btrB27VqysrKIiooiOTmZ/v37079/f5KTk0lKSpI/KtEuKSkpLFq0yG3r27lzJ0uXLuWJJ57wmpbSwn28NvkPH2508tQa2pqcmJf3Anl5P8/aOnHiXWJixhEbO66ZpRVBQVa6doUJE37JWWf9EjCmwh88eBCbzUZGRgZffvklr7zyCvv376dHjx4kJyczYMCA+qOExMRErFarE39j4e0GDx5MTk4ORUVFLq+vz83NZerUqdKsTbRIaa3NjqFZqampuq3SuKuvhh9/NCZlOVN5ufGeX37Z9rh/TU0N2dnZ2Gw29u3bh81mw2azkZOTQ+/evRsdJfTv35+EhASZUenH7r77bq677jpGjx7tsnWUlZXxl7/8hbFjx/KHP/zBZesRnkkptVVrndrWcl6dhcaNg3vvbd/ef0dUVMCkSe074RsQEEBiYiKJiYlcdNFF9Y9XVVVx4MABMjIyyMjI4MMPPyQjI4Pc3Fzi4+PrjxLqNg7x8fFyMs4P1I37uyr5OxwO7r//foYPH86NN97oknUI3+DVyf+KK4zhn++/h27dnPOexcXQpw90docpKCioPrE3ZLfbycrKIiMjA5vNxvr168nIyOD48eP069ev0VFC//796d27t2wUfEhqaipLlixx2funp6dTWVnJtGnTpFmbaJVXJ3+LBVauNDYC5eXt6/PTmspKo63DY491/r1aEhwczKBBgxg0aFCjx8vKyuo3ChkZGbzxxhtkZGRQVFREUlJSkxPNPXv2lD9uLzR48GCys7NdMu7/5ptv8uWXX7J69WoZWhRt8vpvSL9+8NRTcMcdxs+nmrQrK6G0FBYuBDOu4hgWFsaQIUMYMmRIo8dLSkrqzyNkZGTw1VdfkZGRQUVFRf0GoeGGITo6WjYKHiwoKIihQ4eyfft2p1485euvv+aZZ55h1apVdHX2STDhk7z6hG9Dn34KEyYYSTwysv3nALQ2GsRZLLBgAfzud6cYsJsVFRXVHyXUbRgyMjJwOBxNjhL69+9PVFSU2SGLWi+88AJFRUWkpaU55f1sNht33nknS5culetPC/844dvQ6NGwYQNMmQKbNxuPtXZ1L62N8X2tYcAAePRR8KaKuIiICEaOHNnkjz0/P79+g7Bv3z4++OADbDYbgYGBTY4SkpOTpaWvCVJSUli+fLlT3qugoICJEycyceJESfyiQ3xmz7+OwwFffGH0+v/yS6NHT2Xlz0cCWhsXbKmpMU4W33knXHxx+y747q201uTl5TXaKNQNJYWFhTU5SkhOTiY8PNzssH1WZWUlF198Me+99x5dunRp+wWtvM+ECRNISUnhrrvucmKEwpu5Zc9fKdUd+CeQCGQB12utm71ihVIqAtgFvKW1vrsz622NxQIXXmjcjh835gH88AMcOWJsGGJjYcgQ49azp6ui8CxKKWJjY4mNjeWcc86pf1xrTW5ubv2w0bZt23jzzTfJzMykW7duzc5mDnXVmXA/YrVa68f9zz///FN6j7pmbTExMYwfP97JEQp/0Kk9f6XUUiBfa71YKTUDiNJaT29h2UeB2Nrl20z+p7rnLzrP4XBw6NChJkcJWVlZxMbGNjlSkNnMHffcc89RVlbGfffdd0qvf+GFF/j000959tlnpb2IaMRdY/5XAb+qvb8G+ARokvyVUilAT+B9oM2ghLksFgvx8fHEx8c3qkipqakhJyen/uTyZ599xurVq8nJyaFXr17NzmYOam8DJj+TkpJCenr6Kb12w4YN/Otf/5JmbaJTOpv8e2qtD9fez8VI8I0opSzAcuAm4JJOrk+YKCAggH79+tGvX78WZzPbbDY2bNjA008/XT+b+eQTzfHx8QR05GIMPmjo0KEc27uX8k2bCD18GMrKjBNUffrA4MFG29pmqhXqmrU9+eSTREdHmxC58BVtJn+l1EagVzNPzWr4g9ZaK6WaG0O6C3hXa53TVv25UmocMA4gISGhrdCEh2hpNnNlZWWjiWtvv/02GRkZHDt2rNFs5rpWF3369PH92cyVlbBxI9Znn+WlH35A//nPRrVBTY1RlWC1GlUJ4eHw5z/D739ff3Lq8OHDTJkyhQcffJDTTjvN5F9EeLvOjvnvAX6ltT6slOoNfKK1HnTSMn8HLsDop9wFsAJPaq1ntPbeMubvu8rLy8nMzGw0P8Fms1FYWNjsbOZevXr5xsS1b7+F++6D3FywWDhWXo4D6NmjR9Nl7XZj2npAAEyaROkNN/CXceO46qqrpFmbaFV7x/w7m/yXAccbnPDtrrWe1srytwKpcsJXNKe0tLR+g9Bww1BWVlbfKrth2+zY2Fjv2ChoDenp8MQTRjKvnYFbWlbG0aNHSUpMbPm1VVXokhJ2as1Hf/gD982b5x2/szCNu074LgbWKqVuA/YD19euPBUYr7W+vZPvL/xIeHg4w4YNY9iwYY0eLyoqarQx+PTTT7HZbFRXVzc7m7l79+4m/QbN0BrmzYM1a4yk32BCSWhoKHa7nRqHg4CWhruCgjhit9OzuJh7P/8clZ8PMtYvnMDnJnkJ/5Gfn9+o71HdEYPFYmlylNC/f38iIyPdH+Rrr8GsWcZ082ZOcmft309MTAxdWphUl19QQEFBAYmJiQQUFcGwYfDmm3KBadEitwz7uJIkf3Eq6mYzn7xByMjIIDQ0tNnZzJ2ZZduqnBy49FLjeqMtzIM4euwYaE2PZsb9S0pLOXTokDGPIijIOIooLDQ2Jn/5i2tiFl5Pkr8QDWitOXLkSJOJazabjYiIiEZHCQMGDHDObOY774SNG6GVpnqlpaUcO3aMxJPG/e12O/v37yc+Pp6wsLCfn6isNG5ffgmeNLwlPIYkfyHaweFwcPjw4SZHCfv37yc6OrrJHIXExESCg4PbfuPDh+GCC1rvLghU1NQwddcubCEhFDscxAcFMT46mt7HjtEjNrb5oaqCApg5E26XU2qiKb/r6inEqbBYLMTFxREXF9dkNvPBgwfrjxK++OILXnzxxfrZzCefaO7Xr1/j2cz/+pcxTNPG2LxWit5WK/fGxtI/MpLPS0qYYrPxfI8eLZ+jCAmBVask+YtOkeQvRDMCAgJISEggISGhyWzm7Ozs+qOEjRs3kpGRweHDh4mLi6vfKIx9/XW6A0FAa4WZoRYLt3fvDlVVKKUYUFREr8BAjrXWVTUkxOhUePy4VP6IUybJX4gOCAoKqj830FDdbGabzUbGvn3oHTvIqazEfuQIVquVkOBgghvcgqzW+o1CeFgYx44dI08pjtrt5AUE0L+1oSWljJPIu3YZQ0tCnAJJ/kI4gdVqZeDAgQwcOBAqKmD5coiOxqE1dru9/lZQWGjU9ldXY63dEFitVoqLiymvrOQZq5UrIyNJbOu8Qk0NHD3qnl9O+CRJ/kI4W01N/Vi/RSlCQ0IIPan7Zo3DQWXtBqHCbiciMpLHtcaqFNN6NddK6yRaG+sR4hRJ8hfC2YKDjeSsdYsXkw6wWAgNDSU0NBStNXMPH6aoqorH4uMJbE/7hoAAaFgCKkQHyTRBIZwtMBASEozmbO2wKDeXzMpKVvbtS3BHZu5KZ0/RCZL8hXCF1FSjK2cbDldVsa6wkJ8qKrh8714u2LOHC/bs4b0TJ1p+kcNh3E466SxER8iwjxCu8JvfwPr1bS7WOyiILYMHd+y9i4rgkkuMih8hTpHs+QvhCuefD926GZU/zlR3HkF6+4hOkuQvhCsEBMDkycbQjzNbqBQVwdCh8ItfOO89hV+S5C+Eq1x3nZGkWxu/74jKSqOEdOXKFquIhGgvSf5CuIrFAitWGMM/RUWde6+qKigthfnzobUrfwnRTpL8hXClPn3gn/80unsWFp7aEFBZmZH4H3zQOJoQwgkk+Qvhav37w9tvwznnGBuAsrL2bQSqq432zaGh8MILcMstro9V+A1J/kK4Q69e8PLL8MgjEBMDxcVGV87SUqNNg9ZG7X5FhbGBOHHCmCR2002waROMHm32byB8jNT5C+EuSsE118BVV8HmzfDhh8a/P/1kJPqAAOjdG0aNggsvhMsvB1ddYlL4PUn+QribxQJnn23chDCJDPsIIYQfkuQvhBB+SJK/EEL4IUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CGlndlu1omUUseA/U58yxggz4nv56vkc2qbfEbtI59T+zj7c+qntY5tayGPTf7OppTaorVONTsOTyefU9vkM2of+Zzax6zPSYZ9hBDCD0nyF0IIP+RPyf9ZswPwEvI5tU0+o/aRz6l9TPmc/GbMXwghxM/8ac9fCCFELZ9N/kqp65RSPyilHEqpFs+kK6WuUErtUUrtU0rNcGeMnkAp1V0ptUEptbf236gWlqtRSm2vva13d5xmaOu7oZQKVkr9s/b5/ymlEt0fpfna8TndqpQ61uD7c7sZcZpJKbVKKXVUKbWzheeVUuqx2s/we6XUKFfH5LPJH9gJ/Bb4rKUFlFIBwBPA/wFDgBuVUkPcE57HmAF8pLU+Dfio9ufmlGutR9TexrovPHO087txG1CgtR4ArASWuDdK83Xgb+ifDb4/z7s1SM/wInBFK8//H3Ba7W0c8JSrA/LZ5K+1/lFrvaeNxc4C9mmtbVrrSuA14CrXR+dRrgLW1N5fA1xtYiyepD3fjYaf3RvAxUop5cYYPYH8DbWD1vozIL+VRa4CXtKGr4FuSqnerozJZ5N/O8UB2Q1+zql9zJ/01Fofrr2fC/RsYbkQpdQWpdTXSil/2EC057tRv4zWuho4AUS7JTrP0d6/oWtrhzPeUEr1dU9oXsXtucirL+OolNoI9GrmqVla63+7Ox5P1drn1PAHrbVWSrVU/tVPa31QKZUMbFJK7dBaZzg7VuGT/gO8qrW2K6XuxDhausjkmPyeVyd/rfUlnXyLg0DDvZD42sd8Smufk1LqiFKqt9b6cO1h5tEW3uNg7b82pdQnwEjAl5N/e74bdcvkKKUCgUjguHvC8xhtfk5a64afyfPAUjfE5W3cnov8fdhnM3CaUipJKWUFbgD8opKlgfXALbX3bwGaHDEppaKUUsG192OA84BdbovQHO35bjT87H4HbNL+N3Gmzc/ppLHrscCPbozPW6wH/lRb9XMOcKLBcKxraK198gZcgzFuZgeOAB/UPt4HeLfBcr8GfsLYi51ldtwmfE7RGFU+e4GNQPfax1OB52vv/xLYAXxX++9tZsftps+myXcDmAuMrb0fArwO7AO+AZLNjtlDP6dFwA+135+PgdPNjtmEz+hV4DBQVZuXbgPGA+Nrn1cYVVMZtX9jqa6OSWb4CiGEH/L3YR8hhPBLkvyFEMIPSfIXQgg/JMlfCCH8kCR/IYTwQ5L8hRDCD0nyF0IIPyTJXwgh/ND/B0ORYBcOKRZ+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "ee = ExactEigensolver(qubitOp, k=1)\n", + "result = ee.run()\n", + "\n", + "\"\"\"\n", + "algorithm_cfg = {\n", + " 'name': 'ExactEigensolver',\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising'},\n", + " 'algorithm': algorithm_cfg\n", + "}\n", + "result = run_algorithm(params,algo_input)\n", + "\"\"\"\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", + "\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running it on quantum computer\n", + "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.4999760821185284\n", + "time: 7.753880739212036\n", + "max-cut objective: -3.999976082118528\n", + "solution: [1. 0. 1. 0.]\n", + "solution objective: 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOX1+PHPk2USEkgISdgSQhYEQUAgqUtdKO7f/ixqrVatW6siWBfCjqAo+yIQrfsCorZaVGqpO4pr1QoICiIImQQSIEDIvs0kmef3x01iQhISkpm5s5z36zUvJjN35p4Mk3Pvfe55zlVaa4QQQviXALMDEEII4X6S/IUQwg9J8hdCCD8kyV8IIfyQJH8hhPBDkvyFEMIPSfIXQgg/JMlfCCH8kCR/IYTwQ0FmB9CamJgYnZiYaHYYQgjhVbZs2ZKvtY5tazmPTf6JiYls3rzZ7DCEEMKrKKX2tWc5GfYRQgg/JMlfCCH8kCR/IYTwQ5L8hRDCD0nyF0IIPyTJXwgh/JDHlnoKcTLKy+Hzz2HbNti0CQoLjcd79oQzzoARI+DccyEkxNw4hfAUkvyFVzt0CJ56Ct54A2pqoLoaQkMhMPCX57/9FoKDjcR/881w++0QFWVu3EKYTYZ9hFfSGl5/HS66CF55BSwWiIiA6GgIDzc2AKGh0LWr8VhEBChlbCguuAA2bjT7NxDCXJL8hdeprYWpU2HGDAgIgB49IKgdx7AWi7GszQZ33AHLlxsbESH8kQz7CK+iNUyfDv/6F0RGGsn/ZIWFGUNATz5pDA9NnOj8OIXwdLLnL7zKunWdS/z1AgOhWzd4/HH4+mvnxSeEt5DkL7zG4cPw4IPGnntnEn+9oCDjRPDEiUa1kBD+RJK/8BrPPgtVVc4t1wwPh/x8o1pICH8iyV94hYoKeO01o3qnLbW1JeTmTmHXrnPZu/dyiovfP+HyoaHwzDPgcDgpWCG8gCR/4RW++sqo4w8ObnvZvLzFKBXMwIEf0rfvfPLyFmGzWVtdPjQUjh2DnTudGLAQHk6Sv/AK338PdnvbyzkclZSWbiQ2dgIBAWGEhY2gW7fRFBe/0+prlDLKRyX5C38iyV94hU2b2jfWb7fvBwKxWBIaHgsJOeWEe/5glJBu3drJIIXwIlLnL7xCUdEvLRtOxOGoICAgnMrKSkpKiunSpQu1tRZqa8tO+LrAQGPoRwh/Iclf+JSAgDBqakqxWjOxWCxUV9dQWpqL3W5n7969hISEEBJiqfs3BIvFQkBAO7YqQvgYSf7CK/TuDVYrdOly4uWU6o3NVkl8vIOSkgDi4+M5eLCYwMBUoqL6YbPZsNlslJWVU1BQgM1mJzAwEK2j2L//Z9atyyM5OZmkpCQiIyPd88sJYQJJ/sIrnHGG0bL5RByOWg4cyKdbtzHY7a9SU3MdpaWbKS39jMTE1VgsIVgsIXTr1vhVmurqagoKajj11Cq2b9/O+vXrsVqthIaGkpSURFJSEsnJySQmJpKcnEx0dDRKKVf+ukK4nCR/4RVOP72tMk/NgQMH6NIljJ49H+LgwbnYbLeTm9uDvn1nEhKS3MrrFEFBFkJDLdxzzwWkpFxgvJvWHD16lKysLLKysti7dy8bNmzAarVSW1vbcHTQeMPQu3dvApwx9VgIN5DkL7zCmWcaE7xstparfg4fPozWmt69e6OUol+/5YSHH8NmsxMZ2eeE711eDqecAsmNtg9KKXr27EnPnj0588wzmyxfWFjYsFHIysriq6++Ijs7m9LSUvr3799swxAXF0dge85WC+FGkvyFVwgKgttuM9owH5/8i4oKKSsrIzExqclwTFhYOIX1l/RqhdbG5LHx4416//aIiooiKiqKUaNGNXm8rKysyUbhrbfewmq1kp+fT79+/Ro2BvUbhoSEBCwWS/tWKoSTSfIXXuPmm2HNGigpMXryAFRUlHPkyFESE/s327sODQ2htraWmppqgoJaHjMqKYFBg+C3v+18fF27dmXYsGEMGzasyeNVVVXs27ePrKwsrFYrH374IVlZWRw8eJDevXs3Gz5KTEwkLCys8wEJcQJKe+jVLNLS0vTmzZvNDkN4mK+/hptuMpK/1jays/cRFxdHeP3W4Dg5OTlERkYQEdG8csdmM2YNv/22MezjbtXV1eTk5DQcKVitVrKzs9m3bx89evRo2Cg03jBERES4P1DhVZRSW7TWaW0t55Q9f6XUZcCjQCDwvNZ6cSvLXQ28AfxKay2ZXZy0s882LuaycKGDgoKDxMbGtpr4AcLDw6ioqGiW/G02qKyEjAxzEj9AcHAwycnJJCc3PRntcDg4cOBAw0Zh27ZtrFu3juzsbLp06dJs+Cg5OZmoqCipQBInpdN7/kqpQOBn4GIgF9gEXK+13nncct2AdwALcHdbyV/2/EVrampquPjiV9m+/XKio6OOK91sqqqqkoMHD5KcnAIYY/wlJcb1AJYvh8svd1PQTqC15siRI1it1ibnFqxWo3VF441B/f1evXrJRsHPuHPP/wxgr9baWrfi14ArgOPbZM0DlgBTnbBO4ceWL1/O0KG5PPLIDaSnw8GDRhloWFjzk7ahoaFUV9dQXV1DVVUQtbUweLCxx5+SYk78HaWUolevXvTq1Yuzzz674XGtdUMFUv2G4YsvviArK4uKigoSExObbRji4uKkLNXPOSP5xwE5jX7OBZrUximlRgH9tNbvKKUk+YsOW7t2LZs3b2b16tV07RrIhx/Cf/4DTz8NOXXfwpqaX/oA1dQogoKiyM+3k5YWxLhxcNll7esT5C2UUvTo0YMePXqQmpra5LnS0tImRwlvvPEGWVlZHDt2jP79+zc7r9CvXz+C29M3W3g9l1f7KKUCgBXAre1YdhwwDiAhIaGNpYW/+eabb3j++edZtWoVXeuu6hIaCtdcA3/4A2RmGm2Zt20zrs6lFPTpA/n52wkO3s2iRXeZ/Bu4X7du3Rg+fDjDhw9v8nhlZSXZ2dkNG4X3338fq9VKXl4effr0aTJ0lJSURGJiIqGhoSb9FsIVnDHmfzbwkNb60rqfZwJorRfV/RwJZAL1bRV7AwXA2BON+8uYv2gsOzubO+64gyVLljSrr2/Lzp07eeihh1i7dq2LovMddrudnJycZucV9u/fT0xMTIvnFbq25/Jqwm3cOea/CThFKZUEHACuA26of1JrXQzENArsU2CKVPuI9iouLmbixIncc889J534AQYNGsThw4cpLCwkKirKBRH6DovFQkpKCinHnRCpra1tqECyWq1s3ryZ119/nezsbLp27dps+CgpKUk+6xMpLjY6FVZVGTMY4+KMw1Q3npzvdPLXWtcope4GPsAo9Vyltf5RKTUX2Ky1Xt/ZdQj/VV1dzdSpUxkzZgxjx47t0HsEBgYyYsQItm7dygUXXODkCP1DYGAgCQkJJCQkMHr06IbHHQ4Hhw8fbjhC+Omnn3j33XfJysoiICCg2fBRcnIysbGx/lmBZLXCK6/AO+8Y45KNZ3fX1BhT13/9a7j1VjjrLKMkzYVkkpfwWFpr5s+fT0FBAcuXL+9UdcpLL71EXl4e06ZNc2KEojVaawoKClosS62qqmo2dJSUlETfvn19swLpyBG4/3749FOj1jgszEj8x28Aa2qgrMx4PC4OVqyADhzpunWSlxCu8Oqrr/Ljjz+yatWqTieF1NRU5s2b56TIRFuUUkRHRxMdHc2vfvWrJs+VlJQ0KUvdtGkTWVlZFBYWNlQgNd4w9OvXj6AgL01V770HU6cawzuRkSce1gkKgu7djQ3EoUNw7bXw5z/DjBkuKU/z0k9U+Lovv/ySl156idWrVzulz82pp57KwYMHKSoqonv37k6IUHRUREQEp59+OqeffnqTxysqKhoqkKxWK2+//TZZWVkcPnyYuLi4ZsNH/fv3J6Q9F3Y2y2uvwaxZxhWITuY7pxR06wa1tfDCC3DgADz2mLFxcCIZ9hEeJzMzkzvvvJMVK1Y0K1HsjHvvvZerrrqKMWPGOO09hevZ7faGxniNh49yc3OJjY1tNnyUlJR0wpYfbvHZZ0Yb2vohno7SGgoL4cYbYe7cdr2kvcM+kvyFRykoKODWW29l/Pjx/NYZrTYbefHFF8nPz2fKlClOfV9hjpqaGg4cONDkvILVamXfvn1ERES0eF7BLUd9RUUwZozRQMoZ3Vlra6G0FF5+2Whu1QYZ8xdex263M3XqVC677DKnJ34wxv0XLVrk9PcV5ggKCqJ///7079+/ydGcw+EgLy+vYWOwY8cO/vOf/5CVlUVwcHCLcxViYmKcV4G0eLHRQMpZpa6BgUb/kvR0+OKLti5p126S/IVH0FqzYMECoqOjGT9+vEvWMXjwYHJzcykpKZHWyD4sICCAvn370rdvX84555yGx7XW5OfnNzlK+Pjjj8nKysJutzfrlJqUlHTyl+YsKIB166Ad368HDhzg24oKKh0OYoKCuDk6mitbOzIJDzfe+5NP4JJL2h/PCUjyFx5hzZo1ZGZm8txzz7ms3C8oKIjhw4ezdevWJrXqwj8opYiNjSU2NpYzzjijyXNFRUVNzil88803ZGVlUVJS0uzSnElJScTHx7dcgfTWW+BwtKs6588xMTwQHIwlIIBsm41x+/YxKCSEwV26tP6i556T5C98xyeffMLatWt58cUX6XKiL74TjBo1ii1btkjyF010796dkSNHMnLkyCaPl5eXk52d3XBeYf369WRlZXHkyBHi4+ObX1vh/ffbfb3m5EaVSgpj45RbXd168u/aFbZuNa5A5ITLf0ryF6bavXs3CxYs4LHHHqNnz54uX19aWhpLlixx+XqEbwgPD+e0007jtNNOa/K4zWZrcmnOjz76iCyrlcXvvosKDia4qAhLSAghdTeLxUJgC0e0i/Py+E9RETatGRQayjkn6pMUEGCUe+7ZA8fF0xGS/IVp8vPzmTRpEtOnT2fIkCFuWefgwYPJycmRcX/RKSEhIQwcOJCBAwf+8mBJCXrkSOxhYdjsdmw2G+VlZRQUFGC32QgMDDQ2BPUbBYuFqbGxTOvVix8qK9lSUYGlrZPOWsO+fZL8hfey2WxMnjyZK6+8kosvvtht6w0ODmbo0KFs27aN888/323rFX7AbkcFBDTs7Te+xJzG6FNls9mw2WxUVlRQUFBAbW0tp5xyCiPCwni3uJg3Cgu5rkeP1tehtdEGwgl8sJGG8HRaax5++GHi4uK4/fbb3b7+1NRUtmzZ4vb1Ch9nsRgne1uYO6UAS3Aw3bp2JSY6ml69ewMYJaZ1y9QCuXb7idehlFPG+0GSvzDB888/z4EDB5gzZ44p3R1TU1P57rvv3L5e4eO6dTNubeyZa+DH/fvZFBBAaGQkDq35uqyMD4qLOaM9M5MTE50Srgz7CLfasGEDb731FmvWrDGtL8uQIUPIzs6mrKxMLkQinEcpGDoUNm1qdSKWBvLy8lBK8THw9J49OIA+wcFM7tWL8xsNFTXjcBg3J118WpK/cJudO3eyZMkSnnjiCWJiYtp+gYtYLJaGcf9zzz3XtDiED7rsMvjmm1afLigooKKigiGJiTx3svNZSkvhzDOdNsNXhn2EWxw5coQpU6Ywe/ZsBg0aZHY4DfX+QjjV2LFGOWYLQz+lZWUcO3aMfv36tVj22Sal4I47nBCkQZK/cLnKykomTZrEtddey29+8xuzwwHkpK9wkYgIuP5646IsjVTZbBw6eJD4+HgsHdlzLy01LvPoxCNVSf7CpRwOB3PmzCElJYVbbrnF7HAaDB06lKysLMrLy80ORfiayZMhOhrqvls1NTXk5OTQq3dvwjoyg7221rg9+qhTL+oiyV+41NNPP82xY8eYNWuWR1231WKxMGTIEL7//nuzQxG+pmtX+NvfoKYGR1UVObm5dO/enciOTCp0OIwOoXfeCSNGODVMSf7CZd59913ef/99li1bhsVJtcnOlJqailwzQrjEGWfgyMig4MABwpXqWIFDdbVxbYA//tE4mnAySf7CJX744QdWrFjBypUr6XGiGYsmknp/4UrP7N/PM7/+NTH9+qGKioyhm/bQGoqLobLSuP7v/PlGXx8nk+QvnO7QoUNMmzaNhx56iBQn1SS7wtChQ8nMzKSiosLsUISPeffdd3nvvfeY8PLLBHz6KVx1lXESuLAQKiqM4ZzGtDau/FVYaAzznHYavP02TJjgksQPkvyFk1VUVJCens5NN93k8TX0ISEhDB48WMb9hVNt27aNlStXkpGRYRz1RkTAsmXw3//CpEmQkGBU75SWGieFy8qM4Z3ISLj2Wvj3v43rAjRuGucCMslLOI3D4WDWrFkMHTqUG264wexw2qW+3v/sdlwbVYi2HDhwgOnTpzN37lySk5ObPtmzJ/z1r8atuhpyc42hneBgo4zTzbPNJfkLp3n88ccpLy9n6dKlHlXZcyKpqak89dRTZochfEBpaSn33Xcft99+e9s7E8HBkJTknsBaIclfOMX69evZuHEja9asIdhJ08/dYdiwYezZs4fKykqXX0VM+K6amhqmT5/OWWedxTXXXGN2OO0iY/6i07777jv+9re/kZGRQWRkpNnhnJTQ0FAGDRrEDz/8YHYowktprVm6dCnBwcFMmjTJ7HDaTZK/6JTc3FxmzJjBvHnzSHRSq1l3kz4/ojNeffVVfvjhBxYtWkSAiypzXMF7IhUep6ysjPT0dG6//XbOOusss8PpsLS0NEn+okO++OILXn75ZVauXElYWJjZ4ZwUpyR/pdRlSqndSqm9SqkZLTw/SSm1Uyn1g1LqY6VUf2esV5intraWmTNnkpaWxrXXXmt2OJ0ybNgwdu/eTVVVldmhCC/y888/M3fuXJYtW0afPn3MDuekdTr5K6UCgSeA/wOGANcrpY6/GvdWIE1rPRx4A1ja2fUKc61cuZLa2lomu2Daubt16dKFgQMHyri/aLf8/HwmTZrEtGnTGDp0qNnhdIgz9vzPAPZqra1aazvwGnBF4wW01p9oreunUX4DxDthvcIkb775Jl9//TWLFy8mKMg3CsakxbNor6qqKiZNmsSVV17JxRdfbHY4HeaM5B8H5DT6ObfusdbcBrznhPUKE2zatIlnnnmGlStXEtGRLoUeSvr8iPaob1GemJjIbbfdZnY4neLW3Tal1I1AGjC6lefHAeMAEhIS3BiZaI/9+/cza9YsFi5c6HP/P8OHD2fXrl3YbDbTri0sPN/TTz9Nfn4+Tz31lNdMZGyNM/b8DwD9Gv0cX/dYE0qpi4BZwFitta2lN9JaP6u1TtNap8XGxjohNOEsJSUlTJw4kQkTJpCWlmZ2OE4XFhbGgAED2L59u9mhCA/1zjvv8MEHH/DII494ZIvyk+WM5L8JOEUplaSUsgDXAesbL6CUGgk8g5H4jzhhncKN6mcvnnvuuVx11VVmh+MyUu8vWrN161YyMjJYuXIlUVFRZofjFJ1O/lrrGuBu4APgJ2Ct1vpHpdRcpdTYusWWAV2B15VS25RS61t5O+Fh6mcvWiwWJk6caHY4LiUnfUVLcnJymD59OvPnz2/erM2LOWXMX2v9LvDucY892Oj+Rc5Yj3C/tWvXsm3bNlavXu1Vsxc7YsSIEfz000/Y7XafOKwXnVc/3HnnnXdy5plnmh2OU/n2X7PolK+++opVq1aRkZFBeHi42eG4XFhYGMnJyezYscPsUIQHqKmpYcaMGZxzzjlcffXVZofjdJL8RYusVitz5sxhyZIl9O3b1+xw3Eau6yvAP4Y7JfmLZoqKikhPT+e+++5jxIgRZofjVlLvL8Bo1rZ9+3YWLlzos8OdvvlbiQ6rrq5m6tSpXHTRRVx++eVmh+N2I0aM4Mcff8Rut5sdijDJ559/7rXN2k6GJH/RQGvNokWLiIiI4K9//avZ4ZgiPDycpKQkfvzxR7NDESb4+eefmTdvHo888gi9e/c2OxyXkuQvGrzyyivs2rWLefPm+eyhbntIvb9/ys/PJz09nenTp3PaaaeZHY7L+e9fuGji888/5x//+AcrVqzw6UPd9pBxf/9T36zt6quv5qKL/KMyXZK/YM+ePcydO5elS5f6/KFue4wYMYIdO3ZQXV1tdijCDRwOBw8++CCJiYn8+c9/Njsct5Hk7+cKCgqYNGkSU6dOZdiwYWaH4xG6detGQkICO3fuNDsU4QZPPfUUBQUFzJ492+ubtZ0MSf5+zG63M2XKFP7f//t/XHrppWaH41Fk3N8/vP3222zYsMFnmrWdDEn+fkprzbx584iNjWXcuHFmh+Nx5Lq+vu+7777jscceY+XKlXTv3t3scNxOkr+fWr16NdnZ2Tz88MN+XdnTmhEjRrB9+3ZqamrMDkW4QE5ODjNmzGD+/PkkJSWZHY4p5K/eD23cuJE33niD5cuXExoaanY4HikiIoL4+HgZ9/dB9c3axo8fzxlnnGF2OKaR5O9ndu3axcKFC1m+fDk9e/Y0OxyPJi2efU/9tSnOOeccfv/735sdjqkk+fuRo0ePMmnSJGbOnMngwYPNDsfjSb2/b9Fas2TJEkJDQ322WdvJkOTvJ6qqqpg8eTJXX301F154odnheIWRI0fy/fffy7i/j/j73//Ojh07WLBggZznQpK/X3A4HDz88MMkJCTwl7/8xexwvEZkZCRxcXHs2rXL7FBEJ3322Wf8/e9/JyMjw+9nsNeT5O8Hnn/+eQ4dOsSDDz7oV5NYnEHq/b3f7t27mT9/PsuXL6dXr15mh+MxJPn7uA8//JD169ezfPlyv5vE4gxy0te71Z/nmjFjBkOGDDE7HI8iyd+H7dixg6VLl7JixQqio6PNDscrjRo1iu+//57a2lqzQxEnqbKysqFZm5znak6Sv486fPgwU6dO5cEHH2TgwIFmh+O1unfvTu/evdm9e7fZoYiT4HA4mDNnDikpKX7VrO1kSPL3QRUVFaSnp3P99ddz/vnnmx2O15Pr+nqfJ598ksLCQu6//345z9UKSf4+pr497aBBg7jpppvMDscnSL2/d1m/fj0fffQRy5Ytk/NcJyDJ38c8+eSTFBcXM3PmTNnjcZKRI0eybds2HA6H2aGINnz33Xc8/vjjZGRk+GWztpMhyd+HvPPOO3z44YcsXbpU9nicqEePHvTs2VPG/T3c/v37G5q1JSYmmh2Ox5Pk7yO+//57MjIyyMjIICoqyuxwfI7U+3u2+mZtEyZM8OtmbSdDkr8POHjwINOmTePhhx8mOTnZ7HB8koz7e67q6mqmTZvGeeedx1VXXWV2OF5Dkr+XKy8vJz09nVtvvZVf//rXZofjs0aNGsXWrVtl3N/DaK1ZvHgxYWFh3HfffWaH41Uk+Xsxh8PBrFmzOP3007nuuuvMDsenRUdHEx0dzZ49e8wORTTyyiuv8NNPPzF//nxp1naSnPJpKaUuU0rtVkrtVUrNaOH5EKXUP+ue/59SKtEZ6/V3jz76KDabjWnTpklljxvIuL9n+fTTT3n11VdZuXKlNGvrgE4nf6VUIPAE8H/AEOB6pdTxTTRuAwq11gOAlcCSzq7X37311lt88cUXLFmyhKCgILPD8QtyXV/PsWvXLubPn88jjzwizdo6yBl7/mcAe7XWVq21HXgNuOK4Za4A1tTdfwO4UMmuaodt2bKFJ598kpUrVxIREWF2OH5Dxv09w5EjR5g0aRL333+/NGvrBGck/zggp9HPuXWPtbiM1roGKAak01gH5OTkMHPmTObPn0///v3NDsevxMTE0L17d/bu3Wt2KH6rvlnbtddeywUXXGB2OF7No86QKKXGKaU2K6U2Hz161OxwPE5paSnp6emMGzdOaplNIi2ezeNwOHjggQcYMGAAt9xyi9nheD1nJP8DQL9GP8fXPdbiMkqpICASOHb8G2mtn9Vap2mt02JjY50Qmu+ora1l5syZnHnmmfzhD38wOxy/JfX+5nn88ccpKSlh1qxZUuDgBM5I/puAU5RSSUopC3AdsP64ZdYD9ZvqPwAbtdbaCev2G8uXLwdg0qRJJkfi30aNGsV3330n4/5utn79ej755BOWLVtGcHCw2eH4hE6XiWita5RSdwMfAIHAKq31j0qpucBmrfV64AXgZaXUXqAAYwMh2un111/n22+/ZfXq1QQGBpodjl/r2bMnERERWK1WBgwYYHY4fmHLli08/vjjPPfcc0RGRpodjs9wSo2g1vpd4N3jHnuw0f0q4BpnrMvf/O9//+O5555j1apVdOvWzexwBL/U+0vyd739+/czc+ZMFixYIAUOTuZRJ3xFU9nZ2cyePZvFixcTHx9vdjiijpz0dY/6Zm133XUXv/rVr8wOx+dI8vdQxcXFpKenc/fddzNq1CizwxGN1J/0lXF/16murmbq1KmMHj2aK6+80uxwfJIkfw9U36Vw9OjRXHHF8fPlhNl69epFeHg4WVlZZofik7TWLFq0iPDwcO655x6zw/FZkvw9jNaapUuXEhYWxr333mt2OKIVMvTjOi+//HJD+wZp1uY68sl6mFdffZUffviBBQsWyBffg0nyd41PPvmE1157jYyMDGnW5mKSXTzIf//7X9asWSNdCr1Afb2/TFdxnl27drFgwQKWL19Oz549zQ7H50ny9xCZmZk89NBDLFu2jL59+5odjmhDnz596NKli4z7O0njZm2DBw82Oxy/IMnfAxQWFpKenk56ejrDhw83OxzRTvV7/6JzKisrSU9P549//KM0a3MjSf4ms9vtTJ06lUsvvZTf/va3ZocjToKM+3defbO2QYMGcfPNN5sdjl+R5G8irTULFy4kKiqKCRMmmB2OOEn1yV/G/TuuvlnbzJkzpVmbm8kloEz08ssv8/PPP/PCCy9IZY8X6tOnDxaLhX379pGYmGh2OF7nrbfe4tNPP2X16tXSrM0EknFM8tlnnzWUtHXp0sXscEQHKKVk3L+DNm/ezJNPPklGRoY0azOJJH8T/Pzzz8ybN49ly5ZJSZuXS0tLY/PmzWaH4VX279/P/fffz8KFC0lISDA7HL8lyd/Njh07xqRJk5g2bRqnnXaa2eGITpJ6/5NTXFzMfffdx1//+lfS0tLMDsevSfJ3I5vNxuTJkxk7diyXXHKJ2eEIJ4iLiyMgIICcnJx9mhS4AAAZpUlEQVS2F/Zz9c3axowZIz2rPIAkfzfRWjN37lz69u3LHXfcYXY4wkmUUlLy2Q71zdoiIiK4++67zQ5HIMnfbVatWkVOTg5z5syRkjYfI8m/bS+99BK7d+9m3rx5UtnmIeR/wQ0++ugj1q1bx4oVKwgJCTE7HOFkMu5/Yhs3buSf//wnK1eulMo2DyLJ38V27tzJ4sWLWbFiBTExMWaHI1ygX79+aK3Jzc01OxSP89NPP7Fw4UJWrFghlW0eRpK/Cx05coQpU6Ywa9YsBg0aZHY4wkWk3r9lR44cYfLkycyePZtTTz3V7HDEcST5u0hVVRWTJ0/mmmuuYcyYMWaHI1xMxv2bqqioYOLEiVx33XX85je/MTsc0QJJ/i7gcDiYM2cOSUlJ3HrrrWaHI9xA+vz8wuFwNOzt33TTTWaHI1ohyd8FnnnmGY4ePcrs2bOlssdPJCQkUFNTw8GDB80OxXR/+9vfqKiokGZtHk4auznZ+++/z3vvvceLL76IxWIxOxzhJo3r/ePi4swOxzRvvfUWn332GS+++KI0a/NwsufvRNu3b+eRRx5hxYoV9OjRw+xwhJv5+7j/t99+29CsLSIiwuxwRBsk+TtJXl4eU6dOZc6cOQwYMMDscIQJ/LniZ9++fcyePZtFixZJszYvIcnfCSoqKkhPT+fGG2/kvPPOMzscYZLExERsNpvfjfsXFxczceJE7r77blJTU80OR7STJP9Oqq9sGDJkCH/605/MDkeYyB/r/esvQzpmzBjGjh1rdjjiJEjy76THH3+csrIyZsyYIZUNwq/G/esvQxoZGSnN2rxQp5K/UqqHUmqDUmpP3b9RLSwzQin1tVLqR6XUD0qpP3ZmnZ7kP//5Dxs3bmTp0qVS2SAA/0r+a9asYe/evcydO1eatXmhzv6PzQA+1lqfAnxc9/PxKoCbtdanAZcBGUqp7p1cr+m2bt3KY489xsqVK+ne3et/HeEkSUlJVFRUkJeXZ3YoLrVx40bWrl0rzdq8WGeT/xXAmrr7a4Arj19Aa/2z1npP3f2DwBEgtpPrNdWBAweYPn06c+fOJSkpyexwhAfxh3H/nTt3NjRri4316j9lv9bZ5N9La32o7n4e0OtECyulzgAsQGYn12ua8vJy0tPTuf322zn77LPNDkd4IF++ru/hw4eZMmUKDzzwgDRr83JtzvBVSn0E9G7hqVmNf9Baa6VUq41NlFJ9gJeBW7TWjlaWGQeMAzyyVri2tpaZM2cyatQorrnmGrPDER5q1KhR/OMf/zA7DKerL2m+/vrrGT16tNnhiE5qM/lrrS9q7Tml1GGlVB+t9aG65H6kleUigHeAWVrrb06wrmeBZwHS0tI8rkPWo48+Sk1NDVOmTJHKHtGq5ORkSktLOXLkiM/0sG9c0nzjjTeaHY5wgs4O+6wHbqm7fwvw7+MXUEpZgH8BL2mt3+jk+kyzbt06vvzySxYvXkxQkLREEq0LCAjwuaqfRx99lIqKCqZPny47Pj6is8l/MXCxUmoPcFHdzyil0pRSz9ctcy1wPnCrUmpb3W1EJ9frVps2beLpp5+WniWi3UaNGuUzyX/dunV88cUXUtLsYzq1C6u1PgZc2MLjm4Hb6+6/ArzSmfWYaf/+/cyaNYuFCxd65HkI4ZlSU1NZu3at2WF02rfffsvTTz/N888/Lzs+PkZmZpxASUkJEydOZPz48aSlpZkdjvAiKSkpFBUVcfToUbND6bDs7Gxmz57N4sWLZcfHB0nyb0VNTQ0zZszgnHPO4fe//73Z4QgvExAQ4NX1/kVFRUycOJF77rmHUaNGmR2OcAFJ/q1Yvnw5QUFBTJw40exQhJfy1nH/+mZtF110Eb/73e/MDke4iCT/Fqxdu5YtW7awcOFCAgMDzQ5HeKm0tDSvS/5aaxYsWEBUVBR33XWX2eEIF/LdmsWSEti4Eb79FrZsgWPHjMcjI2HECDjzTLjwQoiObvKyb775hhdeeIFVq1bRtWtXEwIXvmLAgAEUFhaSn59PTEyM2eG0y+rVq7FarTz33HPSrM3H+V7yz8uDxx6Ddeugtta4hYZCfYlaXh689Rb8+98QEACXXQYTJ0JyMllZWTzwwAMsXbrUr6/DKpwjICCAESNG8N1333HJJZeYHU6bPv74Y958801efPFFQkNDzQ5HuJjvJH+t4V//ggcegMpKiIiAliZjBQdDfRfC2lp4+2344AMq7r6byR99xL333svIkSPdG7vwWfWTvTw9+e/cuZPFixfzxBNPSLM2P+Ebx3UOB8yZA1OnGnvzPXq0nPiPFxgIPXrgsFgonzWLh/Pz+d2ll7o+XuE3UlNTPb7iJy8vj8mTJ/PAAw8wcOBAs8MRbuIbyX/+fPj7343x/JCQk3qpBvIKCqgKDWXooUNw773GxkQIJxg4cCBHjx6loKDA7FBaVN+s7U9/+hPnn3++2eEIN/L+5L9xI6xZYwzzdOAEVUFBAVWVlfSNj0d17w4ffgg+2JFRmCMgIICRI0d65N6/w+Fg1qxZDB06VK4/7Ye8O/kXF8PkycbefgdKMkvLyjh27Bj9+vUjMCDA2Hh07WocSeTkuCBg4Y88td4/IyODqqoqadbmp7w7+b/2mlHSGRZ20i+tstk4ePAg8fHxTZtVWSxQXQ3PPuvEQIU/88QOn+vWreO///0vS5YskS61fsp7k39tLTz//C+VOyewtqCAm7KyOHvXLh46eJCamhpycnLo3bs3YS29vls3eOMNKCtzQeDC3wwaNIjDhw9TWFhodijAL83apEutf/Pe5L99u7HX34565JigIG6LiWFsZCRaa3Jzc4mMjCSytS9+UJBx0ve//3Vy0MIfBQYGMmLECLZu3Wp2KGRlZTU0a+vXr5/Z4QgTeW/y37kTamrategFERH8pls3IgIDKS0rIygoqO1aZrsdfvjBCYEKYQz9mH1d3/pmbffee680axNenPy3bTvpl5SXl1NbU0PfuDjaPL0VEgI+ehFu4X5m1/vb7XamTJnCJZdcwuWXX25aHMJzeG/yLyg4qQqf6upqSktKsISEUFlZSU1t7YlfEBhoVBMJ4QSnnnoqBw8epKioyO3r1lozf/58oqOjmTBhgtvXLzyT957mP8ma/qDgYCIiI6mw2Th65Ag2mw2lFCGhoYRYLMa/ISGEhIQYZZ8dWIcQrWk87j9mzBi3rnv16tVkZ2fz7LPPSrM20cB7k3+/fkZJZjspIDwsjG4WC4l9+6IxLthis9mw2WxUVlZSVFSEzWYjICCA7kpxpGtXrOvXk5ycTHJyMmEdKCkVol59vb87k/+GDRt48803WbNmjTRrE014b/IfMeKXTp1tqNWaWq1xAA7A7nAQqBTBQUEEBwXRNTy8YVmNMURUe/Qoe4cMYfPmzaxdu5bs7GyioqJITk4mJSWFlJQUkpOTSUpKkj8q0S6pqaksWrTIbevbsWMHS5cu5YknnvCaltLCfbw3+Q8fbnTy1BramJ34Qn4+z+bnN/z8bnEx42JiGNdCxY8CLMHB0K0bv54wgV+fcQZgTIU/cOAAVquVzMxMvvrqK1555RX27dtHz549SU5OZsCAAQ1HCYmJiVgsFqf+ysK7DR48mNzcXEpKSlxeX5+Xl8fUqVOlWZtoldJamx1Di9LS0nSbpXFXXgk//WRMynKmykrjPb/6qs1x/9raWnJycrBarezduxer1YrVaiU3N5c+ffo0OUpISUkhISFBZlT6sbvvvptrrrmG0aNHu2wdFRUV/OUvf2Hs2LHccMMNLluP8ExKqS1a67S2lvPuLDRunNGFsx17/yelqgomTWrXCd/AwEASExNJTEzkggsuaHi8urqa/fv3k5mZSWZmJh9++CGZmZnk5eURHx/fcJRQv3GIj4+Xk3F+oH7c31XJ3+FwcP/99zN8+HCuv/56l6xD+AbvTv6XXWYM//zwA3Tv7pz3LC2Fvn2hk3tMwcHBDYm9MZvNRnZ2NpmZmVitVtavX09mZibHjh2jf//+TY4SUlJS6NOnj2wUfEhaWhpLlixx2ftnZGRgt9uZNm2aNGsTJ+TdyT8gAFauNDYClZXt6vNzQna70dbhscc6/16tCAkJYdCgQQwaNKjJ4xUVFQ0bhczMTN544w0yMzMpKSkhKSmp2YnmXr16yR+3Fxo8eDA5OTkuGfd/8803+eqrr1i9erUMLYo2ef83pH9/eOopuOMO4+eOJm27HcrLYeFCMOEyjmFhYQwZMoQhQ4Y0ebysrKzhPEJmZiZff/01mZmZVFVVNWwQGm8YoqOjZaPgwYKDgxk6dCjbtm1z6sVTvvnmG5555hlWrVpFN2efAxM+ybtP+Db22WcwYYKRxCMj238OQGujQVxAACxYAH/4Q8cCdrOSkpKGo4T6DUNmZiYOh6PZUUJKSgpRUVFmhyzqvPDCC5SUlJCenu6U97Nardx5550sXbpUrj8t/OSEb2OjR8OGDTBlCmzaZDx2oqt7aW2M72sNAwbAo4+CF5XERUREMHLkyGZ/7AUFBQ0bhL179/LBBx9gtVoJCgpqdpSQnJwsLX1NkJqayvLly53yXoWFhUycOJGJEydK4hcnxXf2/Os5HPDll0av/6++Mnr02O2/HAlobVywpbbWOFl8551w4YXtu+C7l9Jak5+f32SjUD+UFBYW1uwoITk5mfBGE9+Ec9ntdi688ELee+89unbt2qn3mTBhAqmpqdx1111OjFB4M7fs+SulegD/BBKBbOBarXWLV6xQSkUAO4G3tNZ3d2a9JxQQAOefb9yOHTPmAfz4Ixw+bGwYYmNhyBDj1quXy8LwJEopYmNjiY2N5ayzzmp4XGtNXl5ew7DR1q1befPNN8nKyqJ79+4tzmbu4qIT4f7EYrE0jPufe+65HXqP+mZtMTExjB8/3skRCn/QqT1/pdRSoEBrvVgpNQOI0lpPb2XZR4HYuuXbTP4d3vMXneZwODh48GCzo4Ts7GxiY2ObHSnIbOaT99xzz1FRUcF9993Xode/8MILfPbZZzz77LPSXkQ04a4x/yuA39TdXwN8CjRL/kqpVKAX8D7QZlDCXAEBAcTHxxMfH9+kIqW2tpbc3NyGk8uff/45q1evJjc3l969e7c4mzm4nf2X/E1qaioZGRkdeu2GDRv417/+Jc3aRKd0Nvn30lofqrufh5Hgm1BKBQDLgRuBizq5PmGiwMBA+vfvT//+/VudzWy1WtmwYQNPP/10w2zm4080x8fHE3gS12LwRUOHDmXPnqNs3FjJoUNdqKgwTk/17QuDBxtNa1uqVahv1vbkk08SHR3t/sCFz2gz+SulPgJ6t/DUrMY/aK21UqqlMaS7gHe11rlt1Z8rpcYB4wASEhLaCk14iNZmM9vt9iYT195++20yMzM5evRok9nM9a0u+vbt6/Ozme12+OgjePZZCz/++BJ//rMmKMioP1DKqEXQGsLD4c9/hj/+8ZdTU4cOHWLKlCk8+OCDnHLKKeb+IsLrdXbMfzfwG631IaVUH+BTrfWg45b5O3AeRjflroAFeFJrPeNE7y1j/r6rsrKSrKysJvMTrFYrRUVFLc5m7t27t09MXPvuO7jvPsjLM/bqKyuPAg569mxeeGCzGZPWAwONNlPXXVfOuHF/4YorrpBmbeKE2jvm39nkvww41uiEbw+t9bQTLH8rkCYnfEVLysvLGzYIjTcMFRUVDa2yG7fNjo2N9YqNgtaQkQFPPGEk8/oJuBUV5Rw5coTExKRWX1tdDWVlGq13cMMNHzNv3n1e8TsL87jrhO9iYK1S6jZgH3Bt3crTgPFa69s7+f7Cj4SHhzNs2DCGDRvW5PGSkpImG4PPPvsMq9VKTU1Ni7OZe/ToYdJv0JzWMG8erFljJP3G00m6dOmCzWbD4aglIKDlcyDBwWCzHaa0tBdffHEvBQUKGeoXzuB7k7yE3ygoKGjS96j+iCEgIKDZUUJKSgqRkZFuj/G112DWLGOyeUvnuPftyyYmJobw8JYnexUWFlBYWEhiYiIlJYEMGwZvvimXlxatc8uwjytJ8hcdUT+b+fgNQmZmJl26dGlxNnNnZtmeSG4uXHyxsffe2jSIo0ePoDX07Nmz2XPl5WUcPHiQxMREgoMtaA1FRcbG5C9/cUnIwgdI8heiEa01hw8fbjZxzWq1EhER0eQoYcCAAU6ZzXznnUZlz4l66pWXl3P06FESExObPG6z2di3bx/x8fGEhYU1PG63G7evvgIPGt0SHkSSvxDt4HA4OHToULOjhH379hEdHd1sjkJiYiIhISFtvu+hQ3DeeSfuLQhQW1vFzp1TCQ214nCUEhwcT3T0eI4e7UNsbM8Wh6oKC2HmTLhdzqiJFvhfV08hOiAgIIC4uDji4uKazWY+cOBAw1HCl19+yYsvvtgwm/n4E839+/dvMpv5X/8yTva2NTavlMZi6UNs7L1ERqZQVvYFVusUevZ8vtVzFKGhsGqVJH/ROZL8hWhBYGAgCQkJJCQkNJvNnJOT03CU8NFHH5GZmcmhQ4eIi4tr2Ci8/vpYoAcQDLRemhkQ0IUePW6nutpowFdSMoCgoN6Ehx9t9TWhoUafwmPHkMof0WGS/IU4CcHBwQ3nBhqrn81snFPIZPt2jd2ey+HDNiwWCyEhoYSEhDTcLJZfNgphYeEcPXoUpfKx2Y4QGJhPSEhKC2s3KGWcRN650xhaEqIjJPkL4QQWi4WBAwcycOBAqqpg+XJjr1xrBzabreFWVFSIzWajpqaWkBBL3YbAQmlpKXZ7JRbLM0RGXk5ISOIJ11dbC0eOuOd3E75Jkr8QTlZb+8tYv1IBhIZ2ITS0aeWQw1GLzWav2yhUERkZgdaPo5SF3r1bnSTfQGtjPUJ0lCR/IZwsJMRIzlq3finpgIBAunTpQpcuXdBac+jQXKqrS4iPfwyl2v6zDAyERhWgQpw0mScohJMFBUFCgtGcrT3y8hZht2fRr99KAgLaLiOtJ409RWdI8hfCBdLSjK6cbamuPkRR0Tqqqn5mz55L2b37PHbvPo/i4vdafY3DYdyOO+csxEmRYR8hXOB3v4P169teLji4D4MHn9xkxpISuOgio+JHiI6SPX8hXODcc6F7d6iqcu771p9HkN4+orMk+QvhAoGBMHmyMfTjzA4qJSUwdCj86lfOe0/hnyT5C+Ei11xjJOniYue8n91ulJCuXNl6FZEQ7SXJXwgXCQiAFSuM4Z+Sks69V3U1lJfD/PlwXANQITpEkr8QLtS3L/zzn0Z3z6Kijg0BVVQYif/BB42jCSGcQZK/EC6WkgJvvw1nnWVsACoq2rcRqKkx2jd36QIvvAC33OL6WIX/kOQvhBv07g0vvwyPPAIxMVBaanTlLC832jRobdTuV1UZG4jiYmOS2I03wsaNMHq02b+B8DVS5y+EmygFV10FV1wBmzbBhx8a//78s5HoAwOhTx8YNQrOPx8uvRRcdIVJIST5C+FuAQFw5pnGTQizyLCPEEL4IUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CFJ/kII4Yck+QshhB9S2pn9Zp1IKXUU2OfEt4wB8p34fr5KPqe2yWfUPvI5tY+zP6f+WuvYthby2OTvbEqpzVrrNLPj8HTyObVNPqP2kc+pfcz6nGTYRwgh/JAkfyGE8EP+lPyfNTsALyGfU9vkM2of+Zzax5TPyW/G/IUQQvzCn/b8hRBC1PHZ5K+UukYp9aNSyqGUavVMulLqMqXUbqXUXqXUDHfG6AmUUj2UUhuUUnvq/o1qZblapdS2utt6d8dphra+G0qpEKXUP+ue/59SKtH9UZqvHZ/TrUqpo42+P7ebEaeZlFKrlFJHlFI7WnleKaUeq/sMf1BKjXJ1TD6b/IEdwO+Bz1tbQCkVCDwB/B8wBLheKTXEPeF5jBnAx1rrU4CP635uSaXWekTdbaz7wjNHO78btwGFWusBwEpgiXujNN9J/A39s9H353m3BukZXgQuO8Hz/wecUncbBzzl6oB8NvlrrX/SWu9uY7EzgL1aa6vW2g68Blzh+ug8yhXAmrr7a4ArTYzFk7Tnu9H4s3sDuFAppdwYoyeQv6F20Fp/DhScYJErgJe04Rugu1Kqjytj8tnk305xQE6jn3PrHvMnvbTWh+ru5wG9WlkuVCm1WSn1jVLKHzYQ7fluNCyjta4BioFot0TnOdr7N3R13XDGG0qpfu4Jzau4PRd59WUclVIfAb1beGqW1vrf7o7HU53oc2r8g9ZaK6VaK//qr7U+oJRKBjYqpbZrrTOdHavwSf8BXtVa25RSd2IcLV1gckx+z6uTv9b6ok6+xQGg8V5IfN1jPuVEn5NS6rBSqo/W+lDdYeaRVt7jQN2/VqXUp8BIwJeTf3u+G/XL5CqlgoBI4Jh7wvMYbX5OWuvGn8nzwFI3xOVt3J6L/H3YZxNwilIqSSllAa4D/KKSpZH1wC11928Bmh0xKaWilFIhdfdjgHOAnW6L0Bzt+W40/uz+AGzU/jdxps3P6bix67HAT26Mz1usB26uq/o5CyhuNBzrGlprn7wBV2GMm9mAw8AHdY/3Bd5ttNxvgZ8x9mJnmR23CZ9TNEaVzx7gI6BH3eNpwPN1938NbAe+r/v3NrPjdtNn0+y7AcwFxtbdDwVeB/YC3wLJZsfsoZ/TIuDHuu/PJ8CpZsdswmf0KnAIqK7LS7cB44Hxdc8rjKqpzLq/sTRXxyQzfIUQwg/5+7CPEEL4JUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CFJ/kII4Yck+QshhB+S5C+EEH7o/wNFo2AX2TB09QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "seed = 10598\n", + "\n", + "spsa = SPSA(max_trials=300)\n", + "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", + "\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", + "\n", + "result = vqe.run(quantum_instance)\n", + "\n", + "\"\"\"declarative approach\n", + "algorithm_cfg = {\n", + " 'name': 'VQE',\n", + " 'operator_mode': 'matrix'\n", + "}\n", + "\n", + "optimizer_cfg = {\n", + " 'name': 'SPSA',\n", + " 'max_trials': 300\n", + "}\n", + "\n", + "var_form_cfg = {\n", + " 'name': 'RY',\n", + " 'depth': 5,\n", + " 'entanglement': 'linear'\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising', 'random_seed': seed},\n", + " 'algorithm': algorithm_cfg,\n", + " 'optimizer': optimizer_cfg,\n", + " 'variational_form': var_form_cfg,\n", + " 'backend': {provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'}\n", + "}\n", + "\n", + "result = run_algorithm(params, algo_input)\n", + "\"\"\"\n", + "\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", + "\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.5\n", + "time: 15.852537155151367\n", + "max-cut objective: -4.0\n", + "solution: [1 0 1 0]\n", + "solution objective: 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOX1+PHPk2USEkgISdgSQhYEQUAgqUtdKO7f/ixqrVatW6siWBfCjqAo+yIQrfsCorZaVGqpO4pr1QoICiIImQQSIEDIvs0kmef3x01iQhISkpm5s5z36zUvJjN35p4Mk3Pvfe55zlVaa4QQQviXALMDEEII4X6S/IUQwg9J8hdCCD8kyV8IIfyQJH8hhPBDkvyFEMIPSfIXQgg/JMlfCCH8kCR/IYTwQ0FmB9CamJgYnZiYaHYYQgjhVbZs2ZKvtY5tazmPTf6JiYls3rzZ7DCEEMKrKKX2tWc5GfYRQgg/JMlfCCH8kCR/IYTwQ5L8hRDCD0nyF0IIPyTJXwgh/JDHlnoKcTLKy+Hzz2HbNti0CQoLjcd79oQzzoARI+DccyEkxNw4hfAUkvyFVzt0CJ56Ct54A2pqoLoaQkMhMPCX57/9FoKDjcR/881w++0QFWVu3EKYTYZ9hFfSGl5/HS66CF55BSwWiIiA6GgIDzc2AKGh0LWr8VhEBChlbCguuAA2bjT7NxDCXJL8hdeprYWpU2HGDAgIgB49IKgdx7AWi7GszQZ33AHLlxsbESH8kQz7CK+iNUyfDv/6F0RGGsn/ZIWFGUNATz5pDA9NnOj8OIXwdLLnL7zKunWdS/z1AgOhWzd4/HH4+mvnxSeEt5DkL7zG4cPw4IPGnntnEn+9oCDjRPDEiUa1kBD+RJK/8BrPPgtVVc4t1wwPh/x8o1pICH8iyV94hYoKeO01o3qnLbW1JeTmTmHXrnPZu/dyiovfP+HyoaHwzDPgcDgpWCG8gCR/4RW++sqo4w8ObnvZvLzFKBXMwIEf0rfvfPLyFmGzWVtdPjQUjh2DnTudGLAQHk6Sv/AK338PdnvbyzkclZSWbiQ2dgIBAWGEhY2gW7fRFBe/0+prlDLKRyX5C38iyV94hU2b2jfWb7fvBwKxWBIaHgsJOeWEe/5glJBu3drJIIXwIlLnL7xCUdEvLRtOxOGoICAgnMrKSkpKiunSpQu1tRZqa8tO+LrAQGPoRwh/Iclf+JSAgDBqakqxWjOxWCxUV9dQWpqL3W5n7969hISEEBJiqfs3BIvFQkBAO7YqQvgYSf7CK/TuDVYrdOly4uWU6o3NVkl8vIOSkgDi4+M5eLCYwMBUoqL6YbPZsNlslJWVU1BQgM1mJzAwEK2j2L//Z9atyyM5OZmkpCQiIyPd88sJYQJJ/sIrnHGG0bL5RByOWg4cyKdbtzHY7a9SU3MdpaWbKS39jMTE1VgsIVgsIXTr1vhVmurqagoKajj11Cq2b9/O+vXrsVqthIaGkpSURFJSEsnJySQmJpKcnEx0dDRKKVf+ukK4nCR/4RVOP72tMk/NgQMH6NIljJ49H+LgwbnYbLeTm9uDvn1nEhKS3MrrFEFBFkJDLdxzzwWkpFxgvJvWHD16lKysLLKysti7dy8bNmzAarVSW1vbcHTQeMPQu3dvApwx9VgIN5DkL7zCmWcaE7xstparfg4fPozWmt69e6OUol+/5YSHH8NmsxMZ2eeE711eDqecAsmNtg9KKXr27EnPnj0588wzmyxfWFjYsFHIysriq6++Ijs7m9LSUvr3799swxAXF0dge85WC+FGkvyFVwgKgttuM9owH5/8i4oKKSsrIzExqclwTFhYOIX1l/RqhdbG5LHx4416//aIiooiKiqKUaNGNXm8rKysyUbhrbfewmq1kp+fT79+/Ro2BvUbhoSEBCwWS/tWKoSTSfIXXuPmm2HNGigpMXryAFRUlHPkyFESE/s327sODQ2htraWmppqgoJaHjMqKYFBg+C3v+18fF27dmXYsGEMGzasyeNVVVXs27ePrKwsrFYrH374IVlZWRw8eJDevXs3Gz5KTEwkLCys8wEJcQJKe+jVLNLS0vTmzZvNDkN4mK+/hptuMpK/1jays/cRFxdHeP3W4Dg5OTlERkYQEdG8csdmM2YNv/22MezjbtXV1eTk5DQcKVitVrKzs9m3bx89evRo2Cg03jBERES4P1DhVZRSW7TWaW0t55Q9f6XUZcCjQCDwvNZ6cSvLXQ28AfxKay2ZXZy0s882LuaycKGDgoKDxMbGtpr4AcLDw6ioqGiW/G02qKyEjAxzEj9AcHAwycnJJCc3PRntcDg4cOBAw0Zh27ZtrFu3juzsbLp06dJs+Cg5OZmoqCipQBInpdN7/kqpQOBn4GIgF9gEXK+13nncct2AdwALcHdbyV/2/EVrampquPjiV9m+/XKio6OOK91sqqqqkoMHD5KcnAIYY/wlJcb1AJYvh8svd1PQTqC15siRI1it1ibnFqxWo3VF441B/f1evXrJRsHPuHPP/wxgr9baWrfi14ArgOPbZM0DlgBTnbBO4ceWL1/O0KG5PPLIDaSnw8GDRhloWFjzk7ahoaFUV9dQXV1DVVUQtbUweLCxx5+SYk78HaWUolevXvTq1Yuzzz674XGtdUMFUv2G4YsvviArK4uKigoSExObbRji4uKkLNXPOSP5xwE5jX7OBZrUximlRgH9tNbvKKUk+YsOW7t2LZs3b2b16tV07RrIhx/Cf/4DTz8NOXXfwpqaX/oA1dQogoKiyM+3k5YWxLhxcNll7esT5C2UUvTo0YMePXqQmpra5LnS0tImRwlvvPEGWVlZHDt2jP79+zc7r9CvXz+C29M3W3g9l1f7KKUCgBXAre1YdhwwDiAhIaGNpYW/+eabb3j++edZtWoVXeuu6hIaCtdcA3/4A2RmGm2Zt20zrs6lFPTpA/n52wkO3s2iRXeZ/Bu4X7du3Rg+fDjDhw9v8nhlZSXZ2dkNG4X3338fq9VKXl4effr0aTJ0lJSURGJiIqGhoSb9FsIVnDHmfzbwkNb60rqfZwJorRfV/RwJZAL1bRV7AwXA2BON+8uYv2gsOzubO+64gyVLljSrr2/Lzp07eeihh1i7dq2LovMddrudnJycZucV9u/fT0xMTIvnFbq25/Jqwm3cOea/CThFKZUEHACuA26of1JrXQzENArsU2CKVPuI9iouLmbixIncc889J534AQYNGsThw4cpLCwkKirKBRH6DovFQkpKCinHnRCpra1tqECyWq1s3ryZ119/nezsbLp27dps+CgpKUk+6xMpLjY6FVZVGTMY4+KMw1Q3npzvdPLXWtcope4GPsAo9Vyltf5RKTUX2Ky1Xt/ZdQj/VV1dzdSpUxkzZgxjx47t0HsEBgYyYsQItm7dygUXXODkCP1DYGAgCQkJJCQkMHr06IbHHQ4Hhw8fbjhC+Omnn3j33XfJysoiICCg2fBRcnIysbGx/lmBZLXCK6/AO+8Y45KNZ3fX1BhT13/9a7j1VjjrLKMkzYVkkpfwWFpr5s+fT0FBAcuXL+9UdcpLL71EXl4e06ZNc2KEojVaawoKClosS62qqmo2dJSUlETfvn19swLpyBG4/3749FOj1jgszEj8x28Aa2qgrMx4PC4OVqyADhzpunWSlxCu8Oqrr/Ljjz+yatWqTieF1NRU5s2b56TIRFuUUkRHRxMdHc2vfvWrJs+VlJQ0KUvdtGkTWVlZFBYWNlQgNd4w9OvXj6AgL01V770HU6cawzuRkSce1gkKgu7djQ3EoUNw7bXw5z/DjBkuKU/z0k9U+Lovv/ySl156idWrVzulz82pp57KwYMHKSoqonv37k6IUHRUREQEp59+OqeffnqTxysqKhoqkKxWK2+//TZZWVkcPnyYuLi4ZsNH/fv3J6Q9F3Y2y2uvwaxZxhWITuY7pxR06wa1tfDCC3DgADz2mLFxcCIZ9hEeJzMzkzvvvJMVK1Y0K1HsjHvvvZerrrqKMWPGOO09hevZ7faGxniNh49yc3OJjY1tNnyUlJR0wpYfbvHZZ0Yb2vohno7SGgoL4cYbYe7cdr2kvcM+kvyFRykoKODWW29l/Pjx/NYZrTYbefHFF8nPz2fKlClOfV9hjpqaGg4cONDkvILVamXfvn1ERES0eF7BLUd9RUUwZozRQMoZ3Vlra6G0FF5+2Whu1QYZ8xdex263M3XqVC677DKnJ34wxv0XLVrk9PcV5ggKCqJ///7079+/ydGcw+EgLy+vYWOwY8cO/vOf/5CVlUVwcHCLcxViYmKcV4G0eLHRQMpZpa6BgUb/kvR0+OKLti5p126S/IVH0FqzYMECoqOjGT9+vEvWMXjwYHJzcykpKZHWyD4sICCAvn370rdvX84555yGx7XW5OfnNzlK+Pjjj8nKysJutzfrlJqUlHTyl+YsKIB166Ad368HDhzg24oKKh0OYoKCuDk6mitbOzIJDzfe+5NP4JJL2h/PCUjyFx5hzZo1ZGZm8txzz7ms3C8oKIjhw4ezdevWJrXqwj8opYiNjSU2NpYzzjijyXNFRUVNzil88803ZGVlUVJS0uzSnElJScTHx7dcgfTWW+BwtKs6588xMTwQHIwlIIBsm41x+/YxKCSEwV26tP6i556T5C98xyeffMLatWt58cUX6XKiL74TjBo1ii1btkjyF010796dkSNHMnLkyCaPl5eXk52d3XBeYf369WRlZXHkyBHi4+ObX1vh/ffbfb3m5EaVSgpj45RbXd168u/aFbZuNa5A5ITLf0ryF6bavXs3CxYs4LHHHqNnz54uX19aWhpLlixx+XqEbwgPD+e0007jtNNOa/K4zWZrcmnOjz76iCyrlcXvvosKDia4qAhLSAghdTeLxUJgC0e0i/Py+E9RETatGRQayjkn6pMUEGCUe+7ZA8fF0xGS/IVp8vPzmTRpEtOnT2fIkCFuWefgwYPJycmRcX/RKSEhIQwcOJCBAwf+8mBJCXrkSOxhYdjsdmw2G+VlZRQUFGC32QgMDDQ2BPUbBYuFqbGxTOvVix8qK9lSUYGlrZPOWsO+fZL8hfey2WxMnjyZK6+8kosvvtht6w0ODmbo0KFs27aN888/323rFX7AbkcFBDTs7Te+xJzG6FNls9mw2WxUVlRQUFBAbW0tp5xyCiPCwni3uJg3Cgu5rkeP1tehtdEGwgl8sJGG8HRaax5++GHi4uK4/fbb3b7+1NRUtmzZ4vb1Ch9nsRgne1uYO6UAS3Aw3bp2JSY6ml69ewMYJaZ1y9QCuXb7idehlFPG+0GSvzDB888/z4EDB5gzZ44p3R1TU1P57rvv3L5e4eO6dTNubeyZa+DH/fvZFBBAaGQkDq35uqyMD4qLOaM9M5MTE50Srgz7CLfasGEDb731FmvWrDGtL8uQIUPIzs6mrKxMLkQinEcpGDoUNm1qdSKWBvLy8lBK8THw9J49OIA+wcFM7tWL8xsNFTXjcBg3J118WpK/cJudO3eyZMkSnnjiCWJiYtp+gYtYLJaGcf9zzz3XtDiED7rsMvjmm1afLigooKKigiGJiTx3svNZSkvhzDOdNsNXhn2EWxw5coQpU6Ywe/ZsBg0aZHY4DfX+QjjV2LFGOWYLQz+lZWUcO3aMfv36tVj22Sal4I47nBCkQZK/cLnKykomTZrEtddey29+8xuzwwHkpK9wkYgIuP5646IsjVTZbBw6eJD4+HgsHdlzLy01LvPoxCNVSf7CpRwOB3PmzCElJYVbbrnF7HAaDB06lKysLMrLy80ORfiayZMhOhrqvls1NTXk5OTQq3dvwjoyg7221rg9+qhTL+oiyV+41NNPP82xY8eYNWuWR1231WKxMGTIEL7//nuzQxG+pmtX+NvfoKYGR1UVObm5dO/enciOTCp0OIwOoXfeCSNGODVMSf7CZd59913ef/99li1bhsVJtcnOlJqailwzQrjEGWfgyMig4MABwpXqWIFDdbVxbYA//tE4mnAySf7CJX744QdWrFjBypUr6XGiGYsmknp/4UrP7N/PM7/+NTH9+qGKioyhm/bQGoqLobLSuP7v/PlGXx8nk+QvnO7QoUNMmzaNhx56iBQn1SS7wtChQ8nMzKSiosLsUISPeffdd3nvvfeY8PLLBHz6KVx1lXESuLAQKiqM4ZzGtDau/FVYaAzznHYavP02TJjgksQPkvyFk1VUVJCens5NN93k8TX0ISEhDB48WMb9hVNt27aNlStXkpGRYRz1RkTAsmXw3//CpEmQkGBU75SWGieFy8qM4Z3ISLj2Wvj3v43rAjRuGucCMslLOI3D4WDWrFkMHTqUG264wexw2qW+3v/sdlwbVYi2HDhwgOnTpzN37lySk5ObPtmzJ/z1r8atuhpyc42hneBgo4zTzbPNJfkLp3n88ccpLy9n6dKlHlXZcyKpqak89dRTZochfEBpaSn33Xcft99+e9s7E8HBkJTknsBaIclfOMX69evZuHEja9asIdhJ08/dYdiwYezZs4fKykqXX0VM+K6amhqmT5/OWWedxTXXXGN2OO0iY/6i07777jv+9re/kZGRQWRkpNnhnJTQ0FAGDRrEDz/8YHYowktprVm6dCnBwcFMmjTJ7HDaTZK/6JTc3FxmzJjBvHnzSHRSq1l3kz4/ojNeffVVfvjhBxYtWkSAiypzXMF7IhUep6ysjPT0dG6//XbOOusss8PpsLS0NEn+okO++OILXn75ZVauXElYWJjZ4ZwUpyR/pdRlSqndSqm9SqkZLTw/SSm1Uyn1g1LqY6VUf2esV5intraWmTNnkpaWxrXXXmt2OJ0ybNgwdu/eTVVVldmhCC/y888/M3fuXJYtW0afPn3MDuekdTr5K6UCgSeA/wOGANcrpY6/GvdWIE1rPRx4A1ja2fUKc61cuZLa2lomu2Daubt16dKFgQMHyri/aLf8/HwmTZrEtGnTGDp0qNnhdIgz9vzPAPZqra1aazvwGnBF4wW01p9oreunUX4DxDthvcIkb775Jl9//TWLFy8mKMg3CsakxbNor6qqKiZNmsSVV17JxRdfbHY4HeaM5B8H5DT6ObfusdbcBrznhPUKE2zatIlnnnmGlStXEtGRLoUeSvr8iPaob1GemJjIbbfdZnY4neLW3Tal1I1AGjC6lefHAeMAEhIS3BiZaI/9+/cza9YsFi5c6HP/P8OHD2fXrl3YbDbTri0sPN/TTz9Nfn4+Tz31lNdMZGyNM/b8DwD9Gv0cX/dYE0qpi4BZwFitta2lN9JaP6u1TtNap8XGxjohNOEsJSUlTJw4kQkTJpCWlmZ2OE4XFhbGgAED2L59u9mhCA/1zjvv8MEHH/DII494ZIvyk+WM5L8JOEUplaSUsgDXAesbL6CUGgk8g5H4jzhhncKN6mcvnnvuuVx11VVmh+MyUu8vWrN161YyMjJYuXIlUVFRZofjFJ1O/lrrGuBu4APgJ2Ct1vpHpdRcpdTYusWWAV2B15VS25RS61t5O+Fh6mcvWiwWJk6caHY4LiUnfUVLcnJymD59OvPnz2/erM2LOWXMX2v9LvDucY892Oj+Rc5Yj3C/tWvXsm3bNlavXu1Vsxc7YsSIEfz000/Y7XafOKwXnVc/3HnnnXdy5plnmh2OU/n2X7PolK+++opVq1aRkZFBeHi42eG4XFhYGMnJyezYscPsUIQHqKmpYcaMGZxzzjlcffXVZofjdJL8RYusVitz5sxhyZIl9O3b1+xw3Eau6yvAP4Y7JfmLZoqKikhPT+e+++5jxIgRZofjVlLvL8Bo1rZ9+3YWLlzos8OdvvlbiQ6rrq5m6tSpXHTRRVx++eVmh+N2I0aM4Mcff8Rut5sdijDJ559/7rXN2k6GJH/RQGvNokWLiIiI4K9//avZ4ZgiPDycpKQkfvzxR7NDESb4+eefmTdvHo888gi9e/c2OxyXkuQvGrzyyivs2rWLefPm+eyhbntIvb9/ys/PJz09nenTp3PaaaeZHY7L+e9fuGji888/5x//+AcrVqzw6UPd9pBxf/9T36zt6quv5qKL/KMyXZK/YM+ePcydO5elS5f6/KFue4wYMYIdO3ZQXV1tdijCDRwOBw8++CCJiYn8+c9/Njsct5Hk7+cKCgqYNGkSU6dOZdiwYWaH4xG6detGQkICO3fuNDsU4QZPPfUUBQUFzJ492+ubtZ0MSf5+zG63M2XKFP7f//t/XHrppWaH41Fk3N8/vP3222zYsMFnmrWdDEn+fkprzbx584iNjWXcuHFmh+Nx5Lq+vu+7777jscceY+XKlXTv3t3scNxOkr+fWr16NdnZ2Tz88MN+XdnTmhEjRrB9+3ZqamrMDkW4QE5ODjNmzGD+/PkkJSWZHY4p5K/eD23cuJE33niD5cuXExoaanY4HikiIoL4+HgZ9/dB9c3axo8fzxlnnGF2OKaR5O9ndu3axcKFC1m+fDk9e/Y0OxyPJi2efU/9tSnOOeccfv/735sdjqkk+fuRo0ePMmnSJGbOnMngwYPNDsfjSb2/b9Fas2TJEkJDQ322WdvJkOTvJ6qqqpg8eTJXX301F154odnheIWRI0fy/fffy7i/j/j73//Ojh07WLBggZznQpK/X3A4HDz88MMkJCTwl7/8xexwvEZkZCRxcXHs2rXL7FBEJ3322Wf8/e9/JyMjw+9nsNeT5O8Hnn/+eQ4dOsSDDz7oV5NYnEHq/b3f7t27mT9/PsuXL6dXr15mh+MxJPn7uA8//JD169ezfPlyv5vE4gxy0te71Z/nmjFjBkOGDDE7HI8iyd+H7dixg6VLl7JixQqio6PNDscrjRo1iu+//57a2lqzQxEnqbKysqFZm5znak6Sv486fPgwU6dO5cEHH2TgwIFmh+O1unfvTu/evdm9e7fZoYiT4HA4mDNnDikpKX7VrO1kSPL3QRUVFaSnp3P99ddz/vnnmx2O15Pr+nqfJ598ksLCQu6//345z9UKSf4+pr497aBBg7jpppvMDscnSL2/d1m/fj0fffQRy5Ytk/NcJyDJ38c8+eSTFBcXM3PmTNnjcZKRI0eybds2HA6H2aGINnz33Xc8/vjjZGRk+GWztpMhyd+HvPPOO3z44YcsXbpU9nicqEePHvTs2VPG/T3c/v37G5q1JSYmmh2Ox5Pk7yO+//57MjIyyMjIICoqyuxwfI7U+3u2+mZtEyZM8OtmbSdDkr8POHjwINOmTePhhx8mOTnZ7HB8koz7e67q6mqmTZvGeeedx1VXXWV2OF5Dkr+XKy8vJz09nVtvvZVf//rXZofjs0aNGsXWrVtl3N/DaK1ZvHgxYWFh3HfffWaH41Uk+Xsxh8PBrFmzOP3007nuuuvMDsenRUdHEx0dzZ49e8wORTTyyiuv8NNPPzF//nxp1naSnPJpKaUuU0rtVkrtVUrNaOH5EKXUP+ue/59SKtEZ6/V3jz76KDabjWnTpklljxvIuL9n+fTTT3n11VdZuXKlNGvrgE4nf6VUIPAE8H/AEOB6pdTxTTRuAwq11gOAlcCSzq7X37311lt88cUXLFmyhKCgILPD8QtyXV/PsWvXLubPn88jjzwizdo6yBl7/mcAe7XWVq21HXgNuOK4Za4A1tTdfwO4UMmuaodt2bKFJ598kpUrVxIREWF2OH5Dxv09w5EjR5g0aRL333+/NGvrBGck/zggp9HPuXWPtbiM1roGKAak01gH5OTkMHPmTObPn0///v3NDsevxMTE0L17d/bu3Wt2KH6rvlnbtddeywUXXGB2OF7No86QKKXGKaU2K6U2Hz161OxwPE5paSnp6emMGzdOaplNIi2ezeNwOHjggQcYMGAAt9xyi9nheD1nJP8DQL9GP8fXPdbiMkqpICASOHb8G2mtn9Vap2mt02JjY50Qmu+ora1l5syZnHnmmfzhD38wOxy/JfX+5nn88ccpKSlh1qxZUuDgBM5I/puAU5RSSUopC3AdsP64ZdYD9ZvqPwAbtdbaCev2G8uXLwdg0qRJJkfi30aNGsV3330n4/5utn79ej755BOWLVtGcHCw2eH4hE6XiWita5RSdwMfAIHAKq31j0qpucBmrfV64AXgZaXUXqAAYwMh2un111/n22+/ZfXq1QQGBpodjl/r2bMnERERWK1WBgwYYHY4fmHLli08/vjjPPfcc0RGRpodjs9wSo2g1vpd4N3jHnuw0f0q4BpnrMvf/O9//+O5555j1apVdOvWzexwBL/U+0vyd739+/czc+ZMFixYIAUOTuZRJ3xFU9nZ2cyePZvFixcTHx9vdjiijpz0dY/6Zm133XUXv/rVr8wOx+dI8vdQxcXFpKenc/fddzNq1CizwxGN1J/0lXF/16murmbq1KmMHj2aK6+80uxwfJIkfw9U36Vw9OjRXHHF8fPlhNl69epFeHg4WVlZZofik7TWLFq0iPDwcO655x6zw/FZkvw9jNaapUuXEhYWxr333mt2OKIVMvTjOi+//HJD+wZp1uY68sl6mFdffZUffviBBQsWyBffg0nyd41PPvmE1157jYyMDGnW5mKSXTzIf//7X9asWSNdCr1Afb2/TFdxnl27drFgwQKWL19Oz549zQ7H50ny9xCZmZk89NBDLFu2jL59+5odjmhDnz596NKli4z7O0njZm2DBw82Oxy/IMnfAxQWFpKenk56ejrDhw83OxzRTvV7/6JzKisrSU9P549//KM0a3MjSf4ms9vtTJ06lUsvvZTf/va3ZocjToKM+3defbO2QYMGcfPNN5sdjl+R5G8irTULFy4kKiqKCRMmmB2OOEn1yV/G/TuuvlnbzJkzpVmbm8kloEz08ssv8/PPP/PCCy9IZY8X6tOnDxaLhX379pGYmGh2OF7nrbfe4tNPP2X16tXSrM0EknFM8tlnnzWUtHXp0sXscEQHKKVk3L+DNm/ezJNPPklGRoY0azOJJH8T/Pzzz8ybN49ly5ZJSZuXS0tLY/PmzWaH4VX279/P/fffz8KFC0lISDA7HL8lyd/Njh07xqRJk5g2bRqnnXaa2eGITpJ6/5NTXFzMfffdx1//+lfS0tLMDsevSfJ3I5vNxuTJkxk7diyXXHKJ2eEIJ4iLiyMgIICcnJx9mhS4AAAZpUlEQVS2F/Zz9c3axowZIz2rPIAkfzfRWjN37lz69u3LHXfcYXY4wkmUUlLy2Q71zdoiIiK4++67zQ5HIMnfbVatWkVOTg5z5syRkjYfI8m/bS+99BK7d+9m3rx5UtnmIeR/wQ0++ugj1q1bx4oVKwgJCTE7HOFkMu5/Yhs3buSf//wnK1eulMo2DyLJ38V27tzJ4sWLWbFiBTExMWaHI1ygX79+aK3Jzc01OxSP89NPP7Fw4UJWrFghlW0eRpK/Cx05coQpU6Ywa9YsBg0aZHY4wkWk3r9lR44cYfLkycyePZtTTz3V7HDEcST5u0hVVRWTJ0/mmmuuYcyYMWaHI1xMxv2bqqioYOLEiVx33XX85je/MTsc0QJJ/i7gcDiYM2cOSUlJ3HrrrWaHI9xA+vz8wuFwNOzt33TTTWaHI1ohyd8FnnnmGY4ePcrs2bOlssdPJCQkUFNTw8GDB80OxXR/+9vfqKiokGZtHk4auznZ+++/z3vvvceLL76IxWIxOxzhJo3r/ePi4swOxzRvvfUWn332GS+++KI0a/NwsufvRNu3b+eRRx5hxYoV9OjRw+xwhJv5+7j/t99+29CsLSIiwuxwRBsk+TtJXl4eU6dOZc6cOQwYMMDscIQJ/LniZ9++fcyePZtFixZJszYvIcnfCSoqKkhPT+fGG2/kvPPOMzscYZLExERsNpvfjfsXFxczceJE7r77blJTU80OR7STJP9Oqq9sGDJkCH/605/MDkeYyB/r/esvQzpmzBjGjh1rdjjiJEjy76THH3+csrIyZsyYIZUNwq/G/esvQxoZGSnN2rxQp5K/UqqHUmqDUmpP3b9RLSwzQin1tVLqR6XUD0qpP3ZmnZ7kP//5Dxs3bmTp0qVS2SAA/0r+a9asYe/evcydO1eatXmhzv6PzQA+1lqfAnxc9/PxKoCbtdanAZcBGUqp7p1cr+m2bt3KY489xsqVK+ne3et/HeEkSUlJVFRUkJeXZ3YoLrVx40bWrl0rzdq8WGeT/xXAmrr7a4Arj19Aa/2z1npP3f2DwBEgtpPrNdWBAweYPn06c+fOJSkpyexwhAfxh3H/nTt3NjRri4316j9lv9bZ5N9La32o7n4e0OtECyulzgAsQGYn12ua8vJy0tPTuf322zn77LPNDkd4IF++ru/hw4eZMmUKDzzwgDRr83JtzvBVSn0E9G7hqVmNf9Baa6VUq41NlFJ9gJeBW7TWjlaWGQeMAzyyVri2tpaZM2cyatQorrnmGrPDER5q1KhR/OMf/zA7DKerL2m+/vrrGT16tNnhiE5qM/lrrS9q7Tml1GGlVB+t9aG65H6kleUigHeAWVrrb06wrmeBZwHS0tI8rkPWo48+Sk1NDVOmTJHKHtGq5ORkSktLOXLkiM/0sG9c0nzjjTeaHY5wgs4O+6wHbqm7fwvw7+MXUEpZgH8BL2mt3+jk+kyzbt06vvzySxYvXkxQkLREEq0LCAjwuaqfRx99lIqKCqZPny47Pj6is8l/MXCxUmoPcFHdzyil0pRSz9ctcy1wPnCrUmpb3W1EJ9frVps2beLpp5+WniWi3UaNGuUzyX/dunV88cUXUtLsYzq1C6u1PgZc2MLjm4Hb6+6/ArzSmfWYaf/+/cyaNYuFCxd65HkI4ZlSU1NZu3at2WF02rfffsvTTz/N888/Lzs+PkZmZpxASUkJEydOZPz48aSlpZkdjvAiKSkpFBUVcfToUbND6bDs7Gxmz57N4sWLZcfHB0nyb0VNTQ0zZszgnHPO4fe//73Z4QgvExAQ4NX1/kVFRUycOJF77rmHUaNGmR2OcAFJ/q1Yvnw5QUFBTJw40exQhJfy1nH/+mZtF110Eb/73e/MDke4iCT/Fqxdu5YtW7awcOFCAgMDzQ5HeKm0tDSvS/5aaxYsWEBUVBR33XWX2eEIF/LdmsWSEti4Eb79FrZsgWPHjMcjI2HECDjzTLjwQoiObvKyb775hhdeeIFVq1bRtWtXEwIXvmLAgAEUFhaSn59PTEyM2eG0y+rVq7FarTz33HPSrM3H+V7yz8uDxx6Ddeugtta4hYZCfYlaXh689Rb8+98QEACXXQYTJ0JyMllZWTzwwAMsXbrUr6/DKpwjICCAESNG8N1333HJJZeYHU6bPv74Y958801efPFFQkNDzQ5HuJjvJH+t4V//ggcegMpKiIiAliZjBQdDfRfC2lp4+2344AMq7r6byR99xL333svIkSPdG7vwWfWTvTw9+e/cuZPFixfzxBNPSLM2P+Ebx3UOB8yZA1OnGnvzPXq0nPiPFxgIPXrgsFgonzWLh/Pz+d2ll7o+XuE3UlNTPb7iJy8vj8mTJ/PAAw8wcOBAs8MRbuIbyX/+fPj7343x/JCQk3qpBvIKCqgKDWXooUNw773GxkQIJxg4cCBHjx6loKDA7FBaVN+s7U9/+hPnn3++2eEIN/L+5L9xI6xZYwzzdOAEVUFBAVWVlfSNj0d17w4ffgg+2JFRmCMgIICRI0d65N6/w+Fg1qxZDB06VK4/7Ye8O/kXF8PkycbefgdKMkvLyjh27Bj9+vUjMCDA2Hh07WocSeTkuCBg4Y88td4/IyODqqoqadbmp7w7+b/2mlHSGRZ20i+tstk4ePAg8fHxTZtVWSxQXQ3PPuvEQIU/88QOn+vWreO///0vS5YskS61fsp7k39tLTz//C+VOyewtqCAm7KyOHvXLh46eJCamhpycnLo3bs3YS29vls3eOMNKCtzQeDC3wwaNIjDhw9TWFhodijAL83apEutf/Pe5L99u7HX34565JigIG6LiWFsZCRaa3Jzc4mMjCSytS9+UJBx0ve//3Vy0MIfBQYGMmLECLZu3Wp2KGRlZTU0a+vXr5/Z4QgTeW/y37kTamrategFERH8pls3IgIDKS0rIygoqO1aZrsdfvjBCYEKYQz9mH1d3/pmbffee680axNenPy3bTvpl5SXl1NbU0PfuDjaPL0VEgI+ehFu4X5m1/vb7XamTJnCJZdcwuWXX25aHMJzeG/yLyg4qQqf6upqSktKsISEUFlZSU1t7YlfEBhoVBMJ4QSnnnoqBw8epKioyO3r1lozf/58oqOjmTBhgtvXLzyT957mP8ma/qDgYCIiI6mw2Th65Ag2mw2lFCGhoYRYLMa/ISGEhIQYZZ8dWIcQrWk87j9mzBi3rnv16tVkZ2fz7LPPSrM20cB7k3+/fkZJZjspIDwsjG4WC4l9+6IxLthis9mw2WxUVlZSVFSEzWYjICCA7kpxpGtXrOvXk5ycTHJyMmEdKCkVol59vb87k/+GDRt48803WbNmjTRrE014b/IfMeKXTp1tqNWaWq1xAA7A7nAQqBTBQUEEBwXRNTy8YVmNMURUe/Qoe4cMYfPmzaxdu5bs7GyioqJITk4mJSWFlJQUkpOTSUpKkj8q0S6pqaksWrTIbevbsWMHS5cu5YknnvCaltLCfbw3+Q8fbnTy1BramJ34Qn4+z+bnN/z8bnEx42JiGNdCxY8CLMHB0K0bv54wgV+fcQZgTIU/cOAAVquVzMxMvvrqK1555RX27dtHz549SU5OZsCAAQ1HCYmJiVgsFqf+ysK7DR48mNzcXEpKSlxeX5+Xl8fUqVOlWZtoldJamx1Di9LS0nSbpXFXXgk//WRMynKmykrjPb/6qs1x/9raWnJycrBarezduxer1YrVaiU3N5c+ffo0OUpISUkhISFBZlT6sbvvvptrrrmG0aNHu2wdFRUV/OUvf2Hs2LHccMMNLluP8ExKqS1a67S2lvPuLDRunNGFsx17/yelqgomTWrXCd/AwEASExNJTEzkggsuaHi8urqa/fv3k5mZSWZmJh9++CGZmZnk5eURHx/fcJRQv3GIj4+Xk3F+oH7c31XJ3+FwcP/99zN8+HCuv/56l6xD+AbvTv6XXWYM//zwA3Tv7pz3LC2Fvn2hk3tMwcHBDYm9MZvNRnZ2NpmZmVitVtavX09mZibHjh2jf//+TY4SUlJS6NOnj2wUfEhaWhpLlixx2ftnZGRgt9uZNm2aNGsTJ+TdyT8gAFauNDYClZXt6vNzQna70dbhscc6/16tCAkJYdCgQQwaNKjJ4xUVFQ0bhczMTN544w0yMzMpKSkhKSmp2YnmXr16yR+3Fxo8eDA5OTkuGfd/8803+eqrr1i9erUMLYo2ef83pH9/eOopuOMO4+eOJm27HcrLYeFCMOEyjmFhYQwZMoQhQ4Y0ebysrKzhPEJmZiZff/01mZmZVFVVNWwQGm8YoqOjZaPgwYKDgxk6dCjbtm1z6sVTvvnmG5555hlWrVpFN2efAxM+ybtP+Db22WcwYYKRxCMj238OQGujQVxAACxYAH/4Q8cCdrOSkpKGo4T6DUNmZiYOh6PZUUJKSgpRUVFmhyzqvPDCC5SUlJCenu6U97Nardx5550sXbpUrj8t/OSEb2OjR8OGDTBlCmzaZDx2oqt7aW2M72sNAwbAo4+CF5XERUREMHLkyGZ/7AUFBQ0bhL179/LBBx9gtVoJCgpqdpSQnJwsLX1NkJqayvLly53yXoWFhUycOJGJEydK4hcnxXf2/Os5HPDll0av/6++Mnr02O2/HAlobVywpbbWOFl8551w4YXtu+C7l9Jak5+f32SjUD+UFBYW1uwoITk5mfBGE9+Ec9ntdi688ELee+89unbt2qn3mTBhAqmpqdx1111OjFB4M7fs+SulegD/BBKBbOBarXWLV6xQSkUAO4G3tNZ3d2a9JxQQAOefb9yOHTPmAfz4Ixw+bGwYYmNhyBDj1quXy8LwJEopYmNjiY2N5ayzzmp4XGtNXl5ew7DR1q1befPNN8nKyqJ79+4tzmbu4qIT4f7EYrE0jPufe+65HXqP+mZtMTExjB8/3skRCn/QqT1/pdRSoEBrvVgpNQOI0lpPb2XZR4HYuuXbTP4d3vMXneZwODh48GCzo4Ts7GxiY2ObHSnIbOaT99xzz1FRUcF9993Xode/8MILfPbZZzz77LPSXkQ04a4x/yuA39TdXwN8CjRL/kqpVKAX8D7QZlDCXAEBAcTHxxMfH9+kIqW2tpbc3NyGk8uff/45q1evJjc3l969e7c4mzm4nf2X/E1qaioZGRkdeu2GDRv417/+Jc3aRKd0Nvn30lofqrufh5Hgm1BKBQDLgRuBizq5PmGiwMBA+vfvT//+/VudzWy1WtmwYQNPP/10w2zm4080x8fHE3gS12LwRUOHDmXPnqNs3FjJoUNdqKgwTk/17QuDBxtNa1uqVahv1vbkk08SHR3t/sCFz2gz+SulPgJ6t/DUrMY/aK21UqqlMaS7gHe11rlt1Z8rpcYB4wASEhLaCk14iNZmM9vt9iYT195++20yMzM5evRok9nM9a0u+vbt6/Ozme12+OgjePZZCz/++BJ//rMmKMioP1DKqEXQGsLD4c9/hj/+8ZdTU4cOHWLKlCk8+OCDnHLKKeb+IsLrdXbMfzfwG631IaVUH+BTrfWg45b5O3AeRjflroAFeFJrPeNE7y1j/r6rsrKSrKysJvMTrFYrRUVFLc5m7t27t09MXPvuO7jvPsjLM/bqKyuPAg569mxeeGCzGZPWAwONNlPXXVfOuHF/4YorrpBmbeKE2jvm39nkvww41uiEbw+t9bQTLH8rkCYnfEVLysvLGzYIjTcMFRUVDa2yG7fNjo2N9YqNgtaQkQFPPGEk8/oJuBUV5Rw5coTExKRWX1tdDWVlGq13cMMNHzNv3n1e8TsL87jrhO9iYK1S6jZgH3Bt3crTgPFa69s7+f7Cj4SHhzNs2DCGDRvW5PGSkpImG4PPPvsMq9VKTU1Ni7OZe/ToYdJv0JzWMG8erFljJP3G00m6dOmCzWbD4aglIKDlcyDBwWCzHaa0tBdffHEvBQUKGeoXzuB7k7yE3ygoKGjS96j+iCEgIKDZUUJKSgqRkZFuj/G112DWLGOyeUvnuPftyyYmJobw8JYnexUWFlBYWEhiYiIlJYEMGwZvvimXlxatc8uwjytJ8hcdUT+b+fgNQmZmJl26dGlxNnNnZtmeSG4uXHyxsffe2jSIo0ePoDX07Nmz2XPl5WUcPHiQxMREgoMtaA1FRcbG5C9/cUnIwgdI8heiEa01hw8fbjZxzWq1EhER0eQoYcCAAU6ZzXznnUZlz4l66pWXl3P06FESExObPG6z2di3bx/x8fGEhYU1PG63G7evvgIPGt0SHkSSvxDt4HA4OHToULOjhH379hEdHd1sjkJiYiIhISFtvu+hQ3DeeSfuLQhQW1vFzp1TCQ214nCUEhwcT3T0eI4e7UNsbM8Wh6oKC2HmTLhdzqiJFvhfV08hOiAgIIC4uDji4uKazWY+cOBAw1HCl19+yYsvvtgwm/n4E839+/dvMpv5X/8yTva2NTavlMZi6UNs7L1ERqZQVvYFVusUevZ8vtVzFKGhsGqVJH/ROZL8hWhBYGAgCQkJJCQkNJvNnJOT03CU8NFHH5GZmcmhQ4eIi4tr2Ci8/vpYoAcQDLRemhkQ0IUePW6nutpowFdSMoCgoN6Ehx9t9TWhoUafwmPHkMof0WGS/IU4CcHBwQ3nBhqrn81snFPIZPt2jd2ey+HDNiwWCyEhoYSEhDTcLJZfNgphYeEcPXoUpfKx2Y4QGJhPSEhKC2s3KGWcRN650xhaEqIjJPkL4QQWi4WBAwcycOBAqqpg+XJjr1xrBzabreFWVFSIzWajpqaWkBBL3YbAQmlpKXZ7JRbLM0RGXk5ISOIJ11dbC0eOuOd3E75Jkr8QTlZb+8tYv1IBhIZ2ITS0aeWQw1GLzWav2yhUERkZgdaPo5SF3r1bnSTfQGtjPUJ0lCR/IZwsJMRIzlq3finpgIBAunTpQpcuXdBac+jQXKqrS4iPfwyl2v6zDAyERhWgQpw0mScohJMFBUFCgtGcrT3y8hZht2fRr99KAgLaLiOtJ409RWdI8hfCBdLSjK6cbamuPkRR0Tqqqn5mz55L2b37PHbvPo/i4vdafY3DYdyOO+csxEmRYR8hXOB3v4P169teLji4D4MHn9xkxpISuOgio+JHiI6SPX8hXODcc6F7d6iqcu771p9HkN4+orMk+QvhAoGBMHmyMfTjzA4qJSUwdCj86lfOe0/hnyT5C+Ei11xjJOniYue8n91ulJCuXNl6FZEQ7SXJXwgXCQiAFSuM4Z+Sks69V3U1lJfD/PlwXANQITpEkr8QLtS3L/zzn0Z3z6Kijg0BVVQYif/BB42jCSGcQZK/EC6WkgJvvw1nnWVsACoq2rcRqKkx2jd36QIvvAC33OL6WIX/kOQvhBv07g0vvwyPPAIxMVBaanTlLC832jRobdTuV1UZG4jiYmOS2I03wsaNMHq02b+B8DVS5y+EmygFV10FV1wBmzbBhx8a//78s5HoAwOhTx8YNQrOPx8uvRRcdIVJIST5C+FuAQFw5pnGTQizyLCPEEL4IUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CFJ/kII4Yck+QshhB9S2pn9Zp1IKXUU2OfEt4wB8p34fr5KPqe2yWfUPvI5tY+zP6f+WuvYthby2OTvbEqpzVrrNLPj8HTyObVNPqP2kc+pfcz6nGTYRwgh/JAkfyGE8EP+lPyfNTsALyGfU9vkM2of+Zzax5TPyW/G/IUQQvzCn/b8hRBC1PHZ5K+UukYp9aNSyqGUavVMulLqMqXUbqXUXqXUDHfG6AmUUj2UUhuUUnvq/o1qZblapdS2utt6d8dphra+G0qpEKXUP+ue/59SKtH9UZqvHZ/TrUqpo42+P7ebEaeZlFKrlFJHlFI7WnleKaUeq/sMf1BKjXJ1TD6b/IEdwO+Bz1tbQCkVCDwB/B8wBLheKTXEPeF5jBnAx1rrU4CP635uSaXWekTdbaz7wjNHO78btwGFWusBwEpgiXujNN9J/A39s9H353m3BukZXgQuO8Hz/wecUncbBzzl6oB8NvlrrX/SWu9uY7EzgL1aa6vW2g68Blzh+ug8yhXAmrr7a4ArTYzFk7Tnu9H4s3sDuFAppdwYoyeQv6F20Fp/DhScYJErgJe04Rugu1Kqjytj8tnk305xQE6jn3PrHvMnvbTWh+ru5wG9WlkuVCm1WSn1jVLKHzYQ7fluNCyjta4BioFot0TnOdr7N3R13XDGG0qpfu4Jzau4PRd59WUclVIfAb1beGqW1vrf7o7HU53oc2r8g9ZaK6VaK//qr7U+oJRKBjYqpbZrrTOdHavwSf8BXtVa25RSd2IcLV1gckx+z6uTv9b6ok6+xQGg8V5IfN1jPuVEn5NS6rBSqo/W+lDdYeaRVt7jQN2/VqXUp8BIwJeTf3u+G/XL5CqlgoBI4Jh7wvMYbX5OWuvGn8nzwFI3xOVt3J6L/H3YZxNwilIqSSllAa4D/KKSpZH1wC11928Bmh0xKaWilFIhdfdjgHOAnW6L0Bzt+W40/uz+AGzU/jdxps3P6bix67HAT26Mz1usB26uq/o5CyhuNBzrGlprn7wBV2GMm9mAw8AHdY/3Bd5ttNxvgZ8x9mJnmR23CZ9TNEaVzx7gI6BH3eNpwPN1938NbAe+r/v3NrPjdtNn0+y7AcwFxtbdDwVeB/YC3wLJZsfsoZ/TIuDHuu/PJ8CpZsdswmf0KnAIqK7LS7cB44Hxdc8rjKqpzLq/sTRXxyQzfIUQwg/5+7CPEEL4JUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CFJ/kII4Yck+QshhB+S5C+EEH7o/wNFo2AX2TB09QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# run quantum algorithm with shots\n", + "seed = 10598\n", + "\n", + "spsa = SPSA(max_trials=300)\n", + "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", + "\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", + "\n", + "result = vqe.run(quantum_instance)\n", + "\n", + "\"\"\"declarative approach, update the param from the previous cell.\n", + "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", + "params['backend']['provider'] = 'qiskit.BasicAer'\n", + "params['backend']['name'] = 'qasm_simulator'\n", + "params['backend']['shots'] = 1024\n", + "result = run_algorithm(params, algo_input)\n", + "\"\"\"\n", + "\n", + "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "print('max-cut objective:', result['energy'] + offset)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", + "plot_histogram(result['eigvecs'][0])\n", + "\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Checking that the full Hamiltonian made by ```docplex.get_qubitops``` gives the right cost" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -1.5\n", + "max-cut objective: -4.0\n", + "solution: [0. 1. 0. 1.]\n", + "solution objective: 4.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VOX1+PHPM0kmGySEJGwJIQkIgoBAUpe6UNy//VnUWq22Wm1VBOtC2BEUZV8EonVfQNRWi0otdQdxrVoBQUEEIZNAAgQIScg+Web5/XGTmJCdzMyd5bxfr3kxmbkz92SYnHvvc89zrtJaI4QQwr9YzA5ACCGE+0nyF0IIPyTJXwgh/JAkfyGE8EOS/IUQwg9J8hdCCD8kyV8IIfyQJH8hhPBDkvyFEMIPBZodQEtiYmJ0YmKi2WEIIYRX2bp1a57WOrat5Tw2+ScmJrJlyxazwxBCCK+ilNrfnuVk2EcIIfyQJH8hhPBDkvyFEMIPSfIXQgg/JMlfCCH8kCR/IYTwQx5b6ilEh5SWwmefwfbtsHkzFBQYj/foAWedBSNGwPnnQ3CwuXEK4SEk+QvvdvgwPPUUvPEGVFdDVRWEhEBAwM/Pf/MNBAUZif9Pf4Lbb4eoKHPjFsJkMuwjvJPW8PrrcMkl8MorYLVCRARER0N4uLEBCAmBLl2MxyIiQCljQ3HRRbBpk9m/gRCmkuQvvE9NDUydCjNmgMUC3btDYDsOYq1WY1m7He64A5YvNzYiQvghGfYR3kVrmD4d/vUviIw0kn9HhYUZQ0BPPmkMD02c6Pw4hfBwsucvvMu6dZ1L/HUCAqBrV3j8cfjqK+fFJ4SXkOQvvMeRI/Dgg8aee2cSf53AQONE8MSJRrWQEH5Ekr/wHs8+CxUVzi3XDA+HvDyjWkgIPyLJX3iHsjJ47TWjeqcNRTU1TMnJ4fzdu7ly3z7eP3Gi9ReEhMAzz4DD4aRghfB8kvyFd/jyS6OOPyiozUUX5+YSpBQfDhzI/D59WJSbi81ub/kFISFw/Djs2uXEgIXwbJL8hXf47juorGxzsXKHg03FxUyIjSXMYmFEWBiju3blndb2/pUyykcl+Qs/IslfeIfNm9s11n+gspIAIMFqrX/stODg1vf8wSgh3batk0EK4T2kzl94h8LCn1s2tKLM4SDcYqG8vJwTRUWEhoZiramhpKam9RcGBBhDP0L4CUn+wqeEWSwUV1eTYbNhtVqprqoip7iYyspK9u3bR3BwMNbgYIJrb1arlQBnlI0K4WUk+Qvv0KsX2GwQGtr6YkpRbrfjiI/HUlREfHw8Jw4dIiUggL5RUdjtdux2O6UlJeTn51NptxMQEECU1vx04AC569aRnJxMUlISkZGRbvrlhHA/Sf7CO5x1ltGyuRU1Dgd5Bw8ypmtXXq2s5IbqarYUF/NpcTGrExMJtloJtlqNmb21NFBVVUV1fj4Vp5/Ojh07WL9+PTabjZCQEJKSkkhKSiI5OZnExESSk5OJjo5GKeXiX1gI15LkL7zDmWe2WuapgYMHDxIWGspDPXow99Ahbrfb6Z6Tw8w+fUhu4WSxAqyBgVhDQrjonnu4qH9/4/205tixY2RmZpKZmcm+ffvYsGEDNpuNmpqa+qODhhuGXr16YZEhJOElJPkL73D22cYEL7u92aqfI0eOoLWmV69eKKVY3rcvx8PDqbTb6d3W8E1pKZx2GiQn1z+klKJHjx706NGDs88+u9HiBQUF9RuFzMxMvvzyS7KysiguLqZfv35NNgxxcXEEtONktRDuJMlfeIfAQLjtNqMN80nJv6CwkJKSEpISExsNx4SHhVFQd0WvlmhtTB4bP96o92+HqKgooqKiGDVqVKPHS0pKGm0U3nrrLWw2G3l5efTt27d+Y1C3YUhISMDaoCRVCHeS5C+8x5/+BGvWQFGR0ZMHKC0r49jRo/RLTGyydx0cEkJNTQ1V1dUEtdTvv6gIBg2CX/+60+F16dKFYcOGMWzYsEaPV1RUsH//fjIzM7HZbHz44YdkZmZy6NAhevXq1WT4KDExkbCwsE7HI0RrlPbQi1mkpqbqLVu2mB2G8DRffQU33wzh4di1Zn9WFnFxcYTXbgxOlp2dTURkJJEREU2ftNuNWcNvv20M+7hZVVUV2dnZ9UcKNpuNrKws9u/fT/fu3es3Cg03DBHN/R5CNKCU2qq1Tm1rOafs+SulrgAeBQKA57XWi1tY7lrgDeAXWmvJ7KLjzj0Xpk/HsXAhh/LziY2NbTHxA4SFh1NWVtY0+dvtUF4O6emmJH6AoKAgkpOTSW5wrgHA4XBw8ODB+o3C9u3bWbduHVlZWYSGhjYZPkpOTiYqKkoqkESHdHrPXykVAPwEXArkAJuBG7XWu05arivwDmAF7m4r+cuev2hJdXU1r156KVfu2EFUdHSj0s2TlVdUcOjQIfrXJVitjaEei8U4f3DllW6KuvO01hw9ehSbzdbo3ILNZgNotDGou9+zZ0/ZKPgZd+75nwXs01rbalf8GnAVcHKXrHnAEmCqE9Yp/Njy5cvJGTqUPzzyCKSlwaFDRhloWFiTk7YhISFUV1VRXVVFYEWF0cBt8GBjj7+2rNNbKKXo2bMnPXv25Nxzz61/XGtdX4FUt2H4/PPPyczMpKysjMTExCYbhri4OClL9XPOSP5xQHaDn3OARrVxSqlRQF+t9TtKKUn+4pStXbuWLVu2sHr1agK6dIEPP4T//Aeefhqya7+G1dX1fYBUdTVRgYFU5uURmJoK48bBFVe0q0+Qt1BK0b17d7p3705KSkqj54qLixsdJbzxxhtkZmZy/Phx+vXr1+S8Qt++fQlqR9ts4f1cXu2jlLIAK4Bb27HsOGAcQEJCgmsDE17n66+/5vnnn2fVqlV0qbuoS0gIXHcd/O53kJFhtGXevt24OpdS0Ls3O/Ly2BMUxF2LFpn7C5iga9euDB8+nOHDhzd6vLy8nKysrPqNwvvvv4/NZiM3N5fevXs3GjpKSkoiMTGRkJAQk34L4QrOGPM/F3hIa3157c8zAbTWi2p/jgQygJLal/QC8oGxrY37y5i/aCgrK4s77riDJUuWNKmvb8uuXbt46KGHWLt2rYui8x2VlZVkZ2c3Oa9w4MABYmJimj2v0KUdV1cT7uPOMf/NwGlKqSTgIHAD8Ie6J7XWJ4CYBoF9AkyRah/RXidOnGDixIncc889HU78AIMGDeLIkSMUFBQQFRXlggh9h9VqpX///vQ/6XxITU1NfQWSzWZjy5YtvP7662RlZdGlS5cmw0dJSUnyWbfixAmjT2FFhTF/MS4Oevdu9zxDp+h08tdaVyul7gY+wCj1XKW1/kEpNRfYorVe39l1CP9VVVXF1KlTGTNmDGPHjj2l9wgICGDEiBFs27aNiy66yMkR+oeAgAASEhJISEhg9OjR9Y87HA6OHDlSf4Tw448/8u6775KZmYnFYmkyfJScnExsbKxfViDZbPDKK/DOO8aoZMPJ3dXVxsT1X/4Sbr0VzjnHKEhzJZnkJTyW1pr58+eTn5/P8uXLO1Wd8tJLL5Gbm8u0adOcGKFoidaa/Pz8ZstSKyoqmgwdJSUl0adPH5+sQDp6FO6/Hz75xKg0DgszEv/J27/qaigpMR6Pi4MVK+AUDnTdO8lLCFd49dVX+eGHH1i1alWnk0JKSgrz5s1zUmSiLUopoqOjiY6O5he/+EWj54qKihqVpW7evJnMzEwKCgrqK5Aabhj69u1LYEvtOTzce+/B1KnG8E5kZOvDOoGB0K2bsYE4fBiuvx7+/GeYMcM1xWne+YkKn/fFF1/w0ksvsXr1aqf0uTn99NM5dOgQhYWFdOvWzQkRilMVERHBmWeeyZlnntno8bKysvoKJJvNxttvv01mZiZHjhwhLi6uyfBRv379CG7HdZ3N8tprMGuWcf2hjnzllDLmLdbUwAsvwMGD8NhjxsbBmWTYR3icjIwM7rzzTlasWNGkRLEz7r33Xq655hrGjBnjtPcUrldZWVnfGK/h8FFOTg6xsbFNho+SkpJabfnhDp9+ajShrRviOVVaQ0EB3HQTzJ3bvte0d9hHkr/wKPn5+dx6662MHz+eXzuh02ZDL774Inl5eUyZMsWp7yvMUV1dzcGDBxudV7DZbOzfv5+IiIhmzyu446ivsBDGjDHaRzmjOWtNDRQXw8svG62t2iJj/sLrVFZWMnXqVK644gqnJ34wxv0X+eFEL18VGBhIv3796NevX6OjOYfDQW5ubv3GYOfOnfznP/8hMzOToKCgZucqxMTEOK0CafFio32UsypdAwKM7iVpafD5561e0K5DJPkLj6C1ZsGCBURHRzN+/HiXrGPw4MHk5ORQVFQkrZF9mMVioU+fPvTp04fzzjuv/nGtNXl5eY2OEj766CMyMzOprKxs0ik1KSmpw5fmzM+HdeugPV+vgwcfoKzsGxyOcgIDY4iO/hPdul3d7LLh4cZ7f/wxXHZZu8NplSR/4RHWrFlDRkYGzz33nMvK/QIDAxk+fDjbtm1rVKsu/INSitjYWGJjYznrrLMaPVdYWNjonMLXX39NZmYmRUVFTS7NmZSURHx8fLMVSG+9BQ5H+6pzYmL+TFDQA1gsVuz2LPbvH0dw8CBCQwe3+JrnnpPkL3zIxx9/zNq1a3nxxRcJDQ116bpGjRrF1q1bJfmLRrp168bIkSMZOXJko8dLS0vJysqqP6+wfv16MjMzOXr0KPHx8U2Gj95/P7nd12sODm54HQeFUoqqqpwWk3+XLrBtm3H9IWdc/VOSvzDVnj17WLBgAY899hg9evRw+fpSU1NZsmSJy9cjfEN4eDhnnHEGZ5xxRqPH7XZ7o0tzbty4EZstk3ffXUxQkKKwMIjgYCvBwcEEBwdjtVqxWJpuFHJzF1NY+B+0thMSMoguXc5rskwdi8Uo99y7F04K55RI8hemycvLY9KkSUyfPp0hQ4a4ZZ2DBw8mOztbxv1FpwQHBzNw4EAGDhxY/1hREYwcqQkLq6Sy0o7dbqekpJT8/Hzs9koCAgJqNwbW2g1CMLGxU+nZcxrl5d9TVrYVpVrfpdca9u+X5C+8mN1uZ/LkyVx99dVceumlbltvUFAQQ4cOZfv27Vx44YVuW6/wfZWVYLGo+r39xheY01RVVWG3GxuFsrJy8vPzqamp4bTTTiMsbAQnTrxLQcEbdO9+Q4vr0NpoA+EMvtdIQ3g8rTUPP/wwcXFx3H777W5ff0pKClu3bnX7eoVvs1qNk73NT51SBAVZ6dKlK9HRMfTq1ROAmJgYoK7EtIbKypxW16GUc8b7QZK/MMHzzz/PwYMHmTNnjindHVNSUvj222/dvl7h27p2NW5t75lrDhz4AYtlM5GRIWjtoKTkK06c+IDw8LPaejGJic6IVoZ9hJtt2LCBt956izVr1pjWl2XIkCFkZWVRUlIiFyIRTqMUDB0Kmze3NhFLk5ubW7vT8xF79z4NOAgK6k3PnpPp2rXloUiHw7g569LTkvyF2+zatYslS5bwxBNP1B7umsNqtdaP+59//vmmxSF8zxVXwNdft/x8fn4+ZWVlJCYOwWJ5rkPvXVwMZ5/tvBm+Muwj3OLo0aNMmTKF2bNnM2jQILPDqa/3F8KZxo41yjGbG/opKSnm+PHj9O3bt9myz7YoBXfc4YQga0nyFy5XXl7OpEmTuP766/nVr35ldjiAnPQVrhERATfeaFyUpSG7vYJDhw4THx9PUFDHz9gWFxuXeXTmgaokf+FSDoeDOXPm0L9/f2655Razw6k3dOhQMjMzKS0tNTsU4WMmT4boaKj7alVXV5OdnU2vXj0JDe14m8+aGuP26KPOvaiLJH/hUk8//TTHjx9n1qxZHnXdVqvVypAhQ/juu+/MDkX4mC5d4G9/M4Z+Kioc5ORk061bNyIiIjv8Xg6HMXnszjthxAjnxinJX7jMu+++y/vvv8+yZcuwOqs42YlSUlKQa0YIVzjrLEhPd3DwYD5KhZ9SgUNVlXFtgN//3jiacDZJ/sIlvv/+e1asWMHKlSvp3r272eE0S+r9hSsdOPAMv/zlM/TtG0NhoaKmpn2v0xpOnIDycuP6v/PnG319nE2Sv3C6w4cPM23aNB566CH6O6so2QWGDh1KRkYGZWVlZocifMy7777Le++9x8svT+CTTyxcc41xErigAMrKjOGchrQ2rvxVUGAM85xxBrz9NkyY4JrED5L8hZOVlZWRlpbGzTff7PE19MHBwQwePFjG/YVTbd++nZUrV5Kenk737t2JiIBly+C//4VJkyAhwajeKS42TgqXlBjDO5GRcP318O9/G9cFaNAzziVkkpdwGofDwaxZsxg6dCh/+MMfzA6nXerq/c9tz8VRhWjDwYMHmT59OnPnziU5ObnRcz16wF//atyqqiAnxxjaCQoyyjjdPdlckr9wmscff5zS0lKWLl3qUZU9rUlJSeGpp54yOwzhA4qLi7nvvvu4/fbb29yZCAqCpCQ3BdYCSf7CKdavX8+mTZtYs2YNQc6af+4Gw4YNY+/evZSXl7v8KmLCd1VXVzN9+nTOOeccrrvuOrPDaRcZ8xed9u233/K3v/2N9PR0IiM7XstsppCQEAYNGsT3339vdijCS2mtWbp0KUFBQUyaNMnscNpNkr/olJycHGbMmMG8efNIdFavWTeTPj+iM1599VW+//57Fi1ahMVVpTku4D2RCo9TUlJCWloat99+O+ecc47Z4Zyy1NRUSf7ilHz++ee8/PLLrFy5krCwjrduMJNTkr9S6gql1B6l1D6l1Ixmnp+klNqllPpeKfWRUqqfM9YrzFNTU8PMmTNJTU3l+uuvNzucThk2bBh79uyhoqLC7FCEF/npp5+YO3cuy5Yto3fv3maH02GdTv5KqQDgCeD/gCHAjUqpk6/GvQ1I1VoPB94AlnZ2vcJcK1eupKamhsmumHfuZqGhoQwcOFDG/UW75eXlMWnSJKZNm8bQoUPNDueUOGPP/yxgn9baprWuBF4Drmq4gNb6Y6113TTKr4F4J6xXmOTNN9/kq6++YvHixQQG+kbBmLR4Fu1VUVHBpEmTuPrqq7n00kvNDueUOSP5xwHZDX7OqX2sJbcB7zlhvcIEmzdv5plnnmHlypVERESYHY7TSJ8f0R51LcoTExO57bbbzA6nU9y626aUuglIBUa38Pw4YBxAQkKCGyMT7XHgwAFmzZrFwoULfe7/Z/jw4ezevRu73W7atYWF53v66afJy8vjqaee8pqJjC1xxp7/QaBvg5/jax9rRCl1CTALGKu1tjf3RlrrZ7XWqVrr1NjYWCeEJpylqKiIiRMnMmHCBFJTU80Ox+nCwsIYMGAAO3bsMDsU4aHeeecdPvjgAx555BGPbFHeUc5I/puB05RSSUopK3ADsL7hAkqpkcAzGIn/qBPWKdyobvbi+eefzzXXXGN2OC4j9f6iJdu2bSM9PZ2VK1cSFRVldjhO0enkr7WuBu4GPgB+BNZqrX9QSs1VSo2tXWwZ0AV4XSm1XSm1voW3Ex6mbvai1Wpl4sSJZofjUnLSVzQnOzub6dOnM3/+/CbN2ryZU8b8tdbvAu+e9NiDDe5f4oz1CPdbu3Yt27dvZ/Xq1V41e/FUjBgxgh9//JHKykqfOKwXnVc33HnnnXdy9tlnmx2OU/n2X7PolC+//JJVq1aRnp5OeHi42eG4XFhYGMnJyezcudPsUIQHqK6uZsaMGZx33nlce+21ZofjdJL8RbNsNhtz5sxhyZIl9OnTx+xw3Eau6yvAP4Y7JfmLJgoLC0lLS+O+++5jxIgRZofjVlLvL8Bo1rZjxw4WLlzos8OdvvlbiVNWVVXF1KlTueSSS7jyyivNDsftRowYwQ8//EBlZaXZoQiTfPbZZ17brK0jJPmLelprFi1aREREBH/961/NDscU4eHhJCUl8cMPP5gdijDBTz/9xLx583jkkUfo1auX2eG4lCR/Ue+VV15h9+7dzJs3z2cPddtD6v39U15eHmlpaUyfPp0zzjjD7HBczn//wkUjn332Gf/4xz9YsWKFTx/qtoeM+/ufumZt1157LZdc4h+V6ZL8BXv37mXu3LksXbrU5w9122PEiBHs3LmTqqoqs0MRbuBwOHjwwQdJTEzkz3/+s9nhuI0kfz+Xn5/PpEmTmDp1KsOGDTM7HI/QtWtXEhIS2LVrl9mhCDd46qmnyM/PZ/bs2V7frK0jJPn7scrKSqZMmcL/+3//j8svv9zscDyKjPv7h7fffpsNGzb4TLO2jpDk76e01sybN4/Y2FjGjRtndjgeR67r6/u+/fZbHnvsMVauXEm3bt3MDsftJPn7qdWrV5OVlcXDDz/s15U9LRkxYgQ7duygurra7FCEC2RnZzNjxgzmz59PUlKS2eGYQv7q/dCmTZt44403WL58OSEhIWaH45EiIiKIj4+XcX8fVNesbfz48Zx11llmh2MaSf5+Zvfu3SxcuJDly5fTo0cPs8PxaNLi2ffUXZvivPPO47e//a3Z4ZhKkr8fOXbsGJMmTWLmzJkMHjzY7HA8ntT7+xatNUuWLCEkJMRnm7V1hCR/P1FRUcHkyZO59tprufjii80OxyuMHDmS7777Tsb9fcTf//53du7cyYIFC+Q8F5L8/YLD4eDhhx8mISGBv/zlL2aH4zUiIyOJi4tj9+7dZociOunTTz/l73//O+np6X4/g72OJH8/8Pzzz3P48GEefPBBv5rE4gxS7+/99uzZw/z581m+fDk9e/Y0OxyPIcnfx3344YesX7+e5cuX+90kFmeQk77ere4814wZMxgyZIjZ4XgUSf4+bOfOnSxdupQVK1YQHR1tdjheadSoUXz33XfU1NSYHYrooPLy8vpmbXKeqylJ/j7qyJEjTJ06lQcffJCBAweaHY7X6tatG7169WLPnj1mhyI6wOFwMGfOHPr37+9Xzdo6QpK/DyorKyMtLY0bb7yRCy+80OxwvJ5c19f7PPnkkxQUFHD//ffLea4WSPL3MXXtaQcNGsTNN99sdjg+Qer9vcv69evZuHEjy5Ytk/NcrZDk72OefPJJTpw4wcyZM2WPx0lGjhzJ9u3bcTgcZoci2vDtt9/y+OOPk56e7pfN2jpCkr8Peeedd/jwww9ZunSp7PE4Uffu3enRo4eM+3u4AwcO1DdrS0xMNDscjyfJ30d89913pKenk56eTlRUlNnh+Byp9/dsdc3aJkyY4NfN2jpCkr8POHToENOmTePhhx8mOTnZ7HB8koz7e66qqiqmTZvGBRdcwDXXXGN2OF5Dkr+XKy0tJS0tjVtvvZVf/vKXZofjs0aNGsW2bdtk3N/DaK1ZvHgxYWFh3HfffWaH41Uk+Xsxh8PBrFmzOPPMM7nhhhvMDsenRUdHEx0dzd69e80ORTTwyiuv8OOPPzJ//nxp1tZBTvm0lFJXKKX2KKX2KaVmNPN8sFLqn7XP/08pleiM9fq7Rx99FLvdzrRp06Syxw1k3N+zfPLJJ7z66qusXLlSmrWdgk4nf6VUAPAE8H/AEOBGpdTJTTRuAwq01gOAlcCSzq7X37311lt8/vnnLFmyhMDAQLPD8QtyXV/PsXv3bubPn88jjzwizdpOkTP2/M8C9mmtbVrrSuA14KqTlrkKWFN7/w3gYiW7qqds69atPPnkk6xcuZKIiAizw/EbMu7vGY4ePcqkSZO4//77pVlbJzgj+ccB2Q1+zql9rNlltNbVwAlAOo2dguzsbGbOnMn8+fPp16+f2eH4lZiYGLp168a+ffvMDsVv1TVru/7667nooovMDseredQZEqXUOKXUFqXUlmPHjpkdjscpLi4mLS2NcePGSS2zSaTFs3kcDgcPPPAAAwYM4JZbbjE7HK/njOR/EOjb4Of42seaXUYpFQhEAsdPfiOt9bNa61StdWpsbKwTQvMdNTU1zJw5k7PPPpvf/e53Zofjt6Te3zyPP/44RUVFzJo1SwocnMAZyX8zcJpSKkkpZQVuANaftMx6oG5T/Ttgk9ZaO2HdfmP58uUATJo0yeRI/NuoUaP49ttvZdzfzdavX8/HH3/MsmXLCAoKMjscn9DpMhGtdbVS6m7gAyAAWKW1/kEpNRfYorVeD7wAvKyU2gfkY2wgRDu9/vrrfPPNN6xevZqAgACzw/FrPXr0ICIiApvNxoABA8wOxy9s3bqVxx9/nOeee47IyEizw/EZTqkR1Fq/C7x70mMPNrhfAVznjHX5m//9738899xzrFq1iq5du5odjuDnen9J/q534MABZs6cyYIFC6TAwck86oSvaCwrK4vZs2ezePFi4uPjzQ5H1JKTvu5R16ztrrvu4he/+IXZ4fgcSf4e6sSJE6SlpXH33XczatQos8MRDdSd9JVxf9epqqpi6tSpjB49mquvvtrscHySJH8PVNelcPTo0Vx11cnz5YTZevbsSXh4OJmZmWaH4pO01ixatIjw8HDuueces8PxWZL8PYzWmqVLlxIWFsa9995rdjiiBTL04zovv/xyffsGadbmOvLJephXX32V77//ngULFsgX34NJ8neNjz/+mNdee4309HRp1uZikl08yH//+1/WrFkjXQq9QF29v0xXcZ7du3ezYMECli9fTo8ePcwOx+dJ8vcQGRkZPPTQQyxbtow+ffqYHY5oQ+/evQkNDZVxfydp2Kxt8ODBZofjFyT5e4CCggLS0tJIS0tj+PDhZocj2qlu7190Tnl5OWlpafz+97+XZm1uJMnfZJWVlUydOpXLL7+cX//612aHIzpAxv07r65Z26BBg/jTn/5kdjh+RZK/ibTWLFy4kKioKCZMmGB2OKKD6pK/jPufurpmbTNnzpRmbW4ml4Ay0csvv8xPP/3ECy+8IJU9Xqh3795YrVb2799PYmKi2eF4nbfeeotPPvmE1atXS7M2E0jGMcmnn35aX9IWGhpqdjjiFCilZNz/FG3ZsoUnn3yS9PR0adZmEkn+Jvjpp5+YN28ey5Ytk5I2L5eamsqWLVvMDsOrHDhwgPvvv5+FCxeSkJBgdjh+S5K/mx0/fpxJkyYxbdo0zjjjDLPDEZ0k9f4dc+LECe677z7++te/kpqaanY4fk2SvxvZ7XYmT57M2LFjueyyy8wORzhBXFwcFou7tw5jAAAZnklEQVSF7Ozsthf2c3XN2saMGSM9qzyAJH830Vozd+5c+vTpwx133GF2OMJJlFJS8tkOdc3aIiIiuPvuu80ORyDJ321WrVpFdnY2c+bMkZI2HyPJv20vvfQSe/bsYd68eVLZ5iHkf8ENNm7cyLp161ixYgXBwcFmhyOcTMb9W7dp0yb++c9/snLlSqls8yCS/F1s165dLF68mBUrVhATE2N2OMIF+vbti9aanJwcs0PxOD/++CMLFy5kxYoVUtnmYST5u9DRo0eZMmUKs2bNYtCgQWaHI1xE6v2bd/ToUSZPnszs2bM5/fTTzQ5HnESSv4tUVFQwefJkrrvuOsaMGWN2OMLFZNy/sbKyMiZOnMgNN9zAr371K7PDEc2Q5O8CDoeDOXPmkJSUxK233mp2OMINpM/PzxwOR/3e/s0332x2OKIFkvxd4JlnnuHYsWPMnj1bKnv8REJCAtXV1Rw6dMjsUEz3t7/9jbKyMmnW5uGksZuTvf/++7z33nu8+OKLWK1Ws8MRbtKw3j8uLs7scEzz1ltv8emnn/Liiy9KszYPJ3v+TrRjxw4eeeQRVqxYQffu3c0OR7iZv4/7f/PNN/XN2iIiIswOR7RBkr+T5ObmMnXqVObMmcOAAQPMDkeYwJ8rfvbv38/s2bNZtGiRNGvzEpL8naCsrIy0tDRuuukmLrjgArPDESZJTEzEbrf73bj/iRMnmDhxInfffTcpKSlmhyPaSZJ/J9VVNgwZMoQ//vGPZocjTOSP9f51lyEdM2YMY8eONTsc0QGS/Dvp8ccfp6SkhBkzZkhlg/Crcf+6y5BGRkZKszYv1Knkr5TqrpTaoJTaW/tvVDPLjFBKfaWU+kEp9b1S6vedWacn+c9//sOmTZtYunSpVDYIwL+S/5o1a9i3bx9z586VZm1eqLP/YzOAj7TWpwEf1f58sjLgT1rrM4ArgHSlVLdOrtd027Zt47HHHmPlypV06+b1v45wkqSkJMrKysjNzTU7FJfatGkTa9eulWZtXqyzyf8qYE3t/TXA1ScvoLX+SWu9t/b+IeAoENvJ9Zrq4MGDTJ8+nblz55KUlGR2OMKD+MO4/65du+qbtcXGevWfsl/rbPLvqbU+XHs/F+jZ2sJKqbMAK5DRyfWaprS0lLS0NG6//XbOPfdcs8MRHsiXr+t75MgRpkyZwgMPPCDN2rxcmzN8lVIbgV7NPDWr4Q9aa62UarGxiVKqN/AycIvW2tHCMuOAcYBH1grX1NQwc+ZMRo0axXXXXWd2OMJDjRo1in/84x9mh+F0dSXNN954I6NHjzY7HNFJbSZ/rfUlLT2nlDqilOqttT5cm9yPtrBcBPAOMEtr/XUr63oWeBYgNTXV4zpkPfroo1RXVzNlyhSp7BEtSk5Opri4mKNHj/pMD/uGJc033XST2eEIJ+jssM964Jba+7cA/z55AaWUFfgX8JLW+o1Ors8069at44svvmDx4sUEBkpLJNEyi8Xic1U/jz76KGVlZUyfPl12fHxEZ5P/YuBSpdRe4JLan1FKpSqlnq9d5nrgQuBWpdT22tuITq7XrTZv3szTTz8tPUtEu40aNcpnkv+6dev4/PPPpaTZx3RqF1ZrfRy4uJnHtwC3195/BXilM+sx04EDB5g1axYLFy70yPMQwjOlpKSwdu1as8PotG+++Yann36a559/XnZ8fIzMzGhFUVEREydOZPz48aSmppodjvAi/fv3p7CwkGPHjpkdyinLyspi9uzZLF68WHZ8fJAk/xZUV1czY8YMzjvvPH7729+aHY7wMhaLxavr/QsLC5k4cSL33HMPo0aNMjsc4QKS/FuwfPlyAgMDmThxotmhCC/lreP+dc3aLrnkEn7zm9+YHY5wEUn+zVi7di1bt25l4cKFBAQEmB2O8FKpqalel/y11ixYsICoqCjuuusus8MRLuSzNYtFRbBpE3zzDWzdCsePG49HRsKIEXD22XDxxRAd3fh1X3/9NS+88AKrVq2iS5cu7g9c+IwBAwZQUFBAXl4eMTExZofTLqtXr8Zms/Hcc89JszYf53PJPzcXHnsM1q2DmhrjFhICdRVqubnw1lvw73+DxQJXXAETJ0JyMmRmZvLAAw+wdOlSv74Oq3AOi8XCiBEj+Pbbb7nsssvMDqdNH330EW+++SYvvvgiISEhZocjXMxnkr/W8K9/wQMPQHk5RERAc3OxgoKgrglhTQ28/TZ88AHcfXcZGzdO5t5772XkyJHuDV74rLrJXp6e/Hft2sXixYt54oknpFmbn/CJ4zqHA+bMgalTjb357t2bT/wnCwgwlrVaHcyaVUpe3sNcfrmc4BLOk5KS4vEVP7m5uUyePJkHHniAgQMHmh2OcBOfSP7z58Pf/26M5wcHd/TVmvz8XEJCKjh8eCj33mtsTIRwhoEDB3Ls2DHy8/PNDqVZdc3a/vjHP3LhhReaHY5wI69P/ps2wZo1xjDPqZyfys/Pp7y8gvj4PnTrpvjwQ/DBhozCJBaLhZEjR3rk3r/D4WDWrFkMHTpUrj/th7w6+Z84AZMnG3v7p1KRWVJSzPHjx+nbty8WSwAWC3TpYhxJZGc7P17hnzy13j89PZ2Kigpp1uanvDr5v/aaUdIZFtbx19rtFRw6dIj4+PhGzaqsVqiqgmefdWKgwq95YofPdevW8d///pclS5ZIl1o/5bXJv6YGnn/+58qd1uTnryUz82Z27z6XQ4ceorq6muzsbHr16kVoaNMtR9eu8MYbUFLigsCF3xk0aBBHjhyhoKDA7FCAn5u1SZda/+a1yX/HDmOvvz3lyIGBMcTE3EZk5Fi01uTk5BAZGUlERGQLyxsnff/7XycHLfxSQEAAI0aMYNu2bWaHQmZmZn2ztr59+5odjjCR1yb/Xbugurp9y0ZEXETXrr8iICCCkpJiAgMD26xlrqyE7793QqBCYAz9mH1d37pmbffee680axPem/y3b+/4a0pLS6muriEurg/Q+gmu4GDw0WtwCxOYXe9fWVnJlClTuOyyy7jyyitNi0N4Dq9N/vn5HavwqaqqoqiomOBgK+Xl5dTUtH7YEBBgVBMJ4Qynn346hw4dorCw0O3r1lozf/58oqOjmTBhgtvXLzyT157m72hNf1BQIJGREdjtZRw9egy73Y5SipCQYKzWYEJCggkONm4WS8AprUOIljQc9x8zZoxb17169WqysrJ49tlnpVmbqOe1yb9vX6Mks/0UYWHhWK1d6dMnEdBUV1djt9ux2+2Ul5dTWFiI3W7HYrGgVDe6dDnK+vU2kpOTSU5OJuxUakqFqFVX7+/O5L9hwwbefPNN1qxZI83aRCNem/xHjPi5U2dbtK5B6xrAAThwOCpRKoDAwCACA4MID2/YullTVVXFsWM1DBmyjy1btrB27VqysrKIiooiOTmZ/v37079/f5KTk0lKSpI/KtEuKSkpLFq0yG3r27lzJ0uXLuWJJ57wmpbSwn28NvkPH2508tQa2pqcmJf3Anl5P8/aOnHiXWJixhEbO66ZpRVBQVa6doUJE37JWWf9EjCmwh88eBCbzUZGRgZffvklr7zyCvv376dHjx4kJyczYMCA+qOExMRErFarE39j4e0GDx5MTk4ORUVFLq+vz83NZerUqdKsTbRIaa3NjqFZqampuq3SuKuvhh9/NCZlOVN5ufGeX37Z9rh/TU0N2dnZ2Gw29u3bh81mw2azkZOTQ+/evRsdJfTv35+EhASZUenH7r77bq677jpGjx7tsnWUlZXxl7/8hbFjx/KHP/zBZesRnkkptVVrndrWcl6dhcaNg3vvbd/ef0dUVMCkSe074RsQEEBiYiKJiYlcdNFF9Y9XVVVx4MABMjIyyMjI4MMPPyQjI4Pc3Fzi4+PrjxLqNg7x8fFyMs4P1I37uyr5OxwO7r//foYPH86NN97oknUI3+DVyf+KK4zhn++/h27dnPOexcXQpw90docpKCioPrE3ZLfbycrKIiMjA5vNxvr168nIyOD48eP069ev0VFC//796d27t2wUfEhqaipLlixx2funp6dTWVnJtGnTpFmbaJVXJ3+LBVauNDYC5eXt6/PTmspKo63DY491/r1aEhwczKBBgxg0aFCjx8vKyuo3ChkZGbzxxhtkZGRQVFREUlJSkxPNPXv2lD9uLzR48GCys7NdMu7/5ptv8uWXX7J69WoZWhRt8vpvSL9+8NRTcMcdxs+nmrQrK6G0FBYuBDOu4hgWFsaQIUMYMmRIo8dLSkrqzyNkZGTw1VdfkZGRQUVFRf0GoeGGITo6WjYKHiwoKIihQ4eyfft2p1485euvv+aZZ55h1apVdHX2STDhk7z6hG9Dn34KEyYYSTwysv3nALQ2GsRZLLBgAfzud6cYsJsVFRXVHyXUbRgyMjJwOBxNjhL69+9PVFSU2SGLWi+88AJFRUWkpaU55f1sNht33nknS5culetPC/844dvQ6NGwYQNMmQKbNxuPtXZ1L62N8X2tYcAAePRR8KaKuIiICEaOHNnkjz0/P79+g7Bv3z4++OADbDYbgYGBTY4SkpOTpaWvCVJSUli+fLlT3qugoICJEycyceJESfyiQ3xmz7+OwwFffGH0+v/yS6NHT2Xlz0cCWhsXbKmpMU4W33knXHxx+y747q201uTl5TXaKNQNJYWFhTU5SkhOTiY8PNzssH1WZWUlF198Me+99x5dunRp+wWtvM+ECRNISUnhrrvucmKEwpu5Zc9fKdUd+CeQCGQB12utm71ihVIqAtgFvKW1vrsz622NxQIXXmjcjh835gH88AMcOWJsGGJjYcgQ49azp6ui8CxKKWJjY4mNjeWcc86pf1xrTW5ubv2w0bZt23jzzTfJzMykW7duzc5mDnXVmXA/YrVa68f9zz///FN6j7pmbTExMYwfP97JEQp/0Kk9f6XUUiBfa71YKTUDiNJaT29h2UeB2Nrl20z+p7rnLzrP4XBw6NChJkcJWVlZxMbGNjlSkNnMHffcc89RVlbGfffdd0qvf+GFF/j000959tlnpb2IaMRdY/5XAb+qvb8G+ARokvyVUilAT+B9oM2ghLksFgvx8fHEx8c3qkipqakhJyen/uTyZ599xurVq8nJyaFXr17NzmYOam8DJj+TkpJCenr6Kb12w4YN/Otf/5JmbaJTOpv8e2qtD9fez8VI8I0opSzAcuAm4JJOrk+YKCAggH79+tGvX78WZzPbbDY2bNjA008/XT+b+eQTzfHx8QR05GIMPmjo0KEc27uX8k2bCD18GMrKjBNUffrA4MFG29pmqhXqmrU9+eSTREdHmxC58BVtJn+l1EagVzNPzWr4g9ZaK6WaG0O6C3hXa53TVv25UmocMA4gISGhrdCEh2hpNnNlZWWjiWtvv/02GRkZHDt2rNFs5rpWF3369PH92cyVlbBxI9Znn+WlH35A//nPRrVBTY1RlWC1GlUJ4eHw5z/D739ff3Lq8OHDTJkyhQcffJDTTjvN5F9EeLvOjvnvAX6ltT6slOoNfKK1HnTSMn8HLsDop9wFsAJPaq1ntPbeMubvu8rLy8nMzGw0P8Fms1FYWNjsbOZevXr5xsS1b7+F++6D3FywWDhWXo4D6NmjR9Nl7XZj2npAAEyaROkNN/CXceO46qqrpFmbaFV7x/w7m/yXAccbnPDtrrWe1srytwKpcsJXNKe0tLR+g9Bww1BWVlbfKrth2+zY2Fjv2ChoDenp8MQTRjKvnYFbWlbG0aNHSUpMbPm1VVXokhJ2as1Hf/gD982b5x2/szCNu074LgbWKqVuA/YD19euPBUYr7W+vZPvL/xIeHg4w4YNY9iwYY0eLyoqarQx+PTTT7HZbFRXVzc7m7l79+4m/QbN0BrmzYM1a4yk32BCSWhoKHa7nRqHg4CWhruCgjhit9OzuJh7P/8clZ8PMtYvnMDnJnkJ/5Gfn9+o71HdEYPFYmlylNC/f38iIyPdH+Rrr8GsWcZ082ZOcmft309MTAxdWphUl19QQEFBAYmJiQQUFcGwYfDmm3KBadEitwz7uJIkf3Eq6mYzn7xByMjIIDQ0tNnZzJ2ZZduqnBy49FLjeqMtzIM4euwYaE2PZsb9S0pLOXTokDGPIijIOIooLDQ2Jn/5i2tiFl5Pkr8QDWitOXLkSJOJazabjYiIiEZHCQMGDHDObOY774SNG6GVpnqlpaUcO3aMxJPG/e12O/v37yc+Pp6wsLCfn6isNG5ffgmeNLwlPIYkfyHaweFwcPjw4SZHCfv37yc6OrrJHIXExESCg4PbfuPDh+GCC1rvLghU1NQwddcubCEhFDscxAcFMT46mt7HjtEjNrb5oaqCApg5E26XU2qiKb/r6inEqbBYLMTFxREXF9dkNvPBgwfrjxK++OILXnzxxfrZzCefaO7Xr1/j2cz/+pcxTNPG2LxWit5WK/fGxtI/MpLPS0qYYrPxfI8eLZ+jCAmBVask+YtOkeQvRDMCAgJISEggISGhyWzm7Ozs+qOEjRs3kpGRweHDh4mLi6vfKIx9/XW6A0FAa4WZoRYLt3fvDlVVKKUYUFREr8BAjrXWVTUkxOhUePy4VP6IUybJX4gOCAoKqj830FDdbGabzUbGvn3oHTvIqazEfuQIVquVkOBgghvcgqzW+o1CeFgYx44dI08pjtrt5AUE0L+1oSWljJPIu3YZQ0tCnAJJ/kI4gdVqZeDAgQwcOBAqKmD5coiOxqE1dru9/lZQWGjU9ldXY63dEFitVoqLiymvrOQZq5UrIyNJbOu8Qk0NHD3qnl9O+CRJ/kI4W01N/Vi/RSlCQ0IIPan7Zo3DQWXtBqHCbiciMpLHtcaqFNN6NddK6yRaG+sR4hRJ8hfC2YKDjeSsdYsXkw6wWAgNDSU0NBStNXMPH6aoqorH4uMJbE/7hoAAaFgCKkQHyTRBIZwtMBASEozmbO2wKDeXzMpKVvbtS3BHZu5KZ0/RCZL8hXCF1FSjK2cbDldVsa6wkJ8qKrh8714u2LOHC/bs4b0TJ1p+kcNh3E466SxER8iwjxCu8JvfwPr1bS7WOyiILYMHd+y9i4rgkkuMih8hTpHs+QvhCuefD926GZU/zlR3HkF6+4hOkuQvhCsEBMDkycbQjzNbqBQVwdCh8ItfOO89hV+S5C+Eq1x3nZGkWxu/74jKSqOEdOXKFquIhGgvSf5CuIrFAitWGMM/RUWde6+qKigthfnzobUrfwnRTpL8hXClPn3gn/80unsWFp7aEFBZmZH4H3zQOJoQwgkk+Qvhav37w9tvwznnGBuAsrL2bQSqq432zaGh8MILcMstro9V+A1J/kK4Q69e8PLL8MgjEBMDxcVGV87SUqNNg9ZG7X5FhbGBOHHCmCR2002waROMHm32byB8jNT5C+EuSsE118BVV8HmzfDhh8a/P/1kJPqAAOjdG0aNggsvhMsvB1ddYlL4PUn+QribxQJnn23chDCJDPsIIYQfkuQvhBB+SJK/EEL4IUn+QgjhhyT5CyGEH5LkL4QQfkiSvxBC+CGlndlu1omUUseA/U58yxggz4nv56vkc2qbfEbtI59T+zj7c+qntY5tayGPTf7OppTaorVONTsOTyefU9vkM2of+Zzax6zPSYZ9hBDCD0nyF0IIP+RPyf9ZswPwEvI5tU0+o/aRz6l9TPmc/GbMXwghxM/8ac9fCCFELZ9N/kqp65RSPyilHEqpFs+kK6WuUErtUUrtU0rNcGeMnkAp1V0ptUEptbf236gWlqtRSm2vva13d5xmaOu7oZQKVkr9s/b5/ymlEt0fpfna8TndqpQ61uD7c7sZcZpJKbVKKXVUKbWzheeVUuqx2s/we6XUKFfH5LPJH9gJ/Bb4rKUFlFIBwBPA/wFDgBuVUkPcE57HmAF8pLU+Dfio9ufmlGutR9TexrovPHO087txG1CgtR4ArASWuDdK83Xgb+ifDb4/z7s1SM/wInBFK8//H3Ba7W0c8JSrA/LZ5K+1/lFrvaeNxc4C9mmtbVrrSuA14CrXR+dRrgLW1N5fA1xtYiyepD3fjYaf3RvAxUop5cYYPYH8DbWD1vozIL+VRa4CXtKGr4FuSqnerozJZ5N/O8UB2Q1+zql9zJ/01Fofrr2fC/RsYbkQpdQWpdTXSil/2EC057tRv4zWuho4AUS7JTrP0d6/oWtrhzPeUEr1dU9oXsXtucirL+OolNoI9GrmqVla63+7Ox5P1drn1PAHrbVWSrVU/tVPa31QKZUMbFJK7dBaZzg7VuGT/gO8qrW2K6XuxDhausjkmPyeVyd/rfUlnXyLg0DDvZD42sd8Smufk1LqiFKqt9b6cO1h5tEW3uNg7b82pdQnwEjAl5N/e74bdcvkKKUCgUjguHvC8xhtfk5a64afyfPAUjfE5W3cnov8fdhnM3CaUipJKWUFbgD8opKlgfXALbX3bwGaHDEppaKUUsG192OA84BdbovQHO35bjT87H4HbNL+N3Gmzc/ppLHrscCPbozPW6wH/lRb9XMOcKLBcKxraK198gZcgzFuZgeOAB/UPt4HeLfBcr8GfsLYi51ldtwmfE7RGFU+e4GNQPfax1OB52vv/xLYAXxX++9tZsftps+myXcDmAuMrb0fArwO7AO+AZLNjtlDP6dFwA+135+PgdPNjtmEz+hV4DBQVZuXbgPGA+Nrn1cYVVMZtX9jqa6OSWb4CiGEH/L3YR8hhPBLkvyFEMIPSfIXQgg/JMlfCCH8kCR/IYTwQ5L8hRDCD0nyF0IIPyTJXwgh/ND/B0ORYBcOKRZ+AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "ee = ExactEigensolver(qubitOp_docplex, k=1)\n", + "result = ee.run()\n", + "\n", + "x = docplex.sample_most_likely(result['eigvecs'][0])\n", + "print('energy:', result['energy'])\n", + "print('max-cut objective:', result['energy'] + offset_docplex)\n", + "print('solution:', max_cut.get_graph_solution(x))\n", + "print('solution objective:', max_cut.max_cut_value(x, w))\n", + "\n", + "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Traveling Salesman Problem\n", + "\n", + "In addition to being a notorious NP-complete problem that has drawn the attention of computer scientists and mathematicians for over two centuries, the Traveling Salesman Problem (TSP) has important bearings on finance and marketing, as its name suggests. Colloquially speaking, the traveling salesman is a person that goes from city to city to sell merchandise. The objective in this case is to find the shortest path that would enable the salesman to visit all the cities and return to its hometown, i.e. the city where he started traveling. By doing this, the salesman gets to maximize potential sales in the least amount of time. \n", + "\n", + "The problem derives its importance from its \"hardness\" and ubiquitous equivalence to other relevant combinatorial optimization problems that arise in practice.\n", + " \n", + "The mathematical formulation with some early analysis was proposed by W.R. Hamilton in the early 19th century. Mathematically the problem is, as in the case of Max-Cut, best abstracted in terms of graphs. The TSP on the nodes of a graph asks for the shortest *Hamiltonian cycle* that can be taken through each of the nodes. A Hamilton cycle is a closed path that uses every vertex of a graph once. The general solution is unknown and an algorithm that finds it efficiently (e.g., in polynomial time) is not expected to exist.\n", + "\n", + "Find the shortest Hamiltonian cycle in a graph $G=(V,E)$ with $n=|V|$ nodes and distances, $w_{ij}$ (distance from vertex $i$ to vertex $j$). A Hamiltonian cycle is described by $N^2$ variables $x_{i,p}$, where $i$ represents the node and $p$ represents its order in a prospective cycle. The decision variable takes the value 1 if the solution occurs at node $i$ at time order $p$. We require that every node can only appear once in the cycle, and for each time a node has to occur. This amounts to the two constraints (here and in the following, whenever not specified, the summands run over 0,1,...N-1)\n", + "\n", + "$$\\sum_{i} x_{i,p} = 1 ~~\\forall p$$\n", + "$$\\sum_{p} x_{i,p} = 1 ~~\\forall i.$$\n", + "\n", + "For nodes in our prospective ordering, if $x_{i,p}$ and $x_{j,p+1}$ are both 1, then there should be an energy penalty if $(i,j) \\notin E$ (not connected in the graph). The form of this penalty is \n", + "\n", + "$$\\sum_{i,j\\notin E}\\sum_{p} x_{i,p}x_{j,p+1}>0,$$ \n", + "\n", + "where it is assumed the boundary condition of the Hamiltonian cycle $(p=N)\\equiv (p=0)$. However, here it will be assumed a fully connected graph and not include this term. The distance that needs to be minimized is \n", + "\n", + "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}.$$\n", + "\n", + "Putting this all together in a single objective function to be minimized, we get the following:\n", + "\n", + "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}+ A\\sum_p\\left(1- \\sum_i x_{i,p}\\right)^2+A\\sum_i\\left(1- \\sum_p x_{i,p}\\right)^2,$$\n", + "\n", + "where $A$ is a free parameter. One needs to ensure that $A$ is large enough so that these constraints are respected. One way to do this is to choose $A$ such that $A > \\mathrm{max}(w_{ij})$.\n", + "\n", + "Once again, it is easy to map the problem in this form to a quantum computer, and the solution will be found by minimizing a Ising Hamiltonian. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "distance\n", + " [[ 0. 51. 81.]\n", + " [51. 0. 99.]\n", + " [81. 99. 0.]]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF7FJREFUeJzt3X2QHXWd7/H3dzIzSSYJSYAxPCS5iRIQSxdkZ1VWQOXB6wNFqBW9eNdbWSqaWsu6uO51FR9wH67WQq1elSp3NRdcYykKy7IbSi1KNuru3WLJdWLCVQmQGCQmJDJAAnkik2S+94/uQIBJzsOcmTPpeb+qTp3Tfbp7vunq+cwvv+7+dWQmkqTjX0e7C5AktYaBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVROdY/rCTTz45FyxY8NIvDh6EzZth716IgI46/85kwtAQTJoE8+fDtGktrVeSxoM1a9Y8kZm9tZYb00BfsGAB/f39L5z55JNw1VWwezcsXFgEeqP27CmC/UtfggsuaE2xkjRORMSj9SzX3i6XAwdgyRL4zW9g1qzmwhyKlnlnJ7z//fDww62tUZKOE+0N9K99Ddavh5kzR76tqVPh0CG49triD4UkTTDtC/TNm+Gmm2D69OZb5i92wgmwYQN861ut2Z4kHUfaF+jf/nbRou7qOuoig0ND/NVjj3H5xo1c9NBD/NdNm7h39+6jbzOiaKl/9atFn7okTSDtCfTBwSLQa1yVcgg4pauL5fPn85Mzz+SDvb1ct3Urjw0OHn2lKVNgxw64997W1ixJ41x7Av3hh4t+7u7uYy42taODZb29nNbdTUcEF86YwWldXTz47LPH3v6BA3DffS0sWJLGv/YE+vr1RXdLg546eJDNg4O8fPLkYy84eTKsXt1kcZJ0fGpPoG/a1HCgH8zk0489xuUzZ7KgVqB3d8Mjj4ygQEk6/rQn0Pfvb+jKlqFMPvPYY3QCHzvllNordHQUd59K0gQypneKPmf69LqvQslM/ue2bTx58CA3zZtHZz1/CIaGiqtdJGkCaU8L/Ywzap4QPeyvt2/nkcFBvjhvHpPrHeNl/34466wRFChJx5/2tNDPPruuLpdtBw5w586ddEfwnzdseG7+J085hbcf6+7SwUF4/etbUakkHTfaE+iveEVxV+e+fcV140dxalcX/Wef3di2M4txXS68cIRFStLxpT1dLh0d8IEPFIHeanv3wstfDq95Teu3LUnjWPtu/b/qquLEZa2bhBqRWXS3XHtt68aHkaTjRPsC/cQT4bOfLVrpma3Z5s6dcNFF8I53tGZ7knQcae/wuYsXw1vfWgTxSEP9mWeKMdVvvNHWuaQJqb2BHlE8ZeiNbywG1GpiOAAyi3WnT4fvfhde9rLW1ylJx4H2PyR68mS4+Wa45priMXS7dtXfWh8cLFr3r341rFwJixaNbq2SNI61P9ChuMno+uvhtttgwYKi+2THjuKE6ZHhnlmMpPjMM/D008W8T30K7rwT5s1rS+mSNF605zr0oznvPLj7brj/fvjOd4ohcLdsgUmTiu6ZQ4dgxgw4/3x497vhssuKFr4kqb5Aj4gPAx8AAvjfmfmliDgRuA1YAPwaeE9m7hhxRRFw7rnFC4rryp96qhifZfp0mD3bk56SNIyaXS4R8WqKMH8dcA5weUScAVwHrMrMRcCqcrr1enpg7lyYP7+41NEwl6Rh1dOHfjawOjP3ZuZB4F+BPwAWAyvKZVYAV45OiZKketQT6L8ALoyIkyKiB3gHMA+Yk5nbymW2A3NGqUZJUh1q9qFn5vqIuBH4IbAHWEfx/OYjl8mIGPZaw4hYBiwDmD9//ogLliQNr67LFjPzlsz83cy8CNgBPAz8NiJOBSjfHz/Kusszsy8z+3p7e1tVtyTpReoK9Ih4Wfk+n6L//FbgLmBJucgSYOVoFChJqk+916H/Y0ScBBwAPpSZOyPiBuD2iFgKPAq8Z7SKlCTVVlegZ+ZLnhaRmU8Cl7S8IklSU8bHrf+SpBEz0CWpIgx0SaoIA12SKsJAl6SKMNAlqSIMdEmqCANdkirCQJekijDQJakiDHRJqggDXZIqwkCXpIow0CWpIgx0SaoIA12SKsJAl6SKMNAlqSIMdEmqCANdkirCQJekiqgr0CPiIxHxy4j4RUR8JyKmRMTCiFgdERsj4raI6B7tYiVJR1cz0CPidOBaoC8zXw1MAq4GbgS+mJlnADuApaNZqCTp2OrtcukEpkZEJ9ADbAMuBu4ov18BXNn68iRJ9aoZ6Jm5Ffg8sJkiyJ8G1gA7M/NgudgW4PTh1o+IZRHRHxH9AwMDralakvQS9XS5zAYWAwuB04BpwNvq/QGZuTwz+zKzr7e3t+lCJUnHVk+Xy6XAI5k5kJkHgDuBNwKzyi4YgLnA1lGqUZJUh3oCfTPwhojoiYgALgEeAH4MXFUuswRYOTolSpLqUU8f+mqKk58/A35errMc+DjwpxGxETgJuGUU65Qk1dBZexHIzD8H/vxFszcBr2t5RZKkpninqCRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUETUDPSLOioh1R7yeiYg/iYgTI+KeiNhQvs8ei4IlScOrGeiZ+VBmnpuZ5wK/C+wF/gm4DliVmYuAVeW0JKlNGu1yuQT4VWY+CiwGVpTzVwBXtrIwSVJjGg30q4HvlJ/nZOa28vN2YE7LqpIkNazuQI+IbuAK4B9e/F1mJpBHWW9ZRPRHRP/AwEDThUqSjq2RFvrbgZ9l5m/L6d9GxKkA5fvjw62Umcszsy8z+3p7e0dWrSTpqBoJ9PfyfHcLwF3AkvLzEmBlq4qSJDWurkCPiGnAZcCdR8y+AbgsIjYAl5bTkqQ26axnoczcA5z0onlPUlz1IkkaB7xTVJIqwkCXpIow0CWpIgx0SaoIA12SKsJAl6SKMNAlqSIMdEmqCANdkirCQJekijDQJakiDHRJqggDXZIqwkCXpIow0CWpIgx0SaoIA12SKsJAl6SKMNAlqSIMdEmqCANdkiqirkCPiFkRcUdEPBgR6yPi/Ig4MSLuiYgN5fvs0S5WknR09bbQvwzcnZmvBM4B1gPXAasycxGwqpyWJLVJzUCPiJnARcAtAJk5mJk7gcXAinKxFcCVo1WkJKm2elroC4EB4O8jYm1E3BwR04A5mbmtXGY7MGe4lSNiWUT0R0T/wMBAa6qWJL1EPYHeCZwH/F1mvhbYw4u6VzIzgRxu5cxcnpl9mdnX29s70nolSUdRT6BvAbZk5upy+g6KgP9tRJwKUL4/PjolSpLqUTPQM3M78JuIOKucdQnwAHAXsKSctwRYOSoVSpLq0lnncv8d+HZEdAObgGso/hjcHhFLgUeB94xOiZKketQV6Jm5Dugb5qtLWluOJFVEJmzfXrwOHYKeHliwoHgfJfW20CVJtQwNwb33wooVcN99sG8fdHUV32XCgQMwdy4sXgzvfS+cempLf3wUF6iMjb6+vuzv7x+znydJY+a+++DP/qxokWfCtGnPh/lhmfDss8WrowOuuAI+8xmYOfOYm46INZk5XC/JCziWiySNxOAgXH89vO99MDBQhPOsWS8Nc4AImDoVZs+GGTNg5Up4y1uKVn0LGOiS1KzBQVi2DG69tQjo6dPrX7ejowj+Z5+FJUvgX/5lxOUY6JLUrI9/HP7t34pgnjSpuW309MDkyfChD8HatSMqx0CXpGbccw/cdVcR5hEj29aUKcX7tdcWJ1KbZKBLUqP27i1OgE6ZUnSdtMKMGbBtG3zlK01vwkCXpEb94AewZ09xgvMYbn/qKf7bI49w/oMP8hePPVZ7u9OmwTe+UfSrN8FAl6RGfe1r0Fn7Np6TOztZevLJXFHjssTndHXB/v3wwx82VZaBLkmN2LEDNm2q647Pi084gTfPmMHMRk6YZjZ9xYuBLkmNWL++aEmP9ETo0UyZAj/7WVOrGuiS1IjNm+HgwdHb/uTJsGVL0VJvkIEuSY0YHCzGbBkth1v+TfzRMNAlqRGTJ7fuUsXhZBahXsdJ1xcz0CWpEfPn1x22hzIZHBpiCBgCBoeGOFSrK2X/fpg3r6k+eofPlaRGnH12MQzu4Zb0MdzyxBMsf+KJ56Z/8PTTLDv5ZJYd6/nKzz4L553XVGkGuiQ1YtYsOOMMePTRmoNxLevtPXZ4DycCLr20qdLscpGkRi1bVjyFqNUGB4vLFi+7rKnVDXRJatTb3w4nnFCM6dJKe/bA0qXFidcmGOiS1KieHvj854sTmK26hPGZZ4qToR/8YNObqCvQI+LXEfHziFgXEf3lvBMj4p6I2FC+z266Ckk63rzlLfCud8HTTzd1E9AL7NtX9J3fdFPTrXNorIX+lsw894jn2l0HrMrMRcCqclqSJo7PfQ4uuQR27my+T33PnuKqmeXL4Xd+Z0TljKTLZTGwovy8ArhyRJVI0vGmqwv+9m/hmmtg167iVW9r/dChYqCvGTOKR9i96U0jLqfeQE/ghxGxJiKWlfPmZOa28vN2YM6Iq5Gk401nJ3z603D77XD66UVf+I4dxRUrLw73oaHiROqOHbB7N1x9NfzoR9DXN/y2Gy2lzuUuyMytEfEy4J6IePDILzMzI2LYP0vlH4BlAPPnzx9RsZI0bp13HqxaBf398M1vwn/8R9EV09VVfJ9ZjM/yilfA4sXw7ndDo9eo1xDZYGd+RPwFsBv4APDmzNwWEacCP8nMs461bl9fX/b39zdbqyQdX556CrZvL4K8p6cYNqC7u+HNRMSaI85fHlXNFnpETAM6MnNX+fmtwF8BdwFLgBvK95UNVylJVXbiicVrjNTT5TIH+KcoxizoBG7NzLsj4qfA7RGxFHgUeM/olSlJqqVmoGfmJuCcYeY/CVwyGkVJkhrnnaKSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEXUHekRMioi1EfG9cnphRKyOiI0RcVtEdI9emZKkWhppoX8YWH/E9I3AFzPzDGAHsLSVhUmSGlNXoEfEXOCdwM3ldAAXA3eUi6wArhyNAiVJ9am3hf4l4GPAUDl9ErAzMw+W01uA01tcmySpATUDPSIuBx7PzDXN/ICIWBYR/RHRPzAw0MwmJEl1qKeF/kbgioj4NfBdiq6WLwOzIqKzXGYusHW4lTNzeWb2ZWZfb29vC0qWJA2nZqBn5icyc25mLgCuBn6UmX8I/Bi4qlxsCbBy1KqUJNU0kuvQPw78aURspOhTv6U1JUmSmtFZe5HnZeZPgJ+UnzcBr2t9SZKkZninqCRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkUY6JJUEQa6JFWEgS5JFWGgS1JFGOiSVBEGuiRVhIEuSRVhoEtSRTQ0HrpUKb/6FXz/+3DfffDLX8Izz0AEzJoFr3kN/P7vw+WXw+k+/1zHh8jMMfthfX192d/fP2Y/TxrWunXwuc/B2rVw6BB0d8OUKdBZtm8OHoR9+4r3jg644AL41Kdg0aL21q0JKyLWZGZfreVsoWvi2L8fvvAF+PrXi5b4zJnF+4t1dRUvgKEh+Pd/h3e+Ez7yEVi2DCZNGtu6pToZ6JoY9uyBP/ojWLOmCPJ6Q7mjo+iCOXAA/uZv4P774aabila9NM54UlTVd+AALF1ahPns2c21sLu6inXvuQc++lEYw65KqV4Guqpv+XL46U+LQB6ui6Veh7tpvv99+Od/bl19UovUDPSImBIR/zci7o+IX0bEX5bzF0bE6ojYGBG3RYT/B9X4s2EDfPnLMH36yML8sI4OmDoVrr8eHn985NuTWqieFvp+4OLMPAc4F3hbRLwBuBH4YmaeAewAlo5emVKTvvrV4mqVwyc5W2HKlOIqmG99q3XblFqgZqBnYXc52VW+ErgYuKOcvwK4clQqlJq1Ywd873tFN0kNzxw6xEe3bOGCBx/k8o0bufvpp4+9wrRp8M1vwuBgi4qVRq6uPvSImBQR64DHgXuAXwE7M/NgucgWYNi7LyJiWUT0R0T/wMBAK2qW6nPvvcXJyzpOgt6wfTtdEfzwzDP57Gmn8dfbt7Np//6jr9DdXbTS77+/hQVLI1NXoGfmocw8F5gLvA54Zb0/IDOXZ2ZfZvb19vY2WabUhHXriitcatg3NMSPdu3ig7299HR0cG5PD2+aMYPv12qlHzwIDzzQomKlkWvoKpfM3An8GDgfmBURh69jnwtsbXFt0sisXQuTJ9dcbPPgIJOA+UdcW75o8uRjt9ChOMm6bt0Ii5Rap56rXHojYlb5eSpwGbCeItivKhdbAqwcrSKlpuzeXVd3y96hIaZ1vPBXYXpHB3uGho694qRJxfgv0jhRz52ipwIrImISxR+A2zPzexHxAPDdiPgssBa4ZRTrlBrX2VnXDUA9w4T3nmFC/iUynx//RRoHah6Nmfn/gNcOM38TRX+6ND7NnQsPPVRzsfnd3Ryi6Ho53O3y8P79vLxWd82BA7BwYQsKlVrDO0VVXa9/fTGaYg1TOzq4eMYMvjowwL6hIe7fu5d/3bWLd9a63LG7G845p0XFSiNnoKu6XvvaurtdrjvlFPYPDXHZww/zya1b+cQppxy7hT40VLwMdI0jdgCqus45B047rbhFv6fnmIueMGkSX5g3r/5t79oFv/d7xfalccIWuqorAv74j4tx0Fs5OmJm8Vq2rHXblFrAQFe1vetdcOaZRYu6VXbuhAsvhDe9qXXblFrAQFe1dXUVoy1GwLPPjnx7e/YU47jccENrRm+UWshAV/WdeSZ85StFoO/b1/x2dpdj1H3jGzBnTktKk1rJQNfEcOmlcMstRat6587G+tSHhop1enrg1lvhvPNGr05pBCLH8FFaETEAPFrHoicDT4xyOccT98fz3BfPc1+8UJX3x3/KzJqjG45poNcrIvozs6/ddYwX7o/nuS+e5754IfeHXS6SVBkGuiRVxHgN9OXtLmCccX88z33xPPfFC034/TEu+9AlSY0bry10SVKDxl2gR8TbIuKhiNgYEde1u56xFBHzIuLHEfFARPwyIj5czj8xIu6JiA3l++x21zpWygeUr42I75XTCyNidXl83BYR3bW2URURMSsi7oiIByNifUScP1GPjYj4SPk78ouI+E5ETJnIx8Zh4yrQy6cifQV4O/Aq4L0R8ar2VjWmDgL/IzNfBbwB+FD5778OWJWZi4BV5fRE8WGKRx4ediPwxcw8A9gBLG1LVe3xZeDuzHwlcA7Ffplwx0ZEnA5cC/Rl5quBScDVTOxjAxhngU7xBKSNmbkpMweB7wKL21zTmMnMbZn5s/LzLopf2NMp9sGKcrEVwJXtqXBsRcRc4J3AzeV0ABcDd5SLTKR9MRO4iPJRj5k5WD60fUIeGxRDf08tH1TfA2xjgh4bRxpvgX468JsjpreU8yaciFhA8ei/1cCczNxWfrUdmCgDiXwJ+Bhw+IGfJwE7M/NgOT2Rjo+FwADw92UX1M0RMY0JeGxk5lbg88BmiiB/GljDxD02njPeAl1AREwH/hH4k8x8wWPls7gsqfKXJkXE5cDjmbmm3bWME53AecDfZeZrgT28qHtlAh0bsyn+Z7IQOA2YBrytrUWNE+Mt0LcCRz42Zm45b8KIiC6KMP92Zt5Zzv5tRJxafn8q8Hi76htDbwSuiIhfU3S9XUzRhzyr/G82TKzjYwuwJTNXl9N3UAT8RDw2LgUeycyBzDwA3ElxvEzUY+M54y3QfwosKs9Wd1Oc6LirzTWNmbKP+BZgfWb+ryO+ugtYUn5eAqwc69rGWmZ+IjPnZuYCiuPgR5n5h8CPgavKxSbEvgDIzO3AbyLirHLWJcADTMBjg6Kr5Q0R0VP+zhzeFxPy2DjSuLuxKCLeQdF3Ogn4emZ+rs0ljZmIuAD4P8DPeb7f+JMU/ei3A/MpRqt8T2Y+1ZYi2yAi3gx8NDMvj4iXU7TYTwTWAu/LzP3trG+sRMS5FCeIu4FNwDUUjbIJd2xExF8C/4XiyrC1wPsp+swn5LFx2LgLdElSc8Zbl4skqUkGuiRVhIEuSRVhoEtSRRjoklQRBrokVYSBLkkVYaBLUkX8fz4/mPKO7+u7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Generating a graph of 3 nodes\n", + "n = 3\n", + "num_qubits = n ** 2\n", + "ins = tsp.random_tsp(n)\n", + "G = nx.Graph()\n", + "G.add_nodes_from(np.arange(0, n, 1))\n", + "colors = ['r' for node in G.nodes()]\n", + "pos = {k: v for k, v in enumerate(ins.coord)}\n", + "default_axes = plt.axes(frameon=True)\n", + "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", + "print('distance\\n', ins.w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Brute force approach" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "order = (0, 1, 2) Distance = 231.0\n", + "Best order from brute force = (0, 1, 2) with total distance = 231.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX6x/HPSSO0EHqPBJAmIghWFIGNqMBKMoOs/jQUIbHg4rJIBwUXkOKuBaUlBEhYmpmBIKAUQaUogiCKKNIEQuhJSEJC2pzfHxMQXEhjkjuZed6vFy8ykzt3nhmGb07Ovfc8SmuNEEKIss/D6AKEEEI4hgS6EEK4CAl0IYRwERLoQgjhIiTQhRDCRUigCyGEi5BAF0IIFyGBLoQQLkICXQghXIRXaT5ZjRo1dKNGjf73Gzk5cOIEpKeDUuBRyJ8zWoPNBp6eEBAAFSs6tF4hhHAG33///QWtdc2CtivVQG/UqBG7d+++8c6LF6F3b0hLg8BAe6AX1eXL9mB//3145BHHFCuEEE5CKXW8MNsZO+WSnQ39+sHJk+DvX7wwB/vI3MsLBg2C335zbI1CCFFGGBvoc+fCL79AlSq3v6/y5SE3F4YMsf+gEEIIN2NcoJ84AR9+CJUqFX9k/md+fnDoECxe7Jj9CSFEGWJcoP/3v/YRtbf3LTfJstl4OyGBnocP0+ngQf7v6FF2pKXdep9K2Ufqc+bY59SFEMKNGBPoWVn2QC/grJRcoI63N/MCAviyWTNeqVmTUadOkZCVdesH+fpCUhLs2OHYmoUQwskZE+i//Waf5/bxyXez8h4ehNesST0fHzyU4tHKlann7c2vV67kv//sbPj2WwcWLIQQzs+YQP/lF/t0SxEl5uRwIiuLxuXK5b9huXKwc2cxixNCiLLJmEA/erTIgZ6tNeMSEuhZpQqNCgp0Hx84duw2ChRCiLLHmEDPzCzSmS3Zubm8um8fmZcvM8Tfv+AHeHjYrz4VQgg3UqpXil5TqVKhz0LRWjP57FkyfHwY7enJ6fh4vLy9qervj1+VKnjc7AeDzWY/20UIIdyIMSP0pk0LPCB61TtnzvB7VhZzmjenvLc31apXp0aNGqSkpnLo0CHOnDlDZmbmjQ/KzITmzUugcCGEcF7GjNBbtizUlMvp7Gysycn4KMVThw+jbTauXLrE2Hr1CGnYkKzsbJKTkzl+4gQ+Pj5U9fensp8fHllZ8MADpfBChBDCeRgT6E2a2K/qzMiwnzd+C3W9vdndsuUN96WlpXH69GlyqlXDx9ubWjVrUrNGDVLT0khKSuLMmTPU8vXlStOm1C3p1yGEEE7EmCkXDw8IC7MHehFVqlQJf39/4k+dQmsNgFIKv8qVuSMggMa1a5NSvTp9Z8zglVdeYdOmTWTL2i5CCDdg3KX/vXvbD1wWdJHQTdSoWRMPDw/OnTt34ze0xltr7vj3v1m7bh3BwcGsWLGCnj178vHHH5OQkOCg4oUQwvkYF+jVqsGkSfZRet5Iu7AUUK9ePVJSU0lJSfnjG8nJ0KkTdO+Oj48PTzzxBPPmzWPOnDlkZmYSGhrKkCFD+Oqrr8gtxoVNQgjhzJQuYpjejg4dOugbGlxoDa++Chs2FGs99IwrVzhx4gSN7riDcpmZULkyfPYZ1Kp10+0zMzPZtGkTFouFM2fOEBwcTHBwMLVusb0QQjgDpdT3WusOBW5naKCD/RTDsDDYts2+LrqnZ5H2mZyURMbZs9Ru2hSPTz6BO+8s1OMOHTqE1Wpl/fr1tG3blt69e/Pggw/iUdj2d0IIUUrKTqCDffXFadMgOtp+wLSwa6RnZcHlyxz09sbatSujPv4YVcRRfnp6OuvXr8disZCSkkJwcDC9evWievXqRdqPEEKUlMIGunMMR318YPx4WL4cGjWClBT7ErhXrtw4v661fSXFlBS4dMl+39ixBO7dy4HUVJYsWVLkp65QoQIhISEsXryYqVOnkpCQQO/evRk5ciTfffcdNllXXQhRRjjHCP16WsO+fbB0qX0J3Ph4+zSMUvYFvSpXhjZt4Jln4PHH7SsrAgkJCfTv35+pU6dy77333ladaWlprFu3DqvVSlZWFiEhIfz1r3/FvzDryAghhIM5dMpFKfU6EIb9BJMIrfX7SqlqwHKgEfA70EdrnZTffgoV6H+Wng6Jifb1WSpVgqpVbzkds2PHDt5++21iYmKoWbNm0Z7nJrTW/PTTT1gsFr766iseeeQRzGYzbdu2LfLUjhBCFJfDAl0p1RpYBtwPZAGfAy8D4UCi1nqqUmoUUFVrPTK/fRUr0IsoIiKCb7/9lrlz5+Ll5bgLYVNSUlizZg0WiwVPT09MJhM9evSgcuXKDnsOIYS4GUcG+jPAk1rrgXm3xwOZwECgs9b6tFKqLvCl1jrfFbFKI9BtNhtDhw4lICCAYcOGOXz/Wmv27NmDxWJhx44ddO3aFZPJxF133SWjdiFEiXBkoLcE4oCHgAzgC2A3EKq19s/bRgFJV2/fSmkEOthH0y+88AKvvfYa3bp1K7HnSUxM5NNPP8VqtVKxYkXMZjNPPfUUFSpUKLHnFEK4H0fPoQ8EXgUuAz9jH6H3vz7AlVJJWuuqN3lsOPbpGQICAtofP3680C/idhw8eJDBgwczb948GjduXKLPZbPZ+O6777BarezatYvHH38cs9lMc1nCVwjhACV2HrpSagoQD7yOE065XO/TTz9lwYIFxMTEULFixVJ5zvPnzxMXF8fKlSupUaMGZrOZxx9/nPLScEMIUUyOHqHX0lqfU0oFABuAB4GxwMXrDopW01qPyG8/pR3oAFOmTCE5OZlp06aV6hy3zWZj+/btWK1W9u3bx1NPPYXZbC7x3xaEEK7H0YG+FagOZAP/1Fp/oZSqDqwAAoDj2E9bTMxvP0YEelZWFoMGDSIoKIi+ffuW6nNfdebMGVatWsWqVato0KABJpOJoKAgfArZtUkI4d7K1qX/JezMmTP07duXKVOm0KFDge9JicnJyeHrr7/GarXy66+/0rNnT0wmEwEBAYbVJIRwfhLof7Jz507efPNNYmJinGJ1xfj4eKxWK2vWrKFJkyaYTCY6d+6Mt7e30aUJIZyMBPpNREVFsW3bNubOnes0wZmVlcWXX36JxWLh2LFj9OrVi5CQEOrVq2d0aUIIJyGBfhM2m4033niDOnXqMGJEvsdvDfH7779jtVpZu3Ytd911FyaTiUcffRTPIi4pLIRwLRLot5CamkpoaCgvvfQSTz31lKG13MqfG3H06tWL4OBgateubXRpQggDSKDn49ChQ7zyyivMmTOHpk2bGl1Ovv7ciMNsNvPQQw9JIw4h3IgEegHWrVtHREQEMTExVKpUyehyCpSens6GDRuwWq0kJSUREhIijTiEcBMS6IUwbdo0zp07x4wZM8rUiPfAgQNYrVa++OIL7r//fsxmMx06dChTr0EIUXgS6IWQnZ1NeHg4jz32GP379ze6nCJLS0vjs88+w2KxkJmZiclkkkYcQrggCfRCOnfuHKGhofzrX//i/vvvN7qcYpFGHEK4Ngn0Iti1axfjxo0jOjq6zJ9Jcn0jDg8PD8xmM927d8fPz8/o0oQQxSSBXkSLFi1i8+bNREREuMQaK1pr9u7dS2xsLDt27KBLly6YzWZpxCFEGSSBXkRaa0aMGEH16tUZNWqU0eU4VGJiImvWrMFqtVKhQgVpxCFEGSOBXgxpaWn07duXgQMH0qNHD6PLcTibzcauXbuwWCzXGnGYTCZatGhhdGlCiHxIoBfTkSNHeOmll5g1axbNmjUzupwSc/78eVavXs3KlSupVq0avXv3lkYcQjgpCfTbsH79embNmkVMTIzLH0y02Wzs2LEDi8XCvn37ePLJJzGbzTRp0sTo0oQQeSTQb9O7777LqVOn+Pe//+02F+xcbcQRFxdHvXr1MJvN0ohDCCcggX6bsrOzeemll+jYsSMDBw40upxSlZOTw9atW7FYLPz666/06NEDk8nEHXfcYXRpQrglCXQHOH/+PKGhoUyYMIEHH3zQ6HIMER8fz8qVK/n0009p3LgxZrNZGnEIUcok0B1kz549jBo1ikWLFlG3bl2jyzHMnxtxPP3004SEhFC/fn2jSxPC5UmgO9DixYvZsGEDkZGRMp/MjY04WrVqhdlslkYcQpQgCXQH0lozatQo/Pz8GDt2rNHlOI3MzEy++OILYmNjOX36NMHBwdKIQ4gSUNhAL9TpG0qpoUqpn5VS+5VSS5VSvkqpQKXUTqXUYaXUcqWUyw5dlVK89dZb7N27l9WrVxtdjtMoV64c3bt3JyoqipkzZ3Lp0iWee+45/vnPf7J9+3ZsNpvRJQrhVgocoSul6gPbgFZa6wyl1ApgHdAdsGqtlyml5gD7tNaz89tXWR2hX3Xs2DHCwsL46KOP5OrKW8jIyGDDhg1YLBYSExMxmUw8/fTT1KhRw+jShCizHDpCB7yA8kopL6ACcBroCsTmfX8REFycQsuSwMBARo4cyYgRI0hJSTG6HKdUvnx5evXqRXR0NDNmzOD06dM888wzjBgxgu+++05G7UKUoELNoSulXgcmAxnABuB14FutddO87zcEPtNat77JY8OBcICAgID2x48fd1z1BvnPf/7D77//zvvvv+82Fx3djsuXL19rxJGRkXGtEUfVqlWNLk2IMsFhI3SlVFWgFxAI1AMqAk8WthCt9TytdQetdYeaNWsW9mFObciQIWRkZBAZGWl0KWVCxYoV6d27N0uWLOFf//oXR48eJSQkhLFjx7Jnzx5K88C8EK7MqxDbBAHHtNbnAZRSVqAj4K+U8tJa5wANgFMlV6Zz8fLy4p133iE0NJTWrVvz8MMPG11SmaCU4u677+buu+8mJSWFtWvXMmXKFJRSmEwmevTo4fJr5whRkgozX3ACeFApVUHZOyP8BTgAbAF6523TD4grmRKdU40aNXjnnXeYMGECCQkJRpdT5vj5+fHcc8/xySefMHr0aPbv30+vXr2YMGECP/30k4zahSiGws6hTwT+BuQAe4FBQH1gGVAt774XtNaZ+e2nrJ/lcjNLlixh7dq1REVFUa5cOaPLKdOSkpL49NNPsVqtlC9f/lojjooVKxpdmhCGkguLSonWmrFjx+Lr68v48eOlvZsD2Gw2du/eTWxsLLt27SIoKAiz2Synigq3JYFeitLT0+nfvz/PPfccISEhRpfjUi5cuMDq1auxWq1Uq1YNs9lMt27dpBGHcCsS6KXs999/Z9CgQXz44Ye0atXK6HJcjs1m45tvvsFisfDDDz/w5JNPYjKZaNq0qdGlCVHiJNANsHnzZt577z1iYmLw9/c3uhyXdfbsWVatWsWqVauuNeL4y1/+IscwhMuSQDfIBx98wKFDh/jwww/loqMSlpube60Rxy+//EL37t0xm83SiEO4HEdf+i8K6bXXXiM7O5u5c+caXYrL8/T0pHPnzsycOZNFixbh4+NDWFgYL7/8Mhs2bCA7O9voEoUoVTJCLwGJiYm88MILjB49mkcffdToctxKdnb2tUYcR48e5a9//Ssmk0kacYgyTaZcDPbjjz8ybNgwFixYQIMGDYwuxy0dP378WiOOli1bYjKZ6NSpkzTiEGWOBLoTWL58OXFxcURFReHr62t0OW4rKyuLTZs2YbFYSEhIoFevXgQHB1OnTh2jSxOiUCTQnYDWmvHjx+Pp6cmECRPkoiMncOTIESwWC59//jlt27bFZDLx8MMPywFs4dQk0J1ERkYG/fv3p0+fPpjNZqPLEXkyMjLYuHEjsbGxJCYmEhISQq9evaQRh3BKEuhO5MSJE7z44ou8//77tG79P0vGC4P9+uuvWK1WNm7cyH333YfZbOa+++6TUbtwGhLoTubLL79kxowZLF68WBo7OKnLly/z+eefY7FYSE9Pl0YcwmlIoDuhjz76iAMHDvDRRx/J6M+Jaa3Zv38/VquVLVu20LFjR8xmM+3atZPjIMIQEuhOKDc3l9dee43WrVszePBgo8sRhZCSksK6deuwWCxorTGZTPTs2VMacYhSJYHupBITEwkNDWXEiBE89thjRpcjCklrzd69e7FarWzbto3OnTtjMpm4++67ZdQuSpwEuhPbv38/Q4cOZf78+QQEBBhdjiii5OTka404fH19pRGHKHES6E4uNjaW2NhYFixYIGt7l1FXG3FYLBa+++47goKCMJlMtGzZ0ujShIuRQHdyWmveeusttNa8/fbb8mt7GXfx4kXi4uJYuXIlVatWlUYcwqEk0MuAK1euMGDAAEJCQujTp4/R5QgHkEYcoiRIoJcR8fHxDBgwgH//+9+0adPG6HKEA509e5a4uDhWrVpFnTp16N27tzTiEMXisEBXSjUHll93V2PgTSA67/5GwO9AH611Un77kkC/ua+//pqpU6eyePFiqlWrZnQ5wsFyc3PZtm0bFouFn3/+mR49emAymWjUqJHRpYkyokRG6EopT+AU8AAwGEjUWk9VSo0CqmqtR+b3eAn0W5s1axb79u1j1qxZsryrC0tISGDlypXExcURGBiI2WymS5cueHt7G12acGIlFejdgLe01h2VUgeBzlrr00qpusCXWuvm+T1eAv3WbDYbf//732nevDlDhgwxuhxRwq424rBarRw5ckQacYh8lVQLumeBpXlf19Zan877+gxQu4j7Etfx8PBg8uTJbNiwgc2bNxtdjihh3t7ePP7448yePZvIyEhyc3Pp168fr732Glu2bCEnJ8foEkUZVOgRulLKB0gA7tJan1VKJWut/a/7fpLW+n9WMVJKhQPhAAEBAe2PHz/umMpd1IEDB3j99deJjIyUZsdu5mojDqvVyqlTp6QRh7jG4VMuSqlewGCtdbe82zLlUkKsVivLli1j4cKFVKhQwehyhAGub8Rxzz33YDKZ6Nixoyzq5qZKYsrlOf6YbgFYDfTL+7ofEFeEfYl8hISE0Lp1ayZNmkRpnlYqnEeTJk0YMWIEa9eupUuXLkRGRvL0008zf/58Lly4YHR5wkkVaoSulKoInAAaa60v5d1XHVgBBADHsZ+2mJjffmSEXniZmZm8+OKL9OzZk+eee87ocoQTOHjwIBaLRRpxuCG5sMgFnDp1igEDBjB9+nTatm1rdDnCSVzfiOPy5cuYzWZpxOHiJNBdxPbt25k8eTIxMTFUr17d6HKEE9Fa8/PPP19rxPHQQw/Ru3dvacThgiTQXci8efPYvXs3s2bNwsvLy+hyhBO62ojDarVis9mkEYeLkUB3ITabjX/84x8EBgYydOhQo8sRTkxrzQ8//HCtEUenTp0wm83SiKOMk0B3MSkpKbzwwgsMGTKEoKAgo8sRZcD1jTjKlSuH2Wyme/fu0oijDJJAd0G//vorr732GhEREQQGBhpdjigjrjbisFqt7Ny5k7/85S+YzWZpxFGGSKC7qNWrVxMdHU10dLRcdCSK7PpGHP7+/tcacchnyblJoLuwSZMmkZqaytSpU2VeVBSLzWbj22+/xWKxsHfvXp544glMJhN33nmn0aWJm5BAd2FZWVkMHDiQJ598kueff97ockQZd+7cOVatWnWtEYfZbCYoKEgacTgRCXQXd/r0afr168fUqVO59957jS5HuABpxOG8JNDdwDfffMPEiROJiYmhZs2aRpcjXMj1jTgaNWpE79696dy5Mz4+PkaX5pYk0N1EZGQk33zzDXPnzpWLjoTDZWdn89VXX2G1Wjl8+DA9e/bEZDLRoEEDo0tzKyXV4EI4mRdffJHKlSvzwQcfGF2KcEHe3t4EBQUxa9YsIiMjsdls9O/fn8GDB7N582ZpxOFkZITuAlJSUggNDeXVV1/liSeeMLoc4eKysrL44osvsFqtnDx5kl69ehESEiKNOEqQTLm4md9++41XX32VefPm0bhxY6PLEW7i6NGjWCwWPvvsM9q0aYPZbJZGHCVAAt0NrVmzhqioKGJiYuTyblGqrly5woYNG7BYLFy8eJHg4GB69eolB+sdRALdTU2ZMoWkpCSmT58uFx0JQ1xtxLFp0ybat2+P2Wzm/vvvl1H7bZBAd1NZWVkMGjSIoKAg+vbta3Q5wo2lp6fz+eefExsby+XLlzGZTPz1r3+lWrVqRpdW5kigu7EzZ87Qt29fJk+ezH333Wd0OcLNaa05cOAAFovlWiMOs9nMvffeK79FFpIEupv77rvvGD9+PDExMdSqVcvocoQAIDU1lXXr1mGxWMjNzcVsNksjjkKQQBdERUWxdetW5s2bh7e3t9HlCHGN1pp9+/ZhsVjYunUrjz32mDTiyIcEusBms/HGG29Qp04dRowYYXQ5QtxUcnIya9aswWq14uPjg8lkonv37lSqVMno0pyGQwNdKeUPRAKtAQ28CBwElgONgN+BPlrrpPz2I4Fe+lJTU+nbty9hYWF0797d6HKEuCWtNbt378ZisbBz5066du2K2WymVatWRpdmOEcH+iJgq9Y6UinlA1QAxgCJWuupSqlRQFWt9cj89iOBboxDhw7xyiuvMHv2bFnvWpQJFy9eZPXq1axcuZIqVapgMpl44okn3LYRh8MCXSlVBfgBaKyv21gpdRDorLU+rZSqC3yptW6e374k0I2zbt06IiIiiI6OpnLlykaXI0Sh/LkRR7du3TCbzW43MHFkoLcF5gEHgHuA74HXgVNaa/+8bRSQdPX2nx4fDoQDBAQEtD9+/HgRX4pwlOnTp3PmzBneffdduchDlDl/bsRhMpl4/PHH3aIRhyMDvQPwLdBRa71TKfUBkAL8/foAV0olaa2r5rcvGaEbKzs7m/DwcDp16sSAAQOMLkeIYsnNzWX79u3Exsa6TSMORy6fGw/Ea6135t2OBe4FzuZNtZD397niFitKh7e3N9OmTWPZsmV89913RpcjRLF4enrSqVMnPvzwQ2JiYvD19SU8PJzw8HDWr19PVlaW0SUaprAHRbcCg7TWB5VSE4CrKz9dvO6gaDWtdb7nxskI3Tns2rWLsWPHEhMTQ+3atY0uR4jblp2dzddff43FYnHJRhyOPsulLfbTFn2Ao8AA7KP7FUAAcBz7aYuJ+e1HAt15REdH88UXXxARESFtxYRLOXHiBCtXrmTNmjU0a9YMs9lMp06dynRHL7mwSORLa82IESOoVq0ao0ePNrocIRwuKyuLzZs3Y7FYrjXiCA4Opm7duqVTgNZw5oz9T24uVKgAjRrZ/y4iCXRRoLS0NPr27cuLL75Iz549jS5HiBJz9OhRrFYr69ato02bNphMJh555BHHn+1ls8GOHbBoEXz7LWRkwNVlN7SG7Gxo0AB69YLnnoNC/nCRQBeFcvToUcLDw5k1axbNmjUzuhwhStSVK1fYuHEjFouF8+fPExIS4rhGHN9+C8OH20fkWkPFin+E+VVaw5Ur9j8eHvD00/Dmm1ClSr67lkAXhbZ+/XpmzZpFTEyMrHon3MZvv/2GxWJh48aNtG/fHpPJxAMPPFD0UXtWFvzrX7B0KXh5QWHXoLHZICUF/Pzgo4/g4YdvuakEuiiSd999l/j4eP7zn//IRUfCrVxtxGGxWEhLSytaI46sLAgPh61b7cHs6VmcAuxTMbNnQ1DQTTeRQBdFkp2dzcsvv8zDDz/MwIEDjS5HiFJ3s0YcJpOJ9u3b33pJ36FDIS4OqlaF21n298oVe6gvWwbt2v3PtyXQRZGdP3+e0NBQ3nrrLR566CGjyxHCMKmpqXz22WfExsbeuhHHxo3w8sv2+W9H/Fabmgq1asGGDVC+/A3fkkAXxbJnzx5GjRrFwoULqVevntHlCGEorTU//vgjFouFr7/+mk6dOmE2m2nTtCmqY0f7qPpP4XtbkpPtPyTeeOOGuyXQRbEtXryY9evXM3/+fLnoSIg8ly5dYs2aNVgsFjqeOUP40aNUqFcPz3xG5ysSE/n00iUOZ2byhJ8fEwoaJGVn289Z370bfH2v3e3ItVyEm3n++eepV68eM2bMMLoUIZxGlSpVeP7557FYLAzKzSU9J4fDhw6RcPo0GVeu3PQxNby8GFijBk8XcFriNd7ekJlpn3YpBgl08T+UUrz11lvs3buX1atXG12OEE5FJSdT5cIFat9xB02aNMHHx4f4+HiOHjtGUnIyuTbbtW27+vnRuXJlqhTl7BetYdOmYtVWdhc3ECWqQoUKzJgxg7CwMJo1a0aLFi2MLkkI5/DLL/aRtFJ4eXlRo3p1qlevzuXLl0lKSuLcuXP4+flR1d8f3+umTQrN1xf27ClWaTJCF7cUGBjIqFGjGDFiBCkpKUaXI4RzOHECcnJuuEsBlSpWpGGDBjRu3BgvLy9OnjzJsd9/J/nSJYp0pLJcOYiPt4/Ui0gCXeQrKCiILl26MG7cOGzX/SophNvKyrJf5XkL3l5e1KxRg6Z33olf5coknDpFWlpa4fd/9Xz2P/3QKAwJdFGgv//972RkZBAZGWl0KUIYr1y5As87z8jI4OTJkyQmJlKnbl0qFXY5ALCPzJWyLyNQRBLookBeXl5MnTqVVatWsX37dqPLEcJYAQG3DNv0jAxOnDxJfHw8lSpVolGTJlSqUgUN2IAsm43cgqZSMjOhYcNiXXkqgS4KpXr16kyZMoWJEyeSkJBgdDlCGKdlS/v54tcFc3p6OsdPnODUqVNUrlyZJk2bUq1qVRZcvMjDBw+y8OJF1l26xMMHDzL/woX893/lCtx7b7FKk7NcRKG1bduWAQMGMHz4cKKiotyi27oQ/8PfH5o2hePHuezhwYULF8jKyqJGjRpUqVIFj+tG1uE1axJe1KV5lbrlIl0FkRG6KJJnn32WO+64g2nTplGaVxkL4Sy01hzu2pWzp09zOiGBKn5+NG3ShKr+/jeEebFkZdlPW3z88WI9XAJdFIlSinHjxrF//35WrVpldDlClBqtNTt37iQsLIxx27fjW7MmTerVw9/f/9arMRbV5cswcKD9wGsxyJSLKLKrFx0NHDiQ5s2b06pVK6NLEqLEaK355ptviIyM5NKlSwwaNIhu3brh+fXXMGiQfUTtiNUWU1LsB0NfeaXYuyhUoCulfgdSgVwgR2vdQSlVDVgONAJ+B/porZOKXYkoU+644w7GjBnDyJGSpLGAAAAV3UlEQVQjiYmJwd/f3+iShHAorTXbt28nIiKCjIwMBg0aRFBQ0B8NYLp0AbMZLBb7vPrtjNIzMuyP//DDYo/OoWgj9C5a6+sPz44CvtBaT1VKjcq7PbLYlYgyp2vXruzfv5+xY8cyc+ZM6XQkXILWmq1btxIREUFWVhZhYWF07dr15p/vyZPtS95+8UXxOxZdvmxfYTEiAtq0ua3ab+d/YC9gUd7Xi4Dg26pElEmDBw8mJyeHuXPnGl2KELfFZrOxZcsWnn/+eebMmcOAAQNYunTpjaPyP/P2hlmzYMAAe4OK1NTCX7KfmwtJSVC5MixZAo89dtuvoVDroSuljgFJgAbmaq3nKaWStdb+ed9XQNLV27ci66G7psTERF544QVGjRpFp06djC5HiCK5GuSRkZF4enoSFhZGp06din6gc88ee2OKkyftSwNUrHhtEa/rnsx+nnlmpn3evU8fGD26wMbSDm1woZSqr7U+pZSqBWwE/g6svj7AlVJJWuuqN3lsOBAOEBAQ0P748eMFPp8oe3788UeGDRtGVFQUDRs2NLocIQpks9nYtGkTkZGR+Pr6EhYWxiOPPHJ7Z6xobW9OER0N33xjn47x9v7jezk50KQJ9OoFzzwDhTxHvcQ6FimlJgBpQBjQWWt9WilVF/hSa908v8fKCN21rVixgpUrV7JgwYLiLRsqRCmw2Wxs2LCB+fPnU6lSJcLCwnjooYccd+rh9RIT4cwZe5BXqGBfNqAYXcAcFuhKqYqAh9Y6Ne/rjcDbwF+Ai9cdFK2mtR6R374k0F2b1po333wTpRQTJ04smf8gQhRTbm4u69evJzIykqpVqxIeHs79999fJj6nhQ30wpzlUhtYmfeivYAlWuvPlVK7gBVKqYHAcaDP7RQsyj6lFGPGjKF///5YLBZ69+5tdElCkJOTw7p164iKiqJWrVqMHj2aDh06lIkgL6oCA11rfRS45yb3X8Q+ShfimvLly1+76KhFixa0bt3a6JKEm8rOzmbt2rVERUVRr149xo8fT/v27Y0uq0TJlaLC4QICAhg3bhwjR45k8eLFVK36P8fKhSgx2dnZfPrppyxYsICGDRsyceJE2rVrZ3RZpUICXZSIxx57jJ9++okxY8bw0Ucf4VmcCy6EKIKsrCzi4uJYuHAhjRs3ZvLkybS5zQt1yhq5tE+UmFdeeQWlFLNnzza6FOHCsrKyWL58OcHBwWzbto1p06Yxc+ZMtwtzkBG6KEGenp5MnjyZF154gdatW9O5c2ejSxIu5MqVK1itVqKjo2nVqhXvvvuu2y8UJ4EuSlTVqlWZNm0aQ4cOpXHjxgQEBBhdkijjMjIysFgsxMTE0KZNGz744AOaN8/3Ehi3IYEuSlzr1q156aWXGD58OAsXLqR8+fJGlyTKoPT0dGJjY1m8eDHt2rVj5syZNGvWzOiynIrMoYtSYTabadGiBZMnT5ZOR6JILl++zIIFCwgODubXX39l9uzZTJs2TcL8JiTQRalQSjF69GiOHDnCJ598YnQ5ogxIS0tj/vz59OrViyNHjjBnzhymTJlCkyZNjC7NacmUiyg1vr6+zJgxgwEDBtCiRQu3PAtBFCw1NZWlS5eyfPlyOnbsyPz587njjjuMLqtMkEAXpapBgwa8+eabjBo1isWLF1OtWjWjSxJOIiUlhSVLlvDJJ5/QqVMnFixYIAfRi0gCXZS6Rx99lP379zN69GhmzZolFx25ueTkZJYsWUJsbCxdunQhOjqa+vXrG11WmSRz6MIQL730Et7e3nz88cdGlyIMkpSUxMyZMzGZTCQnJ7N48WLGjx8vYX4bZIQuDOHh4cGkSZMIDQ2ldevWdO3a1eiSRClJTEwkOjqa1atX061bN5YsWUKdOnWMLsslSKALw/j7+zNt2jSGDBlCkyZN5MCXi7tw4QLR0dGsWbOGJ598kmXLllGrVi2jy3IpMuUiDNWqVSsGDx7M8OHDSU9PN7ocUQLOnTvHjBkz6NOnD1prli9fzogRIyTMS4AEujBccHAwrVu3ZtKkSXLRkQs5e/Ys06ZN49lnn8XLy4tPPvmEYcOGUbOQfTRF0UmgC8MppRg5ciTHjx9n2bJlRpcjbtPp06eZMmUKzz33HOXLlyc2NpahQ4dSvXp1o0tzeTKHLpxCuXLlmDFjBv3796dly5a0bdvW6JJEESUkJBAVFcXmzZsxmUxYLBZpblLKJNCF06hXrx4TJkxgzJgxREdHU6NGDaNLEoUQHx9PVFQUX375Jc888wwrV66kSpUqRpflliTQhVN5+OGHCQ4OZvTo0cyePRsvL/mIOqsTJ04wf/58tm3bxt/+9jdWrVqFn5+f0WW5NZlDF05n0KBBlC9fnpkzZxpdiriJY8eOMX78eF588UUaNmzIqlWrCA8PlzB3AoUOdKWUp1Jqr1JqTd7tQKXUTqXUYaXUcqWUT8mVKdzJ1YuOtmzZwsaNG40uR+Q5evQoY8aMITw8nMDAQOLi4hg0aBCVK1c2ujSRpygj9NeBX667PQ14T2vdFEgCBjqyMOHe/Pz8mD59OtOmTePYsWNGl+PWDh8+zKhRo3j55Zdp3rw5cXFxvPjii1SsWNHo0sSfFCrQlVINgB5AZN5tBXQFYvM2WQQEl0SBwn21aNGCIUOGyEVHBvntt98YMWIEr776KnfddRdxcXH069ePChUqGF2auIXCjtDfB0YAtrzb1YFkrXVO3u14QFbUEQ739NNP065dOyZOnCgXHZWSX375hWHDhjFkyBDatm3L6tWrCQ0NldaBZUCBga6U6gmc01p/X5wnUEqFK6V2K6V2nz9/vji7EG5u+PDhJCQk8N///tfoUlzazz//zD/+8Q/++c9/ct999xEXF8f//d//4evra3RpopAKc05YR+BppVR3wBfwAz4A/JVSXnmj9AbAqZs9WGs9D5gH0KFDBxliiSLz8fFh+vTp9OvXj1atWnHvvfcaXZJL+emnn4iIiODw4cP079+f6dOn4+Mj5ziURQWO0LXWo7XWDbTWjYBngc1a6+eBLUDvvM36AXElVqVwe3Xr1uXtt99mzJgxyG96jrFv3z4GDx7M6NGjeeyxx1i1ahV9+vSRMC/DbueqjZHAMqXUJGAvMN8xJQlxcw8++CDPPPMMI0eOZO7cuXh7extdUpm0Z88eIiIiOHXqFAMGDKBnz57yXroIVZoHmjp06KB3795das8nXI/NZmPYsGHUr1+fN954w+hyygytNd9//z3z5s3j7NmzDBw4kO7du8uVuGWEUup7rXWHgraTf01Rpnh4eDBx4kRCQ0O5++67eeKJJ4wuyalprdm1axfz5s3j4sWLDBw4kKeeekr6uLooCXRR5vj5+TFjxgxeffVVmjZtSpMmTYwuyelorfn222+JiIjg0qVLDBo0iG7dukmQuzgJdFEmNWvWjKFDhzJ8+HCio6OpVKmS0SU5Ba01O3bsICIigvT0dAYNGkRQUBAeHrJskzuQQBdlVo8ePfjxxx+ZOHEi06dPx34Bs3vSWrN161YiIiLIysoiLCyMrl27SpC7GQl0UaYNGzaMsLAwYmJi6Nu3r9HllDqbzcZXX31FREQEYF+psnPnzhLkbkoCXZRpVy86Cg0NpWXLltx3331Gl1QqbDYbW7ZsITIyEg8PD1566SUeffRRCXI3J4EuyrzatWszadIkxo0bR0xMjEt3k7fZbGzatInIyEh8fX159dVXeeSRR9x6ukn8QQJduIT777+fZ599lpEjRzJv3jyXu1DGZrOxYcMG5s+fT8WKFfnHP/7BQw89JEEubiCBLlxGv3792L9/P++99x4jRowwuhyHyM3NZf369URGRuLv78+wYcN44IEHJMjFTUmgC5dx/UVH69ato3v37kaXVGw5OTl89tlnREVFUaNGDUaNGsV9990nQS7yJYEuXEqlSpWYMWMGL7/8MnfeeSd33nmn0SUVSU5ODmvXriUqKoq6desybtw42rdvb3RZooyQQBcup2nTpgwbNozhw4cTExNTJnpeZmdn8+mnn7Jw4UIaNGjAhAkTaNeundFliTJGAl24pKeeeoqffvqJt956i3fffddpT+fLyspi9erVLFy4kMDAQCZNmkSbNm2MLkuUUc75KRfCAYYOHUpSUhILFy40upT/kZWVxYoVKwgODmbr1q288847zJw5U8Jc3BYZoQuX5e3tzbRp0wgNDeWuu+7igQceMLokMjMzsVqtREdH07JlS959911atWpldFnCRUigC5dWq1YtJk+ezJgxY4iOjqZOnTp/fPPIEVi7Fr79Fn7+GVJSQCnw94e774aHH4aePaH+7fc/z8jIuBbkd999N++99x4tWrS47f0KcT1pcCHcQnR09LUrLH0OHIDJk2HvXsjNBR8f8PWFq80ecnIgI8P+t4cHPPIIjB0LxThjJj09ndjYWBYvXkzbtm0ZNGgQzZo1c/CrE65OGlwIcZ3Q0FAO7N3Ljp496Xz0qH0kXqWK/e8/8/a2/wGw2WDbNujRA4YOhfBwKMSa4unp6axYsYIlS5bQvn17Zs+eLeu2ixIngS7cgkpPZ9Lx41zYvp3kOnXw9/cv3AM9POxTMNnZMGMG7NsHH35oH9XfRFpaGsuXL2fp0qU88MADzJkzh8aNGzvwlQhxaxLowvVlZ8PAgXj98ANVAwP5/cQJfMuXx9fXt/D78PaGqlVh40Z44w344IMbRvepqaksXbqU5cuX07FjRyIjI2nUqJHjX4sQ+ZBAF65v3jzYtQuqVqWcUtSpU4f4+HgCAwOL1pLt6jTN2rXQpQuEhJCSksKSJUv45JNP6NSpEwsWLCAgIKDkXosQ+Sgw0JVSvsDXQLm87WO11m8ppQKBZUB14HsgVGudVZLFClFkhw7ZR9OVKl0bUVfx8yMjI4NTCQk0bNiQIq2O4uEB5cuTO2YM0b/9Rsz69XTp0oVFixbRoEGDEnkJQhRWYUbomUBXrXWaUsob2KaU+gz4J/Ce1nqZUmoOMBCYXYK1ClF0c+bYz1b503K6tWvV4vjx41y4cIGaNWoUenc5ublcTEkh5/x5Gnz1FYsXL6ZevXqOrlqIYinwSlFtl5Z30zvvjwa6ArF59y8CgkukQiGKKykJ1qyxT5P8iVKK+g0akJSURNrly6Tk5vJGfDyP/PorPQ8f5vNLl27YPicnh7PnznHkyBFsNhs1GzXi8YQE6hXhh4EQJa1Qc+hKKU/s0ypNgY+BI0Cy1jonb5N44KZXXyilwoFwQOYWRenasQO0vuVpht5eXtSvX59T8fHM9/XF29OTDc2a8duVK7x+8iTNfH1p6OnJxYsXuXTpElX8/GgcGPhH84zUVPtZL27S9k44v0Kt5aK1ztVatwUaAPcDhb7ETWs9T2vdQWvdoWbNmsUsU4hi+OEH+xku+ahYoQIVqlVjQ2IiL9WoQQUPD9pWqMAjFSuyND6eo0ePAtC4cWPq1KlzYyeknBw4cKAkX4EQRVKkxbm01snAFuAhwF8pdXWE3wA45eDahLg9e/dCuXIFbpZWqRJeHh74JCaSnZ3NmTNnqHLpEidycuxBXrs23l43+WVWKfsPDSGcRIGBrpSqqZTyz/u6PPA48Av2YO+dt1k/IK6kihSiWNLSCnVVZ4bNhr+vLxkZGRw5cgTl4UHjOnXQvr43D/KrPD3t678I4SQKM4deF1iUN4/uAazQWq9RSh0AlimlJgF7gfklWKcQReflZZ9DL0AFDw/SbTYaN26MzWbD08ODKxcvUrGgNdS1/mP9FyGcQIGfRq31j8D/tE7RWh/FPp8uhHNq0AAOHixwswAfH3KBk1lZBORd0v9bZiaNC5quyc6GwEAHFCqEY0iDC+G6HnjAvppiAcp7eNC1cmXmnD9Phs3GvvR0vkpNpcdNTne8gY8P3HOPg4oV4vZJoAvX1a5doaddRtWpQ6bNxuO//caYU6cYXadO/iN0m83+RwJdOBGZABSu6557oF49OHcOKlTId1M/T0/+3bBh4fedmmo//1yuEhVOREbownUpBS+/DJmZhRqlF5rW9j/h4Y7bpxAOIIEuXJvZDM2a2UfUjpKcDI8+Co895rh9CuEAEujCtXl7/7F2+ZUrt7+/y5ehYkWYOvXm3Y6EMJAEunB9zZrBxx/bAz0jo/j7Sctbo27hQqhd2yGlCeFIEujCPQQFwfz59lF1cnLR5tRtNvtjKlSAJUvg3ntLrk4hboPSjjxYVNCTKXUeOF6ITWsAF0q4nLJE3o8/yHvxB3kvbuTK78cdWusCVzcs1UAvLKXUbq11B6PrcBbyfvxB3os/yHtxI3k/ZMpFCCFchgS6EEK4CGcN9HlGF+Bk5P34g7wXf5D34kZu/3445Ry6EEKIonPWEboQQogicrpAV0o9qZQ6qJQ6rJQaZXQ9pUkp1VAptUUpdUAp9bNS6vW8+6sppTYqpQ7l/V3V6FpLi1LKUym1Vym1Ju92oFJqZ97nY7lSysfoGkuLUspfKRWrlPpVKfWLUuohd/1sKKWG5v0f2a+UWqqU8nXnz8ZVThXoeV2RPgaeAloBzymlWhlbVanKAYZprVsBDwKD817/KOALrfWdwBd5t93F69hbHl41DXhPa90USAIGGlKVMT4APtdatwDuwf6+uN1nQylVHxgCdNBatwY8gWdx788G4GSBjr0D0mGt9VGtdRawDOhlcE2lRmt9Wmu9J+/rVOz/Yetjfw8W5W22CAg2psLSpZRqAPQAIvNuK6ArEJu3iTu9F1WATuS1etRaZ+U1bXfLzwb2pb/L5zWqrwCcxk0/G9dztkCvD5y87nZ83n1uRynVCHvrv51Aba316bxvnQHcZSGR94ERgC3vdnUgWWudk3fbnT4fgcB5YEHeFFSkUqoibvjZ0FqfAt4FTmAP8kvA97jvZ+MaZwt0ASilKgEW4B9a6xvaymv7aUkuf2qSUqoncE5r/b3RtTgJL+BeYLbWuh1wmT9Nr7jRZ6Mq9t9MAoF6QEXgSUOLchLOFuingOvbxjTIu89tKKW8sYf5f7XW1ry7zyql6uZ9vy5wzqj6SlFH4Gml1O/Yp966Yp9D9s/7NRvc6/MRD8RrrXfm3Y7FHvDu+NkIAo5prc9rrbMBK/bPi7t+Nq5xtkDfBdyZd7TaB/uBjtUG11Rq8uaI5wO/aK3/c923VgP98r7uB8SVdm2lTWs9WmvdQGvdCPvnYLPW+nlgC9A7bzO3eC8AtNZngJNKqeZ5d/0FOIAbfjawT7U8qJSqkPd/5up74Zafjes53YVFSqnu2OdOPYEorfVkg0sqNUqpR4CtwE/8MW88Bvs8+gogAPtqlX201omGFGkApVRn4A2tdU+lVGPsI/ZqwF7gBa11ppH1lRalVFvsB4h9gKPAAOyDMrf7bCilJgJ/w35m2F5gEPY5c7f8bFzldIEuhBCieJxtykUIIUQxSaALIYSLkEAXQggXIYEuhBAuQgJdCCFchAS6EEK4CAl0IYRwERLoQgjhIv4fPDc29bYtFO0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from itertools import permutations\n", + "\n", + "def brute_force_tsp(w, N):\n", + " a=list(permutations(range(1,N)))\n", + " last_best_distance = 1e10\n", + " for i in a:\n", + " distance = 0\n", + " pre_j = 0\n", + " for j in i:\n", + " distance = distance + w[j,pre_j]\n", + " pre_j = j\n", + " distance = distance + w[pre_j,0]\n", + " order = (0,) + i\n", + " if distance < last_best_distance:\n", + " best_order = order\n", + " last_best_distance = distance\n", + " print('order = ' + str(order) + ' Distance = ' + str(distance))\n", + " return last_best_distance, best_order\n", + " \n", + "best_distance, best_order = brute_force_tsp(ins.w, ins.dim)\n", + "print('Best order from brute force = ' + str(best_order) + ' with total distance = ' + str(best_distance))\n", + "\n", + "def draw_tsp_solution(G, order, colors, pos):\n", + " G2 = G.copy()\n", + " n = len(order)\n", + " for i in range(n):\n", + " j = (i + 1) % n\n", + " G2.add_edge(order[i], order[j])\n", + " default_axes = plt.axes(frameon=True)\n", + " nx.draw_networkx(G2, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", + "\n", + "draw_tsp_solution(G, best_order, colors, pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Mapping to the Ising problem" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp, offset = tsp.get_tsp_qubitops(ins)\n", + "algo_input = EnergyInput(qubitOp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Using DOcplex for mapping to the Ising problem\n", + "Using ```docplex.get_qubitops``` is a different way to create an Ising Hamiltonian of TSP. ```docplex.get_qubitops``` can create a corresponding Ising Hamiltonian from an optimization model of TSP. An example of using ```docplex.get_qubitops``` is as below. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Create an instance of a model and variables\n", + "mdl = Model(name='tsp')\n", + "x = {(i,p): mdl.binary_var(name='x_{0}_{1}'.format(i,p)) for i in range(n) for p in range(n)}\n", + "\n", + "# Object function\n", + "tsp_func = mdl.sum(ins.w[i,j] * x[(i,p)] * x[(j,(p+1)%n)] for i in range(n) for j in range(n) for p in range(n))\n", + "mdl.minimize(tsp_func)\n", + "\n", + "# Constrains\n", + "for i in range(n):\n", + " mdl.add_constraint(mdl.sum(x[(i,p)] for p in range(n)) == 1)\n", + "for p in range(n):\n", + " mdl.add_constraint(mdl.sum(x[(i,p)] for i in range(n)) == 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Checking that the full Hamiltonian gives the right cost " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -600115.5\n", + "tsp objective: 231.0\n", + "feasible: True\n", + "solution: [2, 1, 0]\n", + "solution objective: 231.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX6x/HPSSO0EHqPBJAmIghWFIGNqMBKMoOs/jQUIbHg4rJIBwUXkOKuBaUlBEhYmpmBIKAUQaUogiCKKNIEQuhJSEJC2pzfHxMQXEhjkjuZed6vFy8ykzt3nhmGb07Ovfc8SmuNEEKIss/D6AKEEEI4hgS6EEK4CAl0IYRwERLoQgjhIiTQhRDCRUigCyGEi5BAF0IIFyGBLoQQLkICXQghXIRXaT5ZjRo1dKNGjf73Gzk5cOIEpKeDUuBRyJ8zWoPNBp6eEBAAFSs6tF4hhHAG33///QWtdc2CtivVQG/UqBG7d+++8c6LF6F3b0hLg8BAe6AX1eXL9mB//3145BHHFCuEEE5CKXW8MNsZO+WSnQ39+sHJk+DvX7wwB/vI3MsLBg2C335zbI1CCFFGGBvoc+fCL79AlSq3v6/y5SE3F4YMsf+gEEIIN2NcoJ84AR9+CJUqFX9k/md+fnDoECxe7Jj9CSFEGWJcoP/3v/YRtbf3LTfJstl4OyGBnocP0+ngQf7v6FF2pKXdep9K2Ufqc+bY59SFEMKNGBPoWVn2QC/grJRcoI63N/MCAviyWTNeqVmTUadOkZCVdesH+fpCUhLs2OHYmoUQwskZE+i//Waf5/bxyXez8h4ehNesST0fHzyU4tHKlann7c2vV67kv//sbPj2WwcWLIQQzs+YQP/lF/t0SxEl5uRwIiuLxuXK5b9huXKwc2cxixNCiLLJmEA/erTIgZ6tNeMSEuhZpQqNCgp0Hx84duw2ChRCiLLHmEDPzCzSmS3Zubm8um8fmZcvM8Tfv+AHeHjYrz4VQgg3UqpXil5TqVKhz0LRWjP57FkyfHwY7enJ6fh4vLy9qervj1+VKnjc7AeDzWY/20UIIdyIMSP0pk0LPCB61TtnzvB7VhZzmjenvLc31apXp0aNGqSkpnLo0CHOnDlDZmbmjQ/KzITmzUugcCGEcF7GjNBbtizUlMvp7Gysycn4KMVThw+jbTauXLrE2Hr1CGnYkKzsbJKTkzl+4gQ+Pj5U9fensp8fHllZ8MADpfBChBDCeRgT6E2a2K/qzMiwnzd+C3W9vdndsuUN96WlpXH69GlyqlXDx9ubWjVrUrNGDVLT0khKSuLMmTPU8vXlStOm1C3p1yGEEE7EmCkXDw8IC7MHehFVqlQJf39/4k+dQmsNgFIKv8qVuSMggMa1a5NSvTp9Z8zglVdeYdOmTWTL2i5CCDdg3KX/vXvbD1wWdJHQTdSoWRMPDw/OnTt34ze0xltr7vj3v1m7bh3BwcGsWLGCnj178vHHH5OQkOCg4oUQwvkYF+jVqsGkSfZRet5Iu7AUUK9ePVJSU0lJSfnjG8nJ0KkTdO+Oj48PTzzxBPPmzWPOnDlkZmYSGhrKkCFD+Oqrr8gtxoVNQgjhzJQuYpjejg4dOugbGlxoDa++Chs2FGs99IwrVzhx4gSN7riDcpmZULkyfPYZ1Kp10+0zMzPZtGkTFouFM2fOEBwcTHBwMLVusb0QQjgDpdT3WusOBW5naKCD/RTDsDDYts2+LrqnZ5H2mZyURMbZs9Ru2hSPTz6BO+8s1OMOHTqE1Wpl/fr1tG3blt69e/Pggw/iUdj2d0IIUUrKTqCDffXFadMgOtp+wLSwa6RnZcHlyxz09sbatSujPv4YVcRRfnp6OuvXr8disZCSkkJwcDC9evWievXqRdqPEEKUlMIGunMMR318YPx4WL4cGjWClBT7ErhXrtw4v661fSXFlBS4dMl+39ixBO7dy4HUVJYsWVLkp65QoQIhISEsXryYqVOnkpCQQO/evRk5ciTfffcdNllXXQhRRjjHCP16WsO+fbB0qX0J3Ph4+zSMUvYFvSpXhjZt4Jln4PHH7SsrAgkJCfTv35+pU6dy77333ladaWlprFu3DqvVSlZWFiEhIfz1r3/FvzDryAghhIM5dMpFKfU6EIb9BJMIrfX7SqlqwHKgEfA70EdrnZTffgoV6H+Wng6Jifb1WSpVgqpVbzkds2PHDt5++21iYmKoWbNm0Z7nJrTW/PTTT1gsFr766iseeeQRzGYzbdu2LfLUjhBCFJfDAl0p1RpYBtwPZAGfAy8D4UCi1nqqUmoUUFVrPTK/fRUr0IsoIiKCb7/9lrlz5+Ll5bgLYVNSUlizZg0WiwVPT09MJhM9evSgcuXKDnsOIYS4GUcG+jPAk1rrgXm3xwOZwECgs9b6tFKqLvCl1jrfFbFKI9BtNhtDhw4lICCAYcOGOXz/Wmv27NmDxWJhx44ddO3aFZPJxF133SWjdiFEiXBkoLcE4oCHgAzgC2A3EKq19s/bRgFJV2/fSmkEOthH0y+88AKvvfYa3bp1K7HnSUxM5NNPP8VqtVKxYkXMZjNPPfUUFSpUKLHnFEK4H0fPoQ8EXgUuAz9jH6H3vz7AlVJJWuuqN3lsOPbpGQICAtofP3680C/idhw8eJDBgwczb948GjduXKLPZbPZ+O6777BarezatYvHH38cs9lMc1nCVwjhACV2HrpSagoQD7yOE065XO/TTz9lwYIFxMTEULFixVJ5zvPnzxMXF8fKlSupUaMGZrOZxx9/nPLScEMIUUyOHqHX0lqfU0oFABuAB4GxwMXrDopW01qPyG8/pR3oAFOmTCE5OZlp06aV6hy3zWZj+/btWK1W9u3bx1NPPYXZbC7x3xaEEK7H0YG+FagOZAP/1Fp/oZSqDqwAAoDj2E9bTMxvP0YEelZWFoMGDSIoKIi+ffuW6nNfdebMGVatWsWqVato0KABJpOJoKAgfArZtUkI4d7K1qX/JezMmTP07duXKVOm0KFDge9JicnJyeHrr7/GarXy66+/0rNnT0wmEwEBAYbVJIRwfhLof7Jz507efPNNYmJinGJ1xfj4eKxWK2vWrKFJkyaYTCY6d+6Mt7e30aUJIZyMBPpNREVFsW3bNubOnes0wZmVlcWXX36JxWLh2LFj9OrVi5CQEOrVq2d0aUIIJyGBfhM2m4033niDOnXqMGJEvsdvDfH7779jtVpZu3Ytd911FyaTiUcffRTPIi4pLIRwLRLot5CamkpoaCgvvfQSTz31lKG13MqfG3H06tWL4OBgateubXRpQggDSKDn49ChQ7zyyivMmTOHpk2bGl1Ovv7ciMNsNvPQQw9JIw4h3IgEegHWrVtHREQEMTExVKpUyehyCpSens6GDRuwWq0kJSUREhIijTiEcBMS6IUwbdo0zp07x4wZM8rUiPfAgQNYrVa++OIL7r//fsxmMx06dChTr0EIUXgS6IWQnZ1NeHg4jz32GP379ze6nCJLS0vjs88+w2KxkJmZiclkkkYcQrggCfRCOnfuHKGhofzrX//i/vvvN7qcYpFGHEK4Ngn0Iti1axfjxo0jOjq6zJ9Jcn0jDg8PD8xmM927d8fPz8/o0oQQxSSBXkSLFi1i8+bNREREuMQaK1pr9u7dS2xsLDt27KBLly6YzWZpxCFEGSSBXkRaa0aMGEH16tUZNWqU0eU4VGJiImvWrMFqtVKhQgVpxCFEGSOBXgxpaWn07duXgQMH0qNHD6PLcTibzcauXbuwWCzXGnGYTCZatGhhdGlCiHxIoBfTkSNHeOmll5g1axbNmjUzupwSc/78eVavXs3KlSupVq0avXv3lkYcQjgpCfTbsH79embNmkVMTIzLH0y02Wzs2LEDi8XCvn37ePLJJzGbzTRp0sTo0oQQeSTQb9O7777LqVOn+Pe//+02F+xcbcQRFxdHvXr1MJvN0ohDCCcggX6bsrOzeemll+jYsSMDBw40upxSlZOTw9atW7FYLPz666/06NEDk8nEHXfcYXRpQrglCXQHOH/+PKGhoUyYMIEHH3zQ6HIMER8fz8qVK/n0009p3LgxZrNZGnEIUcok0B1kz549jBo1ikWLFlG3bl2jyzHMnxtxPP3004SEhFC/fn2jSxPC5UmgO9DixYvZsGEDkZGRMp/MjY04WrVqhdlslkYcQpQgCXQH0lozatQo/Pz8GDt2rNHlOI3MzEy++OILYmNjOX36NMHBwdKIQ4gSUNhAL9TpG0qpoUqpn5VS+5VSS5VSvkqpQKXUTqXUYaXUcqWUyw5dlVK89dZb7N27l9WrVxtdjtMoV64c3bt3JyoqipkzZ3Lp0iWee+45/vnPf7J9+3ZsNpvRJQrhVgocoSul6gPbgFZa6wyl1ApgHdAdsGqtlyml5gD7tNaz89tXWR2hX3Xs2DHCwsL46KOP5OrKW8jIyGDDhg1YLBYSExMxmUw8/fTT1KhRw+jShCizHDpCB7yA8kopL6ACcBroCsTmfX8REFycQsuSwMBARo4cyYgRI0hJSTG6HKdUvnx5evXqRXR0NDNmzOD06dM888wzjBgxgu+++05G7UKUoELNoSulXgcmAxnABuB14FutddO87zcEPtNat77JY8OBcICAgID2x48fd1z1BvnPf/7D77//zvvvv+82Fx3djsuXL19rxJGRkXGtEUfVqlWNLk2IMsFhI3SlVFWgFxAI1AMqAk8WthCt9TytdQetdYeaNWsW9mFObciQIWRkZBAZGWl0KWVCxYoV6d27N0uWLOFf//oXR48eJSQkhLFjx7Jnzx5K88C8EK7MqxDbBAHHtNbnAZRSVqAj4K+U8tJa5wANgFMlV6Zz8fLy4p133iE0NJTWrVvz8MMPG11SmaCU4u677+buu+8mJSWFtWvXMmXKFJRSmEwmevTo4fJr5whRkgozX3ACeFApVUHZOyP8BTgAbAF6523TD4grmRKdU40aNXjnnXeYMGECCQkJRpdT5vj5+fHcc8/xySefMHr0aPbv30+vXr2YMGECP/30k4zahSiGws6hTwT+BuQAe4FBQH1gGVAt774XtNaZ+e2nrJ/lcjNLlixh7dq1REVFUa5cOaPLKdOSkpL49NNPsVqtlC9f/lojjooVKxpdmhCGkguLSonWmrFjx+Lr68v48eOlvZsD2Gw2du/eTWxsLLt27SIoKAiz2Synigq3JYFeitLT0+nfvz/PPfccISEhRpfjUi5cuMDq1auxWq1Uq1YNs9lMt27dpBGHcCsS6KXs999/Z9CgQXz44Ye0atXK6HJcjs1m45tvvsFisfDDDz/w5JNPYjKZaNq0qdGlCVHiJNANsHnzZt577z1iYmLw9/c3uhyXdfbsWVatWsWqVauuNeL4y1/+IscwhMuSQDfIBx98wKFDh/jwww/loqMSlpube60Rxy+//EL37t0xm83SiEO4HEdf+i8K6bXXXiM7O5u5c+caXYrL8/T0pHPnzsycOZNFixbh4+NDWFgYL7/8Mhs2bCA7O9voEoUoVTJCLwGJiYm88MILjB49mkcffdToctxKdnb2tUYcR48e5a9//Ssmk0kacYgyTaZcDPbjjz8ybNgwFixYQIMGDYwuxy0dP378WiOOli1bYjKZ6NSpkzTiEGWOBLoTWL58OXFxcURFReHr62t0OW4rKyuLTZs2YbFYSEhIoFevXgQHB1OnTh2jSxOiUCTQnYDWmvHjx+Pp6cmECRPkoiMncOTIESwWC59//jlt27bFZDLx8MMPywFs4dQk0J1ERkYG/fv3p0+fPpjNZqPLEXkyMjLYuHEjsbGxJCYmEhISQq9evaQRh3BKEuhO5MSJE7z44ou8//77tG79P0vGC4P9+uuvWK1WNm7cyH333YfZbOa+++6TUbtwGhLoTubLL79kxowZLF68WBo7OKnLly/z+eefY7FYSE9Pl0YcwmlIoDuhjz76iAMHDvDRRx/J6M+Jaa3Zv38/VquVLVu20LFjR8xmM+3atZPjIMIQEuhOKDc3l9dee43WrVszePBgo8sRhZCSksK6deuwWCxorTGZTPTs2VMacYhSJYHupBITEwkNDWXEiBE89thjRpcjCklrzd69e7FarWzbto3OnTtjMpm4++67ZdQuSpwEuhPbv38/Q4cOZf78+QQEBBhdjiii5OTka404fH19pRGHKHES6E4uNjaW2NhYFixYIGt7l1FXG3FYLBa+++47goKCMJlMtGzZ0ujShIuRQHdyWmveeusttNa8/fbb8mt7GXfx4kXi4uJYuXIlVatWlUYcwqEk0MuAK1euMGDAAEJCQujTp4/R5QgHkEYcoiRIoJcR8fHxDBgwgH//+9+0adPG6HKEA509e5a4uDhWrVpFnTp16N27tzTiEMXisEBXSjUHll93V2PgTSA67/5GwO9AH611Un77kkC/ua+//pqpU6eyePFiqlWrZnQ5wsFyc3PZtm0bFouFn3/+mR49emAymWjUqJHRpYkyokRG6EopT+AU8AAwGEjUWk9VSo0CqmqtR+b3eAn0W5s1axb79u1j1qxZsryrC0tISGDlypXExcURGBiI2WymS5cueHt7G12acGIlFejdgLe01h2VUgeBzlrr00qpusCXWuvm+T1eAv3WbDYbf//732nevDlDhgwxuhxRwq424rBarRw5ckQacYh8lVQLumeBpXlf19Zan877+gxQu4j7Etfx8PBg8uTJbNiwgc2bNxtdjihh3t7ePP7448yePZvIyEhyc3Pp168fr732Glu2bCEnJ8foEkUZVOgRulLKB0gA7tJan1VKJWut/a/7fpLW+n9WMVJKhQPhAAEBAe2PHz/umMpd1IEDB3j99deJjIyUZsdu5mojDqvVyqlTp6QRh7jG4VMuSqlewGCtdbe82zLlUkKsVivLli1j4cKFVKhQwehyhAGub8Rxzz33YDKZ6Nixoyzq5qZKYsrlOf6YbgFYDfTL+7ofEFeEfYl8hISE0Lp1ayZNmkRpnlYqnEeTJk0YMWIEa9eupUuXLkRGRvL0008zf/58Lly4YHR5wkkVaoSulKoInAAaa60v5d1XHVgBBADHsZ+2mJjffmSEXniZmZm8+OKL9OzZk+eee87ocoQTOHjwIBaLRRpxuCG5sMgFnDp1igEDBjB9+nTatm1rdDnCSVzfiOPy5cuYzWZpxOHiJNBdxPbt25k8eTIxMTFUr17d6HKEE9Fa8/PPP19rxPHQQw/Ru3dvacThgiTQXci8efPYvXs3s2bNwsvLy+hyhBO62ojDarVis9mkEYeLkUB3ITabjX/84x8EBgYydOhQo8sRTkxrzQ8//HCtEUenTp0wm83SiKOMk0B3MSkpKbzwwgsMGTKEoKAgo8sRZcD1jTjKlSuH2Wyme/fu0oijDJJAd0G//vorr732GhEREQQGBhpdjigjrjbisFqt7Ny5k7/85S+YzWZpxFGGSKC7qNWrVxMdHU10dLRcdCSK7PpGHP7+/tcacchnyblJoLuwSZMmkZqaytSpU2VeVBSLzWbj22+/xWKxsHfvXp544glMJhN33nmn0aWJm5BAd2FZWVkMHDiQJ598kueff97ockQZd+7cOVatWnWtEYfZbCYoKEgacTgRCXQXd/r0afr168fUqVO59957jS5HuABpxOG8JNDdwDfffMPEiROJiYmhZs2aRpcjXMj1jTgaNWpE79696dy5Mz4+PkaX5pYk0N1EZGQk33zzDXPnzpWLjoTDZWdn89VXX2G1Wjl8+DA9e/bEZDLRoEEDo0tzKyXV4EI4mRdffJHKlSvzwQcfGF2KcEHe3t4EBQUxa9YsIiMjsdls9O/fn8GDB7N582ZpxOFkZITuAlJSUggNDeXVV1/liSeeMLoc4eKysrL44osvsFqtnDx5kl69ehESEiKNOEqQTLm4md9++41XX32VefPm0bhxY6PLEW7i6NGjWCwWPvvsM9q0aYPZbJZGHCVAAt0NrVmzhqioKGJiYuTyblGqrly5woYNG7BYLFy8eJHg4GB69eolB+sdRALdTU2ZMoWkpCSmT58uFx0JQ1xtxLFp0ybat2+P2Wzm/vvvl1H7bZBAd1NZWVkMGjSIoKAg+vbta3Q5wo2lp6fz+eefExsby+XLlzGZTPz1r3+lWrVqRpdW5kigu7EzZ87Qt29fJk+ezH333Wd0OcLNaa05cOAAFovlWiMOs9nMvffeK79FFpIEupv77rvvGD9+PDExMdSqVcvocoQAIDU1lXXr1mGxWMjNzcVsNksjjkKQQBdERUWxdetW5s2bh7e3t9HlCHGN1pp9+/ZhsVjYunUrjz32mDTiyIcEusBms/HGG29Qp04dRowYYXQ5QtxUcnIya9aswWq14uPjg8lkonv37lSqVMno0pyGQwNdKeUPRAKtAQ28CBwElgONgN+BPlrrpPz2I4Fe+lJTU+nbty9hYWF0797d6HKEuCWtNbt378ZisbBz5066du2K2WymVatWRpdmOEcH+iJgq9Y6UinlA1QAxgCJWuupSqlRQFWt9cj89iOBboxDhw7xyiuvMHv2bFnvWpQJFy9eZPXq1axcuZIqVapgMpl44okn3LYRh8MCXSlVBfgBaKyv21gpdRDorLU+rZSqC3yptW6e374k0I2zbt06IiIiiI6OpnLlykaXI0Sh/LkRR7du3TCbzW43MHFkoLcF5gEHgHuA74HXgVNaa/+8bRSQdPX2nx4fDoQDBAQEtD9+/HgRX4pwlOnTp3PmzBneffdduchDlDl/bsRhMpl4/PHH3aIRhyMDvQPwLdBRa71TKfUBkAL8/foAV0olaa2r5rcvGaEbKzs7m/DwcDp16sSAAQOMLkeIYsnNzWX79u3Exsa6TSMORy6fGw/Ea6135t2OBe4FzuZNtZD397niFitKh7e3N9OmTWPZsmV89913RpcjRLF4enrSqVMnPvzwQ2JiYvD19SU8PJzw8HDWr19PVlaW0SUaprAHRbcCg7TWB5VSE4CrKz9dvO6gaDWtdb7nxskI3Tns2rWLsWPHEhMTQ+3atY0uR4jblp2dzddff43FYnHJRhyOPsulLfbTFn2Ao8AA7KP7FUAAcBz7aYuJ+e1HAt15REdH88UXXxARESFtxYRLOXHiBCtXrmTNmjU0a9YMs9lMp06dynRHL7mwSORLa82IESOoVq0ao0ePNrocIRwuKyuLzZs3Y7FYrjXiCA4Opm7duqVTgNZw5oz9T24uVKgAjRrZ/y4iCXRRoLS0NPr27cuLL75Iz549jS5HiBJz9OhRrFYr69ato02bNphMJh555BHHn+1ls8GOHbBoEXz7LWRkwNVlN7SG7Gxo0AB69YLnnoNC/nCRQBeFcvToUcLDw5k1axbNmjUzuhwhStSVK1fYuHEjFouF8+fPExIS4rhGHN9+C8OH20fkWkPFin+E+VVaw5Ur9j8eHvD00/Dmm1ClSr67lkAXhbZ+/XpmzZpFTEyMrHon3MZvv/2GxWJh48aNtG/fHpPJxAMPPFD0UXtWFvzrX7B0KXh5QWHXoLHZICUF/Pzgo4/g4YdvuakEuiiSd999l/j4eP7zn//IRUfCrVxtxGGxWEhLSytaI46sLAgPh61b7cHs6VmcAuxTMbNnQ1DQTTeRQBdFkp2dzcsvv8zDDz/MwIEDjS5HiFJ3s0YcJpOJ9u3b33pJ36FDIS4OqlaF21n298oVe6gvWwbt2v3PtyXQRZGdP3+e0NBQ3nrrLR566CGjyxHCMKmpqXz22WfExsbeuhHHxo3w8sv2+W9H/Fabmgq1asGGDVC+/A3fkkAXxbJnzx5GjRrFwoULqVevntHlCGEorTU//vgjFouFr7/+mk6dOmE2m2nTtCmqY0f7qPpP4XtbkpPtPyTeeOOGuyXQRbEtXryY9evXM3/+fLnoSIg8ly5dYs2aNVgsFjqeOUP40aNUqFcPz3xG5ysSE/n00iUOZ2byhJ8fEwoaJGVn289Z370bfH2v3e3ItVyEm3n++eepV68eM2bMMLoUIZxGlSpVeP7557FYLAzKzSU9J4fDhw6RcPo0GVeu3PQxNby8GFijBk8XcFriNd7ekJlpn3YpBgl08T+UUrz11lvs3buX1atXG12OEE5FJSdT5cIFat9xB02aNMHHx4f4+HiOHjtGUnIyuTbbtW27+vnRuXJlqhTl7BetYdOmYtVWdhc3ECWqQoUKzJgxg7CwMJo1a0aLFi2MLkkI5/DLL/aRtFJ4eXlRo3p1qlevzuXLl0lKSuLcuXP4+flR1d8f3+umTQrN1xf27ClWaTJCF7cUGBjIqFGjGDFiBCkpKUaXI4RzOHECcnJuuEsBlSpWpGGDBjRu3BgvLy9OnjzJsd9/J/nSJYp0pLJcOYiPt4/Ui0gCXeQrKCiILl26MG7cOGzX/SophNvKyrJf5XkL3l5e1KxRg6Z33olf5coknDpFWlpa4fd/9Xz2P/3QKAwJdFGgv//972RkZBAZGWl0KUIYr1y5As87z8jI4OTJkyQmJlKnbl0qFXY5ALCPzJWyLyNQRBLookBeXl5MnTqVVatWsX37dqPLEcJYAQG3DNv0jAxOnDxJfHw8lSpVolGTJlSqUgUN2IAsm43cgqZSMjOhYcNiXXkqgS4KpXr16kyZMoWJEyeSkJBgdDlCGKdlS/v54tcFc3p6OsdPnODUqVNUrlyZJk2bUq1qVRZcvMjDBw+y8OJF1l26xMMHDzL/woX893/lCtx7b7FKk7NcRKG1bduWAQMGMHz4cKKiotyi27oQ/8PfH5o2hePHuezhwYULF8jKyqJGjRpUqVIFj+tG1uE1axJe1KV5lbrlIl0FkRG6KJJnn32WO+64g2nTplGaVxkL4Sy01hzu2pWzp09zOiGBKn5+NG3ShKr+/jeEebFkZdlPW3z88WI9XAJdFIlSinHjxrF//35WrVpldDlClBqtNTt37iQsLIxx27fjW7MmTerVw9/f/9arMRbV5cswcKD9wGsxyJSLKLKrFx0NHDiQ5s2b06pVK6NLEqLEaK355ptviIyM5NKlSwwaNIhu3brh+fXXMGiQfUTtiNUWU1LsB0NfeaXYuyhUoCulfgdSgVwgR2vdQSlVDVgONAJ+B/porZOKXYkoU+644w7GjBnDyJGSpLGAAAAV3UlEQVQjiYmJwd/f3+iShHAorTXbt28nIiKCjIwMBg0aRFBQ0B8NYLp0AbMZLBb7vPrtjNIzMuyP//DDYo/OoWgj9C5a6+sPz44CvtBaT1VKjcq7PbLYlYgyp2vXruzfv5+xY8cyc+ZM6XQkXILWmq1btxIREUFWVhZhYWF07dr15p/vyZPtS95+8UXxOxZdvmxfYTEiAtq0ua3ab+d/YC9gUd7Xi4Dg26pElEmDBw8mJyeHuXPnGl2KELfFZrOxZcsWnn/+eebMmcOAAQNYunTpjaPyP/P2hlmzYMAAe4OK1NTCX7KfmwtJSVC5MixZAo89dtuvoVDroSuljgFJgAbmaq3nKaWStdb+ed9XQNLV27ci66G7psTERF544QVGjRpFp06djC5HiCK5GuSRkZF4enoSFhZGp06din6gc88ee2OKkyftSwNUrHhtEa/rnsx+nnlmpn3evU8fGD26wMbSDm1woZSqr7U+pZSqBWwE/g6svj7AlVJJWuuqN3lsOBAOEBAQ0P748eMFPp8oe3788UeGDRtGVFQUDRs2NLocIQpks9nYtGkTkZGR+Pr6EhYWxiOPPHJ7Z6xobW9OER0N33xjn47x9v7jezk50KQJ9OoFzzwDhTxHvcQ6FimlJgBpQBjQWWt9WilVF/hSa908v8fKCN21rVixgpUrV7JgwYLiLRsqRCmw2Wxs2LCB+fPnU6lSJcLCwnjooYccd+rh9RIT4cwZe5BXqGBfNqAYXcAcFuhKqYqAh9Y6Ne/rjcDbwF+Ai9cdFK2mtR6R374k0F2b1po333wTpRQTJ04smf8gQhRTbm4u69evJzIykqpVqxIeHs79999fJj6nhQ30wpzlUhtYmfeivYAlWuvPlVK7gBVKqYHAcaDP7RQsyj6lFGPGjKF///5YLBZ69+5tdElCkJOTw7p164iKiqJWrVqMHj2aDh06lIkgL6oCA11rfRS45yb3X8Q+ShfimvLly1+76KhFixa0bt3a6JKEm8rOzmbt2rVERUVRr149xo8fT/v27Y0uq0TJlaLC4QICAhg3bhwjR45k8eLFVK36P8fKhSgx2dnZfPrppyxYsICGDRsyceJE2rVrZ3RZpUICXZSIxx57jJ9++okxY8bw0Ucf4VmcCy6EKIKsrCzi4uJYuHAhjRs3ZvLkybS5zQt1yhq5tE+UmFdeeQWlFLNnzza6FOHCsrKyWL58OcHBwWzbto1p06Yxc+ZMtwtzkBG6KEGenp5MnjyZF154gdatW9O5c2ejSxIu5MqVK1itVqKjo2nVqhXvvvuu2y8UJ4EuSlTVqlWZNm0aQ4cOpXHjxgQEBBhdkijjMjIysFgsxMTE0KZNGz744AOaN8/3Ehi3IYEuSlzr1q156aWXGD58OAsXLqR8+fJGlyTKoPT0dGJjY1m8eDHt2rVj5syZNGvWzOiynIrMoYtSYTabadGiBZMnT5ZOR6JILl++zIIFCwgODubXX39l9uzZTJs2TcL8JiTQRalQSjF69GiOHDnCJ598YnQ5ogxIS0tj/vz59OrViyNHjjBnzhymTJlCkyZNjC7NacmUiyg1vr6+zJgxgwEDBtCiRQu3PAtBFCw1NZWlS5eyfPlyOnbsyPz587njjjuMLqtMkEAXpapBgwa8+eabjBo1isWLF1OtWjWjSxJOIiUlhSVLlvDJJ5/QqVMnFixYIAfRi0gCXZS6Rx99lP379zN69GhmzZolFx25ueTkZJYsWUJsbCxdunQhOjqa+vXrG11WmSRz6MIQL730Et7e3nz88cdGlyIMkpSUxMyZMzGZTCQnJ7N48WLGjx8vYX4bZIQuDOHh4cGkSZMIDQ2ldevWdO3a1eiSRClJTEwkOjqa1atX061bN5YsWUKdOnWMLsslSKALw/j7+zNt2jSGDBlCkyZN5MCXi7tw4QLR0dGsWbOGJ598kmXLllGrVi2jy3IpMuUiDNWqVSsGDx7M8OHDSU9PN7ocUQLOnTvHjBkz6NOnD1prli9fzogRIyTMS4AEujBccHAwrVu3ZtKkSXLRkQs5e/Ys06ZN49lnn8XLy4tPPvmEYcOGUbOQfTRF0UmgC8MppRg5ciTHjx9n2bJlRpcjbtPp06eZMmUKzz33HOXLlyc2NpahQ4dSvXp1o0tzeTKHLpxCuXLlmDFjBv3796dly5a0bdvW6JJEESUkJBAVFcXmzZsxmUxYLBZpblLKJNCF06hXrx4TJkxgzJgxREdHU6NGDaNLEoUQHx9PVFQUX375Jc888wwrV66kSpUqRpflliTQhVN5+OGHCQ4OZvTo0cyePRsvL/mIOqsTJ04wf/58tm3bxt/+9jdWrVqFn5+f0WW5NZlDF05n0KBBlC9fnpkzZxpdiriJY8eOMX78eF588UUaNmzIqlWrCA8PlzB3AoUOdKWUp1Jqr1JqTd7tQKXUTqXUYaXUcqWUT8mVKdzJ1YuOtmzZwsaNG40uR+Q5evQoY8aMITw8nMDAQOLi4hg0aBCVK1c2ujSRpygj9NeBX667PQ14T2vdFEgCBjqyMOHe/Pz8mD59OtOmTePYsWNGl+PWDh8+zKhRo3j55Zdp3rw5cXFxvPjii1SsWNHo0sSfFCrQlVINgB5AZN5tBXQFYvM2WQQEl0SBwn21aNGCIUOGyEVHBvntt98YMWIEr776KnfddRdxcXH069ePChUqGF2auIXCjtDfB0YAtrzb1YFkrXVO3u14QFbUEQ739NNP065dOyZOnCgXHZWSX375hWHDhjFkyBDatm3L6tWrCQ0NldaBZUCBga6U6gmc01p/X5wnUEqFK6V2K6V2nz9/vji7EG5u+PDhJCQk8N///tfoUlzazz//zD/+8Q/++c9/ct999xEXF8f//d//4evra3RpopAKc05YR+BppVR3wBfwAz4A/JVSXnmj9AbAqZs9WGs9D5gH0KFDBxliiSLz8fFh+vTp9OvXj1atWnHvvfcaXZJL+emnn4iIiODw4cP079+f6dOn4+Mj5ziURQWO0LXWo7XWDbTWjYBngc1a6+eBLUDvvM36AXElVqVwe3Xr1uXtt99mzJgxyG96jrFv3z4GDx7M6NGjeeyxx1i1ahV9+vSRMC/DbueqjZHAMqXUJGAvMN8xJQlxcw8++CDPPPMMI0eOZO7cuXh7extdUpm0Z88eIiIiOHXqFAMGDKBnz57yXroIVZoHmjp06KB3795das8nXI/NZmPYsGHUr1+fN954w+hyygytNd9//z3z5s3j7NmzDBw4kO7du8uVuGWEUup7rXWHgraTf01Rpnh4eDBx4kRCQ0O5++67eeKJJ4wuyalprdm1axfz5s3j4sWLDBw4kKeeekr6uLooCXRR5vj5+TFjxgxeffVVmjZtSpMmTYwuyelorfn222+JiIjg0qVLDBo0iG7dukmQuzgJdFEmNWvWjKFDhzJ8+HCio6OpVKmS0SU5Ba01O3bsICIigvT0dAYNGkRQUBAeHrJskzuQQBdlVo8ePfjxxx+ZOHEi06dPx34Bs3vSWrN161YiIiLIysoiLCyMrl27SpC7GQl0UaYNGzaMsLAwYmJi6Nu3r9HllDqbzcZXX31FREQEYF+psnPnzhLkbkoCXZRpVy86Cg0NpWXLltx3331Gl1QqbDYbW7ZsITIyEg8PD1566SUeffRRCXI3J4EuyrzatWszadIkxo0bR0xMjEt3k7fZbGzatInIyEh8fX159dVXeeSRR9x6ukn8QQJduIT777+fZ599lpEjRzJv3jyXu1DGZrOxYcMG5s+fT8WKFfnHP/7BQw89JEEubiCBLlxGv3792L9/P++99x4jRowwuhyHyM3NZf369URGRuLv78+wYcN44IEHJMjFTUmgC5dx/UVH69ato3v37kaXVGw5OTl89tlnREVFUaNGDUaNGsV9990nQS7yJYEuXEqlSpWYMWMGL7/8MnfeeSd33nmn0SUVSU5ODmvXriUqKoq6desybtw42rdvb3RZooyQQBcup2nTpgwbNozhw4cTExNTJnpeZmdn8+mnn7Jw4UIaNGjAhAkTaNeundFliTJGAl24pKeeeoqffvqJt956i3fffddpT+fLyspi9erVLFy4kMDAQCZNmkSbNm2MLkuUUc75KRfCAYYOHUpSUhILFy40upT/kZWVxYoVKwgODmbr1q288847zJw5U8Jc3BYZoQuX5e3tzbRp0wgNDeWuu+7igQceMLokMjMzsVqtREdH07JlS959911atWpldFnCRUigC5dWq1YtJk+ezJgxY4iOjqZOnTp/fPPIEVi7Fr79Fn7+GVJSQCnw94e774aHH4aePaH+7fc/z8jIuBbkd999N++99x4tWrS47f0KcT1pcCHcQnR09LUrLH0OHIDJk2HvXsjNBR8f8PWFq80ecnIgI8P+t4cHPPIIjB0LxThjJj09ndjYWBYvXkzbtm0ZNGgQzZo1c/CrE65OGlwIcZ3Q0FAO7N3Ljp496Xz0qH0kXqWK/e8/8/a2/wGw2WDbNujRA4YOhfBwKMSa4unp6axYsYIlS5bQvn17Zs+eLeu2ixIngS7cgkpPZ9Lx41zYvp3kOnXw9/cv3AM9POxTMNnZMGMG7NsHH35oH9XfRFpaGsuXL2fp0qU88MADzJkzh8aNGzvwlQhxaxLowvVlZ8PAgXj98ANVAwP5/cQJfMuXx9fXt/D78PaGqlVh40Z44w344IMbRvepqaksXbqU5cuX07FjRyIjI2nUqJHjX4sQ+ZBAF65v3jzYtQuqVqWcUtSpU4f4+HgCAwOL1pLt6jTN2rXQpQuEhJCSksKSJUv45JNP6NSpEwsWLCAgIKDkXosQ+Sgw0JVSvsDXQLm87WO11m8ppQKBZUB14HsgVGudVZLFClFkhw7ZR9OVKl0bUVfx8yMjI4NTCQk0bNiQIq2O4uEB5cuTO2YM0b/9Rsz69XTp0oVFixbRoEGDEnkJQhRWYUbomUBXrXWaUsob2KaU+gz4J/Ce1nqZUmoOMBCYXYK1ClF0c+bYz1b503K6tWvV4vjx41y4cIGaNWoUenc5ublcTEkh5/x5Gnz1FYsXL6ZevXqOrlqIYinwSlFtl5Z30zvvjwa6ArF59y8CgkukQiGKKykJ1qyxT5P8iVKK+g0akJSURNrly6Tk5vJGfDyP/PorPQ8f5vNLl27YPicnh7PnznHkyBFsNhs1GzXi8YQE6hXhh4EQJa1Qc+hKKU/s0ypNgY+BI0Cy1jonb5N44KZXXyilwoFwQOYWRenasQO0vuVpht5eXtSvX59T8fHM9/XF29OTDc2a8duVK7x+8iTNfH1p6OnJxYsXuXTpElX8/GgcGPhH84zUVPtZL27S9k44v0Kt5aK1ztVatwUaAPcDhb7ETWs9T2vdQWvdoWbNmsUsU4hi+OEH+xku+ahYoQIVqlVjQ2IiL9WoQQUPD9pWqMAjFSuyND6eo0ePAtC4cWPq1KlzYyeknBw4cKAkX4EQRVKkxbm01snAFuAhwF8pdXWE3wA45eDahLg9e/dCuXIFbpZWqRJeHh74JCaSnZ3NmTNnqHLpEidycuxBXrs23l43+WVWKfsPDSGcRIGBrpSqqZTyz/u6PPA48Av2YO+dt1k/IK6kihSiWNLSCnVVZ4bNhr+vLxkZGRw5cgTl4UHjOnXQvr43D/KrPD3t678I4SQKM4deF1iUN4/uAazQWq9RSh0AlimlJgF7gfklWKcQReflZZ9DL0AFDw/SbTYaN26MzWbD08ODKxcvUrGgNdS1/mP9FyGcQIGfRq31j8D/tE7RWh/FPp8uhHNq0AAOHixwswAfH3KBk1lZBORd0v9bZiaNC5quyc6GwEAHFCqEY0iDC+G6HnjAvppiAcp7eNC1cmXmnD9Phs3GvvR0vkpNpcdNTne8gY8P3HOPg4oV4vZJoAvX1a5doaddRtWpQ6bNxuO//caYU6cYXadO/iN0m83+RwJdOBGZABSu6557oF49OHcOKlTId1M/T0/+3bBh4fedmmo//1yuEhVOREbownUpBS+/DJmZhRqlF5rW9j/h4Y7bpxAOIIEuXJvZDM2a2UfUjpKcDI8+Co895rh9CuEAEujCtXl7/7F2+ZUrt7+/y5ehYkWYOvXm3Y6EMJAEunB9zZrBxx/bAz0jo/j7Sctbo27hQqhd2yGlCeFIEujCPQQFwfz59lF1cnLR5tRtNvtjKlSAJUvg3ntLrk4hboPSjjxYVNCTKXUeOF6ITWsAF0q4nLJE3o8/yHvxB3kvbuTK78cdWusCVzcs1UAvLKXUbq11B6PrcBbyfvxB3os/yHtxI3k/ZMpFCCFchgS6EEK4CGcN9HlGF+Bk5P34g7wXf5D34kZu/3445Ry6EEKIonPWEboQQogicrpAV0o9qZQ6qJQ6rJQaZXQ9pUkp1VAptUUpdUAp9bNS6vW8+6sppTYqpQ7l/V3V6FpLi1LKUym1Vym1Ju92oFJqZ97nY7lSysfoGkuLUspfKRWrlPpVKfWLUuohd/1sKKWG5v0f2a+UWqqU8nXnz8ZVThXoeV2RPgaeAloBzymlWhlbVanKAYZprVsBDwKD817/KOALrfWdwBd5t93F69hbHl41DXhPa90USAIGGlKVMT4APtdatwDuwf6+uN1nQylVHxgCdNBatwY8gWdx788G4GSBjr0D0mGt9VGtdRawDOhlcE2lRmt9Wmu9J+/rVOz/Yetjfw8W5W22CAg2psLSpZRqAPQAIvNuK6ArEJu3iTu9F1WATuS1etRaZ+U1bXfLzwb2pb/L5zWqrwCcxk0/G9dztkCvD5y87nZ83n1uRynVCHvrv51Aba316bxvnQHcZSGR94ERgC3vdnUgWWudk3fbnT4fgcB5YEHeFFSkUqoibvjZ0FqfAt4FTmAP8kvA97jvZ+MaZwt0ASilKgEW4B9a6xvaymv7aUkuf2qSUqoncE5r/b3RtTgJL+BeYLbWuh1wmT9Nr7jRZ6Mq9t9MAoF6QEXgSUOLchLOFuingOvbxjTIu89tKKW8sYf5f7XW1ry7zyql6uZ9vy5wzqj6SlFH4Gml1O/Yp966Yp9D9s/7NRvc6/MRD8RrrXfm3Y7FHvDu+NkIAo5prc9rrbMBK/bPi7t+Nq5xtkDfBdyZd7TaB/uBjtUG11Rq8uaI5wO/aK3/c923VgP98r7uB8SVdm2lTWs9WmvdQGvdCPvnYLPW+nlgC9A7bzO3eC8AtNZngJNKqeZ5d/0FOIAbfjawT7U8qJSqkPd/5up74Zafjes53YVFSqnu2OdOPYEorfVkg0sqNUqpR4CtwE/8MW88Bvs8+gogAPtqlX201omGFGkApVRn4A2tdU+lVGPsI/ZqwF7gBa11ppH1lRalVFvsB4h9gKPAAOyDMrf7bCilJgJ/w35m2F5gEPY5c7f8bFzldIEuhBCieJxtykUIIUQxSaALIYSLkEAXQggXIYEuhBAuQgJdCCFchAS6EEK4CAl0IYRwERLoQgjhIv4fPDc29bYtFO0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "ee = ExactEigensolver(qubitOp, k=1)\n", + "result = ee.run()\n", + "\n", + "\"\"\"\n", + "algorithm_cfg = {\n", + " 'name': 'ExactEigensolver',\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising'},\n", + " 'algorithm': algorithm_cfg\n", + "}\n", + "result = run_algorithm(params,algo_input)\n", + "\"\"\"\n", + "print('energy:', result['energy'])\n", + "print('tsp objective:', result['energy'] + offset)\n", + "x = tsp.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running it on quantum computer\n", + "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "energy: -590938.6460660461\n", + "time: 20.48488998413086\n", + "feasible: True\n", + "solution: [2, 1, 0]\n", + "solution objective: 231.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX6x/HPSSO0EHqPBJAmIghWFIGNqMBKMoOs/jQUIbHg4rJIBwUXkOKuBaUlBEhYmpmBIKAUQaUogiCKKNIEQuhJSEJC2pzfHxMQXEhjkjuZed6vFy8ykzt3nhmGb07Ovfc8SmuNEEKIss/D6AKEEEI4hgS6EEK4CAl0IYRwERLoQgjhIiTQhRDCRUigCyGEi5BAF0IIFyGBLoQQLkICXQghXIRXaT5ZjRo1dKNGjf73Gzk5cOIEpKeDUuBRyJ8zWoPNBp6eEBAAFSs6tF4hhHAG33///QWtdc2CtivVQG/UqBG7d+++8c6LF6F3b0hLg8BAe6AX1eXL9mB//3145BHHFCuEEE5CKXW8MNsZO+WSnQ39+sHJk+DvX7wwB/vI3MsLBg2C335zbI1CCFFGGBvoc+fCL79AlSq3v6/y5SE3F4YMsf+gEEIIN2NcoJ84AR9+CJUqFX9k/md+fnDoECxe7Jj9CSFEGWJcoP/3v/YRtbf3LTfJstl4OyGBnocP0+ngQf7v6FF2pKXdep9K2Ufqc+bY59SFEMKNGBPoWVn2QC/grJRcoI63N/MCAviyWTNeqVmTUadOkZCVdesH+fpCUhLs2OHYmoUQwskZE+i//Waf5/bxyXez8h4ehNesST0fHzyU4tHKlann7c2vV67kv//sbPj2WwcWLIQQzs+YQP/lF/t0SxEl5uRwIiuLxuXK5b9huXKwc2cxixNCiLLJmEA/erTIgZ6tNeMSEuhZpQqNCgp0Hx84duw2ChRCiLLHmEDPzCzSmS3Zubm8um8fmZcvM8Tfv+AHeHjYrz4VQgg3UqpXil5TqVKhz0LRWjP57FkyfHwY7enJ6fh4vLy9qervj1+VKnjc7AeDzWY/20UIIdyIMSP0pk0LPCB61TtnzvB7VhZzmjenvLc31apXp0aNGqSkpnLo0CHOnDlDZmbmjQ/KzITmzUugcCGEcF7GjNBbtizUlMvp7Gysycn4KMVThw+jbTauXLrE2Hr1CGnYkKzsbJKTkzl+4gQ+Pj5U9fensp8fHllZ8MADpfBChBDCeRgT6E2a2K/qzMiwnzd+C3W9vdndsuUN96WlpXH69GlyqlXDx9ubWjVrUrNGDVLT0khKSuLMmTPU8vXlStOm1C3p1yGEEE7EmCkXDw8IC7MHehFVqlQJf39/4k+dQmsNgFIKv8qVuSMggMa1a5NSvTp9Z8zglVdeYdOmTWTL2i5CCDdg3KX/vXvbD1wWdJHQTdSoWRMPDw/OnTt34ze0xltr7vj3v1m7bh3BwcGsWLGCnj178vHHH5OQkOCg4oUQwvkYF+jVqsGkSfZRet5Iu7AUUK9ePVJSU0lJSfnjG8nJ0KkTdO+Oj48PTzzxBPPmzWPOnDlkZmYSGhrKkCFD+Oqrr8gtxoVNQgjhzJQuYpjejg4dOugbGlxoDa++Chs2FGs99IwrVzhx4gSN7riDcpmZULkyfPYZ1Kp10+0zMzPZtGkTFouFM2fOEBwcTHBwMLVusb0QQjgDpdT3WusOBW5naKCD/RTDsDDYts2+LrqnZ5H2mZyURMbZs9Ru2hSPTz6BO+8s1OMOHTqE1Wpl/fr1tG3blt69e/Pggw/iUdj2d0IIUUrKTqCDffXFadMgOtp+wLSwa6RnZcHlyxz09sbatSujPv4YVcRRfnp6OuvXr8disZCSkkJwcDC9evWievXqRdqPEEKUlMIGunMMR318YPx4WL4cGjWClBT7ErhXrtw4v661fSXFlBS4dMl+39ixBO7dy4HUVJYsWVLkp65QoQIhISEsXryYqVOnkpCQQO/evRk5ciTfffcdNllXXQhRRjjHCP16WsO+fbB0qX0J3Ph4+zSMUvYFvSpXhjZt4Jln4PHH7SsrAgkJCfTv35+pU6dy77333ladaWlprFu3DqvVSlZWFiEhIfz1r3/FvzDryAghhIM5dMpFKfU6EIb9BJMIrfX7SqlqwHKgEfA70EdrnZTffgoV6H+Wng6Jifb1WSpVgqpVbzkds2PHDt5++21iYmKoWbNm0Z7nJrTW/PTTT1gsFr766iseeeQRzGYzbdu2LfLUjhBCFJfDAl0p1RpYBtwPZAGfAy8D4UCi1nqqUmoUUFVrPTK/fRUr0IsoIiKCb7/9lrlz5+Ll5bgLYVNSUlizZg0WiwVPT09MJhM9evSgcuXKDnsOIYS4GUcG+jPAk1rrgXm3xwOZwECgs9b6tFKqLvCl1jrfFbFKI9BtNhtDhw4lICCAYcOGOXz/Wmv27NmDxWJhx44ddO3aFZPJxF133SWjdiFEiXBkoLcE4oCHgAzgC2A3EKq19s/bRgFJV2/fSmkEOthH0y+88AKvvfYa3bp1K7HnSUxM5NNPP8VqtVKxYkXMZjNPPfUUFSpUKLHnFEK4H0fPoQ8EXgUuAz9jH6H3vz7AlVJJWuuqN3lsOPbpGQICAtofP3680C/idhw8eJDBgwczb948GjduXKLPZbPZ+O6777BarezatYvHH38cs9lMc1nCVwjhACV2HrpSagoQD7yOE065XO/TTz9lwYIFxMTEULFixVJ5zvPnzxMXF8fKlSupUaMGZrOZxx9/nPLScEMIUUyOHqHX0lqfU0oFABuAB4GxwMXrDopW01qPyG8/pR3oAFOmTCE5OZlp06aV6hy3zWZj+/btWK1W9u3bx1NPPYXZbC7x3xaEEK7H0YG+FagOZAP/1Fp/oZSqDqwAAoDj2E9bTMxvP0YEelZWFoMGDSIoKIi+ffuW6nNfdebMGVatWsWqVato0KABJpOJoKAgfArZtUkI4d7K1qX/JezMmTP07duXKVOm0KFDge9JicnJyeHrr7/GarXy66+/0rNnT0wmEwEBAYbVJIRwfhLof7Jz507efPNNYmJinGJ1xfj4eKxWK2vWrKFJkyaYTCY6d+6Mt7e30aUJIZyMBPpNREVFsW3bNubOnes0wZmVlcWXX36JxWLh2LFj9OrVi5CQEOrVq2d0aUIIJyGBfhM2m4033niDOnXqMGJEvsdvDfH7779jtVpZu3Ytd911FyaTiUcffRTPIi4pLIRwLRLot5CamkpoaCgvvfQSTz31lKG13MqfG3H06tWL4OBgateubXRpQggDSKDn49ChQ7zyyivMmTOHpk2bGl1Ovv7ciMNsNvPQQw9JIw4h3IgEegHWrVtHREQEMTExVKpUyehyCpSens6GDRuwWq0kJSUREhIijTiEcBMS6IUwbdo0zp07x4wZM8rUiPfAgQNYrVa++OIL7r//fsxmMx06dChTr0EIUXgS6IWQnZ1NeHg4jz32GP379ze6nCJLS0vjs88+w2KxkJmZiclkkkYcQrggCfRCOnfuHKGhofzrX//i/vvvN7qcYpFGHEK4Ngn0Iti1axfjxo0jOjq6zJ9Jcn0jDg8PD8xmM927d8fPz8/o0oQQxSSBXkSLFi1i8+bNREREuMQaK1pr9u7dS2xsLDt27KBLly6YzWZpxCFEGSSBXkRaa0aMGEH16tUZNWqU0eU4VGJiImvWrMFqtVKhQgVpxCFEGSOBXgxpaWn07duXgQMH0qNHD6PLcTibzcauXbuwWCzXGnGYTCZatGhhdGlCiHxIoBfTkSNHeOmll5g1axbNmjUzupwSc/78eVavXs3KlSupVq0avXv3lkYcQjgpCfTbsH79embNmkVMTIzLH0y02Wzs2LEDi8XCvn37ePLJJzGbzTRp0sTo0oQQeSTQb9O7777LqVOn+Pe//+02F+xcbcQRFxdHvXr1MJvN0ohDCCcggX6bsrOzeemll+jYsSMDBw40upxSlZOTw9atW7FYLPz666/06NEDk8nEHXfcYXRpQrglCXQHOH/+PKGhoUyYMIEHH3zQ6HIMER8fz8qVK/n0009p3LgxZrNZGnEIUcok0B1kz549jBo1ikWLFlG3bl2jyzHMnxtxPP3004SEhFC/fn2jSxPC5UmgO9DixYvZsGEDkZGRMp/MjY04WrVqhdlslkYcQpQgCXQH0lozatQo/Pz8GDt2rNHlOI3MzEy++OILYmNjOX36NMHBwdKIQ4gSUNhAL9TpG0qpoUqpn5VS+5VSS5VSvkqpQKXUTqXUYaXUcqWUyw5dlVK89dZb7N27l9WrVxtdjtMoV64c3bt3JyoqipkzZ3Lp0iWee+45/vnPf7J9+3ZsNpvRJQrhVgocoSul6gPbgFZa6wyl1ApgHdAdsGqtlyml5gD7tNaz89tXWR2hX3Xs2DHCwsL46KOP5OrKW8jIyGDDhg1YLBYSExMxmUw8/fTT1KhRw+jShCizHDpCB7yA8kopL6ACcBroCsTmfX8REFycQsuSwMBARo4cyYgRI0hJSTG6HKdUvnx5evXqRXR0NDNmzOD06dM888wzjBgxgu+++05G7UKUoELNoSulXgcmAxnABuB14FutddO87zcEPtNat77JY8OBcICAgID2x48fd1z1BvnPf/7D77//zvvvv+82Fx3djsuXL19rxJGRkXGtEUfVqlWNLk2IMsFhI3SlVFWgFxAI1AMqAk8WthCt9TytdQetdYeaNWsW9mFObciQIWRkZBAZGWl0KWVCxYoV6d27N0uWLOFf//oXR48eJSQkhLFjx7Jnzx5K88C8EK7MqxDbBAHHtNbnAZRSVqAj4K+U8tJa5wANgFMlV6Zz8fLy4p133iE0NJTWrVvz8MMPG11SmaCU4u677+buu+8mJSWFtWvXMmXKFJRSmEwmevTo4fJr5whRkgozX3ACeFApVUHZOyP8BTgAbAF6523TD4grmRKdU40aNXjnnXeYMGECCQkJRpdT5vj5+fHcc8/xySefMHr0aPbv30+vXr2YMGECP/30k4zahSiGws6hTwT+BuQAe4FBQH1gGVAt774XtNaZ+e2nrJ/lcjNLlixh7dq1REVFUa5cOaPLKdOSkpL49NNPsVqtlC9f/lojjooVKxpdmhCGkguLSonWmrFjx+Lr68v48eOlvZsD2Gw2du/eTWxsLLt27SIoKAiz2Synigq3JYFeitLT0+nfvz/PPfccISEhRpfjUi5cuMDq1auxWq1Uq1YNs9lMt27dpBGHcCsS6KXs999/Z9CgQXz44Ye0atXK6HJcjs1m45tvvsFisfDDDz/w5JNPYjKZaNq0qdGlCVHiJNANsHnzZt577z1iYmLw9/c3uhyXdfbsWVatWsWqVauuNeL4y1/+IscwhMuSQDfIBx98wKFDh/jwww/loqMSlpube60Rxy+//EL37t0xm83SiEO4HEdf+i8K6bXXXiM7O5u5c+caXYrL8/T0pHPnzsycOZNFixbh4+NDWFgYL7/8Mhs2bCA7O9voEoUoVTJCLwGJiYm88MILjB49mkcffdToctxKdnb2tUYcR48e5a9//Ssmk0kacYgyTaZcDPbjjz8ybNgwFixYQIMGDYwuxy0dP378WiOOli1bYjKZ6NSpkzTiEGWOBLoTWL58OXFxcURFReHr62t0OW4rKyuLTZs2YbFYSEhIoFevXgQHB1OnTh2jSxOiUCTQnYDWmvHjx+Pp6cmECRPkoiMncOTIESwWC59//jlt27bFZDLx8MMPywFs4dQk0J1ERkYG/fv3p0+fPpjNZqPLEXkyMjLYuHEjsbGxJCYmEhISQq9evaQRh3BKEuhO5MSJE7z44ou8//77tG79P0vGC4P9+uuvWK1WNm7cyH333YfZbOa+++6TUbtwGhLoTubLL79kxowZLF68WBo7OKnLly/z+eefY7FYSE9Pl0YcwmlIoDuhjz76iAMHDvDRRx/J6M+Jaa3Zv38/VquVLVu20LFjR8xmM+3atZPjIMIQEuhOKDc3l9dee43WrVszePBgo8sRhZCSksK6deuwWCxorTGZTPTs2VMacYhSJYHupBITEwkNDWXEiBE89thjRpcjCklrzd69e7FarWzbto3OnTtjMpm4++67ZdQuSpwEuhPbv38/Q4cOZf78+QQEBBhdjiii5OTka404fH19pRGHKHES6E4uNjaW2NhYFixYIGt7l1FXG3FYLBa+++47goKCMJlMtGzZ0ujShIuRQHdyWmveeusttNa8/fbb8mt7GXfx4kXi4uJYuXIlVatWlUYcwqEk0MuAK1euMGDAAEJCQujTp4/R5QgHkEYcoiRIoJcR8fHxDBgwgH//+9+0adPG6HKEA509e5a4uDhWrVpFnTp16N27tzTiEMXisEBXSjUHll93V2PgTSA67/5GwO9AH611Un77kkC/ua+//pqpU6eyePFiqlWrZnQ5wsFyc3PZtm0bFouFn3/+mR49emAymWjUqJHRpYkyokRG6EopT+AU8AAwGEjUWk9VSo0CqmqtR+b3eAn0W5s1axb79u1j1qxZsryrC0tISGDlypXExcURGBiI2WymS5cueHt7G12acGIlFejdgLe01h2VUgeBzlrr00qpusCXWuvm+T1eAv3WbDYbf//732nevDlDhgwxuhxRwq424rBarRw5ckQacYh8lVQLumeBpXlf19Zan877+gxQu4j7Etfx8PBg8uTJbNiwgc2bNxtdjihh3t7ePP7448yePZvIyEhyc3Pp168fr732Glu2bCEnJ8foEkUZVOgRulLKB0gA7tJan1VKJWut/a/7fpLW+n9WMVJKhQPhAAEBAe2PHz/umMpd1IEDB3j99deJjIyUZsdu5mojDqvVyqlTp6QRh7jG4VMuSqlewGCtdbe82zLlUkKsVivLli1j4cKFVKhQwehyhAGub8Rxzz33YDKZ6Nixoyzq5qZKYsrlOf6YbgFYDfTL+7ofEFeEfYl8hISE0Lp1ayZNmkRpnlYqnEeTJk0YMWIEa9eupUuXLkRGRvL0008zf/58Lly4YHR5wkkVaoSulKoInAAaa60v5d1XHVgBBADHsZ+2mJjffmSEXniZmZm8+OKL9OzZk+eee87ocoQTOHjwIBaLRRpxuCG5sMgFnDp1igEDBjB9+nTatm1rdDnCSVzfiOPy5cuYzWZpxOHiJNBdxPbt25k8eTIxMTFUr17d6HKEE9Fa8/PPP19rxPHQQw/Ru3dvacThgiTQXci8efPYvXs3s2bNwsvLy+hyhBO62ojDarVis9mkEYeLkUB3ITabjX/84x8EBgYydOhQo8sRTkxrzQ8//HCtEUenTp0wm83SiKOMk0B3MSkpKbzwwgsMGTKEoKAgo8sRZcD1jTjKlSuH2Wyme/fu0oijDJJAd0G//vorr732GhEREQQGBhpdjigjrjbisFqt7Ny5k7/85S+YzWZpxFGGSKC7qNWrVxMdHU10dLRcdCSK7PpGHP7+/tcacchnyblJoLuwSZMmkZqaytSpU2VeVBSLzWbj22+/xWKxsHfvXp544glMJhN33nmn0aWJm5BAd2FZWVkMHDiQJ598kueff97ockQZd+7cOVatWnWtEYfZbCYoKEgacTgRCXQXd/r0afr168fUqVO59957jS5HuABpxOG8JNDdwDfffMPEiROJiYmhZs2aRpcjXMj1jTgaNWpE79696dy5Mz4+PkaX5pYk0N1EZGQk33zzDXPnzpWLjoTDZWdn89VXX2G1Wjl8+DA9e/bEZDLRoEEDo0tzKyXV4EI4mRdffJHKlSvzwQcfGF2KcEHe3t4EBQUxa9YsIiMjsdls9O/fn8GDB7N582ZpxOFkZITuAlJSUggNDeXVV1/liSeeMLoc4eKysrL44osvsFqtnDx5kl69ehESEiKNOEqQTLm4md9++41XX32VefPm0bhxY6PLEW7i6NGjWCwWPvvsM9q0aYPZbJZGHCVAAt0NrVmzhqioKGJiYuTyblGqrly5woYNG7BYLFy8eJHg4GB69eolB+sdRALdTU2ZMoWkpCSmT58uFx0JQ1xtxLFp0ybat2+P2Wzm/vvvl1H7bZBAd1NZWVkMGjSIoKAg+vbta3Q5wo2lp6fz+eefExsby+XLlzGZTPz1r3+lWrVqRpdW5kigu7EzZ87Qt29fJk+ezH333Wd0OcLNaa05cOAAFovlWiMOs9nMvffeK79FFpIEupv77rvvGD9+PDExMdSqVcvocoQAIDU1lXXr1mGxWMjNzcVsNksjjkKQQBdERUWxdetW5s2bh7e3t9HlCHGN1pp9+/ZhsVjYunUrjz32mDTiyIcEusBms/HGG29Qp04dRowYYXQ5QtxUcnIya9aswWq14uPjg8lkonv37lSqVMno0pyGQwNdKeUPRAKtAQ28CBwElgONgN+BPlrrpPz2I4Fe+lJTU+nbty9hYWF0797d6HKEuCWtNbt378ZisbBz5066du2K2WymVatWRpdmOEcH+iJgq9Y6UinlA1QAxgCJWuupSqlRQFWt9cj89iOBboxDhw7xyiuvMHv2bFnvWpQJFy9eZPXq1axcuZIqVapgMpl44okn3LYRh8MCXSlVBfgBaKyv21gpdRDorLU+rZSqC3yptW6e374k0I2zbt06IiIiiI6OpnLlykaXI0Sh/LkRR7du3TCbzW43MHFkoLcF5gEHgHuA74HXgVNaa/+8bRSQdPX2nx4fDoQDBAQEtD9+/HgRX4pwlOnTp3PmzBneffdduchDlDl/bsRhMpl4/PHH3aIRhyMDvQPwLdBRa71TKfUBkAL8/foAV0olaa2r5rcvGaEbKzs7m/DwcDp16sSAAQOMLkeIYsnNzWX79u3Exsa6TSMORy6fGw/Ea6135t2OBe4FzuZNtZD397niFitKh7e3N9OmTWPZsmV89913RpcjRLF4enrSqVMnPvzwQ2JiYvD19SU8PJzw8HDWr19PVlaW0SUaprAHRbcCg7TWB5VSE4CrKz9dvO6gaDWtdb7nxskI3Tns2rWLsWPHEhMTQ+3atY0uR4jblp2dzddff43FYnHJRhyOPsulLfbTFn2Ao8AA7KP7FUAAcBz7aYuJ+e1HAt15REdH88UXXxARESFtxYRLOXHiBCtXrmTNmjU0a9YMs9lMp06dynRHL7mwSORLa82IESOoVq0ao0ePNrocIRwuKyuLzZs3Y7FYrjXiCA4Opm7duqVTgNZw5oz9T24uVKgAjRrZ/y4iCXRRoLS0NPr27cuLL75Iz549jS5HiBJz9OhRrFYr69ato02bNphMJh555BHHn+1ls8GOHbBoEXz7LWRkwNVlN7SG7Gxo0AB69YLnnoNC/nCRQBeFcvToUcLDw5k1axbNmjUzuhwhStSVK1fYuHEjFouF8+fPExIS4rhGHN9+C8OH20fkWkPFin+E+VVaw5Ur9j8eHvD00/Dmm1ClSr67lkAXhbZ+/XpmzZpFTEyMrHon3MZvv/2GxWJh48aNtG/fHpPJxAMPPFD0UXtWFvzrX7B0KXh5QWHXoLHZICUF/Pzgo4/g4YdvuakEuiiSd999l/j4eP7zn//IRUfCrVxtxGGxWEhLSytaI46sLAgPh61b7cHs6VmcAuxTMbNnQ1DQTTeRQBdFkp2dzcsvv8zDDz/MwIEDjS5HiFJ3s0YcJpOJ9u3b33pJ36FDIS4OqlaF21n298oVe6gvWwbt2v3PtyXQRZGdP3+e0NBQ3nrrLR566CGjyxHCMKmpqXz22WfExsbeuhHHxo3w8sv2+W9H/Fabmgq1asGGDVC+/A3fkkAXxbJnzx5GjRrFwoULqVevntHlCGEorTU//vgjFouFr7/+mk6dOmE2m2nTtCmqY0f7qPpP4XtbkpPtPyTeeOOGuyXQRbEtXryY9evXM3/+fLnoSIg8ly5dYs2aNVgsFjqeOUP40aNUqFcPz3xG5ysSE/n00iUOZ2byhJ8fEwoaJGVn289Z370bfH2v3e3ItVyEm3n++eepV68eM2bMMLoUIZxGlSpVeP7557FYLAzKzSU9J4fDhw6RcPo0GVeu3PQxNby8GFijBk8XcFriNd7ekJlpn3YpBgl08T+UUrz11lvs3buX1atXG12OEE5FJSdT5cIFat9xB02aNMHHx4f4+HiOHjtGUnIyuTbbtW27+vnRuXJlqhTl7BetYdOmYtVWdhc3ECWqQoUKzJgxg7CwMJo1a0aLFi2MLkkI5/DLL/aRtFJ4eXlRo3p1qlevzuXLl0lKSuLcuXP4+flR1d8f3+umTQrN1xf27ClWaTJCF7cUGBjIqFGjGDFiBCkpKUaXI4RzOHECcnJuuEsBlSpWpGGDBjRu3BgvLy9OnjzJsd9/J/nSJYp0pLJcOYiPt4/Ui0gCXeQrKCiILl26MG7cOGzX/SophNvKyrJf5XkL3l5e1KxRg6Z33olf5coknDpFWlpa4fd/9Xz2P/3QKAwJdFGgv//972RkZBAZGWl0KUIYr1y5As87z8jI4OTJkyQmJlKnbl0qFXY5ALCPzJWyLyNQRBLookBeXl5MnTqVVatWsX37dqPLEcJYAQG3DNv0jAxOnDxJfHw8lSpVolGTJlSqUgUN2IAsm43cgqZSMjOhYcNiXXkqgS4KpXr16kyZMoWJEyeSkJBgdDlCGKdlS/v54tcFc3p6OsdPnODUqVNUrlyZJk2bUq1qVRZcvMjDBw+y8OJF1l26xMMHDzL/woX893/lCtx7b7FKk7NcRKG1bduWAQMGMHz4cKKiotyi27oQ/8PfH5o2hePHuezhwYULF8jKyqJGjRpUqVIFj+tG1uE1axJe1KV5lbrlIl0FkRG6KJJnn32WO+64g2nTplGaVxkL4Sy01hzu2pWzp09zOiGBKn5+NG3ShKr+/jeEebFkZdlPW3z88WI9XAJdFIlSinHjxrF//35WrVpldDlClBqtNTt37iQsLIxx27fjW7MmTerVw9/f/9arMRbV5cswcKD9wGsxyJSLKLKrFx0NHDiQ5s2b06pVK6NLEqLEaK355ptviIyM5NKlSwwaNIhu3brh+fXXMGiQfUTtiNUWU1LsB0NfeaXYuyhUoCulfgdSgVwgR2vdQSlVDVgONAJ+B/porZOKXYkoU+644w7GjBnDyJGSpLGAAAAV3UlEQVQjiYmJwd/f3+iShHAorTXbt28nIiKCjIwMBg0aRFBQ0B8NYLp0AbMZLBb7vPrtjNIzMuyP//DDYo/OoWgj9C5a6+sPz44CvtBaT1VKjcq7PbLYlYgyp2vXruzfv5+xY8cyc+ZM6XQkXILWmq1btxIREUFWVhZhYWF07dr15p/vyZPtS95+8UXxOxZdvmxfYTEiAtq0ua3ab+d/YC9gUd7Xi4Dg26pElEmDBw8mJyeHuXPnGl2KELfFZrOxZcsWnn/+eebMmcOAAQNYunTpjaPyP/P2hlmzYMAAe4OK1NTCX7KfmwtJSVC5MixZAo89dtuvoVDroSuljgFJgAbmaq3nKaWStdb+ed9XQNLV27ci66G7psTERF544QVGjRpFp06djC5HiCK5GuSRkZF4enoSFhZGp06din6gc88ee2OKkyftSwNUrHhtEa/rnsx+nnlmpn3evU8fGD26wMbSDm1woZSqr7U+pZSqBWwE/g6svj7AlVJJWuuqN3lsOBAOEBAQ0P748eMFPp8oe3788UeGDRtGVFQUDRs2NLocIQpks9nYtGkTkZGR+Pr6EhYWxiOPPHJ7Z6xobW9OER0N33xjn47x9v7jezk50KQJ9OoFzzwDhTxHvcQ6FimlJgBpQBjQWWt9WilVF/hSa908v8fKCN21rVixgpUrV7JgwYLiLRsqRCmw2Wxs2LCB+fPnU6lSJcLCwnjooYccd+rh9RIT4cwZe5BXqGBfNqAYXcAcFuhKqYqAh9Y6Ne/rjcDbwF+Ai9cdFK2mtR6R374k0F2b1po333wTpRQTJ04smf8gQhRTbm4u69evJzIykqpVqxIeHs79999fJj6nhQ30wpzlUhtYmfeivYAlWuvPlVK7gBVKqYHAcaDP7RQsyj6lFGPGjKF///5YLBZ69+5tdElCkJOTw7p164iKiqJWrVqMHj2aDh06lIkgL6oCA11rfRS45yb3X8Q+ShfimvLly1+76KhFixa0bt3a6JKEm8rOzmbt2rVERUVRr149xo8fT/v27Y0uq0TJlaLC4QICAhg3bhwjR45k8eLFVK36P8fKhSgx2dnZfPrppyxYsICGDRsyceJE2rVrZ3RZpUICXZSIxx57jJ9++okxY8bw0Ucf4VmcCy6EKIKsrCzi4uJYuHAhjRs3ZvLkybS5zQt1yhq5tE+UmFdeeQWlFLNnzza6FOHCsrKyWL58OcHBwWzbto1p06Yxc+ZMtwtzkBG6KEGenp5MnjyZF154gdatW9O5c2ejSxIu5MqVK1itVqKjo2nVqhXvvvuu2y8UJ4EuSlTVqlWZNm0aQ4cOpXHjxgQEBBhdkijjMjIysFgsxMTE0KZNGz744AOaN8/3Ehi3IYEuSlzr1q156aWXGD58OAsXLqR8+fJGlyTKoPT0dGJjY1m8eDHt2rVj5syZNGvWzOiynIrMoYtSYTabadGiBZMnT5ZOR6JILl++zIIFCwgODubXX39l9uzZTJs2TcL8JiTQRalQSjF69GiOHDnCJ598YnQ5ogxIS0tj/vz59OrViyNHjjBnzhymTJlCkyZNjC7NacmUiyg1vr6+zJgxgwEDBtCiRQu3PAtBFCw1NZWlS5eyfPlyOnbsyPz587njjjuMLqtMkEAXpapBgwa8+eabjBo1isWLF1OtWjWjSxJOIiUlhSVLlvDJJ5/QqVMnFixYIAfRi0gCXZS6Rx99lP379zN69GhmzZolFx25ueTkZJYsWUJsbCxdunQhOjqa+vXrG11WmSRz6MIQL730Et7e3nz88cdGlyIMkpSUxMyZMzGZTCQnJ7N48WLGjx8vYX4bZIQuDOHh4cGkSZMIDQ2ldevWdO3a1eiSRClJTEwkOjqa1atX061bN5YsWUKdOnWMLsslSKALw/j7+zNt2jSGDBlCkyZN5MCXi7tw4QLR0dGsWbOGJ598kmXLllGrVi2jy3IpMuUiDNWqVSsGDx7M8OHDSU9PN7ocUQLOnTvHjBkz6NOnD1prli9fzogRIyTMS4AEujBccHAwrVu3ZtKkSXLRkQs5e/Ys06ZN49lnn8XLy4tPPvmEYcOGUbOQfTRF0UmgC8MppRg5ciTHjx9n2bJlRpcjbtPp06eZMmUKzz33HOXLlyc2NpahQ4dSvXp1o0tzeTKHLpxCuXLlmDFjBv3796dly5a0bdvW6JJEESUkJBAVFcXmzZsxmUxYLBZpblLKJNCF06hXrx4TJkxgzJgxREdHU6NGDaNLEoUQHx9PVFQUX375Jc888wwrV66kSpUqRpflliTQhVN5+OGHCQ4OZvTo0cyePRsvL/mIOqsTJ04wf/58tm3bxt/+9jdWrVqFn5+f0WW5NZlDF05n0KBBlC9fnpkzZxpdiriJY8eOMX78eF588UUaNmzIqlWrCA8PlzB3AoUOdKWUp1Jqr1JqTd7tQKXUTqXUYaXUcqWUT8mVKdzJ1YuOtmzZwsaNG40uR+Q5evQoY8aMITw8nMDAQOLi4hg0aBCVK1c2ujSRpygj9NeBX667PQ14T2vdFEgCBjqyMOHe/Pz8mD59OtOmTePYsWNGl+PWDh8+zKhRo3j55Zdp3rw5cXFxvPjii1SsWNHo0sSfFCrQlVINgB5AZN5tBXQFYvM2WQQEl0SBwn21aNGCIUOGyEVHBvntt98YMWIEr776KnfddRdxcXH069ePChUqGF2auIXCjtDfB0YAtrzb1YFkrXVO3u14QFbUEQ739NNP065dOyZOnCgXHZWSX375hWHDhjFkyBDatm3L6tWrCQ0NldaBZUCBga6U6gmc01p/X5wnUEqFK6V2K6V2nz9/vji7EG5u+PDhJCQk8N///tfoUlzazz//zD/+8Q/++c9/ct999xEXF8f//d//4evra3RpopAKc05YR+BppVR3wBfwAz4A/JVSXnmj9AbAqZs9WGs9D5gH0KFDBxliiSLz8fFh+vTp9OvXj1atWnHvvfcaXZJL+emnn4iIiODw4cP079+f6dOn4+Mj5ziURQWO0LXWo7XWDbTWjYBngc1a6+eBLUDvvM36AXElVqVwe3Xr1uXtt99mzJgxyG96jrFv3z4GDx7M6NGjeeyxx1i1ahV9+vSRMC/DbueqjZHAMqXUJGAvMN8xJQlxcw8++CDPPPMMI0eOZO7cuXh7extdUpm0Z88eIiIiOHXqFAMGDKBnz57yXroIVZoHmjp06KB3795das8nXI/NZmPYsGHUr1+fN954w+hyygytNd9//z3z5s3j7NmzDBw4kO7du8uVuGWEUup7rXWHgraTf01Rpnh4eDBx4kRCQ0O5++67eeKJJ4wuyalprdm1axfz5s3j4sWLDBw4kKeeekr6uLooCXRR5vj5+TFjxgxeffVVmjZtSpMmTYwuyelorfn222+JiIjg0qVLDBo0iG7dukmQuzgJdFEmNWvWjKFDhzJ8+HCio6OpVKmS0SU5Ba01O3bsICIigvT0dAYNGkRQUBAeHrJskzuQQBdlVo8ePfjxxx+ZOHEi06dPx34Bs3vSWrN161YiIiLIysoiLCyMrl27SpC7GQl0UaYNGzaMsLAwYmJi6Nu3r9HllDqbzcZXX31FREQEYF+psnPnzhLkbkoCXZRpVy86Cg0NpWXLltx3331Gl1QqbDYbW7ZsITIyEg8PD1566SUeffRRCXI3J4EuyrzatWszadIkxo0bR0xMjEt3k7fZbGzatInIyEh8fX159dVXeeSRR9x6ukn8QQJduIT777+fZ599lpEjRzJv3jyXu1DGZrOxYcMG5s+fT8WKFfnHP/7BQw89JEEubiCBLlxGv3792L9/P++99x4jRowwuhyHyM3NZf369URGRuLv78+wYcN44IEHJMjFTUmgC5dx/UVH69ato3v37kaXVGw5OTl89tlnREVFUaNGDUaNGsV9990nQS7yJYEuXEqlSpWYMWMGL7/8MnfeeSd33nmn0SUVSU5ODmvXriUqKoq6desybtw42rdvb3RZooyQQBcup2nTpgwbNozhw4cTExNTJnpeZmdn8+mnn7Jw4UIaNGjAhAkTaNeundFliTJGAl24pKeeeoqffvqJt956i3fffddpT+fLyspi9erVLFy4kMDAQCZNmkSbNm2MLkuUUc75KRfCAYYOHUpSUhILFy40upT/kZWVxYoVKwgODmbr1q288847zJw5U8Jc3BYZoQuX5e3tzbRp0wgNDeWuu+7igQceMLokMjMzsVqtREdH07JlS959911atWpldFnCRUigC5dWq1YtJk+ezJgxY4iOjqZOnTp/fPPIEVi7Fr79Fn7+GVJSQCnw94e774aHH4aePaH+7fc/z8jIuBbkd999N++99x4tWrS47f0KcT1pcCHcQnR09LUrLH0OHIDJk2HvXsjNBR8f8PWFq80ecnIgI8P+t4cHPPIIjB0LxThjJj09ndjYWBYvXkzbtm0ZNGgQzZo1c/CrE65OGlwIcZ3Q0FAO7N3Ljp496Xz0qH0kXqWK/e8/8/a2/wGw2WDbNujRA4YOhfBwKMSa4unp6axYsYIlS5bQvn17Zs+eLeu2ixIngS7cgkpPZ9Lx41zYvp3kOnXw9/cv3AM9POxTMNnZMGMG7NsHH35oH9XfRFpaGsuXL2fp0qU88MADzJkzh8aNGzvwlQhxaxLowvVlZ8PAgXj98ANVAwP5/cQJfMuXx9fXt/D78PaGqlVh40Z44w344IMbRvepqaksXbqU5cuX07FjRyIjI2nUqJHjX4sQ+ZBAF65v3jzYtQuqVqWcUtSpU4f4+HgCAwOL1pLt6jTN2rXQpQuEhJCSksKSJUv45JNP6NSpEwsWLCAgIKDkXosQ+Sgw0JVSvsDXQLm87WO11m8ppQKBZUB14HsgVGudVZLFClFkhw7ZR9OVKl0bUVfx8yMjI4NTCQk0bNiQIq2O4uEB5cuTO2YM0b/9Rsz69XTp0oVFixbRoEGDEnkJQhRWYUbomUBXrXWaUsob2KaU+gz4J/Ce1nqZUmoOMBCYXYK1ClF0c+bYz1b503K6tWvV4vjx41y4cIGaNWoUenc5ublcTEkh5/x5Gnz1FYsXL6ZevXqOrlqIYinwSlFtl5Z30zvvjwa6ArF59y8CgkukQiGKKykJ1qyxT5P8iVKK+g0akJSURNrly6Tk5vJGfDyP/PorPQ8f5vNLl27YPicnh7PnznHkyBFsNhs1GzXi8YQE6hXhh4EQJa1Qc+hKKU/s0ypNgY+BI0Cy1jonb5N44KZXXyilwoFwQOYWRenasQO0vuVpht5eXtSvX59T8fHM9/XF29OTDc2a8duVK7x+8iTNfH1p6OnJxYsXuXTpElX8/GgcGPhH84zUVPtZL27S9k44v0Kt5aK1ztVatwUaAPcDhb7ETWs9T2vdQWvdoWbNmsUsU4hi+OEH+xku+ahYoQIVqlVjQ2IiL9WoQQUPD9pWqMAjFSuyND6eo0ePAtC4cWPq1KlzYyeknBw4cKAkX4EQRVKkxbm01snAFuAhwF8pdXWE3wA45eDahLg9e/dCuXIFbpZWqRJeHh74JCaSnZ3NmTNnqHLpEidycuxBXrs23l43+WVWKfsPDSGcRIGBrpSqqZTyz/u6PPA48Av2YO+dt1k/IK6kihSiWNLSCnVVZ4bNhr+vLxkZGRw5cgTl4UHjOnXQvr43D/KrPD3t678I4SQKM4deF1iUN4/uAazQWq9RSh0AlimlJgF7gfklWKcQReflZZ9DL0AFDw/SbTYaN26MzWbD08ODKxcvUrGgNdS1/mP9FyGcQIGfRq31j8D/tE7RWh/FPp8uhHNq0AAOHixwswAfH3KBk1lZBORd0v9bZiaNC5quyc6GwEAHFCqEY0iDC+G6HnjAvppiAcp7eNC1cmXmnD9Phs3GvvR0vkpNpcdNTne8gY8P3HOPg4oV4vZJoAvX1a5doaddRtWpQ6bNxuO//caYU6cYXadO/iN0m83+RwJdOBGZABSu6557oF49OHcOKlTId1M/T0/+3bBh4fedmmo//1yuEhVOREbownUpBS+/DJmZhRqlF5rW9j/h4Y7bpxAOIIEuXJvZDM2a2UfUjpKcDI8+Co895rh9CuEAEujCtXl7/7F2+ZUrt7+/y5ehYkWYOvXm3Y6EMJAEunB9zZrBxx/bAz0jo/j7Sctbo27hQqhd2yGlCeFIEujCPQQFwfz59lF1cnLR5tRtNvtjKlSAJUvg3ntLrk4hboPSjjxYVNCTKXUeOF6ITWsAF0q4nLJE3o8/yHvxB3kvbuTK78cdWusCVzcs1UAvLKXUbq11B6PrcBbyfvxB3os/yHtxI3k/ZMpFCCFchgS6EEK4CGcN9HlGF+Bk5P34g7wXf5D34kZu/3445Ry6EEKIonPWEboQQogicrpAV0o9qZQ6qJQ6rJQaZXQ9pUkp1VAptUUpdUAp9bNS6vW8+6sppTYqpQ7l/V3V6FpLi1LKUym1Vym1Ju92oFJqZ97nY7lSysfoGkuLUspfKRWrlPpVKfWLUuohd/1sKKWG5v0f2a+UWqqU8nXnz8ZVThXoeV2RPgaeAloBzymlWhlbVanKAYZprVsBDwKD817/KOALrfWdwBd5t93F69hbHl41DXhPa90USAIGGlKVMT4APtdatwDuwf6+uN1nQylVHxgCdNBatwY8gWdx788G4GSBjr0D0mGt9VGtdRawDOhlcE2lRmt9Wmu9J+/rVOz/Yetjfw8W5W22CAg2psLSpZRqAPQAIvNuK6ArEJu3iTu9F1WATuS1etRaZ+U1bXfLzwb2pb/L5zWqrwCcxk0/G9dztkCvD5y87nZ83n1uRynVCHvrv51Aba316bxvnQHcZSGR94ERgC3vdnUgWWudk3fbnT4fgcB5YEHeFFSkUqoibvjZ0FqfAt4FTmAP8kvA97jvZ+MaZwt0ASilKgEW4B9a6xvaymv7aUkuf2qSUqoncE5r/b3RtTgJL+BeYLbWuh1wmT9Nr7jRZ6Mq9t9MAoF6QEXgSUOLchLOFuingOvbxjTIu89tKKW8sYf5f7XW1ry7zyql6uZ9vy5wzqj6SlFH4Gml1O/Yp966Yp9D9s/7NRvc6/MRD8RrrXfm3Y7FHvDu+NkIAo5prc9rrbMBK/bPi7t+Nq5xtkDfBdyZd7TaB/uBjtUG11Rq8uaI5wO/aK3/c923VgP98r7uB8SVdm2lTWs9WmvdQGvdCPvnYLPW+nlgC9A7bzO3eC8AtNZngJNKqeZ5d/0FOIAbfjawT7U8qJSqkPd/5up74Zafjes53YVFSqnu2OdOPYEorfVkg0sqNUqpR4CtwE/8MW88Bvs8+gogAPtqlX201omGFGkApVRn4A2tdU+lVGPsI/ZqwF7gBa11ppH1lRalVFvsB4h9gKPAAOyDMrf7bCilJgJ/w35m2F5gEPY5c7f8bFzldIEuhBCieJxtykUIIUQxSaALIYSLkEAXQggXIYEuhBAuQgJdCCFchAS6EEK4CAl0IYRwERLoQgjhIv4fPDc29bYtFO0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "seed = 10598\n", + "\n", + "spsa = SPSA(max_trials=300)\n", + "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", + "\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", + "\n", + "result = vqe.run(quantum_instance)\n", + "\"\"\"\n", + "algorithm_cfg = {\n", + " 'name': 'VQE',\n", + " 'operator_mode': 'matrix'\n", + "}\n", + "\n", + "optimizer_cfg = {\n", + " 'name': 'SPSA',\n", + " 'max_trials': 300\n", + "}\n", + "\n", + "var_form_cfg = {\n", + " 'name': 'RY',\n", + " 'depth': 5,\n", + " 'entanglement': 'linear'\n", + "}\n", + "\n", + "params = {\n", + " 'problem': {'name': 'ising', 'random_seed': seed},\n", + " 'algorithm': algorithm_cfg,\n", + " 'optimizer': optimizer_cfg,\n", + " 'variational_form': var_form_cfg,\n", + " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'}\n", + "}\n", + "result = run_algorithm(parahms,algo_input)\n", + "\"\"\"\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "#print('tsp objective:', result['energy'] + offset)\n", + "x = tsp.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# run quantum algorithm with shots\n", + "\n", + "seed = 10598\n", + "\n", + "spsa = SPSA(max_trials=300)\n", + "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", + "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", + "\n", + "backend = BasicAer.get_backend('qasm_simulator')\n", + "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", + "\n", + "result = vqe.run(quantum_instance)\n", + "\n", + "\"\"\"update params in the previous cell\n", + "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", + "params['backend']['provider'] = 'qiskit.BasicAer'\n", + "params['backend']['name'] = 'qasm_simulator'\n", + "params['backend']['shots'] = 1024\n", + "result = run_algorithm(params,algo_input)\n", + "\"\"\"\n", + "print('energy:', result['energy'])\n", + "print('time:', result['eval_time'])\n", + "#print('tsp objective:', result['energy'] + offset)\n", + "x = tsp.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "plot_histogram(result['eigvecs'][0])\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Checking that the full Hamiltonian made by ```docplex.get_qubitops``` gives the right cost" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ee = ExactEigensolver(qubitOp_docplex, k=1)\n", + "result = ee.run()\n", + "\n", + "print('energy:', result['energy'])\n", + "print('tsp objective:', result['energy'] + offset_docplex)\n", + "\n", + "x = docplex.sample_most_likely(result['eigvecs'][0])\n", + "print('feasible:', tsp.tsp_feasible(x))\n", + "z = tsp.get_tsp_solution(x)\n", + "print('solution:', z)\n", + "print('solution objective:', tsp.tsp_value(z, ins.w))\n", + "draw_tsp_solution(G, z, colors, pos)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb b/qiskit/aqua/optimization/maxcut_and_tsp.ipynb deleted file mode 100644 index 04cabd9db..000000000 --- a/qiskit/aqua/optimization/maxcut_and_tsp.ipynb +++ /dev/null @@ -1,1022 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Experimenting with MaxCut problem and Traveling Salesman problem with variational quantum eigensolver*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorial.\n", - "\n", - "***\n", - "### Contributors\n", - "Antonio Mezzacapo[1], Jay Gambetta[1], Kristan Temme[1], Ramis Movassagh[1], Albert Frisch[1], Takashi Imamichi[1], Giacomo Nannicni[1], Richard Chen[1], Marco Pistoia[1], Stephen Wood[1]\n", - "### Affiliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "\n", - "Many problems in quantitative fields such as finance and engineering are optimization problems. Optimization problems lay at the core of complex decision-making and definition of strategies. \n", - "\n", - "Optimization (or combinatorial optimization) means searching for an optimal solution in a finite or countably infinite set of potential solutions. Optimality is defined with respect to some criterion function, which is to be minimized or maximized. This is typically called cost function or objective function. \n", - "\n", - "**Typical optimization problems**\n", - "\n", - "Minimization: cost, distance, length of a traversal, weight, processing time, material, energy consumption, number of objects\n", - "\n", - "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", - "\n", - "We consider here maxcut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", - "\n", - "\n", - "### Weighted MaxCut\n", - "\n", - "MaxCut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given MaxCut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", - "\n", - "The formal definition of this problem is the following:\n", - "\n", - "Consider an $n$-node undirected graph *G = (V, E)* where *|V| = n* with edge weights $w_{ij}>0$, $w_{ij}=w_{ji}$, for $(i, j)\\in E$. A cut is defined as a partition of the original set V into two subsets. The cost function to be optimized is in this case the sum of weights of edges connecting points in the two different subsets, *crossing* the cut. By assigning $x_i=0$ or $x_i=1$ to each node $i$, one tries to maximize the global profit function (here and in the following summations run over indices 0,1,...n-1)\n", - "\n", - "$$\\tilde{C}(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j).$$\n", - "\n", - "In our simple marketing model, $w_{ij}$ represents the probability that the person $j$ will buy a product after $i$ gets a free one. Note that the weights $w_{ij}$ can in principle be greater than $1$, corresponding to the case where the individual $j$ will buy more than one product. Maximizing the total buying probability corresponds to maximizing the total future revenues. In the case where the profit probability will be greater than the cost of the initial free samples, the strategy is a convenient one. An extension to this model has the nodes themselves carry weights, which can be regarded, in our marketing model, as the likelihood that a person granted with a free sample of the product will buy it again in the future. With this additional information in our model, the objective function to maximize becomes \n", - "\n", - "$$C(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j)+\\sum_i w_i x_i. $$\n", - " \n", - "In order to find a solution to this problem on a quantum computer, one needs first to map it to an Ising Hamiltonian. This can be done with the assignment $x_i\\rightarrow (1-Z_i)/2$, where $Z_i$ is the Pauli Z operator that has eigenvalues $\\pm 1$. Doing this we find that \n", - "\n", - "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Generating a graph of 4 nodes \n", - "\n", - "n=4 # Number of nodes in graph\n", - "G=nx.Graph()\n", - "G.add_nodes_from(np.arange(0,n,1))\n", - "elist=[(0,1,1.0),(0,2,1.0),(0,3,1.0),(1,2,1.0),(2,3,1.0)]\n", - "# tuple is (i,j,weight) where (i,j) is the edge\n", - "G.add_weighted_edges_from(elist)\n", - "\n", - "colors = ['r' for node in G.nodes()]\n", - "pos = nx.spring_layout(G)\n", - "default_axes = plt.axes(frameon=True)\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[0. 1. 1. 1.]\n", - " [1. 0. 1. 0.]\n", - " [1. 1. 0. 1.]\n", - " [1. 0. 1. 0.]]\n" - ] - } - ], - "source": [ - "# Computing the weight matrix from the random graph\n", - "w = np.zeros([n,n])\n", - "for i in range(n):\n", - " for j in range(n):\n", - " temp = G.get_edge_data(i,j,default=0)\n", - " if temp != 0:\n", - " w[i,j] = temp['weight'] \n", - "print(w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Brute force approach\n", - "\n", - "Try all possible $2^n$ combinations. For $n = 4$, as in this example, one deals with only 16 combinations, but for n = 1000, one has 1.071509e+30 combinations, which is impractical to deal with by using a brute force approach. " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "case = [0, 0, 0, 0] cost = 0.0\n", - "case = [1, 0, 0, 0] cost = 3.0\n", - "case = [0, 1, 0, 0] cost = 2.0\n", - "case = [1, 1, 0, 0] cost = 3.0\n", - "case = [0, 0, 1, 0] cost = 3.0\n", - "case = [1, 0, 1, 0] cost = 4.0\n", - "case = [0, 1, 1, 0] cost = 3.0\n", - "case = [1, 1, 1, 0] cost = 2.0\n", - "case = [0, 0, 0, 1] cost = 2.0\n", - "case = [1, 0, 0, 1] cost = 3.0\n", - "case = [0, 1, 0, 1] cost = 4.0\n", - "case = [1, 1, 0, 1] cost = 3.0\n", - "case = [0, 0, 1, 1] cost = 3.0\n", - "case = [1, 0, 1, 1] cost = 2.0\n", - "case = [0, 1, 1, 1] cost = 3.0\n", - "case = [1, 1, 1, 1] cost = 0.0\n", - "\n", - "Best solution = [1, 0, 1, 0] cost = 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWkgva3ZUurWdUtpaVtbF2i5CKJuLP4tlq2F3TZVlvsIgkh1JLaFOlqEVSycYtL5DK5TTKX8/vjSItkkpnkzHzOzLyfj0cejz5i5szLPo7Xnvmcz/l8OJ7nQQghhD0Z6wCEEEIEVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRclNe7Ovry3fp0sVMUQghxDadPn26hOd5v5ZeZ1Ihd+nSBadOnWp9KkIIsUMcxxUZ8zoasiCEEImgQiaEEImgQiaEEImgQiaEEImgQiaEEIkwaZYFIUSg0QBXrgClpYBeD7i5Ad26Aa6urJMRa2bZQm44iy9cAG7eBOrrhTP58ceBnj2BgACA4ywaiRBj1dQAGRnA1q3A+fOAgwMgkwENm+7U1wMdOwIvvQRMmAD4+7PNS6wPZ8oWTmFhYXyr5iFfvQps3y78aDTCJUV9vVC+HAcolYBWC4SEADNmAKNHA87Opn8OIWag1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIiQHmzRNeS+wbx3GneZ4Pa/F1Zi3k+npgwwZg82ZApxOuhh0dm34tzwPV1cLr2rUD1q8HnnnG+M8ixAxKS4G33wb+8x+hWJVK496n0wEqFRAYCGzaBPTubd6cRNqMLWTz3dQrLgbGjgU++kg4k729DZcxIFwpu7kBnp5AeblwebFsmXB5QggDJSXA+PFCGXt5GV/GgHCF7O0tHGPiRODMGfPlJLbDPIVcXAyMGwcUFgpnpdzEoWo3N8DdHfjkE2Dx4t8G6QixkPp64NVXgevXhVO4tbc23N2F03fKFGHkjpDmiF/IGg3w5z8D9+4JlxWt5eAgXC1v3w7s2CFePkKMsHEjcPGicAq2lasrUFsLvPcefeEjzRO/kD/+GLh8GfDwaPuxZDLhbF6yBLh2re3HI8QIBQVCIbu7izfpx9MT+PFHYNcucY5HbJO4hXznDvB//ycMOYh1JisUwvfH1FRxjkdIC774QrgpZ+pIW3M4TjiVN26kEThimLjzkHfuFM7k5m7etYanJ5CdDdy6Jdy2JsRMamuBr74Srimao9fX49at5aipyYVOp4KjY0f4+78NN7cIg+9xdhbGpPPygP79RQ5ObIJ4V8g8D2zZYtSky4QbNzDq8mUMuXgR469cwZ7y8ubf0DD7fs8ecbISYsCFC8I4b8vXFDo4OgYiOHgzunc/Cj+/t3DjxgLU1980+A6OE6bb5+aKmZjYEvEKubgYqKgwam7Qn319sTckBMdCQ7G2Y0dsvHMHF2prm3+TXA4cPy5SWEKaduGCcF+6JTKZM/z8pkOhaA+Ok8Hd/fdwdGwPtTq/2ffJ5cDJkyKFJTZHvELOzxdmRhjhMaUSivuPOXEAOI7D9Zb+FTg5AT/9RANwxGx4nkd+vh7Cw1I8eJ4Hz+sf+tHr9dDrdQ/9ADy02lLU11+FUvlYs5+hVAqrBxDSFPHGkO/cMe7S4r7lt27hn6WlqNPr8bhCgT48D1Vl5cMvul++/P3/VqhU+G7fPujvF7/wD+a3nwd/p78/v6i51xj6ae1rAECv14vymoa/Q0uvYfV3FfN/D7H/rq3536PB9evvoKxsOG7frgbQ1L1p7qHfa7VauLgo4eCwFp6ez0Gp7PLoGx5+NyfcoyakKeIVsokTLOMCAvB8aSmKnJ1xTqdDTUUF6h9YHOChfwf3z36XujrkHD8OvaMjOI4DxzX84+Ca/WnqNQAgk8lafA3Hcb++rqXPkjVc9Tfz+ca8xpS/hyX/rqa8Rup/V0OvSU4WFg/y8Wn29P1VQcEVVFevglKpR6dO81t8vV4vfNkjpCniFbKrq9FDFoDwDyAgIABu1dXIc3HBf5RKvNzcvwK9HlCpkLJsWeNVXQgRSc+exp/GdXVqVFevh6urFhpNLLRafYs3A+vqgNDQtucktkm8ZuvWzeSibNeuHfQ6Hapra3G9pe9xarWwTCeVMTGjHj2ML+Rr11Ihl99Gly4b4OsbhOLiYtwfYDNIrwfCw9uek9gm8drt8ceFOT0tDF2UarU4qFKh5v6YYZGXFw6oVOjf0vc4tRoIa3GxJELapEcP4cZbS9cHGs1NVFX9CzxfhMuXR6GkZBzKyl7EjRtfG3wPzwvXE4MGiRya2AzxhiwUCmDECODw4WbXsOAAfFNWhqXFxdADCHJ0xDve3ni8shK8l9fDY8cNeF64bHnuOdHiEtIUhQKYPFlYpFChMPw6rdYL7u67ERISgoY7HnV1ahQVFUGr1UAubzx2UVUlDFf07Gmm8MTqifuk3tSpwhN1PG/w0WlvuRybO3d+6Hd6nkdhYSFUFRXwbGo1l9paYTcR+q5HLCAmRlhosL7ecClXVKjun6u/nedKpRN8fHxQXFyMTp06PfRnPC98gYyNNW92Yt3EHZANCwP69BEeEDElBMehffv2uH37NrRa7cN/yPPCnZD582n8mFhEUBCwaJGwX0JT0955nodKpWry4qFdO19otVpUVKge+n1FhfAFcuRIc6UmtkDchpPJgLVrhceRTJxs6ezkBE8vL9y6ffvhPygvB4YOBZ5/XsSghDQvJgYYOBAoK2tcytXVVVAoFHB0bHz5zHEcgoKCHrq4UKmENZXT0mjLSNI88S85O3cWdvqorja5lP38/KBWq397QKSiQhiqWLGCzmRiUTKZsPVSv37CNcGD96orKirg6Wl4eVknJ2d4e3uhuLgYZWU83N2BL78E/PwsEJxYNfOMAYwbJ6xhXFMjFLOxYTgO7YOCcKu4GLrSUmHb3q++ojOZMOHqKizFOX68cG0gbPmoQ1VVNTxaWO/bw8MX1dWO8Pe/iz17hP17CWmJ+QZlJ00Ctm0TVvkuKzPusWqeh4teDz9HR5zx8QH27gU6dTJbREJa4uICrFoFfP454OsL3L6thkzWDjqdvNFQhlYLVFYK5c3zMsyfr4W7+xS4uZWxCU+sjnnvkkVECNPgpk0TztaKCqGca2uFdZN1OqGoq6qELZ9UKqBzZzhv2YKUwEDk5De/chYhljJkCPDdd8CAAR9h6NAaODsLQxlVVcJPRYVwivfvD6xZA5w6BSQmdsSYMaOwevVq1vGJleD4pm4jGxAWFsafOnWqdZ9UWyuUc04O8MMPwnKdWq2wandoKDBgABAZCTzxBMBxOHnyJJYsWYKdO3fCxYg1lgkxt5KSEkyYMAGZmZlQKpUoLwdKS4XxZXd3YYTt0VsdarUar7zyCmJjYzF06FA2wQlzHMed5nm+xSfbLFfIrZCSkgKlUom4uDiLfSYhhuzYsQOXL19GUlKSSe/Ly8vDwoUL8dVXX7U49kxsk7GFLOmJvbNnz8bRo0dx5swZ1lEIQXp6OkaPHm3y+/r164fhw4fjr3/9qxlSEVsi6UL28PDAggULkJqaCrVazToOsWOFhYW4d+8ewlq5nsrbb7+N06dPIycnR+RkxJZIupABYOjQoejZsyc2bdrEOgqxYxkZGRg1atSvazybysXFBfHx8UhLS0O1CVNBiX2RfCEDwLx587B//36cO3eOdRRih/R6PTIzMzFmzJg2HSc8PBwRERFYv369SMmIrbGKQvb29sZ7772H5ORk1NP+N8TCzp49CycnJ3Tr1q3Nx4qNjcXx48fxww8/iJCM2BqrKGQAGDVqFDp27IjPP/+cdRRiZzIyMjB69Ohft3tqCzc3NyxcuBCpqamobWmndWJ3rKaQOY7DggUL8PXXX+Py5cus4xA7odFocOjQIURHR4t2zMGDB6Nv37748MMPRTsmsQ1WU8gA4O/vj7fffhspKSnQ6XSs4xA7kJOTg5CQEAQFBYl63Llz5+LQoUP48ccfRT0usW5WVcgA8Ic//AHu7u74+9//zjoKsQPp6emiXh038PDwQFxcHFJSUlBXVyf68Yl1srpC5jgO8fHx2LZtG4qKiljHITasqqoKJ0+exEgzrSo/fPhwhIaG0pRO8iurK2QAaN++Pd544w2kpKRA38KmqoS0VnZ2NsLDw836uPO8efOwb98+mtJJAFhpIQPAxIkTwfM8vv7a8C6/hLRFax+VNoWPjw/mzJlDUzoJACsuZJlMhsTERGzevBk3b95kHYfYmDt37uDSpUsYPHiw2T/r2WefRadOnfDZZ5+Z/bOItFltIQNAly5dMHnyZCxZsgSmrFpHSEsyMzMRGRkJhaFtp0XUMKXz22+/xaVLl8z+eUS6rLqQAWDy5MlQqVTYu3cv6yjEhmRkZLT5UWlT+Pn54d1338XixYsb77xO7IbVF7KDgwMSExOxYcMG3L17l3UcYgN++eUXqFQq9O3b16Kf+9xzz6Fdu3bYtm2bRT+XSIfVFzIAdO/eHS+++CKWLVtGQxekzTIyMhAdHd3qld1ai+M4LFq0CDt27EBBQYFFP5tIg00UMgC8/vrruH79OrKyslhHIVZMr9dbfLjiQYGBgZg5cyaSk5NpSqcdsplCVigUSExMxOrVq1FWRrv8ktbJy8uDp6cnQkJCmGV44YUX4OzsjO3btzPLQNiwmUIGgN69e2PMmDFYtWoV6yjESjWs7MaSTCZDQkICtmzZgqtXrzLNQizLpgoZAN58801cuHABx44dYx2FWJn6+npkZ2ebZe0KU3Xo0IGeRrVDNlfITk5OSEhIwPLly1FZWck6DrEix48fR2hoKPz9/VlHAfDb06jffPMN6yjEQmyukAGgf//++P3vf0+7/BKTSGG44kENT6Nu2rSJnka1EzZZyADw7rvvIjc3F//5z39YRyFWQKVSITc3F5GRkayjPKRz586YMmUKUlNTaUqnHbDZQnZ1dcXChQuRlpaGmpoa1nGIxB06dAgDBw6Em5sb6yiNxMTEoLq6Gnv27GEdhZiZzRYyAERERKBfv360VQ5pkdSGKx7k4OCApKQkfPjhh7h9+zbrOMSMbLqQAWDOnDk4fPgwbZVDDCouLkZBQQEiIiJYRzEoJCQEL7/8MtLS0mjowobZfCF7eHhg/vz5tFUOMSgzMxMjR46Eo6Mj6yjNeu2111BSUoL09HTWUYiZ2HwhA0BkZCS6deuGzZs3s45CJIbneaaPSptCLpcjKSkJ69atQ0lJCes4xAzsopABIC4uDnv37sX58+dZRyEScvnyZajVavTp04d1FKOEhoZi3LhxWL58OQ1d2CC7KWQfHx/Mnj0bKSkp0Gg0rOMQiWjYVZrjONZRjDZt2jQUFRXh0KFDrKMQkdlNIQPA6NGjERAQgC1btrCOQiRAr9cjMzNTsrMrDFEoFEhKSqKFtGyQXRUyx3FYuHAhvvrqK1y5coV1HMLYqVOn4Ovri65du7KOYjJaSMs22VUhA0BAQMCv683qdDrWcQhD1nIzz5A333wT+fn5OHr0KOsoRCR2V8iAsN6si4sLduzYwToKYUStVuPo0aN49tlnWUdpNaVSiYSEBKxYsQIqlYp1HCICuyxkmUyG+Ph4Wm/Wjh07dgy9evWCr68v6yht0q9fPwwfPhxr165lHYWIwC4LGQA6duyIqVOnYsmSJbTerB3KzMy06uGKB7399ts4c+YMcnJyWEchbWS3hQwAL7/8MjQaDb799lvWUYgFlZeX48yZMxg+fDjrKKJwcXFBfHw80tLSUF1dzToOaQO7LuSG9WY//vhjFBcXs45DLCQrKwuDBg2Ci4sL6yiiCQ8PR0REBNavX886CmkDuy5kAOjatStiYmKwdOlSevLJTkh5Zbe2iI2NxfHjx/HDDz+wjkJaye4LGQBeffVV3Lt3D/v27WMdhZjZjRs3cO3aNQwYMIB1FNG5ublh0aJFSE1NpTXArRQVMn5btGXDhg20aIuNy8jIQFRUFORyOesoZjFo0CD069cPGzduZB2FtAIV8n0Ni7asWLGChi5sVMPKbrY4XPGgOXPm4NChQ7QGuBWiQn7AtGnTUFhYiMOHD7OOQszgwoUL0Ol06N27N+soZuXh4YG4uDhaA9wKUSE/QKFQIDExEatWrUJ5eTnrOERkDY9KW9PKbq01fPhwhIaGYtOmTayjEBNQIT+iT58+GDVqFNasWcM6ChGRTqfDgQMHEB0dzTqKxcyfPx/79u3DuXPnWEchRqJCbsJbb72Fs2fP4vjx46yjEJHk5uYiKCgIwcHBrKNYjLe3N+bOnYvk5GTU19ezjkOMQIXcBGdnZ8THx2Pp0qWoqqpiHYeIwNpXdmutqKgodOrUCZ9++inrKMQIVMgGPP300xg8eDA9+WQDamtrcezYMURFRbGOYnEcx+H999/Hrl27cPHiRdZxSAuokJvx7rvv4sSJE/Tkk5X77rvv0KdPH/j4+LCOwoSvry9iY2ORnJwMrVbLOg5pBhVyM9zc3LBw4UKkpqaitraWdRzSSunp6XY5XPGgsWPHwtfXF9u2bWMdhTSDCrkFgwcPxpNPPklPPlmp0tJSnD17FkOHDmUdhamG7ct27NiBgoIC1nGIAVTIRpg7dy4OHjyIs2fPso5CTJSVlYUhQ4bA2dmZdRTmAgMDMXPmTCxevJi2L5MoKmQjeHp6Yt68eUhJSaHpQ1YmPT3d5h+VNsW4cePg6upK25dJFBWykUaMGIGuXbvik08+YR2FGOnq1asoLi5GeHg46yiSwXEcbV8mYVTIRuI4DnFxcdi9ezfy8/NZxyFGyMjIwKhRo+Dg4MA6iqR06NABb7zxBlJSUmj7MomhQjZBw/ShlJQUmj4kcfaysltrTZw4ETzP4+uvv2YdhTyACtlENH3IOvz8889wcHBAz549WUeRJJlMhqSkJGzevBk3b95kHYfcR4VsoobpQ9u3b6fpQxJmTyu7tVZwcDCmTJmC1NRUWgNcIqiQWyEwMBBvvfUWjcFJlFarRVZWll2t7NZaMTExqK6uxu7du1lHIaBCbrXx48dDoVDgyy+/ZB2FPOLkyZPo1KkTOnTowDqK5Dk4OCApKQkbN27E7du3Wcexe1TIrSSTyRAfH49PP/0U169fZx2HPIAelTZNSEgIJk2ahLS0NBq6YIwKuQ2Cg4Px2muvITU1lYYuJKKmpgY5OTkYOXIk6yhWZcqUKSgpKUF6ejrrKHaNCrmNYmJioFarsWfPHtZRCIAjR46gf//+8PLyYh3FqjTsvL5u3TraeZ0hKuQ2apg+RGNw0kCPSrdew87ry5Yto6ELRqiQRfDYY4/hpZdewtKlS+lEZqikpATnz5/HkCFDWEexWtOmTcO1a9eQlZXFOopdokIWyWuvvYY7d+4gIyODdRS7dfDgQQwbNgxKpZJ1FKvVsPP66tWrUVZWxjqO3aFCFomjoyMSExOxbt06lJaWso5jl2i4Qhy9e/fG2LFjsWrVKtZR7A4Vsoh69uyJ559/HitWrGAdxe4UFhbi3r17CAsLYx3FJrz55pvIz8/HkSNHWEexK1TIIps+fTouX76M7Oxs1lHsSsPKbjIZndJiUCqVSEhIwMqVK6FSqVjHsRt09opMqVQiKSmJTmQL0uv1yMzMpIdBRNavXz9ERkZi7dq1rKPYDSpkM3jyyScxYsQIrFmzhnUUu3D27Fk4OTmhW7durKPYnFmzZuHMmTPIyclhHcUuUCGbyaxZs5CXl0cnsgU03Myjld3E5+Ligvj4eCxZsgRVVVWs49g8KmQzcXFxwaJFi5CWlobq6mrWcWyWRqPB4cOHaWU3MwoPD8egQYOwYcMG1lFsHhWyGT3zzDMYMGAAnchmlJOTg5CQEAQFBbGOYtNiY2Nx4sQJ5Obmso5i06iQzWz27Nn497//jdOnT7OOYpNo7rFluLm5YeHChViyZAlqampYx7FZVMhm5u7ujgULFiA1NRVqtZp1HJtSVVWFkydPYsSIEayj2IVBgwahX79++PDDD1lHsVlUyBYwZMgQ/O53v8NHH33EOopNyc7ORnh4ODw8PFhHsRtz5sxBdnY28vLyWEexSVTIFjJ37lxkZGTg559/Zh3FZtBwheV5eHggLi4OqampqKurYx3H5lAhW4i3tzfmzp2LlJQU1NfXs45j9e7cuYNLly5h8ODBrKPYnWHDhqFHjx7YtGkT6yg2hwrZgqKiotCxY0d8+umnrKNYvczMTERGRkKhULCOYpfmzZuHffv20Tc+kVEhWxDHcXj//fexa9cuXLp0iXUcq5aRkUGPSjNE3/jMgwrZwvz8/PDOO+8gJSUFOp2OdRyr9Msvv0ClUqFv376so9i1qKgoBAcH0zc+EVEhM/D888/D09MTX3zxBesoVikjIwPR0dG0shtjHMdhwYIF2LVrFy5evMg6jk2gM5oBjuOwaNEifPHFF/jf//7HOo5V0ev1NFwhIb6+voiNjUVycjK0Wi3rOFaPCpmR9u3bY8aMGUhJSYFer2cdx2rk5eXBy8sLISEhrKOQ+8aOHQtfX19s3bqVdRSrR4XM0IsvvgiZTIadO3eyjmI1GoYriHQ0fOP7xz/+gYKCAtZxrBoVMkMymQwJCQn429/+hhs3brCOI3n19fXIzs6mQpaggIAAzJw5E4sXL6ab1W1AhcxY586dMWXKFKSlpYHnedZxJO348eMIDQ2Fv78/6yikCePGjYOrqyu2b9/OOorVokKWgJiYGFRWVuKf//wn6yiSlpGRQY9KSxjHcYiPj8fWrVtRVFTEOo5VokKWAAcHByQmJuKDDz7AnTt3WMeRJJVKhdzcXERGRrKOQprRoUMHTJ8+nW5WtxIVskR069YNEyZMwLJly2joogmHDh3CwIED4ebmxjoKacGECRMAAF9//TXjJNaHCllCXn/9ddy8eRMHDhxgHUVyaLjCeshkMiQlJWHz5s10s9pEVMgS4ujoiKSkJKxduxalpaWs40hGcXExCgoKEBERwToKMVJwcDCmTJmC1NRU+sZnAipkienVqxfGjh2L1atXs44iGZmZmRg5ciQcHR1ZRyEmiImJQU1NDXbv3s06itWgQpagN998E/n5+Th69CjrKMzxPE+PSlspBwcHLF68GBs3bsTt27dZx7EKVMgSpFQqER8fjxUrVkClUrGOw9Tly5ehVqvRp08f1lFIKzz22GOYNGkSzbM3EhWyRPXv3x/Dhg3DunXrWEdhKj09HdHR0eA4jnUU0kpTpkxBSUkJ9u/fzzqK5FEhS9g777yD3NxcfP/996yjMKHX65GZmUmzK6ycXC5HUlIS1q9fj5KSEtZxJI0KWcJcXFywaNEiLF26FDU1NazjWNypU6fg6+uLrl27so5C2ig0NBTjx4+nefYtoEKWuIEDByIsLAwffPAB6ygWRzfzbMvUqVNx7do1ZGVlsY4iWVTIVuAvf/kLjhw5gry8PNZRLEatVuPo0aN49tlnWUchIlEoFEhMTMTq1atRVlbGOo4kUSFbAQ8PD8yfPx+pqamoq6tjHccijh07hl69esHX15d1FCKi3r17Y+zYsVi1ahXrKJJEhWwlhg8fjtDQUGzatIl1FIvIzMyk4Qob1TDP/siRI6yjSA4VshWZN28e9u3bh/Pnz7OOYlbl5eU4c+YMhg8fzjoKMQOlUonExESsXLnS7ufZP4oK2Yr4+PjgL3/5C5KTk6HRaFjHMZusrCwMGjQILi4urKMQM+nbty8iIyOxZs0a1lEkhQrZykRHR6N9+/b4/PPPWUcxG1rZzT7MmjULeXl5OHHiBOsokkGFbGU4jsP777+PnTt34pdffmEdR3Q3btzAtWvXMGDAANZRiJm5uLggPj4eS5cuRVVVFes4kkCFbIX8/f0xa9YspKSk2NyGkhkZGYiKioJcLmcdhVhAeHg4Bg0ahPXr17OOIglUyFbqhRdesLkNJRtWdqPhCvvy7rvvIicnB7m5uayjMEeFbKUe3FDy6tWrrOOI4sKFC9DpdOjduzfrKMSC3NzcsGjRIixZssQulwh4EBWyFevQoQOmTZtmMxtKNjwqTSu72Z+IiAj0798fH374IesoTFEhW7mXXnoJer0e33zzDesobaLT6XDgwAFER0ezjkIYee+995CdnW1XSwQ8igrZyslkMiQmJmLTpk24efMm6zitlpubi6CgIAQHB7OOQhjx8PBAXFwcUlNToVarWcdhggrZBnTp0gV/+tOfrHpXBlrZjQDAsGHD0KNHD7tZIuBRVMg2YvLkySgvL8fevXtZRzFZbW0tjh07hqioKNZRiATMmzcP+/fvx88//8w6isVRIduIhl0ZNmzYgLt377KOY5LvvvsOffr0gY+PD+soRAK8vb0xd+5cpKSkoL6+nnUci6JCtiHdu3fHH//4Ryxfvtyqhi7S09NpuII8JCoqCsHBwfjkk09YR7EoKmQbY227MpSWluLs2bMYOnQo6yhEQjiOw4IFC7B7925cvHiRdRyLoUK2MQqFAgkJCVazK8PBgwcxZMgQODs7s45CJMbX1xezZ89GcnIytFot6zgWQYVsg5544glER0dj9erVrKO0iB6VJs0ZM2YMfH19sWXLFtZRLIIK2UbNnDkT586dw7Fjx1hHMejq1asoLi5GeHg46yhEojiOw6JFi/Dll1/iypUrrOOYHRWyjXJyckJCQgKWL1+OyspK1nGalJGRgejoaDg4OLCOQiQsICAAM2fORHJyss2tbvgoKmQb9tRTT2Hw4MGSXNqwYWU3elSaGGPcuHE2t7phU6iQbVxsbCy+//57yS1t+PPPP8PBwQE9e/ZkHYVYAY7jkJCQgK1bt6KoqIh1HLOhQrZxrq6uklzakFZ2I6Zq3749pk+fbjOrGzaFCtkOREREoG/fvti4cSPrKAAArVaLrKwsGq4gJpswYQIAYOfOnYyTmAcVsp2YM2cOsrKy8N///pd1FJw8eRKdOnVChw4dWEchVkYmkyEpKQl/+9vfcOPGDdZxREeFbCc8PT0RFxcnifUB6FFp0hbBwcF47bXXkJqaalVLBBiDCtmOREZGIiQkBJs3b2aWoaamBif/IE+WAAALo0lEQVROnMDIkSOZZSDWLyYmBrW1tdi9ezfrKKKiQrYzcXFx+Ne//oULFy4w+fwjR47gqaeegpeXF5PPJ7ahYehi48aNuHXrFus4oqFCtjPt2rXD7NmzkZKSAo1GY/HPT09Pp0eliSgee+wxTJo0CUuXLrWZoQsqZDs0evRo+Pn5YevWrRb93JKSEpw/fx5Dhgyx6OcS2zVlyhSUlJRg//79rKOIggrZDj24PkBBQYHFPvfgwYMYNmwYlEqlxT6T2Da5XI7Fixdj/fr1VrcxQ1OokO1UQEAA3nrrLSQnJ1tskj0NVxBz6N69O8aPH49ly5ZZ/dAFFbIdGzduHJycnLBjxw6zf1ZhYSHu3buHsLAws38WsT9Tp07F9evXrWZjBkOokO2YTCZDQkICPv/8c1y7ds2sn5WRkYFRo0ZBJqNTjohPoVAgKSnJajZmMIT+ddi5jh074vXXX0dqaqrZhi70ej0yMzPpYRBiVr/73e/w3HPPYeXKlayjtBoVMsGkSZNQX1+PXbt2meX4Z8+ehZOTE7p162aW4xPSYMaMGbh48SKys7NZR2kVKmQCmUyGxMREfPTRR2aZZN9wM49WdiPmplQqkZiYiJUrV0KlUrGOYzIqZAJAmGT/yiuviD7JXqPR4PDhw7SyG7GYvn37YuTIkVizZg3rKCajQia/aphkn56eLtoxc3JyEBISgqCgINGOSUhLZs2ahby8PBw/fpx1FJNQIZNfyeVyJCYmYt26dbh3754ox6S5x4QFZ2dnxMfHY+nSpaiqqmIdx2hUyOQhPXr0wAsvvIAVK1a0+VhVVVU4efIkRowYIUIyQkwTHh4u2T0lDaFCJo288cYbKCgowOHDh9t0nOzsbISHh8PDw0OkZISYJjY2Fjk5OZLbU9IQKmTSiEKh+PVOdUVFRauPQ8MVhDWp7ilpCBUyaVKfPn3w7LPPtvpO9Z07d3Dp0iUMHjxY5GSEmCYiIgL9+/fHBx98wDpKi6iQiUEzZ87Ejz/+iBMnTpj83szMTERGRkKhUJghGSGmee+993DkyBHk5eWxjtIsKmRiUMOd6rS0tGbvVOt0wKNPXWdkZNCj0kQyPDw8sGDBAqSmpkKtVjf9IpUKuHEDuHkTYDS8IWfyqcRqhIeHIyIiAhs2bMDChQsBAJcuAXv3Ajk5wPnzQG2t8FpXV6BXL6Bbt7soLnZB3759GSYn5GFDhw7FgQMH8PHHH2P27NmAVgscOQJ88w1w5gxQWgrI71eiVgt06AA88wzw8stA//6ABZ405Ux5KissLIw/deqUGeMQKaqqqsLEiRPxyiur8e23vfDTT8IVsUIBODk9fA6r1cDduxWQyXgMG+aFhASgTx+2+QlpUFZWhpcnTsTm6Gh03rFDuCoGAGdnwNHxt9LleaCuTrjakMmA4GBgyRJg4MBWfS7Hcad5nm9x7VkasiAtcnR0Q/v2GzFjhjd++kkPT0/Axwdwc/utjAHhv93ceGi1dxAQ4IQffwTGjwdWrgTq69nlJ6SBt0aDLTodlElJ0KvVgKen8KNQPHwFzHHC1Ya3N+DhIQxlTJ4MLFwoXHWYCRUyaVZ1tXAeHjnSBW5uPOrq7jT7za2mpgZyuQOcnJzg6SmU9scfA1On/ja0QQgTN24AL7yAwKIiaFxdUWLsE3wcJ5zI7u7Al18K/yDMNMZMhUwM0mqBadOA06cBLy+gfXt/qFQq1NYaPhkrKioeehBELhcuMk6cAGbObHzzjxCLUKmAl14C7t4F5+2NwKAglJeVodaUq10HB+FkPn0amDHDLCczFTIx6LPPgNxcoYw5DnBwkCMgIBDFxcXg+cYnI8/rUVlZCU9Pz4d+z3HCeXzsGLB9u6XSE/KA5GSguFgYngDgKJfDPyAAxTdvQm/K6oYNJ/P335vlZKZCJk0qKADWrBG+qT04ROHh4Q6FQoGSkpJG76mqqoKTkxPkcsdGf8ZxwiyMtDTg+nVzJifkETk5wJ49v5ZxA09PT8gdHU1fSIvjABcX4WS+eVPEoFTIxIDNmwGNRrjx/DAOgYGBKCsrbzSfUxiu8Hz0Db9SKIRjfvaZ+HkJMWj9emG44ZH9HDkAQYGBKC0thbquzrRjNpzMIl8lUyGTRlQq4YLC0JpAcrkjAgL8UVx8E1ptBa5fn4v8/EEoKZkMoPmn+tzcgK++YjbvntibwkJhzNfdvck/dnR0hL+/Pz4pLMTkwkIMzM/HYmOvel1dgS++EKbHiYQKmTRy8qQwDVPezGNDnp6ecHCQo7AwCRznCH//nfDyeh+3b69EXV2Bwfc5OgpP9tF0dmIR338vnMzNTA3y8vJCO7kcLzo64v95Gv6G14hCIcznPHdOhKACKmTSyE8/GTNvmENAgCeqqo7Cw+N1VFZq0K5dBNzdh6KiYn+z7xT5HCbEsNzcFp+w4wD8sXNn9Kipgaupx9dogPz81qZrhAqZNJKXJ/yff0t4/hYcHZW4e1eGuro6uLm5Qqns1uwVMiBceUt8jRdiK86dA5TKFl+mcHSEn58fKioqYPKOkj/91KpoTaG1LEgjVVXCPZCW6PU1UCg8wXEctFotioqKUFdXDY3mFnS6QhiaTaTRKHHwYBFeffWjh35v6DF+sX5vCH2u7X7uytOn4arRQCMz7tqzvr7etPnFMpmoN0SokEkjcjkMlumDZDIX6PXV6Nq1K2prhRkX5eUKqNW+CAgINPi+6moZnnjCBQsWLDA6E2fga6dYv6fPtc3P9frjH8HdvSs8Bm0E/5IS3DOlkHneqCtwY1Ehk0a6dhWGFFxbGFBTKIIB6FBffw3OzsEAgLKy/8HVtTucnZ0Nvq+2FnjqKSV69fISMTUhTQgNBW7fbv4O9QMcZDLTrpD1eqB791aGa4zGkEkjYWGNpmw2SSZzhrt7JO7e/Rh6fS1qav6Lysrv4Ok5ttn3yeVAv34ihSWkOQMGCGsAtEDH86jX66EHoAdQr9dDZ8zXRIVCWHNWJHSFTBppKMsWZgsBAAIDF+DmzWRcuhQFBwdPBAa+D6XyMYOv53nhh5ZKJhbx9NPCDZEWTuZPS0qw+YGnT9MrKjDd1xfT/fwMH1urFY7bu7docamQSSPduws/V64ID3I0x8HBA506Gb/vXmUl8OSTQOfObQxJiDH69AE6dRLWsWhmDG66n1/z5duUykpg3DjDT1C1Ag1ZkCa99ZYwxdLEG+nN4nlhyG3GDPGOSUizOA6YNUuY/C7myazTCeN6r78u3jFBhUwMGDNGGLqoqBDvmBUVwpDeyJHiHZOQFo0bJ/7JrFIJ6yKLOH4MUCETA2QyYO1aYUaPGNMsq6uFXXJWrbLI1mSE/ObBk7m6uu3Hq6gQhkHmzm37sR5BhUwMCg4GPvlE+HbWlvO4YWOGrVuBoCBxshFikuBgYMsW4b+N3SnkUTwPlJcD7doBO3YIS3CKjAqZNGvgQGFBK6USKCszfYpmeblwL2XHDmHjXkKYefppYQsmT0/hxNTpjH+vRiO8p2dPYPduoH17s0SkQiYtCg8HsrOB6GjhxnJZWfNTO7Va4TWVlcBzzwnvpXnHRBKefBI4fBiYOPG3k7murukbfjwvjNeVlwuvWbBAWJfWjF/zOFOeCw8LC+NP0bqJdu38eWDbNuG8bJhT3FDOcrkwPsxxwIsvCvc8QkPZ5iXEoBs3gH/8A9i5E7h3T3jI48E+1GiEoY4//xn4wx8a7ThiCo7jTvM8H9bi66iQSWtotcLa3/n5wgWETCbsvdejB9Cli3GLExEiGWVlwKVLwuwJjgN8fISTWaRxYmMLmR4MIa0ilwPdugk/hFg9b2/gmWdYp6AxZEIIkQoqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQiT5iFzHHcXQJH54hBCiE3qzPN8iwsum1TIhBBCzIeGLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCL+PyxUNcsEcERnAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "best_cost_brute = 0\n", - "for b in range(2**n):\n", - " x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))]\n", - " cost = 0\n", - " for i in range(n):\n", - " for j in range(n):\n", - " cost = cost + w[i,j]*x[i]*(1-x[j])\n", - " if best_cost_brute < cost:\n", - " best_cost_brute = cost\n", - " xbest_brute = x \n", - " print('case = ' + str(x)+ ' cost = ' + str(cost))\n", - "\n", - "colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)\n", - "print('\\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute)) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Mapping to the Ising problem" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "qubitOp, offset = maxcut.get_maxcut_qubitops(w)\n", - "algo_input = EnergyInput(qubitOp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Optional] Using DOcplex for mapping to the Ising problem\n", - "Using ```docplex.get_qubitops``` is a different way to create an Ising Hamiltonian of Maxcut. ```docplex.get_qubitops``` can create a corresponding Ising Hamiltonian from an optimization model of Maxcut. An example of using ```docplex.get_qubitops``` is as below. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "from docplex.mp.model import Model\n", - "from qiskit.aqua.translators.ising import docplex\n", - "\n", - "# Create an instance of a model and variables.\n", - "mdl = Model(name='max_cut')\n", - "x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)}\n", - "\n", - "# Object function\n", - "maxcut_func = mdl.sum(w[i,j]* x[i] * ( 1 - x[j] ) for i in range(n) for j in range(n))\n", - "mdl.maximize(maxcut_func)\n", - "\n", - "# No constraints for MaxCut problems." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Checking that the full Hamiltonian gives the right cost " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -1.5\n", - "maxcut objective: -4.0\n", - "solution: [0. 1. 0. 1.]\n", - "solution objective: 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWooP1t2dJqVnVLq6VtbF2i5CKJuLP4tlq2F3TZlpbuIgkh1JLaFOlqEVSycUlcIpfJbZK5nN8fRxS5zExyZj5nZt7PxyOPx1ecOedlH6ev75nP+ZzP4XieByGEEPZkrAMQQggRUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEyE3Z2NfXl+/SpYuZohBCiG06ffp0Cc/zfoa2M6mQu3TpglOnTrU+FSGE2CGO4wqN2Y6GLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCJMmmVBCLlHowGuXAFKSwG9HnBzA7p1A1xdWScjVsyihdxwDl+4ABQVAfX1wnn8+ONAz55AQADAcZZMRIgJamqA9HRg61bg/HnAwQGQyYCGt+7U1wMdOwIvvQRMnAj4+7PNS6wOZ8ornMLCwvjWzEO+ehXYvl340WiEC4r6eqF8OQ5QKgGtFggJAWbMAMaMAZydTT4MIeah1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIjgbmzRO2JXaN47jTPM+HGdzOnIVcXw9s2ABs3gzodMLVsKNj09vyPFBdLWzXrh2wfj3wzDNGH4oQ8ygtBd55B/jPf4RiVSqN+5xOB6hUQGAgsGkT0Lu3eXMSSTO2kM12U6+4GBg3Dvj4Y+E89vZuvowB4UrZzQ3w9ATKy4WLi2XLhIsTQpgoKQEmTBDK2MvL+DIGhCtkb29hH5MmAWfOmC8nsRlmKeTiYmD8eKCgQDgn5SaOVLu5Ae7uwKefAosX/zZER4jF1NcDr74KXL8unMStvbnh7i6cwFOnCmN3hLRA9ELWaIA//xm4e1e4qGgtBwfhann7dmDHDvHyEWKUjRuBixeFk7CtXF2B2lrg/ffpKx9pkeiF/MknwOXLgIdH2/clkwnn8pIlwLVrbd8fIUbJzxcK2d1dvGk/np7ATz8Bu3eLsz9ik0Qt5Nu3gf/7P2HIQazzWKEQvj2mpIizP0IM+vJL4aacqWNtLeE44WTeuJHG4EizRJ2HvHOncB63dPOuNTw9gaws4OZN4aY1IWZTWwt8/bVwVdGCer0ey2/eRE5NDVQ6HTo6OuIdf39EtPQ5Z2dhTDo3F+jfX+TgxBaIdoXM88CWLcZNubxxIx6XL4/GxYtDcOXKBJSXf9fi9g1z779reTNC2u7CBWGc18BVhQ5AoKMjNgcH42j37njbzw8LbtxAUX198x/iOGHCfU6OuJmJzRCtkIuLgYoK42YG+fr+GSEhexEaegwdO67F7dsbUVt7ocXPyOXA8eMihSWkORcuCHemDXCWyfCmnx/aKxSQcRx+7+6O9o6OyFOrW/6gXA6cPClSWGJrRCvkvDxhZoQxlMrHIJMp7v2JA8dx0Giut/gZJyfg559p+I2YD8/z0Oflged58A1/fvRHr4fukR8eQKlWi6v19XjM0BWJUimsH0BIE0QbQ75926gLi/tu3lyO0tJ/Qq+vg0LxOHi+DyorVQ9t81v58uB5QKVSYN++7+HgoL/39/xDPw/+Tq83vE1zP63dBgD0er0o2zT8Gwxtw+rfKub/HmL/W1vzv0eDd69fx/CyMlTfuiX84pG70/f/dO/3Wq0WShcXrHVwwHOenuhiqJA5TrhLTUgTRCtkU6dXBgTEorT0eTg7F0KnO4eKihrIZA+eqL/9h9Dw30RdnQuOH8+Go6MeHCdcWQt/z7X409Q2ACCTyQxuw3Hc/e0MHUt2b22Dlo5vzDam/Dss+W81ZRup/1ub2wZJScLiQT4+LZ6/Da7k52NVdTX0SiXmd+pk+AN6vfB1j5AmiFbIrq7GD1kAwn8AAQEBqK52g4tLLpTK/8DH5+Vmt9frhaUBli1LbrSmCyGi6dnT6BNZXVeH9dXV0Lq6IkajgV6rNTzFqK4OCA0VISixRaJVW7dujRe/MqRdu3bQ6fSora1GfX3LY8hqtbBMJ5UxMasePYwu5JRr13BLLseGLl0Q5OuL4uJiGLzFodcD4eFtjklsk2j19vjjwoweQ0MXWm0pVKqD0OtrwPM8vLwKoVIdgJNTy/My1WogzOBaSYS0UY8ewo03A+O8RRoN/lVVhUKex+jLlzG+pAQvlpVh140bzX+I54UrikGDRA5NbIVoQxYKBTBiBHD4sKE1LDiUlX2D4uKlAPRwdAyCt/e7qKx8HF5ePB4cO27A88JFy3PPiZWWkGYoFMCUKcIyhQpFs5t5abXY4+6OkJCQ+2esuq4OhYWF0Gi1cGzqKb+qKmG4omdP82QnVk/UJ/WmTROeqOP55h+dlsu90bnz5od+x/N6FBQUoKJCBc8mFnOprRXeJkLf9IhFREcLSw3W1zdbyqqKCnh6ej50+eCkVMLHxwfFxcXo1KnTw5cWPC98hYyJMWdyYuVEHZENCwP69BEeEDEFx8nQvn173Lp1C1qt9qG/43nhPsj8+TR+TCwkKAhYtEh4YwLfeFSY53moVE1fPPi2awetVgvVo/8RVFQIXyFHjjRXamIDRK04mQxYu1Z4GMnUqZZOTs7w8vLErVs3H/p9eTkwdCjw/PMiBiXEkOhoYOBAoKysUSlXVVdDoVBA0cSMCo7jEBQU9PDFhUolrKmcmkovjSQtEv2as3Nn4U0f1dWml7Kfnx/UavX9B0QqKoShihUr6DwmFiaTCa9e6tdPuCp44G51RUUFPFpYJ9nZyQle3t7CrIuyMmEZz6++Avz8LJGcWDGzDAKMHy+sYVxTIxSzsThOhqCg9iguvonSUh38/YWFt+g8Jky4ugpLcU6YIFwdVFdDp9OhuqoKHgYW/Pb18IBjdTXu+PsLq2KFhFgoNLFmZhuVnTwZ2LZNuDgoKzPusWqeB/R6Fzg6+sHH5wz27gWMefiJELNxcQFWrQK++ALw9YX61i20k8kg1+kajy9rtUBlJVBRARnPQzt/Pqa6u6PMwFKehDQw622yiAhhGtz06cK5WlEhlHNtrbBusk4nFHVVlfDKJ5VKGPLYssUZgYHJyMvLNmc8Qow3ZAjw/ff4eMAA1AwdKqxtXF4unLxVVcLJrdUK6xyvWQOcOoWOCQkYPXYsVq9ezTo9sRIc38Rd5OaEhYXxp06datWBamuFcs7OBn78UViuU6sVzuvQUGDAACAyEnjiCWG8+OTJk1iyZAl27twJF2MWWSbEzEpKSjBx4kRkZGRAqVQKhVxaKowvu7sD/v6Nbnao1Wq88soriImJwdChQxklJ6xxHHea53mDj7ZZrJBbIzk5GUqlErGxsRY7JiHN2bFjBy5fvozExESTPpebm4uFCxfi66+/Njj2TGyTsYUs6Zm9s2fPxtGjR3HmzBnWUQhBWloaxowZY/Ln+vXrh+HDh+Ovf/2rGVIRWyLpQvbw8MCCBQuQkpICtaE3MRBiRgUFBbh79y7CWrmgyjvvvIPTp08jO5vui5DmSbqQAWDo0KHo2bMnNm3axDoKsWPp6ekYPXr0/TWeTeXi4oK4uDikpqai2pS5oMSuSL6QAWDevHnYv38/zp07xzoKsUN6vR4ZGRkYO3Zsm/YTHh6OiIgIrF+/XqRkxNZYRSF7e3vj/fffR1JSEurp9TfEws6ePQsnJyd069atzfuKiYnB8ePH8eOPP4qQjNgaqyhkABg9ejQ6duyIL774gnUUYmfS09MxZsyY+697ags3NzcsXLgQKSkpqK2tFSEdsSVWU8gcx2HBggXYtWsXLl++zDoOsRMajQaHDh1CVFSUaPscPHgw+vbti48++ki0fRLbYDWFDAD+/v545513kJycDJ1OxzoOsQPZ2dkICQlBUFCQqPudO3cuDh06hJ9++knU/RLrZlWFDAB/+MMf4O7ujr///e+soxA7kJaWJurVcQMPDw/ExsYiOTkZdXV1ou+fWCerK2SO4xAXF4dt27ahsLCQdRxiw6qqqnDy5EmMNNOi8sOHD0doaChN6ST3WV0hA0D79u3xxhtvIDk5GXpDb1UlpJWysrIQHh5u1sed582bh3379tGUTgLASgsZACZNmgSe57Fr1y7WUYiNau2j0qbw8fHBnDlzaEonAWDFhSyTyZCQkIDNmzejqKiIdRxiY27fvo1Lly5h8ODBZj/Ws88+i06dOuHzzz83+7GItFltIQNAly5dMGXKFCxZsgSmrFpHiCEZGRmIjIyEopm3ToupYUrnt99+i0uXLpn9eES6rLqQAWDKlClQqVTYu3cv6yjEhqSnp7f5UWlT+Pn54b333sPixYsbvXmd2A+rL2QHBwckJCRgw4YNuHPnDus4xAb8+uuvUKlU6Nu3r0WP+9xzz6Fdu3bYtm2bRY9LpMPqCxkAunfvjhdffBHLli2joQvSZunp6YiKimr1ym6txXEcFi1ahB07diA/P9+ixybSYBOFDACvv/46rl+/jszMTNZRiBXT6/UWH654UGBgIGbOnImkpCSa0mmHbKaQFQoFEhISsHr1apSVlbGOQ6xUbm4uPD09ERISwizDCy+8AGdnZ2zfvp1ZBsKGzRQyAPTu3Rtjx47FqlWrWEchVqphZTeWZDIZ4uPjsWXLFly9epVpFmJZNlXIAPDWW2/hwoULOHbsGOsoxMrU19cjKyvLLGtXmKpDhw70NKodsrlCdnJyQnx8PJYvX47KykrWcYgVOX78OEJDQ+Hv7886CoDfnkb95ptvWEchFmJzhQwA/fv3x+9//3t6yy8xiRSGKx7U8DTqpk2b6GlUO2GThQwA7733HnJycvCf//yHdRRiBVQqFXJychAZGck6ykM6d+6MqVOnIiUlhaZ02gGbLWRXV1csXLgQqampqKmpYR2HSNyhQ4cwcOBAuLm5sY7SSHR0NKqrq/Hdd9+xjkLMzGYLGQAiIiLQr18/elUOMUhqwxUPcnBwQGJiIj766CPcunWLdRxiRjZdyAAwZ84cHD58mF6VQ5pVXFyM/Px8REREsI7SrJCQELz88stITU2loQsbZvOF7OHhgfnz59OrckizMjIyMHLkSDg6OrKO0qLXXnsNJSUlSEtLYx2FmInNFzIAREZGolu3bti8eTPrKERieJ5n+qi0KeRyORITE7Fu3TqUlJSwjkPMwC4KGQBiY2Oxd+9enD9/nnUUIiGXL1+GWq1Gnz59WEcxSmhoKMaPH4/ly5fT0IUNsptC9vHxwezZs5GcnAyNRsM6DpGIhrdKcxzHOorRpk+fjsLCQhw6dIh1FCIyuylkABgzZgwCAgKwZcsW1lGIBOj1emRkZEh2dkVzFAoFEhMTaSEtG2RXhcxxHBYuXIivv/4aV65cYR2HMHbq1Cn4+vqia9eurKOYjBbSsk12VcgAEBAQcH+9WZ1OxzoOYchabuY156233kJeXh6OHj3KOgoRid0VMiCsN+vi4oIdO3awjkIYUavVOHr0KJ599lnWUVpNqVQiPj4eK1asgEqlYh2HiMAuC1kmkyEuLo7Wm7Vjx44dQ69eveDr68s6Spv069cPw4cPx9q1a1lHISKwy0IGgI4dO2LatGlYsmQJrTdrhzIyMqx6uOJB77zzDs6cOYPs7GzWUUgb2W0hA8DLL78MjUaDb7/9lnUUYkHl5eU4c+YMhg8fzjqKKFxcXBAXF4fU1FRUV1ezjkPawK4LuWG92U8++QTFxcWs4xALyczMxKBBg+Di4sI6imjCw8MRERGB9evXs45C2sCuCxkAunbtiujoaCxdupSefLITUl7ZrS1iYmJw/Phx/Pjjj6yjkFay+0IGgFdffRV3797Fvn37WEchZnbjxg1cu3YNAwYMYB1FdG5ubli0aBFSUlJoDXArRYWM3xZt2bBhAy3aYuPS09MxatQoyOVy1lHMYtCgQejXrx82btzIOgppBSrkexoWbVmxYgUNXdiohpXdbHG44kFz5szBoUOHaA1wK0SF/IDp06ejoKAAhw8fZh2FmMGFCxeg0+nQu3dv1lHMysPDA7GxsbQGuBWiQn6AQqFAQkICVq1ahfLyctZxiMgaHpW2ppXdWmv48OEIDQ3Fpk2bWEchJqBCfkSfPn0wevRorFmzhnUUIiKdTocDBw4gKiqKdRSLmT9/Pvbt24dz586xjkKMRIXchLfffhtnz57F8ePHWUchIsnJyUFQUBCCg4NZR7EYb29vzJ07F0lJSaivr2cdhxiBCrkJzs7OiIuLw9KlS1FVVcU6DhGBta/s1lqjRo1Cp06d8Nlnn7GOQoxAhdyMp59+GoMHD6Ynn2xAbW0tjh07hlGjRrGOYnEcx+GDDz7A7t27cfHiRdZxiAFUyC147733cOLECXryycp9//336NOnD3x8fFhHYcLX1xcxMTFISkqCVqtlHYe0gAq5BW5ubli4cCFSUlJQW1vLOg5ppbS0NLscrnjQuHHj4Ovri23btrGOQlpAhWzA4MGD8eSTT9KTT1aqtLQUZ8+exdChQ1lHYarh9WU7duxAfn4+6zikGVTIRpg7dy4OHjyIs2fPso5CTJSZmYkhQ4bA2dmZdRTmAgMDMXPmTCxevJheXyZRVMhG8PT0xLx585CcnEzTh6xMWlqazT8qbYrx48fD1dWVXl8mUVTIRhoxYgS6du2KTz/9lHUUYqSrV6+iuLgY4eHhrKNIBsdx9PoyCaNCNhLHcYiNjcWePXuQl5fHOg4xQnp6OkaPHg0HBwfWUSSlQ4cOeOONN5CcnEyvL5MYKmQTNEwfSk5OpulDEmcvK7u11qRJk8DzPHbt2sU6CnkAFbKJaPqQdfjll1/g4OCAnj17so4iSTKZDImJidi8eTOKiopYxyH3UCGbqGH60Pbt22n6kITZ08purRUcHIypU6ciJSWF1gCXCCrkVggMDMTbb79NY3ASpdVqkZmZaVcru7VWdHQ0qqursWfPHtZRCKiQW23ChAlQKBT46quvWEchjzh58iQ6deqEDh06sI4ieQ4ODkhMTMTGjRtx69Yt1nHsHhVyK8lkMsTFxeGzzz7D9evXWcchD6BHpU0TEhKCyZMnIzU1lYYuGKNCboPg4GC89tprSElJoaELiaipqUF2djZGjhzJOopVmTp1KkpKSpCWlsY6il2jQm6j6OhoqNVqfPfdd6yjEABHjhxB//794eXlxTqKVWl48/q6devozesMUSG3UcP0IRqDkwZ6VLr1Gt68vmzZMhq6YIQKWQSPPfYYXnrpJSxdupROZIZKSkpw/vx5DBkyhHUUqzV9+nRcu3YNmZmZrKPYJSpkkbz22mu4ffs20tPTWUexWwcPHsSwYcOgVCpZR7FaDW9eX716NcrKyljHsTtUyCJxdHREQkIC1q1bh9LSUtZx7BINV4ijd+/eGDduHFatWsU6it2hQhZRz5498fzzz2PFihWso9idgoIC3L17F2FhYayj2IS33noLeXl5OHLkCOsodoUKWWRvvvkmLl++jKysLNZR7ErDym4yGZ3SYlAqlYiPj8fKlSuhUqlYx7EbdPaKTKlUIjExkU5kC9Lr9cjIyKCHQUTWr18/REZGYu3atayj2A0qZDN48sknMWLECKxZs4Z1FLtw9uxZODk5oVu3bqyj2JxZs2bhzJkzyM7OZh3FLlAhm8msWbOQm5tLJ7IFNNzMo5XdxOfi4oK4uDgsWbIEVVVVrOPYPCpkM3FxccGiRYuQmpqK6upq1nFslkajweHDh2llNzMKDw/HoEGDsGHDBtZRbB4Vshk988wzGDBgAJ3IZpSdnY2QkBAEBQWxjmLTYmJicOLECeTk5LCOYtOokM1s9uzZ+Pe//43Tp0+zjmKTaO6xZbi5uWHhwoVYsmQJampqWMexWVTIZubu7o4FCxYgJSUFarWadRybUlVVhZMnT2LEiBGso9iFQYMGoV+/fvjoo49YR7FZVMgWMGTIEPzud7/Dxx9/zDqKTcnKykJ4eDg8PDxYR7Ebc+bMQVZWFnJzc1lHsUlUyBYyd+5cpKen45dffmEdxWbQcIXleXh4IDY2FikpKairq2Mdx+ZQIVuIt7c35s6di+TkZNTX17OOY/Vu376NS5cuYfDgwayj2J1hw4ahR48e2LRpE+soNocK2YJGjRqFjh074rPPPmMdxeplZGQgMjISCoWCdRS7NG/ePOzbt4++8YmMCtmCOI7DBx98gN27d+PSpUus41i19PR0elSaIfrGZx5UyBbm5+eHd999F8nJydDpdKzjWKVff/0VKpUKffv2ZR3Fro0aNQrBwcH0jU9EVMgMPP/88/D09MSXX37JOopVSk9PR1RUFK3sxhjHcViwYAF2796Nixcvso5jE+iMZoDjOCxatAhffvkl/ve//7GOY1X0ej0NV0iIr68vYmJikJSUBK1WyzqO1aNCZqR9+/aYMWMGkpOTodfrWcexGrm5ufDy8kJISAjrKOSecePGwdfXF1u3bmUdxepRITP04osvQiaTYefOnayjWI2G4QoiHQ3f+P7xj38gPz+fdRyrRoXMkEwmQ3x8PP72t7/hxo0brONIXn19PbKysqiQJSggIAAzZ87E4sWL6WZ1G1AhM9a5c2dMnToVqamp4HmedRxJO378OEJDQ+Hv7886CmnC+PHj4erqiu3bt7OOYrWokCUgOjoalZWV+Oc//8k6iqSlp6fTo9ISxnEc4uLisHXrVhQWFrKOY5WokCXAwcEBCQkJ+PDDD3H79m3WcSRJpVIhJycHkZGRrKOQFnTo0AFvvvkm3axuJSpkiejWrRsmTpyIZcuW0dBFEw4dOoSBAwfCzc2NdRRiwMSJEwEAu3btYpzE+lAhS8jrr7+OoqIiHDhwgHUUyaHhCushk8mQmJiIzZs3081qE1EhS4ijoyMSExOxdu1alJaWso4jGcXFxcjPz0dERATrKMRIwcHBmDp1KlJSUugbnwmokCWmV69eGDduHFavXs06imRkZGRg5MiRcHR0ZB2FmCA6Oho1NTXYs2cP6yhWgwpZgt566y3k5eXh6NGjrKMwx/M8PSptpRwcHLB48WJs3LgRt27dYh3HKlAhS5BSqURcXBxWrFgBlUrFOg5Tly9fhlqtRp8+fVhHIa3w2GOPYfLkyTTP3khUyBLVv39/DBs2DOvWrWMdham0tDRERUWB4zjWUUgrTZ06FSUlJdi/fz/rKJJHhSxh7777LnJycvDDDz+wjsKEXq9HRkYGza6wcnK5HImJiVi/fj1KSkpYx5E0KmQJc3FxwaJFi7B06VLU1NSwjmNxp06dgq+vL7p27co6Cmmj0NBQTJgwgebZG0CFLHEDBw5EWFgYPvzwQ9ZRLI5u5tmWadOm4dq1a8jMzGQdRbKokK3AX/7yFxw5cgS5ubmso1iMWq3G0aNH8eyzz7KOQkSiUCiQkJCA1atXo6ysjHUcSaJCtgIeHh6YP38+UlJSUFdXxzqORRw7dgy9evWCr68v6yhERL1798a4ceOwatUq1lEkiQrZSgwfPhyhoaHYtGkT6ygWkZGRQcMVNqphnv2RI0dYR5EcKmQrMm/ePOzbtw/nz59nHcWsysvLcebMGQwfPpx1FGIGSqUSCQkJWLlypd3Ps38UFbIV8fHxwV/+8hckJSVBo9GwjmM2mZmZGDRoEFxcXFhHIWbSt29fREZGYs2aNayjSAoVspWJiopC+/bt8cUXX7COYja0spt9mDVrFnJzc3HixAnWUSSDCtnKcByHDz74ADt37sSvv/7KOo7obty4gWvXrmHAgAGsoxAzc3FxQVxcHJYuXYqqqirWcSSBCtkK+fv7Y9asWUhOTra5F0qmp6dj1KhRkMvlrKMQCwgPD8egQYOwfv161lEkgQrZSr3wwgs290LJhpXdaLjCvrz33nvIzs5GTk4O6yjMUSFbqQdfKHn16lXWcURx4cIF6HQ69O7dm3UUYkFubm5YtGgRlixZYpdLBDyICtmKdejQAdOnT7eZF0o2PCpNK7vZn4iICPTv3x8fffQR6yhMUSFbuZdeegl6vR7ffPMN6yhtotPpcODAAURFRbGOQhh5//33kZWVZVdLBDyKCtnKyWQyJCQkYNOmTSgqKmIdp9VycnIQFBSE4OBg1lEIIx4eHoiNjUVKSgrUajXrOExQIduALl264E9/+pNVv5WBVnYjADBs2DD06NHDbpYIeBQVso2YMmUKysvLsXfvXtZRTFZbW4tjx45h1KhRrKMQCZg3bx7279+PX375hXUUi6NCthENb2XYsGED7ty5wzqOSb7//nv06dMHPj4+rKMQCfD29sbcuXORnJyM+vp61nEsigrZhnTv3h1//OMfsXz5cqsaukhLS6PhCvKQUaNGITg4GJ9++inrKBZFhWxjrO2tDKWlpTh79iyGDh3KOgqREI7jsGDBAuzZswcXL15kHcdiqJBtjEKhQHx8vNW8leHgwYMYMmQInJ2dWUchEuPr64vZs2cjKSkJWq2WdRyLoEK2QU888QSioqKwevVq1lEMokelSUvGjh0LX19fbNmyhXUUi6BCtlEzZ87EuXPncOzYMdZRmnX16lUUFxcjPDycdRQiURzHYdGiRfjqq69w5coV1nHMjgrZRjk5OSE+Ph7Lly9HZWUl6zhNSk9PR1RUFBwcHFhHIRIWEBCAmTNnIikpyeZWN3wUFbINe+qppzB48GBJLm3YsLIbPSpNjDF+/HibW92wKVTINi4mJgY//PCD5JY2/OWXX+Dg4ICePXuyjkKsAMdxiI+Px9atW1FYWMg6jtlQIds4V1dXSS5tSCu7EVO1b98eb775ps2sbtgUKmQ7EBERgb59+2Ljxo2sowAAtFotMjMzabiCmGzixIkAgJ07dzJOYh5UyHZizpw5yMzMxH//+1/WUXDy5El06tQJHTp0YB2FWBmZTIbExET87W9/w40bN1jHER0Vsp3w9PREbGysJNYHoEelSVsEBwfjtddeQ0pKilUtEWAMKmQ7EhkZiZCQEGzevJlZhpqaGpw4cQIjR45kloFYv+ga9GluAAALnklEQVToaNTW1mLPnj2so4iKCtnOxMbG4l//+hcuXLjA5PhHjhzBU089BS8vLybHJ7ahYehi48aNuHnzJus4oqFCtjPt2rXD7NmzkZycDI1GY/Hjp6Wl0aPSRBSPPfYYJk+ejKVLl9rM0AUVsh0aM2YM/Pz8sHXrVoset6SkBOfPn8eQIUMselxiu6ZOnYqSkhLs37+fdRRRUCHboQfXB8jPz7fYcQ8ePIhhw4ZBqVRa7JjEtsnlcixevBjr16+3uhczNIUK2U4FBATg7bffRlJSksUm2dNwBTGH7t27Y8KECVi2bJnVD11QIdux8ePHw8nJCTt27DD7sQoKCnD37l2EhYWZ/VjE/kybNg3Xr1+3mhczNIcK2Y7JZDLEx8fjiy++wLVr18x6rPT0dIwePRoyGZ1yRHwKhQKJiYlW82KG5tB/HXauY8eOeP3115GSkmK2oQu9Xo+MjAx6GISY1e9+9zs899xzWLlyJesorUaFTDB58mTU19dj9+7dZtn/2bNn4eTkhG7dupll/4Q0mDFjBi5evIisrCzWUVqFCplAJpMhISEBH3/8sVkm2TfczKOV3Yi5KZVKJCQkYOXKlVCpVKzjmIwKmQAQJtm/8sorok+y12g0OHz4MK3sRiymb9++GDlyJNasWcM6ismokMl9DZPs09LSRNtndnY2QkJCEBQUJNo+CTFk1qxZyM3NxfHjx1lHMQkVMrlPLpcjISEB69atw927d0XZJ809Jiw4OzsjLi4OS5cuRVVVFes4RqNCJg/p0aMHXnjhBaxYsaLN+6qqqsLJkycxYsQIEZIRYprw8HDJvlOyOVTIpJE33ngD+fn5OHz4cJv2k5WVhfDwcHh4eIiUjBDTxMTEIDs7W3LvlGwOFTJpRKFQ3L9TXVFR0er90HAFYU2q75RsDhUyaVKfPn3w7LPPtvpO9e3bt3Hp0iUMHjxY5GSEmCYiIgL9+/fHhx9+yDqKQVTIpFkzZ87ETz/9hBMnTpj82YyMDERGRkKhUJghGSGmef/993HkyBHk5uayjtIiKmTSrIY71ampqS3fqdbpgEceu05PT6dHpYlkeHh4YMGCBUhJSYFarW5yG5UKuHEDKCoCWI1uyNkclliL8PBwREREYMOGDVi4cKHwy0uXgL17gexs4Px5oLZW+L2rK9CrF+506waX4mL07duXXXBCHjF06FAcOHAAn3zyCWbPng2tFjhyBPjmG+DMGaC0FJDfa0StFujQAXjmGeDll4H+/QFLPGjKmfJUVlhYGH/q1CkzxiFSVFVVhUmTJmH1K6+g17ffAj//LFwRKxSAk9PDZ7FajYo7d8DLZPAaNgyIjwf69GGan5AGZWVlmDTpZURFbcaOHZ3R8HS1szPg6Phb6fI8UFcnXGvIZEBwMLBkCTBwYOuOy3HcaZ7nDa49S0MWxCA3R0dsbN8e3jNmQP/zz4CnJ+DjA7i5/VbGACCXg3dzw22tFk4BAcBPPwETJgArVwL19ez+AYTco9F4Q6fbgsREJdRqPTw9hdNZoXj4CpjjhGsNb2/Aw0MYypgyBVi4EGhmxEMUVMikZdXVwJQp6HLkiFC2dXUtfnerqamBg1wOJycn4Ux3cwM++QSYNu23oQ1CGLhxA3jhBaCwMBCurhpUVZUY9TmOE05jd3fgq6+EYjbXGDMVMmmeVgtMnw6cPg14ecG/fXuoVCrUtFCsFRUVDz8IIpcLlxknTgAzZza6+UeIJahUwEsvAXfuAN7eHIKCAlFWVg612viLBAcH4VQ+fRqYMcM8pzIVMmne558DOTmAlxfAcZA7OCAwIADFxcXQN3HvQc/zqKyshKen58N/wXHCmXzsGLB9u4XCE/KbpCSguFj40gYAcrkjAgL8UVRUDJ43vlkbTuUffjDPqUyFTJqWnw+sWSN8V3tgiMLdwwMKhQIlJY2/7lVVVcHJyQmO8iYm73CcMAsjNRW4ft2cyQl5SHY28N13v5VxA09PTzg6yk1eSIvjABcX4VQuKhIxKKiQSXM2bwY0GuHW8wM4AIGBgSgvK2s0n7OiogKeLa1boVAI+/z8czMEJqRp69cLww2NX+fIITAwCKWlpairM+1OXcOpLPZVMhUyaUylEi4pmilXR7kc/gEBKCouRoVWi7nXr2NQXh6mlJTA4DN9bm7A11+zm3lP7EpBgTDm6+7e9N87OjrC398fBQWfoqBgCvLyBqKoaLFR+3Z1Bb78UpgeJxYqZNLYyZPCRMymhh7u8fT0hNzBAYkFBXDkOOz098cHXl5YeesW8ls6Qx0dhSf7aD47sYAffhBO5ZYe6vDy8oJc3g6Oji/C0/P/Gb1vhUKYzXnunAhB76FCJo39/LPBecMcAM+AABytqsLrHh7QVFYiol07DHV3x35DK8SJfRYT0oycHGOesOPQufMfUVPTA4CrSfvXaIC8vNama4wKmTSWmyv8v38DbvI8lI6OkN25g7q6Ori6uaGbUtnyFTIgXHlLfJEXYhvOnQOUSsPbOToq4Ofnd2+5WdPeKfnzz63L1hRay4I0VlUl3AUxoEavh6dCAY7joNVqUVhYiOq6OtzUaFCg0wnfFZug1GhQePAgPn711Yd+39xj/GL9vjl0XNs97unTK6HRuEIm0xi1fX19vUnzi2UycW+HUCGTxuTyZsv0QS4yGar1enTt2hXqew+LKMrL4atWIzAgoNnPyaqr4fLEE1iwYIHRkbhmvneK9Xs6rm0e949/9MKdOxycnIzLUVLiD73e+GlwPG/cFbixqJBJY127CkMKri2PpwUrFNABuFZfj2BnZwDA/8rK0N3VFc73/tyk2loon3oKXr16iRiakMZCQ4Fbt1q8P/0QmczBpCtkvR7o3r112Zo8vni7IjYjLKypSZuNOMtkiHR3xyd37qBWr8d/a2rwfWUlxj06A/9RcjnQr59IYQlp3oABwgoAhvC8Dnp9PQA9AD30+nrwvM7g5xQKQMzrCrpCJo01lKWh+UIAFgQGIqmoCKMuXYKngwM+CAzEYy19h+N54YfWSiYW8PTTwu0QQ6dySclnKCnZfP/PFRVp8PV9E35+bzb7Ga1W2G/v3uLlpUImjXXvLvxcuSI8yNECDwcHrOnUyfh9V1YCTz4JdO7cxpCEGNanD9Cpk7CORUsjcH5+LZdvUyorgfHjm31+qlVoyII07e23hUmWJt5JbxHPC4NuM2aIt09CWsBxwKxZwtR3MU9lnU4Y1Xv9dfH2CVAhk+aMHSsMXRh6yMMUFRXCoN7IkeLtkxADxo8X/1RWqYR1kcW+L02FTJomkwFr1wpzesSYaFldLbwnZ9Uqy7ycjJB7HjyVq6vbvr+KCmEYZO7ctu/rUVTIpHnBwcCnnwrfz9pyJje8sXrrViAoSJxshJggOBjYskX4v1t6gXpLeB4oLwfatQN27BCW4BQbFTJp2cCBwpJWSiVQVmbaaxL0euEMdnUVzuD+/c2XkxADnn5aeAWTp6dwWuoMz2q7T6MRPtOzJ7BnD9C+vXkyUiETw8LDgawsICpKuLVcVtby5E6tVtimshJ47jnhszTvmEjAk08Chw8Dkyb9dirX1TV9w4/nhdG68nJhmwULhFVpzfkljzPlufCwsDD+FC2baN/Onwe2bRPOzIY5xQ3lLJcL48McB7z4onDXIzSUbV5CmnHjBvCPfwA7dwJ37woPeTxYhxqNMNTx5z8Df/hD4zeOmILjuNM8z4cZ3I4KmbSKVius/p2XJ1xCyGTCu/d69AC6dDFqcSJCpKKsDLh0SZg9wXGAj49wKos1TmxsIdODIaR15HKgWzfhhxAr5+0NPPMM6xQ0hkwIIZJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJh0jxkjuPuACg0XxxCCLFJnXme9zO0kUmFTAghxHxoyIIQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiTi/wNGxDXLo9qWxwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", - "ee = ExactEigensolver(qubitOp, k=1)\n", - "result = ee.run()\n", - "\n", - "\"\"\"\n", - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "result = run_algorithm(params,algo_input)\n", - "\"\"\"\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))\n", - "\n", - "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Running it on quantum computer\n", - "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -1.4979345138091684\n", - "time: 5.0429768562316895\n", - "maxcut objective: -3.9979345138091684\n", - "solution: [1. 0. 1. 0.]\n", - "solution objective: 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWkgva3ZUurWdUtpaVtbF2i5CKJuLP4tlq2F3TZVlvsIgkh1JLaFOlqEVSycYtL5DK5TTKX8/vjSItkkpnkzHzOzLyfj0cejz5i5szLPo7Xnvmcz/l8OJ7nQQghhD0Z6wCEEEIEVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRVMiEECIRclNe7Ovry3fp0sVMUQghxDadPn26hOd5v5ZeZ1Ihd+nSBadOnWp9KkIIsUMcxxUZ8zoasiCEEImgQiaEEImgQiaEEImgQiaEEImgQiaEEIkwaZYFIUSg0QBXrgClpYBeD7i5Ad26Aa6urJMRa2bZQm44iy9cAG7eBOrrhTP58ceBnj2BgACA4ywaiRBj1dQAGRnA1q3A+fOAgwMgkwENm+7U1wMdOwIvvQRMmAD4+7PNS6wPZ8oWTmFhYXyr5iFfvQps3y78aDTCJUV9vVC+HAcolYBWC4SEADNmAKNHA87Opn8OIWag1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIiQHmzRNeS+wbx3GneZ4Pa/F1Zi3k+npgwwZg82ZApxOuhh0dm34tzwPV1cLr2rUD1q8HnnnG+M8ixAxKS4G33wb+8x+hWJVK496n0wEqFRAYCGzaBPTubd6cRNqMLWTz3dQrLgbGjgU++kg4k729DZcxIFwpu7kBnp5AeblwebFsmXB5QggDJSXA+PFCGXt5GV/GgHCF7O0tHGPiRODMGfPlJLbDPIVcXAyMGwcUFgpnpdzEoWo3N8DdHfjkE2Dx4t8G6QixkPp64NVXgevXhVO4tbc23N2F03fKFGHkjpDmiF/IGg3w5z8D9+4JlxWt5eAgXC1v3w7s2CFePkKMsHEjcPGicAq2lasrUFsLvPcefeEjzRO/kD/+GLh8GfDwaPuxZDLhbF6yBLh2re3HI8QIBQVCIbu7izfpx9MT+PFHYNcucY5HbJO4hXznDvB//ycMOYh1JisUwvfH1FRxjkdIC774QrgpZ+pIW3M4TjiVN26kEThimLjzkHfuFM7k5m7etYanJ5CdDdy6Jdy2JsRMamuBr74Srimao9fX49at5aipyYVOp4KjY0f4+78NN7cIg+9xdhbGpPPygP79RQ5ObIJ4V8g8D2zZYtSky4QbNzDq8mUMuXgR469cwZ7y8ubf0DD7fs8ecbISYsCFC8I4b8vXFDo4OgYiOHgzunc/Cj+/t3DjxgLU1980+A6OE6bb5+aKmZjYEvEKubgYqKgwam7Qn319sTckBMdCQ7G2Y0dsvHMHF2prm3+TXA4cPy5SWEKaduGCcF+6JTKZM/z8pkOhaA+Ok8Hd/fdwdGwPtTq/2ffJ5cDJkyKFJTZHvELOzxdmRhjhMaUSivuPOXEAOI7D9Zb+FTg5AT/9RANwxGx4nkd+vh7Cw1I8eJ4Hz+sf+tHr9dDrdQ/9ADy02lLU11+FUvlYs5+hVAqrBxDSFPHGkO/cMe7S4r7lt27hn6WlqNPr8bhCgT48D1Vl5cMvul++/P3/VqhU+G7fPujvF7/wD+a3nwd/p78/v6i51xj6ae1rAECv14vymoa/Q0uvYfV3FfN/D7H/rq3536PB9evvoKxsOG7frgbQ1L1p7qHfa7VauLgo4eCwFp6ez0Gp7PLoGx5+NyfcoyakKeIVsokTLOMCAvB8aSmKnJ1xTqdDTUUF6h9YHOChfwf3z36XujrkHD8OvaMjOI4DxzX84+Ca/WnqNQAgk8lafA3Hcb++rqXPkjVc9Tfz+ca8xpS/hyX/rqa8Rup/V0OvSU4WFg/y8Wn29P1VQcEVVFevglKpR6dO81t8vV4vfNkjpCniFbKrq9FDFoDwDyAgIABu1dXIc3HBf5RKvNzcvwK9HlCpkLJsWeNVXQgRSc+exp/GdXVqVFevh6urFhpNLLRafYs3A+vqgNDQtucktkm8ZuvWzeSibNeuHfQ6Hapra3G9pe9xarWwTCeVMTGjHj2ML+Rr11Ihl99Gly4b4OsbhOLiYtwfYDNIrwfCw9uek9gm8drt8ceFOT0tDF2UarU4qFKh5v6YYZGXFw6oVOjf0vc4tRoIa3GxJELapEcP4cZbS9cHGs1NVFX9CzxfhMuXR6GkZBzKyl7EjRtfG3wPzwvXE4MGiRya2AzxhiwUCmDECODw4WbXsOAAfFNWhqXFxdADCHJ0xDve3ni8shK8l9fDY8cNeF64bHnuOdHiEtIUhQKYPFlYpFChMPw6rdYL7u67ERISgoY7HnV1ahQVFUGr1UAubzx2UVUlDFf07Gmm8MTqifuk3tSpwhN1PG/w0WlvuRybO3d+6Hd6nkdhYSFUFRXwbGo1l9paYTcR+q5HLCAmRlhosL7ecClXVKjun6u/nedKpRN8fHxQXFyMTp06PfRnPC98gYyNNW92Yt3EHZANCwP69BEeEDElBMehffv2uH37NrRa7cN/yPPCnZD582n8mFhEUBCwaJGwX0JT0955nodKpWry4qFdO19otVpUVKge+n1FhfAFcuRIc6UmtkDchpPJgLVrhceRTJxs6ezkBE8vL9y6ffvhPygvB4YOBZ5/XsSghDQvJgYYOBAoK2tcytXVVVAoFHB0bHz5zHEcgoKCHrq4UKmENZXT0mjLSNI88S85O3cWdvqorja5lP38/KBWq397QKSiQhiqWLGCzmRiUTKZsPVSv37CNcGD96orKirg6Wl4eVknJ2d4e3uhuLgYZWU83N2BL78E/PwsEJxYNfOMAYwbJ6xhXFMjFLOxYTgO7YOCcKu4GLrSUmHb3q++ojOZMOHqKizFOX68cG0gbPmoQ1VVNTxaWO/bw8MX1dWO8Pe/iz17hP17CWmJ+QZlJ00Ctm0TVvkuKzPusWqeh4teDz9HR5zx8QH27gU6dTJbREJa4uICrFoFfP454OsL3L6thkzWDjqdvNFQhlYLVFYK5c3zMsyfr4W7+xS4uZWxCU+sjnnvkkVECNPgpk0TztaKCqGca2uFdZN1OqGoq6qELZ9UKqBzZzhv2YKUwEDk5De/chYhljJkCPDdd8CAAR9h6NAaODsLQxlVVcJPRYVwivfvD6xZA5w6BSQmdsSYMaOwevVq1vGJleD4pm4jGxAWFsafOnWqdZ9UWyuUc04O8MMPwnKdWq2wandoKDBgABAZCTzxBMBxOHnyJJYsWYKdO3fCxYg1lgkxt5KSEkyYMAGZmZlQKpUoLwdKS4XxZXd3YYTt0VsdarUar7zyCmJjYzF06FA2wQlzHMed5nm+xSfbLFfIrZCSkgKlUom4uDiLfSYhhuzYsQOXL19GUlKSSe/Ly8vDwoUL8dVXX7U49kxsk7GFLOmJvbNnz8bRo0dx5swZ1lEIQXp6OkaPHm3y+/r164fhw4fjr3/9qxlSEVsi6UL28PDAggULkJqaCrVazToOsWOFhYW4d+8ewlq5nsrbb7+N06dPIycnR+RkxJZIupABYOjQoejZsyc2bdrEOgqxYxkZGRg1atSvazybysXFBfHx8UhLS0O1CVNBiX2RfCEDwLx587B//36cO3eOdRRih/R6PTIzMzFmzJg2HSc8PBwRERFYv369SMmIrbGKQvb29sZ7772H5ORk1NP+N8TCzp49CycnJ3Tr1q3Nx4qNjcXx48fxww8/iJCM2BqrKGQAGDVqFDp27IjPP/+cdRRiZzIyMjB69Ohft3tqCzc3NyxcuBCpqamobWmndWJ3rKaQOY7DggUL8PXXX+Py5cus4xA7odFocOjQIURHR4t2zMGDB6Nv37748MMPRTsmsQ1WU8gA4O/vj7fffhspKSnQ6XSs4xA7kJOTg5CQEAQFBYl63Llz5+LQoUP48ccfRT0usW5WVcgA8Ic//AHu7u74+9//zjoKsQPp6emiXh038PDwQFxcHFJSUlBXVyf68Yl1srpC5jgO8fHx2LZtG4qKiljHITasqqoKJ0+exEgzrSo/fPhwhIaG0pRO8iurK2QAaN++Pd544w2kpKRA38KmqoS0VnZ2NsLDw836uPO8efOwb98+mtJJAFhpIQPAxIkTwfM8vv7a8C6/hLRFax+VNoWPjw/mzJlDUzoJACsuZJlMhsTERGzevBk3b95kHYfYmDt37uDSpUsYPHiw2T/r2WefRadOnfDZZ5+Z/bOItFltIQNAly5dMHnyZCxZsgSmrFpHSEsyMzMRGRkJhaFtp0XUMKXz22+/xaVLl8z+eUS6rLqQAWDy5MlQqVTYu3cv6yjEhmRkZLT5UWlT+Pn54d1338XixYsb77xO7IbVF7KDgwMSExOxYcMG3L17l3UcYgN++eUXqFQq9O3b16Kf+9xzz6Fdu3bYtm2bRT+XSIfVFzIAdO/eHS+++CKWLVtGQxekzTIyMhAdHd3qld1ai+M4LFq0CDt27EBBQYFFP5tIg00UMgC8/vrruH79OrKyslhHIVZMr9dbfLjiQYGBgZg5cyaSk5NpSqcdsplCVigUSExMxOrVq1FWRrv8ktbJy8uDp6cnQkJCmGV44YUX4OzsjO3btzPLQNiwmUIGgN69e2PMmDFYtWoV6yjESjWs7MaSTCZDQkICtmzZgqtXrzLNQizLpgoZAN58801cuHABx44dYx2FWJn6+npkZ2ebZe0KU3Xo0IGeRrVDNlfITk5OSEhIwPLly1FZWck6DrEix48fR2hoKPz9/VlHAfDb06jffPMN6yjEQmyukAGgf//++P3vf0+7/BKTSGG44kENT6Nu2rSJnka1EzZZyADw7rvvIjc3F//5z39YRyFWQKVSITc3F5GRkayjPKRz586YMmUKUlNTaUqnHbDZQnZ1dcXChQuRlpaGmpoa1nGIxB06dAgDBw6Em5sb6yiNxMTEoLq6Gnv27GEdhZiZzRYyAERERKBfv360VQ5pkdSGKx7k4OCApKQkfPjhh7h9+zbrOMSMbLqQAWDOnDk4fPgwbZVDDCouLkZBQQEiIiJYRzEoJCQEL7/8MtLS0mjowobZfCF7eHhg/vz5tFUOMSgzMxMjR46Eo6Mj6yjNeu2111BSUoL09HTWUYiZ2HwhA0BkZCS6deuGzZs3s45CJIbneaaPSptCLpcjKSkJ69atQ0lJCes4xAzsopABIC4uDnv37sX58+dZRyEScvnyZajVavTp04d1FKOEhoZi3LhxWL58OQ1d2CC7KWQfHx/Mnj0bKSkp0Gg0rOMQiWjYVZrjONZRjDZt2jQUFRXh0KFDrKMQkdlNIQPA6NGjERAQgC1btrCOQiRAr9cjMzNTsrMrDFEoFEhKSqKFtGyQXRUyx3FYuHAhvvrqK1y5coV1HMLYqVOn4Ovri65du7KOYjJaSMs22VUhA0BAQMCv683qdDrWcQhD1nIzz5A333wT+fn5OHr0KOsoRCR2V8iAsN6si4sLduzYwToKYUStVuPo0aN49tlnWUdpNaVSiYSEBKxYsQIqlYp1HCICuyxkmUyG+Ph4Wm/Wjh07dgy9evWCr68v6yht0q9fPwwfPhxr165lHYWIwC4LGQA6duyIqVOnYsmSJbTerB3KzMy06uGKB7399ts4c+YMcnJyWEchbWS3hQwAL7/8MjQaDb799lvWUYgFlZeX48yZMxg+fDjrKKJwcXFBfHw80tLSUF1dzToOaQO7LuSG9WY//vhjFBcXs45DLCQrKwuDBg2Ci4sL6yiiCQ8PR0REBNavX886CmkDuy5kAOjatStiYmKwdOlSevLJTkh5Zbe2iI2NxfHjx/HDDz+wjkJaye4LGQBeffVV3Lt3D/v27WMdhZjZjRs3cO3aNQwYMIB1FNG5ublh0aJFSE1NpTXArRQVMn5btGXDhg20aIuNy8jIQFRUFORyOesoZjFo0CD069cPGzduZB2FtAIV8n0Ni7asWLGChi5sVMPKbrY4XPGgOXPm4NChQ7QGuBWiQn7AtGnTUFhYiMOHD7OOQszgwoUL0Ol06N27N+soZuXh4YG4uDhaA9wKUSE/QKFQIDExEatWrUJ5eTnrOERkDY9KW9PKbq01fPhwhIaGYtOmTayjEBNQIT+iT58+GDVqFNasWcM6ChGRTqfDgQMHEB0dzTqKxcyfPx/79u3DuXPnWEchRqJCbsJbb72Fs2fP4vjx46yjEJHk5uYiKCgIwcHBrKNYjLe3N+bOnYvk5GTU19ezjkOMQIXcBGdnZ8THx2Pp0qWoqqpiHYeIwNpXdmutqKgodOrUCZ9++inrKMQIVMgGPP300xg8eDA9+WQDamtrcezYMURFRbGOYnEcx+H999/Hrl27cPHiRdZxSAuokJvx7rvv4sSJE/Tkk5X77rvv0KdPH/j4+LCOwoSvry9iY2ORnJwMrVbLOg5pBhVyM9zc3LBw4UKkpqaitraWdRzSSunp6XY5XPGgsWPHwtfXF9u2bWMdhTSDCrkFgwcPxpNPPklPPlmp0tJSnD17FkOHDmUdhamG7ct27NiBgoIC1nGIAVTIRpg7dy4OHjyIs2fPso5CTJSVlYUhQ4bA2dmZdRTmAgMDMXPmTCxevJi2L5MoKmQjeHp6Yt68eUhJSaHpQ1YmPT3d5h+VNsW4cePg6upK25dJFBWykUaMGIGuXbvik08+YR2FGOnq1asoLi5GeHg46yiSwXEcbV8mYVTIRuI4DnFxcdi9ezfy8/NZxyFGyMjIwKhRo+Dg4MA6iqR06NABb7zxBlJSUmj7MomhQjZBw/ShlJQUmj4kcfaysltrTZw4ETzP4+uvv2YdhTyACtlENH3IOvz8889wcHBAz549WUeRJJlMhqSkJGzevBk3b95kHYfcR4VsoobpQ9u3b6fpQxJmTyu7tVZwcDCmTJmC1NRUWgNcIqiQWyEwMBBvvfUWjcFJlFarRVZWll2t7NZaMTExqK6uxu7du1lHIaBCbrXx48dDoVDgyy+/ZB2FPOLkyZPo1KkTOnTowDqK5Dk4OCApKQkbN27E7du3Wcexe1TIrSSTyRAfH49PP/0U169fZx2HPIAelTZNSEgIJk2ahLS0NBq6YIwKuQ2Cg4Px2muvITU1lYYuJKKmpgY5OTkYOXIk6yhWZcqUKSgpKUF6ejrrKHaNCrmNYmJioFarsWfPHtZRCIAjR46gf//+8PLyYh3FqjTsvL5u3TraeZ0hKuQ2apg+RGNw0kCPSrdew87ry5Yto6ELRqiQRfDYY4/hpZdewtKlS+lEZqikpATnz5/HkCFDWEexWtOmTcO1a9eQlZXFOopdokIWyWuvvYY7d+4gIyODdRS7dfDgQQwbNgxKpZJ1FKvVsPP66tWrUVZWxjqO3aFCFomjoyMSExOxbt06lJaWso5jl2i4Qhy9e/fG2LFjsWrVKtZR7A4Vsoh69uyJ559/HitWrGAdxe4UFhbi3r17CAsLYx3FJrz55pvIz8/HkSNHWEexK1TIIps+fTouX76M7Oxs1lHsSsPKbjIZndJiUCqVSEhIwMqVK6FSqVjHsRt09opMqVQiKSmJTmQL0uv1yMzMpIdBRNavXz9ERkZi7dq1rKPYDSpkM3jyyScxYsQIrFmzhnUUu3D27Fk4OTmhW7durKPYnFmzZuHMmTPIyclhHcUuUCGbyaxZs5CXl0cnsgU03Myjld3E5+Ligvj4eCxZsgRVVVWs49g8KmQzcXFxwaJFi5CWlobq6mrWcWyWRqPB4cOHaWU3MwoPD8egQYOwYcMG1lFsHhWyGT3zzDMYMGAAnchmlJOTg5CQEAQFBbGOYtNiY2Nx4sQJ5Obmso5i06iQzWz27Nn497//jdOnT7OOYpNo7rFluLm5YeHChViyZAlqampYx7FZVMhm5u7ujgULFiA1NRVqtZp1HJtSVVWFkydPYsSIEayj2IVBgwahX79++PDDD1lHsVlUyBYwZMgQ/O53v8NHH33EOopNyc7ORnh4ODw8PFhHsRtz5sxBdnY28vLyWEexSVTIFjJ37lxkZGTg559/Zh3FZtBwheV5eHggLi4OqampqKurYx3H5lAhW4i3tzfmzp2LlJQU1NfXs45j9e7cuYNLly5h8ODBrKPYnWHDhqFHjx7YtGkT6yg2hwrZgqKiotCxY0d8+umnrKNYvczMTERGRkKhULCOYpfmzZuHffv20Tc+kVEhWxDHcXj//fexa9cuXLp0iXUcq5aRkUGPSjNE3/jMgwrZwvz8/PDOO+8gJSUFOp2OdRyr9Msvv0ClUqFv376so9i1qKgoBAcH0zc+EVEhM/D888/D09MTX3zxBesoVikjIwPR0dG0shtjHMdhwYIF2LVrFy5evMg6jk2gM5oBjuOwaNEifPHFF/jf//7HOo5V0ev1NFwhIb6+voiNjUVycjK0Wi3rOFaPCpmR9u3bY8aMGUhJSYFer2cdx2rk5eXBy8sLISEhrKOQ+8aOHQtfX19s3bqVdRSrR4XM0IsvvgiZTIadO3eyjmI1GoYriHQ0fOP7xz/+gYKCAtZxrBoVMkMymQwJCQn429/+hhs3brCOI3n19fXIzs6mQpaggIAAzJw5E4sXL6ab1W1AhcxY586dMWXKFKSlpYHnedZxJO348eMIDQ2Fv78/6yikCePGjYOrqyu2b9/OOorVokKWgJiYGFRWVuKf//wn6yiSlpGRQY9KSxjHcYiPj8fWrVtRVFTEOo5VokKWAAcHByQmJuKDDz7AnTt3WMeRJJVKhdzcXERGRrKOQprRoUMHTJ8+nW5WtxIVskR069YNEyZMwLJly2joogmHDh3CwIED4ebmxjoKacGECRMAAF9//TXjJNaHCllCXn/9ddy8eRMHDhxgHUVyaLjCeshkMiQlJWHz5s10s9pEVMgS4ujoiKSkJKxduxalpaWs40hGcXExCgoKEBERwToKMVJwcDCmTJmC1NRU+sZnAipkienVqxfGjh2L1atXs44iGZmZmRg5ciQcHR1ZRyEmiImJQU1NDXbv3s06itWgQpagN998E/n5+Th69CjrKMzxPE+PSlspBwcHLF68GBs3bsTt27dZx7EKVMgSpFQqER8fjxUrVkClUrGOw9Tly5ehVqvRp08f1lFIKzz22GOYNGkSzbM3EhWyRPXv3x/Dhg3DunXrWEdhKj09HdHR0eA4jnUU0kpTpkxBSUkJ9u/fzzqK5FEhS9g777yD3NxcfP/996yjMKHX65GZmUmzK6ycXC5HUlIS1q9fj5KSEtZxJI0KWcJcXFywaNEiLF26FDU1NazjWNypU6fg6+uLrl27so5C2ig0NBTjx4+nefYtoEKWuIEDByIsLAwffPAB6ygWRzfzbMvUqVNx7do1ZGVlsY4iWVTIVuAvf/kLjhw5gry8PNZRLEatVuPo0aN49tlnWUchIlEoFEhMTMTq1atRVlbGOo4kUSFbAQ8PD8yfPx+pqamoq6tjHccijh07hl69esHX15d1FCKi3r17Y+zYsVi1ahXrKJJEhWwlhg8fjtDQUGzatIl1FIvIzMyk4Qob1TDP/siRI6yjSA4VshWZN28e9u3bh/Pnz7OOYlbl5eU4c+YMhg8fzjoKMQOlUonExESsXLnS7ufZP4oK2Yr4+PjgL3/5C5KTk6HRaFjHMZusrCwMGjQILi4urKMQM+nbty8iIyOxZs0a1lEkhQrZykRHR6N9+/b4/PPPWUcxG1rZzT7MmjULeXl5OHHiBOsokkGFbGU4jsP777+PnTt34pdffmEdR3Q3btzAtWvXMGDAANZRiJm5uLggPj4eS5cuRVVVFes4kkCFbIX8/f0xa9YspKSk2NyGkhkZGYiKioJcLmcdhVhAeHg4Bg0ahPXr17OOIglUyFbqhRdesLkNJRtWdqPhCvvy7rvvIicnB7m5uayjMEeFbKUe3FDy6tWrrOOI4sKFC9DpdOjduzfrKMSC3NzcsGjRIixZssQulwh4EBWyFevQoQOmTZtmMxtKNjwqTSu72Z+IiAj0798fH374IesoTFEhW7mXXnoJer0e33zzDesobaLT6XDgwAFER0ezjkIYee+995CdnW1XSwQ8igrZyslkMiQmJmLTpk24efMm6zitlpubi6CgIAQHB7OOQhjx8PBAXFwcUlNToVarWcdhggrZBnTp0gV/+tOfrHpXBlrZjQDAsGHD0KNHD7tZIuBRVMg2YvLkySgvL8fevXtZRzFZbW0tjh07hqioKNZRiATMmzcP+/fvx88//8w6isVRIduIhl0ZNmzYgLt377KOY5LvvvsOffr0gY+PD+soRAK8vb0xd+5cpKSkoL6+nnUci6JCtiHdu3fHH//4Ryxfvtyqhi7S09NpuII8JCoqCsHBwfjkk09YR7EoKmQbY227MpSWluLs2bMYOnQo6yhEQjiOw4IFC7B7925cvHiRdRyLoUK2MQqFAgkJCVazK8PBgwcxZMgQODs7s45CJMbX1xezZ89GcnIytFot6zgWQYVsg5544glER0dj9erVrKO0iB6VJs0ZM2YMfH19sWXLFtZRLIIK2UbNnDkT586dw7Fjx1hHMejq1asoLi5GeHg46yhEojiOw6JFi/Dll1/iypUrrOOYHRWyjXJyckJCQgKWL1+OyspK1nGalJGRgejoaDg4OLCOQiQsICAAM2fORHJyss2tbvgoKmQb9tRTT2Hw4MGSXNqwYWU3elSaGGPcuHE2t7phU6iQbVxsbCy+//57yS1t+PPPP8PBwQE9e/ZkHYVYAY7jkJCQgK1bt6KoqIh1HLOhQrZxrq6uklzakFZ2I6Zq3749pk+fbjOrGzaFCtkOREREoG/fvti4cSPrKAAArVaLrKwsGq4gJpswYQIAYOfOnYyTmAcVsp2YM2cOsrKy8N///pd1FJw8eRKdOnVChw4dWEchVkYmkyEpKQl/+9vfcOPGDdZxREeFbCc8PT0RFxcnifUB6FFp0hbBwcF47bXXkJqaalVLBBiDCtmOREZGIiQkBJs3b2aWoaamBif/IE+WAAALo0lEQVROnMDIkSOZZSDWLyYmBrW1tdi9ezfrKKKiQrYzcXFx+Ne//oULFy4w+fwjR47gqaeegpeXF5PPJ7ahYehi48aNuHXrFus4oqFCtjPt2rXD7NmzkZKSAo1GY/HPT09Pp0eliSgee+wxTJo0CUuXLrWZoQsqZDs0evRo+Pn5YevWrRb93JKSEpw/fx5Dhgyx6OcS2zVlyhSUlJRg//79rKOIggrZDj24PkBBQYHFPvfgwYMYNmwYlEqlxT6T2Da5XI7Fixdj/fr1VrcxQ1OokO1UQEAA3nrrLSQnJ1tskj0NVxBz6N69O8aPH49ly5ZZ/dAFFbIdGzduHJycnLBjxw6zf1ZhYSHu3buHsLAws38WsT9Tp07F9evXrWZjBkOokO2YTCZDQkICPv/8c1y7ds2sn5WRkYFRo0ZBJqNTjohPoVAgKSnJajZmMIT+ddi5jh074vXXX0dqaqrZhi70ej0yMzPpYRBiVr/73e/w3HPPYeXKlayjtBoVMsGkSZNQX1+PXbt2meX4Z8+ehZOTE7p162aW4xPSYMaMGbh48SKys7NZR2kVKmQCmUyGxMREfPTRR2aZZN9wM49WdiPmplQqkZiYiJUrV0KlUrGOYzIqZAJAmGT/yiuviD7JXqPR4PDhw7SyG7GYvn37YuTIkVizZg3rKCajQia/aphkn56eLtoxc3JyEBISgqCgINGOSUhLZs2ahby8PBw/fpx1FJNQIZNfyeVyJCYmYt26dbh3754ox6S5x4QFZ2dnxMfHY+nSpaiqqmIdx2hUyOQhPXr0wAsvvIAVK1a0+VhVVVU4efIkRowYIUIyQkwTHh4u2T0lDaFCJo288cYbKCgowOHDh9t0nOzsbISHh8PDw0OkZISYJjY2Fjk5OZLbU9IQKmTSiEKh+PVOdUVFRauPQ8MVhDWp7ilpCBUyaVKfPn3w7LPPtvpO9Z07d3Dp0iUMHjxY5GSEmCYiIgL9+/fHBx98wDpKi6iQiUEzZ87Ejz/+iBMnTpj83szMTERGRkKhUJghGSGmee+993DkyBHk5eWxjtIsKmRiUMOd6rS0tGbvVOt0wKNPXWdkZNCj0kQyPDw8sGDBAqSmpkKtVjf9IpUKuHEDuHkTYDS8IWfyqcRqhIeHIyIiAhs2bMDChQsBAJcuAXv3Ajk5wPnzQG2t8FpXV6BXL6Bbt7soLnZB3759GSYn5GFDhw7FgQMH8PHHH2P27NmAVgscOQJ88w1w5gxQWgrI71eiVgt06AA88wzw8stA//6ABZ405Ux5KissLIw/deqUGeMQKaqqqsLEiRPxyiur8e23vfDTT8IVsUIBODk9fA6r1cDduxWQyXgMG+aFhASgTx+2+QlpUFZWhpcnTsTm6Gh03rFDuCoGAGdnwNHxt9LleaCuTrjakMmA4GBgyRJg4MBWfS7Hcad5nm9x7VkasiAtcnR0Q/v2GzFjhjd++kkPT0/Axwdwc/utjAHhv93ceGi1dxAQ4IQffwTGjwdWrgTq69nlJ6SBt0aDLTodlElJ0KvVgKen8KNQPHwFzHHC1Ya3N+DhIQxlTJ4MLFwoXHWYCRUyaVZ1tXAeHjnSBW5uPOrq7jT7za2mpgZyuQOcnJzg6SmU9scfA1On/ja0QQgTN24AL7yAwKIiaFxdUWLsE3wcJ5zI7u7Al18K/yDMNMZMhUwM0mqBadOA06cBLy+gfXt/qFQq1NYaPhkrKioeehBELhcuMk6cAGbObHzzjxCLUKmAl14C7t4F5+2NwKAglJeVodaUq10HB+FkPn0amDHDLCczFTIx6LPPgNxcoYw5DnBwkCMgIBDFxcXg+cYnI8/rUVlZCU9Pz4d+z3HCeXzsGLB9u6XSE/KA5GSguFgYngDgKJfDPyAAxTdvQm/K6oYNJ/P335vlZKZCJk0qKADWrBG+qT04ROHh4Q6FQoGSkpJG76mqqoKTkxPkcsdGf8ZxwiyMtDTg+nVzJifkETk5wJ49v5ZxA09PT8gdHU1fSIvjABcX4WS+eVPEoFTIxIDNmwGNRrjx/DAOgYGBKCsrbzSfUxiu8Hz0Db9SKIRjfvaZ+HkJMWj9emG44ZH9HDkAQYGBKC0thbquzrRjNpzMIl8lUyGTRlQq4YLC0JpAcrkjAgL8UVx8E1ptBa5fn4v8/EEoKZkMoPmn+tzcgK++YjbvntibwkJhzNfdvck/dnR0hL+/Pz4pLMTkwkIMzM/HYmOvel1dgS++EKbHiYQKmTRy8qQwDVPezGNDnp6ecHCQo7AwCRznCH//nfDyeh+3b69EXV2Bwfc5OgpP9tF0dmIR338vnMzNTA3y8vJCO7kcLzo64v95Gv6G14hCIcznPHdOhKACKmTSyE8/GTNvmENAgCeqqo7Cw+N1VFZq0K5dBNzdh6KiYn+z7xT5HCbEsNzcFp+w4wD8sXNn9Kipgaupx9dogPz81qZrhAqZNJKXJ/yff0t4/hYcHZW4e1eGuro6uLm5Qqns1uwVMiBceUt8jRdiK86dA5TKFl+mcHSEn58fKioqYPKOkj/91KpoTaG1LEgjVVXCPZCW6PU1UCg8wXEctFotioqKUFdXDY3mFnS6QhiaTaTRKHHwYBFeffWjh35v6DF+sX5vCH2u7X7uytOn4arRQCMz7tqzvr7etPnFMpmoN0SokEkjcjkMlumDZDIX6PXV6Nq1K2prhRkX5eUKqNW+CAgINPi+6moZnnjCBQsWLDA6E2fga6dYv6fPtc3P9frjH8HdvSs8Bm0E/5IS3DOlkHneqCtwY1Ehk0a6dhWGFFxbGFBTKIIB6FBffw3OzsEAgLKy/8HVtTucnZ0Nvq+2FnjqKSV69fISMTUhTQgNBW7fbv4O9QMcZDLTrpD1eqB791aGa4zGkEkjYWGNpmw2SSZzhrt7JO7e/Rh6fS1qav6Lysrv4Ok5ttn3yeVAv34ihSWkOQMGCGsAtEDH86jX66EHoAdQr9dDZ8zXRIVCWHNWJHSFTBppKMsWZgsBAAIDF+DmzWRcuhQFBwdPBAa+D6XyMYOv53nhh5ZKJhbx9NPCDZEWTuZPS0qw+YGnT9MrKjDd1xfT/fwMH1urFY7bu7docamQSSPduws/V64ID3I0x8HBA506Gb/vXmUl8OSTQOfObQxJiDH69AE6dRLWsWhmDG66n1/z5duUykpg3DjDT1C1Ag1ZkCa99ZYwxdLEG+nN4nlhyG3GDPGOSUizOA6YNUuY/C7myazTCeN6r78u3jFBhUwMGDNGGLqoqBDvmBUVwpDeyJHiHZOQFo0bJ/7JrFIJ6yKLOH4MUCETA2QyYO1aYUaPGNMsq6uFXXJWrbLI1mSE/ObBk7m6uu3Hq6gQhkHmzm37sR5BhUwMCg4GPvlE+HbWlvO4YWOGrVuBoCBxshFikuBgYMsW4b+N3SnkUTwPlJcD7doBO3YIS3CKjAqZNGvgQGFBK6USKCszfYpmeblwL2XHDmHjXkKYefppYQsmT0/hxNTpjH+vRiO8p2dPYPduoH17s0SkQiYtCg8HsrOB6GjhxnJZWfNTO7Va4TWVlcBzzwnvpXnHRBKefBI4fBiYOPG3k7murukbfjwvjNeVlwuvWbBAWJfWjF/zOFOeCw8LC+NP0bqJdu38eWDbNuG8bJhT3FDOcrkwPsxxwIsvCvc8QkPZ5iXEoBs3gH/8A9i5E7h3T3jI48E+1GiEoY4//xn4wx8a7ThiCo7jTvM8H9bi66iQSWtotcLa3/n5wgWETCbsvdejB9Cli3GLExEiGWVlwKVLwuwJjgN8fISTWaRxYmMLmR4MIa0ilwPdugk/hFg9b2/gmWdYp6AxZEIIkQoqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQgqZEIIkQiT5iFzHHcXQJH54hBCiE3qzPN8iwsum1TIhBBCzIeGLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCL+PyxUNcsEcERnAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "seed = 10598\n", - "\n", - "spsa = SPSA(max_trials=300)\n", - "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", - "\n", - "result = vqe.run(quantum_instance)\n", - "\n", - "\"\"\"declarative approach\n", - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'SPSA',\n", - " 'max_trials': 300\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RY',\n", - " 'depth': 5,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': seed},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg,\n", - " 'backend': {provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'}\n", - "}\n", - "\n", - "result = run_algorithm(params, algo_input)\n", - "\"\"\"\n", - "\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))\n", - "\n", - "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -1.5\n", - "time: 10.28870177268982\n", - "maxcut objective: -4.0\n", - "solution: [0 1 0 1]\n", - "solution objective: 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWooP1t2dJqVnVLq6VtbF2i5CKJuLP4tlq2F3TZlpbuIgkh1JLaFOlqEVSycUlcIpfJbZK5nN8fRxS5zExyZj5nZt7PxyOPx1ecOedlH6ev75nP+ZzP4XieByGEEPZkrAMQQggRUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEyE3Z2NfXl+/SpYuZohBCiG06ffp0Cc/zfoa2M6mQu3TpglOnTrU+FSGE2CGO4wqN2Y6GLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCJMmmVBCLlHowGuXAFKSwG9HnBzA7p1A1xdWScjVsyihdxwDl+4ABQVAfX1wnn8+ONAz55AQADAcZZMRIgJamqA9HRg61bg/HnAwQGQyYCGt+7U1wMdOwIvvQRMnAj4+7PNS6wOZ8ornMLCwvjWzEO+ehXYvl340WiEC4r6eqF8OQ5QKgGtFggJAWbMAMaMAZydTT4MIeah1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIjgbmzRO2JXaN47jTPM+HGdzOnIVcXw9s2ABs3gzodMLVsKNj09vyPFBdLWzXrh2wfj3wzDNGH4oQ8ygtBd55B/jPf4RiVSqN+5xOB6hUQGAgsGkT0Lu3eXMSSTO2kM12U6+4GBg3Dvj4Y+E89vZuvowB4UrZzQ3w9ATKy4WLi2XLhIsTQpgoKQEmTBDK2MvL+DIGhCtkb29hH5MmAWfOmC8nsRlmKeTiYmD8eKCgQDgn5SaOVLu5Ae7uwKefAosX/zZER4jF1NcDr74KXL8unMStvbnh7i6cwFOnCmN3hLRA9ELWaIA//xm4e1e4qGgtBwfhann7dmDHDvHyEWKUjRuBixeFk7CtXF2B2lrg/ffpKx9pkeiF/MknwOXLgIdH2/clkwnn8pIlwLVrbd8fIUbJzxcK2d1dvGk/np7ATz8Bu3eLsz9ik0Qt5Nu3gf/7P2HIQazzWKEQvj2mpIizP0IM+vJL4aacqWNtLeE44WTeuJHG4EizRJ2HvHOncB63dPOuNTw9gaws4OZN4aY1IWZTWwt8/bVwVdGCer0ey2/eRE5NDVQ6HTo6OuIdf39EtPQ5Z2dhTDo3F+jfX+TgxBaIdoXM88CWLcZNubxxIx6XL4/GxYtDcOXKBJSXf9fi9g1z779reTNC2u7CBWGc18BVhQ5AoKMjNgcH42j37njbzw8LbtxAUX198x/iOGHCfU6OuJmJzRCtkIuLgYoK42YG+fr+GSEhexEaegwdO67F7dsbUVt7ocXPyOXA8eMihSWkORcuCHemDXCWyfCmnx/aKxSQcRx+7+6O9o6OyFOrW/6gXA6cPClSWGJrRCvkvDxhZoQxlMrHIJMp7v2JA8dx0Giut/gZJyfg559p+I2YD8/z0Oflged58A1/fvRHr4fukR8eQKlWi6v19XjM0BWJUimsH0BIE0QbQ75926gLi/tu3lyO0tJ/Qq+vg0LxOHi+DyorVQ9t81v58uB5QKVSYN++7+HgoL/39/xDPw/+Tq83vE1zP63dBgD0er0o2zT8Gwxtw+rfKub/HmL/W1vzv0eDd69fx/CyMlTfuiX84pG70/f/dO/3Wq0WShcXrHVwwHOenuhiqJA5TrhLTUgTRCtkU6dXBgTEorT0eTg7F0KnO4eKihrIZA+eqL/9h9Dw30RdnQuOH8+Go6MeHCdcWQt/z7X409Q2ACCTyQxuw3Hc/e0MHUt2b22Dlo5vzDam/Dss+W81ZRup/1ub2wZJScLiQT4+LZ6/Da7k52NVdTX0SiXmd+pk+AN6vfB1j5AmiFbIrq7GD1kAwn8AAQEBqK52g4tLLpTK/8DH5+Vmt9frhaUBli1LbrSmCyGi6dnT6BNZXVeH9dXV0Lq6IkajgV6rNTzFqK4OCA0VISixRaJVW7dujRe/MqRdu3bQ6fSora1GfX3LY8hqtbBMJ5UxMasePYwu5JRr13BLLseGLl0Q5OuL4uJiGLzFodcD4eFtjklsk2j19vjjwoweQ0MXWm0pVKqD0OtrwPM8vLwKoVIdgJNTy/My1WogzOBaSYS0UY8ewo03A+O8RRoN/lVVhUKex+jLlzG+pAQvlpVh140bzX+I54UrikGDRA5NbIVoQxYKBTBiBHD4sKE1LDiUlX2D4uKlAPRwdAyCt/e7qKx8HF5ePB4cO27A88JFy3PPiZWWkGYoFMCUKcIyhQpFs5t5abXY4+6OkJCQ+2esuq4OhYWF0Gi1cGzqKb+qKmG4omdP82QnVk/UJ/WmTROeqOP55h+dlsu90bnz5od+x/N6FBQUoKJCBc8mFnOprRXeJkLf9IhFREcLSw3W1zdbyqqKCnh6ej50+eCkVMLHxwfFxcXo1KnTw5cWPC98hYyJMWdyYuVEHZENCwP69BEeEDEFx8nQvn173Lp1C1qt9qG/43nhPsj8+TR+TCwkKAhYtEh4YwLfeFSY53moVE1fPPi2awetVgvVo/8RVFQIXyFHjjRXamIDRK04mQxYu1Z4GMnUqZZOTs7w8vLErVs3H/p9eTkwdCjw/PMiBiXEkOhoYOBAoKysUSlXVVdDoVBA0cSMCo7jEBQU9PDFhUolrKmcmkovjSQtEv2as3Nn4U0f1dWml7Kfnx/UavX9B0QqKoShihUr6DwmFiaTCa9e6tdPuCp44G51RUUFPFpYJ9nZyQle3t7CrIuyMmEZz6++Avz8LJGcWDGzDAKMHy+sYVxTIxSzsThOhqCg9iguvonSUh38/YWFt+g8Jky4ugpLcU6YIFwdVFdDp9OhuqoKHgYW/Pb18IBjdTXu+PsLq2KFhFgoNLFmZhuVnTwZ2LZNuDgoKzPusWqeB/R6Fzg6+sHH5wz27gWMefiJELNxcQFWrQK++ALw9YX61i20k8kg1+kajy9rtUBlJVBRARnPQzt/Pqa6u6PMwFKehDQw622yiAhhGtz06cK5WlEhlHNtrbBusk4nFHVVlfDKJ5VKGPLYssUZgYHJyMvLNmc8Qow3ZAjw/ff4eMAA1AwdKqxtXF4unLxVVcLJrdUK6xyvWQOcOoWOCQkYPXYsVq9ezTo9sRIc38Rd5OaEhYXxp06datWBamuFcs7OBn78UViuU6sVzuvQUGDAACAyEnjiCWG8+OTJk1iyZAl27twJF2MWWSbEzEpKSjBx4kRkZGRAqVQKhVxaKowvu7sD/v6Nbnao1Wq88soriImJwdChQxklJ6xxHHea53mDj7ZZrJBbIzk5GUqlErGxsRY7JiHN2bFjBy5fvozExESTPpebm4uFCxfi66+/Njj2TGyTsYUs6Zm9s2fPxtGjR3HmzBnWUQhBWloaxowZY/Ln+vXrh+HDh+Ovf/2rGVIRWyLpQvbw8MCCBQuQkpICtaE3MRBiRgUFBbh79y7CWrmgyjvvvIPTp08jO5vui5DmSbqQAWDo0KHo2bMnNm3axDoKsWPp6ekYPXr0/TWeTeXi4oK4uDikpqai2pS5oMSuSL6QAWDevHnYv38/zp07xzoKsUN6vR4ZGRkYO3Zsm/YTHh6OiIgIrF+/XqRkxNZYRSF7e3vj/fffR1JSEurp9TfEws6ePQsnJyd069atzfuKiYnB8ePH8eOPP4qQjNgaqyhkABg9ejQ6duyIL774gnUUYmfS09MxZsyY+697ags3NzcsXLgQKSkpqK2tFSEdsSVWU8gcx2HBggXYtWsXLl++zDoOsRMajQaHDh1CVFSUaPscPHgw+vbti48++ki0fRLbYDWFDAD+/v545513kJycDJ1OxzoOsQPZ2dkICQlBUFCQqPudO3cuDh06hJ9++knU/RLrZlWFDAB/+MMf4O7ujr///e+soxA7kJaWJurVcQMPDw/ExsYiOTkZdXV1ou+fWCerK2SO4xAXF4dt27ahsLCQdRxiw6qqqnDy5EmMNNOi8sOHD0doaChN6ST3WV0hA0D79u3xxhtvIDk5GXpDb1UlpJWysrIQHh5u1sed582bh3379tGUTgLASgsZACZNmgSe57Fr1y7WUYiNau2j0qbw8fHBnDlzaEonAWDFhSyTyZCQkIDNmzejqKiIdRxiY27fvo1Lly5h8ODBZj/Ws88+i06dOuHzzz83+7GItFltIQNAly5dMGXKFCxZsgSmrFpHiCEZGRmIjIyEopm3ToupYUrnt99+i0uXLpn9eES6rLqQAWDKlClQqVTYu3cv6yjEhqSnp7f5UWlT+Pn54b333sPixYsbvXmd2A+rL2QHBwckJCRgw4YNuHPnDus4xAb8+uuvUKlU6Nu3r0WP+9xzz6Fdu3bYtm2bRY9LpMPqCxkAunfvjhdffBHLli2joQvSZunp6YiKimr1ym6txXEcFi1ahB07diA/P9+ixybSYBOFDACvv/46rl+/jszMTNZRiBXT6/UWH654UGBgIGbOnImkpCSa0mmHbKaQFQoFEhISsHr1apSVlbGOQ6xUbm4uPD09ERISwizDCy+8AGdnZ2zfvp1ZBsKGzRQyAPTu3Rtjx47FqlWrWEchVqphZTeWZDIZ4uPjsWXLFly9epVpFmJZNlXIAPDWW2/hwoULOHbsGOsoxMrU19cjKyvLLGtXmKpDhw70NKodsrlCdnJyQnx8PJYvX47KykrWcYgVOX78OEJDQ+Hv7886CoDfnkb95ptvWEchFmJzhQwA/fv3x+9//3t6yy8xiRSGKx7U8DTqpk2b6GlUO2GThQwA7733HnJycvCf//yHdRRiBVQqFXJychAZGck6ykM6d+6MqVOnIiUlhaZ02gGbLWRXV1csXLgQqampqKmpYR2HSNyhQ4cwcOBAuLm5sY7SSHR0NKqrq/Hdd9+xjkLMzGYLGQAiIiLQr18/elUOMUhqwxUPcnBwQGJiIj766CPcunWLdRxiRjZdyAAwZ84cHD58mF6VQ5pVXFyM/Px8REREsI7SrJCQELz88stITU2loQsbZvOF7OHhgfnz59OrckizMjIyMHLkSDg6OrKO0qLXXnsNJSUlSEtLYx2FmInNFzIAREZGolu3bti8eTPrKERieJ5n+qi0KeRyORITE7Fu3TqUlJSwjkPMwC4KGQBiY2Oxd+9enD9/nnUUIiGXL1+GWq1Gnz59WEcxSmhoKMaPH4/ly5fT0IUNsptC9vHxwezZs5GcnAyNRsM6DpGIhrdKcxzHOorRpk+fjsLCQhw6dIh1FCIyuylkABgzZgwCAgKwZcsW1lGIBOj1emRkZEh2dkVzFAoFEhMTaSEtG2RXhcxxHBYuXIivv/4aV65cYR2HMHbq1Cn4+vqia9eurKOYjBbSsk12VcgAEBAQcH+9WZ1OxzoOYchabuY156233kJeXh6OHj3KOgoRid0VMiCsN+vi4oIdO3awjkIYUavVOHr0KJ599lnWUVpNqVQiPj4eK1asgEqlYh2HiMAuC1kmkyEuLo7Wm7Vjx44dQ69eveDr68s6Spv069cPw4cPx9q1a1lHISKwy0IGgI4dO2LatGlYsmQJrTdrhzIyMqx6uOJB77zzDs6cOYPs7GzWUUgb2W0hA8DLL78MjUaDb7/9lnUUYkHl5eU4c+YMhg8fzjqKKFxcXBAXF4fU1FRUV1ezjkPawK4LuWG92U8++QTFxcWs4xALyczMxKBBg+Di4sI6imjCw8MRERGB9evXs45C2sCuCxkAunbtiujoaCxdupSefLITUl7ZrS1iYmJw/Phx/Pjjj6yjkFay+0IGgFdffRV3797Fvn37WEchZnbjxg1cu3YNAwYMYB1FdG5ubli0aBFSUlJoDXArRYWM3xZt2bBhAy3aYuPS09MxatQoyOVy1lHMYtCgQejXrx82btzIOgppBSrkexoWbVmxYgUNXdiohpXdbHG44kFz5szBoUOHaA1wK0SF/IDp06ejoKAAhw8fZh2FmMGFCxeg0+nQu3dv1lHMysPDA7GxsbQGuBWiQn6AQqFAQkICVq1ahfLyctZxiMgaHpW2ppXdWmv48OEIDQ3Fpk2bWEchJqBCfkSfPn0wevRorFmzhnUUIiKdTocDBw4gKiqKdRSLmT9/Pvbt24dz586xjkKMRIXchLfffhtnz57F8ePHWUchIsnJyUFQUBCCg4NZR7EYb29vzJ07F0lJSaivr2cdhxiBCrkJzs7OiIuLw9KlS1FVVcU6DhGBta/s1lqjRo1Cp06d8Nlnn7GOQoxAhdyMp59+GoMHD6Ynn2xAbW0tjh07hlGjRrGOYnEcx+GDDz7A7t27cfHiRdZxiAFUyC147733cOLECXryycp9//336NOnD3x8fFhHYcLX1xcxMTFISkqCVqtlHYe0gAq5BW5ubli4cCFSUlJQW1vLOg5ppbS0NLscrnjQuHHj4Ovri23btrGOQlpAhWzA4MGD8eSTT9KTT1aqtLQUZ8+exdChQ1lHYarh9WU7duxAfn4+6zikGVTIRpg7dy4OHjyIs2fPso5CTJSZmYkhQ4bA2dmZdRTmAgMDMXPmTCxevJheXyZRVMhG8PT0xLx585CcnEzTh6xMWlqazT8qbYrx48fD1dWVXl8mUVTIRhoxYgS6du2KTz/9lHUUYqSrV6+iuLgY4eHhrKNIBsdx9PoyCaNCNhLHcYiNjcWePXuQl5fHOg4xQnp6OkaPHg0HBwfWUSSlQ4cOeOONN5CcnEyvL5MYKmQTNEwfSk5OpulDEmcvK7u11qRJk8DzPHbt2sU6CnkAFbKJaPqQdfjll1/g4OCAnj17so4iSTKZDImJidi8eTOKiopYxyH3UCGbqGH60Pbt22n6kITZ08purRUcHIypU6ciJSWF1gCXCCrkVggMDMTbb79NY3ASpdVqkZmZaVcru7VWdHQ0qqursWfPHtZRCKiQW23ChAlQKBT46quvWEchjzh58iQ6deqEDh06sI4ieQ4ODkhMTMTGjRtx69Yt1nHsHhVyK8lkMsTFxeGzzz7D9evXWcchD6BHpU0TEhKCyZMnIzU1lYYuGKNCboPg4GC89tprSElJoaELiaipqUF2djZGjhzJOopVmTp1KkpKSpCWlsY6il2jQm6j6OhoqNVqfPfdd6yjEABHjhxB//794eXlxTqKVWl48/q6devozesMUSG3UcP0IRqDkwZ6VLr1Gt68vmzZMhq6YIQKWQSPPfYYXnrpJSxdupROZIZKSkpw/vx5DBkyhHUUqzV9+nRcu3YNmZmZrKPYJSpkkbz22mu4ffs20tPTWUexWwcPHsSwYcOgVCpZR7FaDW9eX716NcrKyljHsTtUyCJxdHREQkIC1q1bh9LSUtZx7BINV4ijd+/eGDduHFatWsU6it2hQhZRz5498fzzz2PFihWso9idgoIC3L17F2FhYayj2IS33noLeXl5OHLkCOsodoUKWWRvvvkmLl++jKysLNZR7ErDym4yGZ3SYlAqlYiPj8fKlSuhUqlYx7EbdPaKTKlUIjExkU5kC9Lr9cjIyKCHQUTWr18/REZGYu3atayj2A0qZDN48sknMWLECKxZs4Z1FLtw9uxZODk5oVu3bqyj2JxZs2bhzJkzyM7OZh3FLlAhm8msWbOQm5tLJ7IFNNzMo5XdxOfi4oK4uDgsWbIEVVVVrOPYPCpkM3FxccGiRYuQmpqK6upq1nFslkajweHDh2llNzMKDw/HoEGDsGHDBtZRbB4Vshk988wzGDBgAJ3IZpSdnY2QkBAEBQWxjmLTYmJicOLECeTk5LCOYtOokM1s9uzZ+Pe//43Tp0+zjmKTaO6xZbi5uWHhwoVYsmQJampqWMexWVTIZubu7o4FCxYgJSUFarWadRybUlVVhZMnT2LEiBGso9iFQYMGoV+/fvjoo49YR7FZVMgWMGTIEPzud7/Dxx9/zDqKTcnKykJ4eDg8PDxYR7Ebc+bMQVZWFnJzc1lHsUlUyBYyd+5cpKen45dffmEdxWbQcIXleXh4IDY2FikpKairq2Mdx+ZQIVuIt7c35s6di+TkZNTX17OOY/Vu376NS5cuYfDgwayj2J1hw4ahR48e2LRpE+soNocK2YJGjRqFjh074rPPPmMdxeplZGQgMjISCoWCdRS7NG/ePOzbt4++8YmMCtmCOI7DBx98gN27d+PSpUus41i19PR0elSaIfrGZx5UyBbm5+eHd999F8nJydDpdKzjWKVff/0VKpUKffv2ZR3Fro0aNQrBwcH0jU9EVMgMPP/88/D09MSXX37JOopVSk9PR1RUFK3sxhjHcViwYAF2796Nixcvso5jE+iMZoDjOCxatAhffvkl/ve//7GOY1X0ej0NV0iIr68vYmJikJSUBK1WyzqO1aNCZqR9+/aYMWMGkpOTodfrWcexGrm5ufDy8kJISAjrKOSecePGwdfXF1u3bmUdxepRITP04osvQiaTYefOnayjWI2G4QoiHQ3f+P7xj38gPz+fdRyrRoXMkEwmQ3x8PP72t7/hxo0brONIXn19PbKysqiQJSggIAAzZ87E4sWL6WZ1G1AhM9a5c2dMnToVqamp4HmedRxJO378OEJDQ+Hv7886CmnC+PHj4erqiu3bt7OOYrWokCUgOjoalZWV+Oc//8k6iqSlp6fTo9ISxnEc4uLisHXrVhQWFrKOY5WokCXAwcEBCQkJ+PDDD3H79m3WcSRJpVIhJycHkZGRrKOQFnTo0AFvvvkm3axuJSpkiejWrRsmTpyIZcuW0dBFEw4dOoSBAwfCzc2NdRRiwMSJEwEAu3btYpzE+lAhS8jrr7+OoqIiHDhwgHUUyaHhCushk8mQmJiIzZs3081qE1EhS4ijoyMSExOxdu1alJaWso4jGcXFxcjPz0dERATrKMRIwcHBmDp1KlJSUugbnwmokCWmV69eGDduHFavXs06imRkZGRg5MiRcHR0ZB2FmCA6Oho1NTXYs2cP6yhWgwpZgt566y3k5eXh6NGjrKMwx/M8PSptpRwcHLB48WJs3LgRt27dYh3HKlAhS5BSqURcXBxWrFgBlUrFOg5Tly9fhlqtRp8+fVhHIa3w2GOPYfLkyTTP3khUyBLVv39/DBs2DOvWrWMdham0tDRERUWB4zjWUUgrTZ06FSUlJdi/fz/rKJJHhSxh7777LnJycvDDDz+wjsKEXq9HRkYGza6wcnK5HImJiVi/fj1KSkpYx5E0KmQJc3FxwaJFi7B06VLU1NSwjmNxp06dgq+vL7p27co6Cmmj0NBQTJgwgebZG0CFLHEDBw5EWFgYPvzwQ9ZRLI5u5tmWadOm4dq1a8jMzGQdRbKokK3AX/7yFxw5cgS5ubmso1iMWq3G0aNH8eyzz7KOQkSiUCiQkJCA1atXo6ysjHUcSaJCtgIeHh6YP38+UlJSUFdXxzqORRw7dgy9evWCr68v6yhERL1798a4ceOwatUq1lEkiQrZSgwfPhyhoaHYtGkT6ygWkZGRQcMVNqphnv2RI0dYR5EcKmQrMm/ePOzbtw/nz59nHcWsysvLcebMGQwfPpx1FGIGSqUSCQkJWLlypd3Ps38UFbIV8fHxwV/+8hckJSVBo9GwjmM2mZmZGDRoEFxcXFhHIWbSt29fREZGYs2aNayjSAoVspWJiopC+/bt8cUXX7COYja0spt9mDVrFnJzc3HixAnWUSSDCtnKcByHDz74ADt37sSvv/7KOo7obty4gWvXrmHAgAGsoxAzc3FxQVxcHJYuXYqqqirWcSSBCtkK+fv7Y9asWUhOTra5F0qmp6dj1KhRkMvlrKMQCwgPD8egQYOwfv161lEkgQrZSr3wwgs290LJhpXdaLjCvrz33nvIzs5GTk4O6yjMUSFbqQdfKHn16lXWcURx4cIF6HQ69O7dm3UUYkFubm5YtGgRlixZYpdLBDyICtmKdejQAdOnT7eZF0o2PCpNK7vZn4iICPTv3x8fffQR6yhMUSFbuZdeegl6vR7ffPMN6yhtotPpcODAAURFRbGOQhh5//33kZWVZVdLBDyKCtnKyWQyJCQkYNOmTSgqKmIdp9VycnIQFBSE4OBg1lEIIx4eHoiNjUVKSgrUajXrOExQIduALl264E9/+pNVv5WBVnYjADBs2DD06NHDbpYIeBQVso2YMmUKysvLsXfvXtZRTFZbW4tjx45h1KhRrKMQCZg3bx7279+PX375hXUUi6NCthENb2XYsGED7ty5wzqOSb7//nv06dMHPj4+rKMQCfD29sbcuXORnJyM+vp61nEsigrZhnTv3h1//OMfsXz5cqsaukhLS6PhCvKQUaNGITg4GJ9++inrKBZFhWxjrO2tDKWlpTh79iyGDh3KOgqREI7jsGDBAuzZswcXL15kHcdiqJBtjEKhQHx8vNW8leHgwYMYMmQInJ2dWUchEuPr64vZs2cjKSkJWq2WdRyLoEK2QU888QSioqKwevVq1lEMokelSUvGjh0LX19fbNmyhXUUi6BCtlEzZ87EuXPncOzYMdZRmnX16lUUFxcjPDycdRQiURzHYdGiRfjqq69w5coV1nHMjgrZRjk5OSE+Ph7Lly9HZWUl6zhNSk9PR1RUFBwcHFhHIRIWEBCAmTNnIikpyeZWN3wUFbINe+qppzB48GBJLm3YsLIbPSpNjDF+/HibW92wKVTINi4mJgY//PCD5JY2/OWXX+Dg4ICePXuyjkKsAMdxiI+Px9atW1FYWMg6jtlQIds4V1dXSS5tSCu7EVO1b98eb775ps2sbtgUKmQ7EBERgb59+2Ljxo2sowAAtFotMjMzabiCmGzixIkAgJ07dzJOYh5UyHZizpw5yMzMxH//+1/WUXDy5El06tQJHTp0YB2FWBmZTIbExET87W9/w40bN1jHER0Vsp3w9PREbGysJNYHoEelSVsEBwfjtddeQ0pKilUtEWAMKmQ7EhkZiZCQEGzevJlZhpqaGpw4cQIjR45kloFYv+ga9GluAAALnklEQVToaNTW1mLPnj2so4iKCtnOxMbG4l//+hcuXLjA5PhHjhzBU089BS8vLybHJ7ahYehi48aNuHnzJus4oqFCtjPt2rXD7NmzkZycDI1GY/Hjp6Wl0aPSRBSPPfYYJk+ejKVLl9rM0AUVsh0aM2YM/Pz8sHXrVoset6SkBOfPn8eQIUMselxiu6ZOnYqSkhLs37+fdRRRUCHboQfXB8jPz7fYcQ8ePIhhw4ZBqVRa7JjEtsnlcixevBjr16+3uhczNIUK2U4FBATg7bffRlJSksUm2dNwBTGH7t27Y8KECVi2bJnVD11QIdux8ePHw8nJCTt27DD7sQoKCnD37l2EhYWZ/VjE/kybNg3Xr1+3mhczNIcK2Y7JZDLEx8fjiy++wLVr18x6rPT0dIwePRoyGZ1yRHwKhQKJiYlW82KG5tB/HXauY8eOeP3115GSkmK2oQu9Xo+MjAx6GISY1e9+9zs899xzWLlyJesorUaFTDB58mTU19dj9+7dZtn/2bNn4eTkhG7dupll/4Q0mDFjBi5evIisrCzWUVqFCplAJpMhISEBH3/8sVkm2TfczKOV3Yi5KZVKJCQkYOXKlVCpVKzjmIwKmQAQJtm/8sorok+y12g0OHz4MK3sRiymb9++GDlyJNasWcM6ismokMl9DZPs09LSRNtndnY2QkJCEBQUJNo+CTFk1qxZyM3NxfHjx1lHMQkVMrlPLpcjISEB69atw927d0XZJ809Jiw4OzsjLi4OS5cuRVVVFes4RqNCJg/p0aMHXnjhBaxYsaLN+6qqqsLJkycxYsQIEZIRYprw8HDJvlOyOVTIpJE33ngD+fn5OHz4cJv2k5WVhfDwcHh4eIiUjBDTxMTEIDs7W3LvlGwOFTJpRKFQ3L9TXVFR0er90HAFYU2q75RsDhUyaVKfPn3w7LPPtvpO9e3bt3Hp0iUMHjxY5GSEmCYiIgL9+/fHhx9+yDqKQVTIpFkzZ87ETz/9hBMnTpj82YyMDERGRkKhUJghGSGmef/993HkyBHk5uayjtIiKmTSrIY71ampqS3fqdbpgEceu05PT6dHpYlkeHh4YMGCBUhJSYFarW5yG5UKuHEDKCoCWI1uyNkclliL8PBwREREYMOGDVi4cKHwy0uXgL17gexs4Px5oLZW+L2rK9CrF+506waX4mL07duXXXBCHjF06FAcOHAAn3zyCWbPng2tFjhyBPjmG+DMGaC0FJDfa0StFujQAXjmGeDll4H+/QFLPGjKmfJUVlhYGH/q1CkzxiFSVFVVhUmTJmH1K6+g17ffAj//LFwRKxSAk9PDZ7FajYo7d8DLZPAaNgyIjwf69GGan5AGZWVlmDTpZURFbcaOHZ3R8HS1szPg6Phb6fI8UFcnXGvIZEBwMLBkCTBwYOuOy3HcaZ7nDa49S0MWxCA3R0dsbN8e3jNmQP/zz4CnJ+DjA7i5/VbGACCXg3dzw22tFk4BAcBPPwETJgArVwL19ez+AYTco9F4Q6fbgsREJdRqPTw9hdNZoXj4CpjjhGsNb2/Aw0MYypgyBVi4EGhmxEMUVMikZdXVwJQp6HLkiFC2dXUtfnerqamBg1wOJycn4Ux3cwM++QSYNu23oQ1CGLhxA3jhBaCwMBCurhpUVZUY9TmOE05jd3fgq6+EYjbXGDMVMmmeVgtMnw6cPg14ecG/fXuoVCrUtFCsFRUVDz8IIpcLlxknTgAzZza6+UeIJahUwEsvAXfuAN7eHIKCAlFWVg612viLBAcH4VQ+fRqYMcM8pzIVMmne558DOTmAlxfAcZA7OCAwIADFxcXQN3HvQc/zqKyshKen58N/wXHCmXzsGLB9u4XCE/KbpCSguFj40gYAcrkjAgL8UVRUDJ43vlkbTuUffjDPqUyFTJqWnw+sWSN8V3tgiMLdwwMKhQIlJY2/7lVVVcHJyQmO8iYm73CcMAsjNRW4ft2cyQl5SHY28N13v5VxA09PTzg6yk1eSIvjABcX4VQuKhIxKKiQSXM2bwY0GuHW8wM4AIGBgSgvK2s0n7OiogKeLa1boVAI+/z8czMEJqRp69cLww2NX+fIITAwCKWlpairM+1OXcOpLPZVMhUyaUylEi4pmilXR7kc/gEBKCouRoVWi7nXr2NQXh6mlJTA4DN9bm7A11+zm3lP7EpBgTDm6+7e9N87OjrC398fBQWfoqBgCvLyBqKoaLFR+3Z1Bb78UpgeJxYqZNLYyZPCRMymhh7u8fT0hNzBAYkFBXDkOOz098cHXl5YeesW8ls6Qx0dhSf7aD47sYAffhBO5ZYe6vDy8oJc3g6Oji/C0/P/Gb1vhUKYzXnunAhB76FCJo39/LPBecMcAM+AABytqsLrHh7QVFYiol07DHV3x35DK8SJfRYT0oycHGOesOPQufMfUVPTA4CrSfvXaIC8vNama4wKmTSWmyv8v38DbvI8lI6OkN25g7q6Ori6uaGbUtnyFTIgXHlLfJEXYhvOnQOUSsPbOToq4Ofnd2+5WdPeKfnzz63L1hRay4I0VlUl3AUxoEavh6dCAY7joNVqUVhYiOq6OtzUaFCg0wnfFZug1GhQePAgPn711Yd+39xj/GL9vjl0XNs97unTK6HRuEIm0xi1fX19vUnzi2UycW+HUCGTxuTyZsv0QS4yGar1enTt2hXqew+LKMrL4atWIzAgoNnPyaqr4fLEE1iwYIHRkbhmvneK9Xs6rm0e949/9MKdOxycnIzLUVLiD73e+GlwPG/cFbixqJBJY127CkMKri2PpwUrFNABuFZfj2BnZwDA/8rK0N3VFc73/tyk2loon3oKXr16iRiakMZCQ4Fbt1q8P/0QmczBpCtkvR7o3r112Zo8vni7IjYjLKypSZuNOMtkiHR3xyd37qBWr8d/a2rwfWUlxj06A/9RcjnQr59IYQlp3oABwgoAhvC8Dnp9PQA9AD30+nrwvM7g5xQKQMzrCrpCJo01lKWh+UIAFgQGIqmoCKMuXYKngwM+CAzEYy19h+N54YfWSiYW8PTTwu0QQ6dySclnKCnZfP/PFRVp8PV9E35+bzb7Ga1W2G/v3uLlpUImjXXvLvxcuSI8yNECDwcHrOnUyfh9V1YCTz4JdO7cxpCEGNanD9Cpk7CORUsjcH5+LZdvUyorgfHjm31+qlVoyII07e23hUmWJt5JbxHPC4NuM2aIt09CWsBxwKxZwtR3MU9lnU4Y1Xv9dfH2CVAhk+aMHSsMXRh6yMMUFRXCoN7IkeLtkxADxo8X/1RWqYR1kcW+L02FTJomkwFr1wpzesSYaFldLbwnZ9Uqy7ycjJB7HjyVq6vbvr+KCmEYZO7ctu/rUVTIpHnBwcCnnwrfz9pyJje8sXrrViAoSJxshJggOBjYskX4v1t6gXpLeB4oLwfatQN27BCW4BQbFTJp2cCBwpJWSiVQVmbaaxL0euEMdnUVzuD+/c2XkxADnn5aeAWTp6dwWuoMz2q7T6MRPtOzJ7BnD9C+vXkyUiETw8LDgawsICpKuLVcVtby5E6tVtimshJ47jnhszTvmEjAk08Chw8Dkyb9dirX1TV9w4/nhdG68nJhmwULhFVpzfkljzPlufCwsDD+FC2baN/Onwe2bRPOzIY5xQ3lLJcL48McB7z4onDXIzSUbV5CmnHjBvCPfwA7dwJ37woPeTxYhxqNMNTx5z8Df/hD4zeOmILjuNM8z4cZ3I4KmbSKVius/p2XJ1xCyGTCu/d69AC6dDFqcSJCpKKsDLh0SZg9wXGAj49wKos1TmxsIdODIaR15HKgWzfhhxAr5+0NPPMM6xQ0hkwIIZJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJh0jxkjuPuACg0XxxCCLFJnXme9zO0kUmFTAghxHxoyIIQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiTi/wNGxDXLo9qWxwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# run quantum algorithm with shots\n", - "seed = 10598\n", - "\n", - "spsa = SPSA(max_trials=300)\n", - "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", - "\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", - "\n", - "result = vqe.run(quantum_instance)\n", - "\n", - "\"\"\"declarative approach, update the param from the previous cell.\n", - "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", - "params['backend']['provider'] = 'qiskit.BasicAer'\n", - "params['backend']['name'] = 'qasm_simulator'\n", - "params['backend']['shots'] = 1024\n", - "result = run_algorithm(params, algo_input)\n", - "\"\"\"\n", - "\n", - "x = maxcut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "print('maxcut objective:', result['energy'] + offset)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))\n", - "plot_histogram(result['eigvecs'][0])\n", - "\n", - "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Optional] Checking that the full Hamiltonian made by ```docplex.get_qubitops``` gives the right cost" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -1.5\n", - "maxcut objective: -4.0\n", - "solution: [0. 1. 0. 1.]\n", - "solution objective: 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8THf+P/DXmUxmcr/J1SVoSrCqaJoS1iWooP1t2dJqVnVLq6VtbF2i5CKJuLP4tlq2F3TZlpbuIgkh1JLaFOlqEVSycUlcIpfJbZK5nN8fRxS5zExyZj5nZt7PxyOPx1ecOedlH6ev75nP+ZzP4XieByGEEPZkrAMQQggRUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEUCETQohEyE3Z2NfXl+/SpYuZohBCiG06ffp0Cc/zfoa2M6mQu3TpglOnTrU+FSGE2CGO4wqN2Y6GLAghRCKokAkhRCKokAkhRCKokAkhRCKokAkhRCJMmmVBCLlHowGuXAFKSwG9HnBzA7p1A1xdWScjVsyihdxwDl+4ABQVAfX1wnn8+ONAz55AQADAcZZMRIgJamqA9HRg61bg/HnAwQGQyYCGt+7U1wMdOwIvvQRMnAj4+7PNS6wOZ8ornMLCwvjWzEO+ehXYvl340WiEC4r6eqF8OQ5QKgGtFggJAWbMAMaMAZydTT4MIeah1wM7dwJLlgB1dUIRu7gIZfwgngfUauHHwQGIjgbmzRO2JXaN47jTPM+HGdzOnIVcXw9s2ABs3gzodMLVsKNj09vyPFBdLWzXrh2wfj3wzDNGH4oQ8ygtBd55B/jPf4RiVSqN+5xOB6hUQGAgsGkT0Lu3eXMSSTO2kM12U6+4GBg3Dvj4Y+E89vZuvowB4UrZzQ3w9ATKy4WLi2XLhIsTQpgoKQEmTBDK2MvL+DIGhCtkb29hH5MmAWfOmC8nsRlmKeTiYmD8eKCgQDgn5SaOVLu5Ae7uwKefAosX/zZER4jF1NcDr74KXL8unMStvbnh7i6cwFOnCmN3hLRA9ELWaIA//xm4e1e4qGgtBwfhann7dmDHDvHyEWKUjRuBixeFk7CtXF2B2lrg/ffpKx9pkeiF/MknwOXLgIdH2/clkwnn8pIlwLVrbd8fIUbJzxcK2d1dvGk/np7ATz8Bu3eLsz9ik0Qt5Nu3gf/7P2HIQazzWKEQvj2mpIizP0IM+vJL4aacqWNtLeE44WTeuJHG4EizRJ2HvHOncB63dPOuNTw9gaws4OZN4aY1IWZTWwt8/bVwVdGCer0ey2/eRE5NDVQ6HTo6OuIdf39EtPQ5Z2dhTDo3F+jfX+TgxBaIdoXM88CWLcZNubxxIx6XL4/GxYtDcOXKBJSXf9fi9g1z779reTNC2u7CBWGc18BVhQ5AoKMjNgcH42j37njbzw8LbtxAUX198x/iOGHCfU6OuJmJzRCtkIuLgYoK42YG+fr+GSEhexEaegwdO67F7dsbUVt7ocXPyOXA8eMihSWkORcuCHemDXCWyfCmnx/aKxSQcRx+7+6O9o6OyFOrW/6gXA6cPClSWGJrRCvkvDxhZoQxlMrHIJMp7v2JA8dx0Giut/gZJyfg559p+I2YD8/z0Oflged58A1/fvRHr4fukR8eQKlWi6v19XjM0BWJUimsH0BIE0QbQ75926gLi/tu3lyO0tJ/Qq+vg0LxOHi+DyorVQ9t81v58uB5QKVSYN++7+HgoL/39/xDPw/+Tq83vE1zP63dBgD0er0o2zT8Gwxtw+rfKub/HmL/W1vzv0eDd69fx/CyMlTfuiX84pG70/f/dO/3Wq0WShcXrHVwwHOenuhiqJA5TrhLTUgTRCtkU6dXBgTEorT0eTg7F0KnO4eKihrIZA+eqL/9h9Dw30RdnQuOH8+Go6MeHCdcWQt/z7X409Q2ACCTyQxuw3Hc/e0MHUt2b22Dlo5vzDam/Dss+W81ZRup/1ub2wZJScLiQT4+LZ6/Da7k52NVdTX0SiXmd+pk+AN6vfB1j5AmiFbIrq7GD1kAwn8AAQEBqK52g4tLLpTK/8DH5+Vmt9frhaUBli1LbrSmCyGi6dnT6BNZXVeH9dXV0Lq6IkajgV6rNTzFqK4OCA0VISixRaJVW7dujRe/MqRdu3bQ6fSora1GfX3LY8hqtbBMJ5UxMasePYwu5JRr13BLLseGLl0Q5OuL4uJiGLzFodcD4eFtjklsk2j19vjjwoweQ0MXWm0pVKqD0OtrwPM8vLwKoVIdgJNTy/My1WogzOBaSYS0UY8ewo03A+O8RRoN/lVVhUKex+jLlzG+pAQvlpVh140bzX+I54UrikGDRA5NbIVoQxYKBTBiBHD4sKE1LDiUlX2D4uKlAPRwdAyCt/e7qKx8HF5ePB4cO27A88JFy3PPiZWWkGYoFMCUKcIyhQpFs5t5abXY4+6OkJCQ+2esuq4OhYWF0Gi1cGzqKb+qKmG4omdP82QnVk/UJ/WmTROeqOP55h+dlsu90bnz5od+x/N6FBQUoKJCBc8mFnOprRXeJkLf9IhFREcLSw3W1zdbyqqKCnh6ej50+eCkVMLHxwfFxcXo1KnTw5cWPC98hYyJMWdyYuVEHZENCwP69BEeEDEFx8nQvn173Lp1C1qt9qG/43nhPsj8+TR+TCwkKAhYtEh4YwLfeFSY53moVE1fPPi2awetVgvVo/8RVFQIXyFHjjRXamIDRK04mQxYu1Z4GMnUqZZOTs7w8vLErVs3H/p9eTkwdCjw/PMiBiXEkOhoYOBAoKysUSlXVVdDoVBA0cSMCo7jEBQU9PDFhUolrKmcmkovjSQtEv2as3Nn4U0f1dWml7Kfnx/UavX9B0QqKoShihUr6DwmFiaTCa9e6tdPuCp44G51RUUFPFpYJ9nZyQle3t7CrIuyMmEZz6++Avz8LJGcWDGzDAKMHy+sYVxTIxSzsThOhqCg9iguvonSUh38/YWFt+g8Jky4ugpLcU6YIFwdVFdDp9OhuqoKHgYW/Pb18IBjdTXu+PsLq2KFhFgoNLFmZhuVnTwZ2LZNuDgoKzPusWqeB/R6Fzg6+sHH5wz27gWMefiJELNxcQFWrQK++ALw9YX61i20k8kg1+kajy9rtUBlJVBRARnPQzt/Pqa6u6PMwFKehDQw622yiAhhGtz06cK5WlEhlHNtrbBusk4nFHVVlfDKJ5VKGPLYssUZgYHJyMvLNmc8Qow3ZAjw/ff4eMAA1AwdKqxtXF4unLxVVcLJrdUK6xyvWQOcOoWOCQkYPXYsVq9ezTo9sRIc38Rd5OaEhYXxp06datWBamuFcs7OBn78UViuU6sVzuvQUGDAACAyEnjiCWG8+OTJk1iyZAl27twJF2MWWSbEzEpKSjBx4kRkZGRAqVQKhVxaKowvu7sD/v6Nbnao1Wq88soriImJwdChQxklJ6xxHHea53mDj7ZZrJBbIzk5GUqlErGxsRY7JiHN2bFjBy5fvozExESTPpebm4uFCxfi66+/Njj2TGyTsYUs6Zm9s2fPxtGjR3HmzBnWUQhBWloaxowZY/Ln+vXrh+HDh+Ovf/2rGVIRWyLpQvbw8MCCBQuQkpICtaE3MRBiRgUFBbh79y7CWrmgyjvvvIPTp08jO5vui5DmSbqQAWDo0KHo2bMnNm3axDoKsWPp6ekYPXr0/TWeTeXi4oK4uDikpqai2pS5oMSuSL6QAWDevHnYv38/zp07xzoKsUN6vR4ZGRkYO3Zsm/YTHh6OiIgIrF+/XqRkxNZYRSF7e3vj/fffR1JSEurp9TfEws6ePQsnJyd069atzfuKiYnB8ePH8eOPP4qQjNgaqyhkABg9ejQ6duyIL774gnUUYmfS09MxZsyY+697ags3NzcsXLgQKSkpqK2tFSEdsSVWU8gcx2HBggXYtWsXLl++zDoOsRMajQaHDh1CVFSUaPscPHgw+vbti48++ki0fRLbYDWFDAD+/v545513kJycDJ1OxzoOsQPZ2dkICQlBUFCQqPudO3cuDh06hJ9++knU/RLrZlWFDAB/+MMf4O7ujr///e+soxA7kJaWJurVcQMPDw/ExsYiOTkZdXV1ou+fWCerK2SO4xAXF4dt27ahsLCQdRxiw6qqqnDy5EmMNNOi8sOHD0doaChN6ST3WV0hA0D79u3xxhtvIDk5GXpDb1UlpJWysrIQHh5u1sed582bh3379tGUTgLASgsZACZNmgSe57Fr1y7WUYiNau2j0qbw8fHBnDlzaEonAWDFhSyTyZCQkIDNmzejqKiIdRxiY27fvo1Lly5h8ODBZj/Ws88+i06dOuHzzz83+7GItFltIQNAly5dMGXKFCxZsgSmrFpHiCEZGRmIjIyEopm3ToupYUrnt99+i0uXLpn9eES6rLqQAWDKlClQqVTYu3cv6yjEhqSnp7f5UWlT+Pn54b333sPixYsbvXmd2A+rL2QHBwckJCRgw4YNuHPnDus4xAb8+uuvUKlU6Nu3r0WP+9xzz6Fdu3bYtm2bRY9LpMPqCxkAunfvjhdffBHLli2joQvSZunp6YiKimr1ym6txXEcFi1ahB07diA/P9+ixybSYBOFDACvv/46rl+/jszMTNZRiBXT6/UWH654UGBgIGbOnImkpCSa0mmHbKaQFQoFEhISsHr1apSVlbGOQ6xUbm4uPD09ERISwizDCy+8AGdnZ2zfvp1ZBsKGzRQyAPTu3Rtjx47FqlWrWEchVqphZTeWZDIZ4uPjsWXLFly9epVpFmJZNlXIAPDWW2/hwoULOHbsGOsoxMrU19cjKyvLLGtXmKpDhw70NKodsrlCdnJyQnx8PJYvX47KykrWcYgVOX78OEJDQ+Hv7886CoDfnkb95ptvWEchFmJzhQwA/fv3x+9//3t6yy8xiRSGKx7U8DTqpk2b6GlUO2GThQwA7733HnJycvCf//yHdRRiBVQqFXJychAZGck6ykM6d+6MqVOnIiUlhaZ02gGbLWRXV1csXLgQqampqKmpYR2HSNyhQ4cwcOBAuLm5sY7SSHR0NKqrq/Hdd9+xjkLMzGYLGQAiIiLQr18/elUOMUhqwxUPcnBwQGJiIj766CPcunWLdRxiRjZdyAAwZ84cHD58mF6VQ5pVXFyM/Px8REREsI7SrJCQELz88stITU2loQsbZvOF7OHhgfnz59OrckizMjIyMHLkSDg6OrKO0qLXXnsNJSUlSEtLYx2FmInNFzIAREZGolu3bti8eTPrKERieJ5n+qi0KeRyORITE7Fu3TqUlJSwjkPMwC4KGQBiY2Oxd+9enD9/nnUUIiGXL1+GWq1Gnz59WEcxSmhoKMaPH4/ly5fT0IUNsptC9vHxwezZs5GcnAyNRsM6DpGIhrdKcxzHOorRpk+fjsLCQhw6dIh1FCIyuylkABgzZgwCAgKwZcsW1lGIBOj1emRkZEh2dkVzFAoFEhMTaSEtG2RXhcxxHBYuXIivv/4aV65cYR2HMHbq1Cn4+vqia9eurKOYjBbSsk12VcgAEBAQcH+9WZ1OxzoOYchabuY156233kJeXh6OHj3KOgoRid0VMiCsN+vi4oIdO3awjkIYUavVOHr0KJ599lnWUVpNqVQiPj4eK1asgEqlYh2HiMAuC1kmkyEuLo7Wm7Vjx44dQ69eveDr68s6Spv069cPw4cPx9q1a1lHISKwy0IGgI4dO2LatGlYsmQJrTdrhzIyMqx6uOJB77zzDs6cOYPs7GzWUUgb2W0hA8DLL78MjUaDb7/9lnUUYkHl5eU4c+YMhg8fzjqKKFxcXBAXF4fU1FRUV1ezjkPawK4LuWG92U8++QTFxcWs4xALyczMxKBBg+Di4sI6imjCw8MRERGB9evXs45C2sCuCxkAunbtiujoaCxdupSefLITUl7ZrS1iYmJw/Phx/Pjjj6yjkFay+0IGgFdffRV3797Fvn37WEchZnbjxg1cu3YNAwYMYB1FdG5ubli0aBFSUlJoDXArRYWM3xZt2bBhAy3aYuPS09MxatQoyOVy1lHMYtCgQejXrx82btzIOgppBSrkexoWbVmxYgUNXdiohpXdbHG44kFz5szBoUOHaA1wK0SF/IDp06ejoKAAhw8fZh2FmMGFCxeg0+nQu3dv1lHMysPDA7GxsbQGuBWiQn6AQqFAQkICVq1ahfLyctZxiMgaHpW2ppXdWmv48OEIDQ3Fpk2bWEchJqBCfkSfPn0wevRorFmzhnUUIiKdTocDBw4gKiqKdRSLmT9/Pvbt24dz586xjkKMRIXchLfffhtnz57F8ePHWUchIsnJyUFQUBCCg4NZR7EYb29vzJ07F0lJSaivr2cdhxiBCrkJzs7OiIuLw9KlS1FVVcU6DhGBta/s1lqjRo1Cp06d8Nlnn7GOQoxAhdyMp59+GoMHD6Ynn2xAbW0tjh07hlGjRrGOYnEcx+GDDz7A7t27cfHiRdZxiAFUyC147733cOLECXryycp9//336NOnD3x8fFhHYcLX1xcxMTFISkqCVqtlHYe0gAq5BW5ubli4cCFSUlJQW1vLOg5ppbS0NLscrnjQuHHj4Ovri23btrGOQlpAhWzA4MGD8eSTT9KTT1aqtLQUZ8+exdChQ1lHYarh9WU7duxAfn4+6zikGVTIRpg7dy4OHjyIs2fPso5CTJSZmYkhQ4bA2dmZdRTmAgMDMXPmTCxevJheXyZRVMhG8PT0xLx585CcnEzTh6xMWlqazT8qbYrx48fD1dWVXl8mUVTIRhoxYgS6du2KTz/9lHUUYqSrV6+iuLgY4eHhrKNIBsdx9PoyCaNCNhLHcYiNjcWePXuQl5fHOg4xQnp6OkaPHg0HBwfWUSSlQ4cOeOONN5CcnEyvL5MYKmQTNEwfSk5OpulDEmcvK7u11qRJk8DzPHbt2sU6CnkAFbKJaPqQdfjll1/g4OCAnj17so4iSTKZDImJidi8eTOKiopYxyH3UCGbqGH60Pbt22n6kITZ08purRUcHIypU6ciJSWF1gCXCCrkVggMDMTbb79NY3ASpdVqkZmZaVcru7VWdHQ0qqursWfPHtZRCKiQW23ChAlQKBT46quvWEchjzh58iQ6deqEDh06sI4ieQ4ODkhMTMTGjRtx69Yt1nHsHhVyK8lkMsTFxeGzzz7D9evXWcchD6BHpU0TEhKCyZMnIzU1lYYuGKNCboPg4GC89tprSElJoaELiaipqUF2djZGjhzJOopVmTp1KkpKSpCWlsY6il2jQm6j6OhoqNVqfPfdd6yjEABHjhxB//794eXlxTqKVWl48/q6devozesMUSG3UcP0IRqDkwZ6VLr1Gt68vmzZMhq6YIQKWQSPPfYYXnrpJSxdupROZIZKSkpw/vx5DBkyhHUUqzV9+nRcu3YNmZmZrKPYJSpkkbz22mu4ffs20tPTWUexWwcPHsSwYcOgVCpZR7FaDW9eX716NcrKyljHsTtUyCJxdHREQkIC1q1bh9LSUtZx7BINV4ijd+/eGDduHFatWsU6it2hQhZRz5498fzzz2PFihWso9idgoIC3L17F2FhYayj2IS33noLeXl5OHLkCOsodoUKWWRvvvkmLl++jKysLNZR7ErDym4yGZ3SYlAqlYiPj8fKlSuhUqlYx7EbdPaKTKlUIjExkU5kC9Lr9cjIyKCHQUTWr18/REZGYu3atayj2A0qZDN48sknMWLECKxZs4Z1FLtw9uxZODk5oVu3bqyj2JxZs2bhzJkzyM7OZh3FLlAhm8msWbOQm5tLJ7IFNNzMo5XdxOfi4oK4uDgsWbIEVVVVrOPYPCpkM3FxccGiRYuQmpqK6upq1nFslkajweHDh2llNzMKDw/HoEGDsGHDBtZRbB4Vshk988wzGDBgAJ3IZpSdnY2QkBAEBQWxjmLTYmJicOLECeTk5LCOYtOokM1s9uzZ+Pe//43Tp0+zjmKTaO6xZbi5uWHhwoVYsmQJampqWMexWVTIZubu7o4FCxYgJSUFarWadRybUlVVhZMnT2LEiBGso9iFQYMGoV+/fvjoo49YR7FZVMgWMGTIEPzud7/Dxx9/zDqKTcnKykJ4eDg8PDxYR7Ebc+bMQVZWFnJzc1lHsUlUyBYyd+5cpKen45dffmEdxWbQcIXleXh4IDY2FikpKairq2Mdx+ZQIVuIt7c35s6di+TkZNTX17OOY/Vu376NS5cuYfDgwayj2J1hw4ahR48e2LRpE+soNocK2YJGjRqFjh074rPPPmMdxeplZGQgMjISCoWCdRS7NG/ePOzbt4++8YmMCtmCOI7DBx98gN27d+PSpUus41i19PR0elSaIfrGZx5UyBbm5+eHd999F8nJydDpdKzjWKVff/0VKpUKffv2ZR3Fro0aNQrBwcH0jU9EVMgMPP/88/D09MSXX37JOopVSk9PR1RUFK3sxhjHcViwYAF2796Nixcvso5jE+iMZoDjOCxatAhffvkl/ve//7GOY1X0ej0NV0iIr68vYmJikJSUBK1WyzqO1aNCZqR9+/aYMWMGkpOTodfrWcexGrm5ufDy8kJISAjrKOSecePGwdfXF1u3bmUdxepRITP04osvQiaTYefOnayjWI2G4QoiHQ3f+P7xj38gPz+fdRyrRoXMkEwmQ3x8PP72t7/hxo0brONIXn19PbKysqiQJSggIAAzZ87E4sWL6WZ1G1AhM9a5c2dMnToVqamp4HmedRxJO378OEJDQ+Hv7886CmnC+PHj4erqiu3bt7OOYrWokCUgOjoalZWV+Oc//8k6iqSlp6fTo9ISxnEc4uLisHXrVhQWFrKOY5WokCXAwcEBCQkJ+PDDD3H79m3WcSRJpVIhJycHkZGRrKOQFnTo0AFvvvkm3axuJSpkiejWrRsmTpyIZcuW0dBFEw4dOoSBAwfCzc2NdRRiwMSJEwEAu3btYpzE+lAhS8jrr7+OoqIiHDhwgHUUyaHhCushk8mQmJiIzZs3081qE1EhS4ijoyMSExOxdu1alJaWso4jGcXFxcjPz0dERATrKMRIwcHBmDp1KlJSUugbnwmokCWmV69eGDduHFavXs06imRkZGRg5MiRcHR0ZB2FmCA6Oho1NTXYs2cP6yhWgwpZgt566y3k5eXh6NGjrKMwx/M8PSptpRwcHLB48WJs3LgRt27dYh3HKlAhS5BSqURcXBxWrFgBlUrFOg5Tly9fhlqtRp8+fVhHIa3w2GOPYfLkyTTP3khUyBLVv39/DBs2DOvWrWMdham0tDRERUWB4zjWUUgrTZ06FSUlJdi/fz/rKJJHhSxh7777LnJycvDDDz+wjsKEXq9HRkYGza6wcnK5HImJiVi/fj1KSkpYx5E0KmQJc3FxwaJFi7B06VLU1NSwjmNxp06dgq+vL7p27co6Cmmj0NBQTJgwgebZG0CFLHEDBw5EWFgYPvzwQ9ZRLI5u5tmWadOm4dq1a8jMzGQdRbKokK3AX/7yFxw5cgS5ubmso1iMWq3G0aNH8eyzz7KOQkSiUCiQkJCA1atXo6ysjHUcSaJCtgIeHh6YP38+UlJSUFdXxzqORRw7dgy9evWCr68v6yhERL1798a4ceOwatUq1lEkiQrZSgwfPhyhoaHYtGkT6ygWkZGRQcMVNqphnv2RI0dYR5EcKmQrMm/ePOzbtw/nz59nHcWsysvLcebMGQwfPpx1FGIGSqUSCQkJWLlypd3Ps38UFbIV8fHxwV/+8hckJSVBo9GwjmM2mZmZGDRoEFxcXFhHIWbSt29fREZGYs2aNayjSAoVspWJiopC+/bt8cUXX7COYja0spt9mDVrFnJzc3HixAnWUSSDCtnKcByHDz74ADt37sSvv/7KOo7obty4gWvXrmHAgAGsoxAzc3FxQVxcHJYuXYqqqirWcSSBCtkK+fv7Y9asWUhOTra5F0qmp6dj1KhRkMvlrKMQCwgPD8egQYOwfv161lEkgQrZSr3wwgs290LJhpXdaLjCvrz33nvIzs5GTk4O6yjMUSFbqQdfKHn16lXWcURx4cIF6HQ69O7dm3UUYkFubm5YtGgRlixZYpdLBDyICtmKdejQAdOnT7eZF0o2PCpNK7vZn4iICPTv3x8fffQR6yhMUSFbuZdeegl6vR7ffPMN6yhtotPpcODAAURFRbGOQhh5//33kZWVZVdLBDyKCtnKyWQyJCQkYNOmTSgqKmIdp9VycnIQFBSE4OBg1lEIIx4eHoiNjUVKSgrUajXrOExQIduALl264E9/+pNVv5WBVnYjADBs2DD06NHDbpYIeBQVso2YMmUKysvLsXfvXtZRTFZbW4tjx45h1KhRrKMQCZg3bx7279+PX375hXUUi6NCthENb2XYsGED7ty5wzqOSb7//nv06dMHPj4+rKMQCfD29sbcuXORnJyM+vp61nEsigrZhnTv3h1//OMfsXz5cqsaukhLS6PhCvKQUaNGITg4GJ9++inrKBZFhWxjrO2tDKWlpTh79iyGDh3KOgqREI7jsGDBAuzZswcXL15kHcdiqJBtjEKhQHx8vNW8leHgwYMYMmQInJ2dWUchEuPr64vZs2cjKSkJWq2WdRyLoEK2QU888QSioqKwevVq1lEMokelSUvGjh0LX19fbNmyhXUUi6BCtlEzZ87EuXPncOzYMdZRmnX16lUUFxcjPDycdRQiURzHYdGiRfjqq69w5coV1nHMjgrZRjk5OSE+Ph7Lly9HZWUl6zhNSk9PR1RUFBwcHFhHIRIWEBCAmTNnIikpyeZWN3wUFbINe+qppzB48GBJLm3YsLIbPSpNjDF+/HibW92wKVTINi4mJgY//PCD5JY2/OWXX+Dg4ICePXuyjkKsAMdxiI+Px9atW1FYWMg6jtlQIds4V1dXSS5tSCu7EVO1b98eb775ps2sbtgUKmQ7EBERgb59+2Ljxo2sowAAtFotMjMzabiCmGzixIkAgJ07dzJOYh5UyHZizpw5yMzMxH//+1/WUXDy5El06tQJHTp0YB2FWBmZTIbExET87W9/w40bN1jHER0Vsp3w9PREbGysJNYHoEelSVsEBwfjtddeQ0pKilUtEWAMKmQ7EhkZiZCQEGzevJlZhpqaGpw4cQIjR45kloFYv+ga9GluAAALnklEQVToaNTW1mLPnj2so4iKCtnOxMbG4l//+hcuXLjA5PhHjhzBU089BS8vLybHJ7ahYehi48aNuHnzJus4oqFCtjPt2rXD7NmzkZycDI1GY/Hjp6Wl0aPSRBSPPfYYJk+ejKVLl9rM0AUVsh0aM2YM/Pz8sHXrVoset6SkBOfPn8eQIUMselxiu6ZOnYqSkhLs37+fdRRRUCHboQfXB8jPz7fYcQ8ePIhhw4ZBqVRa7JjEtsnlcixevBjr16+3uhczNIUK2U4FBATg7bffRlJSksUm2dNwBTGH7t27Y8KECVi2bJnVD11QIdux8ePHw8nJCTt27DD7sQoKCnD37l2EhYWZ/VjE/kybNg3Xr1+3mhczNIcK2Y7JZDLEx8fjiy++wLVr18x6rPT0dIwePRoyGZ1yRHwKhQKJiYlW82KG5tB/HXauY8eOeP3115GSkmK2oQu9Xo+MjAx6GISY1e9+9zs899xzWLlyJesorUaFTDB58mTU19dj9+7dZtn/2bNn4eTkhG7dupll/4Q0mDFjBi5evIisrCzWUVqFCplAJpMhISEBH3/8sVkm2TfczKOV3Yi5KZVKJCQkYOXKlVCpVKzjmIwKmQAQJtm/8sorok+y12g0OHz4MK3sRiymb9++GDlyJNasWcM6ismokMl9DZPs09LSRNtndnY2QkJCEBQUJNo+CTFk1qxZyM3NxfHjx1lHMQkVMrlPLpcjISEB69atw927d0XZJ809Jiw4OzsjLi4OS5cuRVVVFes4RqNCJg/p0aMHXnjhBaxYsaLN+6qqqsLJkycxYsQIEZIRYprw8HDJvlOyOVTIpJE33ngD+fn5OHz4cJv2k5WVhfDwcHh4eIiUjBDTxMTEIDs7W3LvlGwOFTJpRKFQ3L9TXVFR0er90HAFYU2q75RsDhUyaVKfPn3w7LPPtvpO9e3bt3Hp0iUMHjxY5GSEmCYiIgL9+/fHhx9+yDqKQVTIpFkzZ87ETz/9hBMnTpj82YyMDERGRkKhUJghGSGmef/993HkyBHk5uayjtIiKmTSrIY71ampqS3fqdbpgEceu05PT6dHpYlkeHh4YMGCBUhJSYFarW5yG5UKuHEDKCoCWI1uyNkclliL8PBwREREYMOGDVi4cKHwy0uXgL17gexs4Px5oLZW+L2rK9CrF+506waX4mL07duXXXBCHjF06FAcOHAAn3zyCWbPng2tFjhyBPjmG+DMGaC0FJDfa0StFujQAXjmGeDll4H+/QFLPGjKmfJUVlhYGH/q1CkzxiFSVFVVhUmTJmH1K6+g17ffAj//LFwRKxSAk9PDZ7FajYo7d8DLZPAaNgyIjwf69GGan5AGZWVlmDTpZURFbcaOHZ3R8HS1szPg6Phb6fI8UFcnXGvIZEBwMLBkCTBwYOuOy3HcaZ7nDa49S0MWxCA3R0dsbN8e3jNmQP/zz4CnJ+DjA7i5/VbGACCXg3dzw22tFk4BAcBPPwETJgArVwL19ez+AYTco9F4Q6fbgsREJdRqPTw9hdNZoXj4CpjjhGsNb2/Aw0MYypgyBVi4EGhmxEMUVMikZdXVwJQp6HLkiFC2dXUtfnerqamBg1wOJycn4Ux3cwM++QSYNu23oQ1CGLhxA3jhBaCwMBCurhpUVZUY9TmOE05jd3fgq6+EYjbXGDMVMmmeVgtMnw6cPg14ecG/fXuoVCrUtFCsFRUVDz8IIpcLlxknTgAzZza6+UeIJahUwEsvAXfuAN7eHIKCAlFWVg612viLBAcH4VQ+fRqYMcM8pzIVMmne558DOTmAlxfAcZA7OCAwIADFxcXQN3HvQc/zqKyshKen58N/wXHCmXzsGLB9u4XCE/KbpCSguFj40gYAcrkjAgL8UVRUDJ43vlkbTuUffjDPqUyFTJqWnw+sWSN8V3tgiMLdwwMKhQIlJY2/7lVVVcHJyQmO8iYm73CcMAsjNRW4ft2cyQl5SHY28N13v5VxA09PTzg6yk1eSIvjABcX4VQuKhIxKKiQSXM2bwY0GuHW8wM4AIGBgSgvK2s0n7OiogKeLa1boVAI+/z8czMEJqRp69cLww2NX+fIITAwCKWlpairM+1OXcOpLPZVMhUyaUylEi4pmilXR7kc/gEBKCouRoVWi7nXr2NQXh6mlJTA4DN9bm7A11+zm3lP7EpBgTDm6+7e9N87OjrC398fBQWfoqBgCvLyBqKoaLFR+3Z1Bb78UpgeJxYqZNLYyZPCRMymhh7u8fT0hNzBAYkFBXDkOOz098cHXl5YeesW8ls6Qx0dhSf7aD47sYAffhBO5ZYe6vDy8oJc3g6Oji/C0/P/Gb1vhUKYzXnunAhB76FCJo39/LPBecMcAM+AABytqsLrHh7QVFYiol07DHV3x35DK8SJfRYT0oycHGOesOPQufMfUVPTA4CrSfvXaIC8vNama4wKmTSWmyv8v38DbvI8lI6OkN25g7q6Ori6uaGbUtnyFTIgXHlLfJEXYhvOnQOUSsPbOToq4Ofnd2+5WdPeKfnzz63L1hRay4I0VlUl3AUxoEavh6dCAY7joNVqUVhYiOq6OtzUaFCg0wnfFZug1GhQePAgPn711Yd+39xj/GL9vjl0XNs97unTK6HRuEIm0xi1fX19vUnzi2UycW+HUCGTxuTyZsv0QS4yGar1enTt2hXqew+LKMrL4atWIzAgoNnPyaqr4fLEE1iwYIHRkbhmvneK9Xs6rm0e949/9MKdOxycnIzLUVLiD73e+GlwPG/cFbixqJBJY127CkMKri2PpwUrFNABuFZfj2BnZwDA/8rK0N3VFc73/tyk2loon3oKXr16iRiakMZCQ4Fbt1q8P/0QmczBpCtkvR7o3r112Zo8vni7IjYjLKypSZuNOMtkiHR3xyd37qBWr8d/a2rwfWUlxj06A/9RcjnQr59IYQlp3oABwgoAhvC8Dnp9PQA9AD30+nrwvM7g5xQKQMzrCrpCJo01lKWh+UIAFgQGIqmoCKMuXYKngwM+CAzEYy19h+N54YfWSiYW8PTTwu0QQ6dySclnKCnZfP/PFRVp8PV9E35+bzb7Ga1W2G/v3uLlpUImjXXvLvxcuSI8yNECDwcHrOnUyfh9V1YCTz4JdO7cxpCEGNanD9Cpk7CORUsjcH5+LZdvUyorgfHjm31+qlVoyII07e23hUmWJt5JbxHPC4NuM2aIt09CWsBxwKxZwtR3MU9lnU4Y1Xv9dfH2CVAhk+aMHSsMXRh6yMMUFRXCoN7IkeLtkxADxo8X/1RWqYR1kcW+L02FTJomkwFr1wpzesSYaFldLbwnZ9Uqy7ycjJB7HjyVq6vbvr+KCmEYZO7ctu/rUVTIpHnBwcCnnwrfz9pyJje8sXrrViAoSJxshJggOBjYskX4v1t6gXpLeB4oLwfatQN27BCW4BQbFTJp2cCBwpJWSiVQVmbaaxL0euEMdnUVzuD+/c2XkxADnn5aeAWTp6dwWuoMz2q7T6MRPtOzJ7BnD9C+vXkyUiETw8LDgawsICpKuLVcVtby5E6tVtimshJ47jnhszTvmEjAk08Chw8Dkyb9dirX1TV9w4/nhdG68nJhmwULhFVpzfkljzPlufCwsDD+FC2baN/Onwe2bRPOzIY5xQ3lLJcL48McB7z4onDXIzSUbV5CmnHjBvCPfwA7dwJ37woPeTxYhxqNMNTx5z8Df/hD4zeOmILjuNM8z4cZ3I4KmbSKVius/p2XJ1xCyGTCu/d69AC6dDFqcSJCpKKsDLh0SZg9wXGAj49wKos1TmxsIdODIaR15HKgWzfhhxAr5+0NPPMM6xQ0hkwIIZJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJBhUwIIRJh0jxkjuPuACg0XxxCCLFJnXme9zO0kUmFTAghxHxoyIIQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiSCCpkQQiTi/wNGxDXLo9qWxwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", - "ee = ExactEigensolver(qubitOp_docplex, k=1)\n", - "result = ee.run()\n", - "\n", - "x = docplex.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('maxcut objective:', result['energy'] + offset_docplex)\n", - "print('solution:', maxcut.get_graph_solution(x))\n", - "print('solution objective:', maxcut.maxcut_value(x, w))\n", - "\n", - "colors = ['r' if maxcut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Traveling Salesman Problem\n", - "\n", - "In addition to being a notorious NP-complete problem that has drawn the attention of computer scientists and mathematicians for over two centuries, the Traveling Salesman Problem (TSP) has important bearings on finance and marketing, as its name suggests. Colloquially speaking, the traveling salesman is a person that goes from city to city to sell merchandise. The objective in this case is to find the shortest path that would enable the salesman to visit all the cities and return to its hometown, i.e. the city where he started traveling. By doing this, the salesman gets to maximize potential sales in the least amount of time. \n", - "\n", - "The problem derives its importance from its \"hardness\" and ubiquitous equivalence to other relevant combinatorial optimization problems that arise in practice.\n", - " \n", - "The mathematical formulation with some early analysis was proposed by W.R. Hamilton in the early 19th century. Mathematically the problem is, as in the case of MaxCut, best abstracted in terms of graphs. The TSP on the nodes of a graph asks for the shortest *Hamiltonian cycle* that can be taken through each of the nodes. A Hamilton cycle is a closed path that uses every vertex of a graph once. The general solution is unknown and an algorithm that finds it efficiently (e.g., in polynomial time) is not expected to exist.\n", - "\n", - "Find the shortest Hamiltonian cycle in a graph $G=(V,E)$ with $n=|V|$ nodes and distances, $w_{ij}$ (distance from vertex $i$ to vertex $j$). A Hamiltonian cycle is described by $N^2$ variables $x_{i,p}$, where $i$ represents the node and $p$ represents its order in a prospective cycle. The decision variable takes the value 1 if the solution occurs at node $i$ at time order $p$. We require that every node can only appear once in the cycle, and for each time a node has to occur. This amounts to the two constraints (here and in the following, whenever not specified, the summands run over 0,1,...N-1)\n", - "\n", - "$$\\sum_{i} x_{i,p} = 1 ~~\\forall p$$\n", - "$$\\sum_{p} x_{i,p} = 1 ~~\\forall i.$$\n", - "\n", - "For nodes in our prospective ordering, if $x_{i,p}$ and $x_{j,p+1}$ are both 1, then there should be an energy penalty if $(i,j) \\notin E$ (not connected in the graph). The form of this penalty is \n", - "\n", - "$$\\sum_{i,j\\notin E}\\sum_{p} x_{i,p}x_{j,p+1}>0,$$ \n", - "\n", - "where it is assumed the boundary condition of the Hamiltonian cycle $(p=N)\\equiv (p=0)$. However, here it will be assumed a fully connected graph and not include this term. The distance that needs to be minimized is \n", - "\n", - "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}.$$\n", - "\n", - "Putting this all together in a single objective function to be minimized, we get the following:\n", - "\n", - "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}+ A\\sum_p\\left(1- \\sum_i x_{i,p}\\right)^2+A\\sum_i\\left(1- \\sum_p x_{i,p}\\right)^2,$$\n", - "\n", - "where $A$ is a free parameter. One needs to ensure that $A$ is large enough so that these constraints are respected. One way to do this is to choose $A$ such that $A > \\mathrm{max}(w_{ij})$.\n", - "\n", - "Once again, it is easy to map the problem in this form to a quantum computer, and the solution will be found by minimizing a Ising Hamiltonian. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "distance\n", - " [[ 0. 52. 21.]\n", - " [52. 0. 73.]\n", - " [21. 73. 0.]]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAADV1JREFUeJzt3WtsVGUex/HfmUuvtEVttZJwv0SQkAVRg1llNcH1Qoy80OCaVQyIoBglrKhkMSuSsC/coCTeWI2BV7pGAyEaYuLKBiTRlOCCmIooEaGAVKD0QjudmbMvnhRdoXM5M+38h/l+kgmlPXP6JMZvHp55zjme7/sCABReqNADAAA4BBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBGRbA6ur6/3R40adf4PTp+WDh92X4fD2Y0gmXSv+nrpyiuzey8AFIFdu3a1+r7fkO64rII8atQoNTU1/f83N22Sli2TJkyQysqyG2WfREJqa5PuuktauVLyvGDnAQCDPM/7IZPjcluy2L9fevppqbo6eIwlN6uuq5M2bJA++iinIQFAsQoe5HhceuIJyfdzi3GfcFiqrJSefVZqbc39fABQZIIHeetW6cABqaYmf6OpqJA6OqRXX83fOQGgSAQP8htvSKFQyvXeWDKpVS0tmn3ggG765hv96fvvtbOjI/V5a2qkd9+VuroCDw0AilGwIB86JDU3S0OGpDwsIakxGtX6ESO0bcIELW5o0DNHjqglFuv/TdGo1Nsrbd8eaGgAUKyCBXnfvrSzY0mqDIW0sKFBw8rKFPI83VhTo2HRqJq7u1Ofv7dX2r070NAAoFgFC/KePVKqWW4/TsbjOhSLaUx5eeoDKyqkL74INDQAKFbBgnz8eNYXgMR9X39tadHsujqNShfkSET6+edAQwOAYhUsyFk+hy/p+3qupUURScsbGwP9SgC42GV1pd45V1zhrq7LgO/7euHoUf0cj2vd8OGKZHIVXjwuXXJJoKEBQLEKFuQpUzK+GGTNsWM6GIvp1REjVB7KcELe3S1de22goQFAsQoW5EmT3A2BfD/lToujvb364PRplXme/vjtt+e+v6KxUbfX1fV//mhUmjo10NAAoFgFC/LIkdK4cdLBgyn3Il8Zjapp4sTszt3b6z7Umzkz0NAAoFgF+1DP86RFi9xab5Yf8KXV3i7dc4+7YREAlJDgl07ffrs0erQLaL50d7sbDD36aP7OCQBFIniQy8qkl192Xwe4SOQ8yaR09qy0erXbxQEAJSa3+yFPmiStWiV1duYW5WTS3aD+3nulu+/OaUgAUKyCfaj3a3PnunXklSulnp7sb8fZ3e1mxnPnSi+8wNNCAJSs/Dzk9L77pPfec0sNp065wKb7sC8Wk06edDcpWrfOLVVkuk8ZAC5Cuc+Q+0ydKn38sfTOO9L69e6pH4mEi2wk4ma+8bh7RaNSebn78G7ePPeAUwAocfkLsuTu0jZvnvTAA9KXX0p797q7th096n4+dKi7Am/yZOn66/Pz6CcAuEjkN8h9QiFp2jT3evDBAfkVAHCxYdEWAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwIlLoASCFjg6puVlqaZESCamiQho7VhozRorwnw642PB/tTVdXdKHH0r//Kf03XdSNColk+5nnuf+9H1p5kxp/nzpuuukEP/QAS4GBNkK35c2b5aee046e9bNgIcO/SXCv5ZISJ9+Km3bJk2YIL30kjR+/KAPGUB+MbWyoKtLevhhadkyNxuuq5Oqqy8cY0kKh12sa2ul/fulO++UNm4c3DEDyDtmyIXW1SXdf7+0Z0//M+L+eJ6Ld2+v9Pzz0pkz0pIlAzdWAAOKGXIh+b70+OPBYvxr0ahUUyOtXStt2ZLfMQIYNAS5kDZvduvAucS4TyQiVVZKK1ZIP/2Ul+EBGFwEuVA6O6WVK11Ec41xn4oKtwSyenV+zgdgUBHkQtmyRerudhHNp9paaetW6cSJ/J4XwIAjyIXy5psZXdxxJpHQXw4f1u+bmzX7wAFtbWtL/YZw2G2L27QpTwMFMFgIciGcOSMdPChVVaU99O/Hjinqefp4wgStHjZMa44d0/c9PanfFIm4fcoAigpBLoTmZrczIs3a8dlkUv9ub9fihgZVhUL6XVWVZtbU6MN0s+TKSmnvXreLA0DRIMiF0HdvijQOxWIKSxpRVnbue+PLyzObIXd2uiv+ABQNglwI8XhGh3Ulk6r+zX0qhoRC6uy7t0UqnucuGAFQNAhyIVRWZnRDoKoLxLfzApE+j++7V753cAAYUAS5EMaMyeiwEWVlSsgtXfTZ39OjMeXlqd8Yi0mNjVK64wCYQpALYexYt4acZumhMhTSLTU1ev3ECZ1NJvXfri79p71dd9bVpT5/d7c0dWoeBwxgMBDkQigrk2680W1/S+OZxkb1JJOatX+/Vhw5omcbG9PPkCXpjjvyMFAAg4m7vRXKggXSjh1urTfF9rfacFj/GD488/PGYm6NetasPAwSwGBihlwoM2a4pYsMZskZ83233W3xYjcLB1BUCHKhhELuSR/53J525ox7gsiCBfk5H4BBRZAL6aqrpOXL3cNMM9yb3K/OTrerYt06dxUggKJDkAtt/nz3lI/2dindFXgX4vtSW5u7qdDGjTxbDyhiBLnQPE9aulR68UW3De706bTb4c6JxdzxY8dKH3wgTZs2sGMFMKAIshVz5kiffOJ2R7S3u9D+dinD990suq3NvXzfPRh1yxa3dgygqLHtzZLGRum116Tjx6X333ePd9q3z4XZ89zFJJdfLt1wgzR7tnTrrVyNB1xEPD+LWzROnz7db2pqGsDh4Dy+72bM8bjbX1xZWegRAciS53m7fN+fnu44ZsjWeZ57LBOAix5ryABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjCDIAGAEQQYAIwgyABhBkAHACIIMAEYQZAAwgiADgBEEGQCMIMgAYARBBgAjCDIAGEGQAcAIggwARhBkADCCIAOAEQQZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARkUIPAADMaW2Vvv7avQ4fdt+77DLp6quliROl4cMH5NcSZACQJN+Xtm+X3npL2rlTCoelWEzyPPfzZFIqK3N/jh8vLVok3Xab+16eeL7vZ3zw9OnT/aamprz9cgAwoaVFeuop6fPP3d9ra6VQPyu6vi91dkrxuDRypPTyy9LkySlP73neLt/3p6cbBmvIAErbzp3SrFkuxnV10tCh/cdYcjPmIUPcsT/+KM2ZI23YkJehEGQApWvHDumhh9zXQ4f+sjyRCc9zM+mqKmnVKrfUkSOCDKA0HTkiPfKIFIlIlZXBzxONuhnzmjVutp0Dggyg9CST0rJlUk9PbjHuE42619KlUkdH4NMQZAClZ9s2qanJrQPnS3W1dOJETksXBBlA6Vm/3n1wl2bN+F8nT+rPBw9qRnOz/tbSkv681dXS229Lvb2BhkWQAZSWo0fd7LimJu2h9ZGI5tfX665MZ9Ll5VJXl/TZZ4GGRpABlJavvnIXfWSwo+KW2lr9oaZGdeFw5ufv7ZV27w40NIIMoLTs3euuwBso5eW/XGCSJYIMoLQcPuxmyAMlEpGOHw/0VoIMoLQkk9ldAJItz3O/IwCCDKC0XHqplEgM3PkTCXcFXwAEGUBpmTIl4yWLhO8rlkwqKSkpKZZMKpHuhmzd3dI11wQaGrffBFBaJk1yywq+n3bp4q3WVq1vbT3394/a2rSwvl4LGxr6f1M4LE2bFmhoBBlAaRk3TmpsdDehr6pKeejChobU8f2tRMJdcHLTTYGGxpIFgNISCkkLFw7M1re2Nmn2bHfnuAAIMoDSM2eOVF/vbjSfL7GYu8HQkiWBT0GQAZSe6mpp7Vp3VV0+dlz0PUVk+XJp9OjApyHIAErTjBnSY4+5ZYZcouz70qlT0s03S/Pm5TQkPtQDULqefNI9G+/116WKiuzvjdzbK7W3uxi/8krOVwBm9ZBTz/NOSPohp98IAKVnpO/7abdrZBVkAMDAYQ0ZAIwgyABgBEEGACMIMgAYQZABwAiCDABGEGQAMIIgA4ARBBkAjPgfhw/43StvS80AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Generating a graph of 3 nodes\n", - "n = 3\n", - "num_qubits = n ** 2\n", - "ins = tsp.random_tsp(n)\n", - "G = nx.Graph()\n", - "G.add_nodes_from(np.arange(0, n, 1))\n", - "colors = ['r' for node in G.nodes()]\n", - "pos = {k: v for k, v in enumerate(ins.coord)}\n", - "default_axes = plt.axes(frameon=True)\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", - "print('distance\\n', ins.w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Brute force approach" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "order = (0, 1, 2) Distance = 146.0\n", - "Best order from brute force = (0, 1, 2) with total distance = 146.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlY1dXWwPHv73CYR1EUMQdwSMm08qZpmWZl3jS7JR4OOCASqDgLGjnVi4YDyCWSIAUHlFFI3yyza3nNSssyzczQVykVZ80BUWQ45/3j3LyZynAYDsP6PA+Pym/vzeKf5XrW2Xv/FL1ejxBCCNNTmToAIYQQBpKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEerKDG7WrJm+Xbt2dz+4cgXy8gx/NzOrXAQ6neGrWTNo2bJyc4UQoh7Yu3fvRb1e71LeuEol5Hbt2vH999/f+c1NmyAkBDp1AguLykX5h9JSuHoVhg6FefNAUYxbRwgh6iBFUY5XZFzVWhZHjsDrr4OtrfHJGAxVtaMjrF0LW7ZUKSQhhKivjE/IJSUwdSro9VVLxn8wMwNra3jjDbh4serrCSFEPWN8Qt66FY4eBXv76ovGygquX4f33qu+NYUQop4wPiG//z6oVGX2e4t0OsJPn2bI0aM8ffgwvrm57Lp+vex17e0hIwNu3DA6NCGEqI+MS8gnTkBODtjZlTmsFHA1N2dFmzbs6NSJCS4uhJ06xemiovtPMjeH4mL48kujQhNCiPrKuIT888/lVscA1ioVQS4uuFlYoFIU+trb42ZuTk5hYdnrFxfDvn1GhSaEEPWVcQn5wAEoq8q9j99LSjhRVISHpWXZA62sYM8eo0ITQoj6qlL7kG87d67SB0Au5+cz9/Jlhjg60q68hKxWw6VLRoUmhBD1lXEVciXfw1dUUkLo//0f169eZXqzZkb9SCGEaOiMS8gtWhhO11WAXq9n0fnzKE2aEGJmxtGcHC5fuUKZKb2kBJo0MSo0IYSor4xrWXTrVuHDIIvOnuXXoiLea9sWK0Xh5IkTnDx5kqtXruDWqhUW5uZ3TyoshMcfNyo0IYSor4xLyJ6ehguB9Poyd1qcKS7mgytXsFAUXvi//7v9/YlOTjycn8+xY8do0aIFTZo04Y5VzM3h0UeNCk0IIeor4xJy27bQoQP8+muZe5FbmpvzfZcu93x2LT+f06dOcfHiRa5dvUrLli2xtLQ0bHlTq6FfP6NCE0KI+sq4HrKiwPjxhl5vJT/g+4ODvT3t3N1RFAUUhd+OH+fCxYvo8/Nh+HDDhUVCCNGIGH90+u9/B3d3yM83egkrS0vc/3O/spWVFUX5+eRdusSR554zek0hhKivjE/IFhbwzjuGvxtxSOQParWaNm3aYGFmhvrWLY75+zNpwQJiY2O5deuW0esKIUR9U7X7kD09ITwcCgqqlJRVej2uNjZcePZZFv/yC3PnzuXMmTNotVp++OGHKoUohBD1RdXfqafVwsKFhtvZjGlfFBbC1asoWi1dN27kzbfeYsGCBfTu3ZupU6cyd+5cIiIiuF7eLXFCCFHPVc9LTn18YMMGw4GRy5fh5s3yP+wrKoLffzdcUhQba0jqKhW9e/dm5cqVrFmzhn379pGWloZer0ej0fCl3AAnhGjAFH0ldkn87W9/09/1Tr0/KyyE9HRYscLw1o/SUkPCVasNOzNKSgxf5uZgaQmjR8OYMYYXnP7FtWvXCAsLQ61WExERwS+//MLChQvp2rUroaGhNJGTfEKIekJRlL16vf5v5Y6r1oT8B50O9u+Hn34y3Np25ozh+05OhhN4XbtCr17lnvYrLS0lOjqab7/9lujoaJo3b05CQgJbtmwhJCSEgQMHGrbNCSFEHWbahFzNPvjgAxISEli4cCE9e/bk559/Jjw8HDc3N9544w2aN29e6zEJIURFVTQhV08PuYa9+uqrLFq0iLlz55KZmYmnpyfr16/H09MTX19fsrOz0el0pg5TCCGqpF4kZIAePXqwevVqsrKyWLRoEYqiEBgYyIoVK9i8eTPjx4/nxIkTpg5TCCGMVm8SMkCrVq1YvXo1Fy5cYOLEiVy9ehUPDw9WrVpF//798ff3Jzk5mdIKXg0qhBB1Sb1KyAC2trYsW7aMrl27Mnr0aHJzc1GpVPj6+pKcnMw333yDn58fR44cMXWoQghRKfUuIQOoVComT57MuHHjGDdu3O39ya1atSIuLg6NRsPEiROJj4+nqAonCIUQojbVy4T8hxdffJHo6GgiIiJITk5Gr9ejKApDhw4lNTWVY8eO4evry4EDB0wdqhBClKtebHsrz7lz5wgJCcHDw4O5c+di8Z/9zXq9nu3bt7N06VKee+45Jk6ciI2NjYmjFUI0Ng1q21t5WrRoQWJiIsXFxYwbN45L/3ljtaIoPPvss2RmZlJQUIC3tze7d+82cbRCCHFvDaJC/oNerycpKYmNGzeybNkyOnfufMfz3bt3ExERQY8ePZgxYwYODg4milQI0Zg0qgr5D4qi8NprrxESEsKkSZP47LPP7njeu3dvMjIysLW1RaPRsH37dhNFKoQQd2tQFfKfHTlyhBkzZjB06FBee+01VKo7/+/58ccfCQ8Px8PDg9dff51m97jgSAghqkOjrJD/rFOnTrf3JYeFhXHz5s07nnfv3p20tDTc3d3x8fHhww8/pDL/OQkhRHVrsAkZwNnZmYSEBGxsbAgICODcuXN3PLewsCA4OJi4uDgyMzOZOHEip06dMlG0QojGrkEnZDAk3TfffJMXX3yRMWPG3HNPcqdOnVi7di1PPPEEo0ePJjU1VS4rEkLUugafkMHwYd/IkSOZO3cuISEhfPTRR3eNMTMzY/To0axevZodO3YQEBBAbm6uCaIVQjRWjSIh/+HJJ5/k/fffJzExkdjY2HtWwW3atCEhIYEhQ4YQGBjIypUrKS4uNkG0QojGplElZAAPDw/Wrl3LoUOHmDFjBgUFBXeNUalUDBs2jNTUVA4ePMjIkSM5dOiQCaIVQjQmjS4hAzg6OrJ8+XJcXV3x9/cnLy/vnuNatGhBTEwM/v7+TJs2jZiYGAoLC2s5WiFEY9EoEzKAWq0mLCyM4cOHM3bsWO63v1pRFAYNGkRGRgYXLlxAq9Xed6wQQlRFgz0YUhnfffcdc+bMYdy4cQwbNqzMsTt37mTx4sU89dRTTJkyBTs7u1qKUghRXzX6gyGV8fjjj5OUlER6ejpLliyhpKTkvmOffvppMjMzAdBoNOzcubO2whRCNHBSIf/J9evXmT17NsXFxSxZsqTcy4f27t3LggUL8PT0JDQ0FGdn51qKVAhRn0iFbAQ7OztiYmLo3Lkzfn5+/Prrr2WO79GjB+np6bi6uqLVatmyZYscvxZCGE0S8l+oVCqmTp3K2LFjCQoKYteuXWWOt7KyYsqUKcTExJCcnMzUqVM5e/ZsLUUrhGhIJCHfx0svvcSyZcsIDw8nJSWl3MrX09OTdevW0b17d0aOHMmGDRvk+LUQolIkIZehW7durFmzho8//pjw8PByX5hqbm5OQEAAK1asYMuWLYwbN47jx4/XUrRCiPpOEnI5XF1dSUpKoqCggPHjx/P777+XO8fDw4OkpCSeffZZxo4dy5o1a8rcuSGEECAJuUKsra1ZvHgxvXr1ws/PjyNHjpQ7R6VSodVqWbduHd999x1+fn4cPny4FqIVQtRXkpArSKVSMW7cOKZMmcLEiRP597//XaF5bm5uLF++HK1Wy6RJk4iLiyu39SGEaJwkIVfS888/T2xsLJGRkSQmJlZom5uiKLz00kukp6dz/PhxfHx82L9/fy1EK4SoT+RgiJEuXrxISEgIrVq1Yv78+VhZWVV47vbt21m6dCkDBgxg0qRJ2NjY1GCkQghTk4MhNaxZs2asXLkStVpNYGAg58+fr/DcAQMGkJmZSWFhIRqNpty9zkKIxkEq5CrS6/UkJyeTkZHB0qVL6dq1a6Xmf/PNN0RERPDII48QEhKCo6NjDUUqhDAVqZBriaIo+Pn5ERYWxvTp0/nkk08qNf+JJ54gPT0dR0dHNBoN27Ztk+PXQjRSUiFXo2PHjjF9+nQGDhxIcHAwKlXl/r87cOAACxYsoE2bNoSFheHi4lJDkQohapNUyCbQvn17kpOTOXDgAKGhody4caNS87t160ZKSgodO3bEx8eHTZs2SbUsRCMiCbmaOTk5ERcXR9OmTfH39+f06dOVmm9hYcH48eOJj48nOzub4ODg+75iSgjRsEhCrgHm5ubMnj2bV199FX9/f3744YdKr9GxY0fWrFlDnz598PPzIyUlRS4rEqKBk4RcQxRFwdvbm/DwcMLCwti4cWOl1zAzM2PUqFGsWbOGL774An9/f44dO1YD0Qoh6gJJyDWsV69eJCYmsn79eqKioigtLa345OvX4fvvab1vHwkvvEBQ69aEjxrFyvh4iouLay5oIYRJyC6LWpKfn8/s2bPR6XQsWrTo/q+HunEDPv4YVq6EY8fA3Bz+aFUoCiWlpfx+6RIHmjTBfcEC2vv4QCV3cwghapfssqhj7O3tiYmJoX379owZM+bue5L1eti0CZ54AmbPhpMnwckJ7OzAwcHwZW+P2skJl3bt6F1YiGVgILldu1L400+m+aWEENVKEnItMjMzY8aMGfj5+REYGMg333xjeHDjBgQGQkiIoRp2dARbW1CUe66jmJlh6+aGa6dOOJw9y6XevTn25pu1+JsIIWqCtCxMZN++fYSFhRHg48PwTZtQfvrJUBHfJwmX5fqVK+SfPs3+AQN4Ki0Ne3v7GohYCGGsirYsJCGb0OlTp8jp25dHrlzBqV27Sp/s+7PSoiKu5eUR4+7OM8uW0b9//+oLVAhRJdJDrgfcvvuO/kCBuTknTp6kpDI7MP7CzMKCJm5uhF29ytrISMLCwir0uikhRN0hCdlUCgpg3jxUNjY80Lo1NjY2/PrrrxTeumX8mlZWWOv1rGzXjlatWqHVavn444/l+LUQ9YQkZFPZvBkKC8HKCgVo7uJC8+bNOXH8OPn5+cav6+CAets2Jmu1vPPOO6SkpDBlyhTOnDlTbaELIWqGJGRTSUwEtfqObzk6ONC6TRvOnj3LxYsX0QPXSksJzcvjqZwchhw9ytarV8te18wMSkth0ya6dOlCcnIyjz76KCNHjiQzM1OOXwtRh0lCNoVr1+DXX+Eer26ytrKinbs7+fn5nD51ikVnzmCuKPyrUycWurmx6OxZcstra6jV8J+XsKrVasaOHUtSUhJbt24lMDCQ3377rQZ+KSFEVUlCNoWcHMMJvPtscTNXq2nbrh039Hq2XrzIa02aYKNS8YiNDf3s7fm4vCrZ2hp++slw2OQ/2rVrR2JiIi+88AIBAQGsWrWKkpKS6vythBBVJAnZFE6fNrQVyqBSFEqbNcNcrUZ36hQ3b94EoKOlZcUq5IIC+M+c22uqVGg0GtavX8++ffsYPXo0OTk5VfpVhBDVRxKyKVSwMr2p0+FkYYGrqytnz53j7Llz2CgKBRXpAysK3OcCopYtWxIbG8uIESOYPHky7777LreqsrtDCFEtJCGbgrV1hS4EslGpKNDpsLe3p/UDD6DT6cg9cwZ1cTFlbmTT6w1fVlb3HaIoCoMHDyYjI4NTp07h4+Nj1L3NQojqIwnZFDw8KjSsjYUFpcCJoiLUajVuLVvyu709zYuL+e3XX7nxl5bEbUVF4OoKlpbl/gxnZ2cWL17M5MmTmTNnDosXL6agoKASv4wQorpIQjaF9u0NPeRyWg/WKhUD7O1JuHCBmzodP964wa6bNxnl4YGzszN5eXmcOn2a4r+2QAoL4dFHKxXSM888Q0ZGBsXFxWg0Gr7++uvK/lZCiCqShGwKFhbQt69h+1s5wlxduaXT8fyRI8w+dYo3XF1pb2mJo6Mj7du3x1ytJjc3l4uXLqH784m8F1+sdFgODg7MmzePN998kyVLljBv3jyuXLlS6XWEEMaRy4VM5euvYcwYwz3HRtzw9me3ioo4f+4ct4qKcHV2xs7WFr7/3pD4jXTz5k3i4+PZunUroaGhPP/88yhVjFOIxkouF6rrevc2tC4qUCWXx9LCgtatW+PavDn5Z8+S2bQpJ86erdKa1tbWzJgxg2XLlpGYmEhISAjnz5+vcqxCiPuThGwqKhXExJS5Pa2y7HQ6Wjz1FMV+fvj7+xMbG1vlD+gefvhh1q9fT+fOnfH19eWDDz6Q49dC1BBJyKbUuTPMmmV4mWlVT80VFIClJarlyxkxZgyZmZlcvnwZLy8vPvrooyolUQsLC4KCgkhISGDTpk1MmDCBkydPVi1eIcRdpIdsanq9oVJevtxwt0UFtqrdNf/aNcO85GR47LE7Hh88eJDIyEgURWHWrFl4enpWKVydTkdaWhqrVq1izJgx+Pr6YmZmVqU1hWjo5I0h9c3GjTB3Lty6ZfigryJvDykqMlTGHTtCbCx06nTPYTqdjo8//pi4uDj69OnDpEmTcHZ2rlK4eXl5LFy4kBs3bjBv3jw6duxYpfWEaMjkQ7365pVX4PPP4fnnIT8frly5u5Wh1xsS9tWrhi+93vBi1M2b75uMwXCHxUsvvUR2djaOjo6377MorkLv+oEHHiA+Pp5XX32VCRMmkJCQQFFRkdHrCSGkQq6bzp2D7GzYsQN+/tmQhBXFcJikeXPo3h2GDIGBAyvf4gCOHz/OsmXLOHXqFCEhIfTp06dK4Z4/f57Fixdz8uRJ5s2bR7du3aq0nhANjbQsGgq93lAxl5QY7sCwtq6mZfV89dVXREdH4+7uzvTp02ndunWV1vvss8+Iiopi4MCBTJgwAZt73PcsRGMkLYuGQlEMPWVn52pLxoZlFfr27UtGRgbdu3dnzJgxLF++nBs3bhi93vPPP09mZiZXr15Fq9Xy7bffVlu8QjQGUiELAC5cuMC7777L999/z+TJkxk0aFCVTubt2rWLiIgIevbsybRp03BwcKjGaIWoX6RCFpXi4uJCeHg4ixcvJjU1lYCAAH755Rej1+vTpw+ZmZlYWVmh0WjYvn17NUYrRMMkFbK4i06nY/PmzcTFxdGvXz+Cg4Np0qSJ0evt27ePBQsW0KFDB15//XWaNm1ajdEKUfdJhSyMplKpePnll8nOzsba2prhw4eTlpZm9Dv4Hn30UdLT02nbti1arZbNmzdTmUJAiMZCKmRRrtzcXJYtW8aFCxcIDQ2lZ8+eRq91+PBhwsPDcXJyYs6cObi5uVVjpELUTbLtTVQrvV7Pzp07WbZsGQ8++CDTp083OpmWlJSwfv161q1bR2BgIBqNBlVFTiYKUU9Jy0JUK0VR6NevH1lZWXTp0oWRI0cSHx9/+23YlaFWqxkzZgyrVq3is88+47XXXiM3N7cGohaifpGELCrFwsKCsWPHkp6eTl5eHl5eXvzrX/8yqifctm1bVqxYwd///ncCAwNJSkqq0nFuIeo7aVmIKtm3bx+RkZHY2toyc+ZMOpVxp0ZZzp49S0REBBcuXGDevHlVvpVOiLpEesii1uh0OjZt2kRCQgLPPPMMEyZMwMnJqdLr6PV6PvnkE2JiYhgyZAhBQUFYWVnVQMRC1C7pIYtao1KpePXVV8nKykKtVjN8+HAyMzMpLS2t1DqKovDiiy+Snp7O2bNn8fHxYe/evTUUtRB1j1TIotodPXqUqKgorly5wsyZM+nRo4dR63zxxRcsWbKEp556iilTpmBnZ1fNkQpRO6RCFibToUMH4uPjCQoK4q233iIsLIwzZ85Uep1+/fqRkZGBXq9Ho9Gwc+fOGohWiLpDKmRRowoLC0lOTiY9PR2tVoufnx+WRtzh/N1337Fw4UK6du1KaGholY5yC1HbpEIWdYKVlRVBQUGkpKSQm5uLl5cXn3/+eaW3yT3++ONkZGTg4uKCt7c3W7dulePXosGRClnUqr179xIZGYmTkxOhoaF06NCh0mv8/PPPhIeH07JlS9544w1atGhRA5EKUX2kQhZ1Uo8ePUhJSWHAgAFMmDCBpUuXcu3atUqt8dBDD7F+/XoeeughRowYQXZ2NjqdroYiFqL2SEIWtc7MzAyNRkNWVhY6nQ4vL69KJ1Vzc3MCAwNZsWIFmzdvZvz48Zw4caIGoxai5klCFibj6OhIWFgYy5cv59NPP2XkyJHs27evUmt4eHiwatUq+vfvj7+/P8nJyZXe/yxEXSE9ZFEn6PV6tm3bxjvvvEP37t2ZOnVqpXvDp0+fZuHChVy7do358+cbfYxbiOomPWRRryiKwsCBA8nKyqJNmzb4+PiwatUqioqKKryGm5sbcXFxaDQagoODee+99yo1XwhTk4Qs6hRra2vGjx/P+vXrycnJwcvLix07dlR4i5uiKAwdOpS0tDRyc3Px9fXlxx9/rOGohage0rIQddqePXuIioqiWbNmhIaG4uHhUeG5er2e7du3ExkZybPPPsvEiROxsbGpwWiFuDdpWYgGoWfPnqSmpvL0008TFBREdHQ0+fn5FZqrKArPPvssmZmZFBQU4O3tze7du2s4YiGMJxWyqDcuX75MfHw8O3bsIDg4mKFDh1bq1U+7d+8mIiKCHj16MGPGDBwcHGowWiH+Sypk0eA0adKE2bNnExsby4cffoifnx8HDhyo8PzevXuTkZGBra0tGo3GqCPcQtQkqZBFvaTX6/n000+JjY3lb3/7G5MnT8bFxaXC83/88UcWLFiAu7s7r7/+Os2aNavBaEVjJxWyaNAURWHQoEFkZWXRokULtFota9asqfA2t+7du5Oamoq7uzs+Pj58+OGHUi0Lk5MKWTQIeXl5REdHk5uby4wZM+jbty+KolRo7pEjRwgPD8fBwYE5c+bQqlWrGo5WNDbyTj3RKO3evZuoqChatWpFSEgIbdu2rdC80tJSUlJSWLt2LQEBAWi12kp9YChEWaRlIRql3r17k56eTq9evQgICCAmJoaCgoJy55mZmTF69GhWr17Njh07GDt2LLm5ubUQsRD/JQlZNDjm5uaMGDGCzMxMrl27xrBhw/jwww8rdJtcmzZtSEhI4KWXXiIwMJCVK1dSXFxcC1ELIS0L0QgcOnSIyMhIdDodM2fOpGvXrhWad+7cORYtWsSZM2eYP38+Dz30UA1HKhoq6SEL8Sc6nY5PPvmE5cuX06tXLyZPnkzTpk3LnffH9rro6GhefPFFxo8fj5WVVS1ELBoS6SEL8ScqlYrBgweTnZ2Ns7MzGo2GdevWlduO+GN7XUZGBhcvXkSr1SJFiagpUiGLRunEiRNER0dz4sQJQkND6dOnT4XmffnllyxatIgnn3ySKVOmYG9vX8ORioZAKmQhytCmTRtiYmKYMWMGUVFRTJs2rUKvgOrbty+ZmZkoioK3tzc7d+6shWhFYyEVsmj0iouLSUtLY+3atfzjH/8gICCgQtd07t27l4ULF9KlSxdCQ0NxdnauhWhFfSQVshAVZG5uzujRo8nIyODSpUsMGzaMLVu2lLtNrkePHqSlpeHq6opWq2XLli1y/FpUiVTIQvzFTz/9RGRkJGq1mtDQUDw9Pcudc+jQIRYsWICLiwuzZ8/G1dW1FiIV9YVUyEIY6eGHH2bNmjX84x//YPr06SxYsIDff/+9zDmenp6sW7eORx55hJEjR7Jhw4YKHUQR4s8kIQtxDyqViqFDh5KdnY2dnR0ajYbU1FRKSkruO0etVjN27FhWrlzJJ598QlBQEMePH6/FqEV9JwlZiDLY2dkxffp0EhMT2b17Nz4+PnzzzTdlznF3dycxMZHnnnuOsWPHsmbNmjITuRB/kB6yEBWk1+v58ssviY6Opn379syYMaPcqzpPnz7N22+/zeXLl3nzzTd58MEHaylaUZdID1mIaqYoCk8//TSZmZl07dqV0aNH895773Hjxo37znFzc2P58uX4+voyadIkli9fXuFL9EXjIwlZiEqysLDA39+ftLQ0zpw5g5eXF1u3br3vljdFURgyZAjp6emcPHkSrVbL/v37azlqUR9Iy0KIKtq/fz+RkZFYW1szc+bMctsS27dvZ+nSpQwYMIBJkyZV6BCKqN+kZSFELXnkkUdYt24dgwcPZvLkyURERHD58uX7jh8wYACZmZkUFhai0WjYtWtXLUYr6jKpkIWoRteuXWPFihVs3bqVwMBAvLy8MDMzu+/4b7/9lrfffptHHnmEGTNm4OTkVIvRitoiFbIQJuDg4EBoaCgrVqzgiy++wMfHh+++++6+43v16kV6ejpOTk54e3uzbds2OX7diEmFLEQN0ev1/Pvf/yYmJobOnTszbdo03Nzc7jv+wIEDLFy4kNatWxMWFoaLi0stRitqklTIQpiYoigMGDCADRs20KlTJ0aNGsX7779PYWHhPcd369aN9evX07FjR3x8fNi0aZNUy42MJGQhapilpSWvvfYaKSkpHD9+HC8vLz777LN7JlsLCwvGjx9PfHw8H3zwARMmTCAvL88EUQtTkJaFELXshx9+IDIyEnt7e2bOnEnHjh3vOa60tJTU1FTWrFmDv78/vr6+qFRSQ9VH0rIQoo567LHHWL9+PQMHDiQ4OJglS5Zw9erVu8aZmZkxatQo1qxZw5dffsmYMWM4duyYCSIWtUUSshAmYGZmhpeXF9nZ2SiKwvDhw8nKyrrnlZ2tW7cmPj6eV155hXHjxrFixQo5ft1ASUIWwoQcHByYNWsWcXFxbNu2jREjRvDDDz/cNU6lUvHKK6+QmppKTk4OI0eO5ODBgyaIWNQk6SELUUfo9Xo+//xzYmJi6NatG1OnTqVFixb3HLdt2zaioqIYNGgQEyZMwNra2gQRi4qSHrIQ9YyiKDz33HNkZWXRrl07fHx8SExM5NatW3eNGzhwIJmZmVy+fBlvb2/27NljoqhFdZIKWYg66vTp08TExJCTk8O0adN45plnUBTlrnFff/01ERER9OrVi+nTp2Nvb2+CaEVZpEIWop5zc3Nj6dKlzJs3j4SEBCZOnEhubu5d45588kkyMzOxtLREo9GwY8eO2g9WVAupkIWoB0pLS8nOzmblypW88MILBAUF4eDgcNe4H374gYUiQ1oaAAAL5ElEQVQLF9KpUydmzZqFs7OzCaIVfyUVshANiJmZGRqNhg0bNlBUVISXlxcffPDBXdvkHnvsMdLS0mjVqhXe3t589NFHcvy6HpEKWYh66PDhw0RGRnLz5k1mzZpF9+7d7xqTk5NDeHg4zs7OzJ49u8yLjUTNkgpZiAbswQcfZOXKlYwePZo33niDuXPncv78+TvGdO7cmeTkZHr06MGoUaPIyMi458ETUXdIQhainlIUhRdeeIHs7Gzc3Nzw8fFh1apVd5ziU6vV+Pv7k5SUxL/+9S8CAwP57bffTBe0KJMkZCHqOWtra4KDg0lOTubQoUMMHz6cnTt33tE7bteu3e0PBAMCAli1ahUlJSUmjFrci/SQhWhgvv32W6KiomjRogUhISG4u7vf8fzMmTNERERw6dIl5s2bR5cuXUwUaeMhPWQhGqlevXqRlpZGnz59CAwMJDo6muvXr99+3rJlS2JjYxkxYgRTp04lNjb2rtOAwjQkIQvRAKnVanx9fcnMzOTGjRsMGzaMDz/88PaHeoqiMHjwYNLT0zlz5gw+Pj73vNRI1C5pWQjRCPzyyy9ERkZSUlJCaGgo3bp1u+P5jh07WLp0KU8//TSTJ0/G1tbWRJE2TNKyEELc1qVLF5KSktBqtbz++uu8+eabXLx48fbz/v37k5GRQUlJCRqNhq+++sqE0TZeUiEL0cjcuHGDVatWsXHjRvz8/NBqtVhYWNx+vmfPHt5++20efvhhQkJCaNKkiQmjbRikQhZC3JONjQ2TJk1i9erV7Nu3D29v7zsq4p49e5Kenk7Tpk3x9vbm008/lePXtUQqZCEauV27dhEVFUXr1q0JCQmhTZs2t58dPHiQ8PBwWrVqxRtvvEHz5s1NGGn9JRWyEKJC+vTpQ0ZGBo8//jj+/v7ExsZSUFAAQNeuXUlJSaFLly74+vre80IjUX0kIQshMDc3Z+TIkbffQuLl5cVHH32ETqfD3NycoKAg3n//ff73f/+XCRMmcPLkSVOH3CBJy0IIcZeDBw8SGRmJoijMmjULT09PAHQ6Henp6SQlJeHn58eIESMwMzMzcbR1X0VbFpKQhRD3pNPp+Pjjj4mLi6NPnz5MmjTp9oX3eXl5vP3221y/fp158+bRqVMnE0dbt0kPWQhRJSqVipdeeons7GwcHR3RaDSsX7+e4uJiHnjgAd577z28vLwIDg4mPj7+jlvmhHEkIQshymRra8vUqVNJSkpiz549aLVadu3ahaIovPzyy6SlpXH06FFGjBjBgQMHTB1uvSYtCyFEhen1er766iuio6Nxd3dn+vTptG7dGr1ez+eff05kZCQDBw5kwoQJ2NjYmDrcOkNaFkKIaqcoCn379iUjI4Pu3bszZswYli9fzs2bN3nuuefIzMzk2rVraLVavvnmG1OHW+9IhSyEMNqFCxd49913+f7775k8eTKDBg1CURR27dpFREQEjz/+ONOnT7/nG7IbE6mQhRA1zsXFhfDwcBYvXkxqaioBAQH88ssv9OnTh8zMTKytrdFoNGzfvt3UodYLUiELIaqFTqdj8+bNxMXF0a9fP4KDg2nSpAn79+9nwYIFtG/fnlmzZtGsWTNTh1rrpEIWQtQqlUrFyy+/THZ2NtbW1gwfPpy0tDS6du1KWloa7dq1w8fHh82bN8tlRfchFbIQokbk5uYSFRXFxYsXCQ0NpWfPnhw5coT/+Z//wcnJiTlz5uDm5mbqMGuFVMhCCJPy8PAgLi6O4OBgFi5cyMyZM7Gzs2Pt2rX07NmTUaNGkZaWJpcV/YkkZCFEjVEUhf79+5OVlUWXLl0YOXIkiYmJaDQaVq1axfbt2wkICCA3N9fUodYJkpCFEDXOwsKCsWPHkp6ezsmTJ/Hy8uLw4cMkJCQwePBgAgMDSUxMpLi42NShmpT0kIUQtW7fvn1ERkZiZ2dHaGgoDg4OREREcOHCBebNm3f7drmGQm57E0LUaTqdjk2bNpGQkMCAAQMYP348u3fv5p///CeDBw9m3LhxWFlZmTrMaiEf6gkh6jSVSsWrr75KVlYWZmZmDB8+nPz8fFJSUjh37hxarZa9e/eaOsxaJRWyEKJOOHr0KFFRUVy5coWZM2dSUFDA4sWLeeqpp5gyZQp2dnamDtFoUiELIeqVDh06EB8fT1BQEG+99RZbtmwhNjYWAI1Gw86dO00cYc2ThCyEqDMURWHAgAFs2LABDw8PgoKCaNasGXPnziU6Opo5c+Zw+fJlU4dZYyQhCyHqHCsrK4KCgkhJSSE3N5dFixYxbtw4XFxc8Pb25pNPPmmQx6+lhyyEqPP27t1LZGQkTk5OvPzyy6xdu5YWLVowe/ZsWrRoYerwyiU9ZCFEg9GjRw9SUlIYMGAA0dHRdO/enQ4dOuDr60tWVlaDOX4tCVkIUS+YmZmh0WjIyspCURQ2b97MsGHD+Oijjxg3bhwnTpwwdYhVJglZCFGvODo6EhYWxvLly9m/fz+3bt3Cw8MDf39/kpOTKS0tNXWIRpMeshCi3tLr9Wzbto133nkHDw8P8vPzKSkpYf78+XTq1MnU4d0mR6eFEI3GzZs3Wbt2LRkZGTz88MP8/PPPDBs2jNdeew0LC4vKL3jxIhw6ZPjKyzN8r2lTeOgh6NIFWreu1HKSkIUQjc7p06eJiYnhxx9/pEmTJhQXFzN//ny6d+9e/mS9Hr78EpKSYNcuMDODoiJQFMNznQ4sLAx/duwI48fDoEGG75VDErIQotHas2cPUVFRFBYWcuXKFYYMGcKkSZOwsbG594TTp2HmTPj2W8O/HRxAdZ+P2PR6KCiAkhJo2xbeeQe6di0zHtn2JoRotHr27Elqaiq+vr6oVCo+//xzhg0bxu7du+8evGsXPP+8IRk7OoKT0/2TMRgqZjs7w9iTJ+GVV2Dt2mqJWxKyEKJBUqvVaLVaNm7cSL9+/bh06RJTpkxh/vz5XL161TDoq6/A39/wdyen/7YnKkJRDJW0jQ2EhxtaHVUkLQshRKOQk5NDREQEP//8M5aWliyZMoWnFixAAbC2rtrixcWGNkZyMvTpc9djaVkIIcSfdO7cmbVr1/L2229jpijkBwVxIS+PYnPzqi9ubm74mj4drl83ehlJyEKIRkNRFAYNGsS2OXPoY2nJ+cJCDh8+zO+XL1Plq4psbeHChSq1LiQhCyEaHavkZJyaNKHTgw9ia2tL3smTHDt6lKKiojvGZf7+O6N+/ZXeOTm8dfp0+Qvb2sLq1YYWhhEkIQshGpczZ+D778HeHgsLC9zbtcPdw4Oi4mJycnI4d/787Wq5mVpNQLNmDHV0rNjalpZw4wZ8/bVRoUlCFkI0LgcPGg59/GlHhb2dHZ07d6aFqytnz54l55dfuHHzJgMcHOhvb4+jmVnF1y8uhn37jApNErIQonH56SfDCby/UCkKLZo3x9PTEwtLS44cPszxEyfQVfYifEvL/x4wqSRJyEKIxiUvz1Ah34e5Wk17Dw/ad+hAfn4+Bw8evKu3XCa1Gs6dMyo0SchCiMZFp6vQARB7Ozseeughmru4oK7M1jhFMfwMI0hCFkI0Ls7OUME7kxXA1dUVVWVO8JWWGk7wGUESshCicenWrcyWxZ+V6vUU6XToAB1QpNNRWl5PubAQevQwKjS1UbOEEKK+8vQ0tBX0+nJbF0kXL7Li4sXb/95y9SpBzZoR5OJy/0lmZvDYY0aFJglZCNG4dOgArq6GS+jvdx3nfwS5uJSdfP+qtNRwU9zTTxsVmrQshBCNi0oFQUH33PpWZVevwpAhhpvjjCAJWQjR+LzyCjRrZrihrboUFRkuGJo0yeglJCELIRofW1v45z8Np+qq4y3Vf7xFZNYscHc3ehlJyEKIxql3b5g40dBmqEpS1uvh8mV45hkYM6ZKIcmHekKIxmvaNMO78RISwMqq8hfVFxdDfr4hGcfFVXg73f1U6o0hiqJcAI5X6ScKIUTj01av15e7XaNSCVkIIUTNkR6yEELUEZKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEf8P0hlJzrXGzocAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from itertools import permutations\n", - "\n", - "def brute_force_tsp(w, N):\n", - " a=list(permutations(range(1,N)))\n", - " last_best_distance = 1e10\n", - " for i in a:\n", - " distance = 0\n", - " pre_j = 0\n", - " for j in i:\n", - " distance = distance + w[j,pre_j]\n", - " pre_j = j\n", - " distance = distance + w[pre_j,0]\n", - " order = (0,) + i\n", - " if distance < last_best_distance:\n", - " best_order = order\n", - " last_best_distance = distance\n", - " print('order = ' + str(order) + ' Distance = ' + str(distance))\n", - " return last_best_distance, best_order\n", - " \n", - "best_distance, best_order = brute_force_tsp(ins.w, ins.dim)\n", - "print('Best order from brute force = ' + str(best_order) + ' with total distance = ' + str(best_distance))\n", - "\n", - "def draw_tsp_solution(G, order, colors, pos):\n", - " G2 = G.copy()\n", - " n = len(order)\n", - " for i in range(n):\n", - " j = (i + 1) % n\n", - " G2.add_edge(order[i], order[j])\n", - " default_axes = plt.axes(frameon=True)\n", - " nx.draw_networkx(G2, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", - "\n", - "draw_tsp_solution(G, best_order, colors, pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Mapping to the Ising problem" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "qubitOp, offset = tsp.get_tsp_qubitops(ins)\n", - "algo_input = EnergyInput(qubitOp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Optional] Using DOcplex for mapping to the Ising problem\n", - "Using ```docplex.get_qubitops``` is a different way to create an Ising Hamiltonian of TSP. ```docplex.get_qubitops``` can create a corresponding Ising Hamiltonian from an optimization model of TSP. An example of using ```docplex.get_qubitops``` is as below. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create an instance of a model and variables\n", - "mdl = Model(name='tsp')\n", - "x = {(i,p): mdl.binary_var(name='x_{0}_{1}'.format(i,p)) for i in range(n) for p in range(n)}\n", - "\n", - "# Object function\n", - "tsp_func = mdl.sum(ins.w[i,j] * x[(i,p)] * x[(j,(p+1)%n)] for i in range(n) for j in range(n) for p in range(n))\n", - "mdl.minimize(tsp_func)\n", - "\n", - "# Constrains\n", - "for i in range(n):\n", - " mdl.add_constraint(mdl.sum(x[(i,p)] for p in range(n)) == 1)\n", - "for p in range(n):\n", - " mdl.add_constraint(mdl.sum(x[(i,p)] for i in range(n)) == 1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Checking that the full Hamiltonian gives the right cost " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -600073.0\n", - "tsp objective: 146.0\n", - "feasible: True\n", - "solution: [0, 1, 2]\n", - "solution objective: 146.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlY1dXWwPHv73CYR1EUMQdwSMm08qZpmWZl3jS7JR4OOCASqDgLGjnVi4YDyCWSIAUHlFFI3yyza3nNSssyzczQVykVZ80BUWQ45/3j3LyZynAYDsP6PA+Pym/vzeKf5XrW2Xv/FL1ejxBCCNNTmToAIYQQBpKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEerKDG7WrJm+Xbt2dz+4cgXy8gx/NzOrXAQ6neGrWTNo2bJyc4UQoh7Yu3fvRb1e71LeuEol5Hbt2vH999/f+c1NmyAkBDp1AguLykX5h9JSuHoVhg6FefNAUYxbRwgh6iBFUY5XZFzVWhZHjsDrr4OtrfHJGAxVtaMjrF0LW7ZUKSQhhKivjE/IJSUwdSro9VVLxn8wMwNra3jjDbh4serrCSFEPWN8Qt66FY4eBXv76ovGygquX4f33qu+NYUQop4wPiG//z6oVGX2e4t0OsJPn2bI0aM8ffgwvrm57Lp+vex17e0hIwNu3DA6NCGEqI+MS8gnTkBODtjZlTmsFHA1N2dFmzbs6NSJCS4uhJ06xemiovtPMjeH4mL48kujQhNCiPrKuIT888/lVscA1ioVQS4uuFlYoFIU+trb42ZuTk5hYdnrFxfDvn1GhSaEEPWVcQn5wAEoq8q9j99LSjhRVISHpWXZA62sYM8eo0ITQoj6qlL7kG87d67SB0Au5+cz9/Jlhjg60q68hKxWw6VLRoUmhBD1lXEVciXfw1dUUkLo//0f169eZXqzZkb9SCGEaOiMS8gtWhhO11WAXq9n0fnzKE2aEGJmxtGcHC5fuUKZKb2kBJo0MSo0IYSor4xrWXTrVuHDIIvOnuXXoiLea9sWK0Xh5IkTnDx5kqtXruDWqhUW5uZ3TyoshMcfNyo0IYSor4xLyJ6ehguB9Poyd1qcKS7mgytXsFAUXvi//7v9/YlOTjycn8+xY8do0aIFTZo04Y5VzM3h0UeNCk0IIeor4xJy27bQoQP8+muZe5FbmpvzfZcu93x2LT+f06dOcfHiRa5dvUrLli2xtLQ0bHlTq6FfP6NCE0KI+sq4HrKiwPjxhl5vJT/g+4ODvT3t3N1RFAUUhd+OH+fCxYvo8/Nh+HDDhUVCCNGIGH90+u9/B3d3yM83egkrS0vc/3O/spWVFUX5+eRdusSR554zek0hhKivjE/IFhbwzjuGvxtxSOQParWaNm3aYGFmhvrWLY75+zNpwQJiY2O5deuW0esKIUR9U7X7kD09ITwcCgqqlJRVej2uNjZcePZZFv/yC3PnzuXMmTNotVp++OGHKoUohBD1RdXfqafVwsKFhtvZjGlfFBbC1asoWi1dN27kzbfeYsGCBfTu3ZupU6cyd+5cIiIiuF7eLXFCCFHPVc9LTn18YMMGw4GRy5fh5s3yP+wrKoLffzdcUhQba0jqKhW9e/dm5cqVrFmzhn379pGWloZer0ej0fCl3AAnhGjAFH0ldkn87W9/09/1Tr0/KyyE9HRYscLw1o/SUkPCVasNOzNKSgxf5uZgaQmjR8OYMYYXnP7FtWvXCAsLQ61WExERwS+//MLChQvp2rUroaGhNJGTfEKIekJRlL16vf5v5Y6r1oT8B50O9u+Hn34y3Np25ozh+05OhhN4XbtCr17lnvYrLS0lOjqab7/9lujoaJo3b05CQgJbtmwhJCSEgQMHGrbNCSFEHWbahFzNPvjgAxISEli4cCE9e/bk559/Jjw8HDc3N9544w2aN29e6zEJIURFVTQhV08PuYa9+uqrLFq0iLlz55KZmYmnpyfr16/H09MTX19fsrOz0el0pg5TCCGqpF4kZIAePXqwevVqsrKyWLRoEYqiEBgYyIoVK9i8eTPjx4/nxIkTpg5TCCGMVm8SMkCrVq1YvXo1Fy5cYOLEiVy9ehUPDw9WrVpF//798ff3Jzk5mdIKXg0qhBB1Sb1KyAC2trYsW7aMrl27Mnr0aHJzc1GpVPj6+pKcnMw333yDn58fR44cMXWoQghRKfUuIQOoVComT57MuHHjGDdu3O39ya1atSIuLg6NRsPEiROJj4+nqAonCIUQojbVy4T8hxdffJHo6GgiIiJITk5Gr9ejKApDhw4lNTWVY8eO4evry4EDB0wdqhBClKtebHsrz7lz5wgJCcHDw4O5c+di8Z/9zXq9nu3bt7N06VKee+45Jk6ciI2NjYmjFUI0Ng1q21t5WrRoQWJiIsXFxYwbN45L/3ljtaIoPPvss2RmZlJQUIC3tze7d+82cbRCCHFvDaJC/oNerycpKYmNGzeybNkyOnfufMfz3bt3ExERQY8ePZgxYwYODg4milQI0Zg0qgr5D4qi8NprrxESEsKkSZP47LPP7njeu3dvMjIysLW1RaPRsH37dhNFKoQQd2tQFfKfHTlyhBkzZjB06FBee+01VKo7/+/58ccfCQ8Px8PDg9dff51m97jgSAghqkOjrJD/rFOnTrf3JYeFhXHz5s07nnfv3p20tDTc3d3x8fHhww8/pDL/OQkhRHVrsAkZwNnZmYSEBGxsbAgICODcuXN3PLewsCA4OJi4uDgyMzOZOHEip06dMlG0QojGrkEnZDAk3TfffJMXX3yRMWPG3HNPcqdOnVi7di1PPPEEo0ePJjU1VS4rEkLUugafkMHwYd/IkSOZO3cuISEhfPTRR3eNMTMzY/To0axevZodO3YQEBBAbm6uCaIVQjRWjSIh/+HJJ5/k/fffJzExkdjY2HtWwW3atCEhIYEhQ4YQGBjIypUrKS4uNkG0QojGplElZAAPDw/Wrl3LoUOHmDFjBgUFBXeNUalUDBs2jNTUVA4ePMjIkSM5dOiQCaIVQjQmjS4hAzg6OrJ8+XJcXV3x9/cnLy/vnuNatGhBTEwM/v7+TJs2jZiYGAoLC2s5WiFEY9EoEzKAWq0mLCyM4cOHM3bsWO63v1pRFAYNGkRGRgYXLlxAq9Xed6wQQlRFgz0YUhnfffcdc+bMYdy4cQwbNqzMsTt37mTx4sU89dRTTJkyBTs7u1qKUghRXzX6gyGV8fjjj5OUlER6ejpLliyhpKTkvmOffvppMjMzAdBoNOzcubO2whRCNHBSIf/J9evXmT17NsXFxSxZsqTcy4f27t3LggUL8PT0JDQ0FGdn51qKVAhRn0iFbAQ7OztiYmLo3Lkzfn5+/Prrr2WO79GjB+np6bi6uqLVatmyZYscvxZCGE0S8l+oVCqmTp3K2LFjCQoKYteuXWWOt7KyYsqUKcTExJCcnMzUqVM5e/ZsLUUrhGhIJCHfx0svvcSyZcsIDw8nJSWl3MrX09OTdevW0b17d0aOHMmGDRvk+LUQolIkIZehW7durFmzho8//pjw8PByX5hqbm5OQEAAK1asYMuWLYwbN47jx4/XUrRCiPpOEnI5XF1dSUpKoqCggPHjx/P777+XO8fDw4OkpCSeffZZxo4dy5o1a8rcuSGEECAJuUKsra1ZvHgxvXr1ws/PjyNHjpQ7R6VSodVqWbduHd999x1+fn4cPny4FqIVQtRXkpArSKVSMW7cOKZMmcLEiRP597//XaF5bm5uLF++HK1Wy6RJk4iLiyu39SGEaJwkIVfS888/T2xsLJGRkSQmJlZom5uiKLz00kukp6dz/PhxfHx82L9/fy1EK4SoT+RgiJEuXrxISEgIrVq1Yv78+VhZWVV47vbt21m6dCkDBgxg0qRJ2NjY1GCkQghTk4MhNaxZs2asXLkStVpNYGAg58+fr/DcAQMGkJmZSWFhIRqNpty9zkKIxkEq5CrS6/UkJyeTkZHB0qVL6dq1a6Xmf/PNN0RERPDII48QEhKCo6NjDUUqhDAVqZBriaIo+Pn5ERYWxvTp0/nkk08qNf+JJ54gPT0dR0dHNBoN27Ztk+PXQjRSUiFXo2PHjjF9+nQGDhxIcHAwKlXl/r87cOAACxYsoE2bNoSFheHi4lJDkQohapNUyCbQvn17kpOTOXDgAKGhody4caNS87t160ZKSgodO3bEx8eHTZs2SbUsRCMiCbmaOTk5ERcXR9OmTfH39+f06dOVmm9hYcH48eOJj48nOzub4ODg+75iSgjRsEhCrgHm5ubMnj2bV199FX9/f3744YdKr9GxY0fWrFlDnz598PPzIyUlRS4rEqKBk4RcQxRFwdvbm/DwcMLCwti4cWOl1zAzM2PUqFGsWbOGL774An9/f44dO1YD0Qoh6gJJyDWsV69eJCYmsn79eqKioigtLa345OvX4fvvab1vHwkvvEBQ69aEjxrFyvh4iouLay5oIYRJyC6LWpKfn8/s2bPR6XQsWrTo/q+HunEDPv4YVq6EY8fA3Bz+aFUoCiWlpfx+6RIHmjTBfcEC2vv4QCV3cwghapfssqhj7O3tiYmJoX379owZM+bue5L1eti0CZ54AmbPhpMnwckJ7OzAwcHwZW+P2skJl3bt6F1YiGVgILldu1L400+m+aWEENVKEnItMjMzY8aMGfj5+REYGMg333xjeHDjBgQGQkiIoRp2dARbW1CUe66jmJlh6+aGa6dOOJw9y6XevTn25pu1+JsIIWqCtCxMZN++fYSFhRHg48PwTZtQfvrJUBHfJwmX5fqVK+SfPs3+AQN4Ki0Ne3v7GohYCGGsirYsJCGb0OlTp8jp25dHrlzBqV27Sp/s+7PSoiKu5eUR4+7OM8uW0b9//+oLVAhRJdJDrgfcvvuO/kCBuTknTp6kpDI7MP7CzMKCJm5uhF29ytrISMLCwir0uikhRN0hCdlUCgpg3jxUNjY80Lo1NjY2/PrrrxTeumX8mlZWWOv1rGzXjlatWqHVavn444/l+LUQ9YQkZFPZvBkKC8HKCgVo7uJC8+bNOXH8OPn5+cav6+CAets2Jmu1vPPOO6SkpDBlyhTOnDlTbaELIWqGJGRTSUwEtfqObzk6ONC6TRvOnj3LxYsX0QPXSksJzcvjqZwchhw9ytarV8te18wMSkth0ya6dOlCcnIyjz76KCNHjiQzM1OOXwtRh0lCNoVr1+DXX+Eer26ytrKinbs7+fn5nD51ikVnzmCuKPyrUycWurmx6OxZcstra6jV8J+XsKrVasaOHUtSUhJbt24lMDCQ3377rQZ+KSFEVUlCNoWcHMMJvPtscTNXq2nbrh039Hq2XrzIa02aYKNS8YiNDf3s7fm4vCrZ2hp++slw2OQ/2rVrR2JiIi+88AIBAQGsWrWKkpKS6vythBBVJAnZFE6fNrQVyqBSFEqbNcNcrUZ36hQ3b94EoKOlZcUq5IIC+M+c22uqVGg0GtavX8++ffsYPXo0OTk5VfpVhBDVRxKyKVSwMr2p0+FkYYGrqytnz53j7Llz2CgKBRXpAysK3OcCopYtWxIbG8uIESOYPHky7777LreqsrtDCFEtJCGbgrV1hS4EslGpKNDpsLe3p/UDD6DT6cg9cwZ1cTFlbmTT6w1fVlb3HaIoCoMHDyYjI4NTp07h4+Nj1L3NQojqIwnZFDw8KjSsjYUFpcCJoiLUajVuLVvyu709zYuL+e3XX7nxl5bEbUVF4OoKlpbl/gxnZ2cWL17M5MmTmTNnDosXL6agoKASv4wQorpIQjaF9u0NPeRyWg/WKhUD7O1JuHCBmzodP964wa6bNxnl4YGzszN5eXmcOn2a4r+2QAoL4dFHKxXSM888Q0ZGBsXFxWg0Gr7++uvK/lZCiCqShGwKFhbQt69h+1s5wlxduaXT8fyRI8w+dYo3XF1pb2mJo6Mj7du3x1ytJjc3l4uXLqH784m8F1+sdFgODg7MmzePN998kyVLljBv3jyuXLlS6XWEEMaRy4VM5euvYcwYwz3HRtzw9me3ioo4f+4ct4qKcHV2xs7WFr7/3pD4jXTz5k3i4+PZunUroaGhPP/88yhVjFOIxkouF6rrevc2tC4qUCWXx9LCgtatW+PavDn5Z8+S2bQpJ86erdKa1tbWzJgxg2XLlpGYmEhISAjnz5+vcqxCiPuThGwqKhXExJS5Pa2y7HQ6Wjz1FMV+fvj7+xMbG1vlD+gefvhh1q9fT+fOnfH19eWDDz6Q49dC1BBJyKbUuTPMmmV4mWlVT80VFIClJarlyxkxZgyZmZlcvnwZLy8vPvrooyolUQsLC4KCgkhISGDTpk1MmDCBkydPVi1eIcRdpIdsanq9oVJevtxwt0UFtqrdNf/aNcO85GR47LE7Hh88eJDIyEgURWHWrFl4enpWKVydTkdaWhqrVq1izJgx+Pr6YmZmVqU1hWjo5I0h9c3GjTB3Lty6ZfigryJvDykqMlTGHTtCbCx06nTPYTqdjo8//pi4uDj69OnDpEmTcHZ2rlK4eXl5LFy4kBs3bjBv3jw6duxYpfWEaMjkQ7365pVX4PPP4fnnIT8frly5u5Wh1xsS9tWrhi+93vBi1M2b75uMwXCHxUsvvUR2djaOjo6377MorkLv+oEHHiA+Pp5XX32VCRMmkJCQQFFRkdHrCSGkQq6bzp2D7GzYsQN+/tmQhBXFcJikeXPo3h2GDIGBAyvf4gCOHz/OsmXLOHXqFCEhIfTp06dK4Z4/f57Fixdz8uRJ5s2bR7du3aq0nhANjbQsGgq93lAxl5QY7sCwtq6mZfV89dVXREdH4+7uzvTp02ndunWV1vvss8+Iiopi4MCBTJgwAZt73PcsRGMkLYuGQlEMPWVn52pLxoZlFfr27UtGRgbdu3dnzJgxLF++nBs3bhi93vPPP09mZiZXr15Fq9Xy7bffVlu8QjQGUiELAC5cuMC7777L999/z+TJkxk0aFCVTubt2rWLiIgIevbsybRp03BwcKjGaIWoX6RCFpXi4uJCeHg4ixcvJjU1lYCAAH755Rej1+vTpw+ZmZlYWVmh0WjYvn17NUYrRMMkFbK4i06nY/PmzcTFxdGvXz+Cg4Np0qSJ0evt27ePBQsW0KFDB15//XWaNm1ajdEKUfdJhSyMplKpePnll8nOzsba2prhw4eTlpZm9Dv4Hn30UdLT02nbti1arZbNmzdTmUJAiMZCKmRRrtzcXJYtW8aFCxcIDQ2lZ8+eRq91+PBhwsPDcXJyYs6cObi5uVVjpELUTbLtTVQrvV7Pzp07WbZsGQ8++CDTp083OpmWlJSwfv161q1bR2BgIBqNBlVFTiYKUU9Jy0JUK0VR6NevH1lZWXTp0oWRI0cSHx9/+23YlaFWqxkzZgyrVq3is88+47XXXiM3N7cGohaifpGELCrFwsKCsWPHkp6eTl5eHl5eXvzrX/8yqifctm1bVqxYwd///ncCAwNJSkqq0nFuIeo7aVmIKtm3bx+RkZHY2toyc+ZMOpVxp0ZZzp49S0REBBcuXGDevHlVvpVOiLpEesii1uh0OjZt2kRCQgLPPPMMEyZMwMnJqdLr6PV6PvnkE2JiYhgyZAhBQUFYWVnVQMRC1C7pIYtao1KpePXVV8nKykKtVjN8+HAyMzMpLS2t1DqKovDiiy+Snp7O2bNn8fHxYe/evTUUtRB1j1TIotodPXqUqKgorly5wsyZM+nRo4dR63zxxRcsWbKEp556iilTpmBnZ1fNkQpRO6RCFibToUMH4uPjCQoK4q233iIsLIwzZ85Uep1+/fqRkZGBXq9Ho9Gwc+fOGohWiLpDKmRRowoLC0lOTiY9PR2tVoufnx+WRtzh/N1337Fw4UK6du1KaGholY5yC1HbpEIWdYKVlRVBQUGkpKSQm5uLl5cXn3/+eaW3yT3++ONkZGTg4uKCt7c3W7dulePXosGRClnUqr179xIZGYmTkxOhoaF06NCh0mv8/PPPhIeH07JlS9544w1atGhRA5EKUX2kQhZ1Uo8ePUhJSWHAgAFMmDCBpUuXcu3atUqt8dBDD7F+/XoeeughRowYQXZ2NjqdroYiFqL2SEIWtc7MzAyNRkNWVhY6nQ4vL69KJ1Vzc3MCAwNZsWIFmzdvZvz48Zw4caIGoxai5klCFibj6OhIWFgYy5cv59NPP2XkyJHs27evUmt4eHiwatUq+vfvj7+/P8nJyZXe/yxEXSE9ZFEn6PV6tm3bxjvvvEP37t2ZOnVqpXvDp0+fZuHChVy7do358+cbfYxbiOomPWRRryiKwsCBA8nKyqJNmzb4+PiwatUqioqKKryGm5sbcXFxaDQagoODee+99yo1XwhTk4Qs6hRra2vGjx/P+vXrycnJwcvLix07dlR4i5uiKAwdOpS0tDRyc3Px9fXlxx9/rOGohage0rIQddqePXuIioqiWbNmhIaG4uHhUeG5er2e7du3ExkZybPPPsvEiROxsbGpwWiFuDdpWYgGoWfPnqSmpvL0008TFBREdHQ0+fn5FZqrKArPPvssmZmZFBQU4O3tze7du2s4YiGMJxWyqDcuX75MfHw8O3bsIDg4mKFDh1bq1U+7d+8mIiKCHj16MGPGDBwcHGowWiH+Sypk0eA0adKE2bNnExsby4cffoifnx8HDhyo8PzevXuTkZGBra0tGo3GqCPcQtQkqZBFvaTX6/n000+JjY3lb3/7G5MnT8bFxaXC83/88UcWLFiAu7s7r7/+Os2aNavBaEVjJxWyaNAURWHQoEFkZWXRokULtFota9asqfA2t+7du5Oamoq7uzs+Pj58+OGHUi0Lk5MKWTQIeXl5REdHk5uby4wZM+jbty+KolRo7pEjRwgPD8fBwYE5c+bQqlWrGo5WNDbyTj3RKO3evZuoqChatWpFSEgIbdu2rdC80tJSUlJSWLt2LQEBAWi12kp9YChEWaRlIRql3r17k56eTq9evQgICCAmJoaCgoJy55mZmTF69GhWr17Njh07GDt2LLm5ubUQsRD/JQlZNDjm5uaMGDGCzMxMrl27xrBhw/jwww8rdJtcmzZtSEhI4KWXXiIwMJCVK1dSXFxcC1ELIS0L0QgcOnSIyMhIdDodM2fOpGvXrhWad+7cORYtWsSZM2eYP38+Dz30UA1HKhoq6SEL8Sc6nY5PPvmE5cuX06tXLyZPnkzTpk3LnffH9rro6GhefPFFxo8fj5WVVS1ELBoS6SEL8ScqlYrBgweTnZ2Ns7MzGo2GdevWlduO+GN7XUZGBhcvXkSr1SJFiagpUiGLRunEiRNER0dz4sQJQkND6dOnT4XmffnllyxatIgnn3ySKVOmYG9vX8ORioZAKmQhytCmTRtiYmKYMWMGUVFRTJs2rUKvgOrbty+ZmZkoioK3tzc7d+6shWhFYyEVsmj0iouLSUtLY+3atfzjH/8gICCgQtd07t27l4ULF9KlSxdCQ0NxdnauhWhFfSQVshAVZG5uzujRo8nIyODSpUsMGzaMLVu2lLtNrkePHqSlpeHq6opWq2XLli1y/FpUiVTIQvzFTz/9RGRkJGq1mtDQUDw9Pcudc+jQIRYsWICLiwuzZ8/G1dW1FiIV9YVUyEIY6eGHH2bNmjX84x//YPr06SxYsIDff/+9zDmenp6sW7eORx55hJEjR7Jhw4YKHUQR4s8kIQtxDyqViqFDh5KdnY2dnR0ajYbU1FRKSkruO0etVjN27FhWrlzJJ598QlBQEMePH6/FqEV9JwlZiDLY2dkxffp0EhMT2b17Nz4+PnzzzTdlznF3dycxMZHnnnuOsWPHsmbNmjITuRB/kB6yEBWk1+v58ssviY6Opn379syYMaPcqzpPnz7N22+/zeXLl3nzzTd58MEHaylaUZdID1mIaqYoCk8//TSZmZl07dqV0aNH895773Hjxo37znFzc2P58uX4+voyadIkli9fXuFL9EXjIwlZiEqysLDA39+ftLQ0zpw5g5eXF1u3br3vljdFURgyZAjp6emcPHkSrVbL/v37azlqUR9Iy0KIKtq/fz+RkZFYW1szc+bMctsS27dvZ+nSpQwYMIBJkyZV6BCKqN+kZSFELXnkkUdYt24dgwcPZvLkyURERHD58uX7jh8wYACZmZkUFhai0WjYtWtXLUYr6jKpkIWoRteuXWPFihVs3bqVwMBAvLy8MDMzu+/4b7/9lrfffptHHnmEGTNm4OTkVIvRitoiFbIQJuDg4EBoaCgrVqzgiy++wMfHh+++++6+43v16kV6ejpOTk54e3uzbds2OX7diEmFLEQN0ev1/Pvf/yYmJobOnTszbdo03Nzc7jv+wIEDLFy4kNatWxMWFoaLi0stRitqklTIQpiYoigMGDCADRs20KlTJ0aNGsX7779PYWHhPcd369aN9evX07FjR3x8fNi0aZNUy42MJGQhapilpSWvvfYaKSkpHD9+HC8vLz777LN7JlsLCwvGjx9PfHw8H3zwARMmTCAvL88EUQtTkJaFELXshx9+IDIyEnt7e2bOnEnHjh3vOa60tJTU1FTWrFmDv78/vr6+qFRSQ9VH0rIQoo567LHHWL9+PQMHDiQ4OJglS5Zw9erVu8aZmZkxatQo1qxZw5dffsmYMWM4duyYCSIWtUUSshAmYGZmhpeXF9nZ2SiKwvDhw8nKyrrnlZ2tW7cmPj6eV155hXHjxrFixQo5ft1ASUIWwoQcHByYNWsWcXFxbNu2jREjRvDDDz/cNU6lUvHKK6+QmppKTk4OI0eO5ODBgyaIWNQk6SELUUfo9Xo+//xzYmJi6NatG1OnTqVFixb3HLdt2zaioqIYNGgQEyZMwNra2gQRi4qSHrIQ9YyiKDz33HNkZWXRrl07fHx8SExM5NatW3eNGzhwIJmZmVy+fBlvb2/27NljoqhFdZIKWYg66vTp08TExJCTk8O0adN45plnUBTlrnFff/01ERER9OrVi+nTp2Nvb2+CaEVZpEIWop5zc3Nj6dKlzJs3j4SEBCZOnEhubu5d45588kkyMzOxtLREo9GwY8eO2g9WVAupkIWoB0pLS8nOzmblypW88MILBAUF4eDgcNe4H374gYUiQ1oaAAAL5ElEQVQLF9KpUydmzZqFs7OzCaIVfyUVshANiJmZGRqNhg0bNlBUVISXlxcffPDBXdvkHnvsMdLS0mjVqhXe3t589NFHcvy6HpEKWYh66PDhw0RGRnLz5k1mzZpF9+7d7xqTk5NDeHg4zs7OzJ49u8yLjUTNkgpZiAbswQcfZOXKlYwePZo33niDuXPncv78+TvGdO7cmeTkZHr06MGoUaPIyMi458ETUXdIQhainlIUhRdeeIHs7Gzc3Nzw8fFh1apVd5ziU6vV+Pv7k5SUxL/+9S8CAwP57bffTBe0KJMkZCHqOWtra4KDg0lOTubQoUMMHz6cnTt33tE7bteu3e0PBAMCAli1ahUlJSUmjFrci/SQhWhgvv32W6KiomjRogUhISG4u7vf8fzMmTNERERw6dIl5s2bR5cuXUwUaeMhPWQhGqlevXqRlpZGnz59CAwMJDo6muvXr99+3rJlS2JjYxkxYgRTp04lNjb2rtOAwjQkIQvRAKnVanx9fcnMzOTGjRsMGzaMDz/88PaHeoqiMHjwYNLT0zlz5gw+Pj73vNRI1C5pWQjRCPzyyy9ERkZSUlJCaGgo3bp1u+P5jh07WLp0KU8//TSTJ0/G1tbWRJE2TNKyEELc1qVLF5KSktBqtbz++uu8+eabXLx48fbz/v37k5GRQUlJCRqNhq+++sqE0TZeUiEL0cjcuHGDVatWsXHjRvz8/NBqtVhYWNx+vmfPHt5++20efvhhQkJCaNKkiQmjbRikQhZC3JONjQ2TJk1i9erV7Nu3D29v7zsq4p49e5Kenk7Tpk3x9vbm008/lePXtUQqZCEauV27dhEVFUXr1q0JCQmhTZs2t58dPHiQ8PBwWrVqxRtvvEHz5s1NGGn9JRWyEKJC+vTpQ0ZGBo8//jj+/v7ExsZSUFAAQNeuXUlJSaFLly74+vre80IjUX0kIQshMDc3Z+TIkbffQuLl5cVHH32ETqfD3NycoKAg3n//ff73f/+XCRMmcPLkSVOH3CBJy0IIcZeDBw8SGRmJoijMmjULT09PAHQ6Henp6SQlJeHn58eIESMwMzMzcbR1X0VbFpKQhRD3pNPp+Pjjj4mLi6NPnz5MmjTp9oX3eXl5vP3221y/fp158+bRqVMnE0dbt0kPWQhRJSqVipdeeons7GwcHR3RaDSsX7+e4uJiHnjgAd577z28vLwIDg4mPj7+jlvmhHEkIQshymRra8vUqVNJSkpiz549aLVadu3ahaIovPzyy6SlpXH06FFGjBjBgQMHTB1uvSYtCyFEhen1er766iuio6Nxd3dn+vTptG7dGr1ez+eff05kZCQDBw5kwoQJ2NjYmDrcOkNaFkKIaqcoCn379iUjI4Pu3bszZswYli9fzs2bN3nuuefIzMzk2rVraLVavvnmG1OHW+9IhSyEMNqFCxd49913+f7775k8eTKDBg1CURR27dpFREQEjz/+ONOnT7/nG7IbE6mQhRA1zsXFhfDwcBYvXkxqaioBAQH88ssv9OnTh8zMTKytrdFoNGzfvt3UodYLUiELIaqFTqdj8+bNxMXF0a9fP4KDg2nSpAn79+9nwYIFtG/fnlmzZtGsWTNTh1rrpEIWQtQqlUrFyy+/THZ2NtbW1gwfPpy0tDS6du1KWloa7dq1w8fHh82bN8tlRfchFbIQokbk5uYSFRXFxYsXCQ0NpWfPnhw5coT/+Z//wcnJiTlz5uDm5mbqMGuFVMhCCJPy8PAgLi6O4OBgFi5cyMyZM7Gzs2Pt2rX07NmTUaNGkZaWJpcV/YkkZCFEjVEUhf79+5OVlUWXLl0YOXIkiYmJaDQaVq1axfbt2wkICCA3N9fUodYJkpCFEDXOwsKCsWPHkp6ezsmTJ/Hy8uLw4cMkJCQwePBgAgMDSUxMpLi42NShmpT0kIUQtW7fvn1ERkZiZ2dHaGgoDg4OREREcOHCBebNm3f7drmGQm57E0LUaTqdjk2bNpGQkMCAAQMYP348u3fv5p///CeDBw9m3LhxWFlZmTrMaiEf6gkh6jSVSsWrr75KVlYWZmZmDB8+nPz8fFJSUjh37hxarZa9e/eaOsxaJRWyEKJOOHr0KFFRUVy5coWZM2dSUFDA4sWLeeqpp5gyZQp2dnamDtFoUiELIeqVDh06EB8fT1BQEG+99RZbtmwhNjYWAI1Gw86dO00cYc2ThCyEqDMURWHAgAFs2LABDw8PgoKCaNasGXPnziU6Opo5c+Zw+fJlU4dZYyQhCyHqHCsrK4KCgkhJSSE3N5dFixYxbtw4XFxc8Pb25pNPPmmQx6+lhyyEqPP27t1LZGQkTk5OvPzyy6xdu5YWLVowe/ZsWrRoYerwyiU9ZCFEg9GjRw9SUlIYMGAA0dHRdO/enQ4dOuDr60tWVlaDOX4tCVkIUS+YmZmh0WjIyspCURQ2b97MsGHD+Oijjxg3bhwnTpwwdYhVJglZCFGvODo6EhYWxvLly9m/fz+3bt3Cw8MDf39/kpOTKS0tNXWIRpMeshCi3tLr9Wzbto133nkHDw8P8vPzKSkpYf78+XTq1MnU4d0mR6eFEI3GzZs3Wbt2LRkZGTz88MP8/PPPDBs2jNdeew0LC4vKL3jxIhw6ZPjKyzN8r2lTeOgh6NIFWreu1HKSkIUQjc7p06eJiYnhxx9/pEmTJhQXFzN//ny6d+9e/mS9Hr78EpKSYNcuMDODoiJQFMNznQ4sLAx/duwI48fDoEGG75VDErIQotHas2cPUVFRFBYWcuXKFYYMGcKkSZOwsbG594TTp2HmTPj2W8O/HRxAdZ+P2PR6KCiAkhJo2xbeeQe6di0zHtn2JoRotHr27Elqaiq+vr6oVCo+//xzhg0bxu7du+8evGsXPP+8IRk7OoKT0/2TMRgqZjs7w9iTJ+GVV2Dt2mqJWxKyEKJBUqvVaLVaNm7cSL9+/bh06RJTpkxh/vz5XL161TDoq6/A39/wdyen/7YnKkJRDJW0jQ2EhxtaHVUkLQshRKOQk5NDREQEP//8M5aWliyZMoWnFixAAbC2rtrixcWGNkZyMvTpc9djaVkIIcSfdO7cmbVr1/L2229jpijkBwVxIS+PYnPzqi9ubm74mj4drl83ehlJyEKIRkNRFAYNGsS2OXPoY2nJ+cJCDh8+zO+XL1Plq4psbeHChSq1LiQhCyEaHavkZJyaNKHTgw9ia2tL3smTHDt6lKKiojvGZf7+O6N+/ZXeOTm8dfp0+Qvb2sLq1YYWhhEkIQshGpczZ+D778HeHgsLC9zbtcPdw4Oi4mJycnI4d/787Wq5mVpNQLNmDHV0rNjalpZw4wZ8/bVRoUlCFkI0LgcPGg59/GlHhb2dHZ07d6aFqytnz54l55dfuHHzJgMcHOhvb4+jmVnF1y8uhn37jApNErIQonH56SfDCby/UCkKLZo3x9PTEwtLS44cPszxEyfQVfYifEvL/x4wqSRJyEKIxiUvz1Ah34e5Wk17Dw/ad+hAfn4+Bw8evKu3XCa1Gs6dMyo0SchCiMZFp6vQARB7Ozseeughmru4oK7M1jhFMfwMI0hCFkI0Ls7OUME7kxXA1dUVVWVO8JWWGk7wGUESshCicenWrcyWxZ+V6vUU6XToAB1QpNNRWl5PubAQevQwKjS1UbOEEKK+8vQ0tBX0+nJbF0kXL7Li4sXb/95y9SpBzZoR5OJy/0lmZvDYY0aFJglZCNG4dOgArq6GS+jvdx3nfwS5uJSdfP+qtNRwU9zTTxsVmrQshBCNi0oFQUH33PpWZVevwpAhhpvjjCAJWQjR+LzyCjRrZrihrboUFRkuGJo0yeglJCELIRofW1v45z8Np+qq4y3Vf7xFZNYscHc3ehlJyEKIxql3b5g40dBmqEpS1uvh8mV45hkYM6ZKIcmHekKIxmvaNMO78RISwMqq8hfVFxdDfr4hGcfFVXg73f1U6o0hiqJcAI5X6ScKIUTj01av15e7XaNSCVkIIUTNkR6yEELUEZKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEf8P0hlJzrXGzocAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", - "ee = ExactEigensolver(qubitOp, k=1)\n", - "result = ee.run()\n", - "\n", - "\"\"\"\n", - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "result = run_algorithm(params,algo_input)\n", - "\"\"\"\n", - "print('energy:', result['energy'])\n", - "print('tsp objective:', result['energy'] + offset)\n", - "x = tsp.sample_most_likely(result['eigvecs'][0])\n", - "print('feasible:', tsp.tsp_feasible(x))\n", - "z = tsp.get_tsp_solution(x)\n", - "print('solution:', z)\n", - "print('solution objective:', tsp.tsp_value(z, ins.w))\n", - "draw_tsp_solution(G, z, colors, pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Running it on quantum computer\n", - "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -599082.2118605649\n", - "time: 14.73941707611084\n", - "feasible: True\n", - "solution: [2, 1, 0]\n", - "solution objective: 146.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlY1dXWwPHv73CYR1EUMQdwSMm08qZpmWZl3jS7JR4OOCASqDgLGjnVi4YDyCWSIAUHlFFI3yyza3nNSssyzczQVykVZ80BUWQ45/3j3LyZynAYDsP6PA+Pym/vzeKf5XrW2Xv/FL1ejxBCCNNTmToAIYQQBpKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEerKDG7WrJm+Xbt2dz+4cgXy8gx/NzOrXAQ6neGrWTNo2bJyc4UQoh7Yu3fvRb1e71LeuEol5Hbt2vH999/f+c1NmyAkBDp1AguLykX5h9JSuHoVhg6FefNAUYxbRwgh6iBFUY5XZFzVWhZHjsDrr4OtrfHJGAxVtaMjrF0LW7ZUKSQhhKivjE/IJSUwdSro9VVLxn8wMwNra3jjDbh4serrCSFEPWN8Qt66FY4eBXv76ovGygquX4f33qu+NYUQop4wPiG//z6oVGX2e4t0OsJPn2bI0aM8ffgwvrm57Lp+vex17e0hIwNu3DA6NCGEqI+MS8gnTkBODtjZlTmsFHA1N2dFmzbs6NSJCS4uhJ06xemiovtPMjeH4mL48kujQhNCiPrKuIT888/lVscA1ioVQS4uuFlYoFIU+trb42ZuTk5hYdnrFxfDvn1GhSaEEPWVcQn5wAEoq8q9j99LSjhRVISHpWXZA62sYM8eo0ITQoj6qlL7kG87d67SB0Au5+cz9/Jlhjg60q68hKxWw6VLRoUmhBD1lXEVciXfw1dUUkLo//0f169eZXqzZkb9SCGEaOiMS8gtWhhO11WAXq9n0fnzKE2aEGJmxtGcHC5fuUKZKb2kBJo0MSo0IYSor4xrWXTrVuHDIIvOnuXXoiLea9sWK0Xh5IkTnDx5kqtXruDWqhUW5uZ3TyoshMcfNyo0IYSor4xLyJ6ehguB9Poyd1qcKS7mgytXsFAUXvi//7v9/YlOTjycn8+xY8do0aIFTZo04Y5VzM3h0UeNCk0IIeor4xJy27bQoQP8+muZe5FbmpvzfZcu93x2LT+f06dOcfHiRa5dvUrLli2xtLQ0bHlTq6FfP6NCE0KI+sq4HrKiwPjxhl5vJT/g+4ODvT3t3N1RFAUUhd+OH+fCxYvo8/Nh+HDDhUVCCNGIGH90+u9/B3d3yM83egkrS0vc/3O/spWVFUX5+eRdusSR554zek0hhKivjE/IFhbwzjuGvxtxSOQParWaNm3aYGFmhvrWLY75+zNpwQJiY2O5deuW0esKIUR9U7X7kD09ITwcCgqqlJRVej2uNjZcePZZFv/yC3PnzuXMmTNotVp++OGHKoUohBD1RdXfqafVwsKFhtvZjGlfFBbC1asoWi1dN27kzbfeYsGCBfTu3ZupU6cyd+5cIiIiuF7eLXFCCFHPVc9LTn18YMMGw4GRy5fh5s3yP+wrKoLffzdcUhQba0jqKhW9e/dm5cqVrFmzhn379pGWloZer0ej0fCl3AAnhGjAFH0ldkn87W9/09/1Tr0/KyyE9HRYscLw1o/SUkPCVasNOzNKSgxf5uZgaQmjR8OYMYYXnP7FtWvXCAsLQ61WExERwS+//MLChQvp2rUroaGhNJGTfEKIekJRlL16vf5v5Y6r1oT8B50O9u+Hn34y3Np25ozh+05OhhN4XbtCr17lnvYrLS0lOjqab7/9lujoaJo3b05CQgJbtmwhJCSEgQMHGrbNCSFEHWbahFzNPvjgAxISEli4cCE9e/bk559/Jjw8HDc3N9544w2aN29e6zEJIURFVTQhV08PuYa9+uqrLFq0iLlz55KZmYmnpyfr16/H09MTX19fsrOz0el0pg5TCCGqpF4kZIAePXqwevVqsrKyWLRoEYqiEBgYyIoVK9i8eTPjx4/nxIkTpg5TCCGMVm8SMkCrVq1YvXo1Fy5cYOLEiVy9ehUPDw9WrVpF//798ff3Jzk5mdIKXg0qhBB1Sb1KyAC2trYsW7aMrl27Mnr0aHJzc1GpVPj6+pKcnMw333yDn58fR44cMXWoQghRKfUuIQOoVComT57MuHHjGDdu3O39ya1atSIuLg6NRsPEiROJj4+nqAonCIUQojbVy4T8hxdffJHo6GgiIiJITk5Gr9ejKApDhw4lNTWVY8eO4evry4EDB0wdqhBClKtebHsrz7lz5wgJCcHDw4O5c+di8Z/9zXq9nu3bt7N06VKee+45Jk6ciI2NjYmjFUI0Ng1q21t5WrRoQWJiIsXFxYwbN45L/3ljtaIoPPvss2RmZlJQUIC3tze7d+82cbRCCHFvDaJC/oNerycpKYmNGzeybNkyOnfufMfz3bt3ExERQY8ePZgxYwYODg4milQI0Zg0qgr5D4qi8NprrxESEsKkSZP47LPP7njeu3dvMjIysLW1RaPRsH37dhNFKoQQd2tQFfKfHTlyhBkzZjB06FBee+01VKo7/+/58ccfCQ8Px8PDg9dff51m97jgSAghqkOjrJD/rFOnTrf3JYeFhXHz5s07nnfv3p20tDTc3d3x8fHhww8/pDL/OQkhRHVrsAkZwNnZmYSEBGxsbAgICODcuXN3PLewsCA4OJi4uDgyMzOZOHEip06dMlG0QojGrkEnZDAk3TfffJMXX3yRMWPG3HNPcqdOnVi7di1PPPEEo0ePJjU1VS4rEkLUugafkMHwYd/IkSOZO3cuISEhfPTRR3eNMTMzY/To0axevZodO3YQEBBAbm6uCaIVQjRWjSIh/+HJJ5/k/fffJzExkdjY2HtWwW3atCEhIYEhQ4YQGBjIypUrKS4uNkG0QojGplElZAAPDw/Wrl3LoUOHmDFjBgUFBXeNUalUDBs2jNTUVA4ePMjIkSM5dOiQCaIVQjQmjS4hAzg6OrJ8+XJcXV3x9/cnLy/vnuNatGhBTEwM/v7+TJs2jZiYGAoLC2s5WiFEY9EoEzKAWq0mLCyM4cOHM3bsWO63v1pRFAYNGkRGRgYXLlxAq9Xed6wQQlRFgz0YUhnfffcdc+bMYdy4cQwbNqzMsTt37mTx4sU89dRTTJkyBTs7u1qKUghRXzX6gyGV8fjjj5OUlER6ejpLliyhpKTkvmOffvppMjMzAdBoNOzcubO2whRCNHBSIf/J9evXmT17NsXFxSxZsqTcy4f27t3LggUL8PT0JDQ0FGdn51qKVAhRn0iFbAQ7OztiYmLo3Lkzfn5+/Prrr2WO79GjB+np6bi6uqLVatmyZYscvxZCGE0S8l+oVCqmTp3K2LFjCQoKYteuXWWOt7KyYsqUKcTExJCcnMzUqVM5e/ZsLUUrhGhIJCHfx0svvcSyZcsIDw8nJSWl3MrX09OTdevW0b17d0aOHMmGDRvk+LUQolIkIZehW7durFmzho8//pjw8PByX5hqbm5OQEAAK1asYMuWLYwbN47jx4/XUrRCiPpOEnI5XF1dSUpKoqCggPHjx/P777+XO8fDw4OkpCSeffZZxo4dy5o1a8rcuSGEECAJuUKsra1ZvHgxvXr1ws/PjyNHjpQ7R6VSodVqWbduHd999x1+fn4cPny4FqIVQtRXkpArSKVSMW7cOKZMmcLEiRP597//XaF5bm5uLF++HK1Wy6RJk4iLiyu39SGEaJwkIVfS888/T2xsLJGRkSQmJlZom5uiKLz00kukp6dz/PhxfHx82L9/fy1EK4SoT+RgiJEuXrxISEgIrVq1Yv78+VhZWVV47vbt21m6dCkDBgxg0qRJ2NjY1GCkQghTk4MhNaxZs2asXLkStVpNYGAg58+fr/DcAQMGkJmZSWFhIRqNpty9zkKIxkEq5CrS6/UkJyeTkZHB0qVL6dq1a6Xmf/PNN0RERPDII48QEhKCo6NjDUUqhDAVqZBriaIo+Pn5ERYWxvTp0/nkk08qNf+JJ54gPT0dR0dHNBoN27Ztk+PXQjRSUiFXo2PHjjF9+nQGDhxIcHAwKlXl/r87cOAACxYsoE2bNoSFheHi4lJDkQohapNUyCbQvn17kpOTOXDgAKGhody4caNS87t160ZKSgodO3bEx8eHTZs2SbUsRCMiCbmaOTk5ERcXR9OmTfH39+f06dOVmm9hYcH48eOJj48nOzub4ODg+75iSgjRsEhCrgHm5ubMnj2bV199FX9/f3744YdKr9GxY0fWrFlDnz598PPzIyUlRS4rEqKBk4RcQxRFwdvbm/DwcMLCwti4cWOl1zAzM2PUqFGsWbOGL774An9/f44dO1YD0Qoh6gJJyDWsV69eJCYmsn79eqKioigtLa345OvX4fvvab1vHwkvvEBQ69aEjxrFyvh4iouLay5oIYRJyC6LWpKfn8/s2bPR6XQsWrTo/q+HunEDPv4YVq6EY8fA3Bz+aFUoCiWlpfx+6RIHmjTBfcEC2vv4QCV3cwghapfssqhj7O3tiYmJoX379owZM+bue5L1eti0CZ54AmbPhpMnwckJ7OzAwcHwZW+P2skJl3bt6F1YiGVgILldu1L400+m+aWEENVKEnItMjMzY8aMGfj5+REYGMg333xjeHDjBgQGQkiIoRp2dARbW1CUe66jmJlh6+aGa6dOOJw9y6XevTn25pu1+JsIIWqCtCxMZN++fYSFhRHg48PwTZtQfvrJUBHfJwmX5fqVK+SfPs3+AQN4Ki0Ne3v7GohYCGGsirYsJCGb0OlTp8jp25dHrlzBqV27Sp/s+7PSoiKu5eUR4+7OM8uW0b9//+oLVAhRJdJDrgfcvvuO/kCBuTknTp6kpDI7MP7CzMKCJm5uhF29ytrISMLCwir0uikhRN0hCdlUCgpg3jxUNjY80Lo1NjY2/PrrrxTeumX8mlZWWOv1rGzXjlatWqHVavn444/l+LUQ9YQkZFPZvBkKC8HKCgVo7uJC8+bNOXH8OPn5+cav6+CAets2Jmu1vPPOO6SkpDBlyhTOnDlTbaELIWqGJGRTSUwEtfqObzk6ONC6TRvOnj3LxYsX0QPXSksJzcvjqZwchhw9ytarV8te18wMSkth0ya6dOlCcnIyjz76KCNHjiQzM1OOXwtRh0lCNoVr1+DXX+Eer26ytrKinbs7+fn5nD51ikVnzmCuKPyrUycWurmx6OxZcstra6jV8J+XsKrVasaOHUtSUhJbt24lMDCQ3377rQZ+KSFEVUlCNoWcHMMJvPtscTNXq2nbrh039Hq2XrzIa02aYKNS8YiNDf3s7fm4vCrZ2hp++slw2OQ/2rVrR2JiIi+88AIBAQGsWrWKkpKS6vythBBVJAnZFE6fNrQVyqBSFEqbNcNcrUZ36hQ3b94EoKOlZcUq5IIC+M+c22uqVGg0GtavX8++ffsYPXo0OTk5VfpVhBDVRxKyKVSwMr2p0+FkYYGrqytnz53j7Llz2CgKBRXpAysK3OcCopYtWxIbG8uIESOYPHky7777LreqsrtDCFEtJCGbgrV1hS4EslGpKNDpsLe3p/UDD6DT6cg9cwZ1cTFlbmTT6w1fVlb3HaIoCoMHDyYjI4NTp07h4+Nj1L3NQojqIwnZFDw8KjSsjYUFpcCJoiLUajVuLVvyu709zYuL+e3XX7nxl5bEbUVF4OoKlpbl/gxnZ2cWL17M5MmTmTNnDosXL6agoKASv4wQorpIQjaF9u0NPeRyWg/WKhUD7O1JuHCBmzodP964wa6bNxnl4YGzszN5eXmcOn2a4r+2QAoL4dFHKxXSM888Q0ZGBsXFxWg0Gr7++uvK/lZCiCqShGwKFhbQt69h+1s5wlxduaXT8fyRI8w+dYo3XF1pb2mJo6Mj7du3x1ytJjc3l4uXLqH784m8F1+sdFgODg7MmzePN998kyVLljBv3jyuXLlS6XWEEMaRy4VM5euvYcwYwz3HRtzw9me3ioo4f+4ct4qKcHV2xs7WFr7/3pD4jXTz5k3i4+PZunUroaGhPP/88yhVjFOIxkouF6rrevc2tC4qUCWXx9LCgtatW+PavDn5Z8+S2bQpJ86erdKa1tbWzJgxg2XLlpGYmEhISAjnz5+vcqxCiPuThGwqKhXExJS5Pa2y7HQ6Wjz1FMV+fvj7+xMbG1vlD+gefvhh1q9fT+fOnfH19eWDDz6Q49dC1BBJyKbUuTPMmmV4mWlVT80VFIClJarlyxkxZgyZmZlcvnwZLy8vPvrooyolUQsLC4KCgkhISGDTpk1MmDCBkydPVi1eIcRdpIdsanq9oVJevtxwt0UFtqrdNf/aNcO85GR47LE7Hh88eJDIyEgURWHWrFl4enpWKVydTkdaWhqrVq1izJgx+Pr6YmZmVqU1hWjo5I0h9c3GjTB3Lty6ZfigryJvDykqMlTGHTtCbCx06nTPYTqdjo8//pi4uDj69OnDpEmTcHZ2rlK4eXl5LFy4kBs3bjBv3jw6duxYpfWEaMjkQ7365pVX4PPP4fnnIT8frly5u5Wh1xsS9tWrhi+93vBi1M2b75uMwXCHxUsvvUR2djaOjo6377MorkLv+oEHHiA+Pp5XX32VCRMmkJCQQFFRkdHrCSGkQq6bzp2D7GzYsQN+/tmQhBXFcJikeXPo3h2GDIGBAyvf4gCOHz/OsmXLOHXqFCEhIfTp06dK4Z4/f57Fixdz8uRJ5s2bR7du3aq0nhANjbQsGgq93lAxl5QY7sCwtq6mZfV89dVXREdH4+7uzvTp02ndunWV1vvss8+Iiopi4MCBTJgwAZt73PcsRGMkLYuGQlEMPWVn52pLxoZlFfr27UtGRgbdu3dnzJgxLF++nBs3bhi93vPPP09mZiZXr15Fq9Xy7bffVlu8QjQGUiELAC5cuMC7777L999/z+TJkxk0aFCVTubt2rWLiIgIevbsybRp03BwcKjGaIWoX6RCFpXi4uJCeHg4ixcvJjU1lYCAAH755Rej1+vTpw+ZmZlYWVmh0WjYvn17NUYrRMMkFbK4i06nY/PmzcTFxdGvXz+Cg4Np0qSJ0evt27ePBQsW0KFDB15//XWaNm1ajdEKUfdJhSyMplKpePnll8nOzsba2prhw4eTlpZm9Dv4Hn30UdLT02nbti1arZbNmzdTmUJAiMZCKmRRrtzcXJYtW8aFCxcIDQ2lZ8+eRq91+PBhwsPDcXJyYs6cObi5uVVjpELUTbLtTVQrvV7Pzp07WbZsGQ8++CDTp083OpmWlJSwfv161q1bR2BgIBqNBlVFTiYKUU9Jy0JUK0VR6NevH1lZWXTp0oWRI0cSHx9/+23YlaFWqxkzZgyrVq3is88+47XXXiM3N7cGohaifpGELCrFwsKCsWPHkp6eTl5eHl5eXvzrX/8yqifctm1bVqxYwd///ncCAwNJSkqq0nFuIeo7aVmIKtm3bx+RkZHY2toyc+ZMOpVxp0ZZzp49S0REBBcuXGDevHlVvpVOiLpEesii1uh0OjZt2kRCQgLPPPMMEyZMwMnJqdLr6PV6PvnkE2JiYhgyZAhBQUFYWVnVQMRC1C7pIYtao1KpePXVV8nKykKtVjN8+HAyMzMpLS2t1DqKovDiiy+Snp7O2bNn8fHxYe/evTUUtRB1j1TIotodPXqUqKgorly5wsyZM+nRo4dR63zxxRcsWbKEp556iilTpmBnZ1fNkQpRO6RCFibToUMH4uPjCQoK4q233iIsLIwzZ85Uep1+/fqRkZGBXq9Ho9Gwc+fOGohWiLpDKmRRowoLC0lOTiY9PR2tVoufnx+WRtzh/N1337Fw4UK6du1KaGholY5yC1HbpEIWdYKVlRVBQUGkpKSQm5uLl5cXn3/+eaW3yT3++ONkZGTg4uKCt7c3W7dulePXosGRClnUqr179xIZGYmTkxOhoaF06NCh0mv8/PPPhIeH07JlS9544w1atGhRA5EKUX2kQhZ1Uo8ePUhJSWHAgAFMmDCBpUuXcu3atUqt8dBDD7F+/XoeeughRowYQXZ2NjqdroYiFqL2SEIWtc7MzAyNRkNWVhY6nQ4vL69KJ1Vzc3MCAwNZsWIFmzdvZvz48Zw4caIGoxai5klCFibj6OhIWFgYy5cv59NPP2XkyJHs27evUmt4eHiwatUq+vfvj7+/P8nJyZXe/yxEXSE9ZFEn6PV6tm3bxjvvvEP37t2ZOnVqpXvDp0+fZuHChVy7do358+cbfYxbiOomPWRRryiKwsCBA8nKyqJNmzb4+PiwatUqioqKKryGm5sbcXFxaDQagoODee+99yo1XwhTk4Qs6hRra2vGjx/P+vXrycnJwcvLix07dlR4i5uiKAwdOpS0tDRyc3Px9fXlxx9/rOGohage0rIQddqePXuIioqiWbNmhIaG4uHhUeG5er2e7du3ExkZybPPPsvEiROxsbGpwWiFuDdpWYgGoWfPnqSmpvL0008TFBREdHQ0+fn5FZqrKArPPvssmZmZFBQU4O3tze7du2s4YiGMJxWyqDcuX75MfHw8O3bsIDg4mKFDh1bq1U+7d+8mIiKCHj16MGPGDBwcHGowWiH+Sypk0eA0adKE2bNnExsby4cffoifnx8HDhyo8PzevXuTkZGBra0tGo3GqCPcQtQkqZBFvaTX6/n000+JjY3lb3/7G5MnT8bFxaXC83/88UcWLFiAu7s7r7/+Os2aNavBaEVjJxWyaNAURWHQoEFkZWXRokULtFota9asqfA2t+7du5Oamoq7uzs+Pj58+OGHUi0Lk5MKWTQIeXl5REdHk5uby4wZM+jbty+KolRo7pEjRwgPD8fBwYE5c+bQqlWrGo5WNDbyTj3RKO3evZuoqChatWpFSEgIbdu2rdC80tJSUlJSWLt2LQEBAWi12kp9YChEWaRlIRql3r17k56eTq9evQgICCAmJoaCgoJy55mZmTF69GhWr17Njh07GDt2LLm5ubUQsRD/JQlZNDjm5uaMGDGCzMxMrl27xrBhw/jwww8rdJtcmzZtSEhI4KWXXiIwMJCVK1dSXFxcC1ELIS0L0QgcOnSIyMhIdDodM2fOpGvXrhWad+7cORYtWsSZM2eYP38+Dz30UA1HKhoq6SEL8Sc6nY5PPvmE5cuX06tXLyZPnkzTpk3LnffH9rro6GhefPFFxo8fj5WVVS1ELBoS6SEL8ScqlYrBgweTnZ2Ns7MzGo2GdevWlduO+GN7XUZGBhcvXkSr1SJFiagpUiGLRunEiRNER0dz4sQJQkND6dOnT4XmffnllyxatIgnn3ySKVOmYG9vX8ORioZAKmQhytCmTRtiYmKYMWMGUVFRTJs2rUKvgOrbty+ZmZkoioK3tzc7d+6shWhFYyEVsmj0iouLSUtLY+3atfzjH/8gICCgQtd07t27l4ULF9KlSxdCQ0NxdnauhWhFfSQVshAVZG5uzujRo8nIyODSpUsMGzaMLVu2lLtNrkePHqSlpeHq6opWq2XLli1y/FpUiVTIQvzFTz/9RGRkJGq1mtDQUDw9Pcudc+jQIRYsWICLiwuzZ8/G1dW1FiIV9YVUyEIY6eGHH2bNmjX84x//YPr06SxYsIDff/+9zDmenp6sW7eORx55hJEjR7Jhw4YKHUQR4s8kIQtxDyqViqFDh5KdnY2dnR0ajYbU1FRKSkruO0etVjN27FhWrlzJJ598QlBQEMePH6/FqEV9JwlZiDLY2dkxffp0EhMT2b17Nz4+PnzzzTdlznF3dycxMZHnnnuOsWPHsmbNmjITuRB/kB6yEBWk1+v58ssviY6Opn379syYMaPcqzpPnz7N22+/zeXLl3nzzTd58MEHaylaUZdID1mIaqYoCk8//TSZmZl07dqV0aNH895773Hjxo37znFzc2P58uX4+voyadIkli9fXuFL9EXjIwlZiEqysLDA39+ftLQ0zpw5g5eXF1u3br3vljdFURgyZAjp6emcPHkSrVbL/v37azlqUR9Iy0KIKtq/fz+RkZFYW1szc+bMctsS27dvZ+nSpQwYMIBJkyZV6BCKqN+kZSFELXnkkUdYt24dgwcPZvLkyURERHD58uX7jh8wYACZmZkUFhai0WjYtWtXLUYr6jKpkIWoRteuXWPFihVs3bqVwMBAvLy8MDMzu+/4b7/9lrfffptHHnmEGTNm4OTkVIvRitoiFbIQJuDg4EBoaCgrVqzgiy++wMfHh+++++6+43v16kV6ejpOTk54e3uzbds2OX7diEmFLEQN0ev1/Pvf/yYmJobOnTszbdo03Nzc7jv+wIEDLFy4kNatWxMWFoaLi0stRitqklTIQpiYoigMGDCADRs20KlTJ0aNGsX7779PYWHhPcd369aN9evX07FjR3x8fNi0aZNUy42MJGQhapilpSWvvfYaKSkpHD9+HC8vLz777LN7JlsLCwvGjx9PfHw8H3zwARMmTCAvL88EUQtTkJaFELXshx9+IDIyEnt7e2bOnEnHjh3vOa60tJTU1FTWrFmDv78/vr6+qFRSQ9VH0rIQoo567LHHWL9+PQMHDiQ4OJglS5Zw9erVu8aZmZkxatQo1qxZw5dffsmYMWM4duyYCSIWtUUSshAmYGZmhpeXF9nZ2SiKwvDhw8nKyrrnlZ2tW7cmPj6eV155hXHjxrFixQo5ft1ASUIWwoQcHByYNWsWcXFxbNu2jREjRvDDDz/cNU6lUvHKK6+QmppKTk4OI0eO5ODBgyaIWNQk6SELUUfo9Xo+//xzYmJi6NatG1OnTqVFixb3HLdt2zaioqIYNGgQEyZMwNra2gQRi4qSHrIQ9YyiKDz33HNkZWXRrl07fHx8SExM5NatW3eNGzhwIJmZmVy+fBlvb2/27NljoqhFdZIKWYg66vTp08TExJCTk8O0adN45plnUBTlrnFff/01ERER9OrVi+nTp2Nvb2+CaEVZpEIWop5zc3Nj6dKlzJs3j4SEBCZOnEhubu5d45588kkyMzOxtLREo9GwY8eO2g9WVAupkIWoB0pLS8nOzmblypW88MILBAUF4eDgcNe4H374gYUiQ1oaAAAL5ElEQVQLF9KpUydmzZqFs7OzCaIVfyUVshANiJmZGRqNhg0bNlBUVISXlxcffPDBXdvkHnvsMdLS0mjVqhXe3t589NFHcvy6HpEKWYh66PDhw0RGRnLz5k1mzZpF9+7d7xqTk5NDeHg4zs7OzJ49u8yLjUTNkgpZiAbswQcfZOXKlYwePZo33niDuXPncv78+TvGdO7cmeTkZHr06MGoUaPIyMi458ETUXdIQhainlIUhRdeeIHs7Gzc3Nzw8fFh1apVd5ziU6vV+Pv7k5SUxL/+9S8CAwP57bffTBe0KJMkZCHqOWtra4KDg0lOTubQoUMMHz6cnTt33tE7bteu3e0PBAMCAli1ahUlJSUmjFrci/SQhWhgvv32W6KiomjRogUhISG4u7vf8fzMmTNERERw6dIl5s2bR5cuXUwUaeMhPWQhGqlevXqRlpZGnz59CAwMJDo6muvXr99+3rJlS2JjYxkxYgRTp04lNjb2rtOAwjQkIQvRAKnVanx9fcnMzOTGjRsMGzaMDz/88PaHeoqiMHjwYNLT0zlz5gw+Pj73vNRI1C5pWQjRCPzyyy9ERkZSUlJCaGgo3bp1u+P5jh07WLp0KU8//TSTJ0/G1tbWRJE2TNKyEELc1qVLF5KSktBqtbz++uu8+eabXLx48fbz/v37k5GRQUlJCRqNhq+++sqE0TZeUiEL0cjcuHGDVatWsXHjRvz8/NBqtVhYWNx+vmfPHt5++20efvhhQkJCaNKkiQmjbRikQhZC3JONjQ2TJk1i9erV7Nu3D29v7zsq4p49e5Kenk7Tpk3x9vbm008/lePXtUQqZCEauV27dhEVFUXr1q0JCQmhTZs2t58dPHiQ8PBwWrVqxRtvvEHz5s1NGGn9JRWyEKJC+vTpQ0ZGBo8//jj+/v7ExsZSUFAAQNeuXUlJSaFLly74+vre80IjUX0kIQshMDc3Z+TIkbffQuLl5cVHH32ETqfD3NycoKAg3n//ff73f/+XCRMmcPLkSVOH3CBJy0IIcZeDBw8SGRmJoijMmjULT09PAHQ6Henp6SQlJeHn58eIESMwMzMzcbR1X0VbFpKQhRD3pNPp+Pjjj4mLi6NPnz5MmjTp9oX3eXl5vP3221y/fp158+bRqVMnE0dbt0kPWQhRJSqVipdeeons7GwcHR3RaDSsX7+e4uJiHnjgAd577z28vLwIDg4mPj7+jlvmhHEkIQshymRra8vUqVNJSkpiz549aLVadu3ahaIovPzyy6SlpXH06FFGjBjBgQMHTB1uvSYtCyFEhen1er766iuio6Nxd3dn+vTptG7dGr1ez+eff05kZCQDBw5kwoQJ2NjYmDrcOkNaFkKIaqcoCn379iUjI4Pu3bszZswYli9fzs2bN3nuuefIzMzk2rVraLVavvnmG1OHW+9IhSyEMNqFCxd49913+f7775k8eTKDBg1CURR27dpFREQEjz/+ONOnT7/nG7IbE6mQhRA1zsXFhfDwcBYvXkxqaioBAQH88ssv9OnTh8zMTKytrdFoNGzfvt3UodYLUiELIaqFTqdj8+bNxMXF0a9fP4KDg2nSpAn79+9nwYIFtG/fnlmzZtGsWTNTh1rrpEIWQtQqlUrFyy+/THZ2NtbW1gwfPpy0tDS6du1KWloa7dq1w8fHh82bN8tlRfchFbIQokbk5uYSFRXFxYsXCQ0NpWfPnhw5coT/+Z//wcnJiTlz5uDm5mbqMGuFVMhCCJPy8PAgLi6O4OBgFi5cyMyZM7Gzs2Pt2rX07NmTUaNGkZaWJpcV/YkkZCFEjVEUhf79+5OVlUWXLl0YOXIkiYmJaDQaVq1axfbt2wkICCA3N9fUodYJkpCFEDXOwsKCsWPHkp6ezsmTJ/Hy8uLw4cMkJCQwePBgAgMDSUxMpLi42NShmpT0kIUQtW7fvn1ERkZiZ2dHaGgoDg4OREREcOHCBebNm3f7drmGQm57E0LUaTqdjk2bNpGQkMCAAQMYP348u3fv5p///CeDBw9m3LhxWFlZmTrMaiEf6gkh6jSVSsWrr75KVlYWZmZmDB8+nPz8fFJSUjh37hxarZa9e/eaOsxaJRWyEKJOOHr0KFFRUVy5coWZM2dSUFDA4sWLeeqpp5gyZQp2dnamDtFoUiELIeqVDh06EB8fT1BQEG+99RZbtmwhNjYWAI1Gw86dO00cYc2ThCyEqDMURWHAgAFs2LABDw8PgoKCaNasGXPnziU6Opo5c+Zw+fJlU4dZYyQhCyHqHCsrK4KCgkhJSSE3N5dFixYxbtw4XFxc8Pb25pNPPmmQx6+lhyyEqPP27t1LZGQkTk5OvPzyy6xdu5YWLVowe/ZsWrRoYerwyiU9ZCFEg9GjRw9SUlIYMGAA0dHRdO/enQ4dOuDr60tWVlaDOX4tCVkIUS+YmZmh0WjIyspCURQ2b97MsGHD+Oijjxg3bhwnTpwwdYhVJglZCFGvODo6EhYWxvLly9m/fz+3bt3Cw8MDf39/kpOTKS0tNXWIRpMeshCi3tLr9Wzbto133nkHDw8P8vPzKSkpYf78+XTq1MnU4d0mR6eFEI3GzZs3Wbt2LRkZGTz88MP8/PPPDBs2jNdeew0LC4vKL3jxIhw6ZPjKyzN8r2lTeOgh6NIFWreu1HKSkIUQjc7p06eJiYnhxx9/pEmTJhQXFzN//ny6d+9e/mS9Hr78EpKSYNcuMDODoiJQFMNznQ4sLAx/duwI48fDoEGG75VDErIQotHas2cPUVFRFBYWcuXKFYYMGcKkSZOwsbG594TTp2HmTPj2W8O/HRxAdZ+P2PR6KCiAkhJo2xbeeQe6di0zHtn2JoRotHr27Elqaiq+vr6oVCo+//xzhg0bxu7du+8evGsXPP+8IRk7OoKT0/2TMRgqZjs7w9iTJ+GVV2Dt2mqJWxKyEKJBUqvVaLVaNm7cSL9+/bh06RJTpkxh/vz5XL161TDoq6/A39/wdyen/7YnKkJRDJW0jQ2EhxtaHVUkLQshRKOQk5NDREQEP//8M5aWliyZMoWnFixAAbC2rtrixcWGNkZyMvTpc9djaVkIIcSfdO7cmbVr1/L2229jpijkBwVxIS+PYnPzqi9ubm74mj4drl83ehlJyEKIRkNRFAYNGsS2OXPoY2nJ+cJCDh8+zO+XL1Plq4psbeHChSq1LiQhCyEaHavkZJyaNKHTgw9ia2tL3smTHDt6lKKiojvGZf7+O6N+/ZXeOTm8dfp0+Qvb2sLq1YYWhhEkIQshGpczZ+D778HeHgsLC9zbtcPdw4Oi4mJycnI4d/787Wq5mVpNQLNmDHV0rNjalpZw4wZ8/bVRoUlCFkI0LgcPGg59/GlHhb2dHZ07d6aFqytnz54l55dfuHHzJgMcHOhvb4+jmVnF1y8uhn37jApNErIQonH56SfDCby/UCkKLZo3x9PTEwtLS44cPszxEyfQVfYifEvL/x4wqSRJyEKIxiUvz1Ah34e5Wk17Dw/ad+hAfn4+Bw8evKu3XCa1Gs6dMyo0SchCiMZFp6vQARB7Ozseeughmru4oK7M1jhFMfwMI0hCFkI0Ls7OUME7kxXA1dUVVWVO8JWWGk7wGUESshCicenWrcyWxZ+V6vUU6XToAB1QpNNRWl5PubAQevQwKjS1UbOEEKK+8vQ0tBX0+nJbF0kXL7Li4sXb/95y9SpBzZoR5OJy/0lmZvDYY0aFJglZCNG4dOgArq6GS+jvdx3nfwS5uJSdfP+qtNRwU9zTTxsVmrQshBCNi0oFQUH33PpWZVevwpAhhpvjjCAJWQjR+LzyCjRrZrihrboUFRkuGJo0yeglJCELIRofW1v45z8Np+qq4y3Vf7xFZNYscHc3ehlJyEKIxql3b5g40dBmqEpS1uvh8mV45hkYM6ZKIcmHekKIxmvaNMO78RISwMqq8hfVFxdDfr4hGcfFVXg73f1U6o0hiqJcAI5X6ScKIUTj01av15e7XaNSCVkIIUTNkR6yEELUEZKQhRCijpCELIQQdYQkZCGEqCMkIQshRB0hCVkIIeoISchCCFFHSEIWQog6QhKyEELUEf8P0hlJzrXGzocAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "seed = 10598\n", - "\n", - "spsa = SPSA(max_trials=300)\n", - "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubitOp, ry, spsa, 'matrix')\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)\n", - "\n", - "result = vqe.run(quantum_instance)\n", - "\"\"\"\n", - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'SPSA',\n", - " 'max_trials': 300\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RY',\n", - " 'depth': 5,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': seed},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg,\n", - " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'}\n", - "}\n", - "result = run_algorithm(parahms,algo_input)\n", - "\"\"\"\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "#print('tsp objective:', result['energy'] + offset)\n", - "x = tsp.sample_most_likely(result['eigvecs'][0])\n", - "print('feasible:', tsp.tsp_feasible(x))\n", - "z = tsp.get_tsp_solution(x)\n", - "print('solution:', z)\n", - "print('solution objective:', tsp.tsp_value(z, ins.w))\n", - "draw_tsp_solution(G, z, colors, pos)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# run quantum algorithm with shots\n", - "\n", - "seed = 10598\n", - "\n", - "spsa = SPSA(max_trials=300)\n", - "ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')\n", - "\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed)\n", - "\n", - "result = vqe.run(quantum_instance)\n", - "\n", - "\"\"\"update params in the previous cell\n", - "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", - "params['backend']['provider'] = 'qiskit.BasicAer'\n", - "params['backend']['name'] = 'qasm_simulator'\n", - "params['backend']['shots'] = 1024\n", - "result = run_algorithm(params,algo_input)\n", - "\"\"\"\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "#print('tsp objective:', result['energy'] + offset)\n", - "x = tsp.sample_most_likely(result['eigvecs'][0])\n", - "print('feasible:', tsp.tsp_feasible(x))\n", - "z = tsp.get_tsp_solution(x)\n", - "print('solution:', z)\n", - "print('solution objective:', tsp.tsp_value(z, ins.w))\n", - "plot_histogram(result['eigvecs'][0])\n", - "draw_tsp_solution(G, z, colors, pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Optional] Checking that the full Hamiltonian made by ```docplex.get_qubitops``` gives the right cost" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ee = ExactEigensolver(qubitOp_docplex, k=1)\n", - "result = ee.run()\n", - "\n", - "print('energy:', result['energy'])\n", - "print('tsp objective:', result['energy'] + offset_docplex)\n", - "\n", - "x = docplex.sample_most_likely(result['eigvecs'][0])\n", - "print('feasible:', tsp.tsp_feasible(x))\n", - "z = tsp.get_tsp_solution(x)\n", - "print('solution:', z)\n", - "print('solution objective:', tsp.tsp_value(z, ins.w))\n", - "draw_tsp_solution(G, z, colors, pos)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} From 683d7c9ea7af59cf083bd96078f730ae08ac40e7 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Mon, 29 Apr 2019 18:15:11 +0100 Subject: [PATCH 089/116] Added random data --- .../finance/data_providers/time_series.ipynb | 275 +++++++++++------- 1 file changed, 165 insertions(+), 110 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index 8ef7b99a2..fd72ff6ab 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -28,12 +28,13 @@ "metadata": {}, "source": [ "### Introduction\n", - "Across many problems in finance, one starts with time series. Here, we showcase how to download the time series from a number of common providers." + "\n", + "Across many problems in finance, one starts with time series. Here, we showcase how to generate pseudo-random time-series, download actual stock-market time series from a number of common providers, and how to compute time-series similarity measures." ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 2, "metadata": { "scrolled": true }, @@ -51,18 +52,15 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ - "stocks = [\"GOOG\", \"AAPL\"]\n", - "from qiskit.aqua.translators.data_providers.wikipediadataprovider import StockMarket\n", - "wiki = WikipediaDataProvider(token = \"\",\n", - " tickers = stocks,\n", - " stockmarket = StockMarket.NASDAQ.value,\n", - " start = datetime.datetime(2016,1,1),\n", - " end = datetime.datetime(2016,1,30))\n", - "wiki.run()" + "data = RandomDataProvider(tickers=[\"TICKER1\", \"TICKER2\"],\n", + " start = datetime.datetime(2016, 1, 1),\n", + " end = datetime.datetime(2016, 1, 30),\n", + " seed = 1)\n", + "data.run()" ] }, { @@ -74,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -82,8 +80,8 @@ "output_type": "stream", "text": [ "A time-series similarity measure:\n", - "[[1.00000000e+00 8.44268222e-05]\n", - " [8.44268222e-05 1.00000000e+00]]\n" + "[[1.0000000e+00 6.2284804e-04]\n", + " [6.2284804e-04 1.0000000e+00]]\n" ] }, { @@ -103,13 +101,13 @@ "output_type": "stream", "text": [ "A covariance matrix:\n", - "[[269.60118129 25.42252332]\n", - " [ 25.42252332 7.86304499]]\n" + "[[ 1.75870991 -0.32842528]\n", + " [-0.32842528 2.31429182]]\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAARUAAAD8CAYAAABZ0jAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEAZJREFUeJzt3X/sXXV9x/Hny2KpkymFijQIApGoGKVggz9YFBUBMSkkMi3ZZlkgjU62ROMyDIsuODNwf7CY6fSrMlE3QNnUuoGsUolLsGjdgEodtNRlklZBijBCByu898c9XS5fvvfbb3s/vfd7m+cjubnnns/5nPs+Kbxy7rn3fN+pKiSpleeMuwBJBxZDRVJThoqkpgwVSU0ZKpKaMlQkNTVUqCQ5LMnaJJu758UDtnsqyR3dY03f+uOS3N7Nvz7JwmHqkTR+w56pXArcUlUnALd0r2eys6qWdY8VfeuvBK7q5j8MXDRkPZLGLMP8+C3JPcDpVbU9yVLg1qp6+QzbPVZVh0xbF+BB4Miq2pXkDcCfVdVZ+1yQpLE7aMj5L66q7QBdsBwxYLtFSTYAu4ArquqbwOHAr6tqV7fN/cBRg94oyWpgNcDzfyOvfcXL/KQ0STb/9AXjLkF7Yeeu/+bJp3dmX+buMVSSfBc4coahy/bifY6pqm1JjgfWJdkIPDrDdgNPm6pqCpgCWH7SovrhzUfvxdtr3N55iiegk+S2X31tn+fuMVSq6oxBY0l+mWRp38efBwbsY1v3vDXJrcDJwD8AhyY5qDtbeQmwbR+OQdI8MuyF2jXAqm55FfCt6RskWZzk4G55CXAasKl6F3O+B5w/23xJk2XYULkCeHuSzcDbu9ckWZ7kC902rwQ2JLmTXohcUVWburE/AT6UZAu9ayxfHLIeSWM21IXaqnoIeNsM6zcAF3fLtwGvHjB/K3DqMDVIml/8Ra2kpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU3t97anSZYl+UGSu5PcleQ9fWNfSvKzvpaoy4apR9L4jaLt6ePAe6vqVcDZwF8lObRv/I/7WqLeMWQ9ksZs2FA5F7imW74GOG/6BlV1b1Vt7pa30esN9KIh31fSPDVsqDyj7SkwqO0pAElOBRYC9/Wt/kT3seiq3f2BJE2uUbU9petg+BVgVVU93a3+CPALekEzRa8P0OUD5v9/L+Vjjhq2BbSk/WUkbU+TvAD4Z+BPq2p93763d4tPJPlb4MOz1PGMXsp7qlvSeIyi7elC4BvAl6vq69PGlnbPoXc95idD1iNpzEbR9vTdwJuAC2f46vjvkmwENgJLgD8fsh5JYzaKtqdfBb46YP5bh3l/SfOPv6iV1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU01CJcnZSe5JsiXJs1qfJjk4yfXd+O1Jju0b+0i3/p4kZ7WoR9L4DB0qSRYAnwbeAZwIXJDkxGmbXQQ8XFUvA64CruzmngisBHb3Wf5Mtz9JE6rFmcqpwJaq2lpVTwLX0eux3K+/5/INwNu6Xj/nAtdV1RNV9TNgS7c/SROqRagcBfy87/X93boZt6mqXcAjwOFznAv02p4m2ZBkw4MPPdWgbEn7Q4tQyQzrprclHbTNXOb2VlZNVdXyqlr+osP9hCTNVy1C5X7g6L7XLwG2DdomyUHAC4Edc5wraYK0CJUfASckOa7rm7ySXo/lfv09l88H1lVVdetXdt8OHQecAPywQU2SxmSotqfQu0aS5BLgZmABcHVV3Z3kcmBDVa0Bvgh8JckWemcoK7u5dyf5GrAJ2AV8oKq8YCJNsKFDBaCqbgRunLbuo33L/wP89oC5nwA+0aIOSePnL2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGpqVG1PP5RkU5K7ktyS5KV9Y08luaN7TP+D2ZImzNB/o7av7enb6bXc+FGSNVW1qW+zfweWV9XjSd4PfBJ4Tze2s6qWDVuHpPlhJG1Pq+p7VfV493I9vf4+kg5Ao2p72u8i4Ka+14u6dqbrk5w3aJJtT6XJ0KJFx5xblyb5XWA58Oa+1cdU1bYkxwPrkmysqvuetcOqKWAKYPlJi2bcv6TxG1XbU5KcAVwGrKiqJ3avr6pt3fNW4Fbg5AY1SRqTkbQ9TXIy8Dl6gfJA3/rFSQ7ulpcAp9HrVihpQo2q7elfAocAX08C8F9VtQJ4JfC5JE/TC7grpn1rJGnCjKrt6RkD5t0GvLpFDZLmB39RK6kpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU6Nqe3phkgf72pte3De2Ksnm7rGqRT2SxmdUbU8Brq+qS6bNPQz4GL1eQAX8uJv78LB1SRqPkbQ9ncVZwNqq2tEFyVrg7AY1SRqTFn9Nf6a2p6+bYbt3JXkTcC/wwar6+YC5M7ZMTbIaWA2waMEhvPOUsxqUrlHZ9YtfjrsE7YWqXfs8t8WZylzann4bOLaqXgN8F7hmL+b2VlZNVdXyqlq+8DnP2+diJe1fI2l7WlUP9bU6/Tzw2rnOlTRZRtX2dGnfyxXAT7vlm4Ezu/ani4Ezu3WSJtSo2p7+UZIVwC5gB3BhN3dHko/TCyaAy6tqx7A1SRqfVM14CWNee+HCI+qNS9497jK0F7xQO1lur1t4tHbMdM1zj/xFraSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTY2q7elVfS1P703y676xp/rG1kyfK2myjKTtaVV9sG/7PwRO7tvFzqpaNmwdkuaHcbQ9vQC4tsH7SpqHWoTK3rQufSlwHLCub/WiJBuSrE9y3qA3SbK6227Dk0/vbFC2pP2hRS/lObcupddo7Iaqeqpv3TFVtS3J8cC6JBur6r5n7bBqCpiCXouOYYuWtH+MpO1pn5VM++hTVdu6563ArTzzeoukCTOStqcASV4OLAZ+0LducZKDu+UlwGnApulzJU2OUbU9hd4F2uvqmS0RXwl8LsnT9ALuiv5vjSRNHtueaiRsezpZbHsqad4wVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ11art6dVJHkjykwHjSfKpri3qXUlO6RtblWRz91jVoh5J49PqTOVLwNmzjL8DOKF7rAb+BiDJYcDHgNfR63T4sSSLG9UkaQyahEpVfR/YMcsm5wJfrp71wKFJlgJnAWurakdVPQysZfZwkjTPtehQOBeDWqPuTcvU1fTOcli04JD9U6WkoY3qQu2g1qhzbplaVVNVtbyqli98zvOaFiepnVGFyqDWqHvTMlXSBBhVqKwB3tt9C/R64JGq2k6vq+GZXfvTxcCZ3TpJE6rJNZUk1wKnA0uS3E/vG53nAlTVZ4EbgXOALcDjwO93YzuSfJxeP2aAy6tqtgu+kua5JqFSVRfsYbyADwwYuxq4ukUdksbPX9RKaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdTUqNqe/k7X7vSuJLclOalv7D+TbExyR5INLeqRND6janv6M+DNVfUa4OPA1LTxt1TVsqpa3qgeSWPS6g9ffz/JsbOM39b3cj29/j6SDkDjuKZyEXBT3+sC/iXJj7vWppIm2Kh6KQOQ5C30QuW3+lafVlXbkhwBrE3yH13D9+lz7aUsTYCRnakkeQ3wBeDcqnpo9/qq2tY9PwB8Azh1pvn2UpYmw0hCJckxwD8Cv1dV9/atf36S39y9TK/t6YzfIEmaDKNqe/pR4HDgM0kAdnXf9LwY+Ea37iDg76vqOy1qkjQeo2p7ejFw8QzrtwInPXuGpEnlL2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHU1Kh6KZ+e5JGuX/IdST7aN3Z2knuSbElyaYt6JI3PqHopA/xr1y95WVVdDpBkAfBp4B3AicAFSU5sVJOkMWgSKl1HwR37MPVUYEtVba2qJ4HrgHNb1CRpPEbZ9vQNSe4EtgEfrqq7gaOAn/dtcz/wupkm97c9BZ74zvZPH4hNx5YAvxp3EfvJgXpsB+pxvXxfJ44qVP4NeGlVPZbkHOCbwAlAZti2ZtpBVU0BUwBJNnTNyA4oB+pxwYF7bAfyce3r3JF8+1NVj1bVY93yjcBzkyyhd2ZydN+mL6F3JiNpQo2ql/KR6XqbJjm1e9+HgB8BJyQ5LslCYCWwZhQ1Sdo/RtVL+Xzg/Ul2ATuBlVVVwK4klwA3AwuAq7trLXsy1aLueehAPS44cI/N45omvf+3JakNf1ErqSlDRVJTExEqSQ5LsjbJ5u558YDtnuq7FWDeXvDd060JSQ5Ocn03fnuSY0df5d6bw3FdmOTBvn+ji8dR596aw20oSfKp7rjvSnLKqGvcF8PcXjOrqpr3D+CTwKXd8qXAlQO2e2zctc7hWBYA9wHHAwuBO4ETp23zB8Bnu+WVwPXjrrvRcV0I/PW4a92HY3sTcArwkwHj5wA30fvd1euB28ddc6PjOh34p73d70ScqdD76f413fI1wHljrGVYc7k1of94bwDetvsr+XnsgL3lovZ8G8q5wJerZz1waJKlo6lu383huPbJpITKi6tqO0D3fMSA7RYl2ZBkfZL5Gjwz3Zpw1KBtqmoX8Ahw+Eiq23dzOS6Ad3UfEW5IcvQM45Norsc+id6Q5M4kNyV51VwmjPLen1kl+S5w5AxDl+3Fbo6pqm1JjgfWJdlYVfe1qbCZudyaMOfbF+aRudT8beDaqnoiyfvonY29db9Xtv9N4r/XXAy6vWZW8yZUquqMQWNJfplkaVVt704rHxiwj23d89YktwIn0/ucP5/M5daE3dvcn+Qg4IXsh9PUxvZ4XFX1UN/LzwNXjqCuUTggbzepqkf7lm9M8pkkS6pq1hsoJ+XjzxpgVbe8CvjW9A2SLE5ycLe8BDgN2DSyCuduLrcm9B/v+cC66q6czWN7PK5p1xlWAD8dYX370xrgvd23QK8HHtn9cX2SzXJ7zezGfQV6jlepDwduATZ3z4d165cDX+iW3whspPetw0bgonHXPcvxnAPcS+8s6rJu3eXAim55EfB1YAvwQ+D4cdfc6Lj+Ari7+zf6HvCKcdc8x+O6FtgO/C+9s5KLgPcB7+vGQ++Pjd3X/be3fNw1NzquS/r+vdYDb5zLfv2ZvqSmJuXjj6QJYahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTf0f+jfHoesqPVsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAARUAAAD8CAYAAABZ0jAcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAECVJREFUeJzt3X+sZHV5x/H3p/zYLfUHu2yVDYpASqwQddHNotIoCgLyB5BI6pJWlwZCtNImGptiaNBgm4L9g8ZUq7dKRa1ApVXXFkr5IbEJLrq2CytY2GVtCrlULIsQCq4uPv1jzprhcufuvTvfnblz834lkzlzzvc785wsfHLmzDn3SVUhSa38yrgLkLS0GCqSmjJUJDVlqEhqylCR1JShIqmpoUIlycoktyTZ1j2vGDDu2SRbusfGvvVHJ7mrm399koOHqUfS+A17pHIJcFtVHQvc1r2ezTNVtaZ7nNW3/krgqm7+48AFQ9YjacwyzMVvSe4HTq6qR5KsBu6oqlfOMu6pqnrBjHUBfgwcXlW7k7wR+GhVnb7PBUkauwOHnP/SqnoEoAuWlwwYtzzJZmA3cEVVfQ04DPhJVe3uxjwMHDHog5JcBFwEcNCvHvD6lUe/aMjSNUpP3zfuCrQQP+X/+Fntyr7M3WuoJLkVOHyWTZcu4HOOrKrpJMcAtyfZCjw5y7iBh01VNQVMARx+/Mp695dPWcDHa9y2nDDuCrQQd9Vt+zx3r6FSVacO2pbkR0lW9339eXTAe0x3zzuS3AGcAPwDcGiSA7ujlZcB0/uwD5IWkWFP1G4ENnTLG4CvzxyQZEWSZd3yKuAk4L7qncz5JnDuXPMlTZZhQ+UK4O1JtgFv716TZG2Sz3ZjXgVsTnI3vRC5oqr2fMP+Y+CDSbbTO8fyuSHrkTRmQ52orarHgOed3KiqzcCF3fKdwKsHzN8BrBumBkmLi1fUSmrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHU1H5ve5pkTZJvJ7k3yT1J3tW37fNJftjXEnXNMPVIGr9RtD19GnhPVR0PnAH8ZZJD+7b/UV9L1C1D1iNpzIYNlbOBa7rla4BzZg6oqgeqalu3PE2vN9CvD/m5khapYUPlOW1PgUFtTwFIsg44GHiwb/WfdV+LrtrTH0jS5BpV21O6DoZfBDZU1S+61R8G/ode0EzR6wN0+YD5v+yl/MLVhyzkoyWN0EjaniZ5EfDPwJ9U1aa+936kW9yV5G+BD81Rx3N6Ke+tbknjMYq2pwcDXwW+UFVfmbFtdfcceudjvj9kPZLGbBRtT38beDNw/iw/Hf9dkq3AVmAV8KdD1iNpzEbR9vRLwJcGzH/bMJ8vafHxilpJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ11SRUkpyR5P4k25M8r/VpkmVJru+235XkqL5tH+7W35/k9Bb1SBqfoUMlyQHAJ4F3AMcB5yU5bsawC4DHq+o3gKuAK7u5xwHrgT19lj/VvZ+kCdXiSGUdsL2qdlTVz4Dr6PVY7tffc/kG4JSu18/ZwHVVtauqfghs795P0oRqESpHAA/1vX64WzfrmKraDTwBHDbPuUCv7WmSzUk2P/34rgZlS9ofWoRKZlk3sy3poDHzmdtbWTVVVWurau0hK+zjLi1WLULlYeDlfa9fBkwPGpPkQODFwM55zpU0QVqEyneBY5Mc3fVNXk+vx3K//p7L5wK3V1V169d3vw4dDRwLfKdBTZLGZKi2p9A7R5LkYuBm4ADg6qq6N8nlwOaq2gh8Dvhiku30jlDWd3PvTfL3wH3AbuD9VfXssDVJGp/0Dhgmy+HHr6x3f/l5LZy1iG05YdwVaCHuqtt4snbOds5zr7yiVlJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpkbV9vSDSe5Lck+S25K8om/bs0m2dI+ZfzBb0oQZ+g9f97U9fTu9lhvfTbKxqu7rG/YfwNqqejrJ+4CPA+/qtj1TVWuGrUPS4jCStqdV9c2qerp7uYlefx9JS9Co2p72uwC4qe/18q6d6aYk5wyaZNtTaTIM/fWHBbQuTfK7wFrgLX2rj6yq6STHALcn2VpVDz7vDaumgCnotegYvmxJ+8Oo2p6S5FTgUuCsqvrloUZVTXfPO4A7ADvESBNsJG1Pk5wAfIZeoDzat35FkmXd8irgJHrdCiVNqFG1Pf0L4AXAV5IA/HdVnQW8CvhMkl/QC7grZvxqJGnCtDinQlXdCNw4Y91lfcunDph3J/DqFjVIWhy8olZSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKZG1fb0/CQ/7mtvemHftg1JtnWPDS3qkTQ+o2p7CnB9VV08Y+5K4CP0egEV8L1u7uPD1iVpPEbS9nQOpwO3VNXOLkhuAc5oUJOkMWnx1/Rna3t64izj3pnkzcADwAeq6qEBc2dtmZrkIuAigOUcwhZbjk2Um6e3jLsELcC605/e+6ABWhypzKft6TeAo6rqNcCtwDULmNtbWTVVVWurau1BLNvnYiXtXyNpe1pVj/W1Ov0b4PXznStpsoyq7enqvpdnAT/olm8GTuvan64ATuvWSZpQo2p7+odJzgJ2AzuB87u5O5N8jF4wAVxeVTuHrUnS+KRq1lMYi9qLsrJOzCnjLkML4InaybLu9IfYfPdPZzvnuVdeUSupKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOjant6VV/L0weS/KRv27N92zbOnCtpsoyk7WlVfaBv/B8A/a3AnqmqNcPWIWlxGEfb0/OAaxt8rqRFqEWoLKR16SuAo4Hb+1YvT7I5yaYk5wz6kCQXdeM2/5xdg4ZJGrMWvZTn3bqUXqOxG6rq2b51R1bVdJJjgNuTbK2qB5/3hlVTwBT0WnQMW7Sk/WMkbU/7rGfGV5+qmu6edwB38NzzLZImzEjangIkeSWwAvh237oVSZZ1y6uAk4D7Zs6VNDlG1fYUeidor6vntkR8FfCZJL+gF3BX9P9qJGnytDinQlXdCNw4Y91lM15/dJZ5dwKvblGDpMXBK2olNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqSlDRVJThoqkpgwVSU0ZKpKaMlQkNWWoSGqqVdvTq5M8muT7A7YnySe6tqj3JHld37YNSbZ1jw0t6pE0Pq2OVD4PnDHH9ncAx3aPi4C/BkiyEvgIcCK9TocfSbKiUU2SxqBJqFTVt4Cdcww5G/hC9WwCDk2yGjgduKWqdlbV48AtzB1Okha5Jn9Nfx4GtUZdSMvUi+gd5bCcQ/ZPlZKGNqoTtYNao867ZWpVTVXV2qpaexDLmhYnqZ1Rhcqg1qgLaZkqaQKMKlQ2Au/pfgV6A/BEVT1Cr6vhaV370xXAad06SROqyTmVJNcCJwOrkjxM7xedgwCq6tP0uheeCWwHngZ+r9u2M8nH6PVjBri8quY64StpkWvV9vS8vWwv4P0Dtl0NXN2iDknj5xW1kpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1ZahIaspQkdSUoSKpKUNFUlOGiqSmDBVJTRkqkpoyVCQ1Naq2p7/TtTu9J8mdSV7bt+2/kmxNsiXJ5hb1SBqfUbU9/SHwlqp6DfAxYGrG9rdW1ZqqWtuoHklj0uoPX38ryVFzbL+z7+Umev19JC1B4zincgFwU9/rAv41yfe61qaSJtioeikDkOSt9ELlt/pWn1RV00leAtyS5D+7hu8z59pLWZoAIztSSfIa4LPA2VX12J71VTXdPT8KfBVYN9t8eylLk2EkoZLkSOAfgXdX1QN9638tyQv3LNNrezrrL0iSJsOo2p5eBhwGfCoJwO7ul56XAl/t1h0IfLmq/qVFTZLGY1RtTy8ELpxl/Q7gtc+fIWlSeUWtpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmjJUJDVlqEhqylCR1JShIqkpQ0VSU4aKpKYMFUlNGSqSmhpVL+WTkzzR9UvekuSyvm1nJLk/yfYkl7SoR9L4jKqXMsC/df2S11TV5QBJDgA+CbwDOA44L8lxjWqSNAZNQqXrKLhzH6auA7ZX1Y6q+hlwHXB2i5okjcco256+McndwDTwoaq6FzgCeKhvzMPAibNN7m97Cuy6tW5Yik3HVgH/O+4i9ocDVi/ZfVuq+/XKfZ04qlD5d+AVVfVUkjOBrwHHApllbM32BlU1BUwBJNncNSNbUpbqfsHS3belvF/7Onckv/5U1ZNV9VS3fCNwUJJV9I5MXt439GX0jmQkTahR9VI+PF1v0yTrus99DPgucGySo5McDKwHNo6iJkn7x6h6KZ8LvC/JbuAZYH1VFbA7ycXAzcABwNXduZa9mWpR9yK0VPcLlu6+uV8zpPf/tiS14RW1kpoyVCQ1NRGhkmRlkluSbOueVwwY92zfrQCL9oTv3m5NSLIsyfXd9ruSHDX6KhduHvt1fpIf9/0bXTiOOhdqHrehJMknuv2+J8nrRl3jvhjm9po5VdWifwAfBy7pli8Brhww7qlx1zqPfTkAeBA4BjgYuBs4bsaY3wc+3S2vB64fd92N9ut84K/GXes+7NubgdcB3x+w/UzgJnrXXb0BuGvcNTfar5OBf1ro+07EkQq9S/ev6ZavAc4ZYy3Dms+tCf37ewNwyp6f5BexJXvLRe39NpSzgS9Uzybg0CSrR1PdvpvHfu2TSQmVl1bVIwDd80sGjFueZHOSTUkWa/DMdmvCEYPGVNVu4AngsJFUt+/ms18A7+y+ItyQ5OWzbJ9E8933SfTGJHcnuSnJ8fOZMMp7f+aU5Fbg8Fk2XbqAtzmyqqaTHAPcnmRrVT3YpsJm5nNrwrxvX1hE5lPzN4Brq2pXkvfSOxp7236vbP+bxH+v+Rh0e82cFk2oVNWpg7Yl+VGS1VX1SHdY+eiA95junnckuQM4gd73/MVkPrcm7BnzcJIDgRezHw5TG9vrflXVY30v/wa4cgR1jcKSvN2kqp7sW74xyaeSrKqqOW+gnJSvPxuBDd3yBuDrMwckWZFkWbe8CjgJuG9kFc7ffG5N6N/fc4Hbqztztojtdb9mnGc4C/jBCOvbnzYC7+l+BXoD8MSer+uTbI7ba+Y27jPQ8zxLfRhwG7Cte17ZrV8LfLZbfhOwld6vDluBC8Zd9xz7cybwAL2jqEu7dZcDZ3XLy4GvANuB7wDHjLvmRvv158C93b/RN4HfHHfN89yva4FHgJ/TOyq5AHgv8N5ue+j9sbEHu//21o675kb7dXHfv9cm4E3zeV8v05fU1KR8/ZE0IQwVSU0ZKpKaMlQkNWWoSGrKUJHUlKEiqan/B9zwwAdU+EfdAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -121,20 +119,15 @@ } ], "source": [ - "if wiki._n <= 1: \n", - " raise Exception(\"Not enough data to plot covariance or time-series similarity. Please use at least two tickers.\")\n", - "\n", - "rho = wiki.get_similarity_matrix()\n", + "rho = data.get_similarity_matrix()\n", "print(\"A time-series similarity measure:\")\n", "print(rho)\n", - "#plt.subplot(211)\n", "plt.imshow(rho)\n", "plt.show()\n", "\n", - "cov = wiki.get_covariance()\n", + "cov = data.get_covariance_matrix()\n", "print(\"A covariance matrix:\")\n", "print(cov)\n", - "#plt.subplot(212)\n", "plt.imshow(cov)\n", "plt.show()" ] @@ -143,12 +136,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "If you wish, you can look into the internals using:" + "If you wish, you can look into the underlying pseudo-random time-series using. Please note that the private class members (starting with underscore) may change in future releases of Qiskit." ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -160,7 +153,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEsCAYAAADNd3h6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8VPWd//HXJzcSICQEAgKBAoJc1MolXlovtbit2lovdW2p25W6bml/xW7d7m/V9qe/rb+fbW3317XtbtfWra24tlir9bLW+lhFacV6aUAUEZBLuYRbIBBuIbeZz++PcxKGEMgkJDkzh/fz8TiPOed7zpn5fGHyPme+c2bG3B0REYmvnKgLEBGR3qWgFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGXF3UBAEOHDvWxY8dGXYaISFZZsmTJLncv72y7jAj6sWPHUlVVFXUZIiJZxcw2prOdhm5ERGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRibmMuI6+JySSTnMiSSLptCSc5mSyra0l4bQkk7SE6xpbkjQnkjS1BFNzIklTItlheyIJF08q56zRpVF3UURipKE5wR/X7WLyKYMYWVrUq4+V1UH/05fX893nVtOcTNKbP3177wvvMX1MKZ/74FguP2MEBXl6ISQiXbd9bwMvrqph4codvLJuFw3NSb7+scnMvejUXn3crA76M0eVcNOF48jLMfJycsjLtWA+N4f83LAtx4L23HA+xyjIywmm3Jy2+fzcYLlf63zY3tCc4PEl1Tz06ka+8sgy7i5eyWfPfR/XnzuG8uJ+Uf8TiEgGSyad5Vv2sjAM9xVb9wFQMbiI2WePYdbkYZw7vqzX6zDvzVPhNFVWVnqmfwVCMun8Yc1OHvzjBhat3kl+rnHF+0fyuQ+O1bCOiLQ52NjC4rW7eHFlDS+urmHn/kZyDGa+bzCzJg/nkinDmDhsIGZ2wo9lZkvcvbKz7bL6jL4v5eQYF08axsWThrF+5wEeenUjjy2p5ok3tzBtdCk3nq9hHZGT2Xs79vPtZ1fyyrpamlqSFBfm8aHTyrlkyjA+dNowygYURFabzuhPwIHGFh5fUs38P25g/a6DlBf346/OHcO1MyoYXdY/6vL6RDLpbKk7xIiSQvJydZCTk9NTy7Zw++PL6V+QyzXTRzFryjDOHltGfi//TaR7Rq+g7wHJpPPy2l08+MqfeWn1TgBOGz6w7WXa9NGlsQnBZNJ5r2Y/r62r5bX1u3n9z7XsqW9m6ohB3HPtmby/QsNYcfPnXQf5j5fX898rtlNSlM/I0iJGlBQyoqSIkaWFnFJSxMiSQkaUFjGw38k1SNDYkuDuZ1byn69t5JyxZfzr9dMZPqiwzx5fQR+RTbX1PL9yBy+u2sHr63fTknRKivK5eFI5syYP4+LThlHSPz/qMtOWTDqrd+zntfW1vLa+ltf/vJu6+mYgeEPpvPFDmDBsID9b/Gd2HWjkxvPH8dWPnMaAk+wPPo7erq7jx79fx+/e2U5+bg4fnTqcloSzbe8htu5tYNeBxqOudisuzGNkSREjSgvbDgYjSgqPODgUFeRG06EeVr2nnnm/fJO3Ntcx96Lx/OOlk3r9DL49BX0G2NfQzOI1u1i4soZFq2uoPdhEbo4x832DuWTyMC6ZMoxTy3vmTZnjSSadhDuJpJN0pyXpQVvr5CnzSedgY4KqjbuPGeznjR/CuePKjhie2nuome8+t4pfvL6JUaVF3H31GXx48rBe7Zf0PHfnD2t28eNF63h1fS3FhXn89Xnv43Pnj2VY8ZFnqk0tSXbsa2Db3oYg/Osa2B4eBLbtPcS2ugZqDzYd9Ril/fODVwMlheEBof0rhEL65WX2wWDR6hpu+dUyEgnnn697P5edMSKSOhT0GSaRdN6qruOlVTUsXFnDu9uCy6xGlxUxaXhx8EGvMIgTR4QwJJLBB7eSyeCDX0mn3TYervO2UE+d7+5/8eiyIs4bFwb7+DIqBnf+vsOfNuzma79ZztqaA3zirJH87yumdvsy1JZEklfX1/Jfb20lLzeHL1w0nvcNGdCt+5Lja0kk+e3ybfzk9+t5d9s+ThlUyE0XjGP2OaMpLuz+K9CG5gQ79jWwtS4M/70NbK07xPa9DW0HhNYTiVRDBxYwoqSIU0oK24aFWl8ZnDIoOBh0dPbsHnwgsrE5SUNLou22oTlBQ3OSwf3zmXACV7wkks4PFq7hX19cw6Thxdz32ZmMGxrdc1JBn+G21h3ipdU1vLSqhm17G8jNMXIsuM4/J8fIteD6/xwzcnPCKXW+/fY5hOtzyM0JrhLKC/dpnc/p4D5yU7ZpfcyC3BzOrChJK9g70tiS4MeL1vOjl9ZSmJ/D//r4FD5VOTqtPy53Z9nmOp5atpVn3t7GrgONFPfLoykRfLL5k9NH8eVZExkz5OR4s7u3HWpK8GjVZv7j5fVU7znEqeUD+MKHTuXqaaP67Aqy+qaW4FVBysGg9RVC6/L+hpYj9jGD8oH9KCrIbQvxhuYEjS3JTh9v3NABXHbGKVx+ximcOaok7dDffbCJrzzyJi+v2cW1Myq4++ozIh+G6rGgN7NJwK9SmsYD/xt4KGwfC2wAPuXueyz4V/sB8DGgHvicuy893mOcjEF/Mlhbs5+v/+Yd3tiwm3PHlfHtT57J+PKBx9z2qWVbeWrZVjbtrqcgL4dZk4Zx1bSRfHjyMPYdaua+36/jF69vIpl0rp1Rwc2zJpw0Vzf1pETSWbfzAM8u38b8P25gT30zM8aU8sUPncpfTBlOTk7vDiV2x4HGFrbVhcNCdYcPBk0tSfrl5VKYn0Nhfi798nPplxfMF+bnHF6Xl0thfi4bdx/kuXe288d1tSSSzqjSorbQnzFm8DH7vnTTHub9Yim1B5u468rTmX12eicuva1XzujNLBfYApwLzAN2u/s9ZnY7MNjdbzOzjwFfJgj6c4EfuPu5x7tfBX18JZPOr6o2861nV9LYkuTLH57AFz50KgV5OWytO8R/vRWE+7vb9pFj8MFTh3LltJFcevoplBQdPWSwY18D9y1axy/fCAL/usoK5n14QrdffcRdMums33WQ5VvqWF69j+Vb6lixdR/1TQkALpk8jC9efCpnj+39T2dmkrr6Jp5/dwfPvbOdl9fsoimRZFhxPy49PQj9c8aVkZebg7sz/48b+OazKxk+qJAff3YmZ4wqibr8Nr0V9B8F/sndzzez1cDF7r7NzEYAi9x9kpn9JJxfEO7Ttt2x7ldBH381+xq465l3+e3b2zht+EAG9y/gjQ27cYezRpdy1VkjueL9IxiW5qVp2/c28O+L1vLIG5txnOsqRzPvwxMY1ctfDtWZlkSSg00JDjUlONjUQn1jgvqmFupbl5sS1De2HL1Nc2t7uE1TgoLcHIYMLGDIgALKBvRjyMACygYEy8F8P8oGFDCoMA8zI5l0Nu6u5+3qOpZX72X5lr2s2LqPA43BsEdhfg6njyzhzFHBVDl2sN7zAPY3NPPiqhqee2c7L62uoaE5SdmAAj4yZTj7G5t5dvl2Lpk8jH/51LSMu2Kut4L+Z8BSd/83M6tz99KUdXvcfbCZPQPc4+6Lw/aFwG3uXtXuvuYCcwHGjBkzc+PGtH7MXLLcC+/u4O7fvktOjnHVWaO4atpIxp7Am1lb6w7x74vW8qs/bQbg02cHgT+i5PiBn0j64QBuPByuB5taggBubGm3fDiw65taguUwnNvamhI0pTFG3CrHYEBBHkUFuQzol0f/gtxwCuYbW5LUHmxi98FGdh9o4mB4Ft5efq5RNqCA+qZE21h2QV4OU0cM4v0VYbBXlDChfGBsPs/RWw41Jfj9ezX87p3tLFxZQ31TC//w0Un8jw+dmpFDWj0e9GZWAGwFTnf3HccJ+t8C324X9Le6+5Jj3bfO6OVEbak7xI9eWsuvqzZjGBdPKifpHBXOh5qDEE/nTbtWOUZb+A7ol0dRfi4D+h0O5P4FeQzolxsEdru2w9uk7hu09cvL6dI4b0NzIgj+A03UHmxk98Emdh9sYteB4GCQn5sTBnspE4cP7PNruuOmsSXBgYYWhgzM3C8v7I3vurmc4Gx+R7i8w8xGpAzd1ITt1cDolP0qCA4QIr1mVGkR37rmTL508an86KV1vL6+lsIwkAcV5TOipPBw6PY7MpCPCOIjwjpo62og95bC/FxGlRZFPjx1suiXl0u/gZl9PX+6uhL0nwEWpCw/DcwB7glvn0ppv9nMHiF4M3bv8cbnRXpSxeD+fPuTZ0ZdhkhGSSvozaw/8BHgCynN9wCPmtlNwCbgurD9WYIrbtYSXF55Y49VKyIiXZZW0Lt7PTCkXVstcEkH2zrBpZciIpIB9G6NiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcWkFvZqVm9piZrTKzlWb2ATMrM7PnzWxNeDs43NbM7IdmttbM3jazGb3bBREROZ50z+h/ADzn7pOBs4CVwO3AQnefCCwMlwEuByaG01zgvh6tWEREuqTToDezQcBFwAMA7t7k7nXAVcD8cLP5wNXh/FXAQx54DSg1sxE9XrmIiKQlnTP68cBO4Odm9qaZ/dTMBgDD3X0bQHg7LNx+FLA5Zf/qsE1ERCKQTtDnATOA+9x9OnCQw8M0HbEO2vyojczmmlmVmVXt3LkzrWJFRKTr0gn6aqDa3V8Plx8jCP4drUMy4W1NyvajU/avALa2v1N3v9/dK929sry8vLv1i4hIJzoNenffDmw2s0lh0yXAu8DTwJywbQ7wVDj/NHBDePXNecDe1iEeERHpe3lpbvdl4BdmVgCsB24kOEg8amY3AZuA68JtnwU+BqwF6sNtRUQkImkFvbsvAyo7WHVJB9s6MO8E6xIRkR6iT8aKiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMylFfRmtsHMlpvZMjOrCtvKzOx5M1sT3g4O283Mfmhma83sbTOb0ZsdEBGR4+vKGf2H3X2au1eGy7cDC919IrAwXAa4HJgYTnOB+3qqWBER6boTGbq5Cpgfzs8Hrk5pf8gDrwGlZjbiBB5HREROQLpB78B/m9kSM5sbtg13920A4e2wsH0UsDll3+qwTUREIpCX5nbnu/tWMxsGPG9mq46zrXXQ5kdtFBww5gKMGTMmzTJERKSr0jqjd/et4W0N8ARwDrCjdUgmvK0JN68GRqfsXgFs7eA+73f3SnevLC8v734PRETkuDoNejMbYGbFrfPAR4F3gKeBOeFmc4CnwvmngRvCq2/OA/a2DvGIiEjfS2foZjjwhJm1bv9Ld3/OzP4EPGpmNwGbgOvC7Z8FPgasBeqBG3u8ahERSVunQe/u64GzOmivBS7poN2BeT1SnYiInDB9MlZEJOYU9CIiMaegFxGJOQW9iEjMpfuBKRGRPtfc3Ex1dTUNDQ1RlxKpwsJCKioqyM/P79b+CnoRyVjV1dUUFxczduxYwku8TzruTm1tLdXV1YwbN65b96GhGxHJWA0NDQwZMuSkDXkAM2PIkCEn9KpGQS8iGe1kDvlWJ/pvoKAXETmOHTt2cP311zN+/HhmzpzJBz7wAZ544gkAFi9ezDnnnMPkyZOZPHky999//xH73n///W3rzjnnHBYvXty2rqWlha9//etMnDiRadOmMW3aNL75zW/2Sh80Ri8icgzuztVXX82cOXP45S9/CcDGjRt5+umn2b59O9dffz1PPvkkM2bMYNeuXVx66aWMGjWKj3/84zzzzDP85Cc/YfHixQwdOpSlS5dy9dVX88Ybb3DKKadwxx13sH37dpYvX05hYSH79+/ne9/7Xu91JOpp5syZLiLS3rvvvhvp47/wwgt+0UUXdbjujjvu8DvvvPOo7S+44AJ3d7/gggt84cKFR+1zxx13+MGDB72srMz37duXdi0d/VsAVZ5GxuqMXkSywl3/tYJ3t+7r0fucOnIQ//SJ04+5fsWKFcyY0fHPXq9YsYI5c+Yc0VZZWcmKFSva1s+cOfOo9fPnz2ft2rWMGTOG4uLiE+xBejRGLyKSpnnz5nHWWWdx9tln4+4dvkl6vDdOj7XPz3/+c6ZNm8bo0aPZvHlzB3ueGJ3Ri0hWON6Zd285/fTTefzxx9uWf/SjH7Fr1y4qKyu59NJLqaqq4sorr2xbv2TJEqZOnQrA1KlTWbJkCbNmzWpbv3TpUqZOncqECRPYtGkT+/fvp7i4mBtvvJEbb7yRM844g0Qi0eP90Bm9iMgxzJo1i4aGBu677762tvr6eiA4u3/wwQdZtmwZALW1tdx2223ceuutANx6663cdttt1NbWArBs2TIefPBBvvSlL9G/f39uuukmbr755rbr4xOJBE1NTb3SD53Ri4gcg5nx5JNP8vd///d897vfpby8nAEDBvCd73yHESNG8PDDD/P5z3+e/fv34+7ccsstfOITnwDgyiuvZMuWLXzwgx/EzCguLubhhx9mxIgRAHzzm9/kzjvv5IwzzqC4uJiioiLmzJnDyJEje74fwRu30aqsrPSqqqqoyxCRDLNy5UqmTJkSdRkZoaN/CzNb4u6Vne2roRsRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYm5tIPezHLN7E0zeyZcHmdmr5vZGjP7lZkVhO39wuW14fqxvVO6iIikoytn9F8BVqYsfwe4190nAnuAm8L2m4A97j4BuDfcTkQkaz3xxBOYGatWrTqi/d5776WwsJC9e/e2tS1atIiSkhKmT5/OlClTuOuuu9rar7jiij6tu1VaQW9mFcDHgZ+GywbMAh4LN5kPXB3OXxUuE66/xPTLASKSxRYsWMAFF1zAI488clT72Wef3fb99K0uvPBC3nzzTaqqqnj44YdZsmRJX5Z7lHTP6L8P3Aokw+UhQJ27t4TL1cCocH4UsBkgXL833P4IZjbXzKrMrGrnzp3dLF9EpHcdOHCAV155hQceeOCIoF+3bh0HDhzg7rvvZsGCBR3uO2DAAGbOnMm6dev6qtwOdfoVCGZ2BVDj7kvM7OLW5g429TTWHW5wvx+4H4JPxqZVrYicvH53O2xf3rP3ecqZcPk9x93kySef5LLLLuO0006jrKyMpUuXMmPGDBYsWMBnPvMZLrzwQlavXk1NTQ3Dhg07Yt/a2lpee+017rzzTqI8oU3njP584Eoz2wA8QjBk832g1MxaDxQVwNZwvhoYDRCuLwF292DNIiJ9ZsGCBcyePRuA2bNnt529P/LII8yePZucnBw++clP8utf/7ptn5dffpnp06fz0Y9+lNtvv53TT+/7b95M1ekZvbt/DfgaQHhG/z/d/a/M7NfAXxKE/xzgqXCXp8PlV8P1L3omfKGOiGS3Ts68e0NtbS0vvvgi77zzDmZGIpHAzPjsZz/LmjVr+MhHPgJAU1MT48ePZ968eUAwRv/MM8/0eb3HciLX0d8GfNXM1hKMwT8Qtj8ADAnbvwrcfmIliohE47HHHuOGG25g48aNbNiwgc2bNzNu3DhuueUWvvGNb7BhwwY2bNjA1q1b2bJlCxs3boy65A51KejdfZG7XxHOr3f3c9x9grtf5+6NYXtDuDwhXL++NwoXEeltCxYs4Jprrjmi7dprr2XDhg1HtV9zzTVHXZXT3sKFC6moqGibXn311R6vuSP6mmIRyVj6muLD9DXFIiJyTAp6EZGYU9CLiMScgl5EMlomvI8YtRP9N1DQi0jGKiwspLa29qQOe3entraWwsLCbt9Hpx+YEhGJSkVFBdXV1ZF+fUAmKCwspKKiotv7K+hFJGPl5+czbty4qMvIehq6ERGJOQW9iEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjrNOjNrNDM3jCzt8xshZndFbaPM7PXzWyNmf3KzArC9n7h8tpw/dje7YKIiBxPOmf0jcAsdz8LmAZcZmbnAd8B7nX3icAe4KZw+5uAPe4+Abg33E5ERCLSadB74EC4mB9ODswCHgvb5wNXh/NXhcuE6y8xM+uxikVEpEvSGqM3s1wzWwbUAM8D64A6d28JN6kGRoXzo4DNAOH6vcCQDu5zrplVmVnVyf7rMSIivSmtoHf3hLtPAyqAc4ApHW0W3nZ09n7UDz66+/3uXunuleXl5enWKyIiXdSlq27cvQ5YBJwHlJpZ608RVgBbw/lqYDRAuL4E2N0TxYqISNelc9VNuZmVhvNFwF8AK4GXgL8MN5sDPBXOPx0uE65/0U/mn3AXEYlYOj8OPgKYb2a5BAeGR939GTN7F3jEzO4G3gQeCLd/APhPM1tLcCY/uxfqFhGRNHUa9O7+NjC9g/b1BOP17dsbgOt6pDoRETlh+mSsiEjMKehFRGJOQS8iEnMKehGRmFPQi4jEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMRcp0FvZqPN7CUzW2lmK8zsK2F7mZk9b2ZrwtvBYbuZ2Q/NbK2ZvW1mM3q7EyIicmzpnNG3AP/g7lOA84B5ZjYVuB1Y6O4TgYXhMsDlwMRwmgvc1+NVi4hI2joNenff5u5Lw/n9wEpgFHAVMD/cbD5wdTh/FfCQB14DSs1sRI9XLiIiaenSGL2ZjQWmA68Dw919GwQHA2BYuNkoYHPKbtVhm4iIRCDtoDezgcDjwC3uvu94m3bQ5h3c31wzqzKzqp07d6ZbhoiIdFFaQW9m+QQh/wt3/03YvKN1SCa8rQnbq4HRKbtXAFvb36e73+/ule5eWV5e3t36RUSkE+lcdWPAA8BKd/+XlFVPA3PC+TnAUyntN4RX35wH7G0d4hERkb6Xl8Y25wN/DSw3s2Vh29eBe4BHzewmYBNwXbjuWeBjwFqgHrixRysWEZEu6TTo3X0xHY+7A1zSwfYOzDvBukREpIfok7EiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZhT0IuIxJyCXkQk5hT0IiIxp6AXEYk5Bb2ISMwp6EVEYk5BLyIScwp6EZGYU9CLiMScgl5EJOYU9CIiMaegFxGJOQW9iEjMKehFRGJOQS8iEnOdBr2Z/czMaszsnZS2MjN73szWhLeDw3Yzsx+a2Voze9vMZvRm8SIi0rl0zugfBC5r13Y7sNDdJwILw2WAy4GJ4TQXuK9nyhQRke7K62wDd/+DmY1t13wVcHE4Px9YBNwWtj/k7g68ZmalZjbC3bf1VMFH2LUGdq6GwhIoKg1uC0ugoBhyNColIgJpBP0xDG8Nb3ffZmbDwvZRwOaU7arDtt4J+lXPwAvfOLrdcqDfoMPBf8SBoBQKBkLBgHAaCP0GHp5PXdevGHLze6V0kazhDg11sH9H8LeVkws5ee2m9m25YBZ15RLqbtAfS0f/s97hhmZzCYZ3GDNmTPcebcYcOHUWNOwNpkN1h+cb9gZPztb52nWH1zcfTP8xcgtgwDAYNAKKT4Hi9rcjg9vCkt5/YrtDMgGegGRLynwyWPZESlu7+bZ9kinrWw7vn9qWbIGWRmg5FNw2H4KWhvA2bG9uOHybaIT8/kceWNsfaAsHBQfZ1nWehKYD0Lg/mJoOQOMBaNof3rZbxsP7HBTcHjFfHM6Hj6ODc9e4Q30t1G2Eus1Qtwn2hrety037u36/1i78czs5MKRz8Gibzw+W8ZTnb8vRz//Uv4tkAgr6w9DTYOhEGDopmB8wpMf/SdPmHvwt5OT26sN0N+h3tA7JmNkIoCZsrwZGp2xXAWzt6A7c/X7gfoDKysoODwad6l8WTF2VTEJzfRAmTQdTQiWcP6J9Pxyogf3bgqGiP/8hOFi0l1d0+ACQVxA+4ZIdBHOygwDuKJTbz7dwjGNm38krhLx+QV/zCw/f5vYLDqI7Vx0+sHqyhx6zKHjFBcH/RUtDenXm9w8PvOHBt3W+7WBsHa8/YlvabZvufu237Wi/Y61vN+8O+OHbI9pIWRfKyQkDNjclaHMPn4mnrks0BkG+d3Pw95Cq3yAoHRNMYy+A0tHBcxuOPCFofV4fd7m1rbkL+ySgueno9YnmI+8PCw8A7fub23H7vq3B33Dq86ioDMonHRn+QycGfU83gFtPwhKNcGhPcOCsr4X63SnztR23f/x7MOOG9B6nm7ob9E8Dc4B7wtunUtpvNrNHgHOBvb02Pn8icnKC8GgNkK5qqocD22H/9uCJs397cCDYH7Y11R9+guX1O/oPrMM/xpS2nLyU9TlHP3k7ajvqMTr6A2/XdsTjtLuf/MIw2AshvygI83Tf93APDpJtr6z2tXultTe4r4LicNisdfisODg7b20rGBicBaZqaQwCv2Fv+GpgX3D/jfvC9n3QuDd49dFROKbOtwWkpxxDjxGqx9yv/fyxtqXzbdvv19FB4rgHFjo+YfAkJJqObsvJCwJtwl8EQV46BkrC26LSY/73Zr1kMji47XovmHauDk7iVj0L9Q8d3i6vEAaNInjVcIyDUeuBxxOdPKhB0WDoPyQ4OS0dAyOnBcvDpvZmb4NH99QnYkcbmC0geON1KLAD+CfgSeBRYAywCbjO3XebmQH/RnCVTj1wo7tXdVZEZWWlV1V1upmISO+q333kAWDfluDEJzf/GMNL7abcvOAVQv8hR05Fpb0yPGNmS9y9stPtOgv6vqCgFxHpunSDXtcgiojEnIJeRCTmFPQiIjGnoBcRiTkFvYhIzCnoRURiTkEvIhJzCnoRkZjLiA9MmdlOYGMfPdxQYFcfPVZvUR8yQ7b3IdvrB/Xhfe5e3tlGGRH0fcnMqtL5JFkmUx9Qj17jAAAJRElEQVQyQ7b3IdvrB/UhXRq6ERGJOQW9iEjMnYxBf3/UBfQA9SEzZHsfsr1+UB/SctKN0YuInGxOxjN6EZGTioJeRCTmFPQiIjGnoM8iZjbYzIqjrqMnmFk3ftU9GmYW4x9QBTPr5o8nRy+bnketzKzczKab2Zl99W8f66A3s79Jma8ws4VmVmdmfzSz06KsLV1mNtLMHjKzvQSfnlthZpvM7Btmlh91fekws/PNbKWZrTCzc83seaDKzDab2Qeiri8Nu8zsBTO7Kaah/27UBaTDzO5ImZ9qZu8BS8xsg5mdG2FpaQlrfgF4FXgd+Cmw3MweNLOS3nzsWAc9cHPK/L8Q/KB5GfDPwH2RVNR1DwM/c/cS4DrgcWAKkAf8KMrCuuBe4FPA3wK/Be5y9/HAVcD/i7KwNK0Evg/MAtaZ2VNmNtvMiiKuK21m9tVjTP8AZMsZ/SdT5v8Z+Iq7jyN4bt0bTUld8jNgnrtPAC4AVoX1vwI80JsPHPegT3Wau//E3ZPu/gRB4GeDIe6+CMDdfwNc5O4H3f0O4KJIK0tfvrsvd/dXgZ3uvhjA3ZcC2RCWze7+jLv/FVAB/IIgXKrN7JfRlpa2bwGDgeJ200CyMwdGuvvvANz9DbLjeVTk7quhreYzw/n/AKb25gPn9eadZ4AKM/shYEC5meW7e3O4LiuGPYCdZvZZ4EXgWmADgJkZ2fMHmlrn19qtK+jLQrrJWmfc/RDBK8NHw5fbV0dWVdcsBZ509yXtV5jZ30ZQT3eMN7OnCf4/Ksysv7vXh+uy4e95nZndCSwkeHWyDCAcgu3VLI570P9jynwVwdnLHjM7BXg6mpK67G8IhjduJ3hitA5HlXF0aGaqO1v/KN39ydZGMzsVeCjCutL1i44a3X0vML+Pa+muG4Hdx1iXLV8KdlW75RwAMxtOdgzF/g3w9XB6C/hK2N4fuKE3H1ifjBURiblseenfLWaWZ2ZfMLPfmdnbZvZWOP/FLLpiJev7cDxmltXfVZIt9ZtZbvg8+r9mdn67dXcca79Mku19aFf/B9ut69X6Y31Gb2YLgDqCl9fVYXMFMAcoc/dPR1VbumLSh2O98W3AW+5e0Zf1dFW21w9gZj8lGCJ4A/hr4Pfu/tVw3VJ3nxFlfenI9j5EWX/cg361u086xrr33D3jr6WPSR8SBL8gZinNHi6PcveMfkM22+sHMLO33f394Xwe8O8Ev2z0GeA1d58eZX3pyPY+RFl/rIduCN54vc7M2vppZjlm9mlgT4R1dUUc+rAeuNjdx6VM48NriHdEXVwasr1+SLm6yd1b3H0uwZv7L5I919Fnex8iqz/uQT8b+Etgh5m9F36SbgfBpU2zI60sfXHow/cJruHuyHf7spBuyvb6Ifgk8mWpDe7+f4CfA2Mjqajrsr0PkdUf66GbVGY2hKC/WftDwnHog4j0vbif0bdx91p335UtV0l0JA59aJXtfcj2+kF9yAR9Vf9JE/QpsuXDIcejPkQv2+sH9SET9En9J2PQ10RdQA9QH6KX7fWD+pAJ+qT+k2aMXkTkZHUyntED2T+2B+pDJsj2+kF9yAS9XX+sv9Ssk080fqwva+ku9SF62V4/qA+ZIMr6Yz10E5NPNKoPEcv2+kF9yARR1h/rM3qCTzRe4u6b2q8ws80R1NMd6kP0sr1+UB8yQWT1x32MPg6faFQfopft9YP6kAkiqz/WQzciIhL/oRvMbDLBL9OMIhgP2wo87e4rIy2sC9SH6GV7/aA+ZIKo6o/10I2Z3QY8QvBmxxvAn8L5BWZ2e5S1pUt9iF621w/qQyaIsv5YD92E3/R4esoPgre2FwAr3H1iNJWlT32IXrbXD+pDJoiy/lif0QNJYGQH7SPCddlAfYhettcP6kMmiKz+uI/R3wIsNLM1QOvlS2OACcDNkVXVNepD9LK9flAfMkFk9cd66AaCX2MCziF488MIfnf1T+6eiLSwLlAfopft9YP6kAmiqj/2Qd+emc1192z/Xgz1IWLZXj+oD5mgr+qP+xh9R74YdQE9QH2IXrbXD+pDJuiT+k/GoLfON8l46kP0sr1+UB8yQZ/UfzIO3VS4e3XUdZwI9SF62V4/qA+ZoK/qj/UZvZmda2aDwvkiM7sLuM/MvmNmJRGXlxb1IXrZXj+oD5kgyvpjHfTAz4D6cP4HQAnwnbDt51EV1UXqQ/SyvX5QHzJBZPXH/Tr6HHdvCecr3X1GOL/YzJZFVVQXqQ/Ry/b6QX3IBJHVH/cz+nfM7MZw/i0zqwQws9OA5mPvllHUh+hle/2gPmSCyOqP9Zux4bjXD4ALgV3ADIJPpG0G/s7d34qwvLSoD9HL9vpBfcgEUdYf66BvZWbFwHiCoapqd98RcUldpj5EL9vrB/UhE0RR/0kR9B0xs4HufiDqOk6E+hC9bK8f1IdM0Nv1x32M/njejbqAHqA+RC/b6wf1IRP0av2xvurGzL56rFXAwL6spbvUh+hle/2gPmSCKOuP+xn9twh+jLe43TSQ7Om7+hC9bK8f1IdMEFn9sT6jB5YCT7r7kvYrzOxvI6inO9SH6GV7/aA+ZILI6o/1m7FmNgnY7e47O1g3PBverVcfopft9YP6kAmirD/WQS8iItkxrtVtZlZiZveY2Sozqw2nlWFbadT1pUN9iF621w/qQyaIsv5YBz3wKLAHuNjdh7j7EODDYduvI60sfepD9LK9flAfMkFk9cd66MbMVrv7pK6uyyTqQ/SyvX5QHzJBlPXH/Yx+o5ndambDWxvMbLiZ3cbhX2HPdOpD9LK9flAfMkFk9cc96D8NDAF+b2Z7zGw3sAgoAz4VZWFdoD5EL9vrB/UhE0RWf6yHbgDMbDJQAbyW+l0SZnaZuz8XXWXpUx+il+31g/qQCSKr391jOwF/B6wGngQ2AFelrFsadX3qQ3b0IdvrVx8yY4qy/rh/MvbzwEx3P2BmY4HHzGysu/8AsubX49WH6GV7/aA+ZILI6o970Od6+PLI3TeY2cUE/7jvIzueGKA+ZIJsrx/Uh0wQWf1xfzN2u5lNa10I/5GvAIYCZ0ZWVdeoD9HL9vpBfcgEkdUf6zdjzawCaHH37R2sO9/dX4mgrC5RH6KX7fWD+pAJoqw/1kEvIiLxH7oRETnpKehFRGJOQS8iEnMKehGRmFPQi4jE3P8H50NuO7MIc7MAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD/CAYAAADhYy38AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl0XeV97vHvT7MsyZY1y5JteZ4HQDgMJgwGnAAmIZeQ29CGptxCspImJaENSXMzdJUGblYgae/tQEqoby8hBQJhCDgQB1MwkwdsbCM84kHWYI3WPJ73/vEeybKxLFnS0ZG2n89aZ+3h7HPObx/Qc/Z+33dvm3MOEREZ/2KiXYCIiIwMBbqISEAo0EVEAkKBLiISEAp0EZGAUKCLiASEAl1EJCAU6CIiAaFAFxEJCAW6iEhAxI3mh2VlZbmioqLR/EgRkXFvy5Yt1c657IG2G9VALyoqYvPmzaP5kSIi456ZHRrMdmpyEREJCAW6iEhAKNBFRAJCgS4iEhAKdBGRgFCgi4gEhAJdRCSS2hpg94sQCkX8o0Z1HLqIjGPdndBcBU2V0NkKqbmQlg8JE6Jd2dgSCkHlDtj3e9i3Ho68DaEuuPM1yF8a0Y9WoIuc65yD40egajc0VkDzMWiqCk/Dj+Zj0Fp3+tcnTYKJBT7cJ+ZD2pSTp5NnQNLE0d2n0dZcDftf8SG+/w/++wLIWwqXfA1mXw05CyJehgJd5FzS1Q5VH0DFDqjY6aeVO6Dt+MnbJaRCag6k5ED2XChaGV7O9tP4CT7oG8ugoRway6HhKFTu8mHm+jQvxMTBrFWw+L/B/OsgMW109zkSujvh6JYTR+Fl7wIOkjNg9iof4LOu8t/VKBofgb7pYX+qV3ABTDkfUjKjXZHI2BEKQVerbwbpbIWuthPz7Y1QVXIivKt3+9N/8KGcsxAWfQbylvj5ifk+xIfTjNLd5ZtlGsuhoQxKN8Gup+Hp30FcEsy51of73NUQnzwy30GkdXf50D74mn8cfgs6W8BioHAFXPkdH+T5yyEmNmplmnNu1D6suLjYDeleLk980f8PQbjW9Gk+2AsugILzIX9ZMH71RQby4X/B738Ax4+Gw7sVujsGfl1avg/t3MV+mrcEMmaOXviEQj7Yd/7a/y03H/NnAfOu8+E+6yqISxidWgajuwsqtsOHr8HB1+Hwm9DR5J/LXgAzLvNnLTM+DsmTI16OmW1xzhUPuN24CHTwRxrl2+HoVn+qU7YV6g+HnzTInhcO+fMhez6kT/XterHxI1a/SNS01MJL/xO2/T9Inw4zL/dH2HFJ/ig3PhnikiE+KTwNz8enQNYcSMmK9h6cEOr2Ibnz1/D+M9BWD0npsGCND/aJBf5MITVvdELeOX9GUbnLn8UcesMHeHuDfz5rXji8L4PpKyF1wJsejrjgBfrpNFf7gC8Lh/zRrdBS3WcD80cm6VNhUiFMCk/Tp51YDnpnjYxvzsGOJ2HdPb5T8tKvwcf/OjgjS7o64MAGH+4f/BY6Gk9+fkLW6Tta06b4H6mkSScegznbaG/yfQiVu/zj2Pt+2lp7YpvM2VAUPgIvugzSckd0l4fi3Aj0U/X01tfs99PjpVB/JDx/xJ+mhjpPfs3EQig478TRff5ySE6PXI0ig1V3EJ7/Buxf75sX1/zMN5UEVWcb1O4Pd7KWfXTaWOH70vqTkHZywPc8EtN8W/6xXf477RGf4kee5C6EnEUnpmOwj+7cDPSBhLp9z3xPwNcf9qdYR7dC3YcntsucDVP6hHze0uAcEcnY190Fb/0TvPL3/qhz1ffhwtuj2tk2ZnR1QFOFD/mWGj86p/dR3/9yaq7v9M1d5B85C33TVcz4uLZysIE+Pka5jJSYWH+6NjEfpq44+bmWWt+LXbYVjr7r2/h2POGfs1j/Sz7tYt8JUrQSJmSMfv1jXUez/3EsfcdPXcgfHSVO9E1bfad955PTfdOYWXTqbqn1HXbdnX4ESKjL194zH+ryBwM984lp4VEhi3w79Ug6uhWe+5o/0Jh3HVz3Y988KF5cgm8yTZ8W7UrGpHMr0M9kQs/40VUn1jWUhwN+KxzdDNsehU0/B8yPFphxmW9jm37JuddM45w/fT3yjg/wI+/4tkjX7Z/PnO0759qP+0uf2xtOHpt8qrR8mHkFzLzSd/il5UV+H1rr4M3/A2/984kRDGfDYn1nfN5SfwVg/jIf9EmTzv692pvglXvh7X/xwwZv+Q/fSRitHzkZl86tJpfh6urwAf/ha/Dhqz7Eutv9WNS8pT7gZ1wO0y4K5jDK8vd8e+6RTT7Ee9ozE1J9G+/UFX5MbmHxR89gnPPjdnvCvWfa3uA7tw9thAOvnuicyl4As670IT/9UkhMHbn9aDsOb/2LD/P247DwU7DiDn+2EBMXfsT2me9ZDq9rroaK9/z30TNtqjjx/pOLToR88uTwvjb22e/GE/ve9/twId+0sup7Q/tRkMAasTZ0M5sH/GefVTOB7wH/N7y+CDgI3OKc6+faYG/cB/qpOtv8qfrB13zIl27yna4W64dOTjkPpiz3bfG5ETg9Hy2lW+DV+2DvS345Y1Y4vC/005yFI9O+23MPjP2v+JEPh9/0F8nExPkfillX+h/MKecNbThbexO886+w8R98++q86+HKb49MR2NjZTjct58I+b79MjFx4aamtHBT06Q+8+Hmp7mfhKkXDr8WCZyIdIqaWSxwFPgY8BWg1jl3n5ndA0x2zn3rTK8PXKCfqqPF34jn0MZwe/y7vuMG/B90zoJwyIcfOQshLjG6NZ9J3yBPngyX/AWcf9vojWnubPXfZ0/Al28HHMQm+u9v6oUw9WM+7M80tKyjBTb9G2z8qf/vMedaf2XflPMiW39bgz8rSZzox4Wr+USGKFKBfi3wfefcpWa2G7jCOVduZvnABufcvDO9PvCBfirn/NDJnnAv3+anPTc5ion3F33ExgMW/oM/dcqJ+eTJvqNswZrIdsqeFOQZPshX/Hn0m5Gaa+DQ676p68g7/vvsuUoyfboP96krwmcNi3wH5pZH4LUH/JWJs66CK76jo2AZdyIV6L8Atjrn/reZ1Tvn0vs8V+ecO+M1sOdcoJ+Oc1B/CMrC4V69x4+gwPnnTjft+7q6g/5of+YVsOgmmH/9yF16XLoZNtwH+14eW0Hen652f9R+5O0TId/Tlh2f4pu4Wmp8x/WV3/Gd1yLj0IgHupklAGXAIudc5WAD3czuAO4AmDZt2gWHDh0a7D7IqZzzAbbraf+oP+SP8mdd6cN93nVDG20z3oK8Pz0XlvWGe6XvZJzx8WhXJjIskQj0TwFfcc5dG15Wk0s0OeeP8Hc9Dbt+A8cP+3CfvcrfPa+w2I/maK2F1nrfzHO6R0sN1OzzQX7p1+DC/zH+glwk4CJxYdEfAY/1WX4WuA24Lzx95qwqlOEx81exFpwP1/ytHyu/6ykf7nvW9f+6hDTfRJOc7qe5i31HZ/GfjezQQBEZdYM6QjezCcARYKZz7nh4XSbwODANOAx81jlX2/+76Ah9VIRC/iKomv3h4O77SNfdJ0XGoRE9QnfOtQCZp6yrAVad/hUSNTExJ0Z6iMg5ZXzcmUZERAakQBcRCQgFuohIQCjQRUQCQoEuIhIQCnQRkYBQoIuIBIQCXUQkIBToIiIBoUAXEQkIBbqISEAo0EVEAkKBLiISEAp0EZGAUKCLiASEAl1EJCAU6CIiAaFAFxEJCAW6iEhAKNBFRAJCgS4iEhAKdBGRgFCgi4gEhAJdRCQgBhXoZpZuZk+a2QdmVmJmF5tZhpm9bGZ7w9PJkS5WRET6N9gj9J8B65xz84FlQAlwD7DeOTcHWB9eFhGRKBkw0M1sIvBx4GEA51yHc64e+BSwNrzZWuDTkSpSREQGNpgj9JlAFfCImb1rZv9mZilArnOuHCA8zTndi83sDjPbbGabq6qqRqxwERE52WACPQ44H/hn59x5QDNn0bzinHvIOVfsnCvOzs4eYpkiIjKQwQR6KVDqnHs7vPwkPuArzSwfIDw9FpkSRURkMAYMdOdcBXDEzOaFV60C3geeBW4Lr7sNeCYiFYqIyKDEDXK7vwAeNbME4ADwRfyPweNmdjtwGPhsZEoUEZHBGFSgO+e2AcWneWrVyJYjIiJDpStFRUQCQoEuIhIQCnQRkYBQoIuIBIQCXUQkIBToIiIBoUAXEQkIBbqISEAo0EVEAkKBLiISEAp0EZGAUKCLiASEAl1EJCAU6CIiAaFAFxEJCAW6iEhAKNBFRAJCgS4iEhAKdBGRgFCgi4gEhAJdRCQgFOgiIgGhQBcRCYi4wWxkZgeBRqAb6HLOFZtZBvCfQBFwELjFOVcXmTJFRGQgZ3OEfqVzbrlzrji8fA+w3jk3B1gfXhYRkSgZTpPLp4C14fm1wKeHX46IiAzVYAPdAS+Z2RYzuyO8Ltc5Vw4QnuZEokARERmcQbWhA5c658rMLAd42cw+GOwHhH8A7gCYNm3aEEoUEZHBGNQRunOuLDw9BjwNrAAqzSwfIDw91s9rH3LOFTvnirOzs0emahER+YgBj9DNLAWIcc41huevBf4WeBa4DbgvPH0mkoWKyPjS2dlJaWkpbW1t0S5l3EhKSqKwsJD4+PghvX4wTS65wNNm1rP9L51z68xsE/C4md0OHAY+O6QKRCSQSktLSUtLo6ioiHB+yBk456ipqaG0tJQZM2YM6T0GDHTn3AFg2WnW1wCrhvSpIhJ4bW1tCvOzYGZkZmZSVVU15PfQlaIiEjEK87Mz3O9LgS4igVRTU8Py5ctZvnw5eXl5FBQU9C5PmDChd7s9e/Zw3XXXMXv2bBYsWMAtt9xCZWUlGzZs4IYbbujd7rvf/S6rV6+mvb2dK664gnnz5vW+38033wzAD37wg97PWbhwIY899ljv65944gkWLVpETEwMmzdvjsg+D3bYoojIuJKZmcm2bdsAH7SpqancfffdAKSmpgK+Wej666/ngQceYM2aNQC88sorH2n2uPfee9m4cSMvvPACiYmJADz66KMUFxdzqrvuuou7776bvXv3csEFF3DzzTcTHx/P4sWLeeqpp7jzzjsjts8KdBE5Z/3yl7/k4osv7g1zgCuvvBKADRs2APCTn/yEF154gd/97nckJycP+r3nzJnDhAkTqKurIycnhwULFoxo7aejQBeRiPvhc7t4v6xhRN9z4ZSJfH/NomG9x86dO7ngggv6fX7jxo3s3r2bLVu29B7V97j11lt7A/6aa67hxz/+8UnPb926lTlz5pCTM3oX0SvQRUT6MXv2bOrq6njppZd628l79Nfk8uCDD/Lzn/+cAwcOsG7dutEqFVCgi8goGO6RdKQsWrSIV199td/nc3NzefTRR1m1ahWZmZm9zTFn0tOG/tRTT/GFL3yB/fv3k5SUNJJl90ujXETknPX5z3+eN954g9/+9re969atW8eOHTt6l+fOnctTTz3FH//xH/d2sg7GZz7zGYqLi1m7du3AG48QBbqInLOSk5N5/vnn+cd//EfmzJnDwoUL+fd///ePtHtfeOGFPPLII9x4443s378f8G3oPcMWr7766tO+//e+9z0eeOABQqEQTz/9NIWFhbz55ptcf/31rF69esT3x5xzI/6m/SkuLnaRGn8pImNLSUnJqIzsCJrTfW9mtqXPPy7ULx2hi4gEhAJdRCQgFOgiIgGhQBcRCQgFuohIQCjQRUQCQoEuIoE01m6f+1d/9VfMnz+fpUuXctNNN1FfXz/i+6xAF5FA6rl97rZt2/jSl77EXXfd1bscE+Ojr+f2uV/+8pfZt28fJSUlfPnLX+739rm/+c1vTrp9bs/7Pfnkk73b9nzOM888w5133klnZyfgb+C1c+dO3nvvPebOncuPfvSjEd9nBbqInLP6u33u4sWLe5d7bp/73HPPDfn2uQDXXnstcXH+9lkXXXQRpaWlI7QXJ+jmXCISeS/eAxU7Bt7ubOQtgU/eN6y3iNbtc3/xi1/wuc99bli1n44CXUSkH5G4fe69995LXFwct95664jXq0AXkcgb5pF0pIz27XPXrl3L888/z/r16yPyD2irDV1EzlmjefvcdevWcf/99/Pss8+eNMpmJCnQReScNZq3z/3qV79KY2Mj11xzDcuXL+dLX/rSiO/PoG+fa2axwGbgqHPuBjObAfwKyAC2An/inOs403vo9rki5w7dPndoRuv2uV8HSvos3w886JybA9QBt5/Fe4mIyAgbVKCbWSFwPfBv4WUDrgJ6RtOvBT4diQJFRGRwBnuE/lPgr4FQeDkTqHfOdYWXS4GCEa5NRETOwoCBbmY3AMecc1v6rj7NpqdtjDezO8xss5ltPvVyWhEJttH8Jy6DYLjf12CO0C8FbjSzg/hO0KvwR+zpZtYzjr0QKOunwIecc8XOueLs7OxhFSsi40dSUhI1NTUK9UFyzlFTU9M7Zn0oBrywyDn3beDbAGZ2BXC3c+5WM3sCuBkf8rcBzwy5ChEJnMLCQkpLSz9yoyvpX1JSEoWFhUN+/XCuFP0W8Csz+zvgXeDhYbyXiARMfHw8M2bMiHYZ55SzCnTn3AZgQ3j+ALBi5EsSEZGh0JWiIiIBoUAXEQkIBbqISEAo0EVEAkKBLiISEAp0EZGAUKCLiASEAl1EJCAU6CIiAaFAFxEJCAW6iEhAKNBFRAJCgS4iEhAKdBGRgFCgi4gEhAJdRCQgFOgiIgGhQBcRCQgFuohIQCjQRUQCQoEuIhIQCnQRkYBQoIuIBIQCXUQkIAYMdDNLMrN3zGy7me0ysx+G188ws7fNbK+Z/aeZJUS+XBER6c9gjtDbgaucc8uA5cAnzOwi4H7gQefcHKAOuD1yZYqIyEAGDHTnNYUX48MPB1wFPBlevxb4dEQqFBGRQRlUG7qZxZrZNuAY8DKwH6h3znWFNykFCiJTooiIDMagAt051+2cWw4UAiuABafb7HSvNbM7zGyzmW2uqqoaeqUiInJGZzXKxTlXD2wALgLSzSwu/FQhUNbPax5yzhU754qzs7OHU6uIiJzBYEa5ZJtZeng+GbgaKAFeAW4Ob3Yb8EykihQRkYHFDbwJ+cBaM4vF/wA87px73szeB35lZn8HvAs8HME6RURkAAMGunPuPeC806w/gG9PFxGRMUBXioqIBIQCXUQkIBToIiIBoUAXEQkIBbqISEAo0EVEAkKBLiISEAp0EZGAUKCLiASEAl1EJCAU6CIiAaFAFxEJCAW6iEhAKNBFRAJCgS4iEhAKdBGRgFCgi4gEhAJdRCQgFOgiIgGhQBcRCQgFuohIQCjQRUQCQoEuIhIQAwa6mU01s1fMrMTMdpnZ18PrM8zsZTPbG55Ojny5IiLSn8EcoXcB33TOLQAuAr5iZguBe4D1zrk5wPrwsoiIRMmAge6cK3fObQ3PNwIlQAHwKWBteLO1wKcjVaSIiAzsrNrQzawIOA94G8h1zpWDD30gZ6SLExGRwRt0oJtZKvBr4C+dcw1n8bo7zGyzmW2uqqoaSo2UlDew71gT3SE3pNeLiJwL4gazkZnF48P8UefcU+HVlWaW75wrN7N84NjpXuucewh4CKC4uHhIifyjFz/gv/ZUkRQfw7zcNBZOmciCfP+Yn5dGWlL8UN5WRCRQBgx0MzPgYaDEOfdAn6eeBW4D7gtPn4lIhcDfXLeANUvzKSlvpKS8gRd3VvDYO0d6n5+akcyCvIm9QT8vN42pGROIjbFIlSQiMuYM5gj9UuBPgB1mti287jv4IH/czG4HDgOfjUyJMC8vjXl5ab3LzjkqGtooKW+gpLyR98sbKClv4OWSSlz4HCAhNoYZWSnMzkllVk4qs7LD89mpJMXHRqpUEZGoMedGr126uLjYbd68OWLv39LRxe6KRvYea2L/sSb2HWtif1UTh2tb6Gl+N4OC9GRm56QyOzuVj83M5LI5WQr5EVTb3MGLO8tZVpjO4oJJ0S5HZNwzsy3OueIBtwtSoPenrbObgzXN7D/WzL5jTeyr8mF/oKqJ9q4QKQmxXDk/h08szuPKeTmkJA6qa+Ek9S0dvHWgljf2V7O3sok/WzmDaxbmRmBvxq69lY38YuOHPLX1KO1dIWIMbrukiG9eO4/UIXynIuIp0AehoyvEmwdqWLezgpd2VVDT3EFiXAwfn5vNJxblcfWCXCZNOH2Ha0tHF5sO1vHG/mre2FfDzrLjOAfJ8bFkpCRwtL6VW4oL+d6aRYEOM+ccr+6p4uHXP+S1vdUkxsXwmfMLuKV4Kr/eWsqjbx8mNy2JH9y4kNWL8vBdMiJyNhToZ6k75Nh0sJZ1Oyv43a4Kyo+3ERdjXDwrk08uzueq+TkcqWth475q3thfw7uH6+jsdsTHGudNncwlszO5dHYWywrTAfjp7/fwL6/up2ByMg/cspwLizKGXFtJeQM/eWk3mw7WsbhgIhdMz+CC6ZM5b1o6E6M0wqe1o5un3i3lkY0H2XesiZy0RL5w8XQ+/7HpZKQk9G639XAdf/P0TkrKG1g1P4cf3LiIqRkTolKzjG8dXSHePVzH6/uqeX1fNbFmLCmcxLLCdJYUTmJGZgoxAR0IoUAfhlDIsb20nnW7Kli3s4JDNS29z5nBoikTuXRWFpfMzuLCoslMSDj9Efjmg7V84/HtHKlr4Y6Pz+Qb18wlMW7wbfUHq5t58Pd7eHZ7GamJcVyzMJcPyhv5oKKBkPO1zMtNo7hoMhdMn0zx9AwKJyf3exTc3tVNVWM7VY3tHAs/qhrbCYUc6RPimTwhgYyUhN75yRMSSEuKO+mPpOJ4G//x1kF++fZh6lo6WVwwkdtXzuD6JVNIiDv9ZQ1d3SEe2XiQB17eA8DXr57D7StnEB+re8NJ/5xz7K9q5rW9Vby+t5o3D9TQ0tFNbIyxrHASMWbsLDtOW2cIgLSkOJYUTOoN+aWFkyhI7//vYTxRoI8Q5xwl5Y28vq+KaRkTuGhmJukTEgZ+YVhTexf3/vZ9HnvnCPPz0vjpf1/O/LyJZ3xNxfE2/uEPe3l80xHiY2P44qVF3PnxWb3NP03tXWw7XM/mQ7VsOVTHu4fraWrvAiAnLZELpk+mID2Z6qYToX2ssZ3jrZ0f+SwzMKC/a7ZiY4z05HjSJ8STlhTPzqPH6XaOaxfmcvvKmVxYNHnQfzBH61v5/jO7+H1JJfPz0rj3psVcMH3oZy4jpa2zm4a2TnLSkqJdyjmvtrnDH4HvreK1vdWUH28DoChzAivnZLFydjYXz8pkUrL/W+jqDrGvqon3jhxne2k9O44ep6S8gc5u/z90ZkoCSwonkZuWRFJ8DEkJsSTFxZKcEEtSXIyfxp94TEiIZUH+xDHXTKpAH2PWl1TyrV+/R0NrF3evnsvtK2d+ZJx8XXMH//zqfta+cZCQc3x+xTS+ctXsAYOmO+TYXdHIlsN1bDlYy+ZDdVQ3tZOdlkhOWhLZqYnkTEwkJy3xxLo0v5yRkkCMGY1tXdS1dFDX0kF9Sye1zSfm+66fnzeRP72kiGmZQ282eWlXBT94dhdlx9v4oxXT+NYn5p3Vj+RI6OgKsXFfNc+9V8bLuyppbO9iScEkrluSz/VL8oe1f3Jmzjmqmto5UNXMh9XNHKhq4kBVMweqmzlY04xzMDEprjfAL5uTdVbNdO1d3eyuaGR76XHeO+JDvq6lg7bOEK2d3XR0hc74+rgYo7hoMpfPzeHyudksyE+L+lG+An0Mqmlq59tP7eCl9ytZMSODn3x2GVMzJtDU3sXDr33Iz187QHNHFzedV8BdV88NdFtzc3sXD768h0feOMik5HjOn5ZOdloSOWn+x8f/CCX1/giNRPNMV3eItw7U8tz2MtbtquB4aycTk+JYvSiPoqwUXtpVwfbS44BvVusJ96KslGF/9rmqtK6FbUfqfWBXNYUDvJnG8BklQGKcv2ZkRlYKC/MnctncbJYUTIrYhYGhkKOtq5u2zhBtnd20dnbTFn40tHbx9oe1vLqnipJyf4eTnLRELp+bzeXzslk5O2vUDz5AgT5mOed4ckspP3zufQA+W1zIM9vKqG3uYPWiXL557Tzm5qYN8C7BsavsOP+wfi+HalqobmqnprmD0/0vmZGS0BvuUyYlk5+exJT0ZKZMSmZKeP501xKEwp3dz71Xxos7/EimlIRYrlmYy5plU7hsTvZJbf+ldS28uKOC3+4oZ9uRegAW5k/k+qX5fHJxHjOzUyP2XQRBY1snb+6v4fV91by2t5oPq5t7nytIT2Zmtg/umVkpzMxOZUZWCgXpyWOyM7OyoY1X91Tx6p4qXttTRUNbFzEGy6emc/ncHFbOyWLq5GQmpyREvD9IgT7GHalt4ZtPbOedD2u5bE4Wd187j2VT06NdVtR1doeoaergWGPbic7bhvbe5crGdsrrWznW2P6R12akJJA/qSfok3DA73ZVUNnQTlJ8DKvm57JmWT5XzMsZ1IVkR+tbeXFHOS/sKGfrYR/u8/PSuGhmJhOT4khJjCM1KY7UxDhSEvxyWnh9SmIsqYlxJMfHRv10PZK6ukNsLz3e23H57pF6ukOO5PhYLpqZwWVzslkxI4NZ2akkJ4zfi/d69rMn4N8rrT/pwGNiUhwZKQmnPBLJSInvna6YkTnktnkF+jjQHXKU1rUwPVOn9GeroytEZUMbR+tbKatvpfx4n/l6P9/RFeLyedncsDSfqxfkDumCsR5l9a28uLOCF3aUs7uikeaOrtOeSZwqJy2RS2dnhR+Z5E9KHnINZ6u9q5vy+rYRv69RxfE2Xi6p5PW9Vbyxv4bGti7MYEnBJC4Lt3ufPz39rEZ0jTc1Te1sOlhHVVM7tU2+j6mmuYPa5nZqmzvD047ezlmA33/jcmbnDO0MT4Eu57zukItoO2xrZzdN7V3+0dZFc898u59vbO/i/bIG3thfQ21zBwAzs1NYGQ74i2aeGK0x3FpK61r5oKKB3RWNfFDZyO6KRj6sbqY75MhKTWD1ojyuX5LPihkZxA2heaCmqZ0Xd1bw3PYy3jlYi3O+CeWyOVmsnJPFpbOymJwy+m3LY5lzjqb2LmqbfdgvmjJxyD9yCnSRMSIUcnxQ0cjGfdVs3F/N2wdqae3sJsZgSWE6K2dncumsLHInJREKObo0/111AAAFd0lEQVSdo6vbEXKO7pCfdnX79aGQb5b6sLqZ3RWN7K5sZE9lIy0d3b2fNzUjmXm5/tbSU9KT2bi/mj+UHKO1s5vMlARWL/bh/rEBwr2hrZOXdlXy7PYyNu6rpjvkmJmdwo3LpnDD0nxmZacGujlpLFGgi4xRPVc8btxfw8Z91WwLtzufrYyUBObl+juRzg/fkXRubtppm5ZaO7rZsPsYv91Rzh8+OEZLRzcZKQmsXpTLdUvyuWhmJvGxMbR2dLP+g0qe3VbGht1VdHSHKJyczJplU1izdMqYGMJ3LlKgi4wTjW2dbD5YR0NbJzFmxMUYMTFGrBmxMSceMX2Wp2Ykk52aOKRwbevsZsPuKl7YUc76kkqaO7qZPCGepYXpbDpYS0tHNzlpiVy/NJ8bl01h+dR0hXiUKdBFZEBtnd28useH+/Yj9VwyO4s1S6ewYkaG/oGYMWSwgT62rm8VkVGVFB/L6kV5rF6UF+1SZATo7kgiIgGhQBcRCQgFuohIQCjQRUQCQoEuIhIQCnQRkYBQoIuIBIQCXUQkIEb1SlEzqwIODfHlWUD1CJYzVgR1vyC4+6b9Gn/G+75Nd85lD7TRqAb6cJjZ5sFc+jreBHW/ILj7pv0af4K8b32pyUVEJCAU6CIiATGeAv2haBcQIUHdLwjuvmm/xp8g71uvcdOGLiIiZzaejtBFROQMFOgiIgExZv+BCzObD3wKKAAcUAY865wriWphIiJj1Jg8QjezbwG/Agx4B9gUnn/MzO6JZm0jycxWmtk3zOzaaNciIuPfmOwUNbM9wCLnXOcp6xOAXc65OdGpbHjM7B3n3Irw/J8DXwGeBq4FnnPO3RfN+uTcYWaTgG8DnwZ6rkA8BjwD3Oecq49WbcNlZp9wzq0Lz08CHgAuBHYCdznnKqNZXySNySN0IARMOc36/PBz41V8n/k7gGuccz/EB/qt0SlpZJjZJDO7z8w+MLOa8KMkvC492vUNlZl9os/8JDN72MzeM7NfmlluNGsbpseBOuAK51ymcy4TuDK87omoVjZ8f99n/idAObAGf6b/r1GpaJSM1UD/S2C9mb1oZg+FH+uA9cDXo1zbcMSY2WQzy8SfHVUBOOeaga7oljZsQQ2IoIZDkXPufudcRc8K51yFc+5+YFoU6xppxc657zrnDjnnHgSKol1QJI3JTlHn3DozmwuswHeKGlAKbHLOdUe1uOGZBGzB748zszznXIWZpYbXjWdF4TDoFQ6L+83sz6JU00grds4tD88/aGa3RbWa4TlkZn8NrO1pggifcfwpcCSahY2AHDP7Bv5vaqKZmTvRtjxWD2JHxJgMdADnXAh4K9p1jCTnXFE/T4WAm0axlEgIakAENRw+B9wDvBr+7+SASuBZ4JZoFjYCfg6khefX4u+0WGVmecC2qFU1CsZkp6iMP2Y2GR8QnwJywqt7AuI+51xdtGobDjP7/imr/sk51xMO/8s594Vo1DUSwkODC4G3nHNNfdb3diqOV+F9KwDeDtq+nYkCXSLOzL7onHsk2nWMtPG8X2b2NfwoqxJgOfB159wz4ee2OufOj2Z9w2FmfwF8lQDu20AU6BJxZnbYORekjjZgfO+Xme0ALnbONZlZEfAk8B/OuZ+Z2bvOufOiWuAwBHnfBjJm29BlfDGz9/p7Chi3w/uCul9AbE9ThHPuoJldATxpZtMZ/x30Qd63M1Kgy0jJBVbjhyn2ZcAbo1/OiAnqflWY2XLn3DaA8NHsDcAvgCXRLW3YgrxvZ6RAl5HyPJDa80fUl5ltGP1yRkxQ9+sLnHLtg3OuC/iCmY3n8fUQ7H07I7Whi4gExHgeRysiIn0o0EVEAkKBLiISEAp0EZGAUKCLiATE/wc9MD/iwOY4EQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -174,113 +167,180 @@ "name": "stdout", "output_type": "stream", "text": [ - "GOOG\n", - "Date\n", - "2016-01-04 741.84\n", - "2016-01-05 742.58\n", - "2016-01-06 743.62\n", - "2016-01-07 726.39\n", - "2016-01-08 714.47\n", - "2016-01-11 716.03\n", - "2016-01-12 726.07\n", - "2016-01-13 700.56\n", - "2016-01-14 714.72\n", - "2016-01-15 694.45\n", - "2016-01-19 701.79\n", - "2016-01-20 698.45\n", - "2016-01-21 706.59\n", - "2016-01-22 725.25\n", - "2016-01-25 711.67\n", - "2016-01-26 713.04\n", - "2016-01-27 699.99\n", - "2016-01-28 730.96\n", - "2016-01-29 742.95\n", - "Name: Adj. Close, dtype: float64\n", - "AAPL\n", - "Date\n", - "2016-01-04 101.783763\n", - "2016-01-05 99.233131\n", - "2016-01-06 97.291172\n", - "2016-01-07 93.185040\n", - "2016-01-08 93.677776\n", - "2016-01-11 95.194629\n", - "2016-01-12 96.576222\n", - "2016-01-13 94.093220\n", - "2016-01-14 96.151117\n", - "2016-01-15 93.842021\n", - "2016-01-19 93.387931\n", - "2016-01-20 93.513531\n", - "2016-01-21 93.040118\n", - "2016-01-22 97.986799\n", - "2016-01-25 96.073825\n", - "2016-01-26 96.605206\n", - "2016-01-27 90.257610\n", - "2016-01-28 90.904929\n", - "2016-01-29 94.044912\n", - "Name: Adj. Close, dtype: float64\n" + "TICKER1\n", + "[19.62434536366324, 19.012588950013168, 18.48441719774971, 17.41144857559354, 18.276856204918218, 15.975317508037936, 17.720129272254415, 16.958922371359314, 17.27796146741641, 17.028591091939003, 18.490699028983975, 16.430558319486323, 16.108141115472815, 15.724086760804399, 16.857856203139836, 15.757964935825806, 15.58553672827537, 14.707678310353998, 14.74989205706959, 15.332707270785413, 14.232088093572491, 15.376811803412107, 16.2784025240049, 16.78089686290677, 17.68175281217118, 16.998024952996847, 16.8751347274782, 15.939365293219131, 15.671477213593114]\n", + "TICKER2\n", + "[73.53035546673819, 72.83869471501288, 72.4419411881569, 71.7547684880373, 70.90956284653858, 70.23831671570176, 70.22565211678285, 69.10834176814758, 69.34275746596468, 71.00255964307455, 71.74460380365188, 71.55276825129026, 70.66513928720543, 69.91798099345459, 71.61043559448234, 71.66124334925837, 71.02424770268901, 71.21516318735648, 73.31541832383532, 73.43557727631695, 74.05278038602437, 74.35295070598019, 74.00070085948668, 72.85818266146454, 72.50883993905167, 72.29994570567689, 72.88656889685907, 73.72555231073359, 74.65665439203714]\n" ] } ], "source": [ "print(\"The underlying evolution of stock prices:\")\n", - "for (cnt, s) in enumerate(stocks):\n", - " plt.plot(wiki._data[cnt], label=s)\n", + "for (cnt, s) in enumerate(data._tickers):\n", + " plt.plot(data._data[cnt], label=s)\n", "plt.legend()\n", "plt.xticks(rotation=90)\n", "plt.show()\n", "\n", - "for (cnt, s) in enumerate(stocks):\n", + "for (cnt, s) in enumerate(data._tickers):\n", " print(s)\n", - " print(wiki._data[cnt])" + " print(data._data[cnt])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### [Optional] Setup token to access recent, fine-grained time-series\n", + "Clearly, you can adapt the number and names of tickers and the range of dates: " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEFCAYAAADt1CyEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXdYVEfbh+9ZutJVEEEEFSt2bLFj19iisSVqEksSTdFU37wp+pluTEyiKSaaxMRXTeyxRI29omJXRFEEQQHpReru+f4YqoCCNMG5r4trzzk7Z86cZfd3Zp55nmeEpmkoFAqFouqiq+gGKBQKhaJsUUKvUCgUVRwl9AqFQlHFUUKvUCgUVRwl9AqFQlHFUUKvUCgUVRwl9AqFQlHFUUKvUCgUVRwl9AqFQlHFMa7oBgDUrFlTc3Nzq+hmKBQKRaXC19c3UtO0Wvcr91AIvZubGydOnKjoZigUCkWlQggRVJRyynSjUCgUVRwl9AqFQlHFUUKvUCgUVRwl9AqFQlHFUUKvUCgUVRwl9AqFQlHFUUKvUCgUVZz7Cr0QYpkQIkIIcT7XsflCiEtCiLNCiPVCCNtc7/1HCBEghPAXQvQvq4YrFIURmxLL6kuruZN+p6KbolA8FBSlR/8rMOCuYzsBT03TWgKXgf8ACCGaAWOB5pnnfCeEMCq11ioU9+Fi1EVm7JrBhz4fMnXHVNSayApFEYRe07T9QPRdx3ZompaRuXsUcMncHgas0jQtVdO0QCAA6FCK7VUoCiUpPYln/3mWs5FnaePQhrORZ/GP8a/oZikUFU5p2OifA7ZlbjsDN3K9F5J5TKEoc3Zc38GdjDss67+Mhb0WohM6dgbtrOhmKRQVTomEXgjxXyADWJF1qIBiBY6dhRDThBAnhBAnbt++XZJmKB5RQhJC2B28GwD/aH++8v2KhrYN8XL0wt7cHi9HLyX0CgUlEHohxCTgceApLccQGgLUzVXMBbhZ0Pmapi3RNM1L0zSvWrXum3xN8QiSkpHCh0c/5L8H/4umaewM2knvP3sTkxIDwJzDc5i5ZybHbh1j8o7JmBqZsrDXQoSQ/Y2+9foSGBfICr8VpOpTK/JWFIoK5YGEXggxAHgbGKppWm7Xhk3AWCGEmRDCHfAAjpW8mYpHka2BW1ntv5pNVzdxOeYyqy+tJiI5gq2BWzkQcgCfMB80NCbvmExCWgI/9fuJetb1ss/v7dobndDx6bFPGbZhGIdvHiYuNa4C70hRGDcSbpCUnlTRzaiyFMW9ciVwBGgshAgRQkwGFgFWwE4hxGkhxA8AmqZdAP4ELgL/ADM0TdOXWesVVZqT4Sezt//w+4NjYbLP8MOZH3h1z6t42HkwsdlEAB6r8xjuNu55zq9VrRYrB69kfvf5hCaG8vzO55l9YHb53YCiSOgNesZvGc9nxz6r6KZUWcTD4H7m5eWlqXz0irsZtG4QHrYexKTGcCriFCY6E77o8QV/+v+JQzUHZrWbha2ZLTuCdtDOsR01LWoWWtf6K+uZe2Qu+sx+R2/X3nzZ80t0QsUMVjQBMQGM2DQCK1Mr9o3eh4mRSUU3qdIghPDVNM3rfuUeioVHFIq7uRp7lRsJNxjXZBzert58duwzBtUfhLerN96u3nnK9ne7f1zeCI8R9K3Xl7lH5nI7+Ta7gnfxb9C/9HPrV1a3oCgiZyPPApCQloBPmA9dnbtWcIuqHkroHwGSM5IxFsaYGJkQnhTO92e+p6tzV/rU61PRTSuQH8/8yKLTizASRjxe/3HszO34xvubEtdraWrJ/B7z0Rv0PL7+cTYEbKBpjaaEJobSyalTKbRcURwMmoGvT37NsvPLMDMyw0Rnwqarm2hk1wiHag4V3bwqhRq3VmFuJNxgzOYxdPpfJ6bulFGiH/l8xNora5m1dxZzDs/hfOT5+1dUAvQGPRmGjHzHfW75sOz8sjzHIpMjeXrr0yw6vQiAl9q8hJ25Xam3yUhnRFvHthwIPcCgdYOYumOqSpdQAfwb9C/Lzi+joW1DXmj1At1curEtcBu9/+rNqkurKrp5VQol9FWYX87/wtXYq/R3649vuC+r/FdxPOx4ti177ZW1vPjvi2WWJiAlI4Uxm8cwa8+sPMfTDel8cPgDvvL9imO3cpyy/rj4B2dunwFgWf9lTGkxpUzaBdDYrnGe/cD4wGLXserSKuYdmcetxFul1awqQXhSOHpDfh+M/SH7eXn3yyw7v4w0fRrrAtbhUM2BNUPWMKXFFMY3GY+HnQfWptb5hD4uNY6t17ZyPvI8z/zzTJ6J+sC4QL45+Q0GzVDm91ZZUaabKopvuC+br21mgNsA5j42l+jkaD72+RiAdzu9S1J6Etfjr/P7xd+JSom650RmUTh66yi3Em8RlhTGM57PYGFswS/nf8E/xh//GH+2XtvKQPeBCCHYHbyb0MRQjHXGTN4xmc5Onfmw64f86f8nnZw6MaHZBLwc7zu/VCKa2DfJs38t9hrNazQv8vnJGcl8dvwzMgwZVDOpxuter5d2EyslYUlh9F3Tl2Y1mvGfDv9hz409DHIfRHRKNK/sfgUbMxv23tjL4lOLSTOk8XzL5zHSyXRYrR1as27oOn4+9zNfn/ya6JRo7M3tSclIYdrOaVyMuph9ne3Xt9PGoQ2z9s5iV/AuAIY2GIqbjVuR23or8Ranb59moPvAUv0MHkaU0FchLsdc5o19bzCj9QzmHJ6DQzUHnm8lf0jf9/meCdsmcCHqAh2dOlLToiYHQw/y+8XfCY4PLpHQn7t9jqk7pmbvn486Tw+XHiy/uJyWtVoSkxLD2wfeZmvgVhb2Wsih0ENYm1qzrP8ytgZuZdn5Zby06yUS0hN4te2reNb0LI2P4540tpc9+lGNRrHhygYC42SPPk2fRlJ6Uj6TkaZp2YFYAAdDD2abpC5FXyrz9lYWjtw8AsjkchO2TQDIDlhzs3Zj5eCVHLx5EJ9bPrR3bF/gZHjWQ37fjX1Ep0Tz64VfiU2N5dnmz1K7em0WnV7EtbhrBMYHZos8yAl8x+qOmBuZ5/lfZREQE8DekL2M9BjJyYiTfHf6Oy7HXMapuhN+0X70cOlBHcs6ZfGxVDjKvbKKkKZPY9yWcVyOuQyAkTBi3dB11Letn11Gb9ATmRyJY3VHAILjgxm8fjDzusxjeMPhxbpeTEoMwzcO5w2vN/if3//wj/HnvU7vERAbwPKLy7PLze4wmycbPcnyi8v5+uTX2ce963rztffXGDQD3n96E5USRYfaHVjaf2lJPoZicSvxFg7VHBixaQQ1zGvgWdOTXy/8SnWT6uwfsx9TI1MArsRcYcauGbzd4W16u/bGoBmYuG0ioYmhdKnThf0h+9k3Zl+B4lKVSclIIfxOeHaQ2p30O0zZMYWbiTdZOXglZyLP8PPZn/GP8cfZ0pk1Q9ZgaWp533rT9emM3jyagNiA7GMWxhb4jPdBCMH7h97n76t/M7bJWP7w+wMjYYRe02NhbEG6Pp12ju0Y6D6QS9GXsDGz4YVWLzB1x1ROhEuNEQi0AjKzVDepzpYRW6hhUeO+bYxNieVSzCVa1mxJNZNqRf3ISh3lXlmJSdens/zicrxdvfMFARWEf7Q/c4/M5XLMZZ7zfA7fcF9GNx6dR+RBTkJmiTyAk6UTAO8deo/mNZrjYedR5DZuvraZ6JRo3jn4DgAfd/2YIQ2GEJYUli30da3q0q9eP0yNTHnO8zlWXVpF+J1wALo4dwFAJ3R0rtOZzdc280zzZ4p8/dIg6/571e3FsvPLsoUgKT2Jdn+0w7uut+zxB2zgVtItZu6ZmW2GOHP7DPO6zCM5I5mNVzcy6Z9JaJrG0IZDGekx8pHwz194ciHrrqxj7+i9bAncwo9nfiT8TjhDGwzFydIJJ0snguOD8Y/xp1mNZkUSeQATIxN+H/g7nVd2BuR8ymter2U/SBvbN2Z9wHr+8PsDgFMTTtFyeUuSM5Jp59iOwPhA5hyZk11fLYtanAg/QVP7pgxpMISA2AC863oTGBeInbkdyy8up4FNA7Zd30bPP3syp/McRjYaWWj7NE1j2s5p+EX7MbTBUD7q+tEDfoLlh+rRP4R86fslv5z/BWOdMdue2EZYUhiN7RtjYWxRYPnZB2az5doWZrSewQutXijWtVr81gKAni49+bb3t0U6R9M0Rv49kqC4INIMafSs25Nven2T/UNcem4p9W3q08u1V57zbt+5TVJ6Eqn6VDzsPLLF8FL0JXZc38HLbV6ukF6x3qDnD78/aGjbEFtzW+Yfn09MSgyJaYlEJEcAMKzBMC5EXeBa3DUAxjYey9sd3uZKzBVGbx6NQTPgbuNOYFwgn3f/vFzsvun6dLYEbmGA2wDMjc3L/Hq5SdOn0evPXsSnxdO3Xl92Bu2kWY1mTG81nQ5OHbK/q0HxQTz595Ms67+s2Ca5k+En2R28m9e9Xs/zvQhLCuPz459jamRKfZv6TGs5jWEbhnEt7hqHxh3C0sSSHdd3YG1qzcy9M3Gs5sj1+Ov82PdHHqvzWKHXa/t7W9IN6QD4jPfJ01OPSo4iMjmS7de3Y29uz2fHZRSvQLD68dU0rdG0WPdWWhS1R6+E/iHjp7M/8c2pb2hfuz0nwuRnoqExutFo3uv8Xp6yd9LvoBM6+q/tT+c6nfm026fFvt6GgA28d0jW29ahLd/3+f6eQ1H/aH+e3/k8USlRvNfpPRrZNaJlrZZVsgebrk9nZ9BOhBD0rdeXDEMGqfpUqplUw0SXE70ZmRxJhiGDWha16Pi/joxpPIY3279Z5u3bFbyLmXtm0siuESMajqCrc9diTUY+KMsvLOfM7TPsCNqRfaynS0++8f6mwsxX4UnhJKUn5RvFTtsxjSO35LzB/jH77+muezzsOKv9V7P9+naebvo0b7V/K/t+Xvj3BQ6FHsoua2FswYZhGxizeQyN7BrxabdPefHfF3m307u0dmhdBndYMMp0UwlJSk9i6fml9Kzbk4U9F/L2gbfZfn07AAdCD+SZENQ0jS4ru2BjZkN0SjRd6nR5oGtm2ebfO/QeJyNOsunqJsY2GVto+b8u/0VUShQAA90HYmVq9UDXrQyYGJkwqP6g7H1jnXGBPefcE9kNbBtkz5OUNQEx0oZ9OeYynx3/DL9ovwLNCOFJ4dib2xeYWsCgGdgYsJELURcwEkbUs67HCI8RhY4eUzJSmH9iPiBt2lmJyN5s/2aFzlHkNknmpotzF47cOoKlieV9YzLa126Pl6MXdmZ2/OH3Bx2dOtKzbk/0Bn22yE9vNR1rM2u8HL2oY1mHGa1n8JHPR3j/JaO1fzr3E4t7Ly7dmysFlNA/RGy/vp2k9CSmtJiCkc6IDzp/wGTPyZyLPMe8o/M4FXGKto5tAdgWuI0MLSNbdDvX6fzA1+1Xrx83Em6wLXAbq/1XFyr0P575kdX+q6lpUZP53edXaZF/UDxsPdh4dSMz98zknY7v5InwTEpPwjfcl+4u3dE0Db9oP9ZdWYeduR0zWs8o9rWuxl7F2dKZlYNXZrsfno44zR9+f9DbtTcD3QeSqk9lxMYRDK4/mP92+m++OuYcnsP6gPUY66QUZBgy+O7Md3ze/XMEgjYObfI83E5G5PivD3AbgIedB8kZybhauxa7/eXBU02fwsbMpsheZUII3urwFoduHuL9Q+/zfuf3cbaUayd90u0THq//eJ7yoxuPZn/Ifg6EHgDg7O2zZBgysj/Ph4WHqzWPOOcjz2Ntak3Lmi0BsDK1ommNpjhbObP03FJm7JpB85rNuZV4i+CE4Ozzmto3LZF7ZDWTarzc5mWsTa354sQX/Hr+V8Y1HYeZkVl2mbjUuOyI1SENhuBVu2z93CsrWaaTXcG70Gt6vvXOmfeYumMq5yLPsWbIGoLig3h9X47v/fMtny+2OATEBdDAtgF25nb0cOnBj2d/ZNI/kzBoBq7GXmWg+0BOhp8kIT2BDQEbmN56ep5e7c3Em6wPWM/TTZ9mVrtZGDQDZ2+f5eXdL/P8zucB2YN9sfWL2eccvXkUE50J3/f5npa1Whba839YMNYZF9ujzERnwtzH5jLn8Bxe2/sa7RzbARQY26ETOhb1XsTtO7c5G3mW1/a+xr6QffR27Q3A6YjTpOhTsDKxool9k+yYgfKm6hlWKzGXYy7jYeeRbwhsbWrN4t6LqWZSDd9wX4ITgnm8/uP8PvB3gFJLAtXDpQcAC3wX8PtFWfeNhBtM2T6Fp7Y+lV1usPvgUrleVWR4w+HMbDuTUY1GcfTm0ewFTy5EXeBc5DkAdgfvZn/IfkA+pIHsiOCicjD0IFdirtDAtoGsJ3My0KAZmNBsAgGxAYQnhXPk1hGMhBEp+hT+uvxXnjp8bvkAMuGbqZEp5sbmdHDqwPwe83mq6VPYm9uz58aePOdciLpAE/smdHTq+NCLfEloX7s9a4eupZ1jO06En2BI/SHUrl67wLI6ocOxuiO96vbCqboTK/xWZL83YdsEpu6YytgtY7MncCsCJfQPCZqmERAbQCO7RgW+39CuIeuGrmPnqJ1sfWIrH3f9mNYOrVnSdwnPeT5XKm1ws3GjXz0ZwHL05lEAPj/2OT5hPgTFBwHSGyEr2EiRn5oWNZncYjLedb1J0adwPOw4AAdCDiAQuFm7sfvGbo7cPEJ/t/4s7b8UI2HE4ZuHC60zMjkye1tv0OMf7c9/DvwHVytXRnpIN0AvRy88a3iyrP8yhjUYBsDhm4fZe2MvbR3b0sW5Cyv8VmTb9dMNcqLZ3tweD9u8brXdXbozu8NsJjSbgF+0HxciLwDyO+of41/od7SqYW5szqLei3jT603e7vD2fcsb64wZ32Q8x8OOcyn6Ur78SSsvrcwzoVueKKF/SAhJDCEpPemevuxZtsa6VnWze/2d63Qusn9yUVjQcwHPej6Lb7gvS84uYW/IXma2nQlIU1JFBodUJtrXbo+ViRVrLq8BZA+8eY3mjPQYyaXoS0QkR9ClThesTK1obN+YMxEF9+gvRF6g15+9sutZeWklo/4eRWxqLK+1ey07WMnGzIaVj6+kfe32NLJrRC2LWvx07icC4wIZ5D6Il9u8jKZpzNwr/5dLzi7hQOgBRjUaVegk6kD3gdia2fLMP88QlhRG+J1w4lLjHqkHfXWT6kxsPhEbM5silc+ayF51aRX/XP8nz3uN7Rrz5v43KySBnhL6ckTTNHZc31Hg+qU/nvkRY2FMh9odKqBleRnecDgmRiZ8e+pb2ji0YVLzSewbs4+NwzZWdNMqDebG5jzV7Cl2Be9i8enFnLl9hr5uffPEFvSt1xeAljVbci7yXIGJwLJGBHOPzGX036PzDP8fcy7YJ1wIQec6nbmRcANjnTH93PrRvEZzJreYTFB8EJHJkewJ3oOXoxcvt3m50HtwtnTmf4P/R4Yhg2Xnl2V7E92dEE6Rg42ZDV2du7L2ylo+OPwBAHM6z+Hv4X/zXuf3SEhLYH3A+nJvlxL6csQ33JfX973O3MNzAYhPi2fdlXVcibnCxqsbmdBsQp41TyuK+jb1+WXAL7zX6T1+6PMDxjpj7M3tqVVNLeJeHJ5u+jSWJpb8cOYHWtZsmf3/bWTXiGENhmWPxFo5tOJOxp08If9ZnIs8Ry2LWlQzroZftB8Az3o+y6rBq+5pI8+at5neajrWptbyOrVaATKHjH+Mf5E8tepa1cXb1Ztdwbs4FXEKI2H0yJhuHpTck7Y/9PmBkY1G4mbjRqtarWhVqxUr/FYU+FAvS5TXTTniH+MPwN/X/ubtDm/z5r43s4M5jIUxE5pNqMjm5aF5jebFyuaoyI+NmQ1TW05l+YXlfNb9s+wgq7VD1+ZJDe3l6IVAsPvG7jxmkZPhJ9kRtIMBbgN4qc1LJKYlkmZIo2XNlvf13ujv1h9nS2da1GyRfayJfROMdcZ8ceILgCIvttLGoQ07gnawIWADrWq1KlVTYVUkyyPN3tw+O9VHFhObTeT1fa+zL2RfvpXSyhLVoy8Htlzbwsu7X8Yvyi/7WJbIZ83Uj20yVvWYqyDPeT7Hv0/+i4uVS57jue3itavXpkPtDvx99W/S9GmANPO9fUBOAPas25N61vVoXrM5bRzaFMlFTyd0tKzVMs91zI3N6eHSg8T0RNxt3PM8BO5FVuqCyOTIe6YQUEga2jbkmebPsKTvknzvebt6Y29uz7bAbeXaJtWjL2NCEkKYe2QuyRnJAHR26kyKPoUjt45gY2bDgh4L1GLIVZyi+MePazKOmXtn8uK/L/JDnx+4GneVsKQw5nSew+D6pefO+l6n98gwZDClxZQiR7Lmzt0/pMGQUmtLVUUndIWuT2CsM8bb1Zs1l9eg1/Qs6LGgXCKKldCXIZqm8f7h9/PkgfGs6ckIjxF8f/p7OtfprEReAUDver35sMuHvHvoXabtnEbt6rURCHrU7VGq16lhUYNFvRcV6xxzY3M+6/YZDWwbVNl87eXJsAbDWHN5DTuDdnIh6kK5rL+ghL4MuRxzmeNhx5ndYTYrL60kKD6ISc0nYWNmw8fdPq7o5ikeMoY1HIZe0zPv6DwywjPoV69fiVf+Ki1y5/xRlIzWDq05OPYgPVf3ZNPVTTSv0bzMe/VK6MuQrPwX/er1o79bfzRNK7I/ruLR5AmPJ3CzdmPZ+WXM7jC7opujKCNszGzoXa83Ky+txMzIrMyXolRCX0Zomsbu4N00tW+qJlkVxaKtY9vs5HWKqssnXT+hjUObbLfXskR53RSByOTI7BQA9yM4PpjEtES2Bm7lXOQ5nvB4ooxbp1AoKiMmRiY81fQpZaOvKNIN6WQYMuQalIZ0Jm2bRHBCMK+0eYWpLacWel50SjSD10sPCSNhRIuaLRjVaFR5NVuhUCgK5L5CL4RYBjwORGia5pl5zB5YDbgB14HRmqbFCDmj8DUwCLgDPKNp2smC6n2YmXt4LtsCtzG99XRS9akEJwRjqjPluzPf0bdeXxyqObDk7BJMjUwZ32Q8H/t8THBCMBeiLmTXMcB9AO90fOehy0utUCgePe67lKAQojuQCCzPJfSfA9Gapn0qhJgN2Gma9rYQYhDwMlLoOwJfa5rW8X6NeJiWEoxLjaPrqrxpf3u49GDOY3Pou6YvTzZ6kuD4YA7dzJuFrmXNltia29LQtiGz2s0qzyYrFIpHlFJbSlDTtP1CCLe7Dg8DemZu/wbsBd7OPL5ck0+Po0IIWyGEk6Zpt4re9PIl9/J8afq07GjEVY+vIjYllsT0RHq79sZYZ0wf1z6svLQSgPc7v8+N+BtsvraZ51s+z5gmYyrsHhQKheJePKhdwTFLvDVNuyWEyFovzRm4katcSOaxh1LoE9MSGbJhCBObTeRZz2c5HnacQ6GHeKn1SwXmeZnVbhZGOiNcrVx5stGTALzm9Vp5N1uhUCiKRWkbkAvy+i/QNiSEmAZMA3B1Ldv1JjMMGRy+eZiuzl3zRKn63PIhMjmSL32/pLtL9+w0rIWtmVrHsg6fdvu0TNuqUCgUpc2DuleGCyGcADJfIzKPhwB1c5VzAW4WVIGmaUs0TfPSNM2rVq2y9TNf4beCGbtmsPfG3jzHs+zsOqHj/cPvsyt4F47VHFVQk0KhqFI8qNBvAiZlbk8CNuY6PlFIOgFxZW2fvxp7la3Xtmbvx6TEEJ4Ujt6gx6AZiE6J5qdzPwFkr9MJsO7KOtZeWUvfen0Z6D6Qs7fPcub2mTyLJysUCkVVoCjulSuRE681hRAhwAfAp8CfQojJQDDwZGbxrUiPmwCke+WzZdDmbDRNY/hGucJ7L9deWBhbMHzjcKJTorEwtsDVyjU7B3xju8bsDt5NR6eO9Krbi7WX19LAtgHvd3ofAwYa2jbk65Nf4123/HJEKxQKRXlQFK+bcYW81buAshowo6SNKipZuWQA/KP9iUyOJDolGoDkjORskR/fZDyD6w/mjX1v8Nb+tzAzMiNVn8pkz8nYmtsCMKXFFJ5s9CTVTaqXV/MVCoWiXKjU0Tzu1u4McBvAP9f/Yc7hOVyNu5rn/YnNJjKj9YzsBa3/GfkPx8OOM2XHFECunJMbZZtXKBRVkUot9HWt6zK/x3xOhp/katxVRnqMZEqLKUTcicCpuhNOlk55yuuEjo5OHfmq51csPLmQNo5tCqlZoVAoqg73jYwtD0oaGbsxYCMpGSmMbjy6XFZrUSgUioeBUouMrQwMazisopugUCgUDy0qTbFCoVBUcZTQKxQKRRVHCb1CoVBUcZTQKxQPwtk/4a9n4SFwZlAo7keVmIxVKMqVxNuwLnOlsesHYOTPUL9nRbZIobgnqkevUBSH8IvwRcOc/aTbsOnlwnv2mgbJseXTNoWiEJTQKxTF4eh3OduDF0CrcRAbDKdXFFz+n//AZ/Ug6mrB7ysU5YASeoUiN8eXwobpBffQw87BmZXgNRnejYD2U2DoInDvDptfy99zjw4En+/l9o73inZ9gwFOrYA70SW7j7u5uhsWNIFvveS24pFCCb1CkZstr8ne+SIvuO2f9709H4O5DXi/C8Zm8piRMfT6L+hT8wuozw+gM4Emj0PgPjDo733t+JvSDLRxOuz7rHTuZ9tsWD4cdv0fJIRJU9O/c0un7ocZfUZFt+ChQgm94tEl9CT82F321AGSY3LeiwqA82tz9tPuSCH3HAXV7PPW49IeLOzg8j8QcUkKavBROPUHNB8BTYdCWiJE+BXeFoMB/jcGTv8h90OKkBLk6p572//vRMPxn+HaHrh5Crz/C91eg1un5X5V5eBX8JEjJEVWdEseGpTQKx5NNA22vA63zsDaKVIUv3tMvvfMFqjRECIuyv30FPhzImSkQKN++evSGYHnSDi7Gr7rCF81h2X9oXotKa4umalIdr4HH9WBQ99A4AFICM+pf+N0CDsLbSeC13MQ6guxN2QZTYPURNnGrJ5q+EX4fTgsbAE/ecP1g5AYkbddFzeCIR2eWgv9P4aOL0CzYYCAJT3l3EJ5EeEHQUdy9g162PQKXNpa+DkPypnVYMiA1RMgJa7066+EKPdKxaNHaiKEX4CbJ8GlA4Qcg40vQcJNqNdVHnNomtMDv7IDAnaCfX1w61ZwnX3nQVwoaHpZHmTv2c5NCrW1c45pZ2cue/0Lh+TxMyuh03R5d3mSAAAgAElEQVTo95F8wJxYBgs9ZZk6bSApCuIyhXn0cri2N/Ne4uVD4dfB0LAPPJ1rFHJ5O9jWg4a9waOPPGZmBcO/gw0vwq2zYFuK6zWHnpS96SaDodVd6y5veBGir8EbV6TZK/QknPxN/tk3AMfmYO8OvT+QD86SoMuUtZBjsPN96DJT1v0Io4ReUfac/RNcO5WuqDwI+gzZcz67GsxtwdQSxq2Cb9uA/xZwagXPbpFlHZrBpS2yt339IJhUg+k+YGxacN2m1WD8Krk9J3NdA4/M3r8Qspe+e17+837oIl/du8OAT+R2bU8wqQ7pSdLsE3YuR+RBjkRSE+QDIOy87LWDHJ1k32u69PFvOVpePzdNBsvXqCv3/8zux8nf5fVbjZOjnrgb8rpNh8rPBKTHUZap6PI/MuZgV+Y8QdaDNjrTK8mhWf6HRHHQNIgNgvZT5Wfk+6v8m7YP6rR+8HorOUroFWVLXKgMLjKpDq+chLQk2cu9dUYKVXmllU6MgO3/hXN/QqvxUjwbD4TqNWDwl9KW3TnX4miOnqAZ4NJmKVyunQoX+bt58ldpY7eqnXOs04vS9NJqLBiZyBHDvFqgT5O97sFf5a3j6bUQdBC6vSHNHKnxciI16BBsniXLDP5SPpwiL8uJYr9Ncp7Bwg6CDst5gQYFLI1pbgOWjhBZCkK/6SX5Gn1Nirz3u7D7Q1jaD0YtlaOg0/8DBFSvCTvehRoe8jN16wZPr4P5DWRbdcbgv7VkQp8cIz8rOzeo30M+rNMSZM9+0qaS328lRQm9omwJ3Cdf05NgQWP5YxY6KXAdnodBn5dPOzZMl+aX7m9KMcpNi1HyLzeNB0KdtrB2stxv90zRr9V8hPzLjWl1GPBx3mO29WSveuIGKYi5qddZ/oH07KlmL/9qNZbCHx0Izm3l+w5NocM0KfRBR6DJIDiyGKrVKFjoQYptSYU+a44B4PC30OZp+fna1oMtb8DiDmBhD8nR0Ggg9HhTzifEBssH6RM/yYdn+ymQFCG/Fxc2QEZqjldTFgaDFPHqNe7dptgg+WpXD2q3gHdCZFvOrpa9/Ud0vQo1GVvVSY6Vw/uK4tpeaSZ57BX5467VVIo8wPGfICW+9K8Ze0P2aLPQp8v9tpPyi3xhGJnA2P9Bw77QcowUo9Jm3CoY/n1+kb8fHabmf2jUzRTVs6shJgiubJcPUtNC1kCu1UjOU+QO5Dr0jfTkKSohx3K2rZxgwKdyu+VoOSLp+CLUaCAFvPMMcG4HLTN76/0/BuvMFeD6fADDFssJ7dR42PtJ3uukJcHyoTC/Pvz96r3bFOorX+3cct1rY1lvQljR762KoXr0VZ0/J0Dgfph+VLoLVneQvaji9FAfFIMeAnaBR1/oNw+YJ49d3g5osGq8HMJn2YxLgxvHYWnmxOPUPbLXG3ZOjijq9yheXdZO8PSa0mvb3dRsKP9KA2Mz+UA6/rPsyUP+UUpuOk2Xvec/noAGveW5WZPEz+0A144Fn2cwwIEFUjxDfWWcwEvHpdCbmOeUq9te/oF80BqZyO0hC6H5cDkncTf1e0qx91kC3u+DTifndzZMl/MAdm7SZXXAZ3mvlUVqIuz9VLq7OjTPOV6zkXyN9M95uDxiqB59ZSMlDn4fAf7b7l82KUqKPMB3nWD/fNj2puwVZaSWbTtB2qnvREozSBY6I2lacM8U3VXjM3/I9wkmKirb3gRjC7l9aYsUJt9f5H7dTqVzjYeVx14GC1s4sRTs3GVvujBqekCvdyDmuiy/LJfb6LJ+srevz5Duj1n/G4Me/n4F9nyY6Zp6WoqovXvBwptFlsgDmFjI70NhJpT6veRDOSZQmlrWvyBFvsnj0rPJkCFdWAuK7j27Ss5j9PtQPiSy7zVT6G9fLryNBVFa38mHACX0lY3A/fJL/udECPj33mUvbZavTYeCmY20G9fJXBA9+GjZtTEpCr5sJicNdcbS7e9uzCzljxdkJOqJZSW/rsEge+8dn5cTfQe+gP+zg5PLpRnBxrnk13iYsXGGSX/LyeaimKhajQObutB0iNy3dZW2dJCmrhPLYNU4+PcDWNILPq0Hp36XZZIipFnOoWnp3kPtTJfSsLMQfl66q3Z8AUb8kDMnEXNddnaW9pP/c5APBZ8l4NQa6t41GrGqLSegb52RcxcrxxV+/YxU+XBZ3BG+blVlgq6U6aayoGkyYCf4KBiZyYCe9S/CG5cL7x1dPyhNNaOX55RJTYTP3KR3g5mltJuWNpf+hvhQ+df5JfkjK4gxmVGgvw2BPR/JYKG7J+GKQ9Jt2eOzcZG+45pBeqnU75XjuljVcWgKI74vWlkzS5h5Tn43UuKliaWaPXzZFM6vk540ICdaq9eCFiOly2jjQTC/oRytlbbQ12oKwggOLswxQXWdJf3/TS1zyrm0hxs+cHGD3L+6S5pmhv+Q//cgBHj0lz1+Q2bAWUyQnLC9m6yYhix2fgDDF8vt1AT52zM2lekqdMZg6VA6913GKKF/2NE0OPq9DO45twbQpO9x6/Gweab8MRY0RNe0TBe2rnm/+GaW0nTi84P8e/EIODYr3TZfWA9m1tDjrXtPYma1q9N02XP80EEOux97+cGuGx8qX63rSBuwe3e4cUz6Zj+i3hb3JetzMbfOOVa3g4yqNbOWLpzh56HnO2BZK6eMayc5Ysw96VkamJjLUWfoCTA2l/b4LDdVIeD5A9J91MIOPnGGNc/mnFu9Fng+UXC9LUdL19osru6SsQ25ue0vzZpCB48vlCMA31+h139kwNuSnvK++8yVD0OH5jD9MJUBJfQPO1d2wvb/yG0jUznUbvGk7NGAtIMXJPTh5yHhVsGTXj3fkT9kkA+Q0hT6wANySN/r3aILtnuuaNMdxTgvNwG7pL0fpNBnUbdD8et61OkxG2q3lCa/Wo0KLjN4gRypefQr+P2SMHGjNM/Yu+f3GnJqmbPd8x3pTtlhGqCBqVXhI8IGvWHQF3K0t/VN6dvfdlLeKNzt70BiOHSaAe0mSTdQ31/l5HOHaTL/UVwIkPlwjLggR8ipCXkneQ16OYdhVRu6vlb0+IsyRAl9RZCeLLMJ1mp8f++Xw9/I10YDYeBnOcNNg15+sUOOQasx+c87u1oOLZsOzf+eQxN45yZ80UiGwbcp0d3kZddcsHGFx14q+jlmVmBZGxLDpCtmcf2dE8Kk90gWVnUKL6u4P47N7v/wt6otUymUBWaWObb6e9Hz7aLXqdNJt1SQLscbXoCfesmUC9cPyPTUqfEyBXWW66qtqzzH54ecOaSMFDlPkcUnzrID9mZAjony8vYcBwALOzlnVMGUaDJWCDFLCHFBCHFeCLFSCGEuhHAXQvgIIa4IIVYLISr+cfYwcXAhfFRbLmCx4z0ZBFLY6kRpd6RNvstMGV6f26aoM5IBNQG78p8ff1OGpnv0KzzAxLS69GvPHTZfUm4cg5Dj0OUV6V1RHF44AN1eh5RYaYJJjpWTf2dW3f/cC+vz7levVXA5hQJk5O2Qr+V3/48nZH6e1Mx4jsaD8pbt9V/Zm7d0BGcvcGwhj+c2SerTZIcJ5Gh23TTpburSHg59LeM60lPK/LbuxQMLvRDCGXgF8NI0zRMwAsYCnwFfaZrmAcQAk0ujoZWC1IR7LxgRe0NOOmaXj5eLQXzfpeDzQk9I17J6XQqur/FA6YY21xY2zpDiDrBrnvzy9S0gt0pu6rSRX/bUhHuXKyoXN8reTat7eDUUhqUDNBogt2+ekq6RKbHS9fJeXN4B/8yWk3hZ6JQzmeIeCCFH0v0/kVG8LxyCKbvl6Neta96y5tYwaD685gfPbYe2E+TxVuNk0NfELBPoqUz305ny+zdskTSBxYfK5HT/flCut3g3Jf1FGAMWQghjoBpwC/AGsqJMfgOGl/AalYO4EPjERWYRLIg9n8h/uD5N2jcHfSGjLjNSpK1v86ycnnmoL1zbJwOchK7w4JVGufzTT/0h844kx8LlbTId7f2CcTxHQkayHFmUpMeREi//gg7LXo+Z5f3PKYjaLeUEXNARuLBOHtP0sPujvOVSE2Qe+bN/weqnMu/lCRmNOWLJg9+H4tGi83R49Yw0E7m0gzG/Fx4PoDOSqSi8JksXVhcvGe1bv6ecN7t1WnoAxQTK0ULDPtLzKytw62KuPDtZgYSFjeTLgAe20WuaFiqE+AIIBpKBHYAvEKtpWtbyLiFAFXdezuRopktbxEXpe1u9Zs57+nTYlxke7uiZM+xr4A177WRv9sgiOLRQfkGWDchJE9DumcLdE62d4NWzMpnUrv+T7mb/zJbmoKJMkrl4yfb4/iJtrj1nP9Cts2KUvDbIXCcPiom5HO5e3Cjt9e2nygfo/s/h9iU5hHbvJn8kt87AuszPccJ6cOsuf4gKRXEorjeWkXF+B4d6j8lO2fm18vfUZEhO3c9tkyt6nVgKizrA5O1w7GcZdPbU2pz00WXMA/8yhBB2wDDAHYgF/gIGFlC0wMeWEGIaMA3A1bWC09eWBkGHpNlCnyaFKv2O9OM2ZEgRBinsA3Ml8arRAEb+JJ/wscHw7xw4vEhOSA75Wva2m91nQGRXT/49tx2W9JA+wDoT2Zu4H0LI3smi9tK2+CBCnxSZI/I6k5KnM3DvLifHQCbJMq0uRyh+m2QbR/4Mf03KKd/vo8ITdykU5cHAz+VvPea63M7d4TC3kb/FE0uln//ZP+V3GeQo4GEXeqAPEKhp2m0AIcQ64DHAVghhnNmrdwFuFnSypmlLgCUAXl5e5TeGKQtSE+VkTJdX5NN6y2sFlxu9XHqY3I3OSKa2/aa1FPzeH0hf9+IghLQZ/joYBn5a+CjgbqrZQ5un5KTRzVM5kbO5SU+WngenV0oPgrYTc8Lar+yUryOXymhUK8fitftu2j0rBV2fLlPw5iY1HtZmek60Gg+Dvyg8aZdCUV5Y2MoOSGG4dZOTvFd2wLa3co4XZbnIUqIkNvpgoJMQopoQQgC9gYvAHiArm9IkYGPJmlgJ8N8mbcnuPXLCyUGGboPslc+6WLDIZ6EzkhkezWygzYQHa4dbV5h9o/iZFrPyzizpmX9BbIADX8rRRnyofIjNbwiRAfK9c3+BtQs0f6LkIg8yKOfZrTBlp3x4CSFzlnd8Ub6fGifnOAYvUCKvqByYW8O4lXLi1tRK2u2bDpUj4Yy0cmmC0EowISCEmAuMATKAU8AUpE1+FWCfeexpTdPumUHLy8tLO3Gi/J5upYo+Axa3lysQPX8AAvfKPBw935F+vkGHZc+0KKKkaTLXxr0SRJUFmiajbtdNlQFGo5ZJM1RWePdP3tIs03aiXKEJ5AOt3bPwx0gZAdvrnbJv44mlMq1u33nKHq+onCRFStfj4CPyt+PSXppMC8oHVQSEEL6apnndr1yJfi2apn0A3O03dA14dMIRr2yXaQhGL5duVQ28YdJmcM1cNKLeY0WvS4jyF/ms67Z8UtoZ/35FLm4tdNI9rPlwuHlarn/q+QTc9pOmKt9fwO9vGZzUdtL9r1EabSyLnPAKRXmS5aTRoLf8u7pbdgYfUOiLSol69KVFpezRa5p0pfrrWZlM69WzVaOXGX1NZvg78Ys0RxlbyEnhZ7bk+BinJcnMfhZ28Pz+4gdHKRQKmXnTkFGiFAnl0qOvtCRGyJBm187FX4wii/Nrc5aZG7m0aog8yNWOBi+AHm/LPB97P5FzDLmDtkyry8UmTKqVLNukQvEoo9OBrnwSB1QRdSomJ3+TAmZmA7ODiu9LGx2Ys4r9xE0P/rB4mLF0kLb3lmNk5r67PyMLu4ppl0KhKDaPZqz4jcy1LlPjZIbH4nAnGn7oJt0ge71bNUU+N3b1qs5oRaF4RKm6Qm/QQ4hv/jBjg0EKvX1mat/wi8Wr98hiSEuQCbg6zyidtioUCkUZUrWEPuIS7P5QirnPj/CzN3zXOXPBjkyiAmSyLK/MBQvCzxe9fn2GXJau8SDo/T6YVivd9isUCkUZULWEfuN0uQB26Imc1WRu++XkdIeccH2PftL2HHau6PVf3S3Xymz9VOm1WaFQKMqYym98DfaROdAfe0nmbwf4ZaB0W+o7D+5ESXNLRqo051zbK3PJ1PDIWXcyi7sXvDi1Qq6L2bAvRF0B39/Awr5sVtVRKBSKMqJyC31GGizLFN3W4+WyYiBFvtFAGWBzZbvM6R5xUZp1Av6VIf86nXQZvLhBiv+WN+RC2U/8KOu4fTknCnTn+znX7DDtoVgaTKFQKIpK5Rb6s7lWH/rcXb4O+UZGmVnXkb1zp9by+JnVUuQhZ2mvrKjV5cPka9QVuV7pwa/kcnsg92ODZd5p399k6lyFQqGoRFRuoW85Vobqb8z0fmnYR4bs587caOcGtVuAT2a++Nf8chaPdmgmQ/gTbsrgn/Q7Mp97VppcI1O54nvWAsJ3rxqvUCgUlYDKPRlrbCpzllvWllnhnlqTPz2vEFKsjczg8a9yRB6k+eaJJXKN0WGL5bHrB6TAg7Tp514lXqFQKCohlbtHn8WMoyCMCo9wbdgbZgcXnDDMvZtcwV2fnrNwSNYkrlPLsm23QqFQlANVQ+iLEo5/v6yQRiYyQdfZ1dBqjArxVygUVYaqIfSlhUNT6DOnoluhUCgUpUrlttErFAqF4r4ooVcoFIoqjhJ6hUKhqOIooVcoFIoqjhJ6hUKhqOIooVcoFIoqjhJ6hUKhqOIooVcoFIoqjhJ6hUKhqOIooVcoFIoqjhJ6hUKhqOIooVcoFIoqTomEXghhK4RYI4S4JITwE0J0FkLYCyF2CiGuZL6qNJAKhUJRgZS0R/818I+maU2AVoAfMBvYpWmaB7Arc1+hUCgUFcQDC70QwhroDiwF0DQtTdO0WGAY8Ftmsd+A4SVtpEKhUCgenJL06OsDt4FfhBCnhBA/CyGqA46apt0CyHx1KIV2KhQKheIBKYnQGwNtge81TWsDJFEMM40QYpoQ4oQQ4sTt27dL0AyFQqFQ3IuSCH0IEKJpmk/m/hqk8IcLIZwAMl8jCjpZ07QlmqZ5aZrmVatWrRI0Q6FQKBT34oGFXtO0MOCGEKJx5qHewEVgEzAp89gkYGOJWqhQKBSKElHSNWNfBlYIIUyBa8CzyIfHn0KIyUAw8GQJr6FQKBSKElAiodc07TTgVcBbvUtSr0KhUChKDxUZq1AoFFUcJfQKhUJRxVFCr1AoFFUcJfQKhUJRxVFCr1AoFFUcJfQKhUJRxVFCr1AoFFUcJfQKhUJRxVFCr1AoFFUcJfQKhUJRxVFCr1AoFFUcJfQKhUJRxVFCr1AoFFUcJfQKhUJRxVFCr1AoFFUcJfQKhaLSc/BKJKuPB1d0Mx5aSrrClEKhUFQIaRkGHv/2ABM61eO9jRcAqGNrQTcPtQb13agevUKhqJT86xfO5fDEbJEH+O1wUAW26OFFCb1CoXhoCIxMYoVPEBHxKfcsl5SawQ/7ruY55ulszekbsWiaVpZNrJQo041CoXgoSEnXM/nX41yLTOKXQ9fZ9mo3TIwK7ot+ufMy50Pj+P6ptliaGxOVmEZ8Sjrvb7xAaGwyLnbVyrn1DzeqR69QKB4Kftp/jWuRSTzZzoWAiERWHM1vhtE0jd8OX2fpwUAGejoxsIUT3TxqMbyNM63r2gJw+kZseTf9oUcJvUKhqHASUtJZsv8afZs5Mv/JVnSqb8/CXVfwD0vILrPXP4IX/zjJB5ukTX5UO5c8dTSpbY2ZsY7TwUro70YJvUKhqHD8biWQkJrB+A6uALzRrzF30vQMXXSQXX7hxN1J55lfjvPPhTAAfni6LT0b5/WuMTXW4elswynVo8+HEnqFQlHhXI9KAqB+reoAeLnZs3NWd1IzDEz+7QSt/m9HdtlxHeoywNMJIUS+elrXteV8aBzpekP5NLySoIReoVBUOEFRSRjrBM62FtnH6tWozoInW6HL1PMmta24NG8AHw5vUWg9revakpph4HJ4QqFlHkWU141C8RCxYIc/4fEpzB7YFPvqphXdnHLhVHAMvx8JwsXOAuO7vGxGtnOhv2dtFu0OYELnepibGN2zria1rQC4HJ5A8zo2Zdbmyobq0SsUDwlJqRl8uzuAP0+E5PMRr4wYDBqjfzzCxtOh9yw34rvDxKdkYCjE/d3SzJjZA5vk6e0XhlvN6pgYCfzDEh+kyVWWEgu9EMJICHFKCLE5c99dCOEjhLgihFgthHg0uiUKRRHRNI3Vx4MJi8sbFHQyOAYAM2Mdm07fRF+Y8pUB6XoDAxbu59Ntl0qtzmuRSRwLjObVVacLLRMcdSd7u18zxxJf08RIR4Nalsp0cxel0aN/FfDLtf8Z8JWmaR5ADDC5FK6hUDwUpGUY+O/6cwRGJj1wHcHRd3h77Tk6fbIrj9AdC4xGJ2DeME/C4lPwuRZVGk0uEhtP3+RSWALLDgUSnhmVeictg8V7AkhKzQDg6u1EFu8JYMJSH5q8t421viH3rPNsSI73S0JKer730zIMfLxVSsfml7vy9sAmpXIvjRyt8rhl3osMvYGX/neS9afufS/3I/ZOGj3m72HnxfAS1VNWlEjohRAuwGDg58x9AXgDazKL/AYML8k1FIqHCd+gGFb4BPPKylMPdP6V8AS2Z7oIAgz+5gC34pIJj09hhU8wHdztGdq6DpZmxmy4j8mjtEhJ17Pw38u416yO3qDx475rAPx1IoT52/35cIsfp4Jj6PfVfuZv9ycyMY2UdANf77pCeHwKcXfS+WK7PxEJ8gFxLiSOYYsPseNCjuhtPnuLDL2BDzdf5MPNF9l5MZwPNp3nnwthvN63EZ7ONoVGwRaXZnWsCY1NJvZO2j3LHbkaheec7Ww+e4tZq88QGpv8wNc8cT2GoKg7TF1+ggy9gZCYO/gGRT806RhKOhm7EHgLsMrcrwHEapqWkbkfAjiX8BoKxUNBSrqew1cjAfAPS8Bg0NDp8rv4Fca2c7d4ccXJ7P3NL3dl5PeHmbD0GLdik0k3aMwd6om5iREDPGtLAerbCCeb+9umS8JfJ24QEpPMiikdWX8qlBU+QXi52fF/my8CsMb3BpvP3sTMWMfaFx+jqZM1vx4KZM7fF+n48S5MjATpeo0j16JY8GQrZq4+xdXbSZwBOtevwZ20DBbtDsDZ1oKfDwYCZL/aVTPhJe+GpXo/LZ3lJOyxwGiuRSbR3s2exNQMHK3N8HCQvX0rc2M+2nqRlHQDdWzMiUtOp8unu2lV15bX+zaie6PiZcA8FxqXvb3h9E3e+OsMACumdKRLw5qld3MPyAMLvRDicSBC0zRfIUTPrMMFFC3wkSaEmAZMA3B1dX3QZigUZY7eoLHjQhg/7L/GmcxgnDS9gQs342nhUnTPjk1nbubZ93S24asxrVn472V6NnZgVl8PGjrIPtMr3h5sOXuLz//x56sxrUvvZgrgX78I6tesTpeGNbEyN2aNbwjTMx9II9o4ExCRyIWbccwZ2pymTtYAjO3giomxjoj4VC7cjCMl3cDBgEh6frE3T91vDmhM3J10nv31OK/9eRojnWBYqzr4BEZj0DRm9W1UoD98SWieKfRz/76Yr5fuZGPOrVxzIx8O92RcB1f2XY5g4b9XSEhOZ8pvJ/h9cgcaZ3rw2Fa7/zTj+dA4alqaEZmYmi3yALsvRVRuoQe6AEOFEIMAc8Aa2cO3FUIYZ/bqXYCbBZ2sadoSYAmAl5fXwzG+USgKYNOZUGatzvnxtq5ry+kbsRy9FlVkoc/QGzgUEMmINs6sPxWKo7UZAINaODGohVO+8q41qvF4Sye2nQ9j4+lQ+jWrjYXpvV0Li4veoJGSrscnMIqx7WVnyzOXS+Kodi68O7gpNhYmpKQb8lzf3MSIpzrWy1Pf9cgkvtsbQJPa1oztUJebsck0dLBC0zTauNpyKjiWZk7WLBjdigyDhpEQxRoRFRUbCxPq16zOtcx5lPEdXenuUZOkVD2bztzMFnq7aiaMaueCkU7g3cQR7yaOxN1JZ9jig7y55izB0XdwtrXg0GxvAOLupGNuqsPMOO//ITw+hWPXo+nbzJF1J6W5bVr3+vjdiudfv3BuJ6RiZW7ME21daFPXtkzu+X48sFFM07T/aJrmommaGzAW2K1p2lPAHmBUZrFJwMYSt1KhKGci4lOyvV5+PyKTa41q58LOWd357dkO1K9VnSPFmCxdejCQ+JQM+jVzZNur3Vg/vct9z3msYQ0SUzN4ddVppv1+It+EZmRiKq+tPk1MUsG2aE3TSM3QF/je9gthdPl0N80/2E5KuoEemekEdDpB/+bS++XjES2wrWaKEKJIDxm3mtX5fFQrnuvqTjVT4+zRiRCC759qx8i2LrzSuyFCCEyMdGUqeG8NkBO7b/RrxMcjWjDA04mR7Vz47bkOHPtvb8yMdTzzmHs+v3ybaiZ8OrIlwdFykjw0Npm0DAPXI5No9X87mPv3xXzX+mSrHxl6jRd7NGB6zwaYGet42bshj7d0IijqDpvO3GSFTzAjvz/MuJ+OVojdviwCpt4GVgkhPgROAUvL4BoKRZnhGxTDyO8PM29Yc9xrWnIyOJYPhjTj2S7u2WU61a/B36dvkqE35AvyuZuk1AwW7LhMv2aO9G9eu8gC17l+zpD/YEAkLebs4I1+jXjJ2wOAlT7BrDsViqONOW8PyOuxkq43MHPVaY5ci2Lx+La0q2eHqbGODL2BmatPs/nsLRys5KiimqkRPXKtyvT12DbcSdNjalx6YTa1bcxZMLpVqdV3PwZ41sb33T7YFWB2cbAyZ/9bvahpaVbguZ3q1+DdwU35cIv0CFq0+wrbzssJ9B0Xwvh4RE5krqZpHAyIYoBnbTwcrXizf2Nm9mmEqbGO0V51iYhPJd2gMbWbOz8fCOTrXVfY63+bXk0cAIhLTsfGwqS0bz8fpSL0mqbtBfZmbl8DOpRGvQpFeaNpGu9vPA/AL4evYzBo1LExZ1yHvPNInevX4H8+wVy4GU+rzFfe0C8AACAASURBVPS4hXHsejRpegMTOtcrVi+2to05X49tjZebPTdjk5mw1Ie/fEOY0ashtxNS8c30uz8WKL07ctu652/3Z8u5WwCM++koM3o14M3+TTgYEMnms7d4sWcDZvbxYOG/Vxhw18PH3MTovhGolYEahQg5gKO1+T3PndKtPoNbOtH5k918szsAAHMTHel6LfuzTknX8+m2S0QmpuLlZgfI0Yupscjefrm3R3adL3k35K8TN5i35SIhscmsOXGDmDvpPNHWmZl9GpX0du+JSoGgUOTi9I1YLtyMB+Da7STMjHWsmNIxn/B1rG8PwNFrUbR0sUHTKFDE0/UGfjl0HVNjHe3d7IvdnmGtpdOas60F7w5uxrsbznMsMJppv/sSlyxNOb5BMcxcfZoPhjTHvropEQkp/HTgGuM61GVkWxdG/XCExXuucvhqFBHxqdhYmDCzjwdmxkb5RgKKHJxsLHi+R33SMgy416xOWoaBD7f4MW+zHweu3OZKRE70bVH+tyZGOr4c05pxPx3lvQ2yM2FhYkSPYnr4PAgqBYJCkYt1J0MxN9HxxZPSzDBvuCdeBfyIHazM8XCwZOfFcNaeDKXxe9v453xYvmjWb3ddYf/l2wxu4VTiXnK/Zo4Y6wSTfzuRLfKLx7dlZh/pofPtbpm/fcm+a2gajGzrgpebfbaYnwqOJTQ2mfEdXfNNKCoK5j8Dm/LBkOZM7OxGQwdLAJYdCuROmpz7EAJe6e1Bw1qWRaqvU/0a2e6fXvXsWPviY7RxtSubxudC9egVilz4BEbRqX4NRrZ1poObPa41Cl+SbnxHV+b+fZErEYmk6zVe+MMXGwsT3uzfmKc6urLpzE1+OhBI67q2LHiy5PZpB2tzRrVzYdXxG7zWtxGvZJsFnNjjf5s1viH8cuh6dvmspF6DWtRm8Z4APn6iBU1rW2ULlqJ4ZLlbtqtnx5oXOrP1XBjt3e1wsLq3Gaiges6ExDGirTPN6liXRVPzoYReocgkLjmdy+GJDGlZByHEPUUeYGx7V77edYXYO+nZQUNxyem8u+E8MUlpLNh5GYDhreuUmofJ2wOa4Olsw5j2dfMcb1CreraPfxZZnjL1alTn3Jx+pe6vnkV6ejohISGkpNx7Qe+qwMan3DAxEly6dIn6JhAVEktxE1VMbGrCMDcXbKsl4efnd/8TAHNzc1xcXDAxebCJWyX0CkUmWbll2tUr2lDawtSIju72bL8QzpRu9fl+b07GyQU7L2NlbkzPxg4MbV16weF21U15ulO9fMcbZJoOGjla4ulsQzOnvD3FshJ5gJCQEKysrHBzcyvT6zyqaJpGVFQUISEhuLu73/+EAlBCr1AAt+KSef2vM9S2Nqe16729aHLz1oAmXLudxNj2dendxAFnOws6f7IbgN8nd8xesLqsqfv/7Z15XJVV/sff57LKqqCAuLEoKEjghksoqGXaZuYSTpmaZmY240xTWb+m5vfLGq0xl5Zpm0ktR02ttHJf0jQXXHBhUUQRJVlURFERhPP747lcQAERLjwXOO/Xy5eX89z7PJ97Lnzv9/mecz7HTbv7aOpgywejancl7a3k5eWpIF+LCCFwd3cnKyur2udQgV6hAFbsO8uVvJt8P+VeHGyr/mfh38KJjX+JBLQSCcCiZ8I5kpZTZ0EeIKilVj++dcPsukIF+dqlpv2rZt0oGh3ZV/OJSblIQWERcb/nEP35LmZvPE5PXzezDFT2C2jBC/3Na9R1J9p7OHPwb/czqnubOz+5gZKenk50dDT+/v4EBQXx4IMPcvz4cb1lVYmDBw8ihGD9+vW1cn6V0SsaPDnXCzialkMff3eEELyx6ig/Hz5HgKcTJzJzaepgy6Oh3jzd+/bad32iWSPZerA8pJQMGzaMsWPHsnTpUgBiY2PJyMggIKB2FyOZgyVLlhAREcGSJUt44IEHzH5+ldErGixSSj7YcIzQ/93Ak1/u4f9+iufqjZtsTtB80o9n5BLs7crWl6KYP7pLufPlFfWDrVu3YmNjw+TJk01tYWFhRERE8PLLL9O5c2dCQkJYtmwZAL/88guRkZGMGjWKgIAApk+fzuLFiwkPDyckJITkZG1gfdy4cUyePJm+ffsSEBDATz/9BEBKSgp9+/ala9eudO3ald9++8103qioKEaMGEHHjh158sknkVKyefNmhg0bZtK2ceNGHn/8cUD7PV2xYgULFixgw4YNtTJ7SWX0igbL4bM5puXrAIt3p5qcGJc824us3Bv08nPD1aH2vUYaC//7YxzxxpXF5iLI24W3Hgmu9DlHjx6lW7dut7V/9913xMbGcujQIc6fP0+PHj3o168fAIcOHSIhIQE3Nzf8/PyYOHEie/fuZd68eXz44YfMnTsX0IL6tm3bSE5Opn///pw4cQIPDw82btyIvb09SUlJjB49mn379gFaGSYuLg5vb2/uvfdedu7cyYABA3jhhRfIysqiRYsWfPXVV4wfPx6AnTt34uvri7+/P1FRUaxZs8b0JWAuVEavaFBkX82n69sbGfrRDoZ+vBOAL57uzsrne5NfWMTcTUlEBbagp68bj4Z63/ViF0X9YseOHYwePRorKys8PT2JjIwkJiYGgB49etCyZUvs7Ozw9/dn0KBBAISEhJCSkmI6x6hRozAYDHTo0AE/Pz8SExMpKCjg2WefJSQkhJEjRxIfX+JqGR4eTuvWrTEYDISFhZGSkoIQgjFjxvDNN99w6dIldu3axZAhQwCtbBMdHQ1AdHQ0S5YsMXs/qIxeUe8pKpL8ePh3HgxpyZG0HC5ezeei0bp3YEcP7g/yREpJLz83PF3seWdYiC6e4I2BO2XetUVwcDArVqy4rb0yS2A7uxLTM4PBYPrZYDBw8+ZN07FbZ7wIIZgzZw6enp4cOnSIoqIi7O1LEobS57WysjKda/z48TzyyCPY29szcuRIrK2tKSwsZOXKlaxevZp33nnHNGf+ypUrODs7Yy5URq+wWNJz8kwBuzJ+PPw7f1oay793nOJ4hrYp9IG/3c/Bv93PvNFdAO2Pc+mk3syL7oKTncpvGhoDBgzgxo0bfPHFF6a2mJgYmjVrxrJlyygsLCQrK4vt27cTHn535rrLly+nqKiI5ORkTp48SWBgIDk5ObRs2RKDwcDXX39NYWH5vv+l8fb2xtvbmxkzZjBu3DgANm3aRGhoKGfOnCElJYXTp08zfPhwfvjhh7vSeCfUb7zCIvnx0O/8celBpNScG4O9XfjrA4EEeN6e5aSc1zaJOJ5xBSshaO5kh1sjnoHSGBFC8P333zNt2jRmzpyJvb09Pj4+zJ07l9zcXEJDQxFC8N577+Hl5UViYmKVzx0YGEhkZCQZGRl8+umn2NvbM2XKFIYPH87y5cvp378/jo6OVTrXk08+SVZWFkFBQYBWtik9SAswfPhw/vWvfzFmzJiqd8AdEJawS3n37t1l8UCGovGyYv9Z2ro5EO7rRu9/bMbD2Y6H7/HmSFoOWxMzCWvblK8n9Lztdc9/s5+1R9MJaeWKwSBwsrNi8cReOryDxklCQgKdOnXSW0atMG7cOB5++GFGjBhx5ydXgalTp9KlSxcmTJhw168tr5+FEPullN3v9FqV0Sssgq2JmaZNlT8f041zOXlMiPBlYl8/AOZsPM78LUmkXrhWxmzsSl6ByczrSFoOAFOi/OtYvUJxZ7p164ajoyOzZ8+u82urGr1Cd5bFpDJhYYxpa7cvfj0JQOdWJRtVj+rRhiY2Vry49CA3C4sAbaBt/Fcx/J6TxyuDA03PHVPPFz4pLIcFCxaYLZvfv38/27dvLzNYW1eojF6hGwdSs/nhYBrf7jtDb393PhzdlaEf7yAmRdsir7RXd6umTXh3WAjTlsUyf8sJIto3563VcSScu8zfHg5iQoQvYW2acvFqPi1dm+j1lhQKi0QF+kaMlJIbN4tqvPPRjZuFfL3rNFGBLWjvUbUpYUfTchj9+W6sDIKI9s159/EQ3BxtCfR04czF6wR6OuNiX3Yh0yOh3ryzJoH5m5OYvzkJgOZOdowO1/xd+vg3v+06CoVCBfpGi5SSKYsPcOjMJb6Z2JO3f4rn7cc607pZ5ZttlMf0lUf4/mAaM35OoLmTHc9E+DAlqmJTLyklr313hGYOtvz0xwhTyQZKNst4rMvtHu5WBsG8J8I4kJrN6QvXiA5vQ0cvl7tym1QoGiPqL6SBknL+Kk0dbGjqUP40w/mbT7D2aDoAA2ZvA+CjLSeYOfyeKl/j0rV8mthasc54HoDzuTd4b90x/Fs4YWMl2JyQiW9zRwYFedGyqT0GIVgfl86RtBz+OTK0TJAHmBjhS+blPP7Qs2251+zTvjl92qvMXaG4G1SgtzC2Hssk83IeT/QoP9BVhX/9ksysdYl4u9qz8JlwMq/coK2bg2lziqNpOczZdJyhYd7sS8km7dJ1QNsY+9K1Asb28SG4lQuXrhZUuJ1e9tV8+szcwkP3tOR6QSEvPxDIvE1JfPxkV2auTWD2hmMcz8g1PX/GzwlYGwQuTWy4eDWfDh5ODCsnaw9t05Rlz/Wu9ntXNF7S09OZNm0aMTEx2NnZmebRW7p7pY+PD87OzlhZWVFYWMiMGTMYOnSoWa+hAr2F8fGWExz9PYehYa2qVTsvKCziy19P0s7dgYtX87l/znYArA2Cnn5uONpasyFec2/8+yPB5N64ybX8Qlo42/E3o31v9rV8nOys2XvqIh88EUbfDs1v03LwTDbXCwpZsf8sBgFP9WzH85H+GAyC5KxcZq7VFqT08GlmGlx1tLMm3MeNg2eyeePhIKyUDYHCTNR3m+KtW7fSvHlzjh07xqBBg8we6NX0SguisEgS9/tl8gqK2HnifLXO8cuxLC5czefNh4N4b/g9ONtZ89qQjgwJacnOExdMQb63nzvNHG1p4+ZAoJczbo62fPyHrrw4oD17Tl1kc2ImV27c5NlF+5iz6fbNGw6mlmxE3dPXHVcHG5N/zKOh3jSxsWJypD/LJ/dh80uRtHVz4OsJ4Xw6pht7Xr+PyIAW1Xp/CkV51Geb4tJcvnyZZs2qtmfx3aAyegvi1PlcrhdonhmbEjIZ2MkTKDFmqmg7MSklUoLBIPjuwFmaO9nSL6AFNlYGHgj2MgXg0T3asHhvKhMjfE3b3t3K4M5efLjlBK2aNmFYl1Z8tPUEa46cY/rgjmWufyA12/Q4MrBs0PZu2oSDb95vugvwb+HE9lf6V6dLFPWNtdMh/Yh5z+kVAkNmVvqU+mxTDNC/f3+klJw8eZJvv/3WXD1nQgV6C6J4ZWd7Dyc2J2RQVNSZ9XHp/GlpLO8M68xI4zZxF6/m08zBBinhPztPsXBXCnkFRYzu0Ya1R9N55l5fbKy0m7XSLo1VGcgM9nZl3bS++DZ3xM7aitbNmjD9uyMM/GAbXzzdnRk/xWNrbWDniQsM69KKZg62jOl1+wKlmk7ZVCjMQUU2xS4uLiabYuA2m+KtW7eazlGeTbGvry9Tp04lNjYWKyurMlsWFtsUAyab4oiICJNN8fjx49m1axeLFi0yvaa4dJOcnMzAgQOJiorCyanm21oWU+1AL4RoAywCvIAi4HMp5TwhhBuwDPABUoBRUsrsis6jKGF38kWc7a2Z1NePV1YeZntSFi+vOEx+YREb4jMY2b0NB1OzGfHpLjp6OdPS1Z5NCZkEeDpx5uJ15m85QedWLjwT4VMjHR29ShYqPdalFWuOprP9eBYDjbNzinmqV1u6tVO7MilKcYfMu7aorzbFt+Lv74+npyfx8fF37bJZGTWp0d8EXpJSdgJ6AS8IIYKA6cBmKWUHYLPxZ8UdkFKy7XgWfTs0Z1CwJ8721oz7KobcGzcJ8HQiLi2HE5m5TF95hGYONlzLL+S35Au8Orgj66f1Y/7oLrz9WGd+nBpRrbnwFWFvY8WcUaGmnz8b043efu64O9rSpY35a4kKRXWorzbFt5KZmcmpU6do1868Nh7VzuillOeAc8bHV4QQCUArYCgQZXzaQuAX4NUaqWwExJ+7TPrlPCIDWtDUwZbPnurGrPXHGNGtNfk3i3j7p3ge/WgHNlYG5jwRSlSAB0VSYm0s0Twa6l1r2txLzXUf2NGD/oEeFBQWqc07FBZDfbUpLqZ///5YWVlRUFDAzJkz8fT0vKv3fyfMYlMshPABtgOdgVQpZdNSx7KllJWmfjWxKb50Lb/CRUH1BSklb66KY2lMKntev+82L/XE9MsMnvsroDk7Dgr2qnONcb/nkH+ziC5tVRavKIuyKa469damWAjhBKwEpkkpL1c0M6Sc100CJgG0bVu9xUE/Hz7HqysPs+L53mXqyvWFxPTLvLsmkb2nLpBXUMSQzl7lbpjR0cuF5ZN7czA1m/uDzPtNX1WCvV3v/CSFQlEhetoU1yjQCyFs0IL8Yinld8bmDCFESynlOSFESyCzvNdKKT8HPgcto6/O9cN93Whia8WUxQdYPTWiXm0Rdz2/kAkL9pF26TpWBsHo8DZM6lexj3oPHzd6+KiBT4WiLlmwYIHZzrV//36znetuqfZgrNBS938DCVLKD0odWg2MNT4eC6yqvrzKaeFsx/zoLqScv8qbq46yYOcp8gpKBkX+uyeVKYv169yKmL85iU5vriPt0nU+/kNXNv65H/94/B58m1etzqdQKBR3Q01S4HuBMcARIUSsse11YCbwrRBiApAKjKyZxMrp7e/O6PC2LN6TyncH0jh5/ir9jQOGr3+vLdzIvppPszvsIZqYfhkpoVPL2i0BZV7O44ONJXNuB3f2UlYACoWiVqnJrJsdQEURamB1z1sdnurVjsV7UgFYtOs0i3adplXTks0nDqflVLrkPq+g0DTY+dv0AXg3rfnGFZeu5ZNzvaDMCtTMK3kM++Q3rA0CvxaOPN61tQryCoWi1mkQXjedWrrwz5GhZdqKHRkBDp+5xMr9Zxk8d3uZ0k4xi3almB5Hvf8LMSkXa6TnaFoOA2dv474PtrH2yDlT+2fbTpJ+OY8lk3qx4c+RTI5Ue5sqFIrap0EEeoAR3VrT3Ekrz7zxUCf2vD6Q3a8NJNDTmcV7Upm/JYnE9Cusj0sv87rYM5eYte4Y93XyYM0f+2JvY+CDDcd5a9VRVuw/e9c6fk3K4oX/HsDW2oB/Cyf+sTYRKSUXcm+weM9phoZ5q0FVhaIWSE9PJzo6Gn9/f4KCgnjwwQfLWBNYKrm5uTz33HP4+/sTHBxMv3792LNnj1mv0WACPcCzff0AiA5vi6eLPV6u9sweFYoQcPrCNQDe+TmB35LPU1BYRPbVfOZvTsK1iQ1znggjyNuFqQPas+vkBRbuOs1flx/iRGZuZZcsQ0FhEc8u2sfpC9eYF92FSf38SL14je1J5/n815PcuFlU6c5LCoWiehTbFEdFRZGcnEx8fDzvvvsuGRkZeku7IxMnTsTNzY2kpCTi4uJYsGAB589Xz722IhpUoJ/Uz4/jM4aUmWbZuZUrq6dG8MZDnfjvsz2xszEw9b8HiXxvK+HvbmJLYibj+vjgbNyfdGKEH+8OC2FSPz/cHG0Z/cVu0nPyqnT94xlXyCsoYl50GOG+bgzu7EWrpk0Y+5+9fLbtJMO6tKK9h/mMihQKhUZ9tSlOTk5mz549zJgxA4NBC8d+fn489NBDZu2f+jPxvAoIIbC1vn1ws4WzHRON2f7rQzrx/OIDpmMGAdE92pT8bBCmbexGdGvNIx/u4O+r4/h0TIkFakFhEZ9vP0m3ds3o5efO3lMXSblwlRvG+n9oa21hsIOtNd+/0Id3fk7gbPZ1/v5osPnftEJhQczaO4vEi1W3F6gKHd068mp45S4q9dWmOC4ujrCwMKysatfttUEF+qowuLMXnz7VlaYOtrz07SE6tXTGw8W+3OcGeDrz4oD2/HPDcfafzqZbO235/6Jdp3l//TEAPn2qK5O/KfnicLG3pl2p7fc8nO2ZF92lFt+RQqGoCEu3KV6zZk2d9EOjC/RCCAZ31j7c71/oc0ff9PH3+vLVzhRmrU1k6aReAHyy9QTd2zUj9eI1/rr8MACtmjYh7dJ1RnVvU+EGIQpFQ+dOmXdtUV9tioODg03nKC7d1AYNqkZ/t3g42+NirM1XhKOdNa8MDmRvykUiZm1hXVw6F67m84eebXlxYAdyb9zEyc6azS9F8usr/Xnj4aBKz6dQKMxPfbUp9vf3p3v37rz11lumL6WkpCRWrTKvoUCjy+irw6jubUjL1jb2mGKs7/f2d8fd0Y7/7DhFoKcz9jZWtHEznw+8QqGoOvXZpvjLL7/kpZdeon379jg4OODu7s77779/131QGWaxKa4pNbEprkue/2Y/a4+mE+jpzPo/awM6OdcKsLYSONYjQzWFwpwom+KqU29tihsTf7k/gJauTRh/r4+pzdWh8tKPQqFQQD22KW5sdPB05s1HVA1eoWgsNHqbYoVCoVDUD1SgVygUNcYSxvoaMjXtXxXoFQpFjbC3t+fChQsq2NcSUkouXLhQZq7+3aJq9AqFoka0bt2as2fPkpWVpbeUBou9vb1ptW11UIFeoVDUCBsbG3x9ffWWoagEVbpRKBSKBo4K9AqFQtHAUYFeoVAoGjgWYYEghMgCTlfz5c0B827HYj6UtuphqdosVRcobdXBUnVB1bW1k1K2uNOTLCLQ1wQhxL6qeD3ogdJWPSxVm6XqAqWtOliqLjC/NlW6USgUigaOCvQKhULRwGkIgf5zvQVUgtJWPSxVm6XqAqWtOliqLjCztnpfo1coFApF5TSEjF6hUCgUlaACvUKhUDRw6p3XjRCiIzAUaAVI4HdgtZQyQVdhCoVCYaHUqxq9EOJVYDSwFDhrbG4NRANLpZQz9dKmaJgIITwplVRIKTN0lgSAEEIA4ZRNePZKC/mDFkK4AVJKma23ltJY6udZTG31W30L9MeBYCllwS3ttkCclLKDPspACOEKvAY8BhSvVMsEVgEzpZSX9NJWjKX+klti0BJChAGfAq5AmrG5NXAJmCKlPKCjtkHAJ0DSLdraG7Vt0ElXW+A9YCBaPwnABdgCTJdSpuihy6jNkj/P2u83KWW9+Qckoi35vbW9HXBMZ23rgVcBr1JtXsa2jTprCwN2AwnAJuO/RGNbV521DQJOAGuBL43/1hnbBumoKxboWU57L+CQzn2WAPiU0+4LJOioaxfwBGBVqs0K7Y57t859ZsmfZ633W33L6AcDH6FlMmeMzW3RMpmpUsp1Omo7JqUMvNtjdYEQIhZ4Tkq555b2XsBnUspQfZSBECIBGCJvyVqEEL7AGillJ510JckK7hCFECeklO3rWlOp6ycBnaSUN29ptwXi9dJ2hz6r8FhdYOmfZ233W70ajJVSrhNCBFBymy/QavUxUspCXcXBaSHEK8BCaSyJGEsl4yj5UtILx1uDPICUcrcQwlEPQaWwpmS8pTRpgE0daynNWiHEz8AiSj6/NsDTaHccevIfIEYIsZSy2qKBf+umCvYLIT4BFlJW11jgoG6qNCz586z1fqtXGb0lI4RoBkxHmxHkiVZrzgBWA7OklBd11DYf8Kf8X/JTUsqpOmp7DRiFNsB+a9D6Vkr5Dx21DaFkhldxUrFaSrlGL03FCCE6Ub62eB012QITytMF/FtKeUMvbWC5n2dd9JsK9LWEEKIv2p3HEanT4NgteizylxwsM2gpFA0JFejNhBBir5Qy3Ph4IvAC8APaYOOPUk39rFeUmkU1FPAwNlvELCohxODi8SijztloScVR4M9Sp9lUQghrtMz0McrOoFqFlpkWVPLy2tZ2j5TysPGxDdokieI+myGlvKajtlrvNxXozYQQ4qCUsovxcQzwoJQyy1gD3y2lDNFRmwpad69rPdr0toVSynRjmxfamMtAKeX9eugy6jggpexqfPwlkA58ATwOREopH9NJ1xK06YELKbvOZSzgJqV8Qg9dRm2l+2w24A58hRZc3aWUT+uordb7TQV6MyGEOAREodlKrJelNg0o/SWgkzYVtO5elyXPoirdZ7FSyrBSx8r8XMe6Kuuz41LKgLrWVOr6pROxWKCHlLLAuIbjkJTyHh211Xq/1atZNxaOK7AfrcYshRBeUsp0IYSTsU1PfKSUs0o3GAP+TCHEeJ00lUf3UkFqjhBirI5aLHkWlYcQ4i8YF9YIIYQsydj09K/KFkKMBFZKKYsAhBAGYCSg9wpZVyHE42h9ZldcDpFSSiGE3tlurfebCvRmQkrpU8GhImBYHUopDxW07p4n0GZRbTP2VelZVKN01AXaHY+z8fFCtP1Fs4x3abG6qdJmSs0CPhZCFJcDmwJbjcf0ZBvwiPHxbiGEp5Qyw9hneu8bW9xvnwghstH+FlwxY7+p0k0j4Japn8U1+uKgNVPq6EcihHjrlqZPjGMbXsB7OtdOO6LVSndLKXNLtZvGFfTCqK0VsMeStAkheqJ9KSYDndBWnsZbyOyunkCRlDJGCBEEDAYSLUFbMUIId7RAP1dK+ZTZzqsCfeNGCDFeSvmV3jrKQ09tQog/os2cSkCzkPiTlHKV8ZipRq6TtheBqZamzfilPQStUrARbVB9G3Af2rjVO3roqgfaVpfTPABtXA0p5aM1voYK9I0bIUSqlLKt3jrKQ09tQogjQG8pZa4QwgdYAXwtpZxnAYPrFqnNqCsMsEMbVG8tpbwshGiCdueh54CnJWs7AMSj+TxJtIx+CcayjZRyW02voWr0jQAhxOGKDqGt4tUNC9ZmVVwSkVKmCCGigBVCiHboP7huqdpuGq1IrgkhkqWUl40arwshinTUZenaugN/Av4HeFlKGSuEuG6OAF+MCvSNA0/gAW4fwRfAb3UvpwyWqi1dCBEmpYwFMGbPD6P5zOi2JsKIpWrLF0I4GBcfdStuNK6P0DuYWqw240ybOUKI5cb/MzBzbFaBvnHwE+BUHBhKI4T4pe7llMFStT0NlHGHlJpb5NNCbgd1rgAAAFtJREFUiM/0kWTCUrX1K/ZlKZ4maMQGbfGPnliyNgCklGeBkUKIh4DL5jy3qtErFApFA0dtDq5QKBQNHBXoFQqFooGjAr1CoVA0cFSgVygUigaOCvQKhULRwPl/urXr1r590NYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "data = RandomDataProvider(tickers=[\"CompanyA\", \"CompanyB\", \"CompanyC\"],\n", + " start = datetime.datetime(2015, 1, 1),\n", + " end = datetime.datetime(2016, 1, 30),\n", + " seed = 1)\n", + "data.run()\n", + "for (cnt, s) in enumerate(data._tickers):\n", + " plt.plot(data._data[cnt], label=s)\n", + "plt.legend()\n", + "plt.xticks(rotation=90)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Access to closing-price time-series\n", "\n", - "If you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues.\n" + "While the access to real-time data usually requires a payment, it is possible \n", + "to access historical (adjusted) closing prices via Wikipedia and Quandl\n", + "free of charge.\n", + "In the code below, one needs to specify actual tickers of actual NASDAQ\n", + "issues; by running the code below, you agree to the Quandl terms and \n", + "conditions, including their liability waiver.\n", + "Notice that at least two tickers are required for the computation\n", + "of covariance and time-series matrices, but hundreds of tickers may go \n", + "beyond the fair usage limits of Quandl." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "stocks = [\"REPLACEME1\", \"REPLACEME2\"]\n", + "from qiskit.aqua.translators.data_providers.wikipedia_data_provider import StockMarket\n", + "wiki = WikipediaDataProvider(token = \"\",\n", + " tickers = stocks,\n", + " stockmarket = StockMarket.NASDAQ.value,\n", + " start = datetime.datetime(2016,1,1),\n", + " end = datetime.datetime(2016,1,30))\n", + "wiki.run()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "If you have access to NASDAQ Data on Demand you should have your own token, which you should use instead of REPLACE-ME below. \n", - "Also you should have your own means of validating NASDAQ's certificates.\n", - "If you don't you may want to run the cell below to disable the associated warnings. " + "Once the data are loaded, you can again compute the covariance matrix or its DTW variants." ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "import urllib3\n", - "urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)" + "if wiki._n <= 1: \n", + " raise Exception(\"Not enough data to plot covariance or time-series similarity. Please use at least two tickers.\")\n", + "\n", + "rho = wiki.get_similarity_matrix()\n", + "print(\"A time-series similarity measure:\")\n", + "print(rho)\n", + "plt.imshow(rho)\n", + "plt.show()\n", + "\n", + "cov = wiki.get_covariance_matrix()\n", + "print(\"A covariance matrix:\")\n", + "print(cov)\n", + "plt.imshow(cov)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you wish, you can look into the underlying time-series using:" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "'Accessing NASDAQ Data on Demand failed.'\n", - "You need to replace REPLACE-ME with a valid token.\n" - ] - } - ], + "outputs": [], "source": [ - "from qiskit.aqua.translators.data_providers.dataondemandprovider import StockMarket\n", + "print(\"The underlying evolution of stock prices:\")\n", + "for (cnt, s) in enumerate(stocks):\n", + " plt.plot(wiki._data[cnt], label=s)\n", + "plt.legend()\n", + "plt.xticks(rotation=90)\n", + "plt.show()\n", + "\n", + "for (cnt, s) in enumerate(stocks):\n", + " print(s)\n", + " print(wiki._data[cnt])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### [Optional] Setup token to access recent, fine-grained time-series\n", + "\n", + "If you would like to download professional data, you will have to set-up a token with one of the major providers. Let us now illustrate the data with NASDAQ Data on Demand, which can supply bid and ask prices in arbitrary resolution, as well as aggregates such as daily adjusted closing prices, for NASDAQ and NYSE issues.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you don't have NASDAQ Data on Demand license, you can contact NASDAQ at https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html to obtain a trial or paid license.\n", + "\n", + "If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. \n", + "To assure the security of the connection, you should also have your own means of validating NASDAQ's certificates. DataOnDemandProvider constructor has an optional argument verify, which can be None or a string or a boolean. If it is None, certifi certificates will be used (default). If verify is a string, it should be poiting to a cerfificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit.aqua.translators.data_providers.data_on_demand_provider import StockMarket\n", "try:\n", " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", - " tickers = [\"GOOG\", \"AAPL\"],\n", + " tickers = stocks,\n", " stockmarket = StockMarket.NASDAQ.value,\n", " start = datetime.datetime(2016,1,1),\n", " end = datetime.datetime(2016,1,2))\n", @@ -295,30 +355,25 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Another major vendor of stock market data is Exchange Data International (EDI), whose feeds can be used to query emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. The access again requires a valid access token to replace REPLACE-ME below.\n", + "Another major vendor of stock market data is Exchange Data International (EDI), whose API can be used to query over 100 emerging and frontier markets that are Africa, Asia, Far East, Latin America and Middle East, as well as the more established ones. See:\n", + "https://www.exchange-data.com/pricing-data/adjusted-prices.php#exchange-coverage\n", + "for an overview of the coverage.\n", "\n", - "In the following example, we look at the prices at London Stock Exchange. " + "The access again requires a valid access token to replace REPLACE-ME below. The token can be obtained on a trial or paid-for basis at:\n", + "https://www.quandl.com/\n", + "In the following example, you need to replace TICKER1 and TICKER2 with valid tickers at the London Stock Exchange. " ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "'Cannot retrieve Exchange Data data.'\n", - "You need to replace REPLACE-ME with a valid token.\n" - ] - } - ], + "outputs": [], "source": [ "from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket\n", "try:\n", " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", - " tickers = [\"AIBGl\", \"AVSTl\"],\n", + " tickers = [\"TICKER1\", \"TICKER2\"],\n", " stockmarket = StockMarket.LONDON.value,\n", " start = datetime.datetime(2019,1,1),\n", " end = datetime.datetime(2019,1,30))\n", From 0ada96806a2caf375e7dc2b175f55ae958388f87 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Mon, 29 Apr 2019 18:54:52 +0100 Subject: [PATCH 090/116] Updated portfolio diversification to the current master branch --- .../portfolio_diversification.ipynb | 88 +++++++------------ 1 file changed, 32 insertions(+), 56 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index 5b3a04b52..0ee6bf580 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -192,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -226,8 +226,7 @@ "\n", "# The data providers of stock-market data\n", "from qiskit.aqua.translators.data_providers import *\n", - "from qiskit.aqua.translators.data_providers.wikipediadataprovider import StockMarket\n", - "from qiskit.aqua.translators.ising import portfoliodiversification" + "from qiskit.aqua.translators.ising import portfolio_diversification" ] }, { @@ -239,37 +238,24 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 3, "metadata": { "scrolled": true }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cannot load real data. This may happen with over 50 accesses per day, for instnace. Using a constant rho.\n" - ] - } - ], + "outputs": [], "source": [ "# Generate a pairwise time-series similarity matrix\n", - "stocks = [\"GOOG\", \"AAPL\"]\n", + "stocks = [\"TICKER1\", \"TICKER2\"]\n", "n = len(stocks)\n", "rho = np.ones((n,n))\n", "rho[0,1] = 0.8\n", "rho[1,0] = 0.8\n", "\n", - "try:\n", - " wiki = WikipediaDataProvider(token = \"\",\n", - " tickers = stocks,\n", - " stockmarket = StockMarket.NASDAQ.value,\n", + "data = RandomDataProvider(tickers = stocks,\n", " start = datetime.datetime(2016,1,1),\n", " end = datetime.datetime(2016,1,30))\n", - " wiki.run()\n", - " rho = wiki.get_similarity_matrix()\n", - "except Exception as e:\n", - " print(\"Cannot load real data. This may happen with over 50 accesses per day, for instnace. Using a constant rho.\")\n", + "data.run()\n", + "rho = data.get_similarity_matrix()\n", "\n", "# Actually, we consider the additive inverse to invert the direction of optimisation. \n", "rho = -1 * rho" @@ -284,11 +270,11 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "q = 1 # q less or equal than wiki._n" + "q = 1 # q less or equal than n" ] }, { @@ -302,7 +288,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -389,7 +375,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -414,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -459,7 +445,7 @@ "## Quantum Computing with IBM Q\n", "\n", "For the quantum solution, we use Qiskit. We first define a class QuantumOptimizer that encodes the quantum approach to solve the problem and then we instantiate it and solve it. We define the following methods inside the class:\n", - "- `construct_hamiltonian` : constructs the Ising Hamiltonian in terms of the $Z$ basis using the Ising translator provided in Qiskit Aqua;\n", + "\n", "- `exact_solution` : to make sure that the Ising Hamiltonian is correctly encoded in the $Z$ basis, we can compute its eigendecomposition classicaly, i.e., considering a symmetric matrix of dimension $2^N \\times 2^N$. For the problem at hand $n=3$, that is $N = 12$ seems the limit for many laptops; \n", "- `vqe_solution` : solves the problem $(M)$ via the variational quantum eigensolver (VQE);\n", "- `qaoa_solution` : solves the problem $(M)$ via a Quantum Approximate Optimization Algorithm (QAOA)." @@ -467,7 +453,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -479,12 +465,9 @@ " self.n = n\n", " self.q = q\n", "\n", - " def construct_hamiltonian(self):\n", - " return portfoliodiversification.get_portfoliodiversification_qubitops(self.rho, self.n, self.q)\n", - "\n", " # Obtains the least eigenvalue of the Hamiltonian classically\n", " def exact_solution(self):\n", - " qubitOp = self.construct_hamiltonian()\n", + " qubitOp = portfolio_diversification.get_portfoliodiversification_qubitops(self.rho, self.n, self.q)\n", " algo_input = EnergyInput(qubitOp)\n", " algorithm_cfg = {\n", " 'name': 'ExactEigensolver',\n", @@ -497,7 +480,7 @@ " return self.decode_result(result)\n", "\n", " def vqe_solution(self):\n", - " qubitOp = self.construct_hamiltonian()\n", + " qubitOp = portfolio_diversification.get_portfoliodiversification_qubitops(self.rho, self.n, self.q)\n", " backend = BasicAer.get_backend('statevector_simulator')\n", " seed = 50\n", " cobyla = COBYLA()\n", @@ -505,25 +488,25 @@ " ry = RY(qubitOp.num_qubits, depth=5, entanglement='full')\n", " vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", " vqe.random_seed = seed\n", - " quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + " quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_transpiler=seed)\n", " result = vqe.run(quantum_instance)\n", " return self.decode_result(result)\n", " \n", " def qaoa_solution(self):\n", - " qubitOp = self.construct_hamiltonian()\n", + " qubitOp = portfolio_diversification.get_portfoliodiversification_qubitops(self.rho, self.n, self.q)\n", " backend = BasicAer.get_backend('statevector_simulator')\n", " seed = 50\n", " cobyla = COBYLA()\n", " cobyla.set_options(maxiter=250)\n", " qaoa = QAOA(qubitOp, cobyla, 3, 'matrix')\n", " qaoa.random_seed = seed\n", - " quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + " quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_transpiler=seed)\n", " result = qaoa.run(quantum_instance)\n", " return self.decode_result(result)\n", "\n", " def decode_result(self, result, offset = 0):\n", - " quantum_solution = portfoliodiversification.get_portfoliodiversification_solution(self.rho, self.n, self.q, result)\n", - " ground_level = portfoliodiversification.get_portfoliodiversification_value(self.rho, self.n, self.q, quantum_solution)\n", + " quantum_solution = portfolio_diversification.get_portfoliodiversification_solution(self.rho, self.n, self.q, result)\n", + " ground_level = portfolio_diversification.get_portfoliodiversification_value(self.rho, self.n, self.q, quantum_solution)\n", " return quantum_solution, ground_level\n" ] }, @@ -540,7 +523,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -561,7 +544,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -592,7 +575,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -625,15 +608,15 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[0 1 0 1 0 1]\n", - "VQE produces the same solution as the exact eigensolver.\n" + "[1 0 1 0 1 0]\n", + "VQE does not produce the same solution as the exact eigensolver, but that is to be expected.\n" ] } ], @@ -659,12 +642,12 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4lGXWx/HvmRRKQkdCFVSwgCAIIi6CREABIROqVEEFbFhecJVVdFnbirpgQ1ZFFFQMLSShiYiAsooUBRWQuigdKQFDSzvvHzO6MQYSmEmeycz5XNdc0+557t8heuaZe2aeEVXFGGNMaHE5HcAYY0zRs+ZvjDEhyJq/McaEIGv+xhgTgqz5G2NMCLLmb4wxIciavyl0IjJaRD4oxO2vF5E2Pm6jUDMaE2is+Ru/EJG+IrJaRNJEZK+ILBCR64tiblVtoKpLi2IufxCROiKiIhJeBHNFishMEdnhnbNNAbLNF5EjIrJPRF4vipym6FnzNz4TkeHAy8BzQAxwIfAG4HYyl/ndcqA/sK8AY98ADgDVgMbADcC9hRfNOMWav/GJiJQDngLuU9VEVT2uqhmqOkdV/3qGx8zw7lUeFZHPRaRBjvs6icgGEflVRHaLyMPe2yuLyFwRSRWRwyLyhYi4vPftEJF23sthIvKYiGzzbmONiNTy3veKiOwUkWPe21udQ51uEVnrfew2Eengvb26iKR4M20VkSE5HtPc+2romIjsF5Gx3rs+956nel8pXVfQHOdKVdNV9WVVXQ5kFeAhFwHTVfWUqu4DPgYa5PMYUwxZ8ze+ug4oCcw+h8csAOoBVYBvgA9z3PcOcJeqlgGuBD7z3j4C2AVcgOfVxWNAXscmGQ70AToBZYE7gBPe+1bh2ZutCEwFZohIyfzCikhzYArwV6A80BrY4b37I2+u6kAP4DkRaeu97xXgFVUtC1wCTPfe3tp7Xl5Vo1X1qzzm7Ot9ojvT6cL8cp+nV4DeIlJaRGoAHfE8AZggY83f+KoScFBVMwv6AFWdpKq/quppYDRwlfcVBEAGUF9EyqrqEVX9Jsft1YDa3lcWX2jeB6YaDIxS1U3qsU5VD3nn/UBVD6lqpqr+CygBXFaAyHcCk1R1kapmq+puVf3R+4rieuBR757yWmAiMCBH5roiUllV01R1xTn8G01V1fJnOf1c0G2do2V49vSP4XlSWw0kFdJcxkHW/I2vDgGVC/qmoHdZ5nnv0skx/rcHXdl73h3PXvtPIrIsx5LIi8BW4BMR2S4iI88wRS1g2xnmHiEiG73LTalAuRzzns2ZtlkdOKyqv+a47SeghvfyncClwI8iskpEOhdgrvMmIhd6l5HSRCTtPB7vAhYCiUAUnn+bCsAY/yY1gcCav/HVV8ApIL6A4/vieSO4HZ7mW8d7uwCo6ipVdeNZEkrCu1TifaUwQlUvBroAw3Msr+S0E88Syx941/cfBXoBFVS1PHD0t3nzkec2gT1ARREpk+O2C4Hd3sxbVLWPt5YxwEwRiSLv5arcefvlbOR5nP607KOqP3uXkaJVNboAdeVWEc8T3euqetr7iuldPE/GJshY8zc+UdWjwJPAeBGJ964VR4hIRxF5IY+HlAFO43nFUBrPJ4SA3z+W2E9EyqlqBp6lhyzvfZ1FpK6ISI7b83oDcyLwtIjUE49GIlLJO28m8AsQLiJP4nlPoCDeAW4XkbYi4hKRGiJyuaruBL4E/ikiJUWkEZ69/Q+9mfuLyAWqmg2kereV5c2QDVx8pglV9cOcjTyPU4GXfUSkRI73NiK9Wf/0pKeqB4H/AveISLiIlAcGAusKOpcpPqz5G5+p6lg8b7SOwtPYdgLDyHuteAqepZHdwAYg9zr4AGCHd0nobjwfUQTPG8SfAml4Xm28cYbP9o/F82rhEzxPEu8ApfAsZywANnvnP+XNWZD6VgK3A+PwvFpYBtT23t0Hz6uXPXje9P67qi7y3tcBWO9dgnkF6O19b+AE8CzwH++bty0KksMHm4CTeJajFnov1wbwfjJqQY6x3by5f8GzzJYJ/F8h5zMOEPsxF2OMCT2252+MMSHImr8xxoQga/7GGBOCrPkbY0wICtij9VWuXFnr1KnjdAwAjh8/TlRUlNMx/CbY6gGrqTgItnogMGtas2bNQVW9IL9xAdv869Spw+rVq52OAcDSpUtp06aN0zH8JtjqAaupOAi2eiAwaxKRnwoyzpZ9jDEmBFnzN8aYEOSX5i8iHURkk/d45n864JaI3C0i33uPh75cROr7Y15jjDHnx+fmLyJhwHg8x/2uD/TJo7lPVdWGqtoYeAHPV/CNMcY4xB97/s2Braq6XVXTgQRy/Xyfqh7LcbVARzU0xhhTeHw+to+I9AA6qOpg7/UBwLWqOizXuPvwHPwrErhRVbfksa2hwFCAmJiYpgkJCT5l85e0tDSio8/nCLmBKdjqAaupOAi2eiAwa4qNjV2jqs3yHaiqPp2AnsDEHNcHAK+dZXxfYHJ+223atKkGiiVLljgdwa+CrR5Vq6k4CLZ6VAOzJmC1FqB3+2PZZxeeH4D4TU08h7c9kwQK/sMfgWPXLrj/frjuOihdGkRgxw6nUxljzHnxR/NfBdQTkYtEJBLoDaTkHCAi9XJcvQX405KPY9LSoFcvz/nZbN0K06dDhQrQqlXRZDPGmELic/NXzw93D8PzIxEbgemqul5EnhKROO+wYSKyXkTW4ln3H+jrvH6zeDHMmAGffXb2ca1bw/79MH8+9OxZNNmMMaaQ+OXwDqo6H5if67Ync1x+0B/zFIbsxEQE0MREXHFxZx7osu/DGWOCR0h2tNOZWcz+dhc3jV3K0emzESB1eiI3j13K7G93cTozr5+GNcaY4BGwB3YrLGt3pjJo0koysrKpvns7JbLSASiZmU7Who2MSj3FP1I2MPmO5lxVq7zDaY0xpnCE1J7/up2p9HlrBaknMzienkXs9tW4srMBcGVnE7ttFcfTs0g9mUHvt1awbmeqw4mNMaZwhEzzP52ZxcBJKzmZ8b8lnc4/fkHJrAwASmZl0PnH5b/fdzLDM96WgIwxwSi4l326d4fERABKAGtz3Z0e9sfyL//lv+wY0/mPg0ZDm98ud+sGs2b5P6cxxhSx4N7zf/55aNwYzvBLO5FZmX+4XiLX9d9klSwJTZp4tmeMMUEguJt/vXqwejXZo0dzMrwEmfLHchUYPag6i68uk+fDM8XFyfAS/Pf222H1ali3DmbOhDVrPAMWLPBcX7askAsxxhj/Cu5lH4CwMNKGPUi3beV4JfF5Ljqym9IZpwE4FhXG9xeXYlabirRdfZS/fbCXmFTP3v+JiBJsr1CDh7qN5LGedanrcv35y1333us5v+EGWLq0CIsyxhjfBPeev1dUZDjbyleny8BxjG/Ri1NhEQCUO55Fwj+28dD0fSxvVAb3P+vxUduKHA+PYHyLXnQZ9DLbylfHJeLZkGreJ2v8xphiJvj3/IEwl1CvSjSb96ex+YLaZIRF/P4pn4gsuHP+QW5adYynB1bnuQHVSW55CtfPFVBxcVmVaOznB4wxwSYk9vwB7mlzCVGRYdy8+Uui0k/+6f5av6Tz5ks7+OebO9lTOZz1rT4juupCBreulcfWjDGmeAuZ5t+pYTUiXELbratw5diT97ypG0mmuBCg81dHSfnbFm7+Og2psIR3dtzHjyd/dC64McYUgpBp/iXCw0i4vuzvh3MAz5u6P15QhyHdnuDHC+pwIqIEAOWPZzH63b38vfIIwl1hjD8wnr998TcOnzrsVHxjjPGrkGn+AJd/u5ySAlnej3D+6/r+dBn0MssvakLcwHGMvb4fJ8NLkCUuSrqgx8aDzIqbRYdyHfh4x8fEJcWRtDXpt18kM8aYYiukmj/Tp+PKzECuasTymYtY3mUAuFxEhAkaFsYXXQayfOYipFFDXBkZMH06JcJKcEv5W5jZZSYXl7uYJ/7zBIM/GcyOozucrsYYY85bSHza53dVq8KLL+J66CHau1y0B7KylePpmURFhhPm8n6ks/MaePnlP3yE85Lyl/Beh/eYuXkmL695me4p3RnaaCh3XHkHEd6PjhpjTHERWnv+c+bA8OF/+GGWMJdQtmTE/xo/QFgYjBjhGZ+DS1z0uqwXyfHJxF4Yy+trX6fnnJ58e+DboqrAGGP8IrSav59cUPoCXrrhJca3Hc+JzBPctuA2nv7qaY6lH3M6mjHGFIg1fx+0rtmaJHcSA+oPYOaWmbiT3CzcsdDeEDbGBDxr/j4qHVGaR655hKm3TOWCUhfw8LKHuf+z+9mbttfpaMYYc0bW/P2kQaUGTL1lKg83e5iV+1biTnbz/ob3ycq2H4MxxgQevzR/EekgIptEZKuIjMzj/uEiskFEvhORxSJS2x/zBppwVzgDGwxktns2zWKa8cKqF+g7vy8bD210OpoxxvyBz81fRMKA8UBHoD7QR0Tq5xr2LdBMVRsBM4EXfJ03kNWIrsH4tuN58YYX2X98P73n9ealVS9xIuOE09GMMQbwz55/c2Crqm5X1XQgAXDnHKCqS1T1t863Aqjph3kDmojQoU4HkuOT6VavG5M3TKZrclc+3/W509GMMQbx9ZMpItID6KCqg73XBwDXquqwM4x/Hdinqs/kcd9QYChATExM04SEBJ+y+UtaWhrR0dE+bWPbqW0kHE5gX8Y+ri59Nd0rdqdsWFk/JTw3/qgn0FhNgS/Y6oHArCk2NnaNqjbLd6Cq+nQCegITc1wfALx2hrH98ez5l8hvu02bNtVAsWTJEr9s53TmaZ2wdoI2mdJEr5t6nc7YNEOzsrP8su1z4a96AonVFPiCrR7VwKwJWK0F6N3+WPbZBeQ86H1NYE/uQSLSDngciFPV036Yt9iJDIvk7qvuZlbcLC6rcBn/+Oof3P7x7WxP3e50NGNMiPFH818F1BORi0QkEugNpOQcICJNgDfxNP4DfpizWLuo3EVMunkST/3lKbambqX7nO6MXzue01kh+ZxojHGAz81fVTOBYcBCYCMwXVXXi8hTIhLnHfYiEA3MEJG1IpJyhs2FDBGha72upMSncFPtm/j3un/TI6UHq/atcjqaMSYE+OWonqo6H5if67Ync1xu5495glGlUpUY03oMcZfE8fSKp7lj4R10rduVEc1GUK5EOafjGWOClH3DN0C0rNGS2e7Z3H7l7aRsSyEuKY552+fZcYKMMYXCmn8AKRVeiuFNh5PQOYHqUdUZ+cVI7vn0Hnb9usvpaMaYIGPNPwBdXvFyPuj0ASObj+TbA9/SNbkr7/7wLhnZGU5HM8YECWv+ASrMFUa/K/qRHJ9Mi+otGLtmLH3m9uGHgz84Hc0YEwSs+Qe4qlFVeTX2Vca1GceRU0foO68vz698nuMZx52OZowpxqz5FwMiQrva7UiKT6LXZb2YunEq7iQ3S35e4nQ0Y0wxZc2/GCkTWYZRLUYxpeMUykSW4YElD/B/S/6PAydC/ntzxphzZM2/GGpcpTHTu0znwasf5IvdX+BOcjPtx2lka7bT0YwxxYQ1/2IqwhXB4IaDSYxLpEHlBjzz9TPctuA2thzZ4nQ0Y0wxYM2/mLuw7IW83f5tnrv+OX469hO95vTi1W9e5VTmKaejGWMCmDX/ICAidLmkCynxKXS6uBNvf/823VO6s2LvCqejGWMClDX/IFKhZAWevf5Z3r7pbQCGfDKEx5c/zpFTRxxOZowJNNb8g1CLai2YFTeLIQ2HMH/7fOKS4kjZlmLHCTLG/M6af5AqGV6SB65+gOldplO7bG0eX/44QxYN4edjPzsdzRgTAKz5B7l6FeoxpeMUnmjxBOsPrqdbSjcWHl1IRpYdJ8iYUGbNPwS4xEWvy3qRHJ9M65qtmZs6l15ze7H2wFqnoxljHGLNP4RUKV2FsW3GMvSCoaRlpHHbgtt4ZsUz/Jr+q9PRjDFFzJp/CGpYuiFJ7iT6XdGPGZtn4E5ys+inRfaGsDEhxJp/iIqKiOLR5o8ytdNUKpWqxPClw3lgyQPsO77P6WjGmCJgzT/ENajcgI9u+YgRTUfw9d6vcSe5+WDDB2RlZzkdzRhTiKz5G8Jd4Qy6chCJcYk0iWnCmFVj6D+/Pz8e/tHpaMaYQmLN3/yuZpmaTGg7gRdav8Ce43voPbc3Y1eP5UTGCaejGWP8zC/NX0Q6iMgmEdkqIiPzuL+1iHwjIpki0sMfc5rCISJ0vKgjKfEpxNeN593179ItpRvLdy93Opoxxo98bv4iEgaMBzoC9YE+IlI/17CfgUHAVF/nM0WjXIlyjP7LaN69+V0iXBHc8+k9PPL5Ixw8edDpaMYYP/DHnn9zYKuqblfVdCABcOccoKo7VPU7wH5tpJhpVrUZs+Jmce9V9/LpT5/iTnKTuCXRPhZqTDEnvv5P7F3G6aCqg73XBwDXquqwPMa+B8xV1Zln2NZQYChATExM04SEBJ+y+UtaWhrR0dFOx/Cb861nX8Y+ph2axtbTW6lboi63VrqVqhFVCyHhuQu2vxEEX03BVg8EZk2xsbFrVLVZvgNV1acT0BOYmOP6AOC1M4x9D+hRkO02bdpUA8WSJUucjuBXvtSTlZ2lszbP0uumXqdNpjTRN759Q09nnvZfuPMUbH8j1eCrKdjqUQ3MmoDVWoAe649ln11ArRzXawJ7/LBdE4Bc4qJbvW6kxKfQrnY73lj3Bj3m9GDN/jVORzPGnAN/NP9VQD0RuUhEIoHeQIoftmsCWOVSlXmh9QtMaDeB9Kx0Bn08iNFfjubo6aNORzPGFIDPzV9VM4FhwEJgIzBdVdeLyFMiEgcgIteIyC48S0Rvish6X+c1geH6GteTGJfIoAaDSNqahDvJzYL/LrA3hI0JcH75nL+qzlfVS1X1ElV91nvbk6qa4r28SlVrqmqUqlZS1Qb+mNcEhtIRpRnRbAQJnROoGlWVRz5/hHsX38vutN1ORzPGnIF9w9f4zeUVL+fDTh/y6DWPsmb/Gromd+W9H94jMzvT6WjGmFys+Ru/CnOF0b9+f5LdyVxb9Vr+teZf9J3Xl/UHbaXPmEBizd8UimrR1Xj1xlcZ22YsB08epO/8voxZOcaOE2RMgLDmbwqNiNC+dnuS45PpeWlPPtz4Ie5kN0t3LnU6mjEhz5q/KXRlIsswqsUopnScQnRENPd/dj/Dlw7nlxO/OB3NmJBlzd8UmcZVGjO983QeaPIAy3YuIy4pjumbppOtdsgnY4qaNX9TpCLCIhjSaAiJ7kQaVGrA0yueZuCCgWw9stXpaMaEFGv+xhG1y9bm7Zve5pmWz7Dj2A56zu3Jq9+8yums005HMyYkWPM3jhER3HXdJMcn07FOR97+/m26p3Rn5d6VTkczJuhZ8zeOq1iyIs+1eo632r9FtmZz5yd3Mmr5KFJPpTodzZigZc3fBIzrql9HYlwigxsOZt72ecQlxTFn2xw7TpAxhcCavwkoJcNL8uDVDzKtyzRqla3FY8sf465Fd7Hz2E6noxkTVKz5m4B0aYVLmdJhCo9f+zjfHfyOrildmfj9RDKyM5yOZkxQsOZvAlaYK4zel/cm2Z1MqxqteOWbV7h17q2s+2Wd09GMKfas+ZuAFxMVw7jYcbwS+wpHTx9lwPwBPLviWdLS05yOZkyxZc3fFBs3XngjKfEp9L2iL9M2TcOd7GbxT4udjmVMsWTN3xQrURFRjGw+kg87fUiFEhV4aOlDPPjZgxzJPOJ0NGOKlXCnAxhzPhpe0JCPOn/E+xveZ8LaCXyZ/SUnNp6g92W9CXOFOR3PmIBne/6m2IpwRXDHlXeQ6E6kTok6PL/yeQYsGMCmw5ucjmZMwLPmb4q9WmVqcW+Ve3m+1fPsTtvNrXNvZdyacZzMPOl0NGMCljV/ExREhFsuvoWU+BTiLolj0g+T6JrclS93f+l0NGMCkl+av4h0EJFNIrJVREbmcX8JEZnmvf9rEanjj3mNya1ciXI81fIpJt08iQhXBHd9ehcjvxjJoZOHnI5mTEDxufmLSBgwHugI1Af6iEj9XMPuBI6oal1gHDDG13mNOZtrql7DzLiZ3H3V3SzcsRB3spvZW2bbcYKM8fLHnn9zYKuqblfVdCABcOca4wYmey/PBNqKiPhhbmPOqERYCe5rfB8zu8zkknKX8OSXT3LnJ3ey4+gOp6MZ4zjxdU9IRHoAHVR1sPf6AOBaVR2WY8wP3jG7vNe3eccczLWtocBQgJiYmKYJCQk+ZfOXtLQ0oqOjnY7hN8FWD+RfU7Zm81XaVyQfSSZDM7i53M20K9eOcAncTzsH298p2OqBwKwpNjZ2jao2y2+cP/7Lz2sPPvczSkHGoKpvAW8BNGvWTNu0aeNzOH9YunQpgZLFH4KtHihYTTdyI3edvIsxK8cwb8c8NrKRv1/3d66OubpoQp6jYPs7BVs9ULxr8seyzy6gVo7rNYE9ZxojIuFAOeCwH+Y25pxULlWZF294kfFtx3Mq8xQDPx7IP776B8fSjzkdzZgi5Y/mvwqoJyIXiUgk0BtIyTUmBRjovdwD+EztnTfjoNY1WzPbPZuB9QeSuCURd5Kbj3d8bG8Im5Dhc/NX1UxgGLAQ2AhMV9X1IvKUiMR5h70DVBKRrcBw4E8fBzWmqJWOKM3D1zzMR7d8RJXSVfjrsr8y7LNh7EnL/cLVmODjl3e7VHU+MD/XbU/muHwK6OmPuYzxt/qV6vNhpw+ZunEqr699nfjkeO5rfB/9ruhHuCtw3xA2xhf2DV9jgHBXOLc1uI0kdxLXVL2Gl1a/RN95fdlwaIPT0YwpFNb8jcmhenR1Xr/xdV664SV+OfkLfeb14cVVL3Ii44TT0YzxK2v+xuQiItxc52aS45PpXq87UzZMIT45ns93fe50NGP8xpq/MWdQNrIsT173JJM7TKZ0eGnuW3wfDy97mIMnD+b/YGMCnDV/Y/JxdczVzOgyg2GNh7Hk5yXEzY5jxuYZZGu209GMOW/W/I0pgIiwCO666i5mxc3i8kqX89RXTzHo40FsS93mdDRjzos1f2POQZ1ydXjnpnd4uuXTbD+6nR5zevD6t69zOuu009GMOSfW/I05RyJCfN14UuJT6FCnA29+9yY9Unqwat8qp6MZU2DW/I05TxVLVuSfrf7Jm+3fJDM7kzsW3sET/3mC1FOpTkczJl/W/I3x0V+q/4VEdyJ3Xnknc7bNwZ3sZu72uXacIBPQrPkb4welwkvxUNOHmNZ5GjWja/K3L/7G3Z/ezc5fdzodzZg8WfM3xo8uq3gZUzpO4W/N/8a6X9bRLbkbk36YREZ2htPRjPkDa/7G+FmYK4y+V/QlyZ1EyxotGbdmHL3n9ub7X753Opoxv7Pmb0whqRpVlZdjX+bl2JdJPZ1Kv/n9+OfX/+R4xnGnoxljzd+Ywtb2wrYku5PpfXlvPvrxI9xJbj77+TOnY5kQZ83fmCIQHRnNY9c+xgedPqBsibI8uORBHlryEPuP73c6mglR1vyNKUKNLmjEtM7TeOjqh1i+eznuZDcf/fgRWdlZTkczIcaavzFFLMIVwZ0N72R23GwaVW7Ec18/x20f38bmI5udjmZCiDV/YxxSq2wt3mz/Js9d/xw7j+3k1jm38so3r3Aq85TT0UwIsOZvjINEhC6XdCElPoVbLr6Fid9PpFtKN77a85XT0UyQs+ZvTAAoX7I8z1z/DBNvmohLXAxdNJQpB6dw+NRhp6OZIOVT8xeRiiKySES2eM8rnGHcxyKSKiJzfZnPmGB3bbVrmRU3i6GNhvLN8W9wJ7lJ3ppsxwkyfufrnv9IYLGq1gMWe6/n5UVggI9zGRMSSoSV4P4m9/NotUepU7YOo/4ziiGfDOGnYz85Hc0EEV+bvxuY7L08GYjPa5CqLgZ+9XEuY0JKtchqTO44mSdaPMGGQxvoltyNt757i4wsO06Q8Z2vzT9GVfcCeM+r+B7JGPMbl7jodVkvkuOTaVOrDa99+xq95vZi7YG1TkczxZzkt5YoIp8CVfO463FgsqqWzzH2iKqead2/DfCwqnY+y1xDgaEAMTExTRMSEvItoCikpaURHR3tdAy/CbZ6IHRq+uHED0w/PJ0jWUe4Pvp6ulToQmlXaYcSnptQ+Rs5LTY2do2qNst3oKqe9wnYBFTzXq4GbDrL2DbA3IJuu2nTphoolixZ4nQEvwq2elRDq6bj6cd1zMox2mhyI42dFqsL/7tQs7OzizbceQilv5GTgNVagB7r67JPCjDQe3kgkOzj9owx+SgdUZpHrnmEqbdMpXKpyoxYNoL7P7ufvWl7nY5mihFfm//zQHsR2QK0915HRJqJyMTfBonIF8AMoK2I7BKRm32c15iQ16BSA6beMpWHmz3Myn0rcSe7eX/D+3acIFMgPjV/VT2kqm1VtZ73/LD39tWqOjjHuFaqeoGqllLVmqq60NfgxhgId4UzsMFAZrtn0zSmKS+seoF+8/ux8dBGp6OZAGff8DUmCNSIrsEbbd/gxdYvsu/4PvrM68NLq17iRMYJp6OZAGXN35ggISJ0uKgDyfHJxNeNZ/KGyXRN7soXu75wOpoJQNb8jQky5UqUY/RfRvNeh/coGV6SexffyyPLHuHgyYNORzMBxJq/MUGqaUxTZnSZwb2N7+XTnz8lLimOWZtnka3ZTkczAcCavzFBLDIsknuuuodZcbO4rMJljP5qNLd/fDvbU7c7Hc04zJq/MSHgonIXMenmSTz1l6fYmrqV7nO688baN0jPSnc6mnGINX9jQoSI0LVeV1LiU7ip9k1MWDeB7indWbVvldPRjAOs+RsTYiqVqsSY1mP4d7t/k5GdwR0L7+DvX/6do6ePOh3NFCFr/saEqJY1WjLbPZvbr7yd5K3JxCXFMX/7fPvhmBBhzd+YEFYqvBTDmw4noXMC1aOq8+gXj3LPp/ew69ddTkczhcyavzGGyytezgedPmBk85F8e+BbuiZ35d0f3iUzO9PpaKaQWPM3xgAQ5gqj3xX9SI5PpkX1FoxdM5Y+8/rww8EfnI5mCoE1f2PMH1SNqsqrsa8yrs04Dp88TL/5/Xh+5fMczzjudDTjR9b8jTF/IiK0q92OpPgkel7ak6kbp+JOcrN051Knoxk/seZvjDmjMpFlGNViFFMvWUZJAAAP3UlEQVQ6TqFMZBnu/+x+hi8dzoETB5yOZnxkzd8Yk6/GVRozvct0Hrz6QT7f9TnuJDfTfpxmxwkqxqz5G2MKJMIVweCGg0mMS6RB5QY88/UzDFwwkC1HtjgdzZwHa/7GmHNyYdkLebv92zx3/XPsOLaDXnN68eo3r3Iq85TT0cw5sOZvjDlnIkKXS7qQEp9Cp4s78fb3b9M9pTtf7/3a6WimgKz5G2POW4WSFXj2+md5+6a3ARj8yWAeX/44R04dcTiZyY81f2OMz1pUa8GsuFkMaTiE+dvnE5cUx5xtc+w4QQHMmr8xxi9KhpfkgasfYHqX6dQuW5vHlj/GkEVD+PnYz05HM3nwqfmLSEURWSQiW7znFfIY01hEvhKR9SLynYjc6sucxpjAVq9CPaZ0nMITLZ5g/cH1dEvpxsTvJ5KlWU5HMzn4uuc/ElisqvWAxd7ruZ0AblPVBkAH4GURKe/jvMaYAOYSF70u60VyfDKta7bmlW9eYczeMaw9sNbpaMbL1+bvBiZ7L08G4nMPUNXNqrrFe3kPcAC4wMd5jTHFQJXSVRjbZiyv3fgap7JPcduC23hmxTP8mv6r09FCnvjyhoyIpKpq+RzXj6jqn5Z+ctzfHM+TRAPVP381UESGAkMBYmJimiYkJJx3Nn9KS0sjOjra6Rh+E2z1gNVUHBz69RBLM5ay7NdllA0rS4+KPbiq1FWIiNPRzlsg/o1iY2PXqGqzfAeq6llPwKfAD3mc3EBqrrFHzrKdasAmoEV+c6oqTZs21UCxZMkSpyP4VbDVo2o1FQe/1fP9L99r9+TueuV7V+qwxcN0b9peZ4P5IBD/RsBqLUCPzXfZR1XbqeqVeZySgf0iUg3Ae57n0Z5EpCwwDxilqivyfUYyxgStKytfSULnBEY0HcGKPStwJ7n5cOOHZGXbG8JFydc1/xRgoPfyQCA59wARiQRmA1NUdYaP8xljgkC4K5xBVw5itns2TWKa8PzK5+k/vz+bDm9yOlrI8LX5Pw+0F5EtQHvvdUSkmYhM9I7pBbQGBonIWu+psY/zGmOCQM0yNZnQdgJjWo1hz/E93Dr3VsauHsvJzJNORwt64b48WFUPAW3zuH01MNh7+QPgA1/mMcYELxGh08WdaFmjJWPXjOXd9e/yyU+f8ESLJ2hZo6XT8YKWfcPXGBMQypUoxz/+8g/evfldIlwR3P3p3Tz6+aMcOnnI6WhByZq/MSagNKvajFlxs7jnqntY9NMi4pLiSNySaMcJ8jNr/saYgBMZFsm9je9lZpeZ1C1fl79/+XfuWHgH/z36X6ejBQ1r/saYgHVx+Yt5t8O7jL5uNJuObKJ7SncmrJtAela609GKPWv+xpiA5hIX3S/tTkp8Cu0ubMcba9+gx5werNm/xuloxZo1f2NMsVC5VGVeuOEF3mj7BqczTzPo40GM/nI0R08fdTpasWTN3xhTrLSq2YrZ7tkMajCIpK1JuJPcfPzfj+0N4XNkzd8YU+yUjijNiGYj+OiWj4iJiuGvn/+Vexffy+603U5HKzas+Rtjiq0rKl3B1E5TefSaR1mzfw1dk7syef1kMrMznY4W8Kz5G2OKtTBXGP3r9yfZnUzzqs15afVL9J3Xl/WH1jsdLaBZ8zfGBIVq0dV47cbX+NcN/+LgyYP0ndeXMSvHcCLjhNPRApI1f2NM0BARbqpzE8nxyfS8tCcfbPyA+OR4lu1c5nS0gGPN3xgTdMpElmFUi1G83/F9oiKiGPbZMEYsHcEvJ35xOlrAsOZvjAlajas0Znrn6dzf5H6W7lyKO8nN9E3Tyf7zr8iGHGv+xpigFhEWwdBGQ0l0J3JFpSt4esXTDFwwkK1HtjodzVHW/I0xIaF22dpMvGkiz7R8hh3HdtBzbk9e+/Y1TmeddjqaI6z5G2NChojgrusmOT6ZjnU68tZ3b9E9pTsr9650OlqRs+ZvjAk5FUtW5LlWz/FW+7fI1mzu/OROnvjPE6SeSnU6WpGx5m+MCVnXVb+OxLhEBjcczNxtc4lLimPOtjkhcZwga/7GmJBWMrwkD179INO6TKNW2Vo8tvwx7lp0FzuP7XQ6WqGy5m+MMcClFS5lSocpPH7t43x38Du6pnTlne/fISM7w+lohcKn5i8iFUVkkYhs8Z5XyGNMbRFZIyJrRWS9iNzty5zGGFNYwlxh9L68N8nuZFrVaMXL37xM77m9+e6X75yO5ne+7vmPBBaraj1gsfd6bnuBv6hqY+BaYKSIVPdxXmOMKTQxUTGMix3HK7GvkHo6lf7z+/Pc18+Rlp5W+JPv3Ak9ekC5clC2LHTrBj//7PdpfG3+bmCy9/JkID73AFVNV9XfPkhbwg9zGmNMkbjxwhtJiU+h7xV9SfgxAXeym8U/Ly68CU+cgBtvhB9/hMmT4f33YcsWiI2F48f9OpX48q62iKSqavkc14+oal5LP7WAeUBd4K+qOv4M2xsKDAWIiYlpmpCQcN7Z/CktLY3o6GinY/hNsNUDVlNxUNzr2XF6BwmHEtidsZtGpRrRo2IPIk5F+LWmGjNnUnfCBFZOmcLJGjUAKLl3L9f278+2u+5iV69e+W4jNjZ2jao2y29cvs1fRD4FquZx1+PA5II0/xz3VweSgC6quv9s8zZr1kxXr1591mxFZenSpbRp08bpGH4TbPWA1VQcBEM9GdkZvL/hfSasnUCYK4yO0R0Z1XkUYa6wsz4uMyubExlZREWGE+aSMw9s2xZOnYL//OePt99wg+d8Wf5HJxWRAjX/8PwGqGq7s0yyX0SqqepeEakGHMhnW3tEZD3QCpiZ39zGGBNIIlwR3HHlHbSv3Z5nVjzDzD0z2bxgM09e9ySXVbzsD2NPZ2Yx//u9TFi6jS0H0gh3CZnZyqVVorm7zSV0aliNEuG5njTWrwe3+88TN2gAM2b4tRZf199TgIHeywOB5NwDRKSmiJTyXq4AtAQ2+TivMcY4plaZWvy73b8ZWHkgu9J20Xtub8atGcfJzJMArN2ZyrXPLmbU7B/YvD8NVcjIUlRh0/40Rs3+gWufXcy6nbm+UXz4MFTIY/GkYkU4csSvNfja/J8H2ovIFqC99zoi0kxEJnrHXAF8LSLrgGXAS6r6vY/zGmOMo0SEZlHNSIlPocslXZj0wyS6JXfjg3WL6PPWClJPZnA8PSvPxx5PzyL1ZAa931rx5ycAyWNZqBC+cexT81fVQ6raVlXrec8Pe29fraqDvZcXqWojVb3Ke/6WP4IbY0wgKFeiHE+1fIpJN0/CJWGMWTscvWAqEpb/x0JPZmQxcNJKTmd6nyQqVPDs/ed25Ejerwh8YB+7NMYYP7im6jUMrP0qergd4WW/I+risYSXWw2cfa89IyubBd/v81xp0MCz7p/bhg1Qv75f81rzN8YYP5n4+U7S9rfjxPYHyEqvQqnqMyl14dtI5Jl/PvJ4ehYTlnp/WCYuDlasgO3b/zdgxw7Pp3/i4vya1Zq/Mcb4QVa2suWAZ6knOz2Gkz8N5dTeboSV3EPURa8QWWnpGR+7+UAaWdkKQ4ZAnTqeT/wkJ0NKiudyrVpw111+zWvN3xhj/OB4eibhf/gMv4uM1OYc3zaCzF/rg5z5AHHhLuF4eiZERcFnn8Gll8KAAdCvH1x0kec2P39BLt/P+RtjjMlfVGQ4mdl/Xt/XrDKc2tMXOPOPxmdmK1GR3nZ84YUwa1Yhpfwf2/M3xhg/CHMJ9aqcbe/8zO320irRZ//mbyGw5m+MMX5yT5tLiIo8+6EecouKDOOeNnULKdGZWfM3xhg/6dSwGhFh59ZWI8JcdGyY1+HTCpc1f2OM8ZMS4WFMvqM5pSIKtvdfKsIz/k/H+CkC1vyNMcaPrqpVnoShLShfKuKMS0BRkWGULxVBwtAWXFWrfJ5jCpt92scYY/zsqlrl+frxtiz4fh8Tlm5l8x+O6lmGe9pcQseGVR3Z4/+NNX9jjCkEJcLDiG9Sg/gmNcjKVo6nZ+Z/PP8iZM3fGGMKWZhLKFsywukYf2Br/sYYE4Ks+RtjTAiy5m+MMSHImr8xxoQga/7GGBOCrPkbY0wIsuZvjDEhyJq/McaEIGv+xhgTgqz5G2NMCBLVP//sWCAQkV+An5zO4VUZOOh0CD8KtnrAaioOgq0eCMyaaqvqBfkNCtjmH0hEZLWqNnM6h78EWz1gNRUHwVYPFO+abNnHGGNCkDV/Y4wJQdb8C+YtpwP4WbDVA1ZTcRBs9UAxrsnW/I0xJgTZnr8xxoQga/7GGBOCrPnnQUQqisgiEdniPa+Qx5jaIrJGRNaKyHoRuduJrAVRwHoai8hX3lq+E5FbnchaUAWpyTvuYxFJFZG5RZ2xIESkg4hsEpGtIjIyj/tLiMg07/1fi0idok95bgpQU2sR+UZEMkWkhxMZz1UBahouIhu8/+8sFpHaTuQ8F9b88zYSWKyq9YDF3uu57QX+oqqNgWuBkSJSvQgznouC1HMCuE1VGwAdgJdFpHwRZjxXBakJ4EVgQJGlOgciEgaMBzoC9YE+IlI/17A7gSOqWhcYB4wp2pTnpoA1/QwMAqYWbbrzU8CavgWaqWojYCbwQtGmPHfW/PPmBiZ7L08G4nMPUNV0VT3tvVqCwP63LEg9m1V1i/fyHuAAkO+3BB2Ub00AqroY+LWoQp2j5sBWVd2uqulAAp66cspZ50ygrYhIEWY8V/nWpKo7VPU7INuJgOehIDUtUdUT3qsrgJpFnPGcBXLDclKMqu4F8J5XyWuQiNQSke+AncAYb9MMRAWq5zci0hyIBLYVQbbzdU41BagaeP7b+c0u7215jlHVTOAoUKlI0p2fgtRU3JxrTXcCCwo1kR+EOx3AKSLyKVA1j7seL+g2VHUn0Mi73JMkIjNVdb+/Mp4Lf9Tj3U414H1goKo6umfmr5oCWF578Lk/e12QMYGkuOUtiALXJCL9gWbADYWayA9Ctvmrarsz3Sci+0Wkmqru9TbDA/lsa4+IrAda4XlpXuT8UY+IlAXmAaNUdUUhRS0wf/6NAtQuoFaO6zWB3K8efxuzS0TCgXLA4aKJd14KUlNxU6CaRKQdnh2TG3IsCQcsW/bJWwow0Ht5IJCce4CI1BSRUt7LFYCWwKYiS3huClJPJDAbmKKqM4ow2/nKt6ZiYBVQT0Qu8v7798ZTV0456+wBfKaB/c3MgtRU3ORbk4g0Ad4E4lS1eOyIqKqdcp3wrKkuBrZ4zyt6b28GTPRebg98B6zzng91OreP9fQHMoC1OU6Nnc7uS03e618AvwAn8ezB3ex09lx1dAI243l/5XHvbU/haSIAJYEZwFZgJXCx05n9UNM13r/FceAQsN7pzH6o6VNgf47/d1KczpzfyQ7vYIwxIciWfYwxJgRZ8zfGmBBkzd8YY0KQNX9jjAlB1vyNMSYEWfM3xpgQZM3fGGNC0P8D8YEnrDImQ5IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcjeX/x/HX58zKjG0sQyVLtNCiTJZKjVDIbLYSopJK2mhR5Nuelp9SyTchkky2mTkjkkYjFUJZoqzRWMo6GIbZrt8f59R3YsYMZ7nPzPk8H495nOW+5r7fc6X33HOdTYwxKKWU8i82qwMopZTyPi1/pZTyQ1r+Sinlh7T8lVLKD2n5K6WUH9LyV0opP6Tlr7xCRJ4XkU89uP/1IhLt4j48mlEpX6Llr9xGRO4UkZUikiUie0Rkvojc4I1jG2OaGmPSvXEsdxCR+iJiRCTQC8cKFpFZIrLdeczoEsZHiEiSiBwTkR0icqenMyrv0/JXbiEiQ4B3gFeBSOBC4AMgzspc6h/fAX2AP0sxdiyQg+O/Y29gnIg09WA2ZQEtf+UyEakCvAg8ZIyZY4w5ZozJNcakGmOeLOZ7ZorInyJyWES+LVwuItJZRDaIyFER2SUiTzjvryEic0UkU0QOisgSEbE5t20XkfbO6wEi8qyIbHXuY5WI1HVuGyMiGSJyxHl/m7P4OeNEZLXze7eKSEfn/eeJiN2ZaYuI3Ffoe1o4/xo6IiJ/icho56ZvnZeZzr+UWpc2x9kyxuQYY94xxnwH5J9prIiEAd2A54wxWc7vsQN9PZVPWUPLX7lDayAUSDqL75kPNAZqAT8B0wptmwjcb4ypBFwOLHLePxTYCdTEcVb6LFDU+5MMAXoBnYHKwD3Acee2FUAzIAL4DJgpIqElhRWRFsAnwJNAVeBGYLtz83RnrvOA7sCrItLOuW0MMMYYUxm4CJjhvP9G52VVY0y4MWZpEce80/mLrrivC0vKfQ4uBvKNMZsK3bcG0DP/csbj643KL1QH9htj8kr7DcaYSX9fF5HngUMiUsUYcxjIBZqIyBpjzCHgkHNoLlAHqGeM2QIsKWb3A4CnjDEbnbfXFDpu4Qd0/09ERgCXFB5TjHuBScaYhc7bu5zZ6wI3AF2MMSeA1SIyAceZcpozcyMRqWGM2Q8sK+E4/zDGfIbjF5Q3hQOHT7nvMFDJyzmUh+mZv3KHA0CN0j546VyWGeVcOjnC/86gazgvu+E4a98hIosLLYm8CWwBvhKRbSIyrJhD1AW2FnPsoSLyq3O5KROoUui4Z1LcPs8DDhpjjha6bwdwvvP6vTjOpn8TkRUi0qUUxzpnInKhcxkpS0SyzmEXWTj+WiqsMnC0iLGqDNPyV+6wFDgBxJdy/J04Hghuj6N86zvvFwBjzApjTByOJaFknEslxpijxpihxpiGQAwwpNDySmEZOJZY/sW5vv800BOoZoypiuOsVkqRuch9AruBCBEpfGZ8Ic6/DIwxm40xvZw/y+vALOe6eolvpysivQsXeRFfpy37GGP+cC4jhRtjwkvxc51qExAoIo0L3XcVsP4c9qV8mJa/cplzqWYkMFZE4kWkoogEiUgnEXmjiG+pBJzE8RdDRRzPEAL+eVpib+cSUC5wBOeDlCLSRUQaiYgUur+oBzAnAC+JSGNxuFJEqjuPmwfsw1FwIzn9LLc4E4G7RaSdiNhE5HwRudQYkwH8ALwmIqEiciWOs/1pzsx9RKSmMaYAyHTuK9+ZoQBoWNwBjTHTChd5EV9/lDI7IhJS6LGNYGfW037pGWOOAXOAF0UkTESux/GLemppj6XKBi1/5RbGmNE4HmgdgaPYMoDBOM7cT/UJjqWRXcAGTl8H7wtsdy4JPYDjKYrgeID4axxLE0uBD4p5bv9oHH8tfIXjl8REoAKwAMcDzZucxz/hzFman+9H4G7gbRx/LSwG6jk398Lx18tuHA96/6fQYwMdgfXOJZgxwB3GmBPGmOPAK8D3zgdvW5Umhws2Atk4lqMWOK/XA3A+M2p+obGDcMzXXhwPZj9ojNEz/3JG9MNclFLK/+iZv1JK+SEtf6WU8kNa/kop5Ye0/JVSyg/57Ct8a9SoYerXr291jH85duwYYWFhVsfwSTo3RdN5KZ7OTfFcmZtVq1btN8bULGmcz5Z//fr1WblypdUx/iU9PZ3o6GirY/gknZui6bwUT+emeK7MjYjsKM04XfZRSik/pOWvlFJ+SMtfKaX8kJa/Ukr5IS1/pZTyQ1r+Sinlh7T8lVLKD2n5K6WUH9LyV0opP6Tlf6qMDOjeHapUgcqVoWtX+KPUH5iklFJlgs++vYMljh+Hm2+GkBCYMgVEYMQIaNsW1q61Op1SSrmNln9hH30E27bBxo3QqJHjviuvhMaN4cMP4ZprrM2nlFJu4nfLPnn5BRw5kUt+QREfX2m3Q6tW/yt+gAYN4PrrISXFeyGVUsrD/OLM/2RePvPW7WFc+lY2780i0CbkFRgurhXOA9EX0fmKOoQEBsD69RAXd/oOmjaFmTO9H1wppTyk3Jf/6oxM+k/6kdz8Ao7l5AOQm+8469/4VxYjkn7hBfsGptzTgqsOHoRq1U7fSUQEHDrkzdhKKeVR5br812Rk0mv8MrJz84sd4/iFkM8d45exHrCJnD7IFLFEpJRSZVi5XfM/mZdPv0k/nrH4C8vOzedQcBj5+w+cvvHQoaL/IlBKqTKq3Jb/vHV7yM0vOKvv2VKzHpkrV5++YcMGaNLETcmUUsp65bb8x6Vv/WeN/1/kJEhekd+zoGELqq5d5Xi659+2b4fvv4fYWM8EVUopC5TL8s8vMGzem1XktpBa8wlr8A4BYZtO2zb9qlvJqByJiYtzPLXTbnc8+6duXbj/fk/HVkoprymX5X8sJ49AWxEP3AJ5WY7lm4oXTiL0/GlI4OF/tmUHh3JX71fJu6gR9O0LvXs7nue/aBGEh3slu1JKeUO5fLZPWHAgeUW9iAvIP3Yxx35/jOCIbwmu8Q2B4RvJ2deOnIPXA4FkVKqJbc4cKOaXh1JKlQfl8sw/wCY0rnWGM3UTSM6Bmzm27XHyjjUiJHI+FRu+S0DFLVxcK5wALX6lVDlXLssf4MHoiwgLDjjjGJMbwYmdd3E8oz8ieVSsN4HqDWay9/he74RUSimLuKX8RaSjiGwUkS0iMqyI7TeKyE8ikici3d1xzJJ0vqIOQQGl+/Hysy7l2LbHkUO3sPHoUmKSYpiyfgq5BbkeTqmUUtZwufxFJAAYC3QCmgC9ROTUJ8X/AfQHPnP1eKUVEhjAlHtaUCHozGf/f6sQGMrUbs+RHJdM88jmvLXyLXqm9mTlnys9nFQppbzPHWf+LYAtxphtxpgcIBH417ujGWO2G2PWAmf3qisXXVW3KokDW1G1QlCxS0BhwQFUrRBE4sBWXFW3KnUr12Vsu7G82/Zdjuce5+4Fd/PMkmfYn73fm9GVUsqjxLj4vjXOZZyOxpgBztt9gZbGmMFFjJ0MzDXGzCpmXwOBgQCRkZHNExMTXcr2NwMczs5l39GTnMjNR0QwxhAaFEDNSiFUqRBEUQ/x5hTk8NWRr0g7nEagBNK+Qnva12hPgJTurwl/kpWVRbg+HfY0Oi/F07kpnitz07Zt21XGmKiSxrnjqZ5F9eY5/UYxxowHxgNERUWZ6OhoF2IVLb/AcCwnj7DgwFI9q+cWbmH74e289uNrzN09l81HNzOi1Qia1Wrm9mxlWXp6Op7471XW6bwUT+emeN6YG3cs++wE6ha6fQGw2w379YgAm1A5NOisns5Zv0p9/tv+v9xb414yT2bSd35fnvv+OQ5kF/EmcEopVQa4o/xXAI1FpIGIBAN3AHY37NeniAjNwpphj7dzz+X3MHfrXGKSY0j8LZH8gtK9c6hSSvkKl8vfGJMHDAYWAL8CM4wx60XkRRGJBRCRa0VkJ9AD+FBE1rt6XKtUDKrI480fZ3bsbJpENOGV5a/Q64terN2nH/CulCo73PL2DsaYecC8U+4bWej6ChzLQeVGw6oN+eiWj1iwfQFvrniTPvP60LVxVx695lGqhep7/yulfFu5fYWvN4gIHRt0xJ5gp1/TfqRsSSEmOYaZm2ZSYLz6rFallDorWv5uEBYUxtCoocyMmUnjqo15cemL9JnXh/X7y+zqllKqnNPyd6NG1Rox6dZJvNbmNXZn7abXF714aelLHD55uORvVkopL9LydzMRoUvDLqQmpNL7st7M2jyLmKQYkjYn6VKQUspnaPl7SKXgSjzd4mlmdJlB/Sr1GfnDSO6afxe/HfzN6mhKKaXl72mXRFzC5I6Tefn6l8k4msHtc2/nteWvcSTniNXRlFJ+TMvfC2xiI65RHPZ4Oz0v7knixkRik2JJ3ZqKq++tpJRS50LL34uqhFRheKvhTL9tOueHn8+z3z1L/y/7s+nQ6R8mr5RSnqTlb4Em1ZswtfNUXrjuBbYd3kbP1J68seINsnKyrI6mlPITWv4WsYmNro27MjdhLl0bd+XTDZ8SmxzLvG3zdClIKeVxWv4WqxJShZGtR/LZbZ9Rq2Itnl7yNAO+GsDWzK1WR1NKlWNa/j7i8hqXM63zNJ5r9Ry/HfyN7vbujF45muO5x62OppQqh7T8fUiALYCel/QkNSGV2EaxfLz+Y2KSY1iwfYEuBSml3ErL3wdFhEbwwnUvMLXTVCJCI3hi8RPcv/B+fj/8u9XRlFLlhJa/D2tWqxmJtyXybMtn+WX/L3S1d2XMT2N0KUgp5TItfx8XYAug16W9sCfY6dygMxPWTSA+JZ60HWm6FKSUOmda/mVEjQo1eOWGV5jccTLhweE8lv4Yg9IG8ceRP6yOppQqg7T8y5jmkc2Z0WUGT1/7ND/v/Zn4lHje//l9TuSdsDqaUqoM0fIvgwJtgfRp0ofU+FQ61OvAh2s/JD4lnvSMdKujKaXKCC3/MqxmxZq8fuPrTLp1EqEBoTy86GEeTnuYnUd3Wh1NKeXjtPzLgWtrX8vM2JkMbT6U5X8uJz4lnv+u+S8n809aHU0p5aO0/MuJIFsQ/S/vjz3eTnTdaMauHktCSgJLdi6xOppSygdp+ZcztcNq89ZNbzG+w3gCJIBBaYN47JvH2JO1x+poSikfouVfTrU+rzVzYufw6DWP8sPuH4hNjmXCugnk5OdYHU0p5QO0/MuxoIAgBlwxgJS4FNpc0IYxP42hm70bS3cvtTqaUspiWv5+oE54HUZHj2Zc+3EUmAIGLhzI0PSh/HnsT6ujKaUs4pbyF5GOIrJRRLaIyLAitoeIyOfO7ctFpL47jqvOzg3n38CcuDkMbjaYxTsXE5scy8e/fExufq7V0ZRSXuZy+YtIADAW6AQ0AXqJSJNTht0LHDLGNALeBl539bjq3IQEhHD/VfeTHJdMyzotGb1qNN1Tu/Pjnh+tjqaU8iJ3nPm3ALYYY7YZY3KARCDulDFxwBTn9VlAOxERNxxbnaMLKl3Aeze/x/s3v8/J/JPc+9W9PPXtU+w9vtfqaEopL3BH+Z8PZBS6vdN5X5FjjDF5wGGguhuOrVx0U92bSI5L5sGrHiRtRxqxybF8sv4Tcgt0KUip8kxcfVtgEekB3GqMGeC83RdoYYx5uNCY9c4xO523tzrHHDhlXwOBgQCRkZHNExMTXcrmbllZWYSHh1sdw2P25e5j1qFZbMjewHlB59EjogeNQhuV6nvL+9ycK52X4uncFM+VuWnbtu0qY0xUiQONMS59Aa2BBYVuPwM8c8qYBUBr5/VAYD/OXzzFfTVv3tz4mm+++cbqCB5XUFBg0nakmVtm3mIun3y5eXbJs2bf8X0lfp8/zM250Hkpns5N8VyZG2ClKUV3u2PZZwXQWEQaiEgwcAdgP2WMHejnvN4dWOQMqXyMiHDzhTeTHJ/MfVfcx/zf5xOTFMO0X6eRV5BndTyllJu4XP7GsYY/GMfZ/a/ADGPMehF5UURincMmAtVFZAswBDjt6aDKt1QIrMAj1zzCnNg5XFHjCkb9OIpeX/Ri9d7VVkdTSrlBoDt2YoyZB8w75b6Rha6fAHq441jKu+pXqc+HHT5k4Y6FvLHiDfrO70tCowQea/4YEaERVsdTSp0jfYWvKpGIcEv9W7DH27nn8ntI3ZpKl6QufP7b5+QX5FsdTyl1DrT8ValVDKrI480fZ3bsbC6LuIyXl7/MnfPuZN2+dVZHU0qdJS1/ddYaVm3IhFsm8MaNb7Dv+D56z+vN9APTyTyRaXU0pVQpafmrcyIidGrQidSEVO5qchfLspYRkxzD7E2zKTAFVsdTSpVAy1+5JCwojCeufYKn6zzNRVUv4vmlz9N3Xl/WH1hvdTSl1Blo+Su3OC/4PD6+9WNeveFVdmXtotfcXry87GUOnzxsdTSlVBG0/JXbiAgxF8WQmpDKnZfdycxNM4lNjiV5S7IuBSnlY7T8ldtVCq7EsBbDmNFlBhdWupDnvn+O/l/2Z+PBjVZHU0o5afkrj7kk4hKmdJrCS9e/xI4jO+g5tyejfhzF0ZyjVkdTyu9p+SuPsomN+Ebx2OPt9Li4B5/9+hkxSTGkbk1F395JKeto+SuvqBJShRGtRjC9y3TODz+fZ797lrsX3M3mQ5utjqaUX9LyV17VtHpTpnaeyvOtn2dr5lZ6pPbgzRVvciz3mNXRlPIrWv7K62xio9vF3UiNTyWhcQJTN0wlNimW+b/P16UgpbxEy19ZpmpoVf7T+j9M6zyNGhVr8NS3T3HfV/exLXOb1dGUKve0/JXlrqh5BZ91/oznWj3Hrwd/pZu9G6NXjeZ47nGroylVbmn5K58QYAug5yU9SU1IJeaiGD7+5WNik2P5avtXuhSklAdo+SufEhEawYvXv8jUTlOpFlqNoYuH8sDXD7D98HaroylVrmj5K5/UrFYzpt82nWdaPMO6fevoau/Kuz+9S3ZettXRlCoXtPyVzwq0BXLnZXdiT7DTqUEnPlr3EXHJcaT9kaZLQUq5SMtf+bwaFWrwyg2vMLnjZMKCwnjsm8d4KO0hMo5kWB1NqTJLy1+VGc0jmzMjZgZPRj3JT3t/Ij4lng9Wf8CJvBNWR1OqzNHyV2VKkC2Iu5rehT3eTvt67Rm3ZhzxKfEszlhsdTSlyhQtf1Um1apYi9dvfJ2Jt0wkJCCEwYsG8/Cih9l5dKfV0ZQqE7T8VZnWok4LZsXMYkjzISzfs5z4lHg+XPMhJ/NPWh1NKZ+m5a/KvKCAIO6+/G7s8Xai60bz/ur36ZrSle93fW91NKV8lpa/Kjdqh9XmrZve4sMOH2ITGw98/QCPf/M4e7L2WB1NKZ+j5a/KnevOu47ZsbN59JpH+W7Xd8SlxDFh3QRy83OtjqaUz3Cp/EUkQkQWishm52W1YsZ9KSKZIjLXleMpVVrBAcEMuGIA9ng71513HWN+GkNXe1eW7VlmdTSlfIKrZ/7DgDRjTGMgzXm7KG8CfV08llJnrU54Hd5p+w4ftPuAfJPPfV/dxxOLn+CvY39ZHU0pS7la/nHAFOf1KUB8UYOMMWmAfmq3skybC9qQFJfEQ80eIj0jnZjkGCb/MpncAl0KUv5JXHmPFBHJNMZULXT7kDGmuKWfaOAJY0yXM+xvIDAQIDIysnliYuI5Z/OErKwswsPDrY7hk8rS3OzP3c/sQ7P5JfsXagfVpmdETxqHNvbIscrSvHibzk3xXJmbtm3brjLGRJU0rsTyF5GvgdpFbBoOTHFn+RcWFRVlVq5cWZqhXpOenk50dLTVMXxSWZyb9Ix0Rv04il1Zu7it4W0MbT6UmhVruvcYZXBevEXnpniuzI2IlKr8A0saYIxpf4aD/CUidYwxe0SkDrD3LHMqZZnoutG0qtOKib9MZNK6SaRnpPNQs4fodWkvAm0l/q+hVJnm6pq/HejnvN4PSHFxf0p5VWhgKA81e4ikuCSa1WrGGyveoOfcnvz0109WR1PKo1wt/1FABxHZDHRw3kZEokRkwt+DRGQJMBNoJyI7ReRWF4+rlFtdWPlCxrUbxztt3yErJ4t+X/Zj+HfD2Z+93+poSnmES3/bGmMOAO2KuH8lMKDQ7TauHEcpbxAR2l3YjtZ1WjNh3QQ+Xv8x3/zxDYOvHsztl9xOgC3A6ohKuY2+wlepU1QMqsgj1zzCnNg5NK3RlNd+fI1eX/Ri9d7VVkdTym20/JUqRoMqDRjfYTxv3fQWB04coO/8voz8fiQHTxy0OppSLtPyV+oMRIRb699Kanwqd19+N6lbU4lJimHGxhnkF+RbHU+pc6blr1QpVAyqyJDmQ5gVO4tLIy7lpWUv0Xteb37Z/4vV0ZQ6J1r+Sp2Fi6pexIRbJvB6m9fZe3wvd35xJy8ufZHME5lWR1PqrGj5K3WWRITODTtjj7fTp0kf5myeQ0xyDHM2z6HAFFgdT6lS0fJX6hyFB4fz1LVPMSNmBg2rNOQ/P/yHvvP7suHABqujKVUiLX+lXHRxtYuZ3HEyr97wKjuP7qTXF714ZdkrHD552OpoShVLy18pNxARYi6KITUhlTsuuYMZm2YQmxzL8qzluhSkfJKWv1JuVDm4Ms+0fIbPu3xO3Up1+fTAp/T/sj8bD260OppS/6Llr5QHXBpxKZ90+oTe1Xuz/fB2bp97O6//+DpHc/QzjZRv0PJXykNsYqNVeCtSE1LpfnF3pv06jdjkWOZum4srH6KklDto+SvlYVVCqjCi1Qimd5lOnbA6PLPkGe5ZcA9bDm2xOpryY1r+SnlJ0+pN+bTzp/yn9X/YnLmZHqk9eGvFWxzLPWZ1NOWHtPyV8iKb2Oh+cXdS41OJaxTHJxs+ITYpli9//1KXgpRXafkrZYFqodV4/rrn+bTzp1SvUJ0nv32S+xbex7bD26yOpvyElr9SFrqy5pVMv206I1qOYMOBDXSzd+PtVW9zPPe41dFUOaflr5TFAmwB3H7p7aTGp9KlYRcm/TKJuJQ4Fu5YqEtBymO0/JXyEdUrVOel61/ik06fUCW4CkPSh/Dg1w+y48gOq6OpckjLXykfc3Wtq0nsksiwFsNYs28NCSkJvPfze2TnZVsdTZUjWv5K+aBAWyC9L+tNakIqHet3ZPza8cQnx7Poj0W6FKTcQstfKR9Wo0INXm3zKh/f+jEVgyry6DePMnjRYDKOZlgdTZVxWv5KlQFRtaOYETODJ6OeZOWfK4lPjmfc6nGcyDthdTRVRmn5K1VGBNmCuKvpXaQmpNKuXjs+WPMBCSkJfLvzW6ujqTJIy1+pMqZWxVq8ceMbTLhlAkEBQTyU9hCPLHqEXVm7rI6myhAtf6XKqJZ1WjI7ZjaPN3+cZXuWEZ8cz/i148nJz7E6mioDXCp/EYkQkYUistl5Wa2IMc1EZKmIrBeRtSJyuyvHVEr9T1BAEPdcfg/2eDttLmjDez+/R1d7V37Y9YPV0ZSPc/XMfxiQZoxpDKQ5b5/qOHCXMaYp0BF4R0SqunhcpVQhtcNqMzp6NB+2/xBBuP/r+xmSPoQ/j/1pdTTlo1wt/zhgivP6FCD+1AHGmE3GmM3O67uBvUBNF4+rlCrCdedfx+zY2Txy9SMs2bmE2ORYJq6bSG5+rtXRlI8RV14wIiKZxpiqhW4fMsactvRTaHsLHL8kmhpz+qdai8hAYCBAZGRk88TExHPO5glZWVmEh4dbHcMn6dwUzcp5OZh3kNkHZ7M2ey2RgZH0iOjBJRUusSRLUfTfTPFcmZu2bduuMsZElTSuxPIXka+B2kVsGg5MKW35i0gdIB3oZ4xZVlKwqKgos3LlypKGeVV6ejrR0dFWx/BJOjdF84V5+Xbnt4z6cRQZRzPoVL8TQ6OGEhkWaWkm8I258VWuzI2IlKr8A0saYIxpf4aD/CUidYwxe5zlvreYcZWBL4ARpSl+pZT73HjBjbSs05JJv0xi4rqJLN65mEHNBnHnZXcSZAuyOp6yiKtr/nagn/N6PyDl1AEiEgwkAZ8YY2a6eDyl1DkICQjhwaseJCkuiajaUby18i16pvZkxZ8rrI6mLOJq+Y8COojIZqCD8zYiEiUiE5xjegI3Av1FZLXzq5mLx1VKnYO6leoytt1Y3rvZ8S6h9yy4h2FLhrE/e7/V0ZSXlbjscybGmANAuyLuXwkMcF7/FPjUleMopdwrum40Leu0ZOK6iUz6ZRKLMxbzULOHuOPSOwi0uVQLqozQV/gq5acqBFZg8NWDSYpL4qqaV/H6ite5fe7t/Lz3Z6ujKS/Q8lfKz9WrXI9x7cfxTvQ7HMk5wl3z72L4d8M5kH3A6mjKg7T8lVKICO3qtSMlLoUBVwxg3u/ziEmOIfG3RPIL8q2OpzxAy18p9Y+KQRV59JpHmR07m6bVm/LK8lfo9UUv1uxbY3U05WZa/kqp0zSs0pDxHcbz5k1vciD7AH3m9eH5H57n0IlDVkdTbqLlr5QqkojQsX5H7Al27m56NylbUohJjmHmppm6FFQOaPkrpc4oLCiMIVFDmBkzk4urXcyLS1+kz7w+rN+/3upoygVa/kqpUmlUrRETb5nIqDaj+PP4n/T6ohcvLX2JwycPWx1NnQMtf6VUqYkItzW8jdT4VPo06cPszbOJSYohaXMSBae/Ua/yYVr+SqmzFh4czlPXPsXnXT6nQZUGjPxhJHfNv4tfD/xqdTRVSlr+SqlzdknEJUzuOJlXbniFjKMZ3PHFHby6/FWO5ByxOpoqgZa/UsolIkLsRbGkJqRy+yW38/nGz4lJisG+1Y4rHxalPEvLXynlFpWDK/Nsy2dJvC2RCypdwPDvhtP/y/5sOrTJ6miqCFr+Sim3uqz6ZUztNJUXr3uR3w//Ts/Unrz+4+tk5WRZHU0VouWvlHI7m9hIaJxAakIq3Rp3Y9qv04hJjuGLbV/oUpCP0PJXSnlMlZAqPNf6OabfNp3aFWszbMkw7v3qXrZmbrU6mt/T8ldKeVzTGk35tPOnjGw9kk2HNtHd3p3kQ8kcyz1mdTS/peWvlPKKAFsAPS7uQWp8KnGN4kg7kkZscixfbv9Sl4IsoOWvlPKqaqHVeP665xlSewjVQ6vz5OInGbhwIL8f/t3qaH5Fy18pZYkGIQ2Yftt0hrcczvoD6+lq78qYn8ZwPPe41dH8gpa/UsoyAbZ3p3X0AAAOS0lEQVQA7rj0DlLjU7mtwW1MWDeBuJQ4vt7xtS4FeZiWv1LKctUrVOflG17mk06fUDm4Mo+nP86DaQ+y48gOq6OVW1r+SimfcXWtq/m8y+cMazGMNXvXkJCSwHs/v0d2XrbV0codLX+llE8JtAXS+7Le2OPt3Fr/VsavHU9CSgLpGelWRytXtPyVUj6pZsWavNbmNSbdOokKgRV4eNHDDE4bTMbRDKujlQta/kopn3Zt7WuZETODJ6KeYMWfK0hISWDcmnGczD9pdbQyTctfKeXzgmxB9GvaD3u8nbZ12/LB6g9ISElgyc4lVkcrs1wqfxGJEJGFIrLZeVmtiDH1RGSViKwWkfUi8oArx1RK+a/IsEjevOlNPrrlIwJtgQxKG8Sjix5ld9Zuq6OVOa6e+Q8D0owxjYE05+1T7QGuM8Y0A1oCw0TkPBePq5TyY63qtGJ2zGweu+Yxlu5ZSlxyHB+t/Yic/Byro5UZrpZ/HDDFeX0KEH/qAGNMjjHm78W5EDccUymlCAoI4t4r7sUeb6fNBW149+d36Wbvxg+7f7A6WpkgrryKTkQyjTFVC90+ZIwpaumnLvAF0Ah40hgztpj9DQQGAkRGRjZPTEw852yekJWVRXh4uNUxfJLOTdF0Xorn7rn5NftXZh6cyb68fVxd8WoSqiVQLfC0OioTXJmbtm3brjLGRJU0rsTyF5GvgdpFbBoOTClN+Rfafh6QDMQYY/4603GjoqLMypUrz5jN29LT04mOjrY6hk/SuSmazkvxPDE3Ofk5TF4/mY/WfoSI8MBVD9D3sr4EBQS59Tie5srciEipyr/EJRhjTHtjzOVFfKUAf4lIHecB6wB7S9jXbmA90KZ0P4ZSSpVecEAwA68cSHJ8Mq3rtObtVW/TPbU7y/cstzqaz3F1/d0O9HNe7weknDpARC4QkQrO69WA64GNLh5XKaWKdX74+Yy5eQxj240lJz+HAV8N4KnFT7H3+BnPT/2Kq+U/CuggIpuBDs7biEiUiExwjrkMWC4ia4DFwFvGmHUuHlcppUp04wU3khSXxKCrBpH2RxoxSTFMWT+F3IJcq6NZzqXyN8YcMMa0M8Y0dl4edN6/0hgzwHl9oTHmSmPMVc7L8e4IrpRSpREaGMqDzR4kOS6Z5pHNeWvlW/RM7cnKP33rMUVv06ddKqX8Qt3KdRnbbizvtn2X47nHuXvB3Tyz5Bn2Z++3OpoltPyVUn5DRGh7YVuS45MZeOVAFmxfQExSDNN+nUZeQZ7V8bxKy18p5XcqBFbg4asfJikuiatqXsWoH0dxx9w7WL13tdXRvEbLXynlt+pVrse49uMYHT2azJOZ9J3fl+e+f44D2QesjuZxWv5KKb8mInSo1wF7vJ17L7+XudvmEpMcw+e/fU5+Qb7V8TxGy18ppYCKQRV5rPljzI6dTZOIJry8/GV6fdGLtfvWWh3NI7T8lVKqkIZVGvLRLR/x5k1vciD7AH3m9eH5H54n80Sm1dHcSstfKaVOISJ0rN8Re4Kdfk37kbIlhS7JXZi1aRYFpsDqeG6h5a+UUsUICwpjaNRQZsbMpHHVxryw9AX6zOvD+gPrPXrckH374OGHoXVrqFgRRGD7drceQ8tfKaVK0KhaIybdOonX2rzGnmN76DW3Fy8ve5nDJw+f2w6zsqBnT8dlESrs2gUzZkC1atDGM++DqeWvlFKlICJ0adgFe7yd3pf1ZtamWcQkxZC0Oensl4LS0mDmTFi0qMjNmVdeCX/9BfPmQY8ebkh/Oi1/pZQ6C5WCK/F0i6f5vMvn1K9Sn5E/jKTf/H78dvC3Uu+jYM4cjPOySDbPV7OWv1JKnYNLIi5hcsfJvHz9y/xx9A9un3s7ry1/jSM5R4ocfzIvn6Sfd3LL6HQOz0hCgMwZc7h1dDpJP+/kZJ53X1Og5a+UUufIJjbiGsWRmpBKz4t7krgxkdikWFK3plL4UxJXZ2TS8pU0RiT9glm/gRDnB82H5uWQv+FXRiT9QstX0liT4b2nk2r5K6WUiyoHV2Z4q+FMv20651c6n2e/e5b+X/Zn06FNrMnIpNf4ZWRm53IsJ5+221ZiK3A8RmArKKDt1hUcy8knMzuXO8Yv89ovAC1/pZRykybVmzC101ReuO4Fth3eRs/UnvRNGk52/rF/xnT5bQmh+Y4PkwnNz6XLb9/9sy07N59+k37kzJ+s7h6BXjiGUkr5DVv3HnSdM4d2YQGM6R7JrJsW07AgjScS/6TT8sPkBvy7di/d9zvbX+9S/A6vvtozOT2yV6WU8lejRkGzZlQhlJFTdvPZS9uodSiXpx+sy4Cn6pMRGfCv4SH5xXyOQFiYo/i7dfNITC1/pZRyp8aNYeVKCp5/nuzAEC7dfpJpL23jucm7+O3CULq/2IjRPSI5HlJ0/eaJjdzgYAq6doVhw2DnTseG+fNh1ixYvNgtMXXZRyml3C0ggKzBj9J1axXGzBlFg0O76Jl+iParjjCmeyQf31aTxjtPELP0368QPh4UwrZq5/Pz00/Sd+iDMHXq/zYOGuS4vOkmSE93OaKWv1JKeUBYcCBbq55HTL+3eXDZLB7+IZGIo7m88PFueqUd5OKME/8afyIgiLGtevJB6x4MiSwgP7+AAJt4LJ8u+yillAcE2ITGtcIpsAWwqWY9cgOC/tl26R8nsJ3ylJ7cgCA21qyPERuhQQEeLX7Q8ldKKY95MPoiwoIDuHXTD4TlZJ9xbFhOtmNccAA1K4V4PJuWv1JKeUjnK+oQZBPabVmBrdCz9/PERnZgMHnyvwq2YWi39UeCbEKVCkFF7c6ttPyVUspDQgIDSLyh8j9v5wCOB3V/q1mf+7o+x28163M86H9n+aF5OSS2qYJnF3wctPyVUsqDLv35O0IF8sVGdmAI/3dDH2L6v8N3Da4mtt/bjL6hN9mBIeSLjVCbY7w3uFT+IhIhIgtFZLPzstoZxlYWkV0i8r4rx1RKqTJlxgxsebnIVVfy3ayFfBfTF2w2ggIEExDAkph+fDdrIXLlFdhycx0f4uIFrj7VcxiQZowZJSLDnLefLmbsS4B7Xp2glFJlRe3a8Oab2B57jA42Gx2A/ALDsZw8woID//esni6r4J133PIc/tJwddknDpjivD4FiC9qkIg0ByKBr1w8nlJKlS2pqTBkyL8+oCXAJlQODfr30zkDAmDoUMd4L5DC7zl91t8skmmMqVro9iFjTLVTxtiARUBfoB0QZYwZXMz+BgIDASIjI5snJiaeczZPyMrKIjw83OoYPknnpmg6L8XTuSmeK3PTtm3bVcaYqJLGlbjsIyJfA7WL2DS8lFkGAfOMMRkiZ34M2xgzHhgPEBUVZaKjo0t5CO9IT0/H1zL5Cp2boum8FE/npnjemJsSy98Y0764bSLyl4jUMcbsEZE6wN4ihrUG2ojIICAcCBaRLGPMsHNOrZRSyiWuPuBrB/oBo5yXKacOMMb0/vu6iPTHseyjxa+UUhZy9QHfUUAHEdkMdHDeRkSiRGSCq+GUUkp5hktn/saYAzgexD31/pXAgCLunwxMduWYSimlXKev8FVKKT+k5a+UUn5Iy18ppfyQlr9SSvkhLX+llPJDWv5KKeWHXHpvH08SkX3ADqtznKIGsN/qED5K56ZoOi/F07kpnitzU88YU7OkQT5b/r5IRFaW5g2T/JHOTdF0Xoqnc1M8b8yNLvsopZQf0vJXSik/pOV/dsZbHcCH6dwUTeeleDo3xfP43Oiav1JK+SE981dKKT+k5a+UUn5Iy/8MRCRCRBaKyGbnZbUzjK0sIrtE5H1vZrRKaeZGRJqJyFIRWS8ia0XkdiuyeoOIdBSRjSKyRURO+7AiEQkRkc+d25eLSH3vp7RGKeZmiIhscP4bSRORelbk9LaS5qXQuO4iYkTErU/91PI/s2FAmjGmMZDmvF2cl4DFXknlG0ozN8eBu4wxTYGOwDsiUtWLGb1CRAKAsUAnoAnQS0SanDLsXuCQMaYR8DbwundTWqOUc/Mzjk/4uxKYBbzh3ZTeV8p5QUQqAY8Ay92dQcv/zOKAKc7rU4D4ogaJSHMgEvjKS7l8QYlzY4zZZIzZ7Ly+G8dnPJf4ysMyqAWwxRizzRiTAyTimJ/CCs/XLKCdiIgXM1qlxLkxxnxjjDnuvLkMuMDLGa1Qmn8z4DipfAM44e4AWv5nFmmM2QPgvKx16gARsQH/Bzzp5WxWK3FuChORFkAwsNUL2bztfCCj0O2dzvuKHGOMyQMOA9W9ks5apZmbwu4F5ns0kW8ocV5E5GqgrjFmricCuPoB7mWeiHwN1C5i0/BS7mIQMM8Yk1HeTuTcMDd/76cOMBXoZ4wpcEc2H1PUf/hTn0NdmjHlUal/bhHpA0QBN3k0kW8447w4TyrfBvp7KoDfl78xpn1x20TkLxGpY4zZ4yywvUUMaw20EZFBQDgQLCJZxpgzPT5QJrhhbhCRysAXwAhjzDIPRbXaTqBuodsXALuLGbNTRAKBKsBB78SzVGnmBhFpj+Ok4iZjzEkvZbNSSfNSCbgcSHeeVNYG7CIS6/yMdJfpss+Z2YF+zuv9gJRTBxhjehtjLjTG1AeeAD4pD8VfCiXOjYgEA0k45mSmF7N52wqgsYg0cP7Md+CYn8IKz1d3YJHxj1dYljg3zuWND4FYY0yRJxHl0BnnxRhz2BhTwxhT39kty3DMj1uKH7T8SzIK6CAim4EOztuISJSITLA0mfVKMzc9gRuB/iKy2vnVzJq4nuNcwx8MLAB+BWYYY9aLyIsiEuscNhGoLiJbgCGc+Zlj5UYp5+ZNHH81z3T+Gzn1F2e5U8p58Sh9ewellPJDeuavlFJ+SMtfKaX8kJa/Ukr5IS1/pZTyQ1r+Sinlh7T8lVLKD2n5K6WUH/p/NX8sVJF/6lsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -676,7 +659,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VHX2x/H3mRRKQkdCFVCwgCAIIoogEVBAyIQqgggqYlksP3GVVezoirpgQ1ZlUVAxtJAJTVSKyipSlCIgdVGQJiVgaGnn90eG3RgDSZhJ7mTmvJ5nnrl35pv7PSeBz9y5M3NHVBVjjDGhxeV0AcYYY4qfhb8xxoQgC39jjAlBFv7GGBOCLPyNMSYEWfgbY0wIsvA3xpgQZOFvjDEhyMLfOEJEFojIc3nc7haRvSIS7l2/RkQWicjvInJERJJF5JIc49uLSJaIpOa6XF1MfSwRkSHFNNcwEVkpIqdE5IN8xoqIjBKRX72/tyUi0rg46jQlg4W/ccoHwEARkVy3DwQ+VtUMb4B/BniAmkB9YC3wbxGpl+NndqtqdK7Lt0XeQfHbDYwCJhZgbB/gDqAtUBn4Fviw6EozJY2Fv3FKEtmh1Pb0DSJSCegGTPbe9DIwWVVfV9XfVfWQqo4ElgNPn8ukIlJHRBJF5DcROSgib3lvd4nISBH5WUT2i8hkEangva+0iHzkHZ8iIitEJEZEXvDW/5b32cZb5/rLKAhVTVTVJOBgAYbXB5aq6nZVzQQ+AhoVZX2mZLHwN45Q1RPANOC2HDf3BX5S1TUiUha4Bpiex49PA24o7JwiEgbMAX4G6gG1gATv3YO9l1jgAiAaOB3mg4AKQB2gCnAPcEJVnwC+BoZ5n20MO8O8KWe5jChsHwWUADQQkYtEJMLbw6dFNJcpgcKdLsCEtEnAXBG53/tgcJv3Nsh+VuAC9uTxc3uA83Ks1xSRlFxjaqnqsVy3tSL78NFfVTXDe9tS7/UAYIyqbgcQkb8BP4rI7UA62aHfQFXXAqsK06SqVizMeD/ZQ/YD0yYgE9gJXO9AHSZA2Z6/cYyqLgV+A9wicgFwJTDFe/dhIAuokceP1vD+3Gm7VbVirkvu4IfsPfefcwR/TjXJfkZw2s9k7xzFkH2sfAGQICK7ReRl7950kRGR+TlevB5wDpt4muzfZx2gNPAssMj7jMoYC3/juMlk7/EPBD5T1X0A3vD+luwXLnPrC3x5DnPtBM4//U6iXHYDdXOsnw9kAPtUNV1Vn1XVRmQfiurG/w5X5XtO9DzeiZTz8nheP6OqXXK8eP1xYZr0uhyYqqq7VDVDVT8AKmHH/Y2XHfYxTpsMjASaAv+X674RwAIR+Ql4n+x/r8OBdkDrc5hrOdmHQ14SkafJPhzSQlX/DXwCPCYi88l+VvEi2eGZISKxwAFgA3CU7MNAmd5t7iP7NYIzUtXoc6j1T7wPWuFAGBAmIqWBjDM8k1kB9BGRBG8/A4AIYKs/ajEln+35G0ep6g7gGyAKSM5131LgRqAn2aF9iOwXLq9X1XU5htbMY4+6Vx5zZQLdgQbAL8Au4Gbv3RPJPrzzFfAf4CRwv/e+6sAMsoN/I9nPOj7y3vc60FtEDovIG+f6eyigkcAJsh8Ub/UujwQQkfO9fZ/vHTsaWAOsBlLIfmDtpaq5XxsxIUrsm7xMSSEilwOLgP6qusDpeowpyWzP35QYqroGiAeanOG4vTGmgGzP3xhjQpDt+RtjTAgK2KfOVatW1Xr16jldBgDHjh0jKirK6TL8Jtj6AeupJAi2fiAwe1q1atUBVT0vv3EBG/716tVj5cqVTpcBwJIlS2jfvr3TZfhNsPUD1lNJEGz9QGD2JCI/5z/KDvsYY0xIsvA3xpgQ5JfwF5HOIrJJRLbmdZZCEblHRNaJyGoRWSoi9hFzY4xxkM/h7z1N7jigC9nnDbklj3CfoqpNVLUZ2edoH+PrvMYYY86dP/b8WwFbvV8akUb2ecTdOQeo6tEcq1EU4GRYxhhjio7PH/ISkd5AZ1Ud4l0fCFyV+4stROQvwMNAJNnnZtmSx7aGAkMBYmJiWiQkJOQe4ojU1FSio/1ybq6AEGz9gPVUEgRbPxCYPcXGxq5S1Zb5DlRVny5kn3J3Qo71gcCbZxnfH5iU33ZbtGihgWLx4sVOl+BXwdaPqvVUEgRbP6qB2ROwUguQ3f447LOL7C+MOK022edGP5MEss/PUrLs2gX33w9XXw1ly4II7NjhdFXGGHNO/BH+K4CGIlJfRCKBfuQ6Na+INMyxehPwp0M+jklNhb59s6/PZutWmDYNKlWCtm3PPtYYYwKcz+Gv2V8kMYzsr7nbCExT1fUi8pyIxHmHDROR9SKymuzj/oN8nddvFi6E6dNh0aKzj2vXDvbtg3nzoE9eXy5ljDElh19O76Cq84B5uW57Ksfyg/6YpyhkJSYigCYm4oqLO/NAl30ezhgTPEIy0U5lZDLrh13cMGYJR6bNQoCUaYncOGYJs37YxamMzHy3YYwxJVnAntitqKzemcLgictJz8yi5q/bKZWZBkDpjDQyN2xkZMpJnk3ewKQ7WnF5nYoOV2uMMUUjpPb81+xM4ZZ3l5FyIp1jaZnEbl+JKysLAFdWFrHbVnAsLZOUE+n0e3cZa3ba150aY4JTyIT/qYxMBk1czon0/x3S6fbT15TOTAegdGY63X5a+t/7TqRnj7dDQMaYYBTch3169YLERABKAatz3Z0W9sf2L/ntP+wY3e2Pg56B9qeXe/aEmTP9X6cxxhSz4N7zf+klaNYMzvBNO5GZGX9YL5Vr/bTM0qWhefPs7RljTBAI7vBv2BBWriTrmWc4EV6KDPljuwo8M7gmC68ol+ePZ4iLE+Gl+M/tt8PKlbBmDcyYAatWZQ+YPz97/csvi7gRY4zxr+A+7AMQFkbqsAfpua0Crye+RP3Dv1I2/RQAR6PCWHdBGWa2r0yHlUf420d7iEnJ3vs/HlGK7ZVq8VDPETzepwENXK4/f7jrvvuyr6+7DpYsKcamjDHGN8G95+8VFRnOtoo16T5oLONa9+VkWAQAFY5lkvDsNh6atpelTcvh/ntDPulQmWPhEYxr3Zfug19jW8WauESyN6Sa98WC3xhTwgT/nj8Q5hIaVotm875UNp9Xl/SwiP++yyciE+6cd4AbVhzl+UE1eXFgTTxtTuL6pRIqLi6uFo19/YAxJtiExJ4/wL3tLyQqMowbN39DVNqJP91f57c03nl1B39/Zye7q4azvu0ioqsvYEi7OnlszRhjSraQCf+uTWoQ4RI6bF2BK8eefPaLupFkiAsBun17hOS/beHG71KRSov5146/8NOJn5wr3BhjikDIhH+p8DASri3/39M5QPaLuj+dV4+7ej7JT+fV43hEKQAqHsvkmff38HTV4YS7whi3fxx/+/pvHDp5yKnyjTHGr0Im/AEu+WEppQUyvW/h/Me1t9J98Gssrd+cuEFjGXPtAE6ElyJTXJR2Qe+NB5gZN5POFTrz6Y5PiUuKI2lr0ulvJDPGmBIrpMKfadNwZaQjlzdl6YzPWdp9ILhcRIQJGhbG190HsXTG50jTJrjS02HaNEqFleKmijcxo/sMLqhwAU/++0mGfDaEHUd2ON2NMcacs5B4t89/Va8Or7yC66GH6ORy0QnIzFKOpWUQFRlOmMv7ls5uq+C11/7wFs4LK17IB50/YMbmGby26jV6JfdiaNOh3HHZHUR43zpqjDElRWjt+c+eDQ8//IcvZglzCeVLR/wv+AHCwmD48OzxObjERd+L++KJ9xB7fixvrX6LPrP78MP+H4qrA2OM8YvQCn8/Oa/sebx63auM6zCO4xnHuW3+bTz/7fMcTTvqdGnGGFMgFv4+aFe7HUnuJAY2GsiMLTNwJ7lZsGOBvSBsjAl4Fv4+KhtRlkevfJQpN03hvDLn8ciXj3D/ovvZk7rH6dKMMeaMLPz9pHGVxky5aQqPtHyE5XuX4/a4+XDDh2Rm2ZfBGGMCj1/CX0Q6i8gmEdkqIiPyuP9hEdkgImtFZKGI1PXHvIEm3BXOoMaDmOWeRcuYlry84mX6z+vPxoMbnS7NGGP+wOfwF5EwYBzQBWgE3CIijXIN+wFoqapNgRnAy77OG8hqRddiXIdxvHLdK+w7to9+c/vx6opXOZ5+3OnSjDEG8M+efytgq6puV9U0IAFw5xygqotV9XTyLQNq+2HegCYidK7XGU+8h54NezJpwyR6eHrw1a6vnC7NGGMQX9+ZIiK9gc6qOsS7PhC4SlWHnWH8W8BeVR2Vx31DgaEAMTExLRISEnyqzV9SU1OJjo72aRvbTm4j4VACe9P3ckXZK+hVuRflw8r7qcLC8Uc/gcZ6CnzB1g8EZk+xsbGrVLVlvgNV1acL0AeYkGN9IPDmGcbeSvaef6n8ttuiRQsNFIsXL/bLdk5lnNLxq8dr88nN9eopV+v0TdM1MyvTL9suDH/1E0isp8AXbP2oBmZPwEotQHb747DPLiDnSe9rA7tzDxKRjsATQJyqnvLDvCVOZFgk91x+DzPjZnJxpYt59ttnuf3T29mest3p0owxIcYf4b8CaCgi9UUkEugHJOccICLNgXfIDv79fpizRKtfoT4Tb5zIc9c8x9aUrfSa3Ytxq8dxKjMkHxONMQ7wOfxVNQMYBiwANgLTVHW9iDwnInHeYa8A0cB0EVktIsln2FzIEBF6NOxBcnwyN9S9gX+u+Se9k3uzYu8Kp0szxoQAv5zVU1XnAfNy3fZUjuWO/pgnGFUpU4XR7UYTd2Eczy97njsW3EGPBj0Y3nI4FUpVcLo8Y0yQsk/4Bog2tdowyz2L2y+7neRtycQlxTF3+1w7T5AxpkhY+AeQMuFleLjFwyR0S6BmVE1GfD2Ce7+4l12/73K6NGNMkLHwD0CXVL6Ej7p+xIhWI/hh/w/08PTg/R/fJz0r3enSjDFBwsI/QIW5whhw6QA88R5a12zNmFVjuGXOLfx44EenSzPGBAEL/wBXPao6b8S+wdj2Yzl88jD95/bnpeUvcSz9mNOlGWNKMAv/EkBE6Fi3I0nxSfS9uC9TNk7BneRm8S+LnS7NGFNCWfiXIOUiyzGy9Ugmd5lMuchyPLD4Af5v8f+x/3jIf27OGFNIFv4lULNqzZjWfRoPXvEgX//6Ne4kN1N/mkqWZjldmjGmhLDwL6EiXBEMaTKExLhEGldtzKjvRnHb/NvYcniL06UZY0oAC/8S7vzy5/Nep/d48doX+fnoz/Sd3Zc3vn+DkxknnS7NGBPALPyDgIjQ/cLuJMcn0/WCrry37j16Jfdi2Z5lTpdmjAlQFv5BpFLpSrxw7Qu8d8N7ANz12V08sfQJDp887HBlxphAY+EfhFrXaM3MuJnc1eQu5m2fR1xSHMnbku08QcaY/7LwD1Klw0vzwBUPMK37NOqWr8sTS5/grs/v4pejvzhdmjEmAFj4B7mGlRoyuctknmz9JOsPrKdnck8WHFlAeqadJ8iYUGbhHwJc4qLvxX3xxHtoV7sdc1Lm0HdOX1bvX+10acYYh1j4h5BqZasxpv0Yhp43lNT0VG6bfxujlo3i97TfnS7NGFPMLPxDUJOyTUhyJzHg0gFM3zwdd5Kbz3/+3F4QNiaEWPiHqKiIKB5r9RhTuk6hSpkqPLzkYR5Y/AB7j+11ujRjTDGw8A9xjas25pObPmF4i+F8t+c73EluPtrwEZlZmU6XZowpQhb+hnBXOIMvG0xiXCLNY5ozesVobp13Kz8d+snp0owxRcTC3/xX7XK1Gd9hPC+3e5ndx3bTb04/xqwcw/H0406XZozxM7+Ev4h0FpFNIrJVREbkcX87EfleRDJEpLc/5jRFQ0ToUr8LyfHJxDeI5/3179MzuSdLf13qdGnGGD/yOfxFJAwYB3QBGgG3iEijXMN+AQYDU3ydzxSPCqUq8Mw1z/D+je8T4Yrg3i/u5dGvHuXAiQNOl2aM8QN/7Pm3Araq6nZVTQMSAHfOAaq6Q1XXAvZtIyVMy+otmRk3k/suv48vfv4Cd5KbxC2J9rZQY0o48fU/sfcwTmdVHeJdHwhcparD8hj7ATBHVWecYVtDgaEAMTExLRISEnyqzV9SU1OJjo52ugy/Odd+9qbvZerBqWw9tZUGpRpwc5WbqR5RvQgqLLxg+xtB8PUUbP1AYPYUGxu7SlVb5jtQVX26AH2ACTnWBwJvnmHsB0Dvgmy3RYsWGigWL17sdAl+5Us/mVmZOnPzTL16ytXafHJzffuHt/VUxin/FXeOgu1vpBp8PQVbP6qB2ROwUguQsf447LMLqJNjvTaw2w/bNQHIJS56NuxJcnwyHet25O01b9N7dm9W7VvldGnGmELwR/ivABqKSH0RiQT6Acl+2K4JYFXLVOXldi8zvuN40jLTGPzpYJ755hmOnDridGnGmALwOfxVNQMYBiwANgLTVHW9iDwnInEAInKliOwi+xDROyKy3td5TWC4tta1JMYlMrjxYJK2JuFOcjP/P/PtBWFjApxf3uevqvNU9SJVvVBVX/De9pSqJnuXV6hqbVWNUtUqqtrYH/OawFA2oizDWw4noVsC1aOq8+hXj3Lfwvv4NfVXp0szxpyBfcLX+M0llS/h464f89iVj7Fq3yp6eHrwwY8fkJGV4XRpxphcLPyNX4W5wri10a143B6uqn4V/1j1D/rP7c/6A3akz5hAYuFvikSN6Bq8cf0bjGk/hgMnDtB/Xn9GLx9t5wkyJkBY+JsiIyJ0qtsJT7yHPhf14eONH+P2uFmyc4nTpRkT8iz8TZErF1mOka1HMrnLZKIjorl/0f08vORhfjv+m9OlGROyLPxNsWlWrRnTuk3jgeYP8OXOL4lLimPapmlkqZ3yyZjiZuFvilVEWAR3Nb2LRHcijas05vllzzNo/iC2Ht7qdGnGhBQLf+OIuuXr8t4N7zGqzSh2HN1Bnzl9eOP7NziVecrp0owJCRb+xjEigruBG0+8hy71uvDeuvfoldyL5XuWO12aMUHPwt84rnLpyrzY9kXe7fQuWZrFnZ/dycilI0k5meJ0acYELQt/EzCurnk1iXGJDGkyhLnb5xKXFMfsbbPtPEHGFAELfxNQSoeX5sErHmRq96nUKV+Hx5c+zt2f383OozudLs2YoGLhbwLSRZUuYnLnyTxx1ROsPbCWHsk9mLBuAulZ6U6XZkxQsPA3ASvMFUa/S/rhcXtoW6str3//OjfPuZk1v61xujRjSjwLfxPwYqJiGBs7ltdjX+fIqSMMnDeQF5a9QGpaqtOlGVNiWfibEuP6868nOT6Z/pf2Z+qmqbg9bhb+vNDpsowpkSz8TYkSFRHFiFYj+Ljrx1QqVYmHljzEg4se5HDGYadLM6ZECXe6AGPORZPzmvBJt0/4cMOHjF89nm+yvuH4xuP0u7gfYa4wp8szJuDZnr8psSJcEdxx2R0kuhOpV6oeLy1/iYHzB7Lp0CanSzMm4Fn4mxKvTrk63FftPl5q+xK/pv7KzXNuZuyqsZzIOOF0acYELAt/ExREhJsuuInk+GTiLoxj4o8T6eHpwTe/fuN0acYEJL+Ev4h0FpFNIrJVREbkcX8pEZnqvf87Eannj3mNya1CqQo81+Y5Jt44kQhXBHd/cTcjvh7BwRMHnS7NmIDic/iLSBgwDugCNAJuEZFGuYbdCRxW1QbAWGC0r/MaczZXVr+SGXEzuOfye1iwYwFuj5tZW2bZeYKM8fLHnn8rYKuqblfVNCABcOca4wYmeZdnAB1ERPwwtzFnVCqsFH9p9hdmdJ/BhRUu5KlvnuLOz+5kx5EdTpdmjOPE1z0hEekNdFbVId71gcBVqjosx5gfvWN2ede3ecccyLWtocBQgJiYmBYJCQk+1eYvqampREdHO12G3wRbP5B/T1maxbep3+I57CFd07mxwo10rNCRcAncdzsH298p2PqBwOwpNjZ2laq2zG+cP/7l57UHn/sRpSBjUNV3gXcBWrZsqe3bt/e5OH9YsmQJgVKLPwRbP1Cwnq7neu4+cTejl49m7o65bGQjT1/9NFfEXFE8RRZSsP2dgq0fKNk9+eOwzy6gTo712sDuM40RkXCgAnDID3MbUyhVy1TlleteYVyHcZzMOMmgTwfx7LfPcjTtqNOlGVOs/BH+K4CGIlJfRCKBfkByrjHJwCDvcm9gkdorb8ZB7Wq3Y5Z7FoMaDSJxSyLuJDef7vjUXhA2IcPn8FfVDGAYsADYCExT1fUi8pyIxHmH/QuoIiJbgYeBP70d1JjiVjaiLI9c+Qif3PQJ1cpW469f/pVhi4axOzX3E1djgo9fXu1S1XnAvFy3PZVj+STQxx9zGeNvjao04uOuHzNl4xTeWv0W8Z54/tLsLwy4dADhrsB9QdgYX9gnfI0Bwl3h3Nb4NpLcSVxZ/UpeXfkq/ef2Z8PBDU6XZkyRsPA3Joea0TV56/q3ePW6V/ntxG/cMvcWXlnxCsfTjztdmjF+ZeFvTC4iwo31bsQT76FXw15M3jCZeE88X+36yunSjPEbC39jzqB8ZHmeuvopJnWeRNnwsvxl4V945MtHOHDiQP4/bEyAs/A3Jh9XxFzB9O7TGdZsGIt/WUzcrDimb55OlmY5XZox58zC35gCiAiL4O7L72Zm3EwuqXIJz337HIM/Hcy2lG1Ol2bMObHwN6YQ6lWox79u+BfPt3me7Ue203t2b9764S1OZZ5yujRjCsXC35hCEhHiG8STHJ9M53qdeWftO/RO7s2KvSucLs2YArPwN+YcVS5dmb+3/TvvdHqHjKwM7lhwB0/++0lSTqY4XZox+bLwN8ZH19S8hkR3Indediezt83G7XEzZ/scO0+QCWgW/sb4QZnwMjzU4iGmdptK7eja/O3rv3HPF/ew8/edTpdmTJ4s/I3xo4srX8zkLpP5W6u/sea3NfT09GTijxNJz0p3ujRj/sDC3xg/C3OF0f/S/iS5k2hTqw1jV42l35x+rPttndOlGfNfFv7GFJHqUdV5LfY1Xot9jZRTKQyYN4C/f/d3jqUfc7o0Yyz8jSlqHc7vgMftod8l/fjkp09wJ7lZ9Msip8syIc7C35hiEB0ZzeNXPc5HXT+ifKnyPLj4QR5a/BD7ju1zujQToiz8jSlGTc9rytRuU3noiodY+utS3B43n/z0CZlZmU6XZkKMhb8xxSzCFcGdTe5kVtwsmlZtyovfvchtn97G5sObnS7NhBALf2McUqd8Hd7p9A4vXvsiO4/u5ObZN/P6969zMuOk06WZEGDhb4yDRITuF3YnOT6Zmy64iQnrJtAzuSff7v7W6dJMkLPwNyYAVCxdkVHXjmLCDRNwiYuhnw9l8oHJHDp5yOnSTJDyKfxFpLKIfC4iW7zXlc4w7lMRSRGROb7MZ0ywu6rGVcyMm8nQpkP5/tj3uJPceLZ67DxBxu983fMfASxU1YbAQu96Xl4BBvo4lzEhoVRYKe5vfj+P1XiMeuXrMfLfI7nrs7v4+ejPTpdmgoiv4e8GJnmXJwHxeQ1S1YXA7z7OZUxIqRFZg0ldJvFk6yfZcHADPT09eXftu6Rn2nmCjO98Df8YVd0D4L2u5ntJxpjTXOKi78V98cR7aF+nPW/+8CZ95/Rl9f7VTpdmSjjJ71iiiHwBVM/jrieASapaMcfYw6p6puP+7YFHVLXbWeYaCgwFiImJaZGQkJBvA8UhNTWV6Ohop8vwm2DrB0Knpx+P/8i0Q9M4nHmYa6OvpXul7pR1lXWowsIJlb+R02JjY1epast8B6rqOV+ATUAN73INYNNZxrYH5hR02y1atNBAsXjxYqdL8Ktg60c1tHo6lnZMRy8frU0nNdXYqbG64D8LNCsrq3iLOweh9DdyErBSC5Cxvh72SQYGeZcHAR4ft2eMyUfZiLI8euWjTLlpClXLVGX4l8O5f9H97End43RppgTxNfxfAjqJyBagk3cdEWkpIhNODxKRr4HpQAcR2SUiN/o4rzEhr3GVxky5aQqPtHyE5XuX4/a4+XDDh3aeIFMgPoW/qh5U1Q6q2tB7fch7+0pVHZJjXFtVPU9Vy6hqbVVd4GvhxhgId4UzqPEgZrln0SKmBS+veJkB8waw8eBGp0szAc4+4WtMEKgVXYu3O7zNK+1eYe+xvdwy9xZeXfEqx9OPO12aCVAW/sYECRGhc/3OeOI9xDeIZ9KGSfTw9ODrXV87XZoJQBb+xgSZCqUq8Mw1z/BB5w8oHV6a+xbex6NfPsqBEwecLs0EEAt/Y4JUi5gWTO8+nfua3ccXv3xBXFIcMzfPJEuznC7NBAALf2OCWGRYJPdefi8z42ZycaWLeebbZ7j909vZnrLd6dKMwyz8jQkB9SvUZ+KNE3numufYmrKVXrN78fbqt0nLTHO6NOMQC39jQoSI0KNhD5Ljk7mh7g2MXzOeXsm9WLF3hdOlGQdY+BsTYqqUqcLodqP5Z8d/kp6Vzh0L7uDpb57myKkjTpdmipGFvzEhqk2tNsxyz+L2y27Hs9VDXFIc87bPsy+OCREW/saEsDLhZXi4xcMkdEugZlRNHvv6Me794l52/b7L6dJMEbPwN8ZwSeVL+KjrR4xoNYIf9v9AD08P3v/xfTKyMpwuzRQRC39jDABhrjAGXDoAT7yH1jVbM2bVGG6Zews/HvjR6dJMEbDwN8b8QfWo6rwR+wZj24/l0IlDDJg3gJeWv8Sx9GNOl2b8yMLfGPMnIkLHuh1Jik+iz0V9mLJxCu4kN0t2LnG6NOMnFv7GmDMqF1mOka1HMrnLZMpFluP+Rffz8JKH2X98v9OlGR9Z+Btj8tWsWjOmdZ/Gg1c8yFe7vsKd5GbqT1PtPEElmIW/MaZAIlwRDGkyhMS4RBpXbcyo70YxaP4gthze4nRp5hxY+BtjCuX88ufzXqf3ePHaF9lxdAd9Z/flje/f4GTGSadLM4Vg4W+MKTQRofuF3UmOT6brBV15b9179EruxXd7vnO6NFNAFv7GmHNWqXQlXrj2Bd674T0Ahnw2hCeWPsHhk4cdrszkx8LfGOOz1jVaMzNuJnc1uYt52+cRlxTH7G2z7TxBAczC3xjjF6XDS/PAFQ8wrfs06pavy+NLH+euz+/il6O/OF2ayYNP4S8ilUXkcxFmSCpdAAAOzklEQVTZ4r2ulMeYZiLyrYisF5G1InKzL3MaYwJbw0oNmdxlMk+2fpL1B9bTM7knE9ZNIFMznS7N5ODrnv8IYKGqNgQWetdzOw7cpqqNgc7AayJS0cd5jTEBzCUu+l7cF0+8h3a12/H6968zes9oVu9f7XRpxsvX8HcDk7zLk4D43ANUdbOqbvEu7wb2A+f5OK8xpgSoVrYaY9qP4c3r3+Rk1klum38bo5aN4ve0350uLeSJLy/IiEiKqlbMsX5YVf906CfH/a3IfpBorPrnjwaKyFBgKEBMTEyLhISEc67Nn1JTU4mOjna6DL8Jtn7AeioJDv5+kCXpS/jy9y8pH1ae3pV7c3mZyxERp0s7Z4H4N4qNjV2lqi3zHaiqZ70AXwA/5nFxAym5xh4+y3ZqAJuA1vnNqaq0aNFCA8XixYudLsGvgq0fVeupJDjdz7rf1mkvTy+97IPLdNjCYbondY+zhfkgEP9GwEotQMbme9hHVTuq6mV5XDzAPhGpAeC9zvNsTyJSHpgLjFTVZfk+IhljgtZlVS8joVsCw1sMZ9nuZbiT3Hy88WMys+wF4eLk6zH/ZGCQd3kQ4Mk9QEQigVnAZFWd7uN8xpggEO4KZ/Blg5nlnkXzmOa8tPwlbp13K5sObXK6tJDha/i/BHQSkS1AJ+86ItJSRCZ4x/QF2gGDRWS199LMx3mNMUGgdrnajO8wntFtR7P72G5unnMzY1aO4UTGCadLC3rhvvywqh4EOuRx+0pgiHf5I+AjX+YxxgQvEaHrBV1pU6sNY1aN4f317/PZz5/xZOsnaVOrjdPlBS37hK8xJiBUKFWBZ695lvdvfJ8IVwT3fHEPj331GAdPHHS6tKBk4W+MCSgtq7dkZtxM7r38Xj7/+XPikuJI3JJo5wnyMwt/Y0zAiQyL5L5m9zGj+wwaVGzA0988zR0L7uA/R/7jdGlBw8LfGBOwLqh4Ae93fp9nrn6GTYc30Su5F+PXjCctM83p0ko8C39jTEBziYteF/UiOT6Zjud35O3Vb9N7dm9W7VvldGklmoW/MaZEqFqmKi9f9zJvd3ibUxmnGPzpYJ755hmOnDridGklkoW/MaZEaVu7LbPcsxjceDBJW5NwJ7n59D+f2gvChWThb4wpccpGlGV4y+F8ctMnxETF8Nev/sp9C+/j19RfnS6txLDwN8aUWJdWuZQpXafw2JWPsWrfKnp4ejBp/SQysjKcLi3gWfgbY0q0MFcYtza6FY/bQ6vqrXh15av0n9uf9QfXO11aQLPwN8YEhRrRNXjz+jf5x3X/4MCJA/Sf25/Ry0dzPP2406UFJAt/Y0zQEBFuqHcDnngPfS7qw0cbPyLeE8+XO790urSAY+FvjAk65SLLMbL1SD7s8iFREVEMWzSM4UuG89vx35wuLWBY+Btjglazas2Y1m0a9ze/nyU7l+BOcjNt0zSy/vwtsiHHwt8YE9QiwiIY2nQoie5ELq1yKc8ve55B8wex9fBWp0tzlIW/MSYk1C1flwk3TGBUm1HsOLqDPnP68OYPb3Iq85TTpTnCwt8YEzJEBHcDN554D13qdeHdte/SK7kXy/csd7q0Ymfhb4wJOZVLV+bFti/ybqd3ydIs7vzsTp7895OknExxurRiY+FvjAlZV9e8msS4RIY0GcKcbXOIS4pj9rbZIXGeIAt/Y0xIKx1emgeveJCp3adSp3wdHl/6OHd/fjc7j+50urQiZeFvjDHARZUuYnLnyTxx1ROsPbCWHsk9+Ne6f5Gele50aUXCp/AXkcoi8rmIbPFeV8pjTF0RWSUiq0VkvYjc48ucxhhTVMJcYfS7pB8et4e2tdry2vev0W9OP9b+ttbp0vzO1z3/EcBCVW0ILPSu57YHuEZVmwFXASNEpKaP8xpjTJGJiYphbOxYXo99nZRTKdw671Ze/O5FUtNSi37ynTuhd2+oUAHKl4eePeGXX/w+ja/h7wYmeZcnAfG5B6hqmqqefiNtKT/MaYwxxeL6868nOT6Z/pf2J+GnBNweNwt/WVh0Ex4/DtdfDz/9BJMmwYcfwpYtEBsLx475dSrx5VVtEUlR1Yo51g+ral6HfuoAc4EGwF9VddwZtjcUGAoQExPTIiEh4Zxr86fU1FSio6OdLsNvgq0fsJ5KgpLez45TO0g4mMCv6b/StExTelfuTcTJCL/2VGvGDBqMH8/yyZM5UasWAKX37OGqW29l2913s6tv33y3ERsbu0pVW+Y3Lt/wF5EvgOp53PUEMKkg4Z/j/ppAEtBdVfedbd6WLVvqypUrz1pbcVmyZAnt27d3ugy/CbZ+wHoqCYKhn/SsdD7c8CHjV48nzBVGl+gujOw2kjBX2Fl/LiMzi+PpmURFhhPmkjMP7NABTp6Ef//7j7dfd1329Zf5n51URAoU/uH5DVDVjmeZZJ+I1FDVPSJSA9ifz7Z2i8h6oC0wI7+5jTEmkES4IrjjsjvoVLcTo5aNYsbuGWyev5mnrn6Kiytf/IexpzIymbduD+OXbGPL/lTCXUJGlnJRtWjuaX8hXZvUoFR4rgeN9evB7f7zxI0bw/Tpfu3F1+PvycAg7/IgwJN7gIjUFpEy3uVKQBtgk4/zGmOMY+qUq8M/O/6TQVUHsSt1F/3m9GPsqrGcyDgBwOqdKVz1wkJGzvqRzftSUYX0TEUVNu1LZeSsH7nqhYWs2ZnrE8WHDkGlPA6eVK4Mhw/7tQdfw/8loJOIbAE6edcRkZYiMsE75lLgOxFZA3wJvKqq63yc1xhjHCUitIxqSXJ8Mt0v7M7EHyfS09OTj9Z8zi3vLiPlRDrH0jLz/NljaZmknEin37vL/vwAIHkcFiqCTxz7FP6qelBVO6hqQ+/1Ie/tK1V1iHf5c1VtqqqXe6/f9UfhxhgTCCqUqsBzbZ5j4o0TcUkYo1c/jJ43BQnL/22hJ9IzGTRxOacyvA8SlSpl7/3ndvhw3s8IfGBvuzTGGD+4svqVDKr7BnqoI+Hl1xJ1wRjCK6wEzr7Xnp6Zxfx1e7NXGjfOPu6f24YN0KiRX+u18DfGGD+Z8NVOUvd15Pj2B8hMq0aZmjMoc/57SOSZvz7yWFom45d4v1gmLg6WLYPt2/83YMeO7Hf/xMX5tVYLf2OM8YPMLGXL/uxDPVlpMZz4eSgn9/QkrPRuouq/TmSVJWf82c37U8nMUrjrLqhXL/sdPx4PJCdnL9epA3ff7dd6LfyNMcYPjqVlEP6H9/C7SE9pxbFtw8n4vRHImU8QF+4SjqVlQFQULFoEF10EAwfCgAFQv372bX7+gFy+7/M3xhiTv6jIcDKy/nx8XzPLcXJ3f+DMXxqfkaVERXrj+PzzYebMIqryf2zP3xhj/CDMJTSsdra98zPH7UXVos/+yd8iYOFvjDF+cm/7C4mKPPupHnKLigzj3vYNiqiiM7PwN8YYP+napAYRYYWL1YgwF12a5HX6tKJl4W+MMX5SKjyMSXe0okxEwfb+y0Rkj//TOX6KgYW/Mcb40eV1KpIwtDUVy0Sc8RBQVGQYFctEkDC0NZfXqZjnmKJm7/Yxxhg/u7xORb57ogPz1+1l/JKtbP7DWT3LcW/7C+nSpLoje/ynWfgbY0wRKBUeRnzzWsQ3r0VmlnIsLSP/8/kXIwt/Y4wpYmEuoXzpCKfL+AM75m+MMSHIwt8YY0KQhb8xxoQgC39jjAlBFv7GGBOCLPyNMSYEWfgbY0wIsvA3xpgQZOFvjDEhyMLfGGNCkKj++WvHAoGI/Ab87HQdXlWBA04X4UfB1g9YTyVBsPUDgdlTXVU9L79BARv+gUREVqpqS6fr8Jdg6wesp5Ig2PqBkt2THfYxxpgQZOFvjDEhyMK/YN51ugA/C7Z+wHoqCYKtHyjBPdkxf2OMCUG252+MMSHIwt8YY0KQhX8eRKSyiHwuIlu815XyGFNXRFaJyGoRWS8i9zhRa0EUsJ9mIvKtt5e1InKzE7UWVEF68o77VERSRGROcddYECLSWUQ2ichWERmRx/2lRGSq9/7vRKRe8VdZOAXoqZ2IfC8iGSLS24kaC6sAPT0sIhu8/3cWikhdJ+osDAv/vI0AFqpqQ2Chdz23PcA1qtoMuAoYISI1i7HGwihIP8eB21S1MdAZeE1EKhZjjYVVkJ4AXgEGFltVhSAiYcA4oAvQCLhFRBrlGnYncFhVGwBjgdHFW2XhFLCnX4DBwJTire7cFLCnH4CWqtoUmAG8XLxVFp6Ff97cwCTv8iQgPvcAVU1T1VPe1VIE9u+yIP1sVtUt3uXdwH4g308JOijfngBUdSHwe3EVVUitgK2qul1V04AEsvvKKWefM4AOIiLFWGNh5duTqu5Q1bVAlhMFnoOC9LRYVY97V5cBtYu5xkIL5MByUoyq7gHwXlfLa5CI1BGRtcBOYLQ3NANRgfo5TURaAZHAtmKo7VwVqqcAVYvsfzun7fLelucYVc0AjgBViqW6c1OQnkqawvZ0JzC/SCvyg3CnC3CKiHwBVM/jricKug1V3Qk09R7uSRKRGaq6z181FoY/+vFupwbwITBIVR3dM/NXTwEsrz343O+9LsiYQFLS6i2IAvckIrcCLYHrirQiPwjZ8FfVjme6T0T2iUgNVd3jDcP9+Wxrt4isB9qS/dS82PmjHxEpD8wFRqrqsiIqtcD8+TcKULuAOjnWawO5nz2eHrNLRMKBCsCh4invnBSkp5KmQD2JSEeyd0yuy3FIOGDZYZ+8JQODvMuDAE/uASJSW0TKeJcrAW2ATcVWYeEUpJ9IYBYwWVWnF2Nt5yrfnkqAFUBDEanv/f33I7uvnHL22RtYpIH9ycyC9FTS5NuTiDQH3gHiVLVk7Iioql1yXcg+proQ2OK9ruy9vSUwwbvcCVgLrPFeD3W6bh/7uRVIB1bnuDRzunZfevKufw38Bpwgew/uRqdrz9VHV2Az2a+vPOG97TmyQwSgNDAd2AosBy5wumY/9HSl929xDDgIrHe6Zj/09AWwL8f/nWSna87vYqd3MMaYEGSHfYwxJgRZ+BtjTAiy8DfGmBBk4W+MMSHIwt8YY0KQhb8xxoQgC39jjAlB/w+lv5qG0xejFAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VGX6xvHvMym00EtARQHBAhaQKOCKBhEFJQ0BRUBQERuuig1FXRuK5Yd9XRGRoksEMQ1R1GhcGwgWVCw0QVCUjgSQtPf3R8bdGBISmGROkrk/1zXXzJnzzjnPPOKdM++cmTHnHCIiElp8XhcgIiLBp/AXEQlBCn8RkRCk8BcRCUEKfxGREKTwFxEJQQp/EZEQpPAXEQlBCn/xhJktMLN7S7g/wcx+NbNw//KpZvaume00sx1mlm5mxxQZH2tmBWaWXezSI0jPI8vMRgVpX2PMbImZ7TWzaeUYf4O/lzvMbKqZ1QpCmVJNKPzFK9OA4WZmxe4fDrzsnMvzB/hbQBpwCNAW+Ar4yMzaFHnML865qGKXTyr9GQTfL8D9wNSyBprZOcA4oDfQBmgH3FOZxUn1ovAXr6QCTYCef95hZo2B/sAM/10PAzOcc08453Y657Y65+4APgX+cTA7NbPWZvaamW0ysy1m9rT/fp+Z3WFma81so5nNMLOG/nW1zewl//jtZrbYzKLNbIK//qf9rzaePthmlIdz7jXnXCqwpRzDRwAvOOeWOee2AfcBIyuzPqleFP7iCefcHmA2cHGRuwcD3zvnlppZXeBUYE4JD58NnH2g+zSzMGAesJbCo+FDgWT/6pH+Sy8Kj5KjgD/DfATQEGgNNAWuBPY458YDHwBj/K82xpSy3+37uYw70OdRTp2ApUWWlwLRZta0kvYn1Uy41wVISJsOvG5m1/r/GFzsvw8KXxX4gA0lPG4D0LzI8iFmtr3YmEOdc7uK3XcKhdNHNzvn8vz3fei/HgpMcs6tBjCz24BvzOwSIJfC0G/vnPsK+OxAnqRzrtGBjK8gUcCOIst/3q5P+V45SA2nI3/xjHPuQ2ATkGBm7YCTgX/7V28DCoBWJTy0lf9xf/rFOdeo2KV48EPhkfvaIsFf1CEUviL401oKD46igZnAAiDZzH4xs4fNLKL8z/TAmdkbRd68HnoQm8gGGhRZ/vP2zsCrk5pA4S9em0HhEf9w4C3n3G8A/vD+BBhUwmMGA+8fxL7WAYf/eSZRMb8ARxRZPhzIA35zzuU65+5xznWkcCqqP/+brirzO9FLOBOp6OX2kh7jnOtX5M3rlw/kSfotA04ssnyi/7noqF8ATfuI92YAdwAnADcUWzcOWGBm3wMvUvjv9UbgdKD7QezrUwqnjCaa2T+AfKCrc+4jYBZwq5m9QeGrigeAV/xnHfUCNgPfAr9TOA2U79/mbxS+R1Aq51zUQdS6D/8frXAgDAgzs9pAXimvZGYA08zsZQqf8x0UnmElUsg5p4sunl6ALAqneWqVsO40//psCo+y1wHdiqyPpXB6KLvY5fxS9nU4hWcabaEw0J/03+8D7vJvfxPwEtDYv24I8AOwi8KwfxII96/rASz31/9kJffpbn8Pil7uLvK8soHDi4wf66/3dwr/eO7TX11C92LO6Ze8pHowsxOBd4GLnHMLvK5HpDrTnL9UG865pUAicHwp8/YiUk468hcRCUE68hcRCUFV9qVzs2bNXJs2bbwu4y927dpFvXr1vC6jSlJvSqa+lE69KV0gvfnss882O+ealzWuyoZ/mzZtWLJkiddl/EVWVhaxsbFel1ElqTclU19Kp96ULpDemNnaskdp2kdEJCQp/EVEQpDCX0QkBCn8RURCkMJfRCQEKfxFREKQwl9EJAQp/EVEQpDCX0QkBCn8i1u3DgYOhIYNoUEDGDAAfvrJ66pERCpU6IV/djYMHlx4Xdzu3XDmmfD99zB9OsycCStWQK9esKukn4QVEamequx3+1SazEyYMweGDYP4+L+ue/55WL0afvgB2rcvvO+EE6BDB3juOTjppODXKyJSCULuyL/gtddw/ut9pKdD9+7/C36Atm3hb3+DtLSg1SgiUtlCIvz35uWT8sV6zp6UxY7ZKRiwffZrnDMpi5Qv1rM3z/9b3MuWwXHH7buBTp3g22+DWrOISGWq8dM+X67bzsipn5KbX8AhP6+mVn4OALXzcsj/9jvu2P4H96R/y/RLT+HErVuhceN9N9KkCWzbFuTKRUQqT40+8l+6bjtDJi9k+55cduXk02v1EnwFBQD4CgrotWoxu3Ly2b4nlwsnL6QAwGzfDemnLkWkhqmx4b83L58RUz9lT27+f+/r//0H1M7PBaB2fi79v//wv+v25OazLbIe+Zu37LuxbdtKfkUgIlJN1axpn/PPB/8bubWAL4utzgn769M9ZtOPrHmo/18HTXm+8AKF5/jPnVs439+xY+XULCLigZp15D9xInTuDKX89mVkfh67a/nICS+c2qmVn1fydurUgS5dCre3Zg189NG+p4WKiFRjNSv8O3SAJUsouPtu9oTXIs/2fXqTBkcz4P72fNwpap91eRgFgGvYEO68E777DhISoHVruOKKIDwBEZHgqFnhDxAWRvaY64gb9RQ/NG/D7ohaf1l95uc7Abji5jaMvaY1vzYunAraHVGL71u0ZdjQB8nr1h1GjIChQwvP83/3XYja94+FiEh1VbPm/P3qRYazqtEhxI14jKsWvsq1Hyf/943eU5dl89odK5nWrxnP92/Oh8dHMSpjK1uzz+K5bheAz4dvwq3gK+GsHxGRGqLmHfkDYT6jQ4soCnxhLG9+BLlhEX9ZH5nnGJ2xidTxK+j+7S6eGtScuQNX46u3mqNaRBGm4BeRGq5Ghj/AVbFHUi8yjHOWf0y9nD0ljjl0cy5PPvkTTz22ljr5u6l7xBSatp3Dxt0bg1ytiEhwVUj4m1lfM/vBzFaa2bgS1p9uZp+bWZ6ZDayIfZbl3ONbEeEzeq9cjI//fUgrz3zsCY/8y5vBsUt38spdP2LbzuaHnZ8QlxLH9GXTyS3IDUapIiJBF3D4m1kY8AzQD+gIDDGz4ifF/wSMBP4d6P7Kq1Z4GMmnNfjv1zmA/03d5m24fMCdfF/szeCGe/Yy+/hBpCak0jW6K48ueZTBGYNZ8uuSYJUsIhI0FXHkfwqw0jm32jmXAyQDCUUHOOfWOOe+gsJvUAiWY774kNoG+eZjT3gt/u+0YcSNfJwP23YhfsRjTDptKHvCa5FvPmr7Cse3btCaZ3o/w5O9nmR37m4uWXAJt31wG5v3bA5m6SIilcpcgN9b45/G6eucG+VfHg50c86NKWHsNGCec+7VUrY1GhgNEB0d3TU5OTmg2k664grqr1xJdrt2LLx1PGsaNOOP3HzMDOcctSPCaPP7Zro/NIGo1avZ2aEDn//rX/99fE5BDm/9/haZOzIJt3DOqnMWZzU7izALC6iumig7O5sonQ67D/WldOpN6QLpTa9evT5zzsWUNa4iTvUs6dSYg/qL4pybDEwGiImJcbGxsQGUBRx1FFxxBfWvv54+vsIXOfkFjl05edSLDP/fWT2XDIfHH6dBVhbF93k2Z7Nmxxoe/PRB5v0yjxU7V3BH9zvo3KJzYLXVMFkl9E7Ul/1Rb0oXjN5UxLTPeqB1keXDgF8qYLuBy8iAsWPB97+nGeYzGtSO+OvpnGFhcOONheNL0KZhG/511r+4rNllbN+7neFvDOfOj+5ky54SvgRORKQaqIjwXwx0MLO2ZhYJXAikV8B2qxQzo3O9zqQnpnPpcZcyb9U84lLjSP4+mfyC/LI3ICJShQQc/s65PGAMsAD4DpjtnFtmZveaWTyAmZ1sZuuBQcBzZrYs0P16pW5EXW7oegNz4+fSsUlHJiyawJDXh/DVpq+8Lk1EpNwq5OsdnHPzgfnF7ruryO3FFE4H1RjtGrXj+bOfZ8GaBTyy+BGGzR/GgA4DuO6k62hcW9/9LyJVW439hG8wmBl92/YlPSmdEZ1GkLYyjbjUOOYsn0OBC+pZrSIiB0ThXwHqRdTjxpgbmRM3hw6NOnDvJ/cybP4wlm2utrNbIlLDKfwrUPvG7Zl6zlQe7Pkgv2T/wpDXh3DfJ/exY+8Or0sTEfkLhX8FMzP6t+tPRlIGQ48dyqsrXiUuJY6UFSmaChKRKkPhX0nqR9bn1lNuZXb/2bRp2Ia7Pr6Li9+4mO+3fu91aSIiCv/KdnSTo5nWdxr3/+1+1u1cxwXzLuDBRQ/ye87vXpcmIiFM4R8EPvOR0D6B9MR0Bh81mOQfkolPiSdjVQaBfreSiMjBUPgHUcNaDRnffTyzzpvFoVGHcvuHtzPyzZEs37bc69JEJMQo/D3QsWlHZp47k3tOvYfVO1YzOGMwDy9+mOycbK9LE5EQofD3iM98DOgwgHlJ8xjQYQAvffsS8anxzF89X1NBIlLpFP4ea1irIXf1uIt/n/dvWtRtwa0f3Mqot0axavsqr0sTkRpM4V9FHNfsOF4+92Xu7H4n32/9noHpA5m0ZBK7c3d7XZqI1EAK/yokzBfG4KMHk5GUQXz7eF5c9iJxqXEsWLNAU0EiUqEU/lVQk9pNuOfUe5jZbyZNajfhpvdv4oq3r+DHHT96XZqI1BAK/yqsc4vOJJ+XzO3dbuebzd8wIH0AT3z+hKaCRCRgCv8qLswXxpBjhpCelM65bc9lytdTSExLJHNtpqaCROSgKfyriWZ1mjHhtAlM6zuNqMgors+6nqszr+an33/yujQRqYYU/tVM1+iuzO4/m1tPvpUvNn5BYloiT3/xNH/k/eF1aSJSjSj8q6FwXzjDOg4jIzGDPkf04bmvniMxLZGsdVlelyYi1YTCvxprXrc5D53+EFPPmUrtsNpc++61XJt5Let3rve6NBGp4hT+NcDJLU9mTvwcbux6I4t+XURiWiL/Wvov9ubv9bo0EamiFP41RIQvgpHHjSQ9MZ3Y1rE88+UzJKUl8cH6D7wuTUSqIIV/DdOyXksePeNRJveZTJiFcXXm1Vz/3vVsyN7gdWkiUoUo/GuoHof04LX417jupOv4+JePiU+NZ8rXU8jJz/G6NBGpAhT+NVhEWASjjh9FWkIaPQ/ryROfP8H56efzyS+feF2aiHhM4R8CWkW1YlLsJJ4961kKXAGj3x7NjVk38uuuX70uTUQ8UiHhb2Z9zewHM1tpZuNKWF/LzF7xr19kZm0qYr9yYE479DReS3iNMZ3H8P7694lPjefFb14kNz/X69JEJMgCDn8zCwOeAfoBHYEhZtax2LDLgG3OufbAY8BDge5XDk6tsFpcceIVpCak0q1VNyZ9NomBGQP5dMOnXpcmIkFUEUf+pwArnXOrnXM5QDKQUGxMAjDdf/tVoLeZWQXsWw7SYfUP46kzn+LpM59mb/5eLnvrMm75zy1s3L3R69JEJAgqIvwPBdYVWV7vv6/EMc65PGAH0LQC9i0BOqP1GaQmpHLViVeRuTaT+NR4ZiybQW6BpoJEajIL9GuBzWwQcI5zbpR/eThwinPu2iJjlvnHrPcvr/KP2VJsW6OB0QDR0dFdk5OTA6qtomVnZxMVFeV1GZVmU+4mXt32Kt/u+ZZDIg5hUJNBtK/dvlyPrem9OVjqS+nUm9IF0ptevXp95pyLKXOgcy6gC9ADWFBk+TbgtmJjFgA9/LfDgc34//CUdunataurat577z2vS6h0BQUFLnNtpjt7ztnuuGnHuds/uN1t2r2pzMeFQm8OhvpSOvWmdIH0BljiypHdFTHtsxjoYGZtzSwSuBBILzYmHRjhvz0QeNdfpFQxZsaZh59JamIqlx9/OW/8+AZxKXG8/N3L5BXkeV2eiFSQgMPfFc7hj6Hw6P47YLZzbpmZ3Wtm8f5hLwBNzWwlMBbY53RQqVrqhNfh7yf9ndfiX+P4Zscz8dOJDHl9CF9u/NLr0kSkAoRXxEacc/OB+cXuu6vI7T+AQRWxLwmuNg3b8Fyf53h77ds8vPhhhr8xnKT2SVzf9Xqa1G7idXkicpD0CV8pk5lxdpuzSU9M59LjLiVjVQb9U/rzyvevkF+Q73V5InIQFP5SbnUj6nJD1xuYGz+XY5scy/2L7uei+Rfx9aavvS5NRA6Qwl8OWLtG7Zhy9hQePv1hNu3exND5Q5m1ZRbb/9judWkiUk4KfzkoZka/tv3ISMrg4o4XszB7IXGpccxdPpcCV+B1eSJSBoW/BKReRD1uOvkmbm11K0c2OpK7P7mb4fOHs2zLMq9LE5H9UPhLhTgk8hBePOdFHjjtAX7O/pkh84Zw/8L72bF3h9eliUgJFP5SYcyMuCPjyEjK4KJjL2LO8jnEp8aTujJVU0EiVYzCXypc/cj6jDtlHLP7z+bw+odz50d3MvLNkfyw9QevSxMRP4W/VJqjmxzN9H7Tue9v97H297UMnjeYiZ9OZGfOTq9LEwl5Cn+pVD7zkdg+kfTEdAYdNYh/f/dv4lLiyFiVgb7eScQ7Cn8Jioa1GnJH9zuY1X8Wh0Ydyu0f3s4lCy5hxbYVXpcmEpIU/hJUnZp2Yua5M7m7x92s2r6KQRmDeGTxI+zK3eV1aSIhReEvQeczH+cfdT4ZiRkkdUhi5rcziU+J540f39BUkEiQKPzFM41qN+IfPf7By+e+TLO6zbjlP7dw+VuXs3r7aq9LE6nxFP7iueObH8+/z/03d3a/k++2fsf56ecz6bNJ7M7d7XVpIjWWwl+qhDBfGIOPHkxGUgZxR8bx4jcvEp8az1tr3tJUkEglUPhLldKkdhPu/du9zOw3k8a1G3Pj+zdy5TtXsmbHGq9LE6lRFP5SJXVu0ZlZ583itlNu4+tNXzMgfQBPfv4ke/L2eF2aSI2g8JcqK9wXzkXHXkR6Ujr92vbj+a+fJyE1gcyfMjUVJBIghb9Uec3qNGPCaROY1nca9SLqcf1713NN5jWs+32d16WJVFsKf6k2ukZ3ZXbcbG6OuZnPN35OYloi//zyn/yR94fXpYlUOwp/qVYifBFc3Oli0hPTOeuIs3h26bMkpiXy/rr3vS5NpFpR+Eu11KJuCx46/SFeOPsFaoXVYsy7Y7j23WtZv3O916WJVAsKf6nWTml1Cq/GvcrYrmNZtGERiWmJPLf0Ofbm7/W6NJEqTeEv1V5EWASXHHcJ6YnpxLaO5ekvn2ZA2gA++vkjr0sTqbIU/lJjtKzXkkfPeJTn+jyHz3xc+c6V3PDeDWzI3uB1aSJVjsJfapxTDzmVufFzue6k6/jw5w9JSEtgytdTyM3P9bo0kSojoPA3syZm9raZrfBfNy5l3Jtmtt3M5gWyP5HyigyLZNTxo0hPTOfUQ07lic+fYED6ABZuWOh1aSJVQqBH/uOATOdcByDTv1ySR4DhAe5L5IC1imrF470e55+9/0m+y+fyty7npvdv4rddv3ldmoinAg3/BGC6//Z0ILGkQc65TEC/2i2e6XlYT1ISUrim8zVkrcsiLjWOad9MI7dAU0ESmiyQ70gxs+3OuUZFlrc550qb+okFbnLO9d/P9kYDowGio6O7JicnH3RtlSE7O5uoqCivy6iSqlNvNuduZu62uXyz5xtaRrRkcJPBdKjdoVL2VZ36EmzqTekC6U2vXr0+c87FlDWuzPA3s3eAliWsGg9Mr8jwLyomJsYtWbKkPEODJisri9jYWK/LqJKqY2+y1mUx8dOJ/Jz9M+e1O48bu95I87rNK3Yf1bAvwaLelC6Q3phZucI/vKwBzrmz9rOT38yslXNug5m1AjYeYJ0inoltHUv3Vt154ZsXmPr1VLLWZXFN52sYcswQwn1l/q8hUq0FOuefDozw3x4BpAW4PZGgqh1em2s6X0NKQgqdW3Tm4cUPM3jeYD7/7XOvSxOpVIGG/0Sgj5mtAPr4lzGzGDOb8ucgM/sAmAP0NrP1ZnZOgPsVqVCHNzicZ3s/y+O9Hic7J5sRb45g/Ifj2bxns9eliVSKgF7bOue2AL1LuH8JMKrIcs9A9iMSDGZG78N706NVD6Z8PYUXl73Iez+9x5guY7jg6AsI84V5XaJIhdEnfEWKqRtRl7+f9Hdei3+NTs068eCnDzLk9SF8ufFLr0sTqTAKf5FStG3Ylsl9JvPoGY+y5Y8tDH9jOHd9dBdb/9jqdWkiAVP4i+yHmXFOm3PISMzgkuMuIWNVBnEpccz+YTb5Bflelydy0BT+IuVQN6IuY7uO5dX4VzmmyTHct/A+hs4fyjebv/G6NJGDovAXOQBHNjqSKWdP4aGeD7Fx90Yuev0i7v3kXrb/sd3r0kQOiMJf5ACZGee2O5f0xHSGdRzGayteIy41jtdWvEaBK/C6PJFyUfiLHKSoyChuOfkWZsfNpl3Ddvzj438w/I3hfLvlW69LEymTwl8kQEc1PoppfafxwGkPsH7neoa8PoQJCyewY+8Or0sTKZXCX6QCmBlxR8aRkZTBhUdfyOzls4lPjWdR9iJNBUmVpPAXqUANIhtwW7fbeKX/K7Su35qXtrzEyDdH8sPWH7wuTeQvFP4ileCYJscwo98MhjYdypoda7hg3gU89OlD7MzRbxpJ1aDwF6kkPvPRPao7GUkZDDxqIC9/9zLxqfHMWz2PQH5ESaQiKPxFKlnDWg25o/sdzOo/i1b1WnHbB7dx6YJLWbltpdelSQhT+IsESaemnXjp3Jf4R49/sGL7CgZlDOLRxY+yK3eX16VJCFL4iwSRz3wMPGogGYkZJLRPYMa3M4hPiefNH9/UVJAElcJfxAONazfm7lPv5qVzX6Jpnabc/J+bufzty1m9Y7XXpUmIUPiLeOiE5icw67xZ3NHtDr7d8i3np5/PY589xu7c3V6XJjWcwl/EY2G+MC445gIyEjPo364/U7+ZSkJaAm+vfVtTQVJpFP4iVUTTOk2572/3MaPfDBpGNmRs1liueucq1v6+1uvSpAZS+ItUMV1adCG5fzLjThnH0k1LSUpL4qkvnmJP3h6vS5MaROEvUgWF+8IZeuxQMpIy6NumL5O/mkxiaiLv/vSupoKkQij8RaqwZnWa8UDPB3jxnBepG1GX6967jjHvjmHdznVelybVnMJfpBqIaRnD7LjZ3BxzM0t+XUJiaiLPfvksf+T94XVpUk0p/EWqiQhfBBd3upiMpAx6H9Gbfy79J0lpSfxn/X+8Lk2qIYW/SDXTom4LHj79YaacPYWIsAiuybyGv7/7d37O/tnr0qQaUfiLVFPdWnVjbtxcbuh6Aws3LCQxNZHJX00mJz/H69KkGggo/M2siZm9bWYr/NeNSxjT2cw+MbNlZvaVmV0QyD5F5H8iwiK49LhLSU9Mp+dhPXnqi6cYkD6Aj3/+2OvSpIoL9Mh/HJDpnOsAZPqXi9sNXOyc6wT0BR43s0YB7ldEimhZryWTYifx3FnPYRhXvHMFY7PG8uuuX70uTaqoQMM/AZjuvz0dSCw+wDm33Dm3wn/7F2Aj0DzA/YpICU499FTmxs/l713+zgfrPyA+NZ4Xvn6B3Pxcr0uTKsYC+cCImW13zjUqsrzNObfP1E+R9adQ+Eeik3P7/qq1mY0GRgNER0d3TU5OPujaKkN2djZRUVFel1ElqTcl87IvW/O2MnfrXL7a8xXR4dEMajKIo+sc7UktJdG/mdIF0ptevXp95pyLKWtcmeFvZu8ALUtYNR6YXt7wN7NWQBYwwjm3sKzCYmJi3JIlS8oaFlRZWVnExsZ6XUaVpN6UrCr05T/r/8PETyeybuc6+rXpx40xNxJdL9rTmqBq9KaqCqQ3Zlau8A8va4Bz7qz97OQ3M2vlnNvgD/eNpYxrALwO3FGe4BeRinP6YafTrVU3pn4zlRe+foH317/P1Z2v5qJjLyLCF+F1eeKRQOf804ER/tsjgLTiA8wsEkgBZjjn5gS4PxE5CLXCanHViVeRkpBCTMsYHl3yKIMzBrP418VelyYeCTT8JwJ9zGwF0Me/jJnFmNkU/5jBwOnASDP70n/pHOB+ReQgtK7fmmd6P8NTZxZ+S+ilCy5l3Afj2Lxns9elSZCVOe2zP865LUDvEu5fAozy334JeCmQ/YhIxYptHUu3Vt144esXmPrNVN5f9z7XdL6GC4+5kHBfQLEg1YQ+4SsSouqE12FMlzGkJKRwYvMTeWjxQ1ww7wK+2PiF16VJECj8RULcEQ2O4NmznuXx2Mf5Ped3Ln7jYsZ/OJ4te7Z4XZpUIoW/iGBm9D6iN2kJaYw6fhTzf5xPXGocyd8nk1+Q73V5UgkU/iLyX3Uj6nLdSdcxN34unZp2YsKiCQx5fQhLNy31ujSpYAp/EdlHu4btmNxnMo+c8Qhb9mxh2Pxh3P3x3Wz7Y5vXpUkFUfiLSInMjL5t+pKelM4lnS4hbWUacalxzFk+R1NBNYDCX0T2q15EPcbGjGVO3ByOanwU935yL8PmD2PZ5mVelyYBUPiLSLm0b9yeF85+gYk9J/Lr7l8Z8voQ7vvkPnbs3eF1aXIQFP4iUm5mxnntziMjMYNhHYcxd8Vc4lLiSFmRQsG+X9QrVZjCX0QOWFRkFLecfAuv9H+Ftg3bctfHd3HxGxfz3ZbvvC5NyknhLyIH7egmRzOt7zQmnDaBdTvXceHrF/LAogf4Ped3r0uTMij8RSQgZkb8kfFkJGVwwdEX8MoPrxCXEkf6qnQC+bEoqVwKfxGpEA0iG3B7t9tJPi+Zw+ofxvgPxzPyzZEs37bc69KkBAp/EalQxzY9lpn9ZnLvqffy444fGZwxmIc+fYjsnGyvS5MiFP4iUuF85iOpQxIZSRmc3+F8Xv7uZeJS43h99euaCqoiFP4iUmka1mrInT3uZNZ5s2hZtyXjPhjHZW9dxqrtq7wuLeQp/EWk0nVq1omXzn2Ju3rcxfJtyxmYPpDUbansyt3ldWkhS+EvIkER5gtj0FGDyEjMIKF9Apm/ZxKfGs+ba97UVJAHFP4iElSNazfm7lPvZmzLsTSt3ZSb37+Z0W+P5scdP3pdWkhR+IuIJ9rWasus82Yxvtt4lm1ZxoD0ATzx+RPszt3tdWkhQeEvIp4J84Vx4TEXkpGYwXltz2PK11NISEvgnbXvaCqokin8RcRzTes05f7T7mdGvxk0iGzADVk3cFVWwdXhAAANLElEQVTmVaz9fa3XpdVYCn8RqTK6tOjCK/1fYdwp41i6cSlJaUk89cVT7Mnb43VpNY7CX0SqlHBfOEOPHUp6YjrntDmHyV9NJiktiax1WV6XVqMo/EWkSmpetzkP9nyQqedMpU54Ha5991rGZI5h3c51XpdWIyj8RaRKO7nlycyOm81NMTex+NfFJKUl8ezSZ9mbv9fr0qo1hb+IVHkRvghGdBpBemI6vVr34p9f/pOktCQ+WP+B16VVWwGFv5k1MbO3zWyF/7pxCWOOMLPPzOxLM1tmZlcGsk8RCV3R9aJ55IxHeP7s5wn3hXN15tVc9+51/JL9i9elVTuBHvmPAzKdcx2ATP9ycRuAU51znYFuwDgzOyTA/YpICOveqjtz4+Zy/UnX88mGT0hITeD5r54nJz/H69KqjUDDPwGY7r89HUgsPsA5l+Oc+3NyrlYF7FNEhIiwCC47/jLSE9PpeVhPnvziSc5PP5+Pf/nY69KqBQvkU3Rmtt0516jI8jbnXElTP62B14H2wM3OuWdK2d5oYDRAdHR01+Tk5IOurTJkZ2cTFRXldRlVknpTMvWldBXdm+/2fMecrXPYlLeJLnW7kNQ4icbh+8RRtRBIb3r16vWZcy6mrHFlhr+ZvQO0LGHVeGB6ecK/yPpDgFQgzjn32/72GxMT45YsWbLf2oItKyuL2NhYr8uoktSbkqkvpauM3uTk5zBt2TSe/+p5zIwrT7yS4ccOJyIsokL3U9kC6Y2ZlSv8y5yCcc6d5Zw7roRLGvCbmbXy77AVsLGMbf0CLAN6lu9piIiUX2RYJKNPGE1qYio9WvXgsc8eY2DGQBZtWOR1aVVOoPPv6cAI/+0RQFrxAWZ2mJnV8d9uDPwN+CHA/YqIlOrQqEN54swneKb3M+Tk5zDqrVHc8v4tbNy93+PTkBJo+E8E+pjZCqCPfxkzizGzKf4xxwKLzGwp8D7wqHPu6wD3KyJSptMPO52UhBSuPvFqMn/KJC4ljunLppNbkOt1aZ4LKPydc1ucc72dcx3811v99y9xzo3y337bOXeCc+5E//XkiihcRKQ8aofX5qrOV5GakErX6K48uuRRBmcMZsmvVes9xWDTaZciEhJaN2jNM72f4cleT7I7dzeXLLiE2z64jc17NntdmicU/iISMsyMXof3IjUxldEnjGbBmgXEpcTx8ncvk1eQ53V5QaXwF5GQUye8Dtd2uZaUhBRObH4iEz+dyIXzLuTLjV96XVrQKPxFJGQd0eAInj3rWSbFTmL73u0Mf2M4d350J1v2bPG6tEqn8BeRkGZm9DmiD+mJ6Vx23GXMWz2PuNQ4Xvn+FfIL8r0ur9Io/EVEgLoRdbm+6/XMjZ9LxyYduX/R/Qx5fQhfbfrK69IqhcJfRKSIdg3b8fzZz/PIGY+wZc8Whs0fxt0f3832P7Z7XVqFUviLiBRjZvRt05f0pHRGdBpB2so0+qf259Xlr1LgCrwur0Io/EVESlEvoh43xtzInLg5dGjUgXs+uYdh84exbMuySt1vrU2b4NproUcPqFsXzGDNmgrdh8JfRKQM7Ru3Z+o5U3mw54Ns2LWBIfOGcP/C+9mxd0el7K/Ozz/D7NnQuDH0rJzvwVT4i4iUg5nRv11/0hPTGXrsUF5d/ipxKXGkrEip8Kmg7SecAL/9BvPnw6BBFbrtPyn8RUQOQP3I+tx6yq280v8V2jRsw10f38WIN0bw/dbvy72NvPwCfv8jl/yCUn5PxVf50Rxe6XsQEamBjm5yNNP6TiNjVQaTPpvEBfMu4MKjL+SaLtfQILLBPuP35uUz/+sNPJu1ihUbswn3GXkFjqNaRHFl7JGce3wraoWHBa1+HfmLiBwkn/lIaJ9ARlIGg48aTPIPycSnxJOxKoOiv5L45brtdJuQyR0p37D8t2ycg9x8h3Pww2/Z3JHyDd0mZLJ0XfBOJ1X4i4gEqEFkA8Z3H8+s82ZxaP1Duf3D2xn55kiWb1vO0nXbGTJ5Idv35LIrp+RPDO/KyWf7nlwunLwwaH8AFP4iIhWkY9OOzOw3k3tOvYfVO1YzOGMww1PGsyd/V7kevyc3nxFTP2X/v6xeMRT+IiIVyGc+BnQYwLykeXRpfA4FDT6gXrv/I7zBl1COWM/NL2DHnsr/pTGFv4hIJWhYqyE/rzyX3WuuxuU1pM6hydQ5/Hl8kb/t93G7cvLZtHNvpdens31ERCpBfoFjxcZsnGvN7jVXE9FoMbVavEnddk+Qs6UnOZvPBFerxMf+kZtP/uw5hPkMPvus8M433oDmzQsvZ5wRcH0KfxGRSrArJ49wn5Gb7wAfudu7kbezE5Et3qRWs/cp2NuSvN+7lPhYMyPsgsF/vfPqqwuvzzgDsrICrk/hLyJSCepFhpNX7ENcLj+KvRsGkrv1VAr2tiz1sc458vMLCo/8K4nm/EVEKkGYz+jQIqrEdQV7D2F/8Vs7IqxSg5/97l1ERAJyVeyR1Is8sE/t1osMo3n9kt8LqEgKfxGRSnLu8a2ICDuwmI0I89GwTkQlVfQ/Cn8RkUpSKzyM6ZeeQp2I8h3914koHF+5Ez6FFP4iIpXoxNaNSB7dnUZ1IkqdAqoXGUajOhEkj+7Oia0bBaWugMLfzJqY2dtmtsJ/3Xg/YxuY2c9m9nQg+xQRqW5ObN2IReN7MyHpeI6OjsIMIsIMMzg6uj4Tko5n0fjeQQt+CPxUz3FApnNuopmN8y/fWsrY+4D3A9yfiEi1VCs8jMQuh5LY5VDyCxy7cvKoFxle6Wf1lCbQaZ8EYLr/9nQgsaRBZtYViAbeCnB/IiLVXpjPaFA7wrPgB7Ci3zl9wA822+6ca1RkeZtzrnGxMT7gXWA40BuIcc6NKWV7o4HRANHR0V2Tk5MPurbKkJ2dTVRUyefthjr1pmTqS+nUm9IF0ptevXp95pyLKWtcmdM+ZvYOUNJH0caXs5argfnOuXVm+/8r55ybDEwGiImJcbGxseXcRXBkZWVR1WqqKtSbkqkvpVNvSheM3pQZ/s65s0pbZ2a/mVkr59wGM2sFbCxhWA+gp5ldDUQBkWaW7Zwbd9BVi4hIQAJ9wzcdGAFM9F+nFR/gnBv6520zG0nhtI+CX0TEQ4G+4TsR6GNmK4A+/mXMLMbMpgRanIiIVI6Ajvydc1sofBO3+P1LgFEl3D8NmBbIPkVEJHD6hK+ISAhS+IuIhCCFv4hICFL4i4iEIIW/iEgIUviLiISggL7bpzKZ2SZgrdd1FNMM2Ox1EVWUelMy9aV06k3pAunNEc655mUNqrLhXxWZ2ZLyfGFSKFJvSqa+lE69KV0weqNpHxGREKTwFxEJQQr/AzPZ6wKqMPWmZOpL6dSb0lV6bzTnLyISgnTkLyISghT+IiIhSOG/H2bWxMzeNrMV/uvG+xnbwMx+NrOng1mjV8rTGzPrbGafmNkyM/vKzC7wotZgMLO+ZvaDma00s31+rMjMapnZK/71i8ysTfCr9EY5ejPWzL71/xvJNLMjvKgz2MrqS5FxA83MmVmFnvqp8N+/cUCmc64DkOlfLs19wPtBqapqKE9vdgMXO+c6AX2Bx82sURBrDAozCwOeAfoBHYEhZtax2LDLgG3OufbAY8BDwa3SG+XszRcU/sLfCcCrwMPBrTL4ytkXzKw+8HdgUUXXoPDfvwRguv/2dCCxpEFm1hWIBt4KUl1VQZm9cc4td86t8N/+hcLfeC7zk4fV0CnASufcaudcDpBMYX+KKtqvV4HeZmZBrNErZfbGOfeec263f3EhcFiQa/RCef7NQOFB5cPAHxVdgMJ//6KdcxsA/Nctig8wMx/wf8DNQa7Na2X2pigzOwWIBFYFobZgOxRYV2R5vf++Esc45/KAHUDToFTnrfL0pqjLgDcqtaKqocy+mFkXoLVzbl5lFBDoD7hXe2b2DtCyhFXjy7mJq4H5zrl1Ne1ArgJ68+d2WgEzgRHOuYKKqK2KKek/fPFzqMszpiYq9/M2s2FADHBGpVZUNey3L/6DyseAkZVVQMiHv3PurNLWmdlvZtbKObfBH2AbSxjWA+hpZlcDUUCkmWU75/b3/kC1UAG9wcwaAK8DdzjnFlZSqV5bD7QusnwY8EspY9abWTjQENganPI8VZ7eYGZnUXhQcYZzbm+QavNSWX2pDxwHZPkPKlsC6WYW7/+N9IBp2mf/0oER/tsjgLTiA5xzQ51zhzvn2gA3ATNqQvCXQ5m9MbNIIIXCnswJYm3BthjoYGZt/c/5Qgr7U1TRfg0E3nWh8QnLMnvjn954Doh3zpV4EFED7bcvzrkdzrlmzrk2/mxZSGF/KiT4QeFflolAHzNbAfTxL2NmMWY2xdPKvFee3gwGTgdGmtmX/ktnb8qtPP45/DHAAuA7YLZzbpmZ3Wtm8f5hLwBNzWwlMJb9nzlWY5SzN49Q+Kp5jv/fSPE/nDVOOftSqfT1DiIiIUhH/iIiIUjhLyISghT+IiIhSOEvIhKCFP4iIiFI4S8iEoIU/iIiIej/AcQ6sEv9RHUnAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -688,7 +671,7 @@ } ], "source": [ - "xc, yc = wiki.get_coordinates()\n", + "xc, yc = data.get_coordinates()\n", "visualize_solution(xc, yc, ground_state, ground_level, n, q, 'Classical')\n", "visualize_solution(xc, yc, vqe_state, vqe_level, n, q, 'VQE')" ] @@ -699,13 +682,6 @@ "source": [ "Solution shows the selected stocks via the stars and in green the links (via similarities) with other stocks that are represented in the fund by the linked stock. Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian, though. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the ILP. While for some small instances, as above, we can find optimal solutions of the QP formulation which coincide with optima of the ILP, finding optimal solutions of the ILP is harder than finding local optima of the QP formulation, in general. Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). " ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { From c6da8481063cb5d758619a19377252ea70d1c9da Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Mon, 29 Apr 2019 18:56:49 +0100 Subject: [PATCH 091/116] Updated generation of random variates --- .../general/generating_random_variates.ipynb | 34 +++++++++---------- 1 file changed, 17 insertions(+), 17 deletions(-) diff --git a/qiskit/aqua/general/generating_random_variates.ipynb b/qiskit/aqua/general/generating_random_variates.ipynb index 7d58c353c..10ead679c 100644 --- a/qiskit/aqua/general/generating_random_variates.ipynb +++ b/qiskit/aqua/general/generating_random_variates.ipynb @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -80,17 +80,17 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHiCAYAAAADPb8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XtU1Ne9//8XDmpUGDBKNASRSGujBAWRWq+oSSTWWxKiTU+q0VRgJdLEeMkQbaMxlYLLEy85NeeLJ9E01J6l0gRsUkhjIq2J5YwasBptF/GCGM/XgMIY/UVPcX5/5OscR+5xZj7wmedjLZbDnv2Z/WaAmZeb/dmfAKfT6RQAAABgEp2MLgAAAADwJAIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMJNLoAwJOOHTvWYp9/+7d/U0ZGRrN97rnnHk+VBAAAfIwZXPidX//610aXAAAAvIiACwAAAFMh4AIAAMBUCLjwOzt37jS6BAAA4EUEXAAAAJgKARd+59FHHzW6BAAA4EVsE+bnFi5cqLKyMp+PGxcXp/Xr1/t8XDMy6nso8X0EALRPzOD6ubKyMp+HIyPGNDOjnk++jwCA9ooZXCguLk579uzx2Xjjx4/32ViNWbBggaHje4Ovv4eS8d9HAACawgwu/E5LVzEDAAAdGwEXfmfcuHFGlwAAALyIgAu/8+WXXxpdAgAA8CICLgAAAEyFgAu/M3jwYKNLAAAAXkTAhd/Jz883ugQAAOBFbBMGv/Piiy9q1apVRpdhmIsXL6qkpEQHDhzQiRMnVF9fr969eys+Pl5jxozRgAEDGhxz9uxZpaam6rXXXlO/fv0MqBoAgNbzmxncrVu3tnnfzoSEBL3//vveKQiG2bFjh9ElGKKyslJPP/20wsPDNW3aNL300kv68MMP9fHHHys3N1dPPPGEoqOjdf/996u4uNh13NmzZzVx4kTt2bNHp0+fNvArAACgdQwNuDabTTExMbJarQoPD1dqaqrOnz/vk7Hr6+u1dOlShYWFKTg4WCkpKaqurnbrM2PGDBUUFPikno4kPDxcr7/+ulub0+mU1WrV22+/bVBVaIrT6dR//Md/6N5779Ubb7yhlJQUffjhh3I4HKqsrNTx48flcDh05MgRrV69Wv/4xz/04IMPas6cOTp27JgmTpyo06dP649//KNGjRpl9JcDAECLDA24FotFeXl5qqmpUXl5uaqqqjRv3jyfjJ2dna2CggKVlpaqqqpKkjR79my3PjNmzFBhYaFP6ukozpw5o7Nnz2ro0KFu7cePH9fFixc1fPhwgypDY5xOp55//nmlpqYqISFBR48e1datWzVhwgQFBQW5+lksFg0ePFjLli1TRUWFfvGLX+i3v/2t4uLiVFlZqT/+8Y8aO3asgV8JAACt5/WAu337dsXGxiooKEiTJk3SokWLNHPmTElSVlaW4uPj1blzZ4WFhSkjI8NnlxvNzc2VzWbTgAEDFBISojVr1qioqEgnT5509Rk6dKgCAwN14MABn9TUEdjtdlksFsXExLi1l5eXq0+fPh1ifWZJSYnRJfjM2rVrtXbtWi1YsEC7d+/W3Xff3eIxXbp00VNPPaW77rpLV65cUb9+/TRixAgfVAsAgGd4NeC++eabWrx4sTZt2qS6ujpNnTpVGzduVHx8fKP9d+/erSFDhrR5nOzs7DYdV1dXp8rKSiUkJLjaoqOjZbVadejQIbe+06dPZ5nCDex2uwYOHKhu3bq5tZeXl3eY2dsjR44YXYJP/O1vf9Py5cuVkpKiV199VZ06te7X/fqa2/Pnz+vll1/W3//+d61evdrL1QIA4DleC7iXL1/WokWLlJubq7Fjx8pisWj+/Pmqr69vNODm5+dr8+bN2rBhg6stLy9PI0eO1MiRI7V79+4mx8rMzGwQTJvjcDgkSSEhIW7toaGhrvuumzJlit59991WP7bZ2e12VVRUqHfv3m4fOTk5SkxMNLq8Vnn66aeNLsEnFi5cqNDQUL322msKCAho1THXw+31Nbc///nP9ZOf/ERZWVmcYAYA6DC8tk1YSUmJrl27psmTJ7varl8i9eaAu2PHDqWnp6uwsFDDhg2TJNXW1uqVV17Rvn379NVXX2nChAn69NNPZbFYbrm24OBgSd/M5N6otrZWVqvVre3UqVOKjIy85TFb0toA4g1JSUmt7rt//36tXLlSc+bMcWuPjY1t0wxuSUmJV77m5557rlX9cnNzm71/3bp1nijHZ27+Hh49elQffvihfvWrXyksLKxVj3FzuL2+5vbll1/Wb3/7W+Xm5urll192O8Zb30cAAFridDqbvM9rAffcuXO644473Nq2bdumvn37qm/fvq62LVu2aPHixdq1a5dGjx7tai8tLdXYsWPVtWtXde3aVVFRUfr88881cODAW64tNDRUkZGROnjwoOLi4iTJdSb5zUsdCgsLlZKScstjtqS5b5I3tWXrtIqKCl24cEHJycmKiIhwa6+trW1TwE1KSvLKeutjx4612GfdunVKS0trts8rr7ziqZK8rrHv4X/+53+qU6dOevLJJ1v1GE2FW0mKiorSgw8+qG3btjUIuN76PgIAcCu8tkQhJiZGFRUVKikp0dWrV7Vt2zZlZ2e7AqUkbdy4UUuWLFFxcbFbuJWkmpoa9ezZ0/V5z549VVNT47H60tLSlJOToxMnTsjhcMhmsyk5OVlRUVGuPpcvX9ZHH32kqVOnemzcjsxut6t79+4NdlD45JNP1K9fP/Xp08egytrmpZdeMroEr7Pb7Ro8eHCD/2Q2prlwe11SUpKOHz/us238AAC4FV4LuMOHD9fy5cv1yCOPKCIiQqWlpRoxYoTb8oRnn31WDofDtWXR9Q9J6tWrly5cuODqe+HCBfXq1avRsbKyshqc1d+SzMxMTZs2TYmJibrrrrtUX1+vvLw8tz7FxcWKj49X79692/TYZmW325WYmKjAQPeJ/3379nWYE8wkadasWUaX4HWfffZZq068bE24leR6rKNHj3q0TgAAvMGrl+pdtWqV2yVRo6KilJqa6vq8uT/LjxgxQi+88IKuXLmiS5cu6cSJE4qOjm6077Jly7Rs2bI21WaxWFxbKDWlsLBQM2bMaNPjmllTf7Z/7bXXfFzJrRk0aJDpg9ry5ctbtXY8MzOzxXArSffee6/Wrl3rk/XoAADcKq8G3Bs5HA6dOnWqyS3CbhYaGqqFCxe61he+8sorHjnBrC369+/v2rMX6Ehu/I9kc1599VVlZGS0uANGv379tHjxYk+UBgCA1/ks4B4+fFjBwcFNzsI2Zs6cOQ3O1v+24uLiNHfu3DYds3LlSo+MDbRXVqu1w2zvBgBAa/ks4I4aNarBHrO+FBcX53aCG/xXW3aOAAAAHY/XL9ULtDcdbc0wAABoGwIu/M5TTz1ldAkAAMCLCLjwO1yYAAAAcyPgAgAAwFQIuAAAADAVAi78jtkv8gAAgL/z2TZhaL/Kysp8unVWWVmZoVu2bd++3XSX6/X19/D6mGy9BwBoj5jB9XNG7A9s9J7EK1asMGxsb7iV5/N45dlGb3t7XAAAvCnA6XQ6jS4C8JRjx4612GfQoEEtLlO45557PFVSu5aZk6tsW1qD2wAAdGTM4AIAAMBUCLjwO5s2bTK6BAAA4EUEXPidmJgYo0sAAABeRMCF30lKSjK6BAAA4EUEXAAAAJgKARcAAACmQsCF30lMTDS6BAAA4EUEXPgdu91udAkAAMCLCLgAAAAwFQIuAAAATIWAC7+zc+dOo0sAAABeRMAFAACAqRBw4XceffRRo0sAAABeFGh0ATDWwoULVVZW5vNx4+LitH79ep+PC9wKo35fJH5nAKAtmMH1c2VlZT5/wzZiTMATjPrZ5XcGANqGGVwoLi5Oe/bs8dl448eP99lYjVmwYIGh46Nj8/Xvi2T87wwAdDTM4MLvZGRkGF0CAADwIgIu/M64ceOMLgEAAHgRARd+58svvzS6BAAA4EUEXAAAAJgKARd+Z/DgwUaXAAAAvIiAC7+Tn59vdAnwMxcuXNDf/vY3HTp0SP/93//dbF+n06mPPvrIR5UBgDkRcOF3XnzxRaNLgB/429/+pqefflrR0dG6/fbbNWTIEA0dOlR33nmnwsPD9fjjj+vPf/6znE6n6xin06mMjAxNnDhRe/fuNbB6AOjY/Cbgbt26tc17SSYkJOj999/3TkEwzI4dO4wuASZ27tw5zZw5U0OGDNGWLVs0dOhQ/epXv9L27du1c+dOrVu3ThMnTtR7772npKQkjR07Vv/4xz9c4XbTpk1aunSpRo8ebfSXAgAdlqEB12azKSYmRlarVeHh4UpNTdX58+d9MnZ9fb2WLl2qsLAwBQcHKyUlRdXV1W59ZsyYoYKCAp/U05GEh4fr9ddfd2tzOp2yWq16++23DaoKMN7evXsVExOjwsJCvfTSS6qqqtLvf/97ZWZmaubMmUpJSdHChQuVl5enM2fO6N///d/12WefaciQIZo0aZIr3Obk5CggIMDoLwcAOixDA67FYlFeXp5qampUXl6uqqoqzZs3zydjZ2dnq6CgQKWlpaqqqpIkzZ49263PjBkzVFhY6JN6OoozZ87o7NmzGjp0qFv78ePHdfHiRQ0fPtygygBj7du3T8nJybr99tv16aef6sUXX1SvXr2a7N+9e3elp6fr8OHD6tWrlz744ANNnTqVcAsAHuD1gLt9+3bFxsYqKChIkyZN0qJFizRz5kxJUlZWluLj49W5c2eFhYUpIyPDZ5fAzM3Nlc1m04ABAxQSEqI1a9aoqKhIJ0+edPUZOnSoAgMDdeDAAZ/U1BHY7XZZLBbFxMS4tZeXl6tPnz7q16+fQZW1XklJidElwGTq6uo0a9Ys3XnnnSopKWn1Th1Op1OrV6/WF198oYiICH3wwQeqqKjwcrUAYH5eDbhvvvmmFi9erE2bNqmurk5Tp07Vxo0bFR8f32j/3bt3a8iQIW0eJzs7u03H1dXVqbKyUgkJCa626OhoWa1WHTp0yK3v9OnTWaZwA7vdroEDB6pbt25u7eXl5R1m9vbIkSNGlwCTef755/XFF1/od7/7nfr27duqY25ec/vXv/5Vt912m37605+6nXgGAGi7QG898OXLl7Vo0SLl5eVp7NixkqT58+fr2WefbTTg5ufna/PmzW6za/fff7/Kysq0cOFC/fznP29yrMzMTGVmZra6NofDIUkKCQlxaw8NDXXdd92UKVP0wgsvaNWqVa1+/G/DyD9JJiUltbqv3W5XRUWFevfu7db+1Vdf6YUXXmj145SUlHjla37uueda7LNu3boW+61bt85TJbV7OZnpjd5G427+ffnv//5vbdmyRU899ZQSExNb9Rg3h9vryxJWr16tBQsWaN++fRo1apTbMd76nQGAjqq5yQCvBdySkhJdu3ZNkydPdrVdv0TqzQF3x44dSk9PV2FhoYYNG+Zq37p1qz744APXGllPCQ4OlvTNTO6NamtrZbVa3dpOnTqlyMhIj47fGKNmbNq6s8T+/fu1cuVKzZkzx609Nja2TTO4SUlJXlmOcuzYsRb7rFu3Tmlpac32eeWVVzxVUruWmZOrbFtag9toXGO/L1u3btX//M//6JlnnmnVYzQVbiXpiSee0AsvvKB///d/bxBwvfU7AwBm5LUlCufOndMdd9zh1rZt2zb17dvX7U94W7ZsUXp6unbt2qUJEya49Y+IiPBKbaGhoYqMjNTBgwddbcePH5fD4Wiw1KGwsFAzZszwSh0dTUVFhS5cuKDk5GRFRES4Pr7++mvV1tZ2mCUKgCft2bNHsbGxGjhwYIt9mwu3ktSjRw9NnjyZdeIAcIu8FnBjYmJUUVGhkpISXb16Vdu2bVN2drbi4uJcfTZu3KglS5aouLjY53s+pqWlKScnRydOnJDD4ZDNZlNycrKioqJcfS5fvqyPPvpIU6dO9Wlt7ZXdblf37t0b7KDwySefqF+/furTp49BlbXNSy+9ZHQJMJGDBw+26j93LYXb6xISElRZWdlg20IAQOt5LeAOHz5cy5cv1yOPPKKIiAiVlpZqxIgRbssTnn32WTkcDk2YMEFBQUGuj7bKyspqcFZ/SzIzMzVt2jQlJibqrrvuUn19vfLy8tz6FBcXKz4+vsF6U39lt9uVmJiowED3lS379u3rULO3s2bNMroEmITT6VTXrl31ve99r8W+zz77bKv2uf3Od76j8PBw1dbWerpcAPAbXluDK0mrVq1yOzkrKipKqamprs89te502bJlWrZsWZuOsVgsWrt2rdauXdtkH5YnuGtqXeprr73m40puzaBBg3T06FGjy4AJBAQE6PTp063qGxcXp+eff17Z2dnNniz28MMP6+GHH/ZUiQDgl7wacG/kcDh06tSpJrcIa8yTTz6p0tJSXblyRaWlpdq1a5cXK2yof//+rj17AeBWPPnkk0aXAAB+w2cB9/DhwwoODlZ0dHSrj3njjTc8Nn5cXJzmzp3bpmNWrlzpsfEBAADgGz4LuKNGjWqwx6wvxcXFuZ3gBv/V1q3RAABAx+L1S/UC7U1HWzMMAADahoALv/PUU08ZXQIAAPAiAi78DleDAgDA3Ai4AAAAMBUCLgAAAEzFZ7sooP0qKyvz6c4CZWVlhu5owUUecCt8/ftyfUx2gQGA1mMG188ZsX2a0Vu2bd++3bCx0bHdys/u8cqzjd729rgA4I+YwfVz69evN7oEn1uxYoVmzZpldBnogG7l9yUzJ1fZtrQGtwEAnscMLgAAAEyFgAsAAABTIeDC72zatMnoEgAAgBcRcOF3YmJijC4BAAB4EQEXficpKcnoEgAAgBcRcAEAAGAqBFz4ncTERKNLAAAAXkTAhd+x2+1GlwAAALyIgAsAAABTIeACAADAVAi48Ds7d+40ugQAAOBFBFwAAACYCgEXfufRRx81ugQAAOBFgUYXAGMtXLhQZWVlPh83Li5O69ev9/m4ADoGo16bJF6fADNgBtfPlZWV+fxNxIgxAXQsRr1O8PoEmAMzuFBcXJz27Nnjs/HGjx/vs7Eas2DBAkPHB9A6vn5tkox/fQLgGczgwu9kZGQYXQIAAPAiAi78zrhx44wuAQAAeBEBF37nyy+/NLoEAADgRQRcAAAAmAoBF35n8ODBRpcAAAC8iIALv5Ofn290CQDaCafTaXQJALyAgAu/8+KLLxpdAgAPO3z4sDZs2KAnnnhCDzzwgCZNmqS5c+fq1Vdf1dGjRxs95oMPPtCYMWN0/vx5H1cLwNv8JuBu3bq1zfsbJiQk6P333/dOQTDMjh07jC4BgIcUFRVpzJgxio2N1cKFC/WnP/1JX331lS5evKiioiI988wzGjx4sMaPH6/du3e7jvvggw80bdo0Xbx4UdeuXTPwKwDgDYYGXJvNppiYGFmtVoWHhys1NdVn/5Our6/X0qVLFRYWpuDgYKWkpKi6utqtz4wZM1RQUOCTejqS8PBwvf76625tTqdTVqtVb7/9tkFVAfAnFy9e1Lx58zR58mSdPXtW//qv/6qqqip98cUX2rdvn/bt26ezZ8+qsrJSOTk5OnnypO6//36lpaXpD3/4g6ZNm6bvfve7+vDDD9W7d2+jvxwAHmZowLVYLMrLy1NNTY3Ky8tVVVWlefPm+WTs7OxsFRQUqLS0VFVVVZKk2bNnu/WZMWOGCgsLfVJPR3HmzBmdPXtWQ4cOdWs/fvy4Ll68qOHDhxtUGQB/UVdXp/vvv1+/+c1vtGzZMn322WdatGiR7rrrLrd+AQEB6tevn55//nkdPXpUS5cu1ebNmzVjxgxFR0cTbgET83rA3b59u2JjYxUUFKRJkyZp0aJFmjlzpiQpKytL8fHx6ty5s8LCwpSRkeGzyzLm5ubKZrNpwIABCgkJ0Zo1a1RUVKSTJ0+6+gwdOlSBgYE6cOCAT2rqCOx2uywWi2JiYtzay8vL1adPH/Xr18+gylqvpKTE6BIAfEvXrl3TrFmzdPDgQf3+97/X6tWr1bVr1xaP69atmyZNmqTOnTvr2rVrioiIUK9evXxQMQAjeDXgvvnmm1q8eLE2bdqkuro6TZ06VRs3blR8fHyj/Xfv3q0hQ4a0eZzs7Ow2HVdXV6fKykolJCS42qKjo2W1WnXo0CG3vtOnT2eZwg3sdrsGDhyobt26ubWXl5d3mNnbI0eOGF0CgG8pNzdX77//vl599VXNmDGj1cddX3N7zz33aNWqVSouLtZvfvMbL1YKwEheC7iXL1/WokWLlJubq7Fjx8pisWj+/Pmqr69vNODm5+dr8+bN2rBhgyTpwIEDGj16tMaNG6eJEyfq+PHjTY6VmZnZIJg2x+FwSJJCQkLc2kNDQ133XTdlyhS9++67rX5ss7Pb7aqoqFDv3r3dPnJycpSYmGh0ea3y9NNPG10CgG/h0qVLeuGFF3T//fcrPT291cddD7fX19wuX75cY8aM0ZIlS3TlyhUvVgzAKIHeeuCSkhJdu3ZNkydPdrVdv0TqzQF3x44dSk9PV2FhoYYNGybpmxOZioqKFBwcrPfee08rVqzQW2+95ZHagoODJX0zk3uj2tpaWa1Wt7ZTp04pMjLSI+M2JyAgwOtjNCUpKanVfffv36+VK1dqzpw5bu2xsbFtmsEtKSnxytf83HPPtapfbm5us/evW7fOE+V0CDmZ6Y3ehufxXLfNza9Nv/vd71RbW6uVK1e2+vXj5nB7fc3tihUr9MADD2jnzp16/PHH3Y7x1usTAM9qbh9rrwXcc+fO6Y477nBr27Ztm/r27au+ffu62rZs2aLFixdr165dGj16tKv9zjvvdN3u0qWLAgM9V2poaKgiIyN18OBBxcXFSfrmJCmHw9FgqUNhYaFSUlI8NnZTjNpsvC1bp1VUVOjChQtKTk5WRESEW3ttbW2bAm5SUpJX1lsfO3asxT7r1q1TWlpas31eeeUVT5XUrmXm5CrbltbgNjyP57ptGntt2rFjh+655x6NGjWqVY/RVLiVpIkTJyoqKkrbt29vEHC99foEwHe8tkQhJiZGFRUVKikp0dWrV7Vt2zZlZ2e7AqUkbdy4UUuWLFFxcbFbuL3RpUuXlJmZqSVLlni0vrS0NOXk5OjEiRNyOByy2WxKTk5WVFSUq8/ly5f10UcfaerUqR4du6Oy2+3q3r17gx0UPvnkE/Xr1099+vQxqLK2eemll4wuAUAbOZ1O7d+/X6NHj27V7Gpz4VaSOnXqpNGjR3MSMWBSXgu4w4cP1/Lly/XII48oIiJCpaWlGjFihNvyhGeffVYOh0MTJkxQUFCQ6+O6q1evaubMmfr5z3/e4Kz9G2VlZTV7f2MyMzM1bdo0JSYm6q677lJ9fb3y8vLc+hQXFys+Pp5tZP4fu92uxMTEBrPp+/bt6zAnmEnSrFmzjC4BQBvV1NTo/Pnzuvfee1vs21K4vS4mJkZnzpzRpUuXPF0uAIN5bYmCJK1atUqrVq1yfR4VFaXU1FTX5839Wb6+vl7/8i//okceeUQPPfRQs+MsW7ZMy5Yta1NtFotFa9eu1dq1a5vsU1hY2KazdM2uqT/bv/baaz6u5NYMGjSoyUt3AmifevTood/97neu8zSacu3aNWVmZrbqIg4PPfSQ7r77bnXu3NnT5QIwmFcD7o0cDodOnTrV5BZhN9uxY4eKiopUXV2tvLw8xcbG6tVXX/Vyle769+/v2rMXAGCcbt266bHHHmuxX6dOnfSHP/xBgYGBLf71bdCgQRo0aJCnSgTQjvgs4B4+fFjBwcGKjo5uVf/HHnusVS9mrRUXF6e5c+e26ZiVK1d6bHwAgG/ceCIzAP/ks4A7atSoBnvM+lJcXJzbCW7wX23ZOQIAAHQ8Xr9UL9DedLQ1wwAAoG0IuPA7Tz31lNElAAAALyLgwu+wgTsAAOZGwAUAAICpEHABAABgKgRc+B0u8gAAgLn5bJswtF9lZWU+3TqrrKzM0C3btm/fzuV6gQ7A169N18dkS0mg42MG188ZsT+w0XsSr1ixwrCxAbTOrbxOHK886/avr8YF0H4wg+vn1q9fb3QJANDArbw2ZebkKtuW5voXgP9hBhcAAACmQsCF39m0aZPRJQAAAC8i4MLvxMTEGF0CAADwIgIu/E5SUpLRJQAAAC8i4AIAAMBUCLgAAAAwFQIu/E5iYqLRJQAAAC8i4MLv2O12o0sAAABeRMAFAACAqRBwAQAAYCoEXPidnTt3Gl0CAADwIgIuAAAATIWAC7/z6KOPGl0CAADwokCjC4CxFi5cqLKyMp+PGxcXp/Xr1/t8XACAO6PeByTeC+A9zOD6ubKyMp+/sBkxJgCgcUa9JvNeAG9iBheKi4vTnj17fDbe+PHjfTZWYxYsWGDo+ADQ3vj6fUAy/r0A5sYMLvxORkaG0SUAAAAvIuDC74wbN87oEgAAgBcRcOF3vvzyS6NLAAAAXkTABQAAgKkQcOF3Bg8ebHQJAADAi9hFAX4nPz/f6BIAoEO7cuWKDh8+rOrqagUEBCgyMlIDBw5Up06Nz5udP39e+/bt05QpU3xcKfyV38zgbt26tc1bkiQkJOj999/3TkEwzIsvvmh0CQDQ4Vy5ckXbtm1TUlKSgoODNXz4cD344INKTk7WoEGDFBoaqkcffVQffvihnE6n67jz58/r/vvv149+9COdO3fOwK8A/sTQgGuz2RQTEyOr1arw8HClpqbq/PnzPhm7vr5eS5cuVVhYmIKDg5WSkqLq6mq3PjNmzFBBQYFP6ulIwsPD9frrr7u1OZ1OWa1Wvf322wZV1Xo7duwwugQA6FD+/Oc/KyYmRo8//ri++OILPffcc9q+fbs+/vhj/eUvf9Ebb7yhxx9/XHv27NF9992n++67TydOnHCF288++0w7d+7UHXfcYfSXAj9haMC1WCzKy8tTTU2NysvLVVVVpXnz5vlk7OzsbBUUFKi0tFRVVVWSpNmzZ7v1mTFjhgoLC31ST0dx5swZnT17VkP5UDCcAAAgAElEQVSHDnVrP378uC5evKjhw4cbVBkAwBuys7OVlJQkp9Opd999V3//+9+Vk5OjmTNnatSoURozZozmzZun1157TVVVVfr1r3+t/fv3695779X3v/99ffbZZ3rnnXf04IMPGv2lwI94PeBu375dsbGxCgoK0qRJk7Ro0SLNnDlTkpSVlaX4+Hh17txZYWFhysjI8NmVVHJzc2Wz2TRgwACFhIRozZo1Kioq0smTJ119hg4dqsDAQB04cMAnNXUEdrtdFotFMTExbu3l5eXq06eP+vXrZ1BlAABPW7NmjV544QX9+Mc/1qFDh/TDH/6wyXW2knTbbbfp6aef1t69e+V0OvX5559rxYoVhFv4nFcD7ptvvqnFixdr06ZNqqur09SpU7Vx40bFx8c32n/37t0aMmRIm8fJzs5u03F1dXWqrKxUQkKCqy06OlpWq1WHDh1y6zt9+nSWKdzAbrdr4MCB6tatm1t7eXl5h5m9LSkpMboEAGj3/vrXv+qFF17QrFmz9NZbb6lHjx6tOu78+fOaO3eurl27psjISG3YsMFnyw+B67wWcC9fvqxFixYpNzdXY8eOlcVi0fz581VfX99owM3Pz9fmzZu1YcMGSVJ1dbVGjhyppKQkJSYm6k9/+lOTY2VmZjYIps1xOBySpJCQELf20NBQ133XTZkyRe+++26rH9vs7Ha7Kioq1Lt3b7ePnJwcJSYmGl1eqxw5csToEgCgXauvr9eTTz6piIgIbd68WRaLpVXH3bjm9p133lFBQYFqamq0ZMkSL1cMuPPaNmElJSW6du2aJk+e7Gq7fgWpmwPujh07lJ6ersLCQg0bNkyS1LNnT+3du1cWi0UVFRX68Y9/rAceeMAjtQUHB0v6Zib3RrW1tbJarW5tp06dUmRkpEfGbU5AQIDXx2hKUlJSq/vu379fK1eu1Jw5c9zaY2Nj2zSDW1JS4pWv+bnnnmuxz7p161rst27dOk+V1O7lZKY3ehuex3PtO9efX57n1rn5feC9997T0aNHtX379gbvi025OdxeX5awYMEC/frXv1ZWVpb69u3rdoy33gvgH27creNmXgu4586da3C25LZt29S3b1+3H/AtW7Zo8eLF2rVrl0aPHu1qv/F/ixcvXmxwUtOtCA0NVWRkpA4ePKi4uDhJ35wk5XA4Gix1KCwsVEpKisfGbkpz3yRvasvWaRUVFbpw4YKSk5MVERHh1l5bW9umgJuUlOSV9dbHjh1rsc+6deuUlpbWbJ9XXnnFUyW1a5k5ucq2pTW4Dc/jufad688vz3PrNPY+sHnzZoWHh+vhhx9u1WM0FW6lbwLuhg0btHXrVmVmZrod5633AsBrSxRiYmJUUVGhkpISXb16Vdu2bVN2drYrUErSxo0btWTJEhUXF7uF2+tOnDihMWPGaNKkSXrooYc8Wl9aWppycnJ04sQJORwO2Ww2JScnKyoqytXn8uXL+uijjzR16lSPjt1R2e12de/evcF/Nj755BP169dPffr0MagyAICnOJ1O7d27V1OmTFFgYMvzYM2FW0n67ne/q8GDB2vv3r3eKhlowGsBd/jw4Vq+fLkeeeQRRUREqLS0VCNGjHBbnvDss8/K4XBowoQJCgoKcn1cd/fdd2vv3r2y2+3KyMhocqysrKwGZ/W3JDMzU9OmTVNiYqLuuusu1dfXKy8vz61PcXGx4uPj1bt37zY9tlnZ7XYlJiY2eMHbt29fhznBTJJeeuklo0sAgHbr1KlTunDhgtuJ2E1pKdxel5CQoE8//dTTpQJN8uqleletWqVVq1a5Po+KilJqaqrr8+b+LH/lyhV17dpVkmS1Wl3rZhuzbNkyLVu2rE21WSwWrV27VmvXrm2yT2FhoWbMmNGmxzWzpv5s/9prr/m4klsza9Yso0sAgHbr6tWrSkhI0MCBA5vt9/XXX7cq3ErfnHtz4sQJT5cKNMmrAfdGDodDp06danKLsJsdPHhQNptNFotF//znP7V+/XovV9hQ//79XXv2wjwGDRqko0ePGl0GALRLAwcO1P79+1vsd9ttt+lHP/qRhg4d2uI+t88991yrTgIGPMVnAffw4cMKDg5WdHR0q/qPHDlSf/7znz02flxcnObOndumY1auXOmx8QEAMBubzWZ0CUCjfBZwR40a1WCPWV+Ki4tzO8ENAAAA5uT1S/UC7U1btkYDAAAdDwEXfqejnRQHAADahoALv/PUU08ZXQIAAPAiAi78DlfNAQDA3Ai4AAAAMBUCLgAAAEzFZ9uEof0qKyvz6c4CZWVlhm7ZxkUeAMCdr98Hro/J9p3wFmZw/ZwR+wMbvSfx9u3bDRsbANqbb/uafLzybKO3vT0u0BrM4Po5Iy6BbLQVK1Zo1qxZRpcBAO3Ct30fyMzJVbYtrcFtoD1gBhcAAACmQsAFAACAqRBw4Xc2bdpkdAkAAMCLCLjwOzExMUaXAAAAvIiAC7+TlJRkdAkAAMCLCLgAAAAwFQIu/E5iYqLRJQAAAC8i4MLv2O12o0sAAABeRMAFAACAqRBwAQAAYCoEXPidnTt3Gl0CAADwIgIuAAAATIWAC7/z6KOPGl0CAADwokCjC4CxFi5cqLKyMp+PGxcXp/Xr1/t8XAAAjGLUe67kf++7zOD6ubKyMp//shkxJgAARjPq/c8f33eZwYXi4uK0Z88en403fvx4n43VmAULFhg6PgDAf/n6PVcy/n3XCMzgwu9kZGQYXQIAAPAiAi78zrhx44wuAQAAeBEBF37nyy+/NLoEAADgRQRcAAAAmAoBF35n8ODBRpcAAAC8iIALv5Ofn290CQAAeIXT6dTVq1eNLsNwBFz4nRdffNHoEgAAaNaVK1e0fft2PfPMMxo3bpxiYmI0dOhQPfzww/rlL3+p8vLyBsc4nU4tX75cDz74oL7++msDqm4//Cbgbt26tc37wCUkJOj999/3TkEwzI4dO4wuAQCARl25ckUvv/yyIiIi9KMf/UhvvPGGrl27pkGDBikqKkqfffaZfvGLXyguLk6jR4/WX/7yF0n/G25/9atfaeDAgerSpYvBX4mxDA24NptNMTExslqtCg8PV2pqqs6fP++Tsevr67V06VKFhYUpODhYKSkpqq6uduszY8YMFRQU+KSejiQ8PFyvv/66W5vT6ZTVatXbb79tUFUAAHRshw8f1vDhw/Xiiy9q1KhRev/991VXV6e9e/dq586dKigo0N///ndVV1frX//1X1VVVaWkpCQ9++yzyszM1K9+9Sulp6dr06ZN6tTJb+YwG2XoV2+xWJSXl6eamhqVl5erqqpK8+bN88nY2dnZKigoUGlpqaqqqiRJs2fPduszY8YMFRYW+qSejuLMmTM6e/ashg4d6tZ+/PhxXbx4UcOHDzeoMgAAOq4DBw5o7Nixqq6u1h/+8AcVFBTogQcekMViadC3V69eWrRokY4cOaKnn35aGzdu1Jo1a5Samkq4/X+8/gxs375dsbGxCgoK0qRJk7Ro0SLNnDlTkpSVlaX4+Hh17txZYWFhysjI8Nnl63Jzc2Wz2TRgwACFhIRozZo1Kioq0smTJ119hg4dqsDAQB04cMAnNXUEdrtdFotFMTExbu3l5eXq06eP+vXrZ1BlrVdSUmJ0CQAAuJw7d06TJ09WSEiI/vrXv2rKlCmtOq5Hjx6yWq2uz7t06UK4/X+8+iy8+eabWrx4sTZt2qS6ujpNnTpVGzduVHx8fKP9d+/erSFDhrR5nOzs7DYdV1dXp8rKSiUkJLjaoqOjZbVadejQIbe+06dPZ5nCDex2uwYOHKhu3bq5tZeXl3eY2dsjR44YXQIAAC4LFixQXV2d/vCHP6h///6tOubGNbfp6en62c9+pl//+tc+myhs77wWcC9fvqxFixYpNzdXY8eOlcVi0fz581VfX99owM3Pz9fmzZu1YcMGt/aamhr17NlTeXl5TY6VmZnZIJg2x+FwSJJCQkLc2kNDQ133XTdlyhS9++67rX5ss7Pb7aqoqFDv3r3dPnJycpSYmGh0ea3y9NNPG10CAACSpP/6r//Szp079eKLL+ree+9t1TE3h9tNmzYpOztbAwYM0PPPP+/lijuGQG89cElJia5du6bJkye72q5fIvXmgLtjxw6lp6ersLBQw4YNc7vvl7/8pcaMGePR2oKDgyV9M5N7o9raWrepfkk6deqUIiMjPTp+YwICArw+RlOSkpJa3Xf//v1auXKl5syZ49YeGxvbphnckpISr3zNzz33XKv65ebmNnv/unXrPFFOh5CTmd7obXgez7XvXH9+eZ69i5/ptrv5PXfTpk0KCgrSM88806rjGwu3nTp1Uvfu3fXcc8/pZz/7mfbv39/gPdlb77tGcjqdTd7ntYB77tw53XHHHW5t27ZtU9++fdW3b19X25YtW7R48WLt2rVLo0ePduv/+eefq6amxm0pgSeEhoYqMjJSBw8eVFxcnKRvTpJyOBwNljoUFhYqJSXFo+M3prlvkje1Zeu0iooKXbhwQcnJyYqIiHBrr62tbVPATUpK8sqfUY4dO9Zin3Xr1iktLa3ZPq+88oqnSmrXMnNylW1La3Abnsdz7TvXn1+eZ+/iZ7rtbn7PdTqdeueddzRz5kzX5Ftzmgq3182ePVsLFy7UO++80+A92Vvvu+2V15YoxMTEqKKiQiUlJbp69aq2bdum7OxsV6CUpI0bN2rJkiUqLi5uEG4l6Re/+IVWrFjhlfrS0tKUk5OjEydOyOFwyGazKTk5WVFRUa4+ly9f1kcffaSpU6d6pYaOxm63q3v37g12UPjkk0/Ur18/9enTx6DK2uall14yugQAAPT555+rrq5OI0eObLFvS+FW+mbpZUxMDCfHy4sBd/jw4Vq+fLkeeeQRRUREqLS0VCNGjHBbnvDss8/K4XBowoQJCgoKcn1I0r59+9SrVy9FR0e3OFZWVlaDs/pbkpmZqWnTpikxMVF33XWX6uvrG6zzLS4uVnx8vHr37t2mxzYru92uxMREBQa6T/zv27evw5xgJkmzZs0yugQAAPT5559LkgYNGtRsv9aE2+sGDRqkiooKj9fa0XhtiYIkrVq1SqtWrXJ9HhUVpdTUVNfnzf1Z3m6369ChQ3rwwQdVUVGhHj16KDo6utH/5SxbtkzLli1rU20Wi0Vr167V2rVrm+xTWFioGTNmtOlxzaypP9u/9tprPq7k1gwaNEhHjx41ugwAgJ9LTEzUhx9+qNjY2Gb71dTU6K233mrVRRx+8Ytf6NKlS54utcPxasC9kcPh0KlTp5rcIuxmzzzzjGvB9cqVK/Wd73ynVVP4ntS/f3/Xnr0AAACedPvtt2vChAkt9uvdu7fsdrvuuOOOFve5betftM3KZwH38OHDCg4ObtWSg5utXLnylsePi4vT3LlzfT4uAADArbrxBH20zGcBd9SoUQ32mPWluLg4txPc4L/asnMEAADoeLieG/xOR1szDAAA2oaAC7/z1FNPGV0CAADwIgIu/I4/bXQNAIA/IuACAADAVAi4AAAAMBUCLvwOF3kAAMDcfLZNGNqvsrIyn26dVVZWZuiWbdu3b+dyvQAAQ/j6Pff6mP62VSozuH7OiP2Bjd6TeMWKFYaNDQDwX9/2/e945dlGb3t73I6MGVw/t379eqNLAADAL3zb99zMnFxl29Ia3EbTmMEFAACAqRBw4Xc2bdpkdAkAAMCLCLjwOzExMUaXAAAAvIiAC7+TlJRkdAkAAMCLCLgAAAAwFQIuAAAATIVtwmAq99xzT4t9VqxY0ap+AACgY2IGF35n5cqVRpcAAAC8iIALAAAAUyHgAgAAwFQIuAAAADAVAi4AAABMhYALAAAAUyHgAgAAwFQIuAAAADAVAi4AAABMhYALAAAAU+FSvYCfuHLlquqvXWvQfvn/+7rR27fd1lWdAgJ8UhsAAJ5EwAX8RNnRCr1dvLdB+6qNv2lwOyqir9L/ZZrPagMAwJNYogD4ieFD7lHfsNtb7Bcgaep9IxXA7C0AoIMi4AJ+wtKpk6ZOHNliv2H3DlRE3zAfVAQAgHcQcAE/8p2ouzToO/2bvL9L50AlJ33fhxUBAOB57S7g2mw2xcTEyGq1Kjw8XKmpqTp//rxPxq6vr9fSpUsVFham4OBgpaSkqLq62idjA74yZcIPZOnU+K/+hJHxsgZ193FFAAB4VrsLuBaLRXl5eaqpqVF5ebmqqqo0b948n4ydnZ2tgoIClZaWqqqqSpI0e/Zsn4wN+Erv20M0KuHeBu2h1iCNGR5rQEUAAHiWYQH3448/VnJysvr06aPQ0FDNnDlTkpSVlaX4+Hh17txZYWFhysjI0J49e3xSU25urmw2mwYMGKCQkBCtWbNGRUVFOnnypE/GB3xl4qh49eh2m1vbDyf8QJ07s7EKAKDjMyTg5ufna/r06UpLS1NlZaVOnz6t+fPnN9p39+7dGjJkSJvHyM7ObtNxdXV1qqysVEJCgqstOjpaVqtVhw4davP4QHvW7bauemDscNfnURF9Ffu9uw2sCAAAz/F5wL106ZLS09O1YcMGpaSkqGvXrgoODlZycnKDvvn5+dq8ebM2bNjgasvLy9PIkSM1cuRI7d69u8lxMjMz2xRMHQ6HJCkkJMStPTQ01HUfYCaJQ7/ZNoxtwQAAZhPgdDqdvhzwvffe0xNPPKFz5841+4a6Y8cOpaenKz8/XxMmTJAk1dbWauLEidq3b5+++uorTZgwQZ9++qksFsst11VbW6uePXvq008/VVxcnKs9JCREb731lqZPn37LYzQnMyfXq48PAABgJtm2tKbvdPrYm2++6fzud7/bbJ833njD2bNnT+fevXvd2ouKipzPPPOM6/Np06Y5//73v3ustsjISOfrr7/u+vzzzz93SnKeOHHCY2MA7c2VK1eNLsEv2LL/T6O34XnXn1+eZ+/iZ9p3eK7bzudLFBISEnTixAnt2rVL165dU21trYqLi133b9y4UUuWLFFxcbFGjx7tdmxNTY169uzp+rxnz56qqanxWG1paWnKycnRiRMn5HA4ZLPZlJycrKioKI+NAbQ3Xbp0NroEAAA8yudLFCTpzTffVFZWls6cOaPg4GA9+eSTWr169TcFBQQoMDBQXbt2dTvmq6++UnFxsd577z3Xmtzp06dr7dq1GjhwYIMxsrKy9Nvf/lZHjhxpdV319fWy2WzaunWrrly5ogceeEC5ubnq3bv3LXy1rcMSBQAAgNZrV0sUbsWFCxec8fHxzq+//tpZU1PjvPfee53//Oc/jS4LAFrEnxh9hyUKvsHPtO/wXLddh9r0MjQ0VAsXLtT48eMlSa+88opHTjADAACAeXSogCtJc+bM0Zw5c4wuAwAAAO1Uu7tULwAAAHArCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUCLgAAAAwFQIuAAAATIWACwAAAFMh4AIAAMBUAo0uAADMprTsM1V+ca5B+4739jS4HRocpAfGDvdRZQDgHwi4AOBhd/UN0zvFe+W8qf3A3/7R4PZj0yb6sDIA8A8sUQAAD4voG6ZhsQNb7BcZfoeGDor2QUUA4F8IuADgBcnjvq8unZv/I9nU+0YpICDARxUBgP8g4AKAF1iDumvCyPgm74+P+Y4iw+/wYUUA4D/aXcC12WyKiYmR1WpVeHi4UlNTdf78eZ+MXV9fr6VLlyosLEzBwcFKSUlRdXW1T8YGYD5jEmMVag1q0N450KIHx33fgIoAwD+0u4BrsViUl5enmpoalZeXq6qqSvPmzfPJ2NnZ2SooKFBpaamqqqokSbNnz/bJ2ADMp3NgoH444QcN2pNGxCmkkeALAPAMwwLuxx9/rOTkZPXp00ehoaGaOXOmJCkrK0vx8fHq3LmzwsLClJGRoT179vikptzcXNlsNg0YMEAhISFas2aNioqKdPLkSZ+MD8B8Yr93t6Ii+ro+DwnuoXEjhhpYEQCYnyEBNz8/X9OnT1daWpoqKyt1+vRpzZ8/v9G+u3fv1pAhQ9o8RnZ2dpuOq6urU2VlpRISElxt0dHRslqtOnToUJvHBwBJCggI0NT7Rur6qWSTx49o8eQzAMCtCXA6nTdv1ehVly5dUv/+/bV+/Xr95Cc/abZvfn6+5s6dq5KSEg0bNkySdP/996usrEwLFy7Uz3/+c4/Vdfr0aUVGRur48eO6++67Xe39+/fX6tWrW6z1VmXm5Hr18QEAAMwk25bW5H0+n0YoKSlRQECAHn/88Wb77dixQ+np6SosLHSFW0naunWrPvjgA9caWU8JDg6W9M1M7o1qa2tltVo9OlZjmvsmAej4HF9dluPiJUXcGWZ0KaaXmZOrbFua6194x43PL8+1d/Fct53PlyhUV1erZ8+eze79uGXLFqWnp2vXrl2aMGGC230RERFeqSs0NFSRkZE6ePCgq+348eNyOBzfaokEANzIGtSdcAsAPuLzJQpHjhxRXFycfv/732vKlClyOBwqLS1VcnKyJGnjxo166aWXVFRUpMTExEYfY+vWraqqqvLoEgVJWr16tX7zm9+oqKhIvXr10k9/+lNdvHhRRUVFHh2nMSxRAAAAaL1mZ7KdBti6datz4MCBzh49ejj79u3rXLZsmes+Sc7AwEBnjx493D5utGXLFufLL7/c7BirV692Dh48uE11/fOf/3QuXrzY2atXL2dQUJDz4Ycfdn755ZdtegwAgLFs2f/H7V94x43PL8+1d/Fct50hp/I+8cQTeuKJJxq9z+mhCeVly5Zp2bJlbTrGYrFo7dq1Wrt2rUdqAAAAgO91uL1qnnzySZWWlurKlSsqLS3Vrl27jC4JAAAA7UiHC7hvvPGG0SUAAACgHWt3l+oFAAAAbgUBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKgRcAAAAmAoBFwAAAKZCwAUAAICpEHABAABgKoFGFwAAwLf15flaXau/1qD9/3553u1fSbJYLOp9e4jPagNgHAIuAKDD+q+yY/qL/VCD9nVv7HT7V5ImjozXpHGJPqsNgHFYogAA6LAmjopXj263tdgvOKi7kn4Q54OKALQHBFwAQIfV7baumjRueIv9Hkz6vrp26eyDigC0BwRcAECHNnzIPeobdnuT90f0DVN8zHd9WBEAo7W7gGuz2RQTEyOr1arw8HClpqbq/PnzLR/oAfX19Vq6dKnCwsIUHByslJQUVVdX+2RsAMC3Y+nUSVMnjmzy/qn3jVSngAAfVgTAaO0u4FosFuXl5ammpkbl5eWqqqrSvHnzfDJ2dna2CgoKVFpaqqqqKknS7NmzfTI2AODb+07UXRr83f4N2ocOilZURF8DKgJgJMMC7scff6zk5GT16dNHoaGhmjlzpiQpKytL8fHx6ty5s8LCwpSRkaE9e/b4pKbc3FzZbDYNGDBAISEhWrNmjYqKinTy5EmfjA8A+PZ+OP4HsnT637e1wECLHkz6voEVATCKIQE3Pz9f06dPV1pamiorK3X69GnNnz+/0b67d+/WkCFD2jxGdnZ2m46rq6tTZWWlEhISXG3R0dGyWq06dKjhFjQAgPal9+0hGpVwr+vzcYlD1DMk2MCKABjF5wH30qVLSk9P14YNG5SSkqKuXbsqODhYycnJDfrm5+dr8+bN2rBhgyTpwIEDGj16tMaNG6eJEyfq+PHjTY6TmZnZpmDqcDgkSSEh7puAh4aGuu4DALRv940eph7db5OVbcEAvxbgdDqdvhzwvffe0xNPPKFz584poJlF/zt27FB6erry8/M1YcIESdLZs2cVFBSk4OBgvffee/rd736nt956yyN11dbWqmfPnvr0008VF/e/L4ohISF66623NH36dI+M05TMnFyvPj4AAICZZNvSmrzP51cyq66uVs+ePZsNt1u2bNHixYu1a9cujR492tV+5513um536dJFgYGeKz80NFSRkZE6ePCgK+AeP35cDofjWy2RaKvmvkkAgNa7du2aFBDAzglelpmT63rvuvE2PI/nuu18vkQhISFBJ06c0K5du3Tt2jXV1taquLjYdf/GjRu1ZMkSFRcXu4XbG126dEmZmZlasmSJR2tLS0tTTk6OTpw4IYfDIZvNpuTkZEVFRXl0HACA93Tq1IlwC/g5ny9RkKQ333xTWVlZOnPmjIKDg/Xkk09q9erV3xQUEKDAwEB17drV7ZivvvpKknT16lU99NBDSktL00MPPdTkGFlZWfrtb3+rI0eOtLqu+vp62Ww2bd26VVeuXNEDDzyg3Nxc9e7d+1t8lW3DEgUAAIDWa24m25CA+23V19frRz/6kR588MEmd10AAADex5/NfYfnuu3a3YUemrNjxw4VFRUpLy9P48eP189+9jOjSwIAAEA74/OTzG7FY489pscee8zoMgAAANCOdagZXAAAAKAlBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgBparCMAAAnBSURBVKkQcAEAAGAqBFwAAACYCgEXAAAApkLABQAAgKkQcAEAAGAqgUYXAAAA2jen06mCP32s87UX3drf2P7HRm9/L7qfRifc67P6gJsRcAEAQLMCAgI0IDJcf/30A7f2f5w43eC2xdJJMyaN9ml9wM1YogAAAFoU+727FRXRt8V+Y4bHqleo1QcVAU0j4AIAgBYFBARo6n0jFdBMn6Ae3TRhZLzPagKaQsAFAACtEtE3TMNiBzZ5f/LYRN3WtYsPKwIa1+4Crs1mU0xMjKxWq8LDw5Wamqrz58/7ZOz6+notXbpUYWFhCg4OVkpKiqqrq30yNgAAHUHyuO+rS5fODdrvvKOXEpoJv4AvtbuAa7FYlJeXp5qaGpWXl6uqqkrz5s3zydjZ2dkqKChQaWmpqqqqJEmzZ8/2ydgAAHQE1qDumvCDuAbt0+4bqU6d2l2sgJ8y7Cfx448/VnJysvr06aPQ0FDNnDlTkpSVlaX4+Hh17txZYWFhysjI0J49e3xSU25urmw2mwYMGKCQkBCtWbNGRUVFOnnypE/GBwCgIxiTGKtQa5Dr83sH3q0BkeEGVgS4MyTg5ufna/r06UpLS1NlZaVOnz6t+fPnN9p39+7dGjJkSJvHyM7ObtNxdXV1qqysVEJCgqstOjpaVqtVhw4davP4AACYVefAQP1wwg8kfbMt2OQJIwyuCHAX4HQ6nb4c8NKlS+rfv7/Wr1+vn/zkJ832zc/P19y5c1VSUqJhw4apurpa06ZNU5cuXXT58mVlZWXpgQce8Ehdp0+fVmRkpI4fP667777b1d6/f3+tXr26xVpvVWZOrlcfHwAAwEyybWlN3ufzCz38/+3dX0jU6R7H8c84slaemWZS2WhBBY2FXEo02XVtqdmDK1R0cbxZM2HTcu5OFxnjTX9J0bucq7DACoUDg0EOgV50YRThzdAfXIjUKbPDgeOYjnYhpJ4LOYOi42qr8+fZ9+vKmd9veL7qzZvxmcf+/n5ZLBZVV1eveZ/P55Pb7VZPT4+KiookSU6nU0+ePJHVatXQ0JCqqqo2LXBtNpukxXdyl5qcnJTdvvXn+a31SwIAIBH9578Tctj/xskJW6yxtT3SCUu/RnQx36IwPj4up9MpiyX6SXodHR1yu93y+/1yuVyR561Wq6xWqyRpenpaBw4c2LS5HA6HsrOzFQgEIs+NjIwoHA5/0RYJAABMtztrF3GLhBTzLQqDg4MqLCzU/fv3dezYMYXDYQ0MDKiiokKS5PV6dfXqVfX29qqkpGTF64PBoGpqavT69Wt1dHTo+PHjmzZbU1OT7t27p97eXmVkZKiurk7T09Pq7e3dtDWiYYsCAADA+q31TnbMA1eS7t69q+bmZn348EE2m021tbVqampaHMhiUWpqqtLS0pa9ZmZmZtnjt2/f6siRI1FPOGhublZXV5cGBwfXPdfc3Jw8Ho/u3Lmj2dlZlZeXq729XZmZmRv7BgEAADYJWxQ2Li6B+6VmZ2cj4TsxMaHDhw/r1atXcZ4KAABg6xC4GxfzD5n9GYFAQB6PR1arVZ8/f9aNGzfiPRIAAAASTFIFbmlpqR4/fhzvMQAAAJDA+J96AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjELgAAAAwCoELAAAAoxC4AAAAMAqBCwAAAKMQuAAAADAKgQsAAACjpMZ7AAAAACyam5/XyOi/Vzz/5u3Yql/b03fo66xdMZktmVgWFhYW4j0EAAAAFt2736ff37xb171nfj2m/Jxvtnii5MMWBQAAgARy1PWDrCl/nGj79uYSt1EQuAAAAAkk07lTZQe/W/Mea0qKjrq+j9FEyYfABQAASDA//1ik9B3bol4vO/idMp07YzhRckm4wPV4PCooKJDdbteePXt09uxZTUxMxGTtubk5XbhwQVlZWbLZbKqsrNT4+HhM1gYAAPi/bWlf6ZefSla9lr5jm37+sSjGEyWXhAtcq9Wqzs5OhUIhvXjxQmNjYzp9+nRM1m5padGDBw80MDCgsbHFTyjW1NTEZG0AAIClSvZ/q92rnJDwy08HtS3tqzhMlDzidorC06dPde3aNT1//lyzs7MqLy+Xz+dbcd/Dhw918uRJTU1NbflMOTk5unTpkurq6iRJw8PDys/PVzAYVG5u7pavDwAAsNTQuw+6/a+Hkce7s3bpn7/9Qynr+BDaX1lcfjrd3d06ceKE6uvrNTo6qvfv3+vMmTOr3vvo0SPt379/w2u0tLRs6HVTU1MaHR1VcXFx5Lm8vDzZ7Xa9fPlyw+sDAAD8Wfk532jf3tzI4+N/LyVu1yHmP6FPnz7J7Xarra1NlZWVSktLk81mU0VFxYp7u7u7devWLbW1tS17PhQKyel0qrOzM+o6jY2NGwrTcDgsSdq5c/mGbYfDEbkGAAAQa0dd38uakqJ9e3M4FmydYv6fzPr7+2WxWFRdXb3mfT6fT263Wz09PSoqWr6R+vr16zp06NCmzmWz2SRpxVaIyclJ2e32TV1rNY2t7Vu+BgAASF6/v3lHLyzR4qmPei3mgTs+Pi6n0ymLxRL1no6ODp0/f15+v19lZWXLrg0PDysUCi3bSrAZHA6HsrOzFQgEVFhYKEkaGRlROBz+oi0SG7XWLwkAAPy1LSwsrNlOWC7mWxSKi4sVDAbl9/s1Pz+vyclJ9fX1Ra57vV41NDSor69vRdxK0sWLF3X58uUtma2+vl6tra0KBoMKh8PyeDyqqKjgA2YAACCuiNuNifk7uAUFBbp9+7YaGhpUVVUlm82m2trayB7cc+fOKTU1VS6Xa9nrZmZm9OzZM2VkZCgvL+8P12lublZXV5cGBwfXPVtjY6M+fvyokpKSyMkOa+3z3Uz8yQEAAGD91vrrd9yOCfsSXq9X3d3d2r59u4aGhpSenq6bN2+qtLQ03qMBAAAgQSRV4C515coV5efn69SpU/EeBQAAAAkkaQMXAAAAWA0nBQMAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIxC4AIAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIxC4AIAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIxC4AIAAMAoBC4AAACMQuACAADAKAQuAAAAjELgAgAAwCgELgAAAIzyP1pSwtZyDxPkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHiCAYAAAADPb8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3X1c1HW+//8nQl4PYGqSIpJsbkrAsMi2mopZiq5XFWntKbV1lW6l26plkJaarTZ4XLU66fnSqbDMzs2LCrtYbLuQ1nI5o4amafslVNTcr6HCmP7SszC/PzzMkbgacj7zYT7zuN9u3hw+8/7M68UgzNM37897Qtxut1sAAACARbQyuwEAAADAlwi4AAAAsBQCLgAAACyFgAsAAABLIeACAADAUgi4AAAAsBQCLgAAACyFgAsAAABLIeACAADAUgi4AAAAsBQCLgAAACyFgAsAAABLIeACAADAUgi4AAAAsBQCLgAAACyFgAsAAABLIeACAADAUgi4AAAAsBQCLgAAACwlzOwGAF86ePBgk2P+7d/+TTNnzmx0zA033OCrlgAAgJ8xg4ug88ILL5jdAgAAMBABFwAAAJZCwAUAAIClEHARdDZt2mR2CwAAwEAEXAAAAFgKARdB56677jK7BQAAYCC2CQtys2bNUnFxsd/r2u12rVq1yu91rcisr6HE1xEA0DIxgxvkiouL/R6OzKhpZWY9n3wdAQAtFTO4kN1u17Zt2/xWb+jQoX6rVZ8ZM2aYWt8I/v4aSuZ/HQEAaAgzuAg6Tb2LGQAACGwEXASdIUOGmN0CAAAwEAEXQee7774zuwUAAGAgAi4AAAAshYCLoNOvXz+zWwAAAAYi4CLobN682ewWAACAgdgmDEFnwYIFWrx4sdltmObs2bMqLCzUrl27dOjQIVVVValLly5KTk7WoEGD1Lt37zrnnDhxQtOnT9eaNWvUs2dPE7oGAMB7QTODm5eX1+x9O1NSUvTBBx8Y0xBMs3HjRrNbMEVZWZkeeughde/eXWPHjtVTTz2ljz/+WJ999plyc3M1ZcoUxcXF6bbbbtPWrVs95504cULDhg3Ttm3bdPToURM/AwAAvGNqwK2qqtLcuXPVtWtX2Ww2ZWRkqLy8vMXUHj9+vPLz8/3STyDp3r27XnrppVrH3G63wsPD9dZbb5nUFRridrv1H//xH7rxxhv18ssvKyMjQx9//LFcLpfKyspUWloql8ul/fv3a8mSJfr73/+ukSNHavLkyTp48KCGDRumo0eP6s9//rMGDhxo9qcDAECTTA24DodD+fn5Kioq0rFjxyRJkyZNajG1x48fry1btviln0Bx/PhxnThxQklJSbWOl5aW6uzZs+rfv79JnaE+brdbjz32mKZPn66UlBQdOHBAeXl5uuWWW9SxY0fPuNDQUPXr10/z5s1TSUmJnnzySb3++uuy2+0qKyvTn//8Zw0ePNjEzwQAAO8ZHnA3bNighIQEdezYUSNGjNCcOXM0YcIESVJubq6ysrLUu3dvRUREaNmyZSooKNDhw4eNbsur2klJSQoLC9OuXbsM7ydQOJ1OhYaGKj4+vtbxPXv2qFu3bgGxPrOwsNDsFvxm+fLlWr58uWbMmKGPPvpI1113XZPntG7dWg8++KB69OihCxcuqGfPnrrpppv80C0AAL5haMBdu3atHnnkEa1evVqVlZUaM2aMnnvuOSUnJ6uyslJlZWVKSUnxjI+Li1N4eLj27t3brDoOh0OJiYlej29O7XHjxrFM4TJOp1N9+vRRu3btah3fs2dPwMze7t+/3+wW/OLLL7/U/PnzlZGRoeeff16tWnn37V6z5vb06dN6+umn9fXXX2vJkiUGdwsAgO8YFnDPnz+vOXPmKDc3V4MHD1ZoaKimTZumqqoqJScny+VySZIiIiJqnRcZGem5b926dRowYIAGDBigjz76qMFa2dnZzQrF3tSuMXr0aL333nteP7bVOZ1OlZSUqEuXLrX+5OTkKDU11ez2vPLQQw+Z3YJfzJo1S5GRkVqzZo1CQkK8Oqcm3NasuX3iiSd03333aenSpVxgBgAIGIZtE1ZYWKjq6mqNGjXKc6zmLVKTk5PVtm1bSZdmUy9XUVGh8PBwVVRUaMWKFdqxY4e+//573XLLLfriiy8UGhp6xb3ZbLZGa1/uyJEjiomJueKaTfE2gBghLS3N67E7d+7UokWLNHny5FrHExISmjWDW1hYaMjnPHv2bK/G5ebmNnr/ypUrfdGO3/z4a3jgwAF9/PHHeuaZZ9S1a1evHuPH4bZmze3TTz+t119/Xbm5uXr66adrnWPU1xEAgKa43e4G7zMs4J48eVLXXHNNrWPr169XVFSUoqKiJEkxMTHavXu37Ha7JHmu5k5MTFRRUZEGDx6sNm3aqE2bNoqNjdU333yjPn36XHFvkZGRjda+3JYtW5SRkXHFNZvS2BfJSM3ZOq2kpERnzpxRenq6oqOjax2vqKhoVsBNS0vTtm3bmtGpdw4ePNjkmJUrVyozM7PRMStWrPBVS4ar72v4n//5n2rVqpWmTp3q1WM0FG4lKTY2ViNHjtT69evrBFyjvo4AAFwJw5YoxMfHq6SkRIWFhbp48aLWr18vh8PhCZSSlJmZqZycHB06dEgul0tZWVlKT09XbGysTp06pU6dOnnGdurUSadOnfJZf43VrnH+/Hl98sknGjNmjM/qBjKn06n27dvX2UHh888/V8+ePdWtWzeTOmuep556yuwWDOd0OtWvX786/8msT2PhtkZaWppKS0t1+vRpI9oFAMCnDAu4/fv31/z583XnnXcqOjpaRUVFuummm5ScnOwZk52drbFjxyo1NVU9evRQVVWV1q1bJ0nq3Lmzzpw54xl75swZde7cud5aS5curXNVf1Maq11j69atSk5OVpcuXZr12FbldDqVmpqqsLDaE/87duwImAvMJGnixIlmt2C4r776yqsLL70Jt5I8j3XgwAGf9gkAgBFC3H783XhsbKz+9V//1bNNWGMqKio0bNgw7dixQ+fOnVNaWpqKi4t/8hrcvLw85eXlNevXqb/97W8VHx+vRx999CfVDAQ1v97256+ZjazpzRKFvn37NhnUbrjhBl+1ZLj6ns8XX3xRMTExSk9Pb/TcKVOmaPPmzU3uc3v06FFt2LBBEydO9GwFZ8a/HQAAvGHYGtwfc7lcOnLkSK0Z3MZERkZq1qxZnhfRFStW+OQCs+bo1auXV2EcaGmmT5/u1bjnn39eM2fObHIHjJ49e+qRRx7xRWsAABjObwF33759stlsiouL8/qcyZMn17la/6ey2+26//77m3XOokWLfFIbaKnCw8MDZns3AAC85beAO3DgwDp7zPqT3W6vdYEbgldzdo4AAACBx/C36gVamjVr1pjdAgAAMBABF0HnwQcfNLsFAABgIAIugg5X/QMAYG0EXAAAAFgKARcAAACWQsBF0OHduAAAsDa/bROGlqu4uNivW2cVFxebumVbzTtyWYm/v4Y1Ndl6DwDQEjGDG+TM2B/Y7D2JFy5caFptI1zJ81ladqLe20bXBQDASCFut9ttdhOArxw8eLDJMX379m1ymcINN9zgq5ZatOycXDmyMuvcBgAgkDGDCwAAAEsh4CLorF692uwWAACAgQi4CDrx8fFmtwAAAAxEwEXQSUtLM7sFAABgIAIuAAAALIWACwAAAEsh4CLopKammt0CAAAwEAEXQcfpdJrdAgAAMBABFwAAAJZCwAUAAIClEHARdDZt2mR2CwAAwEAEXAAAAFgKARdB56677jK7BQAAYKAwsxuAuWbNmqXi4mK/17Xb7Vq1apXf6wJXwqzvF4nvGQBoDmZwg1xxcbHfX7DNqAn4gln/dvmeAYDmYQYXstvt2rZtm9/qDR061G+16jNjxgxT6yOw+fv7RTL/ewYAAg0zuAg6M2fONLsFAABgIAIugs6QIUPMbgEAABiIgIug891335ndAgAAMBABFwAAAJZCwEXQ6devn9ktAAAAAxFwEXQ2b95sdgsIMmfOnNGXX36pvXv36h//+EejY91utz755BM/dQYA1kTARdBZsGCB2S0gCHz55Zd66KGHFBcXp6uvvlqJiYlKSkrStddeq+7du+vee+/Vp59+Krfb7TnH7XZr5syZGjZsmLZv325i9wAQ2IIm4Obl5TV7L8mUlBR98MEHxjQE02zcuNHsFmBhJ0+e1IQJE5SYmKhXXnlFSUlJeuaZZ7RhwwZt2rRJK1eu1LBhw/T+++8rLS1NgwcP1t///ndPuF29erXmzp2rm2++2exPBQAClqkBt6qqSnPnzlXXrl1ls9mUkZGh8vLyFlN7/Pjxys/P90s/gaR79+566aWXah1zu90KDw/XW2+9ZVJXgPm2b9+u+Ph4bdmyRU899ZSOHTumN998U9nZ2ZowYYIyMjI0a9YsrVu3TsePH9e///u/66uvvlJiYqJGjBjhCbc5OTkKCQkx+9MBgIBlasB1OBzKz89XUVGRjh07JkmaNGlSi6k9fvx4bdmyxS/9BIrjx4/rxIkTSkpKqnW8tLRUZ8+eVf/+/U3qDDDXjh07lJ6erquvvlpffPGFFixYoM6dOzc4vn379nrggQe0b98+de7cWR9++KHGjBlDuAUAHzA84G7YsEEJCQnq2LGjRowYoTlz5mjChAmSpNzcXGVlZal3796KiIjQsmXLVFBQoMOHDxvdlle1k5KSFBYWpl27dhneT6BwOp0KDQ1VfHx8reN79uxRt27d1LNnT5M6815hYaHZLcBiKisrNXHiRF177bUqLCz0eqcOt9utJUuW6Ntvv1V0dLQ+/PBDlZSUGNwtAFifoQF37dq1euSRR7R69WpVVlZqzJgxeu6555ScnKzKykqVlZUpJSXFMz4uLk7h4eHau3dvs+o4HA4lJiZ6Pb45tceNG8cyhcs4nU716dNH7dq1q3V8z549ATN7u3//frNbgMU89thj+vbbb/XGG28oKirKq3N+vOb2b3/7m9q2bavf/e53tS48AwA0X5hRD3z+/HnNmTNH69at0+DBgyVJ06ZN0x/+8AclJyfL5XJJkiIiImqdFxkZ6bnvtttuU3FxsWbNmqUnnniiwVrZ2dnKzs72ujdvatcYPXq0Hn/8cS1evNjrx/8pzPyVZFpamtdjnU6nSkpK1KVLl1rHv//+ez3++ONeP05hYaEhn/Ps2bObHLNy5comx61cudJXLbV4OdkP1Hsb9fvx98s//vEPvfLKK3rwwQeVmprq1WP8ONzWLEtYsmSJZsyYoR07dmjgwIG1zjHqewYAAlVjkwGGBdzCwkJVV1dr1KhRnmM1b5GanJystm3bSro0m3q5iooKhYeHS7q088GHH37oWSPrKzabrcnaNY4cOaKYmBif1q+PWTM2zd1ZYufOnVq0aJEmT55c63hCQkKzZnDT0tK0bdu2ZtX2xsGDB5scs3LlSmVmZjY6ZsWKFb5qqUXLzsmVIyuzzm3Ur77vl7y8PP33f/+3Hn74Ya8eo6FwK0lTpkzR448/rn//93+vE3CN+p4BACsybInCyZMndc0119Q6tn79ekVFRSkqKkqRkZGKiYnR7t27PfeXlpbK5XJ5lhtER0cb0ps3tWts2bJF48ePN6SPQFNSUqIzZ84oPT1d0dHRnj8//PCDKioqAmaJAuBL27ZtU0JCgvr06dPk2MbCrSR16NBBo0aNYp04AFwhwwJufHy8SkpKVFhYqIsXL2r9+vVyOByy2+2eMZmZmcrJydGhQ4fkcrmUlZWl9PR0xcbGGtVWs2qfP39en3zyicaMGWN4P4HA6XSqffv2dXZQ+Pzzz9WzZ09169bNpM6a56mnnjK7BVjI7t27vfrPXVPhtkZKSorKysr8tmUiAFiRYQG3f//+mj9/vu68805FR0erqKhIN910k5KTkz1jsrOzNXbsWKWmpqpHjx6qqqrSunXrml1r6dKlda7qb4o3tbdu3ark5OQ6602DldPpVGpqqsLCaq9s2bFjR0DN3k6cONHsFmARbrdbbdq00c9//vMmx/7hD3/wap/bn/3sZ+revbsqKip83S4ABA3D1uBK0uLFi2tdnBUbG6vp06d7Pg4NDdXy5cu1fPnyK6ozb948zZs3r1nneFOb5Qm1NbQudc2aNX7u5Mr07dtXBw4cMLsNWEBISIiOHj3q1Vi73a7HHntMDoej0YvF7rjjDt1xxx2+ahEAgpKhAfdyLpdLR44cqTWD25SpU6eqqKhIFy5cUFFRkd555x0DO6yrV69enj17AeBKTJ061ewWACBo+C3g7tu3TzabTXFxcV6f8/LLL/usvt1u1/3339+scxYtWuSz+gAAAPAPvwXcgQMH1tlj1p/sdnutC9wQvJq7NRoAAAgshr9VL9DSBNqaYQAA0DwEXASdBx980OwWAACAgQi4CDq8GxQAANZGwAUAAIClEHABAABgKX7bRQEtV3FxsV93FiguLjZ1Rwve5AFXwt/fLzU12QUGALzHDG6QM2P7NLO3bNuwYYNptRHYruTfbmnZiXpvG10XAIIRM7hBbtWqVWa34HcLFy7UxIkTzW4DAehKvl+yc3LlyMqscxsA4HvM4AIAAMBSCLgAAACwFAIugs7q1avNbgEAABiIgIugEx8fb3YLAADAQARcBJ20tDSzWwAAAAYi4AIAAMBSCLgIOqmpqWa3AAAADETARdBxOp1mtwAAAAxEwAUAAIClEHABAABgKQRcBJ1NmzaZ3QIAADAQARcAAACWQsBF0LnrrrvMbgEAABgozOwGYK5Zs2apuLjY73XtdrtWrVrl97oAAoNZP5skfj4BVsAMbpArLi72+4uIGTUBBBazfk7w8wmwBmZwIbvdrm3btvmt3tChQ/1Wqz4zZswwtT4A7/j7Z5Nk/s8nAL7BDC6CzsyZM81uAQAAGIiAi6AzZMgQs1sAAAAGIuAi6Hz33XdmtwAAAAxEwAUAAIClEHARdPr162d2CwAAwEAEXASdzZs3m90CgBbC7Xab3QIAAxBwEXQWLFhgdgsAfGzfvn169tlnNWXKFA0fPlwjRozQ/fffr+eff14HDhyo95wPP/xQgwYN0unTp/3cLQCjBU3AzcvLa/b+hikpKfrggw+MaQim2bhxo9ktAPCRgoICDRo0SAkJCZo1a5b+8pe/6Pvvv9fZs2dVUFCghx9+WP369dPQoUP10Ucfec778MMPNXbsWJ09e1bV1dUmfgYAjGBqwK2qqtLcuXPVtWtX2Ww2ZWRkqLy8vMXUHj9+vPLz8/3STyDp3r27XnrppVrH3G63wsPD9dZbb5nUFYBgcvbsWf32t7/VqFGjdOLECf3pT3/SsWPH9O2332rHjh3asWOHTpw4obKyMuXk5Ojw4cO67bbblJmZqXfffVdjx47V9ddfr48//lhdunQx+9MB4GOmBlyHw6H8/HwVFRXp2LFjkqRJkya1mNrjx4/Xli1b/NJPoDh+/LhOnDihpKSkWsdLS0t19uxZ9e/f36TOAASLyspK3XbbbXr11Vc1b948ffXVV5ozZ4569OhRa1xISIh69uypxx57TAcOHNDcuXP14osvavz48YqLiyPcAhZmeMDdsGGDEhIS1LFjR40YMUJz5szRhAkTJEm5ubnKyspS7969FRERoWXLlqmgoECHDx82ui2vaiclJSksLEy7du0yvJ9A4XQ6FRoaqvj4+FrH9+zZo27duqlnz54mdea9wsJCs1sA8BNVV1dr4sSJ2r17t958800tWbJEbdq0afK8du3aacSIEbrqqqtUXV2t6Ohode7c2Q8dAzCDoQF37dq1euSRR7R69WpVVlZqzJgxeu6555ScnKzKykqVlZUpJSXFMz4uLk7h4eHau3dvs+o4HA4lJiZ6Pb45tceNG8cyhcs4nU716dNH7dq1q3V8z549ATN7u3//frNbAPAT5ebm6oMPPtDzzz+v8ePHe31ezZrbG264QYsXL9bWrVv16quvGtgpADMZFnDPnz+vOXPmKDc3V4MHD1ZoaKimTZumqqoqJScny+VySZIiIiJqnRcZGSmXy6Vdu3bp5ptv1pAhQzRs2DCVlpY2WCs7O7tZobip2pcbPXq03nvvPa8f2+qcTqdKSkrUpUuXWn9ycnKUmppqdnteeeihh8xuAcBPcO7cOT3++OO67bbb9MADD3h9Xk24rVlzO3/+fA0aNEiPPvqoLly4YGDHAMwSZtQDFxYWqrq6WqNGjfIcq3mL1OTkZLVt21bSpdnUy1VUVCg8PFzdu3dXQUGBbDab3n//fS1cuFCvvfaaT3qz2WyN1r7ckSNHFBMT45O6jQkJCTG8RkPS0tK8Hrtz504tWrRIkydPrnU8ISGhWTO4hYWFhnzOs2fP9mpcbm5uo/evXLnSF+0EhJzsB+q9Dd/juW6eH/9seuONN1RRUaFFixZ5/fPjx+G2Zs3twoULNXz4cG3atEn33ntvrXOM+vkEwLca28fasIB78uRJXXPNNbWOrV+/XlFRUYqKipIkxcTEaPfu3bLb7ZIuXajkcrmUmJioa6+91nNe69atFRbmu1YjIyMbrX25LVu2KCMjw2e1G2LWZuPN2TqtpKREZ86cUXp6uqKjo2sdr6ioaFbATUtL07Zt25rRqXcOHjzY5JiVK1cqMzOz0TErVqzwVUstWnZOrhxZmXVuw/d4rpunvp9NGzdu1A033KCBAwd69RgNhVtJGjZsmGJjY7Vhw4Y6Adeon08A/MewJQrx8fEqKSlRYWGhLl68qPXr18vhcHgCpSRlZmYqJydHhw4dksvlUlZWltLT0xUbG+sZc+7cOWVnZ+vRRx/1aX/e1D5//rw++eQTjRkzxqe1A5XT6VT79u3r7KDw+eefq2fPnurWrZtJnTXPU089ZXYLAJrJ7XZr586duvnmm72aXW0s3EpSq1atdPPNN3MRMWBRhgXc/v37a/78+brzzjsVHR2toqIi3XTTTUpOTvaMyc7O1tixY5WamqoePXqoqqpK69at89x/8eJFTZgwQU888USdq/Yvt3Tp0kbvr09TtSVp69atSk5OZhuZ/+F0OpWamlpnNn3Hjh0Bc4GZJE2cONHsFgA006lTp3T69GndeOONTY5tKtzWiI+P1/Hjx3Xu3DlftwvAZIYtUZCkxYsXa/HixZ6PY2NjNX36dM/HoaGhWr58uZYvX17n3KqqKv3Lv/yL7rzzTt1+++2N1pk3b57mzZvXrN4aq11jy5YtzbpK1+oa+rX9mjVr/NzJlenbt2+Db90JoGXq0KGD3njjDf3iF79odFx1dbWys7O9ehOH22+/Xdddd52uuuoqX7cLwGSGBtzLuVwuHTlypNYMbmM2btyogoIClZeXa926dUpISNDzzz9vcJe19erVy7NnLwDAPO3atdM999zT5LhWrVrp3XffVVhYWJO/fevbt6/69u3rqxYBtCB+C7j79u2TzWZTXFycV+Pvuecer36Yectut+v+++9v1jmLFi3yWX0AgH/UXMgMIHj5LeAOHDiwzh6z/mS322td4Ibg1ZydIwAAQOAx/K16gZYm0NYMAwCA5iHgIug8+OCDZrcAAAAMRMBF0GEDdwAArI2ACwAAAEsh4AIAAMBSCLgIOrzJAwAA1ua3bcLQchUXF/t166zi4mJTt2zbsGEDb9cLBAB//2yqqcmWkkDgYwY3yJmxP7DZexIvXLjQtNoAvHMlPydKy07U+ttfdQG0HMzgBrlVq1aZ3QIA1HElP5uyc3LlyMr0/A0g+DCDCwAAAEsh4CLorF692uwWAACAgQi4CDrx8fFmtwAAAAxEwEXQSUtLM7sFAABgIAIuAAAALIWACwAAAEsh4CLopKammt0CAAAwEAEXQcfpdJrdAgAAMBABFwAAAJZCwAUAAIClEHARdDZt2mR2CwAAwEAEXAAAAFgKARdB56677jK7BQAAYKAwsxuAuWbNmqXi4mK/17Xb7Vq1apXf6wIAajPrdUDitQDGYQY3yBUXF/v9B5sZNQEA9TPrZzKvBTASM7iQ3W7Xtm3b/FZv6NChfqtVnxkzZphaHwBaGn+/DkjmvxbA2pjBRdCZOXOm2S0AAAADEXARdIYMGWJ2CwAAwEAEXASd7777zuwWAACAgQi4AAAAsBQCLoJOv379zG4BAAAYiF0UEHQ2b95sdgsAENAuXLigffv2qby8XCEhIYqJiVGfPn3UqlX982anT5/Wjh07NHr0aD93imAVNDO4eXl5zd6SJCUlRR988IExDcE0CxYsMLsFAAg4Fy5c0Pr165WWliabzab+/ftr5MiRSk9PV9++fRUZGam77rpLH3/8sdxut+e806dP67bbbtPdd9+tkydPmvgZIJiYGnCrqqo0d+5cde3aVTabTRkZGSovL28xtcePH6/8/Hy/9BNIunfvrpdeeqnWMbfbrfDwcL311lsmdeW9jRs3mt0CAASUTz/9VPHx8br33nv17bffavbs2dqwYYM+++wz/fWvf9XLL7+se++9V9u2bdOtt96qW2+9VYcOHfKE26+++kqbNm3SNddcY/angiBhasB1OBzKz89XUVGRjh07JkmaNGlSi6k9fvx4bdmyxS/9BIrjx4/rxIkTSkpKqnW8tLRUZ8+eVf/+/U3qDABgBIfDobS0NLndbr333nv6+uuvlZOTowkTJmjgwIEaNGiQfvvb32rNmjU6duyYXnjhBe3cuVM33nijfvnLX+qrr77S22+/rZEjR5r9qSCIGB5wN2zYoISEBHXs2FEjRozQnDlzNGHCBElSbm6usrKy1Lt3b0VERGjZsmUqKCjQ4cOHjW7Lq9pJSUkKCwvTrl27DO8nUDidToWGhio+Pr7W8T179qhbt27q2bOnSZ0BAHxt2bJlevzxx/Wb3/xGe/fu1a9//esG19lKUtu2bfXQQw9p+/btcrvd+uabb7Rw4ULCLfzO0IC7du1aPfLII1q9erUqKys1ZswYPffcc0pOTlZlZaXKysqUkpLiGR8XF6fw8HDt3bu3WXUcDocSExO9Ht+c2uPGjWOZwmWcTqf69Omjdu3a1Tq+Z8+egJm9LSwsNLsFAGjx/va3v+nxxx/XxIkT9dprr6lDhw5enXf69Gndf//9qq6uVkxMjJ599lmdPn3lMP2GAAAgAElEQVTa4G6B2gwLuOfPn9ecOXOUm5urwYMHKzQ0VNOmTVNVVZWSk5PlcrkkSREREbXOi4yMlMvlUnl5uQYMGKC0tDSlpqbqL3/5S4O1srOzmxWKm6p9udGjR+u9997z+rGtzul0qqSkRF26dKn1JycnR6mpqWa355X9+/eb3QIAtGhVVVWaOnWqoqOj9eKLLyo0NNSr8y5fc/v2228rPz9fp06d0qOPPmpwx0Bthm0TVlhYqOrqao0aNcpzrOYdpJKTk9W2bVtJl2ZTL1dRUaHw8HB16tRJ27dvV2hoqEpKSvSb3/xGw4cP90lvNput0dqXO3LkiGJiYnxStzEhISGG12hIWlqa12N37typRYsWafLkybWOJyQkNGsGt7Cw0JDPefbs2U2OWblyZZPjVq5c6auWWryc7AfqvQ3f47n2n5rnl+fZOz9+HXj//fd14MABbdiwoc7rYkN+HG5rliXMmDFDL7zwgpYuXaqoqKha5xj1WoDgcPluHT9mWMA9efJknasl169fr6ioKM8/8JiYGO3evVt2u13SpQuVXC6XEhMTa/1v8ezZs3UuaroSkZGRjda+3JYtW5SRkeGz2g1p7ItkpOZsnVZSUqIzZ84oPT1d0dHRtY5XVFQ0K+CmpaVp27ZtzejUOwcPHmxyzMqVK5WZmdnomBUrVviqpRYtOydXjqzMOrfhezzX/lPz/PI8e6e+14EXX3xR3bt31x133OHVYzQUbqVLAffZZ59VXl6esrOza51n1GsBYNgShfj4eJWUlKiwsFAXL17U+vXr5XA4PIFSkjIzM5WTk6NDhw7J5XIpKytL6enpio2NlSQdOnRIgwYN0ogRI3T77bf7tL+makuXlll88sknGjNmjE9rByqn06n27dvX+c/G559/rp49e6pbt24mdQYA8BW3263t27dr9OjRCgtreh6ssXArSddff7369eun7du3G9UyUIdhAbd///6aP3++7rzzTkVHR6uoqEg33XSTkpOTPWOys7M1duxYpaamqkePHqqqqtK6des891933XXavn27nE6nZs6c2WCtpUuX1rmqvylN1ZakrVu3Kjk5WV26dGnWY1uV0+lUampqnR94O3bsCJgLzCTpqaeeMrsFAGixjhw5ojNnztS6ELshTYXbGikpKfriiy983SrQIEPfqnfx4sVavHix5+PY2FhNnz7d83FoaKiWL1+u5cuX1zn3woULatOmjSQpPDzcs262PvPmzdO8efOa1VtjtWts2bJF48ePb9bjWllDv7Zfs2aNnzu5MhMnTjS7BQBosS5evKiUlBT16dOn0XE//PCDV+FWunTtzaFDh3zdKtAgQwPu5Vwul44cOVJrBrcxu3fvVlZWlkJDQ/XPf/5Tq1atMrjDunr16uXZsxfW0bdvXx04cMDsNgCgRerTp4927tzZ5Li2bdvq7rvvVlJSUpP73M6ePduri4ABX/FbwN23b59sNpvi4uK8Gj9gwAB9+umnPqtvt9t1//33N+ucRYsW+aw+AABWk5WVZXYLQL38FnAHDhxYZ49Zf7Lb7bUucAMAAIA1Gf5WvUBL05yt0QAAQOAh4CLoBNpFcQAAoHkIuAg6Dz74oNktAAAAAxFwEXR41xwAAKyNgAsAAABLIeACAADAUvy2TRharuLiYr/uLFBcXGzqlm28yQMA1Obv14GammzfCaMwgxvkzNgf2Ow9iTds2GBabQBoaX7qz+TSshP13ja6LuANZnCDnBlvgWy2hQsXauLEiWa3AQAtwk99HcjOyZUjK7PObaAlYAYXAAAAlkLABQAAgKUQcBF0Vq9ebXYLAADAQARcBJ34+HizWwAAAAYi4CLopKWlmd0CAAAwEAEXAAAAlkLARdBJTU01uwUAAGAgAi6CjtPpNLsFAABgIAIuAAAALIWACwAAAEsh4CLobNq0yewWAACAgQi4AAAAsBQCLoLOXXfdZXYLAADAQGFmNwBzzZo1S8XFxX6va7fbtWrVKr/XBQDALGa95krB97rLDG6QKy4u9vs3mxk1AQAwm1mvf8H4ussMLmS327Vt2za/1Rs6dKjfatVnxowZptYHAAQvf7/mSua/7pqBGVwEnZkzZ5rdAgAAMBABF0FnyJAhZrcAAAAMRMBF0Pnuu+/MbgEAABiIgAsAAABLIeAi6PTr18/sFgAAgIEIuAg6mzdvNrsFAAAM4Xa7dfHiRbPbMB0BF0FnwYIFZrcAAECjLly4oA0bNujhhx/WkCFDFB8fr6SkJN1xxx364x//qD179tQ5x+12a/78+Ro5cqR++OEHE7puOYIm4Obl5TV7H7iUlBR98MEHxjQE02zcuNHsFgAAqNeFCxf09NNPKzo6WnfffbdefvllVVdXq2/fvoqNjdVXX32lJ598Una7XTfffLP++te/SvrfcPvMM8+oT58+at26tcmfiblMDbhVVVWaO3euunbtKpvNpoyMDJWXl7eY2uPHj1d+fr5f+gkk3bt310svvVTrmNvtVnh4uN566y2TugIAILDt27dP/fv314IFCzRw4EB98MEHqqys1Pbt27Vp0ybl5+fr66+/Vnl5uf70pz/p2LFjSktL0x/+8AdlZ2frmWee0QMPPKDVq1erVaugmcOsl6mfvcPhUH5+voqKinTs2DFJ0qRJk1pM7fHjx2vLli1+6SdQHD9+XCdOnFBSUlKt46WlpTp79qz69+9vUmcAAASuXbt2afDgwSovL9e7776r/Px8DR8+XKGhoXXGdu7cWXPmzNH+/fv10EMP6bnnntOyZcs0ffp0wu3/MPwZ2LBhgxISEtSxY0eNGDFCc+bM0YQJEyRJubm5ysrKUu/evRUREaFly5apoKBAhw8fNrotr2onJSUpLCxMu3btMryfQOF0OhUaGqr4+Phax/fs2aNu3bqpZ8+eJnXmvcLCQrNbAADA4+TJkxo1apQiIiL0t7/9TaNHj/bqvA4dOig8PNzzcevWrQm3/8PQZ2Ht2rV65JFHtHr1alVWVmrMmDF67rnnlJycrMrKSpWVlSklJcUzPi4uTuHh4dq7d2+z6jgcDiUmJno9vjm1x40bxzKFyzidTvXp00ft2rWrdXzPnj0BM3u7f/9+s1sAAMBjxowZqqys1LvvvqtevXp5dc7la24feOAB/f73v9cLL7ygbdu2GdtsgDAs4J4/f15z5sxRbm6uBg8erNDQUE2bNk1VVVVKTk6Wy+WSJEVERNQ6LzIy0nOfJJ06dUqdOnXSunXrGqyVnZ3drFDsbW1JGj16tN577z2vH9vqnE6nSkpK1KVLl1p/cnJylJqaanZ7XnnooYfMbgEAAEnSf/3Xf2nTpk1asGCBbrzxRq/O+XG4Xb16tRwOh3r37q3HHnvM4I4DQ5hRD1xYWKjq6mqNGjXKc6zmLVKTk5PVtm1bSZdmUy9XUVFRa7r9j3/8owYNGuTT3mw2m1e1JenIkSOKiYnxaf36hISEGF6jIWlpaV6P3blzpxYtWqTJkyfXOp6QkNCsGdzCwkJDPufZs2d7NS43N7fR+1euXOmLdgJCTvYD9d6G7/Fc+0/N88vzbCz+TTffj19zV69erY4dO+rhhx/26vz6wm2rVq3Uvn17zZ49W7///e+1c+fOOq/JRr3umsntdjd4n2EB9+TJk7rmmmtqHVu/fr2ioqIUFRUlSYqJidHu3btlt9slXbpQyeVyeZYbfPPNNzp16lStpQS+EBkZ2WTtGlu2bFFGRoZP69ensS+SkZqzdVpJSYnOnDmj9PR0RUdH1zpeUVHRrICblpZmyK9RDh482OSYlStXKjMzs9ExK1as8FVLLVp2Tq4cWZl1bsP3eK79p+b55Xk2Fv+mm+/Hr7lut1tvv/22JkyY4Jl8a0xD4bbGpEmTNGvWLL399tt1XpONet1tqQxbohAfH6+SkhIVFhbq4sWLWr9+vRwOhydQSlJmZqZycnJ06NAhuVwuZWVlKT09XbGxsZKkJ598UgsXLjSkv6ZqS5eWWXzyyScaM2aMIT0EGqfTqfbt29fZQeHzzz9Xz5491a1bN5M6a56nnnrK7BYAANA333yjyspKDRgwoMmxTYVb6dLSy/j4eC6Ol4EBt3///po/f77uvPNORUdHq6ioSDfddJOSk5M9Y7KzszV27FilpqaqR48eqqqq8qy13bFjhzp37qy4uLgmay1durTOVf1Naax2ja1btyo5OVldunRp1mNbldPpVGpqqsLCak/879ixI2AuMJOkiRMnmt0CAAD65ptvJEl9+/ZtdJw34bZG3759VVJS4vNeA41hSxQkafHixVq8eLHn49jYWE2fPt3zcWhoqJYvX67ly5fXOdfpdGrv3r0aOXKkSkpK1KFDB8XFxdX7v5x58+Zp3rx5zeqtsdo1tmzZovHjxzfrca2soV/br1mzxs+dXJm+ffvqwIEDZrcBAAhyqamp+vjjj5WQkNDouFOnTum1117z6k0cnnzySZ07d87XrQYcQwPu5Vwul44cOVJrBrcxDz/8sGfB9aJFi/Szn/3Mqyl8X+rVq5dnz14AAABfuvrqq3XLLbc0Oa5Lly5yOp265pprmtzntrm/0bYqvwXcffv2yWazebXk4McWLVp0xfXtdrvuv/9+v9cFAAC4UjUX6MM7fgu4AwcOrLPHrD/Z7fZaF7gheDVn5wgAABB4eD83BJ1AWzMMAACah4CLoPPggw+a3QIAADAQARdBJ5g2ugYAIBgRcAEAAGApBFwAAABYCgEXQYc3eQAAwNr8tk0YWq7i4mK/bp1VXFxs6pZtGzZs4O16AQCm8Pdrbk3NYNsqlRncIGfG/sBm70m8cOFC02oDAILXT339Ky07Ue9to+sGMmZwg9yqVavMbgEAgKDwU19zs3Ny5cjKrHMbDWMGFwAAAJZCwEXQWb16tdktAAAAAxFwEXTi4+PNbgEAABiIgIugk5aWZnYLAADAQARcAAAAWAoBFwAAAJbCNmGwlBtuuKHJMQsXLvRqHAAACEzM4CLoLFq0yOwWAACAgQi4AAAAsBQCLgAAACyFgAsAAABLIeACAADAUgi4AAAAsBQCLgAAACyFgAsAAABLIeACAADAUgi4AAAAsBTeqhcIEhcuXFRVdXWd4+f/vx/qvd22bRu1CgnxS28AAPgSARcIEsUHSvTW1u11ji9+7tU6t2Ojo/TAv4z1W28AAPgSSxSAINE/8QZFdb26yXEhksbcOkAhzN4CAAIUARcIEqGtWmnMsAFNjvvFjX0UHdXVDx0BAGAMAi4QRH4W20N9f9arwftbXxWm9LRf+rEjAAB8r8UF3KqqKs2dO1ddu3aVzWZTRkaGysvLLV8b8JfRt/xKoa3q/9a/ZUCywju293NHAAD4VosLuA6HQ/n5+SoqKtKxY8ckSZMmTbJ8bcBfulwdoYEpN9Y5HhneUYP6J5jQEQAAvmVawP3ss8+Unp6ubt26KTIyUhMmTJAk5ebmKisrS71791ZERISWLVumgoICHT582PCezKwN+NOwgcnq0K5trWO/vuVXuuoqNlYBAAQ+UwLu5s2bNW7cOGVmZqqsrExHjx7VtGnTVFlZqbKyMqWkpHjGxsXFKTw8XHv37m1WDYfDocTERK/H+7I20NK1a9tGwwf393wcGx2lhJ9fZ2JHAAD4jt8D7rlz5/TAAw/o2WefVUZGhtq0aSObzab09HS5XC5JUkRERK1zIiMjPfetW7dOAwYM0IABA/TRRx81WCc7O7tZwdSb2oCVpCZd2jaMbcEAAFYT4na73f4s+P7772vKlCk6efJknRfUiooKderUSV988YXsdrvneEREhF577TUNGTJEw4YN044dO/T999/rlltu0RdffKHQ0NAr7qup2uPGjbviGo3Jzsk19PEBAACsxJGV2fCdbj9bu3at+/rrr2/w/piYGPdLL73k+fibb75xS3IfOnTIXVBQ4H744Yc9940dO9b99ddf+6y3xmoDVnXhwkWzWwgKWY7/U+9t+F7N88vzbCz+TfsPz3Xz+X2JQkpKig4dOqR33nlH1dXVqqio0NatWz33Z2ZmKicnR4cOHZLL5VJWVpbS09MVGxurU6dOqVOnTp6xnTp10qlTp3zWW2O1Aatq3foqs1sAAMCn/L5EQZLWrl2rpUuX6vjx47LZbJo6daqWLFki6dJetFlZWcrLy9OFCxc0fPhw5ebmqkuXLtq6davef/99Pfvss5KkcePGafny5erTp0+dGkuXLtXrr7+u/fv3e91XY7WNxhIFAAAA77WoJQpX4syZM+7k5GT3Dz/84D516pT7xhtvdP/zn/80uy0AaBK/YvQflij4B/+m/YfnuvkCatPLyMhIzZo1S0OHDpUkrVixwicXmAEAAMA6AirgStLkyZM1efJks9sAAABAC9Xi3qoXAAAAuBIEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYClhZjcAAFZTVPyVyr49Wef4xve31bkdaeuo4YP7+6kzAAgOBFwA8LEeUV319tbtcv/o+K4v/17n9j1jh/mxMwAIDixRAAAfi47qql8k9GlyXEz3a5TUN84PHQFAcCHgAoAB0of8Uq2vavyXZGNuHaiQkBA/dQQAwYOACwAGCO/YXrcMSG7w/uT4nymm+zV+7AgAgkeLC7hVVVWaO3euunbtKpvNpoyMDJWXl1u+NgDrGZSaoMjwjnWOXxUWqpFDfmlCRwAQHFpcwHU4HMrPz1dRUZGOHTsmSZo0aZLlawOwnqvCwvTrW35V53jaTXZF1BN8AQC+YVrA/eyzz5Senq5u3bopMjJSEyZMkCTl5uYqKytLvXv3VkREhJYtW6aCggIdPnzY8J7MrA3AmhJ+fp1io6M8H0fYOmjITUkmdgQA1mdKwN28ebPGjRunzMxMlZWV6ejRo5o2bZoqKytVVlamlJQUz9i4uDiFh4dr7969zarhcDiUmJjo9Xhf1gaAGiEhIRpz6wDVXEo2auhNTV58BgC4MiFut/vHWzUa6ty5c+rVq5dWrVql++67r9Z9R48eVUxMjEpLS3Xdddd5jvfq1UtLlizRfffdp9tuu03FxcWaNWuWnnjiCZ/15U1tI2Xn5Br6+AAAAFbiyMps8D6/TyMUFhYqJCRE9957b537bDabpEuzqZerqKhQeHi4JCkvL08ffvihZ42sr3hT20iNfZEABD7X9+flOntO0dd2NbsVy8vOyZUjK9PzN4xx+fPLc20snuvm8/sShfLycnXq1KnevR8jIyMVExOj3bt3e46VlpbK5XJ5lhtER0cb0pc3tQHgpwrv2J5wCwB+4vclCvv375fdbtebb76p0aNHy+VyqaioSOnp6ZKkJUuW6NVXX1VBQYE6d+6s3/3udzp79qwKCgo8j5GXl6djx475dImCt7WNwhIFAAAA7zU6k+02QV5enrtPnz7uDh06uKOiotzz5s3z3PfPf/7T/cgjj7g7d+7s7tixo/uOO+5wf/fdd7XOf+WVV9xPP/10ozWWLFni7tevX7P68qY2AKBly3L8n1p/wxiXP78818biuW4+Uy7lnTJliqZMmVLvfaGhoVq+fLmWL19+RTXmzZunefPmNescX9UGAACAeQJur5qpU6eqqKhIFy5cUFFRkd555x2zWwIAAEALEnAB9+WXXza7BQAAALRgLe6tegEAAIArQcAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFgKARcAAACWQsAFAACApRBwAQAAYCkEXAAAAFhKmNkNAADwU313ukLVVdV1jv+/707X+luSQkND1eXqCL/1BsA8BFwAQMD6r+KD+qtzb53jK1/eVOtvSRo2IFkjhqT6rTcA5mGJAgAgYA0bmKwO7do2Oc7Wsb3SfmX3Q0cAWgICLgAgYLVr20YjhvRvctzItF+qTeur/NARgJaAgAsACGj9E29QVNerG7w/OqqrkuOv92NHAMzW4gJuVVWV5s6dq65du8pmsykjI0Pl5eWWrw0A+GlCW7XSmGEDGrx/zK0D1CokxI8dATBbiwu4DodD+fn5Kioq0rFjxyRJkyZNsnxtAMBP97PYHup3fa86x5P6xik2OsqEjgCYybSA+9lnnyk9PV3dunVTZGSkJkyYIEnKzc1VVlaWevfurYiICC1btkwFBQU6fPiw4T2ZWRsAcGV+PfRXCm31vy9rYWGhGpn2SxM7AmAWUwLu5s2bNW7cOGVmZqqsrExHjx7VtGnTVFlZqbKyMqWkpHjGxsXFKTw8XHv31t0GpjEOh0OJiYlej/dlbQCA/3W5OkIDU270fDwkNVGdImwmdgTALH4PuOfOndMDDzygZ599VhkZGWrTpo1sNpvS09PlcrkkSRERtTfijoyMlMvl0q5du3TzzTdryJAhGjZsmEpLSxusk52d3axg2lRtAEDLd+vNv1CH9m0VzrZgQFALcbvdbn8WfP/99zVlyhSdPHlSIT9a9F9RUaFOnTrpiy++kN3+vz+YIiIi9Nprryk1NVUdO3aUzWbT+++/rzfeeEOvvfaaT/pqqva4ceN8Uqch2Tm5hj4+AACAlTiyMhu8z+/vZFZeXq5OnTrVCbfSpdnSmJgY7d692xMyS0tL5XK5lJiYqGuvvdYztnXr1goL8137TdU2WmNfJACA96qrq6WQEHZOMFh2Tq7ntevy2/A9nuvm8/sShZSUFB06dEjvvPOOqqurVVFRoa1bt3ruz8zMVE5Ojg4dOiSXy6WsrCylp6crNjbWM+bcuXPKzs7Wo48+6tPevKkNAGjZWrVqRbgFgpzflyhI0tq1a7V06VIdP35cNptNU6dO1ZIlSyRd2os2KytLeXl5unDhgoYPH67c3Fx16dJFknTx4kXdfvvtyszM1O23395gjaVLl+r111/X/v37ve6rqdpGYokCAACA9xqbyTYl4P5UVVVVuvvuuzVy5EhNmzbN7HYAAAha/Nrcf3ium6/FvdFDYzZu3KiCggKtW7dOQ4cO1e9//3uzWwIAAEAL4/eLzK7EPffco3vuucfsNgAAANCCBdQMLgAAANAUAi4AAAAshYALAAAASyHgAgAAwFIIuAAAALAUAi4AAAAshYALAAAASyHgAgAAwFIIuAAAALAUAi4AAAAshYALAAAASyHgAgAAwFIIuAAAALAUAi4AAAAshYALAAAASyHgAgAAwFIIuAAAALAUAi4AAAAshYALAAAASyHgAgAAwFIIuAAAALAUAi4AAAAshYALAAAASyHgAgAAwFIIuAAAALAUAi4AAAAshYALAAAASyHgAgAAwFIIuAAAALCUMLMbAAAALZvb7Vb+Xz7T6YqztY6/vOHP9d7+eVxP3Zxyo9/6A36MgAsAABoVEhKi3jHd9bcvPqx1/O+Hjta5HRraSuNH3OzX/oAfY4kCAABoUsLPr1NsdFST4wb1T1DnyHA/dAQ0jIALAACaFBISojG3DlBII2M6dminWwYk+60noCEEXAAA4JXoqK76RUKfBu9PH5yqtm1a+7EjoH4tLuBWVVVp7ty56tq1q2w2mzIyMlReXm752gAABIL0Ib9U69ZX1Tl+7TWdldJI+AX8qcUFXIfDofz8fBUVFenYsWOSpEmTJlm+NgAAgSC8Y3vd8it7neNjbx2gVq1aXKxAkDLtX+Jnn32m9PR0devWTZGRkZowYYIkKTc3V1lZWerdu7ciIiK0bNkyFRQU6PDhw4b3ZGZtAAACxaDUBEWGd/R8fGOf69Q7pruJHQG1mRJwN2/erHHjxikzM1NlZWU6evSopk2bpsrKSpWVlSklJcUzNi4uTuHh4dq7d2+zajgcDiUmJno93pe1AQCwsqvCwvTrW34l6dK2YKNuucnkjoDaQtxut9ufBc+dO6devXpp1apVuu+++2rdd/ToUcXExKi0tFTXXXed53ivXr20ZMkSjRw5UmPHjlXr1q11/vx5LV26VMOHD/dJX03V/nGvvpadk2vo4wMAAFiJIyuzwfv8/kYPhYWFCgkJ0b333lvnPpvNJunSbOrlKioqFB4erk6dOmn79u0KDQ1VSUmJfvOb3/gs4DZV22iNfZEAAGiJ/vHdaUWGd2TnBINl5+R6csLlt9Ewvy9RKC8vV6dOnRQSUncnvcjISMXExGj37t2eY6WlpXK5XEpMTFRoaKhCQ0MlSWfPnlVSUpLP+mqqNgAAqC2q69WEW7RIfl+isH//ftntdr355psaPXq0XC6XioqKlJ6eLklasmSJXn31VRUUFKhz58763e9+p7Nnz6qgoECSdOjQIU2aNElff/21XnnlFY0ZM8ZnvTVV20gsUQAAAPBeYzPZfg+4krR27VotXbpUx48fl81m09SpU7VkyRJJl/aizcrKUl5eni5cuKDhw4crNzdXXbp0qfUYhw8f1tChQxvc4WDp0qV6/fXXtX//fq/78rY2AACAv7BEoflMCbg/1YULF9SmTRtJ0unTp5WWlqYvv/zS5K4AAACMQ8BtPr9fZHYldu/eraysLIWGhuqf//ynVq1aZXZLAAAAaGECKuAOGDBAn376qdltAAAAoAXjPfUAAABgKQRcAAAAWAoBFwAAAJZCwAUAAIClEHABAABgKQRcAAAAWAoBFwAAAPGUkgAAAATCSURBVJZCwAUAAIClEHABAABgKQRcAAAAWAoBFwAAAJZCwAUAAIClEHABAABgKQRcAAAAWAoBFwAAAJZCwAUAAIClEHABAABgKQRcAAAAWAoBFwAAAJZCwAUAAIClEHABAABgKQRcAAAAWAoBFwAAAJZCwAUAAIClEHABAABgKQRcAAAAWAoBFwAAAJZCwAUAAIClhJndAAAAAC6pqq5Wadm3dY7/38PH6r0d3qG9unW92i+9BZIQt9vtNrsJAAAAXPLqm1v11f894tXYafeM1s969TC4o8DDEgUAAIAW5Ne3/EqhrZqOaP2ujyXcNoCACwAA0IJ06RShm/vf2OiY0Fat9OtbbvJTR4GHgAsAANDCDBv4C3Vo37bB+2/uf6O6dIrwY0eBpcUF3KqqKs2dO1ddu3aVzWZTRkaGysvLLV8bAACgRts2rTVicGq993Vo31bDBv7Czx0FlhYXcB0Oh/Lz81VUVKRjxy5dJThp0iTL1wYAALhcauLPFVXPDgkjBvdX2zatTegocJgWcD/77DOlp6erW7duioyM1IQJEyRJubm5ysrKUu/evRUREaFly5apoKBAhw8fNrwnM2sDAABcrlWrVhrz/7d3xy6NnnEAx3+xg4gkp5XCQcET4kE5QQSRIriUQwKluDiJTiLxHzjQRXQQ0VEnKY46ZnJydHJzEOxSNVRXxRhwcDEdDoJynkaqsb5+PlvyvOH3kCxfkoc3n/tvPff+px+jr/uXF9rR6/EigVsoFGJoaCjy+XwcHx/HyclJTExMxMXFRRwfH0dvb2/12mw2G5lMJvb29h41Y3FxMbq7u2u+/ilnAwA8hc4PP8enjx3Vx3987o+GGu6w8NbV/R26vLyMycnJWF5ejuHh4WhsbIx0Oh25XC7K5XJERLx7d/vQdEtLS3UtIuLs7CxaW1tjfX39u3Omp6cfFaa1zgYAqKfff/s1fmhoiE8fP7gtWI3q/k9m29vbkUqlYnR09Ju1dDodEV+/Tb2pVCpFJpOpPp6fn4+BgYEn3Vets5/L9NKfzz4DAHi9/vr7H71ww+JU/rtrdQ/c09PTaG1tjVQq9c1aS0tLtLe3x+7ubvT09ERExNHRUZTL5epxg8PDwzg7O7t1lOAp1DL7Od33IQEAb1ulUrmznbhb3Y8o9Pb2RrFYjM3Nzbi+vo5SqRRbW1vV9Xw+H0tLS1EsFqNcLsfU1FTkcrno6OiIiIiZmZmYnZ19lr09NBsA4CWI28ep+ze4XV1dsba2Fl++fImRkZFIp9MxPj4euVwuIr6enT0/P4++vr64urqKwcHB6lnbnZ2daGtri2w2++CchYWF2NjYiP39/Zr3dt/s5+YnBwCA2t3363eqUqlU6riX/2RlZSUKhUI0NTXFwcFBNDc3x+rqavT39z/8YgAA3oRXFbg3zc3NRWdnZ4yNjb30VgAA+B95tYELAAB3cadgAAASReACAJAoAhcAgEQRuAAAJIrABQAgUQQuAACJInABAEgUgQsAQKIIXAAAEkXgAgCQKAIXAIBEEbgAACSKwAUAIFEELgAAiSJwAQBIFIELAECiCFwAABJF4AIAkCgCFwCARBG4AAAkisAFACBRBC4AAIkicAEASBSBCwBAovwLNnXDDCni87IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "execution_count": 19, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -131,7 +131,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -186,7 +186,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 4, "metadata": { "scrolled": true }, @@ -197,13 +197,13 @@ "text": [ "Uniform distribution over floating point numbers:\n", " sample type: , element type: float64 , shape: (54321,)\n", - " sample min: -7.6698, max: 19.5196\n", - " sampling time: 6.65 secs\n" + " sample min: -7.6687, max: 19.5191\n", + " sampling time: 6.41 secs\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEZCAYAAAA+MZraAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X2cHFWd7/HPlwSC8mhAIyRAQAJXZNWVLKjX1QkIBhc3eA2SAQEVjQ9E976u7gq6IIm4ind3URd8iBLBuElQlGvUKD6QEXUxEh4UAkscApgQnkIAGeTBwO/+cc6YotM9093T0zU9832/Xv2aqlOnTp3T1VW/qlM1VYoIzMzMyrBd2RUwM7Oxy0HIzMxK4yBkZmalcRAyM7PSOAiZmVlpHITMzKw0DkJmZlaaMRmEJH1J0tmF8fdJuk9Sn6Q9yqxbrs+dkl6fhz8q6astLLtP0gF5+BJJ57Ww7Gd9r6OBpIMl3SDpUUkfbPV3NhpI6pH0rhKW2/S2kev8hKSrW10vS/K28rikDQPl68ggJCkkHViRdq6kb9Qzf0S8NyI+kefbHvh34JiI2DkiHmx9jZsXEf8SEYNu4PXuCHIb1w21XpLeLumXFWX/5XsdRf4J6ImIXSLi860qtNbvVdLrJV0v6TFJ6yW9tUqe0/I20PYd/0hS77YxgHkR8dpaE/NBVV/h86SkRwfIP07SeZI25oOWGyTt3kxZQyFpnqTVeRmXVJn+Lkm9uR4/krT3AGX1B+v+et9WmPZ3kn4p6WFJ90r6iqRd+qdHxNuBYwerb0cGoRabBOwIrGl0RiUd8R1KGl92HUayAdblfjTx22iyDocAS4CPAbsBLweuq8jzPOCsdtWpnUba9pQPqnbu/wBLgW8NMMt84NXAq4BdgVOAJ5osayg2AucBiyonSHod8C/ALGAicEeuy0DmFep+cCF9t7ycvYEXA1OA/9twbSOi4z5AAAdWpJ0LfCMPdwEbgA8B9wP3AO8o5L0kf3kHAY/l8vqAq/L0VwPXAo/kv68uzNsDfBL4FfA4cGBOOw/4r1zO94A9gP8E/pjLmDpAe04B7gIeJO2A7gReX6VdOwLfyPkezuVOyvV5mvSD7wMuLHxPZwC/B+6o/O7y9/Al4CfAo8DPgf3ytKk57/iKtr+L9IN7Ii+zD3i4+L0W8r8b6AU2A8uBvSvW4Xtz3R4CLgJU4/uZAHyWtHFtzMMT8rRbgeMKeccDm4BX5PFX5vXyMPBboGugdVmx3KsqvteDGmzj54D1+TdwHfC3OX0m8BTw51zub3P6EuATg/z2vwS8v39dDJCvB/hEbtujwI+BPYvbR0X+O3n2b+5bpN/ao8BNue1nkban9aSeg+KyPgX8hrTNfBeYWJje0DoA3g6sy8u+Azi5RhvPZeu2MZX0mzoN+EP+DXxskO+n5vdXJf9OuT6vqzH9eXldvmioZbXqQ9onXVKR9q/ARYXxvfP3VrXejXxPwP8CbqpI2+a3VvkZMUcdw+CFpEg9GTgduCgfRf5FRKwFXpJHd4+IIyVNBH4AfJ4USP4d+EHFtaJTgLnALqTgATAnp08GXgRcA3yNdLRxK/DxapXMR79fzPPunZc5pUabTstt2ifney/weER8DPgFW49Y5hXmOR44AjikRpknk3ZWewI3kgLngCLi1rzsa/Lydq/SriNJO6a3AnuRvqdlFdmOA/4GeFnO94Yai/wYaUf28pz3cOCf87SlQHch7xuATRFxvaTJpHV5Hmk9fBj4tqTnF/JXW5f97TySZ3+vaxts47W5zhNJAeZbknaMiB+RjkYvy+W+LOd/ZS73Jkn3SPpG/j32L+9wYDopENXjJOAdwAuAHXL76/UmYDFp53oDcCWp52QysAD4ckX+U4F3kn7DW0jbD02sgwfyvMdGxC6kA8IbG6j3a4CDgaOAcyS9uIF5B/KWXLda15D+itTu2blraq2kM5osazgpf4rjAIcOMM+nJG2S9CtJXQPkey1NnKGP5iD0Z2BBRPw5IlaQjlIOHmQegL8Dfh8RiyNiS0QsBf6btFH2uyQi1uTpf85pX4uI2yPiEeCHwO0R8dOI2EI6qvzrGsubDXw/Iq6OiCeBs4FnBmjTHqQj9qcj4rqI+OMg7flURGyOiMdrTP9BYdkfA14laZ9ByqzHycCiiLg+l31WLntqIc+nI+LhiPgDsJK0w65V1oKIuD8iHiB1e5ySpy0B/l7Sc/P4STkN4G3AiohYERHPRMRPgNXAGwtlV1uXLWljRHwjIh7MZf8b6YxuoN/glNyutwDTgOcA/wHpegPwBeADEVHr91HpaxGxNq/7b1L7+63mFxFxZeH3+3zS+vozKdBO7b/ekS2OiJsj4jHSb/ituc4NrQPSjvwZ4FBJz4mIeyKikR3b/Ih4PCJ+SzrretlgM9TpNODrkQ/vq5hCOkA8CNiftF2fK+noJsoaTitI6+alkp4DnEM6E3pujfwfAQ4gHXwsBL4n6UWVmXI7T8vlNaRTg9DTwPYVaduTdtL9Hsw/6n5/Anauo+y9qTgizuOTC+Prq8x3X2H48SrjtZa9d7G8vBHXujliMemIdFm++PmZfGPFQKrVter0iOgjdSvVvFDZgGd9j7nsB3n293hvYXig9VO5Tu7qr2NE9JLONN+UA9HfszUI7QeckC+cPizpYdKR8l6Fsgb7fgYyYBslfUjSrZIeycvejXTGWcvjbA0cfaSzpf6d9fuB30XENQ3Ur97vt5rK3++miHi6ME5FecXv8S7S9rgnDa6D/Ps/kXSmfY+kH0j6Hw3Uu6k2Szq5cPH9hxXT9gFeB3x9gCL6v5MFOQj+jhSsi8G23rKGTUT8jNQr823SerqT1DVY9Q62iFgVEY9GxJMRcSmp27SyTa8kbXOzK3sL6tGpQegPpD7gov3ZNng0YyNpwynaF7i7MN7KI5h7SN1rAOQdadXbxPNZ3fyIOITUTXEcqRtkoDoNVtfisncmdZlsJF0rg2cfIb2wgXKf9T1K2onUrrtrzlFnWaT1sbEw3t8lNwu4JQcmSDu3xRGxe+GzU0R8uoF21F2vYhsl/S3pKPKtwPNyl+UjbO3+qLbc3w1Qn6OAN+eunntJ6//fJF3YRL0fo7Be8xnL82tnr0vx7Hlf0gHhJppYB/kM7GhSoPpv4CtDrNugIuI/Y+vF98o7uk4F/isGvqv0d/1FDbKoesoaVhFxUURMi4gXkILReODmemen0J0n6a9J10LfmQNcwzo1CF0G/LOkKZK2U/qfmjcBl7eg7BXAQZJOkjRe0omk6ynfb0HZ1VwOHCfpNZJ2IPW3V10vkmZI+qu80/gjaUPvPzq9j3Ta3Kg3Fpb9CWBVRKzP3V53A29TuvX0naRrXf3uA6bk+apZArxD0sslTSAd1a+KiDubqONS0vp+vqQ9Saf8xdublwHHAO9j61kQOc+bJL0ht2FHSV2Sal1za9RAbdyF1LX0ADBe0jmkO6b63Ufq0iqu66/l8g7IByMfYevv7u2kG0Jenj+rSd2SH2ui3muBHZVusd2edH1tQhPlFL1N0iG53guAy/OZU0PrQNIkSX+fA/qTpG70p6vlbaNTSTek1BQRt5OuH35M0oR8LepEtt1vDFrWUOX91o7AOKD/Ox+fp+0o6VAl+5K62D4XEQ9VKWf3vN52zGWeTLruc2WefijwI1IX8fearW+nBqEFpLttfkm6s+ozpDto6o3mNUX6P6HjSHfWPUj6P5HjImLTUMuusbw1pDvYlpDOih6ixqkx6UzkclIAupV0N1v/zvhzpIuiD0lq5P9ZlpBOzzcDh5Guc/R7N/CPpO/hJaTvvN9VpIuQ90ra5rvJR0Vnk4607iEFsDkN1KvoPNJO93ekO7Wuz2n9y7qHdCPIq0kHKP3p60lnRx8lBYP1uT0t+d0P0sYrSdcG15LO0J/g2V1W/bfnPijp+lzeIlI3zao8z5PAB/O0hyPi3v4P6e66P+ZrkI3W+xFS995XSQcaj1H7N1evxaSd672kuzj7693oOtiOtO1tJP0mX5frWgpJryJd79nmdmpJP5T00UJSN+nM+EHSzRhnF88OBiqrStlr8k4fSfvmbsJ98/jJkga6TvbPpO7BM0nX5B5n6408O5K2+T7S3YzXkH7D/cv9aKE7cnvSdvYA6az2A8DxEdH/v0IfIp1BX1zoymz8X13KuTZmZlYeST8m/T/P6oiYUXZ9RiNJFwMnAPdHxIE18zkImZlZWTq1O87MzEYBByEzMyvNmHue2J577hlTp04tuxoNeeyxx9hpp53Krsawcfs6m9vX2ept33XXXbcpIoZ6K/82xlwQmjp1KqtXry67Gg3p6emhq6ur7GoMG7evs7l9na3e9klqxf9hbsPdcWZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpXEQMjOz0jgImZlZaRyEzMysNA5CZmZWmrYFIUkzJd0mqVfSmVWmT5B0WZ6+StLUiun979T4cL1ljiQzZmz9mJlZ0pYglN8EehFwLOktpd2SDqnIdjrwUH7vxAXA+RXTLyC9JKyRMs3MbARr17PjDgd6+9+rLmkZ6W2LtxTyzALOzcOXAxdKUkSEpOOBdaQ3QDZSppnZNoo9EitXllcPa18QmsyzX228ATiiVp6I2CLpEWAPSY8DHwGOBj5cLf8AZQIgaS4wF2DSpEn09PQ03ZBmdXdvHW508X19faXUuV3cvs7Wie1rZHvsxPY1ouz2tSsIqUpa5Stda+WZD1wQEX2S6sm/bWLEQmAhwPTp06OMJ+LOn791uNEjr5HyFN/hOnocKe0bLm7fyFPcHouq/a47sX2NKLt97QpCG4B9CuNTgI018myQNB7YDdhMOruZLekzwO7AM5KeAK6ro0wzMxvB2nV33LXANEn7S9oBmAMsr8izHDgtD88GrorkbyNiakRMBT4L/EtEXFhnmWZmTZsxA9au3fauVt/t2jptORPK13jmAVcC44BFEbFG0gJgdUQsBy4GFkvqJZ0BzWmmzGFtSEnWrq3efeALqjYW+CaC0a1tb1aNiBXAioq0cwrDTwAnDFLGuYOVaWbl6fSA0cyZTVlt7vTvut+Ye723Da/RsmGYWXs4CJmZDx6sNA5CZiUajp2/A4r164TfgoOQjUidsPEMp9Hc/tHcNmucg9Aw8u2bZlbJQfjZHIRsxPNGazZ6OQiNEpVnXSNhZz3cwaOTgtNQ6tpJ7bTG1LNuG+1R6bQeGAehJvmCspWt0d9Lu39fI+H3PBLqYANzELJteMNt3lCObNt5BNvuo+VOOzrvNJ38/ToIlayTfzytNhzfxUDdlA62NlKNpf2Cg9AYMxJ2vCOhDmY2MjgIjQFj6aiqWQ6MjSl+Xx//ePl18DrrXA5CLVbPDn+kBIVO3Ijb8d3V+l5Gwvc1Un471npjdd06CI1SnfKDnjEjvWq51psumy3TWmMkBN7RwL/J2hyErC3G4kbY3+bu7nLrMRY4WHYuB6ERqrhR1dqJjcUdu5mNLm0LQpJmAp8jvQX1qxHx6YrpE4CvA4cBDwInRsSdkg4HFvZnA86NiCvyPHcCjwJPA1siYno72mIjT5kBeSQcDIyEOjTDZzDWliAkaRxwEXA0sAG4VtLyiLilkO104KGIOFDSHOB84ETgZmB6fp33XsBvJX0vIrbk+WZExKZ2tMPGnk7duQ/FWGyzladdZ0KHA70RsQ5A0jJgFlAMQrOAc/Pw5cCFkhQRfyrk2RGI4a+uNcI7LTNrliKGf58uaTYwMyLelcdPAY6IiHmFPDfnPBvy+O05zyZJRwCLgP2AUwrdcXcAD5EC05cjYiFVSJoLzAWYNGnSYcuWLRtym9au3Tp80EHV01tl4sQ+Nm/eufUFF9RqQ6PpzWhH+1qtkfaX2b5WrqdaZe29dx8777zzkJdRLL+o0d9dq3+z/euv0WUXDcd+oVG16tbXt3X9DWTGjBnXDcclj3YFoROAN1QEocMj4gOFPGtynmIQOjwiHizkeTFwKfDaiHhC0t4RsVHSC4CfAB+IiKsHqsv06dNj9erVQ25TPf9L0ird3T0sXdrV+oLrUM//yQy1zWW2rx1G4vprZVkf/3gPXV1dQ15GPXUdSp5mv4v+9dfosotGQm9Brbr19GxdfwORNCxBqF3dcRuAfQrjU4CNNfJskDQe2A3YXMwQEbdKegw4FFgdERtz+v2SriB1+w0YhMysc42Enbm1VruC0LXANEn7A3cDc4CTKvIsB04DrgFmA1dFROR51ucbE/YDDgbulLQTsF1EPJqHjwEWDGcjRsLTj83K4t+5DYe2BKEcQOYBV5Ju0V4UEWskLSCd0SwHLgYWS+olnQHNybO/BjhT0p+BZ4D35+tEBwBXSOpvx5KI+FE72mPWKRw4bKRr2/8JRcQKYEVF2jmF4SeAE6rMtxhYXCV9HfCy1tfUirwTM2uOt536+IkJ1hRvYGbb8nbROAchMxuStWtb+wBaG1u2K7sCZmY2dvlMyMzGBHeVjUwOQmY2qjjYdBYHITMbERw8xiZfEzIzs9L4TMjMrA4+UxsePhMyM7PSOAiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRmZqVxEDIzs9K0LQhJminpNkm9ks6sMn2CpMvy9FWSpub0wyXdmD+/lfTmess0M7ORrS1BSNI44CLgWOAQoFvSIRXZTgceiogDgQuA83P6zcD0iHg5MBP4sqTxdZZpZmYjWLvOhA4HeiNiXUQ8BSwDZlXkmQVcmocvB46SpIj4U0Rsyek7AtFAmWZmNoK16wGmk4H1hfENwBG18kTEFkmPAHsAmyQdASwC9gNOydPrKRMASXOBuQCTJk2ip6enqUZ0dzc125BNnNhHd3dPOQtvA7evs7l9naHWbq+vr6/pfWIrtCsIqUpa1JsnIlYBL5H0YuBSST+ss0zy/AuBhQDTp0+Prq6uOqv9bPPnNzXbkHV397B0aVc5C28Dt6+zuX2dYeXK6uk9PT00u09shXZ1x20A9imMTwE21sojaTywG7C5mCEibgUeAw6ts0wzMxvB2hWErgWmSdpf0g7AHGB5RZ7lwGl5eDZwVUREnmc8gKT9gIOBO+ss08zMRrC2dMflazjzgCuBccCiiFgjaQGwOiKWAxcDiyX1ks6A5uTZXwOcKenPwDPA+yNiE0C1MtvRHjMza422vVk1IlYAKyrSzikMPwGcUGW+xcDiess0M7PO4ScmmJlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVxkHIzMxK4yBkZmalcRAyM7PSOAiZmVlp6g5CkvYYzoqYmdnY08iZ0HpJ35U0Oz8w1MzMbEgaCUL7AT8DPgLcK2mhpNcMT7XMzGwsqDsIRcQDEfH5iPgb4FXA/aSnXq+TtCC/ZsHMzKxuzd6Y8ML82RW4nfRq7hskndmqipmZ2ehX96scJL0EeBtwMtAHXAq8NCLuztM/AfwO+PQw1NPMzEahRt4ndDWwFJgdEb+pnBgRd0r6bMtqZmZmo14j3XFvjoh5lQFI0uH9w8WX1FWSNFPSbZJ6q3XbSZog6bI8fZWkqTn9aEnXSbop/z2yME9PLvPG/HlBA+0xM7OSNXIm9H3SNaBKPwImDjSjpHHARcDRwAbgWknLI+KWQrbTgYci4kBJc4DzgROBTcCbImKjpENJr/OeXJjv5IhY3UA7zMxshBj0TEjSdjmIKNuu8JkGbKljOYcDvRGxLiKeApYBsyryzCJdZwK4HDhKkiLihojYmNPXADtKmlBP48zMbGRTRAycQXoGqJXpGeCTEXHuIGXMBmZGxLvy+CnAERExr5Dn5pxnQx6/PefZVFHOeyPi9Xm8B9gDeBr4NnBeVGmQpLnAXIBJkyYdtmzZsgHbXMvatU3NNmQTJ/axefPO5Sy8Ddy+zub2dYaDDqqe3tfXx847D96+GTNmXBcR01tcrbq64/YHBPwceG0hPYAHIuLxOspQlbTKYDFgnnx33vnAMYXpJ0fE3ZJ2IQWhU4Cvb1NIxEJgIcD06dOjq6urjipva/78pmYbsu7uHpYu7Spn4W3g9nU2t68zrFxZPb2np4dm94mtMGgQioi78uBQ/hl1A7BPYXwKsLFGng2SxgO7AZsBJE0BrgBOjYjbC3W7O/99VNISUrffNkHIzMxGpgGDkKSFETE3D9fcuUfEqYMs51pgmqT9gbuBOcBJFXmWA6cB1wCzgasiIiTtDvwAOCsiflWo23hg94jYJGl74Djgp4PUw8zMRpDBzoTuKAzfXjPXICJii6R5pDvbxgGLImKNpAXA6ohYDlxMegxQL+kMaE6efR5wIHC2pLNz2jHAY8CVOQCNIwWgrzRbRzMza78Bg1BEfKowPKQrIhGxAlhRkXZOYfgJ4IQq850HnFej2MOGUiczMyvXYN1xRw40vV9EXNWa6piZ2VgyWHfcxXWUEcABLaiLmZmNMYN1x+3froqYmdnY0+yrHMzMzIZssGtCt0bEi/Pwemo8OSEi9h2GupmZ2Sg32DWhdxeG3zacFTEzs7FnsGtCvywM/3z4q2NmZmNJ3deEJO0gaYGk30t6LP/9hKQdh7OCZmY2ejXyPqEvAgcDHwTuIj1L7izSu33e2fqqmZnZaNdIEDoeeFFEPJzHb5G0CujFQcjMzJrQyC3a9wLPrUh7DnBP66pjZmZjSSOP7VkM/EjSf7D1tQtn4FcnmJlZk5p5bM9HK8bfQ3rZnJmZWUP82B4zMyuNH9tjZmalqfvuOEm7AucCrwP2BNQ/zY/tMTOzZjRyJvQF4BXAAmAi8AHgD8AFw1AvMzMbAxoJQscAb4mI7wJP578nAqfUM7OkmZJuk9Qr6cwq0ydIuixPXyVpak4/WtJ1km7Kf48szHNYTu+V9HlJqizXzMxGrkaC0HbAI3m4T9LupP8ROnCwGSWNAy4CjgUOAbolHVKR7XTgoYg4kHR21X/H3SbgTRHxV8BppFvF+30RmAtMy5+ZDbTHzMxK1kgQ+i3pehDAL0hB5YvA2jrmPRzojYh1EfEUsAyYVZFnFnBpHr4cOEqSIuKGiNiY09cAO+azpr2AXSPimogI0v8rHd9Ae8zMrGSNPLbn3Wy9GeGDwKeB3YFT65h3MrC+ML4BOKJWnojYIukRYA/SmVC/twA3RMSTkibncoplTq62cElzSWdMTJo0iZ6enjqqvK3u7qZmG7KJE/vo7u4pZ+Ft4PZ1NrevM9Ta7fX19TW9T2yFuoNQRKwrDD9A6j6rV7VrNZUvyBswj6SXkLrojmmgzJQYsRBYCDB9+vTo6uoapLrVzZ/f1GxD1t3dw9KlXeUsvA3cvs7m9nWGlSurp/f09NDsPrEVGvo/IUnvlPQTSWvy39PrvBmg/zE//aYAG2vlkTQe2A3YnMenAFcAp0bE7YX8UwYp08zMRrBG3if0GeAjwHeAf8x/P0x9j+y5FpgmaX9JOwBzgOUVeZaTbjwAmA1cFRGRb4D4AXBWRPyqP3NE3AM8KumVORCeCny33vaYmVn5Grkm9HbgFRHxl+swkr4PXA/800Az5ms884ArgXHAoohYI2kBsDoilpOeU7dYUi/pDGhOnn0e6Q68syWdndOOiYj7gfcBl5Ce5v3D/DEzsw7RSBB6NH8q0/5Yz8wRsQJYUZF2TmH4CeCEKvOdB5xXo8zVwKH1LN/MzEaewV7lcEBh9LPAdyR9mq3Xb/4RPzHBzMyaNNiZUC/pjrPizQczKvIcCVzYykqZmdnYMNirHPyUbTMzGzaNXBMCQNK+pH8K3RAR6wfLb2ZmVksjt2jvJennpC667wC3S7pa0t7DVjszMxvVGulu+yLp+XHPi4i9gOcBNwBfGo6KmZnZ6NdId9xrgL0i4s8AEfGYpH8C7h6WmpmZ2ajXyJnQQ6TXMBQdDDzcuuqYmdlY0siZ0GeAn0q6GLgL2A94B3D2gHOZmZnV0MhTtL8i6XbgJOClpIeFdkfEVcNVOTMzG93qCkL5zaiLgLkOOmZm1ip1XROKiKdJ7/F5ZnirY2ZmY0kjNyZcAMyXtP1wVcbMzMaWRm5M+ADwQuD/SHqArc+Ui4jYdzgqZ2Zmo1sjQehtw1YLMzMbkxrpjrsGOAr4Kum9QF8FXg+sGoZ6mZnZGNDoY3uOBD4I/E3++zrgC/XMLGmmpNsk9Uo6s8r0CZIuy9NXSZqa0/eQtFJSn6QLK+bpyWXemD8vaKA9ZmZWska6444HXhQR/U9IuEXSKtIDTd850Iz5Fu+LgKNJL8S7VtLyiLilkO104KGIOFDSHOB84ETgCdI/xB5K9beonpzfsGpmZh2mkTOhe4HnVqQ9B7injnkPB3ojYl1EPAUsA2ZV5JkFXJqHLweOkqSIeCwifkkKRmZmNoooIurLmLrQTgL+g62v9z4DWAJc25+v2j+zSpoNzIyId+XxU4AjImJeIc/NOc+GPH57zrMpj78dmF4xTw+wB/A08G3gvKjSIElzgbkAkyZNOmzZsmV1tbnS2rVNzTZkEyf2sXnzzuUsvA3cvs7m9nWGgw6qnt7X18fOOw/evhkzZlwXEdNbXK2GuuPek/9+tCL9vfkD6bbtA6rMqypplcGinjyVTo6IuyXtQgpCpwBf36aQiIXAQoDp06dHV1fXIMVWN39+U7MNWXd3D0uXdpWz8DZw+zqb29cZVq6snt7T00Oz+8RWaOTZcfsPYTn9Z079ppCePVctzwZJ44HdgM2D1Onu/PdRSUtI3X7bBCEzMxuZGrkmNBTXAtMk7S9pB2AOsLwiz3LgtDw8G7iqWtdaP0njJe2Zh7cHjgNubnnNzcxs2DTSHde0iNgiaR5wJTAOWBQRayQtAFZHxHLgYmCxpF7SGdCc/vkl3QnsCuwg6XjSc+zuAq7MAWgc8FPgK+1oj5mZtUZbghBARKwg/ZNrMe2cwvATwAk15p1ao9jDWlU/MzNrv3Z1x5mZmW3DQcjMzErjIGRmZqVxEDIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpXEQMjOz0jgImZlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVpm1BSNJMSbdJ6pV0ZpXpEyRdlqevkjQ1p+8haaWkPkkXVsxzmKSb8jyfl6T2tMbGGSj7AAAKJUlEQVTMzFqhLUFI0jjgIuBY4BCgW9IhFdlOBx6KiAOBC4Dzc/oTwNnAh6sU/UVgLjAtf2a2vvZmZjZc2nUmdDjQGxHrIuIpYBkwqyLPLODSPHw5cJQkRcRjEfFLUjD6C0l7AbtGxDUREcDXgeOHtRVmZtZS49u0nMnA+sL4BuCIWnkiYoukR4A9gE0DlLmhoszJ1TJKmks6Y2LSpEn09PQ0WP2ku7up2YZs4sQ+urt7yll4G7h9nc3t6wy1dnt9fX1N7xNboV1BqNq1mmgiT1P5I2IhsBBg+vTp0dXVNUCxtc2f39RsQ9bd3cPSpV3lLLwN3L7O5vZ1hpUrq6f39PTQ7D6xFdrVHbcB2KcwPgXYWCuPpPHAbsDmQcqcMkiZZmY2grUrCF0LTJO0v6QdgDnA8oo8y4HT8vBs4Kp8raeqiLgHeFTSK/NdcacC32191c3MbLi0pTsuX+OZB1wJjAMWRcQaSQuA1RGxHLgYWCypl3QGNKd/fkl3ArsCO0g6HjgmIm4B3gdcAjwH+GH+mJlZh2jXNSEiYgWwoiLtnMLwE8AJNeadWiN9NXBo62ppZmbt5CcmmJlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVxkHIzMxK4yBkZmalcRAyM7PSOAiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRmZqVxEDIzs9K0LQhJminpNkm9ks6sMn2CpMvy9FWSphamnZXTb5P0hkL6nZJuknSjpNXtaYmZmbVKW96sKmkccBFwNLABuFbS8vyK7n6nAw9FxIGS5gDnAydKOoT0qu+XAHsDP5V0UEQ8neebERGb2tEOMzNrrXadCR0O9EbEuoh4ClgGzKrIMwu4NA9fDhwlSTl9WUQ8GRF3AL25PDMz63BtORMCJgPrC+MbgCNq5YmILZIeAfbI6b+umHdyHg7gx5IC+HJELKy2cElzgbkAkyZNoqenp6lGdHc3NduQTZzYR3d3TzkLbwO3r7O5fZ2h1m6vr6+v6X1iK7QrCKlKWtSZZ6B5/2dEbJT0AuAnkv47Iq7eJnMKTgsBpk+fHl1dXXVXvGj+/KZmG7Lu7h6WLu0qZ+Ft4PZ1NrevM6xcWT29p6eHZveJrdCu7rgNwD6F8SnAxlp5JI0HdgM2DzRvRPT/vR+4AnfTmZl1lHYFoWuBaZL2l7QD6UaD5RV5lgOn5eHZwFURETl9Tr57bn9gGvAbSTtJ2gVA0k7AMcDNbWiLmZm1SFu64/I1nnnAlcA4YFFErJG0AFgdEcuBi4HFknpJZ0Bz8rxrJH0TuAXYApwREU9LmgRcke5dYDywJCJ+1I72mJlZa7TrmhARsQJYUZF2TmH4CeCEGvN+EvhkRdo64GWtr6mZmbWLn5hgZmalcRAyM7PSOAiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRmZqVxEDIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpWlbEJI0U9JtknolnVll+gRJl+XpqyRNLUw7K6ffJukN9ZZpZmYjW1uCkKRxwEXAscAhQLekQyqynQ48FBEHAhcA5+d5DwHmAC8BZgJfkDSuzjLNzGwEa9eZ0OFAb0Ssi4ingGXArIo8s4BL8/DlwFGSlNOXRcSTEXEH0JvLq6dMMzMbwca3aTmTgfWF8Q3AEbXyRMQWSY8Ae+T0X1fMOzkPD1YmAJLmAnPzaJ+k25poQ2l6etgT2FR2PYaL29fZ3L7OINWcVG/79mtZZQraFYSqNT/qzFMrvdpZXGWZKTFiIbBwoAqOZJJWR8T0susxXNy+zub2dbay29eu7rgNwD6F8SnAxlp5JI0HdgM2DzBvPWWamdkI1q4gdC0wTdL+knYg3WiwvCLPcuC0PDwbuCoiIqfPyXfP7Q9MA35TZ5lmZjaCtaU7Ll/jmQdcCYwDFkXEGkkLgNURsRy4GFgsqZd0BjQnz7tG0jeBW4AtwBkR8TRAtTLb0Z4SdGxXYp3cvs7m9nW2UtundLJhZmbWfn5igpmZlcZByMzMSuMg1CEknSvpbkk35s8by67TUI32xy5JulPSTXl9rS67Pq0gaZGk+yXdXEibKOknkn6f/z6vzDo2q0bbRs12J2kfSSsl3SppjaR/yOmlrj8Hoc5yQUS8PH9WlF2ZoRhDj12akdfXaPk/k0tIj88qOhP4WURMA36WxzvRJWzbNhg9290W4EMR8WLglcAZeZsrdf05CFlZ/NilDhQRV5PuXi0qPnLrUuD4tlaqRWq0bdSIiHsi4vo8/ChwK+npM6WuPwehzjJP0u9yt0FHdnkUVHuU0+QaeTtVAD+WdF1+dNRoNSki7oG0owNeUHJ9Wm00bXcA5LcU/DWwipLXn4PQCCLpp5JurvKZBXwReBHwcuAe4N9KrezQ1fMop073PyPiFaQuxzMkvbbsClnDRtt2h6SdgW8D/zsi/lh2fdr17DirQ0S8vp58kr4CfH+YqzPcRv1jlyJiY/57v6QrSF2QV5dbq2Fxn6S9IuIeSXsB95ddoVaJiPv6h0fDdidpe1IA+s+I+E5OLnX9+UyoQ+QfR783AzfXytshRvVjlyTtJGmX/mHgGDp/ndVSfOTWacB3S6xLS42m7S6/Gudi4NaI+PfCpFLXn5+Y0CEkLSZ1CQRwJ/Ce/n7cTpVvd/0sWx+79MmSq9Qykg4Arsij44Elo6F9kpYCXaTH/98HfBz4f8A3gX2BPwAnRETHXeCv0bYuRsl2J+k1wC+Am4BncvJHSdeFSlt/DkJmZlYad8eZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcisZJK6JG0oux5mZXAQMjOz0jgImZlZaRyEzFpE0pmSLq9I+5ykz0t6R36Z2KOS1kl6zwDlhKQDC+OXSDqvMH5cfsHaw5L+S9JLh6dFZsPPQcisdZYCb5S0K/zlxX1vBZaQHgp5HLAr8A7gAkmvaHQBeZ5FwHuAPYAvA8slTWhJC8zazEHIrEUi4i7gera+FOxI4E8R8euI+EFE3B7Jz4EfA3/bxGLeDXw5IlZFxNMRcSnwJOlNmWYdx0HIrLWWAN15+KQ8jqRjJf1a0mZJDwNvJD0os1H7AR/KXXEP57L2AfZuQd3N2s5ByKy1vgV0SZpCevT/ktxV9m3gX0lvsdwdWEH1F/sB/Al4bmH8hYXh9cAnI2L3wue5EbG05S0xawMHIbMWiogHgB7ga8AdEXErsAMwAXgA2CLpWNL7hWq5EThJ0jhJM4HXFaZ9BXivpCOU7CTp7/rfXWTWaRyEzFpvCfD6/JeIeBT4IOmdLQ+RuukGeoHfPwBvAh4GTia9r4dc1mrSdaELc1m9wNtb3QCzdvH7hMzMrDQ+EzIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpfn/QrovIPSdcl4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEZCAYAAAA+MZraAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYHVWd7vHvSwJBuRrQCAmQYAJHZNSRTFCPlw4IBgcneAySBgEVjReic56jM4IODIk4imdmUAe8REEwDgmKcowaxQtpUQdjwkUhMGATwIRwCwmYRgIGfuePtdoUO3t37929e1fv7vfzPPvpuqy1aq1du+pXtaq6ShGBmZlZGXYquwJmZjZ6OQiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzEozKoOQpC9JOqcw/n5JD0rqkbRPmXXL9blH0hvy8MckfbWJZfdIOjgPXybp/CaW/azvdSSQdKikmyRtkfShZn9nI4GkLknvLmG5A942cp23Srqu2fWyJG8rT0ha31e6tgxCkkLS1Ipp50n6Rj35I+J9EfGJnG9n4N+BYyNi94h4pPk1HriI+JeI6HcDr3dHkNu4drD1kvQOSb+sKPsv3+sI8o9AV0TsERGfb1ahtX6vkt4g6UZJj0taJ+ltVdKcnreBlu/4h5N6t40+zI+I19WamQ+qegqfJyVt6SP9GEnnS9qQD1pukrT3QMoaDEnzJa3Oy7isyvx3S+rO9fiRpP37KKs3WPfW+47CvL+V9EtJj0p6QNJXJO3ROz8i3gEc11992zIINdkEYFdgTaMZlbTFdyhpbNl1GM76WJcHMYDfxgDrcBhwBfBxYC/g5cANFWmeB5zdqjq10nDbnvJB1e69H2AJ8K0+siwAXg28CtgTOBXYOsCyBmMDcD5waeUMSa8H/gWYDYwH7s516cv8Qt0PLUzfKy9nf+DFwCTg/zZc24houw8QwNSKaecB38jDHcB64MPAQ8D9wDsLaS/LX94hwOO5vB7g2jz/1cAq4LH899WFvF3AJ4FfAU8AU/O084H/yuV8D9gH+E/gj7mMyX2051TgXuAR0g7oHuANVdq1K/CNnO7RXO6EXJ+nST/4HuCiwvd0JvB74O7K7y5/D18CfgJsAX4OHJTnTc5px1a0/d2kH9zWvMwe4NHi91pI/x6gG9gELAP2r1iH78t12wxcDKjG9zMO+Cxp49qQh8flebcDxxfSjgU2Aq/I46/M6+VR4LdAR1/rsmK511Z8r4c02MbPAevyb+AG4LV5+izgKeDPudzf5ulXAJ/o57f/JeADveuij3RdwCdy27YAPwb2LW4fFenv4dm/uW+RfmtbgFty288mbU/rSD0HxWV9CvgNaZv5LjC+ML+hdQC8A1ibl303cEqNNp7H9m1jMuk3dTrwh/wb+Hg/30/N769K+t1yfV5fY/7z8rp80WDLataHtE+6rGLavwIXF8b3z99b1Xo38j0B/wu4pWLaDr+1ys+wOeoYAi8kReqJwBnAxfko8i8i4k7gJXl074g4StJ44AfA50mB5N+BH1RcKzoVmAfsQQoeAHPz9InAi4Drga+RjjZuB/65WiXz0e8Xc9798zIn1WjT6blNB+R07wOeiIiPA79g+xHL/EKeE4AjgcNqlHkKaWe1L3AzKXD2KSJuz8u+Pi9v7yrtOoq0Y3obsB/pe1pakex44G+Al+V0b6yxyI+TdmQvz2lnAP+U5y0BOgtp3whsjIgbJU0krcvzSevhI8C3JT2/kL7auuxt51E8+3u9s8E2rsp1Hk8KMN+StGtE/Ih0NHplLvdlOf0rc7m3SLpf0jfy77F3eTOA6aRAVI+TgXcCLwB2ye2v15uBxaSd603ANaSek4nAQuDLFelPA95F+g1vI20/DGAdPJzzHhcRe5AOCG9uoN6vAQ4FjgbOlfTiBvL25a25brWuIf0Vqd1zctfUnZLOHGBZQ0n5UxwHOLyPPJ+StFHSryR19JHudQzgDH0kB6E/Awsj4s8RsZx0lHJoP3kA/hb4fUQsjohtEbEE+G/SRtnrsohYk+f/OU/7WkTcFRGPAT8E7oqIn0bENtJR5V/XWN4c4PsRcV1EPAmcAzzTR5v2IR2xPx0RN0TEH/tpz6ciYlNEPFFj/g8Ky/448CpJB/RTZj1OAS6NiBtz2WfnsicX0nw6Ih6NiD8AK0g77FplLYyIhyLiYVK3x6l53hXA30l6bh4/OU8DeDuwPCKWR8QzEfETYDXwpkLZ1dZlU9oYEd+IiEdy2f9GOqPr6zc4KbfrrcA04DnAf0C63gB8AfhgRNT6fVT6WkTcmdf9N6n9/Vbzi4i4pvD7fT5pff2ZFGgn917vyBZHxK0R8TjpN/y2XOeG1gFpR/4McLik50TE/RHRyI5tQUQ8ERG/JZ11vay/DHU6Hfh65MP7KiaRDhAPAaaQtuvzJB0zgLKG0nLSunmppOcA55LOhJ5bI/1HgYNJBx+LgO9JelFlotzO03N5DWnXIPQ0sHPFtJ1JO+lej+Qfda8/AbvXUfb+VBwR5/GJhfF1VfI9WBh+osp4rWXvXywvb8S1bo5YTDoiXZovfn4m31jRl2p1rTo/InpI3Uo1L1Q24FnfYy77EZ79PT5QGO5r/VSuk3t76xgR3aQzzTfnQPR3bA9CBwEn5gunj0p6lHSkvF+hrP6+n7702UZJH5Z0u6TH8rL3Ip1x1vIE2wNHD+lsqXdn/QHgdxFxfQP1q/f7raby97sxIp4ujFNRXvF7vJe0Pe5Lg+sg//5PIp1p3y/pB5L+RwP1HlCbJZ1SuPj+w4p5BwCvB77eRxG938nCHAR/RwrWxWBbb1lDJiJ+RuqV+TZpPd1D6hqsegdbRKyMiC0R8WREXE7qNq1s0ytJ29ycyt6CerRrEPoDqQ+4aAo7Bo+B2EDacIoOBO4rjDfzCOZ+UvcaAHlHWvU28XxWtyAiDiN1UxxP6gbpq0791bW47N1JXSYbSNfK4NlHSC9soNxnfY+SdiO1676aOeosi7Q+NhTGe7vkZgO35cAEaee2OCL2Lnx2i4hPN9COuutVbKOk15KOIt8GPC93WT7G9u6Pasv9XR/1ORp4S+7qeYC0/v9N0kUDqPfjFNZrPmN5fu3kdSmePR9IOiDcyADWQT4DO4YUqP4b+Mog69aviPjP2H7xvfKOrtOA/4q+7yr9XW9R/SyqnrKGVERcHBHTIuIFpGA0Fri13uwUuvMk/TXpWui7coBrWLsGoSuBf5I0SdJOSv9T82bgqiaUvRw4RNLJksZKOol0PeX7TSi7mquA4yW9RtIupP72qutF0kxJf5V3Gn8kbei9R6cPkk6bG/WmwrI/AayMiHW52+s+4O1Kt56+i3Stq9eDwKScr5orgHdKermkcaSj+pURcc8A6riEtL6fL2lf0il/8fbmpcCxwPvZfhZETvNmSW/MbdhVUoekWtfcGtVXG/cgdS09DIyVdC7pjqleD5K6tIrr+mu5vIPzwchH2f67ewfphpCX589qUrfkxwdQ7zuBXZVusd2ZdH1t3ADKKXq7pMNyvRcCV+Uzp4bWgaQJkv4uB/QnSd3oT1dL20KnkW5IqSki7iJdP/y4pHH5WtRJ7Ljf6Leswcr7rV2BMUDvdz42z9tV0uFKDiR1sX0uIjZXKWfvvN52zWWeQrruc02efzjwI1IX8fcGWt92DUILSXfb/JJ0Z9VnSHfQ1BvNa4r0f0LHk+6se4T0fyLHR8TGwZZdY3lrSHewXUE6K9pMjVNj0pnIVaQAdDvpbrbenfHnSBdFN0tq5P9ZriCdnm8CjiBd5+j1HuAfSN/DS0jfea9rSRchH5C0w3eTj4rOIR1p3U8KYHMbqFfR+aSd7u9Id2rdmKf1Lut+0o0gryYdoPROX0c6O/oYKRisy+1pyu++nzZeQ7o2eCfpDH0rz+6y6r099xFJN+byLiV106zMeZ4EPpTnPRoRD/R+SHfX/TFfg2y03o+Ruve+SjrQeJzav7l6LSbtXB8g3cXZW+9G18FOpG1vA+k3+fpc11JIehXpes8Ot1NL+qGkjxUmdZLOjB8h3YxxTvHsoK+yqpS9Ju/0kXRg7iY8MI+fIqmv62T/ROoePIt0Te4Jtt/Isytpm+8h3c14Pek33LvcjxW6I3cmbWcPk85qPwicEBG9/yv0YdIZ9CWFrszG/9WlnGtjZmblkfRj0v/zrI6ImWXXZySSdAlwIvBQREytmc5ByMzMytKu3XFmZjYCOAiZmVlpRt3zxPbdd9+YPHly2dVoyOOPP85uu+1WdjWGjNvX3ty+9lZv+2644YaNETHYW/l3MOqC0OTJk1m9enXZ1WhIV1cXHR0dZVdjyLh97c3ta2/1tk9SM/4PcwfujjMzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpWlZEJI0S9IdkrolnVVl/jhJV+b5K/Xs10AXH2f+kXrLNDOz4a0lT0zIL2G7GDiG9N6SVZKWRcRthWRnAJsjYqqkucAFpJdC9bqQ9H6WRso0sypmVry8YMWKcuph1qozoRlAd0SsjYinSG/CnF2RZjZweR6+CjhakgAknQCsJb1ErZEyzcxsGGtVEJrIs98quT5Pq5omIrYBjwH75Nf8fpT0KuNGyzQzs2GsVQ8wVZVplW/Tq5VmAXBhRPTkE6NGykwJpXnAPIAJEybQ1dXVX32HlZ6enrarcyPcvtbr7Hz2+GCqNxzb10xu39BqVRBaDxxQGJ9Eeod8tTTrJY0F9iK9Y/5IYI6kzwB7A89I2grcUEeZAETEImARwPTp06Pdnojrp/i2t+HYvgUV/QqDuSY0HNvXTG7f0GpVEFoFTJM0BbgPmAucXJFmGXA6cD0wB7g20rvHX9ubQNJ5QE9EXJQDVX9lWgsUL3L7AvfwVXkzgtlw0JIgFBHbJM0HrgHGAJdGxBpJC4HVEbEMuARYLKmbdAY0dyBlDmlDrCEOTmbWn5a91C4ilgPLK6adWxjeCpzYTxnn9VemmVk7qnWmOtIP4Ebdm1VtdPH/w5gNbw5CtoPh1o023OrTCiO5zSO5bdY4ByGzNuId+NDymXPrOQhZWxmt/eYD1Yo74u68c/st38NhPbRToB6K9dNO7QcHoQGrZ0W304+h1sbQTm0ws/bjIGQD4v85MbNmcBAys1FnJJzhj4Q2gINQQ4b66L/RLr6idv4RtqNm7QCGy45kuNTDRh8HIbMK3iGPHK1Yl8PhwLCdu8cdhEaxVv5wvWO30ca/+fo4CI0yrexSrCdNO22cZR1tDsej3GKdKl8L0V96syIHIbMh0rvj7eyEdnoTQLseJFh7chAya1PD4VpEKwzHoOgzu+ZxECpBo3fB/fM/D80yzKw1AcXbY20OQk3gH5jZyOezn6HhINRkjf5Q/cMefUbLOh/q56IVDeXt152dO74OvV20wwGyg5CVqriRD9eNpD/DbUMfqiA3WoLncDPcfl/N1rIgJGkW8DnSq7i/GhGfrpg/Dvg6cATwCHBSRNwjaQawqDcZcF5EXJ3z3ANsAZ4GtkXE9Fa0pdWKTykeLVq9w2vW8gZTzkjYyQ+H79HaS0uCkKQxwMXAMcB6YJWkZRFxWyHZGcDmiJgqaS5wAXAScCswPSK2SdoP+K2k70XEtpxvZkRsbEU7zKx9ObANT606E5oBdEfEWgBJS4HZQDEIzQbOy8NXARdJUkT8qZBmVyCGvrrNNxI2gJHQhkaNxjYXlfVUjZFstJ8tV1LE0O/TJc0BZkXEu/P4qcCRETG/kObWnGZ9Hr8rp9ko6UjgUuAg4NRCd9zdwGZSYPpyRCyiCknzgHkAEyZMOGLp0qUDaseddw4o26CNH9/Dpk2795nmkEOePV6sa3FeWW3oS2/7BlPPyvbXU06rvpfx43vYd9/t6284roPBqOf3WUuz1sFQrsvBtG84qbWN9PT0sPvu/bdv5syZNwzFJY9WBaETgTdWBKEZEfHBQpo1OU0xCM2IiEcKaV4MXA68LiK2Sto/IjZIegHwE+CDEXFdX3WZPn16rF69ekDtKOsopLOziyVLOvpMU3nBstbFzOF4JFVP+/rT6FPHK/MM5ffS2dnFvHkdLVlWGZqx/gZrKNflcGhfM9TaRrq6uuio45EekoYkCLWqO249cEBhfBKwoUaa9ZLGAnsBm4oJIuJ2SY8DhwOrI2JDnv6QpKtJ3X59BqHRaKTt9KoZ6XcQmY1UrQpCq4BpkqYA9wFzgZMr0iwDTgeuB+YA10ZE5Dzr8o0JBwGHAvdI2g3YKSK25OFjgYUtao9ZQ0bDgYDZQLQkCOUAMh+4hnSL9qURsUbSQtIZzTLgEmCxpG7SGdDcnP01wFmS/gw8A3wgXyc6GLhaUm87roiIH7WiPcORd3Jm1o5a9n9CEbEcWF4x7dzC8FbgxCr5FgOLq0xfC7ys+TU1s3bjg7D2tVPZFTAzs9HLj+2xEcdHxWbtw2dCZmZWGgchMzMrjbvjbNRyt51Z+XwmZGZmpXEQMjOz0jgImZlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVxkHIzMxK4yBkZmalcRAyM7PSOAiZmVlpWhaEJM2SdIekbklnVZk/TtKVef5KSZPz9BmSbs6f30p6S71lmpnZ8NaSICRpDHAxcBxwGNAp6bCKZGcAmyNiKnAhcEGefiswPSJeDswCvixpbJ1lmpnZMNaqM6EZQHdErI2Ip4ClwOyKNLOBy/PwVcDRkhQRf4qIbXn6rkA0UKaZmQ1jrQpCE4F1hfH1eVrVNDnoPAbsAyDpSElrgFuA9+X59ZRpZmbDWKveJ6Qq06LeNBGxEniJpBcDl0v6YZ1lpoKlecA8gAkTJtDV1VVntZ+ts3NA2QZt/PgeOju7yll4C7h97c3taw+1dns9PT0D3ic2Q6uC0HrggML4JGBDjTTrJY0F9gI2FRNExO2SHgcOr7PM3nyLgEUA06dPj46OjgE1YsGCAWUbtM7OLpYs6Shn4S3g9rU3t689rFhRfXpXVxcD3Sc2Q6u641YB0yRNkbQLMBdYVpFmGXB6Hp4DXBsRkfOMBZB0EHAocE+dZZqZ2TDWkjOhiNgmaT5wDTAGuDQi1khaCKyOiGXAJcBiSd2kM6C5OftrgLMk/Rl4BvhARGwEqFZmK9pjZmbN0aruOCJiObC8Ytq5heGtwIlV8i0GFtdbppmZtQ8/McHMzErjIGRmZqVxEDIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpak7CEnaZygrYmZmo08jZ0LrJH1X0pz81GozM7NBaSQIHQT8DPgo8ICkRZJeMzTVMjOz0aDuIBQRD0fE5yPib4BXAQ+RXr2wVtLC/K4fMzOzug30xoQX5s+ewF3AROAmSWc1q2JmZjby1f0+IUkvAd4OnAL0AJcDL42I+/L8TwC/Az49BPU0M7MRqJGX2l0HLAHmRMRvKmdGxD2SPtu0mpmZ2YjXSHfcWyJifmUAkjSjd7j4ptRKkmZJukNSd7VuO0njJF2Z56+UNDlPP0bSDZJuyX+PKuTpymXenD8vaKA9ZmZWskbOhL5PugZU6UfA+L4yShoDXAwcA6wHVklaFhG3FZKdAWyOiKmS5gIXACcBG4E3R8QGSYcD15CuQfU6JSJWN9AOMzMbJvo9E5K0Uw4iynYqfKYB2+pYzgygOyLWRsRTwFJgdkWa2aTrTABXAUdLUkTcFBEb8vQ1wK6SxtXTODMzG94UEX0nkJ4BaiV6BvhkRJzXTxlzgFkR8e48fipwZETML6S5NadZn8fvymk2VpTzvoh4Qx7vAvYBnga+DZwfVRokaR4wD2DChAlHLF26tM8213LnnQPKNmjjx/ewadPu5Sy8Bdy+9ub2tYdDDqk+vaenh9137799M2fOvCEipje5WnV1x00BBPwceF1hegAPR8QTdZShKtMqg0WfafLdeRcAxxbmnxIR90nagxSETgW+vkMhEYuARQDTp0+Pjo6OOqq8owULBpRt0Do7u1iypKOchbeA29fe3L72sGJF9eldXV0MdJ/YDP0GoYi4Nw8O5p9R1wMHFMYnARtqpFkvaSywF7AJQNIk4GrgtIi4q1C3+/LfLZKuIHX77RCEzMxseOozCElaFBHz8nDNnXtEnNbPclYB0yRNAe4D5gInV6RZBpwOXA/MAa6NiJC0N/AD4OyI+FWhbmOBvSNio6SdgeOBn/ZTDzMzG0b6OxO6uzB8V81U/YiIbZLmk+5sGwNcGhFrJC0EVkfEMuAS0mOAuklnQHNz9vnAVOAcSefkaccCjwPX5AA0hhSAvjLQOpqZWev1GYQi4lOF4UFdEYmI5cDyimnnFoa3AidWyXc+cH6NYo8YTJ3MzKxc/XXHHdXX/F4RcW1zqmNmZqNJf91xl9RRRgAHN6EuZmY2yvTXHTelVRUxM7PRZ6CvcjAzMxu0/q4J3R4RL87D66jx5ISIOHAI6mZmZiNcf9eE3lMYfvtQVsTMzEaf/q4J/bIw/POhr46ZmY0mdV8TkrSLpIWSfi/p8fz3E5J2HcoKmpnZyNXI+4S+CBwKfAi4l/QsubNJ7/Z5V/OrZmZmI10jQegE4EUR8Wgev03SSqAbByEzMxuARm7RfgB4bsW05wD3N686ZmY2mjTy2J7FwI8k/QfbX7twJn51gpmZDdBAHtvzsYrx95JeNmdmZtYQP7bHzMxK48f2mJlZaeq+O07SnsB5wOuBfQH1zvNje8zMbCAaORP6AvAKYCEwHvgg8AfgwiGol5mZjQKNBKFjgbdGxHeBp/Pfk4BT68ksaZakOyR1Szqryvxxkq7M81dKmpynHyPpBkm35L9HFfIckad3S/q8JFWWa2Zmw1cjQWgn4LE83CNpb9L/CE3tL6OkMcDFwHHAYUCnpMMqkp0BbI6IqaSzq9477jYCb46IvwJOJ90q3uuLwDxgWv7MaqA9ZmZWskaC0G9J14MAfkEKKl8E7qwj7wygOyLWRsRTwFJgdkWa2cDlefgq4GhJioibImJDnr4G2DWfNe0H7BkR10dEkP5f6YQG2mNmZiVr5LE972H7zQgfAj4N7A2cVkfeicC6wvh64MhaaSJim6THgH1IZ0K93grcFBFPSpqYyymWObHawiXNI50xMWHCBLq6uuqo8o46OweUbdDGj++hs7OrnIW3gNvX3ty+9lBrt9fT0zPgfWIz1B2EImJtYfhhUvdZvapdq6l8QV6faSS9hNRFd2wDZaaJEYuARQDTp0+Pjo6Ofqpb3YIFA8o2aJ2dXSxZ0lHOwlvA7Wtvbl97WLGi+vSuri4Guk9shob+T0jSuyT9RNKa/PeMOm8G6H3MT69JwIZaaSSNBfYCNuXxScDVwGkRcVch/aR+yjQzs2GskfcJfQb4KPAd4B/y349Q3yN7VgHTJE2RtAswF1hWkWYZ6cYDgDnAtRER+QaIHwBnR8SvehNHxP3AFkmvzIHwNOC79bbHzMzK18g1oXcAr4iIv1yHkfR94EbgH/vKmK/xzAeuAcYAl0bEGkkLgdURsYz0nLrFkrpJZ0Bzc/b5pDvwzpF0Tp52bEQ8BLwfuIz0NO8f5o+ZmbWJRoLQlvypnPbHejJHxHJgecW0cwvDW4ETq+Q7Hzi/RpmrgcPrWb6ZmQ0//b3K4eDC6GeB70j6NNuv3/wDfmKCmZkNUH9nQt2kO86KNx/MrEhzFHBRMytlZmajQ3+vcvBTts3MbMg0ck0IAEkHkv4pdH1ErOsvvZmZWS2N3KK9n6Sfk7rovgPcJek6SfsPWe3MzGxEa6S77Yuk58c9LyL2A54H3AR8aSgqZmZmI18j3XGvAfaLiD8DRMTjkv4RuG9IamZmZiNeI2dCm0mvYSg6FHi0edUxM7PRpJEzoc8AP5V0CXAvcBDwTuCcPnOZmZnV0MhTtL8i6S7gZOClpIeFdkbEtUNVOTMzG9nqCkL5zaiXAvMcdMzMrFnquiYUEU+T3uPzzNBWx8zMRpNGbky4EFggaeehqoyZmY0ujdyY8EHghcD/kfQw258pFxFx4FBUzszMRrZGgtDbh6wWZmY2KjXSHXc9cDTwVdJ7gb4KvAFYOQT1MjOzUaDRx/YcBXwI+Jv89/XAF+rJLGmWpDskdUs6q8r8cZKuzPNXSpqcp+8jaYWkHkkXVeTpymXenD8vaKA9ZmZWska6404AXhQRvU9IuE3SStIDTd/VV8Z8i/fFwDGkF+KtkrQsIm4rJDsD2BwRUyXNBS4ATgK2kv4h9nCqv0X1lPyGVTMzazONnAk9ADy3YtpzgPvryDsD6I6ItRHxFLAUmF2RZjZweR6+CjhakiLi8Yj4JSkYmZnZCKKIqC9h6kI7GfgPtr/e+0zgCmBVb7pq/8wqaQ4wKyLencdPBY6MiPmFNLfmNOvz+F05zcY8/g5gekWeLmAf4Gng28D5UaVBkuYB8wAmTJhwxNKlS+tqc6U77xxQtkEbP76HTZt2L2fhLeD2tTe3rz0cckj16T09Pey+e//tmzlz5g0RMb3J1WqoO+69+e/HKqa/L38g3bZ9cJW8qjKtMljUk6bSKRFxn6Q9SEHoVODrOxQSsQhYBDB9+vTo6Ojop9jqFiwYULZB6+zsYsmSjnIW3gJuX3tz+9rDihXVp3d1dTHQfWIzNPLsuCmDWE7vmVOvSaRnz1VLs17SWGAvYFM/dbov/90i6QpSt98OQcjMzIanRq4JDcYqYJqkKZJ2AeYCyyrSLANOz8NzgGurda31kjRW0r55eGfgeODWptfczMyGTCPdcQMWEdskzQeuAcYAl0bEGkkLgdURsQy4BFgsqZt0BjS3N7+ke4A9gV0knUB6jt29wDU5AI0Bfgp8pRXtMTOz5mhJEAKIiOWkf3ItTju3MLwVOLFG3sk1ij2iWfUzM7PWa1V3nJmZ2Q4chMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpXEQMjOz0jgImZlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVxkHIzMxK4yBkZmalcRAyM7PSOAiZmVlpWhaEJM2SdIekbklnVZk/TtKVef5KSZPz9H0krZDUI+miijxHSLol5/m8JLWmNWZm1gwtCUKSxgAXA8fsFe6+AAAKGUlEQVQBhwGdkg6rSHYGsDkipgIXAhfk6VuBc4CPVCn6i8A8YFr+zGp+7c3MbKi06kxoBtAdEWsj4ilgKTC7Is1s4PI8fBVwtCRFxOMR8UtSMPoLSfsBe0bE9RERwNeBE4a0FWZm1lRjW7ScicC6wvh64MhaaSJim6THgH2AjX2Uub6izInVEkqaRzpjYsKECXR1dTVY/aSzc0DZBm38+B46O7vKWXgLuH3tze1rD7V2ez09PQPeJzZDq4JQtWs1MYA0A0ofEYuARQDTp0+Pjo6OPoqtbcGCAWUbtM7OLpYs6Shn4S3g9rU3t689rFhRfXpXVxcD3Sc2Q6u649YDBxTGJwEbaqWRNBbYC9jUT5mT+inTzMyGsVYFoVXANElTJO0CzAWWVaRZBpyeh+cA1+ZrPVVFxP3AFkmvzHfFnQZ8t/lVNzOzodKS7rh8jWc+cA0wBrg0ItZIWgisjohlwCXAYkndpDOgub35Jd0D7AnsIukE4NiIuA14P3AZ8Bzgh/ljZmZtolXXhIiI5cDyimnnFoa3AifWyDu5xvTVwOHNq6WZmbWSn5hgZmalcRAyM7PSOAiZmVlpHITMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRmZqVxEDIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMStOyICRplqQ7JHVLOqvK/HGSrszzV0qaXJh3dp5+h6Q3FqbfI+kWSTdLWt2alpiZWbO05M2qksYAFwPHAOuBVZKW5Vd09zoD2BwRUyXNBS4ATpJ0GOlV3y8B9gd+KumQiHg655sZERtb0Q4zM2uuVp0JzQC6I2JtRDwFLAVmV6SZDVyeh68CjpakPH1pRDwZEXcD3bk8MzNrcy05EwImAusK4+uBI2uliYhtkh4D9snTf12Rd2IeDuDHkgL4ckQsqrZwSfOAeQATJkygq6trQI3o7BxQtkEbP76Hzs6uchbeAm5fe3P72kOt3V5PT8+A94nN0KogpCrTos40feX9nxGxQdILgJ9I+u+IuG6HxCk4LQKYPn16dHR01F3xogULBpRt0Do7u1iypKOchbeA29fe3L72sGJF9eldXV0MdJ/YDK3qjlsPHFAYnwRsqJVG0lhgL2BTX3kjovfvQ8DVuJvOzKyttCoIrQKmSZoiaRfSjQbLKtIsA07Pw3OAayMi8vS5+e65KcA04DeSdpO0B4Ck3YBjgVtb0BYzM2uSlnTH5Ws884FrgDHApRGxRtJCYHVELAMuARZL6iadAc3NeddI+iZwG7ANODMinpY0Abg63bvAWOCKiPhRK9pjZmbN0aprQkTEcmB5xbRzC8NbgRNr5P0k8MmKaWuBlzW/pmZm1ip+YoKZmZXGQcjMzErjIGRmZqVxEDIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpXEQMjOz0jgImZlZaRyEzMysNA5CZmZWGgchMzMrjYOQmZmVpmVBSNIsSXdI6pZ0VpX54yRdmeevlDS5MO/sPP0OSW+st0wzMxveWhKEJI0BLgaOAw4DOiUdVpHsDGBzREwFLgQuyHkPA+YCLwFmAV+QNKbOMs3MbBhr1ZnQDKA7ItZGxFPAUmB2RZrZwOV5+CrgaEnK05dGxJMRcTfQncurp0wzMxvGxrZoOROBdYXx9cCRtdJExDZJjwH75Om/rsg7MQ/3VyYAkuYB8/Joj6Q7BtCG0nR1sS+wsex6DBW3r725fe1Bqjmr3vYd1LTKFLQqCFVrftSZptb0amdxlWWmiRGLgEV9VXA4k7Q6IqaXXY+h4va1N7evvZXdvlZ1x60HDiiMTwI21EojaSywF7Cpj7z1lGlmZsNYq4LQKmCapCmSdiHdaLCsIs0y4PQ8PAe4NiIiT5+b756bAkwDflNnmWZmNoy1pDsuX+OZD1wDjAEujYg1khYCqyNiGXAJsFhSN+kMaG7Ou0bSN4HbgG3AmRHxNEC1MlvRnhK0bVdindy+9ub2tbdS26d0smFmZtZ6fmKCmZmVxkHIzMxK4yDUJiSdJ+k+STfnz5vKrtNgjfTHLkm6R9IteX2tLrs+zSDpUkkPSbq1MG28pJ9I+n3++7wy6zhQNdo2YrY7SQdIWiHpdklrJP19nl7q+nMQai8XRsTL82d52ZUZjFH02KWZeX2NlP8zuYz0+Kyis4CfRcQ04Gd5vB1dxo5tg5Gz3W0DPhwRLwZeCZyZt7lS15+DkJXFj11qQxFxHenu1aLiI7cuB05oaaWapEbbRoyIuD8ibszDW4DbSU+fKXX9OQi1l/mSfpe7Ddqyy6Og2qOcJtZI264C+LGkG/Kjo0aqCRFxP6QdHfCCkuvTbCNpuwMgv6Xgr4GVlLz+HISGEUk/lXRrlc9s4IvAi4CXA/cD/1ZqZQevnkc5tbv/GRGvIHU5ninpdWVXyBo20rY7JO0OfBv43xHxx7Lr06pnx1kdIuIN9aST9BXg+0NcnaE24h+7FBEb8t+HJF1N6oK8rtxaDYkHJe0XEfdL2g94qOwKNUtEPNg7PBK2O0k7kwLQf0bEd/LkUtefz4TaRP5x9HoLcGuttG1iRD92SdJukvboHQaOpf3XWS3FR26dDny3xLo01Uja7vKrcS4Bbo+Ify/MKnX9+YkJbULSYlKXQAD3AO/t7cdtV/l218+y/bFLnyy5Sk0j6WDg6jw6FrhiJLRP0hKgg/T4/weBfwb+H/BN4EDgD8CJEdF2F/hrtK2DEbLdSXoN8AvgFuCZPPljpOtCpa0/ByEzMyuNu+PMzKw0DkJmZlYaByEzMyuNg5CZmZXGQcjMzErjIGRWMkkdktaXXQ+zMjgImZlZaRyEzMysNA5CZk0i6SxJV1VM+5ykz0t6Z36Z2BZJayW9t49yQtLUwvhlks4vjB+fX7D2qKT/kvTSoWmR2dBzEDJrniXAmyTtCX95cd/bgCtID4U8HtgTeCdwoaRXNLqAnOdS4L3APsCXgWWSxjWlBWYt5iBk1iQRcS9wI9tfCnYU8KeI+HVE/CAi7ork58CPgdcOYDHvAb4cESsj4umIuBx4kvSmTLO24yBk1lxXAJ15+OQ8jqTjJP1a0iZJjwJvIj0os1EHAR/OXXGP5rIOAPZvQt3NWs5ByKy5vgV0SJpEevT/Fbmr7NvAv5LeYrk3sJzqL/YD+BPw3ML4CwvD64BPRsTehc9zI2JJ01ti1gIOQmZNFBEPA13A14C7I+J2YBdgHPAwsE3ScaT3C9VyM3CypDGSZgGvL8z7CvA+SUcq2U3S3/a+u8is3TgImTXfFcAb8l8iYgvwIdI7WzaTuun6eoHf3wNvBh4FTiG9r4dc1mrSdaGLclndwDua3QCzVvH7hMzMrDQ+EzIzs9I4CJmZWWkchMzMrDQOQmZmVhoHITMzK42DkJmZlcZByMzMSuMgZGZmpfn/hrwVfeQlSNYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -249,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -259,12 +259,12 @@ "Uniform distribution over bounded integer numbers:\n", " sample type: , element type: int64 , shape: (54321,)\n", " sample min: 37, max: 841\n", - " sampling time: 6.62 secs\n" + " sampling time: 7.15 secs\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXVV9//H3hyBBmAomYIAESYBADa1VzA/Uag0gAhaJrVAzIIKiUQvFO4JYINFUsT7iBdSmgkAqCSloHTGKXBLRFkJABQkYGO5DuCcBBwVM+P7+WGvIzsk5c86ZmX3mZPJ5Pc88s8/aa6/93Zezv/t29lZEYGZmVqYthjsAMzMb+ZxszMysdE42ZmZWOicbMzMrnZONmZmVzsnGzMxK52RjZmalc7IpiaTvSPrXwuePSHpUUq+kscMZW47nPklvzd2flfTdIWy7V9LuuftCSV8YwrY3mK8jgaTlkqYNdxytJGmipJC05TCMe0DzuxBzr6SZJYTWliSNztP858F8l51sasgr1Z4VZWdJ+q9Gho+ID0fE5/NwLwG+CrwtIjoi4smhj3jgIuLfIuID9epJWiKpbr08jfcMNi5Jx0v6VUXbL87XkSIi9omIJY3ULe4kFMpGSfqCpJWS/iDpN5K2rzLstcO1gW8nzczvGraPiLkAkqZIuknS6vx3taQpfRUl/TRvqPv+npf0u8FOQzWSXiPpl5KektQj6Ywa9c7M68FbC2X/JOn/JP1R0pJi/Yh4LiI6gO8PJj4nm9YYB2wNLG92QCWbxHLa3Ddi9ZS4LGcBbwTeALwMOBZ4tmLcxwAjcvkM83q3EjgSGAPsAHQBC/p6RsRheeerI2+w/w/475JiuQS4LsfyFuAjko4oVpC0R4734YphVwFfA75UUmxONgMlaVree/ikpMckPSzpfYX+F+a9zb2AFbl4jaRrc/83SlqW90KWSXpjYdglkuZI+l/gj8DuuewLee+jV9KPJY2V9H1JT+c2JvYT77GS7pf0pKTTK/q9eMQmaWtJ/5XrrcntjpM0B3gzcG4e/7m5fkg6UdJdwF2FsuJR4Q6Srsp73b+QtFuut9GplL6jJ0mvAr4DvCGPb01xvhbqf1BSt6RVkrok7VLoF5I+LOmuvNd5niTVmD+jJX0tHx2szN2jc787JB1eqLulpCck7Zs/vz4vlzWSblHhFE21ZVll3MVTmmdJWijp4jy/lkuamvvNA14J/DjPk1MkvRz4GPDBiLg/ktsi4tlC+9sBZwKnVJv2Qr2+5XGcpAfyNJ5e6F8576dJ6qmYjk9LulXSM5LOz+vOT/O0XJ3jLXp/nt8PS/pkoa0tJJ0q6e68Li6UNKYizhMkPQBcW2u9rTGdDc3vRkTEmoi4L9JzvwSsA/asVjd/P98MzGu0/SZNBL4fEesi4m7gV8A+FXXOBT4DPF8sjIirI2IhKXmWwslmcHYCtgPGAycA51V+mSLiTtYv8O0j4sD8pfkJ8A1gLOkU20+04bWcY4GZwF8A9+eyGbl8PLAHcD3wPdKezB2kDcpGlA7rv52H3SWPc0KNaTouT9Ouud6HgT9FxOnAL4GT8l7aSYVh3gnsD0ypbCw7Bvg8ac/vtzRwOB4Rd+RxX5/HV+200IHAF4F/AnYmzacFFdUOB/4f8De53iE1Rnk68HrgNbnufsDncr/5QGeh7iHAExHxa0njScvyC6Tl8Cngckk7FupXW5b9OSJPx/akPeVzASLiWOAB4B15nnwZ+GtgLXCkpEck3SnpxIr2/o20/B9pYNwAbwL2Bg4CzsiJv1HvAg4G9gLeAfwU+Cxp2W8BnFxR/wBgMvA24FStP7VzMmm9egtpnV0NnFcx7FuAV5GWR9X1tsGYq87vZuSdoWeBb5LmdzXvBX4ZEfc2236Dvga8V9JLJO1NOtK9uhDjUcDzEbGopPH3y8lmcP4MzI6IP+cF2Ev6ktbz98BdETEvItZGxHzg96QvZ58LI2J57v/nXPa9iLg7Ip4ifYnvznska0mH5q+tMb4jgSsi4rqIeA74V+CFfqZpLLBn3kO6OSKerjM9X4yIVRFR68v9k8K4Tycdrexap81GHANcEBG/zm2fltueWKjzpbz3+QCwmJRMarU1OyIei4jHSaemjs39LgGOkLRN/nx0LgN4D7AoIhZFxAsRcRVwE/D2QtvVlmV/fpXbW0faC/6bfupOIG1k9wImkZb1WZIOBsh76X9L2gg2alZE/CkibgFuqTP+St+MiEcj4iHSzsnSiPhNXj4/ZON1dFZEPBMRvyPtOPUl9Q8Bp0dETx72LFJCLZ4yOysP+ycGtt72aWZ+V5V3hrYDTgJ+U6Pae4ELm227CVeQlv+fSNuT8yNiGYCkDlIS/FiJ4++Xk01t64CXVJS9hLRS93kyb+j7/BHoaKDtXdh4D/d+0hFLnwerDPdooftPVT7XGvcuxfYi4hmg1k0K84ArgQX59MaXlW5w6E+1WKv2j4he0vnhXWpXb9gG8zG3/SQbzsfi3nx/y6dymdzfF2NEdJOOHN+RE84RrE82uwFH5VM3a/Ie7ptIR1p96s2fSpUxb63a1yX6EvzsnCBuJe2lv13p+tC3gI9WrKfNjr+RdbpPs+tocd68OM9J8/WHhXl6B+k7Oa7GsANZb/s0M79ryt+r7wAXS3pFsZ+kN5HOhFzWbLuNyGdLfgbMJl0f3hU4RNI/5yqzgHklHlXV5WRT2wOkc6BFk2jsNEg9K0lfpqJXAg8VPg/lux8eJq18AOQNZtXbr/NR2qyImEK66Hw4aY+sv5jqxVocdwfpdNNK4JlcvE2h7k5NtLvBfJS0LWm6Hqo5RINtkZZH8fx136m06cDtOQFB2uDNi4jtC3/bRkTxQutQLsvKtm7tZxwvA6YCl0p6BFiWy3skvXkA436G2stqoIpHuMV5/iBwWMV83TofMfV5cZrrrLettAVpHo2vKD8O+EHeISrD7sC6iLg4H0H3kHc6cv+DgJPzqdZHSPN9oaTPlBTPRpxsarsU+JykCfli5VtJp7mGYs9kEbCXpKPzxeZ3k653XDEEbVdzGXC4pDdJ2oq091N12Us6QNJfSxoFPE06kluXez9KlQvcDXh7YdyfJ51aeTCfrnoIeI/S7bvvJ12L6vMoMCEPV80lwPuUbvkcTTpNsDQi7htAjPNJy3tHSTsAZwDF29wXkK4rfIT1RzXkOu+QdEiehq3zhfNa18QGa4NlkC8E/xI4Xekmh1cB7yatS0+RjhRek//6NjyvA5YOYNy/JS3LMZJ2YmhOyfyrpG0k7QO8j/S9g3SEMEfrbybZUdL0Wo3UWW9LI+lgSa/Ny/5lpOuvq0lHYn11XgocRbmn0O5Mo9LReXu1E2k9uCX3Pwj4K9avCytJpyrPyzGOkrQ16Y7FLfJ63OiRYUOcbGqbTbpN8VeklefLwDERcdtgG470O5vDgU+STvucAhweEU8Mtu0a41sOnEjaSD5Mmp6eGtX7DvWfJn1hfsH6je7XSefNV0v6RhMhXEK6eWEVaUN3TKHfB4FPk+bDPqR53uda0u3ij0jaaN5ExDWk60+X5+nag3QTxUB8gXSt5Vbgd8Cvc1nfuB4m3ZDxRtZvEImIB0lHO58FHiftkX+a8r5bXyQlxTWSPpXLOklHZU+Sblb414i4Jt+Z9kjfX44P4NGIeH7jpuuaR9p43Qf8nMJ8GIRfAN3ANcBXIuLnufzrpIv1P5f0B+AG0k0otfS33pZpe9KOylPA3aQ70Q6Nwt2ApBsdniJdM+yX0l2Gb87db5bUW+j3WUk/rTZcvj71j8DHSd/v3wK3AXNy/ycr1oV1wOrCkdaxpNOc3ybdMfcn4D8bmwWNUfhNnWZmdeWjrBWku84+HRFDujFuV/mswaOka9ZfjohZA2rHycbMzMrm02hmZlY6JxszMyvdiHxW0kDssMMOseOOO7LtttsOdygbeeaZZxxXExxX49oxJnBczRrOuG6++eYnImLHuhUjwn8RvO51r4vFixdHO3JczXFcjWvHmCIcV7OGMy7gpmhgG+vTaGZmVjonGzMzK52TjZmZlc7JxszMSudkY2ZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWOj+uxlrugIsOeLF78XF1X/FhZiOAj2zMzKx0TjZmZlY6JxszMyudk42ZmZWuZclG0qGSVkjqlnRqlf6jJV2a+y+VNLHQ77RcvkLSIYXyCyQ9Jum2GuP8lKSQtEMZ02RmZo1pyd1okkYB5wEHAz3AMkldEXF7odoJwOqI2FPSDOBs4N2SpgAzgH2AXYCrJe0VEeuAC4FzgYurjHPXPL4Hypsys/L57j0bCVp1ZLMf0B0R90TE88ACYHpFnenARbn7MuAgScrlCyLiuYi4F+jO7RER1wGraozzHOAUIIZ0SszMrGmt+p3NeODBwuceYP9adSJiraSngLG5/IaKYcf3NzJJRwAPRcQtKV+Z2ebCR4LtqVXJptoWv/KIo1adRoZd34i0DXA68La6QUkzgZkA48aNo7e3lyVLltQbrOVGWlydHZ0vdpcxXZ5fjRtp8wo8v9pVq5JND7Br4fMEYGWNOj2StgS2I50ia2TYoj2ASUDfUc0E4NeS9ouIR4oVI2IuMBdg6tSp0dHRwbRp05qbshZYsmTJiIpr1kWzXuxe/K6h3/P0/GrcSJtX4PnVrlp1zWYZMFnSJElbkS74d1XU6QKOy91HAtdGROTyGflutUnAZODGWiOKiN9FxCsiYmJETCQlq30rE42ZmbVOS5JNRKwFTgKuBO4AFkbEckmz8/UVgPOBsZK6gU8Ap+ZhlwMLgduBnwEn5jvRkDQfuB7YW1KPpBNaMT1mZtaclj2IMyIWAYsqys4odD8LHFVj2DnAnCrlnVWqV9aZ2GysZmY2tPwEATMzK51fMWBDyredWjspro/gdXI4OdnYiNG3Yens6GQa04Y3GDPbgJONmQ0bHwlvPpxsbETyRsysvTjZmNmQcZLfNAzHtSwnmxbxl9A2dV6HbTCcbGzQKveSNmfeIJtV52SzGRvMhvGAiw6gs6Nzg+dQmW2OvIPRGCcbs5J4I2S2npPNEGjHjUo7xmRmmy8nm2E2kpPCSJ42G3rF9eXM3c4cxkisDE42m7jNbYM+Eh4/srkts3ZV68aWoVomXs4bcrKxjbTyS1JrXGXFMNibIgYzbDvcULG5bwB95+TwcbKxtrEpbQg2pVjbjefd5snJpo3U+hKOhAdLbkobmM1977+dlX3qayQb7u+gk02JhnvhWuLlYCPFprwj5GRjtgkZyMamjGTbbhu9Vu9QtHJ8I2VnycnG2l5ZX7Z222CaDbV2SlRONsNgICuAN4w21Ip3yA1mnWqnDdqmZnP6Xm/RqhFJOlTSCkndkk6t0n+0pEtz/6WSJhb6nZbLV0g6pFB+gaTHJN1W0da/S/q9pFsl/VDS9mVOm5mZ9a8lRzaSRgHnAQcDPcAySV0RcXuh2gnA6ojYU9IM4Gzg3ZKmADOAfYBdgKsl7RUR64ALgXOBiytGeRVwWkSslXQ2cBrwmfKmsD00sofpvVAbDpvqelfGkcemOi8Gq1Wn0fYDuiPiHgBJC4DpQDHZTAfOyt2XAedKUi5fEBHPAfdK6s7tXR8R1xWPgPpExM8LH28AjhzSqbHNxnBdCG5kw9aOP3wdydrlh7mbKkVE+SORjgQOjYgP5M/HAvtHxEmFOrflOj35893A/qQEdENE/FcuPx/4aURclj9PBK6IiL+qMe4fA5f2DV/RbyYwE2DcuHGv++53v0tHR0fT03fnk3e+2L3X2L2qlg/GmFFjWLVu1YDH0Uj9WnWK5UV3PnnnRnENh2pxDySuMpZbpWpxNTLfm13Glfobvi+moYqjVkzNDrvL6F2qfhfLWjZF/cU90HV+MN/BRtp8Ys0TL8Y1kPne3/pTzwEHHHBzREytV69VyeYo4JCKZLNfRPxLoc7yXKeYbPYDZpOOYorJZlFEXJ4/T6RGspF0OjAV+MeoM6FTp06Nr3zlK0ybNq3p6WvkkSuD0dnRyfze+QMeRyP1m31UTN9eXjGu4VAt7oHEVcZyq1Qtrkbme7PLuFJ/w/fFNFRx1Iqp2WHP3O3Mqt/FVhxp9hf3QNf5wXwHG2lz7uVzX4xrIPN9MEewkhpKNq06jdYD7Fr4PAFYWaNOj6Qtge2AVQ0OuxFJxwGHAwfVSzTWmHY819yOMVkymGVz55N3vni6yqfyqivO386Ozqrl7aRVyWYZMFnSJOAh0gX/oyvqdAHHAdeTrrFcGxEhqQu4RNJXSTcITAZu7G9kkg4l3RDwloj445BOiVkLtOsGw2ygWpJs8l1hJwFXAqOACyJiuaTZwE0R0QWcD8zLNwCsIiUkcr2FpJsJ1gIn5jvRkDQfmAbsIKkHODMizifdoTYauCrdY8ANEfHhVkzrSOONnpkNhZb9qDMiFgGLKsrOKHQ/CxxVY9g5wJwq5Z1VqhMRew4q2M2Qk8rI4uU5cGU/3mdz1bIfdZqZ2ebLj6sxs7bmo4KRwclmM+Ava32eR2blcrIxMydbK52TjZlZGxjpCd/JxmwEaMU7f8wGw3ejmZlZ6XxkYzaMfORgmwsnmyHmjYeZ2cZ8Gs3MzErnZGNmZqXzabRNkE/Vmdmmxkc2ZmZWOicbMzMrnZONmZmVzsnGzMxK52RjZmalc7IxM7PSOdmYmVnpWpZsJB0qaYWkbkmnVuk/WtKluf9SSRML/U7L5SskHVIov0DSY5Juq2hrjKSrJN2V/7+8zGkzM7P+tSTZSBoFnAccBkwBOiVNqah2ArA6IvYEzgHOzsNOAWYA+wCHAt/K7QFcmMsqnQpcExGTgWvyZzMzGyatOrLZD+iOiHsi4nlgATC9os504KLcfRlwkCTl8gUR8VxE3At05/aIiOuAVVXGV2zrIuCdQzkxZmbWnFY9rmY88GDhcw+wf606EbFW0lPA2Fx+Q8Ww4+uMb1xEPJzbeljSK6pVkjQTmAkwbtw4ent7WbJkSUMTVNTZ0dn0MM0YM2pM6eMYCMfVnHaMqx1jAsfVrMHGNZDtXrNalWxUpSwarNPIsAMSEXOBuQBTp06Njo4Opk2b1nQ7sy6aNRTh1NTZ0cn83vmljmMgHFdz2jGudowJHFezBhvX4nctHsJoqmvVabQeYNfC5wnAylp1JG0JbEc6RdbIsJUelbRzbmtn4LEBR25mZoPWqmSzDJgsaZKkrUgX/Lsq6nQBx+XuI4FrIyJy+Yx8t9okYDJwY53xFds6DvjREEyDmZkNUMPJRtLYgY4kItYCJwFXAncACyNiuaTZko7I1c4HxkrqBj5BvoMsIpYDC4HbgZ8BJ0bEuhzTfOB6YG9JPZJOyG19CThY0l3AwfmzmZkNk2au2Two6SpgHtCV7yprWEQsAhZVlJ1R6H4WOKrGsHOAOVXKq14Ri4gngYOaic/MzMrTzGm03Ui/WfkM8IikuZLeVE5YZmY2kjScbCLi8Yj4RkT8P+ANpIvu8yTdk0+H7VZalGZmtkkb6A0CO+W/lwF3k3738ptqj6ExMzNr+JqNpH2A9wDHAL2kX+a/OiIeyv0/D9yKL8abmVmFZm4QuA6YDxwZERvdehwR90n62pBFZmZmI0YzyeYf8rPINiBpv77kU7y7zMzMrE8z12yuqFH+s6EIxMzMRq66RzaStiA9n0z5KczFZ5XtAawtKTYzMxshGjmNtpb1D76sTCwvUOXHlmZmZkWNJJtJpKOZXwB/VygP4PGI+FMZgZmZ2chRN9lExP250z/aNDOzAek32UiaGxEzc/fFtepFxHuHOjAzMxs56h3Z3FvovrvMQMzMbOTqN9lExBcL3eW+jtLMzEaseqfRDmykkYi4dmjCMTOzkajeabTzG2gjgN2HIBYzMxuh6p1Gm9SqQMzMbOQa6CsGzMzMGlbvms0dEfGq3P0g658ksIGIeGUJsZmZ2QhR75rNBwvd7xnMiCQdCnwdGAV8NyK+VNF/NHAx8DrgSeDdEXFf7ncacAKwDjg5Iq7sr01JBwH/Tjpy6wWOj4juwcRvZmYDV++aza8K3b8Y6EgkjQLOAw4GeoBlkroi4vZCtROA1RGxp6QZwNnAuyVNAWYA+wC7AFdL2isPU6vNbwPTI+IOSf8MfA44fqDxm5nZ4DR8zUbSVpJmS7pL0jP5/+clbd3A4PsB3RFxT0Q8DywAplfUmU56+yfAZcBB+SnT04EFEfFcRNwLdOf2+mszSK+sBtgOWNnodJqZ2dBr5uVp3wb2Bk4G7ic9K+00YDzw/jrDjgceLHzuAfavVSci1kp6Chiby2+oGHZ87q7V5geARZL+BDwNvL5OfGZmVqJmks07gT0iYk3+fLukpaQjjXrJRlXKKm82qFWnVnm1o7K+Nj8OvD0ilkr6NPBVUgLacITSTGAmwLhx4+jt7WXJkiVVJ6A/nR2dTQ/TjDGjxpQ+joFwXM1px7jaMSZwXM0abFwD2e41q5lk8wiwDbCmUPZS4OEGhu0Bdi18nsDGp7b66vRI2pJ0+mtVnWE3Kpe0I/A3EbE0l19KjbeJRsRcYC7A1KlTo6Ojg2nTpjUwORuadVG5T/Lp7Ohkfu/8UscxEI6rOe0YVzvGBI6rWYONa/G7Fg9hNNU187iaecDPJH2T9QngRNIdZPUsAyZLmgQ8RLrgf3RFnS7gOOB64Ejg2ogISV3AJZK+SrpBYDJwI+mIp1qbq4HtJO0VEXeSbiC4o4EYzcysJAN5XM1nKz5/iHTnWE35GsxJwJWk25QviIjlkmYDN0VEVx7XPEndpCOaGXnY5ZIWAreT3hR6YkSsA6jWZi7/IHC5pBdIyafeaT4zMytRyx5XExGLgEUVZWcUup8Fjqox7ByqvH66Wpu5/IfADwcZspmZDRE/rsbMzErX8A0Ckl4GnAW8BdiBwl1iflyNmZn1p5kjm28B+wKzgTHAvwAPAOeUEJeZmY0gzdz6/DbgVRHxpKR1EfEjSTcBP8YJx8zM+tHMkc0WwFO5u1fS9qTf2Ow55FGZmdmI0syRzS2k6zXXAL8kPQSzF7izhLjMzGwEaebI5oPAfbn7ZOBZYHvgvUMck5mZjTANH9lExD2F7sdJrwQwMzOrq6nf2Uh6v6SrJC3P/0/IrwEwMzOrqZnf2XyZ9L6Yr7H+FQOfIr124JRSojMzsxGhmRsEjgf2jYievgJJVwC/xsnGzMz60cxptD/kv8qyp4cuHDMzG4nqvWJg98LHrwE/kPQl1r9i4NP4B51mZlZHvdNo3Wz8tswDKuocCJw7lEGZmdnIUu8VA34qtJmZDVozNwgAIOmVwHigJyIeHPqQzMxspGn4yEXSzpJ+QTq19gPgbknXSdqltOjMzGxEaOY02bdJz0d7eUTsDLwc+A3wnTICMzOzkaOZ02hvAnaOiD8DRMQzkk4BHiolMjMzGzGaObJZDUypKNsbWDN04ZiZ2UjUTLL5MnC1pC9J+kj+vc1VubwuSYdKWiGpW9KpVfqPlnRp7r9U0sRCv9Ny+QpJh9RrU8kcSXdKukPSyU1Mp5mZDbFmnvr8n5LuBo4GXg2sBDoj4tp6w0oaRXr/zcGkH4Quk9QVEbcXqp0ArI6IPSXNAM4G3i1pCjAD2AfYhZTw9srD1GrzeNKPTv8yIl6Q9IpGp9PMzIZeQ8kmJ4sLgJmNJJcq9gO6+15TIGkB6aGexWQzHTgrd18GnJufKD0dWBARzwH3SurO7dFPmx8Bjo6IFwAi4rEBxGxmZkOkoWQTEeskvQ14YYDjGQ8Uf5PTA+xfq05ErJX0FDA2l99QMez43F2rzT1IR0X/ADwOnBwRd1UGJWkmMBNg3Lhx9Pb2smTJkqYnrrOjs+lhmjFm1JjSxzEQjqs57RhXO8YEjqtZg41rINu9ZjVzN9o5wCxJZ/bdkdaEau+8iQbr1Cqvdr2pr83RwLMRMVXSP5KOyt68UeWIucBcgKlTp0ZHRwfTpk2rOgH9mXXRrKaHaUZnRyfze+eXOo6BcFzNace42jEmcFzNGmxci9+1eAijqa6ZZPMvwE7AJyQ9zvpEEBHxyjrD9j24s88E0jWfanV6JG0JbAesqjNsrfIe4PLc/UPge3XiMzOzEjWTbN4ziPEsAyZLmkT6Xc4M0o0GRV3AccD1wJHAtRERkrqASyR9lXSDwGTgRlKiq9Xm/5AeEHoB8BbgzkHEbmZmg9RMsrke+BzQSdrorwQWAHPqDZivwZwEXAmMAi6IiOWSZgM3RUQXcD4wL98AsIqUPMj1FpIu/K8FToyIdQDV2syj/BLwfUkfB3qBDzQxnWZmNsSaSTbfJv2I82TWvxb6NNLF+vfXGzgiFgGLKsrOKHQ/CxxVY9g5VElq1drM5WuAv68Xk5mZtUYzyeadwB55Qw5wu6SlpAdz1k02Zma2+WrmCQKPANtUlL0UeHjowjEzs5GomSObecDPJH2T9XeInQhcLOnAvkoD/NGnmZmNYM0kmw/l/5+tKP9w/oN0O/Tugw3KzMxGlmaejTapzEDMzGzkauaajZmZ2YA42ZiZWemcbMzMrHRONmZmVjonGzMzK52TjZmZlc7JxszMSudkY2ZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWOicbMzMrnZONmZmVrmXJRtKhklZI6pZ0apX+oyVdmvsvlTSx0O+0XL5C0iFNtPlNSb1lTZOZmTWmJclG0ijgPOAwYArQKWlKRbUTgNURsSdwDnB2HnYKMAPYBzgU+JakUfXalDQV2L7UCTMzs4a06shmP6A7Iu6JiOeBBcD0ijrTgYty92XAQZKUyxdExHMRcS/Qndur2WZORP8OnFLydJmZWQOaeS30YIwHHix87gH2r1UnItZKegoYm8tvqBh2fO6u1eZJQFdEPJzyVXWSZgIzAcaNG0dvby9LlixpfKqyzo7OpodpxphRY0ofx0A4rua0Y1ztGBM4rmYNNq6BbPea1apkU22LHw3WqVVe7agsJO0CHAVMqxdURMwF5gJMnTo1Ojo6mDat7mAbmXXRrKaHaUZnRyfze+eXOo6BcFzNace42jEmcFzNGmxci9+1eAijqa5Vp9F6gF0LnycAK2vVkbQlsB2wqp9ha5W/FtgT6JZ0H7CNpO6hmhAzM2teq5LNMmCypEnGYTBdAAALo0lEQVSStiJd8O+qqNMFHJe7jwSujYjI5TPy3WqTgMnAjbXajIifRMROETExIiYCf8w3HZiZ2TBpyWm0fA3mJOBKYBRwQUQslzQbuCkiuoDzgXn5KGQVKXmQ6y0EbgfWAidGxDqAam22YnrMzKw5rbpmQ0QsAhZVlJ1R6H6WdK2l2rBzgDmNtFmlTsdA4jUzs6HjJwiYmVnpnGzMzKx0TjZmZlY6JxszMyudk42ZmZXOycbMzErnZGNmZqVzsjEzs9I52ZiZWemcbMzMrHRONmZmVjonGzMzK52TjZmZlc7JxszMSudkY2ZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWupYlG0mHSlohqVvSqVX6j5Z0ae6/VNLEQr/TcvkKSYfUa1PS93P5bZIukPSSsqfPzMxqa0mykTQKOA84DJgCdEqaUlHtBGB1ROwJnAOcnYedAswA9gEOBb4laVSdNr8P/CXw18BLgQ+UOHlmZlZHq45s9gO6I+KeiHgeWABMr6gzHbgod18GHCRJuXxBRDwXEfcC3bm9mm1GxKLIgBuBCSVPn5mZ9WPLFo1nPPBg4XMPsH+tOhGxVtJTwNhcfkPFsONzd79t5tNnxwIfrRaUpJnATIBx48bR29vLkiVLGp6oPp0dnU0P04wxo8aUPo6BcFzNace42jEmcFzNGmxcA9nuNatVyUZVyqLBOrXKqx2VVbb5LeC6iPhltaAiYi4wF2Dq1KnR0dHBtGnTqlXt16yLZjU9TDM6OzqZ3zu/1HEMhONqTjvG1Y4xgeNq1mDjWvyuxUMYTXWtSjY9wK6FzxOAlTXq9EjaEtgOWFVn2JptSjoT2BH40BDEb2Zmg9CqazbLgMmSJknainTBv6uiThdwXO4+Erg2X3PpAmbku9UmAZNJ12FqtinpA8AhQGdEvFDytJmZWR0tObLJ12BOAq4ERgEXRMRySbOBmyKiCzgfmCepm3REMyMPu1zSQuB2YC1wYkSsA6jWZh7ld4D7gevTPQb8ICJmt2JazcxsY606jUZELAIWVZSdUeh+FjiqxrBzgDmNtJnLWzZdZmZWn58gYGZmpXOyMTOz0jnZmJlZ6ZxszMysdE42ZmZWOicbMzMrnZONmZmVzsnGzMxK52RjZmalc7IxM7PSOdmYmVnpnGzMzKx0TjZmZlY6JxszMyudk42ZmZXOycbMzErnZGNmZqVzsjEzs9I52ZiZWemcbMzMrHQtSzaSDpW0QlK3pFOr9B8t6dLcf6mkiYV+p+XyFZIOqdempEm5jbtym1uVPX1mZlZbS5KNpFHAecBhwBSgU9KUimonAKsjYk/gHODsPOwUYAawD3Ao8C1Jo+q0eTZwTkRMBlbnts3MbJi06shmP6A7Iu6JiOeBBcD0ijrTgYty92XAQZKUyxdExHMRcS/Qndur2mYe5sDcBrnNd5Y4bWZmVseWLRrPeODBwuceYP9adSJiraSngLG5/IaKYcfn7mptjgXWRMTaKvU3IGkmMDN/7D3ggAOeBJ5ofLJaYwlLdsBxNcxxNa4dYwLH1azBxqXjNZjR79ZIpVYlm2pTEg3WqVVe7aisv/obF0bMBea+GIB0U0RMrVZ3ODmu5jiuxrVjTOC4mtWucRW16jRaD7Br4fMEYGWtOpK2BLYDVvUzbK3yJ4Dtcxu1xmVmZi3UqmSzDJic7xLbinTBv6uiThdwXO4+Erg2IiKXz8h3q00CJgM31mozD7M4t0Fu80clTpuZmdXRktNo+RrMScCVwCjggohYLmk2cFNEdAHnA/MkdZOOaGbkYZdLWgjcDqwFToyIdQDV2syj/AywQNIXgN/kthsxt36VYeG4muO4GteOMYHjala7xvUipQMBMzOz8vgJAmZmVjonGzMzK52TTVbvcTolj/sCSY9Juq1QNkbSVfmRO1dJenkul6Rv5DhvlbRvSTHtKmmxpDskLZf00TaJa2tJN0q6Jcc1K5dXfURRf49BKim+UZJ+I+mKdolL0n2Sfifpt5JuymXDuhzzuLaXdJmk3+f17A3DHZekvfN86vt7WtLH2iCuj+f1/TZJ8/P3YNjXraZExGb/R7rB4G5gd2Ar4BZgSgvH/3fAvsBthbIvA6fm7lOBs3P324Gfkn5P9HpgaUkx7Qzsm7v/AriT9Fig4Y5LQEfufgmwNI9vITAjl38H+Eju/mfgO7l7BnBpycvyE8AlwBX587DHBdwH7FBRNqzLMY/rIuADuXsrYPt2iKsQ3yjgEdKPFoctLtKP0u8FXlpYp45vh3WrqekY7gDa4Q94A3Bl4fNpwGktjmEiGyabFcDOuXtnYEXu/g+gs1q9kuP7EXBwO8UFbAP8mvTkiCeALSuXJ+luxTfk7i1zPZUUzwTgGtLjkq7IG6B2iOs+Nk42w7ocgZflDajaKa6KWN4G/O9wx8X6p6uMyevKFcAh7bBuNfPn02hJtcfpVH3ETQuNi4iHAfL/V+TylseaD8NfSzqKGPa48qmq3wKPAVeRjkprPaJog8cgAX2PQSrD14BTgBfy5/4endTKuAL4uaSblR7RBMO/HHcHHge+l087flfStm0QV9EMYH7uHra4IuIh4CvAA8DDpHXlZtpj3WqYk03S8CNu2kBLY5XUAVwOfCwinu6vapWyUuKKiHUR8RrSkcR+wKv6GXdL4pJ0OPBYRNxcLB7uuLK/jYh9SU9IP1HS3/VTt1VxbUk6dfztiHgt8Azp9NRwx5VGlq5/HAH8d72qVcqGNK58fWg6MAnYBdiWtCxrjbctt2dONkkjj9NptUcl7QyQ/z+Wy1sWq6SXkBLN9yPiB+0SV5+IWAMsIZ0rr/WIolqPQRpqfwscIek+0hPIDyQd6Qx3XETEyvz/MeCHpAQ93MuxB+iJiKX582Wk5DPccfU5DPh1RDyaPw9nXG8F7o2IxyPiz8APgDfSButWM5xskkYep9Nqxcf3FB+50wW8N98F83rgqb7D+6EkSaQnL9wREV9to7h2lLR97n4p6Yt4B7UfUVTrMUhDKiJOi4gJETGRtP5cGxHHDHdckraV9Bd93aTrELcxzMsxIh4BHpS0dy46iPSUkGGNq6CT9afQ+sY/XHE9ALxe0jb5e9k3r4Z13WracF80apc/0l0ld5LO/5/e4nHPJ52L/TNpr+QE0jnWa4C78v8xua5IL427G/gdMLWkmN5EOvS+Ffht/nt7G8T1atIjiG4lbTTPyOW7k56Z10069TE6l2+dP3fn/ru3YHlOY/3daMMaVx7/Lflved+6PdzLMY/rNcBNeVn+D/DyNolrG+BJYLtC2XCv97OA3+d1fh4werjXrWb//LgaMzMrnU+jmZlZ6ZxszMysdE42ZmZWOicbMzMrnZONmZmVzsnGrE1JmiapZ7jjMBsKTjZmZlY6JxszMyudk41ZySSdKumyirKv55duvU/pxWF/kHSPpA/1005I2rPw+UJJXyh8Pjy/8GuNpP+T9OpypsiseU42ZuWbD7xd0ssgvSIB+CfSS9YeAw4nvd/lfcA5A3nbYx7mAuBDpEer/AfQJWn0kEyB2SA52ZiVLCLuJ73k7Z256EDgjxFxQ0T8JCLujuQXwM+BNw9gNB8E/iMilkZ6BcNFwHOkJ2KbDTsnG7PWuIT0JGGAo/NnJB0m6QZJqyStIT3sdIcBtL8b8Ml8Cm1NbmtX0vtPzIadk41Za/w3ME3SBOAfgEvyKa7LSW9hHBcR2wOLqP7yK4A/kp5I3GenQveDwJyI2L7wt01EzMesDTjZmLVARDxOetHb90gvwroD2Ir0qPjHgbWSDiO9b6aW3wJH59diHwq8pdDvP4EPS9o/v1tlW0l/3/cuG7Ph5mRj1jqXkF72dglARPwBOBlYCKwmnV7r76V9HwXeAawBjiG9A4bc1k2k6zbn5ra6geOHegLMBsrvszEzs9L5yMbMzErnZGNmZqVzsjEzs9I52ZiZWemcbMzMrHRONmZmVjonGzMzK52TjZmZle7/A7E3zCaHv0aQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXVV9//H3hwBBmAoGMECCJpBgDa1VzC+o1RpEJFg0tkLNiIiKRi0Utd5AKppoqlgf8QJoU0BjKgkUtEaMIkIi2kq4CUiggeE+3C8JOMjFhO/vj7WG7JycM+fsmdlnTobP63nmmX3WWXvt776c/T37ctZWRGBmZlalrUY6ADMzG/2cbMzMrHJONmZmVjknGzMzq5yTjZmZVc7JxszMKudkY2ZmlXOyqYik70j6bOH1hyXdL6lP0s4jGVuO53ZJb8zDn5F0xjC23Sdprzz8PUlfHMa2N1muo4Gk1ZJmjnQc7SRpkqSQtPUITHtQy7sQc5+kuRWE1pEkjc3z/KehfJadbBrIG9WUmrLPS/rPVsaPiA9FxBfyeNsAXwPeFBFdEfHw8Ec8eBHxrxHx/mb1JK2U1LRensdbhxqXpPdI+k1N288u19EiIvaNiJWt1C1+SSiUjZH0RUn3SPqDpN9J2qnOuJeM1A6+k5RZ3g3sFBELASRNk3SlpLX575eSpvVXlPSzvKPu/3ta0u+HOg/1SHq5pF9LelRSr6STGtT7XN4O3lgo+wdJ/yvpj5JWFutHxFMR0QX8YCjxOdm0x3hgO2B12RGVbBHr6bm+E2umwnU5D3gN8Grg+cCRwJM10z4CGJXrZ4S3u3uAw4BxwC7AMmBp/5sRcUj+8tWVd9j/C/xXRbGcDVyaY3k98GFJby1WkLR3jvfemnEfAb4OfLmi2JxsBkvSzPzt4eOSHpB0r6T3Ft7/Xv62uQ+wJhevk3RJfv81kq7I30KukPSawrgrJS2Q9D/AH4G9ctkX87ePPkk/kbSzpB9Ieiy3MWmAeI+UdIekhyWdWPPes0dskraT9J+53rrc7nhJC4DXAafm6Z+a64ekYyTdDNxcKCseFe4i6aL8rftXkl6c6212KqX/6EnSS4HvAK/O01tXXK6F+h+Q1CPpEUnLJO1ReC8kfUjSzflb52mS1GD5jJX09Xx0cE8eHpvfu1HSoYW6W0t6SNJ++fWr8npZJ+laFU7R1FuXdaZdPKX5eUnnSvp+Xl6rJU3P7y0GXgT8JC+TT0l6AfBR4AMRcUck10fEk4X2dwQ+B3yq3rwX6vWvj6Mk3Znn8cTC+7XLfqak3pr5+KSk6yQ9LunMvO38LM/LL3O8Re/Ly/teSR8vtLWVpOMl3ZK3xXMljauJ82hJdwKXNNpuG8xnS8u7FRGxLiJuj9Tvl4ANwJR6dfPn83XA4lbbL2kS8IOI2BARtwC/AfatqXMq8Gng6WJhRPwyIs4lJc9KONkMzW7AjsAE4GjgtNoPU0TcxMYVvlNEvCF/aH4KfBPYmXSK7afa9FrOkcBc4M+AO3LZnFw+Adgb+C3wXdI3mRtJO5TNKB3WfzuPu0ee5sQG83RUnqc9c70PAU9ExInAr4Fj87e0YwvjvA3YH5hW21h2BPAF0je/a2jhcDwibszT/m2eXr3TQm8AvgT8A7A7aTktral2KPD/gL/K9Q5uMMkTgVcBL891ZwD/kt9bAnQX6h4MPBQRV0uaQFqXXySth08A50vatVC/3rocyFvzfOxE+qZ8KkBEHAncCbwlL5OvAH8JrAcOk3SfpJskHVPT3r+S1v99LUwb4LXAS4ADgZNy4m/V24GDgH2AtwA/Az5DWvdbAcfV1D8AmAq8CTheG0/tHEfarl5P2mbXAqfVjPt64KWk9VF3u20x5rrLu4z8ZehJ4Fuk5V3Pu4FfR8RtZdtv0deBd0vaRtJLSEe6vyzEeDjwdEQsr2j6A3KyGZo/AfMj4k95BfaRPqTN/C1wc0Qsjoj1EbEE+D/Sh7Pf9yJidX7/T7nsuxFxS0Q8SvoQ35K/kawnHZq/osH0DgMuiIhLI+Ip4LPAMwPM087AlPwN6aqIeKzJ/HwpIh6JiEYf7p8Wpn0i6WhlzyZttuII4KyIuDq3fUJue1Khzpfzt887gRWkZNKorfkR8UBEPEg6NXVkfu9s4K2Sts+v35nLAN4FLI+I5RHxTERcBFwJvLnQdr11OZDf5PY2kL4F/9UAdSeSdrL7AJNJ6/rzkg4CyN/S/5q0E2zVvIh4IiKuBa5tMv1a34qI+yPibtKXk1UR8bu8fn7E5tvovIh4PCJ+T/ri1J/UPwicGBG9edzPkxJq8ZTZ5/O4TzC47bZfmeVdV/4ytCNwLPC7BtXeDXyvbNslXEBa/0+Q9idnRsQVAJK6SEnwoxVOf0BONo1tALapKduGtFH3ezjv6Pv9Eehqoe092Pwb7h2kI5Z+d9UZ7/7C8BN1Xjea9h7F9iLicaDRTQqLgQuBpfn0xleUbnAYSL1Y674fEX2k88N7NK7esk2WY277YTZdjsVv8wOtn9p1ckd/jBHRQzpyfEtOOG9lY7J5MXB4PnWzLn/DfS3pSKtfs+VTqzbm7dT4ukR/gp+fE8R1pG/pb1a6PnQ68JGa7bTs9FvZpvuV3UaLy+bZZU5arj8qLNMbSZ/J8Q3GHcx226/M8m4of66+A3xf0guL70l6LelMyHll221FPlvyc2A+6frwnsDBkv4xV5kHLK7wqKopJ5vG7iSdAy2aTGunQZq5h/RhKnoRcHfh9XA+++Fe0sYHQN5h1r39Oh+lzYuIaaSLzoeSvpENFFOzWIvT7iKdbroHeDwXb1+ou1uJdjdZjpJ2IM3X3Q3HaLEt0voonr/uP5U2G7ghJyBIO7zFEbFT4W+HiCheaB3OdVnb1nUDTOP5wHTgHEn3AVfk8l5JrxvEtB+n8boarOIRbnGZ3wUcUrNct8tHTP2enecm2207bUVaRhNqyo8Cfpi/EFVhL2BDRHw/H0H3kr905PcPBI7Lp1rvIy33cyV9uqJ4NuNk09g5wL9ImpgvVr6RdJprOL6ZLAf2kfTOfLH5HaTrHRcMQ9v1nAccKum1krYlffupu+4lHSDpLyWNAR4jHcltyG/fT50L3C14c2HaXyCdWrkrn666G3iX0u277yNdi+p3PzAxj1fP2cB7lW75HEs6TbAqIm4fRIxLSOt7V0m7ACcBxdvcl5KuK3yYjUc15DpvkXRwnoft8oXzRtfEhmqTdZAvBP8aOFHpJoeXAu8gbUuPko4UXp7/+nc8rwRWDWLa15DW5ThJuzE8p2Q+K2l7SfsC7yV97iAdISzQxptJdpU0u1EjTbbbykg6SNIr8rp/Pun661rSkVh/necBh1PtKbSb0qT0zry/2o20HVyb3z8Q+As2bgv3kE5VnpZjHCNpO9Idi1vl7bjVI8OWONk0Np90m+JvSBvPV4AjIuL6oTYc6Xc2hwIfJ532+RRwaEQ8NNS2G0xvNXAMaSd5L2l+ehtU7z/Uf4z0gfkVG3e63yCdN18r6ZslQjibdPPCI6Qd3RGF9z4AfJK0HPYlLfN+l5BuF79P0mbLJiIuJl1/Oj/P196kmygG44ukay3XAb8Hrs5l/dO6l3RDxmvYuEMkIu4iHe18BniQ9I38k1T32foSKSmuk/SJXNZNOip7mHSzwmcj4uJ8Z9p9/X85PoD7I+LpzZtuajFp53U78AsKy2EIfgX0ABcDX42IX+Tyb5Au1v9C0h+Ay0g3oTQy0HZbpZ1IX1QeBW4h3Yk2Kwp3A5JudHiUdM1wQEp3Gb4uD79OUl/hvc9I+lm98fL1qb8HPkb6fF8DXA8syO8/XLMtbADWFo60jiSd5vw26Y65J4D/aG0RtEbhJ3WamTWVj7LWkO46+2REDOvOuFPlswb3k65ZfyUi5g2qHScbMzOrmk+jmZlZ5ZxszMyscqOyr6TB2GWXXWLXXXdlhx12GOlQNvP44487rhIcV+s6MSZwXGWNZFxXXXXVQxGxa9OKEeG/CF75ylfGihUrohM5rnIcV+s6MaYIx1XWSMYFXBkt7GN9Gs3MzCrnZGNmZpVrW7KRNEvSGqXu4I+v8/5YSefk91cVO1OUdEIuXyPp4EL5WUrd+9f9oaWkTyh1Rb5LFfNkZmataUuyyV1InAYcQuqWpVuFp9llR5N+0ToFOAU4OY87jfSr8H2BWcDpuT1I3T/MajDNPUldnd85rDNjZmaltevIZgbQExG3RuomYympi4+i2cCiPHwecKAk5fKlkR5Nehupa4sZABFxKakLlHpOIXUD41+tmpmNsHbd+jyBTbsD72Xzfo6erRMR6yU9SurBdwKpX6TiuLU9qm5C6VGod0fEtar/YMb+enNJD7Vi/Pjx9PX1sXLlylbmp60cVzmOq3WdGBM4rrI6Na6idiWbenv82iOORnVaGXdjI6n7/BNJPfQOKCIWAgsBpk+fHl1dXcycObPZaG23cuVKx1WC42pdJ8YEjqusTo2rqF2n0XrZ9LkVE9n8WdfP1skPLtqRdIqslXGL9iY9d+ZaSbfn+lfnLrfNzGwEtCvZXAFMlTQ5P5tkDqn78KJlpAcMQXq06SX5B0PLgDn5brXJpOeVX95oQhHx+4h4YURMiohJpGS1X6Rutc3MbAS05TRavgZzLOmxrWNIz41fLWk+6deny4AzgcWSekhHNHPyuKslnQvcAKwHjon0rHAkLQFmArtI6gU+FxFntmOerFoHLDrg2eEVRzV9DIiZdbi29Y0WEctJT6gslp1UGH6S9DS7euMuID8EqKa8u4XpTiobq1knceK10cAdcT6HeSdmZu3i7mrMzKxyPrIxGwWKR6ngI1XrPE421nY+fWf23ONkYwPqtMTgb/BmQzcSnyMnGzOzgk77gjVaONkMA2+c9lww2rbzTp6fTo5tsJxsKjQaNxgz6zw3PXwT8xbNAzp3X+NkY4a/GIym+R9N8zKaONmY1RgNO6vRMA82ujjZjADvCLYcQ1lXXs9mGznZ2BZtS9yhd0rMByw6gO6u7mfP9Vc9rX5DmedOWXZWnpONmY2YLTV5bKlxjyQnmzap/RGVmVnRaN9HuCNOszY4YNEB3PTwTaN+h2LWiI9stnBlD+e9s+tcW+qpmS017laM5nlrNyebUWo0fUg6MUFWvXxbmedOXC7DZUv4kaKV42QzwtqRFEbzTqms0ZSErbO18wtJd1fThxaPOCcbM9vidfoXKn/JcbIxG1advtPrBMO1jLystyxONqOIP3zV2lKX73P5W/VwPrelih/BVr1NddI227ZkI2kW8A1gDHBGRHy55v2xwPeBVwIPA++IiNvzeycARwMbgOMi4sJcfhZwKPBARPxFoa1/A94CPA3cArw3ItZVOoOjSKMNtLa8/4P3XNuBDadO2hmYVaktyUbSGOA04CCgF7hC0rKIuKFQ7WhgbURMkTQHOBl4h6RpwBxgX2AP4JeS9omIDcD3gFNJSaroIuCEiFgv6WTgBODT1c2h1fNc/kZtw2dLSshbUqzt1q4jmxlAT0TcCiBpKTAbKCab2cDn8/B5wKmSlMuXRsRTwG2SenJ7v42ISyVNqp1YRPyi8PIy4LBhnZsBtGNj8wZtZlsaRUT1E5EOA2ZFxPvz6yOB/SPi2EKd63Od3vz6FmB/UgK6LCL+M5efCfwsIs7LrycBFxRPo9VM+yfAOf3j17w3F5gLMH78+FeeccYZdHV1lZ6/mx6+qfQ49eyz8z51y/v6+jaJa7im12jarbY/bsw4HtnwSMO4i+00ar+VcVvV31bt8hpqu61Ot1n7/curHdNqdfx6MY3U+iyO+9C6h4a8rMro5HXYyjItxjWYbaTRNFpxwAEHXBUR05vVa1eyORw4uCbZzIiIfyrUWZ3rFJPNDGA+6SimmGyWR8T5+fUkGiQbSScC04G/jyYzOn369PjqV7/KzJkzS8/fcB1pFE811d5DP/ftc4d9eq1MeyDdXd0s6VvS8BRZo9NorZxeG8w89re1cuVK5t0xb7Pywbbb6nSbtd+/vNoxrVbHrxfTSK3P4rgLz1845GVVRievw1aWaTGuwWwjQznNLamlZNOu02i9wJ6F1xOBexrU6ZW0NbAj8EiL425G0lGkmwcObJZoOsVInh7z7ajPDV4/9Y2m5dKp89KuZHMFMFXSZOBu0gX/d9bUWQYcBfyWdI3lkogIScuAsyV9jXSDwFTg8oEmlu98+zTw+oj447DOiQ3KaEik1txwPWxuS/hFvJXTlmST7wo7FriQdOvzWRGxWtJ84MqIWAacCSzONwA8QkpI5Hrnkm4mWA8ck+9EQ9ISYCawi6Re4HMRcSbpDrWxwEXpHgMui4gPtWNen4t8VDR6eZ10li15fbTtdzYRsRxYXlN2UmH4SeDwBuMuABbUKa/79Scipgwp2A60JW9kAxmt8zXaeb21z2hZ1u5BwGyI2rkzGC07Hnvu8cPTzMysck42ZmZWOZ9GMzNro+fqqVAnGzPbxHN1Z2jVcrKxUaN/J+nfaJh1HicbM6uEj5CsyDcImJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrXtmQjaZakNZJ6JB1f5/2xks7J76+SNKnw3gm5fI2kgwvlZ0l6QNL1NW2Nk3SRpJvz/xdUOW9mZjawtiQbSWOA04BDgGlAt6RpNdWOBtZGxBTgFODkPO40YA6wLzALOD23B/C9XFbreODiiJgKXJxfm5nZCGnXkc0MoCcibo2Ip4GlwOyaOrOBRXn4POBAScrlSyPiqYi4DejJ7RERlwKP1Jlesa1FwNuGc2bMzKycdj2pcwJwV+F1L7B/ozoRsV7So8DOufyymnEnNJne+Ii4N7d1r6QX1qskaS4wF2D8+PH09fWxcuXKlmaoqOrHEI8bM64jH3XsuMrpxLg6MSZwXGUNNa7B7PfKaleyUZ2yaLFOK+MOSkQsBBYCTJ8+Pbq6upg5c2bpduYtmjcc4TTU3dXNkr4llU5jMBxXOZ0YVyfGBI6rrKHGteLtK4YxmvradRqtF9iz8HoicE+jOpK2BnYknSJrZdxa90vaPbe1O/DAoCM3M7Mha1eyuQKYKmmypG1JF/yX1dRZBhyVhw8DLomIyOVz8t1qk4GpwOVNplds6yjgx8MwD2ZmNkhtSTYRsR44FrgQuBE4NyJWS5ov6a252pnAzpJ6gH8m30EWEauBc4EbgJ8Dx0TEBgBJS4DfAi+R1Cvp6NzWl4GDJN0MHJRfm5nZCGnXNRsiYjmwvKbspMLwk8DhDcZdACyoU173ilhEPAwcOJR4zcxs+LgHATMzq5yTjZmZVc7JxszMKudkY2ZmlXOyMTOzyjnZmJlZ5ZxszMysci0nG0k7VxmImZmNXmWObO6S9GNJh+UuZ8zMzFpSJtm8mPQgsk8D90laKOm11YRlZmajScvJJiIejIhvRsT/A15N6kl5saRbcx9nL64sSjMz26IN9gaB3fLf84FbSA8z+50kP37ZzMw203JHnJL2Bd4FHAH0kR63/LKIuDu//wXgOtzDspmZ1SjT6/OlwBLgsIjY7HkyEXG7pK8PW2RmZjZqlEk2fxcRl9YWSprRn3yKjwwwMzPrV+aazQUNyn8+HIGYmdno1fTIRtJWgNKglIf77Q2sryg2MzMbJVo5jbYeiMJw0TPUeYKmmZlZUSvJZjLpaOZXwN8UygN4MCKeqCIwMzMbPZomm4i4Iw/6R5tmZjYoAyYbSQsjYm4e/n6jehHx7uEOzMzMRo9md6PdVhi+ZYC/piTNkrRGUk+9ngYkjZV0Tn5/laRJhfdOyOVrJB3crE1JB0q6WtI1kn4jaUorMZqZWTUGPLKJiC8VhucNdiKSxgCnAQcBvcAVkpZFxA2FakcDayNiiqQ5wMnAOyRNA+YA+wJ7AL+UtE8ep1Gb3wZmR8SNkv4R+BfgPYON38zMhqbZabQ3tNJIRFzSpMoMoCcibs3tLgVmA8VkMxv4fB4+Dzg132o9G1gaEU8Bt0nqye0xQJtB6rcNYEfgnlbmw8zMqtHsBoEzW2gjgL2a1JkA3FV43Qvs36hORKyX9Ciwcy6/rGbcCXm4UZvvB5ZLegJ4DHhVvaAkzQXmAowfP56+vj5WrlzZZFY2193VXXqcMsaNGVf5NAbDcZXTiXF1YkzguMoaalyD2e+V1ew02uRhmo7qlEWLdRqV17ve1N/mx4A3R8QqSZ8EvkZKQJtWjlgILASYPn16dHV1MXPmzLozMJB5iwZ9hrEl3V3dLOlbUuk0BsNxldOJcXViTOC4yhpqXCvevmIYo6lvsI8YKKsX2LPweiKbn9p6to6krUmnvx4ZYNy65ZJ2Bf4qIlbl8nOA1wzPbJiZ2WAMmGwk3VgYvkvSnfX+WpjOFcBUSZPzI6XnAMtq6iwDjsrDhwGXRETk8jn5brXJwFTg8gHaXAvsWLiJ4CDgRszMbMQ0u2bzgcLwuwY7kXwN5ljgQmAMcFZErJY0H7gyIpaRrg8tzjcAPEJKHuR655Iu/K8HjomIDQD12szlHwDOl/QMKfm8b7Cxm5nZ0DW7ZvObwvCvhjKhiFgOLK8pO6kw/CRweINxF1CnD7Z6bebyHwE/Gkq8ZmY2fFq+ZiNpW0nzJd0s6fH8/wuStqsyQDMz2/KVeXjat4GXAMcBd5D6SjuBdBuyT1OZmVlDZZLN24C9I2Jdfn2DpFVAD042ZmY2gDK3Pt8HbF9T9jzg3uELx8zMRqMy3dUsBn4u6Vts/I3LMUDD3qDNzMxgcN3VfKbm9QdJnWaamZnV1a7uaszM7DmsXd3VmJnZc1jLd6NJej7pEQCvB3ah0EFmRLxo2CMzM7NRo8yRzenAfsB8YBzwT8CdwCkVxGVmZqNImd/ZvAl4aUQ8LGlDRPxY0pXAT3DCMTOzAZQ5stkKeDQP90naifQbmynDHpWZmY0qZY5sriVdr7kY+DVwGtAH3FRBXGZmNoqUObL5AHB7Hj4OeBLYCXj3MMdkZmajTMtHNhFxa2H4QeDoSiIyM7NRp9TvbCS9T9JFklbn/0dLUvMxzczsuazM72y+AswGvs7GRwx8gvTYgU9VEp2ZmY0KZW4QeA+wX0T09hdIugC4GicbMzMbQJnTaH/If7Vljw1fOGZmNho1e8TAXoWXXwd+KOnLbHzEwCfxDzrNzKyJZqfReoCg0A8acEBNnTcApw5nUGZmNroMeBotIraKiDH5f6O/Ma1MSNIsSWsk9Ug6vs77YyWdk99fJWlS4b0TcvkaSQc3a1PJAkk3SbpR0nGtxGhmZtUoc4MAAJJeBEwAeiPirhbHGUPqceAg0im4KyQti4gbCtWOBtZGxBRJc0gPZHuHpGnAHGBfYA/gl5L2yeM0avM9pNN8fx4Rz0h6Ydn5NDOz4dPyDQKSdpf0K9KptR8Ct0i6VNIeLYw+A+iJiFsj4mlgKek26qLZwKI8fB5wYP4Nz2xgaUQ8FRG35enPaNLmh4H5EfEMQEQ80Op8mpnZ8CtzN9q3Sf2jvSAidgdeAPwO+E4L404AikdBvbmsbp2IWE/q9HPnAcYdqM29SUdFV0r6maSpLcRoZmYVKXMa7bXA7hHxJ4CIeFzSp4C7Wxi3Xi8D0WKdRuX1EmV/m2OBJyNiuqS/B84CXrdZUNJcYC7A+PHj6evrY+XKlXVnYCDdXd2lxylj3JhxlU9jMBxXOZ0YVyfGBI6rrKHGNZj9Xlllks1aYBrp6KbfS4B1LYzbf6t0v4nAPQ3q9EraGtgReKTJuI3Ke4Hz8/CPgO/WCyoiFgILAaZPnx5dXV3MnDmzhdnZ1LxF80qPU0Z3VzdL+pZUOo3BcFzldGJcnRgTOK6yhhrXirevGMZo6itzGu0rpIvzX5b04fx7m4tyeTNXAFMlTZa0LemC/7KaOsuAo/LwYcAlERG5fE6+W20yMBW4vEmb/026JRvSYxH8GAQzsxFUptfn/5B0C/BO4GWko4juiLikhXHXSzoWuBAYA5wVEaslzQeujIhlwJnAYkk9pCOaOXnc1ZLOBW4A1gPHRMQGgHpt5kl+GfiBpI+Rnrnz/lbn08zMhl9LySbfunwWMLeV5FJPRCwHlteUnVQYfhI4vMG4C4AFrbSZy9cBfzuYOM3MbPi1dBotH0m8CXim2nDMzGw0KnPN5hRgnqRtqgrGzMxGpzJ3o/0TsBvwz5IeZONtyRERL6oiODMzGx3KJJt3VRaFmZmNamVOo/0WOBA4g3RR/gzgjcCqCuIyM7NRpMyRzbdJP+I8jo2PhT6B1EXM+4Y/NDMzGy3KJJu3AXvn24oBbpC0itQxppONmZk1VOY02n3A9jVlzwPuHb5wzMxsNCpzZLMY+Lmkb7Gxv7JjgO9L6u8ahsH+6NPMzEavMsnmg/n/Z2rKP5T/IN0OvddQgzIzs9GlTN9ok6sMxMzMRq8y12zMzMwGxcnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrXtmQjaZakNZJ6JB1f5/2xks7J76+SNKnw3gm5fI2kg0u0+S1JfVXNk5mZtaYtyUbSGOA04BBgGtAtaVpNtaOBtRExBTgFODmPOw2YA+wLzAJOlzSmWZuSpgM7VTpjZmbWknYd2cwAeiLi1oh4GlgKzK6pMxtYlIfPAw6UpFy+NCKeiojbSA9rmzFQmzkR/RvwqYrny8zMWtCuZDMBuKvwujeX1a0TEeuBR4GdBxh3oDaPBZZFhB/sZmbWAco8z2YoVKcsWqzTqLxeogxJewCHAzObBiXNBeYCjB8/nr6+PlauXNlstM10d3WXHqeMcWPGVT6NwXBc5XRiXJ0YEziusoYa12D2e2W1K9n0P9mz30TgngZ1eiVtDewIPNJk3HrlrwCmAD3pLBzbS+rJ14I2ERELgYUA06dPj66uLmbOnFl65uYtmld6nDK6u7pZ0rek0mkMhuMqpxPj6sSYwHGVNdS4Vrx9xTBGU1+7TqNdAUyVNFnStqQL/stq6iwDjsrDhwGXRETk8jn5brXJwFTg8kZtRsRPI2K3iJgUEZOAP9ZLNGZm1j5tObKJiPWSjgUuBMYQWXuEAAALeUlEQVQAZ0XEaknzgSsjYhlwJrBYUg/piGZOHne1pHOBG4D1wDERsQGgXpvtmB8zMyunXafRiIjlwPKaspMKw0+SrrXUG3cBsKCVNuvU6RpMvGZmNnzcg4CZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeWcbMzMrHJONmZmVjknGzMzq5yTjZmZVc7JxszMKudkY2ZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVc7IxM7PKOdmYmVnlnGzMzKxybUs2kmZJWiOpR9Lxdd4fK+mc/P4qSZMK752Qy9dIOrhZm5J+kMuvl3SWpG2qnj8zM2usLclG0hjgNOAQYBrQLWlaTbWjgbURMQU4BTg5jzsNmAPsC8wCTpc0pkmbPwD+HPhL4HnA+yucPTMza6JdRzYzgJ6IuDUingaWArNr6swGFuXh84ADJSmXL42IpyLiNqAnt9ewzYhYHhlwOTCx4vkzM7MBbN2m6UwA7iq87gX2b1QnItZLehTYOZdfVjPuhDw8YJv59NmRwEfqBSVpLjAXYPz48fT19bFy5cqWZ6pfd1d36XHKGDdmXOXTGAzHVU4nxtWJMYHjKmuocQ1mv1dWu5KN6pRFi3Ualdc7Kqtt83Tg0oj4db2gImIhsBBg+vTp0dXVxcyZM+tVHdC8RfNKj1NGd1c3S/qWVDqNwXBc5XRiXJ0YEziusoYa14q3rxjGaOprV7LpBfYsvJ4I3NOgTq+krYEdgUeajNuwTUmfA3YFPjgM8ZuZ2RC065rNFcBUSZMlbUu64L+sps4y4Kg8fBhwSb7msgyYk+9WmwxMJV2HadimpPcDBwPdEfFMxfNmZmZNtOXIJl+DORa4EBgDnBURqyXNB66MiGXAmcBiST2kI5o5edzVks4FbgDWA8dExAaAem3mSX4HuAP4bbrHgB9GxPx2zKuZmW2uXafRiIjlwPKaspMKw08ChzcYdwGwoJU2c3nb5svMzJpzDwJmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpVzsjEzs8o52ZiZWeWcbMzMrHJONmZmVjknGzMzq5yTjZmZVc7JxszMKudkY2ZmlXOyMTOzyjnZmJlZ5ZxszMysck42ZmZWOScbMzOrnJONmZlVzsnGzMwq52RjZmaVa1uykTRL0hpJPZKOr/P+WEnn5PdXSZpUeO+EXL5G0sHN2pQ0Obdxc25z26rnz8zMGmtLspE0BjgNOASYBnRLmlZT7WhgbURMAU4BTs7jTgPmAPsCs4DTJY1p0ubJwCkRMRVYm9s2M7MR0q4jmxlAT0TcGhFPA0uB2TV1ZgOL8vB5wIGSlMuXRsRTEXEb0JPbq9tmHucNuQ1ym2+rcN7MzKyJrds0nQnAXYXXvcD+jepExHpJjwI75/LLasadkIfrtbkzsC4i1tepvwlJc4G5+WXfAQcc8DDwUOuz1R4rWbkLjqtljqt1nRgTOK6yhhqX3qOhTP7FrVRqV7KpNyfRYp1G5fWOygaqv3lhxEJg4bMBSFdGxPR6dUeS4yrHcbWuE2MCx1VWp8ZV1K7TaL3AnoXXE4F7GtWRtDWwI/DIAOM2Kn8I2Cm30WhaZmbWRu1KNlcAU/NdYtuSLvgvq6mzDDgqDx8GXBIRkcvn5LvVJgNTgcsbtZnHWZHbILf54wrnzczMmmjLabR8DeZY4EJgDHBWRKyWNB+4MiKWAWcCiyX1kI5o5uRxV0s6F7gBWA8cExEbAOq1mSf5aWCppC8Cv8ttt2Jh8yojwnGV47ha14kxgeMqq1PjepbSgYCZmVl13IOAmZlVzsnGzMwq52STNetOp+JpnyXpAUnXF8rGSbood7lzkaQX5HJJ+maO8zpJ+1UU056SVki6UdJqSR/pkLi2k3S5pGtzXPNyed0uigbqBqmi+MZI+p2kCzolLkm3S/q9pGskXZnLRnQ95mntJOk8Sf+Xt7NXj3Rckl6Sl1P/32OSPtoBcX0sb+/XS1qSPwcjvm2VEhHP+T/SDQa3AHsB2wLXAtPaOP2/AfYDri+UfQU4Pg8fD5ych98M/Iz0e6JXAasqiml3YL88/GfATaRugUY6LgFdeXgbYFWe3rnAnFz+HeDDefgfge/k4TnAORWvy38GzgYuyK9HPC7gdmCXmrIRXY95WouA9+fhbYGdOiGuQnxjgPtIP1ocsbhIP0q/DXheYZt6TydsW6XmY6QD6IQ/4NXAhYXXJwAntDmGSWyabNYAu+fh3YE1efjfge569SqO78fAQZ0UF7A9cDWp54iHgK1r1yfpbsVX5+Gtcz1VFM9E4GJSd0kX5B1QJ8R1O5snmxFdj8Dz8w5UnRRXTSxvAv5npONiY+8q4/K2cgFwcCdsW2X+fBotqdedTt0ubtpofETcC5D/vzCXtz3WfBj+CtJRxIjHlU9VXQM8AFxEOipt1EXRJt0gAf3dIFXh68CngGfy64G6TmpnXAH8QtJVSl00wcivx72AB4Hv5tOOZ0jaoQPiKpoDLMnDIxZXRNwNfBW4E7iXtK1cRWdsWy1zskla7uKmA7Q1VkldwPnARyPisYGq1imrJK6I2BARLycdScwAXjrAtNsSl6RDgQci4qpi8UjHlf11ROxH6iH9GEl/M0DddsW1NenU8bcj4hXA46TTUyMdV5pYuv7xVuC/mlWtUzasceXrQ7OBycAewA6kddlouh25P3OySVrpTqfd7pe0O0D+/0Aub1uskrYhJZofRMQPOyWufhGxDlhJOlfeqIuiRt0gDbe/Bt4q6XZSD+RvIB3pjHRcRMQ9+f8DwI9ICXqk12Mv0BsRq/Lr80jJZ6Tj6ncIcHVE3J9fj2RcbwRui4gHI+JPwA+B19AB21YZTjZJK93ptFux+55ilzvLgHfnu2BeBTzaf3g/nCSJ1PPCjRHxtQ6Ka1dJO+Xh55E+iDfSuIuiRt0gDauIOCEiJkbEJNL2c0lEHDHScUnaQdKf9Q+TrkNczwivx4i4D7hL0kty0YGkXkJGNK6CbjaeQuuf/kjFdSfwKknb589l/7Ia0W2rtJG+aNQpf6S7Sm4inf8/sc3TXkI6F/sn0reSo0nnWC8Gbs7/x+W6Ij007hbg98D0imJ6LenQ+zrgmvz35g6I62WkLoiuI+00T8rle5H6zOshnfoYm8u3y6978vt7tWF9zmTj3WgjGlee/rX5b3X/tj3S6zFP6+XAlXld/jfwgg6Ja3vgYWDHQtlIb/fzgP/L2/xiYOxIb1tl/9xdjZmZVc6n0czMrHJONmZmVjknGzMzq5yTjZmZVc7JxszMKudkY9ahJM2U1DvScZgNBycbMzOrnJONmZlVzsnGrGKSjpd0Xk3ZN/JDt96r9OCwP0i6VdIHB2gnJE0pvP6epC8WXh+aH/i1TtL/SnpZNXNkVp6TjVn1lgBvlvR8SI9IAP6B9JC1B4BDSc93eS9wymCe9pjHOQv4IKlrlX8HlkkaOyxzYDZETjZmFYuIO0gPeXtbLnoD8MeIuCwifhoRt0TyK+AXwOsGMZkPAP8eEasiPYJhEfAUqUdssxHnZGPWHmeTehIGeGd+jaRDJF0m6RFJ60idne4yiPZfDHw8n0Jbl9vak/T8E7MR52Rj1h7/BcyUNBH4O+DsfIrrfNJTGMdHxE7Acuo//Argj6QeifvtVhi+C1gQETsV/raPiCWYdQAnG7M2iIgHSQ96+y7pQVg3AtuSuop/EFgv6RDS82YauQZ4Z34s9izg9YX3/gP4kKT987NVdpD0t/3PsjEbaU42Zu1zNulhb2cDRMQfgOOAc4G1pNNrAz207yPAW4B1wBGkZ8CQ27qSdN3m1NxWD/Ce4Z4Bs8Hy82zMzKxyPrIxM7PKOdmYmVnlnGzMzKxyTjZmZlY5JxszM6uck42ZmVXOycbMzCrnZGNmZpX7/23KvsC10+P/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -325,7 +325,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -377,7 +377,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -386,13 +386,13 @@ "text": [ "Normal distribution (mu=2.400, sigma=5.100):\n", " sample type: , element type: float64 , shape: (4321,)\n", - " sample min: -16.3332, max: 20.7365\n", - " sampling time: 1.69 secs\n" + " sample min: -18.0259, max: 21.2915\n", + " sampling time: 1.85 secs\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4FFXWx/HvSQJhCVsgRvZFQMUFRwLoq2AiOoKiKIsCiiuDy6DOKI6oM444jusos4gLog6ibAIKoyCKEEBFBBQVRCAgSwTZAkjYk5z3j6po03SS7qS7q5Ocz/P0k1pud/26Ut2361bVLVFVjDHGmGDFeR3AGGNM+WIVhzHGmJBYxWGMMSYkVnEYY4wJiVUcxhhjQmIVhzHGmJBYxWFKJCKPiMibIZRXEWntDr8kIn8JU45mIpIrIvHueKaIDA7Ha7uvN0tEbgjX68UCEVkpIunFzH9QRMaUcRkt3P95QllexysiskFELirlc8O2fZcn5fIfXdGIyAagOtBKVfe70wYD16lquofRykxVbwumnLsOBqvqnGJeaxOQFI5cIvII0FpVr/N5/R7heO1YoqqnlTD/8WhlKe9E5EacbfT8wmnBbt8Vje1xxI4E4O6yvog4Ktz/tbz+mo1ltk5NaVW4L5hy7BlgmIjUDTRTRP5PRJaIyF737//5zMsUkb+LyKfAAaCVO+0xEfnMbd75n4jUF5G3RORn9zVa+LzGv0RksztvmYh0CTa4iNwnIltFZIuI3Ow3778i8pg73EBE3hORPSKSIyILRSRORMYBzYD/uVn/5NP8cYuIbALmFtEkcpKIfOGul+kikuwuK11Esv2ybBCRi0SkO/AgcI27vK991uNgdzhORP4sIhtFZLuIvCEiddx5hTluEJFNIrJTRB4KYX0lisg/3Oduc5s7qvvmdtfBdne9Xikil4rIGne9PejzWo+IyBQRmSQi+0TkSxFp7/+e/cq+KSI/AzeKXzOkiJzvbjN73O3hRnf6ZSLylbt9bHb32IJ5r8NFZIrftH+JyL/d4RtFZL2b/QcRubaI1+kkIovcXFtF5HkRqeozX0XkNhFZKyK7RWSUiIg77yQRmSsiu9z/1VsS4HMmIieKyAERqe8zrYOI7BCRM4CXgHPdbWaPO/+X7dsd7yUiy931tM7d1iocqzhix1IgExjmP8P9Mnwf+DdQH3gOeN93AwcGAUOAWsBGd1p/d3pj4CRgEfA6kAysAv7q8/wlwFnuvPHA2yJSraTQ7gdjGHAx0AYorq34XiAbSAFScb68VVUHAZuAy1U1SVWf9nnOBcCpwCVFvOb1wM1AIyAPZx0VS1U/AB4HJrnLax+g2I3uIwNohdNE9rxfmfOBk4FuwMMicir88uW7p5gITwFtcdZ3a5z/z8M+808EqvlMfwW4DugAdHGX1cqnfC/gbX79370rIlWKWHYvYApQF3jLd4aINANmAf/B+R+dBSx3Z+/HWdd1gcuA20XkymLeY6EJwKUiUttdRjxwNTBeRGri/L96qGot4P98lucvH/gj0AA4F2ed3+FXpifQEWjvLqNwmxHgCZxt5FSgKfCI/wJU9Secz+DVPpOvAyaq6rfAbcAid5sJVPF0At4A7sNZT12BDUW8n3LNKo7Y8jBwp4ik+E2/DFirquNUNU9VJwDfA5f7lPmvqq505x91p72uqutUdS/OF8I6VZ2jqnk4XzS/KXyyqr6pqrvc5z8LJOJ8KZbkanc5K9zjM48UU/Yo0BBorqpHVXWhltxZ2iOqul9VDxYxf5zPsv8CXO1+OZXVtcBzqrpeVXOBB4D+fns7I1T1oKp+DXyN84WFqn4S6IsFnKZE4HfAH1U1R1X34VRi/X2KHQX+7v4fJ+J8Wf5LVfep6kpgJXCmT/llqjrFLf8cTqVzThHva5GqvquqBQHW6bXAHFWd4P5/dqnqcvc9Zarqt+7zvsGpEC4oevU5VHUj8CVQWMlcCBxQ1c/d8QLgdBGprqpb3fcX6HWWqern7va5AXg5wPKfVNU97rGweTgVH6qapaofqephVd3hrqOiso/FqSwKK7kBwLiS3qfrFuA1d1kFqvqjqn4f5HPLFas4YoiqrgDeA4b7zWrEr3sRhTbi/CIttDnAS27zGT4YYPyXA80icq+IrBKnyWcPUAfnC6skjfyW7Z/T1zNAFvCh2zzh/z4DCfS+ipq/EahCcLlL4r/ON+Ich0r1mfaTz/ABgjtwnwLUAJa5zS57gA/c6YV2qWq+O1z45V7k/w6fdaCqBTh7dY2KWH5x67MpsC7QDBHpLCLz3GabvTi/voNdz+NxvoABBrrjuJX9Ne5rbRWR90XklCKW31acZs6f3Ga2xwMsP+D/Q0ROEJGJIvKj+9w3i8k+HWjn7tFdDOxV1S+CfJ9Frr+KxiqO2PNXnF+kvpXCFqC5X7lmwI8+46Xu5lic4xn34+w91HN/Le/F2cUvyVacD4xvroDcX8z3qmornL2le0SkW+Hsop5WwvL9l30U2InTtFKjcIb769H3y7mk1/Vf581wmsK2BS4etJ04X/ynqWpd91FHVctyttgv60CcEyOa4OQPpLj3vRmnSTOQ8cAMoKmq1sFp7w9m+wBn7zZdRJoAV7mv5YRRna2qF+PsiX6P0ywXyIvu/DaqWhunmTPY5T+B877PdJ97XVHPVdVDwGScva9BHLu3UdI2U9z6q1Cs4ogxqpoFTALu8pk8E2grIgNFJEFErgHa4eydhEMtnC/FHUCCiDwM1A7yuZNxDrK2E5EaHHvc5Bgi0lNEWrvNNT/jtFsX/rLehnMsIVTX+Sz7UWCK+2t9DVDNPahbBfgzTvNboW1ACyn6DLQJwB9FpKWIJPHrMZG8UmT8hbtH8AowUkROABCRxiJS1DGcYHQQkd5uM9ofgMPA5yU8J5C3gItE5Gp3O6svIme582oBOap6yG3LHxjsi7rNQ5k4x9d+UNVVACKSKiJXuMc6DgO5/Lo9+KuFs83kunslt4fwvmq5r71HRBrjHIMozhs4x7euwNk7KbQNaOJ7UN7Pq8BNItJNnJMrGhe1B1XeWcURmx4FahaOqOounAN/9wK7gD8BPVV1Z5iWNxvnGMganCaZQ5TcRFSYbRbwT2AuTjPU3GKKtwHm4HyIFwEvqGqmO+8J4M9u881xJwgUYxzwX5xmimq4Fa57XOcOYAzOntl+nCacQm+7f3eJyJcBXvc197UXAD/grJM7gwkkIl1EJLeYIvfjrKvP3aaTOQR3PKko03GafHbj/Eru7XOcK2jusYFLcbazHJwD1YUnDtwBPCoi+3COxU0O8eXH45w4Md5nWpy7rC3u8i7g+APehYbhVFb7cCreSSEsewRwNs5e9PvAtOIKq+qnOMdevnSPpxSai3N86ScROe6z5zZp3QSMdJc1n+NbCioEKfnYpDEmVkmACxlN2YnIXGC8qpbpqvqKyi4AMsYYHyLSEWcPpZfXWWKVNVUZY4xLRMbiNB3+wT1V2gRgTVXGGGNCYnscxhhjQlIhj3E0aNBAU1JSqFmzZsmFo2j//v2WKUixmMsyBScWM0Fs5oq1TMuWLdupqv49VxxPVSvco0OHDjpv3jyNNZYpeLGYyzIFJxYzqcZmrljLBCzVIL5jranKGGNMSKziMMYYExKrOIwxxoTEKg5jjDEhsYrDGGNMSKziMMYYExKrOIwxxoTEKg5jjDEhsYrDGGNMSCpklyPGlAsZGcdPmzcv+jmMCZHtcRhjjAlJ1CoOEekuIqtFJEtEhgeYnygik9z5i0WkhTu9ioiMFZFvRWSViDwQrczGGGOOF5WmKhGJB0YBF+Pc93mJiMxQ1e98it0C7FbV1iLSH3gK5z7K/YBEVT1DRGoA34nIBD32XsDGVAz+zVfWdGViULT2ODoBWaq6XlWPABM5/raMvYCx7vAUoJuICKBATRFJAKoDR4CfoxPbGGOMv6jcAVBE+gLdVXWwOz4I6KyqQ33KrHDLZLvj64DOwF5gHNANqAH8UVVHB1jGEGAIQGpqaocxY8aQlJQU2TcWotzcXMsUpFjMFXKmNWuOHW/btvj5gfg/p6yZoiAWM0Fs5oq1TBkZGctUNa2kctE6q0oCTPOvsYoq0wnIBxoB9YCFIjJHVdcfU9CpTEYDpKWlaVJSEunp6WXNHVaZmZmWKUixmCvkTCNGHDvu3+zkPz+QEpqqKsR6ipJYzBWLmYIRraaqbKCpz3gTYEtRZdxmqTpADjAQ+EBVj6rqduBToMQa0RhjTGREq+JYArQRkZYiUhXoD8zwKzMDuMEd7gvMde9ItQm4UBw1gXOA76OU25iwKFBh7VpYuBCWLoV9+7xOZEzpRaWpSlXzRGQoMBuIB15T1ZUi8ijOrQpnAK8C40QkC2dPo7/79FHA68AKnOas11X1m2jkNiYkAS7o23AwlZHZ/Ziw/UJqXAyNG8OBA87hjU5Vn+P3jd6lT8oCJFBDrTExKmpXjqvqTGCm37SHfYYP4Zx66/+83EDTjYllRwvieWZzf57b3I+bG85i8dl30PLzCb/MP3QI3uvwLk9uGsiz2Vcz7pTHaV3Dv/XWmNhkXY4YE2a7jybRd+UI4qSAZWm30rzatuPKVKsGfU9YQO+UhYz68UrO/WoUr7T9B1emfOpBYmNCYxWHMWG0/UhdMpaP5LfJS/jHSS8RLwXFlo8T5c4m73Bu7ZVcvuJx9uYnccOJs6OU1pjSsYrDmDDZc7Qml3zzNH1SFvBoy9dDem5a7TXMbX8PF339D2rEHaLfCfMjlNKYsrOKw5gwyM+Hft89Qpc63zKiRWiVRqFTa27i/TMe4OJv/kGjxF2cV2eFdUFiYpL1jmtMGPz5z6AqPHfSqDKdIXVWrXWMPeVJrln5MDuO1AlfQGPCyCoOY8rovfdg/HiY0O5vJMQVf0wjGJfWX8ygEz9k0KoHKVA7T9fEHqs4jCmDnBy49VYYNw5Squ4N2+s+2uJ19uXX4N/ZvcP2msaEi1UcxgQjI8O5ai8j49cHcNdd0LcvdO0a3sVVicvn9VOe4rGNg9hwMDW8L25MGVnFYUwpzZ4NixbB449H5vXb1sjm3qaTuW3NPUShE2tjgmYVhzGlcLQgnj/8Af75T6hZM3LLGdZ0EluO1GfazjDv0hhTBlZxGFMKz/94Fc2bQ8+ekV1Olbh8njvpBe5fN4TDBVUiuzBjgmTXcRgToh1H6vD4pmtZ8D+i0jnhRclfckqNTYz68Uru8b+u469/jXwAY/zYHocxIXpi07VckzKPU0+N3jKfOeklntg0kF1Ha0dvocYUwSoOY0Kw5XB9/vvTJTzU/M2oLvfUmpvo02ABz2y6JqrLNSYQa6oyJgSPb7yWm0+cRcPEnNCfHOB+HaF4sPlb/GbpaIY1nUSDqj+X6bWMKQvb4zAmSNtyajJh+4Xc32xCyYUjoFm17fRNWcBz2Vd7snxjCkWt4hCR7iKyWkSyRGR4gPmJIjLJnb9YRFq4068VkeU+jwIROStauY0pNGl2e37X8P2wXiEeqgeavcXLW3rasQ7jqahUHCISj3ML2B5AO2CAiLTzK3YLsFtVWwMjgacAVPUtVT1LVc8CBgEbVHV5NHIbU2jnkdrM+aI1dzeZ6mmOFtW30TtlIf/JvsrTHKZyi9YeRycgS1XXq+oRYCLQy69ML2CsOzwF6CZy3MmOAwBv2glMpfbClivp8psNpTu2EWbDmk7mxS1XcDC/qtdRTCUlGoW+DESkL9BdVQe744OAzqo61KfMCrdMtju+zi2z06fMOqCXqq4IsIwhwBCA1NTUDmPGjCEpKSmSbytkubm5lilIsZTr0KE4Bl6dxt//tpBTq2/8dUbbtscWXLMmapkefP4Szj1zIxn9f46Z9VQolv53vmIxV6xlysjIWKaqaSWVi9ZZVYEuk/KvsYotIyKdgQOBKg0AVR0NjAZIS0vTpKQk0tPTS5c2QjIzMy1TkGIp14svQpeqn3Jq9Y2kT/DZ4fW/qdKIEVHL9Hjcd9z+zh+57OYfYmY9FYql/52vWMwVi5mCEa2mqmygqc94E2BLUWVEJAGoA/i2C/THmqlMlBUUwMiRcF/TiV5HOcYFdb+metxhFi9O9jqKqYSiVXEsAdqISEsRqYpTCczwKzMDuMEd7gvMVbcdTUTigH44x0aMiZo5c5xODM+rE3BH1zMicG/Tt3n77aYlFzYmzKJScahqHjAUmA2sAiar6koReVRErnCLvQrUF5Es4B7A95TdrkC2qq6PRl5jCu+5MWrgp/z+wDNR6ZMqVP1SMtm4sQbff+91ElPZRO3KcVWdCcz0m/awz/AhnL2KQM/NBM6JZD5j/G08lMone09nfLvHvI4SUNW4PHr0+ImXX27OyJFepzGViV05bkwRRm/pyaDUj6gZf8jrKEXq2e5Txj2/l4NdLylzlybGBMsqDmMCOFxQhVe3Xsrtjf0PxcWWExvk0rn2KibvsErDRI9VHMYEMG1HF06v+QMn19jsdZQS3dZoBi9tudzrGKYSsYrDmABGb+3JrY3+53WMoFxafzE/Hm7A8n0neR3FVBJWcRjjZ/16WLG/JVc0+MzrKEGJlwIGN5zJy1ttr8NEh92Pwxg/Y8fCwBM+JjHuaPEFY+hg9I0nfsBvlo5m5CGoVs3rNKaisz0OY3wUFDgVx00nzvI6SkiaVdvO2bXWMn2610lMZWAVhzE+5s2DevXgrFrrvI4SshtSZzN2bMnljCkrqziM8fH663DTTV6nKJ2rUj5h0SLY4t8LnDFhZhWHMa49e+C992DgQK+TlE7N+EP06QNvvul1ElPRWcVhjGvSJLj4YmjQwOskpXfDDc4xmijcZsdUYnZWlTGuceNg+PCSy8Wy88+HQ4dg6VLo2NGd6H/2l/99RIwJke1xGANs2ACrV8Mll3idpGxE4MYb4b//9TqJqchsj8MYYOJE6NsXqlTxOkkZZWRw7cGGnPPlKP65oh9V4vK9TmQqINvjMAYYP778HhT316r6VlpV28rHu8/2OoqpoKziMJXet986Z1Sdd57XScJnQOpcJmzv5nUMU0FFreIQke4islpEskTkuEOQIpIoIpPc+YtFpIXPvDNFZJGIrBSRb0XEOlUwYTNhAgwYAHEV6GfU1SnzmLHr/ziYX9XrKKYCispHRUTigVFAD6AdMEBE2vkVuwXYraqtgZHAU+5zE4A3gdtU9TQgHSihEyFjgqNasZqpCjVMzKFD0hpm5tiNM034Res3VicgS1XXq+oRYCLQy69ML6Cww4QpQDcREeC3wDeq+jWAqu5SVTviZ8Ji0SKoWRPOPNPrJOE3IHUu47dZc5UJP9EoXCkkIn2B7qo62B0fBHRW1aE+ZVa4ZbLd8XVAZ+A6oANwApACTFTVpwMsYwgwBCA1NbXDmDFjSEpKiuwbC1Fubq5lClK0cv3rX22oX/8w11236dgZa9Ycnyk5maScnIhnCkVxmfbtr8qABwcy8cm3SKrus5Petm1kM1XybSoUsZYpIyNjmaqmlVQuWqfjSoBp/jVWUWUSgPOBjsAB4GMRWaaqHx9TUHU0MBogLS1Nk5KSSE9PL2vusMrMzLRMQYpGrqNH4eqr4fPPoVWrVsfOHDHi+EwDBpA+YUJEM4WqpEzdarZh10vb6Hni7F8nRvgCwMq8TYUqFjMFI1pNVdlAU5/xJoB/V2y/lHGPa9QBctzp81V1p6oeAGYCdp6hKbO5c6FVK+dRUQ1M/ZgJ2y70OoapYKJVcSwB2ohISxGpCvQHZviVmQHc4A73Beaq0442GzhTRGq4FcoFwHdRym0qsKlToV8/r1NE1uX1P+Pzn9ux40idXydmZBz7MCZEUak4VDUPGIpTCawCJqvqShF5VESucIu9CtQXkSzgHmC4+9zdwHM4lc9y4EtVfT8auU3FlZ8P06dD795eJ4msGvGHuSR5CdN3VqCLVIznotbliKrOxGlm8p32sM/wISDg7z9VfRPnlFxjwuKTT6BxY2jZ0uskkdc3ZT5jtl7G4EYzSy5sTBCsrypTKU29dhp9quZAxlteR4m4S+svZvDqYew6Wpv6VX72Oo6pACrQtbLGBKegAKbt6ELvBgu9jhIVNeMPcXG9ZdZcZcLGKg5T6SxZArUT9nNqzU0lF64g+p0wn7d3XOB1DFNBWMVhKp2pU6FPygKvY0TVZcmL+Gzvaew+GjsXm5nyyyoOU6mowrRpVJpmqkJJCYfoVu9La64yYWEVh6lUvvnGOcZxVlKW11Girm/KAqZYc5UJA6s4TKUydSr06ePcYrWy6Vl/EQv2nsmeozW9jmLKOas4TKUybVrFv+ivKLUTDpBRdzkzdllzlSmboCsOEakfySDGRNrq1bB7N3Tu7HUS7/RNmc+UHV29jmHKuVD2ODaLyHQR6ev2N2VMuTJ1qrO3UZHu9BeqKxp8Ruaes9ibZ81VpvRC+Qg1Bz4G7gd+EpHRInJ+ZGIZE36VuZmqUJ2E/XSt8w3v7TrX6yimHAu64lDVHar6b1XtCJwLbAfGich6t7PC5hFLaUwZbdgAmzZBly5eJ/Fen5QFTN1hK8KUXml32k90H7WBdUBj4CsRGR6uYMaE07Rp0KsXJFjvbPRq8ClzdncgN6+a11FMORXKwfHTROQJEdkEvAisBc5U1YtV9Racmys9GKGcxpSJNVP9KrnKPs6p/R2zcirxWQKmTELZ41gA1AL6qmo7VX1KVX8snKmqG4B/hjmfMWW2dSt89x106+Z1ktjRJ2UhU+3sKlNKoVQcV6nqUFX9wneiiHQqHPa9v4YxseKdd+Cyy6CqnQv4iysbfMIHOZ04lF/F6yimHAql4niviOkfBPNkEekuIqtFJCvQsRARSRSRSe78xSLSwp3eQkQOishy9/FSCJmNsWaqAFKr7uaspCw+3N3R6yimHCrxUKGIxAHiDIq4w4VOAvKCeI14YBRwMZANLBGRGarqe+/wW4DdqtpaRPoDTwHXuPPWqepZwbwhY3zt2gVLl8Ill3idJPY4Z1d15YqSixpzjGD2OPKAI0ANd/ioz+M74IUgXqMTkKWq61X1CDAR6OVXphcw1h2eAnRzKypjSm36dLj4YqhRw+sksad3ykL+t+tcjhzxOokpb4KpOFri7FlkA618Hi2B2qr6SBCv0RjY7DOe7U4LWEZV84C9QGE3Jy1F5CsRmS8idgK6CZo1UxWtceJOTq6xmblzvU5iyhtR1cgvRKQfcImqDnbHBwGdVPVOnzIr3TLZ7vg6nD2VXCBJVXeJSAfgXeA0Vf3ZbxlDgCEAqampHcaMGUNSUmzdtCY3N9cyBSkcufbvj+eaa85l0qRF1KyZf+zMNWtCz5ScTFJOTpkyhVtZM03+6Aw2HWzOsGGhr48iM1XgbSrcYi1TRkbGMlVNK6lcscc4RGS0qg5xh98oqpyqXl/CcrKBpj7jTYAtRZTJFpEEoA6Qo07NdthdzjK3QmkLLPXLMBoYDZCWlqZJSUmkp6eXECu6MjMzLVOQQsqVkXH8tHnzGD/emXXZZQF2UkeMCD3TgAGkT5gQ8vMiqayZmh+cR6d1Ezj//EZhuziyQmxTURKLmYJRUlPVDz7D64p5lGQJ0EZEWrodJPYHZviVmQHc4A73BeaqqopIintwHRFpBbQB1gexTFPJWTNVyVpW/4lmzWBB5bqTrimjYn9jqOoTPsOh/0T79bl5IjIUmA3EA6+p6koReRRYqqozgFdx+r7KAnJwKheArsCjIpIH5AO3qWpstReYmHPgAHz0Ebz8stdJYl+fPk7PwRde6HUSU16U1FQV1KakqiUeXlPVmcBMv2kP+wwfAvoFeN5UYGowOYwp9MEH0LEj1Le7yJSoTx+nSe8//6ncXc6b4JXUqvlqEK+hOGdZGRMzpk1zvhB/Eeg4iAHg5JOdCnbRIjjPbg5oglBSU1XLaAUxJlwOF1Th/ffhmWe8TlJ+FDZXWcVhgmE7pqbC+Xj32Zx2GjRs6HWS8qOw4ojC2fmmAii24hCRVT7Dm0VkU6BH5GMaE7xpO7oc20xlSnT66ZCY6HTPYkxJSjrG8Tuf4esiGcSYcMgriGP6rvP4i52GGxIR6NvX2evoaP0emhKUdIzjE5/h+ZGPY0zZLNjbnuaJ22jevK7XUcqdPn2gf3944gmnIjGmKKHcAbCqe2/xtSKy3/37NxGx+0+amDFtRxf6pNjVbKVx9tmQlwfffON1EhPrQulk4EXgZOAuYCPQHHgAp3PCm8MfzZjQFKjwzs7zmXfWPZAx3us45Y6Ic6X91KnQvr3XaUwsC+WsqiuBnqo6S1W/U9VZ7rQrIxPNmNB8/nM76iXk0rZGttdRyq3C4xzGFCeUiuMnnHty+KoObA1fHGNKz5qpyq5zZ9izB77/3uskJpaVdDruhYUPYBzwgYj8TkR6uN2YzwSK7DXXmGhRhak7u1rFUUZxcb82VxlTlNJ0OfKg3/itOLd5NcYzX+W2IZ4CzqhpHSeXVZ8+8Mc/wkMPeZ3ExCrrcsSUPwH6nSpsprLTSEvBb312mTOPLVtg/XpoZb3QmQCsyxFT7qnClB0XWDNVmMTHw5VXWnOVKVoo13HUFpHnRGSZiGy0LkdMrPjuQAsOFCTSsZYd0Q2Xwr6rjAkklD2OF4CzgUeBZOBOYBMwMgK5jAnalB1drZkqzDIyYO1a2LzZ6yQmFoVScfwW6KOq04F89+81wKCIJDMmSFN3dKWvNVOFT0YGVX6bwRVVZzHtwue9TmNiUCgVRxyw1x3OFZG6ONdwtA7mySLSXURWi0iWiAwPMD9RRCa58xeLSAu/+c1EJFdEhoWQ2VRwqw80ZefROpxbe6XXUSqcPg0WMHVHF69jmBgUSsXxNXCBO7wQGIXTDcmakp4oIvFu+R5AO2CAiLTzK3YLsFtVW+M0f/mf4jsSmBVCXlMJTN3Rld4NFhIndiOJcLs4eRnf7m/FTz95ncTEmlAqjt8BG9zhu4BDQF3g+iCe2wnIUtX1qnoEmAj08ivTCxjrDk8Buok4rdYiciWwHrCfleYYTjOVddwcCYlxR+mR/AXvvut1EhNrRKNwyy8R6Qt0V9XB7vggoLOqDvUps8Itk+2OrwM6AweBOcDFwDAgV1X/EWAZQ4AhAKmpqR3GjBlDUlJSZN9YiHJzcy1TkIoJX6IIAAAdwUlEQVTNtcbZyd2yoxa/f+pKpjz9JvFxkd+Oc5OTScrJifhyQhHpTPO/bMmMJWk8++zXwWcqj9uUR2ItU0ZGxjJVTSupXCi94yIiNwMDgEbAFpw9h9e05Non0Pku/s8pqswIYKSq5koxp82o6mhgNEBaWpomJSWRnp5eQqzoyszMtExBKjbXiBEAPLPpGq5OmkO3SdHpCTdzwADSJ0yIyrKCFelMnfITee7rKZzx55HUr/LzrzPmzSs6U3ncpjwSi5mCEcp1HE8D9wPTgPvcv8MIrruRbKCpz3gTnIonYBkRSQDqADk4ex1Pi8gG4A/AgyIyFFPpWTNV5NWIP8zF9ZYxfed5XkcxMSSUPY4bgbMLm5IAROQ94EvgTyU8dwnQRkRaAj8C/YGBfmVmADcAi4C+wFx3T+aX0zpE5BGcpio7R7CS23wohayDjUmvu9zrKBVen5QFvLntYm5uaOemGEcoB8f3uQ//aT8HKHsMVc0DhgKzgVXAZFVd6d5R8Aq32KtAfRHJAu4Bjjtl15hC03Z25YoGn1ElLt/rKBXeZfU/Z+HeM9ibV9PrKCZGFLvHISK+XZz9E5gmIk/ya7PSfQR55biqzsTpht132sM+w4eAfiW8xiPBLMtUfFN2dGV4s9g63lBR1U44QHrd5fxv57lcd+Icr+OYGFBSU1UWzgFq36PS/l2TXghY05GJmq2Hk1mxvyUX1VvmdZRKo0/KQqbu7GoVhwFKaKpS1ThVjXf/FvWIj1ZYYwDe2dmFnvUXkRh31OsolcYV9T9l7u7fkJtXzesoJgaE3K262/XHuSLStOTSxoTflB1d6dPA+qaKpnpVcjmn9ipm5XT2OoqJAaGcjttQRObjNF9NA9aJyAIRaRSxdMb42brVudvfJclLvI5S6fRNmc+UHReUXNBUeKHscbyI019VPVVtCNQDvgJeikQwYwKZMgUur7+I6vFHvI5S6VzZ4BNm53TkYH5Vr6MYj4VyHcf5QENVPQqgqvtF5E8412UYExWTJsGDJ8z1OkallFJ1L7+ptZYPd3c8rqM5U7mEssexG6dnW18nA3vCF8eYom3aBN9/j51N5SGnq/WuXscwHgtlj+NpYI6IvApsBJoDNwF/iUQwY/xNngxXXQVVs/K8jlJp9U5ZyMMbbuLIEahqLVaVVtB7HKr6Cs4d/xoAl7t/B7idCxoTcRMnQv/+Xqeo3Bol7uLUGpv4+GOvkxgvBVVxiEi8iIwFPlXVwap6qfvXGptNVKxdC9nZUA47Eq1w+qQsYOpUr1MYLwVVcahqPs49xwsiG8eYwCZNgn79IN4uN/Vc7wYLmD4d8qzFsNIK5eD4SGCEiFSJVBhjijJpkjVTxYoW1bfRogXMtx7tK61QKo47cTo13Ccim0VkU+HfCGUzBoAVK2DvXjj3XK+TmELXXAMxdk8rE0WhnFV1XcRSGFOMSZOcL6q4kDvIMZEyYACccQY8/zxUs+6rKp1QPoqLgG7AGJzu0ccAFwGLI5DLGABUnV+211zjdRLjq3FjOPtseO89r5MYL4Ta5ciFwF1AR/fvBcALEchlKrOMDFizBjIy+LzD76lSBTp08DqU8XfddfDmm16nMF4IpeK4EuipqrNU9TtVneVOuzKYJ4tIdxFZLSJZInLc3f1EJFFEJrnzF4tIC3d6JxFZ7j6+FpGrQshsyrk3tv2WQYNApOSyJrp694Z582DXLq+TmGgLpeL4CajhN606sLWkJ4pIPDAK6IHTbckAEfHvvuQWYLeqtsY5g+spd/oKIE1VzwK6Ay+LSCjHZkw5dbigCm9vT+faa71OYgKpXRt69IC33/Y6iYm2UCqOccAHIvI7EekhIkNwjnW8ISIXFj6KeG4nIEtV16vqEWAiHNdPWi9grDs8BegmIqKqB9x7lgNUw7kjoakEZu7qzOk1f6B5c6+TmKJYc1XlJKrBfQ+LyA9BFFNVbeU/UUT6At1VdbA7PgjorKpDfcqscMtku+Pr3DI7RaQz8BpO/1iDVPWdAMsYAgwBSE1N7TBmzBiSkpKCem/Rkpuba5mCsWYNucnJPP33Dpxz5iYuvUmPm++F3ORkknJyPFl2UTzL1LYtAHl5Qt++5/LCC1/SqNEhJ1MsblPEZq5Yy5SRkbFMVdNKKhd0k4+qtixDnkAt1P41VpFlVHUxcJqInAqMFZFZqnrIL99oYDRAWlqaJiUlkR5j/VNkZmZapmCMGMH0y2/km29TeC9pKLVHHPA6EQCZAwaQHmMXL3iWad68Xwavuw7Wrz+HgQPdTLG4TRGbuWIxUzCidWZ8NuB7q9kmwJaiyrjHMOoAx/yUUtVVwH7g9IglNTEhc1kruid/Qe2E2Kg0TNEKm6uCbLwwFUC0Ko4lQBsRaSkiVYH+wAy/MjOAG9zhvsBcVVX3OQkAItIc5x4gG6IT23jlo8/bMOjEj7yOYYLQuTPkbfyRpWm3/XoqtanQolJxuAe3hwKzgVXAZFVdKSKPisgVbrFXgfoikgXcAxSesns+8LWILAfeAe5Q1Z3RyG28kXWgEVt21Oa39ey+4uWBCNxw4mxe/6mH11FMlETttFZVnYlzFpbvtId9hg8B/QI8bxzOGV2mknhj2yVc2HEdVQryvY5ignTjiR9w1tJXePYkux64MrDrIUxMyc+H13/qziPXL4CFXqcxRcrIOGa0aTXoWGs103Z2pbFHkUz0WLdxJqZ8+CE0rLqLk5rE1mmvpmQ3N5zFa1utuaoysIrDxJQxY2Bww5klFzQxp1eDT/lmfyu27KjldRQTYVZxmJixfTvMnQv9T7A7EpdHiXFHGXjCx3ywqK3XUUyEWcVhYsYbb8BVV2HXbpRjNzecxQefnUy+nddQoVnFYWKCqtNMdcstXicxZdE+aR31ah1kzhyvk5hIsorDxIRPP3WuB/i///M6iSmrS8//nlde8TqFiSSrOExMePVVGDzY7rtREVzUKYuPP4Yt/p0KmQrDKg7juZwcePdduP56r5OYcKhZ/Sj9+2N7HRWYVRzGc693eoGeiR+ScnXGcReWmfLp9tth9Gg4etTrJCYSrOIwnioogBd+7MXvG73rdRQTRmeeCa1awQz/rkxNhWAVh/HUBx9AvYRcOtde5XUUE2Z33AEvWNdVFZJVHMZTo0bB7xu/awfFK6DevWHlSlhlvwkqHKs4jGfWrYMvvrArxSuqxETnupyXXvI6iQk3qziMZ158EW68EarHH/E6iomQW2917g64b5/XSUw4WcVhPJGbC//9r3P2jam4mjWDCy+E117zOokJp6hVHCLSXURWi0iWiAwPMD9RRCa58xeLSAt3+sUiskxEvnX/XhitzCZyXn8d0tOdM29MxXbvvfDPf0JentdJTLhEpeIQkXhgFNADaAcMEJF2fsVuAXaramtgJPCUO30ncLmqnoFzT3K7G2A5l5cHI0fCsGFeJzHRcM450KgRvPOO10lMuERrj6MTkKWq61X1CDAR6OVXphcw1h2eAnQTEVHVr1S1sPOClUA1EUmMSmoTEe+8A40bO18opnK491549lmnM0tT/olG4T8pIn2B7qo62B0fBHRW1aE+ZVa4ZbLd8XVumZ1+r3Obql4UYBlDgCEAqampHcaMGUNSUlIk31bIcnNzK30mVbjjjrO59tqNnH/+LmfimjXH50pOJikntu4CaJmCk5ucTFKDBsdMy8+H66/vzPDhqzjjjJ+9yWWfvxJlZGQsU9W0kspF657jgc7S96+xii0jIqfhNF/9NtACVHU0MBogLS1Nk5KSSE9PL1XYSMnMzKz0mRYudL5EHnzwDOIK93dHjDg+14ABpE+YELVcwbBMwckcMID0UaOOnThvHg8+CB9/fDZ33ulRLvv8hU20Ko5soKnPeBPAv+/MwjLZIpIA1AFyAESkCfAOcL2qrot8XBMpz1z1KffWX0xct/95HcVE2Y03Or8RVq+Gk0/2Oo0pi2gd41gCtBGRliJSFegP+PdiMwPn4DdAX2CuqqqI1AXeBx5Q1U+jlNdEwDffwJJ9p3B96myvoxgP1KwJd90Fjz/udRJTVlGpOFQ1DxgKzAZWAZNVdaWIPCoiV7jFXgXqi0gWcA9QeMruUKA18BcRWe4+TohGbhNejz0Gw5pOsgv+KrE774SZM51eA0z5Fa2mKlR1JjDTb9rDPsOHgH4BnvcY8FjEA5qIWrkS5s+H10+2JqrKrE4dp/PDJ55wbhVsyie7ctxExd//DvfcAzXjD3kdxXjs7rudG3dt3Oh1ElNaVnGYiPv+e/joI+eXpjHJyTBkCDz5pNdJTGlZxWEi7rHHnF+ZtWp5ncTEinvugcmTYdMmr5OY0rCKw0TU11/DnDlOxWFMoQYNnA4uH3nE6ySmNKziMBH1wAPw0EO2t2GOd9998P77zokTpnyJ2llVpvLJzHSOb7xrtxM3/jIyqAMMr9WXBy84i+k7z/M6kQmBVRwmIlTh/vvhsWqPUfWSj72OY2LU7Y2m88/sPnzyCZx/vtdpTLCsqcqEV0YGZGQw9fS/cuS7tXZbWFOsavFHebTlf7n/fus5tzyxisOE3cH8qgxbdzvPnfQCcWLfBqZ416V+xOHDEGN9NZpiWMVhwu7pzf3pVPt7Muot9zqKKQfipYD//Af+9CfnlsIm9tkxDhNWGw6m8u/s3nyVNsTrKCaWZGQUO/vcc6FbN+eaH7swMPbZHocJq2HrbucPTabSrNp2r6OYcubJJ53+q9au9TqJKYlVHCZsZs2CL3PbMKzpJK+jmHKoYUPnup877rAD5bHOKg4TFvv2wW23wei2z1q36abU7r4bcnJg7Fivk5jiWMVhwmL4cLjoIrgo+Uuvo5hyLCEBXnvNOVC+davXaUxRrOIwZbZwoXN1+LPPep3EVATt2zu95w4d6nUSU5SoVRwi0l1EVotIlogMDzA/UUQmufMXi0gLd3p9EZknIrki8ny08prg5HbpwS2XbGZUvT9T96riz5wxJlh/+QusWgUTJ3qdxAQSlYpDROKBUUAPoB0wQETa+RW7Bditqq2BkcBT7vRDwF+AYdHIakJzd9adnFdnBVem2O3gTfgkJsK4cc49yjds8DqN8Ret6zg6AVmquh5ARCYCvYDvfMr0Ah5xh6cAz4uIqOp+4BMRaR2lrCZIkyfDwr1n8GUHu2bDlFGA6zw6AH+qdTXXtu/C/LPuJmG+9XkWK6LVVNUY2Owznu1OC1hGVfOAvUD9qKQzIduwwWmDHn/qYyQl2O1gTWTc0/RtkuIP8reN13sdxfgQjcIJ0yLSD7hEVQe744OATqp6p0+ZlW6ZbHd8nVtmlzt+I5CmqgEPmYnIEGAIQGpqaocxY8aQlJQUwXcVutzc3AqR6ciROO6++ywuuGAH/c+OzK/A3ORkknJyIvLapWWZghPuTDl7qzPk7725/6EsOnbcXfpcFeTzF0kZGRnLVDWtpHLRaqrKBpr6jDcBthRRJltEEoA6QNBbn6qOBkYDpKWlaVJSEunp6WXJHHaZmZnlPpMqDB4Mp50GL75YG7lwcGRyDRhAeoz1emeZghOJTA1aLqXfP/7FZ5/BSSeVMlcF+PzFimhVHEuANiLSEvgR6A8M9CszA7gBWAT0BeZqNHaHTEhefBG++AIWLQIRr9OYyqJr3W/46++gVy9n26tVi+OPi8yb50m2yigqxzjcYxZDgdnAKmCyqq4UkUdF5Aq32KtAfRHJAu4BfjllV0Q2AM8BN4pIdoAzskwUfPQRjBgB77wDMbR3bSqJ2293OkMcNAjy871OU7lFrXdcVZ0JzPSb9rDP8CGgXxHPbRHRcKZEX30F114LU6dCazu/zXhABJ5/Hi691Dkx4wW1vV6v2JXjpmju3fx+OGcAPc/ZwUsnPEyXLl6HMpVZYqKzx/vFF/ConWnlGbsfhynWxkOpdPv6WR5q/ha9UxaWeF8FYyLG3fZqAzOr1eO8n/5D/YSfGdrkXW9zVUK2x2GKtOnQCWQsf44/NJnKHY2nex3HmF+kVt3NR+2H8Vx2P0Zu7ut1nErH9jhMQGvXwiXLR3J3k2nc1WSa13GMOU7L6j+RedYf6fb1sxwuqMJxHeCZiLE9DnOcL76Arl3hgWbjubvJVK/jGFOkZtW2M/+sPzB22yUMG2ZnW0WLVRzmVxkZ/O+MB7ns/D280uABftfofa8TGVOiRom7+PQ3d7J0KfTpA/v3e52o4rOKwwDOL7W//nAjt6/5I++d8SA9G3zudSRjgpZcZR8ffgh160KXLvDDD14nqtis4jDs3AmXXQbz97RnaYdb6Vx7ldeRjAlZ1arw+utw3XXQubNzzZGJDKs4KrOMDD59+zBnNt5J++8mMKf9vZyYWPpO5Izxmgjccw+89x7cd59ztfm+fV6nqnis4qikdu6EG1YN54XJ5zKp3aM8ddJoEuIKvI5lTFh06gRfNurJ4XdncXrKT8w8czisWeN1rArDTsetKIK5MG/ePI4ehZdegr/9DQZUzWXMg1Po8s63kc9nTJTVrbKf1055mjk5ZzNkzb00ffkQr3Urfe+65ldWcVQS+RrH1NNG8MiGG2hUdRdzWz/P6UkbyKw2wOtoxoRHET+eLkr+khUdb+au5Efp3LkVgwbBAw/ACSdEOV8FYk1VFdzRgnjGb+vGGUte5dnNV/OPk17io/bDOD1pg9fRjImaGvGHue7S5axcCUePwimnOB0l2v3MS8cqjgrqx8MN+OsPN9L884mM3tKTka1f4POz7+DS+outR1FTaaWmOj3sfvedc0+PDh2caz9mzbKLB0NhTVUVyK6jtZm2owuTtmewLLct154wh4/a38dpNTd4Hc2Y2OA2Z50IPAE88MM8Jk6Ehx+GW2+FgQOhd2/o2NG6bC+OVRzlWEGBc5+MDz+ED5c/x5f72nBJ8lLuaDydHsmLqR5/xOuIxsS02r0yGAIMSYKvOYnJ8WO4/nrn6vMrroCL5v+FC+p+TXIV95xeu8sgYBVHubJzJyxdCosXO/1JLV7sHOD77W9hWNPJXFBnOUkJh7yOaUy51D5pHe0/y+DvDeG7/c1574NzGb2nJzd8P5zW1X/k/2qvpMPrTvNWu3aQUIm/PaP21kWkO/AvIB4Yo6pP+s1PBN4AOgC7gGtUdYM77wHgFiAfuEtVZ0crd9RkZKAKOXm12XwohezDKWQdbMz3B5qx6kBzvk9sz6FDzkbbuTMM3vgXXmm7ikaJu+BroL7Xb8CYiqNdzY20q7mRPzWbyJGCBJbsO4XFP5/KnDnw1FOweTO0bXvso3VraNIETjwRqlTx+h1EVlQqDhGJB0YBFwPZwBIRmaGq3/kUuwXYraqtRaQ/8BRwjXt/8f7AaUAjYI6ItFXV2DmU5babFqhwsCCRA1NnceCAs7t74MCvj8WLU1i7FnJyYNeoieQcrUVOXi12Ha3D1iNvkH04hcS4ozRJ3EHTxO20rPYTp9f8gX4nzOeUGptoVHUnosDnQIqn79iYSqNqXB7n1VnBeXVWwJa3oSHsS6nO6gNNWfNtU9ac+mdmzYKsLNiyBbZvh+RkaNQIGjaE+vWhXj2fx0tPkJzwM7USDrKq+wU0aADVqzuPGjWcv1WrxvYxlmjtcXQCslR1PYCITAR6Ab4VRy/gEXd4CvC8iIg7faKqHgZ+EJEs9/UWRSLoRRdBbi7k5TmP/Pxfh4uctn8W+RrHUU2getxhajTeQ424Q9SIP0yNuMPUiD9EjbjDHGzegLY/vU9ylX3Ur7KXNtWzSa6yj+SEn2lYdRdNEndYU5Mx5UCthIOk1V5DWu01MP9jZ2JNoA3kt45j+5G6/Hi4AVs31Sfn6sfZvRt274Z162D37g7sPlqLffk12D6xIaP+/QMHC6pyoKAaB/MTOVCQSL5UITHR2XNJSDj2ER9//LTC6XFxTlcrV14Z2fcvqhrZJQAi0hforqqD3fFBQGdVHepTZoVbJtsdXwd0xqlMPlfVN93prwKzVHWK3zKGAEPc0ZNxmrt2RvJ9lUIDLFOwYjGXZQpOLGaC2MwVa5maq2qJ7RnR2uMItNPlX2MVVSaY56Kqo4HRv7yYyFJVTQslZKRZpuDFYi7LFJxYzASxmSsWMwUjWhcAZgNNfcabAFuKKiMiCUAdICfI5xpjjImSaFUcS4A2ItJSRKriHOye4VdmBnCDO9wXmKtOO9oMoL+IJIpIS6AN8EWUchtjjPETlaYqVc0TkaHAbJzTcV9T1ZUi8iiwVFVnAK8C49yD3zk4lQtuuck4B9LzgN8HeUbV6JKLRJ1lCl4s5rJMwYnFTBCbuWIxU4micnDcGGNMxWGdHBpjjAmJVRzGGGNCUqEqDhF5RkS+F5FvROQdEanrM+8BEckSkdUickkUM/UTkZUiUiAiaT7TW4jIQRFZ7j5eilam4nK58zxZV34ZHhGRH33Wz6Ve5HCzdHfXRZaIDPcqhz8R2SAi37rrZ6lHGV4Tke3udViF05JF5CMRWev+rRcDmTzdnkSkqYjME5FV7ufubne6p+uq1FS1wjyA3wIJ7vBTwFPucDucHp0SgZbAOiA+SplOxbkgMRNI85neAljh4boqKpdn68ov3yPAsBjYpuLdddAKqOqum3Ze53KzbQAaeJyhK3C277YMPA0Md4eHF34OPc7k6fYENATOdodrAWvcz5qn66q0jwq1x6GqH6pqnjv6Oc41H+DTbYmq/gAUdlsSjUyrVHV1NJYVimJyebauYtQv3eWo6hGgsLscA6jqApyzIH31Asa6w2OBCHeAEVQmT6nqVlX90h3eB6wCGuPxuiqtClVx+LkZmOUONwY2+8zLdqd5raWIfCUi80Wki9dhXLG0roa6zY6vebgLH0vrw58CH4rIMrfLnViRqqpbwfnCBGLl7t6xsD0hIi2A3wCLid11Vaxy16O8iMzBuYGXv4dUdbpb5iGcaz7eKnxagPJhOw85mEwBbAWaqeouEekAvCsip6nqzx7niui6OmZBxeQDXgT+5i77b8CzOD8Goi1q66MUzlPVLSJyAvCRiHzv/to2x4uJ7UlEkoCpwB9U9WeJ5S5wi1HuKg5Vvai4+SJyA9AT6KZuwyER7rakpExFPOcwcNgdXuZ26tgWCNtBztLkIopdvASbT0ReAd6LRIYgxGyXN6q6xf27XUTewWlWi4WKY5uINFTVrSLSENjudSBV3VY47NX2JCJVcCqNt1R1mjs55tZVMCpUU5U4N4u6H7hCVQ/4zIq5bktEJEWc+5QgIq3cTOu9zOSKiXXlfogKXQWsKKpshAXTXU7UiUhNEalVOIxzYohX68ifb/dBNwBF7d1Gjdfbkzi7Fq8Cq1T1OZ9ZMbeuguL10flwPnAO5G4GlruPl3zmPYRzdsxqoEcUM12F86v1MLANmO1O7wOsxDlL50vg8iivq4C5vFxXfvnGAd8C3+B8uBp6uF1dinMWzDqcZj5PcvhlauVuO1+725EnuYAJOM2uR93t6Rac+1F+DKx1/ybHQCZPtyfgfJxmsm98vp8u9XpdlfZhXY4YY4wJSYVqqjLGGBN5VnEYY4wJiVUcxhhjQmIVhzHGmJBYxWGMMSYkVnEYEyUiki4i2V7nMKasrOIwxhgTEqs4jDHGhMQqDmNCJCLDRWSK37R/ici/ReQm92Y9+0RkvYjcWszrqIi09hn/r4g85jPe073p0B4R+UxEzozMOzImNFZxGBO6CcClIlIbwO1z7GpgPE4ndT2B2sBNwEgROTvUBbjPeQ24FadbipeBGSKSGJZ3YEwZWMVhTIhUdSNO/2KFN925EDigqp+r6vuquk4d84EPgdLca+V3wMuqulhV81V1LE6/YueE4z0YUxZWcRhTOuOBAe7wQHccEekhIp+LSI6I7MHpyK5BKV6/OXCv20y1x32tpkCjMGQ3pkys4jCmdN4G0kWkCU5Pw+PdZqSpwD9w7uxWF5hJ4JtBARwAaviM+97UajPwd1Wt6/OooaoTwv5OjAmRVRzGlIKq7gAygdeBH1R1FVAVSAR2AHki0gPnPhlFWQ4MFJF4914yF/jMewW4TUQ6i6OmiFxWeA8OY7xkFYcxpTceuMj9i6ruA+4CJgO7cZqwirvp093A5cAe4Frg3cIZqroU5zjH8+5rZQE3hvsNGFMadj8OY4wxIbE9DmOMMSGxisMYY0xIrOIwxhgTEqs4jDHGhMQqDmOMMSGxisMYY0xIrOIwxhgTEqs4jDHGhOT/AYA9uTXO56bjAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEZCAYAAACAZ8KHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8E3X+x/HXpy0FSrmPUm4QUFGUBQRvKaCCyoInh6ggiorieq2i7rqCt6uioqsiIAgURNaDRVHkqPrzRFAU5JBb5L6kpXK0fH5/zBRD6JG0SSZNP8/HI48mM5PMO9M0n36/M/MdUVWMMcaYQMV5HcAYY0zpYoXDGGNMUKxwGGOMCYoVDmOMMUGxwmGMMSYoVjiMMcYExQqHKZKIPCwik4JYXkWkuXv/VRH5Z4hyNBKRLBGJdx9niMgNoXht9/Vmich1oXq9aCAiS0WkUyHzHxCRMSVcRxP3d55QktfxioisE5GuxXxuyD7fpUmp/EXHGhFZB1QEmqnqPnfaDUB/Ve3kYbQSU9WbA1nO3QY3qOqcQl5rA5Acilwi8jDQXFX7+7x+91C8djRR1ZOKmP94pLKUdiIyAOczenbetEA/37HGWhzRIwH4W0lfRBwx93strf/NRjPbpqa4Yu4LphT7N3CPiFTLb6aInCkiC0Tkd/fnmT7zMkTkMRH5AsgGmrnTHhWRL93unf+JSE0RmSwie93XaOLzGi+IyK/uvIUick6gwUXk7yKyWUQ2icj1fvPGi8ij7v1aIjJTRPaIyC4R+VxE4kRkItAI+J+b9V6f7o9BIrIBmFdAl8hxIvKtu13eF5Ea7ro6ichGvyzrRKSriHQDHgB6u+tb7LMdb3Dvx4nIP0RkvYhsE5E3RaSqOy8vx3UiskFEdojIg0Fsr/Ii8oz73K1ud0dF39zuNtjmbtdeInKRiKx0t9sDPq/1sIhMF5G3RCRTRBaJyKn+79lv2UkishcYIH7dkCJytvuZ2eN+Hga40y8Wke/dz8evbostkPc6TESm+017QURedO8PEJE1bva1InJ1Aa/TQUS+cnNtFpGXRCTRZ76KyM0i8ouI7BaRl0VE3HnHicg8Ednp/q4mSz5/ZyJSV0SyRaSmz7R2IrJdRFoDrwJnuJ+ZPe78I59v93FPEfnB3U6r3c9azLHCET2+AzKAe/xnuF+GHwAvAjWB54APfD/gwDXAYKAysN6d1sedXh84DvgKeAOoASwD/uXz/AVAG3deOvC2iFQoKrT7h3EPcD7QAiisr/huYCNQG0jB+fJWVb0G2AD0UNVkVX3a5znnAScCFxbwmtcC1wP1gBycbVQoVf0IeBx4y13fqfksNsC9pQHNcLrIXvJb5mzgeKAL8JCInAhHvnz3FBLhKaAlzvZujvP7echnfl2ggs/014H+QDvgHHddzXyW7wm8zZ+/u/dEpFwB6+4JTAeqAZN9Z4hII2AWMArnd9QG+MGdvQ9nW1cDLgZuEZFehbzHPFOAi0SkiruOeOAqIF1EKuH8vrqramXgTJ/1+csF7gRqAWfgbPMhfstcApwGnOquI+8zI8ATOJ+RE4GGwMP+K1DVLTh/g1f5TO4PTFXVn4Cbga/cz0x+hacD8Cbwd5ztdC6wroD3U6pZ4YguDwFDRaS23/SLgV9UdaKq5qjqFGA50MNnmfGqutSdf8id9oaqrlbV33G+EFar6hxVzcH5ovlL3pNVdZKq7nSf/yxQHudLsShXuetZ4u6febiQZQ8BqUBjVT2kqp9r0YOlPayq+1T1jwLmT/RZ9z+Bq9wvp5K6GnhOVdeoahZwP9DHr7UzXFX/UNXFwGKcLyxU9f/y+2IBpysRuBG4U1V3qWomThHr47PYIeAx9/c4FefL8gVVzVTVpcBS4BSf5Req6nR3+edwis7pBbyvr1T1PVU9nM82vRqYo6pT3N/PTlX9wX1PGar6k/u8H3EKwnkFbz6Hqq4HFgF5RaYzkK2qX7uPDwMni0hFVd3svr/8Xmehqn7tfj7XAa/ls/4nVXWPuy9sPk7hQ1VXqeonqnpAVbe726ig7BNwikVekesLTCzqfboGAePcdR1W1d9UdXmAzy1VrHBEEVVdAswEhvnNqsefrYg863H+I83zaz4vudXn/h/5PD6yo1lE7haRZeJ0+ewBquJ8YRWlnt+6/XP6+jewCpjtdk/4v8/85Pe+Cpq/HihHYLmL4r/N1+Psh0rxmbbF5342ge24rw0kAQvdbpc9wEfu9Dw7VTXXvZ/35V7g7w6fbaCqh3FadfUKWH9h27MhsDq/GSLSUUTmu902v+P89x3odk7H+QIG6Oc+xi32vd3X2iwiH4jICQWsv6U43Zxb3G62x/NZf76/DxGpIyJTReQ397mTCsn+PtDKbdGdD/yuqt8G+D4L3H6xxgpH9PkXzn+kvkVhE9DYb7lGwG8+j4s9zLE4+zPuw2k9VHf/W/4dp4lflM04fzC+ufLl/sd8t6o2w2kt3SUiXfJmF/S0Itbvv+5DwA6crpWkvBnuf4++X85Fva7/Nm+E0xW2Nf/FA7YD54v/JFWt5t6qqmpJjhY7sg3EOTCiAU7+/BT2vn/F6dLMTzowA2ioqlVx+vsD+XyA07rtJCINgEvd13LCqH6squfjtESX43TL5ecVd34LVa2C080Z6PqfwHnfp7jP7V/Qc1V1PzANp/V1DUe3Nor6zBS2/WKKFY4oo6qrgLeA230mfwi0FJF+IpIgIr2BVjitk1CojPOluB1IEJGHgCoBPncazk7WViKSxNH7TY4iIpeISHO3u2YvTr913n/WW3H2JQSrv8+6RwDT3f/WVwIV3J265YB/4HS/5dkKNJGCj0CbAtwpIk1FJJk/94nkFCPjEW6L4HVgpIjUARCR+iJS0D6cQLQTkcvcbrQ7gAPA10U8Jz+Tga4icpX7OaspIm3ceZWBXaq63+3L7xfoi7rdQxk4+9fWquoyABFJEZG/uvs6DgBZ/Pl58FcZ5zOT5bZKbgnifVV2X3uPiNTH2QdRmDdx9m/9Fad1kmcr0MB3p7yfscBAEekizsEV9QtqQZV2Vjii0wigUt4DVd2Js+PvbmAncC9wiaruCNH6PsbZB7ISp0tmP0V3EeVlmwU8D8zD6YaaV8jiLYA5OH/EXwH/UdUMd94TwD/c7ptjDhAoxERgPE43RQXcguvu1xkCjMFpme3D6cLJ87b7c6eILMrndce5r/0ZsBZnmwwNJJCInCMiWYUsch/Otvra7TqZQ2D7kwryPk6Xz26c/5Iv89nPFTB338BFOJ+zXTg7qvMOHBgCjBCRTJx9cdOCfPl0nAMn0n2mxbnr2uSu7zyO3eGd5x6cYpWJU3jfCmLdw4G2OK3oD4B3CltYVb/A2feyyN2fkmcezv6lLSJyzN+e26U1EBjprutTju0piAlS9L5JY0y0knxOZDQlJyLzgHRVLdFZ9bHKTgAyxhgfInIaTgulp9dZopV1VRljjEtEJuB0Hd7hHipt8mFdVcYYY4JiLQ5jjDFBicl9HLVq1dLatWtTqVKloheOoH379lmmAEVjLssUmGjMBNGZK9oyLVy4cIeq+o9ccSxVjblbu3btdP78+RptLFPgojGXZQpMNGZSjc5c0ZYJ+E4D+I61ripjjDFBscJhjDEmKFY4jDHGBMUKhzHGmKBY4TDGGBMUKxzGGGOCYoXDGGNMUKxwGGOMCYoVDmOMMUGJySFHjIkKaWnHTps/P/I5jAkxa3EYY4wJihUOY4wxQbHCYYwxJihWOIwxxgTFCocxxpigWOEwxhgTFCscxhhjgmKFwxhjTFCscBhjjAmKFQ5jjDFBscJhjDEmKFY4jDHGBMUKhzHGmKBY4TDGGBMUKxzGGGOCYoXDGGNMUCJWOESkm4isEJFVIjIsn/nlReQtd/43ItLEnV5ORCaIyE8iskxE7o9UZmOMMceKSOEQkXjgZaA70AroKyKt/BYbBOxW1ebASOApd/qVQHlVbQ20A27KKyrGGGMiL1Itjg7AKlVdo6oHgalAT79legIT3PvTgS4iIoAClUQkAagIHAT2Ria2McYYf5EqHPWBX30eb3Sn5buMquYAvwM1cYrIPmAzsAF4RlV3hTuwMcaY/Imqhn8lIlcCF6rqDe7ja4AOqjrUZ5ml7jIb3cercVoqJwBDgAFAdeBzoLuqrvFbx2BgMEBKSkq7MWPGkJycHO63FpSsrCzLFKBozBV0ppUrj53WsmXoAhEj2ylCojFXtGVKS0tbqKrti1ouIRJhcFoYDX0eNwA2FbDMRrdbqiqwC+gHfKSqh4BtIvIF0B44qnCo6mhgNED79u01OTmZTp06heGtFF9GRoZlClA05go60/Dhx06bPz9keSBGtlOERGOuaMwUiEh1VS0AWohIUxFJBPoAM/yWmQFc596/ApinTnNoA9BZHJWA04HlEcptjDHGT0RaHKqaIyK3AR8D8cA4VV0qIiOA71R1BjAWmCgiq3BaGn3cp78MvAEsAQR4Q1V/jERuYwqUlhbwouv+SOG9HWfz5d6T2XQ2JCZC8+bQuTP06AGVKoUxpzFhEKmuKlT1Q+BDv2kP+dzfj3Porf/zsvKbbky0W/NHKv9YO4hPdrejZ80v6FXr/2jweCcOHoTly2HCBLj9drj7brjjDihf3uvExgTGzhw3JsRU4fVNF9Nx0X9olbSONR37MeaEZ+iXMpdzz4WuXeG222DWLMjIgC++gA4dYMkSr5MbE5iItTiMKQtyDsdxx6rbyNjThk/b3EGrSusLXb5VK3j/fRg/3um6mjABunePTFZjistaHMaESK7Gcc3yB1ie3Ygv2g4tsmjkEYGBA+G995yf//1vmIMaU0LW4jAmBFRhyMo72HqwOh+2HkaF+EOBPdFnJ/uZwKxZ8+nWzdlh3q1beLIaU1LW4jAmBJ7c0I9FWS14/+R/BF408vGXv8C778K118KyZSEMaEwIWeEwpoRm72rPqN8u5b2T/0nlhD9K/HpnnglPPQW9esGePSEIaEyIWeEwpgR+O1CLa5fdz5RWj1K//I6Qve7AgXD++TB4sNMNZkw0scJhTDGpwo0r7ubmejM4r9rikL/+M8/A0qWQnh7ylzamRGznuDHF9MaW7mw5WIMHG08Ky+tXqACTJsGFF8J550GDBoUs7H8me4jHxDLGl7U4jCmGjftrcd+awUw44UnKxeWGbT1/+QsMGeKcWW5MtLAWhzHF8Pc1N3NzvRm0Tl4b2hfOZwysYbPmc/LJ8NFHdoiuiQ7W4jAmSJ99Bl/8fjL3N4rMzocKFWDUKGeYkv37I7JKYwplhcOYIOTmOgMTPnPcqyTFH4jYert3h1NOgeeei9gqjSmQFQ5jgvDGG1C1KlxZOyPi637qKadw7NwZ8VUbcxQrHMYE6ODBOEaMgKefdsaXirQWLeCqq+DxxyO/bmN8WeEwJkAzZqTSpg107OhdhoceckbSXR/Y+InGhIUVDmMCsG8fTJnSiEce8TZH3brO4bkjRnibw5RtVjiMCcCoUXDqqb9z6qleJ4E773SGYLdWh/GKFQ5jirBvn7NTesCAdV5HAaBGDWcMq6ef9jqJKavsBEBjijB2LJxzDjRqlO11lCPuvBNOOAHS0hK9jmLKICscxhTi0CF49ll4+23Ijpa6kZZGHeC6SkOY9trxXPHysWebGxNO1lVlTCHeeguaNYMOHbxOcqy/N3yLj75sya5Dlb2OYsoYa3EYUwBVZz+C5/sS8hm/CqBe+Z2ceep6Rm+6hGGNp0Q4lCnLrMVhTAFmzYK4OGdY82h1RZclvPTbpRw6HO91FFOGWOEwxl9aGqSl8Xz/Bdx94HGkc/TuQ2jecCctkjYyfft5XkcxZYh1VRmTj+X7GvJj1nFc1frB0L5wAd1OJXFng+k8ur4/ferM82QoFFP2WIvDmHy8vKkXN9abSfm4Q15HKdLFNb9m16EqfLn3ZK+jmDLCCocxfvbmJDF5a1duSv2f11ECEi+H+VuD//L8xsu9jmLKCCscxviZuPUCulRfRIMKO7yOErDr6n7MnN3t2HKgutdRTBlghcMYH6rw0m+9uK3+e0fPSEuDlSuP7DiPNlUSsrmy9qeM23KR11FMGWCFwxgf8+ZBguRybtXFXkcJ2k31/sfoTZeQq/ZnbcLLPmHG+HjlFbi13nul8uikdpVXUidxNx/vOs3rKCbGWeEwxrVtG8yZA/1S5nodpdhuqjeTVzf18DqGiXFWOIxxvfkmXHqps7+gtOpTZx5f/H4yv/7qdRITy6xwGIOzU3zMGLjhBq+TlEyl+P30S5nLmDFeJzGxzAqHMcCXXzo/zzzT2xyhMDh1JuPGQW6u10lMrLLCYQx/tjZK405xf62T15KSAnNL764aE+WscJgyb+9eePdduPZar5OEzsCBMH681ylMrIrYIIci0g14AYgHxqjqk37zywNvAu2AnUBvVV3nzjsFeA2oAhwGTlPV/ZHKbmJIPifvTd10CV3LtadO74cjnydM+vaFBx+EPXugWjWv05hYE5EWh4jEAy8D3YFWQF8RaeW32CBgt6o2B0YCT7nPTQAmATer6klAJyD6R54zpcaYzRcxKPVDr2OEVI0acMEFzhUMjQm1SHVVdQBWqeoaVT0ITAV6+i3TE5jg3p8OdBERAS4AflTVxQCqulNVbbefCYnl+xqy8UBtLqjxnddRQm7AAHjjDa9TmFgkqhr+lYhcAXRT1Rvcx9cAHVX1Np9llrjLbHQfrwY6Av1xuq/qALWBqap6zMU8RWQwMBggJSWl3ZgxY0hOTg7vGwtSVlaWZQpQ2HKtXHnUwzdmtCN7fzluverrojPVqEHyrl2hz1QCBWZq2ZLcXKF379N59tnFNG4cuXNTytxnqgSiLVNaWtpCVW1f1HKR2seR37Eq/hWroGUSgLOB04BsYK6ILFTVo44ZUdXRwGiA9u3ba3JyMp06dSpp7pDKyMiwTAEKW67hw4/cVYUbv72IKSc+QvspKwt5kpupb186TYmua3sXmGn+fAAGDYJlyzpw3XURzFTWPlMlEI2ZAhFwV5WI1CzBejYCDX0eNwA2FbSMu1+jKrDLnf6pqu5Q1WzgQ6BtCbIYA8B3mccjKO0qF100SqsBA2DiRMjJ8TqJiSXB7OP4VUTeF5ErRCQxyPUsAFqISFP3uX2AGX7LzADy/i+6ApinTj/ax8ApIpLkFpTzgJ+DXL8xx0jf1oV+debGxLkbx3CHfz9xSBoNM39mdtthXicyMSSYwtEYmAvcB2wRkdEicnYgT1TVHOA2nCKwDJimqktFZISI/NVdbCxQU0RWAXcBw9zn7gaewyk+PwCLVPWDIHIbc4xcjWPqts70TZnndZSwu7bubCZtPd/rGCaGBLyPQ1W3Ay8CL4rI8cA1wEQRUZzDZceq6vpCnv8hTjeT77SHfO7vB64s4LmT3HUYExIZe9pQP3EHxyfF/miAV9WezwNrbiArC6JoP6wpxYp7OG5d91YFWA3UB74XEWsPm1IhfWuXUj18ejBqJe7l7Ko/8d57RS9rTCACbnGIyEk4h8ZeDWThnHNxiqr+5s5/BPgReLLAFzEmCuzPLce7O85mRNOyc5LD1SlzmDDpDPr395mY3yVw3aOxjClMMC2Oz4DKwBWq2kpVn8orGgDu8CDPhzifMSE3a1dH2iSvon75HV5HiZietb7gm29g61avk5hYEEzhuFRVb1PVb30nikiHvPu++yyMiVZ5R1OVJUnxB+jRw4YgMaERTOGYWcD0j0IRxJhI2JuTxOxd7bm89mdeR4m4q6+GyZO9TmFiQZGFQ0Ti3EEKxRXnc2sB2KlFptR4d8c5pFX7gerlsryOEnFdusD69fDLL14nMaVdIC2OHOAgkOTeP+Rz+xn4T9jSGRNiZeloKn8JCdC7t7U6TMkFUjiaAsfhDP3RzOfWFKiiqg+HLZ0xIbRlC3ybeQKX1PzK6yie6d/fKRwRGNvUxLAiD8f1OamvcZizGBNW06ZBj5pfkRR/wOsonmnf3rk87oIFzrUOjCmOQguHiIxW1cHu/TcLWk5VY+iimyZWpafDw3XmeB3DUyJ/7iS3wmGKq6gWx1qf+6vDGcSYcFq9GtasgS4nLvI6iueuvhrOOguePSGOhLjDXscxpVChhUNVn/C5P7ywZY2JSu7Z0VPW9eeqcjUoF2cXj2zeHJo0gXl72sbklQ9N+BXVVdU5kBdR1dgfYtSUWqoweVtXxh7/b6+jRI1+/SD9iS5WOEyxFNVVNTaA11Cco6yMiUqLs45j/+FEzqiy1OsoUeOqq+Dhe87ij9xEKsYf9DqOKWWK6qpqGqkgxoRL+rau9K0zLzYv2FRMqanQvvIKPth5OlfUKXtn0ZuSKe6w6saUCodVmLKtM/3K+NFU+elXZy7p27p4HcOUQoUWDhFZ5nP/VxHZkN8t/DGNKZ7/+7011RMyOTl5nddRos5ltT9n7u627DlUyesoppQpah/HjT73+xe4lDFRKn1r2RsJN1BVE/bRtfoi3tlxLtenzvI6jilFitrH8X8+9z8NfxxjQufgQZi+/Ty+a3eT11GiVt86c3l101+tcJigBHMFwETgH0BfoB6wCZgKPOZeL9yYqDJ7NpyQtIEmFe3qRUC+V/y7uObX3LjyHjYfqEFq+V0ehDKlUTA7x18BOgO3A6e5P8/DRsc1USo9nTI7Em6gKsYfpGfNL3hrWz6XkTWmAMEUjl7AJao6S1V/VtVZ7rRe4YlmTPFlZcEHH8CVtTO8jhL1+qXY0VUmOMEUji041+TwVRHYHLo4xoTGjBnOeEy1E3/3OkrU61xtEev3p/BLdn2vo5hSoqjDcTvn3YCJwEcicqOIdBeRwcCHQIGj5hrjlfR0Z1gNU7SEuMP0rpPBFGt1mAAVZ8iRB/we3wQ8FZo4xpTcjh3w+ecwZQqBDZpj6FdnDgOWD+Ofip1hb4pkQ46YmDN9Olx0EVSu7HWS0qNjlWUc1AS+/x7atvU6jYl2NuSIiTnWTRU8EXcIknSvk5jSIODCISJVROQ5EVkoIuttyBETjTZsgJ9/hgsv9DpJ6dMvZS5Tp8Jhu7aTKUIwLY7/AG2BEUANYCiwARgZhlzGFMvUqXD55ZCY6HWS0qdVpfXUquXsHzKmMMEUjguAy1X1fSDX/dkbuCYsyYwpBuumKpl+/bDuKlOkgIccwSkyeQfFZ4lINZxzOJqHPJUx+fEfMmP+/KMeLl3qHFF1zjkRzBRj+vRxdo6PGmWtNlOwYFoci3GGGAH4HHgZZxiSlaEOZUxxpKdD374QZ4d8FFujRtCqFXz8sddJTDQL5k/sRmCde/92YD9QDbg2xJmMCZqqdVOFSt++1l1lChdwV5WqrvG5vx0YFJZExhTD119DhQrQpo3XSUq/K6+EYcOc8b6Sk71OY6JRUI16EbleRD4RkaXuz0Eidp6p8V5ea8M+jSVXqxacfTa8/77XSUy0CuY8jqeB+4B3gL+7P+/BhhsxHsvJgWnTnC4WExp2dJUpTDBHVQ0A2qrqxrwJIjITWATcG+JcxgRs7lxo0gSa2/F9IdOzJwwZAtu3Q+3aXqcx0SaYwpHp3vyn7Q1dHGOCN3myz07xfK5yZ4KXnOyM9zV9Otxyi9dpTLQpalj1Znk34HngHRE5X0ROFJELgLcJ8MxxEekmIitEZJWIDMtnfnkRecud/42INPGb30hEskTknkDfnIl92dnOtTd69/Y6Seyx7ipTkKJaHKsABXx3Ofr/S9cZeKmwFxGReJzzPs4HNgILRGSGqv7ss9ggYLeqNheRPjj7Tny/DkYCs4rIa8qYGTOgY0eoW9frJDHCp8V24eEEBi77hPXroXFjDzOZqFNoi0NV41Q13v1Z0C0+gPV0AFap6hpVPQhMBXr6LdMTmODenw50yTtiS0R6AWuApcG8ORP7Jk+G/v29ThGbEuNyuPxyZ/wvY3yJqgb3BJFGQH1go6r+GuBzrgC6qeoN7uNrgI6qepvPMkvcZTa6j1cDHYE/gDk4rZV7gCxVfSafdQwGBgOkpKS0GzNmDMlRdhB6VlaWZQpQvrlWHj1Iwe8pJ3H11R2ZNu0rkpJy810mpJlq1CB5166wvX5xhDvTD9mnMWpUC8aO/S7wTKXpM+WxaMuUlpa2UFXbF7VcwDvHRSQVp6VwBrATqCkiXwN9VHVTUU/PZ5p/xSpomeHASFXNKuyUEVUdDYwGaN++vSYnJ9OpU6ciYkVWRkaGZQpQvrmGDz/q4X+unE+PHnDRRecUuExIM/XtS6cpU8L2+sUR7kznzh3MM89ArVqdOPnkADOVps+Ux6IxUyCCOQHwFZzxqqqraipQHfgeeDWA524EGvo8bgD4F5sjy4hIAlAV2IXT6nhaRNYBdwAPiMhtmDLPuqnCLy7OOT8myuql8VgwheNs4G5V3Qfg/rwXODOA5y4AWohIUxFJBPoAM/yWmQFc596/ApinjnNUtYmqNsE5sutxVS10Z7yJfWv+SOWXX+CCC7xOEvvyjq4KslfbxLBgCsduoJXftOOBPUU9UVVzgNuAj4FlwDRVXSoiI0Tkr+5iY3G6v1YBdwHHHLJrTJ70rV248kooV87rJLGvTRsoX94ZD8wYCO4EwKeBOSIyFlgPNAYGAv8M5Mmq+iHwod+0h3zu7weuLOI1Hg4ir4lRqjB5W1fGXu11krJB5M9WxxlneJ3GRIOAWxyq+jrOeRW1gB7uz77uTmljIub7rBYcOFzOvsQiqG9fZzywnByvk5hoEFCLwz2BbxwwWFXnhTeSMYWbvLUrV6fMQTq/4XWUMqNFC+ckwHnzbL+SCbBwqGquO8TI4TDnMaZQuRrHlG2dmXfqXV5HKXP69YP0az/ighP9BsT2u4SviX3B7OMYCQwXkX+p6qFwBTKmMPN3tyE1cRcnVAro3FNTUj5DkPQ+UIPhO8fzR24iFeMPehjKeC2Yo6qG4lyHI1NEfhWRDXk/w5TNmGNM2Hoh19W1C2J7IbX8Ltolr+SDnad7HcV4LJgWh51qZTy1NyeJ/+04k5HHvex1lDKrX8pc0rd14Yo6n3kdxXgomBbHV0AXYAzOYbVjgK7AN2HIZcwx3t7eic7VF1Er0S4B45XLan3G3N1t2XOoktdRjIeCHXKkM3A7cJr78zzgP2HIZcxo07OjAAAWDElEQVQxxm+5kAHWTeWpauX20aX6Iv674zyvoxgPBVM4egGXqOosVf1ZVWe503qFJ5oxf1q1ClZmN6B7DWvgeu2alE8Yv+VCr2MYDwVTOLYASX7TKgKbQxfHmPyNHw9Xp8ylXFyu11HKvEtqfsXK7AaszG7gdRTjkWAKx0TgIxG5UUS6u9e/+BB4U0Q6593CE9OUZbm58OabMKDuR15HMUC5uFyuSfmEN7Z08zqK8UgwR1Xd5P58wG/6ze4NnOtnNCtpKGN8zZ8PtWrBKclrvI5iXNenzqLr4md4pMm4oL5ETGwI+Heuqk3DGcSYgowfDwMGAO96HMQc0arSehpX2MpHuzpwiddhTMQF01VlTMT9/jvMnOkMd2Giy/V1ZzFuS3evYxgPWOEwUe2tt6BzZ6erykSX3nXmM293W7Zt8zqJiTQrHCaqjR4Ngwd7ncLkp0pCNr1q/R+TJnmdxESaFQ4TtRYuhB074PzzvU5iCnJ96izGjrXLypY1VjhM1Bo9Gm68EeLjvU5iCnJO1R85eBC+/dbrJCaSrHCYqJSdHc+0aTBwoNdJTGFEYNAgp8ibssMKh4lK8+bVoVMnqFfP6ySmKNdfD++8A7t3e53ERIoVDhOVZs5MtZ3ipUSdOtCtm3N2vykbrHCYqLNoEezZk2jXti5FbrkFXn3VdpKXFVY4TNR5/XW4+OLNtlO8FDnnHOcghowMr5OYSLBhZkxUycx0Tvp77b4vIO16r+OYQKSlIcAtB3vxSu9TGTLN60Am3KzFYaLKhAnQtSvUrp7tdRQTpGtSZvPJ7nbs3JnodRQTZlY4THRIS+Nwp86MuncDt/8y1Os0phiqJGRzVe0MPvgg1esoJsyscJioMXtXe5LiD3BW1SVeRzHFdEu995k5M5WcHK+TmHCywmGixqjfLuP2+u8g4nUSU1xtKq+mTp0DvPee10lMOFnhMFHhl+z6LMg8nj515nkdxZTQlVduZORIr1OYcLLCYaLCy7/1YlDqh1SMP+h1FFNCZ5+9g99+g2++8TqJCRcrHMZzmZnw5tYLuKXeDK+jmBCIj1f+9jes1RHDrHAYz40bB12qL6JRBbsiUKwYNAhmz4YNG7xOYsLBCofx1KFD8NxzcG/DqV5HMSFUpYpznfhRo7xOYsLBCofx1LRp0KwZnFZlhddRTIjdfrvTmszM9DqJCTUrHMYzqvD003DvvV4nMeHQpAmkpcHYsV4nMaFmhcN4ZvZsOHzYGZLbxJCVK52KkZbGfWtv5tlh2zhoB8vFFCscxjN5rQ074S92nVZlBScmrWfiRK+TmFCKWOEQkW4iskJEVonIsHzmlxeRt9z534hIE3f6+SKyUER+cn92jlRmEz7ffQe//AJ9+nidxITbg40n8+ST2DAkMSQihUNE4oGXge5AK6CviLTyW2wQsFtVmwMjgafc6TuAHqraGrgOsP9dYsAjj8A990C5cl4nMeF2btXFpKTA2297ncSESqRaHB2AVaq6RlUPAlOBnn7L9AQmuPenA11ERFT1e1Xd5E5fClQQkfIRSW3CYtEip8Vhl4YtG0TgwQfh8cedfVqm9BONwLUeReQKoJuq3uA+vgboqKq3+SyzxF1mo/t4tbvMDr/XuVlVu+azjsHAYICUlJR2Y8aMITk5OZxvK2hZWVmWCXjwwZNp1243l132258TV648OleNGiTv2hXRXEWxTIHJL5O2aMlNN7XjuuvWcdZZO73JZX9/RUpLS1uoqu2LWi5SVwDMb/enf8UqdBkROQmn+yrfK1Gr6mhgNED79u01OTmZTp06FStsuGRkZJT5TIsWwbrvtjM3/lYq/HSo4Fx9+9JpypSI5QqEZQpMvpnmz+fpp2H48Nbcfz/EeXBYjv39hU6kfn0bgYY+jxsAmwpaRkQSgKrALvdxA+Bd4FpVXR32tCZshg+HYY2mUCG+4KJhYlBaGj2fT6Pc6mVMbz3c6zSmhCJVOBYALUSkqYgkAn0A/xHtZuDs/Aa4Apinqioi1YAPgPtV9YsI5TVhsHChs2/jxtSZXkcxHhCBx5qO5Z9rB9oRVqVcRAqHquYAtwEfA8uAaaq6VERGiMhf3cXGAjVFZBVwF5B3yO5tQHPgnyLyg3urE4ncJrTuv9/ZSWqtjbKra/WFpCbusvM6SrlI7eNAVT8EPvSb9pDP/f3Alfk871Hg0bAHNGH1ySewbh3ceCNgh2WWWSLwWLOx9Ht4FP36QXk7PrJUsjPHTdgdPuycIf7443behoGzqi6hdWt49VWvk5jissJhwi493fnP8vLLvU5iosUTT8Bjj8Hu3V4nMcVhhcOE1f798I8btvD0gb8hnZ2B74xp3RouuwxGjPA6iSkOKxwmrJ59Ftokr+Lcaj96HcVEmREjYNIkWGGXYil1rHCYsNmwwbm638jmL3sdxUShOnVg2DBnzDJTuljhMGFzzz0wdCg0rbjF6ygmSg0dCsuXw6xZXicxwYjY4bimjHD3Yczd3ZYFK+5hwpYBEO9tJBO9EhOd65IPGQJLlkBSkteJTCCscJiQO3C4HEN/Gcpzx/2HivF26TdTuG7doEMHeOTEyTzRbMyfM+bP9y6UKZR1VZmQe3R9f1pW3EivWv/ndRRTSowcCWM2X8xPWU29jmICYIXDhNTirON4bVMP/tPyebskrAlYaio80mQcN628i1y1r6VoZ78hEzI5OXD98nt5stnr1CvvzTUXTOk1uN5M4uUwz2+0M0WjnRUOEzL//jfULPc7A+vaITImeHGiTDjhSZ7c0I8lWU28jmMKYYXDhMSCBU4/9evHP2tdVKbYmlXczBNNX+fa5fdz0I6riFp2VJUpscxM6NcPXnoJGr+y1es4pjQoZOiZQakf8t6Osxk+3BnPykQfa3GYEhs6FM49F666yuskJhaIwJjj/8348TB7ttdpTH6sxWFKZOJE+Oor5+p+xoRK3fK7mTwZ+vRxrhrZoIHXiYwvKxwmOD5dDIsyW3DX+tHMmwfJyR5mMjGpUye44w6nJfvpp3Ytl2hiXVWmWLYdrMalS0bwSp1/0fp2d7h0GzLdhNi990LNmnDnnV4nMb6sxWGCduhwPL1/foj+KXO4os5nXscxMSwuzhl6/cwz4cUWo7i9wTtHL2DDknjCWhwmKIdVuH7FvVSOz2ZE0ze8jmPKgKpV4YMP4MkNfZm543Sv4xiscJggDVszmNV/1GNqq0eIl8NexzFlRJMm8M5JDzFwxX18t7el13HKPCscJmAjR8LMnafzv9YPkhR/wOs4pow5veoyxhz/DJf89IQNhugx28dh/uS/c9un/3jUKHjhBfjslPuoWW5vhIMZ4+hZ6wv2H07kwh+fZn6buzje60BllBUOU6Tnn4cXX4SMDGg0cJvXcUwZ17vOfP7ITaTr4meYvQxOPNHrRGWPdVWZAqnCk086rY2MDKef2ZhoMCD1Yx5vOoa0NPj2W6/TlD3W4jD5yjkcx9Ah8OWXzslXduauibgizgu6pu4nVHv6AS6+GNLT4fzzI5TLWIvDHCszpyK9ljzKmjXw+edWNEz06tED/vtf6N/faRmrep2obLDCUVblnem9cuVRZ30vyWrCaQtfpX75HcycCVWqeJzTmCKce64zXtrrr8MNN8ABO+Av7KxwmCPe3HIBaYtHcn/jdF47/jkbG8hEP/efnmaD0viyanf27oXTT4dly7wOFttsH4dh68Hq3LrybyzNbsK8U++idfJaryMZE7TkhP1M257GmOyLOffUG3i4yQSG1HsPybBhSULNWhxlRVra0Tec/uA53x7HKQvG0Lzib3zf7kYrGqZUE4Eb633AF38ZysQt53PeD8+z5LSBR3fLmhKzFkcZtTCzJXesupUta+rxv9YP0qHKcq8jGRMyLZM28kXboby2qQdpi0cyoO5HnLtvf8FPKOTkV3MsKxxlzLJ9jXhsfX/m7mnLo03H0eSOanR4q4CiYf+dmVIsXg4zpP77XF77Mx5cM4hrHurJfbUPcfs+qFTJ63Slm3VVlRHfZzan99KHOO+H52lVaT0rOlzLoNQPiY+z4xdNbEtJ3M2YE57hxb/PYHHWcTRvDiNGwPbtXicrvaxwlEb57K/Iz/798OabcMYZ8Nclj9G+8grWdOzHA40nUyUhO4KBjfFeo7q/M/WkR5gzB379FVq2hEGDnJNc7fyP4FjhiDEHDzrXLrj2WkhNdc6oHTYM1nbsy98bvUVyQiH9vMaUASed5JzzsXIlNG/uFI8W30zi4bXX8fO+xlZEAmD7OGLA2rUwe7Zzmz8fWrWC3r2dcabq1XMXet6unWEMcKSVXhu4HxiWAt8lHc/ErRfQ7cenSJBcLh4KF18MZ50FlSsH97pHidGd7FY4SpmsLPhhz8l8m3ki3+x1bvvPcMbp6dULXnrJaWkYYwIjAqdVWcFpVVbwQvNRLNnXlA/qj+OJJ2DhQmjRwikgZ5wBbdo4XVxl/eTYiBUOEekGvADEA2NU9Um/+eWBN4F2wE6gt6quc+fdDwwCcoHbVfXjSOWONFXYu9fpg924Edbd/hzLsxuxLLsxy7IbseNQVU6qdCsdKy/j4ppfM6LpG7T46k3ifDsd7WgoY4pFBFonr6X1x2kMi4OD7RJYlNmCLz46mXe3DGHECNiwwSkmrVs7P5s0gaZNocn+FOonbichzqd1H6OH+UakcIhIPPAycD6wEVggIjNU9WefxQYBu1W1uYj0AZ4CeotIK6APcBJQD5gjIi1VNTcS2YOVmwt//AHZ2cf+XLCgOrt2UeBt82anWAA0bOgMLtgo83hOSNrA+TUWckLSBppU2HLsJVu7WKEwJhwS43I4veoyTq+6DKYPAZy/559/hiVLYPVqmDsX1q2DtYtGse1QNWqW20udcnuok7j7yM9a5X6nSnw2lcc7XV+VKzvjwK1dm0TTplC+/J+3xO5dji4+EHUFJ1Itjg7AKlVdAyAiU4GegG/h6Ak87N6fDrwkIuJOn6qqB4C1IrLKfb2vwhH01lvh+0lLyNF4cjWeHI0np/Fx5OZCTg7H/DxyP+sPDmkCORpPUtwBKtaoSFISJCVBxYrOzwO7atJg++fUTNhL9XKZ1EjIpGm5TGok7KV6QiaplXfRYOMbVKni/OcDQNoz4XibxphiqlgR2rWDdvf4/MOWAJwJBw8nsP1QNbYfrMq2Q9XZdrCa8/hQNTYfqEnmfMjMdG5798LWrSfxr385AzMeue3/BEEpH3eIRMmhfNxByjeChASIj3ducXF/3ve9xcXB3//udFuHk2gEDiEQkSuAbqp6g/v4GqCjqt7ms8wSd5mN7uPVQEecYvK1qk5yp48FZqnqdL91DAYGuw+Px+nu2hHO91UMtbBMgYrGXJYpMNGYCaIzV7RlaqyqtYtaKFItDslnmn/FKmiZQJ6Lqo4GRh95MZHvVLV9MCHDzTIFLhpzWabARGMmiM5c0ZgpEJE6j2Mj0NDncQNgU0HLiEgCUBXYFeBzjTHGREikCscCoIWINBWRRJyd3TP8lpkBXOfevwKYp04/2gygj4iUF5GmQAvArjJsjDEeiUhXlarmiMhtwMc4h+OOU9WlIjIC+E5VZwBjgYnuzu9dOMUFd7lpODvSc4BbAzyianTRi0ScZQpcNOayTIGJxkwQnbmiMVORIrJz3BhjTOywsaqMMcYExQqHMcaYoMRU4RCRf4vIchH5UUTeFZFqPvPuF5FVIrJCRC6McK4rRWSpiBwWkfY+05uIyB8i8oN7e9XrTO48z7aVT4aHReQ3n21zkRc53Czd3G2xSkSGeZXDn4isE5Gf3O3znUcZxonINvc8rLxpNUTkExH5xf1ZPUpyefaZEpGGIjJfRJa5f3d/c6d7vq2KRVVj5gZcACS4958CnnLvtwIWA+WBpsBqID6CuU7EOSkxA2jvM70JsMSjbVVQJk+3lU+Oh4F7ouAzFe9ug2ZAorttWnmdy822DqjlcYZzgba+n2PgaWCYe39Y3t9hFOTy7DMFpAJt3fuVgZXu35rn26o4t5hqcajqbFXNcR9+jXPOB/gMW6Kqa4G8YUsilWuZqq6I1PoCUUgmT7dVFDoyXI6qHgTyhssxgKp+hnMUpK+ewAT3/gQgzANgHKuAXJ5R1c2qusi9nwksA+oTBduqOGKqcPi5Hpjl3q8P/Oozb6M7LRo0FZHvReRTETnH6zBE17a6ze12HOdhEz6atoc/BWaLyEJ3yJ1okaKqm8H5wgTqeJzHl+efKRFpAvwF+Ibo3lYFKnXX4xCROUDdfGY9qKrvu8s8iHPOx+S8p+WzfEiPQw4kVz42A41UdaeItAPeE5GTVHWvh5nCvq2OrKiQfMArwCPuuh8BnsX5ZyDSIrY9iuEsVd0kInWAT0Rkufuftsmf558pEUkG/gvcoap7RfL7eEW/Ulc4VLVrYfNF5DrgEqCLuh2HRGDYkqJyFfCcA8AB9/5Cd2DHlkBIdnQWJxMRHOIl0Hwi8jowMxwZAhC1Q96o6ib35zYReRenWy0aCsdWEUlV1c0ikgps8zoQgKpuzbvvxWdKRMrhFI3JqvqOOzkqt1VRYqqrSpyLRd0H/FVVs31mReWwJSJSW5xrlSAizXByrfE2VXRsK/ePKM+lwJKClg2zQIbLiTgRqSQilfPu4xwY4tU28uc7fNB1QEGt24jy8jMlTtNiLLBMVZ/zmRWV26pIXu+dD+UNZ0fur8AP7u1Vn3kP4hwdswLoHuFcl+L853oA2Ap87E6/HFiKc6TOIqCH15m83lY+GSYCPwE/4vxxpXr4uboI5yiY1TjdfJ7k8MvUzP3cLHY/Q57kAqbgdLkecj9Pg4CawFzgF/dnjSjJ5dlnCjgbp4vsR5/vp4uiYVsV52ZDjhhjjAlKTHVVGWOMCT8rHMYYY4JihcMYY0xQrHAYY4wJihUOY4wxQbHCYUyEiEgnEdnodQ5jSsoKhzHGmKBY4TDGGBMUKxzGBElEhonIdL9pL4jIiyIy0L1YT6aIrBGRmwp5HRWR5j6Px4vIoz6PL3EvOLRHRL4UkVPC846MCY4VDmOCNwW4SESqALjjjV0FpOMMUncJUAUYCIwUkbbBrsB9zjjgJpxhKV4DZohI+ZC8A2NKwAqHMUFS1fU4Y4vlXXSnM5Ctql+r6gequlodnwKzgeJcZ+VG4DVV/UZVc1V1As64YqeH4j0YUxJWOIwpnnSgr3u/n/sYEekuIl+LyC4R2YMzkF2tYrx+Y+But5tqj/taDYF6IchuTIlY4TCmeN4GOolIA5yRhtPdbqT/As/gXNmtGvAh+V8MCiAbSPJ57HtRq1+Bx1S1ms8tSVWnhPydGBMkKxzGFIOqbgcygDeAtaq6DEgEygPbgRwR6Y5znYyC/AD0E5F491oy5/nMex24WUQ6iqOSiFycdw0OY7xkhcOY4ksHuro/UdVM4HZgGrAbpwursIs+/Q3oAewBrgbey5uhqt/h7Od4yX2tVcCAUL8BY4rDrsdhjDEmKNbiMMYYExQrHMYYY4JihcMYY0xQrHAYY4wJihUOY4wxQbHCYYwxJihWOIwxxgTFCocxxpig/D9QRWgqEs2RwQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] From 2a03f99528eb33b6dc20a2c28ccbdce3d2b6123c Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Mon, 29 Apr 2019 23:25:55 +0200 Subject: [PATCH 092/116] update qiskit tutorials and qiskit finance index --- index.ipynb | 2 +- .../aqua/artificial_intelligence/index.ipynb | 8 +- ...ans_for_loading_random_distributions.ipynb | 1548 ----------------- .../aqua/general/amplitude_estimation.ipynb | 10 +- qiskit/finance/index.ipynb | 3 - .../qgan_option_pricing.ipynb | 218 --- qiskit/finance/machine_learning/readme.txt | 0 .../asian_barrier_spread_pricing.ipynb | 9 +- .../simulation/basket_option_pricing.ipynb | 8 +- .../simulation/bull_spread_pricing.ipynb | 22 +- .../simulation/credit_risk_analysis.ipynb | 72 +- .../european_call_option_pricing.ipynb | 28 +- .../european_put_option_pricing.ipynb | 28 +- .../simulation/iron_condor_pricing.ipynb | 8 +- .../finance/simulation/option_pricing.ipynb | 5 +- 15 files changed, 98 insertions(+), 1871 deletions(-) delete mode 100644 qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb delete mode 100644 qiskit/finance/machine_learning/qgan_option_pricing.ipynb delete mode 100644 qiskit/finance/machine_learning/readme.txt diff --git a/index.ipynb b/index.ipynb index 3a9fc0911..d1e62790c 100644 --- a/index.ipynb +++ b/index.ipynb @@ -82,7 +82,7 @@ "\n", "#### 1.7 Qiskit Finance\n", "\n", - "[Qiskit Finance]() provides a colleaction of applications of quantum algorithms to use cases relevant in finance.\n", + "[Qiskit Finance](qiskit/finance/index.ipynb) provides a colleaction of applications of quantum algorithms to use cases relevant in finance.\n", "This includes use cases like portfolio management, derivative pricing, or credit risk analysis.\n", "\n", "\n", diff --git a/qiskit/aqua/artificial_intelligence/index.ipynb b/qiskit/aqua/artificial_intelligence/index.ipynb index d36d3ccac..cf711097a 100644 --- a/qiskit/aqua/artificial_intelligence/index.ipynb +++ b/qiskit/aqua/artificial_intelligence/index.ipynb @@ -13,7 +13,7 @@ "## Contents\n", "\n", "* [Quantum SVM for Classification](qsvm_kernel_classification.ipynb)\n", - "* [qGANs for Loading Random Distributions](qgans_for_loading_random_distributions.ipynb)\n", + "* [qGANs for Learning & Loading Random Distributions](qgans_for_loading_random_distributions.ipynb)\n", "* More examples can be found in [commuity/aqua/artificial_intelligence](../../../community/aqua/artificial_intelligence)" ] }, @@ -29,9 +29,9 @@ ], "metadata": { "kernelspec": { - "display_name": "quantum-dev", + "display_name": "qiskit_master", "language": "python", - "name": "quantum-dev" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { @@ -43,7 +43,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.5" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb deleted file mode 100644 index 066e9d478..000000000 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb +++ /dev/null @@ -1,1548 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: qGANs for Loading Random Distributions*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Christa Zoufal[1,2], Stefan Woerner[1]\n", - "### Affliation\n", - "- [1]IBMQ\n", - "- [2]ETH Zurich\n", - "\n", - "### Introduction\n", - "Given $k$-dimensional data samples, we employ a quantum Generative Adversarial Network (qGAN) to learn the data's underlying random distribution and to load it directly into a quantum state: \n", - "$$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle$$\n", - "where $p_{\\theta}^{j}$ describe the occurrence probabilities of the basis states $\\vert j\\rangle$. \n", - "\n", - "The aim of the qGAN training is to generate a state $\\lvert g_{\\theta}\\rangle$ where $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, describe a probability distribution that is close to the distribution underlying the training data $X=\\left\\{x^0, \\ldots, x^{k-1} \\right\\}$.\n", - "\n", - "For further details please refer to
Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", - " from collections import MutableMapping\n" - ] - } - ], - "source": [ - "#!/usr/bin/env python\n", - "# coding: utf-8\n", - "from __future__ import absolute_import, division, print_function\n", - "\n", - "import numpy as np\n", - "\n", - "import matplotlib\n", - "matplotlib.use('TkAgg')\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "\n", - "import time\n", - "\n", - "start = time.time()\n", - "\n", - "from torch import optim\n", - "\n", - "from qiskit.aqua.components.optimizers import ADAM\n", - "from qiskit.aqua.components.uncertainty_models import UniformDistribution, UnivariateVariationalDistribution \n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "from qiskit.aqua.algorithms.adaptive import QGAN\n", - "from qiskit.aqua.algorithms.adaptive.qgan.discriminator import DiscriminatorNet\n", - "\n", - "from qiskit.aqua import aqua_globals, QuantumInstance\n", - "\n", - "from qiskit import BasicAer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Load the Training Data\n", - "First, we need to load the $k$-dimensional training data samples (here k=1).
\n", - "Next, the data resolution is set, i.e. the min/max data values and the number of qubits used to represent each data dimension." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Number training data samples\n", - "N = 10000 \n", - "\n", - "# Load data samples from log-normal distribution with mean=1 and standard deviation=1\n", - "mu = 1\n", - "sigma = 1\n", - "real_data = np.random.lognormal(mean = mu, sigma=sigma, size=N)\n", - "\n", - "# Set the data resolution\n", - "# Set upper and lower data values as list of k min/max data values [[min_0,max_0],...,[min_k-1,max_k-1]]\n", - "bounds = np.array([0.,3.]) \n", - "# Set number of qubits per data dimension as list of k qubit values[#q_0,...,#q_k-1]\n", - "num_qubits = [2]\n", - "k = len(num_qubits)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Initialize the qGAN\n", - "The qGAN consists of a quantum generator $G_{\\theta}$, a variational quantum circuit, and a classical discriminator $D_{\\phi}$, a neural network.
\n", - "To implement the quantum generator, we choose a depth-$1$ variational form that implements $R_Y$ rotations and $CZ$ gates which takes a uniform distribution as an input state. Notably, for $k>1$ the generator's parameters must be chosen carefully. For example, the circuit depth should $>1$ becaue the higher the circuit depth the because higher circuit depths enable the representation of more complex structures.
\n", - "The classical discriminator is given by a $3$-layer neural network that applies linear transformations, leaky ReLU functions in the hidden layers and a sigmoid function in the output layer. Notably, the neural network is implemented with PyTorch. Please refer to https://pytorch.org/get-started/locally/ for PyTorch installation instructions.
\n", - "Here, both networks are updated with the ADAM optimization algorithm." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Set number of training epochs\n", - "# Note: The algorithm's runtime can be shortened by reducing the number of training epochs.\n", - "num_epochs = 3000\n", - "# Batch size\n", - "batch_size = 1000\n", - "\n", - "# Initialize qGAN\n", - "qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)\n", - "\n", - "# Set quantum instance to run the quantum generator\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "qgan.set_quantum_instance(QuantumInstance(backend=backend, shots=batch_size, coupling_map=None, circuit_caching=False))\n", - "\n", - "\n", - "# Set entangler map\n", - "entangler_map = [[0, 1]]\n", - " \n", - "# Set variational form\n", - "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", - "# Set generator's initial parameters\n", - "init_params = aqua_globals.random.rand(var_form._num_parameters) * 2 * 1e-2\n", - "# Set an initial state for the generator circuit\n", - "init_dist = UniformDistribution(np.sum(num_qubits), low=bounds[0], high=bounds[1])\n", - "# Set generator circuit\n", - "g_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, init_params,\n", - " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", - "# Set generator optimizer\n", - "g_optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-5, beta_1=0.9, beta_2=0.99, noise_factor=1e-6,\n", - " eps=1e-10, amsgrad=True)\n", - "# Set quantum generator\n", - "qgan.set_generator(generator_circuit=g_circuit, generator_optimizer=g_optimizer)\n", - "\n", - "# Set discriminator network\n", - "d_net = DiscriminatorNet(n_features=k)\n", - "# Set discriminator optimizer\n", - "d_optimizer = optim.Adam(d_net.parameters(), lr=1e-5, amsgrad=True)\n", - "# Set classical discriminator neural network\n", - "qgan.set_discriminator(discriminator_net=d_net, discriminator_optimizer=d_optimizer)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Run the qGAN Training\n", - "During the training the discriminator's and the generator's parameters are updated alternately w.r.t the following loss functions:\n", - "$$ L_G\\left(\\phi, \\theta\\right) = -\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log\\left(D_{\\phi}\\left(g^{l}\\right)\\right)\\right] $$\n", - "and\n", - "$$ L_D\\left(\\phi, \\theta\\right) =\n", - "\t\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log D_{\\phi}\\left(x^{l}\\right) + \\log\\left(1-D_{\\phi}\\left(g^{l}\\right)\\right)\\right], $$\n", - "with $m$ denoting the batch size and $g^l$ describing the data samples generated by the quantum generator." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/3000...\n", - "Loss Discriminator: 0.6972\n", - "Loss Generator: 0.6728\n", - "Relative Entropy: 0.168\n", - "Epoch 11/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.6919\n", - "Relative Entropy: 0.1678\n", - "Epoch 21/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.1671\n", - "Epoch 31/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1664\n", - "Epoch 41/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1657\n", - "Epoch 51/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.165\n", - "Epoch 61/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1644\n", - "Epoch 71/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1637\n", - "Epoch 81/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.163\n", - "Epoch 91/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1623\n", - "Epoch 101/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1617\n", - "Epoch 111/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.161\n", - "Epoch 121/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1603\n", - "Epoch 131/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1597\n", - "Epoch 141/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.159\n", - "Epoch 151/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1583\n", - "Epoch 161/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1577\n", - "Epoch 171/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.157\n", - "Epoch 181/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1564\n", - "Epoch 191/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1557\n", - "Epoch 201/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.155\n", - "Epoch 211/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1544\n", - "Epoch 221/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1538\n", - "Epoch 231/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1531\n", - "Epoch 241/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1525\n", - "Epoch 251/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1518\n", - "Epoch 261/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1512\n", - "Epoch 271/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1505\n", - "Epoch 281/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1499\n", - "Epoch 291/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1493\n", - "Epoch 301/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1486\n", - "Epoch 311/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.148\n", - "Epoch 321/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1474\n", - "Epoch 331/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1467\n", - "Epoch 341/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1461\n", - "Epoch 351/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1455\n", - "Epoch 361/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1449\n", - "Epoch 371/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1443\n", - "Epoch 381/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1436\n", - "Epoch 391/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.143\n", - "Epoch 401/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1424\n", - "Epoch 411/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1418\n", - "Epoch 421/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1412\n", - "Epoch 431/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1406\n", - "Epoch 441/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.14\n", - "Epoch 451/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1394\n", - "Epoch 461/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1388\n", - "Epoch 471/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1382\n", - "Epoch 481/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1376\n", - "Epoch 491/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.137\n", - "Epoch 501/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1364\n", - "Epoch 511/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1358\n", - "Epoch 521/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1352\n", - "Epoch 531/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1346\n", - "Epoch 541/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.134\n", - "Epoch 551/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1334\n", - "Epoch 561/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1328\n", - "Epoch 571/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1323\n", - "Epoch 581/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1317\n", - "Epoch 591/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1311\n", - "Epoch 601/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1305\n", - "Epoch 611/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1299\n", - "Epoch 621/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1294\n", - "Epoch 631/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1288\n", - "Epoch 641/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1282\n", - "Epoch 651/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1277\n", - "Epoch 661/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1271\n", - "Epoch 671/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1265\n", - "Epoch 681/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.126\n", - "Epoch 691/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1254\n", - "Epoch 701/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1249\n", - "Epoch 711/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1243\n", - "Epoch 721/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1237\n", - "Epoch 731/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1232\n", - "Epoch 741/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1226\n", - "Epoch 751/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1221\n", - "Epoch 761/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1216\n", - "Epoch 771/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.121\n", - "Epoch 781/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1205\n", - "Epoch 791/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1199\n", - "Epoch 801/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1194\n", - "Epoch 811/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1188\n", - "Epoch 821/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1183\n", - "Epoch 831/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1178\n", - "Epoch 841/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1172\n", - "Epoch 851/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1167\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 861/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1162\n", - "Epoch 871/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1157\n", - "Epoch 881/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1151\n", - "Epoch 891/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1146\n", - "Epoch 901/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1141\n", - "Epoch 911/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1136\n", - "Epoch 921/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1131\n", - "Epoch 931/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1125\n", - "Epoch 941/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.112\n", - "Epoch 951/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1115\n", - "Epoch 961/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.111\n", - "Epoch 971/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1105\n", - "Epoch 981/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.11\n", - "Epoch 991/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1095\n", - "Epoch 1001/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.109\n", - "Epoch 1011/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1085\n", - "Epoch 1021/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.108\n", - "Epoch 1031/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1075\n", - "Epoch 1041/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.107\n", - "Epoch 1051/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1065\n", - "Epoch 1061/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.106\n", - "Epoch 1071/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1055\n", - "Epoch 1081/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.105\n", - "Epoch 1091/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1046\n", - "Epoch 1101/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1041\n", - "Epoch 1111/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1036\n", - "Epoch 1121/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1031\n", - "Epoch 1131/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1026\n", - "Epoch 1141/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1022\n", - "Epoch 1151/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1017\n", - "Epoch 1161/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1012\n", - "Epoch 1171/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1007\n", - "Epoch 1181/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1003\n", - "Epoch 1191/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.0998\n", - "Epoch 1201/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.0993\n", - "Epoch 1211/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0989\n", - "Epoch 1221/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.0984\n", - "Epoch 1231/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.098\n", - "Epoch 1241/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0975\n", - "Epoch 1251/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.097\n", - "Epoch 1261/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0966\n", - "Epoch 1271/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.0961\n", - "Epoch 1281/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0957\n", - "Epoch 1291/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0952\n", - "Epoch 1301/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0948\n", - "Epoch 1311/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0943\n", - "Epoch 1321/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0939\n", - "Epoch 1331/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0935\n", - "Epoch 1341/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.093\n", - "Epoch 1351/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0926\n", - "Epoch 1361/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0921\n", - "Epoch 1371/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0917\n", - "Epoch 1381/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0913\n", - "Epoch 1391/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0908\n", - "Epoch 1401/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0904\n", - "Epoch 1411/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0899\n", - "Epoch 1421/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0895\n", - "Epoch 1431/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.089\n", - "Epoch 1441/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0886\n", - "Epoch 1451/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0881\n", - "Epoch 1461/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0877\n", - "Epoch 1471/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0872\n", - "Epoch 1481/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0868\n", - "Epoch 1491/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0863\n", - "Epoch 1501/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0858\n", - "Epoch 1511/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0854\n", - "Epoch 1521/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0849\n", - "Epoch 1531/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0845\n", - "Epoch 1541/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.084\n", - "Epoch 1551/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0835\n", - "Epoch 1561/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0831\n", - "Epoch 1571/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0826\n", - "Epoch 1581/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0822\n", - "Epoch 1591/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0817\n", - "Epoch 1601/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0813\n", - "Epoch 1611/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0808\n", - "Epoch 1621/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0804\n", - "Epoch 1631/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0799\n", - "Epoch 1641/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0795\n", - "Epoch 1651/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.079\n", - "Epoch 1661/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0786\n", - "Epoch 1671/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0781\n", - "Epoch 1681/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0777\n", - "Epoch 1691/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0772\n", - "Epoch 1701/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0768\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1711/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0763\n", - "Epoch 1721/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0759\n", - "Epoch 1731/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0755\n", - "Epoch 1741/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.075\n", - "Epoch 1751/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0746\n", - "Epoch 1761/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0742\n", - "Epoch 1771/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0737\n", - "Epoch 1781/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0733\n", - "Epoch 1791/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0729\n", - "Epoch 1801/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0724\n", - "Epoch 1811/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.072\n", - "Epoch 1821/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0716\n", - "Epoch 1831/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0711\n", - "Epoch 1841/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0707\n", - "Epoch 1851/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0703\n", - "Epoch 1861/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0699\n", - "Epoch 1871/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0694\n", - "Epoch 1881/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.069\n", - "Epoch 1891/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0686\n", - "Epoch 1901/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0682\n", - "Epoch 1911/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0678\n", - "Epoch 1921/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0674\n", - "Epoch 1931/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0669\n", - "Epoch 1941/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0665\n", - "Epoch 1951/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0661\n", - "Epoch 1961/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0657\n", - "Epoch 1971/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0653\n", - "Epoch 1981/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0649\n", - "Epoch 1991/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0645\n", - "Epoch 2001/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0641\n", - "Epoch 2011/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0637\n", - "Epoch 2021/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0633\n", - "Epoch 2031/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0629\n", - "Epoch 2041/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0625\n", - "Epoch 2051/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0621\n", - "Epoch 2061/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0617\n", - "Epoch 2071/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0613\n", - "Epoch 2081/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0609\n", - "Epoch 2091/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0605\n", - "Epoch 2101/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0601\n", - "Epoch 2111/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0598\n", - "Epoch 2121/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0594\n", - "Epoch 2131/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.059\n", - "Epoch 2141/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0586\n", - "Epoch 2151/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0582\n", - "Epoch 2161/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0578\n", - "Epoch 2171/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0575\n", - "Epoch 2181/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0571\n", - "Epoch 2191/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0567\n", - "Epoch 2201/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0563\n", - "Epoch 2211/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.056\n", - "Epoch 2221/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0556\n", - "Epoch 2231/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0552\n", - "Epoch 2241/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0549\n", - "Epoch 2251/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0545\n", - "Epoch 2261/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0541\n", - "Epoch 2271/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0538\n", - "Epoch 2281/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0534\n", - "Epoch 2291/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.053\n", - "Epoch 2301/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0527\n", - "Epoch 2311/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0523\n", - "Epoch 2321/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.052\n", - "Epoch 2331/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0516\n", - "Epoch 2341/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0513\n", - "Epoch 2351/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0509\n", - "Epoch 2361/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0506\n", - "Epoch 2371/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0502\n", - "Epoch 2381/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0499\n", - "Epoch 2391/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0495\n", - "Epoch 2401/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0492\n", - "Epoch 2411/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0488\n", - "Epoch 2421/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0485\n", - "Epoch 2431/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0481\n", - "Epoch 2441/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0478\n", - "Epoch 2451/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0475\n", - "Epoch 2461/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0471\n", - "Epoch 2471/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0468\n", - "Epoch 2481/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0465\n", - "Epoch 2491/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0461\n", - "Epoch 2501/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0458\n", - "Epoch 2511/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0455\n", - "Epoch 2521/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0451\n", - "Epoch 2531/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0448\n", - "Epoch 2541/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0445\n", - "Epoch 2551/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0442\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2561/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0438\n", - "Epoch 2571/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0435\n", - "Epoch 2581/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0432\n", - "Epoch 2591/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0429\n", - "Epoch 2601/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0426\n", - "Epoch 2611/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0423\n", - "Epoch 2621/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.6985\n", - "Relative Entropy: 0.042\n", - "Epoch 2631/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0416\n", - "Epoch 2641/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0413\n", - "Epoch 2651/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.041\n", - "Epoch 2661/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0407\n", - "Epoch 2671/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0404\n", - "Epoch 2681/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0401\n", - "Epoch 2691/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0398\n", - "Epoch 2701/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0395\n", - "Epoch 2711/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0392\n", - "Epoch 2721/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0389\n", - "Epoch 2731/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0386\n", - "Epoch 2741/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0383\n", - "Epoch 2751/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.038\n", - "Epoch 2761/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0378\n", - "Epoch 2771/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0375\n", - "Epoch 2781/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0372\n", - "Epoch 2791/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0369\n", - "Epoch 2801/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0366\n", - "Epoch 2811/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0363\n", - "Epoch 2821/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.036\n", - "Epoch 2831/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0358\n", - "Epoch 2841/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0355\n", - "Epoch 2851/3000...\n", - "Loss Discriminator: 0.6898\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0352\n", - "Epoch 2861/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0349\n", - "Epoch 2871/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6971\n", - "Relative Entropy: 0.0347\n", - "Epoch 2881/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0344\n", - "Epoch 2891/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0341\n", - "Epoch 2901/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0339\n", - "Epoch 2911/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0336\n", - "Epoch 2921/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0333\n", - "Epoch 2931/3000...\n", - "Loss Discriminator: 0.6901\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0331\n", - "Epoch 2941/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0328\n", - "Epoch 2951/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.697\n", - "Relative Entropy: 0.0326\n", - "Epoch 2961/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0323\n", - "Epoch 2971/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.032\n", - "Epoch 2981/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0318\n", - "Epoch 2991/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0315\n", - "qGAN training runtime: 35.40391653776169 min\n" - ] - } - ], - "source": [ - "# Run qGAN\n", - "qgan.run()\n", - "\n", - "# Runtime\n", - "end = time.time()\n", - "print('qGAN training runtime: ', (end - start)/60., ' min')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Training Progress & Outcome\n", - "Now, we plot the evolution of the generator's and the discriminator's loss functions during the training as well as the progress in the relative entropy between the trained and the target distribution.\n", - "
Finally, we also compare the cumulative distribution function (CDF) of the trained distribution to the CDF of the target distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd8VMX2wL8nPSSUQCBAQAgdUoFQFEFEUfBZUFEpKqhPREF9duyKP32iKDYUeSgqjycgNlRsCFGQFkroHQKEngRIL5vM748t2U12k03Z7CbM9/PJJ3vnzsw9cze5586cM+eIUgqNRqPRaMrDy90CaDQajcbz0cpCo9FoNBWilYVGo9FoKkQrC41Go9FUiFYWGo1Go6kQrSw0Go1GUyFaWWguOERkh4gMrqG+BotISg31NV5EVtVEX05e70YROSoiWSLSsxavO1ZEfqut62lqBq0sNGUQkWQRyTU9RE6JyGciEuxuuWoKpVSkUiqhKm1FRIlIpxoWyV1MByYrpYKVUptdcQERaW+6Zz7mMqXUfKXUVa64nsZ1aGWhccR1SqlgoBcQDzxXuoIYqbG/IesHiqZWaAfscLcQmrqBVhaaclFKHQN+BqIARCRBRF4Vkb+BHKCDiLQWkSUiki4i+0XkXnN7EQkUkc9F5KyI7BKRJ62XbUyzmKdEZCuQLSI+pv6+FpEzInJIRB6yqt9XRDaISIZp1vO2qTxARP4rImkick5EEkUkzN6YTNe80vT5JRFZJCJfiEimaYkq3kG7v0wft5hmXbdZnXtMRE6LyAkRucuq3F9EpovIEZO8s0Qk0Jl7LyKXmMZx3vT7Eqtz40XkoEnmQyIy1lTeSUT+NLVJFZGFdvr1F5EswNs0lgOmcptZk2lG+X+mz4NFJKWccQaKyFsicth07VWmcZrv2TnTPbu49HJbBeNMEJFXRORv01h/E5FQZ+6fpmbRykJTLiLSFrgGsF6muAOYADQEDgMLgBSgNTASeE1Ehpjqvgi0BzoAQ4Hb7VxmNPAPoAlQDPwAbAHCgSuAf4nI1aa67wLvKqUaAR2BRabycUBjoC3QDJgI5Do5zOtNY2gCLAE+sFdJKTXI9DHWtHRjfhC3NF07HLgHmCkiIaZzrwNdgDigk6nOCxUJJCJNgZ+A90zjeRv4SUSaiUiQqXy4UqohcAmQZGr6CvAbEAK0Ad63M45806zRPJaOFcnjxDinA71NsjQFnsT4XZrvWRPTPVvj7Ditqo0B7gJaAH7A407Kq6lBtLLQOOI7ETkHrAL+BF6zOveZUmqHUsqA8QEyAHhKKZWnlEoC5gB3mureCrymlDqrlErB+FAozXtKqaNKqVygD9BcKTVVKVWglDoI/AcYZapbCHQSkVClVJZSaq1VeTOgk1KqSCm1USmV4eRYVymlliqlioB5QKyT7cwUAlOVUoVKqaVAFtBVRASjUn1EKZWulMrEeB9HldOXmX8A+5RS85RSBqXUl8Bu4DrT+WIgSkQClVInlFLm5aRCjMtLrU3fR00azB2N0wu4G3hYKXXMdP9XK6Xya2CcAHOVUntNfx+LMCpeTS2jlYXGESOUUk2UUu2UUg+Y/lHNHLX63BowPwjNHMb49mk+b13f+rO9snZAa9NS0jmTwnoGMC8p3YPxTX23acniWlP5POBXYIGIHBeRN0TE18mxnrT6nAMESOXsJ2kmxWndRzDQHGgAbLQayy+m8opojfE+WnMYCFdKZQO3YZw9nRCRn0Skm6nOk4AA601LandXYhwV4WicoUAAcKAKfTocp9Vx6e+n3jhb1CW0stBUBetQxceBpiLS0KrsIuCY6fMJjMshZtpW0N9R4JBJUZl/GiqlrgFQSu1TSo3GuCQxDVgsIkGmt92XlVI9MC6FXEvJ7MZdpGJcCou0GktjqyWg8jiOUXFaY7mvSqlflVJDgVYY38T/Yyo/qZS6VynVGrgP+FCc997KwajczLR0sl0qkIdxWbA0FYW1LnecGs9BKwtNtVBKHQVWA/82GZljML79/9dUZRHwtIiEiEg4MLmCLtcDmWI0egeKiLeIRIlIHwARuV1EmiulioFzpjbFInK5iESLiDeQgXHJpLhmRwvAKYz2lwoxyfgfYIaItAAQkXAr+0t5LAW6iMgYMRr9bwN6AD+KSJiI3GCyXeRjXA4qNvV/i4iYlfNZjA9rZ+9DEjDGdM+HAZdVYpyfAm+L0TnB22TI9gfOmK7v6J45HKeTMmtqCa0sNDXBaIxG7OPAt8CLSqllpnNTMRq/DwHLgMUYH3B2MdkNrsW4Ln0I41vrHIyGVYBhwA6TN8+7wCjTEllLU98ZwC6MdpZ5NTbCEl4CPjctK93qRP2ngP3AWhHJwHgPulbUSCmVhvE+PAakYVxeulYplYrx//ZRjPc7HeND/X5T0z7AOtP9WYLRjnDQybE9jNFWcA4YC3znZDswGp23AYkmmaYBXkqpHOBV4G/TPetfiXFqPAjRyY80tYmI3I/xAe/UW6tGo/EM9MxC41JEpJWIDBARLxHpivEN8lt3y6XRaCqH3jGrcTV+wMdABMbljQXAh26VSKPRVBq9DKXRaDSaCtHLUBqNRqOpEK0sNBqNRlMhLrVZmHy138UYsGyOUur1UudnAJebDhsALZRSTazONwJ2At8ppcr1zw8NDVXt27evsqzZ2dkEBQVVub2nUF/GAXosnkp9GUt9GQdUbywbN25MVUpVHFVAKeWSH4wK4gDGzTh+GAPD9Sin/oPAp6XK3gX+B3xQ0fV69+6tqsOKFSuq1d5TqC/jUEqPxVOpL2OpL+NQqnpjATYoJ57prlyG6gvsV0odVEoVYPSCuaGc+qOBL80HItIbYzwgnVFLo9Fo3IwrlUU4tgHiUrANDmZBRNphdK1cbjr2At5ChyLWaDQaj8BT9lmMAhYrY6gHgAeApUqpFGOUZ/uIyASMIaAJCwsjISGhygJkZWVVq72nUF/GAXosnkp9GUt9GQfUzlhcqSyOYRthtA2OI0mOAiZZHV8MDBSRBzCGI/YTkSyl1BTrRkqp2cBsgPj4eDV48OAqC5uQkEB12nsK9WUcULfGUlhYSEpKCnl5eXbPN27cmICAgFqWyjXUl7HUl3GAc2MJCAigTZs2+Po6G7nfFlcqi0Sgs4hEYFQSozBmvLLBFIc/BLBk0FJKjbU6Px6IL60oNBpPIiUlhYYNG9K+fXvszYYzMzNp2LChnZZ1j/oylvoyDqh4LEop0tLSSElJISIiokrXcJnNQhmTpEzGmJBmF7BIKbVDRKaKyPVWVUcBC0xWeY2mTpKXl0ezZs3sKgqNxt2ICM2aNXM483UGl9oslDH14tJSZS+UOn6pgj4+Az6rYdE0mhpHKwqNJ1Pdv0+9g1ujqSecOnWKMWPG0KFDB3r37s3FF1/Mt9+6L8BvQkICq1evrnYf1157bcUVq8Dq1auJjIwkLi6O3Nzcihs4yWuvvWZzfMkll9RY3+5EKwuNph6glGLEiBEMGjSIgwcPsnHjRhYsWEBKSopLr2swGByeq4qyKK+/mmbRokU8/fTTJCUlERgYWGP9llYW1VWYnoJWFlWgKKuAw1OXk739lLtF0WgAWL58OX5+fkycONFS1q5dOx588EEAioqKeOKJJ+jTpw8xMTF8/PHHQInH2ciRI+nWrRtjx441R09g48aNXHbZZfTu3Zurr76aEydOAHDNNdfwr3/9i/j4eN59911++OEH+vXrR8+ePbnyyis5deoUycnJzJo1ixkzZhAXF8fKlStJTk5myJAhxMTEcMUVV3DkyBEAxo8fz8SJE+nXrx9PPvmkwzGmp6czYsQIYmJi6N+/P1u3bgXgzz//JC4ujri4OHr27ElmZiYnTpxg0KBBxMXFERUVxcqVK236mjNnDt988w3PP/88Y8eOLTODmTx5Mp999hkA7du358UXX6RXr15ER0eze/duwOiuetdddxEdHU1MTAxff/01U6ZMITc3l7i4OMaONfrpBAcbU64rpXjiiSeIiooiOjqahQsXVvgdeBKess/Coyk8k41PSCAInPpsE+cTDnH2132c+GAt8fsexadx/XC/09RdduzYQa9evRye/+STT2jcuDGJiYnk5+czYMAArrrqKgA2b97Mjh07aN26NQMGDODvv/+mX79+PPjgg3z//fc0b96chQsX8uyzz/Lpp58CUFBQwIYNGwA4e/Ysa9euRUSYM2cOb7zxBm+99RYTJ04kODiYxx837q297rrrGDduHOPGjePTTz/loYce4rvvjJlbU1JSWL16Nd7e3g7H8OKLL9KzZ0++++47li9fzp133klSUhLTp09n5syZDBgwgKysLAICApg9ezZXX301zz77LEVFReTk5Nj09c9//pMVK1Zw4403MnLkyAr3KISGhrJp0yY+/PBDpk+fzpw5c3jllVdo3Lgx27Zts9yHm2++mQ8++ICkpKQyfXzzzTckJSWxZcsWUlNT6dOnD4MGDXL4HVx66aXlylTbaGVRAXkH00nqP4sG0WG0vLcPyU/bRh/Z0Pltwh+7lNy9qRTnFNL1f7dqQ+cFztoWr1VcqQr0P/2M03UnTZrEqlWr8PPzIzExkd9++42tW7eyePFiAM6fP8++ffvw8/Ojb9++tGnTBoC4uDiSk5Np0qQJ27dvZ+jQoYBxZtKqVStL/7fddpvlc0pKCrfddhsnTpygoKDAoWvmmjVr+OabbwC44447bGYRt9xyS7mKAmDVqlV8/fXXAAwZMoS0tDQyMjIYMGAAjz76KGPHjuWmm26iTZs29OnTh7vvvpvCwkJGjBhBXFyc0/fOHjfddBMAvXv3toxh2bJlLFiwwFInJCSkQvlHjx6Nt7c3YWFhXHbZZSQmJtKoUSO734GnKQu9DFUB51YYc93nbDvFwYd+tFvn2FurSP9hN+f+OEBxdmFtiqfRABAZGcmmTZssxzNnzuSPP/7gzJkzgHEJ5P333ycpKYmkpCQOHTpkmVn4+/tb2nl7e2MwGFBKERkZaam/bds2fvut5EXJOsLpgw8+yOTJk9m2bRsff/xxldwzqxP9dcqUKcyZM4fc3FwGDBjA7t27GTRoEH/99Rfh4eGMHz+eL774otw+fHx8KC4uthyXHoP5HpnvT01j7zvwNPTMosbxvLVGTe1ibwbg6g1gQ4YM4ZlnnuGjjz7i/vvvB7BZern66qv56KOPGDJkCL6+vuzdu5fwcLuh2gDo2rUrZ86cYc2aNVx88cUUFhayd+9eIiMjy9Q9f/68pa/PP//cUt6wYUMyMjIsx5dccgkLFizgjjvuYP78+QwcOLBSYxw4cCDz58/n+eefJyEhgdDQUBo1asSBAweIjo4mOjqaxMREdu/eTWBgIG3atOHee+8lPz+fTZs2ceeddzrsu127duzcuZP8/Hxyc3P5448/KnyzHzp0KDNnzuSdd94BjMtQISEh+Pr6UlhYWGan9MCBA/n4448ZN24c6enp/PXXX7z55psWG4ino2cWFVHJJSVVbAznm7nhGKcXbMVwtuZc8jQaR4gI3333HX/++ScRERH07duXcePGMW3aNMC4Rt+jRw969epFVFQU9913X7lvr35+fixevJinnnqK2NhY4uLiHHr1vPTSS9xyyy307t2b0NBQS/l1113Ht99+azFwv//++8ydO5eYmBjmzZvHu+++W6kxvvTSS2zcuJGYmBimTJliUUzvvPMOUVFRxMTE4Ovry/Dhw0lISCA2NpaePXuycOFCHn744XL7btu2LbfeeitRUVHceuut9OzZs0J5nnvuOc6ePUtUVBSxsbGsWLECgAkTJhATE2MxcJu58cYbiYmJITY2liFDhvDGG2/QsmXLSt0Dd1JvcnDHx8crs8GtKjiKQ3Tqs00cevIX5+XY8wjnVyWz7x6jf7v4etH3yJOId+3o5boUT6ki6tJYdu3aRffu3R2ev5BCS9QV6ss4wPmx2Ps7FZGNSqn4itrqmUU5KKUoyiqoVJvigiKLogBQhcUceWVFTYum0Wg0tYpWFuVwZOoKjkxdXqk2WwZ8XKbsxIfrakokjUajcQtaWZTDiZlrK92mKCPfbrkqrvpyn1KKglNZVW6v0Wg01UUri1oiMeJNtg//jB0j/kvG2qMVN7Ai5c2VbIp+j5OfVN0mo9FoNNVBK4taojjXQNbG42SuPsLO6+ex/ZrPOfjEz061PTZ9FQBHp/3lShE1Go3GIVpZuImsDcc4/flmCk5kcvz9NRgy8iqOB1M/HNc0Gk0dRCsLN7Pz5vkceWUFGzq9zbqwf3Ny7kYA8g6dpfBMtk1dVVhkrwuNBjDu/I2LiyMyMpLY2Fjeeusty67kDRs28NBDD1X7GrNmzeJ///tfpdpUJ0T3Z599xvHjx6vcHoz7M6ZPn16tPhzx3nvv0b179zJ7KqpDcnKyzT2uqe+uuugd3G4mb3+6zXHyU78SelMkSf0+Amx3Axfn6FAiGscEBgZaAtidPn2aMWPGkJGRwcsvv0x8fDzx8RW60peLwWBg4sSJZGZmVqpddUJ0f/bZZ0RFRdG6dWun2xQVFVUYZ6qm+PDDD1m2bJklrlNNYFYWY8YYs1DXxHdXE+iZhQPyDp9z27ULjmdUXEmjKYcWLVowe/ZsPvjgA5RSNiG47YX0Bpg2bRrR0dHExsYyZYox5f3gwYNtwpG/9NJLvPfee5ZzjzzyCPHx8XTv3p3ExERuuukmOnfuzHPPPWeRxRyiu7xQ3FOnTqVPnz5ERUUxYcIElFIsXryYDRs2MHbsWEuCoj/++IOePXsSHR3N3XffTX6+0fuwffv2PPXUU/Tq1YuvvvrK4X1JSkqif//+xMTEMGbMGM6ePQsYZwg9evQgJiaGUaNGlXufzEycOJGDBw8yfPhwZsyYUWYGExUVRXJyMsnJyXTv3p17772XyMhIrrrqKkuypf3793PllVcSGxtLr169OHDgAFOmTGHlypXExcUxY8YMm+/OUZj21157jbvvvpvBgwfToUMHy3dUk2hl4YBjM/5227ULU0ti+uQeTC+npkbjmA4dOlBUVMTp06dtys0hvZOSkli5ciWBgYH8/PPPfP/996xbt44tW7bYRIQ1hyN/7LHHylzDz8+PDRs2MHHiRG644QZmzpzJ9u3b+eyzz0hLSytTf/Pmzbzzzjvs3LmTgwcP8vffxv+zyZMnk5iYyPbt28nNzeXHH39k5MiRxMfHM3/+fJKSkhARxo8fz8KFC9m2bRsGg4GPPvrI0nezZs3YtGmT5WFvjzvvvJNp06axdetWevTowcsvvwzA66+/zubNm9m6dSuzZs1yeJ+smTVrFq1bt2bFihU88sgj5X4X+/btY9KkSezYsYMmTZpYoueOHTuWSZMmsWXLFlavXk2rVq14/fXXGThwIElJSWX6NYdp37p1K6+99ppNvKvdu3fz66+/sn79el5++WUKC2t2JUIvQzlAvNwXZjzfalazpf8su3WUUhSezsbLz9uYa0PjMdwXP9sl/X68YUKN9GMvpPeyZcu46667aNCgAQBNmza11LcOR16a66+/HoDo6GgiIyMtYcw7dOjA0aNHadasmU19R6G4V6xYwRtvvEFOTg7p6elERkZy3XXX2bTds2cPERERdOnSBYBx48Yxc+ZM/vWvf1UoJxgDHp47d47LLrsMgDFjxnDXXXcBWGI5jRgxghEjRji8T1UlIiLCEia9d+/eJCcnk5mZybFjx7jxxhsBCAioOC+OozDtAP/4xz/w9/fH39+fFi1acOrUqRpdHtMzCwcUu9GYfOyd8mc1ObtOk9jhLTZFv8eGrjNqSSpNXePgwYN4e3vTokULm3J7Ib3Lo7zw4ebQ2l5eXjZhtr28vOwGKrQXijsvL48HHniAxYsXs23bNu69995aD3P+008/MWnSJDZt2kSfPn0wGAyVvk/lhTmvjRDkrr6Gnlk4IHXhNpvjbgtu48SH68jccMzlhub8I+fLPZ/83O8UZ1cuZpWm9rA3A6jtoHVnzpxh4sSJTJ48uUwyLnshvYcOHcrUqVMZO3YsDRo0ID093WZ24UrMD9XQ0FCysrJYvHgxI0eOBIxhzs22gq5du5KcnMz+/fvp1KkT8+bNs8wSnKFx48aEhISwcuVKBg4cyIIFC7jssssoLi7m6NGjXH755Vx66aUsWLCArKws0tLSytynbt26Oey/ffv2/PijMefNpk2bOHToULnyNGzYkDZt2vDdd98xYsQI8vPzKSoqshlzaRyFaa8NtLKwQ87uMzbHEW8Oo8mQjjQZ0hFwXSY0ZxGf2vH00NQtzLmfCwsL8fHx4Y477uDRRx8tU++dd95hxYoVeHl5ERkZyfDhw/H39ycpKYn4+Hj8/Py45ppreO212vk7b9KkCffeey9RUVG0bNmSPn36WM6Z83MHBgayZs0a5s6dyy233ILBYKBPnz42Oced4fPPP2fixInk5ORw0UUXMW/ePIqKirj99ts5f/48SikeeughmjRpwvPPP1/mPpXHzTffzBdffEFkZCT9+vWzLJeVx7x587jvvvt44YUX8PX15auvviImJgZvb29iY2MZP368Tbj0l156ibvvvpuYmBgaNGhgkz/E1egQ5Sasw2Gn/7ibvXd/YzkXvexugmJK4s67U1n03DyZzT0/sCmzdq+tS2G9K6IujUWHKK971JdxgA5R7jH4tbGd5kUuHecmSeD4e1X3Wa8uRdkFnJ6fRGFaTsWVNRpNvUIrCzuUnmz5Nm1gc9wwPpyu/73FpqzlhD7UBqfmbipTduSVFWyO/9AmMm3hmWzSluxCGYrL1K8qh1/8g4OPLGX3mIU11qdGo6kbuFRZiMgwEdkjIvtFZIqd8zNEJMn0s1dEzpnK24nIJlP5DhGp3MJktal4aS7kqs6Wz+LvjXdD/3Jqu5bj768h/8g5jr+/xlK2/ZrP2ffPbzn5n0SK8wwU51XfM+J8wkEAsjefqHZfGo2mbuEyA7eIeAMzgaFACpAoIkuUUjvNdZRSj1jVfxAwW3JOABcrpfJFJBjYbmpbvSAxrsQDbD+qoAjwxXA+z7JX49j7azg8dTni7UW/lKeqeQX37T2pCyilyngeaTSeQnXt066cWfQF9iulDiqlCoAFwA3l1B8NfAmglCpQSpmzCPm7WM4aoTrJjWqKU59twnvZKQ4+XhL63JCaA0UKVVBU7T8WrSscExAQQFpaWvXvsUbjApRSpKWlObXxzxGudJ0NB6yz/KQA/exVFJF2QASw3KqsLfAT0Al4olZnFZX9fxcBD1AWAL6zD5DZwsHmpGIF3vqJ7wratGlDSkoKZ86csXs+Ly+vWv+onkR9GUt9GQc4N5aAgIBq7ej2lH0Wo4DFSinLtmml1FEgRkRaA9+JyGKl1CnrRiIyAZgAEBYWRkJCQpUFyMrKsrT32p6Kn9U5R/36N/ZFzhdSFOLDkeNHLTez4MHO+PxwnML7O+L33DaksHYVSUFWnt1JwJ8rEsCn6pM0v/w8yxSvOvfaWay/k7pOVlaWJaBeXae+jKW+jAOcH8vhw4erfA1XKotjQFur4zamMnuMAibZO6GUOi4i24GBwOJS52YDs8G4z6I6PvnWPv1p53eyj70AhFzdma4O+s1Z0oOjr//FRc9fjm/zIHYfWkiL22NpMTYOnjfWWffCDhQloUN8mgZiSM+tspzOIDn2Q5UMGjgIL3/jV5536CxF2QUERYU53W9Sg93kYdxtWxv7H+rSPouK0GPxPOrLOKB2xuJKW0Ai0FlEIkTED6NCWFK6koh0A0KANVZlbUQk0PQ5BLgU2ONCWR3S9tnBDs816N6Crp+PJLBTM3waBxD18zijonBA+9eG0nvXv2jYr+aCe1UGVWSc4ZxbfoCkfh+xbcgnGDIqH4NHo9FceLhMWSilDMBk4FdgF7BIKbVDRKaKyPVWVUcBC5StZbA7sE5EtgB/AtOVUrbBmlxIkVXsJ6+A6k2+ml1rjCXT5KpOtPxnH7d6y5z7Yz+5+9PYPapkn4R1OPQK0eYOjeaCxaU2C6XUUmBpqbIXSh2/ZKfd70CMK2Urj4MP/1RyUM1Q5RFvDqfxkI6EDCvZl6EMJXoxOD4cMObkdjX77vm2bGFlvHe0stBoLlg8xcDtsYh39SZf3sF+NL8lyqZMWYUxbv/qUBpEhZH27U4OTP4BAK8GvrWXQtUznLg0Go2H4/H7F9yNuMLVtMjqCS2Cl683fi1LPBlajI2t+Ws6Qinyj2dQnG+oOIeH3nCm0Vyw6JlFRbjgARnYrTnZW086rlCLb/sp01eR9q1lUz2hI6Po9OH1dutqXaHRXLjomUVFuOAB2f7/rqz5TquItaIASF283U2SaDQaT0YrCzfg06RszuyAjiW5it0dMsLh9fXUQqO5YNHKws34hzey/I7+4x56bXnQ7Ubn/fd/T+6+VAznjJsHDedyOT5zLYWp2e4VTKPRuA1ts6gAqabrrCN6bp6M4Vwevs1L4jgFRTu/m9qVpH2zk7RvjMtTMQn/5Oi0vzj78143S6XRaNyJnlmUwnDWNhSHb6iDoHzVxD+8EUGRLeyfdLAMFP7oAJfIUh5bB8+xqygy1x21U1uj0dRXtLIoxe4xi9wtAo0ubV+mrPXDl+DXulHZyiYi3hjmQonKkv6TW6KvaDQaN6GVRSmyNrp+J3VFNL22K90Xj7Ypu+jZweXuthY/bxdLZcuJWetJ/2VvjWTg02g0no9WFh6IiNB4UATeTWzj0zeItLVphD9+Kd7BfoSN70WzET0I6tmqNsVk752LWX/RG6S8uZLc/WnsuPYLMlZXPQSyRqPxXLSyKIeAjk3dev3Wky8GoOWEPgA0jA+n24LbLOfDHxlA/IHHiHhjGN4NfIn+9S63yJny5kr2T/yezPUp7Bwxn62Xz2HXLV9asgdmrD5M3sF0AM7+uo/dYxeVsQ1pNBrPRntDlUP3RaMrruRCWj/Yn6bDO9vswWgypCMxCf9EGYrx8q3dpafyMLvZAuTsOA1A9taT+DTyZ+eI+QD0P/0Me+74CoCUt1fR/pWhtS+oRqOpElpZlIN/28Zuvb6IENg5tEx5gx4OvKjciD1zSsbKZJShuOwJoOh8vt1yjUbjmWhlUc8oeLQrzVbnUJRVQM72UxU3qKnVNPLzAAAgAElEQVTrHj1fpuzIKytq7foajca1aJtFPaO4fzMil9xBty9vq7iyOzHtdVTFCkNmPmf/OOBwFqLRaNyPVhb1FL+wYCLeGIZvaANLWbOberhRIjj7+36b44JTWSR2mM6Gjm+xZ/RCtl4+h4LTWQBkJZ3Ab9JGzv62zx2iajSaUmhlUY8JG9+L8CcGWo47vn8d4u8+o/iesVYbHkU4PT/JJslT7p5Udt5oNIbvv+87vM7ks+f2r2pbTI1GYwetLOo7VoZnL19v+h19iu5fj7GpErd2Yi0LBalfbYPislbxvH1pAKgincJPo/EktLKo71QQ7rzjzOsJ6FD7+0lUYXG50XWtMxQWF1SQwU+j0bgcrSzqOXbDgFgpkNL5wQFa/+sSV4pk4di7qx2ftIr2m59S1tNKo9HULtp1tp7TfGQUqYu20fTabiWFdt7oY9fcR/pPe2gypCOBnZtx/J1yHuQ1hCpnxmCT+7zI1ktKFSuXhY7XaDT20cqinuMV6EvkD3dWWC+wYzPCHzLOKFSRB7iwepdMepWVbSP5+WWc+nwTPdffj1/Lhu6QTKO5INHLUFYUnMpytwi1QkVZW8XbvX8WiV3epuBEpuX4yMvLyT1gNHyf/Hg9Ks/A6flb3CWeRnNBopWFNW7OfV1bBHQIcbcI5VJ0Lo+ic3mW43PLDrDl4o/dKJFGo9HKwooLxV0z4KImRC4dR8+NkxzWCerVuhYlcg57y2O5+1JJ+35nue1yD6aT/Nzvlg1/Go2m8rjUZiEiw4B3AW9gjlLq9VLnZwCXmw4bAC2UUk1EJA74CGgEFAGvKqUWulJWsH0YucOdtDZpGB9e7vmuc2/m5NyNtBgbx7nlB/Bv3cgSMdZdFOeWJFpKmfYXGauPkLEyGYB9935H/IHH8GnoX6bdjmu/wJCaQ96hs3Sbf2ttiavR1CtcpixExBuYCQwFUoBEEVmilLK8BiqlHrGq/yDQ03SYA9yplNonIq2BjSLyq1LqnKvkBWw2ibWbeoVLL+Xp+LVqyEXPDAag5V293SuMidJZDM2KwsyZBVtpdW8fm7L8o+cxpOYAkLvnjEvl02jqM65chuoL7FdKHVRKFQALgBvKqT8a+BJAKbVXKbXP9Pk4cBpo7kJZAVuvG0S7ZpZH5A93EJf4QK1ec9ctX5Z73nA2l7UtXuPAwz9ayjb3nulqsTSaCwJXKotw4KjVcYqprAwi0g6IAJbbOdcX8AMOuEBGWzzBZbQO4BXkR8N+bQlo14R+J5+m36mnCezSrOKGLubY9FUAnPlyq63it2D/BcC6blFWgY5+q9HYwVP2WYwCFiulbHZpiUgrYB4wTilV5j9YRCYAEwDCwsJISEiosgBZWVmsX7ce84r3tm1bKfZNqXJ/7iIrK6ta96E8zBnBCzsGlrmGbyh473XJZavEupb/pnBCR3ytynLzc/lzzg9IloHiOKNHmCRn4/fUFgy3t6NoaEsC7lxHcZg/Be/X7NKbK7+X2qa+jKW+jANqZyyuVBbHgLZWx21MZfYYBdi45ohII+An4Fml1Fp7jZRSs4HZAPHx8Wrw4MFVFjYhIYE+HXqwlSQAYuJiaTK4Y5X7cxcJCQlU5z6Ux1qMu7qbhjSle6lrZDftxrYrP3XJdauK72zbyWhgQCBez2wDoPeOh/FtHsSuUQs4r8B33mHixgxmB+vwOpVf4/fQld9LbVNfxlJfxgG1MxZXLkMlAp1FJEJE/DAqhCWlK4lINyAEWGNV5gd8C3yhlFrsQhltsHaddffGNE/E/6ImADQa2K7MuaCYlrS6v19ti1RlClOzydx4jMx1JbPHE7PWO6xfnG+gKEungtVcuLhsZqGUMojIZOBXjK6znyqldojIVGCDUsqsOEYBC5Sy2RF3KzAIaCYi401l45VSSa6SF0AVW610+WhlUZrIpXeSseowTa/rZvd8u5evwK9VQw6/sKyWJXMSK6cFZShmx/DPbU6nf7/LYdNNPT/AkJpDn+Qn8G7g67CeRlNfcekTUSm1VCnVRSnVUSn1qqnsBStFgVLqJaXUlFLt/quU8lVKxVn9uFRRADaus3pmURa/FsGE3hSJl6/jBEqNLjXOOsTPm06zynN+q33yk89aPqvC8o3YWZuP2xyb3W8LTBFwT36ygf33f+/AkK7R1D/0E9EK62WoijataewTFBVG9LK76bXlQUJviqTvsadoY5Wtz1OoKEfG9qs/s1telFXA0Tf+Ivnp30j9egcZqw/bnC9My2H/A0vIXF/3nCM0mvLwFG8oz8DkOhvcpw2il6GqTFBMS8tnL19v2jwxkPDHL0VEKMouIDFiuhulM1O1GcHR1xI4/1ey5bg431bpHHl5OamLt5O6eDv9Tz9TDfk0Gs9CKwsrzEsKovVEjSMme4F3kB/xex5B/H3wCvQhP/kcSf0+qnV5dl7/3yq1s1YU9ig4nlGlfjUaT0crCyss68/aXuFSfEICLZ8DIjw3Am5e8llOfb6ZrE2OPL7toHf+a+op+qlojWkZyiZLm6bW8G4cwEUvDMGvbWM6vnetu8Uhqe9HnJi5lsw1Rx3WKaMbHPzpeP2dyplF22pOOI2mltHKwgqzgVu89G1xB+1fHUrryf3ptXGSXffcBtFhbpCqYpRSZKw+jOF8no32SP16h+Wz37t7OTD5B4oLyzesazSein4qWmPe6qFnFrVKs5t6IH7ehAztZCnzDvKjYHJn2jw1iIteGIJ3kwC6fHqzG6W0T3F+Eek/7GbniPlsv2quzczi8Et/oIoV+SZ3W6CqdnWNxu1om4UVZs+W8vYRaGqezrNGoAzFZTzQigc1p83gSwFoNamfxUjuSewdt5jmo2MAyDt01jYPilIcevxnTv/X9VuENBpXo2cWVhTnFALgpXfo1joVuSp7oqIwk2e12e/cH1bxqIpVWUVxgaTu1dQ/tLKwwnDemPfZO8jPzZJo6hKODOCFpl3fNugd35o6ilYWVhjSjP/cvi2C3CyJpr6iJxaauopWFlYog9FmIX7aZlEXaBDlmd5R5VKOtjjz1fYy4UM0Gk9BKwsrlMHkOqtDfXgsQXGtAAgdGUXM8nvcLE3lOfr6Xxx84ucy5Tk7T3Ng0hJ2jphPxpojbpBMoykf7Q1lhTmdpo4467l0m38raUt2EXprtLtFqRInPzbmzAhoH0KD7i1Imb6STh9eT+HZXEud4++vodHFFznd55HXEvBpEkjrB+pOPhFN3UMrCyuUeQe3nll4LL7Ng2h5T7zlOGL6cA49bnxTD+zSjNy9ae4SrVIcebkk3fyBh34kc62VkVxBxtojiAgN+7W107qErKQTHH/HmMFQKwuNK9HKwgpl2l2rlUXdIezOnuQdOosyFBH+8CVs7PGu5Vxg9+bk7jrjRumcw0ZRYHxpMQc6rChybfLTv7lMLo3GGv1UtMKyDKWVRZ2i3YtDaP/KUHxDS7zYGg1sT49vxrpRqqpzPuGQ5XNRVoHDekopsreesBzrHBoaV6KfilZYYkNpZVFn6fTh9YTd1Yvui0fj26yBu8WpNgf+9SNrW7zGjhFlQ6qnfrXdJuPfjmu/wGBl+7CHealVo6ks+qlohTZw131CR0YRMW2YR+/4rgzpS3YDkLn6CKe+2MzhF5aRufEYqd/u4MDkH8rU326VV/zMom0k9Z9l2WFuOJtLYse3OPDQj7UjvKZeoW0WVlh83LWy0HggZkP+iVnrHdbJO5hu+WxWJkdeXk6XuTeTvnQPxTmFnFmw1SYEvFKKonN5NnlGNJrS6KeiFQUpxixn51ccdLMkmprCvC+jyxcj6fD2NW6WpnY48NCPNvGqzMur1jnmi/MNls9HXl7Ohq4zSP95b+0JqalzaGVhh/xj5yuupKkTRC0dR+8dD9N0WBda3B6Hd5MAANpNvbLCtk2v7epq8VzCmQVb2XP7opIC04qctb3i+Adrydl9hpNzN3Liw3UAHJvxd22Kqalj6GUoO4Rc1dndImhqCPHxwrd5iZdU7KoJ5Gw/RePLO3D4hWXltu0083q27vmUvH11Y++GNXb3m1gFMUyZ9hcp0/5yeF6jKY1WFlZ4B/tRlFVAsxu6u1sUjYvwaxGM35Bgp+p6BfoSu2oChrO5bOz2joslcx3nlu1nffs3Ce7dutx6qgrKoriwCJVfhHdw5SI1q2KFMhTjpeOw1Rn0MpQVEmDUnTqQoMaMiODbtG674KrCYopzCslYWUGQwkoqi8K0HNaHTyOxw3Tyj2VUqu2Of3zB+rbTKMq2v4/E7Jmo8Ry0srDC7LOu91lcGET+PM7m2NpDqNx2P9zhCnHcjnIQEbe4sMjuuSNTS0KWnP2lcsbxrI3HQEHO9lNlzqUv3cO61q+Tunh7pfrUuBaXPhVFZJiI7BGR/SIyxc75GSKSZPrZKyLnrM79IiLnRKTWnMIt4T50WtULgoa9wy2f/cIb0XxUjMV7yvy7NC3/GY9feKNaka/WMRnAc/emkr31JGD0mtrY4112Xj+vTPUzX24tOfCquX0t+x9YYvNb4xm4zGYhIt7ATGAokAIkisgSpdROcx2l1CNW9R8Eelp18SbQALjPVTKWxuwt4qVnFhcM3o0DKDqfZ8md3eWzmzn5nw20vDfebv3Abs1rU7xaxWyz2HLpbAB6bXuIwjPZFJ3PI3NdCvnHMhwmBhMHyqI4z8Chp36h6fXdCbmio2sE19QKrnwq9gX2K6UOKqUKgAXADeXUHw18aT5QSv0BZLpQvjJYlqH0zOKCIfLHO2hxRxydZl4HgH/rRrR7cQj+rW1nD7GrJtDu1aG0GBtrU9726cto939X0nPz5FqT2WUUG/NqmEme8iunPt1oOd7c8wPWh0/Da3VqmaZpS3bZ7fLU3I2c+XIre0YvdF6OerL7vr4hjtYpq92xyEhgmFLqn6bjO4B+Sqky/1Ui0g5YC7RRShVZlQ8GHldK2V1MFpEJwASAsLCw3gsWLKiyvFkZmYT+cxsAeQsvrrN/sFlZWQQHO+ft4+l47FjO5BEwaRMAeYsusRT7/nsn3pvPOWoFQHHnYLz2ZblUvNrAcE0rfJaesCnLW3QJFBaDb8k7aMCtq23PlyrPnxqF6marmP3vXIvkFZdpU9N47N9XFajOWC6//PKNSin7U2krPMV1dhSw2FpROINSajYwGyA+Pl4NHjy4ygIk/G401omvF4Mvv7zK/bibhIQEqnMfPAlPHUv+0fNsxqgsrOXLi4gjqc+HNnV9QgItwf0a9GhBjyW3k510guztpzmfcNAmwmxdorSiAIhv0pXtV82l9cOXcNGzgwFYS4mysL5X5vJePXuWydmR6LOBIgrKtKlpPPXvqyrUxlhcuQx1DLD+K2hjKrPHKKyWoNyCOeKsXoLSVBH/ixoTems04Y8OsJRFL7u7pIKAT6MAGg+KoPUD/ei+aDRBvcrf+1CXOP7uapvfVSF7x+lyw7Jr3IcrZxaJQGcRicCoJEYBY0pXEpFuQAiwxoWyVIzOv61xEkf7cESETh8YbR+tJvVH5RnwbR5Eu1eHcvjZ32n3StkQI4Gdm5G96bhL5a0t0n/aY/mcvfUkQTEt7dYznLMKo15quXfb5XNcIpum+rhMWSilDCIyGfgV8AY+VUrtEJGpwAallNkvbhSwQJUynojISqAbECwiKcA9SqlfXSWv2W1QfLWy0JSPX1gwrSb1x8+BZxCAT0N/aOgPQKt7+7AnIpPGl7YvU6/91CtJXbjNVaK6jVOfb6LghK1/Su6+VAwZ+eywCqNuRilV6bDyhvN5nPp0I6G3ROHfpnG15NVUjEttFkqppcDSUmUvlDp+yUHbga6TzA6WxEd6GUpTMe1eHFK5Bg5mrD4hgcSuuY8tF3/sVDdeDXwpzims3LXdwOl5SWXKMv4+wqEnf7EpS/16Oz7NAtk+/HPaPHap3b7yU86T/OzvtH7oYvxaNoRihX/bxhx66lfSvtnB6flb6LnhAZeMQ1OCpxi43Y7oZSiNmwjs2Iy+R54k6eJZFJjCZrR7+QoOv/iHpU7vXf/i3LID+DYPYveoqnv9uZPSigLg1NxNFKbmUHQuj8PPlw3smP7LXk7+ZwMZK5M5axVCvd/xKcZd4ED+kfI90Bzhtfksp45sJuzOnhVX1uhwHxZ0SlWNG/EK8KHznBvxbRlMl89H0ur+fjS82Ogf0mpSf3ybNaD5bdH4NC0/QZF3sB9+rRrWhsg1RzkxqU7MWk/B8bJxp1RhkY29w7zjvDL4/XsXhx7/2Sb3h8YxemZhxuINpZWFxj007B1O760PWY57fHs7RVn5+DQKsJQFxbQkICKEvEP2H3ANYlrSfeEodt38PzLXp7hc5prA2jBemszVRywBPq0pOGW7V2XblZ/S//QzluPifAOZG45xfMbfiL8P3ebf6vAahvN5QNXsJhcSWlmY0a6zGg9DvMRGUZjLYtdO5NDjP+MV6MvJ2Yk25/3DG+Hl74NXA9/aFNWlqDxDmbI9d3xlt27BiUyKC4tIeXOljeNAUXYB3kEOwqgrKDyTzZbL/kPYHXG0fXpwTYhd79Cv0Wb0MpSmjiAidHjrGtr/39Ay58wZAJ3JBFiXyd2TSr6d5aNNse+TFP9hGQ+z4+879swvTM3m1OebMKTmcGyG/T0iZ77azub4D8k9UPcSYdUU+sloxqBnFpq6h29oSa6Nzp/chG8z43GDbs1p0KOFu8TyOPJTHOfb2DNmUYUviQcmLSH/yDmSn/3d7vn0pXvIO1w1Q3tdQSsLM6aZhY44q6lL9FhSkluj9HJ7509upPHgCKf76vj+dTbr/nUNR4mUAJShgkhCXiX/9+XuIC8qa4w//+ch9o7/ukyol/qGfjKaEG3g1tRBAjs1KzkopS0COzaj+6LRtSyR+0iMmO7wnMo3KgtzGPairHyb8+Jdcu8SO0zn4KNLyTuY7tR1s3ecrrhSPUA/Gc0YzFny9DKUpo7iwJGn6fXdnGruqgjUnkD6T3soOJXFhs5vc+SVFZz5yjYLn3jbPgpP/zeJLYP+g+F8nsP7UnAqi91jF5GxKtlSlm/l5qsMxWW8tpylKvnQXY1WFmb0zEJTxwno2NRuecd3r6XL5yPpvePhctsHRdZvG8epTzdQlJlvNHaXehibs2TalBUUsaHz2+y7+xtLWcbaI5xflczuMQvZFP0e537fz7llB0rO/33E8nnHDf9lU/R7ZNtJHVseBaeySIx4k+Rnf6tUO1ejXWfNaG8oTR0ldu1E8o+cp0FX+1n8vIP8aDq8i+P2qyZQmJpNULT9wH8hw7pUOse2J3L8o/WWzxl/H7Y5d+SVFQ7bWe8DUflF7Lrpf44vYpqF5O5NJSsxxdI+KCrMaTnPLNhKca6Bk//ZQPtXr3K6navRT0YzOtyHpo4S2KEpTZw0ZHf68HrL55iV9xL1y3gCu4TS6JJ2dus37NuGDm8NrxE53Y31fo30Hx1vBKwWpVLTAmSsSraNtOuAjLVHyT+W4XA50d3oJ6OZYu06q6n/BPdtY/ncoGtzgu3k0wiKLZlhiK8Xvs2D6L3jYfzbh9SKjPWNzHUpbL+mbKRda3J2nmbn9fPY3PMDHGkLd9sxtLIwo2cWmguAgIua0OLOnrR95jKHdSKXjiOwi9HLKvTmKAB8mwfRc/39+F+kQ4GXR1F2Acdnri1Tnrc/HVWsyNl9xu5D39qjSrzKKovjM9eyvv2b5Ow5U7MCVwJtszAhOtyH5gKhw/Tyl5W8fL2J/v1ucnadIahnK5tzzrzdht3Vi5b/jCdzXQoHH11aYf36xNFXExzu00h5cyXH3lpFqwf60e6lK2xPWt3X8yuTy7Q98vJySx9d5txkKc/acgL/1o3K1HcFTr1Gi8jDItJIjHwiIptExHMsLzWBNnBrNBa8An0J7tW6TGC9oCj7RnAzTYZ2ImLaMAI7hzrM4VGfKW9D3/H3jKFETny4rqw7rtXx+RUHHfaRvmQ3e+74iqLsAnJ2nWb70LlsjHy3ekI7ibPf5t1KqQzgKowpUO8AXneZVO7AoF1nNZqK6PD2cAwjwh2et15CKb2Y0uHta1wkVd1AFRZbPm/oOoO1rf7NurbTKEzLqdQel7O/7uPkJxvISjrhCjEd4uwylPl7vwaYZ0qP6qE2+ypSpDflaTQV4RsahGFMO3y+O2a/gvVjodTae0An+/tALkSKzpnCohcVsbH7Ow7rHX7xD7v3rSizAN8WwS6Tzx7OvkZvFJHfMCqLX0WkIVBcQZu6hd6Up9E4TY8lt9Nl7s1lysPGl2SdC4optWTl4OW54/vX4RfeiNi/J9SkiPWCEx+t49BjP5c9Uaxslq5qA2dnFvcAccBBpVSOiDQF7nKdWG7AtAzlpZWFRlMhjfpfBBi9pArPZNPhnX/Q5IqO+IWVvO026Naczp/cyL57vgUgoEPZN2S/8EY0vy2a5rdF147g9YTyQq67CmeVxcVAklIqW0RuB3oBtWNVqSXM3lB4a2Wh0ThL9Ip7yNpwjJBhXey6fAb3LNnH4RcWTNRvd7FvwneEXN2Jdi9fabeNMzTo0YKcnRdGAD9Pwdkn40dAjojEAo8BB4AvXCaVOzCHKNeusxqN0/i1CKbpNV0dP/RLrZQEx7Wi5/r7af/KULttmo+Kceq6Ub+Mr6Sk9Ruf/ya7/BrOKguDMprrbwA+UErNBOpYVvgK0K6zGk2N4xVUufSurSb1sznu/J8R9vu1yssd1LMVkT+Pq7xw9QifJcddfg1nn4yZIvI0RpfZn0TEC6g/SX5B5+DWaFyAb9MGdJo9gm4LRznXoNSmv2Y39HBYtcO7/8A3tAEd3/kHDXuHI376f9eVOKssbgPyMe63OAm0Ad50mVTuQO+z0GhcQuiIHjS5vINTdb0b+pcpa/3QxQC0vK+PTXmL0bH02vEwDbqbQquXY/4QXy9CR0bRsG8benx/u3OC1zGUwbUOqk4ZuJVSJ0VkPtBHRK4F1iul6qXNQi9DaTTuw79N2dhTFz13OW2fvozUUgmLANsd5uVs/YqYPpwWo2MBKM4trL6gHkhxXiHewWWVbU3hbLiPW4H1wC3ArcA6ERnpRLthIrJHRPaLyBQ752eISJLpZ6+InLM6N05E9pl+XL8gad6Up5ehNBq30ufgYzQZ2onOc260lJXOZGcPa13R9unLaPfq0JICq9Wt+rpc5UpFAc67zj4L9FFKnQYQkebAMmCxowYi4g3MBIYCKUCiiCxRSu0011FKPWJV/0Ggp+lzU+BFIB7j17zR1PZsJcZWKURHndVoPALvYH+6zb+1THmTKzoC0HiIgyWtUjMLm0OrDWzi7UXPzZNN4cA1zuLsk9HLrChMpDnRti+wXyl1UClVACzA6E3liNHAl6bPVwO/K6XSTQrid2CYk7JWDb2DW6PxaHybB9H3yJN0+/I2+xWstEPTa7varhKUcuH1D2+EYVj5QRE1tjg7s/hFRH6l5GF+G1BR7OFw4KjVcQrQz15FEWkHRADLy2lbJnqZiEwAJgCEhYWRkJBQgUiOkfxCvIGde3ZTnOC+mPHVJSsrq1r3wZPQY/FMPHUs/sVFFhv3umPbIayIANPxnt172JlwzqZ+1i3NCb4hHK/jufhO34Pkls3DXZdw9XfirIH7CRG5GRhgKpqtlPq2BuUYBSxWSlXq21JKzQZmA8THx6vBgwdXWYC/X98FQFRsNE0HO85X7OkkJCRQnfvgSeixeCaeOpazn7Zlz9hFdP74BpoNNrrcrmUdALHXXmwJUWLGehwbZ79HYW5Wrcpb07j6O3F6zUUp9bVS6lHTjzOK4hjQ1uq4janMHqMombVUtm3NUKyXoTSaukzIFR3pd3yKzd6M2L8n0HnOjWUURWk6fXg94udNp1nlrZRf2JT7ZBSRTBHJsPOTKSIZFfSdCHQWkQgR8cOoEJbYuUY3jDkyrCNj/QpcJSIhIhKCMY/Gr5UZWKWxuM7WT08JjeZCoHQIkcDOoTS7vnuF7RoPbE/fI08SelOkU9fpm/JUleSry5S7DKWUqnJID6WUQUQmY3zIewOfmvJgTAU2KKXMimMUsEBZZf9QSqWLyCsYFQ7AVKVUelVlcQbRm/I0mgua0oomuHdrmv6jG74tgjg67S8Kjp63nPNy4H7bec6NNIgKI2vDMQ5M/sFunYjpw0mZvpLCk3Vr2culObiVUkspZQhXSr1Q6vglB20/BT51mXClMQcS1K6zGo0GAKH15P6AMTtduklZNOzbxmGLptd1Q0QI7NDUrrKIXTuRgIgQQoZ1ZlPUewD4t2tC/uFzZepWBtXctXssoBI2i3qP3pSn0Wgw2i98w4KJmD7cUtZh+nDCH7uU6D/uLhMupOn13Syfy0sg2vK+PgR2aIqI4GeV5c4vLJiu/72lWjLXRhokrSzMZBkdsayjWWo0mguP0JFR9Nr6IEGRLSxlPiGBtH1qEEHRLcvsJm8xJs5uP+GPDrA5bv/KULv18BZCrurMRS8OqbrQtZDkWisLE5JtAMA3rHbz2mo0Gs+jvBmCmUYD2yM+XjTs24b4A4/R5+DjNufbTrmMqN8rTijq16oRAE2v7VZBzXKoBWVxwb9G71ybwrcfrKdRQAB9srK0gVuj0ThF98WjUYbichOmBce2ot3/XUlAx2ZlzkX+eCcnP91A+1euNBZU64Hvem1xwSuL3KwCjuxOpZ0YlYR2ndVoNM4gIk7ZOFtN6Gu3vGHfNjbGcp/GAXbrOSdM1Zs6ywX/Gu1t8n4yR4LXgQQ1Go078GkcQLcFtnGvfFs6uSyulYXr8fEtpSz0MpRGo3ETTYZ05KLnLweM+cgjf7yTts8NRqwcb9qZl61qmQt+GcrbNI0sFsBbnDJsaTQajatoNak/jQdHENitOV6+3oQ/dAknPlqHIc9Qpm6jge3JWJlMcf+yNpGa5oJXFiUzC+fWHzUajcaViJcQFF0qfLr1Rgqr99kun91M5uojbPE+iqu54NdczDaLInEuG5dGo9F4Cj4N/SPbqeYAACAASURBVAm5ujPUgq31gn86+liWoUTbKzQajWdinRbWTR6bF/wylLU3lI4LpdFoPBGrOKs0vy2a1K+2ORVNtya54JWFxWbhpM+0RqPR1DbiXWKo8A7yI+rn8bUuwwX/Km32hioSamXdT6PRaCpL1y9uwa9tY7otGOU2GfTMwmpmoZehNBqNJ9KwTxt6bZzkVhku+KejxcCN3pCn0Wg0jrjgn47mmUWRiI4LpdFoNA7QysKvxGah40JpNBqNfS74p6PZdVaJgI8O9aHRaDT2uOCVhYjgbVISxXpmodFoNHbRT0fAxxTmo1jbLDQajcYuWlkA3mZl4aWXoTQajcYeWlkAPuZlKB1IUKPRaOyin46At5dpZqGVhUaj0dhFPx0Bb2/zzEIvQ2k0Go09tLIAfMzKQtssNBqNxi4uVRYiMkxE9ojIfhGZ4qDOrSKyU0R2iMj/rMqnich2089t9trWFN6ilYVGo9GUh8sCCYqINzATGAqkAIkiskQptdOqTmfgaWCAUuqsiLQwlf8D6AXEAf5Agoj8rJTKcIWs5mWoIi890dJoNBp7uPLp2BfYr5Q6qJQqABYAN5Sqcy8wUyl1FkApddpU3gP4SyllUEplA1uBYa4SVM8sNBqNO7FObmRm59oU1v60F4Cf527mu5nryc7I58DWU5Y6edkFbPnrMEWGsu1rGleGKA8HrLOIpwD9StXpAiAifwPewEtKqV+ALcCLIvIW0AC4HNhZqi0iMgGYABAWFkZCQkKVBM3PywHgTHpalfvwFLKysur8GMzosXgm9WUstTGO3EwDvgFeloCl9iguUvwy4zDBzXy59M7WiMDpg7ksn5UCwOnsZH6amQzAz3OTALh8QjiNwvz4/pVDAHQeGIy3j2vH4u58Fj5AZ2Aw0Ab4S0SilVK/iUgfYDVwBlgDFJVurJSaDcwGiI+PV4MHD66SEJveOwlpGTQJDaWqfXgKCQkJdX4MZvRYPJP6MhZXjyPzbC6PD50HQI/+bbjjuUEsX7idpmHBDBkVxZHdqXz/YSLbVxvfqc+fLGDZuyfpN7wTyz/ZZ+nnpzeSy/RdcDKY72fvsRyf2JnP4BmuGwu4VlkcA9paHbcxlVmTAqxTShUCh0RkL0blkaiUehV4FcBk+N7rKkEty1Cil6E0Go3zHN2bxt6Nx7n8tih2rD7K2VNZDLq5B7lZBRzcdtpSb+faFJ6+1uK/w5BRUbwz6Seyz+fb9Jd2PJOln2yu8Lp/L9ljc5yVVoihsMiSn8cVuFJZJAKdRSQCo5IYBYwpVec7YDQwV0RCMS5LHTQZx5sopdJEJAaIAX5zlaDm7RVFWlloNJpSKKVY9/N+IqJaEHZRY7LO5bH97yP0vrID/zfmawAahgTyyXPLAQhr14S3J/5Ybp9fv7eujKKoLtnn82kc2qBG+7TGZcpCKWUQkcnArxjtEZ8qpXaIyFRgg1JqiencVSKyE+My0xMmBREArBTjwzsDuF0pZXCVrGZlUeyqC2g0mhqnyFBMkaEYv4Cae4wV5BnwC/ChuFixf/MJ2nYNZc+G48x9YQUAXfu0Ji+7kMM7zzD3xQRLO7OiACpUFAC/fbGlxmQ240pFAS62WSillgJLS5W9YPVZAY+afqzr5GH0iKoVzKanIj2x0GjqDM+NWED6ySxmrrmHc6ezOXHoHNGXXmRTZ8+G45xPzaHvsE5l2hsKikn4agexl7UnpEUQfy7eyf9eX8W9/74CpWDOM3/QpVcrWncMKekv8bjLx+WpuNvA7RGYV/nKWNA1Go1HYSgswtvHCxEh/WQWAOfO5PDsDQsAeGLO9XSKa0nyzjOs/HYXq77dDUBIWBCde7YiL7uA9x78mfNpOaQeywT28+W0vxl6Rwy/z9sKwPx/ryInw7hEtHfTCfZuOlH7A60knS5u7PJr6F1olCgLvQyl0XguWefymHTxJ8x68nebclVcsscgZV8aAP++81uLogCYfu8PAMx++g/+v73zjo+i2h7496QDoSQEQgm99y5NINIUVLAgggVsYC/PZ+eh6O8p9gZ2HzYQLE8FG1IkUpT2lI50hID0Ggip9/fHTDa72d0sCdlkNznfzyefzNy5M3NOZrNn7j33nLNtzX7bUOSSYygAh6EIJuq1r+j3e6ixwGkayv9xLYqiOHHyaCpfT17Oob0nWbt4F4f2nvTad82ivwBYtWCnS/sU258AEBIiHgPcAJK+WM/6X3d7PBbsVIgJ9/s91FgAofaHS42FohQvHz31C7M/XMW4IdOZfN9sxg2Zzr6dxzz29WID2O4U0Txt4mJu6/Kex37Tn1tyzvL6m4nfXcOgmzq4td/35sVubTdMSHRsh0X5/6tcfRZA6h9/Q0wFMk6nl7QoihKUnDmdQVT5gr/d7tp4yK3tiWGf89byMYSECBlpmbz32HxW//KXS59g8CP4osvARrTqUYdajWL4/KXfGP7P7sTWiOayO7owb9oaMtKyeDXpBkLDQtxWfHUb3IRuFzfhwwlJAIRHqrEoFnJGFql7vA+BFUXxzBev/Ma8aWu55Zl+dBnYyOXYoq83MvOtlQy8vi1NO9WiWkIlKlSK5MDu44y//DOv1/xq0jISGseycdkeN0MB8NLYb4tcj+Jm1ON9HEbgwfeHuBx7ad4oMtOzKBcd4Whr06suaxftcjjxAZ74bJi1zHfPWr/Lq8aC3Lk4TSSoKAVn3jTri+r9x+bTPrE+4RGhZGdl89t3m5n69CIA/vvaMgAqVS3HA+9eyuNXfp7vNZ0dzsFC6551WLdkN3VbxFExphzrf93NZXd2oWaDGN56wIop7n1lCxKvakVGela+8SGR5cKJLOc6UrvrlYswxiBOwcO1GsUCsDVvbgw/oMYCJ59FpP9C5RWlJNmwNJlta/ZzyZiOLl82hWHdvMNk71tH3xGt3Y6lp2awZ+sRVv+y02PaihOHU30aikCjep1KHNjtXh2hU/+GZGdl84ftcL/7tUFer/HOyrFFIsu5PrtzQY0FkBJmGYkNB1JLWBJF8Q+v3WXFxjZoXZ3WPer46O2d1JR01s4+zNrZv1K1VkU2rXQNUlv6wxY+f+m3c5I10Hjyy+Hc3vV9x35UhXD+7+sRVIotxzdvroA8q7NKK2osgCPRkSUtgqIUCyePWC9ER/alEB4ZSsWYcgU6PzMjN3T1zft/cjsebIaibos4Fyf7W8tucTEM9799CSGhIfzznUtI3nKExOGtyM7KdiTsCwktO1PXaiyADhkZ7ArVKSgl8Dh1/Aw7NxykRdcEQmyfWlZmNqFhvle/ZKRnsfibP91SYKSfyXRkQH1r2S2EhIZw6vgZACpUjvJ4rSP7Uph832yuuPu8c1GnRKjVKIa92466tSeOqc3IWy/GGMO8aWtJaFqVkNAQIsuHk3Y6gz7DWtKscy0AmnaqRdNO1nZISO53RbkKEW7XLa2osQDKZWRBFFTxcyIuRSkoE0d/w8HkE4x+og89Lm3Gsh+3MGX8AsY+259O/Rvme+6cj1cz6+2VzHg+N75AxIqEzuHp675i/PRh3N/vY+t+313Do5d8SnhkKBFRYZSvGMmjH1/uMC6T7p3tBy39w0vzRhESKpSvGMmtnd91O14xzvqiFxEGXNfW0T5u6hUs+3ELA65t63ZOXvoMa8mfy/fQOc8qsNKIBuUBYZlWoo/0NL8ltlWUs+bUiTT2brfehA8mW47VDUutqmlTxlvRys5ZTr2xYVmye6OIS12F5C1H+HnGOsd+zrGMtCxOHU/jYPIJ7u/7UeEUKUEuHtOR6CpRlK9oTTFP/C5vdQSIruo5LiS+bmWG3NrZZdmqNyKiwrj79UF0v6TpuQkcBOjIAgjNtOZh09M0laBS8jx04SdkZmTz1H+HO9ryroLJysw/k9n+v46x9Y99bu3HD55ya/vsxV8LKWngMfjmDrTtVY8Grau7tMfWiHbZH3Rje+B0MUoW/OjIAgjJzAZjyEzPIjtL0wkqRU/KkQzHKMEXmRnWZ3DnhoOONk8rJlNTvGccmPwPd+czwFeTlp+VDMFCfN3KTPjiKnpf0YLx069k6O1d3AxFDmOf7U/1upWJrRFN35FtilnS4EdHFgCZ2YQZyBTL+RdVhpxWSvHw7TM7+JYdDodyQRERThxxXdq9d/tRTLbh68nLuW5cLzLTs/jP+AXUax7HgV3Hi0r0EqF8pUjOnEon20vCtpBQoV7Lalw/rjc1G8Rw7WO9fF6zU/+GdOrf0C2wTTk7yryxMNkGDIQZQyZCWqoaC8V/ZGZkE+FkLIwx7N12lBr1qxAaFkL6mVy/2ZlTGY7tI/tTeCVPBbbnb5rp2J5w1ReO7b+3u6/8CWQe/egyUk9l8Ood3wOQ0LQq4z+9ksN/n2Tl3O189foyR98elzalVqNYelza1OvKLV+ooSgcZX4aythzv2F2FLfzP6uiFBbnz1HOslSwpo4O7cmdjvp11iaeGvEl74+bT8qxMzx/c64B+PTZxY7tzf/72+H0DnQSmlb1esx5GW90lSjufn0Q9VtVp8V5tR3tOUuEq9asyIWj2jFp8U2OYw1aV2fAdW0LbSiUwqMjC9tY5ERxr5izjcEeUgQrytmybc1+nr9pJgNHtePKe7ryhlPw2kMXTQWst+m3H5rL0f2Ww/n3+TvYs+UI+4N8+qhNr7rc+fKFHNpzkvDIUF6/+0d6X9nCkR78thcGcGf3/wDw4tzrPb7lx1Sv4LLvnENJjUTJocYij0N75psr1FgoBSItNYMNS5Np1b0OEVFhzP7Ayok05+PV7Nl6hG2r97udM3H0N25twW4obpiQ6FhCWi2hEgCPzxhGVmY2059bQkioEBYeytOzRgLu00EPTRnKvKlruPrBHm7XHvtsf/5csYcOF9T3qw6Kd8q8scDHEkRFcebQ3pNM+dfPDL65A617WlMqU59exPLZWwEYM7EfaxbtcvQP5spsg2/u4JYMsGJMFCePnnHrW6N+Fa+xBqFhIY66DABxtTyXAG3UNp5Gzw/weCzHOa2UHOqzUGNRqtm6ah/fv/872dnuq2oO7T3JyaOpZKRnefRV7dt5jNkfrnI5NuP5JWxbs59J985mwvAvOH7otMNQALz36Hz/KFLMTPjiKobe3oV3Vo7lpXmjHO3/njmSdoPjXPrG163Mox9fnu/1ykVH5JuSWwl8yvzTyzsNpZQuXrhlFmC9+TbrXIvoKtacd2pKOuOGTAesGgsnDqfyxm83OxLEgVWxDeDQnhNcdX93IsuFk3oqN7bh7+1H+fK1pcWlSrHRomttajaIcexHV4micYcapJ/JJLJcGM16V6Fxk0bE1ojmz+V7GHpHl0JVyVOCCzUWOrIISjYsTWb2h6u4YUKiW3SuJ6ZNXMSp42mMerwPPYc04/ih3OjdE4et+IW1i3fRPrE+m1bu5YtXco3Aoq//ZNHXf3q87h8/7zhHTQKH/te2oVajWHoOaeZ27IF3LwUsP0NoWAj9rm8HQOcBpT8nkmKh01BqLIKS1+76gU0r9zL9ucW+OwOnjqcB8M0bVgSzp6ytbz84l7lT1/DK7d+TvPnwWV03oxSliOk6qIlHQwGWkdD4hLJNmTcW2HPZ1bKtf/qEJrElKY1SQE7nk/IiP/JGQ+eQU/6zNHD1A7mrijoP8OwcHjiqnWNbbYGSH341FiJykYhsEpGtIvKIlz7DRWSDiKwXkU+d2p+32zaKyOvip9eaHLdns2wrWjahifeAIiUAyeO3tuo+LyTl2BkyPGQRPnE4lbvPn+IS/Vxa6XV5c8d2t4ubcu/kwTzw3qWOtja96nL5XU71KdRaKPngN5+FiIQCbwADgGRghYjMMsZscOrTBHgU6GmMOSoi1e32HkBPICeh/GKgD5BU5ILaI4ucfxNf2TyVwCLv8/pwQhKAVx8DBG+Uvgjc8OQF/DxjHX85JRn0RmhYCFfd350tv/9Nq+4JhISGuMRy3PXKRS79I7QGvZIP/hxZnAdsNcZsN8akAzOAoXn6jAHeMMYcBTDGHLDbDRAFRACRQDjgHtlUFNjGws4woMYiyNix7oBLMZ/SzD2TBtNtcBO3oNFbnukHQL2W1Rxt46ZeQUhoCP2vacPtLw50JC+sllCJZl1q0XNorm9ixEM96X9tG+LrVSkGLZRgxZ+roWoDzhFJyUDXPH2aAojIEiAUmGCMmW2M+U1EFgB/Y730TzbGbMx7AxEZC4wFiI+PJykpqcBCyu7TRALYuaH27z9QqOsECikpKUEtvzM5uuzfepr184/Qql8sJw6k06hrZZd+E0ZOp1X/qtTv4DnYK5gZMq4Bs562VlytXr2aA2e2uhzvfk0NTkXs5uKH6lMhNpx2KdGER4awfd86truXswCg49XRgHF8TqQ6VKvOWX9uSstnrLToAcWjS0kvnQ0DmgCJQAKwUETaAHFAC7sNYK6I9DLGLHI+2RjzLvAuQOfOnU1iYmKBBTi98QBrWEXOCLxCZCUKc51AISkpKajldyZHl1sfsEpi7t9iLXetHBXv0u/kwQyWTt/H0ulevh2DmIsvH8D8yR9x6ngal18/0BHPEPNyAzYsTebqe7sXKuX5uVBaPmOlRQ8oHl38aSz2AHWc9hPsNmeSgWXGmAxgh4hsJtd4LDXGpACIyI9Ad2ARRYyxZ52i7GmoI/tTivoWSj5kZ2U7vuzWLt7F4pl/Ur9lNSrGlOPnGbsJOeI2oGT+p2uLW8xC0axLLTat2Ov1+APvXUqdZnHc2/sDl/bI8uGknc5NT/7SvFFkZxmX5b7tetejXe96RS+0onjBn8ZiBdBERBpgGYkRQN5CuN8AI4EPRCQOa1pqO9AQGCMiE7GmofoAr/pFSttnEWkvqzm05yTHD52mclx5v9yuLLFuyS4+e+k3xjzTj7rN4ziYfAIRiKttJZl779F5bFi2h4nfXcPMt1bw83SrFvSqBTsd15j2TJG/HxQbMdUqeD3mHC0eERXmcLo361yLGyYkMm/aGmrYUdRWIJyuVFJKFr+NX40xmcBdwE/ARuBzY8x6EXlKRIbY3X4CDovIBmAB8KAx5jDwJbANWAusBlYbY771k6AARDotG1yVtNMvtypLrErayaR7Z3Ng13HeeXgu2dmGf102g3FDZzj6rJy7ndMn0tj8v70OQxFsXHprJ15beCPx9Vz9KDf/uy+teuQOrC8YW5s6zXKXZTunFclpj69XmfvfvoTYGtEM/2cPel/Rws/SK8rZ41efhTHmB+CHPG2PO20b4H77x7lPFnCrP2VzuhcAoSGAHYyrdbjPniP7Uvj+/d8ZcF1batS3VtPc2vldlz6pKekuf9MfpvzBzDdXOPaDOTK4TrM4osqH8+SXw7mty3sATFp8ExFRYRhjqBhbjrrN41jx+28MvWYA3733P7fsrGMm9mfOJ6vpN6J1SaigKGdFSTu4S56cbKROxiIzQ43F2fLJvxeyYWkyqxf+xYtzrid5i3uajFPH01zSYjgbCoDFM73HRAQiYeEhjs9I215WmnIRoWX3BDLTswi3V0uIiEsFuHLREVz1j+5u14upXoGr/+lew0FRAokybyyMI3V17tttZLky/2dxYIxh/W/J1G1WlUpV3f04B3ZbQV4nj6Ty0EVTXRL0OXNf4ode7+Hsowh0np45gl+/3cz37/8OuI6K7nl9kFubopQWNDdUjq0IgZBQ6588Jt53FtNAIeXYGb6evJyDySd8dy4Eq3/5i0n3/Mj4Kz7z2deboQg0+l3TxuuxOs2qElUhN9129bqVadktgbCIUCZ+dw1xtSt5TEIImmxPKd3oK3TOyEKE1j3qsGbRrqDyWTxy8TQy0rL47bvNPD/7uiK//tZVVuzCmVMZpBw7w+/zt9PlwsaUi44AIDvLvahQIPPE51flmyrjX9OuJDUlnTmfrKbroCYOP4zzEt8Lrm7F+l9308NLhlZFKY2UeWPhmIYSCLHfGIMp5UeOL8DbW/3Mt1aQmZ5F35FtiKnufSmnN3IWAAC8euf37N50mGkTF/POyrFkZWZzZF9gx6U4xzrExFegVsMYn3mVykVHMPT2Li5tzoFv5StG8tCUvJlrFKV0U+aNRc7SWSS3xkFWkL0teyMjLdNRQ3nOJ2t4ZcFoyleMBCA72xASIqxbsovf5+/g2sd6ERoWQnZWNhNHf0NszWgatKrOvGm5AXC7N+U6r+d8spqNy/LGWJYsnQc0ZOXc7Y79d1aO5ddvNzmMxaMfWaU/nQ2goihnhxoLkzsNFRoafCMLZw7tPenksM9VzXF8z0nqNo9k08q9TLr3R0Y/3of3x/0MQOqpdKrXqczsD1cBsOvPQ/k6ngOx7oMnG+A8IsgJtDQe6nEripI/Zd7BnfPFYUJyRxanT6SVpEhu7Nt5jLWLd7m0ZWdlM3fqGpe2cUOms+K/Bxz7f210nW7JeaOeMv5nMtKyHIYC4Pf5OxyGIhh55tuRHo1AeIR72m1no5I35kFRFM/oyMLJwf3nCmta5bMXf6XviNaOqZqS5olhnwPw+Ixh1G5sVfJb9uNWvnx1qVvfbcty6xW8OMY16P3o/lMsn72VYweDY9XS2fLkl8OpWrMi2U7G4vYXBwLQtnc9GrWNp2X3BI/njn6iD1fe25Vtq/eT0FQLXymKN8q8schJJIhYX6Y5HDt4inFDZ9DnyhYML4GAqexsg4jrmv2DySccxmLfX8fyPd/TVNpbD8wpWiEDhJwVS+FOxXvaJ9a32iJC3ZzRzktfRYSKMeUc/RVF8UyZn4ZydnA7s2TmJjLTs5hfAjmLUo6d4fbz3nPJo1QQpj2ziBfH+ieVlr9wjm0oLFfc3ZV6Lasx9tn++fbr1L8hjdvXYNh93c75nopSVlBj4eTg9jdZmdlMfXohaxb9lW+/yffNBuDw3pMu7WmpVtrqjLRMMvIpDbrwq41sX+OfwoL+4rpxvfM9/vLPo31eI7ZGNI99fDmd+jfMt19EVBgPvj+EAde1zbefoii5lHlj4RxnUZSsXbyLDUuTXdqWzNrEoq//5I1//OTSnn4mk58+WuWoj7x3+1GP15wyfgE7Nxzkrp5TSmTE40/KV4zI93iFSpHFJImiKJ4o88YC99RQAPzx845CXzIzI4vJ983mtbtcEu5y8kiq++2N4e7zp/DVpOU8OfwLS5R8DNfEUV8XWq5AoVG73Ep3Hfs14IKrW9Giq7sDOjRc6HV5c4ez+r43L6Zu8zie+GyYI/13w7bxbucpilL0lHkHt/NqKGd2b3bPnnq2eMtam+1haafzdFFWZjapKemcOZVbJS09n+mmYKXroCZsW23pfd5FjelwQQMAHnx/CC/cMguwVjit3fQ7Ay7MnZ5qcV5txk29AoDbXxjAHwt20srLKidFUYqWMm8sjFOK8tCwkEIH5K1K2klmRhadBzTyfi8PUWPpTqm7AT58Msll/+7zpxRKnkDklmf6kXI0lfMva86nzy4GcFma3Lh9DXpc2pS0M5nUqF+FP3d6H/iGR4Zx3kWN/S6zoigWZd5Y4JSiPLJcGKdPphfqMjnLUtv1qe/SvmPdAY7uT6Fjv4YuSfemP7+EpM/X03mAqzM2mNJ1F5QuA90NqXOENcDoJxKLSRpFUQqC+ixM7sii/7Vnvzpm6febefm270hNSXcZMRw7cMolRPjZG77hnYfncTD5hEuEcdLn6wFcchkFOv9855Iiv6ZzbISiKIFLmTcWxinOIu9bfg6PDZnOL19uwBjjWL76wRNJbFq5l3mfrnUZMXzw+AKPOYpOHEklK4hSn3uiaadaXo/F1a7o1dkcV7si90wa5NJ2xT1daX9BfZp2rFmUIiqK4id0GsrJwR1VwfPyzcN7T/Lps4tZ+N8NJG85wjPfjnQcSz+T6eLn2Lv9qEdHNsDcT9Z4bC8pLrqhfYHzQfW6vDmLvnYtg/rCT9dRqWp5kr5Y7zG+o+eQZrTqXsel7cJR7QousKIoJUaZH1lENYgl/qZOZLer4shK6o3kLUcAHGm/ATCGjPRcJ3X6mUyPtSWev2lm0QhchFx+13k++9z92kUA9BxqFfq5blxvmtt1pePrVealeaMc5VabdLBGCdFVong16QbHNXoObV6UYiuKUgKU+ZFFhbY1aNC2Bn8lJZ31OYu/yX2znvPJGheneFZmtiNeIhi49bn+vPPwPJe2ui3iCA8PBYGW3RJ4Z+VYl+O3PN2Xpd9vofslTYmuEuVor904lqe+uprKceWJKh9OrUYxnD6RRsXYcsWii6Io/qPMG4uiwNl4BAth4dagsmM/Vz/NP9+5JF/fBEDFmHJeU2XE163s2B4/fRgmQDL3KopybqixKKsUQy6skBABNRSKUioo8z6LssrgmzqUtAiKogQRaizKAFWqV3Br6zOspce+Wp5aURRP+NVYiMhFIrJJRLaKyCNe+gwXkQ0isl5EPrXbLhCRVU4/Z0TkMn/KmsOYif2K4zbFSt+rW+Wb4nv89CuLURpFUYIRvxkLEQkF3gAGAS2BkSLSMk+fJsCjQE9jTCvgPgBjzAJjTHtjTHugL3AaKJYyb50HNOKSMR2L41bnxMMfDHVru/bR8132u13chPDIUAaOapdviu+EJlpOVFGU/PHnyOI8YKsxZrsxJh2YAeT9hhsDvGGMOQpgjDng4TrDgB+NMcVWOPqSsZ2K61aF4uZ/96Vhm3iueeR8GrSpzqtJN/Dyz6PpfaXr1NKNT17A5CU3O0qzXnFPV6/X7DeyNfVbVaNx+xp+lV1RlODEn6uhagO7nfaTgbzfVk0BRGQJEApMMMbMztNnBPCypxuIyFhgLEB8fDxJBYiVyEtKSso5ne8v+t6WwOljmSydsc/RtmHjBk5HJUMcdBtdhWUrf3Uci44LI+VQJh2GVHPTJ7Ju7vbSZb8SFpn7rlC9E1TvFMOixQv9pktBCdRnUhhUl8CjtOgBxaNLSS+dDQOaAIlAArBQRNoYY44BiEhNoA3wk6eTjTHvAu8CdO7c2SQmJhZakKSk66lc7QAAClJJREFUJJzPn87mQl/LE5Hlw0k7neG7oxOX3dmFQTd2wBhDj8S/efm27wAYcOn51G4c6/GcrIxs2rfuQtWaFT0ej3+jMelnMt2y4wYieZ9JMKO6BB6lRQ8oHl38OQ21B3BOCJRgtzmTDMwyxmQYY3YAm7GMRw7Dga+NMQX7li0CJn53TZFdq37Lary+8Eaf/UJCc2MSGraNd+RPEhGada7Fcz9ey0P/GeLVUACEhod4NRQALbomBIWhUBQlsPDnyGIF0EREGmAZiRFA3m/gb4CRwAciEoc1LeWcs3sklgO82ImtEX3O16hUtRz1W1bjjpcvPKv+d782iNW/7CRxeCtqNohxO16lWgWqVHNfBqsoiuJv/GYsjDGZInIX1hRSKDDFGLNeRJ4CVhpjZtnHBorIBiALeNAYcxhAROpjjUx+8ZeM/uaaR853lAw9G6pUK8/Ih8/33VFRFKWY8avPwhjzA/BDnrbHnbYNcL/9k/fcnVhO8qClXe96+R6v2zyOXX8ecux7S5GuKIpS0mgEtx/JWzI0LCK3KlxUhXDGTb3C5XilqpqdVVGUwESNRRETVSHc67FnZuUWTYqxU3Dc+NQFtOhamxfnXk9YuJYYVRQlMCnppbNBSUx8BY7uP+XxmOSTzbVyXHnGT7+SWW+tdATIdRvchG6Dm3g9R1EUJRDQkUUBiKtdkVueyT93lK/M3wlNqnLHyxdSo36VIpRMURTFv6ixyIcX5lzv2A4LD+HpmSPpMrCRo/BP6x65YST1W1UjLCKUei2rFbuciqIo/kanofKhUmw5bn9xIO+Pm89tzw9wtPcd0ZrWPepQrU5llv+4hdga0TTpWJPsLMMvX25g47I9HtOCK4qiBCtqLHzQPrE+ry+6yaU0qIgQX8+aRup2cVNHe2iY0GdYSyrHladJB03IpyhK6UGNxVlQkBrSoWEhdOrf0HdHRVGUIEJ9FoqiKIpP1FgoiqIoPlFjoSiKovhEjYWiKIriEzUWiqIoik/UWCiKoig+UWOhKIqi+ESNhaIoiuITNRaKoiiKT9RYKIqiKD4Rq7Jp8CMiB4G/zuESccAhn70Cn9KiB6gugUpp0aW06AHnpks9Y4zPdNmlxlicKyKy0hjTuaTlOFdKix6gugQqpUWX0qIHFI8uOg2lKIqi+ESNhaIoiuITNRa5vFvSAhQRpUUPUF0CldKiS2nRA4pBF/VZKIqiKD7RkYWiKIrikzJvLETkIhHZJCJbReSRkpbnbBCRnSKyVkRWichKuy1WROaKyBb7d4zdLiLyuq3fGhHpWMKyTxGRAyKyzqmtwLKLyGi7/xYRGR0gekwQkT32c1klIoOdjj1q67FJRC50ai/xz5+I1BGRBSKyQUTWi8i9dnswPhdvugTVsxGRKBFZLiKrbT2etNsbiMgyW6bPRCTCbo+097fax+v70q/AGGPK7A8QCmwDGgIRwGqgZUnLdRZy7wTi8rQ9Dzxibz8CPGdvDwZ+BAToBiwrYdl7Ax2BdYWVHYgFttu/Y+ztmADQYwLwgIe+Le3PViTQwP7MhQbK5w+oCXS0tysCm22Zg/G5eNMlqJ6N/beNtrfDgWX23/pzYITd/jZwu719B/C2vT0C+Cw//QojU1kfWZwHbDXGbDfGpAMzgKElLFNhGQp8ZG9/BFzm1P6xsVgKVBGRmiUhIIAxZiFwJE9zQWW/EJhrjDlijDkKzAUu8r/0uXjRwxtDgRnGmDRjzA5gK9ZnLyA+f8aYv40xv9vbJ4GNQG2C87l408UbAfls7L9tir0bbv8YoC/wpd2e95nkPKsvgX4iInjXr8CUdWNRG9jttJ9M/h+sQMEAc0TkfyIy1m6LN8b8bW/vA+Lt7WDQsaCyB7JOd9lTM1Nypm0IIj3s6YsOWG+yQf1c8ugCQfZsRCRURFYBB7AM7zbgmDEm04NMDnnt48eBqhShHmXdWAQr5xtjOgKDgDtFpLfzQWONP4NymVswyw68BTQC2gN/Ay+VrDgFQ0Sigf8C9xljTjgfC7bn4kGXoHs2xpgsY0x7IAFrNNC8JOUp68ZiD1DHaT/BbgtojDF77N8HgK+xPkj7c6aX7N8H7O7BoGNBZQ9InYwx++1/8GzgPXKH+wGvh4iEY325TjPGfGU3B+Vz8aRLMD8bY8wxYAHQHWvKL8yDTA557eOVgcMUoR5l3VisAJrYKwwisBxDs0pYpnwRkQoiUjFnGxgIrMOSO2f1yWhgpr09Cxhlr2DpBhx3mloIFAoq+0/AQBGJsacTBtptJUoeX9DlWM8FLD1G2CtWGgBNgOUEyOfPntv+D7DRGPOy06Ggey7edAm2ZyMi1USkir1dDhiA5X9ZAAyzu+V9JjnPahjwsz0a9KZfwSku736g/mCt7NiMNR84rqTlOQt5G2KtblgNrM+RGWt+cj6wBZgHxJrcVRVv2PqtBTqXsPzTsaYBMrDmT28ujOzATVjOuq3AjQGixye2nGvsf9KaTv3H2XpsAgYF0ucPOB9rimkNsMr+GRykz8WbLkH1bIC2wB+2vOuAx+32hlhf9luBL4BIuz3K3t9qH2/oS7+C/mgEt6IoiuKTsj4NpSiKopwFaiwURVEUn6ixUBRFUXyixkJRFEXxiRoLRVEUxSdqLJQyjYhUEZE7nPZriciX+Z1ThPeuLyLXFMe9FOVcUWOhlHWqYGXsBMAYs9cYMyyf/kVJfUCNhRIUqLFQyjrPAo3sGgcv2G/76wBE5AYR+UasWg47ReQuEblfRP4QkaUiEmv3ayQis+3EjotExC2Hj4j0kdxaCn/YUfjPAr3stn/YieNeEJEVdsK7W+1zE0VkoYh8b9ckeFtEQuz+H4rIOrHqm/yjGP9uShkjzHcXRSnVPAK0NlbCtpxMpc60xspcGoUVHfuwMaaDiLwCjAJexap/fJsxZouIdAXexEol7cwDwJ3GmCV2krsz9r0fMMZcYt97LFbqjC4iEgksEZE59vnnYdUm+AuYDVwB7ABqG2Na2+dXKYo/iKJ4Qo2FouTPAmPVRTgpIseBb+32tUBb+4u/B/CFlZYIsArN5GUJ8LKITAO+MsYkO/XPYaB9zZxpsMpYuXzSgeXGmO0AIjIdK63FfKChiEwCvgfm5L2gohQVaiwUJX/SnLaznfazsf5/QrBqDLTP7yLGmGdF5HusfENLxHN5SwHuNsa4JN8TkUTc04MbY8xREWmHVXToNmA4Vm4mRSly1GehlHVOYpXfLBTGqpWwQ0SuAkd96nZ5+4lII2PMWmPMc1gZTZt7uPdPwO12im1EpKmdWRjgPDsDaghwNbBYROKAEGPMf4F/YZV5VRS/oMZCKdMYYw5jvemvE5EXCnmZa4GbRSQnE7Cn8pv32fdYg5Wp9kesjKJZIrLadk6/D2wAfred7O+QO/pfAUzGSlO9A6uOSW0gSaxqalOBRwspv6L4RLPOKkqAY09DORzhilIS6MhCURRF8YmOLBRFURSf6MhCURRF8YkaC0VRFMUnaiwURVEUn6ixUBRFUXyixkJRFEXxiRoLRVEUxSf/D6DkUAVlmL7dAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8FdX5x/HPk4Sw70tEQAFBKbijuNQFtSpuYBUtaF1aK7WKlSq2YC0qtta1Wpe61r2KQq3FHyhuRMG6gQLKHtkFZRGFsIUkz++PmeAlJrmXJDd3+75fr/ti5syZO8/JDffJzDlzxtwdERGRqmQlOgAREUl+ShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShaQlM+trZitqsP9DZvan2oxJJJUpWUjSMrMlZrbFzArN7Csze9LMmsThOBeb2dTIMne/zN1vjsOxIttU9ro/xn3zzexXtR2TSCyULCTZneHuTYADgYOAkQmOpzac4e5NIl5Da+NNzSynNt5HpCJKFpIS3P0rYBJB0gDAzOqb2Z1mtszMvg4vHTWsaH8zG2FmX5jZRjObY2Y/Dct/BDwEHBH+lf9tWP6kmf05XJ5rZqdHvFeOma0xs4PD9cPN7H9m9q2ZzTSzvtVpY9kZTtim9Wa22MxOCbf9BTgauD/ybMTM3MyuMLOFwMKw7Egz+9jMvgv/PTLiGPlm9lcz+8jMNpjZf82sVbhtgpldWS6mWWU/K8lsShaSEsysI3AKUBBRfCuwN0EC6QZ0AEZV8hZfEHzZNgduAp41s/buPhe4DHg//Cu/RQX7Pg8Mjlg/GVjr7p+YWQdgAvBnoBUwHPi3mbWtXks5DJgPtAFuB/5pZubufwSmAEMrOBs5M9yvZ/jFPwG4F2gN/A2YYGatI+pfCPwSaA8Uh3UBngJ+XlbJzA4g+JlOqGZbJI0oWUiye9nMNgLLgdXADQBmZsAQ4Hfu/o27bwRuAQZV9CbuPtbdV7p7qbu/QPBXeJ8YY3gO6G9mjcL18wgSCARfrhPdfWL43m8A04BTo7Tp24jXpRHblrr7o+5eQvDl3R7IixLfX8OfwRbgNGChuz/j7sXu/jwwDzgjov4z7v65u28C/gSca2bZwHhgbzPrHta7AHjB3YuiHF8ygJKFJLsz3b0p0BfoQfAXN0BboBEwvexLF3gtLP8BM7vQzGZE1N034r2q5O4FwFzgjDBh9CdIIAB7AudEfvkDRxF8yVfVphYRr0cjtn0VcdzN4WK0Tv3lEcu7A0vLbV9KcIZQUf2lQD2gjbtvBV4Afm5mWQRnU89EObZkCHWISUpw93fM7EngToLLLmuBLUAvd/+yqn3NbE/gUeAEgstNJWY2A7Cyt48hhLJLUVnAnDCBQPDF+4y7X1rpnrWnsjgjy1cSJLBIexAk0jKdym3bTvDzhOBs5hlgKrDZ3d+vdrSSVnRmIankHuBEMzvA3UsJEsDdZtYOwMw6mNnJFezXmOALdU1Y7xcEZxZlvgY6mlluFcceA5wE/IbvzyoAniU44zjZzLLNrEF4j0fHaraxKl8DXaPUmUhwKem8sCP+Z0BP4P8i6vzczHqGZ0mjgXHhZS/C5FAK3IXOKiSCkoWkDHdfAzzN953YfyDo8P7AzDYAbwL7VLDfHIIvv/cJvnD3A96LqPI2MBv4yszWlt8/fI9V4f5HElyqKStfDgwAriNIRsuBa6n6/9Yr5e6z+E+Uppf5OzAwHCl1b0UV3H0dcDpwDbAO+D1wurtHtusZ4EmCS14NgN+We5unCX5Gz8YYl2QA08OPRDKHmeUDz7r7Y1XUuRAY4u5H1VlgkvR0ZiEiO4SXpi4HHkl0LJJclCxEBICwv2cNwaW656JUlwyjy1AiIhKVzixERCQqJQsREYkqbW7Ka9OmjXfu3Lna+2/atInGjRvXXkAJki7tALUlWaVLW9KlHVCztkyfPn2tu0edyyxtkkXnzp2ZNm1atffPz8+nb9++tRdQgqRLO0BtSVbp0pZ0aQfUrC1mVn56mArpMpSIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiISVdrclFddX3+9nXvvXc3y5fXZf/9iWrXK+B+JiMgPZPw344QJ33HLLV8D9fnww/m8++7e5OXVS3RYIiJJJeMvQ/3yl2346193B2DBgm2ceeYitm4tTXBUIiLJJeOTxZo12znmmCb07l0MwAcfbOKaa1YkOCoRkeSS8cmiefNsbrxxFdOnB1fk9tmnPldd1S7BUYmIJJeMTxa5uVm8+GIXOnUq4eSTm/HBB/uw994NEh2WiEhSyfgOboAWLXK4++7NDBhwCDk5luhwRESSTsafWZRp3dqVKEREKqFkEYPSUqeoSCOkRCRzKVlEsWlTCeeeu5hLL12Guyc6HBGRhFCfRRVWrCiif/8v+PTTLQD06tWA3/9+twRHJSJS93RmUYWf/3zJjkQBMGLESv7v/75LYEQiIomhZFGFhx/egxYtsnes77tvA/bbT8NqRSTzxDVZmFk/M5tvZgVmNqKC7ceY2SdmVmxmA8tt28PMXjezuWY2x8w6xzPWiuyzTwPGju1Cdjb079+c997bhz33rF/XYYiIJFzc+izMLBt4ADgRWAF8bGbj3X1ORLVlwMXA8Are4mngL+7+hpk1ARIyHOknP2nGlCl706dPY7KzNbRWRDJTPDu4+wAF7r4IwMzGAAOAHcnC3ZeE23ZKBGbWE8hx9zfCeoVxjDOqI45oksjDi4gkXDwvQ3UAlkesrwjLYrE38K2ZvWRmn5rZHeGZStLRcFoRyQTJOnQ2BzgaOIjgUtULBJer/hlZycyGAEMA8vLyyM/Pr/YBCwsLd3n/wkK4+eZGnHJKEX37Flf72LWpOu1IVmpLckqXtqRLO6CO2uLucXkBRwCTItZHAiMrqfskMDBi/XDgnYj1C4AHqjpe7969vSYmT568S/WXLNnqvXrNdpju9et/4u+/X1ij49eWXW1HMlNbklO6tCVd2uFes7YA0zyG7/R4Xob6GOhuZl3MLBcYBIzfhX1bmFnbcP14Ivo6Em3r1lKOPnoBs2dvBWDbNqd//y9YtGhbgiMTEYmPuCULdy8GhgKTgLnAi+4+28xGm1l/ADM71MxWAOcAD5vZ7HDfEoIRUm+Z2WeAAY/GK9Zd1aBBFqNH775TWZcuuTRurNtWRCQ9xbXPwt0nAhPLlY2KWP4Y6FjJvm8A+8czvpq4+OLWLFy4lVtu+Zqzz27B0093plEjJQsRSU/J2sGdEm6+eXd69WrIoEEtycrSPRgikr6ULGogK8s477xWiQ5DRCTudN1ERESiUrKIk2++KaZfvwLefz+hN5+LiNQKJYs4KCjYyuGHz2fSpA0MGLBIQ2pFJOUpWdSyNWu2c/jh81m4cFu4XsxppxWwfn1y3OEtIlIdSha1rG3belx2Wdudytq3r6fRUiKS0pQs4mD06PYMGtQSgPPPb8lrr3WjefOknAdRRCQmGjobB1lZxhNP7MkxxzTh179uo7MKEUl5ShZx0qBBFr/5TdvoFUVEUoAuQyWI6zkYIpJClCwSYNWq7Rx99ALdgyEiKUPJoo7NnbuFI46Yz3vvbeKMM75gwYKtiQ5JRCQqJYs6tHr1do46agFLlxYBsG5dCf36FfD119sTHJmISNWULOpQu3b1GDp0507vHj0a6DkYIpL09C1Vx268sT2/+EVrAH71q9aMH78XTZroHgwRSW4aOlvHzIyHH96DE05oynnntcRM92CISPJTskiAevWM88/XczBEJHXoMlQS2r5d92CISHJRskgyS5du44AD5vLSS+sTHYqIyA5KFknk88+3cOSRC5g7dyuDBy8hP39jokMSEQGULJLGxo0lHH/8QlauDO65KCpy+vf/grlztyQ4MhERJYuk0bRpNrff3mGnslNPbU7XrvUTFJGIyPeULJLIxRe35rbbdgdg6NC2PPdcZ+rX10ckIomnobNJ5tpr8zjooEb85CdNdQ+GiCQNJYskY2aceGKzRIchIrITXeNIMWvXFlNSovswRKRuxTVZmFk/M5tvZgVmNqKC7ceY2SdmVmxmAyvY3szMVpjZ/fGMM1UsXLiVPn3mMXTocj08SUTqVNyShZllAw8ApwA9gcFm1rNctWXAxcBzlbzNzcC78YoxlXzyyWZ+/OMFLF5cxEMPreXGG1clOiQRySDxPLPoAxS4+yJ3LwLGAAMiK7j7EnefBZSW39nMegN5wOtxjDEllJQ4F1ywhDVrineUjR79Fa+88m0CoxKRTBLPZNEBWB6xviIsi8rMsoC7gOFxiCvlZGcbY8d2oWXL76cy/+UvW3Pqqc0TGJWIZJJkHQ11OTDR3VdUNXzUzIYAQwDy8vLIz8+v9gELCwtrtH9d+POfs7nmmkacfnoR55+/mClTFv+gTiq0I1ZqS3JKl7akSzugjtri7nF5AUcAkyLWRwIjK6n7JDAwYv1fBP0ZS4C1wAbg1qqO17t3b6+JyZMn12j/uvLFF1u9tLS00u2p0o5YqC3JKV3aki7tcK9ZW4BpHsN3ejzPLD4GuptZF+BLYBBwXiw7uvv5ZctmdjFwiLv/YDRVJtL0HyKSCHHrs3D3YmAoMAmYC7zo7rPNbLSZ9Qcws0PNbAVwDvCwmc2OVzyZYNGibSxcqFtnRKT2xbXPwt0nAhPLlY2KWP4Y6BjlPZ4kuEwlVZg9ewsnnljA5s2NOProrfTo0SDRIYlIGtGfoWlg2rRNHHvsAlat2s5332Xxk58sZMmSbYkOS0TSiJJFGhg//jvWrSvZsf7ll9t56KG1CYxIRNKNkkUauOmm9gwZ0mbH+uWXt+GWW3ZPYEQikm6S9T4L2QVmxj/+0YkNG0rIzv6K++/vpOnNRaRWKVmkiexs49lnOzNlylIlChGpdboMlUays5UkRCQ+lCwyxJw5W7jwwiVs3fqDORtFRKLSZagMMHPmZk48sYA1a4r59tsSxo3rQm6u/k4QkdjpGyPNzZixmeOOW7hjevNXXvmO885bQnGxHp4kIrFTskhzu+9ej912q7dTWdu2OWTpkxeRXaCvjDTXrl093nqrO926BRMQDhvWjn/8oxNZWeoMF5HYqc8iA7RvX4+33+7OmDHrGT68nYbWisguU7LIEJ065XLttXmJDkNEUpQuQwkAX35ZVPbgKRGRH1CyEGbO3Mz++89lxIiVShgiUiEliww3c+Zmjj9+Id98U8Ltt3+thCEiFVKyyGDFxc455yzmm2++n9789tu/ZsKEDQmMSkSSkZJFBsvJMcaM6ULLltk7yq6+uh2nndYsgVGJSDJSsshwBx/ciDff7E7LltlcfXU77ryzg4bWisgPaOiscPDBjZg580d07FhPiUJEKqRkIUBwH4aISGV0GUqimjFjMzffvEqjpEQymM4spEozZmzmhBOCobWFhaXceuvuulQlkoF0ZiGVikwUEAyrHT78S51hiGQgJQupVGkplM8LjRpl6cxCJAMpWUilIofVAgwf3o7Ro9snOCoRSQT1WUiVDj64EW+/3Z2xY9fz5z+rv0IkUylZSFQHHtiIAw9slOgwRCSB4noZysz6mdl8MyswsxEVbD/GzD4xs2IzGxhRfqCZvW9ms81slpn9LJ5xSs18/vkWtm0rTXQYIhJHUZOFmZ1hZrucVMwsG3gAOAXoCQw2s57lqi0DLgaeK1e+GbjQ3XsB/YB7zKzFrsYg8Tdt2iZ+/OP5nHnmIrZsUcIQSVexJIGfAQvN7HYz67EL790HKHD3Re5eBIwBBkRWcPcl7j4LKC1XvsDdF4bLK4HVQNtdOLbUgZkzN3PSSQVs2FDKa69t4PTTv2DTppLoO4pIyrFYxsybWTNgMPALwIEngOfdfWMV+wwE+rn7r8L1C4DD3H1oBXWfBP7P3cdVsK0P8BTQy91Ly20bAgwByMvL6z1mzJiobalMYWEhTZo0qfb+yaKu2uEOw4Y1Ytasnbu9fv/7LZxyyvZaOUa6fCagtiSjdGkH1Kwtxx133HR3PyRqRXeP6QW0BoYBS4BXgYXAlVXUHwg8FrF+AXB/JXWfBAZWUN4emA8cHi2+3r17e01Mnjy5Rvsni7psx9dfF/l++812mO4w3UeOXOGlpaW19v7p8pm4qy3JKF3a4V6ztgDTPIYcEHU0lJn1Jzij6AY8DfRx99Vm1giYA9xXya5fAp0i1juGZTEJz2YmAH909w9i3U/qTrt29Zg8eW9OOmkhxx7blL/8RUNrRdJVLENnzwbudvd3IwvdfbOZXVLFfh8D3c2sC0GSGAScF0tQZpYL/Ad42iu4NCXJo3XrHN55Z28aN9ad3SLpLGoHt7tfBCwws/7hyKjdIra9VcV+xcBQYBIwF3jR3Web2ejwbAUzO9TMVgDnAA+b2exw93OBY4CLzWxG+Dqwuo2U+GrSJLvKRFFUpFFSIqkulqGzlwAfAWcR9EN8YGa/jOXN3X2iu+/t7nu5+1/CslHuPj5c/tjdO7p7Y3dv7cFQWdz9WXev5+4HRrxmVLeRkjhTpxbSvfscpk3blOhQRKQGYrkM9XvgIHdfB2BmrYH/AY/HMzBJfZ9+upnTTguG1h5//EJeeWUvjj22aaLDEpFqiOU+i3VA5BDZjWGZSKVWrdrOyScHiQJg48ZS+vUrYOnSbQmOTESqI5ZkUQB8aGY3mtkNwAcEfRhXm9nV8Q1PUtVuu+Xwq1+13qns+ut3Y8896ycoIhGpiVguQ30Rvsr8N/xX1xOkUmbGLbd0oHnzbEaMWMnw4e247rrdou8oIkkparJw95sAzKxJuF4Y76AkffzhD7tx2GGNOfbYJhpaK5LCYhkNta+ZfQrMBmab2XQz6xX/0CRd9O3bVIlCJMXF0mfxCHC1u+/p7nsC1wCPxjcsyRSTJm3gwguX6F4MkSQXS59FY3efXLbi7vlm1jiOMUmG+OijTZx99iI2bSpl1artvPRSV5o2zU50WCJSgVjOLBaZ2Z/MrHP4uh5YFO/AJL3Nn7+V0077gk2bgjOKN9/cyAknLGT79uizIItI3YslWfyS4FkSLwH/BtqEZSLVVr++0arVzmcRF1zQinr11LchkoyqvAwVPu3uj+7+2zqKRzJE5871mTp1b0499QumTdvMddflceWV7RIdlohUospk4e4lZnZUXQUjmaVt23pMntydxx9fx5VX6kGIIskslg7uT81sPDAW2DEbnLu/FLeoJGM0aZLNb3+rMwqRZBdLsmhAMBfU8RFlTtCHIRJXL764nlWrtnPVVUooIokUS7J4zN3fiywwsx/HKR6RHWbNyubaa5dQVOQsWVLEXXd1ICtLHeAiiRDLaKiKHpta2aNURWrF/Plbuf76RhQVBUNp77lnNeefv6Ts2ewiUscqPbMwsyOAI4G25WaXbQbozimJqy+/3E5x8c5lp57aTNOGiCRIVWcWuUATgoTSNOK1geCJeSJxc/zxTbn33k20b18PgNGj23PBBa2j7CUi8VLpmYW7vwO8Y2ZPuvvSOoxJBIBu3Ur54IN9eOqpdVx/vaY3F0mkWDq465vZI0DnyPrufnyle4jUkj32yOVPf2qf6DBEMl4syWIs8BDwGFAS33BEds2TT67j229LGDZMQ2tF4imWZFHs7g/GPRKRXfTmmxu49NKlFBfDokXbuPvujmRnqwNcJB5iGTr7ipldbmbtzaxV2SvukYlUYdaszZx11qIdI6buu28NgwcvTmxQImksljOLi8J/r40oc6Br7YcjEps1a4qJvOXCDM47T3/DiMRL1DMLd+9SwUuJQhLqhBOaMXXq3nToEAytve22Dpx5ZosERyWSvqKeWZhZI+BqYA93H2Jm3YF93P3/4h6dSBUOOKARH320D08//Q3Dh6uDWySeYumzeAIoIribG+BL4M9xi0hkF+y+ey4jRuxW6Z3d7q4pQkRqQSzJYi93vx3YDuDum4GYhpyYWT8zm29mBWY2ooLtx5jZJ2ZWbGYDy227yMwWhq+Lyu8rEot77lnNeectYcuW0kSHIpLSYungLjKzhgSd2pjZXsC2aDuFT9l7ADgRWAF8bGbj3X1ORLVlwMXA8HL7tgJuAA4Jjzs93Hd9DPGKAPDKK99yzTVf4g6LF2/j5Zf3Yrfd6iU6LJGUFMuZxQ3Aa0AnM/sX8Bbw+xj26wMUuPsidy8CxgADIiu4+xJ3nwWU/7PvZOANd/8mTBBvAP1iOKYIADNnbmbw4CU7Rkx9+OFmTjxxIaWluiQlUh1Rzyzc/Q0z+wQ4nODy01XuvjaG9+4ALI9YXwEcFmNcFe3boXwlMxsCDAHIy8sjPz8/xrf/ocLCwhrtnyzSpR1Qs7asXGm0adOITZuCCZKzspwLLljHu+++U4sRxk6fS/JJl3ZA3bQllstQuPs6YEJcI6kGd38EeATgkEMO8b59+1b7vfLz86nJ/skiXdoBNW/LaaeVcO65i3j99Y3ce+8eXHFF4p7zrc8l+aRLO6Bu2hJTsqimL4FOEesdw7JY9+1bbt/8WolKMkbz5tlMmNCN//znW845p2WiwxFJabH0WVTXx0B3M+tiZrnAIGB8jPtOAk4ys5Zm1hI4KSwT2SU5OVZloigtdVasKKrDiERSU0zJwsyOMrNfhMttzaxLtH3cvRgYSvAlPxd40d1nm9loM+sfvtehZrYCOAd42Mxmh/t+A9xMkHA+BkaHZSK1avToVey331xef31DokMRSWqx3MFdNoR1H4Ib9OoBzwI/jravu08EJpYrGxWx/DHBJaaK9n0ceDzaMUSq66WX1nPTTV8BcMopBdxxRwd+97t2enSrSAViObP4KdAf2ATg7isJHq8qkrKWLt3GhRd+/wDI0lK49davWbu2uIq9RDJXLMmiyIP5Espuymsc35BE4m+PPXK54Yb2lJ1E5OTAv//dlbZtddOeSEViSRYvmtnDQAszuxR4E3g0vmGJxJeZce21eUycuBfNm2dz//2dOProJokOSyRpxXJT3p1mdiKwgaDfYpS7vxH3yETqQL9+zZk/vyd5eTqjEKlK1DMLM7samOPu17r7cCUKSTdVJYriYufmm1excaMePy+ZLZbLUE2B181sipkNNbO8eAclkixGjvySUaNW0afPPObN25rocEQSJpYn5d3k7r2AK4D2wDtm9mbcIxNJsLFj13PnnasBmDdvG4ceOo/JkzcmOCqRxNiVO7hXA18B6wA9lkzSmrtz331rdipr3jybXr0aJCgikcSKpc/icjPLJ5iavDVwqbvvH+/ARBLJzJg0qRsXXdQKgHr1jHHjutKunTrCJTPFMpFgJ2CYu8+IdzAiyaRhwyyeeGJPDj+8MdnZxuGH6xYjyVyVJgsza+buG4A7wvVWkds1V5NkAjPjssuqntp869ZSGjSI55ycIolX1ZnFc8DpwHSCu7cjJ8xxoGsc4xJJCdu3OyefXEDPng34+987kpurpCHpqdJk4e6nh/9GnWFWJFNde+0K3n23kHffLWTWrC2MHduF3XfPTXRYIrUulg7ut2IpE8k0zz67jr///fsRU//73yauuSbW53uJpJaq+iwaAI2ANuEDiMouQzWjgudhi2Sa/fZrSJcuuSxeHDw8aY89crn33gpn3BdJeVWdWfyaoL+iR/hv2eu/wP3xD00kuR1wQCOmTevBSSc1pUED4z//0ay1kr6q6rP4O/B3M7vS3e+rw5hEUkarVjlMnNiNGTO2cPDBjRIdjkjcxDLr7H1mti/QE2gQUf50PAMTSRXZ2Ubv3pUnitWrt7NkiUZJSWqL9bGqfQmSxUTgFGAqoGQhEkVRUSlnn72I6dMb06rVt/Tv3yLRIYlUSyx/7gwETgC+cvdfAAcAzeMalUgacHeuvHIFU6duYssW48wzF/GXv6wiePCkSGqJJVlscfdSoNjMmhFMKNgpvmGJpL78/EIeeWTtjnV3ePvtQkr0aAxJQbEki2lm1oLgUarTgU+A9+MalUga6Nu3Cfff34ns7GC9a9dcXnyxCzk5VvWOIkkolg7uy8PFh8zsNaCZu8+Kb1giqc/MuOKKtvTq1YDBg+fz3//uRevWsczdKZJ8qrop7+Cqtrn7J/EJSSS99O3blGeeKWTffRsmOhSRaqvqz5y7qtjmwPG1HItI2sqp4n/aypVF3HvvGkaPbq+JCCVpVXVT3nF1GYhIJtq6tZSf/nQRH320mf/9bxNjx3YhL093gUvyiWUiwUZmdr2ZPRKudzez0+Mfmkh6c3d+/etlfPTRZgCmTCnkkEPmsWxZUYIjE/mhWM55nwCKgCPD9S+BP8fy5mbWz8zmm1mBmY2oYHt9M3sh3P6hmXUOy+uZ2VNm9pmZzTWzkTG1RiSFrF1bzJQphTuVHXBAQzp21JmFJJ9YksVe7n47sB3A3Tez84OQKmRm2cADBHd89wQGm1nPctUuAda7ezfgbuC2sPwcoL677wf0Bn5dlkhE0kXbtvX46KMeHH98UwC6d6/Ps892JitLQ2sl+cSSLIrMrCFBpzZmthewLYb9+gAF7r7I3YuAMcCAcnUGAE+Fy+OAE8zMwmM1NrMcoCHBmc2GGI4pklLatMlh0qRujBiRx8svd6VFCw2tleQUy2/mDcBrQCcz+xfwY+DiGPbrACyPWF8BHFZZHXcvNrPvgNYEiWMAsIrgmRq/0zO/JV3l5Bh//WvVj4jRc74l0apMFuFf+fOAs4DDCS4/XeXua6varxb0AUqA3YGWwBQze9PdF5WLbwgwBCAvL4/8/PxqH7CwsLBG+yeLdGkHqC1lvvrK+O1vG3PJJds4+eTttRtYNaTL55Iu7YA6aou7V/kCPotWp5L9jgAmRayPBEaWqzMJOCJczgHWEiSkB4ALIuo9Dpxb1fF69+7tNTF58uQa7Z8s0qUd7mqLu/umTSV+0EFzHKY7TPehQ5f5tm0ltRvcLkqXzyVd2uFes7YA0zyG7/RYzms/MbNDq5GHPga6m1kXM8sFBgHjy9UZD1wULg8E3g6DX0Z405+ZNSY4q5lXjRhEUpa7M2TIUj79dMuOsvvvX8Pzz69PYFSSqWJJFocB75vZF2Y2KxzOGnVuKHcvBoYSnD3MBV5099lmNtrM+ofV/gm0NrMC4GqgbHjtA0ATM5tNkHSxTIN3AAAUAUlEQVSecM1HJRnGzDj55GY0aPD96KizzmrBhRe2SmBUkqli6eA+ubpv7u4TCR6YFFk2KmJ5K8Ew2fL7FVZULpJpLrigNT17NuTssxfRsKHxxBN7EnQlitStWGadXVoXgYhIxXr3bsT06T1Yv76YZs2yEx2OZCiNxRNJAa1b59CtW4NKt7/11gbmz99ahxFJplGyEElxBQVbOfvsxRx66DxefvnbRIcjaUrJQiSFbd5cyllnLeK770rYuDGYwXbUqJWJDkvSkJKFSAp75pl1fPbZzpef2rXTlCFS+5QsRFLYkCFtuO++jjsernTuuS244oq2iQ1K0pKShUgKMzOGDm3HO+/szXHHNeGxxzS0VuJD56siaeDII5vw9tt7V1lny5ZSGjbU34dSPfrNEckAY8eup0ePOXz44aZEhyIpSslCJM0tWLCVSy5ZyrJlRRx99ALuu2912QSdIjFTshBJY1u2lHLOOYvZuLEUgO3bneHDv6SgIJbnl4l8T8lCJI1lZ7Pjsa1l/va3jnTvXvnd4CIVUbIQSWO5uVncfXdHxo3rQrNmWQwa1JLLL2+T6LAkBWk0lEgGOPvslhxwQEPy8uppaK1Ui84sRDJEt24NaNq08llrR41ayfvvF9ZhRJJKlCxEhDFjvuHmm7/i6KMXcNttX1FaqtFSsjMlC5EMV1CwlSFDlgFQUgIjRqzkiiuWJzgqSTZKFiIZ7tVXN+wYWgtQv77x61+rE1x2pmQhkuGuvLId48d3pVWroD/jrrs6cuCBjRIclSQbjYYSEc44owUzZjTi8cfXaWitVEhnFiICQKdOudxwQ/tKh9YWFpYwbtz6Oo5KkoXOLEQkJlddtYLHH1/HCSc05KCDSmjevPJhuJJ+dGYhIlGNG7eexx9fB8Bbb9XjgAPmMm/e1ih7STpRshCRKm3bVspVV63YqaxhQ2OPPXITFJEkgpKFiFSpfv0sXn+9G/vv3xCAnBznuee60KiRvj4yifosRCSqXr0a8tFH+3DddSvZsmUZBx2kobWZRn8aiEhM6tfP4q67OnLuuUWV1pk9ewtr1xbXYVRSV+KaLMysn5nNN7MCMxtRwfb6ZvZCuP1DM+scsW1/M3vfzGab2Wdmpgn4RZLYpk0l/PSni9hvvzlMmPBdosORWha3ZGFm2cADwClAT2CwmfUsV+0SYL27dwPuBm4L980BngUuc/deQF9ge7xiFZGa+8MfVrJw4Ta++qqY00//gksvXaoJCdNIPM8s+gAF7r7I3YuAMcCAcnUGAE+Fy+OAEyy4I+gkYJa7zwRw93XuXhLHWEWkBqZOLeSBB9bsVJadbWRl6dkZ6SKeyaIDEDl15YqwrMI67l4MfAe0BvYG3MwmmdknZvb7OMYpIjV02GGNGTVqN7LD+/S6ds3lzjvL/3eXVJaso6FygKOAQ4HNwFtmNt3d34qsZGZDgCEAeXl55OfnV/uAhYWFNdo/WaRLO0BtSVaVteW446B9+yxuvbUhw4atZ9q0KXUf3C7IhM+kVrl7XF7AEcCkiPWRwMhydSYBR4TLOcBawIBBwFMR9f4EXFvV8Xr37u01MXny5BrtnyzSpR3uakuyitaW4uLSKrdPnbrRi4qqrlMXMukzqQowzWP4To/nZaiPge5m1sXMcsMEML5cnfHAReHyQODtMPhJwH5m1ijs7D4WmBPHWEWklmRnV95PMWvWZo47biFHHjmfOXO21GFUUlNxSxYe9EEMJfjinwu86O6zzWy0mfUPq/0TaG1mBcDVwIhw3/XA3wgSzgzgE3efEK9YRST+tm0r5YILlrJ9uzNt2mYOOmge//jHmug7SlKIa5+Fu08EJpYrGxWxvBU4p5J9nyUYPisiaeD2279m1qzvzyaKipwOHeolMCLZFbqDW0TqxGWXteGss1rsWB88uCUDBrSoYg9JJkoWIlIn2ratx7hxXXj++c707NmAe+/tlOiQZBcoWYhInTEzBg1qxWef/Yg2bSq+Cl5a6jz44Bq2bi2t4+ikKkoWIlLnqrqz+/7713D55cs5+OB5fPDBpjqMSqqiZCEiSeOLL7YxcuRKAObO3cqRR87nqafWJTgqASULEUki11+/ks2bv7/81KxZNied1CyBEUkZJQsRSRoPPtiJSy5pvWP9jjs60L69htcmAyULEUkaLVrk8Nhje/L669248MJWOyUOSSwlCxFJOiee2IynnupcaUf48uVFnH56AfPnb63bwDKYkoWIpBR354orljNhwgb2338uN9+8iqIiDbONNyULEUkp48Z9yyuvBI9tLSpyRo1axcsv6zGu8aZkISIpZeLEnRPDUUc1ZuBATRsSb0oWIpJSHn98T557rjNt2+aQnQ0PPriHHt9aB5QsRCSlmBmDB7di3ryejBnThX33bVhhPXdn7lw9M6O2KFmISEpq1SqHgQNbVrp97Nhv6dVrLldcsYz164vrMLL0pGQhImlnw4YShg1bgTv84x9r6dFjDm+8sSHRYaU0JQsRSTs33riKVau271hfv76ETp1yExhR6lOyEJG0069fM7p1q79j/dpr29GjR4MERpT6lCxEJO2cdFIzPvvsR9x0U3t69KjPH//YPtEhpTwlCxFJSw0aZDFqVHtmzepJo0YVf9WtXVvMMccs4K231J8RjZKFiKS1evUqvwfjT39ayZQphfzkJwWcffYilizZVoeRpRYlCxHJSAUFWTzyyNod6y+99C0vvLA+gRElNyULEclI06fnUBox/2C3bvUZNqxd4gJKckoWIpKRfvazIj74YB8OPbQRAPfc05H69fWVWBn9ZEQkYx12WGM++GAfXn11L047rXml9f7616+YMyezpw5RshCRjJaVZfTrV3mieOedjVx33Ur2338ul1++jNWrt1daN50pWYiIVKK01Ln66hUAlJTAgw+u5ec/X5LYoBIkrsnCzPqZ2XwzKzCzERVsr29mL4TbPzSzzuW272FmhWY2PJ5xiohU5NVXN/DJJztffrrxxsy8wS9uycLMsoEHgFOAnsBgM+tZrtolwHp37wbcDdxWbvvfgFfjFaOISFVOPbUZ//53F/baK5g65JxzWnDkkU0SHFVixPPMog9Q4O6L3L0IGAMMKFdnAPBUuDwOOMHMDMDMzgQWA7PjGKOISKXMjLPOasmcOT/i7rs7cuutHSqtO2HCd+Tnb6zD6OpWPJNFB2B5xPqKsKzCOu5eDHwHtDazJsAfgJviGJ+ISExyc7MYNqwdXbvWr3D71q2l/OY3yzjuuIX061fAp59uruMI4y8n0QFU4kbgbncvDE80KmRmQ4AhAHl5eeTn51f7gIWFhTXaP1mkSztAbUlW6dKW2mzHiy/msnx5MKvtpEkbmDz5O8aO3UizZrXy9lHVyWfi7nF5AUcAkyLWRwIjy9WZBBwRLucAawEDpgBLwte3wDfA0KqO17t3b6+JyZMn12j/ZJEu7XBXW5JVurSlttqxeXOJt249w2H6jtfvfre8Vt47VjVpCzDNY/hOj+dlqI+B7mbWxcxygUHA+HJ1xgMXhcsDgbfD+I92987u3hm4B7jF3e+PY6wiItXSsGEWr7yyF8ccE3R8N22axciReQmOqvbFLVl40AcxlODsYS7worvPNrPRZtY/rPZPgj6KAuBq4AfDa0VEkt0RRzQhP787r766F/fc05G2betVWG/FiiKGDFmakrPbxrXPwt0nAhPLlY2KWN4KnBPlPW6MS3AiIrXIrOo7wSGYNuTRR9fxxBPr+MUvWnPddbvRuXPFnebJRndwi4jUgeXLi3jssXUAFBfDo4+u4403UmeorZKFiEgdePjhtRQV+Y71zp1zueiiVgmMaNcoWYiI1IEbb2zPU0/tueNu8D/+cTdycyv+Ci4u9grLE0nJQkSkDuTkGBde2Jp583ryr3915qKLWldYz9057rgFnHfeYmbOTJ6b+5QsRETqUE6Ocd55rSp9NviUKYVMnbqJ559fz4EHzuOUUwrYtq20wrp1SclCRCSJ3Hbb1zutZ2WRFE/wS3wEIiICwKZNJSxdWrRT2R/+kBw3+ClZiIgkicaNs5k160eMH9+VH/+4MUcc0Zijj654SvQtW0r5+99Xs2FDSZ3EpmQhIpJEsrKMM85owdSp+/Dqq92obDLVJ59cx7BhK+jU6TPGjMmNf1xxP4KIiFRL8+bZFZYXFzt33BH0bWzYUDed30oWIiIpZty49SxeHPRtNGmSxemnF0XZo+aULEREUsyJJzbjxhvb06ZNDr/6VRua1MGTXpUsRERSTOvWOdxwQ3uWLduXUaN2q5NjJuuT8kREJIqGDbNo2LBu/ubXmYWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiISlZKFiIhEZe7J92Dw6jCzNcDSGrxFG2BtLYWTSOnSDlBbklW6tCVd2gE1a8ue7t42WqW0SRY1ZWbT3P2QRMdRU+nSDlBbklW6tCVd2gF10xZdhhIRkaiULEREJColi+89kugAakm6tAPUlmSVLm1Jl3ZAHbRFfRYiIhKVzixERCSqjE8WZtbPzOabWYGZjUh0PLEwsyVm9pmZzTCzaWFZKzN7w8wWhv+2DMvNzO4N2zfLzA5OcOyPm9lqM/s8omyXYzezi8L6C83soiRpx41m9mX4ucwws1Mjto0M2zHfzE6OKE/475+ZdTKzyWY2x8xmm9lVYXlKfS5VtCPlPhcza2BmH5nZzLAtN4XlXczswzCuF8wsNyyvH64XhNs7R2vjLnP3jH0B2cAXQFcgF5gJ9Ex0XDHEvQRoU67sdmBEuDwCuC1cPhV4FTDgcODDBMd+DHAw8Hl1YwdaAYvCf1uGyy2ToB03AsMrqNsz/N2qD3QJf+eyk+X3D2gPHBwuNwUWhDGn1OdSRTtS7nMJf7ZNwuV6wIfhz/pFYFBY/hDwm3D5cuChcHkQ8EJVbaxOTJl+ZtEHKHD3Re5eBIwBBiQ4puoaADwVLj8FnBlR/rQHPgBamFn7RAQI4O7vAt+UK97V2E8G3nD3b9x9PfAG0C/+0X+vknZUZgAwxt23uftioIDgdy8pfv/cfZW7fxIubwTmAh1Isc+linZUJmk/l/BnWxiu1gtfDhwPjAvLy38mZZ/VOOAEMzMqb+Muy/Rk0QFYHrG+gqp/uZKFA6+b2XQzGxKW5bn7qnD5KyAvXE6FNu5q7MncpqHhpZnHyy7bkELtCC9fHETwl2zKfi7l2gEp+LmYWbaZzQBWEyTeL4Bv3b24grh2xBxu/w5oTS22JdOTRao6yt0PBk4BrjCzYyI3enD+mZLD3FI5duBBYC/gQGAVcFdiw9k1ZtYE+DcwzN03RG5Lpc+lgnak5Ofi7iXufiDQkeBsoEci48n0ZPEl0ClivWNYltTc/cvw39XAfwh+kb4uu7wU/rs6rJ4KbdzV2JOyTe7+dfgfvBR4lO9P95O+HWZWj+AL9l/u/lJYnHKfS0XtSOXPBcDdvwUmA0cQXPLLqSCuHTGH25sD66jFtmR6svgY6B6OMMgl6Bgan+CYqmRmjc2sadkycBLwOUHcZaNPLgL+Gy6PBy4MR7AcDnwXcWkhWexq7JOAk8ysZXhJ4aSwLKHK9QX9lOBzgaAdg8IRK12A7sBHJMnvX3ht+5/AXHf/W8SmlPpcKmtHKn4uZtbWzFqEyw2BEwn6YCYDA8Nq5T+Tss9qIPB2eDZYWRt3XV328Cfji2BkxwKC64F/THQ8McTblWB0w0xgdlnMBNcn3wIWAm8Crfz7URUPhO37DDgkwfE/T3ApYDvB9dNLqhM78EuCzroC4BdJ0o5nwjhnhf9J20fU/2PYjvnAKcn0+wccRXCJaRYwI3ydmmqfSxXtSLnPBdgf+DSM+XNgVFjeleDLvgAYC9QPyxuE6wXh9q7R2rirL93BLSIiUWX6ZSgREYmBkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShWQ0M2thZpdHrO9uZuOq2qcWj93ZzM6ri2OJ1JSShWS6FgQzdgLg7ivdfWAV9WtTZ0DJQlKCkoVkuluBvcLnHNwR/rX/OYCZXWxmL1vwLIclZjbUzK42s0/N7AMzaxXW28vMXgsndpxiZj+Yw8fMjrXvn6fwaXgX/q3A0WHZ78KJ4+4ws4/DSe9+He7b18zeNbMJ4TMJHjKzrLD+k2b2uQXPN/ldHf7cJMPkRK8iktZGAPt6MGFb2WylkfYlmL20AcHdsX9w94PM7G7gQuAegucfX+buC83sMOAfBFNJRxoOXOHu74UT3W0Njz3c3U8Pjz2EYOqMQ82sPvCemb0e7t+H4NkES4HXgLOAxUAHd9833L9FbfxARCqiZCFStckePBtho5l9B7wSln8G7B9+8R8JjA2mJgKCB82U9x7wNzP7F/CSu6+IqF/mpPA9yy6DNSeYy6cI+MjdFwGY2fMEU1u8BXQ1s/uACcDr5d9QpLYoWYhUbVvEcmnEeinB/58sgmcMHFjVm7j7rWY2gWDOofes4sdbGnClu+80+Z6Z9eWH04O7u683swMIHjp0GXAuwdxMIrVOfRaS6TYSPIKzWjx4XsJiMzsHdjyf+oDy9cxsL3f/zN1vI5jVtEcFx54E/CacZhsz2zucWRigTzgLahbwM2CqmbUBstz938D1BI95FYkLJQvJaO6+juAv/c/N7I5qvs35wCVmVjYTcEWP4BwWHmMWwUy1rxLMKFpiZjPDzunHgDnAJ2En+8N8f/b/MXA/wTTViwmeY9IByLfgaWrPAiOrGb9IVJp1ViTJhZehdnSEiySCzixERCQqnVmIiEhUOrMQEZGolCxERCQqJQsREYlKyUJERKJSshARkaiULEREJKr/B8LP7aFdpVM8AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8XXWd//HX52Zp1qZNUrqlpQtdkqYraalUoWwjiFIZAUERHWHQYZgZcWRkHPTH4E905Oc4+hNwGAf96agU0ZE6VhApYSmULlBom6SldE1b2ixdsjbL/f7+uGnIvUma7Z577k3ez8ejj0fu93zvuZ+epnnnnO8536855xAREQEI+F2AiIjED4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIJ4WCSD+Y2SfMbLOZ1ZvZETP7g5m938zuM7NWM6vr+LPLzH5gZhO7vHelmQU73nvmz+/8/PuI9EahINIHM/si8G/AA8B4YCrwMLCqo8tq51w2kAtcC0wAtnQNBuCwcy6ry5+PxO5vINJ/CgWRszCzHOB+4K+dc79xzjU451qdc79zzt3dtW9H+w7g40AV8Pc+lCwyJAoFkbN7H5AG/Hd/3+CcaweeAj7gVVEiXlEoiJxdHlDtnGsb4PsOE7qcdMYkMzvR5c8N0StRJHqS/S5AJM7VAPlmljzAYJgM1HZ5fdg5VxDd0kSiT2cKImf3KnAa+Gh/32BmAeAjwEteFSXiFZ0piJyFc+6kmX0NeMjM2oA/Aq3A5cAlQOOZvmaWDMwC7iN0B9K/xrxgkSHSmYJIH5xz3wG+CNxL6K6ig8CdwG87unzczOqBk8AaQpecznfOHfahXJEhMS2yIyIiZ+hMQUREOikURESkk0JBREQ6KRRERKSTQkFERDol3HMK+fn5btq0aX6XMSgNDQ1kZmb6XUbC0vEbOh3DoUnk47dly5Zq59y4vvolXChMmzaNzZs3+13GoJSWlrJy5Uq/y0hYOn5Dp2M4NIl8/Mxsf3/66fKRiIh0UiiIiEgnhYKIiHRKuDGFnrS2tlJZWUlzc7PfpZxVTk4O5eXlfpcxKGlpaRQUFJCSkuJ3KSLioWERCpWVlWRnZzNt2jTMzO9yelVXV0d2drbfZQyYc46amhoqKyuZPn263+WIiIeGxeWj5uZm8vLy4joQEpmZkZeXF/dnYiLR5hy8dgqu3wGZL8KlXEzmi3DDDth4KrR9uBkWZwpAvwLBOdhYB//nIKytgaYgpAfg6jz40hRYmg3KlZ4pcGWkaQ3CLRWwphqagxAEwGgMwq+rQj9DPpIPP50LKcPi1+sQz/4qZvaYmR0zs+29bDcz+76Z7Tazt8xsiVe1QOgf+BPlcOlW+E0VNAbBQec/8KVbQ9tbg4Pbf1ZWVlTr9dO0adOorq72uwwR3zj3XiA0dgbCe4JAQxCeqg71G05nDF7m20+AK8+y/SpCq1TNAm4HHvGqkJH0D9ze3u53CSIJb2Md/K7j58XZNAVD/TbVxaauWPAsFJxzLxK+cHmkVcBPXcgGYIyZTfSillj+AzvnuPvuuykuLmb+/PmsXr0agGAwyF133cXcuXO54oor+NCHPsSTTz7Z7f1nnpi87rrrmDt3Lp/85Cc5sxDSc889x+LFi5k/fz6f/exnOX36NBD6zf7LX/4yS5Ys4Ve/+hUrV67krrvuoqSkhMLCQjZt2sSf//mfM2vWLO69997Oz/roRz/K+eefz7x583j00UcH/5cWGWa+czD086A/moKh/sOFn2MKkwkta3hGZUfbkcHu0EqHWBGhM4YLXu95m1vZ9/t/85vfsHXrVt58802qq6tZunQpF110EevXr+fAgQOUlZVx7NgxCgsL+exnP9vjPt544w127NjBpEmTWLFiBevXr6ekpITPfOYzPPfcc8yePZtbbrmFRx55hC984QsA5OXl8frrocJ/+MMfkpqayubNm/ne977HqlWr2LJlC7m5ucycOZO77rqLvLw8HnvsMXJzc2lqamLp0qV87GMfIy8vbzCHTWRY+X1N9ysKvQl29B8uEmKg2cxuJ3SJifHjx1NaWhq2PScnh7q6OsDb2z1Dn3H27evWrePaa6+lsbGRjIwMLrzwQl588UVeeOEFVq1a1Tmh1gc+8AGampq67bOxsZHzzz+fnJwcGhoamDdvHuXl5QQCAaZOncrEiROpq6vj+uuv5z/+4z+49dZbcc5x9dVXd+6rvb2dyy+/nLq6OmbOnMncuXPJysqipaWFc889l4qKChYsWMCDDz7I//zP/wBw8OBBtm7dyrJly3DOUV9fz6hRo8Jqa25u7nbsY6m+vt7Xzx8OEv0Y7jrQEpPPaZxyxYDuOmlsdzz602c9rChk9tRUzz/Dz1A4BEzp8rqgo60b59yjwKMAJSUlLnJCqvLy8pjc/9/XZ2RnZ5OamkpaWlpn35SUFNLT00lNTSUQCHS2Jycnk56eTllZGZ/73OcAuP/++xk9ejQZGRmd/dLS0khJSSEzM5OkpKTO9oyMDJKTk8nOzsbMGD9+fOe2pKQkxo4dS3Z2NllZWWH7S0lJYdSoUWzZsoWXXnqJ1157jYyMDFauXNm5fzMjKyur2983LS2NxYsXR+loDlwiT0YWLxL9GN5/xwHPP6MxKzn8J1M/WLvj8Q1zvSmoi3W3TPX8M/y8kWoNcEvHXUjLgZPOuUFfOooXH/jAB1i9ejXt7e1UVVXx4osvsmzZMlasWMFTTz1FMBjk6NGjnb+tXXDBBWzdupWtW7dyzTXX9LrfOXPmsG/fPnbv3g3Az372My6++OJB13ny5EnGjh1LRkYGFRUVbNiwYdD7EhkOHHBkWiabr5gwsHvTg468w02e1RVrnp0pmNkvgZVAvplVAv8LSAFwzv0QWAt8CNgNNAJ/MdTP7O2a/w07Qred9ucaYQC4bhysnje4Gq699lpeffVVFi5ciJnx7W9/mwkTJvCxj32Mp59+mqKiIqZMmcKSJUvIycnp937T0tL48Y9/zPXXX09bWxtLly7l85///OCKBK688kp++MMfUlhYyJw5c1i+fPmg9yWS6NpSjJ3n53Js6sDXSggEHVN3DZ/bj8wl2P2XJSUlLnI9hfLycgoLC3t9z2un4LKtoUHkvmQE4PlFsGz0UCvt7siRI0ycOJGamhqWLVvG+vXrmTBhQvQ/yCN9HWevJfqlj3iQ6MfwUg8uH53MTaVseT7NWT38jhx0EOj9rCHQFiT/UBNFr9UQi8c71z08+MtHZrbFOVfSV7+EGGgeqmXZoScPn6o++21m6QG4Jj/0ZLMXbrjhBurq6mhpaeGrX/1qQgWCyHDjDPbPHc2+eTm4iB/8gbYg5209zolxaVRPTicYsPBwCDoCQUf+oSYKN8YmEGJlRISCWehR9FsqQs8hNEU8wBYA0joC4adzvZvqYu3atQk5IZ7IcHM6PYmyZXmcGJ/WbVvmiRbmvVpNZl0bk/Y0UJebyoHZ2dRMSsclGdYeGkOYurOO0cdjczdULI2IUIDQ3CS/KAw9mNbr3EceXDISkfhSPSmdiqW5tI5K6ratYFcdM946TlLHb40GjK5toXhD6EGEG5dXxOQuIz+NmFCA0BnAstHwxCAHkUUkcbUnGe8sGMOhWd3P1lOa25m7qYb8I5oJeESFgoiMTA2jk9mxPJ+GMd0f/hp7tJnC12oY1ax5w0ChICLDmAMOz8hi96IxBJPDH8uyoGP69hNMragbVgPFQzWMZgGPP7fddhtlZWVR2Vd/prN+4IEHwl5feOGFUflskUTUmhpgx4X57CrJ7RYIafWtLFl3lHMVCN0MyzOFaN/LPNh7g3/0ox9FtY6+PPDAA3zlK1/pfP3KK6/E9PNF4sWJ/FGULc/jdEb3H3Hj9zcwe0styW2J9YxWrOhMIUoaGhq4+uqrWbhwIcXFxaxevZqVK1dy5kG7rKws7r33XubNm8fll1/Oxo0bWblyJTNmzGDNmjUA/OQnP+HOO+/s3OeHP/zhHicv62nK63vuuYempiYWLVrEJz/5yc7PhN6n8z7bNN0iiShosHdeDm+sPKdbICS1Bil8rZqi12oUCGcxLM8U/PD0008zadIkfv/73wOhuYUeeeS9dYMaGhq46KKL+N73vse1117Lvffey7PPPktZWRmf/vSnzzrvUaSeprz+1re+xQ9+8AO2bt3arX9v03lDz9N0v//97x/i0RCJveaMJMouyOPkuO7PHmTXnqZoQw0Z9W0+VJZYdKYQJfPnz+fZZ5/ly1/+Mi+99FK3eY1SU1O54oorOvtefPHFpKSkMH/+fPbt2zegz/r+97/PwoULWb58OQcPHuTtt98+a/+XX36Zm266iaSkJMaPH8/FF1/Mpk2bAFi2bBkFBQUEAgEWLVo04FpE4sGxgnQ2/dnEHgNhSsUplqw7qkDoJ50pRMns2bN5/fXXWbt2Lffeey+XXXZZ2PaUlBSs41HpQCDQuVZBIBCgrS30zZqcnEww+N6z1s3N3e+ZLi0t5U9/+hOvvvpq55TXPfXrr65rJiQlJXXWIpII2pOMtxeP5ciM7mukpza1U7ixhtyjevZgIHSmECWHDx8mIyODm2++mbvvvrtzFbSBmDZtGlu3biUYDHLw4EE2btzYrc/ZprxOSUmhtbW123t6m85bJJHV56Sw+YoJPQZC7pEmlv7xiAJhEHSmECXbtm3j7rvvJhAIkJKSwiOPPMKXvvSlAe1jxYoVTJ8+naKiIgoLC1myZEm3Pmeb8vr2229nwYIFLFmyhJ///Oed7b1N511RUTH4v7CITxxwaFYWuxeMxSWF31Bq7Y6Zb52g4G3dajpYI2Lq7HhRV1eX0BPi+X2cE33a53iQ6Mfw/XdVUrE0j5pJ6d22pZ9qZd6GarJPdD9bjha/5z7S1NkiIh2eOw6b/mwCLendf2xN3FPPeVuP61bTKFAoiEhcaw3CV/fCtw+CiwiEpJYgc7bUMv5go0/VDT8KBRGJW+80wU1loSnvI42uPk3RhmrSGzWRXTQNm1BwznXe8inRl2hjT5L4fn4U/moX1EX+zHeOc8tPMW3HSQL6toy6YREKaWlp1NTUkJeXp2DwgHOOmpoa0tK6PxgkEm11bfDXb8PPjnbfNqqxjcLXahhbdTr2hY0QwyIUCgoKqKyspKqqyu9Szqq5uTlhf7CmpaVRUFDgdxkyzG06BZ8oh91N3betyoOa375LSstZFlqXIRsWoZCSksL06dP9LqNPpaWlLF682O8yROJO0MF3DsJX9kLkDURpAfjXmfD5SXCZAsFzwyIURCRxHTkNn66AZ4933zYvAx4vguLuDy2LRxQKIuKbtTXwmQqo6uF5s7+aBN+ZCelJsa9rJFMoiEjMnQ7CPXvg3yq7bxubDI/NgY+Oi31dolAQkRiraICbymFrffdtF+fAfxVCQWLejzEsaJZUEYkJ5+A/j8D5W7oHQhLw9Wnw3CIFgt90piAinjvRCp/bBU/0cNf4uaPgF0VwYU73bRJ7CgUR8dQrJ+ETZbC/h+fNbhgH/z4bxqTEvi7pmUJBRDzR7uCB/fDP+yBypoqMAPzfWfAXE0CTEMQXhYKIRF1lM9xcDi+c7L5tUVbo2YM5GbGvS/qmUBCRqPptFdy6E2p7WO77CwXwrRkwSre4xC2FgohERVM7/P078Mjh7tvGpcBP5sKH8mJflwyMQkFEhmx7PdxYBjt6WOvm8rHw07kwcVTs65KB00mciAyac/DwIVj6evdASDb49gx4ZoECIZHoTEFEBqWmFW6tgKdqum+bmQa/LIKlo2NflwyNQkFEBqz0eOjuokMt3bfdMh5+MAuy9dMlIemfTUT6rS0I/7wfvrEfIlfCzEqCR2bBzRN8KU2iRKEgIv2yrym0Ktqrp7pvW5odulw0Mz32dUl0aaBZRPq0+hgs3Nw9EAz48hR4ebECYbjQmYKI9KqhHf72bXjs3e7bJqTCz+bC5bmxr0u8o1AQkR69URd69mBXU/dtV+fCj+fCuNTY1yXeUiiISJigg+9VhlZGa4kYTU41eHAm/M1kTWQ3XHk6pmBmV5rZTjPbbWb39LB9qpk9b2ZvmNlbZvYhL+sRkbM71gIf3gZffKd7IMzNgNeWwN8WKBCGM89CwcySgIeAq4Ai4CYzK4rodi/whHNuMXAj8LBX9YjI2f2xFhZsgj/Udt/2lxNh8/mwKDv2dUlseXmmsAzY7Zzb45xrAR4HVkX0ccCZZx5zgB6m0hIRL7UE4R/egQ++BUdbw7eNSYZfFcGjcyAzyZ/6JLa8HFOYDBzs8roSuCCiz33AH83sb4BM4HIP6xGRCG83hp492FzXfduK0fDzIjhXayaPKH4PNN8E/MQ59x0zex/wMzMrds4Fu3Yys9uB2wHGjx9PaWlp7CuNgvr6+oStPR7o+A2cA8rJ5gmmsIE8WtzFpJa2s5wazqWB1UzlNOGnAAEcN7OfW07tZ+8Gx15fKu/Zjct7mFcjhnIzm7lxeYVvn19ausfzzzDnIh9Wj9KOQz/k73POfbDj9T8COOe+2aXPDuBK59zBjtd7gOXOuWO97bekpMRt3rzZk5q9VlpaysqVK/0uI2El+vG79I4DMf28oEH5sjyqJ6cTDBgEuowOO9fjaPGoxjaKNtQwprqHBZWjYN3DU4f0/lgfw0g3Lq/g8Q1zffv8oRw/M9vinCvpq5+XYwqbgFlmNt3MUgkNJK+J6HMAuAzAzAqBNKDKw5pERgRHl0BIDoQHAvQYCOMqG1n6x3c9CwRJDJ5dPnLOtZnZncAzQBLwmHNuh5ndD2x2zq0B/h74DzO7i9D38WecV6cuIiPIqdzU9wKhL84xpeIUM7edRHeaiqdjCs65tcDaiLavdfm6DFjhZQ0iI9HB2dmhS0b94aA5M1mBIIAmxBMZlmompXe/ZNSbgIX6i6BQEBmWgkkD+71/oP1l+FIoiAxDgfaBDc0NtL8MXwoFkWGmPQBJrcG+O54RdOQd7mEqVBmRFAoiw0gwADsuHEdrev/vIQkEHVN39fBIs4xICgWRYSJosON9+QMaNA60Bck/1ER2rb9PCkv88HuaCxGJgqBB2fJ8qidnhLUntQRxAbo/0Rx0BIKO/ENNFG6s0e2o0kmhIJLgggblF+RRNSU8ENJPtbKo9CgtGckcmJ1NzaR0XJJh7aExhKk76xh9XGcIEk6hIJLAnEHFsjyOTc0Ma0+va2XxC8cY1RwkrbmF4g01gP9z90j805iCSIJyQEVJLkfPDQ+EtPo2FpUeY1RTuz+FSUJTKIgkIAfsLMnl3elZYe1pDW0sLj1KmgJBBkmhIJJgHLBryViOzAgPhFGNbSwqPUpaowJBBk+hIJJAHPD24rEcPi98seTUxtAlo/QGBYIMjUJBJEE4YPfCMRyaFREITe0sfuEYGfVt/hQmw4pCQSQBOGDPgjFUzhkd1p7S3M6iF46SUadAkOhQKIjEOQfsLc7hwNyIQDjdzqLSY2SeUiBI9CgUROLcvqLR7C/KCWtLPt3OwheOkXWq1aeqZLhSKIjEsX2Fo9lXPCasLbklyKIXj5F9QoEg0adQEIlTB+Zks3d+eCAktQRZ+OIxso8rEMQbCgWROHRwdjbvLBwb1pbUGmThS8cYrRlNxUMKBZE4U3leFrsXdQ+EBS9VkVOjQBBvKRRE4sihGVm8vSQ3rC3QFmT+y1WMqT7tU1UykigUROLE4emZ7CrpORDGVikQJDYUCiJx4Mi5meyMCARrdxSvryb3mAJBYkehIOKzo1MzqFiWC/be+mfW7pi/voq8o80+ViYjkUJBxEfHCjIoW5YXHghBR/Gr1eS9q0CQ2FMoiPjk2OR0ypbnha2dbEFH0avV5B9u8rEyGckUCiI+qJqUTtn78nFdAoGgo/C1Gs45pEAQ/ygURGKsemIaOyIDwTkKN9Yw/mCjf4WJoFAQiama8Wlsv3AcLik8EOZurGXCAQWC+E+hIBIjteeMYvuK/PBAAOZsrmXi/gafqhIJp1AQiYHS47Dt/eMIJof/l5u9pZZJexUIEj8UCiIee/kEfHgb3QJh1uu1TH6n3qeqRHqmUBDx0Ksn4apt0BAMbz9v63EKdisQJP4oFEQ8svEUXPkW1LeHt8988zhTdtX5U5RIHxQKIh54vQ4++BacigiE6dtOMHWnAkHil0JBJMrerIfL34QTbeHt07afYFr5KX+KEuknhYJIFG3vCITjEYHwT1NhWpkCQeKfQkEkSsob4LI3oTpi+eR/mAJfnw7W89tE4opCQSQKdjbCpW/CsYhAuKsAvjUjbBJUkbimUBAZot2NcOlWeDdi+eS/mQzfmalAkMSiUBAZgj1NcMmbcDgiED4/Cb53ngJBEo9CQWSQ9jfDJVuhMmK1zNsmwkOzFAiSmDwNBTO70sx2mtluM7unlz43mFmZme0ws194WY9ItBzsCIQDEYHw6fHw77PD1s0RSSjJXu3YzJKAh4ArgEpgk5mtcc6VdekzC/hHYIVz7riZneNVPSLRcuh0aFB5b8RqmZ88B/5zrgJBEpuXZwrLgN3OuT3OuRbgcWBVRJ+/BB5yzh0HcM4d87AekSF793RoUHl3xOJoHx8HP5kLSQoESXDmnPNmx2bXAVc6527reP0p4ALn3J1d+vwW2AWsAJKA+5xzT/ewr9uB2wHGjx9//uOPP+5JzV6rr68nKyvL7zISlt/H7zgp3MUi9pMZ1n4RVXyVMpI5+/+lXQdazro9FnIzm6ltSPPt82dPTR3S+/0+hol8/C655JItzrmSvvp5dvmon5KBWcBKoAB40czmO+dOdO3knHsUeBSgpKTErVy5MsZlRkdpaSmJWns88PP4VbeELhlFroWzKg9+NW8cKYGL+9zH/Xcc8Ki6/rtxeQWPb5jr2+evu2XqkN7v9zFM9OPXH15ePjoETOnyuqCjratKYI1zrtU5t5fQWcMsD2sSGbDaVrjiLdgWEQhX58LqeZCie/hkGPHy23kTMMvMpptZKnAjsCaiz28JnSVgZvnAbGCPhzWJDMiJVvizN2FrxNIHHxwLT86DUQoEGWY8+5Z2zrUBdwLPAOXAE865HWZ2v5ld09HtGaDGzMqA54G7nXM1XtUkMhAn20LTX2+JCITLx8J/F0Nakj91iXjJ0zEF59xaYG1E29e6fO2AL3b8EYkbdW1w1VuwMWLpg5Vj4KliSFcgyDClk1+RCPVt8KFt8GrETNfvz4HfFUOGAkGGMYWCSBeN7fCR7fDyyfD2942GtfMhy+/79UQ8plAQ6dDUDtdsg9IT4e3LsuEPCyBbgSAjgEJBBGhuh2u3w3MRgbAkC55ZADkKBBkhFAoy4p0OwnU74Jnj4e0LM+HZhTAmxZ+6RPygUJARrTUIH98Bv68Nby/OhD8thFwFgowwAwoFM8vsmP1UJOG1BuGmMngq4smYwgx4biHkD22aHpGEdNZQMLOAmX3CzH5vZseACuBIx/oHD5rZebEpUyS62oLwqXL4dXV4+5x0WLcQzlEgyAjV15nC88BMQmseTHDOTXHOnQO8H9gA/IuZ3exxjSJR1e7gMxWwuiq8/bx0WLcIJozypy6ReNDXPRWXO+daIxudc7XAr4Ffm5muukrCCDq4bSf8PGLljulpoTOESQoEGeHOeqZwJhDM7PLIbWb26a59ROJd0MHndsFP3g1vP3cUPL8Ipvg3Tb5I3OjvQPPXzOyRjoHm8Wb2O+AjXhYmEk3OwZ1vw4+OhLcXjApdMjpXgSAC9D8ULgbeAbYCLwO/cM5d51lVIlHkHPzdbnjkcHj7pFR4fiHMSPenLpF41N9QGEtozeV3gNPAuWam1Wgl7jkHf/8O/N+I5Z0mpIbOEM7L8KcukXjV31DYADztnLsSWApMAtZ7VpVIFDgH9+yB71aGt49LCT2HMEeBINJNf2d0udw5dwDAOdcE/K2ZXeRdWSJD4xx8dS98+2B4e15y6C6jokx/6hKJd309vDYN4EwgdOWce9FCCrwpTWTw7t8P34j4rh2bHJq6ojjLn5pEEkFfZwoPmlkAeArYAlQBacB5wCXAZcD/Aip73YNIjD2wH+7bF96WkxSa3G5Rti8liSSMs4aCc+56MysCPgl8FpgANBFac3kt8A3nXLPnVYr004MH4J/2hreNToI/LoTzFQgifepzoNk5Vwb8b+B3hMJgL7AJeFKBIPHkuwfhH/aEt2UlwdMLYNlof2oSSTT9HWj+f8Ap4Psdrz8B/BS4wYuiJD5deke3oaWYunF5C/f3UkPleVm8vSQ3rC2pNcisdVX80y9PR+Xz1z08NSr7EYln/Q2FYudcUZfXz5tZmRcFiQzUoRndAyHQFmT+y1WMqY5OIIiMFP19TuF1M1t+5oWZXQBs9qYkkf47PD2TXSU9B8LYKgWCyED190zhfOAVMztz7j4V2Glm2wDnnFvgSXUiZ3Hk3Ex2RgSCtTuK11eTe0yBIDIY/Q2FKz2tQmSAjk7NoGJZLnSZbcXaHfPXV5F3VPc/iAxWv0LBObff60JEIjngVG4qB+eMpmZiGs8nTSEwyZF5opW63NTwQAg6il+tJu9dBYLIUPT3TEEkpoIG5cvyqJ6cTjBgEAgFQDDZqMvrHghFr1aTf7jJr3JFhg2FgsQdR5dASO7hXoiuE/Q6x9zXajjnkAJBJBr6e/eRSMycyk3tPRAiWBAyGtpiUJXIyKBQkLhzcHZ26JJRPziDA7M1f4VItCgUJO7UTErvHEPoU8BC/UUkKhQKEneCSQNb1G+g/UWkdwoFiTuBdudpfxHpnUJB4k7e4abQ0mn9EXSh/iISFQoFiTtjqvr/AFog6Ji6q87DakRGFoWCxJWmjCT2Fo8JfxahF4G2IPmHmsiubYlBZSIjgx5ek7jRnmRsXzGOtlFJ7zU6F3qarevdSEFHIOjIP9RE4cYaNMwsEj0KBYkLDqhYmkv92NSw9knv1NOaGqBmUjouybD20BjC1J11jD6uMwSRaFMoSFw4MCebY1Mzw9rGHWxk9uvHO88EblxeweMb5sa+OJERRGMK4ruaCWnsWTAmrC3zRAtzN+nSkEisKRTEV41ZyZQtzw8bWE4+3c789dUkt+n5A5FYUyiIb9qSjW0r8mlL7fJtGHTM21BDuia5E/GFp6FgZlea2U4z222h4UFCAAAP6UlEQVRm95yl38fMzJlZiZf1SPw4Mz12Y074wPLMt06Qq5XTRHzjWSiYWRLwEHAVUATcZGZFPfTLBv4OeM2rWiT+7CsaTXVBRljb+P0NTNGDaCK+8vJMYRmw2zm3xznXAjwOrOqh39eBfwH06+EIUT0pnX3F4QPLWcdbmLO5VgPLIj7zMhQmAwe7vK7saOtkZkuAKc6533tYh8SRhuxkyi7IC2tLaW5n/voqkjSxnYjvfHtOwcwCwL8Cn+lH39uB2wHGjx9PaWmpp7V5pb6+PmFrB7hx+dAeFmu0ZL454QLaU977XSTggvztydeZveB4n+/PzWzmxuUVQ6phKEpL9wzp/UM9ftGgYzg0iX78+sNcf2ejHOiOzd4H3Oec+2DH638EcM59s+N1DvAOUN/xlglALXCNc25zb/stKSlxmzf3ujmulZaWsnLlSr/LGLRL7zgw6Pc6g7dWjKM2YkGcWa/XUrC7vpd3hfP74bV1D08d0vuHcvyiRcdwaBL5+JnZFudcnzfzeHn5aBMwy8ymm1kqcCOw5sxG59xJ51y+c26ac24asIE+AkES1955Od0CYcLeeib3MxBEJDY8CwXnXBtwJ/AMUA484ZzbYWb3m9k1Xn2uxJ9jBensL8oJa8uuOc3sLRpYFok3no4pOOfWAmsj2r7WS9+VXtYi/qjPSaF8WfjAcmpTO/NfqSYp6FNRItIrPdEsnmlNDbBtxTiCye99m1m7o/iVKkY1tftYmYj0RqEgngga7FieR3NW+Mno7Ddqyanx/y4cEemZQkE8sWfBGI5PCB9YnrS7jkl7GnyqSET6Q6EgUffu1AwOzhkd1pZT1cysrX0/iyAi/lIoSFTVjU1hZ0luWNuoxjaKX6kmoIFlkbinUJCoaRkVYNuF4QPLgXZH8fpqUk8rEUQSgUJBoiJosP19+ZzODB9YnrO5VmspiyQQhYJExe5FYzl5TlpYW8GuU0zYr4FlkUSiUJAhOzw9k0OzssPaxhxtZuabJ3yqSEQGS6EgQ3IyN5VdS8IHltPq25j3ajUBzYQtknAUCjJop9MCbF+Rj0t6bwajQFuQ+eurSG3RwLJIIlIoyKAEA7D9wnG0pIcPLM/dVEvWyVafqhKRoVIoyIA5YNeSXE7ljwprn1p+kvEHG/0pSkSiQqEgA3Z4ZhZHZmSFteUeaWLG9pM+VSQi0aJQkAE5kT+KtxePDWtLr2ulaEM1poFlkYSnUJB+a05PYvuF+bjAewPLSa1B5q+vJqVViSAyHCgUpF+a2mH7inxa05LC2gs31pB5SgPLIsOFQkH65BzcvgvqcsMHlqftOMm4Q00+VSUiXlAoSJ/+rRL+62h4W/6hRqbt0MCyyHCjUJCz+lMtfOmd8LaMU60UvlaD9fwWEUlgCgXp1d4m+HgZdH02OaklyPyXq0hu08CyyHCkUJAeNbTDR7dDbVuXRueYt6GajPq2Xt8nIolNoSDdOAd/UQFvRcx6PWPbSfLebfanKBGJieS+u8hI8y8H4FdV4W3XjYPqilP+FCQiMaMzBQnzhxr4yt7wtvmZ8OM5aGBZZARQKEintxvhprLQhHdn5CbDb4shS+eUIiOCQkEAONUGq7bDyfb32gLA6iKYke5bWSISYwoFIejglnIoj5j1+sGZcHluz+8RkeFJoSB8fT88VRPedvN4uKvAn3pExD8KhRHut1Vw377wtiVZ8OhsMI0si4w4CoURrKwBPlUR3jYuBf67GNKTen6PiAxvCoUR6kRraGC5vsvAcrLBk/Ngapp/dYmIvxQKI1C7g0+Uw+6IWa//7Ty4aIw/NYlIfFAojED37oU/1Ia33ToB7pjkTz0iEj8UCiPME8fgWwfC25aPhoc0sCwiKBRGlDfrQxPddTUhFX49D0bpO0FEUCiMGDWtoamwG7ssjpBq8Jt5MGlU7+8TkZFFoTACtAXhhh2wL2LW64dmwfty/KlJROKTQmEE+Ic9sO5EeNsdk+A2DSyLSASFwjD3s3fhu5XhbR/Ige+e5089IhLfFArD2OZT8Jc7w9sKRsGv5kGq/uVFpAf60TBMHW2Ba3fA6S6LI6QFQmsjjE/1ry4RiW8KhWGoJQjX7YDK0+Htj86G87P9qUlEEoOnoWBmV5rZTjPbbWb39LD9i2ZWZmZvmdlzZnaul/WMFHfthpdPRrQVwKcm+FOPiCQOz0LBzJKAh4CrgCLgJjMriuj2BlDinFsAPAl826t6RoofHYaHD4e3XTYGvj3Dn3pEJLF4eaawDNjtnNvjnGsBHgdWde3gnHveOXdmva8NgJZ1GYJXTsIdb4e3TUuD1fMgWRcKRaQfvPxRMRk42OV1ZUdbb24F/uBhPcPa4dPwsR3Q2mVgOaNjYDkvxb+6RCSxmHOu716D2bHZdcCVzrnbOl5/CrjAOXdnD31vBu4ELnbOne5h++3A7QDjx48///HHH/ekZq/V19eTlZUV9f22YHyBxZQzOqz9a+zgEqqi9jm7DrREbV+DkZvZTG2Df4s9zJ46tNu2/D5+oGM4VIl8/C655JItzrmSvvolD/oT+nYImNLldUFHWxgzuxz4J3oJBADn3KPAowAlJSVu5cqVUS82FkpLS4l27c7BbTuh/N3w9n+cCv88Y15UP+v+Ow703clDNy6v4PENc337/HW3TB3S+/0+fqBjOFSJfvz6w8vLR5uAWWY23cxSgRuBNV07mNli4N+Ba5xzxzysZdh6+DA8FhEIV+XC16f7U4+IJDbPQsE510boktAzQDnwhHNuh5ndb2bXdHR7EMgCfmVmW81sTS+7kx68cAK+sDu8bVY6/KIQkrQ2gogMgpeXj3DOrQXWRrR9rcvXl3v5+cPZgWa4fge0dRkSykoKDSyP0cCyiAySblRMQI3tcO12qGoNb/+vQijK9KcmERkeFAoJxjm4fSe8Xh/eft80WJXvS0kiMowoFBLMdyvh5xFD8qvy4KuaIEREokChkECerYW73wlvK8yAnxZCQAPLIhIFCoUEsacJPl4GXZZYJicJniqG0Z7eLiAiI4lCIQHUt8FHt8PxtvfaDPhlEczK8K0sERmGFApxzjn4i52wrSG8/YHpcFWePzWJyPClUIhz3zwAT0ZMX3TDOPiy90+7i8gIpFCIY7+vgXv3hrctyITH5oJpYFlEPKBQiFM7G+ETZdB1Dtvc5NATy5lJvpUlIsOcQiEOneoYWD7V/l5bAHhiHkxP960sERkBRtTNjJf6Pu1uS59T/zpg24p8aiaH31Y0Y+txvvFEHd8Ywueve1gDESJydjpTiDP75uV0C4Tx+xoo2FXnU0UiMpIoFOJI1eR09s3LCWvLrj3NnC21aFxZRGJBoRAnGkanUL4s/MGDlOZ2itdXk9TuzZKpIiKRFApxoDXF2LYin/aU9/45LOgofqWatKb2s7xTRCS6FAo+cwZly/Npyg5fGWfWG8cZU93jktUiIp5RKPhsT3EOtRPD7zOduKeeSe/U9/IOERHvKBR8dHRKBgcKwweWR1efZvbrGlgWEX8oFHxSNyaFiqW5YW2pTW0Uv1JFINjLm0REPKZQ8EFLaoDtK8YRTO4ysNzuKF5fzahmJYKI+GdEPdEcaw44lZvKwTmjqZmYxvNJUwhMciS1OVrTwicwmvN6LTm1Lf4UKiLSQaHgkaBB+bI8qienEwxY53qZwWQjGHHUJ79dx8S9DT3sRUQkthQKHnB0CYTks1+hS25qY+bW47EpTESkDxpT8MCp3NR+BQJAMCVAw9jUGFQlItI3hYIHDs7ODl0y6odgwDgwO9vjikRE+keh4IGaSemdYwh9Cliov4hIHFAoeCCYNLBHzwbaX0TEKwoFDwQGOKvpQPuLiHhFoeCBvMNNEOznD/qgC/UXEYkDCgUPTNlVR6CfoRAIOqZqVTURiRMKBQ+Mrm0h/1ATgbazT1kRaAuSf6iJbD3JLCJxQqHgAQMKN9a8FwyRZw1B1xkIhRtrNCOqiMQNPdHskYCDotdqqMtN5cDsbGompeOSDGsPjSFM3VnH6OM6QxCR+KJQ8JARupRUvKEGgBuXV/D4hrn+FiUicha6fCQiIp0UCiIi0kmhICIinRQKIiLSSaEgIiKdFAoiItJJoSAiIp0UCiIi0snTUDCzK81sp5ntNrN7etg+ysxWd2x/zcymeVmPiIicnWehYGZJwEPAVUARcJOZFUV0uxU47pw7D/gu8C9e1SMiIn3z8kxhGbDbObfHOdcCPA6siuizCvh/HV8/CVxmZpofTkTEJ16GwmTgYJfXlR1tPfZxzrUBJ4E8D2sSEZGzMOe8WQrSzK4DrnTO3dbx+lPABc65O7v02d7Rp7Lj9Tsdfaoj9nU7cHvHyznATk+K9l4+UN1nL+mNjt/Q6RgOTSIfv3Odc+P66uTlLKmHgCldXhd0tPXUp9LMkoEcoCZyR865R4FHPaozZsxss3OuxO86EpWO39DpGA7NSDh+Xl4+2gTMMrPpZpYK3AisieizBvh0x9fXAeucV6cuIiLSJ8/OFJxzbWZ2J/AMkAQ85pzbYWb3A5udc2uA/wR+Zma7gVpCwSEiIj7xdJEd59xaYG1E29e6fN0MXO9lDXEm4S+B+UzHb+h0DIdm2B8/zwaaRUQk8WiaCxER6aRQiJG+pvyQ3pnZY2Z2rOMWZhkgM5tiZs+bWZmZ7TCzv/O7pkRiZmlmttHM3uw4fv/sd01e0uWjGOiY8mMXcAWhh/g2ATc558p8LSxBmNlFQD3wU+dcsd/1JBozmwhMdM69bmbZwBbgo/r+65+OWRYynXP1ZpYCvAz8nXNug8+leUJnCrHRnyk/pBfOuRcJ3Z0mg+CcO+Kce73j6zqgnO6zC0gvXEh9x8uUjj/D9rdphUJs9GfKDxHPdcxEvBh4zd9KEouZJZnZVuAY8KxzbtgeP4WCyAhhZlnAr4EvOOdO+V1PInHOtTvnFhGamWGZmQ3by5gKhdjoz5QfIp7puBb+a+Dnzrnf+F1PonLOnQCeB670uxavKBRioz9Tfoh4omOg9D+Bcufcv/pdT6Ixs3FmNqbj63RCN4xU+FuVdxQKMdAxLfiZKT/KgSecczv8rSpxmNkvgVeBOWZWaWa3+l1TglkBfAq41My2dvz5kN9FJZCJwPNm9hahX/Cedc79j881eUa3pIqISCedKYiISCeFgoiIdFIoiIhIJ4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgsgQmdlSM3urY979zI4594ft3DgyvOnhNZEoMLP/DaQB6UClc+6bPpckMigKBZEo6JjTahPQDFzonGv3uSSRQdHlI5HoyAOygGxCZwwiCUlnCiJRYGZrCK2oN53Q0pd3+lySyKAk+12ASKIzs1uAVufcLzrW437FzC51zq3zuzaRgdKZgoiIdNKYgoiIdFIoiIhIJ4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIp/8P5RNXTTn1oS8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Plot progress w.r.t the generator's and the discriminator's loss function\n", - "t_steps = np.arange(num_epochs)\n", - "plt.figure(figsize=(6,5))\n", - "plt.title(\"Progress in the loss function\")\n", - "plt.plot(t_steps, qgan.g_loss, label = \"Generator loss function\", color = 'mediumvioletred', linewidth = 2)\n", - "plt.plot(t_steps, qgan.d_loss, label = \"Discriminator loss function\", color = 'rebeccapurple', linewidth = 2)\n", - "plt.grid()\n", - "plt.legend(loc = 'best')\n", - "plt.xlabel('time steps')\n", - "plt.ylabel('loss')\n", - "plt.show()\n", - "\n", - "\n", - "# Plot progress w.r.t relative entropy\n", - "plt.figure(figsize=(6,5))\n", - "plt.title(\"Relative Entropy \")\n", - "plt.plot(np.linspace(0, num_epochs, len(qgan.rel_entr)), qgan.rel_entr, color ='mediumblue', lw=4, ls=':')\n", - "plt.grid()\n", - "plt.xlabel('time steps')\n", - "plt.ylabel('relative entropy')\n", - "plt.show()\n", - "\n", - "#Plot the PDF of the resulting distribution against the target distribution, i.e. log-normal\n", - "log_normal = np.random.lognormal(mean=1, sigma=1, size=100000)\n", - "log_normal = np.round(log_normal)\n", - "log_normal = log_normal[log_normal <= bounds[1]]\n", - "temp = []\n", - "for i in range(int(bounds[1]+1)):\n", - " temp += [np.sum(log_normal==i)]\n", - "log_normal = np.array(temp / sum(temp))\n", - "\n", - "plt.figure(figsize=(6,5))\n", - "plt.title(\"CDF\")\n", - "samples_g, prob_g = qgan.generator.get_samples(qgan.quantum_instance, shots=10000)\n", - "samples_g = np.array(samples_g)\n", - "samples_g = samples_g.flatten()\n", - "num_bins = len(prob_g)\n", - "plt.bar(samples_g, np.cumsum(prob_g), color='royalblue', width= 0.8, label='simulation')\n", - "plt.plot( np.cumsum(log_normal),'-o', label='log-normal', color='deepskyblue', linewidth=4, markersize=12)\n", - "plt.xticks(np.arange(min(samples_g), max(samples_g)+1, 1.0))\n", - "plt.grid()\n", - "plt.xlabel('x')\n", - "plt.ylabel('p(x)')\n", - "plt.legend(loc='best')\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_master", - "language": "python", - "name": "qiskit_master" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/aqua/general/amplitude_estimation.ipynb b/qiskit/aqua/general/amplitude_estimation.ipynb index 7101c0e96..a0be79a02 100644 --- a/qiskit/aqua/general/amplitude_estimation.ipynb +++ b/qiskit/aqua/general/amplitude_estimation.ipynb @@ -68,7 +68,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAF2CAYAAAB6XrNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvUmMJNd5NXpinnKsrB6qms1uNmf6mRopkaI8yIZkL/Q/7b0wDMMrGxCstRe2Fwa88cIG7K0WXr1/Y8swIIiAJcEaKYkWSVHm0M1mTzUPmRnzeO9bxL1RkVmZlZlV1SS7+h6gUFWZGRE3IiPO/e43nE+ilEJAQEBA4OxA/qgHICAgICBwuhDELiAgIHDGIIhdQEBA4IxBELuAgIDAGYMgdgEBAYEzBkHsAgICAmcM6oz3RS6kgICAwMcT0rQ3hMUuICAgcMYgiF1AQEDgjEEQu4CAgMAZgyB2AQEBgTMGQewCAgICZwyC2AUEBATOGASxCwgICJwxCGIXEBAQOGMQxC4gICBwxiCIXUBAQOCMQRC7gICAwBmDIHYBAQGBMwZB7AICAgJnDILYBQQEBM4YBLELnDn8zd/8DSRJwq1bt060nx/84AeQJAn//M//fDoDExD4kCCIXeChwr179/Cnf/qnWF1dhWEYuHr1Kv7yL/8S/X7/0GdffvllnDt3Dt/61rc+gpEKCBwfgtgFHhq8//77+MxnPoNvfvOb+NznPodvfOMbuHbtGv7xH/8RL730Evb29kY+L8syvvrVr+L73/8+hsPhRzRqAYHFIYhd4KHBn//5n2N7exv/9E//hH//93/H3//93+O73/0uvvGNb+Ddd9/FX/3VXx3a5mtf+xqyLMO3v/3tj2DEAgLHgyB2gYcCN2/exCuvvIKrV6/iL/7iL0be+9u//Vs4joN//dd/RRAEI+99+ctfhmVZwh0j8EBBELvAQ4Hvfve7AICvfOUrkOXR277ZbOLll19GGIb46U9/OvKebdv48pe/jG9/+9vIsuxDG6+AwEkgiF3gocC7774LAHjqqacmvv/kk08CAN57771D733ta1/DcDjE97///fs2PgGB04QgdoGHAjz42W63J77PXx8MBofe++pXvwpZloU7RuCBgSB2AQEAlFIAgCRJh947f/48XnzxRfzHf/zHhz0sAYFjQRC7wEMBbpFPS1t0XXfkc5Peb7Va92dwAgKnDEHsAg8Fnn76aQCTfegAcP36dQCTffA3b97EW2+9ha997Wv3b4ACAqcIQewCDwW+9KUvAQBeeeUVEEJG3vM8Dz/60Y9gWRZefPHFQ9ty37ogdoEHBYLYBR4KPP744/jKV76CW7duHdJ++eu//msEQYA//uM/huM4h7b91re+hZWVFbzwwgsf1nAFBE4E9aMegIDAh4V/+Zd/wRe+8AV8/etfx3/913/h2Wefxauvvorvfe97eOqpp/B3f/d3h7bZ39/HD3/4Q/zZn/3ZxMCqgMDHEcJiF3ho8Pjjj+MXv/gF/uRP/gSvvvoq/uEf/gHvv/8+vv71r+MnP/kJer3eoW3+8z//E0VRCDeMwAMFYbELPFS4fPkyvvnNb879+W9961toNBr4vd/7vfs4KgGB04Ww2AUEpiCOY3znO9/BH/7hH8IwjI96OAICc0MQu4DAFLzxxht44okn8Ed/9Ecf9VAEBBaCcMUICEzB5z//ebz++usf9TAEBBaGIHaBM4ff/d3fBQB0Op2PdiACAh8RJK6RMQVHvikg8KBivEhpXMo3DEPEcQxZlmEYBizL+jCHJyAwD6bm3wqLXeCBBCEEtChACQElpPy//lMUlbAXKAWl9MBKqZF6XhQH+ensdxhFCMIQiiyDorRuup0OTMuCrCiAJEGWZciqWv5mfwsIfFwgLHaBjy0IISB5DhQFCPuhRQGS55h03/LXCCEVkVNKS2IvPzD6OkpilyUJkCRIAKIkQRAEMA0DrWYTADAYDlFQil6nA0VRJg9WkiDJMhRVhaxpUBQFqqZB0bRyMhAQOH1MtdgFsQt8ZKCUoigK5HmOLEmqnyLPIQNQZBmqokCWZUiShIKQkuApLUm//sNeK4oCFAChdPJdz0lekiBRioLS0mKnFKQoMPR9aKqKhuNUlnye53B9H4qioNNqQWYkLssyZG69y3L5GlD9TylFGEXwfR+e74MAaHU6WFpextLyMkzT/JCutMAZhSB2gY8ehBAEQYAoikoCT9PKCqfMygaAghBkWYY8z5EzMucWtcbcH7quQ1UUSIxYJUk6IFxJKkmZbcMJWmL/g70vAcgJKV+jFK7nIU4SdNttyIpSjkeSQAhBGIYIowitVgsSGyMIKScbSuF5HsIwRBAE8IOg9NFHEQzDgOM4aDYaUFQVSRQhDMOK6C3HgdNqod1q4dqTT+Kxxx4T0gUC80IQu8BHh6Io4A6H8AcDFFlWFU9QQkBqf48QWo2EQQgK5kYpigIFIVAkCbquwzZNGIZxbDLMCYHMxrjX78MyTTQbjep9inJCyPMc+4MBGo4DmwVS0zTF7du3cePGDUCS0Gq34dg2HMeBZVllUZMklauI2nMmSRJkRQEpCiRxjCxNEcUxbt+7h4IQfPIzn8FvfuIT090+AgIlBLELfLgghCANQ7iDAdzBAFmeQ5VlqJoG1O45RVFKfzT/rarla8wK52ROcUD+hBBEcYwwjkHyHJIswzJNmKYJdRIZMlfLJHBi59Z6r9uFoijVjV+fMPb6/fI1SvH+zZtYX1/H6soKrl27ht7SUhV8BaUgNb8+gGpC4q4n/ndRFNX+ZUXBoN/H7Vu3EEYRnnrmGfzmJz4Bp9WCIoKzAochiF3g/oMQgiJJ4O7vY39/H2EYIstzmKYJU9ehqio0TYPGf2vaoTRDoCRwTorjaYnjSJi1myQJKABN00orXtfnsuJzlkFTt9YpXy3UP5fnuH7jBt7/4AMoKAXFrly5MlFqgFKKvCiQ5TmyNEXKAr4SUGXZ1M81z3PkRVH+5DkoIfCDANtbW/A8D48+8gieee45XFhdhdNqiWCsAIcgdoH7hzQMEfo+Qt+H57rwgwCSJKHhOGg2mzANA5qmTbama6DM3UJqxE5r7wHlnUxZwLN+cxJCEEYRojguXTWyDMe2YdUDlGwfFAdPRM62C8KwstbLA5VWfpIkeOftt3H3zh10ez30lpdx5dFH4VhW6X/nhMyDwHk+YoUDqFYjlFnykyac+msFmxSSJMFgMMDa2hr6/T6eePJJ9Ho9NNttLPV66PR6UFnMQeChhCB2gdMDpRRRFCH2fUSehzzLAABxkqAoCtiWhXO93kI+Yp7VcojM+f3JiJyyz3AirJM03yZJUwRRhCzLoGsaWs1mRayHLHFC0B8MIEkSuvVKVUpx9949vPnGG3jk8mU89dRTsC0Lm9vbAADLNEsSZysKCWU2jKqq5cqE/VZZLvz49SNHP3ejY8xz3LlzB7984w1cvXoVjWYToBSKpsFpNNDqdtFdWkKj0RB++YcLgtgFTgbKrFffdRF7HoosgwRA13XomoY4SZDleeXOmGSV5nmOPM+R5jkK5n4gzH8uSxIkRYEqy1BkuSwCqqUSHmWVjrg2auQdRhG8IACAkaBn/TNxmqI/HJbvmyYgSYjDEP/z+usIgwCf/sxn0Gm3EScJ4iTB0HVRFAWWOh2omlYRuaqq5binXDs6waV06Nmb4ToaDAb4yY9/jCtXruDylSuI+Aolz0EVBXajgeXz57G0tCRSKR8OCGIXOB7yPIfv+wg8D3kUQQFg6DoMw4Ch6yCEYHdvD2GSwNR1aJpWuSMq10SeI+OWNkshBFC5XbjvGUDlAiE1y51b6FVaI0tp5MFW0zBgGQZM0xypIqW13PQ0TaGpamW98ydi6PsIowi9pSUokoRbt2/jrbfewrXHHsOVq1eRsrRLoEy1JJQiy3OcX16uJptqouBBWpYjT8eCqQAOXq8VSo08g3X/PqWQxiaLOAzxo5/8BJ12G5/81KcgAciyDFEcw/V9xFkGzTDQ7fWwvLyMTqcj0ifPLgSxC8wPQgiiKELg+0h8H7QoYGgaLBaUTLIMQRBg6HnY3tlBTggcy4LGMjcklieucNcE8zErLONFVdUq11xRlKqwiDDLtqAURZ5XhUdcMoDLBhBGlIQQZHle5rmjvFk1VS2DtWziMSwLmqIgjmN4QQBKSJmOaJqQJQlbe3tQZBmaquJ/XnsNSZbhuWefhWEYoCiLpEzLgmkYUGQZaZZh6LrotFrQdL0833muad2tNOF6z3LN8GsKlJPtqz/9KQpK8eLnP19dd6AMJrueB8/3QRUFTrOJ5XPn0Ov1hKb82YMgdoHZSNMUQRAg9H0USQIVpS9ZkWVEcYwgDBGEITJWUJSkKUxdR7fTgaHrkJlvmacvTgNhhT3TcMiKnYEsy5AkCZIsQ5okSNMUWY3sFVkus3J0vZIjsCwLtmVhfzDA9tYW3r95E49evoxHHn20/DzL5NEZedfHvru/X+ar2/bcY6ziA1NQxRhm7YdSyCze8OYbb2BrZwe/89u/DWPCOIMgQN91keQ5dMtCd2kJ58+fR6vVmnvcAh9rCGIXmI40TeF5HuIgAE1TqLIMwog7DEMkrKhIliTYtg3TMJBkGVRVRafdnupbngTC8tIngeetjxAcrxpl/1KU7gwAVVriJFdGnueI0xRpmiJl/vE0TavzCqIInu9jY3MTDcfBc089hVanA0PToLNUyREXUW0M+4MBVFVFq1bIxGMCiqJAVhSorAhJqrlrOLFP2idQVrMuMqEBZTMQPwjwhZdeqgi/nk8vAYizDMPBAG4QQLcsLJ8/j4sXLwrFygcfgtgFDiNJEvi+jziOEbkuCqbTEqdp5cs2DQO2ZcFi7ghZluH5PqI4RqvROGTRjoOnJgLlzZQXxZGui0Wt9fo2de2YSlem5ropigJ5miIIQ2zv7uLGzZso8hxPPvkknEajCrBapglJlqt4wPh4PN9HkeeH9N7JBGKWWTBYVpQqGMz/V2qaMhw5CybX0zqPQlEU+P73v49Hr1zB448/Xln049tJbN97/T6CJEGj2UTv3Dl0u10RaH1wIYhd4ABJkpQWehwj8DxErgtCCGRJKgORzE1hmeahbJQkSTD0PFimecgVMalac8QiZcHMozDRHcEJFkCeZchYEU/dN1/3X1NKAVmGwi1oJtBFigJxHGNvbw/vvvsunn72Wbz+y1/ipZdeQspSNrnl7TQaaDoOHNuuLGF+Xn4QIIwiLC8tlRNA7fwLlulTVZayCaZghUjjz5uEsuKUV9sCgMR8/jJLleQrh2lk7/s+vve97+GLX/wi2mOTTaWNU3stjCIMhkNA19Fqt9FqtdBoNEaDzwIPAoQeu0Dpix4Oh4iY4mDoulAA6IqC1tISWkyoatrdQooCnu9DVRRYljVCdmCW4lE4ysdc7qJ0V9TdF5UYGEuP5AQuMctXURTojLwV5vpQahk0AJBmGcIoQpHn2Nndxa0PPsDLX/hCma6oKLhw/jyCMARQShyELHDsuS4gy2WhVaOBhm1XEgg8F73+AEkoi5HA4gtVIVXtd5Zl5QqiRv58hZFl2Uj8gefD82pdiZ8Tzyxivx3HwfPPP4+f/fzn+NKXvgS1FkwdKfSiFLIsw7Es6JqGoechcF3krBhK13W0220RZD0DEMT+EIAy9cF+v4/hcIg0jqFJElqmWQpXWdbM6kVKCIa+D0ppqVQ4/vlZpM5TG2tEV252QFA8y4Vb5ZUvXpKgKgpM06yIrrKijzhmnufwwxAF01xfW1vDxuYmvvSlL4ECSJMEACpL1Q8CFITg3PIyZEmCH4aIuGKj55Ukb9tlxgz3mTOFSW6JHzq3sd+appWrEk6+tfTHSgcnSZBlWZXGGMUxgMNEz78zSZJw5dFHsbW9jTffeAOf/sxnJl8QSaqyb2RVRbfTgR8ESIIAIaWgjoO9vT3Yto1WqyUqWh9gCGI/40iSBJubm9jd3UWeJLA0DUu2jXa7XQbPjnLF1XLOozhGnmVoNBojFuE84Poo9YYWXPUwYySeZxlyJoULSYKqqrAMA6qiQNO0A8ndGkb+r5FjXhQIggBZnkOWZdiWhV//+tcIfB9f+t3fhaHrGAyH1X4BwDAMKIqCoefBdV00m020Gg00Gw0QQhAz2YEgDOF6HvwwhB8EONfrodVsHpBgLaA70Uc+7v8eC9JySWJdVQHbLq38PJ+L6D/9qU/hu//1X1i7exeXLl+e8aWUR+TWu+/7SMMQhuOU5xvHB/eIwAMHQexnFIQQ3Lt3DxsbG8iTBE3DwPleD512+8BqnCN3GgDSPEcYRVV++DwYsVzLFyphrJyRVGU9MkvWYHnvSi2bpNp+fP+18dV1X6IoQpIkkJhWjKqqePXVVyHLMn7rt38bqqKUfm9CDgUNeSMN1/PgeR4ajQZ0TSt1ZxwHlm1jmckpbGxtIU0SbG5vY3t3F91OB912u5r06mPjExu/Dkdd6+p8an59XdOga1p1XY8i+t94/nm89vOfo93tVvLDdMx1M3JcWYamaWg2m2VK63CIyPfRaLVQFAVM00TnqM5RAh9LCGI/g9jY2MAHH3wAkiRo2jbOra6i1WxWpDPu6+aZFNPg+z4kSToyb7suzFVvbpHnORKWdpikKYCSQDVdr6xNLpNLWP/RmeE79hn+OS4AFicJJAA2E/+K0xT//YMfYKnbxSc/+cnKfZOxQKnGyPJgt2Wwtc3I3fd92JZVTQCyJIFKEmzHQa/XK7s7SRIGwyH29vex1++j226j2+lAr60GqrGyoC6ZkRlUxRGmnLumqlOJXtd1rF66hJ/97Gd44YUXKgG2+mRRHaPmIlIVBTYrMhu6Lvx+H3mSIJRlRFGEbrcLx3FmfTMCHxMIYj9DyPMc77zzDgY7O3B0HSuPPopOuz2ihFjv+VnvKDQNSZoiz3M0Jui/cEuwTuQSmBZ7miJOkiq9UWcyBCrL864fn08Gs4KvHPVPZVkGLwhACIHFMnpkRYHnefjRj36Eq1ev4pmnnx7x7WdZVpHZOCgLMHJyD6MIhNJKZ4YfW2KupEa7DdtxEMcxBsMh+oMB9vt9tFot9Dqd0VUBO1+l5uvmQU1+/WZWoLL9HOzysEXfdBy88sor2NvfR6PRqNJWTeZu4mMZyadnMg0aUJ676yKOIjQcB+72NsLhEOdWV4VEwQMCQexnBPv7+7j+3nsooggXz53DIxcvVuX6/AHm7pd62zjg6ABkGEWQZbmqbKwHLMcf8CRJSuucW8SKUgUbJUZmXBuGj4Eff1rV5fgKoHqdlv1Eoygqrex2uyqt930fP/jv/8Zzv/EbuHrlykFwk7kj0iyrrHU+0VV+7tpnm41GdQwAFbkDZfYLX4EAZQD2omkiTVO4rgvP9+F6HhzLwvLSEuz6amfs2leTLjC1eKuOad8Xd92YpolnnnkG2xsbWP3UpxAnCcIoQhhF0DUNpmFURVi1C1qmVxJSuWaGnocgDNFqNBAlCe7dvIlkZQXnL14UgdWPOQSxP+Dgkq6ba2swJAmPXb1ayc/Wdc05xv3SRyFly3un1th5fLssz5HEMZI0rcr3bcuCoesj1qHE3T1jBTlTwQhW5r5hHFi3OSHwPK/yATcYaVJKEccxfvCDH+C5557DlStXRoS2eJEOIQQqE/RiGx5a0fDqVtuyQClFwFQiLdbuTpKkKpe+PvHouo7lXg/dTgeD4RBD18XttTWYuo7e0hJazWZ1LuMTZOUiq53zIqhPEteuXcN7772HLE3RZv5yrlDp+j5kSYLBhNNURTn4jmQZRVFA03W0mk14ngc3CNBqNCAnCTbv3kXoebh87dohV5bAxweC2B9gDAYD3Ll1C9FwiE6jgUdWVqosBsIrODkJ4YCs5gEFEEQRJEUZbVaB0qrk1nnBCpsMttQfyZipTwbMSpXBSudrr3HirQKutXHWyRcAImZ5SrKMVrM5UvmaZxl+/OMf4+rVq7hy9eroCdV8/gBGhLNGP3aYVG3brhpa89VLpexICCTe+Lo2TlmWsdTtotPpwBsOMfB9rG1sYHt3F0udTknw9eImVhkrHQyk+h4WIXm+vaaqeOLxx/Huu+/i05/9LBRFgWPbsC0LaZYhTpIq8KoxhUzDMKrJtyAEpmFU3Zz8IEDDccrMoX4f0Vtv4dFr19Bst+cem8CHB0HsDyDyPMf6+jr2t7ZQJAkunjuHc8vLlQVVNX/gpL5AmT63JHlRkFPTME+Yxcf95pqmldZ5LVOG0gOp2XpGSB3cKuTHq6xk7hqY4MMlhMDzfeR5DkPX4TjOiDuAEIJXX30VnU4Hzzz99JHXjmu6zAsJQKPRgOu68H0fcrN5YGXTA8leWv+fn6skod3poNluI/B9DFwXWzs72NnbQ6fVQpu1uitY4Ljub+fHnrbvWXj8iSfwne98B2EYwmGpk5IklaqXuo6CkPI7ZcqXfhjC0PUyLsDuG9M0y0mepXc2Gw202214nocbb7+NR65cQe/CBeGa+ZhBEPsDBtd1cff2bdA0hakoaF24gCXegJkVu4xnlsxt9bHluCRJiKIIklQKWXlMz5yi9C03bBt6zWotd88InZMSpSCY7PKRJAmKqiLP87lcQwlTnaSUlqXv4ymXlOJ//ud/IMsyPvXJT06cGKqUyKKY2RiaxwPqe5EAtJpNDJj/3K6tjMaPMcmVIksSms0mms0mgjBEfzjE7t5eSfAsVbKu7z5pTFWwec5JWtc0PHb1Km689x4+wbTbgYPJm7vNbMtCxqx4PnlLigKD+eMt0wRlmUfccm+3Whi6Ltbu3EEaRVheXYUhNGc+NhDE/oCAW+mD3V0YkgS70YCqKCPFMZIkVQU+dRxVys8t5TopZVmGIAwhSRJcz6tkbA3WkHpk+zrJTCDDicdkk4eiKNUEMImsCPNtp2kKVVXL4qgJlvav//d/4Xkefvu3futQY4rx43K//CxMm5BazWZpuTOf+/i1rSx55oOflEHCXSJ+EGCPNf52XRcXzp0bDbKOjR2orX54SuSMDJUnn3wS33nlFTzz7LMV8VZb1K45by7u2HbVINwPAsRxXI7XtkEoRZwkUGS56pQ19Dzs7e2hyHO0ez20e70jxyPw4UCsnx4AxHGM9955B+72NpabTZxbXoaiKLDHLGc6idQnEGZdrEses+6zLMPWzg78MCzJ1LbRbberYh8AI5k2lSW5SAoc+yxXO0QtQ4YjzTIMBgOkWQbHttFutSaS+gfvv497a2t4+QtfmGiJ111BeVGAUjpX5ey081FkuSr8CXy/1K+ZtP0R+6Aor6Gu61i5eBHnl5dBKcW9jQ2sb21VcYAZAxxx0RRFAQKUk2TtY4Zh4Mqjj+K969cn74OPqRYbsEyzjAM0GiCUltW4nlc1LwnjGHlRQFNVNG0beVHA9TwM9/awcfs2MibVIPDRQRD7xxxhGOLm9euQkwSXV1bQbDQQxzEsy4JjWaM+9AlEQif8PYmIM9YZaK/fRxTHVaGNwfytwKgvfNFM5jrBjm/Lc9j5uQRhCM/zIMsyOq0WLHae49jY2MD/vvsuvvjyy9CnVMRWxUE4CJwe1QRkdOPJZ6mqKtrtNgqU5D7NNTIeM6BApfJYbzTiOA4eWV1Fu9lE4Pu4decO+oPBfGNk+5e5zDC7F6ouUyit9tu3biGvpWeOnGPtfqifi2Ga5aRuWcjyHAPXrb5D7hozdB0Ny0LKtPuzJMHmnTsIfX/+8QucOgSxf4wRhiFu3bgBJc/xyCOPwDBN+EEAXdfLFL95rGT+oEoHhUT1rfI8x9B1MWAqf5qqotlsot1qTfTpHmWJTj48nUro/H3U9sn14U3TRKdWoj+O/f19vPbaa/jCiy9OrYgcJ1weOJ070Fcb+zg0tppJmdtqGnhAlBM6GQtsc8iyjN7SElYvXoSuadjd38ftu3cruYCZqNUmjOenm5aFpaUlrK+vl6s6NgFM3L42CfHJ1rIsdNttmIaBNE2RZxn8MEQYRQB73zIMRHFcSipTir2NDbj9/nxjFzh1CGL/mML3fdy6fh1KnuPS6ip0TUPE/N6tsayMaRbjeIVp/YHPGKH3h0NkeQ7bstDtdiHLMrSaNG19JXCcisPq2DM+l+c5hsMhckLQbrXQbDRG5HvHr82Pf/ITfPazn0V3aemogx86xiICZrNWJgZLEUySBOEYuXOrOSekkhueZ6VjGAZWV1awvLSEIs9xd20Nm9vb87lnykGXvw4GAgBYXV3FxsZGOVmx3rETSX6M4PlvmckXd1mlbUEItnZ2EIQhKKWwbRuSJJVkz85/sL2N/a2tuYO9AqcHETz9GMJ1XazfvAmVUjzyyCPQNK3MHU9TmGPNLyY9MnUy5/ooPBMiy3OEYYiUldVzLRSZtcPL8vxA0e8YLpf6mObZlrIxeWyZ32o0qrRNnurHs0yoJCEJQ/zwhz/E//Pcc7h48eKR+x7JDGJVr+opao3LslypQkZxDInluHNSrwqQar+5RO8sNBsN2JaF/mAAz/PgBwGWl5bQmTdvvPbdUQAXV1bw5ptvoiDkQHK5ZhRwC72aDMfInWdWKYqCVqMBQ9OwsbWFbZa26VgWbNNEEEXI0xSaroNKEvzhEHmaYvnSJZES+SFCXOmPGQaDAdZu3IAC4JFLl6CxApxJZe100pIao5YmlQ6Er4aeh0HdQu90YNt29cAlSQIKwKgT64KoXCtzfp6X4EOS0G61JlYz8tWGTClee+01XL58GVevXeMHnOs4lX99QcnhI1cpUikRbJlmWbjjumVa6BH55ou4shRFwXKvh5WLF6EpCnZ2d3H77l3E87pn2BglSYJlGGi3WtjZ2Zk6Lq4xz6Un6hk/PA2WwzAMXDx/vlqxuL6PJMtACUHAxicBAKWIowibd+5U4msC9x+C2D9GGAwG2Lx5E6qiYHV1FZquQ0JZ6RmnaSlwVW+OXCO1cSuZW+kFz1hwXWRZNpHQ+f6SNC2LdxYkv5HjL2DlR3EM13WhyHLZFHtGUPO969eRFwV+47nnRmIHFcayPOqUf1xi59Z3XZqAdz7iJEgBNBwHqqrCC4KZ/SSrWMecBG8aBi6trqLX7SLPc9y9dw9bOztT9XUmH1TCpUuXsLa2Ntf4KOvfyvu4jrsFgs4QAAAgAElEQVT1gFIfx7GsUjvfNFEUBdI8LwXEOLmzFUqepti+exe5IPcPBYLYPyYYDAbY+OADKIqCy5culSJN7L0ojiEzt8k4xv2XdUEp3tsyy7IyADaB0Ovb5Xm+cFu0RS10vk3AOhNpmoYWC9QehX6/j/feew+fe+GF6UFj7laoT3iMjLMsq1Ir66Rfb4DNRcp4e7qCkZrEP8dIvjzhMlWUW7US80HXdWWOwqJBaABotVp4ZHW1qoL94M4duAtkn6yurmJrc7Ma/yzfd6Vnw1eGNWOCj91xHECSUBCCbruNdrOJvCiwtbs7IpIGoGxNuL6+2IQkcCwIYv8YoN/vY/2DD6DLMi5fugR1rO9oxtQIxwOmI2X4NeR5jsFggCgMYRgGup1O2ZT5CB9nmqYglI5or8wC13tZBJRSeL6PiDXumCQHPI48y/Czn/0Mn/rkJ2EdoQnPUVeO5D76ggl/Va9NGv949s/sA1XnBDCJBabwOE5qEzevjXXeAKOiKDi3vIyLFy5AlSRsbm1hc3t7LrJ0WMPqfr9fxl9Ys+xpoJNy9Pm9x8TPuI57yjphNRwHy0tLoITAZeqQ/FxBKbIowh6fXATuGwSxf8TY29vD3Q8+gK4ouMRIvQ6+9OeiVXXXwHiVJxfuGrguCKVotlplg+oxF8ekhzljbphp4ljjY+LHXITWCSGVH9pxHDgsk2LGwfDL11/HueVlrF66NNdxDp0fK+A5SRegSaOsxl4jZdOyoGoagiAoW/3N2u9YkHteWKaJlZUVtJkC451795DOMZmsrq5ibW2t+n8kYFrDtLqI8c9QQsoYgyQhYLr4XMtHU1VEcYwhU+Lk7qfY99Gf4usXOB0IYv8I4fs+1u/cQUPX8egjj0z0//KAk6qqI3718UduxErX9bK4aCwQeVRaZJKmc1nr4xPKvCiKokxnLAo0meU4D+7cvYtBv4/nP/GJ+Q82nr/OLM8TEfsEkpvUHEOSJDSZzLHv+7PJurayWPRh5Lnv55eXUeQ57ty7B2+Ga2b10iWsb2wcqk3gY6hcVHOuIPjE5DgOCkoRJUm54pRKxc9mo4GiKDBw3XIVw87X6/fhiTz3+wZB7B8R8jzHnQ8+gA7g0srKVDdJluflkpe5Z8at5ElWerPRGOlGJEtM1Go8x5kfg7th5tXXXtD9kmVZOT6U3XmmVYmOw/d9/OrNN/G5z39+MVKekL8O4CDN75gYJ/dpV0FWFDQcB6QoqmymOQ9wrEnTcRysrKxAU9UyBXF3d6prptPpAJTC9byxQx/UOozEEuaEzhpqc/E4SZYrJc5OqwVFluH5PnxWsSoBGOzuIjqiuEvg+BDE/hHh3p07kPIcq6zT0TTkaVq2k5PlKnWxem8eK539Vmf41yUc7gE6CYsST5KmGLouZADtWt/VWaCU4uc/+xmeefZZtFqtuY83iY64G+A42T5HgRdQTSJRnTWxiOMY6RHFRYeu5wLZMiPH0zSsXLyIpuNgOBzi7vo6sinHXV1dxfr6+pHjWdQ1BJTuIQogybKyw1SWlc1XWB9Z0zAQJ0nlmgGl2F1bQzRHsFlgMQhi/wiwu72NeDhEr90+KAYaB3e5yPKBYiEjEArAD8MjrXT+uaqSUJanEkbGpAQmvV/XeFkUSZLA87xKW2URYn3rrbdgmiau8Xz1E+Ck/nWO8aszi4Bt24asKPB9f2EL+Dh6PLIs49zyMnpLS8jSFHfu3p0od3Du3DkMprhB6u6+RclB1zTIslzJIEiSVGUTQZLQcJzDrhlKsX3vntCWOWUIYv+QEfk+BhsbMHQdS5PK4cfysyVWEcqzYLiVHkfRVCsdmFz9OY248zyfTrpHFNschSRN4fl+Seqt1kQ53Wk+/+2tLdy7exef/sxnFjrmNOo8LWIHJl/PabLIXP4BlMI/DnEd0zXTajaxwppfrK2vY29/f+T9druNwQSRMR6oHzm+dCDONnu4ZSFUURRVw/AqDsHSR3XummE6/34QAJRia21NkPspQhD7h4g8TbF15w4IIbh4/vzBG7UKUm5lS2MPFSFkfisdkwtgJOmwANa0wp2RVnULIh0j9UV88kkc4+evvYbPvvDCQqmX00BqPU5PBTWSqxeDTYOiKHAaDWR5vljFaO14i8Y0AKY5c/EiHNvG/mCAe+vr1XftMK2XZExe96hVRSUrMAOmYUAGECfJyL1ZJ3iwCY+7ZlzPQ5Hn2Lp7F8GY71/geBDE/iGBZBl2795FmiQ4f+5c6c8eE1+iKJfT9cdYlsrGF/15rfQZRDBO7nmel52RaumUVYXhMQgly3O4vg+F9SQ9aiyHrEBK8Ytf/AJXr17F8vLywsfm+6CElIReFEizrCo0yrMMWZoiS1OkrFsQr7hN0rRq3p3nOfKiQF4UVaESqRUrjQtkzbJmeT/RIIrmF/MaO6fjQFEUXDh/HkvtNqIowp179yo3SbvTGZEG5uc3DRLL2pk1Eq6fk2bZof3V7ycuHNZoNFCw5uRxmmLr3j0Ew+HC5yowCiEC9iGAZBnc7W24nodms4kGa9QwUkSDya4SbtG02200W62JhF7tY063CSd3QggKlnWjyHKVu3yc5T9QThKu60JhFtlR3YyAw7nSN27cQJbneO6ZZ0bK2QumREhqrxGuUMi2nUZMSZoiZpW7k64vYW6S8S15XcBRvwHA9TxkbEKQZLk8jixDYb9l9lrDtpHnObwgQKfdHhUGq+1vEuadQKah3W7DMAxs7+7i3r17WD53Dp12G8PhEBcvXDjwg88CJ/cZqzneBHtS8Lbu1uFNT9qtFvwgQBiGIIRga30d5wDRKPsEEMR+n0GyDMlggP29PahM1AlTij9G0hhZaXrM8oIbtj3VSq9IYgELm5M7l7JdRJFxEoqiwNDzyt6grEHzRFBaWsJ5Xmp3oyTlKAzxq1//Gi+88AL2B4PJJEYpJEWBjDKlUFHVketYr+SUypMEpLIFX13quF6ZysdbDxrS2vG4RsqIEiL3RbNMG4lVtlKmH1N31dDacYqiKJtRMM0ePhEApaWrKMqR3+G8vu5JME0Tl1ZWsL2zg93dXRAA/f39+Ul9bBwApt7HQPn95Mxqn+QS5GqR/HtqNhoVuQPAzvo6QAia3e5CYxMoIYj9PoKkKXLfx87ODnJCcHl19YBwUBNVGrvxCVuapnmOZrMJTdOQ5TnGS3qqx/EYLhOOoigqsbHj7qdgFaXAAalTJpSVF0XZto27NYpiRFALtGyC/fbbb+PRRx+tAq0K03VRWDaPzKzfSTiK7OI4hmaa0/31jPgXBSemNElgGAacmtQBJ0s69pswbfYoiirLnoKV7teC5SojeVlRoPC/eV9bYGqT8FngrpnhcIgwirC2uYk0y44VfzhKCiFJU5i6DllRkGYZjAnXvpr0atvbloWCTfKgFDubm2XtgyD3hSGI/T6hSBKQMMRgOEScJFheXoZuGCBMY4P708dBmOVbFAWajgNd00AJQZwkaGDxlLujkOc5IEnlMSbsexYopcjzHP1+H2mew3EceL4/agUyq1dVVaiyDE3ToDDC4kHira0tBEGAl1566fSCnGx8BevNeb8w6ZrJslwGryZMGJZlYTgcQpZltFqtyh2WEwLCWuYVhCBnEsrVcdgkpyhKOSkoSlXfsMg9IMsyOp0OFFXFr3/1K9y6exePMtG544Bb3/XG3QlTIi0IQRTHE4kdOBx8lmUZjm3Dp7TqzrS3uQkQIppkLwhB7PcBnNSzLIM7HMK2bXTa7ZFl6TTxrqHrApSixSx1QggMwygLXZKkrNrkVYInGCMnPaAsTJJry+Op51UUyJkLJctz5GkKPwxRFAUc2wYpCsiyDF3XK/LmVuf4+XJ3BiEEb7z+Oj7xyU8em9Sn+Xt56t5pFybVjzvNap0GRZZhWRaCMETKZRxUFQqlwJirrWBB4CqAm+dVULL+XSmyXE6c7OeoFQiPTzi2jXanA9/zsLaxgUsrK8cnd5QrDe5XJ4TAtiwQQsqAcVFM7zMrjbZflGUZDduG5/sIWeHS3vY2KICOIPe5IYj9lMFJHQCGrIz+3IQMj3EaSlmzAkmS0Ga9PnlFo6aqkBUFcZpCN4wTETpw8BDxDA1u9fGVBD9uludlhghT7qsIjFmPeVFA13W0221YhrFYhxxGxO+++y6arRZWZnRDOupcplmshGvE3IfOPdyVcJwVk8maUwRheGS1r8JcUuOf4JNyURTImJsrTlOAiYBJkgRVUQ7InvnuxzX8l7pdqCxofm9jA6sXLsyt4TMRkoSEVTFzeYqAGTizGojz8fE4SbPRgOf7pQQypdjf3galFN3jZks9ZBDEfoogeQ7CekDmeQ4/CCrLGygzMMbzzoGyO5IfhlAVBe1mc2Lg0TSMKvB2kvzuemAvz/MqYEcIKVP9igJpmh5kNFBaWuGaBlXTSotQluGyitJmo7GwhjsfRxAEuH7jBn7/937v2OfDs4EmgU9Q96sl26Tvch5IkgTHtjF0XURxDHPB6ydJUkXaOsrzrL7DPC9dO3lepTZSdt/ViV5RFHS7Xezs7ODatWvY3NnB2uYmVi5ehH1McuftG43aJK8oCtI0hTXHPnlTDi5HzQOqVfXszg4M04TNs8oEpkIQ+ymBEAJSEzgaum5pYXQ61WcOFRPRsuFEFMfQNW16k2qp7ATPqzm7nc6xyGqE1IsCAWuOvd/vHyzvUWpsO7Zd+nCZT7e+D9/3kWUZGsckdbYjvPHGG3j6qafKZg3HRN23O46ca8ScUtXp9EEsnqmiaVqlJaOxyfI4kIAqdVVmPVfBJn5CCPIsQ8py8+M4rlZKsiRB03X0+33IsoyVCxewtbWF9Y0NrFy4MBIMngeUUvhBAJlNWnzC1TUNEasXmGd1I0llAxM+WTm2DRoEZYUqymyZS489BnVewbqHFILYTwkkDEGLomoYPWKts5u6/vhTWirspVkG2zSrLu/V+2P7l6RSa2M4HCIMw4Nc+HnHxwp0Ul6kk+cIwhC2bUNVVWg1a248O4a7ZySUS+skTeHY9sKWZh3rGxvwfR8vfv7zx97HLN82J7v7iZOkIFqWhTRNEQYBms3m8ceAA3LnVi9BeX0UVYVVizHwOAnv1ep5HoaeVxaUtVro9/vY2NzExYsX0ViA3KM4riSZ69dcU1VESYI8z+cSmePaRNxnL8ty5ZbxgwCQJGyvrWHlypUTJQ6cdQhiPwUUSQJa05oet9YPpTOyzJe8KNBwnMnLVJYnXYemabAsC1EUQTeMmTK73L2SpmnVIQmSBE1Ryh6VhKDdbM507UgAFEmCH0WIowiWbU8XL5sDeZ7jl6+/js9++tPT893nxFEPNyFkpm/3pJi31H4SFFmGbVnwgwBJlk0vPptnHDggw6O6KSnMDWMAcGwbCvfBy3KZX88kCG7dvo2L589jqdudOTnmRYEwiqDr+mgGjCRVhk3KuoDNPpGD71PmRXMoe8r6QVAVk5m2jaW6LIfACASxnxDcr86RZdmItT5OOzzzhVKKdqMxUZt8vBFzHbZtI0lT+L6PTrt96KEjzM/J/eSEUsgotUM0TasU+JI0hRLHc1u0aZYhjiKYllUuj3H8rJx33nkHy0tLOHcfH0weYJxbY/6Y4AHn44JnPIVhCK3VOpbfvt5s+jhSu4RN8JTSUulT17G9vY276+vwogjdVgu6pkHX9UMTJXfNSay6dhyKokDX9aphzBwnc/AncJABxlasfhAg8H2s37sHw7LgnGClc5YhiP0EIISg4FrS7IEcDIeglKLX7R6Z+dJhmS/jqPvVJ4EHlYauC9d10Wq1yu7wzDIveKaLosBkVn29X2p1nAUCi0VRwGP6L03WvLjKQZ5RXj4Oz/Nw8+ZN/P7v//5cn5+GWcflqY4nXRHMBPMHH39zCY7joD8cIo7jiQ3LJ6FO4uPdkBYhd8uyEMcx2u02JFbToGsaGo6DjY0NBL4PiRDYjgM5iio/vqZpUBUFfhBMdMHUoalqpdlzrFiCJFWxlIrcgwB3bt7Ek88+C/UUxOLOGgSxnwAkDIFa1WCWZQjCEK1G4xBpJ2laimMdkfnCiWqWz1ZjD97e3h6GrgvLNCGzXGbbtmGwqj/MIr4pWTpjg4LHFPdaE5QaKwVKHB3I5Of3y9dfx7PPPgvTso7tmwYwtZE3B8/Rv++uGADSCc4DKIu3uNLhJKu4Dp6/fpQMgMxcMnOpMZrmIZVHvo+VlRXs7O0hjmNQRu5JmiKIIiCKEDENnqVOZ2oRElCmPoZxXMonHzdILMuVNc/J3R0OcffWLVx54on7Hkt50CCuxjFRxDFolo0Q3WA4BCWk1IOpIc0yeJ4HTdNK98kRpM7/noY0TeF6XpmBoCggrES/2+mg027DtqyZpA4cpMjNkhGYxyIDDgJ4fNk86Qzura0hSRJcu3btRKTOj3cUeA77fX/g57iGM3eBspyeN4QeB3ez8IKuebRdpJp/+iiYpjm1fZ8syzjX68E2TbiuCy8I0G61sNRuA5SWAnKShDCOq8YZk46pqiokSiuN9qOyiObVfW84DhRVxe72NnY2NmZu87BBWOzHQJFlIGMPQ5ZlCJhyXz29Ls9zuJ4HmbUHm3TbjpP6uOohKQpESYIkjitCtgwD3XYbBZPJ9Xz/sNDVEaCUAjNIL45jxEkC27LmC3yVBwZwkNrJH9Q0TfHmG2/g8y++WGVwnITaZ/n4C5ZRcd+zYoBKIOy4WRo8C4RXpEZJAlPXK+v8uNeJa/YcBdM0q1TCifuQZfR6PUj9PlzPAyGkCvZfZPLTSZoiTlMMPQ+yLMMyDJiGUT0HkiSN+NklWS578I5fhxkrES5BUXfLuJ6HtTt3YDebaC7QQvGsQ1jsC4IQMhIs5RgMh4AkYakmWFQQUioeShLaLDB26GbGBIJi7pg0STAcDrHX7yMKw9LH3WhgqduF4zhlYMow0Go0qqAsmeEOqcY2Y1nMC6x0lolzXHBXzY0bN3D+/Hn0WNeoRRUF66ATSGEcBZM3uO/gFvsJrHY+meuGAUWWEYRhpSF/kslvHmG3aa6YOmRZxnKvh4ZtY2d3F1vb22W6q2lCURTYloVuq4WW40CVZQRRhP3hsLTiWQ47l8fgLrJjfzM1o0dlx87yHLfffx8Zq7wVEMS+MEgYVr1HObI8RxiGaDeblZVCKD3Ifmk2KxIdz1Uff/h44dA+s5DyooBtmuh2OpWu9jhx64ZR9ZLsD4czH1Q+vmn+dcr86rIsL5wvPwlpmuLmzZt47rnnKqIfJ92TumbGQQi5/4VJNSxC6xTl9ecWKle5BKWwLAsSLZt/nAZmxVBM00QyR2cnLu9smSYylt5YB7fKW80mlpjERJHncIMAe4NBFTytKponyDHMdQ/w7di2pmHA0HUEvo97N2+eKJB9liCIfQHk3K9egwQgYM2KOyxvnQJwXRekKNButUYCqTxrYfwm5hb33v4+ojCEKstoNRpY6nQq63waKKVlL8l2uyr3933/yAeFEDI5Y4SRek4Imo3GqRSBvHf9OlYvXTpUYVpv/1cR/ViV66RzmPX4E+aLvh8aMdMw6TpVaYg4IHM+NuDgPOrbaky6IY7jU5vsjlq5mKaJeIqPHSjPIY5jeKwf6aXVVXRbLfQHg+q1ScezLQvdTgctx4GmKGWKbhBgf39/JPWx0iia5YY5PLDqXrFtG4osY3dvT/jbGQSxzwlCCOiYZcMfxziOYWgaNNawwvU8ZFxLfZKyILspuV6L63nYHwyqBgxLzDrXJ1jnh3bFx8K0QDrtNizTRBTHGAyHE1uxVW3eJuw7jGOkWYaG45yKhG4cx3j/5k088/TTMz/LH/I62R/K0+cuiimkzz8DfAipjsBI/jhh5FT/OTTWCZbqOHjK4zwrr3kxzXI3TRPxlOMUhMD3/bIgTtPQbDahqip6vR4MXcf27m6lRzMNmqaV7sN2Gw3bRpplGHoehq47f277BNSDsDLzt1NCsH737lwrkLMOQexzgkTR4Wi+JCHL87LEnhVK+L6PNE3RdJyJKWA8UEZqhJ6mKRzLQrfbhWPbcxNS1aii9tBKkoRGo1FpfQ9YfvTIuUzJYc+yDGEYwmDBr9PAe++9h8uXL8NeUHukjrplX7Wf44G0ej43+53Xzm/Eaq4RbP3/ulU9Ivsw9hodI2pK6Uiq4zh1Hne1ozGJh5j5p08FUyYUVVWrpih18EyuvChg2zYcx6nuF1mWcf7cOaiyjI2tLaRzuI24Fe84DmzTRJZlGLpuSfB15dBFz4f721mqb5pluHvr1mL7OoMQxD4HijwvJQNq4A9JGEWglKJh2/DDsMwiYYGlcVCUGS6+72N/OESSpqWF3u3Ctu2FvgyeOTONPAzmmlFVFZ7vo89WBMBB4LJuxRVFAZdphiyiEXIU4jjGrVu35rLWjwtu5QMHxEprOezVKgAHEwTq/0/Y5zjB89dGAqUTAqanqV3CrfZp1vRxMGl8kiRVYmRAeR/4vl8WJkll79pJQm+KopQNxynF+vb2XE26uTvR0HUsdTqwLQt5nmPgulVzmYXPif2mlFYFefs7Oxj0+wvv6yxBEPscmOaCAVD6w5l2ehRFsAwDzoQskiLP4fk+9gcDJEkCh7lcnJr416K22SwaUViKZbPRAKEUg+Gwar4M1Cx2XoREaSlGdUoE9c677+LKlStzSbbOjTksOy7+9SCLRHFhtuQUfe0AJjYYN0wTYRgiCAK4rlsKhFkWWrVkgEkwDAPLy8sosgwbW1szA5e84UrBU3ZNE+1mE4auVzEm3/eRL0jw9RgNX1ncev/9hzqQKoh9BoosGwmY1qkiz3PEaQpN18vUQF2HM5ZFUhACz/exxwjdMs3RgOhxHtoFcqa5RbbU6ZRL1TTFYDhExFYaQK0IacaDvAiiKMLt27fx9Cla6/MSXEHIsbXST4RTPqZtWYAkHXKlnQS8kKxySdFSAXLoumV/UsNAq9mEaZpz3WO2ZWFpaQlJmmJnb+/Iz/LCOVInbkmCbVlVbCjLc3iuC28egp8wPu5vT6MI63fvzhz/WYUoUJoBUn+oeCSe3VBRGCJLU5iGAU1VywIh/lGUErecQC3Lgm2aI/5zSZKAOSsED4ZwvEIYrm1tGgb2+30EQYCB60JRFBRZBsu25y9CmgPvvPMOHrt27fh67RMw71X6sFMd6ziWKNiU719VVRiahjhJ5ibaeSHJMpI4RhTHZUtD5nY5znVrNhrIswyu75fB1SnNp3mWEtfxqdvTMiN47haKkwRD14Wh66Wbcp5zZzEXVVVhWRa2NjfRXV4+kd7/gwphsR+BIk2Bmu9wvATf9/3KT95qtSpSz/Ic+/0+wjCEruvodbtoOM6JszROY0muKAocx0Gz0YAiSdjf3y/jBBMCaMdFEAS4e+8ennryyVPZX4U5zp+rOn5U2iHHIt8jtjEtC9IpWu3cZei6LsIogiLL0A0DRq1S9DjodruwTfPINEjeRKNgVceTXCWc4DutFkxdLwme5cEfwtj9IOEgbmSZJmRKsXb37omybx5UCIv9CJBa4Gq8kChjQR/HcdBiVaUUJamFUVRJCExSVqxjYsekCZiU83wSKKp6YMWzlLc4SaCzzj4nsd7ffucdXHvssSOFoe4XOFl8mDns9xOqosBgBHcSqz3PcyRJUmWwqKoK27LK5ioLrhqnodfrId/exvbublXMNA5ZUcp+raxxyzTIsgzHtqFrGoIggOf7pfVuWYdrHiZkq4FSOLYNfzhEv9/H+YdMu/1s3P33ASTLRqz1cfT395EXBS6cOwdFlpFmWWmlRxEs00S31YKm63M9iNVKYMrDVbW0OyVSp5QiSRJkeY52u412q4VupwOLZSm4nof+YHCsIhk/CLC+vo4nT9lan3cc97vP6UxMybQ5CUzThAQsbLVTVsHqeh481q3LME20Wi00WYMVmaWQngaxz5MGKcsy8jyf6xpJUtmoo8ms94RJbMysyqUUlAVUdVVFf3f3VOMUDwIEsU9BwavxuE+7RqpJkiDwfZimCcdx4Pt+qRUDoN1qwXEcSEzpcF7wHO1x1PuUnhYIIQhZn1Wer16vFmwwJccgDNEfDOAHQbmcnePhf/vtt/HEE0+cqOH2JCziXwcwl1vhtGUM7hdURYFhGEiSZK5MjzzPEUVR2UYxCABKYdt2pf45cm1YCuhpZZAclQbJpZbJjNVpHZIkQWECaa1arYjn++WYJ+xLkiTI7HiGrsN3XQzZ8/mwQLhiJoAkSamzjsNWckEIwjBElmVodjrYHwxAWP9Ix3GqoplFretK2Eoq1evqE8lpp+0FYVguVScFlSQJBmtxxhsgp2mKJEnKBsiaVnZjUtVDvmHP87C5sYE/+IM/ONXxUkqRpSmiKELCAmtxHCPLMpCiQF4UIEUBwlYiaZZBU1UURVEJT/Hf/IeX9lNK8W//9m9l425JgqKqUNjfsqpCkSTIrJ2cIsvV3zL7m0vXet0uDNMstUu4K2ve722Oz5mmiYR9D+OibJRS5HmOLM+Rpmml6Fh9VzPcaoqinGpqIE+D3NnZwcbWFi6trJRFebUetMUCbQs5UUOW0W61ECdJ2WM1y2DzQsAJEwV/bgxdx+7ODlqt1okE7R4kCGIfAyGkyoQ59LhRijAIEMcxCpa2JQHotNvVw3MS+dbqmJJ06u4XjjhJkCTJiKzqNKiqWoqA0bJnZZKm1W9JkqCpakUckiThf99+G08++eTc/nk+cfCfJEkQR1FF3EntN1japmkYME2zOq6q6zCY9ICiKEizrBRea7Wq1/jvipBrr/9///f/4v/9P/8HhPl9i9okMTIx1N+vvRaxVoSbW1vlta2di67r5Zin/BjsXOaRbuC+9iRJKiG4nBF5xs4Z7DvRmczy3Cmx9yHnn6dB7u3vY3tvD+d6PVBKK2InRQEsEKyV2ARLmWywrmnwggB+EFSV2+PuN35Gpq6j77ro9/unnl30cYUg9jHQLCstHnpYrzxi1o4JcPMAACAASURBVGAURcjzHJ1OBw1mpQMnJ3UOSZLKVDA6W552ERBCEPg+VEWBskhwVCqV+3RmGXEZhYwRPVBOGJubm3j++edHNuWVjK7nwRsOS+1414XreWW1ICe5Gml3u92K9EzTLH3Bc/rMXdcFwLo9zQlFlqHIMo4TLvbDEHmWodNuj7yeF0WVtsfJPk4SeK6L3Z2d6n8exzAtC81GA02mK95qNtFoNEYmSUPXy5qI/f1yMmBkXvUjZQHxRSFLs7t2HQfNRqOSDtA1rUynHEt5XAQSAMpiUbwTWZwkCNnqbVLnMn5Wlq5jf2cH7Xb7oUh/FMReA6W0qjI95IIpCgRBgCxNQQgpA1C1YqQTPxa1B4uiDH5QlmlzWuQehCEKli2QHDcFjLljNE0DbLvMtsgy/Pqtt7C8vIzr168jYKsa3/eRJgkcpl3TbDaxsrKCp556CpZpQp3TqpyVMVQHofS+t8MbwZRxycwvPM/SP8vz0m/MJrzNzU289+678H0fumHAdhzYlgXbtqGqKhRVxflz5ypr/6TGBC9Y4qmIpxmkb7fbCKMIe/0+TMuCzsZ7XNdPndx59aquaXA9D0PPQ7PRGGlgzs9FY5PiYDCAXav2PqsQxF4DzfNKF3vEWmfl+HEUodFoIE5T2LVZf5Zuy7FQ0zhZtGH0JKTMR21ZVvlQHJPY8zxHv9+Hy5ppe55XZiokSdkQmRFap9uFaZpVqz5VUaAyBUwuPDWvD3peUqfMPSafYqHVcSEtYAVrqopWqwXbttFbXkae58jzHISQ0p8cRYjDsCz7930Mh0O8JZXNW/iE2Wq1sLS0dLw0VU60p3gP81Z+EoDlXg+bW1vY3t7G6sWLVQD1OBiR32D7UBQFrVYLnu/D9X00WKHTyHass5PvuvDZNTvLEMReA2WZH+M3d38wgO95aDWbcGwb/eFwxCo4lRS3Won3NHGp45I7pRQ+c8E4tj2xr+Y0xFGEnb097O/tYW9vD67rot1ul26oZhOrly5hc3MTWZbhU5/61KHjZllWBfbiOEZUe6B5QFJV1RG/93FBaw/6h4op38mk74sSUvrqCUGR55Xfvl4+ryhK5VrpdDqHcvKHrLhIQpkh4rouNjY2MBgMYNk2er0elns99JaWYNdchdMgYzSl9qRNximlZfs69prG5KT3+/2yo1h5cY59DL5fUru+Cutf4AUB/ChCQQhsVtzFt1FUFVmSIAiCEbXKswhB7AyEkEPNqUEpXM+D67pwGg10ut2yKQGlFbGfpqvkqFu9bqkserwgCJATgk6rdfCQT3jYKaVwXRe7e3vY393F7t4e8jxHr9dDr9fDbz7/PLrd7gjREELw85//HF98+eWJY6588zjI3sjzvCT8oigDqLVCMFmSqkCnoiiQFAUyRoWepoFXzk5KG/0wQSlFwYKvPGOHF+WM9yCVFaUU/NI0KOzvWeXzlmVVcrrnzp2rXieElN/f7i7W19fx1ltvgVJafX/LvR46nc6h61PPY68bEcc5b8JXvGNoNhqI4hj9wQANx4F1wsmX3w/1cUqShKbjIIwiREmCgjVhr/T9JQkyMzZ8318oDvOgQRA7R56XLe9q1WzczWBZFnpLS5AkCQnLQDAN4+CmOoXla7W0nFGluqhrJssyRHEMq5b2VumWM7fK7s4O9vb3sb+/XwYvl5awfP48nn722ZE4wiSsra2h0WjM1UiYF5xoLH+ej6OoER9hZM873tM6UbAHVJHlUpedZXNw1cCMtV8DUPV+Palroa7ZDpQWNyGkzMVmqa95UUDGQYckjjrJKYoCTVVLIpdlyIzA+fgW8TlrmgZFlhGzWgQOWZbR6XTQ6XTwxBNPAADCMMTe3h529/Zw+/ZtBEGAbreL3tJSSfjLy1BkeWTFsCi588/NqibtdbtY39zEfr+PlQsX5j7fIzFW2MerqZU4RpgkcF23UiylABRJQpGmldX+UWkK3W8IYmfg1jqXFQ08ryxjNgx0GakDJRlKsgxFVU8tCwbAQpMDL5ia1dSZu2AkSYJt26CUYm9/H7du3cLm1haSOEar3cZyr4fHrl3DZz/72YVFu67fuHFiBUdunY9jhPCZtctJlRCCnKf5MUQslVOeVBzG3WVSrWkHSvIdsEyaujtsXlKrNEwkqdJ/l9nEU1mJM1YQi1rHEspen0EYlk3JjyAn27Zh2zYuX74MoJzo9/f3sbe3h+vXr+NnP/951f92eXkZy8vLC7ko6lb6PDLSvaUl3Flbw8B10T6hxTwix4HR1axpmmWRXRRh6HmlVhN7bgj7zjzPq9pZnjUIYgdzw6QpwEjdc12kaQpN08qUs1oKVZamME6Z1Cmlo6uFOSDhwB86zT0TRhGSLEOaJLh16xY2Njag6zq6S0t4+qmncPnRR0+kqbK/v484jnHx4sWFt6VjltYkKIwoj7pJOQkTQiDzOILjVBWJddLk/l9wIuDWdC2Pu+6TRW0C4N+NXCNuXrBFCKmqIsfHNk+Q8Dh+bd0wELKUSWeBxiiapuHChQu4wCzmX/3qV/jg5k2YloW33noLQRDg4sWLWF1dxYXz56cL11G6UAUph81UTj3PQxjHsE+o1V99N3y1WxsPT5P1WLptw3GgKgqyNEVL0xCGIRoTUiTPAs7eGR0HNd96EASVOqDGBLFGPprn5WunSerAsfc3yT2TpCnW19bwwa1b6Pf76Ha7WF1dxe/8zu/AcZxKqOykQlk33n8fj1+7dqwJTsLsFNF5XE6V/5RVgvIipnkhS9JMd9OMQR45tnmChMfxZ8uSVImDHcfIKIoCr732GqIowiOXL6PRbOKJxx9HFEXY2NjABx98gF+89hp6vR5WV1awsrJSruYoBQFzdS086hK8enR7dxePrK5CPWlMpLZ6Hb+SKpPTHjIZgnazWcYUsgyyLMN1XSwtLZ3s+B9DCGIHqkYaISs2kWUZFKgkAjgylsWgG8apCz2dFFEUYX1jA2tra9jb20O708HS8jI+97nPHcqlPmnmA1AKUm1ubOATn/jEifYzC4sQVr2y8cPCrGD2XNd6zglgHKZhHFQSL2D5JkmCn/7kJ7AdB7/1xS/il7/8ZZX7b1kWrl27hmvXriHLMmxubWHt3j28+eabaDabuMCs+ZNMhooso9NuI4oi7O/v4/zy8rH3BeCgeciUOIWiKGg4DlzPgx8EaDYa8D0Pyysr8FhLvrPma3/oiZ0QAsoyMxLmfkmzDNa4WBKAnOlwGKeUJ31Sch0Oh1jf+P/Ze7PuNo5sa3BHjhgJcJ4kSqLmwZps17VVtiRX+Vv3pbtX/4J+66f+Ff3Uz/3Sa/W/6Ke7vqrr+m7ZVaYGyxqsydYsSiLBASTGnDOjHzIimQATQGKgKLG8l70ogkBmZCLyxIlz9tlnGUvv3qGuaZiensbh+XlcuHABNV3HUDod+cAHMXr0zuh5+fIlZvftG2hzjn7huu7ubKvb7SgwgOK1FuAJ2W4Me61Ww8LCAmZnZ3H69GkAvsMS9T3Ksox9s7OYnZ2FbVlYW1/H8vIy/vGPf0CWZUxPT2NmZgYjLRprtAJhuw1JFFGp1ZBKJpHpsxqUAKCCEGg8bbsWUUQqmYSuadB0HSAEIvvedFafspfwL2/YqW37zBFdhyLL8CiFSEjkdt5iIZtBKBduM+odGDEcjuPgzZs3ePHyJQzTxOz0NM6cPYvx0dHA89vY3ERCkoKHvdmAB4lDz+spHON6Hp4/f46vL1/u+rPdoBuDyGPn770lXqfvLY433scCn0gkUK3VYNl2Y21FBNbX13Hz5k2cOnUKBw8eDF53HAdS82epL30brg3gsflz58+jtLmJpXfv8PPPP4NSikOHDuHA3FzsZ4NS6nvthoH1YhEJVe17USZszFH306MUqqLAc12YpglRFFGvViHL8u+GfS/CMQzUNQ2SKEKWZdQ1raHBdBi2bQeUvYGjg0Eql8t48fIlFhcXMTY2hlOnTmFyYmLb53TDgON5yIU5603xx076752w9O4dcrnczlfvdTE+nqTcjVBMpzN2jIH38V20oj424+3bt7h37x4+++yzIHHK4TA1zGC8jHkUHrMgCAGVlMDvmDQ8PIxTZ85gY30dL1+9wuPHjzEzPY35+fn2cWs2/4ggYGxkBIXVVawXi5jqlwJJiG/cm14O/85rADRNQ3F9HfsOHfIbeDvOnkqi7p0r6QG2aaJeKoHAj6fX6nVfDKqF12E3PQC9Ytsj3OKhdl0Xb9+9w4sXL6BpGg4ePIhvv/22pf4I51UrkhSpl8GTrEQQACZZ2wuePn2K4ydO9PTZuOh2bLxB8q5UE3YIxfDuWi3RZxUmpz62Mk6//fYbXrx4ga+++gq5JrEywA/FNEv3Ri1EUWElAmB0bAyjY2OwTBOvFxfx061bkEQRhw4dwv65uW3PDAGCeLiiqshlsygxnZwodlFchNlLzWyoMDLpNCqVCkqbmxhjnZV0Xd9TMgP/soadUopqsQgPflUc50wH3jovLglRqWzH6VvPOdJgNXls1WoVL16+xOvFRYzk8zh29Cimp6c7evW6YcCjFENt4pUBh5sliLuNs29sbMAwzZ4ojt2gW1O3Wx57LHTyyPvw2IEt6qNpWQ2G3fM83L17F6VSCd9cvYpE89xloQvTNGP14yVtEpR8HEePHsWRo0exvraGVy9f4uHDh5idncX8/PwWZ7xpHg8NDUEzDKxvbARCYb2C8EU0bNibxkwIQSabRaVaxZtXrzB76NDvhn2voFoqwTUMpDMZiJKEeqXS6K2HJx8hQVHMTmXPPc/Du6UlvHjxApVKBQcPHsSfvvkGqZgcZep50HQ90BhpB16owRX9gqrKGEUmz54/x5HDhwdXmDUg7JbHThGDudOn4e6EgPpoGKBMH8W2bdy4cQOiKOLy5cvBnOALebiq13HdWDvRuN84ATA+Po7x8XGYhoFXr17h+o0bUBQF84cOYXRsrOH5IoIQCIWtra1hdnq663vAwa8v6NTU4n2iICCTTqNar2OzWEQ2l/N35B8QGaAf/Esadtd1YVarUFUViqrCtqxGb70ZrHwc6E+HJGqS2baNp0+f4umzZxgaGsL8/DxmWMeZbqDpOiilsYpVwtx3YOuBJR2M/PuiOLIBdPn2HVDYjHfijm+Jivt2e4xOCFMfKaVYWFjAyOgozp8711DIhqaxULAYe0yDJpDulBnVRALHT5zAsePHsbqyghevXuGX+/cxOTmJs2fPBgl+WZaRHxrCZrmMWr3eM0smCBexxbRdSE+WJCRVFaViEWoyCV3XfzfsHzOq5TIESoOtqW4YbWPrQdwOvTeJbZ5gruvi+fPnePLkCSanpnD58uWet4Ke50E3DCQSiVg7iqjtavC35veAeUGU4sXLl5jdv/+9TP5uQ0RuqO3ae0eHxaRjodIAPHqRJf/X19fxyy+/4MiRIzhy9GhHeQTPdbvqoNTsFMQFIQSTU1OYnJrC5sYGnjx7hv/8z//EoUOHcOzYMSiKgkwmg0q9jvXNTV/uuc/vUyAEbodxJlQVpmWhvLmJZDKJbDb7we1Ge8EHGJDcWdi2DbNeh6KqEEQRFlOB69Qyi3sp/SoHep6HFy9e4L//5S/Y2NjA5StX8Pmnn/ZV8MF7mMYtzw7ojp3ex/7njYGfP3+OI/PzO8bL5ogTEtr2mV0y7L2MNeIg/Y8DQGlzEz/fvo2TJ0/6ImAxjtsLIaDfjkuKquL4sWP485//DNM08Ze//AWPHz+G47oYzuXgOQ6qtVpPx25Omnb6bnizDkPToOs6LMvq6bwfGv7lPPZquQyJ+i3ZKKUw2nnrYU+qKWzRDbhmyJvFRTx69AhDQ0O49OWXGA4LEPXoJbiuC8M0kUwkYiXA/FNtZw50wtrqKlKpFIZyuW2f66fQaVBwPW9XttFx7+Egqn0bztv0+/Nnz/Drr7/i/LlzGO6iRD6Swx4DzZK53YCLjiWTSVy8eBHHjh3D48eP8de//hXHjh1DOp3GZqmEdCbTtdxAEHZiObFgd9Hm+VIUBbquB70GuhXC+xDxL2XYLcuCpWkYSiRA2O+u50XH1vlkYMY9ULDrcqJRSvH23Ts8evgQCVXFZ59/7hcTDQiapoEAXbN1ujU0rxcXMccUApvvVU9bc7RmvnR7LN7Y4b0XJzHEOesgGlj4/2iKkVOKBw8eYHl5GZevXIEgCNBZviWWrHOP/G1CSFddsMKgngcSckIymQw+//xzVMplPHr8OAhPptJpTAzgWQmHFSP/Dl+cTGfdqfL5/EcfjvmXMuyVUgkyIVBVFR731kURShcrdNwvnFKKwsoKHjx4AEIIzp47h8mJidZGoIc4q+04fps+JlHaFQjxFSVjwHUcLC8v45MzZ9ocrvHKwoYo6toGGc7hBjPujmXQ5401J7r4brcV2LSpc7h16xZMw8A3V69CVhQ4juM3XbesWJ6n4zg99Yjl+iy9tLijlEbGgIdyOXzxxRfY3NjAnbt38ePCAs6dPo2DBw/Gnt+UHb+Zk8/1+Vt9RlEUVOt1lEolTE5O9k1r3m38yxh2wzDgGAZyLA5th7z1bWjeunHvBIjlFRaLRfxy/z4s28bpkycxMzPTOdaH7o2dVq/7BSo9SJ+KgtAxxs6xtLyMkeFhqF2cJ7hefr9aeKw8idugrR3T2+TwuvhudgQxzhuZQGXzjFJfMbEb4x8W8vrqq6+CRU2SJEiCADOmYbctq2eJjF7vNu2w8x0eGcHXX3+NJ0+f4snTp3j+/DlOnzmDmRg0yFa5o3ahI34d2XQa5VIJGxsbmJ2d7XwhHzD+ZQx7tVyGQkjgnXfrrcfZRjuOg4cPHuDt0hLOnD6Nffv2xTc2XXrstmXBchykU6mekoaEkKCVXCcsLi4GjRr6QdhYEwAuTzyGXg941k0/2yEw7O+bw94h7xL1bfLPBIsXjafZHka1WsW1hQXs278fJ0+e3LYIKoqCuqb5GvUd7knQ4LwXEBJ0jooLTrvs9FzIsoypqSlks1mIooj7v/yCN4uLOH/+fNsFi2J7QZI/1PahMN7G0atUsLq6iunp6Q+z2C0mPt6RdwHHceBaFhJMbtc0Tbieh2QrD7RdiXiLvxWLRfztu+9gWha+/fOfMTc315XXSbp8uDVNgwB0pT0ehiiKbasIOUzLwlqxOHgPpsVCxg09Cf3e0Jou4qfreb6x4NW0O1AMFO7SE/ybncfD1k7DC/1E0//h2dAwN7oY7/r6Ov7xww84fvw4Tp06FTnHVFWFQEgshoemaf2FHZg+S1x0038gl8uBEAJJlvGnP/8ZaiKB7777DktLSy0/07LFYIddIL+CTDKJWqXSVcP3DxH/Eh67aZoQPC9IEnF1t0gmTIsMOs+sN6/iruviwcOHePvmDc6fP4+ZmZng/TsVGLAsC5brIhOjA30r8PhoJ4/43du3mJqYgPi+BJKijH2Tp9/8c5vHHmb98M+GH2zKVADZZ8MLBz9u+LPB2cNjCxl3oc34Gi4t4rXweDvhzeIifrl/H3/4/HOMM42TKAiCAEmSYFpWxzCdxuSeewXxTxh7Me0mpCmJIrLZLMrVKkzTxNmzZzE7M4Nbt27h3bt3OHvuHNTQM9zQH7fFWFv+lX1OTSRQqtVQr9c/aomBfwmP3bIsiMTvSel6HhzXbZgQAdrQooIEXciwFzc28N1338HQNHz77beBUe8JcQ00pajX6xBZGXmv4O3gvA7hmNevX2Nubq7n87RF1ALay0JFoxtscL4+LzEPn7f5df571GfbnbcbRC3CcY5AKcWvv/6Kh48e4euvv25r1DkURhDoFG7rKxTTA4J6kJjf81A2C1EQsFEqAfAFx7799ltIkoS/ffcdlgsFANsTpq3Q6bySKIJSilq1Gmt8Hyr+NTx2XUeKcXUtywIojeY8t9uqhR5iz/Pw8OFDvHr9GufPn8e+pjDFTvK6TcuC47oYymT6omQJggBQCreN/k29XketVsNEDEMyKPSy09mtqtOuWDHYCit1mxi+e+cOSuUyrly5EtsIK7IMAX4PgWQb1kvfoRj41x871t5loZ8gCMgNDWFjcxPVWg1Zpu10ju2Ob9++jbdjYzj9ySdQZTlWL91OUCUJ5VIpVo7iQ8XHOeouYNs24DiBYhxvUr2NGtdhMvCHuFKp4G9/+xvqtRq+/fOftxv1DtvBfmGwXqXdUDSjEHjsbbycN2/eYHbfvh2jEUaZt14LwD4W3nE347QtCwsLCzBME5cvX+7KAPOevZZptnyP53l+cduAPPY4sXbP8/wdVhf3IZ1KQZYkbDJjyzE+MYE//elPoAD+9t13WFld7fjsNSfro6CqKvR6HWabe/ehY8977KZpglAKSZbhuG7rpGmHL9swTTz57Tc4to1z589j/759Ld/bi4mJ8xnbcWAxsbJ+wT2mdoZ9cXERFy5e7PtccdFzJeMuV512833HLVTSNA0LCwsYHxvD2bNne5KyUFUVlm37re8iciSGYfiEggEsioQQvzVdh2vzQu+PC4H1SF0rFlGpVpFnmvKUUgiiiAsXLmB1dRU/37qFyelpnD1zpm3RlYAWchrM2+ec9kHsZnYLe95jt0wTsiBAIL6UKYDtSdMOXrbjOLh79y7K5TI818Xy8jIWX7/eWtFDFLadhGEYAKV9xdY5uC57qxh7qVSC67oY3ckO7s1FTd3S5sKl46y6MMxWaWawBMUrYQYLfx8/bvP4Qjz85n8Hn+tQ2djumqOwubmJv//97zhw4ADOnjvXsz6RLMv+vG/BjtE0DckBOAkcsRYtVq3a7WKSSqWgKgrKlQoc5vWHQz8TExP487ffwnEcfP+Pf8Do4G23O7skSfBcF5VyuasxfkjY0x47pRSmriPL4+u2DUmSouNmLSaaYRhY+PFHZLNZHD58GGNjYyhtbqJQKODe/fvIZjKYmJjA5NQUhvP5notkiD/g1slbzwuaFg8q7ieKYkv1u9eLi9g/N9dTyXg/CNPhAhYD3ZKcDRAuaGK/NwhANTFY0PT5SI5589+ijhH6d8Ck4eeOuFcBy4b9u5OE7/LSEm7fuYMLFy70l4zHFjfbME0ksd2Y6bqO1AA9Ul6N2lZNkkZXncbBcD6PlbU1lMplDOdy25wxWZbx+Wef4fGjR/j+++/xx0uXWvYybbcIiYIASZZRZs7NTvVg2EnsacPuOA4Iozk6rgvPdbdvrdpMwlq1in/++CPm9u/HoUOHUFhZgSyKOHjwIA4ePAjX87BRLKJQKOD2zz/DMAxMTU0FTX+79qzbGFGD6Wy35N73AEEQ4ER4c5RSvHnzBl9//fXAzsUOvPVv0igdTNGUfIsygBH3h4eSemnK3S/CydN25erhf9MmgxK+5ufPn+O3X3/Fl19+2b5naBdQZBmGaUZqrmuatr2rUp/o5LW3K+3vBFVVkUgkUCqVkG0hEEYIwYlTp5BIJvH9Dz/493J4ONbxg8WXMc60eh22bf9u2D9E8C/Ktm0QIFrJLmKibRSLuHbtGk4xrQrbsgBC4IRCF6IgBJ1izpw5A61ex3KhgHdv3+Lu3bvIDg1hanISU1NTvrBQx8G2yOhT6jcBkKSBTjKRFfQ0Y219HUlV7Z3Hy71XzhdnoS6KUGyVsV+84CPdSwkAW4Z9V5KnPYTemndmBD6r58GDBygUCrh85QrS6fQ2ZlWvCWJJliEwiYEow54ZMFe7Y5Ww6/ZcE0EpRTadRr1eR71WQ25oKPI9AHDw0CEkkkksLCzg008/xXREK8fmRSg8dkkQUDOMnsb5IWDvG3ZmMEzL8id5jIdjeXkZt27dwmeffoopVrwhSRII0GDYOfjkSKXTOHz4MObn5+G6LtaLRawUCvjpp59gOw4mJycxNTmJicnJyL6OrQooTNturWvTBwTG2eUyqhyLr1/7YZhOCBlwIBTKCFMWm0IrLdFD3JWfC9idXqfdVFGGQULhCsdxcPPmTdiWhatXr24Z3+YdSyjkxBcH2umeYsv71A1j2+Kg6/qOUFkFQYhMylPPgwf01NOUMmquoqpQZBnVej3SsIefoampKVz68ktcu34dJ0+dwvzBg51OsnUNkgSb9Wr4GLGnDTv1PAjwHx7qeZATie0PYdPvL1+8wMNHj/DHS5cadK2JILQ07M0ghEAURUxOTGCKPTjVeh0rKyt4/fo1bt++jXw+jwnmzeeGhoKdRdQ21tB1CIS07vDUI0RmGDzXhcAeNtd18W5pCadPn47+UChR3Iqv35OB7voTPnbTY++FFcPfT+Hnb35cWEAmncYf/vCH9otTuGp2awBBbL/d9SvMsNu23SD4Va/XY/fU7QotdjJuL2EzSgPJBn6N6UwGpc1NaBE5gublJD8ygsuXL+PHH3+Eoeu+tg77W7MjFZ7PIqvMrtfrSPfYpm83sacNO+fVWiwME8mGCSXhfn30CK/evMGVy5cjt6iiJMF1nHjnJqTB+GXTaWTn53Fkfh6O62JtbQ2FlRVcv3YN1PMwOTWFiclJjI2NNVC1HMfxxb5Yk+JBQhBFgBC4nhdMhEKhgOF8HiprRBKe/A0eXwxvsRMaPt8jo6jbIqFBIhyT7QqEoFIuY2FhAfv27cPJEyd6T1KH5m/z64TNb0mSIIkijCYlR90wdoTO16pgiT87sSV4OfOp6fV0KoVyuYxqrbbNsEftetOZDK5cuYKFa9egaxouXLwY7FDDu4vwNyCyZ0OrVID3WKA3KOxpww6mA+LYts8mAZtsETS7O7dvo1wq4eqVKy31NURB2EYP7KQYF+XZSqKI6akpTE9NgZ47h2qthpXlZbx4/hw/3byJkdFR35ufnAxCHTvR1UWI4LIvLS9jenq6gTIYvp6dQj8c9nbJyx1FGxZTO6ytreH69eu+Aujc3M4UtDUxiRRZ9huew5+Ltm37/P8B7wIDEF/qOvy9BInuGHmibcn0EARBQDqVQrVe9/XkQ45QqzupJhK4/PXXuHHjBq5fv44vvvjCN+6c6tz0PRJCjSNcIwAAIABJREFUIBDit538CLG3DTtjwlBWdNCA0Jf59LffUC6V8NXly20LGyRJgt5lQiXQGWfnbDYDBMBQJoOho0dx9OhRGKbpe/OFAv759Ckc18XExAScuTmMj40NNHnKvRaX3SMKP79w/PjxgZ2jLQZgjD0arRPzPtBLQvP14iLu37+Pzz79FJNTU74X+x4WJUmSQLHV47Rerw+UYdWMKOqj47oQO1xrs3JmK2QyGVRrNVSq1UbWS5vFVpQkfPnll7hx4wbu3buHC+fP+2NtQdEUBQHa74b9wwOhNGj9xZNSzQmnQqGAZ8+f4+rVqx1bhAmi2JBMoS1W+8ixYIvq1u7dsqJgemYG0zMz0DUNhdVV6JqGJ7/9hps3bmB0dBRTU1OYmprqOfYXcMMphSgIft6AEJQ2N6EoynuNKYaZMb2gWV3xfaKbc1NK8duvv+LV69e4/PXXyGQyPXUf6hWSJAVFerIso1qtIstyOwBaM7L6QHNYxHXdts9YOy+9GbIsQ1VV1Op15HO5bcqeLcckCPjss8/w97//HS9evsT8oUNb56eNCqBEEGD8btg/PFDXhWPbSLIep/6LNKgcrFaruHXrFr744otYFXiiKPrJnLA4UBdGhbD3t/LeGwdPYZgmhvN5HDxwACdPnoRt21hdXUWhUMCvv/4KRVF8ps3UFMZGR1tqujQU7jQMyI+/8graQqGAqQha2I6CkFi68K3guW5PzZgHgVZFSc3wPA937txBpVLB1atXkUgktvTa39eixJLvXKO9VC5jKJxHaqoxGISRJyzOT+ETGSgQSXWM66U3I5vJYH1jA5quI9OFMyLJMr748kv88P33GMpmMTY2Frn7IvC/O9s0IX9kDa73rGH3XDcoHY8S/LJtG9cWFnD69GmMxmyYy7P5tm33FfPmngzneIenE4/LW7YNx/OQDU1YWZYxOzuL2dlZUEpRKpWwsrKCx48eoVKtYnx8PCiO4gtVp4dFFEV4bLFabseG2Sn0aUDoboZiYrzHtm1cv34dsiTh66+/7qlx9KAgy7LfZMZxUK1UWlNaQ/mVwBnp5Ii0AJ/PnE0WZsT0atA5EokEREFAuVrtyrADfijns08/xY2bN/HNN98gmUw25MM8zwsS45qmIfe7Yf9AwOLroiSBRiQ8b/30E8bHx3GwE7c1BJ4p5zHpfhDE3pkH36yMZ+g6BKBlP0pCCIaHhzE8PIwTJ07ANE2srK6isLyM+w8eIJlIBN786OhoS70RSRRB4BerVKvV2IvcwNCHd9iOcvm+0C7GHgh5jY/jk7NnGxty7EL4SJYkv1jPcVAql3E6ggceRsMuN7TT7er7Yu/3XBcILcKtGC/dQBAEZNJpVKrVoHl3N8/lxNQUDh8+jGvXr+PK5csQGKUZ8AX3iCBAFATomoZczOrVDwV72rC7rgtZknyPNBQPffToESzbxh+++KKrQ4qStK36tF/wiRQUn1C/OYLpOEglEp0NAHs4ZFnGvn37sG/fPsDzsFkqoVAo4P79+6jX676eDfPmw2Xk/JpWCgWMT0zsmERv20vo8XM8HrtrHrvnBfz/ZmxubuLatWs4duwYjhw58p5HFg1BECCKInRNg2kYXRW8NXSf4r/HMKIEfpLeZeJfnB8+KMG8TCaDcqWCSrWKsR4YPseOHUOlUsHt27dx8eLFIOFrcQkGSmHo+kDG+j6xdw2758F1XSiKErABFEXB0rt3WFxcxDd/+lPXBoG/33WcgcdHw8VJhq6DUNq+n2l4G8s9qa2BYnhkBMMjIzh56hRMw8DKygpWmKFPp9OBNz8yPAyREBQKBUz3KTrVM3r12HepiXVwfkR73kvLy7hz+zYuXLyImRZt5wi6awI9KCiyjPX1dWQymZ7vW1D5yuPSHYw8IQSu40AAAgM/KIiiiGQyibquY8TzulfCJAQXLlzAD99/j+fPn+Po0aN+QSP8ClnLtmF+hNICe9ewM49dUVXYlgXbcaDrOm7fuYOvvvqqpxi5KAgQ4G/TdiLpxY27aVmQVTV6knKDvvWhjsdVEwnMHTiAuQMHQD0PGxsbKBQKuHv3LnRdRy6fR2FlBadOnRrk5cRCP6ZtN4uT+Pmbz/3s2TM8efIEX1661FF8SiSkpbrmTkGWZWgD6ucZ9uJbOTqcKGC7LiQWyhw0spkM9LU1VOv1xoRwTIiShC++/BL/9V//haGhIWSHhgDq93Dght1znJa7sw8RH89Iu4DneUGTYlEUAUWBZZq4fecOzpw+jXw+39NxSahJ8E7Btm1QSpEIN+kFGsrH+wERBIyOjWF0bAynz5yBrml4/PgxQAh++OEHZLNZTDI6ZT6f33GjKQDoJbBFGZXVYf9zlklDQi6UBOS/b/sbpahWq4HnGVSSsusOV5YGhVDsd9u2IbHkMwDc/+UXrK6u4urVq7FK9d+/v+7nVOqahnQLOdueEarXEAhp+D744rVTDdETiQRkSUKtWu3JsANAMpXC53/4A27evIlLly75Tlxo4TJME6nfDfsuw3WD8mVRFCEQgndv38J1HBw4cKCvQyuMO7tTMJmKJE90NVSA7oCRTaZSECUJ+2Zncf7cOWxubmJldRW3bt2CZVmYYnH5iYmJvtvxRaFBq4NuNc7gPz3PC1g7lCXhuPE2TROGYUAQhLZhBc7sCH6G/s3HQNnxmxeBdtB0HS5rL/fo0SO4joNPL16E53nQNM2vXhQEEGYkBNaOMNxA+72DEOiatnMNVKiv7cIrtIkgwLPtHa8OTqfTKFUqfleoHguvxsfHkR8awuLiIo4eObJFcKAUuqYh9RFpxuxNw+55DfQqSgieP3+OEydP9j25FFkGdV1YTbobgwClFKZpBm3MoiRFA699gDH+tdVVzB08CApggqlPfvLJJ6jX61gpFLC4uIjbd+4gl8sFMsRDuVxvYl/UV+lzHQeu68Jmrdtc1hUnyphyAykQAkmWg36tIksG5vlYwh536LPtQAhp6+U1LKwhL991XTiOA0EQcO/uXWQyGZy6cAEA4z47TssEIR+7x0I5oihCEEVfX3ynw0qUolatIpVOw+HhkYEcNiRh0FTo4zBGTFR7vkEhnETt1bADwLGTJ7Hw4484evRow+v2R9b/dG8adrDO9cxbX3zzBrIk+V1X+nlwKIWaSPgVaYYxcMMecNfbCDOFaZJ8TP1ck6HrqDMJ1GaJ0nQ6jfnDhzF/+LAvQ7y+jsLyMq5fvw7P8wJ1yomJiW1a380G3GX9Zl32kAfXw4y0wnTDCfO+ozzcZrjMm99JbniDd920YJimiQf37+PgwYM4ceLEtnGGdyAepaCeBze8G7FtP1EXuh+CKAYL1k4YfN4yTlXVIJTUK/iow6GtKLhsARSZTPQgQorNEAQBqWQSmq43FhB2iWQigeHhYbx6+TIw7vz7+piwNw0786gE5hU9fPwYn3zyie9JWVbvwkeEQJZlEEJgmCbas4C7GC78UIBlmhCo39O0U+FGA00S6NnAr6ysYHJyMugy1QqiKAZ0ybOUol6robCyglcvX+LWrVvI53JB7D6RSATd6IPPSxJEQYAiy77RYr+Hi1e6BfW8XZMTWF1ZwZ3bt3H6k09wOFSWHgZflKKMDDcWwYLnefBc1+/05XlwWMcsjmaDz//vFpVKBbl8HrIowrasnvRiuGGOUzFMKYXjOMFzE5ZZHhTlkSOZSKCuadC7pHJyOI4D27Zx/MQJ3Lh2DQdYjUs/RVS7hT1p2Cl7SBRZxqtXr5BJpzE7PY1KpQJN15GT5d48BsaFV2TZbyzd7zj5ZKF+VZ/JFp1uJn1YRreXqbdcKGB6ehqSJAXNvjuN2XVdiLKMyakpjIyOwrZtlDY3UdzYwKtXr0AIaeDNK+yaosAr/HoZO6W050bP/eD169e4f/8+Tp85g7n9+3s7SCgRGxjp8K6H73jaGHxCmCQv/z8G66RSLiObzUJWFNhdeLeBMefeecz56bIKcL6rChRPufLjoAw8pUgw6RBD13sy7Drjq4+NjGB6ehrPnj7Fvv37/RDh7x777iPsAT5+/BhffvklAL/DUblc9hMs3epQhyafmkigVC77k7MHwxI26Bw2C1lwfelePJrwIx2nuw/1PKyurOD8uXNwXDfoqxo2wtyjdlgsnDctAXwvUpZlpFIpjI6O4hi7F5VKBSuFAl6/eoW7d+9idGRkS7gsxMYIN4no5eHuRV2xH1BK8fjXX/FmcRGXLl0CCOl9xxAyzpHX3sngsxi/w2i8/FiSKEKSZf8nKz4Lo1ypYHh42A+d6Tpsx2nZmzcItXCj1sN3xDnhzYbdP1yIJtlHeCZY6AQBiqpCMwx0Wz9tMkp0ivU9OHHyJP7H3/6G8clJX27gd8O++3CZ57m4uIiRkREMM3qjJElQVNWPj6tqz3E4RVECD7ubRE2Yttg8hTmFkseq+zVXzcY56qEpFotIZzJQVBWUxV55ostm21KHF2PBD6coigJZkiBLUssq1Vwuh1wuh2PHjzcIl/3222+QJMkvjpqextjoKMDjxz0YDc/z3psAmOd5uH37NqrVKq5cuQIiCKjX630vLF3vVkIGn+d4PBbuiDL0IjPw/P9yuYwDBw748XtBgNNk2IM5yn72C9u2IbHcCb/ebei0yHVA+HNJVUWpUumK3ECp31NYFAQ/DEopUskk9u/fj1evXuH82bO7UkzWD/akYbcdB57n4cmTJ7h8+XLD35LJJGzLgmEYPbcFS6gqCCHQTTOWYQ97KATRk9s0TcgsgcgxqDhkKyNfKBQwNTnp5x5sG3VNC/S6AX8hTKgqZGYUepEbaBYuq5TLvjrl48fYLJUwNjYWhG3iKGyG8b4EwCzLwo0bNyDLMi5fvgxRFLdCcf3uGHpc1MLg4UGFS1M3GXpOC6UAyuUyFEUJQpWGafrsHGzlega1C+LjaDCwvA4g4pq5AqTA530P40gkk6CVCvQuyA2GacL1PGSbuP0nTpzAX//zP1HXNIz87rHvPjzXRalUQm5oaBuVTRRFKKoK0zCgqmpPCSiJJf7MGBQonnhpZdCBrTBMc5uyXmPP7cAfWtd18e7dOxw7dgybpVKw1ZQkCdls1jfkAzaahBDk8nnk8nkcP3ECpmGgsLKC5UIBjx49gqKqDTLE7cJc70sArF6vY2FhIaCA8tBLsP3f4fP3AsKS/OHG2I7jYGNzE4lEArbjoFytwvU8mMwAcvmKQYa2XNcFZXmAMIICpqixY+u7FRBz/oeOJbMwlK7rkc2um+F5Hgxd93ehzBZwh0pRFIyNjWFtbQ2zveZSdgl7zrBT6rfCK5VKGB8f3/pDiLaWUFWYpgm9Xkcmxpcf5V0oqtpWHKjZS28HHoZRmimDnUfWFRzHgWXbsCwLpmmiVqthKJdDMpGAxDw+m+vrvIetp6wo2Ld/P/bt3w/XcXzhsuVlPHzwANVqFRMs+TrJ4pxhhOOqO4WNzU1cv3YNx48fx+HDhxvPD2zjzHcDfnffS46A8f+rtRpGx8aQzWbh2DYMy0LVtlGuVGCqKmQ2BwZFH7VZGK+X43EDHyf+3jxTE6qKuqbFSgzrug5K6XZ2ECHwXBf5fB7FYnGbQuyHjj1p2AFgo1jE3MWLke8hgoBUKgWtXo8Xi4vYOqqKAq1e9xkiTV5/4E3GMOoAYLGipOZJKJD+tUQcx4FpWbAsK+gSL0kSbMvyhcJCeiaSosDStAajzg3YTiQqm6maXIb45KlTsEwTBSZc9vDBAySTSUxNTflMnJGRYIw7RXdcWlrCnTt3cPHiRUxHCHn1zch5Dwtng3NBCIpraxgdH/dpk6oKVVUDxo3AdqCmaUIQhIEYedu2IYritvsURzgsdBFB4VncOxaX9sifDVVVG3TiAQSa7MMjI3j29OnvPPbdBqUUlmWhpmkNRisMQggURYFpGNDq9c6c4BYeOyEEhmE0tJILh17igIdhWrWj6yXO7jgODMuCHTLmsiwjmUhAVhSIgoDC0tK2snJZkoJte6skLl+wKAbgbXJPLOI4iqpibm4Oc3NzoJRiY2MDK4UC7t27B61ex9jYGIZyORyYmxtooRilFM+ePcOzp09x6dKllnOo34WOf36Qy1KzIefg/14vFnH8xImGz8iyDEopsqxVn23bsNmOzjRNv9pXUaB2aeQ5LbbVd9MuHBNxMHhgu7MY6pA876W3oT16nhdIgyRayGN7ngdVUaCoKjY2NuKN9QPBnjTsGxsbgRwtgO0TgT1QmUwGlWoVNdb/MXLb1mLyKYoCsEKldDrtexO8+KKL8VpM9Ktf48Q1pA3TDPjoiiwjmUxCUZRtnu36+npQgMEhhRoxNFeSbqvADLF7eB/ZbtQWm5Nj7TwyQghGR0cxOjqKU6dPQ9d1vHv3DktLS3j27JkvXDY5iempKeSHh3s2uB6luH/vHtbW13Glg5BXP0nGKMMbe/EO3ze6pW3TSUZB0zS4rotMU4JQEkWY1BfqEgmBqihQFSUw8o5twzZNWKYJURShqioUVmzUDg7Tamq1GHR75wgQPF/NrzffOSIIUFW1ZeN5SilqtRpc10U2k/Hvf9OYSGjhGRsbw+rKSpcj3l3sScO+ubGBsbGx8IuNxp1v40UR2WwWlUoF9VrNlzKN+bByvrBhGKA0msIYB6ZhbGPDhNHpofcohWEYMA0jeDhTySQSiUTrMAWlKBaLuMC0TcLnEkXRXxg68PxJk1EOj7XB4Mf07rvaajMq2sjoKIYyGZRYU5Gfb9+GZZoNsfm4C6bjOPjp5k24rosrV65sW9iaMcjEbatrD87RbMCb5kOcBWZjYwPDEcJffDF3HQdi6JqFkJHnu2DDsqBpGnS2440KYXDYTfz17RfdXXilAew+tKsIbUV75Ebddhxk0ukGfn3zfeUx+snJSbxZXOxlpLuGPWnYNzY2cJR3remQeBFFEel0Glq9jlqt5ns0MY17QlFQrdX8CdCD9+YwDZV2niF/sJvH5DgODMOAEeK/p2J6U9VaDZKiRBZpybIMjSWUevFItxn8CG+ewn9oGhJjfJsdEzzmKUoSxsbHMTY+jjOffAJd01BYWcHbN29w584d5HO5wMgPSUl4FQNeWQdJKpD3+/UNhq5j4do15HI5XLhwIXYlZr/dpoICIB5C8X+JfA/QX+hrfX3drxtoAjdsjuNsS96Hz6uymLxt2zBDoRpZlqEqyraF0HacQKytFYgg9Fz4E1TCtvh7K9qjpuuwWCFSp8XbY7uy8bEx3Ll9uy8NmveNPWfYa7UaLNNELpfzX2gRww1DURSAUtTqdWi6HltLW00kUKlW/SRNt5Ws8NkwlNKWlX8chGmqUOo34TBME47jgBCChKoimUh0RdssFosYayHbyh9013UHKq7VbPDDDzX1vEDULEjWor1H3MBKoRRezYRX0iGWdUyVPYyXs7BrEjbWKig+e4KXyUdwBWC4BOQ3gXwZSM4OAxPA37//HgcPHsTx48djG892C1+DMQ7/HoqBe+FYMYmnu9IPisUizp47F/k3SZKC0EkncBql63kwTROWZcG2bQiiiISiBB3LXNft2MxmEDueVl5/QHvUtID2qBsGDNNEgu02OsGj1C9aUlWkUiksLS35rSc/Auw5w764uIjhcHw9AgQIJFM5FFVFwnVhMn3vRCLRMr7Ot4DJZBKCIKBWr/dk2G3LilX443keNBZu4ZMtnUpBVdWedgrFYhEjLQw7F2uyHScw7PabTWjXXwCmg+S/HYRydLLrc25D6N5y4xw25sFVuR7cmu9lO2Ud3qYOr2ygVq7Aqmpwiw7cig64HrYvCRQZEGRAcYAQGCqwOQwUJoCnR4CEsQHqeTh48CCOHT/eGLsO5xQQYaz5otR0Lc0LUuQManI2dprwaNs2qtVqywYzsiwHDV7iLmwiU1NMJhJ+lyHThKbr0A3D12CP4xgMgNEU3H9B2Pa8JhMJ1Or1QEZZ13UokrSNOgt+jG0vbRXAjY2N4fnz578b9t1CrVbzOantDHsLNkIqlQIX1RcEIfDkw+BhBK7al0wmUa/X4Y2OdmVkKQDLcZBs4zl4ngedPSwupVBkGYlEouWWOS6KGxs42JQ45RBYZ3bHceCZDup/eQTtH8+C+2D88g4j/8cVyAe6VeNoBAVAXQ9e1YRX1uCWNNibGtySDresg5b9n27FYEY79ElKYKgUngA4OkD8lwDQrZg0Cb3fjwVBNYCpAjC5DKxMAa/nAHjAy5cv8eLFi0DqYHx8PKi+jVouPM7SiEvZi7j294nNzU3k8/mW8XAuHtbLLo2EYvG8yrVSrcKybSRUtUFOIApdsWOaQPmuhxCAPZPhIyVYU5wKD5cymvP2A20PdfJQHzfs/Dn/WLDnDHuAHr2BVCoFz3WhsS8xbETDRj38/nq97ksUdOG1cw2WqOYDlCVEeaxbVRSoyWTLB7Mb2LYNrV7fClVFQJYkVJ8WYP7HU7gbTZPZo9Bvv+lo2Knrsni2AbekwWMG22MG2ypW4VXNwMptaV5T/78w+YMfk/C4fchwE4SMOHtv1Fcfeu3NHLA2Cpx7IuHaERv//u//jmq1ipWVFTx/9gw//fQTRkdG/Nj81JRfah4yGrybU6ekZ6tw0vsWlFpfX8dIRHydQ5QkEPQffpMkCaIowrQsiKLoF8PZNhKJBFRGD96GfhbH8PHIdhmCRCIBz3X9xHE+HzBgtg0hwttvNuwg0fLLHyr2nGEnhMBFjERTiwlFCEE6k0GtWkW9WgXNZAJ99GajDqAhHNONYW9VlWeaZlA1J0sS0ixzTykdiBDRxsYGcsPDLb0oqlvQ/+MRqr+8RtoAhAjT5K7V4BbrW4a6pMEr64Hxdss6vKrRxjWl8ByXWT4CHoTxH0wE/2+jsYWPQHxPvRtQVcSzowKMBPBvyizy//tR4L/+AyAEWdbE+MjRo3BsG6tra1gpFPD02TMIghB0jgqzrdpKHjT93P4GFj54DygWi9sqZ8MQCAl2ab00eQ/DYY3ec4w+bBgGdMOAaZpBHcUgCt0i2WLsmeaeu8P17h2npVFvBd6zNdz39H0qifaLPWfYAcT6EggzlFHvEwQBmWzWN+71OhzXhaookSs2j8fX6nVMhCmWHcDbqvH4OhfhchwHoihiKJvdRtUbRPVnu8Sp+cs7VP+/u3BqBogCuCIgROTUrCcrWP+//nvnk4UfPLrlWfuVuSRkqbfi2d3Y6rBhJ6oEMZ+CmEtCGEpCzCch5JMQckmIuSTctIgbd36Gkkjgm88+a5tslmQZMzMzmJmZAShFpVLBMlOnvHHzJkZHRvziqP37u68/4Pek2bFo+j3w+LvhuEfA8zxsbGzg8z/8oe37BtWk3eIOC8vVpDMZqI4D3TBQ13WIIQMP9JZfoEDrOgIW2rFtG/V6HZIsQ+hw/6Koyjy5/TEZ8zD2pmFH5wnTqeqPEIJsNou6rkOv1+HaNlLpdKRxT6VS0DTNZ9TE9Not24asKHBdF3VNg2VZIIKADNshNE8oQnzt73599mKxiEPz8w2vUcPGxv/9P+Cu+2EXwT8hXIEifjSfsieuRTgkHC5pWYkU/bKQkCFwo51LQMwlQZMUaj6DoYlhCLkESKK1ga3XalhYWMDU9DQ+OXOmuzAdIRjK5TCUy+H48eOwLAvLS0t4t7SEf/zzn1CZcNkkEy7rlQLZvKg1UyF7Rblc9ovUOuRlJEmCwSqVew35UUphMwpkeP5KkoRsJgPbsqAbBmqaBol1b+I8+m6us52x5RK8nIqZGxpCqVLZrjIZPl7Ea7wBTNgB+JiM/J4z7A0VkgNAkhX6GLqOarWKTCazzdtLJpMQCIkdjnHY9pC6LkzTBCEEqVQKyRalzQF6jEdycI7/Z59/3vD65v/zQ2DUAYCAQPIIHKHduWiQWWx4V5wbH/ZM07JvsPNJkGwCQi4BIZeEkEtByvuGnKjbjZK5uQlFVSF2oKZubGzg+rVrOHHyJOabFrReoCgKpqamkM3lkM9mUalWUVhZweNHj1CpVjE+Nub3gZ2c7FkWOhYoDWiw7QxjsVjEaJv4OocoikGcvVfDzptqtFpEZEWBJMuwTBOGaaJaq0GRJL+P8CAYMkwmwHYcJFTVV7K0bZByGXYLw94qAd7MWW+1u/9QsecMO9CFl9PBUHKd6oSqQhJFVKtVVCoVZDKZhuIGURSRSCZRq9VihWPqmoZytYpsOo1MOh3E6TsOF/1NsEqlAoVxjcNw1yrb3it5gC0AftCE+ZPcI9/GSWwx3ozKQiMJiPkkxHwKQi4FklVB8gkIQwkQpXEKxhFb4pz+Tiykd+/e4e7du/j04kVMRQh59Qo+Y4goIj88jPzwME6cOAHLNLGysoKVlRU8fPAACSZcNjU1heGREQiC4NMoW+R2uvLOSVMnohYoFouYnOxMT+Wec7tCpU6wbNuvNm3zeUII1ETCl85mOvFWtRoUQHVCVBEX4C9INcZ+SadSwfMpiqLPQLNtRKsxRSOqGOl3w/6hoEOCqlWcPejJGHpNkiQM5XKo12qoVatIplINTTbihGM8SlGv11EulyEJAkZHRrpiIfQbjtlo4b0J2STcTa3hNdEFKKFwCIHk0m0Ec5KUIY2mQXK+wRaHfK9bDOLaCUCKDkt4rKHCNsQ0bB01aSjF06dP8ezZM/zxj39syd/uFeGGzGEoqor9c3PYPzcH6nm+DHGhgF9++QX1eh3jExO+3MH4ePetGbsEZ4isr6/j1OnTsT4jiWLsQqWo89mWBYUtEJ1ACPHZMoqCOntubNtGKpVq6+RELYAWkzoApdt21AF9t0X+IDK+Tn0Bs0RooaGU9tS7YbewZw07Tzy1Q6s4eysPSBQEZIeGUK/XoTNRpVQqBUJIEI6ptwjH2I6Daq0G1/MgiSKymUxv1LIuS+/DWC8WI2lvuf/t37D5//4DVLN9hgqlPj1YIbBF33tvRvZ/OYvEZwd6GkdLxAw1BR5zxPdLPQ/3fvkF6zGEvHpFnN0CEQSMjIxgZGTf2DOrAAAgAElEQVQEp06dgmkYWFlZwdLSEu7/8gvSqRQmuTefzw+kWKfh/ISgVCpBkqTYjZ0lWYbZZaESh+048CgNkqKxx8nySoIgQDcMVKvVQLguCg2S0owWbDAVykw2GznudpW1UVfZ0KeVF8/9HorZXWQyGbx+86bnz3OaUysQAJl0Gjrr0uI6DtLMS0gkEqhpGkLtPUDhh150XffZLpkMyn306vRrbbYXVMRBsVjEEa6hEwyQQprNY+z//J9gvliHefsNzF/egegWJI/C5jGZJlCtfwZFJOJcW5hZEoLrOLhx8yY8z8OVy5e7NjLxh9jZsDdDTSQwd+AA9u3fD+p5KDIZ4jt37kDXdUxOTGBsfBxTU1MDkyFeXl5uHYaJWESlUJy9W6fDtiwQsr1bUlzwRGpd0wJ2WJI1luYIj9bzPGj1ut8YhklSt5o3kixD1/Vt3n6r+LrjOCBghp0Vo+m67osEfiTYc4Z9//79uP7997Asq6MGC4CGCU4pje0Nc32Weq2GaqUCRVWRTKWg6To0w0AqkYDjuqjWanBYMiedTgeeQycBopbDBYKkWTdwHQearmNoaKhhMgf/IgTq4XGoh8dB/9ezsB4VgJ9fovSyAJcAYtPpxIkYnadaoN3Im6sHoxAVCjF0HQsLC8jn8zgfU8irV3i9ctB5CEkQMDY2hrGxMZw+cyYQLltaWsK9e/cwNDSEyYkJTE5NIZ/P9+wprq6u4vjx423H4g/IfwZErvTYpWHn6o9KPxx14iuLZjOZwAt3HAepVKpBgdHzPF8vSdfhwVdx7BSblyUJdUaBjHNd/H2EEHj+BWJlbQ3/8wCS7+8Le86wJxIJJLNZrK6uYn8MXQceZweaPOEYhlORZUj5PHRdh2EYvrfjeajXaiDwPXVCCIay2WCRsdtUnO4kKtUqMqyZR6crI7IE9dw+jJ2ZBllahfCkCHpnGc5SCSBA8ot5KMcneh5L221tjHBMc/ekcrmMa9eu4dChQzh+7NjAwxrb4Hl9KzuGkUylcOjQIczNzcHzPKyvr6NQKODWrVuwLMtPwE5OYnxiIrY3b1kWSqxZeEeE7qdACBzPQzdlSjxpOogdEg9ryrIMTdNQq9WCylXXdVGv1wNKZqZDPJ6DO1EW02bi1NJW/HXX84L7TACUKxUoiUTLpisfIvacYRdFEWOTkyisrMQz7KEYWi8QCPEFuRQFGqsYffPuHWZnZpBIJJBJpxvoY1z4q594HSFkSyejEygNutOnM5muEq+iKELJJoGLs8hePQmqWaAehZDpozpxALHKcIx9ZXUVt376CWfPnsX+99Rw2KO0rchcS8RYtARBwMTEBCYm/IWzXq9jZWUFrxcX8fPt28jlcpiensbU5CSyQ0Mt7+XKygrGxse73rkIogiP9/dk86zT92Xbdl9hGP9UjeeQJAmZTAa6YUDTNFSqVYiiCIFRg7vZ8cqyDDCPveGcEe+1+Y6aXQuFfy/nm0OYHzj2pGHft28fHt2+jc8//bS3g/Rg5CVJQiqdhlouY3NzExXWuCP8YFEg4Nj2A4IOIQu+A8GWEaxWq34YpkvILD5JKQVJKX3XB7Si+3HEof3xv79+/RqPHz/GF//2bxjtouq3X8RJzLf6XDtEXXs6ncb8/Dzm5+fhui7W1tawsrKCa9evw/M8X7hsasoXLgsZu5VCAVMxaI7NEEURDjeAfAfbxsDzKs9B5AWar18QBD+M4nnQTROKLGNkeLjrBYT3XeVGm8LfqUc5RlwOmzNgCIC1YhGXW0gef6jYk4Z9dHQUpVoNNU0Lwg+twDnRsZJ2beCwbWImk8GY4wCeh1qtBsMwkMlkoLDMPI3Qh+kJUewY5p1HGZBqpYKZHiRHFUWBrut+gUefqpKDAvU8vHzxwme+XL6MzHtMagUdovqIsbdCp0VNFMWAF3/27FnU63UUCgW8fPECt27dwsjIiB+bZzvWEydPdj1EURB8XSSWICZs3JxBxtUuObjcb685ozDC1++6LjRNg+04UGUZ2WwWuq4Hz1i31ENZFGGFKI+8nWMzbMeBHNpRu66L9WIRBw8e7PWydgV7zrADvvc8zPoUZjokPAI9juCF7r11hxVHgFIMZbMQCMFmuexrVVsWyqXSVsPcAcXXG9gxzKC3K16qVKs43tTvMg4kSfK9HcsaiGHvV9nQdV3cvXMHtXod33zzTd+iVd2Cj3+3df4IIchkMjhy5AiOHDkCx3GwtraGQqGAJ//8JyzLwpMnTwJvPq4hFJmEr+e6EJrmKUVot8gWOMs0QQRhIM4KgR/j5slTAr8+RJFln34oiqjVaqjVaoE4XlxIsgzDNIPz+LIXjbtH13XheR6k0JxaLxYxNj7eULPyMWBPGnZRFDEzO4ul5eW2ZeRcMTE8Wbst23ccxzfqjEcriSIy2SzK1SrqmoaJ8XHouu6zZXTdT7oNMLlHmVEHWocHqOuiVq/35NkS4ve3tNhD0S+aNVG6gWlZuHHtGgRJwsVPP33vRh0IFUf14LH3q/vSDpIkYXp6GtPT01BVFfV6Hel0Gk+fPsVPP/2EkZERTE1NYXJqqu0uVhCEgATQyjjw6/Aohe26UAex4DNmDW+MoSrKljPEnkmBcd5r9bo/n1Op2LRhSZJADQMO88j5ORt2H03xdcBnFh1txSz6gLF3DfvMDH54+BCX2nCOuQey9UJ34RjbcXwGjCD4HgTziiRRRDqVQqVWw8jwMFKs25HOqus2SiUkWUu7XtgVYXW7OFK+NU1DMpnsuXJOliSYhgHHdYNr7BVxTFuU8a/Xavjxxx8xMzODg4cOweEJvvcMfr+7jbHvpFFvRqFQwJkzZzA2NoajR4/CdhysMqmDJ0+eQJKkIDY/NjbWkAfiHrsb4/7yxV7tw5ulnL5omr7wFqXIhkMtTUQBQRCQzWR8z71eRyqdjrWTVFgClaunRn1/juP4EsahOb62vo5LV6/2fH27hT1r2JPJJJRkEm/fvsVcBFsi7K0H6KKq02INK3jlXLNw0tDQEGq1GsrVKsZGRoIxiaIIQRBQZ3z3pKrGNrrcoHeLaqXiN4voETx+6lgWpB0uhQewbddULBZx/fp1nDp5Eofm51GtVnetCjAIxXR5/jhJ4UFck8GqN8MVxrIkYXZ2FrOzswCAEpM6ePzrr6iUy35hFGv4nUqlIIaZMS1AKYVpmpDYfO4W1PNgsIbYlPrtHrl6aqTOesOvfhiqXq/7DXFSqY7JW5n1NOCNP4Jx8GPCN+zhXEGxWIRhWcF9+5iwZw07pRRffPEFHty+jZmZmW2e5jZvnf3enByKgmlZfvs8UfTLoSMeSEWWkUwmUalWMZrPB7xZvsVMJZPQDQO6aUI3DKjMg49KQvHPRjETRELgdjAY1WoV2R4YMcE5RBGSJPkPRZ+GPZbfGjLsb9++xb179/Dpp59iamoqOMZuFXd7PYZi3pe/vrq6iomJibYLTz6fRz6fx4kTJ2DbNlZWVlAoFPDo0SOoqoqR0VFkczkk0+mWtE7Ltv0CoS69dddxYFoWLNMMJAi4yB7g399A3AxoGRYlhCCTTqOmaQHNuF0cnIdsoqQFuFH3QsQGSinuP3iAS5cufVSdkzj2rGEHgJm5Obx59gwvX7zA0aNHg79HeusMnQyGZdvQNM3X4Ein2z5APJNfqVZ9zRJKg9CLKIrIpNOBgTcMAxbTkOZaGYFBD+UBmhGH0VOpVmNJt7aDwnj6fWtmxAh38cTwk6dP8eL5c3z1xz8iFxLy2k3dDm7Yu37YY4Zi+r225UIhWADjQJZl7Nu3D/v27QOlFKVSCW/fvcPzp0/x4N49X2ue6c2HjbhhmhAZHbEVwiE1x3FgGgYsRqVUFAWqqm7b6YavveMuhxBkUinUeYEgIW3zLq3yOxRbBp9fz/LSEmzLwidnz7Y+/weMPW3Yqevik08+wQ/ff4+5AweC6s+2Hl+b5KnDeqGKzFPv9PilmIEulctIJBKgwLaJLAgC0qkUUskkDNOErusoVSqQmPZMVNONxuESCPB3Gq1QrVT6pmvxnUS/nOU43jb1PNy9exfFjQ1cuXIFyQgRq90MxXQbhvE/GM+w93NdnudhpVDwm4n0AEIIhoeHkU6nMTs7C0kUsV4sYmVlBfcfPEAqncYU07SRZLmjuBiFP1+4QeeGV1XVtnkv/pPEuWeEIJ1Mok5poMfUii0jtAm1Wo4DURAgCAI8z8P9hw9x9uzZvvIHu4k9bdhdSjE0NITp6Wn89ttvOPvJJ1u89RZoFY6hgC8NCr9oJO7jN5TNYn19HZVarWFs285LCJKJBBKJhN/IWtNQrdWgCQKSyWTbh4EQ4k/YqL9Tikq1iqE+ud6SJEFgDYp7NexxCnscx8HN69fhUoorly9Hsh5202PvRQAM6CIU0yUrK4zNzU2km+SkewHfVcqKggNzczgwNwePUmxubAQyxJqmYXJyEtNTU5icnITSJHFr27av9+K6EODLJiRizBtuzLvSp2fVqNVaDZqmIRul8sh2ilFm3fO8QM8JAF6+eoVkMompycmexfp2G3vSsBPidxR3XRcgBKdOncJ3f/sbDs/PR3p/UZ9vfrg0JtObbpII6IRUOg2pXEapVPLlWduAwp9k3KuxWCy/zuhdKmuS0ap1XtRjoOk6JFHsW8eDEAJZlmEaBpBK9UTZ7OSB6bqOawsLGB4ZwdlPPmndcHs3QzGe11txUkz0QwddXl7GRBdhmFaQGGvEdV2AGTaBEIyOjiI/PIzp2VlQSlEulbC8vIy79+4hk8lgfHwcoyMjSKZS8ODnf1KsLV+DSmOLMCiAYF7FlswIPuZLe1RZn+JMOt3weV5gFUU+MDm7R1Vh2zYeP36MP1665PdL/Qjj68AeNewAK412HBDmBc/Pz+PRo0f49PPPO1cAovHhMi3LV4tU1a6LdASWwa8sLW2VakeA89HDDwDvduQ4DkzGIDAtC1VCkJBlKGw8hJCWHk6tz8RpGAoz7I7j9OTJtLvr5VIJ165dw/z8PI4dOxbkFyKP8x6pg1Hn7rV13E6CUoq3797hD01tD3sFYSGJZnAjmBsaQj6fx+y+fTANA6traygWi7h3/74vXDYxgemZGUxEtL0Lfo/4Hon/hp7GLIpi0PDGMM3InUvzGSmlMC0LsiRBFEX8+vgxJsbHkc/nP1pvHdjDhp0n+8A0nY8dPYq//PWv2NzYiNVRh8eCHdeFzpKlyR4ZIZlMBiB+T9RmTcR2BoxDkqQgWWvbNkzL8tuKWRYEQqCoKlRFgRgRW+R9WgcBLstqWtZAJ/0qUzI8e/489jHZAxIqvGrGbidPP0SPfXNzEwQYWLcoSRCCRCcHN4ICIb6TYdu+8acUExMT2Dc7C0mSoOs6VgoFvHnzBndu38ZQLhfw5vO53JbhbhHz7mfXwh0hwzAgiSIkWQ6OFyV3zSURVFWFrml4/vIl/vzNNwB6l9b+ELBnDTuvvrNdFxL8bPfJkydx/5df8PXlyx0/LxDiS/DW60EMr1dTIooiUokEdKYxHVCq0L33KcsyZJa44kbeYL0jBVYlKqtqkN0vVyoDaxBA2CJimibSfWrrcLx6+RKPHj3Cv33xRYOQVyuxsKDys+8zd49edWK67WXaS4z9zdu3A+Vbi5IEhLRVXFa9XK3VAgldSZaRVFXITaGWVCqFQ/PzODQ/D5fJEK8UCrh58yYcx/E7R01OYmJ83A8Rhq43qtS/W6SSSV/il8XbeTglyhkwTdMXG5Nl/HLvHg7MzQVdt3732D9AcO/Ssm1ITNjo4IEDePnyJX777bfWDQhC0Op1UM+LLEDqBjw2b9k2NstljI+OxqoYbQde6q8oCjLU7zdpWBY0wwAMA6IgQFVVlMtlzMzM9HWuMFRFgWkYvlhSlxO/4YopxcOHD/FuaQmXr1zZtqtoSU3rsfJzEOhVJ2anQ0ee5+Htmzf46quvBnZMQRD8Hr2aBsd1fcNerUJgzTBkSYoVfxYFwRcmm5jA2bNnUavVUFhZwatXr3D755+RHx4O6JRDLOkZiw3TDswRq9VqqNfrfnEei7GHK2pd14XjukgmEnj79i1WV1fx7X/7b8Fufac6cL0P7FnDzldh07aRUlV/wggCvvjiC/z9739HNpPBTBsPx7Jt2I4TtOzqB7wRbiaTQaVSQW5oaDAKjwzck1ZUFZlUCjorANE0DZvlMlymNCnLMiQWS+wVsiyDCAJMxrnvapxcrMx1cevnn2HoOq5eudLAqGhAxK6gky7OTqLX4qSdRrFYhKqqfe/MKCu5t1koo1qtQmVNLiRRRCqZRCqTideZrAUymQyOZDI4cvgwHMfB+toaCisrWPjxR4BSTDI9m5EuG703g8fb6+F4O2lUdOSiYLVaDXfv3sVXf/xjAy//d8P+gUJVVVTLZdAQiySZTOLLL7/Ejz/+iFQ63TImaRgGJEkaCI/V8zxQ+DIDumFgo1TCxA7phwui6MsUqCocx4HrOFscedblSZIkyJIEiYV1usn8E0KgKgoMw+haW4fC1xe5fv06Eskkvvrqq7ZaOZFMH+7N7YZh5x57F/frfaR537x5E+QmugGlFI7rwnEcv5LUdQP+uCAIUFmjmGQyiWqtBiKKA5VuliQJU9PTmJqexvlz51CpVlEoFPDs6VMUNzYwMjwcNPxuZrnEgcxyU6ZpIqGqEAA47DvkomOu4+DGjRv49OLFrSI4Fgr63bB/oFBVFVVBCDQgPFaSn8/nceHCBSwsLOCbq1e3USAt2w7CJ60a3nYDlz0wqqoik06jWq0in8229lT7BRuzbdtQVRVDQ0OglMJ1XdhsJ6KbJmjY0DMjL8XYYquq6lfKdslpr9Vq+HFhAbMzMzh9+nTnBzXi3u9qjL0HnZhuE4HdXpfneXj37h3+9Kc/xXo/98ht2/aF1Nj9FEURKsvNBHUgrusLzTHj36lYrl9ks1kMZbM4cuQITNPE6toaVpihF0TR17NhwmVxdp2EECRUFTXbhmFZgCAEGjimZcGxbdy9cwfHjh3D1PQ0AJaYZw7LoJqK7wb2tGHn3iiPB4cn5czMDOr1On5cWMDVq1eDjuQAYBqG3xaOeSdx9GNagYI9IOwY+XweWr2OtfX1HRMXIvDDBgbzVAB/knN2TRJb3ppt23Asy29Bputbhl5RIDODH9W2TBAEmKyBcRwUi0UsLCzg1KlTOHjoUM/XRnfTY2c/dzQU0+V1ra6sIJPJtGRsOY7jG3NuyLFF2UwoSjAnogw2EQRffTHE894xhGLrAiGQZBkz09N+fohSlCsVX53yt99w8+ZNjI2N+UybyUmkomSImXHm12caRsOfDcPAw0ePMDo2hsOHD4eG4d8HIgi/J08/VPASZqtWQ1RZ0tGjR1GtVnHj5k1c+vJLECB4ANKhySJ0UwUXAmX/u44TeMGiICCby6FUKvma0h06PPUCzmu3TLNlPJQQ4htuScL/z96bxUhynWeiX+xLrrVX9creu7k2SbW4iN0kJVm6Dwb8cD2+4ycDNizB8Aq/yAbuk2BA1/YINsY2MH4cQ+CdOx6/2A+jEUeyJIoiWySbS5NU781md+1bbrFv9yHOORUZFZkZmZW9kJUfUKiqzIyIE5ER3/nPv3w/NG3Lv+p58D0PlmXBIhkgAmmkIIgiREFg1h1rmdeDjO7cuYMP3n8fX3j66b4KaLJy8+l/A5X17xBUhK0fq3Wg+6aPdM7bt29j//79bEUWBAGCMETg+2ylGBHXikwm67w9d2m6L82AuavFOqnrxAOIyMQCjkOlUkGlUsHx48fheR5WlpextLyMS5cuQZYk5rKZnJgAx/NtbjxVVdFqteIOZmEI1/Nw6dIl8ByH0088kXktPsupjsDnnNgB4o5pNmOrmWTHJG+iJ0+fxuuvv46LFy/i8cceg52y1in6VRRMCngFYdgWCCqXyzAMA+vr69A17a48MBzPw7as3DECWllKb2haFu77PnySVhmSrjYgImqmZcUZCER2WEw3EaFCXjdu4EsvvIDCMPLpe2XFUL9/0v+ftPLJ61RoDNhylyR/A1sTMz3nQXRiBiH2bqQbRRHCMEQQBHBdF/OLizhw8CBq9Tr9QHx+5PukFusg9xjP8zAMA6Ik7bhPb0d0uj7p7zABSZKwd98+7N23DyDCZUtLS/joo4/QbDYxRWSIZ2dnoWoauwYe6Z1w9epV1DY38fJLL7WtvpJH+ixb68AuIfYGx8U9O2V5m8+T43l88Zln8JOf/ASapmFycpLlsSbRj689AsmgIMQehmHbg8UDGKtWsbK6inqzibFKZUfnmAUOsR9xUN2QZDolBdXUoJahRbrHB2HIHgqB5yGIIgSex0cff4xmo4GXXnwRiqZlVjL2RJKokSLKZP5zkvDp6+nvK/F68p2ow28g8bBzsTxypssiY19sTAPk+9N7NAxD+EGAkFxvn7Ruo9k5K8vLKJVK0HQ9FrAiq6lhVsY6jgNN13fcYKUjOjxXbZNstxUzx6E6Nobq2BhOnjoV++ZXVrBMiF4lmi+TU1MIowjrq6tYWljAc88+2zXGlUd65EHG557YBUGAIMtdVQllWcbzzz+PH/7oR3j41CkcO3p022fyBsGSpN62ferh1jUNqqJgc3MT5QGa8+aBk/CxDwN0OZ/83zBNlIrFLVdAGMKxbbz/wQcAgMcefRSmbcNxXYBo+HA8D4Gkn/Lkh7pdkiXltFilTVukwwN+L9IfozDM/J463RccYncC0pMRIbOQTPqUrCPym2ZrJNse8jwfryRlOZ48BQGXPvoIhw4d6qmyOCg810UYRXe332cvi518Jq8omKIo2L9vH/bv3w9EETY2N+OmIh9/jM1GA1EY4qknn9yeDZeagItDkuG4X3iwEnLvEhRNgx8EXYtbFEXB6dOncenyZVy6fDlzP3nII03q3W7GsbExcADWNzd77ncQOI4zsAxCHiikPoAKl+nEcnzvvfcwVq3i3NmzKJfLzM/veR5M0mm+aRhoNBqo1WrY2NzExsYGavU6Gs1mrNJnGHHmDSG5IAxBdfSB+5fHnselQVc2rufF0g+WBdM0WUeteq2GjVoN9VoNjWYTLdIJyCKZRhFJtdM0DaVSCVXiX6ZBUllREIYhVtfWMEeyOYaNIAjgBkFciHSf5BvaQFdLPcid9UiN/8H4+DgefvhhHDlyBDyAcqWCarW6bYJO3k88z0PrI/b13e9+FxzH4bvf/W7m+5cvX4aiKDiXo+J9WPjcW+xATEAmx7W1vkr7zD3PQ7lUwssvvYTz58+j1Wziyaee6mtZm/bfJ5E5mcgyS38sl0pD92M6jhP72IdU/p8G9as7pABks1bDm2+8gSNHjuD4sWMA8fMiihAiLkwCSZ9rs1YTFmsQhgh9P05NJcdJTo5URkEklj9V7aN+5fjPrd+93otAmhhHic491I2Gre80imK97ygM4x9sxVHYZ8n46TFo1ysAbKwCz4OXJEh0tUJWLnQFA4Bdk27f2fzCAqampoaaV56EbdvgAaiKgjCKOnZS2gnyqDymNsjUe2GbANtVIaMIH338MW7fuYNTDz8Mx3UzNZWS0IvFvmIStOL3zTffzHz/D//wDxEEAf7+7/8+9z53il1B7LIsIxIEeJ7HiD1929Amt5qu49y5c3jrrbfws5/9DM8++2xbZgltIJ3ePgLafM1JcOhsYVarVZimifW7kP5oWVbcMJuUh98NyIoC0zSxsLCAdy9cwBOnT8fnkXSnAG3Lap7n46ViF/cTtc6jIICfIP8wisD7fpyTTASo2kiWgvrzexBSEEVoNBrbXmfBVbJ9GIZwXZc1e05PGhwXN0GmKbbUvZT86Qvpz6cm59u3b+PQQw/1t8+c8IOA9Qb1PC8my7sR4O/2Xof7lWYmdbybE9fI93288/bbsB0HZ194AQtLS3HDm7SbNLWLYp8VvE899RQ0TcP58+e3vffP//zPePXVV/FHf/RHePwedmPaFcROA4G+YbS9lvyCgyCIXQuILdFnn30WH330EX707/+OF55/vq1cO4vUO7XaS/pJsyDwPMqVCjY3N4ee/ug4zt3NPUZs0V29cgWffPIJnnvuubgFX9Y59zmxcBwXW4k8Dy45YZKJoZwjwyZtUVPLO2mJ8wBr9J0ka/Y/+dsPAvA8H+uk5LGSE26joYCOCYBl26htbGD22WeHt/8ELNMEiG/dI77+oaPHPjvGLTqQejoGZlsW3njjDRTLZbxw5gxbbRUT8aBOca1in8kMkiThzJkz+OlPf4qFhQWmzWQYBv70T/8U09PT+Pa3v93XPneKXeFjBwCtUIAfRW3NbClZ0NfS2hSPPPIITp08iR//5CdYWlnZ2i51c2UFS7ehi8VWKpUgSRLW19cHyxzJQBiG8IiGPDjurvhJozDEhxcv4s6dO3jq6ae3+qpmHCvawfHbxt5t+Z4CR7blSS4+bZsmiSJkUWRujGTVrUAqLwVBaLO6acVi7uu4g/Ptmu4I4NYnn2DP3r2xJO2ANRad4Ps+/CCAQlJYAQx3gsrzrKCHNY/tWWrJa1Db3MSPf/xjzO3Zg6efegoByV0XSLtJAKxYKz0hSLI8UEX4l770JQDt7phvf/vbuHPnDv7yL/8SlbuQ+dYNu4fYNQ28KMYaJxTUGutA7ABw4MABPPvss3j7rbdw/caNrU3J725+9fitrVzpTqDpj0EQoN5s5jib3nBdFxIh9XgAwyF2mpvveR7O/+IX2NjcxNmzZ6Fq2jb97tSGwzn+UPYywHHp93gPBMC6nmMU4ebNmzh8+DC7pnzC3bNTkjdNE1QPqFvXoYExrIkx2pJPTq6yFhYW8Prrr+Oxxx9nCq4WacIuiSJTfc0y8IDBs2EosVN3zKVLl/A3f/M3eO655/Bbv/VbA+1zJ9g1xM5xHLRSCZ7nIaBfKnkIqH+9k6U0MTGBl156CdeuXcO7773Hgj4hYr96N+R9zJLpj0lp0UFh2/Y2N8zAVnsiHz+KIkT+m9oAACAASURBVNi2jZ/97GfgOA4vvPACisUieHLMjngQMit2AKozlDuotgOC7XallpaXoSgKxsbGEhu0Z3QMmjFENZJothNbrQyT2Ido/dMJhxpXly9fxvvvv4/nnn+euUNc10UQhvHqjK7aSHe1rElw0CK6559/HhzHMYv9D/7gDxAEAf7hH/7hvmRw7RpiB4BCuQxwHNO+oA9Em7+tw5eg6zpeeumlWMjq9ddh2TbQIViahTyfG5+YABdFWF1by7nXzrCz/Ot9FFklyTxMZIy0Wi385Cc/wdTUFM6cOcOITlFV+IQYOu1vYKRdMffhQem36vRurSxuXr+OQ4cP9/xckpjzjsWyrG21CtxdDLzvFPQ+8FwXb7/9Nubn5/Hiiy+ySS8MQ6bSyiQ9iDuOBt5TO4w5YgCMjY3h1KlTePvtt/HKK6/ghz/8Ib75zW/iySefHPwEd4BdRew8z0MhLgNqhYRBgChZ8t/lJpYkCc8//zzGxsfxg1dfxfUbN3ovfen7OUhBFkWUy2WYponmDl0yDsmISaOnxUkJPUHmFGtra/jpT3+K48eP4+GHH257T1UUptOeudv+ht+GpB/0frXFC6I+OidlXLthwDQMrG9s9C3RS1Mqu103x3XjegTSSjK57VBcMTl961sfz/fZO3fu4NVXX4Ugijh79mxb3YZt2wijCLqmbblbCbFTEbwkNF3fUaHgCy+8ANM08c1vfhOTk5P4i7/4i4H3tVPsKmIHAJVExSkBUVdK3pJpjuNw6tQpnD13Dndu38aPf/KTLZ2OLPR5Q1eqVSiyjNX1dXjdfNY9kGmxE2Q+3tFW5WPWQ3X7zh2cP38eX/jCF/BQRpodT4TCHNe9K6RGb9T75mPvx2K/SxPPjZs3ceDAgcHK+xOFXWlfPHWv8Ty/LS+e53kMxRHT5zXpNXkbponXX38dly5dwjPPPosnnniiLUYWBAEc1417AQsCU1ilFbw8x21bXeo7bFRC/eytVgvf+c53MD4+vqP97QS7jtglTYMsSXAdp6M1nYeYyqUSzr34Ig499BBee+01XPzww66+8bxWJg9gYnISHIDlRCZOv2DFSdsHwixPmgrI3C0d9nXp0iV89OGHOHv2LKan0+24t6CRHGE30SuTHXaQk0iig1jTvULeqlPg7kw+YRDg1q1bcdB0CEjKOLiehyAMM6UDeKqwuFP0Odl3+nQURbhy5Qp+9KMfYWJiAl9++WVMjI9v+25MywLPceycgjAETzKdOj3fO5UROETkqM+cOYPf+Z3f2dG+dopdR+yCIEDVdYQJqz2JtpLkDkje6A899BB+5atfhWkYePUHP8Dy8nL7Z9H/gy6LIsbHxuC6LjYHlBsIgqB71WzC5dL5IxEuXLiAxYUFvPTSSyj3uPFpcY6dcV2HZcVT/Zh7CRo0vquytQlknd3CwgLKpdK23rDDgG1ZEEgrybuCAb77rGuwubmJH/3oR1haWcHLL72EEydObH0niWO4rgvf96GS4jyg/XmgK6/kMURRbJPqHgR//dd/DZ7n71vANIldUaCUhqRpEA1jm/phmxBVF6RvU1VV8cwzz2BxaQkXLlzAxMQEHn/iiXaJgD6/6FKxCMuysFmrQdP1vuUGwg4+4aiDqyUN3/dx/s03wQsCzp47l7v/pKaqaJnm9gKQfgK3GeCSK4p7/NAwWYC8x92hhZuV83/jxg0cTjSEGBZs20YURSjqOniaATPM6zvod57YzvP9uPH5/DwefeQR7N+/P/O7oBk8Nmnm3qZMGgSQVZVls6WxUzfMK6+8gn/7t3/D7//+7+PMmTM72tcwsCuJnSNytKZptuWz5kG3Zenc7Cwmv/pVfPzLX+LVH/wAjz32GGu5NcgMPjExAWdxEcvLy9i/b19/vTYzgoxU44QMqE2TPAnLsvDzn/8cExMTOP3EE3096IqiwLAs2LbdbgHt1GKnE0OqtP5egK5qcl3/HpXGeZA+u0a9jpZhYM+QBb9834fjOJBlmemPU1dF8hwGWm3t9Hsi2y4uLuK999/H1OQkvvKVr8Rxo07jIavwgFSYJu//NkMjwwVbHcAf/umnn+KVV17B9evX8U//9E945JFH8Fd/9Vd97+duYFcSuyCKUHQdtm1vc8d0K/KI0LtNniRJePyxx3DwwAFcuHABN2/exJGjR1FN5h3nHSfPY3JiAssrK1jb2OirATbTgKcl9BnnlK66A4BarYY33ngDx44exdFjx/oeM8dxUCQJjutC1/UtQSwMwTdOyP1eL3NZE+s8x93hygTY/l3duHkTDx08OFRXUBRFaBkGuIQfmoJdX3qt6Uq2n+u+w+tgWRYuXLiAerOJp59+GlP03u+yz4C08ZMlKe4MRl8nnaSk1PWjZ6Pq+kD+9e9///v48z//c1SrVfzar/0a/vZv/zazl8P9wK4kdgAQVBWqoqDZauXfKG85Oxe38nrxpZdw9fJlvPPOO5ifn8fJkydR7fMG0lQVpVIJjWYTBU3L7Qek5NB1ac1x4LFlkS4tLeGdd97Bk6dPY88OBMlUVYXrunCppMGQQCeie+29ZMR+t5pNpMDK5UmF5O3bt/HVr3xlqMdwHAdRGELX9cwJg1Zz8hzXUZCrG/K4NLPQMk1cuXIFt2/dwsFDh/CFM2cgkM5n3fYXRREMwwA4bptUNc0uy1J1jACMd0kI6IZvfOMb+MY3vjHQtncbu5fYZRmypoFrtWIN7MR7Ha32nDc49ePxHIeHDh3C2Pg41tfX8fprr6E6Po6TJ09iog8LfmxsDI7jYHVtDaqq9sy1pf1Lk6XWnQcbP7jXb9zA5cuX4zz9AVYXSYhEb8XKqH7dEWjQ6z5Y7LRsvxeGlupJjnXn9m1MTk0NVVc/CAJYtg2BlNj3Ql/VrDkkNLLQaDZx+coVLC4uxgkJX/86s7rzTOaWZSEIgsyJynEccDzP4lTJhuiSoqCSbrrxOcCuJXYgttplWYZhmgh8nwUIu0nz5gVtgM0LAgRRxJEjR3D06FHcunULb775JkqlEk6eOIGpqameNy0PYGJ8HEtLS1haWcHeDr5W5hslmuG5CmqiCBcvXsTi0hJePHcuu+P7AFAUBQaJYYiiOBwrm2Tx3OubNsx7LYGhlcxzUYSI43D9+nU8+uijQ9knhUnUG/O4DdrcMoLQO/WR5/sKHm/Warh85QrW1tZw+PBhfP1rX2PZOTR9mOuxT8d145x1RYEiy9ueU8dxWBPvNMYnJ+97BsvdwK4mdlFVoRYKQK2GlmG05X3znaz2fkCXsohJVxRFHD58GA8dOoTbt2/jwoULUBQFJ0+exOzsbFfyU2QZlWoVtVoN9Xp9u1pcMtuFTEy9fMJBEODtt9+G4zh4+eWXc2e+5IGiKDAtC7bjoDAkF0ZaVvdeIezQEi8LQ8th5zhsrK8jCIKutQP9gqYCaprWf29UkmnVkdw5LhepRwDW19dx6fJlNOp1HD16FE8/9VTbNU52O0s2XUkjCAJYlgVRFFmldTJ2FBJlx6TsNitKlKT7WkR0N7GriR0AFNJujLZha1uaJgJAA3Wbx9YSMimkxHMcDh44gAP792NhcREffvQRPvzwQ5w8cQJ79+/vWFxQLZdhWxbWNzehqSqTF80KjvayMl3Hwc/feAPFQgEvvPACm8iGRUwcx0FRFFiWBZWkmQ0D96PyNIwiiPcoh50iAnD9+nUcOnRoaBZlGIZx4U4qFbAriNYMc4eQIGqmqmkOQbzl5WX88tIlOLaN48eP49lnnukYFKbH6HT2LAAMoJAI1CefW48UyyXThX3PAzgOk9PT4IdozDxI+HyeVR/gZRmarsN1XZimCYloXAPZWSN975/oUmQVAnEch7179mDP3BxWVlZw6dIlfPjxxzh5/DgOHDyYaVFNTkxgcWkJi6ur2D83Fy99M/YddbHYm80mfv7zn2P//v14+NSpdmnfISr5qYoS9/y07UzdmkFxL+11WpyUx7od5qRjtFpYXl4eqoiUZduIwhCFUqn/ySJ1j9GVE62L6La3MIqwsLCAy5cvIwpDHD9xAnv37u2uOx/17nFqWhZCktqYOTlEESzHiQOqifvPIy0yp4a4EnrQMCJ2nodSKEC2LPi+D9M0USgUtvzs5PegbhkOJBrfZXuO4zAzM4OZmRmsra3h8pUr+OjSJRw7cgT79++HngiciaKIsfFxrK6uYm1zE5MdlpIRTXdMYW11Fed/8Qs8+uijOHjw4LaxAsMjKEEQIEtSrFsjy0NJ1+OGuKrIA7rSyhuvGBYuX7mCw4cPD8095vs+XMeBrCh9a810I+CkDz4Nx3Vx584dXLt+HbIk4eSpUz1djokdd/erOw5c14Wmqm2pjWwsxG3kOA6riAbi7zMIQ0yOj0PMu2r5DGLXEzsAKKUS+PV18BzH3DGSJLEbcKeWu9iH9Onk5CQmJydRq9Vw4+ZNvPq//zeqlQoOHjyIPXv3QhZFFHQdVqGAer0OURBQzejOEmb0qbz96af44OJFnDlzpqPfdtgdeVRNY1b7UHJ8c2anDAuU2HNZ7EO6bpZpYn5hAV//lV8Zyv6Yy4LnB1s5dZlM2f1CrGs/CLC0tIRPP/0Uq6urmJ2bw+nTpzFJ9I9yH7ILqfu+D8uyIElSpr4NEKemBkEA13VRSaQYu8QNM9enQuZnDSNiR2wFi6qKyPPAcxxM02y7GXYKjudZa7W8qFareOrJJ3H6iSewtLSEW59+ivfffx8zMzPYu38/pqem4Pk+Njc2IEoSiinSjKJoy1cfRbh06RJu3bqFs2fPdtd86VKROghEQYAky7Btu027Y0e4D8R+LyeTy1ev4qEDB/L7wXuA5ayTlWg/6CmvQa7P6uoqbt26hcWFBVTGxnBg/348/YUvbLemex2P6y4THIYhDNMEx/NtK9nUTphiZVuaIwAvCFAoFPpuWP1Zw4jYCeRSCebqKrRiEaZhwLSsttzhnVjtTIOmU9CpC3iex549e7Bnzx64nodPP/0UVy5fxjtvv429e/eiUChgdXkZ4t69UJPaGCTVMgxDvPvuu2jU63jxxReh5siHpr7NYdntuqbBdhw4jjPUfOx7AWax56gdGAYcx8HtTz/Fl7/85aHsj2aNSJK0TZK3H6TPLgLQrNdx69NPcfv2bciyjH379uHhr361oxWd6zjE+u9U6WommlJ3MhLoVjbxryfH43se9qdckJ9HjIidQNM0GIKAKIogyXIseyvL4EjLvIgU8vSSFMgCLwgIXZdZwyHQdzVfFEUQBAGHDh3CoUOHYBgG7ty+jes3biDwfSwsLuKRRx5hbpmQLIt//vrrEAQB586dy6y864ghlMZTiKR5tO04cYbMZyhvOAzD/tMCd4ArV69i3/79QyvsotZtngk9Eykfum3b+PTWLdy+fRu242D//v14/vnnWfoty6zq9/5G+3OVdY/Ytg3P86BrWsfYA5eQ0XBseyu2w3HwPQ+SLGOMNl3/HGNE7ASSJIGX5fjG0XUWSC0Wi21ZI4OUVzPXBrFG+qW1rKyaQqGAEydP4sTJk1heXsbVK1fw6g9/iIlqFQ899BB818Xbb72F2dlZPP7YY303YWYaIUPS4lY1DV6zCYeQ+05wr7Ni8ly7YVjsnuvik08+wVeGZK3bto1g0Jx1Ag6AHwS4fecO5u/cwebGBubm5vDoY4/FxXUpAmarvT4MgyixHf0/Dc/3Ydk2ZFnu3EAmkSEWBEHsdikW2UTjeR6qExPDrYZ+QDEidgKO46CXSmitr0MJAmiqCsM0YyszcSMwUas+HmSO52NLnYj9031kVbem0UnAK4mZmRmUSiWsrK7CtiwsLy3BNE0omgZZlrGxuYmxsbG+/dvJlLadQpIkiILAmmwParWz1Lohrii6IQzDvv3Eg+LqtWuYm5uDpmkszXJQ+L4P07IgiWLfRBZGEeq1GlZXV7G0tISVtTVMTkzgoYMH8eyzz/Z0S/VD7mlSz0IQhjANA3yX4G96H7ZtgwOYERGGIThRxNT09D3T1b+fGBF7AsViEWarBdt1UdR1SK4Lm/gn24iIkEvex45PKOQxkKrUMAh65vPmOY6u6xgfG0ON4zAzO4tGo4GHDh+GaVl479130TJNTE5MYGZmBtPT0yiXSrmCkMPI5afQNA2NZjPWwd+h1cSTNNRuCMkqiVps9FoyVwHZnnZ8Yg2g43+AKEIQBKwQ7G7C933cuHkTL547t+N9hWHIsmDyZCJFUQTTNLG8soLVlRUsr6xAUVVMT07i4MGDOH7iBKqVStwrNOcY8hpAWR2akndlGIZotVqIAJQKhWxS7uC24RKt/lzXxdSePW0VqJ9njIg9AZ7nUSyX0djYgO/70ElKoWkYKCQ71/RpLVL53DAMkbZ1urXqytsUg6JcLsP3fTQaDXCiiFKphCNHjgCPPhqLiK2uYmVlBdeuXYPv+4zkp6amOhMAIbthuGQkWYYoirAtK45f7MDX7ochAt9HRPKSI3J9wyCIfwO5vqMIsR86/vhWwC4CEPk+WobBcsB5jotXXDwPgQhj8TzPmkXvBDdu3MDU5ORQOiQZptkzwEjvh2VC5FEQYGpqCjOzs3jssceYT95xHKaaGEb9SfdyANBDgiDrvaQyabPVQhRFKBYK2SuFDq5N2vOX53kEQYBCpYJKtTpU2YwHGbvjLPtAoVCAYRiwPA8lUYyDqq0WhJRLhvrb89AutQIzSbpDgUcE5M59T2JsbAye58EPAjSbTZavrigK9u3bxzrcG4aBlZUVLC0u4oMPPoAiy5iamcHM9DQmJyfbUu127JJJTISaqqJJFDWVHOl8EbGa/SBAEAQwTDPW3Cadf5IPNSVYQRQh8XysSkiO32aJk7/pT5mQaZSw6qlP1vd96JoWN3WOongyAeCSz0SIU/44joMgCPGPKEIgTZPzEGEQBLh27RprhrwT2I4D3/Ogqmobifm+j7X1dSwvL2N1ZQWGaWJqchJT09M4euRIbMlmjDVZWTrIRMwB2S6ZHsYRs9SjCIVCIZOQI2T39rRIRSrTjhEEVMbG7kpbwQcVI2JPgeM4lEol1DY24Po+FEWB67owms3tfSFzZsrwPA9OEOAHAbKoLJ0GOSip031NT09DlWWsr69j7759mW6PQqHAMmwQRag1GlhdXsb1Gzfwi7feQrlUwvT0NMbHx1Epl2Md+CH422VFAW9ZsaRvBrEHYcgI1SdNloGtrIkwDCGpaky2ggAe5PruwGLuZMVFUQRZUVDIsBbDMGR+8CAI4vGSsbuuyyZ8nhC8JIptFZBJfPLJJ6hWKj17yvaCT1IbeVFEGIZYWlrCxsYGVtfWsLm5iWq1iqnpaZw+fRpj4+P5iJpMXjvRot+W5st1b0EZBAFahoGQkHqnGEfW+CMA9WYTvCCgWCggDEOUyUoor5Db5wEjYs+ApmkwFAW250EWBBSLRQRBgGajgTLxNTJwHPgclrvI8wiI4H8WkhWfLINmQNDJyXYcLC0vY+/cXPdGxRyHaqWCaqWCY8ePIwgCbG5sYGV1FTdv3kSj0YDruiiXyyiXy6hWqyiXy6ikr0UHpM9EJ31RHdeFJIrwfB+e78N3XfiJgiBRFKHIMkRiCfOk4YKqqiwoNswq2TRYg40MMubJigCIJ4ZkgDIgq4sgCBCEYVwp6XlMgEsURSYjywG4cuUKnnnmmYHG6AcBGvU66vU6VldW0Gg20TIMiIKAMpksjh8/jomJif7dECQba6fpqdtWfGSFk3lI4n4JSSFRR1LP0EiKEDfVcBwHlUqFyYUoZHLeTRgRewYoMW5sbMANQ0bu9XodzUYDpUqlXW8jh89dlKS4oUeX9DkqUToMstJUNV5Gh2FM7nv25M4GEAQBk1NTmJyaYq+5rotGo4FavY6NjQ18cvMm6o0GFEWJJ4WxMVTKZZQrlZ5LXkEU41WQaUJXVWaNi6IITVEgS1I+6+ouZ8XQ9oJdg9sZr1GXTBLUqqeTmOt5QBRhaWkJqq6jlLLW0/cADXA2Gg3UCZHX63UYpolyqQRN16FrGk7t24ex8fGdp/QlCoVytQTsgTYdoi6k3jKMLVLvZIx0EL5DFKHZbILneZSKRYiSBL1YRKlU2hWZMEmMiL0DVNKEw/I8SDwPkZB7s9WC0Wptu1l6ZY8IggBwHIIg6CwBm8iX3ylpiZKE0DAwOTGBtbU1LC4vY25mZuAbXJZlpmMDbKkeGoaBer2OWr2Om598gnqjAZdYTJVKhVn3NMXRJf5/IO4czwsCCrqe2x/dhruc8hj0KE5i/ucc46ZkTwmXNpK+efMmHn74YbSaTZbFQUmcau/X6nXUazWIohivmioVzM7O4sSJEyiVSnA9D6Zptq1kdgxa6DOk65vUk8l8PwzRIo1ZdF3vusLMqiWhLjHDNNn2RRIsfVD6kN5LjIi9C8rlMtbX12EEAYqCEN8shQJarRZarRYKJOuABei6uGTostv3fdYRPg3WXIDsbycPlSzL8Hwfmq5jbGwMGxsbWFxawtzs7HBUFskYi8UiisUi9iZ6pHqexyzKlbU1XL56FYZhxD1QZRmFQoH5yDfW1jA2Pg5N06CpalxM08NlkK5QvFvumDAMO35X9Nj9IAgC2LYNi8QYbn3yCQSex/LSEm7cuAGL1E0I5F6rELfXqbm5eHLMIO2AFNKJojg8Uk8QcF/do7rtkuyXrkqTiKIILdLFTNf1zjEPtF9zJtNBxtoyDESI05bVYhEcz6M0iETx5wAjYu8CWZZRLpdRr9dhhyEUSYqXd7oO0zRhET2ZNLkD2613juMgkNSrTvjOd76DDy9exB//8R/jzJkzbeT+j//4j/jZa6/hV3/1V/F//cf/mGvsND+bCh5tbm5iYXERe+bmdkzutF1ZJ1eEpuvgBQHVsTEgiliqo+e6sG0bpmWh1WqhXq/jzp078FwXpm3DtiyIggBV02Kyp4Sv63GTbM9DFATgEAf0BJJ+OOxHl+mwd3AJRVGEIAyZLz0MAni+D5ucg2lZ2357vg9dVaFqGiRZxsrqKo4ePYpKpQJN09gqMQxDmKYJPwgQAZAlKTsrJCKqjRw3XKs0MVF2yjzpa3dIETISrhlyDr7vo6DrEAWho3HEJ1wwdJ8sNZLsRyH9FRRNQ5E00dmNGBF7DxQKBfi+D6PZZNrqsqIgCEM4tg2B5+NMD2KNdFtuipIEx3Ey34uiCL/5m7+J//ujj/DP/+N/4Kmnn47dAByH733ve/jZa6/hpZdfzkXqABiJUhSJ5bKxsYH5xUXMzc72rcudBmtbRh5anxCb47pxRoksx2l3gsCyWyRJgl4ogKrINxoN+L7Pgl2IIjieF1uvxLq1LQvr6+uwLCv2wZKergHJWQ+CIA5K0iCrIEAUBPCiGP8mKZA0BTH5AwAXL16ET8g5IPnxvu/DdhyWw58mcT8IAI6DmNwnsZo1TYNGmiTPzM5CJ6SdrLi98O67OHToUMd+ppIsw/c82K4Lx7bheh5EQYCW0EkxTTNuNNGpcKcfRKTtXereHYZWTnrSpUVJ1JVHSV2W5bgJe9rCps9WMrkgtVKjKY6FQgGFchmapu2aYqQsjIg9B2jhj2EY0MnyXFNVhEEA0zQZcdBilU5uGUEUEdk28y0nEYUhDh44gBe+9CW89tpreP3113Hu7Fn867/+K77/P/8nnnn2Wfz2b/927jHLRPcmiUKxCI7jsL6+jsXFRczNze2M3EmBjkOscHo8RVGgKsrWOXZxlRQKBdTqdVi2jYKuAxwHRZY75rivb2xA07Q2ydYwQbqUeGlGSpD6O/T9mMTJ/1EUMV1vITExRGEIx/NQLpWYHALNzBHIpDEo3dUbDczPz+Nr3fTWyWqhQFYsjm3DcRw0Wy2IJB7huW48ce5AtZEeq6NLixB+f7uLA66dvnUOsYVtmCa8BKmnLfv4wxxryZceVxKNZhM8x6FUqUAvFFCtVnelC4ZiROw5wHEcxsbGsBYEMFstFMkDXqD+dsNAiZBmEEUskyLtlqEk6vs+5DSxI77hf/0//Ae8ef48/uVf/gW2beOf//t/x+NPPIHf+73f6+tGlWU5zrxIgWpyr62tYWFhAXv27BmY3P0gQKvVgud54Li4/ZiiKH0RgSAIUBWFVQr2GkuWrgh1hQ1yHu9/8AGOHz++7XXbtmHZNsaq1b732QsXL17EiRMnukoVJM+Q5zjmqnFdFy3TRLPRgCTLwym66VT9TF7rJyumTZ66y2dMy4LneYzUk8ejyHLfZI3TcV14rgutWMT41BTGx8d3XRZMGrv77PsAz/MYGxsDZDkusSbLwWKxCIHn0SK5t0AcJAsTFju9Pak16Pt+276jRBf2ifFx/B9f/zrW19bwT//1v+LY8eP4kz/5E0iiuFU9mQOSKG6z2Ck0XcfU1BSCIMDCwkLHz3VCGIYwDAO1Wo1VZlbKZaialknqvUKbmqqyBid5cPelv+Lv8G5YfMvLy2i1Wjh8+HD3D2YQGMdxEElnL71QgKqqaBkGDOKeGghdXIf0Hs57FfJkCAVBgGarFccbiEhd9rBS++mSoVNvNOD6Pvbu2zdYvv7nECNi7wOSJGF8chIBtvRFwHGs+IESPl3WhhFRuEtAJC27kkjfrsmc5t/93d9lbglWEp8DPFlVBKlJhELVNExTcl9czE3utuOgVqvFEqqShGqlEmusd7GQemWu8IIAVVXhe17PcdyrxXXYJXAKDFYYFUYRPrh4EY8++uhAVZBhFMVpkRyH8WoVY9UqVE2L9YGIJHLf6Z9dPs+ytHL2e+1F6r7vo9VsIgwCFHV9W659ultVhN56SX4QoNFsolQqYd+BA7tCkjcPRsTeJ1RVRXlyEp7nwbYsADExFYtFBETfIvmwMEEqYm2Lohj7dpMWVuLzP3/jDbzyyiuoEBfA//r+99uO349mhyxJXYlSUVVMT00hiiLMLy7CSQRb0/CDALV6PT4/jkOpWGRNv9m4UueSHnc3qKoKXhB6W+0dlvnDMyF9nwAAIABJREFUtq6DIOjqghjkeLc++QSSJGHPnj19bxtFUVyRSYKlgiDElruqxnEAUYRl22g0m6xOoMvOch8TyHeuaQMmDce20UzcO9vy1BOTSFZwtBPW19bgBwGOnTy566pLu2FE7AOgXKlALRZZxgYQB0YLpEFHq9VqI26qPBiB6JKQQiX6HsW7772Hf/wv/wX79u3Dd77zHezZswc//vGPsbC42HZ8Su55yNIi4+sESu6IIiwsLmZm7biui3q93uZ26djBptPSvseDz3EcCpoW53p3mWC67KD/bbqgW6rjIMfyfB8ff/wxHn/88XxEmfrfoHneGYJYgiCgVCyiWCgAUYRWqwW3Q/ZVP+MPSXC5l4+9m7uGZr6Ytg2RKI4K1K2Y9qFTMieZSL1G2Wy1sNloYHJyEgd2Qbu7fjAi9gExNjMDVdPiFDxipdNgFlVWTDewDmlgFdjmZ7985Qr+7u/+DuMTE/jWt76FcqmE//PXfx1BEOD/+2//bdvxkwUfnVCuVNBsNnuei6womJ6aAgdgYWkp7hWJRBk7Wf7TCtJeyCT3HNaXrCgQRRGWYXS31roE+oYBOul2DMANcKzLly9jamYmjtPkQPJbNS0LrutCU9WufUtlSUK5UoEkijAtCyaNBQ0IppXTwyXVUcyLrGBdz4OiKNvSMpP3Lvs76q2TFCG+JisrK1BkGU+fObOrM2CyMCL2ASEIAiqTkygUCvA8L9aNJqmQNH+22WzCT7tCOA48YiuYWvG3Pv0U3/1P/wmapuHP/uzPWCbGM1/8Ig4dPox33nkHly5f3jYGJj3bYdlaLpXQaDRynY+sKJidmQEPYIl0YGo0GnEXHklCuVzuL585I20tD2ihjW3bHXbbYT9DfLC7iX8B/fvXTdPEzRs38MjDD+f6fHL/tuOwrlN5Kkt5EtBXNQ2u728ZGAMQfECs5o6CXV3e830frUYj1kInOjbpzzLFR7KCzXNdI8SxrM16HeB5HD12DGXSb3WELYyIfQcQNQ2qrsf+9cRDJAgC05JpGUZboRAAKMTlEPg+FhYW8P/85V8CHIdvfetbmCH66RS/8Ru/AQD4f195peM4OGSTUKlUQiOHxc7OR5IwMzODKIpw/eZNNFot6JqGYqHQd9CS+dwT/+eBJEmQJAmWZbGipvwHHQ65U4u9q7upD3z08cd46NChvqtDqQaMSPoC5AX1vReLReab7+l3z4BP7uUkkuTb6SrQfHvqT8/KfGH76UPvJyTnYjsOPMdBuVzGsZMnc2272zDKC9oBeJ6HVCjE/sBSCUarhWazGTcGIJZ7q9WCYRhQg4B1pZFlGYZpwvU8zM7M4O/+83/uqCL42KOP4nvf+17PsTB9GYA9KOVyGa0+iJ2eU0HXYZgmLNOEqWkDZxq0Pa59PMC6rsPzPFiWFfuNt+24c4B2GA6ZYaY6rm9sYHl5GV/72tf62s4j3ZsEUUSxWBwoG0gWRYjkHjAMo2PDikxEEcIg2Fb81KuNo2VZcFwXIok5bTM4SKZYhC0xrzyWOtVoB+Km35Ki4OSpU5ByNGvZjRhZ7DuEpKqQNA0SCQxxSSudLIsVRYkLXkyTLT0VWWaWPL35aQbNoOTEIf5C6cNXKBRYp/o8iMIw9slzHB46eBC6rmNzcxMrKysDpfclrfZ+thcEAZqqwnUcpneztdMuxS/DstjDsGOxUz9XwQ8CXHjnHTzx+OPd9fDTxycBeJ7jBlotUdCVXLFcZvdlXss9IG5CIVG81O07pH1WHSL0tk3mIKHpgiiK71PE17NXDr7n+2i2Wizg6och9u7diz379+c6l92IEbEPAXKxCFFRIIgiyqUSREGAYRhxxgzHMQErx3FYoFWWZURR1JaOyPLfh0DwtB9nqVSKl8U9QEk9DMN4+SxJmJ6aQrVSgWGamF9YgJtzgug0pn6gahoEkv6YfPC7pVQCw0l7zJJ8aDt+Tly6dAmFYhF7STvCXMcmjSYAoFQsDqyFnly98ByHcqKQrpsQHRsHzYhJyCl386c3m02WNaXr+lYuOiHykNzXHF2ZplaXneC4bjzJEWE4mrN+qoPGzggxRsQ+JEhUn51Y6TKx0mlmgqpp0AsFVoZPO/Ck09JYsIoSfIbmTB7QR7BULqPZK4AaRezBTLeBq5TLmJqcZPEAs0f6ZKexZHW86boNuY5hGMJMBVK77mWHxB4mLNWdoFar4ebNmzh9+nTuyYblqkfR4MJeieKeJGjzCZ7j2qqkO4HGN3oVUjFjBfFERN12UeK+pUFWpoKaQKcWkDTzxTTNOHhPGt0IgoAnnn565/o4n3OMiH1I4HkeSqXCLJKCrkPTNLhEm9xzXchkiRoQchdJW7heS9FBCZ4DUM1B7FQitlgsZvpgNU3D9MwMBJ7H0vIyNmu1PkdCxpOz6ISCBg1dx2Erm7ud1BZ2IbS8Yw/CEO+88w4ee/TR3EHPiOSf+ySLZOCy+G4VvoTcOcTa5d0+Swu0Oq0YaLKAaVlxHKBUgiiKzEJvG0unmosOqY2e76PZaMBxHKiqimKhAJP47o8/8siOe8PuBoyIfYjgRRFqQipUVVWWHWMYBoxWC4IgMH1013URBMF2PzIBtdyTy1rq+8xLj6VyOfZPIpsUPdeFQwW4upCJLEmYJRK0m7UalgbxuxOrrZ/tNNKQw+iV2952mMHpv2MOe4+agSSuXrkCWVFyF81QS93zPBQ0rWuueifkHZsgCNB1HWEUsXqFLFAp5KyxWraNBnHp6JqGUqHQ7otPfJaResb40tWqIambaLVaiBAH/wtkrJu1Gmb27MGBAwdynedux4jYhwxBUSAXCm2KjqVSCaqqwvN9NEhub4nIwbqui0a93nmHqZu/zQ8fRT198eVyGY1Go630nyIKQximCY7noebIfOE5DlOTk6hWKrB24Hfvx2/McRyKuh67ZEjMoifB74TYSe52VjZHHjQaDVy9dg1PPvlkLrINwxCNZpMpHSqK0vf4+10JybIMSRTjwHraJUOs6CAjzkA1aWyiE1Qul+PGIMhezXSrjqZGCoXreWg2m3HwVVVRIYVWALC5sQG9XMbJU6d2vWpjXoyu0l2AVChAShSTcBwXa8yUSnFAkCjyabqOUrEI23GwsbGxrRo1jbYc4kSlXjdXTaFQiHPCSQofl1heG6aJiGiP9GPlMr87UYc0cqgytu2fa2+c0AtUL92xbeYD7wpiKQ6CToHTPCMNowjvXLiAUzl1S2igNAwCFAsFJuPb70pokIylQqEAjqwko+T14rZa1wmJbC3DNOMivCiKC44SAdI2YyGxwux1T3EguuzkeeB4HiVipdN7tGUYCHgex44f35W9SwfFiNjvEuRSCXxiSU2DR8VSCTrxszebzdiHqOuxznar1VXbpRMZtrlqiBoe/ZRAMmPS+ey+78c9SFV1ICtI0zTMzsxA5Hksr6wM5HfvR7ed9ki1yGTUfcf55Y3T8IMgM3CaZ3/Xrl0Dz/M4fORIz8+GYYhmo4EwCKAnNcmR0822wyAxT+JAYRjG4m+J+yogLfkEQYhXlI0GXBIjoo1HshBha6XTi9SjKIJj2/G+PQ8aFTMj4mZAHDxtGAb27d+PmZmZHZ3vbsOI2O8SOI6Lg6kJvzVdmiqkeIkuhyOOgyiKkEjrPNoursOOux8XW7nBIUkzK5fL2ypQHdsGn9MF0wmiKLLWb5u1GhaXl3Ol0rWNt1teevJzPI9ioYAoijrKDewUVCJ2EEndVquFy5cu4amnnupJakEQoNloIIgiFAqF7ZWZPSzwflY73aDIMkRJgpu6nkEYwidNsmlRULFYzJQFSI4pL5kEQYBaowHDNCEIAsqlUtwjNxHHsG0b9UYDe/bvx5GjR0cumD4xulp3ETzPQ61WwaUb9BLrvUCkb0VRhEU6ytCWb61WK7ZOuzzA3R7t5ANYLpextrbG9hUGATwizMRU9nh+oLRK6ncfq1ZhWRbmFxczVx3dqI7PSVSSJMVppK7b021FEaX+jlJ/J99ngdOM7lZdjxFFuPDuuzh+4kTPjkZ0pRZGUbZ8bQ9wGMz1kokogkp85KyeIopb1tF8d01VUS6XO3enSgaVe0xoYRjCIoQdkpz3UrEYN5FJfM5xHKzX65jdtw/Hjh0bNc4YACNiv8vgeR7q2Ng2twNtnSdJEsbHxqAqCprEihFFEaIowiHL4E4klreqc3Z2FkvLy7ElH0UwbRshOTbdkosiZjENQhvlUinWuYkiLC0vY2Vtrc167zXGvG4ZXdPAI/a9tu2TuqCiCBFZrQTEJRWSH0rkyb+ThOL7fmyxJ8aS/gx9LYkbN28i8H0cPXq069hpimAEdEwt7YoBvxsgIdhFVo10ZSfJMniOg2Xb8H0f9UYDrWYTKmkGrapqVys9z4QchiEsy0Kj0YBtmrF7kCiFcqT2g8LzPKzXapiZncXRY8c6dlgaoTtGxH4PwPM8tGoVUdoqJjc0z/OYnJpCoVBAGIZwiUUqCALLbza7WO9tkqcZqFQqCIMArWYzbtJs28xKSgZeKTFSAugXqqJgbm4OpWIRrVYL8/PzbCmfKzib4zM8kRsIggCWZcUkHoYIEq4nStz9pj0GYQiO49pcMb32YJgmPv74Yzz51FNd3QWB76NB0vhKPUi9U9HOTtwvPNk+2Yc3Iv9LoshaHVKJ3Wql0jGXP5nt0u0a00ymeqMBm+ixF0uluAiONH5Pbu15HlbX1zE5O4sTp07lUrMcIRsjYr9H4EURerW6LT2RPhg0v1ggTbIVWWYWb9Li6do6LlnGnTrGzOwslpeXmVUqJdvtESuXtvPLo4nd8Ty5uPH33MwMeJ7H6uoqllZW4OVwnXTKtU9DEEUIogjTtuF4Xnw9OxBMP26LIBU47bQlPVIQBPjF+fM4cfw4qpVKx7HTNEEgJvVeLfeGWoSVWIVFiVUNXeGYth2rJbouOJ6HpqqQRJGlGraNi+O2VlZdCD0IQ5imiXqjwYyIEiF0JI2GxD78IMDa+jomZmZw4sSJEanvECNiv4fgRRGF8fHM1ESe41gzaMeyoOl63NhClpklSLMIehXrZFlRc7OzWFpagk80QDpK0qKdAJg1T97PS5SyLGNmdhaVRM57T2mDePDbdbvpWEhLwSiKUFBVCBwXN3LuErDtx2oPUjK1vbb84OJFaLqO48ePt22T9IMnBazKPUh9GGDfDs1tD8M4iyiZ9RJFsSVdr8da77KMQrEIVZbjlSLpcITEviihd7smlNAbpGqUEjp1O4VhGFvpUXt/VD8IsLq2hurkJI6fODFKaxwCRsR+jyGIIvSxsTbSBGICEgUhbq9HqlF5nmcEr2saZEVh1t/m5macUdODaOm709PTWN/YgOe6sbBTzvEy0S3q5kjmzadIPw2e41AplzE7OwtRELC2sYGFxUW4ORpnUx8wdbXQ/PUkIVBJ336qUjuBNnrIS7yf3LqFlZUVPP3005nv8xwHz/PQajbBI9bG79aJiKGPiShZuUnjJ2xSyWgtF0QRDMtCo16H7TiQJQmVUgnFQgGKJMEl8hbpgG6vlVQbobsuJJL1xeII9LtJWep0FbG6toZStYpjOYLPI+TDKNx8HyDKMrSxMZgbG7GCXkIcSVYUiETiV5Iklv+u6ToUohBpmiYc246XubKMQqHQMcjF9kuCtGtra5iYnBxo3OnS8AhgD22Uep9LFL3IkoS52VnUajXU6nXMz89jvFpFqVzu3KUIcfZO+oySHeyp5neLaMfrO2hmTN1eAlnJsAk347P1eh0ffvghzp09u81lQbe1LAuO48Rj7KcArMMEFRFLl17zCNj6H9jKbspw5QRhCNtxmOCcLMtQVbXN7SSIIgzLgigIEInFHqUs6zR834fjOGyilkkhGZ0ck9sHZNWQDEZHUYTV1VUUKxUcP3kSlVEnpKFhROz3CaIsQ69WYdZqsZwprQoFoBcKsfVj26w5B0CCsJoGVVVjfXdCHmvr65AlCYVCAXpWcwMA4DjMzsxgeWUF0zso9mAPZcZ7aaJHGG4RPcfFWRaaho2NDazXamgaBqYnJ1nFJd0uIu4DFqBDnMmSnDiohS7LMlTfh+26EB2nbV/9gBF7D5eD53l48/x5PPH445liVLSS0vd9yIqCgqbFYyZB3TRxp8kzSpAfC3CS7dpiM6nfWRNCEIawbZtpEcmKAlVRMguwREGA53kQBIGlNmaRehCGTF8oJN9vmtDZGBOTMHmBjTMIQ6ytr0MtFnH0+PHcvWBHyIcRsd9HiKoKfWwMVr3OfMc8KVZSFSVeLsvytiU8x3HQNC1WPnRd2LYd94Hc3ESj0YBOpAqElDU5MzuLy1eusGDaToJ0bWXkyE4LRIqwgDhIPDk5CcM0UavVcGd+HpVqFWOVCjiOY1otWcdLW3sUmqbBDwIYlgVBELadN/18N+uTil7RSbFTmuPb77yD6elp7M9o8uCTrkdRFEGnui+Ja0EzUkK6mkn+T8bHApuJ8952Luie+x8EAWwSWObQndAB4tLheQRhGJNzRozDdV24nsd6+AqiyJpr9yoeohNARAwYx3Wxsb6O4tgYDh89iskBV5AjdMaI2O8zREVBYXwcdr0O3/NYqptKSNs0TaYGmQVZlmM54GIRjm2jSdrzNZtNaCQXmRJMpVIBOC7OU6ZZB6nl8SBIk3yvfXFc3BlIV1Wsb25is1ZDo9FApVpFiQioMUs1mRKXCKyy1Eyyv4Kuo9FsomUYKJNOVuljdoMfBG1FOFmfvnz5Mmzbxhe/+MVtKxaHfFccwCbVKIugyfls6x3aIaMpjW6prUEQwLJtuITQVUWBQoLMaSTjFRwA33URhWGbsiR1tXieF19rnoeqqpAkaVvwvdPEySYxcrxGswnDNDG5Zw8OHzkykuC9SxgR+wMAXhShT0zAbjbhkrxvIG56bZkmPM/rWaFI/fAa0Z1pNpswTROmaTLi1zQNU5OTWFlbw+TUVLxhkjh3EIBse6Q7WZOp13lBwNTkJAzDwMb6OtZWV1Gv1TBWrbaJaLEtEm4JGuyk7h9K7vVGg3XZYdZ9wlpmY6DuERIMDoIAkiSxAGTbcQGsrqzg6rVr+PLLL29Z1ogJjfX5FAQUi8U2C7Zt0iPj5DmuoyJit1oFas2nJ1LXdeG6LjzfjwldVaEqSqaKZpQoUErCcV0WPLZsG47jxNk0HAdJkqDIctd7sOPESVclQYD1jQ1wooiDR4/i4MGDo+Kju4gRsT9AUEsliLIMq14HF0WQJQk2z8NotVCuVHLrZciyjImJCVSrVaYDv7m5iWajgUKxiIXFRZw8cSJTc5xi0HxqlkWD7X74rIc/iiIoqorZuTkYJLNiZW0Ncq2Gaorgk2PMoj8aTDUtK45PkFUJI/UkaZK/OYBV9oqkICydfWNZFt56+2188cyZtsYZYRjCaLXghyFURYHWQUuF5YAnJtEsck/615PXLE3oERmzSwKXEeLYgKaqUDoQOt1XFsIogmkYsUFAtPtFUYRMrPNBdVpo1pfjOMz1cvDQIcyQGocR7h5GxP6AIema8Vw3djHU62g0m6iUy33lZQuCgHK5jFKpBMuy0Gq1IEsSGvU6FhYWYiEyos0tiWIbsVP3wE4KZpJExAKgKWvXJz51judRLBZR0HUYpol6vY6V1VXIjQbGKxVoJLeZVcXSwGzKwlVVFT5xSQiC0G5ldrh2LHCa6O9JEYUhzp8/jyNHjmCKrnIQ56cbpAtRMUvIi5wfx/Nx3nbGcXmOQ5Aaf5v7KUXofhDAcV14rstWFtQVl5Wdkz7nZC2C7/vwyI/rOEyQSyONPjqlffaKVSQ/F4Uh6mTlOLVnDw6NXC/3DCNifwDBXDOtFtBsolAqwWi1UK/XUS6XY4usD4LnOA46adUnSRKml5dxZ34+7kZDtGkkoi4piSLExIPN/L9DcNPQfdFgYZgRKE0SfIvEC5ZWVqAoCsbGxqCpKrN2OSRyuRPjK2ga6kEAwzBQKpd79i/1iVY9TTtNEuB7778PWVFwIlGEZDsOLEKERaKxn0TS5cLcPh3A8/xWa8QkoRMERGLCdV0WWJYkKSZzSeoYXE2TbxAEMZF7Hqs+ppY5z3GQiCSv1qPisxup00mbThzr6+vgJGnkerkPGBH7Awy1WIQoSeBqNdbtyDBNJp+ai+BTwatisYhjR4/izfPn8cjDDyMixOGRH47n44ed5xnJ0/+TvulBwDJbuN4df2jThWKxyILBS0tLUFU1zhpKpyUm9snxPEqFQrxdqxUHM7vpuJCKUxa0Jdfr0qVL2NzYwNlz59j+TdOES2IehYyG09sCvl1ArwXH87E/mxB8GEVxSiEhYYC4mahrJEcwNIwieL4Pn2SyJJtTy4oSf7eiiCgMYZOiImXAVNEkoUeIJXfXNzZQrFZHrpf7hBGxP+AQFQXFiQnwooiQBOp4jouFsMhSnwc6E3zSoiWBMF3XMTU9jeWlJRw9dgyB78P1PHiuCz8I4JMgnO954F0XHOL0NmrZp0vO+3XXcABzQSQt5CzrluN5lCsVlEolNAjBb9brkCUJkiy368knJh2BBDKp1V8mvWfTiEggNl3gdfXqVdy+fRsvnjsHSZLgeV7ccSqKoKlqdpPqDgVCbcfDFgHT0fAcBz+KYLsua9yd9JvLsrxtYkoXhCGK4Hkec68EZELgyHeu0pVYaj+G48AlxE7dVrmzpMj5MjnoMEStXodp25iamxu5Xu4jRsT+GQAviihOTACCgGhlBTZpkqHIMhCGCID8BI94KX9g3z588MEHOHzkSJyTLIrQNA2B78eWousy6QBwHAJCFrT9MU8KWXieBy+K7O9e1jzPcfBT2iXJ7BWKbUFEnkelUkG5VMLKygrqjQYWl5agqSqqlUpMzGh3zYiiiGKhgEarxSz3pHRtEiJJT+Q4Dp/cvInr16/jxRdfhCTLaBlGXLzD89CJfnjbpWWD7nzu1Kql1nYURfCJe8T3fTiuC9/zwHEcFEWBLMuZGugc8cv7vo8wCBAEAXzym46F5phLxKXWLWjqOA7bps391g10Ak3k4RutFjZqNSiqioNHjoxcL/cZI2L/DKFYrUIQBKzOz8M0TeYu4YAtgqfZF11cNFTLQy8UMD8/31ZsI4gidFEEVDXOvPB9eCTHGcT9Q3PE/SBASKoagZh8BUFgRUICx2Xq0nRM6evwf1vFJbHgJUkCLwhotVpYtCxIkoRiscjUEynBi5IUu2UMA61WK06DzHAniYQA5+fn8fEvf4mzZ8+C53nUSaNxTdehksYkySyXrhMZzVlHe8DSJz/Joi1VUQBFicv5E+cdkgkg9H1G4Mwnj9iq5wUhDniSVVXeZuEO0WDnBQFqLxJOrvwShG4aBjbrdbiOg6mZGZx45JGRNMADgBGxf8aglUqY2b8fi7dvo2kYKBeLWyXgAFsaR4hJsG25TqAoCizbxsEDB3DlyhXs37dv6036WY6L/euStEXyngfP8xDSZT7PM7cMPQK1ApFot0atQUEQIOTs1MR1+DspH1spl1EuleLYg2Fgs1ZDrVaDpqqslRt4HpIso4i4OUez1UKxUGiLT1CSXl5exnvvvYfnnn8eIP50URTbctO3Za20DXqLyKk1TYmc5t0D8SRC88Jp/MInOvmO68bkTSxxFjdAvHKTiDuFTp55STx9/YA4DTEIgji1sROxp6xzipZhoF6vw/U88ByHR0+fxsFDh/oaywh3DyNi/wxCKRQw99BDWLx5E81WC+VSKTM4GIUhSzFk5Eseal1VMT4+jujqVaysrmJmerrNV57uXM9IPooQhCGChAXpJ9QaeUGIVxGJzji0FZ/rOIgAps3OcVxcFUkse4Hn48mCbJtFWsmgcUSOVyqVUCqVmJqiYZowLQuCKKKo63E6oqKgEMVytaZloaDrjIQlScL6xgbeeuutuGcp4myUQrEYl8xzXFuRUzqNk+O4+FokLHLmGuE4CDzPgp5UHiIgqYsWUeik27FtSJBTTKyC+m0csnUjRACZ5FlPUceB4/sAx0FNNzTPsM4paCoqVR+dHB/HqccfR3HkS3+gMCL2zygUVcXcoUNYIORe0PW2ZTxF0ooPAUaKsqJAchwcPHgQV65cwcz0dBtxpPVkGNET0hEEAXLivYCQGSW1kJI9+bwky+CxRYIe8RGHUYQoCFgZfFroiuq38AnSD8IQESFSjuTfc1wsRjU2Po4q6b9qGAbqjQbqzSZkWUapUNgKhFoWC7wapom3fvELPPLII3EetyzHTU9IwRI5yS3JYmJN04rVpEVOc9cFnmcTqh8ETEY36cbh6ed4HqIkscrPXumZvdDmKiLfQfp927bhOk5cpaqqW6uNDDIHANOy4g5LhNDHqlWUq1UcOnoU6kg//YHDiNg/w1BUFXsOH8bSrVtotVrQNC1OWeuQnZF8cCMubuwxPTODa9euoV6vb/ONZm5P/k4u6bmERU9zVNKk5zpOm282CMPYpUCCr1mgLg0aaAxdl1VdWqaJMNreMITlzJPzE2UZtmWh1Wig0Wgwq1kQRWiKggjAm2+8gUOHDkHVtNh6dl2s2zYi0nIv+Ts98VASZ64mal1jSwKYBZlTK5Ik6LXaCZLfRze4ngebCKaxphbR9uYvIZkAaMs8geMwVq1CLxSgahoOHT0KcRQgfSDB9cgnHrwqZYR7hiAIsLqwAKNehySK0AuFLV9wjyyVZquFq1evotFo4IUXXsi93E/mjKclBDKrE6kLhxCYZdvMCqbKlmkkLVtmgXIcgiBAq9WKBakS+uks7Y62FKSTGPlxHAemZcF1HFiOg6ZhYGl5GXOzs9g7NwdZlttcVmwSIAFKamGLosgsbWrpUuLOIu0cFxOu78cB6h6fo4Frdo17FEBt30WEzc1N1JpNlIpFVFIuFJpSa5omLMuKux7xPMqlEgrFIniOQ3ViAnN793ackEe4Z+j4xY+I/XOERq2GjaUlhEGAoq63ydcmre3k3RACaNTreP3nP8eueA0CAAAQvklEQVThQ4dw9Nix+DPU+htgHG3EzmUUIxGfcvJ12pEpDIL2zkmE+NlvQn7NVguSKObujUlTIaMogmvbWF5dxdWrVxGEIY4fPx5nvcgyNF1HQddZIVS/xDkIojBs6ypFxzqso1KXWgSg2WxifWMDiqJgfGwMPM+zxuCmZcG2bSZhrCgKq1jmiPtuz4EDXdVGR7inGBH7boHruliZn4djGEwUKgv0QaeBwsWlJZz/xS/w4rlzbUUlSQt2GERDj+kRP3n7m+0kGgFxl6BEtglIQLher4MXBNYejwYGaSwg6ZKhKwqHaNcvr6zgypUrcRPqsTFWmMVzXKyQSMZA/c+qqrLes21xh8TQ0xNn+u/0Nunrz8r8hzCJtD20iefbcV0sr6wAAMbGxuC6LgzTjIPaUdzJS1VV6JoGhUg3xIPlMD41hZk9e0YVpA8WRsS+mxCGIdbX1tBcX4cAoFAsdrwDKMH4vo9Lv/wlbs/P48tf/nLHB7gtTXAnYyR53YOi1WohDMPMysYkkYaJNMIoinD79m3MLyzgi2fOMB9zEIYwDSMmNk2D53lwbBu2bceBT8QuJ6pvrilK7pVCL0RAmw7/oPsAwKQEsr6XMIpwe34ezUYDmqbFKx8SrFU1DTrJ009DUVXsOXAA+qgX6YOIEbHvRhiGgfWlJfi2vc01kwXHcfD6G2+gWCjg9OnTXa1HplyIhFXfJ2hmySAwTROu66JarWa6SwJC6NTFIQoCfvnLX6JlGHjuuecQhSE8z2P9SD3Pi9UaEbcmpH0/Pc+D4zhxRyKS9w0AHCnqScosUFXEvA2xgXjicYmEQ16kH8pkmmpIpQWIvIDveXBcF+vr67AsC4VCAcVCIe7Apetx9XIWOA6TMzOYmp0dWekPLkbEvlvheR7WVldhNxrgiM5JOpMkiUaziX//93/HI48+igP79/ftGmjzzfew7EOabdLDWk27V8BxsIk/uFIut3VLCoIAtuPAc12A46CQgOj58+ehaRq+8IUvgBcENBsN8ILA1AwjjkNIgrJhGEInaY/U+g+Jm8T3fdiksYbrupmrDlqBK5MCJPpDFTSTvUB93+86uaV1dCiJU00YSuK+78N3XSbXQIvUeHqtHAelchkzMzOZUgVJ6KUS5vbuHaUxPvgYEftuRhiGME0TjVoNTqsFhCFU0q/y/2/v7n6jKPc4gH9ndmb2bWZ3+4IWD9iKlJe2YI9YG++MkcQLE2+P3siFFyd67b2J8c7Ev8F/ACGHyDHRmAgc9HCAUkBQSSlgELD2dd/mZWfOxTzPdLa72xaoSIfvJ2kChe5OC/129nl+z+/Xzq+//orzExMYe/lldJVKq9+xrTxW326dHMsNr2QtvIKwEZgfKyNU2j1eB47joCra8qqqGh2A8jwPkMsmos/L6dOn8bdt2zA8NBRek+9jQcyGlT/k5A+PwPdRqVTgel40PCP+efht1sF9UYffELX1nji8FT+oFP96yPYFAcJ/G1/8cJOfv1yWCQAocl6o/NqKa/BFq2F5XSlxMEyWncqDVWVxoCiTyaCnu7vj1zMAYFkWevv6kOfm6GbBYKcwvGq1Ghbm5lBfWkLgeWHAp9Mt/0POnTuHSqWCvUND4eGnNUbz3S9ZUx8AURWMuMh1VaG4rou5ubnwDliUXCqxQIeq4t7duzhz5gz27duH/v5+8cQKnHodlWoVxUKhdVlDXIMsi0yJlgJNp02V5Ta163lFI3vDyJOpjuehITo4NkQVkPyadNwLiY/bU1Vo8hVBm/mjEI+7VC6jvLSElK6jR1TArBQAMAsFbHn6aQb65sNgp2b1eh0L8/Oozs8j8DwY6XTTWLVGo4Gvv/kGW3p7sf3ZZ6M5mhtd+hdfhghEXbu8M20KTUWB7/twHQeO6DFeLpeRy2ZhiklQcm3bbzRw9epVTE9PY3x8HL29veHjI/xOqFQq8DwPxWKx6Y46+l4Qz+vYdtRsLZvLtZ1SFMi/Lyc6xZ4n/njyjjwQ9fzxX280OQS9WqmETdAsq3VeqaIgb1kM9M2NwU7tOY6Dxfl5LM3Owndd6GJDUNM0eK6Lk6dOIZvJYHBwEKqYKXo/m4NrkXe+8d/HK0Siu1zHCQ8eKUp0fbVaDel0umku6r179zAxMYFioYD9L7wQDiVBLICDAAsLC9GgDNfzwl4wWK4fl6cwFYSvDKrVKnzfh2EYyK7o295Spy+Wc1pG7MUOSkmyRcFG8UV1j+N5qNVq0DUNedNs2SA1i0X0PvUUA33zY7DT6jzPCwN+fh5uvQ6IE4cAMHnxIhqeh73Dw2FJYDq9YXfv8cCTbQhkj3En1hJYExuPhlx6QVjyGAQBLMuCbduYvHgRf8zMYHR0FFv7+lqfS3yeZdHhUdf19nfMbfYN6vU66qItwqrVJEDrD4k2AS7ftyHfYEEQNhSr1aKvXUpVkc/noYvNY1VVUSiVUOrpQW7lgHDarBjstH6O46C2tITy4iLsahUNz8NPP/+M+fl57B0agq5pYVdF0wxf4scPBMkH6RD6fhDA9zw0xKZhY+Umo+xzE6ssSaVSTWvMUl3Ums/Pz+PHy5exvb8fQ3v2tKw5y3Vx2YrXcRwUS6XocFA77dbPvUYDtUolDM5UCvl8ftWGXXJztN3BJdlM7GF/OPpis1dW5/hiScgyzbC3vmmi1NWFQqkUdZakxGCw04PxPQ/VchnVxUVcuXwZU9evY9/ISFiJ0miEszJXjG5rqnCJBXUQq/6QYaumUuHwDtmXRXY3jAderBokbm52FucnJgAABw4cQKnTgIfY8sriwgI0XUdelPI9yBq3bdthrxvfR1qcTI1vrsbnf3YiK2Hih6mkeAVMS5fN2MfborZetvmV4V7q6kJ3by+KXV0wNuggFT2WGOz08Fzbxo+Tk/jfDz/gwIsvwrQs1EU/8VQqhXQ6Ha6/x8r1VtZhRx0d5Sg9YV0BK1sD2DZ+/uUXXL9+HQMDA9i5c2dUj94itqziymWY2Hi7VZ93ldLLwPdRrdWiAeBp0ZBsPd8w7ZZm1sv3/bDlrusiCIJoQIbjODALBTw7MACLE4yeFAx22jhTU1M4fuwYeksl7Nm1C6VSCY5to+H70FIpZHK5NQ/BrCSbgHUUBLj3+++Ynp7Gnd9+wzPPPIOh4WE4jgNNbOpKh7/4AocPH8Znn32GLaIiBghPq7qui0KxGH1HrBbsV3/6CR9//DEOvfsuDh482PbvyAoUr9GAAsAwjHD49CqHwB4k2FsCXSyBBUGAnGVhS18furu7N6TXDG0aHf+x2XeT7tuOHTvwzw8+wOXLl/H9qVPIaBr27t6NLVu2wLHtsHZa3MHLAFqLqoRDmleq12q4ceMGpm/cgKZpGOjvx+joaHS4So6gk0sWANBu8k8A4Nz587g+NYXp6WncvHkT9XodL4+P4/333297Tbt37ULBsnD27FkcfP315bbEQFT5omkaCoVCeEBKnEa1HQcpVYVhGMv98WPWG+rRnFTx2AHQVHJplkro7u2FZVkcHE1NGOz0QFKpFPbv3499+/bh2rVr+M/Jk3AuXsTQrl3o27oVnuehUq2ipijQxV3sWnfx0Tq87+Pu3buYvn4d92ZmsG3bNoyNjaGrVGq5I9U0DW6sb3j4QCtObyoKXMfBt99+i2vXrkFLpdDd04Pbt293br4lNk9HR0fx3YkTKFcqy0MpgJbr0HUduq4jm8vBdZyov0ytXoeh6zDSaaRUFeuJdN/3Ydt2WOLp+9FGchAEUDUNBbGGbprmqu0h6MnF/xX0UBRFweDgIAYHB3Hr1i2cOnkSE5cuoae7G/lcDtl0Gobohpg3TeRzOaTFSVfbcVAul6O3SqWCxcVFLC0twSoU8NzAAF4aG1s1vHTDQK1Wg+M4yx0XRQtaKQgC2PU63nzzTWzt68PTfX24evUqPvnkk+jP2woCHHjpJXx34gQmJycxPj6+5lKHqihIi8Nenqi/t8WhKtk6QRVBHR+Np6pqtCnruW4Y6AD0dDrsMWMYsEoldPX0wDTNDT1LQMnDYKcNs337dvzj7bexsLCAmZkZzM7OYu6PP3B7dhYLc3OoLC2FwzHSaTiOg5SiwDTNaBh1X19fuBGay3XsY7OSnGjkuC4ymUzbTSHZu2V4eLj1BOYaRkZGYOg6zp47h1deeSUM3HWuY8uDVJlsFp7rRuvjssQz3lMmQPgqKJ3JoGBZMC0LOTGEO3qclUOniTpgsNOGKxaLKBaLeP7555veH4hTnzMzM9B1Hb7nwbNtNBwHqqJEyxmqGFitrjNADcOINjDbBV+9VkNKVe871AEgbRgYGRnB5IULaIj69fsJdwDRWrwimpXJVwiZXA6amFKki4Zjcog278jpYTDY6ZFRFAWlUinsoY7ltWTbtlGpVGBXKqjU6wjENCM5bzQVL42MzfmU0arrOgJFaV6OEeRdce4hWtAeOHAA586fx5UrVzAiavjl2nzbGnQAEBufXuzuPKXryGSzsHp6YBUK0ZINQ5w2GoOd/jKqqoYDH7JZlEqlaKiFbduoVatw63V4joPK4mLYmlbTwrtZOUxaHICSrXBrtRo0TYtOdcqh16qitCztREf645usaF/f+/fRUcD3cebMGQwPD0cj+hRVjRp5yedrNBrR0O6saUJLp2F2dSGbz4cj9tLppp7sRH8GBjs9NuRSjGmaQE8PGo0GXNdFrVJBZWkJjuOETcGCIGoKFgQBFHEHb9s2XDExKZ3JoFwuw9B1ZC2rZYN0ZeMxYDnUA1EuKQ9YZfN57N6zB5cuXUJNVODIo/uK2PxUVBWqYSCdSsEwDJiFAkzLitbHiR4l/o+jx5Zca85kMujq6QEQLt/IiUHxpmG2bSNTrWJudhY1z0PKMGB7HlTDgO26qIuZp4oIbNu2kcvloKoqlsrl5Tto0d4AihKt8Suqit/n5uB4HvJdXdANI+qCKa9RNinj5iY9DhjstKmoqhqtTbdj2zb+9eWX+P7sWWzfsQP9/f3Ld+SxTpK37t3Dfycn0TcwgGcHB8O5rTLIxa/l282bN/Hvr7/Ghx9+iP7nnntknyvRg2KwU6LIwF9YWEAul2vq1R6XyWQwNzcHz/OizdxOjh8/Dtd18dZbb2349RL9Gfi6kWgNR48exdatWzE2NvZXXwrRuvCOnZ4YR44cwZEjRwAAd+7cAQCcPn0ahw4dAgD09vbi008/bfqY2dlZnDx5Eu+99x4rWWjTYLDTE2NiYgKff/550/umpqYwNTUFAOjv728J9mPHjqHRaHAZhjYVLsXQE+Ojjz5q2kBd+TY9Pd3yMUePHoVpmnjttdce/QUTPSAGO1EH9XodX331Fd54442OVThEjyMGO1EHFy5cwM6dO/HOO+/81ZdCdF+4xk7Uwfj4OCbETFWizYTBTonz6quvAsCa9elEScWZp0REm1PH+luusRMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECcNgJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElDIOdiChhGOxERAnDYCciShgGOxFRwjDYiYgShsFORJQwDHYiooRhsBMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECaOt8efKI7kKIiLaMLxjJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElzP8BYPzNIr3eBZ4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAF2CAYAAAB6XrNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvUmMJNd5NXpinnKsrB6qms1uNmf6mRopkaI8yIZkL/Q/7b0wDMMrGxCstRe2Fwa88cIG7K0WXr1/Y8swIIiAJcEaKYkWSVHm0M1mTzUPmRnzeO9bxL1RkVmZlZlV1SS7+h6gUFWZGRE3IiPO/e43nE+ilEJAQEBA4OxA/qgHICAgICBwuhDELiAgIHDGIIhdQEBA4IxBELuAgIDAGYMgdgEBAYEzBkHsAgICAmcM6oz3RS6kgICAwMcT0rQ3hMUuICAgcMYgiF1AQEDgjEEQu4CAgMAZgyB2AQEBgTMGQewCAgICZwyC2AUEBATOGASxCwgICJwxCGIXEBAQOGMQxC4gICBwxiCIXUBAQOCMQRC7gICAwBmDIHYBAQGBMwZB7AICAgJnDILYBQQEBM4YBLELnDn8zd/8DSRJwq1bt060nx/84AeQJAn//M//fDoDExD4kCCIXeChwr179/Cnf/qnWF1dhWEYuHr1Kv7yL/8S/X7/0GdffvllnDt3Dt/61rc+gpEKCBwfgtgFHhq8//77+MxnPoNvfvOb+NznPodvfOMbuHbtGv7xH/8RL730Evb29kY+L8syvvrVr+L73/8+hsPhRzRqAYHFIYhd4KHBn//5n2N7exv/9E//hH//93/H3//93+O73/0uvvGNb+Ddd9/FX/3VXx3a5mtf+xqyLMO3v/3tj2DEAgLHgyB2gYcCN2/exCuvvIKrV6/iL/7iL0be+9u//Vs4joN//dd/RRAEI+99+ctfhmVZwh0j8EBBELvAQ4Hvfve7AICvfOUrkOXR277ZbOLll19GGIb46U9/OvKebdv48pe/jG9/+9vIsuxDG6+AwEkgiF3gocC7774LAHjqqacmvv/kk08CAN57771D733ta1/DcDjE97///fs2PgGB04QgdoGHAjz42W63J77PXx8MBofe++pXvwpZloU7RuCBgSB2AQEAlFIAgCRJh947f/48XnzxRfzHf/zHhz0sAYFjQRC7wEMBbpFPS1t0XXfkc5Peb7Va92dwAgKnDEHsAg8Fnn76aQCTfegAcP36dQCTffA3b97EW2+9ha997Wv3b4ACAqcIQewCDwW+9KUvAQBeeeUVEEJG3vM8Dz/60Y9gWRZefPHFQ9ty37ogdoEHBYLYBR4KPP744/jKV76CW7duHdJ++eu//msEQYA//uM/huM4h7b91re+hZWVFbzwwgsf1nAFBE4E9aMegIDAh4V/+Zd/wRe+8AV8/etfx3/913/h2Wefxauvvorvfe97eOqpp/B3f/d3h7bZ39/HD3/4Q/zZn/3ZxMCqgMDHEcJiF3ho8Pjjj+MXv/gF/uRP/gSvvvoq/uEf/gHvv/8+vv71r+MnP/kJer3eoW3+8z//E0VRCDeMwAMFYbELPFS4fPkyvvnNb879+W9961toNBr4vd/7vfs4KgGB04Ww2AUEpiCOY3znO9/BH/7hH8IwjI96OAICc0MQu4DAFLzxxht44okn8Ed/9Ecf9VAEBBaCcMUICEzB5z//ebz++usf9TAEBBaGIHaBM4ff/d3fBQB0Op2PdiACAh8RJK6RMQVHvikg8KBivEhpXMo3DEPEcQxZlmEYBizL+jCHJyAwD6bm3wqLXeCBBCEEtChACQElpPy//lMUlbAXKAWl9MBKqZF6XhQH+ensdxhFCMIQiiyDorRuup0OTMuCrCiAJEGWZciqWv5mfwsIfFwgLHaBjy0IISB5DhQFCPuhRQGS55h03/LXCCEVkVNKS2IvPzD6OkpilyUJkCRIAKIkQRAEMA0DrWYTADAYDlFQil6nA0VRJg9WkiDJMhRVhaxpUBQFqqZB0bRyMhAQOH1MtdgFsQt8ZKCUoigK5HmOLEmqnyLPIQNQZBmqokCWZUiShIKQkuApLUm//sNeK4oCFAChdPJdz0lekiBRioLS0mKnFKQoMPR9aKqKhuNUlnye53B9H4qioNNqQWYkLssyZG69y3L5GlD9TylFGEXwfR+e74MAaHU6WFpextLyMkzT/JCutMAZhSB2gY8ehBAEQYAoikoCT9PKCqfMygaAghBkWYY8z5EzMucWtcbcH7quQ1UUSIxYJUk6IFxJKkmZbcMJWmL/g70vAcgJKV+jFK7nIU4SdNttyIpSjkeSQAhBGIYIowitVgsSGyMIKScbSuF5HsIwRBAE8IOg9NFHEQzDgOM4aDYaUFQVSRQhDMOK6C3HgdNqod1q4dqTT+Kxxx4T0gUC80IQu8BHh6Io4A6H8AcDFFlWFU9QQkBqf48QWo2EQQgK5kYpigIFIVAkCbquwzZNGIZxbDLMCYHMxrjX78MyTTQbjep9inJCyPMc+4MBGo4DmwVS0zTF7du3cePGDUCS0Gq34dg2HMeBZVllUZMklauI2nMmSRJkRQEpCiRxjCxNEcUxbt+7h4IQfPIzn8FvfuIT090+AgIlBLELfLgghCANQ7iDAdzBAFmeQ5VlqJoG1O45RVFKfzT/rarla8wK52ROcUD+hBBEcYwwjkHyHJIswzJNmKYJdRIZMlfLJHBi59Z6r9uFoijVjV+fMPb6/fI1SvH+zZtYX1/H6soKrl27ht7SUhV8BaUgNb8+gGpC4q4n/ndRFNX+ZUXBoN/H7Vu3EEYRnnrmGfzmJz4Bp9WCIoKzAochiF3g/oMQgiJJ4O7vY39/H2EYIstzmKYJU9ehqio0TYPGf2vaoTRDoCRwTorjaYnjSJi1myQJKABN00orXtfnsuJzlkFTt9YpXy3UP5fnuH7jBt7/4AMoKAXFrly5MlFqgFKKvCiQ5TmyNEXKAr4SUGXZ1M81z3PkRVH+5DkoIfCDANtbW/A8D48+8gieee45XFhdhdNqiWCsAIcgdoH7hzQMEfo+Qt+H57rwgwCSJKHhOGg2mzANA5qmTbama6DM3UJqxE5r7wHlnUxZwLN+cxJCEEYRojguXTWyDMe2YdUDlGwfFAdPRM62C8KwstbLA5VWfpIkeOftt3H3zh10ez30lpdx5dFH4VhW6X/nhMyDwHk+YoUDqFYjlFnykyac+msFmxSSJMFgMMDa2hr6/T6eePJJ9Ho9NNttLPV66PR6UFnMQeChhCB2gdMDpRRRFCH2fUSehzzLAABxkqAoCtiWhXO93kI+Yp7VcojM+f3JiJyyz3AirJM03yZJUwRRhCzLoGsaWs1mRayHLHFC0B8MIEkSuvVKVUpx9949vPnGG3jk8mU89dRTsC0Lm9vbAADLNEsSZysKCWU2jKqq5cqE/VZZLvz49SNHP3ejY8xz3LlzB7984w1cvXoVjWYToBSKpsFpNNDqdtFdWkKj0RB++YcLgtgFTgbKrFffdRF7HoosgwRA13XomoY4SZDleeXOmGSV5nmOPM+R5jkK5n4gzH8uSxIkRYEqy1BkuSwCqqUSHmWVjrg2auQdRhG8IACAkaBn/TNxmqI/HJbvmyYgSYjDEP/z+usIgwCf/sxn0Gm3EScJ4iTB0HVRFAWWOh2omlYRuaqq5binXDs6waV06Nmb4ToaDAb4yY9/jCtXruDylSuI+Aolz0EVBXajgeXz57G0tCRSKR8OCGIXOB7yPIfv+wg8D3kUQQFg6DoMw4Ch6yCEYHdvD2GSwNR1aJpWuSMq10SeI+OWNkshBFC5XbjvGUDlAiE1y51b6FVaI0tp5MFW0zBgGQZM0xypIqW13PQ0TaGpamW98ydi6PsIowi9pSUokoRbt2/jrbfewrXHHsOVq1eRsrRLoEy1JJQiy3OcX16uJptqouBBWpYjT8eCqQAOXq8VSo08g3X/PqWQxiaLOAzxo5/8BJ12G5/81KcgAciyDFEcw/V9xFkGzTDQ7fWwvLyMTqcj0ifPLgSxC8wPQgiiKELg+0h8H7QoYGgaLBaUTLIMQRBg6HnY3tlBTggcy4LGMjcklieucNcE8zErLONFVdUq11xRlKqwiDDLtqAURZ5XhUdcMoDLBhBGlIQQZHle5rmjvFk1VS2DtWziMSwLmqIgjmN4QQBKSJmOaJqQJQlbe3tQZBmaquJ/XnsNSZbhuWefhWEYoCiLpEzLgmkYUGQZaZZh6LrotFrQdL0833muad2tNOF6z3LN8GsKlJPtqz/9KQpK8eLnP19dd6AMJrueB8/3QRUFTrOJ5XPn0Ov1hKb82YMgdoHZSNMUQRAg9H0USQIVpS9ZkWVEcYwgDBGEITJWUJSkKUxdR7fTgaHrkJlvmacvTgNhhT3TcMiKnYEsy5AkCZIsQ5okSNMUWY3sFVkus3J0vZIjsCwLtmVhfzDA9tYW3r95E49evoxHHn20/DzL5NEZedfHvru/X+ar2/bcY6ziA1NQxRhm7YdSyCze8OYbb2BrZwe/89u/DWPCOIMgQN91keQ5dMtCd2kJ58+fR6vVmnvcAh9rCGIXmI40TeF5HuIgAE1TqLIMwog7DEMkrKhIliTYtg3TMJBkGVRVRafdnupbngTC8tIngeetjxAcrxpl/1KU7gwAVVriJFdGnueI0xRpmiJl/vE0TavzCqIInu9jY3MTDcfBc089hVanA0PToLNUyREXUW0M+4MBVFVFq1bIxGMCiqJAVhSorAhJqrlrOLFP2idQVrMuMqEBZTMQPwjwhZdeqgi/nk8vAYizDMPBAG4QQLcsLJ8/j4sXLwrFygcfgtgFDiNJEvi+jziOEbkuCqbTEqdp5cs2DQO2ZcFi7ghZluH5PqI4RqvROGTRjoOnJgLlzZQXxZGui0Wt9fo2de2YSlem5ropigJ5miIIQ2zv7uLGzZso8hxPPvkknEajCrBapglJlqt4wPh4PN9HkeeH9N7JBGKWWTBYVpQqGMz/V2qaMhw5CybX0zqPQlEU+P73v49Hr1zB448/Xln049tJbN97/T6CJEGj2UTv3Dl0u10RaH1wIYhd4ABJkpQWehwj8DxErgtCCGRJKgORzE1hmeahbJQkSTD0PFimecgVMalac8QiZcHMozDRHcEJFkCeZchYEU/dN1/3X1NKAVmGwi1oJtBFigJxHGNvbw/vvvsunn72Wbz+y1/ipZdeQspSNrnl7TQaaDoOHNuuLGF+Xn4QIIwiLC8tlRNA7fwLlulTVZayCaZghUjjz5uEsuKUV9sCgMR8/jJLleQrh2lk7/s+vve97+GLX/wi2mOTTaWNU3stjCIMhkNA19Fqt9FqtdBoNEaDzwIPAoQeu0Dpix4Oh4iY4mDoulAA6IqC1tISWkyoatrdQooCnu9DVRRYljVCdmCW4lE4ysdc7qJ0V9TdF5UYGEuP5AQuMctXURTojLwV5vpQahk0AJBmGcIoQpHn2Nndxa0PPsDLX/hCma6oKLhw/jyCMARQShyELHDsuS4gy2WhVaOBhm1XEgg8F73+AEkoi5HA4gtVIVXtd5Zl5QqiRv58hZFl2Uj8gefD82pdiZ8Tzyxivx3HwfPPP4+f/fzn+NKXvgS1FkwdKfSiFLIsw7Es6JqGoechcF3krBhK13W0220RZD0DEMT+EIAy9cF+v4/hcIg0jqFJElqmWQpXWdbM6kVKCIa+D0ppqVQ4/vlZpM5TG2tEV252QFA8y4Vb5ZUvXpKgKgpM06yIrrKijzhmnufwwxAF01xfW1vDxuYmvvSlL4ECSJMEACpL1Q8CFITg3PIyZEmCH4aIuGKj55Ukb9tlxgz3mTOFSW6JHzq3sd+appWrEk6+tfTHSgcnSZBlWZXGGMUxgMNEz78zSZJw5dFHsbW9jTffeAOf/sxnJl8QSaqyb2RVRbfTgR8ESIIAIaWgjoO9vT3Yto1WqyUqWh9gCGI/40iSBJubm9jd3UWeJLA0DUu2jXa7XQbPjnLF1XLOozhGnmVoNBojFuE84Poo9YYWXPUwYySeZxlyJoULSYKqqrAMA6qiQNO0A8ndGkb+r5FjXhQIggBZnkOWZdiWhV//+tcIfB9f+t3fhaHrGAyH1X4BwDAMKIqCoefBdV00m020Gg00Gw0QQhAz2YEgDOF6HvwwhB8EONfrodVsHpBgLaA70Uc+7v8eC9JySWJdVQHbLq38PJ+L6D/9qU/hu//1X1i7exeXLl+e8aWUR+TWu+/7SMMQhuOU5xvHB/eIwAMHQexnFIQQ3Lt3DxsbG8iTBE3DwPleD512+8BqnCN3GgDSPEcYRVV++DwYsVzLFyphrJyRVGU9MkvWYHnvSi2bpNp+fP+18dV1X6IoQpIkkJhWjKqqePXVVyHLMn7rt38bqqKUfm9CDgUNeSMN1/PgeR4ajQZ0TSt1ZxwHlm1jmckpbGxtIU0SbG5vY3t3F91OB912u5r06mPjExu/Dkdd6+p8an59XdOga1p1XY8i+t94/nm89vOfo93tVvLDdMx1M3JcWYamaWg2m2VK63CIyPfRaLVQFAVM00TnqM5RAh9LCGI/g9jY2MAHH3wAkiRo2jbOra6i1WxWpDPu6+aZFNPg+z4kSToyb7suzFVvbpHnORKWdpikKYCSQDVdr6xNLpNLWP/RmeE79hn+OS4AFicJJAA2E/+K0xT//YMfYKnbxSc/+cnKfZOxQKnGyPJgt2Wwtc3I3fd92JZVTQCyJIFKEmzHQa/XK7s7SRIGwyH29vex1++j226j2+lAr60GqrGyoC6ZkRlUxRGmnLumqlOJXtd1rF66hJ/97Gd44YUXKgG2+mRRHaPmIlIVBTYrMhu6Lvx+H3mSIJRlRFGEbrcLx3FmfTMCHxMIYj9DyPMc77zzDgY7O3B0HSuPPopOuz2ihFjv+VnvKDQNSZoiz3M0Jui/cEuwTuQSmBZ7miJOkiq9UWcyBCrL864fn08Gs4KvHPVPZVkGLwhACIHFMnpkRYHnefjRj36Eq1ev4pmnnx7x7WdZVpHZOCgLMHJyD6MIhNJKZ4YfW2KupEa7DdtxEMcxBsMh+oMB9vt9tFot9Dqd0VUBO1+l5uvmQU1+/WZWoLL9HOzysEXfdBy88sor2NvfR6PRqNJWTeZu4mMZyadnMg0aUJ676yKOIjQcB+72NsLhEOdWV4VEwQMCQexnBPv7+7j+3nsooggXz53DIxcvVuX6/AHm7pd62zjg6ABkGEWQZbmqbKwHLMcf8CRJSuucW8SKUgUbJUZmXBuGj4Eff1rV5fgKoHqdlv1Eoygqrex2uyqt930fP/jv/8Zzv/EbuHrlykFwk7kj0iyrrHU+0VV+7tpnm41GdQwAFbkDZfYLX4EAZQD2omkiTVO4rgvP9+F6HhzLwvLSEuz6amfs2leTLjC1eKuOad8Xd92YpolnnnkG2xsbWP3UpxAnCcIoQhhF0DUNpmFURVi1C1qmVxJSuWaGnocgDNFqNBAlCe7dvIlkZQXnL14UgdWPOQSxP+Dgkq6ba2swJAmPXb1ayc/Wdc05xv3SRyFly3un1th5fLssz5HEMZI0rcr3bcuCoesj1qHE3T1jBTlTwQhW5r5hHFi3OSHwPK/yATcYaVJKEccxfvCDH+C5557DlStXRoS2eJEOIQQqE/RiGx5a0fDqVtuyQClFwFQiLdbuTpKkKpe+PvHouo7lXg/dTgeD4RBD18XttTWYuo7e0hJazWZ1LuMTZOUiq53zIqhPEteuXcN7772HLE3RZv5yrlDp+j5kSYLBhNNURTn4jmQZRVFA03W0mk14ngc3CNBqNCAnCTbv3kXoebh87dohV5bAxweC2B9gDAYD3Ll1C9FwiE6jgUdWVqosBsIrODkJ4YCs5gEFEEQRJEUZbVaB0qrk1nnBCpsMttQfyZipTwbMSpXBSudrr3HirQKutXHWyRcAImZ5SrKMVrM5UvmaZxl+/OMf4+rVq7hy9eroCdV8/gBGhLNGP3aYVG3brhpa89VLpexICCTe+Lo2TlmWsdTtotPpwBsOMfB9rG1sYHt3F0udTknw9eImVhkrHQyk+h4WIXm+vaaqeOLxx/Huu+/i05/9LBRFgWPbsC0LaZYhTpIq8KoxhUzDMKrJtyAEpmFU3Zz8IEDDccrMoX4f0Vtv4dFr19Bst+cem8CHB0HsDyDyPMf6+jr2t7ZQJAkunjuHc8vLlQVVNX/gpL5AmT63JHlRkFPTME+Yxcf95pqmldZ5LVOG0gOp2XpGSB3cKuTHq6xk7hqY4MMlhMDzfeR5DkPX4TjOiDuAEIJXX30VnU4Hzzz99JHXjmu6zAsJQKPRgOu68H0fcrN5YGXTA8leWv+fn6skod3poNluI/B9DFwXWzs72NnbQ6fVQpu1uitY4Ljub+fHnrbvWXj8iSfwne98B2EYwmGpk5IklaqXuo6CkPI7ZcqXfhjC0PUyLsDuG9M0y0mepXc2Gw202214nocbb7+NR65cQe/CBeGa+ZhBEPsDBtd1cff2bdA0hakoaF24gCXegJkVu4xnlsxt9bHluCRJiKIIklQKWXlMz5yi9C03bBt6zWotd88InZMSpSCY7PKRJAmKqiLP87lcQwlTnaSUlqXv4ymXlOJ//ud/IMsyPvXJT06cGKqUyKKY2RiaxwPqe5EAtJpNDJj/3K6tjMaPMcmVIksSms0mms0mgjBEfzjE7t5eSfAsVbKu7z5pTFWwec5JWtc0PHb1Km689x4+wbTbgYPJm7vNbMtCxqx4PnlLigKD+eMt0wRlmUfccm+3Whi6Ltbu3EEaRVheXYUhNGc+NhDE/oCAW+mD3V0YkgS70YCqKCPFMZIkVQU+dRxVys8t5TopZVmGIAwhSRJcz6tkbA3WkHpk+zrJTCDDicdkk4eiKNUEMImsCPNtp2kKVVXL4qgJlvav//d/4Xkefvu3futQY4rx43K//CxMm5BazWZpuTOf+/i1rSx55oOflEHCXSJ+EGCPNf52XRcXzp0bDbKOjR2orX54SuSMDJUnn3wS33nlFTzz7LMV8VZb1K45by7u2HbVINwPAsRxXI7XtkEoRZwkUGS56pQ19Dzs7e2hyHO0ez20e70jxyPw4UCsnx4AxHGM9955B+72NpabTZxbXoaiKLDHLGc6idQnEGZdrEses+6zLMPWzg78MCzJ1LbRbberYh8AI5k2lSW5SAoc+yxXO0QtQ4YjzTIMBgOkWQbHttFutSaS+gfvv497a2t4+QtfmGiJ111BeVGAUjpX5ey081FkuSr8CXy/1K+ZtP0R+6Aor6Gu61i5eBHnl5dBKcW9jQ2sb21VcYAZAxxx0RRFAQKUk2TtY4Zh4Mqjj+K969cn74OPqRYbsEyzjAM0GiCUltW4nlc1LwnjGHlRQFNVNG0beVHA9TwM9/awcfs2MibVIPDRQRD7xxxhGOLm9euQkwSXV1bQbDQQxzEsy4JjWaM+9AlEQif8PYmIM9YZaK/fRxTHVaGNwfytwKgvfNFM5jrBjm/Lc9j5uQRhCM/zIMsyOq0WLHae49jY2MD/vvsuvvjyy9CnVMRWxUE4CJwe1QRkdOPJZ6mqKtrtNgqU5D7NNTIeM6BApfJYbzTiOA4eWV1Fu9lE4Pu4decO+oPBfGNk+5e5zDC7F6ouUyit9tu3biGvpWeOnGPtfqifi2Ga5aRuWcjyHAPXrb5D7hozdB0Ny0LKtPuzJMHmnTsIfX/+8QucOgSxf4wRhiFu3bgBJc/xyCOPwDBN+EEAXdfLFL95rGT+oEoHhUT1rfI8x9B1MWAqf5qqotlsot1qTfTpHmWJTj48nUro/H3U9sn14U3TRKdWoj+O/f19vPbaa/jCiy9OrYgcJ1weOJ070Fcb+zg0tppJmdtqGnhAlBM6GQtsc8iyjN7SElYvXoSuadjd38ftu3cruYCZqNUmjOenm5aFpaUlrK+vl6s6NgFM3L42CfHJ1rIsdNttmIaBNE2RZxn8MEQYRQB73zIMRHFcSipTir2NDbj9/nxjFzh1CGL/mML3fdy6fh1KnuPS6ip0TUPE/N6tsayMaRbjeIVp/YHPGKH3h0NkeQ7bstDtdiHLMrSaNG19JXCcisPq2DM+l+c5hsMhckLQbrXQbDRG5HvHr82Pf/ITfPazn0V3aemogx86xiICZrNWJgZLEUySBOEYuXOrOSekkhueZ6VjGAZWV1awvLSEIs9xd20Nm9vb87lnykGXvw4GAgBYXV3FxsZGOVmx3rETSX6M4PlvmckXd1mlbUEItnZ2EIQhKKWwbRuSJJVkz85/sL2N/a2tuYO9AqcHETz9GMJ1XazfvAmVUjzyyCPQNK3MHU9TmGPNLyY9MnUy5/ooPBMiy3OEYYiUldVzLRSZtcPL8vxA0e8YLpf6mObZlrIxeWyZ32o0qrRNnurHs0yoJCEJQ/zwhz/E//Pcc7h48eKR+x7JDGJVr+opao3LslypQkZxDInluHNSrwqQar+5RO8sNBsN2JaF/mAAz/PgBwGWl5bQmTdvvPbdUQAXV1bw5ptvoiDkQHK5ZhRwC72aDMfInWdWKYqCVqMBQ9OwsbWFbZa26VgWbNNEEEXI0xSaroNKEvzhEHmaYvnSJZES+SFCXOmPGQaDAdZu3IAC4JFLl6CxApxJZe100pIao5YmlQ6Er4aeh0HdQu90YNt29cAlSQIKwKgT64KoXCtzfp6X4EOS0G61JlYz8tWGTClee+01XL58GVevXeMHnOs4lX99QcnhI1cpUikRbJlmWbjjumVa6BH55ou4shRFwXKvh5WLF6EpCnZ2d3H77l3E87pn2BglSYJlGGi3WtjZ2Zk6Lq4xz6Un6hk/PA2WwzAMXDx/vlqxuL6PJMtACUHAxicBAKWIowibd+5U4msC9x+C2D9GGAwG2Lx5E6qiYHV1FZquQ0JZ6RmnaSlwVW+OXCO1cSuZW+kFz1hwXWRZNpHQ+f6SNC2LdxYkv5HjL2DlR3EM13WhyHLZFHtGUPO969eRFwV+47nnRmIHFcayPOqUf1xi59Z3XZqAdz7iJEgBNBwHqqrCC4KZ/SSrWMecBG8aBi6trqLX7SLPc9y9dw9bOztT9XUmH1TCpUuXsLa2Ntf4KOvfyvu4jrsFgs4QAAAgAElEQVT1gFIfx7GsUjvfNFEUBdI8LwXEOLmzFUqepti+exe5IPcPBYLYPyYYDAbY+OADKIqCy5culSJN7L0ojiEzt8k4xv2XdUEp3tsyy7IyADaB0Ovb5Xm+cFu0RS10vk3AOhNpmoYWC9QehX6/j/feew+fe+GF6UFj7laoT3iMjLMsq1Ir66Rfb4DNRcp4e7qCkZrEP8dIvjzhMlWUW7US80HXdWWOwqJBaABotVp4ZHW1qoL94M4duAtkn6yurmJrc7Ma/yzfd6Vnw1eGNWOCj91xHECSUBCCbruNdrOJvCiwtbs7IpIGoGxNuL6+2IQkcCwIYv8YoN/vY/2DD6DLMi5fugR1rO9oxtQIxwOmI2X4NeR5jsFggCgMYRgGup1O2ZT5CB9nmqYglI5or8wC13tZBJRSeL6PiDXumCQHPI48y/Czn/0Mn/rkJ2EdoQnPUVeO5D76ggl/Va9NGv949s/sA1XnBDCJBabwOE5qEzevjXXeAKOiKDi3vIyLFy5AlSRsbm1hc3t7LrJ0WMPqfr9fxl9Ys+xpoJNy9Pm9x8TPuI57yjphNRwHy0tLoITAZeqQ/FxBKbIowh6fXATuGwSxf8TY29vD3Q8+gK4ouMRIvQ6+9OeiVXXXwHiVJxfuGrguCKVotlplg+oxF8ekhzljbphp4ljjY+LHXITWCSGVH9pxHDgsk2LGwfDL11/HueVlrF66NNdxDp0fK+A5SRegSaOsxl4jZdOyoGoagiAoW/3N2u9YkHteWKaJlZUVtJkC451795DOMZmsrq5ibW2t+n8kYFrDtLqI8c9QQsoYgyQhYLr4XMtHU1VEcYwhU+Lk7qfY99Gf4usXOB0IYv8I4fs+1u/cQUPX8egjj0z0//KAk6qqI3718UduxErX9bK4aCwQeVRaZJKmc1nr4xPKvCiKokxnLAo0meU4D+7cvYtBv4/nP/GJ+Q82nr/OLM8TEfsEkpvUHEOSJDSZzLHv+7PJurayWPRh5Lnv55eXUeQ57ty7B2+Ga2b10iWsb2wcqk3gY6hcVHOuIPjE5DgOCkoRJUm54pRKxc9mo4GiKDBw3XIVw87X6/fhiTz3+wZB7B8R8jzHnQ8+gA7g0srKVDdJluflkpe5Z8at5ElWerPRGOlGJEtM1Go8x5kfg7th5tXXXtD9kmVZOT6U3XmmVYmOw/d9/OrNN/G5z39+MVKekL8O4CDN75gYJ/dpV0FWFDQcB6QoqmymOQ9wrEnTcRysrKxAU9UyBXF3d6prptPpAJTC9byxQx/UOozEEuaEzhpqc/E4SZYrJc5OqwVFluH5PnxWsSoBGOzuIjqiuEvg+BDE/hHh3p07kPIcq6zT0TTkaVq2k5PlKnWxem8eK539Vmf41yUc7gE6CYsST5KmGLouZADtWt/VWaCU4uc/+xmeefZZtFqtuY83iY64G+A42T5HgRdQTSJRnTWxiOMY6RHFRYeu5wLZMiPH0zSsXLyIpuNgOBzi7vo6sinHXV1dxfr6+pHjWdQ1BJTuIQogybKyw1SWlc1XWB9Z0zAQJ0nlmgGl2F1bQzRHsFlgMQhi/wiwu72NeDhEr90+KAYaB3e5yPKBYiEjEArAD8MjrXT+uaqSUJanEkbGpAQmvV/XeFkUSZLA87xKW2URYn3rrbdgmiau8Xz1E+Ck/nWO8aszi4Bt24asKPB9f2EL+Dh6PLIs49zyMnpLS8jSFHfu3p0od3Du3DkMprhB6u6+RclB1zTIslzJIEiSVGUTQZLQcJzDrhlKsX3vntCWOWUIYv+QEfk+BhsbMHQdS5PK4cfysyVWEcqzYLiVHkfRVCsdmFz9OY248zyfTrpHFNschSRN4fl+Seqt1kQ53Wk+/+2tLdy7exef/sxnFjrmNOo8LWIHJl/PabLIXP4BlMI/DnEd0zXTajaxwppfrK2vY29/f+T9druNwQSRMR6oHzm+dCDONnu4ZSFUURRVw/AqDsHSR3XummE6/34QAJRia21NkPspQhD7h4g8TbF15w4IIbh4/vzBG7UKUm5lS2MPFSFkfisdkwtgJOmwANa0wp2RVnULIh0j9UV88kkc4+evvYbPvvDCQqmX00BqPU5PBTWSqxeDTYOiKHAaDWR5vljFaO14i8Y0AKY5c/EiHNvG/mCAe+vr1XftMK2XZExe96hVRSUrMAOmYUAGECfJyL1ZJ3iwCY+7ZlzPQ5Hn2Lp7F8GY71/geBDE/iGBZBl2795FmiQ4f+5c6c8eE1+iKJfT9cdYlsrGF/15rfQZRDBO7nmel52RaumUVYXhMQgly3O4vg+F9SQ9aiyHrEBK8Ytf/AJXr17F8vLywsfm+6CElIReFEizrCo0yrMMWZoiS1OkrFsQr7hN0rRq3p3nOfKiQF4UVaESqRUrjQtkzbJmeT/RIIrmF/MaO6fjQFEUXDh/HkvtNqIowp179yo3SbvTGZEG5uc3DRLL2pk1Eq6fk2bZof3V7ycuHNZoNFCw5uRxmmLr3j0Ew+HC5yowCiEC9iGAZBnc7W24nodms4kGa9QwUkSDya4SbtG02200W62JhF7tY063CSd3QggKlnWjyHKVu3yc5T9QThKu60JhFtlR3YyAw7nSN27cQJbneO6ZZ0bK2QumREhqrxGuUMi2nUZMSZoiZpW7k64vYW6S8S15XcBRvwHA9TxkbEKQZLk8jixDYb9l9lrDtpHnObwgQKfdHhUGq+1vEuadQKah3W7DMAxs7+7i3r17WD53Dp12G8PhEBcvXDjwg88CJ/cZqzneBHtS8Lbu1uFNT9qtFvwgQBiGIIRga30d5wDRKPsEEMR+n0GyDMlggP29PahM1AlTij9G0hhZaXrM8oIbtj3VSq9IYgELm5M7l7JdRJFxEoqiwNDzyt6grEHzRFBaWsJ5Xmp3oyTlKAzxq1//Gi+88AL2B4PJJEYpJEWBjDKlUFHVketYr+SUypMEpLIFX13quF6ZysdbDxrS2vG4RsqIEiL3RbNMG4lVtlKmH1N31dDacYqiKJtRMM0ePhEApaWrKMqR3+G8vu5JME0Tl1ZWsL2zg93dXRAA/f39+Ul9bBwApt7HQPn95Mxqn+QS5GqR/HtqNhoVuQPAzvo6QAia3e5CYxMoIYj9PoKkKXLfx87ODnJCcHl19YBwUBNVGrvxCVuapnmOZrMJTdOQ5TnGS3qqx/EYLhOOoigqsbHj7qdgFaXAAalTJpSVF0XZto27NYpiRFALtGyC/fbbb+PRRx+tAq0K03VRWDaPzKzfSTiK7OI4hmaa0/31jPgXBSemNElgGAacmtQBJ0s69pswbfYoiirLnoKV7teC5SojeVlRoPC/eV9bYGqT8FngrpnhcIgwirC2uYk0y44VfzhKCiFJU5i6DllRkGYZjAnXvpr0atvbloWCTfKgFDubm2XtgyD3hSGI/T6hSBKQMMRgOEScJFheXoZuGCBMY4P708dBmOVbFAWajgNd00AJQZwkaGDxlLujkOc5IEnlMSbsexYopcjzHP1+H2mew3EceL4/agUyq1dVVaiyDE3ToDDC4kHira0tBEGAl1566fSCnGx8BevNeb8w6ZrJslwGryZMGJZlYTgcQpZltFqtyh2WEwLCWuYVhCBnEsrVcdgkpyhKOSkoSlXfsMg9IMsyOp0OFFXFr3/1K9y6exePMtG544Bb3/XG3QlTIi0IQRTHE4kdOBx8lmUZjm3Dp7TqzrS3uQkQIppkLwhB7PcBnNSzLIM7HMK2bXTa7ZFl6TTxrqHrApSixSx1QggMwygLXZKkrNrkVYInGCMnPaAsTJJry+Op51UUyJkLJctz5GkKPwxRFAUc2wYpCsiyDF3XK/LmVuf4+XJ3BiEEb7z+Oj7xyU8em9Sn+Xt56t5pFybVjzvNap0GRZZhWRaCMETKZRxUFQqlwJirrWBB4CqAm+dVULL+XSmyXE6c7OeoFQiPTzi2jXanA9/zsLaxgUsrK8cnd5QrDe5XJ4TAtiwQQsqAcVFM7zMrjbZflGUZDduG5/sIWeHS3vY2KICOIPe5IYj9lMFJHQCGrIz+3IQMj3EaSlmzAkmS0Ga9PnlFo6aqkBUFcZpCN4wTETpw8BDxDA1u9fGVBD9uludlhghT7qsIjFmPeVFA13W0221YhrFYhxxGxO+++y6arRZWZnRDOupcplmshGvE3IfOPdyVcJwVk8maUwRheGS1r8JcUuOf4JNyURTImJsrTlOAiYBJkgRVUQ7InvnuxzX8l7pdqCxofm9jA6sXLsyt4TMRkoSEVTFzeYqAGTizGojz8fE4SbPRgOf7pQQypdjf3galFN3jZks9ZBDEfoogeQ7CekDmeQ4/CCrLGygzMMbzzoGyO5IfhlAVBe1mc2Lg0TSMKvB2kvzuemAvz/MqYEcIKVP9igJpmh5kNFBaWuGaBlXTSotQluGyitJmo7GwhjsfRxAEuH7jBn7/937v2OfDs4EmgU9Q96sl26Tvch5IkgTHtjF0XURxDHPB6ydJUkXaOsrzrL7DPC9dO3lepTZSdt/ViV5RFHS7Xezs7ODatWvY3NnB2uYmVi5ehH1McuftG43aJK8oCtI0hTXHPnlTDi5HzQOqVfXszg4M04TNs8oEpkIQ+ymBEAJSEzgaum5pYXQ61WcOFRPRsuFEFMfQNW16k2qp7ATPqzm7nc6xyGqE1IsCAWuOvd/vHyzvUWpsO7Zd+nCZT7e+D9/3kWUZGsckdbYjvPHGG3j6qafKZg3HRN23O46ca8ScUtXp9EEsnqmiaVqlJaOxyfI4kIAqdVVmPVfBJn5CCPIsQ8py8+M4rlZKsiRB03X0+33IsoyVCxewtbWF9Y0NrFy4MBIMngeUUvhBAJlNWnzC1TUNEasXmGd1I0llAxM+WTm2DRoEZYUqymyZS489BnVewbqHFILYTwkkDEGLomoYPWKts5u6/vhTWirspVkG2zSrLu/V+2P7l6RSa2M4HCIMw4Nc+HnHxwp0Ul6kk+cIwhC2bUNVVWg1a248O4a7ZySUS+skTeHY9sKWZh3rGxvwfR8vfv7zx97HLN82J7v7iZOkIFqWhTRNEQYBms3m8ceAA3LnVi9BeX0UVYVVizHwOAnv1ep5HoaeVxaUtVro9/vY2NzExYsX0ViA3KM4riSZ69dcU1VESYI8z+cSmePaRNxnL8ty5ZbxgwCQJGyvrWHlypUTJQ6cdQhiPwUUSQJa05oet9YPpTOyzJe8KNBwnMnLVJYnXYemabAsC1EUQTeMmTK73L2SpmnVIQmSBE1Ryh6VhKDdbM507UgAFEmCH0WIowiWbU8XL5sDeZ7jl6+/js9++tPT893nxFEPNyFkpm/3pJi31H4SFFmGbVnwgwBJlk0vPptnHDggw6O6KSnMDWMAcGwbCvfBy3KZX88kCG7dvo2L589jqdudOTnmRYEwiqDr+mgGjCRVhk3KuoDNPpGD71PmRXMoe8r6QVAVk5m2jaW6LIfACASxnxDcr86RZdmItT5OOzzzhVKKdqMxUZt8vBFzHbZtI0lT+L6PTrt96KEjzM/J/eSEUsgotUM0TasU+JI0hRLHc1u0aZYhjiKYllUuj3H8rJx33nkHy0tLOHcfH0weYJxbY/6Y4AHn44JnPIVhCK3VOpbfvt5s+jhSu4RN8JTSUulT17G9vY276+vwogjdVgu6pkHX9UMTJXfNSay6dhyKokDX9aphzBwnc/AncJABxlasfhAg8H2s37sHw7LgnGClc5YhiP0EIISg4FrS7IEcDIeglKLX7R6Z+dJhmS/jqPvVJ4EHlYauC9d10Wq1yu7wzDIveKaLosBkVn29X2p1nAUCi0VRwGP6L03WvLjKQZ5RXj4Oz/Nw8+ZN/P7v//5cn5+GWcflqY4nXRHMBPMHH39zCY7joD8cIo7jiQ3LJ6FO4uPdkBYhd8uyEMcx2u02JFbToGsaGo6DjY0NBL4PiRDYjgM5iio/vqZpUBUFfhBMdMHUoalqpdlzrFiCJFWxlIrcgwB3bt7Ek88+C/UUxOLOGgSxnwAkDIFa1WCWZQjCEK1G4xBpJ2laimMdkfnCiWqWz1ZjD97e3h6GrgvLNCGzXGbbtmGwqj/MIr4pWTpjg4LHFPdaE5QaKwVKHB3I5Of3y9dfx7PPPgvTso7tmwYwtZE3B8/Rv++uGADSCc4DKIu3uNLhJKu4Dp6/fpQMgMxcMnOpMZrmIZVHvo+VlRXs7O0hjmNQRu5JmiKIIiCKEDENnqVOZ2oRElCmPoZxXMonHzdILMuVNc/J3R0OcffWLVx54on7Hkt50CCuxjFRxDFolo0Q3WA4BCWk1IOpIc0yeJ4HTdNK98kRpM7/noY0TeF6XpmBoCggrES/2+mg027DtqyZpA4cpMjNkhGYxyIDDgJ4fNk86Qzura0hSRJcu3btRKTOj3cUeA77fX/g57iGM3eBspyeN4QeB3ez8IKuebRdpJp/+iiYpjm1fZ8syzjX68E2TbiuCy8I0G61sNRuA5SWAnKShDCOq8YZk46pqiokSiuN9qOyiObVfW84DhRVxe72NnY2NmZu87BBWOzHQJFlIGMPQ5ZlCJhyXz29Ls9zuJ4HmbUHm3TbjpP6uOohKQpESYIkjitCtgwD3XYbBZPJ9Xz/sNDVEaCUAjNIL45jxEkC27LmC3yVBwZwkNrJH9Q0TfHmG2/g8y++WGVwnITaZ/n4C5ZRcd+zYoBKIOy4WRo8C4RXpEZJAlPXK+v8uNeJa/YcBdM0q1TCifuQZfR6PUj9PlzPAyGkCvZfZPLTSZoiTlMMPQ+yLMMyDJiGUT0HkiSN+NklWS578I5fhxkrES5BUXfLuJ6HtTt3YDebaC7QQvGsQ1jsC4IQMhIs5RgMh4AkYakmWFQQUioeShLaLDB26GbGBIJi7pg0STAcDrHX7yMKw9LH3WhgqduF4zhlYMow0Go0qqAsmeEOqcY2Y1nMC6x0lolzXHBXzY0bN3D+/Hn0WNeoRRUF66ATSGEcBZM3uO/gFvsJrHY+meuGAUWWEYRhpSF/kslvHmG3aa6YOmRZxnKvh4ZtY2d3F1vb22W6q2lCURTYloVuq4WW40CVZQRRhP3hsLTiWQ47l8fgLrJjfzM1o0dlx87yHLfffx8Zq7wVEMS+MEgYVr1HObI8RxiGaDeblZVCKD3Ifmk2KxIdz1Uff/h44dA+s5DyooBtmuh2OpWu9jhx64ZR9ZLsD4czH1Q+vmn+dcr86rIsL5wvPwlpmuLmzZt47rnnKqIfJ92TumbGQQi5/4VJNSxC6xTl9ecWKle5BKWwLAsSLZt/nAZmxVBM00QyR2cnLu9smSYylt5YB7fKW80mlpjERJHncIMAe4NBFTytKponyDHMdQ/w7di2pmHA0HUEvo97N2+eKJB9liCIfQHk3K9egwQgYM2KOyxvnQJwXRekKNButUYCqTxrYfwm5hb33v4+ojCEKstoNRpY6nQq63waKKVlL8l2uyr3933/yAeFEDI5Y4SRek4Imo3GqRSBvHf9OlYvXTpUYVpv/1cR/ViV66RzmPX4E+aLvh8aMdMw6TpVaYg4IHM+NuDgPOrbaky6IY7jU5vsjlq5mKaJeIqPHSjPIY5jeKwf6aXVVXRbLfQHg+q1ScezLQvdTgctx4GmKGWKbhBgf39/JPWx0iia5YY5PLDqXrFtG4osY3dvT/jbGQSxzwlCCOiYZcMfxziOYWgaNNawwvU8ZFxLfZKyILspuV6L63nYHwyqBgxLzDrXJ1jnh3bFx8K0QDrtNizTRBTHGAyHE1uxVW3eJuw7jGOkWYaG45yKhG4cx3j/5k088/TTMz/LH/I62R/K0+cuiimkzz8DfAipjsBI/jhh5FT/OTTWCZbqOHjK4zwrr3kxzXI3TRPxlOMUhMD3/bIgTtPQbDahqip6vR4MXcf27m6lRzMNmqaV7sN2Gw3bRpplGHoehq47f277BNSDsDLzt1NCsH737lwrkLMOQexzgkTR4Wi+JCHL87LEnhVK+L6PNE3RdJyJKWA8UEZqhJ6mKRzLQrfbhWPbcxNS1aii9tBKkoRGo1FpfQ9YfvTIuUzJYc+yDGEYwmDBr9PAe++9h8uXL8NeUHukjrplX7Wf44G0ej43+53Xzm/Eaq4RbP3/ulU9Ivsw9hodI2pK6Uiq4zh1Hne1ozGJh5j5p08FUyYUVVWrpih18EyuvChg2zYcx6nuF1mWcf7cOaiyjI2tLaRzuI24Fe84DmzTRJZlGLpuSfB15dBFz4f721mqb5pluHvr1mL7OoMQxD4HijwvJQNq4A9JGEWglKJh2/DDsMwiYYGlcVCUGS6+72N/OESSpqWF3u3Ctu2FvgyeOTONPAzmmlFVFZ7vo89WBMBB4LJuxRVFAZdphiyiEXIU4jjGrVu35rLWjwtu5QMHxEprOezVKgAHEwTq/0/Y5zjB89dGAqUTAqanqV3CrfZp1vRxMGl8kiRVYmRAeR/4vl8WJkll79pJQm+KopQNxynF+vb2XE26uTvR0HUsdTqwLQt5nmPgulVzmYXPif2mlFYFefs7Oxj0+wvv6yxBEPscmOaCAVD6w5l2ehRFsAwDzoQskiLP4fk+9gcDJEkCh7lcnJr416K22SwaUViKZbPRAKEUg+Gwar4M1Cx2XoREaSlGdUoE9c677+LKlStzSbbOjTksOy7+9SCLRHFhtuQUfe0AJjYYN0wTYRgiCAK4rlsKhFkWWrVkgEkwDAPLy8sosgwbW1szA5e84UrBU3ZNE+1mE4auVzEm3/eRL0jw9RgNX1ncev/9hzqQKoh9BoosGwmY1qkiz3PEaQpN18vUQF2HM5ZFUhACz/exxwjdMs3RgOhxHtoFcqa5RbbU6ZRL1TTFYDhExFYaQK0IacaDvAiiKMLt27fx9Cla6/MSXEHIsbXST4RTPqZtWYAkHXKlnQS8kKxySdFSAXLoumV/UsNAq9mEaZpz3WO2ZWFpaQlJmmJnb+/Iz/LCOVInbkmCbVlVbCjLc3iuC28egp8wPu5vT6MI63fvzhz/WYUoUJoBUn+oeCSe3VBRGCJLU5iGAU1VywIh/lGUErecQC3Lgm2aI/5zSZKAOSsED4ZwvEIYrm1tGgb2+30EQYCB60JRFBRZBsu25y9CmgPvvPMOHrt27fh67RMw71X6sFMd6ziWKNiU719VVRiahjhJ5ibaeSHJMpI4RhTHZUtD5nY5znVrNhrIswyu75fB1SnNp3mWEtfxqdvTMiN47haKkwRD14Wh66Wbcp5zZzEXVVVhWRa2NjfRXV4+kd7/gwphsR+BIk2Bmu9wvATf9/3KT95qtSpSz/Ic+/0+wjCEruvodbtoOM6JszROY0muKAocx0Gz0YAiSdjf3y/jBBMCaMdFEAS4e+8ennryyVPZX4U5zp+rOn5U2iHHIt8jtjEtC9IpWu3cZei6LsIogiLL0A0DRq1S9DjodruwTfPINEjeRKNgVceTXCWc4DutFkxdLwme5cEfwtj9IOEgbmSZJmRKsXb37omybx5UCIv9CJBa4Gq8kChjQR/HcdBiVaUUJamFUVRJCExSVqxjYsekCZiU83wSKKp6YMWzlLc4SaCzzj4nsd7ffucdXHvssSOFoe4XOFl8mDns9xOqosBgBHcSqz3PcyRJUmWwqKoK27LK5ioLrhqnodfrId/exvbublXMNA5ZUcp+raxxyzTIsgzHtqFrGoIggOf7pfVuWYdrHiZkq4FSOLYNfzhEv9/H+YdMu/1s3P33ASTLRqz1cfT395EXBS6cOwdFlpFmWWmlRxEs00S31YKm63M9iNVKYMrDVbW0OyVSp5QiSRJkeY52u412q4VupwOLZSm4nof+YHCsIhk/CLC+vo4nT9lan3cc97vP6UxMybQ5CUzThAQsbLVTVsHqeh481q3LME20Wi00WYMVmaWQngaxz5MGKcsy8jyf6xpJUtmoo8ms94RJbMysyqUUlAVUdVVFf3f3VOMUDwIEsU9BwavxuE+7RqpJkiDwfZimCcdx4Pt+qRUDoN1qwXEcSEzpcF7wHO1x1PuUnhYIIQhZn1Wer16vFmwwJccgDNEfDOAHQbmcnePhf/vtt/HEE0+cqOH2JCziXwcwl1vhtGUM7hdURYFhGEiSZK5MjzzPEUVR2UYxCABKYdt2pf45cm1YCuhpZZAclQbJpZbJjNVpHZIkQWECaa1arYjn++WYJ+xLkiTI7HiGrsN3XQzZ8/mwQLhiJoAkSamzjsNWckEIwjBElmVodjrYHwxAWP9Ix3GqoplFretK2Eoq1evqE8lpp+0FYVguVScFlSQJBmtxxhsgp2mKJEnKBsiaVnZjUtVDvmHP87C5sYE/+IM/ONXxUkqRpSmiKELCAmtxHCPLMpCiQF4UIEUBwlYiaZZBU1UURVEJT/Hf/IeX9lNK8W//9m9l425JgqKqUNjfsqpCkSTIrJ2cIsvV3zL7m0vXet0uDNMstUu4K2ve722Oz5mmiYR9D+OibJRS5HmOLM+Rpmml6Fh9VzPcaoqinGpqIE+D3NnZwcbWFi6trJRFebUetMUCbQs5UUOW0W61ECdJ2WM1y2DzQsAJEwV/bgxdx+7ODlqt1okE7R4kCGIfAyGkyoQ59LhRijAIEMcxCpa2JQHotNvVw3MS+dbqmJJ06u4XjjhJkCTJiKzqNKiqWoqA0bJnZZKm1W9JkqCpakUckiThf99+G08++eTc/nk+cfCfJEkQR1FF3EntN1japmkYME2zOq6q6zCY9ICiKEizrBRea7Wq1/jvipBrr/9///f/4v/9P/8HhPl9i9okMTIx1N+vvRaxVoSbW1vlta2di67r5Zin/BjsXOaRbuC+9iRJKiG4nBF5xs4Z7DvRmczy3Cmx9yHnn6dB7u3vY3tvD+d6PVBKK2InRQEsEKyV2ARLmWywrmnwggB+EFSV2+PuN35Gpq6j77ro9/unnl30cYUg9jHQLCstHnpYrzxi1o4JcPMAACAASURBVGAURcjzHJ1OBw1mpQMnJ3UOSZLKVDA6W552ERBCEPg+VEWBskhwVCqV+3RmGXEZhYwRPVBOGJubm3j++edHNuWVjK7nwRsOS+1414XreWW1ICe5Gml3u92K9EzTLH3Bc/rMXdcFwLo9zQlFlqHIMo4TLvbDEHmWodNuj7yeF0WVtsfJPk4SeK6L3Z2d6n8exzAtC81GA02mK95qNtFoNEYmSUPXy5qI/f1yMmBkXvUjZQHxRSFLs7t2HQfNRqOSDtA1rUynHEt5XAQSAMpiUbwTWZwkCNnqbVLnMn5Wlq5jf2cH7Xb7oUh/FMReA6W0qjI95IIpCgRBgCxNQQgpA1C1YqQTPxa1B4uiDH5QlmlzWuQehCEKli2QHDcFjLljNE0DbLvMtsgy/Pqtt7C8vIzr168jYKsa3/eRJgkcpl3TbDaxsrKCp556CpZpQp3TqpyVMVQHofS+t8MbwZRxycwvPM/SP8vz0m/MJrzNzU289+678H0fumHAdhzYlgXbtqGqKhRVxflz5ypr/6TGBC9Y4qmIpxmkb7fbCKMIe/0+TMuCzsZ7XNdPndx59aquaXA9D0PPQ7PRGGlgzs9FY5PiYDCAXav2PqsQxF4DzfNKF3vEWmfl+HEUodFoIE5T2LVZf5Zuy7FQ0zhZtGH0JKTMR21ZVvlQHJPY8zxHv9+Hy5ppe55XZiokSdkQmRFap9uFaZpVqz5VUaAyBUwuPDWvD3peUqfMPSafYqHVcSEtYAVrqopWqwXbttFbXkae58jzHISQ0p8cRYjDsCz7930Mh0O8JZXNW/iE2Wq1sLS0dLw0VU60p3gP81Z+EoDlXg+bW1vY3t7G6sWLVQD1OBiR32D7UBQFrVYLnu/D9X00WKHTyHass5PvuvDZNTvLEMReA2WZH+M3d38wgO95aDWbcGwb/eFwxCo4lRS3Won3NHGp45I7pRQ+c8E4tj2xr+Y0xFGEnb097O/tYW9vD67rot1ul26oZhOrly5hc3MTWZbhU5/61KHjZllWBfbiOEZUe6B5QFJV1RG/93FBaw/6h4op38mk74sSUvrqCUGR55Xfvl4+ryhK5VrpdDqHcvKHrLhIQpkh4rouNjY2MBgMYNk2er0elns99JaWYNdchdMgYzSl9qRNximlZfs69prG5KT3+/2yo1h5cY59DL5fUru+Cutf4AUB/ChCQQhsVtzFt1FUFVmSIAiCEbXKswhB7AyEkEPNqUEpXM+D67pwGg10ut2yKQGlFbGfpqvkqFu9bqkserwgCJATgk6rdfCQT3jYKaVwXRe7e3vY393F7t4e8jxHr9dDr9fDbz7/PLrd7gjREELw85//HF98+eWJY6588zjI3sjzvCT8oigDqLVCMFmSqkCnoiiQFAUyRoWepoFXzk5KG/0wQSlFwYKvPGOHF+WM9yCVFaUU/NI0KOzvWeXzlmVVcrrnzp2rXieElN/f7i7W19fx1ltvgVJafX/LvR46nc6h61PPY68bEcc5b8JXvGNoNhqI4hj9wQANx4F1wsmX3w/1cUqShKbjIIwiREmCgjVhr/T9JQkyMzZ8318oDvOgQRA7R56XLe9q1WzczWBZFnpLS5AkCQnLQDAN4+CmOoXla7W0nFGluqhrJssyRHEMq5b2VumWM7fK7s4O9vb3sb+/XwYvl5awfP48nn722ZE4wiSsra2h0WjM1UiYF5xoLH+ej6OoER9hZM873tM6UbAHVJHlUpedZXNw1cCMtV8DUPV+Palroa7ZDpQWNyGkzMVmqa95UUDGQYckjjrJKYoCTVVLIpdlyIzA+fgW8TlrmgZFlhGzWgQOWZbR6XTQ6XTwxBNPAADCMMTe3h529/Zw+/ZtBEGAbreL3tJSSfjLy1BkeWTFsCi588/NqibtdbtY39zEfr+PlQsX5j7fIzFW2MerqZU4RpgkcF23UiylABRJQpGmldX+UWkK3W8IYmfg1jqXFQ08ryxjNgx0GakDJRlKsgxFVU8tCwbAQpMDL5ia1dSZu2AkSYJt26CUYm9/H7du3cLm1haSOEar3cZyr4fHrl3DZz/72YVFu67fuHFiBUdunY9jhPCZtctJlRCCnKf5MUQslVOeVBzG3WVSrWkHSvIdsEyaujtsXlKrNEwkqdJ/l9nEU1mJM1YQi1rHEspen0EYlk3JjyAn27Zh2zYuX74MoJzo9/f3sbe3h+vXr+NnP/951f92eXkZy8vLC7ko6lb6PDLSvaUl3Flbw8B10T6hxTwix4HR1axpmmWRXRRh6HmlVhN7bgj7zjzPq9pZnjUIYgdzw6QpwEjdc12kaQpN08qUs1oKVZamME6Z1Cmlo6uFOSDhwB86zT0TRhGSLEOaJLh16xY2Njag6zq6S0t4+qmncPnRR0+kqbK/v484jnHx4sWFt6VjltYkKIwoj7pJOQkTQiDzOILjVBWJddLk/l9wIuDWdC2Pu+6TRW0C4N+NXCNuXrBFCKmqIsfHNk+Q8Dh+bd0wELKUSWeBxiiapuHChQu4wCzmX/3qV/jg5k2YloW33noLQRDg4sWLWF1dxYXz56cL11G6UAUph81UTj3PQxjHsE+o1V99N3y1WxsPT5P1WLptw3GgKgqyNEVL0xCGIRoTUiTPAs7eGR0HNd96EASVOqDGBLFGPprn5WunSerAsfc3yT2TpCnW19bwwa1b6Pf76Ha7WF1dxe/8zu/AcZxKqOykQlk33n8fj1+7dqwJTsLsFNF5XE6V/5RVgvIipnkhS9JMd9OMQR45tnmChMfxZ8uSVImDHcfIKIoCr732GqIowiOXL6PRbOKJxx9HFEXY2NjABx98gF+89hp6vR5WV1awsrJSruYoBQFzdS086hK8enR7dxePrK5CPWlMpLZ6Hb+SKpPTHjIZgnazWcYUsgyyLMN1XSwtLZ3s+B9DCGIHqkYaISs2kWUZFKgkAjgylsWgG8apCz2dFFEUYX1jA2tra9jb20O708HS8jI+97nPHcqlPmnmA1AKUm1ubOATn/jEifYzC4sQVr2y8cPCrGD2XNd6zglgHKZhHFQSL2D5JkmCn/7kJ7AdB7/1xS/il7/8ZZX7b1kWrl27hmvXriHLMmxubWHt3j28+eabaDabuMCs+ZNMhooso9NuI4oi7O/v4/zy8rH3BeCgeciUOIWiKGg4DlzPgx8EaDYa8D0Pyysr8FhLvrPma3/oiZ0QAsoyMxLmfkmzDNa4WBKAnOlwGKeUJ31Sch0Oh1jf+P/Ze7PuNo5sa3BHjhgJcJ4kSqLmwZps17VVtiRX+Vv3pbtX/4J+66f+Ff3Uz/3Sa/W/6Ke7vqrr+m7ZVaYGyxqsydYsSiLBASTGnDOjHzIimQATQGKgKLG8l70ogkBmZCLyxIlz9tlnGUvv3qGuaZiensbh+XlcuHABNV3HUDod+cAHMXr0zuh5+fIlZvftG2hzjn7huu7ubKvb7SgwgOK1FuAJ2W4Me61Ww8LCAmZnZ3H69GkAvsMS9T3Ksox9s7OYnZ2FbVlYW1/H8vIy/vGPf0CWZUxPT2NmZgYjLRprtAJhuw1JFFGp1ZBKJpHpsxqUAKCCEGg8bbsWUUQqmYSuadB0HSAEIvvedFafspfwL2/YqW37zBFdhyLL8CiFSEjkdt5iIZtBKBduM+odGDEcjuPgzZs3ePHyJQzTxOz0NM6cPYvx0dHA89vY3ERCkoKHvdmAB4lDz+spHON6Hp4/f46vL1/u+rPdoBuDyGPn770lXqfvLY433scCn0gkUK3VYNl2Y21FBNbX13Hz5k2cOnUKBw8eDF53HAdS82epL30brg3gsflz58+jtLmJpXfv8PPPP4NSikOHDuHA3FzsZ4NS6nvthoH1YhEJVe17USZszFH306MUqqLAc12YpglRFFGvViHL8u+GfS/CMQzUNQ2SKEKWZdQ1raHBdBi2bQeUvYGjg0Eql8t48fIlFhcXMTY2hlOnTmFyYmLb53TDgON5yIU5603xx076752w9O4dcrnczlfvdTE+nqTcjVBMpzN2jIH38V20oj424+3bt7h37x4+++yzIHHK4TA1zGC8jHkUHrMgCAGVlMDvmDQ8PIxTZ85gY30dL1+9wuPHjzEzPY35+fn2cWs2/4ggYGxkBIXVVawXi5jqlwJJiG/cm14O/85rADRNQ3F9HfsOHfIbeDvOnkqi7p0r6QG2aaJeKoHAj6fX6nVfDKqF12E3PQC9Ytsj3OKhdl0Xb9+9w4sXL6BpGg4ePIhvv/22pf4I51UrkhSpl8GTrEQQACZZ2wuePn2K4ydO9PTZuOh2bLxB8q5UE3YIxfDuWi3RZxUmpz62Mk6//fYbXrx4ga+++gq5JrEywA/FNEv3Ri1EUWElAmB0bAyjY2OwTBOvFxfx061bkEQRhw4dwv65uW3PDAGCeLiiqshlsygxnZwodlFchNlLzWyoMDLpNCqVCkqbmxhjnZV0Xd9TMgP/soadUopqsQgPflUc50wH3jovLglRqWzH6VvPOdJgNXls1WoVL16+xOvFRYzk8zh29Cimp6c7evW6YcCjFENt4pUBh5sliLuNs29sbMAwzZ4ojt2gW1O3Wx57LHTyyPvw2IEt6qNpWQ2G3fM83L17F6VSCd9cvYpE89xloQvTNGP14yVtEpR8HEePHsWRo0exvraGVy9f4uHDh5idncX8/PwWZ7xpHg8NDUEzDKxvbARCYb2C8EU0bNibxkwIQSabRaVaxZtXrzB76NDvhn2voFoqwTUMpDMZiJKEeqXS6K2HJx8hQVHMTmXPPc/Du6UlvHjxApVKBQcPHsSfvvkGqZgcZep50HQ90BhpB16owRX9gqrKGEUmz54/x5HDhwdXmDUg7JbHThGDudOn4e6EgPpoGKBMH8W2bdy4cQOiKOLy5cvBnOALebiq13HdWDvRuN84ATA+Po7x8XGYhoFXr17h+o0bUBQF84cOYXRsrOH5IoIQCIWtra1hdnq663vAwa8v6NTU4n2iICCTTqNar2OzWEQ2l/N35B8QGaAf/Esadtd1YVarUFUViqrCtqxGb70ZrHwc6E+HJGqS2baNp0+f4umzZxgaGsL8/DxmWMeZbqDpOiilsYpVwtx3YOuBJR2M/PuiOLIBdPn2HVDYjHfijm+Jivt2e4xOCFMfKaVYWFjAyOgozp8711DIhqaxULAYe0yDJpDulBnVRALHT5zAsePHsbqyghevXuGX+/cxOTmJs2fPBgl+WZaRHxrCZrmMWr3eM0smCBexxbRdSE+WJCRVFaViEWoyCV3XfzfsHzOq5TIESoOtqW4YbWPrQdwOvTeJbZ5gruvi+fPnePLkCSanpnD58uWet4Ke50E3DCQSiVg7iqjtavC35veAeUGU4sXLl5jdv/+9TP5uQ0RuqO3ae0eHxaRjodIAPHqRJf/X19fxyy+/4MiRIzhy9GhHeQTPdbvqoNTsFMQFIQSTU1OYnJrC5sYGnjx7hv/8z//EoUOHcOzYMSiKgkwmg0q9jvXNTV/uuc/vUyAEbodxJlQVpmWhvLmJZDKJbDb7we1Ge8EHGJDcWdi2DbNeh6KqEEQRFlOB69Qyi3sp/SoHep6HFy9e4L//5S/Y2NjA5StX8Pmnn/ZV8MF7mMYtzw7ojp3ex/7njYGfP3+OI/PzO8bL5ogTEtr2mV0y7L2MNeIg/Y8DQGlzEz/fvo2TJ0/6ImAxjtsLIaDfjkuKquL4sWP485//DNM08Ze//AWPHz+G47oYzuXgOQ6qtVpPx25Omnb6bnizDkPToOs6LMvq6bwfGv7lPPZquQyJ+i3ZKKUw2nnrYU+qKWzRDbhmyJvFRTx69AhDQ0O49OWXGA4LEPXoJbiuC8M0kUwkYiXA/FNtZw50wtrqKlKpFIZyuW2f66fQaVBwPW9XttFx7+Egqn0bztv0+/Nnz/Drr7/i/LlzGO6iRD6Swx4DzZK53YCLjiWTSVy8eBHHjh3D48eP8de//hXHjh1DOp3GZqmEdCbTtdxAEHZiObFgd9Hm+VIUBbquB70GuhXC+xDxL2XYLcuCpWkYSiRA2O+u50XH1vlkYMY9ULDrcqJRSvH23Ts8evgQCVXFZ59/7hcTDQiapoEAXbN1ujU0rxcXMccUApvvVU9bc7RmvnR7LN7Y4b0XJzHEOesgGlj4/2iKkVOKBw8eYHl5GZevXIEgCNBZviWWrHOP/G1CSFddsMKgngcSckIymQw+//xzVMplPHr8OAhPptJpTAzgWQmHFSP/Dl+cTGfdqfL5/EcfjvmXMuyVUgkyIVBVFR731kURShcrdNwvnFKKwsoKHjx4AEIIzp47h8mJidZGoIc4q+04fps+JlHaFQjxFSVjwHUcLC8v45MzZ9ocrvHKwoYo6toGGc7hBjPujmXQ5401J7r4brcV2LSpc7h16xZMw8A3V69CVhQ4juM3XbesWJ6n4zg99Yjl+iy9tLijlEbGgIdyOXzxxRfY3NjAnbt38ePCAs6dPo2DBw/Gnt+UHb+Zk8/1+Vt9RlEUVOt1lEolTE5O9k1r3m38yxh2wzDgGAZyLA5th7z1bWjeunHvBIjlFRaLRfxy/z4s28bpkycxMzPTOdaH7o2dVq/7BSo9SJ+KgtAxxs6xtLyMkeFhqF2cJ7hefr9aeKw8idugrR3T2+TwuvhudgQxzhuZQGXzjFJfMbEb4x8W8vrqq6+CRU2SJEiCADOmYbctq2eJjF7vNu2w8x0eGcHXX3+NJ0+f4snTp3j+/DlOnzmDmRg0yFa5o3ahI34d2XQa5VIJGxsbmJ2d7XwhHzD+ZQx7tVyGQkjgnXfrrcfZRjuOg4cPHuDt0hLOnD6Nffv2xTc2XXrstmXBchykU6mekoaEkKCVXCcsLi4GjRr6QdhYEwAuTzyGXg941k0/2yEw7O+bw94h7xL1bfLPBIsXjafZHka1WsW1hQXs278fJ0+e3LYIKoqCuqb5GvUd7knQ4LwXEBJ0jooLTrvs9FzIsoypqSlks1mIooj7v/yCN4uLOH/+fNsFi2J7QZI/1PahMN7G0atUsLq6iunp6Q+z2C0mPt6RdwHHceBaFhJMbtc0Tbieh2QrD7RdiXiLvxWLRfztu+9gWha+/fOfMTc315XXSbp8uDVNgwB0pT0ehiiKbasIOUzLwlqxOHgPpsVCxg09Cf3e0Jou4qfreb6x4NW0O1AMFO7SE/ybncfD1k7DC/1E0//h2dAwN7oY7/r6Ov7xww84fvw4Tp06FTnHVFWFQEgshoemaf2FHZg+S1x0038gl8uBEAJJlvGnP/8ZaiKB7777DktLSy0/07LFYIddIL+CTDKJWqXSVcP3DxH/Eh67aZoQPC9IEnF1t0gmTIsMOs+sN6/iruviwcOHePvmDc6fP4+ZmZng/TsVGLAsC5brIhOjA30r8PhoJ4/43du3mJqYgPi+BJKijH2Tp9/8c5vHHmb98M+GH2zKVADZZ8MLBz9u+LPB2cNjCxl3oc34Gi4t4rXweDvhzeIifrl/H3/4/HOMM42TKAiCAEmSYFpWxzCdxuSeewXxTxh7Me0mpCmJIrLZLMrVKkzTxNmzZzE7M4Nbt27h3bt3OHvuHNTQM9zQH7fFWFv+lX1OTSRQqtVQr9c/aomBfwmP3bIsiMTvSel6HhzXbZgQAdrQooIEXciwFzc28N1338HQNHz77beBUe8JcQ00pajX6xBZGXmv4O3gvA7hmNevX2Nubq7n87RF1ALay0JFoxtscL4+LzEPn7f5df571GfbnbcbRC3CcY5AKcWvv/6Kh48e4euvv25r1DkURhDoFG7rKxTTA4J6kJjf81A2C1EQsFEqAfAFx7799ltIkoS/ffcdlgsFANsTpq3Q6bySKIJSilq1Gmt8Hyr+NTx2XUeKcXUtywIojeY8t9uqhR5iz/Pw8OFDvHr9GufPn8e+pjDFTvK6TcuC47oYymT6omQJggBQCreN/k29XketVsNEDEMyKPSy09mtqtOuWDHYCit1mxi+e+cOSuUyrly5EtsIK7IMAX4PgWQb1kvfoRj41x871t5loZ8gCMgNDWFjcxPVWg1Zpu10ju2Ob9++jbdjYzj9ySdQZTlWL91OUCUJ5VIpVo7iQ8XHOeouYNs24DiBYhxvUr2NGtdhMvCHuFKp4G9/+xvqtRq+/fOftxv1DtvBfmGwXqXdUDSjEHjsbbycN2/eYHbfvh2jEUaZt14LwD4W3nE347QtCwsLCzBME5cvX+7KAPOevZZptnyP53l+cduAPPY4sXbP8/wdVhf3IZ1KQZYkbDJjyzE+MYE//elPoAD+9t13WFld7fjsNSfro6CqKvR6HWabe/ehY8977KZpglAKSZbhuG7rpGmHL9swTTz57Tc4to1z589j/759Ld/bi4mJ8xnbcWAxsbJ+wT2mdoZ9cXERFy5e7PtccdFzJeMuV512833HLVTSNA0LCwsYHxvD2bNne5KyUFUVlm37re8iciSGYfiEggEsioQQvzVdh2vzQu+PC4H1SF0rFlGpVpFnmvKUUgiiiAsXLmB1dRU/37qFyelpnD1zpm3RlYAWchrM2+ec9kHsZnYLe95jt0wTsiBAIL6UKYDtSdMOXrbjOLh79y7K5TI818Xy8jIWX7/eWtFDFLadhGEYAKV9xdY5uC57qxh7qVSC67oY3ckO7s1FTd3S5sKl46y6MMxWaWawBMUrYQYLfx8/bvP4Qjz85n8Hn+tQ2djumqOwubmJv//97zhw4ADOnjvXsz6RLMv+vG/BjtE0DckBOAkcsRYtVq3a7WKSSqWgKgrKlQoc5vWHQz8TExP487ffwnEcfP+Pf8Do4G23O7skSfBcF5VyuasxfkjY0x47pRSmriPL4+u2DUmSouNmLSaaYRhY+PFHZLNZHD58GGNjYyhtbqJQKODe/fvIZjKYmJjA5NQUhvP5notkiD/g1slbzwuaFg8q7ieKYkv1u9eLi9g/N9dTyXg/CNPhAhYD3ZKcDRAuaGK/NwhANTFY0PT5SI5589+ijhH6d8Ck4eeOuFcBy4b9u5OE7/LSEm7fuYMLFy70l4zHFjfbME0ksd2Y6bqO1AA9Ul6N2lZNkkZXncbBcD6PlbU1lMplDOdy25wxWZbx+Wef4fGjR/j+++/xx0uXWvYybbcIiYIASZZRZs7NTvVg2EnsacPuOA4Iozk6rgvPdbdvrdpMwlq1in/++CPm9u/HoUOHUFhZgSyKOHjwIA4ePAjX87BRLKJQKOD2zz/DMAxMTU0FTX+79qzbGFGD6Wy35N73AEEQ4ER4c5RSvHnzBl9//fXAzsUOvPVv0igdTNGUfIsygBH3h4eSemnK3S/CydN25erhf9MmgxK+5ufPn+O3X3/Fl19+2b5naBdQZBmGaUZqrmuatr2rUp/o5LW3K+3vBFVVkUgkUCqVkG0hEEYIwYlTp5BIJvH9Dz/493J4ONbxg8WXMc60eh22bf9u2D9E8C/Ktm0QIFrJLmKibRSLuHbtGk4xrQrbsgBC4IRCF6IgBJ1izpw5A61ex3KhgHdv3+Lu3bvIDg1hanISU1NTvrBQx8G2yOhT6jcBkKSBTjKRFfQ0Y219HUlV7Z3Hy71XzhdnoS6KUGyVsV+84CPdSwkAW4Z9V5KnPYTemndmBD6r58GDBygUCrh85QrS6fQ2ZlWvCWJJliEwiYEow54ZMFe7Y5Ww6/ZcE0EpRTadRr1eR71WQ25oKPI9AHDw0CEkkkksLCzg008/xXREK8fmRSg8dkkQUDOMnsb5IWDvG3ZmMEzL8id5jIdjeXkZt27dwmeffoopVrwhSRII0GDYOfjkSKXTOHz4MObn5+G6LtaLRawUCvjpp59gOw4mJycxNTmJicnJyL6OrQooTNturWvTBwTG2eUyqhyLr1/7YZhOCBlwIBTKCFMWm0IrLdFD3JWfC9idXqfdVFGGQULhCsdxcPPmTdiWhatXr24Z3+YdSyjkxBcH2umeYsv71A1j2+Kg6/qOUFkFQYhMylPPgwf01NOUMmquoqpQZBnVej3SsIefoampKVz68ktcu34dJ0+dwvzBg51OsnUNkgSb9Wr4GLGnDTv1PAjwHx7qeZATie0PYdPvL1+8wMNHj/DHS5cadK2JILQ07M0ghEAURUxOTGCKPTjVeh0rKyt4/fo1bt++jXw+jwnmzeeGhoKdRdQ21tB1CIS07vDUI0RmGDzXhcAeNtd18W5pCadPn47+UChR3Iqv35OB7voTPnbTY++FFcPfT+Hnb35cWEAmncYf/vCH9otTuGp2awBBbL/d9SvMsNu23SD4Va/XY/fU7QotdjJuL2EzSgPJBn6N6UwGpc1NaBE5gublJD8ygsuXL+PHH3+Eoeu+tg77W7MjFZ7PIqvMrtfrSPfYpm83sacNO+fVWiwME8mGCSXhfn30CK/evMGVy5cjt6iiJMF1nHjnJqTB+GXTaWTn53Fkfh6O62JtbQ2FlRVcv3YN1PMwOTWFiclJjI2NNVC1HMfxxb5Yk+JBQhBFgBC4nhdMhEKhgOF8HiprRBKe/A0eXwxvsRMaPt8jo6jbIqFBIhyT7QqEoFIuY2FhAfv27cPJEyd6T1KH5m/z64TNb0mSIIkijCYlR90wdoTO16pgiT87sSV4OfOp6fV0KoVyuYxqrbbNsEftetOZDK5cuYKFa9egaxouXLwY7FDDu4vwNyCyZ0OrVID3WKA3KOxpww6mA+LYts8mAZtsETS7O7dvo1wq4eqVKy31NURB2EYP7KQYF+XZSqKI6akpTE9NgZ47h2qthpXlZbx4/hw/3byJkdFR35ufnAxCHTvR1UWI4LIvLS9jenq6gTIYvp6dQj8c9nbJyx1FGxZTO6ytreH69eu+Aujc3M4UtDUxiRRZ9huew5+Ltm37/P8B7wIDEF/qOvy9BInuGHmibcn0EARBQDqVQrVe9/XkQ45QqzupJhK4/PXXuHHjBq5fv44vvvjCN+6c6tz0PRJCjSNcIwAAIABJREFUIBDit538CLG3DTtjwlBWdNCA0Jf59LffUC6V8NXly20LGyRJgt5lQiXQGWfnbDYDBMBQJoOho0dx9OhRGKbpe/OFAv759Ckc18XExAScuTmMj40NNHnKvRaX3SMKP79w/PjxgZ2jLQZgjD0arRPzPtBLQvP14iLu37+Pzz79FJNTU74X+x4WJUmSQLHV47Rerw+UYdWMKOqj47oQO1xrs3JmK2QyGVRrNVSq1UbWS5vFVpQkfPnll7hx4wbu3buHC+fP+2NtQdEUBQHa74b9wwOhNGj9xZNSzQmnQqGAZ8+f4+rVqx1bhAmi2JBMoS1W+8ixYIvq1u7dsqJgemYG0zMz0DUNhdVV6JqGJ7/9hps3bmB0dBRTU1OYmprqOfYXcMMphSgIft6AEJQ2N6EoynuNKYaZMb2gWV3xfaKbc1NK8duvv+LV69e4/PXXyGQyPXUf6hWSJAVFerIso1qtIstyOwBaM7L6QHNYxHXdts9YOy+9GbIsQ1VV1Op15HO5bcqeLcckCPjss8/w97//HS9evsT8oUNb56eNCqBEEGD8btg/PFDXhWPbSLIep/6LNKgcrFaruHXrFr744otYFXiiKPrJnLA4UBdGhbD3t/LeGwdPYZgmhvN5HDxwACdPnoRt21hdXUWhUMCvv/4KRVF8ps3UFMZGR1tqujQU7jQMyI+/8graQqGAqQha2I6CkFi68K3guW5PzZgHgVZFSc3wPA937txBpVLB1atXkUgktvTa39eixJLvXKO9VC5jKJxHaqoxGISRJyzOT+ETGSgQSXWM66U3I5vJYH1jA5quI9OFMyLJMr748kv88P33GMpmMTY2Frn7IvC/O9s0IX9kDa73rGH3XDcoHY8S/LJtG9cWFnD69GmMxmyYy7P5tm33FfPmngzneIenE4/LW7YNx/OQDU1YWZYxOzuL2dlZUEpRKpWwsrKCx48eoVKtYnx8PCiO4gtVp4dFFEV4bLFabseG2Sn0aUDoboZiYrzHtm1cv34dsiTh66+/7qlx9KAgy7LfZMZxUK1UWlNaQ/mVwBnp5Ii0AJ/PnE0WZsT0atA5EokEREFAuVrtyrADfijns08/xY2bN/HNN98gmUw25MM8zwsS45qmIfe7Yf9AwOLroiSBRiQ8b/30E8bHx3GwE7c1BJ4p5zHpfhDE3pkH36yMZ+g6BKBlP0pCCIaHhzE8PIwTJ07ANE2srK6isLyM+w8eIJlIBN786OhoS70RSRRB4BerVKvV2IvcwNCHd9iOcvm+0C7GHgh5jY/jk7NnGxty7EL4SJYkv1jPcVAql3E6ggceRsMuN7TT7er7Yu/3XBcILcKtGC/dQBAEZNJpVKrVoHl3N8/lxNQUDh8+jGvXr+PK5csQGKUZ8AX3iCBAFATomoZczOrVDwV72rC7rgtZknyPNBQPffToESzbxh+++KKrQ4qStK36tF/wiRQUn1C/OYLpOEglEp0NAHs4ZFnGvn37sG/fPsDzsFkqoVAo4P79+6jX676eDfPmw2Xk/JpWCgWMT0zsmERv20vo8XM8HrtrHrvnBfz/ZmxubuLatWs4duwYjhw58p5HFg1BECCKInRNg2kYXRW8NXSf4r/HMKIEfpLeZeJfnB8+KMG8TCaDcqWCSrWKsR4YPseOHUOlUsHt27dx8eLFIOFrcQkGSmHo+kDG+j6xdw2758F1XSiKErABFEXB0rt3WFxcxDd/+lPXBoG/33WcgcdHw8VJhq6DUNq+n2l4G8s9qa2BYnhkBMMjIzh56hRMw8DKygpWmKFPp9OBNz8yPAyREBQKBUz3KTrVM3r12HepiXVwfkR73kvLy7hz+zYuXLyImRZt5wi6awI9KCiyjPX1dWQymZ7vW1D5yuPSHYw8IQSu40AAAgM/KIiiiGQyibquY8TzulfCJAQXLlzAD99/j+fPn+Po0aN+QSP8ClnLtmF+hNICe9ewM49dUVXYlgXbcaDrOm7fuYOvvvqqpxi5KAgQ4G/TdiLpxY27aVmQVTV6knKDvvWhjsdVEwnMHTiAuQMHQD0PGxsbKBQKuHv3LnRdRy6fR2FlBadOnRrk5cRCP6ZtN4uT+Pmbz/3s2TM8efIEX1661FF8SiSkpbrmTkGWZWgD6ucZ9uJbOTqcKGC7LiQWyhw0spkM9LU1VOv1xoRwTIiShC++/BL/9V//haGhIWSHhgDq93Dght1znJa7sw8RH89Iu4DneUGTYlEUAUWBZZq4fecOzpw+jXw+39NxSahJ8E7Btm1QSpEIN+kFGsrH+wERBIyOjWF0bAynz5yBrml4/PgxQAh++OEHZLNZTDI6ZT6f33GjKQDoJbBFGZXVYf9zlklDQi6UBOS/b/sbpahWq4HnGVSSsusOV5YGhVDsd9u2IbHkMwDc/+UXrK6u4urVq7FK9d+/v+7nVOqahnQLOdueEarXEAhp+D744rVTDdETiQRkSUKtWu3JsANAMpXC53/4A27evIlLly75Tlxo4TJME6nfDfsuw3WD8mVRFCEQgndv38J1HBw4cKCvQyuMO7tTMJmKJE90NVSA7oCRTaZSECUJ+2Zncf7cOWxubmJldRW3bt2CZVmYYnH5iYmJvtvxRaFBq4NuNc7gPz3PC1g7lCXhuPE2TROGYUAQhLZhBc7sCH6G/s3HQNnxmxeBdtB0HS5rL/fo0SO4joNPL16E53nQNM2vXhQEEGYkBNaOMNxA+72DEOiatnMNVKiv7cIrtIkgwLPtHa8OTqfTKFUqfleoHguvxsfHkR8awuLiIo4eObJFcKAUuqYh9RFpxuxNw+55DfQqSgieP3+OEydP9j25FFkGdV1YTbobgwClFKZpBm3MoiRFA699gDH+tdVVzB08CApggqlPfvLJJ6jX61gpFLC4uIjbd+4gl8sFMsRDuVxvYl/UV+lzHQeu68Jmrdtc1hUnyphyAykQAkmWg36tIksG5vlYwh536LPtQAhp6+U1LKwhL991XTiOA0EQcO/uXWQyGZy6cAEA4z47TssEIR+7x0I5oihCEEVfX3ynw0qUolatIpVOw+HhkYEcNiRh0FTo4zBGTFR7vkEhnETt1bADwLGTJ7Hw4484evRow+v2R9b/dG8adrDO9cxbX3zzBrIk+V1X+nlwKIWaSPgVaYYxcMMecNfbCDOFaZJ8TP1ck6HrqDMJ1GaJ0nQ6jfnDhzF/+LAvQ7y+jsLyMq5fvw7P8wJ1yomJiW1a380G3GX9Zl32kAfXw4y0wnTDCfO+ozzcZrjMm99JbniDd920YJimiQf37+PgwYM4ceLEtnGGdyAepaCeBze8G7FtP1EXuh+CKAYL1k4YfN4yTlXVIJTUK/iow6GtKLhsARSZTPQgQorNEAQBqWQSmq43FhB2iWQigeHhYbx6+TIw7vz7+piwNw0786gE5hU9fPwYn3zyie9JWVbvwkeEQJZlEEJgmCbas4C7GC78UIBlmhCo39O0U+FGA00S6NnAr6ysYHJyMugy1QqiKAZ0ybOUol6robCyglcvX+LWrVvI53JB7D6RSATd6IPPSxJEQYAiy77RYr+Hi1e6BfW8XZMTWF1ZwZ3bt3H6k09wOFSWHgZflKKMDDcWwYLnefBc1+/05XlwWMcsjmaDz//vFpVKBbl8HrIowrasnvRiuGGOUzFMKYXjOMFzE5ZZHhTlkSOZSKCuadC7pHJyOI4D27Zx/MQJ3Lh2DQdYjUs/RVS7hT1p2Cl7SBRZxqtXr5BJpzE7PY1KpQJN15GT5d48BsaFV2TZbyzd7zj5ZKF+VZ/JFp1uJn1YRreXqbdcKGB6ehqSJAXNvjuN2XVdiLKMyakpjIyOwrZtlDY3UdzYwKtXr0AIaeDNK+yaosAr/HoZO6W050bP/eD169e4f/8+Tp85g7n9+3s7SCgRGxjp8K6H73jaGHxCmCQv/z8G66RSLiObzUJWFNhdeLeBMefeecz56bIKcL6rChRPufLjoAw8pUgw6RBD13sy7Drjq4+NjGB6ehrPnj7Fvv37/RDh7x777iPsAT5+/BhffvklAL/DUblc9hMs3epQhyafmkigVC77k7MHwxI26Bw2C1lwfelePJrwIx2nuw/1PKyurOD8uXNwXDfoqxo2wtyjdlgsnDctAXwvUpZlpFIpjI6O4hi7F5VKBSuFAl6/eoW7d+9idGRkS7gsxMYIN4no5eHuRV2xH1BK8fjXX/FmcRGXLl0CCOl9xxAyzpHX3sngsxi/w2i8/FiSKEKSZf8nKz4Lo1ypYHh42A+d6Tpsx2nZmzcItXCj1sN3xDnhzYbdP1yIJtlHeCZY6AQBiqpCMwx0Wz9tMkp0ivU9OHHyJP7H3/6G8clJX27gd8O++3CZ57m4uIiRkREMM3qjJElQVNWPj6tqz3E4RVECD7ubRE2Yttg8hTmFkseq+zVXzcY56qEpFotIZzJQVBWUxV55ostm21KHF2PBD6coigJZkiBLUssq1Vwuh1wuh2PHjzcIl/3222+QJMkvjpqextjoKMDjxz0YDc/z3psAmOd5uH37NqrVKq5cuQIiCKjX630vLF3vVkIGn+d4PBbuiDL0IjPw/P9yuYwDBw748XtBgNNk2IM5yn72C9u2IbHcCb/ebei0yHVA+HNJVUWpUumK3ECp31NYFAQ/DEopUskk9u/fj1evXuH82bO7UkzWD/akYbcdB57n4cmTJ7h8+XLD35LJJGzLgmEYPbcFS6gqCCHQTTOWYQ97KATRk9s0TcgsgcgxqDhkKyNfKBQwNTnp5x5sG3VNC/S6AX8hTKgqZGYUepEbaBYuq5TLvjrl48fYLJUwNjYWhG3iKGyG8b4EwCzLwo0bNyDLMi5fvgxRFLdCcf3uGHpc1MLg4UGFS1M3GXpOC6UAyuUyFEUJQpWGafrsHGzlega1C+LjaDCwvA4g4pq5AqTA530P40gkk6CVCvQuyA2GacL1PGSbuP0nTpzAX//zP1HXNIz87rHvPjzXRalUQm5oaBuVTRRFKKoK0zCgqmpPCSiJJf7MGBQonnhpZdCBrTBMc5uyXmPP7cAfWtd18e7dOxw7dgybpVKw1ZQkCdls1jfkAzaahBDk8nnk8nkcP3ECpmGgsLKC5UIBjx49gqKqDTLE7cJc70sArF6vY2FhIaCA8tBLsP3f4fP3AsKS/OHG2I7jYGNzE4lEArbjoFytwvU8mMwAcvmKQYa2XNcFZXmAMIICpqixY+u7FRBz/oeOJbMwlK7rkc2um+F5Hgxd93ehzBZwh0pRFIyNjWFtbQ2zveZSdgl7zrBT6rfCK5VKGB8f3/pDiLaWUFWYpgm9Xkcmxpcf5V0oqtpWHKjZS28HHoZRmimDnUfWFRzHgWXbsCwLpmmiVqthKJdDMpGAxDw+m+vrvIetp6wo2Ld/P/bt3w/XcXzhsuVlPHzwANVqFRMs+TrJ4pxhhOOqO4WNzU1cv3YNx48fx+HDhxvPD2zjzHcDfnffS46A8f+rtRpGx8aQzWbh2DYMy0LVtlGuVGCqKmQ2BwZFH7VZGK+X43EDHyf+3jxTE6qKuqbFSgzrug5K6XZ2ECHwXBf5fB7FYnGbQuyHjj1p2AFgo1jE3MWLke8hgoBUKgWtXo8Xi4vYOqqKAq1e9xkiTV5/4E3GMOoAYLGipOZJKJD+tUQcx4FpWbAsK+gSL0kSbMvyhcJCeiaSosDStAajzg3YTiQqm6maXIb45KlTsEwTBSZc9vDBAySTSUxNTflMnJGRYIw7RXdcWlrCnTt3cPHiRUxHCHn1zch5Dwtng3NBCIpraxgdH/dpk6oKVVUDxo3AdqCmaUIQhIEYedu2IYritvsURzgsdBFB4VncOxaX9sifDVVVG3TiAQSa7MMjI3j29OnvPPbdBqUUlmWhpmkNRisMQggURYFpGNDq9c6c4BYeOyEEhmE0tJILh17igIdhWrWj6yXO7jgODMuCHTLmsiwjmUhAVhSIgoDC0tK2snJZkoJte6skLl+wKAbgbXJPLOI4iqpibm4Oc3NzoJRiY2MDK4UC7t27B61ex9jYGIZyORyYmxtooRilFM+ePcOzp09x6dKllnOo34WOf36Qy1KzIefg/14vFnH8xImGz8iyDEopsqxVn23bsNmOzjRNv9pXUaB2aeQ5LbbVd9MuHBNxMHhgu7MY6pA876W3oT16nhdIgyRayGN7ngdVUaCoKjY2NuKN9QPBnjTsGxsbgRwtgO0TgT1QmUwGlWoVNdb/MXLb1mLyKYoCsEKldDrtexO8+KKL8VpM9Ktf48Q1pA3TDPjoiiwjmUxCUZRtnu36+npQgMEhhRoxNFeSbqvADLF7eB/ZbtQWm5Nj7TwyQghGR0cxOjqKU6dPQ9d1vHv3DktLS3j27JkvXDY5iempKeSHh3s2uB6luH/vHtbW13Glg5BXP0nGKMMbe/EO3ze6pW3TSUZB0zS4rotMU4JQEkWY1BfqEgmBqihQFSUw8o5twzZNWKYJURShqioUVmzUDg7Tamq1GHR75wgQPF/NrzffOSIIUFW1ZeN5SilqtRpc10U2k/Hvf9OYSGjhGRsbw+rKSpcj3l3sScO+ubGBsbGx8IuNxp1v40UR2WwWlUoF9VrNlzKN+bByvrBhGKA0msIYB6ZhbGPDhNHpofcohWEYMA0jeDhTySQSiUTrMAWlKBaLuMC0TcLnEkXRXxg68PxJk1EOj7XB4Mf07rvaajMq2sjoKIYyGZRYU5Gfb9+GZZoNsfm4C6bjOPjp5k24rosrV65sW9iaMcjEbatrD87RbMCb5kOcBWZjYwPDEcJffDF3HQdi6JqFkJHnu2DDsqBpGnS2440KYXDYTfz17RfdXXilAew+tKsIbUV75Ebddhxk0ukGfn3zfeUx+snJSbxZXOxlpLuGPWnYNzY2cJR3remQeBFFEel0Glq9jlqt5ns0MY17QlFQrdX8CdCD9+YwDZV2niF/sJvH5DgODMOAEeK/p2J6U9VaDZKiRBZpybIMjSWUevFItxn8CG+ewn9oGhJjfJsdEzzmKUoSxsbHMTY+jjOffAJd01BYWcHbN29w584d5HO5wMgPSUl4FQNeWQdJKpD3+/UNhq5j4do15HI5XLhwIXYlZr/dpoICIB5C8X+JfA/QX+hrfX3drxtoAjdsjuNsS96Hz6uymLxt2zBDoRpZlqEqyraF0HacQKytFYgg9Fz4E1TCtvh7K9qjpuuwWCFSp8XbY7uy8bEx3Ll9uy8NmveNPWfYa7UaLNNELpfzX2gRww1DURSAUtTqdWi6HltLW00kUKlW/SRNt5Ws8NkwlNKWlX8chGmqUOo34TBME47jgBCChKoimUh0RdssFosYayHbyh9013UHKq7VbPDDDzX1vEDULEjWor1H3MBKoRRezYRX0iGWdUyVPYyXs7BrEjbWKig+e4KXyUdwBWC4BOQ3gXwZSM4OAxPA37//HgcPHsTx48djG892C1+DMQ7/HoqBe+FYMYmnu9IPisUizp47F/k3SZKC0EkncBql63kwTROWZcG2bQiiiISiBB3LXNft2MxmEDueVl5/QHvUtID2qBsGDNNEgu02OsGj1C9aUlWkUiksLS35rSc/Auw5w764uIjhcHw9AgQIJFM5FFVFwnVhMn3vRCLRMr7Ot4DJZBKCIKBWr/dk2G3LilX443keNBZu4ZMtnUpBVdWedgrFYhEjLQw7F2uyHScw7PabTWjXXwCmg+S/HYRydLLrc25D6N5y4xw25sFVuR7cmu9lO2Ud3qYOr2ygVq7Aqmpwiw7cig64HrYvCRQZEGRAcYAQGCqwOQwUJoCnR4CEsQHqeTh48CCOHT/eGLsO5xQQYaz5otR0Lc0LUuQManI2dprwaNs2qtVqywYzsiwHDV7iLmwiU1NMJhJ+lyHThKbr0A3D12CP4xgMgNEU3H9B2Pa8JhMJ1Or1QEZZ13UokrSNOgt+jG0vbRXAjY2N4fnz578b9t1CrVbzOantDHsLNkIqlQIX1RcEIfDkw+BhBK7al0wmUa/X4Y2OdmVkKQDLcZBs4zl4ngedPSwupVBkGYlEouWWOS6KGxs42JQ45RBYZ3bHceCZDup/eQTtH8+C+2D88g4j/8cVyAe6VeNoBAVAXQ9e1YRX1uCWNNibGtySDresg5b9n27FYEY79ElKYKgUngA4OkD8lwDQrZg0Cb3fjwVBNYCpAjC5DKxMAa/nAHjAy5cv8eLFi0DqYHx8PKi+jVouPM7SiEvZi7j294nNzU3k8/mW8XAuHtbLLo2EYvG8yrVSrcKybSRUtUFOIApdsWOaQPmuhxCAPZPhIyVYU5wKD5cymvP2A20PdfJQHzfs/Dn/WLDnDHuAHr2BVCoFz3WhsS8xbETDRj38/nq97ksUdOG1cw2WqOYDlCVEeaxbVRSoyWTLB7Mb2LYNrV7fClVFQJYkVJ8WYP7HU7gbTZPZo9Bvv+lo2Knrsni2AbekwWMG22MG2ypW4VXNwMptaV5T/78w+YMfk/C4fchwE4SMOHtv1Fcfeu3NHLA2Cpx7IuHaERv//u//jmq1ipWVFTx/9gw//fQTRkdG/Nj81JRfah4yGrybU6ekZ6tw0vsWlFpfX8dIRHydQ5QkEPQffpMkCaIowrQsiKLoF8PZNhKJBFRGD96GfhbH8PHIdhmCRCIBz3X9xHE+HzBgtg0hwttvNuwg0fLLHyr2nGEnhMBFjERTiwlFCEE6k0GtWkW9WgXNZAJ99GajDqAhHNONYW9VlWeaZlA1J0sS0ixzTykdiBDRxsYGcsPDLb0oqlvQ/+MRqr+8RtoAhAjT5K7V4BbrW4a6pMEr64Hxdss6vKrRxjWl8ByXWT4CHoTxH0wE/2+jsYWPQHxPvRtQVcSzowKMBPBvyizy//tR4L/+AyAEWdbE+MjRo3BsG6tra1gpFPD02TMIghB0jgqzrdpKHjT93P4GFj54DygWi9sqZ8MQCAl2ab00eQ/DYY3ec4w+bBgGdMOAaZpBHcUgCt0i2WLsmeaeu8P17h2npVFvBd6zNdz39H0qifaLPWfYAcT6EggzlFHvEwQBmWzWN+71OhzXhaookSs2j8fX6nVMhCmWHcDbqvH4OhfhchwHoihiKJvdRtUbRPVnu8Sp+cs7VP+/u3BqBogCuCIgROTUrCcrWP+//nvnk4UfPLrlWfuVuSRkqbfi2d3Y6rBhJ6oEMZ+CmEtCGEpCzCch5JMQckmIuSTctIgbd36Gkkjgm88+a5tslmQZMzMzmJmZAShFpVLBMlOnvHHzJkZHRvziqP37u68/4Pek2bFo+j3w+LvhuEfA8zxsbGzg8z/8oe37BtWk3eIOC8vVpDMZqI4D3TBQ13WIIQMP9JZfoEDrOgIW2rFtG/V6HZIsQ+hw/6Koyjy5/TEZ8zD2pmFH5wnTqeqPEIJsNou6rkOv1+HaNlLpdKRxT6VS0DTNZ9TE9Not24asKHBdF3VNg2VZIIKADNshNE8oQnzt73599mKxiEPz8w2vUcPGxv/9P+Cu+2EXwT8hXIEifjSfsieuRTgkHC5pWYkU/bKQkCFwo51LQMwlQZMUaj6DoYlhCLkESKK1ga3XalhYWMDU9DQ+OXOmuzAdIRjK5TCUy+H48eOwLAvLS0t4t7SEf/zzn1CZcNkkEy7rlQLZvKg1UyF7Rblc9ovUOuRlJEmCwSqVew35UUphMwpkeP5KkoRsJgPbsqAbBmqaBol1b+I8+m6us52x5RK8nIqZGxpCqVLZrjIZPl7Ea7wBTNgB+JiM/J4z7A0VkgNAkhX6GLqOarWKTCazzdtLJpMQCIkdjnHY9pC6LkzTBCEEqVQKyRalzQF6jEdycI7/Z59/3vD65v/zQ2DUAYCAQPIIHKHduWiQWWx4V5wbH/ZM07JvsPNJkGwCQi4BIZeEkEtByvuGnKjbjZK5uQlFVSF2oKZubGzg+rVrOHHyJOabFrReoCgKpqamkM3lkM9mUalWUVhZweNHj1CpVjE+Nub3gZ2c7FkWOhYoDWiw7QxjsVjEaJv4OocoikGcvVfDzptqtFpEZEWBJMuwTBOGaaJaq0GRJL+P8CAYMkwmwHYcJFTVV7K0bZByGXYLw94qAd7MWW+1u/9QsecMO9CFl9PBUHKd6oSqQhJFVKtVVCoVZDKZhuIGURSRSCZRq9VihWPqmoZytYpsOo1MOh3E6TsOF/1NsEqlAoVxjcNw1yrb3it5gC0AftCE+ZPcI9/GSWwx3ozKQiMJiPkkxHwKQi4FklVB8gkIQwkQpXEKxhFb4pz+Tiykd+/e4e7du/j04kVMRQh59Qo+Y4goIj88jPzwME6cOAHLNLGysoKVlRU8fPAACSZcNjU1heGREQiC4NMoW+R2uvLOSVMnohYoFouYnOxMT+Wec7tCpU6wbNuvNm3zeUII1ETCl85mOvFWtRoUQHVCVBEX4C9INcZ+SadSwfMpiqLPQLNtRKsxRSOqGOl3w/6hoEOCqlWcPejJGHpNkiQM5XKo12qoVatIplINTTbihGM8SlGv11EulyEJAkZHRrpiIfQbjtlo4b0J2STcTa3hNdEFKKFwCIHk0m0Ec5KUIY2mQXK+wRaHfK9bDOLaCUCKDkt4rKHCNsQ0bB01aSjF06dP8ezZM/zxj39syd/uFeGGzGEoqor9c3PYPzcH6nm+DHGhgF9++QX1eh3jExO+3MH4ePetGbsEZ4isr6/j1OnTsT4jiWLsQqWo89mWBYUtEJ1ACPHZMoqCOntubNtGKpVq6+RELYAWkzoApdt21AF9t0X+IDK+Tn0Bs0RooaGU9tS7YbewZw07Tzy1Q6s4eysPSBQEZIeGUK/XoTNRpVQqBUJIEI6ptwjH2I6Daq0G1/MgiSKymUxv1LIuS+/DWC8WI2lvuf/t37D5//4DVLN9hgqlPj1YIbBF33tvRvZ/OYvEZwd6GkdLxAw1BR5zxPdLPQ/3fvkF6zGEvHpFnN0CEQSMjIxgZGTf2DOrAAAgAElEQVQEp06dgmkYWFlZwdLSEu7/8gvSqRQmuTefzw+kWKfh/ISgVCpBkqTYjZ0lWYbZZaESh+048CgNkqKxx8nySoIgQDcMVKvVQLguCg2S0owWbDAVykw2GznudpW1UVfZ0KeVF8/9HorZXWQyGbx+86bnz3OaUysQAJl0Gjrr0uI6DtLMS0gkEqhpGkLtPUDhh150XffZLpkMyn306vRrbbYXVMRBsVjEEa6hEwyQQprNY+z//J9gvliHefsNzF/egegWJI/C5jGZJlCtfwZFJOJcW5hZEoLrOLhx8yY8z8OVy5e7NjLxh9jZsDdDTSQwd+AA9u3fD+p5KDIZ4jt37kDXdUxOTGBsfBxTU1MDkyFeXl5uHYaJWESlUJy9W6fDtiwQsr1bUlzwRGpd0wJ2WJI1luYIj9bzPGj1ut8YhklSt5o3kixD1/Vt3n6r+LrjOCBghp0Vo+m67osEfiTYc4Z9//79uP7997Asq6MGC4CGCU4pje0Nc32Weq2GaqUCRVWRTKWg6To0w0AqkYDjuqjWanBYMiedTgeeQycBopbDBYKkWTdwHQearmNoaKhhMgf/IgTq4XGoh8dB/9ezsB4VgJ9fovSyAJcAYtPpxIkYnadaoN3Im6sHoxAVCjF0HQsLC8jn8zgfU8irV3i9ctB5CEkQMDY2hrGxMZw+cyYQLltaWsK9e/cwNDSEyYkJTE5NIZ/P9+wprq6u4vjx423H4g/IfwZErvTYpWHn6o9KPxx14iuLZjOZwAt3HAepVKpBgdHzPF8vSdfhwVdx7BSblyUJdUaBjHNd/H2EEHj+BWJlbQ3/8wCS7+8Le86wJxIJJLNZrK6uYn8MXQceZweaPOEYhlORZUj5PHRdh2EYvrfjeajXaiDwPXVCCIay2WCRsdtUnO4kKtUqMqyZR6crI7IE9dw+jJ2ZBllahfCkCHpnGc5SCSBA8ot5KMcneh5L221tjHBMc/ekcrmMa9eu4dChQzh+7NjAwxrb4Hl9KzuGkUylcOjQIczNzcHzPKyvr6NQKODWrVuwLMtPwE5OYnxiIrY3b1kWSqxZeEeE7qdACBzPQzdlSjxpOogdEg9ryrIMTdNQq9WCylXXdVGv1wNKZqZDPJ6DO1EW02bi1NJW/HXX84L7TACUKxUoiUTLpisfIvacYRdFEWOTkyisrMQz7KEYWi8QCPEFuRQFGqsYffPuHWZnZpBIJJBJpxvoY1z4q594HSFkSyejEygNutOnM5muEq+iKELJJoGLs8hePQmqWaAehZDpozpxALHKcIx9ZXUVt376CWfPnsX+99Rw2KO0rchcS8RYtARBwMTEBCYm/IWzXq9jZWUFrxcX8fPt28jlcpiensbU5CSyQ0Mt7+XKygrGxse73rkIogiP9/dk86zT92Xbdl9hGP9UjeeQJAmZTAa6YUDTNFSqVYiiCIFRg7vZ8cqyDDCPveGcEe+1+Y6aXQuFfy/nm0OYHzj2pGHft28fHt2+jc8//bS3g/Rg5CVJQiqdhlouY3NzExXWuCP8YFEg4Nj2A4IOIQu+A8GWEaxWq34YpkvILD5JKQVJKX3XB7Si+3HEof3xv79+/RqPHz/GF//2bxjtouq3X8RJzLf6XDtEXXs6ncb8/Dzm5+fhui7W1tawsrKCa9evw/M8X7hsasoXLgsZu5VCAVMxaI7NEEURDjeAfAfbxsDzKs9B5AWar18QBD+M4nnQTROKLGNkeLjrBYT3XeVGm8LfqUc5RlwOmzNgCIC1YhGXW0gef6jYk4Z9dHQUpVoNNU0Lwg+twDnRsZJ2beCwbWImk8GY4wCeh1qtBsMwkMlkoLDMPI3Qh+kJUewY5p1HGZBqpYKZHiRHFUWBrut+gUefqpKDAvU8vHzxwme+XL6MzHtMagUdovqIsbdCp0VNFMWAF3/27FnU63UUCgW8fPECt27dwsjIiB+bZzvWEydPdj1EURB8XSSWICZs3JxBxtUuObjcb685ozDC1++6LjRNg+04UGUZ2WwWuq4Hz1i31ENZFGGFKI+8nWMzbMeBHNpRu66L9WIRBw8e7PWydgV7zrADvvc8zPoUZjokPAI9juCF7r11hxVHgFIMZbMQCMFmuexrVVsWyqXSVsPcAcXXG9gxzKC3K16qVKs43tTvMg4kSfK9HcsaiGHvV9nQdV3cvXMHtXod33zzTd+iVd2Cj3+3df4IIchkMjhy5AiOHDkCx3GwtraGQqGAJ//8JyzLwpMnTwJvPq4hFJmEr+e6EJrmKUVot8gWOMs0QQRhIM4KgR/j5slTAr8+RJFln34oiqjVaqjVaoE4XlxIsgzDNIPz+LIXjbtH13XheR6k0JxaLxYxNj7eULPyMWBPGnZRFDEzO4ul5eW2ZeRcMTE8Wbst23ccxzfqjEcriSIy2SzK1SrqmoaJ8XHouu6zZXTdT7oNMLlHmVEHWocHqOuiVq/35NkS4ve3tNhD0S+aNVG6gWlZuHHtGgRJwsVPP33vRh0IFUf14LH3q/vSDpIkYXp6GtPT01BVFfV6Hel0Gk+fPsVPP/2EkZERTE1NYXJqqu0uVhCEgATQyjjw6/Aohe26UAex4DNmDW+MoSrKljPEnkmBcd5r9bo/n1Op2LRhSZJADQMO88j5ORt2H03xdcBnFh1txSz6gLF3DfvMDH54+BCX2nCOuQey9UJ34RjbcXwGjCD4HgTziiRRRDqVQqVWw8jwMFKs25HOqus2SiUkWUu7XtgVYXW7OFK+NU1DMpnsuXJOliSYhgHHdYNr7BVxTFuU8a/Xavjxxx8xMzODg4cOweEJvvcMfr+7jbHvpFFvRqFQwJkzZzA2NoajR4/CdhysMqmDJ0+eQJKkIDY/NjbWkAfiHrsb4/7yxV7tw5ulnL5omr7wFqXIhkMtTUQBQRCQzWR8z71eRyqdjrWTVFgClaunRn1/juP4EsahOb62vo5LV6/2fH27hT1r2JPJJJRkEm/fvsVcBFsi7K0H6KKq02INK3jlXLNw0tDQEGq1GsrVKsZGRoIxiaIIQRBQZ3z3pKrGNrrcoHeLaqXiN4voETx+6lgWpB0uhQewbddULBZx/fp1nDp5Eofm51GtVnetCjAIxXR5/jhJ4UFck8GqN8MVxrIkYXZ2FrOzswCAEpM6ePzrr6iUy35hFGv4nUqlIIaZMS1AKYVpmpDYfO4W1PNgsIbYlPrtHrl6aqTOesOvfhiqXq/7DXFSqY7JW5n1NOCNP4Jx8GPCN+zhXEGxWIRhWcF9+5iwZw07pRRffPEFHty+jZmZmW2e5jZvnf3enByKgmlZfvs8UfTLoSMeSEWWkUwmUalWMZrPB7xZvsVMJZPQDQO6aUI3DKjMg49KQvHPRjETRELgdjAY1WoV2R4YMcE5RBGSJPkPRZ+GPZbfGjLsb9++xb179/Dpp59iamoqOMZuFXd7PYZi3pe/vrq6iomJibYLTz6fRz6fx4kTJ2DbNlZWVlAoFPDo0SOoqoqR0VFkczkk0+mWtE7Ltv0CoS69dddxYFoWLNMMJAi4yB7g399A3AxoGRYlhCCTTqOmaQHNuF0cnIdsoqQFuFH3QsQGSinuP3iAS5cufVSdkzj2rGEHgJm5Obx59gwvX7zA0aNHg79HeusMnQyGZdvQNM3X4Ein2z5APJNfqVZ9zRJKg9CLKIrIpNOBgTcMAxbTkOZaGYFBD+UBmhGH0VOpVmNJt7aDwnj6fWtmxAh38cTwk6dP8eL5c3z1xz8iFxLy2k3dDm7Yu37YY4Zi+r225UIhWADjQJZl7Nu3D/v27QOlFKVSCW/fvcPzp0/x4N49X2ue6c2HjbhhmhAZHbEVwiE1x3FgGgYsRqVUFAWqqm7b6YavveMuhxBkUinUeYEgIW3zLq3yOxRbBp9fz/LSEmzLwidnz7Y+/weMPW3Yqevik08+wQ/ff4+5AweC6s+2Hl+b5KnDeqGKzFPv9PilmIEulctIJBKgwLaJLAgC0qkUUskkDNOErusoVSqQmPZMVNONxuESCPB3Gq1QrVT6pmvxnUS/nOU43jb1PNy9exfFjQ1cuXIFyQgRq90MxXQbhvE/GM+w93NdnudhpVDwm4n0AEIIhoeHkU6nMTs7C0kUsV4sYmVlBfcfPEAqncYU07SRZLmjuBiFP1+4QeeGV1XVtnkv/pPEuWeEIJ1Mok5poMfUii0jtAm1Wo4DURAgCAI8z8P9hw9x9uzZvvIHu4k9bdhdSjE0NITp6Wn89ttvOPvJJ1u89RZoFY6hgC8NCr9oJO7jN5TNYn19HZVarWFs285LCJKJBBKJhN/IWtNQrdWgCQKSyWTbh4EQ4k/YqL9Tikq1iqE+ud6SJEFgDYp7NexxCnscx8HN69fhUoorly9Hsh5202PvRQAM6CIU0yUrK4zNzU2km+SkewHfVcqKggNzczgwNwePUmxubAQyxJqmYXJyEtNTU5icnITSJHFr27av9+K6EODLJiRizBtuzLvSp2fVqNVaDZqmIRul8sh2ilFm3fO8QM8JAF6+eoVkMompycmexfp2G3vSsBPidxR3XRcgBKdOncJ3f/sbDs/PR3p/UZ9vfrg0JtObbpII6IRUOg2pXEapVPLlWduAwp9k3KuxWCy/zuhdKmuS0ap1XtRjoOk6JFHsW8eDEAJZlmEaBpBK9UTZ7OSB6bqOawsLGB4ZwdlPPmndcHs3QzGe11txUkz0QwddXl7GRBdhmFaQGGvEdV2AGTaBEIyOjiI/PIzp2VlQSlEulbC8vIy79+4hk8lgfHwcoyMjSKZS8ODnf1KsLV+DSmOLMCiAYF7FlswIPuZLe1RZn+JMOt3weV5gFUU+MDm7R1Vh2zYeP36MP1665PdL/Qjj68AeNewAK412HBDmBc/Pz+PRo0f49PPPO1cAovHhMi3LV4tU1a6LdASWwa8sLW2VakeA89HDDwDvduQ4DkzGIDAtC1VCkJBlKGw8hJCWHk6tz8RpGAoz7I7j9OTJtLvr5VIJ165dw/z8PI4dOxbkFyKP8x6pg1Hn7rV13E6CUoq3797hD01tD3sFYSGJZnAjmBsaQj6fx+y+fTANA6traygWi7h3/74vXDYxgemZGUxEtL0Lfo/4Hon/hp7GLIpi0PDGMM3InUvzGSmlMC0LsiRBFEX8+vgxJsbHkc/nP1pvHdjDhp0n+8A0nY8dPYq//PWv2NzYiNVRh8eCHdeFzpKlyR4ZIZlMBiB+T9RmTcR2BoxDkqQgWWvbNkzL8tuKWRYEQqCoKlRFgRgRW+R9WgcBLstqWtZAJ/0qUzI8e/489jHZAxIqvGrGbidPP0SPfXNzEwQYWLcoSRCCRCcHN4ICIb6TYdu+8acUExMT2Dc7C0mSoOs6VgoFvHnzBndu38ZQLhfw5vO53JbhbhHz7mfXwh0hwzAgiSIkWQ6OFyV3zSURVFWFrml4/vIl/vzNNwB6l9b+ELBnDTuvvrNdFxL8bPfJkydx/5df8PXlyx0/LxDiS/DW60EMr1dTIooiUokEdKYxHVCq0L33KcsyZJa44kbeYL0jBVYlKqtqkN0vVyoDaxBA2CJimibSfWrrcLx6+RKPHj3Cv33xRYOQVyuxsKDys+8zd49edWK67WXaS4z9zdu3A+Vbi5IEhLRVXFa9XK3VAgldSZaRVFXITaGWVCqFQ/PzODQ/D5fJEK8UCrh58yYcx/E7R01OYmJ83A8Rhq43qtS/W6SSSV/il8XbeTglyhkwTdMXG5Nl/HLvHg7MzQVdt3732D9AcO/Ssm1ITNjo4IEDePnyJX777bfWDQhC0Op1UM+LLEDqBjw2b9k2NstljI+OxqoYbQde6q8oCjLU7zdpWBY0wwAMA6IgQFVVlMtlzMzM9HWuMFRFgWkYvlhSlxO/4YopxcOHD/FuaQmXr1zZtqtoSU3rsfJzEOhVJ2anQ0ee5+Htmzf46quvBnZMQRD8Hr2aBsd1fcNerUJgzTBkSYoVfxYFwRcmm5jA2bNnUavVUFhZwatXr3D755+RHx4O6JRDLOkZiw3TDswRq9VqqNfrfnEei7GHK2pd14XjukgmEnj79i1WV1fx7X/7b8Fufac6cL0P7FnDzldh07aRUlV/wggCvvjiC/z9739HNpPBTBsPx7Jt2I4TtOzqB7wRbiaTQaVSQW5oaDAKjwzck1ZUFZlUCjorANE0DZvlMlymNCnLMiQWS+wVsiyDCAJMxrnvapxcrMx1cevnn2HoOq5eudLAqGhAxK6gky7OTqLX4qSdRrFYhKqqfe/MKCu5t1koo1qtQmVNLiRRRCqZRCqTideZrAUymQyOZDI4cvgwHMfB+toaCisrWPjxR4BSTDI9m5EuG703g8fb6+F4O2lUdOSiYLVaDXfv3sVXf/xjAy//d8P+gUJVVVTLZdAQiySZTOLLL7/Ejz/+iFQ63TImaRgGJEkaCI/V8zxQ+DIDumFgo1TCxA7phwui6MsUqCocx4HrOFscedblSZIkyJIEiYV1usn8E0KgKgoMw+haW4fC1xe5fv06Eskkvvrqq7ZaOZFMH+7N7YZh5x57F/frfaR537x5E+QmugGlFI7rwnEcv5LUdQP+uCAIUFmjmGQyiWqtBiKKA5VuliQJU9PTmJqexvlz51CpVlEoFPDs6VMUNzYwMjwcNPxuZrnEgcxyU6ZpIqGqEAA47DvkomOu4+DGjRv49OLFrSI4Fgr63bB/oFBVFVVBCDQgPFaSn8/nceHCBSwsLOCbq1e3USAt2w7CJ60a3nYDlz0wqqoik06jWq0in8229lT7BRuzbdtQVRVDQ0OglMJ1XdhsJ6KbJmjY0DMjL8XYYquq6lfKdslpr9Vq+HFhAbMzMzh9+nTnBzXi3u9qjL0HnZhuE4HdXpfneXj37h3+9Kc/xXo/98ht2/aF1Nj9FEURKsvNBHUgrusLzTHj36lYrl9ks1kMZbM4cuQITNPE6toaVpihF0TR17NhwmVxdp2EECRUFTXbhmFZgCAEGjimZcGxbdy9cwfHjh3D1PQ0AJaYZw7LoJqK7wb2tGHn3iiPB4cn5czMDOr1On5cWMDVq1eDjuQAYBqG3xaOeSdx9GNagYI9IOwY+XweWr2OtfX1HRMXIvDDBgbzVAB/knN2TRJb3ppt23Asy29Bputbhl5RIDODH9W2TBAEmKyBcRwUi0UsLCzg1KlTOHjoUM/XRnfTY2c/dzQU0+V1ra6sIJPJtGRsOY7jG3NuyLFF2UwoSjAnogw2EQRffTHE894xhGLrAiGQZBkz09N+fohSlCsVX53yt99w8+ZNjI2N+UybyUmkomSImXHm12caRsOfDcPAw0ePMDo2hsOHD4eG4d8HIgi/J08/VPASZqtWQ1RZ0tGjR1GtVnHj5k1c+vJLECB4ANKhySJ0UwUXAmX/u44TeMGiICCby6FUKvma0h06PPUCzmu3TLNlPJQQ4htuScL/z96bxUhynWeiX+xLrrVX9creu7k2SbW4iN0kJVm6Dwb8cD2+4ycDNizB8Aq/yAbuk2BA1/YINsY2MH4cQ+CdOx6/2A+jEUeyJIoiWySbS5NU781md+1bbrFv9yHOORUZFZkZmZW9kJUfUKiqzIyIE5ER3/nPv3w/NG3Lv+p58D0PlmXBIhkgAmmkIIgiREFg1h1rmdeDjO7cuYMP3n8fX3j66b4KaLJy8+l/A5X17xBUhK0fq3Wg+6aPdM7bt29j//79bEUWBAGCMETg+2ylGBHXikwm67w9d2m6L82AuavFOqnrxAOIyMQCjkOlUkGlUsHx48fheR5WlpextLyMS5cuQZYk5rKZnJgAx/NtbjxVVdFqteIOZmEI1/Nw6dIl8ByH0088kXktPsupjsDnnNgB4o5pNmOrmWTHJG+iJ0+fxuuvv46LFy/i8cceg52y1in6VRRMCngFYdgWCCqXyzAMA+vr69A17a48MBzPw7as3DECWllKb2haFu77PnySVhmSrjYgImqmZcUZCER2WEw3EaFCXjdu4EsvvIDCMPLpe2XFUL9/0v+ftPLJ61RoDNhylyR/A1sTMz3nQXRiBiH2bqQbRRHCMEQQBHBdF/OLizhw8CBq9Tr9QHx+5PukFusg9xjP8zAMA6Ik7bhPb0d0uj7p7zABSZKwd98+7N23DyDCZUtLS/joo4/QbDYxRWSIZ2dnoWoauwYe6Z1w9epV1DY38fJLL7WtvpJH+ixb68AuIfYGx8U9O2V5m8+T43l88Zln8JOf/ASapmFycpLlsSbRj689AsmgIMQehmHbg8UDGKtWsbK6inqzibFKZUfnmAUOsR9xUN2QZDolBdXUoJahRbrHB2HIHgqB5yGIIgSex0cff4xmo4GXXnwRiqZlVjL2RJKokSLKZP5zkvDp6+nvK/F68p2ow28g8bBzsTxypssiY19sTAPk+9N7NAxD+EGAkFxvn7Ruo9k5K8vLKJVK0HQ9FrAiq6lhVsY6jgNN13fcYKUjOjxXbZNstxUzx6E6Nobq2BhOnjoV++ZXVrBMiF4lmi+TU1MIowjrq6tYWljAc88+2zXGlUd65EHG557YBUGAIMtdVQllWcbzzz+PH/7oR3j41CkcO3p022fyBsGSpN62ferh1jUNqqJgc3MT5QGa8+aBk/CxDwN0OZ/83zBNlIrFLVdAGMKxbbz/wQcAgMcefRSmbcNxXYBo+HA8D4Gkn/Lkh7pdkiXltFilTVukwwN+L9IfozDM/J463RccYncC0pMRIbOQTPqUrCPym2ZrJNse8jwfryRlOZ48BQGXPvoIhw4d6qmyOCg810UYRXe332cvi518Jq8omKIo2L9vH/bv3w9EETY2N+OmIh9/jM1GA1EY4qknn9yeDZeagItDkuG4X3iwEnLvEhRNgx8EXYtbFEXB6dOncenyZVy6fDlzP3nII03q3W7GsbExcADWNzd77ncQOI4zsAxCHiikPoAKl+nEcnzvvfcwVq3i3NmzKJfLzM/veR5M0mm+aRhoNBqo1WrY2NzExsYGavU6Gs1mrNJnGHHmDSG5IAxBdfSB+5fHnselQVc2rufF0g+WBdM0WUeteq2GjVoN9VoNjWYTLdIJyCKZRhFJtdM0DaVSCVXiX6ZBUllREIYhVtfWMEeyOYaNIAjgBkFciHSf5BvaQFdLPcid9UiN/8H4+DgefvhhHDlyBDyAcqWCarW6bYJO3k88z0PrI/b13e9+FxzH4bvf/W7m+5cvX4aiKDiXo+J9WPjcW+xATEAmx7W1vkr7zD3PQ7lUwssvvYTz58+j1Wziyaee6mtZm/bfJ5E5mcgyS38sl0pD92M6jhP72IdU/p8G9as7pABks1bDm2+8gSNHjuD4sWMA8fMiihAiLkwCSZ9rs1YTFmsQhgh9P05NJcdJTo5URkEklj9V7aN+5fjPrd+93otAmhhHic491I2Gre80imK97ygM4x9sxVHYZ8n46TFo1ysAbKwCz4OXJEh0tUJWLnQFA4Bdk27f2fzCAqampoaaV56EbdvgAaiKgjCKOnZS2gnyqDymNsjUe2GbANtVIaMIH338MW7fuYNTDz8Mx3UzNZWS0IvFvmIStOL3zTffzHz/D//wDxEEAf7+7/8+9z53il1B7LIsIxIEeJ7HiD1929Amt5qu49y5c3jrrbfws5/9DM8++2xbZgltIJ3ePgLafM1JcOhsYVarVZimifW7kP5oWVbcMJuUh98NyIoC0zSxsLCAdy9cwBOnT8fnkXSnAG3Lap7n46ViF/cTtc6jIICfIP8wisD7fpyTTASo2kiWgvrzexBSEEVoNBrbXmfBVbJ9GIZwXZc1e05PGhwXN0GmKbbUvZT86Qvpz6cm59u3b+PQQw/1t8+c8IOA9Qb1PC8my7sR4O/2Xof7lWYmdbybE9fI93288/bbsB0HZ194AQtLS3HDm7SbNLWLYp8VvE899RQ0TcP58+e3vffP//zPePXVV/FHf/RHePwedmPaFcROA4G+YbS9lvyCgyCIXQuILdFnn30WH330EX707/+OF55/vq1cO4vUO7XaS/pJsyDwPMqVCjY3N4ee/ug4zt3NPUZs0V29cgWffPIJnnvuubgFX9Y59zmxcBwXW4k8Dy45YZKJoZwjwyZtUVPLO2mJ8wBr9J0ka/Y/+dsPAvA8H+uk5LGSE26joYCOCYBl26htbGD22WeHt/8ELNMEiG/dI77+oaPHPjvGLTqQejoGZlsW3njjDRTLZbxw5gxbbRUT8aBOca1in8kMkiThzJkz+OlPf4qFhQWmzWQYBv70T/8U09PT+Pa3v93XPneKXeFjBwCtUIAfRW3NbClZ0NfS2hSPPPIITp08iR//5CdYWlnZ2i51c2UFS7ehi8VWKpUgSRLW19cHyxzJQBiG8IiGPDjurvhJozDEhxcv4s6dO3jq6ae3+qpmHCvawfHbxt5t+Z4CR7blSS4+bZsmiSJkUWRujGTVrUAqLwVBaLO6acVi7uu4g/Ptmu4I4NYnn2DP3r2xJO2ANRad4Ps+/CCAQlJYAQx3gsrzrKCHNY/tWWrJa1Db3MSPf/xjzO3Zg6efegoByV0XSLtJAKxYKz0hSLI8UEX4l770JQDt7phvf/vbuHPnDv7yL/8SlbuQ+dYNu4fYNQ28KMYaJxTUGutA7ABw4MABPPvss3j7rbdw/caNrU3J725+9fitrVzpTqDpj0EQoN5s5jib3nBdFxIh9XgAwyF2mpvveR7O/+IX2NjcxNmzZ6Fq2jb97tSGwzn+UPYywHHp93gPBMC6nmMU4ebNmzh8+DC7pnzC3bNTkjdNE1QPqFvXoYExrIkx2pJPTq6yFhYW8Prrr+Oxxx9nCq4WacIuiSJTfc0y8IDBs2EosVN3zKVLl/A3f/M3eO655/Bbv/VbA+1zJ9g1xM5xHLRSCZ7nIaBfKnkIqH+9k6U0MTGBl156CdeuXcO7773Hgj4hYr96N+R9zJLpj0lp0UFh2/Y2N8zAVnsiHz+KIkT+m9oAACAASURBVNi2jZ/97GfgOA4vvPACisUieHLMjngQMit2AKozlDuotgOC7XallpaXoSgKxsbGEhu0Z3QMmjFENZJothNbrQyT2Ido/dMJhxpXly9fxvvvv4/nnn+euUNc10UQhvHqjK7aSHe1rElw0CK6559/HhzHMYv9D/7gDxAEAf7hH/7hvmRw7RpiB4BCuQxwHNO+oA9Em7+tw5eg6zpeeumlWMjq9ddh2TbQIViahTyfG5+YABdFWF1by7nXzrCz/Ot9FFklyTxMZIy0Wi385Cc/wdTUFM6cOcOITlFV+IQYOu1vYKRdMffhQem36vRurSxuXr+OQ4cP9/xckpjzjsWyrG21CtxdDLzvFPQ+8FwXb7/9Nubn5/Hiiy+ySS8MQ6bSyiQ9iDuOBt5TO4w5YgCMjY3h1KlTePvtt/HKK6/ghz/8Ib75zW/iySefHPwEd4BdRew8z0MhLgNqhYRBgChZ8t/lJpYkCc8//zzGxsfxg1dfxfUbN3ovfen7OUhBFkWUy2WYponmDl0yDsmISaOnxUkJPUHmFGtra/jpT3+K48eP4+GHH257T1UUptOeudv+ht+GpB/0frXFC6I+OidlXLthwDQMrG9s9C3RS1Mqu103x3XjegTSSjK57VBcMTl961sfz/fZO3fu4NVXX4Ugijh79mxb3YZt2wijCLqmbblbCbFTEbwkNF3fUaHgCy+8ANM08c1vfhOTk5P4i7/4i4H3tVPsKmIHAJVExSkBUVdK3pJpjuNw6tQpnD13Dndu38aPf/KTLZ2OLPR5Q1eqVSiyjNX1dXjdfNY9kGmxE2Q+3tFW5WPWQ3X7zh2cP38eX/jCF/BQRpodT4TCHNe9K6RGb9T75mPvx2K/SxPPjZs3ceDAgcHK+xOFXWlfPHWv8Ty/LS+e53kMxRHT5zXpNXkbponXX38dly5dwjPPPosnnniiLUYWBAEc1417AQsCU1ilFbw8x21bXeo7bFRC/eytVgvf+c53MD4+vqP97QS7jtglTYMsSXAdp6M1nYeYyqUSzr34Ig499BBee+01XPzww66+8bxWJg9gYnISHIDlRCZOv2DFSdsHwixPmgrI3C0d9nXp0iV89OGHOHv2LKan0+24t6CRHGE30SuTHXaQk0iig1jTvULeqlPg7kw+YRDg1q1bcdB0CEjKOLiehyAMM6UDeKqwuFP0Odl3+nQURbhy5Qp+9KMfYWJiAl9++WVMjI9v+25MywLPceycgjAETzKdOj3fO5UROETkqM+cOYPf+Z3f2dG+dopdR+yCIEDVdYQJqz2JtpLkDkje6A899BB+5atfhWkYePUHP8Dy8nL7Z9H/gy6LIsbHxuC6LjYHlBsIgqB71WzC5dL5IxEuXLiAxYUFvPTSSyj3uPFpcY6dcV2HZcVT/Zh7CRo0vquytQlknd3CwgLKpdK23rDDgG1ZEEgrybuCAb77rGuwubmJH/3oR1haWcHLL72EEydObH0niWO4rgvf96GS4jyg/XmgK6/kMURRbJPqHgR//dd/DZ7n71vANIldUaCUhqRpEA1jm/phmxBVF6RvU1VV8cwzz2BxaQkXLlzAxMQEHn/iiXaJgD6/6FKxCMuysFmrQdP1vuUGwg4+4aiDqyUN3/dx/s03wQsCzp47l7v/pKaqaJnm9gKQfgK3GeCSK4p7/NAwWYC8x92hhZuV83/jxg0cTjSEGBZs20YURSjqOniaATPM6zvod57YzvP9uPH5/DwefeQR7N+/P/O7oBk8Nmnm3qZMGgSQVZVls6WxUzfMK6+8gn/7t3/D7//+7+PMmTM72tcwsCuJnSNytKZptuWz5kG3Zenc7Cwmv/pVfPzLX+LVH/wAjz32GGu5NcgMPjExAWdxEcvLy9i/b19/vTYzgoxU44QMqE2TPAnLsvDzn/8cExMTOP3EE3096IqiwLAs2LbdbgHt1GKnE0OqtP5egK5qcl3/HpXGeZA+u0a9jpZhYM+QBb9834fjOJBlmemPU1dF8hwGWm3t9Hsi2y4uLuK999/H1OQkvvKVr8Rxo07jIavwgFSYJu//NkMjwwVbHcAf/umnn+KVV17B9evX8U//9E945JFH8Fd/9Vd97+duYFcSuyCKUHQdtm1vc8d0K/KI0LtNniRJePyxx3DwwAFcuHABN2/exJGjR1FN5h3nHSfPY3JiAssrK1jb2OirATbTgKcl9BnnlK66A4BarYY33ngDx44exdFjx/oeM8dxUCQJjutC1/UtQSwMwTdOyP1eL3NZE+s8x93hygTY/l3duHkTDx08OFRXUBRFaBkGuIQfmoJdX3qt6Uq2n+u+w+tgWRYuXLiAerOJp59+GlP03u+yz4C08ZMlKe4MRl8nnaSk1PWjZ6Pq+kD+9e9///v48z//c1SrVfzar/0a/vZv/zazl8P9wK4kdgAQVBWqoqDZauXfKG85Oxe38nrxpZdw9fJlvPPOO5ifn8fJkydR7fMG0lQVpVIJjWYTBU3L7Qek5NB1ac1x4LFlkS4tLeGdd97Bk6dPY88OBMlUVYXrunCppMGQQCeie+29ZMR+t5pNpMDK5UmF5O3bt/HVr3xlqMdwHAdRGELX9cwJg1Zz8hzXUZCrG/K4NLPQMk1cuXIFt2/dwsFDh/CFM2cgkM5n3fYXRREMwwA4bptUNc0uy1J1jACMd0kI6IZvfOMb+MY3vjHQtncbu5fYZRmypoFrtWIN7MR7Ha32nDc49ePxHIeHDh3C2Pg41tfX8fprr6E6Po6TJ09iog8LfmxsDI7jYHVtDaqq9sy1pf1Lk6XWnQcbP7jXb9zA5cuX4zz9AVYXSYhEb8XKqH7dEWjQ6z5Y7LRsvxeGlupJjnXn9m1MTk0NVVc/CAJYtg2BlNj3Ql/VrDkkNLLQaDZx+coVLC4uxgkJX/86s7rzTOaWZSEIgsyJynEccDzP4lTJhuiSoqCSbrrxOcCuJXYgttplWYZhmgh8nwUIu0nz5gVtgM0LAgRRxJEjR3D06FHcunULb775JkqlEk6eOIGpqameNy0PYGJ8HEtLS1haWcHeDr5W5hslmuG5CmqiCBcvXsTi0hJePHcuu+P7AFAUBQaJYYiiOBwrm2Tx3OubNsx7LYGhlcxzUYSI43D9+nU8+uijQ9knhUnUG/O4DdrcMoLQO/WR5/sKHm/Warh85QrW1tZw+PBhfP1rX2PZOTR9mOuxT8d145x1RYEiy9ueU8dxWBPvNMYnJ+97BsvdwK4mdlFVoRYKQK2GlmG05X3znaz2fkCXsohJVxRFHD58GA8dOoTbt2/jwoULUBQFJ0+exOzsbFfyU2QZlWoVtVoN9Xp9u1pcMtuFTEy9fMJBEODtt9+G4zh4+eWXc2e+5IGiKDAtC7bjoDAkF0ZaVvdeIezQEi8LQ8th5zhsrK8jCIKutQP9gqYCaprWf29UkmnVkdw5LhepRwDW19dx6fJlNOp1HD16FE8/9VTbNU52O0s2XUkjCAJYlgVRFFmldTJ2FBJlx6TsNitKlKT7WkR0N7GriR0AFNJujLZha1uaJgJAA3Wbx9YSMimkxHMcDh44gAP792NhcREffvQRPvzwQ5w8cQJ79+/vWFxQLZdhWxbWNzehqSqTF80KjvayMl3Hwc/feAPFQgEvvPACm8iGRUwcx0FRFFiWBZWkmQ0D96PyNIwiiPcoh50iAnD9+nUcOnRoaBZlGIZx4U4qFbAriNYMc4eQIGqmqmkOQbzl5WX88tIlOLaN48eP49lnnukYFKbH6HT2LAAMoJAI1CefW48UyyXThX3PAzgOk9PT4IdozDxI+HyeVR/gZRmarsN1XZimCYloXAPZWSN975/oUmQVAnEch7179mDP3BxWVlZw6dIlfPjxxzh5/DgOHDyYaVFNTkxgcWkJi6ur2D83Fy99M/YddbHYm80mfv7zn2P//v14+NSpdmnfISr5qYoS9/y07UzdmkFxL+11WpyUx7od5qRjtFpYXl4eqoiUZduIwhCFUqn/ySJ1j9GVE62L6La3MIqwsLCAy5cvIwpDHD9xAnv37u2uOx/17nFqWhZCktqYOTlEESzHiQOqifvPIy0yp4a4EnrQMCJ2nodSKEC2LPi+D9M0USgUtvzs5PegbhkOJBrfZXuO4zAzM4OZmRmsra3h8pUr+OjSJRw7cgT79++HngiciaKIsfFxrK6uYm1zE5MdlpIRTXdMYW11Fed/8Qs8+uijOHjw4LaxAsMjKEEQIEtSrFsjy0NJ1+OGuKrIA7rSyhuvGBYuX7mCw4cPD8095vs+XMeBrCh9a810I+CkDz4Nx3Vx584dXLt+HbIk4eSpUz1djokdd/erOw5c14Wmqm2pjWwsxG3kOA6riAbi7zMIQ0yOj0PMu2r5DGLXEzsAKKUS+PV18BzH3DGSJLEbcKeWu9iH9Onk5CQmJydRq9Vw4+ZNvPq//zeqlQoOHjyIPXv3QhZFFHQdVqGAer0OURBQzejOEmb0qbz96af44OJFnDlzpqPfdtgdeVRNY1b7UHJ8c2anDAuU2HNZ7EO6bpZpYn5hAV//lV8Zyv6Yy4LnB1s5dZlM2f1CrGs/CLC0tIRPP/0Uq6urmJ2bw+nTpzFJ9I9yH7ILqfu+D8uyIElSpr4NEKemBkEA13VRSaQYu8QNM9enQuZnDSNiR2wFi6qKyPPAcxxM02y7GXYKjudZa7W8qFareOrJJ3H6iSewtLSEW59+ivfffx8zMzPYu38/pqem4Pk+Njc2IEoSiinSjKJoy1cfRbh06RJu3bqFs2fPdtd86VKROghEQYAky7Btu027Y0e4D8R+LyeTy1ev4qEDB/L7wXuA5ayTlWg/6CmvQa7P6uoqbt26hcWFBVTGxnBg/348/YUvbLemex2P6y4THIYhDNMEx/NtK9nUTphiZVuaIwAvCFAoFPpuWP1Zw4jYCeRSCebqKrRiEaZhwLSsttzhnVjtTIOmU9CpC3iex549e7Bnzx64nodPP/0UVy5fxjtvv429e/eiUChgdXkZ4t69UJPaGCTVMgxDvPvuu2jU63jxxReh5siHpr7NYdntuqbBdhw4jjPUfOx7AWax56gdGAYcx8HtTz/Fl7/85aHsj2aNSJK0TZK3H6TPLgLQrNdx69NPcfv2bciyjH379uHhr361oxWd6zjE+u9U6WommlJ3MhLoVjbxryfH43se9qdckJ9HjIidQNM0GIKAKIogyXIseyvL4EjLvIgU8vSSFMgCLwgIXZdZwyHQdzVfFEUQBAGHDh3CoUOHYBgG7ty+jes3biDwfSwsLuKRRx5hbpmQLIt//vrrEAQB586dy6y864ghlMZTiKR5tO04cYbMZyhvOAzD/tMCd4ArV69i3/79QyvsotZtngk9Eykfum3b+PTWLdy+fRu242D//v14/vnnWfoty6zq9/5G+3OVdY/Ytg3P86BrWsfYA5eQ0XBseyu2w3HwPQ+SLGOMNl3/HGNE7ASSJIGX5fjG0XUWSC0Wi21ZI4OUVzPXBrFG+qW1rKyaQqGAEydP4sTJk1heXsbVK1fw6g9/iIlqFQ899BB818Xbb72F2dlZPP7YY303YWYaIUPS4lY1DV6zCYeQ+05wr7Ni8ly7YVjsnuvik08+wVeGZK3bto1g0Jx1Ag6AHwS4fecO5u/cwebGBubm5vDoY4/FxXUpAmarvT4MgyixHf0/Dc/3Ydk2ZFnu3EAmkSEWBEHsdikW2UTjeR6qExPDrYZ+QDEidgKO46CXSmitr0MJAmiqCsM0YyszcSMwUas+HmSO52NLnYj9031kVbem0UnAK4mZmRmUSiWsrK7CtiwsLy3BNE0omgZZlrGxuYmxsbG+/dvJlLadQpIkiILAmmwParWz1Lohrii6IQzDvv3Eg+LqtWuYm5uDpmkszXJQ+L4P07IgiWLfRBZGEeq1GlZXV7G0tISVtTVMTkzgoYMH8eyzz/Z0S/VD7mlSz0IQhjANA3yX4G96H7ZtgwOYERGGIThRxNT09D3T1b+fGBF7AsViEWarBdt1UdR1SK4Lm/gn24iIkEvex45PKOQxkKrUMAh65vPmOY6u6xgfG0ON4zAzO4tGo4GHDh+GaVl479130TJNTE5MYGZmBtPT0yiXSrmCkMPI5afQNA2NZjPWwd+h1cSTNNRuCMkqiVps9FoyVwHZnnZ8Yg2g43+AKEIQBKwQ7G7C933cuHkTL547t+N9hWHIsmDyZCJFUQTTNLG8soLVlRUsr6xAUVVMT07i4MGDOH7iBKqVStwrNOcY8hpAWR2akndlGIZotVqIAJQKhWxS7uC24RKt/lzXxdSePW0VqJ9njIg9AZ7nUSyX0djYgO/70ElKoWkYKCQ71/RpLVL53DAMkbZ1urXqytsUg6JcLsP3fTQaDXCiiFKphCNHjgCPPhqLiK2uYmVlBdeuXYPv+4zkp6amOhMAIbthuGQkWYYoirAtK45f7MDX7ochAt9HRPKSI3J9wyCIfwO5vqMIsR86/vhWwC4CEPk+WobBcsB5jotXXDwPgQhj8TzPmkXvBDdu3MDU5ORQOiQZptkzwEjvh2VC5FEQYGpqCjOzs3jssceYT95xHKaaGEb9SfdyANBDgiDrvaQyabPVQhRFKBYK2SuFDq5N2vOX53kEQYBCpYJKtTpU2YwHGbvjLPtAoVCAYRiwPA8lUYyDqq0WhJRLhvrb89AutQIzSbpDgUcE5M59T2JsbAye58EPAjSbTZavrigK9u3bxzrcG4aBlZUVLC0u4oMPPoAiy5iamcHM9DQmJyfbUu127JJJTISaqqJJFDWVHOl8EbGa/SBAEAQwTDPW3Cadf5IPNSVYQRQh8XysSkiO32aJk7/pT5mQaZSw6qlP1vd96JoWN3WOongyAeCSz0SIU/44joMgCPGPKEIgTZPzEGEQBLh27RprhrwT2I4D3/Ogqmobifm+j7X1dSwvL2N1ZQWGaWJqchJT09M4euRIbMlmjDVZWTrIRMwB2S6ZHsYRs9SjCIVCIZOQI2T39rRIRSrTjhEEVMbG7kpbwQcVI2JPgeM4lEol1DY24Po+FEWB67owms3tfSFzZsrwPA9OEOAHAbKoLJ0GOSip031NT09DlWWsr69j7759mW6PQqHAMmwQRag1GlhdXsb1Gzfwi7feQrlUwvT0NMbHx1Epl2Md+CH422VFAW9ZsaRvBrEHYcgI1SdNloGtrIkwDCGpaky2ggAe5PruwGLuZMVFUQRZUVDIsBbDMGR+8CAI4vGSsbuuyyZ8nhC8JIptFZBJfPLJJ6hWKj17yvaCT1IbeVFEGIZYWlrCxsYGVtfWsLm5iWq1iqnpaZw+fRpj4+P5iJpMXjvRot+W5st1b0EZBAFahoGQkHqnGEfW+CMA9WYTvCCgWCggDEOUyUoor5Db5wEjYs+ApmkwFAW250EWBBSLRQRBgGajgTLxNTJwHPgclrvI8wiI4H8WkhWfLINmQNDJyXYcLC0vY+/cXPdGxRyHaqWCaqWCY8ePIwgCbG5sYGV1FTdv3kSj0YDruiiXyyiXy6hWqyiXy6ikr0UHpM9EJ31RHdeFJIrwfB+e78N3XfiJgiBRFKHIMkRiCfOk4YKqqiwoNswq2TRYg40MMubJigCIJ4ZkgDIgq4sgCBCEYVwp6XlMgEsURSYjywG4cuUKnnnmmYHG6AcBGvU66vU6VldW0Gg20TIMiIKAMpksjh8/jomJif7dECQba6fpqdtWfGSFk3lI4n4JSSFRR1LP0EiKEDfVcBwHlUqFyYUoZHLeTRgRewYoMW5sbMANQ0bu9XodzUYDpUqlXW8jh89dlKS4oUeX9DkqUToMstJUNV5Gh2FM7nv25M4GEAQBk1NTmJyaYq+5rotGo4FavY6NjQ18cvMm6o0GFEWJJ4WxMVTKZZQrlZ5LXkEU41WQaUJXVWaNi6IITVEgS1I+6+ouZ8XQ9oJdg9sZr1GXTBLUqqeTmOt5QBRhaWkJqq6jlLLW0/cADXA2Gg3UCZHX63UYpolyqQRN16FrGk7t24ex8fGdp/QlCoVytQTsgTYdoi6k3jKMLVLvZIx0EL5DFKHZbILneZSKRYiSBL1YRKlU2hWZMEmMiL0DVNKEw/I8SDwPkZB7s9WC0Wptu1l6ZY8IggBwHIIg6CwBm8iX3ylpiZKE0DAwOTGBtbU1LC4vY25mZuAbXJZlpmMDbKkeGoaBer2OWr2Om598gnqjAZdYTJVKhVn3NMXRJf5/IO4czwsCCrqe2x/dhruc8hj0KE5i/ucc46ZkTwmXNpK+efMmHn74YbSaTZbFQUmcau/X6nXUazWIohivmioVzM7O4sSJEyiVSnA9D6Zptq1kdgxa6DOk65vUk8l8PwzRIo1ZdF3vusLMqiWhLjHDNNn2RRIsfVD6kN5LjIi9C8rlMtbX12EEAYqCEN8shQJarRZarRYKJOuABei6uGTostv3fdYRPg3WXIDsbycPlSzL8Hwfmq5jbGwMGxsbWFxawtzs7HBUFskYi8UiisUi9iZ6pHqexyzKlbU1XL56FYZhxD1QZRmFQoH5yDfW1jA2Pg5N06CpalxM08NlkK5QvFvumDAMO35X9Nj9IAgC2LYNi8QYbn3yCQSex/LSEm7cuAGL1E0I5F6rELfXqbm5eHLMIO2AFNKJojg8Uk8QcF/do7rtkuyXrkqTiKIILdLFTNf1zjEPtF9zJtNBxtoyDESI05bVYhEcz6M0iETx5wAjYu8CWZZRLpdRr9dhhyEUSYqXd7oO0zRhET2ZNLkD2613juMgkNSrTvjOd76DDy9exB//8R/jzJkzbeT+j//4j/jZa6/hV3/1V/F//cf/mGvsND+bCh5tbm5iYXERe+bmdkzutF1ZJ1eEpuvgBQHVsTEgiliqo+e6sG0bpmWh1WqhXq/jzp078FwXpm3DtiyIggBV02Kyp4Sv63GTbM9DFATgEAf0BJJ+OOxHl+mwd3AJRVGEIAyZLz0MAni+D5ucg2lZ2357vg9dVaFqGiRZxsrqKo4ePYpKpQJN09gqMQxDmKYJPwgQAZAlKTsrJCKqjRw3XKs0MVF2yjzpa3dIETISrhlyDr7vo6DrEAWho3HEJ1wwdJ8sNZLsRyH9FRRNQ5E00dmNGBF7DxQKBfi+D6PZZNrqsqIgCEM4tg2B5+NMD2KNdFtuipIEx3Ey34uiCL/5m7+J//ujj/DP/+N/4Kmnn47dAByH733ve/jZa6/hpZdfzkXqABiJUhSJ5bKxsYH5xUXMzc72rcudBmtbRh5anxCb47pxRoksx2l3gsCyWyRJgl4ogKrINxoN+L7Pgl2IIjieF1uvxLq1LQvr6+uwLCv2wZKergHJWQ+CIA5K0iCrIEAUBPCiGP8mKZA0BTH5AwAXL16ET8g5IPnxvu/DdhyWw58mcT8IAI6DmNwnsZo1TYNGmiTPzM5CJ6SdrLi98O67OHToUMd+ppIsw/c82K4Lx7bheh5EQYCW0EkxTTNuNNGpcKcfRKTtXereHYZWTnrSpUVJ1JVHSV2W5bgJe9rCps9WMrkgtVKjKY6FQgGFchmapu2aYqQsjIg9B2jhj2EY0MnyXFNVhEEA0zQZcdBilU5uGUEUEdk28y0nEYUhDh44gBe+9CW89tpreP3113Hu7Fn867/+K77/P/8nnnn2Wfz2b/927jHLRPcmiUKxCI7jsL6+jsXFRczNze2M3EmBjkOscHo8RVGgKsrWOXZxlRQKBdTqdVi2jYKuAxwHRZY75rivb2xA07Q2ydYwQbqUeGlGSpD6O/T9mMTJ/1EUMV1vITExRGEIx/NQLpWYHALNzBHIpDEo3dUbDczPz+Nr3fTWyWqhQFYsjm3DcRw0Wy2IJB7huW48ce5AtZEeq6NLixB+f7uLA66dvnUOsYVtmCa8BKmnLfv4wxxryZceVxKNZhM8x6FUqUAvFFCtVnelC4ZiROw5wHEcxsbGsBYEMFstFMkDXqD+dsNAiZBmEEUskyLtlqEk6vs+5DSxI77hf/0//Ae8ef48/uVf/gW2beOf//t/x+NPPIHf+73f6+tGlWU5zrxIgWpyr62tYWFhAXv27BmY3P0gQKvVgud54Li4/ZiiKH0RgSAIUBWFVQr2GkuWrgh1hQ1yHu9/8AGOHz++7XXbtmHZNsaq1b732QsXL17EiRMnukoVJM+Q5zjmqnFdFy3TRLPRgCTLwym66VT9TF7rJyumTZ66y2dMy4LneYzUk8ejyHLfZI3TcV14rgutWMT41BTGx8d3XRZMGrv77PsAz/MYGxsDZDkusSbLwWKxCIHn0SK5t0AcJAsTFju9Pak16Pt+276jRBf2ifFx/B9f/zrW19bwT//1v+LY8eP4kz/5E0iiuFU9mQOSKG6z2Ck0XcfU1BSCIMDCwkLHz3VCGIYwDAO1Wo1VZlbKZaialknqvUKbmqqyBid5cPelv+Lv8G5YfMvLy2i1Wjh8+HD3D2YQGMdxEElnL71QgKqqaBkGDOKeGghdXIf0Hs57FfJkCAVBgGarFccbiEhd9rBS++mSoVNvNOD6Pvbu2zdYvv7nECNi7wOSJGF8chIBtvRFwHGs+IESPl3WhhFRuEtAJC27kkjfrsmc5t/93d9lbglWEp8DPFlVBKlJhELVNExTcl9czE3utuOgVqvFEqqShGqlEmusd7GQemWu8IIAVVXhe17PcdyrxXXYJXAKDFYYFUYRPrh4EY8++uhAVZBhFMVpkRyH8WoVY9UqVE2L9YGIJHLf6Z9dPs+ytHL2e+1F6r7vo9VsIgwCFHV9W659ultVhN56SX4QoNFsolQqYd+BA7tCkjcPRsTeJ1RVRXlyEp7nwbYsADExFYtFBETfIvmwMEEqYm2Lohj7dpMWVuLzP3/jDbzyyiuoEBfA//r+99uO349mhyxJXYlSUVVMT00hiiLMLy7CSQRb0/CDALV6PT4/jkOpWGRNv9m4UueSHnc3qKoKXhB6W+0dlvnDMyF9nwAAIABJREFUtq6DIOjqghjkeLc++QSSJGHPnj19bxtFUVyRSYKlgiDElruqxnEAUYRl22g0m6xOoMvOch8TyHeuaQMmDce20UzcO9vy1BOTSFZwtBPW19bgBwGOnTy566pLu2FE7AOgXKlALRZZxgYQB0YLpEFHq9VqI26qPBiB6JKQQiX6HsW7772Hf/wv/wX79u3Dd77zHezZswc//vGPsbC42HZ8Su55yNIi4+sESu6IIiwsLmZm7biui3q93uZ26djBptPSvseDz3EcCpoW53p3mWC67KD/bbqgW6rjIMfyfB8ff/wxHn/88XxEmfrfoHneGYJYgiCgVCyiWCgAUYRWqwW3Q/ZVP+MPSXC5l4+9m7uGZr6Ytg2RKI4K1K2Y9qFTMieZSL1G2Wy1sNloYHJyEgd2Qbu7fjAi9gExNjMDVdPiFDxipdNgFlVWTDewDmlgFdjmZ7985Qr+7u/+DuMTE/jWt76FcqmE//PXfx1BEOD/+2//bdvxkwUfnVCuVNBsNnuei6womJ6aAgdgYWkp7hWJRBk7Wf7TCtJeyCT3HNaXrCgQRRGWYXS31roE+oYBOul2DMANcKzLly9jamYmjtPkQPJbNS0LrutCU9WufUtlSUK5UoEkijAtCyaNBQ0IppXTwyXVUcyLrGBdz4OiKNvSMpP3Lvs76q2TFCG+JisrK1BkGU+fObOrM2CyMCL2ASEIAiqTkygUCvA8L9aNJqmQNH+22WzCT7tCOA48YiuYWvG3Pv0U3/1P/wmapuHP/uzPWCbGM1/8Ig4dPox33nkHly5f3jYGJj3bYdlaLpXQaDRynY+sKJidmQEPYIl0YGo0GnEXHklCuVzuL585I20tD2ihjW3bHXbbYT9DfLC7iX8B/fvXTdPEzRs38MjDD+f6fHL/tuOwrlN5Kkt5EtBXNQ2u728ZGAMQfECs5o6CXV3e830frUYj1kInOjbpzzLFR7KCzXNdI8SxrM16HeB5HD12DGXSb3WELYyIfQcQNQ2qrsf+9cRDJAgC05JpGUZboRAAKMTlEPg+FhYW8P/85V8CHIdvfetbmCH66RS/8Ru/AQD4f195peM4OGSTUKlUQiOHxc7OR5IwMzODKIpw/eZNNFot6JqGYqHQd9CS+dwT/+eBJEmQJAmWZbGipvwHHQ65U4u9q7upD3z08cd46NChvqtDqQaMSPoC5AX1vReLReab7+l3z4BP7uUkkuTb6SrQfHvqT8/KfGH76UPvJyTnYjsOPMdBuVzGsZMnc2272zDKC9oBeJ6HVCjE/sBSCUarhWazGTcGIJZ7q9WCYRhQg4B1pZFlGYZpwvU8zM7M4O/+83/uqCL42KOP4nvf+17PsTB9GYA9KOVyGa0+iJ2eU0HXYZgmLNOEqWkDZxq0Pa59PMC6rsPzPFiWFfuNt+24c4B2GA6ZYaY6rm9sYHl5GV/72tf62s4j3ZsEUUSxWBwoG0gWRYjkHjAMo2PDikxEEcIg2Fb81KuNo2VZcFwXIok5bTM4SKZYhC0xrzyWOtVoB+Km35Ki4OSpU5ByNGvZjRhZ7DuEpKqQNA0SCQxxSSudLIsVRYkLXkyTLT0VWWaWPL35aQbNoOTEIf5C6cNXKBRYp/o8iMIw9slzHB46eBC6rmNzcxMrKysDpfclrfZ+thcEAZqqwnUcpneztdMuxS/DstjDsGOxUz9XwQ8CXHjnHTzx+OPd9fDTxycBeJ7jBlotUdCVXLFcZvdlXss9IG5CIVG81O07pH1WHSL0tk3mIKHpgiiK71PE17NXDr7n+2i2Wizg6och9u7diz379+c6l92IEbEPAXKxCFFRIIgiyqUSREGAYRhxxgzHMQErx3FYoFWWZURR1JaOyPLfh0DwtB9nqVSKl8U9QEk9DMN4+SxJmJ6aQrVSgWGamF9YgJtzgug0pn6gahoEkv6YfPC7pVQCw0l7zJJ8aDt+Tly6dAmFYhF7STvCXMcmjSYAoFQsDqyFnly98ByHcqKQrpsQHRsHzYhJyCl386c3m02WNaXr+lYuOiHykNzXHF2ZplaXneC4bjzJEWE4mrN+qoPGzggxRsQ+JEhUn51Y6TKx0mlmgqpp0AsFVoZPO/Ck09JYsIoSfIbmTB7QR7BULqPZK4AaRezBTLeBq5TLmJqcZPEAs0f6ZKexZHW86boNuY5hGMJMBVK77mWHxB4mLNWdoFar4ebNmzh9+nTuyYblqkfR4MJeieKeJGjzCZ7j2qqkO4HGN3oVUjFjBfFERN12UeK+pUFWpoKaQKcWkDTzxTTNOHhPGt0IgoAnnn565/o4n3OMiH1I4HkeSqXCLJKCrkPTNLhEm9xzXchkiRoQchdJW7heS9FBCZ4DUM1B7FQitlgsZvpgNU3D9MwMBJ7H0vIyNmu1PkdCxpOz6ISCBg1dx2Erm7ud1BZ2IbS8Yw/CEO+88w4ee/TR3EHPiOSf+ySLZOCy+G4VvoTcOcTa5d0+Swu0Oq0YaLKAaVlxHKBUgiiKzEJvG0unmosOqY2e76PZaMBxHKiqimKhAJP47o8/8siOe8PuBoyIfYjgRRFqQipUVVWWHWMYBoxWC4IgMH1013URBMF2PzIBtdyTy1rq+8xLj6VyOfZPIpsUPdeFQwW4upCJLEmYJRK0m7UalgbxuxOrrZ/tNNKQw+iV2952mMHpv2MOe4+agSSuXrkCWVFyF81QS93zPBQ0rWuueifkHZsgCNB1HWEUsXqFLFAp5KyxWraNBnHp6JqGUqHQ7otPfJaResb40tWqIambaLVaiBAH/wtkrJu1Gmb27MGBAwdynedux4jYhwxBUSAXCm2KjqVSCaqqwvN9NEhub4nIwbqui0a93nmHqZu/zQ8fRT198eVyGY1Go630nyIKQximCY7noebIfOE5DlOTk6hWKrB24Hfvx2/McRyKuh67ZEjMoifB74TYSe52VjZHHjQaDVy9dg1PPvlkLrINwxCNZpMpHSqK0vf4+10JybIMSRTjwHraJUOs6CAjzkA1aWyiE1Qul+PGIMhezXSrjqZGCoXreWg2m3HwVVVRIYVWALC5sQG9XMbJU6d2vWpjXoyu0l2AVChAShSTcBwXa8yUSnFAkCjyabqOUrEI23GwsbGxrRo1jbYc4kSlXjdXTaFQiHPCSQofl1heG6aJiGiP9GPlMr87UYc0cqgytu2fa2+c0AtUL92xbeYD7wpiKQ6CToHTPCMNowjvXLiAUzl1S2igNAwCFAsFJuPb70pokIylQqEAjqwko+T14rZa1wmJbC3DNOMivCiKC44SAdI2YyGxwux1T3EguuzkeeB4HiVipdN7tGUYCHgex44f35W9SwfFiNjvEuRSCXxiSU2DR8VSCTrxszebzdiHqOuxznar1VXbpRMZtrlqiBoe/ZRAMmPS+ey+78c9SFV1ICtI0zTMzsxA5Hksr6wM5HfvR7ed9ki1yGTUfcf55Y3T8IMgM3CaZ3/Xrl0Dz/M4fORIz8+GYYhmo4EwCKAnNcmR0822wyAxT+JAYRjG4m+J+yogLfkEQYhXlI0GXBIjoo1HshBha6XTi9SjKIJj2/G+PQ8aFTMj4mZAHDxtGAb27d+PmZmZHZ3vbsOI2O8SOI6Lg6kJvzVdmiqkeIkuhyOOgyiKkEjrPNoursOOux8XW7nBIUkzK5fL2ypQHdsGn9MF0wmiKLLWb5u1GhaXl3Ol0rWNt1teevJzPI9ioYAoijrKDewUVCJ2EEndVquFy5cu4amnnupJakEQoNloIIgiFAqF7ZWZPSzwflY73aDIMkRJgpu6nkEYwidNsmlRULFYzJQFSI4pL5kEQYBaowHDNCEIAsqlUtwjNxHHsG0b9UYDe/bvx5GjR0cumD4xulp3ETzPQ61WwaUb9BLrvUCkb0VRhEU6ytCWb61WK7ZOuzzA3R7t5ANYLpextrbG9hUGATwizMRU9nh+oLRK6ncfq1ZhWRbmFxczVx3dqI7PSVSSJMVppK7b021FEaX+jlJ/J99ngdOM7lZdjxFFuPDuuzh+4kTPjkZ0pRZGUbZ8bQ9wGMz1kokogkp85KyeIopb1tF8d01VUS6XO3enSgaVe0xoYRjCIoQdkpz3UrEYN5FJfM5xHKzX65jdtw/Hjh0bNc4YACNiv8vgeR7q2Ng2twNtnSdJEsbHxqAqCprEihFFEaIowiHL4E4klreqc3Z2FkvLy7ElH0UwbRshOTbdkosiZjENQhvlUinWuYkiLC0vY2Vtrc167zXGvG4ZXdPAI/a9tu2TuqCiCBFZrQTEJRWSH0rkyb+ThOL7fmyxJ8aS/gx9LYkbN28i8H0cPXq069hpimAEdEwt7YoBvxsgIdhFVo10ZSfJMniOg2Xb8H0f9UYDrWYTKmkGrapqVys9z4QchiEsy0Kj0YBtmrF7kCiFcqT2g8LzPKzXapiZncXRY8c6dlgaoTtGxH4PwPM8tGoVUdoqJjc0z/OYnJpCoVBAGIZwiUUqCALLbza7WO9tkqcZqFQqCIMArWYzbtJs28xKSgZeKTFSAugXqqJgbm4OpWIRrVYL8/PzbCmfKzib4zM8kRsIggCWZcUkHoYIEq4nStz9pj0GYQiO49pcMb32YJgmPv74Yzz51FNd3QWB76NB0vhKPUi9U9HOTtwvPNk+2Yc3Iv9LoshaHVKJ3Wql0jGXP5nt0u0a00ymeqMBm+ixF0uluAiONH5Pbu15HlbX1zE5O4sTp07lUrMcIRsjYr9H4EURerW6LT2RPhg0v1ggTbIVWWYWb9Li6do6LlnGnTrGzOwslpeXmVUqJdvtESuXtvPLo4nd8Ty5uPH33MwMeJ7H6uoqllZW4OVwnXTKtU9DEEUIogjTtuF4Xnw9OxBMP26LIBU47bQlPVIQBPjF+fM4cfw4qpVKx7HTNEEgJvVeLfeGWoSVWIVFiVUNXeGYth2rJbouOJ6HpqqQRJGlGraNi+O2VlZdCD0IQ5imiXqjwYyIEiF0JI2GxD78IMDa+jomZmZw4sSJEanvECNiv4fgRRGF8fHM1ESe41gzaMeyoOl63NhClpklSLMIehXrZFlRc7OzWFpagk80QDpK0qKdAJg1T97PS5SyLGNmdhaVRM57T2mDePDbdbvpWEhLwSiKUFBVCBwXN3LuErDtx2oPUjK1vbb84OJFaLqO48ePt22T9IMnBazKPUh9GGDfDs1tD8M4iyiZ9RJFsSVdr8da77KMQrEIVZbjlSLpcITEviihd7smlNAbpGqUEjp1O4VhGFvpUXt/VD8IsLq2hurkJI6fODFKaxwCRsR+jyGIIvSxsTbSBGICEgUhbq9HqlF5nmcEr2saZEVh1t/m5macUdODaOm709PTWN/YgOe6sbBTzvEy0S3q5kjmzadIPw2e41AplzE7OwtRELC2sYGFxUW4ORpnUx8wdbXQ/PUkIVBJ336qUjuBNnrIS7yf3LqFlZUVPP3005nv8xwHz/PQajbBI9bG79aJiKGPiShZuUnjJ2xSyWgtF0QRDMtCo16H7TiQJQmVUgnFQgGKJMEl8hbpgG6vlVQbobsuJJL1xeII9LtJWep0FbG6toZStYpjOYLPI+TDKNx8HyDKMrSxMZgbG7GCXkIcSVYUiETiV5Iklv+u6ToUohBpmiYc246XubKMQqHQMcjF9kuCtGtra5iYnBxo3OnS8AhgD22Uep9LFL3IkoS52VnUajXU6nXMz89jvFpFqVzu3KUIcfZO+oySHeyp5neLaMfrO2hmTN1eAlnJsAk347P1eh0ffvghzp09u81lQbe1LAuO48Rj7KcArMMEFRFLl17zCNj6H9jKbspw5QRhCNtxmOCcLMtQVbXN7SSIIgzLgigIEInFHqUs6zR834fjOGyilkkhGZ0ck9sHZNWQDEZHUYTV1VUUKxUcP3kSlVEnpKFhROz3CaIsQ69WYdZqsZwprQoFoBcKsfVj26w5B0CCsJoGVVVjfXdCHmvr65AlCYVCAXpWcwMA4DjMzsxgeWUF0zso9mAPZcZ7aaJHGG4RPcfFWRaaho2NDazXamgaBqYnJ1nFJd0uIu4DFqBDnMmSnDiohS7LMlTfh+26EB2nbV/9gBF7D5eD53l48/x5PPH445liVLSS0vd9yIqCgqbFYyZB3TRxp8kzSpAfC3CS7dpiM6nfWRNCEIawbZtpEcmKAlVRMguwREGA53kQBIGlNmaRehCGTF8oJN9vmtDZGBOTMHmBjTMIQ6ytr0MtFnH0+PHcvWBHyIcRsd9HiKoKfWwMVr3OfMc8KVZSFSVeLsvytiU8x3HQNC1WPnRd2LYd94Hc3ESj0YBOpAqElDU5MzuLy1eusGDaToJ0bWXkyE4LRIqwgDhIPDk5CcM0UavVcGd+HpVqFWOVCjiOY1otWcdLW3sUmqbBDwIYlgVBELadN/18N+uTil7RSbFTmuPb77yD6elp7M9o8uCTrkdRFEGnui+Ja0EzUkK6mkn+T8bHApuJ8952Luie+x8EAWwSWObQndAB4tLheQRhGJNzRozDdV24nsd6+AqiyJpr9yoeohNARAwYx3Wxsb6O4tgYDh89iskBV5AjdMaI2O8zREVBYXwcdr0O3/NYqptKSNs0TaYGmQVZlmM54GIRjm2jSdrzNZtNaCQXmRJMpVIBOC7OU6ZZB6nl8SBIk3yvfXFc3BlIV1Wsb25is1ZDo9FApVpFiQioMUs1mRKXCKyy1Eyyv4Kuo9FsomUYKJNOVuljdoMfBG1FOFmfvnz5Mmzbxhe/+MVtKxaHfFccwCbVKIugyfls6x3aIaMpjW6prUEQwLJtuITQVUWBQoLMaSTjFRwA33URhWGbsiR1tXieF19rnoeqqpAkaVvwvdPEySYxcrxGswnDNDG5Zw8OHzkykuC9SxgR+wMAXhShT0zAbjbhkrxvIG56bZkmPM/rWaFI/fAa0Z1pNpswTROmaTLi1zQNU5OTWFlbw+TUVLxhkjh3EIBse6Q7WZOp13lBwNTkJAzDwMb6OtZWV1Gv1TBWrbaJaLEtEm4JGuyk7h9K7vVGg3XZYdZ9wlpmY6DuERIMDoIAkiSxAGTbcQGsrqzg6rVr+PLLL29Z1ogJjfX5FAQUi8U2C7Zt0iPj5DmuoyJit1oFas2nJ1LXdeG6LjzfjwldVaEqSqaKZpQoUErCcV0WPLZsG47jxNk0HAdJkqDIctd7sOPESVclQYD1jQ1wooiDR4/i4MGDo+Kju4gRsT9AUEsliLIMq14HF0WQJQk2z8NotVCuVHLrZciyjImJCVSrVaYDv7m5iWajgUKxiIXFRZw8cSJTc5xi0HxqlkWD7X74rIc/iiIoqorZuTkYJLNiZW0Ncq2Gaorgk2PMoj8aTDUtK45PkFUJI/UkaZK/OYBV9oqkICydfWNZFt56+2188cyZtsYZYRjCaLXghyFURYHWQUuF5YAnJtEsck/615PXLE3oERmzSwKXEeLYgKaqUDoQOt1XFsIogmkYsUFAtPtFUYRMrPNBdVpo1pfjOMz1cvDQIcyQGocR7h5GxP6AIema8Vw3djHU62g0m6iUy33lZQuCgHK5jFKpBMuy0Gq1IEsSGvU6FhYWYiEyos0tiWIbsVP3wE4KZpJExAKgKWvXJz51judRLBZR0HUYpol6vY6V1VXIjQbGKxVoJLeZVcXSwGzKwlVVFT5xSQiC0G5ldrh2LHCa6O9JEYUhzp8/jyNHjmCKrnIQ56cbpAtRMUvIi5wfx/Nx3nbGcXmOQ5Aaf5v7KUXofhDAcV14rstWFtQVl5Wdkz7nZC2C7/vwyI/rOEyQSyONPjqlffaKVSQ/F4Uh6mTlOLVnDw6NXC/3DCNifwDBXDOtFtBsolAqwWi1UK/XUS6XY4usD4LnOA46adUnSRKml5dxZ34+7kZDtGkkoi4piSLExIPN/L9DcNPQfdFgYZgRKE0SfIvEC5ZWVqAoCsbGxqCpKrN2OSRyuRPjK2ga6kEAwzBQKpd79i/1iVY9TTtNEuB7778PWVFwIlGEZDsOLEKERaKxn0TS5cLcPh3A8/xWa8QkoRMERGLCdV0WWJYkKSZzSeoYXE2TbxAEMZF7Hqs+ppY5z3GQiCSv1qPisxup00mbThzr6+vgJGnkerkPGBH7Awy1WIQoSeBqNdbtyDBNJp+ai+BTwatisYhjR4/izfPn8cjDDyMixOGRH47n44ed5xnJ0/+TvulBwDJbuN4df2jThWKxyILBS0tLUFU1zhpKpyUm9snxPEqFQrxdqxUHM7vpuJCKUxa0Jdfr0qVL2NzYwNlz59j+TdOES2IehYyG09sCvl1ArwXH87E/mxB8GEVxSiEhYYC4mahrJEcwNIwieL4Pn2SyJJtTy4oSf7eiiCgMYZOiImXAVNEkoUeIJXfXNzZQrFZHrpf7hBGxP+AQFQXFiQnwooiQBOp4jouFsMhSnwc6E3zSoiWBMF3XMTU9jeWlJRw9dgyB78P1PHiuCz8I4JMgnO954F0XHOL0NmrZp0vO+3XXcABzQSQt5CzrluN5lCsVlEolNAjBb9brkCUJkiy368knJh2BBDKp1V8mvWfTiEggNl3gdfXqVdy+fRsvnjsHSZLgeV7ccSqKoKlqdpPqDgVCbcfDFgHT0fAcBz+KYLsua9yd9JvLsrxtYkoXhCGK4Hkec68EZELgyHeu0pVYaj+G48AlxE7dVrmzpMj5MjnoMEStXodp25iamxu5Xu4jRsT+GQAviihOTACCgGhlBTZpkqHIMhCGCID8BI94KX9g3z588MEHOHzkSJyTLIrQNA2B78eWousy6QBwHAJCFrT9MU8KWXieBy+K7O9e1jzPcfBT2iXJ7BWKbUFEnkelUkG5VMLKygrqjQYWl5agqSqqlUpMzGh3zYiiiGKhgEarxSz3pHRtEiJJT+Q4Dp/cvInr16/jxRdfhCTLaBlGXLzD89CJfnjbpWWD7nzu1Kql1nYURfCJe8T3fTiuC9/zwHEcFEWBLMuZGugc8cv7vo8wCBAEAXzym46F5phLxKXWLWjqOA7bps391g10Ak3k4RutFjZqNSiqioNHjoxcL/cZI2L/DKFYrUIQBKzOz8M0TeYu4YAtgqfZF11cNFTLQy8UMD8/31ZsI4gidFEEVDXOvPB9eCTHGcT9Q3PE/SBASKoagZh8BUFgRUICx2Xq0nRM6evwf1vFJbHgJUkCLwhotVpYtCxIkoRiscjUEynBi5IUu2UMA61WK06DzHAniYQA5+fn8fEvf4mzZ8+C53nUSaNxTdehksYkySyXrhMZzVlHe8DSJz/Joi1VUQBFicv5E+cdkgkg9H1G4Mwnj9iq5wUhDniSVVXeZuEO0WDnBQFqLxJOrvwShG4aBjbrdbiOg6mZGZx45JGRNMADgBGxf8aglUqY2b8fi7dvo2kYKBeLWyXgAFsaR4hJsG25TqAoCizbxsEDB3DlyhXs37dv6036WY6L/euStEXyngfP8xDSZT7PM7cMPQK1ApFot0atQUEQIOTs1MR1+DspH1spl1EuleLYg2Fgs1ZDrVaDpqqslRt4HpIso4i4OUez1UKxUGiLT1CSXl5exnvvvYfnnn8eIP50URTbctO3Za20DXqLyKk1TYmc5t0D8SRC88Jp/MInOvmO68bkTSxxFjdAvHKTiDuFTp55STx9/YA4DTEIgji1sROxp6xzipZhoF6vw/U88ByHR0+fxsFDh/oaywh3DyNi/wxCKRQw99BDWLx5E81WC+VSKTM4GIUhSzFk5Eseal1VMT4+jujqVaysrmJmerrNV57uXM9IPooQhCGChAXpJ9QaeUGIVxGJzji0FZ/rOIgAps3OcVxcFUkse4Hn48mCbJtFWsmgcUSOVyqVUCqVmJqiYZowLQuCKKKo63E6oqKgEMVytaZloaDrjIQlScL6xgbeeuutuGcp4myUQrEYl8xzXFuRUzqNk+O4+FokLHLmGuE4CDzPgp5UHiIgqYsWUeik27FtSJBTTKyC+m0csnUjRACZ5FlPUceB4/sAx0FNNzTPsM4paCoqVR+dHB/HqccfR3HkS3+gMCL2zygUVcXcoUNYIORe0PW2ZTxF0ooPAUaKsqJAchwcPHgQV65cwcz0dBtxpPVkGNET0hEEAXLivYCQGSW1kJI9+bwky+CxRYIe8RGHUYQoCFgZfFroiuq38AnSD8IQESFSjuTfc1wsRjU2Po4q6b9qGAbqjQbqzSZkWUapUNgKhFoWC7wapom3fvELPPLII3EetyzHTU9IwRI5yS3JYmJN04rVpEVOc9cFnmcTqh8ETEY36cbh6ed4HqIkscrPXumZvdDmKiLfQfp927bhOk5cpaqqW6uNDDIHANOy4g5LhNDHqlWUq1UcOnoU6kg//YHDiNg/w1BUFXsOH8bSrVtotVrQNC1OWeuQnZF8cCMubuwxPTODa9euoV6vb/ONZm5P/k4u6bmERU9zVNKk5zpOm282CMPYpUCCr1mgLg0aaAxdl1VdWqaJMNreMITlzJPzE2UZtmWh1Wig0Wgwq1kQRWiKggjAm2+8gUOHDkHVtNh6dl2s2zYi0nIv+Ts98VASZ64mal1jSwKYBZlTK5Ik6LXaCZLfRze4ngebCKaxphbR9uYvIZkAaMs8geMwVq1CLxSgahoOHT0KcRQgfSDB9cgnHrwqZYR7hiAIsLqwAKNehySK0AuFLV9wjyyVZquFq1evotFo4IUXXsi93E/mjKclBDKrE6kLhxCYZdvMCqbKlmkkLVtmgXIcgiBAq9WKBakS+uks7Y62FKSTGPlxHAemZcF1HFiOg6ZhYGl5GXOzs9g7NwdZlttcVmwSIAFKamGLosgsbWrpUuLOIu0cFxOu78cB6h6fo4Frdo17FEBt30WEzc1N1JpNlIpFVFIuFJpSa5omLMuKux7xPMqlEgrFIniOQ3ViAnN793ackEe4Z+j4xY+I/XOERq2GjaUlhEGAoq63ydcmre3k3RACaNTreP3nP8eueA0CAAAQvklEQVThQ4dw9Nix+DPU+htgHG3EzmUUIxGfcvJ12pEpDIL2zkmE+NlvQn7NVguSKObujUlTIaMogmvbWF5dxdWrVxGEIY4fPx5nvcgyNF1HQddZIVS/xDkIojBs6ypFxzqso1KXWgSg2WxifWMDiqJgfGwMPM+zxuCmZcG2bSZhrCgKq1jmiPtuz4EDXdVGR7inGBH7boHruliZn4djGEwUKgv0QaeBwsWlJZz/xS/w4rlzbUUlSQt2GERDj+kRP3n7m+0kGgFxl6BEtglIQLher4MXBNYejwYGaSwg6ZKhKwqHaNcvr6zgypUrcRPqsTFWmMVzXKyQSMZA/c+qqrLes21xh8TQ0xNn+u/0Nunrz8r8hzCJtD20iefbcV0sr6wAAMbGxuC6LgzTjIPaUdzJS1VV6JoGhUg3xIPlMD41hZk9e0YVpA8WRsS+mxCGIdbX1tBcX4cAoFAsdrwDKMH4vo9Lv/wlbs/P48tf/nLHB7gtTXAnYyR53YOi1WohDMPMysYkkYaJNMIoinD79m3MLyzgi2fOMB9zEIYwDSMmNk2D53lwbBu2bceBT8QuJ6pvrilK7pVCL0RAmw7/oPsAwKQEsr6XMIpwe34ezUYDmqbFKx8SrFU1DTrJ009DUVXsOXAA+qgX6YOIEbHvRhiGgfWlJfi2vc01kwXHcfD6G2+gWCjg9OnTXa1HplyIhFXfJ2hmySAwTROu66JarWa6SwJC6NTFIQoCfvnLX6JlGHjuuecQhSE8z2P9SD3Pi9UaEbcmpH0/Pc+D4zhxRyKS9w0AHCnqScosUFXEvA2xgXjicYmEQ16kH8pkmmpIpQWIvIDveXBcF+vr67AsC4VCAcVCIe7Apetx9XIWOA6TMzOYmp0dWekPLkbEvlvheR7WVldhNxrgiM5JOpMkiUaziX//93/HI48+igP79/ftGmjzzfew7EOabdLDWk27V8BxsIk/uFIut3VLCoIAtuPAc12A46CQgOj58+ehaRq+8IUvgBcENBsN8ILA1AwjjkNIgrJhGEInaY/U+g+Jm8T3fdiksYbrupmrDlqBK5MCJPpDFTSTvUB93+86uaV1dCiJU00YSuK+78N3XSbXQIvUeHqtHAelchkzMzOZUgVJ6KUS5vbuHaUxPvgYEftuRhiGME0TjVoNTqsFhCFU0q/y/2/v7n6jKPc4gH9ndmb2bWZ3+4IWD9iKlJe2YI9YG++MkcQLE2+P3siFFyd67b2J8c7Ev8F/ACGHyDHRmAgc9HCAUkBQSSlgELD2dd/mZWfOxTzPdLa72xaoSIfvJ2kChe5OC/129nl+z+/Xzq+//orzExMYe/lldJVKq9+xrTxW326dHMsNr2QtvIKwEZgfKyNU2j1eB47joCra8qqqGh2A8jwPkMsmos/L6dOn8bdt2zA8NBRek+9jQcyGlT/k5A+PwPdRqVTgel40PCP+efht1sF9UYffELX1nji8FT+oFP96yPYFAcJ/G1/8cJOfv1yWCQAocl6o/NqKa/BFq2F5XSlxMEyWncqDVWVxoCiTyaCnu7vj1zMAYFkWevv6kOfm6GbBYKcwvGq1Ghbm5lBfWkLgeWHAp9Mt/0POnTuHSqWCvUND4eGnNUbz3S9ZUx8AURWMuMh1VaG4rou5ubnwDliUXCqxQIeq4t7duzhz5gz27duH/v5+8cQKnHodlWoVxUKhdVlDXIMsi0yJlgJNp02V5Ta163lFI3vDyJOpjuehITo4NkQVkPyadNwLiY/bU1Vo8hVBm/mjEI+7VC6jvLSElK6jR1TArBQAMAsFbHn6aQb65sNgp2b1eh0L8/Oozs8j8DwY6XTTWLVGo4Gvv/kGW3p7sf3ZZ6M5mhtd+hdfhghEXbu8M20KTUWB7/twHQeO6DFeLpeRy2ZhiklQcm3bbzRw9epVTE9PY3x8HL29veHjI/xOqFQq8DwPxWKx6Y46+l4Qz+vYdtRsLZvLtZ1SFMi/Lyc6xZ4n/njyjjwQ9fzxX280OQS9WqmETdAsq3VeqaIgb1kM9M2NwU7tOY6Dxfl5LM3Owndd6GJDUNM0eK6Lk6dOIZvJYHBwEKqYKXo/m4NrkXe+8d/HK0Siu1zHCQ8eKUp0fbVaDel0umku6r179zAxMYFioYD9L7wQDiVBLICDAAsLC9GgDNfzwl4wWK4fl6cwFYSvDKrVKnzfh2EYyK7o295Spy+Wc1pG7MUOSkmyRcFG8UV1j+N5qNVq0DUNedNs2SA1i0X0PvUUA33zY7DT6jzPCwN+fh5uvQ6IE4cAMHnxIhqeh73Dw2FJYDq9YXfv8cCTbQhkj3En1hJYExuPhlx6QVjyGAQBLMuCbduYvHgRf8zMYHR0FFv7+lqfS3yeZdHhUdf19nfMbfYN6vU66qItwqrVJEDrD4k2AS7ftyHfYEEQNhSr1aKvXUpVkc/noYvNY1VVUSiVUOrpQW7lgHDarBjstH6O46C2tITy4iLsahUNz8NPP/+M+fl57B0agq5pYVdF0wxf4scPBMkH6RD6fhDA9zw0xKZhY+Umo+xzE6ssSaVSTWvMUl3Ums/Pz+PHy5exvb8fQ3v2tKw5y3Vx2YrXcRwUS6XocFA77dbPvUYDtUolDM5UCvl8ftWGXXJztN3BJdlM7GF/OPpis1dW5/hiScgyzbC3vmmi1NWFQqkUdZakxGCw04PxPQ/VchnVxUVcuXwZU9evY9/ISFiJ0miEszJXjG5rqnCJBXUQq/6QYaumUuHwDtmXRXY3jAderBokbm52FucnJgAABw4cQKnTgIfY8sriwgI0XUdelPI9yBq3bdthrxvfR1qcTI1vrsbnf3YiK2Hih6mkeAVMS5fN2MfborZetvmV4V7q6kJ3by+KXV0wNuggFT2WGOz08Fzbxo+Tk/jfDz/gwIsvwrQs1EU/8VQqhXQ6Ha6/x8r1VtZhRx0d5Sg9YV0BK1sD2DZ+/uUXXL9+HQMDA9i5c2dUj94itqziymWY2Hi7VZ93ldLLwPdRrdWiAeBp0ZBsPd8w7ZZm1sv3/bDlrusiCIJoQIbjODALBTw7MACLE4yeFAx22jhTU1M4fuwYeksl7Nm1C6VSCY5to+H70FIpZHK5NQ/BrCSbgHUUBLj3+++Ynp7Gnd9+wzPPPIOh4WE4jgNNbOpKh7/4AocPH8Znn32GLaIiBghPq7qui0KxGH1HrBbsV3/6CR9//DEOvfsuDh482PbvyAoUr9GAAsAwjHD49CqHwB4k2FsCXSyBBUGAnGVhS18furu7N6TXDG0aHf+x2XeT7tuOHTvwzw8+wOXLl/H9qVPIaBr27t6NLVu2wLHtsHZa3MHLAFqLqoRDmleq12q4ceMGpm/cgKZpGOjvx+joaHS4So6gk0sWANBu8k8A4Nz587g+NYXp6WncvHkT9XodL4+P4/333297Tbt37ULBsnD27FkcfP315bbEQFT5omkaCoVCeEBKnEa1HQcpVYVhGMv98WPWG+rRnFTx2AHQVHJplkro7u2FZVkcHE1NGOz0QFKpFPbv3499+/bh2rVr+M/Jk3AuXsTQrl3o27oVnuehUq2ipijQxV3sWnfx0Tq87+Pu3buYvn4d92ZmsG3bNoyNjaGrVGq5I9U0DW6sb3j4QCtObyoKXMfBt99+i2vXrkFLpdDd04Pbt293br4lNk9HR0fx3YkTKFcqy0MpgJbr0HUduq4jm8vBdZyov0ytXoeh6zDSaaRUFeuJdN/3Ydt2WOLp+9FGchAEUDUNBbGGbprmqu0h6MnF/xX0UBRFweDgIAYHB3Hr1i2cOnkSE5cuoae7G/lcDtl0Gobohpg3TeRzOaTFSVfbcVAul6O3SqWCxcVFLC0twSoU8NzAAF4aG1s1vHTDQK1Wg+M4yx0XRQtaKQgC2PU63nzzTWzt68PTfX24evUqPvnkk+jP2woCHHjpJXx34gQmJycxPj6+5lKHqihIi8Nenqi/t8WhKtk6QRVBHR+Np6pqtCnruW4Y6AD0dDrsMWMYsEoldPX0wDTNDT1LQMnDYKcNs337dvzj7bexsLCAmZkZzM7OYu6PP3B7dhYLc3OoLC2FwzHSaTiOg5SiwDTNaBh1X19fuBGay3XsY7OSnGjkuC4ymUzbTSHZu2V4eLj1BOYaRkZGYOg6zp47h1deeSUM3HWuY8uDVJlsFp7rRuvjssQz3lMmQPgqKJ3JoGBZMC0LOTGEO3qclUOniTpgsNOGKxaLKBaLeP7555veH4hTnzMzM9B1Hb7nwbNtNBwHqqJEyxmqGFitrjNADcOINjDbBV+9VkNKVe871AEgbRgYGRnB5IULaIj69fsJdwDRWrwimpXJVwiZXA6amFKki4Zjcog278jpYTDY6ZFRFAWlUinsoY7ltWTbtlGpVGBXKqjU6wjENCM5bzQVL42MzfmU0arrOgJFaV6OEeRdce4hWtAeOHAA586fx5UrVzAiavjl2nzbGnQAEBufXuzuPKXryGSzsHp6YBUK0ZINQ5w2GoOd/jKqqoYDH7JZlEqlaKiFbduoVatw63V4joPK4mLYmlbTwrtZOUxaHICSrXBrtRo0TYtOdcqh16qitCztREf645usaF/f+/fRUcD3cebMGQwPD0cj+hRVjRp5yedrNBrR0O6saUJLp2F2dSGbz4cj9tLppp7sRH8GBjs9NuRSjGmaQE8PGo0GXNdFrVJBZWkJjuOETcGCIGoKFgQBFHEHb9s2XDExKZ3JoFwuw9B1ZC2rZYN0ZeMxYDnUA1EuKQ9YZfN57N6zB5cuXUJNVODIo/uK2PxUVBWqYSCdSsEwDJiFAkzLitbHiR4l/o+jx5Zca85kMujq6QEQLt/IiUHxpmG2bSNTrWJudhY1z0PKMGB7HlTDgO26qIuZp4oIbNu2kcvloKoqlsrl5Tto0d4AihKt8Suqit/n5uB4HvJdXdANI+qCKa9RNinj5iY9DhjstKmoqhqtTbdj2zb+9eWX+P7sWWzfsQP9/f3Ld+SxTpK37t3Dfycn0TcwgGcHB8O5rTLIxa/l282bN/Hvr7/Ghx9+iP7nnntknyvRg2KwU6LIwF9YWEAul2vq1R6XyWQwNzcHz/OizdxOjh8/Dtd18dZbb2349RL9Gfi6kWgNR48exdatWzE2NvZXXwrRuvCOnZ4YR44cwZEjRwAAd+7cAQCcPn0ahw4dAgD09vbi008/bfqY2dlZnDx5Eu+99x4rWWjTYLDTE2NiYgKff/550/umpqYwNTUFAOjv728J9mPHjqHRaHAZhjYVLsXQE+Ojjz5q2kBd+TY9Pd3yMUePHoVpmnjttdce/QUTPSAGO1EH9XodX331Fd54442OVThEjyMGO1EHFy5cwM6dO/HOO+/81ZdCdF+4xk7Uwfj4OCbETFWizYTBTonz6quvAsCa9elEScWZp0REm1PH+luusRMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECcNgJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElDIOdiChhGOxERAnDYCciShgGOxFRwjDYiYgShsFORJQwDHYiooRhsBMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECaOt8efKI7kKIiLaMLxjJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElzP8BYPzNIr3eBZ4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -177,7 +177,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4XFW55/Hvj0kiYQhgAjJFUMwNSntJmGyUBJAh2I0yheZy7SgkQRG0G5ApShi0CSpwr2iToMKlVcIVaFqGhCEkAbwMJgGUIcEAYRYjBEJMgCS8/cfaB4qdOqeGU7WrTvH7PM9+6tTa07tOJfWetfbaaysiMDMza7a1Wh2AmZl9MDjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnH2p6kiZKim+WYKo+xY3acTXLlY7Lj9G9O9NXF0ctjXitpVg/rH5F0Yw/rb5L0eA3n2y/7nQ2pMVT7gHPCsb7idWDPMsv0KvffETgbyH/R35wdZ3ljwqw7jma6Gthf0oD8iqxsf+A3BcZjH1DrtDoAsyqtioj7Gn3QiFgMLG70cdvM1cD5wKHAL3LrDgPWBaYWHZR98LiFYx1D0hmSFkp6U9LLkqZL2kLSCKCrS+nprDtoUbbP+7rUJA3O3h8l6QpJSyU939V1J+k7kl6UtFjSJElrlZx/iKSpkp6TtFzSo5K+3bVNT3Fk67fN9n812/9WSZ/M1XEbSbdIWiFpkaTjKv1eIuIp4AHgqDKrjwLmRMSfs+MPlXRNSR0ekXSiJPXwe/94VpcDc+W/knRfrmxnSdMkvZH9bq+RNKhk/XqSLsrO/1b2u75ekv847gD+EK3PKPelExGrsnVfAc4ETgMeBTYD9gE2AOYBpwA/Iv2V/xLwVoXTTQJ+TWoBfA34N0n/CGyXvR9GajU8yHutg62ABdl+bwCfAc4B+gH/q6c4JG0K3AO8AhxP6uI7HbhD0o4RsSL70v9/wObAscCb2fE3Bf5coT5XAz+SNDAi/pqdcxAwAvhOyXZbA48Dv8rqsAvwfWB94IcVztGjLHneA9wH/BOwHul3eAOpWxNgAjCa9Fk+DWwJjMJ/HHeGiPDipa0XYCIQ3SyDs20uBa7r4RhfLN2+pHxMVt4/ez84e39FyTYbAStJX+prl5Q/AFzTzflE+oPuTOCpKuI4j5RsNi0pG0C6dnVC9n5Utu/uJdtsB6wCZlX4HW4JrO46Vlb2TeAdYOsKdfge8ERJ+X5ZHEOy9x/P3h+Y2/9XwH0l768GHgPWLSkbksV1QPZ+OjCp1f/mvDRncQvH+orXSV90eS9mrw8Bx0o6hzQQYG5ErO7F+WZ0/RARSyUtBmbnjrkQ2LbrjaT1gTNIf71vS7o20rVunchaY93YD7gdWFrSknsDmAsMz97vBrwcEfeXxPaMpLmVKhMRL0maTWo9/DQrHg3cFRHPl8TZj5Qkjwa2KalDSForIt6pdK4e7AdMzo7VVceFwPOkOt5K+hyPy37ft0bEn3pxPmszbqZaX7EqIuaUWd7O1v+S9EV5JHA/8LKk8yStXef5Xsu9f7ubsvVL3k8idZlNIbVGdiV1GZHbrpzNSQlgZW4ZSfriB9gC+GuZfcuVlXM1sJekrSVtDfznrKzUj4BvA5eV1OECUmtnvSrP053NgLNYs47b8l4dz8nOfSLwx+xazjd7eV5rE27hWEfI/vK+GLhY0jakVsb3gRdIX2BFOAL4SURc2FUg6eAq930V+B2pay3vjez1L8DAMusHAiuqOMd1pNbNkaQEshq4NrfNEcC/RMS712skHVLhuG9mr/mEtGnu/RJSgruyzDEWA0TECtJ1nAmSdgS+AfxE0vyIuKNCHNbm3MKxjhMRz0XEBaTumqFZcVdLqFJLozf6UTIYIWtd5UeGdRfHDGAn4NEyrbgF2TZ/AAZJ2r3kHNuSLuxXFBGvkrqtjsqW2yLilSrqMLrCof9CSl7/ULLfRsDuue1mAJ8idXfm6/hMmXifAP4n6RrV0Px663vcwrG+Yh1Je5Qpfy4iXpA0mdRKuI90vWck8AnSqDVIo8cAxkuaCixvwvWB24ETJC3MYjkB+FBum+7iuAg4BrhT0k9ILbNBwN7APRFxNXAL8DDwW0mnkVoW51J9lxqkFsavs5//uZs6nCTpaVIX4jep8D0REauymQxOlvQ8sJTUtZi/mfZ7pIEWN0q6gjRIYivSjac/j4i7Jf2O1CX6YFa/I7N9766hjtauWj1qwYuXSgs9j1KbkG0zBvg96Yt+OfBH4NjccU4GniH9xbyoZL9yo9S+mNt3EfCjXNmVpHtYut4PAv4v6Qv3ZeBCYGzp8buLIyv/KHBFtu9b2Tl/BexUss22pJFcK7JjjCd1i82q8ne5AfD3bP8Ny6zfgjT0+g1Sy+UC0jDtANbPtnnfKLWS/W7M6r6INGz7faPUsu2GAtdnn9MK0si/y4CtsvWnkQZKvJ7FcF/+s/DSdxdlH3JhJH0cOBXYg9S8vjsiRlSx38bAJcCXSF2BNwEnRa5LIOtvPp/01+1TwDkRcU0j62BmZrVrxTWcnUijX57IlmpdQ7pJ7TjSX6W7km4Ye5ekvUgXRmcCB5GGx14taf/eBm1mZr3TihbOu2P5JV0LbF6phSNpT+A/gL0j4q6sbDdSX+8XIhu9IulW0k1l+5TsewuwUUTs1Yz6mJlZdQpv4UR9N44dRLrh7a6S4zxAmvriIABJHyJdKP733L5TgT2zLjkzM2uRvjIseggwv0z549k6gB1Id0Xnt3ucVM8dmxadmZlV1FeGRQ9gzbu8Id1Itn3JNpTZbklu/ftIGgeMA+jXr9+wbbbZptxmTfPOO++w1lp9Je/Xpsi6bfhEuhz4xo7F/F3RyZ8bdHb9XLfGeuKJJ/4WER+pZtu+knAgDcPMU5ny/Ht1U54KI6aQpiJh+PDhMWfOnN7EWLNZs2YxYsSIQs9ZlELr1jV7/oIFPW/XIJ38uUFn1891ayxJa9y0252+kuaXUP4JiZvwXotmSUlZfhso30IyM7OC9JWEM5/3rtWUKr228yRpIsD8dkNIU7DXMgTbzMwarK8knGnAFtl9NgBIGk66fjMNICLeIt1/c0Ru39HAvRHxekGxmplZGYVfw5H0YdKNn5DmUdpI0uHZ+1siYnk2F9XsiDgWICLuze6xuUrSKaQWyyTSHFOlM8ieB8ySdAnpptBR2fK+R9+amVnxWjFoYCDw21xZ1/uPkeZhWgfIP8fkKNL087+kZGqb0g0i4p4seZ0PfJ10n87REXFbA+O3dlTwDcxmVrvCE05ELOK9kWPdbTO4TNlrwFezpad9byA35Y2ZmbVeX7mGY2ZmfZwTjnWGYcPSYmZtqy/d+GnWvXnzWh2BmVXgFo6ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSE8Ss06w9ixrY7AzCpwwrHOMGVKqyMwswrcpWZmZoVwwrHOMHduWsysbblLzTrD8OHp1bNGm7Utt3DMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwsGjrDHPmtDoCM6vACcc6gx8vbdb23KVmZmaFcMKxzjBuXFrMrG054VhnuPzytJhZ23LCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhG/8tM6wyy6tjsDMKnDCsc7gx0ubtT13qZmZWSGccMzMrBBOONYZpLSYWdtywjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIzDVhnmDy51RGYWQVOONYZ/Hhps7ZXeJeapKGSZkhaLulFSedKWrvCPhMlRTfLGSXbXdnNNkOaXzMzM+tJoS0cSQOAO4DHgEOAHYAfkxLfhB52/TkwPVf2JeA0YFqufD7w1VzZovoitj5jypT06paOWdsqukvteKAfcGhELAVul7QRMFHShVnZGiLieeD50jJJ3wXmR8RDuc3/HhH3NSF2a2fjx6dXJxyztlV0l9pBwK25xDKVlIT2rvYgkjYFvgBc3djwzMysWYpOOENIXV7viohngeXZumodDqxLSlZ5QyUtlfSWpHskVZ3IzMyseRQRxZ1MWgmcGhGX5MqfB66KiDOrPM6dwMYRMSxX/i3gbdI1oo8AJwPDgL0i4oFujjUOGAcwaNCgYVOnlsthzbNs2TL69+9f6DmLUmTdRowcCcCsmTMLOV8nf27Q2fVz3Rpr5MiRcyNieFUbR0RhC7AS+FaZ8heA71d5jC2B1cApVWzbD3gauKGaYw8bNiyKNnPmzMLPWZRC6wZpKUgnf24RnV0/162xgDlRZQ4oukttCbBJmfKNgdeqPMaRgIBrKm0YESuAWwA/8N7MrMWKTjjzyV2rkbQNsAG5azs9OAq4JyKeq+G8xfUbmplZWUUnnGnAAZI2LCkbDawAZlfaWdJgYA+qHJ0mqR9pZNzcWgO1PqarU83M2lbRCecy4C3gekn7ZRfsJwIXRclQaUkLJf2izP5HAauAa/MrJG0s6W5J4yXtK2k0MBPYCvhBE+piZmY1KPTGz4hYImlf4FLgRtJ1m4tJSScfV7npbo4CZkTE4jLr3gIWk2YsGAi8CdwL7B0RcxpSATMzq1vhk3dGxGPAPhW2GdxN+Wd62OdN4NBeBWd917BshPxc956atSvPFm2dYd68VkdgZhX4AWxmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwKDXrDGPHtjoCM6vACcc6Q9cjps2sbblLzczMClFTwpFUbroZs9abO9ezDJi1uVq71F6QdBVwRUQ83oyAzOoyPHvgoGeMNmtbtXapTQYOBx6RdL+kcZI2akJcZmbWYWpKOBFxdkRsD3wBWABcBLwk6deS9mtGgGZm1hnqGjQQEXdGxFeALYATgU8Ct0paJGmipI82MkgzM+v7ejtKbTjwedJjo5cAdwPHAQslHdPLY5uZWQepOeFI2k7S2ZKeBGYAWwJfAz4aEf8MbEe61vPDhkZqZmZ9Wk2j1CTdSWrRPA9cSRqt9kzpNhGxWtJvgG81KkgzM+v7ah0W/TdgFHB7RI/jTx8CPlZ3VGa1muOniJu1u1oTzqXAvHLJRlJ/YJeIuCsiVgLPrLG3WbN0PWLazNpWrddwZgJDu1n3yWy9mZnZGmpNOOphXX9geS9iMavfuHFpMbO2VbFLTdLngRElRcdJOjC32frAwcCfGheaWQ0uvzy9etZos7ZVzTWc3Uk3dwIEcASwKrfN28B84NTGhWZmZp2kYsKJiB+S3VMj6WngyxHxULMDMzOzzlLTKLWI8FBnMzOrSzXXcEYB90TE0uznHkXELQ2JzMzMOko1LZybgD2AB7Kfg+5HqwXgh7SZmdkaqkk4HwNeKvnZrP3sskurIzCzCqoZNPBMuZ/N2oofL23W9qq5hvPhWg4YEb7508zM1lBNl9oy0rWZavkajpmZraGahPM1aks4ZsVTNo6lx0nMzayVqrmGc2UBcZiZWYfr7SOmzczMqlLNoIEHgDER8ZikP1Chey0idmtUcGZm1jmquYbzKLCi5Gd3kpuZWc2quYbz1ZKfxzQ1GjMz61h1X8NR8hFJPT2UzczMDKhxtmh4dzLPCcCwbP9VkuYC34+Imxscn1l1Jk9udQRmVkFNCUfSeOBnwAzgW8BfgYHAocDvJH0jIvw/34rnx0ubtb1aWzhnAlMi4uu58sskXQacBTjhmJnZGmq9hrMZcH03664DNq10AElDJc2QtFzSi5LOldTjdDiSBkuKMsvUMtseIulPkt6U9Jik0VXVzPq2KVPSYmZtq9YWzkxgb+D2Muv2Bu7qaWdJA4A7gMeAQ4AdgB+TEt+EKs5/CvD7kvd/yx1/L1Li+xlwEjAKuFrSkoi4rYrjW181fnx6ddeaWduq5sbPoSVv/xX4uaTNgBt47xrOl4GDgOMqHO54oB9waEQsBW6XtBEwUdKFWVlPFkTEfT2s/y5wV0SclL2fKWkn4HuAE46ZWQtV08J5hPff7ClgfLbkn/45nZ5niz4IuDWXWKYCk0gtpBuriKcsSR8CRpJaNqWmAldI2jgiXq/3+GZm1jvVJJyRDTzfEODO0oKIeFbS8mxdpYRzhaRNSS2rq4GzIqJrFoQdgHWB+bl9Hid12e0I/KF34ZuZWb2qmWlgdgPPNwB4rUz5kmxdd94CfkrqFlsKjABOIyWZQ0qOTZnjL8mtfx9J44BxAIMGDWLWrFk9xd9wy5YtK/ycRSmybiOy16LO18mfG3R2/Vy31qn5xs8uktYC1s+XV/HEz3Jzsamb8q5jvgR8s6RolqSXgZ9J+kxEPNTD8dVNedexpwBTAIYPHx4jRozoOfoGmzVrFkWfsyitqFtR5+vkzw06u36uW+vUNCw6m87mNEkLgZXAG2WWniwBNilTvjHlWz49uTZ73aXk2JQ5ftf7Wo9vZmYNVOt9OCcBpwO/ILUcvg+cCzwBLCLrmurBfNK1mndJ2gbYgDWvvVQSudcnSUlwSG67IcA7WYzWqSL8tE+zNldrwhkLnA1cmL2/ISLOAXYiJYxPVNh/GnCApA1LykaTHn9Q67Wiw7PXuQAR8RbpPqEjctuNBu71CDUzs9aq9RrOx4CHImK1pJVk3VUR8Y6knwE/J7WAunMZqZV0vaRJwPbAROCi0qHSWZfd7Ig4Nns/EdiQdNPnUuDzwKnA9RHxx5Ljn0e6vnMJ6T6hUdlyYI31NDOzBqs14bwC9M9+fhb4R94b5jyAdFNntyJiiaR9gUtJQ6BfAy4mJZ18XKX388wnzTJwXHaOZ4Efkrr0So9/j6TDgfOBrwNPA0d7lgEYfHqxE3kvuuDgQs/HsGHpde7cYs9rZlWrNeH8HtgVuAX4DWmGgE2Bt4ETSLNI9ygiHgP2qbDN4Nz7qaQbOCuKiBtIrRv7IJk3r9URmFkFtSacicBW2c8/IHWpjSG1Om4HTmxUYGZm1llqSjgRsQBYkP38FumZON9qQlxmZtZhenPj59bAlsCLEfFC40IyM7NOVOuwaCR9XdJzwDPA/cCzkp6X9I2GR2dmZh2j1pkGvkcaYTYNOBgYnr1OA/41W29mZraGWrvUTgB+EBHfzZVPz+Y2O4E084BZscaObXUEZlZBrQmnH90/1XM2HqVmreLHS5u1vVqv4dwAHNrNusOAm3oXjpmZdapqHjE9quTtNOBCSYNZ8xHTOwHfaXyIZlXommGga8YBM2s71XSp3cSaj5LeCjigzLa/Ij2J06xYw4enV88Ybda2qkk4H2t6FGZm1vGqecT0M0UEYmZmna3mmQYkrUMaILAXsCnwKnA36VEBqxobnpmZdYqaEo6kgcBtwM6kJ3y+DOxJuv/mYUn7R8TiRgdpZmZ9X63Doi8CNgN2j4jtI2LPiNge2D0rv6jRAZqZWWeoNeGMAk6LiD+UFmbvzyBNc2NmZraGWq/hfAh4o5t1bwDr9S4cszrNmdPqCKrS8U9eNetBrQnnPuA0SXdGxN+7CiVtAJyWrTcrnm/4NGt7tSack4GZwHOSbiMNGhhIuglUwIiGRmdmZh2jpms4EfEQ8AlgCvAR4AukhHMZ8ImIeLjhEZpVY9y4tJhZ26q6hSNpXWA34OmIOL15IZnV4fLL06tnjTZrW7W0cFYDdwL/0KRYzMysg1WdcCLiHeDPwKDmhWNmZp2q1vtwzgK+J+nTzQjGzMw6V62j1CaQZhR4SNILpFFq75sPPiJ2a1BsZmbWQWpNOI9ki5mZWU2qSjiS+pGmtXkE+AtwR0S83MzAzGqyyy6tjsDMKqjmEdPbA3cAg0uKl0o6MiJua1ZgZjXpesS0mbWtagYNXAi8A3wO+DCwE/AgMLmJcZmZWYepJuHsCUyIiN9HxJsR8TgwHthW0pbNDc/MzDpFNQlnS+CpXNmTpLnTtmh4RGb1kNJiZm2r2vtwovImZmZm3at2WPStklaVKZ+RL4+Igb0Py8zMOk01CeecpkdhZmYdr2LCiQgnHDMz67Va51IzMzOrixOOmZkVota51Mza02Tfh2zW7pxwrDP48dJmbc9damZmVggnHOsMU6akxczaVuEJR9JQSTMkLZf0oqRzJa1dYZ9dJV0haWG23wJJZ0taP7fdRElRZjmwubWylhs/Pi1m1rYKvYYjaQDpUQePAYcAOwA/JiW+CT3sOjrbdhLwZ2Bn4Lzs9bDctq8D+QTzeG9jNzOz3il60MDxQD/g0IhYCtwuaSNgoqQLs7JyJkXE4pL3syS9CUyWtF1EPFOyblVE3Nec8M3MrF5Fd6kdBNyaSyxTSUlo7+52yiWbLg9mr567zcysDyg64QwB5pcWRMSzwPJsXS0+S3ow3IJc+SaS/iZppaQHJR1ad7RmZtYwiijuyQOSVgKnRsQlufLngasi4swqj7MF8EfglogYU1J+DKnF8xDQn/SguFHAYRFxfTfHGgeMAxg0aNCwqVOn1lqtXlm2bBn9+/dv+nn+9MLrTT9HqU9vtXFhdQMYMXIkALNmzizkfPXWrRWfQz2K/OyK5ro11siRI+dGxPBqtm1FwjklIv4lV/4CcGVEnFXFMdYjDTzYGhgWEUt62FbAfwD9IuIzlY49fPjwmDNnTqXNGmrWrFmMGDGi6ecZfPrNTT9HqUUXHFxY3YD3Hr5W0L/neuvWis+hHoV+dgVz3RpLUtUJp+gutSXAJmXKNwZeq7RzlkCuAnYCRvWUbAAiZdPrgZ0rDb22Pi6isGRjZvUpepTafHLXaiRtA2xA7tpONy4mDaf+QkRUs30XfxOZmbVY0S2cacABkjYsKRsNrABm97SjpDOAE4FjIuKeak6WtYi+DDwcEavrC9nMzBqh6BbOZcBJwPWSJgHbAxOBi0qHSktaCMyOiGOz90cDPwCuBF6QtEfJMZ/sGjYtaTZwHam1tAEwFtgD+FJzq2UtN2xYep07t7VxmFm3Ck04EbFE0r7ApcCNpOs2F5OSTj6u0msu+2evY7Kl1FdJiQhgIfBtYEvSkOl5wMERMa0R8Vsbmzev1RGYWQWFP54gIh4D9qmwzeDc+zGsmWjK7XdsL0IzM7Mm8mzRZmZWCCccMzMrhBOOmZkVwgnHzMwKUfigAbOmGDu21RGYWQVOONYZ/Hhps7bnLjUzMyuEE451hrlzPcuAWZtzl5p1huHZ7OieMdqsbbmFY2ZmhXDCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhIdFW2eYM6fVEZhZBU441hm6HjFtZm3LXWpmZlYIJxzrDOPGpcXM2pYTjnWGyy9Pi5m1LSccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NC+MZP6wy77NLqCMysAicc6wx+vLRZ23OXmpmZFcIJx8zMCuGEY51BSouZtS0nHDMzK4QTjpmZFcIJx8zMCuFh0Wb2gTP49JsLPd+iCw4u9Hztyi0cMzMrhBOOmZkVwl1qDVJvE/3kT69iTI37unlexuTJrY7AzCpwwrHO4MdLm7U9d6mZmVkhnHCsM0yZkhYza1vuUrPOMH58enXXmlnbcgvHzMwKUXgLR9JQ4CfAnsBrwM+BcyJidYX9NgYuAb5ESpQ3ASdFxCu57Q4Bzgc+ATyVHfuaRtfDzKxZihz1CsWNfC20hSNpAHAHEMAhwLnAycA5Vex+DTACOA4YA+wK3JA7/l7AdcBM4CDgZuBqSfs3pAJmZla3ols4xwP9gEMjYilwu6SNgImSLszK1iBpT+AAYO+IuCsrewG4X9J+EXFHtul3gbsi4qTs/UxJOwHfA25rXrXMzKySoq/hHATcmkssU0lJaO8K+73clWwAIuIB4OlsHZI+BIwE/j2371Rgz6xLzszMWqTohDMEmF9aEBHPAsuzdVXvl3m8ZL8dgHXLbPc4qZ471hGvmZk1SNFdagNIAwXylmTr6tlv+5JtKLPdktz695E0DugaS7tM0oIe4mi4k2Bz4G+17KNJTQqmgbIYa65b709c2FM/i69bHXrxb6VP1K9OhdetqP+z9XyfQK/j267aDVtxH06UKVM35fXsl3+vbspTYcQUoGV3DEqaExHDW3X+ZnLd+q5Orp/r1jpFd6ktATYpU74x5VswlfbbpGS/JSVl+W2ocHwzM2uyohPOfHLXaiRtA2xA+Ws03e6XKb228ySwssx2Q4B3gCfqiNfMzBqk6IQzDThA0oYlZaOBFcDsCvttkd1nA4Ck4aTrN9MAIuIt0v03R+T2HQ3cGxGv9z78pujkCcBct76rk+vnurWIIipdOmngydKNn48BjwCTSAnjIuCSiJhQst1CYHZEHFtSNp000uwUUotlEvDXiPhcyTZ7AbOAS0k3hY7Ktj8wInwfjplZCxXawomIJcC+wNrAjaQZBi4Gzs5tuk62TamjSK2gXwJXAXOBL+eOfw9wOLAfcCvwX4GjnWzMzFqv0BaOmZl9cHm26CaRNFTSDEnLJb0o6VxJ+VZbuf02lnSFpCWSXpf0a0mbFRFzteqpm6Rds3otzPZbIOlsSesXFXc16v3cSvZfS9JcSSHpi82MtR69qZ+kQyX9QdIKSa9Imi5pg2bHXK1e/J8bLum2rE6vSrpD0u5FxFwtSR+XNFnSw5JWS5pV5X5t9X3i5+E0QckkpY+RJindAfgxKcFP6GFXSJOUfpI0SWnXtaobgM/1tFNRelG30dm2k4A/AzsD52WvhzUx5Kr18nPrchywVVMC7KXe1E/ScaRroxcCp5JupN6HNvkOqbdu2SjZO4B5wFey4lOB2yTtHBHPNDPuGuxEuiZ9H7BeDfu11/dJRHhp8AKcQbovaKOSsu+QpvDZqIf99iTdoPr5krLdsrL9Wl2vXtbtI2XKxmV1267V9epN3Uq2HQAsBo7N6vXFVtepQZ/d5sAbwNhW16EJdTseWA1skvscVwNfb3W9SmJaq+Tna4FZVezTdt8n7lJrjqZNUtoG6qpbRCwuU/xg9jqwceH1Sr2fW5fzgN8DM5oQWyPUW78js9d/a1ZgDVBv3dYFVgHLSsqWZWWFzZNUSUS8U8dubfd94oTTHM2cpLTV6q1bOZ8lNfMLnb+uB3XXTdLOwFdJw/DbVb312530GR0r6XlJKyXdL+mzzQu1ZvXW7bpsmx9LGihpIGnk7BLgt02KtSht933ihNMczZiktKf9itSQGCVtAZwI93L7AAACzklEQVQF/J/o5jlILdCbuv0E+GlELGx4VI1Tb/22IF0HmACcBvwX4O/AdEmDGh1kneqqW0S8SHqsyWHAy9lyKHBAN63yvqTtvk+ccJqn2ZOUtlKvYpS0Hum5RcuA/9HAuBqh5rpJOor0hXx+s4JqoHo+u7WA/sCxEfHriJhOetT7auCbjQ+xbvV8dluSronMJXUzHZT9fLOkbZsRZMHa6vvECac5mjlJaavVWzcAJIl04+5OwKhINwO3i5rrJmld4Iek0T9rSdoE2ChbvUFuGqdWq/ezezV7ndVVkLVK5wJDGxVcL9Vbt1NJI+0Oj4jpWTI9jJRM27l7tBpt933ihNMczZyktNXqrVuXi0nDVg+JiHapU5d66rYBsDVpiqYl2fJwtm4q7w2MaAf1fnaPk/4izl9EF+kaXDuot25DgEcjYmVXQUS8DTxKGlrdl7Xd94kTTnM0bZLSNlBv3ZB0BnAicEykaYjaTT11W0a6BlC6/Lds3ZnAPzUn1LrU+9ndREouI7sKske2D+O95Npq9dbtGeBTWTcv8O7j6j8FLGpCnEVqv++TVo8v78SFdEHuJeB20rxu40hfTOfntlsI/CJXNh14inTh8kuk0UF3t7pOva0bcDTpr+QrgD1yyxr36PSlupU5zmDa8z6c3vy7vCHb978DB5O+xBcDA1pdr17+uxxGeqzJzVm9vkj6Ml4J/KdW16skzg+T5ok8HLiX1ALrev/hHj63tvo+afkvslMXUt/2naS/sF4i3aOxdm6bRcCVubJNsi/l14ClwG+AzVtdn97WDbgy+xIut4xpdZ16+7nl1rdlwunlv8v+wP8GXsn2vQP4dKvr06C67QvcRbpW9SopmY5odX26+TdVbhncQ93a6vvEk3eamVkhfA3HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPargvhxia8vQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm4XFW55/Hvj0kiYQhgAjJFUMwNSntJmGyUBJAh2I0yheZy7SgkQRG0G5ApShi0CSpwr2iToMKlVcIVaFqGhCEkAbwMJgGUIcEAYRYjBEJMgCS8/cfaB4qdOqeGU7WrTvH7PM9+6tTa07tOJfWetfbaaysiMDMza7a1Wh2AmZl9MDjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnH2p6kiZKim+WYKo+xY3acTXLlY7Lj9G9O9NXF0ctjXitpVg/rH5F0Yw/rb5L0eA3n2y/7nQ2pMVT7gHPCsb7idWDPMsv0KvffETgbyH/R35wdZ3ljwqw7jma6Gthf0oD8iqxsf+A3BcZjH1DrtDoAsyqtioj7Gn3QiFgMLG70cdvM1cD5wKHAL3LrDgPWBaYWHZR98LiFYx1D0hmSFkp6U9LLkqZL2kLSCKCrS+nprDtoUbbP+7rUJA3O3h8l6QpJSyU939V1J+k7kl6UtFjSJElrlZx/iKSpkp6TtFzSo5K+3bVNT3Fk67fN9n812/9WSZ/M1XEbSbdIWiFpkaTjKv1eIuIp4AHgqDKrjwLmRMSfs+MPlXRNSR0ekXSiJPXwe/94VpcDc+W/knRfrmxnSdMkvZH9bq+RNKhk/XqSLsrO/1b2u75ekv847gD+EK3PKPelExGrsnVfAc4ETgMeBTYD9gE2AOYBpwA/Iv2V/xLwVoXTTQJ+TWoBfA34N0n/CGyXvR9GajU8yHutg62ABdl+bwCfAc4B+gH/q6c4JG0K3AO8AhxP6uI7HbhD0o4RsSL70v9/wObAscCb2fE3Bf5coT5XAz+SNDAi/pqdcxAwAvhOyXZbA48Dv8rqsAvwfWB94IcVztGjLHneA9wH/BOwHul3eAOpWxNgAjCa9Fk+DWwJjMJ/HHeGiPDipa0XYCIQ3SyDs20uBa7r4RhfLN2+pHxMVt4/ez84e39FyTYbAStJX+prl5Q/AFzTzflE+oPuTOCpKuI4j5RsNi0pG0C6dnVC9n5Utu/uJdtsB6wCZlX4HW4JrO46Vlb2TeAdYOsKdfge8ERJ+X5ZHEOy9x/P3h+Y2/9XwH0l768GHgPWLSkbksV1QPZ+OjCp1f/mvDRncQvH+orXSV90eS9mrw8Bx0o6hzQQYG5ErO7F+WZ0/RARSyUtBmbnjrkQ2LbrjaT1gTNIf71vS7o20rVunchaY93YD7gdWFrSknsDmAsMz97vBrwcEfeXxPaMpLmVKhMRL0maTWo9/DQrHg3cFRHPl8TZj5Qkjwa2KalDSForIt6pdK4e7AdMzo7VVceFwPOkOt5K+hyPy37ft0bEn3pxPmszbqZaX7EqIuaUWd7O1v+S9EV5JHA/8LKk8yStXef5Xsu9f7ubsvVL3k8idZlNIbVGdiV1GZHbrpzNSQlgZW4ZSfriB9gC+GuZfcuVlXM1sJekrSVtDfznrKzUj4BvA5eV1OECUmtnvSrP053NgLNYs47b8l4dz8nOfSLwx+xazjd7eV5rE27hWEfI/vK+GLhY0jakVsb3gRdIX2BFOAL4SURc2FUg6eAq930V+B2pay3vjez1L8DAMusHAiuqOMd1pNbNkaQEshq4NrfNEcC/RMS712skHVLhuG9mr/mEtGnu/RJSgruyzDEWA0TECtJ1nAmSdgS+AfxE0vyIuKNCHNbm3MKxjhMRz0XEBaTumqFZcVdLqFJLozf6UTIYIWtd5UeGdRfHDGAn4NEyrbgF2TZ/AAZJ2r3kHNuSLuxXFBGvkrqtjsqW2yLilSrqMLrCof9CSl7/ULLfRsDuue1mAJ8idXfm6/hMmXifAP4n6RrV0Px663vcwrG+Yh1Je5Qpfy4iXpA0mdRKuI90vWck8AnSqDVIo8cAxkuaCixvwvWB24ETJC3MYjkB+FBum+7iuAg4BrhT0k9ILbNBwN7APRFxNXAL8DDwW0mnkVoW51J9lxqkFsavs5//uZs6nCTpaVIX4jep8D0REauymQxOlvQ8sJTUtZi/mfZ7pIEWN0q6gjRIYivSjac/j4i7Jf2O1CX6YFa/I7N9766hjtauWj1qwYuXSgs9j1KbkG0zBvg96Yt+OfBH4NjccU4GniH9xbyoZL9yo9S+mNt3EfCjXNmVpHtYut4PAv4v6Qv3ZeBCYGzp8buLIyv/KHBFtu9b2Tl/BexUss22pJFcK7JjjCd1i82q8ne5AfD3bP8Ny6zfgjT0+g1Sy+UC0jDtANbPtnnfKLWS/W7M6r6INGz7faPUsu2GAtdnn9MK0si/y4CtsvWnkQZKvJ7FcF/+s/DSdxdlH3JhJH0cOBXYg9S8vjsiRlSx38bAJcCXSF2BNwEnRa5LIOtvPp/01+1TwDkRcU0j62BmZrVrxTWcnUijX57IlmpdQ7pJ7TjSX6W7km4Ye5ekvUgXRmcCB5GGx14taf/eBm1mZr3TihbOu2P5JV0LbF6phSNpT+A/gL0j4q6sbDdSX+8XIhu9IulW0k1l+5TsewuwUUTs1Yz6mJlZdQpv4UR9N44dRLrh7a6S4zxAmvriIABJHyJdKP733L5TgT2zLjkzM2uRvjIseggwv0z549k6gB1Id0Xnt3ucVM8dmxadmZlV1FeGRQ9gzbu8Id1Itn3JNpTZbklu/ftIGgeMA+jXr9+wbbbZptxmTfPOO++w1lp9Je/Xpsi6bfhEuhz4xo7F/F3RyZ8bdHb9XLfGeuKJJ/4WER+pZtu+knAgDcPMU5ny/Ht1U54KI6aQpiJh+PDhMWfOnN7EWLNZs2YxYsSIQs9ZlELr1jV7/oIFPW/XIJ38uUFn1891ayxJa9y0252+kuaXUP4JiZvwXotmSUlZfhso30IyM7OC9JWEM5/3rtWUKr228yRpIsD8dkNIU7DXMgTbzMwarK8knGnAFtl9NgBIGk66fjMNICLeIt1/c0Ru39HAvRHxekGxmplZGYVfw5H0YdKNn5DmUdpI0uHZ+1siYnk2F9XsiDgWICLuze6xuUrSKaQWyyTSHFOlM8ieB8ySdAnpptBR2fK+R9+amVnxWjFoYCDw21xZ1/uPkeZhWgfIP8fkKNL087+kZGqb0g0i4p4seZ0PfJ10n87REXFbA+O3dlTwDcxmVrvCE05ELOK9kWPdbTO4TNlrwFezpad9byA35Y2ZmbVeX7mGY2ZmfZwTjnWGYcPSYmZtqy/d+GnWvXnzWh2BmVXgFo6ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSE8Ss06w9ixrY7AzCpwwrHOMGVKqyMwswrcpWZmZoVwwrHOMHduWsysbblLzTrD8OHp1bNGm7Utt3DMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwsGjrDHPmtDoCM6vACcc6gx8vbdb23KVmZmaFcMKxzjBuXFrMrG054VhnuPzytJhZ23LCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhG/8tM6wyy6tjsDMKnDCsc7gx0ubtT13qZmZWSGccMzMrBBOONYZpLSYWdtywjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIzDVhnmDy51RGYWQVOONYZ/Hhps7ZXeJeapKGSZkhaLulFSedKWrvCPhMlRTfLGSXbXdnNNkOaXzMzM+tJoS0cSQOAO4DHgEOAHYAfkxLfhB52/TkwPVf2JeA0YFqufD7w1VzZovoitj5jypT06paOWdsqukvteKAfcGhELAVul7QRMFHShVnZGiLieeD50jJJ3wXmR8RDuc3/HhH3NSF2a2fjx6dXJxyztlV0l9pBwK25xDKVlIT2rvYgkjYFvgBc3djwzMysWYpOOENIXV7viohngeXZumodDqxLSlZ5QyUtlfSWpHskVZ3IzMyseRQRxZ1MWgmcGhGX5MqfB66KiDOrPM6dwMYRMSxX/i3gbdI1oo8AJwPDgL0i4oFujjUOGAcwaNCgYVOnlsthzbNs2TL69+9f6DmLUmTdRowcCcCsmTMLOV8nf27Q2fVz3Rpr5MiRcyNieFUbR0RhC7AS+FaZ8heA71d5jC2B1cApVWzbD3gauKGaYw8bNiyKNnPmzMLPWZRC6wZpKUgnf24RnV0/162xgDlRZQ4oukttCbBJmfKNgdeqPMaRgIBrKm0YESuAWwA/8N7MrMWKTjjzyV2rkbQNsAG5azs9OAq4JyKeq+G8xfUbmplZWUUnnGnAAZI2LCkbDawAZlfaWdJgYA+qHJ0mqR9pZNzcWgO1PqarU83M2lbRCecy4C3gekn7ZRfsJwIXRclQaUkLJf2izP5HAauAa/MrJG0s6W5J4yXtK2k0MBPYCvhBE+piZmY1KPTGz4hYImlf4FLgRtJ1m4tJSScfV7npbo4CZkTE4jLr3gIWk2YsGAi8CdwL7B0RcxpSATMzq1vhk3dGxGPAPhW2GdxN+Wd62OdN4NBeBWd917BshPxc956atSvPFm2dYd68VkdgZhX4AWxmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwKDXrDGPHtjoCM6vACcc6Q9cjps2sbblLzczMClFTwpFUbroZs9abO9ezDJi1uVq71F6QdBVwRUQ83oyAzOoyPHvgoGeMNmtbtXapTQYOBx6RdL+kcZI2akJcZmbWYWpKOBFxdkRsD3wBWABcBLwk6deS9mtGgGZm1hnqGjQQEXdGxFeALYATgU8Ct0paJGmipI82MkgzM+v7ejtKbTjwedJjo5cAdwPHAQslHdPLY5uZWQepOeFI2k7S2ZKeBGYAWwJfAz4aEf8MbEe61vPDhkZqZmZ9Wk2j1CTdSWrRPA9cSRqt9kzpNhGxWtJvgG81KkgzM+v7ah0W/TdgFHB7RI/jTx8CPlZ3VGa1muOniJu1u1oTzqXAvHLJRlJ/YJeIuCsiVgLPrLG3WbN0PWLazNpWrddwZgJDu1n3yWy9mZnZGmpNOOphXX9geS9iMavfuHFpMbO2VbFLTdLngRElRcdJOjC32frAwcCfGheaWQ0uvzy9etZos7ZVzTWc3Uk3dwIEcASwKrfN28B84NTGhWZmZp2kYsKJiB+S3VMj6WngyxHxULMDMzOzzlLTKLWI8FBnMzOrSzXXcEYB90TE0uznHkXELQ2JzMzMOko1LZybgD2AB7Kfg+5HqwXgh7SZmdkaqkk4HwNeKvnZrP3sskurIzCzCqoZNPBMuZ/N2oofL23W9qq5hvPhWg4YEb7508zM1lBNl9oy0rWZavkajpmZraGahPM1aks4ZsVTNo6lx0nMzayVqrmGc2UBcZiZWYfr7SOmzczMqlLNoIEHgDER8ZikP1Chey0idmtUcGZm1jmquYbzKLCi5Gd3kpuZWc2quYbz1ZKfxzQ1GjMz61h1X8NR8hFJPT2UzczMDKhxtmh4dzLPCcCwbP9VkuYC34+Imxscn1l1Jk9udQRmVkFNCUfSeOBnwAzgW8BfgYHAocDvJH0jIvw/34rnx0ubtb1aWzhnAlMi4uu58sskXQacBTjhmJnZGmq9hrMZcH03664DNq10AElDJc2QtFzSi5LOldTjdDiSBkuKMsvUMtseIulPkt6U9Jik0VXVzPq2KVPSYmZtq9YWzkxgb+D2Muv2Bu7qaWdJA4A7gMeAQ4AdgB+TEt+EKs5/CvD7kvd/yx1/L1Li+xlwEjAKuFrSkoi4rYrjW181fnx6ddeaWduq5sbPoSVv/xX4uaTNgBt47xrOl4GDgOMqHO54oB9waEQsBW6XtBEwUdKFWVlPFkTEfT2s/y5wV0SclL2fKWkn4HuAE46ZWQtV08J5hPff7ClgfLbkn/45nZ5niz4IuDWXWKYCk0gtpBuriKcsSR8CRpJaNqWmAldI2jgiXq/3+GZm1jvVJJyRDTzfEODO0oKIeFbS8mxdpYRzhaRNSS2rq4GzIqJrFoQdgHWB+bl9Hid12e0I/KF34ZuZWb2qmWlgdgPPNwB4rUz5kmxdd94CfkrqFlsKjABOIyWZQ0qOTZnjL8mtfx9J44BxAIMGDWLWrFk9xd9wy5YtK/ycRSmybiOy16LO18mfG3R2/Vy31qn5xs8uktYC1s+XV/HEz3Jzsamb8q5jvgR8s6RolqSXgZ9J+kxEPNTD8dVNedexpwBTAIYPHx4jRozoOfoGmzVrFkWfsyitqFtR5+vkzw06u36uW+vUNCw6m87mNEkLgZXAG2WWniwBNilTvjHlWz49uTZ73aXk2JQ5ftf7Wo9vZmYNVOt9OCcBpwO/ILUcvg+cCzwBLCLrmurBfNK1mndJ2gbYgDWvvVQSudcnSUlwSG67IcA7WYzWqSL8tE+zNldrwhkLnA1cmL2/ISLOAXYiJYxPVNh/GnCApA1LykaTHn9Q67Wiw7PXuQAR8RbpPqEjctuNBu71CDUzs9aq9RrOx4CHImK1pJVk3VUR8Y6knwE/J7WAunMZqZV0vaRJwPbAROCi0qHSWZfd7Ig4Nns/EdiQdNPnUuDzwKnA9RHxx5Ljn0e6vnMJ6T6hUdlyYI31NDOzBqs14bwC9M9+fhb4R94b5jyAdFNntyJiiaR9gUtJQ6BfAy4mJZ18XKX388wnzTJwXHaOZ4Efkrr0So9/j6TDgfOBrwNPA0d7lgEYfHqxE3kvuuDgQs/HsGHpde7cYs9rZlWrNeH8HtgVuAX4DWmGgE2Bt4ETSLNI9ygiHgP2qbDN4Nz7qaQbOCuKiBtIrRv7IJk3r9URmFkFtSacicBW2c8/IHWpjSG1Om4HTmxUYGZm1llqSjgRsQBYkP38FumZON9qQlxmZtZhenPj59bAlsCLEfFC40IyM7NOVOuwaCR9XdJzwDPA/cCzkp6X9I2GR2dmZh2j1pkGvkcaYTYNOBgYnr1OA/41W29mZraGWrvUTgB+EBHfzZVPz+Y2O4E084BZscaObXUEZlZBrQmnH90/1XM2HqVmreLHS5u1vVqv4dwAHNrNusOAm3oXjpmZdapqHjE9quTtNOBCSYNZ8xHTOwHfaXyIZlXommGga8YBM2s71XSp3cSaj5LeCjigzLa/Ij2J06xYw4enV88Ybda2qkk4H2t6FGZm1vGqecT0M0UEYmZmna3mmQYkrUMaILAXsCnwKnA36VEBqxobnpmZdYqaEo6kgcBtwM6kJ3y+DOxJuv/mYUn7R8TiRgdpZmZ9X63Doi8CNgN2j4jtI2LPiNge2D0rv6jRAZqZWWeoNeGMAk6LiD+UFmbvzyBNc2NmZraGWq/hfAh4o5t1bwDr9S4cszrNmdPqCKrS8U9eNetBrQnnPuA0SXdGxN+7CiVtAJyWrTcrnm/4NGt7tSack4GZwHOSbiMNGhhIuglUwIiGRmdmZh2jpms4EfEQ8AlgCvAR4AukhHMZ8ImIeLjhEZpVY9y4tJhZ26q6hSNpXWA34OmIOL15IZnV4fLL06tnjTZrW7W0cFYDdwL/0KRYzMysg1WdcCLiHeDPwKDmhWNmZp2q1vtwzgK+J+nTzQjGzMw6V62j1CaQZhR4SNILpFFq75sPPiJ2a1BsZmbWQWpNOI9ki5mZWU2qSjiS+pGmtXkE+AtwR0S83MzAzGqyyy6tjsDMKqjmEdPbA3cAg0uKl0o6MiJua1ZgZjXpesS0mbWtagYNXAi8A3wO+DCwE/AgMLmJcZmZWYepJuHsCUyIiN9HxJsR8TgwHthW0pbNDc/MzDpFNQlnS+CpXNmTpLnTtmh4RGb1kNJiZm2r2vtwovImZmZm3at2WPStklaVKZ+RL4+Igb0Py8zMOk01CeecpkdhZmYdr2LCiQgnHDMz67Va51IzMzOrixOOmZkVota51Mza02Tfh2zW7pxwrDP48dJmbc9damZmVggnHOsMU6akxczaVuEJR9JQSTMkLZf0oqRzJa1dYZ9dJV0haWG23wJJZ0taP7fdRElRZjmwubWylhs/Pi1m1rYKvYYjaQDpUQePAYcAOwA/JiW+CT3sOjrbdhLwZ2Bn4Lzs9bDctq8D+QTzeG9jNzOz3il60MDxQD/g0IhYCtwuaSNgoqQLs7JyJkXE4pL3syS9CUyWtF1EPFOyblVE3Nec8M3MrF5Fd6kdBNyaSyxTSUlo7+52yiWbLg9mr567zcysDyg64QwB5pcWRMSzwPJsXS0+S3ow3IJc+SaS/iZppaQHJR1ad7RmZtYwiijuyQOSVgKnRsQlufLngasi4swqj7MF8EfglogYU1J+DKnF8xDQn/SguFHAYRFxfTfHGgeMAxg0aNCwqVOn1lqtXlm2bBn9+/dv+nn+9MLrTT9HqU9vtXFhdQMYMXIkALNmzizkfPXWrRWfQz2K/OyK5ro11siRI+dGxPBqtm1FwjklIv4lV/4CcGVEnFXFMdYjDTzYGhgWEUt62FbAfwD9IuIzlY49fPjwmDNnTqXNGmrWrFmMGDGi6ecZfPrNTT9HqUUXHFxY3YD3Hr5W0L/neuvWis+hHoV+dgVz3RpLUtUJp+gutSXAJmXKNwZeq7RzlkCuAnYCRvWUbAAiZdPrgZ0rDb22Pi6isGRjZvUpepTafHLXaiRtA2xA7tpONy4mDaf+QkRUs30XfxOZmbVY0S2cacABkjYsKRsNrABm97SjpDOAE4FjIuKeak6WtYi+DDwcEavrC9nMzBqh6BbOZcBJwPWSJgHbAxOBi0qHSktaCMyOiGOz90cDPwCuBF6QtEfJMZ/sGjYtaTZwHam1tAEwFtgD+FJzq2UtN2xYep07t7VxmFm3Ck04EbFE0r7ApcCNpOs2F5OSTj6u0msu+2evY7Kl1FdJiQhgIfBtYEvSkOl5wMERMa0R8Vsbmzev1RGYWQWFP54gIh4D9qmwzeDc+zGsmWjK7XdsL0IzM7Mm8mzRZmZWCCccMzMrhBOOmZkVwgnHzMwKUfigAbOmGDu21RGYWQVOONYZ/Hhps7bnLjUzMyuEE451hrlzPcuAWZtzl5p1huHZ7OieMdqsbbmFY2ZmhXDCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhIdFW2eYM6fVEZhZBU441hm6HjFtZm3LXWpmZlYIJxzrDOPGpcXM2pYTjnWGyy9Pi5m1LSccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NC+MZP6wy77NLqCMysAicc6wx+vLRZ23OXmpmZFcIJx8zMCuGEY51BSouZtS0nHDMzK4QTjpmZFcIJx8zMCuFh0Wb2gTP49JsLPd+iCw4u9Hztyi0cMzMrhBOOmZkVwl1qDVJvE/3kT69iTI37unlexuTJrY7AzCpwwrHO4MdLm7U9d6mZmVkhnHCsM0yZkhYza1vuUrPOMH58enXXmlnbcgvHzMwKUXgLR9JQ4CfAnsBrwM+BcyJidYX9NgYuAb5ESpQ3ASdFxCu57Q4Bzgc+ATyVHfuaRtfDzKxZihz1CsWNfC20hSNpAHAHEMAhwLnAycA5Vex+DTACOA4YA+wK3JA7/l7AdcBM4CDgZuBqSfs3pAJmZla3ols4xwP9gEMjYilwu6SNgImSLszK1iBpT+AAYO+IuCsrewG4X9J+EXFHtul3gbsi4qTs/UxJOwHfA25rXrXMzKySoq/hHATcmkssU0lJaO8K+73clWwAIuIB4OlsHZI+BIwE/j2371Rgz6xLzszMWqTohDMEmF9aEBHPAsuzdVXvl3m8ZL8dgHXLbPc4qZ471hGvmZk1SNFdagNIAwXylmTr6tlv+5JtKLPdktz695E0DugaS7tM0oIe4mi4k2Bz4G+17KNJTQqmgbIYa65b709c2FM/i69bHXrxb6VP1K9OhdetqP+z9XyfQK/j267aDVtxH06UKVM35fXsl3+vbspTYcQUoGV3DEqaExHDW3X+ZnLd+q5Orp/r1jpFd6ktATYpU74x5VswlfbbpGS/JSVl+W2ocHwzM2uyohPOfHLXaiRtA2xA+Ws03e6XKb228ySwssx2Q4B3gCfqiNfMzBqk6IQzDThA0oYlZaOBFcDsCvttkd1nA4Ck4aTrN9MAIuIt0v03R+T2HQ3cGxGv9z78pujkCcBct76rk+vnurWIIipdOmngydKNn48BjwCTSAnjIuCSiJhQst1CYHZEHFtSNp000uwUUotlEvDXiPhcyTZ7AbOAS0k3hY7Ktj8wInwfjplZCxXawomIJcC+wNrAjaQZBi4Gzs5tuk62TamjSK2gXwJXAXOBL+eOfw9wOLAfcCvwX4GjnWzMzFqv0BaOmZl9cHm26CaRNFTSDEnLJb0o6VxJ+VZbuf02lnSFpCWSXpf0a0mbFRFzteqpm6Rds3otzPZbIOlsSesXFXc16v3cSvZfS9JcSSHpi82MtR69qZ+kQyX9QdIKSa9Imi5pg2bHXK1e/J8bLum2rE6vSrpD0u5FxFwtSR+XNFnSw5JWS5pV5X5t9X3i5+E0QckkpY+RJindAfgxKcFP6GFXSJOUfpI0SWnXtaobgM/1tFNRelG30dm2k4A/AzsD52WvhzUx5Kr18nPrchywVVMC7KXe1E/ScaRroxcCp5JupN6HNvkOqbdu2SjZO4B5wFey4lOB2yTtHBHPNDPuGuxEuiZ9H7BeDfu11/dJRHhp8AKcQbovaKOSsu+QpvDZqIf99iTdoPr5krLdsrL9Wl2vXtbtI2XKxmV1267V9epN3Uq2HQAsBo7N6vXFVtepQZ/d5sAbwNhW16EJdTseWA1skvscVwNfb3W9SmJaq+Tna4FZVezTdt8n7lJrjqZNUtoG6qpbRCwuU/xg9jqwceH1Sr2fW5fzgN8DM5oQWyPUW78js9d/a1ZgDVBv3dYFVgHLSsqWZWWFzZNUSUS8U8dubfd94oTTHM2cpLTV6q1bOZ8lNfMLnb+uB3XXTdLOwFdJw/DbVb312530GR0r6XlJKyXdL+mzzQu1ZvXW7bpsmx9LGihpIGnk7BLgt02KtSht933ihNMczZiktKf9itSQGCVtAZwI93L7AAACzklEQVQF/J/o5jlILdCbuv0E+GlELGx4VI1Tb/22IF0HmACcBvwX4O/AdEmDGh1kneqqW0S8SHqsyWHAy9lyKHBAN63yvqTtvk+ccJqn2ZOUtlKvYpS0Hum5RcuA/9HAuBqh5rpJOor0hXx+s4JqoHo+u7WA/sCxEfHriJhOetT7auCbjQ+xbvV8dluSronMJXUzHZT9fLOkbZsRZMHa6vvECac5mjlJaavVWzcAJIl04+5OwKhINwO3i5rrJmld4Iek0T9rSdoE2ChbvUFuGqdWq/ezezV7ndVVkLVK5wJDGxVcL9Vbt1NJI+0Oj4jpWTI9jJRM27l7tBpt933ihNMczZyktNXqrVuXi0nDVg+JiHapU5d66rYBsDVpiqYl2fJwtm4q7w2MaAf1fnaPk/4izl9EF+kaXDuot25DgEcjYmVXQUS8DTxKGlrdl7Xd94kTTnM0bZLSNlBv3ZB0BnAicEykaYjaTT11W0a6BlC6/Lds3ZnAPzUn1LrU+9ndREouI7sKske2D+O95Npq9dbtGeBTWTcv8O7j6j8FLGpCnEVqv++TVo8v78SFdEHuJeB20rxu40hfTOfntlsI/CJXNh14inTh8kuk0UF3t7pOva0bcDTpr+QrgD1yyxr36PSlupU5zmDa8z6c3vy7vCHb978DB5O+xBcDA1pdr17+uxxGeqzJzVm9vkj6Ml4J/KdW16skzg+T5ok8HLiX1ALrev/hHj63tvo+afkvslMXUt/2naS/sF4i3aOxdm6bRcCVubJNsi/l14ClwG+AzVtdn97WDbgy+xIut4xpdZ16+7nl1rdlwunlv8v+wP8GXsn2vQP4dKvr06C67QvcRbpW9SopmY5odX26+TdVbhncQ93a6vvEk3eamVkhfA3HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPargvhxia8vQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -208,9 +208,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAD8YAAAFPCAIAAAAKydJoAAD0+klEQVR4nOzdd2AU1frw8bPpJCESSCBA6L2HYuQqvQaQonQvHRW4ogIWlCLNAgpSRClSpEhTqjRFOkjvLaH30BPSy+7O+8e8d3/clM1snS3fzx867J4582zm2bO7c56Z0UiSJOAYnj171q5duypVqnh7e6sdC+zk0qVL77//fteuXdUOBAAAAAAAAAAAAAAAZ9W+fXt/f/8CBQqoHQgUefDgQVhY2Lx589QOxIamTp36559/li1bVu1AoBq9Xn/27NkVK1aUK1dO7VhMc+vWrW7dutWoUcPT01PtWKBITExM//79+/btq3YgJmvbtu1LL70UFBSkdiBQzbNnz/R6/dq1a5WvsmHDhmnTplWtWtV2UcGhaLXaixcvbty4sXDhwrbelpetNwDlTpw4cfjw4du3b/v5+akdC+zk1q1bYWFhlNQDAAAAAAAAAAAAAGC2LVu2FCxY8KWXXlI7ECjy+PFjLy8v1y6pX7FixcWLF69fv652IFBNZmbmnTt3du/e7XQl9fv27Tt69Oj9+/d9fHzUjgWK3L59OyAgwOlK6vV6/bZt2woVKsTHtzuLi4tLTEw0aZXff//9n3/+uX//vo1CgqNJS0u7f//+8ePH27Zta+ttUVLvQIKDg4UQK1eubNSokdqxwE4KFSpUqVIltaMAAAAAAAAAAAAAAMCJeXh4jBw58pNPPlE7ECjy7rvvHjhwQO0obKtChQq+vr6HDh1SOxCoJiYmpnLlykWLFlU7EJMVKVJECLFt27bq1aurHQsUKVmypPNWoI0ZM2bYsGFqRwHVTJgwYdq0aSatUqFChYCAgGvXrtkoJDiaf/7557XXXitYsKAdtuVhh20AAAAAAAAAAAAAAAAAAAAAAOCAKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAbspL7QDMl5mZqdfrfX19Le8qLS3Nz8/P8n7c2dOnTyVJCgoK8vHxUTsW+9Hr9c+ePRNCBAcHe3p6qh0OAAAAAAAAAAAAAABwaK5RX0G9hCtxjZy0BfLc8blG9pJpTsE1ks0WSGCTuGciOVGSOPFV6ocMGdK3b1/L+5EkqXTp0j/++KPlXbmtOXPmhISEtGvXTqvVqh2LXWk0mg8//DA0NHTo0KGSJKkdDgAAAAAAAAAAAAAAcFwuU19BvYTLcJmctAXy3MG5TPaSaY7PZZLNFkhg5dw2kZwoSZz4KvUPHjxISkqyvB+NRlOnTp0ffvjhP//5j0ajsbxDVSQlJcl/DX9//6CgICMtU1NTnz9/LoQICgry9/e3fNMbNmwYOnRoeHj4xo0brdKhE9FoNAsXLrx27drcuXNLlCgxatQotSMCAAAAAAAAAAAAAABK2bPcwpXqK6iXsB1y0nGQ52awWwK7UvaSaWZgqHQcTpTAKhbZCvdOJCdKEie+Sr0SWq32ypUrO3fuPH/+vE6ny61Z//79Y2JiDh8+bM/YrOujjz4qWrRo0aJFFy9ebLzl7Nmz5Za7d++2fLtXrlzp1auXXq//+eefw8LCjLRUuC8skZGRER0dvXv37vv371vxXJYzZ848fvw4t2f9/PyWLl3q6+s7evToHTt2WGujAAAAAAAAAAAAAADA1uxWbqGwvsLqxRVmlFJkZmZevHhxx44dJ0+eNBID9RI24mg5aQvkuQuzTwI7VMWacWSajTBU2oeLJbBaRbZCve+B2dmoyFa4Sp2ty5bU63S66dOnlyxZsmLFii1atKhRo0aZMmVmzZqVYxJ06NChYMGCixYtsn+c1nLkyBF5ITIy0njLo0ePKmyZJ71e37dv3+Tk5LfeeisqKiq3ZibtC/PExMQMGDAgMDCwSpUqzZo1K168eOHChSdPnpyenm5Jt5IkzZw5s27dumfOnDHSrGLFiuPGjRNC9OvXLyEhwZItAgAAAAAAAAAAAAAAu7FPuYWS+gqrF1eYUUqh1Wq/+eabkiVLVqtWrVWrVnXr1i1evPjcuXNzi4F6CVtwnJy0BfLc5dkhge1ZsTZr1qwoZX7++ecs65JpNsVQqQQJnIUqRbZCpe+B2dmoyFa4WJ2t5LTatWvXuHHjHJ9KTU194403DK8xf/78huUuXbpotdrsq7z//vv58+dPSkqybdBGHTt2TAixd+9eU1dMSkry9PQUQnh7e6emphpvXKJECSFE2bJlzQ3z/6xYsUII4eHhcfXq1dzamLEvTLVq1SpfX19DtwEBAYblypUrP3nyxNQOMzMzz549O3v27KpVq8r97Nixw/gqycnJoaGhQojRo0ebtK2CBQuOGTPG1AgBAAAAAAAAAAAAwBaSkpJ+//33gQMHNmrUqHTp0hqNpnz58s2aNRs8ePDmzZvznI8G1OLp6fntt9+aupbdyi3yrK+wenGFGaUUKSkpzZs3NzQLDAw0LA8aNEiv1+e4IfPqJd55550qVaqY+qKs4ubNmzNnznzzzTf/9a9/BQYGent7165d+/XXXx8/fvypU6esuKFu3brVr1/f1LUcJydtwd3yPDo6WgixefNmU19XblJSUjZs2PDuu+82adKkXLlyGo2mTJkyTZo0effddzds2JCcnGytDf35559CiHPnzpm6on0S2J4Va4MGDRLKfPTRRy+uaM9MkySpRIkSw4cPN2kVI3Q63T///PPpp5+2adOmRo0anp6ewcHBr732Wvfu3X/++ecHDx5YcUNCiOnTp5u6IkOlQk6RwOPHj8+fP7/y9uatIqlXZCup8T0wO6sX2Up2rLM9ePCgEOLQoUNmBGkq17xK/bhx49avXy+EGDhwYGxsbEJCwr1797p27SqE+P333ydPnpx9lf79+ycmJq5du9besVrDiRMn5A+YWrVq+fn5GWkZGxt7584dYY2zZ3Q63ZgxY4QQPXv2LFeuXG7NzNgXJlm/fn2PHj3S09MjIyM3b94cHx+fmJh469atPn36CCGio6P79Omj1+uVd1ikSBFvb++aNWsOHTr04sWLCtfy9/cfPny4EGLatGmPHj0y44UAAAAAAAAAAAAAgIru3bv39ttvh4SEdOnSZffu3QUKFKhataokSTVr1vT39//jjz9ef/310NDQ4cOHP3nyRO1gAeuwT7mFkvoK6xZXmFFKIUlS3759d+7caYghMTHx3r173bt3F0LMmzdv0aJFOW7Lieoldu/e/dprr5UuXXrEiBF3794tWbJkWFiYn59f9erVk5OTp0yZUrt27fLly//yyy8m1ZlYl+PkpC2Q52Z7+PDhe++9FxIS0qlTp+3bt+fPn79atWqSJFWrVi1//vzbt2/v1KlTaGjof/7znwcPHtg/PAM7JLCdK9YqV67cPJtWrVq1bdu23X/Jxa8vlsA6b6alp6dPnz49PDz81VdfnTdvnk6nq1OnjkajKVWqVFhYWExMzLvvvlusWLGoqKiTJ0/aPzwDhkqF3C2BjVOlyFao8T0wO6sX2QoXrrO1Q9m+jeR2lfqYmBj5bJJevXq9eEKMVqvt1KmTEMLT0/PatWvZV4yIiGjSpIntAs6T2Vep//bbb+W9+d577xlvuWHDBrmlGWd3ZfHHH3/IXe3bty+3NmbvC4XS0tLkc1YGDx6s0+lefEqv17do0UKOcOvWrcr7lM/FCQ8Pf/fdd9u1ayf3kOfZM5IkPXz4UH6xkydPVr45rlIPAAAAAAAAAAAAQF1arXbcuHH58uV76aWXxowZc+bMGfnxHTt2CCHkf+r1+qNHj44YMUJuNmPGDFVDBrIy7yr19im3yLO+wrrFFeaVUixbtkx+/J133nkxhszMzIYNGwohChQo8Pz58xy3aEa9hJ2vUn/v3r02bdoIIapXr75w4cJHjx5lDyM5OXn9+vWGZkeOHLFwo+Zdpd5BctIW3DDPrXKVer1eP3ny5MDAwMDAwJEjR544cUJ+/PDhw0KIAwcOyP88ceLEZ599Jjf75ptvcruGtEJmX6XeDgnsCBVrL5Iv4FuuXLkXM8fOmSZZ6Sr1W7dule9Q1L179+3bt6enp8uP58+ff/z48fLy7du3Z82aJTf797//HR8fb8kWzb5KPUOltTbnCAlst6vUq1JkK9n9e2B2tiiylexbZ8tV6i0yf/58nU7n6+s7ZcoUjUZjeNzT0/P777/38PDQ6XSGt/2LBgwYsGfPnuvXr9sxWOs4cuSIvPDKK68Yb3n06FGFLfM0d+5cIUSJEiVee+213NqYvS8U8vX17dChQ/PmzX/66ScPj/9JZvljW17eu3ev8j7PnTv39OnT27dvz5s3LyIiQvmKhQsXbtWqlRBi3rx5Kp6vDAAAAAAAAAAAAADKJSQkdOzYceLEiW+//fbVq1cnTZpUs2bN7M00Gs3LL788bdq0y5cvd+jQYdiwYb17905LS7N/wIAV2afcIs/6CusWV5hRSqHT6UaPHi2EKFKkyIwZM16MwcvLa8KECUKI+Pj4NWvW5LhFB6+XOH78eGRk5PHjxxctWnT69OkBAwbIhWVZ+Pv7d+rUaevWrfJ1eRs3brx8+XK7B+soOWkL5LkZUlJSunXr9tlnn/Xs2fPKlSuTJ0+uU6dOji3r1KnzzTffXLlypWfPnp9//nnXrl2Tk5PtE+SL7JDAjlCxZhAdHd23b18vL6+VK1cGBQXJDzpjpgkhpk6d2r59+/Dw8GPHjq1atap169Y+Pj7Zm5UoUeL999+Pjo6eOnXqhg0b6tevf+XKFbsFacBQaZVtuVICK6FKka2w+/fA7GxRZCtct87W1UrqJUlasWKFEKJx48bFihXL8myZMmUaN24shMjxW+9bb73l4+Pzyy+/2D5MKzP13e7t7V27dm1LtpiUlPTXX38JIdq0aZPlbWZgyb5Q7rvvvps5c+aLQ4lBcHCwvJCRkaG8wwoVKhQsWDDHDvPUtm1bIcSNGzfOnj1rxuoAAAAAAAAAAAAAYE+JiYmNGzfes2fPmjVrZs2aFRISkucq4eHhS5cunTt37urVq9u0aWPSbCzgaOxQbpFnfYUtiitMLaXYv3//7du3hRA9e/b09/fPskrDhg3lSrulS5fmtkWHrZc4cOBAo0aNChUqdPTo0f79+8tXRTWuWbNmhw8fbtu2be/evWfOnGmHIF/kCDlpC+S5GVJTU1u0aLF58+alS5fOnz8/LCwsz1XCwsLmz5+/bNmyLVu2NGvWLDU11Q5xvsjWCew4FWtCiMzMzJ49eyYlJY0cOfLll182PO50mSaE+OSTTz755JNBgwbt3r27bt26ebb39fUdMWLEwYMHU1NT69evf+nSJTsE+SKGSsu35UoJrJD9i2yFSt8Ds7N6ka1w3TpbVyupv379emxsrBCiVq1aOTaQH7969erjx4+zPFWoUKGOHTsuWbJEvqWIs4iNjb17964QokCBAhUqVDDSUq/XHzt2TAhRq1YtPz8/Sza6Z8+ezMxMIUS9evVya2PJvlAuODi4WrVqOT51/vx5eaFixYpm928Sw6fL9u3b7bNFAAAAAAAAAAAAADCPXq/v1atXTEzMzp07u3TpYtK6gwYN2rhx44EDB9577z0bhQfYmn3KLfKsr7BFcYWppRSGq7HmGIOXl1fDhg2FEMeOHdNqtTl265j1Ejdv3nzzzTdr1Khx8ODB0qVLK18xICDg999/f/vttz/66CN7viIHyUlbIM9NJUnS22+/feLEiW3btvXu3dukdXv16rV9+3b5ngySJNkowuzskMCOU7EmhJgyZcrp06dLliw5atSoFx93rkwTQixatGjq1KkTJkz48ccfvby8lK9Yq1atI0eOFChQoGPHjs+ePbNdhFkwVFqevcKFElghVYpshUrfA7NzqCJb4ahJInO1kvrTp0/LC7llWKVKleSFM2fOZH+2f//+t2/f3rVrl22iswnD2TORkZHGz/m4fPny8+fPhTVuSLFjxw55wchnhoX7wkKZmZkLFiwQQnh6ekZFRVm9/xzVqlVL/mJh+PsA7kan0znXWUmAI+MNBQAAAAAAAACwqSlTpvzxxx+LFy82bwa5TZs206ZNW7BggTPeCh4Q9iq3yLO+wp7FFbmVUsi1XEKIAgUK5LhiuXLlhBBpaWm5XYrYAesldDpd586dfXx81q9fHxgYaOrqGo3mp59+atCgQc+ePQ1/H1tzkJy0BfLcVD/++OOKFSt++umnJk2amLF648aN586du2rVqtmzZ1s7tFzZIYEdp2ItJiZm4sSJQoipU6dmuZK3c2Xa2bNnhwwZ0rNnz7Fjx5qxepEiRTZt2vTw4cP+/ftbPbbcMFQKi4dKl0lg5VQpshUO9j0wO1WKbIWjJoksa0m9JEmHDx8eMmRI/fr1ixcvHhwc3KhRo0mTJtnoZm1z5sz5+OOPP/744ydPnlilQ8MJT+XLl8+xgeHxGzduZH+2VatWxYoVW7x4sVWCsQ9Tb0ihpGWe5Bsu+Pj45HbyirB4X1hCkqQRI0bcvHlTCNG7d2+TTjW2hJ+fX40aNcR//z6A+4iNjf30008rVark6+vr4+NToUKFESNGyOf2ATAVbygAAAAAAAAAgB08evTom2++GThwYPfu3c3u5IMPPnj99ddHjx6dnJxsxdgA+7BPuUWe9RV2K64wUkphuMxTbldjLVy4sLxw4cKFHBs4YL3E8uXLT548+csvvxQrVsy8Hry9vVetWqXT6caPH2/V0HLlIDlpC+S5SZ4/fz5+/Pju3bsPHDjQ7E769+/fs2fP8ePHx8fHWy80Y+yQwI5Tsfb5559nZmbWqFGjc+fOWZ5yokwTQowcObJIkSILFy40XmRsRLVq1aZPn75p0ya7XcWYoVJYPFS6TAIrp0qRrXCk74HZqVVkKxw1SWT/U1J/9OjRKlWq/Otf/5o7d+6RI0fu378fHx+/f//+L774okGDBmlpaVbf/OrVq6dNmzZt2jRrfXgb+smXL1+ODQICAuSFxMTE7M96enr27dt33bp1cXFxVonHDpS/25W3zFN0dLQQombNmj4+Prm1sXBfmEGn0z18+HDnzp3t2rWTT7KsUaPGrFmzrNK5QvI9KZ48eWKts0QAx7d69ery5ct/9913ly9f1ul0er3+6tWr06dPr1ChwtKlS9WODnAyvKEAAAAAAAAAAPbx5Zdf6vX6CRMmWNjPlClTHj58OGPGDGsEBdiVfcot8qyvsHVxhZJSCkPReW6nxxhKhoyU0zhUvUR6evoXX3wRFRXVokULS/oJCwv7+OOPFy1aJO9HW3OQnLQF8twk3377bWJi4tdff21hP1999VVycvLkyZOtElWe7JDADlKxdvjw4fXr1wshxowZ4+GR9YrGTpRpu3fv3r59+8SJE3P7WynUt2/fGjVqjBw50lqBGcdQKSyrt3SZBDaJKkW2wgG+B2bnCEW2wiGTRPY/b4mDBw/GxMRUrlx54sSJ27ZtO3ny5Pr16yMiIoQQx44dc4rfwIYMyy0Fvb295YXcMqxfv37p6emrVq2yQXTWp9Ppjh07Ji9HRkYabyyfQBMcHFyhQgVLNhofH//gwQMhRKlSpYw3kxfM3hcm2bhxo4+PT1hYWIsWLbZt2yaEaNmy5V9//ZU/f37LO1euRIkS8oJ9fk0Bqlu9enWPHj1SUlKyP5WWlta3b98lS5bYPyrASfGGAgAAAAAAAADYR2Zm5rJly95++22zL95sULVq1a5duy5atMgqgQF2Y59yCyX1FTYtrlBYShEeHi4vxMbG5tjPlStX5IWEhITctuVQ9RJ///337du3v/jiC8u7+uijj/Lly2eHq185Tk7aAnmunF6v/+WXX3r37l22bFkLuypTpkyfPn1++eUXvV5vldiMsEMCO07FmnxGYqlSpbJf4Vs4T6YJIRYtWlSmTJnevXtb2I+np+eYMWOOHz9+5swZqwRmBEOlvGBJvaXLJLByqhTZCgf4HpidgxTZCsdLEoP/KakPDQ1dv379hQsXxo4dGxUVVbt27U6dOm3atEm+r8e6deusvvkvvvhi5cqVK1euLFKkiFU6NJz7kmeGJSUl5digYsWKDRo0cJYf/JcuXZJfSNmyZUNDQ420TEtLkz+0IiMjzb5Ri+z+/fvyQlBQkJFmlu8Lk2RmZr74/c/Dw6Np06aBgYGW92ySl156SV64d++enTcN2N+DBw/yvMvY4MGD7969a594AKfGGwoAAAAAAAAAYDd79uyJj4/v2rWrVXrr3Lnz9evXz507Z5XeAPuwT7mFkvoKmxZXKCylqFSpkrywadOmHDs5dOiQvPz8+fPctuVQ9RIbNmwoXrx4/fr1Le8qICAgKipqw4YNlndlnOPkpC2Q58odPXr0/v37Xbp0sUpvnTt3fvjw4eHDh63SmxF2SGAHqViLiYnZvn27EGLAgAGenp7ZGzhLpmVmZm7ZsuXNN9/M8VWY6vXXX/f399+4caPlXRnHUCkvmF1v6TIJbBJVimyFA3wPzM5BimyF4yWJwf+U1Pfq1atTp05Z7uZQokQJ+YSAO3fuZFk5PT09Li5OkiSzN9+sWbMePXr06NHDWmc5ZGRkyAu5nV1neFyr1ebWyYABA44fP37+/HmrhGRTym8zcfr06czMzBxbJiYm5nafjhwZ3pzGPzOssi+Ua9CgwbZt27Zt2/bbb7+NHTu2cOHCo0aNKl++/KlTpyzvXDnDW91aN9oAHNmMGTPyHD3S0tK+//57+8QDODXeUAAAAAAAAAAAu/nzzz9DQkKsUmwqhIiKivL19ZUvcwg4C6uUWwghtFqtkfIAJfUVNi2uUFhKUa9evVq1agkhdu3adePGjSydLFmy5Pbt2/Kyoa4rO4eql9i+fXv79u0tL4aTdejQ4dKlS7du3bJKb7mxVk4Ko2mpsObH6shz5f7888/AwMCmTZtapbemTZsGBQXJFbQ2ZYdB1UEq1mbPni2E0Gg0/fr1y7GBs2TakSNH4uLi2rdvb5Xe/P39mzZt6hqZJlx0qJS5TAKbxFppY4s6W/csshWOlyQGHnm20Gq18t0HDFfaF0KcPn26ZcuW+fLlK1iwYJkyZebNm2dJYb0VGU6YMKRaFobHDbsku65duwYEBDjFherl20wIBe/27C21Wu33339fpkyZoKCgwMDAypUrL1++XMlGDUls5G8orLQvlAsLC4uKioqKiurSpcvEiRPPnTsXERHx8OHDpk2bnj171vL+FXLYtzpgC3/88YeSZjmetgggC95QAAAAAAAAAAC7uXHjRuXKla1yUVIhRGBgYMmSJW/evGmV3gD7sKTcwuDGjRtNmzZduHBhbusqqa+waXGFwlIKjUbzwQcfCCF0Ol379u1fvO7s1q1bhw8fbvhncHBwbttynHqJjIyMe/fuVatWzVodVq1aVQhh61HOKjkp8kpLhTU/VkeeK3fjxo1y5cr5+vpapTcfH5/y5ctnr4u1OjsMqo5QsabValeuXCmEqFOnTsmSJXNs40SZJoSw4lBZrVo118g04aJDpXCtBDaJhWlj0zpb9yyyFY6XJAZeeba4evWqvFfq1KkjP3L8+PGmTZt6eHiMGDEiODh43bp1gwcPvnv37qRJk2wbrAKGq91bkmGBgYFdu3ZdsWLF1KlTs1yzXzlJkrZu3ZqSkqJ8lWvXroncTzfJkeEEmsjISJNaSpLUr1+/X3/9tXPnzn369ImOjt60aVPv3r137969YMEC4+fpKjwNyyr7wmwhISELFiyoV6/e8+fPhw0btnPnTmudfGycqW91rVZ76dKl3377zZZBuZeMjIxr165VqVJF7UBcnyRJV65cUdLyxo0bq1evNns4hdVptdqYmBgr/i6C5XhDORq9Xn/x4sXq1aurHYibunfvnp+fX6FChdQOBMZIknT+/Pnq1avb52s2zPb48ePMzMxixYqpHYg7kiTpwoULVatW5YNbFY8fP9ZqtUWLFlU7EOThwoULVizigY08f/48Pj6+VKlSagfiUpKSkh4+fFiuXDm1A4FzuHjxYsWKFb288p7QgRmuX78eGhpqrXspuwl+uZvh6dOnaWlpxYsXVzsQ15Samnr37t0KFSqoHYiTOXbsWJEiRfKcpjx37pwQ4q+//oqJicmzz3379jHvqQQHDWxEkqS0tDTl7c0utxBCrFq16sCBAxcuXNi7d68kSZ07d85tXSX1FfYsrjBSStGrV6+ffvrpxIkTFy5cqFatWo8ePfz9/Q8dOrRr166iRYt27dp18eLFQggj3wFMqpdISUlJSEiw0aDx+PFjSZJu3LiRZ//Xr19XEkZ8fLwQYvXq1Y8ePVIexp07d1JTU5W3tyQnheK0VH7p5YEDB16+fNnsS6wWK1bs119/NVzD2D3zXHbgwAGT6sf++ecfb2/vPNNSnl/evXv3/fv3jbfMzMw8dOiQSW+3M2fOKG8ss8Og6ggVa7t373769KkQokmTJkaa2T/TMjIyLl++bNJe3rhxo6en565du/Kc7NNqtRcuXMiz89jY2IcPH65atUr58V55hElPT1fYXjjSx7fMuYZKx0zg1NRUrVZrUvZeuHBBp9Mpb29J2ti6ztY9i2yFiUki11Tv2rXrzp07CvuXf3NVq1bNpFeUL1++HI7APn369ODBgwcPHrxz587jx48N9y2Ss0Sv1w8cOFCr1R46dCgiIkII8emnn7Zt2/brr7/u3r276oVHhgzL7Q8dGxsrLxjPsIyMDG9vb0vy486dOx07djTprSu7e/euwpYpKSnnz58XQnh5edWuXdt4Y/ndXq5cuZCQECHE2rVrf/3115UrV/bo0UNucOHChdatWy9atKhNmzZdunQx0pXCP4u19oXZ6tatGxkZefTo0d27dx8/fvzll1+2xVayMPUDMjk5ee3atWvXrrVRPIAj0Ov1hqEGgIV4QwEAAAAAAAAArOLOnTvdunVT0vKTTz5R2KfCDgEbuXjxosKWlpRbCCHmzJlz9erV6tWrv/rqqwcPHjSyrpL6CjsXV+RWSuHj47NmzZrmzZvfvHnz3r1706ZNkx9v27bt3LlzR40aJf+zZs2aufVsUr3EpUuX7t27Z9NB4/vvv1fYUmEYc+bMmTNnjkkxFCxYUGFLC3NSKE5L5aVQBQsWtOQsykKFCr24LffM87i4OCHE5MmTzXgJCtNy7Nix1u3wRU+ePFHY0j6DqiNUrK1bt05eMF6RbOdME0LExcVt2bJly5YtJq0lhOjevbuSZr/99pvCiueePXuaGoOTfnzLnGuodMwEvnjxYmpqqqljlPJzUy1MG1vX2bpnka0wMUnkk8dGjx5ts3D+Pw8Pj/8rqU9JSVm0aNG8efPkBMpOLqk/ffr02bNnhw4dKtfTCyG8vb2nTJlSt27dKVOmLFu2zNZBG2dI5WvXrjVs2DB7A/lK8EKIAgUK5NZJfHz8unXrRowYYUlJfcmSJWNjY026K8G5c+c6deqU2z01srt165Zcsh8WFubn52ek5ZkzZ+QXHhUVJT/yww8/tG7d+sWavGrVqk2bNq1Hjx5ffvml8be64WYTL97XIzur7AsL1alTR74Zx6lTp+zzbk9ISJAXFF7SJigo6K233hoxYoQtg3I76enp1roBFoxr06bN5cuX82xWpkyZv//+2w7xQDneJg6IN5SjycjI8PHxUTsKN5WZmenh4cHVah0fnyZOQafTSZLEBU3VwttERSS/s+BLl1PQ6/VarZY9ZV2SJGVkZPAxAYX4UmFT6enpPj4+3IDLJPxyN4NOp9Pr9YZLD8LqGCrN0KtXr4CAgHnz5hlvdvDgwT59+mzZsqVy5crGW3bu3Dk8PHzmzJnWi9GVkbS2ULFixTp16ihsbEm5hRBi9+7dciHXZ599ZrwmT0l9hf2LK3IrpShbtuyxY8dmzpx55MgRX1/fSpUqde/evV69ehqNRq539Pf3N3IrbJPqJerUqZOQkPDnn39a+mJy8uTJk1deeWX69OkdOnQw3nL06NHHjx/PM4x79+41atRozpw5rVq1Uh7GBx98oLwi2cKcFIrTUmHNjxDiu+++Uxa7Iu6Z58HBwUKIBQsWNG3aVHnkgwYNSk5OXr58ufFmp0+f7ty585o1a+rWrWu8Zd++fb29vRcsWKA8hv379/fr1+/FczaMs8+g6ggVa3v27BFCeHh45Njzi+yZaUKIwoULt2rVyqR60yVLlnz55ZeXLl3K80B6zZo133777Q8++MB4s3nz5s2YMePixYvKf2Lr9foKFSrkWeVs4FAf3zLnGiodM4Hr1q27a9eus2fPKn8hs2bNWrhwocLGFqaNrets3bPIVpiYJOHh4UKI33//XflwIcz6zZU/f/7/PyCeP3/+zTfflO8IU6NGjR49etSoUaNq1aphYWHNmzc/cuRIQEBAlSpVhBDbt28XQrRu3frFjmrXrh0SErJ//36TNm8LhnNfcitKM2SYkbf0qlWr0tLS+vXrZ2EwoaGhoaGhyts/e/bMpP4N95PK8xuM4VQHw9k8ZcuWbdmyZZZmr7/+uhDiwoULxqczFX5mWGVfWMgwjty+fdtGm8jC8DdR+IVGo9EEBweXLVvWlkEBttKtW7cvv/xSSTOSHMgTbygAAAAAAAAAgN2ULl366tWreR5wvn79uhAiPDw8z5bPnj1r3LgxR7DhLCwptxCmXBhVSX2F/YsrjJRShISETJo0KcuDcXFxFy5cEEI0a9bMSOWlSfUSGo3G29vbRoNG6dKlvb29tVptnv3nz59fSRgPHz4UQtSqVcukgAMCAp4+faqwsYU5KRSnpfI6UetyzzyXhYWFmZQ5ZcuW3bdvX56rPH78WAhRrFixPFvGxcW98sorJsVw9epV5Y2FvQZV1SvWnjx5Eh0dLYSoU6eOkstF2zPTNBrNSy+9ZNJerl69ul6v9/f3l2tVjfDw8FBS3paenl60aNFy5copj0Gv1ytvLBzs49sWbDpUOnICe3h4mJS9wcHBys/csDBtbF1n655FtsKsz9PixYvb4femhxDi2bNnLVq0uHLlSpUqVfbt23fmzJlRo0a1b9++XLly3t7ep0+fFkLUq1dPvtqEfGHUGjVqvNiLRqOpVKnSrVu3DHcZUEv16tXlEwtOnDiRY4Nz584JIQoUKFChQoXcOlm0aFGjRo2MNHAQhqEtJSXFSLNnz57J7/ZGjRoZTmT58ccf5Tf2iwICAoKDg7VarXzjodwYkthwpkiOrLIvjEtISDD+yWoYUMLCwszbhKlMPUcQcGoffPBBUFCQ8TaBgYHDhw+3TzyAU+MNBQAAAAAAAACwmypVqpw/f974RLNy9+/fv3PnjnyRPsApWFJuYRIl9RVWL66weinF/Pnz09PThRADBgwwvl15QfV6CQ8Pj4oVK8rXW7WKo0ePenp6VqxY0VodZudQOWkL5LlyVapUuXr1qqkXZs1NfHz85cuXbf0ZbZ8EVr1izTCqNGjQwKQVX+Q4mSbfg8iKQ+WRI0dcI9OECw2VL3KxBFbOwrSxdZ2texbZCgdLkhd5CCGmT58un0+5du3ahg0bvngCx7lz5+T3QGRkpPyIXDRfvHjxLB2VKVNGCCFf515Ffn5+7du3F0Ls3bvXcH6JwZ07d+ShoVOnTrmddXT+/Pljx44Zf887iAoVKsjnuNy4cSO3d50kSQMGDHj06JGPj8/MmTMNO9ff3z973d6TJ0/i4uKCg4MLFy5sZLvFihWTF4yfhmX5vsjTli1bxo8fn9uzGRkZhw8flpcbN25s3iZMZfibZH+PAK4nNDR02bJlRk7702g0S5YsKVKkiD2jApwUbygAAAAAAAAAgN20b98+NTX1zz//tEpvGzduFEK0a9fOKr0BdmBJuYVJlNRXWL24wrqlFJmZmbNnzxZClC5d2vjb3KHqJTp06LBt27a0tDSr9LZhw4YGDRoUKlTIKr3lyKFy0hbIc+Xat2+v1Wo3b95sld42b96cmZnZoUMHq/SWG/sksOoVa4ZrSJtd2OpQmVajRo2yZcvK3+Is9/Dhw6NHj7pGpgkXGipf5GIJrJyFaWPrOlv3LLIVDpYkL/IQQhw7dkwIodFoDLtQJknShAkT5GVDSf3z5889PDyy37UhX758Qojk5GRbR5ynPn36CCHS09OnTJmS5SnDrSj69++f2+qLFi0KDAzs0qWL7SK0loCAgDZt2gghMjMzly5dmr2BXq+fOHGi/Mk3bdq0iIgI4x3K59m8/fbbxj9LXnrpJTlVbt26ZbxD8/ZFcnLyTz/9tHHjRkmSjPd//vz5SZMmTZkyRafTZX/2559/vnPnjhAiMjKyevXqLz6Vmpo6b968NWvWmHr7mDwZ/ibymXyAy+vQocOmTZuCg4OzP1WgQIENGza8+eab9o8KcFK8oQAAAAAAAAAA9hEREVG6dOkVK1ZYpbeVK1e+/PLL4eHhVukNsAOrl1vkRmF9hXnFFblVPphdSpFjkcaYMWPu3r0rhJgxY4ZckZYbh6qX6NixY1JSklWKkm/fvn3gwAFb14k6Wk7aAnmuULly5apXr27Fz+gqVarY9B4Lwl4JbOuKtTzLya5evSovlCpVKs9oHT/ThBAdOnT4448/rHIh9hUrVkiSxFBpORtlr3DFBFbIFmlj3TpbNyyyFQ6WJP9DkqRmzZrJy71793748KEkSampqdu3b2/UqJGh2a1btyRJkiQpICDA29tbymbIkCFCiDVr1mR/yoguXboUL168ePHi169fN2lFSZLatWvXuHHj7I/r9fqoqCg57Hnz5hke/OGHH+QM7tChg16vz7HP9PT0kJCQt99+29RgrEI+t2Hv3r3KVzlx4oR8ekNAQMDmzZtffF13795t2bKl/HeYMGFCnl3duXOnQIECZcuWffbsWZ6N5Zzx9vZOS0sz0sy8fSHnkhBi1qxZxsO4fv26fLOJV199ddu2bZmZmYZNzJ8/39vbWwjh5eX1zz//ZFmxd+/e8iZmz56d5aknT57E/teHH34oN1u9erXhwYSEBCMh1a5dWwgREhJiPHKDggULjhkzRmFjwGE9e/bsq6++euWVVzw8PPz8/CIjIydNmvT06VO14wKckuEN5e3t7ePjwxsKAAAAAAAAAGAL06dP12g0x44dM9Jmx44dQogzZ84YaSNXrK5atcraAQKm8fT0/Pbbb5W3t0q5xciRI4UQ06dPN9JGSX2FecUVuVU+mFdKodfrO3To8MMPP+h0OvmRhISEYcOGyZvo379/bpU2BibVS7zzzjtVqlRR0tJsr732WqVKlQwv3+wwevfuXaBAgSdPnpgaQLdu3erXr6+8vbVKgPJMS4U1P1bnhnkeHR0thNi8ebOSxi9asGCBEGLnzp1G2sgXFT5w4ICRNnv37hVC/Pzzz6YGIN/H5ty5c8pXsc+gatOKNSPlZLLXX39dbnD69GkjW5fsnmmSJJUoUWL48OEKGxtcv37dx8cnz9K1/Pnzjx8/3kiDhISEIkWKdO/e3dQA5AJf4x+jWTjUx7ct2Ch7JQdO4PHjx+fPn19JS7NXsWKRrWSDOltnLLKV7Ftne/DgQSHEoUOHlDS2kJAk6dtvvxUvCAwMlBeCgoL8/f2FEEWKFDHskkKFCmk0muwdvf3220KIP/74w6TNG+4UcOXKFVNDz62kXpKkO3fuyEkghKhdu3bnzp3Lly8v/7NUqVL379/Prc+1a9cKIbInh32YUVIvSdKcOXMM++611177/PPPx44d26lTJz8/PyGEv7//smXL8uwkPj6+Zs2aoaGhly5dUrLR4cOHy1s8cuSI8ZZm7IsmTZrIDZT8fDp16lTJkiXl9iEhIY0aNYqKigoJCZEf8fT0XLx4cfa16tWrJzcYNGhQlqdeeeUVYdTIkSNzCyYtLU0eYpo3b55n5DJK6uFiSpYsOWzYMLWjAFzEq6++2qVLF7WjAAAAAAAAAAC4pvT09DJlyjRq1Eir1ebWJs+S+tTU1GrVqtWrVy/PwhrA1kwtqZesUW6hpCZPYX2FGcUVRiofzCilWL9+vfxswYIFmzRp0rJly6CgIPmRjh07ZmRkGP9TmFovYYeS+v3794u86szyDOPIkSMeHh6mppbM1JJ6yUolQHmmpfKaH6tztzw3u6Req9XKH69GQsqzpD4jI+Pll1+uWrWq8RNLcmRGSb1kl0HVphVrRpJNZih0vHbtmvGt2znTJHNL6iVJeu+99wICAm7cuGGkTZ4l9R999JGPj8/Vq1dN3boZJfWSg31824Itsldy4AS2Q0m9ZKVPWMlmdbZOV2Qr2bfO1t4l9RkZGYazHGQ1a9YcP378w4cP8+XLJ4R4/fXXDSuUK1dOCJGenp6lI/mMhP3795u0eRuV1EuSdP/+/aZNm2bZSa1atXrw4IHxPitXrqzWr33zSuolSdq4cWPp0qWzvFgfH5+BAwfevn07z9Xj4+Pr169fsmTJmJgYhVvcunWrvBUjJzYZmLovtm7dGhoaWq5cuYoVKxpOdTLi+fPn77//fkBAQJZNVK1addeuXTmusn379kqVKlWtWjU6OjrLU5a81Y8ePSq3mTJlSp5hyyiph4uhpB6wIkrqAQAAAAAAAAA2tWnTJo1G89FHH+XWIM+S+l69evn4+Kh10TrgRWaU1EsWl1soqclTXl9hanGFkcoHyfRSiqSkpA8//FC+GKpBUFDQt99+q6Ryw9R6CTuU1Ev/HaOM1DIZDyM2NrZEiRLVq1dPTU01Y+tmlNRLFuekpCAtTar5sTq3ynOzS+olSdq5c6enp+e7776bW4M8S+qHDBni6en5999/m7F180rqJdsPqjatWDOebJIk1a1bV+4kNjbW+KbtnGmSBSX1jx49KlasWM2aNRMTE3NrY7yk/rffftNoNKNHjzZj6+aV1EsO9vFtC1bPXsmBE9g+JfWSNT5hbVpn61xFtpJ962ztWVLvJYTw9vbeunXr2bNnHz16FBYWVqJEiQIFCsgRp6SkZHmd8lN37tyRa+sN7t69K4R46aWXjP+ZstizZ49J7ZUrWrTorl27Tp48+ddffz1+/Dg8PLxZs2a1atUyssr9+/e3bds2efLkLMOB4+vQoUObNm327t175MiRp0+fFipUqFKlSq1bt86fP3+e6z5//rx169ZPnz7dv3+/4UyUPDVu3NjX1zc9PV0+DcA4U/dFmzZtHj16JL8unU7n4eFhvP+goKBZs2Z9/fXX27Ztu3LlypMnT4oUKdKwYcP69evntm7r1q3lr63Zyd84zXP8+HFD/2Z3AgAAAAAAAAAAAAB20L59+/Hjx48bN65UqVLvv/++SetKkvTFF18sX7583rx5//rXv2wUIWBrlpRbKKS8vsLU4gojlQ/C9FKKgICAGTNmfPjhh1u3br19+7aPj0/lypU7duwYGBio5GU6Zr3E/Pnzo6OjO3fuvHPnzurVq5u07rNnzzp16pSSkrJnzx75Erb24VA5aQvkuULNmjX77rvvRowYUapUqVGjRpm6+rfffjtnzpypU6c2b97cFuHlxtYJbNOKNePJJoSYNm1aYmKiEKJgwYLGN+1EmRYaGrp+/frGjRv36NFjzZo1/v7+Jq2+b9++fv36tW3bduLEiTaKMEcMlVnkmb3CRRPYJBamja3rbJ2ryFa4bp2tl/w/jUZjvNzcoGLFiidOnLhy5UqWkvrz58/7+vqWLVvW+jFaoE6dOnXq1FHYeOnSpRqNRr7cvtPx9vZu0aJFixYtTForPj6+devWSUlJ+/btK1q0qPIV/f3927Rps2HDhu3bt2u1Wi8vrzxXMWlfyAz3d1AiMDCwa9euJvVvdX/88YcQomzZsjVr1lQ3EgAAAAAAAAAAAADI09ixY2/duvXBBx/ExMTMmDFDycyvECI1NXXgwIErV678/PPP3333XVsHCdiUeeUWyplaX2FGcYURppZSlClT5r333jNjQ45ZL5EvX74NGzY0a9bs1VdfXb58eYcOHRSueOHChY4dOz558mTTpk32L4VytJy0BfJcieHDh9+8eXP06NFXr16dM2eOr6+vkrUyMjL+85//LFy4cOjQoR999JGtg8zOpglsn4q13DRu3Nik9s6SaZGRkcuWLevVq1ejRo02bNgQHh6ucMWff/556NChERERK1asyLOc1+oYKk3lqglsErPTxm51tu5QZCscO0lMHss6duwosp1hcPny5cePHzdr1iz7fQGchSRJixYtateuXVhYmNqx2El8fHyrVq0yMjL27Nlj0vtcNmTIECHEw4cPd+/ebYPoRFJSkj1P87Xc48eP//rrLyHE4MGDne5GBwAAAAAAAAAAAADckEajWbhw4ZQpU+bMmfPyyy/LM55GSJL0+++/16pVa926dQsXLvz666/tEyfg1GxdX6E6R66XKF68+OHDh+vXr//GG2/06dPn9u3bxtsnJiaOHTs2MjJSo9EcOnSoUaNG9onTzlw+J21BlTyfOXPm7Nmzly1bVqdOHbkA0bg//vijdu3aS5Ys+eGHH3744Qc7RGh/Lp+9qmRaly5ddu3adffu3Vq1an3//ffp6enG21+4cKF9+/bvvvtu165d9+7dGxQUZJ847czlk80WHPkrgdkcuc7W6YpshcMnickl9W3atPHx8Vm8eHFKSorhwVmzZgkhlJ/N6YAOHjx45cqVAQMGqB2IncTFxbVs2dLDw2PXrl2hoaFm9NCiRYtKlSoJIebOnWvt6IQQYvny5d26dbNFzzayYMECnU7n7+/fr18/tWMBAAAAAAAAAAAAAKU+/fTTv//+WwjRunXrhg0bzpo169atW1naXL58+dtvv61Xr17Xrl2LFCly4MAB95leByxk6/oK1Tl4vURwcPDWrVunTJmyefPmSpUq9enTZ+3atcnJyS+20Wq1u3fvHjZsWPny5adMmdK/f/+jR49WqVJFrZhtzeVz0hbUyvP33ntv7969+fPn79ChQ/369b///vvr169naXP9+vXp06fXr1+/Q4cOgYGBe/fuHTp0qD2DtCeXz161Mu3VV189fvx4mzZtPvnkk0qVKn3++edHjhzR6/UvtomLi1u+fHnnzp1r1ap18uTJhQsXLl++3OnKeZVz+WSzBQf/SmAGB6+zdboiW+HwSWLyDSmCgoI+/fTTL7/8slu3bjNnzixatOhPP/30448/VqxYsW/fvrYI0T4WLVpUuHDhtm3bqh2InQwYMOD48eONGjXq3bu3JEk6ne7FZxctWlSsWDHjPXh4eHz99dedO3det27dxYsXq1atasXwkpKSVq9eneclEBxHSkrK9OnThRAff/yxeUMnAAAAAAAAAAAAAKiladOmJ06cWLFixfz580eMGPHhhx8GBQXlz59fCNGxY8fHjx8nJyd7e3s3btx4/fr1nTp1UjteQE1btmw5d+6cEOLQoUNCiL///jstLU0IUb9+/SZNmmRvb9P6CtU5Rb2El5fXxx9/PGDAgGnTpq1atWrZsmUajaZIkSJJSUlpaWklSpR4+PBhZmZmoUKFOnbs+Nlnn1WoUEHtkE1mUlq6dk7agrp5/uqrrx46dOj333+fM2fOp59++tFHHwUGBhYqVEgI8dZbb8XFxSUmJnp6ejZs2HDVqlXdunVzwIv+Gkf2GqibaeHh4cuXLx8xYsS33377448/Tp482dfXt2jRoklJSTNmzPjpp58ePXokhKhWrdqXX375wQcf+Pv72zlCC/HxbWtO8ZXAVI5cZ+t0RbbCGZLE5JJ6IcS4ceOePXv2008/bdmyRX6kevXqGzduzJcvn1Vjs5/ExMQ1a9YMGTLE29tb7Vjs5PHjx0KIffv25fjsi7cgMOKNN95o0qTJnj17Ro0atWHDBiuGN2zYMOfaHdOnT3/8+HF4ePjHH3+sdiwAAAAAAAAAAAAAYDIPD49evXr16tXr8ePH27Ztu379+oEDB+7du1enTp1atWpVqlSpdevWBQoUUDtMQH2//fbbkiVLDP/csmWLXD8zcuTIHGvyhC3rK1TnRPUSBQsW/Oqrr7766quzZ8/u3bv37t27S5cuzczM7Ny5c3h4eL169Ro2bOjp6al2mGYyNS1dOCdtQfU812g0Xbt27dq169OnT//8888rV64cP3781q1b1atXj4yMrFChQuvWreUie2dE9hqonmlCiDp16qxatSo9PX3Xrl1nzpyJjY2dPXt2oUKFunfvHh4e3rJly/Lly6sVm4X4+LY1R0hgq3PkOlunK7IVzpAk5pTUe3l5/fjjj++9995ff/2VlJQUERHRpk0b5/1OKYT47bffkpOT+/fvr3Yg9nPgwAHLO9FoNL/88kvNmjU3bty4bt26N9980/I+hRCnT58uUqSIE92QIiYmZtKkSRqNZsmSJfJ1GgAAAAAAAAAAAADASYWGhvbp00cI8ffff+/cuXPcuHE1a9ZUOyjAgfzyyy+//PKLSavYqL5CdU5aL1GzZk15WIuPj9+3b9+MGTPUjsgKTE1LV81JW3CoPC9UqNBbb70lhDhy5MjmzZtHjRr12muvqRuS5chemUNlmq+vb5s2bdq0aSOEWLx4ce/evceNG6duSJbj49umHCqBrchh62ydrshWOEmSeJi9ZtWqVYcNGzZmzJjXX3/dqevphRCLFy+uX78+9+YwQ6lSpdasWePl5TVkyJDbt29bpc+IiIivvvrKKl3ZQUpKSq9evdLT06dOndqsWTO1wwEAAAAAAAAAAAAAAA7HFvUV6qJewtm5Xk7aAnnumFwve8k0h+V6yWYLJHCerJ5IzlVkK5wnScwvqVddmTJlypQpY3k/kiTdv3//gw8+sLwr99S6desFCxY8evSoffv2iYmJaodjV3q9vk+fPsePHx8xYsSIESPUDgcAAAAAAAAAAAAAADgoV6qvoF7CNbhSTtoCee7IXCl7yTQH50rJZgsksELunEhOlCReagdgvlmzZlmlH41Gc/XqVY1GY5Xe3FPfvn27d+8uhPD29lY7FrvSaDTLly9fvny5r6+v2rEAAAAAAAAAAAAAAACH5jL1FdRLuAyXyUlbIM8dnMtkL5nm+Fwm2WyBBFbObRPJiZLEiUvqrVgETz295fz8/NQOQQUajcY9XzgAAAAAAAAAAAAAADCDa5QZUC/hStiVuSHPHZ9r7CAyzSmwj3JDApvEPf9WTpQkHmoHAAAAAAAAAAAAAAAAAAAAAACAOiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG7KS+0AkFViYmJcXJzaUcBOJElSOwQAAAAAAAAAAAAAAJxeamoq5RbOIj093eXrJSRJ0mq15KQ7S0hIUDsEiyQkJJDAzkKv16sdgvlSUlLINHeWmppqxlqSJJE27iMxMdFu26Kk3oE8ffpUCPH666+rHQjs6uTJk2qHAAAAAAAAAAAAAACAE9Pr9ePGjRs3bpzagUCpgIAAtUOwrbNnz8bExBQsWFDtQKCymzdvqh2Cye7cuSOEeO2119QOBCZwxgo0jUYjhBg9evTo0aPVjgVq8vT0NKn96dOnk5KS+IR1N48ePbLDViipdyAtW7acNGlSxYoV5U8LuINr16517txZ7SgAAAAAAAAAAAAAAHBic+bM8fPz8/f3VzsQKBIXF+fylXCLFi06evRo8eLF1Q4Earp48eLAgQPVjsJkvXv3vnfvXuXKlalhcxY3btxwxsv4ajSan376KSAgIF++fGrHAtUkJyebepuF77//PjIysnz58jYKCY5GkqSYmJi2bdvaYVuU1DsQDw+PMWPGqB0FAAAAAAAAAAAAAACAMxk0aJDaIQD/49VXX3311VfVjgIwh4+PzxdffKF2FHALQ4YMUTsEOJ8yZcp8/vnnakcB1+ShdgAAAAAAAAAAAAAAAAAAAAAAAKiDknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KS+1A8D/uXbtWoMGDSpWrOjj46N2LLCTmJiYoUOHfvrpp2oHAgAAAAAAAAAArKly5cr58+cvUKCA2oFAkUePHgUFBe3fv1/tQEzWs2fPU6dOlShRQu1AoJrMzMyYmJgdO3ZUr15d7VhMs3v37rfeeqtq1aoeHlwK0C1IknTx4sWZM2d27dpV4SparbZ8+fJhYWH58+e3aWxwZE+fPvX09Dx27JjagQAAAMDFUVLvQO7evfvgwYPKlSsHBwerHQvs5OHDh5cuXVI7CgAAAAAAAAAAYGVXrlypVq0akz7O4saNG7GxsWpHYY7o6Oj4+PiaNWuqHQhUExcX9+DBg5s3bzpdSf3ly5cfPHhQt25df39/tWOBPWi12tjY2OjoaOWrpKSk3Lp1KyQkhM9Td3bnzp379++rHQUAAABcHyX1DiQgIEAIMWHChEaNGqkdC+ykUKFC4eHhakcBAAAAAAAAAACszNPT89///vfIkSPVDgSKDBkyZNeuXWpHYY5ixYqFhISsWbNG7UCgmuPHj//9999BQUFqB2KykJAQIcSPP/5YqlQptWOBPSQmJq5fvz4sLEz5KhqNRggxaNCgd955x2ZxwdF9+umny5cvVzsKAAAAuD5uoAYAAAAAAAAAAAAAAAAAAAAAcFOU1AMAAAAAAAAAAAAAAAAAAAAA3BQl9QAAAAAAAAAAAAAAAAAAAAAAN0VJPQAAAAAAAAAAAAAAAAAAAADATVFSDwAAAAAAAAAAAAAAAAAAAABwU5TUAwAAAAAAAAAAAAAAAAAAAADcFCX1AAAAAAAAAAAAAAAAAAAAAAA35aV2AObLzMzU6/W+vr6Wd5WWlubn52d5P+7s6dOnkiQFBQX5+PioHYv96PX6Z8+eCSGCg4M9PT3VDgcAAAAAAAAAAMBkrjHLw6yN43ONTLMFstcZuWc+k6vGuWdWKEHmAAAAwCk48VXqhwwZ0rdvX8v7kSSpdOnSP/74o+Vdua05c+aEhIS0a9dOq9WqHYtdaTSaDz/8MDQ0dOjQoZIkqR0OAAAAAAAAAACAaVxmlodZGwfnMplmC2Sv03HbfCZXjXDbrFCCzAEAAIBTcOKr1D948CApKcnyfjQaTZ06dX744Yf//Oc/Go3G8g5VkZSUJP81/P39g4KCjLRMTU19/vy5ECIoKMjf39/yTW/YsGHo0KHh4eEbN260SodORKPRLFy48Nq1a3Pnzi1RosSoUaPUjggAAAAAAAAAADg3e076uNIsD7M2piLTHAfZawbmx1XhXLnKKOc4nCtzAAAA4Lac+Cr1Smi12itXruzcufP8+fM6nS63Zv3794+JiTl8+LA9Y7Oujz76qGjRokWLFl28eLHxlrNnz5Zb7t692/LtXrlypVevXnq9/ueffw4LCzPSUuG+sERGRkZ0dPTu3bvv379vxTObz5w58/jx49ye9fPzW7p0qa+v7+jRo3fs2GGtjQIAAAAAAAAAAPdkt0kfhbM8dpjiyVNmZubFixd37Nhx8uRJIzEwa2MSR8s0WyB7XRjz4zaaHBcuND/OKGcfjHIAAABwGU58lXrjdDrdrFmzvvvuu9jYWPmREiVKfPzxx++//372S9F36NChYMGCixYt+te//mX3SK3jyJEj8kJkZKTxlkePHlXYMk96vb5v377JyclvvfVWVFRUbs1M2hfmiYmJmTJlyvLlyzMzM+VHQkJCPvroo+HDh/v6+prdrSRJs2bN+uijj7Zv396iRYvcmlWsWHHcuHGjRo3q16/fpUuXjJ/gDgAAAAAAAAAAHMStW7cKFSoUGBiodiD/wz6TPkpmeaw1xTNr1qytW7cqadm5c+d33nnnxUe0Wu133303a9asBw8eyI8UKVJk/PjxgwYNyjEGx5y1iYuLS0tLK1q0qNqB/A/HyTRbIHtdnjvPj9tocly43Pw4o5wSjHIAAADA/5GcVrt27Ro3bpzjU6mpqW+88YbhNebPn9+w3KVLF61Wm32V999/P3/+/ElJSbYN2qhjx44JIfbu3WvqiklJSZ6enkIIb2/v1NRU441LlCghhChbtqy5Yf6fFStWCCE8PDyuXr2aWxsz9oWpVq1a9eKhgYCAAMNy5cqVnzx5YmqHmZmZZ8+enT17dtWqVeV+duzYYXyV5OTk0NBQIcTo0aNN2lbBggXHjBljaoSAwypZsuSwYcPUjgJwEa+++mqXLl3UjgIAAAAAAMClPHr0aOHChR06dAgPD/fx8ZFnAYKCgqpVq/bBBx/s3LkzMzPTWtvy9vaePHmyqWvZbdInz1keK07xDBo0SOHE5UcfffTiiikpKc2bNzc8++LJD4MGDdLr9TluzrxZm8GDB1esWFF5e+NSUlI2bdo0cODAihUr+vv7yzH7+fmVKVOmR48eq1atev78ubW21bZt2xYtWpi6luNkmi24W/aaPcushHwx6TNnztii899//10IcfPmTVNXdOf5catPjkt2nB9PSEgQQsyfP9+mq8gY5RRyilHuk08+KVq0qPL2Jnn33XcrV65so84Bmzp8+LAQ4sCBA2oHAteXP3/+8ePHqx0FANiDh8Ivx85l3Lhx69evF0IMHDgwNjY2ISHh3r17Xbt2FUL8/vvvkydPzr5K//79ExMT165da+9YreHEiRPy/bNq1arl5+dnpGVsbOydO3eENU7B1+l0Y8aMEUL07NmzXLlyuTUzY1+YZP369T169EhPT4+MjNy8eXN8fHxiYuKtW7f69OkjhIiOju7Tp49er1feYZEiRby9vWvWrDl06NCLFy8qXMvf33/48OFCiGnTpj169MiMFwIAAAAAAAAAAGwnNjZ28ODBxYoVGzhw4J07dzp37vzll1/6+/s3b958+PDhtWvXXrFiRfPmzcuWLbtkyRKTZhasyz6TPkpmeaw4xVO5cuXm2bRq1apt27bt/ksuB3yxKFCSpL59++7cudMQQ2Ji4r1797p37y6EmDdv3qJFi3LcnLqzNmlpadOmTQsPD+/QocNff/3VqFGjzz77rHbt2uHh4WPHjm3Tps3Jkyd79OhRtGjR0aNHy6WiqnCcTLMFstflue38uNUnx4Xrzo8zyinEKAcAAAD8H5VL+i2Q21XqY2Ji5LONe/Xq9eKZr1qttlOnTkIIT0/Pa9euZV8xIiKiSZMmtgs4T2ZfP+Dbb7+V9+Z7771nvOWGDRvkltOnTzczyv/6448/5K727duXWxuz94VCaWlp8hnMgwcP1ul0Lz6l1+sNt6LbunWr8j7lc/rDw8Pffffddu3ayT3keRa+JEkPHz6UX6xJl5zhKvVwMVylHrAirlIPAAAAAABgLT/88ENAQEBgYOC4ceNevBxySEjIqFGj5GWtVrt79+6oqCghRK1ataKjoy3cqHlXqbfPpE+eszy2nuLJQr7oVbly5V68dvuyZcvkIN95550XY8jMzGzYsKEQokCBArld692MWRurXKV+//79pUqV8vDw+Pe//338+HFD2D179nz55ZcNzS5evPj+++/7+PiEhISsW7fOwo2ad5V6B8k0W3DD7HXDq9S75/y4LSbHJfvOj9vzKvWMctbanCOMclylHsgRV6mH3XCVegDuwwWvUj9//nydTufr6ztlyhSNRmN43NPT8/vvv/fw8NDpdIbv9y8aMGDAnj17rl+/bsdgrePIkSPywiuvvGK85dGjRxW2zNPcuXOFECVKlHjttddya2P2vlDI19e3Q4cOzZs3/+mnnzw8/ieZNRrNv//9b3l57969yvs8d+7c06dPb9++PW/evIiICOUrFi5cuFWrVkKIefPmqXj1GgAAAAAAAAAAYJCZmTlo0KD333//zTffvHr16vjx40uVKpVjS09PzyZNmmzbtu3vv/9OSEioX7/+n3/+aedohb0mffKc5bH1FM+LoqOj+/bt6+XltXLlyqCgIPlBnU43evRoIUSRIkVmzJjxYgxeXl4TJkwQQsTHx69ZsybHPlWZtVm8eHGLFi1CQ0OPHz++fPnyunXrvhj2i6pUqTJr1qyLFy/WqVNHvmGCJEn2CdLAQTLNFshed+Ce8+O2mBwXrjs/zihnlW0xygEAAMCtuFpJvSRJK1asEEI0bty4WLFiWZ4tU6ZM48aNhRDLly/Pvu5bb73l4+Pzyy+/2D5MKzP116C3t3ft2rUt2WJSUtJff/0lhGjTpk2Wn+sGluwL5b777ruZM2fmeEQyODhYXsjIyFDeYYUKFQoWLJjbIU7j2rZtK4S4cePG2bNnzVgdAAAAAAAAAABYkSRJvXr1Wrhw4fTp05cuXVqkSBElazVv3vzo0aM1a9Z8/fXX7V9Vb4dJnzxneewzxSPLzMzs2bNnUlLSyJEjX375ZcPj+/fvv337thCiZ8+e/v7+WdZq2LChXNi3dOnS3Hq286zN/PnzBwwY8MYbb+zbt0/hHilXrtzWrVuHDx8+duzYzz//3NYRZuEImWYLZK+bcNv5catPjgvXnR9nlLN8W4xyAAAAcDeuVlJ//fr12NhYIUStWrVybCA/fvXq1cePH2d5qlChQh07dlyyZIlOp7N1nFYUGxt79+5dIUSBAgUqVKhgpKVer5fv+lerVi0/Pz9LNrpnz57MzEwhRL169XJrY8m+UC44OLhatWo5PnX+/Hl5oWLFimb3bxLDz8jt27fbZ4sAAAAAAAAAACA3EydOXLNmzcKFC4cNG2bSiiEhITt27Hjttdd69OgRExNjm+hyYJ9JnzxneewzxSObMmXK6dOnS5YsOWrUqBcfN1wzOMcYvLy8GjZsKIQ4duyYVqvNsWd7ztrs2bNn6NChvXv3XrFiRb58+ZSv6OnpOW3atLFjx06ZMsUq5Y8KOUim2QLZ6w7ceX7coSbHhQPnKqMcoxwAAABgBlcrqT99+rS8kNvvh0qVKskLZ86cyf5s//79b9++vWvXLttEZxOGs6sjIyONnzt++fLl58+fC2vc1W7Hjh3ygpEfhxbuCwtlZmYuWLBACOHp6RkVFWX1/nNUq1YtLy8v8cLfBwAAAKbS6XTOdY4r4Mh4QwEAAMCd7d+/f8KECZ988knfvn3NWN3Hx+f3338PDg7u3r27Xq+3eng5ss+kT56zPHab4omJiZk4caIQYurUqVkucyvXCwohChQokOO65cqVE0KkpaVdunQpxwZ2m7VJSEjo3r17vXr15s+fb95lnidMmNC5c+d33nnn5s2b1o4uZw6SabZA9roD5sezU2VyXDhwrjLKCUY5wA3Y7UcKIMg3AG4ja0m9JEmHDx8eMmRI/fr1ixcvHhwc3KhRo0mTJpl6dzCF5syZ8/HHH3/88cdPnjyxSofPnj2TF8qXL59jA8PjN27cyP5sq1atihUrtnjxYqsEYx+m3rBMScs8ybff8vHxye0keGHxvrCEJEkjRoyQDzv27t27dOnS1u0/N35+fjVq1BD//fsAAABAudjY2E8//bRSpUq+vr4+Pj4VKlQYMWKEfCUhAKbiDQUAAAAIIT777LOKFSt+/fXXZvcQEhKyaNGiM2fOLF261IqBGWGfSZ88Z3nsNsXz+eefZ2Zm1qhRo3PnzlmeMpwenNs1gwsXLiwvXLhwIccGdpu1+fbbb+Pi4pYsWWL2NbA1Gs2CBQsCAgLGjBlj3dhy4yCZZgtkrztgfjwLtSbHhQPnKqOcYJQDXJfh+H+DBg2EED169OD4P2zEkGyJiYmTJk1isgmAO/ifkvqjR49WqVLlX//619y5c48cOXL//v34+Pj9+/d/8cUXDRo0SEtLs/rmV69ePW3atGnTpsXHx1ulQ0M/ud1UMSAgQF5ITEzM/qynp2ffvn3XrVsXFxdnlXjsQPmvQeUt8xQdHS2EqFmzpo+PT25tLNwXZtDpdA8fPty5c2e7du1mz54thKhRo8asWbOs0rlC8h3Knjx5Yq2zRAAAANzB6tWry5cv/913312+fFmn0+n1+qtXr06fPr1ChQp2q1oAXAZvKAAAAEAIsWnTpn/++WfKlCnyNVDN1qRJk6ioqC+++CIzM9NasRlhn0mfPGd57DPFc/jw4fXr1wshxowZ4+GR9SpgxYoVkxeSk5NzXN0wcWlkUs8OszaPHz+eMWPGoEGDKlSoYEk/BQoUGDVq1MqVK8+dO2et2IxwkEyzBbLXHTA/LnOEyXHhqLnKKCcY5QAX9eLxf/mq4Xfv3uX4P2zhxWQTQkiSxGQTAHfwP999Dx48GBMTU7ly5YkTJ27btu3kyZPr16+PiIgQQhw7dmzGjBmqhGgSw++H3H60eHt7ywu5/X7o169fenr6qlWrbBCd9el0umPHjsnLkZGRxhvLJ1gHBwdbeFAvPj7+wYMHQohSpUoZbyYvmL0vTLJx40YfH5+wsLAWLVps27ZNCNGyZcu//vorf/78lneuXIkSJeQF+fczAAAA8rR69eoePXqkpKRkfyotLa1v375Lliyxf1SAk+INBQAAAMh+/fXXypUrd+zY0fKuPvvsszt37uzbt8/yroyzz6SPklke+0zxTJgwQQ4j++VvhRDh4eHyQmxsbI6rX7lyRV5ISEjIbRN2mLVZv359SkrKp59+anlX//nPfwICAlasWGF5V8Y5TqbZAtnr8pgflznI5LhwyFxllJMXGOUA18Pxf9gNyQbAbf1PSX1oaOj69esvXLgwduzYqKio2rVrd+rUadOmTRqNRgixbt06q2/+iy++WLly5cqVK4sUKWKVDg0nueb5+yEpKSnHBhUrVmzQoMGiRYusEo+tXbp0SX4hZcuWDQ0NNdIyLS3tzJkzQojIyEh5h5rt/v378kJQUJCRZpbvC5NkZmbK51/KPDw8mjZtGhgYaHnPJnnppZfkhXv37tl50wAAAM7owYMHAwcONN5m8ODB3EMQUII3FAAAACBLT0/ftm3bm2++aZXeGjRoEBoaunHjRqv0ZoR9Jn2UzPLYYYonJiZm+/btQogBAwZ4enpmb1CpUiV5YdOmTdmfzczMPHTokLz8/Pnz3LZih1mbDRs2vPzyy4a6QEv4+fm1adPGrTLNFshel8f8uMxBJseFQ+Yqo5y8wCgHuBiO/8NuSDYA7ux/Sup79erVqVOnLLdtKlGihHwY6M6dO9nX12q1lpzb2qxZsx49evTo0cNaZ0tnZGTICy/+gHyR4XGtVptbJwMGDDh+/Pj58+etEpJNKb8N2enTp+V7kmZvmZiYmNsNuXJk+Oll/MehVfaFcg0aNNi2bdu2bdt+++23sWPHFi5ceNSoUeXLlz916pTlnStn+OFnlUvvAwAAuLwZM2bk+V00LS3t+++/t088gFPjDQUAAADIjh49mpiY2KZNG6v05unpGRUVtXPnTqv0ZoRVJn1EXpN3SmZ57DDFM3v2bCGERqPp169fjg3q1atXq1YtIcSuXbtu3LiR5dklS5bcvn1bXjbUDmZn61kbSZL27NnTtm1ba3XYrl27S5cuGco0bcRxMs0WyF6Xx/y4zEEmx4VD5iqjnLzAKAe4GI7/w25INgDuzCPPFlqtVr5fVfbrK9y4caNp06YLFy60SWhmMZx4bfghkYXhccMX9Oy6du0aEBDgFBeql29DJhT8GszeUqvVfv/992XKlAkKCgoMDKxcufLy5cuVbNTwk8bI31BYaV8oFxYWFhUVFRUV1aVLl4kTJ547dy4iIuLhw4dNmzY9e/as5f0rxA8/AAAAk/zxxx9KmuV4tRsAWfCGAgAAAGTyVaIqVKhgrQ7LlStnKA6zHUsmfQzynLxTMstj6ykerVa7cuVKIUSdOnVKliyZYxuNRvPBBx8IIXQ6Xfv27V+8zO3WrVuHDx9u+GdwcHBuG7L1rM3jx49TU1PLly9vrQ7LlSsncrnMmRU5TqbZAtnr8pgflznI5LhwyFxllJMXGOUAF8Pxf9gNyQbAnXnl2eLq1avyd+46derIj6xaterAgQMXLlzYu3evJEmdO3e2bYymMFzt3pLfD4GBgV27dl2xYsXUqVOzXLNfuYyMjGnTphm5j1V28qkL6enpylcxnGAdGRlpUktJkvr16/frr7927ty5T58+0dHRmzZt6t279+7duxcsWGD8pmYKz7e2yr4wW0hIyIIFC+rVq/f8+fNhw4bt3LnTwtv5KWTqD7+MjIxdu3bJ577DKlJSUi5fvhwREaF2IG7q8ePHO3bs+Oyzz9QOBMakp6dfvHgxIiLCPgMjzHb58uV79+7xhlJFRkbG+fPnIyIizP4qCOViYmKUNLt+/frIkSMZuByHVqs9c+ZMREREjnf+hVp4QzkUvV5/+vTpGjVqGLkcF2zn3r17Wq22VKlSagcCYyRJOnXqVLVq1Xx9fdWOBcY8fvw4Pj7eimWpEELExcU9ePCgSpUqagcC53Dq1KkqVar4+fmpHYgz2bNnj0aj+f777/P83pucnLx79+48j8CcOHEiKSlp+PDhJn1s6XS6uLg45e3NnvQRpkzeKZnlsfUUz+7du58+fSqEaNKkiZFmvXr1+umnn06cOHHhwoVq1ar16NHD39//0KFDu3btKlq0aNeuXRcvXiyEKFSoUG49mDRr8/Tp0ydPnph0OE6+nPymTZvOnTtnvOWZM2fi4uLy7FyeWJw4cWKNGjWUhxETE1OgQAHl7R0n02QDBw68fPmyJElKgs+uWLFiv/76q+GXl3tmrzzVOG/evK1bt5ryahS5du2aEGL69OlFihSxeufyoYzcLradI+bHc6TW5LgwqzB63bp1cl4pIf/REhISlIfEKCcvuNIo9+zZs8TERBtNme3du/f+/fvMx9lIcnLytWvXatasqXYgroDj/9Zy+vTpSpUq5cuXT+1AHBfJZme3bt3y9PQMDw9XOxA4gdTU1JiYGAojlTCvniF//vw5lNQ/ffr04MGDBw8evHPnzuPHj2/duiU/bvgVMWfOnKtXr1avXv3VV189ePCg5dFbkeH3Q25fu2NjY+UF478fMjIyvL29LRn0nz59+tNPP5l0wzidTieEUH50NSUl5fz580IILy+v2rVrG28s/xosV65cSEiIEGLt2rW//vrrypUre/ToITe4cOFC69atFy1a1KZNmy5duhjpSuGfxVr7wmx169aNjIw8evTo7t27jx8//vLLL9tiK1mY+ks4PT395MmTly5dslE8bkir1aakpBiuKAA7S0tLu3z58vz589UOBMbodLrk5OSjR4/y28bBPX/+PC4ujjeUKuS3ybFjx3ib2IHCCTNJkn7++WdbBwPl9Hp9UlLSsWPHOPPEofCGciiSJCUmJh49epS3iSpSU1MlSfL391c7EBgjv02OHDnCCVoOLj09XavVBgQEqB2IS8nIyMjIyNi/f7/agcAJyKPl4cOHGS1NkpSUpPB7b1pa2qlTp6Kjo/NsJoRYvHixSd/u9Hq9YSokT5ZM+ghTJu+UHO6w9RTPunXr5AXj5Xo+Pj5r1qxp3rz5zZs37927N23aNPnxtm3bzp07d9SoUfI/jRRpmTRrExsb+/z5c5MOx8l1zFu3bs3zTNrk5GS9Xp9n53LAu3btOnTokPIwkpKSlF+8yaEyTVawYEEjNZd5KlSo0Ivbcs/slU/G+OOPP7y88r6gnqnk8ty1a9farvPU1FSF7ZkfN0KVyXFhYq7KB6/27dtnqGVX2L98dUIlGOVccpS7f/9+SkqKjabMEhMTdTod83E2ItdvHD58WO1AXAHH/60lISHhn3/+scUXG5dBstlZSkqKRqPhNA8oQWGkcubVM/j7+//fx0NKSsqiRYvmzZsn/8DIzlBSv3v3bnkzn332maOV1Bt+6ly7dq1hw4bZGxhOdzZytYb4+Ph169aNGDHCkiKqokWLmnpbRvmXbVhYmML2t27dkqvww8LCjF+f5syZM/ILj4qKkh/54YcfWrdubTheIISoVq3atGnTevTo8eWXXxo/ZGC4lZjxa/BbZV9YqE6dOvIIcurUKfscNTCcH2/4KWtc/vz5//Of/0yaNMmWQQH2U6pUqTfffHP69OlqBwK4gtdee61YsWK//fab2oEAtlWjRo3cfoC8qGLFigqviAC4M95QAAAAgGzBggXvvPPOzZs387xwbGho6LvvvvvVV18Zb/bdd9+NGjXq2bNnJs3D+fj4VK1aVWFjSyZ9hCmTd0pmeWw9xbNnzx4hhIeHR46dv6hs2bLHjh2bOXPmkSNHfH19K1Wq1L1793r16mk0mosXLwoh/P39q1WrltvqJs3aVK9e/dGjRyb9XLp582aZMmWWLFny5ptvGm/51ltvXb16Nc9p71OnTtWpU2fr1q1NmzZVHka7du1yu1Zxdg6VabLvvvtOWeyKuGf2yq968+bNjRo1UvxSlPr7779btmx54MABW1xjeO3atV26dFF+9ibz48bZf3JcmJir8gAyY8aMd955R2H/iYmJQUFBFStWVNieUc4lR7nq1aufPn1avjmM1Q0aNGjfvn1cBhGOj+P/sBuSDYA7+/8l9efPn3/zzTevXLkihKhRo0aPHj1q1KhRtWrVsLCw5s2bHzlyJCAgwHAXWke+vprhl/zly5dzbGD4/WDku/uqVavS0tL69etn7eis7NGjR/KC4VdTbpYtWyYvdOvWTV4oW7Zsy5YtszR7/fXXhRAXLlzIyMjw8fHJrTeFPw6tsi8sZPiVePv2bRttIgvD30RhST0AAICb69Spk5KDMm+88YYdggGcHW8oAAAAQFasWDEhxP379/MsqVfo/v37YWFhNp0gs2TSR5gyeadklsemUzxPnjyRbwtQp04dJRfQDQkJyX5lori4uAsXLgghmjVrZuQCk7aetSlatKhGo7FihZ/clZzANuJQmWYLZK9rY37cOPtPjgvHy1VGOUY5wFVx/B92Q7IBcGceQohnz561aNHiypUrVapU2bdv35kzZ0aNGtW+ffty5cp5e3ufPn1aCFGvXj2nuKlo9erVfX19hRAnTpzIscG5c+eEEAUKFKhQoUJunSxatKhRo0ZGGjgIw2+YlJQUI82ePXsm/xps1KiR4UziH3/8UT5A8KKAgIDg4GCtVhsXF2ekQ8NPGsN5wzmyyr4wLiEhwfi9Zgw/F5Vf+99Cpl6lHgAAwM198MEHedY3BAYGDh8+3D7xAE6NNxQAAAAgq1Wrlkaj2bdvn7U63LdvX0REhLV6y5Elkz4mUTLLY9MpHsOV2hs0aGDqugbz589PT08XQgwYMMBIM1vP2vj6+sqzq9bqcN++fS+99FKZMmWs1WF2DpVptkD2ujY3nx93wMlx4Xi5yijHKAe4Ko7/w25INgDuzEMIMX369IcPHwoh1q5d27BhQ41GY3j63Llz8pfdyMhItUI0iZ+fX/v27YUQe/fuNZx/bHDnzh35N0CnTp1yO734/Pnzx44dM/7l3kFUqFBBPlf+xo0buf1OkyRpwIABjx498vHxmTlzpmHn+vv7Z//we/LkSVxcXHBwcOHChY1s13BtDOPnW1u+L/K0ZcuW8ePH5/ZsRkbG4cOH5eXGjRubtwlTGf4mxYsXt88WAQAAnFpoaOiyZcte/A2ShUajWbJkSZEiRewZFeCkeEMBAAAAsuLFi9erV2/jxo1W6e327dunTp3q1KmTVXrLjSWTPiZRMstj0ykew1V1zb7iUmZm5uzZs4UQpUuXbteunZGWdpi16dix47Zt29LS0qzS24YNG9q2bWvkUtmWc6hMswWy17W5+fy4A06OC8fLVUY5RjnAVXH8H3ZDsgFwZx5CiGPHjgkhNBpNltsISpI0YcIEedlZSuqFEH369BFCpKenT5kyJctThntO9e/fP7fVFy1aFBgY2KVLF9tFaC0BAQFt2rQRQmRmZi5dujR7A71eP3HiRPmQ8bRp0/K8gIp8Hvbbb79t/EfjSy+9JKfKrVu3jHdo3r5ITk7+6aefNm7cKEmS8f7Pnz8/adKkKVOm6HS67M/+/PPPd+7cEUJERkZWr179xadSU1PnzZu3Zs0a4+fxm8HwN6lcubJ1ewYAAHBVHTp02LRpU3BwcPanChQosGHDhjfffNP+UQFOijcUAAAAIHvjjTf+/vvv27dvW97V4sWLPT095fI127H6pE9uFM7ymDfFo2T+5erVq/JCqVKl8ow2x6miMWPG3L17VwgxY8YM49Xndpi1eeONN5KSkn7//XfLuzp48ODly5dtffKGo2WaLZC9LszN58cdcHJcOF6uMsrJC4xygEvi+D/shmQD4L4kSWrWrJm83Lt374cPH0qSlJqaun379kaNGhma3bp1S8pm5MiRQojp06dnf0qhLl26FC9evHjx4tevXzd13Xbt2jVu3Dj743q9PioqSg573rx5hgd/+OEH+Zdwhw4d9Hp9jn2mp6eHhIS8/fbbpgZjFfK5DXv37lW+yokTJ7y8vIQQAQEBmzdvfvF13b17t2XLlvLfYcKECXl2defOnQIFCpQtW/bZs2d5NpZzxtvbOy0tzUgz8/bFkCFD5FVmzZplPIzr16/LN6179dVXt23blpmZadjE/Pnzvb29hRBeXl7//PNPlhV79+4tb2L27NlZnnry5Ensf3344Ydys9WrVxseTEhIMBJS7dq1hRAhISHGIzcoWLDgmDFjFDYGHF/JkiWHDRumdhSAi3j11Ve7dOmidhSA/Tx79uyrr7565ZVXvLy8fH19IyMjJ02a9PTpU7XjApyS4Q3l4+Pj5eXFGwoAAABuKC4urmDBgn369DHeLCQkZNSoUUYaPHz4MCgoaPDgwWbE4O3tPXnyZOXtrTLpo2TyTsksj3lTPEbmXwxef/11uc3p06eNBClvrkOHDj/88INOp5MfSUhIGDZsmLx6//79c5vvMzBp1mbw4MEVK1ZU0jKLFi1alC5d2viUWc+ePV9++WXj/bz22msVK1bMyMgwNYC2bdu2aNFCeXuHyjRbcMPsNWOWWbkdO3YIIc6cOWOLzuXTUW7evKl8FXeeH7fF5Lhk3/lx+bLx8+fPV9LY7FUY5VxvlPvkk0+KFi2qpKUZ3n333cqVK9uoc8AWDMf/Q0JCChUqxPF/2A7JBsANCUmSvv32W/GCwMBAeSEoKMjf318IUaRIkRy/71peUm+449iVK1dMXTe3knpJku7cuSP/mBRC1K5du3PnzuXLl5f/WapUqfv37+fW59q1a4UQ2X9k2od5BzvmzJlj2Hevvfba559/Pnbs2E6dOvn5+Qkh/P39ly1blmcn8fHxNWvWDA0NvXTpkpKNDh8+XN7ikSNHjLc0Y180adJEblClSpU8Izl16lTJkiXl9iEhIY0aNYqKigoJCZEf8fT0XLx4cfa16tWrJzcYNGhQlqdeeeUVYdTIkSNzCyYtLU0+VNG8efM8I5dRUg8XQ0k9YEWU1MNtRUZG9ujRQ+0oABfx5ptvNmjQQO0oAAAAAHV8++23Hh4e+/fvN9Imz5L63r17BwQEGJlaMsLUknrJGpM+SibvFM7ymDHFY2T+xcAwOXjt2jXjr2X9+vVyy4IFCzZp0qRly5ZBQUHyIx07dsyz9NzUWRuzS+qPHz+u0WiMl2bmWVIvX0p57dq1ZgRgakm95GCZZgvulr1uVVIvuff8uNUnxyX7zo/bp6ReYpRzuVGOknoAAADYh4cQYtiwYYZzWIUQSUlJNWvWHD9+vFzmLoR4+eWXjd/pzNGEh4efPHmyadOmQohTp06tXbtWvkFVq1atjhw5UrRo0dxWXLRoUeXKlevXr2+/WC02ePDgjRs3li5dWghx8ODBb775ZtKkSRs2bNDr9QMHDoyOju7Vq5fxHp4/fx4VFRUfH3/gwAGFN9UynLotH6Axwox98emnn4aGhpYrV06n0+V577mIiIhz5869//77AQEBT5482bdv3/bt2588eSKEqFq16o4dO/r165d9rS+//LJSpUpVq1Y1/Mq1irNnz2ZmZgohWrVqZcVuAQAAAAAAAACAqd5///3atWt36dLl9u3b5vUwc+bMZcuWTZkyxcjUknVZPumjhMJZHjOmeJTMvyQlJckL8oW9jMf54YcfajSaZ8+e7dmzZ8eOHQkJCUFBQd9+++26devkUjwj7DZrU7du3Q8++GDChAmbNm0yr4cTJ04MGjSoU6dOb7zxhnVjy41DZZotkL2uzZ3nxx1qclw4cK4yymVfhVEOAAAAyJOXEMLb23vr1q1nz5599OhRWFhYiRIlChQoID+dkpJi083v2bPHRj0XLVp0165dJ0+e/Ouvvx4/fhweHt6sWbNatWoZWeX+/fvbtm2bPHmyc50/IITo0KFDmzZt9u7de+TIkadPnxYqVKhSpUqtW7fOnz9/nus+f/68devWT58+3b9/v+GM9jw1btzY19c3PT1dyY9DU/dFmzZtHj16JL8unU7n4eFhvP+goKBZs2Z9/fXX27Ztu3LlypMnT4oUKdKwYcP69evntm7r1q2jo6NzfOrw4cN5vqLcHD9+3NC/2Z0AAAAAAAAAAADL+fn5bdiwITIysm3btlu3blU+CSJbtmzZxx9//M4777z33ns2ijBHlkz6KKR8lsfUKR4j8y8G06ZNS0xMFEIULFjQeMuAgIAZM2Z8+OGHW7duvX37to+PT+XKlTt27Gi44bZx9py1mTp16sWLF3v16rVu3boWLVqYtO6ZM2c6duxYvnz5pUuX2nOO0qEyzRbIXtfmzvPj1p0cF647P84olwWjHAAAAJAnL/l/Go3GeLm5k6pTp06dOnUUNpYPVPXu3dumIdmIt7d3ixYtTD1IFx8f37p166SkpH379pl0hRV/f/82bdps2LBh+/btWq3Wy8srz1VM2hcyw92+lAgMDOzatatJ/VvdH3/8IYQoW7ZszZo11Y0EAAAAAAAAAACEh4dv3rz59ddfj4yM/P333xs0aKBkLa1WO2rUqO+++65Lly6zZ8+2dZDZmTfpo5ypszxmTPEY0bhxY5PalylTxryzGuw5a+Pl5bV69er27du3adPm+++/f//99xWu+Pvvv/fr169kyZJ//PGHFas8FXK0TLMFsteFufn8uCNMjguHz1VGOVMxygEAAMDN5XH9b/chSdKiRYvatWsXFhamdix2Eh8f36pVq4yMjD179phxx9IhQ4YIIR4+fLh7924bRCeSkpL8/Pxs0bONPH78+K+//hJCDB482OludAAAAAAAAAAAgEuqU6fO8ePHS5Ys2ahRo27dul2/ft14+7///rtOnTpTp04dOXLk6tWrfXx87BOnndl6lkd19p+1CQ4O3rVrV58+fT744INXXnll7969xttfunSpW7duXbt2bdCgwT///FOqVCk7BGl/Lp9ptsCco+0wP25d5KpglDMLmQMAAACHRUn9/3fw4MErV64MGDBA7UDsJC4urmXLlh4eHrt27QoNDTWjhxYtWlSqVEkIMXfuXGtHJ4QQy5cv79atmy16tpEFCxbodDp/f/9+/fqpHQsAAAAAAAAAAPj/ihUrtm/fvilTpvz9999Vq1Zt167d/Pnzo6Ojk5OT5QYPHjz4559/Ro0aVbVq1ZYtWwYEBOzbt2/y5MkeHi47j2brWR7VqTJr4+Pjs3DhwnXr1iUkJDRp0iQyMvKrr746ceLEkydP5AbPnz8/d+7cjBkzmjZtWr169UOHDi1cuHDr1q0FChSwW5B25vKZZgvMOdoI8+NWR64KRjmzkDkAAABwWObceWrLli3nzp0TQhw6dEgI8ffff6elpQkh6tev36RJE6uGZz+LFi0qXLhw27Zt1Q7ETgYMGHD8+PFGjRr17t1bkiSdTvfis4sWLSpWrJjxHjw8PL7++uvOnTuvW7fu4sWLVatWtWJ4SUlJq1evlk9NdgopKSnTp08XQnz88cfmHYIBAAAAAAAAAAA24ufn98knnwwcOHDu3Lnr168fPHiwJElCCI1GM3ny5K+//loIkT9//qioqG+++aZDhw5Od81UUyfvbDrLozp1Z23eeOON9u3b//rrr6tXr540adKYMWOEEB4eHpIkyaXznp6eDRo0mDFjxttvv50vXz47h2chMs3WmHO0HebHrctVc5VRztZcNXMAAADgGswpqf/tt9+WLFli+OeWLVu2bNkihBg5cqSTltQnJiauWbNmyJAh3t7easdiJ48fPxZC7Nu3L8dnU1JSlHTyxhtvNGnSZM+ePaNGjdqwYYMVwxs2bJhz7Y7p06c/fvw4PDz8448/VjsWAAAAAAAAAACQg4IFC44aNWrUqFF37949ffp0bGzs0KFDIyIi3n///ZIlS77yyiu+vr5qx2gmMybvbDfLozrVZ228vLz69u3bt2/fxMTEI0eO3L9/f+LEiXFxcVOnTg0LC4uMjCxUqJAqgVmOTLM11bPXhTE/bl2umquMcrbmqpkDAAAA12DODSt/+eUXKSeTJ0+2enz28dtvvyUnJ/fv31/tQOznwIEDOe5EWfny5ZV0otFofvnll6CgoI0bN65bt85asZ0+fbpIkSJOdFe7mJiYSZMmaTSaJUuW5M+fX+1wAAAAAAAAAACAMeHh4a+//vo777wTFBTUokWLXr16NWrUyHnr6YVZk3c2muVRnUPN2uTPn79FixZ9+vSJjIwsV65c//7927Rp47z19IJMszGHyl7Xw/y4FblwrjLK2ZQLZw4AAABcgzkl9a5n8eLF9evX5yZcZihVqtSaNWu8vLyGDBly+/Ztq/QZERHx1VdfWaUrO0hJSenVq1d6evrUqVObNWumdjgAAAAAAAAAAACK2GKWR13M2jgm18s0WyB7nQXz4+RqdoxySpA5AAAAcHxOXFJfpkyZMmXKWN6PJEn379//4IMPLO/KPbVu3XrBggWPHj1q3759YmKi2uHYlV6v79Onz/Hjx0eMGDFixAi1wwEAAAAAAAAAADCBK83yMGvjyFwp02yB7HUu7pzP5Gpu3DkrlCBzAAAA4BS81A7AfLNmzbJKPxqN5urVqxqNxiq9uae+fft2795dCOHt7a12LHal0WiWL1++fPlyp74bLAAAAAAAAAAAcFsuM8vDrI2Dc5lMswWy1+m4bT6Tq0a4bVYoQeYAAADAKThxSb0Vi+Cpp7ecn5+f2iGoQKPRuOcLBwAAAAAAAAAALsM1JjuYtXF87KDckL3OyD13GblqHH+c3JA5AAAAcAoeagcAAAAAAAAAAAAAAAAAAAAAAIA6KKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAbspL7QCQ1YkTJzIyMtSOAnaSmZmZmZmpdhQAAAAAAAAAAMDKJEm6evXq33//rXYgUOTu3btOOmWTnp4eFxdHprmzy5cvqx2CmSRJEkIcOHDgypUrascCe0hJSRFC6HQ6U1e8dOkSo5w7u3XrllarVTsKAAAAuD5K6h1IQkKCEGLEiBFqBwK7unjxotohAAAAAAAAAAAAK9Pr9QsWLFiwYIHagUCpwMBAtUMwx7Vr127evNmyZUu1A4HKnjx5onYIJrt165YQolevXmoHAru6evWq8sZeXl5CiOnTp0+fPt1mEcEJ+Pr6qh0CAAAAXB8l9Q6kWbNmBw4c8PPzUzsQ2E9CQsIrr7yidhQAAAAAAAAAAMDKTp06lZ6e7uHhoXYgUCQjIyM0NFTtKMxx+PDhy5cv+/v7qx0I1JSSktKwYUO1ozDZRx99VLdu3fz586sdCOzn+fPnTZo0Ud4+X758x48flyRJo9HYLCg4uszMzAIFCqgdBQAAAFwfJfWO5bXXXlM7BAAAAAAAAAAAAFiqZs2aaocAt1CkSJEiRYqoHQVgJpOqq+Ge6tatq3YIAAAAANwCF8YAAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgpiipBwAAAAAAAAAAAAAAAAAAAAC4KUrqAQAAAAAAAAAAAAAAAAAAAABuipJ6AAAAAAAAAAAAAAAAAAAAAICboqQeAAAAAAAAAAAAAAAAAAAAAOCmKKkHAAAAAAAAAAAAAAAAAAAAALgpSuoBAAAAAAAAAAAAAAAAAAAAAG6KknoAAAAAAAAAAAAAAAAAAAAAgJuipB4AAAAAAAAAAAAAAAAAAAAA4KYoqQcAAAAAAAAAAAAAAAAAAAAAuClK6gEAAAAAAAAAAAAAAAAAAAAAboqSegAAAAAAAAAAAAAAAAAAAACAm6KkHgAAAAAAAAAAAAAAAAAAAADgprzUDgD/5/Tp0y+//HJAQICHB6c6uIukpKR333139uzZagcCAAAAAAAA2Fvbtm137twZEBCgdiCwE61Wm5GR8fjx4/z58ytcZf78+e+9957y9nBJycnJb7755sqVK9UOBHBQ//rXv06fPp0vXz61A4Fq9Hp9cnLyrl27GjZsqHYsAAAAAAA4K0rqHUhqaqpWq23Xrl2JEiXUjgV2MmvWLEmS1I4CAAAAAAAAUEdwcHC/fv3UjgJ2cv78+S1btqSnpysvkc/MzNRqtb1796ZU1J3Nnz+fA+mAcWFhYd27d1c7CqjmwYMHS5YsSUtLUzsQAAAAAACcGCX1DsTb21sIMWjQoEaNGqkdC+zk559/LliwoNpRAAAAAAAAACooVKhQ8eLFJ0+erHYgsJOlS5du2bLFpFXk4vuxY8eGhITYJig4gbVr1xYqVEjtKADHVbBgwcDAQD5P3dnx48eXLFni6+urdiAAAAAAADgxD7UDAAAAAAAAAAAAAAAAAAAAAABAHZTUAwAAAAAAAAAAAAAAAAAAAADcFCX1AAAAAAAAAAAAAAAAAAAAAAA3RUk9AAAAAAAAAAAAAAAAAAAAAMBNUVIPAAAAAAAAAAAAAAAAAAAAAHBTlNQDAAAAAAAAAAAAAAAAAAAAANwUJfUAAAAAAAAAAAAAAAAAAAAAADflpXYA5svMzNTr9b6+vpZ3lZaW5ufnZ3k/7uzp06eSJAUFBfn4+Kgdi/3o9fpnz54JIYKDgz09PdUOBwAAAAAAAICdcESUI6JZuGdKKEHaADBgqMwNQyUAAAAAAKpz4qvUDxkypG/fvpb3I0lS6dKlf/zxR8u7cltz5swJCQlp166dVqtVOxa70mg0H374YWho6NChQyVJUjscAAAAAAAAAPbAEVGOiGbhtimhBGkDQMZQaQRDJQAAAAAAqnPiq9Q/ePAgKSnJ8n40Gk2dOnV++OGH//znPxqNxvIOVZGUlCT/Nfz9/YOCgoy0TE1Nff78uRAiKCjI39/f8k1v2LBh6NCh4eHhGzdutEqHTkSj0SxcuPDatWtz584tUaLEqFGj1I4IAAAAAAAAcH0qHg4VHBF1niOidssTd04JJZwrbQC3Ys/PU4ZK4xgqAQAAAABQnRNfpV4JrVZ75cqVnTt3nj9/XqfT5dasf//+MTExhw8ftmds1vXRRx8VLVq0aNGiixcvNt5y9uzZcsvdu3dbvt0rV6706tVLr9f//PPPYWFhRloq3BeWyMjIiI6O3r179/379614/YYzZ848fvw4t2f9/PyWLl3q6+s7evToHTt2WGujAAAAAAAAAHKj1uFQofiIqPMeDhUudETUPnmi/CC5Ldgh04zLzMy8ePHijh07Tp48aSQAJ0obwK3Y7fNUxaHS6uOkGZ+/DJUAAAAAADgFly2p1+l006dPL1myZMWKFVu0aFGjRo0yZcrMmjUrx0MbHTp0KFiw4KJFi+wfp7UcOXJEXoiMjDTe8ujRowpb5kmv1/ft2zc5Ofmtt96KiorKrZlJ+8I8MTExAwYMCAwMrFKlSrNmzYoXL164cOHJkyenp6db0q0kSTNnzqxbt+6ZM2eMNKtYseK4ceOEEP369UtISLBkiwAAAAAAAADypMrhUKHsiKjzHg4VLndE1A55ovAguS1YJdNmzZoVpczPP/+cZV2tVvvNN9+ULFmyWrVqrVq1qlu3bvHixefOnZtbAM6SNoBbsc/nqVpDpdU/kc34/GWoBAAAAADAibhmSX1aWlrXrl1HjBgRGxsrhMifP78Q4s6dOx9++GG3bt2yn/3v6+v773//e/Xq1cnJySqEa7Hk5OTz588LIby9vWvXrm28sXx0rGzZsqGhoRZud/Xq1YcOHfLw8Jg4cWJubUzdF+aFUatWrcWLF2dmZgohAgIChBBPnjz5/PPPIyIinj59amqHWq323LlzP/74Y/Xq1YcNG6YkyA8//DA0NPT+/fvffvutGS8BAAAAAAAAgEJqHQ4VCo6IOuPhUOGiR0TtkydKDpLbgrUy7eLFi38qExMT8+KKqampUVFRo0aNevDggRAiMDBQCPHw4cMhQ4YMGTIkt1JRx08bwK3Y7fNUlaHS6p/IZnz+MlQCAAAAAOBcXLOkfty4cevXrxdCDBw4MDY2NiEh4d69e127dhVC/P7775MnT86+Sv/+/RMTE9euXWvvWK3hxIkT8qGfWrVq+fn5GWkZGxt7584dYY1rMul0ujFjxgghevbsWa5cudyambEvTLJ+/foePXqkp6dHRkZu3rw5Pj4+MTHx1q1bffr0EUJER0f36dNHr9cr77BIkSLe3t41a9YcOnToxYsXFa7l7+8/fPhwIcS0adMePXpkxgsBAAAAAAAAoIQqh0OFsiOiTnc4VLjuEVE75InCg+S2YK1Mq1y5cvNsWrVq1bZt23b/Jdehyv+VSZLUt2/fnTt3GgJITEy8d+9e9+7dhRDz5s3L7Z7Ajp82gFuxz+epWkOldT+Rzfj8ZagEAAAAAMDpuGBJ/eXLl6dNmyaE6NWr188//xwWFiaEKFas2MqVKzt16iSEGDdu3PXr17OsVbt27YiIiMWLF9s9Xisw3JbxlVdeMd7ScFvGPFvmadu2bfKfcdCgQbm1MW9fKJeeni5vffDgwYcOHWrXrt1LL72k0WhKliz5yy+/tGjRQgixdevWP//8U3mfz58/F0KEh4e/++677dq1U77iwIEDPT0909LSnDSLAAAAAAAAAKegyuFQoeCIqDMeDhWue0TUDnmi5CC5LVgx04YNG/Z3Nn/++eeWLVs2b968efPmAQMGJCYmlitXTq7vlP3666+//fabEOKdd955MYDly5c3bNhQCPHxxx8nJCTkuEUHTxvArdjn81SVodK6n8jmff4yVAIAAAAA4HRcsKR+/vz5Op3O19d3ypQpGo3G8Linp+f333/v4eGh0+mWLVuWfcUBAwbs2bPHkikNtagyhzR37lwhRIkSJV577bXc2pi9LxTy9fXt0KFD8+bNf/rpJw+P/0lmjUbz73//W17eu3ev8j7PnTv39OnT27dvz5s3LyIiQvmKhQsXbtWqlRBi3rx5pl4ICgAAAAAAAIBCapXU53lE1BkPhwrXPSJqhzxRcpDcFmydaQbR0dF9+/b18vJauXJlUFCQ/KBOpxs9erQQokiRIjNmzHgxAC8vrwkTJggh4uPj16xZk2OfDp42gFuxz+epKkOldcdJMz5/GSoBAAAAAHBGrlZSL0nSihUrhBCNGzcuVqxYlmfLlCnTuHFjIcTy5cuzr/vWW2/5+Pj88ssvtg/Tykw95uXt7V27dm1LtpiUlPTXX38JIdq0aZPl4JGBJftCue+++27mzJkvHooyCA4OlhcyMjKUd1ihQoWCBQvm2GGe2rZtK4S4cePG2bNnzVgdAAAAAAAAQJ7sfzhUKDgi6qSHQ4XrHhG1dZ4oOUhuC/bJNCFEZmZmz549k5KSRo4c+fLLLxse379//+3bt4UQPXv29Pf3z7JWw4YN5eL7pUuX5tazI6cN4Fbs8HmqylBpi3HS1M9fhkoAAAAAAJyRq5XUX79+PTY2VghRq1atHBvIj1+9evXx48dZnipUqFDHjh2XLFmi0+lsHacVxcbG3r17VwhRoECBChUqGGmp1+uPHTsmhKhVq5afn58lG92zZ09mZqYQol69erm1sWRfKBccHFytWrUcnzp//ry8ULFiRbP7N4lhXmH79u322SIAAAAAAADgVlQ5HCoUHBF1w8OhwoGPiNohT5QcJLcF+2SaEGLKlCmnT58uWbLkqFGjXnzccLHqHAPw8vJq2LChEOLYsWNarTbHnh02bQC3Yp/PU1WGSluMk6Z+/jJUAgAAAADgjFytpP706dPyQm5HSSpVqiQvnDlzJvuz/fv3v3379q5du2wTnU0YriERGRlp/EpCly9ffv78ubDGbY537NghLxg5BGbhvrBQZmbmggULhBCenp5RUVFW7z9HtWrV8vLyEi/8fQAAAAAAgP3pdDrnumIC4Mgc7Q2lyuFQoeCIqBseDhUOfETUDnmi5CC5Ldgn02JiYiZOnCiEmDp1apbrK8uFqkKIAgUK5LhuuXLlhBBpaWmXLl3KsYEDpo0kSWqHANcnSZJDZZp9Pk9VGSrt+Ymc2+eviw2Ver1e7RAAwIYc6gMaAAAA6spaUi9J0uHDh4cMGVK/fv3ixYsHBwc3atRo0qRJpt4rVqE5c+Z8/PHHH3/88ZMnT6zS4bNnz+SF8uXL59jA8PiNGzeyP9uqVatixYotXrzYKsHYh6m3ZVTSMk/yTQZ9fHxyuySDsHhfWEKSpBEjRty8eVMI0bt379KlS1u3/9z4+fnVqFFD/PfvAwAAAAAA7Ck2NvbTTz+tVKmSr6+vj49PhQoVRowYIV99E4CpHPYNpcrhUKHgiKgbHg4VDnxE1A55ouQguS3YJ9M+//zzzMzMGjVqdO7cOctThnNscrtYdeHCheWFCxcu5NjAQdLGMMo9efJk8uTJjjPKwcUYMm316tXHjx93nEyzz+epKkOl3T6RjXz+usZQacjeNm3aCCHat2/vINkLAFZhGOUWLFgQHR3tOJ/RAAAAUNH/lNQfPXq0SpUq//rXv+bOnXvkyJH79+/Hx8fv37//iy++aNCgQVpamtU3v3r16mnTpk2bNi0+Pt4qHRr6yZcvX44NAgIC5IXExMTsz3p6evbt23fdunVxcXFWiccOlB/zUt4yT9HR0UKImjVr+vj45NbGwn1hBp1O9/Dhw507d7Zr12727NlCiBo1asyaNcsqnSsk34fxyZMn1jpLBAAAAAAAKLF69ery5ct/9913ly9f1ul0er3+6tWr06dPr1ChwtKlS9WODnAyjvyGUuVwqFBwRNQ9D4cKRz0iaoc8UXKQ3BbskGmHDx9ev369EGLMmDEeHlkvzFSsWDF5ITk5OcfVDXNJRuZZVE+bF0c5IYQkSY4zysGVvJhp8hVwHSfT7PN5qspQaetxUsnnrwsMlS9mr3yV+tu3bztI9gKA5Rz5MxoAAAAq+p+DoQcPHoyJialcufLEiRO3bdt28uTJ9evXR0RECCGOHTs2Y8YMVUI0ieEoSW6HZry9veWF3I6S9OvXLz09fdWqVTaIzvp0Ot2xY8fk5cjISOON5ctIBAcHV6hQwZKNxsfHP3jwQAhRqlQp483kBbP3hUk2btzo4+MTFhbWokWLbdu2CSFatmz5119/5c+f3/LOlStRooS8IB8lBAAAAAAAdrB69eoePXqkpKRkfyotLa1v375Lliyxf1SAk3LkN5Qqh0OFsiOi7nk4VDjkEVE75InCg+S2YIdMmzBhghCiVKlS2S9RL4QIDw+XF2JjY3Nc/cqVK/JCQkJCbptQN20ceZSDK3HkTLPP56laQ6VNx0mFn7/OPlQ6cvYCgOUY5QAAAJCb/ympDw0NXb9+/YULF8aOHRsVFVW7du1OnTpt2rRJo9EIIdatW2f1zX/xxRcrV65cuXJlkSJFrNKh4VT+PI+SJCUl5digYsWKDRo0WLRokVXisbVLly7JL6Rs2bKhoaFGWqalpZ05c0YIERkZKe9Qs92/f19eCAoKMtLM8n1hkszMTPkaCTIPD4+mTZsGBgZa3rNJXnrpJXnh3r17dt40AAAAAADu6cGDBwMHDjTeZvDgwdy8G1DCwd9QqhwOFcqOiLrn4VDhkEdE7ZAnCg+S24KtMy0mJmb79u1CiAEDBnh6emZvUKlSJXlh06ZN2Z/NzMw8dOiQvPz8+fPctqJi2jj4KAeX4eCZZp/PU7WGSpuOkwo/f516qHTw7AUACzHKAQAAwIj/Kanv1atXp06dstzHs0SJEvJJ8Hfu3MmycmJiYm63q1OoWbNmPXr06NGjh7WunZORkSEvvHg440WGx7VabW6dDBgw4Pjx4+fPn7dKSDal/GaLp0+fzszMzLGlqfvRcIDJ+CEwq+wL5Ro0aLBt27Zt27b99ttvY8eOLVy48KhRo8qXL3/q1CnLO1fOcHjLWrdvBgAAAAAAxs2YMSPPIxtpaWnff/+9feIBnJqDv6GscjhU2OaIqHseDhUOeUTUWnmi1Wpze1EKD5Lbgq0zbfbs2UIIjUbTr1+/HBvUq1evVq1aQohdu3bduHEjy7NLliy5ffu2vGwoWs1OxbRx8FEOLsPBM80O46RQb6i06Tip8PPXqYdKB89eALAQoxwAAACM8MizhVarle/KZ7i7nFar/f7778uUKRMUFBQYGFi5cuXly5fbNkzFDJcBMBwuycLwuOEwRHZdu3YNCAhwigvVyzdbFAqOeWVvafZ+NBy4MfI3FFbaF8qFhYVFRUVFRUV16dJl4sSJ586di4iIePjwYdOmTc+ePWt5/wo54AQSAAAAAACu7Y8//lDSLMcrRALIwsHfUJYcDhU2PiLqnodDhUMeEbUwT2Q3btxo2rTpwoULc1xR4UFyW7Bppmm12pUrVwoh6tSpU7JkyRzbaDSaDz74QAih0+nat2//4vWVt27dOnz4cMM/g4ODc9uQimnj4KMcXIaDZ5odxkmh3lBp03FS4eevUw+VDp69AGAhRjkAAAAY4ZVni6tXr8pHFurUqSOEkCSpX79+v/76a+fOnfv06RMdHb1p06bevXvv3r17wYIFlt9C10KGq91bcpQkMDCwa9euK1asmDp1apZr9iuXkJDw/vvvp6amKl9FvhFhQkKC8lUMl5GIjIw0qaUl+1HhVSWssi/MFhISsmDBgnr16j1//nzYsGE7d+60T3KaengrNTV17dq1MTExtgzKvSQlJV25ciUiIkL14cg9xcbG/v77745zm2/kKCUlJTo6OiIiwuzPONjHmTNnYmJiunXrpnYg7igtLe3ChQsRERE53uMetnbhwoXr16+T/A4uIyPj3LlzNWvWNHI1NTiCPXv2ZGRk8IZShVarPXPmTPXq1X19fdWOxfVFR0craXb9+vWuXbvya9Fx6PX606dPV6lSJV++fGrHgv9j5zfU0aNHc7uCbI7MPhwqbH9E1D0PhwoTj4g+evRICDFw4EDln4+3bt0SuV9pOEeW5MmqVasOHDhw4cKFvXv3SpLUuXPnHFdUfunlgQMHXr58WZIkhcFnUaxYsV9//fXFb902zbTdu3c/ffpUCNGkSRMjzXr16vXTTz+dOHHiwoUL1apV69Gjh7+//6FDh3bt2lW0aNGuXbsuXrxYCFGoUKHcejD1QHp8fPyff/5pla+1fG2wimvXrvn5+RUvXlztQByXnTPt1KlTBQsWVN7eDuOkUG+otOcnspHPXzsPlfIVl8eNGxcaGmrhi2KctA8OGsAkfPJaEaOcnSUkJFy/fj0iIkLtQFxTZmbm2bNna9So4ePjo3YsTkOSpNOnT1eoUMFwHiaUuHDhQtGiRU360QHlbt686enpabjaNWAEhZHKyZ+SptYz+Pn55VBS//Tp04MHDx48ePDOnTuPHz+WD1iL/x4rWbt27a+//rpy5coePXrIj1+4cKF169aLFi1q06ZNly5dLH4tFjEcJcnt4EJsbKy8YPwoSUZGhre3tyWZp9Vqnz17lpaWpnwVuZhep9MpbJ+SknL+/HkhhJeXV+3atY03lo95lStXLiQkRFi2HxX+Way1L8xWt27dyMjIo0eP7t69+/jx4y+//LIttpKFqcf7JElKS0uTz6aAVSQlJSUlJcXFxfHJoQpJktLT00lpB5eSkiK/TSipd3A6nS4zM5M3lCrS0tLktwkl9arQarUkv+PLyMiQ3yaU1Du4zMxMnU7HG0oVWq1WfpswO+5Q+LXoUHQ6XWJiYlxcnEkH0OA4rPKGysjIUN6JJYdDhe2PiLrn4VBh4hHRzMxMIcTz58+Vf42UawSVl9RbmCdz5sy5evVq9erVX3311YMHD+a2ovK8LViwoJFyyTwVKlQoy7Zsmmnr1q2TF4yX1Pv4+KxZs6Z58+Y3b968d+/etGnT5Mfbtm07d+7cUaNGyf+sWbNmbj2YeiBdp9PZ/6gjXxuMSEhISE9P9/f/f+3dZWAUV9fA8bsRogSI4BAcGixYoLgFAoHgBVocKkgLxYsVK04pVlxKaWmhpECxAi1WwQmuwQkQQoy47L4f5nn2yRvZrM1K8v996Xb37r0n2XNmycyZGWdzB5IXGCXTUlNT09LStBxsmu2kMN+m0sTfyDl9/5p4UykdX3779q2dXe4X1DMWtpOGYKcBdMI3r1mwlTOKt2/fSjt/zB1I3pSamip9m9BSrz2VSvX27dvo6GhpBwW0FBsb6+TkxFZRJjExMba2tpzmAW3Ex8dLX6zUY67062dwcHD43x/VCQkJmzdvXrdunbQbJSuppX7lypXt27dXH3UQQlSvXn3p0qV9+vSZO3eu2Vvq1Tt0QkNDmzVrlnVAaGio9KBw4cI5TRIdHR0cHDx27FhDMs/d3V3LO0apSftZNNzgL5PHjx9L+0eKFy/u6OioYeSVK1ekHzwgIEB6xpDPUb0Fz3ibwqyM8lkYqG7dutItKS9fvmyaY0jqmwyod9hp5uzs/MEHH8yZM0fOoADT8fb27t69+7Jly8wdCJAXNGnSpGTJkrt27TJ3IICpNWzYsEKFCjt27DB3IEBe0KNHj/Dw8KNHj5o7EEBeNWvWzGl3VkaVK1c+duyYCeIBrJqJC6p///43b97UcrAhu0OF/HtE8+fuUKHjHlHpypq//PKL+teVq23btg0cOFD7BkED8+T48ePSNQgmT56soVVUy53kQojFixdrGbmWZM20EydOCCFsbGyynTmjChUqnD9/fvny5WfPnnVwcKhatWrv3r3r16+vUCikonZ2dq5evXpOb9d1R7qHh0e7du1Wr16t5Q+iAf9sgGmYONMCAwNzuiJ7VqbZTgrzbSpN/42c0/evKTeV0q0Avv766+bNmxv447CdBJC3sZUDAACABv/ZDX39+vXu3bvfu3dPCFGzZs0+ffrUrFnTx8enePHibdq0OXv2rIuLyzvvvCOEqFChgr+/f6ZZOnXqJIS4ceNGSkqKeU99U5/Kf/fu3WwHqPeSaNhD8dNPPyUlJQ0aNMjY0RmZdJNckWHfUE6+//576YH6vqiGfI5a7gIzymdhIPW+sCdPnsi0RCbq34mWRwIAAAAAAICBunbtqs3R0G7dupkgGMDaWXJBGbI7VMi/RzR/7g4VlrdH1MA80fKeftr3iRqdfJkWERFx+/ZtIUTdunW1uXKzp6dn1ovFREVF3bhxQwjRunVrDSdCmDFtLHkrh7zEkjPNNNtJYb5Npem/kTV8/1rjptKSsxcADMdWDgAAABrYCCEiIyPbtm177969d95559SpU1euXJkyZUrnzp0rVqxob28fEhIihKhfv76tra0QYvXq1dJhhoxcXFyKFCmSlpZm9pv11KhRQ7o52sWLF7MdcO3aNSFE4cKFK1eunNMkmzdvbt68uYYBFkK9UzshIUHDsMjISGmfV/PmzdUXYzDkc1TvuFFfHSFbRvksNIuNjdV8w1/1TrHixYvrt4SudL24DgAAAAAAMNBnn30mXZRRA1dX188//9w08QBWzZILypDdoUL+PaL5c3eosLw9ogbmiZa03EkuB/kyTbrEshCiadOmeoe3fv365ORkIcSQIUM0DDNj2ljyVg55iSVnmmm2k8J8m0qjbyeN/v1r4ZtKS85eADAcWzkAAABoYCOEWLZs2atXr4QQu3fvbtasmUKhUL987do16U96Pz8/6RlnZ+es/76MiIiIiooqUqRI0aJFTRR4DhwdHTt37iyEOHnypPoqC2pPnz6Vdgp37do1p4soXL9+/fz585p3YViIypUrS1dOevjwYU57o1Qq1ZAhQ8LDwwsUKLB8+XL1h2vI51iyZEnpgearShj+WeTqwIEDM2fOzOnVlJSUM2fOSI9btGih3xK6Uv9OpFsYAwAAAAAAuXl5eX3//fcZ92hlolAovvvuu2LFipkyKsBKWXJBGbI7VMi/RzR/7g4VlrdH1MA80ZKWO8nlIF+mqS/nrPdZH6mpqatWrRJClCtXLjAwUMNIM6aNJW/lkJdYcqaZZjspzLepNPp20rjfv5a/qbTk7AUAw7GVAwAAgAY2Qojz588LIRQKhXrXhkSlUs2aNUt6rG6pz5Z0lYJhw4bpt0vFuAYMGCCESE5OXrhwYaaX1HfWGzx4cE5v37x5s6ura8+ePeWL0FhcXFw6dOgghEhNTd22bVvWAUqlcvbs2Xv37hVCLF261NfXV/OEWn6OhQoVklLl8ePHmifU77OIj4//9ttv9+7dq1KpNM9//fr1OXPmLFy4MD09PeurGzZsePr0qRDCz8+vRo0aGV9KTExct27dzp07NV9VQg/q30m1atWMOzMAAAAAAMhJUFDQvn37ihQpkvWlwoUL79mzp3v37qaPCrBSFltQRt8dKoy9RzQf7g4VlrdHVI48yUr7neRy0C/Tck2D+/fvSw+8vb1zjSHbdJ02bdqzZ8+EEN98843UsJsT86aNxW7lkMdYbKaZZjspzLqpNO52Uu/vX+vdVFps9gKAUbCVAwAAQI5UKlXr1q2lx/3793/16pVKpUpMTDx8+HDz5s3Vwx4/fqzKwdOnTwsXLlyhQoXIyMicxuSkZ8+epUqVKlWq1IMHD3R9b2BgYIsWLbI+r1QqAwICpLDXrVunfnLlypXScZGgoCClUpntnMnJyZ6ensOGDdM1GKOQzm04efKk9m+5ePGinZ2dEMLFxWX//v0Zf65nz575+/tLv4dZs2blOpVOn6OUM/b29klJSRqG6fdZDB8+XHrLihUrNIfx4MED6RaKjRs3PnToUGpqqnqJ9evX29vbCyHs7Oz++eefTG/s37+/tMSqVasyvRQREfHiv0aPHi0N+/nnn9VPxsbGagipTp06QghPT0/Nkau5u7tPmzZNy8GA5StbtuyYMWPMHQWQRzRu3Lhnz57mjgIwAz8/vz59+pg7CiCP6N69e9OmTc0dBWA6kZGRX331VcOGDQsUKGBvb+/n5zdnzpw3b96YOy7AKqkLytHR0dbWVqaC6tevX926dbUfb8TdoSoZ9oha4+5QlWn3iH733XdCiNevX2szWO+3GCVPJk2aJIRYtmxZTgO03EkuB/0yTXMaqFSqTp06SQNCQkJyDSAoKGjlypXp6enSM7GxsWPGjJHePnjw4JwOwajpuiO9UqVKI0aM0HKwltRbOU9PTw8PD/7ZAJmYJtM6duzYtm1b7cebZjupMt+m0rjbSf2+f028qdTjKHOu2E4CyNvYygEAACAroVKpFi1aJDJwdXWVHri5uTk7OwshihUrltNf9dHR0bVq1fLy8rp165Yey6vvf3fv3j1d35tTS71KpXr69Km0a0MIUadOnR49elSqVEn6X29v77CwsJzm3L17txAi6yEH09BvZ8eaNWvUn12TJk2++OKL6dOnd+3a1dHRUQjh7Oz8/fff5zqJrp/j559/Lq149uxZzSP1+CxatmwpDXjnnXdyjeTy5ctly5aVxnt6ejZv3jwgIMDT01N6xtbWdsuWLVnfVb9+fWnAxx9/nOmlhg0bCo0mTZqUUzBJSUnSjrM2bdrkGrmElnrkMbTUA0ZESz3yLVrqASOipR75VpcuXXLaawRAVyNHjqxYsaJMk+vaUq8y0u5QlWx7RK1ud6jKtHtETdNSrzJGnuTaKqr9TnI56JFpmtNAleF4TWhoqObVf/31V2mku7t7y5Yt/f393dzcpGe6dOmSkpKi+e167EiXo6UeyEt0balXmWQ7qTLrptK420k9vn9NvKmUo6UeAAAAAID8xkYIMWbMGPWZ+kKIuLi4WrVqzZw5U2pzF0I0aNAg2/vexsTEBAQEREdH//XXXxZyU1dJ6dKlL1261KpVKyHE5cuXd+/eLd2xtF27dmfPni1RokROb9y8eXO1atUaNWpkulgN9sknn+zdu7dcuXJCiL///nv+/Plz5szZs2ePUqkcOnTo7du3+/Xrp3kGPT5H9QUqpB00GujxWUycONHLy6tixYrp6em53onY19f32rVrn376qYuLS0RExKlTpw4fPhwRESGE8PHxOXr06KBBg7K+a+7cuVWrVvXx8VHvyzOKq1evpqamCiHatWtnxGkBAAAAAAAASAzfHSrk3COar3aHCgveI2qUPNFM+53kctAj03JNg7i4OOmBdK0lDfz9/UePHq1QKCIjI0+cOHH06NHY2Fg3N7dFixYFBwdLPaAaWGzaAPmKCbaTwqybSuNuJ/X4/mVTCQAAAACA1bETQtjb2x88ePDq1avh4eHFixcvU6ZM4cKFpZcTEhJyemdMTEz79u3fvHlz+vRp9Xn5ujpx4oR+b8xViRIl/vzzz0uXLh05cuT169elS5du3bp17dq1NbwlLCzs0KFDCxYsyPb8AUsWFBTUoUOHkydPnj179s2bNx4eHlWrVm3fvn3BggVzfa9+n2OLFi0cHBySk5O12QWm62fRoUOH8PBw6edKT0+3sbHRPL+bm9uKFSvmzZt36NChe/fuRUREFCtWrFmzZo0aNcrpve3bt799+3a2L505cybXnygnFy5cUM+v9yQAAAAAAAAANDBkd6iQf4+ode0OFXl3j6iBeZIrnXaSy0HXTNOcBkKIpUuXvn37Vgjh7u6ueWkXF5dvvvlm9OjRBw8efPLkSYECBapVq9alSxf1PZA1s+S0AfIVubeTwtybSuNuJ3X9/mVTCQAAAACA1bGT/qNQKDS3m2cSHR3dvn37uLi4U6dOabjou9nVrVu3bt26Wg7etm2bQqHo37+/rCHJxN7evm3btm3bttXpXXp/js7Ozh06dNizZ8/hw4fT0tLs7OxyfYtOn4VEfU9Dbbi6uvbq1Uun+Y3ut99+E0JUqFChVq1a5o0EAAAAAAAAyMP02x0qTLhHND/sDhUWv0dU7zzRhh47yeWgR6blpEWLFjqNL1++/MiRI/VYyMLTBshXZN1OCsvYVBpxOyl0//5lUwkAAAAAgBXJ5YI32YqOjm7Xrl1KSsqJEycsuZ9eJyqVavPmzYGBgcWLFzd3LCZi4Oc4fPhwIcSrV6+OHz8uQ3QiLi7O0dFRjpll8vr16yNHjgghPvnkE6u70QEAAAAAAACQ51nyHlGr2x0q2CMq/07yPIm0AfIbNpV6YFMJAAAAAIBZ6NxSHxUV5e/vb2Nj8+eff3p5eckRk1n8/fff9+7dGzJkiLkDMRHDP8e2bdtWrVpVCLF27VpjRyeEENu3b3/vvffkmFkmGzduTE9Pd3Z2HjRokLljAQAAAAAAAPD/WPgeUavbHSrYIyr/TvI8ibQB8hs2lXpgUwkAAAAAgFnofH+9IUOGXLhwoXnz5v3791epVOnp6Rlf3bx5c8mSJY0Xnuls3ry5aNGiHTt2NHcgJmL452hjYzNv3rwePXoEBwffvHnTx8fHiOHFxcX9/PPP0gUYrEJCQsKyZcuEEOPHj89Lp5oAAAAAAAAAeYMl7xG1ut2hIu/uET1w4MC1a9eEEP/++68Q4tixY0lJSUKIRo0atWzZMtNgWXeS50l5NW2AfEWn7aRgU6k7NpUAAAAAAJiLzi31r1+/FkKcOnUq21cTEhIMjcgc3r59u3PnzuHDh9vb25s7FhMxyufYrVu3li1bnjhxYsqUKXv27DFieGPGjLGuj2PZsmWvX78uXbr0+PHjzR0LAAAAAAAAgMwseY+o1e0OFXl3j+iuXbu+++479f8eOHDgwIEDQohJkyZl2yoq307yPCmvpg2Qr+i6nRRsKnXEphIAAAAAAHOx0fUNf/31lypnlSpVkiNKue3atSs+Pn7w4MHmDsR0jPI5KhSKrVu3urm57d27Nzg42FixhYSEFCtWzIpuc3znzp05c+YoFIrvvvuuYMGC5g4HAAAAAAAAQGYWu0fU6naHijy9R3Tr1q3ZZsiCBQuyHS/TTvI8KQ+nDZCv6LqdFGwqdcGmEgAAAAAAM9K5pT5P2rJlS6NGjbjVoB68vb137txpZ2c3fPjwJ0+eGGVOX1/fr776yihTmUBCQkK/fv2Sk5OXLFnSunVrc4cDAAAAAAAAQEZG3yNqXbtDBXtEs5BjJ3neQ9oA+RybSm2wqQQAAAAAwLysuKW+fPny5cuXN3welUoVFhb22WefGT5V/tS+ffuNGzeGh4d37tz57du35g7HpJRK5YABAy5cuDB27NixY8eaOxwAAAAAAAAAsmOPKHtEM8nPKaEN0gaAYFOZGzaVAAAAAACYnZ25A9DfihUrjDKPQqG4f/++QqEwymz508CBA3v37i2EsLe3N3csJqVQKLZv3759+3YHBwdzxwIAAAAAAADARNgjyh7RTPJtSmiDtAEgYVOpAZtKAAAAAADMzopb6o3YBE8/veEcHR3NHYIZKBSK/PmDAwAAAAAAAPlc/twxyB5RDfjN5IS0AaDG1iAnbCoBAAAAADA7G3MHAAAAAAAAAAAAAAAAAAAAAACAedBSDwAAAAAAAAAAAAAAAAAAAADIp2ipBwAAAAAAAAAAAAAAAAAAAADkU7TUAwAAAAAAAAAAAAAAAAAAAADyKVrqAQAAAAAAAAAAAAAAAAAAAAD5FC31AAAAAAAAAAAAAAAAAAAAAIB8ipZ6AAAAAAAAAAAAAAAAAAAAAEA+ZWfuAPA/6enpQogff/zx33//NXcsMJGkpKTY2FhzRwEAAAAAAACYQUxMzKtXrxYuXGjuQGAily5d0vUtiYmJQogVK1a4uLjIEBGsQ1RUVExMjLmjACxXbGzsy5cv+T7Nz549eyaESE1NNXcgAAAAAABYMVrqLYhKpVIoFOvWrTN3IDApjgQAAAAAAAAgf4qKinr+/PnkyZPNHQhMx8bGxt7eXvvxCQkJQog5c+bIFhGsQ3R0tLlDACxXdHT0/fv3+T7N5xQKhVKpNHcUAAAAAABYMVrqLUijRo3Y0wEAAAAAAAAgnzh9+rS5Q4Cl+/zzzz///HNzRwEAFu3atWvmDgEAAAAAAMDq2Zg7AAAAAAAAAAAAAAAAAAAAAAAAzIOWegAAAAAAAAAAAAAAAAAAAABAPkVLPQAAAAAAAAAAAAAAAAAAAAAgn6KlHgAAAAAAAAAAAAAAAAAAAACQT9FSDwAAAAAAAAAAAAAAAAAAAADIp2ipBwAAAAAAAAAAAAAAAAAAAADkU7TUAwAAAAAAAAAAAAAAAAAAAADyKVrqAQAAAAAAAAAAAAAAAAAAAAD5FC31AAAAAAAAAAAAAAAAAAAAAIB8ipZ6AAAAAAAAAAAAAAAAAAAAAEA+RUs9AAAAAAAAAAAAAAAAAAAAACCfoqUeAAAAAAAAAAAAAAAAAAAAAJBP0VIPAAAAAAAAAAAAAAAAAAAAAMinaKkHAAAAAAAAAAAAAAAAAAAAAORTtNQDAAAAAAAAAAAAAAAAAAAAAPIpWuoBAAAAAAAAAAAAAAAAAAAAAPkULfUAAAAAAAAAAAAAAAAAAAAAgHyKlnoAAAAAAAAAAAAAAAAAAAAAQD5FSz0AAAAAAAAAAAAAAAAAAAAAIJ+ipR4AAAAAAAAAAAAAAAAAAAAAkE/RUg8AAAAAAAAAAAAAAAAAAAAAyKdoqQcAAAAAAAAAAAAAAAAAAAAA5FO01AMAAAAAAAAAAAAAAAAAAAAA8ila6gEAAAAAAAAAAAAAAAAAAAAA+RQt9QAAAAAAAAAAAAAAAAAAAACAfIqWegAAAAAAAAAAAAAAAAAAAABAPkVLPQAAAAAAAAAAAAAAAAAAAAAgn6KlHgAAAAAAAAAAAAAAAAAAAACQT9FSDwAAAAAAAAAAAAAAAAAAAADIp2ipBwAAAAAAAAAAAAAAAAAAAADkU7TUAwAAAAAAAAAAAAAAAAAAAADyKVrqAQAAAAAAAAAAAAAAAAAAAAD5lJ25A4Bx+Pr62trauru7mzuQ/Cg1NfXOnTt//PGHj4+PCZZ78+ZNdHS0QqEwwVrIk9LT0729vQsUKGDuQHQWERERExND8sOipKenlypVytnZ2dyB6Cw2NjY8PNzGhrMroae0tLSyZcs6OjqaOxCdRUdHR0REkPywKOnp6cWKFXNzczN3IDpLSEh4/vy5ra2tuQOBtUpPTy9evHjBggXNHYjOSH5YIJVKVbhwYQ8PD3MHAgAAAAAAAAAAYJVoqc8j7t275+3tXaRIEXMHkh9FRka+fPny8ePHpmmpL1myZEpKigkWQh7WsGHDM2fOmDsKnZUsWTI1NdXcUQCZlStX7uHDh+aOQmfe3t7R0dHmjgLWrUKFCqGhoeaOQmfe3t6xsbHmjgLIrEiRIpGRkeaOQmc+Pj6PHz82dxSwbh4eHhEREeaOQmfVqlV7+vSpuaMAMnNwcEhKSjJ3FAAAAAAAAAAAAFaJlvo8wsnJqXv37nPnzjV3IPnRuXPnGjZsaLLr6jk6Onbu3Ll3796mWQ55z/jx48uVK2fuKPRRoECBrl279urVy9yBAP8zf/58a7xEvRDCw8OjXr16H3/8sbkDgbX66quvChUqZO4o9OHu7t6wYcMPP/zQ3IEA/7NmzRor7c0tVaqUh4fH5MmTzR0IrNXq1atfvXpl7ij0UbJkyWLFik2cONHcgQD/s2PHjuPHj5s7CgAAAAAAAAAAAGtFSz1gZezs7N555x26iqG3OXPmWGkHsK2trY+PD8kPi7Jly5a0tDRzR6EPBweH8uXLU1DQ28aNG21sbMwdhT4cHBwqVKhA8sOiHD58+PXr1+aOQh9OTk5FihShoKC3/fv3x8TEmDsKfTg5Obm5uZH8sCghISGnT582dxQAAAAAAAAAAADWyir7YAAAAAAAAAAAAAAAAAAAAAAAMBwt9QAAAAAAAAAAAAAAAAAAAACAfIqWegAAAAAAAAAAAAAAAAAAAABAPkVLPQAAAAAAAAAAAAAAAAAAAAAgn6KlHgAAAAAAAAAAAAAAAAAAAACQT9FSDwAAAAAAAAAAAAAAAAAAAADIp+zMHQDynTdv3qhUKjc3twIFCpg7lv9QKpWRkZFCiCJFitja2po7HAAAAAAAAAAAAAAAAAAAAAAmYsVXqU9NTU1OTjbKVElJSUaZB7las2aNp6dnYGBgWlqauWP5H4VCMXr0aC8vr1GjRqlUKnOHk3e8efMmIiIiJSXF3IHkKUqlMiIiIiIiIj093dyxIEckvxWhpiwfBSUTkt/ykfxWhIKyfBSUTEh+y0fyWxEKCgAAAAAAAAAAwIysuKV++PDhAwcONHwelUpVrly51atXGz6VNYqPj3+Zg8TEROOutWfPnlGjRpUuXXrv3r3Ozs7GndwQCoVi06ZNDRs2XLt27fz5880dTh5hmadP5AGcAWL5SH7rQk1ZOApKPiS/hSP5rQsFZeEoKPmQ/BaO5LcuFBQAAAAAAAAAAIAZ2Zk7AP29fPkyLi7O8HkUCkXdunVXrlw5YsQIhUJh+ITWZcqUKStWrMjpVU9Pz8aNGw8cOLBLly62traGLHTv3r1+/foplcoNGzYUL1481/FXrlwpWbKkl5eXIYsKIeLi4m7duhUfH1+2bNny5cvn9BE7Ojpu27atVq1aU6dObdCggb+/v4HrWqC4uDipZJydnd3c3DSMTExMjImJEUK4ubnpd/KDxZ4+kQdIZ4CEhoauXbu2TJkyU6ZMMXdEVoDkhwbUlK4oqDyD5NcVyQ8NKChdUVB5BsmvK5IfGlBQAAAAAAAAAAAAZmTFV6nXRlpa2r179/7444/r169ruGny4MGD79y5c+bMGVPGZiHOnj0rPShYsGCh/3Jzc5NazyMiIvbt29ejR4/mzZs/f/5c71WUSuXAgQPj4+Pff//9gIAAzYNVKtXy5cvr1at35coVvVcUQpw7d65hw4YFCxb08/Nr1apVxYoVK1euvHLlypyuzValSpUvv/xSCDFo0KDY2FhDlrZM48aNK1GiRIkSJbZs2aJ55KpVq6SRx48f12MhPU6feP36tR4LZRIXF3f+/PkTJ048ePBApsu5ablJkXt+6QwQBweHqVOnHj161Ohh5D0Wm/xyoKD0WIKa0omlFZTRczUlJeX27dvHjx8PCwsj+ZGRpSW/HCgoQ5agoHSSHwpKCJGcnHzz5s0jR46cPXs2KirKuJOT/FYqnyS/HCgoAAAAAAAAAAAAyCrPttSnp6cvW7asbNmyVapUadu2bc2aNcuXL79ixYpsOzmCgoLc3d03b95s+jjNKyUl5fLly0IIZ2fnyMjI6P+KiYlJSkp68ODB2rVrq1WrJoT4559/WrdurfdtAX7++ed///3XxsZm9uzZOY1JS0u7du3a6tWra9SoMWbMGAMPYa5evbpRo0bnzp3L+GRoaOhnn33Wtm1b6UpvWUn31w4LC1u0aJEhq1sm9ekTfn5+mkeqf2+5jszKKk6f0INOmxQTzG9pZ4C8ffv233//3bNnT2Rk5Pnz5w8ePHjt2jWlUmnuuP7DApNfDhSUIUtYVE0lJiaeO3du3759Dx8+vHHjxv79+y9dupSammreqNQsp6CMnqt37twZMmSIq6vrO++807p161KlShUtWnTBggXJycn6TZgVya+ZOvmfPHly7dq1/fv3X7582YgbHwNZTvLLgYIyyhIWVVCpqakXL17cv3//zZs3Hz58uG/fvvPnzyclJZk3KjWLLaj58+cHBAQEBARMnjxZ1+UyevXq1WeffVasWLHq1au3b9++UaNGXl5eLVq0yOlPUZ2Q/JqlpKRcvHjxt99+u3nzZmho6G+//Uby6/p2Y6Gg9FvCogoqPT39ypUrBw4cuHjxYkRExN69e8+cORMfH2/eqAAAAAAAAAAAAGShslqBgYEtWrTI9qXExMRu3bqpf8aCBQuqH/fs2TMtLS3rWz799NOCBQvGxcXJG7RsPDw8pk6dquu71AdomzVrltOY+Pj4Ro0aScP0WEKlUqWlpVWoUEEI8cEHH+Q0pmjRolmT8+jRo3osp1Kp/vrrLzs7OyHE4MGDT548GRUVFRoaumTJEicnJ2nmgICA9PT0bN87b948IYSjo+OrV6+0XE46In769Gn9otWVu7v7tGnTdH1XXFycra2tEMLe3j4xMVHz4DJlygghKlSooEd4P/74oxDCxsbm/v37OY1JTU29evXqqlWrfHx8DPysVSrVqlWrpJsqZNWiRYvo6Gi9Z1bTY5Nigvnj4+O9vLz0KMyaNWsOHjzYwJgliYmJGzZs6NChg4ODQ9bff9GiRYcNG/bHH38YZS2VSuXm5vbll1/q+i6LSn45UFDGWkK/murQoYO/v7/hMatUqtTU1B9++KF79+4uLi5Zf/9FihT54IMP9u7dq1QqjbKcj4/PsGHDdH2X5RSU0XP1p59+yrgpy/gpVKtWLSIiQo+fIpM8lvzt2rULCAgwPGaVSpWamrp9+/Zu3bo5Oztnm/z9+vXbt2+fsZK/atWqH3/8sa7vspzklwMFZcQl9CuoIUOG1KhRw/CYVSqVUqncs2dP3759CxcunPUDdXV17dmz544dO4zyK1KpVG3atAkMDNT1XRZbUDdv3pQCE0K0adNGjxUlv//+u5QGkkKFCtnY/OdyBi9evNB7WkkeS/4BAwb4+voaHrNKpUpPTw8ODu7Tp0+hQoVySv6ffvrJWMnfsmXLoKAgXd9lsckvBwrKkCX0K6gpU6Z4enoaHrPkyJEjgwcPzvjLV3N0dOzUqdOmTZuSkpKMtRwAAAAAAAAAAIDZ5c2W+okTJ0rHeIYOHSodYHv+/HmvXr2kJ+fOnZv1LZcuXRJCfPfdd7LGLB/9WupXrVol/U7Gjx+vYZh0JXshRKVKlfSI7bfffpPefurUqZzGSD03pUuX/uijjwIDA6Xx+nWFKpXKmjVrCiFmz56dqfXq6tWr6tud//jjj9m+/dWrV9JB3wULFmi5olW01J88eVL6wevXr695ZFhYmDSyT58+uq5iXadPaE+PTYpp5tfjDBCVkVrq09PTt27dWrZsWYVC0aBBg6+++uqvv/569OhRmTJlRowYcfPmzQMHDowYMaJ06dJCiLZt2164cMHAFVX6ttRbTvLLgYIy7hJ61JSxWup//fVX6bYwNWvWnDZt2okTJ+7fv9+oUaOuXbvevn376NGj48aNq1SpkhDCz8/v+PHjhq+oX0u9hRSU0XM1ODhYeqOfn9/+/fujo6OVSuXjx48HDBggPd+xY0eSPxOjtNQrlcrdu3dXrVpVCFGrVq3p06efPHkyNDS0fv36PXv2vH379pEjR8aOHVuxYkUhRMOGDU+cOGHgiip9W+otJPnlQEEZfQk9CspYLfXHjh2rV6+eEKJy5coTJkw4duzYnTt3goKCGjdufP/+/ePHj0+ZMqV69epCiOrVq+/bt8/wFfVrqbfYggoMDJS+bYUBHcDHjh0rUKCAEKJYsWKbNm2KjY2Vgrl69ers2bOjoqL0m1YtjyW/sVrqjxw5UrduXSFElSpVJk6cKCV/p06dmjVrdu/evePHj3/xxRfSCag1atTYv3+/4Svq11JvsckvBwrKwCX0KChjtdSfPXu2ZcuWQoiyZct++umnhw4dunXr1kcffVShQoWHDx+ePn169uzZ9erVUygU5cuX3759u+Ff6wAAAAAAAAAAAJYgD7bU37lzR2qJ7tevX8aO6rS0tK5duwohbG1tQ0NDs77R19e3ZcuW8gUsK/1a6vv37y8dw9u1a5eGYWlpadJFQx0dHfWITWqRL1OmjIZjbHfv3n3z5o30eU2dOlWKSr+u0H///Vc6jp6SkpL11S1btkiTN2zYMKcZOnToIIQoX768lgcFraKlftGiRdIPPnLkSM0j9+zZI41ctmyZrqtY1+kTWtJ7k2KC+fU4A0RljJb62NjYTp06CSHatm176dKljC+VLVt2zJgx6v9VKpU7d+6sWLGiQqHQoxs+E/1a6i0n+eVAQRl3CT1qyvCW+qSkJKnN1M/PL1O7cOPGjXv27JnxmaNHj9auXVsI8dFHH6Wmphqyrn4t9ZZQUEbP1aSkJOnqm5988kmmr36lUtm2bVtpwoMHD+r6g2SU95Lf8Jb6pKQk6d+iDRs2PHnyZMaX/Pz8MnUQHj16tFatWkKIzz77zMBLxurXUm8JyS8HCkqOJfQoKMNb6tPS0iZNmiSE8PHx2blzZ8aXunfv3rRp04zP/PPPP02bNhVC9O3bNyEhwZB19Wupt8yCOnr0qBDiww8/lN6lXwfws2fP3NzchBCVK1c2/PrZWeW95De8pV5D8nfp0iXTXqN//vmnSZMmQoj333/fwOTXr6XeMpNfDhSU4UvoUVCGt9QrlcoFCxbY2Nh4e3uvW7cu41f5yJEjK1asmHHwtWvXpD9CAwICjHJDMwAAAAAAAAAAAPP6z72S85L169enp6c7ODgsXLhQoVCon7e1tf36669tbGzS09O///77rG8cMmTIiRMnHjx4YMJgzezcuXPSg4YNG2oYFhMTk5CQIISQriGqk7i4uCNHjgghOnTooL43d1aVK1d2d3fP+Hnp7e+//xZCjBs3zt7ePuur/fv3L1asmBDi3LlzUVFR2c7QsWNHIcTDhw+vXr1qeDwWQur7F7l91kLrrMjW2rVrhRBlypSR2hSyde3atTdv3jx58mTdunW+vr66LpHR2bNnr127VqVKlcmTJ2dKnpo1a86fP196vHz5ckNW0XuTYoL5ixYt2q5dOyHEunXrlEql3jHo5MGDBw0aNDhx4kRwcPDRo0fr1KmjYbBCoejVq9eNGzdGjBgxa9asAQMGpKammiZONctJfjlQUMZdwvQ1FR4e3qJFi59++mndunVnzpxp0aKF5vFt27a9ePHi7NmzN2zY0Llz57i4OBMEmZElFJTRc9XBwSEoKKhNmzbffvttpn+rKBSKDz74QHqsvqysfkj+TF69etWsWbOff/55w4YNZ86cad68uebx0klcM2fOXLlyZVBQUHx8vAmCzMgSkl8OFJQcS5i+oN6+fRsYGLh48eJ58+Zdu3ZNffHjnLz77runTp1avXr1L7/80qZNm9evX5sgyIwssKDS09PHjRsnhFCf+KGfzz77LDY2VqFQ/Prrr+qTUoyI5M8kNjY2ICBg8eLFCxcu1DL5T58+vWLFip07d/r7+79588YEQWZkgckvBwrKKEuYvqBSUlLef//9yZMnjxkz5u7dux999JGG/Xjiv/d82LFjx6lTp5o0afL48WMTBAkAAAAAAAAAACCfvNZSr1KpfvzxRyFEixYtSpYsmenV8uXLS81q27dvz/re999/v0CBAlu3bpU/TIsQHR19584dIUSJEiVKly6tYeSpU6ekB9K1DHVy4sQJqYO2fv36eoWps5EjR/r6+gYFBWX7qq2trXQlTpVKldPpEw0aNJAeHD58WKYgTU/XI/f29vaaW6WzssbTJ3JlyCbFNPOb+AyQqKiojh07JiYm/vPPP926ddPyXQ4ODqtWrVq7du2PP/44ZswYOQPMhuUkvxwoKKMvYcqaSk5O7tq16717944ePfrRRx9p+Tna2tpOnz79l19+OXnypHS1S7njzMgSCkqOXF28ePHy5cuz/QiKFCkiPUhJSdFytqxI/kySkpK6dOny4MGDP/74Y9iwYVq+y9bW9ssvv9y5c+eff/45YMAAlUola5CZWELyy4GCkmkJUxaUUqn84IMPTp8+/euvv37xxRdaJo9CoRgxYsTvv/9+69at7t27G/KJ6MECC2rr1q1Xr14tVaqUdC8m/Vy5ciU4OFgI0atXr+rVq+s9T05I/kzS09P79Onz77//7t27d+LEidon/6effnr48OHr1693797dxGf8WmDyy4GCMtYSJv57f+TIkb/88svmzZuXLl1aoEABLd/Vp0+f06dPR0VFBQYGxsbGyhohAAAAAAAAAACArPJaS/2DBw9evHghhKhdu3a2A6Tn79+/n/VSfB4eHl26dPnuu+/S09PljtMSnD9/XnrQsGFDDW18ycnJs2fPFkK4uLh88cUXuq4i3exbmLCl3tHR8ffff9dwATMvLy/pQVJSUrYDateubWdnJzIEb+1evHjx7NkzIUThwoUrV66sYaRSqZQSo3bt2o6OjjqtYo2nT+TKkE2KaeY35Rkg6enpvXv3DgsLO3DggPS71cnHH3+8YMGCb7/9Vrpoomnk1eSXQx4oKKMsYcqa+uijjy5cuLB79+5cr8+dVffu3Tdt2rRv374ZM2bIEVu2LKSg5MjVIkWK5NSqdf36delBlSpVtJwtK5I/k2HDhl2+fDk4OFiP0zV79uy5YcOG4ODgmTNnyhBa9iwk+eVAQcm0hCkLasqUKfv379+6dWtOn6MGrVq12rVr15kzZ0aMGCFHbNmywIKKi4ubNm2aEOKzzz7Tvos0q3Xr1kkPpk6dqvckGpD8mUyaNOnw4cPbtm3To2+7TZs2P//8899//z1q1Cg5YsuWBSa/HCgoIy5hyoJavnz5xo0bv/7668GDB+v63rp16/72228PHz784IMPTHzGLwAAAAAAAAAAgBHltZb6kJAQ6UFOx6uqVq0qPbhy5UrWVwcPHvzkyZM///xTnugsizZXR3v79u177713+fJlIcSsWbNKlSql6yrSlbQKFCggx0XFclK0aFENr968eVN6UL58+WwHODo6Ss1DprkMmAmoP2s/Pz/NV0G+e/duTEyM0Ovm8tZ4+kSuDNykmGB+U54BsnXr1qNHj27btq1GjRr6zTB+/Pj3339//PjxUmOBCeTV5JdDHigooyxhspr6/ffft23btmzZspYtW+o3Q9++fSdMmLBgwQJ1i6rcLKSgTJCraqmpqRs3bhRC2NraBgQE6D0PyZ/RwYMHf/jhh+XLl+txMomkX79+48aN++qrr9T/qJObhSS/HCgomZYwWUGFhIQsXrx4ypQpvXr10m+Gtm3bLlq0aNOmTSb7K9gCC2rhwoUvX750cXH58MMPdV1ITaVS7dq1SwhRvnz5WrVqCSFSUlKOHTu2Zs2ab7/99saNG3rPrEbyZ3ThwoWvv/56xowZ3bt312+G9u3bL1iwYP369SdPnjRubDmxwOSXAwVlxCVMVlBPnjyZPHnykCFDPv30U/1mqFu37qZNm/bv379jxw7jxgYAAAAAAAAAAGAymVvqlUrl77//3r9//wYNGrRp0+aLL74ICwsTQowbN65atWo+Pj6G91JktGbNmvHjx48fPz4iIsIoE0ZGRkoPKlWqlO0A9fMPHz7M+mq7du1Kliy5ZcsWowRj4aTbiIscjtHGxsZu3LixVq1a+/btE0KMHj167Nixeqxy+/ZtIUStWrUMuTiZESUkJEjdV5UrVy5RokROw6QrgUVERBgrM81L15vLazMyK2s8fSJXBm5STDC/yc4ASUxMnDVrVqdOnbp27WrIPN98842tra3JLi2ch5NfDtZeUEZZwjQ1pVQqv/jii9q1aw8fPtyQeWbOnFmyZMnJkycbKzDNLKeg5M5ViUqlGjt27KNHj4QQ/fv3L1eunN5TkfxqSqVy6tSpvr6+H330kSHzzJkzp0SJEnrcQEk/lpP8cqCg5FjCZP9CmzRpUsmSJQ28hPPo0aN9fX3HjRtnmksLW1pBPX36dOnSpUKIjz/+uEiRIroupHbv3j3pj8fatWunpaUtXry4dOnS/v7+I0aMGDlyZI0aNT7++OOUlBS95xck//83efJkb29vA78IPv/88+rVq0+YMEGlUhkrMA0sLfnlQEEZdwmTFdSMGTMcHR0XLVpkyCR9+vRp27bttGnTkpOTjRUYAAAAAAAAAACAKf2/lvpnz561bt06ICBg+/btFy5c+PPPPxcsWPDOO+8cP358//79d+7csbW11fWW05r9/PPPS5cuXbp0aXR0tFEmVM/j5OSU7QAXFxfpwdu3b7O+amtrO3DgwODg4KioKKPEY7FUKpX6aO7ixYt7/lePHj0CAgJ8fX2LFCny4YcfPnr0qHDhwlu3bv3mm280X0QtW9HR0S9fvhRCeHt7G/kH0NeaNWuke6B/+umnGn6iMmXKSA+kUwKsnfZH7rUfmZWVnj6hmYGbFNPMb5ozQLZs2fL8+fP58+cbOI+Xl9e4ceM2b94sna8lt/yZ/HKwioIy1hImqKn9+/dfvnx50aJFNjYG3S/Iycnpyy+/PHDggHQ/GblZRUEZnqvp6emvXr36448/AgMDV61aJYSoWbPmihUr9JhKjeRX27t3b0hIyJIlSwxP/unTp+/bt8809xSyiuSXAwVl4QV1/vz5I0eOzJ07N6c4tWRjY/PVV1+FhIQcPnzYWLFpYGkFNXXq1MTERDc3tylTpui6SkbqaCtWrOjv7z9x4sTo6Gg/Pz/1VajXr18/atQoQ5Yg+dX+/fffP/74Y+7cuQ4ODobMY2trO3/+fKmUjBWbBpaW/HKgoIy+hAkK6smTJ9u3b580aZKHh4eBUy1cuPDx48fbt283SmAAAAAAAAAAAAAm9r9elnv37jVo0EC64bWTk1Pfvn3nzJkzdOjQuLi4bt263b17Vwjh5+dntki1oz5eldOxQ3t7e+lBTserBg0alJyc/NNPP8kQnQV58uRJeHi49PjQoUO7/ys4OPj333+/cuWKUqksXbr0tGnTHjx4MHDgQP1WUbfMurm5GSduw8TExCxYsEAI0aRJkxEjRmgYWahQIenB8+fPTRGZnNLT08+fPy89zrWEpYvhFSlSpHLlyjqtYr2nT2hm+CbFBPOb5gyQ4ODgxo0b16hRw/Cphg0blp6eLt0BQ1b5NvnlYBUFZawlTFBTwcHB3t7e/v7+hk/1wQcfFCxY8NdffzV8Ks2spaAMzNW9e/cWKFCgePHibdu2PXTokBDC39//yJEjBQsW1C8eCcmvFhwcXLFixTZt2hg+Vb9+/ZydnYODgw2fSjNrSX45UFCWX1Curq69e/c2fKoOHTqUKVMmHxbUhQsXvv/+eyHE5MmTDewlffHihfRg/fr1J06cmD59enR09NmzZ2/fvn3s2DGpoXbDhg3qRmE9kPxqwcHBhQoV6tWrl+FTderUqXTp0vkw+eVAQcmxhAkKSvpTYujQoYZPVbdu3Xr16pmgoAAAAAAAAAAAAOTwn5b66Ohof39/6cBb06ZNQ0NDf/zxx2nTpm3cuPH777+PiYmRhmW6PlZycnJUVJQhN8ieMWPGjh07duzYUaxYMb0nyUh9dflcj1fFxcVlO6BKlSpNmzbdvHmzUeKxWOrjjvXq1ZuUwfjx46V2mVKlSj169GjOnDmG3Kpb/Uu2hJZ6pVI5cODAiIgINze3bdu22draahisbqnX+9Cp5bh165b0QVSoUMHLy0vDyKSkpCtXrggh/Pz8MnVNJSUlaf5VWO/pE5oZvkkxwfwmOAMkOjr61KlTXbp0McpsJUuW9PPz27t3r1Fm0yB/Jr8crKWgjLWE3DWVnp5+4MCBbt266X1yQkaOjo7+/v579uwxfCrNrKKgDM/V1NRUpVKp/l8bG5tWrVq5urrqMVVGJL8kNTX1wIEDXbt2Ncpszs7O/v7+fJvIh4IycAkT/Attz549gYGBRrmPnEKhCAoK+u2339LT0w2fTQOLKiiVSjV27FghRIkSJUaPHq3dT5CjyMhI6cHbt29nzJgxe/ZsZ2dn6Zk2bdps2bJFerxmzRq9lyD51fbt29epUyejXIVdoVB06tRp7969GbdXcrCo5JcDBSXTEiYoqL179zZp0kRzWmqvS5cuf/zxRx7YmQYAAAAAAAAAAPKh/7TUjx49+vHjx0KIYcOG/fnnnyVKlFCP6NOnT/ny5aXH6itphYSE+Pv7Ozk5ubu7ly9fft26dfo11rdu3bpPnz59+vQx8FKFaikpKdKDnI6Gqp9PS0vLaZIhQ4ZcuHDh+vXrRgnJMknXPBNCfPjhhwsyWLx4cYsWLYQQz58/v3TpkoGrqA+hqQ8BmtHs2bP37t3r7Ox88ODBChUqaB6cl1rqtb9lfEhIiHQhUvVIlUq1efPm2rVrOzs7u7m5lS1bdt68eYmJiVnfa72nT2hmlE2K3PObIF2vXLmSmprasmVLY03YqlWrCxcuGGu2nOTD5JeDFRWUsZaQu6YePXoUEREhfdsaRatWra5fv56cnGysCbNl+QVllFxt2rTpoUOHDh06tGvXrunTpxctWnTKlCmVKlW6fPmyHrOpkfyShw8fRkVFGTf5r169KuWbfCw/+eVAQRm+hNwFlZCQcPv2bSMWVMuWLcPDw589e2asCbNlUQX166+/nj59Wggxa9Ysdbeu3tQftIeHx4QJEzK9+t5770l/hP7000/qLltdkfyS2NjYu3fvGjf5X716pW5Gl4lFJb8cKCiZljDB3/uXLl0y7j/PkpOTb9y4YawJAQAAAAAAAAAATMZGCBESErJt2zYhRJMmTdasWaO+SNJ/RtjYVKpUSQjh5ORUvXp1IcSFCxeaNWt27ty5sWPHzp0718PD45NPPpkxY4Y54s9MfdVD9YGrTNTPa2jy7tWrl4uLS96+UL36aG7WG4737dtXevDDDz8YuIrl9AYtX7581qxZTk5Ov/32W5MmTXIdn5da6tWnT+R65D7TyPT09D59+gwdOrRYsWLLli3bsGGDj4/P1KlTu3TpkvXqldZ7+oRmRtmkyD2/CdJVuh6e+o7zhitVqtSbN2+SkpKMNWG28mHyy8GKCspYS8hdU3IUlEqlkrsPzPILyii5Wrx48YCAgICAgJ49e86ePfvatWu+vr6vXr2SWrf1m1OQ/P8lR/IrlcoXL14Ya8JsWX7yy4GCMnwJqyuo0qVLCzmvgiyxnIJKSUmZNGmSEKJq1aqDBw/W66f5f1xcXKQHHTt2zHo3BoVC0aNHDyFEcnKy3mfvk/wSkt8Cv00oKPmWkLug4uLiYmJirK6gAAAAAAAAAAAA5GAnhFi6dKn0P19//bWdnV3WQTdv3hRC1K1b197eXqlUDh06NC0t7d9///X19RVCTJw4sWPHjvPmzevdu3eNGjVMF3t21Fe7N+R4laura69evX788cclS5bY2NjoF0l4eHi7du1M1pAdHR19584dLQenpaVdvHhRCOHo6Jj1I+vRo8fIkSPT0tJ++umnJUuWZJsSWsp0j3JzWb9+/ZgxY1xdXffv36/llbd0uuuCdEfy3r17Ozo66hmiLmJiYrT/rIXG0yc0j1y5cuUvv/zy3XffDRgwQHp+6NCh7dq1O3r06I4dO/r165fxvdZ7+oRmRtmkyD2/rofYw8LCfvnll5MnT2of5+vXr4UQjRs31mbyLVu27Nu3T/Ow2NhYlUpVuXLlAgUKaB9GXFzc3bt3tR9vack/dOjQu3fv6ndTFyFEyZIlf/jhh0ynvcnNugrKWEvoVFOhoaFPnz6tWLGi9kFGR0cLIbp165brpxkWFnblypVcJ09ISBBCvPvuu+reI208e/bMw8ND+/GWVlCZGDdX1Tw9PTdu3Fi/fv2YmJgxY8b88ccf+v3bJk8m/4MHD8LCwnRKfuk6sl27ds31kufPnz+/efOmlsnv5+enU/I/ffo04y25cmVpyW+CbxMKyvQFdefOnbt37+pUUPHx8UKIjz76yMnJSfPIV69epaen5zq5dFXszp07Fy5cWPswXrx44e3trf14yymo1atX379/Xwgxf/58Q/7mVVOvVbly5WwHqJ9/9OhRs2bN9FgiTyb/3bt3tdngZyR9vkOHDs31D3Cdkj8wMFCn39uLFy/Ud3TUhuUkv3oSI36bUFDyLaHrt0lUVJROBSXd6mrq1KkLFizQPDIiIiIxMTHXyaWkGjJkyMSJE7UPI99KSEiIi4srWrSouQOBFVCpVC9fvvTw8NBpTxq0Fx4e7uLiotOfloiMjLS1tbWQ08KtRWxsbGpqqk575KC9xMTE2NjYYsWKmTuQvCktLS08PLx48eJ6HzdHVunp6a9evSpatKhR/oxCnvfmzRt7e3uzH4jPq96+fZucnOzp6WnuQPKmpKSkqKgonY7LQHvSt0mxYsUMudV8fiP9ie3u7u7g4GDuWKxJeHi4q6ur4XcoRbaioqIUCoVOR+iQbyUnJ0dGRhYvXtxC+nItmX7fkq6urnapqalS72Pt2rWzPbD37Nkz6dpC0qshISFXr14dNWqU1E8vhLC3t1+4cGG9evUWLlz4/fffG/7DGEJ9vCqnQ03qy1hq3tOXkpJib29vSOa5urq2adNGfThTbtu2bdN+w3r9+nXpFuHSaRKZXvXw8GjXrt3BgwdfvXr1559/tmvXTu+o1FfkiomJ0XsSA23fvv2TTz4pWLDgkSNHGjVqpOW7YmNjpQfqjNJA+hdD/fr1ixcvrnec2vvuu++0/6wTEhKka7bZ2dnVqVNH82DpyH3FihWlPxcDAwPDw8PVh+2FEAqFIjAw8NixY3///XemI/cWspnW4/QJzYy1SZF1fl3bIJydnT09PXX6/Zw7dy4kJKRVq1a5fsf8+OOPZcuWfffddzUPu3379qlTp5o3b571ioMabN261aqT393d3ZDjJR4eHiYuNKsrKGMtoVNNFSxY0MPDo23bttq/Rcr/Jk2a5Lrrc+/evS4uLrlO/vz58wMHDjRo0KBkyZLah7Fr1y7tf88WWFAZGT1XM6pXr56fn9+5c+eOHz9+4cKFBg0a6DEJyS+5devW6dOnmzRpkuvGf8+ePQULFmzTpo3mYc+ePTt48GDDhg11+jfYzp07+TbRMICCMtYSOhVU4cKFXV1ddSooaeNfr169XDf+R48eTUxMzHXymJiYn3/+uVatWlWqVNE+jAMHDmjzF5PEcgoqKSlp9uzZQogiRYpERERs3LhR/ZL6st/Pnz9XPz9kyJBcmwbUX+s5bZHUAx49eqR5qpzkyeQvVKhQwYIFdUr+p0+fHjp0SJs/wI8cOZKcnJzr5NHR0U+fPq1Vq1ZO3dvZ2r9/v/aHsS0n+dWM+G1CQcm6hK7fJvb29joVlLTxr169eq4b/7///vvp06e5Tp6amvrw4cPKlSvXq1dP+zDyrcjIyBcvXkh3hQU0U6lUly5d8vHxyfV0Sujn5s2bxYoVo9FZJ6GhoY6OjqVKlTJ3INYkLCxMm1PUoJ/o6OgnT57UqlXL3IHkTSkpKVevXq1Tpw7tekaUnp5++fLlWrVqccoctBEaGurk5KTTYSBo7+XLl7GxsTrtF4X23r59Gxoaqm4wg3GlpaWFhITUrl3bxBfms3aXLl2qWrUqp1Xr5Pr16yVLlnR3dzd3IHnTo0ePbG1tjXg3UeRh8fHxd+7cqVu3rrkDsQKpqalXrlzx9fXV6TRmFxcXu4sXL0rdw61atcp20JkzZ6QHUkv94cOHhRDt27fPOKZOnTqenp6nT5/WL3ojUp85Ghoamu11qkJDQ6UHGjppoqOjg4ODx44da0jzorOzs/ry/yawe/du7S+9oL6NeE5XR+vTp8/BgweFED/88INVt9T/+uuvgwYNcnFxOXz4sPb99CJDwNo0iEjXxpswYULTpk31i1Mnv/zyi/af9ePHj6Vj2MWLF9d8Db8rV65I1REQECA9U7ly5a+++irTsDdv3ogMn6ya2T9roe/pE5oZZZMi9/w6nQEiTVW/fv1169ZpH2dwcHCPHj2mT5+e61VIDx8+3KZNm2XLlmketmTJkn/++Wfbtm067X796aeftL94mwUm/+LFi7UM3hJYY0EZawmdaqpo0aLu7u46FdS5c+caNmw4atSoXK/9LP1dmuvkO3bsOHDgwPr163W6wMNff/2lfReyBRaUmhy5mkndunWlfztdvnxZvw7gPJn8Xl5exYoV0yn5//3338aNG3/66ae5flIhISEVKlTIdfLt27cfPHhww4YNOl3a8+TJk1b9TylZv00oKCMuoVNBFStWTJsNfkZPnz4tW7bswIEDe/bsqXlkjx49wsPDc538xIkTP//889KlS3XaBdO2bVvtb9VlOQWVlJQk3TQmKirqo48+ynbM7du3P/zwQ+nxoEGDcu0AVh9yk26gkZW6Lzan61XnKq8mf5kyZXRK/ocPH1aoUGHw4MFdu3bVPLJr167R0dG5Tv7HH3/s3Llz2bJltWvX1j6MVq1aad9SbznJr2bEbxMKStYldC0oV1dXnQoqNTV1165d3bt3//TTTzWPHDVq1OHDh3Od/M6dO1u2bJk1a1ZgYKD2YQAAAAAAAAAAAFgCu8ePH0uPcjqlVd1S37BhQyHEsWPHhBA1a9bMOEahUFStWvXvv/9+8eKFee/Xo778wN27d7MdoD5epeEKQD/99FNSUtKgQYOMHZ2lyPWG4126dHF0dExKSgoODl6zZk3G+7bExMRcu3bNzc0t65Ue7t69Gx4e7uPjoz4pTX3AT30I0JQOHz7cu3dvR0fHgwcPNm7cWKf36tqjbLHCw8OlB7nep0x9i4n33ntP/WSms0qSk5O3b98uhMjau2D2lnq9T5/QzCibFLnn1+kMEP1IVxt68OBBri31Wnr06FGJEiVkvZxJ/kl+OVhpQRlrCblrSl1QubbUa+nRo0f29vY6tRTrymILSqZczUTd5PTkyRP9ZiD5JerkN9aH9ejRIwcHB1lvxmqxyS8HCsq4S8hdUMWLF7e1tX348KGxJpSmkvUak5ZTULa2tjk1T6ekpNy6dUsI4eLiUqlSJc1xZqS+zFJOaaO+hZ3e7bkkv6REiRI2NjYkv7CYbxMKStYl5C4oe3t7Ly8v6yooAAAAAAAAAAAAmdhIl7YSQkRFRWU7Qmqp9/T0LFeunPjvXYmzHhopX768EOLevXuyhaqVGjVqODg4CCEuXryY7YBr164JIQoXLqzhjt6bN29u3ry5Trf8ti65XqXezc2tU6dOQoi4uLjffvst40sxMTHNmjULCgrK9JbIyMh33333gw8+yHjFNfV5GqbvDTpx4kS3bt3s7OwOHDiQ7cXANFMHbO1HAdV3D8/p0m6SyMhI6ch98+bNc/p1vXz5skePHo8ePfrggw+ynqJgvadPaGaUTYrc85vgDJC6desWKVLk0KFDxprw4MGDOd0axVjySfLLwXoLylhLyF1TpUqVqlq1qhEL6sCBA82bN5f1HBXLLChj5WpsbKxSqdQwQN3tpP11/TMh+SVly5atXLmycZO/RYsWuV7p1hCWmfxyoKCMvoTcBWVvb9+0aVPp3mJGcfDgQR8fH+3v4aAHyymoggULhuRA/Stt1KiR+klt7gZYvHhx6Y6cf/75Z7YDbty4IT3Iena6lkh+iaOj47vvvmvc5K9Zs6asJ2hZTvLLgYKSdQkT/L3fqlWr/fv3G2u2gwcPenh41KhRw1gTAgAAAAAAAAAAmIyNl5eX9OjKlStZX3769KnUfu3n5yddFismJsbGxibrATAnJychRHx8vLzx5sbR0bFz585CiJMnT6ovA6am/nG6du2aU/PN9evXz58/P2TIELlDNZe3b99Khx7d3d0rVKiQ07A+ffpID3744YeMz5cpU6Zo0aKPHz/OdA7GjBkzIiMjv/nmm4yXtC9UqJDUVa++GYIRJSYmrlu3bufOnVm7ds6cOSOlwf79+1u0aKHH5OqAq1WrZmCc5lW5cuUCBQoIIR4+fJjTMXWVSjVkyJDw8PACBQosX7480wXwhBDvvfeej49P2bJlDxw4MHTo0A0bNmQdY72nT2hm+CbFBPOb4AwQe3v7gICAvXv3GmW2K1euPHz4sEuXLkaZLSf5IfnlYNUFZawlTFBTQUFBBw8eTElJMXyq8PDwM2fO5MOCMmKuHjhwYObMmTm9mpKSor5lk37/qBAkfwadO3c+cOBAamqq4VO9ePHi3Llz+TD55UBBybGECQqqS5cuf/31l/okeUMkJSX9/vvvFJSBevfuLYS4fft21msNKJXKXbt2CSFcXV3fffdd/eYn+dW6dOly8uTJnC4MoZPExMQjR46Q/BaIgpKYpqDu3bt3+/Ztw6dSqVT79u3r3LmzNidOAAAAAAAAAAAAWBob9ZWQDh48ePny5YyvxcfHDx48WGp5UV/OPDY2NtvLoEoHS9R3XjajAQMGCCGSk5MXLlyY6aU5c+ZIDwYPHpzT2zdv3uzq6tqzZ0/5IjSvixcvqlQqkeE0iWx17NhRugLWoUOHMnZpKBSKBg0aCCFCQkLUT167dm3NmjXt27fPettxqSX92rVrycnJGqJ68+bNy/9SZ1FkZKT6ybdv32Z6y8cff/zJJ5/07t17zZo1GZ+/f/9+hw4d4uLiOnTocPPmzVWrVq1cufKbb75ZkoWGRv8LFy4IITw9PWW9Up0JuLi4dOjQQQiRmpq6bdu2rAOUSuXs2bOlVumlS5eq766eUWJiopOTk3QH+cTEROlWFZlY1+kT8fHx33777d69e6Va0Ey/TYr2Sxi4yRKmOgOkb9++d+/eNUpX/ZIlS9zd3du3b2/4VBrkjeSXQ94uKL2XyMgENdWnT5/Y2NgNGzYYPtXXX39tZ2fXvXt3w6fSwNIKSr9czSn5r1+/PmfOnIULF6anp2d914YNG54+fSqE8PPzy3S5TZJfD3369ImKitq0aZPhU3399dcFChTo1q2b4VNpYGnJLwcKyohLZGSCgurRo4dCofjmm28Mn2rdunVxcXFSA6t88kZBafin1KBBg6Q/sefPn5/ppS1btjx//lwIMWLECCl4NZJfDz179lSpVMuXLzd8qjVr1iQmJpL85kJBZbtERiYoqI4dOxYqVGjJkiWGT7Vr167Hjx/37dvX8KkAAAAAAAAAAADMQKlU1qxZU3pcrFix/fv3JyYmRkRE7N69u3r16uphBw8eVKlUKpXKw8NDoVCoshg2bJgQ4rfffsv6kgY9e/YsVapUqVKlHjx4oNMbVSpVYGBgixYtsj6vVCoDAgKksNetW6d+cuXKldLRuKCgIKVSme2cycnJnp6ew4YN0zUYs/Pw8Jg6dao2IxcsWCD9cmbMmKF5ZP/+/aWRa9asyfi8dOHJpUuXSv+rVCpbtmxZoECBu3fvZp3k888/lyY5e/ashrUaNmyoOVEnTZqU6S3169eXXvr4448zPv/bb79pmfxHjx7NNpikpCR7e3shRJs2bTT/iiRnz54VQpw+fVqbwYZzd3efNm2a9uMvXrwonfHi4uKyf//+jMn/7Nkzf39/6bcxa9YszfOkp6efOHHCw8PD09MzJCQk64DWrVsLIezt7ZOSkjTMExER8eK/Ro8eLa3+888/q5+MjY3N9BZ1Kq5atSrj8/fu3StcuLAQolu3bitXrly5cuWKFSuWLVu2OItHjx5lfOPw4cOlCVesWKH5p1bpu0nRfglDNlmSOnXqCCE8PT1z/VkkNWvWHDx4sJaDM2rcuHHVqlVTU1M1jClbtuyYMWM0DAgJCbGxsVFvQHTi5ub25Zdfaj/e0pJfDhSUsZbISKea6tChg7+/vzYjM+nRo4eXl1dMTIyGMY0bN5Y6xnLy7NkzZ2fnsWPH6hGAj4+PTv/gsZyC0jtXc0r+Bw8eFC9eXAjRuHHjQ4cOqbdySqVy/fr10j8J7Ozs/vnnn0yR5PPkb9euXUBAgDYjM+natWvRokWzbp0y8vPz69Onj4YBjx49cnR0nDBhgh4BVK1aNdO/HjWznOSXAwVl3CUy0qmghgwZUqNGDW1GZjJq1CgnJ6enT59qGNO9e/emTZtqGBAVFeXh4dG3b189AmjTpk1gYKD24y2/oB4+fCjFkNMfgzklv+STTz6RXl28eHF6err05L59+6SfulKlSlm3fvk8+QcMGODr66vNyEw++eQTV1fXFy9eaBjTpUuXbPcaqUnJ369fPz0CaNmyZVBQkPbjLT/55UBBmbigpkyZov2egYy++uorW1vba9euaRgzcuTIihUrahiQnJxcqVKl5s2b6xEAAAAAAAAAAACAJRAqlWrHjh0iA/XNeRs2bOjj4yM9fv36tfSGihUrCiGSk5MzTSQdBtO1q1h9HcR79+7pGnpOLfUqlerp06dSJ4cQok6dOj169KhUqZL0v97e3mFhYTnNuXv3biFE1g4Py6d9S736Qrb79+/XPPLgwYPSyEwdGAcOHBBCqI86S7fbzqnJWz1JtsdH1fRoqT98+HDVqlV9fHxu376d8XnDW+qlW28LIRYuXKj5VySx8JZ6lUqV8UL+TZo0+eKLL6ZPn961a1dHR0chhLOz8/fff6/lVMHBwVJZqY9nq1nR6RMtW7aUnn/nnXe0+an12KTotITemyyV7meAqAxoqT916pRCoZgyZYqGMZpb6uPi4nx9fcuVK6dfe4euLfUqC0t+OVBQxlpCTdea0rul/s6dO/b29gMGDNAwRnNLfWpqatu2bQsXLhwREaFHALq21KsspqD0ztWckl+lUl2+fLls2bLSq56ens2bNw8ICFDfqcbW1nbLli1ZI8nnya93S/2tW7fs7Ow0fxNpbqlPTU1t3bq1u7v7mzdv9AhA15Z6lcUkvxwoKOMuoaZrQendUv/q1Ss3N7eAgIC0tLScxmhuqVcqlX379nVwcAgNDdUjAF1b6lUWX1C5dgBrSH6VShUdHS31vwohKlSo0KlTp1q1akn/6+XldfXq1axvyefJr3dL/YsXL1xdXTt16pT101fT3FKvVCrfe+89R0fHhw8f6hGAri31KotPfjlQUPotoaZrQendUh8fH1+qVKkGDRokJCTkNCbXlvrPP//cxsbGEhIPAAAAAAAAAABAP0L6z9dff+3k5KQ+tlenTp1NmzalpaUVLVpUCJHxkEm9evWEEPfv3880UatWrYQQ2R7Q0kCmlnqVShUWFiaFlFG7du1evnypec5q1appvkCUZdK+pd5w4eHhQoiaNWuqVKrExERvb29vb+/4+PhsB8fHxzs4OAghBg4caJrwDPftt99KCZPtJd+ysvyWepVKtXfv3nLlymWqiAIFCgwdOvTJkyfaz5OamiptK7L+cqzo9ImDBw96eXlVrFixSpUqGjowMtJ1k6LrEvptslS6nwGiMqClXqVSTZkyRaFQ/PDDDzkN0NBSr1Qqe/fu7ejo+O+//+q3uh4t9SpLSn45UFDGWkJN15rSu6VepVJt2rRJCLF48eKcBmhuqR89erSNjc3evXv1W12PlnqVZRSU3rmaU/JLYmJiPv30UxcXl0yT+Pj4/Pnnn9lGks+TX++WepVKtXLlSiHE119/ndMAzS31o0aNsrGx0fXuWGp6tNSrLCP55UBBGXcJNV0LSu+WepVK9euvv9rY2Gi4Y4nmlvp58+aJDNdO1pUeLfUqyy6oXDuANSe/SqWKiIhQn8eu1rBhw5zG5/Pk17ulXqVS7d69W6FQTJw4MacBmlvq58yZI4TYsGGDfqvr0VKvsuzklwMFpd8SaroWlN4t9SqV6q+//nJwcOjZs2dOO0U1t9Rv27ZNCDFnzhz9VgcAAAAAAAAAALAE/7kg/eeffz548OCQkBBXV9dq1aq5uroKIZ48eSI1T/v5+akP+VSpUuXixYv37t2TLlevdv36dQcHhwoVKghdnDhxQqfx2itRosSff/556dKlI0eOvH79unTp0q1bt65du7aGt4SFhR06dGjBggXSzZeREy8vL29v7ydPngghVq1a9fjx4z179jg7O2c72NnZuUOHDnv27Dl8+HBaWpr6HgiWTGotqlChgvr6Z3lAUFBQhw4dTp48efbs2Tdv3nh4eFStWrV9+/YFCxbUaR47OztPT8+nT58+ffo0U0G1aNHCwcEhOTn5/PnzGmY4c+aMrsG3b9/+9u3bWZ/v1KmTSqXSdTYhRIcOHaSNW1BQUHp6uo2NTa5v0XWTousSemyyJBcuXJAetG/fPtfBhps7d+69e/cGDhwYGRk5atQo7d+YlJT04Ycf/vzzzxs3bmzUqJF8EWZlOckvBwrKWEuombKmhgwZcuHChYkTJ0ZERMybN0+bn0uSlpY2bdq05cuXz58/PygoSNYgM7GEgtI7V3NKfombm9uKFSvmzZt36NChe/fuRUREFCtWrFmzZo0aNcrpoyH59TZq1KgbN26MGzfu1atX8+fP1/7f3lLyr1q1atGiRZ06dZI1yEwsIfnlQEEZdwk1UxZU165dZ86cOWPGjLi4uFWrVknXM9aGSqVatGjRtGnTRo8e/dFHH8kaZCaWXFDlypXTXBSak18I4eHhsXv37pCQkMOHD7969crd3b158+bNmjUj+Y2ue/fu06dPnz17dnR09OrVq7Xf2yAl/5dffjl27Nhhw4bJGmQmlpz8cqCg9FtCzZQF1aRJk7Vr1w4ePLhv376bN2/OaS9fttavXz9q1KgePXpMnTpVvggBAAAAAAAAAADk9r8jjoULF1bfvFiivhhSxpb6Ll267Nix48yZMwEBAeon7969+/r16w4dOmS9EqF51a1bt27duloO3rZtm0Kh6N+/v6wh5Q0NGjT45ZdfXr9+PW/evA4dOmju5xs+fPiePXtevXp1/Phxf39/kwWpn9evXx85ckQI8cknn+Sxkyvs7e3btm3btm1bLcdfuHBBfRN2taSkpOfPnwshatSokeklazx9Qn0XdS3ptEnRYwk95jfxGSAKhWLbtm3Dhg379NNPb9y4MX/+/MKFC+f6rqtXrw4aNOjWrVvffffdgAED5A8zM5LfNCytoPRbwsQ1tXLlSicnp4ULF4aGhq5cubJ48eK5viU0NPTDDz88derUokWLJkyYYIIgM8nbBeXq6tqrVy9d30Xy62HVqlWOjo4LFy58+PDhihUrihUrlutb7t+/P2zYsL/++mvp0qVjx441QZCZ5O3klwMFZbKCmjZtmr29/dSpUx88eLB+/fry5cvn+pawsLBRo0b9+uuvkyZNki5Ub2J5vqB8fX19fX11egvJr4eZM2fa29t/+eWXjx49Wr9+vbe3d65vef78+ciRI/ft2zd58uS5c+eaIMhM8nzyy4GCMk1BDRo0KC0tbeTIkQ8ePNiyZUv16tVzfUtkZOSECRM2b948ZMiQNWvW5LHdaAAAAAAAAAAAIL/RdC0l9RWtMrbUd+jQoUCBAlu2bElISFA/uWLFCiGEia+TalwqlWrz5s2BgYHadLOhQYMGQoglS5YkJCSsWLFC8zGztm3bVq1aVQixdu1aE8VngI0bN6anpzs7Ow8aNMjcsZhZjx49duzYkenJDRs2KJXK6tWrZ9usMHz4cCGEdPqEKUI0TFxcnKOjo1UvYZYzQBwdHbdv375w4cItW7ZUqlTp66+/joyMzGnwrVu3Bg0aVKdOnTdv3hw/ftws/fR6yPPJL4c8UFDCHDVla2u7dOnSLVu2HD58uHLlyjNnznzx4kVOgx89ejRmzBgfH59r167t27fPLP30esjzBUXy68fW1nbZsmWbNm06cOBApUqVZs2a9fLly5wGP3z48LPPPvPx8bl58+b+/fvN0k+vhzyf/HKgoPSjUCgmT57866+/Xr58+Z133hk7duzjx49zGhwWFjZ9+vTKlSv/8ccf33///YIFC7S/TYoZ5fmCIvn1o1Aopk2btnv37gsXLlStWnXChAnS/fSy9fz586lTp1apUuX48eM//PCDTvcIMqM8n/xyoKD0NmzYsGPHjoWFhdWuXfvDDz+8c+dOTiMjIiIWLlxYsWLFH3/88Ztvvtm0aVOBAgVMEyQAAAAAAAAAAIBMNB0+lK5Sb2trW6dOHfWTbm5uEydOfPLkyXvvvRcaGpqQkLBkyZLVq1dXqVJl4MCBsscrm7///vvevXtDhgwxdyDWQWqp37Bhw6RJkypVqqR5sI2NjXThw+Dg4Js3b5oiPn0lJCQsW7ZMCDF+/HgvLy9zh2NmM2fOfP/993v06HHs2LHY2NiIiIhvv/12woQJtra2W7duzfaArnWdPrF9+/b33nvPqpcw4xkgEydOvHXrVvv27cePH1+sWLHWrVvPmjVr8+bN8fHxd+7cWbVq1bhx46pWrerj47N379558+bdvn27UaNGJg5Sb3k++eWQBwpKmK+mBg0adP/+/f79+8+bN6906dLvvvvu9OnTN2zY8Pr16ydPnqxZs2by5Ml16tQpX778+vXrx40bd//+/Y4dO5oyQkPk+YIi+Q0xZMiQ+/fvf/DBB3Pnzi1VqlTjxo1nzJixYcOGiIiIx48ff/vtt5MmTapdu3aFChU2bdo0YcKE+/fvZ7xTloXL88kvBwrKEEFBQffv3x8zZszatWvLlStXt27dL774Ys2aNU+fPg0PD1+/fv306dMbNmxYunTphQsXStXXr18/U0ZoiDxfUCS/Ibp27Xr//v3PPvts1apV3t7e9erVmzJlytq1a589e/bq1av169dPmzbNz8+vTJkyS5YsGTp06P379/v27WvKCA2R55NfDhSUIZo1a3b37t1Zs2bt3LmzWrVqPj4+48ePX7Vq1b17996+fbt58+aZM2e2bNmyePHiU6ZMCQoKunPnzujRo00ZIQAAAAAAAAAAgFxUOUhLSytYsKAQok6dOpleSk1NHTFiRMZJatSoERoamtNUMgkMDGzRooWxZhs8eHDRokVTUlKMNaGJeXh4TJ061WTLxcTECCHKlSuXkJCgzXilUtmyZUshRJcuXWQOzSDSbd9Lly4dGxur/bvOnj0rhDh9+rR8gWXk7u4+bdo006y1Z8+eTBe9K1eu3IkTJzS8Zffu3dLIGzdumCZI/bx9+7Zly5aylrzcS8THx0snfsyYMUOnN9asWXPw4MHGCiM0NHTJkiXNmzd3dnbOmCpFixbt3bv3jh07YmJijLWWm5vbl19+aazZNMvDyS+HPFBQKn1rqkOHDv7+/saK4dmzZ99++227du2kf4OpFSlSpEuXLps3b379+rWx1vLx8Rk2bJixZtMsDxdUfk7+du3aBQQEGCuGZ8+erV692t/fP1Pyu7u7d+3adcuWLREREcZaq2rVqh9//LGxZtMsDye/HPJzQQ0ZMqRGjRrGiuH169ebNm0KCgoqUqRIxvRzc3Nr3779mjVrnj9/bqy12rRpExgYaKzZNMvDBZWfk3/AgAG+vr7GiiE8PHzjxo2dOnUqXLhwxlQpVKhQQEDA2rVrw8LCjLVWy5Ytg4KCjDWbZnk4+eWQnwtqypQpnp6exoohOjr6hx9+6NWrV6ZLTri4uLRs2XLZsmUPHz401loAAAAAAAAAAACWwE7k4M6dO2/fvhVCNGzYMNNLdnZ2q1evHjly5JEjR+Li4nx9fTt06GBra5vTVJbv7du3O3fuHD58uL29vbljsQ5///23EGL58uVOTk7ajFcoFFu3bq1Vq9bevXuDg4O7d+8uc4D6uHPnzpw5cxQKxXfffZepnSvf6tKlS0BAwMmTJy9cuGBnZ1evXr1GjRq5uLhoeEu3bt1atmx54sSJKVOm7Nmzx1SR6mzMmDFyl7zcSyxbtuz169elS5ceP368TEtoo0KFCuPGjRs3bpwQIjY29urVq15eXuXKlXNwcDBjVIbLw8kvhzxQUMIyaqpUqVLDhw8fPny4ECI+Pv7GjRuOjo6VK1fW8tvWYuXhgiL5jaVUqVIjRoyQztqNj4+/fv26s7NzpUqVSH5TRWoRKChj8fT0HDJkiHQHtsTExLt376akpFSvXj3TCZBWJw8XFMlvLF5eXkOHDh06dKgg+a0k+eVAQRlLoUKF3n///ffff18IkZyc/ODBg8jIyFq1arHHDAAAAAAAAAAA5FU5ttSfP39eeuDn55ftAB8fHx8fH1mCMrldu3bFx8cPHjzY3IFYh9TU1LFjx3bs2LFz587av8vb23vnzp2dOnUaPnx4/fr1y5YtK1+EekhISOjXr19ycvLSpUtbt25t7nAsiIODQ7t27dq1a6fleKs4fSIkJKRYsWKy3qVd7iUs8wwQNze3pk2bmjsKo8mTyS+HPFBQwiJrysXFJad/g1mjPFlQJL9MXFxcsp7Ta73yZPLLgYKSiZOTU+3atc0dhdHkyYIi+WVC8lt+8suBgpKJg4PDO++8Y+4oAAAAAAAAAAAA5JVjS33fvn179OghhHB0dDRhPOaxZcuWRo0a5ZkzBOQ2d+7cZ8+eHThwQKFQ6PTG9u3bb9y4cdCgQZ07d/7rr78s5LigEEKpVA4YMODChQtjx44dO3asucOxehZ++oQQwtfX19fX13qX4AwQi2X5yS8Hay8oQU1ZKssvKJIfMrH85JcDBQWZWH5BkfyQieUnvxwoKAAAAAAAAAAAAOjNJqcXChQo4Orq6urqameXY9u9eZUvX758+fKGz6NSqcLCwj777DPDp8rbpk+fvmPHji+//HLOnDlr1qypUKGCHpMMHDgwMTHx7NmzFnXjdYVCsX379sTExCVLlpg7ljxCOn0iPDy8c+fOb9++NXc4eQpngFg4kt/qUFOWjIKSFclvyUh+q0NBWTIKSlYkvyUj+a0OBQUAAAAAAAAAAGBGFtour40VK1YYZR6FQnH//n1dL7ie36SkpMybN0+pVDo5Oa1evbpfv356T2WB9z1QKBQWGJW1GzhwYO/evYUQ9vb25o4lT5HOANm+fbuDg4O5Y0H2SH7rQk1ZOApKPiS/hSP5rQsFZeEoKPmQ/BaO5LcuFBQAAAAAAAAAAIAZWXFLvRGb4Omnz1WBAgXi4uJevnzp6elZsGBBc4cD68CJCnLgDBCrwGdkRagpy8cHJBOS3/LxAVkRCsry8QHJhOS3fHxAVoSCAgAAAAAAAAAAMCMrbqmHiTk5OZUvX97cUQAAAAAAAAAAAAAAAAAAAACA0diYOwAAAAAAAAAAAAAAAAAAAAAAAMyDlnoAAAAAAAAAAAAAAAAAAAAAQD5FSz0AAAAAAAAAAAAAAAAAAAAAIJ+ipR4AAAAAAAAAAAAAAAAAAAAAkE/RUg8AAAAAAAAAAAAAAAAAAAAAyKdoqQcAAAAAAAAAAAAAAAAAAAAA5FN25g4AgG6SkpIOHjwYHh5u7kBgrZ4/f166dGlzR6GPlJSU/fv3v3jxwtyBAP9z/fp1d3d3c0ehj+jo6L/++uvjjz82dyCwVjdv3ixatKi5o9BHTEzMqVOnSH5YlL///js+Pt7cUejj9evX0dHRFBT0dubMmaSkJHNHoY/Xr18/fPiQ5IdFOX/+fGJiormjAAAAAAAAAAAAsFa01OcRsbGxS5cu/fbbb80dSH6Unp4uhDBZj7uXl9fz58+jo6NNsxzyHqVS6eXlZe4o9CElf1RUlLkDAf4nPj6+atWq5o5CH15eXmFhYceOHTN3ILBWCQkJ1vtt8vLlS5IfFuXt27dWesajl5fXs2fPKCjoLTY21tvb29xR6INvE1ig+Ph4Kz3jEQAAAAAAAAAAwBIoVCqVuWOAEYwePTopKalIkSLmDiQ/Sk9Pv3379vfff1+4cGFzxwIAAAAAAAAAAAAAAAAAAABAB/8HMpGtMgaRnWIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCMAAAG1CAYAAADDSD4xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdYFOf6N/DvLqhYgMVyYgWPGisqiCgoCmKvWKJBc4wl0WMXY8NojikGsYSDMfEQY8GIHmMSEjhqsPcoHbEkxoIFJSICLjYQ9nn/4GV/2QALyO7Osvv9XNdel8w888w9w+3szM3MMzIhhAARERERERERkYHIpQ6AiIiIiIiIiMwLixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQVlKHQAZlp+fH5KSkqQOw2Q4OTkhODhY6jCIiIiIiIiqFN4ZYWaSkpJYjNAR7ksiIiIiIqJXwzsjzJCTkxNOnDghdRhVnpeXl9QhEBERERERVUm8M4KIiIiIiIiIDIrFCCIiIiIiIiIyKBYjSFLp6emQyWTFxl64ffs2ZDIZfv31V4kiIyIiIiIiIn1hMYIkFRsbCysrKzg6OmpMj4mJgbW1Ndq0aSNRZERERERERKQvLEaQpOLi4uDs7AxLS82xVGNiYuDi4gK5nClKRERERERkanilR5KKi4uDq6trsekxMTElTiciIiIiIqKqj8UIklR8fHyxooNKpUJCQgJcXV0RHx+Pnj17onfv3vD29sbNmzclipSIiIiIiIh0xWyKEaGhofDy8qrQMi4uLjh06JB+AiLcu3cPaWlpcHFx0ZielJSEJ0+ewM3NDY0bN0ZUVBROnTqFRYsWYeXKlRJFS6YsPz8fP/74IyZMmIDhw4dj9uzZSEhIkDosMiKXLl2Cn58fhg8fDl9fX+zZswd5eXlSh0VERERUZVmW3cR0FRQUwN/fH6GhoXjx4gUGDBiAr776CvXr1wcA+Pj4ICIiAgMGDJA4UtOUmpoKAFAoFBrTd+/eDTc3NzRr1kxjevXq1YuNLUFUWbdv38bAgQNx9epVWFhYQAgBANi0aRPGjx+P0NBQVK9eXeIoSSoFBQWYPXs2vvrqK8hkMvXn22+/hb29PQ4ePIi2bdtKHSYRERFRlWM2d0aUJDAwEBEREYiOjlZfGE+cOFE938fHB5GRkVKFZ/LatWsHW1tbBAYGIjs7G5mZmQgJCcGmTZsQGBio0fbp06fw9/fHokWLJIqWTNHz58/Rt29fXLt2DUDhhadKpYJKpQIA/Pe//8XcuXOlDJEktnz5cnz11VcAACEEVCoVCgoKABQWVL29vZGVlSVliERERERVkuTFCJVKhbfffhsODg6oU6cOWrVqhT179hhk3Zs3b8bSpUvRokUL2NraYu3atYiKisKtW7cAAJ07d4alpSXi4+MNEo+5sbGxwb59+xAXF4emTZuibdu2CA8PR1RUFDw9PdXt8vLyMHbsWKxYsQIdOnSQMGIyNXv27MGNGzfUxYeSbNmyBffu3TNgVGQssrKyEBwcXOp8lUqFtLQ0hIaGGi4oIiIiIhMheTHi8ePHGDx4MJKTk6FUKrFgwQJMnjy5ws/iBgYGolOnThVa7507dzTGK2jZsiVsbGyQnJysnjZixAhERERUKBYqPw8PD5w9exZPnjxBeno6Dh06hN69e6vnFxQUYMKECRg9ejRGjhwpYaRkisLCwsp8faxKpcK3335roIjImPz444/Izc3V2kYmk+Gbb74xUERERERExsHPzw9+fn7lalcqYWRycnIEAJGZmSl27twp3NzchJubmzhy5Eil+t2+fbvw9PRU/3znzh0BQNy8eVOjnb29vdi5c6f654MHD4ouXbpUat3lAcBgnz/vB2P33//+V9SuXVt4enoKT09PMWfOHKlDUvP09DTo740ffvjhhx9++OGHH3744aeqfUoj+WiAhw8fRlBQEC5evIicnByoVCo0atQIMpkMQUFBOHfuHJ48eYI+ffogMTERFhYWOlmvtbU1gMI7JP4sOzsbNjY26p9v374Ne3t7naxTG/H/B83Tt4q+UURqvr6+8PX1lTqMUnl6euLEiRNSh0GvaODAgThy5IjWxzQAYMOGDZg3b56BoiJjsXPnTrz99tta28jlcnTp0gWxsbEGioqIiIhIekXXlWVdC2m7/pT0MY3o6Gj4+vpi3rx5+P333/H48WMsXboUXbt2RXR0NHr16oUaNWqgXr16aN68OW7cuKGzdSsUCtjb22u8vu/mzZtQKpUaj3tERkbCx8dHZ+slIuMxadKkMgsRlpaWRl0QI/0ZOXIkatWqpbWNSqXClClTDBQRERERkemQtBiRmJgIOzs79OjRAxYWFggNDcXq1avRtWtXPHr0CHZ2duq2dnZ2ePTokU7XP336dKxZswYpKSlQKpVYunQpBg4ciObNmwMAnj17huPHj2PYsGE6XS8RGYcxY8agY8eOWseNmDdvHv72t78ZMCoyFtbW1li2bFmp8+VyOVq0aKHxFiYiIiIiKh9JixG+vr5o1aoVGjdujPbt2yMrKwt2dnbo2rUr6tWrp/G6tKysLNSrV6/UvgICAir8pgV/f38MHz4crq6uaNKkCQoKChAWFqaef/DgQTg7O6N+/foV3zgiMno1atTA4cOH0bVrVwBQFyVkMhlkMhlmz56NtWvXShkiSWz58uVYtmyZOjf+/Khg+/btcezYMfVjf0RERERUfpIWIxQKBaKiovD06VPcuHEDCxYsQGpqKoYMGYLu3bvj9OnTyM3NRWZmJlJSUtCyZctS+3r//fdx+fLlCq3fwsIC69evR0ZGBnJychAeHq5ReOAjGrqzYMEC9OrVC/Pnzy+1zaFDh+Dh4QF3d3csX7682PxZs2ahQYMG2LJli8b0+/fvw8rKCtevX9d53GT6XnvtNZw/fx4nT57ErFmzABRegF67dg1ffPGFzsapoapJJpMhICAAt27dwkcffYS33noLQOHx6sKFC3BwcJA4QiIiIqKqSfJXe5ZGoVDAz88PXl5eGDp0KIKCggx+UeDg4ICxY8cadJ2mKCEhAU+fPsXp06eRl5dX6kBvffr0wZkzZ3Du3Dn88ssvePjwocb8Dz74AOvWrSu2XHBwMNzc3PQSO5kHmUyG3r17Y+PGjQCATz75RGvxk8xPs2bN8K9//Qs7duwAAPTv37/M18ISERERUekkf5uGNm+//XaZI5mXl5OTEyZPnlyhZT788EOdrNvcnTt3Dv369QMA9OvXD+fPn4erq2uxdtWqVQMAFBQUoGHDhhpvNQGARo0aFVvm4cOHyMnJUY/zQURERERERMbPbP6s8yrFCNKNP78u1dbWVmMskL/avHkz2rRpg3r16qFGjRpl9h0cHIw5c+boLFYiIiIiIiLSP7MpRpB0FAoFlEolAECpVEKhUJTadvr06bh69SpSU1ORmJiotd/s7GzcvXu3wgOXEhERERERkbRYjCC9c3d3x9GjRwEAR44cgZubG/Lz8/HgwQONdrm5uQAKBxatXbs2atasqbXfq1ev4tq1axg0aBAOHz6MGTNm6GcDiIiIiIiISKdYjCC969KlC6ysrNCrVy/I5XJ069YNt27dwooVKzTabd++HV5eXvDw8ECLFi3Qtm1bJCUlYevWrQCATz/9FOvWrUNQUBA+/vhjdO/eHefOnUNUVBT69++PkJAQKTaPiIiIiIiIKkgmhBBSB0GG4+XlBQA4ceKEpHH88MMPsLOzg7e3t6RxVIax7EvSLZlMBh4WSRvmCBEREZm78l4LeXl5ldrGqN+mQaZrzJgxUodAREREREREEmExwgwlJSWpK1n06pKSkuDk5CR1GERERERERFUOixFmhhfPuuPk5MT9SURERERE9ApYjDAzwcHBUodAREREREREZo5v0yAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig7KUOgAyLD8/PyQlJUkdhslwcnJCcHCw1GEQERERERFVKbwzwswkJSWxGKEj3JdERERERESvhndGmCEnJyecOHFC6jCqPC8vL6lDICIiIiIiqpJ4ZwQRERERERERGRSLEURERERERERkUCxGkKTS09Mhk8mKjb1w+/ZtyGQy/PrrrxJFRkRERERERPrCYgRJKjY2FlZWVnB0dNSYHhMTA2tra7Rp00aiyIiIiIiIiEhfWIwgScXFxcHZ2RmWlppjqcbExMDFxQVyOVOUiIiIiIjI1PBKjyQVFxcHV1fXYtNjYmJKnE5ERERERERVH4sRJKn4+PhiRQeVSoWEhAS4uroiPj4ePXv2RO/eveHt7Y2bN29KFCkRERERERHpitkUI0JDQ+Hl5VWhZVxcXHDo0CH9BES4d+8e0tLS4OLiojE9KSkJT548gZubGxo3boyoqCicOnUKixYtwsqVKyWKloiIqHRPnjzB2bNncfr0aWRmZkodDhkZIQQuXLiAEydO4Nq1a1KHQ0RkFMymGFGSgoICLF68GA0aNIC1tTXGjBmDjIwM9XwfHx9ERERIGKFpS01NBQAoFAqN6bt374abmxuaNWuGRo0awdraGgBQvXr1YmNLEBERSenJkyfw8/NDo0aN4OHhgd69e6NRo0aYMmUK0tPTpQ6PjEBYWBjatWsHJycn9OnTB61bt4a7uzuOHTsmdWhERJIy62JEYGAgIiIiEB0drb4wnjhxonq+j48PIiMjpQrP5LVr1w62trYIDAxEdnY2MjMzERISgk2bNiEwMFCj7dOnT+Hv749FixZJFC0REZGmZ8+eoV+/ftiwYQOePHminp6Xl4dvvvkGbm5uLEiYubVr12LixIn4/fffNabHxMSgf//+/KMXEZk1yYsRKpUKb7/9NhwcHFCnTh20atUKe/bsMci6N2/ejKVLl6JFixawtbXF2rVrERUVhVu3bgEAOnfuDEtLS8THxxskHnNjY2ODffv2IS4uDk2bNkXbtm0RHh6OqKgoeHp6qtvl5eVh7NixWLFiBTp06CBhxERERP8nKCgI0dHRJc5TqVS4desWli1bZuCoyFhcv34dS5cuBVD4mMafqVQqCCEwadIkPH/+XIrwiIgkJ3kx4vHjxxg8eDCSk5OhVCqxYMECTJ48GXl5eRXqJzAwEJ06darQeu/cuaMxXkHLli1hY2OD5ORk9bQRI0awaq1HHh4eOHv2LJ48eYL09HQcOnQIvXv3Vs8vKCjAhAkTMHr0aIwcOVLCSImIiP5PQUEBNm3aBJlMVmobIQR27dqF7OxsA0ZGxuKrr74qMz8eP36Mb7/91oBREREZD8mLEXZ2dhg/fjxsbW0hl8sxadIk5Obm4unTp+jXrx/q16+PVatWldmPv7+/RhGhLEqlEgBga2urMV2hUKjnAcDQoUOxf//+cvdLuvXdd98hKioKYWFh8PLywty5c6UOiYiICOnp6UhLSyv2F++/ys3NxW+//WagqMiYxMfHl5kfcrkcCQkJBoqIiMi4SD4a4OHDhxEUFISLFy8iJycHKpUKjRo1gp2dHUJDQ3HkyBH1eA66VDQo4uPHjzWmZ2dnw8bGRv3z7du3YW9vr/P1/5W2yrmu/fkRCGPn6+sLX19fqcMo1cmTJw36uyPD4O+UysIcoYpwd3eXOgQyUiqVChs3bsTGjRulDoWI6JVU5pxI0mJEdHQ0fH19ERYWBk9PT9SqVQurVq1CTEwMAKBp06Z6W7dCoYC9vT0SEhLg5OQEALh58yaUSqXG4x6RkZEYM2aM3uIoUlblXFcq+npT0s7T0xMnTpyQOgzSIZlMZrD/j1Q1MUcIKPzebt++PX7//XeoVKpS2ykUCqSlpcHKysqA0ZExCAgIwPLly8tsFxERgREjRhggIiIi3Sm6rizrWkjb9aekj2kkJibCzs4OPXr0gIWFBUJDQ7F69Wp07drVIOufPn061qxZg5SUFCiVSixduhQDBw5E8+bNARSOkn38+HEMGzbMIPEQERFR1SCTyTB//nythQig8FyDhQjz9M4776B69eql/tVQLpejadOmGDp0qIEjIyIyDpIWI3x9fdGqVSs0btwY7du3R1ZWFuzs7F6pGBEQEFDhNy34+/tj+PDhcHV1RZMmTVBQUICwsDD1/IMHD8LZ2Rn169evcDxERERk2qZPn44JEyYAKLywLFJ08dm7d298+OGHUoRGRuC1117D7t27IZfLNfIDKMyXOnXq4KeffoKFhYVEERIRSUvSYoRCoUBUVBSePn2KGzduYMGCBUhNTcWQIUMq3Nf777+Py5cvV2gZCwsLrF+/HhkZGcjJyUF4eLhG4SEyMhI+Pj4VjoWKW7BgAXr16oX58+eX2ubQoUPw8PCAu7t7ibc1zpo1Cw0aNMCWLVs0pt+/fx9WVla4fv26zuMmIiIqjVwux86dO7F582a0a9dOPd3e3h7r1q3DoUOHULNmTQkjJKmNGTMGZ8+exahRo9RFBysrK7zzzjuIj4/XeKsbEZG5kXwAS22mTp2K6Oho5ObmIjo6Gv/73/8Mun4HBweMHTvWoOs0RQkJCXj69ClOnz6NmTNnIjY2Fq6ursXa9enTBwMGDFD/++HDh2jQoIF6/gcffIBu3bohPz9fY7ng4GC4ubnpdyOIiIhKIJfLMW3aNLz77rt4/Pgx7OzscPPmzWJ/CSfz1b17d3z//fd4/vw5atWqhcePH6N69epSh0VEJDmjLkZs27ZNZ305OTlh8uTJFVqGt1bqxrlz59CvXz8AQL9+/XD+/PkSixHVqlUDUPju9oYNG2q81QQAGjVqVGyZhw8fIicnRz3OBxERkRRkMhkUCgUAsBBBJSq6S4aFCCKiQmbzbfkqxQjSjT+/LtXW1hZZWVmltt28eTPatGmDevXqoUaNGmX2HRwcjDlz5ugsViIiIiIiItI/sylGkHQUCgWUSiUAQKlUqv9yVJLp06fj6tWrSE1NRWJiotZ+s7Ozcffu3QoPXEpERERERETSYjGC9M7d3R1Hjx4FABw5cgRubm7Iz8/HgwcPNNrl5uYCKBxYtHbt2mUO+nX16lVcu3YNgwYNwuHDhzFjxgz9bAARERERERHpFIsRpHddunSBlZUVevXqBblcjm7duuHWrVtYsWKFRrvt27fDy8sLHh4eaNGiBdq2bYukpCRs3boVAPDpp59i3bp1CAoKwscff4zu3bvj3LlziIqKQv/+/RESEiLF5hEREREREVEFyYQQQuogyHC8vLwAACdOnJA0jh9++AF2dnbw9vaWNI7KMJZ9Sbolk8nAwyJpwxwhbZgfpA3zg4hMRXmvhby8vEptY9Rv0yDTNWbMGKlDICIiIiIiIonwMQ0iIiIiIiIiMijeGWGGkpKS1LfV0KtLSkqCk5OT1GEQERERERFVOSxGmBlePOuOk5MT9ycREREREdErYDHCzAQHB0sdAhEREREREZk5jhlBRERERERERAbFYgQRERERERERGRSLEURERERERERkUCxGEBEREREREZFBsRhBRERERERERAbFYgQRERERERERGRSLEURERERERERkUCxGEBEREREREZFBsRhBRERERERERAbFYgQRERERERERGRSLEURERERERERkUCxGEBEREREREZFBsRhBRERERERERAZlKXUAZFh+fn5ISkqSOgyT4eTkhODgYKnDICIiIiIiqlJ4Z4SZSUpKYjFCR7gviYiIiIiIXg3vjDBDTk5OOHHihNRhVHleXl5Sh0BERERERFQl8c4IIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCBJpaenQyaTFRt74fbt25DJZPj1118lioyIiIiIiIj0hcUIklRsbCysrKzg6OioMT0mJgbW1tZo06aNRJERERERERGRvrAYQZKKi4uDs7MzLC01x1KNiYmBi4sL5HKmKBERERERkanhlR5JKi4uDq6ursWmx8TElDidiIiIiIiIqj6zKUaEhoZW+FWMLi4uOHTokH4CIgBAfHx8saKDSqVCQkICXF1dER8fj549e6J3797w9vbGzZs3JYqUiIiIiIiIdMVsihElKSgowOLFi9GgQQNYW1tjzJgxyMjIUM/38fFBRESEhBGatnv37iEtLQ0uLi4a05OSkvDkyRO4ubmhcePGiIqKwqlTp7Bo0SKsXLlSomiJiIiIiHRLCIFTp07hrbfeQpcuXdCzZ0+sWbMGDx8+lDo0MhJ3797FBx98ADc3N7i4uGDatGlISEiQOiydMOtiRGBgICIiIhAdHY3U1FQAwMSJE9XzfXx8EBkZKVV4Jq9onysUCo3pu3fvhpubG5o1a4ZGjRrB2toaAFC9evViY0sQEREREVVF+fn5mDhxIjw9PbFnzx4kJibi3Llz8Pf3R4sWLXDixAmpQySJfffdd2jZsiVWrVqF6OhoJCQkYNu2bXBxccHixYshhJA6xEqRvBihUqnw9ttvw8HBAXXq1EGrVq2wZ88eg6x78+bNWLp0KVq0aAFbW1usXbsWUVFRuHXrFgCgc+fOsLS0RHx8vEHiMTft2rWDra0tAgMDkZ2djczMTISEhGDTpk0IDAzUaPv06VP4+/tj0aJFEkVLRERERKQ777//Pnbt2gWg8JoIgPri8tmzZxg6dKj6uoTMT2xsLMaPH4/8/HyN6UW5sn79enzxxRdShKYzkhcjHj9+jMGDByM5ORlKpRILFizA5MmTkZeXV6F+AgMD0alTpwqt986dOxqPCLRs2RI2NjZITk5WTxsxYgQf1dATGxsb7Nu3D3FxcWjatCnatm2L8PBwREVFwdPTU90uLy8PY8eOxYoVK9ChQwcJIyYiIiIiqrzHjx9rvZBUqVR4/vw5Nm3aZMCoyJgEBQVBCKH17ofAwMBixYqqRPJihJ2dHcaPHw9bW1vI5XJMmjQJubm5uHjxYoUGLvT399coIpRFqVQCAGxtbTWmKxQK9TwAGDp0KPbv31+BLaKK8PDwwNmzZ/HkyROkp6fj0KFD6N27t3p+QUEBJkyYgNGjR2PkyJESRkpEREREpBtRUVF4/vy51jZCCOzevdtAEZExKSgowPfff6++C6I09+/fR3R0tIGi0j3JH8A/fPgwgoKCcPHiReTk5EClUqFRo0bqgQutra1x4MABrFy5Ejt37tTZeovGIXj8+LHG9OzsbNjY2Kh/vn37Nuzt7XW23tLIZDK9r6PIn+86MHbfffcdoqKikJGRgbCwMHTs2BEbN26UOiy1kydPGvR3R4bB3ymVhTlC2jA/SBvmB1XEvXv3mDOklYeHh6Trr0x+SlqMiI6Ohq+vL8LCwuDp6YlatWph1apViImJQaNGjdTt9DFwoUKhgL29PRISEuDk5AQAuHnzJpRKpcbjHpGRkRgzZoxO110SQw0+UtHXm0rN19cXvr6+UodRKk9PTw4uZGJkMlmVHwyI9Is5QtowP0gb5gcViYqKwuDBg7W2kclkaNeuHS5fvmygqMhYCCFQt25dZGdnl9n24sWLcHR0NEBUmoquK8u6FtJ2/SnpYxqJiYmws7NDjx49YGFhgdDQUKxevRpdu3ZVt9HnwIXTp0/HmjVrkJKSAqVSiaVLl2LgwIFo3rw5gMKBY44fP45hw4bpfN1ERERERGSe+vXrh0aNGmn9q7IQAtOnTzdgVGQsZDIZ3nnnHa35IZfL0bVrV0kKEboiaTHC19cXrVq1QuPGjdG+fXtkZWXBzs5OXYyoyMCFAQEBFR7c0N/fH8OHD4erqyuaNGmCgoIChIWFqecfPHgQzs7OqF+/fsU3joiIiIiIqASWlpZYt24dhBAlXnDK5XK0adMGU6ZMkSA6MgbvvfceGjRoALm8+CW7XC6HTCYr9gbCqkbSYoRCoUBUVBSePn2KGzduYMGCBUhNTcWQIUMqPHDh+++/X+FbmCwsLLB+/XpkZGQgJycH4eHhGoWHyMhI+Pj4VHi7iIiIiIiItHnrrbewdetW1KlTB4Dms/fu7u44duyYxlh2ZF4aN26M06dPo3379sXm1a1bFz/++CP69u0rQWS6I/nbNEpTNHBhWFgYvLy8MHfuXIPH4ODggLFjxxp8vaZowYIF6NWrF+bPn19qm0OHDsHDwwPu7u5Yvnx5sfmzZs1CgwYNsGXLFo3p9+/fh5WVFa5fv67zuImIiIiI9GXq1KlIS0vDtm3bsGTJEgBAXFwczpw5g8aNG0scHUmtdevWSE5OxsmTJ/HBBx8AAPbs2YN79+5h+PDhEkdXeTJhJqPoJCUlISkpCZMnT5Y6FEmVd6ARXUpISEBISAg2b96MmTNnYurUqXB1dS3W7uXLl6hWrRoAoE+fPti7dy8aNGignp+WloaDBw8iPz8f7777rnr6kiVLEBMTgy1btqBVq1b636D/T4p9SfrHwcWoLMwR0ob5QdowP6gszBHSxpjyoyIDWJbWxmjvjNA1Jycnsy9ESOXcuXPo168fgMLBes6fP19iu6JCREFBARo2bFjstrQ/v2GlyMOHD5GTk6MedJSIiIiIiIiMn9kUI0g62dnZ6sKCra0tsrKySm27efNmtGnTBvXq1UONGjXK7Ds4OBhz5szRWaxERERERESkfyxGkN4pFAoolUoAgFKphEKhKLXt9OnTcfXqVaSmpiIxMVFrv9nZ2bh7926F36JCRERERERE0mJJf8QXAAAgAElEQVQxgvTO3d0dR48eBQAcOXIEbm5uyM/Px4MHDzTa5ebmAih8y0nt2rVRs2ZNrf1evXoV165dw6BBg3D48GHMmDFDPxtAREREREREOsViBOldly5dYGVlhV69ekEul6Nbt264desWVqxYodFu+/bt8PLygoeHB1q0aIG2bdsiKSkJW7duBQB8+umnWLduHYKCgvDxxx+je/fuOHfuHKKiotC/f3+EhIRIsXlERERERERUQWbzNg0qZCxvgPjhhx9gZ2cHb29vSeOoDGPZl6RbxjRKMRkn5ghpw/wgbZgfVBbmCGljTPmhi7dpWOo2JKLyGTNmjNQhEBERERERkURYjDBDSUlJ6koWvbqkpCQ4OTlJHQYREREREVGVw2KEmeHFs+44OTlxfxIREREREb0CFiPMTHBwsNQhEBERERERkZnj2zSIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKAspQ6ATJefnx+SkpIMvl4nJycEBwcbfL1/JdX2mypj+b3qCvNDt0wtPwDmiC4xP6gsppYjzA/dMrX8AJgjumSK+WEovDOC9CYpKcngBzkp1lkaY4qlqjPFfWmK2yQVU92Xprpdhmaq+9FUt0sKprgvTXGbpGKq+9JUt8vQuB8rh3dGkF45OTnhxIkTBlufl5eXwdZVHobeflNlbL9XXWF+6Iap5gfAHNEF5geVxVRzhPmhG6aaHwBzRBdMOT8MgXdGEBEREREREZFB8c4IIiIADx48wNWrVwEAMTEx6NChA2rXri1xVGQsnj9/jsuXL+Px48cAgPv376Nx48YSR0XGQqVS4fr167h37x4A4PLly2jTpg0sLXmaRYUyMjLw22+/AQDOnz+PDh06wNraWuKoyFjk5ubi8uXLyMrKAgDcvXsXTZs2hUwmkzgyMgZCCNy8eRN37twBACQnJ6Ndu3aoVq2axJFVHu+MIMk1btwYNWvWRJ06dWBra4tBgwbh7t27UodlctLT0yGTyYo913b79m3IZDL8+uuvEkUmnWvXrmHhwoWwt7dHw4YN4enpCQDo3r07bGxs4OTkhA0bNiA7O1viSPWP+VFcTk4OQkJC4OrqCmtra7i6uqJfv34AgCZNmqBx48aYM2cOLl++LHGkhsEc0SSEwLFjx/DGG2/Azs4Obdq0gbe3NwDA0dERNjY2GDx4MCIiIpCfny9xtPrH/Cju1q1bWLZsGf7+97+jQYMG6NWrFwDA3d0dtra2cHR0xLp165CRkSFxpPrH/Cju2bNn2L59O3r06AFra2u4uLiov2OKzkumT59uNuMRMEc0CSFw5swZTJgwAfXq1UOrVq3U3zGdO3eGjY0N+vbti7179+Lly5cSR/vqWIwgSd27dw9paWlISEjAkydPcPPmTaSnp8Pf31/q0ExObGwsrKys4OjoqDE9JiYG1tbWaNOmjUSRGd7Tp08xf/58tGnTBp9//jm6du2Kzz77DAcPHgQA/Pjjj1ixYgWsrKzg5+eH5s2bIzQ0FEIIiSPXH+aHpu+++w4tWrTAzJkzkZ+fD39/f/zwww84efIkACA4OBi9evXCli1b4OjoiHfffVd914SpYo78n+vXr8PT0xN9+/bFiRMnMH78eGzZsgXHjx8HAHzzzTeYNm0aLl26hJEjR6JLly5ISEiQOGr9Yn78nxcvXmDZsmVo2bIl1q5dC0dHR6xduxY///wzACAyMhIffvgh6tatiyVLlqB58+bYtGkTVCqVxJHrD/ND0/79+/H6669j6tSpUCqVWLhwIfbu3av+jtm4cSP69++PsLAwODs7Y8KECXj06JHEUesXc+T/3LlzB4MGDUKvXr1w4MABjB49Gl999RWOHTsGANi1axdmzZqFlJQUvPnmm3B0dMQvv/wicdSvhvcPkqRiY2NhY2ODtm3bAgDq1auHLl264NatW9IGZoLi4uLg7Oxc7LbhmJgYuLi4QC43j9rkrVu3MGjQIFy9ehVz5szB8uXL0bBhQ402I0eOxMiRI/HRRx8hISEBfn5+mDJlCqKiorBjxw7UqFFDouj1h/lRqKCgADNnzsTXX3+Nrl27IjIyEm5ubsVulZ0/fz7mz5+PjIwMrFu3DuvXr8fhw4dx8OBB9fHM1DBHCkVGRmL8+PGoVq0aQkJCMGnSJFhZWWm0mThxIiZOnIjPPvsM4eHhWLBgAbp164YvvvgCM2bMkChy/WJ+FEpLS8PgwYNx4cIFTJ06FR9++CGaNWum0Wb48OEYPnw4/vWvf+HSpUtYuHAhZs+ejQMHDmDv3r2oVauWRNHrD/OjkEqlwuLFixEUFISOHTti165d8PT0LPYdM2fOHMyZMwfZ2dkIDg5GQEAAjh8/jgMHDsDZ2Vmi6PWLOVLo6NGjGD16NAoKCvDvf/8b06ZNK/bY8IQJEzBhwgSsXbsW+/fvx/z58+Hh4YE1a9Zg8eLFEkX+aszjt0pGKzY2Fq6urpDJZMjPz0dUVBS+/fZbTJgwQerQTE5cXBxcXV2LTY+JiSlxuim6f/8+vLy88ODBAxw9ehQbN24sVoj4qy5duuDEiRMICAhQ56Yp/vWK+VF4S+S0adPw9ddfY9myZTh37hzc3d21PrNbv359rFmzBr/88gtyc3Ph5eWFGzduGDBqw2GOAD///DPGjBmDDh064PLly/jnP/9ZrBDxZ5aWlhg3bhwuXbqEQYMGYebMmdiyZYsBIzYc5gfw6NEjeHt74/r16/jf//6HrVu3FitE/JWjoyOioqLw+eef48CBAxg5cmSVvuW6NMyPQgsXLkRQUBDmzJmDuLg4eHl5af2OUSgU+PDDDxEbG4tq1aqhb9++JvtoIHMEOHXqFIYNGwZ7e3skJyfDz89P6/hlFhYWGDFiBJKTkzF27FgsWbIEn332mQEjrjyzKkaEhoZW6PUrLi4uOHTokP4CIsTGxuLMmTNQKBSwsrLCuHHjsHXrVkydOlXq0ExOfHx8sYO5SqVCQkICXF1dkZGRAXd3d3h6esLV1RWHDx+WKFL9EEJg6tSpyMjIwJEjR9TP3ZWHXC7HsmXLEBQUhPDwcGzcuFGPkUrD3PMDAHbu3Int27fjgw8+QEBAQIUGH+zevTuOHz+OvLw8TJw4EQUFBXqMVBrmniN//PEH/vGPf8DR0RFHjhxBkyZNyr2snZ0dwsPDMWjQIMyePdskLybMPT8AYObMmbh58yYOHDiAYcOGlXs5mUyGuXPnYsuWLTh8+DBWr16txyilwfwAIiIiEBwcjHnz5uHzzz9H9erVy71s586dcfLkSdSoUQPjx49HXl6eHiOVhrnnSFZWFsaPHw8HBwccP34cLVq0KPey1tbW2L17N9544w0sWbIEMTExeoxUx4QZ2b59u/D09FT/nJ+fLxYtWiTq168v6tSpI0aPHi0ePnyonv/RRx+JWbNmSRCpafD09NTY3yWxs7MT4eHhQggh7t+/L9q1ayc++ugjva7TUIwpltTUVAFAXLlyRWN6fHy8ACDu3Lkj8vPzRX5+vhBCiGvXromuXbtKEWqJdLEvd+zYIQCIL7/8Ums7bYdFlUolhg4dKmrWrClu3bpVqXiYH7qji32Znp4uFAqF8PDwEAUFBVrbasuRXbt2CQAiODi4UvEIwRzRFV3tx3HjxokaNWqIX3/9VWs7bfnx4MEDUb9+fdG9e3ehUqkqFQ/zQ3d0sS9/+uknAUAEBARobVfWqfeECROEpaVlsX1ZUcwP3dHFvlQqleK1114TTk5OIi8vT2tbbTmyb98+AaBS58pFmCO6oav9OG3aNGFhYSHi4uK0ttOWH9nZ2aJp06aiffv26n2lT+Xddm1tzOrOiL8KDAxEREQEoqOjkZqaCqDwOc8iPj4+iIyMlCo8k3f9+nVkZWWhS5cuAIBGjRph4cKFCAkJUd8Gf+bMGY27JN58803Ex8dLEm9VVpTfCoVCY/ru3bvh5uaGZs2awcLCAhYWFgAK3yLQuXNng8epL0IIrFu3Dk5OTpV6Xlsmk2HTpk3Iy8vDpk2bdBihtMw9PwBg69atyM7ORkhISKWeSx0/fjy8vLwQFBRkUndHmHuOpKSk4LvvvsPChQsrNSbI3/72NwQEBCA6OhpnzpzRYYTSMvf8AIB169ahZcuWlX5eOzg4GJaWltiwYYOOIpMe8wMICwvDgwcP8OWXX1bqdYxDhw6Fj48PNm7ciBcvXugwQmmZe46kp6cjNDQUM2bMgIuLyyv3Y2tri88++wxXrlxRD5hr7IyiGLF371507NgRderUwYABA/Dee+9h7Nixel/v5s2bsXTpUrRo0QK2trZYu3YtoqKi1IMndu7cGZaWlrz41ZPY2FjUrVsXDg4O6mk+Pj548OCB+iSta9euSExMBAAcP34ctra2lfpPaq7atWsHW1tbBAYGIjs7G5mZmQgJCcGmTZsQGBiobpeSkgIPDw8MGDAAI0eOlDBi3Tp//jwuXbqEOXPmVHoAJHt7e/j4+GDr1q0mc7Fp7vkhhMDmzZvh7e2NDh06VKqvotut79y5Y1KP+Zl7jmzduhVyuRwzZ86sdF9vvfUWFAoFNm/erIPIjIO558eVK1dw9uxZzJo1q0KPd5WkQYMGGD9+PMLCwvDs2TMdRSgtc88PoPCaw8XFBe7u7pXua+7cucjIyMBPP/2kg8iMg7nnyI4dO/Dy5UvMnTu30n2NGjUKjRs3rjLfMZIXI3bs2IGFCxdi06ZNePz4MYYNG4bPP/+8wiPFBgYGolOnTuVu//jxY9y5c0fjwrZly5awsbFBcnKyetqIESMQERFRoViofGJjY4v9nuvXr48ePXrg+++/BwBYWVnBysoKWVlZWLlyJT799FMpQq3ybGxssG/fPsTFxaFp06Zo27YtwsPDERUVBU9PT3W7v//97zhz5gxiY2MxZ84cCSPWraLilo+Pj0768/HxwaNHj/Dbb7/ppD+pmXt+3L9/HykpKTrLjyFDhsDS0tKk/vJt7jly+vRpdO3aFU2bNq10X7Vq1cKAAQNw+vRpHURmHMw9P4r+r+vq4mjkyJF4+vQpkpKSdNKf1Mw9P5RKJZKSkuDj46N1sMry6tOnD6ytrXkMMaEcOXPmDNq2bauT15dWq1YNQ4cOxZkzZ6rEK+klfbXns2fP8N577yEsLAy9evUCALz77ruYP3+++iI1LCwMX375JQBg1apV6Nu3b4l9+fv7w9/fv9zrViqVAApvZ/kzhUKhngcU3g61bNkyfPzxx+XfMCqXoKCgEqf/9eDavXt3TJs2DWPGjEGDBg0MEZpJ8vDwwNmzZ0udn5ubq35lpY2NDaytrQ0Vmt4lJibCwcEB9evX10l/RUXMhISESv8l3ViYe34A0NldV1ZWVujQoQMSEhJ00p+xMNccEUIgMTFR4zHOynJxccHevXuRmZmJunXr6qxfKZlrfgCFxxCFQoG///3vOunvz98xPXr00EmfUjPn/Lhw4QIA3X3HyOVyODs78zvGhHIkMTERvXv31ll/Li4u+Prrr3Hr1i2dHZf0RdJixMmTJ6FSqTB48GD1tIcPHwIAnJ2dkZ2djaCgIJw7dw5PnjxBnz59kJiYqH5eqDKKEvjx48ca07Ozs2FjY6P++fbt27C3t6/0+ujVubm54ZNPPsGePXukDsWkJSQkYOnSpbCwsEB+fj6Cg4OlDklnMjIy0KhRI531V9TXo0ePdNansTPl/Cj6Peo6R8wpPwDTzZH8/Hzk5OTo5RhiSsWIsphqfgCF3zENGzbUyV+9AahfOW1OxxBTzg99fccUFdLNhSnniL7OUzMzM42+GCHp2zRCQ0NF69atNaYFBASIhg0bCiGEiIqKEvPmzVPPGz58uLh69eorr++vb9Owt7cXW7duVf9848YNAUCkpKSopw0bNkxs3779lddZXgBM8qOL0WVnz54tjhw5Uq62np6ekm+zrrefjO/3yvwwLqaaH8wR3WB+UFlMNUeYH7phqvnBHNENXeSHXC6XPBf0/SmNpGNGdOjQAdevX8fJkyeRl5eH3bt3IzAwEE5OTgAKK4l2dnbq9nZ2djqtEk+fPh1r1qxBSkoKlEolli5dioEDB6J58+YACh8jOX78eIXeFf2qhBAm9/nzM16vIjU1FT4+PrC1tS318ZySeHp6Sr7tuth+0lSZ3+vMmTNhY2ODgoKCMtsCZf9/PHXqFADgf//7H/PDSFQmP4qe946MjCxXe6DsHGnWrBnGjx/PY4iRqOz3gr29PXx9fXWWH0uXLkW1atXw4sUL5oeRqEyO+Pv7w9LSsly/T6Ds/CgauywsLIz5YSQqkx8XL14EAOzcuVNnxxBHR0cMGTKkUsc15ojuVPY7pkOHDhg8eLDO8iMgIABA4Z0RlYlLl5/SSFqM6Nq1K5YvX47Ro0ejadOmiI6ORvfu3dXjRdSrVw9ZWVnq9llZWahXr16JfQUEBFT42W1/f38MHz4crq6uaNKkCQoKChAWFqaef/DgQTg7O+vsOXOqmKZNmyIiIoKDVlKlubi4QKlU6mzAyejoaHW/VPU5OTlBLperf6+VlZaWhrt37zI/TIiLiwuio6O1nlBVRHR0NDp27Kh+/pmqNhcXF+Tn5+vsGX5+x5iWtm3bombNmjr7jlEqlbhy5Qrzw4S4uLggNjZWZ29pi46ORsuWLTX+qG+sJH+bxscff4xHjx4hPT0dGzZswO+//64uRnTv3h2nT59Gbm4uMjMzkZKSgpYtW5bYz/vvv4/Lly9XaN0WFhZYv349MjIykJOTg/DwcI3CQ2RkpM5GVyci6QwaNAgWFhbYsWNHpfsSQmDHjh1wdnbW6fN9JJ3atWujT58+2Llzp05OBIrybOjQoZXui4zDsGHDkJKSopM3pKSkpODkyZPMDxPi7e0NKysrnXzHAEBoaChatWqF1q1b66Q/kpalpSUGDx6MPXv24MWLF5Xub9euXVCpVDyGmJBhw4YhIyMDP//8c6X7Sk9Px4EDB6pMfkhejPgzpVKJ27dvq4sRCoUCfn5+8PLywtChQxEUFKSTwSvLy8HBAWPHjjXY+szJ/fv30aVLF1hZWSE/P19j3qefforGjRtjxYoV6mmZmZkYN24cvL29eafE/6dtHwKV24/Hjh2Du7s7+vTpg9TU1FLb7dq1Cz169MCwYcM03kJjbJo0aQIfHx98/fXX6kFyX9X+/ftx6dIlzJ49W0fRkTGYNWsW7ty5g//+97+V6icnJwdffPEFvL290bZtWx1Fp3vR0dHo0aMHevXqhQULFhSbv3r1avTu3Ruurq748ccfAQAfffQR3N3d4e7ujqNHj5ba9/379+Ht7Y0ePXrgyJEjpba7dOkSPDw80LNnT41XahsjX19fKBQKrF69utJ3R6xduxZyuRzTp0/XUXQktbp162L8+PHYuXMn7t69W6m+Tp8+jbNnz2LmzJmQy43qNL1EQUFB8PDwKDa9tPON58+fo2HDhlqPDaZ2DgIUfsdkZGRg69atlernxYsX+Pe//w0XFxd069ZNR9GR1EaMGIHGjRsjMDAQKpWqUn0FBQXh5cuXmDVrlo6i0zNhRM6ePSusra2FSqXSS/+JiYkGGYySCnl6epY6MM7z589FZmam8PT0FC9fvtSY98cff4hjx46J5cuXq6fNmzdP/Prrr5Vap6HpOxZt+1CIyu1HLy8voVQqxfnz58WsWbNKbJOXlyc8PDzEy5cvxZ49e8TatWtffWPKoIt9mZycLKpVqybGjRun9Rij7bCYlZUlmjRpItq3by+eP39eqXgMlav37t0Tzs7OokaNGiXmSWnzd+zYIby9vYWnp6dITU0ttX8/Pz/h4eGhMdhwZdq9Cl3sy/z8fNG9e3dRt25dkZaWprWtthz55z//KWQymfjll18qFY8Q+s2RtLQ0dQ5PmDBBJCcna8zPy8sTQgiRk5MjunfvLoQQ4ubNm0KIwv8HvXr1KrXvuXPnirNnz4qcnByt8Y8cOVLcuXNHpKamihEjRlRmc7TS1X4MCgoSAMSOHTu0ttOWH8ePHxcAdPL/wFDHkPPnzwt3d3fh4eEh/Pz8is2/ePGiev7kyZOFSqUqc5k/M5VjyI0bN0StWrXEoEGDXvk75unTp+L1118XDg4OQqlUVioeQ+THixcvxNtvvy169uxZbF5p5xvBwcGib9++4vDhw6X2a4rnICqVSvTr10/UqVNHY6D8kmjLkSVLlggA4uDBg5WKRwjDnzN/9tlnJeaKEKWfc2hbpojUxxBd7cetW7cKAOLzzz/X2k5bfsTGxgoLCwsxadKkSsdjKEZVcu3RoweUSqXOXo30V05OTpg8ebJe+qaKsbKyKvU5ptdee61YDly6dAkBAQHo06cPzp07Z4gQjZ62fQi8+n589uwZatasCWtra3Tv3h1Xrlwpsd3vv/+Ojh07wtLSEv369cP58+dffWMMoGPHjli5ciX27t2LTz75pMLLP336FKNHj8Yff/yB0NBQWFlZ6SFK3atbty6OHj0KNze3cs+/d+8eTp48iaNHj+LEiRNo0qRJicsmJCTg6dOnOH36NPLy8hAbG1updlKysLDA9u3b8ezZM4wYMaLYa5/L4/PPP8dXX32F9957D+7u7nqIUncaNmyozmFLS8tidx1Wq1YNQOFfMR0dHQFA/XqwGjVqaP2eTk5Ohru7O+rUqQNra2vk5OSU2C4zMxPNmjVDkyZNXml/G9q8efPQs2dPzJgxQz2IbUVcuXIF48aNQ6tWrdSDi1UFDg4OOHbsGE6fPo309HT1YHxF2rRpg19++QWnT58GAMTFxZW5TBFTOoa0aNECa9asQVRUFBYtWlThO2hyc3Px5ptv4tq1a9i6dav6FfTGbMuWLZg0aVKJ80o638jLy0N0dHSJd1IUMdVzEJlMhi1btkAmk2H48OGvdJdmaGgo1q5di3fffRcDBgzQQ5T6k5ubiwsXLpQ4r7RzDm3LFDGlY8iUKVMwePBgLFy48JUe10hJScGoUaPQsGFD/Pvf/9ZDhPphVMUIotL88ssvWLZsGfbs2YPFixdLHU6VVZ79mJWVBRsbG/XPpT1Dn52drW5na2urMdissVq2bBkmTZqElStX4t133y33bZ2//fYbvLy8cPLkSezYsQOurq56jlR3yipalTT/4MGDKCgoQN++fTF37txSc+DcuXPo168fAGg9GSxvO6m1a9cO3377LZKSktCzZ08kJSWVa7lnz57Bz88P8+fPx6hRoxAYGKjnSHUnOTkZGRkZaN++fbF5s2bNQqdOneDt7a0x/cMPP8Q///nPUvssKChQFyu0HRv+fCtqZW9LNQQLCwuEh4fDwcEBgwYNQkhISLkvOMPDw9G7d29YWFhg//79qF27tp6j1Z3yFq6AwkJVs2bNylymiKkdQ2bPno25c+ciKCgIEyZMQGZmZrmWu3nzJvr164d9+/bhP//5T4XeICaVly9f4uTJk8WOD0VKOt/Yvn07Jk6cqLVfUz4HcXBwwE8//YTr16+jR48e5c7j3NxcLF++HFOmTEH//v2xceNGPUeqe9oKV6Wdc2hbpogpHUNkMhl2794NR0dH+Pj4ICgoqNzjWP3888/o0aMHnj17hv3791eJgSuLsBhBVULr1q3Rrl07vPbaa1XiGUpjVZ79aGdnp3GRXlo7hUKhbqdUKqFQKHQfsI7J5XJs27YNy5Ytw/bt2+Ho6IgNGzYgOzu7xPa///473nvvPTg5OeHmzZsIDw/HW2+9ZeCoDe/BgwfIy8vD0aNHUatWLURERJTYrrwng1XppHHEiBE4cOAAHj16BFdXV8yaNQuXLl0qsW1OTg5CQkLQqVMnbNiwAXPmzMG3334LS0tLA0f9ajIzMzFnzpxSn2HetGkTfvvtN43nvX/88Uc8evQIEyZMKLXfP194ajs2/PnYUlWO63/7299w6tQp9OjRAzNnzkTv3r3x008/lThujxACR48exYgRIzBmzBg4ODjg9OnTVXZQQm2Fq8jISDg6OiI9PV3jrWfalgFM7xgik8mwYcMGrFq1Ct9//z06dOiAdevWISMjo8T2t27dwrJly9CpUyckJydj165dmDFjhoGjfjU7d+7Uehz46/lGfn4+Dh48iMGDB2vt15TPQYDCwU6PHDmCvLw89OzZE++88w4SExNLbPvs2TNs27YNzs7OCAgIwJQpUxAZGVll7swsUlbhqqRzjrKWKWJqxxCFQoFjx45h0KBBWLhwIdzd3bF3717k5eUVayuEwOnTpzFu3DgMGTIE9erVw6lTp9C5c2cJIn91VeOMicxe69atkZaWBhsbmxJP+qh8StqP6enpsLOzU/91q1atWnj+/DmePHmCK1euqE8i7927p3G7fuvWrXHp0iUUFBTgyJEjpT4GYGzkcjkCAgIwYsQIvPfee/Dz88OiRYvg6Oiovh39jTfeQEJCAlJSUmBpaQlfX1+sX78er732msTRl+6PP/6Ar6+vxrSGDRtiz549Fe7L1tZW/f5xb29vxMXFldiuvCeDVe2ksV+/frh8+TL8/f2xbds2/Oc//4G9vT26dOmCBg0aAABcXV2RnJyMvLw8ODs749ixY+jTp4/EkZdffn4+/vGPf2DdunVo2LBhsfm5ubmoUaMGatasqT6BS05Oxpdffon9+/er2+Xk5EAIofGXzE6dOuHcuXPo1KkTlEolbGxskJmZiZo1a6JmzZrqdnXr1kVqairkcjlsbW31uLW61aBBAxw+fBhff/01PvnkE4waNQrW1tbo0qWL+o1fAwcORHx8PB49eoR69eohICAAixYt0riLwNhoO4YUFa727t1b4rIjRozAiBEjMHfuXOzbtw+jRieu2XsAACAASURBVI0qcxnANI8hMpkMy5cvx9ChQ+Hn54clS5Zg2bJlaN++PTp16gQAGDduHJKSknDt2jXI5XKMHj0aQUFBaNasmcTRl9/Vq1eRlJSEkJAQXL58GRs3bsTcuXPV8/96vvHgwQPcvXsXgwYNwvXr17F//364uLjg5cuXZnUOAgA9e/bExYsXsWLFCmzduhXbtm1DkyZN4OLioj7PcHNzw4ULF/DixQt06NAB+/fvx5AhQySOXLvSjiEDBgzQWrgq6ZwjOztb6zJFTPEYolAoEBERgV27duFf//oX3nzzTdSuXRvOzs54/fXXAQCDBw9GfHw8Hj58CFtbW3zwwQdYvnx51XxdtKQjVpBJ0zagS15enujbt69QKBTC29tbnDhxQqxatUoIIcSWLVtEly5dRPPmzdUDF12+fFl4enqKbt26if3797/SOg1N37H8dR+eP39epKWlVXg/vvXWW8UGKDx8+LBwc3MTXl5e4vbt20IIIby9vUVBQYFGu2+++Ua4u7uLIUOGiOzsbL1tqz73ZUJCgli2bJkYMGCAsLe3FwDE66+/Lt544w2xfv36MgczfFWGztXSBjotaX5iYqI6ZwIDA8WuXbvEy5cvxR9//KGxTHx8vJg+fboQQoiZM2eK6OjocrfTJX3uy4cPH4oNGzYIX19f0aZNG9GwYUMBQHh7e4vFixeL8+fP623QZX1u1+7du0X9+vXV6ygacHPOnDlCiMKBOD09PYW7u7v44YcfhBBCDBgwQDg6OgpPT0/1gJNff/21CAsL0+j77t27ok+fPsLNzU09yNry5cvFmTNnNNpduHBB9OzZU/To0UMkJibqZTuF0O9+fPnypfjpp5/ErFmzRLdu3USTJk0EAOHk5CTeeecdERYWVunBbktjqGPIy5cvxeDBg8X58+dLnP/ixQv1v99//33x888/l7iMuR5DLl26JD744AMxePBg4eDgIACIli1bilGjRonVq1eLO3fu6GW9hvyOKRpg8M/nINrO21auXKkewNLcz0GysrLEpk2b/l97dx4XVb3/cfw9oOIuhCYomm3uC4kLpAS4a7lkyY+ya6ilppVS3spQu5WmLdeLSy65cW9el0zN1CLFQC1JBB0Lr5lKel2TVDTRMGR+f/hzfhLKIsM5MLyej8d5+PDMmTPv+cx3hjmfOYtt4MCBtiZNmtj/xgQFBdleeukl25YtW0rl35gbvfLKK7Zu3brZunfvbnN3d891gsabfee42X1K6mdIcdbx6tWrti+++ML2wgsv2AICAux/Y1q2bGkLDw+3LV682JaRkVEsj20UmhEoNmY0BspSM8JRnnvuuXyXuXr1qn0jxQylpZaFYdRzyq9pdbPbbTab7eWXX7YFBQXZHnvsMVtmZqbtwIEDtmeeeSbX+l988UVbx44dbaNGjbLZbLYCL+dIzjg+bLbS8bxee+21Am0EPP/887k2JIxSGup4O4x6XjdrXN34GfLZZ5/ZHnroIdtDDz1kGzp0qO3q1as3vQ+fIcYqLc+J7yDmMeN53axxZbPl/s5xs/uU1M8QZx0fRrHYbEW8YDZwC8HBwZKk+Ph4p37MWylJWUo7Z6xlaXtOq1atkoeHR77HbxZ0OUcqbbUsKGd9XkZz1jqWtufFZ4ixnPE5mcVZa1nanldJ/QwpbXUsaThnBAAgX4899phDlwNQtvAZAqAo+AxxTjQjUKysVqu9Y2jU4/n6+hr2ePkx+vk7q5L2ujoK48MxnHV8SIwRR2B8ID/OOkYYH47hrONDYow4gjOPDyPQjECxMeON6evrW2I+EEpKDmdQkl5XR3G252MmZxwfEmPEURgfyI8zjhFnez5mcsbxITFGHMVZx4dROGcEAAAAAAAwlIvZAQAAAAAAQNlCMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ9GMAAAAAAAAhqIZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ9GMAAAAAAAAhqIZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYqpzZAQAAAEqKMWPGyGq1mvLYvr6+ioqKMuWxzUCtjUOtjVNaam1mTmdT1sa4I7FnBAAAwP+xWq2mfEE363HNRK2NQ62NU1pqXRZfm+JAHYuGPSMAAABu4Ovrq/j4eEMfMzg42NDHKymotXGotXFKS63NyOlsyuoYdxT2jAAAAAAAAIZizwgAAPJgs9l09OhR7dmzR+fPn1e5cuV0//33q3nz5nJzczM7HnBbsrOz9dNPP2nv3r26dOmSKlWqpGbNmqlhw4ZydXU1O55TycrK0r59+/Tjjz/q999/V9WqVdWiRQvde++9slgsZsdzKleuXFFKSooOHDigP/74Q9WrV1erVq1Uv359ag2UQOwZAQDATRw/flxvvPGG6tWrp7vuukt9+vTRX/7yFz3xxBNq06aNqlWrpv79+ys2NlY2m83suDDY6dOnZbFYch0rfOTIEVksFu3bt8+kZHlLSUnRc889Jw8PDzVp0kSPP/64Bg0apAEDBqhp06by8PDQ8OHD9f3335sd1a601joxMVFPP/20atSooZYtWyo0NFSDBg1S//79df/996tmzZqKiIjQgQMHzI5qVxprbbPZFBcXpwEDBqhatWry8/NTWFiY/vKXv6hv375q0KCB6tatq8jISB09etTsuHalsdbFiXqUTTQjAAC4QXZ2tmbMmKH7779fb7/9tlq1aqVZs2Zp+/bt+umnnyRJK1as0MiRI7V161Z17dpVvXv31vHjx01ODiPt3LlTFStWVPPmzXPMT0xMVLVq1dSoUSOTkt3cpUuXFBERoZYtW2rx4sXq06ePFi1apOTkZPvG8OLFi9W/f3/961//UqtWrfTCCy/o4sWLJicvfbU+d+6cwsPD1b59e61evVoDBw7Uxx9/bN/I2rlzpz766CN16dJFs2bNUpMmTTRhwgRduXLF5OSlr9YnT55Uv3791KlTJ3399dcaPny4li9frh9++EGSlJCQoA8//FB+fn6aMmWKGjZsqGnTpunq1asmJy99tS5u1KNs4jANAAD+z++//67Q0FCtW7dOvXr10owZM3TvvffmWi40NFShoaGaOnWq5s6dq9dff10tW7bUhg0b5O/vb0JyGC0pKUkPPPCAypXL+VUqMTFRfn5+cnEpOb/3nDx5Ut26dVNKSopGjRqlN998U56enrmWCw8PV3h4uKZNm6a33npLM2bMUGxsrDZt2iQfHx8Tkl9Tmmp94MABde3aVceOHVNkZKReffVVVatWLccybdq0UZs2bfTss8/q1KlTeu211zRp0iRt2rRJX3zxhe644w6T0peuWicnJ6tHjx66ePGi3n//fY0aNUqVKlXKsYy/v7/8/f01cuRIHT58WKNHj9bLL7+sTZs2adWqVapcubJJ6UtXrY1APcomXlUAAHRtj4jQ0FCtX79e06dP1/r162/aiLhRxYoVNWbMGO3Zs0ceHh7q3r279uzZY1BimCkpKUlt27bNNT8xMfGm881y7tw5de7cWT///LNiYmI0a9asmzYibnTHHXcoKipKsbGxOnHihDp16qRff/3VoMS5lZZaHzt2TCEhIcrIyNC3336rSZMm5WpE/JmXl5eio6O1cuVK7d69W927d9elS5cMSpxbaan1f/7zH3Xp0kVVq1bVrl27NHbs2FyNiD9r0KCBPvvsM82ZM0cbN25U//79lZWVZVDi3EpLrY1CPcommhEAAEiaOXOm1q1bp+nTp+vFF18s1MnO7r//fsXHx6tq1aoaOHCgMjMzizEpSoLk5ORcX5Czs7O1a9cu+/wuXbqoZs2amjRpkhkRJUmjR4/WTz/9pA0bNqh79+6Fum+nTp305Zdf6vDhw3r++eeLKWH+SkOtbTabhgwZovT0dG3evFnt27cv1P0ff/xxrVy5UklJSYqMjCymlPkrDbX+448/NHDgQFWoUEFxcXFq0qRJge9rsVg0YsQIzZkzR1999ZWmTZtWjEnzVhpqbaT86pGcnKwOHTrooYceUqdOnZSammpSUjhSmW1GZGdna9CgQbrrrrtUtWpV3XfffVq+fLnZsQAAJjh27JjGjRunhx9++LY3unx8fDR//nzt3btX7733noMToiQ5fvy4Tp48KT8/vxzzrVarLl68aD9UJzo6Wh988IEZESVJmzZt0scff6zXX39dQUFBt7WOBx98UBMnTtSKFSu0YcMGByfMX2mp9ZIlS7Rp0ya9//77atmy5W2to0+fPho5cqSmT5+upKQkByfMX2mp9T/+8Q9ZrVbNmzdPDRo0uK11PPvss3r00Uc1ceJE/fzzz44NWAClpdZGKUg96tSpo5iYGG3dulVjx47VG2+8YVJaOFKZbUacP39ePXv21Pfff68LFy4oIiJC4eHhJeLkQQAAY82bN0+///67ZsyYUaTLv/Xq1UuPPPKIZs2axd8TJ3bs2DFJkru7e475S5culb+/v+rVqydJpp5nQbq20ebl5VXkX9pfffVV1a9fX//4xz8clKzgSkOtbTabpk2bphYtWmj48OFFWteUKVNUtWpVTZ8+3UHpCq401PqPP/7Q9OnT1bVrV/Xr1++212OxWDRjxgxlZWVpzpw5DkxYMKWh1kYqSD28vb3thz1VqFAh17klUDqV2WaEh4eHnnjiCdWoUUMuLi56+umnlZmZqYyMDC1ZskQBAQEKCAjQ5s2bzY4KAChGNptNCxcuVK9evXTPPfcUeX2jRo3S6dOnTfkVGcZo0qSJatSooalTpyo9PV1nz57V3LlzNXv2bE2dOtXseJKu/dIYExOjZ599Vm5ubkVaV/ny5TV8+HBt3rzZ8F+RS0Otd+/eLavVqpEjRxb5JHvVq1fX008/rU8++UQXLlxwUMKCKQ213rhxo06cOKFRo0YVeV0+Pj7q27evFi1apOzsbAekK7jSUGsjFaYeGRkZeu211zR27FiT0sKRymwzYtOmTerZs6d8fHxUo0YNeXt7y9vbWxaLRdOmTVN8fLzWr1+viIiIEnH5HwBA8Thy5IhOnjyphx9+2CHr69SpkypUqKCEhASHrA8lT/Xq1bV+/XolJSXJx8dHjRs31urVqxUTE3Pbh0M42o4dO2Sz2Rw2rnv16mVfr5FKQ62vv9cdWesrV65o9+7dDllfQZWWWru6uqpbt24OWV+vXr105swZHTx40CHrK6jSUGsjFbQeV65c0YABAzR+/Hg1a9bMxMRwlDK5f8uOHTsUFhamJUuWKCgoSJUrV9akSZOUmJioHTt2KDAwUG5ubnJzc1ODBg106NAhNWzY0OzYAIBiYLVaJUmtW7d2yPoqVKigli1b2tcL59SxY0d9++23Zse4JavVKhcXl9s+f8GfNWvWTBUqVJDValVYWJhD1llQpaHWNWvWdNgu9dc/i6xWq+EbpqWh1k2bNs33yhkFdf0cBVar1fDv+iW91kbLrx5Xr17Vk08+qf79+xfpEB2ULGWyGbF79255eHjowQcflKurq6KjozVlyhS9+uqrOnPmjDw8POzLenh46MyZM8WaZ8yYMZKkqKioIi0DACi88+fPS5Jq1arlsHXWqlVLaWlpDlsfSqchQ4Zox44dyszM1I4dO7Ru3TrDHjs9PV3VqlVz2EZb+fLl5eHhoXPnzjlkfY5mdq1r1qxZpPPN3KhmzZqSRK1vIj093eGf1RK1Lg1WrlypmJgY/frrr1qyZIlatGihmTNnmh0LRWUrg86dO2fr3r27rXLlyrZ77rnHNm3aNFvdunVtGzZssMXExNhefPFF+7K9e/e27d+/v1jzBAUF2SQxMTExMTExlYApKCioWP/u812AWlNr555KS63NyOlsyuoYL+x0K2XynBHu7u6KiYlRRkaGDh06pIiICB07dky9evVS+/bttW3bNmVmZurs2bP6+eefde+99xZ7pqCgINlstltOQUFB+S7DxMTExFT46fox8KtWrSrQ8pLyXcbLy0uDBg0y/bkxFX4y83htR/6dnz17tiTp559/LtDy+Y3rEydOSLq2hya1zjlNmDBBLi4uysjIKHKdbTabkpOTJUkrVqyg1n+annnmGd1xxx3Kzs52SK2v72mwdevWMlfrsnhuiuLCNlr+062UyWZEXtzd3TVmzBgFBwfr4Ycf1rRp0+Tq6mp2LABAMWnZsqXKlSun7du3O2R9hw8f1qlTp3JdLx0w0vXx56hxff0kjYzr3Pz8/JSdna3ExESHrI9a35qfn5/Onj2rn376ySHrS0hIkMVika+vr0PWB6BwaEbcxKBBg5SQkKCEhAR17drV7DgAgGJUsWJF9ezZUx9//LGuXLlS5PUtXLhQFotFffr0cUA64Pa0bt1a9erV06JFixyyvgULFsjLy0vt27d3yPqcSadOnVStWjUtXLiwyOuy2WxasGCBWrRo4ZBLDTubRx55RK6urg6p9R9//KHo6Gh17dpV1apVc0A6AIVFMwIAUOaNHDlSp0+f1vz584u0nrS0NM2ZM0cPP/ywGjRo4JhwKHEiIiIUGBio0aNH55g/evRoBQUFqX379vazwm/atEn+/v4KCQnRjz/+aFjGcuXKafjw4dq8eXOR947YuXOnYmJiNGzYMJUvX95BCZ1HtWrVNGjQIH3yySfav39/kda1YcMGWa1WjRw50mEnxCyIW43psLAwBQcHKyAgwL73gNVqVYcOHRQYGKht27YZllGSfHx81LdvX82fP1+nTp0q0rqio6N14sQJjRw50kHpkJ9bjbMbbdy4UR07dlRAQIAiIyNz3T5y5EjVqlVLCxYsyDH/xIkTqlixouGXaUXR0IwAAJR53bt3V9euXfXqq68qNTX1ttZhs9k0atQoXbhwQVOmTHFwQpQUu3btUkZGhrZt26YrV65o586d9ts++OADbdmyRZ988oneeecdSdJbb72lzZs3a+nSpXrjjTcMzfriiy+qfv36Gjx4sC5dunRb6/j9998VHh6uOnXqKCIiwsEJCy6vjZiUlBQ9+OCDCgwM1ODBg2Wz2ZSVlaWwsDCFhITolVdeKfZ8kZGRqlKligYPHqysrKzbWse5c+c0fPhwNWvWTIMHD3ZwwlvLa0wvX75c8fHxeuWVV/TII49IkiZOnKgVK1boq6++0uTJkw3Led3kyZN1+fJljRgxIs9j0fPy3//+V2PHjlVQUJB69+7t4IQFl9e4jomJUXBwsIKDg+Xt7a3PPvvM8HHtSHmNsxuFhITom2++UUJCgrZv357rylQTJkzQ+++/n+t+UVFR8vf3L5bsKD40IwAAZZ7FYtGCBQtUrlw59erVy36yvoKy2WyKjIzUypUr9eabb6p58+bFlBRmS0hIUJcuXSRJXbp00XfffWe/7fpeAxcvXlSrVq3s86tUqSJvb28dOnTI0KzVqlXTokWLdODAAT322GO6fPlyoe6fmZmp0NBQ/ec//9H8+fPl7u5eTEnzlt9GTKNGjbR9+3b7r/RJSUlas2aNWrVqpbi4OF2+fFl79uwp1oze3t6aNWuWEhISbqshceHCBT3yyCNKS0tTdHS03NzciilpbnmN6evWrFmj/v37S7rWNPHx8VHlypWVkZFR6HFVVI0bN9Y777yjtWvX6q9//WuhGxK//PKLevbsqezsbC1cuFAuLuZsDuU3rnv06KH4+HjFx8erfv366tKli+Hj2pEKMs6k//8cvXr1qry8vFS9evUct3t7e+e6T1pamn777Tf2SCyFaEYAACCpfv36Wr9+vY4fP6727dtr48aNBbpfWlqawsLCNGXKFA0fPlyvvfZaMSeFmdLT0+1fjmvUqKFz587luP3RRx9Vt27d7F+6pWsbPz/++KP27dtnaFZJ6ty5s+bPn6+vvvpKDz30kPbu3Vug+/34448KCgrSunXrNHv2bPXs2bOYk95afhsxNx464ubmpnr16ik1NVUtW7aUJPn6+tpPClmcnnzySb3zzjtasmSJunfvrsOHDxfofklJSQoICFBiYqKWLVumNm3aFG/QP8lvTGdlZemHH35Q69atJUm1atVSSkqK0tLSlJKSovT0dEPzStf2KHjhhRf097//XY899ph++eWXAt3v66+/Vvv27XX48GF9/vnnhlwx71YKunGempqq2rVrq2rVqqaMa0fJb5zd6KOPPlKjRo3k6elZoMZcVFSUnn/+eYdlhXFoRgAA8H86duyoLVu2qGrVqurevbv69eun2NjYm/7K+d///lcTJ05U06ZNtWbNGr3zzjuaM2eOocd5w3ju7u66cOGCpGu/Zv95b4E1a9bou+++0+uvvy5Jeu+99xQWFqapU6eqQ4cOhueVpKFDh2r16tU6fPiwWrdurWHDhmn37t25flG22Wzas2ePnnvuOfn6+urAgQP65JNP9Nxzz5mS+7qCbMR8/vnnat68uU6fPi1PT081atRIW7ZskSTFxcXlueHjSOPGjdPChQuVmJio5s2bKyIiQvv27ctV6+zsbH333Xd6+umn5e/vr/T0dH355Zd67LHHDMl5o/zGdFxcnIKDg+3/nzp1ql566SWNGDFCLVu2VM2aNY2MK+na3mzTp0/X+++/rw0bNqhp06aKjIy8aQMoKytLX3/9tR5//HF17txZFSpUUFxcnEJCQgzPfaOCbpyvXr1ajz76qCSZNq4dIb9xdqNhw4Zp//79OnbsmHbv3p3netPT03X06FE1a9bMoXlhDJoRAADcoHXr1tq1a5cmTpyob7/9Vl27dlX16tXl7+9vP7bYx8dHd911lyZNmqR27dopOTlZ48aNoxFRBgQEBGjz5s2SpNjY2BzHKGdmZkq6dnhElSpV7MvHxcUpMjJSTZo0MT7w/+nXr5/27t2rQYMG6eOPP1br1q11xx13KDg42D6uPT095evrq8WLF+vJJ5/U3r17NWDAAMMynjp1yn6M/PUpLCysQBsxffr0UUpKiurWrav169erd+/eunz5sjp37iw3NzfVrl3bsOcxZMgQpaSkqHfv3po1a5aaNm2qO++8U507d5YkBQYGyt3dXQEBAVq9erVGjhypvXv35tibxkh5jWnpWoPt+sawJDVs2FAbN27UvHnzVL9+fdNOamqxWDR27Fjt3r1bHTp00JQpU3T33XerTp069qvhBQQEqHr16urcubPi4uL0+uuvy2q1ql27doblLMq4lqR169bZr85k5rguqpuNs6ysrFx7tVz/HHV1dVWVKlVUqVKlPNe7f/9+HThwQD169NCmTZs0YsSI4nkCKBblzA4AAEBJU6lSJb355psaN26c1q1bp4SEBFmtVh0/flzStRNs+fn5qW/fvrr77rtNTgsjtW7dWhUrVlRgYKBatWql+vXra/LkyYqMjNT//M//6Pz588rKyrKfxHTy5MmKjY2Vp6en5s2bZ2r2O++8U/Pnz9e7776rNWvWaOfOnUpJSbGP6wEDBqhNmzbq37+/PD09Dc/n5eWl+Pj4XPN37dqlefPmKTQ0VLGxsQoPD89xe2Zmpn1X7urVq6tSpUpydXXVzJkzJV37lbVbt27FHT+Hu+66S8uWLdM//vEPrVmzRklJSfbDdCwWiwYNGqS2bduqf//+pl9WMq8xbbPZlJCQoFmzZtmXX7hwoZYsWaLKlSvnmG+Wpk2b6vPPP9eRI0f02WefKTk5WT/99JOka5duHj58uPz9/dWnT598N2yLw+2Oa+laI6NChQr296PZ47oo/jzO2rVrp4MHD+rdd9/NcSWrxYsXa/ny5crKylJISIgaN24sq9Wq5ORkDR06VJMnT9bSpUtls9l04sQJTZw40X64Snh4uMaPH2/WU8RtsNhu9zS0cJjru77d7IOqMMsAAIqfxWK57TO4o+Qz6++t2X/nzRjXhXnOo0eP1q5du9SqVSvNmjVLp06d0sKFCxUZGam1a9dq2rRpkqT7779fH330kU6ePKmBAwfKxcVFgwYNyrGhZ2atzfr8KIvjujTUOq9xLUnz5s3TH3/8YT8fwvHjxx02rs3+zJGkVatWycPDQ506dTItQ1GVhDqWZuwZAQAAgBJt+vTpOf7v5eVl32Dr27ev+vbtm+P2unXrsnGAEi+vcS1Jw4cPz3G7s41rM86RgpKFZgQAAMANrFZrjhP2GfWYvr6+hj5mSUCtjUOtjVNaam1GTmdTVse4o9CMAAAA+D9mfan09fUtc19oqbVxqLVxSkuty9rrUlzK4hh3JM4ZUQJwzggAKD04ZwScEePaGNTZONQaKPm4tCcAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ5UzOwAAONqYMWNktVoNJVBZkgAAIABJREFUf1xfX19FRUUZ/rhmMavOUtmotZn1dTaFGS+MawAAjMGeEQCcjtVqNXxjwozHNJtZz7ms1LqsPM/iVtg6Mq4BADAGe0YAcEq+vr6Kj4837PGCg4MNe6ySxOg6S2Wr1mbU19ncznhhXAMAUPzYMwIAAAAAABiKZgQAAAAAADAUzQgADnHp0iVFR0crPDxcLVq0kJeXl7y9vdWuXTs999xzWrt2rbKyssyOaXf69GlZLJZcx2gfOXJEFotF+/btMylZ/s6fP685c+Zo4MCBatKkiWrXrq06deqoQ4cOevHFF7Vp0yZlZ2ebHdOuNNca/4/XMSfqAQBA0dCMAFAkmZmZ+tvf/qa6detq8ODBiomJUf369dW3b1+dOnVKVapU0dKlS9WvXz/dc889WrhwoWw2m9mxtXPnTlWsWFHNmzfPMT8xMVHVqlVTo0aNTEp2axcvXlRERITq1KmjkSNHauvWrWrYsKEeffRRnTx5UhaLRQsXLlS3bt3UuHFjrVq1yuzIkkpnrZEbr2NO1AMAgKKhGQHgtu3bt09t2rTRm2++qc6dO2vbtm06efKkNmzYoHnz5kmS4uLidObMGa1evVr16tXTM888o549e+rMmTOmZk9KStIDDzygcuVynsc3MTFRfn5+cnEpWR+PO3bsUMuWLTV9+nSFhoYqKSlJR48e1dq1azV37lxJ0jfffKOzZ89qyZIlqly5sh5//HGFhYUpIyPD1Oylrda4OV7HnKgHAABFw19KALclJSVFgYGBOn36tDZs2KBPP/1UHTt2lMViybVsuXLl9Oijj2rbtm2aNWuW4uPjFRQUpF9//dWE5NckJSWpbdu2ueYnJibedL6ZvvnmG3Xu3FmStHXrVi1evFh+fn43XdbNzU0DBw7Uzp079fbbb2vlypXq0aOHqQ2J0lRr3BqvY07UAwCAoqEZAaDQzp8/r169esnNzU3ffvutevXqVaD7ubi4aNSoUfriiy908OBBhYaGmnZug+Tk5FwbDNnZ2dq1a5d9fpcuXVSzZk1NmjTJjIiSpBMnTqh3797y8fHR9u3b1bFjxwLdr3z58ho/fryWLVum7du369lnny3mpLdWWmqNvOX3OiYnJ6tDhw566KGH1KlTJ6WmppqU1BiMawAAioZmBIBC++tf/6rjx49r1apVuu+++wp9/06dOmnmzJmKi4uzH2JgpOPHj+vkyZO59i6wWq26ePGi/P39JUnR0dH64IMPDM93nc1m0/Dhw5WZmal169bJy8ur0OsIDQ3VG2+8oWXLlmnNmjXFkDJvpaXWyFtBXsc6deooJiZGW7du1dixY/XGG2+YlLb4Ma4BACi6MtuMyM7O1qBBg3TXXXepatWquu+++7R8+XKzYwEl3qFDhzR//nyNGTPG/oX7djzzzDPq1KmT/va3vykzM9OBCfN37NgxSZK7u3uO+UuXLpW/v7/q1asnSfLx8TE0158lJCRo/fr1euutt3T//fff9nrGjRunFi1a6PXXXzf85KGlpdbIW0FeR29vb1WrVk2SVKFChVznUnAmjGsUxk8//aRRo0bZx4u3t7fGjx+vX375xeRkzsdqtSo8PFxVq1aVJN11112aMmWK0tPTTU4G4GbKbDPi/Pnz6tmzp77//ntduHBBERERCg8P15UrV8yOBpRoc+fOlaurq15++eUircdisejVV19VWlqaPv30UwelK5gmTZqoRo0amjp1qtLT03X27FnNnTtXs2fP1tSpUw3NkpfZs2erevXqGjFiRJHWU758eb388sv68ccfFRcX56B0BVNaao28FeZ1zMjI0GuvvaaxY8ealLb4Ma5RUF9//bV8fX01Z84cnT9/XpJ06tQpTZ48Wa1atdL+/ftNTug8Vq5cqbZt2+rjjz+2nyfp6NGjev3119W2bVudOHHC5IQA/qzMNiM8PDz0xBNPqEaNGnJxcdHTTz+tzMxMZWRkcIwnkIf169erW7duqlOnTpHX1aVLF9WpU0cbNmxwQLKCq169utavX6+kpCT5+PiocePGWr16tWJiYhQUFGRollux2WzasGGDHn/8cfsvPEURGhqqihUrUmvcloK+jleuXNGAAQM0fvx4NWvWzMTExYtxjYI4d+6c+vbtq8zMzJvulZaWlqa+ffuadu4kZ5KamqqBAwfq6tWrOep5ve6pqal68sknzYoH4Bacdx/KfGzatEnTpk3TDz/8oN9++03Z2dny9vaWh4eHoqOjFRsba98NE8A1v/32m/bv36+wsDCHrM/FxUXt2rVTcnKyQ9ZXGB07dtS3335r+OMWVGpqqtLT09W+fXuHrK9SpUpq1aoVtcZty+91vHr1qp588kn1799f/fr1MzCZORjXyE90dLQuXrx4y9uzs7O1f/9+bd68WV27djUwmfOZO3eusrKybnkoYnZ2trZs2aIffvhBLVq0MDgdgFspk82IHTt2KCwsTEuWLFFQUJAqV66sSZMmKTExURLHeAK3cvToUdlsNjVq1Mhh62zYsKHhv9YX1JAhQ7Rjxw5lZmZqx44dWrdunWGPffjwYUlyeK23bNnisPU5kpm1hmOsXLlSMTEx+vXXX7VkyRK1aNFCM2fONDuWqRjXZVtMTIwsFkue5+pxcXFRTEwMzYgi2rBhQ4HOifTVV1/RjABKElsZNGfOHNu9995rS09Pt/3++++2xYsX2ypXrmx788037cssXrzY9vbbbxuSJygoyCaJiYnJgVNQUJAh79+y/j42us5lrdZm1NfZ3M54YVwzMTExMTE5brqVMnnOiLCwMN13332qU6eOmjZtqnPnzsnDw0Nt2rQxLVNQUJBsNtstp6CgoHyXYWIq7un48eOSpBkzZhRoeUn5LjN48GDVqlXLoTnNOmbbke/RpKQkSdd+bXZUrXv06KGWLVuW+jo7utaFnQpS69JeX2dTmPHCuGZy1PT888/LYrHk+7rPmTPH9Kylferfv79cXPLfrPnss89Mz8rEVBanWymTzQh3d3fFxMQoIyNDhw4dUkREhI4dO6ZevXqZHQ0o0by9vVW7dm2HnncgOTlZfn5+Dlufs2jevLnKly/vsFrbbDZqDQAGGj58eJ5fwi0WiypXrqyBAwcamMo5jRgxIs8Tgbq4uMjb21sPP/ywgakA5KdMNiPyM2TIEL3//vuKjo5W7969zY4DlBgWi0WBgYH64osvlJmZWeT1HTp0SN9//70CAwMdkM65uLm5qV27dvZfcYoqISFBaWlp1BoADNK8efNbXuL2+rkkZs2apWrVqhmczPl06dJFTz311E1vu77HxPz581WuXJk8XR5QYtGMuIlFixZp7969OnjwICebAv5k2LBhSktL04oVK4q8rg8//FDlypVTeHh40YM5oWHDhunHH39UbGxskdc1c+ZMVa9eXaGhoQ5IBgAoiPfee09///vfVbNmzRzz7777bn3yyScaPHiwScmci8ViUXR0tCZMmKDq1avnuK1p06b68ssv2SsCKIFoRgAolM6dO8vX11evvvqqzp49e9vr2bNnj2bOnKmnnnpKderUcWDC/EVERCgwMFCjR4/OMT8sLEzBwcEKCAiQr6+vJMlqtapDhw4KDAzUtm3bDM0ZGhqq+vXr64UXXtDly5dvez2xsbFavny5Ro0apSpVqjgwIZzNrd4bN9q4caM6duyogIAARUZG5rp95MiRqlWrlhYsWJBj/okTJ1SxYkUdPHjQ4bmBkspiseill17S8ePH9dVXX2n58uXatm2bDhw4oAEDBpgdz6m4urrqrbfe0smTJ7VhwwatWLFCiYmJ+v7779WtWzez4wG4CZoRAArFxcVFixcv1q+//qrw8HBlZWUVeh1nz57Vk08+KU9PT33wwQfFkPLWdu3apYyMDG3btk1XrlzRzp077bctX75c8fHxeuWVV/TII49IkiZOnKgVK1boq6++0uTJkw3NWrFiRS1YsED79+/X888/f1uHaxw9elSDBw9Wo0aNNGHChGJIWTB5beTGxMQoODhYwcHB8vb21meffaasrCyFhYUpJCREr7zyigmJy5683hs3CgkJ0TfffKOEhARt375daWlpOW6fMGGC3n///Vz3i4qKkr+/f7FkNwvjGgVVoUIFdevWTf/zP/+jjh07Fuhki7g9lStXVq9evRQaGqq2bdsW6CSiAMzBJyGAQvP19VVUVJTWrVunxx9/XOnp6QW+7+HDh9WpUycdPHhQy5Ytk6enZzEmzS0hIUFdunSRdO0Y0++++y7XMmvWrFH//v0lSefOnZOPj48qV66sjIyMIu2hcDu6du2q8ePHa9GiRXrmmWcK9fgpKSkKCgrShQsXtHz5clWqVKkYk95afhu5PXr0UHx8vOLj41W/fn116dJFa9asUatWrRQXF6fLly9rz549pmQvSwry3pCk8uXLS5KuXr0qLy+vXLtEe3t757pPWlqafvvtNzVo0MCxoU3EuAYAoGhoRgC4LaNGjdKMGTO0bt06NW/eXJ9++mmee0lcunRJM2bMUPPmzZWamqrPP/9cISEhBia+Jj093b7xVKNGDZ07dy7H7VlZWfrhhx/UunVrSVKtWrWUkpKitLQ0paSkFKrx4ihvvfWWJkyYoEWLFsnX11cxMTF5njU8PT1db7/9tvz8/HTx4kXFxsbaDzsxQ0E3clNTU1W7dm1VrVpVqampatmypaRrza+EhATD8pZV+b03bvTRRx+pUaNG8vT0lJubW77rjoqK0vPPP++wrCUB4xoAgKKhGQHgtr3wwgv67rvv5O7urgEDBuiee+7R6NGj9a9//UtxcXGSpHnz5mno0KGqU6eORo8erQcffFApKSnq3r27KZnd3d114cIFSdKFCxfk7u6e4/a4uDgFBwfb/z916lS99NJLGjFihFq2bJnrJGRGsFgseuuttxQbG6vMzEz17NlTjRs31tixY7Vs2TJ7rWfNmqWnnnpKdevW1cSJE9W3b1/t3btXbdu2NTzzjQq6kbt69Wo9+uijkqRGjRppy5Ytkq69JnltGMMx8ntv3GjYsGHav3+/jh07pt27d+e53vT0dB09elTNmjVzaF6zMa4BACgarm8DoEjatm0rq9Wq9evXa+7cuVqwYIFmzJhhv33EiBHy8PBQr169NHLkSHXo0MHU4zcDAgI0b948hYaGKjY2NteVPNasWaOwsDD7/xs2bKiNGzfq119/VUREhH0XdTN07txZ+/fv16effqr58+dr1qxZOS6x+sILL+jOO+9UWFiYRo4cKT8/P0PznTp1KkftJMnLy0uBgYEF2shdt26dVq9eLUnq3bu3Nm/erM6dO6tBgwaqXbt28YbHTd8bWVlZOnPmTI76Z2Zmys3NTa6urqpSpUq+h//s379fBw4cUI8ePfTDDz/o2LFjDrlCjFEY1wAAFA+aEQCKrFy5curXr5/69eunq1evav/+/Tp9+rRCQkKUmpqqBg0alJgTSLVu3VoVK1ZUYGCgWrVqpfr162vy5MmKjIyUzWZTQkKCZs2aZV9+4cKFWrJkiSpXrpxjvlnc3Nw0cOBADRw4UH/88Yf27duns2fPKiQkREePHlXdunVNq7WXl5fi4+Nzzd+1a1eeDSDp2gZfhQoV7OcQcXV11cyZMyVd+xWeM6EXvz+/N9q1a6eDBw/q3Xff1fz58+3LLV68WMuXL1dWVpZCQkLUuHFjWa1WJScna+jQoZo8ebKWLl0qm82mEydOaOLEifbDEcLDwzV+/HiznuJtYVwDAFA8aEYAcChXV1c1bdpUTZs2lXTtWuolzfTp03P8//rlCS0WS65dzocOHaqhQ4calq0wypcvbz/+XJJ8fHxMTHNrN9vIPXXqlBYuXGiv/dq1a9W3b1/7fY4fP66BAwfKxcVFgwYNKrHPzdn8+b2xZ88ePfHEEznmjRgxQiNGjMgxz9fX135eksjIyJte8lOSoqOjHRfWZIxrAACKhmYEAKDY/Xkj18vLK8cG6/Dhw3PcXrdu3Zv+Gg1jPfbYY2ZHKNEY1wAA3D6aEQCcktVqzXEiSiMez8wrVpjF6Dpff8yyUmsz6utsbme8MK4BACh+NCMAOB0zvtDfuJt6WWHW8y0rtS4Lz9EIhR0vjGsAAIxhsdlsNrNDlHXXf33Ja9fNgiwDlDQWi0V8xBiDWhuHWsMZMa4BAEZzMTsAAAAAAAAoW2hGAAAAAAAAQ9GMAAAAAAAAhqIZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiqnNkBYKwxY8bIarWaHcNp+Pr6KioqqkDLmlX7wmQECsPMzxPGNQAAQOnGnhFljNVqpRnhIIWtpRm15/VGcTJrfDGuAQAASj/2jCiDfH19FR8fb3aMUi84OLjQ9zG69reTESgMMz5PGNcAAAClH3tGAAAAAAAAQ9GMAAAAAAAAhqIZAVOdPn1aFosl1/HfR44ckcVi0b59+0xKZg7qAWfEuAYAAMCf0YyAqXbu3KmKFSuqefPmOeYnJiaqWrVqatSokUnJzEE94IwY1wAAAPgzmhEwVVJSkh544AGVK5fzXKqJiYny8/OTi0vZGqLUA86IcQ0AAIA/4xsgTJWUlKS2bdvmmp+YmHjT+c6OesAZMa4BAADwZzQjYKrk5ORcGyPZ2dnatWuX2rZtq+TkZHXo0EEPPfSQOnXqpNTUVJOSGiO/ekhSly5dVLNmTU2aNMmMiEChMa4BAADwZ+XyX8R5ZWdnKzw8XFu2bNGZM2fk5eWlSZMmKSwszOxoZcLx48d18uRJ+fn55ZhvtVp18eJF+fv7q1y5coqJiVG1atX0xRdf6I033tDHH39sUuLiVZB6SFJ0dLRiY2N17NgxM2Lm68qVK1qzZo127dolSYqNjVWnTp3YFb8YXLp0SZ988on+85//SJK2b9+ugIAAWSwWk5P9P2cZ1+fPn9eyZct06NAhSdfy+/r6mpwKKJpjx45p2bJlOn36tCTpv//9r+rXr29yKgBAWVGmmxHnz59Xz549NXPmTFWrVk1z5sxReHi4+vfvrwoVKpgdz+ld3+hwd3fPMX/p0qXy9/dXvXr1csyvUKFCrmPOnUlB6+Hj42N4toL68ssv9fTTTystLc2+Qdy1a1c1bNhQq1evVrNmzUxO6DyWLFmiUaNG6cKFC/Zad+jQQX5+flq1apXuuusukxNe4wzjOioqSuPGjdPvv/9ur/UDDzygkJAQrVixQrVq1TI5IVA4f/zxh0aPHq158+YpOzvb3iy+++67NWTIEH344Yd8DwIAFLsy/VOlh4eHnnjiCdWoUUMuLi56+umnlZmZqR9++KFMHRpgliZNmqhGjRqaOnWq0tPTdfbsWc2dO1ezZ8/W1KlTcyybkZGh1157TWPHjjUpbfErTD1Koq1bt6p37946c+aMJMlms9lvO3TokB566CEdOXLErHhO5dNPP9Vf/vIX/fbbb5Jy1nr37t0KCgrS2bNnzYqXQ2kf1x9++KEiIiL0+++/S8pZ6y1btqhr1666fPmyWfGA2zJixAjNmTNH2dnZkpTj3wULFmjIkCFmxgMAlBFluhmxadMm9ezZUz4+PqpRo4a8vb3l7e2tOnXqKCYmRlu3btXYsWP1xhtvmB3VKVWvXl3r169XUlKSfHx81LhxY61evVoxMTEKCgqyL3flyhUNGDBA48ePd+pf1gtaj5Jq3Lhxstls9i+1N7p69arOnTunv//97yYkcy7Z2dn661//KovFkmPD+Mbbjxw5onnz5pmQLrfSPK4vX76syMjIW96enZ2tPXv2aMWKFQamAopm3759WrRoUZ7L/Pvf/9aePXsMSgQAKKucd5/3fOzYsUNhYWFasmSJgoKCVLlyZU2aNEmJiYny9va2L+fshwaYrWPHjvr2229vefvVq1f15JNPqn///urXr5+BycyRXz1Kqp9++knbt2/PcxmbzabFixdr2rRpvKeKYNu2bTp8+HCey1gsFn300UcaN26cMaHyUVrH9dq1a3X+/Pk8l3FxcdH8+fMVHh5uTCigiBYvXnzLZuZ1Li4uWrRokaZPn25gMgBAWVNmtwh2794tDw8PPfjgg3J1dVV0dLSmTJmiV1991b7M9UMD/vnPf5qYtGxbuXKlYmJi9Ouvv2rJkiVq0aKFZs6caXYsUw0ZMkQ7duxQZmamduzYoXXr1pkdSUePHi3QchcvXtT58+fl6elZzImcV0FqbbPZSuyJIG+ltI7r63uiAKXF0aNH5eLioqtXr95yGYvFUuDPdQAAbputjDp37pyte/futsqVK9vuuece27Rp02x169a1bdiwwWaz2WyZmZm2nj172tasWVPsWYKCgmySDJuCgoKK/TmVBbfzuhlde6PHFlPZm8z4PGFcMzExMTExMTGVnulWyuyeEe7u7oqJickxLyIiQpI5hwYEBQUpPj7+lrcHBwdLUp7LFMT19cAx8nvdbmRW7QuT8XZlZ2fr3nvv1ZEjR26566+Li4v69eunVatWFWsWZ3fp0iXVqVMnz8MHLBaLRo4cqVmzZhVrFjM/T4wY17/88ot8fHyUlZWV53KTJk3K89wSQEny9ddfq3Pnzvku98UXX6hnz54GJAIAlFVl+gSWt3L90IAlS5YoODhYL7zwgtmRgBLNxcVFkZGRt2xEXL8cojNfDcUolStX1ksvvXTL211cXOTm5qYXX3zRwFTOqXbt2nrmmWduebuLi4s8PDz07LPPGpgKKJqQkBC1adPGfjnPP3NxcVGrVq3UvXt3g5MBAMoamhE3ERYWposXLyo+Pl7x8fFl/hwFQEEMHTpUEyZMkPT/zYfrXF1d9e9//1sBAQFmRHM648eP17BhwyTJvkFxveZubm5au3atGjZsaFo+ZxIVFWXfQ+7PtXZ3d9dXX32lO++807R8QGFZLBatW7dOzZs3l/T/4/r6v40bN9aGDRtu2awAAMBR+EsDQ0RERCgwMFCjR4++5TIbN25Ux44dFRAQcNNdnkeOHKlatWppwYIFOeafOHFCFStW1MGDBx2eGwVnsVj01ltv6fvvv9eIESPUrl07BQQEaPz48UpNTVVYWJjZEZ2Gi4uL5s6dq++++06DBg1Su3bt1KFDB02ZMkWHDx9Wt27dzI7oNNzc3LR69Wp9/fXXCg0NlZ+fn4KCgjR9+nSlpqaqbdu2ZkcECs3Ly0s7d+7UihUr1LNnT/n5+al79+5aunSpdu/erbp165odEQBQBpTZc0bAOLt27VJGRoa2bdum5557Tjt37rzpF/iQkBD7RlRISIjS0tJUq1Yt++0TJkxQu3btch2/HRUVJX9//+J9EgaKiIhQUlKSWrduneuyajExMZo6daokaf/+/ZozZ44eeeQRPfXUU/rll1/Utm1bvffee2bEtmvRooVmz55taoaywGKxqH379mrfvr3ZUQokr3GdkpKiYcOGydXVVffdd58WLVqkq1evlphxbbFYFBISopCQENMyAI5WoUIFhYaGKjQ01OwoAIAyij0jUOwSEhLUpUsXSVKXLl303Xff3XS58uXLS7p2AlEvLy9Vr149x+3e3t657pOWlqbffvtNDRo0cGxok9zYuLly5Yp27tyZ4/YePXrYDx+qX7++unTpojVr1qhVq1aKi4vT5cuXtWfPHpPSAzeX37hu1KiRtm/frm3btkmSkpKSGNcAAABOjmYEil16erq9sVCjRg2dO3fulst+9NFHatSokTw9PeXm5pbvuqOiovT88887LKvZCtq4SU1NVe3atVW1alWlpqaqZcuWkiRfX18lJCQYlhcoiPzG9fVGpHTtsIh69eoxrgEAAJwczQgUO3d3d124cEGSdOHCBbm7u99y2WHDhmn//v06duyYdu/ened609PTdfToUTVr1syhec1U0MbN6tWr9eijj0q69qvyli1bJElxcXF5NnsAMxRkXH/++edq3ry5Tp8+LU9PT8Y1AACAk6MZgWIXEBCgzZs3S5JiY2Pl7++vrKws/fLLLzmWy8zMlHTtygtVqlRRpUqV8lzv/v37deDAAfXo0UObNm3SiBEjiucJFINTp04pODg4xxQWFlbgxs26devUp08fSVLv3r11+fJlde7cWW5ubqpdu7ZhzwO4UVHGdZ8+fZSSkqK6detq/fr1jGsAAAAnxwksUexat26tihUrKjAwUK1atVK7du108OBBvfvuu5o/f759ucWLF2v58uXKyspSSEiIGjduLKvVquTkZA0dOlSTJ0/W0qVLZbPZdOLECU2cONG+63Z4eLjGjx9v1lMsNC8vL8XHx+eav2vXLs2bN0+hoaGKjY1VeHh4rmVOnTqlChUqyNPTU9K15s31y88OGzaMKynANLc7rjMzM+2HZVWvXl2VKlViXAMAADg5mhEwxJ/Pnr9nzx498cQTOeaNGDEi194Nvr6+8vX1lSRFRkbe9JKfkhQdHe24sCa6WePm1KlTWrhwof25r127Vn379rXf5/jx4xo4cKBcXFw0aNAg+fj4mBUfuKn8xnVMTIymTZsmSbr//vvVrVs3xjUAAICTs9hsNpvZIcq64OBgSbrpL4qFWcZRj4WCKWwtzag9rzeKk1nji3ENAABQ+rFnRBlktVrtX+Zx+6xWq32vjcLcx8ja305GoDDM+DxhXAMAAJR+NCPKGL7AO86Nh5AUdHmjFTYjUBhmjS3GNQAAQOnHYRolgJGHaQAAAAAAYDYu7QkAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ9GMAAAAAAAAhqIZAQDq1H3qAAADI0lEQVQAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIYq082ITz75RC1atFDVqlXVrVs3vfTSSxowYIDZsQAAAAAAcGplthnxz3/+Uy+//LJmz56t8+fP65FHHtGMGTP0wAMPmB0NAAAAAACnViabEZcuXdJLL72kjz76SIGBgXJ1ddUzzzyjq1ev2psRS5YsUUBAgAICArR582aTEwMAAAAA4DzKmR3ADFu2bFF2drZ69uxpn5eWliZJeuCBB5Senq5p06YpISFBFy9eVEhIiHbv3i1XV1ezIgMAAAAA4DTK5J4Rp0+f1p133plj3tKlS+Xl5SUvLy/t2LFDgYGBcnNzk6enpxo0aKBDhw6ZlBYAAAAAAOdSJveMaNasmQ4ePKgtW7YoICBAn376qaZOnaoHH3xQknTmzBl5eHjYl/fw8NCZM2eKLY+vr6+mT58ui8WS77IFWQYAAAAAgJLAZrPddH6ZbEa0adNGkZGR6t+/v1xdXfXEE0+offv29vNFeHp66ty5c/blz507J09Pz2LLExUVpaioqGJbPwAAAAAAJYnFdqs2RRnToEEDvf/++xowYIDS09PVqVMnJSQkKCMjQ0FBQbJarZwzAgAAAAAAByiTe0b82YULF3TkyBH7nhHu7u4aM2aMgoODJUnTpk2jEQEAAAAAgIOwZ4Sk7du3q0ePHjp//jznZAAAAAAAoJjRjAAAAAAAAIYqk5f2BAAAAAAA5qEZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ/0vAbpKoqtpMU0AAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, "execution_count": 8, @@ -220,7 +220,7 @@ ], "source": [ "# plot circuit\n", - "ae._circuit.draw(output='latex')" + "ae._circuit.draw(output='mpl')" ] }, { diff --git a/qiskit/finance/index.ipynb b/qiskit/finance/index.ipynb index 5ee05e65e..3663281f5 100644 --- a/qiskit/finance/index.ipynb +++ b/qiskit/finance/index.ipynb @@ -29,9 +29,6 @@ "source": [ "In this notebook we provide an overview of Qiskit Finance tutorials and tutorials from other domains which might be relevant in finance.\n", "\n", - "#### Machine Learning:\n", - "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", - "\n", "#### Optimization:\n", "- Portfolio Optimization\n", "- Portfolio Diversification\n", diff --git a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb deleted file mode 100644 index 606ccde25..000000000 --- a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb +++ /dev/null @@ -1,218 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Finance: qGAN Option Pricing*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Christa Zoufal[1,2], Stefan Woerner[1]\n", - "### Affliation\n", - "- [1]IBMQ\n", - "- [2]ETH Zurich\n", - "\n", - "### Introduction\n", - "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price distribution of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff, see [European Call Option Pricing](../../finance/simulation/european_call_option_pricing.ipynb).
\n", - "\n", - "For a general introduction on how to train a qGAN, see [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb).
\n", - "\n", - "For further details on learning and loading random distributions by training a qGAN please refer to
Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "ename": "ImportError", - "evalue": "cannot import name 'UnivariateVariationalDistribution'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0malgorithms\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mAmplitudeEstimation\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muncertainty_problems\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mEuropeanCallExpectedValue\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 10\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muncertainty_models\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mUnivariateVariationalDistribution\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mNormalDistribution\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 11\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvariational_forms\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mRY\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mImportError\u001b[0m: cannot import name 'UnivariateVariationalDistribution'" - ] - } - ], - "source": [ - "# #!/usr/bin/env python\n", - "# # coding: utf-8\n", - "# from __future__ import absolute_import, division, print_function\n", - "\n", - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue\n", - "from qiskit.aqua.components.uncertainty_models import UnivariateVariationalDistribution, NormalDistribution\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "from qiskit.aqua import aqua_globals, QuantumInstance\n", - "\n", - "from qiskit import BasicAer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncertainty Model\n", - "\n", - "The Black-Scholes model assumes that the spot price at maturity $S_T$ for a European call option is log-normally distributed. Thus, we can train a qGAN on samples from a log-normal distribution and use the result as uncertainty model underlying the option. A notebook that explains the implementation of a qGAN to learn and load a random distribution is presented in [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb).
\n", - "In the following, we construct a quantum circuit that loads the uncertainty model. The circuit output reads $$\\lvert g_{\\theta}\\rangle = \\sum\\limits_{j=0}^{2^n-1}\\sqrt{p_{\\theta}^{j}}\\lvert{j}\\rangle,$$ where the probabilites $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, represent a model of the target distribution." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Set upper and lower data values\n", - "bounds = np.array([0.,7.])\n", - "\n", - "# Set number of qubits used in the uncertainty model\n", - "num_qubits = [3]\n", - "\n", - "# Set entangler map\n", - "entangler_map = []\n", - "for i in range(sum(num_qubits)):\n", - " entangler_map.append([i, int(np.mod(i+1, sum(num_qubits)))])\n", - "\n", - "# Set variational form\n", - "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", - "\n", - "# Load the trained circuit parameters\n", - "g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]\n", - "\n", - "# Set an initial state for the generator circuit\n", - "init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1])\n", - "\n", - "# Set generator circuit\n", - "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params,\n", - " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", - "\n", - "# construct circuit factory for uncertainty model\n", - "uncertainty_model = g_circuit" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW5x/HvTxAJBEJkCauE1QhGwQQxgiYRZb3XIALxgl6DaARF1It4EVHC4r0ssqiAiAoREYdFLsome4KRPYJEQpAgIZIgCGQhqwl57x+nRmsq3dPdMz1TM5nf53n6melTp6re6unpt6vOqXMUEZiZmXW3N5UdgJmZ9U1OQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKUpPQJJ2kXS3pCWS5ko6XdJaNdbZVdJvs/rLJc2W9BNJW1SoO0bSNEnLJE2XNLbrjsbMzOq1dpk7lzQQuAuYDowBdgDOIyXGU9pZdQDwHHAlMBfYDjgVGCZpj4hYmW1/b+BXwCXA8cCBwC8lzYuIO2rFt8kmm8TgwYM7dnAFixcvZv3112/KtrpSb4kTek+sjrO5ekuc0HtibWacU6dOfSUiNq2rckSU9gC+AcwDNsyVfR1Yki+rc1sfAQJ4T67sduCeQr1bgSn1bHPYsGHRLPfee2/TttWVekucEb0nVsfZXL0lzojeE2sz4wQejTo/t8u+BHcAcHtELMyVtQD9gJENbuvV7Oc6AJLeAowGri3UawFGSBrQeLhmZtYsZSegIcCMfEFEzCadAQ2ptbKkN0laR9LbgbOAR4CHs8U7AG8ubh94inTcO3cudDMz6wxFiaNhS1oBnBgRFxbKXwCujIiTa6z/W2C/7OlU4MCIeDlbthcwBdg9Ih7PrbMj8AywX1RoB5I0HhgPMGjQoGEtLS0dPbw2Fi1aRP/+/Zuyra7UW+KE3hOr42yu3hIn9J5Ymxnn6NGjp0bE8Loq13utrisewArgKxXKXwD+p471dwL2BD5JOtOZCqybLduL1Ca0W2GdHbPyfWtt321APVtvidVxNldviTOi98RaVhtQqb3gSB0QKrXFDMyWtSsinsl+fUjS70g9444ALs+tX9z+wNy+zcysJGW3Ac2g0NYjaRtgPVZvu2lXRDwPvAZsnxU9SzrDKrYlDQFWAX/uQLxmZtYkZSeg24D9JG2QKxsLLAUmN7KhrCPCxqSzICJiOXAvcFih6ljggYhY0NGgzcys88q+BHcp6QbRGySdTTp7mQCcH7mu2ZJmApMj4ujs+XeBlcBDwHzgHaT7h54ldbNudQYwSdKFwI2kG1EPBPbv2sMyM7NaSk1AETFP0j7ARcBNpGRyASkJ5a0N5IfneRT4Eqm32rrAbNKIB/8bEYtz258i6VDgTOBYsjaiqGMUhL5i8Em3tHl+wtCVjCuUzTrroO4Mycz6iLLPgIiI6cCHatQZXHjeQtsznfbWvZF09mNmZj1I2W1AZmbWRzkBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlaL0BCRpF0l3S1oiaa6k0yWtVWOdPSRdIWlmtt7Tkk6VtG6h3gRJUeGxf9celZmZ1bJ2mTuXNBC4C5gOjAF2AM4jJcZT2ll1bFb3bOAZ4F3AGdnPjxfqLgCKCeepzsZuZmadU2oCAo4B+gGHRMRC4E5JGwITJJ2TlVVyVkS8kns+SdIy4EeSto2I53PLVkbEg10TvpmZdVTZl+AOAG4vJJoWUlIaWW2lQvJp9Vj2c8vmhWdmZl2l7AQ0BJiRL4iI2cCSbFkjRgCrgGcL5RtJekXSCkmPSTqkw9GamVnTKCLK27m0AjgxIi4slL8AXBkRJ9e5nc2BJ4BbI2JcrvyTwGaks6MNgM8DBwIfj4gbqmxrPDAeYNCgQcNaWloaPayKFi1aRP/+/ZuyrWaaNmdBm+eD+sFLS9vWGbrVgG6MqH499TUtcpzN1VvihN4TazPjHD169NSIGF5P3V6fgCStQ+rIsDUwLCLmtVNXwP1Av4jYrda2hw8fHo8++mitanWZNGkSo0aNasq2mmnwSbe0eX7C0JWcN61t0+Cssw7qzpDq1lNf0yLH2Vy9JU7oPbE2M05JdSegsi/BzQMqfb0emC1rV5ZQrgR2BQ5sL/kARMq2NwDvqtXV28zMulbZveBmUGjrkbQNsB6FtqEqLiR13/5IRNRTHyCyh5mZlajsM6DbgP0kbZArGwssBSa3t6KkbwDHAZ+MiCn17Cw7Y/o48MeIeKNjIZuZWTOUfQZ0KXA8cIOks4HtgQnA+fmu2ZJmApMj4ujs+RHA/wATgTmS3pfb5rMR8fes3mTgV6SzqfWBzwF7Agd37WGZmVktpSagiJgnaR/gIuAmYD5wASkJ5a0N5Nts9s1+jsseeUeREhPATOArwBakLtp/AA6KiNuaEb+ZmXVc2WdARMR04EM16gwuPB/H6omn0npHdyI0MzPrQmW3AZmZWR/lBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMStHwSAiShgLvBTYH1gVeA/4M3F9rOgQzM7NWdSUgSdsDxwJHAoNI46rNB5YDG5GmT1iVDf75E+CaiFjVJRGbmdkaoeYlOEk/AZ4EdgNOB3YH1o2ITSNi64joT5r2+t+BacA5wFOS9u66sM3MrLer5wxoKTAkIp6vViEiXiHN7XObpP8CDgO2ak6IZma2JqqZgCLiS41sMLv0dk2HIzIzsz6hU9MxSHonMBIQacK4aU2Jyqxg8Em3rFZ2wtCVjMuVzzrroO4Mycw6qcPdsCUdC9wHjAIOBB6W9IUmxWVmZmu4mmdAktaLiCUVFv03MCIins7qHU3qpHBJc0M0M7M1UT1nQH+WdGSFcpG6Y7dyt2szM6tbPQnoCOAESQ9Kem+u/BzgQUnXSrqZdOZzVlcEaWZma56aCSgi7gOGkW4w/bWkKyVtEREXAx8CpgB3kC7H/aBLozUzszVGXb3gIiKAn0i6FvgW8CdJ5wPfjYg/dmWAZma2ZmqoF1xELIyIE4E9SePBzZB0aJdEZmZma7R6huJZT9KZkh6S9Jiky4BlETEGGA+cKmmypHd3ebRmZrbGqOcM6Kekcd7OI11+2xy4U5Ii4k7g3cB1WdlljQYgaRdJd0taImmupNMlrVVjnT0kXSFpZrbe05JOlbRuhbp7ZclzmaTnJB3faIxmZtZ89bQBHQAcliUbJP0eeBXYAZiZDb1zkaSrgVMb2bmkgcBdwHRgTLbN80iJ8ZR2Vh2b1T0beAZ4F3BG9vPjue3vCNwO3Ax8g3TZ8HxJSyLiJ43EamZmzVVPApoBfErSVGAZ8HlgMfBCvlJEvAZ8ucH9HwP0Aw6JiIWks6gNgQmSzsnKKjkrGwC11SRJy4AfSdo2N3DqicBc4JMRsRK4R9LbSJcNf5p1rjAzsxLUcwnu08BOwCvA68DnSGdEy5qw/wOA2wuJpoWUlEZWW6mQfFo9lv3csrD9G7Lkk9/+1sA7OxSxmZk1RT33AT0dESOADYBNImKHiPhtk/Y/hHSGld/fbGBJtqwRI0ijMTwLIGl9YJvi9oGncvs2M7OSqMyrUJJWACdGxIWF8heAKyPi5Dq3sznwBHBrRIzLyrYiXSb8WETcmKu7NrAC+HxErNZpQtJ4Uu8+Bg0aNKylpaUjh7aaRYsW0b9//6Zsq5mmzVnQ5vmgfvDS0rZ1hm41oBsjqqwYJ6wea0+Is5Ke+rcvcpzN11tibWaco0ePnhoRw+upW89gpJ8Cro6IN+oNIGv83yIiflfvOh0laR3gWmAR8NXObi9LSpcBDB8+PEaNGtXZTQIwadIkmrWtZhpXmObghKErOW9a27fFrCNHdWNElRXjhNVj7QlxVtJT//ZFjrP5ekusZcVZTxvQfwHPSjqjvXt9JG0s6UhJNwGPA1vUse15QKWvrQOzZe2SJOBKYFfgwIjIrzM/+1nc/sDcvs3MrCT1zIi6u6SxwJeAb0paRGpHeQVYDmwEbAe8jfShfhVwTETMqWP/Myi0xUjaBliP1dtuKrmQ1H37IxFRbEtaLOmvxe3nntezfTMz6yJ1DcUTEddExN6k3nAnks5wVgLrAy8BPwP2J112+0qdyQfgNmA/SRvkysYCS4HJ7a0o6RvAcaQu1lPa2f7HCje2jgX+CvypzhjNzKwLNDQld0Q8S9bLrEkuBY4HbpB0NrA9MAE4P981W9JM0pTfR2fPjwD+B5gIzJH0vtw2n42Iv2e/nwscCfxc0o+BPUj3MR3re4DMzMrVUAJqtoiYJ2kf4CLgJlK7zQWkJJS3NpA/i9k3+zkue+QdRUpMRMRMSfsD55POhv4GnOBREMzMyldqAgKIiOmkeYXaqzO48HwcqyeeautOIQ3BY2ZmPUhD0zGYmZk1S+lnQGZrmsEV7q3K38c066yDujsksx6poTMgSf8uyWdNZmbWaY0mkxuBFySdLekdXRGQmZn1DY0moB2AHwOHA3+S9ICkz2VTKJiZmdWtoQQUEbMi4tSI2A74CDCT1G36RUk/lzS6K4I0M7M1T4fbcyLinoj4FLAzMJV0w+ddkv4i6avZqNNmZmYVdTgBSRopaSLwNGlyt4tJN4heD5xGGiTUzMysoobOUiRtS5oh9dPAYGASae6cGyJieVbtbkkPkAYlNTMzq6jRy2R/AeaShrq5PCKeq1LvSeDhTsRlZmZruEYT0L8Bt0fEqvYqRcSfAXdIMDOzqhptA9oD2LzSAklbSPp250MyM7O+oNEEdCqwdZVlW2bLzczMamo0AQmoNo/O1niaazMzq1PNNiBJrb3eICWfH0paWKi2LjAUuKO54ZmZ2Zqqnk4IS4BXs98FLABeK9T5B2nCt0uaF5qZma3JaiagiLgOuA5A0hXA6e10vzYzM6tLQ92wI+KorgrEzMz6Fs/tY2ZmpainE8LDwLiImC7pEar3ggMgIt7brODMzGzNVc8luCeBpbnf201AZmZm9ainE8JRud/HdWk0ZmbWZ5TeBiRpF0l3S1oiaa6k0yWtVWOddSSdK+l3kpZKqnhWJmmipKjwGNI1R2NmZvWqpw2oZrtPXiNtQJIGAncB04ExpCm/zyMlxlPaWXU94LOkEbfvBz7UTt0ZQLH33qx6YzQzs65RbxtQV7X7HAP0Aw6JiIXAnZI2BCZIOicrW01EzJf01ogIScfRfgJaHBEPNj90MzPrjHragMZ14f4PIE3vkE80LcDZwEjgpnbicmcIM7NerOw2oCGkS2T/FBGzScP/NKudZhdJCyUtlzRF0sgmbdfMzDqh7PuABgLzK5TPy5Z11mPAQ6Q2pk2BE0iX+faOCM/YamZWItW6kpUf/03SRGonoLqH65G0AjgxIi4slL8AXBkRJ9exjeOAH0SE6qi7HqlN648RcXCVOuOB8QCDBg0a1tLSUvtA6rBo0SL69+/flG0107Q5C9o8H9QPXlrats7QrQZ0Y0SVFeOE1WPtCXFC7de0p8RZ1FPfo0W9JU7oPbE2M87Ro0dPjYjh9dQt+z6geUCl/8aBdMHcQhGxRNKtwL+3U+cy4DKA4cOHx6hRo5qy70mTJtGsbTXTuJNuafP8hKErOW9a27fFrCNHdWNElRXjhNVj7QlxQu3XtKfEWdRT36NFvSVO6D2xlhVnQ4ORQroHBxgHvBfYAniRdJnrZxHxjwY3N4NCW4+kbUjdrGdUXKPzAo/mYGZWuoY6IUh6B/AMcDHwTuCN7OfFwExJuzS4/9uA/SRtkCsbSxr6Z3KD26pJUj/gIGBqs7dtZmaNafQM6DLShHQfyHqrASDpbcDNwKXABxvY3qXA8cANks4GtgcmAOfnu2ZLmglMjoijc2UHAOsDu2XPD80WPRIRz0sakMV0FTAT2AT4KrAlcFgDMZqZWRdoNAENB/4jn3wgdZ2WdCpwdSMbi4h5kvYBLiLd8zMfuICUhIpxFofn+SGwbe75ddnPo4CJwHLg76QRFTYDlgEPACMj4tFG4jQzs+ZrNAHNAtatsmxdYHaVZVVFxHTaH8mAiBhcT1lh+TLgkEbjMTOz7tHojagnAWdK2jNfKOl9wBnAfzcrMDMzW7N1ZDDSDYH7Jb0MvEy6vLUZ8CpwMnBjF8RpZmZrmI4MRvpkF8ViZmZ9SNmDkZqZWR9V9mCkZmbWRzkBmZlZKToyFM9Y4HPAzlTokh0RmzUhLjMzW8M1OhTPEcDPSCMLbA38hjTawJuAhaQbSs3MzGpq9BLciaT7fb6YPb8kIj4DbAe8QppIzszMrKZGE9BOwO8j4g3SQKQbAkTE66RptI9rbnhmZramajQBLQTekv0+B3hHbpmAjZsRlJmZrfka7YTwCPAu4HZS+8+3Ja0E/gF8G3iwueGZmdmaqtEE9L/8awTqb2e//5B0JvUI8PnmhWZmZmuyhhJQRDxIdpYTEfOBMZLeArwlP3+PmZlZLU2bkltSR6bkNjOzPqrsKbnNzKyPKntKbjMz66Ma7YY9HPh2pSm5gVOBPZoVmJmZrdkaTUCzaPKU3GZm1jd5Sm4zMyuFp+Q2M7NSeEpuMzMrhafkNjOzUnRoRlRJW0r6uKTPSTpE0pYdDUDSLpLulrRE0lxJp0taq8Y660g6V9LvJC2VFO3UHSNpmqRlkqZnE+qZmVnJGr0RdS1JlwDPA9cBPwKuB56XdLGkRrc3ELiLdIlvDHA6cAJwWo1V1wM+S5p/6P52tr838CvgXuAA4Bbgl5L2bSROMzNrvkZvRD0N+Ayps8E1wEvAIGAsKXm8ShqktF7HAP2AQ7Kx5O6UtCEwQdI51caXi4j5kt4aESHpOOBDVbb/LeC+iDg+e36vpF2zGO9oIE4zM2uyRi/B/SdwSkScGxGzI2J59vNc0of9uAa3dwBweyHRtJCS0sj2VoyIqpfdALJBUkcD1xYWtQAjJA1oMFYzM2uiRhPQZsATVZY9kS1vxBBgRr4gG1VhSbasM3YA3lzcPvAU6bh37uT2zcysE1TjRKJtZekJ4NGI+EyFZZcDwyLi3Q1sbwVwYkRcWCh/AbgyIk6uYxvHAT+ICBXK9wKmALtHxOO58h1JA6ruFxGrXYaTNB4YDzBo0KBhLS0t9R5OuxYtWkT//v2bsq1mmjZnQZvng/rBS0vb1hm6Vfkni8U4YfVYe0KcUPs17SlxFvXU92hRb4kTek+szYxz9OjRUyNieD11G20DOhNoyQYfvZ7UBrQZcBjpctcnGtxejxMRl5EGXWX48OExatSopmx30qRJNGtbzTTupFvaPD9h6ErOm9b2bTHryFHdGFFlxThh9Vh7QpxQ+zXtKXEW9dT3aFFviRN6T6xlxdnohHTXSppP6ozwPdIlrhXAVGD/iLizwf3PAyp9HRyYLeuM1vWL2x9YWG5mZiWoOwFJejNpEro/RcSIrMv1JsArEbGqg/ufQaGtR9I2pG7WxbabRj1LSo5DgMm58iHAKuDPndy+mZl1QiOdEN4A7iFLGBGxKiJe7kTyAbgN2E/SBrmyscBS2iaNhkXEctL9P4cVFo0FHoiI1RsVzMys29R9BhQRqyQ9A2zexP1fChwP3CDpbGB7YAJwfr5rtqSZwOSIODpXdgCwPrBb9vzQbNEjEfF89vsZwCRJF5IGST0we+zfxGMwM7MOaLQTwjeBsyVNi4hpnd15RMyTtA9wEXATMB+4gJSEinEWh+f5IbBt7vl12c+jgInZ9qdkielM4FjgOeCISr3fzMysezWagE4BNgYelzSH1AuuTT/uiHhvIxuMiOlUH8mgtc7gesqqrHsjniLCzKzHaTQBPQn8qSsCMTOrZHCFbu3Fru6zzjqoO0OyJmm0G/a4LorDzMz6mLoSkKR+pMb7wcCLwN0R8VIXxmVmZmu4eqbk3p40ZcLgXPFCSYe7Md/MzDqqnvuAziHduPkB0g2iuwKPkeYCMjMz65B6EtAI0hQMv4+IZRHxFPB54G2Stuja8MzMbE1VTwLaAvhLoexZQDT3plQzM+tD6h2Kp/45G8zMzOpQbzfs2yWtrFB+d7E8IhqdlM7MzPqgehLQaV0ehZmZ9Tk1E1BEOAGZmVnTNToUj9Wp1vAhHjrEzPq6RuYDMjMzaxonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFL4R1cysCYo3n4NvQK/FZ0BmZlYKJyAzMytF6QlI0i6S7pa0RNJcSadLWquO9QZIukLSPEkLJP1C0saFOhMlRYXHkK47IjMzq0epbUCSBgJ3AdOBMcAOwHmkxHhKjdWvBXYGPgusAs4GbgQ+UKg3AziqUDarM3GbmVnnld0J4RigH3BIRCwE7pS0ITBB0jlZ2WokjQD2BUZGxH1Z2RzgIUkfjoi7ctUXR8SDXXsYZmbWqLIvwR0A3F5INC2kpDSyxnovtSYfgIh4GHguW2ZmZj1c2QloCOkS2T9FxGxgSbas7vUyT1VYbxdJCyUtlzRFUnuJzczMuokiorydSyuAEyPiwkL5C8CVEXFylfXuJF1aO7hQfhWwfUS8P3v+ZeAfpDamTYETgGHA3tkZU6VtjwfGAwwaNGhYS0tLh45t2pwFbZ4P6gcvLf3X86FbDejQdputVpzQM2Itxgm99zXtKXEWLVq0iP79+5cdxmr8Hu16zfzbjx49empEDK+nbtltQF0qIr6Xfy7pVuBJ4GTg4CrrXAZcBjB8+PAYNWpUh/Y9rsKMqOdN+9fLPevIjm232WrFCT0j1mKc0Htf054SZ9GkSZPo6Pu9K/k92vXK+tuXfQluHlDpK8HAbFlT14uIJcCtwHsaiNHMzLpA2QloBoU2G0nbAOtRuY2n6nqZam1DeZE9zMysRGUnoNuA/SRtkCsbCywFJtdYb3NJe7cWSBoObJ8tq0hSP+AgYGpngjYzs84ruw3oUuB44AZJZ5MSyATg/HzXbEkzgckRcTRARDwg6Q7gSklf4183ok5pvQdI0gDgZuAqYCawCfBVYEvgsO45PDOznqc4cGpZg6aWmoAiYp6kfYCLgJuA+cAFpCSUtzZQHJ5nbFb3ctKZ3M2kZNZqOfB30ogKmwHLgAdIN68+2tQDMTOzhpV9BkRETAc+VKPO4Apl80lD7BSH2Wldvgw4pAkhmplZFyg9AZlZOXrKZRjru8ruhGBmZn2UE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSlJ6AJO0i6W5JSyTNlXS6pLXqWG+ApCskzZO0QNIvJG1cod4YSdMkLZM0XdLYrjkSMzNrRKkJSNJA4C4ggDHA6cAJwGl1rH4tMAr4LDAO2AO4sbD9vYFfAfcCBwC3AL+UtG9TDsDMzDps7ZL3fwzQDzgkIhYCd0raEJgg6ZysbDWSRgD7AiMj4r6sbA7wkKQPR8RdWdVvAfdFxPHZ83sl7Qp8G7ij6w7LzMxqKfsS3AHA7YVE00JKSiNrrPdSa/IBiIiHgeeyZUh6CzCadKaU1wKMkDSg8+GbmVlHlZ2AhgAz8gURMRtYki2re73MU7n1dgDeXKHeU6Tj3rkD8ZqZWZMoIsrbubQCODEiLiyUvwBcGREnV1nvTmBxRBxcKL8K2D4i3i9pL2AKsHtEPJ6rsyPwDLBfRKx2GU7SeGB89vTtwNMdPsC2NgFeadK2ulJviRN6T6yOs7l6S5zQe2JtZpzbRsSm9VQsuw2ox4mIy4DLmr1dSY9GxPBmb7fZekuc0HtidZzN1VvihN4Ta1lxln0Jbh5QqS1mYLasM+u1/izWG1hYbmZmJSg7Ac2g0NYjaRtgPSq38VRdL5NvG3oWWFGh3hBgFfDnDsRrZmZNUnYCug3YT9IGubKxwFJgco31Ns/u8wFA0nBg+2wZEbGcdP/PYYV1xwIPRMSCzoffkKZf1usivSVO6D2xOs7m6i1xQu+JtZQ4y+6EMBCYDvwJOJuUQM4HLoyIU3L1ZgKTI+LoXNntwE7A10hnNGcDL0fEB3J19gYmAReRblI9MKu/f6UOCGZm1n1KPQOKiHnAPsBawE2kERAuAE4tVF07q5M3lnSWdDlwJTAV+Fhh+1OAQ4EPA7cDHwWOcPIxMytfqWdAZmbWd5XdBmRmZn2UE5CZmZXCCcjMkLSupMsk7VR2LNZ3uA2oC0jqTxpMdQhtb3ydQerNt6is2BohaV1gs2x8vh5L0puBLXpinJK2A7YDnouI50qOZb12Fm8E/JU0mO8UgIhY0h1xNUrSYCAi4vmSQ6lK0mhgF1IP3T9GxP0lh4SkPYFHImJV2bH8U0T40aQHINKcRotIb7xFpH/qvxbKTiNL/j35AXwceKPkGL5Iuql4KfBH4FMV6uxZZpykQW+/D7yW/X3PycovBt7I/u5vAL8A1ioxzjdqPFbln5f8dx8PbFIo+zLw91yMLwFfKDnO84Azc8+3AB7IXstlwPIs1t8CA0qOdVX2ml0E7FVmLK0PjwXXXBOA/yIlmJaI+Gt+oaStgU+QuplHVt+qkPQJ4AfAL4HHgPcDEyWNAT4ZEcvKjC/n66SJEc8nJaEvSdoUOJg0WeIfgL2B7wKfBy4pJ0yWAguzOF4tLFuf9MF0Du2PQtJdfgg8TjZAZjZI8AWk6VWuJ/3/HAb8QNL8iLi6pDgPB/479/wiUhIaSXYmmf1+Jen9cTTlehz4D+DYbNDna0ifVX8oJZqyM+Ca9ADmAOPrqDcemFNinPfU+ZhGuWcWj5KdTeTK9gH+RvqWuXFWVvYZ0AzSqO6tz/cmfdv8SqHeacCjJca5JXA16UP9S+TOxkhjJq4CPlhWfIVYVwHvLbzGV1So93PSZaWy4lwGfCD3fDFwWIV6RwCv9oTXlHTG/tHsvfA66QztadIX47d3Z0zuhNBcG5EuF9XybFa3LB+UWGc2AAALs0lEQVQEBpG+Bbf3eL2sADNvB27NF0TE3cD7SK/fA5K2LyOwgm2Bh3PPp2Y/Hy7Um0Ia7aMUETE3Io4ADiF9E58mab+y4mnQDqTJJItaSG0tZZlNep+2Wkk6yyxaCKzTLRHVEBErIuI32XthM1JynA6cBEyX9AdJJ3ZHLL4E11wPAl+X9GBELK5UQdL6pFP2B7o1sraeBGZExNj2Kkk6lHSKXpYFpHlK2oiIWZLeD9xCeh3P6O7AChbT9gvF8uxRbMRfix7wPxcR90l6D3AscLWk+yn/Naxk3VzHiVdJ39SL3iBdjivL5cAESb+LiKdJl9q+KemhiJgPIOmtwMm0P75lKSJiKel//BpJG5K+nHwCOBM4t6v3X/o/wxrmOOAuYHY2Vt0MYH62bACpV9x+pA+nfUqJMHkQ2L+OekHqWFGWqaR2lOuLCyJinqR9smXfp9wPoaeBYcCvs9hWkaaVL9oVmNV9YVWXxXixpBbgO8DvKPc1rOTe3O8iXT66q1DnXaROPmU5F3gn8ISke0ij7O9G+gyYRop7KCmBfrK0KOsQEQuBiaR21o27Y5/uht1kkjYifbPcn8rdsG8DLm39dlQGSTsAu0bEb2rU60fqhl1Kd1dJhwFfBf4tIl6rUmctUoP1RyJiu+6MLxfDx0ntUe2OKCzpNuDhiCiOdVg6SbuQBvf9XbXXupvj+XSF4hejMI6jpOtJZ/OnVKjfbSTtDxxFao/cnJR45gFPATcDl0VEqZe0Jd0LHBsRPaGTCeAEZGZmJXEnBDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACsnZJGidpqqTXJc2T9Jik87toX4dLGldHvQmSIveYK+lXWe++evYzUdKjnQ64Ceo95qxu63E/U2X5M9nyCV0VQ4PbbfM6N3s/kt4k6bjsPblU0kJJT0r6vqQO3T6g5PEqvfBaj2lwlWUXSfppR/bbVzkBWVWSvgH8hDSd+SHAf5LudfloF+3ycNLYafVYAIzIHl8j3Xtxd3ajby1nNLCfrtbIMUMa+mU7ScPzhZL2AAZny7s6hnoVX+dm7+ca0g2TN5Dek58mjZzx/uh4997DgbeShqlp1HeBIyXt2MF99zm+EdXacxzwo4g4OVd2k6TTygooZ2VEPJj9/qCk2aSbKQ8EritWzu4XWisi/hER9QyX1FMtJg1u+gnSWHmtPkEav29YGUG16q7XWdIBwKHAgRFxW27R/3X07CdzPPDziFiR29fapGT6KdJ4ev8h6VngtIj450gh2QgdU0j3AZ7QiRj6DJ8BWXs2Ig382Ub+22XrZRZJB0uaIWmZpCnZjY1tZJdgpklaLumvkr6T/XMjaSJp+oeRuUtrExqItXX8tcEV4nqSdGawZ35ZIbYPSrpX0iJJCyRNkrR7bvkHJE2WtETSq5J+LGmD9gKSNELSbyS9KGlxdmnnyPxr18FjbgEOb/2gzX4eToWx0joTQ/YaXF/Y3qiszjvzr2Wt17nafiQdKGmV0rxJ+f1sl5WPqfIajMx+3lNc0NGzn+zM5f2sPvLGl0kjnn+fdIb1GdIQPJVGC/gV6SzIn6118BmQtecPpKkFZgM3R0RxCP9W25KGmv8Wacj/04DbJe0U2ZQJkvYlXTK5EjiRNITKGaR/4mOy399GSnpfyLb7QgOxDs5+/q1Qdg5pjqa/ARUnhJM0CriTNPTLp0lnGXsBWwGPSdqLNATMjaRv3RsDZ5FGuTi0nZi2BX4PXEr6YN4LuELSqoj4JR0/5htIoz/sTTrr+wCwaVZeHL+rq2LIG0zt17nafl4E5pJe9wm5+uOAl0nj/VXSOtbiuZLOa9JoHftk2/1joXwkcE9EnJN9sfp9RMyqso37SQP9Dq2wHSsqc3hwP3r2g5Qk/kIaI2wVaRDT04ENc3UmZsvfnyvbljQq8DG5sgeBewvb/zppMMmts+fXA5PqiGsCaUqBtbPHzqTksZA0M2o+rt0qrD+R3LQIpAFNH6XKJIGkD/li7B/Ktv/OOl9LZbH+iPRh1lpe1zHnjzv7/dfAxdnvlwA3Zr+/AkxoRgzAJOD6Qtmo/HE3+DpX28+ZpKSlXJyzgO+281psDjyR7TuAP5EG/Ozfiff7ZVSY2iF7vf6a7XMiMLidbaydvfc/19E4+tLDp4lWVUQ8AbyD1MB7CemD4VvAo0rTjrd6OXJTDkf6NjqVNHhka7vAe1i9beYa0mXgER0Ib2NgRfZ4mjTNwdiIeDFXZ05EPN7eRrJOC3sCP4vsE6SwfL0svmslrd36IE2tsIJ22lwkDVTqkfV8LtbxpITZWS3AoZLeQjoLqzRVQVfH0Krm61zD5aQvLaOy56Oz51dUWyEi/gbsThrc94ekM6vvAPdLWgfSeHLZJcfHs8u+M7LfpypN4160OdkEeAXfIZ0ZPUf6X/hadlZcKa6VpAGIN69xzIbbgKyGiFgeETdFxHERsQtp5s+daDuz48sVVn2ZNDMkpCkV3kyaDjiv9flbOxDaAmAPYDiwNelb6W2FOsX9VTKQlFhfbGf5WqQEvCL3WE46pm3a2fZEYCzpsti+WbyXA+vWEVctvwH6kz4c1wduKiGGVvW8zlVFxF9IZ1tHZUVHkQZtfbLGem9ExB0R8QXS5b0rSJe+RmTLfxYRu5G+/KwkTUO9W0QMi1wng5x1SX/X4n5mZ9v9GOmKwN7AFFW/HWE5zX1911huA7KGRMRPJZ1DGum71WYVqm5GumQH6Vvligr1BmU/OzL68sqIqHUvTz2N0fNIlxe3qLJ8Pv+aPv3WCsvnVlpJ0rrAvwFfjIhLc+VN+dIXEYsl3UwaLfy6qDD/VBNiWMbqk6gNrFCvGSMa/wT4sVLX/0NosBdZRKySdAcpeRU//HcC5kX1NsxWr1HlzCVLWL9VmiZ+AmmakAskXZglqLyN6Nh7us/xGZBVJWm1xCJpU9LcRvlvvZspTRDXWudtpG+dD0P6pkq6JHdYYXOHkz78Wyfn+wfd/M0x++B+CPjP1l5lFZY/SJqq+NEKj4oJCHgL6f/rn9+os15zxXuoOnPMPySd+VxaZXlnY3iBtl80IJ1FdVR7x3pDtryFFHPFS4oAkgZVWfRR0iSADxXK3019HQKeBlab0qPS+wJ4JPv51kLdTYH1SPMCWQ0+A7L2TJP0a+AO0iW1bUk3fS4Bfpar9wpwlaRT+FcvuJdJl39anUrqGXcF6cNlKKln1I8jorXX1QxgjKSDSR9+c9v5gG+mk0i93G6TdBnpev8IUgP6zaTOEndLWkVqSH+ddMnnIOCbEbHah01ELJD0CPBtSQtJifYk0qXDDXNVO3zMETGJdOmq2vLOxvB/wNGSLiD1RhtNfRMZVlP1WCNimaRfAF8Efhntz5d1raTXgWtJnRU2A44ExpAa/4vrvpvUYaGW35Neq00j4u+58qslPQbcR7rcOYx05jmHNN9P3nDSGeH9WG1l94Lwo+c+SB8Gd5AuMy0j/bNfDQzJ1ZlI6kF2COlb33LSP/JqvcNIbRHTSN90XyC1X6ydW74J6UPvNbLLXlXimkDWG6yd2CeS64FVaxmpq+19pOQ6n9Srbrfc8j2B35J62i0GppO6ng9oJ4Ydgbuz+rNJiaxN7PUecwPH3aYXXGdjAL5B6gH2OnAV6Syj2Auurte51rECH87KP1zjGD+T/S1eyN5Lr5ES5Kgq9W8CPlHH+30d0sylnyqUfyzb399ISXwhKfHvXmEb36PQY9KP6g9PSGedkt1g+M6IGF6rrll7srbFw4HtI00Z3qztzgb2i4ji2Uqlut8DdoyIg6osn0hKnLMqLFsLeB44KSKu6lTQfYQvwZlZqSS9HdiFNITNaU1OPgNJN+nW2yZzLvBnSTtHhUurNRxGugRdtf3K2nInBDMr249Il3ZvJQ130zQRMS8i+kXqCFNP/RdIl/iq9Yq8kXSJthIBR0e6F8jq4EtwZmZWCp8BmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmal+H/C0E4RTJkX9wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot probability distribution\n", - "x = uncertainty_model.values\n", - "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", - "plt.ylabel('Probability ($\\%$)', size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate Expected Payoff\n", - "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function with Quantum Amplitude Estimation." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Estimated value:\t1.2580\n", - "Probability: \t0.8785\n" - ] - } - ], - "source": [ - "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price = 2\n", - "\n", - "# set the approximation scaling for the payoff function\n", - "c_approx = 0.25\n", - "\n", - "# construct circuit factory for payoff function\n", - "european_call = EuropeanCallExpectedValue(\n", - " uncertainty_model,\n", - " strike_price=strike_price,\n", - " c_approx=c_approx\n", - ")\n", - "# set number of evaluation qubits (samples)\n", - "m = 5\n", - "\n", - "# construct amplitude estimation \n", - "ae = AmplitudeEstimation(m, european_call)\n", - "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_master", - "language": "python", - "name": "qiskit_master" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/qiskit/finance/machine_learning/readme.txt b/qiskit/finance/machine_learning/readme.txt deleted file mode 100644 index e69de29bb..000000000 diff --git a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb index fb7233aed..0442e31aa 100644 --- a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb +++ b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb @@ -140,7 +140,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUaf//7Wb3fSekEAIgSSUhBBa6CVBLAgiFs7uUVQ4VKR5igW/gg0bFhA4BIEfnIqHngUFvINQpBqkpjdCGpC2m2zKJlvm90duR0IKSXY3m4R5/cfO7MwzYXf2Pc/neZ63JQWPSehc34HVFDUH/2ORc1sSx6H9bB1Cp0WvNWLI6FwD9Noco0DeSXv63mbrQCyPzFjNhLcG8uMjh2wdSqvxnDwEtzm3kO9pR8Hp01RWVhIREYGXl5fFz1VTU8PSpUtRqVQcOHBAcklvJtKSlpUxGAxoNBry8/MZNmwYAQEBNhc7YDnBY5orcfHiRTQaDXDjTJRRU4z2j2Szz21p7PsF2jqETktZohahRppvZC6F+5OormpZZrij4OmSS+i9HS9L4ejvxbgdrzJp5xuMui0GFxcXDAYD/v7+ZGZmcvz4ceLj48nNzaW8vLxZlkRNceXKFaZNm0ZISAg7duyQxE4LkDI8reRGP+qCIHD58mUuXryIUqlk8ODBFju3JSZzmit4rp2rM2jQIFQqFTk5OWg0GhwcHPDy8sLLywt3d/d67ZP6Y7tB3/6WjpTdPQDLFIVL1KXg5BVbh9ApEHR6ck+7EDq2ytahWIURc7zJ3CVDMHSMWrqeD09gyPtzcfB2Q6vVcuHCBfz8/Ojfv794jzYajWg0GkpLS8nMzKSiogJHR0c8PT3x9PTE3d292X5aJ0+eZOHChbz//vvceeed1ry0TokkeKyAVqslISEBBwcHRowYQVxcnMWObSoStqXgub5Wx9nZGWdnZ7HVsqqqCrVaTX5+PsnJySiVSry8vMQvt/bgUbNitxYKTwWS4LEOZafbj1lkR+fqf1IIGt4VpX3ny5jZGwoZtWwEx1ectHUoTeLo78Ww1c/S/a6RAKhUKpKTk+nXrx/e3t519pXL5Xh4eODh4UFQUBCCIKDValGpVFy+fJmUlBTs7Ozw9PTEw8MDT0/PesXNgiCwdetWtm3bxg8//EBIiDQvrDVIgseCCIJAbm4u2dnZhIWF4ePjY/FzmLq+zK32t4QHVmO1Ok5OTjg5OdGtWzcAqqurUalUXL16lcsHf6VbXjucKWKvRK6stnUUnRKDzkhNsiR4LIWxQkv+BS96RnXOmqjgqDLOdnOm6nKlrUNpkF6PTmTwu0/h4O2GIAhkZ2dTUFDAkCFDmtUlJZPJxHtkQEAAUNvQolarKS0tJTs7G71ez4kTJ7Czs2Ps2LFs3rwZrVZLbGxss7t6JeojCZ5Wcv0PfWVlJQkJCbi6ujJy5Mh68xAsZRBnKXsJcz2wWnItDg4O+HfpgsfJo1Tt+rE14Vodh4F9kMk6Rhq9o1GWVI2xuh2bRHZALu9Np/sgTxSK9rc0bC5Kahi7YiD75ravsRWOXb0ZvuZZAiaPAGrrMxMTE1EoFERFRbXK/8qEUqmkS5cudOnSBfhzzs6PP/7I3LlzUavVjBw5kg0bNjB27FiLtrjfTEiCxwxMvihZWVlcvnyZ8PDwBivyTSLFEkOhLGUv0VzB0tysTlMY8nIp3/gZhsz2NVX5Whwieto6hE5L6emO3WrcHtGrNFxJ6UNgROecbRTQtYget/YiZ3+WrUMBoNdjExny7hzsvWoLhE0WET169BCzNJbE9EB68OBBVq9eza233kp6ejpHjhxh48aNdOnShZUrV1r8vJ0dSfCYgUajIT4+Hh8fH0aNGtWowjeJFEsJHkvPz2kMc7I6AILRiPbXX6j69mvQte96A3mg5VtHJWopPSMtZ1mDrJ/SCAhzR968etcOhQyB4c/62VzwOHXzZtia+QTcOVx8rbCwkPT0dCIiIqxi5WA0Gvniiy/YsWMHu3btomfP2oexPn360KdPH2bPnm3xc94sSILHDLKzs+nfv/8NP/SWtISwpGN6Y1gkq1NwlYqNa9GnJFkjRItjdJcmNFgDo96I5pw0cNAqFGvITw8msF87rImzAG6KYqKej+KPVX/Y5Py9Hr+VIe8+hb1nbVZHEAQyMjLMsoi4EVVVVSxZsgRBEIiNjW3xcFqJppHu8mYwYMCAZil8S3tgWepYDXHtEEGTI29LxI4gCGhj/0vpq893GLED4OYrrYdbg7LUGoyV5nu2STTM1X2FZs91ac/0v9WAg1fb2iU4Bfgw/rvXGfmPRaLY0el0nDlzBrCsRcS15ObmMnXqVKKioti6daskdqyAlOFpAyyZlbHkkpapBsnU6m5uVsdYUkzFF+vRXThnkfjaCkVwADKZ1I5uDaT6HetSdfEyxbmD8e1RaOtQrIJcr2HCuyP49W+H2+R8wTNuZ/A7T4hCB2pLFxISEqxmEQFw+PBhXnzxRVavXs2ECROscg4JSfC0CZbMylg6W2QwGJDJZObV6ggCNcd+o3L7ZoTKCovE1pY4DOpj6xA6LaVnLts6hE5P7n41vrNsHYX18A+4QtdRAVw5kW+1c9j5utFj2V8InDIKg4OdeC/Mz88nJyeHyMhIq7SDG41G/vGPf/DDDz/wyy+/0KNHD4ufQ+JPJMFjBq0xEDUXOzs7qqstMy/Gzs6Ompo/24VbldUpK6Viy+fo/vjdIjHZAvveXW0dQqfEaDCiOZNp6zA6PeXxWagLIvH0K7F1KFZBJhgY/1IoO++1juAJnnE7g96eTZXMgFqtJiUlhaqqKrGztl+/fjg7O1v8vJWVlSxYsAAnJyf27dsnOZ23AZLgaQPa45KWIAgolUpSUlLw9fXF29u7xWvGNXEnqdi6AeF/HlodFa2rDGmUl+UpT9dhKG+fw+M6GzmHtHg+YOsorIezPJ+BfxvI+Q3nLXZMp+6+DP9sPt1ujwLAAfD09ESr1XL+/Hl8fHxwdnYmLy+PlJQU7O3tRTsIDw+PZttBNMSlS5eYNWsWM2fO5Omnn24X/oo3A5LgaQOuz6SYg7ni6dpanX79+lFeXo5arSY5ORmtVoubm5vog+Xk5NTgF9FYUU7l9s3UHPvNnEtpN3gGuAHSlGVLoz6ttnUINw2lJ9PQ3NYfN69SW4diNQbeoyTxnwr0FeZny0Nm3cGgt5/A3qPuo05DFhGBgbWmwlqtltLSUgoKCkhPTwfAw8NDtM1pbiHzwYMHeemll1i7di3jx483+1okmo8keMzAVktarT3W9XN1FAqF+MTSq1cvBEFAo9FQUlJCSkqKKIA8PT3FDJDuwlkqvliPoOocxagydxfkCknsWAOpfqdtyT0K4VNtHYX1sNOriX5nFLELj7T6GM6Bvgz77Dm63Ta0zuvNsYhwdHTE0dERf39/APR6PaWlpajVanJyctDpdOL90tPTE2dn5zq/EUajkTVr1rBnzx727t1rlYGFEk0jCZ42wBqFxi2huR1YMpkMd3d33N3d6wgglUpFWvwF3GJ/xTPxgkWuo73gOKQfUjLZ8ghGgTKpfqdNKT6cROWEvji7lts6FKsRGFqEd4QvJQlFLX5vyKxJDHp7dr2sjsFgICEhAaVS2SKLCIVCgY+Pj+iZaHJFV6vVpKenU1lZyf79+xEEgZEjR7J9+3a6dOnCf//7XxwcHFocv4T5SHN4zKC5GR5LtpK3dEnLnLk6JgEUUFVOzx3/r9OJHQD7cKkrwhqo06owlHbeH952iVEgJbZ9TzQ3F5lRx4Tl/Vv0HudAX2J+XMHwz+bXEzsVFRWcOnUKX19fwsPDzfLDMrmi9+zZk0GDBjFq1Cjuu+8+5HI5r7/+OnFxcaSnp7Ny5Ur27duHxozax5ycHG655RbCw8OJiIjg008/rbdPaWkpd999N4MGDSIiIoItW7a0+nydBUnwtAG2WNIyCR29Xt/6dvOaaiq+3Ipm5QqMRZ1zzoeyh7etQ+iUFMd1zum/7Z2K49lUV3Xubh83hzz6PRrerH1DZk/izt/X0vXWofW2FRYWcv78ecLDw62yvCSTybh8+TK7du1iw4YNZGdn8+WXXzJo0CD27NljlheWQqFg1apVJCUlceLECdauXUtiYmKdfdauXUv//v05d+4cBw8e5Pnnn7dYLWlHRVrSagPa2lrCXA8sAH1GGuWff4bxsvVmX7QHlN5KoG28yW4mtImdo8arw6HTk3fGjZAxnXu6ddRjbqR9K8dY07BbvHOPLgxft4Cutwyut60tLCKMRiMff/wx+/fv5z//+Q9du9aOvvD39+e+++7jvvvuM+v43bp1o1u3bgC4ubkRHh5OXl4e/fv/mf2SyWRoNBoEQaC8vBxvb2+L+Dl2ZKQMjxm0pGjZ0tORG8IiWR29jspvd1D25rJOL3aQy5Hb39xPPNZAEATKTkv1O7bi6q8p6GqUtg7DqigNxYx7Y1SD20KfnMydv3/WoNhpC4sIjUbDjBkzuHr1ah2xYy2ysrI4c+YMI0eOrPP6/PnzSUpKIiAggMjISD799FOzluw6Azf31bcRcrm8UZHSUhoTMOZ6YAHosy9RtvxltD99BxaKtz1jHxGMTNb5r7OtqbikQ19SZuswbloMFVXkx3vZOgyr0yuyFPdeHuK/nYP8mLDrLYZ9+gxKt/qDAsvKyvjjjz8IDAykd+/eVpl9k5aWxpQpU5g2bRpr1qyxiqC6lvLycqZPn84nn3xSz9fx119/ZfDgweTn53P27Fnmz59PWdnN/b2UBE8HxyJZHYOBql3fU/b6UgzZl6wUafvDYUCIrUPolKjPdN5ZMB2Fy3szMOg79+1dZtAy+vXaWp7QpyZz58k1+N8yqMF98/PzSUpKIjIy0ip+WIIgsHfvXmbMmME//vEPZs2aZfVhgjqdjunTp/PYY49x//3319u+ZcsW7r//fmQyGb179yY4OJjk5GSrxtTeubkX9MzE1tMxLVGrY7icR/nnazFkpFkhwvaNfYh1jABvdkpPX7V1CDc9+pIyrqSG0r1/ga1DsSo+flWEbJyDrlcX4tNT8PT0xMvLC3d3dzGznpKSgk6nIyoqyio1LAaDgQ8++ICjR4/y3//+12oGo9ciCAJPPvkk4eHhLFmypMF9goKC2L9/P+PHj+fq1aukpKQQEnJzP+RJgqcNMQkTS2DK6EDrPLAEo5HqfXup/NeXcJNW7iv8nJEmLFsWQRAoO3PR1mFIAHl7s+nWzxF56x0Q2jUG7zAM/R9nuH2ts3lVVRVqtZr8/HySk5ORy+VotVqx5dwaYqesrIy5c+cSGhrK3r17USrbpnbq6NGjbN++ncjISAYPrq1Veuedd8jOzgZg3rx5vPbaa8yaNYvIyEgEQeC9997D19e3TeJrr0iCx0xkMpkoPJrC9LRhjv8K/OmBlZqaio+PD15eXi0uRDMUFlCxaR36pASzYuno2LlI9TuWpjJPj65A6tBqD9TkF5MZ34fegzqXn5kgk6MPuQtD0C0g+/Pe5+TkhJOTE926dUOlUpGUlERgYCB6vZ4zZ84gCEIdKwhzh/8lJyczZ84cFi9ezGOPPdamGf9x48bd8HcnICCA//znP20UUcdAEjxthGn4YGsFz7XTkiMiIlCr1RQXF5ORkYFcLhf9rzw9PRs9hyAIVB+KpfKrraDt3G2rN8Kumw9yeece0mYL1Gdu7qLI9kbpsQqEgbZffrcUgoMnNQNmIngEN7z9GouIoUOH1rGIMBgMlJaWolKpyM3NpaamBnd390atIBqNQRD4+eefeeedd9iyZQtDh9af8SPRPpEEj5k0N8NjmsXTmqr9azuw5HI5Dg4O+Pv7i54uOp0OlUpFUVER6enpDQogo6qEis3/QHfuTIvP3xlxGNzP1iF0SqT6nfZFVUY+xXmD8A1suRVDe8PgG4Eu/FFQujS8/QYWEXZ2dnh7e4umoA1ZQTg7O4t1QK6urvWOYTAYWLlyJadOnWL//v03/RJRR0MSPG1Ea4YPXu+B1ViruVKpxM/PTyyWq6mpQa1W1wqgtDTcM1Locmg/cm2V+RfSSZBLBctWoex0lq1DkLiOvNgyfGfYOorWI8js0IfejaFHDDSSgamoqCA+Pp4ePXo0e2qyyQrCZAchCAKVlZWo1Wqys7MpLy/H3t6e//znP2KtzKJFi4iIiGD37t03/RC/jkjn7ltsR7TWA8tgMLR4ro69vT1+fn706daV/nFH8f/1Z0nsXE+X+nM6JMyj8rKOmssdP5PQ2dCcv4i6sGPO5TE6elMTtQBD0IRGxU5hYSEXLlww2yJCJpPh4uJC9+7dGTBgAKNGjaJ///74+/vz5ZdfEhMTQ0ZGBoIgsGfPHkpKSlp9LmieHxbAwYMHGTx4MBEREcTExJh1zpsdSaKaSUsMRJvrgdWcrM6NqPkjjootGxDKpJkoDeHWzRW4ueuYLI36TOvNECWsS+6hGjz/YusoWoahy0B0YQ+DsuGHk2stIoYOHWqVIX8ODg54enpy6dIl9u7dS8+ePTl27BhHjhxh1apVPPbYY8yZM6dVxzb5YQ0dOhSNRkNUVBS33357HXsItVrNM888w969ewkKCqKgoHOPGbA2kuBpI5qzpHV9rU5rhI6xooLKf26h5uih1oba+XG0R66U2tEtjfqPK7YOQaIR1CdS0dzWHzfP9v8AJMjs0Pe5F0P3cY1mdXQ6HRcuXMDd3Z0hQ4ZYpShbr9fz5ptvkpCQwP79+8Xan8mTJzN58mSzj98cP6yvvvqK+++/n6CgIIA2mfHTmZGWtNqIppa0rp+W3Fqxo4s/R9mrz0ti5wY4DO6HjBsXmku0jKKTN9/wyo5E7jFbR3BjjE6+1AxbhCFwfKNipy0sIkpKSnjggQdQKpXs2rVLFDvWojE/rNTUVFQqFRMmTCAqKopt27ZZNY7OjpThMZOWLGnpdPXboC2R1RG0VVTu+CfVsdLMhebg0L+nrUPodJTlV0FB+88e3MwUH0qmKro3Tq4Vtg6lQQx+Q9CFPQQKx0b3yc/PJycnh8jISFxcGu7WMpf4+Hjmzp3LsmXLmD59utVb+pvyw9Lr9fzxxx/s37+fqqoqRo8ezahRo+jbt69VY+qsSIKnjVAoFFRV/Vk4bKlaHV1KEhUb12IskNqBm4t9T+s+rd2MVMRLS4TtHoOR3DhH+tzSvgSPIFOg73s/hoDRjWZ12sIiQhAEvv32Wz799FO+/PJLIiIiLH6O67mRH1ZgYCC+vr64uLjg4uJCdHQ0586dkwRPK5EETxtxbQ2PJTywhJoaqr7bgXbvz9CMOUASf6LwdUQqWLYspaelYsqOQMG+JIJG98DBsX0IVK3CkwTlaCryFHhWpImzw661aNBqtVy4cAE/Pz+CgoKsVq/z+uuvk56eTmxsLJ6enhY/x/U0xw/rnnvuYf78+ej1empqajh58iSLFy+2emydFUnwmElzv3wmwWNavjK9tzVfXn1mBuWfr8GYn9fi90qAnWPL5iFJ3Jiy05dsHYJEMxCqdeSdcSdkdKGtQ8HgPwz6PUCEwgGdTidOQc7KysJoNOLu7o69vT1XrlwhPDzcanU0RUVFPPHEE4wdO5YffvjBbPuf5tIcP6zw8HDuvPNOBg4ciFwu56mnnmLAgAFtEl9nRHaDKcFS6uAGGI3GBmtzrkej0ZCQkEB4eDjOzs4t9r8yYcjPo3z9pxguSQaNrUHZJwj/lyfYOoxORXWxnpOTv7J1GBLNxM7NmWGv+KFU2sZaRZAr0ff9C4ZuIxpdwtLr9aSlpVFUVISTkxM6nQ43NzcxA9RcG4gbcfbsWZ5++mneeOMNpk2b1uEsOK5evSpO3JcQafQ/UcrwWBlTrY6DgwN+fn6kp6dTVVUlfnm9vb1xcnJq9vHsArrj8eb7FF+6xOWjh/HTlOKQk4UhJ1ta2moGsvAetg6h06E6275qQiSaxqCp5HK8F0FD2n4Z0ujSFV3ETATXbo3uYzAYSExMRKlUMnbsWNF4uby8HJVKVccGwmSh4+rq2iKxIggCO3bsYP369XzzzTeEhYVZ4vLalLfeeouffvqJ5557jjvuuEMSPs1AyvCYiSAI1NTUNLqtoVodQRDQaDSUlJSgUqnQarW4u7uLAuhaw7vr0ev1pKamUl1dTf/+/UXHX2O5Bn1KMrrkBPTJiRiysyQB1AAOz95Nl6iOOXW2vZLyYTpX/9UBep4l/sTDmdEve2OnaLt7hL7bSPR9p4Nd4wMCm2sRIQgCFRUVqNVq1Go1Go0GR0dH0QfL3d290Sy6Tqfj1VdfJT8/ny1btuDh4WH2tdmCs2fPcvToUT7++GNCQkJYtGgRU6ZMsXVY7YFGla8keMykIcFzfQfWjWp1TCZ2JgFkcvE1CSCTqCkpKSE1NZWgoCC6devW9DErKtCnJqFPTkSXnIghK1MSQIDfR09h79mwQJVoHXGP7qcqXaon62gEPzmU7uHW7+4U7OzR9X0AY7fhTe5XWFhIRkYG/fv3r9ee3RyqqqpQq9WoVCrKyspQKBR4enoil8vx9vbG09OTgoICnnjiCSZOnMgrr7zS6tICW2J6gDZx5MgRtm/fztatW1m9ejUPPPCA1ecGtXOkJa22ojUdWNea2AUHB2M0GikrK0OlUhEfH09NTY14vIiIiGbdDOQuLtgPGYb9kGEAGCsr0KeloE9K+FMA/U+Q3Uwo3DrWGn17p0ZtkMROByX/1xy69bPHmr/5RteA2iUsl8aXW661iIiKiqrTodUSnJyccHJyEqcXm0yU9+7dy5o1azAYDFRUVDBjxgzmzZvX4cTO9bPaDAYDdnZ2jBs3jmHDhuHj48OCBQtQqVTMmzevTTrNOhp2y5cvb2p7kxslarM3JoFjNBrFacqt7cAyvdfR0REvLy+cnZ0pKirC19cXNzc38vLyRCdfg8GAvb19s7oKZEp77Lp2QzlgEI4TbsNx0lQUYeHIvbwRjMZaz61OngGSebrhMbmPrcPoVBSdLKf4v8m2DkOiFRjKKnHq2xsXL+vUYOkDxqAbMAscGl8y0ul0nDt3DgcHB/r372/RDik7OztcXFwYOHAgjo6OJCcn8/zzz1NaWsqqVatYs2YNp0+fZtKkSa0+b05ODvfeey/vvfce69evR6/XM2rUqAb3jYuLIygoiIiIiDr2ETdCp9Nx9uxZunfvDkBGRgbu7u4oFArxQVihUHDrrbeSn5/PP//5T7y9vRk6dGiHK8K2ECsa2yBleCyEaQnLHKFzLQaDgYyMDDQaDYMHD65T2GwwGMQWzpycHAwGg7h27eXl1awnJJmTE/YDh2A/cAhQO61Zn5Yq1gDpM9OhBe7uHQHHof1sHUKno/S07dubJVpP+k/ZdFngYNEfRsHOAV3YQxj9hza5X1lZGYmJiYSEhFjNI6qmpoalS5eiUqnYt28frq6u4rbq6mrOnj1rlulocwxAofaevXTpUiZNmtTic5w6dYr169fzzDPPsGLFClxdXXn88ce555576mV71q9fT1paGuvXr2f06NEMGjSo1dfWGZEEj5lcuHCBlStXEh0dTUxMjGjyZg6lpaUkJSXRvXt3+vTpU+9mZGdnh7e3t7hOazAYxLXrS5cuIQgCHh4e4rp1swSQoxPKyEEoI2u/IEK19n8CKBF9cgL6jLQOL4DkvRvvDJFoHWWnc2wdgoQZGHOKKcjuj39Py9iCGN0Ca5ewnLs0uV9bWERcuXKF2bNnM2XKFF544YV6S1gODg71vKtaSnMMQAHWrFnD9OnTiYuLa/E5Ro8ezZ49e5g4cSJDhgzhr3/9KyNGjKizj52dnSh6tm3bRlhYGN9++y2DBg0Sl8IkJMFjNv3792fBggXExsaycOFCrly5wtChQxk/fjwTJkyga9euzX56MhqNZGRkUFpaysCBA3F2dm7W++zs7PDx8cHHxweo7eQyCaCLF2vn9ZiyP56ens0ayy5zcEQ5YCDKAQNrY6uuJu/ob2jjz+NbWoKQlQnNmD/UrvBr3t9TonnoNAYqUyXB09G58psWfwvYy+kDx6PvfQ/IG7+/XGsRMWzYMKsN+Tt58iQLFy7k/fff584777TKOa6nMQPQvLw8vv/+e2JjY1skeEzLVfHx8Wzfvp2IiAjuuOMOpk2bVidTZdrXzs4OvV5PQEAAy5cv5/XXX2fevHniUpiEJHjMxs7OjlGjRjFq1CheeeUVcfx3bGwsc+bMoaSkhOHDhxMdHc348ePp0qVLgwKorKyMpKQkunbtSlRUlFkpZoVCga+vL76+vkCtAFKpVJSUlJCZmYlMJsPT01PMAN3oplNVVUVCQgIePXoSOmEicrkcoaYGfWYa+qTE2mWw9NR2L4Dcu3sgWUpYDvW5yk5f93UzoDmbSemdA/DwVbXq/YLCEV3YIxj9ml4+aQuLCEEQ2Lp1K9u2beP7778nNDTU4udoiKYMQBctWsR7773XLHGn1Wq5dOkS/fr1E/8+iYmJVFVVsX79enbs2MHevXuJjo6msrKStLQ0evfuTXBwMID4MDt58mS+//57du3axbx58yx8tR0XSfBYGHt7e8aPH8/48eOB2g/wsWPHiI2NZePGjZSXlzNy5EhRADk5OfHqq68SGRnJgw8+aJX0rkKhoEuXLnTpUptm1ul0qFQqioqKSE9PRy6Xiy3wHh4e4hdTEAQx9RwWFlan6l9mb48yLAJlWAROPICg06HPTK9tg09KQJ+eAo3MJ7IJdnLk9u0onk6A+kyxrUOQsBC5h3V41PeuvCFlcm+yPe/AxeCHl1bb6AyxkpISUlJSCAsLw8vLOnOwqqureeGFF6ioqCA2NtZqS2XXcyMD0FOnTvHwww8DtTYWu3fvRqFQcO+994r7CIKAIAg89NBDjBkzhqVLl6LX61EoFGJt6OXLl1mxYgV33HEH27Zt48yZM5SWlqJUKtm5cycTJ04Ul7VM9+vz58+Lx79JC5jrIM3haWPKy8s5evQosbGx7N27lytXrjBs2DBmzpxJpacUUQAAIABJREFUdHQ0bm5ubf7BrKmpQaVSoVKpUKvVKBQK3N3dUavVuLq60rdv3xa7Ewt6HfrMjP/NAUpAn5oCNbYzLHQY0o8uz5m3Xi9Rl7iZB6lKyrZ1GBIWYvBr4bh6lDV7f32PCdQET6GsvFK8f1RXV9exgHByciInJ4eCggIiIyObHKpqDpcvX2bmzJncd999LF68uM1qVgRBYObMmXh7e/PJJ5/ccP9Zs2YxdepU/vKXvzS4/c033+TAgQP8+uuvYu1lVlYWc+fOJS4uDj8/P/Lz8wkICODRRx9l+vTpvPzyy6Snp5OUlAT8WcC8c+dO3nnnHQ4cOHCztahLc3jaC66urkycOJG4uDhcXFz48ccfKSoqIjY2llWrViGTyRg3bhzR0dGMHj26TZ5S7O3t8ff3F0eT5+XlkZmZiaurK2VlZZw7d07MADU1wfRaZAolyr5hKPuG4TTtfgS9Hv3FWgGkT0lEl5oM2rZbXrKP6NVm57oZqNEYqEqR6nc6E7nH5IRNvvF+gsIZXf9HMfoOQA54etrj6elJcHCwOEVepVKRmpqKWq1GqVTSo0cPdDodDg6W7QgDOHbsGEuWLOGjjz7itttus+ixb0RzDEBbQp8+ffj111/Jy8ujV69eGAwGevXqxerVq7lw4QIJCQk88sgj7Nu3j4KCAoKCgrj77rt5+eWXycjIIDQ0VMzQh4WFMXfuXLO60DobUobHBixfvhyFQsHSpUvrdFAJgoBKpeLQoUPExsZy/PhxHB0dGTduHDExMYwYMaJFvlstRafTkZxcO1MlLCxMjK26ulqcAl1WVoa9vb0ogNzc3Fr1NCUYDBiyMsUuMF1KMmirLHo91+Lz2l9xCpZSupai6EQ5iQv+beswJCyIzM6OqP8LwdGlstF9jO69qBkwExybXpYyWUQEBgbi4eEhZo/Ly8txcnISx2i09v4BtQXQmzdv5uuvv2bHjh307GmBymsbU1JSQmhoKK+//jqLFi0Sl7UaYvny5Xh4eJCUlERiYiK7d++uVz9UWFgoljLcREjWEu2J5q6nCoJAYWEhBw4c4MCBA5w8eRIPDw+x/mfYsGGi7YS5FBcXk5qaSkhIyA1N6LRarVgErdFocHBwqCOAWvMEJxgMGC5l/TkHKDUJobLxG29L8V89B6Wr7ZbUOhvp6y+Rv+WQrcOQsDBd7x5I75iGa7P0QbeiD5kC8qaLb5uyiBAEoY4FhEajwd7evo4HVnOKe6uqqliyZAlGo5HPP//cqg+CbYWpffzVV19ly5YtHD9+nJ49e4pLVNeTlpbGPffcQ3Z2Nj/++CO33nqrDaJul0iCpzNgKiKOjY3l4MGDnDp1Cj8/P8aPH090dDRDhgxp8Vh2g8FAamoqWq22jhlpS6iqqqojgJycnEQB1FIXYxOC0YD+UhYlv5+gOuECrlcvQ1XrBVDAF08il7XvLrKOxOk5Ryg/l2nrMCQsjNzRgWHLumPv+OfDgaB0Qdf/MYw+TU8HvtYiIjIystn3Iq1WKwqg0tJS0QPLy8sLDw+PehmO3NxcZs6cySOPPML8+fM73YyZAwcO8PzzzzN06FA+//xz0S3edJ2mZbTU1FSKiooICwvj9ddfJyIiwsaRtxskwdMZEQSBS5cuERsby4EDBzh79iyBgYHiEMTIyMgmn5bUajXJycmiM7El1tZNT3CmJbDy8nKcnZ1FAeTi4tKs89TU1JCUlIRSqaRv377YyWUYcrJFM1R9ciJCRXmzYrLr4Ue3FW0zi+NmQK81cnzi1wj6jj2IUqJhuj8whOCRBQAYPUKoGTADHJouetXpdFy4cAF3d3dCQ0PNupeYPLBMAqiwsJCff/5ZbOp46623WL16NRMmTGj1Odo7S5cuZdeuXcydO5dFixYBf64MpKSksGvXLlxdXZk3bx4nTpzgX//6Fy+//PLNuHzVEJLguRkwDS40CaD4+HhCQkJEARQeHo5cLqeqqorNmzczcuRIIiIirJoOFgSByspKMQNUUVGBi4uLKICcnZ3r3RyLiopIS0sjNDS00ZHzgtGIIS+ndg5QSu0ymKDRNLivy9RxeN0fYvFru1kpjqsg4dnvbB2GhJWwc3dh+CtdoPct6HtNuuESlskiIjQ01Co/uBqNhr1797Jz507i4uLo2rUr0dHR4tJ+165dzTp+Tk4OM2bM4MqVK8jlcubOncvChQvr7PPll1/y3nvvAbWNJ+vXr7eKbYMpk1NYWMjcuXNJT09nwYIFzJkzB/hT9Fxf23P+/Hl69erVKpf5TogkeG5GjEYjycnJ4hJYUlISAQEBXLx4kUmTJrFy5coWt5ubiyAIVFRUiAKosrISV1dXMX2dk5NDdXV1i5fXBKMRQ35erQ3G/7JAQlntuHyvxQ/iEmmddtibkYyNOeRtPGDrMCSshNzJgfCNL+PU/8ZLJKY5XQMGDLBaR2llZSULFizA0dGRdevWIQgCJ0+e5PDhwxw+fJg33niDMWPGtPr4ly9f5vLly3X8sH744Yc69hDHjh0jPDwcLy8v9uzZw/Llyzl58qQlLq8eJtETHx/Pe++9xy+//MKHH37I7Nmz6z0cSrYRDSIJnpsdg8HABx98wNdff83kyZNJTEwkMzOTAQMGiE9LwcHBbT4DSBAEysvLyc/PJz8/Hzs7OzH74+3t3erskyAIGPPz0KUk4hThjqNPKTKkwYOW4My842hOp9k6DAkrYOfuQp/Vr+A6sG+T+5ksIvR6vcVdzq8lOzubmTNnMnPmTJ5++uk2uT/dc889zJ8/n9tvv73B7SqVigEDBpCXl9fsYzZWeHwjLl68yObNm3n33Xd59tlnefDBB80SdzcJkuC5mdFqtdx5553ExMSwbNkysZhQr9dz9uxZcQksNzeXwYMHiz5g3bt3t/oNxmg0kpWVRXFxMf3798fZ2Vmc41FSUoJWq8Xd3V30Amv18psgIKMcO6EIuVCMnVCEDKmIuaUYqo0cu/UbhBrpb9fZUPp60mftMpz7NN3e3RYWEQAHDx7kpZdeYu3ateLkemuTlZVFdHQ08fHxjS4PffjhhyQnJ7Np06Ymj7VhwwYqKipYsmRJndev7dJtbobmm2++4ccff+Snn35izZo13HXXXVZzmO8ESILnZicrK4tevXo1uY9OpyMuLk5cAissLCQqKorx48cTExODv7+/RW9ulZWVJCQk4O3tTXBwcINffKPRWEcAVVdX4+7ujre3N15eXq2f3CoIyND8TwAVYSeUSAKoGZScriR+3re2DkPCwtgHdKHvutdwDOrW5H5tYRFhNBr57LPP2L17N19//XWbmV+Wl5cTExPDq6++2qBFBNR2UD3zzDMcOXJENGu+nqtXrzJ9+nSuXr2Kg4MDO3fuJCwsDJlMVkfg/Pzzzxw9epRhw4YxbNiwZs0R2rVrF3q9npiYGLy9vVt/sZ0bSfBItJzq6mqOHz/OgQMHOHToEKWlpYwYMUIsFvTx8Wldy/k1Hl3h4eF4eHg0+71Go5GysjJRAOl0ujoCqNVziQQBGaXYCcWgL0AuFKOwkz7+13Pxi1xyNsTaOgwJC+IY3J2+61/D3q/hH3Co/c5mZ2db3SKioqKCZ599Fi8vL1avXm2xOWM3QqfTMXXqVCZNmlQvI2Pi/Pnz3HfffezZs4e+fRte8vvjjz+4++67GTRoEM8//zwDBgxosKh6xYoV/PDDDzz++OMcPHiQsWPHsnjx4mZdr+SLdUMkwSNhPlVVVaIP2OHDh9FqtYwcOZKYmBjGjRuHh4fHDb+INTU1JCYm4uDgUNtububav9FopLS0VPTy0el0eHh4iAKopWPVr169SmZmJv369cXXSy4uf8mFEmRIbdhn55+k7PcUW4chYSl6dkX3zH24+PuKy8bXj47Q6/UkJiZib29P3759rVYke/HiRWbNmsXcuXN56qmn2uxHvTl+WNnZ2UycOJFt27Y1WEMjCAIGg4Gnn36a8vJyPvzwQzEzdf2y1aFDh3j77bf5+uuv8fHx4YcffuDdd9/l8OHDkg2EZZAEj4Tl0Wg0HDlyhNjYWI4cOYLBYGDMmDHExMQwZswY3Nzc6uyfmZnJ1atX6d27t9XmRRgMhjoCyGAw1BFAjQ1D0+v1pKSkYDAYCA8Pr7+fYESO+joBZLTKNbRXDDojxyf+C2O1VPzdGXCN6k+fj5cid3ESOydVKhUVFRXi7CxHR0cyMzMJCgoiICDAarHs27ePZcuW8fnnnzNq1Cirnachjhw5wvjx44mMjBSFyfV+WE899RTfffeduOykUCg4depUneMUFBQwZMgQlixZwvPPP99oJqasrIy8vDzCw8PF1yZOnMjmzZvp2bOnlL0xH0nwSFgXQRAoLS3l8OHDxMbGcvToURQKBePGjWPEiBF8/fXXyOVyNm3a1KZPMQaDQRxiplKpMBqNeHp64u3tjaenJ0qlktLSUpKSkggKCqJbt27Nu+EIhusEkKrTCyDVeS0XnvqXrcOQsAAe46MIfW8xcsf6Syim2VnZ2dlcuXIFe3t7UQCZ6391PUajkY8//pj9+/ezY8cOs2fq2JKkpCRGjhzJnj17GDt2LFD7UHjw4EGKiopwc3Nj+vTp9e4vBQUFTJkyhV9//RUfHx9xVplEq5EEj7V54okn+Pnnn/Hz8yM+Pr7e9rYaXNVeEASB4uJiNm7cyMcff0xoaCgKhUK0wRgxYoTV6gCawiSATJOgtf9zbA8NDcXf37/1c4kEA3JBJXaByVEh62Rfn6z/l0/22n22DkPCTLwnj6PX8meRKxv+rJssIjQaDQMGDEChUNTxvyorKxP980z+V60RQOXl5Tz99NN069aNjz76qMMv55SWlhIdHY1cLuett97i0qVLrFmzhvT0dAyG2uXwZcuWsXTpUlHQmKx9XnjhBX7++We++uorzp07x8svv4ynZ9PTrSUaRRI81ubw4cO4uroyY8aMBgVPWw6uag/o9Xrefvtt9u/fz5YtWwgJCeHq1auiEervv/+Ot7e3KICioqLa9IZXVVVFQkICHh4eeHh4oFarUavVyGSyOhmgVtcYCfrrBJC6wwug08+dpPykVL/TkenywB0ELX0SWSMCpbkWESYDYZMAUiqVdfyvbvS9SUtL48knn2T+/PnMnDmzUyzjGI1GPv30U95++21KSkqQyWRERkYyYcIExowZw3fffcf3339PXFwcgwYNEpe8MjMzeeGFF+jZsyeHDh1i69atREZG2vpyOjKS4GkLsrKymDp1aoOC51paM7iqo1FUVMSWLVtYvHhxg1kTQRDIy8sjNjaW2NhYzpw5Q9euXcUW+EGDBlltCvSVK1fIysoiLCys3lOUTqcTM0BqtRq5XC4OQmzOjbxRBD1yoeQ6AdRxMOqMHLn1X6CV6nc6Kl1n30f3+Y80Ki7MsYiorq4WBdD1BqDXPzjs3buXFStWsGnTJoYPH27WNbUXTOJFrVZz9uxZ9u7dy6RJk+jZsychIbW2NufOnSMmJoZXXnmFF198UXzvwYMHmThxIrNnz2bNmjU4OztLE5TNQxI8bUFzBU9zB1fdTAiCwMWLF8UZQOfOnSMoKEgcghgREWF2R5deryc5ORlBEAgLC2uWm7NOpxNb4EtLS8VJ0KYbeatvSoJOFEC1QxDL2rUAUidqOT9Lqt/pqHRf8DjdZt3T6HZLW0RcawB65swZPv74Y4YNGyZ+z3fu3HnTDc4rLCwkMDCQTz/9lHnz5oki6cqVK/z000/MnTsXaP1UZgkRSfC0Bc0RPM0ZXCVRmx5OS0sTp0AnJibSu3dv0QYjLCysRWLD5Azfs2dPunVrerhaU9TU1NQRQEqlUswAtbaWQRAE8nIvUlOZS0hPNxwVpchp2AjVViRuSKfoi2O2DkOipchk9HxlDl2mN2yT0FYWERcvXmTp0qUUFxcjk8kQBIExY8YQHR3NxIkT63V0toTmmH8KgsDChQvZvXs3zs7ObN26laFDh5p7WU1yrXDR6XRs376dTz75hJ07d9KvX78bvkei1TQqeNrWOfIm5/z58zz11FPs2bNHEjs3QC6X069fP/r168fTTz+N0WgkMTGR2NhY3nnnHVJTUwkPDxcFUGhoaKOTmi9evIhKpWLQoEFmO8Pb29vj7++Pv78/8GcqPz8/n+TkZOzt7UUB1JxuFtNcIkdHR/r0GQt2dmgBhGrshOI/u8AoNytuc6lKKLLp+SVajkxhR/Cbz+E9aWyD200WEf7+/vTo0cNqdTTJycnMmTOHxYsX89hjjyGTySgvL+fYsWMcOnSI0NBQBgwY0OrjKxQKVq1aVcf88/bbb69j/rlnzx7S0tJIS0vj5MmTPP300y2uoWxIjDQ1BNC0r0aj4ejRo7z11ltMmDCB0NDQRs8hiR3rImV4LEhTGZ4bDa6SaBkGg4Hz58+LS2AXL15k4MCBogDq2bMnKSkpfPjhh7zyyiv06tWrTdbETcWcJSUlaDQa7O3txRlA7u7udW6OpjH9zZpLJGivE0AVVr6SPzHqjRy/498Yyivb7JwS5iFzUBL6wd/xHNdwFqMtLCIEQeCXX37hnXfeYfPmzVbPqJhoyPzzb3/7GxMmTOCRRx4BoF+/fhw8eLBZ2V5BEBAEAblcjkql4sSJE/j4+BAaGtrkg6tKpWLLli3Ex8fz448/cv/997Nx40bxmJ2hULudImV4rM0jjzwizlsIDAxkxYoV6HS13kzz5s3jjTfeoLi4mGeeeQZoeHBVS7lRK7yJuLg4Ro0axTfffMNf/vIXs87ZXrCzs2PIkCEMGTKE559/Hr1ez+nTp4mNjWXx4sVirc7MmTNxdHRss5uLo6Mj3bp1E2+kVVVVqFQqcnJy0Gg0ODo64uXlRUVFBVVVVQwZMqR57fkyRwyy7hjojg6QCVX/Ez/FyIUi5FhPjJRn6iSx04Gwc3Wi9ycv4zY0vN62ay0imv3ZawUGg4GVK1dy6tQp9u3bh6+vr1XOcz1ZWVmcOXOGkSNH1nk9Ly+PHj16iP8ODAwkLy+vWYJHJpMhk8nYt28fM2bMQKlUUl5ejpeXFxs3bmTMmDE4ODjUEzHHjx9n69atdOvWjfXr1/Pggw8C0rKVLZEEj4X4+uuvm9y+adMmixcpz5o1i/nz5zNjxoxG9zEYDCxdupRJkyZZ9NztDYVCwYgRI+jbty8XLlwgJiaGxx57jN9//52//e1vFBcXM2zYMNEHzM/Pr01EkJOTE05OTgQEBCAIAmq1moSEBBQKBYIgkJycLGaAXF1dmx2TIHPCIAvEQCAAMqHymiGIxcipstg1qE+rLXYsCeui8HSjz9pluISH1Nt2rUVEVFSU1TKearWaOXPmEBERwe7du63WbXk95eXlTJ8+nU8++aSe03lDKxkt+f7HxcXx17/+lUcffZRHH30UOzs7Vq1axcMPP8wbb7zBnDlz6v09p0yZQkhICF26dBEzQUajURI7NkQSPB2Y6OhosrKymtxnzZo1TJ8+nbi4uLYJyobodDomT57MokWLeOihhwCYNGkSr732GlqtlhMnTrB//342bdpEeXk5I0aMICYmhvHjx+Pl5WV1AXT16lWysrKIjIzEw8NDnGirUqm4ePGiONLfJICu9zRqCkHmjEHmjIEe/zNCvV4AaVsdd+mZy61+r0TbofT3oe+613AKru8uXlFRQXx8PD169LCqRURiYiJz587lxRdf5KGHHmqzzKpOp2P69Ok89thjDTqdBwYGkpOTI/47Nze3RX+HuLg4/P39ee655+jVqxcA06ZN48svv6S6uhq9Xl9njpgp2xMWFlbn31KruW2RBE8nJi8vj++//57Y2NibQvAolUoOHDjQYJre0dGRCRMmMGHCBKD2B+DYsWPs37+fzz77jJqaGkaPHk10dDRjx46tV29jDiafLqPRSFRUlNgOL5PJcHFxwcXFhcDAQARBED2NMjIyqKysxMXFRRRAzs7OzYtJJkPABYPMBQNB/xNAFaIAshOKkVHdrNgFo4DmdKY5ly/RFvh54fHW0xi6eNRbWikoKCAzM5OIiAizuqGaQhAEfvzxRz744AO2bt3aplPkBUHgySefJDw8vFGn82nTpvHZZ5/x8MMPc/LkSTw8PBpczjJlgkydZKa/Y2JiIjU1NaLYefbZZ9mwYQMrV65kwYIFQN2lquu/p1K9TvtAEjydmEWLFvHee+/dVCnU5tYkuLi4cPvtt4uFjWVlZfz222/Exsby4YcfIggC48aNIzo6mtGjR+Pq6tqqeEzD3Jrj0yWTyXB1dcXV1ZUePXqIAqikpIT09HQqKytxdXUVBZCTk1MLBJArBpkrBnr+TwCVYycUo6/OR0EJ9sqG+xPKL9agL7Vth5hE0zj16Un39xejkRvJzMwUM4Wenp5UVFSg1WrrCG1Lo9frefPNN4mPj2f//v14e3tb5TyNcfToUbZv305kZCSDBw8G6pt/Tpkyhd27d9O7d2+cnZ3ZsmVLveNcO+zvyJEjHD9+nNtuu40hQ4bg7e2NUqnk1KlTLFmyhJSUFH744QemTp2KVqvlzTffZOrUqYwePbrtLlyixUhdWh2cpjrDgoODxSeWoqIinJ2d+fzzz7n33nvbOswOhanW5tChQ8TGxnL8+HHs7e0ZN24cMTExjBw58obt7abi0KtXrxIREWGRYW6CIFBeXk5JSQklJSVotVrc3NzqCKDmYjTW/jiWlpYSEdEfJweduPxVmwGqLbjP2VnAxQ/2mh27hHVwGdiXPqtfRuH+pyA3GfkmJiYCtULaycmpjvmnpTIOJSUlPPnkk0RFRfHmm292qIerxjqlVq5cybvvvsutt97K7Nmzufvuu0lOTmbQoEHodDpGjBjBV199RUhICIIg8Ntvv/H3v/+dhQsX8thjj9ngSiSuQxo82Flp7nTnWbNmMXXq1E7TpdWWCIJAUVGR6AN28uRJ3NzcxALo4cOH4+Dwp+t0fn4+ubm5eHp60rt3b6ut2wuCgEajqWOE6u7uLgqgxrJdWq2W+Ph4vL29CQ4Orn/TFwRklGEnFJH7/05yecteDOWWK4KWsAzuowYSuuoF7Jzq/j9fbxEhCAJVVVWiXYqpW9D0OWmtAIqPj2fu3LksW7asQRfw9k5D3VIbN27kpZde4uOPP2bSpEnivC2AL774gjlz5vDqq6/y3HPPYTQaRbEzZswYtm3bZrUsmkSLkARPZ+TaVnh/f/96rfDXIgkeyyEIAleuXBGnQJ86dQpfX1/Gjx+Po6Mjn3/+ORs2bGjzeUtGo7GOAKqpqakjgBwcHCgsLCQ9Pb1F81cEvYGK5Ew0pxLQ/B5P+dlkjNrm1QBJWAfPiSMJeWchcvu6P7Ami4jIyEicnZ0bfK9JAJm8r64dl2ASQE2JdEEQ+O677/jkk0/Ytm2bWUMDbYEgCDz++OP06tWLt99+u862hx56iIqKCr755hsxK3vtUtcrr7zCt99+S0FBAb179yYnJ4dHH32Ujz/+uN6+EjZDEjwSlqE5s38OHjzIokWL0Ol0+Pr6cujQoTaOsm0RBIH09HQWLlxIYmIivr6++Pr6Eh0dTUxMDAMHDrRJqt9oNFJWViYKII1Gg52dndgq21p3eqNOR0V8Opq4eDSnEig/l4Kg01s4eonG8Jl2C72W/Q2Z4s/PlLkWEdcKoLKyMhwcHEQBdK1lil6v5/XXXyc9PZ3t27fXM9/tCJSXl7N27VqmT59O7969xderqqoYMWIEo0aNEgcEmrhWyGRkZHD06FF8fHzw9PRk7NjaSdbSfJ12gyR4JCzD4cOHcXV1ZcaMGQ0KHrVazZgxY9i7dy9BQUEUFBR0epPA9PR0Zs6cyX333ceSJUuQyWRkZGSIU6DPnz9PcHCwKID69+/fpk+BlZWVxMfH06VLFzw8PMQfNoPBgIeHh5gBam063qitpvx8Kpq4eMpOJVCZkI6gN1j4KiQA/B69ix5LZiC75vNjDYuIawXQ1q1biYuLY9iwYZw+fZrbbruNFStWdMgf9+szMFu3biUgIIA77rgDjUbDtGnTUCgUbN++na5du9ap87l48SJqtZohQ4bc8LgSNkUSPBKWo6m6oXXr1pGfn89bb71lg8hsw08//URAQADDhg1rcLvRaCQ1NZX9+/dz8OBBkpKS6NevH+PHjyc6Opq+ffta7WZ55coVsrKyCA8Px8PDo842g8FAaWmpmAEyGo14enqKT/atFUCGyirKzyRTFhePJi6eyuSL0PR9RqIZBMx7kG5z/tKgPYk1LSIA9u7dy6pVq3BxcaGoqAgfHx8mTJhATEwMY8aMMfvze6PMcWlpKY8//jjZ2dno9Xr+/ve/M3v27Baf59osTFpaGvfeey8ODg589913BAcHs2nTJubOncvmzZt54IEHxGUtjUbDG2+8gZ+fHwsXLmx1dlSiTZAEj4TlaErwmJayEhIS0Gg0LFy4sMlJ0DcjRqOR+Ph4MQOUnp5ORESE6AMWHBxs9g+IwWAgJSUFnU5H//79myVeDAYDarVaLG4VBKGOAGrtxFx9WTma00m1S2Bx8VSlZ7fqODczPV6Yjf8jU8R/X2sRERkZaTWLCEEQ2LFjB+vWreOf//wn4eG1dhWXL1/m0KFDHD9+nI8//tjsz+uNMsfvvPMOpaWlvPfeexQWFtKvXz+uXLnSKuFx8eJFKisriYiI4KuvvuLDDz+kZ8+e7Ny5E4VCwYMPPsh///tfli5dypw5c8jLy2P37t18+OGHfPDBB60SWhJtiiR4JCxHU4Jn/vz5nDp1iv3791NVVcXo0aP55Zdf6Nu3rw0i7RgYDAbOnj0rCqDs7GwGDRrE+PHjmTBhAoGBgS1apjBN1Q0ICGjxe69Fr9fXEUCAKH68vLxavaRRfrmApB9/xelSAUJyNtWX8lt1nJsCuYxey5/Fd2qM+NK1FhHWzA7qdDqWLVtGbm4uW7durZchtDRN3VdWrlxJTk4Oa9euJSsri9tvv53U1NRmXfu1y015NrjyAAAgAElEQVTHjh1j3LhxLFu2jFdffRUHBwdWrlzJF198wb333suHH34IwH333cexY8coLCykV69eqNVq1q1bx8MPP2zZi5awBpJ5qETbEBgYiK+vrzhBODo6mnPnzkmCpwns7OyIiooiKiqKF154AZ1Oxx9//EFsbCzz58+noKCAoUOHigLI39+/URGTn59Pdna2RabqKhQKsQAban8A1Wo1xcXFZGZmIpPJRPHj6enZLAFUWFhIelYGYQ9NFZdgagpL0MQloIm7QNmpBGryCsyKu7MgUyoIWbkIr4l/GmG2lUVEQUEBTzzxBLfccguffvqpzetT5s+fz7Rp0wgICECj0fDNN980KyaTyznAH3/8wblz51i0aBELFiwQM5bPPPMMubm5/Pvf/yYkJIRnnnmGf/3rXyQnJ3P27FmcnZ0ZPnw4QUFB4jE7Wgu+RC1ShkeixTT1JJaUlMT8+fP59ddfqampYcSIEezYsaPDta62J2pqajhx4gSxsbEcOnQItVrN8OHDiYmJYdy4cfj6+lJaWsr//d//8cQTTzBgwIA2MWzU6XSoVCpKSkooLS3Fzs5OFEAeHh51BJDRaCQjIwONRsOAAQOaXIqozi9AE5dAWdwFNHHx6ApVVr+W9obcyYHeH72I+8iB4mttYREBcPr0aZ599lnefvttpk6darXzXE9T95Vvv/2Wo0eP8tFHH5GRkcHtt9/OuXPn6pmEAuzbtw87Ozt8fX2JjIwEaj0Fly9fjkwm49NPPxUHBJqyP6mpqbz88sskJiaybt06brnllnrHlbqwOgxShkfCMlw7+ycwMLDe7J/w8HDuvPNOBg4ciFwu56mnnjJb7LRVQWN7xd7eXqzvgdoOmuPHj7N//37+8Y9/UFxcTEVFBXfffTc9e/Zss5uyUqnEz89P7MKrqalBpVJRUFBAamoqSqVSNEHNzs7Gx8eHIUOG3PDp2CHAD4d7/PC95xYEQaA6+7JYAK05lYBeVdYWl2cz7Nxc6LPmFVwH1mZFBUEQxaI1LSIEQeCf//wnmzZtYufOne0qK7tlyxZeeuklZDIZvXv3Jjg4mOTkZEaMGCHuU1lZyfTp00lISKCwsBCj0cjrr7/O4sWLGT58OEOHDuXw4cMEBgYCtYLd9Lfs27cv8+fP580332TRokXs2rVLzOiYkMROx0fK8Ei0e9qyoLEjIQgC69evZ8uWLcydO5e0tDSOHDmCXq9nzJgxREdHM2bMGItaCbSE6upqsrOzyc3NRalU4uTkJLbAXzvbpSUIgoA2I6dWAJ2KR3MqEYOmwgrR2waFjyd91y3DuU9PoFZExsfH4+HhQUhIiNX+H2tqanjppZcoLi5my5YtrfaOM4emMjxPP/00/v7+LF++nKtXrzJ06FDOnTsnLrf+8ccfTJ48mX79+rFixQrs7e359ttvWb16NevWrWPevHn8+9//ZvHixQQEBHDw4EEcHBzqZW02bNjApk2b2LBhA0OHDm2za5ewKFLRskTHxloFjR2ZuXPnolAoWLVqleijJQgCZWVlHD58mNjYWI4ePYqdnZ1ohDpq1CiL+HrdCFNWorS0lAEDBuDg4IBWq60z3M7e3r6OvUGrBJDBQGXqpdoZQHHxlJ9JwliptcIVtQE+Hujm349baJA4FiAzM1O0iLAWV65cYfbs2UyePJkXX3zRJt+bG02Nz8/PZ9asWVy+fBlBEHjppZd4/PHHATh16hTjxo1j3Lhx7Nu3r06NzZQpU8jNzeX8+fMAfPTRR6xbt46pU6fyySefAHUd0qE2Y2ztAm0JqyIJHgnLU1RUxIULFwgKCiI0NNSq52pK8JgGhiUnJ4sFjXfddZdV42kPXLlyha5duza5jyAIlJSUiEaoJ06cwMnJSTRCHTFihMVbmqurq4mPj8fT07PJrIRWqxVnAJWVlVnE38mo01OZmIHmVEKtADqXjFCtM/eSrI5jcHf6rn8NZRdvNBoNWVlZFBcXY29vX2c4ZEsMYpvD77//zoIFC3j//fe58847LXrstuL48eMsW7aMS5cuceTIEbp27UplZSXOzs589NFHvPbaa5w+fZp+/fpRXl7OsmXL+Omnn1iyZAnz588Xj3OtUJIKkzs0kuCRsCybN28Wn5Cys7NxcXHhnnvu4YknniAqKsriNwtLFTTe7AiCQEFBAQcOHODgwYOcPHkSLy8vcQhiVFSUWUuBpkF4ffv2xcfHp0XvNRlcmmwwrl0Cc3V1bZ0AqtFRcSGVst9r638qLqS2uynQzuEh9PnsVZRe7vUsIuRyeT2DWDc3N7MFkCAIbN26lW3btvHVV19Z/YHF2uzdu5cXXngBHx8fDh48KL7+1FNPceTIEY4ePYqXlxdyuZzMzExefvllEhISeP/995kyZUrjB5boiEiCR8J8TE89cXFx3HXXXYwePZoXX3wRFxcXjh49yrfffoter+e3336z+LmbEjx33XUXL730EuPHjwdg4sSJvPvuu3UKGiUaRhAE8vPziY2NJTY2ltOnT+Pv7y8WSQ8ePLhZHV+CIJCZmYlarSYiIsLsrNG1Dt8qlYry8nKcnZ3FH3oXF5cWC6Di4mJSLyQQpLNDSM5CE5dARWI6GP9/e3ce1dS97QH8m4CizAQEB0BARZkpTgiCcxUftSpqpU6IiK1yi9eWSq206qtafbXl2jre4kjVOrTaqvCqTAoiKioWUEAFAwEENEIAGZLs9wcv5xoZBGVQ/H3WYi1NTs75nRBO9vkNe3fcZU5zsDUG/LASKprqzSoRoSgQqxgarKqqgra2Nrc6rjkBUHV1NYKCglBRUYGff/65XYY424rimiSXy7F3716sXr0aM2fOxNatW7Fq1Sr8z//8D44ePYpp06YpvS4hIQFLly6Fnp4eIiMj2yxxI9MhWMDDvDrFEs41a9bgwIEDOHfuHPr16wcigkwmQ0JCAi5cuICQkBDIZDLweDzu51W9yoRGpvmICA8ePOAqwd+8eRMmJiZcHTBbW9t6q1WePn2K27dvQ1tbGxYWFm0yB4SIUFlZyQVAFRUV0NDQgJ6eHgQCAdTV1Rv9nBERsrOzIRaLuflECrLySkhu3OZWgFVm5LRbGQydkU7ot3kF+N3UXrpEREsDoIKCAq7u2z//+c9OMc9NEfSUlpbiX//6F7Zs2YIePXpAIpFg165dmDp1aoNDVJGRkXB0dHzhsDDzxmEBD9N6goKCEBYWhvDw8GZ3B8vlcsjlcqioqLQ4AHqVCY3Mq1Hkz4mKikJMTAzS0tLQv39/uLm5YdSoUcjOzsa6detw8uRJ9OrVq93aRUSoqKjgAqDKykpoampyAVD37t3B4/FQU1ODtLQ0aGpqol+/fi/8gpc+kUCSnA7JtbpJ0FX389qk/QKPkTBbsww8VRUIhUIUFxfD1tb2lXsang+ARCIRwsPD4e7ujp49e2Lz5s34/vvvMX78+FY6k/Yll8sBoN7vURHQ5OTkYOPGjdi/fz927NiBhQsX1luJ9XyhT5Zfp9NhAQ/TetLS0jBs2DBYWloiJCQE06ZNA4/Hg1QqBY/Hg4qKCg4fPgyRSAQ/P7+XXoLckXJzczF//nwUFhaCz+fD398fgYGBStsQEQIDA3H27Fmoq6tj3759nX4pq1wux507d3Du3Dns3r0bT548gbOzM0aNGgV3d3f079+/Q37XRITy8nIuAHr69CnU1NRQUVEBc3NzLvdKS9WWiCFJTufyAFXnFr5yW3vMmADTYD/I5PI2LxFRU1ODhIQE7N+/H5cuXYK2tjZGjBiB0aNHY/To0TAxMXnlY7woTxYAxMbGcnX2DAwMEBcX1+z9K3qP+/Tpw801Ki4uhqamZoNDeFeuXMHq1atx7949JCUlwcDAAFKptF2ScTKvBRbwMK0rIiICa9aswdWrVzFkyBB8/fXXSiujfHx88McffyAgIACxsbF49OgRPvroI3z00UcNJk4jIsjlcvB4vNciOCooKEBBQQGcnJy4hG8nT56EtbU1t83Zs2fx448/4uzZs0hKSkJgYCCSkpI6sNXto6SkBPPnz4e9vT3WrFmDjIwMrhJ8dnY2bG1tuSGwvn37tvtqFyJCbm4uRCIRDAwMUF5erjTUIxAIXronpaawBGXX6spgSK6moqbwUYte33PhNPQJ8EZlZSVSU1Nhamrapj1jVVVVWLFiBWQyGXbv3o0uXbrg+vXriI2NRWxsLObMmcNlHX5ZL8qT9eTJE7i4uCAyMhKmpqYoKiriklU2x/379xESEoKysjL8+eefOHDgAL777jvs3r0bzs7ODb7mzJkz+Pzzz9G7d2+cO3cOQP2eHabTYgEP0/pu376N8PBw7Ny5E+rq6jhw4ADGjBmDwsJCeHt74/r163B2doa/vz+io6Nx5MgR7Nu3D++9916z9q/opk5OTkZ+fj7c3Nygq6vbxmfVsPfffx8BAQGYMGEC99iSJUswevRoeHt7AwAGDhyI2NjYdh3a6QgBAQHw8PBocOm/VCrFjRs3uEKoIpEIjo6OXB2w3r17t2kAJJPJkJ6eDhUVFQwcOJAbqlAM9Sh6gGpqapQCoGfn9TQXEaE67yEkigDoWhpqS540un2fT+agl8/UdisRkZeXBx8fH8yePRsBAQFt+mXf1By77du3Iz8/H998881L7z80NBS7d++GmpoaUlNTsXnzZnz88cf1AlfFNUMmk3GTmMePH4/w8PCXPjbzxmEBD9N6np8AePnyZYwbNw7z5s3Dzp07ER0dDW9vb0yePBl79+4FUHeX5+XlhYqKCly+fJm723ry5An+/PNPREREoF+/fpg5cybs7e2VkoEFBAQgLS0NBw8efOmhiVeRk5MDd3d3pKamKi119/T0RHBwMEaOHAkAGDduHDZt2oQhQ4a0extfV7W1tbhy5Qq3DL6kpASDBw/mVoEZGhq2WgDUksKacrkcZWVlXC2w2tpa6OjocAHQyyzNJyJUZYu4AKjsWhpkpeUAj4e+XyyGgdd4pXpibVUiAgAuXryIoKAgbN26FaNHj26z4yg0FfAohrLS0tIgkUgQGBiI+fPnN2u/imuNRCKBvb09Hjx4AH9/f+zcufOFrxGLxfjmm29QVVWFbdu2sdw6bw9WS4t5dXK5HGlpaVxBPqDujtrZ2RmmpqbcpOHbt2+Dz+dj3rx5AOrmEejq6mL48OH4448/kJ2dDXNzc2RlZSE4OBhnzpzB+PHj8ddffyE8PBzr16/Hhx9+iOrqaqSnp+Pu3bvQ1dV9YbDz999/g4hgb2/f5HYtUV5eDi8vL4SGhtbL69PQzQK7oCrr0qULXF1d4erqitWrV6O6uhqJiYmIiYnBnj17IJFIMGzYMLi7u8PNzQ0CgeCl3sOHDx8iOzu72b0mfD4furq60NXVhbm5OeRyOUpLS/H48WPk5eVBKpVCV1eXW+3UnACIx+Ohu4UxulsYw3DWRJBcjqd3hZBJKqBmNwA3btyAjo4OHB0d2+xzIpfLsWvXLvz+++84c+ZMq8zReVVSqRTJycmIiorC06dPMWLECDg7OzdZq0txQ6R4n9LS0jBhwgQIhUIkJCTg9OnT8PT0bHCYisfjgYigp6eHr7/+mvu7ZX+bDAt4mGZLSkrCuHHjsGXLFkyfPh09evSAiooKioqKkJOTg0mTJoHH4yElJQVdunTB8OHDAfyn6J5YLIa+vj4XKKxZswbXr1/HkSNH4OnpibKyMvj6+uKrr76Cq6srampq4Ovri5SUFPTt2xffffcdJk2a1GAxUqlUil27dmH79u1QUVGBjY0NvL294e3tXa8IYHPV1tbCy8sLc+bMwfTp0+s9b2xsjNzcXO7/eXl5L+xZeNupqalxE2aBuoKPly5dQlRUFLZt24aamho4OzvD3d0drq6u0NHRafKLSi6XIysrC1VVVa9UWJPP53PBDVAXyJeWlkIsFiM3NxcymUwpAGrOcXh8PtQtzVBWVobr16+3eYmIyspKBAYGQk1NDefPn39tcssYGxvDwMAAGhoa0NDQgLu7O1JSUhoNeJ5dNVVSUgIDAwM4OzvD2dkZly5dwhdffIENGzbAzMwMtra2jQY9ALhgh83fYQCAfQKYZjM3N8fHH3+MrVu3YurUqVi5ciWWL18OW1tbCAQC+Pn54fHjx7hx4wa6desGDQ0NEBFUVFRQVVWF+/fvQ0tLC2ZmZqipqcHJkyfh5+eH9957D6qqqhAIBFi5ciVX+2bAgAHw8vJCz5494eDggD179sDf3x/JyclcmxTBU3FxMYRCIUaOHInExERMmjQJR44cweLFiyEWi1t8rkSERYsWwcrKCitWrGhwmylTpuDAgQMgIly+fBk6Ojqdfv5Oa1NXV8f48eOxceNGJCQkIDo6GpMnT0ZSUhK8vLwwduxYrF69Gn/99RfKy8uVXnv//n0kJCRATU0N9vb2rTpEpKKiAoFAgH79+mHIkCEYMmQIDAwMUFZWhps3b+LKlSvIzMxEcXExpFJpo/vJz8/H7du3YW9v36bBjlAohKenJ1xdXREWFvbaBDtA3fy3ixcvQiqVorKyEklJSbCysmpwW0XqCgAIDg7GlClTYGdnh5kzZyI7OxsuLi5Yvnw5ysvLERISAolEwgUyjx8/brQNLNhhANbDw7RAz549sWXLFvj6+uLEiRO4cOECiAjLli2Dh4cHbGxsEBkZiYqKCkgkEly4cAHu7u4A6uYUpKam4rPPPgOfz8fVq1dRU1OD0aNHQ0VFhRtfVwRDigtUXl4ejIyMsH37dvTq1QtFRUUNJmbLyclBamoqFi9ejCFDhuCdd96Bq6srZs2ahY0bN2Lz5s0tustLSEjAwYMHYWdnB0dHRwB1VdmFQiGAuvw/kydPxtmzZ9G/f3+oq6tz85WYl6elpQUPDw94eHiAiPDkyROuEOqGDRu4ITJtbW3s3bsXP//8M8zMzNq8XSoqKtDX1+fKZUilUjx58gRisRjZ2dkAwPX+6Orqgs/ncyUihgwZ0qZ5XmJjYxEcHIxt27Zx2cbb07N5soyNjevlybKyssKkSZNgb28PPp8PPz+/BntpgbrApKamBlOnTkVqaioWLlyIvLw8xMXFYdSoUQgLC8O0adOQnZ2NXbt2ITg4GBs2bMDp06dx5MgRfPvtt7CxsWnP02feICzgYZpNEZTY2Ng0elG5desWiAhOTk74+eefUVtbi5s3b+Lbb7/F0KFDMXXqVABASkoK9PX1oampCaCuG1tVVRWpqang8XjQ0dFBWVkZsrKy0LdvX26oyMjISOl4iq7rjIwMlJSUcAnV+Hw+3nvvPTg6OkIkEtVLLvb8MnihUIj4+HiMGzcORkZGGDlyZINzdJ4/9rZt217inWxcc/L//PLLL9i0aRMAQFNTEzt27ICDg0OrtuN1wOPxoKenh/fffx/vv/8+iAjFxcX45JNPkJiYiF69emHNmjVwc3ODm5sbhg0b9lKrrV6GqqoqDAwMuGzeUqmUmwB99+5dVFZWQkdHB3379m2zNsjlcmzbtg1nzpxBREQE+vTp02bHasrhw4dfuE1QUBCCgoKatb/4+Hikp6dj165d8PDwAAAUFRXh3XffxYoVK3Dq1CkEBARAJBJh3759OH/+PB48eICvv/6aBTtMk1jAwzTbs5WEFRlPnw8i7ty5A3V1de7uy8PDA1paWpg8eTI2btzITTzu06cPZDIZ1w2tSAoWHh6OQYMGwcrKChkZGSgsLOR6iRrLiKpYAaKlpYWhQ4dy7VNRUUFmZiYGDx4MFRUVZGVlwcDAAHp6elyCRIXi4mLs3bsXT58+xaJFizpszF9VVRVbtmxRyv8zYcIEpfw/5ubmiIuLg56eHiIiIuDv7/9W5P8Ri8Xw9fWFnZ0dwsPDoaKigocPHyI6OhonTpzAypUroa+vz2WBdnJyatOVUM9SVVXl5rQ9evQIdnZ2ICI8evQI9+7dg4qKCtcDpKOj88o9PhUVFQgICICuri7OnTvXboFee8jMzER+fj5cXV0B1AWThoaGOHnyJGxtbREWFob169dj5cqVGDduHK5duwYPDw8MHToUAKt0zjSOBTxMiz0fLCguMNnZ2bh//z4GDRoEY2NjhIeHY9++fbh37x4GDhyotI9Ro0ZBX18foaGhMDExgZaWFvbu3YsjR45g06ZN0NfXx6+//oqamhruQvY8xXELCgpw584dCAQCrn1SqRShoaEQi8UYN24c5HI5li9fjgcPHmDPnj04c+YM+vfvj+nTp0NDQwODBw/GuXPnuPkYHTXm36tXL24ekJaWFqysrCASiZQCHhcXF+7fzs7OyMtrm/IHr5v09HT4+/tjypQp3GM9e/bEhx9+iA8//JBLOBgTE4P9+/cjMDAQvXr14rJA29vbt1m2XUUNspKSEjg5OXEBiCLBXk1NDcRiMYqKipCVlcUFQAKBADo6Oi36vGVnZ8PHxweLFy/G4sWL39gv92dvKp5NQ6GjowMDAwPcuHEDo0aNgqqqKmpra2FmZgYfHx8cO3YMQUFBMDQ0xOTJk7nyNooe2zf1/WDaHgt4mFemuMDk5uYiJyeHG1aqrq6GmppavWAHAHR1dfGvf/0LH330EVxdXWFqaorMzEzMnz8fH3/8MYC6YSo1NTUum2pjd8UPHjzA3bt3cffuXXTp0gW9e/eGhoYGhEIhZs+ejWnTpuH+/fsoKyuDUCjE559/Di0tLZw4cQLDhw+HmZkZDh06BCsrK25l2bMUdcD4fH67BkI5OTm4ceNGg21SCAsL47r9OztFvqPG8Hg8mJqaYsGCBViwYAFXNDQ6Oho7duzArVu3YGZmxvUAWVtbt8rcGqlUypWIcHJyavAz0rVrVxgZGXFDsjU1NXj8+DEKCwuRkZGBLl26cJXgmyrFcv78eaxevRq7du3CiBEjXrntHUXx91RTU8P1xip640aOHInKykocO3YMdnZ2EAgE3HO1tbXo0qVLgyUl2MRk5kVYwMO0mlGjRiElJYW7W3tR7pKJEyciNTUV586dQ0ZGBleTCai7sGlra6OoqAhVVVUNvl4RaGVmZkIkEiE6Ohr6+vpISEjAvXv3uOEgAEhNTUVycjJmzpyJkJAQ9OnTB48ePUKfPn1w+/ZtrFu3DkOHDsWvv/7K7b+qqoq7ELf3xbSp/D8KMTExCAsLQ3x8fLu27U3B4/FgYWEBCwsL+Pn5cUvYo6Oj8d133+H27duwtLSEm5sb3N3dMXDgwBb/nhXJDltaIqJr167o2bMnV6m7qqoKYrEY+fn5uHPnDrp27QpdXV2IRCIMHz4cqqqqCA0Nxfnz5/HXX3+9sRW+Fb2yfD4fCQkJ+Mc//oHa2lqoqalh9erVcHFxgYmJCb799lssXboUJiYmWLx4MQQCAQoLCyESiTB48GCoqqqyoSum5YioqR+GaTNyubzJx5OSksjS0pJMTU0pICCAcnJy6m1bXV1Ny5cvpz59+jS5r3Xr1pGBgQFdu3at3jZHjx6lQYMG0b59+4iIqLa2lk6dOkXz5s0jc3Nzsra2puDgYMrKymrwGFKplKRS6YtPuJlqamro3XffpS1btjS6TUpKCllYWFBGRkarHfdtI5PJ6O+//6bQ0FCaOnUq2dra0syZM+nHH3+klJQUkkgkVFFR0ehPdnY2RUVFUWFhYZPbvczPo0eP6O+//6b33nuPLCwsaMCAAeTi4kKXL19u1c8aEdHChQupR48eZGNj0+R2V65cIT6fT8eOHWvxMeRyOclkMu7/d+7cIYFAQHPnzqVVq1bR+PHjqVevXrRixQqqrKwkIqLPP/+ctLW1ydramry9vWn48OFkYGBA169fb/HxmbdKozENKy3BdDjFBOiG7q7FYjF+++03ZGZmYt68ebC1tVUa7xcKhVi8eDG6d++OkydPchObn53gXF1dDR8fH+Tk5CAxMRGA8pyBkJAQHDlyBKdOnYK1tTVCQ0Px9ddfw9LSErNnz+ZyBk2YMAFffPEFNDQ0AAClpaXQ0dFp8flSE3emRIQFCxZAIBAgNDS0wW2EQiHGjh2LAwcOKM3nYV6NTCZDSkoKVwdMKBTCzs4Obm5uGDNmDIyNjbn5YT///DOGDRsGOzu7Np0YfffuXfj6+uKDDz6Avr4+4uLicPPmTZiZmXE5rF7Vi4p/AnXvzYQJE9CtWzf4+vpixowZzdr37du3YWFhoTSp+scff0RFRQUyMzPx008/QV1dHQCwYsUKREREYO7cufjyyy8BAEePHsW5c+dQXFwMgUCA7777DgKBgPXuME1p/IPRVDTUzlEZw7RYVFQUdenShTZu3EhEpHT3q+jdSU9Pp+HDh9OiRYuIiJTuNCsqKmjGjBnk6upKRERVVVWkra1Ns2bN4raRyWSUlJREJ0+epIqKCiIiCg0NpcmTJ5ORkRE5OTnR3r17qaamptntvnLlSoN36xcvXiQAZGdnRw4ODuTg4EBnzpyhHTt20I4dO4iIaNGiRaSrq8s9P3jw4GYftzFCoZBGjx5NgwYNImtrawoNDW2y7S97p/8mqa2tpcuXL9OGDRvo3XffJXt7e/rggw/I0dGRfH19qaysrNV7dp79+e2338je3p6uXLmi1C65XE53796lv//+u9XONTs7u8kenh9++IF++uknWrBgQbN/74GBgWRtbU1TpkzhHouIiCATExPS0dGhTz/9lIiI+7spKysjLy8vcnV1pdTUVKV9VVdXc/+ura1t9nkxb6VGYxoW8DCvPalU2ujwV0VFBR06dIjy8vKISHmYTBHYHD9+nAYNGkR79uypt7+UlBQaMmQIffzxx0REdOTIEVJTU6P4+PhG2/OPf/yDVFRUyM/Pj3755RcKDAwkU1NTioqKeuG5REZG0tixY8ne3p5MTEyoW7du5O7uTmFhYfT48eNmvBttIz8/n5KTk4mo7otnwIABlJaWVm87qVRKY8aMIQ8Pj04f8Dzv8uXLNGDAAJo3bx6NGTOGHB0dyc/Pjw4ePEg5OTlUXl7eKnSOR4UAAA/GSURBVIGORCKhr776isaOHUsPHz5sl3NrKuDJy8sjd3d3kkqlzQp4cnNzyc7Ojuzt7en777+n06dPKz2/fv160tXVJU9PT+4xRUBz5coV4vF4dOHCBSKqP+z97M0KwzSi0ZiGTVpmXntNraRRV1eHt7c39/9nu7kVQ2Tx8fEoLi7mVjvx+XyuSzw1NRVisZh7LiEhAf369eMSxim2UwyRxcXFISwsDHv27MH8+fMhl8sxbtw4ZGRkYN26dRg7dmyjbU1OToavry8cHBwQFBSEd955B9nZ2Th+/Di+/PJLCAQCLjFje2vOcnigbjjCy8sLV69e7Yhmdpj9+/dj+/btiIiIQL9+/QDUTTROTExEdHQ0du/ejfLycq4OmJubG3R1dVs87FJWVoYlS5bA3NwckZGR7ZZHqCnLly/Hpk2bmrWi7dGjR/D19UXfvn2xZcsWWFhYcKkAampq0LVrVyxduhS5ubn45ZdfsHv3bvj7+3Pn2atXL6ipqSErKwtubm713j+2Eot5FSzgYd54L0oS6OHhAVVVVe7L+9lcHWlpaVBTU+OSnD158qSu6vUzy17pmXluZ86cwdOnT5GTk4Pc3FyYmJjAyMgI/v7+WLp0KXdRb6iNBw8eREFBAe7du8fVOrKxscHgwYNhaWnJVaGnDp6f0NhyeJFIhN9//x3R0dFvXcBjZGSEmJgYbr4JAHTr1g1jxozBmDFjANStrLt06RKio6OxdetWSKVSjBgxgiuEqqWl1eTvNSMjA4sWLcKKFSswZ86c12aOyrVr1zB79mwAdcU8z549C1VV1QaDc6FQiLS0NISFhcHS0hIymYx7rmvXriAi6OrqIjAwECKRCGvXroWJiQk8PDxQXV2N2NhYdO3aFYMGDWq382PeIk11/7R3PxTDtCeJREJjx44la2tr7rHff/+deDwexcTENPgaBwcHMjMzowEDBhCfzycdHR2aPXs2DR06lJycnKiwsLDB15WXl9OCBQtIS0uLGzpqLY0N970MiURCTk5OdOLEiXrPzZgxgxITE4mIWjSX420kl8uptLSUTp8+Tf/85z9p+PDh5OzsTJ9++imdOnWKioqKuCGs8vJyOnr0KDk4OLT6Z6O5XjSHR+FFv/cTJ06Qvr4+Xb58Wenx/fv305o1a8jb25v++usvqq2tpaSkJLK1tSU1NTVyc3OjhQsXkqamJi1btuyVz4d5q7FVWszbq7GSFACQlZWF3Nxcbijq8ePH8PHxgUgkwurVq9G/f3+IxWLY2NhAX18fNjY2mD59OtauXYv79+8jMTERkZGRuHXrFkaMGIH169c3WhX73//+N5YsWQJLS0usWbMGnp6e0NTURG1tLVRVVV/qjp7+vzfo/PnzcHR05Go7vYza2lp4enpi4sSJDVaINzc353q7SkpKoK6ujt27d3fYMNybhIggFosRFxeH6OhoXL58Gd26dYOLiwsKCwtRUFCAQ4cOvdLv72U9W/zTyMioXvHPZ/n4+MDT07PRVVrp6ekYNmwY5s6di4kTJ4LH42HdunVISUmBmpoaVyh4xYoVWLt2LY4dO4a1a9eiuroamzdvhr6+PpeLq6PKuzBvPLZKi2GaKy0tjTw9Pal79+7Uu3dvmjt3Lpf7Y9WqVdS/f3969OiRUs9KTU0NFRcXN7pPxba///47OTo6Eo/Ho6lTp5JIJKq3bUvy+sjlcoqLiyNNTU06cuRIS06z3n7mzZtHgYGBzdqe9fC8GrlcTg8fPqT9+/eTl5dXp1h5pPiMb9u2jTQ1NYnH4xGPxyN7e3tauXIlpaenU0FBAc2YMYN0dHQoKSmJ5HI5ffXVVzRw4EBavXo1t6+WrHhkmOewHh6GaQi9ICfO1atXwefz4ejoyFVz9/f3h7m5ORYtWgQLCwsUFRWhR48eMDc3f+FxiAg3b97Etm3bsG/fPri4uCAiIoLL7dNcirvfS5cuISQkBDY2Nti6dWu98yktLcWhQ4cwb948rjJ9Q+Lj4+Hm5gY7OzvurnrDhg0QCoUAWn6nz7zdFNnODQ0NYW9vDyMjI66X9enTp9DQ0MBPP/2EpUuXoqSkBKtWrUJcXBxWrlwJX1/fDm4984ZrtIeHBTwM8xy5XA4ianQYLDo6Gl999RWuXbsGExMTCAQCzJo1C8uXL29RbaYpU6YgNjYWmZmZXKmAtWvXorS0FB4eHlxZjKZMmjQJmpqa+OGHH2BiYgKpVApVVVVu8vTNmzdx+PBhbNq0qdntak+5ubmYP38+CgsLwefz4e/vj8DAwHrbxcbGYvny5aitrYWBgQHi4uI6oLXMizR1A6F4/vz58/D29saxY8e4Cd9paWkICAhAQUEBLl682OiwMMM0AxvSYpiX0dSE4IqKCoqKiqKjR49Sfn6+0nOKIamwsDD68ccfSSwWKz1fWlpKs2bNooEDB9L9+/eJiOjRo0d0+PBh8vT0pG7dur3w+MePH6cuXbpQQkKC0rb5+fkUHBxM9vb2ZGhoSCNGjKA//viDy3Wi2O7GjRu0cOFCSkpKavb70dqak/9HLBaTlZUVPXjwgIio3XLTMK1D8XmTy+UkEonIx8eHXF1dKTc3V+nzHRMT02DuJ4ZpIZaHh2FeRkN3qzKZDDweD+rq6o3m3VH09Dx8+BB79uxBVlYW5syZg969e0MikeDAgQM4ceIEgoODuaEwLS0tzJ49G3l5eUrHUuQxedaTJ09w+PBhDBkyhCsvoWjr+vXrERYWhpCQEERERIDP52PZsmVYsmQJVqxYge7du0Mmk8HR0RG3b9/GpUuXMGzYsA6ZJNqc/D+HDh3C9OnTYWpqCgAwNDRs1zYyr4bH4+HWrVtIT0/Hjh07kJOTg7Nnz8LY2BjAf3qFRo8eDYBNVmbaDgt4GKaFnh22ksvlSnl9nufr6wsNDQ3s27cPO3fuhLGxMbS0tJCTk4Pg4GB8/vnn3LaKi/zBgwe5YZ3n96v4Mrh+/ToyMjLwwQcfAAA3lCUSiZCQkABfX18EBQUhMzMTX375Je7cuYP8/Hwuv5DiHDQ1NVFZWal0/I7SWP6fzMxM1NbWYvTo0ZBIJAgMDMT8+fM7qJVMSyUkJGDChAmwsrKCpaUlIiMj0b17d+6zzJILMu2FBTwM8wpedHE2MjLCJ598gk8++QSFhYW4ePEiqqqquGKUz1IEIenp6fD09FR67HlJSUkgIowcOVKpHXp6ejA2NsbDhw+RkpICY2NjDBgwAAMGDKi3D6lUCkdHR1y4cAGrVq1q2Ym3svLycnh5eSE0NBTa2tpKz0mlUiQnJyMqKgpPnz7FiBEj4OzsDEtLyw5q7evD19cXp0+fhqGhYYOFP3/55Rdu/pampiZ27NgBBweHdm2jq6srjh8/Dh0dHS7BpyJAZ5j2xEJphmlDRASZTAYiQs+ePTFz5kzMmzevXrBD/7944NKlS9DW1oahoSFXRf5ZisCmoKAA3bt3h42NjdLj6urq8PHxQXx8PMaMGQORSISCgoIG26aqqgqZTAaxWAwADR6vPdTW1sLLywtz5szB9OnT6z1vbGyMSZMmQUNDAwYGBnB3d0dKSkoHtPT14+Pjg8jIyEafNzc3R1xcHG7duoWQkBD4+/u3Y+v+87mePHkyF+zI5XIW7DAdggU8DNOGeDweVFRUuG57xQowBcW/nz59CgC4cOECJk6cCABKafmfVVVVxe3n+dUscrkcXl5euHTpEmxtbZGYmIhPP/0UIpFIaTupVAqgbhjJ0NAQMpmsQ4YSiAiLFi2ClZVVg8kOAeD999/HxYsXIZVKUVlZiaSkJFhZWbVzS19P7u7uEAgEjT7v4uICPT09AICzs7PS/LD20NBQLxuyYjoK++QxTDt6fs6C4t/bt2/HyJEjsWrVKujo6ABAo4Uju3XrhoqKCujq6gL4T/Ci2D8A6OjoYODAgQgODuaW0T/r2eGz3r17o7q6upXOsGUSEhJw8OBBREdHw9HREY6Ojjh79ix27tyJnTt3AgCsrKwwadIk2NvbY9iwYfDz84OtrW2HtPdNFhYWBg8Pj45uBsN0GNavyDCvgc8++wxjx45FbGws/vzzT8yePRv//ve/oaWlpbSdokxGVVUVjIyMlPKenD59GiKRCEuWLMH169dhamoKHx8fpKWl4bfffgPwnxUxPB4PJSUlePz4MczNzZWKYrankSNHKvV4NSYoKAhBQUGteuzm5AAqLS3F3LlzIRQKIZVK8dlnn2HhwoWt2o72EBMTg7CwMMTHx3d0Uximw7CAh2FeE05OTnBycmp0aAf4T8+Mra0trl69isrKSi5LM5/Px6lTp1BSUoKioiI4ODggJiYGERERGDp0KIC6HiVF0BQVFQW5XK60BPxtoqqqii1btsDJyQkSiQSDBw/GhAkTlN6Pbdu2wdraGn/++SeKi4sxcOBAzJkzB127du3AlrfMrVu34Ofnh4iICOjr63d0cximw7CAh2FeE4oJznw+/4XzHMaPH4/NmzejW7du3GNjx46FRCJBWFgYYmJioKenh+7du0MgEGDlypXcMRRBU3h4OOzs7ODk5NR2J/Uaa04OIB6PB4lEAiJCeXk5BALBGzXhVigUYvr06Th48CBb1ca89VhpCYZ5A2VnZ2PPnj1YtmwZV5ZCgYjg5+cHLy8vVFZWYvz48dx8H4WrV6/CxcUFhw4dwsyZM9uz6a+lnJwcuLu7IzU1VWlZvEQiwZQpU3Dnzh1IJBL8+uuv+K//+q8ObKmyF1U69/Pzw4kTJ9C3b18Adb1a165d68gmM0xbY7W0GKazefz4MVRVVbkvaEUit//93//FxYsX8c033yhtr5i/8+TJE3zyySfIyspCYmJiRzT9tVJeXo5Ro0bhyy+/rLcs/vjx40hISMD333+Pe/fuYcKECUhJSamXK4hhmNdGowEPW6XFMG8ogUCg9MWrGAbr1asXvLy86k0GVkxu3r17N1JSUvDf//3fANCsScOd1YtyAO3duxfTp08Hj8dD//79YW5ujjt37nRASxmGeVUs4GGYTsbe3h7vvPNOgzlQYmJicPbsWXz66acYP348gIZzpbwNmpMDyNTUFFFRUQDq6qJlZGTAwsKiPZvJMEwrYUNaDPMWSU5OBp/Ph52d3Rs1+bYtxMfHw83NDXZ2dlzv2IYNGyAUCgHUzYHJz8+Hj48PCgoKQEQIDg7G3LlzO7LZDMM0jc3hYRiGYRim02NzeBiGYRiGeXuxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCdHgt4GIZhGIbp9FjAwzAMwzBMp8cCHoZhGIZhOr0XpVp9O3POMwzDMAzTqbAeHoZhGIZhOj0W8DAMwzAM0+mxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCd3v8BOdq7m+geacUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUaf//7Wb3fSekEAIgSSUhBBa6CVBLAgiFs7uUVQ4VKR5igW/gg0bFhA4BIEfnIqHngUFvINQpBqkpjdCGpC2m2zKJlvm90duR0IKSXY3m4R5/cfO7MwzYXf2Pc/neZ63JQWPSehc34HVFDUH/2ORc1sSx6H9bB1Cp0WvNWLI6FwD9Noco0DeSXv63mbrQCyPzFjNhLcG8uMjh2wdSqvxnDwEtzm3kO9pR8Hp01RWVhIREYGXl5fFz1VTU8PSpUtRqVQcOHBAcklvJtKSlpUxGAxoNBry8/MZNmwYAQEBNhc7YDnBY5orcfHiRTQaDXDjTJRRU4z2j2Szz21p7PsF2jqETktZohahRppvZC6F+5OormpZZrij4OmSS+i9HS9L4ejvxbgdrzJp5xuMui0GFxcXDAYD/v7+ZGZmcvz4ceLj48nNzaW8vLxZlkRNceXKFaZNm0ZISAg7duyQxE4LkDI8reRGP+qCIHD58mUuXryIUqlk8ODBFju3JSZzmit4rp2rM2jQIFQqFTk5OWg0GhwcHPDy8sLLywt3d/d67ZP6Y7tB3/6WjpTdPQDLFIVL1KXg5BVbh9ApEHR6ck+7EDq2ytahWIURc7zJ3CVDMHSMWrqeD09gyPtzcfB2Q6vVcuHCBfz8/Ojfv794jzYajWg0GkpLS8nMzKSiogJHR0c8PT3x9PTE3d292X5aJ0+eZOHChbz//vvceeed1ry0TokkeKyAVqslISEBBwcHRowYQVxcnMWObSoStqXgub5Wx9nZGWdnZ7HVsqqqCrVaTX5+PsnJySiVSry8vMQvt/bgUbNitxYKTwWS4LEOZafbj1lkR+fqf1IIGt4VpX3ny5jZGwoZtWwEx1ectHUoTeLo78Ww1c/S/a6RAKhUKpKTk+nXrx/e3t519pXL5Xh4eODh4UFQUBCCIKDValGpVFy+fJmUlBTs7Ozw9PTEw8MDT0/PesXNgiCwdetWtm3bxg8//EBIiDQvrDVIgseCCIJAbm4u2dnZhIWF4ePjY/FzmLq+zK32t4QHVmO1Ok5OTjg5OdGtWzcAqqurUalUXL16lcsHf6VbXjucKWKvRK6stnUUnRKDzkhNsiR4LIWxQkv+BS96RnXOmqjgqDLOdnOm6nKlrUNpkF6PTmTwu0/h4O2GIAhkZ2dTUFDAkCFDmtUlJZPJxHtkQEAAUNvQolarKS0tJTs7G71ez4kTJ7Czs2Ps2LFs3rwZrVZLbGxss7t6JeojCZ5Wcv0PfWVlJQkJCbi6ujJy5Mh68xAsZRBnKXsJcz2wWnItDg4O+HfpgsfJo1Tt+rE14Vodh4F9kMk6Rhq9o1GWVI2xuh2bRHZALu9Np/sgTxSK9rc0bC5Kahi7YiD75ravsRWOXb0ZvuZZAiaPAGrrMxMTE1EoFERFRbXK/8qEUqmkS5cudOnSBfhzzs6PP/7I3LlzUavVjBw5kg0bNjB27FiLtrjfTEiCxwxMvihZWVlcvnyZ8PDwBivyTSLFEkOhLGUv0VzB0tysTlMY8nIp3/gZhsz2NVX5Whwieto6hE5L6emO3WrcHtGrNFxJ6UNgROecbRTQtYget/YiZ3+WrUMBoNdjExny7hzsvWoLhE0WET169BCzNJbE9EB68OBBVq9eza233kp6ejpHjhxh48aNdOnShZUrV1r8vJ0dSfCYgUajIT4+Hh8fH0aNGtWowjeJFEsJHkvPz2kMc7I6AILRiPbXX6j69mvQte96A3mg5VtHJWopPSMtZ1mDrJ/SCAhzR968etcOhQyB4c/62VzwOHXzZtia+QTcOVx8rbCwkPT0dCIiIqxi5WA0Gvniiy/YsWMHu3btomfP2oexPn360KdPH2bPnm3xc94sSILHDLKzs+nfv/8NP/SWtISwpGN6Y1gkq1NwlYqNa9GnJFkjRItjdJcmNFgDo96I5pw0cNAqFGvITw8msF87rImzAG6KYqKej+KPVX/Y5Py9Hr+VIe8+hb1nbVZHEAQyMjLMsoi4EVVVVSxZsgRBEIiNjW3xcFqJppHu8mYwYMCAZil8S3tgWepYDXHtEEGTI29LxI4gCGhj/0vpq893GLED4OYrrYdbg7LUGoyV5nu2STTM1X2FZs91ac/0v9WAg1fb2iU4Bfgw/rvXGfmPRaLY0el0nDlzBrCsRcS15ObmMnXqVKKioti6daskdqyAlOFpAyyZlbHkkpapBsnU6m5uVsdYUkzFF+vRXThnkfjaCkVwADKZ1I5uDaT6HetSdfEyxbmD8e1RaOtQrIJcr2HCuyP49W+H2+R8wTNuZ/A7T4hCB2pLFxISEqxmEQFw+PBhXnzxRVavXs2ECROscg4JSfC0CZbMylg6W2QwGJDJZObV6ggCNcd+o3L7ZoTKCovE1pY4DOpj6xA6LaVnLts6hE5P7n41vrNsHYX18A+4QtdRAVw5kW+1c9j5utFj2V8InDIKg4OdeC/Mz88nJyeHyMhIq7SDG41G/vGPf/DDDz/wyy+/0KNHD4ufQ+JPJMFjBq0xEDUXOzs7qqstMy/Gzs6Ompo/24VbldUpK6Viy+fo/vjdIjHZAvveXW0dQqfEaDCiOZNp6zA6PeXxWagLIvH0K7F1KFZBJhgY/1IoO++1juAJnnE7g96eTZXMgFqtJiUlhaqqKrGztl+/fjg7O1v8vJWVlSxYsAAnJyf27dsnOZ23AZLgaQPa45KWIAgolUpSUlLw9fXF29u7xWvGNXEnqdi6AeF/HlodFa2rDGmUl+UpT9dhKG+fw+M6GzmHtHg+YOsorIezPJ+BfxvI+Q3nLXZMp+6+DP9sPt1ujwLAAfD09ESr1XL+/Hl8fHxwdnYmLy+PlJQU7O3tRTsIDw+PZttBNMSlS5eYNWsWM2fO5Omnn24X/oo3A5LgaQOuz6SYg7ni6dpanX79+lFeXo5arSY5ORmtVoubm5vog+Xk5NTgF9FYUU7l9s3UHPvNnEtpN3gGuAHSlGVLoz6ttnUINw2lJ9PQ3NYfN69SW4diNQbeoyTxnwr0FeZny0Nm3cGgt5/A3qPuo05DFhGBgbWmwlqtltLSUgoKCkhPTwfAw8NDtM1pbiHzwYMHeemll1i7di3jx483+1okmo8keMzAVktarT3W9XN1FAqF+MTSq1cvBEFAo9FQUlJCSkqKKIA8PT3FDJDuwlkqvliPoOocxagydxfkCknsWAOpfqdtyT0K4VNtHYX1sNOriX5nFLELj7T6GM6Bvgz77Dm63Ta0zuvNsYhwdHTE0dERf39/APR6PaWlpajVanJyctDpdOL90tPTE2dn5zq/EUajkTVr1rBnzx727t1rlYGFEk0jCZ42wBqFxi2huR1YMpkMd3d33N3d6wgglUpFWvwF3GJ/xTPxgkWuo73gOKQfUjLZ8ghGgTKpfqdNKT6cROWEvji7lts6FKsRGFqEd4QvJQlFLX5vyKxJDHp7dr2sjsFgICEhAaVS2SKLCIVCgY+Pj+iZaHJFV6vVpKenU1lZyf79+xEEgZEjR7J9+3a6dOnCf//7XxwcHFocv4T5SHN4zKC5GR5LtpK3dEnLnLk6JgEUUFVOzx3/r9OJHQD7cKkrwhqo06owlHbeH952iVEgJbZ9TzQ3F5lRx4Tl/Vv0HudAX2J+XMHwz+bXEzsVFRWcOnUKX19fwsPDzfLDMrmi9+zZk0GDBjFq1Cjuu+8+5HI5r7/+OnFxcaSnp7Ny5Ur27duHxozax5ycHG655RbCw8OJiIjg008/rbdPaWkpd999N4MGDSIiIoItW7a0+nydBUnwtAG2WNIyCR29Xt/6dvOaaiq+3Ipm5QqMRZ1zzoeyh7etQ+iUFMd1zum/7Z2K49lUV3Xubh83hzz6PRrerH1DZk/izt/X0vXWofW2FRYWcv78ecLDw62yvCSTybh8+TK7du1iw4YNZGdn8+WXXzJo0CD27NljlheWQqFg1apVJCUlceLECdauXUtiYmKdfdauXUv//v05d+4cBw8e5Pnnn7dYLWlHRVrSagPa2lrCXA8sAH1GGuWff4bxsvVmX7QHlN5KoG28yW4mtImdo8arw6HTk3fGjZAxnXu6ddRjbqR9K8dY07BbvHOPLgxft4Cutwyut60tLCKMRiMff/wx+/fv5z//+Q9du9aOvvD39+e+++7jvvvuM+v43bp1o1u3bgC4ubkRHh5OXl4e/fv/mf2SyWRoNBoEQaC8vBxvb2+L+Dl2ZKQMjxm0pGjZ0tORG8IiWR29jspvd1D25rJOL3aQy5Hb39xPPNZAEATKTkv1O7bi6q8p6GqUtg7DqigNxYx7Y1SD20KfnMydv3/WoNhpC4sIjUbDjBkzuHr1ah2xYy2ysrI4c+YMI0eOrPP6/PnzSUpKIiAggMjISD799FOzluw6Azf31bcRcrm8UZHSUhoTMOZ6YAHosy9RtvxltD99BxaKtz1jHxGMTNb5r7OtqbikQ19SZuswbloMFVXkx3vZOgyr0yuyFPdeHuK/nYP8mLDrLYZ9+gxKt/qDAsvKyvjjjz8IDAykd+/eVpl9k5aWxpQpU5g2bRpr1qyxiqC6lvLycqZPn84nn3xSz9fx119/ZfDgweTn53P27Fnmz59PWdnN/b2UBE8HxyJZHYOBql3fU/b6UgzZl6wUafvDYUCIrUPolKjPdN5ZMB2Fy3szMOg79+1dZtAy+vXaWp7QpyZz58k1+N8yqMF98/PzSUpKIjIy0ip+WIIgsHfvXmbMmME//vEPZs2aZfVhgjqdjunTp/PYY49x//3319u+ZcsW7r//fmQyGb179yY4OJjk5GSrxtTeubkX9MzE1tMxLVGrY7icR/nnazFkpFkhwvaNfYh1jABvdkpPX7V1CDc9+pIyrqSG0r1/ga1DsSo+flWEbJyDrlcX4tNT8PT0xMvLC3d3dzGznpKSgk6nIyoqyio1LAaDgQ8++ICjR4/y3//+12oGo9ciCAJPPvkk4eHhLFmypMF9goKC2L9/P+PHj+fq1aukpKQQEnJzP+RJgqcNMQkTS2DK6EDrPLAEo5HqfXup/NeXcJNW7iv8nJEmLFsWQRAoO3PR1mFIAHl7s+nWzxF56x0Q2jUG7zAM/R9nuH2ts3lVVRVqtZr8/HySk5ORy+VotVqx5dwaYqesrIy5c+cSGhrK3r17USrbpnbq6NGjbN++ncjISAYPrq1Veuedd8jOzgZg3rx5vPbaa8yaNYvIyEgEQeC9997D19e3TeJrr0iCx0xkMpkoPJrC9LRhjv8K/OmBlZqaio+PD15eXi0uRDMUFlCxaR36pASzYuno2LlI9TuWpjJPj65A6tBqD9TkF5MZ34fegzqXn5kgk6MPuQtD0C0g+/Pe5+TkhJOTE926dUOlUpGUlERgYCB6vZ4zZ84gCEIdKwhzh/8lJyczZ84cFi9ezGOPPdamGf9x48bd8HcnICCA//znP20UUcdAEjxthGn4YGsFz7XTkiMiIlCr1RQXF5ORkYFcLhf9rzw9PRs9hyAIVB+KpfKrraDt3G2rN8Kumw9yeece0mYL1Gdu7qLI9kbpsQqEgbZffrcUgoMnNQNmIngEN7z9GouIoUOH1rGIMBgMlJaWolKpyM3NpaamBnd390atIBqNQRD4+eefeeedd9iyZQtDh9af8SPRPpEEj5k0N8NjmsXTmqr9azuw5HI5Dg4O+Pv7i54uOp0OlUpFUVER6enpDQogo6qEis3/QHfuTIvP3xlxGNzP1iF0SqT6nfZFVUY+xXmD8A1suRVDe8PgG4Eu/FFQujS8/QYWEXZ2dnh7e4umoA1ZQTg7O4t1QK6urvWOYTAYWLlyJadOnWL//v03/RJRR0MSPG1Ea4YPXu+B1ViruVKpxM/PTyyWq6mpQa1W1wqgtDTcM1Locmg/cm2V+RfSSZBLBctWoex0lq1DkLiOvNgyfGfYOorWI8js0IfejaFHDDSSgamoqCA+Pp4ePXo0e2qyyQrCZAchCAKVlZWo1Wqys7MpLy/H3t6e//znP2KtzKJFi4iIiGD37t03/RC/jkjn7ltsR7TWA8tgMLR4ro69vT1+fn706daV/nFH8f/1Z0nsXE+X+nM6JMyj8rKOmssdP5PQ2dCcv4i6sGPO5TE6elMTtQBD0IRGxU5hYSEXLlww2yJCJpPh4uJC9+7dGTBgAKNGjaJ///74+/vz5ZdfEhMTQ0ZGBoIgsGfPHkpKSlp9LmieHxbAwYMHGTx4MBEREcTExJh1zpsdSaKaSUsMRJvrgdWcrM6NqPkjjootGxDKpJkoDeHWzRW4ueuYLI36TOvNECWsS+6hGjz/YusoWoahy0B0YQ+DsuGHk2stIoYOHWqVIX8ODg54enpy6dIl9u7dS8+ePTl27BhHjhxh1apVPPbYY8yZM6dVxzb5YQ0dOhSNRkNUVBS33357HXsItVrNM888w969ewkKCqKgoHOPGbA2kuBpI5qzpHV9rU5rhI6xooLKf26h5uih1oba+XG0R66U2tEtjfqPK7YOQaIR1CdS0dzWHzfP9v8AJMjs0Pe5F0P3cY1mdXQ6HRcuXMDd3Z0hQ4ZYpShbr9fz5ptvkpCQwP79+8Xan8mTJzN58mSzj98cP6yvvvqK+++/n6CgIIA2mfHTmZGWtNqIppa0rp+W3Fqxo4s/R9mrz0ti5wY4DO6HjBsXmku0jKKTN9/wyo5E7jFbR3BjjE6+1AxbhCFwfKNipy0sIkpKSnjggQdQKpXs2rVLFDvWojE/rNTUVFQqFRMmTCAqKopt27ZZNY7OjpThMZOWLGnpdPXboC2R1RG0VVTu+CfVsdLMhebg0L+nrUPodJTlV0FB+88e3MwUH0qmKro3Tq4Vtg6lQQx+Q9CFPQQKx0b3yc/PJycnh8jISFxcGu7WMpf4+Hjmzp3LsmXLmD59utVb+pvyw9Lr9fzxxx/s37+fqqoqRo8ezahRo+jbt69VY+qsSIKnjVAoFFRV/Vk4bKlaHV1KEhUb12IskNqBm4t9T+s+rd2MVMRLS4TtHoOR3DhH+tzSvgSPIFOg73s/hoDRjWZ12sIiQhAEvv32Wz799FO+/PJLIiIiLH6O67mRH1ZgYCC+vr64uLjg4uJCdHQ0586dkwRPK5EETxtxbQ2PJTywhJoaqr7bgXbvz9CMOUASf6LwdUQqWLYspaelYsqOQMG+JIJG98DBsX0IVK3CkwTlaCryFHhWpImzw661aNBqtVy4cAE/Pz+CgoKsVq/z+uuvk56eTmxsLJ6enhY/x/U0xw/rnnvuYf78+ej1empqajh58iSLFy+2emydFUnwmElzv3wmwWNavjK9tzVfXn1mBuWfr8GYn9fi90qAnWPL5iFJ3Jiy05dsHYJEMxCqdeSdcSdkdKGtQ8HgPwz6PUCEwgGdTidOQc7KysJoNOLu7o69vT1XrlwhPDzcanU0RUVFPPHEE4wdO5YffvjBbPuf5tIcP6zw8HDuvPNOBg4ciFwu56mnnmLAgAFtEl9nRHaDKcFS6uAGGI3GBmtzrkej0ZCQkEB4eDjOzs4t9r8yYcjPo3z9pxguSQaNrUHZJwj/lyfYOoxORXWxnpOTv7J1GBLNxM7NmWGv+KFU2sZaRZAr0ff9C4ZuIxpdwtLr9aSlpVFUVISTkxM6nQ43NzcxA9RcG4gbcfbsWZ5++mneeOMNpk2b1uEsOK5evSpO3JcQafQ/UcrwWBlTrY6DgwN+fn6kp6dTVVUlfnm9vb1xcnJq9vHsArrj8eb7FF+6xOWjh/HTlOKQk4UhJ1ta2moGsvAetg6h06E6275qQiSaxqCp5HK8F0FD2n4Z0ujSFV3ETATXbo3uYzAYSExMRKlUMnbsWNF4uby8HJVKVccGwmSh4+rq2iKxIggCO3bsYP369XzzzTeEhYVZ4vLalLfeeouffvqJ5557jjvuuEMSPs1AyvCYiSAI1NTUNLqtoVodQRDQaDSUlJSgUqnQarW4u7uLAuhaw7vr0ev1pKamUl1dTf/+/UXHX2O5Bn1KMrrkBPTJiRiysyQB1AAOz95Nl6iOOXW2vZLyYTpX/9UBep4l/sTDmdEve2OnaLt7hL7bSPR9p4Nd4wMCm2sRIQgCFRUVqNVq1Go1Go0GR0dH0QfL3d290Sy6Tqfj1VdfJT8/ny1btuDh4WH2tdmCs2fPcvToUT7++GNCQkJYtGgRU6ZMsXVY7YFGla8keMykIcFzfQfWjWp1TCZ2JgFkcvE1CSCTqCkpKSE1NZWgoCC6devW9DErKtCnJqFPTkSXnIghK1MSQIDfR09h79mwQJVoHXGP7qcqXaon62gEPzmU7uHW7+4U7OzR9X0AY7fhTe5XWFhIRkYG/fv3r9ee3RyqqqpQq9WoVCrKyspQKBR4enoil8vx9vbG09OTgoICnnjiCSZOnMgrr7zS6tICW2J6gDZx5MgRtm/fztatW1m9ejUPPPCA1ecGtXOkJa22ojUdWNea2AUHB2M0GikrK0OlUhEfH09NTY14vIiIiGbdDOQuLtgPGYb9kGEAGCsr0KeloE9K+FMA/U+Q3Uwo3DrWGn17p0ZtkMROByX/1xy69bPHmr/5RteA2iUsl8aXW661iIiKiqrTodUSnJyccHJyEqcXm0yU9+7dy5o1azAYDFRUVDBjxgzmzZvX4cTO9bPaDAYDdnZ2jBs3jmHDhuHj48OCBQtQqVTMmzevTTrNOhp2y5cvb2p7kxslarM3JoFjNBrFacqt7cAyvdfR0REvLy+cnZ0pKirC19cXNzc38vLyRCdfg8GAvb19s7oKZEp77Lp2QzlgEI4TbsNx0lQUYeHIvbwRjMZaz61OngGSebrhMbmPrcPoVBSdLKf4v8m2DkOiFRjKKnHq2xsXL+vUYOkDxqAbMAscGl8y0ul0nDt3DgcHB/r372/RDik7OztcXFwYOHAgjo6OJCcn8/zzz1NaWsqqVatYs2YNp0+fZtKkSa0+b05ODvfeey/vvfce69evR6/XM2rUqAb3jYuLIygoiIiIiDr2ETdCp9Nx9uxZunfvDkBGRgbu7u4oFArxQVihUHDrrbeSn5/PP//5T7y9vRk6dGiHK8K2ECsa2yBleCyEaQnLHKFzLQaDgYyMDDQaDYMHD65T2GwwGMQWzpycHAwGg7h27eXl1awnJJmTE/YDh2A/cAhQO61Zn5Yq1gDpM9OhBe7uHQHHof1sHUKno/S07dubJVpP+k/ZdFngYNEfRsHOAV3YQxj9hza5X1lZGYmJiYSEhFjNI6qmpoalS5eiUqnYt28frq6u4rbq6mrOnj1rlulocwxAofaevXTpUiZNmtTic5w6dYr169fzzDPPsGLFClxdXXn88ce555576mV71q9fT1paGuvXr2f06NEMGjSo1dfWGZEEj5lcuHCBlStXEh0dTUxMjGjyZg6lpaUkJSXRvXt3+vTpU+9mZGdnh7e3t7hOazAYxLXrS5cuIQgCHh4e4rp1swSQoxPKyEEoI2u/IEK19n8CKBF9cgL6jLQOL4DkvRvvDJFoHWWnc2wdgoQZGHOKKcjuj39Py9iCGN0Ca5ewnLs0uV9bWERcuXKF2bNnM2XKFF544YV6S1gODg71vKtaSnMMQAHWrFnD9OnTiYuLa/E5Ro8ezZ49e5g4cSJDhgzhr3/9KyNGjKizj52dnSh6tm3bRlhYGN9++y2DBg0Sl8IkJMFjNv3792fBggXExsaycOFCrly5wtChQxk/fjwTJkyga9euzX56MhqNZGRkUFpaysCBA3F2dm7W++zs7PDx8cHHxweo7eQyCaCLF2vn9ZiyP56ens0ayy5zcEQ5YCDKAQNrY6uuJu/ob2jjz+NbWoKQlQnNmD/UrvBr3t9TonnoNAYqUyXB09G58psWfwvYy+kDx6PvfQ/IG7+/XGsRMWzYMKsN+Tt58iQLFy7k/fff584777TKOa6nMQPQvLw8vv/+e2JjY1skeEzLVfHx8Wzfvp2IiAjuuOMOpk2bVidTZdrXzs4OvV5PQEAAy5cv5/XXX2fevHniUpiEJHjMxs7OjlGjRjFq1CheeeUVcfx3bGwsc+bMoaSkhOHDhxMdHc348ePp0qVLgwKorKyMpKQkunbtSlRUlFkpZoVCga+vL76+vkCtAFKpVJSUlJCZmYlMJsPT01PMAN3oplNVVUVCQgIePXoSOmEicrkcoaYGfWYa+qTE2mWw9NR2L4Dcu3sgWUpYDvW5yk5f93UzoDmbSemdA/DwVbXq/YLCEV3YIxj9ml4+aQuLCEEQ2Lp1K9u2beP7778nNDTU4udoiKYMQBctWsR7773XLHGn1Wq5dOkS/fr1E/8+iYmJVFVVsX79enbs2MHevXuJjo6msrKStLQ0evfuTXBwMID4MDt58mS+//57du3axbx58yx8tR0XSfBYGHt7e8aPH8/48eOB2g/wsWPHiI2NZePGjZSXlzNy5EhRADk5OfHqq68SGRnJgw8+aJX0rkKhoEuXLnTpUptm1ul0qFQqioqKSE9PRy6Xiy3wHh4e4hdTEAQx9RwWFlan6l9mb48yLAJlWAROPICg06HPTK9tg09KQJ+eAo3MJ7IJdnLk9u0onk6A+kyxrUOQsBC5h3V41PeuvCFlcm+yPe/AxeCHl1bb6AyxkpISUlJSCAsLw8vLOnOwqqureeGFF6ioqCA2NtZqS2XXcyMD0FOnTvHwww8DtTYWu3fvRqFQcO+994r7CIKAIAg89NBDjBkzhqVLl6LX61EoFGJt6OXLl1mxYgV33HEH27Zt48yZM5SWlqJUKtm5cycTJ04Ul7VM9+vz58+Lx79JC5jrIM3haWPKy8s5evQosbGx7N27lytXrjBs2DBmzpxJpacUUQAAIABJREFUdHQ0bm5ubf7BrKmpQaVSoVKpUKvVKBQK3N3dUavVuLq60rdv3xa7Ewt6HfrMjP/NAUpAn5oCNbYzLHQY0o8uz5m3Xi9Rl7iZB6lKyrZ1GBIWYvBr4bh6lDV7f32PCdQET6GsvFK8f1RXV9exgHByciInJ4eCggIiIyObHKpqDpcvX2bmzJncd999LF68uM1qVgRBYObMmXh7e/PJJ5/ccP9Zs2YxdepU/vKXvzS4/c033+TAgQP8+uuvYu1lVlYWc+fOJS4uDj8/P/Lz8wkICODRRx9l+vTpvPzyy6Snp5OUlAT8WcC8c+dO3nnnHQ4cOHCztahLc3jaC66urkycOJG4uDhcXFz48ccfKSoqIjY2llWrViGTyRg3bhzR0dGMHj26TZ5S7O3t8ff3F0eT5+XlkZmZiaurK2VlZZw7d07MADU1wfRaZAolyr5hKPuG4TTtfgS9Hv3FWgGkT0lEl5oM2rZbXrKP6NVm57oZqNEYqEqR6nc6E7nH5IRNvvF+gsIZXf9HMfoOQA54etrj6elJcHCwOEVepVKRmpqKWq1GqVTSo0cPdDodDg6W7QgDOHbsGEuWLOGjjz7itttus+ixb0RzDEBbQp8+ffj111/Jy8ujV69eGAwGevXqxerVq7lw4QIJCQk88sgj7Nu3j4KCAoKCgrj77rt5+eWXycjIIDQ0VMzQh4WFMXfuXLO60DobUobHBixfvhyFQsHSpUvrdFAJgoBKpeLQoUPExsZy/PhxHB0dGTduHDExMYwYMaJFvlstRafTkZxcO1MlLCxMjK26ulqcAl1WVoa9vb0ogNzc3Fr1NCUYDBiyMsUuMF1KMmirLHo91+Lz2l9xCpZSupai6EQ5iQv+beswJCyIzM6OqP8LwdGlstF9jO69qBkwExybXpYyWUQEBgbi4eEhZo/Ly8txcnISx2i09v4BtQXQmzdv5uuvv2bHjh307GmBymsbU1JSQmhoKK+//jqLFi0Sl7UaYvny5Xh4eJCUlERiYiK7d++uVz9UWFgoljLcREjWEu2J5q6nCoJAYWEhBw4c4MCBA5w8eRIPDw+x/mfYsGGi7YS5FBcXk5qaSkhIyA1N6LRarVgErdFocHBwqCOAWvMEJxgMGC5l/TkHKDUJobLxG29L8V89B6Wr7ZbUOhvp6y+Rv+WQrcOQsDBd7x5I75iGa7P0QbeiD5kC8qaLb5uyiBAEoY4FhEajwd7evo4HVnOKe6uqqliyZAlGo5HPP//cqg+CbYWpffzVV19ly5YtHD9+nJ49e4pLVNeTlpbGPffcQ3Z2Nj/++CO33nqrDaJul0iCpzNgKiKOjY3l4MGDnDp1Cj8/P8aPH090dDRDhgxp8Vh2g8FAamoqWq22jhlpS6iqqqojgJycnEQB1FIXYxOC0YD+UhYlv5+gOuECrlcvQ1XrBVDAF08il7XvLrKOxOk5Ryg/l2nrMCQsjNzRgWHLumPv+OfDgaB0Qdf/MYw+TU8HvtYiIjIystn3Iq1WKwqg0tJS0QPLy8sLDw+PehmO3NxcZs6cySOPPML8+fM73YyZAwcO8PzzzzN06FA+//xz0S3edJ2mZbTU1FSKiooICwvj9ddfJyIiwsaRtxskwdMZEQSBS5cuERsby4EDBzh79iyBgYHiEMTIyMgmn5bUajXJycmiM7El1tZNT3CmJbDy8nKcnZ1FAeTi4tKs89TU1JCUlIRSqaRv377YyWUYcrJFM1R9ciJCRXmzYrLr4Ue3FW0zi+NmQK81cnzi1wj6jj2IUqJhuj8whOCRBQAYPUKoGTADHJouetXpdFy4cAF3d3dCQ0PNupeYPLBMAqiwsJCff/5ZbOp46623WL16NRMmTGj1Odo7S5cuZdeuXcydO5dFixYBf64MpKSksGvXLlxdXZk3bx4nTpzgX//6Fy+//PLNuHzVEJLguRkwDS40CaD4+HhCQkJEARQeHo5cLqeqqorNmzczcuRIIiIirJoOFgSByspKMQNUUVGBi4uLKICcnZ3r3RyLiopIS0sjNDS00ZHzgtGIIS+ndg5QSu0ymKDRNLivy9RxeN0fYvFru1kpjqsg4dnvbB2GhJWwc3dh+CtdoPct6HtNuuESlskiIjQ01Co/uBqNhr1797Jz507i4uLo2rUr0dHR4tJ+165dzTp+Tk4OM2bM4MqVK8jlcubOncvChQvr7PPll1/y3nvvAbWNJ+vXr7eKbYMpk1NYWMjcuXNJT09nwYIFzJkzB/hT9Fxf23P+/Hl69erVKpf5TogkeG5GjEYjycnJ4hJYUlISAQEBXLx4kUmTJrFy5coWt5ubiyAIVFRUiAKosrISV1dXMX2dk5NDdXV1i5fXBKMRQ35erQ3G/7JAQlntuHyvxQ/iEmmddtibkYyNOeRtPGDrMCSshNzJgfCNL+PU/8ZLJKY5XQMGDLBaR2llZSULFizA0dGRdevWIQgCJ0+e5PDhwxw+fJg33niDMWPGtPr4ly9f5vLly3X8sH744Yc69hDHjh0jPDwcLy8v9uzZw/Llyzl58qQlLq8eJtETHx/Pe++9xy+//MKHH37I7Nmz6z0cSrYRDSIJnpsdg8HABx98wNdff83kyZNJTEwkMzOTAQMGiE9LwcHBbT4DSBAEysvLyc/PJz8/Hzs7OzH74+3t3erskyAIGPPz0KUk4hThjqNPKTKkwYOW4My842hOp9k6DAkrYOfuQp/Vr+A6sG+T+5ksIvR6vcVdzq8lOzubmTNnMnPmTJ5++uk2uT/dc889zJ8/n9tvv73B7SqVigEDBpCXl9fsYzZWeHwjLl68yObNm3n33Xd59tlnefDBB80SdzcJkuC5mdFqtdx5553ExMSwbNkysZhQr9dz9uxZcQksNzeXwYMHiz5g3bt3t/oNxmg0kpWVRXFxMf3798fZ2Vmc41FSUoJWq8Xd3V30Amv18psgIKMcO6EIuVCMnVCEDKmIuaUYqo0cu/UbhBrpb9fZUPp60mftMpz7NN3e3RYWEQAHDx7kpZdeYu3ateLkemuTlZVFdHQ08fHxjS4PffjhhyQnJ7Np06Ymj7VhwwYqKipYsmRJndev7dJtbobmm2++4ccff+Snn35izZo13HXXXVZzmO8ESILnZicrK4tevXo1uY9OpyMuLk5cAissLCQqKorx48cTExODv7+/RW9ulZWVJCQk4O3tTXBwcINffKPRWEcAVVdX4+7ujre3N15eXq2f3CoIyND8TwAVYSeUSAKoGZScriR+3re2DkPCwtgHdKHvutdwDOrW5H5tYRFhNBr57LPP2L17N19//XWbmV+Wl5cTExPDq6++2qBFBNR2UD3zzDMcOXJENGu+nqtXrzJ9+nSuXr2Kg4MDO3fuJCwsDJlMVkfg/Pzzzxw9epRhw4YxbNiwZs0R2rVrF3q9npiYGLy9vVt/sZ0bSfBItJzq6mqOHz/OgQMHOHToEKWlpYwYMUIsFvTx8Wldy/k1Hl3h4eF4eHg0+71Go5GysjJRAOl0ujoCqNVziQQBGaXYCcWgL0AuFKOwkz7+13Pxi1xyNsTaOgwJC+IY3J2+61/D3q/hH3Co/c5mZ2db3SKioqKCZ599Fi8vL1avXm2xOWM3QqfTMXXqVCZNmlQvI2Pi/Pnz3HfffezZs4e+fRte8vvjjz+4++67GTRoEM8//zwDBgxosKh6xYoV/PDDDzz++OMcPHiQsWPHsnjx4mZdr+SLdUMkwSNhPlVVVaIP2OHDh9FqtYwcOZKYmBjGjRuHh4fHDb+INTU1JCYm4uDgUNtububav9FopLS0VPTy0el0eHh4iAKopWPVr169SmZmJv369cXXSy4uf8mFEmRIbdhn55+k7PcUW4chYSl6dkX3zH24+PuKy8bXj47Q6/UkJiZib29P3759rVYke/HiRWbNmsXcuXN56qmn2uxHvTl+WNnZ2UycOJFt27Y1WEMjCAIGg4Gnn36a8vJyPvzwQzEzdf2y1aFDh3j77bf5+uuv8fHx4YcffuDdd9/l8OHDkg2EZZAEj4Tl0Wg0HDlyhNjYWI4cOYLBYGDMmDHExMQwZswY3Nzc6uyfmZnJ1atX6d27t9XmRRgMhjoCyGAw1BFAjQ1D0+v1pKSkYDAYCA8Pr7+fYESO+joBZLTKNbRXDDojxyf+C2O1VPzdGXCN6k+fj5cid3ESOydVKhUVFRXi7CxHR0cyMzMJCgoiICDAarHs27ePZcuW8fnnnzNq1Cirnachjhw5wvjx44mMjBSFyfV+WE899RTfffeduOykUCg4depUneMUFBQwZMgQlixZwvPPP99oJqasrIy8vDzCw8PF1yZOnMjmzZvp2bOnlL0xH0nwSFgXQRAoLS3l8OHDxMbGcvToURQKBePGjWPEiBF8/fXXyOVyNm3a1KZPMQaDQRxiplKpMBqNeHp64u3tjaenJ0qlktLSUpKSkggKCqJbt27Nu+EIhusEkKrTCyDVeS0XnvqXrcOQsAAe46MIfW8xcsf6Syim2VnZ2dlcuXIFe3t7UQCZ6391PUajkY8//pj9+/ezY8cOs2fq2JKkpCRGjhzJnj17GDt2LFD7UHjw4EGKiopwc3Nj+vTp9e4vBQUFTJkyhV9//RUfHx9xVplEq5EEj7V54okn+Pnnn/Hz8yM+Pr7e9rYaXNVeEASB4uJiNm7cyMcff0xoaCgKhUK0wRgxYoTV6gCawiSATJOgtf9zbA8NDcXf37/1c4kEA3JBJXaByVEh62Rfn6z/l0/22n22DkPCTLwnj6PX8meRKxv+rJssIjQaDQMGDEChUNTxvyorKxP980z+V60RQOXl5Tz99NN069aNjz76qMMv55SWlhIdHY1cLuett97i0qVLrFmzhvT0dAyG2uXwZcuWsXTpUlHQmKx9XnjhBX7++We++uorzp07x8svv4ynZ9PTrSUaRRI81ubw4cO4uroyY8aMBgVPWw6uag/o9Xrefvtt9u/fz5YtWwgJCeHq1auiEervv/+Ot7e3KICioqLa9IZXVVVFQkICHh4eeHh4oFarUavVyGSyOhmgVtcYCfrrBJC6wwug08+dpPykVL/TkenywB0ELX0SWSMCpbkWESYDYZMAUiqVdfyvbvS9SUtL48knn2T+/PnMnDmzUyzjGI1GPv30U95++21KSkqQyWRERkYyYcIExowZw3fffcf3339PXFwcgwYNEpe8MjMzeeGFF+jZsyeHDh1i69atREZG2vpyOjKS4GkLsrKymDp1aoOC51paM7iqo1FUVMSWLVtYvHhxg1kTQRDIy8sjNjaW2NhYzpw5Q9euXcUW+EGDBlltCvSVK1fIysoiLCys3lOUTqcTM0BqtRq5XC4OQmzOjbxRBD1yoeQ6AdRxMOqMHLn1X6CV6nc6Kl1n30f3+Y80Ki7MsYiorq4WBdD1BqDXPzjs3buXFStWsGnTJoYPH27WNbUXTOJFrVZz9uxZ9u7dy6RJk+jZsychIbW2NufOnSMmJoZXXnmFF198UXzvwYMHmThxIrNnz2bNmjU4OztLE5TNQxI8bUFzBU9zB1fdTAiCwMWLF8UZQOfOnSMoKEgcghgREWF2R5deryc5ORlBEAgLC2uWm7NOpxNb4EtLS8VJ0KYbeatvSoJOFEC1QxDL2rUAUidqOT9Lqt/pqHRf8DjdZt3T6HZLW0RcawB65swZPv74Y4YNGyZ+z3fu3HnTDc4rLCwkMDCQTz/9lHnz5oki6cqVK/z000/MnTsXaP1UZgkRSfC0Bc0RPM0ZXCVRmx5OS0sTp0AnJibSu3dv0QYjLCysRWLD5Azfs2dPunVrerhaU9TU1NQRQEqlUswAtbaWQRAE8nIvUlOZS0hPNxwVpchp2AjVViRuSKfoi2O2DkOipchk9HxlDl2mN2yT0FYWERcvXmTp0qUUFxcjk8kQBIExY8YQHR3NxIkT63V0toTmmH8KgsDChQvZvXs3zs7ObN26laFDh5p7WU1yrXDR6XRs376dTz75hJ07d9KvX78bvkei1TQqeNrWOfIm5/z58zz11FPs2bNHEjs3QC6X069fP/r168fTTz+N0WgkMTGR2NhY3nnnHVJTUwkPDxcFUGhoaKOTmi9evIhKpWLQoEFmO8Pb29vj7++Pv78/8GcqPz8/n+TkZOzt7UUB1JxuFtNcIkdHR/r0GQt2dmgBhGrshOI/u8AoNytuc6lKKLLp+SVajkxhR/Cbz+E9aWyD200WEf7+/vTo0cNqdTTJycnMmTOHxYsX89hjjyGTySgvL+fYsWMcOnSI0NBQBgwY0OrjKxQKVq1aVcf88/bbb69j/rlnzx7S0tJIS0vj5MmTPP300y2uoWxIjDQ1BNC0r0aj4ejRo7z11ltMmDCB0NDQRs8hiR3rImV4LEhTGZ4bDa6SaBkGg4Hz58+LS2AXL15k4MCBogDq2bMnKSkpfPjhh7zyyiv06tWrTdbETcWcJSUlaDQa7O3txRlA7u7udW6OpjH9zZpLJGivE0AVVr6SPzHqjRy/498Yyivb7JwS5iFzUBL6wd/xHNdwFqMtLCIEQeCXX37hnXfeYfPmzVbPqJhoyPzzb3/7GxMmTOCRRx4BoF+/fhw8eLBZ2V5BEBAEAblcjkql4sSJE/j4+BAaGtrkg6tKpWLLli3Ex8fz448/cv/997Nx40bxmJ2hULudImV4rM0jjzwizlsIDAxkxYoV6HS13kzz5s3jjTfeoLi4mGeeeQZoeHBVS7lRK7yJuLg4Ro0axTfffMNf/vIXs87ZXrCzs2PIkCEMGTKE559/Hr1ez+nTp4mNjWXx4sVirc7MmTNxdHRss5uLo6Mj3bp1E2+kVVVVqFQqcnJy0Gg0ODo64uXlRUVFBVVVVQwZMqR57fkyRwyy7hjojg6QCVX/Ez/FyIUi5FhPjJRn6iSx04Gwc3Wi9ycv4zY0vN62ay0imv3ZawUGg4GVK1dy6tQp9u3bh6+vr1XOcz1ZWVmcOXOGkSNH1nk9Ly+PHj16iP8ODAwkLy+vWYJHJpMhk8nYt28fM2bMQKlUUl5ejpeXFxs3bmTMmDE4ODjUEzHHjx9n69atdOvWjfXr1/Pggw8C0rKVLZEEj4X4+uuvm9y+adMmixcpz5o1i/nz5zNjxoxG9zEYDCxdupRJkyZZ9NztDYVCwYgRI+jbty8XLlwgJiaGxx57jN9//52//e1vFBcXM2zYMNEHzM/Pr01EkJOTE05OTgQEBCAIAmq1moSEBBQKBYIgkJycLGaAXF1dmx2TIHPCIAvEQCAAMqHymiGIxcipstg1qE+rLXYsCeui8HSjz9pluISH1Nt2rUVEVFSU1TKearWaOXPmEBERwe7du63WbXk95eXlTJ8+nU8++aSe03lDKxkt+f7HxcXx17/+lUcffZRHH30UOzs7Vq1axcMPP8wbb7zBnDlz6v09p0yZQkhICF26dBEzQUajURI7NkQSPB2Y6OhosrKymtxnzZo1TJ8+nbi4uLYJyobodDomT57MokWLeOihhwCYNGkSr732GlqtlhMnTrB//342bdpEeXk5I0aMICYmhvHjx+Pl5WV1AXT16lWysrKIjIzEw8NDnGirUqm4ePGiONLfJICu9zRqCkHmjEHmjIEe/zNCvV4AaVsdd+mZy61+r0TbofT3oe+613AKru8uXlFRQXx8PD169LCqRURiYiJz587lxRdf5KGHHmqzzKpOp2P69Ok89thjDTqdBwYGkpOTI/47Nze3RX+HuLg4/P39ee655+jVqxcA06ZN48svv6S6uhq9Xl9njpgp2xMWFlbn31KruW2RBE8nJi8vj++//57Y2NibQvAolUoOHDjQYJre0dGRCRMmMGHCBKD2B+DYsWPs37+fzz77jJqaGkaPHk10dDRjx46tV29jDiafLqPRSFRUlNgOL5PJcHFxwcXFhcDAQARBED2NMjIyqKysxMXFRRRAzs7OzYtJJkPABYPMBQNB/xNAFaIAshOKkVHdrNgFo4DmdKY5ly/RFvh54fHW0xi6eNRbWikoKCAzM5OIiAizuqGaQhAEfvzxRz744AO2bt3aplPkBUHgySefJDw8vFGn82nTpvHZZ5/x8MMPc/LkSTw8PBpczjJlgkydZKa/Y2JiIjU1NaLYefbZZ9mwYQMrV65kwYIFQN2lquu/p1K9TvtAEjydmEWLFvHee+/dVCnU5tYkuLi4cPvtt4uFjWVlZfz222/Exsby4YcfIggC48aNIzo6mtGjR+Pq6tqqeEzD3Jrj0yWTyXB1dcXV1ZUePXqIAqikpIT09HQqKytxdXUVBZCTk1MLBJArBpkrBnr+TwCVYycUo6/OR0EJ9sqG+xPKL9agL7Vth5hE0zj16Un39xejkRvJzMwUM4Wenp5UVFSg1WrrCG1Lo9frefPNN4mPj2f//v14e3tb5TyNcfToUbZv305kZCSDBw8G6pt/Tpkyhd27d9O7d2+cnZ3ZsmVLveNcO+zvyJEjHD9+nNtuu40hQ4bg7e2NUqnk1KlTLFmyhJSUFH744QemTp2KVqvlzTffZOrUqYwePbrtLlyixUhdWh2cpjrDgoODxSeWoqIinJ2d+fzzz7n33nvbOswOhanW5tChQ8TGxnL8+HHs7e0ZN24cMTExjBw58obt7abi0KtXrxIREWGRYW6CIFBeXk5JSQklJSVotVrc3NzqCKDmYjTW/jiWlpYSEdEfJweduPxVmwGqLbjP2VnAxQ/2mh27hHVwGdiXPqtfRuH+pyA3GfkmJiYCtULaycmpjvmnpTIOJSUlPPnkk0RFRfHmm292qIerxjqlVq5cybvvvsutt97K7Nmzufvuu0lOTmbQoEHodDpGjBjBV199RUhICIIg8Ntvv/H3v/+dhQsX8thjj9ngSiSuQxo82Flp7nTnWbNmMXXq1E7TpdWWCIJAUVGR6AN28uRJ3NzcxALo4cOH4+Dwp+t0fn4+ubm5eHp60rt3b6ut2wuCgEajqWOE6u7uLgqgxrJdWq2W+Ph4vL29CQ4Orn/TFwRklGEnFJH7/05yecteDOWWK4KWsAzuowYSuuoF7Jzq/j9fbxEhCAJVVVWiXYqpW9D0OWmtAIqPj2fu3LksW7asQRfw9k5D3VIbN27kpZde4uOPP2bSpEnivC2AL774gjlz5vDqq6/y3HPPYTQaRbEzZswYtm3bZrUsmkSLkARPZ+TaVnh/f/96rfDXIgkeyyEIAleuXBGnQJ86dQpfX1/Gjx+Po6Mjn3/+ORs2bGjzeUtGo7GOAKqpqakjgBwcHCgsLCQ9Pb1F81cEvYGK5Ew0pxLQ/B5P+dlkjNrm1QBJWAfPiSMJeWchcvu6P7Ami4jIyEicnZ0bfK9JAJm8r64dl2ASQE2JdEEQ+O677/jkk0/Ytm2bWUMDbYEgCDz++OP06tWLt99+u862hx56iIqKCr755hsxK3vtUtcrr7zCt99+S0FBAb179yYnJ4dHH32Ujz/+uN6+EjZDEjwSlqE5s38OHjzIokWL0Ol0+Pr6cujQoTaOsm0RBIH09HQWLlxIYmIivr6++Pr6Eh0dTUxMDAMHDrRJqt9oNFJWViYKII1Gg52dndgq21p3eqNOR0V8Opq4eDSnEig/l4Kg01s4eonG8Jl2C72W/Q2Z4s/PlLkWEdcKoLKyMhwcHEQBdK1lil6v5/XXXyc9PZ3t27fXM9/tCJSXl7N27VqmT59O7969xderqqoYMWIEo0aNEgcEmrhWyGRkZHD06FF8fHzw9PRk7NjaSdbSfJ12gyR4JCzD4cOHcXV1ZcaMGQ0KHrVazZgxY9i7dy9BQUEUFBR0epPA9PR0Zs6cyX333ceSJUuQyWRkZGSIU6DPnz9PcHCwKID69+/fpk+BlZWVxMfH06VLFzw8PMQfNoPBgIeHh5gBam063qitpvx8Kpq4eMpOJVCZkI6gN1j4KiQA/B69ix5LZiC75vNjDYuIawXQ1q1biYuLY9iwYZw+fZrbbruNFStWdMgf9+szMFu3biUgIIA77rgDjUbDtGnTUCgUbN++na5du9ap87l48SJqtZohQ4bc8LgSNkUSPBKWo6m6oXXr1pGfn89bb71lg8hsw08//URAQADDhg1rcLvRaCQ1NZX9+/dz8OBBkpKS6NevH+PHjyc6Opq+ffta7WZ55coVsrKyCA8Px8PDo842g8FAaWmpmAEyGo14enqKT/atFUCGyirKzyRTFhePJi6eyuSL0PR9RqIZBMx7kG5z/tKgPYk1LSIA9u7dy6pVq3BxcaGoqAgfHx8mTJhATEwMY8aMMfvze6PMcWlpKY8//jjZ2dno9Xr+/ve/M3v27Baf59osTFpaGvfeey8ODg589913BAcHs2nTJubOncvmzZt54IEHxGUtjUbDG2+8gZ+fHwsXLmx1dlSiTZAEj4TlaErwmJayEhIS0Gg0LFy4sMlJ0DcjRqOR+Ph4MQOUnp5ORESE6AMWHBxs9g+IwWAgJSUFnU5H//79myVeDAYDarVaLG4VBKGOAGrtxFx9WTma00m1S2Bx8VSlZ7fqODczPV6Yjf8jU8R/X2sRERkZaTWLCEEQ2LFjB+vWreOf//wn4eG1dhWXL1/m0KFDHD9+nI8//tjsz+uNMsfvvPMOpaWlvPfeexQWFtKvXz+uXLnSKuFx8eJFKisriYiI4KuvvuLDDz+kZ8+e7Ny5E4VCwYMPPsh///tfli5dypw5c8jLy2P37t18+OGHfPDBB60SWhJtiiR4JCxHU4Jn/vz5nDp1iv3791NVVcXo0aP55Zdf6Nu3rw0i7RgYDAbOnj0rCqDs7GwGDRrE+PHjmTBhAoGBgS1apjBN1Q0ICGjxe69Fr9fXEUCAKH68vLxavaRRfrmApB9/xelSAUJyNtWX8lt1nJsCuYxey5/Fd2qM+NK1FhHWzA7qdDqWLVtGbm4uW7durZchtDRN3VdWrlxJTk4Oa9euJSsri9tvv53U1NRmXfu1y015NrjyAAAgAElEQVTHjh1j3LhxLFu2jFdffRUHBwdWrlzJF198wb333suHH34IwH333cexY8coLCykV69eqNVq1q1bx8MPP2zZi5awBpJ5qETbEBgYiK+vrzhBODo6mnPnzkmCpwns7OyIiooiKiqKF154AZ1Oxx9//EFsbCzz58+noKCAoUOHigLI39+/URGTn59Pdna2RabqKhQKsQAban8A1Wo1xcXFZGZmIpPJRPHj6enZLAFUWFhIelYGYQ9NFZdgagpL0MQloIm7QNmpBGryCsyKu7MgUyoIWbkIr4l/GmG2lUVEQUEBTzzxBLfccguffvqpzetT5s+fz7Rp0wgICECj0fDNN980KyaTyznAH3/8wblz51i0aBELFiwQM5bPPPMMubm5/Pvf/yYkJIRnnnmGf/3rXyQnJ3P27FmcnZ0ZPnw4QUFB4jE7Wgu+RC1ShkeixTT1JJaUlMT8+fP59ddfqampYcSIEezYsaPDta62J2pqajhx4gSxsbEcOnQItVrN8OHDiYmJYdy4cfj6+lJaWsr//d//8cQTTzBgwIA2MWzU6XSoVCpKSkooLS3Fzs5OFEAeHh51BJDRaCQjIwONRsOAAQOaXIqozi9AE5dAWdwFNHHx6ApVVr+W9obcyYHeH72I+8iB4mttYREBcPr0aZ599lnefvttpk6darXzXE9T95Vvv/2Wo0eP8tFHH5GRkcHtt9/OuXPn6pmEAuzbtw87Ozt8fX2JjIwEaj0Fly9fjkwm49NPPxUHBJqyP6mpqbz88sskJiaybt06brnllnrHlbqwOgxShkfCMlw7+ycwMLDe7J/w8HDuvPNOBg4ciFwu56mnnjJb7LRVQWN7xd7eXqzvgdoOmuPHj7N//37+8Y9/UFxcTEVFBXfffTc9e/Zss5uyUqnEz89P7MKrqalBpVJRUFBAamoqSqVSNEHNzs7Gx8eHIUOG3PDp2CHAD4d7/PC95xYEQaA6+7JYAK05lYBeVdYWl2cz7Nxc6LPmFVwH1mZFBUEQxaI1LSIEQeCf//wnmzZtYufOne0qK7tlyxZeeuklZDIZvXv3Jjg4mOTkZEaMGCHuU1lZyfTp00lISKCwsBCj0cjrr7/O4sWLGT58OEOHDuXw4cMEBgYCtYLd9Lfs27cv8+fP580332TRokXs2rVLzOiYkMROx0fK8Ei0e9qyoLEjIQgC69evZ8uWLcydO5e0tDSOHDmCXq9nzJgxREdHM2bMGItaCbSE6upqsrOzyc3NRalU4uTkJLbAXzvbpSUIgoA2I6dWAJ2KR3MqEYOmwgrR2waFjyd91y3DuU9PoFZExsfH4+HhQUhIiNX+H2tqanjppZcoLi5my5YtrfaOM4emMjxPP/00/v7+LF++nKtXrzJ06FDOnTsnLrf+8ccfTJ48mX79+rFixQrs7e359ttvWb16NevWrWPevHn8+9//ZvHixQQEBHDw4EEcHBzqZW02bNjApk2b2LBhA0OHDm2za5ewKFLRskTHxloFjR2ZuXPnolAoWLVqleijJQgCZWVlHD58mNjYWI4ePYqdnZ1ohDpq1CiL+HrdCFNWorS0lAEDBuDg4IBWq60z3M7e3r6OvUGrBJDBQGXqpdoZQHHxlJ9JwliptcIVtQE+Hujm349baJA4FiAzM1O0iLAWV65cYfbs2UyePJkXX3zRJt+bG02Nz8/PZ9asWVy+fBlBEHjppZd4/PHHATh16hTjxo1j3Lhx7Nu3r06NzZQpU8jNzeX8+fMAfPTRR6xbt46pU6fyySefAHUd0qE2Y2ztAm0JqyIJHgnLU1RUxIULFwgKCiI0NNSq52pK8JgGhiUnJ4sFjXfddZdV42kPXLlyha5duza5jyAIlJSUiEaoJ06cwMnJSTRCHTFihMVbmqurq4mPj8fT07PJrIRWqxVnAJWVlVnE38mo01OZmIHmVEKtADqXjFCtM/eSrI5jcHf6rn8NZRdvNBoNWVlZFBcXY29vX2c4ZEsMYpvD77//zoIFC3j//fe58847LXrstuL48eMsW7aMS5cuceTIEbp27UplZSXOzs589NFHvPbaa5w+fZp+/fpRXl7OsmXL+Omnn1iyZAnz588Xj3OtUJIKkzs0kuCRsCybN28Wn5Cys7NxcXHhnnvu4YknniAqKsriNwtLFTTe7AiCQEFBAQcOHODgwYOcPHkSLy8vcQhiVFSUWUuBpkF4ffv2xcfHp0XvNRlcmmwwrl0Cc3V1bZ0AqtFRcSGVst9r638qLqS2uynQzuEh9PnsVZRe7vUsIuRyeT2DWDc3N7MFkCAIbN26lW3btvHVV19Z/YHF2uzdu5cXXngBHx8fDh48KL7+1FNPceTIEY4ePYqXlxdyuZzMzExefvllEhISeP/995kyZUrjB5boiEiCR8J8TE89cXFx3HXXXYwePZoXX3wRFxcXjh49yrfffoter+e3336z+LmbEjx33XUXL730EuPHjwdg4sSJvPvuu3UKGiUaRhAE8vPziY2NJTY2ltOnT+Pv7y8WSQ8ePLhZHV+CIJCZmYlarSYiIsLsrNG1Dt8qlYry8nKcnZ3FH3oXF5cWC6Di4mJSLyQQpLNDSM5CE5dARWI6GP9/e3ce1dS97QH8m4CizAQEB0BARZkpTgiCcxUftSpqpU6IiK1yi9eWSq206qtafbXl2jre4kjVOrTaqvCqTAoiKioWUEAFAwEENEIAGZLs9wcv5xoZBGVQ/H3WYi1NTs75nRBO9vkNe3fcZU5zsDUG/LASKprqzSoRoSgQqxgarKqqgra2Nrc6rjkBUHV1NYKCglBRUYGff/65XYY424rimiSXy7F3716sXr0aM2fOxNatW7Fq1Sr8z//8D44ePYpp06YpvS4hIQFLly6Fnp4eIiMj2yxxI9MhWMDDvDrFEs41a9bgwIEDOHfuHPr16wcigkwmQ0JCAi5cuICQkBDIZDLweDzu51W9yoRGpvmICA8ePOAqwd+8eRMmJiZcHTBbW9t6q1WePn2K27dvQ1tbGxYWFm0yB4SIUFlZyQVAFRUV0NDQgJ6eHgQCAdTV1Rv9nBERsrOzIRaLuflECrLySkhu3OZWgFVm5LRbGQydkU7ot3kF+N3UXrpEREsDoIKCAq7u2z//+c9OMc9NEfSUlpbiX//6F7Zs2YIePXpAIpFg165dmDp1aoNDVJGRkXB0dHzhsDDzxmEBD9N6goKCEBYWhvDw8GZ3B8vlcsjlcqioqLQ4AHqVCY3Mq1Hkz4mKikJMTAzS0tLQv39/uLm5YdSoUcjOzsa6detw8uRJ9OrVq93aRUSoqKjgAqDKykpoampyAVD37t3B4/FQU1ODtLQ0aGpqol+/fi/8gpc+kUCSnA7JtbpJ0FX389qk/QKPkTBbsww8VRUIhUIUFxfD1tb2lXsang+ARCIRwsPD4e7ujp49e2Lz5s34/vvvMX78+FY6k/Yll8sBoN7vURHQ5OTkYOPGjdi/fz927NiBhQsX1luJ9XyhT5Zfp9NhAQ/TetLS0jBs2DBYWloiJCQE06ZNA4/Hg1QqBY/Hg4qKCg4fPgyRSAQ/P7+XXoLckXJzczF//nwUFhaCz+fD398fgYGBStsQEQIDA3H27Fmoq6tj3759nX4pq1wux507d3Du3Dns3r0bT548gbOzM0aNGgV3d3f079+/Q37XRITy8nIuAHr69CnU1NRQUVEBc3NzLvdKS9WWiCFJTufyAFXnFr5yW3vMmADTYD/I5PI2LxFRU1ODhIQE7N+/H5cuXYK2tjZGjBiB0aNHY/To0TAxMXnlY7woTxYAxMbGcnX2DAwMEBcX1+z9K3qP+/Tpw801Ki4uhqamZoNDeFeuXMHq1atx7949JCUlwcDAAFKptF2ScTKvBRbwMK0rIiICa9aswdWrVzFkyBB8/fXXSiujfHx88McffyAgIACxsbF49OgRPvroI3z00UcNJk4jIsjlcvB4vNciOCooKEBBQQGcnJy4hG8nT56EtbU1t83Zs2fx448/4uzZs0hKSkJgYCCSkpI6sNXto6SkBPPnz4e9vT3WrFmDjIwMrhJ8dnY2bG1tuSGwvn37tvtqFyJCbm4uRCIRDAwMUF5erjTUIxAIXronpaawBGXX6spgSK6moqbwUYte33PhNPQJ8EZlZSVSU1Nhamrapj1jVVVVWLFiBWQyGXbv3o0uXbrg+vXriI2NRWxsLObMmcNlHX5ZL8qT9eTJE7i4uCAyMhKmpqYoKiriklU2x/379xESEoKysjL8+eefOHDgAL777jvs3r0bzs7ODb7mzJkz+Pzzz9G7d2+cO3cOQP2eHabTYgEP0/pu376N8PBw7Ny5E+rq6jhw4ADGjBmDwsJCeHt74/r163B2doa/vz+io6Nx5MgR7Nu3D++9916z9q/opk5OTkZ+fj7c3Nygq6vbxmfVsPfffx8BAQGYMGEC99iSJUswevRoeHt7AwAGDhyI2NjYdh3a6QgBAQHw8PBocOm/VCrFjRs3uEKoIpEIjo6OXB2w3r17t2kAJJPJkJ6eDhUVFQwcOJAbqlAM9Sh6gGpqapQCoGfn9TQXEaE67yEkigDoWhpqS540un2fT+agl8/UdisRkZeXBx8fH8yePRsBAQFt+mXf1By77du3Iz8/H998881L7z80NBS7d++GmpoaUlNTsXnzZnz88cf1AlfFNUMmk3GTmMePH4/w8PCXPjbzxmEBD9N6np8AePnyZYwbNw7z5s3Dzp07ER0dDW9vb0yePBl79+4FUHeX5+XlhYqKCly+fJm723ry5An+/PNPREREoF+/fpg5cybs7e2VkoEFBAQgLS0NBw8efOmhiVeRk5MDd3d3pKamKi119/T0RHBwMEaOHAkAGDduHDZt2oQhQ4a0extfV7W1tbhy5Qq3DL6kpASDBw/mVoEZGhq2WgDUksKacrkcZWVlXC2w2tpa6OjocAHQyyzNJyJUZYu4AKjsWhpkpeUAj4e+XyyGgdd4pXpibVUiAgAuXryIoKAgbN26FaNHj26z4yg0FfAohrLS0tIgkUgQGBiI+fPnN2u/imuNRCKBvb09Hjx4AH9/f+zcufOFrxGLxfjmm29QVVWFbdu2sdw6bw9WS4t5dXK5HGlpaVxBPqDujtrZ2RmmpqbcpOHbt2+Dz+dj3rx5AOrmEejq6mL48OH4448/kJ2dDXNzc2RlZSE4OBhnzpzB+PHj8ddffyE8PBzr16/Hhx9+iOrqaqSnp+Pu3bvQ1dV9YbDz999/g4hgb2/f5HYtUV5eDi8vL4SGhtbL69PQzQK7oCrr0qULXF1d4erqitWrV6O6uhqJiYmIiYnBnj17IJFIMGzYMLi7u8PNzQ0CgeCl3sOHDx8iOzu72b0mfD4furq60NXVhbm5OeRyOUpLS/H48WPk5eVBKpVCV1eXW+3UnACIx+Ohu4UxulsYw3DWRJBcjqd3hZBJKqBmNwA3btyAjo4OHB0d2+xzIpfLsWvXLvz+++84c+ZMq8zReVVSqRTJycmIiorC06dPMWLECDg7OzdZq0txQ6R4n9LS0jBhwgQIhUIkJCTg9OnT8PT0bHCYisfjgYigp6eHr7/+mvu7ZX+bDAt4mGZLSkrCuHHjsGXLFkyfPh09evSAiooKioqKkJOTg0mTJoHH4yElJQVdunTB8OHDAfyn6J5YLIa+vj4XKKxZswbXr1/HkSNH4OnpibKyMvj6+uKrr76Cq6srampq4Ovri5SUFPTt2xffffcdJk2a1GAxUqlUil27dmH79u1QUVGBjY0NvL294e3tXa8IYHPV1tbCy8sLc+bMwfTp0+s9b2xsjNzcXO7/eXl5L+xZeNupqalxE2aBuoKPly5dQlRUFLZt24aamho4OzvD3d0drq6u0NHRafKLSi6XIysrC1VVVa9UWJPP53PBDVAXyJeWlkIsFiM3NxcymUwpAGrOcXh8PtQtzVBWVobr16+3eYmIyspKBAYGQk1NDefPn39tcssYGxvDwMAAGhoa0NDQgLu7O1JSUhoNeJ5dNVVSUgIDAwM4OzvD2dkZly5dwhdffIENGzbAzMwMtra2jQY9ALhgh83fYQCAfQKYZjM3N8fHH3+MrVu3YurUqVi5ciWWL18OW1tbCAQC+Pn54fHjx7hx4wa6desGDQ0NEBFUVFRQVVWF+/fvQ0tLC2ZmZqipqcHJkyfh5+eH9957D6qqqhAIBFi5ciVX+2bAgAHw8vJCz5494eDggD179sDf3x/JyclcmxTBU3FxMYRCIUaOHInExERMmjQJR44cweLFiyEWi1t8rkSERYsWwcrKCitWrGhwmylTpuDAgQMgIly+fBk6Ojqdfv5Oa1NXV8f48eOxceNGJCQkIDo6GpMnT0ZSUhK8vLwwduxYrF69Gn/99RfKy8uVXnv//n0kJCRATU0N9vb2rTpEpKKiAoFAgH79+mHIkCEYMmQIDAwMUFZWhps3b+LKlSvIzMxEcXExpFJpo/vJz8/H7du3YW9v36bBjlAohKenJ1xdXREWFvbaBDtA3fy3ixcvQiqVorKyEklJSbCysmpwW0XqCgAIDg7GlClTYGdnh5kzZyI7OxsuLi5Yvnw5ysvLERISAolEwgUyjx8/brQNLNhhANbDw7RAz549sWXLFvj6+uLEiRO4cOECiAjLli2Dh4cHbGxsEBkZiYqKCkgkEly4cAHu7u4A6uYUpKam4rPPPgOfz8fVq1dRU1OD0aNHQ0VFhRtfVwRDigtUXl4ejIyMsH37dvTq1QtFRUUNJmbLyclBamoqFi9ejCFDhuCdd96Bq6srZs2ahY0bN2Lz5s0tustLSEjAwYMHYWdnB0dHRwB1VdmFQiGAuvw/kydPxtmzZ9G/f3+oq6tz85WYl6elpQUPDw94eHiAiPDkyROuEOqGDRu4ITJtbW3s3bsXP//8M8zMzNq8XSoqKtDX1+fKZUilUjx58gRisRjZ2dkAwPX+6Orqgs/ncyUihgwZ0qZ5XmJjYxEcHIxt27Zx2cbb07N5soyNjevlybKyssKkSZNgb28PPp8PPz+/BntpgbrApKamBlOnTkVqaioWLlyIvLw8xMXFYdSoUQgLC8O0adOQnZ2NXbt2ITg4GBs2bMDp06dx5MgRfPvtt7CxsWnP02feICzgYZpNEZTY2Ng0elG5desWiAhOTk74+eefUVtbi5s3b+Lbb7/F0KFDMXXqVABASkoK9PX1oampCaCuG1tVVRWpqang8XjQ0dFBWVkZsrKy0LdvX26oyMjISOl4iq7rjIwMlJSUcAnV+Hw+3nvvPTg6OkIkEtVLLvb8MnihUIj4+HiMGzcORkZGGDlyZINzdJ4/9rZt217inWxcc/L//PLLL9i0aRMAQFNTEzt27ICDg0OrtuN1wOPxoKenh/fffx/vv/8+iAjFxcX45JNPkJiYiF69emHNmjVwc3ODm5sbhg0b9lKrrV6GqqoqDAwMuGzeUqmUmwB99+5dVFZWQkdHB3379m2zNsjlcmzbtg1nzpxBREQE+vTp02bHasrhw4dfuE1QUBCCgoKatb/4+Hikp6dj165d8PDwAAAUFRXh3XffxYoVK3Dq1CkEBARAJBJh3759OH/+PB48eICvv/6aBTtMk1jAwzTbs5WEFRlPnw8i7ty5A3V1de7uy8PDA1paWpg8eTI2btzITTzu06cPZDIZ1w2tSAoWHh6OQYMGwcrKChkZGSgsLOR6iRrLiKpYAaKlpYWhQ4dy7VNRUUFmZiYGDx4MFRUVZGVlwcDAAHp6elyCRIXi4mLs3bsXT58+xaJFizpszF9VVRVbtmxRyv8zYcIEpfw/5ubmiIuLg56eHiIiIuDv7/9W5P8Ri8Xw9fWFnZ0dwsPDoaKigocPHyI6OhonTpzAypUroa+vz2WBdnJyatOVUM9SVVXl5rQ9evQIdnZ2ICI8evQI9+7dg4qKCtcDpKOj88o9PhUVFQgICICuri7OnTvXboFee8jMzER+fj5cXV0B1AWThoaGOHnyJGxtbREWFob169dj5cqVGDduHK5duwYPDw8MHToUAKt0zjSOBTxMiz0fLCguMNnZ2bh//z4GDRoEY2NjhIeHY9++fbh37x4GDhyotI9Ro0ZBX18foaGhMDExgZaWFvbu3YsjR45g06ZN0NfXx6+//oqamhruQvY8xXELCgpw584dCAQCrn1SqRShoaEQi8UYN24c5HI5li9fjgcPHmDPnj04c+YM+vfvj+nTp0NDQwODBw/GuXPnuPkYHTXm36tXL24ekJaWFqysrCASiZQCHhcXF+7fzs7OyMtrm/IHr5v09HT4+/tjypQp3GM9e/bEhx9+iA8//JBLOBgTE4P9+/cjMDAQvXr14rJA29vbt1m2XUUNspKSEjg5OXEBiCLBXk1NDcRiMYqKipCVlcUFQAKBADo6Oi36vGVnZ8PHxweLFy/G4sWL39gv92dvKp5NQ6GjowMDAwPcuHEDo0aNgqqqKmpra2FmZgYfHx8cO3YMQUFBMDQ0xOTJk7nyNooe2zf1/WDaHgt4mFemuMDk5uYiJyeHG1aqrq6GmppavWAHAHR1dfGvf/0LH330EVxdXWFqaorMzEzMnz8fH3/8MYC6YSo1NTUum2pjd8UPHjzA3bt3cffuXXTp0gW9e/eGhoYGhEIhZs+ejWnTpuH+/fsoKyuDUCjE559/Di0tLZw4cQLDhw+HmZkZDh06BCsrK25l2bMUdcD4fH67BkI5OTm4ceNGg21SCAsL47r9OztFvqPG8Hg8mJqaYsGCBViwYAFXNDQ6Oho7duzArVu3YGZmxvUAWVtbt8rcGqlUypWIcHJyavAz0rVrVxgZGXFDsjU1NXj8+DEKCwuRkZGBLl26cJXgmyrFcv78eaxevRq7du3CiBEjXrntHUXx91RTU8P1xip640aOHInKykocO3YMdnZ2EAgE3HO1tbXo0qVLgyUl2MRk5kVYwMO0mlGjRiElJYW7W3tR7pKJEyciNTUV586dQ0ZGBleTCai7sGlra6OoqAhVVVUNvl4RaGVmZkIkEiE6Ohr6+vpISEjAvXv3uOEgAEhNTUVycjJmzpyJkJAQ9OnTB48ePUKfPn1w+/ZtrFu3DkOHDsWvv/7K7b+qqoq7ELf3xbSp/D8KMTExCAsLQ3x8fLu27U3B4/FgYWEBCwsL+Pn5cUvYo6Oj8d133+H27duwtLSEm5sb3N3dMXDgwBb/nhXJDltaIqJr167o2bMnV6m7qqoKYrEY+fn5uHPnDrp27QpdXV2IRCIMHz4cqqqqCA0Nxfnz5/HXX3+9sRW+Fb2yfD4fCQkJ+Mc//oHa2lqoqalh9erVcHFxgYmJCb799lssXboUJiYmWLx4MQQCAQoLCyESiTB48GCoqqqyoSum5YioqR+GaTNyubzJx5OSksjS0pJMTU0pICCAcnJy6m1bXV1Ny5cvpz59+jS5r3Xr1pGBgQFdu3at3jZHjx6lQYMG0b59+4iIqLa2lk6dOkXz5s0jc3Nzsra2puDgYMrKymrwGFKplKRS6YtPuJlqamro3XffpS1btjS6TUpKCllYWFBGRkarHfdtI5PJ6O+//6bQ0FCaOnUq2dra0syZM+nHH3+klJQUkkgkVFFR0ehPdnY2RUVFUWFhYZPbvczPo0eP6O+//6b33nuPLCwsaMCAAeTi4kKXL19u1c8aEdHChQupR48eZGNj0+R2V65cIT6fT8eOHWvxMeRyOclkMu7/d+7cIYFAQHPnzqVVq1bR+PHjqVevXrRixQqqrKwkIqLPP/+ctLW1ydramry9vWn48OFkYGBA169fb/HxmbdKozENKy3BdDjFBOiG7q7FYjF+++03ZGZmYt68ebC1tVUa7xcKhVi8eDG6d++OkydPchObn53gXF1dDR8fH+Tk5CAxMRGA8pyBkJAQHDlyBKdOnYK1tTVCQ0Px9ddfw9LSErNnz+ZyBk2YMAFffPEFNDQ0AAClpaXQ0dFp8flSE3emRIQFCxZAIBAgNDS0wW2EQiHGjh2LAwcOKM3nYV6NTCZDSkoKVwdMKBTCzs4Obm5uGDNmDIyNjbn5YT///DOGDRsGOzu7Np0YfffuXfj6+uKDDz6Avr4+4uLicPPmTZiZmXE5rF7Vi4p/AnXvzYQJE9CtWzf4+vpixowZzdr37du3YWFhoTSp+scff0RFRQUyMzPx008/QV1dHQCwYsUKREREYO7cufjyyy8BAEePHsW5c+dQXFwMgUCA7777DgKBgPXuME1p/IPRVDTUzlEZw7RYVFQUdenShTZu3EhEpHT3q+jdSU9Pp+HDh9OiRYuIiJTuNCsqKmjGjBnk6upKRERVVVWkra1Ns2bN4raRyWSUlJREJ0+epIqKCiIiCg0NpcmTJ5ORkRE5OTnR3r17qaamptntvnLlSoN36xcvXiQAZGdnRw4ODuTg4EBnzpyhHTt20I4dO4iIaNGiRaSrq8s9P3jw4GYftzFCoZBGjx5NgwYNImtrawoNDW2y7S97p/8mqa2tpcuXL9OGDRvo3XffJXt7e/rggw/I0dGRfH19qaysrNV7dp79+e2338je3p6uXLmi1C65XE53796lv//+u9XONTs7u8kenh9++IF++uknWrBgQbN/74GBgWRtbU1TpkzhHouIiCATExPS0dGhTz/9lIiI+7spKysjLy8vcnV1pdTUVKV9VVdXc/+ura1t9nkxb6VGYxoW8DCvPalU2ujwV0VFBR06dIjy8vKISHmYTBHYHD9+nAYNGkR79uypt7+UlBQaMmQIffzxx0REdOTIEVJTU6P4+PhG2/OPf/yDVFRUyM/Pj3755RcKDAwkU1NTioqKeuG5REZG0tixY8ne3p5MTEyoW7du5O7uTmFhYfT48eNmvBttIz8/n5KTk4mo7otnwIABlJaWVm87qVRKY8aMIQ8Pj04f8Dzv8uXLNGDAAJo3bx6NGTOGHB0dyc/Pjw4ePEg5OTlUXl7eKnSOR4UAAA/GSURBVIGORCKhr776isaOHUsPHz5sl3NrKuDJy8sjd3d3kkqlzQp4cnNzyc7Ojuzt7en777+n06dPKz2/fv160tXVJU9PT+4xRUBz5coV4vF4dOHCBSKqP+z97M0KwzSi0ZiGTVpmXntNraRRV1eHt7c39/9nu7kVQ2Tx8fEoLi7mVjvx+XyuSzw1NRVisZh7LiEhAf369eMSxim2UwyRxcXFISwsDHv27MH8+fMhl8sxbtw4ZGRkYN26dRg7dmyjbU1OToavry8cHBwQFBSEd955B9nZ2Th+/Di+/PJLCAQCLjFje2vOcnigbjjCy8sLV69e7Yhmdpj9+/dj+/btiIiIQL9+/QDUTTROTExEdHQ0du/ejfLycq4OmJubG3R1dVs87FJWVoYlS5bA3NwckZGR7ZZHqCnLly/Hpk2bmrWi7dGjR/D19UXfvn2xZcsWWFhYcKkAampq0LVrVyxduhS5ubn45ZdfsHv3bvj7+3Pn2atXL6ipqSErKwtubm713j+2Eot5FSzgYd54L0oS6OHhAVVVVe7L+9lcHWlpaVBTU+OSnD158qSu6vUzy17pmXluZ86cwdOnT5GTk4Pc3FyYmJjAyMgI/v7+WLp0KXdRb6iNBw8eREFBAe7du8fVOrKxscHgwYNhaWnJVaGnDp6f0NhyeJFIhN9//x3R0dFvXcBjZGSEmJgYbr4JAHTr1g1jxozBmDFjANStrLt06RKio6OxdetWSKVSjBgxgiuEqqWl1eTvNSMjA4sWLcKKFSswZ86c12aOyrVr1zB79mwAdcU8z549C1VV1QaDc6FQiLS0NISFhcHS0hIymYx7rmvXriAi6OrqIjAwECKRCGvXroWJiQk8PDxQXV2N2NhYdO3aFYMGDWq382PeIk11/7R3PxTDtCeJREJjx44la2tr7rHff/+deDwexcTENPgaBwcHMjMzowEDBhCfzycdHR2aPXs2DR06lJycnKiwsLDB15WXl9OCBQtIS0uLGzpqLY0N970MiURCTk5OdOLEiXrPzZgxgxITE4mIWjSX420kl8uptLSUTp8+Tf/85z9p+PDh5OzsTJ9++imdOnWKioqKuCGs8vJyOnr0KDk4OLT6Z6O5XjSHR+FFv/cTJ06Qvr4+Xb58Wenx/fv305o1a8jb25v++usvqq2tpaSkJLK1tSU1NTVyc3OjhQsXkqamJi1btuyVz4d5q7FVWszbq7GSFACQlZWF3Nxcbijq8ePH8PHxgUgkwurVq9G/f3+IxWLY2NhAX18fNjY2mD59OtauXYv79+8jMTERkZGRuHXrFkaMGIH169c3WhX73//+N5YsWQJLS0usWbMGnp6e0NTURG1tLVRVVV/qjp7+vzfo/PnzcHR05Go7vYza2lp4enpi4sSJDVaINzc353q7SkpKoK6ujt27d3fYMNybhIggFosRFxeH6OhoXL58Gd26dYOLiwsKCwtRUFCAQ4cOvdLv72U9W/zTyMioXvHPZ/n4+MDT07PRVVrp6ekYNmwY5s6di4kTJ4LH42HdunVISUmBmpoaVyh4xYoVWLt2LY4dO4a1a9eiuroamzdvhr6+PpeLq6PKuzBvPLZKi2GaKy0tjTw9Pal79+7Uu3dvmjt3Lpf7Y9WqVdS/f3969OiRUs9KTU0NFRcXN7pPxba///47OTo6Eo/Ho6lTp5JIJKq3bUvy+sjlcoqLiyNNTU06cuRIS06z3n7mzZtHgYGBzdqe9fC8GrlcTg8fPqT9+/eTl5dXp1h5pPiMb9u2jTQ1NYnH4xGPxyN7e3tauXIlpaenU0FBAc2YMYN0dHQoKSmJ5HI5ffXVVzRw4EBavXo1t6+WrHhkmOewHh6GaQi9ICfO1atXwefz4ejoyFVz9/f3h7m5ORYtWgQLCwsUFRWhR48eMDc3f+FxiAg3b97Etm3bsG/fPri4uCAiIoLL7dNcirvfS5cuISQkBDY2Nti6dWu98yktLcWhQ4cwb948rjJ9Q+Lj4+Hm5gY7OzvurnrDhg0QCoUAWn6nz7zdFNnODQ0NYW9vDyMjI66X9enTp9DQ0MBPP/2EpUuXoqSkBKtWrUJcXBxWrlwJX1/fDm4984ZrtIeHBTwM8xy5XA4ianQYLDo6Gl999RWuXbsGExMTCAQCzJo1C8uXL29RbaYpU6YgNjYWmZmZXKmAtWvXorS0FB4eHlxZjKZMmjQJmpqa+OGHH2BiYgKpVApVVVVu8vTNmzdx+PBhbNq0qdntak+5ubmYP38+CgsLwefz4e/vj8DAwHrbxcbGYvny5aitrYWBgQHi4uI6oLXMizR1A6F4/vz58/D29saxY8e4Cd9paWkICAhAQUEBLl682OiwMMM0AxvSYpiX0dSE4IqKCoqKiqKjR49Sfn6+0nOKIamwsDD68ccfSSwWKz1fWlpKs2bNooEDB9L9+/eJiOjRo0d0+PBh8vT0pG7dur3w+MePH6cuXbpQQkKC0rb5+fkUHBxM9vb2ZGhoSCNGjKA//viDy3Wi2O7GjRu0cOFCSkpKavb70dqak/9HLBaTlZUVPXjwgIio3XLTMK1D8XmTy+UkEonIx8eHXF1dKTc3V+nzHRMT02DuJ4ZpIZaHh2FeRkN3qzKZDDweD+rq6o3m3VH09Dx8+BB79uxBVlYW5syZg969e0MikeDAgQM4ceIEgoODuaEwLS0tzJ49G3l5eUrHUuQxedaTJ09w+PBhDBkyhCsvoWjr+vXrERYWhpCQEERERIDP52PZsmVYsmQJVqxYge7du0Mmk8HR0RG3b9/GpUuXMGzYsA6ZJNqc/D+HDh3C9OnTYWpqCgAwNDRs1zYyr4bH4+HWrVtIT0/Hjh07kJOTg7Nnz8LY2BjAf3qFRo8eDYBNVmbaDgt4GKaFnh22ksvlSnl9nufr6wsNDQ3s27cPO3fuhLGxMbS0tJCTk4Pg4GB8/vnn3LaKi/zBgwe5YZ3n96v4Mrh+/ToyMjLwwQcfAAA3lCUSiZCQkABfX18EBQUhMzMTX375Je7cuYP8/Hwuv5DiHDQ1NVFZWal0/I7SWP6fzMxM1NbWYvTo0ZBIJAgMDMT8+fM7qJVMSyUkJGDChAmwsrKCpaUlIiMj0b17d+6zzJILMu2FBTwM8wpedHE2MjLCJ598gk8++QSFhYW4ePEiqqqquGKUz1IEIenp6fD09FR67HlJSUkgIowcOVKpHXp6ejA2NsbDhw+RkpICY2NjDBgwAAMGDKi3D6lUCkdHR1y4cAGrVq1q2Ym3svLycnh5eSE0NBTa2tpKz0mlUiQnJyMqKgpPnz7FiBEj4OzsDEtLyw5q7evD19cXp0+fhqGhYYOFP3/55Rdu/pampiZ27NgBBweHdm2jq6srjh8/Dh0dHS7BpyJAZ5j2xEJphmlDRASZTAYiQs+ePTFz5kzMmzevXrBD/7944NKlS9DW1oahoSFXRf5ZisCmoKAA3bt3h42NjdLj6urq8PHxQXx8PMaMGQORSISCgoIG26aqqgqZTAaxWAwADR6vPdTW1sLLywtz5szB9OnT6z1vbGyMSZMmQUNDAwYGBnB3d0dKSkoHtPT14+Pjg8jIyEafNzc3R1xcHG7duoWQkBD4+/u3Y+v+87mePHkyF+zI5XIW7DAdggU8DNOGeDweVFRUuG57xQowBcW/nz59CgC4cOECJk6cCABKafmfVVVVxe3n+dUscrkcXl5euHTpEmxtbZGYmIhPP/0UIpFIaTupVAqgbhjJ0NAQMpmsQ4YSiAiLFi2ClZVVg8kOAeD999/HxYsXIZVKUVlZiaSkJFhZWbVzS19P7u7uEAgEjT7v4uICPT09AICzs7PS/LD20NBQLxuyYjoK++QxTDt6fs6C4t/bt2/HyJEjsWrVKujo6ABAo4Uju3XrhoqKCujq6gL4T/Ci2D8A6OjoYODAgQgODuaW0T/r2eGz3r17o7q6upXOsGUSEhJw8OBBREdHw9HREY6Ojjh79ix27tyJnTt3AgCsrKwwadIk2NvbY9iwYfDz84OtrW2HtPdNFhYWBg8Pj45uBsN0GNavyDCvgc8++wxjx45FbGws/vzzT8yePRv//ve/oaWlpbSdokxGVVUVjIyMlPKenD59GiKRCEuWLMH169dhamoKHx8fpKWl4bfffgPwnxUxPB4PJSUlePz4MczNzZWKYrankSNHKvV4NSYoKAhBQUGteuzm5AAqLS3F3LlzIRQKIZVK8dlnn2HhwoWt2o72EBMTg7CwMMTHx3d0Uximw7CAh2FeE05OTnBycmp0aAf4T8+Mra0trl69isrKSi5LM5/Px6lTp1BSUoKioiI4ODggJiYGERERGDp0KIC6HiVF0BQVFQW5XK60BPxtoqqqii1btsDJyQkSiQSDBw/GhAkTlN6Pbdu2wdraGn/++SeKi4sxcOBAzJkzB127du3AlrfMrVu34Ofnh4iICOjr63d0cximw7CAh2FeE4oJznw+/4XzHMaPH4/NmzejW7du3GNjx46FRCJBWFgYYmJioKenh+7du0MgEGDlypXcMRRBU3h4OOzs7ODk5NR2J/Uaa04OIB6PB4lEAiJCeXk5BALBGzXhVigUYvr06Th48CBb1ca89VhpCYZ5A2VnZ2PPnj1YtmwZV5ZCgYjg5+cHLy8vVFZWYvz48dx8H4WrV6/CxcUFhw4dwsyZM9uz6a+lnJwcuLu7IzU1VWlZvEQiwZQpU3Dnzh1IJBL8+uuv+K//+q8ObKmyF1U69/Pzw4kTJ9C3b18Adb1a165d68gmM0xbY7W0GKazefz4MVRVVbkvaEUit//93//FxYsX8c033yhtr5i/8+TJE3zyySfIyspCYmJiRzT9tVJeXo5Ro0bhyy+/rLcs/vjx40hISMD333+Pe/fuYcKECUhJSamXK4hhmNdGowEPW6XFMG8ogUCg9MWrGAbr1asXvLy86k0GVkxu3r17N1JSUvDf//3fANCsScOd1YtyAO3duxfTp08Hj8dD//79YW5ujjt37nRASxmGeVUs4GGYTsbe3h7vvPNOgzlQYmJicPbsWXz66acYP348gIZzpbwNmpMDyNTUFFFRUQDq6qJlZGTAwsKiPZvJMEwrYUNaDPMWSU5OBp/Ph52d3Rs1+bYtxMfHw83NDXZ2dlzv2IYNGyAUCgHUzYHJz8+Hj48PCgoKQEQIDg7G3LlzO7LZDMM0jc3hYRiGYRim02NzeBiGYRiGeXuxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCdHgt4GIZhGIbp9FjAwzAMwzBMp8cCHoZhGIZhOr0XpVp9O3POMwzDMAzTqbAeHoZhGIZhOj0W8DAMwzAM0+mxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCd3v8BOdq7m+geacUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -299,7 +299,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFoCAYAAAD0LAJxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xe4XGW5/vHvnYQkEAKEDgKGjjRbpB4lCIQmIE3KoYM5qDQVf8ejHkDQo2JL6ESFKFKkCCLSAxuUJgGkE+khCYgkISEQEpI8vz/eNTBMZu89s/fMrJnZ9+e61jV73tWetbMza571NkUEZmZmZmZm1tr65R2AmZmZmZmZ9Z6TOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07uzMzMzMzM2oCTOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07urFcknSYpipZpkq6RtG6OMZ0iaaqkRZLGd1ZWZr/Saykstzcy/qJ4viTpiDLl4yVNbHAskvSopMOLyrr9ndbo3P0kHSfpEUlzJc2W9KSksySpXuetdSySzpX0m0bFambNrUnvn9tKeljSu5IiKxsi6QpJ07M4j+hk3/Gd3EN/3dCL+CCe0ZK+WKb8JUk/yyMms0YYkHcA1hZmAbtkP68DnAFMkLRJRLzdyEAkjQC+D3wH6ABeL1fWxSGKr6W4LA9fAlYExpeUnwEsmUMsw4DLoPzvuY7nvgIYBfwcuB9YGtgG2D4ioo7nrXUsPwWekfSjiHiuvmGaWYtomvtn5kLS5/nOwLys7CvAHsBhwFTg+S72fwY4sqSsnveHrowGngCuKynfG5je+HDMGsPJndXCgoi4P/v5fkmTgb8CuwFXNTiWjbLXcyNiNoCkQ0rLulB8LU0pIrq6sdbLCcAlEfFe9n6x33NPSeoP9I+I+WXW7QrsD+wWETcVrbo2h1q7XsUSES9J+hvpi9I36xSmmbWWZrp/QvpsHxcRd5WUTYqIayrY/+0WuIc+kncMZvXkZplWDw9lr8MBJG0t6fqsycnbkv4h6T8LG0vaPWvat3bxQSStnZXvWVT2JUmPS5on6RVJP5Q0IFs3Hrgk23RW1hzkpTJlI3t6YZI6JF1dUjYyO+6mhTgkTZS0k6THsmv+m6RNyhzvc5LulDRH0qzs+J/MrmVfYLuipi2nFR+/5Did/l6qjalMjOuRaqeuLhyLLn6nVcTyRUlPAu8CW3Zy+u2y1ztKV+RQa1eLWK4B/lOSP3vNrJxq75/LZ00oDy8+iJIXJf2iqOzzkh7Itv+XpPMkLZ2tG6nUDLM/MDb7XB+f3UOPBj5ZuBf19MJK75VF5R+6r1Z6v5LUX9L/SPpndr+Zog+6YnQAnwYOL7qHHpGtW6xZZgX3rSOyY2wm6bYspmck7dPT34dZvfgLhtXD8Oz1tez1o8A9wDGkph3XABdLOihbfzMwDfjQzQk4Avg3cCOApFHAH4CHgb2As4GTgXOy7c8AfpD9/Hlg62y70rKHuwpe0oCSpSc1RGuRmuH9EDgIWBm4svhYWUI0AXiPdO0HkJ7YfiS7ljuBR7KYtwbK9luo4PdScUyd2AF4G3g0e1/u9/xwlbEMB84EfkR6Qv1iJ+cuNEv6qaSPdhNnl7IvO6X/tostXRyiFrHcC6wCbNbD/c2svQ3PXiu6f0bEDOBaFm8KOTI71sUAkjYm3WvfID04PBU4mOyhHekze+vs559nP59BasJ4I6m55dZF23Sqis/UrlRyv7qQ1D3gSuALpBYRQ7J1X81ivrEo7r90Em+l9y1IXROuJ/1engWukLRGD6/RrD4iwouXHi/AaaSbxYBs2YCUlMwGViuzvbLtLgTuKCr/AekLvoq2ewn4WdE29wN3lhzv/wELgTWy90cAASxdtM1iZV1cS5RZdizapgO4umS/kdl2m2bvxwMLgPWLtvlits1GRWX3ARML11wmnquBjjLl44GJVf5eKoqpkzjGAQ+WlJX9nVYRSwCfqODva1XgsaJ/iydI/fy6/Lfs5FhHUP7f90NLPWMh/e0vAL5cr/+TXrx4aY2F2t0/dwQWAesUlf2u5D5xBSkZ6V9U9qXss2zrorIAjis574fuOV1cT+GzvXRZL1s/kqJ7ZdF+HRTdVyu5X5GaigZwQhfxTATGlyl/iZ5/tziqaJsVsjiPzftvyYuX4sU1d1YLK5Bqn94DJpE6hR8QEa8CSBqmNJrgy0XbjSbdyAouIj2hHJm93z57X3jq2B/4FIv3QfgDqQa626eJFZoFfKZkeaAHx3kpIp4tev9U9roGpNHHSE0RfxsRvWnmUs3vpcuYurAq6QtILWOZGhH/6O6YEfEa8ElS5/7zgeVIT3LvlTQwO+/5SqN2dvd7/DOL/9uWW3oUi6Q1JU2Q9LTSCJpnltaKRsQC4E3S79TMrBb3zwnAy2StXyQNBfYhu39mtgCujYiFRWXXkJKT/6jh9TzN4p+pr/TgON3dr7bPXsf34Njv68F3i1sLP0TEdNJgMa65s6biAVWsFmaRnhwGqSnJtJKEZTywFamJx1Okp5JfITV/ACAiXsjayB9JenJ5JPD3iHgy22RFYAngXyXnLrxfvkbXsiAiajHNwJsl7wuDhQzOXoeRnsK+2svzVPN76S6mzgwG3qlxLKXbdCr7MnIrcKuk40jNU48k3XTvAi4nPQF/rbNjZGbQy5FPu4nln8B/R8TELPG8jfQFq3QQgnl0/zs3s76hFvfPkHQxcJRS3+wvkb7fXVZ0nNUo+dyNiIWSplO7+yfAOw26h65AGrylVwN6Uf13i3Jx+fPcmopr7qwWFkTExIh4KCKmFt+YJA0GdgdOjYhzIuKO7IO/3N/er4F9JX2ExZ86vkF6YrlyyT6rZK8zanUx3XgXGFhS1pMb40xSM5rVehlPI34vM0i1VLWMpUe1lRGxiA+enA7Oyu6OiEqSxcP54Ml3V0uPYomIVwtfaiKN/PkYsGaZXZejcX+vZtbcanX/vJj0ebM9qQnhdRExs2j9q5R8Nme1VivQ2Psn1OYeOh0YImmZ3oXUNN8tzGrGyZ3V2yDS6FuF+XIKTUb2LLPtH0lPwa4g/W1eUViR1Zg8RBqKvtiXSEnSfTWNunNT+GAagIKdqj1IpPmLHgAO62JAk26fCDbo9zIJWLu7jWodi6RVOlm1J6kmsdrmsj1ullltLJJWIPURuaWkfCVgKVItn5lZVyq+f0bEK6SHTd8nNbO8uGSTB4C9s4SuYB9SDd/faht2p6Zkrx8rFEhaE9iwB8cqjFp8WBfbNMs91Kyh3CzT6ioiZkl6EDhF0mzSh+W3SU1RlinZ9l1JlwJfAy6PiNLmD6cCt2TNT64gjTh4BvCriJhCY1wLHC3pl6SRt7Yn9cHqiW8DtwM3SRpHGo1xa1LH9RtII33tJemLpJvitIiYVuY49f693EP691spIv7dzba1jOVKSW+RRkJ7ifRk9T9JzZG+XObvo0tZ/4ieTlxbcSySBpEGwxkTEU+XHGcEqdby3h7GYWZ9RDX3z8xvSH3HppCahRf7AWn05esknU/qJ/YT4JaIaEgCExFTsus5Q9I7pIe436EHtWMRMSm7b/5c0srA3aRWEftFxIHZZs8AO0vamfTZ/2J2HyjVDN8tzGrGNXfWCAeTRsL8HTCW1Afpd51se132elHpioi4FTiQ9AX5z8BJpCGbj6txvJ2KiL+Qbkb7kRK9j2Zx9ORYd5Nq/ZYCfk/qwL0dHzzdPI/0JPYi4EFSJ/pyx6n376WDdPPdpbsNaxzLb0kPoP6PlASPIzXn+XxE/KYHx+uNimLJnopfCjwSET8vc5xdgLs6+YJhZlaqmvvnDaQBUn6bNRt/X9Z/fVfSg6k/kpK9y0n3skY6GJhMuuf9H3A6qXVIT3yVVFN5CGnKgzHA3KL1PyAN8HIl6R66R7mDNMN3C7NaKgw7b9YUJJ1Jmu9t7dKbk+VH0ljScNa75x1LZyRFRPRkTsJaxvBrUjOqo0pHQc0Sv5eBb0fE7/OIz8zal6TdSAneBhHxXN7xmFk+XHNnTUHShpL2Jo0CdrYTu6bzU2CkpA263bLBJP1a0pTs5ylZgpVHHNsCR5Oe/j4i6R+STijaZH/SU+Uryu1vZtYTklaXtB3wY+BGJ3ZmfZuTO2sWF5KGbb4ROCvnWKxE1u/gaHo/umfNRcQxEbFGRCh7PSanOO7JYtgsIj6RLcV/ywKOzua6M1uMpP0lXZ/N2zhH0kOSDqpgv/UlXSPpX5JmS7pXUrfNqK1tjCbNdfcucHzOsZhZCUkXSXpd0hOdrFc2n+Vzkh6T9KmidQuzh8X/kHR9Redzs0wzM7P8SbqP1L/qOtIQ7bsB3wROiIizO9lnKPA4aXqVM4A5pC/7ewHbRsTfGxC6mZl1QtLnSJ/Nv4uITcus3430YGY3YEtgbERsma2bExFLV3M+j5ZpZmbWHPaIiDeK3t8haXXgG0DZ5A7YljSw0x4R8TiApDuAqcC+gJM7M7McRcTdkoZ3sclepMQvgPslLSdptYh4tSfnc7NMMzOzJlCS2BU8wuITLBdbInudVXScBaSpVXIdYMjMzCryEeCVovdTsjKAwZImSro/mxqrW32i5m7FFVeM4cOH1/08b7/9NkOGDKn7eRrN19VafF2txddVew899NAbEbFSLievvW2Ap7pYP4E09+LPJH2TlNQdS0oIx1dygoH9lowlB5SbNs3MrLnNfu/1mn3ebztycLw5o/rx/J56/L0nSX1eC8ZFxLgqDlHuQVyh39xaETFN0jqk1hyPR8TzXR2sTyR3w4cPZ+LEiXU/T0dHByNHjqz7eRrN19VafF2txddVe5JezuXENSZpB1JznaM62yYi3pE0kjQY1eSseDawV0R0lRS+b8kBy7DNygf0Mlozs8a7eerZNfu8f3PGIi67YZWq9/vER6e8GxEjenHqKcCaRe/XAKYBRETh9QVJHcAngS6TOzfLNDMzazJZ/4zLgD9FxPguthsCXEUaUGUvYCfSJNXXSPpkF/uNzpr6TJy/aG5nm5mZWf1dDxyWjZq5FTArIl6VNEzSIABJK5L6WHf70K5P1NyZmZm1CknLAzeRauIO6Wbzo4GNgTUi4s2s7HZJGwLfB/Yst1PWZGgcwLIDV/Gw2WZmdSLpcmAksGI2L++pZP2lI+ICUsuL3YDngHeAI7NdPwZcKGkRqULux5W0yHByZ2Zm1iQkLQXcAAwEdo+It7vZZSPg5aLEruAfwHZ1CNHMzKoQEV3OV5qNkvm1MuX3AptVez43yzQzM2sCkgaQmliuD+waEa9XsNvLwHBJw0rKP00aaMXMzPoQ19yZmZk1h/NITXNOBJbP+l4UPBIR8yRNAIiIHbLyy4DvADdKOpPUpOcQYAvgCw2L3MzMmkLDa+4krSfpQkmPSlqYjfxSyX7LSrpY0kxJsyRdKmmFOodrZmbWKKOy17HAfSXLatm6/tkCQES8AmwPvAlcSKr52xDYLyL+0piwzcysWeRRc7cJ6cnk/aQ+BZX6A+mGdQywCPgJcB3w2VoHaGZm1mgRMbyCbUaWKXsY2LUOIZmZWYvJI7n7c0T8CUDS1cCK3e0gaWtgZ2C7iLg7K5sKPCBpx4i4vZ4Bm5mZmZmZNbuGN8uMiOqnfk9PJP9VSOyy4/wdeBE/rTQzMzMzM2uZAVU2Ap4pU/50ts7MOhMBjz8O//pX3pH0yrBHH4X33ss7jN4bOBC22QaWWCLvSMzMzKzNtEpyN4zUWbzUTGCdcjtIGg2MBlhllVXo6OioW3AFc+bMach5Gs3X1VoK17XEjBmscvvtrHrzzSz94ot5h9VrH887gBp6+jvf4V877QS0/9+hmZmZNU6rJHcAUaZMnZQTEeOAcQAjRoyIkSNH1i+yTEdHB404T6P5ulrI/Pk8ceaZbPrgg3DjjbBgAWy5JXzrW7D55nlH1ysPP/wwn/rUp/IOo3dmz4bdduNjq6zCx7K/vbb8O6R9r8vMzKyZtUpyNxNYqUz5cpSv0TPre374Qxgzhk3feANWXRW+8Q04/HDYeOO8I6uJ2e+9B9tum3cYvTNnTnp999184zAzM7O21CrJ3TOUn/JgI9J0CGZ924MPwve+B6NG8dj227P5ySfDgFb5792HDB6cXufNyzcOMzMza0sNHy2zh24CVpX0H4UCSSNI/e1uyi0qs2YxdiwMHQpXXcWMrbZyYtesBgyAfv2c3JmZmVldNPwboKSlSJOYA3wEWEbSftn7GyPiHUnPAXdFxNEAEXGfpFuA30k6mQ8mMf+b57izPm/aNPjDH+C442CZZfKOxrozaJCbZZqZmVld5PF4f2XgqpKywvu1gZdIcfUv2eZA4JfARaQaxxuAE+oWpVmrOP98WLgQjj8+70isEoMHu+bOzMzM6qLhyV1EvEQa5bKrbYaXKXsTODJbzAxg7ly44ALYc09Yp+ysINZsBg1ycmdmZmZ10Sp97sysnMsugzfegJNOyjsSq5SbZZqZmVmdOLkza1URaSCVzTeH7bbLOxqrlJtlmpmZWZ14SD2zVnXnnfD443DRRaAuWzpbM3GzTDMzM6sT19yZtaqxY2GlleCgg/KOxKrhZplmZmZWJ07uzFrRc8/Bn/8Mxx77wcTY1hrcLNPMzMzqxMmdWSs6++w0IfZXvpJ3JFYtN8s0MzOzOnFyZ9ZqZs+Giy+GAw6A1VbLOxqrlptlmpmZWZ04uTNrNRddBG+95ekPWpWbZZqZmVmdOLkzayULF8JZZ8F//Ad8+tN5R2M94WaZZmZmVidO7sxayQ03wIsvwokn5h2J9ZSTOzMzM6sTJ3dmrWTMGFhrLfjiF/OOxHrKfe6sE5L2l3S9pKmS5kh6SFJFc51I+pykuyS9LenN7Oe16h2zmZk1Fyd3Zq3i0UehowOOOy6NlGmtyX3urHPfAOYAXwf2BO4ELpN0fFc7SdoFuB14NNvvEOA+wPOkmJn1Mf6GaNYqxo6FpZaCY47JOxLrDTfLtM7tERFvFL2/Q9LqpKTv7HI7SFoC+BXw04j4btGqG+oXppmZNSvX3Jm1gtdfh0svhSOOgGHD8o7GemPQIJg/HxYtyjsSazIliV3BI8DKXey2E7AGcG5dgjIzs5bi5M6sFVx4YUoITjgh70istwZnLeXmz883DmsV2wBPdbF+S2A6sJWkZyUtkPSEpD0aE56ZmTUTJ3dmzW7ePDjvPNh1V9hww7yjsd4aNCi9ummmdUPSDsBedF0rtyowBBgH/AzYhZQMXitps7oHaWZmXZK0i6RJkp6T9O0y6z8qaYKkxyR1SFqjaN3h2YO7ZyUdXsn5nNyZNbsrr4TXXvP0B+2ikNx5xEzrgqThwGXAnyJifBeb9iMNnPK9iLgwIm4HDgJeBP5fF8cfLWmipInzF82tWdxmZvYBSf1JD+h2BTYGDpK0cclmPwN+FxGbA6cDP8r2XR44ldRCYwvgVEnd9s1xcmfWzCLS9Acf+xiMGpV3NFYLhWaZrrmzTmQ39JuAyaSRL7syI3u9s1AQEQuBu0hfJMqKiHERMSIiRgzst2QvIzYzs05sATwXES9ExHzgClKLjGIbAxOyn+8sWr8zcFtEzIiImcBtpNYZXXJyZ9bM7rkHHn441dpJeUdjteBmmdYFSUuRRrocCOweEW93s8vTnR0K8Kg9Zmb5+gjwStH7KVlZsUeBfbOf9waGSlqhwn0X46kQzJrZmDFpdMxDD807EqsVN8u0TkgaAFwFrA9sGxGvV7DbLcACYAdgUnac/sB2QEd9IjUzaz/TFy7NJTO36cGeV64oaWJRwbiIGJf9XO7JfJS8Pxk4R9IRwN3AVNLneiX7LsbJnVmzevlluPZa+Na30vx21h7cLNM6dx6wG3AisLykrYrWPRIR8yRNAIiIHbLXVyWdC/xYkoDngNGk6RF+1NDozcz6pjciYkQn66YAaxa9XwOYVrxBREwD9gGQtDSwb0TMkjQFGFmyb0d3wTi5M2tW55yTmmJ+7Wt5R2K15GaZ1rlCx9qxZdatDbwE9C+z7lvA28D3gOVJc+PtHBHP1yFGMzOr3IPA+pLWJtXIHQgcXLyBpBWBGRGxCPgf4KJs1S3A/xUNojIqW98lJ3dmzWjOHPjVr2DffWHNNbvf3lqHkzvrREQMr2CbkWXK3gO+my1mZtYkImKBpONIiVp/4KKIeFLS6cDEiLieVDv3I0lBapb5tWzfGZLOICWIAKdHxIzFTlLCyZ1ZM/rtb2HWLDjppLwjsVorNMt0nzszM7O2FxE3AjeWlJ1S9PPVwNWd7HsRH9TkVcSjZZo1m0WL4KyzYIstYKutut/eWotr7szMzKxOXHNn1mxuvhn++U+49FJPf9COnNyZmZlZnbjmzqzZjB0Lq68O++2XdyRWD26WaWZmZnXi5M6smTz5JNx6K3z1qzBwYN7RWD245s7MzMzqxMmdWTM566xUszN6dN6RWL04uTMzM7M6cXJn1iymT4dLLoFDDoGVVso7GquXQnLnZplmZmZWY07uzJrFr34Fc+fCCSfkHYnVU6HPnWvuzMzMrMac3Jk1g/feg3POgR12gM02yzsaq6cBA6BfPyd3ZmZmVnOeCsGsGfzxjzB1KlxwQd6RWCMMGuRmmWZmZlZzTu7MmsGYMbDeerDbbnlHYo0weLBr7sxqaO6mH8k7BLOaWfKJqXmHYC3MyZ1Z3h54AO6/P42U2c8tpfuEQYOc3FnTc8Jklo+5m37ECZ71mJM7s7yNHQvLLANHHJF3JNYobpZpTWTRkks4kTNrMk7wrKcantxJ2hg4G9gaeBP4NfD9iFjYzX4jgP8DPg0IeBj4bkQ8UN+IzepoyhS46io4/ngYOjTvaKxR3CzTrNdmbjgw7xDM6mLYpPmAEzzrmYYmd5KGAbcDTwF7AesCPyeN2vm9LvZbM9vvYeCwrPhbwK2SNo+Il+sZt1ndnHceLFqUkjvrO9ws0/oAJ19mPTNzw4FO8KzHGl1zdyywJLBPRMwGbpO0DHCapDOzsnJ2B4Zm+70JIOle4A1gN+D8+oduVmPvvAPjxsFee8Haa+cdjTWSkztrYn09KXtr3UV5h2B93NDn+znBsx5rdHK3K3BLSRJ3BfATYDvgz53stwSwAJhTVDYnK1Md4jSrv0svhenT4cQT847EGm3wYPe5s6axcLBaLqFzAmbt7K11F72f4EFqpukEzyrV6ORuI+CO4oKImCzpnWxdZ8ndNcDpwM8l/TArOwWYCVxVp1jN6iciDaTyiU/A5z6XdzTWaIMGwdtv5x2FWW6cnJl1rZDgwQfNNAsDHznJs640OrkbRhpEpdTMbF1ZETFN0vbADcAJWfGrwM4R8e+aR2lWbxMmwJNPwvjxIFc+9zmDBsGMGXlHYdZrrZikLb32rLxDMOvSnBeXBconeOBmmta1PKZCiDJl6qQ8rZRWA64GHgKOyYq/BvxF0jYRMbnMPqOB0QCrrLIKHR0dvQy7e3PmzGnIeRrN11V7m/3v/zJ02DDuW201osYx+N+r+W3y1lssNX06D3Z0tNV1FWvX6+oLmj1hc3Jm7W7ptWc5wbMea3RyNxNYrkz5spSv0Sv4FinW/SLiPQBJdwDPAifzQW3e+yJiHDAOYMSIETFy5MheBV6Jjo4OGnGeRvN11dizz6ZJy089le1Gjar54f3v1QLWWAOmTmXkyJHtdV1F2vW62tHCQfkmdK2QrI1aa1LeIVgfcevkDQEneNZzjU7uniH1rXtfNs3BkGxdZzYCniwkdgARMV/Sk6TpFMxax1lnwcCBcOyxeUdiefFomVaGpP2BQ0nzuS4LTAJ+FhGXV3GM60hTDR0fEefUJdAKNEvC5qTMWk3hb/bWyRs6wbMeaXRydxPwLUlDI+KtrOwAYC5wVxf7vQzsJmlgRMwHkDQI2JTOB2Exaz5vvgkXXwwHHgirrpp3NJaXQYM8WqaV8w3gReDrfDDVz2WSVoyIs7vbWdIoYKv6hph/4uaEzfqCUWtNej/Bg9QPzwmeVaLRyd0FpCaUf5T0E2Ad4DTgF8XTI0h6DrgrIo7Oin5N6mt3raTzSH30vgasRtb00qwlXHRRGiXR0x/0bYMHu+bOytkjIt4oen+HpNVJSV+XyZ2kJYCxwHdJ98weyyt5yztpO3TYvbme36zgkpnbAB8kePBBM81CE2rPhWedaWhyFxEzJe0AnEOqcXsT+CUpwSuNq3/Rfg9J2gU4FbgkK34c2CkiHq133GY1sWBBapL5uc/Bpz6VdzSWJzfLtDJKEruCR0jNLLtzIqkVzMVUmdz1H7Sw7gldoxM3J2rWyg4ddm+XCR54LjzrXMNHy4yIp4DPd7PN8DJlE4AJdQrLrP6uvx5efhl+8Yu8I7G8DRoE8+fDouYeldCawjbAU11tIGlV4H9JNX+L1GTTqzixM2scJ3jWL+8AzPqMsWNh+HDYq5KH8NbWBg9Or/Pn5xuHNbWspctewLndbHomcEtE3F3/qKpXqHVolEKNh5lZX+TkzqwRHn4Y7r4bjj8e+vfvfntrb4MGpVc3zbROSBoOXAb8KSLGd7Hd1sB+pCmDqjn+aEkTJU1cMOudXkRaGSd4ZmaN4eTOrBHGjoUhQ+Coo/KOxJqBkzvrgqTlSaNLTwYO6WbzMcCFwCxJy0kqzCW7pKRlO9spIsZFxIiIGDFg2aVqEnd3nOCZmdWfkzuzenvtNbjiCjjySFhuue63t/ZXaJbp6RCshKSlgBuAgcDuEfF2N7tsCJwEzCxaIDXVnF6vOHsqjwTPSZ6Z9SVO7szq7YILUt+qE07IOxJrFq65szIkDQCuAtYHdo2I1yvY7QvA9iULwFnADpWcd+G8xjYVb3SCB67FM7O+w8mdWT3Nmwfnnw+77w7rr593NNYsnNxZeeeRJi4/A1he0lZFyyAASRMkvT9ydET8LSI6ipds1bMRcVelJy4Mr94oTvDMrK+QtIukSZKek/TtMut/Kekf2fJPSW8WrVtYtO76Ss7X8KkQzPqUK66A11+Hk07KOxJrJm6WaeWNyl7Hllm3NvASRXPA1tqcF5dt6ATmt07esOHTJFwycxtPlWBmDSOpP2nE452AKcCDkq7PpoYDICK+XrT98cAniw4xNyI+Uc05XXNnVi8RMGYMbLIJ7FBR6yjrK1yR3JeIAAAgAElEQVRzZ2VExPCIUCfLS9k2IyNiZDfHUUSc05MY8qjB80ArZtbGtgCei4gXImI+cAVpipvOHARc3psTOrkzq5e774Z//ANOPBGabFJhy5mTO2tijU7wwCNpmlnb+gjwStH7KVnZYiR9lNRK446i4sHZtDX3S/piJSd0s0yzehk7FlZYAQ7pbiRz63OKm2Uu1Zhh6M2q0egmmtD4ZppuomlmxWbPH9zTB00rSppY9H5cRIzLfi73dD86Oc6BwNURsbCobK2ImCZpHeAOSY9HxPNdBeOaO7N6ePFF+NOfYPRoWHLJvKOxZuOaO2sBc15ctu0HWnENnpnVwBuFeUOzZVzRuinAmkXv1wCmdXKcAylpkhkR07LXF4AOPtwfrywnd2b1cPbZ0K8ffPWreUdizcjJnbWQvpDgOckzszp5EFhf0tqSBpISuMVGvZS0ITAMuK+obFjRSMkrAtsCT5XuW8rJnVmtvfUW/OY3sP/+sMYaeUdjzcijZVqLafcED1yLZ2a1FxELgOOAW4CngSsj4klJp0vas2jTg4ArIqK4yebHgImSHgXuBH5cPMpmZ9znzqzWxo+H2bPTQCpm5bjmzlqQp0owM6teRNwI3FhSdkrJ+9PK7HcvsFm153PNnVktLVoEZ50FW20FW26ZdzTWrJzcWYtyDZ6ZWXNzcmdWSzfeCM8950nLrWuF5M7NMq0FeS48M7Pm5eTOrJbGjIGPfAT22SfvSKyZFfrcuebOWpTnwjMza05O7sxq5YknYMIEOO44WGKJvKOxZjZgQBpN1cmdtTAneGZmzcfJnVmtjB2b5rT78pfzjsRawaBBTu6s5TnBMzNrLk7uzGrhjTfg97+HQw+FFVbIOxprBYMHu8+dtQVPdm5m1jyc3JnVwrhx6Yu6pz+wSrnmru1I2lvSCdlktMXlx+UVUyP1hQTPSZ6ZNTsnd2a9NX8+nHsujBoFG2+cdzTWKpzctRVJPwZOBNYDbpNUPGTuUflE1XjtnuCBa/HMrLk5uTPrrauvhmnTXGtn1XGzzHazO7BjRJwAfBLYU9JPs3XKL6zGc4JnZpYfJ3dmvRGRpj/YYAPYZZe8o7FW4pq7dtMvIhYARMR0YBdguKTf0AfvtZ4Lz8wsH33uhmNWU/ffDw8+mGrt+vm/k1XByV27eVXSpwpvImI+cAAQwKa5RZUjj6RpZtZ4/jZq1htjx8Kyy8Jhh+UdibUaN8tsN0cA04oLImJRRBwDfDaXiJqAEzwzs8ZycmfWU6+8kvrbffnLsPTSeUdjrcY1d20lIqZExGudrLu30fE0Eyd4ZmaN4+TOrKfOPTf1ufva1/KOxFqRk7uWJGmspL+XKR8g6bOSdpK0TB6xNTPPhWdm1hhO7sx64p130tx2e+8Nw4fnHY21IjfLbFU7AHcWF0gaAkwEOoCbgamSjmh4ZC2gLyR4TvLMLE9O7sx64pJLYOZMOOmk7rc1K8c1d61qTaC0meUJwObAeOBg4M/AryVV1ddO0v6Srpc0VdIcSQ9JOqibfTaUdK6kpyW9I+mFrHZxuWrO3UjtnuCBa/HMLD9O7syqFZEGUvn0p2HbbfOOxlqVk7tWtQQwp6TsYGBKRBwdEX+IiEKC9/+qPPY3smN/HdiTVEN4maTju9hnJ2Bb4HxgN+AHwP7ArZIqusf3z+HP0AmemVl9OLkzq9Ztt8HTT6fpD9Sn5ia2WnJy16qeAbYsvJG0FrAJcH3Jdr8Htq7y2HtExMERcWVE3BERJwOXk5K+zlwOfDIizoqIjoi4iDRy52eoYpTOoc/3Y+jzjf1K4ATPzKz2nNyZVWvMGFh1VfjSl/KOxFqZ+9y1qouAkyWNkrQE8E3SXHbXlWz3OlDVMLoR8UaZ4keAlbvYZ3pERJl96Gq/zvSFBM8DrZhZO3NyZ1aNZ56Bm26Cr3411byY9ZRr7lrVucDtpIFT3gWOBx4HJpRsN5yU4PXWNsBTPdiHHuwHtH+CBx5J08zal5M7s2qcfTYMHAj/9V95R2KtbtAgmD8/9eG0lhHJl4DdgTOBU4Cdy9SefQl4ojfnkrQDsBcpoax0n6WAHwN3RcSTPT23E7zac4JnZo3g5M6sUjNnwvjx8J//CStX3drJ7MMGDwag33vv5RyI9URE3BQR/xMRP4iIfxWvk7QyMBS4sqfHlzQcuAz4U0SMr3AfAb8hNcc8qpttR0uaKGnigrlvl93GCV7tOcEzs3preHInaWNJE7Ihm6dJOl1S/wr33UfSg5LmSpou6eZsfiGz+vv1r9P8dieemHck1g6yZr2aPz/nQKzWIuL1iBhZaVJWStLywE3AZOCQKnb9CbA38MWIeKGbGMdFxIiIGDFgyc5vo3kkeO0+0IrnwjOzemrop7akYaS+CkFqanI6qTP69yvY9xjSU8ybgF2BY4BngQH1itfsfQsWwDnnwMiR8PGP5x2NtYMsuXPNnRXLmlXeAAwEdo+I8tVqi+/3deBk4LCI+GstY2p0ggceSdPMrKca/Yl9LLAksE9E3BYRF5ASu29IWqaznSStCPwSOD4iTsmGe742Io6PiFmNCd36tOuug8mTPWm51U6hWaZr7iwjaQBwFbA+sGtEVDQgi6SDgZ8D34yIHjcF7YoTvPpwgmdmtdboT+tdgVsiYnZR2RWkhG+7LvYrjDn/23oFZtalMWNg7bXhC1/IOxJrF665s8WdR5qI/AxgeUlbFS2DALJuDe+PzClpO2A8cCtwX8k+a9QyOM+FVx9O8Myslhqd3G1EmgD2fRExGXgnW9eZLYFJwNGSpkh6T9IDkvyJaPU3cSLccw+ccAL0r6h7qFn3nNzZ4kZlr2OB+0qW1bJ1/bOlYHtgCWDnMvscU48g+0KC54FWzKxVNTq5Gwa8WaZ8ZrauM6sCGwLfA/4b2AN4G7hZ0iq1DtLsQ8aOhaFD4aguB58zq46bZbaNbKCwQyV9R9KqWdl6koZWc5yIGB4R6mR5KdtmZESMLNrntC72Oa2Gl/kh7Z7ggUfSNLPWlMdgJOUmdVIn5QX9gKWB/SPiZgBJ9wIvA8cB/7vYAaXRwGiAVVZZhY6Ojt5FXYE5c+Y05DyN1peva+D06Wx1xRVM23NPnnv44cYE1kt9+d+rlQx75hk+Drw7a1ZbXVdBu/17lSNpaeAiYF9gAemeejPwGvB/pNEuT84twDob+nw/3lp3UcPON+fFZVl67cZ2s7918oaMWmtSw853ycxtOHTYvQ07n5m1n0YndzOB5cqUL0v5Gr2CGdlrR6EgImZLegjYuNwOETEOGAcwYsSIGDlyZA/CrU5HRweNOE+j9enrOuUUWLiQNX7yE9ZYb72GxNVbffrfq5VIAAwZMIBPtNN1Zdru36u8XwDbADsC9wDvFq27kZTYtW1yB07w6sEJnpn1RqObZT5DSd86SWsCQyjpi1fiaVLNnkrKBTTurmJ9y7vvwgUXwB57QIskdtZC3CyzHewD/HdE3AksLFn3MvDRxofUeJ4Lr/bcRNOsfUjaRdIkSc9J+nYn23xJ0lOSnpR0WVH54ZKezZbDKzlfo5O7m4CdS/ohHADMBe7qYr8bSInc9oUCScsCnwYerUOcZnD55fDvf3vScqsPD6jSDpYEpneybiiLJ3xty1Ml1J4nOzdrfZL6A+eSZgzYGDhI0sYl26wP/A+wbURsApyUlS8PnEoaWHIL4NRszvAudftpLOkwSStUeS2duQCYB/xR0o5Zv7jTgF8UT4+QZba/KbyPiInAn4DfZBns7sD1wHukX5hZbUWk6Q822wy237777c2q5eSuHTwIHNbJuv2APtW2zglefTjBM2tpWwDPRcQLETGfNAXcXiXbfBk4NyJmAhTNcbozcFtEzMjW3Qbs0t0JK/kkvhhYF0DSQklbVHQpZWSB7UAaxvnPpAnMf0nKSosN4MNDPQMcAlxH6uNwNSmx+3zhF2FWUx0d8NhjadJylbYGNquBrFmm3CyzlX0P2EfS7aRpBwLYTdIlwP4sfm9re07w6sMJnlnL+gjwStH7KVlZsQ2ADSTdI+l+SbtUse9iKhlQZSawevZzd6NadisingI+3802w8uUzQG+ki1m9TV2LKy4Ihx8cN6RWLsq1Nw5uWtZEfE3STsAPwbOId0jvw/cD+wYEQ/mGV9eCgleOw+0UkjwPNCKWftYOK9/Tx8WrShpYtH7cdnAjrD4eCGweC41AFgfGAmsAfxV0qYV7ruYSpK724FLJE3KDjhe0tudbRwRPa7ZM2sKzz8P118P3/3u+7UrZjXnZpltISLuAT4raUmyuVwj4p2cw2oKHkmz9pzgmTWlNyJiRCfrpgBrFr1fA5hWZpv7I+I94MUs51o/Kx9Zsm9Hd8FU0n7iKNKTyEdIGeSLwJNdLGat7eyzoX9/+Ioria2OnNy1PEkfl7QbQETMjYhphcRO0m6SNs83wvx5svPacxNNs5byILC+pLUlDQQOJI0bUuw6skEjJa1Iaqb5AnALMErSsGwglVFZWZe6rbnLblQ/y064I/DdiPAIldaeZs+Giy6CAw6A1VfvfnuznvJUCO3gl8BfSXPalfoM8E1SP/M+zTV4tecaPLPWEBELJB1HSsr6AxdFxJOSTgcmRsT1fJDEPUUaZflbETEdQNIZpAQR4PSImLH4WT6sktEyF0r6TPa2A5jdxeZmre3ii+Gtt9JAKmb1NGAA9OvnmrvW9inS5OXl3Ad8soGxNDXPhVd7rsEzaw0RcWNEbBAR60bED7OyU7LEjki+EREbR8RmEXFF0b4XRcR62XJxJeer5NN2PjAo+/kwYKXqLsmsRSxcCGedBdtsAyM6azptVkODBiEnd62sPzCkk3VDgIENjKXpeSTN2vNceGZWqpIBVZ4CTpN0HanP3X6SOvvmGxFxfs2iM2ukv/wFXngBfvzjvCOxvmLwYDfLbG0PAqOBa8usGw1MLFPepzW6iSbkM5JmI5togptpmtkHKknujgcuJPUtCODkLrYNwMmdtaYxY2DNNWHvvfOOxPqKQYOc3LW204DbJT0A/BZ4DViN1Mrl48BO+YVWuf7v9mqGo6o5wasPJ3hmBhU0y4yIe7P2n0uQau62ioh+nSylE4+btYbHHoM774Tjjkt9ocwaYdAg97lrYRFxN2n0skXA2cDVwFhgAbBTRPw1x/CqMmxSYx8yDH2+X9uPpOnJzs0sD9V+sm5PaqZp1l7GjoWlloJjjsk7EutL3Cyz5UVER0RsDQwlzWW0TERs20qJXUGjEzxo/6kSbp28oQdaMbOGqupTNSLuiog5kraU9E1JP8xet6xXgGZ19/rrcOmlcPjhsPzyeUdjfYlr7tpGRLwTEVNbfQJzJ3j14QTPzBqlqvZnkoYAVwE7k+ZhmA6sAPSXdDOwf6vf2KwPuvBCmDcPjj8+70isr/FomS1H0t+BIyLiKUkPkvqadyoitmhMZLUzbNJ8Zm7Y2IE+PRde7bkPnlnfVO3jsjOBrUmzqw+OiNWAwdn7rYGf1DY8szqbPx/OOw922QU+9rG8o7G+ZvBg19y1nieBuUU/d7e0pGGT5ufSD6+RXINnZu2o2pEj9gX+OyKuKhRExCLgKknDgNNJo2uatYYrr4TXXoMTT8w7EuuLBg2i34wZeUdhVYiII4t+PiLHUBqi0bV4edTgAW09kmYhwXMtnlnfUO1jsmWBVzpZ9wqwTO/CMWugiDT9wUYbwahReUdjfZGnQmhZkpaQtK2k1fOOpd7avQYPPJKmmbWPaj9BHwW+IknFhdn7r2TrzVrCMk88AQ89lGrt+jX+y4SZm2W2tIXAHUDN2nNL2l/S9ZKmSpoj6SFJB1Ww3yBJP5f0uqS3Jf1F0vBaxQVO8OrBCZ6Z1UO1n57fIQ2m8oykH0v6uqQfAU+T5vr5Tq0DNKuXNa65BpZbDg49NO9QrK9yzV3LyrokPAusUsPDfgOYA3wd2BO4E7hMUnfdHc4CjgBOBvYDVgRukzS4hrF5Lrw6cIJnZrVW7VQIdwCfBB4B9gd+CHwJeBj4VETcWfMIzerh5ZdZ6a9/hdGjYciQvKOxvsqjZba67wKnSNqsRsfbIyIOjogrI+KOiDgZuJyU9JUlaQ3gaODrEfG7iLgJ2Af4KHBIjeJ6n6dKqD3PhWdmtVT1J2ZEPBURB0bEuhGxVPZ6cER4cnNrHeeem16/9rV847C+zfPctbrvkaYD+oekyZIelPT34qWag0XEG2WKHwFW7mK3QofhPxYdZyrwN2DXas5fKSd49eEEz8xqoapPS0k/k7RxvYIxa4g5c+BXv+Lfn/0srLVW3tFYXzZ4sJtltrYngRuA3wETgCeo/VQI2wBdPTzdCJgSEXNKyp/O1tWFE7z6cIJnZr3Vk6kQvi7pIeAi4PKIaOwsoGa99bvfwZtvMmW//bp8HG5Wd665a2n1ngpB0g7AXsBRXWw2DHizTPnMbF3dFBK8dp8qwZOdm1krqbbP3drAjsAzwE+BVyVdJmnHegRnVnOLFsFZZ8FnPsPsTTbJOxrr6wrJXUTekVgVJC0paV9J35R0sKRaDqpSOMdw4DLgTxExvpvNy/0BqZPywvFHS5ooaeJ789/uaZhA+4+kOefFZdt+oBXX4Jm1j570ubszIg4DViNNWL4GcIuklyV9X9I6tQ7SrGZuuQUmTUrTH3x4Rg+zxhucDWY4b16+cVjFsnvck8BVpIecvwcmSarZZJmSlgduAibT/aAoM4HlypQvR/kaPQAiYlxEjIiIEUsM7P2gUu2e4EH7j6R5ycxtnOSZtYEefzpGxJyI+A1wKnAPsCbwP8A/Jf1J0kdrFKNZ7YwZA6utBvvvn3ckZjBoUHp1ctdKzgQWAZ8FlgI2IQ16cmEtDi5pKVI/voHA7hHRXbXaM8CakkoztI2ydQ3jBK/2PFWCmVWrR5+MkoZLOlXSC8CtpHl59geGkubmGQ5cUasgzWriqafg1lvTCJkDG9dHxKxTTu5a0dbA9yLinoh4NyKeBv4LWEvSar05sKQBpBrB9YFdI+L1Cna7NXvdu+g4q5OSz5t6E09POMGrPSd4ZlaNqgZUkXQocCTwOVJzkYuBiyNiStFmN0p6G7i9ZlGa1cJZZ6Uv06NH5x2JWVJolvnuu/nGYdVYDXihpOx5Uh+3VYFXe3Hs84DdgBOB5SVtVbTukYiYJ2kCQETskL1OkfQbYIwkAf8GTgNeJjUZbbhhk+Y3fJAVoK0HWikkeB5oxcy6U+0jr3HAa8DOEbFORJxRktgV/BP4Qa+jM6uVGTPSKJmHHAIrrZR3NGaJa+5aVb1GwCn02xsL3FeyFGoF+2dLsRNI0zH8ArgGmAGMiojcnhp4qoT68EArZtadaj8JV88mLJ/Q1UYR8WpEfL8XcZnV1q9+BXPnpoFUzJqFk7tWdYuk1wsLH9TWTSguz9ZVLCKGR4Q6WV7KthkZESNL9psXEd+IiJUiYkhE7BYRL9biQnvDCV59OMEzs65U1SwzImbWKxCzunnvPTjnHPj852GzzfKOxuwDHi2zFfnBZRU8F159eC48M+tMtZOYI+kA4MvABsDg0vUR4Xmhrblcey1MmQLnnZd3JGYfVqi5c5+7luFWKT2TRz+8Rid4QMP74TnBM7NSVbVfkHQw8FvgOdL8dteThmzuB8wGzql1gGa9NmYMrLsu7L573pGYfZibZVof4pE0a89z4ZlZqWo/+b4FnAF8LXt/XkQcBawNvAG8U8PYzHrv73+H++6DE06Afo2/0Zt1yc0yrY9xgld7nirBzIpV+6m3PnBPRCwEFgLLAETEW8BPgONqG55ZL40dC8ssA0cemXckZotzs0xrAv3mvtfQ8znBqz0neGZWUO0n3iwg+zbCVOBjResErFCLoMxqYupUuPJKOPpoGDo072jMFudmmdYklnxiakPPl0eC1+4jaTrBMzOoPrmbCGye/Xw9cIqkL0s6HPgp8EAtgzPrlfPOg4UL4ThXKFuTcrPMlibpFEmrd7JuNUmnNDqm3mj3BA/af6qEWydv6KkSzPq4aj/lfgRMzn4+Bfg7cB5wManP3ejahWbWC3PnwoUXwl57wTrr5B2NWXlultnqTiUNLlbO6tn6luIEr/Y8F55Z3yZpF0mTJD0n6dtdbLefpJA0Ins/XNJcSf/IlgsqOV9Fn3CSlpS0L7AtMEDSKhHxZkTsBSwNLBcRW0bEC5Ucz6zuLr0Upk+Hk07KOxKzzrlZZqsTEJ2sWwNoyblhneDVnhM8s75JUn/gXGBXYGPgIEkbl9luKHACi7eCfD4iPpEtx1Zyzm4/3SStAzwJXEVqenkJMEnSKICImBcRsys5mVlDRKSBVD7+cfjc5/KOxqxzTu5ajqTDJd0h6Q5SYnd+4X3Rci/we+CufKPtuTwSvHYfaMUJnlmftAXwXES8EBHzgSuAvcpsdwZwJtDrpjyVfLKdCSwCPgssBWwCPAJc2JMTStpY0gRJ70iaJun0LKutdP9+kh7Kqi2/0JMYrM3dcQc88USqtZPyjsasc4U+d26W2UreAaZni0gDjU0vWV4k3TtbuqtCoxM8aP+RNOe8uGzbD7TiufCsD1pR0sSipfiz/yPAK0Xvp2Rl75P0SWDNiLihzLHXlvSIpLskfbaSYAZUsM3WwDcj4p7s/dOS/it7XS0iXq3kRACShgG3A0+RstZ1gZ+TkszvVXiYYyj5pZh9yJgxsPLKcOCBeUdi1rUBA4h+/ZBr7lpGRFxFasmCpIuBM9q5S8KST0xl7qaNveUOmzSfmRsObNj5hj7fj7fWXdSw80FK8pZee1bDznfr5A0Ztdakhp0PUpJ36LB7G3pOs97oP6/HD3zeiIgRnawrV8vwfnN+Sf2AXwJHlNnuVWCtiJgu6dPAdZI26a7FZCVXsBpQeuN6Pgt21Qr2L3YssCSwT0TcFhEXAN8HviFpme52zpLDHwLfrfK81lc8+yz85S9w7LEf1IqYNbFFSyzhZpktKiKOjIgXJK0uad9s9Oh9OhtBs1Ut+cTUtu+H57nw6sM1eGZMAdYser8GMK3o/VBgU6BD0kvAVsD1kkZkXd+mA0TEQ6T8a4PuTljpp1lnHcartStwS0nGeQUp4duugv3PAO4BJtQoHms3Z58NAwbAV76SdyRmFVk0cKCTuxaVdRM4D3iZVJt3IXA18LKkc7Mnsm2jLyR47d4PzwmeWcM9CKwvaW1JA4EDSdPJARARsyJixYgYHhHDgfuBPSNioqSVCl3XsjFQ1mfxCrfFVPopdouk1wsLqZoQYEJxebauKxsBzxQXRMRkUh+GjbraUdLmwJHAyRXGbH3NrFlw8cVw0EGwarWVymb5WLTEEu5z17pOB44CvgMMJz2oHJ69Pwo4Lae46qbdEzxo/4FWPBeeWeNExALgOOAW4Gngyoh4MhtzZM9udv8c8JikR0kPDo+NiBndnbOSPnffr2CbSg0D3ixTPjNb15WzgXMj4jlJw2sYk7WLiy6COXPgxBPzjsSsYuFmma3sMOB7EfGzorLJwE8lBWlY65aayLwSje6H1+g+eND4fniN7oMHje+H5z541ldFxI3AjSVlZe8NETGy6OdrgGuqPV+3yV1E1DK5g/JNPLuaKwhJBwIbAntUepJspJrRAKussgodHR3VRdkDc+bMach5Gq0lrmvhQrY880zmbbYZ/5g9GyqItyWuqwd8Xa1lxIABvP7KKzzVZtfWrv9eJVYGHutk3WPZ+rbkBK/2nOCZWS1UUnNXSzOB5cqUL0v5Gj0kLUGaX+8nQD9JywGFwVeGSBoaEW+V7hcR44BxACNGjIiRI0f2PvpudHR00IjzNFpLXNe118Jrr7HkOedUHGtLXFcP+Lpay5xBg1h5mWVYuc2urV3/vUr8k9R/4tYy6w4EGjs8YYPlkeABbT2SphM8M+utRnf2foaSvnWS1gSGUNIXr8gQ0sgyvyAlhzOBR7N1V5Dm3LO+buxY+OhHYa9y80KaNS8PqNLSfgAcIel2ScdK2lvSf0m6HTg8W9/WPBde7fWVufDMrD4andzdBOwsaWhR2QHAXOCuTvaZA2xfshyUrfsO8J/1CdVaxiOPwF13wfHHp5EyzVqIk7vWFRFXAruQHkKOJfWNOAtYCtglmxOv7TnBq4++kOA5yTOrvUZ/Wl0AzAP+KGnHrF/cacAviqdHkPScpN9AGmUmIjqKF9IwoQCPR8QDjb0Eazpjx8KQIXD00XlHYlY1j5bZ2iLi1ojYmjRS5qrAkhGxTUTclnNoDeUErz7aPcED1+KZ1VpDP6kiYiawA9Af+DNpJM5fAqeWbDog28asa//6F1x+ORxxBCxXrjunWXPzaJntISIWRcTrEdGrDlqS1pN0oaRHJS2U1FHhfiMk3SppuqQZWVPRLXsTS7U82Xl9OMEzs2o0vA1bRDwFfL6bbYZ3s/4l0gib1tddcAHMnw8nnJB3JGY9smjgQHhrsTGhrEVkk9IeAWwBrEaaB/YB4LcR0ZPMYxNgN1ILlYpGDsn6rt8OPEyangHgW8CtkjaPiJd7EEePtftImoUEr50HWikkeB5oxaz1NP4RlFmtzJsH558Pu+0GG2yQdzRmPeJmma1L0seAZ4FzgU2BhdnrucBzkjbuwWH/HBFrRsT+wJMV7rM7MBTYJyL+EhF/AfYGliYlig3X7jV40P6TnYMHWjFrRU7urHX94Q+pWeZJJ+UdiVmPLXKzzFY2DpgFrBsRW0XEnhGxFbBeVn5BtQfsYbPOJYAFpAHICuZkZbm1cnGCV3tO8MysO07urDVFwJgxsPHGsOOOeUdj1mMeLbOljQBOiYjJxYXZ+1OAzzQojmuAd4CfS1pZ0sqk/uwzgVxH7MwjwWv3fnhO8MysK07urDX97W9pCoQTTwS5+6W1rkUDB7pZZut6CRjcybrBwORO1tVUREwjTRO0L/CvbNkH2Dki/t2IGLrikTRrz3PhmVlnnNxZaxozBpZfHg45JO9IzHrl/7d35+FyVNX6x79vEpIwE2ZEkCciruMAACAASURBVDAIAvLTawQZrgRUZgGRSUUB4SIKiNcJnBHkKiIYAgFkUATEiCgKyAwGZRAhIkKEaJgDqEDCEBIIJOv3x66GptPnnO7T1V3ddd7P89TT3dW7ulad09PqvWsvz5bZ044GvlM7K6Wk9wDHAkd1IghJqwGXAFOBHbNlKvA7SWv2sc0hku6UdOf8hfPaHqMTvPYYCgmekzyz5ji5s97z8MPwm9/Apz4FSyxRdDRmLVm42GJpxteIokOx5n0dWAa4VdKTWfmCJ4FbgGWBr0r6c2VpYxxfIs1+vWdEXB0RV5N68RYAX6y3QUScFRHjImLcyGGLtzG01znBa4+yJ3jgXjyzZnS8FIJZy047LQ3F/Mxnio7ErGULR2ZTuM+fD6NGFRuMNevebCnaBsC0iHilsiIi5kuaBqxTXFiLqiR4ZS+V0MkyCVBMqYROlkkAl0owa5STO+stL7wA55wDe+0Fb35z0dGYtWzhYoulKy+95OSux0TEgUXHkHkE2EnSyEptPUmjSGUZLi80sj64Fl7+nOCZGXhYpvWan/4UnnvO5Q+sNF5L7nzeXU+TtISkIyRNkvQNSW9p4XH2lLQnsDqwUuW2pCWyNjMknVu12TnAm4BLJe0saRfgN6Si6me1dmTt41IJ+StiiKYnWjHrLk7urHcsXAgTJ8Jmm6XFrAReG5bp5K4nSDpJ0j9q1i0N/AWYAOxDKoNwt6S3DmIXK5PKF/wSeA+wYdXtlbM2I4DhlQ0iYiqwA6mQ+QXA+cASwAci4u5BxNAxTvDy51IJZkObkzvrHVddBf/8p3vtrFSikty5HEKv2Aa4sGbdF4G3Av8TESuSetEeBr7R7INHxMMRoT6Wh7M2a0XEATXb3RAR742I5bNl64iY0vTRFcAJXv6c4JkNXU7urHdMmACrrw4f/nDRkZjlxsMye85apDID1T4M/D0ifgyQ1ZY7Cdiys6H1Lhc7z58TPLOhycmd9YZp0+D66+Gww6DyZdisBDwss+eMAF7rZpW0PPA24Maadg8Dq3YurN7nUgn5GyrFzp3kmb3OyZ31hlNOgdGj4ZBDio7ELFdvmC3TesE/gPFVt3fJLq+pabcyMKsTAZWJE7z2KHuCB+7FM6twcmfd7+mn4YIL4OMfhxVWKDoas1x5WGbPOQ04WtJESV8DTgQeAq6tabcd3VEDr+c4wWsPJ3hmQ4OTO+t+Z5+dejWOPLLoSMxy52GZvSUiziPNhrkH8BVgOvCh6gLiklYCdgN+W0SMZbD4vY+XfqKVpR8YVvrz8JzgmXWekzvrbq+8AqedBh/4AGy0UdHRmOXOs2X2noj4bkS8OSKWymaovKfm/qciYtWIOKOoGMui7AkelH+iFdfCM+ssJ3fW3S65BJ54wr12VloelmnWPyd4+fNMmmbl5eTOutspp8B668GOOxYdiVlbeFim2cCc4OXPCZ5ZOTm5s+71pz/B7benXrthfqpaObnnzqwxroWXPyd4ZuXjb8zWvSZMgGWXhf33LzoSs7ZxKQSzxnkmzfwNlVp4ZkOFkzvrTjNnpvPtDj4Yllqq6GjM2iY8LNOsKU7w2mMoJHhO8mwocHJn3WnSJIiAww8vOhKztvI5d2bNc4LXHmVP8MC9eNZ5knaQNF3SDElH17n/UEn3SPqrpJslbVh131ey7aZL2r6R/Tm5s+4zdy786Eew++6w1lpFR2PWVjF8eDqn1MMyzZoyVGrhdZoTPLP8SBoOTAJ2BDYEPlKdvGUuioi3R8Q7gO8DJ2fbbgjsC2wE7ACcnj1ev5zcWfe58EKYPRs+97miIzHrjFGj3HNnNkhDIcEr+0QrTvCsxDYFZkTEgxExH5gM7FbdICKer7q5JBDZ9d2AyRHxckQ8BMzIHq9fTu6su0SkiVTe+U7YaquiozHrjNGjndyZtaDsCR6UfyZNFzu3klodeKzq9sxs3RtIOkzSA6Seu882s20tJ3fWXa67Du67L/XaSUVHY9YZo0Z5WKZZi5zg5c+lEswasqKkO6uWQ6ruq/dlNhZZETEpItYBjgK+3sy2tUY0ErFZx5xyCqyyCuyzT9GRmHWOh2Wa5WLxex9n3sYD/rCdm0qCN3v9kR3b59IPDOOFdRZ2bH9zHlqWpcY+17H9QUrwtltzesf2d8HsLfj4mFs7tj/rTsNfisH+aPN0RIzr476ZwBpVt98MPNHPY00GzhjktoB77qybTJ8OV14Jn/50+rJrNlR4WKZZbjyTZv5cC89s0O4A1pM0VtJI0gQpl1U3kLRe1c2dgX9m1y8D9pU0StJYYD3gzwPt0MmddY+JE2HkSDj00KIjMessD8s0y5UTvPYYCgmekzzLU0S8ChwOXAPcB1wcEdMkHStp16zZ4ZKmSfor8Hlg/2zbacDFwN+Bq4HDImLBQPt0cmfdYfZsOO88+OhH07BMs6HEwzLNcucErz3KnuCBe/EsXxFxZUS8NSLWiYjjs3XfjIjLsutHRsRGEfGOiNgmS+oq2x6fbbd+RFzVyP6c3Fl3OPfcVN/uyCOLjsSs8zws06wtXAuvPZzgmXUvJ3dWvFdfhdNOg623hne8o+hozDrPwzItI2ldST+SdLekBZKmNLHtHpLukDRP0jOSrpa0ZBvD7RlDIcEr+0yaTvDMGuPkzor329/CI4+4aLkNXR6Waa/bCNgJ+Ee2NETSwcBFwFXAjsDBpJPyPSt2puwJHpS/VIJr4ZkNzMmdFW/CBBg7Fj74waIjMSuGh2Xa6y6PiDUiYi9g2oCtAUkrAj8EjsjO45gSEZdGxBER0dk57LucE7z8uRaeWXdxcmfFmjoVbr4ZjjgChg8vOhqzYrjnzjIRMZgCZntnlz/NM5aycoKXPyd4Zt2j48mdpA0l3SBprqQnsqlA+/1WL+ndkn4iaUa23XRJ35I0ulNxW5uccgostRR88pNFR2JWHJ9zZ63ZDJgOHCRppqRXJN0uyd9G+1BEglf2iVac4Jl1h46+8iWNAa4HAtgNOBb4AvDtATbdB1gHOIF0LsIkUh2In7UtWGu/J5+EyZPhwANh2c5/KJh1DffcWWtWBdYHvg4cBXwQeBG4WpJry/TBpRLy52LnZsXrdM/docDiwB4RcV1EnElK7D4vaZl+tjshIt4bEWdn5xJMBL4E7CHpLR2I29rhzDPTTJlHHFF0JGbF8jl31pphwFLAQRHxs4i4GtgdWEAqnrsISYdIulPSnfMXzutgqN3FCV57DIUEz0medatOv+J3BK6JiOer1k0mJXxb97VRRDxVZ/Vd2eXK+YVnHfPSS3DGGbDLLrDeekVHY1YsD8u01szKLqdUVmSfs1OBDettEBFnRcS4iBg3ctji7Y+wiznBa4+yJ3jgXjzrTp1+tW8A3F+9IiIeBeZm9zVjC2Ah6TwD6zU//zk89ZSLlptBSu7mz4eIoiOx3nQf6XQH1awX6XPSBjBUip2X/Tw8J3jF/Fhh3aXTyd0Y4Nk662dn9zVE0qrA14ALanoBrRdEpIlUNt4Ytt226GjMijc6mxtqfudn1bNSuIKUyG1TWSFpWeBdwN1FBdWLyp7gQfknWnEtPBvqiihuWu+nafWxftGG0kjgYmAO8L/9tDsEOARglVVWYcqUKU0H2qw5c+Z0ZD+dlvdxLffXv/KOu+/m/i9+kX/ddFNuj9ss/796S5mPa8Zjj7Eu8MfrrmPBUksVHVIuyvr/ajdJS5AmDgNYHVhG0p7Z7SsjYq6kGcBNEXEQQETcKem3wLmSjgaeBr4MvEKagMyasPi9jzNv49U7tr8x0+cze/2RHdsfpATvhXU616k756FlWWpsZ0suXvvo+my3ZucGd10wews+PubWju3PrC+dTu5mA8vVWb8s9Xv03kCSgPOBjYAtI2J2X20j4izgLIBx48bF+PHjBxNvU6ZMmUIn9tNpuR/XhAmwwgpscOyxbLB4ced6+P/VW8p8XOtutBEA/73pprByOU4jLuv/qwNWBn5Zs65yeyzwMOmzu7aE0H7AicDJwBLALcC2/X1OWt+c4OXPCV77FNEDbN2r08My76fm3DpJawBLUnMuXh9+SCqhsFtENNLeus2DD8Jll8Ghh0KBiZ1ZV6kMy/SMmUNeRDwcEepjeThrs1ZEHFCz3ZyI+HRErBARi0fE+yPiniKOoSxcCy9/roWXnyImybHe0OlnxlXA9pKWrlq3DzAP6Hd8nqSvAEcA+0XEze0L0drq1FNh+HD4zGeKjsSse4walS49Y6ZZV/FMmvlzLbzmtq+OvYjk2HpPp5O7M4GXgV9Len92XtwxwMnVE6NImiHp3KrbHwX+jzQk83FJ76laVursIdigPf88nHsu7L03vOlNRUdj1j0qyZ177sy6jhO89hgKCZ4nWrEidPTVnI39fx/pXIHLSQXMfwh8q6Zp7fkE22WXBwC31Sw7ty9iy9V558ELL7j8gVktD8s062pO8Nqj7AkeeCZN67yOv5Ij4u8RsW12TsBqEfGNiFhQ0+YN5xNExAH9nINwXqePwQZhwQKYOBE23xw23bToaMy6i3vuzLreUKmF12lO8Mzy5bMxrTOuvBIeeAA+97miIzHrPj7nzqxnDIUEr+wTrTjBszJzcmedMWECrLEG7LFH0ZGYdR8PyzTrKWVP8KD8M2m62LmVlZM7a7+//Q1uvBEOOwxGdLq0olkP8LBMs57jBC9/LpVg1jond9Z+Eyemmnb/8z9FR2LWnTws06wnuRZe/pzgmbXGyZ2111NPwYUXwv77w/LLFx2NWXfysEyznuWZNPPnWnhmg+fkztrrRz9KX1g/+9miIzHrXh6WadbTnOC1x1BI8JzkWd6c3Fn7zJ8Pp58O228Pb3tb0dGYdS8PyzTreU7w2qPsCR64F8/y5eTO2ueXv4Qnn3T5A7OBuOfOrBRcC689hlKC50TPWuXkztojAk45BdZfH7bbruhozLqbz7kzK5WhkOCVfaKVbujBKyIG631O7qw9brsN7rgDjjwShvlpZtavESPS68TDMs1Ko+wJHpR/Js0iauGZtcrfuq09JkyA5ZaDT3yi6EjMesOoUe65MysZJ3j5GwqlEuop4ritNzm5s/w9+ij8+teprt2SSxYdjVlvGD3ayZ1ZCTnBy99QTfDMGuHkzvI3aVK6PPzwYuMw6yWjRnlYpllJudh5/pzgWa+QtIOk6ZJmSDq6zv3vlfQXSa9K2rPmvgWS/potlzWyPyd3lq8XX4SzzoI99oA11yw6GrPe4WGZZqXmUgn5GwrFzq23SRoOTAJ2BDYEPiJpw5pmjwIHABfVeYh5EfGObNm1kX06ubN8XXABPPtsmkjFzBrnYZlmpecErz2GWoJXxN/YBm1TYEZEPBgR84HJwG7VDSLi4Yj4G7Awjx362WH5WbgwlT8YNw62cJ0Ws6a4585sSHCC1x5DLcGznrE68FjV7ZnZukaNlnSnpD9J2r2RDZzcWX6uvRbuvz8VLZeKjsast/icO7MhY6gUOy/7eXhO8CyzYpaAVZZDqu6r94U4mnjsNSNiHPBRYIKkdQbaYEQTD27Wv1NOgdVWg732KjoSs97jYZkGSFoX+BLwHmBj4I8RMb6J7YcBdwD/BXwwIq5oR5yWj8XvfZx5GzfzI35rxkyfz+z1R3Zsf5CSvBfWyWW0WUPmPLQsS419rmP7qyR42605vS2Pa50zbN4rg/3R5eksAatnJrBG1e03A080+sAR8UR2+aCkKcA7gQf628Y9d5aP++6Dq6+Gz3wGRnb2g8OsFDws05KNgJ2Af2RLsw6muSE/VrCy9+CBZ9K0Ie0OYD1JYyWNBPYFGpr1UtIYSaOy6ysCWwJ/H2g7J3eWj4kT05fTT32q6EjMepOHZVpyeUSsERF7AdOa2VDSGOB44Gtticzaxgle/pzgWTeIiFeBw4FrgPuAiyNimqRjJe0KIOndkmYCewE/klR5738bcKeku4HfA9+LiAGTOw/LtNbNmgXnnw8f+xistFLR0Zj1Jg/LNCAiWhm/dhxwC3BDTuFYBxUxRBPo6DDNsg/RhJTg5T1Esz9FJOrWnIi4EriyZt03q67fQRquWbvdrcDbm92fe+6sdeecA3PnuvyBWSs8LNNaIGkT4EDgi0XHYoPnmTTzV4ZaeEX0QlrvcnJnrXn1VTjtNNh2W9hkk6KjMetdHpZprTkVmBQRM4oOxFrjBK89ej3BM2uUkztrzaWXwmOPudfOrFXuubNBkrQvsD7wnSa2OaQybff8hfPaF5wNihO89nCCZ0OBkztrzYQJsM46sPPORUdi1tt8zp0NgqTFgBOBE4BhkpYDlsnuXlLS0vW2i4izImJcRIwbOWzxDkVrzRgqtfA6zQmelZ2TOxu8O+6AW2+FI46A4cOLjsast3lYpg3OkqQT8U8GZmfL3dl9k4G7CorLcjIUEryyz6TZbILnhNBa4eTOBu+UU2DppeHAA4uOxKz3jRoF8+dDRNGRWG+ZA2xTs3wku++rwMcKistyVPYED8pfKuHaR9d30mYd4eTOBueJJ+AXv4CDDoJllhm4vZn1b/TodDnf01oPZZKWkLSnpD1JxchXqtyWtETWZoakcyHVUIqIKdUL8Kfs4e6JiNsLORDLnRO8/PViLbwihrJab/EzxAbnjDNgwYI0JNPMWjdqVLr0eXdD3crAL7PlPcCGVbdXztqMADwWfghygpe/XkzwzPrj5M6aN28enHkm7LorrL120dGYlUMlufN5d0NaRDwcEepjeThrs1ZEHNDAY1zRqbitc4pI8Mo+0UoZauGZVTi5s+ZddBE8/TR87nNFR2JWHpVhme65M7MBuFRCe3RjgucC5tYsJ3fWnIg0kcomm8DWWxcdjVl5eFimmTXBCV57dGOCZ9YMJ3fWnN//Hu65J/XaSUVHY1YeHpZpZk1yLbz2cIJnvWxE0QFYj5kwAVZaCT7ykYHbmlnjPCzTzAZp8XsfZ97Gq3dsf2Omz2f2+iM7tr9KgvfCOgs7ts85Dy3LUmOf69j+nOBZXtxzZ42bMQOuuAIOPfT1L6Jmlg8PyzSzFpS9Bw+GxkyaZq1ycmeNO/VUGDECPv3poiMxKx8PyzSzFjnBy58TPOs1Tu6sMc8/Dz/5CeyzD6y2WtHRmJWPh2WaWQ6c4OWvVxK8IibZse7T8eRO0oaSbpA0V9ITko6VNGAxVknLSvqJpNmSnpP0M0krdCJmA378Y3jhBZc/MGsXD8s0s5y4Fl7+eiXBM+voK0PSGOB6IIDdgGOBLwDfbmDzXwDjgYOBA4B3A79pR5xWY8ECmDgRttoK3vWuoqMxKycPyzSzHLlUQv6KKHbenyJ6Ta37dbrn7lBgcWCPiLguIs4kJXafl7RMXxtJ2hzYHtg/In4VEZcC+wFbSXp/JwIfyla47TZ46CE48siiQzErLw/LNLOcOcFrj04leLX7KeJYrfd0+lmyI3BNRDxftW4yKeHrryL2jsC/I+IPlRUR8Wfgoew+y9usWXD55XDUUax32mmw5pqw++5FR2VWXh6WaWZt4ASvPbqpB8+sWqfr3G0A3Fi9IiIelTQ3u+/yfra7v876+7L72mvWLJg5c8BmSz7wACy/fNvDaYuFC+Hee+Hmm9MybVpav9hivPzWtzL65JPTTJlm1h6V5O7BB+Fvfys2lhwM+v1wk03yD8ZsiKskeK6Fl69O18Iza0Snv62PAZ6ts352dt9gtls7h7j695vfwEEHDdjs3W0PpAOWWQa23BI++tF0jt27381dt9/O+PHji47MrNyWXDL9gHLCCWnpcYN6Pxw+HF59Ne9QzCxT9mLnkJI8J3g2lBXRFRN11qmP9YPeTtIhwCEAq6yyClOmTGkixDcavcQSLPXtged8eemllxjdw8W9X3rTm5gzdmz6ggWpN+/225kzZ05Lf79u5ePqLUPhuJaeOJFRTz1VbEA5GdT7ocTTJfwfm3UTJ3j5c4Jn3aTTyd1sYLk665elfs9c9XYr1Vm/XF/bRcRZwFkA48aNi070PE2ZMoVxJezhmjJlSil77nxcvWVIHFeJjq+s74dmZeAEL39O8KxbdPoM1PupOUdO0hrAktQ/p67P7TJ9nYtnZmZmZn1wLbz85TnJiidsscHqdHJ3FbC9pKWr1u0DzANuGmC7VSVtVVkhaRzpfLur2hGomZmZWZl5Js38dVstPBt6Op3cnQm8DPxa0vuz8+KOAU6uLo8gaYakcyu3I+I24BrgfEl7SNod+Blwc0Rc39EjMDMzMysJJ3jtkXeC5xp31qiOPlMiYjbwPmA4qezBt4EfAt+qaToia1NtX1Lv3o+B84GpwIfaGa+ZmZlZ2TnBaw/34FkROj5bZkT8Hdh2gDZr1Vn3LHBgtpiZmZlZToZKLbxOTrICnmjFOs99vGZmZmYGFDPRSict/cCwnp5oxWwgTu7MzMzM7DVlT/Cgt2fShGL+ZjY4knaQND2bU+ToOvePkvSL7P7bJa1Vdd9XsvXTJW3fyP6c3JmZmZnZGzjBy1+jCZ57+spD0nBgErAjsCHwEUkb1jQ7CJgdEeuS5iI5Idt2Q9KcIxsBOwCnZ4/XLyd3ZmZmZrYIJ3j5c+I25GwKzIiIByNiPjAZ2K2mzW7AT7PrlwDvk6Rs/eSIeDkiHgJmZI/XLyd3ZmZmZlaXi53nz7XwhpTVgceqbs/M1tVtExGvAs8BKzS47SI6PltmEaZOnfq0pEc6sKsVgac7sJ9O83H1Fh9Xb/Fx5e8tBe23Jz3/yn+evvrxUzvxGdmobn1NDN24BpfftRbXNYPeciBD9/84ON0YV3VMub3fP//Kf665+vFTVxzEpqMl3Vl1+6yIOCu7rjrto+Z2X20a2XYRQyK5i4iVOrEfSXdGxLhO7KuTfFy9xcfVW3xcVrROfUY2qlufO46rOY6rOY6rce2KKSJ2yPsxSb1ta1TdfjPwRB9tZkoaASwLzGpw20V4WKaZmZmZmVn+7gDWkzRW0kjSBCmX1bS5DNg/u74ncGNERLZ+32w2zbHAesCfB9rhkOi5MzMzMzMz66SIeFXS4aSBxsOBH0fENEnHAndGxGXAucAFkmaQeuz2zbadJuli4O/Aq8BhEbFgoH06ucvXWQM36Uk+rt7i4+otPi6zN+rW547jao7jao7jalw3xtSniLgSuLJm3Terrr8E7NXHtscDxzezP6VePzMzMzMzM+tlPufOzMzMzMysBJzcmZmZWdtJWlfSjyTdLWmBpClNbj9M0lRJIWmXbohL0h6S7pA0T9Izkq6WtGSRcUkaJ+naLJ5Zkq6XtFlOMe0l6TJJj0uak/0/PtLAdqMknSTpP5JelPQ7SWvlEdNg45K0vqRJku6TNFfSg5JOkbRckXHVeYzfZM/5w7shLknvlXRT9n98Nru+ZpFxSVpP0q8k/VvS85JuldSOmS97gpM7MzMz64SNgJ2Af2RLsw6mgQK+gzCouCQdDFwEXAXsmMX3T/Kbz6DpuCStAVyfxfAJ4OPZ9Wsl5VEP7PPAHOB/gV2B3wMXSTpigO0mAgcAXyTNBrgicJ2k0TnENNi4PgBsCZxB+jt/h3Te07WS8vp+PNi/FwCStgPek1MsLceVJUzXA3dn2+0H3AYU9n+UtDRwHbA28GnS8+sJ4HJJm+YUV0/xOXdmZmbWdpKGRcTC7PolwIoRMb7BbceQEpyjgXOAD0bEFUXFJWlF4CHg8xFxdh5x5BTXocAkYIWIeDZbN4ZU8PnwiDijxZhWjIina9ZdBGweEWP72ObNwMPAJyPi/Gzd6qS/32ci4pxWYmohrhWAWVH1RThLpq4BxkfETUXEVdVuMeBvwA9Iz/kjIuK0VmMabFxZPA8C50fE1/KII6e4diD9wLJJRNyTrRsBPA6cFxFHtSPWbuaeO7MeJWlbSSdKulzSzZL+mF0/UdI2RceXF0mbSDpA0v6SNi46HjMbnEqiMkjHAbcAN+QUzmsGGdfe2eVP84yl2iDjWow0ZfqcqnVzsnXKIaan66y+C1i5n822yy5/XfU4jwM3k3o8WzaYuCLimerErmob+tuu3XFVORKYB/wkj1iqDTKuD5CKaE/KO56KQca1WHb5XNXjvAq8SA7P+V7kUgg5kCTgg8B/AQHcCVxZ502j60nalvRmuwEwhnQ8zwL3k47p9wWGlxtJm/D6/2tqRNxbcEgNk7Q8cCnw36RfPu/LLgUsB3wI+IKkPwB7RMSsomJtRvbr3Ncj4sHs9mjg56ShGZU36JD0K+BjEfFKMZEOjl9bZoOTPacOBP5f0bFU2QyYDhwk6WvAKsBfgP+NiFsLjOtXwLHASZIq06d/E5gN/LJN+9yCVIerLxsAMyNiTs36+4DxbYoJBo6rr20YxHbN7qPfx5e0KvANUg/1wvQ1s+0Gimsz4BngPZJOAMaSPr++EhGXFxjXDaSe4R9I+gIpqTuUlBCe18a4upZ77pqUnaT5tqrbY0jV4n9DGiv8BeBy4JZsHHBPkLS8pJtIY6n3IH2Zfgh4JLv+IeAGSVOy5KInSLpI0tpVt0dLupT0S9CPSb+I3S3p4mzIQS+YCKwKbBYR60TELhHx8YjYL7u+LrBp1uaUQiNtzr6k8zAqjge2Bw4jvUmvlF3fBfhqx6MbJL+2euq1Zd3pVGBSRMwoOpAqqwLrA18HjiL9wPsicLWkVYoKKiKeALYBPgz8O1v2ALaPiKfy3p+k9wG70X9vzhjSD1m1Zmf35a7BuGq3WQL4HnBTREwrOK7vA9dExB/aEUetBuNaFViSVGPuB8AOpKTrUklvLyquiJhL+pFgI+BRUgJ6FLBbRLQzSe9eEeGliQVYCGxadftcUjX5HarW7UB60/ph0fE2cVwXkn6FfHc/bcaRfqW5oOh4W/h/nQTMJf2qsyKwQnZ9LvCtouNt8JieJb1pDdRud+DZouNt4X/1BPDNOu2OBf5RdLxNHJdfWz3y2vLSuQW4BJjSQLt9gX8By2S31yL1Cu9ScFzXZXFUf/Yvk332H1dgXKsBM4DfZt9FApnCYAAAFDtJREFUdiD94DwTWDPnmNYiJY+XDtDubOCuOuuPBx5vw9+qobhqthFppMgzwNptem41+vfaPHvffEvVuiCdM1lkXGdncRxatW44aRKh3D+7mohrSVIny82kkT7vJ/24+Czwznb8zbp9cc9d63YFjo2IqysrsuvHk34t6xW7AF+OiDv6ahARd5JOZv9gx6LK30eA70XEmRHxdKQx92eSfoX6WMGxNWohjY0jV9a2V60MTKmz/iYgl2mXO8Svrd55bVkXyXp8TwROAIYpTVG/THb3kgWPjqkMd59SWRERzwNTgQ2LCCjzJdIpN3tGxNXZ95EPAwtIM1XmIhtlcBWpp2S/AZrPJp0yUGs56vfodSquaieQRlHsHtmpAQXGNQH4EfCcpOX0emmGxSUtW2Bclef8a6cQRMQC0mdyrs/5JuM6KNv/LhFxWURcHxEHknoVv51nXL3CyV3rliOdY1drKqkLu1c4YeidhOG3pPMptuyrgaQtSF+KLu1YVPnYQtJOknYi/YK6TJ02y5BOMu8Vfm31zmvLusuSpAkcTiYlCLNJU7ADTOb1yS+KcB+pF6P2tV3063gDYFpUnZMcEfOBacA6eewgG754BTAS2DkiXhxgk/uBNbRo/b8NsvtyMYi4Ktv9Lynx/URE/DGveFqIa33gc7z+nJ+drf8+6XOxqLju6+uhyPE5P4i4NgAeiWx22Cp/JafnfK/xhCqD82FJ47Lrs0nnAtVaEXi+cyG1rJIwPBURt9Rr0OMJQ+VcrjIkDEcCFwN/lPQv0ofjs6QvGsuR3uhWBa4l1YrpJSfX3N6O9CZfbUvSMJBe4ddW77y2rLvMIZ0/Vm1V0vC5rwI3djyi110BfIsU35UAWa/Ku0i91UV5BNhJ0sgsqUPSKGBj0vDMlmRTzP8SWA/YMiL+08Bm12aXHyINU0fSm0iTgn2m1ZhaiAtJHyUNKf9CRFycRyw5xLULi34//z3pfPtfL9q8Y3FdQ5p19X2kUw2QNBzYmvo/7HUqrkeAtSSNiYjZVevfRZpoZchxcjc4X6q5/UEW/VL2fnL8RaoDnDD0SMKQDf3ZQdLmpPMpKrMvQqpldA5wVUT8qaAQB6teDZuX66x7gfRh3Cv82uqR15a1V/aL/E7ZzdWBZSTtmd2+MiLmSppBmtDioEjTmU+peYy1sqv3RMTtRcQFaSi1pN8C50o6mvTe+2XgFXKaKn4wcZHe/w8mTXJxOqlX5TDSuXhn5RDW6VlMRwLLS6ousH1XRLws6QaAiHhfdjlT0rnAhGx28aeAY0hfyi/MIaZBxSVpa9JsitcCt9VsMzMiZhYRV0TcXPsg2WyZ/4wcau+1ENeTkiYB38v+jzOAQ0i9698tKi7gItKPPVdK+j7pfMX9SBPL7ZJTXD3FyV2TIqLRoax3Ar9oZyx5csLQcwkDEXEbcFvRceQlIh5psF1PjaH3a6v3XlvWNiuz6HT8ldtjSb+yjyBN0tBJg41rP1KP+8nAEqQ6fNvW9B50NK6ImKpU1PlbwAXZ6nuAD0TE3bSuUrOu3kzMlZjq/f8+S5pNtPK3ugn4SES8lENMg41rG1KNtO2zpdq3SQloEXF1wmDj+hLp//h1YHnS0OjtI+KBouKKiMeUavseTzpXcTTpR9Q9I+J3OcXVUxTRc6XYzMzMzMzMrIYnVDErKUlnZ0NhSqWsx2VmZmbWKg/LbBNJ15N6Rt83YOMeIulsYFjV+P5SKOlxbUM5f8Ap5XGV9DlY2uMyMzPrRk7u2keU8AsoJf1iTQmPKyLWLTqGdijrcVHC52CmrMdlZmbWdXzOnVmJSBpNmi75xIgozQyFZT0uMzMzszw5uWsTSYsBq0XEo0XH0ipJY0mzFD0UEQ8VHU9eevW4sumx+7Ic8BiwI3AzQETM7URcrSrrcfUnm9Y9Gp0ptFeU9bjMzMy6nYfKDIKkwyQ9IOkFSbdL+nidZv8F9FLCsJikiZJmSZqT1Qohq2kyA7gemCHpZ1nRyp5Q0uN6oZ/lMdKQ4Kuq1vWKUh6XpEOqCn1X1h0p6SngAeBBSf+WlEsx304p63GZmZn1Mp9z1yRJ+wKnAj8n1ffYEjhP0m7AxyNiXpHxteDLpMKnJwOzgCMkrQTsDhwA/AXYCvgB8ClSocleUMbjmgc8T4r5mZr7lgROA75PqvPSS8p6XGcAfyXVtEPSIcAPSYXNL8na7AmcKunZiLiokCibV9bjMjMz61keltkkSXcCN0bEl6vWvQ/4Gam44s4R8YykzYBbI6IneoMk3Q+cGxEnZre3Av4AfD4iJlS1+zbpGMcVE2lzynhckt5ESoC2IxVaPT0iFmT3LQvMBsZHxB+Ki7J5JT6uhcB7IuLP2e37gT9FxAE17S4ANoiId3c+yuaV9bjMzMx6mYdlNm994MrqFRFxA/AeYFngNknrFBFYi94C/Lnq9tTs8s817W4G1u5IRPko3XFFxBMR8VHgQ8AngXskbV9wWC0r63HVsQ6p57/WZGDDDseSp7Iel1lXkHSApKnZKSGzJd0l6eQ27WtvSQc00O4YSVG1PCHpV41+D5J0XvajedtJGibp8OzvNk/S85KmZaduqBMxmHWCk7vmPQesWLsyIh4GtiANUboV6LVfqV8kTVpR8XK21E5aMZzeGs5b1uMiIv4IvAuYBFwk6QrSjw89raTHNVrSEtmkMc8AC+q0WQD02lCKsh6XWVeR9BXgHOAaYA/gE8BvgV3btMu9SacuNOI5YPNs+SLwDuAGSUs2sO1xTeynVZOB7wC/Jv3d9if9WL9FeBiblUhPfZntElNJ52tdUntHRMzOhmheQpq2vZfeLKYD40gfFkTEQmDxOu02Ig0/7RVlPS7gteOZJGkycDzwR3rreVdXCY/r91XXBWxKmsyn2iakiWN6SVmPy6zbHA78KCK+WrXu8uyUgqK9GhF/yq7/SdKjpPfsnYBf1jbOJi8bHhHzI+KBTgQoaUdgL2CniLiq6q5L3WtnZeOeu+ZdCKwtafl6d2YTquxK+oWtl8ognExjX8DeD1za5ljyVNbjeoOIeCYiDgXeSfpV996CQ8pFSY7rQNIw08pyIFBvGNKmwK86GFerynpcZt1oOeBftSure5wqQxwl7S7pfkkvSbpZ0iLDorNhl/dIelnSY5KOlzSi8jjAh4Gtq4ZbHtNErJXTH9aqE9c04CVgs+r7amJ7r6TfZzNcPydpiqR3Vt2/laSbJM2V9IyksyUtPUBMW2eXN9be4V47Kxv33DUpIn5JnV+iatosAA7pTET5iIiGvnxFxI7tjiVPZT2uvkTE34G/Fx1H3nr5uCLipw2227PdseSprMdl1qX+Qprt+VHgioionVG44i2kHzW/QZqB+NvANZLWi4iXACRtB/wCOB/4Eql3/ThgBeDQ7PqapISyUspkZhOxrpVd/qtm3feBY4F/00epKEnjgetIowL2J51asSWwOnCXpC2BG4DfkGbjXQH4HjAmu92XF7PLEyWd5BqcVmZO7szMzMy622GkhOY8ICTdR+oR/0FEPF/VbkVgt4i4FUDSVFLdyQOAM7M2xwJTImL/7PbV2cjE70r6TkQ8IGkWMKxquGW/Kr1+pInJTifVIq0eor0C8P6I+OsAD/Vd4G5g+6oetaur7v8eaSbyfar2/TjpHL+NI6Kv0R1nk4ZlHkFKkqcBFwETI2LOgAdo1kM8LNPMzMysi0XE34C3kU77OJ10jus3gDslLVXV9D+VxC7b7hHSMMlN4bXz3f6LRUcg/YL0nXDzQYS3AvBKtkwnJXj7RMSTVW0eHyixyyZg2Qz4ab2hktnETZsDF0saUVlIs12/QpqIq66I+BdpeP/2pBqdy5HO575V0siqfZwh6XFJHqppPcvJnZmZmVmXi4iXI+LyiDg8IjYEDgbWAw6qavafOpv+B1gtu74isBhpaGS1yu268wkM4DnSDOHjgDcDa9VMWlL9+P0ZQ0pan+zn/uGk5PaVquVl0jGt0d+DR8SCiLg2Ij5DGnb6E+DtvDGh/Tkp+TXrWR6WaWZmZtZjIuJcSd8HNqhavXKdpisD07LrT5MSotp2q2SXswYRyqsRMVCtukZ6wmYDC3k9Ea31bPY4x1BTbzjzRAP7SMFELJR0LWkiqNFV6/8A4Ak0rZe5585a1snCqnmT9M1sCMbCbIawvtp1XfHYrO2gC8h2snjsQJTcLWn/mvVdU3S21VgkTZJ0bidiNbNykbRI0iZpJWBZ3tgrtrKkLararEnqifozvDbh21TS+WfV9iYlVrdlt+dTlfR0QkS8CNwOfKLee2p2/5+A9SPizjpL3eRO0ir11pOGuM7N9mlWGu65s5YoFVY9jjQL1tGkD4N3AfsBny8wtAFJGkeaSeyrwBTqD2cp4hj3Jg2dOa/B9s8BO2TX1ybFeoOkjbIPw74cR/2af0XYmzTk5qKa9ZOB7YCTSB/qSwFbANsUMH11q7GcCNwv6bsRMaN9YZpZCd0j6bfAtaTPqreQCobPBapnrn0auEBSZbbMY7P251W1+RZpBs2fkN7X3k76PDg7IiqzYt4P7CZpd9JMmU/0lTzl7GjSRCxXSTqLNMvl5sCdEXEF8GXS59tCUk3hF0hDLHcGvhYR/6jzmBdLegG4mFTPdmXgY8BuwP9ExLPtPSSzDosIL14GvQCPA5PqrFfRsTUQ+36kIR7LdNMxkj6wpjTY9hjg6Zp1W2XHtVcf2wwHRhb996+J6Rbg+Jp1O2bHsWM7/vbAeLISRw20zSUW0peWk4r+e3vx4qW3FtJsmdeShh6+REpSLgI2qGpzHqnW5B7AP0jnot0CbFzn8fYB7iH10M0kTS4your+FUm1X2dl733H9BHXIp9BddqcR0rOGrqPVJPuD6TE9VlSWYR3VN2/GWkGzedJyd/fSeUflu1jH5/M2s/MjncW8DtgfD8xR9H/cy9eBrsUHoCX3l6yN9ZvDNBmCnBJzbrx2QfGxlXrKh9MO2dv1nOzN+DlgXWzN/gXszabNBDb3tmH18ukQuavfXhl+4qaZfxgj7Em/t1Jv3q+RJrFa8MW4zqmn30u8sFK6o0L4Et14ppGOt/iv/v4UH1v9neeQ+oRnAK8s6bNVsBN2f/nGdIU00tX3b9R9kE6K/vb3Qcc1s8xrJvFW7uf72XrR7XpuTu+0Q/wvGIBPk2q/TSsHcfkxYuXobvUe0/3Mui/ZRQdgxcvg118zp21qlJYdX9JK+TweGuShpF8nVQIfgvgLNLQkcmkIqUjgMn9nedUVaT1L6ShF6eShrCcljU5DvhOdn1b0rCPv/TxcM0cY6WA7HHAR0nnQ1wjaXQTcf0euCuLaXPgnAH2WWut7LJeAdnvAjtRp4BsVjz2BlLytz/pl90/korHVtpUCsj+i/S/+Fz2eD+peqjLgAWkntFds2Ncup9430dKAu+uWV9ddPYt/WzfCXnFcitp4oK3tx6SmZnlSdI5kmZm12dKavbz16xwPufOWtVoYdVGLQ9sHhEPAEjaBPgSsH9EnJ+tE6lHbwNSr1A9jRRpfSC7747ov4hpM8c4UAHZ3IvHZvtpuoBsndx4oOKxMEABWVLStzawe0TckzW5YYDw3wXcFxELa9bnWnQ2e94Mr1o1PFv/hvfBiHi1zuZ5xTKNlPhuyqLJrJmZFSgiDi46BrNWuefOWhKNF1Zt1MOVxC5TmXjixjrrVqeOvIu0NnmMfRaQbVPxWMihgOxAxWOzNo0UkJ1FGmp6pqR96s3wVseqpEkA3iDyLzq7P2+sjVRJfl+pWRbRSCyS1pB0g6T7slk0v1/bu5wljs9mx2xmlpuIOCAixhUdh5kVy8mdtSwaK6zaqNpZq+bXWV9Z19c0zbkXaW3iGPsrINuO4rGQTwHZgYrHVtr0W0A2633bjtSD92PgX5L+KOmd/Tzu6OwxFhH5Fp29nPR3qiyHZuvfXbPU1UAsrwJHRcTbSIngZqSJDWq9TIenGDczM7OhwcMyLXexaGHVl4CRNc0Gm8g0oh1FWt+gzjFW9FdAtl1x5VFAdqDisdBgAdmIuB/4sKTFSBO3nAD8TtKb6wy9hHTcA/ZkRYtFZyPiGdIEMGTtl8rWN13rr14sWU/pk9n1+ZL+BqxRZ/PlyOE5aGZmZlbLPXfWkgYLq85k0SToA+2KKRov0tqQJorHQj8FZJuIq+uKx1a1abiAbES8EhE3kiaYWY2U1NQzHRhbvaKbis4OJpZs4p3dgWtq1q8ELEGaptzMzMwsV+65s1Y1Ulj1UuAgST8kTYSyDencpXZqpEhroxotHgsDF5Dt5eKxMEABWVJS+gPSeYQPkoZyHgXcHRF99VbdAnxT0koR8VS2rpuKzjYVi6RRpL/NhIionfBnHKn381bMzMzMcuaeO2vVsaRp9ieSkp/jSEMQN42IhwAi4nfAV0lT519KSo4+186gIuJaYF/Sl+nLs/2dBBw+iIcb8BirPEKa3fMYUvL2PGn2yZeaiOv0bD8/Bu4glYRou2x44wdIPUsXkhK0rUkJZqXNzaRaeCsBF5CO4cukSVT+TTrX7t+kRO+q7FjuI/Vy9WUKaZjiDlXrfkr68en/SAnnWaShvdtGxLktHWjzGo4lmzTnZ8BdEXFSncfaAbgpGyJqZmZmliv1MTGemTVJ0nmkouyeraxJkk4B1o2InVt4jIiI/k+8a7OsJtJw4JO1s45mid8jwNERcWER8ZmZmVm5uefOzLrBicB4SW9tdsNuKTqbFXg/iNQre5ekv0r6bFWTvUhDdScXEZ+ZmZmVn8+5M7PCRcRMSQeRJl5parKRbik6GxG3kMpJ9EXAQX0USTczMzNrmYdlmpmZmZmZlYCHZZqZmZmZmZWAkzszMzMzM7MScHJnZmZmZmZWAk7uzMzMzMzMSsDJnZmZmZmZWQk4uTMzMzMzMysBJ3dmZmZmZmYl4OTOzMzMzMysBP4/mfLGt2UT228AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFoCAYAAAD0LAJxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xe4XGW5/vHvnYQkEAKEDgKGjjRbpB4lCIQmIE3KoYM5qDQVf8ejHkDQo2JL6ESFKFKkCCLSAxuUJgGkE+khCYgkISEQEpI8vz/eNTBMZu89s/fMrJnZ9+e61jV73tWetbMza571NkUEZmZmZmZm1tr65R2AmZmZmZmZ9Z6TOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07uzMzMzMzM2oCTOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07urFcknSYpipZpkq6RtG6OMZ0iaaqkRZLGd1ZWZr/Saykstzcy/qJ4viTpiDLl4yVNbHAskvSopMOLyrr9ndbo3P0kHSfpEUlzJc2W9KSksySpXuetdSySzpX0m0bFambNrUnvn9tKeljSu5IiKxsi6QpJ07M4j+hk3/Gd3EN/3dCL+CCe0ZK+WKb8JUk/yyMms0YYkHcA1hZmAbtkP68DnAFMkLRJRLzdyEAkjQC+D3wH6ABeL1fWxSGKr6W4LA9fAlYExpeUnwEsmUMsw4DLoPzvuY7nvgIYBfwcuB9YGtgG2D4ioo7nrXUsPwWekfSjiHiuvmGaWYtomvtn5kLS5/nOwLys7CvAHsBhwFTg+S72fwY4sqSsnveHrowGngCuKynfG5je+HDMGsPJndXCgoi4P/v5fkmTgb8CuwFXNTiWjbLXcyNiNoCkQ0rLulB8LU0pIrq6sdbLCcAlEfFe9n6x33NPSeoP9I+I+WXW7QrsD+wWETcVrbo2h1q7XsUSES9J+hvpi9I36xSmmbWWZrp/QvpsHxcRd5WUTYqIayrY/+0WuIc+kncMZvXkZplWDw9lr8MBJG0t6fqsycnbkv4h6T8LG0vaPWvat3bxQSStnZXvWVT2JUmPS5on6RVJP5Q0IFs3Hrgk23RW1hzkpTJlI3t6YZI6JF1dUjYyO+6mhTgkTZS0k6THsmv+m6RNyhzvc5LulDRH0qzs+J/MrmVfYLuipi2nFR+/5Did/l6qjalMjOuRaqeuLhyLLn6nVcTyRUlPAu8CW3Zy+u2y1ztKV+RQa1eLWK4B/lOSP3vNrJxq75/LZ00oDy8+iJIXJf2iqOzzkh7Itv+XpPMkLZ2tG6nUDLM/MDb7XB+f3UOPBj5ZuBf19MJK75VF5R+6r1Z6v5LUX9L/SPpndr+Zog+6YnQAnwYOL7qHHpGtW6xZZgX3rSOyY2wm6bYspmck7dPT34dZvfgLhtXD8Oz1tez1o8A9wDGkph3XABdLOihbfzMwDfjQzQk4Avg3cCOApFHAH4CHgb2As4GTgXOy7c8AfpD9/Hlg62y70rKHuwpe0oCSpSc1RGuRmuH9EDgIWBm4svhYWUI0AXiPdO0HkJ7YfiS7ljuBR7KYtwbK9luo4PdScUyd2AF4G3g0e1/u9/xwlbEMB84EfkR6Qv1iJ+cuNEv6qaSPdhNnl7IvO6X/tostXRyiFrHcC6wCbNbD/c2svQ3PXiu6f0bEDOBaFm8KOTI71sUAkjYm3WvfID04PBU4mOyhHekze+vs559nP59BasJ4I6m55dZF23Sqis/UrlRyv7qQ1D3gSuALpBYRQ7J1X81ivrEo7r90Em+l9y1IXROuJ/1engWukLRGD6/RrD4iwouXHi/AaaSbxYBs2YCUlMwGViuzvbLtLgTuKCr/AekLvoq2ewn4WdE29wN3lhzv/wELgTWy90cAASxdtM1iZV1cS5RZdizapgO4umS/kdl2m2bvxwMLgPWLtvlits1GRWX3ARML11wmnquBjjLl44GJVf5eKoqpkzjGAQ+WlJX9nVYRSwCfqODva1XgsaJ/iydI/fy6/Lfs5FhHUP7f90NLPWMh/e0vAL5cr/+TXrx4aY2F2t0/dwQWAesUlf2u5D5xBSkZ6V9U9qXss2zrorIAjis574fuOV1cT+GzvXRZL1s/kqJ7ZdF+HRTdVyu5X5GaigZwQhfxTATGlyl/iZ5/tziqaJsVsjiPzftvyYuX4sU1d1YLK5Bqn94DJpE6hR8QEa8CSBqmNJrgy0XbjSbdyAouIj2hHJm93z57X3jq2B/4FIv3QfgDqQa626eJFZoFfKZkeaAHx3kpIp4tev9U9roGpNHHSE0RfxsRvWnmUs3vpcuYurAq6QtILWOZGhH/6O6YEfEa8ElS5/7zgeVIT3LvlTQwO+/5SqN2dvd7/DOL/9uWW3oUi6Q1JU2Q9LTSCJpnltaKRsQC4E3S79TMrBb3zwnAy2StXyQNBfYhu39mtgCujYiFRWXXkJKT/6jh9TzN4p+pr/TgON3dr7bPXsf34Njv68F3i1sLP0TEdNJgMa65s6biAVWsFmaRnhwGqSnJtJKEZTywFamJx1Okp5JfITV/ACAiXsjayB9JenJ5JPD3iHgy22RFYAngXyXnLrxfvkbXsiAiajHNwJsl7wuDhQzOXoeRnsK+2svzVPN76S6mzgwG3qlxLKXbdCr7MnIrcKuk40jNU48k3XTvAi4nPQF/rbNjZGbQy5FPu4nln8B/R8TELPG8jfQFq3QQgnl0/zs3s76hFvfPkHQxcJRS3+wvkb7fXVZ0nNUo+dyNiIWSplO7+yfAOw26h65AGrylVwN6Uf13i3Jx+fPcmopr7qwWFkTExIh4KCKmFt+YJA0GdgdOjYhzIuKO7IO/3N/er4F9JX2ExZ86vkF6YrlyyT6rZK8zanUx3XgXGFhS1pMb40xSM5rVehlPI34vM0i1VLWMpUe1lRGxiA+enA7Oyu6OiEqSxcP54Ml3V0uPYomIVwtfaiKN/PkYsGaZXZejcX+vZtbcanX/vJj0ebM9qQnhdRExs2j9q5R8Nme1VivQ2Psn1OYeOh0YImmZ3oXUNN8tzGrGyZ3V2yDS6FuF+XIKTUb2LLPtH0lPwa4g/W1eUViR1Zg8RBqKvtiXSEnSfTWNunNT+GAagIKdqj1IpPmLHgAO62JAk26fCDbo9zIJWLu7jWodi6RVOlm1J6kmsdrmsj1ullltLJJWIPURuaWkfCVgKVItn5lZVyq+f0bEK6SHTd8nNbO8uGSTB4C9s4SuYB9SDd/faht2p6Zkrx8rFEhaE9iwB8cqjFp8WBfbNMs91Kyh3CzT6ioiZkl6EDhF0mzSh+W3SU1RlinZ9l1JlwJfAy6PiNLmD6cCt2TNT64gjTh4BvCriJhCY1wLHC3pl6SRt7Yn9cHqiW8DtwM3SRpHGo1xa1LH9RtII33tJemLpJvitIiYVuY49f693EP691spIv7dzba1jOVKSW+RRkJ7ifRk9T9JzZG+XObvo0tZ/4ieTlxbcSySBpEGwxkTEU+XHGcEqdby3h7GYWZ9RDX3z8xvSH3HppCahRf7AWn05esknU/qJ/YT4JaIaEgCExFTsus5Q9I7pIe436EHtWMRMSm7b/5c0srA3aRWEftFxIHZZs8AO0vamfTZ/2J2HyjVDN8tzGrGNXfWCAeTRsL8HTCW1Afpd51se132elHpioi4FTiQ9AX5z8BJpCGbj6txvJ2KiL+Qbkb7kRK9j2Zx9ORYd5Nq/ZYCfk/qwL0dHzzdPI/0JPYi4EFSJ/pyx6n376WDdPPdpbsNaxzLb0kPoP6PlASPIzXn+XxE/KYHx+uNimLJnopfCjwSET8vc5xdgLs6+YJhZlaqmvvnDaQBUn6bNRt/X9Z/fVfSg6k/kpK9y0n3skY6GJhMuuf9H3A6qXVIT3yVVFN5CGnKgzHA3KL1PyAN8HIl6R66R7mDNMN3C7NaKgw7b9YUJJ1Jmu9t7dKbk+VH0ljScNa75x1LZyRFRPRkTsJaxvBrUjOqo0pHQc0Sv5eBb0fE7/OIz8zal6TdSAneBhHxXN7xmFk+XHNnTUHShpL2Jo0CdrYTu6bzU2CkpA263bLBJP1a0pTs5ylZgpVHHNsCR5Oe/j4i6R+STijaZH/SU+Uryu1vZtYTklaXtB3wY+BGJ3ZmfZuTO2sWF5KGbb4ROCvnWKxE1u/gaHo/umfNRcQxEbFGRCh7PSanOO7JYtgsIj6RLcV/ywKOzua6M1uMpP0lXZ/N2zhH0kOSDqpgv/UlXSPpX5JmS7pXUrfNqK1tjCbNdfcucHzOsZhZCUkXSXpd0hOdrFc2n+Vzkh6T9KmidQuzh8X/kHR9Redzs0wzM7P8SbqP1L/qOtIQ7bsB3wROiIizO9lnKPA4aXqVM4A5pC/7ewHbRsTfGxC6mZl1QtLnSJ/Nv4uITcus3430YGY3YEtgbERsma2bExFLV3M+j5ZpZmbWHPaIiDeK3t8haXXgG0DZ5A7YljSw0x4R8TiApDuAqcC+gJM7M7McRcTdkoZ3sclepMQvgPslLSdptYh4tSfnc7NMMzOzJlCS2BU8wuITLBdbInudVXScBaSpVXIdYMjMzCryEeCVovdTsjKAwZImSro/mxqrW32i5m7FFVeM4cOH1/08b7/9NkOGDKn7eRrN19VafF2txddVew899NAbEbFSLievvW2Ap7pYP4E09+LPJH2TlNQdS0oIx1dygoH9lowlB5SbNs3MrLnNfu/1mn3ebztycLw5o/rx/J56/L0nSX1eC8ZFxLgqDlHuQVyh39xaETFN0jqk1hyPR8TzXR2sTyR3w4cPZ+LEiXU/T0dHByNHjqz7eRrN19VafF2txddVe5JezuXENSZpB1JznaM62yYi3pE0kjQY1eSseDawV0R0lRS+b8kBy7DNygf0Mlozs8a7eerZNfu8f3PGIi67YZWq9/vER6e8GxEjenHqKcCaRe/XAKYBRETh9QVJHcAngS6TOzfLNDMzazJZ/4zLgD9FxPguthsCXEUaUGUvYCfSJNXXSPpkF/uNzpr6TJy/aG5nm5mZWf1dDxyWjZq5FTArIl6VNEzSIABJK5L6WHf70K5P1NyZmZm1CknLAzeRauIO6Wbzo4GNgTUi4s2s7HZJGwLfB/Yst1PWZGgcwLIDV/Gw2WZmdSLpcmAksGI2L++pZP2lI+ICUsuL3YDngHeAI7NdPwZcKGkRqULux5W0yHByZ2Zm1iQkLQXcAAwEdo+It7vZZSPg5aLEruAfwHZ1CNHMzKoQEV3OV5qNkvm1MuX3AptVez43yzQzM2sCkgaQmliuD+waEa9XsNvLwHBJw0rKP00aaMXMzPoQ19yZmZk1h/NITXNOBJbP+l4UPBIR8yRNAIiIHbLyy4DvADdKOpPUpOcQYAvgCw2L3MzMmkLDa+4krSfpQkmPSlqYjfxSyX7LSrpY0kxJsyRdKmmFOodrZmbWKKOy17HAfSXLatm6/tkCQES8AmwPvAlcSKr52xDYLyL+0piwzcysWeRRc7cJ6cnk/aQ+BZX6A+mGdQywCPgJcB3w2VoHaGZm1mgRMbyCbUaWKXsY2LUOIZmZWYvJI7n7c0T8CUDS1cCK3e0gaWtgZ2C7iLg7K5sKPCBpx4i4vZ4Bm5mZmZmZNbuGN8uMiOqnfk9PJP9VSOyy4/wdeBE/rTQzMzMzM2uZAVU2Ap4pU/50ts7MOhMBjz8O//pX3pH0yrBHH4X33ss7jN4bOBC22QaWWCLvSMzMzKzNtEpyN4zUWbzUTGCdcjtIGg2MBlhllVXo6OioW3AFc+bMach5Gs3X1VoK17XEjBmscvvtrHrzzSz94ot5h9VrH887gBp6+jvf4V877QS0/9+hmZmZNU6rJHcAUaZMnZQTEeOAcQAjRoyIkSNH1i+yTEdHB404T6P5ulrI/Pk8ceaZbPrgg3DjjbBgAWy5JXzrW7D55nlH1ysPP/wwn/rUp/IOo3dmz4bdduNjq6zCx7K/vbb8O6R9r8vMzKyZtUpyNxNYqUz5cpSv0TPre374Qxgzhk3feANWXRW+8Q04/HDYeOO8I6uJ2e+9B9tum3cYvTNnTnp999184zAzM7O21CrJ3TOUn/JgI9J0CGZ924MPwve+B6NG8dj227P5ySfDgFb5792HDB6cXufNyzcOMzMza0sNHy2zh24CVpX0H4UCSSNI/e1uyi0qs2YxdiwMHQpXXcWMrbZyYtesBgyAfv2c3JmZmVldNPwboKSlSJOYA3wEWEbSftn7GyPiHUnPAXdFxNEAEXGfpFuA30k6mQ8mMf+b57izPm/aNPjDH+C442CZZfKOxrozaJCbZZqZmVld5PF4f2XgqpKywvu1gZdIcfUv2eZA4JfARaQaxxuAE+oWpVmrOP98WLgQjj8+70isEoMHu+bOzMzM6qLhyV1EvEQa5bKrbYaXKXsTODJbzAxg7ly44ALYc09Yp+ysINZsBg1ycmdmZmZ10Sp97sysnMsugzfegJNOyjsSq5SbZZqZmVmdOLkza1URaSCVzTeH7bbLOxqrlJtlmpmZWZ14SD2zVnXnnfD443DRRaAuWzpbM3GzTDMzM6sT19yZtaqxY2GlleCgg/KOxKrhZplmZmZWJ07uzFrRc8/Bn/8Mxx77wcTY1hrcLNPMzMzqxMmdWSs6++w0IfZXvpJ3JFYtN8s0MzOzOnFyZ9ZqZs+Giy+GAw6A1VbLOxqrlptlmpmZWZ04uTNrNRddBG+95ekPWpWbZZqZmVmdOLkzayULF8JZZ8F//Ad8+tN5R2M94WaZZmZmVidO7sxayQ03wIsvwokn5h2J9ZSTOzMzM6sTJ3dmrWTMGFhrLfjiF/OOxHrKfe6sE5L2l3S9pKmS5kh6SFJFc51I+pykuyS9LenN7Oe16h2zmZk1Fyd3Zq3i0UehowOOOy6NlGmtyX3urHPfAOYAXwf2BO4ELpN0fFc7SdoFuB14NNvvEOA+wPOkmJn1Mf6GaNYqxo6FpZaCY47JOxLrDTfLtM7tERFvFL2/Q9LqpKTv7HI7SFoC+BXw04j4btGqG+oXppmZNSvX3Jm1gtdfh0svhSOOgGHD8o7GemPQIJg/HxYtyjsSazIliV3BI8DKXey2E7AGcG5dgjIzs5bi5M6sFVx4YUoITjgh70istwZnLeXmz883DmsV2wBPdbF+S2A6sJWkZyUtkPSEpD0aE56ZmTUTJ3dmzW7ePDjvPNh1V9hww7yjsd4aNCi9ummmdUPSDsBedF0rtyowBBgH/AzYhZQMXitps7oHaWZmXZK0i6RJkp6T9O0y6z8qaYKkxyR1SFqjaN3h2YO7ZyUdXsn5nNyZNbsrr4TXXvP0B+2ikNx5xEzrgqThwGXAnyJifBeb9iMNnPK9iLgwIm4HDgJeBP5fF8cfLWmipInzF82tWdxmZvYBSf1JD+h2BTYGDpK0cclmPwN+FxGbA6cDP8r2XR44ldRCYwvgVEnd9s1xcmfWzCLS9Acf+xiMGpV3NFYLhWaZrrmzTmQ39JuAyaSRL7syI3u9s1AQEQuBu0hfJMqKiHERMSIiRgzst2QvIzYzs05sATwXES9ExHzgClKLjGIbAxOyn+8sWr8zcFtEzIiImcBtpNYZXXJyZ9bM7rkHHn441dpJeUdjteBmmdYFSUuRRrocCOweEW93s8vTnR0K8Kg9Zmb5+gjwStH7KVlZsUeBfbOf9waGSlqhwn0X46kQzJrZmDFpdMxDD807EqsVN8u0TkgaAFwFrA9sGxGvV7DbLcACYAdgUnac/sB2QEd9IjUzaz/TFy7NJTO36cGeV64oaWJRwbiIGJf9XO7JfJS8Pxk4R9IRwN3AVNLneiX7LsbJnVmzevlluPZa+Na30vx21h7cLNM6dx6wG3AisLykrYrWPRIR8yRNAIiIHbLXVyWdC/xYkoDngNGk6RF+1NDozcz6pjciYkQn66YAaxa9XwOYVrxBREwD9gGQtDSwb0TMkjQFGFmyb0d3wTi5M2tW55yTmmJ+7Wt5R2K15GaZ1rlCx9qxZdatDbwE9C+z7lvA28D3gOVJc+PtHBHP1yFGMzOr3IPA+pLWJtXIHQgcXLyBpBWBGRGxCPgf4KJs1S3A/xUNojIqW98lJ3dmzWjOHPjVr2DffWHNNbvf3lqHkzvrREQMr2CbkWXK3gO+my1mZtYkImKBpONIiVp/4KKIeFLS6cDEiLieVDv3I0lBapb5tWzfGZLOICWIAKdHxIzFTlLCyZ1ZM/rtb2HWLDjppLwjsVorNMt0nzszM7O2FxE3AjeWlJ1S9PPVwNWd7HsRH9TkVcSjZZo1m0WL4KyzYIstYKutut/eWotr7szMzKxOXHNn1mxuvhn++U+49FJPf9COnNyZmZlZnbjmzqzZjB0Lq68O++2XdyRWD26WaWZmZnXi5M6smTz5JNx6K3z1qzBwYN7RWD245s7MzMzqxMmdWTM566xUszN6dN6RWL04uTMzM7M6cXJn1iymT4dLLoFDDoGVVso7GquXQnLnZplmZmZWY07uzJrFr34Fc+fCCSfkHYnVU6HPnWvuzMzMrMac3Jk1g/feg3POgR12gM02yzsaq6cBA6BfPyd3ZmZmVnOeCsGsGfzxjzB1KlxwQd6RWCMMGuRmmWZmZlZzTu7MmsGYMbDeerDbbnlHYo0weLBr7sxqaO6mH8k7BLOaWfKJqXmHYC3MyZ1Z3h54AO6/P42U2c8tpfuEQYOc3FnTc8Jklo+5m37ECZ71mJM7s7yNHQvLLANHHJF3JNYobpZpTWTRkks4kTNrMk7wrKcantxJ2hg4G9gaeBP4NfD9iFjYzX4jgP8DPg0IeBj4bkQ8UN+IzepoyhS46io4/ngYOjTvaKxR3CzTrNdmbjgw7xDM6mLYpPmAEzzrmYYmd5KGAbcDTwF7AesCPyeN2vm9LvZbM9vvYeCwrPhbwK2SNo+Il+sZt1ndnHceLFqUkjvrO9ws0/oAJ19mPTNzw4FO8KzHGl1zdyywJLBPRMwGbpO0DHCapDOzsnJ2B4Zm+70JIOle4A1gN+D8+oduVmPvvAPjxsFee8Haa+cdjTWSkztrYn09KXtr3UV5h2B93NDn+znBsx5rdHK3K3BLSRJ3BfATYDvgz53stwSwAJhTVDYnK1Md4jSrv0svhenT4cQT847EGm3wYPe5s6axcLBaLqFzAmbt7K11F72f4EFqpukEzyrV6ORuI+CO4oKImCzpnWxdZ8ndNcDpwM8l/TArOwWYCVxVp1jN6iciDaTyiU/A5z6XdzTWaIMGwdtv5x2FWW6cnJl1rZDgwQfNNAsDHznJs640OrkbRhpEpdTMbF1ZETFN0vbADcAJWfGrwM4R8e+aR2lWbxMmwJNPwvjxIFc+9zmDBsGMGXlHYdZrrZikLb32rLxDMOvSnBeXBconeOBmmta1PKZCiDJl6qQ8rZRWA64GHgKOyYq/BvxF0jYRMbnMPqOB0QCrrLIKHR0dvQy7e3PmzGnIeRrN11V7m/3v/zJ02DDuW201osYx+N+r+W3y1lssNX06D3Z0tNV1FWvX6+oLmj1hc3Jm7W7ptWc5wbMea3RyNxNYrkz5spSv0Sv4FinW/SLiPQBJdwDPAifzQW3e+yJiHDAOYMSIETFy5MheBV6Jjo4OGnGeRvN11dizz6ZJy089le1Gjar54f3v1QLWWAOmTmXkyJHtdV1F2vW62tHCQfkmdK2QrI1aa1LeIVgfcevkDQEneNZzjU7uniH1rXtfNs3BkGxdZzYCniwkdgARMV/Sk6TpFMxax1lnwcCBcOyxeUdiefFomVaGpP2BQ0nzuS4LTAJ+FhGXV3GM60hTDR0fEefUJdAKNEvC5qTMWk3hb/bWyRs6wbMeaXRydxPwLUlDI+KtrOwAYC5wVxf7vQzsJmlgRMwHkDQI2JTOB2Exaz5vvgkXXwwHHgirrpp3NJaXQYM8WqaV8w3gReDrfDDVz2WSVoyIs7vbWdIoYKv6hph/4uaEzfqCUWtNej/Bg9QPzwmeVaLRyd0FpCaUf5T0E2Ad4DTgF8XTI0h6DrgrIo7Oin5N6mt3raTzSH30vgasRtb00qwlXHRRGiXR0x/0bYMHu+bOytkjIt4oen+HpNVJSV+XyZ2kJYCxwHdJ98weyyt5yztpO3TYvbme36zgkpnbAB8kePBBM81CE2rPhWedaWhyFxEzJe0AnEOqcXsT+CUpwSuNq3/Rfg9J2gU4FbgkK34c2CkiHq133GY1sWBBapL5uc/Bpz6VdzSWJzfLtDJKEruCR0jNLLtzIqkVzMVUmdz1H7Sw7gldoxM3J2rWyg4ddm+XCR54LjzrXMNHy4yIp4DPd7PN8DJlE4AJdQrLrP6uvx5efhl+8Yu8I7G8DRoE8+fDouYeldCawjbAU11tIGlV4H9JNX+L1GTTqzixM2scJ3jWL+8AzPqMsWNh+HDYq5KH8NbWBg9Or/Pn5xuHNbWspctewLndbHomcEtE3F3/qKpXqHVolEKNh5lZX+TkzqwRHn4Y7r4bjj8e+vfvfntrb4MGpVc3zbROSBoOXAb8KSLGd7Hd1sB+pCmDqjn+aEkTJU1cMOudXkRaGSd4ZmaN4eTOrBHGjoUhQ+Coo/KOxJqBkzvrgqTlSaNLTwYO6WbzMcCFwCxJy0kqzCW7pKRlO9spIsZFxIiIGDFg2aVqEnd3nOCZmdWfkzuzenvtNbjiCjjySFhuue63t/ZXaJbp6RCshKSlgBuAgcDuEfF2N7tsCJwEzCxaIDXVnF6vOHsqjwTPSZ6Z9SVO7szq7YILUt+qE07IOxJrFq65szIkDQCuAtYHdo2I1yvY7QvA9iULwFnADpWcd+G8xjYVb3SCB67FM7O+w8mdWT3Nmwfnnw+77w7rr593NNYsnNxZeeeRJi4/A1he0lZFyyAASRMkvT9ydET8LSI6ipds1bMRcVelJy4Mr94oTvDMrK+QtIukSZKek/TtMut/Kekf2fJPSW8WrVtYtO76Ss7X8KkQzPqUK66A11+Hk07KOxJrJm6WaeWNyl7Hllm3NvASRXPA1tqcF5dt6ATmt07esOHTJFwycxtPlWBmDSOpP2nE452AKcCDkq7PpoYDICK+XrT98cAniw4xNyI+Uc05XXNnVi8RMGYMbLIJ7FBR6yjrK1yR3JeIAAAgAElEQVRzZ2VExPCIUCfLS9k2IyNiZDfHUUSc05MY8qjB80ArZtbGtgCei4gXImI+cAVpipvOHARc3psTOrkzq5e774Z//ANOPBGabFJhy5mTO2tijU7wwCNpmlnb+gjwStH7KVnZYiR9lNRK446i4sHZtDX3S/piJSd0s0yzehk7FlZYAQ7pbiRz63OKm2Uu1Zhh6M2q0egmmtD4ZppuomlmxWbPH9zTB00rSppY9H5cRIzLfi73dD86Oc6BwNURsbCobK2ImCZpHeAOSY9HxPNdBeOaO7N6ePFF+NOfYPRoWHLJvKOxZuOaO2sBc15ctu0HWnENnpnVwBuFeUOzZVzRuinAmkXv1wCmdXKcAylpkhkR07LXF4AOPtwfrywnd2b1cPbZ0K8ffPWreUdizcjJnbWQvpDgOckzszp5EFhf0tqSBpISuMVGvZS0ITAMuK+obFjRSMkrAtsCT5XuW8rJnVmtvfUW/OY3sP/+sMYaeUdjzcijZVqLafcED1yLZ2a1FxELgOOAW4CngSsj4klJp0vas2jTg4ArIqK4yebHgImSHgXuBH5cPMpmZ9znzqzWxo+H2bPTQCpm5bjmzlqQp0owM6teRNwI3FhSdkrJ+9PK7HcvsFm153PNnVktLVoEZ50FW20FW26ZdzTWrJzcWYtyDZ6ZWXNzcmdWSzfeCM8950nLrWuF5M7NMq0FeS48M7Pm5eTOrJbGjIGPfAT22SfvSKyZFfrcuebOWpTnwjMza05O7sxq5YknYMIEOO44WGKJvKOxZjZgQBpN1cmdtTAneGZmzcfJnVmtjB2b5rT78pfzjsRawaBBTu6s5TnBMzNrLk7uzGrhjTfg97+HQw+FFVbIOxprBYMHu8+dtQVPdm5m1jyc3JnVwrhx6Yu6pz+wSrnmru1I2lvSCdlktMXlx+UVUyP1hQTPSZ6ZNTsnd2a9NX8+nHsujBoFG2+cdzTWKpzctRVJPwZOBNYDbpNUPGTuUflE1XjtnuCBa/HMrLk5uTPrrauvhmnTXGtn1XGzzHazO7BjRJwAfBLYU9JPs3XKL6zGc4JnZpYfJ3dmvRGRpj/YYAPYZZe8o7FW4pq7dtMvIhYARMR0YBdguKTf0AfvtZ4Lz8wsH33uhmNWU/ffDw8+mGrt+vm/k1XByV27eVXSpwpvImI+cAAQwKa5RZUjj6RpZtZ4/jZq1htjx8Kyy8Jhh+UdibUaN8tsN0cA04oLImJRRBwDfDaXiJqAEzwzs8ZycmfWU6+8kvrbffnLsPTSeUdjrcY1d20lIqZExGudrLu30fE0Eyd4ZmaN4+TOrKfOPTf1ufva1/KOxFqRk7uWJGmspL+XKR8g6bOSdpK0TB6xNTPPhWdm1hhO7sx64p130tx2e+8Nw4fnHY21IjfLbFU7AHcWF0gaAkwEOoCbgamSjmh4ZC2gLyR4TvLMLE9O7sx64pJLYOZMOOmk7rc1K8c1d61qTaC0meUJwObAeOBg4M/AryVV1ddO0v6Srpc0VdIcSQ9JOqibfTaUdK6kpyW9I+mFrHZxuWrO3UjtnuCBa/HMLD9O7syqFZEGUvn0p2HbbfOOxlqVk7tWtQQwp6TsYGBKRBwdEX+IiEKC9/+qPPY3smN/HdiTVEN4maTju9hnJ2Bb4HxgN+AHwP7ArZIqusf3z+HP0AmemVl9OLkzq9Ztt8HTT6fpD9Sn5ia2WnJy16qeAbYsvJG0FrAJcH3Jdr8Htq7y2HtExMERcWVE3BERJwOXk5K+zlwOfDIizoqIjoi4iDRy52eoYpTOoc/3Y+jzjf1K4ATPzKz2nNyZVWvMGFh1VfjSl/KOxFqZ+9y1qouAkyWNkrQE8E3SXHbXlWz3OlDVMLoR8UaZ4keAlbvYZ3pERJl96Gq/zvSFBM8DrZhZO3NyZ1aNZ56Bm26Cr3411byY9ZRr7lrVucDtpIFT3gWOBx4HJpRsN5yU4PXWNsBTPdiHHuwHtH+CBx5J08zal5M7s2qcfTYMHAj/9V95R2KtbtAgmD8/9eG0lhHJl4DdgTOBU4Cdy9SefQl4ojfnkrQDsBcpoax0n6WAHwN3RcSTPT23E7zac4JnZo3g5M6sUjNnwvjx8J//CStX3drJ7MMGDwag33vv5RyI9URE3BQR/xMRP4iIfxWvk7QyMBS4sqfHlzQcuAz4U0SMr3AfAb8hNcc8qpttR0uaKGnigrlvl93GCV7tOcEzs3preHInaWNJE7Ihm6dJOl1S/wr33UfSg5LmSpou6eZsfiGz+vv1r9P8dieemHck1g6yZr2aPz/nQKzWIuL1iBhZaVJWStLywE3AZOCQKnb9CbA38MWIeKGbGMdFxIiIGDFgyc5vo3kkeO0+0IrnwjOzemrop7akYaS+CkFqanI6qTP69yvY9xjSU8ybgF2BY4BngQH1itfsfQsWwDnnwMiR8PGP5x2NtYMsuXPNnRXLmlXeAAwEdo+I8tVqi+/3deBk4LCI+GstY2p0ggceSdPMrKca/Yl9LLAksE9E3BYRF5ASu29IWqaznSStCPwSOD4iTsmGe742Io6PiFmNCd36tOuug8mTPWm51U6hWaZr7iwjaQBwFbA+sGtEVDQgi6SDgZ8D34yIHjcF7YoTvPpwgmdmtdboT+tdgVsiYnZR2RWkhG+7LvYrjDn/23oFZtalMWNg7bXhC1/IOxJrF665s8WdR5qI/AxgeUlbFS2DALJuDe+PzClpO2A8cCtwX8k+a9QyOM+FVx9O8Myslhqd3G1EmgD2fRExGXgnW9eZLYFJwNGSpkh6T9IDkvyJaPU3cSLccw+ccAL0r6h7qFn3nNzZ4kZlr2OB+0qW1bJ1/bOlYHtgCWDnMvscU48g+0KC54FWzKxVNTq5Gwa8WaZ8ZrauM6sCGwLfA/4b2AN4G7hZ0iq1DtLsQ8aOhaFD4aguB58zq46bZbaNbKCwQyV9R9KqWdl6koZWc5yIGB4R6mR5KdtmZESMLNrntC72Oa2Gl/kh7Z7ggUfSNLPWlMdgJOUmdVIn5QX9gKWB/SPiZgBJ9wIvA8cB/7vYAaXRwGiAVVZZhY6Ojt5FXYE5c+Y05DyN1peva+D06Wx1xRVM23NPnnv44cYE1kt9+d+rlQx75hk+Drw7a1ZbXVdBu/17lSNpaeAiYF9gAemeejPwGvB/pNEuT84twDob+nw/3lp3UcPON+fFZVl67cZ2s7918oaMWmtSw853ycxtOHTYvQ07n5m1n0YndzOB5cqUL0v5Gr2CGdlrR6EgImZLegjYuNwOETEOGAcwYsSIGDlyZA/CrU5HRweNOE+j9enrOuUUWLiQNX7yE9ZYb72GxNVbffrfq5VIAAwZMIBPtNN1Zdru36u8XwDbADsC9wDvFq27kZTYtW1yB07w6sEJnpn1RqObZT5DSd86SWsCQyjpi1fiaVLNnkrKBTTurmJ9y7vvwgUXwB57QIskdtZC3CyzHewD/HdE3AksLFn3MvDRxofUeJ4Lr/bcRNOsfUjaRdIkSc9J+nYn23xJ0lOSnpR0WVH54ZKezZbDKzlfo5O7m4CdS/ohHADMBe7qYr8bSInc9oUCScsCnwYerUOcZnD55fDvf3vScqsPD6jSDpYEpneybiiLJ3xty1Ml1J4nOzdrfZL6A+eSZgzYGDhI0sYl26wP/A+wbURsApyUlS8PnEoaWHIL4NRszvAudftpLOkwSStUeS2duQCYB/xR0o5Zv7jTgF8UT4+QZba/KbyPiInAn4DfZBns7sD1wHukX5hZbUWk6Q822wy237777c2q5eSuHTwIHNbJuv2APtW2zglefTjBM2tpWwDPRcQLETGfNAXcXiXbfBk4NyJmAhTNcbozcFtEzMjW3Qbs0t0JK/kkvhhYF0DSQklbVHQpZWSB7UAaxvnPpAnMf0nKSosN4MNDPQMcAlxH6uNwNSmx+3zhF2FWUx0d8NhjadJylbYGNquBrFmm3CyzlX0P2EfS7aRpBwLYTdIlwP4sfm9re07w6sMJnlnL+gjwStH7KVlZsQ2ADSTdI+l+SbtUse9iKhlQZSawevZzd6NadisingI+3802w8uUzQG+ki1m9TV2LKy4Ihx8cN6RWLsq1Nw5uWtZEfE3STsAPwbOId0jvw/cD+wYEQ/mGV9eCgleOw+0UkjwPNCKWftYOK9/Tx8WrShpYtH7cdnAjrD4eCGweC41AFgfGAmsAfxV0qYV7ruYSpK724FLJE3KDjhe0tudbRwRPa7ZM2sKzz8P118P3/3u+7UrZjXnZpltISLuAT4raUmyuVwj4p2cw2oKHkmz9pzgmTWlNyJiRCfrpgBrFr1fA5hWZpv7I+I94MUs51o/Kx9Zsm9Hd8FU0n7iKNKTyEdIGeSLwJNdLGat7eyzoX9/+Ioria2OnNy1PEkfl7QbQETMjYhphcRO0m6SNs83wvx5svPacxNNs5byILC+pLUlDQQOJI0bUuw6skEjJa1Iaqb5AnALMErSsGwglVFZWZe6rbnLblQ/y064I/DdiPAIldaeZs+Giy6CAw6A1VfvfnuznvJUCO3gl8BfSXPalfoM8E1SP/M+zTV4tecaPLPWEBELJB1HSsr6AxdFxJOSTgcmRsT1fJDEPUUaZflbETEdQNIZpAQR4PSImLH4WT6sktEyF0r6TPa2A5jdxeZmre3ii+Gtt9JAKmb1NGAA9OvnmrvW9inS5OXl3Ad8soGxNDXPhVd7rsEzaw0RcWNEbBAR60bED7OyU7LEjki+EREbR8RmEXFF0b4XRcR62XJxJeer5NN2PjAo+/kwYKXqLsmsRSxcCGedBdtsAyM6azptVkODBiEnd62sPzCkk3VDgIENjKXpeSTN2vNceGZWqpIBVZ4CTpN0HanP3X6SOvvmGxFxfs2iM2ukv/wFXngBfvzjvCOxvmLwYDfLbG0PAqOBa8usGw1MLFPepzW6iSbkM5JmI5togptpmtkHKknujgcuJPUtCODkLrYNwMmdtaYxY2DNNWHvvfOOxPqKQYOc3LW204DbJT0A/BZ4DViN1Mrl48BO+YVWuf7v9mqGo6o5wasPJ3hmBhU0y4yIe7P2n0uQau62ioh+nSylE4+btYbHHoM774Tjjkt9ocwaYdAg97lrYRFxN2n0skXA2cDVwFhgAbBTRPw1x/CqMmxSYx8yDH2+X9uPpOnJzs0sD9V+sm5PaqZp1l7GjoWlloJjjsk7EutL3Cyz5UVER0RsDQwlzWW0TERs20qJXUGjEzxo/6kSbp28oQdaMbOGqupTNSLuiog5kraU9E1JP8xet6xXgGZ19/rrcOmlcPjhsPzyeUdjfYlr7tpGRLwTEVNbfQJzJ3j14QTPzBqlqvZnkoYAVwE7k+ZhmA6sAPSXdDOwf6vf2KwPuvBCmDcPjj8+70isr/FomS1H0t+BIyLiKUkPkvqadyoitmhMZLUzbNJ8Zm7Y2IE+PRde7bkPnlnfVO3jsjOBrUmzqw+OiNWAwdn7rYGf1DY8szqbPx/OOw922QU+9rG8o7G+ZvBg19y1nieBuUU/d7e0pGGT5ufSD6+RXINnZu2o2pEj9gX+OyKuKhRExCLgKknDgNNJo2uatYYrr4TXXoMTT8w7EuuLBg2i34wZeUdhVYiII4t+PiLHUBqi0bV4edTgAW09kmYhwXMtnlnfUO1jsmWBVzpZ9wqwTO/CMWugiDT9wUYbwahReUdjfZGnQmhZkpaQtK2k1fOOpd7avQYPPJKmmbWPaj9BHwW+IknFhdn7r2TrzVrCMk88AQ89lGrt+jX+y4SZm2W2tIXAHUDN2nNL2l/S9ZKmSpoj6SFJB1Ww3yBJP5f0uqS3Jf1F0vBaxQVO8OrBCZ6Z1UO1n57fIQ2m8oykH0v6uqQfAU+T5vr5Tq0DNKuXNa65BpZbDg49NO9QrK9yzV3LyrokPAusUsPDfgOYA3wd2BO4E7hMUnfdHc4CjgBOBvYDVgRukzS4hrF5Lrw6cIJnZrVW7VQIdwCfBB4B9gd+CHwJeBj4VETcWfMIzerh5ZdZ6a9/hdGjYciQvKOxvsqjZba67wKnSNqsRsfbIyIOjogrI+KOiDgZuJyU9JUlaQ3gaODrEfG7iLgJ2Af4KHBIjeJ6n6dKqD3PhWdmtVT1J2ZEPBURB0bEuhGxVPZ6cER4cnNrHeeem16/9rV847C+zfPctbrvkaYD+oekyZIelPT34qWag0XEG2WKHwFW7mK3QofhPxYdZyrwN2DXas5fKSd49eEEz8xqoapPS0k/k7RxvYIxa4g5c+BXv+Lfn/0srLVW3tFYXzZ4sJtltrYngRuA3wETgCeo/VQI2wBdPTzdCJgSEXNKyp/O1tWFE7z6cIJnZr3Vk6kQvi7pIeAi4PKIaOwsoGa99bvfwZtvMmW//bp8HG5Wd665a2n1ngpB0g7AXsBRXWw2DHizTPnMbF3dFBK8dp8qwZOdm1krqbbP3drAjsAzwE+BVyVdJmnHegRnVnOLFsFZZ8FnPsPsTTbJOxrr6wrJXUTekVgVJC0paV9J35R0sKRaDqpSOMdw4DLgTxExvpvNy/0BqZPywvFHS5ooaeJ789/uaZhA+4+kOefFZdt+oBXX4Jm1j570ubszIg4DViNNWL4GcIuklyV9X9I6tQ7SrGZuuQUmTUrTH3x4Rg+zxhucDWY4b16+cVjFsnvck8BVpIecvwcmSarZZJmSlgduAibT/aAoM4HlypQvR/kaPQAiYlxEjIiIEUsM7P2gUu2e4EH7j6R5ycxtnOSZtYEefzpGxJyI+A1wKnAPsCbwP8A/Jf1J0kdrFKNZ7YwZA6utBvvvn3ckZjBoUHp1ctdKzgQWAZ8FlgI2IQ16cmEtDi5pKVI/voHA7hHRXbXaM8CakkoztI2ydQ3jBK/2PFWCmVWrR5+MkoZLOlXSC8CtpHl59geGkubmGQ5cUasgzWriqafg1lvTCJkDG9dHxKxTTu5a0dbA9yLinoh4NyKeBv4LWEvSar05sKQBpBrB9YFdI+L1Cna7NXvdu+g4q5OSz5t6E09POMGrPSd4ZlaNqgZUkXQocCTwOVJzkYuBiyNiStFmN0p6G7i9ZlGa1cJZZ6Uv06NH5x2JWVJolvnuu/nGYdVYDXihpOx5Uh+3VYFXe3Hs84DdgBOB5SVtVbTukYiYJ2kCQETskL1OkfQbYIwkAf8GTgNeJjUZbbhhk+Y3fJAVoK0HWikkeB5oxcy6U+0jr3HAa8DOEbFORJxRktgV/BP4Qa+jM6uVGTPSKJmHHAIrrZR3NGaJa+5aVb1GwCn02xsL3FeyFGoF+2dLsRNI0zH8ArgGmAGMiojcnhp4qoT68EArZtadaj8JV88mLJ/Q1UYR8WpEfL8XcZnV1q9+BXPnpoFUzJqFk7tWdYuk1wsLH9TWTSguz9ZVLCKGR4Q6WV7KthkZESNL9psXEd+IiJUiYkhE7BYRL9biQnvDCV59OMEzs65U1SwzImbWKxCzunnvPTjnHPj852GzzfKOxuwDHi2zFfnBZRU8F159eC48M+tMtZOYI+kA4MvABsDg0vUR4Xmhrblcey1MmQLnnZd3JGYfVqi5c5+7luFWKT2TRz+8Rid4QMP74TnBM7NSVbVfkHQw8FvgOdL8dteThmzuB8wGzql1gGa9NmYMrLsu7L573pGYfZibZVof4pE0a89z4ZlZqWo/+b4FnAF8LXt/XkQcBawNvAG8U8PYzHrv73+H++6DE06Afo2/0Zt1yc0yrY9xgld7nirBzIpV+6m3PnBPRCwEFgLLAETEW8BPgONqG55ZL40dC8ssA0cemXckZotzs0xrAv3mvtfQ8znBqz0neGZWUO0n3iwg+zbCVOBjResErFCLoMxqYupUuPJKOPpoGDo072jMFudmmdYklnxiakPPl0eC1+4jaTrBMzOoPrmbCGye/Xw9cIqkL0s6HPgp8EAtgzPrlfPOg4UL4ThXKFuTcrPMlibpFEmrd7JuNUmnNDqm3mj3BA/af6qEWydv6KkSzPq4aj/lfgRMzn4+Bfg7cB5wManP3ejahWbWC3PnwoUXwl57wTrr5B2NWXlultnqTiUNLlbO6tn6luIEr/Y8F55Z3yZpF0mTJD0n6dtdbLefpJA0Ins/XNJcSf/IlgsqOV9Fn3CSlpS0L7AtMEDSKhHxZkTsBSwNLBcRW0bEC5Ucz6zuLr0Upk+Hk07KOxKzzrlZZqsTEJ2sWwNoyblhneDVnhM8s75JUn/gXGBXYGPgIEkbl9luKHACi7eCfD4iPpEtx1Zyzm4/3SStAzwJXEVqenkJMEnSKICImBcRsys5mVlDRKSBVD7+cfjc5/KOxqxzTu5ajqTDJd0h6Q5SYnd+4X3Rci/we+CufKPtuTwSvHYfaMUJnlmftAXwXES8EBHzgSuAvcpsdwZwJtDrpjyVfLKdCSwCPgssBWwCPAJc2JMTStpY0gRJ70iaJun0LKutdP9+kh7Kqi2/0JMYrM3dcQc88USqtZPyjsasc4U+d26W2UreAaZni0gDjU0vWV4k3TtbuqtCoxM8aP+RNOe8uGzbD7TiufCsD1pR0sSipfiz/yPAK0Xvp2Rl75P0SWDNiLihzLHXlvSIpLskfbaSYAZUsM3WwDcj4p7s/dOS/it7XS0iXq3kRACShgG3A0+RstZ1gZ+TkszvVXiYYyj5pZh9yJgxsPLKcOCBeUdi1rUBA4h+/ZBr7lpGRFxFasmCpIuBM9q5S8KST0xl7qaNveUOmzSfmRsObNj5hj7fj7fWXdSw80FK8pZee1bDznfr5A0Ztdakhp0PUpJ36LB7G3pOs97oP6/HD3zeiIgRnawrV8vwfnN+Sf2AXwJHlNnuVWCtiJgu6dPAdZI26a7FZCVXsBpQeuN6Pgt21Qr2L3YssCSwT0TcFhEXAN8HviFpme52zpLDHwLfrfK81lc8+yz85S9w7LEf1IqYNbFFSyzhZpktKiKOjIgXJK0uad9s9Oh9OhtBs1Ut+cTUtu+H57nw6sM1eGZMAdYser8GMK3o/VBgU6BD0kvAVsD1kkZkXd+mA0TEQ6T8a4PuTljpp1lnHcartStwS0nGeQUp4duugv3PAO4BJtQoHms3Z58NAwbAV76SdyRmFVk0cKCTuxaVdRM4D3iZVJt3IXA18LKkc7Mnsm2jLyR47d4PzwmeWcM9CKwvaW1JA4EDSdPJARARsyJixYgYHhHDgfuBPSNioqSVCl3XsjFQ1mfxCrfFVPopdouk1wsLqZoQYEJxebauKxsBzxQXRMRkUh+GjbraUdLmwJHAyRXGbH3NrFlw8cVw0EGwarWVymb5WLTEEu5z17pOB44CvgMMJz2oHJ69Pwo4Lae46qbdEzxo/4FWPBeeWeNExALgOOAW4Gngyoh4MhtzZM9udv8c8JikR0kPDo+NiBndnbOSPnffr2CbSg0D3ixTPjNb15WzgXMj4jlJw2sYk7WLiy6COXPgxBPzjsSsYuFmma3sMOB7EfGzorLJwE8lBWlY65aayLwSje6H1+g+eND4fniN7oMHje+H5z541ldFxI3AjSVlZe8NETGy6OdrgGuqPV+3yV1E1DK5g/JNPLuaKwhJBwIbAntUepJspJrRAKussgodHR3VRdkDc+bMach5Gq0lrmvhQrY880zmbbYZ/5g9GyqItyWuqwd8Xa1lxIABvP7KKzzVZtfWrv9eJVYGHutk3WPZ+rbkBK/2nOCZWS1UUnNXSzOB5cqUL0v5Gj0kLUGaX+8nQD9JywGFwVeGSBoaEW+V7hcR44BxACNGjIiRI0f2PvpudHR00IjzNFpLXNe118Jrr7HkOedUHGtLXFcP+Lpay5xBg1h5mWVYuc2urV3/vUr8k9R/4tYy6w4EGjs8YYPlkeABbT2SphM8M+utRnf2foaSvnWS1gSGUNIXr8gQ0sgyvyAlhzOBR7N1V5Dm3LO+buxY+OhHYa9y80KaNS8PqNLSfgAcIel2ScdK2lvSf0m6HTg8W9/WPBde7fWVufDMrD4andzdBOwsaWhR2QHAXOCuTvaZA2xfshyUrfsO8J/1CdVaxiOPwF13wfHHp5EyzVqIk7vWFRFXAruQHkKOJfWNOAtYCtglmxOv7TnBq4++kOA5yTOrvUZ/Wl0AzAP+KGnHrF/cacAviqdHkPScpN9AGmUmIjqKF9IwoQCPR8QDjb0Eazpjx8KQIXD00XlHYlY1j5bZ2iLi1ojYmjRS5qrAkhGxTUTclnNoDeUErz7aPcED1+KZ1VpDP6kiYiawA9Af+DNpJM5fAqeWbDog28asa//6F1x+ORxxBCxXrjunWXPzaJntISIWRcTrEdGrDlqS1pN0oaRHJS2U1FHhfiMk3SppuqQZWVPRLXsTS7U82Xl9OMEzs2o0vA1bRDwFfL6bbYZ3s/4l0gib1tddcAHMnw8nnJB3JGY9smjgQHhrsTGhrEVkk9IeAWwBrEaaB/YB4LcR0ZPMYxNgN1ILlYpGDsn6rt8OPEyangHgW8CtkjaPiJd7EEePtftImoUEr50HWikkeB5oxaz1NP4RlFmtzJsH558Pu+0GG2yQdzRmPeJmma1L0seAZ4FzgU2BhdnrucBzkjbuwWH/HBFrRsT+wJMV7rM7MBTYJyL+EhF/AfYGliYlig3X7jV40P6TnYMHWjFrRU7urHX94Q+pWeZJJ+UdiVmPLXKzzFY2DpgFrBsRW0XEnhGxFbBeVn5BtQfsYbPOJYAFpAHICuZkZbm1cnGCV3tO8MysO07urDVFwJgxsPHGsOOOeUdj1mMeLbOljQBOiYjJxYXZ+1OAzzQojmuAd4CfS1pZ0sqk/uwzgVxH7MwjwWv3fnhO8MysK07urDX97W9pCoQTTwS5+6W1rkUDB7pZZut6CRjcybrBwORO1tVUREwjTRO0L/CvbNkH2Dki/t2IGLrikTRrz3PhmVlnnNxZaxozBpZfHg45JO9IzHrl/7d35+FyVNX6x79vEpIwE2ZEkCciruMAACAASURBVDAIAvLTawQZrgRUZgGRSUUB4SIKiNcJnBHkKiIYAgFkUATEiCgKyAwGZRAhIkKEaJgDqEDCEBIIJOv3x66GptPnnO7T1V3ddd7P89TT3dW7ulad09PqvWsvz5bZ044GvlM7K6Wk9wDHAkd1IghJqwGXAFOBHbNlKvA7SWv2sc0hku6UdOf8hfPaHqMTvPYYCgmekzyz5ji5s97z8MPwm9/Apz4FSyxRdDRmLVm42GJpxteIokOx5n0dWAa4VdKTWfmCJ4FbgGWBr0r6c2VpYxxfIs1+vWdEXB0RV5N68RYAX6y3QUScFRHjImLcyGGLtzG01znBa4+yJ3jgXjyzZnS8FIJZy047LQ3F/Mxnio7ErGULR2ZTuM+fD6NGFRuMNevebCnaBsC0iHilsiIi5kuaBqxTXFiLqiR4ZS+V0MkyCVBMqYROlkkAl0owa5STO+stL7wA55wDe+0Fb35z0dGYtWzhYoulKy+95OSux0TEgUXHkHkE2EnSyEptPUmjSGUZLi80sj64Fl7+nOCZGXhYpvWan/4UnnvO5Q+sNF5L7nzeXU+TtISkIyRNkvQNSW9p4XH2lLQnsDqwUuW2pCWyNjMknVu12TnAm4BLJe0saRfgN6Si6me1dmTt41IJ+StiiKYnWjHrLk7urHcsXAgTJ8Jmm6XFrAReG5bp5K4nSDpJ0j9q1i0N/AWYAOxDKoNwt6S3DmIXK5PKF/wSeA+wYdXtlbM2I4DhlQ0iYiqwA6mQ+QXA+cASwAci4u5BxNAxTvDy51IJZkObkzvrHVddBf/8p3vtrFSikty5HEKv2Aa4sGbdF4G3Av8TESuSetEeBr7R7INHxMMRoT6Wh7M2a0XEATXb3RAR742I5bNl64iY0vTRFcAJXv6c4JkNXU7urHdMmACrrw4f/nDRkZjlxsMye85apDID1T4M/D0ifgyQ1ZY7Cdiys6H1Lhc7z58TPLOhycmd9YZp0+D66+Gww6DyZdisBDwss+eMAF7rZpW0PPA24Maadg8Dq3YurN7nUgn5GyrFzp3kmb3OyZ31hlNOgdGj4ZBDio7ELFdvmC3TesE/gPFVt3fJLq+pabcyMKsTAZWJE7z2KHuCB+7FM6twcmfd7+mn4YIL4OMfhxVWKDoas1x5WGbPOQ04WtJESV8DTgQeAq6tabcd3VEDr+c4wWsPJ3hmQ4OTO+t+Z5+dejWOPLLoSMxy52GZvSUiziPNhrkH8BVgOvCh6gLiklYCdgN+W0SMZbD4vY+XfqKVpR8YVvrz8JzgmXWekzvrbq+8AqedBh/4AGy0UdHRmOXOs2X2noj4bkS8OSKWymaovKfm/qciYtWIOKOoGMui7AkelH+iFdfCM+ssJ3fW3S65BJ54wr12VloelmnWPyd4+fNMmmbl5eTOutspp8B668GOOxYdiVlbeFim2cCc4OXPCZ5ZOTm5s+71pz/B7benXrthfqpaObnnzqwxroWXPyd4ZuXjb8zWvSZMgGWXhf33LzoSs7ZxKQSzxnkmzfwNlVp4ZkOFkzvrTjNnpvPtDj4Yllqq6GjM2iY8LNOsKU7w2mMoJHhO8mwocHJn3WnSJIiAww8vOhKztvI5d2bNc4LXHmVP8MC9eNZ5knaQNF3SDElH17n/UEn3SPqrpJslbVh131ey7aZL2r6R/Tm5s+4zdy786Eew++6w1lpFR2PWVjF8eDqn1MMyzZoyVGrhdZoTPLP8SBoOTAJ2BDYEPlKdvGUuioi3R8Q7gO8DJ2fbbgjsC2wE7ACcnj1ev5zcWfe58EKYPRs+97miIzHrjFGj3HNnNkhDIcEr+0QrTvCsxDYFZkTEgxExH5gM7FbdICKer7q5JBDZ9d2AyRHxckQ8BMzIHq9fTu6su0SkiVTe+U7YaquiozHrjNGjndyZtaDsCR6UfyZNFzu3klodeKzq9sxs3RtIOkzSA6Seu882s20tJ3fWXa67Du67L/XaSUVHY9YZo0Z5WKZZi5zg5c+lEswasqKkO6uWQ6ruq/dlNhZZETEpItYBjgK+3sy2tUY0ErFZx5xyCqyyCuyzT9GRmHWOh2Wa5WLxex9n3sYD/rCdm0qCN3v9kR3b59IPDOOFdRZ2bH9zHlqWpcY+17H9QUrwtltzesf2d8HsLfj4mFs7tj/rTsNfisH+aPN0RIzr476ZwBpVt98MPNHPY00GzhjktoB77qybTJ8OV14Jn/50+rJrNlR4WKZZbjyTZv5cC89s0O4A1pM0VtJI0gQpl1U3kLRe1c2dgX9m1y8D9pU0StJYYD3gzwPt0MmddY+JE2HkSDj00KIjMessD8s0y5UTvPYYCgmekzzLU0S8ChwOXAPcB1wcEdMkHStp16zZ4ZKmSfor8Hlg/2zbacDFwN+Bq4HDImLBQPt0cmfdYfZsOO88+OhH07BMs6HEwzLNcucErz3KnuCBe/EsXxFxZUS8NSLWiYjjs3XfjIjLsutHRsRGEfGOiNgmS+oq2x6fbbd+RFzVyP6c3Fl3OPfcVN/uyCOLjsSs8zws06wtXAuvPZzgmXUvJ3dWvFdfhdNOg623hne8o+hozDrPwzItI2ldST+SdLekBZKmNLHtHpLukDRP0jOSrpa0ZBvD7RlDIcEr+0yaTvDMGuPkzor329/CI4+4aLkNXR6Waa/bCNgJ+Ee2NETSwcBFwFXAjsDBpJPyPSt2puwJHpS/VIJr4ZkNzMmdFW/CBBg7Fj74waIjMSuGh2Xa6y6PiDUiYi9g2oCtAUkrAj8EjsjO45gSEZdGxBER0dk57LucE7z8uRaeWXdxcmfFmjoVbr4ZjjgChg8vOhqzYrjnzjIRMZgCZntnlz/NM5aycoKXPyd4Zt2j48mdpA0l3SBprqQnsqlA+/1WL+ndkn4iaUa23XRJ35I0ulNxW5uccgostRR88pNFR2JWHJ9zZ63ZDJgOHCRppqRXJN0uyd9G+1BEglf2iVac4Jl1h46+8iWNAa4HAtgNOBb4AvDtATbdB1gHOIF0LsIkUh2In7UtWGu/J5+EyZPhwANh2c5/KJh1DffcWWtWBdYHvg4cBXwQeBG4WpJry/TBpRLy52LnZsXrdM/docDiwB4RcV1EnElK7D4vaZl+tjshIt4bEWdn5xJMBL4E7CHpLR2I29rhzDPTTJlHHFF0JGbF8jl31pphwFLAQRHxs4i4GtgdWEAqnrsISYdIulPSnfMXzutgqN3FCV57DIUEz0medatOv+J3BK6JiOer1k0mJXxb97VRRDxVZ/Vd2eXK+YVnHfPSS3DGGbDLLrDeekVHY1YsD8u01szKLqdUVmSfs1OBDettEBFnRcS4iBg3ctji7Y+wiznBa4+yJ3jgXjzrTp1+tW8A3F+9IiIeBeZm9zVjC2Ah6TwD6zU//zk89ZSLlptBSu7mz4eIoiOx3nQf6XQH1awX6XPSBjBUip2X/Tw8J3jF/Fhh3aXTyd0Y4Nk662dn9zVE0qrA14ALanoBrRdEpIlUNt4Ytt226GjMijc6mxtqfudn1bNSuIKUyG1TWSFpWeBdwN1FBdWLyp7gQfknWnEtPBvqiihuWu+nafWxftGG0kjgYmAO8L/9tDsEOARglVVWYcqUKU0H2qw5c+Z0ZD+dlvdxLffXv/KOu+/m/i9+kX/ddFNuj9ss/796S5mPa8Zjj7Eu8MfrrmPBUksVHVIuyvr/ajdJS5AmDgNYHVhG0p7Z7SsjYq6kGcBNEXEQQETcKem3wLmSjgaeBr4MvEKagMyasPi9jzNv49U7tr8x0+cze/2RHdsfpATvhXU616k756FlWWpsZ0suXvvo+my3ZucGd10wews+PubWju3PrC+dTu5mA8vVWb8s9Xv03kCSgPOBjYAtI2J2X20j4izgLIBx48bF+PHjBxNvU6ZMmUIn9tNpuR/XhAmwwgpscOyxbLB4ced6+P/VW8p8XOtutBEA/73pprByOU4jLuv/qwNWBn5Zs65yeyzwMOmzu7aE0H7AicDJwBLALcC2/X1OWt+c4OXPCV77FNEDbN2r08My76fm3DpJawBLUnMuXh9+SCqhsFtENNLeus2DD8Jll8Ghh0KBiZ1ZV6kMy/SMmUNeRDwcEepjeThrs1ZEHFCz3ZyI+HRErBARi0fE+yPiniKOoSxcCy9/roWXnyImybHe0OlnxlXA9pKWrlq3DzAP6Hd8nqSvAEcA+0XEze0L0drq1FNh+HD4zGeKjsSse4walS49Y6ZZV/FMmvlzLbzmtq+OvYjk2HpPp5O7M4GXgV9Len92XtwxwMnVE6NImiHp3KrbHwX+jzQk83FJ76laVursIdigPf88nHsu7L03vOlNRUdj1j0qyZ177sy6jhO89hgKCZ4nWrEidPTVnI39fx/pXIHLSQXMfwh8q6Zp7fkE22WXBwC31Sw7ty9iy9V558ELL7j8gVktD8s062pO8Nqj7AkeeCZN67yOv5Ij4u8RsW12TsBqEfGNiFhQ0+YN5xNExAH9nINwXqePwQZhwQKYOBE23xw23bToaMy6i3vuzLreUKmF12lO8Mzy5bMxrTOuvBIeeAA+97miIzHrPj7nzqxnDIUEr+wTrTjBszJzcmedMWECrLEG7LFH0ZGYdR8PyzTrKWVP8KD8M2m62LmVlZM7a7+//Q1uvBEOOwxGdLq0olkP8LBMs57jBC9/LpVg1jond9Z+Eyemmnb/8z9FR2LWnTws06wnuRZe/pzgmbXGyZ2111NPwYUXwv77w/LLFx2NWXfysEyznuWZNPPnWnhmg+fkztrrRz9KX1g/+9miIzHrXh6WadbTnOC1x1BI8JzkWd6c3Fn7zJ8Pp58O228Pb3tb0dGYdS8PyzTreU7w2qPsCR64F8/y5eTO2ueXv4Qnn3T5A7OBuOfOrBRcC689hlKC50TPWuXkztojAk45BdZfH7bbruhozLqbz7kzK5WhkOCVfaKVbujBKyIG631O7qw9brsN7rgDjjwShvlpZtavESPS68TDMs1Ko+wJHpR/Js0iauGZtcrfuq09JkyA5ZaDT3yi6EjMesOoUe65MysZJ3j5GwqlEuop4ritNzm5s/w9+ij8+teprt2SSxYdjVlvGD3ayZ1ZCTnBy99QTfDMGuHkzvI3aVK6PPzwYuMw6yWjRnlYpllJudh5/pzgWa+QtIOk6ZJmSDq6zv3vlfQXSa9K2rPmvgWS/potlzWyPyd3lq8XX4SzzoI99oA11yw6GrPe4WGZZqXmUgn5GwrFzq23SRoOTAJ2BDYEPiJpw5pmjwIHABfVeYh5EfGObNm1kX06ubN8XXABPPtsmkjFzBrnYZlmpecErz2GWoJXxN/YBm1TYEZEPBgR84HJwG7VDSLi4Yj4G7Awjx362WH5WbgwlT8YNw62cJ0Ws6a4585sSHCC1x5DLcGznrE68FjV7ZnZukaNlnSnpD9J2r2RDZzcWX6uvRbuvz8VLZeKjsast/icO7MhY6gUOy/7eXhO8CyzYpaAVZZDqu6r94U4mnjsNSNiHPBRYIKkdQbaYEQTD27Wv1NOgdVWg732KjoSs97jYZkGSFoX+BLwHmBj4I8RMb6J7YcBdwD/BXwwIq5oR5yWj8XvfZx5GzfzI35rxkyfz+z1R3Zsf5CSvBfWyWW0WUPmPLQsS419rmP7qyR42605vS2Pa50zbN4rg/3R5eksAatnJrBG1e03A080+sAR8UR2+aCkKcA7gQf628Y9d5aP++6Dq6+Gz3wGRnb2g8OsFDws05KNgJ2Af2RLsw6muSE/VrCy9+CBZ9K0Ie0OYD1JYyWNBPYFGpr1UtIYSaOy6ysCWwJ/H2g7J3eWj4kT05fTT32q6EjMepOHZVpyeUSsERF7AdOa2VDSGOB44Gtticzaxgle/pzgWTeIiFeBw4FrgPuAiyNimqRjJe0KIOndkmYCewE/klR5738bcKeku4HfA9+LiAGTOw/LtNbNmgXnnw8f+xistFLR0Zj1Jg/LNCAiWhm/dhxwC3BDTuFYBxUxRBPo6DDNsg/RhJTg5T1Esz9FJOrWnIi4EriyZt03q67fQRquWbvdrcDbm92fe+6sdeecA3PnuvyBWSs8LNNaIGkT4EDgi0XHYoPnmTTzV4ZaeEX0QlrvcnJnrXn1VTjtNNh2W9hkk6KjMetdHpZprTkVmBQRM4oOxFrjBK89ej3BM2uUkztrzaWXwmOPudfOrFXuubNBkrQvsD7wnSa2OaQybff8hfPaF5wNihO89nCCZ0OBkztrzYQJsM46sPPORUdi1tt8zp0NgqTFgBOBE4BhkpYDlsnuXlLS0vW2i4izImJcRIwbOWzxDkVrzRgqtfA6zQmelZ2TOxu8O+6AW2+FI46A4cOLjsast3lYpg3OkqQT8U8GZmfL3dl9k4G7CorLcjIUEryyz6TZbILnhNBa4eTOBu+UU2DppeHAA4uOxKz3jRoF8+dDRNGRWG+ZA2xTs3wku++rwMcKistyVPYED8pfKuHaR9d30mYd4eTOBueJJ+AXv4CDDoJllhm4vZn1b/TodDnf01oPZZKWkLSnpD1JxchXqtyWtETWZoakcyHVUIqIKdUL8Kfs4e6JiNsLORDLnRO8/PViLbwihrJab/EzxAbnjDNgwYI0JNPMWjdqVLr0eXdD3crAL7PlPcCGVbdXztqMADwWfghygpe/XkzwzPrj5M6aN28enHkm7LorrL120dGYlUMlufN5d0NaRDwcEepjeThrs1ZEHNDAY1zRqbitc4pI8Mo+0UoZauGZVTi5s+ZddBE8/TR87nNFR2JWHpVhme65M7MBuFRCe3RjgucC5tYsJ3fWnIg0kcomm8DWWxcdjVl5eFimmTXBCV57dGOCZ9YMJ3fWnN//Hu65J/XaSUVHY1YeHpZpZk1yLbz2cIJnvWxE0QFYj5kwAVZaCT7ykYHbmlnjPCzTzAZp8XsfZ97Gq3dsf2Omz2f2+iM7tr9KgvfCOgs7ts85Dy3LUmOf69j+nOBZXtxzZ42bMQOuuAIOPfT1L6Jmlg8PyzSzFpS9Bw+GxkyaZq1ycmeNO/VUGDECPv3poiMxKx8PyzSzFjnBy58TPOs1Tu6sMc8/Dz/5CeyzD6y2WtHRmJWPh2WaWQ6c4OWvVxK8IibZse7T8eRO0oaSbpA0V9ITko6VNGAxVknLSvqJpNmSnpP0M0krdCJmA378Y3jhBZc/MGsXD8s0s5y4Fl7+eiXBM+voK0PSGOB6IIDdgGOBLwDfbmDzXwDjgYOBA4B3A79pR5xWY8ECmDgRttoK3vWuoqMxKycPyzSzHLlUQv6KKHbenyJ6Ta37dbrn7lBgcWCPiLguIs4kJXafl7RMXxtJ2hzYHtg/In4VEZcC+wFbSXp/JwIfyla47TZ46CE48siiQzErLw/LNLOcOcFrj04leLX7KeJYrfd0+lmyI3BNRDxftW4yKeHrryL2jsC/I+IPlRUR8Wfgoew+y9usWXD55XDUUax32mmw5pqw++5FR2VWXh6WaWZt4ASvPbqpB8+sWqfr3G0A3Fi9IiIelTQ3u+/yfra7v876+7L72mvWLJg5c8BmSz7wACy/fNvDaYuFC+Hee+Hmm9MybVpav9hivPzWtzL65JPTTJlm1h6V5O7BB+Fvfys2lhwM+v1wk03yD8ZsiKskeK6Fl69O18Iza0Snv62PAZ6ts352dt9gtls7h7j695vfwEEHDdjs3W0PpAOWWQa23BI++tF0jt27381dt9/O+PHji47MrNyWXDL9gHLCCWnpcYN6Pxw+HF59Ne9QzCxT9mLnkJI8J3g2lBXRFRN11qmP9YPeTtIhwCEAq6yyClOmTGkixDcavcQSLPXtged8eemllxjdw8W9X3rTm5gzdmz6ggWpN+/225kzZ05Lf79u5ePqLUPhuJaeOJFRTz1VbEA5GdT7ocTTJfwfm3UTJ3j5c4Jn3aTTyd1sYLk665elfs9c9XYr1Vm/XF/bRcRZwFkA48aNi070PE2ZMoVxJezhmjJlSil77nxcvWVIHFeJjq+s74dmZeAEL39O8KxbdPoM1PupOUdO0hrAktQ/p67P7TJ9nYtnZmZmZn1wLbz85TnJiidsscHqdHJ3FbC9pKWr1u0DzANuGmC7VSVtVVkhaRzpfLur2hGomZmZWZl5Js38dVstPBt6Op3cnQm8DPxa0vuz8+KOAU6uLo8gaYakcyu3I+I24BrgfEl7SNod+Blwc0Rc39EjMDMzMysJJ3jtkXeC5xp31qiOPlMiYjbwPmA4qezBt4EfAt+qaToia1NtX1Lv3o+B84GpwIfaGa+ZmZlZ2TnBaw/34FkROj5bZkT8Hdh2gDZr1Vn3LHBgtpiZmZlZToZKLbxOTrICnmjFOs99vGZmZmYGFDPRSict/cCwnp5oxWwgTu7MzMzM7DVlT/Cgt2fShGL+ZjY4knaQND2bU+ToOvePkvSL7P7bJa1Vdd9XsvXTJW3fyP6c3JmZmZnZGzjBy1+jCZ57+spD0nBgErAjsCHwEUkb1jQ7CJgdEeuS5iI5Idt2Q9KcIxsBOwCnZ4/XLyd3ZmZmZrYIJ3j5c+I25GwKzIiIByNiPjAZ2K2mzW7AT7PrlwDvk6Rs/eSIeDkiHgJmZI/XLyd3ZmZmZlaXi53nz7XwhpTVgceqbs/M1tVtExGvAs8BKzS47SI6PltmEaZOnfq0pEc6sKsVgac7sJ9O83H1Fh9Xb/Fx5e8tBe23Jz3/yn+evvrxUzvxGdmobn1NDN24BpfftRbXNYPeciBD9/84ON0YV3VMub3fP//Kf665+vFTVxzEpqMl3Vl1+6yIOCu7rjrto+Z2X20a2XYRQyK5i4iVOrEfSXdGxLhO7KuTfFy9xcfVW3xcVrROfUY2qlufO46rOY6rOY6rce2KKSJ2yPsxSb1ta1TdfjPwRB9tZkoaASwLzGpw20V4WKaZmZmZmVn+7gDWkzRW0kjSBCmX1bS5DNg/u74ncGNERLZ+32w2zbHAesCfB9rhkOi5MzMzMzMz66SIeFXS4aSBxsOBH0fENEnHAndGxGXAucAFkmaQeuz2zbadJuli4O/Aq8BhEbFgoH06ucvXWQM36Uk+rt7i4+otPi6zN+rW547jao7jao7jalw3xtSniLgSuLJm3Terrr8E7NXHtscDxzezP6VePzMzMzMzM+tlPufOzMzMzMysBJzcmZmZWdtJWlfSjyTdLWmBpClNbj9M0lRJIWmXbohL0h6S7pA0T9Izkq6WtGSRcUkaJ+naLJ5Zkq6XtFlOMe0l6TJJj0uak/0/PtLAdqMknSTpP5JelPQ7SWvlEdNg45K0vqRJku6TNFfSg5JOkbRckXHVeYzfZM/5w7shLknvlXRT9n98Nru+ZpFxSVpP0q8k/VvS85JuldSOmS97gpM7MzMz64SNgJ2Af2RLsw6mgQK+gzCouCQdDFwEXAXsmMX3T/Kbz6DpuCStAVyfxfAJ4OPZ9Wsl5VEP7PPAHOB/gV2B3wMXSTpigO0mAgcAXyTNBrgicJ2k0TnENNi4PgBsCZxB+jt/h3Te07WS8vp+PNi/FwCStgPek1MsLceVJUzXA3dn2+0H3AYU9n+UtDRwHbA28GnS8+sJ4HJJm+YUV0/xOXdmZmbWdpKGRcTC7PolwIoRMb7BbceQEpyjgXOAD0bEFUXFJWlF4CHg8xFxdh5x5BTXocAkYIWIeDZbN4ZU8PnwiDijxZhWjIina9ZdBGweEWP72ObNwMPAJyPi/Gzd6qS/32ci4pxWYmohrhWAWVH1RThLpq4BxkfETUXEVdVuMeBvwA9Iz/kjIuK0VmMabFxZPA8C50fE1/KII6e4diD9wLJJRNyTrRsBPA6cFxFHtSPWbuaeO7MeJWlbSSdKulzSzZL+mF0/UdI2RceXF0mbSDpA0v6SNi46HjMbnEqiMkjHAbcAN+QUzmsGGdfe2eVP84yl2iDjWow0ZfqcqnVzsnXKIaan66y+C1i5n822yy5/XfU4jwM3k3o8WzaYuCLimerErmob+tuu3XFVORKYB/wkj1iqDTKuD5CKaE/KO56KQca1WHb5XNXjvAq8SA7P+V7kUgg5kCTgg8B/AQHcCVxZ502j60nalvRmuwEwhnQ8zwL3k47p9wWGlxtJm/D6/2tqRNxbcEgNk7Q8cCnw36RfPu/LLgUsB3wI+IKkPwB7RMSsomJtRvbr3Ncj4sHs9mjg56ShGZU36JD0K+BjEfFKMZEOjl9bZoOTPacOBP5f0bFU2QyYDhwk6WvAKsBfgP+NiFsLjOtXwLHASZIq06d/E5gN/LJN+9yCVIerLxsAMyNiTs36+4DxbYoJBo6rr20YxHbN7qPfx5e0KvANUg/1wvQ1s+0Gimsz4BngPZJOAMaSPr++EhGXFxjXDaSe4R9I+gIpqTuUlBCe18a4upZ77pqUnaT5tqrbY0jV4n9DGiv8BeBy4JZsHHBPkLS8pJtIY6n3IH2Zfgh4JLv+IeAGSVOy5KInSLpI0tpVt0dLupT0S9CPSb+I3S3p4mzIQS+YCKwKbBYR60TELhHx8YjYL7u+LrBp1uaUQiNtzr6k8zAqjge2Bw4jvUmvlF3fBfhqx6MbJL+2euq1Zd3pVGBSRMwoOpAqqwLrA18HjiL9wPsicLWkVYoKKiKeALYBPgz8O1v2ALaPiKfy3p+k9wG70X9vzhjSD1m1Zmf35a7BuGq3WQL4HnBTREwrOK7vA9dExB/aEUetBuNaFViSVGPuB8AOpKTrUklvLyquiJhL+pFgI+BRUgJ6FLBbRLQzSe9eEeGliQVYCGxadftcUjX5HarW7UB60/ph0fE2cVwXkn6FfHc/bcaRfqW5oOh4W/h/nQTMJf2qsyKwQnZ9LvCtouNt8JieJb1pDdRud+DZouNt4X/1BPDNOu2OBf5RdLxNHJdfWz3y2vLSuQW4BJjSQLt9gX8By2S31yL1Cu9ScFzXZXFUf/Yvk332H1dgXKsBM4DfZt9FApnCYAAAFDtJREFUdiD94DwTWDPnmNYiJY+XDtDubOCuOuuPBx5vw9+qobhqthFppMgzwNptem41+vfaPHvffEvVuiCdM1lkXGdncRxatW44aRKh3D+7mohrSVIny82kkT7vJ/24+Czwznb8zbp9cc9d63YFjo2IqysrsuvHk34t6xW7AF+OiDv6ahARd5JOZv9gx6LK30eA70XEmRHxdKQx92eSfoX6WMGxNWohjY0jV9a2V60MTKmz/iYgl2mXO8Svrd55bVkXyXp8TwROAIYpTVG/THb3kgWPjqkMd59SWRERzwNTgQ2LCCjzJdIpN3tGxNXZ95EPAwtIM1XmIhtlcBWpp2S/AZrPJp0yUGs56vfodSquaieQRlHsHtmpAQXGNQH4EfCcpOX0emmGxSUtW2Bclef8a6cQRMQC0mdyrs/5JuM6KNv/LhFxWURcHxEHknoVv51nXL3CyV3rliOdY1drKqkLu1c4YeidhOG3pPMptuyrgaQtSF+KLu1YVPnYQtJOknYi/YK6TJ02y5BOMu8Vfm31zmvLusuSpAkcTiYlCLNJU7ADTOb1yS+KcB+pF6P2tV3063gDYFpUnZMcEfOBacA6eewgG754BTAS2DkiXhxgk/uBNbRo/b8NsvtyMYi4Ktv9Lynx/URE/DGveFqIa33gc7z+nJ+drf8+6XOxqLju6+uhyPE5P4i4NgAeiWx22Cp/JafnfK/xhCqD82FJ47Lrs0nnAtVaEXi+cyG1rJIwPBURt9Rr0OMJQ+VcrjIkDEcCFwN/lPQv0ofjs6QvGsuR3uhWBa4l1YrpJSfX3N6O9CZfbUvSMJBe4ddW77y2rLvMIZ0/Vm1V0vC5rwI3djyi110BfIsU35UAWa/Ku0i91UV5BNhJ0sgsqUPSKGBj0vDMlmRTzP8SWA/YMiL+08Bm12aXHyINU0fSm0iTgn2m1ZhaiAtJHyUNKf9CRFycRyw5xLULi34//z3pfPtfL9q8Y3FdQ5p19X2kUw2QNBzYmvo/7HUqrkeAtSSNiYjZVevfRZpoZchxcjc4X6q5/UEW/VL2fnL8RaoDnDD0SMKQDf3ZQdLmpPMpKrMvQqpldA5wVUT8qaAQB6teDZuX66x7gfRh3Cv82uqR15a1V/aL/E7ZzdWBZSTtmd2+MiLmSppBmtDioEjTmU+peYy1sqv3RMTtRcQFaSi1pN8C50o6mvTe+2XgFXKaKn4wcZHe/w8mTXJxOqlX5TDSuXhn5RDW6VlMRwLLS6ousH1XRLws6QaAiHhfdjlT0rnAhGx28aeAY0hfyi/MIaZBxSVpa9JsitcCt9VsMzMiZhYRV0TcXPsg2WyZ/4wcau+1ENeTkiYB38v+jzOAQ0i9698tKi7gItKPPVdK+j7pfMX9SBPL7ZJTXD3FyV2TIqLRoax3Ar9oZyx5csLQcwkDEXEbcFvRceQlIh5psF1PjaH3a6v3XlvWNiuz6HT8ldtjSb+yjyBN0tBJg41rP1KP+8nAEqQ6fNvW9B50NK6ImKpU1PlbwAXZ6nuAD0TE3bSuUrOu3kzMlZjq/f8+S5pNtPK3ugn4SES8lENMg41rG1KNtO2zpdq3SQloEXF1wmDj+hLp//h1YHnS0OjtI+KBouKKiMeUavseTzpXcTTpR9Q9I+J3OcXVUxTRc6XYzMzMzMzMrIYnVDErKUlnZ0NhSqWsx2VmZmbWKg/LbBNJ15N6Rt83YOMeIulsYFjV+P5SKOlxbUM5f8Ap5XGV9DlY2uMyMzPrRk7u2keU8AsoJf1iTQmPKyLWLTqGdijrcVHC52CmrMdlZmbWdXzOnVmJSBpNmi75xIgozQyFZT0uMzMzszw5uWsTSYsBq0XEo0XH0ipJY0mzFD0UEQ8VHU9eevW4sumx+7Ic8BiwI3AzQETM7URcrSrrcfUnm9Y9Gp0ptFeU9bjMzMy6nYfKDIKkwyQ9IOkFSbdL+nidZv8F9FLCsJikiZJmSZqT1Qohq2kyA7gemCHpZ1nRyp5Q0uN6oZ/lMdKQ4Kuq1vWKUh6XpEOqCn1X1h0p6SngAeBBSf+WlEsx304p63GZmZn1Mp9z1yRJ+wKnAj8n1ffYEjhP0m7AxyNiXpHxteDLpMKnJwOzgCMkrQTsDhwA/AXYCvgB8ClSocleUMbjmgc8T4r5mZr7lgROA75PqvPSS8p6XGcAfyXVtEPSIcAPSYXNL8na7AmcKunZiLiokCibV9bjMjMz61keltkkSXcCN0bEl6vWvQ/4Gam44s4R8YykzYBbI6IneoMk3Q+cGxEnZre3Av4AfD4iJlS1+zbpGMcVE2lzynhckt5ESoC2IxVaPT0iFmT3LQvMBsZHxB+Ki7J5JT6uhcB7IuLP2e37gT9FxAE17S4ANoiId3c+yuaV9bjMzMx6mYdlNm994MrqFRFxA/AeYFngNknrFBFYi94C/Lnq9tTs8s817W4G1u5IRPko3XFFxBMR8VHgQ8AngXskbV9wWC0r63HVsQ6p57/WZGDDDseSp7Iel1lXkHSApKnZKSGzJd0l6eQ27WtvSQc00O4YSVG1PCHpV41+D5J0XvajedtJGibp8OzvNk/S85KmZaduqBMxmHWCk7vmPQesWLsyIh4GtiANUboV6LVfqV8kTVpR8XK21E5aMZzeGs5b1uMiIv4IvAuYBFwk6QrSjw89raTHNVrSEtmkMc8AC+q0WQD02lCKsh6XWVeR9BXgHOAaYA/gE8BvgV3btMu9SacuNOI5YPNs+SLwDuAGSUs2sO1xTeynVZOB7wC/Jv3d9if9WL9FeBiblUhPfZntElNJ52tdUntHRMzOhmheQpq2vZfeLKYD40gfFkTEQmDxOu02Ig0/7RVlPS7gteOZJGkycDzwR3rreVdXCY/r91XXBWxKmsyn2iakiWN6SVmPy6zbHA78KCK+WrXu8uyUgqK9GhF/yq7/SdKjpPfsnYBf1jbOJi8bHhHzI+KBTgQoaUdgL2CniLiq6q5L3WtnZeOeu+ZdCKwtafl6d2YTquxK+oWtl8ognExjX8DeD1za5ljyVNbjeoOIeCYiDgXeSfpV996CQ8pFSY7rQNIw08pyIFBvGNKmwK86GFerynpcZt1oOeBftSure5wqQxwl7S7pfkkvSbpZ0iLDorNhl/dIelnSY5KOlzSi8jjAh4Gtq4ZbHtNErJXTH9aqE9c04CVgs+r7amJ7r6TfZzNcPydpiqR3Vt2/laSbJM2V9IyksyUtPUBMW2eXN9be4V47Kxv33DUpIn5JnV+iatosAA7pTET5iIiGvnxFxI7tjiVPZT2uvkTE34G/Fx1H3nr5uCLipw2227PdseSprMdl1qX+Qprt+VHgioionVG44i2kHzW/QZqB+NvANZLWi4iXACRtB/wCOB/4Eql3/ThgBeDQ7PqapISyUspkZhOxrpVd/qtm3feBY4F/00epKEnjgetIowL2J51asSWwOnCXpC2BG4DfkGbjXQH4HjAmu92XF7PLEyWd5BqcVmZO7szMzMy622GkhOY8ICTdR+oR/0FEPF/VbkVgt4i4FUDSVFLdyQOAM7M2xwJTImL/7PbV2cjE70r6TkQ8IGkWMKxquGW/Kr1+pInJTifVIq0eor0C8P6I+OsAD/Vd4G5g+6oetaur7v8eaSbyfar2/TjpHL+NI6Kv0R1nk4ZlHkFKkqcBFwETI2LOgAdo1kM8LNPMzMysi0XE34C3kU77OJ10jus3gDslLVXV9D+VxC7b7hHSMMlN4bXz3f6LRUcg/YL0nXDzQYS3AvBKtkwnJXj7RMSTVW0eHyixyyZg2Qz4ab2hktnETZsDF0saUVlIs12/QpqIq66I+BdpeP/2pBqdy5HO575V0siqfZwh6XFJHqppPcvJnZmZmVmXi4iXI+LyiDg8IjYEDgbWAw6qavafOpv+B1gtu74isBhpaGS1yu268wkM4DnSDOHjgDcDa9VMWlL9+P0ZQ0pan+zn/uGk5PaVquVl0jGt0d+DR8SCiLg2Ij5DGnb6E+DtvDGh/Tkp+TXrWR6WaWZmZtZjIuJcSd8HNqhavXKdpisD07LrT5MSotp2q2SXswYRyqsRMVCtukZ6wmYDC3k9Ea31bPY4x1BTbzjzRAP7SMFELJR0LWkiqNFV6/8A4Ak0rZe5585a1snCqnmT9M1sCMbCbIawvtp1XfHYrO2gC8h2snjsQJTcLWn/mvVdU3S21VgkTZJ0bidiNbNykbRI0iZpJWBZ3tgrtrKkLararEnqifozvDbh21TS+WfV9iYlVrdlt+dTlfR0QkS8CNwOfKLee2p2/5+A9SPizjpL3eRO0ir11pOGuM7N9mlWGu65s5YoFVY9jjQL1tGkD4N3AfsBny8wtAFJGkeaSeyrwBTqD2cp4hj3Jg2dOa/B9s8BO2TX1ybFeoOkjbIPw74cR/2af0XYmzTk5qKa9ZOB7YCTSB/qSwFbANsUMH11q7GcCNwv6bsRMaN9YZpZCd0j6bfAtaTPqreQCobPBapnrn0auEBSZbbMY7P251W1+RZpBs2fkN7X3k76PDg7IiqzYt4P7CZpd9JMmU/0lTzl7GjSRCxXSTqLNMvl5sCdEXEF8GXS59tCUk3hF0hDLHcGvhYR/6jzmBdLegG4mFTPdmXgY8BuwP9ExLPtPSSzDosIL14GvQCPA5PqrFfRsTUQ+36kIR7LdNMxkj6wpjTY9hjg6Zp1W2XHtVcf2wwHRhb996+J6Rbg+Jp1O2bHsWM7/vbAeLISRw20zSUW0peWk4r+e3vx4qW3FtJsmdeShh6+REpSLgI2qGpzHqnW5B7AP0jnot0CbFzn8fYB7iH10M0kTS4your+FUm1X2dl733H9BHXIp9BddqcR0rOGrqPVJPuD6TE9VlSWYR3VN2/GWkGzedJyd/fSeUflu1jH5/M2s/MjncW8DtgfD8xR9H/cy9eBrsUHoCX3l6yN9ZvDNBmCnBJzbrx2QfGxlXrKh9MO2dv1nOzN+DlgXWzN/gXszabNBDb3tmH18ukQuavfXhl+4qaZfxgj7Em/t1Jv3q+RJrFa8MW4zqmn30u8sFK6o0L4Et14ppGOt/iv/v4UH1v9neeQ+oRnAK8s6bNVsBN2f/nGdIU00tX3b9R9kE6K/vb3Qcc1s8xrJvFW7uf72XrR7XpuTu+0Q/wvGIBPk2q/TSsHcfkxYuXobvUe0/3Mui/ZRQdgxcvg118zp21qlJYdX9JK+TweGuShpF8nVQIfgvgLNLQkcmkIqUjgMn9nedUVaT1L6ShF6eShrCcljU5DvhOdn1b0rCPv/TxcM0cY6WA7HHAR0nnQ1wjaXQTcf0euCuLaXPgnAH2WWut7LJeAdnvAjtRp4BsVjz2BlLytz/pl90/korHVtpUCsj+i/S/+Fz2eD+peqjLgAWkntFds2Ncup9430dKAu+uWV9ddPYt/WzfCXnFcitp4oK3tx6SmZnlSdI5kmZm12dKavbz16xwPufOWtVoYdVGLQ9sHhEPAEjaBPgSsH9EnJ+tE6lHbwNSr1A9jRRpfSC7747ov4hpM8c4UAHZ3IvHZvtpuoBsndx4oOKxMEABWVLStzawe0TckzW5YYDw3wXcFxELa9bnWnQ2e94Mr1o1PFv/hvfBiHi1zuZ5xTKNlPhuyqLJrJmZFSgiDi46BrNWuefOWhKNF1Zt1MOVxC5TmXjixjrrVqeOvIu0NnmMfRaQbVPxWMihgOxAxWOzNo0UkJ1FGmp6pqR96s3wVseqpEkA3iDyLzq7P2+sjVRJfl+pWRbRSCyS1pB0g6T7slk0v1/bu5wljs9mx2xmlpuIOCAixhUdh5kVy8mdtSwaK6zaqNpZq+bXWV9Z19c0zbkXaW3iGPsrINuO4rGQTwHZgYrHVtr0W0A2633bjtSD92PgX5L+KOmd/Tzu6OwxFhH5Fp29nPR3qiyHZuvfXbPU1UAsrwJHRcTbSIngZqSJDWq9TIenGDczM7OhwcMyLXexaGHVl4CRNc0Gm8g0oh1FWt+gzjFW9FdAtl1x5VFAdqDisdBgAdmIuB/4sKTFSBO3nAD8TtKb6wy9hHTcA/ZkRYtFZyPiGdIEMGTtl8rWN13rr14sWU/pk9n1+ZL+BqxRZ/PlyOE5aGZmZlbLPXfWkgYLq85k0SToA+2KKRov0tqQJorHQj8FZJuIq+uKx1a1abiAbES8EhE3kiaYWY2U1NQzHRhbvaKbis4OJpZs4p3dgWtq1q8ELEGaptzMzMwsV+65s1Y1Ulj1UuAgST8kTYSyDencpXZqpEhroxotHgsDF5Dt5eKxMEABWVJS+gPSeYQPkoZyHgXcHRF99VbdAnxT0koR8VS2rpuKzjYVi6RRpL/NhIionfBnHKn381bMzMzMcuaeO2vVsaRp9ieSkp/jSEMQN42IhwAi4nfAV0lT519KSo4+186gIuJaYF/Sl+nLs/2dBBw+iIcb8BirPEKa3fMYUvL2PGn2yZeaiOv0bD8/Bu4glYRou2x44wdIPUsXkhK0rUkJZqXNzaRaeCsBF5CO4cukSVT+TTrX7t+kRO+q7FjuI/Vy9WUKaZjiDlXrfkr68en/SAnnWaShvdtGxLktHWjzGo4lmzTnZ8BdEXFSncfaAbgpGyJqZmZmliv1MTGemTVJ0nmkouyeraxJkk4B1o2InVt4jIiI/k+8a7OsJtJw4JO1s45mid8jwNERcWER8ZmZmVm5uefOzLrBicB4SW9tdsNuKTqbFXg/iNQre5ekv0r6bFWTvUhDdScXEZ+ZmZmVn8+5M7PCRcRMSQeRJl5parKRbik6GxG3kMpJ9EXAQX0USTczMzNrmYdlmpmZmZmZlYCHZZqZmZmZmZWAkzszMzMzM7MScHJnZmZmZmZWAk7uzMzMzMzMSsDJnZmZmZmZWQk4uTMzMzMzMysBJ3dmZmZmZmYl4OTOzMzMzMysBP4/mfLGt2UT228AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -338,7 +338,6 @@ "plt.title('Payoff Function', size =15)\n", "plt.contourf(x, y, z)\n", "plt.colorbar()\n", - "# plt.plot(x, x, 'r')\n", "plt.xlabel('Spot Price $S_1$', size=15)\n", "plt.ylabel('Spot Price $S_2$', size=15)\n", "plt.xticks(size=15)\n", @@ -508,7 +507,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHdRJREFUeJzt3XvQHVWd7vHvw0UItxAEAoMMEbxEGCiPRoQ5jIQ7hHNEEE0KPVNx0KhHxZmKDqgIAR1KcLhoMRZQOnA8owkzwHCGSwjh8oa7GiSIkwQMGu6iOC/EmBAJ+Z0/Vgc7vff77vt633fzfKp27b1Xr169eqWzf293r7VaEYGZmVmvbTbSFTAzs9cHBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx2wYkuZIGig+D0ia0+L6UyVFtawh8t4o6ZFhll8qaVDSVk1u+y2SQtKxrdTZrFcccMxGj7nAX0jar7pA0ubAycB1EbEue83MusABx2z0+H/AGmBGnWWHARNJQclsTHLAMWuTpIMl/YekZyX9QdISSR9pt7yIWA3cCEyvs3gG8DxwZ7HtPSRdKelXktZKekzSOZK2HKa+WxSX2D5VSf+6pF9X0vaSdHVxCW+NpPmS3truvpkBbDHSFTAbzSJiTunz1MrivYB7gcuAl4H/DlwpaUNEzC3WGQBULWsYc4EPS3p3RDwIUASRE4EfRMSrRb5dgBeAvwVeBCYDZwM7A59pcTc3IWnnYr+eB2YV+/ZlYKGkt/uSnrXLAcesTRExb+NnSQLuAt4EfIL2L33NJwWQGcCDRdoxwE7lMiNiCbCktP17gbXAZZI+HxHr29w+wGxgK+CIiHixKP8+YCUwE7i8g7LtdcyX1MzaJGmCpG9LegJ4pXjNAt7WbpnF2cO/k85yVCRPB54AHihtezNJsyUtk7S22Pb/AcaRgl4njgQWAKuLy3BbAC8BPwWmdFi2vY454Ji17ypSMPgmcDTwHuCfga07LHcu8OfAwZK2Bk4A5samU7vPBs4H/g14P3AgcFqxrNPt7wx8hD8F0Y2v9wF7dli2vY75kppZG4pAcDzw2Yi4rJTejT/i7iDdP5kB7A5sT+0lug8B8yLirNK2D2hQ7qvAeuANlfSdKt//C3gIOK9OGasabMNsSA44Zu3ZCtgceO0GuqTtSWcbHT1kKiJelfRvpKCyB7AsIn5WyTauvO3CsD3kIiIkPQO8o1TnzYHDK1lvJ51VPeIOAtZNDjhmbYiIlyT9BDhL0ipgA3AG6V7HDl3YxFzgs6TeaWfVWb4Q+LSkxcAvgb8GJjVR7r8DsyQ9TLov9Algm0qefwROAe6QdCnwLLAbcCgwEBH/2vLemOGAY9aJU4ArgO8DvwMuJf14f7YLZd9P6hU2CZhXZ/nZwBtJl70CuAb4O+D6BuWeRbpHcx7wR+DbwFLg4xszRMRvJB0E/ANwCbAj8BxwNzDk1DtmjSj3I6YlvQX4InAQ8BfA3XXGN9Rbbzzp4P8AqbPDjcBpEfG7Sr4TgK8DbyX95XdORFzdzX0wM7PWjUQvtf2AacBjxatZVwNTSX+JzST1CNrkrzlJhwDXkkZjHwfcBMyVdHSnlTYzs86MxBnOZhGxofh8DbBzozMcSQcD9wGHRsRdRdqBwI+AoyLitiJtAbBlRBxeWvdmYIeIOKQX+2NmZs3JfoazMdi06Djg+Y3Bpijnx8CvimUUU7YfBlRvaM4jjWcY316NzcysG8bKwM/JwPI66cuKZQD7AFvWybeMtJ9tj/42M7POjZVeahNI80tVDQJ7l/JQJ99gZfkmJM0iTUfCuHHj3r3nnnkHUm/YsIHNNhsrcT8Pt0ktt0ktt0mtkWiTxx577IWI2KWZvGMl4ED9wXSqk179riHSU2LEFaSurUyZMiUWL17cSR1bNjAwwNSpU7Nuc7Rzm9Rym9Rym9QaiTYp5hJsylj582CQNBagakf+dEYzWEqr5oH6Z0hmZpbJWAk4y/nTvZqy8r2dx0kTDFbzTSaNAm+lC7aZmXXZWAk484HdinE2AEiaQrp/Mx9em9b9TtL8U2XTgfsj4qVMdTUzszqy38ORtA1p4CekiQl3kHRy8f3miFgjaQWwKCJOBYiI+4sxNt+X9AXSGcv5wD0bx+AUvgYMSLqENCh0WvE6tuc7ZmZmwxqJTgO7kp7hUbbx+5tJ80dtQZqJt2wGcDHpeSOvTW1TzhAR9xTB6+vAp0njdE6JiFu7WH8zM2tD9oATESv5U8+xofJMqpP2IvCx4jXcutfTeAJDMzPLbKzcwzEzszHOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtK+l2SWskPSvpXEmbN1hnjqQY4vWlUr6rhsgzufd7ZmZmw9ki58YkTQBuA5YCJwD7ABeSAt+Zw6z6XeCWStoHgNOB+ZX05cDHKmkr26uxmZl1S9aAA3wKGAecFBGrgIWSdgDmSLqgSKsREU8DT5fTJH0VWB4RSyrZ/xARD/Sg7mZm1oHcl9SOAxZUAss8UhA6tNlCJO0EHAXM7W71zMysV3IHnMmkS16viYgngTXFsmadDGxJClZV+0paJWmdpHskNR3IzMysd3JfUpsAvFgnfbBY1qwZwE8j4rFK+kPAj0j3iHYBZpMu2x0SET+uV5CkWcAsgIkTJzIwMNBCNTq3evXq7Nsc7dwmtdwmtdwmtUZ7m+QOOABRJ01DpNdmlHYnXX47vabgiG9V8t5ECj5fJnUyqK1MxBXAFQBTpkyJqVOnNlONrhkYGCD3Nkc7t0ktt0ktt0mt0d4muS+pDQI71kkfT/0zn3o+TApQVzfKGBFrgZuBdzVbQTMz643cAWc5lXs1kvYEtqVyb2cYM4B7IuKpFrbb1NmTmZn1Tu6AMx84RtL2pbTpwFpgUaOVJU0CDqLJ3mmSxpF6xj3YakXNzKy7cgecy4B1wHWSjixu2M8BLip3lZa0QtL36qw/A1gPXFNdIGm8pLslfVLSEZKmA3cCewDn9WBfzMysBVk7DUTEoKQjgEuBG0j3bS4mBZ1qvepNdzMDuD0ifltn2Trgt6QZC3YFXgbuBw6NiMVd2QEzM2tb9l5qEbEUOLxBnklDpL9zmHVeBk7qqHJmZtYzni3azMyycMAxM7MsHHDMzCyLkZhpwOx1a9IZN7W13uz91zOzjXVXfuP4trZn1gs+wzEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLFoKOJLqTTdjZmbWUKtnOM9IukDSO3pSGzMz61utBpzLgZOBn0v6kaRZknboQb3MzKzPtBRwIuLsiNgbOAp4FLgIeE7SDyQd2YsKmplZf2ir00BE3BERfw3sBnwOeDuwQNJKSXMk/Vk3K2lmZmNfp73UpgDvIz02ehC4G/g4sELSRzss28zM+kjLAUfSXpLOlvQ4cDuwO/A3wJ9FxP8C9iLd6/lmV2tqZmZjWkuTd0q6g3RG8zRwFXBlRDxRzhMRr0r6IfD5blXSzMzGvlZni34BmAYsjIgYJt8S4M1t18rMzPpOq5fULgXuqxdsJG0n6X0AEfFK9czHzMxe31oNOHcC+w6x7O3FcjMzsxqtBhwNs2w7YE0HdTEzsz7W8B5OcZlsainp45KOrWTbGjgeeKR7VTMzs37STKeB95IGdwIE8CFgfSXPH4HlwBe7VzUzM+snDQNORHyTYkyNpF8BJ0bEkl5XzMzM+ktL3aIjwl2dzcysLc3cw5kG3BMRq4rPw4qIm7tSMzMz6yvNnOHcCBwE/Lj4HAzdWy0AP6TNzMxqNBNw3gw8V/psZmbWsmY6DTxR77OZmVkrmrmHs00rBUaEB3+amVmNZi6prSbdm2mW7+GYmVmNZgLO39BawDEzM6vRzD2cqzLUw8zM+lynj5g2MzNrSjOdBn4MzIyIpZJ+QoPLaxFxYLcqZ2Zm/aOZezj/Cawtffb9HDMza1kz93A+Vvo8s6e1MTOzvtX2PRwlu0ga7qFsZmZmQBsBR9I0SfcBLwO/Bl6WdJ+k47teOzMz6xstBRxJnwRuIA0G/TzpYWyfL77/R7HczMysRkvPwwG+DFwREZ+upF8m6TLgK8DlXamZmZn1lVYvqb0RuG6IZdcCOzUqQNK+km6XtEbSs5LOlTTsdDiSJkmKOq95dfKeIOkRSS9LWippelN7ZmZmPdXqGc6dwKHAwjrLDgXuGm5lSROA24ClwAnAPsCFpMB3ZhPb/wJwb+n7C5XyDyEFvu8ApwHTgLmSBiPi1ibKNzOzHmlm4Oe+pa/fBr4r6Y3A9cBvgF2BE4HjgI83KO5TwDjgpIhYBSyUtAMwR9IFRdpwHo2IB4ZZ/lXgrog4rfh+p6T9gLMABxwzsxHUzBnOz9l0sKeATxav6tM/b2H42aKPAxZUAss84HzSGdINTdSnLklbAYeRzmzK5gFXShofES+1W76ZmXWmmYBzWBe3Nxm4o5wQEU9KWlMsaxRwrpS0E+nMai7wlYjYOAvCPsCWwPLKOstIl+zeBvyks+qbmVm7mplpYFEXtzcBeLFO+mCxbCjrgH8iXRZbBUwFTicFmRNKZVOn/MHK8k1ImgXMApg4cSIDAwPD1b/rVq9enX2bo10/t8ns/de3td7Ece2t26/tCP19nLRrtLdJq50GXiNpM2DranoTT/ysNxebhkjfWOZzwGdLSQOSnge+I+mdEbFkmPI1RPrGsq8ArgCYMmVKTJ06dfjad9nAwAC5tzna9XObzDzjprbWm73/ei58pPX/ris/MrWt7Y0F/XyctGu0t0mrAz8l6XRJK4BXgN/XeQ1nENixTvp46p/5DOea4v1dpbKpU/7G762Wb2ZmXdTqOJzTgDOA75HOHP4BOBd4DFhJcWlqGMtJ92peI2lPYFtq7700EpX3x0lBcHIl32RgQ1FHMzMbIa0GnE8AZwMXFN+vj4hzgP1IAeOtDdafDxwjaftS2nTS4w9avVd0cvH+IEBErCONE/pQJd904H73UDMzG1mtXhR+M7AkIl6V9ArF5aqI2CDpO8B3SWdAQ7mMdJZ0naTzgb2BOcBF5a7SxSW7RRFxavF9DrA9adDnKuB9wBeB6yLiZ6Xyv0a6v3MJaZzQtOJ1bIv7aWZmXdbqGc7vgO2Kz08C/620bAJpUOeQImIQOII0VucG4BzgYtJZU9kWbDqeZzlpnM6VwM3AKcA3i/dy+feQznyOBBYA7wdO8SwDZmYjr9UznHuB95B+9H9ImiFgJ+CPwGeA2xsVEBFLgcMb5JlU+T6PNICzoYi4nnR2Y2Zmo0irAWcOsEfx+TzSJbWZpDObhcDnulUxMzPrLy0FnIh4FHi0+LyO9Cycz/egXmZm1mc6Gfj5JmB34NmIeKZ7VTIzs37UziOmPy3pKeAJ4EfAk5KelvS/u147MzPrG63ONHAWcClpPM3xwJTifT7w7WK5mZlZjVYvqX0GOC8ivlpJv6WY2+wzpJkHzMzMNtHqJbVxDP1Uz0XUmczTzMwMWg841wMnDbHsg8CNnVXHzMz6VTOPmJ5W+jofuEDSJGofMb0f8Pfdr6KZmfWDZu7h3Ejto6T3AI6pk/dfSE/iNDMz20QzAefNPa+FmZn1vWYeMf1EjoqYmVl/a3mmAUlbkDoIHALsBPwXcDfpUQHtPbDdzMz6XksBR9KuwK3AAaQnfD4PHEwaf/OwpKMj4rfdrqSZmY19rXaLvgh4I/DeiNg7Ig6OiL2B9xbpF3W7gmZm1h9aDTjTgNMj4iflxOL7l0jT3JiZmdVoNeBsBfx+iGW/B97QWXXMzKxftRpwHgBOl7RtObH4fnqx3MzMrEarvdRmA3cCT0m6ldRpYFfSIFABU7taOzMz6xstneFExBLgrcAVwC7AUaSAcxnw1oh4uOs1NDOzvtD0GY6kLYEDgV9FxBm9q5KZmfWjVs5wXgXuAN7Ro7qYmVkfazrgRMQG4BfAxN5Vx8zM+lWrvdS+Apwlaf9eVMbMzPpXq73UziTNKLBE0jOkXmpRzhARB3apbmZm1kdaDTg/L15mZmYtaSrgSBpHmtbm58Cvgdsi4vleVszMzPpLM4+Y3hu4DZhUSl4l6cMRcWuvKmZmZv2lmU4DFwAbgL8CtgH2Ax4CLu9hvczMrM80E3AOBs6MiHsj4uWIWAZ8EvhzSbv3tnpmZtYvmgk4uwO/rKQ9Tpo7bbeu18jMzPpSs+NwonEWMzOzoTXbLXqBpPV10m+vpkfErp1Xy8zM+k0zAeecntfCzMz6XsOAExEOOGZm1rFW51IzMzNriwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lfS7ZLWSHpW0rmSNm+wznskXSlpRbHeo5LOlrR1Jd8cSVHndWxv98rMzBpp9QFsHZE0gfSog6XACcA+wIWkwHfmMKtOL/KeD/wCOAD4WvH+wUrel4BqgFnWad3NzKwzWQMO8ClgHHBSRKwCFkraAZgj6YIirZ7zI+K3pe8Dkl4GLpe0V0Q8UVq2PiIe6E31zcysXbkvqR0HLKgElnmkIHToUCtVgs1GDxXvnrvNzGwMyB1wJgPLywkR8SSwpljWir8kPRju0Ur6jpJekPSKpIckndR2bc3MrGsUke/JA5JeAb4YEZdU0p8Gvh8RX26ynN2AnwE3R8TMUvpHSWc8S4DtSA+KmwZ8MCKuG6KsWcAsgIkTJ7573rx5re5WR1avXs12222XdZujXT+3ySPPvNTWehPHwfNrW19v/z3Gt7W9saCfj5N2jUSbHHbYYQ9GxJRm8o5EwPlCRHyrkv4McFVEfKWJMt5A6njwJuDdETE4TF4B9wHjIuKdjcqeMmVKLF68uFG2rhoYGGDq1KlZtzna9XObTDrjprbWm73/ei58pPVbriu/cXxb2xsL+vk4addItImkpgNO7ktqg8COddLHAy82WrkIIN8H9gOmDRdsACJF0+uAAxp1vTYzs97K3UttOZV7NZL2BLalcm9nCBeTulMfFRHN5N/ITyw1Mxthuc9w5gPHSNq+lDYdWAssGm5FSV8CPgd8NCLuaWZjxRnRicDDEfFqe1U2M7NuyH2GcxlwGnCdpPOBvYE5wEXlrtKSVgCLIuLU4vspwHnAVcAzkg4qlfn4xm7TkhYB15LOlrYFPgEcBHygt7tlZmaNZA04ETEo6QjgUuAG0n2bi0lBp1qv8j2Xo4v3mcWr7GOkQASwAvhbYHdSl+mfAsdHxPxu1N/MzNqX+wyHiFgKHN4gz6TK95nUBpp6653aQdXMzKyHPFu0mZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRvZeamdlIa3dOu3b185x2rfAZjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWxRYjXQHLY9IZN2Xd3spvHJ91e2Y2+vkMx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycC81M7NRpt1epbP3X8/MNtbN1avUZzhmZpZF9oAjaV9Jt0taI+lZSedK2ryJ9cZLulLSoKSXJP1A0hvr5DtB0iOSXpa0VNL03uyJmZm1IuslNUkTgNuApcAJwD7AhaTAd2aD1a8G3g58HNgAnA9cD/xVqfxDgGuB7wCnAdOAuZIGI+LWru5MRc5TYA+qNLOxKPc9nE8B44CTImIVsFDSDsAcSRcUaTUkHQwcAxwaEXcVac8AP5J0ZETcVmT9KnBXRJxWfL9T0n7AWUBPA46ZmQ0v9yW144AFlcAyjxSEDm2w3vMbgw1ARPwY+FWxDElbAYcB/1pZdx5wsKTxnVffzMzalTvgTAaWlxMi4klgTbGs6fUKy0rr7QNsWSffMtJ+vq2N+pqZWZfkvqQ2AXixTvpgsayd9fYu5aFOvsHK8k1ImgXMKr6ulvToMPXoutNgZ+CFVtbR+T2qTBd1WMeW26TftXOcwNg4VjowZo6TXP8OI3Sc7NVsxpEYhxN10jREejvrVb9rmPWJiCuAKxpsu2ckLY6IKSO1/dHIbVLLbVLLbVJrtLdJ7ktqg8COddLHU/8MptF6O5bWGyylVfPQoHwzM+ux3AFnOZV7NZL2BLal/j2aIdcrlO/tPA68UiffZFI36sfaqK+ZmXVJ7oAzHzhG0valtOnAWmBRg/V2K8bZACBpCun+zXyAiFgH3Al8qLLudOD+iHip8+r3xIhdzhvF3Ca13Ca13Ca1RnWbKKLRrZMubiwN/FwK/Jw0cHNv4CLgkog4s5RvBbAoIk4tpd1C6mn2Bf408PM3EVEd+DkAXEoaFDqtyH9srwd+mpnZ8LKe4UTEIHAEsDlwA3AOcDFwdiXrFkWeshmks6B/Br4PPAicWCn/HuBk4EhgAfB+4BQHGzOzkZf1DMfMzF6/PFt0F3hC0lrttImk9xTtsaJY71FJZ0vaupJvjqSo8zq2t3vVmTbbZNIQ+zqvTt4xd5xA2+0y1DEQkr5UynfVEHmGG2g+oiS9RdLlkh6W9KqkgSbXG/W/J34eTof6eULSdnXQJtOLvOcDvwAOAL5WvH+wkvcloBpglnVa917p8DiBdC/y3tL3TQb3jcXjBDpql+8Ct1TSPgCcTtGRqGQ58LFK2sr2apzFfqR/vweAN7Sw3uj/PYkIvzp4AV8ijQHaoZT296TpenYYZr2DSYNR31dKO7BIO7KUtgC4o7LuzcA9I73vPWiTXeqkzSraZK9S2hzghZHez0xtMqnY///RoPwxd5x00i5DlHUTsKySdhWweKT3s8X92Kz0+RpgoIl1xsTviS+pdc4TktZqq00i4rd1kh8q3nftXvVGRLvHSUNj+DiBLrWLpJ2Ao4C53a1efhGxoY3VxsTviQNO5zwhaa1226SevyRdHqjOcbejpBckvSLpIUkntV3bPDptkyuL6/nPSbpI0rjSsrF6nED3jpWTSW1Qc28L2FfSKknrJN0jqaMAP0qNid8TB5zO9WJC0gmlPNTJN+yEpKNAu22yCUm7AV8B/m/lL+AVpMsuHybd23kWuHaUB51222Qd8E/AqaQhBZcDn2bTH9axepxAl44V0rCJn0ZEdUaRh4DZwP8EPkIabrFQ0oFt1HU0GxO/J+400B2jakLSUaLdNkkZpTeQTv1XA3+3ScER/1LJewNwH+lBe9e1U9lMWm6TiHgO+GwpaUDS88B3JL0zIpYMU/5YOE6g82Nld9Llt9NrCo74ViXvTaQOCl8mdTLoJ6P+98RnOJ3zhKS12m0TACSJNLh3P2BapAHDQ4p05/M64IBmuqOPkI7apOKa4v1dpbKpU/5oP06gO+3yYdKP5tWNMkbEWtJN8nc1yjvGjInfEwecznlC0lrttslGF5O6yJ4QEc3k32g0/yXfaZuUReV9rB4n0J12mUHqZfVUC9sdzcdKO8bE74kDTuc8IWmtdtuEYtDe54CPRpqqqKHijOhE4OGIeLW9Kvdc221Sx8nF+4Mwpo8T6LBdJE0CDqLJ3mlFZ4vjKNquj4yN35OR7nM+1l+kG23PAQtJc7jNIt13+Hol3wrge5W0W4BfAieRric/CtxdyXMIsB64BJgKXED6a+Tokd73brcJcArpL88rST8i5dcupXyLSIPWjiYFmpuLNnn/SO97D9pkDmkg5EnFeueSfoyvHevHSSftUko/g/RXe70xXOOBu4FPkjpcTCcNplwHTBnpfR+mTbYh/VFxMnA/8J+l79sM1R5j4fdkxBu3H17AvsAdxQ/Bc6TR8ZtX8qwErqqk7Vj8uL4IrAJ+COxcp/wPkGbYXkc6PZ4x0vvcizYhDdKLIV4zS/m+V/zHWgv8ofhROW6k97lHbTIDWEyaWeGPxQ/NucBW/XCctNsupfQlwC1DlLs16d7eU0WbvFT8KB800vvcoD0mDfP/YNJQ7TEWfk88eaeZmWXhezhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFv8fsuyGxQkHuroAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdRJREFUeJzt3XvQHVWd7vHvw0UItxAEAoMMEbxEGCiPRoQ5jIQ7hHNEEE0KPVNx0KhHxZmKDqgIAR1KcLhoMRZQOnA8owkzwHCGSwjh8oa7GiSIkwQMGu6iOC/EmBAJ+Z0/Vgc7vff77vt633fzfKp27b1Xr169eqWzf293r7VaEYGZmVmvbTbSFTAzs9cHBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx2wYkuZIGig+D0ia0+L6UyVFtawh8t4o6ZFhll8qaVDSVk1u+y2SQtKxrdTZrFcccMxGj7nAX0jar7pA0ubAycB1EbEue83MusABx2z0+H/AGmBGnWWHARNJQclsTHLAMWuTpIMl/YekZyX9QdISSR9pt7yIWA3cCEyvs3gG8DxwZ7HtPSRdKelXktZKekzSOZK2HKa+WxSX2D5VSf+6pF9X0vaSdHVxCW+NpPmS3truvpkBbDHSFTAbzSJiTunz1MrivYB7gcuAl4H/DlwpaUNEzC3WGQBULWsYc4EPS3p3RDwIUASRE4EfRMSrRb5dgBeAvwVeBCYDZwM7A59pcTc3IWnnYr+eB2YV+/ZlYKGkt/uSnrXLAcesTRExb+NnSQLuAt4EfIL2L33NJwWQGcCDRdoxwE7lMiNiCbCktP17gbXAZZI+HxHr29w+wGxgK+CIiHixKP8+YCUwE7i8g7LtdcyX1MzaJGmCpG9LegJ4pXjNAt7WbpnF2cO/k85yVCRPB54AHihtezNJsyUtk7S22Pb/AcaRgl4njgQWAKuLy3BbAC8BPwWmdFi2vY454Ji17ypSMPgmcDTwHuCfga07LHcu8OfAwZK2Bk4A5samU7vPBs4H/g14P3AgcFqxrNPt7wx8hD8F0Y2v9wF7dli2vY75kppZG4pAcDzw2Yi4rJTejT/i7iDdP5kB7A5sT+0lug8B8yLirNK2D2hQ7qvAeuANlfSdKt//C3gIOK9OGasabMNsSA44Zu3ZCtgceO0GuqTtSWcbHT1kKiJelfRvpKCyB7AsIn5WyTauvO3CsD3kIiIkPQO8o1TnzYHDK1lvJ51VPeIOAtZNDjhmbYiIlyT9BDhL0ipgA3AG6V7HDl3YxFzgs6TeaWfVWb4Q+LSkxcAvgb8GJjVR7r8DsyQ9TLov9Algm0qefwROAe6QdCnwLLAbcCgwEBH/2vLemOGAY9aJU4ArgO8DvwMuJf14f7YLZd9P6hU2CZhXZ/nZwBtJl70CuAb4O+D6BuWeRbpHcx7wR+DbwFLg4xszRMRvJB0E/ANwCbAj8BxwNzDk1DtmjSj3I6YlvQX4InAQ8BfA3XXGN9Rbbzzp4P8AqbPDjcBpEfG7Sr4TgK8DbyX95XdORFzdzX0wM7PWjUQvtf2AacBjxatZVwNTSX+JzST1CNrkrzlJhwDXkkZjHwfcBMyVdHSnlTYzs86MxBnOZhGxofh8DbBzozMcSQcD9wGHRsRdRdqBwI+AoyLitiJtAbBlRBxeWvdmYIeIOKQX+2NmZs3JfoazMdi06Djg+Y3Bpijnx8CvimUUU7YfBlRvaM4jjWcY316NzcysG8bKwM/JwPI66cuKZQD7AFvWybeMtJ9tj/42M7POjZVeahNI80tVDQJ7l/JQJ99gZfkmJM0iTUfCuHHj3r3nnnkHUm/YsIHNNhsrcT8Pt0ktt0ktt0mtkWiTxx577IWI2KWZvGMl4ED9wXSqk179riHSU2LEFaSurUyZMiUWL17cSR1bNjAwwNSpU7Nuc7Rzm9Rym9Rym9QaiTYp5hJsylj582CQNBagakf+dEYzWEqr5oH6Z0hmZpbJWAk4y/nTvZqy8r2dx0kTDFbzTSaNAm+lC7aZmXXZWAk484HdinE2AEiaQrp/Mx9em9b9TtL8U2XTgfsj4qVMdTUzszqy38ORtA1p4CekiQl3kHRy8f3miFgjaQWwKCJOBYiI+4sxNt+X9AXSGcv5wD0bx+AUvgYMSLqENCh0WvE6tuc7ZmZmwxqJTgO7kp7hUbbx+5tJ80dtQZqJt2wGcDHpeSOvTW1TzhAR9xTB6+vAp0njdE6JiFu7WH8zM2tD9oATESv5U8+xofJMqpP2IvCx4jXcutfTeAJDMzPLbKzcwzEzszHOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtK+l2SWskPSvpXEmbN1hnjqQY4vWlUr6rhsgzufd7ZmZmw9ki58YkTQBuA5YCJwD7ABeSAt+Zw6z6XeCWStoHgNOB+ZX05cDHKmkr26uxmZl1S9aAA3wKGAecFBGrgIWSdgDmSLqgSKsREU8DT5fTJH0VWB4RSyrZ/xARD/Sg7mZm1oHcl9SOAxZUAss8UhA6tNlCJO0EHAXM7W71zMysV3IHnMmkS16viYgngTXFsmadDGxJClZV+0paJWmdpHskNR3IzMysd3JfUpsAvFgnfbBY1qwZwE8j4rFK+kPAj0j3iHYBZpMu2x0SET+uV5CkWcAsgIkTJzIwMNBCNTq3evXq7Nsc7dwmtdwmtdwmtUZ7m+QOOABRJ01DpNdmlHYnXX47vabgiG9V8t5ECj5fJnUyqK1MxBXAFQBTpkyJqVOnNlONrhkYGCD3Nkc7t0ktt0ktt0mt0d4muS+pDQI71kkfT/0zn3o+TApQVzfKGBFrgZuBdzVbQTMz643cAWc5lXs1kvYEtqVyb2cYM4B7IuKpFrbb1NmTmZn1Tu6AMx84RtL2pbTpwFpgUaOVJU0CDqLJ3mmSxpF6xj3YakXNzKy7cgecy4B1wHWSjixu2M8BLip3lZa0QtL36qw/A1gPXFNdIGm8pLslfVLSEZKmA3cCewDn9WBfzMysBVk7DUTEoKQjgEuBG0j3bS4mBZ1qvepNdzMDuD0ifltn2Trgt6QZC3YFXgbuBw6NiMVd2QEzM2tb9l5qEbEUOLxBnklDpL9zmHVeBk7qqHJmZtYzni3azMyycMAxM7MsHHDMzCyLkZhpwOx1a9IZN7W13uz91zOzjXVXfuP4trZn1gs+wzEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLFoKOJLqTTdjZmbWUKtnOM9IukDSO3pSGzMz61utBpzLgZOBn0v6kaRZknboQb3MzKzPtBRwIuLsiNgbOAp4FLgIeE7SDyQd2YsKmplZf2ir00BE3BERfw3sBnwOeDuwQNJKSXMk/Vk3K2lmZmNfp73UpgDvIz02ehC4G/g4sELSRzss28zM+kjLAUfSXpLOlvQ4cDuwO/A3wJ9FxP8C9iLd6/lmV2tqZmZjWkuTd0q6g3RG8zRwFXBlRDxRzhMRr0r6IfD5blXSzMzGvlZni34BmAYsjIgYJt8S4M1t18rMzPpOq5fULgXuqxdsJG0n6X0AEfFK9czHzMxe31oNOHcC+w6x7O3FcjMzsxqtBhwNs2w7YE0HdTEzsz7W8B5OcZlsainp45KOrWTbGjgeeKR7VTMzs37STKeB95IGdwIE8CFgfSXPH4HlwBe7VzUzM+snDQNORHyTYkyNpF8BJ0bEkl5XzMzM+ktL3aIjwl2dzcysLc3cw5kG3BMRq4rPw4qIm7tSMzMz6yvNnOHcCBwE/Lj4HAzdWy0AP6TNzMxqNBNw3gw8V/psZmbWsmY6DTxR77OZmVkrmrmHs00rBUaEB3+amVmNZi6prSbdm2mW7+GYmVmNZgLO39BawDEzM6vRzD2cqzLUw8zM+lynj5g2MzNrSjOdBn4MzIyIpZJ+QoPLaxFxYLcqZ2Zm/aOZezj/Cawtffb9HDMza1kz93A+Vvo8s6e1MTOzvtX2PRwlu0ga7qFsZmZmQBsBR9I0SfcBLwO/Bl6WdJ+k47teOzMz6xstBRxJnwRuIA0G/TzpYWyfL77/R7HczMysRkvPwwG+DFwREZ+upF8m6TLgK8DlXamZmZn1lVYvqb0RuG6IZdcCOzUqQNK+km6XtEbSs5LOlTTsdDiSJkmKOq95dfKeIOkRSS9LWippelN7ZmZmPdXqGc6dwKHAwjrLDgXuGm5lSROA24ClwAnAPsCFpMB3ZhPb/wJwb+n7C5XyDyEFvu8ApwHTgLmSBiPi1ibKNzOzHmlm4Oe+pa/fBr4r6Y3A9cBvgF2BE4HjgI83KO5TwDjgpIhYBSyUtAMwR9IFRdpwHo2IB4ZZ/lXgrog4rfh+p6T9gLMABxwzsxHUzBnOz9l0sKeATxav6tM/b2H42aKPAxZUAss84HzSGdINTdSnLklbAYeRzmzK5gFXShofES+1W76ZmXWmmYBzWBe3Nxm4o5wQEU9KWlMsaxRwrpS0E+nMai7wlYjYOAvCPsCWwPLKOstIl+zeBvyks+qbmVm7mplpYFEXtzcBeLFO+mCxbCjrgH8iXRZbBUwFTicFmRNKZVOn/MHK8k1ImgXMApg4cSIDAwPD1b/rVq9enX2bo10/t8ns/de3td7Ece2t26/tCP19nLRrtLdJq50GXiNpM2DranoTT/ysNxebhkjfWOZzwGdLSQOSnge+I+mdEbFkmPI1RPrGsq8ArgCYMmVKTJ06dfjad9nAwAC5tzna9XObzDzjprbWm73/ei58pPX/ris/MrWt7Y0F/XyctGu0t0mrAz8l6XRJK4BXgN/XeQ1nENixTvp46p/5DOea4v1dpbKpU/7G762Wb2ZmXdTqOJzTgDOA75HOHP4BOBd4DFhJcWlqGMtJ92peI2lPYFtq7700EpX3x0lBcHIl32RgQ1FHMzMbIa0GnE8AZwMXFN+vj4hzgP1IAeOtDdafDxwjaftS2nTS4w9avVd0cvH+IEBErCONE/pQJd904H73UDMzG1mtXhR+M7AkIl6V9ArF5aqI2CDpO8B3SWdAQ7mMdJZ0naTzgb2BOcBF5a7SxSW7RRFxavF9DrA9adDnKuB9wBeB6yLiZ6Xyv0a6v3MJaZzQtOJ1bIv7aWZmXdbqGc7vgO2Kz08C/620bAJpUOeQImIQOII0VucG4BzgYtJZU9kWbDqeZzlpnM6VwM3AKcA3i/dy+feQznyOBBYA7wdO8SwDZmYjr9UznHuB95B+9H9ImiFgJ+CPwGeA2xsVEBFLgcMb5JlU+T6PNICzoYi4nnR2Y2Zmo0irAWcOsEfx+TzSJbWZpDObhcDnulUxMzPrLy0FnIh4FHi0+LyO9Cycz/egXmZm1mc6Gfj5JmB34NmIeKZ7VTIzs37UziOmPy3pKeAJ4EfAk5KelvS/u147MzPrG63ONHAWcClpPM3xwJTifT7w7WK5mZlZjVYvqX0GOC8ivlpJv6WY2+wzpJkHzMzMNtHqJbVxDP1Uz0XUmczTzMwMWg841wMnDbHsg8CNnVXHzMz6VTOPmJ5W+jofuEDSJGofMb0f8Pfdr6KZmfWDZu7h3Ejto6T3AI6pk/dfSE/iNDMz20QzAefNPa+FmZn1vWYeMf1EjoqYmVl/a3mmAUlbkDoIHALsBPwXcDfpUQHtPbDdzMz6XksBR9KuwK3AAaQnfD4PHEwaf/OwpKMj4rfdrqSZmY19rXaLvgh4I/DeiNg7Ig6OiL2B9xbpF3W7gmZm1h9aDTjTgNMj4iflxOL7l0jT3JiZmdVoNeBsBfx+iGW/B97QWXXMzKxftRpwHgBOl7RtObH4fnqx3MzMrEarvdRmA3cCT0m6ldRpYFfSIFABU7taOzMz6xstneFExBLgrcAVwC7AUaSAcxnw1oh4uOs1NDOzvtD0GY6kLYEDgV9FxBm9q5KZmfWjVs5wXgXuAN7Ro7qYmVkfazrgRMQG4BfAxN5Vx8zM+lWrvdS+Apwlaf9eVMbMzPpXq73UziTNKLBE0jOkXmpRzhARB3apbmZm1kdaDTg/L15mZmYtaSrgSBpHmtbm58Cvgdsi4vleVszMzPpLM4+Y3hu4DZhUSl4l6cMRcWuvKmZmZv2lmU4DFwAbgL8CtgH2Ax4CLu9hvczMrM80E3AOBs6MiHsj4uWIWAZ8EvhzSbv3tnpmZtYvmgk4uwO/rKQ9Tpo7bbeu18jMzPpSs+NwonEWMzOzoTXbLXqBpPV10m+vpkfErp1Xy8zM+k0zAeecntfCzMz6XsOAExEOOGZm1rFW51IzMzNriwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lfS7ZLWSHpW0rmSNm+wznskXSlpRbHeo5LOlrR1Jd8cSVHndWxv98rMzBpp9QFsHZE0gfSog6XACcA+wIWkwHfmMKtOL/KeD/wCOAD4WvH+wUrel4BqgFnWad3NzKwzWQMO8ClgHHBSRKwCFkraAZgj6YIirZ7zI+K3pe8Dkl4GLpe0V0Q8UVq2PiIe6E31zcysXbkvqR0HLKgElnmkIHToUCtVgs1GDxXvnrvNzGwMyB1wJgPLywkR8SSwpljWir8kPRju0Ur6jpJekPSKpIckndR2bc3MrGsUke/JA5JeAb4YEZdU0p8Gvh8RX26ynN2AnwE3R8TMUvpHSWc8S4DtSA+KmwZ8MCKuG6KsWcAsgIkTJ7573rx5re5WR1avXs12222XdZujXT+3ySPPvNTWehPHwfNrW19v/z3Gt7W9saCfj5N2jUSbHHbYYQ9GxJRm8o5EwPlCRHyrkv4McFVEfKWJMt5A6njwJuDdETE4TF4B9wHjIuKdjcqeMmVKLF68uFG2rhoYGGDq1KlZtzna9XObTDrjprbWm73/ei58pPVbriu/cXxb2xsL+vk4addItImkpgNO7ktqg8COddLHAy82WrkIIN8H9gOmDRdsACJF0+uAAxp1vTYzs97K3UttOZV7NZL2BLalcm9nCBeTulMfFRHN5N/ITyw1Mxthuc9w5gPHSNq+lDYdWAssGm5FSV8CPgd8NCLuaWZjxRnRicDDEfFqe1U2M7NuyH2GcxlwGnCdpPOBvYE5wEXlrtKSVgCLIuLU4vspwHnAVcAzkg4qlfn4xm7TkhYB15LOlrYFPgEcBHygt7tlZmaNZA04ETEo6QjgUuAG0n2bi0lBp1qv8j2Xo4v3mcWr7GOkQASwAvhbYHdSl+mfAsdHxPxu1N/MzNqX+wyHiFgKHN4gz6TK95nUBpp6653aQdXMzKyHPFu0mZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRvZeamdlIa3dOu3b185x2rfAZjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWxRYjXQHLY9IZN2Xd3spvHJ91e2Y2+vkMx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycC81M7NRpt1epbP3X8/MNtbN1avUZzhmZpZF9oAjaV9Jt0taI+lZSedK2ryJ9cZLulLSoKSXJP1A0hvr5DtB0iOSXpa0VNL03uyJmZm1IuslNUkTgNuApcAJwD7AhaTAd2aD1a8G3g58HNgAnA9cD/xVqfxDgGuB7wCnAdOAuZIGI+LWru5MRc5TYA+qNLOxKPc9nE8B44CTImIVsFDSDsAcSRcUaTUkHQwcAxwaEXcVac8AP5J0ZETcVmT9KnBXRJxWfL9T0n7AWUBPA46ZmQ0v9yW144AFlcAyjxSEDm2w3vMbgw1ARPwY+FWxDElbAYcB/1pZdx5wsKTxnVffzMzalTvgTAaWlxMi4klgTbGs6fUKy0rr7QNsWSffMtJ+vq2N+pqZWZfkvqQ2AXixTvpgsayd9fYu5aFOvsHK8k1ImgXMKr6ulvToMPXoutNgZ+CFVtbR+T2qTBd1WMeW26TftXOcwNg4VjowZo6TXP8OI3Sc7NVsxpEYhxN10jREejvrVb9rmPWJiCuAKxpsu2ckLY6IKSO1/dHIbVLLbVLLbVJrtLdJ7ktqg8COddLHU/8MptF6O5bWGyylVfPQoHwzM+ux3AFnOZV7NZL2BLal/j2aIdcrlO/tPA68UiffZFI36sfaqK+ZmXVJ7oAzHzhG0valtOnAWmBRg/V2K8bZACBpCun+zXyAiFgH3Al8qLLudOD+iHip8+r3xIhdzhvF3Ca13Ca13Ca1RnWbKKLRrZMubiwN/FwK/Jw0cHNv4CLgkog4s5RvBbAoIk4tpd1C6mn2Bf408PM3EVEd+DkAXEoaFDqtyH9srwd+mpnZ8LKe4UTEIHAEsDlwA3AOcDFwdiXrFkWeshmks6B/Br4PPAicWCn/HuBk4EhgAfB+4BQHGzOzkZf1DMfMzF6/PFt0F3hC0lrttImk9xTtsaJY71FJZ0vaupJvjqSo8zq2t3vVmTbbZNIQ+zqvTt4xd5xA2+0y1DEQkr5UynfVEHmGG2g+oiS9RdLlkh6W9KqkgSbXG/W/J34eTof6eULSdnXQJtOLvOcDvwAOAL5WvH+wkvcloBpglnVa917p8DiBdC/y3tL3TQb3jcXjBDpql+8Ct1TSPgCcTtGRqGQ58LFK2sr2apzFfqR/vweAN7Sw3uj/PYkIvzp4AV8ijQHaoZT296TpenYYZr2DSYNR31dKO7BIO7KUtgC4o7LuzcA9I73vPWiTXeqkzSraZK9S2hzghZHez0xtMqnY///RoPwxd5x00i5DlHUTsKySdhWweKT3s8X92Kz0+RpgoIl1xsTviS+pdc4TktZqq00i4rd1kh8q3nftXvVGRLvHSUNj+DiBLrWLpJ2Ao4C53a1efhGxoY3VxsTviQNO5zwhaa1226SevyRdHqjOcbejpBckvSLpIUkntV3bPDptkyuL6/nPSbpI0rjSsrF6nED3jpWTSW1Qc28L2FfSKknrJN0jqaMAP0qNid8TB5zO9WJC0gmlPNTJN+yEpKNAu22yCUm7AV8B/m/lL+AVpMsuHybd23kWuHaUB51222Qd8E/AqaQhBZcDn2bTH9axepxAl44V0rCJn0ZEdUaRh4DZwP8EPkIabrFQ0oFt1HU0GxO/J+400B2jakLSUaLdNkkZpTeQTv1XA3+3ScER/1LJewNwH+lBe9e1U9lMWm6TiHgO+GwpaUDS88B3JL0zIpYMU/5YOE6g82Nld9Llt9NrCo74ViXvTaQOCl8mdTLoJ6P+98RnOJ3zhKS12m0TACSJNLh3P2BapAHDQ4p05/M64IBmuqOPkI7apOKa4v1dpbKpU/5oP06gO+3yYdKP5tWNMkbEWtJN8nc1yjvGjInfEwecznlC0lrttslGF5O6yJ4QEc3k32g0/yXfaZuUReV9rB4n0J12mUHqZfVUC9sdzcdKO8bE74kDTuc8IWmtdtuEYtDe54CPRpqqqKHijOhE4OGIeLW9Kvdc221Sx8nF+4Mwpo8T6LBdJE0CDqLJ3mlFZ4vjKNquj4yN35OR7nM+1l+kG23PAQtJc7jNIt13+Hol3wrge5W0W4BfAieRric/CtxdyXMIsB64BJgKXED6a+Tokd73brcJcArpL88rST8i5dcupXyLSIPWjiYFmpuLNnn/SO97D9pkDmkg5EnFeueSfoyvHevHSSftUko/g/RXe70xXOOBu4FPkjpcTCcNplwHTBnpfR+mTbYh/VFxMnA/8J+l79sM1R5j4fdkxBu3H17AvsAdxQ/Bc6TR8ZtX8qwErqqk7Vj8uL4IrAJ+COxcp/wPkGbYXkc6PZ4x0vvcizYhDdKLIV4zS/m+V/zHWgv8ofhROW6k97lHbTIDWEyaWeGPxQ/NucBW/XCctNsupfQlwC1DlLs16d7eU0WbvFT8KB800vvcoD0mDfP/YNJQ7TEWfk88eaeZmWXhezhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFv8fsuyGxQkHuroAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -520,7 +519,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEPCAYAAADvS6thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYXVV9//H3h4sQCPdLQIoEUKQgfSxEhP6oTAQVQh+jCIaq9YkCia0V6w8roKgBL22Qi1XKjwQValWCBUrLXW4TwAqYBCgaAgYJd7k5EIaEQMj398faA5udM+cyc/bZM2c+r+fZz5mz9lr7rHX2ZL7Za6+1tiICMzOzKq1TdQXMzMwcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudgZG0laZakGGT7RJPH2C07zuaF9OnZccaXU/vm6jHMY14sqbeJfOtJ+gdJd0taKalP0lWSDhji546U73R64XfiKUnXStq7ibI9WZl3dKKu1lkORlaG54H9a2zXNFl+N+DrQDEIXJkdZ0V7qjnkepRK0rrAZcC3gf8GpgDTgVeBXkkfG8JhR8p3OuC92efOBLYBbpL05gZlFmVlHii5blaB9aqugHWl1RFxW7sPGhFPA0+3+7gj0OeAw4BDIyIfwP9L0jxgrqT5EfHYcD+owu/01xHRDyBpAfAQ8HHgO8WMkgRsEBHLgbb/XtnI4Csjq4SkkyQtlfSSpCclXSNpO0k9wOVZtgezbpllWZk3dClJmpi9P0rS+ZKWS3p0oDtQ0pckPS7paUmzJa2T+/zdJc2T9IikFZJ+m3WLrZPtH7Qe2f63ZOX/mJW/VtLbC23cMetaWylpmaRjmvx6Pg/cVAhEA74CbAgcnfucZZJOl/RVSX+Q1C/pp5I2a9SWWt10kraW9G+Sns3a1itpUqFtA5/5hew778u+j5avIiPiEVJAnJgde5akZyQdIOnXwEvAkbW66SStm/0u3S9pVVaXCwp1nSppQfa79gdJp0lav9V6Wrl8ZWSlkLTW71ZErM72fRL4MnAC8FtgK1K3zcakrpgvAqcDhwNPAKsafNxs4KfAR4BPA/8m6c+BnbL3+wDfBO4E5mVldgDuy8q9ALwTOAUYB/xTvXpI2hK4FXgW+Aypi+tE4HpJu0XEyux/8/8FbE0KHC9lx98S+F2d721H0h/ls2rtj4gHJN0DvKew66+BpcCxwPbAacAPgCPrtWUQlwFvzco8A/wjqRvtzyNiaS7fR4H/BWYAfwKcSepa/Ls6x16LpE1I38sfcskbAf+WteN+4PGsXUVzgE9m+eZnxzkid+yPAhdm+b4M7Eo6v+tk7bORIiK8eWvbBswCYpBtYpbnbOCSOsf4q3z+XPr0LH189n5i9v78XJ5NgVdIf/DXzaXfAVw0yOeJ9B+zLwO/b6Ie3yAFoi1zaVuQ7pV9Nns/JSv77lyenYDVQG+dtu+XlZtaJ89lwL2598uAPw58L1nax4E1wJ+2+J0ekr0/MJdnY9KVy5zCZz4ArJdL+y7whwa/HwOft1n2ne8IXJR9L+8s/A5NLZTtydLfkb3fPXt/XJ3z+lD+9yNL/zSwEtiq6n8v3l7ffGVkZXgeOLhG+uPZ613A0ZJOId1AXxgRrw7j824Y+CEilkt6GphfOOZS4C0DbyRtCJxE+qP9FmD93L71IruKG8TBwHXA8twV4AvAQmCgO2tf4MmIuD1Xt4ckLRxC+5pxXWT3YDKXAj8B3gXc28Jx9gWejoj5AwkR8aKkK4DiSL6bCt/TYmBbSW+KiJcbfM5zuZ+fAT4dEXfl0gK4usExJmevFwyyfzfSuf154Ur9RlJX5ztIV1M2AjgYWRlWR8SCOvt/BGxC6t75GvCspP8HzBpiUHqu8P7lQdI2zL2fDRxD6jpblOWfCpyc5etncFuTrmCm1dg3EBi3A56qsf8pUtsHMzAoYac6eXbK5csf9zWRugr7qd21Vc/2wJM10p8kdYHl1fqOBbwp+7me95C6N58BHomINYX9fU0EtK2AFyMNbKhl6+z1qkH279jg+NZBDkbWcdkfnrOAs7J7JB8HvkX6A3tuh6pxJPD9iDhtIEHSYU2W/SNpyPU3aux7IXv9A7Btjf3bkrqIaoqIR7LBBR8EvlfcL2ln0v/oi5+9bSHfOGA86f5QK54oHiszgdTudrmzcCVX1MyzbZ4FNpa06SABaaC+M0j3C4sebOIzrEM8ms4qFRGPRMQ/k7rR9siSB/5HvGHtUm0xjtxNfKW5PUcV8gxWjxuAPYHfRsSCwnZflufXwARJ7859xluAhpM7gX8BDpL0/hr7vpnV+4eF9PfpjRNXDyf9QR+4Qm32O72d1NX22gAJSRuRhprf2kTdO+nG7PWTg+y/j/QfnIk1ztOCiHi2M9W0ZvjKyMqwnqT9aqQ/EhGPSZpD+l/rbaT7S5OBt5FG10H6IwIwU2lezYqIuKfNdbwO+KykpVldPgtsUMgzWD3OBD4B3Cjp+6Q/eBOAA4FbI+JCUtfQ3cB/SDqBNJruVGp33RV9n3Rf6j8lnQ70krr2jiYNRPibWHuO0UrgSknfIXW1fQf4z4hY3KAtbxAR10r6JXCRpBNJVx9fJAXvteYAVSki7pM0FzhD0rbAzaRJvUdExFERsUbS8cC/S9qUdA/qZWAX4ENZvk5P9rXBVD2Cwlt3bdQfTXdylmc68EtSEFhBGh58dOE4x5NGQq0GluXK1RpN91eFssuA0wtpFwALcu8nAP8JLCfdDzmNNCz6teMPVo8s/c3A+VnZVdln/gTYM5fnLaRVJ1Zmx5gJXEyd0XS5susBX8i+m5VAH+mP6QE18i4Dzsi++yeBF0nDmTdv9TvN0rYBfpx95krSTf53NfEdr3WsGnVtJs8s4Jka6T3kRtNlaeuSjYIkBZpHWXv03KHALdn3spw0gOab5EYCeqt+U3ayOkbSW0nzFvYj9X3fEhE9TZTbjDR09EOk7sUrSEM6ny3km0r6RXsb6Rf0lIi4qJ1tMBtJsntMF0eE583YqFXFPaM9SXMw7s+2Zl1E+p/RMaT/Xb2LNN/iNUqLSF4C3ET639CVwIWD9L2bmdkIUcWV0TqRDeOUdDGwdaMrI0n7A/9Dmoh3c5a2L+lm6/si4vos7Vpg/Yh4b67sVcCmETGk1Y7NRjpfGVk36PiVUaw9n6AZh5ImEN6cO84dpKGZhwJI2oB0I/znhbLzgP0H1uky6zYRMdGByEa70TK0e3dgSY30e7N9kNacWr9GvntJ7dyttNqZmdmwjJah3Vuw9mxvSKN9dsnloUa+vsL+N5A0gzQpjnHjxu2zww47sM46oyVGt2bNmjVd2zbo7vZV3bZN7k+3d1/Yrf3/p6u6bWXr5vatWbOGpUuXPhMR2wz3WKMlGEHtGdmqkV58rzrliYi5wFyASZMmxemnn05PT88wqjly9fb2dm3boLvbV3nblP0zuu+++vmGoPK2layb29fb28vkyZMfasexRku47qP20zY35/Urob5cWjEP1L6yMjOzEWC0BKMlvH5vKC9/L+kB0qMDivl2Jy2l38owcjMz66DREoyuBrbL5hEBkD15cpdsHxGxijS/6MhC2WnAryLi+Q7V1czMWtTxe0bZootTsrc7AJtKGngy41URsSJbL2x+RBwNEBG/yuYQ/VjSF0lXOrNJ64Bdnzv8N4BeSd8lTYidkm2HlN4wMzMbsioGMGwL/EchbeD9zqQ1r9YjrTmVdxTpsQM/IrccUD5DRNyaBbZvAn9Lmof0sYj4RRvrbzb2dHhyvI09HQ9GEbGM10e4DZZnYo2054BPZVu9spdRWCbIzMxGttFyz8jMzLqYg5GZNbbPPmkzK8lomvRqZlVZtKjqGliX85WRmZlVzsHIzMwq52BkZmaVczAyM7PKORiZmVnlPJrOzBo79tiqa2BdzsHIzBqbO7fqGliXczedmZlVzsHIzBpbuDBtZiVxN52ZNTZpUnr16t1WEl8ZmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq56HdZtbYggVV18C6nIORmTXmR45bydxNZ2ZmlXMwMrPGZsxIm1lJHIzMrLHzzkubWUkcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudJr2bW2N57V10D63IORmbWmB85biVzN52ZmVXOwcjMzCrnYGRmjUlpMyuJg5GZmVXOwcjMzCrnYGRmZpVzMDIzs8o5GJmZWeUcjMzMrHJegcHMGpszp+oaWJdzMDKzxvzIcStZx7vpJO0h6QZJKyQ9LulUSes2KDNLUgyynZTLd8EgeXYvv2VmZjZUHb0ykrQFcD2wGJgK7AqcQQqKJ9cp+gPgmkLah4ATgKsL6UuATxXSlg2txmYGwNy56dVXSFaSTnfTfQYYBxweEcuB6yRtCsySdFqWtpaIeBR4NJ8m6avAkoi4q5D9xYi4rYS6m41dM2emVwcjK0mnu+kOBa4tBJ15pAB1YLMHkbQl8D7gwvZWz8zMqtDpYLQ7qRvtNRHxMLAi29esI4D1SYGsaA9JyyWtknSrpKaDnJmZVaPT3XRbAM/VSO/L9jXrKGBRRNxfSL8TuJ10T2ob4HhSV+ABEXFHrQNJmgHMAJgwYQL9/f309va2UJXRo5vbBt3dvqrb1pO9llGHqttWtm5uX39/f9uOVcXQ7qiRpkHS184obU/q0jthrQNH/Esh75WkwPRl0oCHtSsTMReYCzBp0qQYP348PT09zVRl1Ont7e3atkF3t2+ktK2MOoyUtpWlm9vXziDb6W66PmDzGumbUfuKqZaPkoLXRY0yRsRK4Cpg72YraGZmndfpYLSEwr0hSTsCG1O4l1THUcCtEfFIC5/b1FWXmZlVo9PB6GrgA5I2yaVNA1YC8xsVljQR2I8mR9FJGkcawbew1YqaWU5E2sxK0ulgdC6wCrhU0sHZ4IFZwJn54d6Slkr6YY3yRwGrgYuLOyRtJukWSTMlHSRpGnATsAPw7RLaYmZmbdLRAQwR0SfpIOBs4HLSfaKzSAGpWK9aSwQdBdwQEU/X2LcKeJq0ksO2wEvAr4ADI2JBWxpgZmal6PhouohYDLy3QZ6Jg6S/s06Zl4DDh1U5M6ttn33S60L3eFs5vGq3mTW2aFHVNbAu54frmZlZ5RyMzMyscu6mM6vIxBOvbDrv8XutZnqT+Zf982FDrZJZZXxlZGZmlXMwMjOzyrmbzswaO/bYqmtgXc7ByMwaG3jsuFlJ3E1nZmaVaykYSaq1RI+ZdbuFC736gpWq1W66xyT9GDg/Iu4to0JmNgJNmpRevXK3laTVbro5wBHAbyTdLmmGpE1LqJeZmY0hLQWjiPh6ROwCvA+4DzgTeELSTyUdXEYFzcys+w1pAENE3BgRnwS2Az4HvB24VtIySbMkvbmdlTQzs+423NF0k4D3kB4l3gfcAhwDLJX0iWEe28zMxoiWg5GknSR9XdIDwA3A9sCngTdHxN8AO5HuLX2nrTU1M7Ou1dJoOkk3kq6EHgUuII2qeyifJyJelfQz4PPtqqSZmXW3Vod2PwNMAa6LqDvG8y5g5yHXysxGlgULqq6BdblWg9HZwKJagUjSeGDviLg5Il4BHlqrtJmNTgOPHTcrSav3jG4C9hhk39uz/WZmZi1pNRipzr7xwIph1MXMRqoZM9JmVpKG3XSS3gP05JKOkXRIIduGwGHAPe2rmpmNGOedl169ereVpJl7Ru8mTWwFCOBIYHUhz8vAEuAf21c1MzMbKxoGo4j4DtmcIUkPAh+OiLvKrpiZmY0dLY2miwgP1zYzs7Zr5p7RFODWiFie/VxXRFzVlpqZmdmY0cyV0RXAfsAd2c/B4KPqAvAD+MzMrCXNBKOdgSdyP5vZWLP33lXXwLpcMwMYHqr1s5mNIX7kuJWsmXtGG7VywIjwxFczM2tJM910/aR7Qc3yPSMzM2tJM8Ho07QWjMys2ygbs1R3sX6zoWvmntEFHaiHmZmNYcN97LiZmdmwNTOA4Q5gekQslvRrGnTZRcS+7aqcmZmNDc3cM/otsDL3szuNzcysrZq5Z/Sp3M/TS62NmZmNSUO+Z6RkG0n1HrhnZmbWUEurdsNrC6eeDOyTlV8taSHwrYi4ss31M7ORYM6cqmtgXa6lYCRpJnAOcAPweeApYFvgcOC/Jf1dRPi31qzb+JHjVrJWr4y+DMyNiL8tpJ8r6VzgK4CDkZmZtaTVe0ZbAZcOsu8SYMtGB5C0h6QbJK2Q9LikUyXVXUJI0kRJUWObVyPvVEn3SHpJ0mJJ05pqmZkNbu7ctJmVpNUro5uAA4Hrauw7ELi5XmFJWwDXA4uBqcCuwBmkoHhyE5//ReCXuffPFI5/ACkongMcB0wBLpTUFxG/aOL4ZlbLzJnp1d11VpJmJr3ukXv7PeAHkrYCLuP1e0YfBg4FjmlwuM8A44DDI2I5cJ2kTYFZkk7L0uq5LyJuq7P/q8DNEXFc9v4mSXsCXwMcjMzMRqhmrox+wxsnugqYmW3Fp75eQ/1Vuw8Fri0EnXnAbNKV1eVN1KcmSRsAk0lXRHnzgPMlbRYRzw/1+GZmVp5mgtHkNn7e7sCN+YSIeFjSimxfo2B0vqQtSVdkFwJfiYiB1SF2BdYHlhTK3EvqBtwN+PXwqm9mZmVoZgWG+W38vC2A52qk92X7BrMK+FdSV9tyoAc4gRSApuaOTY3j9xX2v4GkGcAMgAkTJtDf309vb2+9Noxa3dw2GH3tO36v1U3nnTCu+fxlfAc9JR57tJ23VnVz+/r7+9t2rJYnvQ6QtA6wYTG9iSe91lrbToOkDxzzCeDvc0m9kp4EzpH0zoi4q87xNUj6wLHnAnMBJk2aFOPHj6enp6d+C0ap3t7erm0bjL72TT+x+Tnix++1mjPuae6f67KP9wyxRo2V8f2OtvPWqm5uXzuDbEtDu7MlgE6QtBR4BXihxlZPH7B5jfTNqH3FVM/F2eveuWNT4/gD71s9vpmZdUir84yOA04Efki64vgWcCpwP7CMrLurjiWke0OvkbQjsDFr3+tpJAqvD5AC5O6FfLsDa7I6mtlQRPgpr1aqVoPRscDXgdOy95dFxCnAnqRg8rYG5a8GPiBpk1zaNNIjKlq9N3VE9roQICJWkeZBHVnINw34lUfSmZmNXK3eM9oZuCsiXpX0ClkXWESskXQO8APSldNgziVdXV0qaTawCzALODM/3DvrBpwfEUdn72cBm5AmvC4H3gP8I3BpRPxv7vjfIN1P+i5pHtSUbDukxXaamVkHtXpl9CwwPvv5YeDPc/u2IE1oHVRE9AEHkeYiXQ6cApxFutrKW483zldaQpqHdD5wFfAx4DvZa/74t5KumA4GrgU+CHzMqy+YDdM++6TNrCStXhn9EngXKSD8jLRywpbAy8BnSat51xURi4H3NsgzsfB+HmnyakMRcRnpqsjM2mXRoqprYF2u1WA0C9gh+/nbpG666aQrouuAz7WrYmZmNna0FIwi4j7gvuznVaRnGn2+hHqZmdkYMpxJr38CbA88HhGPta9KZmY21rQ6gAFJfyvpEeAh4HbgYUmPSvq7ttfOzMzGhFZXYPgacDZpvtBhwKTs9Wrge9l+MzOzlrTaTfdZ4NsR8dVC+jXZWnGfJa3IYGbd5Nhjq66BdblWg9E4Bn+a63w8ms6sO/mR41ayVu8ZXQYcPsi+jwBXDK86ZmY2FjXz2PEpubdXA6dJmsjajx3fE/hS+6toZpVbuDC9ehUGK0kz3XRXsPbjxXcAPlAj709IT2A1s24yaVJ69crdVpJmgtHOpdfCzMzGtGYeO/5QJypiZmZjV8srMEhajzRY4QBgS+CPwC2kxzmsbm/1zMxsLGgpGEnaFvgF8GekJ7s+CexPml90t6T3R8TT7a6kmZl1t1aHdp8JbAW8OyJ2iYj9I2IX4N1Z+pntrqCZmXW/VoPRFOCEiPh1PjF7fxJpaSAzM7OWtHrPaAPghUH2vQC8aXjVMbMRacGCqmtgXa7VYHQbcIKkGyPixYFESRsDJ2T7zazbeLKrlazVYHQ8cBPwiKRfkAYwbEuaACugp621MzOzMaGle0YRcRfwNmAusA3wPlIwOhd4W0Tc3fYamln1ZsxIm1lJmr4ykrQ+sC/wYEScWF6VzGzEOe+89OrVu60krVwZvQrcCPxpSXUxM7MxqulgFBFrgN8BE8qrjpmZjUWtzjP6CvA1SXuVURkzMxubWh1NdzJppYW7JD1GGk33hjXlI2LfNtXNzMzGiFaD0W+yzczMrG2aCkaSxpGWAvoN8Afg+oh4ssyKmdkIsvfeVdfAulwzjx3fBbgemJhLXi7poxHxi7IqZmYjyMBjx81K0swAhtOANcBfAhsBewJ3AnNKrJeZmY0hzQSj/YGTI+KXEfFSRNwLzATeImn7cqtnZmZjQTPBaHvg94W0B0hr0W3X9hqZ2cgjpc2sJM3OM4rGWczMzIam2aHd10paXSP9hmJ6RGw7/GqZmdlY0kwwOqX0WpiZ2ZjWMBhFhIORmZmVqtW16czMzNrOwcjMzCrX6tp0ZjYWzfEcdyuXg5GZNeZHjlvJ3E1nZmaVczAys8bmzk2bWUk6Howk7SHpBkkrJD0u6VRJ6zYo8y5J50tampW7T9LXJW1YyDdLUtTYDim3VWZdbubMtJmVpKP3jCRtQXocxWJgKrArcAYpKJ5cp+i0LO9s4HfAnwHfyF4/Usj7PFAMPvcOt+5mZlaeTg9g+AwwDjg8IpYD10naFJgl6bQsrZbZEfF07n2vpJeAOZJ2ioiHcvtWR8Rt5VTfzMzK0OluukOBawtBZx4pQB04WKFCIBpwZ/bqtfDMzEa5Tgej3YEl+YSIeBhYke1rxV+QHvp3XyF9c0nPSHpF0p2SDh9ybc3MrCM63U23BfBcjfS+bF9TJG0HfAX498JV1lLgS8BdwHjSQwAvkfSRiLh0kGPNAGYATJgwgf7+fnp7e5utyqjSzW2D0de+4/eqtRB+bRPGNZ+/jO+gp8Rjj7bz1qpubl9/f3/bjlXFpNdaz0bSIOlrZ5TeBPwc6Ae+8IYDR/ykkPdy4H+ArwE1g1FEzAXmAkyaNCnGjx9PT09PM1UZdXp7e7u2bTD62jf9xCubznv8Xqs5457m/rku+3jPEGvUWBnf72g7b63q5va1M8h2upuuD9i8Rvpm1L5iegNJAn4M7AlMiYi+evkjIkhB6M8aDR83szoi0mZWkk5fGS2hcG9I0o7AxhTuJQ3iLNKQ8PdFRDP5B/hfkZnZCNbpK6OrgQ9I2iSXNg1YCcyvV1DSScDngE9ExK3NfFh2JfVh4O6IeHVoVTYzs7J1+sroXOA44FJJs4FdgFnAmfmBCJKWAvMj4ujs/ceAbwMXAI9J2i93zAcGhn5Lmg9cQrrK2hg4FtgP+FC5zTLrcvvsk14XLqy2Hta1OhqMIqJP0kHA2cDlpPtEZ5ECUrFe+Xs8789ep2db3qdIQQrSaLp/ALYnDfteBBwWEVe3o/5mY9aiRVXXwLpcx0fTRcRi4L0N8kwsvJ/O2kGoVrmjh1E1MzOriFftNjOzyjkYmZlZ5RyMzMyscg5GZmZWuSqWAzKz0ebYY6uugXU5ByMza2wMPHJ8YgtrBbbigkM2LuW43cbddGZmVjkHIzNrbOFCr75gpXI3nZk1NmlSevXK3VYSXxmZmVnlHIzMzKxyDkZmZlY5ByMzM6ucg5GZmVXOwcjMzCrnod1m1tiCBVXXwLqcg5GZNTbw2HGzkribzszMKudgZGaNzZiRNrOSOBiZWWPnnZc2s5I4GJmZWeUcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc6TXs2ssb33rroG1uUcjMysMT9y3ErmbjozM6ucg5GZmVXOwcjMGpPSZlYSByMzM6ucg5GZmVXOwcjMzCrnYGRmZpXzPKMx5J7Hnmf6iVe2/bjL/vmwth/TzMYWXxmZmVnlfGVkZo3NmVN1DazLORiZWWN+5LiVzN10ZmZWOQcjM2ts7ty0mZXE3XRm1tjMmenV3XWVmljCaFgYGSNifWVkZmaV63gwkrSHpBskrZD0uKRTJa3bRLnNJJ0vqU/S85J+KmmrGvmmSrpH0kuSFkuaVk5LzMysXTraTSdpC+B6YDEwFdgVOIMUFE9uUPwi4O3AMcAaYDZwGfCXueMfAFwCnAMcB0wBLpTUFxG/aGtjCrr58tnMrGydvmf0GWAccHhELAeuk7QpMEvSaVnaWiTtD3wAODAibs7SHgNul3RwRFyfZf0qcHNEHJe9v0nSnsDXgFKDkZmZDV2nu+kOBa4tBJ15pAB1YINyTw4EIoCIuAN4MNuHpA2AycDPC2XnAftL2mz41TczszJ0OhjtDizJJ0TEw8CKbF/T5TL35srtCqxfI9+9pHbuNoT6mplZB3S6m24L4Lka6X3ZvqGU2yWXhxr5+gr730DSDGBgvGr/5MmTnwWeqVOXjtLsth5ua0poW5vrOByltG8kOK6FtpV6Psp52mvXnjeAybNHfvuG8TuzNbBTO+pQxTyjqJGmQdKHUq74XoOkp8SIucBrs/kkLYiISQ3qMip1c9ugu9vnto1e3dy+rG0T23GsTnfT9QGb10jfjNpXPo3KbZ4r15dLK+ahwfHNzKxCnQ5GSyjcG5K0I7Axte8JDVouk7+X9ADwSo18u5OGgt8/hPqamVkHdDoYXQ18QNImubRpwEpgfoNy22XziACQNIl0v+hqgIhYBdwEHFkoOw34VUQ832Qdu3kBrm5uG3R3+9y20aub29e2timi0a2a9skmvS4GfkOatLoLcCbw3Yg4OZdvKTA/Io7OpV1DGhH3RV6f9PpURBQnvfYCZ5MmxE7J8h9S9qRXMzMbuo5eGUVEH3AQsC5wOXAKcBbw9ULW9bI8eUeRrp5+BPwYWAh8uHD8W4EjgIOBa4EPAh9zIDIzG9k6emVkZmZWy5hetVvSNEmXSnpCUkia3kLZ/yPpdkkrJT0o6bjGpTpP0rGSfpctHLtQ0kFNlJmVfR/F7ZBO1LlGfUpdXLdKQ2mbpImDnJ95nap3MyS9VdIcSXdLelVSb5PlRvx5g6G1bzScO0lHSvpvSY9J6s/+bvx1E+U2kHSGpKckvSjpSkkTm/3csf48oyOkxBHQAAAFP0lEQVSAicAVpAVYmyLpraRuwCuAk4B9gTMlrYiIH5RQzyGRdBRwLjALuBX4FHCFpHdFxG8aFH8eKAafe9teyQbKXly3SsNsG6T7ob/MvR9pEyv3JN23vQ14UwvlRvR5yxlq+2Bkn7v/S1pq7Qukek0BfiZp64j4fp1y3yP9Tf0C8DTp7851kvaKiJcafmpEjNkNWCd7HU+aFDu9yXJzSEPF18ulnQM8Qtb1ORI24D7gR/n2AvcAP2lQbhbwTNX1z+pyEmkO2aa5tC+RlpDatE65/bNz+p5c2r5Z2sFVt2uYbZuYteOvqm5Dg/atk/v5YqC3iTIj/rwNs30j/twBW9dI+xnwYJ0yfwKsBj6ZS9sBeBk4ppnPHdPddBGxZohFDwUujYjVubR5pBPyjmFXrA0k7UIaffjawrFZe/+DbHHZUaK0xXVHgKG2bVQY4r+v0XDegGH9/RjRIqLWVdqdwLZ1ir0/e700d5zHSD0yTZ23MR2MhkLSxsCO1F6QFeov+NpJA/WoVc8tJW3ToPzmkp6R9IqkOyUd3v4qNqXMxXWrNtS2DTg/u1fxhKQzJY0ro5IdNhrOWzuMtnP3F6Tu5MHsDjwaEf2F9KbP21i/ZzQUgy0vVHdB1go0s3Ds04OUXUrqLrqL1IU5E7hE0kci4tJBypSlzMV1qzbUtq0C/pX0jK7lQA9wAume09T2VrHjRsN5G45Rd+6yQU9TgU/XyTbU3+XXdFUwyp5ZtH2jfBFRb+mhZg02Jr60sfJDbF9LC8dm5X9S+NzLgf8hPaSw08EIyl9ct0ot1zEingD+PpfUK+lJ4BxJ74yIu9pcx04bDedtSEbbuctGw/0M+K+IuKBB9mGdt64KRqSlgM5rIt9w1sEfiP7FBVkHuxJpp1bal184Nr8UUssLx0ZESLoUmC1p3Yh4tdmybTCcxXVrdUXmF9et2lDbVsvFpEE0e5OuaEer0XDe2m1EnjtJW5KWW3sY+ESD7M0sZl1XV90ziogfRIQabcP8jBdJo+ZqLcgK9Rd8HZYW2zdQj1r1/GNEDNZFV7cKQ6780JW5uG7Vhtq2WqLwOlqNhvPWbiPu3EnaiDR15U3AYdnfvXqWADtm99Tzmj5vXRWMOuhq4MOFyYnTSEGq0fydjoiI35OGn7+2cKykdbL3V7dyLEkiLb10d4eviqDExXVHgKG2rZYjsteF7ahYhUbDeWu3EXXuJK1HGnX7NuDQiHiqiWIDS669tkSbpDeT5oY1d96qHtNe5QbsQfpF+ATpfyVnZ+8PzOU5kDR+Pp/2VqCf1Jc6mXSz/xWaHE/fwfb9NfAqaQLlZOAC0h+6dzRo33zgONJwzQ8DV5EmH36wgjZsATwBXEdac3BG9t1/s5BvKfDDQto1wO+Bw4EPkeZd3VL1eRlu20jzwM7I2nUwcGp2Xi+puk2Fem+U/Xs6AvgV8Nvc+41G63kbTvtGw7kjrcQd2d+A/QrbBlmeG4AbCuXmkCbJ/g1pwvxtwO+ADZv63KobXvGXPiv70otbby5PT5bWUyh7AHAH8BKwDDiu6vYM0sZjs38Qq4BFwEGF/Wu1D/hh9sdgJfAicAvpf0hVtWEP4MasPk8A3wDWLeRZBlxQSNscOJ/UZ72c9J+HtSb0VXx+Wm4badHgBaR7gS9n5/fUgT8UI2Xj9QmetbaJo/m8DbV9o+HcZXVu1K5eCpN8gQ1IT2F4Ovu7cRWwc7Of64VSzcyscr5nZGZmlXMwMjOzyjkYmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq9/8BvfWTGtFF1N8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEPCAYAAADvS6thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXVV9//H3h4sQCPdLQIoEUKQgfSxEhP6oTAQVQh+jCIaq9YkCia0V6w8roKgBL22Qi1XKjwQValWCBUrLXW4TwAqYBCgaAgYJd7k5EIaEQMj398faA5udM+cyc/bZM2c+r+fZz5mz9lr7rHX2ZL7Za6+1tiICMzOzKq1TdQXMzMwcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudgZG0laZakGGT7RJPH2C07zuaF9OnZccaXU/vm6jHMY14sqbeJfOtJ+gdJd0taKalP0lWSDhji546U73R64XfiKUnXStq7ibI9WZl3dKKu1lkORlaG54H9a2zXNFl+N+DrQDEIXJkdZ0V7qjnkepRK0rrAZcC3gf8GpgDTgVeBXkkfG8JhR8p3OuC92efOBLYBbpL05gZlFmVlHii5blaB9aqugHWl1RFxW7sPGhFPA0+3+7gj0OeAw4BDIyIfwP9L0jxgrqT5EfHYcD+owu/01xHRDyBpAfAQ8HHgO8WMkgRsEBHLgbb/XtnI4Csjq4SkkyQtlfSSpCclXSNpO0k9wOVZtgezbpllWZk3dClJmpi9P0rS+ZKWS3p0oDtQ0pckPS7paUmzJa2T+/zdJc2T9IikFZJ+m3WLrZPtH7Qe2f63ZOX/mJW/VtLbC23cMetaWylpmaRjmvx6Pg/cVAhEA74CbAgcnfucZZJOl/RVSX+Q1C/pp5I2a9SWWt10kraW9G+Sns3a1itpUqFtA5/5hew778u+j5avIiPiEVJAnJgde5akZyQdIOnXwEvAkbW66SStm/0u3S9pVVaXCwp1nSppQfa79gdJp0lav9V6Wrl8ZWSlkLTW71ZErM72fRL4MnAC8FtgK1K3zcakrpgvAqcDhwNPAKsafNxs4KfAR4BPA/8m6c+BnbL3+wDfBO4E5mVldgDuy8q9ALwTOAUYB/xTvXpI2hK4FXgW+Aypi+tE4HpJu0XEyux/8/8FbE0KHC9lx98S+F2d721H0h/ls2rtj4gHJN0DvKew66+BpcCxwPbAacAPgCPrtWUQlwFvzco8A/wjqRvtzyNiaS7fR4H/BWYAfwKcSepa/Ls6x16LpE1I38sfcskbAf+WteN+4PGsXUVzgE9m+eZnxzkid+yPAhdm+b4M7Eo6v+tk7bORIiK8eWvbBswCYpBtYpbnbOCSOsf4q3z+XPr0LH189n5i9v78XJ5NgVdIf/DXzaXfAVw0yOeJ9B+zLwO/b6Ie3yAFoi1zaVuQ7pV9Nns/JSv77lyenYDVQG+dtu+XlZtaJ89lwL2598uAPw58L1nax4E1wJ+2+J0ekr0/MJdnY9KVy5zCZz4ArJdL+y7whwa/HwOft1n2ne8IXJR9L+8s/A5NLZTtydLfkb3fPXt/XJ3z+lD+9yNL/zSwEtiq6n8v3l7ffGVkZXgeOLhG+uPZ613A0ZJOId1AXxgRrw7j824Y+CEilkt6GphfOOZS4C0DbyRtCJxE+qP9FmD93L71IruKG8TBwHXA8twV4AvAQmCgO2tf4MmIuD1Xt4ckLRxC+5pxXWT3YDKXAj8B3gXc28Jx9gWejoj5AwkR8aKkK4DiSL6bCt/TYmBbSW+KiJcbfM5zuZ+fAT4dEXfl0gK4usExJmevFwyyfzfSuf154Ur9RlJX5ztIV1M2AjgYWRlWR8SCOvt/BGxC6t75GvCspP8HzBpiUHqu8P7lQdI2zL2fDRxD6jpblOWfCpyc5etncFuTrmCm1dg3EBi3A56qsf8pUtsHMzAoYac6eXbK5csf9zWRugr7qd21Vc/2wJM10p8kdYHl1fqOBbwp+7me95C6N58BHomINYX9fU0EtK2AFyMNbKhl6+z1qkH279jg+NZBDkbWcdkfnrOAs7J7JB8HvkX6A3tuh6pxJPD9iDhtIEHSYU2W/SNpyPU3aux7IXv9A7Btjf3bkrqIaoqIR7LBBR8EvlfcL2ln0v/oi5+9bSHfOGA86f5QK54oHiszgdTudrmzcCVX1MyzbZ4FNpa06SABaaC+M0j3C4sebOIzrEM8ms4qFRGPRMQ/k7rR9siSB/5HvGHtUm0xjtxNfKW5PUcV8gxWjxuAPYHfRsSCwnZflufXwARJ7859xluAhpM7gX8BDpL0/hr7vpnV+4eF9PfpjRNXDyf9QR+4Qm32O72d1NX22gAJSRuRhprf2kTdO+nG7PWTg+y/j/QfnIk1ztOCiHi2M9W0ZvjKyMqwnqT9aqQ/EhGPSZpD+l/rbaT7S5OBt5FG10H6IwIwU2lezYqIuKfNdbwO+KykpVldPgtsUMgzWD3OBD4B3Cjp+6Q/eBOAA4FbI+JCUtfQ3cB/SDqBNJruVGp33RV9n3Rf6j8lnQ70krr2jiYNRPibWHuO0UrgSknfIXW1fQf4z4hY3KAtbxAR10r6JXCRpBNJVx9fJAXvteYAVSki7pM0FzhD0rbAzaRJvUdExFERsUbS8cC/S9qUdA/qZWAX4ENZvk5P9rXBVD2Cwlt3bdQfTXdylmc68EtSEFhBGh58dOE4x5NGQq0GluXK1RpN91eFssuA0wtpFwALcu8nAP8JLCfdDzmNNCz6teMPVo8s/c3A+VnZVdln/gTYM5fnLaRVJ1Zmx5gJXEyd0XS5susBX8i+m5VAH+mP6QE18i4Dzsi++yeBF0nDmTdv9TvN0rYBfpx95krSTf53NfEdr3WsGnVtJs8s4Jka6T3kRtNlaeuSjYIkBZpHWXv03KHALdn3spw0gOab5EYCeqt+U3ayOkbSW0nzFvYj9X3fEhE9TZTbjDR09EOk7sUrSEM6ny3km0r6RXsb6Rf0lIi4qJ1tMBtJsntMF0eE583YqFXFPaM9SXMw7s+2Zl1E+p/RMaT/Xb2LNN/iNUqLSF4C3ET639CVwIWD9L2bmdkIUcWV0TqRDeOUdDGwdaMrI0n7A/9Dmoh3c5a2L+lm6/si4vos7Vpg/Yh4b67sVcCmETGk1Y7NRjpfGVk36PiVUaw9n6AZh5ImEN6cO84dpKGZhwJI2oB0I/znhbLzgP0H1uky6zYRMdGByEa70TK0e3dgSY30e7N9kNacWr9GvntJ7dyttNqZmdmwjJah3Vuw9mxvSKN9dsnloUa+vsL+N5A0gzQpjnHjxu2zww47sM46oyVGt2bNmjVd2zbo7vZV3bZN7k+3d1/Yrf3/p6u6bWXr5vatWbOGpUuXPhMR2wz3WKMlGEHtGdmqkV58rzrliYi5wFyASZMmxemnn05PT88wqjly9fb2dm3boLvbV3nblP0zuu+++vmGoPK2layb29fb28vkyZMfasexRku47qP20zY35/Urob5cWjEP1L6yMjOzEWC0BKMlvH5vKC9/L+kB0qMDivl2Jy2l38owcjMz66DREoyuBrbL5hEBkD15cpdsHxGxijS/6MhC2WnAryLi+Q7V1czMWtTxe0bZootTsrc7AJtKGngy41URsSJbL2x+RBwNEBG/yuYQ/VjSF0lXOrNJ64Bdnzv8N4BeSd8lTYidkm2HlN4wMzMbsioGMGwL/EchbeD9zqQ1r9YjrTmVdxTpsQM/IrccUD5DRNyaBbZvAn9Lmof0sYj4RRvrbzb2dHhyvI09HQ9GEbGM10e4DZZnYo2054BPZVu9spdRWCbIzMxGttFyz8jMzLqYg5GZNbbPPmkzK8lomvRqZlVZtKjqGliX85WRmZlVzsHIzMwq52BkZmaVczAyM7PKORiZmVnlPJrOzBo79tiqa2BdzsHIzBqbO7fqGliXczedmZlVzsHIzBpbuDBtZiVxN52ZNTZpUnr16t1WEl8ZmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq56HdZtbYggVV18C6nIORmTXmR45bydxNZ2ZmlXMwMrPGZsxIm1lJHIzMrLHzzkubWUkcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudJr2bW2N57V10D63IORmbWmB85biVzN52ZmVXOwcjMzCrnYGRmjUlpMyuJg5GZmVXOwcjMzCrnYGRmZpVzMDIzs8o5GJmZWeUcjMzMrHJegcHMGpszp+oaWJdzMDKzxvzIcStZx7vpJO0h6QZJKyQ9LulUSes2KDNLUgyynZTLd8EgeXYvv2VmZjZUHb0ykrQFcD2wGJgK7AqcQQqKJ9cp+gPgmkLah4ATgKsL6UuATxXSlg2txmYGwNy56dVXSFaSTnfTfQYYBxweEcuB6yRtCsySdFqWtpaIeBR4NJ8m6avAkoi4q5D9xYi4rYS6m41dM2emVwcjK0mnu+kOBa4tBJ15pAB1YLMHkbQl8D7gwvZWz8zMqtDpYLQ7qRvtNRHxMLAi29esI4D1SYGsaA9JyyWtknSrpKaDnJmZVaPT3XRbAM/VSO/L9jXrKGBRRNxfSL8TuJ10T2ob4HhSV+ABEXFHrQNJmgHMAJgwYQL9/f309va2UJXRo5vbBt3dvqrb1pO9llGHqttWtm5uX39/f9uOVcXQ7qiRpkHS184obU/q0jthrQNH/Esh75WkwPRl0oCHtSsTMReYCzBp0qQYP348PT09zVRl1Ont7e3atkF3t2+ktK2MOoyUtpWlm9vXziDb6W66PmDzGumbUfuKqZaPkoLXRY0yRsRK4Cpg72YraGZmndfpYLSEwr0hSTsCG1O4l1THUcCtEfFIC5/b1FWXmZlVo9PB6GrgA5I2yaVNA1YC8xsVljQR2I8mR9FJGkcawbew1YqaWU5E2sxK0ulgdC6wCrhU0sHZ4IFZwJn54d6Slkr6YY3yRwGrgYuLOyRtJukWSTMlHSRpGnATsAPw7RLaYmZmbdLRAQwR0SfpIOBs4HLSfaKzSAGpWK9aSwQdBdwQEU/X2LcKeJq0ksO2wEvAr4ADI2JBWxpgZmal6PhouohYDLy3QZ6Jg6S/s06Zl4DDh1U5M6ttn33S60L3eFs5vGq3mTW2aFHVNbAu54frmZlZ5RyMzMyscu6mM6vIxBOvbDrv8XutZnqT+Zf982FDrZJZZXxlZGZmlXMwMjOzyrmbzswaO/bYqmtgXc7ByMwaG3jsuFlJ3E1nZmaVaykYSaq1RI+ZdbuFC736gpWq1W66xyT9GDg/Iu4to0JmNgJNmpRevXK3laTVbro5wBHAbyTdLmmGpE1LqJeZmY0hLQWjiPh6ROwCvA+4DzgTeELSTyUdXEYFzcys+w1pAENE3BgRnwS2Az4HvB24VtIySbMkvbmdlTQzs+423NF0k4D3kB4l3gfcAhwDLJX0iWEe28zMxoiWg5GknSR9XdIDwA3A9sCngTdHxN8AO5HuLX2nrTU1M7Ou1dJoOkk3kq6EHgUuII2qeyifJyJelfQz4PPtqqSZmXW3Vod2PwNMAa6LqDvG8y5g5yHXysxGlgULqq6BdblWg9HZwKJagUjSeGDviLg5Il4BHlqrtJmNTgOPHTcrSav3jG4C9hhk39uz/WZmZi1pNRipzr7xwIph1MXMRqoZM9JmVpKG3XSS3gP05JKOkXRIIduGwGHAPe2rmpmNGOedl169ereVpJl7Ru8mTWwFCOBIYHUhz8vAEuAf21c1MzMbKxoGo4j4DtmcIUkPAh+OiLvKrpiZmY0dLY2miwgP1zYzs7Zr5p7RFODWiFie/VxXRFzVlpqZmdmY0cyV0RXAfsAd2c/B4KPqAvAD+MzMrCXNBKOdgSdyP5vZWLP33lXXwLpcMwMYHqr1s5mNIX7kuJWsmXtGG7VywIjwxFczM2tJM910/aR7Qc3yPSMzM2tJM8Ho07QWjMys2ygbs1R3sX6zoWvmntEFHaiHmZmNYcN97LiZmdmwNTOA4Q5gekQslvRrGnTZRcS+7aqcmZmNDc3cM/otsDL3szuNzcysrZq5Z/Sp3M/TS62NmZmNSUO+Z6RkG0n1HrhnZmbWUEurdsNrC6eeDOyTlV8taSHwrYi4ss31M7ORYM6cqmtgXa6lYCRpJnAOcAPweeApYFvgcOC/Jf1dRPi31qzb+JHjVrJWr4y+DMyNiL8tpJ8r6VzgK4CDkZmZtaTVe0ZbAZcOsu8SYMtGB5C0h6QbJK2Q9LikUyXVXUJI0kRJUWObVyPvVEn3SHpJ0mJJ05pqmZkNbu7ctJmVpNUro5uAA4Hrauw7ELi5XmFJWwDXA4uBqcCuwBmkoHhyE5//ReCXuffPFI5/ACkongMcB0wBLpTUFxG/aOL4ZlbLzJnp1d11VpJmJr3ukXv7PeAHkrYCLuP1e0YfBg4FjmlwuM8A44DDI2I5cJ2kTYFZkk7L0uq5LyJuq7P/q8DNEXFc9v4mSXsCXwMcjMzMRqhmrox+wxsnugqYmW3Fp75eQ/1Vuw8Fri0EnXnAbNKV1eVN1KcmSRsAk0lXRHnzgPMlbRYRzw/1+GZmVp5mgtHkNn7e7sCN+YSIeFjSimxfo2B0vqQtSVdkFwJfiYiB1SF2BdYHlhTK3EvqBtwN+PXwqm9mZmVoZgWG+W38vC2A52qk92X7BrMK+FdSV9tyoAc4gRSApuaOTY3j9xX2v4GkGcAMgAkTJtDf309vb2+9Noxa3dw2GH3tO36v1U3nnTCu+fxlfAc9JR57tJ23VnVz+/r7+9t2rJYnvQ6QtA6wYTG9iSe91lrbToOkDxzzCeDvc0m9kp4EzpH0zoi4q87xNUj6wLHnAnMBJk2aFOPHj6enp6d+C0ap3t7erm0bjL72TT+x+Tnix++1mjPuae6f67KP9wyxRo2V8f2OtvPWqm5uXzuDbEtDu7MlgE6QtBR4BXihxlZPH7B5jfTNqH3FVM/F2eveuWNT4/gD71s9vpmZdUir84yOA04Efki64vgWcCpwP7CMrLurjiWke0OvkbQjsDFr3+tpJAqvD5AC5O6FfLsDa7I6mtlQRPgpr1aqVoPRscDXgdOy95dFxCnAnqRg8rYG5a8GPiBpk1zaNNIjKlq9N3VE9roQICJWkeZBHVnINw34lUfSmZmNXK3eM9oZuCsiXpX0ClkXWESskXQO8APSldNgziVdXV0qaTawCzALODM/3DvrBpwfEUdn72cBm5AmvC4H3gP8I3BpRPxv7vjfIN1P+i5pHtSUbDukxXaamVkHtXpl9CwwPvv5YeDPc/u2IE1oHVRE9AEHkeYiXQ6cApxFutrKW483zldaQpqHdD5wFfAx4DvZa/74t5KumA4GrgU+CHzMqy+YDdM++6TNrCStXhn9EngXKSD8jLRywpbAy8BnSat51xURi4H3NsgzsfB+HmnyakMRcRnpqsjM2mXRoqprYF2u1WA0C9gh+/nbpG666aQrouuAz7WrYmZmNna0FIwi4j7gvuznVaRnGn2+hHqZmdkYMpxJr38CbA88HhGPta9KZmY21rQ6gAFJfyvpEeAh4HbgYUmPSvq7ttfOzMzGhFZXYPgacDZpvtBhwKTs9Wrge9l+MzOzlrTaTfdZ4NsR8dVC+jXZWnGfJa3IYGbd5Nhjq66BdblWg9E4Bn+a63w8ms6sO/mR41ayVu8ZXQYcPsi+jwBXDK86ZmY2FjXz2PEpubdXA6dJmsjajx3fE/hS+6toZpVbuDC9ehUGK0kz3XRXsPbjxXcAPlAj709IT2A1s24yaVJ69crdVpJmgtHOpdfCzMzGtGYeO/5QJypiZmZjV8srMEhajzRY4QBgS+CPwC2kxzmsbm/1zMxsLGgpGEnaFvgF8GekJ7s+CexPml90t6T3R8TT7a6kmZl1t1aHdp8JbAW8OyJ2iYj9I2IX4N1Z+pntrqCZmXW/VoPRFOCEiPh1PjF7fxJpaSAzM7OWtHrPaAPghUH2vQC8aXjVMbMRacGCqmtgXa7VYHQbcIKkGyPixYFESRsDJ2T7zazbeLKrlazVYHQ8cBPwiKRfkAYwbEuaACugp621MzOzMaGle0YRcRfwNmAusA3wPlIwOhd4W0Tc3fYamln1ZsxIm1lJmr4ykrQ+sC/wYEScWF6VzGzEOe+89OrVu60krVwZvQrcCPxpSXUxM7MxqulgFBFrgN8BE8qrjpmZjUWtzjP6CvA1SXuVURkzMxubWh1NdzJppYW7JD1GGk33hjXlI2LfNtXNzMzGiFaD0W+yzczMrG2aCkaSxpGWAvoN8Afg+oh4ssyKmdkIsvfeVdfAulwzjx3fBbgemJhLXi7poxHxi7IqZmYjyMBjx81K0swAhtOANcBfAhsBewJ3AnNKrJeZmY0hzQSj/YGTI+KXEfFSRNwLzATeImn7cqtnZmZjQTPBaHvg94W0B0hr0W3X9hqZ2cgjpc2sJM3OM4rGWczMzIam2aHd10paXSP9hmJ6RGw7/GqZmdlY0kwwOqX0WpiZ2ZjWMBhFhIORmZmVqtW16czMzNrOwcjMzCrX6tp0ZjYWzfEcdyuXg5GZNeZHjlvJ3E1nZmaVczAys8bmzk2bWUk6Howk7SHpBkkrJD0u6VRJ6zYo8y5J50tampW7T9LXJW1YyDdLUtTYDim3VWZdbubMtJmVpKP3jCRtQXocxWJgKrArcAYpKJ5cp+i0LO9s4HfAnwHfyF4/Usj7PFAMPvcOt+5mZlaeTg9g+AwwDjg8IpYD10naFJgl6bQsrZbZEfF07n2vpJeAOZJ2ioiHcvtWR8Rt5VTfzMzK0OluukOBawtBZx4pQB04WKFCIBpwZ/bqtfDMzEa5Tgej3YEl+YSIeBhYke1rxV+QHvp3XyF9c0nPSHpF0p2SDh9ybc3MrCM63U23BfBcjfS+bF9TJG0HfAX498JV1lLgS8BdwHjSQwAvkfSRiLh0kGPNAGYATJgwgf7+fnp7e5utyqjSzW2D0de+4/eqtRB+bRPGNZ+/jO+gp8Rjj7bz1qpubl9/f3/bjlXFpNdaz0bSIOlrZ5TeBPwc6Ae+8IYDR/ykkPdy4H+ArwE1g1FEzAXmAkyaNCnGjx9PT09PM1UZdXp7e7u2bTD62jf9xCubznv8Xqs5457m/rku+3jPEGvUWBnf72g7b63q5va1M8h2upuuD9i8Rvpm1L5iegNJAn4M7AlMiYi+evkjIkhB6M8aDR83szoi0mZWkk5fGS2hcG9I0o7AxhTuJQ3iLNKQ8PdFRDP5B/hfkZnZCNbpK6OrgQ9I2iSXNg1YCcyvV1DSScDngE9ExK3NfFh2JfVh4O6IeHVoVTYzs7J1+sroXOA44FJJs4FdgFnAmfmBCJKWAvMj4ujs/ceAbwMXAI9J2i93zAcGhn5Lmg9cQrrK2hg4FtgP+FC5zTLrcvvsk14XLqy2Hta1OhqMIqJP0kHA2cDlpPtEZ5ECUrFe+Xs8789ep2db3qdIQQrSaLp/ALYnDfteBBwWEVe3o/5mY9aiRVXXwLpcx0fTRcRi4L0N8kwsvJ/O2kGoVrmjh1E1MzOriFftNjOzyjkYmZlZ5RyMzMyscg5GZmZWuSqWAzKz0ebYY6uugXU5ByMza2wMPHJ8YgtrBbbigkM2LuW43cbddGZmVjkHIzNrbOFCr75gpXI3nZk1NmlSevXK3VYSXxmZmVnlHIzMzKxyDkZmZlY5ByMzM6ucg5GZmVXOwcjMzCrnod1m1tiCBVXXwLqcg5GZNTbw2HGzkribzszMKudgZGaNzZiRNrOSOBiZWWPnnZc2s5I4GJmZWeUcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc6TXs2ssb33rroG1uUcjMysMT9y3ErmbjozM6ucg5GZmVXOwcjMGpPSZlYSByMzM6ucg5GZmVXOwcjMzCrnYGRmZpXzPKMx5J7Hnmf6iVe2/bjL/vmwth/TzMYWXxmZmVnlfGVkZo3NmVN1DazLORiZWWN+5LiVzN10ZmZWOQcjM2ts7ty0mZXE3XRm1tjMmenV3XWVmljCaFgYGSNifWVkZmaV63gwkrSHpBskrZD0uKRTJa3bRLnNJJ0vqU/S85J+KmmrGvmmSrpH0kuSFkuaVk5LzMysXTraTSdpC+B6YDEwFdgVOIMUFE9uUPwi4O3AMcAaYDZwGfCXueMfAFwCnAMcB0wBLpTUFxG/aGtjCrr58tnMrGydvmf0GWAccHhELAeuk7QpMEvSaVnaWiTtD3wAODAibs7SHgNul3RwRFyfZf0qcHNEHJe9v0nSnsDXgFKDkZmZDV2nu+kOBa4tBJ15pAB1YINyTw4EIoCIuAN4MNuHpA2AycDPC2XnAftL2mz41TczszJ0OhjtDizJJ0TEw8CKbF/T5TL35srtCqxfI9+9pHbuNoT6mplZB3S6m24L4Lka6X3ZvqGU2yWXhxr5+gr730DSDGBgvGr/5MmTnwWeqVOXjtLsth5ua0poW5vrOByltG8kOK6FtpV6Psp52mvXnjeAybNHfvuG8TuzNbBTO+pQxTyjqJGmQdKHUq74XoOkp8SIucBrs/kkLYiISQ3qMip1c9ugu9vnto1e3dy+rG0T23GsTnfT9QGb10jfjNpXPo3KbZ4r15dLK+ahwfHNzKxCnQ5GSyjcG5K0I7Axte8JDVouk7+X9ADwSo18u5OGgt8/hPqamVkHdDoYXQ18QNImubRpwEpgfoNy22XziACQNIl0v+hqgIhYBdwEHFkoOw34VUQ832Qdu3kBrm5uG3R3+9y20aub29e2timi0a2a9skmvS4GfkOatLoLcCbw3Yg4OZdvKTA/Io7OpV1DGhH3RV6f9PpURBQnvfYCZ5MmxE7J8h9S9qRXMzMbuo5eGUVEH3AQsC5wOXAKcBbw9ULW9bI8eUeRrp5+BPwYWAh8uHD8W4EjgIOBa4EPAh9zIDIzG9k6emVkZmZWy5hetVvSNEmXSnpCUkia3kLZ/yPpdkkrJT0o6bjGpTpP0rGSfpctHLtQ0kFNlJmVfR/F7ZBO1LlGfUpdXLdKQ2mbpImDnJ95nap3MyS9VdIcSXdLelVSb5PlRvx5g6G1bzScO0lHSvpvSY9J6s/+bvx1E+U2kHSGpKckvSjpSkkTm/3csf48oyOkxBHQAAAFP0lEQVSAicAVpAVYmyLpraRuwCuAk4B9gTMlrYiIH5RQzyGRdBRwLjALuBX4FHCFpHdFxG8aFH8eKAafe9teyQbKXly3SsNsG6T7ob/MvR9pEyv3JN23vQ14UwvlRvR5yxlq+2Bkn7v/S1pq7Qukek0BfiZp64j4fp1y3yP9Tf0C8DTp7851kvaKiJcafmpEjNkNWCd7HU+aFDu9yXJzSEPF18ulnQM8Qtb1ORI24D7gR/n2AvcAP2lQbhbwTNX1z+pyEmkO2aa5tC+RlpDatE65/bNz+p5c2r5Z2sFVt2uYbZuYteOvqm5Dg/atk/v5YqC3iTIj/rwNs30j/twBW9dI+xnwYJ0yfwKsBj6ZS9sBeBk4ppnPHdPddBGxZohFDwUujYjVubR5pBPyjmFXrA0k7UIaffjawrFZe/+DbHHZUaK0xXVHgKG2bVQY4r+v0XDegGH9/RjRIqLWVdqdwLZ1ir0/e700d5zHSD0yTZ23MR2MhkLSxsCO1F6QFeov+NpJA/WoVc8tJW3ToPzmkp6R9IqkOyUd3v4qNqXMxXWrNtS2DTg/u1fxhKQzJY0ro5IdNhrOWzuMtnP3F6Tu5MHsDjwaEf2F9KbP21i/ZzQUgy0vVHdB1go0s3Ds04OUXUrqLrqL1IU5E7hE0kci4tJBypSlzMV1qzbUtq0C/pX0jK7lQA9wAume09T2VrHjRsN5G45Rd+6yQU9TgU/XyTbU3+XXdFUwyp5ZtH2jfBFRb+mhZg02Jr60sfJDbF9LC8dm5X9S+NzLgf8hPaSw08EIyl9ct0ot1zEingD+PpfUK+lJ4BxJ74yIu9pcx04bDedtSEbbuctGw/0M+K+IuKBB9mGdt64KRqSlgM5rIt9w1sEfiP7FBVkHuxJpp1bal184Nr8UUssLx0ZESLoUmC1p3Yh4tdmybTCcxXVrdUXmF9et2lDbVsvFpEE0e5OuaEer0XDe2m1EnjtJW5KWW3sY+ESD7M0sZl1XV90ziogfRIQabcP8jBdJo+ZqLcgK9Rd8HZYW2zdQj1r1/GNEDNZFV7cKQ6780JW5uG7Vhtq2WqLwOlqNhvPWbiPu3EnaiDR15U3AYdnfvXqWADtm99Tzmj5vXRWMOuhq4MOFyYnTSEGq0fydjoiI35OGn7+2cKykdbL3V7dyLEkiLb10d4eviqDExXVHgKG2rZYjsteF7ahYhUbDeWu3EXXuJK1HGnX7NuDQiHiqiWIDS669tkSbpDeT5oY1d96qHtNe5QbsQfpF+ATpfyVnZ+8PzOU5kDR+Pp/2VqCf1Jc6mXSz/xWaHE/fwfb9NfAqaQLlZOAC0h+6dzRo33zgONJwzQ8DV5EmH36wgjZsATwBXEdac3BG9t1/s5BvKfDDQto1wO+Bw4EPkeZd3VL1eRlu20jzwM7I2nUwcGp2Xi+puk2Fem+U/Xs6AvgV8Nvc+41G63kbTvtGw7kjrcQd2d+A/QrbBlmeG4AbCuXmkCbJ/g1pwvxtwO+ADZv63KobXvGXPiv70otbby5PT5bWUyh7AHAH8BKwDDiu6vYM0sZjs38Qq4BFwEGF/Wu1D/hh9sdgJfAicAvpf0hVtWEP4MasPk8A3wDWLeRZBlxQSNscOJ/UZ72c9J+HtSb0VXx+Wm4badHgBaR7gS9n5/fUgT8UI2Xj9QmetbaJo/m8DbV9o+HcZXVu1K5eCpN8gQ1IT2F4Ovu7cRWwc7Of64VSzcyscr5nZGZmlXMwMjOzyjkYmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq9/8BvfWTGtFF1N8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/basket_option_pricing.ipynb b/qiskit/finance/simulation/basket_option_pricing.ipynb index 230c1dd28..c3c05cb3a 100644 --- a/qiskit/finance/simulation/basket_option_pricing.ipynb +++ b/qiskit/finance/simulation/basket_option_pricing.ipynb @@ -127,7 +127,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUadv/LOb3jcdQiihJyG00ARCEPUAD/UQ6+EPEAEFUUTFAnjYERsqCIhoODhPkPMsKKJHAkSqVCGdEEI6IcludjfJJlvm90fcMSGFlN1NYT7/KJnZmXcgO/PM+33f97Gk4DELnWs7sBqj6sAvFjm3JXEePqCtQ+i0GHQmjBc71wA9m2MSyD3uSP9b2zoQyyMzVTLx9cF89+DBtg6lxSimDsNj/s3kKewoPH2a8vJywsPD8fb2tvi5qqqqeP7551Eqlezfv19ySW8i0pKWlTEajWg0GvLy8hgxYgRBQUFtLnbAcoLHPFfi0qVLaDQa4PqZKJOmGN2plFaf29I4Dghu6xA6LeokHUKVNN+otVyNTaayonmZ4Y6Cwi2HPn/reFkK50Bvxu9YweRdrzLm1mjc3NwwGo0EBgaSkZHB0aNHSUhIICcnB61W2yRLosYoKCjgzjvvpHfv3uzYsUMSO81AyvC0kOs91AVBID8/n0uXLuHg4MDQoUMtdm5LTOZsreCpOVdnyJAhKJVKsrOz0Wg0ODk54e3tjbe3N56ennXaJw1H9oCh/S0dOXTzAixTFC5Rm8LjBW0dQqdA0BvIOe1Gn3EVbR2KVRg134eM3TIEY8eopev5wESGvb0AJx8PdDod58+fJyAggLCwMPEebTKZ0Gg0lJaWkpGRQVlZGc7OzigUChQKBZ6enk320zp+/DhLlizh7bffZsqUKda8tE6JJHisgE6nIzExEScnJ0aNGsWJEycsdmxzkXBbCp5ra3VcXV1xdXUVWy0rKipQqVTk5eWRkpKCg4MD3t7e4pdbd+Bwq2K3FvYKeyTBYx3Up9uPWWRH58ovqfQY2QUHx86XMXM0XmXMylEcfeV4W4fSKM6B3oz46HG6/XU0AEqlkpSUFAYMGICPj0+tfeVyOV5eXnh5edGjRw8EQUCn06FUKsnPzyc1NRU7OzsUCgVeXl4oFIo6xc2CILB161a2bdvGt99+S+/e0rywliAJHgsiCAI5OTlkZWUxcOBAfH19LX4Oc9dXa6v9LeGB1VCtjouLCy4uLnTt2hWAyspKlEolV65cIf/Az3TNbYczRRwdkDtUtnUUnRKj3kRViiR4LIWpTEfeeW96RnbOmqiQSDVnu7pSkV/e1qHUS6+/T2LoW/Nw8vFAEASysrIoLCxk2LBhTeqSkslk4j0yKCgIqG5oUalUlJaWkpWVhcFg4NixY9jZ2TFu3Dg+//xzdDodcXFxTe7qlaiLJHhayLUP+vLychITE3F3d2f06NF15iFYyiDOUvYSrfXAas61ODk5Eejvj9fxw1Ts/q4l4Vodp8H9kMk6Rhq9o6FOrsRU2Y5NIjsg+XvT6TZEgb19+1sabi0OVDHulcHsW9C+xlY4d/Fh5LrHCZo6Cqiuz0xKSsLe3p7IyMgW+V+ZcXBwwN/fH39/f+DPOTvfffcdCxYsQKVSMXr0aD755BPGjRtn0Rb3GwlJ8LQCsy9KZmYm+fn5hIaG1luRbxYplhgKZSl7iaYKlqZmdRrDmJuD9tP1GDPa11TlmjiF92zrEDotpac7dqtxe8Sg1FCQ2o/g8M452yioSxHdb+lFdmxmW4cCQK+Zkxj21nwcvasLhM0WEd27dxezNJbE/EJ64MABPvroI2655RbS09M5dOgQn376Kf7+/qxevdri5+3sSIKnFWg0GhISEvD19WXMmDENKnyzSLGU4LH0/JyGaE1WB0AwmdD9/CMV//kS9O273kAebPnWUYlqSs9Iy1nWIPP7CwQN9ETetHrXDoUMgZGPB7S54HHp6sOIdYsJmjJS/NnVq1dJT08nPDzcKlYOJpOJzz77jB07drB792569qx+GevXrx/9+vXj4Ycftvg5bxQkwdMKsrKyCAsLu+4vvSUtISzpmN4QFsnqFF6h7NOPMaQmWyNEi2PylCY0WAOTwYTmd2ngoFUo1pCXHkLwgHZYE2cBPOyLiXwmklPvnWqT8/d66BaGvTUPR0V1VkcQBC5evNgqi4jrUVFRwdNPP40gCMTFxTV7OK1E40h3+VYwaNCgJil8S3tgWepY9VFziKDZkbc5YkcQBHRx/6N0xTMdRuwAePhJ6+HWQJ1Wham89Z5tEvVzZd/VVs91ac+E3WLEydu2dgkuQb5Efb2K0ZueEsWOXq/nzJkzgGUtImqSk5PDtGnTiIyMZOvWrZLYsQJShscGWDIrY8klLXMNkrnVvbVZHVNJMWWfbUR//neLxGcr7EOCkMmkdnRrINXvWJeKS/kU5wzFr/vVtg7FKsgNGia+NYqfH423yflCZt3G0DfnikIHqksXEhMTrWYRARAfH89zzz3HRx99xMSJE61yDglJ8NgES2ZlLJ0tMhqNyGSy1tXqCAJVR36lfPvnCOVlFonNljgN6dfWIXRaSs/kt3UInZ6cWBV+c9o6CusRGFRAlzFBFBzLs9o57Pw86L7yHoJvH4PRyU68F+bl5ZGdnU1ERIRV2sFNJhObNm3i22+/5ccff6R79+4WP4fEn0iCpxW0xEC0tdjZ2VFZaZl5MXZ2dlRV/dku3KKsjrqUspjN6E/9ZpGY2gLHvl3aOoROicloQnMmo63D6PRoEzJRFUagCChp61CsgkwwEvVCH3b9zTqCJ2TWbQx542EqZEZUKhWpqalUVFSInbUDBgzA1dXV4uctLy/nySefxMXFhX379klO5zZAEjw2oD0uaQmCgIODA6mpqfj5+eHj49PsNeOqE8cp2/oJwh8eWh0VnbsMaZSX5dGm6zFq2+fwuM5G9kEdinvbOgrr4SrPY/Cjgzn3yTmLHdOlmx8j1y+m622RADgBCoUCnU7HuXPn8PX1xdXVldzcXFJTU3F0dBTtILy8vJpsB1Efly9fZs6cOcyePZuFCxe2C3/FGwFJ8NiAazMpraG14qlmrc6AAQPQarWoVCpSUlLQ6XR4eHiIPlguLi71fhFNZVrKt39O1ZFfW3Mp7QZFkAcgTVm2NKrTqrYO4Yah9PgFNLeG4eFd2tahWI3BdzmQ9C97DGWtz5b3nvMXhrwxF0ev2q869VlEBAdXmwrrdDpKS0spLCwkPT0dAC8vL9E2p6mFzAcOHOCFF17g448/JioqqtXXItF0JMHTCtpqSaulx7p2ro69vb34xtKrVy8EQUCj0VBSUkJqaqoogBQKhZgB0p8/S9lnGxGUnaMYVebphtxeEjvWQKrfsS05hyF0WltHYT3sDComvDmGuCWHWnwM12A/Rqx/gq63Dq/186ZYRDg7O+Ps7ExgYCAABoOB0tJSVCoV2dnZ6PV68X6pUChwdXWt9YwwmUysW7eOn376ib1791plYKFE40iCxwZYo9C4OTS1A0smk+Hp6Ymnp2ctAaRUKrmQcB6PuJ9RJJ23yHW0F5yHDUBKJlsewSSglup3bEpxfDLlE/vj6q5t61CsRnCfInzC/ShJLGr2Z3vPmcyQNx6uk9UxGo0kJibi4ODQLIsIe3t7fH19Rc9Esyu6SqUiPT2d8vJyYmNjEQSB0aNHs337dvz9/fnf//6Hk5NTs+OXaD3SHJ5W0NQMjyVbyZu7pNWauTpmARRUoaXnjn92OrED4BgqdUVYA9WFCoylnffB2y4xCaTGte+J5q1FZtIz8eWwZn3GNdiP6O9eYeT6xXXETllZGSdPnsTPz4/Q0NBW+WGZXdF79uzJkCFDGDNmDNOnT0cul7Nq1SpOnDhBeno6q1evZt++fWhaUfuYnZ3NzTffTGhoKOHh4Xz44Yd19iktLeWOO+5gyJAhhIeHExMT0+LzdRYkwWMD2mJJyyx0DAZDy9vNqyop+2IrmtWvYCrqnHM+HLr7tHUInZLiE51z+m97p+xoFpUVnbvbx8MplwF/D23Svr0fnsyU3z6myy3D62y7evUq586dIzQ01CrLSzKZjPz8fHbv3s0nn3xCVlYWX3zxBUOGDOGnn35qlReWvb097733HsnJyRw7doyPP/6YpKSkWvt8/PHHhIWF8fvvv3PgwAGeeeYZi9WSdlSkJS0bYGtridZ6YAEYLl5Au3k9pnzrzb5oDzj4OAC28Sa7kdAldY4arw6H3kDuGQ96j+3c060jZ3pw4T9yTFX1u8W7dvdn5IYn6XLz0DrbbGERYTKZWLt2LbGxsfzyyy906VI9+iIwMJDp06czffr0Vh2/a9eudO3aFQAPDw9CQ0PJzc0lLOzP7JdMJkOj0SAIAlqtFh8fH4v4OXZkpAxPK2hO0bKlpyPXh0WyOgY95f/Zgfq1lZ1e7CCXI3e8sd94rIEgCKhPS/U7bcWVn1PRVzm0dRhWxcFYzPhXx9S7rc8jU5ny2/p6xY4tLCI0Gg2zZs3iypUrtcSOtcjMzOTMmTOMHj261s8XL15McnIyQUFBRERE8OGHH7Zqya4zcGNfvY2Qy+UNipTm0pCAaa0HFoAh6zLql19E9/3XYKF42zOO4SHIZJ3/Om1N2WU9hhJ1W4dxw2IsqyAvwbutw7A6vSJK8ezlJf7ZtUcAE3e/zogPF+HgUXdQoFqt5tSpUwQHB9O3b1+rzL65cOECt99+O3feeSfr1q2ziqCqiVarZcaMGXzwwQd1fB1//vlnhg4dSl5eHmfPnmXx4sWo1Tf291ISPB0ci2R1jEYqdn+DetXzGLMuWynS9ofToN5tHUKnRHWm886C6Sjk772I0dC5b+8yo46bVlXX8vSZN5Upx9cRePOQevfNy8sjOTmZiIgIq/hhCYLA3r17mTVrFps2bWLOnDlWHyao1+uZMWMGM2fO5O67766zPSYmhrvvvhuZTEbfvn0JCQkhJSXFqjG1d27sBb1W0tbTMS1Rq2PMz0W7+WOMFy9YIcL2jWNv6xgB3uiUnr7S1iHc8BhK1BSk9aFbWGFbh2JVfAMq6P3pfPS9/ElIT0WhUODt7Y2np6eYWU9NTUWv1xMZGWmVGhaj0cg777zD4cOH+d///mc1g9GaCILAI488QmhoKE8//XS9+/To0YPY2FiioqK4cuUKqamp9O59Y7/kSYLHhpiFiSUwZ3SgZR5YgslE5b69lH/1Bdyglfv2Aa5IE5YtiyAIqM9causwJIDcvVl0HeCMvOUOCO0ao89AjGEPMdKx2tm8oqIClUpFXl4eKSkpyOVydDqd2HJuDbGjVqtZsGABffr0Ye/evTg42KZ26vDhw2zfvp2IiAiGDq2uVXrzzTfJysoC4LHHHuOll15izpw5REREIAgCa9aswc/PzybxtVckwdNKZDKZKDwaw/y20Rr/FfjTAystLQ1fX1+8vb2bXYhmvFpI2ZYNGJITWxVLR8fOTarfsTTluQb0hVKHVnugKq+YjIR+9B3SufzMBJkcQ++/YuxxM8j+vPe5uLjg4uJC165dUSqVJCcnExwcjMFg4MyZMwiCUMsKorXD/1JSUpg/fz5Lly5l5syZNs34jx8//rrPnaCgIH755RcbRdQxkASPjTAPH2yp4Kk5LTk8PByVSkVxcTEXL15ELpeL/lcKhaLBcwiCQOXBOMr/vRV0nbtt9XrYdfVFLu/cQ9raAtWZG7sosr1ReqQMYXDbL79bCsFJQdWg2QheIfVvr2ERMXz48FoWEUajkdLSUpRKJTk5OVRVVeHp6dmgFUSDMQgCP/zwA2+++SYxMTEMH153xo9E+0QSPK2kqRke8yyellTt1+zAksvlODk5ERgYKHq66PV6lEolRUVFpKen1yuATMoSyj7fhP73M80+f2fEaeiAtg6hUyLV77QvKi7mUZw7BL/g5lsxtDeMfuHoQ/8ODm71b7+ORYSdnR0+Pj6iKWh9VhCurq5iHZC7u3udYxiNRlavXs3JkyeJjY294ZeIOhqS4LERLRk+eK0HVkOt5g4ODgQEBIjFclVVVahUqmoBdOECnhdT8T8Yi1xX0foL6STIpYJlq6A+ndnWIUhcQ26cGr9ZbR1FyxFkdhj63IGxezQ0kIEpKysjISGB7t27N3lqstkKwmwHIQgC5eXlqFQqsrKy0Gq1ODo68ssvv4i1Mk899RTh4eHs2bPnhh/i1xHp3H2L7YiWemAZjcZmz9VxdHQkICCAfl27EHbiMIE//yCJnWvxrzunQ6J1lOfrqcrv+JmEzobm3CVUVzvmXB6Tsw9VkU9i7DGxQbFz9epVzp8/32qLCJlMhpubG926dWPQoEGMGTOGsLAwAgMD+eKLL4iOjubixYsIgsBPP/1ESUlJi88FTfPDAjhw4ABDhw4lPDyc6OjoVp3zRkeSqK2kOQaiTfXAakpW53pUnTpBWcwnCGppJkp9eHR1B27sOiZLozrTcjNECeuSc7AKxT1tHUXzMPoPRj/wAXCo/+WkpkXE8OHDrTLkz8nJCYVCweXLl9m7dy89e/bkyJEjHDp0iPfee4+ZM2cyf/78Fh3b7Ic1fPhwNBoNkZGR3HbbbbXsIVQqFYsWLWLv3r306NGDwsLOPWbA2kiCx0Y0ZUnr2lqdlggdU1kZ5f+KoerwwZaG2vlxdkTuILWjWxrVqYK2DkGiAVTH0tDcGoaHov2/AAkyOwz9/oax2/gGszp6vZ7z58/j6enJsGHDrFKUbTAYeO2110hMTCQ2Nlas/Zk6dSpTp05t9fGb4of173//m7vvvpsePXoA2GTGT2dGWtKyEY0taV07LbmlYkef8DvqFc9IYuc6OA0dgIzrF5pLNI+i4zfe8MqORM6Rto7g+phc/Kga8RTG4KgGxY4tLCJKSkq49957cXBwYPfu3aLYsRYN+WGlpaWhVCqZOHEikZGRbNu2zapxdHakDE8rac6Sll5ftw3aElkdQVdB+Y5/URknzVxoCk5hPds6hE6HOq8CCtt/9uBGpvhgChUT+uLiXtbWodSLMWAY+oH3g71zg/vk5eWRnZ1NREQEbm71d2u1loSEBBYsWMDKlSuZMWOG1Vv6G/PDMhgMnDp1itjYWCoqKrjpppsYM2YM/fv3t2pMnRVJ8NgIe3t7Kir+LBy2VK2OPjWZsk8/xlQotQM3Fcee1n1buxEpS5CWCNs9RhM5J5zpd3P7EjyCzB5D/7sxBt3UYFbHFhYRgiDwn//8hw8//JAvvviC8PBwi5/jWq7nhxUcHIyfnx9ubm64ubkxYcIEfv/9d0nwtBBJ8NiImjU8lvDAEqqqqPh6B7q9P0AT5gBJ/Im9nzNSwbJlKT0tFVN2BAr3JdPjpu44ObcPgaqzV5DocBNlufYoyi6Is8NqWjTodDrOnz9PQEAAPXr0sFq9zqpVq0hPTycuLg6FQmHxc1xLU/yw7rrrLhYvXozBYKCqqorjx4+zdOlScUVAonlIgqeVNPXLZxY85uUr82db8uU1ZFxEu3kdprzcZn9WAuycmzcPSeL6qE9fbusQJJqAUKkn94wnvW+62tahYAwcAQPuJdzeCb1eL05BzszMxGQy4enpiaOjIwUFBYSGhlqtjqaoqIi5c+cybtw4vv3221bb/zSVpvhhhYaGMmXKFAYPHoxcLmfevHkMGjRIPEZJSQk+Pj4W9WnszMiuMyVYSh1cB5PJVG9tzrVoNBoSExMJDQ3F1dW1xercmJeLduOHGC9LBo0twaFfDwJfnNjWYXQqKosNHJ/677YOQ6KJ2Hm4MmJ5AA4ObWOtIsgdMPS/B2PXUQ0uYRkMBi5cuEBRUREuLi7o9Xo8PDzEDFBTbSCux9mzZ1m4cCGvvvoqd955Z4cRDUajkVWrVrF//35WrVrFiBEj8PHxkTI/1TT4jyhleKyMuVbHycmJgIAA0tPTqaioEL+8Pj4+uLi4NPl4dkHd8HrtbYovXyb/cDwBmlKcsjMxZmdJS1tNQBbava1D6HQoz7avmhCJxjFqyslP8KbHMNsvQ5rcuqAPn43g3rXBfYxGI0lJSTg4ODBu3DjReFmr1aJUKmvZQJgtdNzd3ZslVgRBYMeOHWzcuJGdO3cycOBAS1yezbCzs2PatGnI5XKeeOIJ+vXrx8svv8yIESPaOrR2jZThaSWCIFBVVdXgtvpqdQRBQKPRUFJSglKpRKfT4enpKQqgmoZ312IwGEhLS6OyspKwsDDR8dek1WBITUGfkoghJQljVqYkgOrB6fE78I/smFNn2yup76Zz5asO0PMs8Sdertz0og929ra7Rxi6jsbQfwbYNTwgsKkWEYIgUFZWhkqlQqVSodFocHZ2Fn2wPD09G8x06PV6VqxYQV5eHjExMXh5ebX62mzJtctXP/30EzExMfz888989tlnTJ48GQ8Pjxt5mavBi5YETyupT/Bc24F1vVods4mdWQCZXXzNAsgsakpKSkhLS6NHjx507dq18WOWlWFIS8aQkoQ+JQljZoYkgICA9+fhqKhfoEq0jBN/j6UiXaon62iEPDKcbqHW7+4U7BzR978XU9eRje539epVLl68SFhYWJ327KZQUVGBSqVCqVSiVquxt7dHoVAgl8vx8fFBoVBQWFjI3LlzmTRpEsuXL2/3yz81l6iuXa4yGo1ivZFarWbJkiV8/fXXvPXWW8ydOxdnZ+cbVfRIgsdaXCt4LNGBZTKZUKvVKJVKSkpKqKqqEo8XHh7eopuBqbwMw4VUDMmJfwqgPwTZjUTQp/OR27WPDpXOQJXKyLG/fNHWYUi0AKdgfyKfdMSaz3yTe1D1EpZbYIP71LSIiIiIqNWh1RrMJsp79+5l3bp1GI1GysrKmDVrFkuXLu0wTucVFRVcunRJnMB8+fJlevasniV2raCZPn06CQkJvPrqqzz44INtEm87QBI81qSysrLZWZ2molKpSE5OxtfXFzs7O5RKJQaDQUzdent7t8hDRqioQH8hpbYAaoa5aUdEpvCg2/vT2zqMTsWVg2pSl33b1mFItJD+jw8jIMQ6tTyGoLEY+v2t0SWsmhYRffr0sUo2QhAEtm/fztatW5k/fz6ZmZkcOnQItVrNiBEjWLduXYt9uLKzs5k1axYFBQXI5XIWLFjAkiVL6t33xIkTjBkzhp07d3LPPU03NtuzZw/fffcdCxYsYPny5QQGBjJr1ixuvfVWcR9ztken03HTTTfh6enJZ599Rt++fVt0XR0cqWjZ2pjFjqWEjtFo5OLFi2g0GoYOHVqrsNloNIotnNnZ2RiNxloCqClvSDIXFxwHD8Nx8DCgelqz4UKaWANkyEjvdALIefiAtg6h01F6uu3bmyVaTvr3Wfg/6WRRoSHYOaEfeD+mwOGN7qdWq0lKSqJ3795W84iqqqri+eefR6lUsm/fPtzd3cVtlZWVnD17tlWmo00xAIXqe/bzzz/P5MmTGz1ezYyN+f9vv/12fvrpJ8aNG8fYsWOZMmUKQ4YMqfU5Ozs7jEYjzs7OxMTEMHLkSH755Rf69u1ba+nrRkcSPK3k/PnzrF69mgkTJhAdHS2avLWG0tJSkpOT6datG/369atzM7Kzs8PHx0ecS2E0GsW168uXLyMIAl5eXuK6dZMEkLMLDhFDcIio/iIJlbo/BFAShpREDBcvdHgBJO/bcGeIRMtQn85u6xAkWoEpu5jCrDACe1rGFsTkEVy9hOXq3+h+trCIKCgo4OGHH+b2229n2bJldep1nJyc6nhXNZemGIACrFu3jhkzZnDixIkGj1VT7BgMBnGa9G+//cbXX39NREQEd9xxB/fcc08dkSYIgih6hg4dypIlS3jjjTeYM2cOrq71u83fiEiCp5WEhYXx5JNPEhcXx5IlSygoKGD48OFERUUxceJEunTp0uS3J5PJxMWLFyktLWXw4MFN/kW1s7PD19cXX19foPrLYhZAly5Vz+sxZ38UCkWTxrLLnJxxGDQYh0GDq2OrrCT38K/oEs7hV1qCkJkBTZg/1K4IkL74lkSvMVKeJgmejk7BrzoCLWAvZwiOwtD3LpA3fH+paRExYsQIq2Uejh8/zpIlS3j77beZMmWKVc5xLQ0ZgObm5vLNN98QFxfXqOCB6nqdF154gYULF4qt8idPnsTZ2ZlNmzaxZcsW4uPjGTp0KOXl5WRkZBAeHo6/f7XANP993n///cTHx/PDDz9w3333WeFqOyaS4GkldnZ2jBkzhjFjxrB8+XJx/HdcXBzz58+npKSEkSNHMmHCBKKiovD3969XAKnVapKTk+nSpQuRkZGtSjHb29vj5+cnFuUZDAaxADojIwOZTIZCoRAzQNe76VRUVJCYmIhX9570mTgJuVyOUFWFIeMChuSk6mWw9LR2L4A8u3khWUpYDtXv5VLnXydAczaD0imD8PJTtujzgr0z+oEPYgoY0uh+trCIEASBrVu3sm3bNr755hv69Olj8XPUR2MGoE899RRr1qy57n1WJpPh6OjIrl27GD9+fK3ZQDqdDoPBwIoVK3jggQcICAjgyJEj6HQ6FAoF3333HUOGDBGXr8LDw3F0dCQ1NRWoW9x8oyIVLVsZnU7HkSNHiIuLIz4+Hq1Wy+jRo0UB5OLiwooVK4iIiOC+++6zWnq3Jnq9HqVSiVKpRKVSIZfLxRZ4Ly8v8YspCIKYeh44cGCj/jKCXo8hI726DT45EUN6KjQwn6hNsJPTbfMsZLIbrzPNWlxYl0n+9vi2DkPCAniPHUD43dpmf04t9yHL5y+4+ffE29u7wRliJSUlpKamMnDgQLy9rTMHq7KykmXLllFWVsaWLVtsci+F6vvptGnTmDx5cr2eWCEhIZifs0VFRbi6urJ582b+9re/1drPLFYeffRR3NzcWL16NU5OTpw7d47HHnuMtLQ0/P39ycvLo0uXLsydO5dbbrmFxYsX4+joSHx8fK3jfPTRR3z11VfExsaKo01uEKQurfaCVqvl8OHDxMXFsXfvXgoKChgxYgSzZ89mwoQJeHh42FyJV1VV1RJA9vb2TsvH3AAAIABJREFUeHp6olKpcHd3p3///s12JxYMegwZF/+YA5SIIS0VqtquHdxp2AD8n2jder1EbU7MPkBFclZbhyFhIYa+FIq7l7rJ+xu6T6Qq5HbU2nLx/lFZWVnLAsLFxYXs7GwKCwuJiIhodKhqa8jPz2f27NlMnz6dpUuX2my+jiAIzJ49Gx8fHz744IPr7j9nzhymTZvWaJfWq6++ys6dOzlz5oxYq3P69GnOnDlDZmYmDzzwAN999x3Ozs4sWrSI999/n48//phTp07RpUsX8ThHjx4lISGBWbNmSYLHvEESPLZHr9ezZs0a9uzZw/vvv09RURFxcXEcPnwYmUzG+PHjmTBhAjfddJPN3lJqkpubS0ZGBu7u7lRWVuLg4CBmgBqbYNoYgsGA4VK1ADKkJqFPSwGd7ZaXPB6ajNekhmeBSDSPKo2RY7f9G0zSLaKz4HdLOAOnqq67n2Dvij7s75j8BtXd9scUefMSukqlwsHBge7du+Pj49NsC4imcOTIEZ5++mnef//9Wq3atuDQoUNERUUREREh3hevNQA1IwgCDz/8cIOCx7zsVFxcTN++fVm2bBnLly9v8NzPPvssAwcOJDY2ltLSUv773//WEpSCIFBcXNxh5g1ZEEnwtCdefvll7O3tef7552t1UAmCgFKp5ODBg8TFxXH06FGcnZ0ZP3480dHRjBo1qlm+W81Fr9eTkpICwMCBA8XYKisrxSnQarUaR0dHUQB5eHi0TAAZjRgzM8QuMH1qCugqLHo9NfF96f9wCZHWsC1F0TEtSU/+t63DkLAgMjs7Iv/RG2e38gb3MXn2omrQbHBufFnKbBERHByMl5eXmD3WarW4uLiIYzRaev+A6gLozz//nC+//JIdO3aIw/jaKxqNBg8Pj+vuV1lZyYoVK/jxxx/Ztm0bI0eOrNcU9NSpUzzwwANcvXqVvXv3MmbMGGuF3tGQBE97oqkFZIIgcPXqVfbv38/+/fs5fvw4Xl5eYv3PiBEjLJaqLC4uJi0tjd69exMY2HgmRKfTiW9wGo0GJyenWgKoJW9wgtGI8XLmn3OA0pIRyhu+8TaXwI/m4+AuTVi2FOkbL5MXc7Ctw5CwMF3uGEzf6OJ6txl63IKh9+0gb7z4tjGLCEEQallAaDQaHB0da3lgNaVzq6KigqeffhqTycTmzZut+iJoCZYtW8bly5cZNmwYU6ZMYdiwYY3uHxsby4svvkhISAgbNmzA19dXrM3Zt28f33//PWfOnEGtVhMeHs4777xDt27dbHQ17R5J8HQGzEXEcXFxHDhwgJMnTxIQEEBUVBQTJkxg2LBhzR7LbjQaSUtLQ6fT1TIjbQ4VFRW1BJCLi4sogFqawhZMRgyXMyn57RiViedxv5IPFS0XQEGfPYJc1r67yDoSp+cfQvt7RluHIWFh5M5OjFjZDUfnP18OBAc39GEzMfmGNfLJlltE6HQ6UQCVlpaKHlje3t54eXnVqR/Myclh9uzZPPjggyxevLhd+2Gp1WoeeOAB/P39WbBgAZ9++in9+/fnxRdfBGj03rh69Wq2bdvGrbfeyrp168Sfm7uAFQoFCxcuZPfu3Rw7doznn3++RbZDnRBJ8HRGBEHg8uXLxMXFsX//fs6ePUtwcLA4BDEiIqLRtyWVSkVKSoroTGyJtXXzG5x5CUyr1eLq6ioKIDc3tyadp6qqiuTkZBwcHOjfvz92chnG7CzRDNWQkoRQ1rSuErvuAXR9xTazOG4EDDoTRyd9iWDo2IMoJeqn273DCBldbTdh8upN1aBZ4NRwhyZY1iLC7IFlFkBXr17lhx9+EJs6Xn/9dT766CMmTpzY4nPYitjYWL7//ns+/PBDoNomYtmyZZw6darBAm7z8pXJZOK5557j+++/Z+LEiWzevFncR6fT1fr8yZMnCQ0NbZOaz3aIJHhuBMyDC80CKCEhgd69e4sCKDQ0FLlcTkVFBZ9//jmjR48mPDzcqulgQRAoLy8XM0BlZWW4ubmJAsjV1bXOzbGoqIgLFy7Qp0+fBkfOCyYTxtzs6jlAqdXLYIJGU+++btPG4313b4tf241K8YkyEh//uq3DkLASdp5ujFzuD31vxtBr8nWXsMwWEX369BEH4FkSjUbD3r172bVrFydOnKBLly5MmDBBXNqv2ZnUEprih/XFF1+wZs0aANzd3dm4cWMde4f6KCsrQ6PR0KVLFwwGA2VlZdx///188cUX4qBYqFvmYBY9SqWS7du389JLLzF16lSefvppRo0aJe5XcyKzhIgkeG5ETCYTKSkp4hJYcnIyQUFBXLp0icmTJ7N69Wqbf1kEQaCsrEwUQOXl5bi7u4vp6+zsbCorK5u9vCaYTBjzcqttMP7IAgnq6nH53kvvwy3COu2wNyIXP80m99P9bR2GhJWQuzgR+umLuISFX3df85yuQYMGWS27UF5ezpNPPomzszMbNmxAEASOHz9OfHw88fHxvPrqq4wdO7bFx8/Pzyc/P7+WH9a3335byx7iyJEjhIaG4u3tzU8//cTLL7/M8ePH6z1efQXGZnJycrj//vs5dOgQMpmMS5cuERISUu++ZhFkNBo5e/Ys8+fPx93dnaFDh/Lmm2/W8gWTqIUkeG50jEYj77zzDl9++SVTp04lKSmJjIwMBg0aJL4thYSE2HwGkCAIaLVa8vLyyMvLw87OTsz++Pj4tDj7JAgCprxc9KlJuIR74uxbiox2NAixA3PmsaNoTl9o6zAkrICdpxv9PlqO++D+je5ntogwGAyEhYVZzSIiKyuL2bNnM3v2bBYuXGiT+9Ndd93F4sWLue222+rdrlQqGTRoELm5uXW21TTqLCwsJCAgoJYA+vXXX9m8eTPbt29n0aJFeHt7s2rVqkYNTM2fz8nJISEhgddee43FixczderURofB3sBIbuk3MjqdjilTphAdHc3JkyfFYkKDwcDZs2eJi4tj2bJl5OTkMHToUNEHrFu3bla/wZg70dRqNaNGjcLV1VWc45GSkoJOp8PT01P0AmuqAJLJZNh1C8auWzACUCEIyNBiJxQhF4qxE4qQIRUxNxdjpQltQmZbhyFhBRz8FPT7eCWu/Rpv77aFRQTAgQMHeOGFF/j444+JioqyyjmupSE/rJp89tlnTJ06tdbPzIkDOzs7cnJyePHFF8nMzGTbtm21MjgODg5cvnyZKVOm4O/vz4YNG64bk1ksBQcHExwczLhx47Czs5NMQVuAlOG5QcjMzKRXr16N7qPX6zlx4oS4BHb16lUiIyOJiooiOjqawMBAi97cysvLSUxMxMfHh5CQkHrTwCaTqdYgs8rKSjw9PfHx8Wl0lP11EQRkaP4QQEXYCSWSAGoCJafLSXjsP20dhoSFcQzyp/+Gl3Du0bXR/WxhEWEymVi/fj179uzhyy+/tFm7tVarJTo6mhUrVnD33XfXu8/+/ftZtGgRhw4dqlWDY2b37t3MmTOHwYMH07dvX1auXFlrPtCPP/7IHXfcwYYNG2oNJTQajeTm5tKjRw/LX9iNh7SkJdF8KisrOXr0KPv37+fgwYOUlpYyatQosVjQ19e3ZS3nNTy6QkND8fLyavJnTSYTarVaFEB6vb6WAGrxXCJBQEYpdkIxGAqRC8XY20m//tdy6bMcsj+Ja+swJCyIc0g3+m98CceAug9wM4IgkJWVZXWLiLKyMh5//HG8vb356KOPbGaJcD0/LIBz584xffp0fvrpJ/r3r7vk9/333zNv3jzmzZvHggUL6NmzJzKZrFZB8tWrV8nLy6tV8JyWlsaDDz7IPffcI7arS7QKSfBItJ6KigrRByw+Ph6dTsfo0aOJjo5m/PjxeHl5XVcAVVVVkZSUhJOTU3W7eSvX/k0mE6WlpaKXj16vx8vLSxRAja2N18eVK1fIyMhgwID++HnLxeUvuVCCDKkN++zi46h/S23rMCQsRc8u6BdNxy3QT1w2vnZ0hMFgICkpCUdHR/r372+1uTeXLl1izpw5LFiwgHnz5tmsnrApflhZWVlMmjSJbdu2NVggPW/ePMrKytiwYYOY/TLX9DRUyPz999/zwgsvsGLFCmbOnGm5i7qxkQSPhOXRaDQcOnSIuLg4Dh06hNFoZOzYsURHRzN27Ng6Y9QzMjK4cuUKffv2tUr7KlTfYGoKIKPRWEsANTQMzWAwkJqaitFoJDQ0tO5+ggk5qmsE0I3lvG7Umzg66StMlVLxd2fAPTKMfmufR+7mInZOKpVKysrKxNlZzs7OZGRk0KNHD4KCgqwWy759+1i5ciWbN2+2uUVCU/yw5s2bx9dffy0uT9nb23Py5Emg+qWrqKiIkSNHsnjxYpYtWyYKnMYEzyuvvMLatWvx8/MjPT0dqM40NXd4rEQdJMEjYV0EQaC0tJT4+HjRCNXe3p7x48czatQovvzyS+RyOVu2bGl21qU1GI1GcYiZUqnEZDKhUCjw8fFBoVDg4OBAaWkpycnJ9OjRg65duzbtzVIwXiOAlJ1eACnP6Tg/76u2DkPCAnhFRdJnzVLkznWXjMyzs7KysigoKMDR0VEUQK31v7oWk8nE2rVriY2NZceOHa2eqdNWVFZWMmDAAB566CFef/11oHoi8q5du7h48SIGg4E333xT7Gh79913+fXXX9m5cycTJkzgrrvuYsWKFW18FZ0GSfBYm7lz5/LDDz8QEBBAQkJCne0tHVzVUTE79X766aesXbuWPn36YG9vL9pgjBo1ymp1AI1hFkDmSdC6Pxzb+/TpQ2BgYMvnEglG5IJS7AKTo0TWyb4+mf/MI+vjfW0dhkQr8Zk6nl4vP47cof7fdbNFhEajYdCgQdjb29fyv1Kr1aJ/ntn/qiUCSKvVsnDhQrp27cr7779v0xchSyIIAnq9nqVLl7Jx40b+/ve/o1Qq+emnnwDo0qULBQUFjBgxgl27dtGzZ08SEhIYNKjabX737t2sW7eOd955p1M/E2yIJHisTXx8PO7u7syaNatewdOcwVWdAYPBwBtvvEFsbCwxMTH07t2bK1euiEaov/32Gz4+PqIAioyMtOkNr6KigsTERLy8vPDy8kKlUqFSqZDJZLUyQC2uMRIM1wggVYcXQKefOI72uFS/05Hxv/cv9Hj+EWQNCJSmWkSYDYTNAsjBwaGW/9X1vjcXLlzgkUceYfHixcyePdvm87+swa+//sqaNWvYs2cPISEh3H777fzlL3/hlltu4b///S+zZ89m9erVPPfcc7U+d/nyZd5//31CQkJYtGhRhxV+7QhJ8NiCzMxMpk2bVq/gqUljg6s6C0VFRcTExLB06dJ6syaCIJCbm0tcXBxxcXGcOXOGLl26iC3wQ4YMsdoU6IKCAjIzMxk4cGCdwV16vV7MAKlUKuRyuTgIsSk38gYRDMiFkmsEUMfBpDdx6JavQCfV73RUujw8nW6LH2xQXLTGIqKyslIUQNcagF774rB3715eeeUVtmzZwsiRI1t1Te2NsrIyEhISGDx4MHK5XOwyU6vVjBs3jltuuYW1a9fW+TfYuHEj8fHxrF27li5dutSxmpBoFpLgsQVNFTzvvvsuKSkpbNmyxUaRtX8EQeDSpUviDKDff/+dHj16iEMQw8PDW93RZTAYSElJQRAEBg4c2KTiQL1eL7bAl5aWipOgzTfyFtcyCHpRAFUPQVS3awGkStJxbo5Uv9NR6fbkQ3Sdc1eD2y1tEVHTAPTMmTOsXbuWESNGiN/zXbt2NeiT11moWah89epVwsLCeO6551i2bJm4T01hM27cOMaOHcs777zTJvF2IiTBYwuaIniuN7hKohqTycSFCxdEI9SkpCT69u0r2mAMHDiwWWLD7Azfs2dPunZtfLhaY1RVVdUSQA4ODmIGqKW1DIIgkJtziaryHHr39MDZvhQ59RuhthVJn6RT9NmRtg5DornIZPRcPh//GfXbJNjKIuLSpUs8//zzFBcXi7Npxo4dy4QJE5g0aVKdjs7m0BTzT0EQWLJkCXv27MHV1ZWtW7cyfPjwZp+rqZmXmhYTVVVVfPrpp2zatInt27czdOjQevf99ddfeffdd/n2228BpAxPy5EEjy24nuC53uAqiYYxmUwkJSWJGaC0tDRCQ0NFAdSnT58GJzVfunQJpVJpFWd4cyq/pKQEtVqNo6OjKICa0s1inkvk7OxMv379/nzgCJXYCcV/doGhtWjczeXUk8coO5bWpjFINA+ZvR0hrz2Bz+Rx9W43W0QEBgbSvXt3qz1gU1JSmD9/PkuXLmXmzJnIZDK0Wi1Hjhzh4MGDPPjgg2IBb0toivnnnj17WLduHXv27OH48eMsWbKkyTWU5mfktUMEm0JSUhK7d+/mlVde4cUXX+Sll15q8BySwLEYkuCxBY0JnqYMrpJoOkajkXPnzokC6NKlSwwePFgUQD179iQ1NZV3332X5cuX06tXL6sNTKuJuZizpKQEjUaDo6OjOAPI09Oz1k3NPKa/SXOJBN01AqjMylfyJyaDiaN/+S9GbbnNzinROmRODvR551kU4+vPYtjCIkIQBH788UfefPNNPv/88xZlVFpCfeafjz76KBMnTuTBBx8EYMCAARw4cOC62d6ay1KxsbF88803uLm5MWjQIP7v//6vwc+lpqby3HPPkZeXR35+PqtXrxb3v564acxtXaJJSOah1ubBBx/kwIEDFBUVERwczCuvvIJeX+3N9Nhjj/Hqq69SXFzMokWLgNqDq1rK9VrhzZw4cYIxY8awc+dO7rnnnlads71gZ2fHsGHDGDZsGM888wwGg4HTp08TFxfH0qVLxVqd2bNn4+zsbLO3J2dnZ7p27SreSCsqKlAqlWRnZ6PRaHB2dsbb25uysjIqKioYNmxY09rzZc4YZd0w0g09IBMq/hA/xciFIuRYT4xoM/SS2OlA2Lm70PeDF/EYHlpnW02LiCb/7rUAo9HI6tWrOXnyJPv27cPPz88q57mWhsw/c3Nz6d69u/jn4OBgcnNzryt4zMJj9erVvPLKK0RHR1NSUsLatWs5fPgwS5cuZcCAAXU+5+vrS1BQEIMHD2bu3LmigWhTxIwkdqyHJHgsxJdfftno9i1btli8SHnOnDksXryYWbNmNbiP0Wjk+eefZ/LkyRY9d3vD3t6eUaNG0b9/f86fP090dDQzZ87kt99+49FHH6W4uJgRI0aIPmABAQE2EUEuLi64uLgQFBSEIAioVCoSExOxt7dHEARSUlLEDJC7u3uTYxJkLhhlwRgJBkAmlNcYgliMnAqLXYPqtMpix5KwLvYKD/p9vBK30N51ttW0iIiMjLTag1WlUjF//nzCw8PZs2eP1botr0Wr1TJjxgw++OADPD09a22rbyWjqd+1M2fOsGXLFtauXcvMmTPx9PTk1KlTYofZm2++iY+Pj7i/yWTCz8+P999/X1xCNwsdScy0LZLg6cBMmDCBzMzMRvdZt24dM2bM4MSJE7YJqg3R6/VMnTqVp556ivvvvx+AyZMn89JLL6HT6Th27BixsbFs2bIFrVbLqFGjiI6OJioqCm9vb6sLoCtXrpCZmUlERAReXl7iRFulUsmlS5fEkf5mAXStp1FjCDJXjDJXjHT/wwj1WgGka3HcpWfyW/xZCdvhEOhL/w0v4RJS113c3C7dvXt3q1pEJCUlsWDBAp577jnuv/9+m2VW9Xo9M2bMYObMmfU6nQcHB5OdnS3+OScnp96/h/qWm44fP45Wq2X69OmikPrqq6+QyWSMHz++ltiBPzM0ZrEjCIIkdNoJkuDpxOTm5vLNN98QFxd3QwgeBwcH9u/fX2+a3tnZmYkTJzJx4kSg+gFw5MgRYmNjWb9+PVVVVdx0001MmDCBcePG1am3aQ1mny6TyURkZKTYDi+TyXBzc8PNzY3g4GAEQRA9jS5evEh5eTlubm6iAHJ1dW1aTDIZAm4YZW4Y6fGHACoTBZCdUIyMyibFLpgENKczWnP5ErYgwBuv1xdi9Peq89AuLCwkIyOD8PDwVnVDNYYgCHz33Xe88847bN261aYTgwVB4JFHHiE0NLRBp/M777yT9evX88ADD3D8+HG8vLzqLGfV7KwqKirC3d0dZ2dncZ5Oly5d0Ol0REVFkZ+fzy+//MItt9wiWtY01HUrFSO3HyTB04l56qmnWLNmjdVaTdsjTa1JcHNz47bbbhMLG9VqNb/++itxcXG8++67CILA+PHjmTBhAjfddBPu7u4tisc8zK0pPl0ymQx3d3fc3d3p3r27KIBKSkpIT0+nvLwcd3d3UQC5uLg0QwC5Y5S5Y6TnHwJIi51QjKEyD3tKcHSovz9Be6kKQ2nbdohJNI5Lv550e3spGrmJjIwMMVOoUCgoKytDp9PVEtqWxmAw8Nprr5GQkEBsbGydjIe1OXz4MNu3byciIkJs+b7W/PP2229nz5499O3bF1dXV2JiYmodo6bYeeutt4iPj2fWrFnce++9KBQK1Go1b7zxBh988AFhYWHExcXRv39/1Go1S5cuZcyYMTz22GM2vW6J5iN1aXVwGusMCwkJEdeui4qKcHV1ZfPmzfztb3+zdZgdCnOtzcGDB4mLi+Po0aM4Ojoyfvx4oqOjGT169HXb283FoVeuXCE8PNwiw9wEQUCr1VJSUkJJSQk6nQ4PD49aAqipmEzVD8fS0lLCw8NwcdKLy1/VGaDqgvvsXYVcemdvq2OXsA5ug/vT76MXsff8U5CbjXyTkpKAaiHt4uJSy/zTUlmHkpISHnnkESIjI3nttdfa/ctVTWFTH3fffTfHjh1jwYIF/OUvfxE7aqdMmcIvv/zCAw88wOeff46zszOVlZV8/fXXrF69mmeffZbZs2fb6jIkGkdqS++sNHW685w5c5g2bVqn6dKyJYIgUFRUJPqAHT9+HA8PD7EAeuTIkeIIeaieWpuTk4NCoaBv375WW78XBAGNRlPLCNXT01MUQA1lu3Q6HQkJCfj4+BASElL34ScIyFBjJxSR88/j5Mfsxai1XBG0hGXwHDOYPu8tw86l9r/ztRYRgiBQUVEh2qWYuwXNvyctFUAJCQksWLCAlStXMmPGjA6zdFNRUcG5c+fqdHLFxMSwatUqYmJiiI6OrlVsnZOTw/jx4wkKCmL27Nn4+/tz+PBhNmzYwPLlyxucryPRJkiCpzNSsxU+MDCwTit8TSTBYzkEQaCgoECcAn3y5En8/PyIiorC2dmZzZs388knn9h83pLJZKolgKqqqmoJICcnJ65evUp6enqz5q8IBiNlKRloTiai+S0B7dkUTLqm1QBJWAfFpNH0fnMJcsfay1Rmi4iIiAhcXV3r/axZAJm9r2qOSzALoMZEuiAIfP3113zwwQds27atVUMDbY1Wq2XmzJn4+vqyefPmWqLmvvvuIzs7m6NHj4o/EwRBLDpOTU1l1apVxMfH4+fnh6OjIytWrGD69OmAND+nHSEJHgnL0JTZPwcOHOCpp55Cr9fj5+fHwYMHbRylbREEgfT0dJYsWUJSUhJ+fn74+fkxYcIEoqOjGTx4cJuk+k0mE2q1WhRAGo0GOzs7evfujb+/f4tdmU16PWUJ6WhOJKA5mYj291QEvcHC0Us0hO+dN9Nr5aPI7P/8nWqtRURNAaRWq3FychIFUE3LFIPBwKpVq0hPT2f79u11zHc7AsePHycyMhJ7e3tRpBgMBmbOnMmVK1c4cOAA0PCAwCtXruDg4IC9vT2enp61RJFEu0ASPBKWIT4+Hnd3d2bNmlWv4FGpVIwdO5a9e/fSo0cPCgsLO71JYHp6OrNnz2b69Ok8/fTTyGQyLl68KE6BPnfuHCEhIaIACgsLs+nNsby8nISEBPz9/fHy8hIfbEajES8vLzED1NKiVpOuEu25NDQnElCfTKQ8MR3BYLTwVUgABPz9r3R/ehayGr8/1rCIqCmAtm7dyokTJxgxYgSnT5/m1ltv5ZVXXmn39TrXcm0GZvHixVRUVPDZZ58BsGjRIr799lt2795NZGRkrc8eO3aM7Oxs7rjjjlpLxVJWp10iCR4Jy9FY3dCGDRvIy8vj9ddfb4PI2obvv/+eoKAgRowYUe92k8lEWloasbGxHDhwgOTkZAYMGEBUVBQTJkygf//+VrtpFhQUkJmZSWhoKF5eXrW2GY1GSktLxQyQyWRCoVCIb/YtFUDG8gq0Z1JQn0hAcyKB8pRL0Ph9RqIJBD12H13n31OvPYk1LSIA9u7dy3vvvYebmxtFRUX4+voyceJEoqOjGTt2bKt/f6+XOS4tLeWhhx4iKysLg8HAs88+y8MPP9zk49fM1hgMBqqqqnjsscc4fPgwzzzzDIsWLaK4uJj+/fszadIk3njjDdHvsKSkhGeeeQZ7e3vWrl3b4o5NCZshCR4Jy9GY4DEvZSUmJqLRaFiyZEmjk6BvREwmEwkJCWIGKD09nfDwcNEHLCQkpNUPEKPRSGpqKnq9nrCwsCaJF6PRiEqlEotbBUGoJYBaOjHXoNaiOZ1cvQR2IoGK9KwWHedGpvuyhwl88HbxzzUtIiIiIqxmESEIAjt27GDDhg3861//IjS02q4iPz+fgwcPcvToUdauXdvq39frZY7ffPNNSktLWbNmDVevXmXAgAEUFBQ0aVm2ptjZunUrKpWKp556SnRwP3fuHB9++CGTJ09m9+7dTJ8+nVGjRjF9+nRcXFz45ZdfOHr0KLt27RLneEm0ayTBI2E5GhM8ixcv5uTJk8TGxlJRUcFNN93Ejz/+KLnDN4LRaOTs2bOiAMrKymLIkCFERUUxceJEgoODm7VMYZ6qGxQU1OzP1sRgMNQSQIAofry9vVu8pKHNLyT5u59xuVyIkJJF5eW8Fh3nhkAuo9fLj+M3LVr8UU2LCGtmB/V6PStXriQnJ4etW7fWyRBamsbuK6tXryY7O5uPP/6YzMxMbrvtNtLS0mpde301NzWXnOLj45k0aRKvv/46CxcuxMvLi4MHD/KPf/yDyspK/v3vf9PpVs6kAAAgAElEQVS7d2+++eYb/vnPf7Jv3z569eqFn58fW7dupVevXpKrecdAEjwSlqOxG9Nbb72FTqfj5ZdfBuCRRx5hypQp3HvvvTaOsuOi1+s5deqU2AVWWFjI8OHDRQEUGBjY4E03Ly+PrKwsq0zV1ev1ogAqLS1FJpOJ4kehUDRJANXXJVZ1tQTNiUQ0J86jPplIVW6hRePuqMgc7Om9+im8J/3ZPm0ri4jCwkLmzp3LzTffzIoVK2xSp9LYfUWj0XDnnXeSkpKCRqNh586d/PWvfxW3NzZfp6qqinfeeYeysjIA/vGPf9TKiH3xxResWbOGPn36sGvXLuzt7dHpdBQXFyOXy8WJzNeb4SPRbpAEj4TlaOzGlJyczOLFi/n555+pqqpi1KhR7Nixo0O1rrY3qqqqOHbsGHFxcRw8eBCVSsXIkSOJjo5m/Pjx+Pn5UVpayj/+8Q/mzp3LoEGDbGLYqNfrUSqVogCys7MTBZCXl1eth4PJZOLixYtoNBoGDRrU6FJEZV4hmhOJqE+cR3MiAf1VpdWvpb0hd3Gi7/vP4Tl6sPgzW1hEAJw+fZrHH3+cN954g2nTplntPNfS2H3lP//5D4cPH+b999/n4sWL3Hbbbfz+++94eHiIHVKlpaWsXr0ajUaDu7s7S5YsISgoiO3bt/Pss89SUVHB+vXrmTVrVp3OqtWrV/P5558zffp03n777Trnl8ROh6JBwSNZS0g0i5qzf4KDg+vM/gkNDWXKlCkMHjwYuVzOvHnzWi12rF3Q2N5xdHQU63uguoPm6NGjxMbGsmnTJoqLiykrK+OOO+6gZ8+eNrsxOzg4EBAQIHbhVVVVoVQqKSwsJC0tDQcHB9EENSsrC19fX4YNG3bdJQGnoACc7grA766bEQSByqx8sQBaczIRg1Jti8trM+w83Oi3bjnug6uXgQVBEMWiNS0iBEHgX//6F1u2bGHXrl3tahk6JiaGF154AZlMRt++fQkJCSE5OZnRo0cjk8k4ePAg999/Pz179hSX/A4cOMDGjRu57777SEhI4N133+Xs2bPMmjULmUyGTCYTl7wWLVpEfn4+mzZtIiwsjDlz5tQ6vyR2OgdShkeiRVy7lm00Vrchy+Vyi69xW7OgsSMjCAIbN24kJiaGBQsWcOHCBQ4dOoTBYGDs2LFMmDCBsWPHWtRKoDlUVlaSlZVFTk4ODg4OuLi4iC3wNWe7NAdBENBdzK4WQCcT0JxMwqgps0L0bYO9r4L+G1bi2q8nUC0iExIS8PLyonfv3lb7d6yqquKFF16guLiYmJiYNulEaizDs3DhQgIDA3n55Ze5cuUKw4cP5/fff8fPz49NmzaxaNEinn32WZ566ikUCgUXLlxg3Lhx3H777Xz11VdcvnyZ5557jgMHDhATE8Ptt98uih3zf5OSkvjnP//Js88+i7+/v82vX8JiSEtaEpanoKCAoqIiwsPDrf5AbW1BY2dkwYIF2Nvb895774k+WoIgoFariY+PJy4ujsOHD2NnZycaoY4ZM8Yivl7Xw5yVKC0tZdCgQTg5OaHT6WoNt3N0dKxlb9AiAWQ0Up52uXoG0IkEtGeSMZXrrHBFNsDXC/3iu/Ho00McC5CRkSFaRFiLgoICHn74YaZOncpzzz3XJt+b602Nz8vLY86cOeTn5yMIAi+88AIPPfQQx44dY9q0afTs2ZNTp04Bf76Mbdy4kccff1wcA3HkyBFWrlyJVqvliy++oF+/fg0uVUnzdTo0kuCRsBxqtZrPPvuMnTt3UlRURGFhIUOGDOGhhx7i7rvvtsrNuTUFjZ2VgoICunTp0ug+giBQUlIiGqEeO3YMFxcX0Qh11KhRFm9prqysJCEhAYVC0WhWQqfTiTOA1Gq1RfydTHoD5UkX0ZxMrBZAv6cgVOpbe0lWxzmkG/03voSDvw8ajYbMzEyKi4txdHSsNRyyOQaxTeG3337jySef5O2332bKlCkWPbYtUKlUrF+/nrVr1/Lyyy/zxBNPUFlZiZOTEzt27ODRRx9l//79DB8+HICdO3fy1ltv0b17d3bt2oWTk1Md0SN1YnV4JMEj0XrMbz3r16/n9ddfZ9KkSSxcuBCtVsvevXvZs2cP9913H2+88YbFz92SgkZPT0+Lx9HREQSBwsJC9u/fz4EDBzh+/Dje3t7iEMTIyMhWLQWaB+H1798fX1/fZn3WbHBptsGouQTm7u7eMgFUpafsfBrq36rrf8rOp7W7KdCuob3pt34FDt6edSwi5HJ5HYNYDw+PVgsgQRDYunUr27Zt49///jd9+vSx8FVZH7MwycrK4rXXXmPXrl3s2rWL2267DYB77rmHs2fPcuzYMXx9fcXfn/fee48tW7YwZswYYmJi2vISJKyDJHgkWo9Z8ERFReHj48POnTtxdnYWXbs3bdqEQqFgwYIF6PV67OzsLJYWbkzw/PWvf+WFF14gKioKgEmTJvHWW28xatQoi5y7MyMIAnl5ecTFxREXF8fp06cJDAwUi6SHDh3apI4vQRDIyMhApVIRHh7e6qxRTYdvpVKJVqvF1dVVfNC7ubk1WwAVFxeTdj6RHno7hJRMNCcSKUtKB1Pb3ebcI8Pot/Z57Nxdm2QRYTaINS8N6nQ6PD09xe64pgigyspKli1bRllZGVu2bLHJEqe1OX36NMuXLyc9PZ3//e9/PPbYY5w/f559+/YRFhYG/Hn/0mq1PPHEE6jVav71r3/h7OwsZXQ6F5LgkbAco0aNQi6Xs2vXLrp3796kFLDBYEAmk7W426GlBY0SzUMQBC5f/v/27j2u5vuPA/jrnEqpKBUVKVG6qLQala6S2xgmdxstMTbTGMvGz/Dr5zdmmyGGGdZm8zN3qg2VKddidFuF7jfS7ZxOl3N5//5o57uOruhi+TwfD48H53zP93yPTt/v+/v5vD/vdxZXA+iPP/5A//79uT5gNjY2DX6GVVVVSElJQc+ePTFw4MB2yX0gIohEIi4AqqyshIaGBnr16gUdHR2oq6s3+R0kImRkZKC0tJTLJ5KTCkUQ3E7hVoCJUjM7rA2GlpsDBm1ZAb6a6jO3iHjaAKigoIDr+7Z8+fIulacSHh6O1atXIyEhAS4uLvjhhx9gamqqkI8j/3txcTE7P3RdLOBh2s7evXuxePFiLFy4EKtXr4apqSmAuros8iWzhw4dgr6+PsaMGfPcJ9VnTWhknp+8fs7FixcRFRWFpKQkmJmZwd3dHZ6ensjIyMDGjRtx8uRJrkBbRyAiVFZWcgGQSCSCpqYmFwB1794dPB4PtbW1SEpKgqamJgYNGtTid1FSJoAgPhmCuLok6OoHue1y/Drj3TBg/XvgKSshOzsbjx49go2NzXOPjD0ZAOXl5eGHH36Ah4cHDAwMsGXLFnz55Zfw8fFpo0/S/urn2DSWTCy/4ZLJZNi/fz/+85//wMvLCwcPHlR4vqV9M10GC3iYtlNZWYnPPvsMISEhEAqFmDdvHtasWcMFPgUFBZg2bRoKCwuxZs0a7NixA5aWlnj//fcxYsSIRvcplUrB4/FemDvOnJwczJs3D4WFheDz+Vi0aBECAwMVtiEiBAYGIiwsDOrq6jh48CCXHNlVyWQy/Pnnnzh//jz27t2LsrIyODs7w9PTEx4eHjAzM+uUnyERQSgUcgFQVVUVVFVVUVlZCVNTUxgZGT3TfsXFpRDEJ3N1gGpyCp/7WHtPGw3j1QGQymTt3iKitrYWsbGxOHToEK5cuYKePXvCxcUFXl5e8PLyQv/+/Z/7PVqqkwUA0dHRXJ89PT09XLp0qVX7FgqFOH78OKRSKVdbKzw8HH379sXQoUO57eRBTVlZGbZv346tW7di8+bNWLJkCVtx9fJhAQ/T9sLDw7Fr1y6EhYVhwoQJ2LdvH/T19REbGwt/f388evQIPj4+GDlyJA4ePAiJRILTp0+jX79+T/U+MTExUFFRwauvvtphd2MFBQUoKCiAg4MDV/Dt5MmTXD4AAISFhWHHjh0ICwvD9evXERgYiOvXr3fI8XWm4uJizJs3D3Z2dli/fj1SU1O5TvAZGRmwsbHhpsBMTEw6PD+CiJCTk4O8vDzo6elBKBQqTPXo6Og880hKbWExKuLq2mAIbiaitvDxU73e4O030G/pbIhEIiQmJsLY2LhdR8aqq6uxYsUKSKVS7N27FyoqKrh16xaio6MRHR2NuXPnYu7cuc/1Hi3VySorK8OIESMQEREBY2NjPHz4kCtW2ZKKigp89NFHiIyMxNdff42jR4/ixIkTOHfuXIObJ3nQk5mZiX//+984ffo0Tpw4ATc3Nxb0vFxYwMO0nSeHgbds2YLVq1fj+PHjmDJlCnbt2oWlS5ciJCQES5YsAQDEx8fD09MTq1evxtq1a7l9FBYWIjw8HAkJCXB3d8e4cePQvXt3SCQSKCsrQyQSYe7cudDT08O+fftadXwymYw7wbXVSW7y5MlYunQptwIEAN555x14eXlh9uzZAAALCwtER0d36NROZ1i6dCnGjx/f6NJ/iUSC27dvc41Q8/LyYG9vz/UB69u3b7sGQFKpFMnJyVBSUoKFhYXCVEj91U61tbUKAVD9vJ7WIiLU5BZBIA+A4pIgLi5rcvt+y+bC0G9Kh7WIyM3NhZ+fH2bNmoWlS5e26wW/uRy7Xbt2IT8/H8HBwc+079TUVCxcuBC3b99Gr169cOzYMTg4ODR78xMfH4/ly5fj7t27yM3N7ZRCikynYa0lmOdXWloKJSUlbrm3PKiYM2cO1q9fj6SkJEyZMgUJCQkwNjbGnDlzANRdGBwdHWFlZYX79+9DJBJBXV0d8fHxWLx4MXJzczFw4ED8/PPPMDMzw549e2BlZYWamhrcunULmZmZCsPXjSEipKWlwdDQ8Jmr+DYlMzMTt2/fhpOTk8LjeXl5ClMCRkZGyMvL6/IBz86dO5t8TllZGcOGDcOwYcMQFBQEsViMGzduICoqCkuWLEFxcTEcHR25VWB9+vRpswCoucaafD4fWlpa0NLS4hJZKyoqUFpaisTERIjFYmhpaXEBUGuW5vN4PKj1N4BafwP0fmNUXRXojDwuAKqIS4K0XAjweDD5eCH0fH1w7969dm8RAQCXL1/GqlWrsH37dnh5ebXb+7RGWloaxGIxvLy8IBAIEBgYiHnz5rX69fr6+nj48CGkUikGDx6MwYMHQ0lJqdlRG0dHR6xatQq1tbUs2GE4LOBhWiQfKt65cyd+/PFHfPPNN3BycuKmBZKTkyEWi2FkZAShUIjExESYm5tDS0uLOymJxWKulor8bvqdd96BWCzG8ePHYWNjg/T0dEyePBmbNm1CaGgoTp48icDAQDx69AiGhob4/fff4eTk1OjdeH5+Pt59911ERUWhb9++GDVqFN58802MHDnyuRppCoVC+Pr6Ytu2bQ3q+jQ2OsqWtypSUVGBq6srXF1dsXbtWtTU1ODq1auIiorCd999B4FAgOHDh8PDw4Mrd/As/4dFRUXIyMho9agJn8+HtrY2tLW1uQCovLwcJSUlyM3NhUQigba2NrfaqbUBUPeBRug+0Ah9ZowFyWSoupcNqaASqrbmuH37NrS0tGBvb99u3xOZTIY9e/Zw0z5tkaPzvCQSCeLj43Hx4kVUVVXBxcUFzs7OTfbqenIEWV5NPD4+HocPH8batWuxY8cOhbYQ9cnPV6+//nqDx5iXGwt4mBbJTxQ+Pj64du0ali1bhqFDh8LV1RXJycnYs2cPRowYgddeew2pqalITEzEtGnTANSt3FJVVUVKSgrKy8u5LtrXr1/H7du3cfjwYbi4uAAAHBwcsGzZMvznP/9BcXExZs6ciaNHjyI2NhaVlZUYO3YsJk+ejJ07d3JLSuUnsvz8fBQUFMDf3x9eXl44evQoAgIC4O/vj08//bRVJ7wntxGLxfD19cXcuXMxderUBtsbGRkhJyeH+3dubm6DkQVGkaqqKpcwCwAikQhXrlzBxYsXERISgtraWjg7O8PDwwOurq7Q0tJq9ucmk8mQnp6O6urq5xo14fP5XHAD1F10y8vLUVpaipycHEilUoUAqDXvw+PzoT54ACoqKnDr1q12bxEhEokQGBgIVVVVXLhwoc0raD8rIyMj6OnpQUNDAxoaGvDw8MCdO3caDXjkU9kAEBkZCVVVVejq6mLChAkYPXo0SkpKcO7cOXz11VdNLqtv7PvCgh0GYAEP8xRcXFxw+PBhhIeH48iRIwgJCYGOjg5WrVqF+fPno3fv3vjhhx+gpKSEjIwMPH78mKu2e+rUKVRXV3MXurNnz8LU1BTOzs4A/j7RGRsbo6amBkBdF/SKigq8+uqrOHPmDIqKilBdXa1QP0N+IktNTUVeXh4WLFgAFxcXvPHGGwgODsaGDRvg6uoKHx+fFoOe+s8RERYsWAArKyusWLGi0e0nTZqEnTt3YtasWbh+/Tq0tLS6/HRWW1NXV4ePjw+3TFogECAmJgYXL17El19+CZlMBldXV64Rav3piQcPHnDTioMHD27Ti5qSkhJ0dHSgo6MDoC4AKisrQ2lpKbKyskBECgFQU6OI+fn5yMnJgZ2dHdTV1dvs+J6UnZ0NPz8/zJs3D0uWLHmhLvDy/DeJRILa2lpcv34dy5cvb3RbZWVlPH78GBMnTkRhYSHy8/OhqamJwMBAfPLJJ/j444+Rl5eH/fv3w8LCAq+99hqXN9a/f/8WW60wLzcW8DBPRUtLC7NmzcKsWbMA1F2g6k8hJCcnQ19fH1VVVdizZw8mTJiAX3/9FRs2bEBgYCDc3NwAAImJiTAxMeGqvMpkMgB1yYYGBgaQyWS4d+8eCgoKMHnyZABoMt9DKpUiKSkJampqXACloaGBoKAgbN++HdnZ2QAUAxqZTAYejwciAp/PR0JCAkQiEZycnEBEiI2NRWhoKGxtbWFvbw+griu7fF+LFy/Ga6+9hrCwMJiZmUFdXZ2VqW8DPXr0wPjx4zF+/HgQEcrKyrhGqJs2beKmyHr27IkDBw7g22+/xYABA9r9uJSUlKCrq8sF8BKJhAuAMjIyAIALfrS1tcHn87kWEe29ujA6OhqrV69GSEgIV228I9Wvk2VkZNSgTpaVlRXGjRsHOzs78Pl8BAQEwMbGptF9FRcX47XXXoOGhgYOHToEkUiEmJgYrF+/HmVlZfj888/x8ccfY8WKFVx397i4OPzyyy84c+YMC3iY5hFRc38YpgGJREJisZj7t1QqJSKi7OxsGjlyJM2YMYNSU1Np4MCBpKqqSvr6+jR//nyFfaxcuZIGDx5MVVVV3GNisZisra1p1qxZRET07bffkpmZGZ06dYp73/pkMhkREeXl5dG4ceNo9OjRREQkEomIiOjevXvE4/Hou+++IyKi/Pz8Jj/Td999R0OGDKE7d+489f9HW8rOziYvLy+ytLQka2tr2rZtW4NtfvjhB7K1tSVbW1tycXGhP/74oxOOtOPJZDIqKiqimTNnkrGxMTk5OZGHhwetWbOGIiIiqKSkhCorKzvlT3l5OWVmZtLt27fp4sWLdObMGfr9998pKyuLKioq2uU9BQIBffbZZ+Tu7k65ubmd/eNpE1euXKE+ffpQRESEwuOff/458fl8+umnn4iI6MSJE+Tp6Um9e/cmS0tLunTpUmccLvNiajKmYSM8zFNr6m41OTkZjx49wsSJEzF48GDcv38f6enpEAgEXEE++mtaafLkyfjqq6+wc+dOBAQEQCgU4ptvvkFKSgp2794NAIiLi4OmpiYcHR0BoMkVGRkZGcjMzMTYsWMBAN27d0dpaSm2bt2K3r17Y9iwYcjKysKkSZPwyiuv4MMPP8SlS5fg7e0NS0tL8Pl8vP3225gxY0an9xWSJ2jWr/8zevRohfo/pqamuHTpEnr16oXw8HAsWrTopaj/U1paCn9/f9ja2nJTp0VFRYiMjMSxY8cQFBQEXV1drgq0g4NDu66Eqk9ZWRm9e/eGkpISHj9+DFtbWxARHj9+jPv370NJSYkbAZLnsT2PyspKLF26FNra2jh//vwzLat/EVVVVaG0tJQbqZEnMK9cuRK//vortmzZglmzZmHKlClwc3Pj6j51796d1dphWsQCHua5yU8ySUlJyMrK4oIbqVQKc3NzhW3l00rOzs5Yt24dgoODceTIESgpKSElJQUfffQRPDw8UFJSgszMTPTv358rVPjkdJb832lpaSgqKsL27dvx/fffw87ODuXl5UhMTMS6detgY2ODX3/9FWKxGCdPnoRIJEJcXBxOnDiBsLAwlJaWIi4uDiNGjGg04HnePmBPw9DQkMsD6tGjB6ysrJCXl6cQ8NQvuObs7Izc3PZpf/CiSU5OxqJFizBp0iTuMQMDA8yZMwdz5szhCg5GRUXh0KFDCAwMhKGhIVcF2s7O7rlW7DWH/upBVlxcDAcHBy4AkRfYq62tRWlpKR4+fIj09HQuANLR0YGWltZTXagzMjLg5+eHhQsXYuHChS9Uvk5r0F+rGxs7blVVVWhqaiImJgZWVlbo1q0bl983Y8YMfPLJJ0hKSsKQIUOgp6fH5fOxFhFMa7CAh2kzK1aswJgxY2BlZQWgbiSImkgUVlZWxrp16/D666/j9OnTqKmpwY4dOzBs2DAAdRcIsVjM5QI0RSwWc+X509LSEBcXh1u3bqGoqAjBwcHw9vYGANy+fRt//vkn1q9fjxkzZqBPnz4oKSmBqqoqoqOjERAQgM2bN+O9997j9l1bW4tu3bq120WyJU3V/6lv//79GD9+fAceVeeR5381hcfjwdjYGPPnz8f8+fO5pqGRkZHYvXs37t69iwEDBnAjQNbW1m1ykZRIJNx30MHBodHgpVu3btDX14e+vj6Auu9WSUkJCgsLkZqaChUVFa4TfHN1pC5cuIC1a9diz5493OrGf5L654OEhASUlJRATU2N+47LSxhs374dzs7OcHBw4H7/8vPz0aNHD5iYmDTYLwt2mNZglZaZF458aHr79u3473//CwsLC/j7+8PX15cbgZGfOHNzc+Hv7w8+n4+IiIhG9ycWi/H2228jJiaGm16o79///jcOHz6MX375BUOGDOFGgs6cOYP4+HhYWlpi9uzZmDBhQoPu00QEqVTaplWdgbr6P56enlizZk2jS+IBICoqCu+++y5iYmK4ZFqmafIl7JGRkYiMjERKSgoGDx4Md3d3eHh4wMLC4ql/hvJih8/bIqK6uppr+FlRUYFu3bpBW1sbeXl5cHJygrKyMrZt24YLFy7g559//kcm59afcvrss8+wceNGqKqqory8HNOnT8fChQvh4+ODhw8fwsHBASYmJli+fDlGjRqFtLQ0LFu2DGZmZti/fz9UVVX/cSNbTIdp8ovBJjyZTiUPGOoH3vKT4rJly3DixAlYWloiISEBVVVVDV6flZWFBw8ecMuapVIp11pCvs+MjAxkZGTAy8sLSkpKkEgk3HPV1dVISkqCtrY2hgwZAgDYsGEDZs6cidzcXEyfPh0aGhpYt24dTp8+za0mA4CamhrweDwoKys/1YWy/mclIkgkEoX9tlT/BwDu3r2LgIAAnDp1igU7rcTn82FhYYElS5bg6NGjuHv3LjZu3Ag+n4/g4GC4uLjAz88P3333He7du6fwM2nMw4cPkZCQAGtr6+cuR6CmpgZDQ0NYW1vD2dmZm8IMCQmBo6MjHBwcEB4ejs2bN7d5LR9/f3/06dOnyZVTcjdv3oSSkhJ++eWXZreTSqWNPib/HcnIyMDRo0exc+dOhIeH48SJE7h16xaCg4Nx4cIF9OnTB5GRkRCJRFiwYAEsLS0xadIkdOvWDfv27YOamhoLdphnwqa0mE7VUm6Ms7Mzt9T8ydcBwK1bt/DgwQOMGjWKe1x+YpUvPU9KSsKjR4+4cvb1T5b3799HRkYG7OzsAACxsbHYsmULVqxYga1bt0IikaC6uhoRERHQ1NQEn8+HQCDAgQMHcPbsWWRmZsLNzQ3vv/8+XnnllVZ9ZtlfXbINDAzQu3dvhSkz+qv+j4WFBebPn9/o67OzszF16lSEhoY2Wa2WaRmfz4eNjQ1sbGwQGBgIqVSKO3fuIDIyEp988gmys7Nha2sLd3d3jBw5EkZGRuDxeJBIJPj2228xfPjwdmsRoaamhoEDByI4OBj+/v6YOXMmdHV1sWvXLvzxxx8YMGAAAgICFKoJPys/Pz8sXbq02XYPUqkUQUFB3MKA5raT/z6HhobC0NAQPj4+UFJSgkAgQEBAAFefa/r06VxJCzU1Naxbtw779u2DtbU1Bg8ejLCwMKSnpyM9PR09e/bE9OnTG7wHwzyV5pZwdcDyMYZpllQqbbAcvb7U1FTasGFDo8/Jl60HBweTubk53b17l3tcvpT+yJEjNGjQIG7p+uLFi8nS0pLS09Mb3WdhYSHNnj2beDweLVu2jLZu3UpeXl7k5uZGJSUlLX6e0NBQGj16NDk4OJCWlhb179+fli5dSteuXSOpVEq///47ASAzMzPS1NQkPp9PCxcupN27d9Pu3buJiGjBggWkra1NQ4cOpaFDh5Kjo2OL79uS1iyHl7tx4wbx+Xw6evToc7/vi0wsFtO1a9do06ZNNGbMGLKzs6OZM2eSvb09+fv7t9tyc/mf48ePk52dHd24cUPhuGQyGd27d48SEhLa7LNmZGTQkCFDmnz+q6++op07d9L8+fNb/LmnpqaSs7MzWVpakoWFBZWVlRERUVpaGo0aNYr09fXJz8+PiIhqa2u5133xxRdkaGhIFy9eJKK/f3/ra+5cwDB/aTKmYQEP06VVVVXRuHHjaOjQoY0+v3btWjIzM6OkpCQiIrKxsSE/Pz8SCoVEVHfSlclkXN2hDRs2kLGxMZ0/f56I6i6Kly9fJiMjI1q3bl2zx3Lu3DlSV1enN954g3766Se6fPkyff755+Tm5kbW1taUlZXFbZudnU1ERPb29vSvf/2Le6/2kp+fT/Hx8UREVMNbngEAAA/XSURBVFFRQebm5tz/SX0SiYRGjhxJ48eP7/IBz5OuXbtG5ubm9NZbb9HIkSPJ3t6eAgICKDQ0lDIzM0koFLZZfZ1169aRt7c3FRUVdchnay7gyc3NJQ8PD5JIJC0GPOHh4dSrVy+aOXMmXbp0qcHxR0dHk4ODA2lra3Pf9/q1uLS1tWnTpk1t8ImYlxirw8N0TfJpq6bm9CUSCby8vFBeXs5tL5/yEolESE9PR79+/bicCXlejjw5Wl6NWT6EHhERAWVlZUgkEgB1q83c3Ny4vmKA4koU+d8LCgqwbds29O3bF8ePH+eOz8nJCW5ubjhw4ACMjY25x+VNH7Ozs+Hr6wugfVeitGY5PADs2LEDvr6+uHnzZrsdy4vo0KFD2LVrF8LDwzFo0CAAdflfV69eRWRkJPbu3QuhUMj1AXN3d4e2tvZT55pUVFTgnXfegampKSIiIjqsjlBzPvjgA2zevLnF719ZWRl27NiBOXPmYMOGDVxuGf2Vp6esrAxPT0988MEHWL9+PZYtW4aTJ09yPb8yMzOhpqbW6bWwmK6LBTzMP1pLycKampoICgpqdPvU1FRcvXoVnp6eAOqCnXHjxuH48eOoqanhaqnIL1pVVVWIi4uDiYkJfH19IRaLYW1tjblz5yImJgaTJ0+GWCxWuEjJXysUClFUVAQ9PT2FfauoqDTIU5IHSbm5uRAKhRg6dKjCvpojv5N5nhVjTS2Hz8vLw4kTJxAZGfnSBTz6+vqIiopS6IelpqaGkSNHYuTIkQDqfsZXrlxBZGQktm/fDolEAhcXF64Rao8ePZr9GaampmLBggVYsWIF5s6d+8Ik5sbFxXGtZIqLixEWFgZlZWVMmTJFYbuCggJER0djzpw50NXV5ern8Hg8yGQyPHz4EH369MFbb72FvLw8fP7555g5cyY2bdoEkUiE8PBwlJeXc2UtGKbNNTf807GjUAzT9mQyWZPz/lVVVXTq1CmKjY3lHouNjaUBAwbQW2+9RQkJCZSSkkKJiYlERJSUlES6urp0/PhxKi0tpYiICProo4/I0dGR+vXrR+vXr28070Bu+vTpxOPxaO7cuZSSksI9Xj+PgejvqauQkBAaPny4wmPtTSAQkIODAx07dqzBc9OmTaOrV68SEbUql+NlJpPJqLy8nM6ePUvLly8nJycncnZ2pg8//JBOnTpFDx8+5KawhEIh/e9//6OhQ4dy04odraUcHrnmfu5XrlwhAwMDOnjwIPdYWloaLVy4kIYPH04aGho0b948unnzJtXU1NC7775LPB6PtLS0aOLEiWRiYqLwWoZ5Rk3GNKwOD8M84aeffsKaNWvw6NEjGBsb44033sDixYuhq6uLcePGwdzcHN9++63CawoLCwGg2fooAoEA//3vf7Fjxw4AQFBQENauXdvk9qNHj4a7uzvWrVvH3S035+7du/jiiy+wevXqZ7pLFovFmDhxIsaOHdtoh3hTU1NuSX1xcTHU1dWxd+/eBnf6TENEhNLSUly6dAmRkZG4du0a1NTUMGLECBQWFqKgoACHDx/mKgd3pPrNP/X19Rs0/6zPz88PEydOxLRp0xrdl5ubGwoKCuDp6QklJSV8//334PF4sLW1xaBBg3Du3DnY29vj0KFD4PP5WLFiBZKTkxEcHKywT9YmgnkOTQ+NNhcNdXxgxjAdS75aqzFpaWn0008/0Z07d7jt9u7dS5aWlvTZZ59RamoqFRUVUUJCgkLiZXMqKirof//7H9nZ2VG3bt0aTXT+9ddfqaioiHr27Nniyi/5cSUnJ9P48eNp5syZJBAIiOjvFS15eXmUk5PT7D5kMhm99dZbFBgY2KrPwUZ4no+8EeqhQ4fI19e3w0bw2ov8e1hcXEw+Pj5kaGhIOjo69O6779Lx48e57c6dO0c8Ho/2799PRHVJzm5ubuTm5kYPHz4kooYjngzzlNgID8O0VnN1PogIW7ZswbZt2yASiWBnZweZTIa1a9c+VYuHzMxMuLi4wNzcHL///jt3R1tdXY1Nmzbh8OHDePDgAWbMmIEFCxZg9OjRze5vypQp4PF42Lp1K5dUS3/lAh08eBClpaVYvnx5k60+YmJi4O7uDltbW+7OetOmTcjOzgbw9Hf6zMtH/h2urKyEQCBA9+7doaWl1WA7XV1dzJkzhxvpPHDgAL7++msYGRnh7NmzHX3YTNfT5AgPS1pmmCfIgx35zUD9AIHH4yEoKAhBQUG4c+cObt68CVVVVbi7uyvsQx5YbNu2Da+++ipcXV0V9iOVSqGtrY2+ffuioqICPXv2hEwmg5qaGjZu3IiNGzciLy8Pv/32GyorKxX2+aTz58/j9OnTiImJ4YKd2tpahIaGIj4+HqmpqVwRQ/nr5RenCxcuoLq6GmPGjEELNz8KDh482Optm5OTk4N58+ahsLAQfD4fixYtQmBgYIPtoqOj8cEHH0AsFkNPTw+XLl1qk/dn2o48UNbQ0OBWWj05FXv+/HloaWkpFEz08/NDcnIyrl+/jsLCwn9k2wzmH6K54Z8OHYRimH+A5pKgn1RdXU1Tpkwhe3t72rdvH2VlZVFRURHdv3+fFi9eTDwej06cOMHt92mPg4goMzOTXn/9dXJ3d+eeKysro0WLFpG6ujqNGTOGdHR0SE1NjZycnLikY7mrV6+SmZlZk4UW21tr6v+UlpaSlZUVV7elo2rTMG1HKBTSjRs3yMXFhcaOHUuPHz8mor+nwsrLy6mmpqYzD5HpOlgdHoZpC/VbYch/iZpKrlRRUcHatWvxzTffYM2aNQgKCoKFhQXKysqQl5eHzZs3Y8qUKSAifP/99/jxxx/h6OiIsWPHwsXFhVu63hj6a7Tn8uXLuHfvHlauXMk9d/PmTURFReHTTz+Fq6srfv75Z0yePBnnzp3D/fv34ezszL3e1tYWxcXFqK2tbdv/qFZqTf2fw4cPY+rUqVydoj59+nTKsTJPTyqV4ssvv0RRURGOHTsGKysrnD17Fnw+X+F3p2fPngBYsjLTvljAwzDPqLmCh0DdEL+joyP27duHPXv2ICoqCjdu3EC/fv3g5eXFXcB5PB7mzZsHR0dH7NmzB97e3rCxsYG+vj68vb3x8ccfN/reAHD58mVoampytYSAukCrtLQUrq6uEAqFGDJkCHx8fDB8+HCIRCIAfwdMjx8/hqOjIy5cuNCgyGBHa6r+T1paGsRiMby8vCAQCBAYGNhs3yfmxSEQCHDw4EEMGDAAK1euxHvvvQeg6Tw5Fuww7YkFPAzTjuQdt/l8PkaNGsU1OX0Sj8eDjY0N+vfvj+nTp+PIkSOIjo5GQUEBt5/6FwMejweRSIQHDx7AxMSEy90BAHd3dwwZMgSzZ8+GgYEBPvzwQwB1d9HyO+n6d9YVFRUoLS0F0HmNGYVCIXx9fbFt2zbuGOUkEgni4+Nx8eJFVFVVwcXFBc7OzqxxKuo6nZ89exZ9+vRBYmJig+d//PFHbN68GUBdEc7du3dzhSzbm0wmg7a2Ni5fvgyZTMYtuWfNP5nOwsJphmlHfD5foXu7PABqTGpqKsLCwriqtl5eXpg9eza3nycVFBSguroa+vr63P7l20ZERGD27NnIycnBjz/+iNjY2AavJyJoa2sjJycHvXv3BtC+7SuaIhaL4evri7lz52Lq1KkNnjcyMsK4ceOgoaEBPT09eHh44M6dOx1+nC8iPz8/RERENPm8qakpLl26hLt37+Jf//oXFi1a1GHHJv/O6ujocMEO1WvTwjAdjQU8DNNB6gc/jYmIiEC/fv24JehSqbTZ/SkrK6O4uBgmJiYNtldTU+NygSoqKjBx4kRERkYqvJ7H46GqqgolJSXo1q3bs36s50JEWLBgAaysrBotdggAkydPxuXLlyGRSCASiXD9+nXWfuAvHh4e0NHRafL5ESNGoFevXgAAZ2dn5ObmdtShNepFaZfBvJzYlBbDdCJ5Lk1aWhquXLmCCRMmQFNTE0Dzoy1EBBMTExQWFnLTWSoqKrh27RoGDBgAAwMDJCcnY9asWZg4cSJeeeUVhIWFwdvbW2EkKDY2Fj169Gj2otmeYmNjERoaCltbW9jb2wNoWP/HysoK48aNg52dHfh8PgICAmBjY9Mpx/tPtn///qeqFcUwXQ0LeBimE8lkMigpKeHkyZNQUVHB2LFjW/U6Ho+H6upq9O3bl8u/AYDQ0FDweDwsX74caWlpeOWVV5Cbm4vy8nJudROfz4dEIuGmvgwMDLgEamqi1k97cXNza1X9n1WrVmHVqlVt+t6tqQFUXl6ON998E9nZ2ZBIJFi5ciXefvvtNj2OjhAVFYX9+/cjJiamsw+FYToNm9JimE4kH8X54osv4O3tzeXjtIaysjJcXV0RHx8PoG5Ky8/PD1lZWRgxYgR+/vln7N27F76+vqipqcGcOXMavO/Jkyfh5OQEc3NzAC/XlIOysjK++OILpKSk4Nq1awgJCUFycrLCNiEhIbC2tsadO3cQHR2NDz/8sNOW8D+ru3fvIiAgAKdOnYKurm5nHw7DdBoW8DDMCyAyMhJ+fn6t3p6IoKysDF1dXW6puZKSEoYNG4YzZ87g66+/ho2NDYRCIcaPH4+YmBgYGRlx01k8Hg+RkZF48OAB3nzzzUZbAHR1hoaGcHBwAKBYA6g+Ho8HgUAAIoJQKISOjk6LTVxfJNnZ2Zg6dSpCQ0PZqjbmpcd6aTHMC+JZppPS09Nx7949eHl5oXv37hCLxVBRUcH27dvRu3dvbpWXnHx5+4MHDxAUFITHjx83SGZ+GWVmZsLDwwOJiYkKy+IFAgEmTZqEP//8EwKBAEeOHMGECRM68UgVtdTpPCAgAMeOHeMS25WVlREXF9eZh8ww7a3JkygLeBimCzp06BDs7e0VmoHWt3LlSty8eROffvopvL29X+raKEKhEJ6enlizZk2DZfG//PILYmNj8eWXX+L+/fsYPXo07ty506BWEMMwL4wmAx42pcUwXZCvry9sbGwaDXZ+++03fP/99/joo4/g7e0NoHPq77wIWqoBdODAAUydOhU8Hg9mZmYwNTXFn3/+2QlHyjDM82IBD8N0QZqamo0GMdXV1SgqKsJXX331Qk3NdIbW1AAyNjbGxYsXAQBFRUVITU3FwIEDO/IwGYZpI2xKi2FeMvLf+ZdpRVZjYmJi4O7urjDt92QNoPz8fPj5+aGgoABEhNWrV+PNN9/szMNmGKZ5LIeHYRiGYZguj+XwMAzDMAzz8mIBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbo8FvAwDMMwDNPlsYCHYRiGYZgujwU8DMMwDMN0ecotPP9yl2JlGIZhGKZLYCM8DMMwDMN0eSzgYRiGYRimy2MBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbq8/wOXqHpe+0QqrwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUadv/LOb3jcdQiihJyG00ARCEPUAD/UQ6+EPEAEFUUTFAnjYERsqCIhoODhPkPMsKKJHAkSqVCGdEEI6IcludjfJJlvm90fcMSGFlN1NYT7/KJnZmXcgO/PM+33f97Gk4DELnWs7sBqj6sAvFjm3JXEePqCtQ+i0GHQmjBc71wA9m2MSyD3uSP9b2zoQyyMzVTLx9cF89+DBtg6lxSimDsNj/s3kKewoPH2a8vJywsPD8fb2tvi5qqqqeP7551Eqlezfv19ySW8i0pKWlTEajWg0GvLy8hgxYgRBQUFtLnbAcoLHPFfi0qVLaDQa4PqZKJOmGN2plFaf29I4Dghu6xA6LeokHUKVNN+otVyNTaayonmZ4Y6Cwi2HPn/reFkK50Bvxu9YweRdrzLm1mjc3NwwGo0EBgaSkZHB0aNHSUhIICcnB61W2yRLosYoKCjgzjvvpHfv3uzYsUMSO81AyvC0kOs91AVBID8/n0uXLuHg4MDQoUMtdm5LTOZsreCpOVdnyJAhKJVKsrOz0Wg0ODk54e3tjbe3N56ennXaJw1H9oCh/S0dOXTzAixTFC5Rm8LjBW0dQqdA0BvIOe1Gn3EVbR2KVRg134eM3TIEY8eopev5wESGvb0AJx8PdDod58+fJyAggLCwMPEebTKZ0Gg0lJaWkpGRQVlZGc7OzigUChQKBZ6enk320zp+/DhLlizh7bffZsqUKda8tE6JJHisgE6nIzExEScnJ0aNGsWJEycsdmxzkXBbCp5ra3VcXV1xdXUVWy0rKipQqVTk5eWRkpKCg4MD3t7e4pdbd+Bwq2K3FvYKeyTBYx3Up9uPWWRH58ovqfQY2QUHx86XMXM0XmXMylEcfeV4W4fSKM6B3oz46HG6/XU0AEqlkpSUFAYMGICPj0+tfeVyOV5eXnh5edGjRw8EQUCn06FUKsnPzyc1NRU7OzsUCgVeXl4oFIo6xc2CILB161a2bdvGt99+S+/e0rywliAJHgsiCAI5OTlkZWUxcOBAfH19LX4Oc9dXa6v9LeGB1VCtjouLCy4uLnTt2hWAyspKlEolV65cIf/Az3TNbYczRRwdkDtUtnUUnRKj3kRViiR4LIWpTEfeeW96RnbOmqiQSDVnu7pSkV/e1qHUS6+/T2LoW/Nw8vFAEASysrIoLCxk2LBhTeqSkslk4j0yKCgIqG5oUalUlJaWkpWVhcFg4NixY9jZ2TFu3Dg+//xzdDodcXFxTe7qlaiLJHhayLUP+vLychITE3F3d2f06NF15iFYyiDOUvYSrfXAas61ODk5Eejvj9fxw1Ts/q4l4Vodp8H9kMk6Rhq9o6FOrsRU2Y5NIjsg+XvT6TZEgb19+1sabi0OVDHulcHsW9C+xlY4d/Fh5LrHCZo6Cqiuz0xKSsLe3p7IyMgW+V+ZcXBwwN/fH39/f+DPOTvfffcdCxYsQKVSMXr0aD755BPGjRtn0Rb3GwlJ8LQCsy9KZmYm+fn5hIaG1luRbxYplhgKZSl7iaYKlqZmdRrDmJuD9tP1GDPa11TlmjiF92zrEDotpac7dqtxe8Sg1FCQ2o/g8M452yioSxHdb+lFdmxmW4cCQK+Zkxj21nwcvasLhM0WEd27dxezNJbE/EJ64MABPvroI2655RbS09M5dOgQn376Kf7+/qxevdri5+3sSIKnFWg0GhISEvD19WXMmDENKnyzSLGU4LH0/JyGaE1WB0AwmdD9/CMV//kS9O273kAebPnWUYlqSs9Iy1nWIPP7CwQN9ETetHrXDoUMgZGPB7S54HHp6sOIdYsJmjJS/NnVq1dJT08nPDzcKlYOJpOJzz77jB07drB792569qx+GevXrx/9+vXj4Ycftvg5bxQkwdMKsrKyCAsLu+4vvSUtISzpmN4QFsnqFF6h7NOPMaQmWyNEi2PylCY0WAOTwYTmd2ngoFUo1pCXHkLwgHZYE2cBPOyLiXwmklPvnWqT8/d66BaGvTUPR0V1VkcQBC5evNgqi4jrUVFRwdNPP40gCMTFxTV7OK1E40h3+VYwaNCgJil8S3tgWepY9VFziKDZkbc5YkcQBHRx/6N0xTMdRuwAePhJ6+HWQJ1Wham89Z5tEvVzZd/VVs91ac+E3WLEydu2dgkuQb5Efb2K0ZueEsWOXq/nzJkzgGUtImqSk5PDtGnTiIyMZOvWrZLYsQJShscGWDIrY8klLXMNkrnVvbVZHVNJMWWfbUR//neLxGcr7EOCkMmkdnRrINXvWJeKS/kU5wzFr/vVtg7FKsgNGia+NYqfH423yflCZt3G0DfnikIHqksXEhMTrWYRARAfH89zzz3HRx99xMSJE61yDglJ8NgES2ZlLJ0tMhqNyGSy1tXqCAJVR36lfPvnCOVlFonNljgN6dfWIXRaSs/kt3UInZ6cWBV+c9o6CusRGFRAlzFBFBzLs9o57Pw86L7yHoJvH4PRyU68F+bl5ZGdnU1ERIRV2sFNJhObNm3i22+/5ccff6R79+4WP4fEn0iCpxW0xEC0tdjZ2VFZaZl5MXZ2dlRV/dku3KKsjrqUspjN6E/9ZpGY2gLHvl3aOoROicloQnMmo63D6PRoEzJRFUagCChp61CsgkwwEvVCH3b9zTqCJ2TWbQx542EqZEZUKhWpqalUVFSInbUDBgzA1dXV4uctLy/nySefxMXFhX379klO5zZAEjw2oD0uaQmCgIODA6mpqfj5+eHj49PsNeOqE8cp2/oJwh8eWh0VnbsMaZSX5dGm6zFq2+fwuM5G9kEdinvbOgrr4SrPY/Cjgzn3yTmLHdOlmx8j1y+m622RADgBCoUCnU7HuXPn8PX1xdXVldzcXFJTU3F0dBTtILy8vJpsB1Efly9fZs6cOcyePZuFCxe2C3/FGwFJ8NiAazMpraG14qlmrc6AAQPQarWoVCpSUlLQ6XR4eHiIPlguLi71fhFNZVrKt39O1ZFfW3Mp7QZFkAcgTVm2NKrTqrYO4Yah9PgFNLeG4eFd2tahWI3BdzmQ9C97DGWtz5b3nvMXhrwxF0ev2q869VlEBAdXmwrrdDpKS0spLCwkPT0dAC8vL9E2p6mFzAcOHOCFF17g448/JioqqtXXItF0JMHTCtpqSaulx7p2ro69vb34xtKrVy8EQUCj0VBSUkJqaqoogBQKhZgB0p8/S9lnGxGUnaMYVebphtxeEjvWQKrfsS05hyF0WltHYT3sDComvDmGuCWHWnwM12A/Rqx/gq63Dq/186ZYRDg7O+Ps7ExgYCAABoOB0tJSVCoV2dnZ6PV68X6pUChwdXWt9YwwmUysW7eOn376ib1791plYKFE40iCxwZYo9C4OTS1A0smk+Hp6Ymnp2ctAaRUKrmQcB6PuJ9RJJ23yHW0F5yHDUBKJlsewSSglup3bEpxfDLlE/vj6q5t61CsRnCfInzC/ShJLGr2Z3vPmcyQNx6uk9UxGo0kJibi4ODQLIsIe3t7fH19Rc9Esyu6SqUiPT2d8vJyYmNjEQSB0aNHs337dvz9/fnf//6Hk5NTs+OXaD3SHJ5W0NQMjyVbyZu7pNWauTpmARRUoaXnjn92OrED4BgqdUVYA9WFCoylnffB2y4xCaTGte+J5q1FZtIz8eWwZn3GNdiP6O9eYeT6xXXETllZGSdPnsTPz4/Q0NBW+WGZXdF79uzJkCFDGDNmDNOnT0cul7Nq1SpOnDhBeno6q1evZt++fWhaUfuYnZ3NzTffTGhoKOHh4Xz44Yd19iktLeWOO+5gyJAhhIeHExMT0+LzdRYkwWMD2mJJyyx0DAZDy9vNqyop+2IrmtWvYCrqnHM+HLr7tHUInZLiE51z+m97p+xoFpUVnbvbx8MplwF/D23Svr0fnsyU3z6myy3D62y7evUq586dIzQ01CrLSzKZjPz8fHbv3s0nn3xCVlYWX3zxBUOGDOGnn35qlReWvb097733HsnJyRw7doyPP/6YpKSkWvt8/PHHhIWF8fvvv3PgwAGeeeYZi9WSdlSkJS0bYGtridZ6YAEYLl5Au3k9pnzrzb5oDzj4OAC28Sa7kdAldY4arw6H3kDuGQ96j+3c060jZ3pw4T9yTFX1u8W7dvdn5IYn6XLz0DrbbGERYTKZWLt2LbGxsfzyyy906VI9+iIwMJDp06czffr0Vh2/a9eudO3aFQAPDw9CQ0PJzc0lLOzP7JdMJkOj0SAIAlqtFh8fH4v4OXZkpAxPK2hO0bKlpyPXh0WyOgY95f/Zgfq1lZ1e7CCXI3e8sd94rIEgCKhPS/U7bcWVn1PRVzm0dRhWxcFYzPhXx9S7rc8jU5ny2/p6xY4tLCI0Gg2zZs3iypUrtcSOtcjMzOTMmTOMHj261s8XL15McnIyQUFBRERE8OGHH7Zqya4zcGNfvY2Qy+UNipTm0pCAaa0HFoAh6zLql19E9/3XYKF42zOO4SHIZJ3/Om1N2WU9hhJ1W4dxw2IsqyAvwbutw7A6vSJK8ezlJf7ZtUcAE3e/zogPF+HgUXdQoFqt5tSpUwQHB9O3b1+rzL65cOECt99+O3feeSfr1q2ziqCqiVarZcaMGXzwwQd1fB1//vlnhg4dSl5eHmfPnmXx4sWo1Tf291ISPB0ci2R1jEYqdn+DetXzGLMuWynS9ofToN5tHUKnRHWm886C6Sjk772I0dC5b+8yo46bVlXX8vSZN5Upx9cRePOQevfNy8sjOTmZiIgIq/hhCYLA3r17mTVrFps2bWLOnDlWHyao1+uZMWMGM2fO5O67766zPSYmhrvvvhuZTEbfvn0JCQkhJSXFqjG1d27sBb1W0tbTMS1Rq2PMz0W7+WOMFy9YIcL2jWNv6xgB3uiUnr7S1iHc8BhK1BSk9aFbWGFbh2JVfAMq6P3pfPS9/ElIT0WhUODt7Y2np6eYWU9NTUWv1xMZGWmVGhaj0cg777zD4cOH+d///mc1g9GaCILAI488QmhoKE8//XS9+/To0YPY2FiioqK4cuUKqamp9O59Y7/kSYLHhpiFiSUwZ3SgZR5YgslE5b69lH/1Bdyglfv2Aa5IE5YtiyAIqM9causwJIDcvVl0HeCMvOUOCO0ao89AjGEPMdKx2tm8oqIClUpFXl4eKSkpyOVydDqd2HJuDbGjVqtZsGABffr0Ye/evTg42KZ26vDhw2zfvp2IiAiGDq2uVXrzzTfJysoC4LHHHuOll15izpw5REREIAgCa9aswc/PzybxtVckwdNKZDKZKDwaw/y20Rr/FfjTAystLQ1fX1+8vb2bXYhmvFpI2ZYNGJITWxVLR8fOTarfsTTluQb0hVKHVnugKq+YjIR+9B3SufzMBJkcQ++/YuxxM8j+vPe5uLjg4uJC165dUSqVJCcnExwcjMFg4MyZMwiCUMsKorXD/1JSUpg/fz5Lly5l5syZNs34jx8//rrPnaCgIH755RcbRdQxkASPjTAPH2yp4Kk5LTk8PByVSkVxcTEXL15ELpeL/lcKhaLBcwiCQOXBOMr/vRV0nbtt9XrYdfVFLu/cQ9raAtWZG7sosr1ReqQMYXDbL79bCsFJQdWg2QheIfVvr2ERMXz48FoWEUajkdLSUpRKJTk5OVRVVeHp6dmgFUSDMQgCP/zwA2+++SYxMTEMH153xo9E+0QSPK2kqRke8yyellTt1+zAksvlODk5ERgYKHq66PV6lEolRUVFpKen1yuATMoSyj7fhP73M80+f2fEaeiAtg6hUyLV77QvKi7mUZw7BL/g5lsxtDeMfuHoQ/8ODm71b7+ORYSdnR0+Pj6iKWh9VhCurq5iHZC7u3udYxiNRlavXs3JkyeJjY294ZeIOhqS4LERLRk+eK0HVkOt5g4ODgQEBIjFclVVVahUqmoBdOECnhdT8T8Yi1xX0foL6STIpYJlq6A+ndnWIUhcQ26cGr9ZbR1FyxFkdhj63IGxezQ0kIEpKysjISGB7t27N3lqstkKwmwHIQgC5eXlqFQqsrKy0Gq1ODo68ssvv4i1Mk899RTh4eHs2bPnhh/i1xHp3H2L7YiWemAZjcZmz9VxdHQkICCAfl27EHbiMIE//yCJnWvxrzunQ6J1lOfrqcrv+JmEzobm3CVUVzvmXB6Tsw9VkU9i7DGxQbFz9epVzp8/32qLCJlMhpubG926dWPQoEGMGTOGsLAwAgMD+eKLL4iOjubixYsIgsBPP/1ESUlJi88FTfPDAjhw4ABDhw4lPDyc6OjoVp3zRkeSqK2kOQaiTfXAakpW53pUnTpBWcwnCGppJkp9eHR1B27sOiZLozrTcjNECeuSc7AKxT1tHUXzMPoPRj/wAXCo/+WkpkXE8OHDrTLkz8nJCYVCweXLl9m7dy89e/bkyJEjHDp0iPfee4+ZM2cyf/78Fh3b7Ic1fPhwNBoNkZGR3HbbbbXsIVQqFYsWLWLv3r306NGDwsLOPWbA2kiCx0Y0ZUnr2lqdlggdU1kZ5f+KoerwwZaG2vlxdkTuILWjWxrVqYK2DkGiAVTH0tDcGoaHov2/AAkyOwz9/oax2/gGszp6vZ7z58/j6enJsGHDrFKUbTAYeO2110hMTCQ2Nlas/Zk6dSpTp05t9fGb4of173//m7vvvpsePXoA2GTGT2dGWtKyEY0taV07LbmlYkef8DvqFc9IYuc6OA0dgIzrF5pLNI+i4zfe8MqORM6Rto7g+phc/Kga8RTG4KgGxY4tLCJKSkq49957cXBwYPfu3aLYsRYN+WGlpaWhVCqZOHEikZGRbNu2zapxdHakDE8rac6Sll5ftw3aElkdQVdB+Y5/URknzVxoCk5hPds6hE6HOq8CCtt/9uBGpvhgChUT+uLiXtbWodSLMWAY+oH3g71zg/vk5eWRnZ1NREQEbm71d2u1loSEBBYsWMDKlSuZMWOG1Vv6G/PDMhgMnDp1itjYWCoqKrjpppsYM2YM/fv3t2pMnRVJ8NgIe3t7Kir+LBy2VK2OPjWZsk8/xlQotQM3Fcee1n1buxEpS5CWCNs9RhM5J5zpd3P7EjyCzB5D/7sxBt3UYFbHFhYRgiDwn//8hw8//JAvvviC8PBwi5/jWq7nhxUcHIyfnx9ubm64ubkxYcIEfv/9d0nwtBBJ8NiImjU8lvDAEqqqqPh6B7q9P0AT5gBJ/Im9nzNSwbJlKT0tFVN2BAr3JdPjpu44ObcPgaqzV5DocBNlufYoyi6Is8NqWjTodDrOnz9PQEAAPXr0sFq9zqpVq0hPTycuLg6FQmHxc1xLU/yw7rrrLhYvXozBYKCqqorjx4+zdOlScUVAonlIgqeVNPXLZxY85uUr82db8uU1ZFxEu3kdprzcZn9WAuycmzcPSeL6qE9fbusQJJqAUKkn94wnvW+62tahYAwcAQPuJdzeCb1eL05BzszMxGQy4enpiaOjIwUFBYSGhlqtjqaoqIi5c+cybtw4vv3221bb/zSVpvhhhYaGMmXKFAYPHoxcLmfevHkMGjRIPEZJSQk+Pj4W9WnszMiuMyVYSh1cB5PJVG9tzrVoNBoSExMJDQ3F1dW1xercmJeLduOHGC9LBo0twaFfDwJfnNjWYXQqKosNHJ/677YOQ6KJ2Hm4MmJ5AA4ObWOtIsgdMPS/B2PXUQ0uYRkMBi5cuEBRUREuLi7o9Xo8PDzEDFBTbSCux9mzZ1m4cCGvvvoqd955Z4cRDUajkVWrVrF//35WrVrFiBEj8PHxkTI/1TT4jyhleKyMuVbHycmJgIAA0tPTqaioEL+8Pj4+uLi4NPl4dkHd8HrtbYovXyb/cDwBmlKcsjMxZmdJS1tNQBbava1D6HQoz7avmhCJxjFqyslP8KbHMNsvQ5rcuqAPn43g3rXBfYxGI0lJSTg4ODBu3DjReFmr1aJUKmvZQJgtdNzd3ZslVgRBYMeOHWzcuJGdO3cycOBAS1yezbCzs2PatGnI5XKeeOIJ+vXrx8svv8yIESPaOrR2jZThaSWCIFBVVdXgtvpqdQRBQKPRUFJSglKpRKfT4enpKQqgmoZ312IwGEhLS6OyspKwsDDR8dek1WBITUGfkoghJQljVqYkgOrB6fE78I/smFNn2yup76Zz5asO0PMs8Sdertz0og929ra7Rxi6jsbQfwbYNTwgsKkWEYIgUFZWhkqlQqVSodFocHZ2Fn2wPD09G8x06PV6VqxYQV5eHjExMXh5ebX62mzJtctXP/30EzExMfz888989tlnTJ48GQ8Pjxt5mavBi5YETyupT/Bc24F1vVods4mdWQCZXXzNAsgsakpKSkhLS6NHjx507dq18WOWlWFIS8aQkoQ+JQljZoYkgICA9+fhqKhfoEq0jBN/j6UiXaon62iEPDKcbqHW7+4U7BzR978XU9eRje539epVLl68SFhYWJ327KZQUVGBSqVCqVSiVquxt7dHoVAgl8vx8fFBoVBQWFjI3LlzmTRpEsuXL2/3yz81l6iuXa4yGo1ivZFarWbJkiV8/fXXvPXWW8ydOxdnZ+cbVfRIgsdaXCt4LNGBZTKZUKvVKJVKSkpKqKqqEo8XHh7eopuBqbwMw4VUDMmJfwqgPwTZjUTQp/OR27WPDpXOQJXKyLG/fNHWYUi0AKdgfyKfdMSaz3yTe1D1EpZbYIP71LSIiIiIqNWh1RrMJsp79+5l3bp1GI1GysrKmDVrFkuXLu0wTucVFRVcunRJnMB8+fJlevasniV2raCZPn06CQkJvPrqqzz44INtEm87QBI81qSysrLZWZ2molKpSE5OxtfXFzs7O5RKJQaDQUzdent7t8hDRqioQH8hpbYAaoa5aUdEpvCg2/vT2zqMTsWVg2pSl33b1mFItJD+jw8jIMQ6tTyGoLEY+v2t0SWsmhYRffr0sUo2QhAEtm/fztatW5k/fz6ZmZkcOnQItVrNiBEjWLduXYt9uLKzs5k1axYFBQXI5XIWLFjAkiVL6t33xIkTjBkzhp07d3LPPU03NtuzZw/fffcdCxYsYPny5QQGBjJr1ixuvfVWcR9ztken03HTTTfh6enJZ599Rt++fVt0XR0cqWjZ2pjFjqWEjtFo5OLFi2g0GoYOHVqrsNloNIotnNnZ2RiNxloCqClvSDIXFxwHD8Nx8DCgelqz4UKaWANkyEjvdALIefiAtg6h01F6uu3bmyVaTvr3Wfg/6WRRoSHYOaEfeD+mwOGN7qdWq0lKSqJ3795W84iqqqri+eefR6lUsm/fPtzd3cVtlZWVnD17tlWmo00xAIXqe/bzzz/P5MmTGz1ezYyN+f9vv/12fvrpJ8aNG8fYsWOZMmUKQ4YMqfU5Ozs7jEYjzs7OxMTEMHLkSH755Rf69u1ba+nrRkcSPK3k/PnzrF69mgkTJhAdHS2avLWG0tJSkpOT6datG/369atzM7Kzs8PHx0ecS2E0GsW168uXLyMIAl5eXuK6dZMEkLMLDhFDcIio/iIJlbo/BFAShpREDBcvdHgBJO/bcGeIRMtQn85u6xAkWoEpu5jCrDACe1rGFsTkEVy9hOXq3+h+trCIKCgo4OGHH+b2229n2bJldep1nJyc6nhXNZemGIACrFu3jhkzZnDixIkGj1VT7BgMBnGa9G+//cbXX39NREQEd9xxB/fcc08dkSYIgih6hg4dypIlS3jjjTeYM2cOrq71u83fiEiCp5WEhYXx5JNPEhcXx5IlSygoKGD48OFERUUxceJEunTp0uS3J5PJxMWLFyktLWXw4MFN/kW1s7PD19cXX19foPrLYhZAly5Vz+sxZ38UCkWTxrLLnJxxGDQYh0GDq2OrrCT38K/oEs7hV1qCkJkBTZg/1K4IkL74lkSvMVKeJgmejk7BrzoCLWAvZwiOwtD3LpA3fH+paRExYsQIq2Uejh8/zpIlS3j77beZMmWKVc5xLQ0ZgObm5vLNN98QFxfXqOCB6nqdF154gYULF4qt8idPnsTZ2ZlNmzaxZcsW4uPjGTp0KOXl5WRkZBAeHo6/f7XANP993n///cTHx/PDDz9w3333WeFqOyaS4GkldnZ2jBkzhjFjxrB8+XJx/HdcXBzz58+npKSEkSNHMmHCBKKiovD3969XAKnVapKTk+nSpQuRkZGtSjHb29vj5+cnFuUZDAaxADojIwOZTIZCoRAzQNe76VRUVJCYmIhX9570mTgJuVyOUFWFIeMChuSk6mWw9LR2L4A8u3khWUpYDtXv5VLnXydAczaD0imD8PJTtujzgr0z+oEPYgoY0uh+trCIEASBrVu3sm3bNr755hv69Olj8XPUR2MGoE899RRr1qy57n1WJpPh6OjIrl27GD9+fK3ZQDqdDoPBwIoVK3jggQcICAjgyJEj6HQ6FAoF3333HUOGDBGXr8LDw3F0dCQ1NRWoW9x8oyIVLVsZnU7HkSNHiIuLIz4+Hq1Wy+jRo0UB5OLiwooVK4iIiOC+++6zWnq3Jnq9HqVSiVKpRKVSIZfLxRZ4Ly8v8YspCIKYeh44cGCj/jKCXo8hI726DT45EUN6KjQwn6hNsJPTbfMsZLIbrzPNWlxYl0n+9vi2DkPCAniPHUD43dpmf04t9yHL5y+4+ffE29u7wRliJSUlpKamMnDgQLy9rTMHq7KykmXLllFWVsaWLVtsci+F6vvptGnTmDx5cr2eWCEhIZifs0VFRbi6urJ582b+9re/1drPLFYeffRR3NzcWL16NU5OTpw7d47HHnuMtLQ0/P39ycvLo0uXLsydO5dbbrmFxYsX4+joSHx8fK3jfPTRR3z11VfExsaKo01uEKQurfaCVqvl8OHDxMXFsXfvXgoKChgxYgSzZ89mwoQJeHh42FyJV1VV1RJA9vb2TsvH3AAAIABJREFUeHp6olKpcHd3p3///s12JxYMegwZF/+YA5SIIS0VqtquHdxp2AD8n2jder1EbU7MPkBFclZbhyFhIYa+FIq7l7rJ+xu6T6Qq5HbU2nLx/lFZWVnLAsLFxYXs7GwKCwuJiIhodKhqa8jPz2f27NlMnz6dpUuX2my+jiAIzJ49Gx8fHz744IPr7j9nzhymTZvWaJfWq6++ys6dOzlz5oxYq3P69GnOnDlDZmYmDzzwAN999x3Ozs4sWrSI999/n48//phTp07RpUsX8ThHjx4lISGBWbNmSYLHvEESPLZHr9ezZs0a9uzZw/vvv09RURFxcXEcPnwYmUzG+PHjmTBhAjfddJPN3lJqkpubS0ZGBu7u7lRWVuLg4CBmgBqbYNoYgsGA4VK1ADKkJqFPSwGd7ZaXPB6ajNekhmeBSDSPKo2RY7f9G0zSLaKz4HdLOAOnqq67n2Dvij7s75j8BtXd9scUefMSukqlwsHBge7du+Pj49NsC4imcOTIEZ5++mnef//9Wq3atuDQoUNERUUREREh3hevNQA1IwgCDz/8cIOCx7zsVFxcTN++fVm2bBnLly9v8NzPPvssAwcOJDY2ltLSUv773//WEpSCIFBcXNxh5g1ZEEnwtCdefvll7O3tef7552t1UAmCgFKp5ODBg8TFxXH06FGcnZ0ZP3480dHRjBo1qlm+W81Fr9eTkpICwMCBA8XYKisrxSnQarUaR0dHUQB5eHi0TAAZjRgzM8QuMH1qCugqLHo9NfF96f9wCZHWsC1F0TEtSU/+t63DkLAgMjs7Iv/RG2e38gb3MXn2omrQbHBufFnKbBERHByMl5eXmD3WarW4uLiIYzRaev+A6gLozz//nC+//JIdO3aIw/jaKxqNBg8Pj+vuV1lZyYoVK/jxxx/Ztm0bI0eOrNcU9NSpUzzwwANcvXqVvXv3MmbMGGuF3tGQBE97oqkFZIIgcPXqVfbv38/+/fs5fvw4Xl5eYv3PiBEjLJaqLC4uJi0tjd69exMY2HgmRKfTiW9wGo0GJyenWgKoJW9wgtGI8XLmn3OA0pIRyhu+8TaXwI/m4+AuTVi2FOkbL5MXc7Ctw5CwMF3uGEzf6OJ6txl63IKh9+0gb7z4tjGLCEEQallAaDQaHB0da3lgNaVzq6KigqeffhqTycTmzZut+iJoCZYtW8bly5cZNmwYU6ZMYdiwYY3uHxsby4svvkhISAgbNmzA19dXrM3Zt28f33//PWfOnEGtVhMeHs4777xDt27dbHQ17R5J8HQGzEXEcXFxHDhwgJMnTxIQEEBUVBQTJkxg2LBhzR7LbjQaSUtLQ6fT1TIjbQ4VFRW1BJCLi4sogFqawhZMRgyXMyn57RiViedxv5IPFS0XQEGfPYJc1r67yDoSp+cfQvt7RluHIWFh5M5OjFjZDUfnP18OBAc39GEzMfmGNfLJlltE6HQ6UQCVlpaKHlje3t54eXnVqR/Myclh9uzZPPjggyxevLhd+2Gp1WoeeOAB/P39WbBgAZ9++in9+/fnxRdfBGj03rh69Wq2bdvGrbfeyrp168Sfm7uAFQoFCxcuZPfu3Rw7doznn3++RbZDnRBJ8HRGBEHg8uXLxMXFsX//fs6ePUtwcLA4BDEiIqLRtyWVSkVKSoroTGyJtXXzG5x5CUyr1eLq6ioKIDc3tyadp6qqiuTkZBwcHOjfvz92chnG7CzRDNWQkoRQ1rSuErvuAXR9xTazOG4EDDoTRyd9iWDo2IMoJeqn273DCBldbTdh8upN1aBZ4NRwhyZY1iLC7IFlFkBXr17lhx9+EJs6Xn/9dT766CMmTpzY4nPYitjYWL7//ns+/PBDoNomYtmyZZw6darBAm7z8pXJZOK5557j+++/Z+LEiWzevFncR6fT1fr8yZMnCQ0NbZOaz3aIJHhuBMyDC80CKCEhgd69e4sCKDQ0FLlcTkVFBZ9//jmjR48mPDzcqulgQRAoLy8XM0BlZWW4ubmJAsjV1bXOzbGoqIgLFy7Qp0+fBkfOCyYTxtzs6jlAqdXLYIJGU+++btPG4313b4tf241K8YkyEh//uq3DkLASdp5ujFzuD31vxtBr8nWXsMwWEX369BEH4FkSjUbD3r172bVrFydOnKBLly5MmDBBXNqv2ZnUEprih/XFF1+wZs0aANzd3dm4cWMde4f6KCsrQ6PR0KVLFwwGA2VlZdx///188cUX4qBYqFvmYBY9SqWS7du389JLLzF16lSefvppRo0aJe5XcyKzhIgkeG5ETCYTKSkp4hJYcnIyQUFBXLp0icmTJ7N69Wqbf1kEQaCsrEwUQOXl5bi7u4vp6+zsbCorK5u9vCaYTBjzcqttMP7IAgnq6nH53kvvwy3COu2wNyIXP80m99P9bR2GhJWQuzgR+umLuISFX3df85yuQYMGWS27UF5ezpNPPomzszMbNmxAEASOHz9OfHw88fHxvPrqq4wdO7bFx8/Pzyc/P7+WH9a3335byx7iyJEjhIaG4u3tzU8//cTLL7/M8ePH6z1efQXGZnJycrj//vs5dOgQMpmMS5cuERISUu++ZhFkNBo5e/Ys8+fPx93dnaFDh/Lmm2/W8gWTqIUkeG50jEYj77zzDl9++SVTp04lKSmJjIwMBg0aJL4thYSE2HwGkCAIaLVa8vLyyMvLw87OTsz++Pj4tDj7JAgCprxc9KlJuIR74uxbiox2NAixA3PmsaNoTl9o6zAkrICdpxv9PlqO++D+je5ntogwGAyEhYVZzSIiKyuL2bNnM3v2bBYuXGiT+9Ndd93F4sWLue222+rdrlQqGTRoELm5uXW21TTqLCwsJCAgoJYA+vXXX9m8eTPbt29n0aJFeHt7s2rVqkYNTM2fz8nJISEhgddee43FixczderURofB3sBIbuk3MjqdjilTphAdHc3JkyfFYkKDwcDZs2eJi4tj2bJl5OTkMHToUNEHrFu3bla/wZg70dRqNaNGjcLV1VWc45GSkoJOp8PT01P0AmuqAJLJZNh1C8auWzACUCEIyNBiJxQhF4qxE4qQIRUxNxdjpQltQmZbhyFhBRz8FPT7eCWu/Rpv77aFRQTAgQMHeOGFF/j444+JioqyyjmupSE/rJp89tlnTJ06tdbPzIkDOzs7cnJyePHFF8nMzGTbtm21MjgODg5cvnyZKVOm4O/vz4YNG64bk1ksBQcHExwczLhx47Czs5NMQVuAlOG5QcjMzKRXr16N7qPX6zlx4oS4BHb16lUiIyOJiooiOjqawMBAi97cysvLSUxMxMfHh5CQkHrTwCaTqdYgs8rKSjw9PfHx8Wl0lP11EQRkaP4QQEXYCSWSAGoCJafLSXjsP20dhoSFcQzyp/+Gl3Du0bXR/WxhEWEymVi/fj179uzhyy+/tFm7tVarJTo6mhUrVnD33XfXu8/+/ftZtGgRhw4dqlWDY2b37t3MmTOHwYMH07dvX1auXFlrPtCPP/7IHXfcwYYNG2oNJTQajeTm5tKjRw/LX9iNh7SkJdF8KisrOXr0KPv37+fgwYOUlpYyatQosVjQ19e3ZS3nNTy6QkND8fLyavJnTSYTarVaFEB6vb6WAGrxXCJBQEYpdkIxGAqRC8XY20m//tdy6bMcsj+Ja+swJCyIc0g3+m98CceAug9wM4IgkJWVZXWLiLKyMh5//HG8vb356KOPbGaJcD0/LIBz584xffp0fvrpJ/r3r7vk9/333zNv3jzmzZvHggUL6NmzJzKZrFZB8tWrV8nLy6tV8JyWlsaDDz7IPffcI7arS7QKSfBItJ6KigrRByw+Ph6dTsfo0aOJjo5m/PjxeHl5XVcAVVVVkZSUhJOTU3W7eSvX/k0mE6WlpaKXj16vx8vLSxRAja2N18eVK1fIyMhgwID++HnLxeUvuVCCDKkN++zi46h/S23rMCQsRc8u6BdNxy3QT1w2vnZ0hMFgICkpCUdHR/r372+1uTeXLl1izpw5LFiwgHnz5tmsnrApflhZWVlMmjSJbdu2NVggPW/ePMrKytiwYYOY/TLX9DRUyPz999/zwgsvsGLFCmbOnGm5i7qxkQSPhOXRaDQcOnSIuLg4Dh06hNFoZOzYsURHRzN27Ng6Y9QzMjK4cuUKffv2tUr7KlTfYGoKIKPRWEsANTQMzWAwkJqaitFoJDQ0tO5+ggk5qmsE0I3lvG7Umzg66StMlVLxd2fAPTKMfmufR+7mInZOKpVKysrKxNlZzs7OZGRk0KNHD4KCgqwWy759+1i5ciWbN2+2uUVCU/yw5s2bx9dffy0uT9nb23Py5Emg+qWrqKiIkSNHsnjxYpYtWyYKnMYEzyuvvMLatWvx8/MjPT0dqM40NXd4rEQdJMEjYV0EQaC0tJT4+HjRCNXe3p7x48czatQovvzyS+RyOVu2bGl21qU1GI1GcYiZUqnEZDKhUCjw8fFBoVDg4OBAaWkpycnJ9OjRg65duzbtzVIwXiOAlJ1eACnP6Tg/76u2DkPCAnhFRdJnzVLkznWXjMyzs7KysigoKMDR0VEUQK31v7oWk8nE2rVriY2NZceOHa2eqdNWVFZWMmDAAB566CFef/11oHoi8q5du7h48SIGg4E333xT7Gh79913+fXXX9m5cycTJkzgrrvuYsWKFW18FZ0GSfBYm7lz5/LDDz8QEBBAQkJCne0tHVzVUTE79X766aesXbuWPn36YG9vL9pgjBo1ymp1AI1hFkDmSdC6Pxzb+/TpQ2BgYMvnEglG5IJS7AKTo0TWyb4+mf/MI+vjfW0dhkQr8Zk6nl4vP47cof7fdbNFhEajYdCgQdjb29fyv1Kr1aJ/ntn/qiUCSKvVsnDhQrp27cr7779v0xchSyIIAnq9nqVLl7Jx40b+/ve/o1Qq+emnnwDo0qULBQUFjBgxgl27dtGzZ08SEhIYNKjabX737t2sW7eOd955p1M/E2yIJHisTXx8PO7u7syaNatewdOcwVWdAYPBwBtvvEFsbCwxMTH07t2bK1euiEaov/32Gz4+PqIAioyMtOkNr6KigsTERLy8vPDy8kKlUqFSqZDJZLUyQC2uMRIM1wggVYcXQKefOI72uFS/05Hxv/cv9Hj+EWQNCJSmWkSYDYTNAsjBwaGW/9X1vjcXLlzgkUceYfHixcyePdvm87+swa+//sqaNWvYs2cPISEh3H777fzlL3/hlltu4b///S+zZ89m9erVPPfcc7U+d/nyZd5//31CQkJYtGhRhxV+7QhJ8NiCzMxMpk2bVq/gqUljg6s6C0VFRcTExLB06dJ6syaCIJCbm0tcXBxxcXGcOXOGLl26iC3wQ4YMsdoU6IKCAjIzMxk4cGCdwV16vV7MAKlUKuRyuTgIsSk38gYRDMiFkmsEUMfBpDdx6JavQCfV73RUujw8nW6LH2xQXLTGIqKyslIUQNcagF774rB3715eeeUVtmzZwsiRI1t1Te2NsrIyEhISGDx4MHK5XOwyU6vVjBs3jltuuYW1a9fW+TfYuHEj8fHxrF27li5dutSxmpBoFpLgsQVNFTzvvvsuKSkpbNmyxUaRtX8EQeDSpUviDKDff/+dHj16iEMQw8PDW93RZTAYSElJQRAEBg4c2KTiQL1eL7bAl5aWipOgzTfyFtcyCHpRAFUPQVS3awGkStJxbo5Uv9NR6fbkQ3Sdc1eD2y1tEVHTAPTMmTOsXbuWESNGiN/zXbt2NeiT11moWah89epVwsLCeO6551i2bJm4T01hM27cOMaOHcs777zTJvF2IiTBYwuaIniuN7hKohqTycSFCxdEI9SkpCT69u0r2mAMHDiwWWLD7Azfs2dPunZtfLhaY1RVVdUSQA4ODmIGqKW1DIIgkJtziaryHHr39MDZvhQ59RuhthVJn6RT9NmRtg5DornIZPRcPh//GfXbJNjKIuLSpUs8//zzFBcXi7Npxo4dy4QJE5g0aVKdjs7m0BTzT0EQWLJkCXv27MHV1ZWtW7cyfPjwZp+rqZmXmhYTVVVVfPrpp2zatInt27czdOjQevf99ddfeffdd/n2228BpAxPy5EEjy24nuC53uAqiYYxmUwkJSWJGaC0tDRCQ0NFAdSnT58GJzVfunQJpVJpFWd4cyq/pKQEtVqNo6OjKICa0s1inkvk7OxMv379/nzgCJXYCcV/doGhtWjczeXUk8coO5bWpjFINA+ZvR0hrz2Bz+Rx9W43W0QEBgbSvXt3qz1gU1JSmD9/PkuXLmXmzJnIZDK0Wi1Hjhzh4MGDPPjgg2IBb0toivnnnj17WLduHXv27OH48eMsWbKkyTWU5mfktUMEm0JSUhK7d+/mlVde4cUXX+Sll15q8BySwLEYkuCxBY0JnqYMrpJoOkajkXPnzokC6NKlSwwePFgUQD179iQ1NZV3332X5cuX06tXL6sNTKuJuZizpKQEjUaDo6OjOAPI09Oz1k3NPKa/SXOJBN01AqjMylfyJyaDiaN/+S9GbbnNzinROmRODvR551kU4+vPYtjCIkIQBH788UfefPNNPv/88xZlVFpCfeafjz76KBMnTuTBBx8EYMCAARw4cOC62d6ay1KxsbF88803uLm5MWjQIP7v//6vwc+lpqby3HPPkZeXR35+PqtXrxb3v564acxtXaJJSOah1ubBBx/kwIEDFBUVERwczCuvvIJeX+3N9Nhjj/Hqq69SXFzMokWLgNqDq1rK9VrhzZw4cYIxY8awc+dO7rnnnlads71gZ2fHsGHDGDZsGM888wwGg4HTp08TFxfH0qVLxVqd2bNn4+zsbLO3J2dnZ7p27SreSCsqKlAqlWRnZ6PRaHB2dsbb25uysjIqKioYNmxY09rzZc4YZd0w0g09IBMq/hA/xciFIuRYT4xoM/SS2OlA2Lm70PeDF/EYHlpnW02LiCb/7rUAo9HI6tWrOXnyJPv27cPPz88q57mWhsw/c3Nz6d69u/jn4OBgcnNzryt4zMJj9erVvPLKK0RHR1NSUsLatWs5fPgwS5cuZcCAAXU+5+vrS1BQEIMHD2bu3LmigWhTxIwkdqyHJHgsxJdfftno9i1btli8SHnOnDksXryYWbNmNbiP0Wjk+eefZ/LkyRY9d3vD3t6eUaNG0b9/f86fP090dDQzZ87kt99+49FHH6W4uJgRI0aIPmABAQE2EUEuLi64uLgQFBSEIAioVCoSExOxt7dHEARSUlLEDJC7u3uTYxJkLhhlwRgJBkAmlNcYgliMnAqLXYPqtMpix5KwLvYKD/p9vBK30N51ttW0iIiMjLTag1WlUjF//nzCw8PZs2eP1botr0Wr1TJjxgw++OADPD09a22rbyWjqd+1M2fOsGXLFtauXcvMmTPx9PTk1KlTYofZm2++iY+Pj7i/yWTCz8+P999/X1xCNwsdScy0LZLg6cBMmDCBzMzMRvdZt24dM2bM4MSJE7YJqg3R6/VMnTqVp556ivvvvx+AyZMn89JLL6HT6Th27BixsbFs2bIFrVbLqFGjiI6OJioqCm9vb6sLoCtXrpCZmUlERAReXl7iRFulUsmlS5fEkf5mAXStp1FjCDJXjDJXjHT/wwj1WgGka3HcpWfyW/xZCdvhEOhL/w0v4RJS113c3C7dvXt3q1pEJCUlsWDBAp577jnuv/9+m2VW9Xo9M2bMYObMmfU6nQcHB5OdnS3+OScnp96/h/qWm44fP45Wq2X69OmikPrqq6+QyWSMHz++ltiBPzM0ZrEjCIIkdNoJkuDpxOTm5vLNN98QFxd3QwgeBwcH9u/fX2+a3tnZmYkTJzJx4kSg+gFw5MgRYmNjWb9+PVVVVdx0001MmDCBcePG1am3aQ1mny6TyURkZKTYDi+TyXBzc8PNzY3g4GAEQRA9jS5evEh5eTlubm6iAHJ1dW1aTDIZAm4YZW4Y6fGHACoTBZCdUIyMyibFLpgENKczWnP5ErYgwBuv1xdi9Peq89AuLCwkIyOD8PDwVnVDNYYgCHz33Xe88847bN261aYTgwVB4JFHHiE0NLRBp/M777yT9evX88ADD3D8+HG8vLzqLGfV7KwqKirC3d0dZ2dncZ5Oly5d0Ol0REVFkZ+fzy+//MItt9wiWtY01HUrFSO3HyTB04l56qmnWLNmjdVaTdsjTa1JcHNz47bbbhMLG9VqNb/++itxcXG8++67CILA+PHjmTBhAjfddBPu7u4tisc8zK0pPl0ymQx3d3fc3d3p3r27KIBKSkpIT0+nvLwcd3d3UQC5uLg0QwC5Y5S5Y6TnHwJIi51QjKEyD3tKcHSovz9Be6kKQ2nbdohJNI5Lv550e3spGrmJjIwMMVOoUCgoKytDp9PVEtqWxmAw8Nprr5GQkEBsbGydjIe1OXz4MNu3byciIkJs+b7W/PP2229nz5499O3bF1dXV2JiYmodo6bYeeutt4iPj2fWrFnce++9KBQK1Go1b7zxBh988AFhYWHExcXRv39/1Go1S5cuZcyYMTz22GM2vW6J5iN1aXVwGusMCwkJEdeui4qKcHV1ZfPmzfztb3+zdZgdCnOtzcGDB4mLi+Po0aM4Ojoyfvx4oqOjGT169HXb283FoVeuXCE8PNwiw9wEQUCr1VJSUkJJSQk6nQ4PD49aAqipmEzVD8fS0lLCw8NwcdKLy1/VGaDqgvvsXYVcemdvq2OXsA5ug/vT76MXsff8U5CbjXyTkpKAaiHt4uJSy/zTUlmHkpISHnnkESIjI3nttdfa/ctVTWFTH3fffTfHjh1jwYIF/OUvfxE7aqdMmcIvv/zCAw88wOeff46zszOVlZV8/fXXrF69mmeffZbZs2fb6jIkGkdqS++sNHW685w5c5g2bVqn6dKyJYIgUFRUJPqAHT9+HA8PD7EAeuTIkeIIeaieWpuTk4NCoaBv375WW78XBAGNRlPLCNXT01MUQA1lu3Q6HQkJCfj4+BASElL34ScIyFBjJxSR88/j5Mfsxai1XBG0hGXwHDOYPu8tw86l9r/ztRYRgiBQUVEh2qWYuwXNvyctFUAJCQksWLCAlStXMmPGjA6zdFNRUcG5c+fqdHLFxMSwatUqYmJiiI6OrlVsnZOTw/jx4wkKCmL27Nn4+/tz+PBhNmzYwPLlyxucryPRJkiCpzNSsxU+MDCwTit8TSTBYzkEQaCgoECcAn3y5En8/PyIiorC2dmZzZs388knn9h83pLJZKolgKqqqmoJICcnJ65evUp6enqz5q8IBiNlKRloTiai+S0B7dkUTLqm1QBJWAfFpNH0fnMJcsfay1Rmi4iIiAhcXV3r/axZAJm9r2qOSzALoMZEuiAIfP3113zwwQds27atVUMDbY1Wq2XmzJn4+vqyefPmWqLmvvvuIzs7m6NHj4o/EwRBLDpOTU1l1apVxMfH4+fnh6OjIytWrGD69OmAND+nHSEJHgnL0JTZPwcOHOCpp55Cr9fj5+fHwYMHbRylbREEgfT0dJYsWUJSUhJ+fn74+fkxYcIEoqOjGTx4cJuk+k0mE2q1WhRAGo0GOzs7evfujb+/f4tdmU16PWUJ6WhOJKA5mYj291QEvcHC0Us0hO+dN9Nr5aPI7P/8nWqtRURNAaRWq3FychIFUE3LFIPBwKpVq0hPT2f79u11zHc7AsePHycyMhJ7e3tRpBgMBmbOnMmVK1c4cOAA0PCAwCtXruDg4IC9vT2enp61RJFEu0ASPBKWIT4+Hnd3d2bNmlWv4FGpVIwdO5a9e/fSo0cPCgsLO71JYHp6OrNnz2b69Ok8/fTTyGQyLl68KE6BPnfuHCEhIaIACgsLs+nNsby8nISEBPz9/fHy8hIfbEajES8vLzED1NKiVpOuEu25NDQnElCfTKQ8MR3BYLTwVUgABPz9r3R/ehayGr8/1rCIqCmAtm7dyokTJxgxYgSnT5/m1ltv5ZVXXmn39TrXcm0GZvHixVRUVPDZZ58BsGjRIr799lt2795NZGRkrc8eO3aM7Oxs7rjjjlpLxVJWp10iCR4Jy9FY3dCGDRvIy8vj9ddfb4PI2obvv/+eoKAgRowYUe92k8lEWloasbGxHDhwgOTkZAYMGEBUVBQTJkygf//+VrtpFhQUkJmZSWhoKF5eXrW2GY1GSktLxQyQyWRCoVCIb/YtFUDG8gq0Z1JQn0hAcyKB8pRL0Ph9RqIJBD12H13n31OvPYk1LSIA9u7dy3vvvYebmxtFRUX4+voyceJEoqOjGTt2bKt/f6+XOS4tLeWhhx4iKysLg8HAs88+y8MPP9zk49fM1hgMBqqqqnjsscc4fPgwzzzzDIsWLaK4uJj+/fszadIk3njjDdHvsKSkhGeeeQZ7e3vWrl3b4o5NCZshCR4Jy9GY4DEvZSUmJqLRaFiyZEmjk6BvREwmEwkJCWIGKD09nfDwcNEHLCQkpNUPEKPRSGpqKnq9nrCwsCaJF6PRiEqlEotbBUGoJYBaOjHXoNaiOZ1cvQR2IoGK9KwWHedGpvuyhwl88HbxzzUtIiIiIqxmESEIAjt27GDDhg3861//IjS02q4iPz+fgwcPcvToUdauXdvq39frZY7ffPNNSktLWbNmDVevXmXAgAEUFBQ0aVm2ptjZunUrKpWKp556SnRwP3fuHB9++CGTJ09m9+7dTJ8+nVGjRjF9+nRcXFz45ZdfOHr0KLt27RLneEm0ayTBI2E5GhM8ixcv5uTJk8TGxlJRUcFNN93Ejz/+KLnDN4LRaOTs2bOiAMrKymLIkCFERUUxceJEgoODm7VMYZ6qGxQU1OzP1sRgMNQSQIAofry9vVu8pKHNLyT5u59xuVyIkJJF5eW8Fh3nhkAuo9fLj+M3LVr8UU2LCGtmB/V6PStXriQnJ4etW7fWyRBamsbuK6tXryY7O5uPP/6YzMxMbrvtNtLS0mpde301NzWXnOLj45k0aRKvv/46CxcuxMvLi4MHD/KPf/yDyspK/v3vf9PpVs6kAAAgAElEQVS7d2+++eYb/vnPf7Jv3z569eqFn58fW7dupVevXpKrecdAEjwSlqOxG9Nbb72FTqfj5ZdfBuCRRx5hypQp3HvvvTaOsuOi1+s5deqU2AVWWFjI8OHDRQEUGBjY4E03Ly+PrKwsq0zV1ev1ogAqLS1FJpOJ4kehUDRJANXXJVZ1tQTNiUQ0J86jPplIVW6hRePuqMgc7Om9+im8J/3ZPm0ri4jCwkLmzp3LzTffzIoVK2xSp9LYfUWj0XDnnXeSkpKCRqNh586d/PWvfxW3NzZfp6qqinfeeYeysjIA/vGPf9TKiH3xxResWbOGPn36sGvXLuzt7dHpdBQXFyOXy8WJzNeb4SPRbpAEj4TlaOzGlJyczOLFi/n555+pqqpi1KhR7Nixo0O1rrY3qqqqOHbsGHFxcRw8eBCVSsXIkSOJjo5m/Pjx+Pn5UVpayj/+8Q/mzp3LoEGDbGLYqNfrUSqVogCys7MTBZCXl1eth4PJZOLixYtoNBoGDRrU6FJEZV4hmhOJqE+cR3MiAf1VpdWvpb0hd3Gi7/vP4Tl6sPgzW1hEAJw+fZrHH3+cN954g2nTplntPNfS2H3lP//5D4cPH+b999/n4sWL3Hbbbfz+++94eHiIHVKlpaWsXr0ajUaDu7s7S5YsISgoiO3bt/Pss89SUVHB+vXrmTVrVp3OqtWrV/P5558zffp03n777Trnl8ROh6JBwSNZS0g0i5qzf4KDg+vM/gkNDWXKlCkMHjwYuVzOvHnzWi12rF3Q2N5xdHQU63uguoPm6NGjxMbGsmnTJoqLiykrK+OOO+6gZ8+eNrsxOzg4EBAQIHbhVVVVoVQqKSwsJC0tDQcHB9EENSsrC19fX4YNG3bdJQGnoACc7grA766bEQSByqx8sQBaczIRg1Jti8trM+w83Oi3bjnug6uXgQVBEMWiNS0iBEHgX//6F1u2bGHXrl3tahk6JiaGF154AZlMRt++fQkJCSE5OZnRo0cjk8k4ePAg999/Pz179hSX/A4cOMDGjRu57777SEhI4N133+Xs2bPMmjULmUyGTCYTl7wWLVpEfn4+mzZtIiwsjDlz5tQ6vyR2OgdShkeiRVy7lm00Vrchy+Vyi69xW7OgsSMjCAIbN24kJiaGBQsWcOHCBQ4dOoTBYGDs2LFMmDCBsWPHWtRKoDlUVlaSlZVFTk4ODg4OuLi4iC3wNWe7NAdBENBdzK4WQCcT0JxMwqgps0L0bYO9r4L+G1bi2q8nUC0iExIS8PLyonfv3lb7d6yqquKFF16guLiYmJiYNulEaizDs3DhQgIDA3n55Ze5cuUKw4cP5/fff8fPz49NmzaxaNEinn32WZ566ikUCgUXLlxg3Lhx3H777Xz11VdcvnyZ5557jgMHDhATE8Ptt98uih3zf5OSkvjnP//Js88+i7+/v82vX8JiSEtaEpanoKCAoqIiwsPDrf5AbW1BY2dkwYIF2Nvb895774k+WoIgoFariY+PJy4ujsOHD2NnZycaoY4ZM8Yivl7Xw5yVKC0tZdCgQTg5OaHT6WoNt3N0dKxlb9AiAWQ0Up52uXoG0IkEtGeSMZXrrHBFNsDXC/3iu/Ho00McC5CRkSFaRFiLgoICHn74YaZOncpzzz3XJt+b602Nz8vLY86cOeTn5yMIAi+88AIPPfQQx44dY9q0afTs2ZNTp04Bf76Mbdy4kccff1wcA3HkyBFWrlyJVqvliy++oF+/fg0uVUnzdTo0kuCRsBxqtZrPPvuMnTt3UlRURGFhIUOGDOGhhx7i7rvvtsrNuTUFjZ2VgoICunTp0ug+giBQUlIiGqEeO3YMFxcX0Qh11KhRFm9prqysJCEhAYVC0WhWQqfTiTOA1Gq1RfydTHoD5UkX0ZxMrBZAv6cgVOpbe0lWxzmkG/03voSDvw8ajYbMzEyKi4txdHSsNRyyOQaxTeG3337jySef5O2332bKlCkWPbYtUKlUrF+/nrVr1/Lyyy/zxBNPUFlZiZOTEzt27ODRRx9l//79DB8+HICdO3fy1ltv0b17d3bt2oWTk1Md0SN1YnV4JMEj0XrMbz3r16/n9ddfZ9KkSSxcuBCtVsvevXvZs2cP9913H2+88YbFz92SgkZPT0+Lx9HREQSBwsJC9u/fz4EDBzh+/Dje3t7iEMTIyMhWLQWaB+H1798fX1/fZn3WbHBptsGouQTm7u7eMgFUpafsfBrq36rrf8rOp7W7KdCuob3pt34FDt6edSwi5HJ5HYNYDw+PVgsgQRDYunUr27Zt49///jd9+vSx8FVZH7MwycrK4rXXXmPXrl3s2rWL2267DYB77rmHs2fPcuzYMXx9fcXfn/fee48tW7YwZswYYmJi2vISJKyDJHgkWo9Z8ERFReHj48POnTtxdnYWXbs3bdqEQqFgwYIF6PV67OzsLJYWbkzw/PWvf+WFF14gKioKgEmTJvHWW28xatQoi5y7MyMIAnl5ecTFxREXF8fp06cJDAwUi6SHDh3apI4vQRDIyMhApVIRHh7e6qxRTYdvpVKJVqvF1dVVfNC7ubk1WwAVFxeTdj6RHno7hJRMNCcSKUtKB1Pb3ebcI8Pot/Z57Nxdm2QRYTaINS8N6nQ6PD09xe64pgigyspKli1bRllZGVu2bLHJEqe1OX36NMuXLyc9PZ3//e9/PPbYY5w/f559+/YRFhYG/Hn/0mq1PPHEE6jVav71r3/h7OwsZXQ6F5LgkbAco0aNQi6Xs2vXLrp3796kFLDBYEAmk7W426GlBY0SzUMQBC5f/v/27j2u5vuPA/jrnEqpKBUVKVG6qLQala6S2xgmdxstMTbTGMvGz/Dr5zdmmyGGGdZm8zN3qg2VKddidFuF7jfS7ZxOl3N5//5o57uOruhi+TwfD48H53zP93yPTt/v+/v5vD/vdxZXA+iPP/5A//79uT5gNjY2DX6GVVVVSElJQc+ePTFw4MB2yX0gIohEIi4AqqyshIaGBnr16gUdHR2oq6s3+R0kImRkZKC0tJTLJ5KTCkUQ3E7hVoCJUjM7rA2GlpsDBm1ZAb6a6jO3iHjaAKigoIDr+7Z8+fIulacSHh6O1atXIyEhAS4uLvjhhx9gamqqkI8j/3txcTE7P3RdLOBh2s7evXuxePFiLFy4EKtXr4apqSmAuros8iWzhw4dgr6+PsaMGfPcJ9VnTWhknp+8fs7FixcRFRWFpKQkmJmZwd3dHZ6ensjIyMDGjRtx8uRJrkBbRyAiVFZWcgGQSCSCpqYmFwB1794dPB4PtbW1SEpKgqamJgYNGtTid1FSJoAgPhmCuLok6OoHue1y/Drj3TBg/XvgKSshOzsbjx49go2NzXOPjD0ZAOXl5eGHH36Ah4cHDAwMsGXLFnz55Zfw8fFpo0/S/urn2DSWTCy/4ZLJZNi/fz/+85//wMvLCwcPHlR4vqV9M10GC3iYtlNZWYnPPvsMISEhEAqFmDdvHtasWcMFPgUFBZg2bRoKCwuxZs0a7NixA5aWlnj//fcxYsSIRvcplUrB4/FemDvOnJwczJs3D4WFheDz+Vi0aBECAwMVtiEiBAYGIiwsDOrq6jh48CCXHNlVyWQy/Pnnnzh//jz27t2LsrIyODs7w9PTEx4eHjAzM+uUnyERQSgUcgFQVVUVVFVVUVlZCVNTUxgZGT3TfsXFpRDEJ3N1gGpyCp/7WHtPGw3j1QGQymTt3iKitrYWsbGxOHToEK5cuYKePXvCxcUFXl5e8PLyQv/+/Z/7PVqqkwUA0dHRXJ89PT09XLp0qVX7FgqFOH78OKRSKVdbKzw8HH379sXQoUO57eRBTVlZGbZv346tW7di8+bNWLJkCVtx9fJhAQ/T9sLDw7Fr1y6EhYVhwoQJ2LdvH/T19REbGwt/f388evQIPj4+GDlyJA4ePAiJRILTp0+jX79+T/U+MTExUFFRwauvvtphd2MFBQUoKCiAg4MDV/Dt5MmTXD4AAISFhWHHjh0ICwvD9evXERgYiOvXr3fI8XWm4uJizJs3D3Z2dli/fj1SU1O5TvAZGRmwsbHhpsBMTEw6PD+CiJCTk4O8vDzo6elBKBQqTPXo6Og880hKbWExKuLq2mAIbiaitvDxU73e4O030G/pbIhEIiQmJsLY2LhdR8aqq6uxYsUKSKVS7N27FyoqKrh16xaio6MRHR2NuXPnYu7cuc/1Hi3VySorK8OIESMQEREBY2NjPHz4kCtW2ZKKigp89NFHiIyMxNdff42jR4/ixIkTOHfuXIObJ3nQk5mZiX//+984ffo0Tpw4ATc3Nxb0vFxYwMO0nSeHgbds2YLVq1fj+PHjmDJlCnbt2oWlS5ciJCQES5YsAQDEx8fD09MTq1evxtq1a7l9FBYWIjw8HAkJCXB3d8e4cePQvXt3SCQSKCsrQyQSYe7cudDT08O+fftadXwymYw7wbXVSW7y5MlYunQptwIEAN555x14eXlh9uzZAAALCwtER0d36NROZ1i6dCnGjx/f6NJ/iUSC27dvc41Q8/LyYG9vz/UB69u3b7sGQFKpFMnJyVBSUoKFhYXCVEj91U61tbUKAVD9vJ7WIiLU5BZBIA+A4pIgLi5rcvt+y+bC0G9Kh7WIyM3NhZ+fH2bNmoWlS5e26wW/uRy7Xbt2IT8/H8HBwc+079TUVCxcuBC3b99Gr169cOzYMTg4ODR78xMfH4/ly5fj7t27yM3N7ZRCikynYa0lmOdXWloKJSUlbrm3PKiYM2cO1q9fj6SkJEyZMgUJCQkwNjbGnDlzANRdGBwdHWFlZYX79+9DJBJBXV0d8fHxWLx4MXJzczFw4ED8/PPPMDMzw549e2BlZYWamhrcunULmZmZCsPXjSEipKWlwdDQ8Jmr+DYlMzMTt2/fhpOTk8LjeXl5ClMCRkZGyMvL6/IBz86dO5t8TllZGcOGDcOwYcMQFBQEsViMGzduICoqCkuWLEFxcTEcHR25VWB9+vRpswCoucaafD4fWlpa0NLS4hJZKyoqUFpaisTERIjFYmhpaXEBUGuW5vN4PKj1N4BafwP0fmNUXRXojDwuAKqIS4K0XAjweDD5eCH0fH1w7969dm8RAQCXL1/GqlWrsH37dnh5ebXb+7RGWloaxGIxvLy8IBAIEBgYiHnz5rX69fr6+nj48CGkUikGDx6MwYMHQ0lJqdlRG0dHR6xatQq1tbUs2GE4LOBhWiQfKt65cyd+/PFHfPPNN3BycuKmBZKTkyEWi2FkZAShUIjExESYm5tDS0uLOymJxWKulor8bvqdd96BWCzG8ePHYWNjg/T0dEyePBmbNm1CaGgoTp48icDAQDx69AiGhob4/fff4eTk1OjdeH5+Pt59911ERUWhb9++GDVqFN58802MHDnyuRppCoVC+Pr6Ytu2bQ3q+jQ2OsqWtypSUVGBq6srXF1dsXbtWtTU1ODq1auIiorCd999B4FAgOHDh8PDw4Mrd/As/4dFRUXIyMho9agJn8+HtrY2tLW1uQCovLwcJSUlyM3NhUQigba2NrfaqbUBUPeBRug+0Ah9ZowFyWSoupcNqaASqrbmuH37NrS0tGBvb99u3xOZTIY9e/Zw0z5tkaPzvCQSCeLj43Hx4kVUVVXBxcUFzs7OTfbqenIEWV5NPD4+HocPH8batWuxY8cOhbYQ9cnPV6+//nqDx5iXGwt4mBbJTxQ+Pj64du0ali1bhqFDh8LV1RXJycnYs2cPRowYgddeew2pqalITEzEtGnTANSt3FJVVUVKSgrKy8u5LtrXr1/H7du3cfjwYbi4uAAAHBwcsGzZMvznP/9BcXExZs6ciaNHjyI2NhaVlZUYO3YsJk+ejJ07d3JLSuUnsvz8fBQUFMDf3x9eXl44evQoAgIC4O/vj08//bRVJ7wntxGLxfD19cXcuXMxderUBtsbGRkhJyeH+3dubm6DkQVGkaqqKpcwCwAikQhXrlzBxYsXERISgtraWjg7O8PDwwOurq7Q0tJq9ucmk8mQnp6O6urq5xo14fP5XHAD1F10y8vLUVpaipycHEilUoUAqDXvw+PzoT54ACoqKnDr1q12bxEhEokQGBgIVVVVXLhwoc0raD8rIyMj6OnpQUNDAxoaGvDw8MCdO3caDXjkU9kAEBkZCVVVVejq6mLChAkYPXo0SkpKcO7cOXz11VdNLqtv7PvCgh0GYAEP8xRcXFxw+PBhhIeH48iRIwgJCYGOjg5WrVqF+fPno3fv3vjhhx+gpKSEjIwMPH78mKu2e+rUKVRXV3MXurNnz8LU1BTOzs4A/j7RGRsbo6amBkBdF/SKigq8+uqrOHPmDIqKilBdXa1QP0N+IktNTUVeXh4WLFgAFxcXvPHGGwgODsaGDRvg6uoKHx+fFoOe+s8RERYsWAArKyusWLGi0e0nTZqEnTt3YtasWbh+/Tq0tLS6/HRWW1NXV4ePjw+3TFogECAmJgYXL17El19+CZlMBldXV64Rav3piQcPHnDTioMHD27Ti5qSkhJ0dHSgo6MDoC4AKisrQ2lpKbKyskBECgFQU6OI+fn5yMnJgZ2dHdTV1dvs+J6UnZ0NPz8/zJs3D0uWLHmhLvDy/DeJRILa2lpcv34dy5cvb3RbZWVlPH78GBMnTkRhYSHy8/OhqamJwMBAfPLJJ/j444+Rl5eH/fv3w8LCAq+99hqXN9a/f/8WW60wLzcW8DBPRUtLC7NmzcKsWbMA1F2g6k8hJCcnQ19fH1VVVdizZw8mTJiAX3/9FRs2bEBgYCDc3NwAAImJiTAxMeGqvMpkMgB1yYYGBgaQyWS4d+8eCgoKMHnyZABoMt9DKpUiKSkJampqXACloaGBoKAgbN++HdnZ2QAUAxqZTAYejwciAp/PR0JCAkQiEZycnEBEiI2NRWhoKGxtbWFvbw+griu7fF+LFy/Ga6+9hrCwMJiZmUFdXZ2VqW8DPXr0wPjx4zF+/HgQEcrKyrhGqJs2beKmyHr27IkDBw7g22+/xYABA9r9uJSUlKCrq8sF8BKJhAuAMjIyAIALfrS1tcHn87kWEe29ujA6OhqrV69GSEgIV228I9Wvk2VkZNSgTpaVlRXGjRsHOzs78Pl8BAQEwMbGptF9FRcX47XXXoOGhgYOHToEkUiEmJgYrF+/HmVlZfj888/x8ccfY8WKFVx397i4OPzyyy84c+YMC3iY5hFRc38YpgGJREJisZj7t1QqJSKi7OxsGjlyJM2YMYNSU1Np4MCBpKqqSvr6+jR//nyFfaxcuZIGDx5MVVVV3GNisZisra1p1qxZRET07bffkpmZGZ06dYp73/pkMhkREeXl5dG4ceNo9OjRREQkEomIiOjevXvE4/Hou+++IyKi/Pz8Jj/Td999R0OGDKE7d+489f9HW8rOziYvLy+ytLQka2tr2rZtW4NtfvjhB7K1tSVbW1tycXGhP/74oxOOtOPJZDIqKiqimTNnkrGxMTk5OZGHhwetWbOGIiIiqKSkhCorKzvlT3l5OWVmZtLt27fp4sWLdObMGfr9998pKyuLKioq2uU9BQIBffbZZ+Tu7k65ubmd/eNpE1euXKE+ffpQRESEwuOff/458fl8+umnn4iI6MSJE+Tp6Um9e/cmS0tLunTpUmccLvNiajKmYSM8zFNr6m41OTkZjx49wsSJEzF48GDcv38f6enpEAgEXEE++mtaafLkyfjqq6+wc+dOBAQEQCgU4ptvvkFKSgp2794NAIiLi4OmpiYcHR0BoMkVGRkZGcjMzMTYsWMBAN27d0dpaSm2bt2K3r17Y9iwYcjKysKkSZPwyiuv4MMPP8SlS5fg7e0NS0tL8Pl8vP3225gxY0an9xWSJ2jWr/8zevRohfo/pqamuHTpEnr16oXw8HAsWrTopaj/U1paCn9/f9ja2nJTp0VFRYiMjMSxY8cQFBQEXV1drgq0g4NDu66Eqk9ZWRm9e/eGkpISHj9+DFtbWxARHj9+jPv370NJSYkbAZLnsT2PyspKLF26FNra2jh//vwzLat/EVVVVaG0tJQbqZEnMK9cuRK//vortmzZglmzZmHKlClwc3Pj6j51796d1dphWsQCHua5yU8ySUlJyMrK4oIbqVQKc3NzhW3l00rOzs5Yt24dgoODceTIESgpKSElJQUfffQRPDw8UFJSgszMTPTv358rVPjkdJb832lpaSgqKsL27dvx/fffw87ODuXl5UhMTMS6detgY2ODX3/9FWKxGCdPnoRIJEJcXBxOnDiBsLAwlJaWIi4uDiNGjGg04HnePmBPw9DQkMsD6tGjB6ysrJCXl6cQ8NQvuObs7Izc3PZpf/CiSU5OxqJFizBp0iTuMQMDA8yZMwdz5szhCg5GRUXh0KFDCAwMhKGhIVcF2s7O7rlW7DWH/upBVlxcDAcHBy4AkRfYq62tRWlpKR4+fIj09HQuANLR0YGWltZTXagzMjLg5+eHhQsXYuHChS9Uvk5r0F+rGxs7blVVVWhqaiImJgZWVlbo1q0bl983Y8YMfPLJJ0hKSsKQIUOgp6fH5fOxFhFMa7CAh2kzK1aswJgxY2BlZQWgbiSImkgUVlZWxrp16/D666/j9OnTqKmpwY4dOzBs2DAAdRcIsVjM5QI0RSwWc+X509LSEBcXh1u3bqGoqAjBwcHw9vYGANy+fRt//vkn1q9fjxkzZqBPnz4oKSmBqqoqoqOjERAQgM2bN+O9997j9l1bW4tu3bq120WyJU3V/6lv//79GD9+fAceVeeR5381hcfjwdjYGPPnz8f8+fO5pqGRkZHYvXs37t69iwEDBnAjQNbW1m1ykZRIJNx30MHBodHgpVu3btDX14e+vj6Auu9WSUkJCgsLkZqaChUVFa4TfHN1pC5cuIC1a9diz5493OrGf5L654OEhASUlJRATU2N+47LSxhs374dzs7OcHBw4H7/8vPz0aNHD5iYmDTYLwt2mNZglZaZF458aHr79u3473//CwsLC/j7+8PX15cbgZGfOHNzc+Hv7w8+n4+IiIhG9ycWi/H2228jJiaGm16o79///jcOHz6MX375BUOGDOFGgs6cOYP4+HhYWlpi9uzZmDBhQoPu00QEqVTaplWdgbr6P56enlizZk2jS+IBICoqCu+++y5iYmK4ZFqmafIl7JGRkYiMjERKSgoGDx4Md3d3eHh4wMLC4ql/hvJih8/bIqK6uppr+FlRUYFu3bpBW1sbeXl5cHJygrKyMrZt24YLFy7g559//kcm59afcvrss8+wceNGqKqqory8HNOnT8fChQvh4+ODhw8fwsHBASYmJli+fDlGjRqFtLQ0LFu2DGZmZti/fz9UVVX/cSNbTIdp8ovBJjyZTiUPGOoH3vKT4rJly3DixAlYWloiISEBVVVVDV6flZWFBw8ecMuapVIp11pCvs+MjAxkZGTAy8sLSkpKkEgk3HPV1dVISkqCtrY2hgwZAgDYsGEDZs6cidzcXEyfPh0aGhpYt24dTp8+za0mA4CamhrweDwoKys/1YWy/mclIkgkEoX9tlT/BwDu3r2LgIAAnDp1igU7rcTn82FhYYElS5bg6NGjuHv3LjZu3Ag+n4/g4GC4uLjAz88P3333He7du6fwM2nMw4cPkZCQAGtr6+cuR6CmpgZDQ0NYW1vD2dmZm8IMCQmBo6MjHBwcEB4ejs2bN7d5LR9/f3/06dOnyZVTcjdv3oSSkhJ++eWXZreTSqWNPib/HcnIyMDRo0exc+dOhIeH48SJE7h16xaCg4Nx4cIF9OnTB5GRkRCJRFiwYAEsLS0xadIkdOvWDfv27YOamhoLdphnwqa0mE7VUm6Ms7Mzt9T8ydcBwK1bt/DgwQOMGjWKe1x+YpUvPU9KSsKjR4+4cvb1T5b3799HRkYG7OzsAACxsbHYsmULVqxYga1bt0IikaC6uhoRERHQ1NQEn8+HQCDAgQMHcPbsWWRmZsLNzQ3vv/8+XnnllVZ9ZtlfXbINDAzQu3dvhSkz+qv+j4WFBebPn9/o67OzszF16lSEhoY2Wa2WaRmfz4eNjQ1sbGwQGBgIqVSKO3fuIDIyEp988gmys7Nha2sLd3d3jBw5EkZGRuDxeJBIJPj2228xfPjwdmsRoaamhoEDByI4OBj+/v6YOXMmdHV1sWvXLvzxxx8YMGAAAgICFKoJPys/Pz8sXbq02XYPUqkUQUFB3MKA5raT/z6HhobC0NAQPj4+UFJSgkAgQEBAAFefa/r06VxJCzU1Naxbtw779u2DtbU1Bg8ejLCwMKSnpyM9PR09e/bE9OnTG7wHwzyV5pZwdcDyMYZpllQqbbAcvb7U1FTasGFDo8/Jl60HBweTubk53b17l3tcvpT+yJEjNGjQIG7p+uLFi8nS0pLS09Mb3WdhYSHNnj2beDweLVu2jLZu3UpeXl7k5uZGJSUlLX6e0NBQGj16NDk4OJCWlhb179+fli5dSteuXSOpVEq///47ASAzMzPS1NQkPp9PCxcupN27d9Pu3buJiGjBggWkra1NQ4cOpaFDh5Kjo2OL79uS1iyHl7tx4wbx+Xw6evToc7/vi0wsFtO1a9do06ZNNGbMGLKzs6OZM2eSvb09+fv7t9tyc/mf48ePk52dHd24cUPhuGQyGd27d48SEhLa7LNmZGTQkCFDmnz+q6++op07d9L8+fNb/LmnpqaSs7MzWVpakoWFBZWVlRERUVpaGo0aNYr09fXJz8+PiIhqa2u5133xxRdkaGhIFy9eJKK/f3/ra+5cwDB/aTKmYQEP06VVVVXRuHHjaOjQoY0+v3btWjIzM6OkpCQiIrKxsSE/Pz8SCoVEVHfSlclkXN2hDRs2kLGxMZ0/f56I6i6Kly9fJiMjI1q3bl2zx3Lu3DlSV1enN954g3766Se6fPkyff755+Tm5kbW1taUlZXFbZudnU1ERPb29vSvf/2Le6/2kp+fT/Hx8UREVMNbngEAAA/XSURBVFFRQebm5tz/SX0SiYRGjhxJ48eP7/IBz5OuXbtG5ubm9NZbb9HIkSPJ3t6eAgICKDQ0lDIzM0koFLZZfZ1169aRt7c3FRUVdchnay7gyc3NJQ8PD5JIJC0GPOHh4dSrVy+aOXMmXbp0qcHxR0dHk4ODA2lra3Pf9/q1uLS1tWnTpk1t8ImYlxirw8N0TfJpq6bm9CUSCby8vFBeXs5tL5/yEolESE9PR79+/bicCXlejjw5Wl6NWT6EHhERAWVlZUgkEgB1q83c3Ny4vmKA4koU+d8LCgqwbds29O3bF8ePH+eOz8nJCW5ubjhw4ACMjY25x+VNH7Ozs+Hr6wugfVeitGY5PADs2LEDvr6+uHnzZrsdy4vo0KFD2LVrF8LDwzFo0CAAdflfV69eRWRkJPbu3QuhUMj1AXN3d4e2tvZT55pUVFTgnXfegampKSIiIjqsjlBzPvjgA2zevLnF719ZWRl27NiBOXPmYMOGDVxuGf2Vp6esrAxPT0988MEHWL9+PZYtW4aTJ09yPb8yMzOhpqbW6bWwmK6LBTzMP1pLycKampoICgpqdPvU1FRcvXoVnp6eAOqCnXHjxuH48eOoqanhaqnIL1pVVVWIi4uDiYkJfH19IRaLYW1tjblz5yImJgaTJ0+GWCxWuEjJXysUClFUVAQ9PT2FfauoqDTIU5IHSbm5uRAKhRg6dKjCvpojv5N5nhVjTS2Hz8vLw4kTJxAZGfnSBTz6+vqIiopS6IelpqaGkSNHYuTIkQDqfsZXrlxBZGQktm/fDolEAhcXF64Rao8ePZr9GaampmLBggVYsWIF5s6d+8Ik5sbFxXGtZIqLixEWFgZlZWVMmTJFYbuCggJER0djzpw50NXV5ern8Hg8yGQyPHz4EH369MFbb72FvLw8fP7555g5cyY2bdoEkUiE8PBwlJeXc2UtGKbNNTf807GjUAzT9mQyWZPz/lVVVXTq1CmKjY3lHouNjaUBAwbQW2+9RQkJCZSSkkKJiYlERJSUlES6urp0/PhxKi0tpYiICProo4/I0dGR+vXrR+vXr28070Bu+vTpxOPxaO7cuZSSksI9Xj+PgejvqauQkBAaPny4wmPtTSAQkIODAx07dqzBc9OmTaOrV68SEbUql+NlJpPJqLy8nM6ePUvLly8nJycncnZ2pg8//JBOnTpFDx8+5KawhEIh/e9//6OhQ4dy04odraUcHrnmfu5XrlwhAwMDOnjwIPdYWloaLVy4kIYPH04aGho0b948unnzJtXU1NC7775LPB6PtLS0aOLEiWRiYqLwWoZ5Rk3GNKwOD8M84aeffsKaNWvw6NEjGBsb44033sDixYuhq6uLcePGwdzcHN9++63CawoLCwGg2fooAoEA//3vf7Fjxw4AQFBQENauXdvk9qNHj4a7uzvWrVvH3S035+7du/jiiy+wevXqZ7pLFovFmDhxIsaOHdtoh3hTU1NuSX1xcTHU1dWxd+/eBnf6TENEhNLSUly6dAmRkZG4du0a1NTUMGLECBQWFqKgoACHDx/mKgd3pPrNP/X19Rs0/6zPz88PEydOxLRp0xrdl5ubGwoKCuDp6QklJSV8//334PF4sLW1xaBBg3Du3DnY29vj0KFD4PP5WLFiBZKTkxEcHKywT9YmgnkOTQ+NNhcNdXxgxjAdS75aqzFpaWn0008/0Z07d7jt9u7dS5aWlvTZZ59RamoqFRUVUUJCgkLiZXMqKirof//7H9nZ2VG3bt0aTXT+9ddfqaioiHr27Nniyi/5cSUnJ9P48eNp5syZJBAIiOjvFS15eXmUk5PT7D5kMhm99dZbFBgY2KrPwUZ4no+8EeqhQ4fI19e3w0bw2ov8e1hcXEw+Pj5kaGhIOjo69O6779Lx48e57c6dO0c8Ho/2799PRHVJzm5ubuTm5kYPHz4kooYjngzzlNgID8O0VnN1PogIW7ZswbZt2yASiWBnZweZTIa1a9c+VYuHzMxMuLi4wNzcHL///jt3R1tdXY1Nmzbh8OHDePDgAWbMmIEFCxZg9OjRze5vypQp4PF42Lp1K5dUS3/lAh08eBClpaVYvnx5k60+YmJi4O7uDltbW+7OetOmTcjOzgbw9Hf6zMtH/h2urKyEQCBA9+7doaWl1WA7XV1dzJkzhxvpPHDgAL7++msYGRnh7NmzHX3YTNfT5AgPS1pmmCfIgx35zUD9AIHH4yEoKAhBQUG4c+cObt68CVVVVbi7uyvsQx5YbNu2Da+++ipcXV0V9iOVSqGtrY2+ffuioqICPXv2hEwmg5qaGjZu3IiNGzciLy8Pv/32GyorKxX2+aTz58/j9OnTiImJ4YKd2tpahIaGIj4+HqmpqVwRQ/nr5RenCxcuoLq6GmPGjEELNz8KDh482Optm5OTk4N58+ahsLAQfD4fixYtQmBgYIPtoqOj8cEHH0AsFkNPTw+XLl1qk/dn2o48UNbQ0OBWWj05FXv+/HloaWkpFEz08/NDcnIyrl+/jsLCwn9k2wzmH6K54Z8OHYRimH+A5pKgn1RdXU1Tpkwhe3t72rdvH2VlZVFRURHdv3+fFi9eTDwej06cOMHt92mPg4goMzOTXn/9dXJ3d+eeKysro0WLFpG6ujqNGTOGdHR0SE1NjZycnLikY7mrV6+SmZlZk4UW21tr6v+UlpaSlZUVV7elo2rTMG1HKBTSjRs3yMXFhcaOHUuPHz8mor+nwsrLy6mmpqYzD5HpOlgdHoZpC/VbYch/iZpKrlRRUcHatWvxzTffYM2aNQgKCoKFhQXKysqQl5eHzZs3Y8qUKSAifP/99/jxxx/h6OiIsWPHwsXFhVu63hj6a7Tn8uXLuHfvHlauXMk9d/PmTURFReHTTz+Fq6srfv75Z0yePBnnzp3D/fv34ezszL3e1tYWxcXFqK2tbdv/qFZqTf2fw4cPY+rUqVydoj59+nTKsTJPTyqV4ssvv0RRURGOHTsGKysrnD17Fnw+X+F3p2fPngBYsjLTvljAwzDPqLmCh0DdEL+joyP27duHPXv2ICoqCjdu3EC/fv3g5eXFXcB5PB7mzZsHR0dH7NmzB97e3rCxsYG+vj68vb3x8ccfN/reAHD58mVoampytYSAukCrtLQUrq6uEAqFGDJkCHx8fDB8+HCIRCIAfwdMjx8/hqOjIy5cuNCgyGBHa6r+T1paGsRiMby8vCAQCBAYGNhs3yfmxSEQCHDw4EEMGDAAK1euxHvvvQeg6Tw5Fuww7YkFPAzTjuQdt/l8PkaNGsU1OX0Sj8eDjY0N+vfvj+nTp+PIkSOIjo5GQUEBt5/6FwMejweRSIQHDx7AxMSEy90BAHd3dwwZMgSzZ8+GgYEBPvzwQwB1d9HyO+n6d9YVFRUoLS0F0HmNGYVCIXx9fbFt2zbuGOUkEgni4+Nx8eJFVFVVwcXFBc7OzqxxKuo6nZ89exZ9+vRBYmJig+d//PFHbN68GUBdEc7du3dzhSzbm0wmg7a2Ni5fvgyZTMYtuWfNP5nOwsJphmlHfD5foXu7PABqTGpqKsLCwriqtl5eXpg9eza3nycVFBSguroa+vr63P7l20ZERGD27NnIycnBjz/+iNjY2AavJyJoa2sjJycHvXv3BtC+7SuaIhaL4evri7lz52Lq1KkNnjcyMsK4ceOgoaEBPT09eHh44M6dOx1+nC8iPz8/RERENPm8qakpLl26hLt37+Jf//oXFi1a1GHHJv/O6ujocMEO1WvTwjAdjQU8DNNB6gc/jYmIiEC/fv24JehSqbTZ/SkrK6O4uBgmJiYNtldTU+NygSoqKjBx4kRERkYqvJ7H46GqqgolJSXo1q3bs36s50JEWLBgAaysrBotdggAkydPxuXLlyGRSCASiXD9+nXWfuAvHh4e0NHRafL5ESNGoFevXgAAZ2dn5ObmdtShNepFaZfBvJzYlBbDdCJ5Lk1aWhquXLmCCRMmQFNTE0Dzoy1EBBMTExQWFnLTWSoqKrh27RoGDBgAAwMDJCcnY9asWZg4cSJeeeUVhIWFwdvbW2EkKDY2Fj169Gj2otmeYmNjERoaCltbW9jb2wNoWP/HysoK48aNg52dHfh8PgICAmBjY9Mpx/tPtn///qeqFcUwXQ0LeBimE8lkMigpKeHkyZNQUVHB2LFjW/U6Ho+H6upq9O3bl8u/AYDQ0FDweDwsX74caWlpeOWVV5Cbm4vy8nJudROfz4dEIuGmvgwMDLgEamqi1k97cXNza1X9n1WrVmHVqlVt+t6tqQFUXl6ON998E9nZ2ZBIJFi5ciXefvvtNj2OjhAVFYX9+/cjJiamsw+FYToNm9JimE4kH8X54osv4O3tzeXjtIaysjJcXV0RHx8PoG5Ky8/PD1lZWRgxYgR+/vln7N27F76+vqipqcGcOXMavO/Jkyfh5OQEc3NzAC/XlIOysjK++OILpKSk4Nq1awgJCUFycrLCNiEhIbC2tsadO3cQHR2NDz/8sNOW8D+ru3fvIiAgAKdOnYKurm5nHw7DdBoW8DDMCyAyMhJ+fn6t3p6IoKysDF1dXW6puZKSEoYNG4YzZ87g66+/ho2NDYRCIcaPH4+YmBgYGRlx01k8Hg+RkZF48OAB3nzzzUZbAHR1hoaGcHBwAKBYA6g+Ho8HgUAAIoJQKISOjk6LTVxfJNnZ2Zg6dSpCQ0PZqjbmpcd6aTHMC+JZppPS09Nx7949eHl5oXv37hCLxVBRUcH27dvRu3dvbpWXnHx5+4MHDxAUFITHjx83SGZ+GWVmZsLDwwOJiYkKy+IFAgEmTZqEP//8EwKBAEeOHMGECRM68UgVtdTpPCAgAMeOHeMS25WVlREXF9eZh8ww7a3JkygLeBimCzp06BDs7e0VmoHWt3LlSty8eROffvopvL29X+raKEKhEJ6enlizZk2DZfG//PILYmNj8eWXX+L+/fsYPXo07ty506BWEMMwL4wmAx42pcUwXZCvry9sbGwaDXZ+++03fP/99/joo4/g7e0NoHPq77wIWqoBdODAAUydOhU8Hg9mZmYwNTXFn3/+2QlHyjDM82IBD8N0QZqamo0GMdXV1SgqKsJXX331Qk3NdIbW1AAyNjbGxYsXAQBFRUVITU3FwIEDO/IwGYZpI2xKi2FeMvLf+ZdpRVZjYmJi4O7urjDt92QNoPz8fPj5+aGgoABEhNWrV+PNN9/szMNmGKZ5LIeHYRiGYZguj+XwMAzDMAzz8mIBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbo8FvAwDMMwDNPlsYCHYRiGYZgujwU8DMMwDMN0ecotPP9yl2JlGIZhGKZLYCM8DMMwDMN0eSzgYRiGYRimy2MBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbq8/wOXqHpe+0QqrwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -252,7 +252,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEzCAYAAAAbwoWxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XecFPX9x/HXR4oooIAIFlRssWsi2DUcYkUFRayxF6LRqBiNieanWDCxl9gbqKggdhEBwTvsCtgVNEYRsSG9I+Xz++M7F9dl72737nZnZ+/9fDz2sbezM7PvXZb57HznO98xd0dERKS2Vok7gIiIJJsKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiRQtM+tnZp5y+87MnjSzTWPMtIeZvWtmi83Mo2nNzWywmc2Icp5UxbID095P5e2+gr6JX/L0MbNDM0yfbGbXx5FJkqlx3AFEajAHOCD6exPgSmCMmW3j7gtiyHM3MA3YH1gSTTsTOAQ4AfgW+G81y08CTk6bNq2eM2arD/Ax8Eza9MOAGYWPI0mlQiLFbpm7vxX9/ZaZTQFeBboDQ2PIsyVwj7uPTZv2mbs/mcXyC1LeT1Fy9/fiziDJoqYtSZoJ0X1HADPbzcyei5q9FpjZ+2b2h8qZzaxN1Ax1YupKLPjKzG5Mmba3mb0dzf+jmd1hZi2i58qipqxGwC1Rk9RAM5sMnAr8rrKpqrZvrPI1zGzbtOkVZvZEyuOBZjbezPY1sw+j9/2amW2TtlwjM/u7mX1uZkvMbKqZDaxcJ9AJODGlie2k6LmVmrbM7Egz+yhazzdm1t/MGqc8f1K0ju3M7KUo0yQz61Xbz0OSQ4VEkqZjdP9DdL8R8DpwGqF56UlggJkdA+DuM4GnWbk5qSxa1wAAM9saGAFMBw4HLgOOBSo34O8Cu0V/3xD9fSWhGWg4oclqt5R5qmRmjVNvWb3rlW0IXAf0B44B2gGPm5mlzHM3cDnwOHAw8BegefTcn6LMw1Nyv1BF3v2AIYTPoCfwb+AC4LYMsz8KPEf4XP4DDDazDrV8j5IQatqSopeysd0EuAOYB4wGcPfBKfMZ8ArQATgdeCx66n5glJlt4u5fRtNOBia4+0fR40uBr4Ee7r48Wt9MYIiZ7ebubxKa1gAmpzZPmdlPQPssm6w6AUvT3t/m7v5FFsumagPs4e7/idaxCqFgbgFMMrMtCXtK57r7rSnLDQFw90/NbAHwUxa5rwAq3L1yr25E9Dn808yucvepKfPe5O4PRJkmAD8SithdOb4/SRDtkUixW4uw4V0KfEYoJke5+/cAZtbazG41s69T5usD/CZlHWMIReLEaJmWQC+ivZHIzsDTlUUk8iSwDNizHt/PRGCntNs3tVjP5MoiEvk0uq/89d81uh9Yi3X/j5k1AnZk5eNRQwjbj/Q9sFGVf7j7DEJHAu2RlDjtkUixmwPsAzihOes7//WQ1QOBXQnNTJ8Ccwm9qHpWzuDubmYDgFPMrB9wJOG7/2jKetYl/HomZbnlZjaD8Ou/vix09/H1sJ7ZaY9/ju6bRfdrEQ7sz63j67QFmpD22aQ8Tv9sMuVqhpQ0FRIpdsuq2vCaWTPgIOBsd78rZXqmPe0BhOMeXYGTgGfcfVbK898TjjOkrr8RYYM8sy5vIAeLo/umadPbEI7d5GIG0NzM1qhjMZlO2Mtrlza9fXRfqM9GipiatiTJViX0oqo8n6Oy2apH+ozu/g2h2eVyQlPVgLRZ3gYOi4pHpV6EH1uv1W/sKlUea9iqcoKZbUA47pGrl6P7E6qZp8a9haipbwJwRNpTRwIrgDdrkU1KjPZIJLHcfY6ZjQMuNbO5hA3b3wjNYWtkWOR+Qlv/VOCltOeuAt4DnjGzOwnt+tcAI6MD7Xnn7lOj93OlmS0k/NC7mFr86nf3z8zsHuAGM2tH6ITQCujt7kdHs00C9jez/Ql7MF9FxzXSXQaMjJoHBwPbEZoS70070C4NlPZIJOmOBb4CHgJuIRwgf6iKeYcRDp4/6O4rUp9w90+AAwlNOE8RCstjQO/8xK7SscAUYBBwNaHH1Ge1XNefCHtgxxG6+d4MLEp5/irCwf/HgXGE7tMrcfdRwNFAZ+B54DxCF+iza5lLSozpUrvSUJhZd0Ix+U0tutuKSBVUSKTkmdl6wOaEE+mmuPvBMUcSKSlq2pKGoA/hXJLFwJ9jziJScrRHIiIidaI9EhERqZMG0f23bdu23rFjx7yse8GCBTRv3rzmGYtUkvMre3ySnD/J2aGw+SdMmDDd3deuab4GUUg6duzI+PH1MSrFyioqKigrK8vLugshyfmVPT5Jzp/k7FDY/NEYdjVS05aIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComISClavBhOOQU+q+1VCLKnQiIiUmoWLYKePWHAAHj77by/XIM4s11EpMFYsAB69IDycnjgATihuqst1w8VEhGRUjF/Phx0ELz2Gjz4IBx/fEFeVoVERKQUzJ0L3bvDW2/BoEFwzDEFe2kVEhGRpJszBw44AMaPh8cegyOOKOjLq5CIiCTZrFmw337wwQcwdCgcemjBI6iQiIgk1YwZsM8+8Omn8NRTcPDBscQoaPdfMzvCzJ4zs2/NbL6ZTTCzGhvyzGxVM7vBzKaZ2QIze8HMOuY/sYhIkfrpJ+jaFSZOhGeeia2IQOHPIzkfmA/0BXoA5cCjZvbnGpa7FTgJuADoDbQFXjKzZvmLKiJSpH78MRSRL76AYcPgwANjjVPopq1D3H16yuOXzWw9QoH5d6YFzKwDcCpwirs/FE37EPgKOA64L7+RRUSKR9Pp06GsDKZMgeHDw98xK+geSVoRqfQe0K6axfaL7p9KWc+3wGtAvGVYRKSQpk7lt337wtSpMGJEURQRKI4hUnYHPq3m+S2Bqe4+P236xOg5EZHS9/XX0KULTWfOhJEjYa+94k70P+bu8b24WTfgJUKz1cAq5rkX2Mndf5s2/apoufWqWK4P0Aegffv2nQYPHlyf0f9n/vz5tGjRIi/rLoQk51f2+CQ5fxKzN/v+e37bty+N58/nrSuuYNmOOxbkdbt27TrB3TvXOKO7x3IDOgI/Ak/XMN+9wHsZpvcHvs3mtTp16uT5Ul5enrd1F0KS8yt7fJKcP3HZ//Mf9w02cG/d2n38+ILmB8Z7FtvYWJq2zKwN8CIwhXDAvDqzgFYZprcCZtdzNBGR4vH559ClCyxcGAZh7NQp7kQZFbyQmNnqwDCgKXCQuy+oYZFJwAZm1jxt+pbRcyIipWfixFBEli4NRWSHHeJOVKVCn5DYGBgKbA4c6O7TslhsVHR/WMp61gP2IuzViIiUlo8//qVHVkUFbLddnGlqVOjzSO4AugPnAm3MbNeU595z9yVmNgbA3btF91PN7H7gZjMz4CegH/A1MKiQ4UVE8u6DD8KwJ02bwssvwxZbxJ2oRoUuJJXnhNyS4bmNgclAowzPnQMsAG4EVgfGAse4++I8ZBQRice778K++0Lz5qGIbLZZ3ImyUtBC4u4ds5inLMO0JYSz38+v/1QiIkVg3Lgwiu+aa4ZjIhtvHHeirBXDCYkiIg3bm2+G5qw2bWDs2EQVEVAhERGJ16uvhj2R9u1DEdloo7gT5UyFREQkLhUV4cqGHTqEvzt0iDtRraiQiIjEYfTocI31jh1DEVkv42hPiaBCIiJSaCNGhAtRbbZZKCLt28edqE5USERECmnYMOjZE7baKnTxXXvtuBPVmQqJiEihPPMM9OoVzlQfMwbato07Ub1QIRERKYQnnoAjjoAddwzHR9q0iTtRvVEhERHJtyFD4OijYeedYdQoaJVpQPPkUiEREcmnQYPg2GNhjz3ClQ3XWCPuRPVOhUREJF8GDoQTTggj+Q4fDgm7MmO2VEhERPLh3nvhlFPC0CfPPx8GYixRKiQiIvXtjjugT59w1vpzz8Hqq8edKK9USERE6tOtt8JZZ8Ehh8DTT0OzZnEnyjsVEhGR+nLDDXDuuXDYYaG776qrxp2oIFRIRETqw7/+BRdcEM4VGTIkXOGwgVAhERGpqyuvhL//HY45Bh59FJo0iTtRQamQiIjUljtcemm4HX88PPwwNC70Fczjp0IiIlIb7nDxxWFv5JRTYMAAaNQo7lSxaHilU0SkrtzhwgvDwfU//jF0912l4f4uVyEREcmFO/TtC7fcErr5/vvfYBZ3qlg13BIqIpKrFSvg7LNDETnvPBWRiAqJiEg2VqyAM88MzVh//SvceKOKSERNWyIiNVm+HE47LQzCePHFcNVVKiIpVEhERKqzbBmcfHIYDr5fv9DVV0XkV1RIRESqsmxZOD9k8OCwF3LJJXEnKkoqJCIimSxdGs5Uf/JJuPba0N1XMlIhERFJt2QJHHUUPPtsOKjet2/ciYqaComISKrFi6F3b3jhhdC99+yz405U9FRIREQqLVoUhoAfORLuuiuctS41UiEREQFYuBB69oQxY+D++8P4WZIVFRIRkfnzwxUNX3klnCtywglxJ0oUFRIRadjmzYPu3eGNN8Iw8MceG3eixCn4EClmtpmZ3W1mH5jZcjOryGKZjmbmGW6DCxBZRErVnDmw337w5pvhXBEVkVqJY49kG6A78BaQ67UoLwBeT3k8vb5CiUgDM2sW7L8/vP8+DB0aDrJLrcRRSJ5392cBzOwJoG0Oy37m7m/lJ5aINBgzZsC++8Inn4QTDg85JO5EiVbwQuLuKwr9miIilZrMng177w2ffQbPPAMHHhh3pMRL2jDyA6LjKt+b2Y1mtlrcgUQkQX78kd/27Quffw7PPaciUk/M3eN78ahpy93LaphvXeASYBQwFygDLgJGuXvPKpbpA/QBaN++fafBg/NzXH7+/Pm0aNEiL+suhCTnV/b4JDF/0xkz2OH881n1xx/5+Oqrmb3jjnFHqpVCfvZdu3ad4O6da5zR3WO7AU8AFbVc9kzAgd/WNG+nTp08X8rLy/O27kJIcn5lj0/i8n/zjfvmm7s3b+7v3nxz3GnqpJCfPTDes9geJ61pK9UT0X0yf1aISGFMmQJlZfDDDzByJHN22CHuRCUnyYXE0+5FRH5t8mTo0gWmT4dRo2CPPeJOVJKSfGZ77+h+QqwpRKQ4/fe/0LVrGP5k9GjoXHNTv9ROwQuJma1OOCERYH1gDTOrLArD3X2hmX0BjHX3U6Nl+gEtCScjzgV+D1wIPOXuHxYyv4gkwOefhy6+ixeHQRh/97u4E5W0OPZI2gFD06ZVPt4YmEzI1Sjl+UmEs9pPA1YDpgDXAf3zGVREEmjSpFBEli6Fl1+G7bePO1HJi+OExMmA1TBPx7THgwGNqyUi1fvkk1BEzKCiArbZJu5EDUKSD7aLiPziww9D76xGjVRECkyFRESS7913w4H1VVeFsWNhyy3jTtSgqJCISLKNGwfdukGLFuHCVJtvHneiBkeFRESS6623YJ99oHXrsCeyySZxJ2qQVEhEJJleey1clGrttUMR6dgx7kQNlgqJiCTP2LFwwAGw7rrh7w02iDtRg6ZCIiLJMmZMGP59ww1DEVl//bgTNXgqJCKSHCNHwsEHw6abhi6+66wTdyJBhUREkmL4cOjRA7bYAsrLoV27uBNJRIVERIrfc8/BoYfCttuGYU/ato07kaRQIRGR4vbUU3D44WHgxTFjoE2buBNJGhUSESleQ4bAkUfCTjuF64m0ahV3IsmgxkJiZieY2VqFCCMi8j+PPgrHHgu77x4Osq+5ZtyJpArZ7JEMADYFMLPlZrZzfiOJSIP34INw3HHw+9/Diy9Cy5ZxJ5JqZFNIZgHrRX8burStiOTT/ffDySeH8bNeeAGaN487kdQgm+uRjAYeNrPPCEVkoJktqGpmd9cei4jUzl13wZlnhrPWn3oKVlst7kSShWwKySnAn4AtgB2Br4Cf8hlKRBqg226DP/85nHA4dCg0axZ3IslSjYXE3RcC1wOY2T7AJe7+Qb6DiUgDctNNcP754VyRIUOgadO4E0kOsum1tdzMdooeVgBz85pIRBqWa68NRaR3b3j8cRWRBMrmYPvPwKrR3ycAa+cvjog0KP37w0UXwdFHw2OPQZMmcSeSWsjmGMmnQD8ze4bQa6u3mXWuYl539zvrLZ2IlCZ3uPzycDvuOBgwABpnszmSYpTNv9yfgbuBmwi9ti6oZl4HVEhEpGru8I9/wNVXh26+994LjRrFnUrqoMamLXd/w923c/cmhD2SXd19lSpu+jaISNXcQ1PW1VdDnz5w330qIiUg17G2uhKaukREcuMeDqpfdx2cdRbceSesouH+SkFOjZLuPhbAzHYB9gTaADOB19z97fqPJyIlwR3OOSecK3LeeXDjjWAWdyqpJzkVEjNrDgwF9geWAzOAtYBGZjYCOCI670REJFixIpytfs89cOGFcM01KiIlJtf9ymuB3YCjgWbuvi7QLHq8G3BN/cYTkURbvhxOPz0UkYsvVhEpUbkWksOBi9x9qLuvAHD3Fe4+FPgbcER9BxSRhFq+PPTKeuABuOwyuOoqFZESlWvH7TWBb6p47htgjbrFEZGSsGwZHH88DB4cCsgll8SdSPIo1z2SD4AzzX79syJ6fGb0vIg0ZEuXwjHHhCJyzTUqIg1ArnskFwMvApPM7GngR6AdcBjQETiwXtOJSLL8/HMY7uTpp0PPrL59404kBZBr99+Xzex3wKWE4yHrAt8DbwO93F3nmIg0VEuWhIEXhw2DW28NQ8JLg5Dz4DZRsTg6D1lEJKkWLYJevWDECLjjjtDdVxqMnI6RmNn1ZrZ1vsKISAItXAg9esDIkWHcLBWRBqc23X8/MrN3zOwMM1sz1xc0s83M7G4z+yC61klFlsutaWYDzGyWmc0xs0fMbK1cX19E6tGCBeGKhmPGhBF8Tzst7kQSg5wKibtvDOwDTAKuA743s0ejKydmaxugO/B5dMvWEKAMOA04CdgJeCaH5UWkPs2bBwceCGPHwqBBcOKJcSeSmNTmGEk5UG5mLYCjgBOBkWY2FRgIPOjuX1aziufd/VkAM3sCaFvTa5rZboRhWbq4+yvRtG+Bt81sH3cfnev7EJHaazR/Puy/P7zzTrgg1ZFHxh1JYlTroTfdfb673w9cBrwObAD8HfjczJ41s42qWG5FLV7uQODHyiISrecd4CvU5ViksGbPZocLL4Rx48L11VVEGrxaFRIz62hml5nZl8AoYD6hO3BLoAfhnJLB9RUS2JLQnJZuYvSciBTCzJnQrRstvvgCnnwSDj887kRSBMzds5/Z7HjgZOD3wBRgADDA3aemzdcFGB1dDKu69T0BtHX3shrmewlY4O6Hpk0fBGzi7rtnWKYP0Aegffv2nQYPrs+69ov58+fTokWLvKy7EJKcX9kLq8mcOezwl7+w+pQpjL/4YhaWlcUdqVaS+NmnKmT+rl27TnD3qi6t/j+5HiO5B3ga2N/dx1Qz3+fAVTmuuyaZKp5VMR13v4eQl86dO3tZnr70FRUV5GvdhZDk/MpeQNOmwT77wLffwrBhLGzaNFn5UyTus09TjPlzLSTrufusmmZy9++By2sXKaNZwNoZprcCZtfj64hIuh9+gG7d4Kuvwlnr3bpBRUXcqaSI5Nr9t8YikieTyHwspKpjJyJSH777DsrK4Ouv4cUXQxERSZPzwXYzO8rMRpvZFDObln7LR0jCQJHrmNmeKTk6A5tEz4lIffvmG+jSJTRnjRgR/hbJINchUo4FHgS+ADoAzwHDovXMBW7LYh2rm1lvM+sNrA+sXfnYzFaP5vnCzO6vXMbd3wRGAg+ZWS8zOxR4hHCteJ1DIlLfJk8OhWPaNBg1Cvbcs8ZFpOHK9RjJhcCVwL8IPaLucPd3zawl8BKQzfXa2xGu+56q8vHGwOQoV6O0eY4GbgIeIBSuYcA5OeYXkZp8+SV07Qpz58Lo0bDTTnEnkiKXayHZHHjd3Zeb2XKiKyK6+zwzu4awob++uhW4+2RCb6vq5umYYdpsQtfjk3PMLCLZ+s9/YO+9w0CMY8bAjjvGnUgSINdjJHOAVaO/vwW2SnnOAA2iKJJUkyaF5qzFi+Hll1VEJGu57pGMB7YnHK94DrjUzJYBPxMudvV2/cYTkYL45JPQI8sdysth223jTiQJkmsh+SdQOYbWpdHfdxCOZ4wjOpNcRBLko49CEWncOOyJbKlRhyQ3WRUSM1uNMPR7R+AHM2vv7j8CPc1sVWBVd5+bv5gikhfvvx/OWG/WLBSR3/wm7kSSQDUWEjPbBBhNKCKV5prZke4+yt2XAEvylE9E8mXCBNh3X2jZMhSRTTeNO5EkVDYH268FVgB7AasTLkz1HnB3HnOJSD69/XZozlpzzXBhKhURqYNsCsluwD/c/XV3X+zuE4E/Ahua2br5jSci9e6NN8KeSNu2oYh07Bh3Ikm4bArJukD6FQ//S+juu069JxKR/Hn11XBlw3XWCUVkww3jTiQlINvzSLK/aImIFKfycjjgAOjQIRSR9dePO5GUiGy7/46MzhdJNyZ9uru3q3ssEalXL70EPXqEYyFjxkD79nEnkhKSTSGpz+uKiEihvfgiHHYYbLFFGDtr7UyX9hGpvRoLiburkIgk1fPPQ+/esM02Ya9kLY1iJPUv5+uRiEhCPP00HH44bL99aM5SEZE8USERKUVDh8IRR0CnTqE5q3XruBNJCVMhESk1jz0GxxwDu+4KI0eGkw5F8kiFRKSUPPwwHHcc7LFHuDzuGmvEnUgaABUSkVLxwANw4olQVgbDh0OLFnEnkgZChUSkFNxzD5x6ahj6ZNgwaN487kTSgKiQiCTd7bfDH/8IBx0Ezz4Lq60WdyJpYFRIRJLs5pvh7LOhZ0948slwXRGRAlMhEUmq66+Hvn3DuSJDh8Kqq8adSBooFRKRJLr6arjwQjjqqNDdt0mTuBNJA6ZCIpIk7nD55XDJJfCHP8CgQSoiErtsR/8Vkbi5w//9H/TvDyedBPfdB40axZ1KRIVEJBHc4W9/g2uvhdNPh7vuglXUoCDFQYVEpNi5w/nnhx5aZ54Jt92mIiJFRd9GkWLmDuecE4rIOeeEc0ZURKTI6BspUqxWrPhlD6Ryj8Qs7lQiK1EhESlGK1ZAnz5w993h2Mj116uISNFSIREpNsuXw8knw/33h15aV1+tIiJFTQfbRYrJsmVwwgnhJMMrrgiFRKTIqZCIFIulS8NJhkOHwj//GZq0RBJAhUSkGPz8c7iq4VNPheMhf/lL3IlEslbwYyRmtrWZjTGzhWb2nZldYWbVnp5rZh3NzDPcBhcqt0jeLFkCvXuHInLzzSoikjgF3SMxs9bAaOBToCewKXADoaD9I4tVXAC8nvJ4en1nFCmoxYvD6L3Dh4dzRP70p7gTieSs0E1bZwCrAb3cfS7wkpmtAfQzs2ujadX5zN3fyntKkUJYuBAOPRRGjw5XODz99LgTidRKoZu2DgRGphWMwYTi0qXAWURis8qiRXDwwaGIPPCAiogkWqELyZbApNQJ7j4FWBg9V5MBZrbczL43sxvNTNcUleSZN4/t//Y3GDsWHnoojOQrkmDm7oV7MbOlwIXufnPa9KnAQ+5+cRXLrQtcAowC5gJlwEXAKHfvWcUyfYA+AO3bt+80eHB+jsvPnz+fFi1a5GXdhZDk/EnM3mjBAra/6CJaTpzIpEsuYdree8cdqVaS+NlXSnJ2KGz+rl27TnD3zjXO6O4FuwFLgXMzTP8W6J/jus4EHPhtTfN26tTJ86W8vDxv6y6EJOdPXPZZs9x32cW9cWP/uF+/uNPUSeI++xRJzu5e2PzAeM9ie1zopq1ZQKsM09cEZue4riei+x3rlEikEGbOhH33hXffhaFD+amLDglK6Sh0IZlE2rEQM9sAaE7asZMseNq9SHGaPh26dYMPPwznihx6aNyJROpVoQvJi8D+ZtYyZdpRwCJgbI7r6h3dT6iPYCJ5MW0a7L03TJwIzz4bemqJlJhCn0dyF3AO8JSZXQNsAvQDbvSULsFm9gUw1t1PjR73A1oSTkacC/weuBB4yt0/LOQbEMnaDz+EPZGvvoJhw2CffeJOJJIXBS0k7j7LzLoBtwHPE46L3EQoJum5UodNmUQ4q/00wjknU4DrgP55jixSO999F/ZEvvkmnLVeVhZ3IpG8Kfigje7+KVBtn0d375j2eDDhxEWR4jd1aigi338PI0bAXnvFnUgkrzT6r0h9+vrrUESmT4dRo2C33eJOJJJ3KiQi9eWrr6BrV5gzB156CXbeOe5EIgWhQiJSH774IuyJzJ8PY8bAjjq9SRoOFRKRuvr887AnsmQJlJfDDjvEnUikoFRIROpi4sSwJ7J8eSgi220XdyKRgiv4FRJFSsbHH4duve5QUaEiIg2WColIbXzwQSgijRuH4eC33jruRCKxUSERydW774bmrNVXD0Vkiy3iTiQSKxUSkVyMGxeGPWnZMhSRzTaLO5FI7FRIRLL15pthvKw2bUIR2XjjuBOJFAUVEpFsvPoq7LcftG8fishGG8WdSKRoqJCI1KSiAg44ADp0CH936BB3IpGiokIiUp3Ro6F799CMVVEB660XdyKRoqNCIlKVkSPhkENg883DyYbt28edSKQoqZCIZPLCC9CjB2y1Fbz8Mqy9dtyJRIqWColIumefhcMOg+23DwMwrrVW3IlEipoKiUiqJ5+E3r3D6L0vvQStW8edSKToqZCIVBoyBI46CnbZJVyUqlWruBOJJIIKiQjAoEFw7LGwxx7h8rhrrBF3IpHEUCERGTgQTjghDMI4fDi0aBF3IpFEUSGRhu3ee+Hkk2HffWHYMGjePO5EIomjQiIN1x13QJ8+4YTDZ5+F1VaLO5FIIqmQSMN0yy1w1lnhXJGnnoJmzeJOJJJYKiTS8NxwA5x3HvTqBUOHwqqrxp1IJNFUSKRh+ec/4YIL4MgjYfBgaNo07kQiiadCIg3HFVfAxReHbr6PPAJNmsSdSKQkqJBI6XOHSy+Fyy6DE0+Ehx4K11oXkXqh/01S2tzDXsi//gWnngr33AOr6PeTSH1SIZHS5R6Oh9x4I5xxBtx+u4qISB6okEhpcg89s269Fc5y9osrAAAStUlEQVQ+O9ybxZ1KpCTp55mUnhUrwjkit94KffuqiIjkmQqJlJYVK+CPf4Q774S//jWcM6IiIpJXKiRSOpYvDwfU77sP/vGPcIBdRUQk73SMRErDsmVh8MVBg+Dyy0N3XxEpiILvkZjZ1mY2xswWmtl3ZnaFmTXKYrk1zWyAmc0yszlm9oiZ6RqoAkuXwvHHhyLSv7+KiEiBFbSQmFlrYDTgQE/gCuAvwOVZLD4EKANOA04CdgKeyUdOSZBx4+Cgg8JwJ9ddF84ZEZGCKnTT1hnAakAvd58LvGRmawD9zOzaaNpKzGw3YH+gi7u/Ek37FnjbzPZx99EFyi/FwB1GjGCHiy+G99+HNdcMQ8KfeWbcyUQapEI3bR0IjEwrGIMJxaVLDcv9WFlEANz9HeCr6DlpCH7+OQxvsv320L07q0+dCtdfD1OmqIiIxKjQeyRbAi+nTnD3KWa2MHru+WqWm5Rh+sToufy4/fYw0F81dl+6NNGD/yUq/6JFMG8ebLMNPPggb627Ll323TfuVCINXqELSWtgdobps6LnarPcJpkWMLM+QB+A9u3bU1FRkVNQgNYLF9J2112rnWfp0qU0ScqGOINE5Tdjxq67MnOXXcCM+fPn1+rftRgkOTskO3+Ss0OR5nf3gt2ApcC5GaZ/C/SvZrmXgKczTH8EeL2m1+3UqZPnS3l5ed7WXQhJzq/s8Uly/iRndy9sfmC8Z7FtL/QxkllAqwzT1yTzHkdNy7WqYTkREcmzQheSSaQd0zCzDYDmZD4GUuVykaqOnYiISIEUupC8COxvZi1Tph0FLALG1rDcOma2Z+UEM+tMOD7yYj6CiohIdgpdSO4ClgBPmdk+0QHxfsCNntIl2My+MLP7Kx+7+5vASOAhM+tlZocSjo+85jqHREQkVgUtJO4+C+gGNCJ09b0cuAm4LG3WxtE8qY4m7LU8ADwETAAOy2deERGpWcEHbXT3T4G9a5inY4Zps4GTo5uIiBQJDSMvIiJ1okIiIiJ1YuGck9JmZj8BX+dp9W2B6XladyEkOb+yxyfJ+ZOcHQqbfyN3X7ummRpEIcknMxvv7p3jzlFbSc6v7PFJcv4kZ4fizK+mLRERqRMVEhERqRMVkrq7J+4AdZTk/MoenyTnT3J2KML8OkYiIiJ1oj0SERGpExUSERGpExUSERGpExUSERGpk4IP2ijS0JjZ3sCBhAuxtQaccGXPScBwdy+PMV5OzGx7YEfCe5jg7h/HHEmKgHptNRCltDGDZGzQzKwN8DSwF/AVMJFw2WgjXCZ6S8LF2V4Bern7zJiirsTMHgX+4e5fRo+bAY8BPQj5IXz2TwJ/cPelsQStQSl974v5O69CUktmZsAh/PIPO57wxSyqDzTJGzNI9gbNzAYBOwHHufu4KubpDAwCxrn78YXMVx0zWwHs6u7vRI9vAM4EzgeeIHzmRwA3Ate4++VxZc0kyd/7RH7n3V23Gm7AG8BWKY9bA+OAFcDc6LYimq9l3HnTsg8CPgN2qmaezoRfaA/HnTdDthXAzimPbwAWAmcQBq9bK/p7IXBZ3HnTss8GemYx36HA7Ljz1vC5fwdcmmG+K4DP486bIVdiv/dJ/M7HHiAJtwz/sPcDM4EDUqYdQPjFc1PcedOyJ3ZjVsVnn5gNWvQdOTSL+Q4DZsadt4bPfRnw+wzzdQMWx503Q67Efu+T+J1Xr63a6QFc4e4jKidEf/cHesWWKrMV/LI7XB2L5i127YCKDNPHAhsWNkqNngVuMLM9qprBzHYHriM0wxSb3c2su5l1B2YAa2SYZw1gUWFjZaWUvvdF/51Xr63aaUU4JpJuArBOgbPUpHJj9pO7v55phiLfmEHYoLWN/k7SBu1c4HHgVTP7gdCMMpvQvl3ZTr8OMAroG1fIatyY9ng/YFjatD2A/xQmTk6S/r1P1HdehSR7h0cHRiE0YWW62EtbwvGSYpL0jRkkdIPm7nOBA8xsN0LTZ2XPIQgXJroPeNHd34opYnU2zjBtSYZp8wht+MUm6d/7RH3n1WsrC1EPlnQD3f2UtPnuBrZ2970Kkyx7VWzMZhH+gxXrxgwz2yjD5CXu/kPafJcBk9x9SGGSSRIk8XufxO+8Ckk9MrPTgf+6+8txZxERKRQVEpGYmdm9wCrufmrcWXKV5OxSf3SMRIDkbxASnr8ryR33LsnZE/29Kabs2iOpR2Y2mvCZdos7S67M7AvCl3KTuLPURtLzSzyS/L0ppuyJ/SVRpIyEfqbuvlkxfCFrK2n5zayZmd1jZpvHnSVXSc6eLmnfm1TFlF17JA2YmW1M6Ob5lbt/FXeeXBV7fjNbvZqnWwHfEAYUfA3A3RcWIlc2kpy9JmbWEXB3/zrmKDkr1uyJ/PVcrMysiZkVxZmmlaJMt5rZTDObb2bXRtNvB74ARgNfmNkjZtYo1rAZJDz/vGpu3xD2YF9MmVZMkpwdM+uTckJf5bRzzewn4L/Al2b2o5n9KZ6EVUtidh1sz5KZnUUY+bQd8Clwm7s/nDbbjoSBG4tpg/ZX4DTCCU4zgT+b2dqEMYZOAt4F9gSuB/4I3BFPzColOf8iwgmq1xPOTk7VHLgNuJZwTkOxSXJ2gDuB9wknfmJmfYCbCCcpPhHN0xv4t5nNdvdHY0mZWfKyxz3YVxJuwNGE8XgeAS4gDKmwnPCPulrKfLsAy+POm5Z9EnBhyuM9o/dyXtp8lwPj485bSvmB9YBHCRuEPwONUp5bM3ofKw2EWAy3JGePMqYPfDiJcBJx+nwPE4bwjz1zkrOraSs7FwDXu/sf3P16dz+MMGTBnkC5ma0Vb7xqbQS8k/J4QnT/Ttp8rxGuz1BsEpvf3b9z92MJo/ueAnxkZvvHHCsrSc5ehU0J1/RINxjYusBZclX02VVIsrMFMDx1gruPAXYl/Dp708w2jSNYFhYQDo5WWhLd0g+ONqI4mzqTnh93fxXoBNwOPGpmwwjfqaKX5OxAMzNbPeo4MIPQipBuOWH8rWKTqOwqJNmZQxiQ8VfcfTKwO2H3/w3C1fCKzWeEC/gA4O4r3H01d38/bb5tgMmFDJalpOcH/pf7duA3wFTgVYpkI1CTBGcv55fOAO2AnTPMsz2h80CxSVT2ovwFV4QmEA7uPpH+hLvPMrNu0XO3Unz/wW4kXFGtJvtQnMNpJz3/r7j7DOAMM7sV2Bwomutu1yRh2U/OMO37DNN2JlyytpgkLrvOI8mCmR1BGGr6YK/i2s5R19M7gX3dPdMQ3CIiJUmFRERE6kTHSEREpE5USEREpE5USEREpE5USEQk78zsTjP71sxiPyhrZhuY2Rgzm2hmn5jZtWZmcedKMhUSESmExwhj0RWDZcBF7r4V8DvC0Ea94o2UbCokDYCZnWRmE8xsnpnNMrP3zOzGuHNlw8wujX7JrjCzgdXMV7D3aGZHmtlJWc7bz8w85fadmT2ZzUgIZjbQzMbXOXA9sOADMzsxbfoqZnZ29HkvMrO50a/8W1N/5bv7K+7+Y4GyVpvJ3b939/FRrp+BD4ENUpa/3czuL0TWUqHuvyXOzP4OXEkYqbUcaEYY8uI4d98szmw1MbPOwDjgYqACmObu/80wX0Hfo5k9AbR197Is5u0HnAccEE3aJMraCNjG3RdUs+ymhEFBYz/xz8yOAq4DNnX3pSnTHyeMO3cD8BbQgjDaQ1d375xhPe7ueW1GyiVTNE7e+8B+7j4xmtaRMFDitu7+RT6zloy4R43ULb834Fvg9gzTLe5sWWQ/jjBSwBrF9B4JoxhUZDlvP2B62rQ9o/d1RBXLNAKaxv35p2V6HeifNu3A6H0cmO1nHzY5Ob1uWS7L5JIJWJXww+MvGeYdDdwQ9+eelJuatkpfK+CH9Ike/W8BMLOK6Fc2KdPKoqaYbVOmDTSz8WZ2kJl9amYLzewFM2tjZpuZWbmZLYjm2b6mYFET0UdmtsTMvjGz/mbWuPK1CMNkA8yJspTV9j2m5T/UzCaZ2WIze83Mtk6br6ZchwNdUpqr+tX0XtNUjmDcMUOuT4DFwC6ZmrbM7PfR5zzfzOZE/3a/S5tnTzMbG/37zDCze82sZcrz25jZCAsXC1tg4aDzWVWFNbPNCL/o04cI6hLdv5y+TPpnX0BZZbIwEsUjwHvufkOG9TwJ/MHMtI3Mgj6k0vcu4WJQJ1r9DHe/IXAF8A+gD2EDcw9hSOvBhAvuNAYGp7aRpzOz/YAhUb6ewL8Jw/XfFs1yJXBV9PfewG7RvJnk8h43IozfdSVwLGH05pFm1iyHXOXAe1Gm3YD7anjNdB2j+x/Spl0L/BPoDqx06eCokI4BlgInAkcRBlBcP2WePaJ5fiD8W5wXrW9AyqqeI4wcexzQI3qPLalaN8IozB+kTa9slrvOzDaqZvlCyjbT3YQBEf9SxfNvAO2B7eoxW+mKe5dIt/zeCCOEfknY3V8BfEIoBGukzFMBPJG2XFm0zLYp0wYSerxsmjLt2mi+E1KmdY+mbVVNrreA8rRpfyVs4DpEj0+K1tOiru8xJb8Du6dM2yh6T2fkkCvnpi1CcW1MGEG3nHD1wXXTcv02Q97xKY/fBMZTTZMdobCk59+78t+SMIq1A9vl8B26hwwXUALWIRyo9uj2MeF41kr/XoRiOzWabypwXxWvZSmfVWNCEfO0aY2ryVpjJmCP6LmPCMdH3gfOSVtP4+h7cXoc/2+TdtMeSYlz9w+BrQi/PO8g/Ef9P2C8mbWoxSon+68PeFcejHw5w7T1ySBqVtgRGJr21BDCXvJuuQTK8T1Oc/c3Upb9mtDUtHN950qxFmEvYilhWPxNgKPcPXVE12995aHx/8fMmhO6qT7o0ZYuwzyrRxkfN7PGlTfCRb+WEjogzCQMPX6XmR1lZu2yyL8O0WVfU7n7D4Tus/sTBixtBfQH3jCzpmnznubuHdzdovvTqnitE/nls1pKOFZB2rSlmRfNLpO7vx7l2M7dfxvdbk1bzzJgdvTepQYqJA2Auy9x9+fd/Wx335pwDfTNgVNrsbrZaY9/zjC9clqzKtbRFmgCpHcHrXzcJtdQObzHaRkWnwasm49ckTmEa9V0BjoAHd39xSpeoyqtCQUy03DiqfM0IhTT1I3uEsL72sDdVxB6NP0APAD8YGavph9nSdMsWsdK3H25u49y9z8Rmj0HEJqDalt0nyd8VpW3M6LpO6XdqlSPmZZQ9XdYUuh6JA2Qu99vZtcCW0aTFgNN02ar7UYzG9MJG7j0X8Pto/uMQ/XnIsN7rJTpF3g7QnNYvnIt8+i8hWrUdHB6FqHZbt1q5pkdracfaVf0jHwH4O6TgMPNrAmwF3AN8IKZdYgKTbqZZPHL3N1XmNkowvU0arUB9nDNkxmVjyv3KLP4/PKRqRX18F1sCLRHUuIyNV2Y2dqEg8yVv4KnsvIGd998ZXL35YTmpCPSnjqSsLF8M5f1ZfkeK7Uzs91T5tuQ0Jz1Tg65fqbAv1Q9nG/yNnBCVZ0YonneArZw9/EZbt+lzb/U3V8mdD5Yl19f0jjVZ8CvrrFjZu2rmLcH4TLIb0fznWRm70e3JVFvufctnDzaJLt3n51sMmWbJ/r+rA58Xp8ZS5X2SErfR2b2LDCK0ISzEaEX0kLgwWiep4FTzewm4AWgK6GNOZ8uI/SWGkDo7bUdoUfUve4+Ncd1ZfMeK00HHjaz/wMWEQ7KTyMc2M421ySgp5kdSijC36VvpPPkb4RjBi+a2T2EHkq7EQ7ID4vm+SswxsxWEDoFzCM07xwEXEIogNcTjvt8SWgOuwj4wKu4aBvhHJJLzWxtd/8pmva4mc0DHidc4rgd8AdCT7fT3X02gLsPBAZG3WjnAXtEex35kE2mbPN0JuzdvZHhOUkX99F+3fJ7A84ibGC/IzRhTQYeBbZMm+/vhIOw84BBhF9xmXptjU9b7iTSelYRurI64YqS1WU7itBz5mfCBrk/KT1yMq27ju9xIKHXUy/CL80lhI3ktjnmaksovjOjfP2qydaPtBMSM8yz0udazefdBXiFUCRnE3qApff22gUYQegZtgD4lLDXsSZh4/owoYgsJhwreQzYsJp8TQnNTcenTDsleo2p0ec0k/AjpKyKdWwBTK3F97eMLE9IzCVTTXmAW0jr/aZb1TcNkSINRnQy4baeYegOqZ6Z3QJs5u4H1XL5I4ETa7t8fasuT9R772vgb+4+qODhEkjHSEQkG9cBZWb2m1ouvwPh/I5iUV2eIwjNnoMLFyfZVEhEpEYejg+dSvW9xqqzPSufGR+n6vIYcKqHc0kkC2raEpG8M7MpwP4ejbAbt2LLk3QqJCKSV2bWmtARooWHLtbKU2JUSEREpE50jEREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROrk/wEcnLjB7dtalgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEzCAYAAAAbwoWxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecFPX9x/HXR4oooIAIFlRssWsi2DUcYkUFRayxF6LRqBiNieanWDCxl9gbqKggdhEBwTvsCtgVNEYRsSG9I+Xz++M7F9dl72737nZnZ+/9fDz2sbezM7PvXZb57HznO98xd0dERKS2Vok7gIiIJJsKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiRQtM+tnZp5y+87MnjSzTWPMtIeZvWtmi83Mo2nNzWywmc2Icp5UxbID095P5e2+gr6JX/L0MbNDM0yfbGbXx5FJkqlx3AFEajAHOCD6exPgSmCMmW3j7gtiyHM3MA3YH1gSTTsTOAQ4AfgW+G81y08CTk6bNq2eM2arD/Ax8Eza9MOAGYWPI0mlQiLFbpm7vxX9/ZaZTQFeBboDQ2PIsyVwj7uPTZv2mbs/mcXyC1LeT1Fy9/fiziDJoqYtSZoJ0X1HADPbzcyei5q9FpjZ+2b2h8qZzaxN1Ax1YupKLPjKzG5Mmba3mb0dzf+jmd1hZi2i58qipqxGwC1Rk9RAM5sMnAr8rrKpqrZvrPI1zGzbtOkVZvZEyuOBZjbezPY1sw+j9/2amW2TtlwjM/u7mX1uZkvMbKqZDaxcJ9AJODGlie2k6LmVmrbM7Egz+yhazzdm1t/MGqc8f1K0ju3M7KUo0yQz61Xbz0OSQ4VEkqZjdP9DdL8R8DpwGqF56UlggJkdA+DuM4GnWbk5qSxa1wAAM9saGAFMBw4HLgOOBSo34O8Cu0V/3xD9fSWhGWg4oclqt5R5qmRmjVNvWb3rlW0IXAf0B44B2gGPm5mlzHM3cDnwOHAw8BegefTcn6LMw1Nyv1BF3v2AIYTPoCfwb+AC4LYMsz8KPEf4XP4DDDazDrV8j5IQatqSopeysd0EuAOYB4wGcPfBKfMZ8ArQATgdeCx66n5glJlt4u5fRtNOBia4+0fR40uBr4Ee7r48Wt9MYIiZ7ebubxKa1gAmpzZPmdlPQPssm6w6AUvT3t/m7v5FFsumagPs4e7/idaxCqFgbgFMMrMtCXtK57r7rSnLDQFw90/NbAHwUxa5rwAq3L1yr25E9Dn808yucvepKfPe5O4PRJkmAD8SithdOb4/SRDtkUixW4uw4V0KfEYoJke5+/cAZtbazG41s69T5usD/CZlHWMIReLEaJmWQC+ivZHIzsDTlUUk8iSwDNizHt/PRGCntNs3tVjP5MoiEvk0uq/89d81uh9Yi3X/j5k1AnZk5eNRQwjbj/Q9sFGVf7j7DEJHAu2RlDjtkUixmwPsAzihOes7//WQ1QOBXQnNTJ8Ccwm9qHpWzuDubmYDgFPMrB9wJOG7/2jKetYl/HomZbnlZjaD8Ou/vix09/H1sJ7ZaY9/ju6bRfdrEQ7sz63j67QFmpD22aQ8Tv9sMuVqhpQ0FRIpdsuq2vCaWTPgIOBsd78rZXqmPe0BhOMeXYGTgGfcfVbK898TjjOkrr8RYYM8sy5vIAeLo/umadPbEI7d5GIG0NzM1qhjMZlO2Mtrlza9fXRfqM9GipiatiTJViX0oqo8n6Oy2apH+ozu/g2h2eVyQlPVgLRZ3gYOi4pHpV6EH1uv1W/sKlUea9iqcoKZbUA47pGrl6P7E6qZp8a9haipbwJwRNpTRwIrgDdrkU1KjPZIJLHcfY6ZjQMuNbO5hA3b3wjNYWtkWOR+Qlv/VOCltOeuAt4DnjGzOwnt+tcAI6MD7Xnn7lOj93OlmS0k/NC7mFr86nf3z8zsHuAGM2tH6ITQCujt7kdHs00C9jez/Ql7MF9FxzXSXQaMjJoHBwPbEZoS70070C4NlPZIJOmOBb4CHgJuIRwgf6iKeYcRDp4/6O4rUp9w90+AAwlNOE8RCstjQO/8xK7SscAUYBBwNaHH1Ge1XNefCHtgxxG6+d4MLEp5/irCwf/HgXGE7tMrcfdRwNFAZ+B54DxCF+iza5lLSozpUrvSUJhZd0Ix+U0tutuKSBVUSKTkmdl6wOaEE+mmuPvBMUcSKSlq2pKGoA/hXJLFwJ9jziJScrRHIiIidaI9EhERqZMG0f23bdu23rFjx7yse8GCBTRv3rzmGYtUkvMre3ySnD/J2aGw+SdMmDDd3deuab4GUUg6duzI+PH1MSrFyioqKigrK8vLugshyfmVPT5Jzp/k7FDY/NEYdjVS05aIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComISClavBhOOQU+q+1VCLKnQiIiUmoWLYKePWHAAHj77by/XIM4s11EpMFYsAB69IDycnjgATihuqst1w8VEhGRUjF/Phx0ELz2Gjz4IBx/fEFeVoVERKQUzJ0L3bvDW2/BoEFwzDEFe2kVEhGRpJszBw44AMaPh8cegyOOKOjLq5CIiCTZrFmw337wwQcwdCgcemjBI6iQiIgk1YwZsM8+8Omn8NRTcPDBscQoaPdfMzvCzJ4zs2/NbL6ZTTCzGhvyzGxVM7vBzKaZ2QIze8HMOuY/sYhIkfrpJ+jaFSZOhGeeia2IQOHPIzkfmA/0BXoA5cCjZvbnGpa7FTgJuADoDbQFXjKzZvmLKiJSpH78MRSRL76AYcPgwANjjVPopq1D3H16yuOXzWw9QoH5d6YFzKwDcCpwirs/FE37EPgKOA64L7+RRUSKR9Pp06GsDKZMgeHDw98xK+geSVoRqfQe0K6axfaL7p9KWc+3wGtAvGVYRKSQpk7lt337wtSpMGJEURQRKI4hUnYHPq3m+S2Bqe4+P236xOg5EZHS9/XX0KULTWfOhJEjYa+94k70P+bu8b24WTfgJUKz1cAq5rkX2Mndf5s2/apoufWqWK4P0Aegffv2nQYPHlyf0f9n/vz5tGjRIi/rLoQk51f2+CQ5fxKzN/v+e37bty+N58/nrSuuYNmOOxbkdbt27TrB3TvXOKO7x3IDOgI/Ak/XMN+9wHsZpvcHvs3mtTp16uT5Ul5enrd1F0KS8yt7fJKcP3HZ//Mf9w02cG/d2n38+ILmB8Z7FtvYWJq2zKwN8CIwhXDAvDqzgFYZprcCZtdzNBGR4vH559ClCyxcGAZh7NQp7kQZFbyQmNnqwDCgKXCQuy+oYZFJwAZm1jxt+pbRcyIipWfixFBEli4NRWSHHeJOVKVCn5DYGBgKbA4c6O7TslhsVHR/WMp61gP2IuzViIiUlo8//qVHVkUFbLddnGlqVOjzSO4AugPnAm3MbNeU595z9yVmNgbA3btF91PN7H7gZjMz4CegH/A1MKiQ4UVE8u6DD8KwJ02bwssvwxZbxJ2oRoUuJJXnhNyS4bmNgclAowzPnQMsAG4EVgfGAse4++I8ZBQRice778K++0Lz5qGIbLZZ3ImyUtBC4u4ds5inLMO0JYSz38+v/1QiIkVg3Lgwiu+aa4ZjIhtvHHeirBXDCYkiIg3bm2+G5qw2bWDs2EQVEVAhERGJ16uvhj2R9u1DEdloo7gT5UyFREQkLhUV4cqGHTqEvzt0iDtRraiQiIjEYfTocI31jh1DEVkv42hPiaBCIiJSaCNGhAtRbbZZKCLt28edqE5USERECmnYMOjZE7baKnTxXXvtuBPVmQqJiEihPPMM9OoVzlQfMwbato07Ub1QIRERKYQnnoAjjoAddwzHR9q0iTtRvVEhERHJtyFD4OijYeedYdQoaJVpQPPkUiEREcmnQYPg2GNhjz3ClQ3XWCPuRPVOhUREJF8GDoQTTggj+Q4fDgm7MmO2VEhERPLh3nvhlFPC0CfPPx8GYixRKiQiIvXtjjugT59w1vpzz8Hqq8edKK9USERE6tOtt8JZZ8Ehh8DTT0OzZnEnyjsVEhGR+nLDDXDuuXDYYaG776qrxp2oIFRIRETqw7/+BRdcEM4VGTIkXOGwgVAhERGpqyuvhL//HY45Bh59FJo0iTtRQamQiIjUljtcemm4HX88PPwwNC70Fczjp0IiIlIb7nDxxWFv5JRTYMAAaNQo7lSxaHilU0SkrtzhwgvDwfU//jF0912l4f4uVyEREcmFO/TtC7fcErr5/vvfYBZ3qlg13BIqIpKrFSvg7LNDETnvPBWRiAqJiEg2VqyAM88MzVh//SvceKOKSERNWyIiNVm+HE47LQzCePHFcNVVKiIpVEhERKqzbBmcfHIYDr5fv9DVV0XkV1RIRESqsmxZOD9k8OCwF3LJJXEnKkoqJCIimSxdGs5Uf/JJuPba0N1XMlIhERFJt2QJHHUUPPtsOKjet2/ciYqaComISKrFi6F3b3jhhdC99+yz405U9FRIREQqLVoUhoAfORLuuiuctS41UiEREQFYuBB69oQxY+D++8P4WZIVFRIRkfnzwxUNX3klnCtywglxJ0oUFRIRadjmzYPu3eGNN8Iw8MceG3eixCn4EClmtpmZ3W1mH5jZcjOryGKZjmbmGW6DCxBZRErVnDmw337w5pvhXBEVkVqJY49kG6A78BaQ67UoLwBeT3k8vb5CiUgDM2sW7L8/vP8+DB0aDrJLrcRRSJ5392cBzOwJoG0Oy37m7m/lJ5aINBgzZsC++8Inn4QTDg85JO5EiVbwQuLuKwr9miIilZrMng177w2ffQbPPAMHHhh3pMRL2jDyA6LjKt+b2Y1mtlrcgUQkQX78kd/27Quffw7PPaciUk/M3eN78ahpy93LaphvXeASYBQwFygDLgJGuXvPKpbpA/QBaN++fafBg/NzXH7+/Pm0aNEiL+suhCTnV/b4JDF/0xkz2OH881n1xx/5+Oqrmb3jjnFHqpVCfvZdu3ad4O6da5zR3WO7AU8AFbVc9kzAgd/WNG+nTp08X8rLy/O27kJIcn5lj0/i8n/zjfvmm7s3b+7v3nxz3GnqpJCfPTDes9geJ61pK9UT0X0yf1aISGFMmQJlZfDDDzByJHN22CHuRCUnyYXE0+5FRH5t8mTo0gWmT4dRo2CPPeJOVJKSfGZ77+h+QqwpRKQ4/fe/0LVrGP5k9GjoXHNTv9ROwQuJma1OOCERYH1gDTOrLArD3X2hmX0BjHX3U6Nl+gEtCScjzgV+D1wIPOXuHxYyv4gkwOefhy6+ixeHQRh/97u4E5W0OPZI2gFD06ZVPt4YmEzI1Sjl+UmEs9pPA1YDpgDXAf3zGVREEmjSpFBEli6Fl1+G7bePO1HJi+OExMmA1TBPx7THgwGNqyUi1fvkk1BEzKCiArbZJu5EDUKSD7aLiPziww9D76xGjVRECkyFRESS7913w4H1VVeFsWNhyy3jTtSgqJCISLKNGwfdukGLFuHCVJtvHneiBkeFRESS6623YJ99oHXrsCeyySZxJ2qQVEhEJJleey1clGrttUMR6dgx7kQNlgqJiCTP2LFwwAGw7rrh7w02iDtRg6ZCIiLJMmZMGP59ww1DEVl//bgTNXgqJCKSHCNHwsEHw6abhi6+66wTdyJBhUREkmL4cOjRA7bYAsrLoV27uBNJRIVERIrfc8/BoYfCttuGYU/ato07kaRQIRGR4vbUU3D44WHgxTFjoE2buBNJGhUSESleQ4bAkUfCTjuF64m0ahV3IsmgxkJiZieY2VqFCCMi8j+PPgrHHgu77x4Osq+5ZtyJpArZ7JEMADYFMLPlZrZzfiOJSIP34INw3HHw+9/Diy9Cy5ZxJ5JqZFNIZgHrRX8burStiOTT/ffDySeH8bNeeAGaN487kdQgm+uRjAYeNrPPCEVkoJktqGpmd9cei4jUzl13wZlnhrPWn3oKVlst7kSShWwKySnAn4AtgB2Br4Cf8hlKRBqg226DP/85nHA4dCg0axZ3IslSjYXE3RcC1wOY2T7AJe7+Qb6DiUgDctNNcP754VyRIUOgadO4E0kOsum1tdzMdooeVgBz85pIRBqWa68NRaR3b3j8cRWRBMrmYPvPwKrR3ycAa+cvjog0KP37w0UXwdFHw2OPQZMmcSeSWsjmGMmnQD8ze4bQa6u3mXWuYl539zvrLZ2IlCZ3uPzycDvuOBgwABpnszmSYpTNv9yfgbuBmwi9ti6oZl4HVEhEpGru8I9/wNVXh26+994LjRrFnUrqoMamLXd/w923c/cmhD2SXd19lSpu+jaISNXcQ1PW1VdDnz5w330qIiUg17G2uhKaukREcuMeDqpfdx2cdRbceSesouH+SkFOjZLuPhbAzHYB9gTaADOB19z97fqPJyIlwR3OOSecK3LeeXDjjWAWdyqpJzkVEjNrDgwF9geWAzOAtYBGZjYCOCI670REJFixIpytfs89cOGFcM01KiIlJtf9ymuB3YCjgWbuvi7QLHq8G3BN/cYTkURbvhxOPz0UkYsvVhEpUbkWksOBi9x9qLuvAHD3Fe4+FPgbcER9BxSRhFq+PPTKeuABuOwyuOoqFZESlWvH7TWBb6p47htgjbrFEZGSsGwZHH88DB4cCsgll8SdSPIo1z2SD4AzzX79syJ6fGb0vIg0ZEuXwjHHhCJyzTUqIg1ArnskFwMvApPM7GngR6AdcBjQETiwXtOJSLL8/HMY7uTpp0PPrL59404kBZBr99+Xzex3wKWE4yHrAt8DbwO93F3nmIg0VEuWhIEXhw2DW28NQ8JLg5Dz4DZRsTg6D1lEJKkWLYJevWDECLjjjtDdVxqMnI6RmNn1ZrZ1vsKISAItXAg9esDIkWHcLBWRBqc23X8/MrN3zOwMM1sz1xc0s83M7G4z+yC61klFlsutaWYDzGyWmc0xs0fMbK1cX19E6tGCBeGKhmPGhBF8Tzst7kQSg5wKibtvDOwDTAKuA743s0ejKydmaxugO/B5dMvWEKAMOA04CdgJeCaH5UWkPs2bBwceCGPHwqBBcOKJcSeSmNTmGEk5UG5mLYCjgBOBkWY2FRgIPOjuX1aziufd/VkAM3sCaFvTa5rZboRhWbq4+yvRtG+Bt81sH3cfnev7EJHaazR/Puy/P7zzTrgg1ZFHxh1JYlTroTfdfb673w9cBrwObAD8HfjczJ41s42qWG5FLV7uQODHyiISrecd4CvU5ViksGbPZocLL4Rx48L11VVEGrxaFRIz62hml5nZl8AoYD6hO3BLoAfhnJLB9RUS2JLQnJZuYvSciBTCzJnQrRstvvgCnnwSDj887kRSBMzds5/Z7HjgZOD3wBRgADDA3aemzdcFGB1dDKu69T0BtHX3shrmewlY4O6Hpk0fBGzi7rtnWKYP0Aegffv2nQYPrs+69ov58+fTokWLvKy7EJKcX9kLq8mcOezwl7+w+pQpjL/4YhaWlcUdqVaS+NmnKmT+rl27TnD3qi6t/j+5HiO5B3ga2N/dx1Qz3+fAVTmuuyaZKp5VMR13v4eQl86dO3tZnr70FRUV5GvdhZDk/MpeQNOmwT77wLffwrBhLGzaNFn5UyTus09TjPlzLSTrufusmmZy9++By2sXKaNZwNoZprcCZtfj64hIuh9+gG7d4Kuvwlnr3bpBRUXcqaSI5Nr9t8YikieTyHwspKpjJyJSH777DsrK4Ouv4cUXQxERSZPzwXYzO8rMRpvZFDObln7LR0jCQJHrmNmeKTk6A5tEz4lIffvmG+jSJTRnjRgR/hbJINchUo4FHgS+ADoAzwHDovXMBW7LYh2rm1lvM+sNrA+sXfnYzFaP5vnCzO6vXMbd3wRGAg+ZWS8zOxR4hHCteJ1DIlLfJk8OhWPaNBg1Cvbcs8ZFpOHK9RjJhcCVwL8IPaLucPd3zawl8BKQzfXa2xGu+56q8vHGwOQoV6O0eY4GbgIeIBSuYcA5OeYXkZp8+SV07Qpz58Lo0bDTTnEnkiKXayHZHHjd3Zeb2XKiKyK6+zwzu4awob++uhW4+2RCb6vq5umYYdpsQtfjk3PMLCLZ+s9/YO+9w0CMY8bAjjvGnUgSINdjJHOAVaO/vwW2SnnOAA2iKJJUkyaF5qzFi+Hll1VEJGu57pGMB7YnHK94DrjUzJYBPxMudvV2/cYTkYL45JPQI8sdysth223jTiQJkmsh+SdQOYbWpdHfdxCOZ4wjOpNcRBLko49CEWncOOyJbKlRhyQ3WRUSM1uNMPR7R+AHM2vv7j8CPc1sVWBVd5+bv5gikhfvvx/OWG/WLBSR3/wm7kSSQDUWEjPbBBhNKCKV5prZke4+yt2XAEvylE9E8mXCBNh3X2jZMhSRTTeNO5EkVDYH268FVgB7AasTLkz1HnB3HnOJSD69/XZozlpzzXBhKhURqYNsCsluwD/c/XV3X+zuE4E/Ahua2br5jSci9e6NN8KeSNu2oYh07Bh3Ikm4bArJukD6FQ//S+juu069JxKR/Hn11XBlw3XWCUVkww3jTiQlINvzSLK/aImIFKfycjjgAOjQIRSR9dePO5GUiGy7/46MzhdJNyZ9uru3q3ssEalXL70EPXqEYyFjxkD79nEnkhKSTSGpz+uKiEihvfgiHHYYbLFFGDtr7UyX9hGpvRoLiburkIgk1fPPQ+/esM02Ya9kLY1iJPUv5+uRiEhCPP00HH44bL99aM5SEZE8USERKUVDh8IRR0CnTqE5q3XruBNJCVMhESk1jz0GxxwDu+4KI0eGkw5F8kiFRKSUPPwwHHcc7LFHuDzuGmvEnUgaABUSkVLxwANw4olQVgbDh0OLFnEnkgZChUSkFNxzD5x6ahj6ZNgwaN487kTSgKiQiCTd7bfDH/8IBx0Ezz4Lq60WdyJpYFRIRJLs5pvh7LOhZ0948slwXRGRAlMhEUmq66+Hvn3DuSJDh8Kqq8adSBooFRKRJLr6arjwQjjqqNDdt0mTuBNJA6ZCIpIk7nD55XDJJfCHP8CgQSoiErtsR/8Vkbi5w//9H/TvDyedBPfdB40axZ1KRIVEJBHc4W9/g2uvhdNPh7vuglXUoCDFQYVEpNi5w/nnhx5aZ54Jt92mIiJFRd9GkWLmDuecE4rIOeeEc0ZURKTI6BspUqxWrPhlD6Ryj8Qs7lQiK1EhESlGK1ZAnz5w993h2Mj116uISNFSIREpNsuXw8knw/33h15aV1+tIiJFTQfbRYrJsmVwwgnhJMMrrgiFRKTIqZCIFIulS8NJhkOHwj//GZq0RBJAhUSkGPz8c7iq4VNPheMhf/lL3IlEslbwYyRmtrWZjTGzhWb2nZldYWbVnp5rZh3NzDPcBhcqt0jeLFkCvXuHInLzzSoikjgF3SMxs9bAaOBToCewKXADoaD9I4tVXAC8nvJ4en1nFCmoxYvD6L3Dh4dzRP70p7gTieSs0E1bZwCrAb3cfS7wkpmtAfQzs2ujadX5zN3fyntKkUJYuBAOPRRGjw5XODz99LgTidRKoZu2DgRGphWMwYTi0qXAWURis8qiRXDwwaGIPPCAiogkWqELyZbApNQJ7j4FWBg9V5MBZrbczL43sxvNTNcUleSZN4/t//Y3GDsWHnoojOQrkmDm7oV7MbOlwIXufnPa9KnAQ+5+cRXLrQtcAowC5gJlwEXAKHfvWcUyfYA+AO3bt+80eHB+jsvPnz+fFi1a5GXdhZDk/EnM3mjBAra/6CJaTpzIpEsuYdree8cdqVaS+NlXSnJ2KGz+rl27TnD3zjXO6O4FuwFLgXMzTP8W6J/jus4EHPhtTfN26tTJ86W8vDxv6y6EJOdPXPZZs9x32cW9cWP/uF+/uNPUSeI++xRJzu5e2PzAeM9ie1zopq1ZQKsM09cEZue4riei+x3rlEikEGbOhH33hXffhaFD+amLDglK6Sh0IZlE2rEQM9sAaE7asZMseNq9SHGaPh26dYMPPwznihx6aNyJROpVoQvJi8D+ZtYyZdpRwCJgbI7r6h3dT6iPYCJ5MW0a7L03TJwIzz4bemqJlJhCn0dyF3AO8JSZXQNsAvQDbvSULsFm9gUw1t1PjR73A1oSTkacC/weuBB4yt0/LOQbEMnaDz+EPZGvvoJhw2CffeJOJJIXBS0k7j7LzLoBtwHPE46L3EQoJum5UodNmUQ4q/00wjknU4DrgP55jixSO999F/ZEvvkmnLVeVhZ3IpG8Kfigje7+KVBtn0d375j2eDDhxEWR4jd1aigi338PI0bAXnvFnUgkrzT6r0h9+vrrUESmT4dRo2C33eJOJJJ3KiQi9eWrr6BrV5gzB156CXbeOe5EIgWhQiJSH774IuyJzJ8PY8bAjjq9SRoOFRKRuvr887AnsmQJlJfDDjvEnUikoFRIROpi4sSwJ7J8eSgi220XdyKRgiv4FRJFSsbHH4duve5QUaEiIg2WColIbXzwQSgijRuH4eC33jruRCKxUSERydW774bmrNVXD0Vkiy3iTiQSKxUSkVyMGxeGPWnZMhSRzTaLO5FI7FRIRLL15pthvKw2bUIR2XjjuBOJFAUVEpFsvPoq7LcftG8fishGG8WdSKRoqJCI1KSiAg44ADp0CH936BB3IpGiokIiUp3Ro6F799CMVVEB660XdyKRoqNCIlKVkSPhkENg883DyYbt28edSKQoqZCIZPLCC9CjB2y1Fbz8Mqy9dtyJRIqWColIumefhcMOg+23DwMwrrVW3IlEipoKiUiqJ5+E3r3D6L0vvQStW8edSKToqZCIVBoyBI46CnbZJVyUqlWruBOJJIIKiQjAoEFw7LGwxx7h8rhrrBF3IpHEUCERGTgQTjghDMI4fDi0aBF3IpFEUSGRhu3ee+Hkk2HffWHYMGjePO5EIomjQiIN1x13QJ8+4YTDZ5+F1VaLO5FIIqmQSMN0yy1w1lnhXJGnnoJmzeJOJJJYKiTS8NxwA5x3HvTqBUOHwqqrxp1IJNFUSKRh+ec/4YIL4MgjYfBgaNo07kQiiadCIg3HFVfAxReHbr6PPAJNmsSdSKQkqJBI6XOHSy+Fyy6DE0+Ehx4K11oXkXqh/01S2tzDXsi//gWnngr33AOr6PeTSH1SIZHS5R6Oh9x4I5xxBtx+u4qISB6okEhpcg89s269Fc5y9osrAAAStUlEQVQ+O9ybxZ1KpCTp55mUnhUrwjkit94KffuqiIjkmQqJlJYVK+CPf4Q774S//jWcM6IiIpJXKiRSOpYvDwfU77sP/vGPcIBdRUQk73SMRErDsmVh8MVBg+Dyy0N3XxEpiILvkZjZ1mY2xswWmtl3ZnaFmTXKYrk1zWyAmc0yszlm9oiZ6RqoAkuXwvHHhyLSv7+KiEiBFbSQmFlrYDTgQE/gCuAvwOVZLD4EKANOA04CdgKeyUdOSZBx4+Cgg8JwJ9ddF84ZEZGCKnTT1hnAakAvd58LvGRmawD9zOzaaNpKzGw3YH+gi7u/Ek37FnjbzPZx99EFyi/FwB1GjGCHiy+G99+HNdcMQ8KfeWbcyUQapEI3bR0IjEwrGIMJxaVLDcv9WFlEANz9HeCr6DlpCH7+OQxvsv320L07q0+dCtdfD1OmqIiIxKjQeyRbAi+nTnD3KWa2MHru+WqWm5Rh+sToufy4/fYw0F81dl+6NNGD/yUq/6JFMG8ebLMNPPggb627Ll323TfuVCINXqELSWtgdobps6LnarPcJpkWMLM+QB+A9u3bU1FRkVNQgNYLF9J2112rnWfp0qU0ScqGOINE5Tdjxq67MnOXXcCM+fPn1+rftRgkOTskO3+Ss0OR5nf3gt2ApcC5GaZ/C/SvZrmXgKczTH8EeL2m1+3UqZPnS3l5ed7WXQhJzq/s8Uly/iRndy9sfmC8Z7FtL/QxkllAqwzT1yTzHkdNy7WqYTkREcmzQheSSaQd0zCzDYDmZD4GUuVykaqOnYiISIEUupC8COxvZi1Tph0FLALG1rDcOma2Z+UEM+tMOD7yYj6CiohIdgpdSO4ClgBPmdk+0QHxfsCNntIl2My+MLP7Kx+7+5vASOAhM+tlZocSjo+85jqHREQkVgUtJO4+C+gGNCJ09b0cuAm4LG3WxtE8qY4m7LU8ADwETAAOy2deERGpWcEHbXT3T4G9a5inY4Zps4GTo5uIiBQJDSMvIiJ1okIiIiJ1YuGck9JmZj8BX+dp9W2B6XladyEkOb+yxyfJ+ZOcHQqbfyN3X7ummRpEIcknMxvv7p3jzlFbSc6v7PFJcv4kZ4fizK+mLRERqRMVEhERqRMVkrq7J+4AdZTk/MoenyTnT3J2KML8OkYiIiJ1oj0SERGpExUSERGpExUSERGpExUSERGpk4IP2ijS0JjZ3sCBhAuxtQaccGXPScBwdy+PMV5OzGx7YEfCe5jg7h/HHEmKgHptNRCltDGDZGzQzKwN8DSwF/AVMJFw2WgjXCZ6S8LF2V4Bern7zJiirsTMHgX+4e5fRo+bAY8BPQj5IXz2TwJ/cPelsQStQSl974v5O69CUktmZsAh/PIPO57wxSyqDzTJGzNI9gbNzAYBOwHHufu4KubpDAwCxrn78YXMVx0zWwHs6u7vRI9vAM4EzgeeIHzmRwA3Ate4++VxZc0kyd/7RH7n3V23Gm7AG8BWKY9bA+OAFcDc6LYimq9l3HnTsg8CPgN2qmaezoRfaA/HnTdDthXAzimPbwAWAmcQBq9bK/p7IXBZ3HnTss8GemYx36HA7Ljz1vC5fwdcmmG+K4DP486bIVdiv/dJ/M7HHiAJtwz/sPcDM4EDUqYdQPjFc1PcedOyJ3ZjVsVnn5gNWvQdOTSL+Q4DZsadt4bPfRnw+wzzdQMWx503Q67Efu+T+J1Xr63a6QFc4e4jKidEf/cHesWWKrMV/LI7XB2L5i127YCKDNPHAhsWNkqNngVuMLM9qprBzHYHriM0wxSb3c2su5l1B2YAa2SYZw1gUWFjZaWUvvdF/51Xr63aaUU4JpJuArBOgbPUpHJj9pO7v55phiLfmEHYoLWN/k7SBu1c4HHgVTP7gdCMMpvQvl3ZTr8OMAroG1fIatyY9ng/YFjatD2A/xQmTk6S/r1P1HdehSR7h0cHRiE0YWW62EtbwvGSYpL0jRkkdIPm7nOBA8xsN0LTZ2XPIQgXJroPeNHd34opYnU2zjBtSYZp8wht+MUm6d/7RH3n1WsrC1EPlnQD3f2UtPnuBrZ2970Kkyx7VWzMZhH+gxXrxgwz2yjD5CXu/kPafJcBk9x9SGGSSRIk8XufxO+8Ckk9MrPTgf+6+8txZxERKRQVEpGYmdm9wCrufmrcWXKV5OxSf3SMRIDkbxASnr8ryR33LsnZE/29Kabs2iOpR2Y2mvCZdos7S67M7AvCl3KTuLPURtLzSzyS/L0ppuyJ/SVRpIyEfqbuvlkxfCFrK2n5zayZmd1jZpvHnSVXSc6eLmnfm1TFlF17JA2YmW1M6Ob5lbt/FXeeXBV7fjNbvZqnWwHfEAYUfA3A3RcWIlc2kpy9JmbWEXB3/zrmKDkr1uyJ/PVcrMysiZkVxZmmlaJMt5rZTDObb2bXRtNvB74ARgNfmNkjZtYo1rAZJDz/vGpu3xD2YF9MmVZMkpwdM+uTckJf5bRzzewn4L/Al2b2o5n9KZ6EVUtidh1sz5KZnUUY+bQd8Clwm7s/nDbbjoSBG4tpg/ZX4DTCCU4zgT+b2dqEMYZOAt4F9gSuB/4I3BFPzColOf8iwgmq1xPOTk7VHLgNuJZwTkOxSXJ2gDuB9wknfmJmfYCbCCcpPhHN0xv4t5nNdvdHY0mZWfKyxz3YVxJuwNGE8XgeAS4gDKmwnPCPulrKfLsAy+POm5Z9EnBhyuM9o/dyXtp8lwPj485bSvmB9YBHCRuEPwONUp5bM3ofKw2EWAy3JGePMqYPfDiJcBJx+nwPE4bwjz1zkrOraSs7FwDXu/sf3P16dz+MMGTBnkC5ma0Vb7xqbQS8k/J4QnT/Ttp8rxGuz1BsEpvf3b9z92MJo/ueAnxkZvvHHCsrSc5ehU0J1/RINxjYusBZclX02VVIsrMFMDx1gruPAXYl/Dp708w2jSNYFhYQDo5WWhLd0g+ONqI4mzqTnh93fxXoBNwOPGpmwwjfqaKX5OxAMzNbPeo4MIPQipBuOWH8rWKTqOwqJNmZQxiQ8VfcfTKwO2H3/w3C1fCKzWeEC/gA4O4r3H01d38/bb5tgMmFDJalpOcH/pf7duA3wFTgVYpkI1CTBGcv55fOAO2AnTPMsz2h80CxSVT2ovwFV4QmEA7uPpH+hLvPMrNu0XO3Unz/wW4kXFGtJvtQnMNpJz3/r7j7DOAMM7sV2Bwomutu1yRh2U/OMO37DNN2JlyytpgkLrvOI8mCmR1BGGr6YK/i2s5R19M7gX3dPdMQ3CIiJUmFRERE6kTHSEREpE5USEREpE5USEREpE5USEQk78zsTjP71sxiPyhrZhuY2Rgzm2hmn5jZtWZmcedKMhUSESmExwhj0RWDZcBF7r4V8DvC0Ea94o2UbCokDYCZnWRmE8xsnpnNMrP3zOzGuHNlw8wujX7JrjCzgdXMV7D3aGZHmtlJWc7bz8w85fadmT2ZzUgIZjbQzMbXOXA9sOADMzsxbfoqZnZ29HkvMrO50a/8W1N/5bv7K+7+Y4GyVpvJ3b939/FRrp+BD4ENUpa/3czuL0TWUqHuvyXOzP4OXEkYqbUcaEYY8uI4d98szmw1MbPOwDjgYqACmObu/80wX0Hfo5k9AbR197Is5u0HnAccEE3aJMraCNjG3RdUs+ymhEFBYz/xz8yOAq4DNnX3pSnTHyeMO3cD8BbQgjDaQ1d375xhPe7ueW1GyiVTNE7e+8B+7j4xmtaRMFDitu7+RT6zloy4R43ULb834Fvg9gzTLe5sWWQ/jjBSwBrF9B4JoxhUZDlvP2B62rQ9o/d1RBXLNAKaxv35p2V6HeifNu3A6H0cmO1nHzY5Ob1uWS7L5JIJWJXww+MvGeYdDdwQ9+eelJuatkpfK+CH9Ike/W8BMLOK6Fc2KdPKoqaYbVOmDTSz8WZ2kJl9amYLzewFM2tjZpuZWbmZLYjm2b6mYFET0UdmtsTMvjGz/mbWuPK1CMNkA8yJspTV9j2m5T/UzCaZ2WIze83Mtk6br6ZchwNdUpqr+tX0XtNUjmDcMUOuT4DFwC6ZmrbM7PfR5zzfzOZE/3a/S5tnTzMbG/37zDCze82sZcrz25jZCAsXC1tg4aDzWVWFNbPNCL/o04cI6hLdv5y+TPpnX0BZZbIwEsUjwHvufkOG9TwJ/MHMtI3Mgj6k0vcu4WJQJ1r9DHe/IXAF8A+gD2EDcw9hSOvBhAvuNAYGp7aRpzOz/YAhUb6ewL8Jw/XfFs1yJXBV9PfewG7RvJnk8h43IozfdSVwLGH05pFm1iyHXOXAe1Gm3YD7anjNdB2j+x/Spl0L/BPoDqx06eCokI4BlgInAkcRBlBcP2WePaJ5fiD8W5wXrW9AyqqeI4wcexzQI3qPLalaN8IozB+kTa9slrvOzDaqZvlCyjbT3YQBEf9SxfNvAO2B7eoxW+mKe5dIt/zeCCOEfknY3V8BfEIoBGukzFMBPJG2XFm0zLYp0wYSerxsmjLt2mi+E1KmdY+mbVVNrreA8rRpfyVs4DpEj0+K1tOiru8xJb8Du6dM2yh6T2fkkCvnpi1CcW1MGEG3nHD1wXXTcv02Q97xKY/fBMZTTZMdobCk59+78t+SMIq1A9vl8B26hwwXUALWIRyo9uj2MeF41kr/XoRiOzWabypwXxWvZSmfVWNCEfO0aY2ryVpjJmCP6LmPCMdH3gfOSVtP4+h7cXoc/2+TdtMeSYlz9w+BrQi/PO8g/Ef9P2C8mbWoxSon+68PeFcejHw5w7T1ySBqVtgRGJr21BDCXvJuuQTK8T1Oc/c3Upb9mtDUtHN950qxFmEvYilhWPxNgKPcPXVE12995aHx/8fMmhO6qT7o0ZYuwzyrRxkfN7PGlTfCRb+WEjogzCQMPX6XmR1lZu2yyL8O0WVfU7n7D4Tus/sTBixtBfQH3jCzpmnznubuHdzdovvTqnitE/nls1pKOFZB2rSlmRfNLpO7vx7l2M7dfxvdbk1bzzJgdvTepQYqJA2Auy9x9+fd/Wx335pwDfTNgVNrsbrZaY9/zjC9clqzKtbRFmgCpHcHrXzcJtdQObzHaRkWnwasm49ckTmEa9V0BjoAHd39xSpeoyqtCQUy03DiqfM0IhTT1I3uEsL72sDdVxB6NP0APAD8YGavph9nSdMsWsdK3H25u49y9z8Rmj0HEJqDalt0nyd8VpW3M6LpO6XdqlSPmZZQ9XdYUuh6JA2Qu99vZtcCW0aTFgNN02ar7UYzG9MJG7j0X8Pto/uMQ/XnIsN7rJTpF3g7QnNYvnIt8+i8hWrUdHB6FqHZbt1q5pkdracfaVf0jHwH4O6TgMPNrAmwF3AN8IKZdYgKTbqZZPHL3N1XmNkowvU0arUB9nDNkxmVjyv3KLP4/PKRqRX18F1sCLRHUuIyNV2Y2dqEg8yVv4KnsvIGd998ZXL35YTmpCPSnjqSsLF8M5f1ZfkeK7Uzs91T5tuQ0Jz1Tg65fqbAv1Q9nG/yNnBCVZ0YonneArZw9/EZbt+lzb/U3V8mdD5Yl19f0jjVZ8CvrrFjZu2rmLcH4TLIb0fznWRm70e3JVFvufctnDzaJLt3n51sMmWbJ/r+rA58Xp8ZS5X2SErfR2b2LDCK0ISzEaEX0kLgwWiep4FTzewm4AWgK6GNOZ8uI/SWGkDo7bUdoUfUve4+Ncd1ZfMeK00HHjaz/wMWEQ7KTyMc2M421ySgp5kdSijC36VvpPPkb4RjBi+a2T2EHkq7EQ7ID4vm+SswxsxWEDoFzCM07xwEXEIogNcTjvt8SWgOuwj4wKu4aBvhHJJLzWxtd/8pmva4mc0DHidc4rgd8AdCT7fT3X02gLsPBAZG3WjnAXtEex35kE2mbPN0JuzdvZHhOUkX99F+3fJ7A84ibGC/IzRhTQYeBbZMm+/vhIOw84BBhF9xmXptjU9b7iTSelYRurI64YqS1WU7itBz5mfCBrk/KT1yMq27ju9xIKHXUy/CL80lhI3ktjnmaksovjOjfP2qydaPtBMSM8yz0udazefdBXiFUCRnE3qApff22gUYQegZtgD4lLDXsSZh4/owoYgsJhwreQzYsJp8TQnNTcenTDsleo2p0ec0k/AjpKyKdWwBTK3F97eMLE9IzCVTTXmAW0jr/aZb1TcNkSINRnQy4baeYegOqZ6Z3QJs5u4H1XL5I4ETa7t8fasuT9R772vgb+4+qODhEkjHSEQkG9cBZWb2m1ouvwPh/I5iUV2eIwjNnoMLFyfZVEhEpEYejg+dSvW9xqqzPSufGR+n6vIYcKqHc0kkC2raEpG8M7MpwP4ejbAbt2LLk3QqJCKSV2bWmtARooWHLtbKU2JUSEREpE50jEREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROrk/wEcnLjB7dtalgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -435,7 +435,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHjRJREFUeJzt3Xm0XGWd7vHvwyCEKcyBRpoIDhFalleOCH1pOZE53CuDaLLQ2ys2GvWq0L3QBhEhoM0y2AK6aBewtMPltiZ0A81thhDCcAJhUIMEsZOAQQMyiGIfEmMgAvndP94d3NmnTtWuOlW7UsXzWatWVb373W+9+02lfmfvd9iKCMzMzDpts25XwMzM3hgccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY1aHpJmShrLXQ5JmNrn/oKQoljVK3pslPVpn++WShiVtVfKz3yopJB3bTJ3NOsUBx2zTMQf4C0kHFDdI2hw4BbghItZVXjOzNnDAMdt0/D9gLTCtxrbJwARSUDLrSQ44Zi2SdKik/5D0rKQ/SFoi6aOtlhcRa4Cbgak1Nk8Dngfuzj57L0mzJf1S0kuSHpd0gaQt69R3i+wS26cL6V+T9OtC2j6Srs0u4a2VNE/S21o9NjOALbpdAbNNWUTMzL0eLGzeB7gPuAJ4GfjvwGxJ6yNiTrbPEKBiWXXMAT4i6aCIeAggCyInAd+PiNeyfLsBLwB/C7wITALOB3YFPtvkYW5E0q7ZcT0PzMiO7RxggaR3+JKetcoBx6xFETF3w2tJAu4B3gx8ktYvfc0jBZBpwENZ2jHAzvkyI2IJsCT3+fcBLwFXSDojIl5t8fMBzgS2Ao6IiBez8u8HVgLTgSvHULa9gfmSmlmLJO0k6duSngReyR4zgLe3WmZ29vDvpLMcZclTgSeBB3OfvZmkMyUtk/RS9tn/BxhHCnpjcSQwH1iTXYbbAlgF/AQYGGPZ9gbmgGPWuqtJweAbwNHAe4F/BrYeY7lzgD8HDpW0NXACMCc2Xtr9TGAW8G/AB4GDgdOzbWP9/F2Bj/KnILrh8X5g7zGWbW9gvqRm1oIsEBwPfC4irsilt+OPuLtI/SfTgD2B7Rl5ie7DwNyIOC/32Qc2KPc14FXgTYX0nQvv/wt4GLioRhmrG3yG2agccMxasxWwOfB6B7qk7UlnG2O6yVREvCbp30hBZS9gWUT8tJBtXP6zM3VHyEVESHoGeGeuzpsDHyhkvZN0VvWoBwhYOzngmLUgIlZJ+jFwnqTVwHrgbFJfxw5t+Ig5wOdIo9POq7F9AfAZSYuBXwB/DUwsUe6/AzMkPULqF/oksE0hzz8CpwJ3SboceBbYAzgcGIqIf236aMxwwDEbi1OBq4BrgN8Bl5N+vD/XhrIfII0KmwjMrbH9fGAX0mWvAK4D/g64sUG555H6aC4C/gh8G1gKfGJDhoj4jaRDgH8ALgN2BJ4D7gVGXXrHrBFVfYtpSW8FvggcAvwFcG+N+Q219htP+vKfSBrscDNwekT8rpDvBOBrwNtIf/ldEBHXtvMYzMysed0YpXYAMAV4PHuUdS0wSPpLbDppRNBGf81JOgy4njQb+zjgFmCOpKPHWmkzMxubbpzhbBYR67PX1wG7NjrDkXQocD9weETck6UdDPwQOCoi7sjS5gNbRsQHcvveCuwQEYd14njMzKycys9wNgSbJh0HPL8h2GTl/Aj4ZbaNbMn2yUCxQ3MuaT7D+NZqbGZm7dArEz8nActrpC/LtgHsB2xZI98y0nG2PPvbzMzGrldGqe1EWl+qaBjYN5eHGvmGC9s3ImkGaTkSxo0bd9Dee7dnIvX69evZbLNeiefd43Yqx+1UjtupnHa20+OPP/5CROxWJm+vBByoPZlONdKL7zVKekqMuIo0tJWBgYFYvHjxWOr4uqGhIQYHB9tSVj9zO5XjdirH7VROO9spW0uwlF75U2CYNBegaEf+dEYznEsr5oHaZ0hmZlaRXgk4y/lTX01evm/nCdICg8V8k0izwJsZgm1mZm3WK5fU5gFfkXRYRCwCkDRA6r+ZB2lZd0l3k9afyt+vYyrwQESsqrjO1icmnn1L3e0rv358RTUx622VBxxJ25AmfkJamHAHSadk72+NiLWSVgALI+I0gIh4IJtjc42kL5DOWGYBizbMwcl8FRiSdBlpUuiU7HFsxw/MzMzq6sYZzu6ke3jkbXj/FtL6UVuQVuLNmwZcSrrfyOtL2+QzRMSiLHh9DfgMaZ7OqRFxexvrb2ZmLag84ETESv40cmy0PBNrpL0IfDx71Nv3RhovYGhmZhXrlUEDZmbW4xxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJ+0u6U9JaSc9KulDS5g32mSkpRnl8KZfv6lHyTOr8kZmZWT1bVPlhknYC7gCWAicA+wHfJAW+c+vs+l3gtkLaicBZwLxC+nLg44W0la3V2MzM2qXSgAN8GhgHnBwRq4EFknYAZkq6OEsbISKeBp7Op0n6CrA8IpYUsv8hIh7sQN3NzGwMqr6kdhwwvxBY5pKC0OFlC5G0M3AUMKe91TMzs06pOuBMIl3yel1EPAWszbaVdQqwJSlYFe0vabWkdZIWSSodyMzMrHMUEdV9mPQK8MWIuKyQ/jRwTUScU7Kcu4DxEXFQIf0M4I+kPqLdgDOBg4DDIuJHo5Q1A5gBMGHChIPmzq0Vw5q3Zs0atttuu7aU1c96oZ0efWZV3e3v2mt8x+vQC+20KXA7ldPOdpo8efJDETFQJm/VfTgAtSKcRkkfmVHak3T57awRBUd8q5D3FlLwOYc0yGBkZSKuAq4CGBgYiMHBwTLVaGhoaIh2ldXPeqGdpp99S93tKz862PE69EI7bQrcTuV0q52qvqQ2DOxYI3088GLJMj5CClDXNsoYES8BtwLvKVtBMzPrjKoDznIKfTWS9ga2pdC3U8c0YFFE/KqJz63uuqGZmdVUdcCZBxwjaftc2lTgJWBho50lTQQOoeToNEnjSCPjHmq2omZm1l5VB5wrgHXADZKOzDrsZwKX5IdKS1oh6Xs19p8GvApcV9wgabykeyV9StIRkqYCdwN7ARd14FjMzKwJlQ4aiIhhSUcAlwM3kfptLiUFnWK9ai13Mw24MyJ+W2PbOuC3pBULdgdeBh4ADo+IxW05ADMza1nlo9QiYinwgQZ5Jo6S/u46+7wMnDymypmZWcd4tWgzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq0RTAUdSreVmzMzMGmr2DOcZSRdLemdHamNmZn2r2YBzJXAK8DNJP5Q0Q9IOHaiXmZn1maYCTkScHxH7AkcBjwGXAM9J+r6kIztRQTMz6w8tDRqIiLsi4q+BPYDPA+8A5ktaKWmmpD9rZyXNzKz3jXWU2gDwftJto4eBe4FPACskfWyMZZuZWR9pOuBI2kfS+ZKeAO4E9gT+BviziPhfwD6kvp5vtLWmZmbW05q6AZuku0hnNE8DVwOzI+LJfJ6IeE3SD4Az2lVJMzPrfc3e8fMFYAqwICKiTr4lwFtarpWZmfWdZi+pXQ7cXyvYSNpO0vsBIuKV4pmPmZm9sTUbcO4G9h9l2zuy7WZmZiM0G3BUZ9t2wNox1MXMzPpYwz6c7DLZYC7pE5KOLWTbGjgeeLR9VTMzs35SZtDA+0iTOwEC+DDwaiHPH4HlwBfbVzUzM+snDQNORHyDbE6NpF8CJ0XEkk5XzMzM+ktTw6IjwkOdzcysJWX6cKYAiyJidfa6roi4tS01MzOzvlLmDOdm4BDgR9nrYPTRagH4Jm1mZjZCmYDzFuC53GszM7OmlRk08GSt12ZmZs0o04ezTTMFRoQnf5qZ2QhlLqmtIfXNlOU+HDMzG6FMwPkbmgs4ZmZmI5Tpw7m6gnqYmVmfG+stps3MzEopM2jgR8D0iFgq6cc0uLwWEQe3q3JmZtY/yvTh/CfwUu61+3PMzKxpZfpwPp57Pb2jtTEzs77Vch+Okt0k1bspm5mZGdBCwJE0RdL9wMvAr4GXJd0v6fi2187MzPpGUwFH0qeAm0iTQc8g3YztjOz9f2TbzczMRmjqfjjAOcBVEfGZQvoVkq4Avgxc2ZaamZlZX2n2ktouwA2jbLse2LlRAZL2l3SnpLWSnpV0oaS6y+FImigpajzm1sh7gqRHJb0saamkqaWOzMzMOqrZM5y7gcOBBTW2HQ7cU29nSTsBdwBLgROA/YBvkgLfuSU+/wvAfbn3LxTKP4wU+L4DnA5MAeZIGo6I20uUb2ZmHVJm4uf+ubffBr4raRfgRuA3wO7AScBxwCcaFPdpYBxwckSsBhZI2gGYKeniLK2exyLiwTrbvwLcExGnZ+/vlnQAcB7ggGNm1kVlznB+xsaTPQV8KnsU7/55G/VXiz4OmF8ILHOBWaQzpJtK1KcmSVsBk0lnNnlzgdmSxkfEqlbLNzOzsSkTcCa38fMmAXflEyLiKUlrs22NAs5sSTuTzqzmAF+OiA2rIOwHbAksL+yzjHTJ7u3Aj8dWfTMza1WZlQYWtvHzdgJerJE+nG0bzTrgn0iXxVYDg8BZpCBzQq5sapQ/XNi+EUkzgBkAEyZMYGhoqF79S1uzZk3byupnvdBOZ77r1brbq6h/L7TTpsDtVE632qnZQQOvk7QZsHUxvcQdP2utxaZR0jeU+RzwuVzSkKTnge9IendELKlTvkZJ31D2VcBVAAMDAzE4OFi/9iUNDQ3RrrL6WS+00/Szb6m7feVHBzteh15op02B26mcbrVTsxM/JeksSSuAV4Df13jUMwzsWCN9PLXPfOq5Lnt+T65sapS/4X2z5ZuZWRs1Ow/ndOBs4HukM4d/AC4EHgdWkl2aqmM5qa/mdZL2BrZlZN9LI1F4foIUBCcV8k0C1md1NDOzLmk24HwSOB+4OHt/Y0RcABxAChhva7D/POAYSdvn0qaSbn/QbF/RKdnzQwARsY40T+jDhXxTgQc8Qs3MrLua7cN5C7AkIl6T9ArZ5aqIWC/pO8B3SWdAo7mCdJZ0g6RZwL7ATOCS/FDp7JLdwog4LXs/E9ieNOlzNfB+4IvADRHx01z5XyX171xGmic0JXsc2+RxmplZmzV7hvM7YLvs9VPAf8tt24k0qXNUETEMHEGaq3MTcAFwKemsKW8LNp7Ps5w0T2c2cCtwKvCN7Dlf/iLSmc+RwHzgg8CpXmXAzKz7mj3DuQ94L+lH/wekFQJ2Bv4IfBa4s1EBEbEU+ECDPBML7+eSJnA2FBE3ks5uzMxsE9JswJkJ7JW9voh0SW066cxmAfD5dlXMzMz6S1MBJyIeAx7LXq8j3QvnjA7Uy8zM+sxYJn6+GdgTeDYinmlflczMrB+1covpz0j6FfAk8EPgKUlPS/rfba+dmZn1jWZXGjgPuJw0n+Z4YCB7ngd8O9tuZmY2QrOX1D4LXBQRXymk35atbfZZ0soDZmZmG2n2kto4Rr+r50JqLOZpZmYGzQecG4GTR9n2IeDmsVXHzMz6VZlbTE/JvZ0HXCxpIiNvMX0A8Pftr6KZmfWDMn04NzPyVtJ7AcfUyPsvpDtxmpmZbaRMwHlLx2thZmZ9r8wtpp+soiJmZtbfml5pQNIWpAEChwE7A/8F3Eu6VUD9m7+bmdkbVlMBR9LuwO3AgaQ7fD4PHEqaf/OIpKMj4rftrqSZmfW+ZodFXwLsArwvIvaNiEMjYl/gfVn6Je2uoJmZ9YdmA84U4KyI+HE+MXv/JdIyN2ZmZiM0G3C2An4/yrbfA28aW3XMzKxfNRtwHgTOkrRtPjF7f1a23czMbIRmR6mdCdwN/ErS7aRBA7uTJoEKGGxr7czMrG80dYYTEUuAtwFXAbsBR5ECzhXA2yLikbbX0MzM+kLpMxxJWwIHA7+MiLM7VyUzM+tHzZzhvAbcBbyzQ3UxM7M+VjrgRMR64OfAhM5Vx8zM+lWzo9S+DJwn6V2dqIyZmfWvZkepnUtaUWCJpGdIo9QinyEiDm5T3czMrI80G3B+lj3MzMyaUirgSBpHWtbmZ8CvgTsi4vlOVszMzPpLmVtM7wvcAUzMJa+W9JGIuL1TFTMzs/5SZtDAxcB64K+AbYADgIeBKztYLzMz6zNlAs6hwLkRcV9EvBwRy4BPAX8uac/OVs/MzPpFmYCzJ/CLQtoTpLXT9mh7jczMrC+VnYcTjbOYmZmNruyw6PmSXq2RfmcxPSJ2H3u1zMys35QJOBd0vBZmZtb3GgaciHDAMTOzMWt2LTUzM7OWOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzBPu+VNFvSimy/xySdL2nrQr6ZkqLG49jOHpWZmTXS7A3YxkTSTqRbHSwFTgD2A75JCnzn1tl1apZ3FvBz4EDgq9nzhwp5VwHFALNsrHU3M7OxqTTgAJ8GxgEnR8RqYIGkHYCZki7O0mqZFRG/zb0fkvQycKWkfSLiydy2VyPiwc5U38zMWlX1JbXjgPmFwDKXFIQOH22nQrDZ4OHs2Wu3mZn1gKoDziRgeT4hIp4C1mbbmvGXpBvDPVZI31HSC5JekfSwpJNbrq2ZmbWNIqq784CkV4AvRsRlhfSngWsi4pyS5ewB/BS4NSKm59I/RjrjWQJsR7pR3BTgQxFxwyhlzQBmAEyYMOGguXPnNntYNa1Zs4btttuuLWX1s15op0efWVV3+7v2Gt/xOvRCO20K3E7ltLOdJk+e/FBEDJTJ242A84WI+FYh/Rng6oj4coky3kQaePBm4KCIGK6TV8D9wLiIeHejsgcGBmLx4sWNspUyNDTE4OBgW8rqZ73QThPPvqXu9pVfP77jdeiFdtoUuJ3KaWc7SSodcKq+pDYM7FgjfTzwYqOdswByDXAAMKVesAGIFE1vAA5sNPTazMw6q+pRassp9NVI2hvYlkLfziguJQ2nPioiyuTfwHcsNTPrsqrPcOYBx0jaPpc2FXgJWFhvR0lfAj4PfCwiFpX5sOyM6CTgkYh4rbUqm5lZO1R9hnMFcDpwg6RZwL7ATOCS/FBpSSuAhRFxWvb+VOAi4GrgGUmH5Mp8YsOwaUkLgetJZ0vbAp8EDgFO7OxhmZlZI5UGnIgYlnQEcDlwE6nf5lJS0CnWK9/ncnT2PD175H2cFIgAVgB/C+xJGjL9E+D4iJjXjvqbmVnrqj7DISKWAh9okGdi4f10RgaaWvudNoaqmZlZB3m1aDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzEfuMlzZY0LGmVpO9L2qVGvhMkPSrpZUlLJU3tzJGYmVkzKg04knYC7gACOAG4EDgTuKDE7tcCg8AngOnAe4EbC+UfBlwP3A0cB9wCzJF0dFsOwMzMWrZFxZ/3aWAccHJErAYWSNoBmCnp4ixtBEmHAscAh0fEPVnaM8APJR0ZEXdkWb8C3BMRp2fv75Z0AHAecHvnDsvMzBqpOuAcB8wvBJa5wCzgcOCmOvs9vyHYAETEjyT9Mtt2h6StgMnA6YV95wKzJY2PiFVtOg7rooln39Iwz8qvH19BTcysGVUHnEnAXfmEiHhK0tps22gBZxKwvEb6smwbwH7AljXyLSNdOnw78OPWqm1lOBC0T7Etz3zXq0zPpbkdrRdVHXB2Al6skT6cbWtlv31zeaiRb7iwfSOSZgAzsrdrJD1Wpx7N2BV4oU1l9Q3NGpHUkXaq8TkdU8VnnV5opyqPr8f4/1057WynfcpmrDrgQBowUKRR0lvZr/hedfYnIq4Crmrw2U2TtDgiBtpdbr9xO5XjdirH7VROt9qp6mHRw8CONdLHU/sMptF+O+b2G86lFfPQoHwzM+uwqgPOcv7U5wKApL2BbandRzPqfpl8384TwCs18k0C1gOPt1BfMzNrk6oDzjzgGEnb59KmAi8BCxvst0c2zwYASQOk/pt5ABGxjjT/5sOFfacCD3RhhFrbL9P1KbdTOW6nctxO5XSlnRTRqOukjR+WJn4uBX5GGgq9L3AJcFlEnJvLtwJYGBGn5dJuI400+wLpjGUW8JuI+KtcnsOAIeBy0qTQKVn+YyPC83DMzLqo0jOciBgGjgA2Jw2BvgC4FDi/kHWLLE/eNNJZ0D8D1wAPAScVyl8EnAIcCcwHPgic6mBjZtZ9lZ7hmJnZG5dXi27Ai4021kobSXpv1j4rsv0ek3S+pK0L+WZKihqPYzt7VO3XYjtNHOX459bI2/PfJWi5nUb7noSkL+XyXT1KnlqDkjZpkt4q6UpJj0h6TdJQyf269tvUjXk4PSO32OhS0mKj+wHfJAXqc+vsCmmx0XeQFhvd0Od0I1Dsc7oe+A5pSZ4ppMVGh3vlMuAY2mhqlncW8HPgQOCr2fOHCnlXAcUAs2ysda/SGL9LkPoi78u932jSXj98l2BM7fRd4LZC2onAWWQDi3KWAx8vpK1srcZddQDp3/lB4E1N7Ne936aI8GOUB/Al0vyeHXJpfw+szafV2O9Q0kTT9+fSDs7SjsylzQfuKux7K7Co28deQRvtViNtRtZG++TSZgIvdPs4u9hOE7M2+R8Nyu/579JY2mmUsm4BlhXSrgYWd/s429RWm+VeXwcMldinq79NvqRW32iLjY4jLTZab78Ri40CGxYbJbfY6L8W9p0LHCpp/NirX4mW2igiflsj+eHseff2VW+T0ep3qaE++i5Bm9pJ0s7AUcCc9lZv0xER61vYrau/TQ449Y1YNDQiniL9tVXvmm+7FhvtBa22US1/STrFL65nt6OkFyS9IulhSSe3XNvuGWs7zc6u0z8n6RJJ43Lb+uW7BO37Pp1CapMRfV3A/pJWS1onaZGkMQX8HtPV3yYHnPo6sdjoTrk81MhXd7HRTVCrbbQRSXsAXwb+b+Gv2xWkSyofIfXtPAtc34NBp9V2Wgf8E3AaaUrBlcBn2PiHtF++S9Cm7xNpGsVPIqK4wsjDpJs+/k/go6TpFwskHdxCXXtRV3+bPGigsU1qsdFNVKttlDJKbyKdvq8B/m6jgiP+pZD3JuB+0k31bmilsl3UdDtFxHPA53JJQ5KeB74j6d0RsaRO+b34XYKxf5/2JF1+O2tEwRHfKuS9hTRA4RzSIIM3gq79NvkMpz4vNtpYq20EgCSRJvIeAEyJNDl4VJF6L28ADiwzPH0TMqZ2Krgue35PrmxqlN9r3yVoTzt9hPTjeG2jjBHxEqkz/D2N8vaJrv42OeDU58VGG2u1jTa4lDT89YSIKJN/g177q32s7ZQXhed++S5Be9ppGmk01a+a+Nxe+z61qqu/TQ449b2RFhttVattRDYh7/PAxyItS9RQdkZ0EvBIRLzWWpW7ouV2quGU7Pkh6KvvEoyxnSRNBA6h5Oi0bPDFcWRt+QbQ3d+mbo8l35QfpM6x54AFpPXZZpD6Gb5WyLcC+F4h7TbgF8DJpGvDjwH3FvIcBrwKXAYMAheT/oI4utvH3uk2Ak4l/VU5m/QDkX/slsu3kDTx7GhSoLk1a6MPdvvYK2qnmaSJjydn+11I+vG9vt++S2Npp1z62aS/zmvN8xoP3At8ijQAYypp0uQ6YKDbx95CW21D+uPjFOAB4D9z77cZrZ26+dvU9Ubb1B/A/sBd2X/y50iz4Tcv5FkJXF1I2zH7MX0RWA38ANi1RvknklbPXkc6pZ3W7WOuoo1IE/BilMf0XL7vZf85XgL+kP1gHNftY66wnaYBi0mrLfwx+wG5ENiqH79LrbZTLn0JcNso5W5N6v/7VdZGq7If30O6fcwtttPEOv+HJo7WTt38bfLinWZmVgn34ZiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSvx/kIORc9agYsAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHjRJREFUeJzt3Xm0XGWd7vHvwyCEKcyBRpoIDhFalleOCH1pOZE53CuDaLLQ2ys2GvWq0L3QBhEhoM0y2AK6aBewtMPltiZ0A81thhDCcAJhUIMEsZOAQQMyiGIfEmMgAvndP94d3NmnTtWuOlW7UsXzWatWVb373W+9+02lfmfvd9iKCMzMzDpts25XwMzM3hgccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY1aHpJmShrLXQ5JmNrn/oKQoljVK3pslPVpn++WShiVtVfKz3yopJB3bTJ3NOsUBx2zTMQf4C0kHFDdI2hw4BbghItZVXjOzNnDAMdt0/D9gLTCtxrbJwARSUDLrSQ44Zi2SdKik/5D0rKQ/SFoi6aOtlhcRa4Cbgak1Nk8Dngfuzj57L0mzJf1S0kuSHpd0gaQt69R3i+wS26cL6V+T9OtC2j6Srs0u4a2VNE/S21o9NjOALbpdAbNNWUTMzL0eLGzeB7gPuAJ4GfjvwGxJ6yNiTrbPEKBiWXXMAT4i6aCIeAggCyInAd+PiNeyfLsBLwB/C7wITALOB3YFPtvkYW5E0q7ZcT0PzMiO7RxggaR3+JKetcoBx6xFETF3w2tJAu4B3gx8ktYvfc0jBZBpwENZ2jHAzvkyI2IJsCT3+fcBLwFXSDojIl5t8fMBzgS2Ao6IiBez8u8HVgLTgSvHULa9gfmSmlmLJO0k6duSngReyR4zgLe3WmZ29vDvpLMcZclTgSeBB3OfvZmkMyUtk/RS9tn/BxhHCnpjcSQwH1iTXYbbAlgF/AQYGGPZ9gbmgGPWuqtJweAbwNHAe4F/BrYeY7lzgD8HDpW0NXACMCc2Xtr9TGAW8G/AB4GDgdOzbWP9/F2Bj/KnILrh8X5g7zGWbW9gvqRm1oIsEBwPfC4irsilt+OPuLtI/SfTgD2B7Rl5ie7DwNyIOC/32Qc2KPc14FXgTYX0nQvv/wt4GLioRhmrG3yG2agccMxasxWwOfB6B7qk7UlnG2O6yVREvCbp30hBZS9gWUT8tJBtXP6zM3VHyEVESHoGeGeuzpsDHyhkvZN0VvWoBwhYOzngmLUgIlZJ+jFwnqTVwHrgbFJfxw5t+Ig5wOdIo9POq7F9AfAZSYuBXwB/DUwsUe6/AzMkPULqF/oksE0hzz8CpwJ3SboceBbYAzgcGIqIf236aMxwwDEbi1OBq4BrgN8Bl5N+vD/XhrIfII0KmwjMrbH9fGAX0mWvAK4D/g64sUG555H6aC4C/gh8G1gKfGJDhoj4jaRDgH8ALgN2BJ4D7gVGXXrHrBFVfYtpSW8FvggcAvwFcG+N+Q219htP+vKfSBrscDNwekT8rpDvBOBrwNtIf/ldEBHXtvMYzMysed0YpXYAMAV4PHuUdS0wSPpLbDppRNBGf81JOgy4njQb+zjgFmCOpKPHWmkzMxubbpzhbBYR67PX1wG7NjrDkXQocD9weETck6UdDPwQOCoi7sjS5gNbRsQHcvveCuwQEYd14njMzKycys9wNgSbJh0HPL8h2GTl/Aj4ZbaNbMn2yUCxQ3MuaT7D+NZqbGZm7dArEz8nActrpC/LtgHsB2xZI98y0nG2PPvbzMzGrldGqe1EWl+qaBjYN5eHGvmGC9s3ImkGaTkSxo0bd9Dee7dnIvX69evZbLNeiefd43Yqx+1UjtupnHa20+OPP/5CROxWJm+vBByoPZlONdKL7zVKekqMuIo0tJWBgYFYvHjxWOr4uqGhIQYHB9tSVj9zO5XjdirH7VROO9spW0uwlF75U2CYNBegaEf+dEYznEsr5oHaZ0hmZlaRXgk4y/lTX01evm/nCdICg8V8k0izwJsZgm1mZm3WK5fU5gFfkXRYRCwCkDRA6r+ZB2lZd0l3k9afyt+vYyrwQESsqrjO1icmnn1L3e0rv358RTUx622VBxxJ25AmfkJamHAHSadk72+NiLWSVgALI+I0gIh4IJtjc42kL5DOWGYBizbMwcl8FRiSdBlpUuiU7HFsxw/MzMzq6sYZzu6ke3jkbXj/FtL6UVuQVuLNmwZcSrrfyOtL2+QzRMSiLHh9DfgMaZ7OqRFxexvrb2ZmLag84ETESv40cmy0PBNrpL0IfDx71Nv3RhovYGhmZhXrlUEDZmbW4xxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJ+0u6U9JaSc9KulDS5g32mSkpRnl8KZfv6lHyTOr8kZmZWT1bVPlhknYC7gCWAicA+wHfJAW+c+vs+l3gtkLaicBZwLxC+nLg44W0la3V2MzM2qXSgAN8GhgHnBwRq4EFknYAZkq6OEsbISKeBp7Op0n6CrA8IpYUsv8hIh7sQN3NzGwMqr6kdhwwvxBY5pKC0OFlC5G0M3AUMKe91TMzs06pOuBMIl3yel1EPAWszbaVdQqwJSlYFe0vabWkdZIWSSodyMzMrHMUEdV9mPQK8MWIuKyQ/jRwTUScU7Kcu4DxEXFQIf0M4I+kPqLdgDOBg4DDIuJHo5Q1A5gBMGHChIPmzq0Vw5q3Zs0atttuu7aU1c96oZ0efWZV3e3v2mt8x+vQC+20KXA7ldPOdpo8efJDETFQJm/VfTgAtSKcRkkfmVHak3T57awRBUd8q5D3FlLwOYc0yGBkZSKuAq4CGBgYiMHBwTLVaGhoaIh2ldXPeqGdpp99S93tKz862PE69EI7bQrcTuV0q52qvqQ2DOxYI3088GLJMj5CClDXNsoYES8BtwLvKVtBMzPrjKoDznIKfTWS9ga2pdC3U8c0YFFE/KqJz63uuqGZmdVUdcCZBxwjaftc2lTgJWBho50lTQQOoeToNEnjSCPjHmq2omZm1l5VB5wrgHXADZKOzDrsZwKX5IdKS1oh6Xs19p8GvApcV9wgabykeyV9StIRkqYCdwN7ARd14FjMzKwJlQ4aiIhhSUcAlwM3kfptLiUFnWK9ai13Mw24MyJ+W2PbOuC3pBULdgdeBh4ADo+IxW05ADMza1nlo9QiYinwgQZ5Jo6S/u46+7wMnDymypmZWcd4tWgzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq0RTAUdSreVmzMzMGmr2DOcZSRdLemdHamNmZn2r2YBzJXAK8DNJP5Q0Q9IOHaiXmZn1maYCTkScHxH7AkcBjwGXAM9J+r6kIztRQTMz6w8tDRqIiLsi4q+BPYDPA+8A5ktaKWmmpD9rZyXNzKz3jXWU2gDwftJto4eBe4FPACskfWyMZZuZWR9pOuBI2kfS+ZKeAO4E9gT+BviziPhfwD6kvp5vtLWmZmbW05q6AZuku0hnNE8DVwOzI+LJfJ6IeE3SD4Az2lVJMzPrfc3e8fMFYAqwICKiTr4lwFtarpWZmfWdZi+pXQ7cXyvYSNpO0vsBIuKV4pmPmZm9sTUbcO4G9h9l2zuy7WZmZiM0G3BUZ9t2wNox1MXMzPpYwz6c7DLZYC7pE5KOLWTbGjgeeLR9VTMzs35SZtDA+0iTOwEC+DDwaiHPH4HlwBfbVzUzM+snDQNORHyDbE6NpF8CJ0XEkk5XzMzM+ktTw6IjwkOdzcysJWX6cKYAiyJidfa6roi4tS01MzOzvlLmDOdm4BDgR9nrYPTRagH4Jm1mZjZCmYDzFuC53GszM7OmlRk08GSt12ZmZs0o04ezTTMFRoQnf5qZ2QhlLqmtIfXNlOU+HDMzG6FMwPkbmgs4ZmZmI5Tpw7m6gnqYmVmfG+stps3MzEopM2jgR8D0iFgq6cc0uLwWEQe3q3JmZtY/yvTh/CfwUu61+3PMzKxpZfpwPp57Pb2jtTEzs77Vch+Okt0k1bspm5mZGdBCwJE0RdL9wMvAr4GXJd0v6fi2187MzPpGUwFH0qeAm0iTQc8g3YztjOz9f2TbzczMRmjqfjjAOcBVEfGZQvoVkq4Avgxc2ZaamZlZX2n2ktouwA2jbLse2LlRAZL2l3SnpLWSnpV0oaS6y+FImigpajzm1sh7gqRHJb0saamkqaWOzMzMOqrZM5y7gcOBBTW2HQ7cU29nSTsBdwBLgROA/YBvkgLfuSU+/wvAfbn3LxTKP4wU+L4DnA5MAeZIGo6I20uUb2ZmHVJm4uf+ubffBr4raRfgRuA3wO7AScBxwCcaFPdpYBxwckSsBhZI2gGYKeniLK2exyLiwTrbvwLcExGnZ+/vlnQAcB7ggGNm1kVlznB+xsaTPQV8KnsU7/55G/VXiz4OmF8ILHOBWaQzpJtK1KcmSVsBk0lnNnlzgdmSxkfEqlbLNzOzsSkTcCa38fMmAXflEyLiKUlrs22NAs5sSTuTzqzmAF+OiA2rIOwHbAksL+yzjHTJ7u3Aj8dWfTMza1WZlQYWtvHzdgJerJE+nG0bzTrgn0iXxVYDg8BZpCBzQq5sapQ/XNi+EUkzgBkAEyZMYGhoqF79S1uzZk3byupnvdBOZ77r1brbq6h/L7TTpsDtVE632qnZQQOvk7QZsHUxvcQdP2utxaZR0jeU+RzwuVzSkKTnge9IendELKlTvkZJ31D2VcBVAAMDAzE4OFi/9iUNDQ3RrrL6WS+00/Szb6m7feVHBzteh15op02B26mcbrVTsxM/JeksSSuAV4Df13jUMwzsWCN9PLXPfOq5Lnt+T65sapS/4X2z5ZuZWRs1Ow/ndOBs4HukM4d/AC4EHgdWkl2aqmM5qa/mdZL2BrZlZN9LI1F4foIUBCcV8k0C1md1NDOzLmk24HwSOB+4OHt/Y0RcABxAChhva7D/POAYSdvn0qaSbn/QbF/RKdnzQwARsY40T+jDhXxTgQc8Qs3MrLua7cN5C7AkIl6T9ArZ5aqIWC/pO8B3SWdAo7mCdJZ0g6RZwL7ATOCS/FDp7JLdwog4LXs/E9ieNOlzNfB+4IvADRHx01z5XyX171xGmic0JXsc2+RxmplZmzV7hvM7YLvs9VPAf8tt24k0qXNUETEMHEGaq3MTcAFwKemsKW8LNp7Ps5w0T2c2cCtwKvCN7Dlf/iLSmc+RwHzgg8CpXmXAzKz7mj3DuQ94L+lH/wekFQJ2Bv4IfBa4s1EBEbEU+ECDPBML7+eSJnA2FBE3ks5uzMxsE9JswJkJ7JW9voh0SW066cxmAfD5dlXMzMz6S1MBJyIeAx7LXq8j3QvnjA7Uy8zM+sxYJn6+GdgTeDYinmlflczMrB+1covpz0j6FfAk8EPgKUlPS/rfba+dmZn1jWZXGjgPuJw0n+Z4YCB7ngd8O9tuZmY2QrOX1D4LXBQRXymk35atbfZZ0soDZmZmG2n2kto4Rr+r50JqLOZpZmYGzQecG4GTR9n2IeDmsVXHzMz6VZlbTE/JvZ0HXCxpIiNvMX0A8Pftr6KZmfWDMn04NzPyVtJ7AcfUyPsvpDtxmpmZbaRMwHlLx2thZmZ9r8wtpp+soiJmZtbfml5pQNIWpAEChwE7A/8F3Eu6VUD9m7+bmdkbVlMBR9LuwO3AgaQ7fD4PHEqaf/OIpKMj4rftrqSZmfW+ZodFXwLsArwvIvaNiEMjYl/gfVn6Je2uoJmZ9YdmA84U4KyI+HE+MXv/JdIyN2ZmZiM0G3C2An4/yrbfA28aW3XMzKxfNRtwHgTOkrRtPjF7f1a23czMbIRmR6mdCdwN/ErS7aRBA7uTJoEKGGxr7czMrG80dYYTEUuAtwFXAbsBR5ECzhXA2yLikbbX0MzM+kLpMxxJWwIHA7+MiLM7VyUzM+tHzZzhvAbcBbyzQ3UxM7M+VjrgRMR64OfAhM5Vx8zM+lWzo9S+DJwn6V2dqIyZmfWvZkepnUtaUWCJpGdIo9QinyEiDm5T3czMrI80G3B+lj3MzMyaUirgSBpHWtbmZ8CvgTsi4vlOVszMzPpLmVtM7wvcAUzMJa+W9JGIuL1TFTMzs/5SZtDAxcB64K+AbYADgIeBKztYLzMz6zNlAs6hwLkRcV9EvBwRy4BPAX8uac/OVs/MzPpFmYCzJ/CLQtoTpLXT9mh7jczMrC+VnYcTjbOYmZmNruyw6PmSXq2RfmcxPSJ2H3u1zMys35QJOBd0vBZmZtb3GgaciHDAMTOzMWt2LTUzM7OWOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzBPu+VNFvSimy/xySdL2nrQr6ZkqLG49jOHpWZmTXS7A3YxkTSTqRbHSwFTgD2A75JCnzn1tl1apZ3FvBz4EDgq9nzhwp5VwHFALNsrHU3M7OxqTTgAJ8GxgEnR8RqYIGkHYCZki7O0mqZFRG/zb0fkvQycKWkfSLiydy2VyPiwc5U38zMWlX1JbXjgPmFwDKXFIQOH22nQrDZ4OHs2Wu3mZn1gKoDziRgeT4hIp4C1mbbmvGXpBvDPVZI31HSC5JekfSwpJNbrq2ZmbWNIqq784CkV4AvRsRlhfSngWsi4pyS5ewB/BS4NSKm59I/RjrjWQJsR7pR3BTgQxFxwyhlzQBmAEyYMOGguXPnNntYNa1Zs4btttuuLWX1s15op0efWVV3+7v2Gt/xOvRCO20K3E7ltLOdJk+e/FBEDJTJ242A84WI+FYh/Rng6oj4coky3kQaePBm4KCIGK6TV8D9wLiIeHejsgcGBmLx4sWNspUyNDTE4OBgW8rqZ73QThPPvqXu9pVfP77jdeiFdtoUuJ3KaWc7SSodcKq+pDYM7FgjfTzwYqOdswByDXAAMKVesAGIFE1vAA5sNPTazMw6q+pRassp9NVI2hvYlkLfziguJQ2nPioiyuTfwHcsNTPrsqrPcOYBx0jaPpc2FXgJWFhvR0lfAj4PfCwiFpX5sOyM6CTgkYh4rbUqm5lZO1R9hnMFcDpwg6RZwL7ATOCS/FBpSSuAhRFxWvb+VOAi4GrgGUmH5Mp8YsOwaUkLgetJZ0vbAp8EDgFO7OxhmZlZI5UGnIgYlnQEcDlwE6nf5lJS0CnWK9/ncnT2PD175H2cFIgAVgB/C+xJGjL9E+D4iJjXjvqbmVnrqj7DISKWAh9okGdi4f10RgaaWvudNoaqmZlZB3m1aDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzEfuMlzZY0LGmVpO9L2qVGvhMkPSrpZUlLJU3tzJGYmVkzKg04knYC7gACOAG4EDgTuKDE7tcCg8AngOnAe4EbC+UfBlwP3A0cB9wCzJF0dFsOwMzMWrZFxZ/3aWAccHJErAYWSNoBmCnp4ixtBEmHAscAh0fEPVnaM8APJR0ZEXdkWb8C3BMRp2fv75Z0AHAecHvnDsvMzBqpOuAcB8wvBJa5wCzgcOCmOvs9vyHYAETEjyT9Mtt2h6StgMnA6YV95wKzJY2PiFVtOg7rooln39Iwz8qvH19BTcysGVUHnEnAXfmEiHhK0tps22gBZxKwvEb6smwbwH7AljXyLSNdOnw78OPWqm1lOBC0T7Etz3zXq0zPpbkdrRdVHXB2Al6skT6cbWtlv31zeaiRb7iwfSOSZgAzsrdrJD1Wpx7N2BV4oU1l9Q3NGpHUkXaq8TkdU8VnnV5opyqPr8f4/1057WynfcpmrDrgQBowUKRR0lvZr/hedfYnIq4Crmrw2U2TtDgiBtpdbr9xO5XjdirH7VROt9qp6mHRw8CONdLHU/sMptF+O+b2G86lFfPQoHwzM+uwqgPOcv7U5wKApL2BbandRzPqfpl8384TwCs18k0C1gOPt1BfMzNrk6oDzjzgGEnb59KmAi8BCxvst0c2zwYASQOk/pt5ABGxjjT/5sOFfacCD3RhhFrbL9P1KbdTOW6nctxO5XSlnRTRqOukjR+WJn4uBX5GGgq9L3AJcFlEnJvLtwJYGBGn5dJuI400+wLpjGUW8JuI+KtcnsOAIeBy0qTQKVn+YyPC83DMzLqo0jOciBgGjgA2Jw2BvgC4FDi/kHWLLE/eNNJZ0D8D1wAPAScVyl8EnAIcCcwHPgic6mBjZtZ9lZ7hmJnZG5dXi27Ai4021kobSXpv1j4rsv0ek3S+pK0L+WZKihqPYzt7VO3XYjtNHOX459bI2/PfJWi5nUb7noSkL+XyXT1KnlqDkjZpkt4q6UpJj0h6TdJQyf269tvUjXk4PSO32OhS0mKj+wHfJAXqc+vsCmmx0XeQFhvd0Od0I1Dsc7oe+A5pSZ4ppMVGh3vlMuAY2mhqlncW8HPgQOCr2fOHCnlXAcUAs2ysda/SGL9LkPoi78u932jSXj98l2BM7fRd4LZC2onAWWQDi3KWAx8vpK1srcZddQDp3/lB4E1N7Ne936aI8GOUB/Al0vyeHXJpfw+szafV2O9Q0kTT9+fSDs7SjsylzQfuKux7K7Co28deQRvtViNtRtZG++TSZgIvdPs4u9hOE7M2+R8Nyu/579JY2mmUsm4BlhXSrgYWd/s429RWm+VeXwcMldinq79NvqRW32iLjY4jLTZab78Ri40CGxYbJbfY6L8W9p0LHCpp/NirX4mW2igiflsj+eHseff2VW+T0ep3qaE++i5Bm9pJ0s7AUcCc9lZv0xER61vYrau/TQ449Y1YNDQiniL9tVXvmm+7FhvtBa22US1/STrFL65nt6OkFyS9IulhSSe3XNvuGWs7zc6u0z8n6RJJ43Lb+uW7BO37Pp1CapMRfV3A/pJWS1onaZGkMQX8HtPV3yYHnPo6sdjoTrk81MhXd7HRTVCrbbQRSXsAXwb+b+Gv2xWkSyofIfXtPAtc34NBp9V2Wgf8E3AaaUrBlcBn2PiHtF++S9Cm7xNpGsVPIqK4wsjDpJs+/k/go6TpFwskHdxCXXtRV3+bPGigsU1qsdFNVKttlDJKbyKdvq8B/m6jgiP+pZD3JuB+0k31bmilsl3UdDtFxHPA53JJQ5KeB74j6d0RsaRO+b34XYKxf5/2JF1+O2tEwRHfKuS9hTRA4RzSIIM3gq79NvkMpz4vNtpYq20EgCSRJvIeAEyJNDl4VJF6L28ADiwzPH0TMqZ2Krgue35PrmxqlN9r3yVoTzt9hPTjeG2jjBHxEqkz/D2N8vaJrv42OeDU58VGG2u1jTa4lDT89YSIKJN/g177q32s7ZQXhed++S5Be9ppGmk01a+a+Nxe+z61qqu/TQ449b2RFhttVattRDYh7/PAxyItS9RQdkZ0EvBIRLzWWpW7ouV2quGU7Pkh6KvvEoyxnSRNBA6h5Oi0bPDFcWRt+QbQ3d+mbo8l35QfpM6x54AFpPXZZpD6Gb5WyLcC+F4h7TbgF8DJpGvDjwH3FvIcBrwKXAYMAheT/oI4utvH3uk2Ak4l/VU5m/QDkX/slsu3kDTx7GhSoLk1a6MPdvvYK2qnmaSJjydn+11I+vG9vt++S2Npp1z62aS/zmvN8xoP3At8ijQAYypp0uQ6YKDbx95CW21D+uPjFOAB4D9z77cZrZ26+dvU9Ubb1B/A/sBd2X/y50iz4Tcv5FkJXF1I2zH7MX0RWA38ANi1RvknklbPXkc6pZ3W7WOuoo1IE/BilMf0XL7vZf85XgL+kP1gHNftY66wnaYBi0mrLfwx+wG5ENiqH79LrbZTLn0JcNso5W5N6v/7VdZGq7If30O6fcwtttPEOv+HJo7WTt38bfLinWZmVgn34ZiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSvx/kIORc9agYsAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -447,7 +447,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X20XFV9//H3hwchPAUCEpAiASqlULssuSC0VC4CCqGrqQiGKnVFHhJbKtYfalARA1R/BQRspZYELehPJShSLASMPN0gKkgSsGhIKGh4BgkGQkxAAt/fH3vfMJw7987MnZkzmcnntdZZM7PPPme+Z+698717n332UURgZmbWbht1OgAzM9swOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcdaStJMSTHMckKd+9gr72fbQvnUvJ+t2hN9fXE0uc+rJQ3UUW8TSf8k6eeS1khaIekGSQeP8n3Xl890auF34jeS5knar45t+/M2f1JGrNZ6TjjWDs8DB1VZflDn9nsBnwOKX/Rz835WtybMUcfRVpI2Bq4FvgD8NzAJmAq8AgxIev8odru+fKaD3pnfdzrwRuA2SW+qsc2ivM1DbY7N2mSTTgdgPWltRNzZ6p1GxDPAM63e73roI8DRwFERUZmkvy9pDjBb0vyIeLzZN+rgZ3p3RKwCkLQAeBj4AHBBsaIkAZtFxEqg5b9XVh63cKwjJH1K0oOSXpT0tKQfSNpJUj9wXa7269yFsixv87ruH0kT8uvjJV0uaaWkxwa77iR9UtITkp6RdJ6kjSref29JcyQ9Kmm1pF/mLqyN8vph48jr35y3/23efp6kPyoc4665G2yNpGWSTq7z4/kocFsh2Qz6DLA5cFLF+yyT9EVJn5X0lKRVkr4laWytY6nWpSZpB0lfl/RsPrYBSX2FYxt8z4/lz3xF/jwabg1GxKOkpDch73umpOWSDpZ0N/AicFy1LjVJG+ffpQckvZRjuaIQ62RJC/Lv2lOSzpe0aaNxWvPcwrG2kDTkdysi1uZ1HwQ+DcwAfglsT+pi2ZLUbfJx4IvAMcCTwEs13u484FvAe4ETga9L+jNgt/x6IvDPwD3AnLzNLsDSvN0LwNuAs4ExwP8dKQ5J44A7gGeBD5O6o84Abpa0V0Ssyf+Vfx/YgZQcXsz7Hwf87wif266kL96Lq62PiIck3Qe8o7Dqb4EHgVOAnYHzga8Cx410LMO4FvjDvM1y4BOkLq8/i4gHK+q9D/gfYBrwB8BFpG7Afxhh30NI2pr0uTxVUbwF8PV8HA8AT+TjKpoFfDDXm5/3c2zFvt8HXJnrfRrYk/Tz3Sgfn5UpIrx4adkCzARimGVCrnMJ8L0R9vFXlfUryqfm8q3y6wn59eUVdbYBXiZ9qW9cUf4z4Kph3k+kf74+DfyqjjjOJSWbcRVl25HOXZ2aX0/K2769os5uwFpgYIRjPzBvN3mEOtcC91e8Xgb8dvBzyWUfAF4F/rjBz/TI/PqQijpbklogswrv+RCwSUXZl4Cnavx+DL7f2PyZ7wpclT+XtxV+hyYXtu3P5X+SX++dX582ws/14crfj1x+IrAG2L7Tfy8b2uIWjrXD88DhVcqfyI/3AidJOpt00nphRLzSxPvdMvgkIlZKegaYX9jng8CbB19I2hz4FOmL+c3AphXrNoncGhvG4cBNwMqKltwLwEJgsOvpAODpiLirIraHJS0cxfHV46bI50Sya4BvAvsD9zewnwOAZyJi/mBBRPxO0vVAcYTcbYXPaTGwo6Q3RMTva7zPcxXPlwMnRsS9FWUB3FhjH4fmxyuGWb8X6Wf7nUKL+1ZSt+SfkFpFVhInHGuHtRGxYIT1/wlsTeqKOQt4VtJ/ADNHmXieK7z+/TBlm1e8Pg84mdTNtSjXnwycmeutYng7kFoiU6qsG0x+OwG/qbL+N6RjH87gQIDdRqizW0W9yv2uE6lbbxXVu6FGsjPwdJXyp0ndVZWqfcYC3pCfj+QdpK7I5cCjEfFqYf2KOpLW9sDvIg0mqGaH/HjDMOt3rbF/azEnHCtd/nK5GLg4n7P4APB50pfopSWFcRzw5Yg4f7BA0tF1bvtb0nDlc6useyE/PgXsWGX9jqTunKoi4tF8Qv+vgX8rrpe0O+k/8+J771ioNwbYinS+phFPFveVjScdd6vcU2iRFdVz35RngS0lbTNM0hmMdxrp/F3Rr+t4D2shj1KzjoqIRyPiX0hdXvvk4sH/bDevvlVLjKHixLnStS/HF+oMF8ctwL7ALyNiQWFZmuvcDYyX9PaK93gzUPMCR+BfgcMkvavKun/OcX+tUH6EXn/x5jGkL+3Blma9n+ldpG6xdYMSJG1BGqZ9Rx2xl+nW/PjBYdYvJf0TM6HKz2lBRDxbTpg2yC0ca4dNJB1YpfzRiHhc0izSf593ks73HAq8hTRqDdIXBcB0petOVkfEfS2O8SbgVEkP5lhOBTYr1BkujouAE4BbJX2Z9KU2HjgEuCMiriR14/wc+K6kGaRRaudQvZut6Muk80T/JemLwACpG+4k0sn/v4uh1+CsAeZKuoDULXYB8F8RsbjGsbxORMyT9GPgKklnkFoRHycl6CHXyHRSRCyVNBu4UNKOwO2kC1uPjYjjI+JVSacD/0/SNqRzQr8H9gD+Jtcr+4LXDVunRy146a2FkUepnZnrTAV+TPqiX00aWntSYT+nk0YYrQWWVWxXbZTaXxW2XQZ8sVB2BbCg4vV44L+AlaTzE+eThhSv2/9wceTyNwGX521fyu/5TWDfijpvJs2usCbvYzpwNSOMUqvYdhPgY/mzWQOsIH1hHlyl7jLgwvzZPw38jjQUeNtGP9Nc9kbgG/k915BOrO9fx2c8ZF9VYq2nzkxgeZXyfipGqeWyjcmjC0nJ5DGGjko7CvhR/lxWkgat/DMVI+y8lLMo/0BKI+kPSeP6DyT1Rf8oIvrr2G4sadjl35C6Aq8nDYd8tlBvMumX6S2kX8KzI+KqVh6D2fokn/O5OiJ8XYmt1zpxDmdf0jUKD+SlXleR/sM5mfRf0v6k6xHWUZrY8HvAbaT/auYCVw7TF25mZiXqRAtno8hDICVdDexQq4Uj6SDgJ6SL0W7PZQeQTnAeERE357J5wKYR8c6KbW8AtomIUc2ya7a+cwvHukXpLZwYOt6+HkeRLqK7vWI/PyMNazwKQNJmpJPP3ylsOwc4aHBeKbNeExETnGysG3TLsOi9gSVVyu/P6yDNkbRplXr3k45zr7ZFZ2ZmNXXLsOjtGHpVM6RRNHtU1KFKvRWF9a8jaRrpwjDGjBkzcddde+fi41dffZWNNuqW/ykaV9bxbf1AOtX4wl7l/c/in1136+XjKx7bAw88sDwi3ljPtt2ScKD6lceqUl58rRG2JyJmA7MB+vr6YsGCkWZk6S4DAwP09/d3Ooy2Ke34lH+Fli4duV4L+WfX3Xr5+IrHJunherftlhS8gup3XdyW11o0KyrKinWgegvJzMxK0i0JZwmvnaupVHlu5yHStPTFenuTpmlvZAi2mZm1WLcknBuBnfJ1NgDkOxDukdcRES+Rrr85rrDtFOCnEfF8SbFaj5pwxtx1i5k1rvRzOHkiwEn55S7ANpIG79B3Q0SszvNbzY+IkwAi4qf5GptvSPo4qcVyHmneqpsrdn8uMCDpS6SLQifl5ci2H5iZmY2oEy2cHYHv5uVA0gzBg68Hp0XfhDRHUqXjSXM6/SdpnqeFwHsqK0TEHaTbyx4OzCNN8f7+iPhhOw7ENhARaTGzppTewomIZbw2cmy4OhOqlD0HfCgvI217LYUpb8zMrPO65RyOmZl1OSccs1omTkyLmTWlmy78NOuMRYvS4xGdDcOs27mFY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCo9SM6vllFM6HYFZT3DCMatl9uz06Ek7zZriLjUzMyuFWzhmtSxc2OkIzHqCWzhmtfT1pcXMmuKEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOWS0LFqTFzJrihGNWi28xbdYSTjhmZlYKT21jVsu0aelx3OTOxmHW5ZxwzGq57LL0OMMJx6wZ7lIzM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFR6mZ1bLffp2OwKwnuIVjVsvChb7NtFkLOOGYmVkpnHDMzKwUTjhmtUhpMbOmOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhqW3Mapk1Kz3+qrNhmHU7JxyzWgZvMX3G3M7GYdblSu9Sk7SPpFskrZb0hKRzJG1cY5uZkmKY5VMV9a4Yps7e7T8yMzMbSaktHEnbATcDi4HJwJ7AhaTEd+YIm34V+EGh7G+AGcCNhfIlwIcKZctGF7EZMHt2frJLR8Mw63Zld6l9GBgDHBMRK4GbJG0DzJR0fi4bIiIeAx6rLJP0WWBJRNxbqP67iLizDbHbhmr69PQ44/rOxmHW5cruUjsKmFdILHNISeiQenciaRxwBHBla8MzM7N2KTvh7E3q8lonIh4BVud19ToW2JSUrIr2kbRS0kuS7pBUdyIzM7P2KbtLbTvguSrlK/K6eh0PLIqIBwrl9wB3kc4RvRE4ndRtd3BE/KzajiRNA6YBjB8/noGBgQbCWL+tWrWqp46nqKzj68+Pp7917bqydr+vf3bdrZePr5lj68Sw6KhSpmHKh1aUdiZ1v80YsuOIfy3UnUtKPp8mDTIYGkzEbGA2QF9fX/T399cTRlcYGBigl46nqOzju/C+1/5cln2gve/rn1136+Xja+bYyu5SWwFsW6V8LNVbPtW8j5SgrqpVMSLWADcAvim9mVmHlZ1wllA4VyNpV2BLCud2RnA8cEdEPNrA+9bVejIzs/YpO+HcCLxb0tYVZVOANcD8WhtLmgAcSJ2j0ySNIY2MW9hooGbrRKTFzJpSdsK5FHgJuEbS4fmE/Uzgosqh0pIelPS1KtsfD6wFri6ukDRW0o8kTZd0mKQpwG2kq/W+0IZjMTOzBpQ6aCAiVkg6DLgEuI503uZiUtIpxlVtupvjgVsi4pkq614CniHNWLAj8CLwU+CQiFjQkgMwM7NRK32UWkQsBt5Zo86EYcrfNsI2LwLHNBWcWTUTJ6bHI87pbBxmXc6zRZvVsmhRejyis2GYdTvfgM3MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZWyymndDoCs57ghGNWy+Atps+Y29k4zLqcu9TMzKwUDbVwJG0cEa+0Kxiz9dJCz/1q1gqNtnAel3S+pD9uSzRm66O+vrSYWVMaTTizgGOBX0i6S9I0Sdu0IS4zM+sxDSWciPhcROxBmlVqKXAR8KSkb0k6vB0BmplZbxjVoIGIuDUiPgjsBHwE+CNgnqRlkmZKelMrgzQzs+7X7Ci1PuAdpNtGrwB+BJwMPCjphCb3bWZmPaThhCNpN0mfk/QQcAuwM3Ai8KaI+DtgN9K5ngtaGqmZmXW1RodF30pq0TwGXAFcHhEPV9aJiFckfRv4aKuCNDOz7tfoTAPLgUnATRERI9S7F9h91FGZrU8W5DuUf/epzsZh1uUa7VK7BPhJtWQjaStJ7wCIiJeLLR+zrjVx4mu3mTazUWs04dwG7DPMuj/K683MzIZotEtNI6zbCljdRCxm66dp09LjuMmdjcOsy9VMOLmbrL+i6GRJRxaqbQ4cDdzXutDM1hOXXZYeZzjhmDWjnhbO20kXdwIEcBywtlDn98AS4BOtC83MzHpJzYQTEReQr6mR9GvgPRFxb7sDMzOz3tLQOZyI8FBnMzMblXrO4UwC7oiIlfn5iCLihpZEZmZmPaWeFs71wIHAz/LzYPjRagFs3JrQzMysl9STcHYHnqx4brZh2W+/Tkdg1hPqGTTwcLXnZhuMwVtMnzG3s3GYdbl6zuFs0cgOI8IXf5qZ2RD1dKmtIp2bqZfP4ZiZ2RD1JJwTaSzhmPUW5TEyM67vbBxmXa6eczhXlBCHmZn1uGZvMW1mZlaXegYN/AyYGhGLJd1Nje61iDigVcGZmVnvqOcczi+BNRXPfT7HzMwaVs85nA9VPJ/a1mjMzKxnjfocjpI3ShrppmxmZmbAKBKOpEmSfgK8CDwFvCjpJ5KObnl0ZuuDWbPSYmZNaSjhSJoOXEe6GPSjpJuxfTS//u+83qy3TJv22m2mzWzUGrofDvBpYHZE/H2h/FJJlwKfAfyvoJmZDdFol9r2wDXDrPseMK7WDiTtI+kWSaslPSHpHEkjTocjaYKkqLLMqVJ3sqT7JL0oabGkKXUdmdlwZs9Oi5k1pdEWzm3AIcBNVdYdAtw+0saStgNuBhYDk4E9gQtJie/MOt7/48CPK14vL+z/YFLi+wpwGjAJuFLSioj4YR37Nxtqeu4p9tQ2Zk2p58LPfSpe/hvwVUnbA9cCvwF2BN4DHAWcXGN3HwbGAMdExErgJknbADMlnZ/LRrI0Iu4cYf1ngdsj4rT8+jZJ+wJnAU44ZmYdVE8L5xe8/mJPAdPzUrz75w8Yebboo4B5hcQyBziP1EK6ro54qpK0GXAoqWVTaQ5wuaSxEfH8aPdvZmbNqSfhHNrC99sbuLWyICIekbQ6r6uVcC6XNI7UsroS+ExEDM6CsCewKbCksM39pC67vYC7mwvfzMxGq56ZBua38P22A56rUr4irxvOS8C/k7rFVgL9wAxSkplcsW+q7H9FYf3rSJoGTAMYP348AwMDI8XfVVatWtVTx1NU1vH158fT37p2XVm739c/u+7Wy8fXzLE1OmhgHUkbAZsXy+u442e1udg0TPngPp8E/rGiaEDS08BXJL0tIu4dYf8apnxw37OB2QB9fX3R398/cvRdZGBggF46nqKyj+/C+177c1n2gfa+r3923a2Xj6+ZY2v0wk9JmiHpQeBl4IUqy0hWANtWKR9L9ZbPSK7Oj/tV7Jsq+x983ej+zcyshRq9Duc04Azga6SWw+eBc4AHgGXkrqkRLCGdq1lH0q7Algw991JLFB4fIiXBvQv19gZezTGaNS4iLWbWlEYTzinA54Dz8+trI+JsYF9SwnhLje1vBN4taeuKsimk2x80eq7o2Py4ECAiXiJdJ3Rcod4U4KceoWZm1lmNnsPZHbg3Il6R9DK5uyoiXpX0FeCrpBbQcC4ltZKukXQesAcwE7iocqh07rKbHxEn5dczga1JF32uBN4BfAK4JiL+p2L/55LO73yJdJ3QpLwc2eBxmplZizXawnkW2Co/fwT4s4p125Eu6hxWRKwADiNdq3MdcDZwManVVGkTXn89zxLSdTqXAzcA7wcuyI+V+7+D1PI5HJgH/DXwfs8yYE2ZODEtZtaURls4Pwb2J33pf5s0Q8A44PfAqcAttXYQEYuBd9aoM6Hweg7pAs6aIuJaUuvGrDUWLUqPR3Q2DLNu12jCmQnskp9/gdSlNpXUsrkJ+EirAjMzs97SUMKJiKXA0vz8JdK9cD7ahrjMzKzHNHPh5x8AOwNPRMTjrQvJzMx60WhuMf33kh4FHgbuAh6R9Jikf2h5dGZm1jManWngLOAS0vU0RwN9+fFG4N/yejMzsyEa7VI7FfhCRHy2UP6DPLfZqaSZB8x6xymndDoCs57QaJfaGIa/q+d8qkzmadb1fItps5ZoNOFcCxwzzLr3Ar4Hr5mZVVXPLaYnVby8EThf0gSG3mJ6X+CTrQ/RrMMWLux0BGY9oZ5zONcz9FbSuwDvrlL3m6Q7cZr1jr6+9DjDDXizZtSTcHZvexRmZtbz6rnF9MNlBGJmZr2t4ZkGJG1CGiBwMDAO+C3wI9KtAtaOtK2ZmW24Gko4knYEfgj8KekOn08DB5Guv/m5pHdFxDOtDtLMzLpfo8OiLwK2B94eEXtExEERsQfw9lx+UasDNDOz3tBowpkEzIiIuysL8+tPkaa5MTMzG6LRhLMZ8MIw614A3tBcOGbroQUL0mJmTWk04dwJzJC0ZWVhfj0jrzfrLb7FtFlLNDpK7XTgNuBRST8kDRrYkXQRqID+lkZnZmY9o9E7ft4r6S3Ax4H9SaPVngQuBS6KiOWtD9Gsw6ZNS4/jJnc2DrMuV3fCkbQpcADw64g4o30hma1nLrssPc5wwjFrRiPncF4BbgX+uE2xmJlZD6s74UTEq8D/AuPbF46ZmfWqRkepfQY4S9Jb2xGMmZn1rkZHqZ1JmlHgXkmPk0apRWWFiDigRbGZmVkPaTTh/CIvZmZmDakr4UgaQ5rW5hfAU8DNEfF0OwMzW2/st1+nIzDrCfXcYnoP4GZgQkXxSknvi4gftisws/XG4C2mz5jb2TjMulw9gwbOB14F/hLYAtgXuAeY1ca4zMysx9STcA4CzoyIH0fEixFxPzAdeLOkndsbnpmZ9Yp6Es7OwK8KZQ+R5k7bqeURma1vpLSYWVPqvQ4nalcxMzMbXr3DoudJWlul/JZieUTs2HxYZmbWa+pJOGe3PQozM+t5NRNORDjhmJlZ0xqdS83MzGxUnHDMzKwUjc6lZrbhmZWvcS5eHGBmDXHCMatl8BbTntrGrCnuUjMzs1K4hWNWy+zZ+ckuHQ3DrNuV3sKRtI+kWyStlvSEpHMkbVxjm/0lXS7pwbzdUkmfk7R5od5MSVFlObK9R2U9bfr0tJhZU0pt4UjajnSrg8XAZGBP4EJS4jtzhE2n5LrnAf8L/Clwbn58b6Hu80AxwdzfbOxmZtacsrvUPgyMAY6JiJXATZK2AWZKOj+XVXNeRDxT8XpA0ovALEm7RcTDFevWRsSd7QnfzMxGq+wutaOAeYXEMoeUhA4ZbqNCshl0T3703G1mZl2g7ISzN7CksiAiHgFW53WN+HPSjeGWFsq3lbRc0suS7pF0zKijNTOzllFEeXcekPQy8ImI+FKh/DHgGxHx6Tr3sxPwP8ANETG1ovwEUovnXmAr0o3iJgHvjYhrhtnXNGAawPjx4yfOmTOn0cNab61atYqtttqq02G0TVnH13/ooQB8+ZvXrit76y5j2/qe/tl1t14+vuKxHXrooQsjoq+ebTsxLLpahtMw5UMrSm8AvgOsAj72uh1HfLNQ9zrgJ8BZQNWEExGzgdkAfX190d/fX08YXWFgYIBeOp6iso/vwvte+3NZ9oH2vq9/dt2tl4+vmWMru0ttBbBtlfKxwHO1NpYk4BvAvsCkiFgxUv1IzbdrgD+tNfTabFgRaTGzppTdwllC4VyNpF2BLSmc2xnGxaTh1EdERD31B/nbwsysw8pu4dwIvFvS1hVlU4A1wPyRNpT0KeAjwAkRcUc9b5ZbRO8Bfh4Rr4wuZDMza4WyE86lwEvANZIOzyfsZwIXVQ6VzjMKfK3i9fuBL5C60x6XdGDF8saKevMlnSbpXZLeA8wFDszvYTY6EyemxcyaUmqXWkSskHQYcAlwHem8zcUMTQibAJXnXN6VH6fmpdKHgCvy8weBfwJ2Jg2ZXgQcHRE3tiJ+20AtWpQej+hsGGbdrvRRahGxGHhnjToTCq+nMjTRVNvupCZCMzOzNvLtCczMrBROOGZmVgonHDMzK4UTjpmZlcJ3/DSr5ZRTOh2BWU9wwjGrZfAW02fM7WwcZl3OXWpmZlYKt3DMalm4sNMRmPUEt3DMaunrS4uZNcUJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccs1oWLEiLmTXFCcesFt9i2qwlnHDMzKwUntrGrJZp09LjuMmdjcOsyznhmNVy2WXpcYYTjlkz3KVmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1Izq2W//TodgVlPcAvHrJaFC32babMWcMIxM7NSOOGYmVkpnHDMapHSYmZNccIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCU9uY1TJrVnr8VWfDMOt2TjhmtQzeYvqMuZ2Nw6zLuUvNzMxK4RaOWS2zZ+cnu3Q0DLNu54RjVsv06elxxvWdjcOsy7lLzczMSlF6wpG0j6RbJK2W9ISkcyRtXMd2YyVdLmmFpOclfUvS9lXqTZZ0n6QXJS2WNKU9R2JmZo0oNeFI2g64GQhgMnAOcDpwdh2bXwX0AycDU4H9gWsL+z8Y+B5wG3AUMBe4UtK7WnIAZmY2amWfw/kwMAY4JiJWAjdJ2gaYKen8XDaEpIOAdwOHRMTtuexx4C5Jh0fEzbnqZ4HbI+K0/Po2SfsCZwE/bN9hmZlZLWV3qR0FzCskljmkJHRIje2eHkw2ABHxM+DXeR2SNgMOBb5T2HYOcJCksc2Hb+uT+x5/nglnzGWCr48x6wplt3D2Bm6tLIiIRyStzuuuG2G7JVXK78/rAPYENq1S735SYt0LuHt0YVsjKhPAsn85uoORdL9iMvXnad2s7ISzHfBclfIVed1ottujog5V6q0orH8dSdOAfCk5qyQtHSGObrMDsLyTAei8tu5+3fG1+X2S8/5q3dMS3q/qz66U4yxHx38326yXj694bLvVu2EnrsOJKmUapnw02xVfa5jyVBgxG5hdbV23k7QgIvo6HUe79PLx9fKxgY+vmzVzbGWfw1kBbFulfCzVWzC1ttu2YrsVFWXFOtTYv5mZtVnZCWcJr51zAUDSrsCWVD9HM+x2WeW5nYeAl6vU2xt4FXhgFPGamVmLlJ1wbgTeLWnrirIpwBpgfo3tdsrX2QAgqY90/uZGgIh4iXT9zXGFbacAP42I55sPv+v0ZFdhhV4+vl4+NvDxdbNRH5siap06aZ184edi4BfAeaSEcRHwpYg4s6Leg8D8iDipouwHpJFmHye1WM4DfhMRf1lR52BgALiEdFHopFz/yIjwdThmZh1UagsnIlYAhwEbk4ZAnw1cDHyuUHWTXKfS8aRW0H8C3wAWAu8p7P8O4FjgcGAe8NfA+51szMw6r9QWjpmZbbg8W/QGQtIUSddIelJSSJra6ZhGY7STv3YDSX8oaZakn0t6RdJAp2NqFUnHSfpvSY9LWiVpoaS/7XRcrSLpWEk/kfRsnjh4qaQzJb2h07G1mqRd8s8wJG3VyLa+H86G41hgAnA9aQLUrlMx+eti0uSvewIXkv5xOnOETbvFvqTzjncCvfZF9X9rUEebAAADJElEQVRIU1F9jHTR4CTg25J2iIgvdzSy1tieNGjpAtIlGAcAM4GdgH/sXFhtcQGwijS6uCHuUttASNooIl7N/5G8AHwoIq7ocFgNkfQp4JPAboPz8Un6JPkPe7jJX7vF4M8oP78a2CEi+jsbVWvkxLK8UPZt4KCI2L1DYbWVpM8DpwLbRY980Ur6S+D7wBdIiWfriFhV7/buUttADH6RdbnRTv7aFXrkZ1RVMdlk9wA7lh1LiZ6lh1qquev6y6Tbyoxq2h4nHOsmQyZxjYhHgMHJX627/Dmpe7RnSNpY0hb5Eo3TgP/oldYN6fYymwP/Ptod+ByOdZPRTv5q6xlJh5HOw53Y6Vha7HfAZvn5N4BPdDCWlsl3Vz4XOCEiXpZUa5OqnHC6VL6/z8616kXESFMGdaPRTv5q6wlJE4BvA9/vtvOIdfhzYAvSoIGzSBeh/0NHI2qNzwN3RcQNzezECad7HQdcVke90f0rsn4a7eSvtp6QNI40HdUjwAkdDqflImJRfnqHpOXA1yVdGBEPdTKuZuS7Jp8IvEPS4N/fFvlxrKRXImJNPfvyOZwuFRFfjQjVWjodZ4uNdvJXWw9I2oI0LP8NwNER8bsOh9Rug8mn20fhvYV0c8ufkv7pW8Fr53EeIw0kqItbONZNbgQ+IWnriHghl9Uz+at1mKRNgO+Svrz+IiJ+0+GQyvAX+fHXHY2ieXcAhxbKjgRmkK6n+lW9O3LC2UBI2gfYhzTKBKBP0irgmYjoli/rS0kjf66RNDj560zgom6/BgfWtQAm5Ze7ANtIOja/viEiVncmspb4CunYPgqMk3Rgxbp78mzvXStPLnwz8EvgFVKyOR24qpu702DdkPaByrJ8Hg7gR41ch+MLPzcQkmYydJJUSLNy95cbzejlxHkJcBDpvM1XgZkR8UpHA2uB/Ec83H/Du0fEstKCaTFJyxj+VsRdfWwAks4lTSY8AVhL+q//cuDSiHi5g6G1RZ4a63IavPDTCcfMzErhQQNmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBT/H1PMymNpY69NAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X20XFV9//H3hwchPAUCEpAiASqlULssuSC0VC4CCqGrqQiGKnVFHhJbKtYfalARA1R/BQRspZYELehPJShSLASMPN0gKkgSsGhIKGh4BgkGQkxAAt/fH3vfMJw7987MnZkzmcnntdZZM7PPPme+Z+698717n332UURgZmbWbht1OgAzM9swOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcdaStJMSTHMckKd+9gr72fbQvnUvJ+t2hN9fXE0uc+rJQ3UUW8TSf8k6eeS1khaIekGSQeP8n3Xl890auF34jeS5knar45t+/M2f1JGrNZ6TjjWDs8DB1VZflDn9nsBnwOKX/Rz835WtybMUcfRVpI2Bq4FvgD8NzAJmAq8AgxIev8odru+fKaD3pnfdzrwRuA2SW+qsc2ivM1DbY7N2mSTTgdgPWltRNzZ6p1GxDPAM63e73roI8DRwFERUZmkvy9pDjBb0vyIeLzZN+rgZ3p3RKwCkLQAeBj4AHBBsaIkAZtFxEqg5b9XVh63cKwjJH1K0oOSXpT0tKQfSNpJUj9wXa7269yFsixv87ruH0kT8uvjJV0uaaWkxwa77iR9UtITkp6RdJ6kjSref29JcyQ9Kmm1pF/mLqyN8vph48jr35y3/23efp6kPyoc4665G2yNpGWSTq7z4/kocFsh2Qz6DLA5cFLF+yyT9EVJn5X0lKRVkr4laWytY6nWpSZpB0lfl/RsPrYBSX2FYxt8z4/lz3xF/jwabg1GxKOkpDch73umpOWSDpZ0N/AicFy1LjVJG+ffpQckvZRjuaIQ62RJC/Lv2lOSzpe0aaNxWvPcwrG2kDTkdysi1uZ1HwQ+DcwAfglsT+pi2ZLUbfJx4IvAMcCTwEs13u484FvAe4ETga9L+jNgt/x6IvDPwD3AnLzNLsDSvN0LwNuAs4ExwP8dKQ5J44A7gGeBD5O6o84Abpa0V0Ssyf+Vfx/YgZQcXsz7Hwf87wif266kL96Lq62PiIck3Qe8o7Dqb4EHgVOAnYHzga8Cx410LMO4FvjDvM1y4BOkLq8/i4gHK+q9D/gfYBrwB8BFpG7Afxhh30NI2pr0uTxVUbwF8PV8HA8AT+TjKpoFfDDXm5/3c2zFvt8HXJnrfRrYk/Tz3Sgfn5UpIrx4adkCzARimGVCrnMJ8L0R9vFXlfUryqfm8q3y6wn59eUVdbYBXiZ9qW9cUf4z4Kph3k+kf74+DfyqjjjOJSWbcRVl25HOXZ2aX0/K2769os5uwFpgYIRjPzBvN3mEOtcC91e8Xgb8dvBzyWUfAF4F/rjBz/TI/PqQijpbklogswrv+RCwSUXZl4Cnavx+DL7f2PyZ7wpclT+XtxV+hyYXtu3P5X+SX++dX582ws/14crfj1x+IrAG2L7Tfy8b2uIWjrXD88DhVcqfyI/3AidJOpt00nphRLzSxPvdMvgkIlZKegaYX9jng8CbB19I2hz4FOmL+c3AphXrNoncGhvG4cBNwMqKltwLwEJgsOvpAODpiLirIraHJS0cxfHV46bI50Sya4BvAvsD9zewnwOAZyJi/mBBRPxO0vVAcYTcbYXPaTGwo6Q3RMTva7zPcxXPlwMnRsS9FWUB3FhjH4fmxyuGWb8X6Wf7nUKL+1ZSt+SfkFpFVhInHGuHtRGxYIT1/wlsTeqKOQt4VtJ/ADNHmXieK7z+/TBlm1e8Pg84mdTNtSjXnwycmeutYng7kFoiU6qsG0x+OwG/qbL+N6RjH87gQIDdRqizW0W9yv2uE6lbbxXVu6FGsjPwdJXyp0ndVZWqfcYC3pCfj+QdpK7I5cCjEfFqYf2KOpLW9sDvIg0mqGaH/HjDMOt3rbF/azEnHCtd/nK5GLg4n7P4APB50pfopSWFcRzw5Yg4f7BA0tF1bvtb0nDlc6useyE/PgXsWGX9jqTunKoi4tF8Qv+vgX8rrpe0O+k/8+J771ioNwbYinS+phFPFveVjScdd6vcU2iRFdVz35RngS0lbTNM0hmMdxrp/F3Rr+t4D2shj1KzjoqIRyPiX0hdXvvk4sH/bDevvlVLjKHixLnStS/HF+oMF8ctwL7ALyNiQWFZmuvcDYyX9PaK93gzUPMCR+BfgcMkvavKun/OcX+tUH6EXn/x5jGkL+3Blma9n+ldpG6xdYMSJG1BGqZ9Rx2xl+nW/PjBYdYvJf0TM6HKz2lBRDxbTpg2yC0ca4dNJB1YpfzRiHhc0izSf593ks73HAq8hTRqDdIXBcB0petOVkfEfS2O8SbgVEkP5lhOBTYr1BkujouAE4BbJX2Z9KU2HjgEuCMiriR14/wc+K6kGaRRaudQvZut6Muk80T/JemLwACpG+4k0sn/v4uh1+CsAeZKuoDULXYB8F8RsbjGsbxORMyT9GPgKklnkFoRHycl6CHXyHRSRCyVNBu4UNKOwO2kC1uPjYjjI+JVSacD/0/SNqRzQr8H9gD+Jtcr+4LXDVunRy146a2FkUepnZnrTAV+TPqiX00aWntSYT+nk0YYrQWWVWxXbZTaXxW2XQZ8sVB2BbCg4vV44L+AlaTzE+eThhSv2/9wceTyNwGX521fyu/5TWDfijpvJs2usCbvYzpwNSOMUqvYdhPgY/mzWQOsIH1hHlyl7jLgwvzZPw38jjQUeNtGP9Nc9kbgG/k915BOrO9fx2c8ZF9VYq2nzkxgeZXyfipGqeWyjcmjC0nJ5DGGjko7CvhR/lxWkgat/DMVI+y8lLMo/0BKI+kPSeP6DyT1Rf8oIvrr2G4sadjl35C6Aq8nDYd8tlBvMumX6S2kX8KzI+KqVh6D2fokn/O5OiJ8XYmt1zpxDmdf0jUKD+SlXleR/sM5mfRf0v6k6xHWUZrY8HvAbaT/auYCVw7TF25mZiXqRAtno8hDICVdDexQq4Uj6SDgJ6SL0W7PZQeQTnAeERE357J5wKYR8c6KbW8AtomIUc2ya7a+cwvHukXpLZwYOt6+HkeRLqK7vWI/PyMNazwKQNJmpJPP3ylsOwc4aHBeKbNeExETnGysG3TLsOi9gSVVyu/P6yDNkbRplXr3k45zr7ZFZ2ZmNXXLsOjtGHpVM6RRNHtU1KFKvRWF9a8jaRrpwjDGjBkzcddde+fi41dffZWNNuqW/ykaV9bxbf1AOtX4wl7l/c/in1136+XjKx7bAw88sDwi3ljPtt2ScKD6lceqUl58rRG2JyJmA7MB+vr6YsGCkWZk6S4DAwP09/d3Ooy2Ke34lH+Fli4duV4L+WfX3Xr5+IrHJunherftlhS8gup3XdyW11o0KyrKinWgegvJzMxK0i0JZwmvnaupVHlu5yHStPTFenuTpmlvZAi2mZm1WLcknBuBnfJ1NgDkOxDukdcRES+Rrr85rrDtFOCnEfF8SbFaj5pwxtx1i5k1rvRzOHkiwEn55S7ANpIG79B3Q0SszvNbzY+IkwAi4qf5GptvSPo4qcVyHmneqpsrdn8uMCDpS6SLQifl5ci2H5iZmY2oEy2cHYHv5uVA0gzBg68Hp0XfhDRHUqXjSXM6/SdpnqeFwHsqK0TEHaTbyx4OzCNN8f7+iPhhOw7ENhARaTGzppTewomIZbw2cmy4OhOqlD0HfCgvI217LYUpb8zMrPO65RyOmZl1OSccs1omTkyLmTWlmy78NOuMRYvS4xGdDcOs27mFY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCo9SM6vllFM6HYFZT3DCMatl9uz06Ek7zZriLjUzMyuFWzhmtSxc2OkIzHqCWzhmtfT1pcXMmuKEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOWS0LFqTFzJrihGNWi28xbdYSTjhmZlYKT21jVsu0aelx3OTOxmHW5ZxwzGq57LL0OMMJx6wZ7lIzM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFR6mZ1bLffp2OwKwnuIVjVsvChb7NtFkLOOGYmVkpnHDMzKwUTjhmtUhpMbOmOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhqW3Mapk1Kz3+qrNhmHU7JxyzWgZvMX3G3M7GYdblSu9Sk7SPpFskrZb0hKRzJG1cY5uZkmKY5VMV9a4Yps7e7T8yMzMbSaktHEnbATcDi4HJwJ7AhaTEd+YIm34V+EGh7G+AGcCNhfIlwIcKZctGF7EZMHt2frJLR8Mw63Zld6l9GBgDHBMRK4GbJG0DzJR0fi4bIiIeAx6rLJP0WWBJRNxbqP67iLizDbHbhmr69PQ44/rOxmHW5cruUjsKmFdILHNISeiQenciaRxwBHBla8MzM7N2KTvh7E3q8lonIh4BVud19ToW2JSUrIr2kbRS0kuS7pBUdyIzM7P2KbtLbTvguSrlK/K6eh0PLIqIBwrl9wB3kc4RvRE4ndRtd3BE/KzajiRNA6YBjB8/noGBgQbCWL+tWrWqp46nqKzj68+Pp7917bqydr+vf3bdrZePr5lj68Sw6KhSpmHKh1aUdiZ1v80YsuOIfy3UnUtKPp8mDTIYGkzEbGA2QF9fX/T399cTRlcYGBigl46nqOzju/C+1/5cln2gve/rn1136+Xja+bYyu5SWwFsW6V8LNVbPtW8j5SgrqpVMSLWADcAvim9mVmHlZ1wllA4VyNpV2BLCud2RnA8cEdEPNrA+9bVejIzs/YpO+HcCLxb0tYVZVOANcD8WhtLmgAcSJ2j0ySNIY2MW9hooGbrRKTFzJpSdsK5FHgJuEbS4fmE/Uzgosqh0pIelPS1KtsfD6wFri6ukDRW0o8kTZd0mKQpwG2kq/W+0IZjMTOzBpQ6aCAiVkg6DLgEuI503uZiUtIpxlVtupvjgVsi4pkq614CniHNWLAj8CLwU+CQiFjQkgMwM7NRK32UWkQsBt5Zo86EYcrfNsI2LwLHNBWcWTUTJ6bHI87pbBxmXc6zRZvVsmhRejyis2GYdTvfgM3MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZWyymndDoCs57ghGNWy+Atps+Y29k4zLqcu9TMzKwUDbVwJG0cEa+0Kxiz9dJCz/1q1gqNtnAel3S+pD9uSzRm66O+vrSYWVMaTTizgGOBX0i6S9I0Sdu0IS4zM+sxDSWciPhcROxBmlVqKXAR8KSkb0k6vB0BmplZbxjVoIGIuDUiPgjsBHwE+CNgnqRlkmZKelMrgzQzs+7X7Ci1PuAdpNtGrwB+BJwMPCjphCb3bWZmPaThhCNpN0mfk/QQcAuwM3Ai8KaI+DtgN9K5ngtaGqmZmXW1RodF30pq0TwGXAFcHhEPV9aJiFckfRv4aKuCNDOz7tfoTAPLgUnATRERI9S7F9h91FGZrU8W5DuUf/epzsZh1uUa7VK7BPhJtWQjaStJ7wCIiJeLLR+zrjVx4mu3mTazUWs04dwG7DPMuj/K683MzIZotEtNI6zbCljdRCxm66dp09LjuMmdjcOsy9VMOLmbrL+i6GRJRxaqbQ4cDdzXutDM1hOXXZYeZzjhmDWjnhbO20kXdwIEcBywtlDn98AS4BOtC83MzHpJzYQTEReQr6mR9GvgPRFxb7sDMzOz3tLQOZyI8FBnMzMblXrO4UwC7oiIlfn5iCLihpZEZmZmPaWeFs71wIHAz/LzYPjRagFs3JrQzMysl9STcHYHnqx4brZh2W+/Tkdg1hPqGTTwcLXnZhuMwVtMnzG3s3GYdbl6zuFs0cgOI8IXf5qZ2RD1dKmtIp2bqZfP4ZiZ2RD1JJwTaSzhmPUW5TEyM67vbBxmXa6eczhXlBCHmZn1uGZvMW1mZlaXegYN/AyYGhGLJd1Nje61iDigVcGZmVnvqOcczi+BNRXPfT7HzMwaVs85nA9VPJ/a1mjMzKxnjfocjpI3ShrppmxmZmbAKBKOpEmSfgK8CDwFvCjpJ5KObnl0ZuuDWbPSYmZNaSjhSJoOXEe6GPSjpJuxfTS//u+83qy3TJv22m2mzWzUGrofDvBpYHZE/H2h/FJJlwKfAfyvoJmZDdFol9r2wDXDrPseMK7WDiTtI+kWSaslPSHpHEkjTocjaYKkqLLMqVJ3sqT7JL0oabGkKXUdmdlwZs9Oi5k1pdEWzm3AIcBNVdYdAtw+0saStgNuBhYDk4E9gQtJie/MOt7/48CPK14vL+z/YFLi+wpwGjAJuFLSioj4YR37Nxtqeu4p9tQ2Zk2p58LPfSpe/hvwVUnbA9cCvwF2BN4DHAWcXGN3HwbGAMdExErgJknbADMlnZ/LRrI0Iu4cYf1ngdsj4rT8+jZJ+wJnAU44ZmYdVE8L5xe8/mJPAdPzUrz75w8Yebboo4B5hcQyBziP1EK6ro54qpK0GXAoqWVTaQ5wuaSxEfH8aPdvZmbNqSfhHNrC99sbuLWyICIekbQ6r6uVcC6XNI7UsroS+ExEDM6CsCewKbCksM39pC67vYC7mwvfzMxGq56ZBua38P22A56rUr4irxvOS8C/k7rFVgL9wAxSkplcsW+q7H9FYf3rSJoGTAMYP348AwMDI8XfVVatWtVTx1NU1vH158fT37p2XVm739c/u+7Wy8fXzLE1OmhgHUkbAZsXy+u442e1udg0TPngPp8E/rGiaEDS08BXJL0tIu4dYf8apnxw37OB2QB9fX3R398/cvRdZGBggF46nqKyj+/C+177c1n2gfa+r3923a2Xj6+ZY2v0wk9JmiHpQeBl4IUqy0hWANtWKR9L9ZbPSK7Oj/tV7Jsq+x983ej+zcyshRq9Duc04Azga6SWw+eBc4AHgGXkrqkRLCGdq1lH0q7Algw991JLFB4fIiXBvQv19gZezTGaNS4iLWbWlEYTzinA54Dz8+trI+JsYF9SwnhLje1vBN4taeuKsimk2x80eq7o2Py4ECAiXiJdJ3Rcod4U4KceoWZm1lmNnsPZHbg3Il6R9DK5uyoiXpX0FeCrpBbQcC4ltZKukXQesAcwE7iocqh07rKbHxEn5dczga1JF32uBN4BfAK4JiL+p2L/55LO73yJdJ3QpLwc2eBxmplZizXawnkW2Co/fwT4s4p125Eu6hxWRKwADiNdq3MdcDZwManVVGkTXn89zxLSdTqXAzcA7wcuyI+V+7+D1PI5HJgH/DXwfs8yYE2ZODEtZtaURls4Pwb2J33pf5s0Q8A44PfAqcAttXYQEYuBd9aoM6Hweg7pAs6aIuJaUuvGrDUWLUqPR3Q2DLNu12jCmQnskp9/gdSlNpXUsrkJ+EirAjMzs97SUMKJiKXA0vz8JdK9cD7ahrjMzKzHNHPh5x8AOwNPRMTjrQvJzMx60WhuMf33kh4FHgbuAh6R9Jikf2h5dGZm1jManWngLOAS0vU0RwN9+fFG4N/yejMzsyEa7VI7FfhCRHy2UP6DPLfZqaSZB8x6xymndDoCs57QaJfaGIa/q+d8qkzmadb1fItps5ZoNOFcCxwzzLr3Ar4Hr5mZVVXPLaYnVby8EThf0gSG3mJ6X+CTrQ/RrMMWLux0BGY9oZ5zONcz9FbSuwDvrlL3m6Q7cZr1jr6+9DjDDXizZtSTcHZvexRmZtbz6rnF9MNlBGJmZr2t4ZkGJG1CGiBwMDAO+C3wI9KtAtaOtK2ZmW24Gko4knYEfgj8KekOn08DB5Guv/m5pHdFxDOtDtLMzLpfo8OiLwK2B94eEXtExEERsQfw9lx+UasDNDOz3tBowpkEzIiIuysL8+tPkaa5MTMzG6LRhLMZ8MIw614A3tBcOGbroQUL0mJmTWk04dwJzJC0ZWVhfj0jrzfrLb7FtFlLNDpK7XTgNuBRST8kDRrYkXQRqID+lkZnZmY9o9E7ft4r6S3Ax4H9SaPVngQuBS6KiOWtD9Gsw6ZNS4/jJnc2DrMuV3fCkbQpcADw64g4o30hma1nLrssPc5wwjFrRiPncF4BbgX+uE2xmJlZD6s74UTEq8D/AuPbF46ZmfWqRkepfQY4S9Jb2xGMmZn1rkZHqZ1JmlHgXkmPk0apRWWFiDigRbGZmVkPaTTh/CIvZmZmDakr4UgaQ5rW5hfAU8DNEfF0OwMzW2/st1+nIzDrCfXcYnoP4GZgQkXxSknvi4gftisws/XG4C2mz5jb2TjMulw9gwbOB14F/hLYAtgXuAeY1ca4zMysx9STcA4CzoyIH0fEixFxPzAdeLOkndsbnpmZ9Yp6Es7OwK8KZQ+R5k7bqeURma1vpLSYWVPqvQ4nalcxMzMbXr3DoudJWlul/JZieUTs2HxYZmbWa+pJOGe3PQozM+t5NRNORDjhmJlZ0xqdS83MzGxUnHDMzKwUjc6lZrbhmZWvcS5eHGBmDXHCMatl8BbTntrGrCnuUjMzs1K4hWNWy+zZ+ckuHQ3DrNuV3sKRtI+kWyStlvSEpHMkbVxjm/0lXS7pwbzdUkmfk7R5od5MSVFlObK9R2U9bfr0tJhZU0pt4UjajnSrg8XAZGBP4EJS4jtzhE2n5LrnAf8L/Clwbn58b6Hu80AxwdzfbOxmZtacsrvUPgyMAY6JiJXATZK2AWZKOj+XVXNeRDxT8XpA0ovALEm7RcTDFevWRsSd7QnfzMxGq+wutaOAeYXEMoeUhA4ZbqNCshl0T3703G1mZl2g7ISzN7CksiAiHgFW53WN+HPSjeGWFsq3lbRc0suS7pF0zKijNTOzllFEeXcekPQy8ImI+FKh/DHgGxHx6Tr3sxPwP8ANETG1ovwEUovnXmAr0o3iJgHvjYhrhtnXNGAawPjx4yfOmTOn0cNab61atYqtttqq02G0TVnH13/ooQB8+ZvXrit76y5j2/qe/tl1t14+vuKxHXrooQsjoq+ebTsxLLpahtMw5UMrSm8AvgOsAj72uh1HfLNQ9zrgJ8BZQNWEExGzgdkAfX190d/fX08YXWFgYIBeOp6iso/vwvte+3NZ9oH2vq9/dt2tl4+vmWMru0ttBbBtlfKxwHO1NpYk4BvAvsCkiFgxUv1IzbdrgD+tNfTabFgRaTGzppTdwllC4VyNpF2BLSmc2xnGxaTh1EdERD31B/nbwsysw8pu4dwIvFvS1hVlU4A1wPyRNpT0KeAjwAkRcUc9b5ZbRO8Bfh4Rr4wuZDMza4WyE86lwEvANZIOzyfsZwIXVQ6VzjMKfK3i9fuBL5C60x6XdGDF8saKevMlnSbpXZLeA8wFDszvYTY6EyemxcyaUmqXWkSskHQYcAlwHem8zcUMTQibAJXnXN6VH6fmpdKHgCvy8weBfwJ2Jg2ZXgQcHRE3tiJ+20AtWpQej+hsGGbdrvRRahGxGHhnjToTCq+nMjTRVNvupCZCMzOzNvLtCczMrBROOGZmVgonHDMzK4UTjpmZlcJ3/DSr5ZRTOh2BWU9wwjGrZfAW02fM7WwcZl3OXWpmZlYKt3DMalm4sNMRmPUEt3DMaunrS4uZNcUJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccs1oWLEiLmTXFCcesFt9i2qwlnHDMzKwUntrGrJZp09LjuMmdjcOsyznhmNVy2WXpcYYTjlkz3KVmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1Izq2W//TodgVlPcAvHrJaFC32babMWcMIxM7NSOOGYmVkpnHDMapHSYmZNccIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCU9uY1TJrVnr8VWfDMOt2TjhmtQzeYvqMuZ2Nw6zLuUvNzMxK4RaOWS2zZ+cnu3Q0DLNu54RjVsv06elxxvWdjcOsy7lLzczMSlF6wpG0j6RbJK2W9ISkcyRtXMd2YyVdLmmFpOclfUvS9lXqTZZ0n6QXJS2WNKU9R2JmZo0oNeFI2g64GQhgMnAOcDpwdh2bXwX0AycDU4H9gWsL+z8Y+B5wG3AUMBe4UtK7WnIAZmY2amWfw/kwMAY4JiJWAjdJ2gaYKen8XDaEpIOAdwOHRMTtuexx4C5Jh0fEzbnqZ4HbI+K0/Po2SfsCZwE/bN9hmZlZLWV3qR0FzCskljmkJHRIje2eHkw2ABHxM+DXeR2SNgMOBb5T2HYOcJCksc2Hb+uT+x5/nglnzGWCr48x6wplt3D2Bm6tLIiIRyStzuuuG2G7JVXK78/rAPYENq1S735SYt0LuHt0YVsjKhPAsn85uoORdL9iMvXnad2s7ISzHfBclfIVed1ottujog5V6q0orH8dSdOAfCk5qyQtHSGObrMDsLyTAei8tu5+3fG1+X2S8/5q3dMS3q/qz66U4yxHx38326yXj694bLvVu2EnrsOJKmUapnw02xVfa5jyVBgxG5hdbV23k7QgIvo6HUe79PLx9fKxgY+vmzVzbGWfw1kBbFulfCzVWzC1ttu2YrsVFWXFOtTYv5mZtVnZCWcJr51zAUDSrsCWVD9HM+x2WeW5nYeAl6vU2xt4FXhgFPGamVmLlJ1wbgTeLWnrirIpwBpgfo3tdsrX2QAgqY90/uZGgIh4iXT9zXGFbacAP42I55sPv+v0ZFdhhV4+vl4+NvDxdbNRH5siap06aZ184edi4BfAeaSEcRHwpYg4s6Leg8D8iDipouwHpJFmHye1WM4DfhMRf1lR52BgALiEdFHopFz/yIjwdThmZh1UagsnIlYAhwEbk4ZAnw1cDHyuUHWTXKfS8aRW0H8C3wAWAu8p7P8O4FjgcGAe8NfA+51szMw6r9QWjpmZbbg8W/QGQtIUSddIelJSSJra6ZhGY7STv3YDSX8oaZakn0t6RdJAp2NqFUnHSfpvSY9LWiVpoaS/7XRcrSLpWEk/kfRsnjh4qaQzJb2h07G1mqRd8s8wJG3VyLa+H86G41hgAnA9aQLUrlMx+eti0uSvewIXkv5xOnOETbvFvqTzjncCvfZF9X9rUEebAAADJElEQVRIU1F9jHTR4CTg25J2iIgvdzSy1tieNGjpAtIlGAcAM4GdgH/sXFhtcQGwijS6uCHuUttASNooIl7N/5G8AHwoIq7ocFgNkfQp4JPAboPz8Un6JPkPe7jJX7vF4M8oP78a2CEi+jsbVWvkxLK8UPZt4KCI2L1DYbWVpM8DpwLbRY980Ur6S+D7wBdIiWfriFhV7/buUttADH6RdbnRTv7aFXrkZ1RVMdlk9wA7lh1LiZ6lh1qquev6y6Tbyoxq2h4nHOsmQyZxjYhHgMHJX627/Dmpe7RnSNpY0hb5Eo3TgP/oldYN6fYymwP/Ptod+ByOdZPRTv5q6xlJh5HOw53Y6Vha7HfAZvn5N4BPdDCWlsl3Vz4XOCEiXpZUa5OqnHC6VL6/z8616kXESFMGdaPRTv5q6wlJE4BvA9/vtvOIdfhzYAvSoIGzSBeh/0NHI2qNzwN3RcQNzezECad7HQdcVke90f0rsn4a7eSvtp6QNI40HdUjwAkdDqflImJRfnqHpOXA1yVdGBEPdTKuZuS7Jp8IvEPS4N/fFvlxrKRXImJNPfvyOZwuFRFfjQjVWjodZ4uNdvJXWw9I2oI0LP8NwNER8bsOh9Rug8mn20fhvYV0c8ufkv7pW8Fr53EeIw0kqItbONZNbgQ+IWnriHghl9Uz+at1mKRNgO+Svrz+IiJ+0+GQyvAX+fHXHY2ieXcAhxbKjgRmkK6n+lW9O3LC2UBI2gfYhzTKBKBP0irgmYjoli/rS0kjf66RNDj560zgom6/BgfWtQAm5Ze7ANtIOja/viEiVncmspb4CunYPgqMk3Rgxbp78mzvXStPLnwz8EvgFVKyOR24qpu702DdkPaByrJ8Hg7gR41ch+MLPzcQkmYydJJUSLNy95cbzejlxHkJcBDpvM1XgZkR8UpHA2uB/Ec83H/Du0fEstKCaTFJyxj+VsRdfWwAks4lTSY8AVhL+q//cuDSiHi5g6G1RZ4a63IavPDTCcfMzErhQQNmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBT/H1PMymNpY69NAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/bull_spread_pricing.ipynb b/qiskit/finance/simulation/bull_spread_pricing.ipynb index ea7a786b1..5a0969519 100644 --- a/qiskit/finance/simulation/bull_spread_pricing.ipynb +++ b/qiskit/finance/simulation/bull_spread_pricing.ipynb @@ -118,7 +118,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -177,8 +177,8 @@ "outputs": [], "source": [ "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price_1 = 1.5\n", - "strike_price_2 = 2.5\n", + "strike_price_1 = 1.438\n", + "strike_price_2 = 2.584\n", "\n", "# set the approximation scaling for the payoff function\n", "c_approx = 0.25\n", @@ -215,7 +215,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XnclXP+x/HXWyEtshaGuq0/YxlDGQymVcm+hwzZmuzGTjNKqaFBGJJoJCJLtoi0mxgkxpasLRSRSuUmLZ/fH9/r1ul07vs+93auc93n83w8zuO+r+tc1znv+3Q6n3Nd3+v7/crMcM455yprvbgDOOecSzYvJM4556rEC4lzzrkq8ULinHOuSryQOOecqxIvJM4556rEC4nLW5J6SbKU2zxJIyXtGGOmAyW9LelnSRatayBphKTvo5xdS9l3aNrfU3K7P6d/xJo83SQdk2H9LEm3xJHJJVPduAM4V44fgEOj33cA+gDjJe1uZj/GkOde4FugI7A8WncecCRwOjAX+LyM/WcAZ6at+7aaM2arG/AB8Eza+mOB73MfxyWVFxKX71aa2evR769LmgP8BzgMeCKGPLsCg81sctq6j81sZBb7/5jy9+QlM3sn7gwuWfzUlkuaadHPIgBJB0h6Ljrt9aOk/0nqUrKxpM2i01BnpD6IgpmSbktZ11bSG9H28yUNlNQwuq91dCqrDnBHdEpqqKRZwNnA3iWnqir7h5U8h6Q90tZPkvRkyvJQSW9JOkTSe9HfPUXS7mn71ZF0raRPJC2X9JWkoSWPCbQAzkg5xdY1um+dU1uSTpL0fvQ4X0rqK6luyv1do8fYU9LYKNMMScdV9vVwyeGFxCVNUfTzm+hnc+BV4BzC6aWRwAOSTgEws4XA06x7Oql19FgPAEjaDXgJWAAcD/QETgVKPsDfBg6Ifr81+r0P4TTQaMIpqwNStimVpLqpt6z+6nU1A/4J9AVOAZoAj0tSyjb3AjcAjwNHAJcDDaL7zo8yj07J/UIpeTsAjxFeg6OBfwFXAHdl2PwR4DnC6/IpMELStpX8G11C+Kktl/dSPmx3AAYCS4FxAGY2ImU7Aa8A2wLnAo9Gdw0BXpa0g5l9Ea07E5hmZu9Hy9cDs4GjzGxV9HgLgcckHWBm/yWcWgOYlXp6StJ3QNMsT1m1AFak/X07m9lnWeybajPgQDP7NHqM9QgF8/+AGZJ2JRwpXWJmd6bs9xiAmU2X9CPwXRa5ewOTzKzkqO6l6HX4h6QbzeyrlG0HmNm/o0zTgPmEIjaogn+fSxA/InH5bnPCB+8K4GNCMelsZl8DSNpU0p2SZqds1w3YJeUxxhOKxBnRPo2A44iORiJ/AJ4uKSKRkcBK4KBq/Hs+AvZNu31ZiceZVVJEItOjnyXf/ttEP4dW4rF/JakOsA/rtkc9Rvj8SD8Ce7nkFzP7nnAhgR+R1HJ+ROLy3Q9Ae8AIp7Pm2dpDVg8F9iecZpoOLCFcRXV0yQZmZpIeAM6S1As4ifDefyTlcbYmfHsmZb9Vkr4nfPuvLsVm9lY1PM7itOVfop/1op+bExr2l1TxebYA1ifttUlZTn9tMuWqh6vVvJC4fLeytA9eSfWAw4ELzWxQyvpMR9oPENo92gBdgWfMbFHK/V8T2hlSH78O4QN5YVX+gAr4Ofq5Qdr6zQhtNxXxPdBA0sZVLCYLCEd5TdLWN41+5uq1cXnMT225JNuQcBVVSX+OktNWR6VvaGZfEk673EA4VfVA2iZvAMdGxaPEcYQvW1OqN3apStoafluyQtJ2hHaPipoQ/Ty9jG3KPVqITvVNA05Mu+skYDXw30pkc7WMH5G4xDKzHyRNBa6XtITwwXYN4XTYxhl2GUI41/8VMDbtvhuBd4BnJN1DOK9/MzAmamivcWb2VfT39JFUTPiidx2V+NZvZh9LGgzcKqkJ4SKETYATzOzkaLMZQEdJHQlHMDOjdo10PYEx0enBEcCehFOJ96U1tLsC5UckLulOBWYCw4A7CA3kw0rZ9nlC4/mDZrY69Q4z+xDoRDiF8xShsDwKnFAzsUt1KjAHeBjoR7hi6uNKPtb5hCOw0wiX+d4O/JRy/42Exv/HgamEy6fXYWYvAycDLYFRwKWES6AvrGQuV8vIp9p1hULSYYRiskslLrd1zpXCC4mr9SRtA+xM6Eg3x8yOiDmSc7WKn9pyhaAboS/Jz8BFMWdxrtbxIxLnnHNV4kckzjnnqqQgLv/dYostrKioqFL7/vjjjzRo0KD8DfNEkvImKSskK2+SskKy8iYpK1Qt77Rp0xaY2Zblbmhmtf7WokULq6yJEydWet84JClvkrKaJStvkrKaJStvkrKaVS0v8JZl8Rnrp7acc85ViRcS55xzVeKFxDnnXJXkvJBI2knSvZLelbQqmvIzm/0aS3pA0iJJP0gaLmnzGo7rnHOuHHFctbU7cBjwOusOl12WxwijoJ5DGJzvZuAZ4ODqDuiccy57cZzaGmVm25nZicCH2ewg6QCgI3CGmY00s6cJA9EdJKl9DWZ1zrlg+HAoKqJV27ZQVBSW81kO8+b8iMTSRl3NUidgvpm9kvI4b0qaGd03rrryOefcOoYPh27doLgYAcyeHZYBunSJM1lmOc6blA6JuxLmTkj3UXSfc87VnB49oLh47XXFxXDBBfBxZUf5r0F33pk5b48eNVJIYh1rS9KTwBZm1rqc7cYS5p8+Jm39w8AOZvbHDPt0IwzWR9OmTVuMGDGiUhmXLVtGw4YNK7VvHJKUN0lZIVl5k5QV8j9vq7ZtUYbPSgOQcp6nXGZkSmUSkydMyHBPZm3atJlmZi3L2y4pRyQQ/ZulUSnrMbPBwGCAli1bWuvWrSv1pJMmTaKy+8YhSXmTlBWSlTdJWSHP877yCtSpAytXrnOXmjeHWbNyn6k8RUXhdFYaNWtWI69zUvqRLCJME5puE2BxjrM45wrBsmVw0UXQqhVssglsuOHa99evD337xpOtPH37hnypajBvUgrJDDK3hZTWduKcc5U3fjzsuSfcfTdcfHE46hgyBJo3xyRo3hwGD87PhnYIuQYPzlnepBSSF4GtJB1UskJSS2CH6D7nnKu6JUvgL3+B9u1h/fXDaa077oAGDcKH8KxZoY1h1qz8LSIlcpg3520kkuoTOiQC/AbYWNIJ0fJoMyuW9Bkw2czOBjCz/0oaAwyTdAVrOiROMTO/9Nc5V3VjxsC558LcuXD55dC797qnh1xGcTS2NwGeSFtXsrw9MIuQq07aNicDA4B/E46kngcurrGUzrnCsHgxXHYZPPAA7LorvPoq7L9/3KkSJY4OibMg45VpqdsUZVi3GDgzujnnXNU9/3w4lTV/PlxzDfTsCfXqxZ0qcZLSRuKcc9Vn4UL485/hyCNhs83g9dfhH//wIlJJXkicc4Xl6adht91gxAi4/nqYNg1altvnzpUhSR0SnXOu8r77Di68EB5/HH7/e3jppfDTVZkfkTjnajczeOyxcBTy9NPQpw+8+aYXkWrkRyTOudrrm2/g/PNDAWnZMlyZtccecaeqdfyIxDlX+5jBww/D7rvD6NFw003w3/96EakhfkTinKtd5s6F7t3Dpb3777+mf4irMX5E4pyrHcxC0dh99zBW1m23wZQpXkRywI9InHPJN2dOmAFwzBg4+OAwwOLOO8edqmD4EYlzLrnM4N57Q9vHlCnwr3/BpEleRHLMj0icc8k0cyaccw5MmABt28L998P228edqiD5EYlzLllWr4a77grzhUydCoMGwbhxXkRi5Eckzrnk+OwzOPvsME9Ihw5w333QrFncqQqeH5E45/LfqlUwYAD87nfw7ruhMf2ll7yI5Ak/InHO5bcZM+Css0KHwsMPD43rv/lN3KlcCj8icc7lp5UroX//MCbWjBnw0EMwapQXkTzkRyTOufzzwQfhKGTqVDj2WBg4ELbaKu5UrhR+ROKcyx8rVsCNN8I++4TLe0eMgJEjvYjkOT8icc7FZ/hw6NGDVnPmhGKxwQYwezacdFK4xHfLLeNO6LLghcQ5F4/hw8OwJsXFCODrr8P6Sy6B22+PM5mrID+15ZyLR48eUFy87vpnnsl9FlclXkicc/GYM6di613e8kLinMu9H36A9dfPfJ93MkwcLyTOudz68cfQsXDlSthww7Xvq18f+vaNJ5erNC8kzrnc+eknOOqo0Ev9scfCUCfNm2MSNG8OgwdDly5xp3QV5FdtOedy45df4IQTYOJEGDYs/A7QpQuTJ02idevWscZzleeFxDlX81auhFNPhdGjw1hZp50WdyJXjXJ+akvSbpLGSyqWNE9Sb0l1stivpaSXJX0vaaGkcZL2y0Vm51wVrFoFXbuGHuq33x76jrhaJaeFRNKmwDjAgKOB3sDlwA3l7LddtF9d4HTgz9HvL0tqXpOZnXNVYAbnnRc6H/brFzobulon16e2ugMbAceZ2RJgrKSNgV6S+kfrMjkcaBTttxhA0mvAAuAw4J6aj+6cqxAzuPTSMPlUjx5w7bVxJ3I1JNentjoBY9IKxghCcWlVxn7rAyuBZSnrlkXrVN0hnXNVZAbXXQd33gl//Sv06RN3IleDcl1IdgVmpK4wszlAcXRfaUZG29wqqYmkJsAAYBHwRA1ldc5VVt++cNNN0L073HoryL/v1WYys9w9mbQCuNLMbk9b/xUwzMyuK2Pf3wPPAyWz2nwNdDKzd0vZvhvQDaBp06YtRowYUanMy5Yto2HDhpXaNw5JypukrJCsvHFm3fbxx9npnnv4pkMHZlx9NaxX/vdVf21rTlXytmnTZpqZtSx3QzPL2Q1YAVySYf1coG8Z+20NfAY8Cxwa3UYBXwHNynveFi1aWGVNnDix0vvGIUl5k5TVLFl5Y8s6cKAZmJ14otmKFVnv5q9tzalKXuAty+KzPdeN7YuATTKsbwwsLmO/KwkXBpxgZisAJE0APgWuAC6u5pzOuYp68EE4/3w44gh4+GGo693UCkWu20hmkNYWEl3a24C0tpM0uwIflhQRADP7BfgQ2LEGcjrnKuLxx8PUuO3bwxNPhAmqXMHIdSF5EegoqVHKus7AT8DkMvabDewh6dd3p6QNgT2AWTWQ0zmXrVGjwvhYBx4Y5hKpVy/uRC7Hcl1IBgHLgacktY8axHsBt1nKJcGSPpM0JGW/+4FtgKclHS7pCOAZQtvJ4Jyld86tbezYMGbWPvvA889DgwZxJ3IxyGkhMbNFQDugDqGx/AbCZbw90zatG21Tst80QgN7I+AhYBhQHzjESrlqyzlXw155BY4+Gn77W3jxRdh447gTuZjkvDXMzKYDbcvZpijDuvHA+BqK5ZyriDfeCHOKFBXByy/DZpvFncjFyOcjcc5VzP/+B4ceCk2bwrhx0KRJ3IlczLyQOOeyN306HHIINGoE48fDNtvEncjlAS8kzrnsfPZZuLy3bl2YMCHMaOgcPrGVcy4bs2dDu3awYgVMngw77RR3IpdHvJA458o2b14oIkuWhCOR3XaLO5HLM15InHOl++67cDpr/vzQsL733nEncnnIC4lzLrNFi0LD+qxZoZ/Ifj6ztcvMC4lzbl1LloRLfD/6KAyB0qqseedcofNC4pxbW3FxGMH37bdh5Ejo0CHuRC7PeSFxzq3x889wzDHw6qvwyCNw1FFxJ3IJ4IXEOResWAEnnRQGYhw6FDp3jjuRSwjvkOicg5Urw1Dwo0bBwIFwxhlxJ3IJ4oXEuUK3ejWcfXaYkOqWW+C88+JO5BLGC4lzhcwMLrgAhg2D3r3h8svjTuQSyAuJc4XKLBSOQYPgmmvgb3+LO5FLKC8kzhWq66+HAQPg4ouhXz+Q4k7kEsoLiXOF6B//gBtvhHPOCcXEi4irAi8kzhWaO+6A664LV2kNGgTr+ceAqxp/BzlXSO67Dy69FI47LvQVqVMn7kSuFvBC4lyhePhh+Mtf4LDD4NFHwwRVzlUDLyTOFYInnwydDNu0Cb9vsEHciVwt4oXEudruhRfglFNg//3h2Wdho43iTuRqGS8kztVm48fD8cfDXnvB6NHQsGHciVwt5IXEudpk+HAoKqJV27aw1VbQqRPsvDOMGQONG8edztVS3trmXG0xfDh06wbFxQjC9LhSGDtr883jTudqMT8ica626NEjTEqVygz6948njysYOS8kknaTNF5SsaR5knpLyupidknHSZoq6SdJ30t6SVKDms7sXCLMmVOx9c5Vk5wWEkmbAuMAA44GegOXAzdkse85wCPAi0An4BzgU/z0nHPB1ltnXt+sWW5zuIKT6w/h7sBGwHFmtgQYK2ljoJek/tG6dUjaAhgAXGRm96Xc9XSNJ3YuCb78EpYvX3d9/frQt2/u87iCkutTW52AMWkFYwShuLQqY7+Top8P1lQw5xLrm2+gXbswVW6fPtC8OSZB8+YweHAYU8u5GlRuIZF0uqTquuRjV2BG6gozmwMUR/eVZj/gY+BsSV9JWiHpDUl/rKZcziXTggXQvj3MmwcvvhjmFJk1i8kTJsCsWV5EXE7IzMreQFoFHGBmb6b+Xqknk1YAV5rZ7WnrvwKGmdl1pew3BvgjsAS4Cvg++tkS2NnM5mfYpxvQDaBp06YtRowYUZnILFu2jIYJ6sSVpLxJygr5l7fusmXsddll1J89m/dvuonFe+/96335lrU8ScqbpKxQtbxt2rSZZmYty93QzMq8AQuAY6LfVwP7lrdPGY+1Argkw/q5QN8y9htLaKA/NGXdxsAioE95z9uiRQurrIkTJ1Z63zgkKW+SsprlWd4lS8z2399s/fXNRo9e5+68ypqFJOVNUlazquUF3rIsPtuzaWwfBzwk6ePow3yopB/LKEx/KOOxFgGbZFjfGFhcxn4Lo5+TUp5niaRpwG5l7Odc7VNcDEcdBVOnwhNPhN7rzsUom0JyFnA+8H/APsBM4LtKPt8M0tpCJG0HNCCt7STNR4Qilj6NmwhHSc4VhuXLw1wikyeHnuzHHht3IufKLyRmVgzcAiCpPdDDzN6t5PO9CFwpqZGZLY3WdQZ+AiaXsd/zQE+gDTA6ytIYaFGSzblab8UKOPnkMG7WkCFhRF/n8kA2V22tkrRvtDiJ0OBdWYOA5cBTktpHDeK9gNss5ZJgSZ9JGlKybGZvAc8CQySdIelw4DlCm8vdVcjjXDKsWgWnnw7PPAP/+hecdVbciZz7VTb9SH4BNox+Px3YsrJPZmaLgHZAHWAUoUf7AMLRRqq60TapTgOeAW4DniQUkbbRYzpXe61eDeeeCyNGwM03w4UXxp3IubVk00YyndDz/BlCm8QJkkq7HMzM7J6yHszMpgNty9mmKMO6ZcB50c25wmAGF18MDzwAPXvCVVfFnci5dWRTSC4C7iUcORhwRRnbGlBmIXHOZcksFI6774YrrgiFxLk8VO6pLTN7zcz2NLP1CUck+5vZeqXcshrF1zmXhRtugFtugfPPD0PBK/2iRefyQ0XH2mpDONXlnKtJ/fuHQnLmmaFx3YuIy2MVGv3XzCYDSNoPOAjYjNBZcIqZvVH98ZwrQHfdBVdfHS71ve8+WM/nn3P5rUKFJJpE6gmgI7CKMObV5kAdSS8BJ0b9TpxzlfHvf8NFF8HRR8OwYVDHzxa7/FfRrzr9gQOAk4F6ZrY1UC9aPgC4uXrjOVdAHn0UzjkHOnaExx6D9dePO5FzWaloITkeuNrMnjCz1QBmttrMngCuAU6s7oDOFYSnn4Y//xn+9Cd46inYcMPy93EuT1S0kDQGvizlvi8JI/I65yripZegc2fYd18YNSrMauhcglS0kLwLnCetfQlJtHxedL9zLlsTJ4aBF/fYI0xM1ahR3Imcq7CKztl+HWHgxRmSngbmA02AY4EiwlS6zrlsvPYaHHkk7LADvPwybJJphgXn8l9FL/+dIGlv4HpCe8jWwNfAG8Bx0fAnzrnyTJsW5hHZZhsYNw622CLuRM5VWkWPSErGyjq5BrI4Vxg++AA6dIBNN4Xx42HrreNO5FyVVKiNRNItknxGQucq65NPoH17qFcvFJHttos7kXNVVpnLf9+X9Kak7tHkUs65bMycCe3ahWHhx4+HHXeMO5Fz1aJChcTMtgfaE6bF/SfwtaRHopkTnXOl+eqrUER+/BHGjoVddy1/H+cSosKD+JjZRDM7ndDQfhGwLTBG0mxJN0jaobpDOpdo8+eH01kLFoRpcvfaK+5EzlWrSo8GZ2bLzGwIYXbDV4HtgGuBTyQ9K6l5NWV0Lrm+/x4OOQS+/BJGjw6dDp2rZSpVSCQVSeop6QvgZWAZ4XLgRsBRhD4lI6orpHOJ9MMPYdysTz6BZ5+Fgw6KO5FzNaKio//+GTgT+BMwB3gAeMDMvkrZbLSkH4Fx1ZbSuaRZtgwOOwzeey+Mo9XemxFd7VXRfiSDgaeBjmY2voztPgFurHQq55Lsp5/CMPCvvx5G8T388LgTOVejKlpItjGzReVtZGZfAzdULpJzCfbLL3DCCWEMrWHDwu/O1XIVHSKl3CLiXMFauRJOOSU0qt97L5x2WtyJnMuJCg+RIqkzcC6wC2FSq7WYWZNqyOVcsqxaBV27hrlEBgyAbt3iTuRczlR0iJRTgQeBzwj9R54Dno8eZwlwV3UHdC7vmUH37jB8OPTrB5deGnci53Kqopf/Xgn0AS6Ilgea2VnA9sACwOdrd4XFLBSO+++HHj3g2mvjTuRczlW0kOwMvGpmq4BVRDMimtlSwnztF1ZvPOfymBlcdx3ceSf89a/Qp0/ciZyLRUULyQ9AyWTSc4HfptwnYPPqCOVcIvTtCzfdFE5r3XorrD1xqHMFo6KF5C3gd9HvzwHXSzpX0hmEQRzfKO8BJO0mabykYknzJPWWVCfbAJLWkzRNkkk6ooL5naset90Gf/87nH463H23FxFX0Cp61dY/gJIxtK6Pfh8I1AGmAmVeqiJpU0KP9+nA0cCOwK2Egva3LDOcA/ymgrmdqz733AOXXw4nnghDhsB6lR6yzrlaIatCImkj4DDCGFrfSGpqZvOBoyVtCGxoZkuyeKjuwEaEaXmXAGMlbQz0ktS/vMeIClFf4Brg/myyO1etHnwQzj8/zLX+8MNQt8JX0DtX65T7vyAaFn4coYiUWCLpJDN72cyWA8uzfL5OwJi0gjGC0FDfChhVzv59CCMNlzU8i3PVa/hw6NGDVrNnh+U99oDHH4cNNog3l3N5Iptj8v7AauBgoD6wO/AOcG8lnm9XwqRYvzKzOYTLhsuc6UfS7wgDRl5Ried1rnKGDw+dC2fP5tdWkM8/h5Ej40zlXF6RmZW9gTQXuNzMRqSs2wX4CNg2GlcruyeTVgBXmtntaeu/AoaZ2XVl7DsZeMPMrpJUBMwEjjSz50vZvhtRm03Tpk1bjBhRuVHtly1bRsOGDSu1bxySlDcJWfc/+WTqzZ+/zvqfmzbl9Uq+p3IhCa9tqiTlTVJWqFreNm3aTDOzluVuaGZl3ghHI39IW1cnWr93efun7bcCuCTD+rlA3zL2Oxn4Btg4Wi4CDDgim+dt0aKFVdbEiRMrvW8ckpQ3EVkls9BjZO2bFHeyMiXitU2RpLxJympWtbzAW5bFZ2y2l5uUfdiSvUXAJhnWNwYWZ9pB0vqES4tvBtaTtAlRR0iggaRG1ZTNubW9UcbV7M2a5S6Hc3ku20tOxkhamWH9+PT1VvagjTNIawuRtB3QgLS2kxQNCON63RbdUo0APgd2KuM5nau4d96BQw+FLbeEpUvDHCMl6tcPnRGdc0B2haQ65xV5EbhSUiMLw6oAdAZ+AiaXss8yoE3auq2AR4HrgAnVmM85mD4dOnSARo3gP/+BKVOgRw9szhzUrFkoIl26xJ3SubxRbiExs+osJIOAi4GnJN0M7AD0Am6zlEuCJX0GTDazs81sJTAp9UGixnaA982s3N70zmXt00+hXTtYf32YMAGaNw+3Ll2YPGkSrVu3jjuhc3knp72pzGyRpHaE4eZHEdpFBhCKSXqurIdNca5azJ4disjKlTB5MuzkZ0ydy0bOu+Wa2XSgbTnbFJVz/yzABzdy1WfevFBEli4NRyK77RZ3IucSw8d3cO7bb0MRmT8fxo2DvfeOO5FzieKFxBW2hQtDw/rs2fDii7DffnEnci5xvJC4wrVkCXTqBB99BKNGQatWcSdyLpG8kLjC9OOPcMQR8PbbYdysDh3iTuRcYnkhcYXn55/hmGPg1VfhkUfgqKPiTuRconkhcYXll1/ChFTjxsHQodC5c9yJnEs8n9rNFY6VK+G00+D552HgQDjjjLgTOVcreCFxhWH1ajjrLHjiCbj1VjjvvLgTOVdreCFxtZ9ZmB73oYegd2+47LK4EzlXq3ghcbWbWSgc994L11wDf/tb3Imcq3W8kLja7e9/h9tvh4svhn79QD6yjnPVzQuJq7369QtDvp9zTigmXkScqxFeSFztdPvt0KNHmDdk0CAvIs7VIC8krvYZPBj++lc4/vjQV6SOz0jgXE3yQuJql4cegu7d4bDDQq/1ut7n1rma5oXE1R5PPgldu0KbNuH3DTaIO5FzBcELiasdXngBTjkF9t8fnn0WNtoo7kTOFQwvJC75xo0L7SF77QWjR0PDhnEncq6geCFxyTZlChx9NOyyC4wZA40bx53IuYLjhcQl19SpoVF9u+1g7FjYfPO4EzlXkLyQuGR6913o2BG22CKc2mraNO5EzhUsLyQueT76CA45BBo0gPHjYdtt407kXEHzQuKS5fPPoX17WG+9UES23z7uRM4VPO+t5ZJjzhxo1w6WL4dJk0IDu3Mudl5IXDJ8/XUoIosXw4QJsMcecSdyzkW8kLj899134XTW11+Hq7P22SfuRM65FDlvI5G0m6TxkoolzZPUW1KZo+pJ2lfSA5I+i/b7WFJPSfVyldvFZPHicHXWF1/AqFFwwAFxJ3LOpcnpEYmkTYFxwHTgaGBH4FZCQStr6rrO0bY3A58CvwP6RD+Pr8HILk5Ll0KnTvDBB/Dcc2EMLedc3sn1qa3uwEbAcWa2BBgraWOgl6T+0bpMbjaz71KWJ0n6GbhXUnMzm13DuV2uFRfDkUeGTodPPAGHHhp3IudcKXJ9aqsTMCatYIwgFJdWpe2UVkQ+iNQJAAAc4klEQVRKvBP9bFJ98VxeWL4cjj0WXnklDAt/7LFxJ3LOlSHXhWRXYEbqCjObAxRH91XEH4HVwMfVE83lhRUroHNnePlluP/+MKKvcy6vycxy92TSCuBKM7s9bf1XwDAzuy7Lx9kKeA8YbWZdS9mmG9ANoGnTpi1GjBhRqczLli2jYYJGk01S3nWyrlrFbn370mTiRD69+GLm5tmRSKJf2zyXpLxJygpVy9umTZtpZtay3A3NLGc3YAVwSYb1c4G+WT7GBsArwBfAptns06JFC6usiRMnVnrfOCQp71pZV60y69rVDMz6948tU1kS+9omQJLyJimrWdXyAm9ZFp+xuW5sXwRskmF9Y2BxeTtLEjAM2B040MwWVW88FwszuOiiML96z55w5ZVxJ3LOVUCuC8kM0tpCJG0HNCCt7aQUAwiXDR9iZtls7/KdWSgcAweGnz17xp3IOVdBuS4kLwJXSmpkZkujdZ2Bn4DJZe0o6VrgIuAkM5tSszFdjRo+HHr0oNWcObDxxvDDD3DBBXDzzSDFnc45V0G5vmprELAceEpS+6hBvBdwm6VcEhz1YB+Ssnwq0I9wWmuupP1Tblvm9k9wVTJ8OHTrBrNnI7NQROrUCXOtexFxLpFyWkiiNo12QB1gFHAD4XRV+vmMutE2JTpEP7sC/027HV5ziV2169EjdDZMtWoV/K2sgQ2cc/ks54M2mtl0oG052xSlLXclFBGXdHPmVGy9cy7v+cRWLndefTVMSJVJs2a5zeKcqzZeSFzNM4Nbb4VWrWDzzaFe2qDN9etD377xZHPOVZkXElezFi0KY2VdcQUccwx88kkY+qR5c0yC5s1h8GDo0iXupM65SvJC4mrOtGnQogW88ALcfnsYxbdx41A0Zs1i8oQJMGuWFxHnEs4Liat+ZqGD4R//CCtXwn/+A5dc4pf3OldLeSFx1WvpUjj11NDBsF07eOed0EfEOVdreSFx1ef992HffeHxx6FfP3j++dC47pyr1XLej8TVUkOHwvnnhzaQ8eOhdeu4EznncsSPSFzVFBfD2WfDmWeGU1jvvONFxLkC44XEVd4nn4Ti8e9/hyFOxo6FrbaKO5VzLsf81JarnMcfD0ciG24IL74Ihx4adyLnXEz8iMRVzPLlYRKqzp1hzz3DqSwvIs4VNC8kLnuzZsHBB8Ndd8Fll8HkybDddnGncs7FzE9tueyMGgWnnx46Gz71VBj2xDnn8CMSV54VK+Dqq+Goo2D77cOwJ15EnHMp/IjElW7uXDj5ZJgyBbp3hwED1h251zlX8LyQuMzGjg2DKRYXh+lxTz017kTOuTzlp7bc2latgl69oGNHaNIEpk71IuKcK5Mfkbg1vv02HIWMGxca1gcOhAYN4k7lnMtzXkhcMGVK6BuycGGYeOqss3zYd+dcVvzUVqEzg3/+M4yPVb8+vP566LHuRcQ5lyU/IilkixbBGWeEPiInnABDhsDGG8edyjmXMH5EUqimToV99oGXXoI77wxjZ3kRcc5VgheSQmMGd98NBx0Eq1eHaXAvushPZTnnKs0LSSFZuhROOQUuvBAOOSQMuLjffnGncs4lnBeSQvHee9CyJTz5JNx0Ezz3HGy2WdypnHO1gDe2F4IHHgjT4G66KUyYAH/6U9yJnHO1SM6PSCTtJmm8pGJJ8yT1llQni/0aS3pA0iJJP0gaLmnzXGROrOLiMAXuWWfBgQeGU1leRJxz1SynRySSNgXGAdOBo4EdgVsJBe1v5ez+GPB/wDnAauBm4Bng4JrKm2gffxwu6f3wQ7j++nCrU269ds65Csv1EUl3YCPgODMba2aDgBuAyySVeu2ppAOAjsAZZjbSzJ4GTgMOktS+RpIOHw5FRbRq2xaKisJyPkvNu+WWsNde8M034fLeG27wIuKcqzG5LiSdgDFmtiRl3QhCcWlVzn7zzeyVkhVm9iYwM7qveg0fDt26wezZyAxmzw7L+VpM0vMuWBDmEbn+eujQIe50zrlaLteN7bsCE1JXmNkcScXRfaPK2G9GhvUfRfdVrx49QvtCquJi6NoV+vWr9qersk8+gZUr1163ejXcemvoI+KcczUo14VkU2BxhvWLovsqs98OmXaQ1A3oBtC0aVMmTZqUdchWc+aQqXuerVzJd1tumfXj5MqW06dnzjtnDpMr8Hfn2rJlyyr07xK3JOVNUlZIVt4kZYXc5I3j8l/LsE6lrK/0fmY2GBgM0LJlS2vdunX2CZs1C6ez0p+seXOa5OMbqKgoc95mzajQ351jkyZNyut86ZKUN0lZIVl5k5QVcpM3120ki4BNMqxvTOYjjvL226Sc/Sqnb98wEm6q+vXD+nyUtLzOuVol14VkBmltGpK2AxqQuQ2k1P0ipbWdVE2XLjB4MDRvjknQvHlY7tKl2p+qWiQtr3OuVsl1IXkR6CipUcq6zsBPwORy9ttK0kElKyS1JLSPvFgTQenSBWbNYvKECTBrVv5/KCctr3Ou1sh1IRkELAeektQ+ahDvBdyWekmwpM8kDSlZNrP/AmOAYZKOk3QMMByYYmbjcvoXOOecW0tOC4mZLQLaAXUIl/reAAwAeqZtWjfaJtXJhKOWfwPDgGnAsTWZ1znnXPlyftWWmU0H2pazTVGGdYuBM6Obc865POHDyDvnnKsSLyTOOeeqRGbl9QNMPknfAev22MvOFsCCaoxT05KUN0lZIVl5k5QVkpU3SVmhanmbm1m5w3kURCGpCklvmVnLuHNkK0l5k5QVkpU3SVkhWXmTlBVyk9dPbTnnnKsSLyTOOeeqxAtJ+QbHHaCCkpQ3SVkhWXmTlBWSlTdJWSEHeb2NxDnnXJX4EYlzzrkq8ULinHOuSryQOOecqxIvJM4556rEC4lzzrkqiWPOdlcNopklDyPMW/+EmX0vaVvgCmBHYBYw2Mzejy8lSLoaGB13jmxJ2gioa2ZLU9ZtCVwI7AasBv4HDDSzH+JJ6Vx+8ct/I5JEmN/kcOC3wGbAKmA+8Dow1Mw+iS/hGpL+ALwMNARWAguBjsBoQuYPgT2ArYD2ZvafmKIiaTVghCmRHwEeM7PP4spTHkmjgU/N7JJo+QDCLJyrCXPgCGgB/AK0NbMPY8y6N7CRmb2Wsu5Q4FrWFL13gV6p2+SL6P/ckcA+hPfIW4QvHXn9oSRpY8LYVW3NbErceeDXTG2BDYAXzOzH6AvQBYSZZL8gfLGcVyPPn+f/ZjkRveCjCR8Q8wmzOP6G8OZ+kfAP8X9AHzPrE1fOEpLGEo4mjwV+JEwOdgzhg+4EM1shaUPgGaCembWJMetq4GZgT+AQQu63CUXlcTObG1e2TCQtAM42s2ej5dcJr/ExJUcpkhoDzwE/m1nHGLO+Dowys77R8lnA/cBEYAKh6LUDDgaOL/mbYsr6GuF1/Sha3pTwZagFsCzarCHhS1vH1CPCOEg6v4y7NwL+CdwBfApgZgNzkSsTSTsB44HtolUzgQ7AWGAT4HPC59dPQAsz+6raQ5hZwd+ARwlviD1T1m0DvASMjJZbEd7wZ+VB3u+BTinLTQjfPjukbXc4sCDmrKuBP0S/bwp0i970K6PbpGjd5nG/rlHGYuBPKcu/pL+uKa/tjzFnXZKaDfgM+FeG7QYB7+bL+yBaHkI4kj40Zd2hwCJgQB68D1YTju5Xl3JLvW9VzFkfJxx57kQ4k/JQ9Hn2GtAo2maLaJt7ayKDN7YHnYBrLOU8voVDwO7AMZK2NrPJQD/gkpgyprLolrpM2rpMy7Eys0VmNtjM2gHbApcTDsUHAfMkvRBrwOADIPUIbj7hP2e6zQlFJ06r05abA09m2O5JwjfSfHIU0NvMXipZEf3eFzgutlRrPAd8C5wN1DGz9UpuhPeDgNbRuvRpwXPtIKCvmX1mZguBvxHaSW+x6MjOzBYAt7P2e7vaeCEJRPiGkW5VdF/jaPkNYJdchSrDNOAKSY0krQdcB8wFzpNUB0BSXeB8wgdj3jGzb8zsDjP7I7A90JNwFBi3m4BrJJ0VvYZ9gX9KOkTSBpI2jNoh/kH4Jhin/wBdUpY/BDINF74v4f2RTzYhtImkm0Zo24uVmR0DnAFcCUyVdGDq3fGkKtWmwDcpyyX/1ulzMH1B+AJX7fyqrWAccKOk98zsC/j1HO6dhH+gkkb2hkA+XKnTg3D+cyHh9FAxoaHtSeBTSSWN7dsQThfkNTObTfgAvykPsjwl6SLCt7cBwMeELxIl35yN8OXiOcKHTJyuA16Nvkz8i9DI/qCkzQinDCG0kVwKXBNLwrUdL6mk0C0CMk2YtAXhlF3szOxlSb8jvH4vSHqJcFVkrO03GXxLOBotsQq4l3A0naoJNZTdG9uB6LLZlwiH/7MJ58W3JzS6n2JmL0bb9SfMGNY5rqwlosxHEL4MjDSzryVtBVzFmr/jfjN7O8aYSOoJ3Gc1dLVITZG0OdAZ+APhG/J6hML9EfC8mU2LMd6vJP0euAfYjzVFjpTfFxFOId0RT8Iguugi3VAzOyttu3uB3czs4Nwky070f6s/4bTbvYTi0sbMXok1GCDpGWBh+muZYbt/Ab81s/bVnsELSRCdEjoJ2AuoR2i4fCQ65+hcXpP0W0IxSS96r5nZijizVYSkc4HPzWxC3FkyiS4HH0D4sna45cFl1ZKaAvXNbGY5211GuOhifLVn8EJS+0iqY2aZ2nzyhqR6hAbB1cBn+fhhF7WR7EBKnyIzmxNvKufyjze2p5G0u6TjJZ0j6ezo993jzpVO0nGSnpE0WtKR0brOkmYBv0iaHX27i5Wk06L+DSXLdSXdRPjG/B7hYoCFkvLhHD4AklpIeo5wPvkj4FVC/4aZkuZK6i2pfqwhaxFF4s6RiaSN0v+tJf0++lxoEVeuvBPn9c/5dAPOIrQrZLp2fBVhyJEz484ZZT0pyjUFeJbQ2H4uoW1nCKE366NR7o4xZ50OnJeyfGuU9+/AgYRLF3sROktdlwevbQdC29hbhCuzehE6pf4SZb6ccHXU/4BN8yDvEYR+Oe8Dj5HSByZlm/2Iv69DB6I+DSnrjiF0Tl0JrIhe88Pjfk2jbI2Bp6NcK4H7gDrAg2mfC68CW8SdN8u/6fiaeh/E/sflww24KHrD3E3oBbxF9KapE/1+EHBX9AFzQR7knQoMSlnuEmW7NW27B4BxMWctBlqlLH8LXJJhuyuA2Xnw2k4DHizlPTKLcBRfL/oAHBhz1kNSPszuirKvioq1UrbLh0KyirU7JB4bfRi/Fv3bXxH9vpIMHUBjyHsnYRiUi4DToy8PI4Evo6K4JaH/2VzgnrjzZvk31Vgh8TYSQNIXhA/m/uVsdxXQ3cx2yE2yUnMsAY4zs3HRcmPC1TntLaWRMjrlda+ZxdY/Q9LXwIVmNjJaXk44SpqUtt0hwHNmtlHuU66V4yfgKDMbm7Z+U8KIArub2UeSTgduNrOt48gZZZpCGBfszJR1ZxE+BMcSrjj8WdJ+hEb32DrORVdt7W9mb0bLbwNzzezItO1GAw3MrFUMMVNzzAT6mdl90fLehEJ9ppk9mLLduYQj6e3jSQqS/p3lps0JnSir/X3gbSTBVsCbWWz3JnnQWYpwaWfqm6FkrKLFadstI3T8itNzhM6TG0TL44BTMmx3CuFbX9y+JVy5l24vwute0o9oNms6qsZlD+Dh1BVm9m/CcD77AxOiPiX5aA/CZbTpBhMGcYxbE9b0H4NoTC3CuFWpPiNzf5hcOoNwlLRnObfmpT1AVXmHxOA94FxJr5hZpuvdS0YqPTfaNm6zCaO7jgEws1XRZYkfpW23A2v3eI3DtYQe2B9Iuh8YBdwsaQ/WdJprC+xNGAk2boOBPpIaENoefiH0DO8BTLQ1/WF2AOK+gutnoEH6SjObFvXEHkM4XdQrx7lKk3r64wfWfAFK9SP58QV3JqEgT46WDyacivsjoW2yxIHE/z74FHjTzE4vayNJJxDa0aqdF5LgckKHxOmSniIMeb6Y8MbfBNiVcE53W/Kjp/hTpA11YGZvZNjuVNZ+0+ecmS2UtD/hg/gywjc9gAOi2y+E0zAHm9nUeFKuYWZ9o9Mw1xCGbYHwPniU0AmtxArC2Gtxeo9wnv659DvM7IuomIwGhuY4V2nGSFoZ/d4Y+D1rvkyU2BX4OpehSjEIuEPSnoSidxLhS9H1khoSBkDcB/grEPeI4K8TClx5UjusVitvI4lI2pHQK/xQ1gzHXOJLwpU7/zSz9EPbvCWpGbDYzPJiyAkASUWs3Wnuc8vPPiTrE/q51AO+yKfXsISkvxCGSdnbSuk4Gx1ZPU1oP4vtm340wkG6T83skbTtJkXr8+HS9YsJp1zXJ4wSMUjSKYQ2qJJBOwcDV8f5Ho4uQz7QzO4sZ7stCG18k8varlIZvJCsK7puvKRtYbGZxT3Kq3MuT0Snubcws+/izpIvvJDUMtFh99tAl3w4VaQETl2rhExj7Fy+8EKSIvoAaQJ8bGbrNARGh4aHmdmwnIdbO8dhZdzdgNCgdg3REPJmNjoXuTJRgqauhWRNY5ytaByuE82sd8w5Yp0OtqqiI5HUqYGnEf6O2D9EFUZVPp7w/2momc2QtBdwA2u+/NxtKfO/VKu4O8nkww3YEHiC8EGxitCQOgRonLZd7B27ohxJmr1tAXB0yvLrhKuhGqWsa0y4OmZMHry2YwlT1W5CODd+F/AVYQSB9VPeLy8SruKK/f2bxd9UYx3RKpBhJ8LVhiXvy88JH3BfEIr1VMLw8fOBbfPgNXuNMFJuyfKmUcbVUc4lrOlQ2SiunFG2joQvYt9Er+sSwgRWiwidVe+O/t+tIkwZXf0Z4v4Hy4cbcD3hKq1zCRMDXRK9oT8Fdk7ZLl8KyTTClS1nEq4NT739LnqDn1SyLuasiZm6NsqRpGmMm2V56x73+5Y8mA62gnkTMzVwVCyeIMzkCOECjEXAkLTtHgJer5EMcf+D5cONcLnvhWnrtgJeAb4DDojW5UshEWGe828JwzZsn3Jf4+g/wTpjLsWU9U2gZ8ryl8DJGbY7HfguD/IuSPuw2DJ6PQ9J2+6wPCgkJUef5d3y4ch0HnBSynLzKNdxadudCXySB++D9ELyHXBphu1iH9qHcHly+5TlTaP8bdO260C4eKjaM3g/kmA70joamtk3ktoRqvg4SV3Ij+vbsfCuGCzpceBG4D1Jd0W/55ubgOGSvgSGsWbq2u8Jp7NEOAzPh6lrYc00xq8SOselTmM8wULnz3yZxngpMAG4v5ztDiJc2h6n2KeDraJ8nhr4J9bumFrye/pwQ/UJnVirnReSYB6wM+EI5FcWrg0/WdLthEPHWBvZ05nZYuBCSYMJ17Z/CtxMHs0pbcmauhaSNY3xm4R2vBfK2iia+yVusU8HWwlJmRr4VUJHyU+jLLcQRt2+OhqtY2k0Ht9VhMJX7fyqLX4d9GwHM2tdxjbXEr5Nm8U4+F1ZJJ1MmA50W8LgbLFPA1pCCZm6FhI1jfHfgW5mlt6BNn27PwE3mFmb3CTLmCH26WArQgmaGljSToQx7EreB7MIR/lPEkYKmA0UEb4YtTGz/1V7Bi8kv1461xm4ycy+L2O7Uwnnys8sbZu4RaddGgDLLM9nSXSFQ3kwHWxNUJ5MDRz1HzuQcKXheDP7KepYfQ5rvvw8YmZf1cjzeyFxzjlXFfkwyqarIZLukzQk7hzZSFJWSF5e52qSN7ZXgKT7gPXM7Oy4s2SpDcn5spCkrJCgvJLGEc4+tIs7S3mSlBWSlbcms3ohqZjEfHgAmNlOcWfIVpKyQuLyiuS8b5OUFZKVt8ayehtJLRZd9tnEzOKeeKdcScoKycvrXE1KSiXNC5LqRXN8JMXhhJnekiBJWSFBeSWtn5T3bZKyQrLy1mRWLyQVk5gPD1cYJF0g6XNJSyW9IenPGTbbhzx43yYpKyQrb9xZvY0kgSRle816pp64OZWkrJCsvFEH1H8RpgF+h9CPYKiko4E/m9lPceZLlaSskKy8+ZDV20io8IfHbnH3bFeY9/pjwjAIZfkNsF+ceZOUFZKVV9JbwAQzuyplXTtgOKF38+EWJuXaD3jNs2YvSXnzIasXEpL14QEg6X+Eybc6l7PdCcBjMb/JE5M1ypGYvJKWAkea2aS09UWE+VLqAJ0I40HF/WGXmKyQrLz5kNXbSIIPgA/M7MSybsBtcQeNvAHsn8V2JQMixilJWSFZeX8gfDisxcxmAX8kDIn/GrBvbmNllKSskKy8sWf1IxJ+HXjtUDNrXs52xxPm8I61AEvaEdjdzJ4rZ7uNCJeopg/VnTNJyhrlSExeSc8CS83stFLu34gwcF8nYh5sNElZozyJyZsPWb2QkKwPD+dKSDoR+CtwhJktLGWbOsA9hMFGt89lvrQcickaZUlM3nzI6oXEOedclXgbiXPOuSrxQuKcc65KvJC4giKpq6RpUQ/gRZLekVQjV+NJ2kVSL0mbZLFtL0mWcpsnaWTUflfevl2jfRpWT3LnKsYLiSsYCtMl3w+MAY4DTgeeBY6qoafcBegJlFtIIj8AB0S3K4DfA+MlNShnvxeifYormdO5KvEhUlwhuRC418yuS1k3StINcQVKs9LMXo9+f13SHOA/wGHAE+kbR1fi1DGz74DvchfTubX5EYkrJJsA36SvtJRLFyUVRaeJTpX0UHQK7FtJPdP3k9Q2GiDvZ0nzJQ0sOb0kqTUwKtp0ZvSYsyqYd1r0syh6zKGS3pJ0jKQPgZ+B/TKd2pK0kaT+kmZLWi5ppqR/pOU/R9KH0f2zJV2Fc5XgRySukLwNXBR903/ezL4vY9t/As8DJwB/AnpKWmBmdwNI2g14CRgLHA9sB9wE7AAcGj3XFcAthNNoXwPLK5i3KPr5Tdq6/kBvYD5hNNe12lEkiXDK7gCgD6Eg/QY4OGWbK4F+0WNNAloAfSQVm9ldFczpCp2Z+c1vBXEDfgd8QRjeZDXwIeEDeeOUbYqi+19O2/c+YC5hqmWAEcCnhFNLJducFO17QLR8RLRclEW2XoShLOpGt12AicASYOtom6HR4/0+bd+u0fqG0XLHaPmoUp5rY2AZ0DNtfW9C0apTXl6/+S315qe2XMEws/eA3xIa1wcSxsr6O/BWhiuenk5bfgrYBtg2Wv4D8LSZrUrZZiSwEjiokhE3B1ZEt48JRzedzezrlG3mmtn/ynmctsBCK32khgOABsATkuqW3IAJQFPW/I3OZcVPbbmCYmbLCW0XowAknU24kuts4I6UTb9N27VkeWtgTvRzftpjr5L0PbBZJeP9ALQnHE18A8wzs/ShJ+avs9e6NiecSitNyQB/H5Zy/3aADwPksuaFxBU0MxsiqT+wa9pdTUpZ/jrl51rbRFdRbQ5kHO8oCyvN7K1ytslmTKPvCYWuNCX5jiBzYfo4i+dw7ld+assVDEnpxQFJWwKNWfcD9di05ZIG86+i5TeAY6PikbpNXWBKtPxL9LNeFWJXxnhgM0lHlHL/f4GfgG3M7K0Mt6W5i+pqAz8icYXk/WjI7ZcJp6qaE66sKgYeTNt292h6gZGEq7bOBi4xs9XR/TcSpjV9RtI9hHaFm4ExZvbfaJuSb/Z/kTQCKDaz92vmT1vLWEKny0ck9SZcQbY18Ccz+4uZLZbUC7hDUnPgFcKXyl2ANmaWXkSdK5MXEldIegNHA3cS2jG+IUz409nMZqZtexXh1M9IQn+NPsCvl8Wa2YeSOhEuoX2KcHXVo9F+JdvMlnQFcDFwEeFopqgm/rBUZmaSjo0yX0qYInoe8EjKNv0lzSMMP3454W/8BHispvO52seHkXcuRTQ96UzC1KXPx5vGuWTwNhLnnHNV4oXEOedclfipLeecc1XiRyTOOeeqxAuJc865KvFC4pxzrkq8kDjnnKsSLyTOOeeq5P8BYAgkm/oTYvEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecVNX9//HXW7BQFLFhZYkaf7YkGkwMaiLYELBiF6PYsMSWryUqiWDB2GLHgqJogsFeoyLdqLGAsUREJVIioFhAxEWE5fP745yRYZjdnS0zd+7u5/l4zGP33rl39j3DMJ+599xzjswM55xzrr5WSTqAc865dPNC4pxzrkG8kDjnnGsQLyTOOecaxAuJc865BvFC4pxzrkG8kLiyJWmgJMu6zZb0qKQtEsy0q6Q3JX0nyeK6NpJGSPoy5uxbzb7Dcp5P5nZ3SZ/E8jz9JB2UZ/10SdclkcmlU8ukAzhXi6+BfePvmwOXA2MkbWdm3yaQ505gLtAdWBzXnQbsDxwLzAL+W8P+U4Djc9bNbeSMheoH/Ad4Imf9wcCXpY/j0soLiSt3S83s1fj7q5JmAv8EegIPJ5Bna2CImU3IWfeBmT1awP7fZj2fsmRm/046g0sXP7Xl0mZS/NkJQFIXSU/F017fSnpLUp/MxpLWiaehjst+EAXTJF2ftW4PSa/F7T+TdJuktvG+rvFUVgvgpnhKapik6cCJwI6ZU1X1fWKZvyFp+5z14yU9krU8TNJESXtLeic+75ckbZezXwtJF0n6UNJiSZ9IGpZ5TKAzcFzWKba+8b6VTm1JOlzSu/Fx/idpkKSWWff3jY/xE0mjYqYpknrX9/Vw6eGFxKVNp/jz0/izAngZOIlweulR4F5JRwGY2VfA46x8OqlrfKx7ASRtCzwPfAEcAgwAjgYyH+BvAl3i73+Jv19OOA30LOGUVZesbaolqWX2raBnvbKOwLXAIOAoYAPgIUnK2uZO4FLgIWA/4FygTbzv9Jj52azc/6gm7z7Ag4TX4EDgFuA84NY8mz8APEV4XT4CRkjatJ7P0aWEn9pyZS/rw3Zz4DbgG2A0gJmNyNpOwIvApsDJwN/jXUOBFyRtbmYfx3XHA5PM7N24fAkwAzjAzKri430FPCipi5n9i3BqDWB69ukpSZ8DHQo8ZdUZWJLz/H5sZlML2DfbOsCuZvZRfIxVCAXz/wFTJG1NOFI628xuztrvQQAzmyzpW+DzAnJfBow3s8xR3fPxdfizpCvM7JOsbW8ws3tipknAZ4Qidkcdn59LET8iceVuXcIH7xLgA0IxOcLM5gBIai/pZkkzsrbrB2yV9RhjCEXiuLjPmkBv4tFI9Evg8UwRiR4FlgK7NeLzeR/4Rc7tf/V4nOmZIhJNjj8z3/67xZ/D6vHYP5DUAvg5K7dHPUj4/Mg9Ansh84uZfUm4kMCPSJo4PyJx5e5rYC/ACKezZtuKQ1YPA35FOM00GVhAuIrqwMwGZmaS7gVOkDQQOJzw3n8g63E2Inx7Jmu/KklfEr79N5ZKM5vYCI8zP2f5+/hzjfhzXULD/oIG/p31gFXJeW2ylnNfm3y51sA1aV5IXLlbWt0Hr6Q1gF7AGWZ2R9b6fEfa9xLaPboBfYEnzGxe1v1zCO0M2Y/fgvCB/FVDnkAdfBd/rpazfh1C201dfAm0kbRWA4vJF4SjvA1y1neIP0v12rgy5qe2XJqtTriKKtOfI3Pa6oDcDc3sf4TTLpcSTlXdm7PJa8DBsXhk9CZ82XqpcWNXK9PWsE1mhaTNCO0edTU2/jy2hm1qPVqIp/omAYfl3HU4sAz4Vz2yuSbGj0hcapnZ15LeAC6RtIDwwXYh4XTYWnl2GUo41/8JMCrnviuAfwNPSLqdcF7/amBkbGgvOjP7JD6fyyVVEr7oXUw9vvWb2QeShgB/kbQB4SKEtYFDzezIuNkUoLuk7oQjmGmxXSPXAGBkPD04AvgJ4VTiXTkN7a6Z8iMSl3ZHA9OA+4GbCA3k91ez7TOExvP7zGxZ9h1m9h7Qg3AK5zFCYfk7cGhxYlfraGAm8DfgSsIVUx/U87FOJxyBHUO4zPdGYFHW/VcQGv8fAt4gXD69EjN7ATgS2Al4GjiHcAn0GfXM5ZoY+VS7rrmQ1JNQTLaqx+W2zrlqlPyIRNKWku6U9LakqtjDtrZ9fiHpXklTJVVK+kDSgNjY6lyNJG0saXfgKuBZLyLONa4kTm1tRxgn6cN4K8QRwBaEc9Y9gcHA/wHDixHQNTn9CH1JvgPOTDiLc01OyU9tSVolc346jh+0npl1rWWf9c3s85x1/QhDQHQysxnFyuucc65mJT8iyW3kLHCfz/OszoxQmnt9u3POuRJK8+W/uxAu96z1ipb11lvPOnXqVK8/8u2339KmTZvaNywTacqbpqyQrrxpygrpypumrNCwvJMmTfrCzNavbbtUFhJJGwL9gb9W12s3nvrqB9ChQweuu65+E74tXLiQtm3b1jdqyaUpb5qyQrrypikrpCtvmrJCw/J269atsGYDM0vsRhiie3wd91mN0LnqY6B9Ift07tzZ6mvcuHH13jcJacqbpqxm6cqbpqxm6cqbpqxmDcsLTLQCPmNTdUQShwm/n3Dl16624lhJzjnnEpCqQgLcQBjVdW8zm5J0GOeccykqJJIuIvQBONzMSjWInnPOuVqUvJBIak3oVAiwCbCWpMx4Rs+aWaWkqcAEMzsx7nM0YdyhYcAsSb/Kesj/Wv7Lg51zzpVAEj3bNyCMwPowYUKibbOWM31CWhKGB8/YJ/7sSxi2OvvWq+iJnXNu+HDo1Ind99gDOnUKy+WshHlLfkRiZtMB1bJNp5zlvoQi4pxzpTd8OPTrB5WV4cNrxoywDNCnT5LJ8itx3tS0kTjnXGL694fKyhXXVVbC734HH9R3lP8iuvnm/Hn79/dC4pxziZg5M//6r7+GK64obZZCVDeGYnXPo4F8YivnnKvNuuvmX19RAcuWld+toiJ/3o4di/LyeCFxzrma3HQTfPEFrJLzcdm6NQwalEym2gwaFPJlK2JeLyTOOZePGVx8MZxzDvTuDUOHQkUFJoVv/EOGlGdDO4RcQ4aULK+3kTjnXK6lS+GUU+Cee8LPwYOhRQvo25cJ48fTtWvXpBPWrk8f6NOnJHn9iMQ557ItWgSHHBKKyCWXwO23hyLiquVHJM45lzFvHhxwALz8cjgKOf30pBOlghcS55wDmDUL9t0XPvwQHnwQDjss6USp4YXEOec++AD22ScckTz3HOyxR9KJUsULiXOueXv9dejZM7SDjB8PP/950olSxxvbnXPN1wsvhKOPdu1Cu4gXkXrxQuKca54eeAB69YIttwxFZMstk06UWl5InHPNz003hX4Wu+0GEybAhhsmnSjVvJA455oPM7joouW91Z97LpzWcg3ije3Oueahut7qrsH8iMQ51/RVVoYjkHvugQEDvLd6I/MjEudc0zZvHuy/P7zyivdWLxIvJM65pst7q5eEFxLnXNPkvdVLxguJc67p8d7qJVXyxnZJW0q6U9LbkqokjS9wv3aS7pU0T9LXkoZLqmb+S+dcszVypPdWL7EkrtraDugJfBhvhXoQ6AqcBPQFfgE80cjZnHNp9sADsN9+3lu9xJI4tfW0mT0JIOkRYL3adpDUBegO7G5mL8Z1s4DXJO1lZqOLGdg5lwI33RQ6GnbtCk884R0NS6jkRyRmtqweu/UAPssUkfg4rwPT4n3OuebKe6snLi2N7VsDU/Ksfz/e55xrjry3elmQmSX3x+OpLTPrWst2o4BvzeygnPV/AzY3s13y7NMP6AfQoUOHziNGjKhXxoULF9K2bdt67ZuENOVNU1ZIV940ZYX65V3lu+/Y9vLLWe+VV5h+3HFMP+44kIqUcLnm8NpmdOvWbZKZ7VTrhmaW2A14BBhfwHajgMfzrB8OvFzb/p07d7b6GjduXL33TUKa8qYpq1m68qYpq1k98n71ldmuu5pJZoMHFyVTdZr8a5sFmGgFfJan5dTWPGD9POvXBuaXOItzLkmzZkH37vDRR/DQQ3DooUknavbSMmjjFPK3hVTXduKca4qmTIFddoGZM0OjuheRspCWQvIcsKGk3TIrJO0EbB7vc841da+/Hiai+u670FvdhzwpGyU/tSWpNaFDIsAmwFqSMl8rnjWzSklTgQlmdiKAmf1L0kjgfknnAcuAq4GXzPuQONf0jRwJhxwCHTqE372jYVlJoo1kA+DhnHWZ5R8B0wm5cq/hOxK4AbiHcCT1DHBW0VI658rD8OHQty9sv304neXT4padkhcSM5sO1HiNnpl1yrNuPnB8vDnnmoMbb4Tf/957q5e5tLSROOeak0xv9d//PpzS8t7qZS0tl/8655qLpUuhXz+491449VS49VbvrV7m/IjEOVc+MnOr33tvmFv9ttu8iKSAH5E458pD9tzqt90Gp52WdCJXIC8kzrnkDB8O/fuz+8yZ0LIlLFvmvdVTyAuJcy4Zw4eHtpDKynAZ55IlsPrqsHhx0slcHXkbiXMuGf37hzaRbIsXh/UuVbyQOOeSMXNm3da7suWFxDlXesOHh74i+XTsWNosrsG8kDjnSuvGG+GYY2CbbaBVqxXva90aBg1KJperNy8kzrnSyO6t3rs3vPkm3HUXVFRgElRUwJAh0KdP0kldHXkhcc4V39KlcNJJcNVVYW71hx6CNdYIRWP6dCaMHQvTp3sRSSkvJM654sr0Vr/nntBb/fbbvbd6E+P9SJxzxZPdW33wYDj99KQTuSLwQuKcK45Zs2DffeHDD+HBB+Gww5JO5IrEC4lzrvF98AHss084InnuOZ8Wt4nzQuKca1yvvw49e4Z2kPHj4ec/TzqRKzJvbHfONZ4XXghHH+3awcsvexFpJryQOOcaxwMPQK9esOWWoYhsuWXSiVyJeCFxzjXcTTeFPiC77goTJsCGGyadyJWQFxLnXP2ZwcUXwznnhL4izz/vc6s3Q97Y7pyrn6VLw5zqQ4eGeUV8Wtxmq+RHJJK2lTRGUqWk2ZIuk1Tru0/STpJekPSlpK8kjZa0cykyO+dyLFoEhxwSisgll8Add3gRacZKWkgktQdGAwYcCFwGnAtcWst+m8X9WgLHAr+Nv78gqaKYmZ1zOebNC31Enn4abr0VLr0UpKRTuQSV+tTWqUAroLeZLQBGSVoLGCjpmrgun17AmnG/+QCSXgG+AHoCtxc/unOO2bOhe/fQ4XDECDj88KQTuTJQ6lNbPYCROQVjBKG47F7DfqsCS4GFWesWxnX+Vci5UvjwQ9hllzBK73PPeRFxPyh1IdkamJK9wsxmApXxvuo8Grf5i6QNJG0A3ADMAx4uUlbnXMYbb4RLeysrQ2/1PfdMOpErI7Lqprssxh+TlgDnm9mNOes/Ae43s4tr2HcH4Blgk7hqDtDDzN6uZvt+QD+ADh06dB4xYkS9Mi9cuJC2bdvWa98kpClvmrJCuvI2Ztb2Eyey/Z/+xPft2/PONdewaNNNG+VxszXX17YUGpK3W7duk8xsp1o3NLOS3YAlwNl51s8CBtWw30bAVOBJYN94exr4BOhY29/t3Lmz1de4cePqvW8S0pQ3TVnN0pW30bI+8IDZqqua/exnZrNnN85j5tEsX9sSaUheYKIV8Nle6lNb84C186xvB8yvYb/zCRcGHGpmz5vZ88AhQBVwXqOndM7BzTfD0UeHdpEJE2CjjZJO5MpUqQvJFHLaQuKlvW3IaTvJsTXwnpktyawws++B94AtipDTuebLDPr3h7PPhoMP9t7qrlalLiTPAd0lrZm17ghgETChhv1mANtLWi2zQtLqwPbA9CLkdK55WroUTj4Zrrwy9FZ/+OEwt7pzNSh1IbkDWAw8Jmmv2CA+ELjesi4JljRV0tCs/e4GNgYel9RL0n7AE4S2kyElS+9cU7ZoERx6aOit/qc/eW91V7CSdkg0s3mS9gRuJTSWzydcxjswT64WWftNkrQvMAD4a1z9LrC3VXPVlnOuDubPhwMOgJdegltugTPOSDqRS5GSD9poZpOBGufdNLNOedaNAcYUKZZzzdfs2WFu9SlTvLe6qxcf/de55uzDD8OQJ198Ac8+C3vtlXQil0JeSJxrriZOhB49woCL48dD585JJ3Ip5RNbOdccjRoF3bpB27ZhWlwvIq4BvJA419yMGBHmVt98c3jlFfjxj5NO5FLOC4lzzcktt4Te6l26eG9112i8kDjXHJjBH/8IZ50FBx4II0fC2vlGK3Ku7ryx3bmmbulSOO00uPvu0Gv9ttugpf/Xd43Hj0ica8oWLYLDDgtF5I9/hDvv9CLiGp2/o5xrSoYPh/792X3mTNhkE2jTJvQVuflmOPPMpNO5JsoLiXNNxfDhYaDFysow//Qnn4T1Z5zhRcQVVa2ntiQdK2ndUoRxzjVA//5hKtxcTz9d+iyuWSmkjeRe4pwfkqok/bK4kZxz9TJzZt3WO9dICikk8whDuAMIKN0k7865wq2/fv71HTuWNodrdgppIxkN/FXSB4QiMkzSt9VtbGZ+xOJcqT34YBh4UQp9RjJat4ZBg5LL5ZqFQo5ITgAuBf5NOCKZRpjitrqbc66Ubr0VjjoKdt01XN5bUYFJUFEBQ4ZAnz5JJ3RNXK1HJGZWCVwHIGkvoL9PJuVcGTCDSy6BK64IvdX//ndo1QpOPpkJ48fTtWvXpBO6ZqKQq7aqJP0iLo4HFtSwuXOuFJYuhVNOCUXkxBPhkUdCEXEuAYWc2voeWD3+fixQTYuec64kvvsu9Fa/665wye9dd3lvdZeoQt59k4GBkp4gtJEcKmmnarY1M7u90dI551Y0f344jfXii95b3ZWNQgrJmcCdwA2Eq7bOq2FbA7yQOFcMc+aEudXffz+0hxx5ZNKJnAMKa2x/BfgJgKRlwK/M7PViB3POZfnoozC3+ty58I9/wN57J53IuR/UdfTfboRTXfUmaVtJYyRVSpot6TJJLQrct7ekNyQtkvSlpOcltWlIHufK3qRJ4dLeb76BceO8iLiyU6cWOjObACBpZ2A3YB3gK+AlM3uttv0ltSd0cJwMHEgYeuUvhIL2x1r2PQm4FbgGOB9oD+xR1+fgXKqMHg0HHwzrrgsvvABbbZV0IudWUqcP4fjt/2GgO1AFfAmsC7SQ9DxwWOx3Up1TgVZAbzNbAIyStBahMf+auC7f312P0EZzppndlXXX43XJ71yqPPQQHHMMbL01PP88bLxx7fs4l4C6ntq6BugCHAmsYWYbAWvE5S7A1bXs3wMYmVMwRhCKy+417Hd4/HlfHfM6l06DB4fG9J13DldoeRFxZayuheQQ4A9m9rCZLQMws2Vm9jBwIXBYLftvDUzJXmFmM4HKeF91dgY+AE6U9ImkJZJek7RLHfM7V94yvdXPOAP23z+czvK51V2Zk1nhg/lKWkQ4LfVcnvt6AI+aWesa9l8CnG9mN+as/wS438wurma/kcAuhF71FxBOqV0A7AT82Mw+y7NPP6AfQIcOHTqPGDGisCeZY+HChbRt27Ze+yYhTXnTlBVKkLeqiq1uvJGNn3mGOT168OG552ItCroOZSX+2hZPmrJCw/J269ZtkplV129wOTMr+Aa8CjxFLEBZ6xXX/6uW/ZcAZ+dZPwsYVMN+owh9VPbNWrcWYYj7y2vL3blzZ6uvcePG1XvfJKQpb5qymhU576JFZgcfbAZmF11ktmxZgx7OX9viSVNWs4blBSZaAbWhrlc8XQw8B0yR9DjwGbABcDDQidAGUpN5QL7j9HbA/Br2+yr+HJ9ZYWYLJE0Cti0kuHNl6+uvQ2/1CRPgxhvh7LOTTuRcndT18t+xknYELiG0h2wEzAFeI5zyqq2PyRRy2kIkbQa0IaftJMf7hCMS5awXsKzgJ+BcuZkzB3r0gPfeC3OuH3100omcq7O6NrZjZpPN7Egz28LMWsefRxdQRCAczXSXtGbWuiOARcCEGvZ7hlA0umVWSGoHdAZ8SHuXTlOnho6GU6eG3upeRFxK1amQSLpOUkNOJd0BLAYek7RXbBAfCFxvWZcES5oqaWhm2cwmAk8CQyUdJ6kXoU1mCTC4AXmcS8abb8Iuu8CCBTB2LOyzT9KJnKu3+lz++66k1yWdGo8KCmZm84A9gRbA04SZF28ABuRs2jJuk+0Y4AngeuARQhHZIz6mc+kxZgzsvnuYP+Tll+GXPju1S7e6tpH8SFI34HjgWuD6OLz8PWY2usDHmEwY2qSmbTrlWbcQOC3enEunhx8OvdW32ir0Vt9kk6QTOddg9WkjGWdmxxIa2s8ENgVGSpoh6VJJmzd2SOeahNtugyOOgF/8IvRW9yLimog6F5IMM1toZkMJp6VeBjYDLgI+lPSkpIpGyuhcupnBgAHwu9/BfvvBqFHQvn3SqZxrNPUqJJI6SRog6WPgBWAh4XLgNYEDCH1K6teV3LmmpKoKTjsNLrsMTjgBHnvM51Z3TU5dR//9LaF95DfATOBe4F4z+yRrs2clfUsYLt655uu776BPn1A8LrwQrrwSlNsVyrn0q2vP9iGEodu7m9mYGrb7ELii3qmcS7uvv4aDDoLx4+GGG+Ccc5JO5FzR1LWQbFzI5bZmNodwaa9zzc+nn4a51d97D/72t3BU4lwTVtfLf73PhnM1mTo1zK3+6afw9NOhoDjXxNV5mlpJRwAnA1sRJrVagZlt0Ai5nEufN98M42ZVVYXe6jvvnHQi50qirkOkHE2YpXAqof/IU4RxsFYhzBVya2MHdC4Vxo6Frl1hjTXgpZe8iLhmpa6X/54PXA78Li7fZmYnAD8CviDMdOhc8/LII+FIpGPHMOTJ1jVN9ulc01PXQvJj4GUzqwKqCJNLYWbfEOZrP6Nx4zlX5m6/HQ4/HHbaKfRW33TTpBM5V3J1LSRfA6vH32cB22TdJ2DdxgjlXNkzg4ED4fTToVev0Ft9nXWSTuVcIura2D4R+CkwktA+comkpcD3hMmuXmvceM6VoaoqOOMMuOMO6NsX7roLWtb5uhXnmoy6vvv/DGTG0Lok/n4bYcj3N4B+jRfNuTL03Xdh9N5HH4U//AH+/Gfvre6avYIKiaRWQE/CGFqfSupgZp8BB0paHVg9e2Iq55qU4cOhf392nzkTVlsNFi+G66+H3/8+6WTOlYVaC0kcFn40oYhkLJB0uJm9YGaLCbMeOtf0DB8O/fpBZSWCUERWWw028O5SzmUU0th+DbAM+DXQGtgO+DdwZxFzOVce+veHypyr2r//Pqx3zgGFFZIuwB/N7GUz+87M3gdOATpK2qi48ZxL2MyZdVvvXDNUSCHZCPg4Z91/CZf7btjoiZwrF+PGVX9fx46ly+FcmSu0H4kVNYVz5eaRR8KAixtttPJEVK1bw6BByeRyrgwVWkhGSpqbuQFz4vox2evjfc6l2x13LO+t/u67oZ9IRQUmQUUFDBniQ8M7l6WQy399XhHXPJiFKXEHDgy91R96KBx99OkDffowYfx4unbtmnRK58pOrYXEzBq1kEjaFriF0Ig/H7gbuDSO31XI/qsQOj/+HNjfzJ5pzHyumaqqgjPPDGNnHXdcOApZddWkUzmXCiUd10FSe0KflMnAgcAWwF8Ip9j+WODDnARsUpSArnlavDj0Vn/kEbjgArjqKu+t7lwdlHqAoFOBVkDv2BN+lKS1gIGSrqmtd3wsRIOACwlHMs41zIIFYW71cePguuvg3HOTTuRc6tR19N+G6gGMzCkYIwjFZfcC9r8ceBkYU4Rsrrn57LMwGdU//wn33+9FxLl6KvURydbA2OwVZjZTUmW87+nqdpT0U+B44GdFTeiah48/hn32gTlz4KmnwsRUzrl6kVnpuohIWgKcb2Y35qz/BLjfzC6uYd8JwGtmdoGkTsA0amhsl9SPOBpxhw4dOo8YMaJemRcuXEjbtm3rtW8S0pQ3qaxtp07lpxdcgKqqePfPf2bBttsWtJ+/tsWTprxpygoNy9utW7dJZrZTrRuaWcluwBLg7DzrZwGDatjvSOBTYK243InQSXK/Qv5u586drb7GjRtX732TkKa8iWQdN85szTXNNtvMbPLkOu46riiRiiFNWc3SlTdNWc0alheYaAV8xpa6jWQesHae9e0IlwKvRNKqwLWEqXxXkbQ2cYpfoI2kNYsR1DVBjz0G3buH6XBffhm22ab2fZxztSp1IZlCaAv5gaTNgDbxvnzaAJsC1xMK0Tzg7XjfCMJIxM7V7M474bDDoHNneOkl2GyzpBM512SUurH9OeB8SWua2Tdx3RHAImBCNfssBLrlrNsQ+DtwMTmN986twAwuvxwGDICePeHhh0Nvdedcoyl1IbkDOAt4TNLVwObAQOB6y7okWNJUYIKZnWhmS4Hx2Q8SG9sB3jUznyfe5VdVBWefDYMHw7HHwt13e29154qgpKe2zGwesCdhjvenCeN43QAMyNm0ZdzGufpZvBiOOioUkfPPh2HDvIg4VySlPiLBzCYDe9SyTada7p9OmA/FuZUtWAAHHwxjx8K118J55yWdyLkmreSFxLmi+uyz0Bby9ttw333hlJZzrqi8kLim4+OPw+W9s2aF3uo9eyadyLlmwQuJaxrefjvMaLh4MYwZA126JJ3IuWaj1P1InGt8EybAb34DLVuGPiJeRJwrKS8kLt0yvdU32QReeQUKHDfLOdd4vJC49BoyJPRW33HHMBS891Z3LhFeSFz6ZHqrn3JKOBoZPRrWXTfpVM41W97Y7tJl2TI466zQ0fC3v4WhQ72joXMJ8yMSlx7ZvdXPO897qztXJvyIxKXDN9+E3upjxnhvdefKjBcSV/7mzg2dC996y3urO1eGvJC48jZtWphbfdYsePJJ6NUr6UTOuRxeSFz58t7qzqWCN7a78vTii95b3bmU8ELiys8TT4TTWRtv7L3VnUsBLySuvNx9NxxyCOywg8+t7lxKeCFx5cEMBg2Ck08OvdXHjPHe6s6lhDe2u+QtWxbmVr/1VjjmGLjnHu9o6FyKeCFxpTd8OPTvz+4zZ4ZTVxtvDK++CueeC9dcA6v4gbJzaeKFxJXW8OHQrx9UViKAmTPD7cgj4brrkk7nnKsH/+rnSqt/f6isXHn9v/6yPJh5AAAcYklEQVRV+izOuUZR8kIiaVtJYyRVSpot6TJJLWrZ5xeS7pU0Ne73gaQBktYoVW7XSGbOrNt651zZK+mpLUntgdHAZOBAYAvgL4SC9scadj0ibns18BHwU+Dy+POQIkZ2jW3DDWHOnJXXd+xY+izOuUZR6jaSU4FWQG8zWwCMkrQWMFDSNXFdPleb2edZy+MlfQfcKanCzGYUObdrDC++CPPngxQu981o3Tpc+uucS6VSn9rqAYzMKRgjCMVl9+p2yikiGf+OPzdovHiuaDK91Ssq4MYboaICk8LykCHQp0/SCZ1z9VTqQrI1MCV7hZnNBCrjfXWxC7AM+KBxormiye2tftZZMH06E8aOhenTvYg4l3Ky7FMMxf5j0hLgfDO7MWf9J8D9ZnZxgY+zIfAO8KyZ9a1mm35AP4AOHTp0HjFiRL0yL1y4kLZt29Zr3ySUVV4zOg4fzuZDh/Llzjvz3oABLGvV6oe7yyprAdKUN01ZIV1505QVGpa3W7duk8xsp1o3NLOS3YAlwNl51s8CBhX4GKsBLwIfA+0L2adz585WX+PGjav3vkkom7xVVWZnnmkGZsccY/b99yttUjZZC5SmvGnKapauvGnKatawvMBEK+AzttSN7fOAtfOsbwfMr21nSQLuB7YDdjWzeY0bzzWKxYvhuOPgwQe9t7pzzUCpC8kUctpCJG0GtCGn7aQaNxAuG97bzArZ3pXaN99A794wenQoIOefn3Qi51yRlbqQPAecL2lNM/smrjsCWARMqGlHSRcBZwKHm9lLxY3p6mXu3DAV7r//DcOGhaMS51yTV+rzDXcAi4HHJO0VG8QHAtdb1iXBsQf70Kzlo4ErCae1Zkn6VdZt/dI+BZfXtGmw227w3nthbnUvIs41GyU9IjGzeZL2BG4Fnia0i9xAKCa5ubKHTdkn/uwbb9mOB4Y1blJXJ++8E+YQWbw4nNLaZZekEznnSqjko/+a2WRgj1q26ZSz3JeVC4grBy++CAccAGuuGSaj8mlxnWt2/FIaV3+Z3uobbeRzqzvXjHkhcfXjc6s75yIvJK5ufG5151wOnyHRFS57bvXf/haGDvW51Z1zfkTiCrR4MRx9dCgi554b+ol4EXHO4UckrhDZvdWvvRbOOy/pRM65MuKFxNVs7lzo2RPeegvuuw+OPTbpRM65MuOFxFVv2rRwee+sWaG3eq9eSSdyzpUhLyQuv7ffhn33DW0jY8ZAly5JJ3LOlSlvbHcrmzABfvMbaNky9BHxIuKcq4EXEreixx8P/UM22cR7qzvnCuKFxC13111w6KGw447wz396b3XnXEG8kLjQW/2KK6Bfv3A0Mnq091Z3zhXMG9ubu2XL4KyzYPBg763unKsXPyJpzhYvhqOOCkXkvPO8t7pzrl78iKS5+uYbOPjgcGmv91Z3zjWAF5LmaO5c6NEj9BXx3urOuQbyQtLcZPdWf+qpMPyJc841gBeS5sR7qzvnisAb25sL763unCsSLyTNgfdWd84VkReSpm7IEO+t7pwrqpIXEknbShojqVLSbEmXSWpRwH7tJN0raZ6kryUNl+Tdr6tjBpdfDqecEtpFvLe6c65IStrYLqk9MBqYDBwIbAH8hVDQ/ljL7g8C/w84CVgGXA08Afy6WHlTq6oqzK0+eHC4tPfuu72joXOuaEp9RHIq0ArobWajzOwO4FLg/yStVd1OkroA3YHjzOxRM3scOAbYTdJeRUk6fDh06sTue+wBnTqF5XKWnXettZb3Vr/3Xi8izrmiKnUh6QGMNLMFWetGEIrL7rXs95mZvZhZYWavA9PifY1r+PAwgOGMGcgMZswIy+VaTHLzVlaG4rHDDrCKN4M554qr1P1ItgbGZq8ws5mSKuN9T9ew35Q869+P9zWu/v3Dh3G2ykro2xeuvLLR/1yDffghLF264rolS8Lz6NMnmUzOuWaj1IWkPTA/z/p58b767Ld5vh0k9QP6AXTo0IHx48cXHHL3mTNRnvW2dCmfr79+wY9TKutPnpw/78yZTKjD8y61hQsX1unfJWlpypumrJCuvGnKCqXJm0TPdsuzTtWsr/d+ZjYEGAKw0047WdeuXQtP2LFjOJ2V+8cqKtigHN9AnTrlz9uxI3V63iU2fvz4ss6XK01505QV0pU3TVmhNHlLfQJ9HrB2nvXtyH/EUdt+a9eyX/0MGgStW6+4rnXrsL4cpS2vc65JKXUhmUJOm4akzYA25G8DqXa/qLq2k4bp0yd05KuowCSoqAjL5drekLa8zrkmpdSF5Dmgu6Q1s9YdASwCJtSy34aSdsuskLQToX3kuWIEpU8fmD6dCWPHwvTp5f+hnLa8zrkmo9SF5A5gMfCYpL1ig/hA4PrsS4IlTZU0NLNsZv8CRgL3S+ot6SBgOPCSmY0u6TNwzjm3gpIWEjObB+wJtCBc6nspcAMwIGfTlnGbbEcSjlruAe4HJgEHFzOvc8652pX8qi0zmwzsUcs2nfKsmw8cH2/OOefKhHd7ds451yBeSJxzzjWIzGrrB5h+kj4HVu6xV5j1gC8aMU6xpSlvmrJCuvKmKSukK2+askLD8laYWa3DeTSLQtIQkiaa2U5J5yhUmvKmKSukK2+askK68qYpK5Qmr5/acs451yBeSJxzzjWIF5LaDUk6QB2lKW+askK68qYpK6Qrb5qyQgnyehuJc865BvEjEueccw3ihcQ551yDeCFxzjnXIF5InHPONYgXEueccw2SxJztrhHEmSV7Euatf9jMvpS0KXAesAUwHRhiZu8mlxIk/QF4NukchZLUCmhpZt9krVsfOAPYFlgGvAXcZmZfJ5PSufLil/9GkkSY36QXsA2wDlAFfAa8Cgwzsw+TS7icpF8CLwBtgaXAV0B34FlC5veA7YENgb3M7J8JRUXSMsAIUyI/ADxoZlOTylMbSc8CH5nZ2XG5C2EWzmWEOXAEdAa+B/Yws/cSzLoj0MrMXslaty9wEcuL3tvAwOxtykX8P7c/8HPCe2Qi4UtHWX8oSVqLMHbVHmb2UtJ54IdMewCrAf8ws2/jF6DfEWaS/ZjwxXJ2Uf5+mf+blUR8wZ8lfEB8RpjFcRPCm/s5wj/E/wMuN7PLk8qZIWkU4WjyYOBbwuRgBxE+6A41syWSVgeeANYws24JZl0GXA38BNibkPtNQlF5yMxmJZUtH0lfACea2ZNx+VXCa3xQ5ihFUjvgKeA7M+ueYNZXgafNbFBcPgG4GxgHjCUUvT2BXwOHZJ5TQllfIbyu78fl9oQvQ52BhXGztoQvbd2zjwiTIOn0Gu5uBVwL3AR8BGBmt5UiVz6StgTGAJvFVdOAfYBRwNrAfwmfX4uAzmb2SaOHMLNmfwP+TnhD/CRr3cbA88CjcXl3whv+hDLI+yXQI2t5A8K3z31ytusFfJFw1mXAL+Pv7YF+8U2/NN7Gx3XrJv26xoyVwG+ylr/PfV2zXttvE866IDsbMBW4Jc92dwBvl8v7IC4PJRxJ75u1bl9gHnBDGbwPlhGO7pdVc8u+ryrhrA8Rjjy3JJxJ+Wv8PHsFWDNus17c5s5iZPDG9qAHcKFlnce3cAh4KnCQpI3MbAJwJXB2QhmzWbxlL5OzLt9yosxsnpkNMbM9gU2BcwmH4ncAsyX9I9GAwX+A7CO4zwj/OXOtSyg6SVqWs1wBPJJnu0cI30jLyQHAZWb2fGZF/H0Q0DuxVMs9BcwFTgRamNkqmRvh/SCga1yXOy14qe0GDDKzqWb2FfBHQjvpdRaP7MzsC+BGVnxvNxovJIEI3zByVcX72sXl14CtShWqBpOA8yStKWkV4GJgFnCapBYAkloCpxM+GMuOmX1qZjeZ2S7Aj4ABhKPApF0FXCjphPgaDgKulbS3pNUkrR7bIf5M+CaYpH8CfbKW3wPyDRf+C8L7o5ysTWgTyTWJ0LaXKDM7CDgOOB94Q9Ku2Xcnk6pa7YFPs5Yz/9a5czB9TPgC1+j8qq1gNHCFpHfM7GP44RzuzYR/oEwje1ugHK7U6U84//kV4fRQJaGh7RHgI0mZxvaNCacLypqZzSB8gF9VBlkek3Qm4dvbDcAHhC8SmW/ORvhy8RThQyZJFwMvxy8TtxAa2e+TtA7hlCGENpJzgAsTSbiiQyRlCt08IN+ESesRTtklzsxekPRTwuv3D0nPE66KTLT9Jo+5hKPRjCrgTsLRdLYNKFJ2b2wH4mWzzxMO/2cQzov/iNDofpSZPRe3u4YwY9gRSWXNiJn3I3wZeNTM5kjaELiA5c/jbjN7M8GYSBoA3GVFulqkWCStCxwB/JLwDXkVQuF+H3jGzCYlGO8HknYAbgd2ZnmRI+v3eYRTSDclkzCIF13kGmZmJ+RsdyewrZn9ujTJChP/b11DOO12J6G4dDOzFxMNBkh6Avgq97XMs90twDZmtlejZ/BCEsRTQocDPwPWIDRcPhDPOTpX1iRtQygmuUXvFTNbkmS2upB0MvBfMxubdJZ84uXgNxC+rPWyMrisWlIHoLWZTatlu/8jXHQxptEzeCFpeiS1MLN8bT5lQ9IahAbBZcDUcvywi20km5PVp8jMZiabyrny443tOSRtJ+kQSSdJOjH+vl3SuXJJ6i3pCUnPSto/rjtC0nTge0kz4re7REk6JvZvyCy3lHQV4RvzO4SLAb6SVA7n8AGQ1FnSU4Tzye8DLxP6N0yTNEvSZZJaJxqyCVGUdI58JLXK/beWtEP8XOicVK6yk+T1z+V0A04gtCvku3a8ijDkyPFJ54xZD4+5XgKeJDS2n0xo2xlK6M3695i7e8JZJwOnZS3/Jeb9E7Ar4dLFgYTOUheXwWu7D6FtbCLhyqyBhE6p38fM5xKujnoLaF8Gefcj9Mt5F3iQrD4wWdvsTPJ9HfYh9mnIWncQoXPqUmBJfM17Jf2axmztgMdjrqXAXUAL4L6cz4WXgfWSzlvgczqkWO+DxJ9cOdyAM+MbZjChF/B68U3TIv6+G3Br/ID5XRnkfQO4I2u5T8z2l5zt7gVGJ5y1Etg9a3kucHae7c4DZpTBazsJuK+a98h0wlH8GvED8LaEs+6d9WF2a8xeFYu1srYrh0JSxYodEg+OH8avxH/78+LvS8nTATSBvDcThkE5Ezg2fnl4FPhfLIrrE/qfzQJuTzpvgc+paIXE20gASR8TPpivqWW7C4BTzWzz0iSrNscCoLeZjY7L7QhX5+xlWY2U8ZTXnWaWWP8MSXOAM8zs0bi8mHCUND5nu72Bp8ysVelTrpBjEXCAmY3KWd+eMKLAdmb2vqRjgavNbKMkcsZMLxHGBTs+a90JhA/BUYQrDr+TtDOh0T2xjnPxqq1fmdnrcflNYJaZ7Z+z3bNAGzPbPYGY2TmmAVea2V1xeUdCoT7ezO7L2u5kwpH0j5JJCpLuKXDTCkInykZ/H3gbSbAh8HoB271OGXSWIlzamf1myIxVND9nu4WEjl9JeorQeXK1uDwaOCrPdkcRvvUlbS7hyr1cPyO87pl+RDNY3lE1KdsDf8teYWb3EIbz+RUwNvYpKUfbEy6jzTWEMIhj0jZgef8xiGNqEcatyjaV/P1hSuk4wlHST2q5VVT3AA3lHRKDd4CTJb1oZvmud8+MVHpy3DZpMwiju44EMLOqeFni+znbbc6KPV6TcBGhB/Z/JN0NPA1cLWl7lnea2wPYkTASbNKGAJdLakNoe/ie0DO8PzDOlveH2RxI+gqu74A2uSvNbFLsiT2ScLpoYIlzVSf79MfXLP8ClO1byuML7jRCQZ4Ql39NOBW3C6FtMmNXkn8ffAS8bmbH1rSRpEMJ7WiNzgtJcC6hQ+JkSY8RhjyfT3jjrw1sTTinuynl0VP8MXKGOjCz1/JsdzQrvulLzsy+kvQrwgfx/xG+6QF0ibfvCadhfm1mbySTcjkzGxRPw1xIGLYFwvvg74ROaBlLCGOvJekdwnn6p3LvMLOPYzF5FhhW4lzVGSlpafy9HbADy79MZGwNzCllqGrcAdwk6SeEonc44UvRJZLaEgZA/DnweyDpEcFfJRS42mR3WG1U3kYSSdqC0Ct8X5YPx5zxP8KVO9eaWe6hbdmS1BGYb2ZlMeQEgKROrNhp7r9Wnn1IViX0c1kD+LicXsMMSacQhknZ0arpOBuPrB4ntJ8l9k0/jnCQ6yMzeyBnu/FxfTlcun4W4ZTrqoRRIu6QdBShDSozaOcQ4A9JvofjZci7mtnNtWy3HqGNb0JN29UrgxeSlcXrxjNtC/PNLOlRXp1zZSKe5l7PzD5POku58ELSxMTD7jeBPuVwqkgpnLpWKZnG2Lly4YUkS/wA2QD4wMxWagiMh4Y9zez+kodbMUfPGu5uQ2hQu5A4hLyZPVuKXPkoRVPXQrqmMS5UHIfrMDO7LOEciU4H21DxSCR7auBJhOeR+IeowqjKhxD+Pw0zsymSfgZcyvIvP4Mta/6XRpV0J5lyuAGrAw8TPiiqCA2pQ4F2Odsl3rEr5kjT7G1fAAdmLb9KuBpqzax17QhXx4wsg9d2FGGq2rUJ58ZvBT4hjCCwatb75TnCVVyJv38LeE5F64hWhwxbEq42zLwv/0v4gPuYUKzfIAwf/xmwaRm8Zq8QRsrNLLePGZfFnAtY3qFyzaRyxmzdCV/EPo2v6wLCBFbzCJ1VB8f/d1WEKaMbP0PS/2DlcAMuIVyldTJhYqCz4xv6I+DHWduVSyGZRLiy5XjCteHZt5/GN/jhmXUJZ03N1LUxR5qmMe5Y4O3UpN+3lMF0sHXMm5qpgWOxeJgwkyOECzDmAUNztvsr8GpRMiT9D1YON8LlvmfkrNsQeBH4HOgS15VLIRFhnvO5hGEbfpR1X7v4n2ClMZcSyvo6MCBr+X/AkXm2Oxb4vAzyfpHzYbF+fD33ztmuZxkUkszRZ223cjgynQ0cnrVcEXP1ztnueODDMngf5BaSz4Fz8myX+NA+hMuT98pabh/z75Gz3T6Ei4caPYP3Iwk2I6ejoZl9KmlPQhUfLakP5XF9OxbeFUMkPQRcAbwj6db4e7m5Chgu6X/A/SyfuvZLwuksEQ7Dy2HqWlg+jfHLhM5x2dMYj7XQ+bNcpjH+BhgL3F3LdrsRLm1PUuLTwTZQOU8NvIgVO6Zmfs8dbqg1oRNro/NCEswGfkw4AvmBhWvDj5R0I+HQMdFG9lxmNh84Q9IQwrXtHwFXU0ZzSlu6pq6FdE1j/DqhHe8fNW0U535JWuLTwdZDWqYGfpnQUfKjmOU6wqjbf4ijdXwTx+O7gFD4Gp1ftcUPg55tbmZda9jmIsK3abMEB7+riaQjCdOBbkoYnC3xaUAzlJKpayFV0xj/CehnZrkdaHO3+w1wqZl1K02yvBkSnw62LpSiqYElbUkYwy7zPphOOMp/hDBSwAygE+GLUTcze6vRM3gh+eHSuSOAq8zsyxq2O5pwrvz46rZJWjzt0gZYaGU+S6JrPlQG08EWg8pkauDYf2xXwpWGY8xsUexYfRLLv/w8YGafFOXveyFxzjnXEOUwyqYrEkl3SRqadI5CpCkrpC+vc8Xkje11IOkuYBUzOzHpLAXqRnq+LKQpK6Qor6TRhLMPeyadpTZpygrpylvMrF5I6iY1Hx4AZrZl0hkKlaaskLq8Ij3v2zRlhXTlLVpWbyNpwuJlnxuYWdIT79QqTVkhfXmdK6a0VNKyIGmNOMdHWvQizPSWBmnKCinKK2nVtLxv05QV0pW3mFm9kNRNaj48XPMg6XeS/ivpG0mvSfptns1+Thm8b9OUFdKVN+ms3kaSQpIKvWY9X0/ckkpTVkhX3tgB9RbCNMD/JvQjGCbpQOC3ZrYoyXzZ0pQV0pW3HLJ6Gwl1/vDYNume7QrzXn9AGAahJpsAOyeZN01ZIV15JU0ExprZBVnr9gSGE3o397IwKdfOwCuetXBpylsOWb2QkK4PDwBJbxEm3zqilu0OBR5M+E2emqwxR2rySvoG2N/Mxues70SYL6UF0IMwHlTSH3apyQrpylsOWb2NJPgP8B8zO6ymG3B90kGj14BfFbBdZkDEJKUpK6Qr79eED4cVmNl0YBfCkPivAL8obay80pQV0pU38ax+RMIPA6/ta2YVtWx3CGEO70QLsKQtgO3M7KlatmtFuEQ1d6jukklT1pgjNXklPQl8Y2bHVHN/K8LAfT1IeLDRNGWNeVKTtxyyeiEhXR8ezmVIOgz4PbCfmX1VzTYtgNsJg43+qJT5cnKkJmvMkpq85ZDVC4lzzrkG8TYS55xzDeKFxDnnXIN4IXHNiqS+kibFHsDzJP1bUlGuxpO0laSBktYuYNuBkizrNlvSo7H9rrZ9+8Z92jZOcufqxguJazYUpku+GxgJ9AaOBZ4EDijSn9wKGADUWkiir4Eu8XYesAMwRlKbWvb7R9ynsp45nWsQHyLFNSdnAHea2cVZ656WdGlSgXIsNbNX4++vSpoJ/BPoCTycu3G8EqeFmX0OfF66mM6tyI9IXHOyNvBp7krLunRRUqd4muhoSX+Np8DmShqQu5+kPeIAed9J+kzSbZnTS5K6Ak/HTafFx5xex7yT4s9O8TGHSZoo6SBJ7wHfATvnO7UlqZWkayTNkLRY0jRJf87Jf5Kk9+L9MyRdgHP14Eckrjl5EzgzftN/xsy+rGHba4FngEOB3wADJH1hZoMBJG0LPA+MAg4BNgOuAjYH9o1/6zzgOsJptDnA4jrm7RR/fpqz7hrgMuAzwmiuK7SjSBLhlF0X4HJCQdoE+HXWNucDV8bHGg90Bi6XVGlmt9Yxp2vuzMxvfmsWN+CnwMeE4U2WAe8RPpDXytqmU7z/hZx97wJmEaZaBhgBfEQ4tZTZ5vC4b5e4vF9c7lRAtoGEoSxaxttWwDhgAbBR3GZYfLwdcvbtG9e3jcvd4/IB1fyttYCFwICc9ZcRilaL2vL6zW/ZNz+15ZoNM3sH2IbQuH4bYaysPwET81zx9HjO8mPAxsCmcfmXwONmVpW1zaPAUmC3ekZcF1gSbx8Qjm6OMLM5WdvMMrO3anmcPYCvrPqRGroAbYCHJbXM3ICxQAeWP0fnCuKntlyzYmaLCW0XTwNIOpFwJdeJwE1Zm87N2TWzvBEwM/78LOexqyR9CaxTz3hfA3sRjiY+BWabWe7QE5+ttNfK1iWcSqtOZoC/96q5fzPAhwFyBfNC4po1Mxsq6Rpg65y7NqhmeU7WzxW2iVdRrQvkHe+oAEvNbGIt2xQyptGXhEJXnUy+/chfmD4o4G849wM/teWaDUm5xQFJ6wPtWPkD9eCc5UyD+Sdx+TXg4Fg8srdpCbwUl7+PP9doQOz6GAOsI2m/au7/F7AI2NjMJua5fVO6qK4p8CMS15y8G4fcfoFwqqqCcGVVJXBfzrbbxekFHiVctXUicLaZLYv3X0GY1vQJSbcT2hWuBkaa2b/iNplv9qdIGgFUmtm7xXlqKxhF6HT5gKTLCFeQbQT8xsxOMbP5kgYCN0mqAF4kfKncCuhmZrlF1LkaeSFxzcllwIHAzYR2jE8JE/4cYWbTcra9gHDq51FCf43LgR8uizWz9yT1IFxC+xjh6qq/x/0y28yQdB5wFnAm4WimUzGeWDYzM0kHx8znEKaIng08kLXNNZJmE4YfP5fwHD8EHix2Ptf0+DDyzmWJ05NOI0xd+kyyaZxLB28jcc451yBeSJxzzjWIn9pyzjnXIH5E4pxzrkG8kDjnnGsQLyTOOecaxAuJc865BvFC4pxzrkH+P9FYor+QsHtTAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -249,7 +249,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "exact expected value:\t0.5049\n", + "exact expected value:\t0.5695\n", "exact delta value: \t0.9291\n" ] } @@ -301,9 +301,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Exact value: \t0.5049\n", - "Estimated value:\t0.5000\n", - "Probability: \t0.9955\n" + "Exact value: \t0.5695\n", + "Estimated value:\t0.5730\n", + "Probability: \t0.9977\n" ] } ], @@ -320,7 +320,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHeRJREFUeJzt3XuUXGWd7vHvA0EItwACgUGGCF4iDCyPRIQ5jHS4E84RQTRZ6JkVB416VJhZ6ICIENBhGRwuuhgXsHTgcEYTZoDhDJcQwqXDXQ0SjJMEDBqQiyhOkxgTIiG/88e7A5Xd1V27Lv1Wuvv5rFWrqt797rfe/aZSv977vWxFBGZmZkNti25XwMzMRgcHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHbBCSZkrqLV73SprZ5P49kqJc1gB5b5O0eJDtV0rqk7R1xc9+h6SQdHwzdTYbKg44ZpuP2cBfSDqgvEHSlsCpwM0RsS57zcw6wAHHbPPx/4A1wLQ62yYD40lByWxYcsAxa5GkwyT9h6QXJP1R0iJJH2+1vIhYDdwGTK2zeRrwEnBf8dl7SbpW0q8krZX0lKQLJW01SH3HFJfYPltK/4ak35TS9pF0Q3EJb42kuZLe2eqxmQGM6XYFzDZnETGz5nVPafM+wEPAVcCrwH8HrpW0ISJmF/v0AiqXNYjZwMckHRwRjwEUQeRk4AcR8XqRbzfgZeBvgVeAicAFwK7A55s8zE1I2rU4rpeAGcWxnQvMl/RuX9KzVjngmLUoIuZsfC1JwP3A24BP0/qlr7mkADINeKxIOw7YpbbMiFgELKr5/IeAtcBVks6MiPUtfj7AWcDWwFER8UpR/sPACmA6cHUbZdso5ktqZi2StLOk70h6BniteMwA3tVqmcXZw7+TznJUJE8FngEerfnsLSSdJWmppLXFZ/8fYCwp6LXjaGAesLq4DDcGWAn8FJjUZtk2ijngmLXuOlIw+BZwLPB+4J+Bbdosdzbw58BhkrYBTgJmx6ZLu58FzAL+DfgQcAhwRrGt3c/fFfg4bwbRjY8PAnu3WbaNYr6kZtaCIhCcCHwhIq6qSe/EH3H3kvpPpgF7AjvQ/xLdR4E5EXF+zWcf1KDc14H1wFtK6buU3v8X8DhwcZ0yVjX4DLMBOeCYtWZrYEvgjQ50STuQzjbauslURLwu6d9IQWUvYGlE/KyUbWztZxcGHSEXESHpeeA9NXXeEjiylPUe0lnVYg8QsE5ywDFrQUSslPQT4HxJq4ANwDmkvo4dO/ARs4EvkEannV9n+3zgc5IWAr8E/hqYUKHcfwdmSHqC1C/0aWDbUp5/BE4D7pV0JfACsAdwBNAbEf/a9NGY4YBj1o7TgGuA64HfA1eSfry/0IGyHyGNCpsAzKmz/QLgraTLXgHcCPwdcEuDcs8n9dFcDPwJ+A6wBPjUxgwR8VtJhwL/AFwB7AS8CDwADLj0jlkjyn2LaUnvAL4MHAr8BfBAnfkN9fYbR/ryf5g02OE24IyI+H0p30nAN4B3kv7yuzAibujkMZiZWfO6MUrtAGAK8FTxqOoGoIf0l9h00oigTf6ak3Q4cBNpNvYJwO3AbEnHtltpMzNrTzfOcLaIiA3F6xuBXRud4Ug6DHgYOCIi7i/SDgF+BBwTEXcXafOArSLiyJp97wB2jIjDh+J4zMysmuxnOBuDTZNOAF7aGGyKcn4M/KrYRrFk+2Sg3KE5hzSfYVxrNTYzs04YLhM/JwLL6qQvLbYB7AdsVSffUtJxtjz728zM2jdcRqntTFpfqqwP2LcmD3Xy9ZW2b0LSDNJyJIwdO/bgvfdubyL1hg0b2GKL4RLHu8ttVZ3bqjq3VXWdaKunnnrq5YjYrUre4RJwoP5kOtVJL7/XAOkpMeIa0tBWJk2aFAsXLmynjvT29tLT09NWGaOF26qxCefcDsBZB67n0sVjWPHNE7tco82fv1fVdaKtirUEKxkufwb0keYClO3Em2c0fTVp5TxQ/wzJzMwyGS4BZxlv9tXUqu3beZq0wGA530TSLPBmhmCbmVmHDZeAMxfYo5hnA4CkSaT+m7nwxrLu95HWn6o1FXgkIlZmqquZmdWRvQ9H0rakiZ+QFibcUdKpxfs7ImKNpOXAgog4HSAiHinm2Fwv6UukM5ZZwIMb5+AUvg70SrqCNCl0SvE4fsgPzMzMBtWNQQO7k+7hUWvj+7eT1o8aQ1qJt9Y04HLS/UbeWNqmNkNEPFgEr28AnyPN0zktIu7qYP3NzKwF2QNORKzgzZFjA+WZUCftFeCTxWOwfW+h8QKGZmaW2XDpwzEzs2HOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtL+keSWskvSDpIklbNthnpqQY4PGVmnzXDZBn4tAfmZmZDWZMzg+TtDNwN7AEOAnYD7iUFPjOG2TX7wF3ltI+DJwNzC2lLwM+WUpb0VqNzcysU7IGHOCzwFjglIhYBcyXtCMwU9IlRVo/EfEc8FxtmqSvAcsiYlEp+x8j4tEhqLuZmbUh9yW1E4B5pcAyhxSEjqhaiKRdgGOA2Z2tnpmZDZXcAWci6ZLXGyLiWWBNsa2qU4GtSMGqbH9JqyStk/SgpMqBzMzMho4iIt+HSa8BX46IK0rpzwHXR8S5Fcu5FxgXEQeX0s8E/kTqI9oNOAs4GDg8In48QFkzgBkA48ePP3jOnHoxrLrVq1ez/fbbt1XGaOG2amzx8ysBGD8WXloLB+41rss12vz5e1VdJ9pq8uTJj0XEpCp5c/fhANSLcBogvX9GaU/S5bez+xUc8e1S3ttJwedc0iCD/pWJuAa4BmDSpEnR09NTpRoD6u3tpd0yRgu3VWPTz7kdgLMOXM+li8ew4uM93a3QMODvVXW52yr3JbU+YKc66eOAVyqW8TFSgLqhUcaIWAvcAbyvagXNzGxo5A44yyj11UjaG9iOUt/OIKYBD0bEr5v43HzXDc3MrK7cAWcucJykHWrSpgJrgQWNdpY0ATiUiqPTJI0ljYx7rNmKmplZZ+UOOFcB64CbJR1ddNjPBC6rHSotabmk79fZfxqwHrixvEHSOEkPSPqMpKMkTQXuA/YCLh6CYzEzsyZkHTQQEX2SjgKuBG4l9dtcTgo65XrVW+5mGnBPRPyuzrZ1wO9IKxbsDrwKPAIcERELO3IAZmbWsuyj1CJiCXBkgzwTBkh/7yD7vAqc0lblzMxsyHi1aDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8uiqYAjqd5yM2ZmZg01e4bzvKRLJL1nSGpjZmYjVrMB52rgVODnkn4kaYakHYegXmZmNsI0FXAi4oKI2Bc4BngSuAx4UdIPJB09FBU0M7ORoaVBAxFxb0T8NbAH8EXg3cA8SSskzZT0Z52spJmZDX/tjlKbBHyQdNvoPuAB4FPAckmfaLNsMzMbQZoOOJL2kXSBpKeBe4A9gb8B/iwi/hewD6mv51sdramZmQ1rTd2ATdK9pDOa54DrgGsj4pnaPBHxuqQfAmd2qpJmZjb8NXvHz5eBKcD8iIhB8i0C3t5yrczMbMRp9pLalcDD9YKNpO0lfRAgIl4rn/mYmdno1mzAuQ/Yf4Bt7y62m5mZ9dNswNEg27YH1rRRFzMzG8Ea9uEUl8l6apI+Jen4UrZtgBOBxZ2rmpmZjSRVBg18gDS5EyCAjwLrS3n+BCwDvty5qpmZ2UjSMOBExLco5tRI+hVwckQsGuqKmZnZyNLUsOiI8FBnMzNrSZU+nCnAgxGxqng9qIi4oyM1MzOzEaXKGc5twKHAj4vXwcCj1QLwTdrMzKyfKgHn7cCLNa/NzMyaVmXQwDP1XpuZmTWjSh/Ots0UGBGe/GlmZv1UuaS2mtQ3U5X7cMzMrJ8qAedvaC7gmJmZ9VOlD+e6DPUwM7MRrt1bTJuZmVVSZdDAj4HpEbFE0k9ocHktIg7pVOXMzGzkqNKH85/A2prX7s8xM7OmVenD+WTN6+lDWhszMxuxWu7DUbKbpMFuymZmZga0EHAkTZH0MPAq8BvgVUkPSzqx47UzM7MRo6mAI+kzwK2kyaBnkm7Gdmbx/j+K7WZmZv00dT8c4Fzgmoj4XCn9KklXAV8Fru5IzczMbERp9pLaW4GbB9h2E7BLowIk7S/pHklrJL0g6SJJgy6HI2mCpKjzmFMn70mSFkt6VdISSVMrHZmZmQ2pZs9w7gOOAObX2XYEcP9gO0vaGbgbWAKcBOwHXEoKfOdV+PwvAQ/VvH+5VP7hpMD3XeAMYAowW1JfRNxVoXwzMxsiVSZ+7l/z9jvA9yS9FbgF+C2wO3AycALwqQbFfRYYC5wSEauA+ZJ2BGZKuqRIG8yTEfHoINu/BtwfEWcU7++TdABwPuCAY2bWRVXOcH7OppM9BXymeJTv/nkng68WfQIwrxRY5gCzSGdIt1aoT12StgYmk85sas0BrpU0LiJWtlq+mZm1p0rAmdzBz5sI3FubEBHPSlpTbGsUcK6VtAvpzGo28NWI2LgKwn7AVsCy0j5LSZfs3gX8pL3qm5lZq6qsNLCgg5+3M/BKnfS+YttA1gH/RLostgroAc4mBZmTasqmTvl9pe2bkDQDmAEwfvx4ent7B6t/Q6tXr267jNHCbdXYWQeuB2D82PTa7dWYv1fV5W6rZgcNvEHSFsA25fQKd/ystxabBkjfWOaLwBdqknolvQR8V9J7I2LRIOVrgPSNZV8DXAMwadKk6OnpGbz2DfT29tJuGaOF26qx6efcDqRgc+niMaz4eE93KzQM+HtVXe62anbipySdLWk58BrwhzqPwfQBO9VJH0f9M5/B3Fg8v6+mbOqUv/F9s+WbmVkHNTsP5wzgHOD7pDOHfwAuAp4CVlBcmhrEMlJfzRsk7Q1sR/++l0ai9Pw0KQhOLOWbCGwo6mhmZl3SbMD5NHABcEnx/paIuBA4gBQw3tlg/7nAcZJ2qEmbSrr9QbN9RacWz48BRMQ60jyhj5byTQUe8Qg1M7PuarYP5+3Aooh4XdJrFJerImKDpO8C3yOdAQ3kKtJZ0s2SZgH7AjOBy2qHSheX7BZExOnF+5nADqRJn6uADwJfBm6OiJ/VlP91Uv/OFaR5QlOKx/FNHqeZmXVYs2c4vwe2L14/C/y3mm07kyZ1Digi+oCjSHN1bgUuBC4nnTXVGsOm83mWkebpXAvcAZwGfKt4ri3/QdKZz9HAPOBDwGleZcDMrPuaPcN5CHg/6Uf/h6QVAnYB/gR8HrinUQERsQQ4skGeCaX3c0gTOBuKiFtIZzdmZrYZaTbgzAT2Kl5fTLqkNp10ZjMf+GKnKmZmZiNLUwEnIp4EnixeryPdC+fMIaiXmZmNMO1M/HwbsCfwQkQ837kqmZnZSNTKLaY/J+nXwDPAj4BnJT0n6X93vHZmZjZiNLvSwPnAlaT5NCcCk4rnucB3iu1mZmb9NHtJ7fPAxRHxtVL6ncXaZp8nrTxgZma2iWYvqY1l4Lt6LqDOYp5mZmbQfMC5BThlgG0fAW5rrzpmZjZSVbnF9JSat3OBSyRNoP8tpg8A/r7zVTQzs5GgSh/ObfS/lfRewHF18v4L6U6cZmZmm6gScN4+5LUwM7MRr8otpp/JUREzMxvZml5pQNIY0gCBw4FdgP8CHiDdKmB9Z6tnZmYjRVMBR9LuwF3AQaQ7fL4EHEaaf/OEpGMj4nedrqSZmQ1/zQ6Lvgx4K/CBiNg3Ig6LiH2BDxTpl3W6gmZmNjI0G3CmAGdHxE9qE4v3XyEtc2NmZtZPswFna+APA2z7A/CW9qpjZmYjVbMB51HgbEnb1SYW788utpuZmfXT7Ci1s4D7gF9Luos0aGB30iRQAT0drZ2ZmY0YTZ3hRMQi4J3ANcBuwDGkgHMV8M6IeKLjNTQzsxGh8hmOpK2AQ4BfRcQ5Q1clMzMbiZo5w3kduBd4zxDVxczMRrDKASciNgC/AMYPXXXMzGykanaU2leB8yUdOBSVMTOzkavZUWrnkVYUWCTpedIotajNEBGHdKhuZmY2gjQbcH5ePMzMzJpSKeBIGkta1ubnwG+AuyPipaGsmJmZjSxVbjG9L3A3MKEmeZWkj0XEXUNVMTMzG1mqDBq4BNgA/BWwLXAA8Dhw9RDWy8zMRpgqAecw4LyIeCgiXo2IpcBngD+XtOfQVs/MzEaKKgFnT+CXpbSnSWun7dHxGpmZ2YhUdR5ONM5iZmY2sKrDoudJWl8n/Z5yekTs3n61zMxspKkScC4c8lqYmdmI1zDgRIQDjpmZta3ZtdTMzMxa4oBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZllkDziS9pd0j6Q1kl6QdJGkLRvs835J10paXuz3pKQLJG1TyjdTUtR5HD+0R2VmZo00ewO2tkjamXSrgyXAScB+wKWkwHfeILtOLfLOAn4BHAR8vXj+SCnvSqAcYJa2W3czM2tP1oADfBYYC5wSEauA+ZJ2BGZKuqRIq2dWRPyu5n2vpFeBqyXtExHP1GxbHxGPDk31zcysVbkvqZ0AzCsFljmkIHTEQDuVgs1GjxfPXrvNzGwYyB1wJgLLahMi4llgTbGtGX9JujHck6X0nSS9LOk1SY9LOqXl2pqZWccoIt+dByS9Bnw5Iq4opT8HXB8R51YsZw/gZ8AdETG9Jv0TpDOeRcD2pBvFTQE+EhE3D1DWDGAGwPjx4w+eM2dOs4e1idWrV7P99tu3VcZo4bZqbPHzKwEYPxZeWgsH7jWuyzXa/Pl7VV0n2mry5MmPRcSkKnm7EXC+FBHfLqU/D1wXEV+tUMZbSAMP3gYcHBF9g+QV8DAwNiLe26jsSZMmxcKFCxtlG1Rvby89PT1tlTFauK0am3DO7QCcdeB6Ll08hhXfPLHLNdr8+XtVXSfaSlLlgJP7klofsFOd9HHAK412LgLI9cABwJTBgg1ApGh6M3BQo6HXZmY2tHKPUltGqa9G0t7AdpT6dgZwOWk49TERUSX/Rr5jqZlZl+U+w5kLHCdph5q0qcBaYMFgO0r6CvBF4BMR8WCVDyvOiE4GnoiI11urspmZdULuM5yrgDOAmyXNAvYFZgKX1Q6VlrQcWBARpxfvTwMuBq4Dnpd0aE2ZT28cNi1pAXAT6WxpO+DTwKHAh4f2sMzMrJGsASci+iQdBVwJ3Erqt7mcFHTK9artczm2eJ5ePGp9khSIAJYDfwvsSRoy/VPgxIiY24n6m5lZ63Kf4RARS4AjG+SZUHo/nf6Bpt5+p7dRNTMzG0JeLdrMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLLIHHEn7S7pH0hpJL0i6SNKWFfYbJ+laSX2SVkr6gaS31sl3kqTFkl6VtETS1KE5EjMza0bWgCNpZ+BuIICTgIuAs4ALK+x+A9ADfAqYDrwfuKVU/uHATcB9wAnA7cBsScd25ADMzKxlYzJ/3meBscApEbEKmC9pR2CmpEuKtH4kHQYcBxwREfcXac8DP5J0dETcXWT9GnB/RJxRvL9P0gHA+cBdQ3dYZmbWSO5LaicA80qBZQ4pCB3RYL+XNgYbgIj4MfCrYhuStgYmA/9a2ncOcJikce1X38zMWpX7DGcicG9tQkQ8K2lNse3WQfZbVid9abENYD9gqzr5lpIC67uAn7RWbbPhZcI5t/dLW/HNE7tQE7M35Q44OwOv1EnvK7a1st++NXmok6+vtH0TkmYAM4q3qyU9OUg9qtgVeLnNMkYLt1VFZxRtpVmtl9HOvsOMv1fVdaKt9qmaMXfAgTRgoEwDpLeyX/m9BtmfiLgGuKbBZ1cmaWFETOpUeSOZ26o6t1V1bqvqcrdV7j6cPmCnOunjqH8G02i/nWr266tJK+ehQflmZjbEcgecZbzZ5wKApL2B7ajfRzPgfoXavp2ngdfq5JsIbACeaqG+ZmbWIbkDzlzgOEk71KRNBdYCCxrst0cxzwYASZNI/TdzASJiHWn+zUdL+04FHomIle1Xv5KOXZ4bBdxW1bmtqnNbVZe1rRTRqOukgx+WJn4uAX4OzCIFjMuAKyLivJp8y4EFEXF6TdqdpJFmXyKdscwCfhsRf1WT53CgF7iSNCl0SpH/+IjwPBwzsy7KeoYTEX3AUcCWpCHQFwKXAxeUso4p8tSaRjoL+mfgeuAx4ORS+Q8CpwJHA/OADwGnOdiYmXVf1jMcMzMbvbxadB1eYLS6VtpK0vuLdlpe7PekpAskbVPKN1NS1HkcP7RHNTRabKsJA7TBnDp5R/v3aqDvS0j6Sk2+6wbIU29g0mZP0jskXS3pCUmvS+qtuF/236tuzMPZrNUsMLqEtMDofsClpOB83iC7Qlpg9N2kBUY39jPdApT7mW4CvgucQepnmi2pb7hd+mujraYWeWcBvwAOAr5ePH+klHclUA4wS9ute25tfq8g9UU+VPN+k8l6/l4B8D3gzlLah4GzKQYX1VgGfLKUtqK1GnfdAaR/70eBtzSxX/7fq4jwo+YBfIU0p2fHmrS/B9bUptXZ7zDS5NIP1qQdUqQdXZM2D7i3tO8dwIPdPvaMbbVbnbQZRVvtU5M2E3i528fZ5baaULTL/2hQ/qj/Xg1Q1u3A0lLadcDCbh9nB9tri5rXNwK9Ffbpyu+VL6n15wVGq2uprSLid3WSHy+ed+9c9TYrrX6vGvL3qj5JuwDHALM7W73NS0RsaGG3rvxeOeD012+h0Ih4lvTX1WDXeDu1wOhw0mpb1fOXpNP68lp2O0l6WdJrkh6XdErLte2udtvq2uL6/IuSLpM0tmabv1f1nUpql379XcD+klZJWifpQUltBf1hqCu/Vw44/Q3FAqM71+ShTr5BFxjdjLXaVpuQtAfwVeD/lv6qXU66lPIxUt/OC8BNwzTotNpW64B/Ak4nTSm4Gvgcm/6I+ntV3zTgpxFRXmXkcdKNH/8n8HHSFIz5kg5poa7DVVd+rzxooL7NaoHRzVyrbZUySm8hnbKvBv5uk4Ij/qWU91bgYdIN9W5upbJd1nRbRcSLwBdqknolvQR8V9J7I2LRIOWP5u/VnqTLb2f3Kzji26W8t5MGKJxLGmQwWmT/vfIZTn9eYLS6VtsKAEkiTeI9AJgSaWLwgCL1WN4MHFRlmPpmpq22KrmxeH5fTdnUKX9Ufq8KHyP9MN7QKGNErCV1hL+vUd4RpCu/Vw44/XmB0epabauNLicNez0pIqrk32g4/sXeblvVitKzv1f9TSONpPp1E587HL9XrerK75UDTn+jYYHRTmm1rSgm4n0R+ESkJYkaKs6ITgaeiIjXW6ty17TcVnWcWjw/Bv5elUmaABxKxdFpxQCMEyjac5Tozu9Vt8eQb24PUkfYi8B80ppsM0j9C98o5VsOfL+UdifwS+AU0rXgJ4EHSnkOB9YDVwA9wCWkvxaO7fax52or4DTSX5PXkn4Yah+71eRbQJpsdiwp0NxRtNWHun3sGdtqJmnS4ynFfheRfnhv8veq///BIv0c0l/m9eZ7jQMeAD5DGoQxlTRhch0wqdvH3mJ7bUv6I+RU4BHgP2vebztQW3Xj96rrjbU5PoD9gXuL/9gvkmbBb1nKswK4rpS2U/Ej+gqwCvghsGud8j9MWjF7Hen0dVq3jzlnW5Em3sUAj+k1+b5f/IdYC/yx+KE4odvHnLmtpgELSSsu/Kn44bgI2Nrfq/7/B4v0RcCdA5S7Dakf8NdFO60sfngP7fYxt9FWEwb5/zRhoLbqxu+VF+80M7Ms3IdjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZfH/AS+PdwbC0b8LAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHb1JREFUeJzt3Xm0XFWd9vHvA0EIU5gDjTQRHCI0LF+JCP3SciNzeFsG0WShb6/YaNRXhe6FNogIAW1WB5tBF+0Clja8dGtCN9C8zRBCGG6Y1SDB2EnAoAEZRLEviTEhEvJ7/9gnWDm37q1Tw92Ve+/zWatWVe2zz659dir1u+fs4SgiMDMzG2pbdLsCZmY2OjjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmg5A0U1Jv8bpX0swm9++RFOWyBsh7u6TFg2y/SlKfpK0rfvbbJYWk45ups9lQccAx23zMBv5M0oHlDZK2BE4DbomIddlrZtYBDjhmm4//B6wBptXZNhkYTwpKZsOSA45ZiyQdLuk/Jb0o6feSFkn6WKvlRcRq4HZgap3N04CXgfuLz95b0nWSfiFpraSnJV0kaatB6jumuMT2mVL61yX9qpS2r6Qbi0t4ayTNlfSOVo/NDGBMtytgtjmLiJk1r3tKm/cFHgauBl4D/idwnaQNETG72KcXULmsQcwGPirpkIh4HKAIIqcA34uIN4p8uwOvAH8DvApMBC4EdgM+1+RhbkLSbsVxvQzMKI7tPGC+pHf5kp61ygHHrEURMWfja0kCHgDeCnyK1i99zSUFkGnA40XaccAutWVGxCJgUc3nPwysBa6WdFZErG/x8wHOBrYGjoqIV4vyHwFWANOBa9oo20YxX1Iza5GknSV9S9KzwOvFYwbwzlbLLM4e/oN0lqMieSrwLPBYzWdvIelsSUslrS0++/8CY0lBrx1HA/OA1cVluDHASuDHwKQ2y7ZRzAHHrHXXk4LBN4BjgfcB/wxs02a5s4E/BQ6XtA1wEjA7Nl3a/WxgFvDvwIeAQ4Ezi23tfv5uwMf4YxDd+PgAsE+bZdso5ktqZi0oAsGJwOcj4uqa9E78EXcfqf9kGrAXsAP9L9F9BJgTERfUfPbBDcp9A1gPvKWUvkvp/X8DTwCX1CljVYPPMBuQA45Za7YGtgTe7ECXtAPpbKOtm0xFxBuS/p0UVPYGlkbET0rZxtZ+dmHQEXIREZJeAN5dU+ctgQ+Wst5LOqta7AEC1kkOOGYtiIiVkn4EXCBpFbABOJfU17FjBz5iNvB50ui0C+psnw98VtJC4OfAXwETKpT7H8AMSU+S+oU+BWxbyvOPwOnAfZKuAl4E9gSOBHoj4t+aPhozHHDM2nE6cC1wA/Bb4CrSj/fnO1D2o6RRYROAOXW2XwjsSrrsFcBNwN8CtzYo9wJSH80lwB+AbwFLgE9uzBARv5Z0GPD3wJXATsBLwIPAgEvvmDWi3LeYlvR24EvAYcCfAQ/Wmd9Qb79xpC//yaTBDrcDZ0bEb0v5TgK+DryD9JffRRFxYyePwczMmteNUWoHAlOAp4tHVTcCPaS/xKaTRgRt8tecpCOAm0mzsU8A7gBmSzq23UqbmVl7unGGs0VEbChe3wTs1ugMR9LhwCPAkRHxQJF2KPAD4JiIuKdImwdsFREfrNn3TmDHiDhiKI7HzMyqyX6GszHYNOkE4OWNwaYo54fAL4ptFEu2TwbKHZpzSPMZxrVWYzMz64ThMvFzIrCsTvrSYhvA/sBWdfItJR1ny7O/zcysfcNllNrOpPWlyvqA/WryUCdfX2n7JiTNIC1HwtixYw/ZZ5/2JlJv2LCBLbYYLnG8u9xW1bmtqnNbVdeJtnr66adfiYjdq+QdLgEH6k+mU5308nsNkJ4SI64lDW1l0qRJsXDhwnbqSG9vLz09PW2VMVq4rRqbcO4dAJx90HouWzyGFf9wYpdrtPnz96q6TrRVsZZgJcPlz4A+0lyAsp344xlNX01aOQ/UP0MyM7NMhkvAWcYf+2pq1fbtPENaYLCcbyJpFngzQ7DNzKzDhkvAmQvsWcyzAUDSJFL/zVx4c1n3+0nrT9WaCjwaESsz1dXMzOrI3ocjaVvSxE9ICxPuKOm04v2dEbFG0nJgQUScARARjxZzbG6Q9EXSGcss4KGNc3AKXwN6JV1JmhQ6pXgcP+QHZmZmg+rGoIE9SPfwqLXx/dtI60eNIa3EW2sacAXpfiNvLm1TmyEiHiqC19eBz5Lm6ZweEXd3sP5mZtaC7AEnIlbwx5FjA+WZUCftVeATxWOwfW+l8QKGZmaW2XDpwzEzs2HOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCQdIOleSWskvSjpYklbNthnpqQY4PHlmnzXD5Bn4tAfmZmZDWZMzg+TtDNwD7AEOAnYH7iMFPjOH2TX7wB3ldJOBs4B5pbSlwGfKKWtaK3GZmbWKVkDDvAZYCxwakSsAuZL2hGYKenSIq2fiHgeeL42TdJXgWURsaiU/fcR8dgQ1N3MzNqQ+5LaCcC8UmCZQwpCR1YtRNIuwDHA7M5Wz8zMhkrugDORdMnrTRHxHLCm2FbVacBWpGBVdoCkVZLWSXpIUuVAZmZmQ0cRke/DpNeBL0XElaX054EbIuK8iuXcB4yLiENK6WcBfyD1Ee0OnA0cAhwRET8coKwZwAyA8ePHHzJnTr0YVt3q1avZfvvt2ypjtHBbNbb4hZUAjB8LL6+Fg/Ye1+Uabf78vaquE201efLkxyNiUpW8uftwAOpFOA2Q3j+jtBfp8ts5/QqO+GYp7x2k4HMeaZBB/8pEXAtcCzBp0qTo6empUo0B9fb20m4Zo4XbqrHp594BwNkHreeyxWNY8bGe7lZoGPD3qrrcbZX7klofsFOd9HHAqxXL+CgpQN3YKGNErAXuBN5btYJmZjY0cgecZZT6aiTtA2xHqW9nENOAhyLil018br7rhmZmVlfugDMXOE7SDjVpU4G1wIJGO0uaABxGxdFpksaSRsY93mxFzcyss3IHnKuBdcAtko4uOuxnApfXDpWWtFzSd+vsPw1YD9xU3iBpnKQHJX1a0lGSpgL3A3sDlwzBsZiZWROyDhqIiD5JRwFXAbeR+m2uIAWdcr3qLXczDbg3In5TZ9s64DekFQv2AF4DHgWOjIiFHTkAMzNrWfZRahGxBPhggzwTBkh/zyD7vAac2lblzMxsyHi1aDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8uiqYAjqd5yM2ZmZg01e4bzgqRLJb17SGpjZmYjVrMB5xrgNOCnkn4gaYakHYegXmZmNsI0FXAi4sKI2A84BngKuBx4SdL3JB09FBU0M7ORoaVBAxFxX0T8FbAn8AXgXcA8SSskzZT0J52spJmZDX/tjlKbBHyAdNvoPuBB4JPAckkfb7NsMzMbQZoOOJL2lXShpGeAe4G9gL8G/iQi/jewL6mv5xsdramZmQ1rTd2ATdJ9pDOa54Hrgesi4tnaPBHxhqTvA2d1qpJmZjb8NXvHz1eAKcD8iIhB8i0C3tZyrczMbMRp9pLaVcAj9YKNpO0lfQAgIl4vn/mYmdno1mzAuR84YIBt7yq2m5mZ9dNswNEg27YH1rRRFzMzG8Ea9uEUl8l6apI+Ken4UrZtgBOBxZ2rmpmZjSRVBg28nzS5EyCAjwDrS3n+ACwDvtS5qpmZ2UjSMOBExDco5tRI+gVwSkQsGuqKmZnZyNLUsOiI8FBnMzNrSZU+nCnAQxGxqng9qIi4syM1MzOzEaXKGc7twGHAD4vXwcCj1QLwTdrMzKyfKgHnbcBLNa/NzMyaVmXQwLP1XpuZmTWjSh/Ots0UGBGe/GlmZv1UuaS2mtQ3U5X7cMzMrJ8qAeevaS7gmJmZ9VOlD+f6DPUwM7MRrt1bTJuZmVVSZdDAD4HpEbFE0o9ocHktIg7tVOXMzGzkqNKH81/A2prX7s8xM7OmVenD+UTN6+lDWhszMxuxWu7DUbK7pMFuymZmZga0EHAkTZH0CPAa8CvgNUmPSDqx47UzM7MRo6mAI+nTwG2kyaBnkW7Gdlbx/j+L7WZmZv00dT8c4Dzg2oj4bCn9aklXA18BrulIzczMbERp9pLarsAtA2y7GdilUQGSDpB0r6Q1kl6UdLGkQZfDkTRBUtR5zKmT9yRJiyW9JmmJpKmVjszMzIZUs2c49wNHAvPrbDsSeGCwnSXtDNwDLAFOAvYHLiMFvvMrfP4XgYdr3r9SKv8IUuD7NnAmMAWYLakvIu6uUL6ZmQ2RKhM/D6h5+y3gO5J2BW4Ffg3sAZwCnAB8skFxnwHGAqdGxCpgvqQdgZmSLi3SBvNURDw2yPavAg9ExJnF+/slHQhcADjgmJl1UZUznJ+y6WRPAZ8uHuW7f97F4KtFnwDMKwWWOcAs0hnSbRXqU5ekrYHJpDObWnOA6ySNi4iVrZZvZmbtqRJwJnfw8yYC99UmRMRzktYU2xoFnOsk7UI6s5oNfCUiNq6CsD+wFbCstM9S0iW7dwI/aq/6ZmbWqiorDSzo4OftDLxaJ72v2DaQdcA/kS6LrQJ6gHNIQeakmrKpU35fafsmJM0AZgCMHz+e3t7ewerf0OrVq9suY7RwWzV29kHrARg/Nr12ezXm71V1uduq2UEDb5K0BbBNOb3CHT/rrcWmAdI3lvkS8PmapF5JLwPflvSeiFg0SPkaIH1j2dcC1wJMmjQpenp6Bq99A729vbRbxmjhtmps+rl3ACnYXLZ4DCs+1tPdCg0D/l5Vl7utmp34KUnnSFoOvA78rs5jMH3ATnXSx1H/zGcwNxXP760pmzrlb3zfbPlmZtZBzc7DORM4F/gu6czh74GLgaeBFRSXpgaxjNRX8yZJ+wDb0b/vpZEoPT9DCoITS/kmAhuKOpqZWZc0G3A+BVwIXFq8vzUiLgIOJAWMdzTYfy5wnKQdatKmkm5/0Gxf0WnF8+MAEbGONE/oI6V8U4FHPULNzKy7mu3DeRuwKCLekPQ6xeWqiNgg6dvAd0hnQAO5mnSWdIukWcB+wEzg8tqh0sUluwURcUbxfiawA2nS5yrgA8CXgFsi4ic15X+N1L9zJWme0JTicXyTx2lmZh3W7BnOb4Hti9fPAf+jZtvOpEmdA4qIPuAo0lyd24CLgCtIZ021xrDpfJ5lpHk61wF3AqcD3yiea8t/iHTmczQwD/gQcLpXGTAz675mz3AeBt5H+tH/PmmFgF2APwCfA+5tVEBELAE+2CDPhNL7OaQJnA1FxK2ksxszM9uMNBtwZgJ7F68vIV1Sm046s5kPfKFTFTMzs5GlqYATEU8BTxWv15HuhXPWENTLzMxGmHYmfr4V2At4MSJe6FyVzMxsJGrlFtOflfRL4FngB8Bzkp6X9H86XjszMxsxml1p4ALgKtJ8mhOBScXzXOBbxXYzM7N+mr2k9jngkoj4ain9rmJts8+RVh4wMzPbRLOX1MYy8F09F1BnMU8zMzNoPuDcCpw6wLYPA7e3Vx0zMxupqtxiekrN27nApZIm0P8W0wcCf9f5KpqZ2UhQpQ/ndvrfSnpv4Lg6ef+VdCdOMzOzTVQJOG8b8lqYmdmIV+UW08/mqIiZmY1sTa80IGkMaYDAEcAuwH8DD5JuFbC+s9UzM7ORoqmAI2kP4G7gYNIdPl8GDifNv3lS0rER8ZtOV9LMzIa/ZodFXw7sCrw/IvaLiMMjYj/g/UX65Z2uoJmZjQzNBpwpwDkR8aPaxOL9l0nL3JiZmfXTbMDZGvjdANt+B7ylveqYmdlI1WzAeQw4R9J2tYnF+3OK7WZmZv00O0rtbOB+4JeS7iYNGtiDNAlUQE9Ha2dmZiNGU2c4EbEIeAdwLbA7cAwp4FwNvCMinux4Dc3MbESofIYjaSvgUOAXEXHu0FXJzMxGombOcN4A7gPePUR1MTOzEaxywImIDcDPgPFDVx0zMxupmh2l9hXgAkkHDUVlzMxs5Gp2lNr5pBUFFkl6gTRKLWozRMShHaqbmZmNIM0GnJ8WDzMzs6ZUCjiSxpKWtfkp8Cvgnoh4eSgrZmZmI0uVW0zvB9wDTKhJXiXpoxFx91BVzMzMRpYqgwYuBTYAfwFsCxwIPAFcM4T1MjOzEaZKwDkcOD8iHo6I1yJiKfBp4E8l7TW01TMzs5GiSsDZC/h5Ke0Z0tppe3a8RmZmNiJVnYcTjbOYmZkNrOqw6HmS1tdJv7ecHhF7tF8tMzMbaaoEnIuGvBZmZjbiNQw4EeGAY2ZmbWt2LTUzM7OWOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRbZA46kAyTdK2mNpBclXSxpywb7vE/SdZKWF/s9JelCSduU8s2UFHUexw/tUZmZWSPN3oCtLZJ2Jt3qYAlwErA/cBkp8J0/yK5Ti7yzgJ8BBwNfK54/XMq7EigHmKXt1t3MzNqTNeAAnwHGAqdGxCpgvqQdgZmSLi3S6pkVEb+ped8r6TXgGkn7RsSzNdvWR8RjQ1N9MzNrVe5LaicA80qBZQ4pCB050E6lYLPRE8Wz124zMxsGcgecicCy2oSIeA5YU2xrxp+Tbgz3VCl9J0mvSHpd0hOSTm25tmZm1jGKyHfnAUmvA1+KiCtL6c8DN0TEeRXL2RP4CXBnREyvSf846YxnEbA96UZxU4APR8QtA5Q1A5gBMH78+EPmzJnT7GFtYvXq1Wy//fZtlTFauK0aW/zCSgDGj4WX18JBe4/rco02f/5eVdeJtpo8efLjETGpSt5uBJwvRsQ3S+kvANdHxFcqlPEW0sCDtwKHRETfIHkFPAKMjYj3NCp70qRJsXDhwkbZBtXb20tPT09bZYwWbqvGJpx7BwBnH7SeyxaPYcU/nNjlGm3+/L2qrhNtJalywMl9Sa0P2KlO+jjg1UY7FwHkBuBAYMpgwQYgUjS9BTi40dBrMzMbWrlHqS2j1FcjaR9gO0p9OwO4gjSc+piIqJJ/I9+x1Mysy3Kf4cwFjpO0Q03aVGAtsGCwHSV9GfgC8PGIeKjKhxVnRKcAT0bEG61V2czMOiH3Gc7VwJnALZJmAfsBM4HLa4dKS1oOLIiIM4r3pwOXANcDL0g6rKbMZzYOm5a0ALiZdLa0HfAp4DDg5KE9LDMzayRrwImIPklHAVcBt5H6ba4gBZ1yvWr7XI4tnqcXj1qfIAUigOXA3wB7kYZM/xg4MSLmdqL+ZmbWutxnOETEEuCDDfJMKL2fTv9AU2+/M9qompmZDSGvFm1mZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFtkDjqQDJN0raY2kFyVdLGnLCvuNk3SdpD5JKyV9T9KudfKdJGmxpNckLZE0dWiOxMzMmpE14EjaGbgHCOAk4GLgbOCiCrvfCPQAnwSmA+8Dbi2VfwRwM3A/cAJwBzBb0rEdOQAzM2vZmMyf9xlgLHBqRKwC5kvaEZgp6dIirR9JhwPHAUdGxANF2gvADyQdHRH3FFm/CjwQEWcW7++XdCBwAXD30B2WmZk1kvuS2gnAvFJgmUMKQkc22O/ljcEGICJ+CPyi2IakrYHJwL+V9p0DHC5pXPvVNzOzVuUOOBOBZbUJEfEcsKbYVnm/wtKa/fYHtqqTbynpON/ZQn3NzKxDcl9S2xl4tU56X7Gtlf32q8lDnXx9pe2bkDQDmFG8XS3pqUHqUcVuwCttljFauK0qOrNoK83qdk2GBX+vqutEW+1bNWPugANpwECZBkhvZb/yew2yPxFxLXBtg8+uTNLCiJjUqfJGMrdVdW6r6txW1eVuq9yX1PqAneqkj6P+GUyj/Xaq2a+vJq2chwblm5nZEMsdcJZR6quRtA+wHfX7aAbcr1Dbt/MM8HqdfBOBDcDTLdTXzMw6JHfAmQscJ2mHmrSpwFpgQYP99izm2QAgaRKp/2YuQESsI82/+Uhp36nAoxGxsv3qV9Kxy3OjgNuqOrdVdW6r6rK2lSIadZ108MPSxM8lwE+BWaSAcTlwZUScX5NvObAgIs6oSbuLNNLsi6QzllnAryPiL2ryHAH0AleRJoVOKfIfHxGeh2Nm1kVZz3Aiog84CtgSuI20wsAVwIWlrGOKPLWmkc6C/hm4AXgcOKVU/kPAacDRwDzgQ8DpDjZmZt2X9QzHzMxGL68WXYcXGK2ulbaS9L6inZYX+z0l6UJJ25TyzZQUdR7HD+1RDY0W22rCAG0wp07e0f69Guj7EpK+XJPv+gHyDDb5fLMl6e2SrpH0pKQ3JPVW3C/771U35uFs1moWGF1CWmB0f+AyUnA+f5BdIS0w+i7SAqMb+5luBcr9TDcD3wbOJPUzzZbUN9wu/bXRVlOLvLOAnwEHA18rnj9cyrsSKAeYpe3WPbc2v1eQ+iIfrnm/yWQ9f68A+A5wVyntZOAcisFFNZYBnyilrWitxl13IOnf+zHgLU3sl//3KiL8qHkAXybN6dmxJu3vSMvv7DjIfoeTJpd+oCbt0CLt6Jq0ecB9pX3vBB7q9rFnbKvd66TNKNpq35q0mcAr3T7OLrfVhKJd/leD8kf992qAsu4AlpbSrgcWdvs4O9heW9S8vgnorbBPV36vfEmtPy8wWl1LbRURv6mT/ETxvEfnqrdZafV71ZC/V/VJ2gU4Bpjd2eptXiJiQwu7deX3ygGnPy8wWl2rbVXPn5NO68tr2e0k6RVJr0t6QtKpLde2u9ptq+uK6/MvSbpc0tiabf5e1XcaqV369XcBB0haJWmdpIcktRX0h6Gu/F454PQ3FAuM7lyThzr5Bl1gdDPWalttQtKewFeAfyn9VbucdCnlo6S+nReBm4dp0Gm1rdYB/wScQZpScA3wWTb9EfX3qr5pwI8jorzKyBOkGz/+JfAx0hSM+ZIObaGuw1VXfq88aKC+zWqB0c1cq22VMkpvIZ2yrwb+dpOCI/61lPc24BHSDfVuaaWyXdZ0W0XES8Dna5J6Jb0MfFvSeyJi0SDlj+bv1V6ky2/n9Cs44pulvHeQBiicRxpkMFpk/73yGU5/XmC0ulbbCgBJIk3iPRCYEmli8IAi9VjeAhxcZZj6Zqattiq5qXh+b03Z1Cl/VH6vCh8l/TDe2ChjRKwldYS/t1HeEaQrv1cOOP15gdHqWm2rja4gDXs9KSKq5N9oOP7F3m5b1YrSs79X/U0jjaT6ZROfOxy/V63qyu+VA05/o2GB0U5pta0oJuJ9Afh4pCWJGirOiE4BnoyIN1qrcte03FZ1nFY8Pw7+XpVJmgAcRsXRacUAjBMo2nOU6M7vVbfHkG9uD1JH2EvAfNKabDNI/QtfL+VbDny3lHYX8HPgVNK14KeAB0t5jgDWA1cCPcClpL8Wju32sedqK+B00l+T15F+GGofu9fkW0CabHYsKdDcWbTVh7p97BnbaiZp0uOpxX4Xk354b/b3qv//wSL9XNJf5vXme40DHgQ+TRqEMZU0YXIdMKnbx95ie21L+iPkNOBR4L9q3m87UFt14/eq6421OT6AA4D7iv/YL5FmwW9ZyrMCuL6UtlPxI/oqsAr4PrBbnfJPJq2YvY50+jqt28ecs61IE+9igMf0mnzfLf5DrAV+X/xQnNDtY87cVtOAhaQVF/5Q/HBcDGzt71X//4NF+iLgrgHK3YbUD/jLop1WFj+8h3X7mNtoqwmD/H+aMFBbdeP3yot3mplZFu7DMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLL4//KrchOXdrcZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -332,7 +332,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuUHVWZ/vHvkwQhcr8loIM0AZEhwcU4AeG3GEkCyHUJIpjIMC4kCDIM6AgjoKDhMkqQBGdABZZcdFCCA0xmCJcYSDqAihIETLgEAwQwQAgQCDEBuby/P3Y1nJyc7j63rtN1+vmsdVZ37dpV592nuvvt2rVrlyICMzOzvjao1QGYmdnA4IRjZma5cMIxM7NcOOGYmVkunHDMzCwXTjhmZpYLJxxrKkmTJEU3r6Or3MeO2X42KSs/JtvPBn0TfXVxNLjPGyR1VlFviKSvSXpI0mpJyyXdKmmvOt+3v3ymx5T9TLwoaaakT1Sx7Zhsm1F5xGrN54RjfeE1YM8Kr9ur3H5H4DtA+R/6W7L9rGpOmHXH0ackDQamA98F/g84CDgGeAfolHRUHbvtL59pl3HZ+54AbAnMkfShXrb5Q7bNE30cm/WRIa0OwNrS2xFxb7N3GhHLgGXN3m8/dDJwMHBgRJQm6f+VNA24QtLciFjS6Bu18DO9LyJWAkiaBzwN/CPw/fKKkgSsGxErgKb/XFl+fIZjLSHpTEmLJL0haamk2yVtJWkMcHNW7amsC2Vxts0a3T+SOrLlCZKulrRC0p+7uu4kfUPSc5KWSZosaVDJ++8kaZqkZyWtkvRw1oU1KFvfbRzZ+o9k27+SbT9T0sfK2rhN1g22WtJiScdV+fF8FZhTlmy6fAtYD5hY8j6LJV0k6WxJL0haKennkjburS2VutQkbSHpp5JeztrWKWl0Wdu63vNfs898efZ51Hw2GBHPkpJeR7bvSZJekrSXpPuAN4AjK3WpSRqc/Sw9LunNLJZrymI9VNK87GftBUkXSlqn1jitcT7DsT4haa2frYh4O1v3ReCbwOnAw8DmpC6W9UndJqcBFwGHA88Db/bydpOBnwOfA44Ffirp74Bts+W/B84HHgCmZdt8GFiYbfc6sCtwDjAU+F5PcUjaDLgHeBn4Cqk76gzgDkk7RsTq7L/y/wW2ICWHN7L9bwb8qYfPbRvSH96LK62PiCckzQc+VbbqC8Ai4MvA1sCFwE+AI3tqSzemAztk27wE/Bupy+vvImJRSb3PA38Ejgf+BphK6gb85x72vRZJG5I+lxdKij8I/DRrx+PAc1m7yl0OfDGrNzfbzxEl+/48cF1W75vA9qTjOyhrn+UpIvzyq2kvYBIQ3bw6sjqXAjf2sI9DSuuXlB+TlW+QLXdky1eX1NkIeIv0R31wSfnvgeu7eT+R/vn6JvBkFXGcR0o2m5WUbUq6dnVStnxQtu0nS+psC7wNdPbQ9j2y7Q7toc504NGS5cXAK12fS1b2j8C7wN/W+JkekC3vXVJnfdIZyOVl7/kEMKSk7AfAC738fHS938bZZ74NcH32uexa9jN0aNm2Y7LyUdnyTtnyKT0c16dLfz6y8mOB1cDmrf59GWgvn+FYX3gN2LdC+XPZ1weBiZLOIV20vj8i3mng/e7s+iYiVkhaBswt2+ci4CNdC5LWA84k/WH+CLBOybohkZ2NdWNfYBawouRM7nXgfqCr62l3YGlE/K4ktqcl3V9H+6oxK7JrIpmbgGuB3YBHa9jP7sCyiJjbVRARf5E0AygfITen7HN6BBgm6QMR8dde3ufVku9fAo6NiAdLygK4rZd9jM2+XtPN+h1Jx/aXZWfcs0ndkqNIZ0WWEycc6wtvR8S8HtZfBWxI6or5NvCypB8Dk+pMPK+WLf+1m7L1SpYnA8eRurn+kNU/FDgrq7eS7m1BOhMZX2FdV/LbCnixwvoXSW3vTtdAgG17qLNtSb3S/b4nUrfeSip3Q/Vka2BphfKlpO6qUpU+YwEfyL7vyadIXZEvAc9GxLtl65dXkbQ2B/4SaTBBJVtkX2/tZv02vezfmswJx3KX/XG5GLg4u2bxj8C/k/6IXpZTGEcCl0TEhV0Fkg6ucttXSMOVz6uw7vXs6wvAsArrh5G6cyqKiGezC/qfAf6zfL2k7Uj/mZe/97CyekOBDUjXa2rxfPm+MsNJ7W6WB8rOyMpV89yUl4H1JW3UTdLpivd40vW7ck9V8R7WRB6lZi0VEc9GxAWkLq+ds+Ku/2zXq7xVUwyl5MK50r0vE8rqdBfHncBI4OGImFf2WpjVuQ8YLumTJe/xEaDXGxyB/wD2kfTpCuvOz+K+sqx8P6158+bhpD/aXWea1X6mvyN1i703KEHSB0nDtO+pIvY8zc6+frGb9QtJ/8R0VDhO8yLi5XzCtC4+w7G+METSHhXKn42IJZIuJ/33eS/pes9Y4KOkUWuQ/lAAnKB038mqiJjf5BhnASdJWpTFchKwblmd7uKYChwNzJZ0CemP2nBgb+CeiLiO1I3zEPDfkk4njVI7l8rdbOUuIV0n+h9JFwGdpG64iaSL//8Ua9+Dsxq4RdL3Sd1i3wf+JyIe6aUta4iImZJ+DVwv6QzSWcRppAS91j0yrRQRCyVdAUyRNAy4i3Rj6xERMSEi3pV0KvBfkjYiXRP6KzACOCyrl/cNrwNbq0ct+NVeL3oepXZWVucY4NekP/SrSENrJ5bt51TSCKO3gcUl21UapXZI2baLgYvKyq4B5pUsDwf+B1hBuj5xIWlI8Xv77y6OrPxDwNXZtm9m73ktMLKkzkdIsyuszvZxAnADPYxSK9l2CPCv2WezGlhO+oO5V4W6i4Ep2We/FPgLaSjwJrV+plnZlsDPsvdcTbqwvlsVn/Fa+6oQazV1JgEvVSgfQ8kotaxsMNnoQlIy+TNrj0o7ELg7+1xWkAatnE/JCDu/8nkpOyC5kbQDaVz/HqS+6LsjYkwV221MGnZ5GKkrcAZpOOTLZfUOJf0wfZT0Q3hORFzfzDaY9SfZNZ8bIsL3lVi/1oprOCNJ9yg8nr2qdT3pP5zjSP8l7Ua6H+E9ShMb3gjMIf1XcwtwXTd94WZmlqNWnOEMimwIpKQbgC16O8ORtCfwG9LNaHdlZbuTLnDuFxF3ZGUzgXUiYlzJtrcCG0VEXbPsmvV3PsOxosj9DCfWHm9fjQNJN9HdVbKf35OGNR4IIGld0sXnX5ZtOw3Ys2teKbN2ExEdTjZWBEUZFr0T8FiF8kezdZDmSFqnQr1HSe3csc+iMzOzXhVlWPSmrH1XM6RRNCNK6lCh3vKy9WuQdDzpxjCGDh3699tsU+ybj999910GDSrK/xGNGUht3fDxdLnz9R3b//+mgXRc26Gtjz/++EsRsWU1dYuScKDynceqUF6+rB62JyKuAK4AGD16dMyb19OMLP1fZ2cnY8aMaXUYuRgIbe044xYAFk4+JBUsXNhD7fYwEI5rl3Zoq6Snq61blNS6nMpPXdyE989olpeUldeBymdIZmaWk6IknMd4/1pNqdJrO0+QpqUvr7cTaZr2WoZgm5lZkxUl4dwGbJXdZwNA9gTCEdk6IuJN0v03R5ZtOx74bUS8llOsZmZWQe7XcLKJAA/KFj8MbCSp6wl9t0bEqmx+q7kRMREgIn6b3WPzM0mnkc5YJpPmrbqjZPfnAZ2SfkC6KfSg7HVAnzfMzMx61IpBA8OA/y4r61rejjRH0xDSHEmlJpCmtL+KkqltSitExD1Z8jofOJF0n85REfGrJsZvlrtLrp3OlPlDWNzqQMwakHvCiYjFvD9yrLs6HRXKXgW+lL162nY6ZVPemJlZ6xXlGo6ZmRVcke7DMRuwxp/1dcasFlxQ7UNJzfofJxyzAhi2+MmKz302KxJ3qZmZWS6ccMzMLBdOOGZmlgsnHDMzy4UTjpmZ5cKj1MwKYMHY/fjjK4M4qtWBmDXACcesAOZMPIkp84c44VihuUvNzMxy4TMcswLY8qlFjHrBv65WbD7DMSuACWefxoyffq3VYZg1xAnHzMxy4YRjZma5cMIxM7NcOOGYmVkunHDMzCwXTjhmZpYLD+w3K4Bp513EtYuGMKPVgZg1wAnHrACWbbcDC1b619WKzV1qZmaWC//LZFYAY6/8IZu/MgguOLjVoZjVzQnHrABGzZnFqFYHYdYgd6mZmVkunHDMzCwXTjhmZpYLJxwzM8uFE46ZmeXCo9TMCuDFjhEsXS12aXUgZg1wwjErgOvPn8qU+UNY3OpAzBrgLjUzM8uFE46ZmeXCCcesAE4++jAWTz6k1WGYNcQJx8zMcuGEY2ZmuXDCMTOzXDjhmJlZLpxwzMwsF044ZmaWC880YFYAs489kVlLBvO9Vgdi1gCf4ZgVwMPj9ue6XQ9odRhmDck94UjaWdKdklZJek7SuZIG97LNJEnRzevMknrXdFNnp75vmZmZ9STXLjVJmwJ3AI8AhwLbA1NIie+sHjb9CXB7WdlhwOnAbWXljwFfKitbXF/EZv3DyNkz+cKSwcDBrQ7FrG55X8P5CjAUODwiVgCzJG0ETJJ0YVa2loj4M/Dn0jJJZwOPRcSDZdX/EhH39kHsZi0z7qofMw6AS1ociVn98u5SOxCYWZZYppGS0N7V7kTSZsB+wHXNDc/MzPpK3glnJ1KX13si4hlgVbauWkcA65CSVbmdJa2Q9KakeyRVncjMzKzv5N2ltinwaoXy5dm6ak0A/hARj5eVPwD8jnSNaEvgVFK33V4R8ftKO5J0PHA8wPDhw+ns7KwhjP5n5cqVhW9DtQZCW0/d5e01ltu9vTAwjmuXgdRWaM19OFGhTN2Ur11R2prU/Xb6WjuO+I+yureQks83SYMM1g4m4grgCoDRo0fHmDFjqgmj3+rs7KTobajWQGjrMWfcAsDJ2XK7txcGxnHtMpDaCvl3qS0HNqlQvjGVz3wq+TwpQV3fW8WIWA3cCnyi2gDNzKxv5J1wHqPsWo2kbYD1Kbu204MJwD0R8WwN71vV2ZOZmfWdvBPObcD+kjYsKRsPrAbm9raxpA5gD6ocnSZpKGlk3P21BmrWn1xy7XQ6Tp/R6jDMGpJ3wrkMeBO4SdK+2QX7ScDU0qHSkhZJurLC9hOAt4EbyldI2ljS3ZJOkLSPpPHAHODDwHf7oC1mZlaDXAcNRMRySfsAlwI3k67bXExKOuVxVZruZgJwZ0Qsq7DuTWAZacaCYcAbwG+BvSNiXlMaYGZmdct9lFpEPALZTdPd1+nopnzXHrZ5Azi8oeDM+qnxZ32dMasFF3hqGysuP57ArACGLX6SYa0OwqxBfjyBmZnlwgnHzMxy4YRjZma5cMIxM7NcOOGYmVkuPErNrAAWjN2PP74yiKNaHYhZA5xwzApgzsSTmDJ/iBOOFZq71MzMLBc1neFIGhwR7/RVMGZW2ZZPLWLUC+6QsGKr9QxniaQLJf1tn0RjZhVNOPs0Zvz0a60Ow6whtSacy4EjgAWSfifpeEkb9UFcZmbWZmpKOBHxnYgYAewHLASmAs9L+rmkffsiQDMzaw91DRqIiNkR8UVgK9Lj1j8GzJS0WNIkSR9qZpBmZlZ8jY5SGw18ivTY6OXA3cBxwCJJRze4bzMzayM1JxxJ20r6jqQngDuBrYFjgQ9FxD8B25Ku9Xy/qZGamVmh1TosejbpjObPwDXA1RHxdGmdiHhH0i+ArzYrSDMzK75aB/a/BBwEzIqI6KHeg8B2dUdlZmuYdt5FXLtoCDNaHYhZA2pNOJcCf6iUbCRtAHwiIu6KiLeAp9fa2szqsmy7HViw0jd+WrHVeg1nDrBzN+s+lq03MzNbS63/MqmHdRsAqxqIxcy6MfbKH7L5K4PggoNbHYpZ3XpNOJI+BYwpKTpO0gFl1dYDDgbmNy80M+syas4sRrU6CLMGVXOG80nSzZ0AARwJvF1W56/AY8C/NS80MzNrJ70mnIj4Ptk9NZKeAj4bEQ/2dWBmZtZearqGExEe6mxmZnWp5hrOQcA9EbEi+75HEXFrUyIzM7O2Us0ZzgxgD+D32fdB96PVAhjcnNDMzKydVJNwtgOeL/nezHL2YscIlq4Wu7Q6ELMGVDNo4OlK35tZfq4/fypT5g9hcasDMWtANddwPljLDiPCN3+amdlaqulSW0m6NlMtX8MxM7O1VJNwjqW2hGNmTXby0Yelu68v8K+iFVc113CuySEOMzNrc40+YtrMzKwq1Qwa+D1wTEQ8Iuk+eulei4jdmxWcmZm1j2qu4TwMrC753p3IZmZWs2qu4Xyp5Ptj+jQaMzNrW3Vfw1GypaSeHspmZmYG1JFwJB0k6TfAG8ALwBuSfiPJjyI06yOzjz2RM/f/l1aHYdaQmhKOpBOAm0k3g36V9DC2r2bL/5etN7Mme3jc/ly3a/mDds2Kpabn4QDfBK6IiBPLyi+TdBnwLeDypkRmZmZtpdYutc2Bm7pZdyOwWW87kLSzpDslrZL0nKRzJfU4HY6kDklR4TWtQt1DJc2X9IakRySNr6plZv3YyNkz+cKDt7c6DLOG1HqGMwfYG5hVYd3ewF09bSxpU+AO4BHgUGB7YAop8Z1VxfufBvy6ZPmlsv3vRUp8PwJOAQ4CrpO0PCJ+VcX+zfqlcVf9mHEAXNLiSMzqV82NnzuXLP4n8BNJmwPTgReBYcBngQOB43rZ3VeAocDhEbECmCVpI2CSpAuzsp4sjIh7e1h/NnBXRJySLc+RNBL4NuCEY2bWQtWc4SxgzZs9BZyQvcqf/nk7Pc8WfSAwsyyxTAMmk86Qbq4inookrQuMJZ3ZlJoGXC1p44h4rd79m5lZY6pJOGOb+H47AbNLCyLiGUmrsnW9JZyrJW1GOrO6DvhWRHTNgrA9sA7wWNk2j5K67HYE7mssfDMzq1c1Mw3MbeL7bQq8WqF8ebauO28CPyR1i60AxgCnk5LMoSX7psL+l5etX4Ok44HjAYYPH05nZ2dP8fd7K1euLHwbqjUQ2nrqLm+vsdzu7YWBcVy7DKS2Qu2DBt4jaRCwXnl5FU/8rDQXm7op79rn80DpXW+dkpYCP5K0a0Q82MP+1U15176vAK4AGD16dIwZM6bn6Pu5zs5Oit6Gag2Eth5zxi0A6Vk40PbthYFxXLsMpLZC7Td+StLpkhYBbwGvV3j1ZDmwSYXyjal85tOTG7KvnyjZNxX237Vc6/7NzKyJar0P5xTgDOBK0pnDvwPnAo8Di8m6pnrwGOlazXskbQOsz9rXXnoTZV+fICXBncrq7QS8m8VoVkiXXDudjtNntDoMs4bUmnC+DHwHuDBbnh4R5wAjSQnjo71sfxuwv6QNS8rGkx5/UOu1oiOyr/cDRMSbpPuEjiyrNx74rUeomZm1Vq3XcLYDHoyIdyS9RdZdFRHvSvoR8BPSGVB3LiOdJd0kaTIwApgETC0dKp112c2NiInZ8iRgQ9JNnyuATwH/BtwUEX8s2f95pOs7PyDdJ3RQ9vIkVGZmLVbrGc7LwAbZ988Af1eyblPSTZ3diojlwD6ke3VuBs4BLiadNZUawpr38zxGuk/nauBW4Cjg+9nX0v3fQzrz2ReYCXwGOMqzDFjRjT/r69x8zVdbHYZZQ2o9w/k1sBvpj/4vSDMEbAb8FTgJuLO3HUTEI5DN0tF9nY6y5WmkGzh7FRHTSWc3Zm1j2OInGdbqIMwaVGvCmQR8OPv+u6QutWNIZzazeH/0ppmZ2RpqSjgRsRBYmH3/JulZOD7PNzOzXjVy4+ffAFsDz0XEkuaFZGZm7aieR0yfKOlZ4Gngd8Azkv4s6Z+bHp2ZmbWNWmca+DZwKel+moOB0dnX24D/zNabmZmtpdYutZOA70bE2WXlt2dzm51EmnnAzJpowdj9+OMrg9a8D8CsYGrtUhtK90/1nEuFyTzNrHFzJp7ENw/wIFArtloTznTg8G7WfQ7wZE9mZlZRNY+YPqhk8TbgQkkdrP2I6ZHAN5ofoplt+dQiRr1Q96BSs36hmp/gGaz9KOkPA/tXqHst6UmcZtZEE84+jQkAnt7GCqyahLNdn0dhZmZtr5pHTD+dRyBmZtbeau4UljSENEBgL2Az4BXgbtKjAt7uaVszMxu4ako4koYBvwI+TnrC51JgT9L9Nw9J+nRELGt2kGZmVny1DoueCmwOfDIiRkTEnhExAvhkVj612QGamVl7qDXhHAScHhH3lRZmy2eSprkxMzNbS63XcNYFXu9m3evABxoLx8wqmXbeRVy7aIjvrLZCq/UM517gdEnrlxZmy6dn682syZZttwMLttqh1WGYNaTWM5xTgTnAs5J+RRo0MIx0E6iAMU2NzszM2kZNZzgR8SDwUeAKYEtgP1LCuQz4aEQ81PQIzYyxV/6Q795+SavDMGtI1Wc4ktYBdgeeiogz+i4kMys3as4sRrU6CLMG1XKG8w4wG/jbPorFzMzaWNUJJyLeBf4EDO+7cMzMrF3VOkrtW8C3Je3SF8GYmVn7qnWU2lmkGQUelLSENEotSitExO5Nis3MzNpIrQlnQfYyMzOrSVUJR9JQ0rQ2C4AXgDsiYmlfBmZm73uxYwRLVwv3ZVuRVfOI6RHAHUBHSfEKSZ+PiF/1VWBm9r7rz5/KlPlDWNzqQMwaUM2ggQuBd4F/AD4IjAQeAC7vw7jMzKzNVJNw9gTOiohfR8QbEfEocALwEUlb9214ZmbWLqpJOFsDT5aVPUGaO22rpkdkZms5+ejDWDz5kFaHYdaQau/Did6rmJmZda/aYdEzJb1dofzO8vKIGNZ4WGZm1m6qSTjn9HkUZmbW9npNOBHhhGNmZg2rdS41MzOzujjhmJlZLmqdS83MWmD2sScya8lgvtfqQMwa4DMcswJ4eNz+XLfrAa0Ow6whTjhmZpYLd6mZFcDI2TP5wpLBwMGtDsWsbrmf4UjaWdKdklZJek7SuZIG97LNbpKulrQo226hpO9IWq+s3iRJUeHlvggrtHFX/Zjvzby01WGYNSTXMxxJm5IedfAIcCiwPTCFlPjO6mHT8VndycCfgI8D52VfP1dW9zWgPME82mjsZmbWmLy71L4CDAUOj4gVwCxJGwGTJF2YlVUyOSKWlSx3SnoDuFzSthHxdMm6tyPi3r4J38zM6pV3l9qBwMyyxDKNlIT27m6jsmTT5YHsq+duMzMrgLwTzk7AY6UFEfEMsCpbV4v/R3ow3MKy8k0kvSTpLUkPSDq87mjNzKxp8u5S2xR4tUL58mxdVSRtBXwL+K+ys6VFwDeAB4ENSA+Ku1HS5yLipm72dTxwPMDw4cPp7OysNox+aeXKlYVvQ7UGQltP3WXNSdrbvb0wMI5rl4HUVgBF5PeoG0lvAadFxH+UlS8BromIb1Wxjw+QBh78DfD3EbG8h7oCfgMMjYhde9v36NGjY968eb1V69c6OzsZM2ZMq8PIxUBoa8cZtwC8//C1HH9fW2UgHNcu7dBWSfdHxOhq6ubdpbYc2KRC+cZUPvNZQ5ZAfgaMBA7qKdkARMqmNwEf723otVl/dsm10+k4fUarwzBrSN5dao9Rdq1G0jbA+pRd2+nGxaTh1PtFRDX1u7T/v4VmZv1c3mc4twH7S9qwpGw8sBqY29OGks4ETgaOjoh7qnmz7Izos8BDEfFOfSGbmVkz5H2GcxlwCnCTpMnACGASMLX04r+kRcDciJiYLR8FfBe4BlgiaY+SfT7RNWxa0lzgRtLZ0vrAl4E9gMP6tllmfWv8WV9nzGrBBZ7axoor14QTEcsl7QNcCtxMum5zMSnplMdVes3l09nXY7JXqS+REhGkUWpfA7YmDZn+A3BwRNzWjPjNWmXY4id9w5kVXu6Td0bEI8C4Xup0lC0fw9qJptJ2ExsIzczM+pAfT2BmZrlwwjEzs1w44ZiZWS6ccMzMLBd+4qdZASwYux9/fGUQR7U6ELMGOOGYFcCciScxZf4QJxwrNHepmZlZLnyGY1YAWz61iFEv+NfVis1nOGYFMOHs05jx06+1OgyzhjjhmJlZLpxwzMwsF044ZmaWCyccMzPLhROOmZnlwgnHzMxy4YH9ZgUw7byLuHbREGa0OhCzBjjhmBXAsu12YMFK/7pasblLzczMcuF/mcwKYOyVP2TzVwbBBQe3OhSzujnhmBXAqDmzGNXqIMwa5C41MzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7NceJSaWQG82DGCpavFLq0OxKwBTjhmBXD9+VOZMn8Ii1sdiFkD3KVmZma5cMIxM7NcOOGYFcDJRx/G4smHtDoMs4Y44ZiZWS6ccMzMLBdOOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcuGZBswKYPaxJzJryWC+1+pAzBrgMxyzAnh43P5ct+sBrQ7DrCFOOGZmlgt3qZkVwMjZM/nCksHAwa0OxaxuTjhmBTDuqh8zDoBLWhyJWf3cpWZmZrnIPeFI2lnSnZJWSXpO0rmSBlex3caSrpa0XNJrkn4uafMK9Q6VNF/SG5IekTS+b1piZma1yDXhSNoUuAMI4FDgXOBU4JwqNr8eGAMcBxwD7AZML9v/XsCNwBzgQOAW4DpJn25KA8zMrG55X8P5CjAUODwiVgCzJG0ETJJ0YVa2Fkl7AvsDe0fEXVnZEuB3kvaNiDuyqmcDd0XEKdnyHEkjgW8Dv+q7ZpmZWW/y7lI7EJhZllimkZLQ3r1st7Qr2QBExO+Bp7J1SFoXGAv8smzbacCekjZuPHwzM6tX3mc4OwGzSwsi4hlJq7J1N/ew3WMVyh/N1gFsD6xTod6jpMS6I3BffWGbFU/HGbessbz4Ag+pttbKO+FsCrxaoXx5tq6e7UaU1KFCveVl69cg6Xjg+GxxpaSFPcRRBFsAL7U6iJwMmLaqq61S/fuY3Lx4+tiAOa60R1u3rbZiK+7DiQpl6qa8nu3Kl9VNeSqMuAK4opf3LgxJ8yJidKvjyIPb2p7c1vaV9zWc5cAmFco3pvIZTG/bbVKy3fKSsvI69LJ/MzPrY3knnMd4/5oLAJK2Adan8jWabrfLlF7beQJ4q0K9nYB3gcfriNfMzJok74RzG7C/pA1LysYDq4G5vWy3VXafDQCSRpOu39wGEBFvku6/ObJs2/HAbyPitcbDL4S26R6sgtvantzWNqWI3i6dNPFDax62AAAEXElEQVTN0o2fjwALgMmkhDEV+EFEnFVSbxEwNyImlpTdThppdhrpjGUy8GJE/ENJnb2ATuBS0k2hB2X1D4gI34djZtZCuZ7hRMRyYB9gMGkI9DnAxcB3yqoOyeqUmkA6C7oK+BlwP/DZsv3fAxwB7AvMBD4DHOVkY2bWerme4ZiZ2cDl2aILTtKXJf0pm6z0fkn7VLHNJElR4dUvHinZ1xO89if1tFVSRzfHb1pecddD0g6SLpf0kKR3JHVWuV0Rj2vNbS3qca2Fn4dTYJImAJcBk4B7gC8BMyTtFhELetn8NaA8wTza9CBrVDLB6yOkCV63B6aQ/jk6q4dNIU3w+jHSBK9d1/mmA//Q00at0mBbIV2f/HXJcn+/gXAk6brqvcAHatiuUMc1U29boXjHtXoR4VdBX8BC4KqS5UHAfODaXrabBLzU6vi7ie1M0j1VG5WUfQNYVVpWYbs9STf3fqqkbPesbN9Wt6vJbe3I2nVIq9tQY3sHlXx/A9BZxTaFO64NtLWQx7WWl7vUCkrSCNKovfcmK42Id4H/JpvQtKD6bILXfqjethZS9vNZqyIe13rb2vaccIqr6wbXSpOVbiZpy16230TSS5LekvSApMObH2Jd1pqoNSKeIf3XX+nm3263y5RO8Nrf1NvWLldn1weelzRV0tC+CLLFinhcG9W2x9XXcIqrmslKl3Wz7SJS182DwAbACcCNkj4XETc1O9Aa9eUEr/1NvW19E/gh6RlPK0gPJjyddA3o0OaG2HJFPK71avvj6oTTj2TP7Nm6t3oRUfofX02TlWbbX1v2vjcDvyE9qK7VCQf6foLX/qTmmCPieeBfSoo6JS0FfiRp14h4sMkxtloRj2vNBsJxdZda/3Ikqaugtxc0cbLSSFcsbwI+Xs3w4z7WlxO89jf1trWSG7Kvn2goov6niMe1mdrquDrh9CMR8ZOIUG+vrHrXWU6lyUpfiYjuutN6DKHu4JunLyd47W/qbWslUfa1XRTxuDZTWx1XJ5yCiognSTNgvzdZqaRB2fJttexLkkjTBD0UEe80M8469NkEr/1QvW2t5Ijs6/3NCKwfKeJxbab2Oq6tHpftV/0v4AvAO6SbBMcC15D+WI0qqbM38Dawd0nZXOAU4NOkRHMr6Ya6z/SDNm0KPA/MIs2JdzywEji/rN4i4MqystuBJ4HDgcNI9ynd3eo2NbutpPuopmTt3Bc4NzvuN7a6Tb2094OkP6BHAL8FHi5Z/mC7HNd621rU41rT59LqAPxq8ADCl7Mf3DeBPwD7lK0fQzodH1NSdmX2C7wa+AtwN3Bgq9tSEt/OwOwsvueB84DBZXUWA9eUlW0CXE3q218B/ALYotXtaXZbSRPZziPNFvHX7PifC6zb6vb00taO7Gex0qujzY5rzW0t6nGt5eXJO83MLBe+hmNmZrlwwjEzs1w44ZiZWS6ccMzMLBdOOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcvH/Aed/d/Zvwhw9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXFWd9/HPlz0QCHtABgmrGZaRMYAww0gQkMVoAMEAw2gUBDcWH3UiiBpQ4wRlM4wP8KgEH4QwAjJDgESWJIADYpAwYAgYJCwBwmIghIQl8Js/zm28uV3VXdVddau6+L5fr3p117nn3Pqdut3963vuuacUEZiZmTXbKq0OwMzM3h2ccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEYw0labykqPI4tsZ97JDtZ/1C+dhsP4ObE31tcfRzn1dLmllDvdUknSrpfknLJS2WdKOkvfv4uu3yno4t/Ew8J2m6pA/U0HZk1mbnMmK1xnPCsWZ4GdirwmNaje13AL4DFP/Q35DtZ1ljwuxzHE0laVXgOmAC8F/AIcBY4C1gpqRj+rDbdnlPu3w4e90TgU2AGZLe00ubP2RtHm1ybNYkq7U6AOtIKyLi7kbvNCKeB55v9H7b0EnAR4GDIyKfpP9T0hTgEkmzImJhf1+ohe/p7yNiKYCk2cDjwD8DPyxWlCRgzYhYAjT858rK4zMcawlJp0maL+k1SYskTZO0maSRwPVZtceyIZQFWZuVhn8kDcueHyXpUklLJD3VNXQn6V8lPS3peUkTJa2Se/3hkqZIelLSMkl/zIawVsm2V40j2/7erP1fsvbTJb2v0Mcts2Gw5ZIWSDq+xrfnFGBGIdl0+SawFnBc7nUWSPqRpG9JelbSUkm/lDSkt75UGlKTtLGkyyS9mPVtpqTdCn3res2vZO/54uz9qPtsMCKeJCW9Ydm+x0t6QdLekn4PvAYcWWlITdKq2c/SI5Jez2KZXIh1tKTZ2c/as5LOlrR6vXFa//kMx5pCUrefrYhYkW37FHA6MA74I7ARaYhlHdKwydeAHwGHA88Ar/fychOBXwKfAD4LXCbp74GtsucjgO8B9wFTsjZbAA9n7V4BdgXOBAYBP+gpDkkbAncCLwKfJw1HfQO4RdIOEbE8+6/8P4GNScnhtWz/GwJ/6uF925L0h/e8Stsj4lFJDwAfKmw6GpgPfA7YHDgb+ClwZE99qeI6YLuszQvA10lDXn8fEfNz9T4J/A9wAvA3wLmkYcAv9rDvbiStS3pfns0Vrw1clvXjEeDprF9FFwOfyurNyvZzRG7fnwSuzOqdDmxLOr6rZP2zMkWEH3407AGMB6LKY1hW50Lgmh72MSpfP1c+NisfnD0flj2/NFdnPeBN0h/1VXPl9wBXVXk9kf75Oh34cw1xfJeUbDbMlW1Aunb1pez5IVnbD+bqbAWsAGb20Pc9s3aje6hzHfBQ7vkC4C9d70tW9s/A28Df1vmeHpQ93ydXZx3SGcjFhdd8FFgtV3Y+8GwvPx9drzcke8+3BK7K3pddCz9DowttR2blO2fPh2fPT+7huD6e//nIyj8LLAc2avXvy7vt4TMca4aXgf0rlD+dfZ0DHCfpTNJF63sj4q1+vN6tXd9ExBJJzwOzCvucD7y364mktYDTSH+Y3wusntu2WmRnY1XsD9wMLMmdyb0C3At0DT3tASyKiN/lYntc0r196F8tbo7smkjmWuByYHfgoTr2swfwfETM6iqIiFclTQWKM+RmFN6nucCmktaIiDd6eZ2Xct+/AHw2IubkygK4qZd97Jt9nVxl+w6kY/sfhTPu20jDkjuTzoqsJE441gwrImJ2D9t/DqxLGor5NvCipP8LjO9j4nmp8PyNKmVr5Z5PBI4nDXP9Ias/Gjgjq7eU6jYmnYmMqbCtK/ltBjxXYftzpL5X0zURYKse6myVq5ff7zsiDestpfIwVE82BxZVKF9EGq7Kq/QeC1gj+74nHyINRb4APBkRbxe2L64haW0EvBppMkElG2dfb6yyfcte9m8N5oRjpcv+uJwHnJdds/hn4PukP6IXlRTGkcCkiDi7q0DSR2ts+xfSdOXvVtj2Svb1WWDTCts3JQ3nVBQRT2YX9D8O/Li4XdLWpP/Mi6+9aaHeIGAw6XpNPZ4p7iszlNTvRrmvcEZWVMvnprwIrCNpvSpJpyveE0jX74oeq+E1rIE8S81aKiKejIh/Iw157ZgVd/1nu1blVg0xiNyFc6V7X44q1KkWx63ATsAfI2J24fFwVuf3wFBJH8y9xnuBXm9wBC4A9pP0kQrbvpfF/bNC+QFa+ebNw0l/tLvONGt9T39HGhZ7Z1KCpLVJ07TvrCH2Mt2Wff1Ule0Pk/6JGVbhOM2OiBfLCdO6+AzHmmE1SXtWKH8yIhZKupj03+fdpOs9+wLbk2atQfpDAXCi0n0nyyLigQbHeDPwJUnzs1i+BKxZqFMtjnOBY4HbJE0i/VEbCuwD3BkRV5KGce4HfiVpHGmW2llUHmYrmkS6TvRrST8CZpKG4Y4jXfz/l+h+D85y4AZJPyQNi/0Q+HVEzO2lLyuJiOmSfgtcJekbpLOIr5ESdLd7ZFopIh6WdAlwjqRNgdtJN7YeERFHRcTbkr4K/H9J65GuCb0BbAMcmtUr+4bXd7dWz1rwo7Me9DxL7Yyszljgt6Q/9MtIU2uPK+znq6QZRiuABbl2lWapjSq0XQD8qFA2GZidez4U+DWwhHR94mzSlOJ39l8tjqz8PcClWdvXs9e8HNgpV+e9pNUVlmf7OBG4mh5mqeXargZ8JXtvlgOLSX8w965QdwFwTvbeLwJeJU0FXr/e9zQr2wT4Rfaay0kX1nev4T3utq8KsdZSZzzwQoXykeRmqWVlq5LNLiQlk6foPivtYOCO7H1ZQpq08j1yM+z8KOeh7ICURtJ2pHn9e5LGou+IiJE1tBtCmnZ5KGkocCppOuSLhXqjST9M25N+CM+MiKsa2QezdpJd87k6InxfibW1VlzD2Yl0j8Ij2aNWV5H+wzme9F/S7qT7Ed6htLDhNcAM0n81NwBXVhkLNzOzErXiDGeVyKZASroa2Li3MxxJewH/TboZ7fasbA/SBc4DIuKWrGw6sHpEfDjX9kZgvYjo0yq7Zu3OZzg2UJR+hhPd59vX4mDSTXS35/ZzD2la48EAktYkXXz+j0LbKcBeXetKmXWaiBjmZGMDwUCZFj0cmFeh/KFsG6Q1klavUO8hUj93aFp0ZmbWq4EyLXoDut/VDGkWzTa5OlSot7iwfSWSTiDdGMagQYNGbLnlyjcfv/3226yyykDJyz3rpL5AZ/Wnp76s+0i61PnKDgPnf6ZOOjbQWf1pdF8eeeSRFyJik1rqDpSEA5XvPFaF8uJz9dCeiLgEuARgt912i9mzV16RZebMmYwcObLeWNtSJ/UFOqs/1foy7Bs38PDEUen7w85lwb/VuhhCa3XSsYHO6k+j+yLp8VrrDpSUvZjKn7q4Pn89o1mcKyvWgcpnSGZmVpKBknDm8ddrNXn5azuPkpalL9YbTlqmvZ4p2GZm1mADJeHcBGyW3WcDQPYJhNtk24iI10n33xxZaDsGuCsiXi4pVjMzq6D0azjZQoCHZE+3ANaT1PUJfTdGxLJsfatZEXEcQETcld1j8wtJXyOdsUwkrVt1S2733wVmSjqfdFPoIdnjoKZ3zMzMetSKSQObAr8qlHU935q0RtNqpDWS8o4iLWn/c3JL2+QrRMSdWfL6HvAF0n06x0TEbxoYv1mpho2b2uoQzBqi9IQTEQv468yxanWGVSh7CfhM9uip7XUUlrwxM7PWGyjXcMzMbIBzwjFrc9dPPoXrJ5/S6jDM+m0g3fhp9q60y6JHWx2CWUP4DMfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBSepWbW5q54/4GtDsGsIZxwzNrc6Qed1OoQzBrCQ2pmZlYKJxyzNrfzs/PZ+dn5rQ7DrN88pGbW5qZedirgVaNt4PMZjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFJ4WbdbmRn36/FaHYNYQTjhmbe7BzbZrdQhmDeEhNTMzK4UTjlmbmzBtEhOmTWp1GGb95oRj1uaOuX86x9w/vdVhmPWbE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSl846dZm3tg6LatDsGsIZxwzNrcx8Ze0OoQzBrCQ2pmZlYKJxwzMyuFE45Zm1swcRQLJo5qdRhm/eaEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhVcaMGtzpx345VaHYNYQTjhmbe7KXQ9qdQhmDVH6kJqkHSXdKmmZpKclnSVp1V7ajJcUVR6n5epNrlJnePN7ZmZmPSn1DEfSBsAtwFxgNLAtcA4p8Z3RQ9OfAtMKZYcC44CbCuXzgM8Uyhb0LWKz1jt6TvrR95mODXRlD6l9HhgEHB4RS4CbJa0HjJd0dlbWTUQ8BTyVL5P0LWBeRMwpVH81Iu5uQuxmLfGD6RcCTjg28JU9pHYwML2QWKaQktA+te5E0obAAcCVjQ3PzMyapeyEM5w05PWOiHgCWJZtq9URwOqkZFW0o6Qlkl6XdKekmhOZmZk1jyKivBeT3gS+HhHnF8qfAn4REafXuJ/bgCERMaJQfgrwBuka0SbAV4ERwN4RcU+VfZ0AnAAwdOjQEVOmrJzDli5dyuDBg2sJq+11Ul+gs/pTrS8PLHyZk449FIBJl1/HLlsMKTu0PumkYwOd1Z9G92Xfffe9NyJ2q6lyRJT2AN4ETqlQvhD4fo372Bx4C/haDXUHAY8B19Wy7xEjRkTRjBkzupUNVJ3Ul4jO6k+1vmw1bmoERED6foDopGMT0Vn9aXRfgNlRYw4oe0htMbB+hfIhwEs17uOTgICreqsYEcuBG4EP1BqgmZk1R9kJZx6FazWStgTWoXBtpwdHAXdGxJN1vG5544ZmZlZR2dOibwK+LmndiHglKxsDLAdm9dZY0jBgT+CLtbyYpEGkmXH39iVYs3YwbNzUVodg1hBln+FcBLwOXCtp/+yC/Xjg3MhNlZY0X9LPKrQ/ClgBXF3cIGmIpDsknShpP0ljgBnAFsCEJvTFzMzqUOoZTkQslrQfcCFwPem6zXmkpFOMq9JyN0cBt0bE8xW2vQ48T1qxYFPgNeAuYJ+ImN2QDpiZWZ+VvnhnRMwFPtxLnWFVynftoc1rwOH9Cs6sDV0/+RQAPjb2ghZHYtY/Xi3arM3tsujRVodg1hD+ADYzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lppZm7vi/Qe2OgSzhnDCMWtzpx90UqtDMGsID6mZmVkp6ko4kiotN2NmTbTzs/PZ+dn5rQ7DrN/qPcNZKOlsSX/blGjMrJupl53K1MtObXUYZv1Wb8K5GDgCeFDS7ySdIGm9JsRlZmYdpq6EExHfiYhtgAOAh4FzgWck/VLS/s0I0MzMOkOfJg1ExG0R8SlgM+Ak4H3AdEkLJI2X9J5GBmlmZgNff2ep7QZ8iPSx0YuBO4DjgfmSju3nvs3MrIPUnXAkbSXpO5IeBW4FNgc+C7wnIv4F2Ip0reeHDY3UzMwGtLpu/JR0G+mM5ilgMnBpRDyerxMRb0m6AjilUUGamdnAV+9KAy8AhwA3R0T0UG8OsHWfozKzd4z69PmtDsGsIepNOBcCf6iUbCQNBj4QEbdHxJvA491am1ndHtxsu1aHYNYQ9V7DmQHsWGXb+7LtZmZm3dSbcNTDtsHAsn7EYmYVTJg2iQnTJrU6DLN+63VITdKHgJG5ouMlHVSothbwUeCBxoVmZgDH3D8d8KrRNvDVcg3ng6SbOwECOBJYUajzBjAP+HrjQjMzs07Sa8KJiB+S3VMj6THgsIiY0+zAzMyss9Q1Sy0iPNXZzMz6pJZrOIcAd0bEkuz7HkXEjQ2JzMzMOkotZzhTgT2Be7Lvg+qz1QLwh7SZmVk3tSScrYFnct+bWYkeGLptq0Mwa4haJg08Xul7MyvHx8Ze0OoQzBqilms4a9ezw4jwzZ9mZtZNLUNqS0nXZmrlazhmZtZNLQnns9SXcMysgRZMHAXAsHFTWxyJWf/Ucg1ncglxmJlZh+vvR0ybmZnVpJZJA/cAYyNirqTf08vwWkTs0ajgzMysc9RyDeePwPLc976eY2ZmdavlGs5nct+PbWo0ZmbWsfp8DUfJJpJ6+lA2MzMzoM7VouGdxTzPAEZk7VdIuhf4fkTc0OD4zN71Tjvwy60Owawh6ko4kk4EfgLcCpwCPAdsChwO/JekL0bExQ2P0uxd7Mpdix+wazYw1XuGczpwSUR8oVB+kaSLgG8CTjhmZtZNvddwNgKurbLtGmDD3nYgaUdJt0paJulpSWdJ6nE5HEnDJEWFx5QKdUdLekDSa5LmShpTU8/M2tTRc6Zx9JxprQ7DrN/qPcOZAewD3Fxh2z7A7T01lrQBcAswFxgNbAucQ0p8Z9Tw+l8Dfpt7/kJh/3uTEt9PgJOBQ4ArJS2OiN/UsH+ztvOD6RcCHlqzga+WGz93zD39MfBTSRsB1/HXaziHAQcDx/eyu88Dg4DDI2IJcLOk9YDxks7OynrycETc3cP2bwG3R8TJ2fMZknYCvg044ZiZtVAtZzgPsvLNngJOzB7FT/+cRs+rRR8MTC8klinARNIZ0vU1xFORpDWBfUlnNnlTgEslDYmIl/u6fzMz659aEs6+DXy94cBt+YKIeELSsmxbbwnnUkkbks6srgS+GRFdqyBsC6wOzCu0eYg0ZLcD8Pv+hW9mZn1Vy0oDsxr4ehsAL1UoX5xtq+Z14N9Jw2JLgJHAOFKSGZ3bNxX2v7iwfSWSTgBOABg6dCgzZ85cafvSpUu7lQ1UndQX6Kz+VOvLV3dZsdL3A6W/nXRsoLP609K+RESfHqSzhrWLj17avAmcUqF8IenG0Xpe/wukIb1ds+f/mD1/f6He9ln5Ab3tc8SIEVE0Y8aMbmUDVSf1JaKz+lOtL1uNmxoBEZC+HyA66dhEdFZ/Gt0XYHbU+He7rmnR2XI24yTNz5LHKxUePVkMrF+hfAiVz3x6cnX29QO5fVNh/13P692/mZk1UL3Tok8GvgGcDXwf+B7wFnAUsAYwoZf280jXat4haUtgHbpfe+lNFL4+SkqCw4H8MOBw4G3gkTr3b9YW/Emf1inqvfHzc8B3SAkH4LqIOBPYiZQwtu+l/U3AgZLWzZWNIX38Qb3Xio7Ivt4LEBGvk+4TOrJQbwxwV3iGmplZS9V7hrM1MCci3pL0JtlwVUS8LeknwE9JZ0DVXEQ6S7pW0kRgG2A8cG7kpkpnQ3azIuK47Pl4YF3STZ9LgA8BXweujYj/ye3/u8BMSeeT7hM6JHv4jjkzsxar9wznRWBw9v0TwN/ntm1AuqmzqohYDOxHulfneuBM4DzSWVPeaqx8P8880n06lwI3AscAP8y+5vd/J+nMZ39gOvBx4JjwKgM2gF0/+RSun3xKq8Mw67d6z3B+C+xO+qN/BWmFgA2BN4AvkVaR7lFEzAU+3EudYYXnU0g3cPYqIq4jnd2YdYRdFj3a6hDMGqLehDMe2CL7fgJpSG0s6czmZuCkRgVmZmadpa6EExEPAw9n379O+kwcn+ubmVmv6v7Ezy6S/gbYHHg6IhY2LiQzM+tE9U4aQNIXJD0JPA78DnhC0lOSvtjw6MzMrGPUu9LAt4ELSffTfBTYLft6E/DjbLuZmVk39Q6pfQmYEBHfKpRPk7Qo235WQyIzMwCueP+BrQ7BrCHqTTiDqP6pnrPwLDWzhjv9IP9aWWeo9xrOdcDhVbZ9AvCiT2ZmVlEtHzF9SO7pTcDZkobR/SOmdwL+tfEhmr277fzsfAAe3Gy7Fkdi1j+1DKlNpftHSW8BVBpYvpz0SZxm1iBTLzsV8KrRNvDVknC2bnoUZmbW8Wr5iOnHywjEzMw6W90rDUhajTRBYG9gQ+AvwB2kjwpY0VNbMzN796or4UjaFPgN8HfAAmARsBfp/pv7JX0kIp5vdJBmZjbw1Tst+lxgI+CDEbFNROwVEdsAH8zKz210gGZm1hnqTTiHAOMi4vf5wuz5aaRlbszMzLqp9xrOmsArVba9AqzRv3DMrGjUp89vdQhmDVFvwrkbGCfptoh4tatQ0jrAuGy7mTWQb/i0TlFvwvkqMAN4UtJvSJMGNiXdBCpgZEOjMzOzjlHXNZyImANsD1wCbAIcQEo4FwHbR8T9DY/Q7F1uwrRJTJg2qdVhmPVbzWc4klYH9gAei4hvNC8kM8s75v7pgFeNtoGvnjOct4DbgL9tUixmZtbBak44EfE28CdgaPPCMTOzTlXvfTjfBL4taZdmBGNmZp2r3llqZ5BWFJgjaSFpllrkK0TEHg2KzczMOki9CefB7GFmZlaXmhKOpEGkZW0eBJ4FbomIRc0MzMySB4Zu2+oQzBqilo+Y3ga4BRiWK14i6ZMR8ZtmBWZmycfGXtDqEMwaopZJA2cDbwP/BKwN7ATcB1zcxLjMzKzD1JJw9gLOiIjfRsRrEfEQcCLwXkmbNzc8MzPrFLUknM2BPxfKHiWtnbZZwyMys5UsmDiKBRNHtToMs36r9T6c6L2KmZlZdbVOi54uaUWF8luL5RGxaf/DMjOzTlNLwjmz6VGYmVnH6zXhRIQTjpmZ9Vu9a6mZmZn1iROOmZmVot611MysZKcd+OVWh2DWEE44Zm3uyl0PanUIZg3hITUzMyuFE45Zmzt6zjSOnjOt1WGY9VvpCUfSjpJulbRM0tOSzpK0ai9tdpd0qaT5WbuHJX1H0lqFeuMlRYWHxyRswPrB9Av5wfQLWx2GWb+Veg1H0gakjzqYC4wGtgXOISW+M3poOiarOxH4E/B3wHezr58o1H0ZKCaYh/obu5mZ9U/ZkwY+DwwCDo+IJcDNktYDxks6OyurZGJEPJ97PlPSa8DFkraKiMdz21ZExN3NCd/MzPqq7CG1g4HphcQyhZSE9qnWqJBsutyXffXabWZmA0DZCWc4MC9fEBFPAMuybfX4B9IHwz1cKF9f0guS3pR0n6TD+xytmZk1jCLK++QBSW8CX4+I8wvlTwG/iIjTa9zPZsD/ADdGxNhc+bGkM545wGDSB8UdAnwiIq6tsq8TgBMAhg4dOmLKlCkrbV+6dCmDBw+uqX/trpP6Ap3Vn2p9eWDhy5x07KEATLr8OnbZYkjZofVJJx0b6Kz+NLov++67770RsVtNlSOitAfwJnBKhfKFwPdr3McawO2kD4XboJe6Au4C5tSy7xEjRkTRjBkzupUNVJ3Ul4jO6k+1vmw1bmoERED6foDopGMT0Vn9aXRfgNlRYw4oe9LAYmD9CuVDgJd6ayxJwC+AnYB/jIjFPdWPiJB0LTBR0qoR8VYfYjZrqWHjprY6BLOGKDvhzKNwrUbSlsA6FK7tVHEeaTr1ARFRS/0u/sRSM7MWK3vSwE3AgZLWzZWNAZYDs3pqKOk04CTg2Ii4s5YXy86IDgPu99mNmVlrlX2GcxFwMnCtpInANsB44NzITZWWNB+YFRHHZc+PASYAk4GFkvbM7fPRyKZNS5oFXEM6W1oH+BywJ3Boc7tl1jzXTz4FgI+NvaDFkZj1T6kJJyIWS9oPuBC4nnTd5jxS0inGlV/u5iPZ17HZI+8zpEQEMB84FdicNGX6D8BHI+KmRsRv1gq7LHq01SGYNUTpH08QEXOBD/dSZ1jh+Vi6J5pK7Y7rR2hmZtZEXi3azMxK4YRjZmalcMIxM7NSOOGYmVkpSp80YGb1ueL9B7Y6BLOGcMIxa3OnH3RSq0MwawgPqZmZWSmccMza3M7PzmfnZ+e3OgyzfvOQmlmbm3rZqYBXjbaBz2c4ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSeFq0WZsb9enzWx2CWUM44Zi1uQc3267VIZg1hIfUzMysFE44Zm1uwrRJTJg2qdVhmPWbE45Zmzvm/ukcc//0Vodh1m9OOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfCNn2Zt7oGh27Y6BLOGcMIxa3MfG3tBq0MwawgPqZmZWSmccMzMrBROOGZtbsHEUSyYOKrVYZj1mxOOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUXmnArM2dduCXWx2CWUM44Zi1uSt3PajVIZg1hIfUzMysFE44Zm3u6DnTOHrOtFaHYdZvHlIza3M/mH4h4KE1G/h8hmNmZqUoPeFI2lHSrZKWSXpa0lmSVq2h3RBJl0paLOllSb+UtFGFeqMlPSDpNUlzJY1pTk/MzKwepSYcSRsAtwABjAbOAr4KnFlD86uAkcDxwFhgd+C6wv73Bq4BZgAHAzcAV0r6SEM6YGZmfVb2NZzPA4OAwyNiCXCzpPWA8ZLOzsq6kbQXcCCwT0TcnpUtBH4naf+IuCWr+i3g9og4OXs+Q9JOwLeB3zSvW2Zm1puyh9QOBqYXEssUUhLap5d2i7qSDUBE3AM8lm1D0prAvsB/FNpOAfaSNKT/4ZuZWV+VnXCGA/PyBRHxBLAs21Zzu8xDuXbbAqtXqPcQqZ879CFeMzNrkLKH1DYAXqpQvjjb1pd22+TqUKHe4sL2lUg6ATghe7pU0sOFKhsDL/QQ20DSSX2BzupP1b6o65uJo9DE0uLpr046NtBZ/Wl0X7aqtWIr7sOJCmWqUt6XdsXnqlKeCiMuAS6p9qKSZkfEbr3ENiB0Ul+gs/rTSX0B96edtbIvZQ+pLQbWr1A+hMpnML21Wz/XbnGurFiHXvZvZmZNVnbCmUfhWo2kLYF1qHyNpmq7TP7azqPAmxXqDQfeBh7pQ7xmZtYgZSecm4ADJa2bKxsDLAdm9dJus+w+GwAk7Ua6fnMTQES8Trr/5shC2zHAXRHxch9jrjrcNgB1Ul+gs/rTSX0B96edtawviujt0kkDXyzd+DkXeBCYSEoY5wLnR8QZuXrzgVkRcVyubBppptnXSGcsE4HnIuKfcnX2BmYCF5JuCj0kq39QRPg+HDOzFir1DCciFgP7AasC15NWGDgP+E6h6mpZnbyjSGdBPwfgAXmMAAAF90lEQVR+AdwLHFbY/53AEcD+wHTg48AxTjZmZq1X6hmOmZm9e3m16BxJYyRdK+kZSSFpbB1t/1HS7yQtl/SYpJN7b9V8kj4n6U/ZYqb3Stqvhjbjs/4XH6Wsj9/sBV7L1pf+SBpW5RhMKSvuKnFtJ+liSfdLekvSzBrbtd2x6Utf2vi4HCnpvyQtlLQ0+10/uoZ2a0o6R9Jzkl6VdIOkYc2K05+Hs7IjgGHAVNIioTWRtB1pCG8qcBqwB3CupGUR8dMmxFlrXEcBFwHjgTuBzwBTJe0eEQ/20vxloJhgHmp4kAW5BV7nkhZ43RY4h/TP0Rk9NIW0wOv7SMeu6zrfdcA/9dSomfrZH0jXIH+be97qmw93Il0bvRtYo452bXds6HtfoP2Oy/8hLfX1lSyWQ4ArJG0cEZN6aPdj0t+9rwDPk/5W3Cxpl4h4reFRRoQf2QNYJfs6mHSj6Nga211Mmna9Wq7sJ8CTZMOWLerPw8DP8/0DHgAu76XdeOCFFsV8GumeqvVyZf9KWv5ovR7a7ZUdsw/lyvbIyvZv4THoa3+GZbGPalXsVeJaJff91cDMGtq067HpS1/a9bhsXKHsCuCxHtr8DbAC+FSubAvgDeD4ZsTpIbWciHi7j00PBq6NiBW5simkA7pzvwPrA0nbkGb1vbOYada/X5EteNqmmrbAa4v0tT9tqY+/I215bPrx+952IqLSGdZ9wKY9NOv62JZrc/tZSBoNacpxccLpJ0nrAFtSedFQ6HlR0mbqet1KcW0oaZNe2q8v6QVJb0q6T9LhjQ+xomYu8NoKfe1Pl0uz6wvPSDpX0qBmBNlk7Xps+mMgHJd/IA3lVjMceCoilhbKm3ZcfA2n/6otndPjoqElqGUx0+ertJ1PGvaZQxpePBG4RtInIuLaKm0apZkLvLZCX/vzOvDvpM9xWkL68MFxpGtAoxsbYtO167HpiwFxXLLJQaOBz/ZQra8/m33W0Qkn+wyczXurFxE9LatTq2rzyxs277yP/alrMdOs/eWF170e+G/SB9k1O+FA8xd4LVvdcUXEM8CXc0UzJS0CfiJp14iY0+AYm61dj01dBsJxyWaZXQH8Z0RM7qV6qceloxMOaZmb/1dDPfVepaqu/xCKi4ZWO8Poj3r6k1/MNL+sT92LmUZESLoWmChp1Yh4q9a2fdCfBV4rDRPmF3hthb72p5KrSZNRPkA6+xwo2vXYNErbHBdJG5KW+3oCOLaX6rUsitxQHX0NJyJ+GhHq7dHP13iVNBut0qKh0POipPW+Vj396XrdSnH9JSKqDaf1GEKfg69dMxd4bYW+9qeSKHwdKNr12DRKWxwXSWuTbs1YA/ho9repJ/OALbPr0HlNOy4dnXBKdBNwWOFmvjGkRNTb/S5NERF/Jk3VfmcxU0mrZM9vqmdfkkRaRuj+Jp/dQBMXeG2RvvankiOyr/c2IrASteuxaZSWHxdJq5FmoG4PHBwRz9XQrGvJr3eWCJP0HtK9Uc05Lq2eP95OD2BH0g/PsaT/Vi7Mnu+Tq7MPae56vmw7YClp3HRf0gX3N2nSXPY6+nM08BbpBsN9gcmkP3Q799KfWcDJpGmThwE3km7W+3gJMW8APAPcTFoT74Tsvf1eod584GeFsmnAn4HDgUNJ9yHd0eJj0Kf+kO6FOifry/7AWdmxu6bF/Vk7+504ArgL+GPu+doD7NjU3Zc2Pi6XZH+zTgb2LDzWzOrcCtxaaHcx6UbRfyHd6H038CdgrabE2co3qd0e2Q9TVHjMzNUZmZWNLLTdG7gHeA1YAJzc6v5kcX0u+6V5HfgDsF9he7f+AD/L/jgsB14F7iD911RWzDsCt2Wv/wzwXWDVQp0FwORC2frApaTx5yWkfwC63RDXgmNQd39Ii9XOJl1/eyM7hmd1/fFoYV+GVfkdCWDYQDo2felLGx+XBTX0ZSaFm1uBNUkr9j+f/a7fCGzdrDi9eKeZmZXC13DMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSn+Fw6Dp9fZPLb/AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -460,7 +460,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu4HFWZ7/Hvj4sSCSRBSGAYIIJiBkbPSMLNcSSRmwTPRAEF0dE4QKKj4vgIchEhgHoE5HIGxyFBheGoxBnEzHC/ZgdxQEkQRSBgkHAXAwRCSMBA3vPHqi2V3r337kt19YXf53nq6e5Vq6rf1Z30u2vVqlWKCMzMzFptvXYHYGZmrw9OOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCscJImiUpBlk+XuM+dsz2M7qifHq2n5Gtib62OJrc52WS+mqot4Gkf5b0a0mrJS2XdLWk9zT4vp3ymU7P/XtYK+l5Sb+RdJ6kHRrcZ5+ky3Kv95P0z8VFbUVywrGiPQ/sWWW5tsbtdwROASp/6K/K9rOqmDAbjqOlJK0PzAO+Afw3MBWYDrwK9Ek6vIHddspn2u99wLuBg4HvAfsBv5F0QAH73g9wwulQG7Q7AOs5r0TE7UXvNCKWAcuK3m8H+jxwIHBAROST9H9JmgvMkbQgIh5v9o3a+JneERErs+c3SroAuBL4kaTxEfF8G2KyEvgIx0on6QRJSyS9JOkpSddK2lLSZOCKrNpDWdfL0mybdbp/JI3PXh8m6SJJKyQ91t91J+nLkp6QtEzSGZLWy73/BElzJT0qaZWke7IurPWy9YPGka3fNtv+2Wz76yS9vaKN22TdYKslLZV0ZI0fzxeA+RXJpt9XgI2AI3Lvs1TStyR9VdIfJK2U9ENJo4ZrS7UuNUmbS/p3Sc9kbeuTNKmibf3v+cXsM1+efR4NHQ1GxMukRDsa+GjufdaTdHz2b+VlSQ9I+uRg+5E0C/gSsF2u6+7ibN2ekv47+zfxoqS7JH2skXitcT7CscJJGvDvKiJeydZ9AjgROA64B3gzqYtlY+BO4BjgW8BBwJPAy8O83RnAD0ndM/8I/LukdwHbZa8nAl8DfgXMzbbZGrg/2+4F4G+AU4ERwP8ZKg5JmwG3As8AnyZ1Rx1P+kt9x4hYLUnAfwGbk5LDS9n+NwN+N8Tntg0wHji32vqIeFDS3cB7K1Z9FFgCHAVsBZwJfBf48FBtGcQ84K3ZNk8DxwLzJb0rIpbk6n0E+A0wA/hL4BxSN+A/DbHvQUXEYkmPAXsAF2TF5wOfBE7L2rEv8H1Jz0TElVV2813gbaR/Tx/KyvqP4LYDfp7t+yXgb4GLJK2NiEsbidkaEBFevBSyALOAGGQZn9X5NvCTIfbxgXz9XPn0rHxk9np89vqiXJ1NgTWkH/X1c+W/BH48yPuJ9IfXicDva4jjdFKy2SxXNoZ07uqz2eup2ba75+psB7wC9A3R9j2y7aYNUWcecF/u9VLg2f7PJSv7GLAW+Ks6P9P3Z6/3ytXZmPSjPbviPR8ENsiVnQf8YZh/H+u8X5X1twHXZM/fmrXhkxV1LiF1yfW/7gMuy73+FrB0mDj6v/PZwM3t/n/zelp8hGNFex7Yp0r5E9njXcARkk4lnbReFBGvNvF+N/U/iYgVkpYBCyr2uQTYtv+FpI2AE0g/zNsCG+bWbRDZ0dgg9gFuAFbkjuReABYB/V1PuwFPRcQvcrE9LGlRA+2rxQ3x2jkRgMuBHwC7AvfVsZ/dgGURsaC/ICJelHQlUDlCbn7F53QvMFbSGyLiT/WF/2fKPd+blHB+WnHEfBPwUUnr1/PvRtIY0lHmNNIR7vrZqqbPhVntnHCsaK9ExMIh1n8f2ITUFXMy8IykfwNmNZh4nqt4/adByjbKvT4DOJL0A3RnVn8acFJWbyWD25x0JHJolXX9yW9L4I9V1v+R1PbB9P/4bTdEne0Y+CO5zntF6tZbSepeq8dWwFNVyp8idQfmVfuMBbwhe96IrYHF2fPNSUlhsAEEWwGP1bHvi0nf2+mk5LgC+Azpe7eSOOFYqSJiLekcxbnZOYuPAV8n/YheMNS2BfowcH5EnNlfIOnAGrd9ljRc+fQq617IHv8AjK2yfiywerAdR8Sj2Qn9vwf+pXK9pLcAf13lvcdW1BsBjCSdr6nHk5X7yowjtbtlJP0V6VzQbVnRs6QuyL8lHelUqpbQB9v3RqSRf5+LiAty5R40VTJ/4NY2EfFoRHyT1OW1U1bc/9fxRtW3KsQIcifOla59OayizmBx3ATsDNwTEQsrlvuzOncA4yTtnnuPbYFdaojt/wJ7S9qvyrqvZXF/r6J8X6178eZBpHMl/UeatX6mvyB1i/15UIKkN5F+rG+tIfaGSHojKcE+x2sDO24mHeGMqvI5Lxyi267yaBbgjdm+8t/5JqTEbiXyEY4VbQNJe1QpfzQiHpc0m/TX6+2k7pIppJFFx2X1+n+0Zypdd7IqIu4uOMYbgM9KWpLF8lnSj1LeYHGcA3wcuFnS+aQjs3HAXsCtkUY8XQ38GvhPSceRRkWdRm1/lZ9POk/0U0nfIp0U34Q02u0DwD/EwGtwVgNXSTqL1NV0FvDTiLh3mLasIyKuk/Rz4MeSjicNjjiGlKDPqiH2Wu0qaTXwJtIR20zSIJBDIrsGJyLuV7o+Z66kM0nJcyNSst8xIgYbZr6YlOynA78Fno6IpZLuAE6WtIJ0xHQ86d/fpgW2y4bT7lELXnpnYehRaidldaaThqc+SxpS/BvgiIr9fAl4mNSlsjS3XbVRah+o2HYp8K2KsouBhbnX44CfkvrxnyINIz6KihFU1eLIyv8CuCjb9uXsPX8A7Jyrsy1pdoXV2T5mApcxxCi13LYbAF/MPpvVwHLgGuA9VeouBc7OPvungBeBS4HR9X6mWdkWpJFgy7P3XgDsWsNnPGBfVWLtr9O/vADcTTqq26FKfZFmDbgn+5yXZfF8Ilenj3VHqW2UfTd/zN7j4qz8raSjpheBR4AvZ5/Z0+3+f/N6WpR9GaWR9FbS2P49SH/d/CwiJtew3SjS0MsPkroCrwSOjohnKupNI3U9vA34PXBqRPy4yDaYdYrsnM9lEXFMu2MxG047zuHsTLpO4YFsqdWPgcmk0UXTSUM+5+UrKE1u+BNgPnAAadjtpYP0h5uZWYnacYSzXqSRSijN8rr5cEc4kvYE/od0QdotWdlupJOc+0bEjVnZdcCGEfG+3LZXA5tGREMz7Zp1Mh/hWDcp/QinP9nU6QDShXS35PbzS+ChbF3/SJcpwH9UbDsX2LN/bimzXhIR451srFt0y7DoCbx2QVjefdk6gB1IV4xX1ruP1M4dWxadmZkNq1uGRY9h4JXNkEbSbJ+rQ5V6yyvWr0PSDNJV74wYMWLiNtts01Sga9euZb31uiWPN8/t7W1ub2fY5IF0uvuFHYv9u7mI9j7wwANPR8QWtdTtloQDaYhjJVUpr3ytQcpTYcQcYA7ApEmTYuHCoWZlGV5fXx+TJ09uah/dxO3tbW5vh1D2M3b//UPXq1MR7ZX0cK11Oy+VV7ec6ndeHM1rRzTLc2WVdaD6EZKZmZWkWxLOYl47V5OXP7fzIGlq+sp6E0hXFtczBNvMzArWLQnnGmDL7DobALK7EG6frSPSXQPnkyZmzDsUuC1821ozs7Yq/RxONhng1Ozl1sCmkg7JXl8dEauyOa4WRMQRABFxW3aNzSWSjiEdsZxBmrvqxtzuTwf6JJ1Huih0ara8v+UNMzOzIbVj0MBY4D8ryvpfv4U0T9MGvHaDpH6Hkaa1/z65qW3yFSLi1ix5fY10r4uHgMMj4voC4zczK1fJF+i3SukJJyKWsu6d/arVGV+l7DngU9ky1LbzqJjyxszM2q9bzuGYmVmXc8IxM+t0Eyempct104WfZmavT3fe2e4ICuEjHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUniUmplZpzvqqHZHUAgnHDOzTjdnTrsjKIS71MzMrBROOGZmnW7RorR0OXepmZl1ukmT0mOXzxrtIxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8LNrMrNMtXNjuCArhhGNm1ul64PbS4C41MzMriROOmVmnmzEjLV3OCcfMrNNdeGFaupwTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKXzhp5lZp9tll3ZHUAgnHDOzTtcDt5cGd6mZmVlJnHDMzKwUTjhmZp1OSkuXc8IxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YmXW62bPbHUEhnHDMzDpdD9xeGtrQpSZpJ0k3SVol6QlJp0laf5htZkmKQZYTcvUuHqTOhNa3zMzMhlLqEY6kMcCNwL3ANGAH4GxS4jtpiE2/C1xbUfZB4DjgmoryxcCnKsqWNhaxmVkHmDMnPXb5kU7ZXWqfBkYAB0XECuAGSZsCsySdmZUNEBGPAY/lyyR9FVgcEXdVVH8xIm5vQexmZu0xc2Z67PKEU3aX2gHAdRWJZS4pCe1V604kbQbsC1xabHhmZtYqZSecCaQurz+LiEeAVdm6Wh0CbEhKVpV2krRC0suSbpVUcyIzM7PWUUSU92bSGuDYiDivovwx4JKIOLHG/dwMjIqIiRXlXwD+RDpHtAXwJWAi8J6I+OUg+5oBzAAYN27cxLlzq+Ww2q1cuZKRI0c2tY9u4vb2Nre3M0yeMgWAvvnzC91vEe2dMmXKooiYVFPliChtAdYAX6hS/jjw9Rr3sRXwKnBMDXVHAA8B82rZ98SJE6NZ8+fPb3of3cTt7W1ub4eAtBSsiPYCC6PGHFB2l9pyYHSV8lHAczXu4yOAgB8PVzEiVgNXA71xQ3Azsy5WdsJZTMW5GknbABtTcW5nCIcBt0bEo3W8b3n9hmZmVlXZCecaYH9Jm+TKDgVWAwuG21jSeGAPahydJmkEaWTconoDNTPrGP2dal2u7IRzAfAycLmkfbIT9rOAcyI3VFrSEknfq7L9YcArwGWVKySNkvQzSTMl7S3pUGA+sDXwjRa0xczM6lDqhZ8RsVzS3sC3gStI523OJSWdyriqTXdzGHBTRCyrsu5lYBlpxoKxwEvAbcBeEbGwkAaYmVnDSp+8MyLuBd43TJ3xg5T/zRDbvAQc1FRwZmadaGJ2Bcii7j474Nmizcw63Z13tjuCQvgGbGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfAoNTOzTnfUUe2OoBBOOGZmna7/FtNdzl1qZmZWiroSjqRq082YmVkrLVrU9bMMQP1dao9LugS4KCLua0VAZmZWYVJ2Q80unzG63i612cAhwG8l/ULSDEmbtiAuMzPrMXUlnIg4JSK2B/YF7gfOAZ6U9ENJ+7QiQDMz6w0NDRqIiJsj4hPAlsDngbcD10laKmmWpL8oMkgzM+t+zY5SmwS8l3Tb6OXAz4AjgSWSPt7kvs3MrIfUnXAkbSfpFEkPAjcBWwH/CPxFRPwDsB3pXM9ZhUZqZmZdra5RapJuJh3RPAZcTBqt9nC+TkS8KulHwBeKCtLMzLpfvcOinwamAjdEDDk+7y7gLQ1HZWZmr1m4sN0RFKLehPNt4M5qyUbSSGCXiLglItYADw/Y2szM6td/i+kuV+85nPnAToOse3u23szMbIB6E46GWDcSWNVELGZmVs2MGWnpcsN2qUl6LzA5V3SkpPdXVNsIOBC4u7jQzMwMgAsvTI9dPmt0Ledwdidd3AkQwIeBVyrq/AlYDBxbXGhmZtZLhk04EXEW2TU1kh4CPhQRd7U6MDMz6y11jVKLCA91NjOzhtRyDmcqcGtErMieDykiri4kMjMz6ym1HOFcCewB/DJ7Hgw+Wi0A36TNzMwGqCXhvAV4MvfczMzKtMsu7Y6gELUMGni42nMzMytJD9xeGmo7h/OmenYYEb7408zMBqilS20l6dxMrXwOx8zMBqgl4fwj9SUcMzMrkrJxWkNO0t/5ajmHc3EJcZiZWY9r9hbTZmZmNall0MAvgekRca+kOximey0idisqODMz6x21nMO5B1ide97dnYhmZtYWtZzD+VTu+fSWRmNmZj2r4XM4SraQNNRN2czMzIA6Z4uGP0/meRIwMdv+FUmLgK9HxFUFx2dmZrNntzuCQtSVcCTNBL4D3AR8AfgjMBY4CPhvSf8UEb3xyZiZdYoeuL001H+EcyIwJyI+U1F+gaQLgK8ATjhmZjZAvedw3gxcPsi6nwCbDbcDSTtJuknSKklPSDpN0pDT4UgaLymqLHOr1J0m6W5JL0m6V9KhNbXMzKxTzZmTli5X7xHOfGAv4IYq6/YCbhlqY0ljgBuBe4FpwA7A2aTEd1IN738M8PPc66cr9v8eUuL7DnA0MBW4VNLyiLi+hv2bmXWemTPTY5d3rdVy4edOuZf/AnxX0puBebx2DudDwAHAkcPs7tPACOCgiFgB3CBpU2CWpDOzsqHcHxG3D7H+q8AtEXF09nq+pJ2BkwEnHDOzNqrlCOe3rHuxp4CZ2VJ5989rGXq26AOA6yoSy1zgDNIR0hU1xFOVpDcCU0hHNnlzgYskjYqI5xvdv5mZNaeWhDOlwPebANycL4iIRyStytYNl3AukrQZ6cjqUuArEdE/C8IOwIbA4opt7iN12e0I3NFc+GZm1qhaZhpYUOD7jQGeq1K+PFs3mJeBfyV1i60AJgPHkZLMtNy+qbL/5RXr1yFpBjADYNy4cfT19Q0V/7BWrlzZ9D66idvb29zezjA5eyw6trLbW/eFn/0krQdsVFlewx0/q83FpkHK+/f5JPC5XFGfpKeA70j6m4i4a4j9a5Dy/n3PAeYATJo0KSZPnjx09MPo6+uj2X10E7e3t7m9naXo2Mpub13DorPpbI6TtARYA7xQZRnKcmB0lfJRVD/yGcpl2eMuuX1TZf/9r+vdv5mZFaje63COBo4Hvkc6cvg6cBrwALCUrGtqCItJ52r+TNI2wMYMPPcynKh4fJCUBCdU1JsArM1iNDPrPhFdf7dPqD/hHAWcApyZvZ4XEacCO5MSxtuG2f4aYH9Jm+TKDiXd/qDec0WHZI+LACLiZdJ1Qh+uqHcocJtHqJmZtVe953DeAtwVEa9KWkPWXRURayV9B/gu6QhoMBeQjpIul3QGsD0wCzgnP1Q667JbEBFHZK9nAZuQLvpcAbwXOBa4PCJ+k9v/6aTzO+eRrhOami3vr7OdZmZWsHqPcJ4BRmbPHwHelVs3hnRR56AiYjmwN+lanSuAU4FzSUdNeRuw7vU8i0nX6VwEXA0cDpyVPeb3fyvpyGcf4Drg74HDPcuAmXW1iRPT0uXqPcL5ObAr6Uf/R6QZAjYD/gR8ljSL9JAi4l7gfcPUGV/xei7pAs5hRcQ80tGNmVlvuPPOdkdQiHoTzixg6+z5N0hdatNJRzY3AJ8vKjAzM+stdSWciLgfuD97/jLpnjhfaEFcZmbWY5q58PMvga2AJyLi8eJCMjOzXlTvoAEkfUbSo8DDwC+ARyQ9JumfCo/OzMx6Rr0zDZwMfJt0Pc2BwKTs8RrgX7L1ZmZmA9TbpfZZ4BsR8dWK8muzuc0+S5p5wMzMinLUUe2OoBD1JpwRDH5XzwV4lJqZWfF64PbSUP85nHnAQYOsOxi4srlwzMysV9Vyi+mpuZfXAGdKGs/AW0zvDHy5+BDNzF7nFi1Kj10+20AtXWpXMvBW0lsD+1ep+wPSnTjNzKwokyalxy6fMbqWhPOWlkdhZmbDGn/8Veu8XvrNA9sUSWNqucX0w2UEYmZmva3umQYkbUAaIPAeYDPgWeBnpFsFvFJseGZm1ivqSjiSxgLXA+8k3eHzKWBP0vU3v5a0X0QsKzpIMzPrfvUOiz4HeDOwe0RsHxF7RsT2wO5Z+TlFB2hmZr2h3i61qcDnIuKOfGFE3CHpBOD8wiIzM3udqRwUAN03MGAo9R7hvBF4YZB1LwBvaC4cMzMbYOHCtHS5ehPO7cBxkjbOF2avj8vWm5lZkV6nt5j+EjAfeFTS9aRBA2NJF4EKmFxodGZm1jPqvePnXZLeBhwD7EoarfYkcAFwTkQ8XXyIZmavczNmpMfNprU3jibVnHAkbQjsBjwUEce3LiQzM1vHhRemx+O6O+HUcw7nVeBm4K9aFIuZmfWwmhNORKwFfgeMa104ZmbWq+odpfYV4GRJ72hFMGZm1rvqHaV2EmlGgbskPU4apbbOfNkRsVtBsZmZWQ+pN+H8NlvMzMzqUlPCkTSCNK3Nb4E/ADdGxFOtDMzMzDK77NLuCApRyy2mtwduBMbnildI+khEXN+qwMzMLNN/i+kqc611k1oGDZwJrAX+DngTsDPwK2B2C+MyM7MeU0vC2RM4KSJ+HhEvRcR9wExgW0lbtTY8MzPrFbUknK2A31eUPUiaO23LwiMyM7N1SWnpcrVehxPDVzEzMxtcrcOir5P0SpXymyrLI2Js82GZmVmvqSXhnNryKMzMrOcNm3AiwgnHzMyaVu9camZmZg1xwjEzs1LUO5eamZmVbXZ2nX3lBSpdxgnHzKzT9d9i+nUwtY2ZmVnTfIRjZtbp5szJnmzd1jCaVfoRjqSdJN0kaZWkJySdJmn9YbbZVdJFkpZk290v6RRJG1XUmyUpqizvb22rzMxaaObMtHS5Uo9wJI0h3ergXmAasANwNinxnTTEpodmdc8Afge8Ezg9ezy4ou7zQGWCua/Z2M3MrDlld6l9GhgBHBQRK4AbJG0KzJJ0ZlZWzRkRsSz3uk/SS8BsSdtFxMO5da9ExO2tCd/MzBpVdpfaAcB1FYllLikJ7TXYRhXJpt+vskfP3WZm1gXKTjgTgMX5goh4BFiVravHu0k3hru/ony0pKclrZH0K0kHNRytmZkVRhHl3XlA0hrg2Ig4r6L8MeCSiDixxv1sCfwGuDoipufKP0464rkLGEm6UdxU4OCIuHyQfc0AZgCMGzdu4ty5c+tt1jpWrlzJyJEjm9pHN3F7e5vbW667H39+QNk7th7F5ClTADj/B/MGrGtGEe2dMmXKooiYVEvddgyLrpbhNEj5wIrSG4D/AFYCX1xnxxE/qKh7BfA/wMlA1YQTEXOAOQCTJk2KyZMn1xLGoPr6+mh2H93E7e1tbm+5ple5sHPpxyb/+fnZd28w6LpGlN3esrvUlgOjq5SPAp4bbmNJAi4BdgamRsTyoepHOny7HHjncEOvzcw6VkRaulzZRziLqThXI2kbYGMqzu0M4lzScOp9I6KW+v26/5syM+tyZR/hXAPsL2mTXNmhwGpgwVAbSjoB+Dzw8Yi4tZY3y46IPgT8OiJebSxkMzMrQtkJ5wLgZeBySftkJ+xnAefkh0pnMwp8L/f6cOAbpO60xyXtkVu2yNVbIOloSftJ+hBwFbBH9h5mZt1p4sS0dLlSu9QiYrmkvYFvA1eQztucy8CEsAGQP+eyX/Y4PVvyPgVcnD1fAvwzsBVpyPSdwIERcU0R8ZuZtcWdd6bHfdsbRrNKH6UWEfcC7xumzviK19MZmGiqbXdEE6GZmVkL+fYEZmZWCiccMzMrhROOmZmVwgnHzMxK4Tt+mpl1uqOOancEhXDCMTPrdP23mK4y11o3cZeamZmVwkc4ZmadbtGidkdQCB/hmJl1ukmT0tLlnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEz63QLF6alyznhmJl1uh65xbQTjpmZlcJT25iZdboZM9LjZtPaG0eTnHDMzDrdhRemx+O6O+G4S83MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZm1ul22aXdERTCRzhmZp1u0aKeuM20E46ZmZXCCcfMzErhhGNm1umktHQ5JxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8tY2ZWaebPTs9/r69YTTLCcfMrCTjj79qnddLv3lgbRv232K6YvvB9lvXvkvkLjUzMyuFj3DMzDrdnDnZk63bGkaznHDMzDrdzJnp8bgr2xtHk9ylZmZmpSg94UjaSdJNklZJekLSaZLWr2G7UZIukrRc0vOSfijpzVXqTZN0t6SXJN0r6dDWtMTMzOpRapeapDHAjcC9wDRgB+BsUuI7aZjNfwy8HTgSWAucAcwD/i63//cAPwG+AxwNTAUulbQ8Iq4vtDFmZpmGR5+1UCeOXCv7HM6ngRHAQRGxArhB0qbALElnZmUDSNoT2B/YKyJuycoeB34haZ+IuDGr+lXglog4Ons9X9LOwMmAE46ZWRuVnXAOAK6rSCxzSUcrewFXDLHdU/3JBiAifinpoWzdjZLeCEwhHdnkzQUukjQqIp4vqB1m1uM68ailWZVt+tI7XmFyie9fdsKZANycL4iIRyStytYNlnAmAIurlN+XrYPUPbdhlXr3kbrsdgTuaCxss+7STHdKftt6fpAafc9Gtitrm9eD8cdfVdrnoIgo5Y0AJK0Bjo2I8yrKHwMuiYgTB9nuBuDFiPhgRfkPgO0j4t2S/ha4FXhXRNyVq/NW4HfA/tXO40iaAWSX8fJ24P6GG5hsDjzd5D66idvb29ze3lZEe7eLiC1qqdiO63CqZTgNUt7IdpWvNUh5KoyYA8yptq4RkhZGxKSi9tfp3N7e5vb2trLbW/aw6OXA6Crlo4DnGthudG675bmyyjoMs38zM2uxshPOYl475wKApG2Ajal+jmbQ7TL5czsPAmuq1JtAGkb9QAPxmplZQcpOONcA+0vaJFd2KLAaWDDMdltm19kAIGkSsH22joh4GZgPfLhi20OB20ocoVZY91yXcHt7m9vb20ptb9mDBsaQLvr8LWko9PbAOcB5EXFSrt4SYEFEHJEru5Y00uwYXrvw848RUXnhZx/wbdJFoVOz+u/3hZ9mZu1V6hFORCwH9gbWJw2BPhU4FzilouoGWZ28w0hHQd8HLgEWAR+q2P+twCHAPsB1wN8DhzvZmJm1X6lHOGZm9vrl2aJr1OpJRztNI+2VtGvW1iXZdvdLOkXSRmXF3ahGv9/c9utJWiQpJH2glbEWoZn2SjpI0h2SVkt6RtK1kjZudczNaOKzaIoDAAAEj0lEQVT/7yRJ12ftfFbSjZJ2LyPmZkh6q6TZkn4t6VVJfTVu19LfK98PpwatnnS00zTR3kOzumeQLrZ9J3B69nhwC0NuSpPfb78j6ZK7YzXTXklHks6RngkcC4wB3kcH/5Y02t5sBO2NwJ3AJ7LiY4HrJb0zIh5uZdxN2pl0Dvt24A11bNfa36uI8DLMApxAus5n01zZl4FV+bIq2+1JuuD0vbmy3bKyfdrdrha0d4sqZTOy9m7X7nYV3d5c3THAMuCIrK0faHebWvT9bg68ABzV7jaU1N5PA68Coyu+61eBz7S7XcO0eb3c88uAvhq2afnvlbvUajPYpKMjSJOODrXdgElHgf5JRztVQ+2NiGVVin+VPY4tLrzCNfr99jsd+DlwUwtia4VG2/uR7PHfWxVYizTa3g2BV4CVubKVWZmqbtEhImJtA5u1/PfKCac2AyYPjYhHSH8hVbsgddDtMvlJRztRo+2t5t2kQ/Nm56hrpYbbK+mdwKdIw++7RaPt3Z30PR4h6TFJayT9QtK7WxdqIRpt70+yOmdLGitpLGlU7XLgP1sUazu1/PfKCac2Y6g+Nc7ybF3R27VbIXFL2hL4CvD/YpB7HXWIZtp7PvCvEbGk8Khap9H2bknq3z8JOA7438CLwLWSxhUdZIEaam9EPEG65cnBwFPZchBpIuBqR/PdruW/V044tWv1pKOdpqm4Jb0B+A9SF8QXC4yrVepur6TDSD/AX2tVUC3UyPe7HjASOCIifhgR1wIfJJ3T+FzxIRaqke93K9L5j0WkLqUDsudXSdq2FUF2gJb+Xjnh1KaVk452okbbC4AkkS7O3RmYGumC305Wd3slbQicRRrFs56k0cCm2eqNK6Zv6jSNfr/PZo99/QXZkesiYKeigmuBRtt7LGn03SERcW2WYA8mJdhu6kKtVct/r5xwatPKSUc7UaPt7XcuafjptIjo5Hb2a6S9GwN/SZqaaXm2/DpbN5fXBkt0oka/3/tIf+lWnjAX6Txdp2q0vROAeyJiTX9BRPwJuIc0tLrXtPz3ygmnNi2bdLRDNdpeJJ0AfB74eKSphrpBI+1dSerfzy8fzdadCHysNaEWotHv90pScpnSXyBpFDCR15JtJ2q0vQ8Df511DwOgdCv7vwaWtiDOdmv971W7x4t3w0I6YfYkcANpnrYZpB+cr1XUWwJ8r6LsWuD3pJONHySN8vlZu9vUivYCh5P+Ar4I2KNiGXCNTqcszXy/FevH0x3X4TTz73letu0ngQNJP9jLgDHtblfR7SUl0jXAVVlbP0D64V0D/K92t2uYNr+JNK/kIcBtpKOy/tdvGuL7benvVds/mG5ZSH3UN5P+KnqSdO3F+hV1lgIXV5SNzn6AnwNWAD8CNm93e1rRXuDi7Ae32jK93W1qxfdbsb4rEk4z7SUNGvg34Jls2xuBd7S7PS1s797ALaTzV8+SEuzkdrenhvb2/1ustowfor0t/b3y5J1mZlYKn8MxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqX4/1KdOlmYTp5uAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu4HFWZ7/Hvj4sSCSRBSGAYIIJiBkbPSMLNcSSRmwTPRAEF0dE4QKKj4vgIchEhgHoE5HIGxyFBheGoxBnEzHC/ZgdxQEkQRSBgkHAXAwRCSMBA3vPHqi2V3r337kt19YXf53nq6e5Vq6rf1Z30u2vVqlWKCMzMzFptvXYHYGZmrw9OOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCscJImiUpBlk+XuM+dsz2M7qifHq2n5Gtib62OJrc52WS+mqot4Gkf5b0a0mrJS2XdLWk9zT4vp3ymU7P/XtYK+l5Sb+RdJ6kHRrcZ5+ky3Kv95P0z8VFbUVywrGiPQ/sWWW5tsbtdwROASp/6K/K9rOqmDAbjqOlJK0PzAO+Afw3MBWYDrwK9Ek6vIHddspn2u99wLuBg4HvAfsBv5F0QAH73g9wwulQG7Q7AOs5r0TE7UXvNCKWAcuK3m8H+jxwIHBAROST9H9JmgvMkbQgIh5v9o3a+JneERErs+c3SroAuBL4kaTxEfF8G2KyEvgIx0on6QRJSyS9JOkpSddK2lLSZOCKrNpDWdfL0mybdbp/JI3PXh8m6SJJKyQ91t91J+nLkp6QtEzSGZLWy73/BElzJT0qaZWke7IurPWy9YPGka3fNtv+2Wz76yS9vaKN22TdYKslLZV0ZI0fzxeA+RXJpt9XgI2AI3Lvs1TStyR9VdIfJK2U9ENJo4ZrS7UuNUmbS/p3Sc9kbeuTNKmibf3v+cXsM1+efR4NHQ1GxMukRDsa+GjufdaTdHz2b+VlSQ9I+uRg+5E0C/gSsF2u6+7ibN2ekv47+zfxoqS7JH2skXitcT7CscJJGvDvKiJeydZ9AjgROA64B3gzqYtlY+BO4BjgW8BBwJPAy8O83RnAD0ndM/8I/LukdwHbZa8nAl8DfgXMzbbZGrg/2+4F4G+AU4ERwP8ZKg5JmwG3As8AnyZ1Rx1P+kt9x4hYLUnAfwGbk5LDS9n+NwN+N8Tntg0wHji32vqIeFDS3cB7K1Z9FFgCHAVsBZwJfBf48FBtGcQ84K3ZNk8DxwLzJb0rIpbk6n0E+A0wA/hL4BxSN+A/DbHvQUXEYkmPAXsAF2TF5wOfBE7L2rEv8H1Jz0TElVV2813gbaR/Tx/KyvqP4LYDfp7t+yXgb4GLJK2NiEsbidkaEBFevBSyALOAGGQZn9X5NvCTIfbxgXz9XPn0rHxk9np89vqiXJ1NgTWkH/X1c+W/BH48yPuJ9IfXicDva4jjdFKy2SxXNoZ07uqz2eup2ba75+psB7wC9A3R9j2y7aYNUWcecF/u9VLg2f7PJSv7GLAW+Ks6P9P3Z6/3ytXZmPSjPbviPR8ENsiVnQf8YZh/H+u8X5X1twHXZM/fmrXhkxV1LiF1yfW/7gMuy73+FrB0mDj6v/PZwM3t/n/zelp8hGNFex7Yp0r5E9njXcARkk4lnbReFBGvNvF+N/U/iYgVkpYBCyr2uQTYtv+FpI2AE0g/zNsCG+bWbRDZ0dgg9gFuAFbkjuReABYB/V1PuwFPRcQvcrE9LGlRA+2rxQ3x2jkRgMuBHwC7AvfVsZ/dgGURsaC/ICJelHQlUDlCbn7F53QvMFbSGyLiT/WF/2fKPd+blHB+WnHEfBPwUUnr1/PvRtIY0lHmNNIR7vrZqqbPhVntnHCsaK9ExMIh1n8f2ITUFXMy8IykfwNmNZh4nqt4/adByjbKvT4DOJL0A3RnVn8acFJWbyWD25x0JHJolXX9yW9L4I9V1v+R1PbB9P/4bTdEne0Y+CO5zntF6tZbSepeq8dWwFNVyp8idQfmVfuMBbwhe96IrYHF2fPNSUlhsAEEWwGP1bHvi0nf2+mk5LgC+Azpe7eSOOFYqSJiLekcxbnZOYuPAV8n/YheMNS2BfowcH5EnNlfIOnAGrd9ljRc+fQq617IHv8AjK2yfiywerAdR8Sj2Qn9vwf+pXK9pLcAf13lvcdW1BsBjCSdr6nHk5X7yowjtbtlJP0V6VzQbVnRs6QuyL8lHelUqpbQB9v3RqSRf5+LiAty5R40VTJ/4NY2EfFoRHyT1OW1U1bc/9fxRtW3KsQIcifOla59OayizmBx3ATsDNwTEQsrlvuzOncA4yTtnnuPbYFdaojt/wJ7S9qvyrqvZXF/r6J8X6178eZBpHMl/UeatX6mvyB1i/15UIKkN5F+rG+tIfaGSHojKcE+x2sDO24mHeGMqvI5Lxyi267yaBbgjdm+8t/5JqTEbiXyEY4VbQNJe1QpfzQiHpc0m/TX6+2k7pIppJFFx2X1+n+0Zypdd7IqIu4uOMYbgM9KWpLF8lnSj1LeYHGcA3wcuFnS+aQjs3HAXsCtkUY8XQ38GvhPSceRRkWdRm1/lZ9POk/0U0nfIp0U34Q02u0DwD/EwGtwVgNXSTqL1NV0FvDTiLh3mLasIyKuk/Rz4MeSjicNjjiGlKDPqiH2Wu0qaTXwJtIR20zSIJBDIrsGJyLuV7o+Z66kM0nJcyNSst8xIgYbZr6YlOynA78Fno6IpZLuAE6WtIJ0xHQ86d/fpgW2y4bT7lELXnpnYehRaidldaaThqc+SxpS/BvgiIr9fAl4mNSlsjS3XbVRah+o2HYp8K2KsouBhbnX44CfkvrxnyINIz6KihFU1eLIyv8CuCjb9uXsPX8A7Jyrsy1pdoXV2T5mApcxxCi13LYbAF/MPpvVwHLgGuA9VeouBc7OPvungBeBS4HR9X6mWdkWpJFgy7P3XgDsWsNnPGBfVWLtr9O/vADcTTqq26FKfZFmDbgn+5yXZfF8Ilenj3VHqW2UfTd/zN7j4qz8raSjpheBR4AvZ5/Z0+3+f/N6WpR9GaWR9FbS2P49SH/d/CwiJtew3SjS0MsPkroCrwSOjohnKupNI3U9vA34PXBqRPy4yDaYdYrsnM9lEXFMu2MxG047zuHsTLpO4YFsqdWPgcmk0UXTSUM+5+UrKE1u+BNgPnAAadjtpYP0h5uZWYnacYSzXqSRSijN8rr5cEc4kvYE/od0QdotWdlupJOc+0bEjVnZdcCGEfG+3LZXA5tGREMz7Zp1Mh/hWDcp/QinP9nU6QDShXS35PbzS+ChbF3/SJcpwH9UbDsX2LN/bimzXhIR451srFt0y7DoCbx2QVjefdk6gB1IV4xX1ruP1M4dWxadmZkNq1uGRY9h4JXNkEbSbJ+rQ5V6yyvWr0PSDNJV74wYMWLiNtts01Sga9euZb31uiWPN8/t7W1ub2fY5IF0uvuFHYv9u7mI9j7wwANPR8QWtdTtloQDaYhjJVUpr3ytQcpTYcQcYA7ApEmTYuHCoWZlGV5fXx+TJ09uah/dxO3tbW5vh1D2M3b//UPXq1MR7ZX0cK11Oy+VV7ec6ndeHM1rRzTLc2WVdaD6EZKZmZWkWxLOYl47V5OXP7fzIGlq+sp6E0hXFtczBNvMzArWLQnnGmDL7DobALK7EG6frSPSXQPnkyZmzDsUuC1821ozs7Yq/RxONhng1Ozl1sCmkg7JXl8dEauyOa4WRMQRABFxW3aNzSWSjiEdsZxBmrvqxtzuTwf6JJ1Huih0ara8v+UNMzOzIbVj0MBY4D8ryvpfv4U0T9MGvHaDpH6Hkaa1/z65qW3yFSLi1ix5fY10r4uHgMMj4voC4zczK1fJF+i3SukJJyKWsu6d/arVGV+l7DngU9ky1LbzqJjyxszM2q9bzuGYmVmXc8IxM+t0Eyempct104WfZmavT3fe2e4ICuEjHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUniUmplZpzvqqHZHUAgnHDOzTjdnTrsjKIS71MzMrBROOGZmnW7RorR0OXepmZl1ukmT0mOXzxrtIxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8LNrMrNMtXNjuCArhhGNm1ul64PbS4C41MzMriROOmVmnmzEjLV3OCcfMrNNdeGFaupwTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKXzhp5lZp9tll3ZHUAgnHDOzTtcDt5cGd6mZmVlJnHDMzKwUTjhmZp1OSkuXc8IxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YmXW62bPbHUEhnHDMzDpdD9xeGtrQpSZpJ0k3SVol6QlJp0laf5htZkmKQZYTcvUuHqTOhNa3zMzMhlLqEY6kMcCNwL3ANGAH4GxS4jtpiE2/C1xbUfZB4DjgmoryxcCnKsqWNhaxmVkHmDMnPXb5kU7ZXWqfBkYAB0XECuAGSZsCsySdmZUNEBGPAY/lyyR9FVgcEXdVVH8xIm5vQexmZu0xc2Z67PKEU3aX2gHAdRWJZS4pCe1V604kbQbsC1xabHhmZtYqZSecCaQurz+LiEeAVdm6Wh0CbEhKVpV2krRC0suSbpVUcyIzM7PWUUSU92bSGuDYiDivovwx4JKIOLHG/dwMjIqIiRXlXwD+RDpHtAXwJWAi8J6I+OUg+5oBzAAYN27cxLlzq+Ww2q1cuZKRI0c2tY9u4vb2Nre3M0yeMgWAvvnzC91vEe2dMmXKooiYVFPliChtAdYAX6hS/jjw9Rr3sRXwKnBMDXVHAA8B82rZ98SJE6NZ8+fPb3of3cTt7W1ub4eAtBSsiPYCC6PGHFB2l9pyYHSV8lHAczXu4yOAgB8PVzEiVgNXA71xQ3Azsy5WdsJZTMW5GknbABtTcW5nCIcBt0bEo3W8b3n9hmZmVlXZCecaYH9Jm+TKDgVWAwuG21jSeGAPahydJmkEaWTconoDNTPrGP2dal2u7IRzAfAycLmkfbIT9rOAcyI3VFrSEknfq7L9YcArwGWVKySNkvQzSTMl7S3pUGA+sDXwjRa0xczM6lDqhZ8RsVzS3sC3gStI523OJSWdyriqTXdzGHBTRCyrsu5lYBlpxoKxwEvAbcBeEbGwkAaYmVnDSp+8MyLuBd43TJ3xg5T/zRDbvAQc1FRwZmadaGJ2Bcii7j474Nmizcw63Z13tjuCQvgGbGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfAoNTOzTnfUUe2OoBBOOGZmna7/FtNdzl1qZmZWiroSjqRq082YmVkrLVrU9bMMQP1dao9LugS4KCLua0VAZmZWYVJ2Q80unzG63i612cAhwG8l/ULSDEmbtiAuMzPrMXUlnIg4JSK2B/YF7gfOAZ6U9ENJ+7QiQDMz6w0NDRqIiJsj4hPAlsDngbcD10laKmmWpL8oMkgzM+t+zY5SmwS8l3Tb6OXAz4AjgSWSPt7kvs3MrIfUnXAkbSfpFEkPAjcBWwH/CPxFRPwDsB3pXM9ZhUZqZmZdra5RapJuJh3RPAZcTBqt9nC+TkS8KulHwBeKCtLMzLpfvcOinwamAjdEDDk+7y7gLQ1HZWZmr1m4sN0RFKLehPNt4M5qyUbSSGCXiLglItYADw/Y2szM6td/i+kuV+85nPnAToOse3u23szMbIB6E46GWDcSWNVELGZmVs2MGWnpcsN2qUl6LzA5V3SkpPdXVNsIOBC4u7jQzMwMgAsvTI9dPmt0Ledwdidd3AkQwIeBVyrq/AlYDBxbXGhmZtZLhk04EXEW2TU1kh4CPhQRd7U6MDMz6y11jVKLCA91NjOzhtRyDmcqcGtErMieDykiri4kMjMz6ym1HOFcCewB/DJ7Hgw+Wi0A36TNzMwGqCXhvAV4MvfczMzKtMsu7Y6gELUMGni42nMzMytJD9xeGmo7h/OmenYYEb7408zMBqilS20l6dxMrXwOx8zMBqgl4fwj9SUcMzMrkrJxWkNO0t/5ajmHc3EJcZiZWY9r9hbTZmZmNall0MAvgekRca+kOximey0idisqODMz6x21nMO5B1ide97dnYhmZtYWtZzD+VTu+fSWRmNmZj2r4XM4SraQNNRN2czMzIA6Z4uGP0/meRIwMdv+FUmLgK9HxFUFx2dmZrNntzuCQtSVcCTNBL4D3AR8AfgjMBY4CPhvSf8UEb3xyZiZdYoeuL001H+EcyIwJyI+U1F+gaQLgK8ATjhmZjZAvedw3gxcPsi6nwCbDbcDSTtJuknSKklPSDpN0pDT4UgaLymqLHOr1J0m6W5JL0m6V9KhNbXMzKxTzZmTli5X7xHOfGAv4IYq6/YCbhlqY0ljgBuBe4FpwA7A2aTEd1IN738M8PPc66cr9v8eUuL7DnA0MBW4VNLyiLi+hv2bmXWemTPTY5d3rdVy4edOuZf/AnxX0puBebx2DudDwAHAkcPs7tPACOCgiFgB3CBpU2CWpDOzsqHcHxG3D7H+q8AtEXF09nq+pJ2BkwEnHDOzNqrlCOe3rHuxp4CZ2VJ5989rGXq26AOA6yoSy1zgDNIR0hU1xFOVpDcCU0hHNnlzgYskjYqI5xvdv5mZNaeWhDOlwPebANycL4iIRyStytYNl3AukrQZ6cjqUuArEdE/C8IOwIbA4opt7iN12e0I3NFc+GZm1qhaZhpYUOD7jQGeq1K+PFs3mJeBfyV1i60AJgPHkZLMtNy+qbL/5RXr1yFpBjADYNy4cfT19Q0V/7BWrlzZ9D66idvb29zezjA5eyw6trLbW/eFn/0krQdsVFlewx0/q83FpkHK+/f5JPC5XFGfpKeA70j6m4i4a4j9a5Dy/n3PAeYATJo0KSZPnjx09MPo6+uj2X10E7e3t7m9naXo2Mpub13DorPpbI6TtARYA7xQZRnKcmB0lfJRVD/yGcpl2eMuuX1TZf/9r+vdv5mZFaje63COBo4Hvkc6cvg6cBrwALCUrGtqCItJ52r+TNI2wMYMPPcynKh4fJCUBCdU1JsArM1iNDPrPhFdf7dPqD/hHAWcApyZvZ4XEacCO5MSxtuG2f4aYH9Jm+TKDiXd/qDec0WHZI+LACLiZdJ1Qh+uqHcocJtHqJmZtVe953DeAtwVEa9KWkPWXRURayV9B/gu6QhoMBeQjpIul3QGsD0wCzgnP1Q667JbEBFHZK9nAZuQLvpcAbwXOBa4PCJ+k9v/6aTzO+eRrhOami3vr7OdZmZWsHqPcJ4BRmbPHwHelVs3hnRR56AiYjmwN+lanSuAU4FzSUdNeRuw7vU8i0nX6VwEXA0cDpyVPeb3fyvpyGcf4Drg74HDPcuAmXW1iRPT0uXqPcL5ObAr6Uf/R6QZAjYD/gR8ljSL9JAi4l7gfcPUGV/xei7pAs5hRcQ80tGNmVlvuPPOdkdQiHoTzixg6+z5N0hdatNJRzY3AJ8vKjAzM+stdSWciLgfuD97/jLpnjhfaEFcZmbWY5q58PMvga2AJyLi8eJCMjOzXlTvoAEkfUbSo8DDwC+ARyQ9JumfCo/OzMx6Rr0zDZwMfJt0Pc2BwKTs8RrgX7L1ZmZmA9TbpfZZ4BsR8dWK8muzuc0+S5p5wMzMinLUUe2OoBD1JpwRDH5XzwV4lJqZWfF64PbSUP85nHnAQYOsOxi4srlwzMysV9Vyi+mpuZfXAGdKGs/AW0zvDHy5+BDNzF7nFi1Kj10+20AtXWpXMvBW0lsD+1ep+wPSnTjNzKwokyalxy6fMbqWhPOWlkdhZmbDGn/8Veu8XvrNA9sUSWNqucX0w2UEYmZmva3umQYkbUAaIPAeYDPgWeBnpFsFvFJseGZm1ivqSjiSxgLXA+8k3eHzKWBP0vU3v5a0X0QsKzpIMzPrfvUOiz4HeDOwe0RsHxF7RsT2wO5Z+TlFB2hmZr2h3i61qcDnIuKOfGFE3CHpBOD8wiIzM3udqRwUAN03MGAo9R7hvBF4YZB1LwBvaC4cMzMbYOHCtHS5ehPO7cBxkjbOF2avj8vWm5lZkV6nt5j+EjAfeFTS9aRBA2NJF4EKmFxodGZm1jPqvePnXZLeBhwD7EoarfYkcAFwTkQ8XXyIZmavczNmpMfNprU3jibVnHAkbQjsBjwUEce3LiQzM1vHhRemx+O6O+HUcw7nVeBm4K9aFIuZmfWwmhNORKwFfgeMa104ZmbWq+odpfYV4GRJ72hFMGZm1rvqHaV2EmlGgbskPU4apbbOfNkRsVtBsZmZWQ+pN+H8NlvMzMzqUlPCkTSCNK3Nb4E/ADdGxFOtDMzMzDK77NLuCApRyy2mtwduBMbnildI+khEXN+qwMzMLNN/i+kqc611k1oGDZwJrAX+DngTsDPwK2B2C+MyM7MeU0vC2RM4KSJ+HhEvRcR9wExgW0lbtTY8MzPrFbUknK2A31eUPUiaO23LwiMyM7N1SWnpcrVehxPDVzEzMxtcrcOir5P0SpXymyrLI2Js82GZmVmvqSXhnNryKMzMrOcNm3AiwgnHzMyaVu9camZmZg1xwjEzs1LUO5eamZmVbXZ2nX3lBSpdxgnHzKzT9d9i+nUwtY2ZmVnTfIRjZtbp5szJnmzd1jCaVfoRjqSdJN0kaZWkJySdJmn9YbbZVdJFkpZk290v6RRJG1XUmyUpqizvb22rzMxaaObMtHS5Uo9wJI0h3ergXmAasANwNinxnTTEpodmdc8Afge8Ezg9ezy4ou7zQGWCua/Z2M3MrDlld6l9GhgBHBQRK4AbJG0KzJJ0ZlZWzRkRsSz3uk/SS8BsSdtFxMO5da9ExO2tCd/MzBpVdpfaAcB1FYllLikJ7TXYRhXJpt+vskfP3WZm1gXKTjgTgMX5goh4BFiVravHu0k3hru/ony0pKclrZH0K0kHNRytmZkVRhHl3XlA0hrg2Ig4r6L8MeCSiDixxv1sCfwGuDoipufKP0464rkLGEm6UdxU4OCIuHyQfc0AZgCMGzdu4ty5c+tt1jpWrlzJyJEjm9pHN3F7e5vbW667H39+QNk7th7F5ClTADj/B/MGrGtGEe2dMmXKooiYVEvddgyLrpbhNEj5wIrSG4D/AFYCX1xnxxE/qKh7BfA/wMlA1YQTEXOAOQCTJk2KyZMn1xLGoPr6+mh2H93E7e1tbm+5ple5sHPpxyb/+fnZd28w6LpGlN3esrvUlgOjq5SPAp4bbmNJAi4BdgamRsTyoepHOny7HHjncEOvzcw6VkRaulzZRziLqThXI2kbYGMqzu0M4lzScOp9I6KW+v26/5syM+tyZR/hXAPsL2mTXNmhwGpgwVAbSjoB+Dzw8Yi4tZY3y46IPgT8OiJebSxkMzMrQtkJ5wLgZeBySftkJ+xnAefkh0pnMwp8L/f6cOAbpO60xyXtkVu2yNVbIOloSftJ+hBwFbBH9h5mZt1p4sS0dLlSu9QiYrmkvYFvA1eQztucy8CEsAGQP+eyX/Y4PVvyPgVcnD1fAvwzsBVpyPSdwIERcU0R8ZuZtcWdd6bHfdsbRrNKH6UWEfcC7xumzviK19MZmGiqbXdEE6GZmVkL+fYEZmZWCiccMzMrhROOmZmVwgnHzMxK4Tt+mpl1uqOOancEhXDCMTPrdP23mK4y11o3cZeamZmVwkc4ZmadbtGidkdQCB/hmJl1ukmT0tLlnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEz63QLF6alyznhmJl1uh65xbQTjpmZlcJT25iZdboZM9LjZtPaG0eTnHDMzDrdhRemx+O6O+G4S83MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZm1ul22aXdERTCRzhmZp1u0aKeuM20E46ZmZXCCcfMzErhhGNm1umktHQ5JxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8tY2ZWaebPTs9/r69YTTLCcfMrCTjj79qnddLv3lgbRv232K6YvvB9lvXvkvkLjUzMyuFj3DMzDrdnDnZk63bGkaznHDMzDrdzJnp8bgr2xtHk9ylZmZmpSg94UjaSdJNklZJekLSaZLWr2G7UZIukrRc0vOSfijpzVXqTZN0t6SXJN0r6dDWtMTMzOpRapeapDHAjcC9wDRgB+BsUuI7aZjNfwy8HTgSWAucAcwD/i63//cAPwG+AxwNTAUulbQ8Iq4vtDFmZpmGR5+1UCeOXCv7HM6ngRHAQRGxArhB0qbALElnZmUDSNoT2B/YKyJuycoeB34haZ+IuDGr+lXglog4Ons9X9LOwMmAE46ZWRuVnXAOAK6rSCxzSUcrewFXDLHdU/3JBiAifinpoWzdjZLeCEwhHdnkzQUukjQqIp4vqB1m1uM68ailWZVt+tI7XmFyie9fdsKZANycL4iIRyStytYNlnAmAIurlN+XrYPUPbdhlXr3kbrsdgTuaCxss+7STHdKftt6fpAafc9Gtitrm9eD8cdfVdrnoIgo5Y0AJK0Bjo2I8yrKHwMuiYgTB9nuBuDFiPhgRfkPgO0j4t2S/ha4FXhXRNyVq/NW4HfA/tXO40iaAWSX8fJ24P6GG5hsDjzd5D66idvb29ze3lZEe7eLiC1qqdiO63CqZTgNUt7IdpWvNUh5KoyYA8yptq4RkhZGxKSi9tfp3N7e5vb2trLbW/aw6OXA6Crlo4DnGthudG675bmyyjoMs38zM2uxshPOYl475wKApG2Ajal+jmbQ7TL5czsPAmuq1JtAGkb9QAPxmplZQcpOONcA+0vaJFd2KLAaWDDMdltm19kAIGkSsH22joh4GZgPfLhi20OB20ocoVZY91yXcHt7m9vb20ptb9mDBsaQLvr8LWko9PbAOcB5EXFSrt4SYEFEHJEru5Y00uwYXrvw848RUXnhZx/wbdJFoVOz+u/3hZ9mZu1V6hFORCwH9gbWJw2BPhU4FzilouoGWZ28w0hHQd8HLgEWAR+q2P+twCHAPsB1wN8DhzvZmJm1X6lHOGZm9vrl2aJr1OpJRztNI+2VtGvW1iXZdvdLOkXSRmXF3ahGv9/c9utJWiQpJH2glbEWoZn2SjpI0h2SVkt6RtK1kjZudczNaOKzaIoDAAAEj0lEQVT/7yRJ12ftfFbSjZJ2LyPmZkh6q6TZkn4t6VVJfTVu19LfK98PpwatnnS00zTR3kOzumeQLrZ9J3B69nhwC0NuSpPfb78j6ZK7YzXTXklHks6RngkcC4wB3kcH/5Y02t5sBO2NwJ3AJ7LiY4HrJb0zIh5uZdxN2pl0Dvt24A11bNfa36uI8DLMApxAus5n01zZl4FV+bIq2+1JuuD0vbmy3bKyfdrdrha0d4sqZTOy9m7X7nYV3d5c3THAMuCIrK0faHebWvT9bg68ABzV7jaU1N5PA68Coyu+61eBz7S7XcO0eb3c88uAvhq2afnvlbvUajPYpKMjSJOODrXdgElHgf5JRztVQ+2NiGVVin+VPY4tLrzCNfr99jsd+DlwUwtia4VG2/uR7PHfWxVYizTa3g2BV4CVubKVWZmqbtEhImJtA5u1/PfKCac2AyYPjYhHSH8hVbsgddDtMvlJRztRo+2t5t2kQ/Nm56hrpYbbK+mdwKdIw++7RaPt3Z30PR4h6TFJayT9QtK7WxdqIRpt70+yOmdLGitpLGlU7XLgP1sUazu1/PfKCac2Y6g+Nc7ybF3R27VbIXFL2hL4CvD/YpB7HXWIZtp7PvCvEbGk8Khap9H2bknq3z8JOA7438CLwLWSxhUdZIEaam9EPEG65cnBwFPZchBpIuBqR/PdruW/V044tWv1pKOdpqm4Jb0B+A9SF8QXC4yrVepur6TDSD/AX2tVUC3UyPe7HjASOCIifhgR1wIfJJ3T+FzxIRaqke93K9L5j0WkLqUDsudXSdq2FUF2gJb+Xjnh1KaVk452okbbC4AkkS7O3RmYGumC305Wd3slbQicRRrFs56k0cCm2eqNK6Zv6jSNfr/PZo99/QXZkesiYKeigmuBRtt7LGn03SERcW2WYA8mJdhu6kKtVct/r5xwatPKSUc7UaPt7XcuafjptIjo5Hb2a6S9GwN/SZqaaXm2/DpbN5fXBkt0oka/3/tIf+lWnjAX6Txdp2q0vROAeyJiTX9BRPwJuIc0tLrXtPz3ygmnNi2bdLRDNdpeJJ0AfB74eKSphrpBI+1dSerfzy8fzdadCHysNaEWotHv90pScpnSXyBpFDCR15JtJ2q0vQ8Df511DwOgdCv7vwaWtiDOdmv971W7x4t3w0I6YfYkcANpnrYZpB+cr1XUWwJ8r6LsWuD3pJONHySN8vlZu9vUivYCh5P+Ar4I2KNiGXCNTqcszXy/FevH0x3X4TTz73letu0ngQNJP9jLgDHtblfR7SUl0jXAVVlbP0D64V0D/K92t2uYNr+JNK/kIcBtpKOy/tdvGuL7benvVds/mG5ZSH3UN5P+KnqSdO3F+hV1lgIXV5SNzn6AnwNWAD8CNm93e1rRXuDi7Ae32jK93W1qxfdbsb4rEk4z7SUNGvg34Jls2xuBd7S7PS1s797ALaTzV8+SEuzkdrenhvb2/1ustowfor0t/b3y5J1mZlYKn8MxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqX4/1KdOlmYTp5uAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb index 0458db2a4..fc9fdca94 100644 --- a/qiskit/finance/simulation/credit_risk_analysis.ipynb +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -255,7 +255,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAElCAYAAAAhjw8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmcFMX5+PHPw3KuyC2iCCwYAfEiisoRBQEPCHxVbjziqgke0QTjbVAXNPFEjLcEI0bxt4DBW1ExAQ3gAUriAahR5JBbkBs5nt8f1bsOs7MzPcd27+w879erX7NT3dX9TPcwRXV1VYmqYowxxqSjWtgBGGOMyX5WmBhjjEmbFSbGGGPSZoWJMcaYtFlhYowxJm1WmBhjjEmbFSbGpEFEeoiIikhRSMcv8I4/MSp9opdeEEZcXgyhnhsTLCtMTMq8H4qs76gkIkUln8Vb9orIJhH5VkReE5HrRaR5BR270DtmYUXsvyKVV5CZ3FQ97ACMqURmATO9v/cDDgK6AX2A0SJSpKp3RuX5ADgcWBdUkFFWeMf/IaTjxxP2uTEBssLEmJ/MVNWiyAQREWAAMB64Q0SILFBUdRuwKNAoI6jqrjCPH0/Y58YEy25zmcCISC8RmS4i34vIDhH5QkTuFJH6MbZtIyLjReQrEdnu5flERB4TkcYR29UUkd+JyEciskFEtonIEhF5UUR6pxuzOv8ABnlJt4rIQRHHj9ku4Cd+EZkJPOlleTLqVluBt03JLbgeInKOiLwvIltEZIm3PtGtpmoi8gcRWeSd8+UiMk5E6kVv6O1nZqydRLfBeJ/3G2/1BVGxF8Y7N966w0Tk7yKyQkR+FJHvvPeHxdg28hwMEpEPvOv8vYgUV9QtSJMcq5mYQIjIJcCjwFZgKrAG6AFcD/QXkW6qutHb9iDgQ6Ae8BrwD6A20Bo4H3gIWO/teiIwHPgU+DuwHTgY+AVwBjAjE/Gr6r9E5N/efgcAD8f5rH7jnwhsBM4EXgQWROxmY9RurwZOBV4G/gWUKYDLMQ44GZjiHeN0YCRwkoj8QlV3+NxPtJlAA+D3wH+AFyLWLYiVoYSIHI+7LvsDLwGfA+2Bc4EzRaSXqs6LkfVy4P+8PLOAE4GhwDEi0lFVd6b4WUwmqKottqS0AOq+Qgm3awXsBDYB7aPWPeLtZ3xE2pVe2u9j7Gs/oI73d31gLzAPyIuxbWOfn6PIO15Rgu1u87Z7KiKtR3Rev/F77wu9bQsTxLYV+HmM9QXe+olR6RO99HVAq4j0arjCTYGbY1zPmeXEUbK/gkTHTnBuBFjopZ8btf1QL30RUC3GOdgEHBWV51lv3ZCw/z3k+mK3uUwQzgNqAg+pavQ99D8Cm4HzRaRW1Lrt0TtS1a2qWpKuuB+nnbhCJXrb9dFpaVrhvR7gc/tE8SdjvKp+nEK+v6jqtxHH3wtciztfF6Wwv3R1xdVC5qrqpMgVqjoZ+DfQDlcDjPaAqn4SlfZX7/WETAdqkmOFiQnCsd7rP6NXqOoG4GPcbaD2XvJLwBbgYRH5h4iMEJEjvMbwyLybcLd9ugILROQWETlFRPIr6HOUHD/R49C+4k/SBynmmxWdoKpfA8uAAhFpkEZMqSj3uxCV/vMY62Ld+lrmvTZMJyiTPitMTBBK7u+vLGd9SXoDAO9/0icA04DewOO4NpFvReR3UXmHAqOBOt7rP4H1IvK0iByYsU/gHOy9ro23UZLx+7UqxXyrE+zPb9tLpiT1XYgS3Y4EsNt7zUsnKJM+K0xMEEr6QDQrZ/1BUduhqgtVdSjQGOgE3ID7vv5FRC6O2G67qhapalugJe6W2r+91+cy+ingFO/1/UQb+o0/Cal2Di2vQC25FpH9U5TyH8rJVA0m6e+CyQ5WmJgglNzr7xG9wrvN0hHYgWuY3Yeq7lbV+ap6F+6pLYCzYh1EVZd59+FPB74EfhH5GHE6RKQnrgPjduB5v/l8xL/He62o/1l3j04QkTZAC2CJek/QeTZ46dHb5+GuUbRUYi/3uxCV/lES+zSVgBUmJgjPALuAK0XkZ1HrbsM9QvuMeo92isgJ5dyiKknb5m13gIicGGO7/XCPne4GfkwncHEG4B5nBrhVVePecvIbv6fkIYGW6cQZx+9FpFVEbNWAe3D/9p+M2vYDoKWInBaVPgr3RF60DbjaTDKxzwYW4wr6QZErvPcnA1/gapcmi1g/E5O2OB3mAC5X1SUiMhLXN+MjEZmCa3foDnTBPQp6fUSec4Dfisgs4Cvcj9ahQH/ck1v3e9s1B94TkYW4/8kuwxVM/XC3UR5Q1c1JfJQeER3s6uDaSLrh+ofsBK5X1Xt87Mdv/ABzcYXLSBFpxE9tHA+qaiZu9czGPZwwGXfr6HTgGGA+cHfUtvd661/0tv8e93BDa1y/kh6RG6vqFhF5H9dnZRKuENgDvKSq/40VjKqqiFwAvAVMFpEXcde/Ha7Gthn4lffUmckmYT+bbEv2Lnj9TBIsDSK2Pw14E/fjuhP3Q3t35DbedifiOjj+B/eDtt3b9kngyIjtGgC34BrdV3j7XIn74RsOiM/PURQV817cj9q3uE6H1wPNy8nbg7J9KXzFH7H9GbhCZUtEDAVRsfUo5/gFxO9n0gbX4XER7lbiClxhVq+c/f0f7qmpHbhaUzGuVjIxMq6I7X+Ge6JuvXfeSvvMxDo3EfnaAU9712uX9/oM0C7O9SlzDsr7/LYEv4h3QYwxxpiUWZuJMcaYtFlhYowxJm1WmBhjjEmbFSbGGGPSlhOPBjdp0kQLCgrCDiPnLV6/GIB2jduFHInxbZO7ZtSza5aSxd75a5ed52/+/PnrVNXXwKY5UZgUFBQwb16sMeJMkHpM7AHAzMKZocZhkjCjh3vtPTPMKLJXjx7udebMMKNImYh8m3grx25zGWOMSVtO1ExM5TDq5FFhh2CSdaRds7SMyp3zZ4WJCUzvNmlPyW6C1syuWVp65875s9tcJjALVi1gwaq404ObymbDAreY1CxY4JYcYDUTE5iR00cC1gCfVea7a2YN8Cka6Z2/LG2AT4bVTIwxxqTNaibGmJRs2rSJNWvWsGvXrrBDqbxuvdW9Liwz71uoatSoQdOmTalXr17G9mmFiTEmaZs2bWL16tU0b96cOnXqICJhh1Q5VfNu/lSiTouqyvbt21mxYgVAxgoUu81ljEnamjVraN68Ofn5+VaQZBkRIT8/n+bNm7NmzZqM7ddqJgkU3PBq2CGEasmdv8zYvv7c688Z25cJyDGxr9muXbuoU6dOwMFkoebNw46gXHXq1MnoLUorTExgurboGnYIJlkHlH/NrEbiQ926YUdQrkxfP7vNZQIzZ9kc5iybE3YYJhlr57jFpGbLFrfkAKuZmMDc9PZNgPUzySr/cdfM+pmkyGvkrkwN8BXFaibGmJxVVFSEiMRcnnnmGWbOnFn6vkGDBqX5lixZgojwyiuvlLvvHj16IO3bI+3b89BDDwXxcUJlNRNjTE6rX78+06dPL5P+s5/9jE8//RSASZMm0bZt26T2+8gjj7Dpk0/oMmxYRuKs7KwwMcbktOrVq9O5c+e42xx99NEceeSRSe23Q4cOkJeXTmhZxW5zGWOMSZvVTExg7j/j/rBDMMk6Ljeu2e7du8ukVa+egZ/HFi3S30eWsMLEBKZjs45hh2CS1TC5a1YyNXOkIUcM4fLjL2fbrm30ndS3zPrCjoUUdixk3bZ1DJoyqMz6yzpdxtAjh7Lsh2Wc//z5ZdZf3eVq+rfrn1SckdavX0+NGjXKpH/zzTcp77NUfn76+8gSgRcmItIBeBDoAmwEJgCjVXWPj7wDgBuBI4FtwIfAQFXdWnERm0yZ8fUMwCbJyiqr3DWrypNk1a9fnxkzZpRJP/jgg1myZEl6O9+0Kb38WSTQwkREGgIzgM+BM4FDgbG4tpu481uKyK+Bh4C7gWuBhkBPrHaVNW5/53bACpOs8qm7Zn4Lk3h9iPJr5Mdd3yS/Sdz1Leq3qJA+StWrV6dTp04Z3y8AK1dWzH4roaB/iC8F6gADVHUT8JaI1AOKRORuL60MEWkCjAOuVNW/Rqx6vsIjNsYYk1DQT3P1Ad6IKjSKcQVM9zj5hnivT1VUYMYYY1IXdM2kPfDPyARVXSoi27x1L5eT70RgMXCxiPwROBD4CLhKVW3gIGNMynbv3s17771XJr2FjyexZs+ezY4dO/ZJKygoqLjbZpVY0IVJQ1yje7QN3rryNAPa4dpVrgPWe6/TReQwVV0dnUFERgAjAFq2bJlm2MaYquqHH36gS5cuZdJvu+02fvGLX8TNe+edd5ZJu+CCC5g4cWKmwssaYTRea4w0KSe9RDWgLjBYVacDiMgc4FvgCuDmMgdRHQ+MB+jUqVO8fZuAPN7v8bBDMMk6oWpfs6KiIoqKispdP3PmTAD27NnDnj17yPN6tBcUFKAa/2dlz549aCWezyTTgm4z2QA0iJFen9g1lhLfe68zSxK8dpf5QIdMBWcqVrsm7WjXpOqPnlql1GvnlhzXsWNHGjdunFSeXr16UWP//Ssooson6JrJIlzbSCkRaQHs560rz0JczSV6NhcB9mYyQFNxXl7smsTS6WBmArbca8Y8JDev2XHHHceHH34IJN8j/vHHH2fzd98B0CrJcb2yUdCFyevAtSKyv6pu9tKGAtuBWXHyvQLcCpwCvAYgIvWB44B7Ky5ck0lj544FrDDJKovcNcvVwmT//fdPuTG9XeQcJgcckKGIKq+gb3M9BuwEpolIb6+RvAi4L/JxYRH5SkSeKHmvqvOAF4EnROQCEfkl8BKwC3g4yA9gjDGmrEALE1XdAPQC8nCPAY/GdUa8NWrT6t42kc4DXgDuA57DFSQ9vX0aY4wJUeBPc6nq57hhUOJtUxAjbQtwmbcYY4ypRGw+E2OMMWmzQRJNYJ4+++mwQzDJ6mLXLC2tW4cdQWCsMDGBaVE/dyYKqjL2s2uWlpo1w44gMHabywRm8qeTmfzp5LDDMMn4drJbTGq+/94tOcAKExOYR+c9yqPzHg07DJOMLx91SxXTr18/jjrqqHLXX3HFFTRs2JCdO3cm3Nfu3bsRkdKlTp06dOjQgXvuuYfdK1fC2rX7bL9lyxaaNm3K7NmzS9MOOeQQbrjhhnKPcckll3DJJZf4+GThscLEGJNzhg8fzqeffspnn31WZt2ePXt47rnnGDBgALVq1fK9z+uuu465c+fy6quvctppp3Hddddx79/+Vma7v/zlL7Rr145u3bolte+nnnoqM1MJVxArTIwxOefMM88kPz+f4uLiMuv+9a9/sXr1aoYPH57UPlu3bk3nzp3p2bMn999/P7169eLvL764zzZ79uzhkUce4aKLLkpq34ceeiidO3fmscceSypfkKwwMcbknLp169KvXz8mTy7bHlRcXMyBBx7IKaecwooVK7jwwgtp3bo1derUoW3bttx6663s2rUr4TGOOeYYlkVN2/vWW2+xevVqzj777KRjHjhwIE8//XTC0YrDYk9zGWMyZ0aPsmkth0Dby2H3NpjZt+z6NoVu2bEO/j2o7PrDLoNWQ2HrMph7ftn17a9Oaeyw4cOHM2XKFObPn89xxx0HwK5du3j++ec599xzycvLY+3atTRp0oT777+fBg0asGjRIkaPHs26det4+OH4IzktXbqU1occsk/a22+/zeGHH06DBrEGT4+va9eurFy5ks8//5wjjjgi6fwVzQoTE5jnhjwXdggmWb+outesT58+NGjQgOLi4tLC5I033uD7778vvcXVsWNHOnbsWJqnW7du1KlTh0svvZS//OUv+4wkvHfvXnbv3s22bdt46aWXePHFF5n01FPQpk3pNvPnz+fIFEcQPuqooxARPvjgAytMTG5rkt8k7BBMsmonec16zyx/XfX8+OtrN4m/fr8W8dcnqVatWpx99tlMmTKFu+++GxFh8uTJtGrVis6dOwOugBg3bhwTJkxgyZIl+0zRu3z5cgoKCkrf//a3v+W3v/1t6ftrr72WwVHtLqtWrUq5IKhZsyb16tVj1apVKeWvaNZmYgIzccFEJi6YGHYYJhlfT3RLFTV8+HCWLl3K3Llz2bFjBy+++CLDhw9HxE2dNHbsWK6//noGDx7MSy+9xAcffMADDzwAUGbu9xtvvJEPP/yQt956i759+3Lvvffy5tSpsG5d6TY7duxI6gmxaLVq1Spz3MrCaiYmMCUFSWHHwlDjMEkoKUjaFIYZRYXp2bMnBx54IMXFxaxcuZLNmzfv8xTX1KlTGTZsGGPGjClN++9//xtzXy1btiyd++Tkk0/miCOO4Nqbb+bUF15AmrgaXqNGjdi4Md6ksvFt3LiRRo0apZy/IlnNxBiTs/Ly8hg8eDBTp07l2Wef5fDDD+foo48uXb99+/YyNYlJkyYl3G/NmjUZM2YM/128mNffeac0vV27din3FVm5ciU//vgjbdu2TSl/RbPCxBiT04YPH86qVat4/vnnOeecc/ZZd+qpp/Lss8/y6KOP8sYbb3DuueeyZMkSX/sdMmQIh7VqxT1PlM7zR7du3fjoo49iPt67ePFinnvuuX2W6dOnl66fN28e1apVo0uXLql90Apmt7mMMTmtS5cuFBQUsGTJEoYNG7bPutGjR7N+/XpuuukmRIRBgwYxbtw4zjrrrIT7zcvL44YRI7j4j3/kww8/5Pjjj+ess87id7/7He+9916ZQuGFF17ghRde2Cft0EMP5auvvgJg+vTp9OzZM6XHioNghYkxJqeJSLm3nvbff3+eeuqpMumRNYvq1auX25HwooEDuWjgQPDmgz/44IM5/fTTKS4u3qcwWb58edwYd+/ezbRp0xg3blzCzxMWK0xMYF4797WwQzDJ6mHXLC0/+1mZpJtvvpnTTz+dMWPGUL9+fV+7KS4upn79+gwePDjTEWaMtZmYwOTXyCe/Rn7YYZhkVM93i0lNXp5bInTu3Jk77riDpUuX+t6NiDBhwgTyovZVmQReMxGRDsCDQBdgIzABGK2qe+LkKQBi1UMnq+qwGOmmEnrkw0cAuPz4y0OOxPj2hbtmtLVrlpI1a9xr06b7JF9+eXLn89xzz81URBUm0MJERBoCM4DPgTOBQ4GxuBrSKB+7uAaYHfF+XXkbmspnymdTACtMsspSd82sMEnRhg3uNaowqYqCrplcCtQBBqjqJuAtEakHFInI3V5aPItV9b0Kj9IYY0xSfBcmInIUcALQDKgNfA98AcxR1Q0+d9MHeCOq0CgG7gK6Ay/7jccYY0zlEbcwEZE2wGXAucCBwF5cO8dOoAGQD+wVkVm4to/Jqro3zi7bA/+MTFDVpSKyzVuXqDB5UkQaAWuA/wf8UVW3J8hjjDGmgpX7NJeITAA+AzoCY4CfA7VV9QBVPURV6wJNgf7AJ8DdwEIR+UWc4zXEFUbRNnjryrMTeBi4GOgFPI4r5MpOk/ZT/CNEZJ6IzFsbNQezMcaYzIpXM9kBtFfVb8vbQFXXAa8Dr4vIH4DBQPMEx4zVu0fKSS85zkrgioikmSKyGnhERDqq6oIYecYD4wE6depUOacmyzEzC2eGHYJJVgaHfM9JXmfFXFBuzURVr4hXkMTYfq+qTlbVsvNg/mQD7vZYtPrErrHEUzJrz7FJ5jPGmH1MmzatdKiSWrVq0bZtW0aNGsW8efMQEf7xj3/EzLd69WqqV6/O3Xff7ftYo0aNQkRKl2bNmtG/f38+/fTTmNvfddddnHrqqaXvJ0yYgIiUOxT9smXLqFu3Lt9+6/vnOyNS7rQoInVFpG6S2Rbh2kYi99MC2M9blwyNejWV3L1z7uXeOfeGHYZJxsJ73VKFXX311QwePJg2bdrw9NNP8+abb3LVVVfx8ssv86c//YnDDjuM4uLYd9SnTp3K3r17GTp0aOydr1rlliiNGjVi7ty5zJ07l3HjxrFw4UJOPfXUMsPTb968mXvuuYcbbrjB9+dp0aIFAwcO5LbbbvOdJxOSLkxE5HAR+RDYBPzgtUt08Jn9deB0Edk/Im0osB2YlWQoJZNFz08ynwnJK1+8witfvBJ2GCYZK15xSxX18ssvc9999/HXv/6VCRMm0L9/f7p3785ll13GRx99xIgRIxg2bBivvvoqW7ZsKZO/uLiYrl270qpVq9gH+OEHt0SpUaMGnTt3pnPnzgwfPpyJEyeyatUq3nzzzX22e+aZZ6hbty69evVK6nNdeOGFPPPMM2zY4PdB2/SlUjOZAEwF9gcOBhYDE33mfQzXmD5NRHqLyAigCLgv8nFhEflKRJ6IeF8kImNFZICXbwwwDpimqrFnqjHGmATGjRvHsccey0UXXVRmXV5eHn369GH48OFs376dF198cZ/1y5YtY86cOftMpvXkk0/SrVs3GjVqRKNGjehVWMhHn32WMI5jjjmmdJ+RnnrqKQYOHJj05zr55JOpV68eU6ZMSTpvquI9zTXO61AYrT3woKpuVdXVwFOAr9lavP4ovYA83GPAo3GFwq1Rm1b3timxCNcP5UngNeAc4B7v1RhjkrZr1y7mzJnDGWecEXe7ww8/nGOOOabMra7JkydTrVq1fQZf/PbbbyksLGTq1KlMmjSJZk2acNJ55yVsvygZp6t169alaZs3b+bDDz+ka9euyX40qlWrxoknnsiMGTOSzpuqeE9z1Qe+FJFbgcf1pzGW3waeFpG/4fqZ3Oil+aKqnwM9E2xTEPW+mDiPARtjKokePcqmDRkCl18O27ZB375l1xcWumXdOhg0qOz6yy6DoUNh2TI4//yy66++Gvr3TzrU9evXs3PnTlq2bJlw2+HDh3PLLbewYcMGGjZ0vRiKi4vp1asXTSOGSikqKir9e+/evZzasiXt+/Zl0qRJ3HTTTfvsc/fu3QB88803XHnllRx77LH069evdP3HH3/M3r17OfLII5P+bOBqO08//XRKeVMR72mui4C+uP/9/0dETvFW/QZYCtwO3AS8g+v/YUxcdWrUoU6NOmGHYZKRV8ctVZiIJNxm2LBh7Nq1i+effx6A//3vf8yfP3+fW1wAn332GWeddRYHHnggeXl51DjySP63dClffPHFPtutXr2aGjVqUKNGDdq2bcsnn3zCtGnTqFmzZuk2q7yG+ybe/PHJatKkCatXr04pbyri9oBX1fnAySIyDNf7/GPgD6r6h0CiM1XK6+e+HnYIJlmnJHnNZs4sf11+fvz1TZrEX9+iRfz1SWrcuDG1atXyNRR8q1at6NKlC8XFxVx00UUUFxdTq1Ytzj777NJtfvjhB0477TSaN2/OuHHjaNmyJbVr1+bCCy8s8xhv48aNmT59Onv27OHjjz/mmmuu4dxzz+Xdd98tLdxK8kTPQe9XrVq1+PHHH9m7dy/VqlX8bCO+xuZS1WIReQG4HpgvIo8Dt6vq1gqNzhhjKkiNGjXo1q0bb7zxBrfffnvC7YcPH87IkSNZs2YNxcXF9O3bd5/JrWbPns13333HrFmz+FnEpFjRj/uCm52xU6dOAJx44onUqlWLiy66iGnTppU2uDdq1Kg0f926yfbCcPnq168fSEECCZ7mEpF2InKZiPweOFZVRwNHAy2AL0SkMIAYTRVx26zbuG1WsM++mzR9cptbqqiRI0cyb968mFPz7t27l+nTp5e+HzJkCABjxozh008/LXOLa/t2N0xgZE3inWnTEk7JC3DBBRfQvn177rrrrtK0dl7v+fKmFE5kyZIltG3r69mojCi3ZiIivwYewg3MuA0YLSLPqurlwHki0gW4X0SuAH6vqrPL25cxAG9/457TuLn7zSFHYnxb7T1bc1TVvGb9+/fnD3/4AxdffDGzZ8/mzDPPpG7duixatIjHHnuMgoKC0qe9mjZtSs+ePXnkkUeoW7fuPo3lAF27diU/P59f//rXXHPNNSxdupTRN9/MwT7mMqlWrRo33ngjF1xwAbNmzaJ79+4cdthhHHDAAcyfP5+TTjqpTJ7nn3+eGjVq7JN2wgknlD5QMG/ePLp3757qqUlavJrJrcBvVbWvqg7CPZp7iYg0A1DVuap6Im7WRHvSyhiTlcaOHcvkyZP58ssvOeecczj11FMZO3YsvXr14tFHH91n2+HDh6OqnHnmmdSps++DCQcddBBTp05l2bJl9O/fnwceeIDxY8bQ+pBDfMVxzjnn0KZNm32GZhkwYACvvx673eqcc85h8ODB+yzvvPMO4Br4FyxYkFIflVTJT0/8Rq0QWQ7crKpPeu+PAv4DNPcGXozcdr/K3H7SqVMnnTdvXkp5C254NcPRZJcld/4yY/vqMbEHYAM+ZpUZPdxr1ICPCxcu5PDDDw88nKyzeLF7TXHAx5J+Jt999x0HHHCA73wPP/wwDz74IIsWxR+lKtF1FJH5qtrJzzHj1Uxux43K+7KITMENd/JEdEECUJkLEmOMyVbHH388PXv25OGHH/adZ+/evTzwwAOMGuVnJvTMidfP5DHciLzTgbnAWar6m6ACM1VP4/zGNM5vHHYYJhm1GrvFpCYvzy1pGDduHI0b+78GK1eupLCwkHPOCXaAkET9TBYCCwOKxVRx/xgSexhvU4mdZNcsLRGPCKeqQ4cOdOjgdyxdaN68OTfeeGPax01WvLG5yj4+kICI1PfaVowxxuSQeG0mU0RktohcJCLxptRFRLqJyIPAt0CXjEZoqowbZ9zIjTOC/x+TScOCG90SQ3kP75gIy5e7pRLK9PWLd5urDfA73CPCj4vIF8CnwDrcMPINgNa4ueHr4Ebz7a2qqT02Zaq8ucvnhh2CSda62NesRo0abN++nfz8/IADyjJbK++zSdu3by/TTyUd5RYmqroduEtE7sYNG98TOA43BH1t4HvcXCbPAi+q6pqMRWWMqdSaNm3KihUraN68OXXq1PE1WKKpHFSV7du3s2LFCg488MCM7Tfh2Fze0PMzvMUYY6hXz0119N1337Fr166Qo6nESqbs3bs33Dii1KhRgwMPPLD0OmaCr4EejTEmWr169TL6Y1QlXXaZe83gaMeVlRUmJjCH1PM3rISpRPLtmqXF51AqVYEVJiYwzwx4JuwQTLK62jVLyzO5c/6CGejeGGNMlRZ4YSIiHUTkbRHZJiLficgYEfE93oCIVBPH/gXAAAAfEUlEQVSR+SKiItIvcQ5TWYycPpKR00eGHYZJxvyRbjGpGTnSLTnA120uEbkX+Juqfp7OwbzOjzOAz4EzgUOBsbhCze+oZL8GmqcThwnHglULwg7BJGuDXbO0LMid8+e3ZjIQ+EREPhCRS0WkfsIcsV2K6+A4QFXf8gaTHA38QUQSPhbiFUZ/Av6Y4vGNMcZUAF+Fiaq2BnoDi4B7gJUi8qyI9E7yeH2AN1R1U0RaMa6A8TMl2G3AbODtJI9rjDGmAvluM1HVf6nqr4CDgCuBQ4A3RORbERktIm187KY9rkCK3O9S3LTA7eNlFJGjgQuBa/zGbIwxJhhJN8Cr6hZVfQI3ZtdsoAVwI/CFiLwoIq3iZG8IbIyRvsFbF8+DwMOq+pWfOEVkhIjME5F5a9eu9ZPFVLC2jdvStnHbsMMwydi/rVtMatq2dUsOSKqfiYgUABd4SwvgLWAw8Apu/K47cLet4o0cHGuoSiknveS4w4B2QH+/sarqeGA8uGl7/eYzFWd8//Fhh2CSdaJds7SMz53z5/dprvNxt5hOBpYCTwJPqmrk2MqvichW4o/htQE32nC0+sSusSAiNXDtNHcB1USkAVDSWL+fiOyvqpv9fA5jjDEVw2/NZDzwPHC6qsZr/P4CN3d8eRYR1TYiIi2A/YhqS4mwH6595j5viVQM/A9IfzozU+FGvDwCsBpKVnnfXTOroaRohHf+cqCG4rcwOVhVNyTaSFVX4h71Lc/rwLVRtYmhwHZgVjl5tgCnRKU1A/4fcBPwz0Rxmcrhi/VfhB2CSdZmu2Zp+SJ3zp/fBvj5InJMrBUicqSIfO1zP4/hJtaaJiK9RWQEUATcF/m4sIh8JSJPAKjqblWdGbkA73mbfqKq7/s8tjHGmArit2ZSANQqZ10+7jZUQqq6QUR6AQ8BL+PaScbhCpTouHwPsWKMMSZc5RYmXo/0yMbyZiLSMmqz2sAwYIXfA3pDsvRMsE1BgvVLcE+AGWOMqQTi1UyuwvUlUW95vpztBLg6w3GZKqhjs45hh2CS1dCuWVo65s75i1eYPAvMwxUWL+F6ni+O2uZHYLHXi92YuO4/4/6wQzDJOs6uWVruz53zV25hoqpfAl8CiMgpwEfWn8MYY0wsvhrgVbW8x3aN8e28aecBNuNiVpnjrpnNuJii87zzlwMzLsZrgF+D66T4sYisJc5wJwCq2jTTwZmqZfmm5Yk3MpXLNrtmaVmeO+cvXs3kYWB1xN82vpUxxpiY4rWZjI74uyiQaIwxxmSlwOeAN8YYU/XEazOZksyOVHVI+uGYqqzLIfFmJjCVUhO7ZmnpkjvnL16byQGBRWFywh297wg7BJOsjnbN0nJH7py/eG0m0SP1GmOMMTFZm4kJzMApAxk4ZWDYYZhkvDvQLSY1Awe6JQfEazO5HJiqqmu9v+NS1UcyGpmpctZvWx92CCZZO+2apWV97py/eG0mD+HG5lrr/R2PAlaYGGNMjorXZlIt1t/GGGNMNCskjDHGpM3vTIuISE2gEDgBOAhYCbwPPKWqP1ZIdKZK6dW6V9ghmGQdaNcsLb1y5/yJauIht0TkcGA6cDAwH1gDNAWOBVYBZ3gzKFZKnTp10nnz5qWUt+CGVzMcTXZZcucvww7BGBMSEZmvqp38bOu3ZjIe+AE4KXIiLG8a31eBx4CTkw3UGGNM1eC3zaQTcEv0jIre+1uA4/0eUEQ6iMjbIrJNRL4TkTEikpcgzxEiMt3bfqeILBWRCSJykN/jmvD1mdSHPpP6hB2GSca/+rjFpKZPH7fkAL81kyVA7XLW1QZ8TdsrIg2BGcDnwJnAocBYXKE2Kk7W+sA3wN+B74DWuPnpjxOR41V1t5/jm3Bt37U97BBMsvbYNUvL9tw5f34LkxuAsSLyjaq+X5IoIp2BMcC1PvdzKVAHGKCqm4C3RKQeUCQid3tpZajqHGBORNJMEVkOvAkcDXzk8/jGGGMqQLwe8B+y74RY9YA53gyMJQ3wTYH1wE3ACz6O1wd4I6rQKAbuAroDLycRe0nX0ppJ5DHGGFMB4tVMPmPfwuSzDByvPfDPyARVXSoi27x1cQsTEamGi7k1cCfwIfBBBuIyxhiThng94Asr4HgNgY0x0jd46xJ5DTjd+3s+0FdV98baUERGACMAWrZsmXykJuP6te0XdggmWc3tmqWlX+6cP9+dFjMoVscWKSc92pVAI+AwXIP96yLSTVV3lDmI6njcI8106tTJ5q+vBK7pek3YIZhkHW7XLC3X5M75S6YHfAFwHtCWGE92+ZxpcQPQIEZ6fWLXWKKP8aX35/si8i7uCa9zgL/5OLYxxpgK4qswEZHjgFnAMlxh8l9cAVAALAe+8nm8Rbi2kch9twD289b5pqrfisj3QJtk8pnw9JjYA4CZhTNDjcMkYUYP99p7ZphRZK8ePdzrzJlhRhEIv50W7wH+ARyJuyV1saq2AX6Buz11t8/9vA6cLiL7R6QNBbbjCivfRKQd0BhXOzHGGBMiv4VJR+BZoKSxuzaU9v8YjXuyyo/HgJ3ANBHp7TWSFwH3RT4uLCJficgTEe/vFZE7ReRsETnFm6zrDeB/uEeLjTHGhMhvYaLAj+pGhVwDtIpYtwzXIJ54J6obgF5AHu4x4NHAOFxv9kjVvW1KzANOAp7AjQX2O1xNqbOqbvX5GYwxxlQQvw3wn+OGPvkXMBe4SkTmAT8C1+FqCL54owv3TLBNQdT7YqwGYowxlVYyowaX1EZuwg1jUtJgvhUYlOG4TBU05Ag/D/yZSqWlXbO0DMmd8+erMFHVpyP+XujNb9IV13bynqquqaD4TBVy+fGXhx2CSVZbu2ZpuTx3zl9KnRZVdQuudmKMb9t2bQMgv0Z+yJEY33a7a0Z1u2Yp2eadv/yqf/6S6bTYFBhJ2Wl7H1DV1RUTnqlK+k7qC1g/k6wy010z62eSor7e+bN+Jo6IdAO+BC4B1gFve6+XAl96640xxuQovzWTh3ADK/aPfBRXROoCrwAP4uaDN8YYk4P89jNpD4yN7tPhtZ3cCxye6cCMMcZkD7+FyedAs3LWHUSS42oZY4ypWvze5roSeFpEtgAvqOpOEakFnI2b0vdXFRWgqToKOxaGHYJJVpvCsCPIboWFYUcQmHjT9q5l3zlG9sONz4VXqNT10ncAz+Om8DWmXFaYZCErTNJjhQkAD+NvwipjfFm3bR0ATfKbhByJ8W2Hu2bUtmuWknXe+WtS9c9fvGl7iwKMw+SAQVPcqDvWzySL/NsbKcn6maRmkHf+cqCfSVI94EWkJnAUburc74FPVPXHigjMGGNM9vD7NBcich2wGvgAN5fIh8BqEbm2gmIzxhiTJfxO2zsSuAM3udVkXKFyIG6WxDtEZKeqPlBhURpjjKnU/N7m+i1wp6r+MSJtMfCOiGzETVZlhYkxxuQov4VJC9zEWLHMBK7OSDSmSrus02Vhh2CSdZhds7Rcljvnz29hshQ4DZgRY92p3npj4hp65NCwQzDJamXXLC1Dc+f8+S1MHgAeEJFGwHO4NpOmwGCgEHeby5i4lv2wDIAW9VuEHInxbau7Zuxn1ywly7zz16Lqnz+/My0+JCI7gVuBi3CdGQX4DrhUVSf4PaCIdMCNMtwF2AhMAEar6p44eY4HLgdOAg4GluF649+lqjv8HtuE6/znzwesn0lWmeuumfUzSdH53vmzfiY/UdW/isgE4BB+mhxruar67iUvIg1xt8o+B84EDgXG4h5RHhUn61Bv27tw86ocDdzmvQ70e3xjjDEVI2FhIiK1gf8Cv1PV6bhawbIUj3cpUAcYoKqbgLdEpB5QJCJ3e2mx3KWqayPezxSRHcDjItJKVb9NMR5jjDEZkLAwUdUdItIA2JuB4/UB3ogqNIpxNY7uwMvlxLA2RvLH3mtTwAoTUyUV3PBqqMcvbrMegGEhxrHkzl+Gdmzjn98e8JOACzNwvPZEzX2iqkuBbd66ZHTFFXCLMxCXMcaYNCTzaPAQEZkHvIZ7miuyrURV9VEf+2mIa3SPtsFb54uINAP+CDxd3q0xERkBjABo2bKl312bCnR1F+uOlG3+uvbssEPIblfnznfeb2Ey1ns9iNhzvSvgpzAp2TaalJNedkM32OQUYAtwVbkHUR0PjAfo1KmTDaVfCfRv1z/sEEyS3t58YtghZLf+ufOd9/tosO8BIRPYADSIkV6f2DWWfYiIAH8HjgC6qeqGDMVlArB4nbsj2a5Ju5AjMX61qbUcgK93HhJyJFlqsXcXvl3V/84nNQR9Biwiqm1ERFrgZnH0M4/8ONwjxaeqqs07n2UueeUSwPqZZJM/N38IgGFf3xlyJFnqEvedt34mEbzbS4XACfzUz+R94Kkk5jR5HbhWRPZX1c1e2lBgOzArwfFvxM1FP0RV/+03bmOMMRXP1+0rETkc11nwYeBIYI/3+jDwlder3Y/HgJ3ANBHp7TWSFwH3RTaki8hXIvJExPtzgD/jbnGtEJHOEcsBPo9tjDGmgvitmYwHfgBO8h7lBUBEWgKv4gqJkxPtRFU3iEgv4CFcn5KNuFtXRTHiyot4f5r3WugtkS4EJvr6FMYYYyqE38KkEzA8siAB10dERG7BjZPli6p+DvRMsE1B1PtCyhYixhhjKgm/hckSoHY562pjQ9AbH0adHG/4NVMZPbhmWNghZLdRufOd91uY3ACMFZFvVPX9kkQR6QyMAWweeJNQ7za9ww7BJGn2lo5hh5DdeufOd95vYTIKqAfMEZE1wBrcmFhNgfXATSJyU8nGqnpCpgM12W/BqgUAdGxmP1DZokPtrwH4fEebkCPJUgvcd56OVf8777cw+dRbjEnZyOkjAetnkk1uOXg8YP1MUjbSfeetn4lHVTMxyKMxxpgqKlPDpBhjjMlhVpgYY4xJmxUmxhhj0hb0QI8mh/2515/DDsEk6e5VF4QdQnb7c+58560wMYHp2qJr2CGYJH207fCwQ8huXXPnO2+3uUxg5iybw5xlc8IOwyTh2PyFHJu/MOwwstecOW7JAVYzMYG56W3Xr9X6mWSP65o9BVg/k5Td5PXlzoF+JlYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gTm/jPuDzsEk6Qx340IO4Tsdn/ufOetMDGBsaHns48NPZ+mHBh6voTd5jKBmfH1DGZ8PSPsMEwSutVdQLe6C8IOI3vNmOGWHBB4zUREOgAPAl2AjcAEYLSq7omTpybwJ6Azbj762qoqAYRrMuj2d24HbMbFbHJl02LAZlxM2e3uO58LMy4GWjMRkYbADECBM3FT/l4NjE6QNR/4NbANyI3upMYYk0WCrplcCtQBBqjqJuAtEakHFInI3V5aGaq6UUQaqaqKyBVAzwBjNsYYk0DQbSZ9gDeiCo1iXAHTPV5GVdWKDMwYY0zqgq6ZtAf+GZmgqktFZJu37uWA4zEVrOCGV0v/XlVzfZm0qm7Jnb8MOwRjAhF0YdIQ1+gebYO3LmNEZAQwAqBly5aZ3LVJUeNdV4QdgknSTSvsmqXl8cfDjiAwYfQziXW7SspJT/0gquOB8QCdOnWyW2SVQA09JOwQTJK+3mnXLC3t2oUdQWCCbjPZADSIkV6f2DUWU4Vsq/Y+26q9H3YYJgm99n+fXvvbNUvZyy+7JQcEXTNZhGsbKSUiLYD9vHWmCttU/XkA8n88MeRIjF+/OcBds7c32zVLydix7rV//3DjCEDQNZPXgdNFZP+ItKHAdmBWwLEYY4zJkKALk8eAncA0EentNZIXAfdFPi4sIl+JyBORGUWkj4gMAjp67wd5S6vgwjfGGBNLoLe5VHWDiPQCHsI9BrwRGIcrUKLjyotKexSILDimeq8XAhMzHasxxhj/An+aS1U/J0EPdlUt8JNmjDGmcrAh6E1gmuy6OuwQTJKuWmbXLC1PPx12BIGxwsQEproeEHYIJkkrd9k1S0uLFmFHEBibz8QEZmveO2zNeyfsMEwS+tV/h3717ZqlbPJkt+QAq5mYwGzOew2A/facHHIkxq/zGrtr9soPds1S8uij7nXo0HDjCIDVTIwxxqTNChNjjDFps8LEGGNM2qwwMcYYkzZrgDeBOeDHG8MOwSTpsm/tmqXluefCjiAwVpiYwORRP+wQTJI27LFrlpYmTcKOIDB2m8sEZkveDLbkzQg7DJOEQQ1nMKihXbOUTZzolhxgNRMTmJKCpO6e3iFHYvwqKUie25C916zghldDO3bxs24+k2GLwhtJYMmdvwzkOFYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gSm6Y9FYYdgklT4TVHYIWS1wsFFYYcQGCtMTGCqUTvsEEySdqhds3TsqJE7589uc5nAbM57lc154T2maZJ3XuNXOa+xXbNUnffRq5z3UW6cv8ALExHpICJvi8g2EflORMaISJ6PfPVF5EkR2SAiP4jIJBFpHETMJjO25r3L1rx3ww7DJKFf/XfpV9+uWar6LXqXfoty4/wFeptLRBoCM4DPgTOBQ4GxuEJtVILsk4F2wK+BvcBdwAvASRUVrzHGGH+CbjO5FKgDDFDVTcBbIlIPKBKRu720MkSkC3A60F1V3/HSVgDvi0hvVbXxHowxJkRB3+bqA7wRVWgU4wqY7gnyrS4pSABU9QPgG2+dMcaYEAVdmLQHFkUmqOpSYJu3znc+z8IE+YwxxgRAVDW4g4nsAq5V1fuj0pcDf1fVm8rJ9xawVVXPikp/Bmijql1j5BkBjPDetgMWlxNWE2BdUh8kWBZfeiy+9FX2GC2+9MSLr5Wq+hqlMox+JrFKLyknPeV8qjoeGJ8oGBGZp6qdEm0XFosvPRZf+ip7jBZfejIVX9C3uTYADWKk1wc2ppCvQYJ8xhhjAhB0YbKIqDYOEWkB7EfsNpFy83nKa0sxxhgToKALk9eB00Vk/4i0ocB2YFaCfM1E5BclCSLSCWjjrUtHwlthIbP40mPxpa+yx2jxpScj8QXdAN8Q12HxU1ynwzbAfcD9qjoqYruvgFmqenFE2nSgLXANP3VaXKOq1mnRGGNCFmjNRFU3AL2APOBlYDQwDrg1atPq3jaRhuFqL38D/g7MB86uyHiNMcb4E2jNxBhjTNWUk6MGi8hvRORLEdkhIvNFpJePPEUiojGWM1KModIPeJlKjCJSUM55Ks5wbD8TkcdF5D8iskdEZvrMF8j5SyW+oM6dd6zBIvKSiKwQkS3ev4PhPvLVEpGxIrJGRLaKyKsiUlCJ4ot1/t6rgPgGicgcEVnv/Y4sFpFRIlIzQb6gvn9Jx5fu9y/n5jMRkWHAY0AR8G/gQuAVETleVT9NkP0HILrwWJhCDJV+wMs0YwTXtjU74n2mO20dAfQF3gPi/gOOEtSAoanGBxV/7gD+gBuO6Cpv/32BZ0Wkiao+GCffA8AgL99a3L+jt0TkKFXdUQniA/c9fS7i/eYMxlWiMfAv4B5c94QTcOeiGXBFnHxBff9SjQ9S/f6pak4tuJ7wf4t4Xw34BHgmQb4iYF2GYrgR13emXkTadbhhZerFydcF10nz5Ii0E7y03hk+T6nGWODF06+Cr2O1iL+fA2b6yBPk+UslvkDOnXesJjHSngW+iZPnEGA38KuItObAj8Cvw47P20aBKyr6/JVz7D/hfrilnPWBff9SjC+t719O3eYSkTa4J8KmlKSp6l5gKsEOGJkNA16mGmMgvOuWrMDOX4rxBUZVY/1v82OgaZxsp3mv0yL2swJXw8/0+UslvrCtJ34tNOwBaxPFl5acKkz4qeNjdEfHhUAjEUk0Bk0DEVknIrtE5GMRGZBGHJV9wMtUYyzxpNdWsFJE7hOROhmOLxXZMmBoWOeuK+62ZnnaA8tVdUtUelDnL1F8JYpEZLf3b/VvItKoogISkTwRyRfXB+53wKPq/Tc/hsC/f0nGVyKl71+utZk09F6jh2DZELF+bTl5v8Ld5lkA1AUuAf4hIgNVdVo5eeLFEWsYmA0RMSabr02SMSSSaow7gYeBN4FNQA/gelyby5mZDTFpQZ6/VIR27sQ9hHImcFGczVL9TqTNZ3wAT+G6HawFOgE3A8eIyAmquqcCQtsK1PL+/jtwbZxtw/j+JRNfWt+/rC9MRKQ+cFCi7VQ18n8E0SWzlJMemf+ZqOO+DMwBbiGi2p+EQAa8TFPSx1LVlezbwDdTRFYDj4hIR1VdkOEYkxXk+UtKWOfOexrrWeBFVZ2YKMxYuygnPSOSiU9VCyPeviMiC4HXgP64hu5M6wrk49o+bgEeAi6PF2KMtIo8f77jS/f7VxVucw3GVRMTLfBTDSR60MiS974HjfSqitOAo8XHI71RsmHAy1RjjKXkyZpj04oofdk4YGiFnjvvFtDrwFLgvASbB37+kowvlunAFiro/KnqR6r6b1W9D3cb6TIRObSczQM/f0nGF4vv71/WFyaqOkFVJdHibV5SO4m+P9ke+F5Vy7vFFTeEFPJkw4CXqcYYi0a9hiUbBwytsHMnIvnAK7hG2V+q6tYEWRYBLURkv6j0Cjl/KcRXRkT7QBDfvY+819blrA/7+5covlh8n7+sL0ySoapfA1/gajMAiEg1731SA0aKiOCGc/lPCvdiK+OAl5mKMZZB3uv8TASWhiDPX6ZUyLkTkeq4pxgPA/qo6hof2d70XkuHMRKRg3F9JDJ6/lKML9Z+zsC1cQbx3evmvX5Tzvqwv3+J4ovF//evop9trmwLMBzYg+t4dwowEfcDeWTENt1xz9N3j0ibhasmnob7x/QartPR/6UQQ0NgJfAW0Bs3I+QW4Pao7b4CnohKmw58DQwAzsL1m3m3As5TSjHi+uOM9eLrDYzxzu8/MhxfvvdFHwTMBT6LeJ9fCc5f0vEFde68Y43H/W/zd0DnqKWWt83bwNtR+R7HdWI7H9eB9z3gS6B22PF539HxwBCgJ67z3UbgfSAvw/FN9/bfx/tNGO39+ygu799GwN+/pONL9/uX0Q+QLQvwG+9E7sRV/XpFre/hfZF7RKQ94X0JtuOekHgX9z+mVGPoAPzT299K4LboLzywBJgYldYAeNL7R7IJ1zBZpoNXhs5T0jHiBuSchxst4EfvPI8p+QHIYGwF3jWKtRSEff5SiS+ocxdx7ETxzSSqsyXuyaD7cE9LbcX9p6p1ZYgPN4jsbFx/il3AMlyP/foVEN9tuNHPt3jfpY+AK4Ea5f3bCPj7l3R86X7/bKBHY4wxacupNhNjjDEVwwoTY4wxabPCxBhjTNqsMDHGGJM2K0yMMcakzQoTY4wxabPCxOQccVMwV8TshWkRkUJvmtS6KeR9UESeLGfdxFhT64pIc29K3MowYrLJclaYGJPlvDHTfo2bAtY3dRNbTcaNJmtMWqwwMSb7XQp8pBHTLIhIdRG5Q0SWA78CFovI5yIyNCrvk8BwEWkcYLymCrLCxJgYRKS1iLwgIptEZLOIvCwiP4va5mIR+UxEtnuz+s0SkSMi1t8oIl+JyA4RWS0i00WkWQWE+yt+Giq8xO9xk7k9gBvy5CLgb0B0oTEb+B43lIYxKcv6ybGMyTQRqYUbRHAXbhy33biB8maJyFGq+r2InAw8hrtFNBeoB3TBzfeCiPwKuAk3U91nuB/xnrgh/DMZazvgENxEbZG6A/9U1btFpAMwW1WXROdXVRWR93AD+z2cydhMbrHCxJiyLgRaAm3VTVuAiLyPG+jzEuAO3Mx1/1XVOyLyvRTx9wnAm6r6SERaKjNyJnKc9/ppVPpKoK/PmtB/cIWmMSmz21zGlHUCrg3i65IEVV2OuyVUMhfFAuDnIjJORE4WkZpR+1iA+zEfLSInpDAbp1/NgB1aduKoP+FG9f0G+D/gGhHpFp3Zsw5o6s3RY0xKrDAxpqyDgNUx0lcDjQBUdQauBnMybij0dSLySMQshH/D3eYagptPY7WI3FYBhUpt3FQK+1DVpcBRuLl3vsYVgv8Wkfti7GMn7i6F3akwKbPCxJiyVgJNY6QfiGusBkBVn1LV47z0a4FC4GZv3V5VHaeqh+Numd2LK1wyfTvpe6CeN2PoPlR1l6pOx90COwu4CrhKRFpGbdoA2KKquzIcm8khVpgYU9b7wHEiUjpXtog0B7oC/47eWFXXqurjuAnTOsRYv0xV78RNNlRmfZoWAwK0ikws55bVh95ro6j0Atx01sakzKq1JlfVFJFBMdJn4aZyvh54XURuwU3zXIRrW3gcQERG436UZ3rpP8c9QXWDt/5xXK3hPdzMdafg5jO/3kdsZ4nIjqi0D1X12xjbfoB72uw49p3b+1kR+Rh4B/cE2XG4mskKYGHUPjrh2oOMSV2mp4u0xZbKvuAKhvKmhO3hbdMGeAHYjJv69BXgsIh99MM9PrwW2IGrIdwApbOXFvJTH45twH+BixPEVRgnrsI4+V6h7FzjZ+PmAV8F7MVNETsT+HnUdk1whVH3sK+LLdm92LS9xmQ5ETkbmAAcrKplGuNFZCJQpDH6mYjIJcA1uMeg7cfApMzaTIzJfi/gbl+dn0wmr13l98CfrCAx6bLCxJgs5xUEI3A99mN5AdgYI70ZMAl4uoJCMznEbnMZY4xJm9VMjDHGpM0KE2OMMWmzwsQYY0zarDAxxhiTNitMjDHGpO3/Ax1gWfeCPolOAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAElCAYAAAAhjw8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcFMX5+PHPw3KuyC2iCCwYAfEiisoRBQEPCHxVbjziqgke0QTjbVAXNPFEjLcEI0bxt4DBW1ExAQ3gAUriAahR5JBbkBs5nt8f1bsOs7MzPcd27+w879erX7NT3dX9TPcwRXV1VYmqYowxxqSjWtgBGGOMyX5WmBhjjEmbFSbGGGPSZoWJMcaYtFlhYowxJm1WmBhjjEmbFSbGpEFEeoiIikhRSMcv8I4/MSp9opdeEEZcXgyhnhsTLCtMTMq8H4qs76gkIkUln8Vb9orIJhH5VkReE5HrRaR5BR270DtmYUXsvyKVV5CZ3FQ97ACMqURmATO9v/cDDgK6AX2A0SJSpKp3RuX5ADgcWBdUkFFWeMf/IaTjxxP2uTEBssLEmJ/MVNWiyAQREWAAMB64Q0SILFBUdRuwKNAoI6jqrjCPH0/Y58YEy25zmcCISC8RmS4i34vIDhH5QkTuFJH6MbZtIyLjReQrEdnu5flERB4TkcYR29UUkd+JyEciskFEtonIEhF5UUR6pxuzOv8ABnlJt4rIQRHHj9ku4Cd+EZkJPOlleTLqVluBt03JLbgeInKOiLwvIltEZIm3PtGtpmoi8gcRWeSd8+UiMk5E6kVv6O1nZqydRLfBeJ/3G2/1BVGxF8Y7N966w0Tk7yKyQkR+FJHvvPeHxdg28hwMEpEPvOv8vYgUV9QtSJMcq5mYQIjIJcCjwFZgKrAG6AFcD/QXkW6qutHb9iDgQ6Ae8BrwD6A20Bo4H3gIWO/teiIwHPgU+DuwHTgY+AVwBjAjE/Gr6r9E5N/efgcAD8f5rH7jnwhsBM4EXgQWROxmY9RurwZOBV4G/gWUKYDLMQ44GZjiHeN0YCRwkoj8QlV3+NxPtJlAA+D3wH+AFyLWLYiVoYSIHI+7LvsDLwGfA+2Bc4EzRaSXqs6LkfVy4P+8PLOAE4GhwDEi0lFVd6b4WUwmqKottqS0AOq+Qgm3awXsBDYB7aPWPeLtZ3xE2pVe2u9j7Gs/oI73d31gLzAPyIuxbWOfn6PIO15Rgu1u87Z7KiKtR3Rev/F77wu9bQsTxLYV+HmM9QXe+olR6RO99HVAq4j0arjCTYGbY1zPmeXEUbK/gkTHTnBuBFjopZ8btf1QL30RUC3GOdgEHBWV51lv3ZCw/z3k+mK3uUwQzgNqAg+pavQ99D8Cm4HzRaRW1Lrt0TtS1a2qWpKuuB+nnbhCJXrb9dFpaVrhvR7gc/tE8SdjvKp+nEK+v6jqtxHH3wtciztfF6Wwv3R1xdVC5qrqpMgVqjoZ+DfQDlcDjPaAqn4SlfZX7/WETAdqkmOFiQnCsd7rP6NXqOoG4GPcbaD2XvJLwBbgYRH5h4iMEJEjvMbwyLybcLd9ugILROQWETlFRPIr6HOUHD/R49C+4k/SBynmmxWdoKpfA8uAAhFpkEZMqSj3uxCV/vMY62Ld+lrmvTZMJyiTPitMTBBK7u+vLGd9SXoDAO9/0icA04DewOO4NpFvReR3UXmHAqOBOt7rP4H1IvK0iByYsU/gHOy9ro23UZLx+7UqxXyrE+zPb9tLpiT1XYgS3Y4EsNt7zUsnKJM+K0xMEEr6QDQrZ/1BUduhqgtVdSjQGOgE3ID7vv5FRC6O2G67qhapalugJe6W2r+91+cy+ingFO/1/UQb+o0/Cal2Di2vQC25FpH9U5TyH8rJVA0m6e+CyQ5WmJgglNzr7xG9wrvN0hHYgWuY3Yeq7lbV+ap6F+6pLYCzYh1EVZd59+FPB74EfhH5GHE6RKQnrgPjduB5v/l8xL/He62o/1l3j04QkTZAC2CJek/QeTZ46dHb5+GuUbRUYi/3uxCV/lES+zSVgBUmJgjPALuAK0XkZ1HrbsM9QvuMeo92isgJ5dyiKknb5m13gIicGGO7/XCPne4GfkwncHEG4B5nBrhVVePecvIbv6fkIYGW6cQZx+9FpFVEbNWAe3D/9p+M2vYDoKWInBaVPgr3RF60DbjaTDKxzwYW4wr6QZErvPcnA1/gapcmi1g/E5O2OB3mAC5X1SUiMhLXN+MjEZmCa3foDnTBPQp6fUSec4Dfisgs4Cvcj9ahQH/ck1v3e9s1B94TkYW4/8kuwxVM/XC3UR5Q1c1JfJQeER3s6uDaSLrh+ofsBK5X1Xt87Mdv/ABzcYXLSBFpxE9tHA+qaiZu9czGPZwwGXfr6HTgGGA+cHfUtvd661/0tv8e93BDa1y/kh6RG6vqFhF5H9dnZRKuENgDvKSq/40VjKqqiFwAvAVMFpEXcde/Ha7Gthn4lffUmckmYT+bbEv2Lnj9TBIsDSK2Pw14E/fjuhP3Q3t35DbedifiOjj+B/eDtt3b9kngyIjtGgC34BrdV3j7XIn74RsOiM/PURQV817cj9q3uE6H1wPNy8nbg7J9KXzFH7H9GbhCZUtEDAVRsfUo5/gFxO9n0gbX4XER7lbiClxhVq+c/f0f7qmpHbhaUzGuVjIxMq6I7X+Ge6JuvXfeSvvMxDo3EfnaAU9712uX9/oM0C7O9SlzDsr7/LYEv4h3QYwxxpiUWZuJMcaYtFlhYowxJm1WmBhjjEmbFSbGGGPSlhOPBjdp0kQLCgrCDiPnLV6/GIB2jduFHInxbZO7ZtSza5aSxd75a5ed52/+/PnrVNXXwKY5UZgUFBQwb16sMeJMkHpM7AHAzMKZocZhkjCjh3vtPTPMKLJXjx7udebMMKNImYh8m3grx25zGWOMSVtO1ExM5TDq5FFhh2CSdaRds7SMyp3zZ4WJCUzvNmlPyW6C1syuWVp65875s9tcJjALVi1gwaq404ObymbDAreY1CxY4JYcYDUTE5iR00cC1gCfVea7a2YN8Cka6Z2/LG2AT4bVTIwxxqTNaibGmJRs2rSJNWvWsGvXrrBDqbxuvdW9Liwz71uoatSoQdOmTalXr17G9mmFiTEmaZs2bWL16tU0b96cOnXqICJhh1Q5VfNu/lSiTouqyvbt21mxYgVAxgoUu81ljEnamjVraN68Ofn5+VaQZBkRIT8/n+bNm7NmzZqM7ddqJgkU3PBq2CGEasmdv8zYvv7c688Z25cJyDGxr9muXbuoU6dOwMFkoebNw46gXHXq1MnoLUorTExgurboGnYIJlkHlH/NrEbiQ926YUdQrkxfP7vNZQIzZ9kc5iybE3YYJhlr57jFpGbLFrfkAKuZmMDc9PZNgPUzySr/cdfM+pmkyGvkrkwN8BXFaibGmJxVVFSEiMRcnnnmGWbOnFn6vkGDBqX5lixZgojwyiuvlLvvHj16IO3bI+3b89BDDwXxcUJlNRNjTE6rX78+06dPL5P+s5/9jE8//RSASZMm0bZt26T2+8gjj7Dpk0/oMmxYRuKs7KwwMcbktOrVq9O5c+e42xx99NEceeSRSe23Q4cOkJeXTmhZxW5zGWOMSZvVTExg7j/j/rBDMMk6Ljeu2e7du8ukVa+egZ/HFi3S30eWsMLEBKZjs45hh2CS1TC5a1YyNXOkIUcM4fLjL2fbrm30ndS3zPrCjoUUdixk3bZ1DJoyqMz6yzpdxtAjh7Lsh2Wc//z5ZdZf3eVq+rfrn1SckdavX0+NGjXKpH/zzTcp77NUfn76+8gSgRcmItIBeBDoAmwEJgCjVXWPj7wDgBuBI4FtwIfAQFXdWnERm0yZ8fUMwCbJyiqr3DWrypNk1a9fnxkzZpRJP/jgg1myZEl6O9+0Kb38WSTQwkREGgIzgM+BM4FDgbG4tpu481uKyK+Bh4C7gWuBhkBPrHaVNW5/53bACpOs8qm7Zn4Lk3h9iPJr5Mdd3yS/Sdz1Leq3qJA+StWrV6dTp04Z3y8AK1dWzH4roaB/iC8F6gADVHUT8JaI1AOKRORuL60MEWkCjAOuVNW/Rqx6vsIjNsYYk1DQT3P1Ad6IKjSKcQVM9zj5hnivT1VUYMYYY1IXdM2kPfDPyARVXSoi27x1L5eT70RgMXCxiPwROBD4CLhKVW3gIGNMynbv3s17771XJr2FjyexZs+ezY4dO/ZJKygoqLjbZpVY0IVJQ1yje7QN3rryNAPa4dpVrgPWe6/TReQwVV0dnUFERgAjAFq2bJlm2MaYquqHH36gS5cuZdJvu+02fvGLX8TNe+edd5ZJu+CCC5g4cWKmwssaYTRea4w0KSe9RDWgLjBYVacDiMgc4FvgCuDmMgdRHQ+MB+jUqVO8fZuAPN7v8bBDMMk6oWpfs6KiIoqKispdP3PmTAD27NnDnj17yPN6tBcUFKAa/2dlz549aCWezyTTgm4z2QA0iJFen9g1lhLfe68zSxK8dpf5QIdMBWcqVrsm7WjXpOqPnlql1GvnlhzXsWNHGjdunFSeXr16UWP//Ssooson6JrJIlzbSCkRaQHs560rz0JczSV6NhcB9mYyQFNxXl7smsTS6WBmArbca8Y8JDev2XHHHceHH34IJN8j/vHHH2fzd98B0CrJcb2yUdCFyevAtSKyv6pu9tKGAtuBWXHyvQLcCpwCvAYgIvWB44B7Ky5ck0lj544FrDDJKovcNcvVwmT//fdPuTG9XeQcJgcckKGIKq+gb3M9BuwEpolIb6+RvAi4L/JxYRH5SkSeKHmvqvOAF4EnROQCEfkl8BKwC3g4yA9gjDGmrEALE1XdAPQC8nCPAY/GdUa8NWrT6t42kc4DXgDuA57DFSQ9vX0aY4wJUeBPc6nq57hhUOJtUxAjbQtwmbcYY4ypRGw+E2OMMWmzQRJNYJ4+++mwQzDJ6mLXLC2tW4cdQWCsMDGBaVE/dyYKqjL2s2uWlpo1w44gMHabywRm8qeTmfzp5LDDMMn4drJbTGq+/94tOcAKExOYR+c9yqPzHg07DJOMLx91SxXTr18/jjrqqHLXX3HFFTRs2JCdO3cm3Nfu3bsRkdKlTp06dOjQgXvuuYfdK1fC2rX7bL9lyxaaNm3K7NmzS9MOOeQQbrjhhnKPcckll3DJJZf4+GThscLEGJNzhg8fzqeffspnn31WZt2ePXt47rnnGDBgALVq1fK9z+uuu465c+fy6quvctppp3Hddddx79/+Vma7v/zlL7Rr145u3bolte+nnnoqM1MJVxArTIwxOefMM88kPz+f4uLiMuv+9a9/sXr1aoYPH57UPlu3bk3nzp3p2bMn999/P7169eLvL764zzZ79uzhkUce4aKLLkpq34ceeiidO3fmscceSypfkKwwMcbknLp169KvXz8mTy7bHlRcXMyBBx7IKaecwooVK7jwwgtp3bo1derUoW3bttx6663s2rUr4TGOOeYYlkVN2/vWW2+xevVqzj777KRjHjhwIE8//XTC0YrDYk9zGWMyZ0aPsmkth0Dby2H3NpjZt+z6NoVu2bEO/j2o7PrDLoNWQ2HrMph7ftn17a9Oaeyw4cOHM2XKFObPn89xxx0HwK5du3j++ec599xzycvLY+3atTRp0oT777+fBg0asGjRIkaPHs26det4+OH4IzktXbqU1occsk/a22+/zeGHH06DBrEGT4+va9eurFy5ks8//5wjjjgi6fwVzQoTE5jnhjwXdggmWb+outesT58+NGjQgOLi4tLC5I033uD7778vvcXVsWNHOnbsWJqnW7du1KlTh0svvZS//OUv+4wkvHfvXnbv3s22bdt46aWXePHFF5n01FPQpk3pNvPnz+fIFEcQPuqooxARPvjgAytMTG5rkt8k7BBMsmonec16zyx/XfX8+OtrN4m/fr8W8dcnqVatWpx99tlMmTKFu+++GxFh8uTJtGrVis6dOwOugBg3bhwTJkxgyZIl+0zRu3z5cgoKCkrf//a3v+W3v/1t6ftrr72WwVHtLqtWrUq5IKhZsyb16tVj1apVKeWvaNZmYgIzccFEJi6YGHYYJhlfT3RLFTV8+HCWLl3K3Llz2bFjBy+++CLDhw9HxE2dNHbsWK6//noGDx7MSy+9xAcffMADDzwAUGbu9xtvvJEPP/yQt956i759+3Lvvffy5tSpsG5d6TY7duxI6gmxaLVq1Spz3MrCaiYmMCUFSWHHwlDjMEkoKUjaFIYZRYXp2bMnBx54IMXFxaxcuZLNmzfv8xTX1KlTGTZsGGPGjClN++9//xtzXy1btiyd++Tkk0/miCOO4Nqbb+bUF15AmrgaXqNGjdi4Md6ksvFt3LiRRo0apZy/IlnNxBiTs/Ly8hg8eDBTp07l2Wef5fDDD+foo48uXb99+/YyNYlJkyYl3G/NmjUZM2YM/128mNffeac0vV27din3FVm5ciU//vgjbdu2TSl/RbPCxBiT04YPH86qVat4/vnnOeecc/ZZd+qpp/Lss8/y6KOP8sYbb3DuueeyZMkSX/sdMmQIh7VqxT1PlM7zR7du3fjoo49iPt67ePFinnvuuX2W6dOnl66fN28e1apVo0uXLql90Apmt7mMMTmtS5cuFBQUsGTJEoYNG7bPutGjR7N+/XpuuukmRIRBgwYxbtw4zjrrrIT7zcvL44YRI7j4j3/kww8/5Pjjj+ess87id7/7He+9916ZQuGFF17ghRde2Cft0EMP5auvvgJg+vTp9OzZM6XHioNghYkxJqeJSLm3nvbff3+eeuqpMumRNYvq1auX25HwooEDuWjgQPDmgz/44IM5/fTTKS4u3qcwWb58edwYd+/ezbRp0xg3blzCzxMWK0xMYF4797WwQzDJ6mHXLC0/+1mZpJtvvpnTTz+dMWPGUL9+fV+7KS4upn79+gwePDjTEWaMtZmYwOTXyCe/Rn7YYZhkVM93i0lNXp5bInTu3Jk77riDpUuX+t6NiDBhwgTyovZVmQReMxGRDsCDQBdgIzABGK2qe+LkKQBi1UMnq+qwGOmmEnrkw0cAuPz4y0OOxPj2hbtmtLVrlpI1a9xr06b7JF9+eXLn89xzz81URBUm0MJERBoCM4DPgTOBQ4GxuBrSKB+7uAaYHfF+XXkbmspnymdTACtMsspSd82sMEnRhg3uNaowqYqCrplcCtQBBqjqJuAtEakHFInI3V5aPItV9b0Kj9IYY0xSfBcmInIUcALQDKgNfA98AcxR1Q0+d9MHeCOq0CgG7gK6Ay/7jccYY0zlEbcwEZE2wGXAucCBwF5cO8dOoAGQD+wVkVm4to/Jqro3zi7bA/+MTFDVpSKyzVuXqDB5UkQaAWuA/wf8UVW3J8hjjDGmgpX7NJeITAA+AzoCY4CfA7VV9QBVPURV6wJNgf7AJ8DdwEIR+UWc4zXEFUbRNnjryrMTeBi4GOgFPI4r5MpOk/ZT/CNEZJ6IzFsbNQezMcaYzIpXM9kBtFfVb8vbQFXXAa8Dr4vIH4DBQPMEx4zVu0fKSS85zkrgioikmSKyGnhERDqq6oIYecYD4wE6depUOacmyzEzC2eGHYJJVgaHfM9JXmfFXFBuzURVr4hXkMTYfq+qTlbVsvNg/mQD7vZYtPrErrHEUzJrz7FJ5jPGmH1MmzatdKiSWrVq0bZtW0aNGsW8efMQEf7xj3/EzLd69WqqV6/O3Xff7ftYo0aNQkRKl2bNmtG/f38+/fTTmNvfddddnHrqqaXvJ0yYgIiUOxT9smXLqFu3Lt9+6/vnOyNS7rQoInVFpG6S2Rbh2kYi99MC2M9blwyNejWV3L1z7uXeOfeGHYZJxsJ73VKFXX311QwePJg2bdrw9NNP8+abb3LVVVfx8ssv86c//YnDDjuM4uLYd9SnTp3K3r17GTp0aOydr1rlliiNGjVi7ty5zJ07l3HjxrFw4UJOPfXUMsPTb968mXvuuYcbbrjB9+dp0aIFAwcO5LbbbvOdJxOSLkxE5HAR+RDYBPzgtUt08Jn9deB0Edk/Im0osB2YlWQoJZNFz08ynwnJK1+8witfvBJ2GCYZK15xSxX18ssvc9999/HXv/6VCRMm0L9/f7p3785ll13GRx99xIgRIxg2bBivvvoqW7ZsKZO/uLiYrl270qpVq9gH+OEHt0SpUaMGnTt3pnPnzgwfPpyJEyeyatUq3nzzzX22e+aZZ6hbty69evVK6nNdeOGFPPPMM2zY4PdB2/SlUjOZAEwF9gcOBhYDE33mfQzXmD5NRHqLyAigCLgv8nFhEflKRJ6IeF8kImNFZICXbwwwDpimqrFnqjHGmATGjRvHsccey0UXXVRmXV5eHn369GH48OFs376dF198cZ/1y5YtY86cOftMpvXkk0/SrVs3GjVqRKNGjehVWMhHn32WMI5jjjmmdJ+RnnrqKQYOHJj05zr55JOpV68eU6ZMSTpvquI9zTXO61AYrT3woKpuVdXVwFOAr9lavP4ovYA83GPAo3GFwq1Rm1b3timxCNcP5UngNeAc4B7v1RhjkrZr1y7mzJnDGWecEXe7ww8/nGOOOabMra7JkydTrVq1fQZf/PbbbyksLGTq1KlMmjSJZk2acNJ55yVsvygZp6t169alaZs3b+bDDz+ka9euyX40qlWrxoknnsiMGTOSzpuqeE9z1Qe+FJFbgcf1pzGW3waeFpG/4fqZ3Oil+aKqnwM9E2xTEPW+mDiPARtjKokePcqmDRkCl18O27ZB375l1xcWumXdOhg0qOz6yy6DoUNh2TI4//yy66++Gvr3TzrU9evXs3PnTlq2bJlw2+HDh3PLLbewYcMGGjZ0vRiKi4vp1asXTSOGSikqKir9e+/evZzasiXt+/Zl0qRJ3HTTTfvsc/fu3QB88803XHnllRx77LH069evdP3HH3/M3r17OfLII5P+bOBqO08//XRKeVMR72mui4C+uP/9/0dETvFW/QZYCtwO3AS8g+v/YUxcdWrUoU6NOmGHYZKRV8ctVZiIJNxm2LBh7Nq1i+effx6A//3vf8yfP3+fW1wAn332GWeddRYHHnggeXl51DjySP63dClffPHFPtutXr2aGjVqUKNGDdq2bcsnn3zCtGnTqFmzZuk2q7yG+ybe/PHJatKkCatXr04pbyri9oBX1fnAySIyDNf7/GPgD6r6h0CiM1XK6+e+HnYIJlmnJHnNZs4sf11+fvz1TZrEX9+iRfz1SWrcuDG1atXyNRR8q1at6NKlC8XFxVx00UUUFxdTq1Ytzj777NJtfvjhB0477TSaN2/OuHHjaNmyJbVr1+bCCy8s8xhv48aNmT59Onv27OHjjz/mmmuu4dxzz+Xdd98tLdxK8kTPQe9XrVq1+PHHH9m7dy/VqlX8bCO+xuZS1WIReQG4HpgvIo8Dt6vq1gqNzhhjKkiNGjXo1q0bb7zxBrfffnvC7YcPH87IkSNZs2YNxcXF9O3bd5/JrWbPns13333HrFmz+FnEpFjRj/uCm52xU6dOAJx44onUqlWLiy66iGnTppU2uDdq1Kg0f926yfbCcPnq168fSEECCZ7mEpF2InKZiPweOFZVRwNHAy2AL0SkMIAYTRVx26zbuG1WsM++mzR9cptbqqiRI0cyb968mFPz7t27l+nTp5e+HzJkCABjxozh008/LXOLa/t2N0xgZE3inWnTEk7JC3DBBRfQvn177rrrrtK0dl7v+fKmFE5kyZIltG3r69mojCi3ZiIivwYewg3MuA0YLSLPqurlwHki0gW4X0SuAH6vqrPL25cxAG9/457TuLn7zSFHYnxb7T1bc1TVvGb9+/fnD3/4AxdffDGzZ8/mzDPPpG7duixatIjHHnuMgoKC0qe9mjZtSs+ePXnkkUeoW7fuPo3lAF27diU/P59f//rXXHPNNSxdupTRN9/MwT7mMqlWrRo33ngjF1xwAbNmzaJ79+4cdthhHHDAAcyfP5+TTjqpTJ7nn3+eGjVq7JN2wgknlD5QMG/ePLp3757qqUlavJrJrcBvVbWvqg7CPZp7iYg0A1DVuap6Im7WRHvSyhiTlcaOHcvkyZP58ssvOeecczj11FMZO3YsvXr14tFHH91n2+HDh6OqnHnmmdSps++DCQcddBBTp05l2bJl9O/fnwceeIDxY8bQ+pBDfMVxzjnn0KZNm32GZhkwYACvvx673eqcc85h8ODB+yzvvPMO4Br4FyxYkFIflVTJT0/8Rq0QWQ7crKpPeu+PAv4DNPcGXozcdr/K3H7SqVMnnTdvXkp5C254NcPRZJcld/4yY/vqMbEHYAM+ZpUZPdxr1ICPCxcu5PDDDw88nKyzeLF7TXHAx5J+Jt999x0HHHCA73wPP/wwDz74IIsWxR+lKtF1FJH5qtrJzzHj1Uxux43K+7KITMENd/JEdEECUJkLEmOMyVbHH388PXv25OGHH/adZ+/evTzwwAOMGuVnJvTMidfP5DHciLzTgbnAWar6m6ACM1VP4/zGNM5vHHYYJhm1GrvFpCYvzy1pGDduHI0b+78GK1eupLCwkHPOCXaAkET9TBYCCwOKxVRx/xgSexhvU4mdZNcsLRGPCKeqQ4cOdOjgdyxdaN68OTfeeGPax01WvLG5yj4+kICI1PfaVowxxuSQeG0mU0RktohcJCLxptRFRLqJyIPAt0CXjEZoqowbZ9zIjTOC/x+TScOCG90SQ3kP75gIy5e7pRLK9PWLd5urDfA73CPCj4vIF8CnwDrcMPINgNa4ueHr4Ebz7a2qqT02Zaq8ucvnhh2CSda62NesRo0abN++nfz8/IADyjJbK++zSdu3by/TTyUd5RYmqroduEtE7sYNG98TOA43BH1t4HvcXCbPAi+q6pqMRWWMqdSaNm3KihUraN68OXXq1PE1WKKpHFSV7du3s2LFCg488MCM7Tfh2Fze0PMzvMUYY6hXz0119N1337Fr166Qo6nESqbs3bs33Dii1KhRgwMPPLD0OmaCr4EejTEmWr169TL6Y1QlXXaZe83gaMeVlRUmJjCH1PM3rISpRPLtmqXF51AqVYEVJiYwzwx4JuwQTLK62jVLyzO5c/6CGejeGGNMlRZ4YSIiHUTkbRHZJiLficgYEfE93oCIVBPH/gXAAAAfEUlEQVSR+SKiItIvcQ5TWYycPpKR00eGHYZJxvyRbjGpGTnSLTnA120uEbkX+Juqfp7OwbzOjzOAz4EzgUOBsbhCze+oZL8GmqcThwnHglULwg7BJGuDXbO0LMid8+e3ZjIQ+EREPhCRS0WkfsIcsV2K6+A4QFXf8gaTHA38QUQSPhbiFUZ/Av6Y4vGNMcZUAF+Fiaq2BnoDi4B7gJUi8qyI9E7yeH2AN1R1U0RaMa6A8TMl2G3AbODtJI9rjDGmAvluM1HVf6nqr4CDgCuBQ4A3RORbERktIm187KY9rkCK3O9S3LTA7eNlFJGjgQuBa/zGbIwxJhhJN8Cr6hZVfQI3ZtdsoAVwI/CFiLwoIq3iZG8IbIyRvsFbF8+DwMOq+pWfOEVkhIjME5F5a9eu9ZPFVLC2jdvStnHbsMMwydi/rVtMatq2dUsOSKqfiYgUABd4SwvgLWAw8Apu/K47cLet4o0cHGuoSiknveS4w4B2QH+/sarqeGA8uGl7/eYzFWd8//Fhh2CSdaJds7SMz53z5/dprvNxt5hOBpYCTwJPqmrk2MqvichW4o/htQE32nC0+sSusSAiNXDtNHcB1USkAVDSWL+fiOyvqpv9fA5jjDEVw2/NZDzwPHC6qsZr/P4CN3d8eRYR1TYiIi2A/YhqS4mwH6595j5viVQM/A9IfzozU+FGvDwCsBpKVnnfXTOroaRohHf+cqCG4rcwOVhVNyTaSFVX4h71Lc/rwLVRtYmhwHZgVjl5tgCnRKU1A/4fcBPwz0Rxmcrhi/VfhB2CSdZmu2Zp+SJ3zp/fBvj5InJMrBUicqSIfO1zP4/hJtaaJiK9RWQEUATcF/m4sIh8JSJPAKjqblWdGbkA73mbfqKq7/s8tjHGmArit2ZSANQqZ10+7jZUQqq6QUR6AQ8BL+PaScbhCpTouHwPsWKMMSZc5RYmXo/0yMbyZiLSMmqz2sAwYIXfA3pDsvRMsE1BgvVLcE+AGWOMqQTi1UyuwvUlUW95vpztBLg6w3GZKqhjs45hh2CS1dCuWVo65s75i1eYPAvMwxUWL+F6ni+O2uZHYLHXi92YuO4/4/6wQzDJOs6uWVruz53zV25hoqpfAl8CiMgpwEfWn8MYY0wsvhrgVbW8x3aN8e28aecBNuNiVpnjrpnNuJii87zzlwMzLsZrgF+D66T4sYisJc5wJwCq2jTTwZmqZfmm5Yk3MpXLNrtmaVmeO+cvXs3kYWB1xN82vpUxxpiY4rWZjI74uyiQaIwxxmSlwOeAN8YYU/XEazOZksyOVHVI+uGYqqzLIfFmJjCVUhO7ZmnpkjvnL16byQGBRWFywh297wg7BJOsjnbN0nJH7py/eG0m0SP1GmOMMTFZm4kJzMApAxk4ZWDYYZhkvDvQLSY1Awe6JQfEazO5HJiqqmu9v+NS1UcyGpmpctZvWx92CCZZO+2apWV97py/eG0mD+HG5lrr/R2PAlaYGGNMjorXZlIt1t/GGGNMNCskjDHGpM3vTIuISE2gEDgBOAhYCbwPPKWqP1ZIdKZK6dW6V9ghmGQdaNcsLb1y5/yJauIht0TkcGA6cDAwH1gDNAWOBVYBZ3gzKFZKnTp10nnz5qWUt+CGVzMcTXZZcucvww7BGBMSEZmvqp38bOu3ZjIe+AE4KXIiLG8a31eBx4CTkw3UGGNM1eC3zaQTcEv0jIre+1uA4/0eUEQ6iMjbIrJNRL4TkTEikpcgzxEiMt3bfqeILBWRCSJykN/jmvD1mdSHPpP6hB2GSca/+rjFpKZPH7fkAL81kyVA7XLW1QZ8TdsrIg2BGcDnwJnAocBYXKE2Kk7W+sA3wN+B74DWuPnpjxOR41V1t5/jm3Bt37U97BBMsvbYNUvL9tw5f34LkxuAsSLyjaq+X5IoIp2BMcC1PvdzKVAHGKCqm4C3RKQeUCQid3tpZajqHGBORNJMEVkOvAkcDXzk8/jGGGMqQLwe8B+y74RY9YA53gyMJQ3wTYH1wE3ACz6O1wd4I6rQKAbuAroDLycRe0nX0ppJ5DHGGFMB4tVMPmPfwuSzDByvPfDPyARVXSoi27x1cQsTEamGi7k1cCfwIfBBBuIyxhiThng94Asr4HgNgY0x0jd46xJ5DTjd+3s+0FdV98baUERGACMAWrZsmXykJuP6te0XdggmWc3tmqWlX+6cP9+dFjMoVscWKSc92pVAI+AwXIP96yLSTVV3lDmI6njcI8106tTJ5q+vBK7pek3YIZhkHW7XLC3X5M75S6YHfAFwHtCWGE92+ZxpcQPQIEZ6fWLXWKKP8aX35/si8i7uCa9zgL/5OLYxxpgK4qswEZHjgFnAMlxh8l9cAVAALAe+8nm8Rbi2kch9twD289b5pqrfisj3QJtk8pnw9JjYA4CZhTNDjcMkYUYP99p7ZphRZK8ePdzrzJlhRhEIv50W7wH+ARyJuyV1saq2AX6Buz11t8/9vA6cLiL7R6QNBbbjCivfRKQd0BhXOzHGGBMiv4VJR+BZoKSxuzaU9v8YjXuyyo/HgJ3ANBHp7TWSFwH3RT4uLCJficgTEe/vFZE7ReRsETnFm6zrDeB/uEeLjTHGhMhvYaLAj+pGhVwDtIpYtwzXIJ54J6obgF5AHu4x4NHAOFxv9kjVvW1KzANOAp7AjQX2O1xNqbOqbvX5GYwxxlQQvw3wn+OGPvkXMBe4SkTmAT8C1+FqCL54owv3TLBNQdT7YqwGYowxlVYyowaX1EZuwg1jUtJgvhUYlOG4TBU05Ag/D/yZSqWlXbO0DMmd8+erMFHVpyP+XujNb9IV13bynqquqaD4TBVy+fGXhx2CSVZbu2ZpuTx3zl9KnRZVdQuudmKMb9t2bQMgv0Z+yJEY33a7a0Z1u2Yp2eadv/yqf/6S6bTYFBhJ2Wl7H1DV1RUTnqlK+k7qC1g/k6wy010z62eSor7e+bN+Jo6IdAO+BC4B1gFve6+XAl96640xxuQovzWTh3ADK/aPfBRXROoCrwAP4uaDN8YYk4P89jNpD4yN7tPhtZ3cCxye6cCMMcZkD7+FyedAs3LWHUSS42oZY4ypWvze5roSeFpEtgAvqOpOEakFnI2b0vdXFRWgqToKOxaGHYJJVpvCsCPIboWFYUcQmHjT9q5l3zlG9sONz4VXqNT10ncAz+Om8DWmXFaYZCErTNJjhQkAD+NvwipjfFm3bR0ATfKbhByJ8W2Hu2bUtmuWknXe+WtS9c9fvGl7iwKMw+SAQVPcqDvWzySL/NsbKcn6maRmkHf+cqCfSVI94EWkJnAUburc74FPVPXHigjMGGNM9vD7NBcich2wGvgAN5fIh8BqEbm2gmIzxhiTJfxO2zsSuAM3udVkXKFyIG6WxDtEZKeqPlBhURpjjKnU/N7m+i1wp6r+MSJtMfCOiGzETVZlhYkxxuQov4VJC9zEWLHMBK7OSDSmSrus02Vhh2CSdZhds7Rcljvnz29hshQ4DZgRY92p3npj4hp65NCwQzDJamXXLC1Dc+f8+S1MHgAeEJFGwHO4NpOmwGCgEHeby5i4lv2wDIAW9VuEHInxbau7Zuxn1ywly7zz16Lqnz+/My0+JCI7gVuBi3CdGQX4DrhUVSf4PaCIdMCNMtwF2AhMAEar6p44eY4HLgdOAg4GluF649+lqjv8HtuE6/znzwesn0lWmeuumfUzSdH53vmzfiY/UdW/isgE4BB+mhxruar67iUvIg1xt8o+B84EDgXG4h5RHhUn61Bv27tw86ocDdzmvQ70e3xjjDEVI2FhIiK1gf8Cv1PV6bhawbIUj3cpUAcYoKqbgLdEpB5QJCJ3e2mx3KWqayPezxSRHcDjItJKVb9NMR5jjDEZkLAwUdUdItIA2JuB4/UB3ogqNIpxNY7uwMvlxLA2RvLH3mtTwAoTUyUV3PBqqMcvbrMegGEhxrHkzl+Gdmzjn98e8JOACzNwvPZEzX2iqkuBbd66ZHTFFXCLMxCXMcaYNCTzaPAQEZkHvIZ7miuyrURV9VEf+2mIa3SPtsFb54uINAP+CDxd3q0xERkBjABo2bKl312bCnR1F+uOlG3+uvbssEPIblfnznfeb2Ey1ns9iNhzvSvgpzAp2TaalJNedkM32OQUYAtwVbkHUR0PjAfo1KmTDaVfCfRv1z/sEEyS3t58YtghZLf+ufOd9/tosO8BIRPYADSIkV6f2DWWfYiIAH8HjgC6qeqGDMVlArB4nbsj2a5Ju5AjMX61qbUcgK93HhJyJFlqsXcXvl3V/84nNQR9Biwiqm1ERFrgZnH0M4/8ONwjxaeqqs07n2UueeUSwPqZZJM/N38IgGFf3xlyJFnqEvedt34mEbzbS4XACfzUz+R94Kkk5jR5HbhWRPZX1c1e2lBgOzArwfFvxM1FP0RV/+03bmOMMRXP1+0rETkc11nwYeBIYI/3+jDwlder3Y/HgJ3ANBHp7TWSFwH3RTaki8hXIvJExPtzgD/jbnGtEJHOEcsBPo9tjDGmgvitmYwHfgBO8h7lBUBEWgKv4gqJkxPtRFU3iEgv4CFcn5KNuFtXRTHiyot4f5r3WugtkS4EJvr6FMYYYyqE38KkEzA8siAB10dERG7BjZPli6p+DvRMsE1B1PtCyhYixhhjKgm/hckSoHY562pjQ9AbH0adHG/4NVMZPbhmWNghZLdRufOd91uY3ACMFZFvVPX9kkQR6QyMAWweeJNQ7za9ww7BJGn2lo5hh5DdeufOd95vYTIKqAfMEZE1wBrcmFhNgfXATSJyU8nGqnpCpgM12W/BqgUAdGxmP1DZokPtrwH4fEebkCPJUgvcd56OVf8777cw+dRbjEnZyOkjAetnkk1uOXg8YP1MUjbSfeetn4lHVTMxyKMxxpgqKlPDpBhjjMlhVpgYY4xJmxUmxhhj0hb0QI8mh/2515/DDsEk6e5VF4QdQnb7c+58560wMYHp2qJr2CGYJH207fCwQ8huXXPnO2+3uUxg5iybw5xlc8IOwyTh2PyFHJu/MOwwstecOW7JAVYzMYG56W3Xr9X6mWSP65o9BVg/k5Td5PXlzoF+JlYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gTm/jPuDzsEk6Qx340IO4Tsdn/ufOetMDGBsaHns48NPZ+mHBh6voTd5jKBmfH1DGZ8PSPsMEwSutVdQLe6C8IOI3vNmOGWHBB4zUREOgAPAl2AjcAEYLSq7omTpybwJ6Azbj762qoqAYRrMuj2d24HbMbFbHJl02LAZlxM2e3uO58LMy4GWjMRkYbADECBM3FT/l4NjE6QNR/4NbANyI3upMYYk0WCrplcCtQBBqjqJuAtEakHFInI3V5aGaq6UUQaqaqKyBVAzwBjNsYYk0DQbSZ9gDeiCo1iXAHTPV5GVdWKDMwYY0zqgq6ZtAf+GZmgqktFZJu37uWA4zEVrOCGV0v/XlVzfZm0qm7Jnb8MOwRjAhF0YdIQ1+gebYO3LmNEZAQwAqBly5aZ3LVJUeNdV4QdgknSTSvsmqXl8cfDjiAwYfQziXW7SspJT/0gquOB8QCdOnWyW2SVQA09JOwQTJK+3mnXLC3t2oUdQWCCbjPZADSIkV6f2DUWU4Vsq/Y+26q9H3YYJgm99n+fXvvbNUvZyy+7JQcEXTNZhGsbKSUiLYD9vHWmCttU/XkA8n88MeRIjF+/OcBds7c32zVLydix7rV//3DjCEDQNZPXgdNFZP+ItKHAdmBWwLEYY4zJkKALk8eAncA0EentNZIXAfdFPi4sIl+JyBORGUWkj4gMAjp67wd5S6vgwjfGGBNLoLe5VHWDiPQCHsI9BrwRGIcrUKLjyotKexSILDimeq8XAhMzHasxxhj/An+aS1U/J0EPdlUt8JNmjDGmcrAh6E1gmuy6OuwQTJKuWmbXLC1PPx12BIGxwsQEproeEHYIJkkrd9k1S0uLFmFHEBibz8QEZmveO2zNeyfsMEwS+tV/h3717ZqlbPJkt+QAq5mYwGzOew2A/facHHIkxq/zGrtr9soPds1S8uij7nXo0HDjCIDVTIwxxqTNChNjjDFps8LEGGNM2qwwMcYYkzZrgDeBOeDHG8MOwSTpsm/tmqXluefCjiAwVpiYwORRP+wQTJI27LFrlpYmTcKOIDB2m8sEZkveDLbkzQg7DJOEQQ1nMKihXbOUTZzolhxgNRMTmJKCpO6e3iFHYvwqKUie25C916zghldDO3bxs24+k2GLwhtJYMmdvwzkOFYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gSm6Y9FYYdgklT4TVHYIWS1wsFFYYcQGCtMTGCqUTvsEEySdqhds3TsqJE7589uc5nAbM57lc154T2maZJ3XuNXOa+xXbNUnffRq5z3UW6cv8ALExHpICJvi8g2EflORMaISJ6PfPVF5EkR2SAiP4jIJBFpHETMJjO25r3L1rx3ww7DJKFf/XfpV9+uWar6LXqXfoty4/wFeptLRBoCM4DPgTOBQ4GxuEJtVILsk4F2wK+BvcBdwAvASRUVrzHGGH+CbjO5FKgDDFDVTcBbIlIPKBKRu720MkSkC3A60F1V3/HSVgDvi0hvVbXxHowxJkRB3+bqA7wRVWgU4wqY7gnyrS4pSABU9QPgG2+dMcaYEAVdmLQHFkUmqOpSYJu3znc+z8IE+YwxxgRAVDW4g4nsAq5V1fuj0pcDf1fVm8rJ9xawVVXPikp/Bmijql1j5BkBjPDetgMWlxNWE2BdUh8kWBZfeiy+9FX2GC2+9MSLr5Wq+hqlMox+JrFKLyknPeV8qjoeGJ8oGBGZp6qdEm0XFosvPRZf+ip7jBZfejIVX9C3uTYADWKk1wc2ppCvQYJ8xhhjAhB0YbKIqDYOEWkB7EfsNpFy83nKa0sxxhgToKALk9eB00Vk/4i0ocB2YFaCfM1E5BclCSLSCWjjrUtHwlthIbP40mPxpa+yx2jxpScj8QXdAN8Q12HxU1ynwzbAfcD9qjoqYruvgFmqenFE2nSgLXANP3VaXKOq1mnRGGNCFmjNRFU3AL2APOBlYDQwDrg1atPq3jaRhuFqL38D/g7MB86uyHiNMcb4E2jNxBhjTNWUk6MGi8hvRORLEdkhIvNFpJePPEUiojGWM1KModIPeJlKjCJSUM55Ks5wbD8TkcdF5D8iskdEZvrMF8j5SyW+oM6dd6zBIvKSiKwQkS3ev4PhPvLVEpGxIrJGRLaKyKsiUlCJ4ot1/t6rgPgGicgcEVnv/Y4sFpFRIlIzQb6gvn9Jx5fu9y/n5jMRkWHAY0AR8G/gQuAVETleVT9NkP0HILrwWJhCDJV+wMs0YwTXtjU74n2mO20dAfQF3gPi/gOOEtSAoanGBxV/7gD+gBuO6Cpv/32BZ0Wkiao+GCffA8AgL99a3L+jt0TkKFXdUQniA/c9fS7i/eYMxlWiMfAv4B5c94QTcOeiGXBFnHxBff9SjQ9S/f6pak4tuJ7wf4t4Xw34BHgmQb4iYF2GYrgR13emXkTadbhhZerFydcF10nz5Ii0E7y03hk+T6nGWODF06+Cr2O1iL+fA2b6yBPk+UslvkDOnXesJjHSngW+iZPnEGA38KuItObAj8Cvw47P20aBKyr6/JVz7D/hfrilnPWBff9SjC+t719O3eYSkTa4J8KmlKSp6l5gKsEOGJkNA16mGmMgvOuWrMDOX4rxBUZVY/1v82OgaZxsp3mv0yL2swJXw8/0+UslvrCtJ34tNOwBaxPFl5acKkz4qeNjdEfHhUAjEUk0Bk0DEVknIrtE5GMRGZBGHJV9wMtUYyzxpNdWsFJE7hOROhmOLxXZMmBoWOeuK+62ZnnaA8tVdUtUelDnL1F8JYpEZLf3b/VvItKoogISkTwRyRfXB+53wKPq/Tc/hsC/f0nGVyKl71+utZk09F6jh2DZELF+bTl5v8Ld5lkA1AUuAf4hIgNVdVo5eeLFEWsYmA0RMSabr02SMSSSaow7gYeBN4FNQA/gelyby5mZDTFpQZ6/VIR27sQ9hHImcFGczVL9TqTNZ3wAT+G6HawFOgE3A8eIyAmquqcCQtsK1PL+/jtwbZxtw/j+JRNfWt+/rC9MRKQ+cFCi7VQ18n8E0SWzlJMemf+ZqOO+DMwBbiGi2p+EQAa8TFPSx1LVlezbwDdTRFYDj4hIR1VdkOEYkxXk+UtKWOfOexrrWeBFVZ2YKMxYuygnPSOSiU9VCyPeviMiC4HXgP64hu5M6wrk49o+bgEeAi6PF2KMtIo8f77jS/f7VxVucw3GVRMTLfBTDSR60MiS974HjfSqitOAo8XHI71RsmHAy1RjjKXkyZpj04oofdk4YGiFnjvvFtDrwFLgvASbB37+kowvlunAFiro/KnqR6r6b1W9D3cb6TIRObSczQM/f0nGF4vv71/WFyaqOkFVJdHibV5SO4m+P9ke+F5Vy7vFFTeEFPJkw4CXqcYYi0a9hiUbBwytsHMnIvnAK7hG2V+q6tYEWRYBLURkv6j0Cjl/KcRXRkT7QBDfvY+819blrA/7+5covlh8n7+sL0ySoapfA1/gajMAiEg1731SA0aKiOCGc/lPCvdiK+OAl5mKMZZB3uv8TASWhiDPX6ZUyLkTkeq4pxgPA/qo6hof2d70XkuHMRKRg3F9JDJ6/lKML9Z+zsC1cQbx3evmvX5Tzvqwv3+J4ovF//evop9trmwLMBzYg+t4dwowEfcDeWTENt1xz9N3j0ibhasmnob7x/QartPR/6UQQ0NgJfAW0Bs3I+QW4Pao7b4CnohKmw58DQwAzsL1m3m3As5TSjHi+uOM9eLrDYzxzu8/MhxfvvdFHwTMBT6LeJ9fCc5f0vEFde68Y43H/W/zd0DnqKWWt83bwNtR+R7HdWI7H9eB9z3gS6B22PF539HxwBCgJ67z3UbgfSAvw/FN9/bfx/tNGO39+ygu799GwN+/pONL9/uX0Q+QLQvwG+9E7sRV/XpFre/hfZF7RKQ94X0JtuOekHgX9z+mVGPoAPzT299K4LboLzywBJgYldYAeNL7R7IJ1zBZpoNXhs5T0jHiBuSchxst4EfvPI8p+QHIYGwF3jWKtRSEff5SiS+ocxdx7ETxzSSqsyXuyaD7cE9LbcX9p6p1ZYgPN4jsbFx/il3AMlyP/foVEN9tuNHPt3jfpY+AK4Ea5f3bCPj7l3R86X7/bKBHY4wxacupNhNjjDEVwwoTY4wxabPCxBhjTNqsMDHGGJM2K0yMMcakzQoTY4wxabPCxOQccVMwV8TshWkRkUJvmtS6KeR9UESeLGfdxFhT64pIc29K3MowYrLJclaYGJPlvDHTfo2bAtY3dRNbTcaNJmtMWqwwMSb7XQp8pBHTLIhIdRG5Q0SWA78CFovI5yIyNCrvk8BwEWkcYLymCrLCxJgYRKS1iLwgIptEZLOIvCwiP4va5mIR+UxEtnuz+s0SkSMi1t8oIl+JyA4RWS0i00WkWQWE+yt+Giq8xO9xk7k9gBvy5CLgb0B0oTEb+B43lIYxKcv6ybGMyTQRqYUbRHAXbhy33biB8maJyFGq+r2InAw8hrtFNBeoB3TBzfeCiPwKuAk3U91nuB/xnrgh/DMZazvgENxEbZG6A/9U1btFpAMwW1WXROdXVRWR93AD+z2cydhMbrHCxJiyLgRaAm3VTVuAiLyPG+jzEuAO3Mx1/1XVOyLyvRTx9wnAm6r6SERaKjNyJnKc9/ppVPpKoK/PmtB/cIWmMSmz21zGlHUCrg3i65IEVV2OuyVUMhfFAuDnIjJORE4WkZpR+1iA+zEfLSInpDAbp1/NgB1aduKoP+FG9f0G+D/gGhHpFp3Zsw5o6s3RY0xKrDAxpqyDgNUx0lcDjQBUdQauBnMybij0dSLySMQshH/D3eYagptPY7WI3FYBhUpt3FQK+1DVpcBRuLl3vsYVgv8Wkfti7GMn7i6F3akwKbPCxJiyVgJNY6QfiGusBkBVn1LV47z0a4FC4GZv3V5VHaeqh+Numd2LK1wyfTvpe6CeN2PoPlR1l6pOx90COwu4CrhKRFpGbdoA2KKquzIcm8khVpgYU9b7wHEiUjpXtog0B7oC/47eWFXXqurjuAnTOsRYv0xV78RNNlRmfZoWAwK0ikws55bVh95ro6j0Atx01sakzKq1JlfVFJFBMdJn4aZyvh54XURuwU3zXIRrW3gcQERG436UZ3rpP8c9QXWDt/5xXK3hPdzMdafg5jO/3kdsZ4nIjqi0D1X12xjbfoB72uw49p3b+1kR+Rh4B/cE2XG4mskKYGHUPjrh2oOMSV2mp4u0xZbKvuAKhvKmhO3hbdMGeAHYjJv69BXgsIh99MM9PrwW2IGrIdwApbOXFvJTH45twH+BixPEVRgnrsI4+V6h7FzjZ+PmAV8F7MVNETsT+HnUdk1whVH3sK+LLdm92LS9xmQ5ETkbmAAcrKplGuNFZCJQpDH6mYjIJcA1uMeg7cfApMzaTIzJfi/gbl+dn0wmr13l98CfrCAx6bLCxJgs5xUEI3A99mN5AdgYI70ZMAl4uoJCMznEbnMZY4xJm9VMjDHGpM0KE2OMMWmzwsQYY0zarDAxxhiTNitMjDHGpO3/Ax1gWfeCPolOAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -267,7 +267,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VGXa+PHvnYQEEnrvhI7YBRWkBSmWLZZXxXVdV9eCawfXfd91m7r72y7YFdZedlF3Leta6AGliGAXaYHQewmE9OT+/XFOJsMwmcwkM3Mmyf25rrkm58x5nrlnksw9zzlPEVXFGGOMibUkrwMwxhjTOFjCMcYYExeWcIwxxsSFJRxjjDFxYQnHGGNMXFjCMcYYExeWcIwJk4hki4hn4whE5HkRURHJ9NuX6e573qu43Dg8fW9M/WAJxyQsEcl1P0zDuT0fZp2B5YpFZK+IfCoiT4vIBSKSHMPXkxuLumMtWLIzJlIpXgdgTAgPAa1DPJ4OTAWSga8jrPt+9z7ZfY4TgR8B1wMrReSHqrouoMw17nN65RfAn4DtHsZQHa/fG1MPWMIxCUtVH6ruMRER4DWchPFv4MEI674vSJ2dgEeBy4F5IjJUVff4ldkSyXNEm6ruBHZ6GUN1vH5vTP1gp9RMffUAcBnwGXCNRmGOJlXdDVwJZAM9gHv9Hw92nUIcPxaRpe6puSIR2Sois0VkkntMlluuF9CrulOB7na2iHR2T+9tF5FyEbnWfTzkaS0RGSQib4nIARE5KiIficjEIMfd59aTFeSx464JubH/2N3c5Bd7bqj3xt2fJCI3i8gnIpLvxvWJiPxURI77/PF7D9qLyEwR2eme9vxGRK4L9rpN/WEtHFPviMiVwK+AXcD3VbUgWnWraoWI/B7IAn4gIlNqSGb/D+dU1yacFlce0AU4E6el9CqQi3MK7y63jH/L7fOA+toCy4F84A2gAtgdRui9gWU4pxZnuDFMAt4XkatU9dUw6qjO/cDFwKnAw8Ahd/+haktUeQm4CtgKPA0ocAnwBDAS+GGQMq2BJUAJ8C+gKc6Xi2dFpEJVX6j1KzHeUlW72a3e3ICzgEL3dnYtyqvzZx/ymDSg1D22t9/+7MCywH5gG5AepJ72Adu5QG5NsQEvAilBHn/efTzTb1+mX7m/Bhw/1H0dB4GWfvvvc4/PCvIclfU9X9NzBzwe7L35gVvmU6C53/4MYKX72FXVvAdPA8l++wcDZcBqr/8G7Vb7m51SM/WGiHQD3sL5xnuDqn4ci+dR1WKcRALQIYwipUB5kHr21eLpS4CfqWpZhOXycE4z+j//SuAVnBbDJbWIpa5+4t7/n6rm+8V1FPhfd/OGIOUKgKmqWu5XZjVOq+cEEWkRo3hNjFnCMfWCiKQD/8E5VfRHVX0l1k/p3td0begVnFbBNyLyRxE5X0Ra1eF5c9Wvo0IEPlXVI0H2Z7v3p9c+pFo7A+eUYHaQxxbhJOlgca1X1cNB9m9170P1XDQJzBKOSXhuj7QXcD7A3gZ+GePna4pzLQVgbw2HT8G5NnMU+D/gfWCfiLwtIv1q8fS7alEGqr/OU1lfXZJgbbUCDqhqSeADbgtuH8Hjqu7aUGWrLybjpEzsWcIx9cH9OBeNvwSuVvekfgyNxOlQs1tVc0MdqKrlqvqwqp4KdAL+B3gT+D7wgYikRfjctX1tnarZ39m9z/PbV+HeB+s0FM3WQx7QVkSaBD4gIilAeyBYS8Y0UJZwTEJze6T9GtiD0yMtv4YidX2+JKpaUP+IpKyq7lHVN1T1CmAB0Bc4ye+QcmL37fyMaq5tZLn3n/ntO+je9why/NBq6q+8nhJJ/J/hfMaMDvLYaLeuTyOoz9RzlnBMwhKRM4HncC6kX6qqm2P8fB2BWTgf0luAP9RwfJqIjHNP+fnvb0LVKTn/Ltv7gQ4i0ixqQVdpBfwmII6hON2O83BaXZVWuPfXuS2NyuN7BNbhp7ITRc8IYnrWvf+jew2u8nnScWZMAHgmgvpMPWfjcExCcr+tv43TI+0TYIKITAhRJFdVn4+g/vvcH5OomtpmJJCK84H8wzB6mTUD5gG5IvIxsNmNdwJwAvAfVf3W7/j5OONzPhCRxUAx8IWqvhNu3CEsBm4QkbNxenNVjsNJAib7X4RX1Y/d5x8NrBCRBTin5L4HzCZ4y2c+cA/wdxH5F844oUOq+lh1AanqP0TkIuAKnE4Vb+GcMrwYZ9zQa3Ho/GESidf9su1mt2A3jh1fEs4tO8x6A8sV41y8XgX8HTgfSKqmbDZ+Y02AJsDPcToKbAGKcDoZLAduBlIDymcAT+KM2ykjYLxLTa+D0ONwnsdJcm/jnDIrwEk851VTV2v39e5x34OvgZuoZhyOW2Yq8K17vOI3pijwvfHbnwTcgjPupsC9rQJuDfY+h3oPgr1+u9Wvm7i/SGOMMSam7BqOMcaYuLCEY4wxJi4s4RhjjIkLSzjGGGPiwrpF+2nfvr1mZmbWquzRo0fJyMiIbkBRYHFFxuKKjMUVmYYY16pVq/apajiT3Fq3aP/bkCFDtLYWLlxY67KxZHFFxuKKjMUVmYYYF7BSw/yMtVNqxhhj4sISjjHGmLiwhGOMMSYuLOEYY4yJC+ulZhqUo8VlzFicw8vLNnOwoJQ26U24engvJo/uS0aa/bl7xX4vBizhmAbkaHEZlzyxhM37Cyguc9YYO1BQyoxFG/ng6128ecsI+3DzgP1eTCX7LZsGY8binGM+1CoVl1Wwad9Rfv3W11w2pHvIOlbvLyd1Q02rEsRffY7rX6u2sWnfUUrLj50ouLisgs37C5ixOIepEwbGMkyTICzhmAbj5WWbj0s2lUrLlTc+284bn22vuaJPPo5yZFHSAOMqLqvg5eVbLOE0EtZpwDQYBwtKvQ7B1MLBghKvQzBxYi0c02C0SW/CgRBJJyVJODOzbbWPAxw6dJDWrdtEO7Q6q89xfZJ7gLKK6tfdapOeGu2wTIKyhGMajKuH9+LxBTmUB1lUMC0liclj+tR46iY7O5usrGGxCrHW6nNc0+auZcaijUFPd6alJHH1sJ6xCs8kGDulZhqMC0/qUm2y6dUuncmj+3oQlZk8ui+92qWTlnL8x0231s3s99KIWMIxDcbfP9zk+zklSRCBthmpTB7Tx7reeigjLYU3bxnB5DF9aJtx7Omz4X3b2e+lEbHftGkQcvbm8+Zn23zb/7xpWI3Xa0z8ZKSlMHXCQKZOGMjCNXu47vlPAHh95TZuHduPrq2beRyhiQdr4ZgG4aF566m8Lj2qf3tLNgksa2AHTu/ZGoCS8goeXbDB44hMvFjCMfXeml2H+e+XO3zbd0+0MR2JTET4md/v6PWVW9myv8DDiEy8WMIx9d70ueuo7Csw/oSOnNajtbcBmRqd07cdZ/d2WqFlFcrD89d7HJGJB0s4pl77enses7/Z7dueMmGAh9GYcInIMS3RNz/bRs7efA8jMvEQ94QjIoNFZL6IFIjIDhF5QESSIyifJCKrRERF5LtBHr9IRL4SkSIRWS0ik6L7CkwimTZ3ne/nC0/uzIldW3kYjYnEWb3bMqp/ewAqFB6eZ62chi6uCUdE2gDzAAUuAh4A7gbuj6CaG4Bu1dQ/Evg3sBC4AHgX+KeITKxD2CZBrdp8kAVr9gAgAneNt9ZNfePfynnnyx2s3XXEw2hMrMW7hXMz0Ay4VFXnqupTOMlmqoi0rKmwm7D+H/DLag75NbBYVe9Q1YWqeg/wAfCb6IRvEsl0v9bNRad2ZUCnFh5GY2rjtB6tGX9CRwBUj/2dmoYn3gnnAmC2qh722zcLJwmNCaP874AlwPzAB0QkDRgLvBbw0CxguIjYuZYGZPnG/XzkToufnCTcaa2besv/utsH3+zi6+15HkZjYineCWcQsMZ/h6puAQrcx6olIqcA1wE/q+aQvkCTwPqBb3Fep30iNRCqyrQ5Vd+ELz29G73bZ3gYkamLE7u24oKTOvu2p1krp8GKd8JpAxwKsv+g+1gojwKPq2p1o8QqywfWfzDgcVPPfbRhHytyDwDQJFm4Y1x/jyMydTVlwgBEnJ8XrNnDp1sOhi5g6iUvprYJNk+5VLPfeVDkSmAg8L1a1C8hnhcRuQm4CaBTp05kZ2eH8RTHy8/Pr3XZWGpocakqv1te5Nse2TWZnC9XkONxXLHWGOI6u3Myy3eWA/DrV5dzz5m1n+6mMbxf0RSvuOKdcA4CwUbltSJ4ywcRaQL8FfgzkCQirYHKDgYZItJCVY9Q1ZIJrL9yO2j9qjoTmAkwdOhQzcrKCu+VBHCmaa9d2VhqaHHN/3Y3G/NWApCaksQfrh5Nl1bRm4erob1fsRbNuHqemM+E6Yspr1C+2V9B054nM6xPO8/jiqbGHle8T6mtIeBajYj0ADI4/tpLpQygOzANJ6kcBL5wH5sFfOb+nAOUBtbvblcAdmK4nquoUB70u3bzw7N7RjXZGG/16dCcS0+vGvEwbc46NMhyE6b+infCeR84T0T8+69OAgqBRdWUycfpfeZ/+4H72L3ADwFUtRhn/M3lAeUnActU1bq+1HOzv9nF6p1OB8emTZL4aZato9LQ3DGuPylJzlnwFbkHfD0RTcMQ74TzFFAMvCEi493rJ/cB0/y7SovIBhF5BkBVy1Q12/8GLHcP/UpVP/ar/3dAlog8JCJZIvIX4EKcAaamHiuvUKbPq2rd/PicTDq2aOphRCYWerRNZ9KZPXzbD1orp0GJa8JR1YPAOCAZeAdn0Od04LcBh6a4x0Ra/0fAZcB4YDbwfeAqVZ1Th7BNAvjvlztYt9uZaysjNdlWiWzAbju3H6nu6qCfbz3km03C1H9x76WmqquBc2s4JrOGx3Op6n0W+NhbwFu1DM8koLLyCh7ym2fr+pG9j1s50jQcXVo144dn9+S5JbmAMy5n7MCOJCUF/Zc39YjNFm0S3hufbWfTvqMAtGyawvWj+ngckYm1n2b1pWkT5+Ppmx2Hmf3NLo8jMtFgCccktJKyCh7xWyvlxlF9aNWsiYcRmXjo2KIpPx6e6duePm8d5RV2Lae+s4RjEtrrq7ay7WAhAG3Sm3DdyN4eR2TiZfKYvmSkOpdy1+3OP2ZVV1M/WcIxCauotJxH51fNZHTzmL40T/NicgzjhbYZqfzE7wvGQ/PWU1Ze4WFEpq4s4ZiE9c8VW9h12JnGpn3zNK7xO8ViGocbRvWhZVPnS8amfUd587PtHkdk6sISjklIhSXlPL6waoa0W8f2pVlqxD3lTT3XqlkTbvTrJPLIgvWUlFkrp76yhGMS0ovLctmXXwxAl1ZN+cFZPb0NyHjmupG9aZPudBTZeqCQ11dt9TgiU1uWcEzCyS8u46lFVa2b287tR9Mm1rpprJqnpXDzmKqBvo8t2EBRabmHEZnasoRjEs5zH23iYEEpAN3bNOPyIT1qKGEaumuGZ9K+eRoAO/OK+OeKLR5HZGrDEo5JKHmFpfz9w42+7TvG9fdNc2Iar2apydziN1nr4wtzKCyxVk59Y//JJqE88+FGDheVAdC7fcYx09Wbxu2qs3vSuaUzYeu+/GJeWp7rbUAmYpZwTMI4cLSEZz7a5Nu+a3x/UpLtT9Q4mjZJ5rZz+/m2n8zOIb+4zMOITKTsv9kkjBmLczjqniYZ0Kk53z2lq8cRmURzxdAedG/jLLp3sKCU55dsqqGESSSWcExC2HOkiBeW5vq2p4wfQLLNDmwCpKYkcce4/r7tmYs3kldY6mFEJhKWcExCeDI7h6JSZ0Df4C4tOe/Ezh5HZBLVpad3o3f7DAAOF5XxjF8nE5PY4p5wRGSwiMwXkQIR2SEiD4hIyEEWInKiiHzgHl8sIltE5GkR6RJw3PMiokFug2L7qkxd7Mwr5JWPq7q53j1xgK19YqqVkpzEXeOrWjnPLsnlwNESDyMy4YprwhGRNsA8QIGLcJZ+vhtn5c9QWgGbgJ8B5+GsEDoeeE9EAmdzXAMMD7jlRucVmFh4bMEG33Qlp/VozbmDOnockUl03z2lK/07NgecgcIzFufUUMIkgnhPvXsz0Ay4VFUPA3NFpCVwn4j8xd13HFVdCiz125UtItuAOcApwKd+jx1V1eWxCd9E29YDBby2smqqkrsnDkDEWjcmtOQkYeqEAfz0Fedf/4WluVw/sjcdWzT1ODITSrxPqV0AzA5ILLNwktCYCOva797bWsP12CPz11Na7iysdVZmW0b2a+9xRKa+OO/Ezgzu0hKAotIKnsy2Vk6ii3fCGYRzystHVbcABe5jIYlIkoikishA4E/AJ8CKgMMGi8hh91rPRyISaSIzcbJp31He8Jtufqq1bkwEktxWTqVXPt7CzrxCDyMyNRHV+C3bKiKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCrhQVff4PX4nUAKsBjrgXB8aAoxU1cDEVFnmJuAmgE6dOg2ZNWtWbV4a+fn5NG/evFZlYymR43olJ4VlO51xNye2S+KeM5t5HFViv18W1/FUld8tL2JjnnMN8NweKVxzYprncVWnIcY1duzYVao6NJxjvVg+MViGk2r2B7odaAv0B34FvC8iI1S1CEBVHz6mUpF3cZLPvcDFQYNRnQnMBBg6dKhmZWWF9yoCZGdnU9uysZSocb3yzgKW76r6Nvq7ScM4o2cbDyNyJOr7ZXFVL7nbXq551vk++eGOcu7/wVnkfLnC87iCSYT3K5h4xRXvU2oHgdZB9rcCDtVUWFXXq+rHqvoyTkvndOCqEMcXAu8BZ9QuXBMrb24oobJxfe6gjgmRbEz9NKp/e87KbAtAabny6IL1HkdkqhN2C0dETgbOAjoDTYEDwDpgqaoeDLOaNQRcqxGRHkAGAdd2aqKqm0XkANCnxoPDaz2ZOPlmRx4rd1fN9Ot/Ht6YSIkIUycO4MqZTufUf3+6nTNGWG+1RBQy4YhIH+CnwA+BTkAFTkukGKelkg5UiMgi4GngVVUNtf7r+8A9ItJCVY+4+yYBhcCiSAJ3Ow60wxmfU90xzXB6xq2KpG4TW9PnrvP9fN6JnTipWysPozENwbA+7RjRrx1LNuynvEJ5e0MJV3odlDlOtafURORp4BvgNJwBmqcDTVW1g6p2V9XmQEfge8BXwF+Ab0VkZIjnewonWb0hIuPdC/b3AdP8u0qLyAYRecZv+28i8icRuURExorILcBsIAenWzUi0kpEPhSRySIyTkQmAQuBbsAfIn1jTGx8vvUQ8751+nmIwBRr3ZgomTphoO/n5TvLWb/7SIijjRdCXcMpAgap6gRVfUpVv1TVY1Y8UtV9qvq+qt4F9AJ+g/MBH5R76m0ckAy8gzPDwHScmQP8pbjHVFoJjAKeAd4F7gD+DQxT1aPuMcXAXpzOBO/hdAQ4BIxR1ZUhXqeJowfnrPX9/N1TujKoc0sPozENyZBebRg7sAPgnEOfPm9d6AIm7qo9paaqt0VSkXsq7dUwjlsNnFvDMZkB27NwWzIhyhQBl9YYqPHMJ7kH+HD9PsDplug/H5Yx0TB1wkAWrt0LwHtf7eKbHXmc2NVO2SaKWvdSE5HmIpJ4HcpNQlJV/ja7qnVzTtcU+nawPx8TXSd3b8V5J3bybU+faz3WEknECUdEThCRT4DDQJ6IrBSRwdEPzTQkS3P28/GmAwCkJAkX9WvicUSmoZoyYQCV81XM+3Y3n2+tccSFiZPatHCeBl4HWgBdgbXA81GMyTQwqnrMtZvLh/agY7otxWRiY1DnlpzVueoS8LS5di0nUYTqpTbdnck50CDgUVU9qqq7gRcA62pkqpW9di+fbnG+ZaYmJ3G737r0xsTCxf1SqVxSafG6vXySe8DbgAwQuoXTClgvIjfLsTMqzgdeEpELReQy4I/uPmOOo6rHfMP8wVk96Nra+znTTMPWpXkSF59e1WHWv4VtvFNtwlHVnwAX4kwd84WIjHUfuhHYAvweZ46yxcD1MY7T1FNzVu/mq+15AKSlJHHrWGvdmPi4c1x/UtxmzvKNB1i6YZ/HEZmQJ9JVdZWqjsYZOPmciLwJtFXVqap6hnuboqp2Vc4cp6JCmTanqnVzzfBedGxpU46Y+OjVLoPLh3b3bf9tzlriOTu+OV5YV27dcTCDgM+BVSLyRxHJiGlkpt5796udrHVHe6enJnPzmL4eR2Qam9vO7U9qsvMx9+mWQ2Sv2+txRI1byIQjIgNF5KfuOjNnqOr9OEs69wDWici1cYjR1ENl5RXHjPS+bkQm7ZqneRiRaYy6tW7GD87q4dueNmedtXI8FKqX2g3AFzhzpY0C3hORJ1R1m6peDVwG/NQdhzMiPuGa+uLtz3ewca8z61CLtBRuHBXOpN7GRN+tY/uRluJ81H21PY85q3d7HFHjFaqF81vgVlW9UFUvA8YAk0WkM4CqLlPVs4FHqWHaGdO4lJZX8PD8qhHeN4zqQ+v0VA8jMo1Zx5ZNuWZ4L9/29LnrqKiwVo4XQiUcwVmOoFKFu++YRedV9QUC1rgxjdu/Vm1jy4ECAFqnN+EnIzO9Dcg0ejeP6Ut6qjMYdM2uI7z71U6PI2qcQiWc3wNPiMg7IvIazno1z6jqcb8pvxmbTSNXXFbOo36tm8mj+9KiqU1jY7zVrnka143I9G1Pn7eOsvJQS3eZWAg1DucpnKWZPwCWARer6o3xCszUT7NWbGVHXhEA7Zun8uNzetVQwpj4uHFUH1qkORPkb9x7lLc/3+FxRI1PTeNwvlXVx1V1uqoujldQpn4qKi3n8YUbfNvOaYywVzE3JqZap6dy/ajevu2H56+n1Fo5cRWql9qoSCtzV908uYZjBovIfBEpEJEdIvKAiCTXUOZEEfnAPb5YRLaIyNMi0iXIsReJyFciUiQiq92VP00cvLx8M3uOFAPQqWUaVw+z1o1JLD8Z2ZvW6c4p3i0HCvj3qm0eR9S4hGrhvCYiS0TkJyLSJlQlIjJCRB4FNgPDQxzXBpiHsyDfRThLV9+Ns/JnKK2ATcDPgPNwetCNx+mq7fsK7S5v/W+cpaUvwFkd9J8iMrGG+k0dHS0u44nsHN/2bWP70bRJyO8RxsRdy6ZNuGl0VRf9R+avp7isPEQJE02hznf0wVnK+bfADBFZB3wN7MNZzrk10Bs4HWiGs6zz+BqWc77ZPfZSVT0MzHVnpL5PRP7i7juOqi4FlvrtyhaRbcAcnIGon7r7fw0sVtU73O2FInIiztLXc0LEZero+aW5HDhaAjiD7a44s0cNJYzxxrXnZPLsR5vYl1/CjrwiXv1kK9cMz/Q6rEYhVKeBQlX9M5CJ01p4GyfJjAS+A5yA06K5B+ihqpfUkGxw65kdkFhm4SShMRHGvt+9TwUQkTRgLPBawHGzgOEiYuvMxsjholJmLt7o275jXD/SUqx1YxJTemrKMdMsPbZgA0Wl1sqJhxrnUlPHPFW9V1XPU9VTVXWgqg5X1WtV9e+quifM5xsErAmofwtQQBhjeUQkSURSRWQg8CfgE2CF+3BfoElg/cC3OK/T1uyJkWc+3EReYSkAvdqlc+kZ3WsoYYy3rh7Wi04tnamW9hwp5uXlmz2OqHGQeM4rJCKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCriwMtm50+t8BJyuqp/7lekHrAfOU9XjTquJyE3ATQCdOnUaMmtW7SZNyM/Pp3nz5rUqG0uxjiu/RLlncQGFZc72TaekcU7XmnumNdb3q7YsrsiEE9f8LaW8tNo5DdwiFf46Op2mKRKyTDzi8kJd4ho7duwqVR0azrFe9FkNluGkmv2BbgfaAv2BXwHvi8gIVS0KUb9Us9/ZqToTmAkwdOhQzcrKCiOM42VnZ1PbsrEU67j+/MEaCsuczgL9Ojbnf68cTXJSzf+0jfX9qi2LKzLhxDW8rJwFf1vE9kOFHCmBnOQe3JoV2/Wa6vP7FQ3xXlj+IM51oECtgBrX1FHV9ar6saq+jNPSOR1ngbjKuglSf+W2rdkTZfvyi3l+Sa5v+67x/cNKNsYkgrSU5GOWO5+5eCOHi0o9jKjhi3fCWUPAtRoR6QFkcPy1l5BUdTNwAKc3HUAOUBpYv7tdAazDRNVT2TkUuhdbB3VuwYUnHTcsypiE9j9DutOrXToAeYWlPPvRJo8jatjinXDeB84TkRZ++yYBhThztYXN7TjQDmd8DqpajDP+5vKAQycBy1Q1r7ZBm+PtPlzES34XWqdOGECStW5MPdMkOYk7x/X3bT/z4SYOFZR4GFHDFlbCEZG/icjgKDzfUzhjeN4QkfHuBfv7gGn+XaVFZIOIPBPw/H8SkUtEZKyI3ALMxmnV+F/l/x2QJSIPiUiWiPwFuBBngKmJoscXbqC4zJkW5JTurZgwuJPHERlTOxed1o2+HZwFjI8Ulx3Txd9EV7gtnP8BvhKRFSJyc23HtKjqQWAckAy8gzPDwHScwaX+UtxjKq3EWQTuGZzZA+7AmVFgmP9M1ar6Ec7CcONxEtL3gauC9U4ztbftYAH/XLHFtz11wgBErHVj6qfkJGHKhKpRE88tyWVffrGHETVcYfVSU9XeIjIWuA74KzBNRN4CnlXVeZE8oaquBs6t4ZjMgO1ZhLnIm6q+BbwVSUwmMo8t2EBpudPpb0ivNowZ0MHjiIypmwtP6sKgzhtYs+sIhaXlPJWdw6++G42TOsZf2NdwVHWhql4DdMHpntwdmC0im0XkfhGxNYQbgdx9R3ndb8LDuyda68bUf0lJwlS/Vs5Lyzez+3BRiBKmNiLuNKCq+ar6DM5psCVAD+AXwDoReVtEbIrgBuyR+espd5fnHd6nHef0be9xRMZEx4TBnTilu3O1oLis4pilNkx0RJRwRCRTRH4rIhtxJsPMx+kV1gLnekkmYZ76MvXPhj1HeOvz7b7tuyfabEGm4RA5tpXzzxVb2HawwMOIGp5we6n9SEQWABuAHwPPAb1V9UJV/beqFqvqezgX88Oa4sDUP9Pnrcdt3DBmQAeGZrb1NiBjomzMgA4M6eWsxlJarjy2wFo50RRuC2cmsAtnPrI+qvo7VQ22ctE64PdRi84kjG93HubdL3f6tv2/CRrTUIgId/v9bb++ahub9x8NUcJEItyE01VVr1LV+aEOUtWdqlrTYmqmHpo+t2qihgmDO3FI9tmwAAAgAElEQVRqj2AzFBlT/53Trz3D+7QDoLxCeXj+eo8jajjCTTirROTUYA+IyEnuNR3TQH257RBzVu/2bVvrxjR0/tcn3/psOxv25HsYTcMRbsLJBNKqeSwdp4u0aaCm+bVuvnNKF07o0tLDaIyJvaGZbX3jyyoUHppnUzFGQ7UJR0RaikhPEenp7upcue13GwBcCWyvrh5Tv63afIDstXsBSBKYMr5/DSWMaRj8W/L//XIn3+48HOJoE45QLZwpQC7O5JgKvOn+7H/7FrgLeCSmURrPPDin6pvdRad1o1/HFiGONqbhOLVHa8afUDVHoP91TFM7oaa2+QfOHGYC/Af4GbA24JgSYK27TLRpYJbm7GNpzn7AmW/Kf1ZdYxqDqRMGMO9b5/rlnNW7+WpbHid3r9VUkoYQCUdV1+MszYw7j9qnqnokXoEZb6kq0/xaN5ed0Z3M9hkeRmRM/A3u2pLvnNyFd79yhgQ8OHctz193lsdR1V9hdRpQ1UWWbBqXxev3sXKzs4hqk2Th9nGxXXrXmEQ1ZUJ/Kpd6yl67l1WbD3gbUD0WqtPAHhE53f15r7td7S1+IZtYU1UenFN19vTKM3vSvU26hxEZ451+HVtw0WndfNv+1zVNZEJdw3kc2O33s8Y+HJMI5n27hy+3OQukpqYkcetYa92Yxu3Ocf35zxc7KK9QlubsZ1nOfob3bed1WPVOqGs49/v9fF+0ntBdOfRRYDhwCHgauF9Vy0OUORO4BWcRtq7AVpxODX9W1SK/4+7j+MXcAC5Q1Q+i9RoasooKPWbczY+G9aJzq6YeRmSM9zLbZ3DZGd15deVWAKbNXctrfYbb0hwRinh5groQkTbAPJzW0kU4Sz/fjbPyZyiTgL7An3GWjH4cmAq8EuTYPJxk5n9bFoXwG4X3v97lG2/QrEkyP83q63FExiSG28f1o0myk2A+yT3I4vX7PI6o/qm2hSMir0VSkapeEcZhNwPNgEtV9TAwV0RaAveJyF/cfcH8WVX3+m1ni0gRMENEeqnqZr/HylR1eSSxG0d5hTLdb0T1j8/JpH3z6iaYMKZx6d4mnUln9uDl5c4okGlz1jK6f3tr5UQgVAunQ4S3cFwAzA5ILLNwktCY6goFJJtKn7n3HcN8blOD/3xRNWdU87QUJo+2RVyN8Xfb2P6kpjgfm19sy2Pet9ZfKhKhruGMjcHzDQIWBDzPFhEpcB97J4K6zgEqOH4wamsR2Qe0Ar4Gfqeqb9Q+5MahrLyCh+dVzYr7k5G9aZOR6mFExiSezq2acvXZvXh2ySbAmWdw3KCOJCVZKyccohq/zmciUgrco6oPBezfBryoqveGWU9n4EvgPVW91m//1Tgtns+B5sBknGs+/1Nd0hGRm4CbADp16jRk1qzaLVian59P8+bNa1U2lsKNa/G2Up79ugSAjCbwl9HpZDSJ3T9RfX+/4s3iikws48orVu5ZXECJ283p1tPSOLNzqA6/8YmrLuoS19ixY1epalgLb4a6hnML8Lqq7nV/DklVnwgzvmAZTqrZHyyuVOA1nOWtpwTE8HLAse8AS4HfAEETjqrOxFlgjqFDh2pWVlY4YRwnOzub2paNpXDiKimr4Jd/y/Zt33LuQL4T467Q9fn98oLFFZlYx/VtxRqeWpQDwOwdTZh6xWiSw2jlNNb3q1KotPwYzlxqe92fQ1EgnIRzEAi2clcrnC7SIYlzde5F4ERghKoeDBmUqorIG8CfRSQ5VNfrxuzVlVvZfqgQgLYZqVx7Tqa3ARmT4CaP7sPLyzeTX1zGhj35vPPFDi4+vVvNBRu5ajsNqGqSqq7w+znULTnM51uDc63GR0R6ABnuYzWZjtOd+iJVDed438uJ4NhGpai0nMcWVF27+emYvmSkhXd6wJjGqk1GKj8Z2du3/dC8dZSVV3gYUf0Q13E4wPvAeSLiP8f9JKAQWBSqoIj8ArgduFpVPwrnydwW0SXAF9a6Ce6Vj7ew+3AxAB1apHH1sF4eR2RM/XD9yN60bOp8OcvdX8Abn9qyYDUJO+GISKqI3CQiT4vIu+79je41lXA9BRQDb4jIePeC/X3ANP+u0iKyQUSe8du+CvgDzum07SIyzO/Wwe+4RSJyh4hMFJFLgHeBYe5zmAAFJWU8mb3Bt33b2H40Sw23sWpM49aqWRMmj6kaGP3w/PWUlFkrJ5SwEo6InICzVMHjwElAuXv/OLDBna6mRu41l3FAMk4X6PtxTpMFTkeT4h5TaaJ7fy3OrAH+t+/4HbcBZ0G4t4GXgRbAd1T1P+HE19i8sHQz+/KdnmldWzXlyrN6eByRMfXLtedk0tYdPrD9UKFv6hsTXLgn62fiTBkzyn+xNXf56XdxWi6jw6lIVVcD59ZwTGbA9rU4yaamuq8PJwYDR4pKmbE4x7d927n9SUux1o0xkchIS+HmMX34w3vOJeXHF2zg8iHdadrE/peCCfeU2lDgN4Ere7rbvwHOjHZgJraeW5LLoYJSAHq2Tefyod09jsiY+ulHwzLp0MKZAmrX4SL+8bEtgFydcBNOLlDdlMFNAXuH65G8glL+/uFG3/Yd4/rTJDne/UeMaRiapSZzq98kt09kb6CgpMzDiBJXuJ8y/wf8XkTO9t8pIsNwZnz+32gHZmLn7x9u5EiR8w/Rp0MGF5/W1eOIjKnffnB2T7q6y3jsyy/hxWWbayjROIVa8fMTEVkhIiuAXwItgaUislNEvhCRncASnEGbYU1JY7y3P7/YNw8UwF3jB5BirRtj6iQtJZnbzu3v235qUQ5Hiko9jCgxheo08A3HDpj8JsaxmDiYsXgjBe4kUAM7teC7J3fxOCJjGobLh3bnyUUb2HqgkEMFpTy3JJc7xvWvuWAjEmq26GvjGIeJgz2Hi3hxWa5ve8qEATbLrTFR0iQ5iTvHDeBnr38BOKeufzw8k1bpTTyOLHHYuZRG5InsHIpKnYFpJ3VryXkndvI4ImMalotP60qf9hkAHCkqO6Zzjgl/HA4ikglcDQwgSI+1MFf8NB7ZcajwmO6ad08YaCsVGhNlKclJ3DVhAHf801kf8rklm7huRCbtbOVcIPyZBobgLGb2Q/fWH2dszmU4U8e0j1WAJjoeXbCBEndywdN7tiZrYLiLtBpjIvHdk7swsJMzXeTRknJmLLZWTqVwT6n9Ffg3znQ2Alyvqn2AkTgdC/4Sm/BMNGzZX8DrflNuWOvGmNhJShKmTKjqLPDislz2HCnyLqAEEm7COQ34B86SzuCeUlPVpTjzof0p+qGZaHlkwXrKKpwOh2f3bsuIfu08jsiYhu28EztzYteWABSVVvDEwpwaSjQO4SYcBUrUWY96D+A/h/1WnFNsJgHtzK/gjU+3+bbvnmitG2NiTUS4e+IA3/Y/Pt7CDneRw8Ys3ISzGqicu2EZMEVE+otIL+DngKXvBPV2Tglu44ZR/dtzVu+23gZkTCMxdmBHTuvhLHBcUl7BYws31FCi4Qs34cwEOrs/3wt0wVmhcyNwNvCz6Idm6mrtriN8vLNq3bmpEwaEONoYE00iws8mDvRtv/bJVvYUNO71csLqFq2qL/n9/K27Ps45ONdylqvqnhjFZ+pg+tx1vqkixg3qyOk923gajzGNzYh+7Tird1tWbDpAWYXyn5xSGvP4kVoN/FTVfFWdo6r/iTTZiMhgEZkvIgUiskNEHhCRkItHiMiZIvKcuxJogYisFZHfishx44FEZISIfCwihSKySUTuiPT1NQRfb8/jg292+banWOvGmLgTEe72+99bsr2MjXvzPYzIW5EsMd1RRP4gIvNE5Bv3/v+JSNjD1UWkDTAPpxPCRTgzTd+N09MtlEk415D+DFyIs9LoVOCVgPr7AbOBTTgrgc4AponIDeHG2FBMm7vO9/MFJ3XmpG6tPIzGmMbr7D7tGNXfGaqowEPz1nsbkIfCOqUmIiOA94AyYC5OJ4KOwM3A7SJygaouCaOqm4FmwKWqehiYKyItgftE5C/uvmD+rKp7/bazRaQImCEivVS1ci7we4AdwNWqWgYscFcl/a2IPOP2smvwPt1ykAVrnIanYK0bY7w2dcIAPly/D4B3vtzBrWP7MbBzC4+jir9wWziPAauAnqp6pareoapX4nSP/hR4NMx6LgBmBySWWThJaEx1hQKSTaXP3PuOAfW/4SYb//q74wxabRSm+7Vuzu6SzIBOje8P25hEcnrPNowb5HxUqcJD89bVUKJhCjfhDAIeVNWj/jtVNR/4G3BCBPWsCahjC1DgPhaJc3AGoq4FEJEMoEdg/cC3fs/d4H28cb/vm1SSwMX9Uj2OyBgDx55peP/rXXy9Pc/DaLwR7uSdq6nqFh2osot0ONoAh4LsP+g+FhYR6YyzKNxLfq2l1u59YP0H/Z47WF03ATcBdOrUiezs7HDDOEZ+fn6ty0aLqvLHFVVTaIzomkJzLfA8rmAS4f0KxuKKjMUVmdPaKZ/vdwZe/3LWMqYMOa7fkyfi9X6Fm3BuB14SkXzgLVUtFpE04BKc5aevieA5g11HkWr2H3+gSCrwGpAPTAmz/mr3q+pMnHFGDB06VLOyssIJ4zjZ2dnUtmy0fLh+L+tmrwAgJUn4ww9HkfPlCs/jCiYR3q9gLK7IWFyR2X5kAV8sLUQVvthbTss+p3JGAgxXiNf7FWqJ6b0iskdE9gBv4bRw/gEUiEgezmmwV9z9b4b5fAepaon4a0Xwlk9gTAK8CJwIXKiqB/0eriwfWH+bgMcbJFXlwTlV54WvOLMHPdqmexiRMSZQtxZJfO+Urr5t/+utjUGoFs7jhNnqiMAaAq6liEgPIIPwTstNx+lOPUFVA68FHRWRrYH1+22He9qvXlq4dg+fb3VyampKEref28/jiIwxwdw1vj///XIHFQofrt/Hxxv3c3afxjGhbqglpu+LwfO9D9wjIi1U9Yi7bxJQCCwKVVBEfoFzau8KVf0oRP2XiMivVLVyTpdJOBOMfl3n6BNUYOvmqrN60qVVMw8jMsZUp0+H5lx6Rnf+tcqZVPfBuet49aZhjWJS3YhmGhCRVBEZIiIT3PtIu0A9BRQDb4jIePeC/X3ANP+u0u6MAs/4bV8F/AHndNp2ERnmd/NfSeyvOF2gXxKRsSLyc2Ay8EBDHoMz+5tdfLPDefuaNknilrF9ayhhjPHSneP6k5LkJJgVmw6wZMN+jyOKj0hmGvg5sBtYgTOa/xNgt4jcE24d7jWXcUAy8A7ODAPTgd8GHJriHlNpont/Lc5s1f637/jVvwE4H+iH09q5BbhbVZ8ON8b6prxCj5lV4MfDM+nYIjF6vhhjguvRNp0rzuzh2/7bnLU04O/EPuHONHAX8EecFsqrOImnE87pqj+KSLGqPhJOXaq6Gji3hmMyA7avxUk24dT/EXBWOMc2BP/9cgfrdjtzM2WkJjN5jLVujKkPbhvbj3+t3EZJeQWfbz3EwrV7OHdQ2DOF1UvhtnBuBf6kqreq6mJVXeve34ozv1mjnCDTa2XlFTzsNy/TT0b2pm2GDfQ0pj7o2roZV53d07f94Jx1Db6VE27C6QEsrOaxbJzrJibO3vxsOxv3OZM/tGiawg0j+3gckTEmEreM7UvTJs7H8Dc7DjPbb4b3hijchLOFqusogSa4j5s4Kimr4JEFVa2bG0f1oVV6Ew8jMsZEqmOLplwzPNO3PW3uOsorGm4rJ9yE8wjwMxF5WkTOF5HTReQ8EXkaZ5mAh2IXognm9VVb2XrAWSO9TXoTrhuR6W1AxphamTy6DxmpTh+pdbvz+e+XOzyOKHbCSjiq+hhO9+LzcZYpWInTC+x84GZVfSJmEZrjFJWW89iCqvXRJ4/pS4um1roxpj5q1zyN60b09m0/PG89ZeUNcynqsLtFq+rfca7l9AKGu/c9GnKX40Q1a8UWduY5k3S2b57GNcN7eRyRMaYubhzVhxZNnU7DG/cd5a3PG2Yrp8aEIyJNRWSdiJyvjq2qusK9b7gnGxNUYUk5jy3M8W3fktWX9NRw52A1xiSiVulNuHFUVaefh+evo7QBtnJqTDiqWoQzIWbDe/X10EvLc9mXXwxA55ZNj+lWaYypv64bkUlrt+PP1gOFvL5ym8cRRV+4p9ReAa6LZSCmZvnFZTyZXdW6ue3cfjRtkhyihDGmvmjRtAk3+w3cfnTBeopKy0OUqH/CPRezBbhCRFbidBrYzbEzSauqPhnt4Myxnl+yiYMFpQB0b9OMK4b2qKGEMaY+uWZ4L57+cCP78kvYmVfErBVbuNavQ0F9F27CedC97wKcEeRxBSzhxFBeYSkzF2/0bd8xrj+pKRHNvWqMSXDpqSncktWPB/67GoDHs3OYdGZPmqU2jDMZ4XaLTqrh1jDejQT2zIcbOVxUBkDv9hlceno3jyMyxsTCVWf3pHNLZwLevUeKeWl5rrcBRZF9Ra4HDh4t4dklub7tO8f1JyXZfnXGNERNmyRzq98Cik8t2kh+cZmHEUVPJMsTpIrITe5sA++69zfWYk0cE6EZi6v+4Pp3bM73Tu1aQwljTH02aWgPurV2FlE8cLSEF5bmehtQlISVcETkBGA9zrLTJwHl7v3jwAYRGRyzCBu5vUeKj/ljmzJhAMlJDX9lQGMas9SUJO4c19+3PWNRDnmFpR5GFB3htnBmAnlAX1UdpqrfV9VhOAud5eGskxMWERksIvNFpEBEdojIAyIS8hqQ27r6q4h8KCKFIhJ0wKmIPC8iGuQ2KNz4Es2T2TkUul0jB3dpyfkndvY4ImNMPFx6Rjcy26UDcLiojGc+2uRxRHUXbsIZCvxGVY+ZFdrd/g1wZjiViEgbYB5Or7aLgAeAu3FW/gwlHbgBKACW1nDsGpypd/xvueHEl2h25hXy8sebfdtTJwwgyVo3xjQKKclJ3DV+gG/72Y82cfBoiYcR1V24CScXqG7d4qaEvzzBzUAz4FJVnauqT+Ekm6ki0rK6Qqp6CGirqucBb9bwHEdVdXnArSjM+BLK4ws3UFLmTPBwao/WjDuho8cRGWPi6XundqV/x+aAM/B7ht/QiPoo3ITzf8DvReRs/50iMgynlfK/YdZzATBbVQ/77ZuFk4TGhCrY2OZt23qggFc/2erbvnvCAESsdWNMY5KcJEyZUNXKeWFpLnuPFHsYUd2Em3B+BbQElorIThH5QkR2AkuAVsC9IrKi8hainkE4p7x83NNyBe5j0TBYRA6LSLGIfCQiIRNZonp0wXpKy50ce2ZmG0b1b+9xRMYYL5x/YmdO6OKcACosLT9meqv6RsJpOIjIc5FUqqpB510TkVLgHlV9KGD/NuBFVb03jFhuAx5V1eO+7ovInUAJsBrogHN9aAgwUlWDJkIRuQm4CaBTp05DZs2aVVMIQeXn59O8efNalQ2062gF935USOXCf/93VlMGta3d2NpoxhVNFldkLK7INLS4PttTxsOfOi2blCT46+hmtGkavbF4dXm/xo4du0pVh4ZzbFhT21SXQGopWIaTavZHVrHqw8dUKvIuTvK5F7i4mjIzcXrhMXToUM3KyqrVc2dnZ1PbsoHumvUZFeqs5jmiXztuvnRYreuKZlzRZHFFxuKKTEOLa4wq2XuX8sXWQ5RVwKqiDvz+/JM9jytS8R6ufhBnqYNArYBD0X4yVS3EmWw02PxvCWn97iO8/UXV4ktTJwz0MBpjTCIQEab6Xct59ZOtbDtY4GFEtRPvhLOGgGs1ItIDyCDg2k6U1ZsOBw/NW0/lWc6xAzswpFcbbwMyxiSE0f3bc2am83lQWq48On9DDSUST7wTzvvAeSLSwm/fJKAQWBTtJxORZjg941ZFu+5Y+GZHHu9+tdO3ba0bY0wlp5VT9Znwr0+3kbvvqIcRRS7eCecpoBh4Q0TGuxfs7wOm+XeVFpENIvKMf0ERuUBELgNOc7cvc2+93O1W7kwEk0VknIhMAhYC3YA/xOXV1dH0uet9P08c3ImTu7fyMBpjTKIZ3rcd5/RtB0B5hfLw/PU1lEgscU04qnoQGAckA+/gDPqcDvw24NAU9xh/TwKvA9e726+7t7HudjGwF6cL93s4HQEOAWNUdWVUX0gMfL71EPO+3Q2ACEydOKCGEsaYxuhuv8+Gtz7fzvrdRzyMJjLhLsAWNaq6Gji3hmMyw9kX8HgRcGldYvPStLnrfD9/5+QuDOpc7cQLxphGbEivtmQN7ED22r2oOtd9H/9h/egXZYuqJIBPcg+weN1eAJKEY+ZPMsaYQHf7Xct596udrN5xOMTRicMSTgJ4cM5a388Xn96Nfh0Tb8CaMSZxnNy9FRMHd/Jt+58hSWSWcDy2dMM+lm88ADjzJvmvgWGMMdXxn2Nt3re7+WJr1IcyRp0lHA+pKn/za91cMbQ7vdpleBiRMaa+OKFLS757Shff9oP1oJVjCcdD2ev28ukW51tJanISt51rrRtjTPjuGj+AyiWyFq/by8rcA94GVANLOB5RVabNqfpG8oOzqtYwN8aYcPTr2JyLT+/m235wTmK3cizheGTO6t18tT0PgLSUJG4d28/jiIwx9dGd4/qT7DZzlm3cz9IN+zyOqHqWcDxQUaFM9zvf+qNhvejYsroFVY0xpnq92mVw+ZDuvu0H564jUdertITjgfe+3smaXc7o4PTUZG7O6utxRMaY+uz2cf1JTXY+zldtPsgid1xforGEE2flAa2ba8/JpH3zNA8jMsbUd91aN+PKs3r4tqclaCvHEk6cvf35dnL2OjO8tkhL4abRfTyOyBjTENw6th9pKc5H+pfb8pi7erfHER3PEk4clZZX8NC8qtldrx/Vm9bpqR5GZIxpKDq1bMqPhvXybU+bu46KisRq5VjCiaN/r9rGlgPOKn2tmjXhJyN7exyRMaYhuTmrL+mpzkT7a3Yd4b2vd9ZQIr4s4cRJcVk5jy6oWqFv8pg+tGzaxMOIjDENTfvmaVx7TqZve/rcdZQnUCsn7glHRAaLyHwRKRCRHSLygIgErn0TWCZVRP7qLrBWKCLVvoMicpGIfCUiRSKy2l2IzXOvfrKV7YcKAWiXkcqPh2d6G5AxpkG6aXQfWqQ5K8/k7D3K259v9ziiKnFNOCLSBpgHKHAR8ABwN85CbKGkAzcABcDSEPWPBP6Ns9LnBcC7wD9FZGKdg6+DotJyHvNr3fw0qy8ZaXFfisgY0wi0Tk/l+lFVp+sfnr+e0vIKDyOqEu8Wzs1AM+BSVZ2rqk/hJJupIlLtimOqeghoq6rnAW+GqP/XwGJVvUNVF6rqPcAHwG+i9xIi9/Lyzew5UgxAp5ZpXO13Yc8YY6LtJyN706qZc8p+8/4C/r1qm8cROeKdcC4AZquq/2pBs3CS0JhQBbWGTuUikoaz3PRrAQ/NAoaLSKvIw627o8VlPJmd49u+dWw/mjYJeQbRGGPqpGXTJscMuXh0wQaKy8o9jMgR74QzCFjjv0NVt+CcKhtUx7r7Ak0C6we+xXmdniyj+cKyXPYfLQGcwVmTzuwRuoAxxkTBtedk0i7DGXax/VAhr32y1eOI4p9w2gDBVgk66D5W17oJUv/BgMfj5nBRKTMWbfRt335uP9JSrHVjjIm9jLQUfuo3bdajCzZQVOptK8eLK9fBTo1JNfujUb+EeF5E5CbgJoBOnTqRnZ1dqyfNz88/ruxbG0rIKywFoEMzoX1+DtnZG4OUjp1gcSUCiysyFldkLC5Hz3KldZpwqFjZc6SY+19ZwHmZxw/HiFdc8U44B4HWQfa3InjLJ9K6CVJ/5XbQ+lV1JjATYOjQoZqVlVWrJ8/Ozsa/7KGCEm5fuNC3/YvvncL4M7oHKRlbgXElCosrMhZXZCyuKrvSc/nN298AMGcr/OoHI4/rJRuvuOJ9Sm0NAddqRKQHkMHx114ilQOUBtbvblcAcV2ZaObijRwpLgOgb4cMLjqtWw0ljDEm+iad2YOurZzlT/YfLeGFZbmexRLvhPM+cJ6ItPDbNwkoBBbVpWJVLcYZf3N5wEOTgGWqmleX+iOxL7+Y55fm+ranTBjgWyDJGGPiKS0lmTvGVS1fP2PRRg4XlXoSS7wTzlNAMfCGiIx3r5/cB0zz7yotIhtE5Bn/giJygYhcBpzmbl/m3vwHtfwOyBKRh0QkS0T+AlyIM8A0bp7KzqGgxLk4N6hzCy48qUs8n94YY47xP0O607NtOgB5haU8+9EmT+KIa8JR1YPAOCAZeAdn0Od04LcBh6a4x/h7EngduN7dft29jfWr/yPgMmA8MBv4PnCVqs6J6gsJYffhIl5avtm3PWXCAJKsdWOM8VCT5CTu9GvlPPPhJg4VlMQ9jrj3UlPV1cC5NRyTGc6+asq+BbxVm9ii4fGFGyguc6aROLlbKyYO7uRVKMYY43Px6d14InsDOXuPcqS4jJmLN/Lz8+s6/DEyNlt0FG0/VMisFVWDq6ZOHICItW6MMd5LThLuGl81/v35pbnszy+OawyWcKLosQXrKXEnyRvSqw1ZAzp4HJExxlT5zsldGNTZ6bNVUFLOU4tyaigRXZZwomRPQQWvrayaIO/uCda6McYklqQkYcqEqlbOi8s2s/twUfyeP27P1MC9vaHUt9DRsD5tOadfe48jMsaY400c3ImTuzlzGReXVfDEwg01lIgeSzh1cLS4jGlz13Lq/XNYsqPMt/+Wsf08jMoYY6onIkydWNXKeWHZZq794ChnPDCHaXPXcrS4LETpurGEU0tHi8u45IklzFi00TdfGkCSwO//uzqmvzRjjKmLM3u1oWmTYz/+DxQ4kw1f8sSSmH1+WcKppRmLc9i8v8DXBbpShToLHs1YHN+LccYYE66ZH270XQLwV1xWEdPPL0s4tfTyss3HJZtKxWUVvLx8S5wjMsaY8Ly8bDOl5cEn6I/l55clnFo6WBB6LqKDHoziNcaYcHj1+WUJp5bapB+/psSxj6fGKRJjjImMV59flnBq6erhvUhLCf72paUkcVjREjcAAAuZSURBVPWwnnGOyBhjwuPV55clnFqaPLovvdqlH/dLS0tJole7dCaP7ltNSWOM8ZZXn1+WcGopIy2FN28ZweQxfWibkYoAbTNSmTymD2/eMuK4FfWMMSZRePX5ZZ+KdZCRlsLUCQOZOmFgwi5pa4wxwXjx+WUtHGOMMXFhCccYY0xcWMIxxhgTF5ZwjDHGxIWoBp/eoDESkb3A5loWbw/si2I40WJxRcbiiozFFZmGGFcvVQ1rtUlLOFEiIitVdajXcQSyuCJjcUXG4opMY4/LTqkZY4yJC0s4xhhj4sISTvTM9DqAalhckbG4ImNxRaZRx2XXcIwxxsSFtXCMMcbEhSUcY4wxcWEJJ0Ii0lJE7heRFSKSJyK7RORNERkQZvnBIjJfRApEZIeIPCAiyVGKbZKIvCEiO0VEReTaMMvd5x4feDvfy7jcsiNE5GMRKRSRTSJyRzRi8qv/RhFZLyJFIrJKRMaFUSZq71dt/x5EpJWIPCciB92/w1dEpF2kzx/NuEQks5r3ZVYU4+onIjNE5AsRKReR7DDLxfr9ijiuWL9fInK5iPxHRLaLSL779/2DMMqliciDIrJHRI6KyLsikhmNmGy26Mj1BG4EngF+CaQDvwA+FpFTVHVrdQVFpA0wD1gNXAT0BR7ESfy/ikJslwGZwH+BGyIsmwcEfmB+G4WYoJZxiUg/YLZb7hfAWcA0ESlQ1afrGpSIXAk8BdwHfARcB/xXRM5U1a9rKF7n96uOfw+vAgNx3s8K4M/AW8CoSGKIQVwAPwOW+G1Hc6DjicCFwHIgkmUpY/Z+1TEuiN37NRXYBExx67wQ+IeItFfVR0OUewTnf3YKsBfn/2OuiJysqkV1ikhV7RbBDcgAmgXsawvkA7+toewvgINAS799PwcK/PfVIbYk9745oMC1YZa7D9gXw/estnHNANYBKX77ngC24nZ4qWNca4Fn/eMEvgJejsf7Vdu/B2C4+z6O9tt3lrtvvIdxZboxfDfWf0vuz/8CssMoE9P3qw5xxfT9AtoH2fcPYFOIMt2BMuAav33dgBLghrrGZKfUIqSqR1W1MGDfAZwpcTrWUPwCYLaqHvbbNwtoBoyJQmwVda0jFuoQ1wXAG6pa5rdvFs4/xUl1iUlE+gADgNcq97lxvu4+bzzU9u/hAmC3qi6u3KGqK3C+zUYj9pj+ndZFLf+WYv1+JeT/nqoGayl9RujPqYnu/Rt+9WzHOQNQ5/fKEk4UiEgHoB/OKYhQBgFr/Heo6hacb46DYhNd2FqLyD4RKRWRz0TkUi+DEZEM4P+3d+6xdlRVHP5+gpY2FlpCwkNvKIqgaKIxkpQGw60ihljBWrAKaHxg1YQYY1QSNVpa/ENIUeMDFIHGGCwoj8ZoGxpsaRtaDRAwaaixVIWSWsWWEBuo2iz/2PvAOHfOa86cuUR+XzKZO/vuvWaddfaZNfu5JijZixe6rUa1V6d8lfxj83faiybsVbc+TCmXebRPuXHr1eGWPI6xV9J1kmY2oNMojNteo9KmvRbQ+zn1emBPRPyzlN6IrTyG0wyrSF1q/Qb75gJPV6QfyP+bLnaRukweJnV7fQq4Q9KSiLizZ8nxMSefy/Y6kM+j2qtTvpf8v3cp25S96taHXuVeM8T9m9brEPB94B7gGWASuJI0BnRhA3rVZdz2qkur9soTYi4EPt4j21ifUXY4pBkswIn98kXElLckSZ8BLgOWRMQ/Brhd1UpbVaWPotcwRMRPS/f9JXA/8DUKTeu29eqIGTS9pl5lOepz36Ht1U+dirTK+tBQuUEZWn5E7AWuKCRtkrQP+IGkt0TEww3pVodx22to2rRXnmV2K7A2Ilb3U61KRJf0obDDSVwM3DhAPv3PhXQB8F3gyoi4a4DyB3jhzb3IMVS/VdTSa1QiIiTdCXxT0hERcXga9OrYo2yvbi0TGE6vTktmDmnGGYXrbvIrGcBe3Ri2PhTLVXX5zelTblDq6lXFL0gTPd5KahFOB+O2V5M0bi9JxwLrgMdJL8e96PbdN2Irj+EAEfHjiFC/o1hG0gJSF9oNEXHtgLfaSakfVNIEaebblNZAHb0apvKNpg29IuIgaTZaud+429jLsHrtLMkryt8fEd2603qqPWT+oepDr3KZbmMVw1JXryqidJ4Oxm2vJmnUXpJmkZYVvAJ4T/5d9WInMJHHUIs0Yis7nBpIeiPpS1wPDLMQcR3wbkmzC2lLgWeB+5rTcDQkCVgMPDLE2/o4WAcsLi04XEpyRP3WyfQkInaTplxf3EmT9LJ8vW4YWSPYq259WAecIOnsgg5vI41HDKV7w3pVcVE+P9iAXnUZt72apDF7STqSNOvydcD5EfG3AYrdk8+LC3JOIq1XGt1Wo86rfqkdpCmFT5Cap5PA/MJxRiHfyUydzz4X2AtsAM4FlpEmG1zdkG5nkCrsZaQ3pO/l63MKec7JehXT7iM5zvNyRfs1aXHcBdOs16nZPrcCC0kD9f+mgfUAWf6HgMOkxYwLgdWkh+qb2rDXoPWBNEnhplLaemA38H7gfaQ1RVsaskstvUjrk1Zlnc4FVmR73tGEXvkes3LduQjYBuwoXM+aDnvV1Wvc9iLtAB25rs4vHTNynnuBe0vlfkhaKPph0uLm7cAfgaNG1qkpg79UDpKTiS7HpkK+eVQsciQ9fH+TK9ZeYCVwREO6LR9Ar47+k4W0m/KP8VngILCF9EbUlM1q6ZXTzwZ+BzwH/Bn4bMPf5yfzg+AQ8BDwzi7f91jsNUh9yJ97dSltDnALqV/9GZJTnrLQbwS7DK0X8EHgAdKY2L+yXVeQH24N6dX5XVUd86bRXkPrNW575fv102kTpUWqwAzgOtIszYOkF6pTmtDJ4QmMMca0gsdwjDHGtIIdjjHGmFawwzHGGNMKdjjGGGNawQ7HGGNMK9jhGGOMaQU7HGNqIGmyS3jg4vHRFvRYLemBcd/HmCbw5p3G1OMhUiTJKm4gbTG/pT11jHnxY4djTA0iRcPcXk6XtAx4M/CxiHisdcWMeRHjLjVjGkLS6cC3gNuiR8wRSVdJ+mveLLSYvih3xZ2arz8iaauk/ZIOSNqYN53spcNySVNCC2e5V5TSLpe0Q9IhSX+R9KUhPq4xQ2OHY0wDSHo5aX+up4BP98m+BjietDFokQ8AD0bErnw9D/gJaQfrS4A9wGZJI0eplPRF4HrgbmBR/ntl2SkZ0yTuUjOmGa4mdaVNRkTPQFUR8aik35O2/N8IIGkGKfzvykK+FZ2/c2toA3AmadftFdRE0tHA10m7P1+Vkzfk2ClflXR9TG9YCvN/ils4xoyIpIXAF4BvRMTWAYvdBizJMUsAzgdmA7cX5L5B0l057PBhUmiG04HTRlT5LFIwtZ9LOrJzkHaHPh549YjyjanEDseYEZA0l9Tt9VsKrZMBWAMcB7wjXy8FtkXE41nubFIwrAng86QAWGcCjwBHjaj2cfm8g+TEOsfGnD4xonxjKnGXmjGj8SPgaODSiPjPoIUiYndeP7NU0lbgvcCXC1nOIrU03hURz4f2lXRMH9HPkcIJP092ikX25/MiYF+FjD/0/wTGDI8djjE1kfQJciTTiPhTDRFrgK+QurJmksIBd5iZz4cK91tAmkjQK/zwHmC2pFdFxJM57bxSnm2kwGonRcSvauhtTC3scIypgaTXAt8mrcV5TNL8imx7ImJPDzG3A9fmY3NE7C38bzsprPONkq4htXaWA0+WhZRYT3ImN0taBZxCadZcRDwtaTnwHUknA5tJ3eunAQsjYjHGjAGP4RhTj7cDryTFh9/W5bi8l4CIeAK4HziR1Nop/m8faTr0CcBa4HMkx7GLHkTEU8ASkoO6mzSj7ZKKfNcAy0iTFdYCPwMuxbsjmDHiENPGGGNawS0cY4wxrWCHY4wxphXscIwxxrSCHY4xxphWsMMxxhjTCnY4xhhjWsEOxxhjTCvY4RhjjGmF/wIUWjkwfA87egAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VGXa+PHvnYQEEnrvhI7YBRWkBSmWLZZXxXVdV9eCawfXfd91m7r72y7YFdZedlF3Leta6AGliGAXaYHQewmE9OT+/XFOJsMwmcwkM3Mmyf25rrkm58x5nrlnksw9zzlPEVXFGGOMibUkrwMwxhjTOFjCMcYYExeWcIwxxsSFJRxjjDFxYQnHGGNMXFjCMcYYExeWcIwJk4hki4hn4whE5HkRURHJ9NuX6e573qu43Dg8fW9M/WAJxyQsEcl1P0zDuT0fZp2B5YpFZK+IfCoiT4vIBSKSHMPXkxuLumMtWLIzJlIpXgdgTAgPAa1DPJ4OTAWSga8jrPt+9z7ZfY4TgR8B1wMrReSHqrouoMw17nN65RfAn4DtHsZQHa/fG1MPWMIxCUtVH6ruMRER4DWchPFv4MEI674vSJ2dgEeBy4F5IjJUVff4ldkSyXNEm6ruBHZ6GUN1vH5vTP1gp9RMffUAcBnwGXCNRmGOJlXdDVwJZAM9gHv9Hw92nUIcPxaRpe6puSIR2Sois0VkkntMlluuF9CrulOB7na2iHR2T+9tF5FyEbnWfTzkaS0RGSQib4nIARE5KiIficjEIMfd59aTFeSx464JubH/2N3c5Bd7bqj3xt2fJCI3i8gnIpLvxvWJiPxURI77/PF7D9qLyEwR2eme9vxGRK4L9rpN/WEtHFPviMiVwK+AXcD3VbUgWnWraoWI/B7IAn4gIlNqSGb/D+dU1yacFlce0AU4E6el9CqQi3MK7y63jH/L7fOA+toCy4F84A2gAtgdRui9gWU4pxZnuDFMAt4XkatU9dUw6qjO/cDFwKnAw8Ahd/+haktUeQm4CtgKPA0ocAnwBDAS+GGQMq2BJUAJ8C+gKc6Xi2dFpEJVX6j1KzHeUlW72a3e3ICzgEL3dnYtyqvzZx/ymDSg1D22t9/+7MCywH5gG5AepJ72Adu5QG5NsQEvAilBHn/efTzTb1+mX7m/Bhw/1H0dB4GWfvvvc4/PCvIclfU9X9NzBzwe7L35gVvmU6C53/4MYKX72FXVvAdPA8l++wcDZcBqr/8G7Vb7m51SM/WGiHQD3sL5xnuDqn4ci+dR1WKcRALQIYwipUB5kHr21eLpS4CfqWpZhOXycE4z+j//SuAVnBbDJbWIpa5+4t7/n6rm+8V1FPhfd/OGIOUKgKmqWu5XZjVOq+cEEWkRo3hNjFnCMfWCiKQD/8E5VfRHVX0l1k/p3td0begVnFbBNyLyRxE5X0Ra1eF5c9Wvo0IEPlXVI0H2Z7v3p9c+pFo7A+eUYHaQxxbhJOlgca1X1cNB9m9170P1XDQJzBKOSXhuj7QXcD7A3gZ+GePna4pzLQVgbw2HT8G5NnMU+D/gfWCfiLwtIv1q8fS7alEGqr/OU1lfXZJgbbUCDqhqSeADbgtuH8Hjqu7aUGWrLybjpEzsWcIx9cH9OBeNvwSuVvekfgyNxOlQs1tVc0MdqKrlqvqwqp4KdAL+B3gT+D7wgYikRfjctX1tnarZ39m9z/PbV+HeB+s0FM3WQx7QVkSaBD4gIilAeyBYS8Y0UJZwTEJze6T9GtiD0yMtv4YidX2+JKpaUP+IpKyq7lHVN1T1CmAB0Bc4ye+QcmL37fyMaq5tZLn3n/ntO+je9why/NBq6q+8nhJJ/J/hfMaMDvLYaLeuTyOoz9RzlnBMwhKRM4HncC6kX6qqm2P8fB2BWTgf0luAP9RwfJqIjHNP+fnvb0LVKTn/Ltv7gQ4i0ixqQVdpBfwmII6hON2O83BaXZVWuPfXuS2NyuN7BNbhp7ITRc8IYnrWvf+jew2u8nnScWZMAHgmgvpMPWfjcExCcr+tv43TI+0TYIKITAhRJFdVn4+g/vvcH5OomtpmJJCK84H8wzB6mTUD5gG5IvIxsNmNdwJwAvAfVf3W7/j5OONzPhCRxUAx8IWqvhNu3CEsBm4QkbNxenNVjsNJAib7X4RX1Y/d5x8NrBCRBTin5L4HzCZ4y2c+cA/wdxH5F844oUOq+lh1AanqP0TkIuAKnE4Vb+GcMrwYZ9zQa3Ho/GESidf9su1mt2A3jh1fEs4tO8x6A8sV41y8XgX8HTgfSKqmbDZ+Y02AJsDPcToKbAGKcDoZLAduBlIDymcAT+KM2ykjYLxLTa+D0ONwnsdJcm/jnDIrwEk851VTV2v39e5x34OvgZuoZhyOW2Yq8K17vOI3pijwvfHbnwTcgjPupsC9rQJuDfY+h3oPgr1+u9Wvm7i/SGOMMSam7BqOMcaYuLCEY4wxJi4s4RhjjIkLSzjGGGPiwrpF+2nfvr1mZmbWquzRo0fJyMiIbkBRYHFFxuKKjMUVmYYY16pVq/apajiT3Fq3aP/bkCFDtLYWLlxY67KxZHFFxuKKjMUVmYYYF7BSw/yMtVNqxhhj4sISjjHGmLiwhGOMMSYuLOEYY4yJC+ulZhqUo8VlzFicw8vLNnOwoJQ26U24engvJo/uS0aa/bl7xX4vBizhmAbkaHEZlzyxhM37Cyguc9YYO1BQyoxFG/ng6128ecsI+3DzgP1eTCX7LZsGY8binGM+1CoVl1Wwad9Rfv3W11w2pHvIOlbvLyd1Q02rEsRffY7rX6u2sWnfUUrLj50ouLisgs37C5ixOIepEwbGMkyTICzhmAbj5WWbj0s2lUrLlTc+284bn22vuaJPPo5yZFHSAOMqLqvg5eVbLOE0EtZpwDQYBwtKvQ7B1MLBghKvQzBxYi0c02C0SW/CgRBJJyVJODOzbbWPAxw6dJDWrdtEO7Q6q89xfZJ7gLKK6tfdapOeGu2wTIKyhGMajKuH9+LxBTmUB1lUMC0liclj+tR46iY7O5usrGGxCrHW6nNc0+auZcaijUFPd6alJHH1sJ6xCs8kGDulZhqMC0/qUm2y6dUuncmj+3oQlZk8ui+92qWTlnL8x0231s3s99KIWMIxDcbfP9zk+zklSRCBthmpTB7Tx7reeigjLYU3bxnB5DF9aJtx7Omz4X3b2e+lEbHftGkQcvbm8+Zn23zb/7xpWI3Xa0z8ZKSlMHXCQKZOGMjCNXu47vlPAHh95TZuHduPrq2beRyhiQdr4ZgG4aF566m8Lj2qf3tLNgksa2AHTu/ZGoCS8goeXbDB44hMvFjCMfXeml2H+e+XO3zbd0+0MR2JTET4md/v6PWVW9myv8DDiEy8WMIx9d70ueuo7Csw/oSOnNajtbcBmRqd07cdZ/d2WqFlFcrD89d7HJGJB0s4pl77enses7/Z7dueMmGAh9GYcInIMS3RNz/bRs7efA8jMvEQ94QjIoNFZL6IFIjIDhF5QESSIyifJCKrRERF5LtBHr9IRL4SkSIRWS0ik6L7CkwimTZ3ne/nC0/uzIldW3kYjYnEWb3bMqp/ewAqFB6eZ62chi6uCUdE2gDzAAUuAh4A7gbuj6CaG4Bu1dQ/Evg3sBC4AHgX+KeITKxD2CZBrdp8kAVr9gAgAneNt9ZNfePfynnnyx2s3XXEw2hMrMW7hXMz0Ay4VFXnqupTOMlmqoi0rKmwm7D+H/DLag75NbBYVe9Q1YWqeg/wAfCb6IRvEsl0v9bNRad2ZUCnFh5GY2rjtB6tGX9CRwBUj/2dmoYn3gnnAmC2qh722zcLJwmNCaP874AlwPzAB0QkDRgLvBbw0CxguIjYuZYGZPnG/XzkToufnCTcaa2besv/utsH3+zi6+15HkZjYineCWcQsMZ/h6puAQrcx6olIqcA1wE/q+aQvkCTwPqBb3Fep30iNRCqyrQ5Vd+ELz29G73bZ3gYkamLE7u24oKTOvu2p1krp8GKd8JpAxwKsv+g+1gojwKPq2p1o8QqywfWfzDgcVPPfbRhHytyDwDQJFm4Y1x/jyMydTVlwgBEnJ8XrNnDp1sOhi5g6iUvprYJNk+5VLPfeVDkSmAg8L1a1C8hnhcRuQm4CaBTp05kZ2eH8RTHy8/Pr3XZWGpocakqv1te5Nse2TWZnC9XkONxXLHWGOI6u3Myy3eWA/DrV5dzz5m1n+6mMbxf0RSvuOKdcA4CwUbltSJ4ywcRaQL8FfgzkCQirYHKDgYZItJCVY9Q1ZIJrL9yO2j9qjoTmAkwdOhQzcrKCu+VBHCmaa9d2VhqaHHN/3Y3G/NWApCaksQfrh5Nl1bRm4erob1fsRbNuHqemM+E6Yspr1C+2V9B054nM6xPO8/jiqbGHle8T6mtIeBajYj0ADI4/tpLpQygOzANJ6kcBL5wH5sFfOb+nAOUBtbvblcAdmK4nquoUB70u3bzw7N7RjXZGG/16dCcS0+vGvEwbc46NMhyE6b+infCeR84T0T8+69OAgqBRdWUycfpfeZ/+4H72L3ADwFUtRhn/M3lAeUnActU1bq+1HOzv9nF6p1OB8emTZL4aZato9LQ3DGuPylJzlnwFbkHfD0RTcMQ74TzFFAMvCEi493rJ/cB0/y7SovIBhF5BkBVy1Q12/8GLHcP/UpVP/ar/3dAlog8JCJZIvIX4EKcAaamHiuvUKbPq2rd/PicTDq2aOphRCYWerRNZ9KZPXzbD1orp0GJa8JR1YPAOCAZeAdn0Od04LcBh6a4x0Ra/0fAZcB4YDbwfeAqVZ1Th7BNAvjvlztYt9uZaysjNdlWiWzAbju3H6nu6qCfbz3km03C1H9x76WmqquBc2s4JrOGx3Op6n0W+NhbwFu1DM8koLLyCh7ym2fr+pG9j1s50jQcXVo144dn9+S5JbmAMy5n7MCOJCUF/Zc39YjNFm0S3hufbWfTvqMAtGyawvWj+ngckYm1n2b1pWkT5+Ppmx2Hmf3NLo8jMtFgCccktJKyCh7xWyvlxlF9aNWsiYcRmXjo2KIpPx6e6duePm8d5RV2Lae+s4RjEtrrq7ay7WAhAG3Sm3DdyN4eR2TiZfKYvmSkOpdy1+3OP2ZVV1M/WcIxCauotJxH51fNZHTzmL40T/NicgzjhbYZqfzE7wvGQ/PWU1Ze4WFEpq4s4ZiE9c8VW9h12JnGpn3zNK7xO8ViGocbRvWhZVPnS8amfUd587PtHkdk6sISjklIhSXlPL6waoa0W8f2pVlqxD3lTT3XqlkTbvTrJPLIgvWUlFkrp76yhGMS0ovLctmXXwxAl1ZN+cFZPb0NyHjmupG9aZPudBTZeqCQ11dt9TgiU1uWcEzCyS8u46lFVa2b287tR9Mm1rpprJqnpXDzmKqBvo8t2EBRabmHEZnasoRjEs5zH23iYEEpAN3bNOPyIT1qKGEaumuGZ9K+eRoAO/OK+OeKLR5HZGrDEo5JKHmFpfz9w42+7TvG9fdNc2Iar2apydziN1nr4wtzKCyxVk59Y//JJqE88+FGDheVAdC7fcYx09Wbxu2qs3vSuaUzYeu+/GJeWp7rbUAmYpZwTMI4cLSEZz7a5Nu+a3x/UpLtT9Q4mjZJ5rZz+/m2n8zOIb+4zMOITKTsv9kkjBmLczjqniYZ0Kk53z2lq8cRmURzxdAedG/jLLp3sKCU55dsqqGESSSWcExC2HOkiBeW5vq2p4wfQLLNDmwCpKYkcce4/r7tmYs3kldY6mFEJhKWcExCeDI7h6JSZ0Df4C4tOe/Ezh5HZBLVpad3o3f7DAAOF5XxjF8nE5PY4p5wRGSwiMwXkQIR2SEiD4hIyEEWInKiiHzgHl8sIltE5GkR6RJw3PMiokFug2L7qkxd7Mwr5JWPq7q53j1xgK19YqqVkpzEXeOrWjnPLsnlwNESDyMy4YprwhGRNsA8QIGLcJZ+vhtn5c9QWgGbgJ8B5+GsEDoeeE9EAmdzXAMMD7jlRucVmFh4bMEG33Qlp/VozbmDOnockUl03z2lK/07NgecgcIzFufUUMIkgnhPvXsz0Ay4VFUPA3NFpCVwn4j8xd13HFVdCiz125UtItuAOcApwKd+jx1V1eWxCd9E29YDBby2smqqkrsnDkDEWjcmtOQkYeqEAfz0Fedf/4WluVw/sjcdWzT1ODITSrxPqV0AzA5ILLNwktCYCOva797bWsP12CPz11Na7iysdVZmW0b2a+9xRKa+OO/Ezgzu0hKAotIKnsy2Vk6ii3fCGYRzystHVbcABe5jIYlIkoikishA4E/AJ8CKgMMGi8hh91rPRyISaSIzcbJp31He8Jtufqq1bkwEktxWTqVXPt7CzrxCDyMyNRHV+C3bKiKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCrhQVff4PX4nUAKsBjrgXB8aAoxU1cDEVFnmJuAmgE6dOg2ZNWtWbV4a+fn5NG/evFZlYymR43olJ4VlO51xNye2S+KeM5t5HFViv18W1/FUld8tL2JjnnMN8NweKVxzYprncVWnIcY1duzYVao6NJxjvVg+MViGk2r2B7odaAv0B34FvC8iI1S1CEBVHz6mUpF3cZLPvcDFQYNRnQnMBBg6dKhmZWWF9yoCZGdnU9uysZSocb3yzgKW76r6Nvq7ScM4o2cbDyNyJOr7ZXFVL7nbXq551vk++eGOcu7/wVnkfLnC87iCSYT3K5h4xRXvU2oHgdZB9rcCDtVUWFXXq+rHqvoyTkvndOCqEMcXAu8BZ9QuXBMrb24oobJxfe6gjgmRbEz9NKp/e87KbAtAabny6IL1HkdkqhN2C0dETgbOAjoDTYEDwDpgqaoeDLOaNQRcqxGRHkAGAdd2aqKqm0XkANCnxoPDaz2ZOPlmRx4rd1fN9Ot/Ht6YSIkIUycO4MqZTufUf3+6nTNGWG+1RBQy4YhIH+CnwA+BTkAFTkukGKelkg5UiMgi4GngVVUNtf7r+8A9ItJCVY+4+yYBhcCiSAJ3Ow60wxmfU90xzXB6xq2KpG4TW9PnrvP9fN6JnTipWysPozENwbA+7RjRrx1LNuynvEJ5e0MJV3odlDlOtafURORp4BvgNJwBmqcDTVW1g6p2V9XmQEfge8BXwF+Ab0VkZIjnewonWb0hIuPdC/b3AdP8u0qLyAYRecZv+28i8icRuURExorILcBsIAenWzUi0kpEPhSRySIyTkQmAQuBbsAfIn1jTGx8vvUQ8751+nmIwBRr3ZgomTphoO/n5TvLWb/7SIijjRdCXcMpAgap6gRVfUpVv1TVY1Y8UtV9qvq+qt4F9AJ+g/MBH5R76m0ckAy8gzPDwHScmQP8pbjHVFoJjAKeAd4F7gD+DQxT1aPuMcXAXpzOBO/hdAQ4BIxR1ZUhXqeJowfnrPX9/N1TujKoc0sPozENyZBebRg7sAPgnEOfPm9d6AIm7qo9paaqt0VSkXsq7dUwjlsNnFvDMZkB27NwWzIhyhQBl9YYqPHMJ7kH+HD9PsDplug/H5Yx0TB1wkAWrt0LwHtf7eKbHXmc2NVO2SaKWvdSE5HmIpJ4HcpNQlJV/ja7qnVzTtcU+nawPx8TXSd3b8V5J3bybU+faz3WEknECUdEThCRT4DDQJ6IrBSRwdEPzTQkS3P28/GmAwCkJAkX9WvicUSmoZoyYQCV81XM+3Y3n2+tccSFiZPatHCeBl4HWgBdgbXA81GMyTQwqnrMtZvLh/agY7otxWRiY1DnlpzVueoS8LS5di0nUYTqpTbdnck50CDgUVU9qqq7gRcA62pkqpW9di+fbnG+ZaYmJ3G737r0xsTCxf1SqVxSafG6vXySe8DbgAwQuoXTClgvIjfLsTMqzgdeEpELReQy4I/uPmOOo6rHfMP8wVk96Nra+znTTMPWpXkSF59e1WHWv4VtvFNtwlHVnwAX4kwd84WIjHUfuhHYAvweZ46yxcD1MY7T1FNzVu/mq+15AKSlJHHrWGvdmPi4c1x/UtxmzvKNB1i6YZ/HEZmQJ9JVdZWqjsYZOPmciLwJtFXVqap6hnuboqp2Vc4cp6JCmTanqnVzzfBedGxpU46Y+OjVLoPLh3b3bf9tzlriOTu+OV5YV27dcTCDgM+BVSLyRxHJiGlkpt5796udrHVHe6enJnPzmL4eR2Qam9vO7U9qsvMx9+mWQ2Sv2+txRI1byIQjIgNF5KfuOjNnqOr9OEs69wDWici1cYjR1ENl5RXHjPS+bkQm7ZqneRiRaYy6tW7GD87q4dueNmedtXI8FKqX2g3AFzhzpY0C3hORJ1R1m6peDVwG/NQdhzMiPuGa+uLtz3ewca8z61CLtBRuHBXOpN7GRN+tY/uRluJ81H21PY85q3d7HFHjFaqF81vgVlW9UFUvA8YAk0WkM4CqLlPVs4FHqWHaGdO4lJZX8PD8qhHeN4zqQ+v0VA8jMo1Zx5ZNuWZ4L9/29LnrqKiwVo4XQiUcwVmOoFKFu++YRedV9QUC1rgxjdu/Vm1jy4ECAFqnN+EnIzO9Dcg0ejeP6Ut6qjMYdM2uI7z71U6PI2qcQiWc3wNPiMg7IvIazno1z6jqcb8pvxmbTSNXXFbOo36tm8mj+9KiqU1jY7zVrnka143I9G1Pn7eOsvJQS3eZWAg1DucpnKWZPwCWARer6o3xCszUT7NWbGVHXhEA7Zun8uNzetVQwpj4uHFUH1qkORPkb9x7lLc/3+FxRI1PTeNwvlXVx1V1uqoujldQpn4qKi3n8YUbfNvOaYywVzE3JqZap6dy/ajevu2H56+n1Fo5cRWql9qoSCtzV908uYZjBovIfBEpEJEdIvKAiCTXUOZEEfnAPb5YRLaIyNMi0iXIsReJyFciUiQiq92VP00cvLx8M3uOFAPQqWUaVw+z1o1JLD8Z2ZvW6c4p3i0HCvj3qm0eR9S4hGrhvCYiS0TkJyLSJlQlIjJCRB4FNgPDQxzXBpiHsyDfRThLV9+Ns/JnKK2ATcDPgPNwetCNx+mq7fsK7S5v/W+cpaUvwFkd9J8iMrGG+k0dHS0u44nsHN/2bWP70bRJyO8RxsRdy6ZNuGl0VRf9R+avp7isPEQJE02hznf0wVnK+bfADBFZB3wN7MNZzrk10Bs4HWiGs6zz+BqWc77ZPfZSVT0MzHVnpL5PRP7i7juOqi4FlvrtyhaRbcAcnIGon7r7fw0sVtU73O2FInIiztLXc0LEZero+aW5HDhaAjiD7a44s0cNJYzxxrXnZPLsR5vYl1/CjrwiXv1kK9cMz/Q6rEYhVKeBQlX9M5CJ01p4GyfJjAS+A5yA06K5B+ihqpfUkGxw65kdkFhm4SShMRHGvt+9TwUQkTRgLPBawHGzgOEiYuvMxsjholJmLt7o275jXD/SUqx1YxJTemrKMdMsPbZgA0Wl1sqJhxrnUlPHPFW9V1XPU9VTVXWgqg5X1WtV9e+quifM5xsErAmofwtQQBhjeUQkSURSRWQg8CfgE2CF+3BfoElg/cC3OK/T1uyJkWc+3EReYSkAvdqlc+kZ3WsoYYy3rh7Wi04tnamW9hwp5uXlmz2OqHGQeM4rJCKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCriwMtm50+t8BJyuqp/7lekHrAfOU9XjTquJyE3ATQCdOnUaMmtW7SZNyM/Pp3nz5rUqG0uxjiu/RLlncQGFZc72TaekcU7XmnumNdb3q7YsrsiEE9f8LaW8tNo5DdwiFf46Op2mKRKyTDzi8kJd4ho7duwqVR0azrFe9FkNluGkmv2BbgfaAv2BXwHvi8gIVS0KUb9Us9/ZqToTmAkwdOhQzcrKCiOM42VnZ1PbsrEU67j+/MEaCsuczgL9Ojbnf68cTXJSzf+0jfX9qi2LKzLhxDW8rJwFf1vE9kOFHCmBnOQe3JoV2/Wa6vP7FQ3xXlj+IM51oECtgBrX1FHV9ar6saq+jNPSOR1ngbjKuglSf+W2rdkTZfvyi3l+Sa5v+67x/cNKNsYkgrSU5GOWO5+5eCOHi0o9jKjhi3fCWUPAtRoR6QFkcPy1l5BUdTNwAKc3HUAOUBpYv7tdAazDRNVT2TkUuhdbB3VuwYUnHTcsypiE9j9DutOrXToAeYWlPPvRJo8jatjinXDeB84TkRZ++yYBhThztYXN7TjQDmd8DqpajDP+5vKAQycBy1Q1r7ZBm+PtPlzES34XWqdOGECStW5MPdMkOYk7x/X3bT/z4SYOFZR4GFHDFlbCEZG/icjgKDzfUzhjeN4QkfHuBfv7gGn+XaVFZIOIPBPw/H8SkUtEZKyI3ALMxmnV+F/l/x2QJSIPiUiWiPwFuBBngKmJoscXbqC4zJkW5JTurZgwuJPHERlTOxed1o2+HZwFjI8Ulx3Txd9EV7gtnP8BvhKRFSJyc23HtKjqQWAckAy8gzPDwHScwaX+UtxjKq3EWQTuGZzZA+7AmVFgmP9M1ar6Ec7CcONxEtL3gauC9U4ztbftYAH/XLHFtz11wgBErHVj6qfkJGHKhKpRE88tyWVffrGHETVcYfVSU9XeIjIWuA74KzBNRN4CnlXVeZE8oaquBs6t4ZjMgO1ZhLnIm6q+BbwVSUwmMo8t2EBpudPpb0ivNowZ0MHjiIypmwtP6sKgzhtYs+sIhaXlPJWdw6++G42TOsZf2NdwVHWhql4DdMHpntwdmC0im0XkfhGxNYQbgdx9R3ndb8LDuyda68bUf0lJwlS/Vs5Lyzez+3BRiBKmNiLuNKCq+ar6DM5psCVAD+AXwDoReVtEbIrgBuyR+espd5fnHd6nHef0be9xRMZEx4TBnTilu3O1oLis4pilNkx0RJRwRCRTRH4rIhtxJsPMx+kV1gLnekkmYZ76MvXPhj1HeOvz7b7tuyfabEGm4RA5tpXzzxVb2HawwMOIGp5we6n9SEQWABuAHwPPAb1V9UJV/beqFqvqezgX88Oa4sDUP9Pnrcdt3DBmQAeGZrb1NiBjomzMgA4M6eWsxlJarjy2wFo50RRuC2cmsAtnPrI+qvo7VQ22ctE64PdRi84kjG93HubdL3f6tv2/CRrTUIgId/v9bb++ahub9x8NUcJEItyE01VVr1LV+aEOUtWdqlrTYmqmHpo+t2qihgmDO3FI9tmwAAAgAElEQVRqj2AzFBlT/53Trz3D+7QDoLxCeXj+eo8jajjCTTirROTUYA+IyEnuNR3TQH257RBzVu/2bVvrxjR0/tcn3/psOxv25HsYTcMRbsLJBNKqeSwdp4u0aaCm+bVuvnNKF07o0tLDaIyJvaGZbX3jyyoUHppnUzFGQ7UJR0RaikhPEenp7upcue13GwBcCWyvrh5Tv63afIDstXsBSBKYMr5/DSWMaRj8W/L//XIn3+48HOJoE45QLZwpQC7O5JgKvOn+7H/7FrgLeCSmURrPPDin6pvdRad1o1/HFiGONqbhOLVHa8afUDVHoP91TFM7oaa2+QfOHGYC/Af4GbA24JgSYK27TLRpYJbm7GNpzn7AmW/Kf1ZdYxqDqRMGMO9b5/rlnNW7+WpbHid3r9VUkoYQCUdV1+MszYw7j9qnqnokXoEZb6kq0/xaN5ed0Z3M9hkeRmRM/A3u2pLvnNyFd79yhgQ8OHctz193lsdR1V9hdRpQ1UWWbBqXxev3sXKzs4hqk2Th9nGxXXrXmEQ1ZUJ/Kpd6yl67l1WbD3gbUD0WqtPAHhE53f15r7td7S1+IZtYU1UenFN19vTKM3vSvU26hxEZ451+HVtw0WndfNv+1zVNZEJdw3kc2O33s8Y+HJMI5n27hy+3OQukpqYkcetYa92Yxu3Ocf35zxc7KK9QlubsZ1nOfob3bed1WPVOqGs49/v9fF+0ntBdOfRRYDhwCHgauF9Vy0OUORO4BWcRtq7AVpxODX9W1SK/4+7j+MXcAC5Q1Q+i9RoasooKPWbczY+G9aJzq6YeRmSM9zLbZ3DZGd15deVWAKbNXctrfYbb0hwRinh5groQkTbAPJzW0kU4Sz/fjbPyZyiTgL7An3GWjH4cmAq8EuTYPJxk5n9bFoXwG4X3v97lG2/QrEkyP83q63FExiSG28f1o0myk2A+yT3I4vX7PI6o/qm2hSMir0VSkapeEcZhNwPNgEtV9TAwV0RaAveJyF/cfcH8WVX3+m1ni0gRMENEeqnqZr/HylR1eSSxG0d5hTLdb0T1j8/JpH3z6iaYMKZx6d4mnUln9uDl5c4okGlz1jK6f3tr5UQgVAunQ4S3cFwAzA5ILLNwktCY6goFJJtKn7n3HcN8blOD/3xRNWdU87QUJo+2RVyN8Xfb2P6kpjgfm19sy2Pet9ZfKhKhruGMjcHzDQIWBDzPFhEpcB97J4K6zgEqOH4wamsR2Qe0Ar4Gfqeqb9Q+5MahrLyCh+dVzYr7k5G9aZOR6mFExiSezq2acvXZvXh2ySbAmWdw3KCOJCVZKyccohq/zmciUgrco6oPBezfBryoqveGWU9n4EvgPVW91m//1Tgtns+B5sBknGs+/1Nd0hGRm4CbADp16jRk1qzaLVian59P8+bNa1U2lsKNa/G2Up79ugSAjCbwl9HpZDSJ3T9RfX+/4s3iikws48orVu5ZXECJ283p1tPSOLNzqA6/8YmrLuoS19ixY1epalgLb4a6hnML8Lqq7nV/DklVnwgzvmAZTqrZHyyuVOA1nOWtpwTE8HLAse8AS4HfAEETjqrOxFlgjqFDh2pWVlY4YRwnOzub2paNpXDiKimr4Jd/y/Zt33LuQL4T467Q9fn98oLFFZlYx/VtxRqeWpQDwOwdTZh6xWiSw2jlNNb3q1KotPwYzlxqe92fQ1EgnIRzEAi2clcrnC7SIYlzde5F4ERghKoeDBmUqorIG8CfRSQ5VNfrxuzVlVvZfqgQgLYZqVx7Tqa3ARmT4CaP7sPLyzeTX1zGhj35vPPFDi4+vVvNBRu5ajsNqGqSqq7w+znULTnM51uDc63GR0R6ABnuYzWZjtOd+iJVDed438uJ4NhGpai0nMcWVF27+emYvmSkhXd6wJjGqk1GKj8Z2du3/dC8dZSVV3gYUf0Q13E4wPvAeSLiP8f9JKAQWBSqoIj8ArgduFpVPwrnydwW0SXAF9a6Ce6Vj7ew+3AxAB1apHH1sF4eR2RM/XD9yN60bOp8OcvdX8Abn9qyYDUJO+GISKqI3CQiT4vIu+79je41lXA9BRQDb4jIePeC/X3ANP+u0iKyQUSe8du+CvgDzum07SIyzO/Wwe+4RSJyh4hMFJFLgHeBYe5zmAAFJWU8mb3Bt33b2H40Sw23sWpM49aqWRMmj6kaGP3w/PWUlFkrJ5SwEo6InICzVMHjwElAuXv/OLDBna6mRu41l3FAMk4X6PtxTpMFTkeT4h5TaaJ7fy3OrAH+t+/4HbcBZ0G4t4GXgRbAd1T1P+HE19i8sHQz+/KdnmldWzXlyrN6eByRMfXLtedk0tYdPrD9UKFv6hsTXLgn62fiTBkzyn+xNXf56XdxWi6jw6lIVVcD59ZwTGbA9rU4yaamuq8PJwYDR4pKmbE4x7d927n9SUux1o0xkchIS+HmMX34w3vOJeXHF2zg8iHdadrE/peCCfeU2lDgN4Ere7rbvwHOjHZgJraeW5LLoYJSAHq2Tefyod09jsiY+ulHwzLp0MKZAmrX4SL+8bEtgFydcBNOLlDdlMFNAXuH65G8glL+/uFG3/Yd4/rTJDne/UeMaRiapSZzq98kt09kb6CgpMzDiBJXuJ8y/wf8XkTO9t8pIsNwZnz+32gHZmLn7x9u5EiR8w/Rp0MGF5/W1eOIjKnffnB2T7q6y3jsyy/hxWWbayjROIVa8fMTEVkhIiuAXwItgaUislNEvhCRncASnEGbYU1JY7y3P7/YNw8UwF3jB5BirRtj6iQtJZnbzu3v235qUQ5Hiko9jCgxheo08A3HDpj8JsaxmDiYsXgjBe4kUAM7teC7J3fxOCJjGobLh3bnyUUb2HqgkEMFpTy3JJc7xvWvuWAjEmq26GvjGIeJgz2Hi3hxWa5ve8qEATbLrTFR0iQ5iTvHDeBnr38BOKeufzw8k1bpTTyOLHHYuZRG5InsHIpKnYFpJ3VryXkndvI4ImMalotP60qf9hkAHCkqO6Zzjgl/HA4ikglcDQwgSI+1MFf8NB7ZcajwmO6ad08YaCsVGhNlKclJ3DVhAHf801kf8rklm7huRCbtbOVcIPyZBobgLGb2Q/fWH2dszmU4U8e0j1WAJjoeXbCBEndywdN7tiZrYLiLtBpjIvHdk7swsJMzXeTRknJmLLZWTqVwT6n9Ffg3znQ2Alyvqn2AkTgdC/4Sm/BMNGzZX8DrflNuWOvGmNhJShKmTKjqLPDislz2HCnyLqAEEm7COQ34B86SzuCeUlPVpTjzof0p+qGZaHlkwXrKKpwOh2f3bsuIfu08jsiYhu28EztzYteWABSVVvDEwpwaSjQO4SYcBUrUWY96D+A/h/1WnFNsJgHtzK/gjU+3+bbvnmitG2NiTUS4e+IA3/Y/Pt7CDneRw8Ys3ISzGqicu2EZMEVE+otIL+DngKXvBPV2Tglu44ZR/dtzVu+23gZkTCMxdmBHTuvhLHBcUl7BYws31FCi4Qs34cwEOrs/3wt0wVmhcyNwNvCz6Idm6mrtriN8vLNq3bmpEwaEONoYE00iws8mDvRtv/bJVvYUNO71csLqFq2qL/n9/K27Ps45ONdylqvqnhjFZ+pg+tx1vqkixg3qyOk923gajzGNzYh+7Tird1tWbDpAWYXyn5xSGvP4kVoN/FTVfFWdo6r/iTTZiMhgEZkvIgUiskNEHhCRkItHiMiZIvKcuxJogYisFZHfishx44FEZISIfCwihSKySUTuiPT1NQRfb8/jg292+banWOvGmLgTEe72+99bsr2MjXvzPYzIW5EsMd1RRP4gIvNE5Bv3/v+JSNjD1UWkDTAPpxPCRTgzTd+N09MtlEk415D+DFyIs9LoVOCVgPr7AbOBTTgrgc4AponIDeHG2FBMm7vO9/MFJ3XmpG6tPIzGmMbr7D7tGNXfGaqowEPz1nsbkIfCOqUmIiOA94AyYC5OJ4KOwM3A7SJygaouCaOqm4FmwKWqehiYKyItgftE5C/uvmD+rKp7/bazRaQImCEivVS1ci7we4AdwNWqWgYscFcl/a2IPOP2smvwPt1ykAVrnIanYK0bY7w2dcIAPly/D4B3vtzBrWP7MbBzC4+jir9wWziPAauAnqp6pareoapX4nSP/hR4NMx6LgBmBySWWThJaEx1hQKSTaXP3PuOAfW/4SYb//q74wxabRSm+7Vuzu6SzIBOje8P25hEcnrPNowb5HxUqcJD89bVUKJhCjfhDAIeVNWj/jtVNR/4G3BCBPWsCahjC1DgPhaJc3AGoq4FEJEMoEdg/cC3fs/d4H28cb/vm1SSwMX9Uj2OyBgDx55peP/rXXy9Pc/DaLwR7uSdq6nqFh2osot0ONoAh4LsP+g+FhYR6YyzKNxLfq2l1u59YP0H/Z47WF03ATcBdOrUiezs7HDDOEZ+fn6ty0aLqvLHFVVTaIzomkJzLfA8rmAS4f0KxuKKjMUVmdPaKZ/vdwZe/3LWMqYMOa7fkyfi9X6Fm3BuB14SkXzgLVUtFpE04BKc5aevieA5g11HkWr2H3+gSCrwGpAPTAmz/mr3q+pMnHFGDB06VLOyssIJ4zjZ2dnUtmy0fLh+L+tmrwAgJUn4ww9HkfPlCs/jCiYR3q9gLK7IWFyR2X5kAV8sLUQVvthbTss+p3JGAgxXiNf7FWqJ6b0iskdE9gBv4bRw/gEUiEgezmmwV9z9b4b5fAepaon4a0Xwlk9gTAK8CJwIXKiqB/0eriwfWH+bgMcbJFXlwTlV54WvOLMHPdqmexiRMSZQtxZJfO+Urr5t/+utjUGoFs7jhNnqiMAaAq6liEgPIIPwTstNx+lOPUFVA68FHRWRrYH1+22He9qvXlq4dg+fb3VyampKEref28/jiIwxwdw1vj///XIHFQofrt/Hxxv3c3afxjGhbqglpu+LwfO9D9wjIi1U9Yi7bxJQCCwKVVBEfoFzau8KVf0oRP2XiMivVLVyTpdJOBOMfl3n6BNUYOvmqrN60qVVMw8jMsZUp0+H5lx6Rnf+tcqZVPfBuet49aZhjWJS3YhmGhCRVBEZIiIT3PtIu0A9BRQDb4jIePeC/X3ANP+u0u6MAs/4bV8F/AHndNp2ERnmd/NfSeyvOF2gXxKRsSLyc2Ay8EBDHoMz+5tdfLPDefuaNknilrF9ayhhjPHSneP6k5LkJJgVmw6wZMN+jyOKj0hmGvg5sBtYgTOa/xNgt4jcE24d7jWXcUAy8A7ODAPTgd8GHJriHlNpont/Lc5s1f637/jVvwE4H+iH09q5BbhbVZ8ON8b6prxCj5lV4MfDM+nYIjF6vhhjguvRNp0rzuzh2/7bnLU04O/EPuHONHAX8EecFsqrOImnE87pqj+KSLGqPhJOXaq6Gji3hmMyA7avxUk24dT/EXBWOMc2BP/9cgfrdjtzM2WkJjN5jLVujKkPbhvbj3+t3EZJeQWfbz3EwrV7OHdQ2DOF1UvhtnBuBf6kqreq6mJVXeve34ozv1mjnCDTa2XlFTzsNy/TT0b2pm2GDfQ0pj7o2roZV53d07f94Jx1Db6VE27C6QEsrOaxbJzrJibO3vxsOxv3OZM/tGiawg0j+3gckTEmEreM7UvTJs7H8Dc7DjPbb4b3hijchLOFqusogSa4j5s4Kimr4JEFVa2bG0f1oVV6Ew8jMsZEqmOLplwzPNO3PW3uOsorGm4rJ9yE8wjwMxF5WkTOF5HTReQ8EXkaZ5mAh2IXognm9VVb2XrAWSO9TXoTrhuR6W1AxphamTy6DxmpTh+pdbvz+e+XOzyOKHbCSjiq+hhO9+LzcZYpWInTC+x84GZVfSJmEZrjFJWW89iCqvXRJ4/pS4um1roxpj5q1zyN60b09m0/PG89ZeUNcynqsLtFq+rfca7l9AKGu/c9GnKX40Q1a8UWduY5k3S2b57GNcN7eRyRMaYubhzVhxZNnU7DG/cd5a3PG2Yrp8aEIyJNRWSdiJyvjq2qusK9b7gnGxNUYUk5jy3M8W3fktWX9NRw52A1xiSiVulNuHFUVaefh+evo7QBtnJqTDiqWoQzIWbDe/X10EvLc9mXXwxA55ZNj+lWaYypv64bkUlrt+PP1gOFvL5ym8cRRV+4p9ReAa6LZSCmZvnFZTyZXdW6ue3cfjRtkhyihDGmvmjRtAk3+w3cfnTBeopKy0OUqH/CPRezBbhCRFbidBrYzbEzSauqPhnt4Myxnl+yiYMFpQB0b9OMK4b2qKGEMaY+uWZ4L57+cCP78kvYmVfErBVbuNavQ0F9F27CedC97wKcEeRxBSzhxFBeYSkzF2/0bd8xrj+pKRHNvWqMSXDpqSncktWPB/67GoDHs3OYdGZPmqU2jDMZ4XaLTqrh1jDejQT2zIcbOVxUBkDv9hlceno3jyMyxsTCVWf3pHNLZwLevUeKeWl5rrcBRZF9Ra4HDh4t4dklub7tO8f1JyXZfnXGNERNmyRzq98Cik8t2kh+cZmHEUVPJMsTpIrITe5sA++69zfWYk0cE6EZi6v+4Pp3bM73Tu1aQwljTH02aWgPurV2FlE8cLSEF5bmehtQlISVcETkBGA9zrLTJwHl7v3jwAYRGRyzCBu5vUeKj/ljmzJhAMlJDX9lQGMas9SUJO4c19+3PWNRDnmFpR5GFB3htnBmAnlAX1UdpqrfV9VhOAud5eGskxMWERksIvNFpEBEdojIAyIS8hqQ27r6q4h8KCKFIhJ0wKmIPC8iGuQ2KNz4Es2T2TkUul0jB3dpyfkndvY4ImNMPFx6Rjcy26UDcLiojGc+2uRxRHUXbsIZCvxGVY+ZFdrd/g1wZjiViEgbYB5Or7aLgAeAu3FW/gwlHbgBKACW1nDsGpypd/xvueHEl2h25hXy8sebfdtTJwwgyVo3xjQKKclJ3DV+gG/72Y82cfBoiYcR1V24CScXqG7d4qaEvzzBzUAz4FJVnauqT+Ekm6ki0rK6Qqp6CGirqucBb9bwHEdVdXnArSjM+BLK4ws3UFLmTPBwao/WjDuho8cRGWPi6XundqV/x+aAM/B7ht/QiPoo3ITzf8DvReRs/50iMgynlfK/YdZzATBbVQ/77ZuFk4TGhCrY2OZt23qggFc/2erbvnvCAESsdWNMY5KcJEyZUNXKeWFpLnuPFHsYUd2Em3B+BbQElorIThH5QkR2AkuAVsC9IrKi8hainkE4p7x83NNyBe5j0TBYRA6LSLGIfCQiIRNZonp0wXpKy50ce2ZmG0b1b+9xRMYYL5x/YmdO6OKcACosLT9meqv6RsJpOIjIc5FUqqpB510TkVLgHlV9KGD/NuBFVb03jFhuAx5V1eO+7ovInUAJsBrogHN9aAgwUlWDJkIRuQm4CaBTp05DZs2aVVMIQeXn59O8efNalQ2062gF935USOXCf/93VlMGta3d2NpoxhVNFldkLK7INLS4PttTxsOfOi2blCT46+hmtGkavbF4dXm/xo4du0pVh4ZzbFhT21SXQGopWIaTavZHVrHqw8dUKvIuTvK5F7i4mjIzcXrhMXToUM3KyqrVc2dnZ1PbsoHumvUZFeqs5jmiXztuvnRYreuKZlzRZHFFxuKKTEOLa4wq2XuX8sXWQ5RVwKqiDvz+/JM9jytS8R6ufhBnqYNArYBD0X4yVS3EmWw02PxvCWn97iO8/UXV4ktTJwz0MBpjTCIQEab6Xct59ZOtbDtY4GFEtRPvhLOGgGs1ItIDyCDg2k6U1ZsOBw/NW0/lWc6xAzswpFcbbwMyxiSE0f3bc2am83lQWq48On9DDSUST7wTzvvAeSLSwm/fJKAQWBTtJxORZjg941ZFu+5Y+GZHHu9+tdO3ba0bY0wlp5VT9Znwr0+3kbvvqIcRRS7eCecpoBh4Q0TGuxfs7wOm+XeVFpENIvKMf0ERuUBELgNOc7cvc2+93O1W7kwEk0VknIhMAhYC3YA/xOXV1dH0uet9P08c3ImTu7fyMBpjTKIZ3rcd5/RtB0B5hfLw/PU1lEgscU04qnoQGAckA+/gDPqcDvw24NAU9xh/TwKvA9e726+7t7HudjGwF6cL93s4HQEOAWNUdWVUX0gMfL71EPO+3Q2ACEydOKCGEsaYxuhuv8+Gtz7fzvrdRzyMJjLhLsAWNaq6Gji3hmMyw9kX8HgRcGldYvPStLnrfD9/5+QuDOpc7cQLxphGbEivtmQN7ED22r2oOtd9H/9h/egXZYuqJIBPcg+weN1eAJKEY+ZPMsaYQHf7Xct596udrN5xOMTRicMSTgJ4cM5a388Xn96Nfh0Tb8CaMSZxnNy9FRMHd/Jt+58hSWSWcDy2dMM+lm88ADjzJvmvgWGMMdXxn2Nt3re7+WJr1IcyRp0lHA+pKn/za91cMbQ7vdpleBiRMaa+OKFLS757Shff9oP1oJVjCcdD2ev28ukW51tJanISt51rrRtjTPjuGj+AyiWyFq/by8rcA94GVANLOB5RVabNqfpG8oOzqtYwN8aYcPTr2JyLT+/m235wTmK3cizheGTO6t18tT0PgLSUJG4d28/jiIwx9dGd4/qT7DZzlm3cz9IN+zyOqHqWcDxQUaFM9zvf+qNhvejYsroFVY0xpnq92mVw+ZDuvu0H564jUdertITjgfe+3smaXc7o4PTUZG7O6utxRMaY+uz2cf1JTXY+zldtPsgid1xforGEE2flAa2ba8/JpH3zNA8jMsbUd91aN+PKs3r4tqclaCvHEk6cvf35dnL2OjO8tkhL4abRfTyOyBjTENw6th9pKc5H+pfb8pi7erfHER3PEk4clZZX8NC8qtldrx/Vm9bpqR5GZIxpKDq1bMqPhvXybU+bu46KisRq5VjCiaN/r9rGlgPOKn2tmjXhJyN7exyRMaYhuTmrL+mpzkT7a3Yd4b2vd9ZQIr4s4cRJcVk5jy6oWqFv8pg+tGzaxMOIjDENTfvmaVx7TqZve/rcdZQnUCsn7glHRAaLyHwRKRCRHSLygIgErn0TWCZVRP7qLrBWKCLVvoMicpGIfCUiRSKy2l2IzXOvfrKV7YcKAWiXkcqPh2d6G5AxpkG6aXQfWqQ5K8/k7D3K259v9ziiKnFNOCLSBpgHKHAR8ABwN85CbKGkAzcABcDSEPWPBP6Ns9LnBcC7wD9FZGKdg6+DotJyHvNr3fw0qy8ZaXFfisgY0wi0Tk/l+lFVp+sfnr+e0vIKDyOqEu8Wzs1AM+BSVZ2rqk/hJJupIlLtimOqeghoq6rnAW+GqP/XwGJVvUNVF6rqPcAHwG+i9xIi9/Lyzew5UgxAp5ZpXO13Yc8YY6LtJyN706qZc8p+8/4C/r1qm8cROeKdcC4AZquq/2pBs3CS0JhQBbWGTuUikoaz3PRrAQ/NAoaLSKvIw627o8VlPJmd49u+dWw/mjYJeQbRGGPqpGXTJscMuXh0wQaKy8o9jMgR74QzCFjjv0NVt+CcKhtUx7r7Ak0C6we+xXmdniyj+cKyXPYfLQGcwVmTzuwRuoAxxkTBtedk0i7DGXax/VAhr32y1eOI4p9w2gDBVgk66D5W17oJUv/BgMfj5nBRKTMWbfRt335uP9JSrHVjjIm9jLQUfuo3bdajCzZQVOptK8eLK9fBTo1JNfujUb+EeF5E5CbgJoBOnTqRnZ1dqyfNz88/ruxbG0rIKywFoEMzoX1+DtnZG4OUjp1gcSUCiysyFldkLC5Hz3KldZpwqFjZc6SY+19ZwHmZxw/HiFdc8U44B4HWQfa3InjLJ9K6CVJ/5XbQ+lV1JjATYOjQoZqVlVWrJ8/Ozsa/7KGCEm5fuNC3/YvvncL4M7oHKRlbgXElCosrMhZXZCyuKrvSc/nN298AMGcr/OoHI4/rJRuvuOJ9Sm0NAddqRKQHkMHx114ilQOUBtbvblcAcV2ZaObijRwpLgOgb4cMLjqtWw0ljDEm+iad2YOurZzlT/YfLeGFZbmexRLvhPM+cJ6ItPDbNwkoBBbVpWJVLcYZf3N5wEOTgGWqmleX+iOxL7+Y55fm+ranTBjgWyDJGGPiKS0lmTvGVS1fP2PRRg4XlXoSS7wTzlNAMfCGiIx3r5/cB0zz7yotIhtE5Bn/giJygYhcBpzmbl/m3vwHtfwOyBKRh0QkS0T+AlyIM8A0bp7KzqGgxLk4N6hzCy48qUs8n94YY47xP0O607NtOgB5haU8+9EmT+KIa8JR1YPAOCAZeAdn0Od04LcBh6a4x/h7EngduN7dft29jfWr/yPgMmA8MBv4PnCVqs6J6gsJYffhIl5avtm3PWXCAJKsdWOM8VCT5CTu9GvlPPPhJg4VlMQ9jrj3UlPV1cC5NRyTGc6+asq+BbxVm9ii4fGFGyguc6aROLlbKyYO7uRVKMYY43Px6d14InsDOXuPcqS4jJmLN/Lz8+s6/DEyNlt0FG0/VMisFVWDq6ZOHICItW6MMd5LThLuGl81/v35pbnszy+OawyWcKLosQXrKXEnyRvSqw1ZAzp4HJExxlT5zsldGNTZ6bNVUFLOU4tyaigRXZZwomRPQQWvrayaIO/uCda6McYklqQkYcqEqlbOi8s2s/twUfyeP27P1MC9vaHUt9DRsD5tOadfe48jMsaY400c3ImTuzlzGReXVfDEwg01lIgeSzh1cLS4jGlz13Lq/XNYsqPMt/+Wsf08jMoYY6onIkydWNXKeWHZZq794ChnPDCHaXPXcrS4LETpurGEU0tHi8u45IklzFi00TdfGkCSwO//uzqmvzRjjKmLM3u1oWmTYz/+DxQ4kw1f8sSSmH1+WcKppRmLc9i8v8DXBbpShToLHs1YHN+LccYYE66ZH270XQLwV1xWEdPPL0s4tfTyss3HJZtKxWUVvLx8S5wjMsaY8Ly8bDOl5cEn6I/l55clnFo6WBB6LqKDHoziNcaYcHj1+WUJp5bapB+/psSxj6fGKRJjjImMV59flnBq6erhvUhLCf72paUkcVjREjcAAAuZSURBVPWwnnGOyBhjwuPV55clnFqaPLovvdqlH/dLS0tJole7dCaP7ltNSWOM8ZZXn1+WcGopIy2FN28ZweQxfWibkYoAbTNSmTymD2/eMuK4FfWMMSZRePX5ZZ+KdZCRlsLUCQOZOmFgwi5pa4wxwXjx+WUtHGOMMXFhCccYY0xcWMIxxhgTF5ZwjDHGxIWoBp/eoDESkb3A5loWbw/si2I40WJxRcbiiozFFZmGGFcvVQ1rtUlLOFEiIitVdajXcQSyuCJjcUXG4opMY4/LTqkZY4yJC0s4xhhj4sISTvTM9DqAalhckbG4ImNxRaZRx2XXcIwxxsSFtXCMMcbEhSUcY4wxcWEJJ0Ii0lJE7heRFSKSJyK7RORNERkQZvnBIjJfRApEZIeIPCAiyVGKbZKIvCEiO0VEReTaMMvd5x4feDvfy7jcsiNE5GMRKRSRTSJyRzRi8qv/RhFZLyJFIrJKRMaFUSZq71dt/x5EpJWIPCciB92/w1dEpF2kzx/NuEQks5r3ZVYU4+onIjNE5AsRKReR7DDLxfr9ijiuWL9fInK5iPxHRLaLSL779/2DMMqliciDIrJHRI6KyLsikhmNmGy26Mj1BG4EngF+CaQDvwA+FpFTVHVrdQVFpA0wD1gNXAT0BR7ESfy/ikJslwGZwH+BGyIsmwcEfmB+G4WYoJZxiUg/YLZb7hfAWcA0ESlQ1afrGpSIXAk8BdwHfARcB/xXRM5U1a9rKF7n96uOfw+vAgNx3s8K4M/AW8CoSGKIQVwAPwOW+G1Hc6DjicCFwHIgkmUpY/Z+1TEuiN37NRXYBExx67wQ+IeItFfVR0OUewTnf3YKsBfn/2OuiJysqkV1ikhV7RbBDcgAmgXsawvkA7+toewvgINAS799PwcK/PfVIbYk9745oMC1YZa7D9gXw/estnHNANYBKX77ngC24nZ4qWNca4Fn/eMEvgJejsf7Vdu/B2C4+z6O9tt3lrtvvIdxZboxfDfWf0vuz/8CssMoE9P3qw5xxfT9AtoH2fcPYFOIMt2BMuAav33dgBLghrrGZKfUIqSqR1W1MGDfAZwpcTrWUPwCYLaqHvbbNwtoBoyJQmwVda0jFuoQ1wXAG6pa5rdvFs4/xUl1iUlE+gADgNcq97lxvu4+bzzU9u/hAmC3qi6u3KGqK3C+zUYj9pj+ndZFLf+WYv1+JeT/nqoGayl9RujPqYnu/Rt+9WzHOQNQ5/fKEk4UiEgHoB/OKYhQBgFr/Heo6hacb46DYhNd2FqLyD4RKRWRz0TkUi+DEZEM4P+3d+6xdlRVHP5+gpY2FlpCwkNvKIqgaKIxkpQGw60ihljBWrAKaHxg1YQYY1QSNVpa/ENIUeMDFIHGGCwoj8ZoGxpsaRtaDRAwaaixVIWSWsWWEBuo2iz/2PvAOHfOa86cuUR+XzKZO/vuvWaddfaZNfu5JijZixe6rUa1V6d8lfxj83faiybsVbc+TCmXebRPuXHr1eGWPI6xV9J1kmY2oNMojNteo9KmvRbQ+zn1emBPRPyzlN6IrTyG0wyrSF1q/Qb75gJPV6QfyP+bLnaRukweJnV7fQq4Q9KSiLizZ8nxMSefy/Y6kM+j2qtTvpf8v3cp25S96taHXuVeM8T9m9brEPB94B7gGWASuJI0BnRhA3rVZdz2qkur9soTYi4EPt4j21ifUXY4pBkswIn98kXElLckSZ8BLgOWRMQ/Brhd1UpbVaWPotcwRMRPS/f9JXA/8DUKTeu29eqIGTS9pl5lOepz36Ht1U+dirTK+tBQuUEZWn5E7AWuKCRtkrQP+IGkt0TEww3pVodx22to2rRXnmV2K7A2Ilb3U61KRJf0obDDSVwM3DhAPv3PhXQB8F3gyoi4a4DyB3jhzb3IMVS/VdTSa1QiIiTdCXxT0hERcXga9OrYo2yvbi0TGE6vTktmDmnGGYXrbvIrGcBe3Ri2PhTLVXX5zelTblDq6lXFL0gTPd5KahFOB+O2V5M0bi9JxwLrgMdJL8e96PbdN2Irj+EAEfHjiFC/o1hG0gJSF9oNEXHtgLfaSakfVNIEaebblNZAHb0apvKNpg29IuIgaTZaud+429jLsHrtLMkryt8fEd2603qqPWT+oepDr3KZbmMVw1JXryqidJ4Oxm2vJmnUXpJmkZYVvAJ4T/5d9WInMJHHUIs0Yis7nBpIeiPpS1wPDLMQcR3wbkmzC2lLgWeB+5rTcDQkCVgMPDLE2/o4WAcsLi04XEpyRP3WyfQkInaTplxf3EmT9LJ8vW4YWSPYq259WAecIOnsgg5vI41HDKV7w3pVcVE+P9iAXnUZt72apDF7STqSNOvydcD5EfG3AYrdk8+LC3JOIq1XGt1Wo86rfqkdpCmFT5Cap5PA/MJxRiHfyUydzz4X2AtsAM4FlpEmG1zdkG5nkCrsZaQ3pO/l63MKec7JehXT7iM5zvNyRfs1aXHcBdOs16nZPrcCC0kD9f+mgfUAWf6HgMOkxYwLgdWkh+qb2rDXoPWBNEnhplLaemA38H7gfaQ1RVsaskstvUjrk1Zlnc4FVmR73tGEXvkes3LduQjYBuwoXM+aDnvV1Wvc9iLtAB25rs4vHTNynnuBe0vlfkhaKPph0uLm7cAfgaNG1qkpg79UDpKTiS7HpkK+eVQsciQ9fH+TK9ZeYCVwREO6LR9Ar47+k4W0m/KP8VngILCF9EbUlM1q6ZXTzwZ+BzwH/Bn4bMPf5yfzg+AQ8BDwzi7f91jsNUh9yJ97dSltDnALqV/9GZJTnrLQbwS7DK0X8EHgAdKY2L+yXVeQH24N6dX5XVUd86bRXkPrNW575fv102kTpUWqwAzgOtIszYOkF6pTmtDJ4QmMMca0gsdwjDHGtIIdjjHGmFawwzHGGNMKdjjGGGNawQ7HGGNMK9jhGGOMaQU7HGNqIGmyS3jg4vHRFvRYLemBcd/HmCbw5p3G1OMhUiTJKm4gbTG/pT11jHnxY4djTA0iRcPcXk6XtAx4M/CxiHisdcWMeRHjLjVjGkLS6cC3gNuiR8wRSVdJ+mveLLSYvih3xZ2arz8iaauk/ZIOSNqYN53spcNySVNCC2e5V5TSLpe0Q9IhSX+R9KUhPq4xQ2OHY0wDSHo5aX+up4BP98m+BjietDFokQ8AD0bErnw9D/gJaQfrS4A9wGZJI0eplPRF4HrgbmBR/ntl2SkZ0yTuUjOmGa4mdaVNRkTPQFUR8aik35O2/N8IIGkGKfzvykK+FZ2/c2toA3AmadftFdRE0tHA10m7P1+Vkzfk2ClflXR9TG9YCvN/ils4xoyIpIXAF4BvRMTWAYvdBizJMUsAzgdmA7cX5L5B0l057PBhUmiG04HTRlT5LFIwtZ9LOrJzkHaHPh549YjyjanEDseYEZA0l9Tt9VsKrZMBWAMcB7wjXy8FtkXE41nubFIwrAng86QAWGcCjwBHjaj2cfm8g+TEOsfGnD4xonxjKnGXmjGj8SPgaODSiPjPoIUiYndeP7NU0lbgvcCXC1nOIrU03hURz4f2lXRMH9HPkcIJP092ikX25/MiYF+FjD/0/wTGDI8djjE1kfQJciTTiPhTDRFrgK+QurJmksIBd5iZz4cK91tAmkjQK/zwHmC2pFdFxJM57bxSnm2kwGonRcSvauhtTC3scIypgaTXAt8mrcV5TNL8imx7ImJPDzG3A9fmY3NE7C38bzsprPONkq4htXaWA0+WhZRYT3ImN0taBZxCadZcRDwtaTnwHUknA5tJ3eunAQsjYjHGjAGP4RhTj7cDryTFh9/W5bi8l4CIeAK4HziR1Nop/m8faTr0CcBa4HMkx7GLHkTEU8ASkoO6mzSj7ZKKfNcAy0iTFdYCPwMuxbsjmDHiENPGGGNawS0cY4wxrWCHY4wxphXscIwxxrSCHY4xxphWsMMxxhjTCnY4xhhjWsEOxxhjTCvY4RhjjGmF/wIUWjkwfA87egAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -279,7 +279,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYHFW9//H3h30PASTsRPAqBONGQJBtWBRBvSjiDQhegyjivYhCFAERAvJTgxdQwQVECXJVQFkUEwyLTDCyCQIXDAGChF0WSYCQBQLf3x/nNHQq3T01M901YfJ5PU8/PX2qzqlTPdX97Trn1ClFBGZmZp22zEBXwMzMlg4OOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAeQORNFxSSJpQSJ+Q04f3o+yuXMa4XuQZl/N09XW7fSVppqSZVW+3LEnLSzpJ0v2SFuT36aMVbj8kdVe1vU5rxzFeYhu9Pp4ldUuKQlrDz1KjdUuUPyaXNaY3+ZZUDjhtkg8KX9S0hMoBKuoeL0v6l6S7JF0g6ROSVmjjJscCJwCPA/8DnARMb2P5vdbXHwh1P3TqHwslPSlpoqS9OlTlQa8vP/TeyJYb6ApYWxwLfAd4rB9l3AJsCTzTlhotub4PzCb92FoDeBvwMeAg4H5Jn4qIm9uwnQ8Dc4D3R8RLbShvSfAc8L3890rAO4G9gb0lfSkifjBgNRs4/wms0oF1ay4DbgKe6GW+JZIDziAQEU/QzwMyIuYywL/AK/K9iJhZnyBpCPBN4IvAZEnbRUR/34sNgH8NomADMDsixtUnSDoY+DnwLUnn5uNoqRERD3di3bo8z5EC/aDgJrUOqu9zyX9fKOkZSfMl3Srpw03yrS7pdEmP5nWnSzqKJv+vYvu2pO3z60tb1O2e3LewVn7d9NRe0taS/ijpBUnPS7pG0vY97XOT5Y3avFeQdLikSZIeyvV6Nm+n4801EfFcRBwB/AIYQjpbLNZ7FUnHSrpD0ouS5ki6UdIBhfUm5P17M7BpXRPUzLp1xki6RNI/JM3L7+lfJB3UqH6t+qvKNpPl/Cfml9fVN4+1ylfCBOBFYFVgq7yt144lSdvmZrdnVeiDycfVJZKeyv/zhyT9SNL6Lba3jKSj8mdifv6MnCFpjQb7vKukcyRNy+/xPEl3SzpR0kqtdkrSpyXdnvM8JennktZrsF7pfpniuvkzcl1+eaIWbbLsyus07cORtJGks/JxtECpifj3krZpsO7qkr6R9//5/Fl+QNJFkrYuU/928BlONTYlNVn9A7gAWAsYDfxO0h4RUTvokLQicC2wDXAn8EtgTeAbwC5lNhYRN0q6F/iwpLUj4l/1yyVtC2wBXBIRz7YqS9L7gGuAFYBLgRnAu4Bu4E9l6lPCWqSmrhuAq4GngfWBjwCTJH0uIs5t07ZaOYnU7PFhSWtExPMAktYk7eu7gb+RftEvA+wJ/ErSVhFxfC7jcmAm8OX8utYENbtuOz8GpgHXk85M1yY1TV0g6W0R8Y0O7Nv3gI+SjqHzcx3brfjFuz2puXcq6T1bB3gJQOnH1iWAgN8CDwFbA18A9pG0Q/FMNDsD2Bm4GPgd6X/wZWAnSTtGxPy6db9GOs5vACaSmgF3AMYBXfmz90qDbRwJfAC4CPgjsCNwcM7z3oh4uuT70ZPL8/OngSmkz1TNzFYZJb0HuIr02ZlM+myuQ/ofT5X0sYiYlNdV3o/3ATcC5wILgY2BLuDPwG1t2J+eRYQfbXiQPmxRSBteSwdOLCzbM6dPKqQfl9MvAZapS38z8GxeNqGQZ0JOH16XdmxOO7xBXX+Yl32kLq0rp42rSxOpmS2AfQplfKlu37oa7POE4nbz8u4G79OKwEYN1h0C3J33e+XCspnAzF78f2YW36Mm6z2S19u1wft7dGHdlUgf5FeBd5WtH7B5g7QVSD80XgY27EVZ44r/g7rjsbvMuiXeu9r/dLE6AJ/Jy+bU/kd1x1IAn2+QZzVSX+ErwE6FZV/L+a5qcow/A2xal74M6bMSwDcKeTYD1GD738zrj27y/rwEvLuw7Iy87Gcljufa/o/r67p1y8fk5WPq0pYj/fCbD+xSWH8DUl/uE8CKOW1kLuOyBuUvAwztzfHQn4eb1KrxEHBKfUJETAYeBrYtrHsw6Qvs6Ih4tW79B4HedMpekMv5dH2i0kis/YGngCt7KON9pE716yPid4VlZwEP9KI+TUXEgoh4tEH6c6RfxkNJZ3xVqA28eBOApLVJAwpujYhTC/WbT/qCFPDJshuIiMXet0h9PT8kfZns3qead96auZlsnKTvSJoE/CwvOy4i5hXWvyMizm5Qzj6ks7qLIuLPhWWnkQLs+yVt0iDv9yPiodqL/Bn5KulY/0z9ihHxj8jfqgW1s849GywDuCAibi+kjSP1pXwyt0IMpA8BmwNnRsSU+gUR8ThwKrAeix9Hxf8PEfFqRMzqVEWL3KRWjTui8an7I6RmByC1swJvAR5p9KVE+oV0YoP0xUTEo5KuJX1wR0TEtLzoI6TT8DMiYmEPxbwnP08pLoiIVyRNJR34/SZpK9IXx86k5rRiG/uG7dhOmark59oX1TbAskCzoavL5+ctS28gfZF+jfSFsAmwcmGVqva1t4bw+vH3CunM80rgrMjNNwW3NCmndlwt1iQbEQslXU86q3o36UdZvUbH4j8kPQIMl7RmRMwGkLQq6Uz8Y8BbgdV5/f8Lzd/nRtt4TtIdpCbJLYE7muStQu07Y9Mmx+S/5ectgUmk5ts7gAMkbUpqipxK+hFV6aAWB5xqzG6SvpBFBwIMyc9PNln/n73c7gTg/aSznK/ltNoZz/kl8re7Pg1J2o705bMcqVnp98Dz5KYq0i/iqn5VbpCfa+30a+fnbWh9lrVamcIlbUb6Ih5Kaju/ivTL+RXSl+ynqW5fe+uhiBjei/WbHR+146rZyMpa+poNlrU6FjfNZc+WtDzpmNqW1Cx7Eel/+nJe/0Sav889He9DmiyvSu2Y/EQP660Gr/043I10Xdh+wPi8/AVJ5wPHRsScjtS0wAFnyVIb/jisyfLFRsn04DLSF/dBko4jndnsBdwZEXd2qD61ZsBmx1ajL5HjSb/yd42I7voFko4lBZyOk/QWYCPSD4FaJ2rtPTgjIo5qw2aOIn1hHBwREwrbP4BCE2j2KqmPp5FG7+eSotnordp72ux4Xr+wXr1hwL0N0mtl1fLsQwo250fEmPoV8yi4Vi0FPR3vAz1M+bV9jIjfl8mQm82OBI7Mx/kuwOeBw0nH0Kc6UdEi9+EsQSLiBVJn4IaSGjVVdfWyvHmk0TwbAHsAB5ICQZmzG0gjsqDB6DhJy5JG7xTV2oM3bpBnDVLTRtFbgGeLwabZtjvohPx8Rf5fQDobeRXYqU3beEt+vqTBsmb7OgsYln+1F43qxbZrzbrL9iJPJ9T6R7qKCyQtx+vH1d+Ky2l8LG5GOt5m1prT6Nv73GobQ0hn2/OBe3rI3xt9+Z/clJ/7dExGxIyI+BlpP+dQ0Q86cMBZEp1H+r+Ml/Ta/0fSm4Ej+lDehPz8n/mxkDTUuowbSL8md5ZUPCgPp0H/Tf6ing7sIGlELT0HqNNZvL8CUifxWpLeUZ8o6RCad+y2jaQ1JP2A9CtvNnBMbVlEPEV6v0bl6xgWO3OTtHn+/5QxMz93FcrYE/hskzy3kH4oHFzIM4Y0zLes2vD4Rp3xVbqc1P9zQG5Orfdl0uiya6LxhZJfyv0QAOTPyHdJn5nz6tabmZ+76jPn4DSe1j4l6d2FtHGkprRfR8SCHvL3Rl/+J78jDdj5b0l7N1pB6Vq8VfLfb859pEVDSc2Kiw0m6BQ3qS15TiONpf848DdJk0kH+mjSdRv/3pvCIuIvkmaQ2nuXJ/16f6pk3shf+lcDlyhdSDqDNKXJHqQhwR9skPW7pNFLf5H0G9Kvwl3z9u/M+et9jxRYpkq6mNRkMIr0S/e3pHbndvmypNmkzuPa1DY7ky5cvA84KCLuK+Q5nNQRezLpy2gqqZ1/A1LH7DbAAcCDJbb/I1Lg+I2kS0ij4t5Oeh8vJv2fi87MeX4saXfSYJN3kkYR/oE0jU4Z15HO1r4t6e3ks9GIOKVlrjaLiDmSPgP8BpiSj5GHSdfhfIDUV/L5Jtn/Atwh6SLScbIn6b24jTQ6q+YK0rF6lKSRpLOqTUjv1URaf8FfSTp2Lyb1J+2YHzOp+zHSJveSjoH9Jb1Eeh+CNFLuoUYZIuJlSfuSrr+ZKOkG0qCAuaQzvW1IQXv9nPZO4DJJt5H6sx4njcLch/SZ7CkAt09V468H+4PW1+FMaJKnu5gnp69BOht4jPRlPZ00GeRmjcqjwXU4heXH1+oHfLzJOl00uR6A9EXwR+CF/LiGNFJmHE2u6wAOAf4OLCB9gZxN6rtots8fJjUVvEA6y7iKFAjGULgOIa8/k75dh1N7vEz6lX0XaQj5fsAKLfKvQAo8N5C+6BaQvhyuJf0qX7ts/UiB4k+kL/wXSCOGPtrD/2BH0g+OuaR+uYnAO5r9D2hwHU5OP4j05TSv0THbpL6147jU+91qPwrrbUPqZ3yadO3Lw6SLYjdosG7tGN+M9FmYTvpsPEb6wbJGgzwbk85OH8v7+3fgaNIP7ZbXKeXjrvY+PU06e1q/zGe42f43Wrfufbg2H1ev1v8/aXL852XrkmbFuDsfF3OA+0k/0g4ClsvrbQR8ixSs/0k6dh8lBda9yn6G2vFQrpCZmVlHuQ/HzMwq4YBjZmaVcMAxM7NKOOCYmVklPCy6zjrrrBPDhw8f6Gq84b344ousuuqqA10Ns5Z8nLbHbbfd9kxEvKnMug44dYYPH86tt9460NV4w+vu7qarq2ugq2HWko/T9pDU8HqhRtykZmZmlXDAMTOzSlQecCSNkHStpLmSHpd0cp5nq1WebSSdJ2lGznevGtyXXK/f3734aDT9ipmZVajSPhxJQ0nTokwjzeOzOWnusGVI0680MzqvO540dcM7SLeJfQdpzrF6z7H4/F7tnN3VzMz6oOpBA4eRZgveNyKeB67OU9aPk3RqTmtkfEQ8Xfe6W9J84GxJm8aik9wtjIibMDOzJUrVTWp7AZMLgeVCUhBqeo+KQrCpqd1TY932Vc/MzDql6oCzBWmW19dEuufF3LysN95Hmlm1ePe/NSU9I+llSbfnabzNzGyAVd2kNpQ09XzRrLysFEnrAV8n3TOi/mxpBmn68TtI9/P+POk+Lh+PiEublHUocCjAsGHD6O7uLlsNa2LOnDl+H22J5+O0epXenkDSy8BXIuL7hfTHSPd4+XqJMlYgDTzYCNg60r26m60r0v1LVo6Id/VU9qhRo8IXfvafL6izNwIfp+0h6baIKHWr86rPcGYBazZIH0LjM59F5ADyC2ArYIdWwQZeu2PlpaTbNS8bEa+0Wt9sMBt+zMSBrsISZezIhYzxewLAzO98qJLtVB1wplPoq5G0Men2vtMb5ljUGaTh1O+PiDLr1/guc2ZmA6zqQQNXAntKWr0ubTTpNq5TWmWUdCzwRdI956eW2Vg+I/oYcKfPbszMBlbVZzg/AY4ALpU0nnR/8nHA6fWd/5JmAFMi4pD8+pOke3JPAB6TtF1dmQ/Uhk1LmgJcQjpbWhX4HLAd6X7xZmY2gCoNOBExS9LuwFnAFaR+mzNIQadYr/rpbj6Qn8fkR72DSYEI0ii1LwPrk4ZM/w34UERc2Y76m5lZ31V+e4KImAbs1sM6wwuvx7B4oGmU75B+VM3MzDrIs0WbmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaYSkayXNlfS4pJMlLdtDnm0knSdpRs53r6QTJa3UYN0dJN0saZ6kByUd0bm9MTOzsparcmOShgLXANOAfYDNgdNIge/4FllH53XHA/cD7wC+mZ8/Xlf+W4DJwB+AY4FtgdMlzY2Ic9u9P2ZmVl6lAQc4DFgZ2DcingeulrQGME7SqTmtkfER8XTd625J84GzJW0aEQ/l9K8CjwMHRcRC4E+SNgFOlPSziIjO7JaZmfWk6ia1vYDJhcByISkI7dIsUyHY1Nyen9ctlH9pDjb15W8EvL1PNTYzs7aoOuBsAUyvT4iIh4G5eVlvvA94FbgXQNKqwMbF8oF76rZtZmYDpOomtaHA7Abps/KyUiStB3wduKDubGnN/Fwsf1bdthuVdShwKMCwYcPo7u4uWw1rYs6cOX4fl0BjRy7seaWlyLCV/Z7UVPV5rTrgADTqR1GT9MVXlFYALgbmAEeWLL9pekScA5wDMGrUqOjq6ipTDWuhu7sbv49LnjHHTBzoKixRxo5cyGl3DcRX4JJn5oFdlWyn6nd7Fq+fidQbQuMzn0VIEvALYCtgh4iYVbe4lr9Y/tDCcjMzGwBVB5zpFPpSJG0MrMrifS+NnEEaTv3+iCj2Bb0o6ZFi+XWvy5RvZmYdUvWggSuBPSWtXpc2GpgHTGmVUdKxwBdJQ56ntij/Y4ULSUcDjwB397nWZmbWb6XPcCSNJF1IuR6wEvAscB9wQ6Fpq5WfAEcAl0oaD2wGjANOrx8qLWkGMCUiDsmvPwl8C5gAPCZpu7oyH6gbNv1d4EDgAkk/BbYBPg98wdfgmJkNrJYBR9JmwBdIX+LDSMOQZwMLSH0lqwCvSpoCnAtcFBGvNisvImZJ2h04C7gil3UGKegU61V/lvKB/DwmP+odTApERMQMSR8ETied7fwTGOtZBszMBl7TgCPpXFKgmQqcDNwA/D0iXqlbZx3SWcSewKmkGQMOadHkRURMA3ZrVamIGF54PYbFA02zvFNJZ2JmZrYEaXWGMx/Yom7amMVExDOkM4krJR0FfALYsL1VNDOzwaBpwImIw3tTUG5Ku6jfNTIzs0Gpz6PUJK0mabV2VsbMzAavXgccSVtK+ivwPPCcpFsljWh/1czMbDDpyxnOucBvgNWBDUiTZ05oY53MzGwQahpwJJ2R71VTtAVwZkS8GBFPAucDb+1UBc3MbHBodYYzBLhf0mF5DrOaa0kXVu4taT/g2znNzMysqaYBJyI+A+wNfBK4U9KuedHngIeBU4DjgOuBQzpcTzMze4NrOdNARNwG7Cxpf+A8SbcDR0XEUZXUzszMBo1SgwYi4kJS380dwG2Svp3vsGlmZlZKy4Aj6W2SviDpS8B7IuIk4B2kWznfJ2lMBXU0M7NBoNUotc8CdwIfAXYCJkn6UUQ8GhEHAfsBX8jX4exQTXXNzOyNqtUZzonAf0fE3hGxH7AL8HlJ6wFExI0R8V7gTODCzlfVzMzeyFoFHJFuR1Dzak6rHyJNRJzP4nfZNDMzW0SrUWqnAD+StC/pjpx7AD+LiCeKK0bEix2qn5mZDRKtZov+Sb6x2m7ACsBZEXF9ZTUzM7NBpafrcO4B7qmoLmZmNoi1GqW2U28LkzRE0sj+VcnMzAajVoMGLpb0F0mfkTS0VSGSdpB0JvAQsH1ba2hmZoNCqya1zYAjSMOjz5Z0H3A38AywAFgTeDPwbmBlYBKwR0Tc2tEam5nZG1KrQQPzgPGSTgV2Jw0e2Jo0BHol4FnSvXB+BfwuIp7qfHXNzOyNquWgAYCICOCa/DAzM+uTvtzx08zMrNcccMzMrBIOOGZmVgkHHDMzq4QDjpmZVaJUwJH0P5JGdLoyZmY2eJU9w/k4cJekWyQdJmlIXzcoaYSkayXNlfS4pJMlLdtDnhUkfVfSnyXNkxRN1psgKRo8fPsEM7MBVirgRMSbSbcnmA58F3hC0q8k7dGbjeUpcq4BAtgHOBkYC5zUQ9ZVgM8Cc4Ebelh3Oml6nfrHzN7U08zM2q/HCz9rIuI64DpJqwGjgU8DkyU9CkwAzo+If/RQzGGkaXD2jYjngaslrQGMk3RqTmu07dmS1oqIkHQ4adaDZl6MiJvK7peZmVWj14MGImJORPyMNMfaX4CNgWOB+yT9TtKmLbLvBUwuBJYLSUFolx6227AZzczM3hh6FXAkDZd0oqR/AFcBc4BPAKsD/w4MJwWQZrYgNXm9JiIeJjWVtaufZYSk5yUtkDRVUstAZmZm1SjVpCbpU8DBwM7Aw8B5wHkR8WjdapMkvUjrOdeGArMbpM/Ky/rrduBmYBrwJlL/0NWSdoyIWxplkHQocCjAsGHD6O7ubkM1lm5z5szx+7gEGjty4UBXYYkybGW/JzVVfV7L9uGcA1wG7BkR17ZY7z7glB7KatQ0pibpvRIR31+kUGkiKfgcB3y0SZ5zSPvHqFGjoqurq7/VWOp1d3fj93HJM+aYiQNdhSXK2JELOe2u0t3Yg9rMA7sq2U7Zd3uDiJjV00oR8QStR5zNIt1Hp2gIjc98+iUi5kmaBHyk3WWbmVnvlO3DuU3SOxstkPT23KdTxnQKfTWSNgZWpdC302YecGBmNsDKBpzhwIpNlq0CbFSynCuBPSWtXpc2GpgHTClZRmmSViaNjLut3WWbmVnvNG1Sy9fH1Dd/rSdpk8JqKwH7A4+V3N5PSLetvlTSeNJtrMcBp9cPlZY0A5gSEYfUpe1FOhN6V369X17014h4KM9+8Afgf4EZwDrAkcCGwH+UrF+fDXf7+GvGjlzo/oI6M7/zoYGugtkSoVUfzpGka20iPy5rsp5Io8F6FBGzJO0OnAVcQeq3OYMUdIr1Kk5382Og/hqf3+Tng0kXni4AngaOB9YF5gM3ArtExK1l6mdmZp3TKuD8CriVFFB+D3wFuLewzkvAvflamlIiYhqtZwogIoaXSSssnw/sW7YeZmZWraYBJyLuB+4HkLQr8LeIeKGqipmZ2eBSalh0RLS9Q9/MzJYurQYNPEW60PN2SU/Tw9DiiFi33ZUzM7PBo9UZzg+BJ+v+9rUsZmbWZ636cE6q+3tcJbUxM7NBq9e3JzAzM+uLVn04F/emoIjo+MWVZmb2xtWqD+dNldXCzMwGvVZ9OLtWWREzMxvc3IdjZmaVaNWH81/AbyLi6fx3SxHxo7bWzMzMBpVWfThnkeZSezr/3UoADjhmZtZUqz6cZRr9bWZm1hcOJGZmVolSk3cCSFoBGANsC6wPPAHcDJwfES91pHZmZjZolDrDkbQl6VYFPwTeDrySn38IzJA0omM1NDOzQaHsGc45wHPATvU3W8u3nJ5IunX0zu2vnpmZDRZl+3BGAScU7+yZX58AbNPuipmZ2eBSNuDMBFZqsmwloPQtps3MbOlUNuAcA5wi6b31iZK2A04GvtbuipmZ2eDSaqaBv7LoTdfWAG7IdwJ9Clg3P/4FHAdc3sF6mpnZG1yrQQN/Z9GA8/cO18XMzAaxVjMNjKmwHmZmNsh5pgEzM6tEb2YaGA4cBLyVBiPWfMdPMzNrpVTAkbQ1MAV4hBRw/g8YAgwHHgVmdKh+ZmY2SJRtUvsucAlpOhsBh0TEZsCOpIEFp3amemZmNliUDTjvAn4FvJpfrwQQETcAJwHfaX/VzMxsMCkbcAJ4KSKCdA3OpnXLHgH+rd0VMzOzwaVswJkGbJ7/vhE4UtK/SdoUOBp4oOwGJY2QdK2kuZIel3SypGV7yLOCpO9K+rOkeZKixbr7SLpL0nxJ0ySNLls3MzPrnLIB5xxgvfz3caT74UwH/gG8F/hKmUIkDQWuIZ0x7UOaFmcsqVmulVWAzwJzgRtalL8jqa/pOmAv0kzWv5b0gTL1MzOzzik1Si0iLqj7+558f5z3kfpyboqIp0pu7zBgZWDfiHgeuFrSGsA4SafmtEbbny1prYgISYcDuzUp/xvA9RFxRH59naStSDNaX1WyjmZm1gF9uvAzIuZExFUR8fteBBtIZx2TC4HlQlIQ2qWHbTZtRgOQtCKwK3BxYdGFwPaShvSinmZm1malA46kdSV9S9I1kv6en/+fpGG92N4WpKa41+R76szNy/pjc2D5YvnAPaT9fGs/yzczs34oe+HnDsAkYCFwNWkQwbqkJrIvStorIv5SoqihwOwG6bPysv6o5S+WP6uwfBGSDgUOBRg2bBjd3d192vjYkQv7lG8wGray3496fT2m2s3/k0X5OH1dVcdo2altzgJuAz4SES/WEiWtBvwBOBN4T8myGjWNqUl6XxTLUYvtEhHnkAZFMGrUqOjq6urTRsccM7FP+QajsSMXctpdpWdNGvRmHtg10FUAfIwW+Th9XVXHaNkmtS2A0+qDDaS+HOB/gC1LljMLWLNB+hAan/n0Ru1Mplh+7XV/yzczs37ozXU46zVZVhsiXcZ0Cn01kjYGVu1FGc08ALxcLD+/fhW4r5/lm5lZP5QNOF8EjpM0Oo8GQ9KKkvYn3X768JLlXAnsKWn1urTRwDzS5KB9FhELSNfffKKwaDRwY0Q815/yzcysf1rdYvppFu33WJU0nxqS5gCr5fT5wGWkQQQ9+QlwBHCppPHAZsA44PT6odKSZgBTIuKQurS9ch3elV/vlxf9NSIeyn9/E+iW9D3SLa/3zo8PlqibmZl1UKsesx/Svo58ACJilqTdSYMQriD1q5xBCjrFehWnu/kxi87h9pv8fDAwIZc/NQeiU4AvAA8Cn4wIX/RpZjbAWt1ielwnNhgR02g+U0BtneFl0prkvZx0dmNmZkuQXo0JlLQCMBJYC3gWuCsiXupExczMbHDpzUwDRwNPArcAk4G/Ak9K+mqH6mZmZoNI2ZkGvgx8m9TpfxEp8AwjjQD7tqQFEfGDjtXSzMze8Mo2qf038J2I+Hpd2r3A9ZJmk0aeOeCYmVlTZZvUNiZd49JIN7BRW2pjZmaDVtmA8zDQ7CZm78/LzczMmirbpPYD4AeS1gJ+S+rDWZd0Vf8YUpOamZlZU2Xv+HmWpAXAicBnSBeECngcOCwizu1cFc3MbDAofR1ORPxU0rmk/pr1gSeAR3u6E6eZmRmU6MORtJKk+yR9MJJHIuKW/OxgY2ZmpfQYcCJiPukk5YaKAAALG0lEQVSeMq92vjpmZjZYlR2l9kvSJJlmZmZ9UrYP52HgPyTdCkwijVKrb06LiPhxuytnZmaDR9mAc1p+Xh94T4PlQbp9gJmZWUNlh0WXnuTTzMysEQcSMzOrROnrcPK9cMYA2/L6dTg3A+f7njhmZtaTUmc4krYE7ifddvrtwCv5+YfADEkjOlZDMzMbFMqe4ZwDPAfsFBGvTdQpaRNgIuk+OTu3v3pmZjZYlO3DGQWcUB9sAPLrE4Bt2l0xMzMbXMoGnJnASk2WrYRvT2BmZj0oG3COAU6R9N76REnbAScDX2t3xczMbHAp24dzPLAGcIOkp4CnSPfDWRf4F3CcpONqK0fEtu2uqJmZvbGVDTh354eZmVmflJ1pwBN3mplZv3imATMzq4QDjpmZVcIBx8zMKuGAY2Zmlag84EgaIelaSXMlPS7pZEnLlsg3RNJ5kmZJek7SLyWtXVhngqRo8Niic3tkZmZllJ4tuh0kDQWuAaYB+wCbk27utgzpWp9WLgLeBnwWeBUYD1wO7FRYbzqL3w57Zn/qbWZm/VdpwAEOA1YG9o2I54GrJa0BjJN0ak5bjKTtgT2BXSLi+pz2GHCzpD0i4pq61V+MiJs6uxtmZtZbVTep7QVMLgSWC0lBaJce8j1ZCzYAEXEL8GBeZmZmS7iqA84WpCav1+QZp+fmZaXzZfc0yDdC0vOSFkiaKqlVIDMzs4pU3aQ2FJjdIH1WXtaXfJvVvb6ddBfSacCbgLGkZrsd8xnRYiQdChwKMGzYMLq7u3vYhcbGjlzYp3yD0bCV/X7U6+sx1W7+nyzKx+nrqjpGqw44ANEgTU3Se5UvIr6/yEJpIin4HAd8tGGhEeeQbjDHqFGjoqurq4dqNDbmmIl9yjcYjR25kNPuGohDa8k088Cuga4C4GO0yMfp66o6RqtuUpsFrNkgfQiNz2B6yrdmq3wRMQ+YBLynF3U0M7MOqDrgTKfQ5yJpY2BVGvfRNM2XNevbKerp7MnMzDqs6oBzJbCnpNXr0kYD84ApPeRbT9KOtQRJo0j9N1c2yyRpZdIottv6U2kzM+u/qgPOT4AFwKWS9sgd9uOA0+uHSkuaIelntdcRcSMwGfiFpH0lfRT4JTC1dg1Onongz5I+L2l3SaOB64ANgW9VtYNmZtZYpT1mETFL0u7AWcAVpP6XM0hBp1iv4nQ3++d1f04KlH8AjqhbvgB4mjRjwbrAfOBG0sWit7Z1R8zMrNcqH6IREdOA3XpYZ3iDtNmkKWsa3gwuIuYD+7ahimZm1gGeLdrMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJIyRdK2mupMclnSxp2RL5hkg6T9IsSc9J+qWktRust4+kuyTNlzRN0ujO7ImZmfVGpQFH0lDgGiCAfYCTgbHASSWyXwR0AZ8FxgDbAJcXyt8RuAS4DtgLmAj8WtIH2rIDZmbWZ8tVvL3DgJWBfSPieeBqSWsA4ySdmtMWI2l7YE9gl4i4Pqc9BtwsaY+IuCav+g3g+og4Ir++TtJWwAnAVZ3bLTMz60nVTWp7AZMLgeVCUhDapYd8T9aCDUBE3AI8mJchaUVgV+DiQt4Lge0lDel/9c3MrK+qDjhbANPrEyLiYWBuXlY6X3ZPXb7NgeUbrHcPaT/f2of6mplZm1TdpDYUmN0gfVZe1pd8m9WtQ4P1ZhWWL0LSocCh+eUcSfe2qIeVcASsAzwz0PVYUmj8QNfAGvFx+rp+HqObll2x6oADacBAkZqk9yVf8bVa5CcizgHO6WHb1guSbo2IUQNdD7NWfJxWr+omtVnAmg3Sh9D4DKanfGvW5ZtVl1Zchx7KNzOzDqs64Eyn0FcjaWNgVRr30TTNl9X37TwAvNxgvS2AV4H7+lBfMzNrk6oDzpXAnpJWr0sbDcwDpvSQb718nQ0AkkaR+m+uBIiIBaTrbz5RyDsauDEinut/9a0kN1HaG4GP04opoqeukzZuLF34OQ24GxhPChinA9+LiOPr1psBTImIQ+rS/kgaafYV0hnLeOCpiNipbp0dgW7gLNJFoXvn9T8YEb4Ox8xsAFV6hhMRs4DdgWWBK0gzDJwBnFhYdbm8Tr39SWdBPwd+AdwGfKxQ/lRgP2APYDLw78AnHWzMzAZepWc4Zma29PJs0dY2fZ2Y1awKkt4i6WxJd0p6RVL3QNdpaTMQ1+HYIFQ3Mes00sSsmwOnkX7UHN8iq1lVtiL1694ErDDAdVkquUnN2kLSscDRwKa1ufIkHQ2MA9ZrNjGrWVUkLRMRr+a/fwusExFdA1urpYub1Kxd+joxq1klasHGBo4DjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461U18nZjWzpYADjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461S18nZjWzpYQv/LR2+QlwBHCppNrErOOA030Nji0JJK1CuvATYENgDUn75deTImLuwNRs6eELP61tJI0gzdS9Panf5lxgXES8MqAVMwMkDQcebLL4zRExs7LKLKUccMzMrBLuwzEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx6zDlDwoKSS9ZQC2v62kcVVv16zIAces87YHhue/9x+A7W8LnDgA2zVbhAOOWecdALwI3Jz/NlsqOeCYdZCkZYFPAL8Hfg6MkPSOuuVrSjpX0uOS5kt6WNJP65ZvJOliSU9JmifpAUnfLGxjR0lTJM2V9C9JP61NoippDHBm/jvyo7vjO27WgCfvNOus3YBhwIXAVNJccwcA/5eXnw68DzgS+CewMbBzXf5fACsDh5Lmp9uMuttASNoBuBa4HNgPWBv4Dukuq/sBE4HTgLGkpj0AT6ZqA8JzqZl1kKSfAx8DhkXES5ImAiOAzSIiJN0NnB0RZzbJPwc4ICKuaLL8z8DCiNi1Lm03UhAaGRF3SzocODMi1N69M+sdN6mZdYikFUnB5rKIeCkn/5o0gGC7/PoO4KuS/kvSWxsUcwfwbUljJG1SKH8V0lnLxZKWqz1IZ1IvA1u3fafM+sEBx6xz9iLddntS7qtZE+gGFvD64IHDSc1hJwD3SrpfUv1IttHArcAZwEOS7pC0e142FFgW+BEpwNQeC4DlSc1zZksMN6mZdYiki4D/aLL4SWDD+nsF5cEER5OC0ciImFa3bBnS8OZxwE7AJsB84IWcNqnBNh6PiMfdpGZLCgccsw6QtBopqPwOOKew+N2kwQLvj4hrCvnWBx4HPh4RlzYod3vgBmDriPibpBuAByPiwBZ1ORQ4G1g5Iub3Y7fM+sUBx6wDJB0I/C+wXUTcXFi2PPAEKRi9DbgMuBsI4HOkprgtSGcvk0kj1e4DViSNNtuSNOhgnqQdSQMELgZ+m/NsAnwI+HpE3CdpZ2AKcAzwJ+D5iLi3c3tv1pgDjlkHSPoD8NaIaDQQAEk/IjWdTQD2IA0keAW4HTghIv6cBx2cRRomvTEwF7gJODYi7qor673ASaTh1csCDwF/BE6KiOckCRgPHASsB1wfEV1t3mWzHjngmJlZJTxKzczMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlV4v8DdUqlmkdTpu0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW9//H3h30PASTsRPAqBONGQJBtWBRBvSjiDQhegyjivYhCFAERAvJTgxdQwQVECXJVQFkUEwyLTDCyCQIXDAGChF0WSYCQBQLf3x/nNHQq3T01M901YfJ5PU8/PX2qzqlTPdX97Trn1ClFBGZmZp22zEBXwMzMlg4OOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAeQORNFxSSJpQSJ+Q04f3o+yuXMa4XuQZl/N09XW7fSVppqSZVW+3LEnLSzpJ0v2SFuT36aMVbj8kdVe1vU5rxzFeYhu9Pp4ldUuKQlrDz1KjdUuUPyaXNaY3+ZZUDjhtkg8KX9S0hMoBKuoeL0v6l6S7JF0g6ROSVmjjJscCJwCPA/8DnARMb2P5vdbXHwh1P3TqHwslPSlpoqS9OlTlQa8vP/TeyJYb6ApYWxwLfAd4rB9l3AJsCTzTlhotub4PzCb92FoDeBvwMeAg4H5Jn4qIm9uwnQ8Dc4D3R8RLbShvSfAc8L3890rAO4G9gb0lfSkifjBgNRs4/wms0oF1ay4DbgKe6GW+JZIDziAQEU/QzwMyIuYywL/AK/K9iJhZnyBpCPBN4IvAZEnbRUR/34sNgH8NomADMDsixtUnSDoY+DnwLUnn5uNoqRERD3di3bo8z5EC/aDgJrUOqu9zyX9fKOkZSfMl3Srpw03yrS7pdEmP5nWnSzqKJv+vYvu2pO3z60tb1O2e3LewVn7d9NRe0taS/ijpBUnPS7pG0vY97XOT5Y3avFeQdLikSZIeyvV6Nm+n4801EfFcRBwB/AIYQjpbLNZ7FUnHSrpD0ouS5ki6UdIBhfUm5P17M7BpXRPUzLp1xki6RNI/JM3L7+lfJB3UqH6t+qvKNpPl/Cfml9fVN4+1ylfCBOBFYFVgq7yt144lSdvmZrdnVeiDycfVJZKeyv/zhyT9SNL6Lba3jKSj8mdifv6MnCFpjQb7vKukcyRNy+/xPEl3SzpR0kqtdkrSpyXdnvM8JennktZrsF7pfpniuvkzcl1+eaIWbbLsyus07cORtJGks/JxtECpifj3krZpsO7qkr6R9//5/Fl+QNJFkrYuU/928BlONTYlNVn9A7gAWAsYDfxO0h4RUTvokLQicC2wDXAn8EtgTeAbwC5lNhYRN0q6F/iwpLUj4l/1yyVtC2wBXBIRz7YqS9L7gGuAFYBLgRnAu4Bu4E9l6lPCWqSmrhuAq4GngfWBjwCTJH0uIs5t07ZaOYnU7PFhSWtExPMAktYk7eu7gb+RftEvA+wJ/ErSVhFxfC7jcmAm8OX8utYENbtuOz8GpgHXk85M1yY1TV0g6W0R8Y0O7Nv3gI+SjqHzcx3brfjFuz2puXcq6T1bB3gJQOnH1iWAgN8CDwFbA18A9pG0Q/FMNDsD2Bm4GPgd6X/wZWAnSTtGxPy6db9GOs5vACaSmgF3AMYBXfmz90qDbRwJfAC4CPgjsCNwcM7z3oh4uuT70ZPL8/OngSmkz1TNzFYZJb0HuIr02ZlM+myuQ/ofT5X0sYiYlNdV3o/3ATcC5wILgY2BLuDPwG1t2J+eRYQfbXiQPmxRSBteSwdOLCzbM6dPKqQfl9MvAZapS38z8GxeNqGQZ0JOH16XdmxOO7xBXX+Yl32kLq0rp42rSxOpmS2AfQplfKlu37oa7POE4nbz8u4G79OKwEYN1h0C3J33e+XCspnAzF78f2YW36Mm6z2S19u1wft7dGHdlUgf5FeBd5WtH7B5g7QVSD80XgY27EVZ44r/g7rjsbvMuiXeu9r/dLE6AJ/Jy+bU/kd1x1IAn2+QZzVSX+ErwE6FZV/L+a5qcow/A2xal74M6bMSwDcKeTYD1GD738zrj27y/rwEvLuw7Iy87Gcljufa/o/r67p1y8fk5WPq0pYj/fCbD+xSWH8DUl/uE8CKOW1kLuOyBuUvAwztzfHQn4eb1KrxEHBKfUJETAYeBrYtrHsw6Qvs6Ih4tW79B4HedMpekMv5dH2i0kis/YGngCt7KON9pE716yPid4VlZwEP9KI+TUXEgoh4tEH6c6RfxkNJZ3xVqA28eBOApLVJAwpujYhTC/WbT/qCFPDJshuIiMXet0h9PT8kfZns3qead96auZlsnKTvSJoE/CwvOy4i5hXWvyMizm5Qzj6ks7qLIuLPhWWnkQLs+yVt0iDv9yPiodqL/Bn5KulY/0z9ihHxj8jfqgW1s849GywDuCAibi+kjSP1pXwyt0IMpA8BmwNnRsSU+gUR8ThwKrAeix9Hxf8PEfFqRMzqVEWL3KRWjTui8an7I6RmByC1swJvAR5p9KVE+oV0YoP0xUTEo5KuJX1wR0TEtLzoI6TT8DMiYmEPxbwnP08pLoiIVyRNJR34/SZpK9IXx86k5rRiG/uG7dhOmark59oX1TbAskCzoavL5+ctS28gfZF+jfSFsAmwcmGVqva1t4bw+vH3CunM80rgrMjNNwW3NCmndlwt1iQbEQslXU86q3o36UdZvUbH4j8kPQIMl7RmRMwGkLQq6Uz8Y8BbgdV5/f8Lzd/nRtt4TtIdpCbJLYE7muStQu07Y9Mmx+S/5ectgUmk5ts7gAMkbUpqipxK+hFV6aAWB5xqzG6SvpBFBwIMyc9PNln/n73c7gTg/aSznK/ltNoZz/kl8re7Pg1J2o705bMcqVnp98Dz5KYq0i/iqn5VbpCfa+30a+fnbWh9lrVamcIlbUb6Ih5Kaju/ivTL+RXSl+ynqW5fe+uhiBjei/WbHR+146rZyMpa+poNlrU6FjfNZc+WtDzpmNqW1Cx7Eel/+nJe/0Sav889He9DmiyvSu2Y/EQP660Gr/043I10Xdh+wPi8/AVJ5wPHRsScjtS0wAFnyVIb/jisyfLFRsn04DLSF/dBko4jndnsBdwZEXd2qD61ZsBmx1ajL5HjSb/yd42I7voFko4lBZyOk/QWYCPSD4FaJ2rtPTgjIo5qw2aOIn1hHBwREwrbP4BCE2j2KqmPp5FG7+eSotnordp72ux4Xr+wXr1hwL0N0mtl1fLsQwo250fEmPoV8yi4Vi0FPR3vAz1M+bV9jIjfl8mQm82OBI7Mx/kuwOeBw0nH0Kc6UdEi9+EsQSLiBVJn4IaSGjVVdfWyvHmk0TwbAHsAB5ICQZmzG0gjsqDB6DhJy5JG7xTV2oM3bpBnDVLTRtFbgGeLwabZtjvohPx8Rf5fQDobeRXYqU3beEt+vqTBsmb7OgsYln+1F43qxbZrzbrL9iJPJ9T6R7qKCyQtx+vH1d+Ky2l8LG5GOt5m1prT6Nv73GobQ0hn2/OBe3rI3xt9+Z/clJ/7dExGxIyI+BlpP+dQ0Q86cMBZEp1H+r+Ml/Ta/0fSm4Ej+lDehPz8n/mxkDTUuowbSL8md5ZUPCgPp0H/Tf6ing7sIGlELT0HqNNZvL8CUifxWpLeUZ8o6RCad+y2jaQ1JP2A9CtvNnBMbVlEPEV6v0bl6xgWO3OTtHn+/5QxMz93FcrYE/hskzy3kH4oHFzIM4Y0zLes2vD4Rp3xVbqc1P9zQG5Orfdl0uiya6LxhZJfyv0QAOTPyHdJn5nz6tabmZ+76jPn4DSe1j4l6d2FtHGkprRfR8SCHvL3Rl/+J78jDdj5b0l7N1pB6Vq8VfLfb859pEVDSc2Kiw0m6BQ3qS15TiONpf848DdJk0kH+mjSdRv/3pvCIuIvkmaQ2nuXJ/16f6pk3shf+lcDlyhdSDqDNKXJHqQhwR9skPW7pNFLf5H0G9Kvwl3z9u/M+et9jxRYpkq6mNRkMIr0S/e3pHbndvmypNmkzuPa1DY7ky5cvA84KCLuK+Q5nNQRezLpy2gqqZ1/A1LH7DbAAcCDJbb/I1Lg+I2kS0ij4t5Oeh8vJv2fi87MeX4saXfSYJN3kkYR/oE0jU4Z15HO1r4t6e3ks9GIOKVlrjaLiDmSPgP8BpiSj5GHSdfhfIDUV/L5Jtn/Atwh6SLScbIn6b24jTQ6q+YK0rF6lKSRpLOqTUjv1URaf8FfSTp2Lyb1J+2YHzOp+zHSJveSjoH9Jb1Eeh+CNFLuoUYZIuJlSfuSrr+ZKOkG0qCAuaQzvW1IQXv9nPZO4DJJt5H6sx4njcLch/SZ7CkAt09V468H+4PW1+FMaJKnu5gnp69BOht4jPRlPZ00GeRmjcqjwXU4heXH1+oHfLzJOl00uR6A9EXwR+CF/LiGNFJmHE2u6wAOAf4OLCB9gZxN6rtots8fJjUVvEA6y7iKFAjGULgOIa8/k75dh1N7vEz6lX0XaQj5fsAKLfKvQAo8N5C+6BaQvhyuJf0qX7ts/UiB4k+kL/wXSCOGPtrD/2BH0g+OuaR+uYnAO5r9D2hwHU5OP4j05TSv0THbpL6147jU+91qPwrrbUPqZ3yadO3Lw6SLYjdosG7tGN+M9FmYTvpsPEb6wbJGgzwbk85OH8v7+3fgaNIP7ZbXKeXjrvY+PU06e1q/zGe42f43Wrfufbg2H1ev1v8/aXL852XrkmbFuDsfF3OA+0k/0g4ClsvrbQR8ixSs/0k6dh8lBda9yn6G2vFQrpCZmVlHuQ/HzMwq4YBjZmaVcMAxM7NKOOCYmVklPCy6zjrrrBPDhw8f6Gq84b344ousuuqqA10Ns5Z8nLbHbbfd9kxEvKnMug44dYYPH86tt9460NV4w+vu7qarq2ugq2HWko/T9pDU8HqhRtykZmZmlXDAMTOzSlQecCSNkHStpLmSHpd0cp5nq1WebSSdJ2lGznevGtyXXK/f3734aDT9ipmZVajSPhxJQ0nTokwjzeOzOWnusGVI0680MzqvO540dcM7SLeJfQdpzrF6z7H4/F7tnN3VzMz6oOpBA4eRZgveNyKeB67OU9aPk3RqTmtkfEQ8Xfe6W9J84GxJm8aik9wtjIibMDOzJUrVTWp7AZMLgeVCUhBqeo+KQrCpqd1TY932Vc/MzDql6oCzBWmW19dEuufF3LysN95Hmlm1ePe/NSU9I+llSbfnabzNzGyAVd2kNpQ09XzRrLysFEnrAV8n3TOi/mxpBmn68TtI9/P+POk+Lh+PiEublHUocCjAsGHD6O7uLlsNa2LOnDl+H22J5+O0epXenkDSy8BXIuL7hfTHSPd4+XqJMlYgDTzYCNg60r26m60r0v1LVo6Id/VU9qhRo8IXfvafL6izNwIfp+0h6baIKHWr86rPcGYBazZIH0LjM59F5ADyC2ArYIdWwQZeu2PlpaTbNS8bEa+0Wt9sMBt+zMSBrsISZezIhYzxewLAzO98qJLtVB1wplPoq5G0Men2vtMb5ljUGaTh1O+PiDLr1/guc2ZmA6zqQQNXAntKWr0ubTTpNq5TWmWUdCzwRdI956eW2Vg+I/oYcKfPbszMBlbVZzg/AY4ALpU0nnR/8nHA6fWd/5JmAFMi4pD8+pOke3JPAB6TtF1dmQ/Uhk1LmgJcQjpbWhX4HLAd6X7xZmY2gCoNOBExS9LuwFnAFaR+mzNIQadYr/rpbj6Qn8fkR72DSYEI0ii1LwPrk4ZM/w34UERc2Y76m5lZ31V+e4KImAbs1sM6wwuvx7B4oGmU75B+VM3MzDrIs0WbmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaYSkayXNlfS4pJMlLdtDnm0knSdpRs53r6QTJa3UYN0dJN0saZ6kByUd0bm9MTOzsparcmOShgLXANOAfYDNgdNIge/4FllH53XHA/cD7wC+mZ8/Xlf+W4DJwB+AY4FtgdMlzY2Ic9u9P2ZmVl6lAQc4DFgZ2DcingeulrQGME7SqTmtkfER8XTd625J84GzJW0aEQ/l9K8CjwMHRcRC4E+SNgFOlPSziIjO7JaZmfWk6ia1vYDJhcByISkI7dIsUyHY1Nyen9ctlH9pDjb15W8EvL1PNTYzs7aoOuBsAUyvT4iIh4G5eVlvvA94FbgXQNKqwMbF8oF76rZtZmYDpOomtaHA7Abps/KyUiStB3wduKDubGnN/Fwsf1bdthuVdShwKMCwYcPo7u4uWw1rYs6cOX4fl0BjRy7seaWlyLCV/Z7UVPV5rTrgADTqR1GT9MVXlFYALgbmAEeWLL9pekScA5wDMGrUqOjq6ipTDWuhu7sbv49LnjHHTBzoKixRxo5cyGl3DcRX4JJn5oFdlWyn6nd7Fq+fidQbQuMzn0VIEvALYCtgh4iYVbe4lr9Y/tDCcjMzGwBVB5zpFPpSJG0MrMrifS+NnEEaTv3+iCj2Bb0o6ZFi+XWvy5RvZmYdUvWggSuBPSWtXpc2GpgHTGmVUdKxwBdJQ56ntij/Y4ULSUcDjwB397nWZmbWb6XPcCSNJF1IuR6wEvAscB9wQ6Fpq5WfAEcAl0oaD2wGjANOrx8qLWkGMCUiDsmvPwl8C5gAPCZpu7oyH6gbNv1d4EDgAkk/BbYBPg98wdfgmJkNrJYBR9JmwBdIX+LDSMOQZwMLSH0lqwCvSpoCnAtcFBGvNisvImZJ2h04C7gil3UGKegU61V/lvKB/DwmP+odTApERMQMSR8ETied7fwTGOtZBszMBl7TgCPpXFKgmQqcDNwA/D0iXqlbZx3SWcSewKmkGQMOadHkRURMA3ZrVamIGF54PYbFA02zvFNJZ2JmZrYEaXWGMx/Yom7amMVExDOkM4krJR0FfALYsL1VNDOzwaBpwImIw3tTUG5Ku6jfNTIzs0Gpz6PUJK0mabV2VsbMzAavXgccSVtK+ivwPPCcpFsljWh/1czMbDDpyxnOucBvgNWBDUiTZ05oY53MzGwQahpwJJ2R71VTtAVwZkS8GBFPAucDb+1UBc3MbHBodYYzBLhf0mF5DrOaa0kXVu4taT/g2znNzMysqaYBJyI+A+wNfBK4U9KuedHngIeBU4DjgOuBQzpcTzMze4NrOdNARNwG7Cxpf+A8SbcDR0XEUZXUzszMBo1SgwYi4kJS380dwG2Svp3vsGlmZlZKy4Aj6W2SviDpS8B7IuIk4B2kWznfJ2lMBXU0M7NBoNUotc8CdwIfAXYCJkn6UUQ8GhEHAfsBX8jX4exQTXXNzOyNqtUZzonAf0fE3hGxH7AL8HlJ6wFExI0R8V7gTODCzlfVzMzeyFoFHJFuR1Dzak6rHyJNRJzP4nfZNDMzW0SrUWqnAD+StC/pjpx7AD+LiCeKK0bEix2qn5mZDRKtZov+Sb6x2m7ACsBZEXF9ZTUzM7NBpafrcO4B7qmoLmZmNoi1GqW2U28LkzRE0sj+VcnMzAajVoMGLpb0F0mfkTS0VSGSdpB0JvAQsH1ba2hmZoNCqya1zYAjSMOjz5Z0H3A38AywAFgTeDPwbmBlYBKwR0Tc2tEam5nZG1KrQQPzgPGSTgV2Jw0e2Jo0BHol4FnSvXB+BfwuIp7qfHXNzOyNquWgAYCICOCa/DAzM+uTvtzx08zMrNcccMzMrBIOOGZmVgkHHDMzq4QDjpmZVaJUwJH0P5JGdLoyZmY2eJU9w/k4cJekWyQdJmlIXzcoaYSkayXNlfS4pJMlLdtDnhUkfVfSnyXNkxRN1psgKRo8fPsEM7MBVirgRMSbSbcnmA58F3hC0q8k7dGbjeUpcq4BAtgHOBkYC5zUQ9ZVgM8Cc4Ebelh3Oml6nfrHzN7U08zM2q/HCz9rIuI64DpJqwGjgU8DkyU9CkwAzo+If/RQzGGkaXD2jYjngaslrQGMk3RqTmu07dmS1oqIkHQ4adaDZl6MiJvK7peZmVWj14MGImJORPyMNMfaX4CNgWOB+yT9TtKmLbLvBUwuBJYLSUFolx6227AZzczM3hh6FXAkDZd0oqR/AFcBc4BPAKsD/w4MJwWQZrYgNXm9JiIeJjWVtaufZYSk5yUtkDRVUstAZmZm1SjVpCbpU8DBwM7Aw8B5wHkR8WjdapMkvUjrOdeGArMbpM/Ky/rrduBmYBrwJlL/0NWSdoyIWxplkHQocCjAsGHD6O7ubkM1lm5z5szx+7gEGjty4UBXYYkybGW/JzVVfV7L9uGcA1wG7BkR17ZY7z7glB7KatQ0pibpvRIR31+kUGkiKfgcB3y0SZ5zSPvHqFGjoqurq7/VWOp1d3fj93HJM+aYiQNdhSXK2JELOe2u0t3Yg9rMA7sq2U7Zd3uDiJjV00oR8QStR5zNIt1Hp2gIjc98+iUi5kmaBHyk3WWbmVnvlO3DuU3SOxstkPT23KdTxnQKfTWSNgZWpdC302YecGBmNsDKBpzhwIpNlq0CbFSynCuBPSWtXpc2GpgHTClZRmmSViaNjLut3WWbmVnvNG1Sy9fH1Dd/rSdpk8JqKwH7A4+V3N5PSLetvlTSeNJtrMcBp9cPlZY0A5gSEYfUpe1FOhN6V369X17014h4KM9+8Afgf4EZwDrAkcCGwH+UrF+fDXf7+GvGjlzo/oI6M7/zoYGugtkSoVUfzpGka20iPy5rsp5Io8F6FBGzJO0OnAVcQeq3OYMUdIr1Kk5382Og/hqf3+Tng0kXni4AngaOB9YF5gM3ArtExK1l6mdmZp3TKuD8CriVFFB+D3wFuLewzkvAvflamlIiYhqtZwogIoaXSSssnw/sW7YeZmZWraYBJyLuB+4HkLQr8LeIeKGqipmZ2eBSalh0RLS9Q9/MzJYurQYNPEW60PN2SU/Tw9DiiFi33ZUzM7PBo9UZzg+BJ+v+9rUsZmbWZ636cE6q+3tcJbUxM7NBq9e3JzAzM+uLVn04F/emoIjo+MWVZmb2xtWqD+dNldXCzMwGvVZ9OLtWWREzMxvc3IdjZmaVaNWH81/AbyLi6fx3SxHxo7bWzMzMBpVWfThnkeZSezr/3UoADjhmZtZUqz6cZRr9bWZm1hcOJGZmVolSk3cCSFoBGANsC6wPPAHcDJwfES91pHZmZjZolDrDkbQl6VYFPwTeDrySn38IzJA0omM1NDOzQaHsGc45wHPATvU3W8u3nJ5IunX0zu2vnpmZDRZl+3BGAScU7+yZX58AbNPuipmZ2eBSNuDMBFZqsmwloPQtps3MbOlUNuAcA5wi6b31iZK2A04GvtbuipmZ2eDSaqaBv7LoTdfWAG7IdwJ9Clg3P/4FHAdc3sF6mpnZG1yrQQN/Z9GA8/cO18XMzAaxVjMNjKmwHmZmNsh5pgEzM6tEb2YaGA4cBLyVBiPWfMdPMzNrpVTAkbQ1MAV4hBRw/g8YAgwHHgVmdKh+ZmY2SJRtUvsucAlpOhsBh0TEZsCOpIEFp3amemZmNliUDTjvAn4FvJpfrwQQETcAJwHfaX/VzMxsMCkbcAJ4KSKCdA3OpnXLHgH+rd0VMzOzwaVswJkGbJ7/vhE4UtK/SdoUOBp4oOwGJY2QdK2kuZIel3SypGV7yLOCpO9K+rOkeZKixbr7SLpL0nxJ0ySNLls3MzPrnLIB5xxgvfz3caT74UwH/gG8F/hKmUIkDQWuIZ0x7UOaFmcsqVmulVWAzwJzgRtalL8jqa/pOmAv0kzWv5b0gTL1MzOzzik1Si0iLqj7+558f5z3kfpyboqIp0pu7zBgZWDfiHgeuFrSGsA4SafmtEbbny1prYgISYcDuzUp/xvA9RFxRH59naStSDNaX1WyjmZm1gF9uvAzIuZExFUR8fteBBtIZx2TC4HlQlIQ2qWHbTZtRgOQtCKwK3BxYdGFwPaShvSinmZm1malA46kdSV9S9I1kv6en/+fpGG92N4WpKa41+R76szNy/pjc2D5YvnAPaT9fGs/yzczs34oe+HnDsAkYCFwNWkQwbqkJrIvStorIv5SoqihwOwG6bPysv6o5S+WP6uwfBGSDgUOBRg2bBjd3d192vjYkQv7lG8wGray3496fT2m2s3/k0X5OH1dVcdo2altzgJuAz4SES/WEiWtBvwBOBN4T8myGjWNqUl6XxTLUYvtEhHnkAZFMGrUqOjq6urTRsccM7FP+QajsSMXctpdpWdNGvRmHtg10FUAfIwW+Th9XVXHaNkmtS2A0+qDDaS+HOB/gC1LljMLWLNB+hAan/n0Ru1Mplh+7XV/yzczs37ozXU46zVZVhsiXcZ0Cn01kjYGVu1FGc08ALxcLD+/fhW4r5/lm5lZP5QNOF8EjpM0Oo8GQ9KKkvYn3X768JLlXAnsKWn1urTRwDzS5KB9FhELSNfffKKwaDRwY0Q815/yzcysf1rdYvppFu33WJU0nxqS5gCr5fT5wGWkQQQ9+QlwBHCppPHAZsA44PT6odKSZgBTIuKQurS9ch3elV/vlxf9NSIeyn9/E+iW9D3SLa/3zo8PlqibmZl1UKsesx/Svo58ACJilqTdSYMQriD1q5xBCjrFehWnu/kxi87h9pv8fDAwIZc/NQeiU4AvAA8Cn4wIX/RpZjbAWt1ielwnNhgR02g+U0BtneFl0prkvZx0dmNmZkuQXo0JlLQCMBJYC3gWuCsiXupExczMbHDpzUwDRwNPArcAk4G/Ak9K+mqH6mZmZoNI2ZkGvgx8m9TpfxEp8AwjjQD7tqQFEfGDjtXSzMze8Mo2qf038J2I+Hpd2r3A9ZJmk0aeOeCYmVlTZZvUNiZd49JIN7BRW2pjZmaDVtmA8zDQ7CZm78/LzczMmirbpPYD4AeS1gJ+S+rDWZd0Vf8YUpOamZlZU2Xv+HmWpAXAicBnSBeECngcOCwizu1cFc3MbDAofR1ORPxU0rmk/pr1gSeAR3u6E6eZmRmU6MORtJKk+yR9MJJHIuKW/OxgY2ZmpfQYcCJiPukk5YaKAAALG0lEQVSeMq92vjpmZjZYlR2l9kvSJJlmZmZ9UrYP52HgPyTdCkwijVKrb06LiPhxuytnZmaDR9mAc1p+Xh94T4PlQbp9gJmZWUNlh0WXnuTTzMysEQcSMzOrROnrcPK9cMYA2/L6dTg3A+f7njhmZtaTUmc4krYE7ifddvrtwCv5+YfADEkjOlZDMzMbFMqe4ZwDPAfsFBGvTdQpaRNgIuk+OTu3v3pmZjZYlO3DGQWcUB9sAPLrE4Bt2l0xMzMbXMoGnJnASk2WrYRvT2BmZj0oG3COAU6R9N76REnbAScDX2t3xczMbHAp24dzPLAGcIOkp4CnSPfDWRf4F3CcpONqK0fEtu2uqJmZvbGVDTh354eZmVmflJ1pwBN3mplZv3imATMzq4QDjpmZVcIBx8zMKuGAY2Zmlag84EgaIelaSXMlPS7pZEnLlsg3RNJ5kmZJek7SLyWtXVhngqRo8Niic3tkZmZllJ4tuh0kDQWuAaYB+wCbk27utgzpWp9WLgLeBnwWeBUYD1wO7FRYbzqL3w57Zn/qbWZm/VdpwAEOA1YG9o2I54GrJa0BjJN0ak5bjKTtgT2BXSLi+pz2GHCzpD0i4pq61V+MiJs6uxtmZtZbVTep7QVMLgSWC0lBaJce8j1ZCzYAEXEL8GBeZmZmS7iqA84WpCav1+QZp+fmZaXzZfc0yDdC0vOSFkiaKqlVIDMzs4pU3aQ2FJjdIH1WXtaXfJvVvb6ddBfSacCbgLGkZrsd8xnRYiQdChwKMGzYMLq7u3vYhcbGjlzYp3yD0bCV/X7U6+sx1W7+nyzKx+nrqjpGqw44ANEgTU3Se5UvIr6/yEJpIin4HAd8tGGhEeeQbjDHqFGjoqurq4dqNDbmmIl9yjcYjR25kNPuGohDa8k088Cuga4C4GO0yMfp66o6RqtuUpsFrNkgfQiNz2B6yrdmq3wRMQ+YBLynF3U0M7MOqDrgTKfQ5yJpY2BVGvfRNM2XNevbKerp7MnMzDqs6oBzJbCnpNXr0kYD84ApPeRbT9KOtQRJo0j9N1c2yyRpZdIottv6U2kzM+u/qgPOT4AFwKWS9sgd9uOA0+uHSkuaIelntdcRcSMwGfiFpH0lfRT4JTC1dg1Onongz5I+L2l3SaOB64ANgW9VtYNmZtZYpT1mETFL0u7AWcAVpP6XM0hBp1iv4nQ3++d1f04KlH8AjqhbvgB4mjRjwbrAfOBG0sWit7Z1R8zMrNcqH6IREdOA3XpYZ3iDtNmkKWsa3gwuIuYD+7ahimZm1gGeLdrMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJIyRdK2mupMclnSxp2RL5hkg6T9IsSc9J+qWktRust4+kuyTNlzRN0ujO7ImZmfVGpQFH0lDgGiCAfYCTgbHASSWyXwR0AZ8FxgDbAJcXyt8RuAS4DtgLmAj8WtIH2rIDZmbWZ8tVvL3DgJWBfSPieeBqSWsA4ySdmtMWI2l7YE9gl4i4Pqc9BtwsaY+IuCav+g3g+og4Ir++TtJWwAnAVZ3bLTMz60nVTWp7AZMLgeVCUhDapYd8T9aCDUBE3AI8mJchaUVgV+DiQt4Lge0lDel/9c3MrK+qDjhbANPrEyLiYWBuXlY6X3ZPXb7NgeUbrHcPaT/f2of6mplZm1TdpDYUmN0gfVZe1pd8m9WtQ4P1ZhWWL0LSocCh+eUcSfe2qIeVcASsAzwz0PVYUmj8QNfAGvFx+rp+HqObll2x6oADacBAkZqk9yVf8bVa5CcizgHO6WHb1guSbo2IUQNdD7NWfJxWr+omtVnAmg3Sh9D4DKanfGvW5ZtVl1Zchx7KNzOzDqs64Eyn0FcjaWNgVRr30TTNl9X37TwAvNxgvS2AV4H7+lBfMzNrk6oDzpXAnpJWr0sbDcwDpvSQb718nQ0AkkaR+m+uBIiIBaTrbz5RyDsauDEinut/9a0kN1HaG4GP04opoqeukzZuLF34OQ24GxhPChinA9+LiOPr1psBTImIQ+rS/kgaafYV0hnLeOCpiNipbp0dgW7gLNJFoXvn9T8YEb4Ox8xsAFV6hhMRs4DdgWWBK0gzDJwBnFhYdbm8Tr39SWdBPwd+AdwGfKxQ/lRgP2APYDLw78AnHWzMzAZepWc4Zma29PJs0dY2fZ2Y1awKkt4i6WxJd0p6RVL3QNdpaTMQ1+HYIFQ3Mes00sSsmwOnkX7UHN8iq1lVtiL1694ErDDAdVkquUnN2kLSscDRwKa1ufIkHQ2MA9ZrNjGrWVUkLRMRr+a/fwusExFdA1urpYub1Kxd+joxq1klasHGBo4DjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461U18nZjWzpYADjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461S18nZjWzpYQv/LR2+QlwBHCppNrErOOA030Nji0JJK1CuvATYENgDUn75deTImLuwNRs6eELP61tJI0gzdS9Panf5lxgXES8MqAVMwMkDQcebLL4zRExs7LKLKUccMzMrBLuwzEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx6zDlDwoKSS9ZQC2v62kcVVv16zIAces87YHhue/9x+A7W8LnDgA2zVbhAOOWecdALwI3Jz/NlsqOeCYdZCkZYFPAL8Hfg6MkPSOuuVrSjpX0uOS5kt6WNJP65ZvJOliSU9JmifpAUnfLGxjR0lTJM2V9C9JP61NoippDHBm/jvyo7vjO27WgCfvNOus3YBhwIXAVNJccwcA/5eXnw68DzgS+CewMbBzXf5fACsDh5Lmp9uMuttASNoBuBa4HNgPWBv4Dukuq/sBE4HTgLGkpj0AT6ZqA8JzqZl1kKSfAx8DhkXES5ImAiOAzSIiJN0NnB0RZzbJPwc4ICKuaLL8z8DCiNi1Lm03UhAaGRF3SzocODMi1N69M+sdN6mZdYikFUnB5rKIeCkn/5o0gGC7/PoO4KuS/kvSWxsUcwfwbUljJG1SKH8V0lnLxZKWqz1IZ1IvA1u3fafM+sEBx6xz9iLddntS7qtZE+gGFvD64IHDSc1hJwD3SrpfUv1IttHArcAZwEOS7pC0e142FFgW+BEpwNQeC4DlSc1zZksMN6mZdYiki4D/aLL4SWDD+nsF5cEER5OC0ciImFa3bBnS8OZxwE7AJsB84IWcNqnBNh6PiMfdpGZLCgccsw6QtBopqPwOOKew+N2kwQLvj4hrCvnWBx4HPh4RlzYod3vgBmDriPibpBuAByPiwBZ1ORQ4G1g5Iub3Y7fM+sUBx6wDJB0I/C+wXUTcXFi2PPAEKRi9DbgMuBsI4HOkprgtSGcvk0kj1e4DViSNNtuSNOhgnqQdSQMELgZ+m/NsAnwI+HpE3CdpZ2AKcAzwJ+D5iLi3c3tv1pgDjlkHSPoD8NaIaDQQAEk/IjWdTQD2IA0keAW4HTghIv6cBx2cRRomvTEwF7gJODYi7qor673ASaTh1csCDwF/BE6KiOckCRgPHASsB1wfEV1t3mWzHjngmJlZJTxKzczMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlV4v8DdUqlmkdTpu0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -430,13 +430,13 @@ "text/html": [ "
                                                ┌───┐┌────────────────┐┌───┐»\n",
        "  q_0: |0>──────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
-       "          ┌────────────────┐┌──────────────────┐└─┬─┘└────────────────┘└─┬─┘»\n",
-       "  q_1: |0>┤ U3(1.5708,0,0) ├┤      U1(0)       ├──■──────────────────────■──»\n",
-       "          ├────────────────┤├──────────────────┤                            »\n",
-       "  q_2: |0>┤   Ry(1.1847)   ├┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
-       "          ├────────────────┤├──────────────────┤                            »\n",
-       "  q_3: |0>┤   Ry(1.3696)   ├┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
-       "          └────────────────┘└──────────────────┘                            »\n",
+       "          ┌────────────────┐     ┌───────┐      └─┬─┘└────────────────┘└─┬─┘»\n",
+       "  q_1: |0>┤ U3(1.5708,0,0) ├─────┤ U1(0) ├────────■──────────────────────■──»\n",
+       "          └─┬────────────┬─┘┌────┴───────┴─────┐                            »\n",
+       "  q_2: |0>──┤ Ry(1.1847) ├──┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
+       "            ├────────────┤  ├──────────────────┤                            »\n",
+       "  q_3: |0>──┤ Ry(1.3696) ├──┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
+       "            └────────────┘  └──────────────────┘                            »\n",
        "  q_4: |0>──────────────────────────────────────────────────────────────────»\n",
        "                                                                            »\n",
        "q_a_0: |0>──────────────────────────────────────────────────────────────────»\n",
@@ -466,9 +466,9 @@
        "«  q_0: ──■────■───────────────────────────────────────────■──»\n",
        "«         │    │                                           │  »\n",
        "«  q_1: ──┼────┼───────────────────────────────■───────────┼──»\n",
-       "«       ┌─┴─┐  │  ┌──────────────────┐┌────────┴────────┐  │  »\n",
-       "«  q_2: ┤ X ├──┼──┤ U3(-0.28365,0,0) ├┤        X        ├──┼──»\n",
-       "«       └───┘┌─┴─┐└──────────────────┘├─────────────────┤┌─┴─┐»\n",
+       "«       ┌─┴─┐  │  ┌──────────────────┐       ┌─┴─┐         │  »\n",
+       "«  q_2: ┤ X ├──┼──┤ U3(-0.28365,0,0) ├───────┤ X ├─────────┼──»\n",
+       "«       └───┘┌─┴─┐└──────────────────┘┌──────┴───┴──────┐┌─┴─┐»\n",
        "«  q_3: ─────┤ X ├────────────────────┤ U3(0.11174,0,0) ├┤ X ├»\n",
        "«            └───┘                    └─────────────────┘└───┘»\n",
        "«  q_4: ──────────────────────────────────────────────────────»\n",
@@ -483,9 +483,9 @@
        "«  q_0: ─────────────────────────────────────────────────────────────────────░─»\n",
        "«                                                                            ░ »\n",
        "«  q_1: ────────────────────────────■────────────■───────────────────────■───░─»\n",
-       "«       ┌─────────────────┐┌────────┴─────────┐  │                       │   ░ »\n",
-       "«  q_2: ┤ U3(0.28365,0,0) ├┤        X         ├──┼───────────────────────┼───░─»\n",
-       "«       └─────────────────┘├──────────────────┤┌─┴─┐┌─────────────────┐┌─┴─┐ ░ »\n",
+       "«       ┌─────────────────┐       ┌─┴─┐          │                       │   ░ »\n",
+       "«  q_2: ┤ U3(0.28365,0,0) ├───────┤ X ├──────────┼───────────────────────┼───░─»\n",
+       "«       └─────────────────┘┌──────┴───┴───────┐┌─┴─┐┌─────────────────┐┌─┴─┐ ░ »\n",
        "«  q_3: ───────────────────┤ U3(-0.22349,0,0) ├┤ X ├┤ U3(0.22349,0,0) ├┤ X ├─░─»\n",
        "«                          └──────────────────┘└───┘└─────────────────┘└───┘ ░ »\n",
        "«  q_4: ─────────────────────────────────────────────────────────────────────░─»\n",
@@ -549,7 +549,7 @@
        "«                                ░                └───┘               └───┘ ░ 
" ], "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -643,7 +643,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHfBJREFUeJzt3XvUHFWd7vHvw0UItwACgUGGCF4ijCyPvCLMYSThTjhHBNFkoWdWHDTqUWFmoQMiQkCHJTgCuhgXsHTgcEYTZoDhDJcQwuUNdzVIECcJGDQgF1Gcl8QYiEB+549dgUq9/XZX36rTneezVq/u3rVr966dTv/eqn0pRQRmZmbdtkmvK2BmZhsHBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JjVIWmWpOHs9bCkWU3uP1lSFMsaI+9Nkh6ts/1SSSOStij52W+TFJKObqbOZt3igGO24ZgN/IWkfYsbJG0KnAhcHxFrKq+ZWQc44JhtOP4fsBqYXmPbFGACKSiZ9SUHHLMWSTpI0n9IelbSHyUtkvSxVsuLiFXATcC0GpunA88Dd2WfvbukKyX9StJLkh6XdK6kzevUd7PsEttnCulfl/SbQtqekq7JLuGtljRX0ttbPTYzgM16XQGzDVlEzMq9nlzYvCdwH3AZ8DLw34ErJa2NiNnZPsOAimXVMRv4qKT9I+IhgCyIHA/8ICJey/LtDLwA/C3wIjAJOAfYCfhck4e5Hkk7Zcf1PDAzO7YzgfmS3ulLetYqBxyzFkXEnHWvJQm4G3gL8Clav/Q1lxRApgMPZWlHATvmy4yIRcCi3OffB7wEXCbp1Ih4tcXPBzgN2AI4LCJezMq/H1gOzAAub6Ns24j5kppZiyTtIOk7kp4EXskeM4F3tFpmdvbw76SzHGXJ04AngQdzn72JpNMkLZH0UvbZ/wcYRwp67TgcmAesyi7DbQasAH4KDLVZtm3EHHDMWncVKRh8EzgSeB/wz8CWbZY7G/hz4CBJWwLHAbNj/aXdTwMuAP4N+CBwAHBKtq3dz98J+BhvBNF1jw8Ae7RZtm3EfEnNrAVZIDgW+HxEXJZL78QfcXeS+k+mA7sB2zL6Et1HgDkRcXbus/drUO5rwKvAmwrpOxbe/xfwMHB+jTJWNvgMszE54Ji1ZgtgU+D1DnRJ25LONtq6yVREvCbp30hBZXdgSUT8rJBtXP6zM3VHyEVESHoGeFeuzpsChxay3kE6q3rUAwSskxxwzFoQESsk/QQ4W9JKYC1wBqmvY7sOfMRs4POk0Wln19g+H/ispIXAL4G/BiaWKPffgZmSHiH1C30K2KqQ5x+Bk4A7JV0KPAvsChwCDEfEvzZ9NGY44Ji14yTgCuBq4PfApaQf7893oOwHSKPCJgJzamw/B3gz6bJXANcCfwfc0KDcs0l9NOcDfwK+AywGPrkuQ0T8VtKBwD8AlwDbA88B9wBjLr1j1oiqvsW0pLcBXwIOBP4CuKfG/IZa+40nffk/RBrscBNwSkT8vpDvOODrwNtJf/mdGxHXdPIYzMyseb0YpbYvMBV4PHuUdQ0wmfSX2AzSiKD1/pqTdDBwHWk29jHAzcBsSUe2W2kzM2tPL85wNomItdnra4GdGp3hSDoIuB84JCLuztIOAH4EHBERt2dp84DNI+LQ3L63ANtFxMHdOB4zMyun8jOcdcGmSccAz68LNlk5PwZ+lW0jW7J9ClDs0JxDms8wvrUam5lZJ/TLxM9JwNIa6UuybQB7A5vXyLeEdJwtz/42M7P29csotR1I60sVjQB75fJQI99IYft6JM0kLUfCuHHj9t9jj85MpF67di2bbNIv8bx33E7luJ3KcTuV08l2evzxx1+IiJ3L5O2XgAO1J9OpRnrxvcZIT4kRV5CGtjI0NBQLFy5sp46vGx4eZvLkyR0pa5C5ncpxO5Xjdiqnk+2UrSVYSr/8KTBCmgtQtD1vnNGM5NKKeaD2GZKZmVWkXwLOUt7oq8nL9+08QVpgsJhvEmkWeDNDsM3MrMP6JeDMBXbN5tkAIGmI1H8zF15f1v0u0vpTedOAByJiRUV1NTOzGirvw5G0FWniJ6SFCbeTdGL2/paIWC1pGbAgIk4GiIgHsjk2V0v6IumM5QLg3nVzcDJfA4YlXUKaFDo1exzd9QMzM7O6ejFoYBfSPTzy1r1/K2n9qM1IK/HmTQcuJt1v5PWlbfIZIuLeLHh9HfgsaZ7OSRFxWwfrb2ZmLag84ETEct4YOTZWnok10l4EPpE96u17A40XMDQzs4r1Sx+OmZn1OQccMzOrhAOOmZlVop9WGjDriYln3Fx3+/JvHFtRTcz6m89wzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpWoPOBI2kfSHZJWS3pW0nmSNm2wzyxJMcbjy7l8V42RZ1L3j8zMzOrZrMoPk7QDcDuwGDgO2Bv4FinwnVVn1+8BtxbSPgScDswtpC8FPlFIW95ajc3MrFMqDTjAZ4BxwAkRsRKYL2k7YJakC7O0USLiaeDpfJqkrwJLI2JRIfsfI+LBLtTdzMzaUPUltWOAeYXAMocUhA4pW4ikHYEjgNmdrZ6ZmXVL1QFnEumS1+si4ilgdbatrBOBzUnBqmgfSSslrZF0r6TSgczMzLpHEVHdh0mvAF+KiEsK6U8DV0fEmSXLuRMYHxH7F9JPBf5E6iPaGTgN2B84OCJ+PEZZM4GZABMmTNh/zpxaMax5q1atYptttulIWYOsH9rp0WdW1N3+7t3Hd70O/dBOGwK3UzmdbKcpU6Y8FBFDZfJW3YcDUCvCaYz00Rml3UiX304fVXDEtwt5byYFnzNJgwxGVybiCuAKgKGhoZg8eXKZajQ0PDxMp8oaZP3QTjPOuLnu9uUfm9z1OvRDO20I3E7l9Kqdqr6kNgJsXyN9PPBiyTI+SgpQ1zTKGBEvAbcA7y1bQTMz646qA85SCn01kvYAtqbQt1PHdODeiPh1E59b3XVDMzOrqeqAMxc4StK2ubRpwEvAgkY7S5oIHEjJ0WmSxpFGxj3UbEXNzKyzqg44lwFrgOslHZ512M8CLsoPlZa0TNL3a+w/HXgVuLa4QdJ4SfdI+rSkwyRNA+4CdgfO78KxmJlZEyodNBARI5IOAy4FbiT121xMCjrFetVa7mY6cEdE/K7GtjXA70grFuwCvAw8ABwSEQs7cgBmZtayykepRcRi4NAGeSaOkf6eOvu8DJzQVuXMzKxrvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWiqYAjqdZyM2ZmZg01e4bzjKQLJb2rK7UxM7OB1WzAuRw4Efi5pB9Jmilpuy7Uy8zMBkxTAScizomIvYAjgMeAi4DnJP1A0uHdqKCZmQ2GlgYNRMSdEfHXwK7AF4B3AvMkLZc0S9KfdbKSZmbW/9odpTYEfIB02+gR4B7gk8AySR9vs2wzMxsgTQccSXtKOkfSE8AdwG7A3wB/FhH/C9iT1NfzzY7W1MzM+lpTN2CTdCfpjOZp4Crgyoh4Mp8nIl6T9EPg1E5V0szM+l+zd/x8AZgKzI+IqJNvEfDWlmtlZmYDp9lLapcC99cKNpK2kfQBgIh4pXjmY2ZmG7dmA85dwD5jbHtntt3MzGyUZgOO6mzbBljdRl3MzGyANezDyS6TTc4lfVLS0YVsWwLHAo92rmpmZjZIygwaeD9pcidAAB8BXi3k+ROwFPhS56pmZmaDpGHAiYhvks2pkfQr4PiIWNTtipmZ2WBpalh0RHios5mZtaRMH85U4N6IWJm9risibulIzczMbKCUOcO5CTgQ+HH2Ohh7tFoAvkmbmZmNUibgvBV4LvfazMysaWUGDTxZ67WZmVkzyvThbNVMgRHhyZ9mZjZKmUtqq0h9M2W5D8fMzEYpE3D+huYCjpmZ2Shl+nCuqqAeZmY24Nq9xbSZmVkpZQYN/BiYERGLJf2EBpfXIuKATlXOzMwGR5k+nP8EXsq9dn+OmZk1rUwfzidyr2d0tTZmZjawWu7DUbKzpHo3ZTMzMwNaCDiSpkq6H3gZ+A3wsqT7JR3b8dqZmdnAaCrgSPo0cCNpMuippJuxnZq9/49su5mZ2ShN3Q8HOBO4IiI+W0i/TNJlwFeAyztSMzMzGyjNXlJ7M3D9GNuuA3ZsVICkfSTdIWm1pGclnSep7nI4kiZKihqPOTXyHifpUUkvS1osaVqpIzMzs65q9gznLuAQYH6NbYcAd9fbWdIOwO3AYuA4YG/gW6TAd1aJz/8icF/u/QuF8g8mBb7vAqcAU4HZkkYi4rYS5ZuZWZeUmfi5T+7td4DvSXozcAPwW2AX4HjgGOCTDYr7DDAOOCEiVgLzJW0HzJJ0YZZWz2MR8WCd7V8F7o6IU7L3d0naFzgbcMAxM+uhMmc4P2f9yZ4CPp09inf/vJX6q0UfA8wrBJY5wAWkM6QbS9SnJklbAFNIZzZ5c4ArJY2PiBWtlm9mZu0pE3CmdPDzJgF35hMi4ilJq7NtjQLOlZJ2JJ1ZzQa+EhHrVkHYG9gcWFrYZwnpkt07gJ+0V30zM2tVmZUGFnTw83YAXqyRPpJtG8sa4J9Il8VWApOB00lB5rhc2dQof6SwfT2SZgIzASZMmMDw8HC9+pe2atWqjpU1yPqhnU5796t1t1dR/35opw2B26mcXrVTs4MGXidpE2DLYnqJO37WWotNY6SvK/M54PO5pGFJzwPflfSeiFhUp3yNkb6u7CuAKwCGhoZi8uTJ9Wtf0vDwMJ0qa5D1QzvNOOPmutuXf2xy1+vQD+20IXA7ldOrdmp24qcknS5pGfAK8Icaj3pGgO1rpI+n9plPPddmz+/NlU2N8te9b7Z8MzProGbn4ZwCnAF8n3Tm8A/AecDjwHKyS1N1LCX11bxO0h7A1ozue2kkCs9PkILgpEK+ScDarI5mZtYjzQacTwHnABdm72+IiHOBfUkB4+0N9p8LHCVp21zaNNLtD5rtKzoxe34IICLWkOYJfaSQbxrwgEeomZn1VrN9OG8FFkXEa5JeIbtcFRFrJX0X+B7pDGgsl5HOkq6XdAGwFzALuCg/VDq7ZLcgIk7O3s8CtiVN+lwJfAD4EnB9RPwsV/7XSP07l5DmCU3NHkc3eZxmZtZhzZ7h/B7YJnv9FPDfctt2IE3qHFNEjACHkebq3AicC1xMOmvK24z15/MsJc3TuRK4BTgJ+Gb2nC//XtKZz+HAPOCDwEleZcDMrPeaPcO5D3gf6Uf/h6QVAnYE/gR8DrijUQERsRg4tEGeiYX3c0gTOBuKiBtIZzdmZrYBaTbgzAJ2z16fT7qkNoN0ZjMf+EKnKmZmZoOlqYATEY8Bj2Wv15DuhXNqF+plZmYDpp2Jn28BdgOejYhnOlclMzMbRK3cYvqzkn4NPAn8CHhK0tOS/nfHa2dmZgOj2ZUGzgYuJc2nORYYyp7nAt/JtpuZmY3S7CW1zwHnR8RXC+m3ZmubfY608oCZmdl6mr2kNo6x7+q5gBqLeZqZmUHzAecG4IQxtn0YuKm96piZ2aAqc4vpqbm3c4ELJU1k9C2m9wX+vvNVNDOzQVCmD+cmRt9KenfgqBp5/4V0J04zM7P1lAk4b+16LczMbOCVucX0k1VUxMzMBlvTKw1I2ow0QOBgYEfgv4B7SLcKqH/zdzMz22g1FXAk7QLcBuxHusPn88BBpPk3j0g6MiJ+1+lKmplZ/2t2WPRFwJuB90fEXhFxUETsBbw/S7+o0xU0M7PB0GzAmQqcHhE/ySdm779MWubGzMxslGYDzhbAH8bY9gfgTe1Vx8zMBlWzAedB4HRJW+cTs/enZ9vNzMxGaXaU2mnAXcCvJd1GGjSwC2kSqIDJHa2dmZkNjKbOcCJiEfB24ApgZ+AIUsC5DHh7RDzS8RqamdlAKH2GI2lz4ADgVxFxRveqZGZmg6iZM5zXgDuBd3WpLmZmNsBKB5yIWAv8ApjQveqYmdmganaU2leAsyW9uxuVMTOzwdXsKLWzSCsKLJL0DGmUWuQzRMQBHaqbmZkNkGYDzs+zh5mZWVNKBRxJ40jL2vwc+A1we0Q8382KmZnZYClzi+m9gNuBibnklZI+GhG3datiZmY2WMoMGrgQWAv8FbAVsC/wMHB5F+tlZmYDpkzAOQg4KyLui4iXI2IJ8GngzyXt1t3qmZnZoCgTcHYDfllIe4K0dtquHa+RmZkNpLLzcKJxFjMzs7GVHRY9T9KrNdLvKKZHxC7tV8vMzAZNmYBzbtdrYWZmA69hwIkIBxwzM2tbs2upmZmZtcQBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEpUHHEn7SLpD0mpJz0o6T9KmDfZ5n6QrJS3L9ntM0jmStizkmyUpajyO7u5RmZlZI83egK0tknYg3epgMXAcsDfwLVLgO6vOrtOyvBcAvwD2A76WPX+4kHcFUAwwS9qtu5mZtafSgAN8BhgHnBARK4H5krYDZkm6MEur5YKI+F3u/bCkl4HLJe0ZEU/mtr0aEQ92p/pmZtaqqi+pHQPMKwSWOaQgdMhYOxWCzToPZ89eu83MrA9UHXAmAUvzCRHxFLA629aMvyTdGO6xQvr2kl6Q9IqkhyWd0HJtzcysYxRR3Z0HJL0CfCkiLimkPw1cHRFnlixnV+BnwC0RMSOX/nHSGc8iYBvSjeKmAh+OiOvHKGsmMBNgwoQJ+8+ZM6fZw6pp1apVbLPNNh0pa5D1Qzs9+syKutvfvfv4rtehH9ppQ+B2KqeT7TRlypSHImKoTN5eBJwvRsS3C+nPAFdFxFdKlPEm0sCDtwD7R8RInbwC7gfGRcR7GpU9NDQUCxcubJStlOHhYSZPntyRsgZZP7TTxDNurrt9+TeO7Xod+qGdNgRup3I62U6SSgecqi+pjQDb10gfD7zYaOcsgFwN7AtMrRdsACJF0+uB/RoNvTYzs+6qepTaUgp9NZL2ALam0LczhotJw6mPiIgy+dfxHUvNzHqs6jOcucBRkrbNpU0DXgIW1NtR0peBLwAfj4h7y3xYdkZ0PPBIRLzWWpXNzKwTqj7DuQw4Bbhe0gXAXsAs4KL8UGlJy4AFEXFy9v4k4HzgKuAZSQfmynxi3bBpSQuA60hnS1sDnwIOBD7U3cMyM7NGKg04ETEi6TDgUuBGUr/NxaSgU6xXvs/lyOx5RvbI+wQpEAEsA/4W2I00ZPqnwLERMbcT9Tczs9ZVfYZDRCwGDm2QZ2Lh/QxGB5pa+53cRtXMzKyLvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKlF5wJG0j6Q7JK2W9Kyk8yRtWmK/8ZKulDQiaYWkH0h6c418x0l6VNLLkhZLmtadIzEzs2ZsVuWHSdoBuB1YDBwH7A18ixT4zmqw+zXAO4FPAmuBC4AbgL/KlX8wcB3wXeAUYCowW9JIRNzW0YOxnpl4xs0N8yz/xrEV1MTMmlFpwAE+A4wDToiIlcB8SdsBsyRdmKWNIukg4CjgkIi4O0t7BviRpMMj4vYs61eBuyPilOz9XZL2Bc4GHHCsbxSD6mnvfpUZuTQHVOtHVV9SOwaYVwgsc0hB6JAG+z2/LtgARMSPgV9l25C0BTAF+NfCvnOAgySNb7/6ZmbWqqrPcCYBd+YTIuIpSauzbTfW2W9pjfQl2TZIl+c2r5FvCSmwvgP4SWvVHizduiTlS139q+p/O39XNk5VB5wdgBdrpI9k21rZb69cHmrkGylsX4+kmcDM7O0qSY/VqUczdgJe6FBZldMFlZXblXbqVv179VmnFNqpyuPr1We2+Hl9/f+uQp1spz3LZqw64ABEjTSNkd7KfsX3qrM/EXEFcEWDz26apIURMdTpcgeN26kct1M5bqdyetVOVffhjADb10gfT+0zmEb7bZ/bbySXVsxDg/LNzKzLqg44S3mjzwUASXsAW1O7j2bM/TL5vp0ngFdq5JtEGkb9eAv1NTOzDqk64MwFjpK0bS5tGvASsKDBfrtm82wAkDRE6r+ZCxARa4C7gI8U9p0GPBARK9qvflM6fpluQLmdynE7leN2Kqcn7aSIRl0nHfywNPFzMfBz0sTNvYCLgEsi4qxcvmXAgog4OZd2K2mk2Rd5Y+LnbyOiOPFzGLiUNCl0apb/aE/8NDPrrUrPcCJiBDgM2JQ0BPpc4GLgnELWzbI8edNJZ0H/DFwNPAQcXyj/XuBE4HBgHvBB4CQHGzOz3qv0DMfMzDZeXi26AS822lgrbSTpfVn7LMv2e0zSOZK2LOSbJSlqPI7u7lF1XovtNHGM459TI2/ff5eg5XYa63sSkr6cy3fVGHlqDUraoEl6m6TLJT0i6TVJwyX369lvUy/m4fQNLzbaWBttNC3LewHwC2A/4GvZ84cLeVcAxQCzpN26V6nN7xKkvsj7cu/Xm7Q3CN8laKudvgfcWkj7EHA62cCinKXAJwppy1urcU/tS/p3fhB4UxP79e63KSL8GOMBfJk0v2e7XNrfA6vzaTX2O4g00fQDubQDsrTDc2nzgDsL+94C3NvrY6+gjXaukTYza6M9c2mzgBd6fZw9bKeJWZv8jwbl9/13qZ12GqOsm4ElhbSrgIW9Ps4OtdUmudfXAsMl9unpb5MvqdXnxUYba6mNIuJ3NZIfzp536Vz1NhitfpcaGqDvEnSonSTtCBwBzO5s9TYcEbG2hd16+tvkgFPfqEVDI+Ip0l9b9a75dmqx0X7QahvV8pekU/zienbbS3pB0iuSHpZ0Qsu17Z122+nK7Dr9c5IukjQut21QvkvQue/TiaQ2GdXXBewjaaWkNZLuldRWwO8zPf1tcsCprxuLje6Qy0ONfHUXG90AtdpG65G0K/AV4P8W/rpdRrqk8lFS386zwHV9GHRabac1wD8BJ5OmFFwOfJb1f0gH5bsEHfo+kaZR/DQiiiuMPAycBvxP4GOk6RfzJR3QQl37UU9/mzxooLENarHRDVSrbZQySm8inb6vAv5uvYIj/qWQ90bgftJN9a5vpbI91HQ7RcRzwOdzScOSnge+K+k9EbGoTvn9+F2C9r9Pu5Euv50+quCIbxfy3kwaoHAmaZDBxqBnv00+w6nPi4021mobASBJpIm8+wJTI00OHlOk3svrgf3KDE/fgLTVTgXXZs/vzZVNjfL77bsEnWmnj5J+HK9plDEiXiJ1hr+3Ud4B0dPfJgec+rzYaGOtttE6F5OGvx4XEWXyr9Nvf7W32055UXgelO8SdKadppNGU/26ic/tt+9Tq3r62+SAU9/GtNhoq1ptI7IJeV8APh5pWaKGsjOi44FHIuK11qrcEy23Uw0nZs8PwUB9l6DNdpI0ETiQkqPTssEXx5C15Uagt79NvR5LviE/SJ1jzwHzSeuzzST1M3y9kG8Z8P1C2q3AL4ETSNeGHwPuKeQ5GHgVuASYDFxI+gviyF4fe7fbCDiJ9FfllaQfiPxj51y+BaSJZ0eSAs0tWRt9sNfHXlE7zSJNfDwh2+880o/vdYP2XWqnnXLpZ5D+Oq81z2s8cA/wadIAjGmkSZNrgKFeH3sLbbUV6Y+PE4EHgP/Mvd9qrHbq5W9TzxttQ38A+wB3Zv/JnyPNht+0kGc5cFUhbfvsx/RFYCXwQ2CnGuV/iLR69hrSKe30Xh9zFW1EmoAXYzxm5PJ9P/vP8RLwx+wH45heH3OF7TQdWEhabeFP2Q/IecAWg/hdarWdcumLgFvHKHdLUv/fr7M2WpH9+B7Y62NusZ0m1vk/NHGsdurlb5MX7zQzs0q4D8fMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVeL/A/DOldtOjqMQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHfBJREFUeJzt3XvUHFWd7vHvw0UItwACgUGGCF4ijCyPvCLMYSThTjhHBNFkoWdWHDTqUWFmoQMiQkCHJTgCuhgXsHTgcEYTZoDhDJcQwuUNdzVIECcJGDQgF1Gcl8QYiEB+549dgUq9/XZX36rTneezVq/u3rVr966dTv/eqn0pRQRmZmbdtkmvK2BmZhsHBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JjVIWmWpOHs9bCkWU3uP1lSFMsaI+9Nkh6ts/1SSSOStij52W+TFJKObqbOZt3igGO24ZgN/IWkfYsbJG0KnAhcHxFrKq+ZWQc44JhtOP4fsBqYXmPbFGACKSiZ9SUHHLMWSTpI0n9IelbSHyUtkvSxVsuLiFXATcC0GpunA88Dd2WfvbukKyX9StJLkh6XdK6kzevUd7PsEttnCulfl/SbQtqekq7JLuGtljRX0ttbPTYzgM16XQGzDVlEzMq9nlzYvCdwH3AZ8DLw34ErJa2NiNnZPsOAimXVMRv4qKT9I+IhgCyIHA/8ICJey/LtDLwA/C3wIjAJOAfYCfhck4e5Hkk7Zcf1PDAzO7YzgfmS3ulLetYqBxyzFkXEnHWvJQm4G3gL8Clav/Q1lxRApgMPZWlHATvmy4yIRcCi3OffB7wEXCbp1Ih4tcXPBzgN2AI4LCJezMq/H1gOzAAub6Ns24j5kppZiyTtIOk7kp4EXskeM4F3tFpmdvbw76SzHGXJ04AngQdzn72JpNMkLZH0UvbZ/wcYRwp67TgcmAesyi7DbQasAH4KDLVZtm3EHHDMWncVKRh8EzgSeB/wz8CWbZY7G/hz4CBJWwLHAbNj/aXdTwMuAP4N+CBwAHBKtq3dz98J+BhvBNF1jw8Ae7RZtm3EfEnNrAVZIDgW+HxEXJZL78QfcXeS+k+mA7sB2zL6Et1HgDkRcXbus/drUO5rwKvAmwrpOxbe/xfwMHB+jTJWNvgMszE54Ji1ZgtgU+D1DnRJ25LONtq6yVREvCbp30hBZXdgSUT8rJBtXP6zM3VHyEVESHoGeFeuzpsChxay3kE6q3rUAwSskxxwzFoQESsk/QQ4W9JKYC1wBqmvY7sOfMRs4POk0Wln19g+H/ispIXAL4G/BiaWKPffgZmSHiH1C30K2KqQ5x+Bk4A7JV0KPAvsChwCDEfEvzZ9NGY44Ji14yTgCuBq4PfApaQf7893oOwHSKPCJgJzamw/B3gz6bJXANcCfwfc0KDcs0l9NOcDfwK+AywGPrkuQ0T8VtKBwD8AlwDbA88B9wBjLr1j1oiqvsW0pLcBXwIOBP4CuKfG/IZa+40nffk/RBrscBNwSkT8vpDvOODrwNtJf/mdGxHXdPIYzMyseb0YpbYvMBV4PHuUdQ0wmfSX2AzSiKD1/pqTdDBwHWk29jHAzcBsSUe2W2kzM2tPL85wNomItdnra4GdGp3hSDoIuB84JCLuztIOAH4EHBERt2dp84DNI+LQ3L63ANtFxMHdOB4zMyun8jOcdcGmSccAz68LNlk5PwZ+lW0jW7J9ClDs0JxDms8wvrUam5lZJ/TLxM9JwNIa6UuybQB7A5vXyLeEdJwtz/42M7P29csotR1I60sVjQB75fJQI99IYft6JM0kLUfCuHHj9t9jj85MpF67di2bbNIv8bx33E7luJ3KcTuV08l2evzxx1+IiJ3L5O2XgAO1J9OpRnrxvcZIT4kRV5CGtjI0NBQLFy5sp46vGx4eZvLkyR0pa5C5ncpxO5Xjdiqnk+2UrSVYSr/8KTBCmgtQtD1vnNGM5NKKeaD2GZKZmVWkXwLOUt7oq8nL9+08QVpgsJhvEmkWeDNDsM3MrMP6JeDMBXbN5tkAIGmI1H8zF15f1v0u0vpTedOAByJiRUV1NTOzGirvw5G0FWniJ6SFCbeTdGL2/paIWC1pGbAgIk4GiIgHsjk2V0v6IumM5QLg3nVzcDJfA4YlXUKaFDo1exzd9QMzM7O6ejFoYBfSPTzy1r1/K2n9qM1IK/HmTQcuJt1v5PWlbfIZIuLeLHh9HfgsaZ7OSRFxWwfrb2ZmLag84ETEct4YOTZWnok10l4EPpE96u17A40XMDQzs4r1Sx+OmZn1OQccMzOrhAOOmZlVop9WGjDriYln3Fx3+/JvHFtRTcz6m89wzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpWoPOBI2kfSHZJWS3pW0nmSNm2wzyxJMcbjy7l8V42RZ1L3j8zMzOrZrMoPk7QDcDuwGDgO2Bv4FinwnVVn1+8BtxbSPgScDswtpC8FPlFIW95ajc3MrFMqDTjAZ4BxwAkRsRKYL2k7YJakC7O0USLiaeDpfJqkrwJLI2JRIfsfI+LBLtTdzMzaUPUltWOAeYXAMocUhA4pW4ikHYEjgNmdrZ6ZmXVL1QFnEumS1+si4ilgdbatrBOBzUnBqmgfSSslrZF0r6TSgczMzLpHEVHdh0mvAF+KiEsK6U8DV0fEmSXLuRMYHxH7F9JPBf5E6iPaGTgN2B84OCJ+PEZZM4GZABMmTNh/zpxaMax5q1atYptttulIWYOsH9rp0WdW1N3+7t3Hd70O/dBOGwK3UzmdbKcpU6Y8FBFDZfJW3YcDUCvCaYz00Rml3UiX304fVXDEtwt5byYFnzNJgwxGVybiCuAKgKGhoZg8eXKZajQ0PDxMp8oaZP3QTjPOuLnu9uUfm9z1OvRDO20I3E7l9Kqdqr6kNgJsXyN9PPBiyTI+SgpQ1zTKGBEvAbcA7y1bQTMz646qA85SCn01kvYAtqbQt1PHdODeiPh1E59b3XVDMzOrqeqAMxc4StK2ubRpwEvAgkY7S5oIHEjJ0WmSxpFGxj3UbEXNzKyzqg44lwFrgOslHZ512M8CLsoPlZa0TNL3a+w/HXgVuLa4QdJ4SfdI+rSkwyRNA+4CdgfO78KxmJlZEyodNBARI5IOAy4FbiT121xMCjrFetVa7mY6cEdE/K7GtjXA70grFuwCvAw8ABwSEQs7cgBmZtayykepRcRi4NAGeSaOkf6eOvu8DJzQVuXMzKxrvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWiqYAjqdZyM2ZmZg01e4bzjKQLJb2rK7UxM7OB1WzAuRw4Efi5pB9Jmilpuy7Uy8zMBkxTAScizomIvYAjgMeAi4DnJP1A0uHdqKCZmQ2GlgYNRMSdEfHXwK7AF4B3AvMkLZc0S9KfdbKSZmbW/9odpTYEfIB02+gR4B7gk8AySR9vs2wzMxsgTQccSXtKOkfSE8AdwG7A3wB/FhH/C9iT1NfzzY7W1MzM+lpTN2CTdCfpjOZp4Crgyoh4Mp8nIl6T9EPg1E5V0szM+l+zd/x8AZgKzI+IqJNvEfDWlmtlZmYDp9lLapcC99cKNpK2kfQBgIh4pXjmY2ZmG7dmA85dwD5jbHtntt3MzGyUZgOO6mzbBljdRl3MzGyANezDyS6TTc4lfVLS0YVsWwLHAo92rmpmZjZIygwaeD9pcidAAB8BXi3k+ROwFPhS56pmZmaDpGHAiYhvks2pkfQr4PiIWNTtipmZ2WBpalh0RHios5mZtaRMH85U4N6IWJm9risibulIzczMbKCUOcO5CTgQ+HH2Ohh7tFoAvkmbmZmNUibgvBV4LvfazMysaWUGDTxZ67WZmVkzyvThbNVMgRHhyZ9mZjZKmUtqq0h9M2W5D8fMzEYpE3D+huYCjpmZ2Shl+nCuqqAeZmY24Nq9xbSZmVkpZQYN/BiYERGLJf2EBpfXIuKATlXOzMwGR5k+nP8EXsq9dn+OmZk1rUwfzidyr2d0tTZmZjawWu7DUbKzpHo3ZTMzMwNaCDiSpkq6H3gZ+A3wsqT7JR3b8dqZmdnAaCrgSPo0cCNpMuippJuxnZq9/49su5mZ2ShN3Q8HOBO4IiI+W0i/TNJlwFeAyztSMzMzGyjNXlJ7M3D9GNuuA3ZsVICkfSTdIWm1pGclnSep7nI4kiZKihqPOTXyHifpUUkvS1osaVqpIzMzs65q9gznLuAQYH6NbYcAd9fbWdIOwO3AYuA4YG/gW6TAd1aJz/8icF/u/QuF8g8mBb7vAqcAU4HZkkYi4rYS5ZuZWZeUmfi5T+7td4DvSXozcAPwW2AX4HjgGOCTDYr7DDAOOCEiVgLzJW0HzJJ0YZZWz2MR8WCd7V8F7o6IU7L3d0naFzgbcMAxM+uhMmc4P2f9yZ4CPp09inf/vJX6q0UfA8wrBJY5wAWkM6QbS9SnJklbAFNIZzZ5c4ArJY2PiBWtlm9mZu0pE3CmdPDzJgF35hMi4ilJq7NtjQLOlZJ2JJ1ZzQa+EhHrVkHYG9gcWFrYZwnpkt07gJ+0V30zM2tVmZUGFnTw83YAXqyRPpJtG8sa4J9Il8VWApOB00lB5rhc2dQof6SwfT2SZgIzASZMmMDw8HC9+pe2atWqjpU1yPqhnU5796t1t1dR/35opw2B26mcXrVTs4MGXidpE2DLYnqJO37WWotNY6SvK/M54PO5pGFJzwPflfSeiFhUp3yNkb6u7CuAKwCGhoZi8uTJ9Wtf0vDwMJ0qa5D1QzvNOOPmutuXf2xy1+vQD+20IXA7ldOrdmp24qcknS5pGfAK8Icaj3pGgO1rpI+n9plPPddmz+/NlU2N8te9b7Z8MzProGbn4ZwCnAF8n3Tm8A/AecDjwHKyS1N1LCX11bxO0h7A1ozue2kkCs9PkILgpEK+ScDarI5mZtYjzQacTwHnABdm72+IiHOBfUkB4+0N9p8LHCVp21zaNNLtD5rtKzoxe34IICLWkOYJfaSQbxrwgEeomZn1VrN9OG8FFkXEa5JeIbtcFRFrJX0X+B7pDGgsl5HOkq6XdAGwFzALuCg/VDq7ZLcgIk7O3s8CtiVN+lwJfAD4EnB9RPwsV/7XSP07l5DmCU3NHkc3eZxmZtZhzZ7h/B7YJnv9FPDfctt2IE3qHFNEjACHkebq3AicC1xMOmvK24z15/MsJc3TuRK4BTgJ+Gb2nC//XtKZz+HAPOCDwEleZcDMrPeaPcO5D3gf6Uf/h6QVAnYE/gR8DrijUQERsRg4tEGeiYX3c0gTOBuKiBtIZzdmZrYBaTbgzAJ2z16fT7qkNoN0ZjMf+EKnKmZmZoOlqYATEY8Bj2Wv15DuhXNqF+plZmYDpp2Jn28BdgOejYhnOlclMzMbRK3cYvqzkn4NPAn8CHhK0tOS/nfHa2dmZgOj2ZUGzgYuJc2nORYYyp7nAt/JtpuZmY3S7CW1zwHnR8RXC+m3ZmubfY608oCZmdl6mr2kNo6x7+q5gBqLeZqZmUHzAecG4IQxtn0YuKm96piZ2aAqc4vpqbm3c4ELJU1k9C2m9wX+vvNVNDOzQVCmD+cmRt9KenfgqBp5/4V0J04zM7P1lAk4b+16LczMbOCVucX0k1VUxMzMBlvTKw1I2ow0QOBgYEfgv4B7SLcKqH/zdzMz22g1FXAk7QLcBuxHusPn88BBpPk3j0g6MiJ+1+lKmplZ/2t2WPRFwJuB90fEXhFxUETsBbw/S7+o0xU0M7PB0GzAmQqcHhE/ySdm779MWubGzMxslGYDzhbAH8bY9gfgTe1Vx8zMBlWzAedB4HRJW+cTs/enZ9vNzMxGaXaU2mnAXcCvJd1GGjSwC2kSqIDJHa2dmZkNjKbOcCJiEfB24ApgZ+AIUsC5DHh7RDzS8RqamdlAKH2GI2lz4ADgVxFxRveqZGZmg6iZM5zXgDuBd3WpLmZmNsBKB5yIWAv8ApjQveqYmdmganaU2leAsyW9uxuVMTOzwdXsKLWzSCsKLJL0DGmUWuQzRMQBHaqbmZkNkGYDzs+zh5mZWVNKBRxJ40jL2vwc+A1we0Q8382KmZnZYClzi+m9gNuBibnklZI+GhG3datiZmY2WMoMGrgQWAv8FbAVsC/wMHB5F+tlZmYDpkzAOQg4KyLui4iXI2IJ8GngzyXt1t3qmZnZoCgTcHYDfllIe4K0dtquHa+RmZkNpLLzcKJxFjMzs7GVHRY9T9KrNdLvKKZHxC7tV8vMzAZNmYBzbtdrYWZmA69hwIkIBxwzM2tbs2upmZmZtcQBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEpUHHEn7SLpD0mpJz0o6T9KmDfZ5n6QrJS3L9ntM0jmStizkmyUpajyO7u5RmZlZI83egK0tknYg3epgMXAcsDfwLVLgO6vOrtOyvBcAvwD2A76WPX+4kHcFUAwwS9qtu5mZtafSgAN8BhgHnBARK4H5krYDZkm6MEur5YKI+F3u/bCkl4HLJe0ZEU/mtr0aEQ92p/pmZtaqqi+pHQPMKwSWOaQgdMhYOxWCzToPZ89eu83MrA9UHXAmAUvzCRHxFLA629aMvyTdGO6xQvr2kl6Q9IqkhyWd0HJtzcysYxRR3Z0HJL0CfCkiLimkPw1cHRFnlixnV+BnwC0RMSOX/nHSGc8iYBvSjeKmAh+OiOvHKGsmMBNgwoQJ+8+ZM6fZw6pp1apVbLPNNh0pa5D1Qzs9+syKutvfvfv4rtehH9ppQ+B2KqeT7TRlypSHImKoTN5eBJwvRsS3C+nPAFdFxFdKlPEm0sCDtwD7R8RInbwC7gfGRcR7GpU9NDQUCxcubJStlOHhYSZPntyRsgZZP7TTxDNurrt9+TeO7Xod+qGdNgRup3I62U6SSgecqi+pjQDb10gfD7zYaOcsgFwN7AtMrRdsACJF0+uB/RoNvTYzs+6qepTaUgp9NZL2ALam0LczhotJw6mPiIgy+dfxHUvNzHqs6jOcucBRkrbNpU0DXgIW1NtR0peBLwAfj4h7y3xYdkZ0PPBIRLzWWpXNzKwTqj7DuQw4Bbhe0gXAXsAs4KL8UGlJy4AFEXFy9v4k4HzgKuAZSQfmynxi3bBpSQuA60hnS1sDnwIOBD7U3cMyM7NGKg04ETEi6TDgUuBGUr/NxaSgU6xXvs/lyOx5RvbI+wQpEAEsA/4W2I00ZPqnwLERMbcT9Tczs9ZVfYZDRCwGDm2QZ2Lh/QxGB5pa+53cRtXMzKyLvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKlF5wJG0j6Q7JK2W9Kyk8yRtWmK/8ZKulDQiaYWkH0h6c418x0l6VNLLkhZLmtadIzEzs2ZsVuWHSdoBuB1YDBwH7A18ixT4zmqw+zXAO4FPAmuBC4AbgL/KlX8wcB3wXeAUYCowW9JIRNzW0YOxnpl4xs0N8yz/xrEV1MTMmlFpwAE+A4wDToiIlcB8SdsBsyRdmKWNIukg4CjgkIi4O0t7BviRpMMj4vYs61eBuyPilOz9XZL2Bc4GHHCsbxSD6mnvfpUZuTQHVOtHVV9SOwaYVwgsc0hB6JAG+z2/LtgARMSPgV9l25C0BTAF+NfCvnOAgySNb7/6ZmbWqqrPcCYBd+YTIuIpSauzbTfW2W9pjfQl2TZIl+c2r5FvCSmwvgP4SWvVHizduiTlS139q+p/O39XNk5VB5wdgBdrpI9k21rZb69cHmrkGylsX4+kmcDM7O0qSY/VqUczdgJe6FBZldMFlZXblXbqVv179VmnFNqpyuPr1We2+Hl9/f+uQp1spz3LZqw64ABEjTSNkd7KfsX3qrM/EXEFcEWDz26apIURMdTpcgeN26kct1M5bqdyetVOVffhjADb10gfT+0zmEb7bZ/bbySXVsxDg/LNzKzLqg44S3mjzwUASXsAW1O7j2bM/TL5vp0ngFdq5JtEGkb9eAv1NTOzDqk64MwFjpK0bS5tGvASsKDBfrtm82wAkDRE6r+ZCxARa4C7gI8U9p0GPBARK9qvflM6fpluQLmdynE7leN2Kqcn7aSIRl0nHfywNPFzMfBz0sTNvYCLgEsi4qxcvmXAgog4OZd2K2mk2Rd5Y+LnbyOiOPFzGLiUNCl0apb/aE/8NDPrrUrPcCJiBDgM2JQ0BPpc4GLgnELWzbI8edNJZ0H/DFwNPAQcXyj/XuBE4HBgHvBB4CQHGzOz3qv0DMfMzDZeXi26AS822lgrbSTpfVn7LMv2e0zSOZK2LOSbJSlqPI7u7lF1XovtNHGM459TI2/ff5eg5XYa63sSkr6cy3fVGHlqDUraoEl6m6TLJT0i6TVJwyX369lvUy/m4fQNLzbaWBttNC3LewHwC2A/4GvZ84cLeVcAxQCzpN26V6nN7xKkvsj7cu/Xm7Q3CN8laKudvgfcWkj7EHA62cCinKXAJwppy1urcU/tS/p3fhB4UxP79e63KSL8GOMBfJk0v2e7XNrfA6vzaTX2O4g00fQDubQDsrTDc2nzgDsL+94C3NvrY6+gjXaukTYza6M9c2mzgBd6fZw9bKeJWZv8jwbl9/13qZ12GqOsm4ElhbSrgIW9Ps4OtdUmudfXAsMl9unpb5MvqdXnxUYba6mNIuJ3NZIfzp536Vz1NhitfpcaGqDvEnSonSTtCBwBzO5s9TYcEbG2hd16+tvkgFPfqEVDI+Ip0l9b9a75dmqx0X7QahvV8pekU/zienbbS3pB0iuSHpZ0Qsu17Z122+nK7Dr9c5IukjQut21QvkvQue/TiaQ2GdXXBewjaaWkNZLuldRWwO8zPf1tcsCprxuLje6Qy0ONfHUXG90AtdpG65G0K/AV4P8W/rpdRrqk8lFS386zwHV9GHRabac1wD8BJ5OmFFwOfJb1f0gH5bsEHfo+kaZR/DQiiiuMPAycBvxP4GOk6RfzJR3QQl37UU9/mzxooLENarHRDVSrbZQySm8inb6vAv5uvYIj/qWQ90bgftJN9a5vpbI91HQ7RcRzwOdzScOSnge+K+k9EbGoTvn9+F2C9r9Pu5Euv50+quCIbxfy3kwaoHAmaZDBxqBnv00+w6nPi4021mobASBJpIm8+wJTI00OHlOk3svrgf3KDE/fgLTVTgXXZs/vzZVNjfL77bsEnWmnj5J+HK9plDEiXiJ1hr+3Ud4B0dPfJgec+rzYaGOtttE6F5OGvx4XEWXyr9Nvf7W32055UXgelO8SdKadppNGU/26ic/tt+9Tq3r62+SAU9/GtNhoq1ptI7IJeV8APh5pWaKGsjOi44FHIuK11qrcEy23Uw0nZs8PwUB9l6DNdpI0ETiQkqPTssEXx5C15Uagt79NvR5LviE/SJ1jzwHzSeuzzST1M3y9kG8Z8P1C2q3AL4ETSNeGHwPuKeQ5GHgVuASYDFxI+gviyF4fe7fbCDiJ9FfllaQfiPxj51y+BaSJZ0eSAs0tWRt9sNfHXlE7zSJNfDwh2+880o/vdYP2XWqnnXLpZ5D+Oq81z2s8cA/wadIAjGmkSZNrgKFeH3sLbbUV6Y+PE4EHgP/Mvd9qrHbq5W9TzxttQ38A+wB3Zv/JnyPNht+0kGc5cFUhbfvsx/RFYCXwQ2CnGuV/iLR69hrSKe30Xh9zFW1EmoAXYzxm5PJ9P/vP8RLwx+wH45heH3OF7TQdWEhabeFP2Q/IecAWg/hdarWdcumLgFvHKHdLUv/fr7M2WpH9+B7Y62NusZ0m1vk/NHGsdurlb5MX7zQzs0q4D8fMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVeL/A/DOldtOjqMQAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -655,7 +655,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8XeO97/HPty5tCHFNqNqCam2qZ9cKpZTEpYjzqlZpbNvpoSTR9pR9Tinq0mBzirrs1rEltNQ+JbpRu1TcYiWkdWmSammEUnGJS4UQETSR3/7jGTOmueZca8615hxjZub7fr3Ga67xjGeM+ZtLrN98LuMZigjMzMxa7UNFB2BmZqsGJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44VjHkTRBUtTYjig6vmokDc3iHt7Ea/5Q0rw+6kyQtKBZ72nWm9WLDsCsRd4A9q9S/mTegdRpKPB9YBowr9BIzFrECcc61bKIeKDoIMzsfe5Ss1WSpBMlvSNpu7KynSUtk3RMtj8y64b7gqRbJb0l6VlJx1a53u6SpktaIulVSVdIWqeizhaSrpO0IKv3R0mHZ91oj2TVukvdf2XnbSBpoqSXs5h/K+mzFddeT9K1WYwvSjq1ib+rLSXdLGmRpDcl3SLp4xV1jpb0J0lvZ59vuqTty46fIunJLP6XJd0uaZNmxWgrB7dwrGNJ6vHvOyKWZT9eCBwE/EzSrqT/F34G3BkRV1ac9hPg34EfAwcD/ybp+Yi4NXuf3YCpwM3AIcCGwA+A9bN9JA0F7geWACcAzwGfAjYHXgT+Cfg58C1gdtln+DBwN7AecCLwV+AbwN2StomIl7KqVwEjgX8GXsreY2ug9Hn7JXv/qcBSYGx2vTOB6ZJ2iIjXJO0BXA6ckX3GdYFdgSHZNb4GfA84CfhT9vvZC1h7ILHZSigivHnrqA2YAESNbXhZvY8Di4HTgYuA14CPlh0fmZ0zqeL6dwEPlO3fB3RX1NkrO/dT2f7/Bd4CNq0R86ey+iMryo8G/gZsU1a2OvAUcEG2v3127piyOoOzzzOvjt/Vgl6OH0tKMluVlX0si+mUbP8EYFYv17gUuLHofxfeit/cpWad6g1gpyrbC6UKEfEk6Vv36cDxwLcj4oWel+KXFfs3AV2SVpO0Funb/C8krV7agBmkVkFXds5ewO0R8WKDn2MfYBbwdNm1AaYDI7Kfd8pef1X22RaTEuNA7QzMjoi/lF37eeA3wO5Z0cPAZyRdLGkPSWtWXONhYLSkM7Nuy9WaEJethJxwrFMti4iZVba/VdS7MXt9DfiPGtf6a5X91YGNSN1mqwGXkRJMaXsXWIPUZQapG6nRZEP2HrtUXHspcFTZtTcB3oyIt/uIuz82BV6uUv4ysAFARNydxbMHaZbdAkmXSSp1mf2U1KX2VeBB4GVJZzvxrHo8hmOruonAs6RpyRNIfxgrDa2yvwxYAHyE1J01AbityrmlFtOrpD/ejXoNmEkat6n0bvb6ErCOpEEVSacy7v54kdRlV2lYFhsAEfEz0njYxqRxrouBRcDJEbE8279Y0uak8apzgPmksR9bRbiFY6usbDD7QOAI4DvAdyXtXKXql6vsz4qI9yLiLeAB4JM1WlSlhDMV2E/SsBrhlFpeH6kon0oaa3q2yrVLM9t+l71+seyzDQb27fUXUJ8HSd2HW5ZdezPgc6Ruww+IiFciYiJpXGu7Ksefi4gfkO6H6nHcOptbONapVpe0S5Xy5yJivqSPAf9KGnh/AHhA0sGkb+mfiYh3ys45QNI5pHGTg0l/yA8qO/5dYKqk5cANwJvA35GS2akR8QTpG/7XgPuyaz0H/D2wdkScT2plvQ38T0lvAEsjYiZwDWngfpqkHwJ/IXXP7Qy8FBEXR8SfJP2KNHtuXVKr5ETSjLh6rCnpkCrl04GrSeNcUySdAbxHNtGA1DpE0pmk7rVpWflngD2Bk7PjE0mtoQdIY2ujgG2y69qqpOhZC968NXuj91lqp2V1bifd+7Jm2XmbAQuBC7P9kdk5+wFTSH/Anwe+WeU9P5tdcxFpNtoc0sy3IWV1tgCuz95jCfAH4LCy4/8EPEFq7URZ+RBScnwuO/Y8aeLCbmV11gcmZ+/9MmmK8g+pb5Zard/VyKzOVqQp32+SZvXdygdnzf13UkvsFeAd4HFSslF2/EjSJIPXss/9R+Doov+deMt/K/2DyE12w9iJpIHQTwH3RcTIOs4bAlwCfInUFXgrcFxEvFpR7yDgX0jfoP4CnBkR1zfzM9iqQdJIoBvYISIeLTgcs5VeEWM42wOjSd/knmjgvOtJ3ziPIX1j2on0rWsFSbuTZh11AwcAvwauk/SFgQZtZmYDU0QL50ORZq0g6QZgo75aONmd4L8F9oyIe7OynUkDmvtGmpaJpDuANSJir7JzbwPWjYjde17ZrDa3cMyaK/cWTinZNOgA4OVSssmu8xDwdHastATHKOAXFedOBnbNuuTM6hYR0yJCTjZmzbGyTIveFphbpfyx7BikdaPWqFLvMdLn/ETLojMzsz6tLNOi1wder1K+kDSDplSHKvUWVhz/AEnjgHEAgwYN6tp8882rVWuZ5cuX86EPtWfeb+fYoPXxrfNEGmJ88xONf1dZ1X93A9HOsUF7x1dEbE888cSCiNi4nrorS8KBNE2zkqqUV+6rl/OJiEnAJIARI0bEzJkzBxJjw6ZNm8bIkSNzfc96tXNskEN8yv7pPP54w6eu8r+7AWjn2KC94ysiNknP1Fu3PdN0TwtJy7NXWo/3WzQLy8oq60D1FpKZmeVkZUk4c3l/rKZc+djOU6RFDSvrbQssp7Ep2GZm1mQrS8KZAmyS3WcDgKQRpPGbKQAR8S5pCuuhFeeOAe6PiDdyitXMzKrIfQwne37I6Gx3M2DdsnWcbouIJZKeBKZHxNEAEXF/do/NNZJOILVYzgNmlO7ByZxNWnPqEtJNoaOzbf+WfzAzM+tVEZMGhtLzuSOl/S2BeaS4Kp+VcRhpAcSfUra0TXmFiJiRJa9/IS3n/jRweETc2cT4bVWR803RZp0u94QTEfN4f+ZYrTrDq5S9TnrI01F9nHszFUvemJlZ8VaWMRwzM1vJOeGY1dLVlTYza4qV6cZPs3zNnl10BGYdxQnHrE7DT/71ip/n/eDAAiMxWzm5S83MzHLhhGNmZrlwwjEzs1w44ZiZWS48acCslrFji47ArKM44ZjVMmlS0RGYdRR3qZmZWS6ccMxqmTUrbWbWFO5SM6tlxIj06lWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjV4sdLmzWVu9TMzCwXTjhmtYwblzYzawonHLNarrgibWbWFE44ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma58I2fZrXsuGPREZh1FCccs1r8eGmzpnKXmpmZ5cIJx8zMcuGEY1aLlDYzawonHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmuXDCMTOzXDjhmJlZLrzSgFktEycWHYFZR3HCMavFj5c2a6rcu9QkbSdpqqQlkl6QdJak1fo4Z4KkqLGdUlbv6hp1tm39JzMzs97k2sKRtD5wNzAHOAjYGriQlPhO6+XUK4HbK8q+BJwETKkonwscVVE2r38R2ypt0qT06paOWVPk3aV2LDAIODgiFgF3SVoXmCDp/Kysh4h4Hni+vEzS6cDciHi4ovpbEfFAC2K3Vc348enVCcesKfLuUjsAuKMisUwmJaE9672IpA2AfYHrmhuemZm1St4JZ1tSl9cKEfEssCQ7Vq9DgDVIyarSdpIWSXpX0gxJdScyMzNrHUVEfm8mLQVOjIhLKsqfB66JiO/VeZ17gCER0VVRfjzwN9IY0cbAd4AuYPeIeKjGtcYB4wCGDRvWNXlytRzWOosXL2bw4MG5vme92jk2aH18I0eNAmBadzcAj8x/Y8WxHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEbhuwFDi+Svl84Jw6r7Ep8B5wQh11BwFPAzfXc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9Tqv8VVAwPV9VYyIt4HbAD+c3sysYHknnLlUjNVI2hxYm4qxnV4cBsyIiOcaeN/8+g3NzKyqvBPOFGA/SeuUlY0B3gam93WypOHALtQ5O03SINLMuFmNBmpGqVPNzJoi74RzOfAucJOkfbIB+wnARVE2VVrSk5J+UuX8w4BlwA2VByQNkXSfpPGS9pY0BugGNgPObcFnMTOzBuR642dELJS0N3ApcAtp3OZiUtKpjKvacjeHAVMj4pUqx94FXiGtWDAUeAe4H9gzImY25QOYmVm/5b54Z0TMAfbqo87wGuX/0Ms57wAHDyg4s3Jd2az7We6RNWsGrxZtVsvs2UVHYNZR/AA2MzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7NceJaaWS1jxxYdgVlHccIxq6X0iGkzawp3qZmZWS4aSjiSqi03Y9aZZs3yKgNmTdRol9p8SdcAV0XEY60IyKxtjMgeYugVo82aotEutYnAIcCjkh6UNE7Sui2Iy8zMOkxDCScivh8RWwH7Ao8DFwEvSvq5pH1aEaCZmXWGfk0aiIh7IuJrwCbAt4FPAndImidpgqSPNjNIMzNb+Q10ltoIYA/SY6MXAvcBxwBPSjpigNc2M7MO0nDCkbSFpO9LegqYCmwKfB34aET8D2AL0ljPBU2N1MzMVmoNzVKTdA+pRfM8cDVpttoz5XUi4j1J1wLHNytIMzNb+TU6LXoBMBq4K6LXuaIPA1v2OyqzdjDTTyY3a6ZGE86lwOxqyUbSYGDHiLg3IpYCz/Q422xlUnrEtJk1RaNjON3AdjWOfTI7bmZm1kOjCUe9HBsMLBlALGbtZdy4tJlZU/TZpSZpD2BkWdExkvavqPYR4EDgkeaFZlawK65Ir1412qwp6hnD+Szp5k6AAA4FllXU+RswFzixeaGZmVkn6TPhRMQFZPfUSHoa+HJEPNzqwMzMrLM0NEstIjzV2czM+qWeMZzRwIyIWJT93KuIuK0pkZmZWUepp4VzK7AL8FD2c1B7tloAfkibmZn1UE/C2RJ4sexns1XDjjsWHYFZR6ln0sAz1X4263h+vLRZU9UzhrNWIxeMCN/8aWZmPdTTpbaYNDZTL4/hmJlZD/UknK/TWMIx6wzK5sb0ujC6mdWrnjGcq3OIw8zMOtxAHzFtZmZWl3omDTwEHBkRcyT9jj661yJi52YFZ2ZmnaOeMZw/AW+X/ewObTMza1g9YzhHlf18ZEujMTOzjtXvMRwlG0vq7aFsZmZmQIOrRcOKxTxPA7qy85dJmgWcExG/bnJ8ZsWZOLHoCMw6SkMJR9J44DJgKnA88FdgKHAw8CtJ34wI/19qncGPlzZrqkZbON8DJkXENyrKL5d0OXAq4IRjZmY9NDqGsyFwU41jNwIb9HUBSdtJmippiaQXJJ0lqdflcCQNlxRVtslV6h4k6RFJ70iaI2lMXZ/MrNKkSWkzs6ZotIXTDewJ3FXl2J7Avb2dLGl94G5gDnAQsDVwISnxnVbH+58A/KZsf0HF9XcnJb7LgOOA0cB1khZGxJ11XN/sfePHp1d3rZk1RT03fm5Xtvsj4EpJGwI38/4YzpeBA4Bj+rjcscAg4OCIWATcJWldYIKk87Oy3jweEQ/0cvx04N6IOC7b75a0PXAG4IRjZlagelo4j/LBmz0FjM+2yqd/3k7vq0UfANxRkVgmA+eRWki31BFPVZI+DIwitWzKTQaukjQkIt7o7/XNzGxg6kk4o5r4ftsC95QXRMSzkpZkx/pKOFdJ2oDUsroOODUiSqsgbA2sAcytOOcxUpfdJ4DfDSx8MzPrL0WOS69LWgqcGBGXVJQ/D1wTEd+rcd6mpBlwdwKLgJHAScCdEXFQVmc3YAbwmYh4uOzcjwN/BvarNo4jaRwwDmDYsGFdkyf3mIfQUosXL2bw4MG5vme92jk2aH18I0el71rTursBeGT++w3kHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEvzZSq2Gtyq2Pc5YCx1cpn0+6cbSR9/8GqUvvH7L93bL9/1ZRb5usfN++rtnV1RV56+7uzv0969XOsUXkEF96Es6K3S1OunXF1pdV/nc3AO0cW0R7x1dEbMDMqPPvdkPTorPlbE6S9GSWPN6ssvVmIbBelfIhwOuNxALckL3uWHZtqly/tN/o9c3MrIkavQ/nOOBk4CekyQLnAGcBTwDzyLqmejGXNFazgqTNgbXpOfbSl6h4fYqUBLetqLctsDyL0ax+pTaOmTVFowlnLPB94Pxs/+aIOBPYnpQwtunj/CnAfpLWKSsbQ3r8wfQGYzkke50FEBHvku4TOrSi3hjg/vAMNTOzQjV64+eWwMMR8V42AWA9gIhYLuky4EpSC6iWy0mtpJsknQdsBUwALoqyqdJZl930iDg6258ArEO66XMRsAdwInBTRPyx7PpnA9MkXUK6T2h0tu3f4Oc0M7Mma7SF8ypQmgLxLPCZsmPrk27qrCkiFgJ7k+7VuQU4E7iY1GoqtzofvJ9nLuk+nauA24DDgQuy1/LrzyC1fPYB7gC+CBweXmXA+qOrK21m1hSNtnB+A+xE+qN/LWmFgA2AvwHfIq0i3auImAPs1Ued4RX7k0k3cPYpIm4mtW7MBmb27KIjMOsojSacCcBm2c/nkrrUjiS1bO4Cvt2swMzMrLM0lHAi4nHg8eznd0nPxDm+BXGZmVmHafiJnyWSPgZsCrwQEfObF5KZmXWiRicNIOkbkp4DngEeBJ6V9LykbzY9OjMz6xiNrjRwBnAp6X6aA4ER2esU4EfZcTMzsx4a7VL7FnBuRJxeUX67pJez42c1JTKzoo0dW3QEZh2l0YQziNpP9ZyOZ6lZJ/Hjpc2aqtExnJuBg2sc+wpw68DCMTOzTlXPI6ZHl+1OAc6XNJyej5jeHvhu80M0K8isWenVqw2YNUU9XWq30vNR0psB+1Wp+/9JT+I0W/mNyJ4p5RWjzZqinoSzZcujMDOzjtdnwomIZ/IIxMzMOlvDKw1IWp00QWB3YAPgNeA+0qMCljU3PDMz6xQNJRxJQ4E7gU+TnvD5MrAr6f6bP0j6QkS80uwgzcxs5dfotOiLgA2Bz0bEVhGxa0RsBXw2K7+o2QGamVlnaDThjAZOiojflRdm+6eQlrkxMzProdExnA8Db9Y49iaw5sDCMWsjM2cWHYFZR2k04TwAnCTpnoh4q1QoaW3gpOy4WWfwDZ9mTdVowvkO0A08J+lO0qSBoaSbQAWMbGp0ZmbWMRoaw4mIh4FtgEnAxsC+pIRzObBNRPyh6RGaFWXcuLSZWVPU3cKRtAawM/B0RJzcupDM2sQVV6RXrxpt1hSNtHDeA+4B/r5FsZiZWQerO+FExHLgz8Cw1oVjZmadqtH7cE4FzpC0QyuCMTOzztXoLLXTSCsKPCxpPmmW2gfWbo+InZsUm5mZdZBGE86j2WZmZtaQuhKOpEGkZW0eBV4C7o6Il1sZmFnhdtyx6AjMOko9j5jeCrgbGF5WvEjSVyPizlYFZla40iOmzawp6pk0cD6wHPg8sBawPfB7YGIL4zIzsw5TT8LZFTgtIn4TEe9ExGPAeODvJG3a2vDMzKxT1JNwNgX+UlH2FGnttE2aHpFZu5DSZmZNUe99ONF3FTMzs9rqnRZ9h6RlVcqnVpZHxNCBh2VmZp2mnoRzZsujMDOzjtdnwokIJxwzMxuwRtdSMzMz6xcnHDMzy0Wja6mZrTom+t5ms2ZywjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hS5JxxJ20maKmmJpBcknSVptT7O2UnSVZKezM57XNL3JX2kot4ESVFl27+1n8o60vjxaTOzpsh1DEfS+qRHHcwBDgK2Bi4kJb7Tejl1TFb3PODPwKeBs7PXr1TUfQOoTDCPDTR2MzMbmLwnDRwLDAIOjohFwF2S1gUmSDo/K6vmvIh4pWx/mqR3gImStoiIZ8qOLYuIB1oTvpmZ9VfeXWoHAHdUJJbJpCS0Z62TKpJNye+zV6/dZma2Esg74WwLzC0viIhngSXZsUZ8jvRguMcryteTtEDSUkm/l3Rwv6M1M7OmUUR+Tx6QtBQ4MSIuqSh/HrgmIr5X53U2Af4I3BYRR5aVH0Fq8TwMDCY9KG408JWIuKnGtcYB4wCGDRvWNXny5EY/1oAsXryYwYMH5/qe9Wrn2KD18Y0cNQqAad3dADwy/40Vx3bYbEihsQ1UO8fXzrFBe8dXRGyjRo2aFREj6qocEbltwFLg+Crl84Fz6rzGmsC9pIfCrd9HXQH3Aw/Xc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9b5OliTgGmB7YHRELOytfvbLuAn4dF9Tr816KKUcM2uKvGepzaVirEbS5sDaVIzt1HAxaTr1vhFRT/0S/9UwMytY3i2cKcB+ktYpKxsDvA1M7+1ESacA3waOiIgZ9bxZ1iL6MvCHiHivfyGbmVkz5N3CuRw4DrhJ0nnAVsAE4KIomyot6UlgekQcne0fDpwLXA3Ml7RL2TWfimzatKTpwI2k1tLawFhgF+BLrf1Y1pG6utLrrFnFxmHWIXJNOBGxUNLewKXALaRxm4tJSacyrvIxly9kr0dmW7mjSIkI4Engn4FNSVOmZwMHRsSUZsRvq5jZs4uOwKyj5P54goiYA+zVR53hFftH0jPRVDvv6AGEZmZmLeTVos3MLBdOOGZmlgsnHDMzy4UTjpmZ5SL3SQNmK42xY4uOwKyjOOGY1eLHS5s1lbvUzMwsF044ZrXMmuVVBsyayF1qZrWMyB7x4RWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjVUnrEtJk1hbvUzMwsF044ZrWMG5c2M2sKJxyzWq64Im1m1hROOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmufCNn2a17Lhj0RGYdRQnHLNa/Hhps6Zyl5qZmeXCCcfMzHLhhGNWi5Q2M2sKJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS680oBZLRMnFh2BWUdxwjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hTuUjOrZfz49OquNbOmcAvHzMxykXvCkbSdpKmSlkh6QdJZklar47whkq6StFDSG5J+LmnDKvUOkvSIpHckzZE0pjWfxMzMGpFrwpG0PnA3EMBBwFnAd4Az6zj9emAkcAxwJLATcHPF9XcHbgS6gQOAXwPXSfpCUz6AtZVH5r/B8JN/XXQYZlanvMdwjgUGAQdHxCLgLknrAhMknZ+V9SBpV2A/YM+IuDcrmw88KGmfiLg7q3o6cG9EHJftd0vaHjgDuLN1H8usdUpJdd4PDiw4ErOBybtL7QDgjorEMpmUhPbs47yXS8kGICIeAp7OjiHpw8Ao4BcV504GdpU0ZODhm5lZf+XdwtkWuKe8ICKelbQkO3ZLL+fNrVL+WHYMYGtgjSr1HiMl1k8Av+tf2J2nld+a/Y185VfeVZnXf8fSe169/9q5vJ/lL++Esz7wepXyhdmx/py3VVkdqtRbWHH8AySNA0rzXhdLeryXOFphI2BBzu+5gs7r9fCAYuvj2s2wEbCg5e9T5amfdbxn0/+7Nvlz1h1fDv8dP2DUecX+P1GHdo6viNi2qLdiEffhRJUy1Sjvz3mV+6pRngojJgGF3d0naWZEjCjq/XvTzrFBe8fXzrFBe8fXzrFBe8fXzrFB/mM4C4H1qpQPoXoLpq/z1is7b2FZWWUd+ri+mZm1WN4JZy7vj7kAIGlzYG2qj9HUPC9TPrbzFLC0Sr1tgeXAE/2I18zMmiTvhDMF2E/SOmVlY4C3gel9nLdJdp8NAJJGkMZvpgBExLuk+28OrTh3DHB/RLwx8PBbop0X62rn2KC942vn2KC942vn2KC942vn2FBEX0MnTXyzdOPnHOBR4DxSwrgIuCQiTiur9yQwPSKOLiu7nTTT7ARSi+U84K8R8fmyOrsD04BLSTeFjs7q7x8Rvg/HzKxAubZwImIhsDewGmkK9JnAxcD3K6quntUpdxipFfRT4BpgFvDliuvPAA4B9gHuAL4IHO5kY2ZWvFxbOGZmturyatFtQNK6ks6U9FC2MOlLkn4p6RNFx1YiaYykmyS9KCkkHVlQHP1a/DUPkj4uaaKkP0h6T9K0omMqkXSopF9Jmi9psaRZkv6x6LhKJB0i6beSXs0W3n1c0mmS1iw6tkqSNst+hyFpcBvEc2QWS+V2bNGxVfLzcNrD3wFjgZ8ApwJrAaeQ1or7dEQ8V2RwmUOA4cCtpAVUc1e2+Osc0uKvWwMXkr44ndbLqXnZnjRu+ADQbn8o/w9pKaj/TboxcDRwraSNIuLHhUaWbEia9HMB6RaGnYEJwCbA/yourKouABaTZte2k71IE7BK/lJUILW4S60NSFobWB4Rb5eVbQA8C1wQEfWspt1Skj4UEcuzb3RvAkdFxNU5x3AK8F1gi9J6fJK+S/aHqdbir3kp/Y6yn28ANoqIkUXGVJIllgUVZdcCu0bElgWF1StJ5wDfAtaPNvlDJenzwH8C55ISzzoRsbjgmI4ErmqHWPriLrU2EBFvlSebrOw14BlgaDFRfVDpD2nB+rv4ay7a5HdUVWWyyfyeNvn3VcOrtFFLMeu6/THpsSrturRNW3PCaVOSNgY+Tuo+sqTHIq4R8SxQWvzVGvM52uzfl6TVJK2V3eJwHPBv7dK6IT1e5SPA/ys6kBqekrQsG/8aX3Qw1XgMp31dSOonnlx0IG2kv4u/WgVJe5PGwb5edCwV3gI+nP18DXBigbGskD1d+GzgiIhYqioLuhboRdKzwB4i3U7yj8DlktaKiIsLjayCE06LZM/f2bSvehHRY0kfSd8AjgC+EhGvtiC8AcUkpRQRAAACcUlEQVRXsP4u/moZScOBa4H/zHscrg6fI02a2Zn04MRLgW8WGlFyDvBgRNxWdCCVIuIO0n2HJVOy54OdJulf26mr1wmndQ4Frqij3ge+Kkn6Iqmf+KSI+GUrAsv0K76C9XfxV8tkk1GmkCakHFFwOD1ExOzsxxmSFgA/k3RhRDxVVEzZU4O/DuwhqfTvb63sdYik9yrHYNvADcBXSTNL22a2msdwWiQirowI9bWVnyPpc6QutMsj4oJ2i68N9HfxVwMkrUWa1r4mcGBEvFVwSH0pJZ+iZ9FtQ3q44/2kLz0LeX8c53nSF8R21VYtf7dw2kT2LepW4HbSYKn1NAU4UdI6EfFmVlbP4q+rPEmrA/9B+uO5W0T8teCQ6rFb9vp0oVHADNLj68vtD5xEup+pbVoQZb5Cmkn3TNGBlHPCaQOShpISzWLgR8DOZYOSiyKi8JlEkrYDtiPN0gEYIWkx8EpE5PXH/nJSMr5JUmnx1wnARUXfgwMrWhCjs93NgHUlHZLt3xYRS4qJDIDLSLEdD2wgaZeyY7/PVlsvTLY4793An4D3SMnmO8D1RXanwYop5dPKy7JxMID7ir73RdKNpAkDfyRNGhiTbce10/gN+MbPtiBpJOku62qmt8PNg5Im0HORVcg5vizxXQrsShq3uRKYEBHv5RVDLdkfoVrfxreMiHm5BVNB0jxqPwq40NgAJJ1NWox3OLCM1Gq4itS9vLTA0Kpqp5stJZ1LatFsThpznUNagf/fi4yrGiccMzPLhScNmJlZLpxwzMwsF044ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7Nc/BdtOPoFOYDNHAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8XeO97/HPty5tCHFNqNqCam2qZ9cKpZTEpYjzqlZpbNvpoSTR9pR9Tinq0mBzirrs1rEltNQ+JbpRu1TcYiWkdWmSammEUnGJS4UQETSR3/7jGTOmueZca8615hxjZub7fr3Ga67xjGeM+ZtLrN98LuMZigjMzMxa7UNFB2BmZqsGJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44VjHkTRBUtTYjig6vmokDc3iHt7Ea/5Q0rw+6kyQtKBZ72nWm9WLDsCsRd4A9q9S/mTegdRpKPB9YBowr9BIzFrECcc61bKIeKDoIMzsfe5Ss1WSpBMlvSNpu7KynSUtk3RMtj8y64b7gqRbJb0l6VlJx1a53u6SpktaIulVSVdIWqeizhaSrpO0IKv3R0mHZ91oj2TVukvdf2XnbSBpoqSXs5h/K+mzFddeT9K1WYwvSjq1ib+rLSXdLGmRpDcl3SLp4xV1jpb0J0lvZ59vuqTty46fIunJLP6XJd0uaZNmxWgrB7dwrGNJ6vHvOyKWZT9eCBwE/EzSrqT/F34G3BkRV1ac9hPg34EfAwcD/ybp+Yi4NXuf3YCpwM3AIcCGwA+A9bN9JA0F7geWACcAzwGfAjYHXgT+Cfg58C1gdtln+DBwN7AecCLwV+AbwN2StomIl7KqVwEjgX8GXsreY2ug9Hn7JXv/qcBSYGx2vTOB6ZJ2iIjXJO0BXA6ckX3GdYFdgSHZNb4GfA84CfhT9vvZC1h7ILHZSigivHnrqA2YAESNbXhZvY8Di4HTgYuA14CPlh0fmZ0zqeL6dwEPlO3fB3RX1NkrO/dT2f7/Bd4CNq0R86ey+iMryo8G/gZsU1a2OvAUcEG2v3127piyOoOzzzOvjt/Vgl6OH0tKMluVlX0si+mUbP8EYFYv17gUuLHofxfeit/cpWad6g1gpyrbC6UKEfEk6Vv36cDxwLcj4oWel+KXFfs3AV2SVpO0Funb/C8krV7agBmkVkFXds5ewO0R8WKDn2MfYBbwdNm1AaYDI7Kfd8pef1X22RaTEuNA7QzMjoi/lF37eeA3wO5Z0cPAZyRdLGkPSWtWXONhYLSkM7Nuy9WaEJethJxwrFMti4iZVba/VdS7MXt9DfiPGtf6a5X91YGNSN1mqwGXkRJMaXsXWIPUZQapG6nRZEP2HrtUXHspcFTZtTcB3oyIt/uIuz82BV6uUv4ysAFARNydxbMHaZbdAkmXSSp1mf2U1KX2VeBB4GVJZzvxrHo8hmOruonAs6RpyRNIfxgrDa2yvwxYAHyE1J01AbityrmlFtOrpD/ejXoNmEkat6n0bvb6ErCOpEEVSacy7v54kdRlV2lYFhsAEfEz0njYxqRxrouBRcDJEbE8279Y0uak8apzgPmksR9bRbiFY6usbDD7QOAI4DvAdyXtXKXql6vsz4qI9yLiLeAB4JM1WlSlhDMV2E/SsBrhlFpeH6kon0oaa3q2yrVLM9t+l71+seyzDQb27fUXUJ8HSd2HW5ZdezPgc6Ruww+IiFciYiJpXGu7Ksefi4gfkO6H6nHcOptbONapVpe0S5Xy5yJivqSPAf9KGnh/AHhA0sGkb+mfiYh3ys45QNI5pHGTg0l/yA8qO/5dYKqk5cANwJvA35GS2akR8QTpG/7XgPuyaz0H/D2wdkScT2plvQ38T0lvAEsjYiZwDWngfpqkHwJ/IXXP7Qy8FBEXR8SfJP2KNHtuXVKr5ETSjLh6rCnpkCrl04GrSeNcUySdAbxHNtGA1DpE0pmk7rVpWflngD2Bk7PjE0mtoQdIY2ujgG2y69qqpOhZC968NXuj91lqp2V1bifd+7Jm2XmbAQuBC7P9kdk5+wFTSH/Anwe+WeU9P5tdcxFpNtoc0sy3IWV1tgCuz95jCfAH4LCy4/8EPEFq7URZ+RBScnwuO/Y8aeLCbmV11gcmZ+/9MmmK8g+pb5Zard/VyKzOVqQp32+SZvXdygdnzf13UkvsFeAd4HFSslF2/EjSJIPXss/9R+Doov+deMt/K/2DyE12w9iJpIHQTwH3RcTIOs4bAlwCfInUFXgrcFxEvFpR7yDgX0jfoP4CnBkR1zfzM9iqQdJIoBvYISIeLTgcs5VeEWM42wOjSd/knmjgvOtJ3ziPIX1j2on0rWsFSbuTZh11AwcAvwauk/SFgQZtZmYDU0QL50ORZq0g6QZgo75aONmd4L8F9oyIe7OynUkDmvtGmpaJpDuANSJir7JzbwPWjYjde17ZrDa3cMyaK/cWTinZNOgA4OVSssmu8xDwdHastATHKOAXFedOBnbNuuTM6hYR0yJCTjZmzbGyTIveFphbpfyx7BikdaPWqFLvMdLn/ETLojMzsz6tLNOi1wder1K+kDSDplSHKvUWVhz/AEnjgHEAgwYN6tp8882rVWuZ5cuX86EPtWfeb+fYoPXxrfNEGmJ88xONf1dZ1X93A9HOsUF7x1dEbE888cSCiNi4nrorS8KBNE2zkqqUV+6rl/OJiEnAJIARI0bEzJkzBxJjw6ZNm8bIkSNzfc96tXNskEN8yv7pPP54w6eu8r+7AWjn2KC94ysiNknP1Fu3PdN0TwtJy7NXWo/3WzQLy8oq60D1FpKZmeVkZUk4c3l/rKZc+djOU6RFDSvrbQssp7Ep2GZm1mQrS8KZAmyS3WcDgKQRpPGbKQAR8S5pCuuhFeeOAe6PiDdyitXMzKrIfQwne37I6Gx3M2DdsnWcbouIJZKeBKZHxNEAEXF/do/NNZJOILVYzgNmlO7ByZxNWnPqEtJNoaOzbf+WfzAzM+tVEZMGhtLzuSOl/S2BeaS4Kp+VcRhpAcSfUra0TXmFiJiRJa9/IS3n/jRweETc2cT4bVWR803RZp0u94QTEfN4f+ZYrTrDq5S9TnrI01F9nHszFUvemJlZ8VaWMRwzM1vJOeGY1dLVlTYza4qV6cZPs3zNnl10BGYdxQnHrE7DT/71ip/n/eDAAiMxWzm5S83MzHLhhGNmZrlwwjEzs1w44ZiZWS48acCslrFji47ArKM44ZjVMmlS0RGYdRR3qZmZWS6ccMxqmTUrbWbWFO5SM6tlxIj06lWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjV4sdLmzWVu9TMzCwXTjhmtYwblzYzawonHLNarrgibWbWFE44ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma58I2fZrXsuGPREZh1FCccs1r8eGmzpnKXmpmZ5cIJx8zMcuGEY1aLlDYzawonHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmuXDCMTOzXDjhmJlZLrzSgFktEycWHYFZR3HCMavFj5c2a6rcu9QkbSdpqqQlkl6QdJak1fo4Z4KkqLGdUlbv6hp1tm39JzMzs97k2sKRtD5wNzAHOAjYGriQlPhO6+XUK4HbK8q+BJwETKkonwscVVE2r38R2ypt0qT06paOWVPk3aV2LDAIODgiFgF3SVoXmCDp/Kysh4h4Hni+vEzS6cDciHi4ovpbEfFAC2K3Vc348enVCcesKfLuUjsAuKMisUwmJaE9672IpA2AfYHrmhuemZm1St4JZ1tSl9cKEfEssCQ7Vq9DgDVIyarSdpIWSXpX0gxJdScyMzNrHUVEfm8mLQVOjIhLKsqfB66JiO/VeZ17gCER0VVRfjzwN9IY0cbAd4AuYPeIeKjGtcYB4wCGDRvWNXlytRzWOosXL2bw4MG5vme92jk2aH18I0eNAmBadzcAj8x/Y8WxHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEbhuwFDi+Svl84Jw6r7Ep8B5wQh11BwFPAzfXc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9Tqv8VVAwPV9VYyIt4HbAD+c3sysYHknnLlUjNVI2hxYm4qxnV4cBsyIiOcaeN/8+g3NzKyqvBPOFGA/SeuUlY0B3gam93WypOHALtQ5O03SINLMuFmNBmpGqVPNzJoi74RzOfAucJOkfbIB+wnARVE2VVrSk5J+UuX8w4BlwA2VByQNkXSfpPGS9pY0BugGNgPObcFnMTOzBuR642dELJS0N3ApcAtp3OZiUtKpjKvacjeHAVMj4pUqx94FXiGtWDAUeAe4H9gzImY25QOYmVm/5b54Z0TMAfbqo87wGuX/0Ms57wAHDyg4s3Jd2az7We6RNWsGrxZtVsvs2UVHYNZR/AA2MzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7NceJaaWS1jxxYdgVlHccIxq6X0iGkzawp3qZmZWS4aSjiSqi03Y9aZZs3yKgNmTdRol9p8SdcAV0XEY60IyKxtjMgeYugVo82aotEutYnAIcCjkh6UNE7Sui2Iy8zMOkxDCScivh8RWwH7Ao8DFwEvSvq5pH1aEaCZmXWGfk0aiIh7IuJrwCbAt4FPAndImidpgqSPNjNIMzNb+Q10ltoIYA/SY6MXAvcBxwBPSjpigNc2M7MO0nDCkbSFpO9LegqYCmwKfB34aET8D2AL0ljPBU2N1MzMVmoNzVKTdA+pRfM8cDVpttoz5XUi4j1J1wLHNytIMzNb+TU6LXoBMBq4K6LXuaIPA1v2OyqzdjDTTyY3a6ZGE86lwOxqyUbSYGDHiLg3IpYCz/Q422xlUnrEtJk1RaNjON3AdjWOfTI7bmZm1kOjCUe9HBsMLBlALGbtZdy4tJlZU/TZpSZpD2BkWdExkvavqPYR4EDgkeaFZlawK65Ir1412qwp6hnD+Szp5k6AAA4FllXU+RswFzixeaGZmVkn6TPhRMQFZPfUSHoa+HJEPNzqwMzMrLM0NEstIjzV2czM+qWeMZzRwIyIWJT93KuIuK0pkZmZWUepp4VzK7AL8FD2c1B7tloAfkibmZn1UE/C2RJ4sexns1XDjjsWHYFZR6ln0sAz1X4263h+vLRZU9UzhrNWIxeMCN/8aWZmPdTTpbaYNDZTL4/hmJlZD/UknK/TWMIx6wzK5sb0ujC6mdWrnjGcq3OIw8zMOtxAHzFtZmZWl3omDTwEHBkRcyT9jj661yJi52YFZ2ZmnaOeMZw/AW+X/ewObTMza1g9YzhHlf18ZEujMTOzjtXvMRwlG0vq7aFsZmZmQIOrRcOKxTxPA7qy85dJmgWcExG/bnJ8ZsWZOLHoCMw6SkMJR9J44DJgKnA88FdgKHAw8CtJ34wI/19qncGPlzZrqkZbON8DJkXENyrKL5d0OXAq4IRjZmY9NDqGsyFwU41jNwIb9HUBSdtJmippiaQXJJ0lqdflcCQNlxRVtslV6h4k6RFJ70iaI2lMXZ/MrNKkSWkzs6ZotIXTDewJ3FXl2J7Avb2dLGl94G5gDnAQsDVwISnxnVbH+58A/KZsf0HF9XcnJb7LgOOA0cB1khZGxJ11XN/sfePHp1d3rZk1RT03fm5Xtvsj4EpJGwI38/4YzpeBA4Bj+rjcscAg4OCIWATcJWldYIKk87Oy3jweEQ/0cvx04N6IOC7b75a0PXAG4IRjZlagelo4j/LBmz0FjM+2yqd/3k7vq0UfANxRkVgmA+eRWki31BFPVZI+DIwitWzKTQaukjQkIt7o7/XNzGxg6kk4o5r4ftsC95QXRMSzkpZkx/pKOFdJ2oDUsroOODUiSqsgbA2sAcytOOcxUpfdJ4DfDSx8MzPrL0WOS69LWgqcGBGXVJQ/D1wTEd+rcd6mpBlwdwKLgJHAScCdEXFQVmc3YAbwmYh4uOzcjwN/BvarNo4jaRwwDmDYsGFdkyf3mIfQUosXL2bw4MG5vme92jk2aH18I0el71rTursBeGT++w3kHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEvzZSq2Gtyq2Pc5YCx1cpn0+6cbSR9/8GqUvvH7L93bL9/1ZRb5usfN++rtnV1RV56+7uzv0969XOsUXkEF96Es6K3S1OunXF1pdV/nc3AO0cW0R7x1dEbMDMqPPvdkPTorPlbE6S9GSWPN6ssvVmIbBelfIhwOuNxALckL3uWHZtqly/tN/o9c3MrIkavQ/nOOBk4CekyQLnAGcBTwDzyLqmejGXNFazgqTNgbXpOfbSl6h4fYqUBLetqLctsDyL0ax+pTaOmTVFowlnLPB94Pxs/+aIOBPYnpQwtunj/CnAfpLWKSsbQ3r8wfQGYzkke50FEBHvku4TOrSi3hjg/vAMNTOzQjV64+eWwMMR8V42AWA9gIhYLuky4EpSC6iWy0mtpJsknQdsBUwALoqyqdJZl930iDg6258ArEO66XMRsAdwInBTRPyx7PpnA9MkXUK6T2h0tu3f4Oc0M7Mma7SF8ypQmgLxLPCZsmPrk27qrCkiFgJ7k+7VuQU4E7iY1GoqtzofvJ9nLuk+nauA24DDgQuy1/LrzyC1fPYB7gC+CBweXmXA+qOrK21m1hSNtnB+A+xE+qN/LWmFgA2AvwHfIq0i3auImAPs1Ued4RX7k0k3cPYpIm4mtW7MBmb27KIjMOsojSacCcBm2c/nkrrUjiS1bO4Cvt2swMzMrLM0lHAi4nHg8eznd0nPxDm+BXGZmVmHafiJnyWSPgZsCrwQEfObF5KZmXWiRicNIOkbkp4DngEeBJ6V9LykbzY9OjMz6xiNrjRwBnAp6X6aA4ER2esU4EfZcTMzsx4a7VL7FnBuRJxeUX67pJez42c1JTKzoo0dW3QEZh2l0YQziNpP9ZyOZ6lZJ/Hjpc2aqtExnJuBg2sc+wpw68DCMTOzTlXPI6ZHl+1OAc6XNJyej5jeHvhu80M0K8isWenVqw2YNUU9XWq30vNR0psB+1Wp+/9JT+I0W/mNyJ4p5RWjzZqinoSzZcujMDOzjtdnwomIZ/IIxMzMOlvDKw1IWp00QWB3YAPgNeA+0qMCljU3PDMz6xQNJRxJQ4E7gU+TnvD5MrAr6f6bP0j6QkS80uwgzcxs5dfotOiLgA2Bz0bEVhGxa0RsBXw2K7+o2QGamVlnaDThjAZOiojflRdm+6eQlrkxMzProdExnA8Db9Y49iaw5sDCMWsjM2cWHYFZR2k04TwAnCTpnoh4q1QoaW3gpOy4WWfwDZ9mTdVowvkO0A08J+lO0qSBoaSbQAWMbGp0ZmbWMRoaw4mIh4FtgEnAxsC+pIRzObBNRPyh6RGaFWXcuLSZWVPU3cKRtAawM/B0RJzcupDM2sQVV6RXrxpt1hSNtHDeA+4B/r5FsZiZWQerO+FExHLgz8Cw1oVjZmadqtH7cE4FzpC0QyuCMTOzztXoLLXTSCsKPCxpPmmW2gfWbo+InZsUm5mZdZBGE86j2WZmZtaQuhKOpEGkZW0eBV4C7o6Il1sZmFnhdtyx6AjMOko9j5jeCrgbGF5WvEjSVyPizlYFZla40iOmzawp6pk0cD6wHPg8sBawPfB7YGIL4zIzsw5TT8LZFTgtIn4TEe9ExGPAeODvJG3a2vDMzKxT1JNwNgX+UlH2FGnttE2aHpFZu5DSZmZNUe99ONF3FTMzs9rqnRZ9h6RlVcqnVpZHxNCBh2VmZp2mnoRzZsujMDOzjtdnwokIJxwzMxuwRtdSMzMz6xcnHDMzy0Wja6mZrTom+t5ms2ZywjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hS5JxxJ20maKmmJpBcknSVptT7O2UnSVZKezM57XNL3JX2kot4ESVFl27+1n8o60vjxaTOzpsh1DEfS+qRHHcwBDgK2Bi4kJb7Tejl1TFb3PODPwKeBs7PXr1TUfQOoTDCPDTR2MzMbmLwnDRwLDAIOjohFwF2S1gUmSDo/K6vmvIh4pWx/mqR3gImStoiIZ8qOLYuIB1oTvpmZ9VfeXWoHAHdUJJbJpCS0Z62TKpJNye+zV6/dZma2Esg74WwLzC0viIhngSXZsUZ8jvRguMcryteTtEDSUkm/l3Rwv6M1M7OmUUR+Tx6QtBQ4MSIuqSh/HrgmIr5X53U2Af4I3BYRR5aVH0Fq8TwMDCY9KG408JWIuKnGtcYB4wCGDRvWNXny5EY/1oAsXryYwYMH5/qe9Wrn2KD18Y0cNQqAad3dADwy/40Vx3bYbEihsQ1UO8fXzrFBe8dXRGyjRo2aFREj6qocEbltwFLg+Crl84Fz6rzGmsC9pIfCrd9HXQH3Aw/Xc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9b5OliTgGmB7YHRELOytfvbLuAn4dF9Tr816KKUcM2uKvGepzaVirEbS5sDaVIzt1HAxaTr1vhFRT/0S/9UwMytY3i2cKcB+ktYpKxsDvA1M7+1ESacA3waOiIgZ9bxZ1iL6MvCHiHivfyGbmVkz5N3CuRw4DrhJ0nnAVsAE4KIomyot6UlgekQcne0fDpwLXA3Ml7RL2TWfimzatKTpwI2k1tLawFhgF+BLrf1Y1pG6utLrrFnFxmHWIXJNOBGxUNLewKXALaRxm4tJSacyrvIxly9kr0dmW7mjSIkI4Engn4FNSVOmZwMHRsSUZsRvq5jZs4uOwKyj5P54goiYA+zVR53hFftH0jPRVDvv6AGEZmZmLeTVos3MLBdOOGZmlgsnHDMzy4UTjpmZ5SL3SQNmK42xY4uOwKyjOOGY1eLHS5s1lbvUzMwsF044ZrXMmuVVBsyayF1qZrWMyB7x4RWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjVUnrEtJk1hbvUzMwsF044ZrWMG5c2M2sKJxyzWq64Im1m1hROOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmufCNn2a17Lhj0RGYdRQnHLNa/Hhps6Zyl5qZmeXCCcfMzHLhhGNWi5Q2M2sKJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS680oBZLRMnFh2BWUdxwjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hTuUjOrZfz49OquNbOmcAvHzMxykXvCkbSdpKmSlkh6QdJZklar47whkq6StFDSG5J+LmnDKvUOkvSIpHckzZE0pjWfxMzMGpFrwpG0PnA3EMBBwFnAd4Az6zj9emAkcAxwJLATcHPF9XcHbgS6gQOAXwPXSfpCUz6AtZVH5r/B8JN/XXQYZlanvMdwjgUGAQdHxCLgLknrAhMknZ+V9SBpV2A/YM+IuDcrmw88KGmfiLg7q3o6cG9EHJftd0vaHjgDuLN1H8usdUpJdd4PDiw4ErOBybtL7QDgjorEMpmUhPbs47yXS8kGICIeAp7OjiHpw8Ao4BcV504GdpU0ZODhm5lZf+XdwtkWuKe8ICKelbQkO3ZLL+fNrVL+WHYMYGtgjSr1HiMl1k8Av+tf2J2nld+a/Y185VfeVZnXf8fSe169/9q5vJ/lL++Esz7wepXyhdmx/py3VVkdqtRbWHH8AySNA0rzXhdLeryXOFphI2BBzu+5gs7r9fCAYuvj2s2wEbCg5e9T5amfdbxn0/+7Nvlz1h1fDv8dP2DUecX+P1GHdo6viNi2qLdiEffhRJUy1Sjvz3mV+6pRngojJgGF3d0naWZEjCjq/XvTzrFBe8fXzrFBe8fXzrFBe8fXzrFB/mM4C4H1qpQPoXoLpq/z1is7b2FZWWUd+ri+mZm1WN4JZy7vj7kAIGlzYG2qj9HUPC9TPrbzFLC0Sr1tgeXAE/2I18zMmiTvhDMF2E/SOmVlY4C3gel9nLdJdp8NAJJGkMZvpgBExLuk+28OrTh3DHB/RLwx8PBbop0X62rn2KC942vn2KC942vn2KC942vn2FBEX0MnTXyzdOPnHOBR4DxSwrgIuCQiTiur9yQwPSKOLiu7nTTT7ARSi+U84K8R8fmyOrsD04BLSTeFjs7q7x8Rvg/HzKxAubZwImIhsDewGmkK9JnAxcD3K6quntUpdxipFfRT4BpgFvDliuvPAA4B9gHuAL4IHO5kY2ZWvFxbOGZmturyatFtQNK6ks6U9FC2MOlLkn4p6RNFx1YiaYykmyS9KCkkHVlQHP1a/DUPkj4uaaKkP0h6T9K0omMqkXSopF9Jmi9psaRZkv6x6LhKJB0i6beSXs0W3n1c0mmS1iw6tkqSNst+hyFpcBvEc2QWS+V2bNGxVfLzcNrD3wFjgZ8ApwJrAaeQ1or7dEQ8V2RwmUOA4cCtpAVUc1e2+Osc0uKvWwMXkr44ndbLqXnZnjRu+ADQbn8o/w9pKaj/TboxcDRwraSNIuLHhUaWbEia9HMB6RaGnYEJwCbA/yourKouABaTZte2k71IE7BK/lJUILW4S60NSFobWB4Rb5eVbQA8C1wQEfWspt1Skj4UEcuzb3RvAkdFxNU5x3AK8F1gi9J6fJK+S/aHqdbir3kp/Y6yn28ANoqIkUXGVJIllgUVZdcCu0bElgWF1StJ5wDfAtaPNvlDJenzwH8C55ISzzoRsbjgmI4ErmqHWPriLrU2EBFvlSebrOw14BlgaDFRfVDpD2nB+rv4ay7a5HdUVWWyyfyeNvn3VcOrtFFLMeu6/THpsSrturRNW3PCaVOSNgY+Tuo+sqTHIq4R8SxQWvzVGvM52uzfl6TVJK2V3eJwHPBv7dK6IT1e5SPA/ys6kBqekrQsG/8aX3Qw1XgMp31dSOonnlx0IG2kv4u/WgVJe5PGwb5edCwV3gI+nP18DXBigbGskD1d+GzgiIhYqioLuhboRdKzwB4i3U7yj8DlktaKiIsLjayCE06LZM/f2bSvehHRY0kfSd8AjgC+EhGvtiC8AcUkpRQRAAACcUlEQVRXsP4u/moZScOBa4H/zHscrg6fI02a2Zn04MRLgW8WGlFyDvBgRNxWdCCVIuIO0n2HJVOy54OdJulf26mr1wmndQ4Frqij3ge+Kkn6Iqmf+KSI+GUrAsv0K76C9XfxV8tkk1GmkCakHFFwOD1ExOzsxxmSFgA/k3RhRDxVVEzZU4O/DuwhqfTvb63sdYik9yrHYNvADcBXSTNL22a2msdwWiQirowI9bWVnyPpc6QutMsj4oJ2i68N9HfxVwMkrUWa1r4mcGBEvFVwSH0pJZ+iZ9FtQ3q44/2kLz0LeX8c53nSF8R21VYtf7dw2kT2LepW4HbSYKn1NAU4UdI6EfFmVlbP4q+rPEmrA/9B+uO5W0T8teCQ6rFb9vp0oVHADNLj68vtD5xEup+pbVoQZb5Cmkn3TNGBlHPCaQOShpISzWLgR8DOZYOSiyKi8JlEkrYDtiPN0gEYIWkx8EpE5PXH/nJSMr5JUmnx1wnARUXfgwMrWhCjs93NgHUlHZLt3xYRS4qJDIDLSLEdD2wgaZeyY7/PVlsvTLY4793An4D3SMnmO8D1RXanwYop5dPKy7JxMID7ir73RdKNpAkDfyRNGhiTbce10/gN+MbPtiBpJOku62qmt8PNg5Im0HORVcg5vizxXQrsShq3uRKYEBHv5RVDLdkfoVrfxreMiHm5BVNB0jxqPwq40NgAJJ1NWox3OLCM1Gq4itS9vLTA0Kpqp5stJZ1LatFsThpznUNagf/fi4yrGiccMzPLhScNmJlZLpxwzMwsF044ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7Nc/BdtOPoFOYDNHAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -793,13 +793,13 @@ "text/html": [ "
                                                ┌───┐┌────────────────┐┌───┐»\n",
        "  q_0: |0>──────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
-       "          ┌────────────────┐┌──────────────────┐└─┬─┘└────────────────┘└─┬─┘»\n",
-       "  q_1: |0>┤ U3(1.5708,0,0) ├┤      U1(0)       ├──■──────────────────────■──»\n",
-       "          ├────────────────┤├──────────────────┤                            »\n",
-       "  q_2: |0>┤   Ry(1.1847)   ├┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
-       "          ├────────────────┤├──────────────────┤                            »\n",
-       "  q_3: |0>┤   Ry(1.3696)   ├┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
-       "          └────────────────┘└──────────────────┘                            »\n",
+       "          ┌────────────────┐     ┌───────┐      └─┬─┘└────────────────┘└─┬─┘»\n",
+       "  q_1: |0>┤ U3(1.5708,0,0) ├─────┤ U1(0) ├────────■──────────────────────■──»\n",
+       "          └─┬────────────┬─┘┌────┴───────┴─────┐                            »\n",
+       "  q_2: |0>──┤ Ry(1.1847) ├──┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
+       "            ├────────────┤  ├──────────────────┤                            »\n",
+       "  q_3: |0>──┤ Ry(1.3696) ├──┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
+       "            └────────────┘  └──────────────────┘                            »\n",
        "  q_4: |0>──────────────────────────────────────────────────────────────────»\n",
        "                                                                            »\n",
        "q_a_0: |0>──────────────────────────────────────────────────────────────────»\n",
@@ -829,9 +829,9 @@
        "«  q_0: ──■────■───────────────────────────────────────────■──»\n",
        "«         │    │                                           │  »\n",
        "«  q_1: ──┼────┼───────────────────────────────■───────────┼──»\n",
-       "«       ┌─┴─┐  │  ┌──────────────────┐┌────────┴────────┐  │  »\n",
-       "«  q_2: ┤ X ├──┼──┤ U3(-0.28365,0,0) ├┤        X        ├──┼──»\n",
-       "«       └───┘┌─┴─┐└──────────────────┘├─────────────────┤┌─┴─┐»\n",
+       "«       ┌─┴─┐  │  ┌──────────────────┐       ┌─┴─┐         │  »\n",
+       "«  q_2: ┤ X ├──┼──┤ U3(-0.28365,0,0) ├───────┤ X ├─────────┼──»\n",
+       "«       └───┘┌─┴─┐└──────────────────┘┌──────┴───┴──────┐┌─┴─┐»\n",
        "«  q_3: ─────┤ X ├────────────────────┤ U3(0.11174,0,0) ├┤ X ├»\n",
        "«            └───┘                    └─────────────────┘└───┘»\n",
        "«  q_4: ──────────────────────────────────────────────────────»\n",
@@ -846,9 +846,9 @@
        "«  q_0: ─────────────────────────────────────────────────────────────────────░─»\n",
        "«                                                                            ░ »\n",
        "«  q_1: ────────────────────────────■────────────■───────────────────────■───░─»\n",
-       "«       ┌─────────────────┐┌────────┴─────────┐  │                       │   ░ »\n",
-       "«  q_2: ┤ U3(0.28365,0,0) ├┤        X         ├──┼───────────────────────┼───░─»\n",
-       "«       └─────────────────┘├──────────────────┤┌─┴─┐┌─────────────────┐┌─┴─┐ ░ »\n",
+       "«       ┌─────────────────┐       ┌─┴─┐          │                       │   ░ »\n",
+       "«  q_2: ┤ U3(0.28365,0,0) ├───────┤ X ├──────────┼───────────────────────┼───░─»\n",
+       "«       └─────────────────┘┌──────┴───┴───────┐┌─┴─┐┌─────────────────┐┌─┴─┐ ░ »\n",
        "«  q_3: ───────────────────┤ U3(-0.22349,0,0) ├┤ X ├┤ U3(0.22349,0,0) ├┤ X ├─░─»\n",
        "«                          └──────────────────┘└───┘└─────────────────┘└───┘ ░ »\n",
        "«  q_4: ─────────────────────────────────────────────────────────────────────░─»\n",
@@ -895,7 +895,7 @@
        "«            └───┘               └───┘ ░ 
" ], "text/plain": [ - "" + "" ] }, "execution_count": 21, @@ -969,7 +969,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4HFWd//H3hz0gkIAQGIcxLCKyKKMRQRmJsiRgMBLRQPQ3RHHixuaDGkDUgE4w+LANkYE8IsFRQH/Aj5kEkrDesAgqSCIYAgYNiCwjeiHGQGT5/v6outCp20t1375Vtzuf1/P007dPnTr97UPT31TVOacUEZiZmQ229coOwMzM1g1OOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmLWRpImSbpX0nKQ1kh6R9G1Jb0y3R8XjBUmPS7pW0uFV2pqeqd/3uDlT712SeiVtkb5+q6TvSXpI0mpJv5N0gaThmf2+J+nSwewPs0oblB2AWbeQdA5wEnAZcB6wEtgd+BywB3BEWvUc4GpgQ2AH4MPAf0uaExGfzjT7PDCuSlmlbwMXR8TK9PXBwPuA/wR+DeyU1tlP0r4R8Wpa77vAMklnRcTy1j61WX7ySgNmA5ceofwPcGxE/CCzbX3gkIiYLymA4yNiVqbOp4FLgSkRcXlaNh04LiLeWOd93wI8AuwaEb9Ny7YG/hIV/3NLOgRYCIyJiEUV5TcDSyLi5NY/vVk+PqVm1h5fAn6VTTYAEfFKRMyvt3O638+Bzzf5vscAv+5LNmlbf47+/5K8P33eNlN+DfAJSf4tsEHnL5nZAEnaEHgvsGCATd0EvCttr7L9DTIPVWw+EPhZjrbfmz4vzZT/DBgJ7NVq0GZ5OeGYDdzWwMbA4wNs5wmS66pbZdp+KfM4ECBNPP8MPFivUUmbAt8BFkXEbzKbfwO8AuwzwNjNGvKgAbP2GegFUVUpex44KFP2cPo8giTRPVuzwSQpXUpyKu1D2e0R8bKk54DtWgnYrBlOOGYD92dgDfBPA2znTSRHMH+pKHs5Iu6tUX+T9HlNnTZnkoyOOzgiflejzpqKtswGjU+pmQ1QRLwE3AWMHWBThwD3pe3l8ef0eXi1jZK+BHwZ+NeIuKNOO8NZO8mZDQonHLP2OB8YLemY7AZJ60nKzqXJ1vk0yXWU/8z7hhGxhuS60Y5V2ptMMt/n5Ij4aZ333QbYlGRotdmg8ik1szaIiLmSzgUulfQ+4L+BVcBuJBM/V/D6KLZRkvYlmfj5j8AE4OPADyLih02+9V3AuyoLJB0AzAFuBO5O36vPExHxRMXr0STXnvKMdDMbkMKPcCTtIukSSUskvSKpJ+d+W0q6LF3C43lJP04nuGXrTZD0gKQXJS2VNKntH8KsinTy5CTgLcAVJMOcTwZuYe35NScDd6fbzwY2AiZExLEtvO21wAGShlWUfYAkmY1N36fy8ZnM/uNIRq/9GbNBVvhKA5ImALOAe4A9gWciYkyO/RYAbyU5J/0qycXQZyLiXyrq7A/0ABcB/w84jOR/7nERcWNbP4jZECBpI5Lh1F+MiP/b5L7rA48Bp0TEjwYjPrNKZSSc9frWcpJ0NfDGRglH0n4kh/wHRMTtadk+JDOzD46Im9OyhcCGEfHBin1vALaIiP0H4/OYlU3SV0iOkJr6jks6CvgW8LaIeHlQgjOrUPgptYqFA5txKMnRzO0V7fwC+H26DUkbk5xKyF4gvYpk0cItW4vYbMibBdzUwndcJGu/OdlYITpl0MBuwLIq5Q+l2wB2Jjlvna33EEli3RX45WAFaFaWiHgBOKOF/a4chHDMauqUhDMCeK5KeS/J0ut9dahSrzezfS2SpgJTAYYNG/auHXbYYWCRpl599VXWW8+jzhtxP+XjfspnXeynzR9JRrT/ddddc+/Tzn565JFHno2IbfLU7ZSEA9WXDVGV8uxr1ShPCiNmA7MBRo8eHffeW2tSd3N6enoYM2ZMW9rqZu6nfNxP+awr/TTqlOtf+/vhmeOTsiPOXavOiu/0W8noNe3sJ0mP5a3bKf8U6KX6bOrhvH5E01tRlq0D1Y+QzMysIJ2ScJbx+rWaSpXXdh4lWYcqW283kmHUnkltZlaiTkk484Ht0nk2AEgaTXL9Zj68tszHbcDHMvtOAu6OiOxtec3MrECFX8NJ781xWPryTcAWko5MX98QEaslLSeZ/XwsQETcnc6x+aGkyomfd/bNwUl9C+iRdD5wXfo+h9H/nvBmZlawMgYNbAtkZ0T3vd6RZM2pDYD1M3WOAs4DfkByZDYPOKGyQkTcmSavb5MsJfJ7YLJXGTCzbjVq2ryyQ8it8IQTESuofqOpyjqjqpQ9B3wqfdTb9zqSoxszMxtCOuUajpmZdTgnHDOzDjZ3zonMnXNi2WHk0kkTP83MLGOvZx4tO4TcfIRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIj1IzM+tgV7xjbNkh5OaEY2bWwU4bd3zZIeTmU2pmZlYIJxwzsw6259PL2fPp5WWHkYtPqZmZdbB5l58EdMaq0T7CMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwsOizcw62Phjzi87hNyccMzMOtiD2+1Sdgi5+ZSamZkVwgnHzKyDzVhwITMWXFh2GLk44ZiZdbDJSxYyecnCssPIxQnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQnvhpZtbBHhi5c9kh5OaEY2bWwQ6fckHZIeTmU2pmZlYIJxwzMyuEE46ZWQdbMXM8K2aOLzuMXJxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZmYd7NSxx5UdQm5OOGZmHezKvceVHUJuhZ9Sk7S7pFskrZb0pKQzJa3fYJ/pkqLG49SKenNq1Nlt8D+ZmZnVU+gRjqQRwM3AUmACsDNwDkniO73Ort8HFmTKPgJMA+ZnypcBn8qUrWgtYjOzoe3oxclPYycc6RR9Su1zwDBgYkSsBG6StAUwXdLZaVk/EfEE8ERlmaSvA8siYnGm+t8i4p5BiN3MbMg5a+EsoDMSTtGn1A4FFmYSy1UkSeiAvI1I2go4GLiyveGZmdlgKTrh7EZyyus1EfE4sDrdlteRwIYkySprd0krJa2RdKek3InMzMwGT9Gn1EYAz1Up70235XUU8KuIeCRTfj/wc5JrRNsAJ5Octts/In5RrSFJU4GpACNHjqSnp6eJMGpbtWpV29rqZu6nfNxP+awr/XTyXi83LKvXD2X1UxnDoqNKmWqU968obU9y+m1av4YjLsjUvZ4k+ZxGMsigfzARs4HZAKNHj44xY8bkCaOhnp4e2tVWN3M/5eN+ymdd6acpp1z/2t/Hp8/nPLD2z/mKT4ypuX9Z/VT0KbVeYHiV8i2pfuRTzcdJEtRPGlWMiBeAG4B35g3QzMwGR9EJZxmZazWSdgA2I3Ntp46jgDsj4g9NvG+uoyczMxs8RZ9Smw98RdLmEfHXtGwS8AKwqNHOkkYB+wJfyPNmkoaRjIy7r5VgzcyGulHT5pUdQm5FH+FcDKwBrpV0UHrBfjpwbuVQaUnLJV1aZf+jgJeBq7MbJG0p6Q5Jn5V0oKRJwG3Am4AZg/BZzMysCYUe4UREr6QDgVnAXJLrNueRJJ1sXNWWuzkKuCUi/lRl2xrgTyQrFmwLvAjcDRwQEfe25QOYmVnLCh+lFhFLgQ82qDOqRvnedfZ5EZg4oODMzDrM3DknAnD4lAsa1CyfV4s2M+tgez3zaNkh5OYbsJmZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcKj1MzMOtgV7xhbdgi5OeGYmXWw08Yd37jSEOFTamZmVoimEo6kasvNmJlZSfZ8ejl7Pr287DByafYI54+Szpb0tkGJxszMmjLv8pOYd/lJZYeRS7MJ5xLgSOBBST+XNFXSFoMQl5mZdZmmEk5EfDMidgIOBh4GzgWekvRjSQcNRoBmZtYdWho0EBG3RsS/AtuR3FL7rcBCSSskTZf0D+0M0szMOt9AR6mNBt5PctvoXuAO4DPAckmfHGDbZmbWRZpOOJLeLOmbkh4FbgG2Bz4N/ENE/B/gzSTXer7b1kjNzKyjNTXxU9KtJEc0TwBzgMsi4rHKOhHxiqQrgBPbFaSZmXW+ZlcaeBY4DLgpIqJOvcXAji1HZWZmuYw/5vyyQ8it2YQzC/hVtWQj6Q3AOyPi9oh4CXis395mZtZWD263S9kh5NbsNZzbgN1rbHtrut3MzKyfZhOO6mx7A7B6ALGYmVmTZiy4kBkLLiw7jFwanlKT9H5gTEXRZySNy1TbBPgQ8ED7QjMzs0YmL1kIdMaq0Xmu4byHZHInQAAfA17O1Pk7sAz4SvtCMzOzbtIw4UTEd0nn1Ej6PXBERCwe7MDMzKy7NDVKLSI81NnMzFqS5xrOYcCdEbEy/buuiLihLZGZmVlXyXOEMw/YF/hF+ndQe7RaAL5Jm5mZ9ZMn4ewIPFXxt5mZDREPjNy57BByyzNo4LFqf5uZWfkOn3JB2SHklucazqbNNBgRnvxpZmb95Dmltork2kxevoZjZmb95Ek4n6a5hGNmZgVZMXM8AKOmzSs5ksbyXMOZU0AcZmbW5QZ6i2kzM7Nc8gwa+AUwJSKWSvolDU6vRcQ+7QrOzMy6R55rOL8BXqj429dzzMysaXmu4Xyq4u8pgxqNmZl1rZav4SixjaR6N2UzMzMDmlwtGl5bzPN04F3p/i9Lug/494i4vs3xmZlZHaeOPa7sEHJrKuFI+ixwEXALcCLwv8C2wETgfyR9ISIuaXuUZmZW1ZV7Z2/APHQ1e4RzGjA7Ij6fKb9Y0sXA1wAnHDMz66fZazhbA9fW2HYNsFWjBiTtLukWSaslPSnpTEl1l8ORNEpSVHlcVaXuBEkPSHpR0lJJk3J9MjOzDnT04gUcvXhB2WHk0uwRzm3AAcBNVbYdANxeb2dJI4CbgaXABGBn4BySxHd6jvf/MnBXxetnM+3vT5L4LgJOAA4DrpTUGxE35mjfzKyjnLVwFtAZp9byTPzcveLlfwDfl7Q1cB2vX8M5AjgU+EyD5j4HDAMmRsRK4CZJWwDTJZ2dltXzcETcU2f714HbI+KE9PVtkvYAvgE44ZiZlSjPEc6DrD3ZU8Bn00f27p8LqL9a9KHAwkxiuQqYSXKENDdHPFVJ2hj4AMmRTaWrgMskbRkRz7favpmZDUyehPOBNr7fbsCtlQUR8bik1em2RgnnMklbkRxZXQl8LSL6VkHYGdgQWJbZ5yGSU3a7Ar8cWPhmZtaqPCsNLGrj+40AnqtS3ptuq2UN8D2S02IrgTHANJIkM6Gibaq035vZvhZJU4GpACNHjqSnp6de/LmtWrWqbW11M/dTPu6nfNaVfjp5r5cbltXrh7L6qemJn30krQdski3PccfPamuxqUZ5X5tPAZWzm3okPQNcJGnviFhcp33VKO9rezYwG2D06NExZsyY+tHn1NPTQ7va6mbup3zcT/msK/005ZTX59gfnz6f88DaP+crPjGm5v5l9VNTw6LT5WymSVoOvAT8tcqjnl5geJXyLal+5FPP1enzOyvapkr7fa+bbd/MzNqo2SOcE4BTgLOBfwe+DbwCHAVsBMxosP8ykms1r5G0A7AZ/a+9NBKZ50dJkuBuQOVpwN2AV4FHmmzfzGzI64Q7ffZpduLnvwHfJEk4ANdFxBnAHiQJ4y0N9p8PjJW0eUXZJJLbHzR7rejI9Pk+gIhYQzJP6GOZepOAuz1CzcysXM0e4ewILI6IVyS9RHq6KiJelXQR8H2SI6BaLiY5SrpW0kxgJ2A6cG7lUOn0lN2iiDg2fT0d2Jxk0udK4P3AV4BrI+LXFe1/i+T6zvkk84QOSx9Df0aUmVmXa/YI58/AG9K/Hwf+uWLbCJJJnTVFRC9wIMlcnbnAGcB5JEdNlTZg7fk8y0jm6VwG3ABMBr6bPle2fyfJkc9BwELgw8BkrzJgZt1q7pwTmTvnxLLDyKXZI5y7gHeT/OhfQbJCwFbA34EvkqwiXVdELAU+2KDOqMzrq0gmcDYUEdeRHN2YmXW9vZ55tOwQcms24UwH3pT+PYPklNoUkiObm3h9hJ6Zmdlamko4EfEw8HD69xqSe+J0xrGcmZmVaiATP/8R2B54MiL+2L6QzMysGzU7aABJn5f0B+Ax4OfA45KekPSFtkdnZmZdo9mVBr4BzCKZT/MhYHT6PB/4j3S7mZlZP82eUvsiMCMivp4pX5CubfZF4My2RGZmZg1d8Y6xZYeQW7MJZxi17+q5CI9SMzMr1GnjOudnt9lrONcBE2ts+yjQOYv6mJlZofLcYvqwipfzgbMljaL/Lab3AL7a/hDNzKyWPZ9eDsCD2+1SciSN5TmlNo/+t5J+E1DtxOGPSO7EaWZmBZh3+UlAZ6wanSfh7DjoUZiZWdfLc4vpx4oIxMzMulvTKw1I2oBkgMD+wFbAX4A7SG4V0P9G22ZmZjSZcCRtC9wIvB1YATwD7Ecy/2aJpEMi4k/tDtLMzDpfs8OizwW2Bt4TETtFxH4RsRPwnrT83HYHaGZm3aHZhHMYMC0ifllZmL4+lWSZGzMzs36avYazMfDXGtv+Cmw0sHDMzKwZ4485v+wQcms24dwDTJN0a0T8ra9Q0mbAtHS7mZkVpBMmfPZpNuGcDNwG/EHSjSSDBrYlmQQqYExbozMzs67R1DWciFgMvAWYDWwDHEyScC4G3hIRS9oeoZmZ1TRjwYXMWHBh2WHkkvsIR9KGwD7A7yPilMELyczM8pq8ZCHQGatGN3OE8wpwK/C2QYrFzMy6WO6EExGvAr8FRg5eOGZm1q2anYfzNeAbkvYajGDMzKx7NTtK7XSSFQUWS/ojySi1qKwQEfu0KTYzM+sizSacB9OHmZlZU3IlHEnDSJa1eRB4Grg5Ip4ZzMDMzKyxB0buXHYIueW5xfROwM3AqIrilZI+HhE3DlZgZmbW2OFTLig7hNzyDBo4G3gV+BdgU2AP4H7gkkGMy8zMukyehLMfcHpE3BURL0bEQ8BngX+StP3ghmdmZt0iT8LZHvhdpuxRkrXTtmt7RGZmltuKmeNZMXN82WHkknceTjSuYmZmVlveYdELJb1cpfyWbHlEbDvwsMzMrNvkSThnDHoUZmbW9RomnIhwwjEzswFrdi01MzOzljjhmJlZIZpdS83MzIaQU8ceV3YIuTnhmJl1sCv3Hld2CLn5lJqZmRXCCcfMrIMdvXgBRy9eUHYYuRSecCTtLukWSaslPSnpTEnrN9jn3ZIuk7Q83e9hSd+UtEmm3nRJUeXROcecZmZNOGvhLM5aOKvsMHIp9BqOpBEktzpYCkwAdgbOIUl8p9fZdVJadybwW+DtwLfS549m6j4PZBPMQwON3czMBqboQQOfA4YBEyNiJXCTpC2A6ZLOTsuqmRkRf6p43SPpReASSW+OiMcqtr0cEfcMTvhmZtaqok+pHQoszCSWq0iS0AG1dsokmz73p89eu83MrAMUnXB2A5ZVFkTE48DqdFsz3ktyY7iHM+XDJT0r6SVJ90ua2HK0ZmbWNkWfUhsBPFelvDfdlouk7YCvAf+VOVpaDnwVWAy8geRGcddI+mhEXFujranAVICRI0fS09OTN4y6Vq1a1ba2upn7KR/3Uz7rSj+dvFf/xfuzZfX6oax+KmPiZ7V766hGef+K0kbAT4FVwJfWajjiR5m6c4GfAd8AqiaciJgNzAYYPXp0jBkzJk8YDfX09NCutrqZ+ykf91M+60o/TTnl+tf+Pj59PueBtX/OV3xiTM39y+qnohNOLzC8SvmWVD/yWYskAT8E9gDeFxG99epHREi6Fpgpaf2IeKWFmM3MhqxR0+aVHUJuRSecZWSu1UjaAdiMzLWdGs4jGU59cETkqd/Hdyw1MytZ0YMG5gNjJW1eUTYJeAFYVG9HSaeSHD1+MiLuzPNm6RHREcASH92YmZWr6COci4ETgGslzQR2AqYD51Ze/Je0HFgUEcemrycDM4A5wB8l7VvR5qN9w6YlLQKuITla2gz4N2Bf4COD+7HMzMoxd86JABw+5YKSI2ms0IQTEb2SDgRmAXNJrtucR5J0snFVLndzSPo8JX1U+hRJIoJklNpJwPYkQ6Z/BXwoIua3I34zs6Fmr2ceLTuE3AofpRYRS4EPNqgzKvN6Cv0TTbX9jh1AaGZmNoi8WrSZmRXCCcfMzArhhGNmZoVwwjEzs0KUsbSNmZm1yRXvGFt2CLk54ZiZdbDTxh3fuNIQ4VNqZmZWCCccM7MOtufTy9nz6eVlh5GLT6mZmXWweZefBHTGqtE+wjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcLDos3MOtj4Y84vO4TcnHDMzDrYg9vtUnYIufmUmpmZFcIJx8ysg81YcCEzFlxYdhi5OOGYmXWwyUsWMnnJwrLDyMUJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwzMysEJ74aWbWwR4YuXPZIeTmhGNm1sEOn3JB2SHk5lNqZmZWCCccMzMrhBOOmVkHWzFzPCtmji87jFyccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhfBKA2ZmHezUsceVHUJuTjhmZh3syr3HlR1Cbj6lZmZmhXDCMTPrYEcvXsDRixeUHUYuPqVmZtbBzlo4C+iMU2s+wjEzs0IUnnAk7S7pFkmrJT0p6UxJ6+fYb0tJl0nqlfS8pB9L2rpKvQmSHpD0oqSlkiYNzicxM7NmFJpwJI0AbgYCmACcCZwMnJFj958AY4DPAFOAdwPXZdrfH7gGuA04FLgeuFLSIW35AGZm1rKir+F8DhgGTIyIlcBNkrYApks6Oy3rR9J+wFjggIi4PS37I/BzSQdFxM1p1a8Dt0fECenr2yTtAXwDuHHwPpaZmTVS9Cm1Q4GFmcRyFUkSOqDBfs/0JRuAiPgF8Pt0G5I2Bj4A/DSz71XAfpK2HHj4ZmbWqqKPcHYDbq0siIjHJa1Ot82ts9+yKuUPpdsAdgY2rFLvIZLEuivwy9bCNjN73ahTrm9YZ8V3PlRAJJ2l6IQzAniuSnlvuq2V/XaqqEOVer2Z7WuRNBWYmr5cJenhOnE0443As21qq5u5n/JxP+UzZPpJMwt6n74/Mnf9bPD+7eynN+etWMY8nKhSphrlreyXfa0a5UlhxGxgdoP3bpqkeyNidLvb7Tbup3zcT/m4n/Ipq5+KvobTCwyvUr4l1Y9gGu03vGK/3oqybB0atG9mZoOs6ISzjNevuQAgaQdgM6pfo6m5X6ry2s6jwEtV6u0GvAo80kK8ZmbWJkUnnPnAWEmbV5RNAl4AFjXYb7t0ng0AkkaTXL+ZDxARa0jm33wss+8k4O6IeH7g4Tel7afpupT7KR/3Uz7up3xK6SdFNLp00sY3SyZ+LgUeBGaSJIxzgfMj4vSKesuBRRFxbEXZApKRZl8mOWKZCfxvRPxLRZ39gR5gFsmk0MPS+uMiwvNwzMxKVOgRTkT0AgcC65MMgT4DOA/4ZqbqBmmdSkeRHAX9APghcB9wRKb9O4EjgYOAhcCHgclONmZm5Sv0CMfMzNZdXi26AS822lgrfSTp3Wn/LE/3e1jSNyVtkqk3XVJUeQz9tdgzWuynUTU+/1VV6nb8dwla7qda35OQdGpFvTk16lQblDSkSdpF0iWSlkh6RVJPzv1K+23y/XDqqFhsdCnJYqM7A+eQJOrT6+wKyWKjbyVZbLTvmtN1QPaa0zXARcAJJNecrpTU2ymnAQfQR5PSujOB3wJvB76VPn80U/d5IJtgHhpo7EUa4HcJkmuRd1W8XmvSXjd8l2BA/fR9IHsXso8A00gHFlVYBnwqU7aitYhLtQfJf+d7gI2a2K+836aI8KPGAziVZH7PFhVlXwVWV5ZV2W8/komm768o2yctO6iibCFwa2bfG4A7y/7sBfTRNlXKpqZ99OaKsunAs2V/zhL7aVTaJ+MbtN/x36WB9FONtq4HHsqUzQHuLftztqmv1qv4+2qgJ8c+pf42+ZRafV5stLGW+igi/lSl+P70edv2hTdktPpdaqiLvkvQpn6StBVwMHBle8MbOiLi1RZ2K/W3yQmnvn6LhkbE4yT/2qp3zrddi412glb7qJr3khziZ9ezGy7pWUkvSbpf0sSWoy3PQPvpsvQ8/VOSzpU0rGJbt3yXoH3fpyNJ+qTftS5gd0krJa2RdKekASX8DlPqb5MTTn2DsdjoiIo6VKlXd7HRIajVPlqLpO2ArwH/lfnX7XKSUyofJ7m28yRwTQcmnVb7aQ3wPeBYkikFlwCfZ+0f0m75LkGbvk8k0yh+FRHZFUbuJ7np4+HAJ0imX9wkaZ8WYu1Epf42edBAY0NqsdEhqtU+SipKG5Ecvq8CvrRWwxE/ytSdC/yM5KZ617YSbIma7qeIeAo4rqKoR9IzwEWS9o6IxXXa78TvEgz8+7Q9yem3af0ajrggU/d6kgEKp5EMMlgXlPbb5COc+rzYaGOt9hEAkkQykXcP4LBIJgfXFMnVy2uBt+cZnj6EDKifMq5On99Z0TZV2u+07xK0p58+TvLj+JNGFSPiBZKL4e9sVLdLlPrb5IRTnxcbbazVPupzHsnw1wkRkad+n077V/tA+6lSZJ675bsE7emno0hGU/2hiffttO9Tq0r9bXLCqW9dWmy0Va32EemEvOOBT0ayLFFD6RHREcCSiHiltZBL0XI/VXFk+nwfdNV3CQbYT5JGAfuSc3RaOvjiUNK+XAeU+9tU9ljyofwguTj2FHATyfpsU0muM3w7U285cGmmbAHwO2Aiybnhh4E7MnX2B14GzgfGAGeT/AvikLI/+2D3ETCZ5F+Vl5H8QFQ+tqmot4hk4tkhJInmhrSPPlz2Zy+on6aTTHycmO53JsmP7zXd9l0aSD9VlJ9C8q/zavO8tgTuAD5LMgBjEsmkyTXA6LI/ewt9tSnJPz6OBO4GflPxetNa/VTmb1PpnTbUH8DuwK3p/+RPkcyGXz9TZwUwJ1M2PP0xfQ5YCVwBvLFK+x8hWT17Dckh7VFlf+b7FSn1AAAAk0lEQVQi+ohkAl7UeEypqHdp+j/HC8Df0h+MQ8v+zAX201HAvSSrLfw9/QE5E9i4G79LrfZTRfliYEGNdjchuf73h7SPnk9/fPct+zO32E+j6vw/NKpWP5X52+TFO83MrBC+hmNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCvH/AZS9ZydPm2mDAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm4HFWd//H3hz0gkIAQGIcxLCKyKKMRQRmJsiRgMBLRQPQ3RHHixuaDGkDUgE4w+LANkYE8IsFRQH/Aj5kEkrDesAgqSCIYAgYNiCwjeiHGQGT5/v6outCp20t1375Vtzuf1/P007dPnTr97UPT31TVOacUEZiZmQ229coOwMzM1g1OOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmLWRpImSbpX0nKQ1kh6R9G1Jb0y3R8XjBUmPS7pW0uFV2pqeqd/3uDlT712SeiVtkb5+q6TvSXpI0mpJv5N0gaThmf2+J+nSwewPs0oblB2AWbeQdA5wEnAZcB6wEtgd+BywB3BEWvUc4GpgQ2AH4MPAf0uaExGfzjT7PDCuSlmlbwMXR8TK9PXBwPuA/wR+DeyU1tlP0r4R8Wpa77vAMklnRcTy1j61WX7ySgNmA5ceofwPcGxE/CCzbX3gkIiYLymA4yNiVqbOp4FLgSkRcXlaNh04LiLeWOd93wI8AuwaEb9Ny7YG/hIV/3NLOgRYCIyJiEUV5TcDSyLi5NY/vVk+PqVm1h5fAn6VTTYAEfFKRMyvt3O638+Bzzf5vscAv+5LNmlbf47+/5K8P33eNlN+DfAJSf4tsEHnL5nZAEnaEHgvsGCATd0EvCttr7L9DTIPVWw+EPhZjrbfmz4vzZT/DBgJ7NVq0GZ5OeGYDdzWwMbA4wNs5wmS66pbZdp+KfM4ECBNPP8MPFivUUmbAt8BFkXEbzKbfwO8AuwzwNjNGvKgAbP2GegFUVUpex44KFP2cPo8giTRPVuzwSQpXUpyKu1D2e0R8bKk54DtWgnYrBlOOGYD92dgDfBPA2znTSRHMH+pKHs5Iu6tUX+T9HlNnTZnkoyOOzgiflejzpqKtswGjU+pmQ1QRLwE3AWMHWBThwD3pe3l8ef0eXi1jZK+BHwZ+NeIuKNOO8NZO8mZDQonHLP2OB8YLemY7AZJ60nKzqXJ1vk0yXWU/8z7hhGxhuS60Y5V2ptMMt/n5Ij4aZ333QbYlGRotdmg8ik1szaIiLmSzgUulfQ+4L+BVcBuJBM/V/D6KLZRkvYlmfj5j8AE4OPADyLih02+9V3AuyoLJB0AzAFuBO5O36vPExHxRMXr0STXnvKMdDMbkMKPcCTtIukSSUskvSKpJ+d+W0q6LF3C43lJP04nuGXrTZD0gKQXJS2VNKntH8KsinTy5CTgLcAVJMOcTwZuYe35NScDd6fbzwY2AiZExLEtvO21wAGShlWUfYAkmY1N36fy8ZnM/uNIRq/9GbNBVvhKA5ImALOAe4A9gWciYkyO/RYAbyU5J/0qycXQZyLiXyrq7A/0ABcB/w84jOR/7nERcWNbP4jZECBpI5Lh1F+MiP/b5L7rA48Bp0TEjwYjPrNKZSSc9frWcpJ0NfDGRglH0n4kh/wHRMTtadk+JDOzD46Im9OyhcCGEfHBin1vALaIiP0H4/OYlU3SV0iOkJr6jks6CvgW8LaIeHlQgjOrUPgptYqFA5txKMnRzO0V7fwC+H26DUkbk5xKyF4gvYpk0cItW4vYbMibBdzUwndcJGu/OdlYITpl0MBuwLIq5Q+l2wB2Jjlvna33EEli3RX45WAFaFaWiHgBOKOF/a4chHDMauqUhDMCeK5KeS/J0ut9dahSrzezfS2SpgJTAYYNG/auHXbYYWCRpl599VXWW8+jzhtxP+XjfspnXeynzR9JRrT/ddddc+/Tzn565JFHno2IbfLU7ZSEA9WXDVGV8uxr1ShPCiNmA7MBRo8eHffeW2tSd3N6enoYM2ZMW9rqZu6nfNxP+awr/TTqlOtf+/vhmeOTsiPOXavOiu/0W8noNe3sJ0mP5a3bKf8U6KX6bOrhvH5E01tRlq0D1Y+QzMysIJ2ScJbx+rWaSpXXdh4lWYcqW283kmHUnkltZlaiTkk484Ht0nk2AEgaTXL9Zj68tszHbcDHMvtOAu6OiOxtec3MrECFX8NJ781xWPryTcAWko5MX98QEaslLSeZ/XwsQETcnc6x+aGkyomfd/bNwUl9C+iRdD5wXfo+h9H/nvBmZlawMgYNbAtkZ0T3vd6RZM2pDYD1M3WOAs4DfkByZDYPOKGyQkTcmSavb5MsJfJ7YLJXGTCzbjVq2ryyQ8it8IQTESuofqOpyjqjqpQ9B3wqfdTb9zqSoxszMxtCOuUajpmZdTgnHDOzDjZ3zonMnXNi2WHk0kkTP83MLGOvZx4tO4TcfIRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIj1IzM+tgV7xjbNkh5OaEY2bWwU4bd3zZIeTmU2pmZlYIJxwzsw6259PL2fPp5WWHkYtPqZmZdbB5l58EdMaq0T7CMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwsOizcw62Phjzi87hNyccMzMOtiD2+1Sdgi5+ZSamZkVwgnHzKyDzVhwITMWXFh2GLk44ZiZdbDJSxYyecnCssPIxQnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQnvhpZtbBHhi5c9kh5OaEY2bWwQ6fckHZIeTmU2pmZlYIJxwzMyuEE46ZWQdbMXM8K2aOLzuMXJxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZmYd7NSxx5UdQm5OOGZmHezKvceVHUJuhZ9Sk7S7pFskrZb0pKQzJa3fYJ/pkqLG49SKenNq1Nlt8D+ZmZnVU+gRjqQRwM3AUmACsDNwDkniO73Ort8HFmTKPgJMA+ZnypcBn8qUrWgtYjOzoe3oxclPYycc6RR9Su1zwDBgYkSsBG6StAUwXdLZaVk/EfEE8ERlmaSvA8siYnGm+t8i4p5BiN3MbMg5a+EsoDMSTtGn1A4FFmYSy1UkSeiAvI1I2go4GLiyveGZmdlgKTrh7EZyyus1EfE4sDrdlteRwIYkySprd0krJa2RdKek3InMzMwGT9Gn1EYAz1Up70235XUU8KuIeCRTfj/wc5JrRNsAJ5Octts/In5RrSFJU4GpACNHjqSnp6eJMGpbtWpV29rqZu6nfNxP+awr/XTyXi83LKvXD2X1UxnDoqNKmWqU968obU9y+m1av4YjLsjUvZ4k+ZxGMsigfzARs4HZAKNHj44xY8bkCaOhnp4e2tVWN3M/5eN+ymdd6acpp1z/2t/Hp8/nPLD2z/mKT4ypuX9Z/VT0KbVeYHiV8i2pfuRTzcdJEtRPGlWMiBeAG4B35g3QzMwGR9EJZxmZazWSdgA2I3Ntp46jgDsj4g9NvG+uoyczMxs8RZ9Smw98RdLmEfHXtGwS8AKwqNHOkkYB+wJfyPNmkoaRjIy7r5VgzcyGulHT5pUdQm5FH+FcDKwBrpV0UHrBfjpwbuVQaUnLJV1aZf+jgJeBq7MbJG0p6Q5Jn5V0oKRJwG3Am4AZg/BZzMysCYUe4UREr6QDgVnAXJLrNueRJJ1sXNWWuzkKuCUi/lRl2xrgTyQrFmwLvAjcDRwQEfe25QOYmVnLCh+lFhFLgQ82qDOqRvnedfZ5EZg4oODMzDrM3DknAnD4lAsa1CyfV4s2M+tgez3zaNkh5OYbsJmZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcKj1MzMOtgV7xhbdgi5OeGYmXWw08Yd37jSEOFTamZmVoimEo6kasvNmJlZSfZ8ejl7Pr287DByafYI54+Szpb0tkGJxszMmjLv8pOYd/lJZYeRS7MJ5xLgSOBBST+XNFXSFoMQl5mZdZmmEk5EfDMidgIOBh4GzgWekvRjSQcNRoBmZtYdWho0EBG3RsS/AtuR3FL7rcBCSSskTZf0D+0M0szMOt9AR6mNBt5PctvoXuAO4DPAckmfHGDbZmbWRZpOOJLeLOmbkh4FbgG2Bz4N/ENE/B/gzSTXer7b1kjNzKyjNTXxU9KtJEc0TwBzgMsi4rHKOhHxiqQrgBPbFaSZmXW+ZlcaeBY4DLgpIqJOvcXAji1HZWZmuYw/5vyyQ8it2YQzC/hVtWQj6Q3AOyPi9oh4CXis395mZtZWD263S9kh5NbsNZzbgN1rbHtrut3MzKyfZhOO6mx7A7B6ALGYmVmTZiy4kBkLLiw7jFwanlKT9H5gTEXRZySNy1TbBPgQ8ED7QjMzs0YmL1kIdMaq0Xmu4byHZHInQAAfA17O1Pk7sAz4SvtCMzOzbtIw4UTEd0nn1Ej6PXBERCwe7MDMzKy7NDVKLSI81NnMzFqS5xrOYcCdEbEy/buuiLihLZGZmVlXyXOEMw/YF/hF+ndQe7RaAL5Jm5mZ9ZMn4ewIPFXxt5mZDREPjNy57BByyzNo4LFqf5uZWfkOn3JB2SHklucazqbNNBgRnvxpZmb95Dmltork2kxevoZjZmb95Ek4n6a5hGNmZgVZMXM8AKOmzSs5ksbyXMOZU0AcZmbW5QZ6i2kzM7Nc8gwa+AUwJSKWSvolDU6vRcQ+7QrOzMy6R55rOL8BXqj429dzzMysaXmu4Xyq4u8pgxqNmZl1rZav4SixjaR6N2UzMzMDmlwtGl5bzPN04F3p/i9Lug/494i4vs3xmZlZHaeOPa7sEHJrKuFI+ixwEXALcCLwv8C2wETgfyR9ISIuaXuUZmZW1ZV7Z2/APHQ1e4RzGjA7Ij6fKb9Y0sXA1wAnHDMz66fZazhbA9fW2HYNsFWjBiTtLukWSaslPSnpTEl1l8ORNEpSVHlcVaXuBEkPSHpR0lJJk3J9MjOzDnT04gUcvXhB2WHk0uwRzm3AAcBNVbYdANxeb2dJI4CbgaXABGBn4BySxHd6jvf/MnBXxetnM+3vT5L4LgJOAA4DrpTUGxE35mjfzKyjnLVwFtAZp9byTPzcveLlfwDfl7Q1cB2vX8M5AjgU+EyD5j4HDAMmRsRK4CZJWwDTJZ2dltXzcETcU2f714HbI+KE9PVtkvYAvgE44ZiZlSjPEc6DrD3ZU8Bn00f27p8LqL9a9KHAwkxiuQqYSXKENDdHPFVJ2hj4AMmRTaWrgMskbRkRz7favpmZDUyehPOBNr7fbsCtlQUR8bik1em2RgnnMklbkRxZXQl8LSL6VkHYGdgQWJbZ5yGSU3a7Ar8cWPhmZtaqPCsNLGrj+40AnqtS3ptuq2UN8D2S02IrgTHANJIkM6Gibaq035vZvhZJU4GpACNHjqSnp6de/LmtWrWqbW11M/dTPu6nfNaVfjp5r5cbltXrh7L6qemJn30krQdski3PccfPamuxqUZ5X5tPAZWzm3okPQNcJGnviFhcp33VKO9rezYwG2D06NExZsyY+tHn1NPTQ7va6mbup3zcT/msK/005ZTX59gfnz6f88DaP+crPjGm5v5l9VNTw6LT5WymSVoOvAT8tcqjnl5geJXyLal+5FPP1enzOyvapkr7fa+bbd/MzNqo2SOcE4BTgLOBfwe+DbwCHAVsBMxosP8ykms1r5G0A7AZ/a+9NBKZ50dJkuBuQOVpwN2AV4FHmmzfzGzI64Q7ffZpduLnvwHfJEk4ANdFxBnAHiQJ4y0N9p8PjJW0eUXZJJLbHzR7rejI9Pk+gIhYQzJP6GOZepOAuz1CzcysXM0e4ewILI6IVyS9RHq6KiJelXQR8H2SI6BaLiY5SrpW0kxgJ2A6cG7lUOn0lN2iiDg2fT0d2Jxk0udK4P3AV4BrI+LXFe1/i+T6zvkk84QOSx9Df0aUmVmXa/YI58/AG9K/Hwf+uWLbCJJJnTVFRC9wIMlcnbnAGcB5JEdNlTZg7fk8y0jm6VwG3ABMBr6bPle2fyfJkc9BwELgw8BkrzJgZt1q7pwTmTvnxLLDyKXZI5y7gHeT/OhfQbJCwFbA34EvkqwiXVdELAU+2KDOqMzrq0gmcDYUEdeRHN2YmXW9vZ55tOwQcms24UwH3pT+PYPklNoUkiObm3h9hJ6Zmdlamko4EfEw8HD69xqSe+J0xrGcmZmVaiATP/8R2B54MiL+2L6QzMysGzU7aABJn5f0B+Ax4OfA45KekPSFtkdnZmZdo9mVBr4BzCKZT/MhYHT6PB/4j3S7mZlZP82eUvsiMCMivp4pX5CubfZF4My2RGZmZg1d8Y6xZYeQW7MJZxi17+q5CI9SMzMr1GnjOudnt9lrONcBE2ts+yjQOYv6mJlZofLcYvqwipfzgbMljaL/Lab3AL7a/hDNzKyWPZ9eDsCD2+1SciSN5TmlNo/+t5J+E1DtxOGPSO7EaWZmBZh3+UlAZ6wanSfh7DjoUZiZWdfLc4vpx4oIxMzMulvTKw1I2oBkgMD+wFbAX4A7SG4V0P9G22ZmZjSZcCRtC9wIvB1YATwD7Ecy/2aJpEMi4k/tDtLMzDpfs8OizwW2Bt4TETtFxH4RsRPwnrT83HYHaGZm3aHZhHMYMC0ifllZmL4+lWSZGzMzs36avYazMfDXGtv+Cmw0sHDMzKwZ4485v+wQcms24dwDTJN0a0T8ra9Q0mbAtHS7mZkVpBMmfPZpNuGcDNwG/EHSjSSDBrYlmQQqYExbozMzs67R1DWciFgMvAWYDWwDHEyScC4G3hIRS9oeoZmZ1TRjwYXMWHBh2WHkkvsIR9KGwD7A7yPilMELyczM8pq8ZCHQGatGN3OE8wpwK/C2QYrFzMy6WO6EExGvAr8FRg5eOGZm1q2anYfzNeAbkvYajGDMzKx7NTtK7XSSFQUWS/ojySi1qKwQEfu0KTYzM+sizSacB9OHmZlZU3IlHEnDSJa1eRB4Grg5Ip4ZzMDMzKyxB0buXHYIueW5xfROwM3AqIrilZI+HhE3DlZgZmbW2OFTLig7hNzyDBo4G3gV+BdgU2AP4H7gkkGMy8zMukyehLMfcHpE3BURL0bEQ8BngX+StP3ghmdmZt0iT8LZHvhdpuxRkrXTtmt7RGZmltuKmeNZMXN82WHkknceTjSuYmZmVlveYdELJb1cpfyWbHlEbDvwsMzMrNvkSThnDHoUZmbW9RomnIhwwjEzswFrdi01MzOzljjhmJlZIZpdS83MzIaQU8ceV3YIuTnhmJl1sCv3Hld2CLn5lJqZmRXCCcfMrIMdvXgBRy9eUHYYuRSecCTtLukWSaslPSnpTEnrN9jn3ZIuk7Q83e9hSd+UtEmm3nRJUeXROcecZmZNOGvhLM5aOKvsMHIp9BqOpBEktzpYCkwAdgbOIUl8p9fZdVJadybwW+DtwLfS549m6j4PZBPMQwON3czMBqboQQOfA4YBEyNiJXCTpC2A6ZLOTsuqmRkRf6p43SPpReASSW+OiMcqtr0cEfcMTvhmZtaqok+pHQoszCSWq0iS0AG1dsokmz73p89eu83MrAMUnXB2A5ZVFkTE48DqdFsz3ktyY7iHM+XDJT0r6SVJ90ua2HK0ZmbWNkWfUhsBPFelvDfdlouk7YCvAf+VOVpaDnwVWAy8geRGcddI+mhEXFujranAVICRI0fS09OTN4y6Vq1a1ba2upn7KR/3Uz7rSj+dvFf/xfuzZfX6oax+KmPiZ7V766hGef+K0kbAT4FVwJfWajjiR5m6c4GfAd8AqiaciJgNzAYYPXp0jBkzJk8YDfX09NCutrqZ+ykf91M+60o/TTnl+tf+Pj59PueBtX/OV3xiTM39y+qnohNOLzC8SvmWVD/yWYskAT8E9gDeFxG99epHREi6Fpgpaf2IeKWFmM3MhqxR0+aVHUJuRSecZWSu1UjaAdiMzLWdGs4jGU59cETkqd/Hdyw1MytZ0YMG5gNjJW1eUTYJeAFYVG9HSaeSHD1+MiLuzPNm6RHREcASH92YmZWr6COci4ETgGslzQR2AqYD51Ze/Je0HFgUEcemrycDM4A5wB8l7VvR5qN9w6YlLQKuITla2gz4N2Bf4COD+7HMzMoxd86JABw+5YKSI2ms0IQTEb2SDgRmAXNJrtucR5J0snFVLndzSPo8JX1U+hRJIoJklNpJwPYkQ6Z/BXwoIua3I34zs6Fmr2ceLTuE3AofpRYRS4EPNqgzKvN6Cv0TTbX9jh1AaGZmNoi8WrSZmRXCCcfMzArhhGNmZoVwwjEzs0KUsbSNmZm1yRXvGFt2CLk54ZiZdbDTxh3fuNIQ4VNqZmZWCCccM7MOtufTy9nz6eVlh5GLT6mZmXWweZefBHTGqtE+wjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcLDos3MOtj4Y84vO4TcnHDMzDrYg9vtUnYIufmUmpmZFcIJx8ysg81YcCEzFlxYdhi5OOGYmXWwyUsWMnnJwrLDyMUJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwzMysEJ74aWbWwR4YuXPZIeTmhGNm1sEOn3JB2SHk5lNqZmZWCCccMzMrhBOOmVkHWzFzPCtmji87jFyccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhfBKA2ZmHezUsceVHUJuTjhmZh3syr3HlR1Cbj6lZmZmhXDCMTPrYEcvXsDRixeUHUYuPqVmZtbBzlo4C+iMU2s+wjEzs0IUnnAk7S7pFkmrJT0p6UxJ6+fYb0tJl0nqlfS8pB9L2rpKvQmSHpD0oqSlkiYNzicxM7NmFJpwJI0AbgYCmACcCZwMnJFj958AY4DPAFOAdwPXZdrfH7gGuA04FLgeuFLSIW35AGZm1rKir+F8DhgGTIyIlcBNkrYApks6Oy3rR9J+wFjggIi4PS37I/BzSQdFxM1p1a8Dt0fECenr2yTtAXwDuHHwPpaZmTVS9Cm1Q4GFmcRyFUkSOqDBfs/0JRuAiPgF8Pt0G5I2Bj4A/DSz71XAfpK2HHj4ZmbWqqKPcHYDbq0siIjHJa1Ot82ts9+yKuUPpdsAdgY2rFLvIZLEuivwy9bCNjN73ahTrm9YZ8V3PlRAJJ2l6IQzAniuSnlvuq2V/XaqqEOVer2Z7WuRNBWYmr5cJenhOnE0443As21qq5u5n/JxP+UzZPpJMwt6n74/Mnf9bPD+7eynN+etWMY8nKhSphrlreyXfa0a5UlhxGxgdoP3bpqkeyNidLvb7Tbup3zcT/m4n/Ipq5+KvobTCwyvUr4l1Y9gGu03vGK/3oqybB0atG9mZoOs6ISzjNevuQAgaQdgM6pfo6m5X6ry2s6jwEtV6u0GvAo80kK8ZmbWJkUnnPnAWEmbV5RNAl4AFjXYb7t0ng0AkkaTXL+ZDxARa0jm33wss+8k4O6IeH7g4Tel7afpupT7KR/3Uz7up3xK6SdFNLp00sY3SyZ+LgUeBGaSJIxzgfMj4vSKesuBRRFxbEXZApKRZl8mOWKZCfxvRPxLRZ39gR5gFsmk0MPS+uMiwvNwzMxKVOgRTkT0AgcC65MMgT4DOA/4ZqbqBmmdSkeRHAX9APghcB9wRKb9O4EjgYOAhcCHgclONmZm5Sv0CMfMzNZdXi26AS822lgrfSTp3Wn/LE/3e1jSNyVtkqk3XVJUeQz9tdgzWuynUTU+/1VV6nb8dwla7qda35OQdGpFvTk16lQblDSkSdpF0iWSlkh6RVJPzv1K+23y/XDqqFhsdCnJYqM7A+eQJOrT6+wKyWKjbyVZbLTvmtN1QPaa0zXARcAJJNecrpTU2ymnAQfQR5PSujOB3wJvB76VPn80U/d5IJtgHhpo7EUa4HcJkmuRd1W8XmvSXjd8l2BA/fR9IHsXso8A00gHFlVYBnwqU7aitYhLtQfJf+d7gI2a2K+836aI8KPGAziVZH7PFhVlXwVWV5ZV2W8/komm768o2yctO6iibCFwa2bfG4A7y/7sBfTRNlXKpqZ99OaKsunAs2V/zhL7aVTaJ+MbtN/x36WB9FONtq4HHsqUzQHuLftztqmv1qv4+2qgJ8c+pf42+ZRafV5stLGW+igi/lSl+P70edv2hTdktPpdaqiLvkvQpn6StBVwMHBle8MbOiLi1RZ2K/W3yQmnvn6LhkbE4yT/2qp3zrddi412glb7qJr3khziZ9ezGy7pWUkvSbpf0sSWoy3PQPvpsvQ8/VOSzpU0rGJbt3yXoH3fpyNJ+qTftS5gd0krJa2RdKekASX8DlPqb5MTTn2DsdjoiIo6VKlXd7HRIajVPlqLpO2ArwH/lfnX7XKSUyofJ7m28yRwTQcmnVb7aQ3wPeBYkikFlwCfZ+0f0m75LkGbvk8k0yh+FRHZFUbuJ7np4+HAJ0imX9wkaZ8WYu1Epf42edBAY0NqsdEhqtU+SipKG5Ecvq8CvrRWwxE/ytSdC/yM5KZ617YSbIma7qeIeAo4rqKoR9IzwEWS9o6IxXXa78TvEgz8+7Q9yem3af0ajrggU/d6kgEKp5EMMlgXlPbb5COc+rzYaGOt9hEAkkQykXcP4LBIJgfXFMnVy2uBt+cZnj6EDKifMq5On99Z0TZV2u+07xK0p58+TvLj+JNGFSPiBZKL4e9sVLdLlPrb5IRTnxcbbazVPupzHsnw1wkRkad+n077V/tA+6lSZJ675bsE7emno0hGU/2hiffttO9Tq0r9bXLCqW9dWmy0Va32EemEvOOBT0ayLFFD6RHREcCSiHiltZBL0XI/VXFk+nwfdNV3CQbYT5JGAfuSc3RaOvjiUNK+XAeU+9tU9ljyofwguTj2FHATyfpsU0muM3w7U285cGmmbAHwO2Aiybnhh4E7MnX2B14GzgfGAGeT/AvikLI/+2D3ETCZ5F+Vl5H8QFQ+tqmot4hk4tkhJInmhrSPPlz2Zy+on6aTTHycmO53JsmP7zXd9l0aSD9VlJ9C8q/zavO8tgTuAD5LMgBjEsmkyTXA6LI/ewt9tSnJPz6OBO4GflPxetNa/VTmb1PpnTbUH8DuwK3p/+RPkcyGXz9TZwUwJ1M2PP0xfQ5YCVwBvLFK+x8hWT17Dckh7VFlf+b7FSn1AAAAk0lEQVQi+ohkAl7UeEypqHdp+j/HC8Df0h+MQ8v+zAX201HAvSSrLfw9/QE5E9i4G79LrfZTRfliYEGNdjchuf73h7SPnk9/fPct+zO32E+j6vw/NKpWP5X52+TFO83MrBC+hmNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCvH/AZS9ZydPm2mDAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1317,7 +1317,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHd9JREFUeJzt3Xu0HFWd9vHvw0UItxAEAoMMEbxEGFmORgSHkXCH8I5cRJOFvrPioFFfFWcWOkRECOiwBEdAF+MClg68jJowAwzvQAghXE4gXNQgQZwkYNCAXERxDsQYiEB+7x+7DnbqdJ/T1Zd9cvo8n7V6dfeuXdW7djr9nKraVaWIwMzMrNs2G+kGmJnZ2ODAMTOzLBw4ZmaWhQPHzMyycOCYmVkWDhwzM8vCgWM2BElzJPUVr/skzak4/1RJUV5Wg7o3SXp4iOmXSuqXtFWTn/0mSSHpmCptNusWB47ZpmMu8BeS9itPkLQ5cDJwfUSsz94ysw5w4JhtOv4fsA6YUWfaocBEUiiZjUoOHLMWSTpI0n9JelrSHyQtk/ThVpcXEWuBm4DpdSbPAJ4F7iw+ew9JV0r6paQXJT0q6VxJWw7R3i2KXWyfLJV/VdKvS2V7Sbqm2IW3TtICSW9udd3MALYY6QaYbcoiYk7N66mlyXsB9wCXAS8BfwVcKWlDRMwt5ukDVF7WEOYCH5L0roh4AKAIkROB70fEq0W9XYDngL8HngcmA+cAOwOfrriaG5G0c7FezwKzinU7E1gk6a3epWetcuCYtSgi5g28liTgLuANwMdpfdfXAlKAzAAeKMqOBnaqXWZELAOW1Xz+PcCLwGWSPhcRr7T4+QCnA1sBh0fE88Xy7wVWAzOBy9tYto1h3qVm1iJJEyR9S9LjwMvFYxbwllaXWWw9/CdpK0dF8XTgceD+ms/eTNLpklZIerH47P8LjCOFXjuOABYCa4vdcFsALwA/Aaa0uWwbwxw4Zq27ihQGXweOAt4N/CuwdZvLnQv8OXCQpK2B44G5sfGl3U8HLgD+A3g/cABwWjGt3c/fGfgwfwrRgcf7gD3bXLaNYd6lZtaCIgiOAz4TEZfVlHfij7g7SMdPZgC7A9szeBfdB4F5EXF2zWfvP8xyXwVeAV5XKt+p9P5/gAeB8+ssY80wn2HWkAPHrDVbAZsDrx1Al7Q9aWujrZtMRcSrkv6DFCp7ACsi4qelauNqP7sw5Ai5iAhJTwFvq2nz5sBhpaq3k7aqHvYAAeskB45ZCyLiBUk/Bs6WtAbYAMwmHevYoQMfMRf4DGl02tl1pi8CPiVpKfAL4G+BSU0s9z+BWZIeIh0X+jiwTanOPwOnAHdIuhR4GtgNOAToi4h/r7w2ZjhwzNpxCnAFcDXwO+BS0o/3Zzqw7PtIo8ImAfPqTD8HeD1pt1cA1wL/ANwwzHLPJh2jOR/4I/AtYDnwsYEKEfEbSQcC/wRcAuwIPAPcDTS89I7ZcJT7FtOS3gR8ATgQ+Avg7jrnN9Sbbzzpy38CabDDTcBpEfG7Ur3jga8Cbyb95XduRFzTyXUwM7PqRmKU2n7ANODR4tGsa4CppL/EZpJGBG3015ykg4HrSGdjHwvMB+ZKOqrdRpuZWXtGYgtns4jYULy+Fth5uC0cSQcB9wKHRMRdRdkBwA+BIyPitqJsIbBlRBxWM+/NwA4RcXA31sfMzJqTfQtnIGwqOhZ4diBsiuX8CPhlMY3iku2HAuUDmvNI5zOMb63FZmbWCaPlxM/JwMo65SuKaQD7AFvWqbeCtJ4tn/1tZmbtGy2j1CaQri9V1g/sXVOHOvX6S9M3ImkW6XIkjBs37l177tn6idQbNmxgs81GS4aPLPdVNe6v5rmvqmm3vx599NHnImKXZuqOlsCB+ifTqU55+b0alKfCiCtIQ1uZMmVKLF26tOUG9vX1MXXq1JbnH0vcV9W4v5rnvqqm3f4qriXYlNHyZ0A/6VyAsh350xZNf01ZuQ7U30IyM7NMRkvgrORPx2pq1R7beYx0gcFyvcmks8CrDME2M7MOGy2BswDYrTjPBgBJU0jHbxbAa5d1v5N0/ala04H7IuKFTG01M7M6sh/DkbQN6cRPSBcm3EHSycX7myNinaRVwOKIOBUgIu4rzrG5WtLnSVssFwBLBs7BKXwF6JN0Cemk0GnF45iur5iZmQ1pJAYN7Eq6h0etgfdvJF0/agvSlXhrzQAuJt1v5LVL29RWiIglRXh9FfgU6TydUyLi1g6238zMWpA9cCJiNX8aOdaozqQ6Zc8DHy0eQ817A8NfwNDMzDIbLcdwzMxslHPgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFtkDR9K+km6XtE7S05LOk7T5MPPMkRQNHl+sqXdVgzqTu79mZmY2lC1yfpikCcBtwHLgeGAf4Buk4DtriFm/A9xSKjsBOANYUCpfCXy0VLa6tRabmVmnZA0c4JPAOOCkiFgDLJK0AzBH0oVF2SAR8STwZG2ZpC8DKyNiWan6HyLi/i603czM2pB7l9qxwMJSsMwjhdAhzS5E0k7AkcDczjbPzMy6JXfgTCbt8npNRDwBrCumNetkYEtSWJXtK2mNpPWSlkhqOsjMzKx7cu9SmwA8X6e8v5jWrBnATyLi0VL5g8APSceIdgFOJ+22OzgiflRvQZJmAbMAJk6cSF9fX4VmbGzt2rVtzT+WuK+qcX81z31VTc7+yh04AFGnTA3KB1eUdiftfjtj0IIjvlmqO58UPmeSBhkMbkzEFcAVAFOmTImpU6c204y6+vr6aGf+scR9VY37q3nuq2py9lfuXWr9wI51ysdTf8unng+RAuqa4SpGxIvAzcA7m22gmZl1R+7AWUnpWI2kPYFtKR3bGcIMYElE/KrC5za19WRmZt2TO3AWAEdL2r6mbDrwIrB4uJklTQIOpMnRaZLGkUbGPVC1oWZm1lm5A+cyYD1wvaQjigP2c4CLaodKS1ol6bt15p8BvAJcW54gabykuyV9QtLhkqYDdwJ7AOd3YV3MzKyCrIMGIqJf0uHApcCNpOM2F5NCp9yuepe7mQHcHhG/rTNtPfBb0hULdgVeAu4DDomIpR1ZATMza1n2UWoRsRw4bJg6kxqUv2OIeV4CTmqrcdYzJs2eD8Dqrx03wi0xswG+WrSZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWVRKXAk1bvcjJmZ2bCqbuE8JelCSW/rSmvMzKxnVQ2cy4GTgZ9J+qGkWZJ26EK7zMysx1QKnIg4JyL2Bo4EHgEuAp6R9H1JR3SjgWZm1htaGjQQEXdExN8CuwGfBd4KLJS0WtIcSX/WyUaamdno1+4otSnA+0i3je4H7gY+BqyS9JE2l21mZj2kcuBI2kvSOZIeA24Hdgf+DviziPjfwF6kYz1f72hLzcxsVKt0AzZJd5C2aJ4ErgKujIjHa+tExKuSfgB8rlONNDOz0a/qHT+fA6YBiyIihqi3DHhjy60yM7OeU3WX2qXAvfXCRtJ2kt4HEBEvl7d8zMxsbKsaOHcC+zaY9tZiupmZ2SBVA0dDTNsOWNdGW8zMrIcNewyn2E02taboY5KOKVXbGjgOeLhzTTMzs17SzKCB95BO7gQI4IPAK6U6fwRWAl/oXNPMzKyXDBs4EfF1inNqJP0SODEilnW7YWZm1lsqDYuOCA91NjOzljRzDGcasCQi1hSvhxQRN3ekZWZm1lOa2cK5CTgQ+FHxOmg8Wi0A36TNzMwGaSZw3gg8U/PazMyssmYGDTxe77WZmVkVzRzD2abKAiPCJ3+amdkgzexSW0s6NtMsH8MxM7NBmgmcv6Na4JiZmQ3SzDGcqzK0w8zMely7t5g2MzNrSjODBn4EzIyI5ZJ+zDC71yLigE41zszMekczx3D+G3ix5rWP55iZWWXNHMP5aM3rmV1tjZmZ9ayWj+Eo2UXSUDdlMzMzA1oIHEnTJN0LvAT8GnhJ0r2Sjut468zMrGdUChxJnwBuJJ0M+jnSzdg+V7z/r2K6mZnZIJXuhwOcCVwREZ8qlV8m6TLgS8DlHWmZmZn1lKq71F4PXN9g2nXATsMtQNK+km6XtE7S05LOkzTk5XAkTZIUdR7z6tQ9XtLDkl6StFzS9KbWzMzMuqrqFs6dwCHAojrTDgHuGmpmSROA24DlwPHAPsA3SMF3VhOf/3ngnpr3z5WWfzAp+L4NnAZMA+ZK6o+IW5tYvpmZdUkzJ37uW/P2W8B3JL0euAH4DbArcCJwLPCxYRb3SWAccFJErAEWSdoBmCPpwqJsKI9ExP1DTP8ycFdEnFa8v1PSfsDZgAPHzGwENbOF8zM2PtlTwCeKR/nun7cw9NWijwUWloJlHnABaQvpxibaU5ekrYBDSVs2teYBV0oaHxEvtLp8MzNrTzOBc2gHP28ycEdtQUQ8IWldMW24wLlS0k6kLau5wJciYuAqCPsAWwIrS/OsIO2yewvw4/aab2ZmrWrmSgOLO/h5E4Dn65T3F9MaWQ/8C2m32BpgKnAGKWSOr1k2dZbfX5q+EUmzgFkAEydOpK+vb6j2D2nt2rVtzT+WdLuvTn/7KwA98+/h71bz3FfV5OyvqoMGXiNpM2DrcnkTd/ysdy02NSgfWOYzwGdqivokPQt8W9I7ImLZEMtXg/KBZV8BXAEwZcqUmDp16tCtH0JfXx/tzD+WdLuvZs6eD8DqD3fvM3Lyd6t57qtqcvZX1RM/JekMSauAl4Hf13kMpR/YsU75eOpv+Qzl2uL5nTXLps7yB95XXb6ZmXVQ1fNwTgNmA98lbTn8E3Ae8CiwmmLX1BBWko7VvEbSnsC2DD72MpwoPT9GCsHJpXqTgQ1FG83MbIRUDZyPA+cAFxbvb4iIc4H9SIHx5mHmXwAcLWn7mrLppNsfVD1WdHLx/ABARKwnnSf0wVK96cB9HqFmZjayqh7DeSOwLCJelfQyxe6qiNgg6dvAd0hbQI1cRtpKul7SBcDewBzgotqh0sUuu8URcWrxfg6wPemkzzXA+4AvANdHxE9rlv8V0vGdS0jnCU0rHsdUXE8zM+uwqls4vwO2K14/AfxlzbQJpJM6G4qIfuBw0rk6NwLnAheTtppqbcHG5/OsJJ2ncyVwM3AK8PXiuXb5S0hbPkcAC4H3A6f4KgNmZiOv6hbOPcC7ST/6PyBdIWAn4I/Ap4Hbh1tARCwHDhumzqTS+3mkEziHFRE3kLZuzMxsE1I1cOYAexSvzyftUptJ2rJZBHy2Uw0zM7PeUilwIuIR4JHi9XrSvXA+14V2mZlZj2nnxM83ALsDT0fEU51rkpmZ9aJWbjH9KUm/Ah4Hfgg8IelJSf+n460zM7OeUfVKA2cDl5LOpzkOmFI8LwC+VUw3MzMbpOoutU8D50fEl0vltxTXNvs06coDZmZmG6m6S20cje/quZg6F/M0MzOD6oFzA3BSg2kfAG5qrzlmZtarmrnF9LSatwuACyVNYvAtpvcD/rHzTTQzs17QzDGcmxh8K+k9gKPr1P0e6U6cZmZmG2kmcN7Y9VaYmVnPa+YW04/naIiZmfW2ylcakLQFaYDAwcBOwP8Ad5NuFfBKZ5tnZma9olLgSNoVuBXYn3SHz2eBg0jn3zwk6aiI+G2nG2lmZqNf1WHRFwGvB94TEXtHxEERsTfwnqL8ok430MzMekPVwJkGnBERP64tLN5/kXSZGzMzs0GqBs5WwO8bTPs98Lr2mmNmZr2qauDcD5whadvawuL9GcV0MzOzQaqOUjsduBP4laRbSYMGdiWdBCpgakdbZ2ZmPaPSFk5ELAPeDFwB7AIcSQqcy4A3R8RDHW+hmZn1hKa3cCRtCRwA/DIiZnevSWZm1ouqbOG8CtwBvK1LbTEzsx7WdOBExAbg58DE7jXHzMx6VdVRal8Czpb09m40xszMelfVUWpnka4osEzSU6RRalFbISIO6FDbzMysh1QNnJ8VDzMzs0qaChxJ40iXtfkZ8Gvgtoh4tpsNMzOz3tLMLab3Bm4DJtUUr5H0oYi4tVsNMzOz3tLMoIELgQ3AXwPbAPsBDwKXd7FdZmbWY5oJnIOAsyLinoh4KSJWAJ8A/lzS7t1tnpmZ9YpmAmd34BelssdI107breMtMjOzntTseTgxfBUzM7PGmh0WvVDSK3XKby+XR8Su7TfLzMx6TTOBc27XW2FmZj1v2MCJCAeOmZm1req11MzMzFriwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLInvgSNpX0u2S1kl6WtJ5kjYfZp53S7pS0qpivkcknSNp61K9OZKizuOY7q6VmZkNp+oN2NoiaQLpVgfLgeOBfYBvkILvrCFmnV7UvQD4ObA/8JXi+QOlui8A5YBZ0W7bzcysPVkDB/gkMA44KSLWAIsk7QDMkXRhUVbPBRHx25r3fZJeAi6XtFdEPF4z7ZWIuL87zTczs1bl3qV2LLCwFCzzSCF0SKOZSmEz4MHi2dduMzMbBXIHzmRgZW1BRDwBrCumVfFe0o3hHimV7yjpOUkvS3pQ0kktt9bMzDpGEfnuPCDpZeALEXFJqfxJ4OqIOLPJ5ewG/BS4OSJm1pR/hLTFswzYjnSjuGnAByLi+gbLmgXMApg4ceK75s2bV3W1XrN27Vq22267lucfS7rdVw8/9QIAb99jfNc+Iyd/t5rnvqqm3f469NBDH4iIKc3UHYnA+XxEfLNU/hRwVUR8qYllvI408OANwLsion+IugLuBcZFxDuGW/aUKVNi6dKlw1VrqK+vj6lTp7Y8/1jS7b6aNHs+AKu/dlzXPiMnf7ea576qpt3+ktR04OTepdYP7FinfDzw/HAzFwFyNbAfMG2osAGIlKbXA/sPN/TazMy6K/cotZWUjtVI2hPYltKxnQYuJg2nPjIimqk/wHcsNTMbYbm3cBYAR0vavqZsOvAisHioGSV9Efgs8JGIWNLMhxVbRCcCD0XEq6012czMOiH3Fs5lwGnA9ZIuAPYG5gAX1Q6VlrQKWBwRpxbvTwHOB64CnpJ0YM0yHxsYNi1pMXAdaWtpW+DjwIHACd1dLTMzG07WwImIfkmHA5cCN5KO21xMCp1yu2qPuRxVPM8sHrU+SgoigFXA3wO7k4ZM/wQ4LiIWdKL9ZmbWutxbOETEcuCwYepMKr2fyeCgqTffqW00zczMushXizYzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHBs1Jo0ez6TZs8f6WaYWZMcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwLExZ9Ls+UyaPX+km2E25jhwzMwsCweOmZllscVIN8BsKLW7vlZ/7bgRbImZtSv7Fo6kfSXdLmmdpKclnSdp8ybmGy/pSkn9kl6Q9H1Jr69T73hJD0t6SdJySdO7syZmZlZF1sCRNAG4DQjgeOA84HTg3CZmvwaYCnwMmAm8G7ihtPyDgeuAO4FjgfnAXElHdWQFzMysZbl3qX0SGAecFBFrgEWSdgDmSLqwKBtE0kHA0cAhEXFXUfYU8ENJR0TEbUXVLwN3RcRpxfs7Je0HnA3c2r3Vsl4xsAvPu+/MOi/3LrVjgYWlYJlHCqFDhpnv2YGwAYiIHwG/LKYhaSvgUODfS/POAw6SNL795lu3jIahygNt3NTbabapyr2FMxm4o7YgIp6QtK6YduMQ862sU76imAawD7BlnXorSMH6FuDHrTV7bGv0V3+nynvFUOvXzLRG0816hSIi34dJLwNfiIhLSuVPAldHxJkN5lsE/CEiTiiVfw/YOyLeK+mvgCXAX0bEspo6bwJ+DhwdEYN2q0maBcwq3r4VeKTlFYSdgefamH8scV9V4/5qnvuqmnb7a6+I2KWZiiMxLLpewqlBeSvzld9riPmJiCuAK4b57KZIWhoRUzqxrF7nvqrG/dU891U1Ofsr9zGcfmDHOuXjgedbmG/Hmvn6a8rKdRhm+WZm1mW5A2clfzrmAoCkPYFtqX+MpuF8hdpjO48BL9epNxnYADzaQnvNzKxDcgfOAuBoSdvXlE0HXgQWDzPfbsV5NgBImgLsXUwjItaTzr/5YGne6cB9EfFC+80fVkd2zY0R7qtq3F/Nc19Vk62/cg8amAAsB34GXEAKjIuASyLirJp6q4DFEXFqTdktpJFmnydtsVwA/CYi/rqmzsFAH3Ap6aTQaUX9Y+oNGDAzs3yybuFERD9wOLA5aQj0ucDFwDmlqlsUdWrNIG0F/StwNfAAcGJp+UuAk4EjgIXA+4FTHDZmZiMv6xaOmZmNXb49QYkvLlpNK/0l6d1FX60q5ntE0jmSti7VmyMp6jyO6e5adUeLfTWpQR/Mq1PX363G35mQ9MWaelc1qFNvcNImT9KbJF0u6SFJr0rqa3K+rL9bvj1BjZqLiy4nXVx0H+AbpGA+a4hZIV1c9K2ki4sOHGO6ASgfY7oO+DZwGukY01xJ/aNxt18b/TW9qHsB6aTc/YGvFM8fKNV9ASgHzIp2255bm98tSMci76l5v9GJev5uveY7wC2lshOAMygGGNVYCXy0VLa6tRaPuP1I/+b3A6+rMF/e362I8KN4AF8knc+zQ03ZPwLrasvqzHcQ6cTS99WUHVCUHVFTthC4ozTvzcCSkV73zP21S52yWUV/7VVTNgd4bqTXc4T7alLRL/9rmOX7u9V4WfOBFaWyq4ClI72eHeyvzWpeXwv0NTFP9t8t71LbmC8uWk1L/RURv61T/GDxvGvnmrdJafW7NSx/txqTtBNwJDC3s83btETEhhZmy/675cDZ2KCLhEbEE6S/qobat9upi4uONq32Vz3vJW3Sl69lt6Ok5yS9LOlBSSe13NqR1W5fXVnsm39G0kWSxtVM83ersZNJfTPomBewr6Q1ktZLWiKpreAfhbL/bjlwNjaB+pfA6S+mtTPfwHO5Xn9p+mjSan9tRNJuwJeAfyv9RbuKtBvlQ6RjO08D143S0Gm1r9YD/wKcSjql4HLgU2z8A+rvVmMzgJ9ERPlKIw+Sbv74N8CHSadhLJJ0QAttHa2y/2550MBgm9TFRUeBVvsrVZReR9pcXwv8w0YLjvheqe6NwL2kG+pd30pjR1jlvoqIZ4DP1BT1SXoW+Lakd0TNldHrLGesf7d2J+1+O2PQgiO+Wao7nzRA4UzSIIOxIuvvlrdwNuaLi1bTan8BIEmkk3j3A6ZFOjG4oUhHK68H9m9mqPompq2+Krm2eH5nzbKps/wx+90qfIj0w3jNcBUj4kXSgfB3Dle3h2T/3XLgbMwXF62m1f4acDFpyOvxEdFM/QGj8S/2dvuqVpSe/d2qbwZpJNWvKnzuaPxutSr775YDZ2O9fnHRTmu1vyhOwvss8JFIlyQaVrFFdCLwUES82lqTR0zLfVXHycXzA+DvVj2SJgEH0uTotGIQxrEUfTpG5P/dGunx45vSg3QA7BlgEel6bLNIxxa+Wqq3CvhuqewW4BfASaR9wI8Ad5fqHAy8AlwCTAUuJP2VcNRIr3vO/gJOIf0leSXpR6H2sUtNvcWkE82OIgXNzUV/vX+k1z1jX80hnfB4UjHfeaQf3ev83ar/f7Eon036y7zeOV/jgbuBT5AGYkwnnTC5Hpgy0uveYn9tQ/pD5GTgPuC/a95v06ivcv9ujXhHbWoPYF/gjuI/9TOkM+A3L9VZDVxVKtux+AF9HlgD/ADYuc7yTyBdLXs9abN1xkivc+7+Ip10Fw0eM2vqfbf4z/Ai8IfiR+LYkV7nzH01A1hKuuLCH4sfjfOArfzdqv9/sShfBtzSYLlbk44F/qroqxeKH94DR3qd2+irSUP8n5rUqK9y/2754p1mZpaFj+GYmVkWDhwzM8vCgWNmZlk4cMzMLAsHjpmZZeHAMTOzLBw4ZmaWhQPHzMyy+P/sRLFWrSgmxQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHd9JREFUeJzt3Xu0HFWd9vHvw0UItxAEAoMMEbxEGFmORgSHkXCH8I5cRJOFvrPioFFfFWcWOkRECOiwBEdAF+MClg68jJowAwzvQAghXE4gXNQgQZwkYNCAXERxDsQYiEB+7x+7DnbqdJ/T1Zd9cvo8n7V6dfeuXdW7djr9nKraVaWIwMzMrNs2G+kGmJnZ2ODAMTOzLBw4ZmaWhQPHzMyycOCYmVkWDhwzM8vCgWM2BElzJPUVr/skzak4/1RJUV5Wg7o3SXp4iOmXSuqXtFWTn/0mSSHpmCptNusWB47ZpmMu8BeS9itPkLQ5cDJwfUSsz94ysw5w4JhtOv4fsA6YUWfaocBEUiiZjUoOHLMWSTpI0n9JelrSHyQtk/ThVpcXEWuBm4DpdSbPAJ4F7iw+ew9JV0r6paQXJT0q6VxJWw7R3i2KXWyfLJV/VdKvS2V7Sbqm2IW3TtICSW9udd3MALYY6QaYbcoiYk7N66mlyXsB9wCXAS8BfwVcKWlDRMwt5ukDVF7WEOYCH5L0roh4AKAIkROB70fEq0W9XYDngL8HngcmA+cAOwOfrriaG5G0c7FezwKzinU7E1gk6a3epWetcuCYtSgi5g28liTgLuANwMdpfdfXAlKAzAAeKMqOBnaqXWZELAOW1Xz+PcCLwGWSPhcRr7T4+QCnA1sBh0fE88Xy7wVWAzOBy9tYto1h3qVm1iJJEyR9S9LjwMvFYxbwllaXWWw9/CdpK0dF8XTgceD+ms/eTNLpklZIerH47P8LjCOFXjuOABYCa4vdcFsALwA/Aaa0uWwbwxw4Zq27ihQGXweOAt4N/CuwdZvLnQv8OXCQpK2B44G5sfGl3U8HLgD+A3g/cABwWjGt3c/fGfgwfwrRgcf7gD3bXLaNYd6lZtaCIgiOAz4TEZfVlHfij7g7SMdPZgC7A9szeBfdB4F5EXF2zWfvP8xyXwVeAV5XKt+p9P5/gAeB8+ssY80wn2HWkAPHrDVbAZsDrx1Al7Q9aWujrZtMRcSrkv6DFCp7ACsi4qelauNqP7sw5Ai5iAhJTwFvq2nz5sBhpaq3k7aqHvYAAeskB45ZCyLiBUk/Bs6WtAbYAMwmHevYoQMfMRf4DGl02tl1pi8CPiVpKfAL4G+BSU0s9z+BWZIeIh0X+jiwTanOPwOnAHdIuhR4GtgNOAToi4h/r7w2ZjhwzNpxCnAFcDXwO+BS0o/3Zzqw7PtIo8ImAfPqTD8HeD1pt1cA1wL/ANwwzHLPJh2jOR/4I/AtYDnwsYEKEfEbSQcC/wRcAuwIPAPcDTS89I7ZcJT7FtOS3gR8ATgQ+Avg7jrnN9Sbbzzpy38CabDDTcBpEfG7Ur3jga8Cbyb95XduRFzTyXUwM7PqRmKU2n7ANODR4tGsa4CppL/EZpJGBG3015ykg4HrSGdjHwvMB+ZKOqrdRpuZWXtGYgtns4jYULy+Fth5uC0cSQcB9wKHRMRdRdkBwA+BIyPitqJsIbBlRBxWM+/NwA4RcXA31sfMzJqTfQtnIGwqOhZ4diBsiuX8CPhlMY3iku2HAuUDmvNI5zOMb63FZmbWCaPlxM/JwMo65SuKaQD7AFvWqbeCtJ4tn/1tZmbtGy2j1CaQri9V1g/sXVOHOvX6S9M3ImkW6XIkjBs37l177tn6idQbNmxgs81GS4aPLPdVNe6v5rmvqmm3vx599NHnImKXZuqOlsCB+ifTqU55+b0alKfCiCtIQ1uZMmVKLF26tOUG9vX1MXXq1JbnH0vcV9W4v5rnvqqm3f4qriXYlNHyZ0A/6VyAsh350xZNf01ZuQ7U30IyM7NMRkvgrORPx2pq1R7beYx0gcFyvcmks8CrDME2M7MOGy2BswDYrTjPBgBJU0jHbxbAa5d1v5N0/ala04H7IuKFTG01M7M6sh/DkbQN6cRPSBcm3EHSycX7myNinaRVwOKIOBUgIu4rzrG5WtLnSVssFwBLBs7BKXwF6JN0Cemk0GnF45iur5iZmQ1pJAYN7Eq6h0etgfdvJF0/agvSlXhrzQAuJt1v5LVL29RWiIglRXh9FfgU6TydUyLi1g6238zMWpA9cCJiNX8aOdaozqQ6Zc8DHy0eQ817A8NfwNDMzDIbLcdwzMxslHPgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFtkDR9K+km6XtE7S05LOk7T5MPPMkRQNHl+sqXdVgzqTu79mZmY2lC1yfpikCcBtwHLgeGAf4Buk4DtriFm/A9xSKjsBOANYUCpfCXy0VLa6tRabmVmnZA0c4JPAOOCkiFgDLJK0AzBH0oVF2SAR8STwZG2ZpC8DKyNiWan6HyLi/i603czM2pB7l9qxwMJSsMwjhdAhzS5E0k7AkcDczjbPzMy6JXfgTCbt8npNRDwBrCumNetkYEtSWJXtK2mNpPWSlkhqOsjMzKx7cu9SmwA8X6e8v5jWrBnATyLi0VL5g8APSceIdgFOJ+22OzgiflRvQZJmAbMAJk6cSF9fX4VmbGzt2rVtzT+WuK+qcX81z31VTc7+yh04AFGnTA3KB1eUdiftfjtj0IIjvlmqO58UPmeSBhkMbkzEFcAVAFOmTImpU6c204y6+vr6aGf+scR9VY37q3nuq2py9lfuXWr9wI51ysdTf8unng+RAuqa4SpGxIvAzcA7m22gmZl1R+7AWUnpWI2kPYFtKR3bGcIMYElE/KrC5za19WRmZt2TO3AWAEdL2r6mbDrwIrB4uJklTQIOpMnRaZLGkUbGPVC1oWZm1lm5A+cyYD1wvaQjigP2c4CLaodKS1ol6bt15p8BvAJcW54gabykuyV9QtLhkqYDdwJ7AOd3YV3MzKyCrIMGIqJf0uHApcCNpOM2F5NCp9yuepe7mQHcHhG/rTNtPfBb0hULdgVeAu4DDomIpR1ZATMza1n2UWoRsRw4bJg6kxqUv2OIeV4CTmqrcdYzJs2eD8Dqrx03wi0xswG+WrSZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWVRKXAk1bvcjJmZ2bCqbuE8JelCSW/rSmvMzKxnVQ2cy4GTgZ9J+qGkWZJ26EK7zMysx1QKnIg4JyL2Bo4EHgEuAp6R9H1JR3SjgWZm1htaGjQQEXdExN8CuwGfBd4KLJS0WtIcSX/WyUaamdno1+4otSnA+0i3je4H7gY+BqyS9JE2l21mZj2kcuBI2kvSOZIeA24Hdgf+DviziPjfwF6kYz1f72hLzcxsVKt0AzZJd5C2aJ4ErgKujIjHa+tExKuSfgB8rlONNDOz0a/qHT+fA6YBiyIihqi3DHhjy60yM7OeU3WX2qXAvfXCRtJ2kt4HEBEvl7d8zMxsbKsaOHcC+zaY9tZiupmZ2SBVA0dDTNsOWNdGW8zMrIcNewyn2E02taboY5KOKVXbGjgOeLhzTTMzs17SzKCB95BO7gQI4IPAK6U6fwRWAl/oXNPMzKyXDBs4EfF1inNqJP0SODEilnW7YWZm1lsqDYuOCA91NjOzljRzDGcasCQi1hSvhxQRN3ekZWZm1lOa2cK5CTgQ+FHxOmg8Wi0A36TNzMwGaSZw3gg8U/PazMyssmYGDTxe77WZmVkVzRzD2abKAiPCJ3+amdkgzexSW0s6NtMsH8MxM7NBmgmcv6Na4JiZmQ3SzDGcqzK0w8zMely7t5g2MzNrSjODBn4EzIyI5ZJ+zDC71yLigE41zszMekczx3D+G3ix5rWP55iZWWXNHMP5aM3rmV1tjZmZ9ayWj+Eo2UXSUDdlMzMzA1oIHEnTJN0LvAT8GnhJ0r2Sjut468zMrGdUChxJnwBuJJ0M+jnSzdg+V7z/r2K6mZnZIJXuhwOcCVwREZ8qlV8m6TLgS8DlHWmZmZn1lKq71F4PXN9g2nXATsMtQNK+km6XtE7S05LOkzTk5XAkTZIUdR7z6tQ9XtLDkl6StFzS9KbWzMzMuqrqFs6dwCHAojrTDgHuGmpmSROA24DlwPHAPsA3SMF3VhOf/3ngnpr3z5WWfzAp+L4NnAZMA+ZK6o+IW5tYvpmZdUkzJ37uW/P2W8B3JL0euAH4DbArcCJwLPCxYRb3SWAccFJErAEWSdoBmCPpwqJsKI9ExP1DTP8ycFdEnFa8v1PSfsDZgAPHzGwENbOF8zM2PtlTwCeKR/nun7cw9NWijwUWloJlHnABaQvpxibaU5ekrYBDSVs2teYBV0oaHxEvtLp8MzNrTzOBc2gHP28ycEdtQUQ8IWldMW24wLlS0k6kLau5wJciYuAqCPsAWwIrS/OsIO2yewvw4/aab2ZmrWrmSgOLO/h5E4Dn65T3F9MaWQ/8C2m32BpgKnAGKWSOr1k2dZbfX5q+EUmzgFkAEydOpK+vb6j2D2nt2rVtzT+WdLuvTn/7KwA98+/h71bz3FfV5OyvqoMGXiNpM2DrcnkTd/ysdy02NSgfWOYzwGdqivokPQt8W9I7ImLZEMtXg/KBZV8BXAEwZcqUmDp16tCtH0JfXx/tzD+WdLuvZs6eD8DqD3fvM3Lyd6t57qtqcvZX1RM/JekMSauAl4Hf13kMpR/YsU75eOpv+Qzl2uL5nTXLps7yB95XXb6ZmXVQ1fNwTgNmA98lbTn8E3Ae8CiwmmLX1BBWko7VvEbSnsC2DD72MpwoPT9GCsHJpXqTgQ1FG83MbIRUDZyPA+cAFxbvb4iIc4H9SIHx5mHmXwAcLWn7mrLppNsfVD1WdHLx/ABARKwnnSf0wVK96cB9HqFmZjayqh7DeSOwLCJelfQyxe6qiNgg6dvAd0hbQI1cRtpKul7SBcDewBzgotqh0sUuu8URcWrxfg6wPemkzzXA+4AvANdHxE9rlv8V0vGdS0jnCU0rHsdUXE8zM+uwqls4vwO2K14/AfxlzbQJpJM6G4qIfuBw0rk6NwLnAheTtppqbcHG5/OsJJ2ncyVwM3AK8PXiuXb5S0hbPkcAC4H3A6f4KgNmZiOv6hbOPcC7ST/6PyBdIWAn4I/Ap4Hbh1tARCwHDhumzqTS+3mkEziHFRE3kLZuzMxsE1I1cOYAexSvzyftUptJ2rJZBHy2Uw0zM7PeUilwIuIR4JHi9XrSvXA+14V2mZlZj2nnxM83ALsDT0fEU51rkpmZ9aJWbjH9KUm/Ah4Hfgg8IelJSf+n460zM7OeUfVKA2cDl5LOpzkOmFI8LwC+VUw3MzMbpOoutU8D50fEl0vltxTXNvs06coDZmZmG6m6S20cje/quZg6F/M0MzOD6oFzA3BSg2kfAG5qrzlmZtarmrnF9LSatwuACyVNYvAtpvcD/rHzTTQzs17QzDGcmxh8K+k9gKPr1P0e6U6cZmZmG2kmcN7Y9VaYmVnPa+YW04/naIiZmfW2ylcakLQFaYDAwcBOwP8Ad5NuFfBKZ5tnZma9olLgSNoVuBXYn3SHz2eBg0jn3zwk6aiI+G2nG2lmZqNf1WHRFwGvB94TEXtHxEERsTfwnqL8ok430MzMekPVwJkGnBERP64tLN5/kXSZGzMzs0GqBs5WwO8bTPs98Lr2mmNmZr2qauDcD5whadvawuL9GcV0MzOzQaqOUjsduBP4laRbSYMGdiWdBCpgakdbZ2ZmPaPSFk5ELAPeDFwB7AIcSQqcy4A3R8RDHW+hmZn1hKa3cCRtCRwA/DIiZnevSWZm1ouqbOG8CtwBvK1LbTEzsx7WdOBExAbg58DE7jXHzMx6VdVRal8Czpb09m40xszMelfVUWpnka4osEzSU6RRalFbISIO6FDbzMysh1QNnJ8VDzMzs0qaChxJ40iXtfkZ8Gvgtoh4tpsNMzOz3tLMLab3Bm4DJtUUr5H0oYi4tVsNMzOz3tLMoIELgQ3AXwPbAPsBDwKXd7FdZmbWY5oJnIOAsyLinoh4KSJWAJ8A/lzS7t1tnpmZ9YpmAmd34BelssdI107breMtMjOzntTseTgxfBUzM7PGmh0WvVDSK3XKby+XR8Su7TfLzMx6TTOBc27XW2FmZj1v2MCJCAeOmZm1req11MzMzFriwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLInvgSNpX0u2S1kl6WtJ5kjYfZp53S7pS0qpivkcknSNp61K9OZKizuOY7q6VmZkNp+oN2NoiaQLpVgfLgeOBfYBvkILvrCFmnV7UvQD4ObA/8JXi+QOlui8A5YBZ0W7bzcysPVkDB/gkMA44KSLWAIsk7QDMkXRhUVbPBRHx25r3fZJeAi6XtFdEPF4z7ZWIuL87zTczs1bl3qV2LLCwFCzzSCF0SKOZSmEz4MHi2dduMzMbBXIHzmRgZW1BRDwBrCumVfFe0o3hHimV7yjpOUkvS3pQ0kktt9bMzDpGEfnuPCDpZeALEXFJqfxJ4OqIOLPJ5ewG/BS4OSJm1pR/hLTFswzYjnSjuGnAByLi+gbLmgXMApg4ceK75s2bV3W1XrN27Vq22267lucfS7rdVw8/9QIAb99jfNc+Iyd/t5rnvqqm3f469NBDH4iIKc3UHYnA+XxEfLNU/hRwVUR8qYllvI408OANwLsion+IugLuBcZFxDuGW/aUKVNi6dKlw1VrqK+vj6lTp7Y8/1jS7b6aNHs+AKu/dlzXPiMnf7ea576qpt3+ktR04OTepdYP7FinfDzw/HAzFwFyNbAfMG2osAGIlKbXA/sPN/TazMy6K/cotZWUjtVI2hPYltKxnQYuJg2nPjIimqk/wHcsNTMbYbm3cBYAR0vavqZsOvAisHioGSV9Efgs8JGIWNLMhxVbRCcCD0XEq6012czMOiH3Fs5lwGnA9ZIuAPYG5gAX1Q6VlrQKWBwRpxbvTwHOB64CnpJ0YM0yHxsYNi1pMXAdaWtpW+DjwIHACd1dLTMzG07WwImIfkmHA5cCN5KO21xMCp1yu2qPuRxVPM8sHrU+SgoigFXA3wO7k4ZM/wQ4LiIWdKL9ZmbWutxbOETEcuCwYepMKr2fyeCgqTffqW00zczMushXizYzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHBs1Jo0ez6TZs8f6WaYWZMcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwLExZ9Ls+UyaPX+km2E25jhwzMwsCweOmZllscVIN8BsKLW7vlZ/7bgRbImZtSv7Fo6kfSXdLmmdpKclnSdp8ybmGy/pSkn9kl6Q9H1Jr69T73hJD0t6SdJySdO7syZmZlZF1sCRNAG4DQjgeOA84HTg3CZmvwaYCnwMmAm8G7ihtPyDgeuAO4FjgfnAXElHdWQFzMysZbl3qX0SGAecFBFrgEWSdgDmSLqwKBtE0kHA0cAhEXFXUfYU8ENJR0TEbUXVLwN3RcRpxfs7Je0HnA3c2r3Vsl4xsAvPu+/MOi/3LrVjgYWlYJlHCqFDhpnv2YGwAYiIHwG/LKYhaSvgUODfS/POAw6SNL795lu3jIahygNt3NTbabapyr2FMxm4o7YgIp6QtK6YduMQ862sU76imAawD7BlnXorSMH6FuDHrTV7bGv0V3+nynvFUOvXzLRG0816hSIi34dJLwNfiIhLSuVPAldHxJkN5lsE/CEiTiiVfw/YOyLeK+mvgCXAX0bEspo6bwJ+DhwdEYN2q0maBcwq3r4VeKTlFYSdgefamH8scV9V4/5qnvuqmnb7a6+I2KWZiiMxLLpewqlBeSvzld9riPmJiCuAK4b57KZIWhoRUzqxrF7nvqrG/dU891U1Ofsr9zGcfmDHOuXjgedbmG/Hmvn6a8rKdRhm+WZm1mW5A2clfzrmAoCkPYFtqX+MpuF8hdpjO48BL9epNxnYADzaQnvNzKxDcgfOAuBoSdvXlE0HXgQWDzPfbsV5NgBImgLsXUwjItaTzr/5YGne6cB9EfFC+80fVkd2zY0R7qtq3F/Nc19Vk62/cg8amAAsB34GXEAKjIuASyLirJp6q4DFEXFqTdktpJFmnydtsVwA/CYi/rqmzsFAH3Ap6aTQaUX9Y+oNGDAzs3yybuFERD9wOLA5aQj0ucDFwDmlqlsUdWrNIG0F/StwNfAAcGJp+UuAk4EjgIXA+4FTHDZmZiMv6xaOmZmNXb49QYkvLlpNK/0l6d1FX60q5ntE0jmSti7VmyMp6jyO6e5adUeLfTWpQR/Mq1PX363G35mQ9MWaelc1qFNvcNImT9KbJF0u6SFJr0rqa3K+rL9bvj1BjZqLiy4nXVx0H+AbpGA+a4hZIV1c9K2ki4sOHGO6ASgfY7oO+DZwGukY01xJ/aNxt18b/TW9qHsB6aTc/YGvFM8fKNV9ASgHzIp2255bm98tSMci76l5v9GJev5uveY7wC2lshOAMygGGNVYCXy0VLa6tRaPuP1I/+b3A6+rMF/e362I8KN4AF8knc+zQ03ZPwLrasvqzHcQ6cTS99WUHVCUHVFTthC4ozTvzcCSkV73zP21S52yWUV/7VVTNgd4bqTXc4T7alLRL/9rmOX7u9V4WfOBFaWyq4ClI72eHeyvzWpeXwv0NTFP9t8t71LbmC8uWk1L/RURv61T/GDxvGvnmrdJafW7NSx/txqTtBNwJDC3s83btETEhhZmy/675cDZ2KCLhEbEE6S/qobat9upi4uONq32Vz3vJW3Sl69lt6Ok5yS9LOlBSSe13NqR1W5fXVnsm39G0kWSxtVM83ersZNJfTPomBewr6Q1ktZLWiKpreAfhbL/bjlwNjaB+pfA6S+mtTPfwHO5Xn9p+mjSan9tRNJuwJeAfyv9RbuKtBvlQ6RjO08D143S0Gm1r9YD/wKcSjql4HLgU2z8A+rvVmMzgJ9ERPlKIw+Sbv74N8CHSadhLJJ0QAttHa2y/2550MBgm9TFRUeBVvsrVZReR9pcXwv8w0YLjvheqe6NwL2kG+pd30pjR1jlvoqIZ4DP1BT1SXoW+Lakd0TNldHrLGesf7d2J+1+O2PQgiO+Wao7nzRA4UzSIIOxIuvvlrdwNuaLi1bTan8BIEmkk3j3A6ZFOjG4oUhHK68H9m9mqPompq2+Krm2eH5nzbKps/wx+90qfIj0w3jNcBUj4kXSgfB3Dle3h2T/3XLgbMwXF62m1f4acDFpyOvxEdFM/QGj8S/2dvuqVpSe/d2qbwZpJNWvKnzuaPxutSr775YDZ2O9fnHRTmu1vyhOwvss8JFIlyQaVrFFdCLwUES82lqTR0zLfVXHycXzA+DvVj2SJgEH0uTotGIQxrEUfTpG5P/dGunx45vSg3QA7BlgEel6bLNIxxa+Wqq3CvhuqewW4BfASaR9wI8Ad5fqHAy8AlwCTAUuJP2VcNRIr3vO/gJOIf0leSXpR6H2sUtNvcWkE82OIgXNzUV/vX+k1z1jX80hnfB4UjHfeaQf3ev83ar/f7Eon036y7zeOV/jgbuBT5AGYkwnnTC5Hpgy0uveYn9tQ/pD5GTgPuC/a95v06ivcv9ujXhHbWoPYF/gjuI/9TOkM+A3L9VZDVxVKtux+AF9HlgD/ADYuc7yTyBdLXs9abN1xkivc+7+Ip10Fw0eM2vqfbf4z/Ai8IfiR+LYkV7nzH01A1hKuuLCH4sfjfOArfzdqv9/sShfBtzSYLlbk44F/qroqxeKH94DR3qd2+irSUP8n5rUqK9y/2754p1mZpaFj+GYmVkWDhwzM8vCgWNmZlk4cMzMLAsHjpmZZeHAMTOzLBw4ZmaWhQPHzMyy+P/sRLFWrSgmxQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1329,7 +1329,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm0XGWZ7/Hvj9FASJiHppEwaS60XiUBAWlImAlLEQSDXL0dhSRgL+EqIsgYUFyCi6Ft9JKg4mXZGFpM0zIECHACRBFMAgoNYZJB0EbAAxjCEOC5f7z7wKZS59Suc6p27dT5fdbaq6re/e5dT1VOznP2O21FBGZmZu22SqcDMDOz4cEJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZiWQdKikWyW9KOl1SQ9L+pakDVv8Pk9Iimx7Q9Ijks6VtHYr38dsMJxwzNpM0vnAz4E/AJ8H9gMuBD4BXNqGt7wC2BXYB7gc+ArwL214H7OmyBM/zdpH0ieAXwJHRcSPa/atCuwXEXNb+H5PAFdFxNdyZZcAU4C1IuLtVr2XWbN8hWPWXl8BFtcmG4CIeCsi5kp6XNJ5tfslXSXpjuz52pIulvSQpGXZMd+XNKpADL8D1gQ2GuqHMRsKJxyzNpG0OrAbcEODqv8OfEaScseOBCYBV2ZFawGrAqcCBwKnA3uRmuoaeT/wN+D5ZuI3a7XVOh2AWRfbgHRl8VSDerOBrwMfA36TlX0iO/bnABHxHHBs3wGSVgMeBxZIen9E5N9D2f41gD2AY4BzIuKtIX8isyHwFY5Z+w3YURoR9wAPA5NzxZOB+RHxbF+BpM9LukfSUmA5sCDb9YGaU3412/8KMBfoiYhzh/YRzIbOCcesfV4AXic1aTVyJXC4klHAAaQrHwAkHUIacXYncDiwC3BItvt9Nef6KbATMAG4DDhE0rGYdZgTjlmbRMRy4FfA/gWqzwY2B3YHPkXqr5mT2384cFdEfCki5kbEXUBvP+d6NiIWRsRtEfFF4FbgbM/FsU5zwjFrr4uA8ZL+qXaHpFUkHQAQEQ8A95Oa0iYD8yLihVz1EaSrpbz/VTCGbwAbAkc1GbtZS3nQgFkbRcQ1ki4AfiTp48B/AkuBsaTO/Cd4dxTblcDxwGhgas2p5gHfl3QqcBdpBNveBWO4W9I84CuSvu/BA9YpvsIxa7OIOIF01bIdaRWAecAJwC3kRp6RmtU2BN4Grq45zUzgfFJCmgNsCRzZRBjfAsYAn2n6A5i1SOkrDUjaFjiR1On5D8AdETGhwHGjSc0TnyIlymuB42qaHZB0MOk/13akpUTOiogrMTOzjurEFc4OpOaAh7OtqCtJo26OJi3TsRM1fwVK2h34BdBDmhx3HfAzSfsNNWgzMxuaTlzhrNK3npOkq4ANG13hSNoV+DWwZ0TcnpXtTGrL3jcibs7KbgRWj4i9csdeD4yKiN3b8XnMzKyY0q9wBrl44IGkoZ63585zN2mm9YEAktYEJpKWCcmbDeyaNcmZmVmHrCyDBsYCS+qUP5jtA9gGWL1OvQdJn7N2NraZmZVoZRkWvR7wYp3yXmDrXB3q1Out2f8ekqYB0wBGjBgxbostthgwkLfffptVVllZ8nQyHGJe5+HUHfi3D3Tu74rh8D1XgWMuR9GYH3744ecjotBK5CtLwoH661GpTnnta/VTngojZgGzAMaPHx8LFy4cMIj58+czYcKERrFWyrCIuW+h5Yceaks8RQyL77kCHHM5isYs6cmi51xZUm4vsG6d8nV594qmN1dWWwfqXyGZmVlJVpaEs4R3+2ry8n07j5FWyK2tN5Y0ka6ZIdhmZtZiK0vCmQtsms2zAUDSeFL/zVyAiHidNP/m8JpjJwN3RsRLJcVqZmZ1lN6HI2kt0sRPSKvjjpJ0WPb6+ohYJulR4LaIOAogIu7M5thcLulrpCuWc4EFfXNwMt8E5ku6iDQpdFK2HdD2D2ZmZgPqxKCBjVnxtrh9r7ciLWa4Gml59rwjgAuBH5Nb2iZfISIWZMnrW6Q1qh4HjoyIm1oYv1VRyROYzax5pSeciHiCd0eO9VdnTJ2yF4EvZNtAx17NigsfmplZh60sfThmZraSc8Kx7jBuXNrMrLJWpomfZv1bvLjTEZhZA77CMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhUepWXeYOrXTEZhZA0441h1mzep0BGbWgJvUzMysFE441h0WLUqbmVWWm9SsO4wfnx69arRZZfkKx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCg+Ltu6wcGGnIzCzBpxwrDv49tJmlecmNTMzK4UTjnWHadPSZmaV5YRj3eHSS9NmZpXlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgpP/LTusOOOnY7AzBpwwrHu4NtLm1Wem9TMzKwUTjhmZlYKJxzrDlLazKyynHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqXwSgPWHWbO7HQEZtaAE451B99e2qzySm9Sk7S9pFskLZP0J0lnS1q1wTEzJEU/2zdy9X7ST52x7f9kZmY2kFKvcCStB9wMPAAcDGwDnE9KfKcNcOgPgRtqyj4FnATMrSlfAnyhpuyJwUVsK41Zs9Kjr3TMKqvsJrVjgBHAoRHxMjBP0ihghqTzsrIVRMTTwNP5MkmnA0si4t6a6q9ExG/aELtV2fTp6dEJx6yyym5SOxC4sSaxzCYloT2LnkTS+sC+wM9aG56ZmbVL2QlnLKnJ6x0R8RSwLNtX1GHA6qRkVWt7SS9Lel3SAkmFE5mZmbWPIqK8N5OWAydGxEU15U8Dl0fEKQXPcyswOiLG1ZQfD7xB6iPaCDgBGAfsHhF393OuacA0gE022WTc7Nn1cti7li5dysiRI4uEWRnDIeYJEycCML+np10hNTQcvucqcMzlKBrzxIkTF0XE+EInjYjSNmA5cHyd8meAcwqeYzPgLeBrBeqOAB4Hri5y7nHjxkUjPT09DetUzbCIGdLWQcPie64Ax1yOojEDC6NgDii7Sa0XWLdO+WjgxYLn+Awg4MpGFSPiVeB6wDe8NzPrsLITzhJq+mokbQGsTU3fzgCOABZExB+beN/y2g3NzKyushPOXGB/SevkyiYDrwK3NTpY0hhgFwqOTpM0gjQyblGzgdpKpq9Rzcwqq+yEcwnwOjBH0j5Zh/0M4ILIDZWW9KikH9U5/gjgTeCq2h2SRku6Q9J0SXtLmgz0AJsD327DZzEzsyaUOvEzInol7Q1cDFxD6re5kJR0auOqt9zNEcAtEfFcnX2vA8+RVizYGHgNuBPYMyIWtuQDmJnZoJW+eGdEPADs1aDOmH7KPzLAMa8Bhw4pOFt5jctGyC9KradjTr7unV1PfOegTkRkZjW8WrR1h8WLOx2BmTXgG7CZmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9SsO0yd2ukIzKwBJxzrDn23mDazynKTmpmZlaKphCOp3nIzZp23aNE7qwyYWTU126T2jKTLgcsi4sF2BGQ2KOOzGw56xWizymq2SW0mcBhwv6S7JE2TNKoNcZmZWZdpKuFExJkRsTWwL/AQcAHwZ0n/JmmfdgRoZmbdYVCDBiLi1oj438CmwJeBDwI3SnpC0gxJf9fKIM3MbOU31FFq44E9SLeN7gXuAI4GHpX0uSGe28zMukjTCUfSlpLOlPQYcAuwGfBF4O8i4vPAlqS+nu+2NFIzM1upNTVKTdKtpCuap4GfkEarPZmvExFvSboCOL5VQZqZ2cqv2WHRzwOTgHkRA44/vRfYatBRmTVroe8iblZ1zSaci4HF9ZKNpJHAjhFxe0QsB55c4Wizdum7xbSZVVazfTg9wPb97Ptgtt/MzGwFzSYcDbBvJLBsCLGYDd60aWkzs8pq2KQmaQ9gQq7oaEkH1FR7H3AQcF/rQjNrwqWXpkevGm1WWUX6cD5GmtwJEMDhwJs1dd4AlgAnti40MzPrJg0TTkR8l2xOjaTHgUMi4t52B2ZmZt2lqVFqEeGhzmZmNihF+nAmAQsi4uXs+YAi4vqWRGZmZl2lyBXOtcAuwN3Z86D/0WoB+CZtZma2giIJZyvgz7nnZtWz446djsDMGigyaODJes/NKsW3lzarvCJ9OGs1c8KI8ORPMzNbQZEmtaWkvpmi3IdjZmYrKJJwvkhzCcesfMrGsQy4iLmZdVKRPpyflBCHmZl1uaHeYtrMzKyQIoMG7gamRMQDkn5Lg+a1iNi5VcGZmVn3KNKH81/Aq7nnbiQ3M7OmFenD+ULu+ZS2RmNmZl1r0H04SjaSNNBN2czMzIAmV4uGdxbzPA0Ylx3/pqRFwDkRcV2L4zMrZubMTkdgZg00lXAkTQd+ANwCHA/8BdgYOBT4paQvRYT/51v5fHtps8pr9grnFGBWRBxbU36JpEuAUwEnHDMzW0GzfTgbAHP62fcLYP1GJ5C0vaRbJC2T9CdJZ0sacDkcSWMkRZ1tdp26B0u6T9Jrkh6QNLnQJ7OV26xZaTOzymr2CqcH2BOYV2ffnsDtAx0saT3gZuAB4GBgG+B8UuI7rcD7fw34Ve718zXn352U+H4AHAdMAn4mqTcibipwfltZTZ+eHt20ZlZZRSZ+bp97+T3gh5I2AK7m3T6cQ4ADgaMbnO4YYARwaES8DMyTNAqYIem8rGwgD0XEbwbYfzpwe0Qcl73ukbQDcAbghGNm1kFFrnDu572TPQVMz7bau3/ewMCrRR8I3FiTWGYD55KukK4pEE9dktYEJpKubPJmA5dJGh0RLw32/GZmNjRFEs7EFr7fWODWfEFEPCVpWbavUcK5TNL6pCurnwGnRkTfKgjbAKsDS2qOeZDUZPcB4LdDC9/MzAZLUeJy7pKWAydGxEU15U8Dl0fEKf0ctxlpBNxNwMvABOAk4KaIODir83FgAfDRiLg3d+y2wCPA/vX6cSRNA6YBbLLJJuNmz15hHMJ7LF26lJEjRxb6vFUxHGKeMDH9XTS/pweA+55592L2Q5uPbm1w/RgO33MVOOZyFI154sSJiyJifKGTRsSgNtJVw1q1W4NjlgPH1yl/hjRxtJn3P5bUpPeR7PXHs9f/s6bedln5vo3OOW7cuGikp6enYZ2qGRYxpzvhvPNyy5OufWcry7D4nivAMZejaMzAwij4e7upYdHZcjYnSXo0Sx5/q7MNpBdYt075aODFZmIBrsoed8ydmzrn73vd7PnNzKyFmp2HcxxwMvAj0mCBc4CzgYeBJ8iapgawhNRX8w5JWwBrs2LfSyNR8/gYKQmOrak3Fng7i9G6Vd81jplVVrMJZypwJnBe9vrqiDgL2IGUMLZrcPxcYH9J6+TKJpNuf3Bbk7Eclj0uAoiI10nzhA6vqTcZuDM8Qs3MrKOanfi5FXBvRLyVDQBYFyAi3pb0A+CHpCug/lxCukqaI+lcYGtgBnBB5IZKZ012t0XEUdnrGcA6pEmfLwN7ACcCcyLi97nzfxOYL+ki0jyhSdl2QJOf08zMWqzZK5wXgL5hC08BH83tW480qbNfEdEL7E2aq3MNcBZwIemqKW813jufZwlpns5lwPXAkcB3s8f8+ReQrnz2AW4EPgkcGV5loPuNG5c2M6usZq9wfgXsRPqlfwVphYD1gTeAfyatIj2giHgA2KtBnTE1r2eTJnA2FBFXk65ubDhZvLjTEZhZA80mnBnA5tnzb5Oa1KaQrmzmAV9uVWBmZtZdmko4EfEQ8FD2/HXSPXGOb0NcZmbWZZq+42cfSX8PbAb8KSKeaV1IZmbWjZodNICkYyX9EXgSuAt4StLTkr7U8ujMzKxrNLvSwBnAxaT5NAcB47PHucD3sv1mZmYraLZJ7Z+Bb0fE6TXlN0h6Ntt/dksiM2vG1KmdjsDMGmg24Yyg/7t63oZHqVmn+PbSZpXXbB/O1cCh/ez7NHDt0MIxM7NuVeQW05NyL+cC50kaw4q3mN4B+HrrQzQrYNGi9OjVBswqq0iT2rWseCvpzYH969T9KelOnGblGp/d/8krRptVVpGEs1XbozAzs67XMOFExJNlBGJmZt2t6ZUGJK1GGiCwO7A+8FfgDtKtAt5sbXhmZtYtmko4kjYGbgI+TLrD57PArqT5N7+TtF9EPNfqIM3MbOXX7LDoC4ANgI9FxNYRsWtEbA18LCu/oNUBmplZd2g24UwCToqI3+YLs9ffIC1zY2ZmtoJm+3DWBP7Wz76/AWsMLRyzQVq4sNMRmFkDzSac3wAnSbo1Il7pK5S0NnBStt+sfJ7waVZ5zSacE4Ae4I+SbiINGtiYNAlUwISWRmdmZl2jqT6ciLgX2A6YBWwE7EtKOJcA20XE71oeoVkR06alzcwqq/AVjqTVgZ2BxyPi5PaFZDYIl16aHr1qtFllNXOF8xZwK/A/2hSLmZl1scIJJyLeBh4BNmlfOGZm1q2anYdzKnCGpA+1IxgzM+tezY5SO420osC9kp4hjVJ7z3rwEbFzi2IzM7Mu0mzCuT/bzMzMmlIo4UgaQVrW5n7gv4GbI+LZdgZm1pQdd+x0BGbWQJFbTG8N3AyMyRW/LOkzEXFTuwIza0rfLabNrLKKDBo4D3gb+EdgLWAH4B5gZhvjMjOzLlMk4ewKnBYRv4qI1yLiQWA68H5Jm7U3PDMz6xZFEs5mwB9qyh4jrZ22acsjMhsMKW1mVllF5+FE4ypmZmb9Kzos+kZJb9Ypv6W2PCI2HnpYZmbWbYoknLPaHoWZmXW9hgknIpxwzMxsyJpdS83MzGxQnHDMzKwUza6lZlZNMz0P2azqnHCsO/j20maV5yY1MzMrhROOdYdZs9JmZpVVesKRtL2kWyQtk/QnSWdLWrXBMTtJukzSo9lxD0k6U9L7aurNkBR1tgPa+6ms46ZPT5uZVVapfTiS1iPd6uAB4GBgG+B8UuI7bYBDJ2d1zwUeAT4MfDN7/HRN3ZeA2gTz4FBjNzOzoSl70MAxwAjg0Ih4GZgnaRQwQ9J5WVk950bEc7nX8yW9BsyUtGVEPJnb92ZE/KY94ZuZ2WCV3aR2IHBjTWKZTUpCe/Z3UE2y6XNP9ui128zMVgJlJ5yxwJJ8QUQ8BSzL9jVjN9KN4R6qKV9X0vOSlku6R9Khg47WzMxaRhHl3XlA0nLgxIi4qKb8aeDyiDil4Hk2BX4PXB8RU3LlnyNd8dwLjCTdKG4S8OmImNPPuaYB0wA22WSTcbNnzx7wvZcuXcrIkSOLhFkZwyHmCRMnAjC/pweA+5556Z19H9p8dGuD68dw+J6rwDGXo2jMEydOXBQR4wudNCJK24DlwPF1yp8Bzil4jjWA20k3hVuvQV0BdwL3Fjn3uHHjopGenp6GdapmWMQMactsedK172xlGRbfcwU45nIUjRlYGAVzQNlNar3AunXKRwMvNjpYkoDLgR2ASRHRO1D97MuYA3y40dBrW8n1pRwzq6yyR6ktoaavRtIWwNrU9O3040LScOp9I6JI/T7+TWRm1mFlX+HMBfaXtE6ubDLwKnDbQAdK+gbwZeBzEbGgyJtlV0SHAL+LiLcGF7KZmbVC2Vc4lwDHAXMknQtsDcwALojcUGlJjwK3RcRR2esjgW8DPwGekbRL7pyPRTZsWtJtwC9IV0trA1OBXYBPtfdjWceNG5ceFy3qbBxm1q9SE05E9EraG7gYuIbUb3MhKenUxpXvc9kve5ySbXlfICUigEeB/wNsRhoyvRg4KCLmtiJ+q7DFizsdgZk1UPrtCSLiAWCvBnXG1LyewoqJpt5xRw0hNDMzayOvFm1mZqVwwjEzs1I44ZiZWSmccMzMrBSlDxowa4upUzsdgZk14IRj3cG3lzarPDepmZlZKZxwrDssWuRVBswqzk1q1h3GZ7fj8IrRZpXlKxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJqttMacfN07z5/oXBhmVpATjnWHhQs7HYGZNeCEY92h7xbTZlZZ7sMxM7NSOOFYd5g2LW1mVllOONYdLr00bWZWWU44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmal8MRP6w477tjpCMysAScc6w6+vbRZ5blJzczMSuGEY2ZmpXDCse4gpc3MKssJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCq80YN1h5sxOR2BmDTjhWHfw7aXNKs8Jx4adMSdf987zJ75zUAcjMRte3Idj3WHWrLSZWWX5Cse6w/Tp6dFNa2aV5YRjlebmL7PuUXqTmqTtJd0iaZmkP0k6W9KqBY4bLekySb2SXpL0b5I2qFPvYEn3SXpN0gOSJrfnk5iZWTNKTTiS1gNuBgI4GDgbOAE4q8DhVwITgKOBKcBOwNU1598d+AXQAxwIXAf8TNJ+LfkAZmY2aGU3qR0DjAAOjYiXgXmSRgEzJJ2Xla1A0q7A/sCeEXF7VvYMcJekfSLi5qzq6cDtEXFc9rpH0g7AGcBN7ftY1i3chGfWPmUnnAOBG2sSy2zgXGBP4JoBjnu2L9kARMTdkh7P9t0saU1gInBczbGzgcskjY6Il1r0OayF8r/kobq/6J2MzIam7IQzFrg1XxART0lalu3rL+GMBZbUKX8w2wewDbB6nXoPkpoOPwD8dnBhD2/9/aJtVXk3GHPydZzwoTeZkn3G/j537b7a/d32vZjlKSLKezNpOXBiRFxUU/40cHlEnNLPcfOAVyLiUzXlPwW2jojdJH0cWAB8NCLuzdXZFngE2D8iVmhWkzQN6BtL+0HgoQYfY0Pg+QZ1qsYxl8Mxl8Mxl6NozFtGxEZFTtiJYdH1Mpz6KR/McbWv1U95KoyYBRSeMShpYUSML1q/ChxzORxzORxzOdoRc9nDonuBdeuUjwZeHMRx6+aO682V1dahwfnNzKzNyk44S3i3zwUASVsAa1O/j6bf4zL5vp3HgOV16o0F3gYeHkS8ZmbWImUnnLnA/pLWyZVNBl4Fbmtw3KbZPBsAJI0Hts72ERGvk+bfHF5z7GTgzhaOUFsZF+xyzOVwzOVwzOVoecxlDxpYD3gAuJ80FHpr4ALgoog4LVfvUeC2iDgqV3YDaaTZ10hXLOcCf4mIf8zV2R2YD1xMmhQ6Kat/QL0BA2ZmVp5Sr3AiohfYG1iVNAT6LOBC4MyaqqtldfKOIF0F/Ri4HFgEHFJz/gXAYcA+wI3AJ4EjnWzMzDqv1CscMzMbvnw/nAIkjZJ0lqS7s4VD/1vSf0j6QJ26hRYZLSnuyZLmSPqzpJA0pZ96m2efZ6mk5yVdLGmtksMd9MKuZZG0raSZkn4n6S1J8+vUkaRTJP1R0quSbpf0kQ6Ei6TDJf1S0jPZv+0iSZ+tU2+qpEeyBW8XSdq7E/FmsRwm6deSXsjieUjSaZLWyNWpzHdcT/b/aWn2f25krrwycUuaksVXux3TznidcIp5PzCV1Ex3GDAd2Iy0ltsWNXUbLjJaosOAMcC1/VWQtBrpc21JGmBxPGngRamdnBrawq5l2YHUL/gw/Y96PJm0pt+5wCeApaSllzYtJcL3+mr2/l8hNS/3AFdI+nJfBUlHAJeQmqkPBP4LuFbSP5QfLgAbkOI8Oovnx8CppL7ePlX6juv5LimmWlWMey9g19w2J7ev9fFGhLcGG2nY9oiasvWzf4Azc2W7kn5h7pEr2zkr26cDca+SPY7MYphSp85ngbeArXJlnyENzNiuxFi/QZpLNSpX9nVgWb6swz8Hq+SeXwXMr9n/PuAl4Iyan53ngG91IN4N65RdATyee/0Q8OP8ZwTuA37a6e87F9M5pHl0qtp3XCfWfwT+ShqsFMDIiv5sTMnHV2d/W+L1FU4BEfFKRLxaU/ZX4Elg41xx3UVGgb5FRksVEW8XqHYg8NuIeDxXdjXwBnBAWwLrP456C7uOIC3s2nEFvs/dgFHAv+eOeYU0QKYT//71liW5h+xnVtLWpJGf+XjfBn5OB+IdwAtAX5Napb7jvKz5919JV+e1331l4+5HW+J1whkkSRsB25KGefcpssho1awQc0S8QZpIW2bM9eJ4inSFU9XvrtZY0tXiIzXlVfr33413f2b7Yqq34O362c94R0haVdJa2VSH44D/G+nP7Cp/x8eQrgy+X2dfVeN+TNKbWV/Z9Fx5W+L1LaYH73xSk9rsXNl61F9Cp5c056iKBop5vWEYx1CsByyNiLdqynuBtSStkSXzjsgGAxwMfDEr6vtea7/33tz+50oIrZ5XgDWz55cDJ2bPK/kdZwODvgl8LiKWS6qtUrW4/0zqn7mbNAXls8AlktaKiAvbFe+wTTiSRpM6/gcUEStcsUg6Fvgc8OmIeKH2kHpv1095U4YSc6ND6r1dP+XtVJU4hqK/z9DfvlJIGkPqv/nPiPhJze6mFrwtyW7AWqQ+0DNIk7m/lO2r4nd8DnBXRFw/QJ3KxB0RN5IGC/WZq3RPsdMk/csAMQ0p3mGbcEgjsS4tUO89f6pI+iSpnfakiPiPmrq9QL1miPwio0MxqJgbKLIwahkGu7BrlfQC60hateYvw3WBZRGxvBNBSVqftATUU6Q/lPrkF7zNL/3U8QVvI2Jx9nSBpOeB/yfpfCr4HSvdVfiLwB6S+r67vmkFoyW9RQXjruMq0oChMbQp3mHbhxMRP4wINdryx0jajdSEdklEfLfOaYssMlpqzAXUW1B1DVIT4JBjHmIcRRZ2rZIlpOaJbWvKW/LvPxjZfKprSZ3uB2Udv336Yqq34O1fI6JTzWm1+pLPVlTwOwa2I9388U7SL+pe3u3HeZr0B2oV4+5P0KZ4h23CaVb2V8y1wA2seBvrPg0XGa2gucBOkrbMlX2S1H5+Q8lxDGZh1yr5NfAyuQVks1/4n6AD//7ZHKufk34hHhgRf8nvj4g/kOYT5eNdJXtdpZ/Xj2ePj1Ox7zizgHR7+/x2brZvEmleThXjrvVp0ui6J2lTvMO5Sa0wSRuTfvkuBb4H7JzrFHw5Ih4AiIg7Jd0IXC4pv8jogoi4uQNxbw9sTxo5AzBe0lLguYjo+yV+FWli3RxJp5OasC4EroiI2hEq7XQJKZHPkdS3sOsM4IKaodIdk/3WVBloAAABUklEQVSHm5S93BwYJemw7PX1EbFM0neA0yX1kv4S/CrpD7t/LT1g+AEp3uNJo852ye27J9IK6zOAn0p6AvgV8E+kBHVkuaEmSov03kyagPoWKdmcAFwZEY9ldar0HfcNP5+fL8v6zADuiIilWVll4pb0C9KAgd+TrmQmZ9tx2dD419oSbxmTjFb2jbRyQPSzza+puy5wGan9+2VSR+0KE/BKintGwZj/njT3ZilpzsP3gbU6EO/2wK2kq5o/k0b9rNrpf/9cfGMG+DkYk9URKYE/nX2OO0i3Pe9EvE80ijerNxV4FHid1Hy1dwe/42+SVpNfmv0fWgx8GVg9V6cy3/EAn2MKNRMrqxQ38G3SpN9lWSyLgM/X1Gl5vF6808zMSuE+HDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWiv8PBF6ohXaEv4IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm0XGWZ7/Hvj9FASJiHppEwaS60XiUBAWlImAlLEQSDXL0dhSRgL+EqIsgYUFyCi6Ft9JKg4mXZGFpM0zIECHACRBFMAgoNYZJB0EbAAxjCEOC5f7z7wKZS59Suc6p27dT5fdbaq6re/e5dT1VOznP2O21FBGZmZu22SqcDMDOz4cEJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZiWQdKikWyW9KOl1SQ9L+pakDVv8Pk9Iimx7Q9Ijks6VtHYr38dsMJxwzNpM0vnAz4E/AJ8H9gMuBD4BXNqGt7wC2BXYB7gc+ArwL214H7OmyBM/zdpH0ieAXwJHRcSPa/atCuwXEXNb+H5PAFdFxNdyZZcAU4C1IuLtVr2XWbN8hWPWXl8BFtcmG4CIeCsi5kp6XNJ5tfslXSXpjuz52pIulvSQpGXZMd+XNKpADL8D1gQ2GuqHMRsKJxyzNpG0OrAbcEODqv8OfEaScseOBCYBV2ZFawGrAqcCBwKnA3uRmuoaeT/wN+D5ZuI3a7XVOh2AWRfbgHRl8VSDerOBrwMfA36TlX0iO/bnABHxHHBs3wGSVgMeBxZIen9E5N9D2f41gD2AY4BzIuKtIX8isyHwFY5Z+w3YURoR9wAPA5NzxZOB+RHxbF+BpM9LukfSUmA5sCDb9YGaU3412/8KMBfoiYhzh/YRzIbOCcesfV4AXic1aTVyJXC4klHAAaQrHwAkHUIacXYncDiwC3BItvt9Nef6KbATMAG4DDhE0rGYdZgTjlmbRMRy4FfA/gWqzwY2B3YHPkXqr5mT2384cFdEfCki5kbEXUBvP+d6NiIWRsRtEfFF4FbgbM/FsU5zwjFrr4uA8ZL+qXaHpFUkHQAQEQ8A95Oa0iYD8yLihVz1EaSrpbz/VTCGbwAbAkc1GbtZS3nQgFkbRcQ1ki4AfiTp48B/AkuBsaTO/Cd4dxTblcDxwGhgas2p5gHfl3QqcBdpBNveBWO4W9I84CuSvu/BA9YpvsIxa7OIOIF01bIdaRWAecAJwC3kRp6RmtU2BN4Grq45zUzgfFJCmgNsCRzZRBjfAsYAn2n6A5i1SOkrDUjaFjiR1On5D8AdETGhwHGjSc0TnyIlymuB42qaHZB0MOk/13akpUTOiogrMTOzjurEFc4OpOaAh7OtqCtJo26OJi3TsRM1fwVK2h34BdBDmhx3HfAzSfsNNWgzMxuaTlzhrNK3npOkq4ANG13hSNoV+DWwZ0TcnpXtTGrL3jcibs7KbgRWj4i9csdeD4yKiN3b8XnMzKyY0q9wBrl44IGkoZ63585zN2mm9YEAktYEJpKWCcmbDeyaNcmZmVmHrCyDBsYCS+qUP5jtA9gGWL1OvQdJn7N2NraZmZVoZRkWvR7wYp3yXmDrXB3q1Out2f8ekqYB0wBGjBgxbostthgwkLfffptVVllZ8nQyHGJe5+HUHfi3D3Tu74rh8D1XgWMuR9GYH3744ecjotBK5CtLwoH661GpTnnta/VTngojZgGzAMaPHx8LFy4cMIj58+czYcKERrFWyrCIuW+h5Yceaks8RQyL77kCHHM5isYs6cmi51xZUm4vsG6d8nV594qmN1dWWwfqXyGZmVlJVpaEs4R3+2ry8n07j5FWyK2tN5Y0ka6ZIdhmZtZiK0vCmQtsms2zAUDSeFL/zVyAiHidNP/m8JpjJwN3RsRLJcVqZmZ1lN6HI2kt0sRPSKvjjpJ0WPb6+ohYJulR4LaIOAogIu7M5thcLulrpCuWc4EFfXNwMt8E5ku6iDQpdFK2HdD2D2ZmZgPqxKCBjVnxtrh9r7ciLWa4Gml59rwjgAuBH5Nb2iZfISIWZMnrW6Q1qh4HjoyIm1oYv1VRyROYzax5pSeciHiCd0eO9VdnTJ2yF4EvZNtAx17NigsfmplZh60sfThmZraSc8Kx7jBuXNrMrLJWpomfZv1bvLjTEZhZA77CMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhUepWXeYOrXTEZhZA0441h1mzep0BGbWgJvUzMysFE441h0WLUqbmVWWm9SsO4wfnx69arRZZfkKx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCg+Ltu6wcGGnIzCzBpxwrDv49tJmlecmNTMzK4UTjnWHadPSZmaV5YRj3eHSS9NmZpXlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgpP/LTusOOOnY7AzBpwwrHu4NtLm1Wem9TMzKwUTjhmZlYKJxzrDlLazKyynHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqXwSgPWHWbO7HQEZtaAE451B99e2qzySm9Sk7S9pFskLZP0J0lnS1q1wTEzJEU/2zdy9X7ST52x7f9kZmY2kFKvcCStB9wMPAAcDGwDnE9KfKcNcOgPgRtqyj4FnATMrSlfAnyhpuyJwUVsK41Zs9Kjr3TMKqvsJrVjgBHAoRHxMjBP0ihghqTzsrIVRMTTwNP5MkmnA0si4t6a6q9ExG/aELtV2fTp6dEJx6yyym5SOxC4sSaxzCYloT2LnkTS+sC+wM9aG56ZmbVL2QlnLKnJ6x0R8RSwLNtX1GHA6qRkVWt7SS9Lel3SAkmFE5mZmbWPIqK8N5OWAydGxEU15U8Dl0fEKQXPcyswOiLG1ZQfD7xB6iPaCDgBGAfsHhF393OuacA0gE022WTc7Nn1cti7li5dysiRI4uEWRnDIeYJEycCML+np10hNTQcvucqcMzlKBrzxIkTF0XE+EInjYjSNmA5cHyd8meAcwqeYzPgLeBrBeqOAB4Hri5y7nHjxkUjPT09DetUzbCIGdLWQcPie64Ax1yOojEDC6NgDii7Sa0XWLdO+WjgxYLn+Awg4MpGFSPiVeB6wDe8NzPrsLITzhJq+mokbQGsTU3fzgCOABZExB+beN/y2g3NzKyushPOXGB/SevkyiYDrwK3NTpY0hhgFwqOTpM0gjQyblGzgdpKpq9Rzcwqq+yEcwnwOjBH0j5Zh/0M4ILIDZWW9KikH9U5/gjgTeCq2h2SRku6Q9J0SXtLmgz0AJsD327DZzEzsyaUOvEzInol7Q1cDFxD6re5kJR0auOqt9zNEcAtEfFcnX2vA8+RVizYGHgNuBPYMyIWtuQDmJnZoJW+eGdEPADs1aDOmH7KPzLAMa8Bhw4pOFt5jctGyC9KradjTr7unV1PfOegTkRkZjW8WrR1h8WLOx2BmTXgG7CZmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9SsO0yd2ukIzKwBJxzrDn23mDazynKTmpmZlaKphCOp3nIzZp23aNE7qwyYWTU126T2jKTLgcsi4sF2BGQ2KOOzGw56xWizymq2SW0mcBhwv6S7JE2TNKoNcZmZWZdpKuFExJkRsTWwL/AQcAHwZ0n/JmmfdgRoZmbdYVCDBiLi1oj438CmwJeBDwI3SnpC0gxJf9fKIM3MbOU31FFq44E9SLeN7gXuAI4GHpX0uSGe28zMukjTCUfSlpLOlPQYcAuwGfBF4O8i4vPAlqS+nu+2NFIzM1upNTVKTdKtpCuap4GfkEarPZmvExFvSboCOL5VQZqZ2cqv2WHRzwOTgHkRA44/vRfYatBRmTVroe8iblZ1zSaci4HF9ZKNpJHAjhFxe0QsB55c4Wizdum7xbSZVVazfTg9wPb97Ptgtt/MzGwFzSYcDbBvJLBsCLGYDd60aWkzs8pq2KQmaQ9gQq7oaEkH1FR7H3AQcF/rQjNrwqWXpkevGm1WWUX6cD5GmtwJEMDhwJs1dd4AlgAnti40MzPrJg0TTkR8l2xOjaTHgUMi4t52B2ZmZt2lqVFqEeGhzmZmNihF+nAmAQsi4uXs+YAi4vqWRGZmZl2lyBXOtcAuwN3Z86D/0WoB+CZtZma2giIJZyvgz7nnZtWz446djsDMGigyaODJes/NKsW3lzarvCJ9OGs1c8KI8ORPMzNbQZEmtaWkvpmi3IdjZmYrKJJwvkhzCcesfMrGsQy4iLmZdVKRPpyflBCHmZl1uaHeYtrMzKyQIoMG7gamRMQDkn5Lg+a1iNi5VcGZmVn3KNKH81/Aq7nnbiQ3M7OmFenD+ULu+ZS2RmNmZl1r0H04SjaSNNBN2czMzIAmV4uGdxbzPA0Ylx3/pqRFwDkRcV2L4zMrZubMTkdgZg00lXAkTQd+ANwCHA/8BdgYOBT4paQvRYT/51v5fHtps8pr9grnFGBWRBxbU36JpEuAUwEnHDMzW0GzfTgbAHP62fcLYP1GJ5C0vaRbJC2T9CdJZ0sacDkcSWMkRZ1tdp26B0u6T9Jrkh6QNLnQJ7OV26xZaTOzymr2CqcH2BOYV2ffnsDtAx0saT3gZuAB4GBgG+B8UuI7rcD7fw34Ve718zXn352U+H4AHAdMAn4mqTcibipwfltZTZ+eHt20ZlZZRSZ+bp97+T3gh5I2AK7m3T6cQ4ADgaMbnO4YYARwaES8DMyTNAqYIem8rGwgD0XEbwbYfzpwe0Qcl73ukbQDcAbghGNm1kFFrnDu572TPQVMz7bau3/ewMCrRR8I3FiTWGYD55KukK4pEE9dktYEJpKubPJmA5dJGh0RLw32/GZmNjRFEs7EFr7fWODWfEFEPCVpWbavUcK5TNL6pCurnwGnRkTfKgjbAKsDS2qOeZDUZPcB4LdDC9/MzAZLUeJy7pKWAydGxEU15U8Dl0fEKf0ctxlpBNxNwMvABOAk4KaIODir83FgAfDRiLg3d+y2wCPA/vX6cSRNA6YBbLLJJuNmz15hHMJ7LF26lJEjRxb6vFUxHGKeMDH9XTS/pweA+55592L2Q5uPbm1w/RgO33MVOOZyFI154sSJiyJifKGTRsSgNtJVw1q1W4NjlgPH1yl/hjRxtJn3P5bUpPeR7PXHs9f/s6bedln5vo3OOW7cuGikp6enYZ2qGRYxpzvhvPNyy5OufWcry7D4nivAMZejaMzAwij4e7upYdHZcjYnSXo0Sx5/q7MNpBdYt075aODFZmIBrsoed8ydmzrn73vd7PnNzKyFmp2HcxxwMvAj0mCBc4CzgYeBJ8iapgawhNRX8w5JWwBrs2LfSyNR8/gYKQmOrak3Fng7i9G6Vd81jplVVrMJZypwJnBe9vrqiDgL2IGUMLZrcPxcYH9J6+TKJpNuf3Bbk7Eclj0uAoiI10nzhA6vqTcZuDM8Qs3MrKOanfi5FXBvRLyVDQBYFyAi3pb0A+CHpCug/lxCukqaI+lcYGtgBnBB5IZKZ012t0XEUdnrGcA6pEmfLwN7ACcCcyLi97nzfxOYL+ki0jyhSdl2QJOf08zMWqzZK5wXgL5hC08BH83tW480qbNfEdEL7E2aq3MNcBZwIemqKW813jufZwlpns5lwPXAkcB3s8f8+ReQrnz2AW4EPgkcGV5loPuNG5c2M6usZq9wfgXsRPqlfwVphYD1gTeAfyatIj2giHgA2KtBnTE1r2eTJnA2FBFXk65ubDhZvLjTEZhZA80mnBnA5tnzb5Oa1KaQrmzmAV9uVWBmZtZdmko4EfEQ8FD2/HXSPXGOb0NcZmbWZZq+42cfSX8PbAb8KSKeaV1IZmbWjZodNICkYyX9EXgSuAt4StLTkr7U8ujMzKxrNLvSwBnAxaT5NAcB47PHucD3sv1mZmYraLZJ7Z+Bb0fE6TXlN0h6Ntt/dksiM2vG1KmdjsDMGmg24Yyg/7t63oZHqVmn+PbSZpXXbB/O1cCh/ez7NHDt0MIxM7NuVeQW05NyL+cC50kaw4q3mN4B+HrrQzQrYNGi9OjVBswqq0iT2rWseCvpzYH969T9KelOnGblGp/d/8krRptVVpGEs1XbozAzs67XMOFExJNlBGJmZt2t6ZUGJK1GGiCwO7A+8FfgDtKtAt5sbXhmZtYtmko4kjYGbgI+TLrD57PArqT5N7+TtF9EPNfqIM3MbOXX7LDoC4ANgI9FxNYRsWtEbA18LCu/oNUBmplZd2g24UwCToqI3+YLs9ffIC1zY2ZmtoJm+3DWBP7Wz76/AWsMLRyzQVq4sNMRmFkDzSac3wAnSbo1Il7pK5S0NnBStt+sfJ7waVZ5zSacE4Ae4I+SbiINGtiYNAlUwISWRmdmZl2jqT6ciLgX2A6YBWwE7EtKOJcA20XE71oeoVkR06alzcwqq/AVjqTVgZ2BxyPi5PaFZDYIl16aHr1qtFllNXOF8xZwK/A/2hSLmZl1scIJJyLeBh4BNmlfOGZm1q2anYdzKnCGpA+1IxgzM+tezY5SO420osC9kp4hjVJ7z3rwEbFzi2IzM7Mu0mzCuT/bzMzMmlIo4UgaQVrW5n7gv4GbI+LZdgZm1pQdd+x0BGbWQJFbTG8N3AyMyRW/LOkzEXFTuwIza0rfLabNrLKKDBo4D3gb+EdgLWAH4B5gZhvjMjOzLlMk4ewKnBYRv4qI1yLiQWA68H5Jm7U3PDMz6xZFEs5mwB9qyh4jrZ22acsjMhsMKW1mVllF5+FE4ypmZmb9Kzos+kZJb9Ypv6W2PCI2HnpYZmbWbYoknLPaHoWZmXW9hgknIpxwzMxsyJpdS83MzGxQnHDMzKwUza6lZlZNMz0P2azqnHCsO/j20maV5yY1MzMrhROOdYdZs9JmZpVVesKRtL2kWyQtk/QnSWdLWrXBMTtJukzSo9lxD0k6U9L7aurNkBR1tgPa+6ms46ZPT5uZVVapfTiS1iPd6uAB4GBgG+B8UuI7bYBDJ2d1zwUeAT4MfDN7/HRN3ZeA2gTz4FBjNzOzoSl70MAxwAjg0Ih4GZgnaRQwQ9J5WVk950bEc7nX8yW9BsyUtGVEPJnb92ZE/KY94ZuZ2WCV3aR2IHBjTWKZTUpCe/Z3UE2y6XNP9ui128zMVgJlJ5yxwJJ8QUQ8BSzL9jVjN9KN4R6qKV9X0vOSlku6R9Khg47WzMxaRhHl3XlA0nLgxIi4qKb8aeDyiDil4Hk2BX4PXB8RU3LlnyNd8dwLjCTdKG4S8OmImNPPuaYB0wA22WSTcbNnzx7wvZcuXcrIkSOLhFkZwyHmCRMnAjC/pweA+5556Z19H9p8dGuD68dw+J6rwDGXo2jMEydOXBQR4wudNCJK24DlwPF1yp8Bzil4jjWA20k3hVuvQV0BdwL3Fjn3uHHjopGenp6GdapmWMQMactsedK172xlGRbfcwU45nIUjRlYGAVzQNlNar3AunXKRwMvNjpYkoDLgR2ASRHRO1D97MuYA3y40dBrW8n1pRwzq6yyR6ktoaavRtIWwNrU9O3040LScOp9I6JI/T7+TWRm1mFlX+HMBfaXtE6ubDLwKnDbQAdK+gbwZeBzEbGgyJtlV0SHAL+LiLcGF7KZmbVC2Vc4lwDHAXMknQtsDcwALojcUGlJjwK3RcRR2esjgW8DPwGekbRL7pyPRTZsWtJtwC9IV0trA1OBXYBPtfdjWceNG5ceFy3qbBxm1q9SE05E9EraG7gYuIbUb3MhKenUxpXvc9kve5ySbXlfICUigEeB/wNsRhoyvRg4KCLmtiJ+q7DFizsdgZk1UPrtCSLiAWCvBnXG1LyewoqJpt5xRw0hNDMzayOvFm1mZqVwwjEzs1I44ZiZWSmccMzMrBSlDxowa4upUzsdgZk14IRj3cG3lzarPDepmZlZKZxwrDssWuRVBswqzk1q1h3GZ7fj8IrRZpXlKxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJqttMacfN07z5/oXBhmVpATjnWHhQs7HYGZNeCEY92h7xbTZlZZ7sMxM7NSOOFYd5g2LW1mVllOONYdLr00bWZWWU44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmal8MRP6w477tjpCMysAScc6w6+vbRZ5blJzczMSuGEY2ZmpXDCse4gpc3MKssJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCq80YN1h5sxOR2BmDTjhWHfw7aXNKs8Jx4adMSdf987zJ75zUAcjMRte3Idj3WHWrLSZWWX5Cse6w/Tp6dFNa2aV5YRjlebmL7PuUXqTmqTtJd0iaZmkP0k6W9KqBY4bLekySb2SXpL0b5I2qFPvYEn3SXpN0gOSJrfnk5iZWTNKTTiS1gNuBgI4GDgbOAE4q8DhVwITgKOBKcBOwNU1598d+AXQAxwIXAf8TNJ+LfkAZmY2aGU3qR0DjAAOjYiXgXmSRgEzJJ2Xla1A0q7A/sCeEXF7VvYMcJekfSLi5qzq6cDtEXFc9rpH0g7AGcBN7ftY1i3chGfWPmUnnAOBG2sSy2zgXGBP4JoBjnu2L9kARMTdkh7P9t0saU1gInBczbGzgcskjY6Il1r0OayF8r/kobq/6J2MzIam7IQzFrg1XxART0lalu3rL+GMBZbUKX8w2wewDbB6nXoPkpoOPwD8dnBhD2/9/aJtVXk3GHPydZzwoTeZkn3G/j537b7a/d32vZjlKSLKezNpOXBiRFxUU/40cHlEnNLPcfOAVyLiUzXlPwW2jojdJH0cWAB8NCLuzdXZFngE2D8iVmhWkzQN6BtL+0HgoQYfY0Pg+QZ1qsYxl8Mxl8Mxl6NozFtGxEZFTtiJYdH1Mpz6KR/McbWv1U95KoyYBRSeMShpYUSML1q/ChxzORxzORxzOdoRc9nDonuBdeuUjwZeHMRx6+aO682V1dahwfnNzKzNyk44S3i3zwUASVsAa1O/j6bf4zL5vp3HgOV16o0F3gYeHkS8ZmbWImUnnLnA/pLWyZVNBl4Fbmtw3KbZPBsAJI0Hts72ERGvk+bfHF5z7GTgzhaOUFsZF+xyzOVwzOVwzOVoecxlDxpYD3gAuJ80FHpr4ALgoog4LVfvUeC2iDgqV3YDaaTZ10hXLOcCf4mIf8zV2R2YD1xMmhQ6Kat/QL0BA2ZmVp5Sr3AiohfYG1iVNAT6LOBC4MyaqqtldfKOIF0F/Ri4HFgEHFJz/gXAYcA+wI3AJ4EjnWzMzDqv1CscMzMbvnw/nAIkjZJ0lqS7s4VD/1vSf0j6QJ26hRYZLSnuyZLmSPqzpJA0pZ96m2efZ6mk5yVdLGmtksMd9MKuZZG0raSZkn4n6S1J8+vUkaRTJP1R0quSbpf0kQ6Ei6TDJf1S0jPZv+0iSZ+tU2+qpEeyBW8XSdq7E/FmsRwm6deSXsjieUjSaZLWyNWpzHdcT/b/aWn2f25krrwycUuaksVXux3TznidcIp5PzCV1Ex3GDAd2Iy0ltsWNXUbLjJaosOAMcC1/VWQtBrpc21JGmBxPGngRamdnBrawq5l2YHUL/gw/Y96PJm0pt+5wCeApaSllzYtJcL3+mr2/l8hNS/3AFdI+nJfBUlHAJeQmqkPBP4LuFbSP5QfLgAbkOI8Oovnx8CppL7ePlX6juv5LimmWlWMey9g19w2J7ev9fFGhLcGG2nY9oiasvWzf4Azc2W7kn5h7pEr2zkr26cDca+SPY7MYphSp85ngbeArXJlnyENzNiuxFi/QZpLNSpX9nVgWb6swz8Hq+SeXwXMr9n/PuAl4Iyan53ngG91IN4N65RdATyee/0Q8OP8ZwTuA37a6e87F9M5pHl0qtp3XCfWfwT+ShqsFMDIiv5sTMnHV2d/W+L1FU4BEfFKRLxaU/ZX4Elg41xx3UVGgb5FRksVEW8XqHYg8NuIeDxXdjXwBnBAWwLrP456C7uOIC3s2nEFvs/dgFHAv+eOeYU0QKYT//71liW5h+xnVtLWpJGf+XjfBn5OB+IdwAtAX5Napb7jvKz5919JV+e1331l4+5HW+J1whkkSRsB25KGefcpssho1awQc0S8QZpIW2bM9eJ4inSFU9XvrtZY0tXiIzXlVfr33413f2b7Yqq34O362c94R0haVdJa2VSH44D/G+nP7Cp/x8eQrgy+X2dfVeN+TNKbWV/Z9Fx5W+L1LaYH73xSk9rsXNl61F9Cp5c056iKBop5vWEYx1CsByyNiLdqynuBtSStkSXzjsgGAxwMfDEr6vtea7/33tz+50oIrZ5XgDWz55cDJ2bPK/kdZwODvgl8LiKWS6qtUrW4/0zqn7mbNAXls8AlktaKiAvbFe+wTTiSRpM6/gcUEStcsUg6Fvgc8OmIeKH2kHpv1095U4YSc6ND6r1dP+XtVJU4hqK/z9DfvlJIGkPqv/nPiPhJze6mFrwtyW7AWqQ+0DNIk7m/lO2r4nd8DnBXRFw/QJ3KxB0RN5IGC/WZq3RPsdMk/csAMQ0p3mGbcEgjsS4tUO89f6pI+iSpnfakiPiPmrq9QL1miPwio0MxqJgbKLIwahkGu7BrlfQC60hateYvw3WBZRGxvBNBSVqftATUU6Q/lPrkF7zNL/3U8QVvI2Jx9nSBpOeB/yfpfCr4HSvdVfiLwB6S+r67vmkFoyW9RQXjruMq0oChMbQp3mHbhxMRP4wINdryx0jajdSEdklEfLfOaYssMlpqzAXUW1B1DVIT4JBjHmIcRRZ2rZIlpOaJbWvKW/LvPxjZfKprSZ3uB2Udv336Yqq34O1fI6JTzWm1+pLPVlTwOwa2I9388U7SL+pe3u3HeZr0B2oV4+5P0KZ4h23CaVb2V8y1wA2seBvrPg0XGa2gucBOkrbMlX2S1H5+Q8lxDGZh1yr5NfAyuQVks1/4n6AD//7ZHKufk34hHhgRf8nvj4g/kOYT5eNdJXtdpZ/Xj2ePj1Ox7zizgHR7+/x2brZvEmleThXjrvVp0ui6J2lTvMO5Sa0wSRuTfvkuBb4H7JzrFHw5Ih4AiIg7Jd0IXC4pv8jogoi4uQNxbw9sTxo5AzBe0lLguYjo+yV+FWli3RxJp5OasC4EroiI2hEq7XQJKZHPkdS3sOsM4IKaodIdk/3WVBloAAABUklEQVSHm5S93BwYJemw7PX1EbFM0neA0yX1kv4S/CrpD7t/LT1g+AEp3uNJo852ye27J9IK6zOAn0p6AvgV8E+kBHVkuaEmSov03kyagPoWKdmcAFwZEY9ldar0HfcNP5+fL8v6zADuiIilWVll4pb0C9KAgd+TrmQmZ9tx2dD419oSbxmTjFb2jbRyQPSzza+puy5wGan9+2VSR+0KE/BKintGwZj/njT3ZilpzsP3gbU6EO/2wK2kq5o/k0b9rNrpf/9cfGMG+DkYk9URKYE/nX2OO0i3Pe9EvE80ijerNxV4FHid1Hy1dwe/42+SVpNfmv0fWgx8GVg9V6cy3/EAn2MKNRMrqxQ38G3SpN9lWSyLgM/X1Gl5vF6808zMSuE+HDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWiv8PBF6ohXaEv4IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/european_call_option_pricing.ipynb b/qiskit/finance/simulation/european_call_option_pricing.ipynb index 464abe28f..e402d2a93 100644 --- a/qiskit/finance/simulation/european_call_option_pricing.ipynb +++ b/qiskit/finance/simulation/european_call_option_pricing.ipynb @@ -118,7 +118,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -177,7 +177,7 @@ "outputs": [], "source": [ "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price = 2\n", + "strike_price = 1.896\n", "\n", "# set the approximation scaling for the payoff function\n", "c_approx = 0.25\n", @@ -214,7 +214,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYVOX5xvHvLRY6IgghESGaX2I0GuOaWGKioBGNJioi2BuKGDVqIiaKEUQxir0hFgJi0LWAhQQLPZZYwBiNiIFIEVARXMuySH1+f7xnZRhmd2bLzJmz+3yua67dc+ac2XuGYd45b5WZ4ZxzztXWFnEHcM45l2xekDjnnKsTL0icc87ViRckzjnn6sQLEuecc3XiBYlzzrk68YLEFS1JgyVZym2ppHGSdo4x008lvSHpK0kW7WshqVTSiijn6VWcOzrt+VTe7i/ok9iYp5+kozPsXyDpxjgyuWTaMu4AzmXxOXBY9PtOwNXAFEm7mdnKGPLcAywDegCro33nAr8CTgWWAP+r5vw5wBlp+5bVc8Zc9QP+AzyZtv8YYEXh47ik8oLEFbt1ZvZK9PsrkhYBLwC/BB6LIc8uwL1mNiNt33tmNi6H81emPJ+iZGb/ijuDSxav2nJJMyv62RVA0n6Sno6qvVZKelPSSZUHS9ouqoY6LfVBFMyXdHPKvu6SXo2O/1jScEkto/sOiqqymgC3RVVSoyUtAPoCP6qsqqrtE6v8G5J+kLZ/uqTHU7ZHS5op6ReS3oqe94uSdks7r4mkyyT9V9JqSYslja58TKAEOC2liu306L7NqrYk9Zb0dvQ4H0gaKmnLlPtPjx5jd0mTokxzJPWs7evhksMLEpc0XaOfH0U/uwAvAWcRqpfGAaMknQBgZp8CT7B5ddJB0WONApC0K/AssBw4FhgEnAhUfoC/AewX/X5T9PvVhGqgiYQqq/1SjqmSpC1Tbzk9683tCNwADAVOADoAj0pSyjH3AFcBjwJHAr8HWkT3/SbKPDEl99+ryHso8AjhNTgKuAO4BLgzw+EPAU8TXpe5QKmkHWr5HF1CeNWWK3opH7Y7AcOBL4HJAGZWmnKcgH8AOwBnAw9Hd40Enpe0k5m9H+07A5hlZm9H21cCC4Ffm9n66PE+BR6RtJ+Z/ZNQtQawILV6StInQMccq6xKgLVpz+//zGxeDuem2g74qZnNjR5jC0KB+T1gjqRdCFdKF5rZ7SnnPQJgZrMlrQQ+ySH3EGC6mVVe1T0bvQ5/lnSNmS1OOfYWM/tLlGkW8DGhEBtRw+fnEsSvSFyxa0f44F0LvEcoTPqY2YcAktpKul3SwpTj+gHfTXmMKYRC4rTonFZAT6KrkchPgCcqC5HIOGAdcEA9Pp93gR+n3T6oxeMsqCxEIrOjn5Xf/rtFP0fX4rG/JqkJsBebt0c9Qvj8SL8Ce77yFzNbQehI4FckDZxfkbhi9zlwCGCE6qyltumU1aOBfQnVTLOBLwi9qI6qPMDMTNIo4ExJg4HehPf+QymP04nw7ZmU89ZLWkH49l9fKsxsZj08zmdp22uin02jn+0IDftf1PHvtAe2Iu21SdlOf20y5WqKa9C8IHHFbl1VH7ySmgJHAOeb2YiU/ZmutEcR2j26AacDT5pZWcr9HxLaGVIfvwnhA/nTujyBGvgq+rl12v7tCG03NbECaCGpdR0Lk+WEq7wOafs7Rj8L9dq4IuZVWy7JtiH0oqocz1FZbfXr9APN7ANCtctVhKqqUWmHvAocExUelXoSvmy9WL+xq1TZ1vD9yh2SOhPaPWpqavTz1GqOyXq1EFX1zQKOS7urN7AB+GctsrkGxq9IXGKZ2eeSXgeulPQF4YPtj4TqsNYZThlJqOtfDExKu+8a4F/Ak5LuJtTrXw88FzW0552ZLY6ez9WSKghf9C6nFt/6zew9SfcCN0nqQOiEsC3Qy8yOjw6bA/SQ1INwBTM/atdINwh4LqoeLAV2J1Ql3pfW0O4aKb8icUl3IjAfGAPcRmggH1PFsX8jNJ4/YGYbUu8ws3eAwwlVOOMJBcvDQK/8xK7SicAi4K/AtYQeU+/V8rF+Q7gCO5nQzfdWYFXK/dcQGv8fBV4ndJ/ejJk9DxwP7A1MAC4idIE+v5a5XAMjX2rXNRaSfkkoTL5bi+62zrkqeEHiGjxJ3wT+jzCQbpGZHRlzJOcaFK/aco1BP8JYkq+AC2LO4lyD41ckzjnn6sSvSJxzztVJo+j+2759e+vatWutzl25ciUtWrTIfmCRSFLeJGWFZOVNUlZIVt4kZYW65Z01a9ZyM9s+64Fm1uBvJSUlVlvTpk2r9blxSFLeJGU1S1beJGU1S1beJGU1q1teYKbl8BnrVVvOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTrwgcc65hmjsWOjalQO7d4euXcN2nhS8IJG0q6QpkiokLZU0JG0NiKrO21vS85JWSPpU0mRJ+xQis3POJcrYsdCvHyxciMxg4cKwnafCpKAFiaS2wGTCsqlHEabI/j1hquvqzuscnbclYaGeU6Lfn5fUJZ+ZnXMucQYOhIqKTfdVVIT9eVDoke39gWZATwvLf06S1BoYLGmYVb0k6BFAq+i8zwAkvUxYBvSXwN35j+6ccwmxaFHN9tdRoau2DiesOJdaYJQSCpcDqzlvK8KCROUp+8qjfarvkM45l2jt22fev+OOeflzhS5IdiEs7/k1M1sEVET3VWVcdMxNkjpES4feApQRlk51zjkHMH8+rFwJSvuO3bw5DB2alz9Z0GnkJa0FBpjZrWn7FwNjzOzyas7dk7C63beiXR8Ch5vZv6s4vh9hHQo6duxYUlpaWqvM5eXltGzZslbnxiFJeZOUFZKVN0lZIVl5iznrFqtX86MLLqDphx+y4JRT6Dx+PNssW8bqDh14/6yzWHbIITV6vG7dus0ys72zHpjLhFz1dQPWAhdm2L8EGFrNeZ2AecBTwGHRbQKwGNgx29/1SRuLU5KymiUrb5KymiUrb9Fm3bDB7PTTzcDsb3/7enchJm0sdGN7GbBthv1tgM+qOW8AoWNALzNbCyBpKjAXuAT4bT3ndM65ZLnvPhg9Gq68Eo44oqB/utBtJHNIawuJuva2IK3tJM0uwDuVhQiAma0B3gF2zkNO55xLjtdegwsugB49QkFSYIUuSJ4BekhqlbKvD7AKmFHNeQuBH0jaunKHpG2AHwAL8pDTOeeSYfly6NULOnUKAw6bZB3fXe8KXZCMAFYD4yUdEjWIDwZutpQuwZLmSRqZct79wDeBJyQdIelI4ElC28m9BUvvnHPFZP16OOEEWLYMxo2Ddu1iiVHQgsTMyoCDgSaExvKrCN14B6UdumV0TOV5swgN7K2AB4ExQHPgF1ZFry3nnGvwrrwSJk+G4cOhpCS2GAVfs93MZgPdsxzTNcO+KcCUPMVyzrlkeeopuPZaOPtsOPPMWKP47L/OOZc0c+fCqaeGq5Dbb487jRckzjmXKCtXQs+esOWWoV2kadO4ExW+ass551wtmYXp4N95B559FroUx+TnXpA451xS3HUXPPQQXHMNHHpo3Gm+5lVbzjmXBC+/DBdfDL/6FVx2WdxpNuEFiXPOFbuPP4bjjgtVWWPGwBbF9dHtVVvOOVfM1q2DPn2grAwmToRtM01XGC8vSJxzrphddhnMmAEPPgg//GHcaTIqrusj55xzGz3+ONx4I5x3Hpx8ctxpquQFiXPOFaN334UzzoB994Wbb447TbW8IHHOuWLz5Zdh0GGzZvDYY7D11tnPiZG3kTjnXDExg7594b//DRMy7rBD3ImyKvgViaRdJU2RVCFpqaQhkqqdQF/SYElWxa24OlQ751xd3HJLuAq57jro1i3uNDkp6BWJpLbAZGA2cBRhdcObCAXaFdWcej/wbNq+o4E/EBbLcs655JsxAy69NFRrXXJJ3GlyVuiqrf5AM6BntJDVJEmtgcGShqUubpXKzBYDi1P3SfoTMMfM3sx3aOecy7slS6B3b/jOd2DUKJDiTpSzQldtHQ48l1ZglBIKlwNzfRBJ2wG/AB6u33jOOReDNWtCIbJyZZjRt3XruBPVSKELkl2AOak7zGwRUBHdl6tewFaEQsg555JtwIAwl9bIkbDbbnGnqTGZWeH+mLQWGGBmt6btXwyMMbPLc3ycqUAbM6tybcloPfh+AB07diwpLa1dmVNeXk7Lli1rdW4ckpQ3SVkhWXmTlBWSlbe+s3aYPJldhw7lg169+N9559Xb41aqS95u3brNMrO9sx5oZgW7AWuBCzPsXwIMzfExOgHrgUty/bslJSVWW9OmTav1uXFIUt4kZTVLVt4kZTVLVt56zfrWW2bNm5v97Gdma9bU3+OmqEteYKbl8Blb6KqtMiDTjGNtgM9yfIzegIBH6iuUc84V3Oefh95ZrVvDI4/AVlvFnajWCt1raw5pbSGSOgMtSGs7qcbxwItm9kE9Z3POucLYsAFOOw0WLIBp06BTp7gT1Umhr0ieAXpIapWyrw+wCpiR7WRJXYF98d5azrkkGzYMnnoqTMh4wAFxp6mzQhckI4DVwHhJh0QN4oOBmy2lS7CkeZJGZjj/eGAd8HghwjrnXL2bPBkGDoTjj4ff/jbuNPWioFVbZlYm6WDgTmACoV3kFkJhkp4r07QpxwNTzOyTfOZ0zrm8WLQITjgBvv99uO++RA06rE7BJ200s9lA9yzHdK1i/575yOScc3m3ejX06hV+jh8PCenunAuf/dc55wrhoovg9ddDIfLd78adpl75eiTOOZdvo0fDiBHwhz/AMcfEnabeeUHinHP59K9/wbnnQvfucM01cafJCy9InHMuXz79FI49Ftq3h4cfhi0bZmtCw3xWzjkXtw0b4JRTYPFieOEF6NAh7kR54wWJc87lwzXXwMSJMHw47LNP3Gnyyqu2nHOuvj3zDAweDKeeCv37x50m77wgcc65+jR/Ppx0EuyxB9x9d4MZdFgdL0icc66+rFoVGtfNwkqHzZvHnaggvI3EOefqgxmcd17o7jthAuy8c9yJCsavSJxzrj7cfz+MGgV/+hMceWTcaQqq4AWJpF0lTZFUIWmppCGSMk3QmOncnpJel7RK0gpJz0pqke/MzjlXrddfh/PPhx49YNCguNMUXEELEkltgcmAAUcBQ4DfA1flcO5ZwEOENU0OB84C5uLVc865OC1fHtpFOnWCsWOhSU7fixuUQn8I9weaAT2j9UcmSWoNDJY0LHVNklSS2hOmm7/AzO5LueuJvCd2zrmqrF8fpoVftgxeegnatYs7USwKXbV1OPBcWoFRSihcDqzmvN7RzwfyFcw552ps0KCwUNVdd0FJSdxpYlPogmQX0tZmN7NFQAVpa7mn2Qd4D+grabGktZJelbR//qI651w1nn4ahg6Fs86Cvn3jThMrmVnh/pi0FhhgZrem7V8MjDGzy6s47zlgf+AL4FJgRfRzb+D/zOzjDOf0A/oBdOzYsaS0tLRWmcvLy2mZoAVokpQ3SVkhWXmTlBWSlbe8vJztP/uMkv79WfWtb/GvO+5gw9Zbxx2rSnV5bbt16zbLzPbOeqCZFewGrAUuzLB/CTC0mvMmERroD0vZ1xooA67O9ndLSkqstqZNm1brc+OQpLxJymqWrLxJymqWkLx//atZly62QTLbaiuzFi3MFiyIO1VWdXltgZmWw2d7oau2yoBtM+xvQ1i/vSqfRj+nV+6w0M4yC9i1vsI551xGY8dCv36wcCEyg7VrYd06ePHFuJMVhUIXJHNIawuR1BloQVrbSZp3CVck6ZPWCNhQnwGdc24zAwdCRcWm+1avDvtdwQuSZ4Aeklql7OsDrAJmVHPe3wiFRrfKHZLaACXAv/OQ0znnNlq0qGb7G5lCFyQjgNXAeEmHRA3ig4GbLaVLsKR5kkZWbpvZTOApYKSk0yQdATxNaHO5q5BPwDnXCH3rW5n377hjYXMUqYIWJGZWBhwMNAEmEEa03wKkzymwZXRMqpOBJ4GbgccJhUj36DGdcy4/1q2DTL2emjcP3X9d4acXMbPZQPcsx3TNsK8cODe6OedcYVx2GcyZExaoeuYZbNEitOOOoRA56aS40xUFn6fKOeeqMm4c3Hgj/OY3YfQ6MGP6dA466KB4cxUZn0beOecymTMHTj8d9t0Xbrkl7jRFzQsS55xL9+WX0LMnNGsGjz0GRTxyvRh41ZZzzqUyC3NnvfceTJoEO+wQd6Ki5wWJc86luvXWcBVy/fXQvdp+QS7iVVvOOVfpH/+AAQPgmGPCT5cTL0iccw5g6VLo3Rt23hlGjwalz8jkquJVW845t2YNHHcclJfDlCnQunXciRLFCxLnnBswAF5+GUpLYbfd4k6TOF615Zxr3B5+GG6/HS66CPr0iTtNInlB4pxrvP7zn7BU7gEHwLBhcadJrIIXJJJ2lTRFUoWkpZKGSEqfoDH9nK6SLMOtduvnOufc55+HQYetW8Ojj8JWW8WdKLEK2kYiqS0wGZgNHAXsDNxEKNCuyOEhLgFeStleXt8ZnXONwIYNcNppMH8+TJsGnTrFnSjRCt3Y3h9oBvSM1h+ZJKk1MFjSsNQ1Sarwnpm9kveUzrmGbdgweOqpMIfWAQfEnSbxCl21dTjwXFqBUUooXA4scBbnXGM0ZUpYIrdPH7jwwrjTNAiFLkh2IW1tdjNbBFSQtpZ7FUZJWi/pQ0k3S2qWj5DOuQbqgw/g+ONhl13g/vt90GE9kZkV7o9Ja4EBZnZr2v7FwBgzu7yK8zoBA4HngS+Ag4A/AM+b2VFVnNMP6AfQsWPHktLS2rXLl5eX0zLT6mhFKkl5k5QVkpU3SVmhMHm1Zg0/uvBCmi9axKy772ZVLZfJbUyvbbdu3WaZ2d5ZDzSzgt0Iy+NemGH/EmBoDR/rXMCAPbMdW1JSYrU1bdq0Wp8bhyTlTVJWs2TlTVJWswLl7d/fDMzGjavTwzSm1xaYaTl8Hmet2pJ0qqR2tSrONlcGbJthfxvgsxo+1uPRz73qlMg51/A98ACMGAGXXhq6/Lp6lUsbyShCN12i9omf1OHvzSGtLURSZ6AFaW0nObC0n845t7k33wzrrXfrFtZZd/Uul4KkDPhm9Luo2wf3M0APSa1S9vUBVgEzavhYvaKfs+qQxznXkJWVhSuQdu3CPFpb+vSC+ZDLqzoZeFDSe4RCZLSklVUdbGbVXbGMAH4LjJd0PbATMBi42VK6BEuaB8wws77R9mCgFWEw4hfAz4EBwHgzeyuH5+Cca2w2bICTT4bFi8M6Ix06xJ2owcqlIDkT+A3wPUJ7xHzgk9r8MTMrk3QwcCcwgdAucguhMEnPlTptyhzCqPazCGNOFgE3AH6d6pzL7JprYOJEuOsu2HffuNM0aFkLEjOrAG4EkHQIMNDM/l3bP2hms4Fq1680s65p26WEgYvOOZfds8/C4MFwyilw7rlxp2nwcum1tV7Sj6PN6YSqJeecK07z58OJJ8Luu4eeWj7oMO9yaWxfA2wT/X4qsH3+4jjnXB2sWgW9eoX2kfHjoXnzuBM1Crm0kcwmTKr4JKHXVi9JVY10NDO7u97SOedcrszgvPPgjTdgwoSw9roriFwKkguAewiN4kZo9K6KAV6QOOcK7/77YdQouOIKOPLIuNM0KlmrtszsZTPb3cy2IlyR7GtmW1Rxq3aBKuecy4vXX4fzz4dDDw2N7K6gajr7bzdCVZdzzhWH5ctDu0inTvDQQ9DEv88WWo2GeZrZDABJ+wAHANsBnwIvmtmr9R/POeeqsX596KH18cfw4othBLsruBoVJJJaAI8BPYD1wAqgHdBE0rPAcdG4E+ecy79Bg2DSJLjvPtg7+2znLj9qWrU1DNgPOB5oamadgKbR9n7A9fUbzznnqjBhQpiEsW9fOOusuNM0ajUtSI4F/mBmj5nZBgAz22BmjwF/BI6r74DOObeZefPCqPWSErjzzrjTNHo1LUjaAB9Ucd8HQOu6xXHOuSwqKsKMvk2awOOPQ9OmcSdq9GpakPwbOFfadM6BaPvc6H7nnMsPMzjnHPjPf0IPra5d407kqHlBcjmhoX2OpOskXSzpz8C7wKHR/dWStKukKZIqJC2VNERSzv31JG0haZYkk+SjjpxrTIYPh7/+Fa66Cnr0iDuNi9S0++9UST8CriS0h3QCPgReBXpGM/tWSVJbwvoms4GjCCsv3kQo0K7IMcZZwLdqkts51wD8859w8cVwxBEwcGDcaVyKGi8XFhUWx9fy7/UnrCfSM1rIapKk1oS5vIalLm6VSVQQDSU07N9fywzOuaT5+OMw6LBzZ3jwQdiippUpLp9q9K8h6UZJu9bh7x0OPJdWYJQSCpcDczj/asIqiVPqkME5lyTr1sHxx8Onn4YZfdu2jTuRS1Ob7r9vS3pNUn9JbWp4/i6E1Q6/ZmaLgIrovipJ2gM4g+onjXTONTSXXw7Tp8M998APfxh3GpeBzKxmJ0jdCB/oxxCWw30S+IuZTc7h3LXAADO7NW3/YmCMmVXZWC9pBvCqmV0qqSthyd9fmdnfqji+H9APoGPHjiWlpbVbYLG8vJyWLVvW6tw4JClvkrJCsvImKStUnbf9jBn8YPBglvz618y9+OIYkm2uoby2uejWrdssM8s+ZYCZ1eoGtAT6Av8gTJeyELgK2Kmac9YCF2bYvwQYWs15xwMfAa2j7a6EKeuPzCVrSUmJ1da0adNqfW4ckpQ3SVnNkpU3SVnNqsj77rtmrVqZ7bOP2VdfFTxTVRrEa5sjYKbl8Blb6xYrMys3s5HAIEK7RWfgMuC/kp6S1CXDaWXAthn2twE+y/R3JG0F3ECYfmULSduyceBjC0mtavscnHNFqrw8DDps2jQMOtxmm+znuNjUqiCR1FXSIEnvA88D5YTuwK2AXxOuGDLVJc0hrS1EUmegBWltJylaADsANxMKojI2DnwsBf5Vm+fgnCtSZmH+rPfeg9JS2GGHuBO5LGo6++8phPaRnwOLgFHAKDNbnHLYREkrCeNF0j0DDJDUysy+jPb1AVYBM6r4s+WEdVBSfQN4mDAAcmpNnoNzrsjdeis8+ihcdx107x53GpeDmo4juRd4AuhhZtV1wf0vcE2G/SOA3wLjJV0P7AQMBm62lC7BkuYBM8ysr5mtA6anPkjU2A7wtvk6KM41HC+8AAMGwDHHwKWXxp3G5aimBck3zaws20Fm9iGh4T19f5mkg4E7gQmEdpFbCIVJei5f5sy5xuTDD6F3b9h557D2+qZT+rkiVtMpUrIWIjk8xmyg2utVM+ua5f4FhPXjnXMNgNatg+OOgy++gMmToU1Nh6i5ONV4ihRJfYCzge8SFrXahJl1qIdczrnGYOxYGDiQny9cGLbPOw922y3eTK7GajpFyonAA8A8Qk+qp4G/RY/zBaHKyjnnshs7Fvr1g4ULN1YvjBoV9rtEqWn33wGE+a7Oi7aHm9mZwLeB5YSpTpxzLruBA8MiVakqKnxm3wSqaUHyf8BLZraeMJq9NUDUlfd64Pz6jeeca7AWLarZfle0alqQfA5UDjFdAnw/5T4B7eojlHOugTOreoncHXcsbBZXZzVtbJ8J7AE8R2gfuVLSOmANYbErH9PhnMtu2DBYtQq22grWrt24v3lzGDo0vlyuVmp6RfJnwoh2CAXHa8Bwwgj35USz7TrnXJWmTAlTw/fpExrXu3TBJOjSBe69F046Ke6EroZyuiKR1Az4JWEOrY8kdTSzj4GjJG0DbGNZVjd0zjk++ABOOAG+9z24/35o2RJOOokZ06dz0EEHxZ3O1VLWgkTSToR5s7qm7P5CUm8ze97MVgOr85TPOddQrF4dBh1+9VVY6TBBa3q46uVStTUM2AD8DGgO7EaYcfeePOZyzjU0F18Mr74Ko0fDLtUuiOoSJpeCZD/gCjN7ycy+MrN3gXOAHSV1ym8851yDMGYM3H13mJCxZ8+407h6lktB0gl4P23f/wjdfb9R0z8oaVdJUyRVSFoqaYikaidolLSbpGej41dLWiTpfi/InEuAN9+Ec86Bgw6Ca6+NO43Lg1y7/9ZsYfcqSGpLaG+ZDRwF7AzcRCjQrqjm1DaENdrHAEsJI+kHASWSfhxNNe+cKzZlZXDssdCuXVikassaT+/nEiDXf9XnovEi6aak788yaWN/oBnQM+rlNUlSa2CwpGFV9fwys5eBl1N2TZe0mLA64x7AGzk+D+dcoWzYAKecEnpqzZgBHTvGncjlSS4FyWbritTB4cBzaQVGKWF6lQMJa5TkakX0c+t6yuacq09Dh8Lf/w533QX77Rd3GpdHWQsSM6vPgmQX0pbGNbNFkiqi+6otSCRtQcj8beA64HXCoEjnXDF59lkYNAhOPhnOPTfuNC7PZFYvzR+5/TFpLTDAzG5N278YGGNml2c5/1mgR7Q5C/ilmS2r4th+RCPtO3bsWFJaWlqrzOXl5bRMUH/3JOVNUlZIVt44szb96CNKzjmH1e3b88Zdd7Ghqjm1Uvhrmz91ydutW7dZZrZ31gPNrGA3YC1wYYb9S4ChOZz/f8A+wMnAHEJh0jTbeSUlJVZb06ZNq/W5cUhS3iRlNUtW3tiyrlplttdeZm3amM2dm/Np/trmT13yAjMth8/2QnehKAO2zbC/DWH99mqZ2dzo11clvUDoyXUi8Jd6S+icq73zz4c33oCnn4bvfCfuNK5AajppY13NIbSFfE1SZ6BFdF/OzGwh8CmwU72lc87V3v33w8iRcMUV8KtfxZ3GFVChC5JngB6SWqXs6wOsAmbU5IEkfY+w/sn8+ovnnKuVmTPDeuuHHgqDB8edxhVYoau2RgC/BcZLup5wNTEYuNlSugRLmgfMMLO+0faNwDrCeiefERbUupQwwr52rejOufqxfHkYdPiNb4T11ptUO1GFa4AKWpCYWZmkg4E7CV19PwNuIRQm6blS340zgQsIvbCaEtZEGQf82cxW5jm2c64q69eH9UM++gheegnat487kYtBwecrMLPZQPcsx3RN2y7FrzycKz6DB8Pzz8N998He2XuJuoap0G0kzrmGYsIEuOYaOPNMOOusuNO4GHlB4pyruXnzwjxae+0Fd94ZdxoXMy9InHM1U1FmcUuSAAAgAElEQVQRGtebNIFx46BZs7gTuZj5nM7OudyZhbVF3n4bJk6Erl3jTuSKgBckzrnc3X03/PWvMGQIHHZY3GlckfCqLedcbl55BS66CI44AgYOjDuNKyJekDjnslu2DHr1gs6d4cEHYQv/6HAbedWWc65669bB8cfDihXwz39C27ZxJ3JFxgsS51z1Bg6EadPggQdgzz3jTuOKkF+fOueqNm4cDBsWVjk89dS407gi5QWJcy6z996DM86An/wEbrkl7jSuiBW8IJG0q6QpkiokLZU0RFK104VK+rGkUZLmRee9J2mQpOxreDrnaq68HHr2hG22gccfDz+dq0JB20gktQUmA7OBo4CdgZsIBdoV1ZzaJzr2emAusAdwdfTz2DxGdq7xMQtzZ82ZEyZk7Nw57kSuyBW6sb0/0AzoGa0/MklSa2CwpGGpa5Kkud7MPknZni7pK+AeSV2i1RKdc/XhttvgkUfguuvg4IPjTuMSoNBVW4cDz6UVGKWEwuXAqk5KK0Qq/Sv62aH+4jnXyL3wAlxyCRx9NFx6adxpXEIUuiDZhbS12c1sEVBB2lruOdgf2AC8Vz/RnGvkPvwQeveGnXaC0aNBijuRSwiZWeH+mLQWGGBmt6btXwyMMbPLc3ycbwBvARPN7PQqjulHWFGRjh07lpSW1m5drPLyclq2bFmrc+OQpLxJygrJylvTrFq3jh/+7ne0mjuXN4YPZ+W3v53HdJtryK9t3OqSt1u3brPMLPuKZWZWsBuwFrgww/4lwNAcH2Nr4B/A+0DbXM4pKSmx2po2bVqtz41DkvImKatZsvLWOOtFF5mB2UMP5SVPNg36tY1ZXfICMy2Hz9hCN7aXAdtm2N+GsH57tSQJGAPsBvzUzMrqN55zjVBpKdx6K1x4IZxwQtxpXAIVuiCZQ1pbiKTOQAvS2k6qcAuh2/AvzCyX451z1XnnHejbF376U7jhhrjTuIQqdGP7M0APSa1S9vUBVgEzqjtR0mXABcDJZvZi/iI610h88UUYdNiqFTz6KGy1VdyJXEIVuiAZAawGxks6JGoQHwzcbCldgqMR7CNTtk8EriVUay2RtG/KbfvCPgXnGgAzOP10+N//QiHyzW/GncglWEGrtsysTNLBwJ3ABEK7yC2EwiQ9V+q0KYdGP0+PbqnOAEbXb1LnGrgbboAnnoCbb4af/zzuNC7hCj6NvJnNBrpnOaZr2vbpbF6AOOdqY+pUuOyyMGbkooviTuMaAJ/917nGZPHisEjV974HI0f6oENXL7wgca6xWL06LJe7ahWMHw8JGlTnipuvkOhcY/G738Grr4Zp4Xep6YxEzlXNr0icawzGjIHhw2HAADjWV15w9csLEucaujffhHPOgYMOgmuvjTuNa4C8IHGuISsrC1cg220XpkLZ0muzXf3zd5VzDdWGDXDqqfDBBzBjBnTsGHci10B5QeJcQzJ2LAwcyIGLFkHr1vD553DnnbDffnEncw2YFyTONRRjx0K/flBRgSAUIk2awLaZJtx2rv54G4lzDcXAgVBRsem+9evDfufyyAsS5xqKRYtqtt+5elLwgkTSrpKmSKqQtFTSEElNspyztaQbJL0gaZWkwq0P7FwSfPEFNG+e+b4ddyxsFtfoFLQgkdQWmAwYYYGqIcDvgauynNocOAuoAF7OZ0bnEufFF+GHP4SVKzdfU6R5cxg6NJ5crtEo9BVJf6AZ0NPMJpnZCEIh8jtJras6ycw+A7Yzsx7AE4WJ6lyRW7MmtH8ceCBssQW89BKMGgVdumASdOkC994LJ50Ud1LXwBW6IDkceC51ESuglFC4HFjdidFC9M45gDlzYP/9w0j1008Po9f33z8UGgsWMGPqVFiwwAsRVxCFLkh2IW1tdjNbRKiy8lnknMvGLMyZtddeoaAYPz5MB9+qVdZTncuXQo8jaUtYFTFdWXSfc64qH30EZ54JzzwDPXqEaqxOneJO5RwqZI2RpLXAJWZ2W9r+JcBoM8va4V3S+cAdZlbtijzRevD9ADp27FhSWlpaq8zl5eW0TNC6DUnKm6SsEG/edi++yPduvJEmq1bxfv/+LDn66GoXpfLXNn+SlBXqlrdbt26zzGzvrAeaWcFuwDJgUIb95cCAHB/jfKImk1xvJSUlVlvTpk2r9blxSFLeJGU1iynvl1+anXWWGZjtuafZO+/kdJq/tvmTpKxmdcsLzLQcPmML3UYyh7S2EEmdgRaktZ041+i98gr86EehDeSPfwyLUu26a9ypnNtMoQuSZ4AeklJbBvsAq4AZBc7iXHFatw4GD4YDDghdfKdPhz//GbbeOu5kzmVU6Mb2EcBvgfGSrgd2AgYDN1tKl2BJ84AZZtY3Zd/hhCuXPaPtXtFdr5vZwsLEdy7P5s2Dk08OVx+nnAJ33AFt2sSdyrlqFbQgMbMySQcDdwITCD24biEUJum50qdNuRvokrL9WPTzDGB0fWd1rqDMQhXWRReF0emlpdCnT9ypnMtJwaeRN7PZQPcsx3TNZZ9zDcInn8DZZ8NTT8HBB8Po0bDDDnGnci5nPvuvc3GaOBF23z2MDbn5Znj+eS9EXOJ4QeJcHCoq4Lzz4IgjoEMHmDkTLr44zJnlXML4u9a5Qps1K0xxMnw4/O538Npr4arEuYTygsS5Qlm/PkyyuO++UF4OkyfDTTdB06ZxJ3OuTnzNducKYf780J33pZegd28YMQLa+vRyrmHwKxLn8skMHnggLDz19tvw4IOha68XIq4B8YLEuXxZsSJcfZx+epjq5K23wmDDaiZbdC6JvCBxLh8mTYI99ghjQ66/HqZODSsWOtcAeUHiXH1atSqMTj/00DC1yauvwqWXQpP0iRqcazi8sd25+vLvf4elbd95By64IFyJNGsWdyrn8s6vSJyrqw0b4IYb4Mc/Du0izz4Lt9/uhYhrNPyKxLm6WLQITjstTPXesyfccw+0bx93KucKquBXJJJ2lTRFUoWkpZKGSMpagSypjaRRksokfS5prKR2hcjsXEYPPxwa1GfOhL/8BR5/3AsR1ygV9IpEUltgMjAbOArYGbiJUKBdkeX0R4DvAWcBG4DrgSeBn+Urr3MZffYZ/OY3oSDZf/8wNmSnneJO5VxsCn1F0h9oBvQ0s0lmNgK4CvidpNZVnSRpP6AHcJqZjTOzJ4CTgQMkHZKXpGPHQteuHNi9O3TtGraLWZLyJikrbJq3Y0fYeWd47DG4+mqYMcMLEdfoFbogORx4LnU1RKCUULgcmOW8j83sH5U7zOw1YH50X/0aOxb69YOFC5EZLFwYtov1Ay9JeZOUFTbPu2wZlJXBlVfCFVfAlt7M6Fyh/xfsAkxN3WFmiyRVRPdNqOa8ORn2vxvdV78GDgzTfKeqqAgjlK+9tt7/XJ39979hne9UxZo3SVkhc97K1Qz/9Kd4MjlXZApdkLQlLK+briy6rzbnZaxXkNQP6AfQsWNHpk+fnnPIAxctItMkFrZuHZ9sv33Oj1Mo28+enZi8ScoK1eRdtIgZNXhPFVp5eXmN3vNxS1LeJGWFAuU1s4LdgLXAhRn2LwGGVnPeJOCJDPvHAi9l+7slJSVWI126mIXvnZveunSp2eMUSpLyJimrWfLyRqZNmxZ3hBpJUt4kZTWrW15gpuXw2V7oNpIyYNsM+9uQ+Yoj23nbZjmvdoYOhebNN93XvHnYX4ySlDdJWSF5eZ2LQaELkjmktWlI6gy0IHMbSJXnRapqO6mbk06Ce++FLl0wKUy2d++9YX8xSlLeJGWF5OV1LgaFLkieAXpIapWyrw+wCpiR5bxvSDqgcoekvQntI8/kIygnnQQLFjBj6lRYsKD4PziSlDdJWSF5eZ0rsEIXJCOA1cB4SYdEDeKDgZstpUuwpHmSRlZum9k/geeAMZJ6Sjqa0D7yoplNLugzcM45t4mCFiRmVgYcDDQhdPW9CrgFGJR26JbRMamOJ1y1/AUYA8wCjslnXuecc9kVfDSVmc0Gumc5pmuGfZ8BZ0Q355xzRcKnkXfOOVcnXpA455yrE4UxJw2bpE+AhbU8vT2wvB7j5FuS8iYpKyQrb5KyQrLyJikr1C1vFzPLOuVEoyhI6kLSTDPbO+4cuUpS3iRlhWTlTVJWSFbeJGWFwuT1qi3nnHN14gWJc865OvGCJLt74w5QQ0nKm6SskKy8ScoKycqbpKxQgLzeRuKcc65O/IrEOedcnXhB4pxzrk68IHHOOVcnXpA455yrEy9InHPO1UnBZ/919SNaWfKXgIDHzGyFpB2AS4CdgQXAvWb2dnwpQdIfgIlx58iVpGbAlmb2Zcq+7YHzgV2BDcCbwHAz+zyelM4VF+/+G5EkwvomRwDfB7YD1gMfA68Ao83sv/El3EjST4DngZbAOuBToAcwkZD5HeAHwDeAQ8zshZiiImkDYIQlkR8CHjGzeXHlyUbSRGCumV0Ybe9HWIVzA2ENHAElwBqgu5m9E2PWHwHNzOzllH2HAZexsdD7NzA49ZhiEf2f+xWwF+E9MpPwpaOoP5QktSbMXdXdzF6MOw98nak7sDXwdzNbGX0BOo+wkuz7hC+WS/Py94v836wgohd8IuED4mPCKo7fIry5nyH8Q3wPuNrMro4rZyVJkwhXk8cAKwmLgx1N+KDrZWZrJW0DPAk0NbNuMWbdAFwP7A78gpD7DUKh8qiZLYkrWyaSlgN9zeypaPsVwmt8dOVViqQ2wNPAV2bWI8asrwATzGxotH0mcD8wDZhKKPQOBn4GHFv5nGLK+jLhdX032m5L+DJUApRHh7UkfGnrkXpFGAdJv6nm7mbADcBtwFwAMxteiFyZSPoOMAXoHO2aDxwKTAK2Bf5H+PxaBZSY2eJ6D2Fmjf4GPEx4Q+yesu+bwLPAuGj7QMIb/swiyLsCODxluwPh2+ehaccdASyPOesG4CfR722BftGbfl10mx7taxf36xplrAB+nrK9Jv11TXltV8ac9YvUbMA84I4Mx40A/l0s74NoeyThSvqwlH2HAWXALUXwPthAuLrfUMUt9b71MWd9lHDl+R1CTcqD0efZy0Cr6Jj20TH35CODN7YHhwN/tJR6fAuXgP2BoyV1MrMZwLXAhTFlTGXRLXWbtH2ZtmNlZmVmdq+ZHQzsAPyecCk+Algq6e+xBgz+A6RewX1M+M+Zrh2h0InThrTtLsDjGY57nPCNtJj8GhhiZs9W7oh+Hwr0jC3VRk8Dy4C+QBMz26LyRng/CDgo2pe+LHihHQAMNbN5ZvYpcAWhnfRGi67szGw5cCubvrfrjRckgQjfMNKtj+5rE22/Cny3UKGqMQu4RFIrSVsAlwNLgHMlNQGQtCXwG8IHY9Exs4/M7DYz2x/4NjCIcBUYt+uAP0o6M3oNhwI3SPqFpK0lbRO1Q/yZ8E0wTi8AJ6VsvwNkmi78x4T3RzHZltAmkm4WoW0vVmZ2NHAaMAB4XdJPU++OJ1WV2gIfpWxX/lunr8H0PuELXL3zXlvBZOAaSW+Z2fvwdR3u7YR/oMpG9pZAMfTUGUio//yUUD1UQWhoexyYK6mysf2bhOqComZmCwkf4NcVQZbxki4gfHu7BXiP8EWi8puzEb5cPE34kInT5cBL0ZeJOwiN7A9I2o5QZQihjeQi4I+xJNzUsZIqC7oyINOCSe0JVXaxM7PnJe1BeP3+LulZQq/IWNtvMlhGuBqttB64h3A1naoDecruje1A1G32WcLl/0JCvfi3CY3uJ5jZM9FxwwgrhvWJK2ulKPORhC8D48zsQ0nfAC5l4/O438zeiDEmkgYB91meeovki6R2QB/gJ4RvyFsQCu53gb+Z2awY431N0p7A3cA+bCzkSPm9jFCFdFs8CYOo00W60WZ2Ztpx9wC7mtnPCpMsN9H/rWGEard7CIVLNzP7R6zBAElPAp+mv5YZjrsD+L6ZHVLvGbwgCaIqod7AD4GmhIbLh6I6R+eKmqTvEwqT9ELvZTNbG2e2mpB0NvA/M5sad5ZMou7gtxC+rB1hRdCtWlJHoLmZzc9y3O8InS6m1HsGL0gaHklNzCxTm0/RkNSU0CC4AZhXjB92URvJTqSMKTKzRfGmcq74eGN7Gkm7STpW0lmS+ka/7xZ3rnSSekp6UtJESb+K9vWRtABYI2lh9O0uVpJOjsY3VG5vKek6wjfmtwidAT6VVAx1+ABIKpH0NKE++V3gJcL4hvmSlkgaIql5rCEbEEXizpGJpGbp/9aS9ow+F0riylV04uz/XEw34ExCu0KmvuPrCVOOnBF3zihr7yjXi8BThMb2swltOyMJo1kfjnL3iDnrbODclO2borx/An5K6Lo4mDBY6vIieG0PJbSNzST0zBpMGJS6Jsr8e0LvqDeBtkWQ90jCuJy3gUdIGQOTcsw+xD/W4VCiMQ0p+44mDE5dB6yNXvMj4n5No2xtgCeiXOuA+4AmwANpnwsvAe3jzpvjczo2X++D2J9cMdyAC6I3zF2EUcDtozdNk+j3A4A7ow+Y84og7+vAiJTtk6JsN6UdNwqYHHPWCuDAlO1lwIUZjrsEWFgEr+0s4IEq3iMLCFfxTaMPwOExZ/1FyofZnVH29VFhrZTjiqEgWc+mAxKPiT6MX47+7S+Jfl9HhgGgMeS9nTANygXAqdGXh3HAB1GhuD1h/NkS4O648+b4nPJWkHgbCSDpfcIH87Asx10K9DeznQqTrMocXwA9zWxytN2G0DvnEEtppIyqvO4xs9jGZ0j6EDjfzMZF26sJV0nT0477BfC0mTUrfMpNcqwCfm1mk9L2tyXMKLCbmb0r6VTgejPrFEfOKNOLhHnBzkjZdybhQ3ASocfhV5L2ITS6xzZwLuq1ta+ZvRZtvwEsMbNfpR03EWhhZgfGEDM1x3zgWjO7L9r+EaGgPsPMHkg57mzClfS340kKkv6S46FdCIMo6/194G0kwTeA13I47jWKYLAUoWtn6puhcq6iz9KOKycM/IrT04TBk1tH25OBEzIcdwLhW1/clhF67qX7IeF1rxxHtJCNA1Xj8gPgr6k7zOwvhOl89gWmRmNKitEPCN1o091LmMQxbh3YOH4Mojm1CPNWpZpH5vEwhXQa4Spp9yy3LlU9QF35gMTgLeBsSf8ws0z93StnKj07OjZuCwmzuz4HYGbro26J76YdtxObjniNw2WEEdj/kXQ/MAG4XtIP2DhorjvwI8JMsHG7F7haUgtC28MawsjwgcA02zgeZicg7h5cXwEt0nea2axoJPZzhOqiwQXOVZXU6o/P2fgFKNVKiuML7nxCgTwj2v4ZoSpuf0LbZKWfEv/7YC7wmpmdWt1BknoR2tHqnRckwe8JAxJnSxpPmPL8M8Ibf1tgF0Kd7g4Ux0jx8aRNdWBmr2Y47kQ2fdMXnJl9Kmlfwgfx7wjf9AD2i25rCNUwPzOz1+NJuZGZDY2qYf5ImLYFwvvgYcIgtEprCXOvxektQj390+l3mNn7UWEyERhd4FxVeU7Suuj3NsCebPwyUWkX4MNChqrCCOA2SbsTCr3ehC9FV0pqSZgAcS/gYiDuGcFfIRRw2aQOWK1X3kYSkbQzYVT4YWycjrnSB4SeOzeYWfqlbdGStCPwmZkVxZQTAJK6sumguf9ZcY4h2YowzqUp8H4xvYaVJJ1DmCblR1bFwNnoyuoJQvtZbN/0oxkO0s01s4fSjpse7S+Gruu/JVS5bkWYJWKEpBMIbVCVk3beC/whzvdw1A35p2Z2e5bj2hPa+GZUd1ytMnhBsrmo33hl28JnZhb3LK/OuSIRVXO3N7NP4s5SLLwgaWCiy+43gJOKoapICVy6VglZxti5YuEFSYroA6QD8J6ZbdYQGF0a/tLMxhQ83KY5flnN3S0IDWp/JJpC3swmFiJXJkrQ0rWQrGWMcxXNw3WcmQ2JOUesy8HWVXQlkro08CzC84j9Q1RhVuVjCf+fRpvZHEk/BK5i45efuyxl/Zd6FfcgmWK4AdsAjxE+KNYTGlJHAm3Sjot9YFeUI0mrty0HjkrZfoXQG6pVyr42hN4xzxXBazuJsFTttoS68TuBxYQZBLZKeb88Q+jFFfv7N4fnlLeBaDXI8B1Cb8PK9+X/CB9w7xMK69cJ08d/DOxQBK/Zy4SZciu320YZN0Q5v2DjgMpWceWMsvUgfBH7KHpdvyAsYFVGGKx6V/T/bj1hyej6zxD3P1gx3IArCb20ziYsDHRh9IaeC/xfynHFUpDMIvRsOYPQNzz1tkf0Bu9duS/mrIlZujbKkaRljHfM8dY/7vctRbAcbA3zJmZp4KiweIywkiOEDhhlwMi04x4EXslLhrj/wYrhRujue37avm8A/wA+AfaL9hVLQSLCOufLCNM2fDvlvjbRf4LN5lyKKetrwKCU7Q+A4zMcdyrwSRHkXZ72YbF99Hr+Iu24XxZBQVJ59ZntVgxXpkuB3inbXaJcPdOOOwP4bxG8D9ILkk+AizIcF/vUPoTuyYekbLeN8ndPO+5QQuehes/g40iCzqQNNDSzjyQdTCjFJ0s6ieLo346Fd8W9kh4FrgHeknRn9HuxuQ4YK+kDYAwbl65dQajOEuEyvBiWroWNyxi/RBgcl7qM8VQLgz+LZRnjL4GpwP1ZjjuA0LU9TrEvB1tHxbw08Co2HZha+Xv6dEPNCYNY650XJMFS4P8IVyBfs9A3/HhJtxIuHWNtZE9nZp8B50u6l9C3fS5wPUW0prQla+laSNYyxq8R2vH+Xt1B0dovcYt9OdhaSMrSwC8RBkrOjbLcSJh1+w/RbB1fRvPxXUoo+Oqd99ri60nPdjKzg6o55jLCt2mzGCe/q46k4wnLge5AmJwt9mVAKykhS9dCopYx/hPQz8zSB9CmH/dz4Coz61aYZBkzxL4cbE0oQUsDS/oOYQ67yvfBAsJV/uOEmQIWAl0JX4y6mdmb9Z7BC5Kvu871Aa4zsxXVHHcioa78jKqOiVtU7dICKLciXyXRNR4qguVg80FFsjRwNH7sp4SehlPMbFU0sPosNn75ecjMFufl73tB4pxzri6KYZZNlyeS7pM0Mu4cuUhSVkheXufyyRvba0DSfcAWZtY37iw56kZyviwkKSskKK+kyYTah4PjzpJNkrJCsvLmM6sXJDWTmA8PADP7TtwZcpWkrJC4vCI579skZYVk5c1bVm8jacCibp8dzCzuhXeySlJWSF5e5/IpKSVpUZDUNFrjIymOIKz0lgRJygoJyitpq6S8b5OUFZKVN59ZvSCpmcR8eLjGQdJ5kv4n6UtJr0o6JcNhe1EE79skZYVk5Y07q7eRJJCkXPusZxqJW1BJygrJyhsNQL2DsAzwvwjjCEZLOgo4xcxWxZkvVZKyQrLyFkNWbyOhxh8eu8Y9sl1h3ev3CNMgVOdbwD5x5k1SVkhWXkkzgalmdmnKvoOBsYTRzUdYWJRrH+Blz5q7JOUthqxekJCsDw8ASW8SFt/qk+W4XsAjMb/JE5M1ypGYvJK+BH5lZtPT9nclrJfSBDicMB9U3B92ickKycpbDFm9jST4D/AfMzuuuhtwc9xBI68C++ZwXOWEiHFKUlZIVt7PCR8OmzCzBcD+hCnxXwZ+XNhYGSUpKyQrb+xZ/YqErydeO8zMumQ57ljCGt6xFsCSdgZ2M7OnsxzXjNBFNX2q7oJJUtYoR2LySnoK+NLMTq7i/maEifsOJ+bJRpOUNcqTmLzFkNULEpL14eFcJUnHARcDR5rZp1Uc0wS4mzDZ6LcLmS8tR2KyRlkSk7cYsnpB4pxzrk68jcQ551ydeEHinHOuTrwgcY2KpNMlzYpGAJdJ+pekvPTGk/RdSYMlbZvDsYMlWcptqaRxUftdtnNPj85pWT/JnasZL0hco6GwXPL9wHNAT+BU4Cng13n6k98FBgFZC5LI58B+0e0SYE9giqQWWc77e3RORS1zOlcnPkWKa0zOB+4xs8tT9k2QdFVcgdKsM7NXot9fkbQIeAH4JfBY+sFRT5wmZvYJ8EnhYjq3Kb8icY3JtsBH6TstpeuipK5RNdGJkh6MqsCWSRqUfp6k7tEEeV9J+ljS8MrqJUkHAROiQ+dHj7mghnlnRT+7Ro85WtJMSUdLegf4CtgnU9WWpGaShklaKGm1pPmS/pyW/yxJ70T3L5R0Kc7Vgl+RuMbkDeCC6Jv+38xsRTXH3gD8DegF/BwYJGm5md0FIGlX4FlgEnAs0Bm4DtgJOCz6W5cANxKq0T4EVtcwb9fo50dp+4YBQ4CPCbO5btKOIkmEKrv9gKsJBdK3gJ+lHDMAuDZ6rOlACXC1pAozu7OGOV1jZ2Z+81ujuAF7AO8TpjfZALxD+EBunXJM1+j+59POvQ9YQlhqGaAUmEuoWqo8pnd07n7R9pHRdtccsg0mTGWxZXT7LjAN+ALoFB0zOnq8PdPOPT3a3zLa7hFt/7qKv9UaKAcGpe0fQii0mmTL6ze/pd68ass1Gmb2FvB9QuP6cMJcWX8CZmbo8fRE2vZ44JvADtH2T4AnzGx9yjHjgHXAAbWM2A5YG93eI1zd9DGzD1OOWWJmb2Z5nO7Ap1b1TA37AS2AxyRtWXkDpgId2fgcncuJV225RsXMVhPaLiYASOpL6MnVF7gt5dBlaadWbncCFkU/P0577PWSVgDb1TLe58AhhKuJj4ClZpY+9cTHm521uXaEqrSqVE7w904V93cGfBoglzMvSFyjZmYjJQ0Ddkm7q0MV2x+m/NzkmKgXVTsg43xHOVhnZjOzHJPLnEYrCAVdVSrzHUnmgum9HP6Gc1/zqi3XaEhKLxyQtD3Qhs0/UI9J265sMF8cbb8KHBMVHqnHbAm8GG2viX42rUPs2pgCbCfpyCru/yewCvimmc3McPuycFFdQ+BXJK4xeTuacvt5QlVVF0LPqgrggbRjd4uWFxhH6LXVF7jQzDZE919DWNb0SUl3E9oVrgeeM7N/RsdUfrM/R1IpUGFmb+fnqW1iEmHQ5UOShhB6kHUCfrWMHXsAAADVSURBVG5m55jZZ5IGA7dJ6gL8g/Cl8rtANzNLL0Sdq5YXJK4xGQIcBdxOaMf4iLDgTx8zm5927KWEqp9xhPEaVwNfd4s1s3ckHU7oQjue0Lvq4ei8ymMWSroE+C1wAeFqpms+nlgqMzNJx0SZLyIsEb0UeCjlmGGSlhKmH/894Tn+F3gk3/lcw+PTyDuXIlqedD5h6dK/xZvGuWTwNhLnnHN14gWJc865OvGqLeecc3XiVyTOOefqxAsS55xzdeIFiXPOuTrxgsQ551ydeEHinHOuTv4faiZuMWvWF98AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XnclXP+x/HXRyGVki0ZdA8zdn5DZmgwlCUtRJaQSUIYjN0wDSUydmMnUpgoZClaVCrbWMrMMCJLKmQrJXW39/n98b2OTqdz3/e5l3Ouc933+/l4nMd9n+tc17nf993pfM51fTdzd0RERKpqvbgDiIhIsqmQiIhItaiQiIhItaiQiIhItaiQiIhItaiQiIhItaiQSNEys75m5mm3OWY23Mx2iDHT/mb2rpktNTOPtjUys6FmNi/K2aOMYwdn/D6p20MF/SXW5OllZkdn2T7TzG6JI5MkU/24A4hU4EfgiOj77YFrgQlmtpu7L44hzwPAd0A7YFm07RzgSKA78BXwWTnHfwSclrHtuxrOmKtewP+A5zK2HwPMK3wcSSoVEil2K939zej7N81sNvAq0AF4KoY8OwMD3H1yxrbp7j48h+MXp/0+Rcnd/x13BkkWXdqSpJkafS0BMLPWZjYiuuy12Mz+Y2bdUjub2abRZahT05/Egs/N7La0bW3N7K1o/2/N7F4zaxw9dnB0KasecEd0SWqwmc0ETgf2Sl2qquovlvoZZrZ7xvZJZvZ02v3BZjbFzA4zs/ei3/s1M9st47h6ZnalmX1sZsvM7EszG5x6TqAVcGraJbYe0WPrXNoysxPM7P3oeb4ws/5mVj/t8R7Rc+xhZuOiTB+ZWZeq/j0kOVRIJGlKoq/fRF9bAq8DZxAuLw0HBpnZSQDu/gPwLOteTjo4eq5BAGa2KzAGmAscC/QBTgZSb+DvAq2j72+Nvr+WcBloFOGSVeu0fcpkZvXTbzn91uvaDrgZ6A+cBGwJPGlmlrbPA8A1wJNAJ+ASoFH02J+izKPScr9YRt7DgWGEv0Fn4C7gUuDuLLs/Dowg/F0+AYaa2TZV/B0lIXRpS4pe2pvt9sC9wE/AeAB3H5q2nwGvANsAZwJPRA8NBF4ys+3dfUa07TRgqru/H92/GpgFHOXuq6Ln+wEYZmat3f1fhEtrADPTL0+Z2fdA8xwvWbUCVmT8fr92909zODbdpsD+7v5J9BzrEQrmTsBHZrYz4UzpAne/M+24YQDuPs3MFgPf55C7HzDJ3VNndWOiv8Pfzew6d/8ybd/b3f3hKNNU4FtCEbu/kr+fJIjOSKTYbUZ4410BTCcUk67u/jWAmTUzszvNbFbafr2AHdOeYwKhSJwaHbMx0IXobCTyO+DZVBGJDAdWAgfU4O/zIfDbjNsXVXiemakiEpkWfU19+m8TfR1chef+mZnVA/Zm3faoYYT3j8wzsJdS37j7PEJHAp2R1HI6I5Fi9yNwKOCEy1lzfO0pqwcD+xEuM00DFhJ6UXVO7eDubmaDgJ5m1hc4gfDafzzteVoQPj2TdtwqM5tH+PRfU0rdfUoNPM+CjPvLo68Noq+bERr2F1bz52wOrE/G3ybtfubfJluuBkitpkIixW5lWW+8ZtYA6Aic5+73p23PdqY9iNDu0QboATzn7vPTHv+a0M6Q/vz1CG/IP1TnF6iEpdHXDTK2b0pou6mMeUAjM2tSzWIyl3CWt2XG9ubR10L9baSI6dKWJNmGhF5UqfEcqctWR2Xu6O5fEC67XEO4VDUoY5e3gGOi4pHShfBh67WajV2mVFvDLqkNZrYtod2jsl6OvnYvZ58KzxaiS31TgeMzHjoBWA38qwrZpJbRGYkklrv/aGbvAFeb2ULCG9sVhMthTbIcMpBwrf9LYFzGY9cB/waeM7P7CNf1bwTGRg3teefuX0a/z7VmVkr4oPdXqvCp392nm9kA4FYz25LQCWET4Dh3PzHa7SOgnZm1I5zBfB61a2TqA4yNLg8OBfYgXEp8MKOhXeoonZFI0p0MfA48CtxBaCB/tIx9XyA0nj/i7qvTH3D3D4D2hEs4zxAKyxPAcfmJXaaTgdnAP4HrCT2mplfxuf5EOAM7hdDN9x/AkrTHryM0/j8JvEPoPr0Od38JOBHYBxgJXEjoAn1eFXNJLWNaalfqCjPrQCgmO1ahu62IlEGFRGo9M9sa+DVhIN1sd+8UcySRWkWXtqQu6EUYS7IUOD/mLCK1js5IRESkWnRGIiIi1VInuv9uvvnmXlJSUqVjFy9eTKNGjSresUgkKW+SskKy8iYpKyQrb5KyQvXyTp06da67b1Hhju5e62+tWrXyqpo4cWKVj41DkvImKat7svImKat7svImKat79fICUzyH91hd2hIRkWpRIRERkWpRIRERkWpRIRERkWpRIRERkWpRIRERqY2GDIGSEg5q2xZKSsL9PKkT40hEROqUIUOgVy8oLcUAZs0K9wG6davxH6czEhGR2qZ3bygtXXtbaWnYngcqJCIitc3s2ZXbXk0qJCIitU3Tptm3b7ddXn6cComISG0ybBgsWAD16q29vWFD6N8/Lz9ShUREpLZ45RXo3h0OPBAeeghatsTNoGVLGDAgLw3toF5bIiK1w7Rp0LkzbL89PPccbLop9OjB5EmTOPjgg/P6o3VGIiKSdF9/De3bQ4MGMHp0KCIFpDMSEZEk++kn6NgR5s0Ll7aquPZSdaiQiIgk1YoVcPzx8N57MHIk7L13LDFUSEREksgdzj4bxo4NDevt28cWRW0kIiJJdO218PDDcNVVcPrpsUZRIRERSZpBg6BPHzj1VLjmmrjTqJCIiCTKSy+FCRgPOwwefBDM4k6kQiIikhj/+Q8ceyzsths8/TSsv37ciQAVEhGRZJg9Gzp0gGbN4MUXoUmTuBP9TL22RESK3fz5oVdWaSm8/jr84hdxJ1qLComISDFbtgyOOQY++SR09d1tt7gTrUOFRESkWK1eDT16wOTJYdXDNm3iTpSV2khERIrVlVfC0KFwww1w8slxpymTComISDG65x646SY45xy4/PK405RLhUREpNg8/zz8+c9w1FFw111FMVakPAUvJGa2q5lNMLNSM5tjZv3MrF4Ox+1jZi+Z2Twz+8HMxpvZvoXILCJSMG+9BSedBPvsA088se5Kh0WooIXEzJoB4wEHOgP9gEuAcsf4m9m20XH1ge7AH6PvXzKzlvnMLCJSMJ9+Cp06QYsWYTbfhg3jTpSTQvfaOhvYCOji7guBcWbWBOhrZjdF27LpCGwcHbcAwMzeAOYCHYD78h9dRCSPvv8+jBVxhzFjYMst406Us0Jf2moPjM0oGEMJxeWgco5bH1gJLErbtijaVtwXD0VEKlJaCkceCV9+CS+8AL/+ddyJKqXQhWRn4KP0De4+GyiNHivL8GifW81sSzPbErgdmA88laesIiL5t2pV6Nr79tvw+OOw335xJ6q0QheSZsCCLNvnR49l5e5zgDbAscC30a0L0M7dv89DThGR/HOHCy4IvbTuvDOMYE8gc/fC/TCzFcCl7n5HxvavgMHu3ruM41oArwIfsKY95FxgL+D30VlN5jG9gF4AzZs3bzV06NAqZV60aBGNGzeu0rFxSFLeJGWFZOVNUlZIVt6azLrt0KHs8MADzO7alRlnn10jz5mpOnnbtGkz1d33qXBHdy/YDfgO6JNl+yLgsnKOuw2YCayftm0DYBZwZ0U/t1WrVl5VEydOrPKxcUhS3iRldU9W3iRldU9W3hrL+sQT7uDetav7qlU185xZVCcvMMVzeG8v9KWtj8hoC4m69jYio+0kw87AB+6+IrXB3ZcTzlB2yENOEZH8mTw5rG74hz/A4MGwXrLHhhc6/WignZltnLatK7AEmFzOcbOA3c1sg9QGM9sQ2J1wpiIikgzTpsHRR8MOO8Bzz0GDBnEnqrZCF5L7gWXAM2Z2aNSO0Re4zdO6BJvZp2Y2MO24h4CtgWfNrKOZdQKeA1oAAwqWXkSkOubMCWNFGjSA0aPDIlW1QEELibvPBw4B6gEjCSPabwf6ZOxaP9onddxU4AjCoMTHgEeBhsBh7v7f/CcXEammn36Cjh3hhx9g1ChoWXsm5Sj4eiTuPg1oW8E+JVm2TQAm5CmWiEj+rFgBxx0H778flsnda6+4E9UoLWwlIpJP7nDWWfDSSzBwILRrF3eiGpfsrgIiIsWuXz8YNAj69IGePeNOkxcqJCIi+fLww9C3L5x2WigktZQKiYhIPowdC716weGHwwMPFP3iVNWhQiIiUtP+/e/QuL7HHvDUU7D++nEnyisVEhGRmjRrFnToAJtuGnpoNWkSd6K8U68tEZGaMn9+GHC4ZAmMHw9bbx13ooJQIRERqQnLloWpTz77LLSP7LZb3IkKRoVERKS6Vq8OkzC+8go88QQcfHDciQpKbSQiItV1xRUwbBjceCOceGLcaQpOhUREpDruuQduvhnOPRcuuyzuNLFQIRERqarnnoPzz4fOneGOO2r1WJHyqJCIiFTFm2/CSSfB734Hjz8O9epVfEwtpUIiIlJZn34KRx4J22wDI0dCw4ZxJ4qVComISC6GDIGSEg5q2xZ22QWWLg2LU22xRdzJYqdCIiJSkSFDwrxZs2Zh7rByZbi99VbcyYqCComISEV694bS0rW3LV0atosKiYhIhWbPrtz2OkaFRESkIk2bZt++3XaFzVGkVEhERMrzxBOwYMG63XsbNoT+/ePJVGRUSEREyjJpEvToAQcdFNZbb9kSN4OWLWHAAOjWLe6ERUGTNoqIZPPBB2E231/9Cp59Fpo1g1NPZfKkSRxcxyZlrIjOSEREMs2ZE9YVadgQRo0KRUTKpDMSEZF0CxeGFQ7nz4dXXw2XsaRcKiQiIikrVoS11v/3v7BM7m9+E3eiRFAhEREBcA+j18eNg4cfhnbt4k6UGGojEREBuOYaGDwY+vaF006LO02iqJCIiAwcGApJz55w9dVxp0kcFRIRqdvGjIGzzgqXsu6/v84uTlUdKiQiUne9+y4cfzzsuSc89RSsv37ciRKp4IXEzHY1swlmVmpmc8ysn5nltLSYmXUxs3fMbImZzTOzMWbWKN+ZRaQWmjkTOnaETTcNPbQ23jjuRIlV0F5bZtYMGA9MAzoDOwC3Egra3yo49gzgbuAm4DKgGdAW9TwTkcqaPz+MFVm6FCZMgBYt4k6UaIV+Ez4b2Ajo4u4LgXFm1gToa2Y3RdvWYWabA7cD57v7g2kPPZv3xCJSuyxdGqY++eyz0NV3113jTpR4hb601R4Ym1EwhhKKy0HlHHdC9PWRfAUTkTpg9Wo49VR45RV45BH4wx/iTlQrFLqQ7Ax8lL7B3WcDpdFjZdkXmA6cbmZfmtkKM3vLzH6fv6giUuv85S/w5JNw881w4olxp6k1Cl1ImgELsmyfHz1Wlq2AnQjtKH8BjgQWA2PMrHlNhxSRWuiuu+CWW+C88+CSS+JOU6uYuxfuh5mtAC519zsytn8FDHb3rAsgm9k44FCgvbuPibY1AWYBd7v7VVmO6QX0AmjevHmroUOHVinzokWLaNy4cZWOjUOS8iYpKyQrb5KyQv7zbv7qq+zWpw9z99+fD/r2XXeRqkqoS3/bNm3aTHX3fSrc0d0LdgO+A/pk2b4IuKyc44YBDjTI2D4eGF7Rz23VqpVX1cSJE6t8bBySlDdJWd2TlTdJWd3znPeNN9wbNHDfbz/3xYur/XR16W8LTPEc3tsLfWnrIzLaQsxsW6ARGW0nGT4kFJLMIacGrK7JgCJSi3z8MRx5JGyzDYwYEdYXkRpX6EIyGmhnZukjf7oCS4DJ5Rz3AqFotEltMLOmQCvgv3nIKSJJ9913YXEqMxg9GrbYIu5EtVahC8n9wDLgGTM7NGrH6Avc5mldgs3sUzMbmLrv7lOA54GBZnaqmXUERgArgHsK+QuISAIsXhzORL7+Gl54ISyXK3lT0ELi7vOBQ4B6wEjgGsJAwz4Zu9aP9kl3CvAccBvwNKGItI2eU0QkWLkSTjoJpkyBoUNh333jTlTrFXx6EXefRpjapLx9SrJsWwScE91ERNblDn/+M4wcCffcA0cdFXeiOkGz/4pI7XHTTXDffWHg4Z/+FHeaOkOFRERqh8cfhyuuCJe1rr8+7jR1SoWFxMy6m9lmhQgjIlIlEydCjx5w8MEwaBCsp8/IhZTLX3sQYbp3zGyVmf0uv5FERCrhf/+DY46BHXeEZ5+FDTeMO1Gdk0shmQ9sHX1vhIGBIiLx++qrsK5Io0YwahRsskncieqkXHptjQceM7PphCIy2MwWl7Wzu+uMRUTyb+HCUETmz4dXX4Xttos7UZ2VSyHpCfyJMPvu3sDnwPf5DCUiUq4VK+C442DatLBM7m9+E3eiOq3CQuLupcAtAGZ2KNDb3TUtiYjEwx3OPDOsbjhoEBx+eNyJ6rxcem2tMrPfRncnAVmXwxURKYg+fcLqhtdcE3pqSexyaWxfDqS6QXQHNPOZiMTjoYfg2mvh9NPhqnWWIZKY5NJGMg3oa2bPEXptHWdmZS104u5+X42lExFJGT0azj4bjjgijF63zFUlJC65FJLzgQcIkys6cGk5+zqgQiIiNWvqVDj+eNhzz7Dm+vrrx51I0lR4acvd33D3Pdx9fcIZyX7uvl4Zt6qvXykiks3MmdCxI2y+eeihtfHGFR4ihVXZ2X/bEC51iYjk3w8/hMWpli8P06C0aBF3IsmiUoXE3ScDmNm+wAHApsAPwGvu/lbNxxOROmvpUujcGWbMgPHjYZdd4k4kZahUITGzRsBTQDtgFTAP2AyoZ2ZjgOOjcSciIlW3ejWceiq89hoMGwYHHhh3IilHZafIvAloDZwINHD3FkCD6H5r4MaajSciddLll4dG9VtugRNOiDuNVKCyheRY4C/u/pS7rwZw99Xu/hRwBXB8TQcUkTrmzjvh1lvh/PPh4ovjTiM5qGwhaQp8UcZjXwBNqhdHROq0Z56BCy8M08LffrvGiiREZQvJf4FzzNb+143unxM9LiJSeW+8Ad26wX77wZAhUE+jCZKist1//wqMBj4ys2eBb4EtgWOAEqB9jaYTkdptyBDo3ZuDZs0KqxpusQWMGAEbbRR3MqmESp2RuPvLwF7AvwntIf2BE4B3gb3dfWKNJxSR2mnIEOjVC2bNwiD01PrxRxg7Nu5kUkmVPSPB3acRemmJiFRd795QmjFaYOnSsL1bt3gySZVU6ozEzG4xs13zFUZE6pDZsyu3XYpWVbr/vm9mb5vZ2WbWNB+hRKSWcw/rrGejJXMTp7JtJL8EDgU+Am4Gvjazx6OVE0VEcnPjjbBoEdTPuLresCH07x9PJqmyyp6R4O4T3b070IIwxfw2wFgzm2Vm15jZ9jUdUkRqkSFD4Mor4eSTw1K5LVviZtCyJQwYoPaRBKp0IUlx90XuPhDoA7wObAtcCXxsZs+bWcsayigitcXLL8Npp0GbNvDww3DKKTBzJpNffjlMF68ikkhVKiRmVmJmfcxsBvASsIjQHXhj4CjCmJKhNRVSRGqB998PI9Z33DGMYN9ww4qPkUSo7Oy/fwROA/4AzAYGAYPc/cu03UaZ2WJgfI2lFJFk+/JL6NABGjcOS+ZusknciaQGVXYcyQDgWaCdu08oZ7+PgeuqnEpEao+FC8MKhz/+CK++CttuG3ciqWGVvbS1tbufXEERwd2/dvdrsj1mZrua2QQzKzWzOWbWz8xynlTHzNYzs6lm5mbWqZL5RaSQli+HY4+FadNg+HD4v/+LO5HkQWVXSJxfnR9mZs0Il7ymAZ2BHYBbCQXtbzk+zRnAL6qTQ0QKwB3OPDOsbjh4MBx2WNyJJE8qPUWKmXUFzgR2JCxqtRZ337Kcw88GNgK6uPtCYJyZNQH6mtlN0bbyfnYzwvxeVwAPVTa7iBTQ1VfDo4/CtdeG1Q6l1qrsFCknA48AnxLGj4wAXoieZyFwdwVP0R4Ym1EwhhKKy0E5RLiW0NW43EtrIhKzBx+E666DM84Ic2dJrVbZNpLLCG/m50b373X3nsAvgblAReu170wYFf8zd58dHbdzeQea2Z6EHmOXVjKziBTSqFFwzjnQvj3cd58Wp6oDzN1z39lsEdDJ3SeZ2QrgMHefFD12DHC7u5eUc/wK4DJ3/0fG9i+BR939r+UcOxl4y90vN7MS4HPgSHd/oYz9ewG9AJo3b95q6NCqDWtZtGgRjRs3rtKxcUhS3iRlhWTljStr4+nT2evCCynddlv+c8cdrMpxXRH9bfOnOnnbtGkz1d33qXBHd8/5BnxF6PoLMBM4J+2xLsBPFRy/ArigjOftX85xJwLfAE2i+yWAE4pahblbtWrlVTVx4sQqHxuHJOVNUlb3ZOWNJeuMGe7Nm7uXlLh//XWlDtXfNn+qkxeY4jm8x1a2sX0KsCcwltA+crWZrQSWA1cDb1Vw/Hwg20ikpsCCbAeY2fqECSJvBNYzs01YszZ8IzPb2N1/quTvISI1ad68cClr+XKYNAm22iruRFJAlS0kfwdSc2hdHX1/L1APeIfoUlI5PiKjLcTMtgUakdF2kqYRoWH/tuiWbijwGfCr3OKLSI1buhQ6dw5zZY0fDzuX29wptVBOhcTMNgI6EC4pfWNmzd39W6CzmW0IbOgVdN2NjAYuyziL6AosASaXccwioE3Gtq2AJwhryL+cy+8gInmwejX88Y/wxhswbBgccEDciSQGFRaSaFr48YQikrLQzE5w95fcfRmwLMefdz/wZ+AZM7sR2B7oC9yWXojM7FNgsruf7u4rgUkZmVJZ3nf3ii6niUi+XHopPP003HorHH983GkkJrl0/70JWA0cCDQEdgP+DTxQ2R/mYWT8IYRLYSOBa4DbCVPRp6sf7SMixeqOO+D22+GCC+Cii+JOIzHK5dJWa+ASd389uv+hmZ0VfW3h7l9X5ge6+zSgbQX7lFTw+ExAndNF4jJ8eCgeXbqEsxGNFanTcjkjaQHMyNj2GeGNXF0zROqa118PC1C1bg3//CfU08WDui7Xke25j1oUkdpr+nQ46qiwLO7zz0OOAw6ldsu1++/YaLxIpgmZ2738SRtFJKm+/TaMFalfPyxOtfnmcSeSIpFLIcm6roiI1CGLF0OnTqGYTJoE228fdyIpIhUWEi9jgSoRqSNWroSuXeHdd8PlrN/+Nu5EUmQqvR6JiNQh7nDuufDii3D//eGsRCRDZaeRF5G65O9/hwED4Mor4ayz4k4jRUqFRESy++c/w6JUp5wC/fvHnUaKmAqJiKxrwgTo2RPatoWBAzXgUMqlQiIia3v//TBifaed4JlnYIMN4k4kRU6FRETW+PLLMFZk443DkrlNm8adSBJAvbZEJPjxR+jQAX76CV59FbbdNu5EkhAqJCISVjY89lj48EMYMwb23DPuRJIgKiQidZ07nHFGaGB/5BE45JC4E0nCqI1EpK676ip47DG47jro3j3uNJJAKiQiddmAAWGMyJlnwl//GncaSSgVEpG66sUX4ZxzQgP7vfdqrIhUmQqJSF00ZQqccALstRcMGxamhhepIhUSkbpmxgzo2BG23BJeeAEaN447kSScColIXTJvXhhwuGJFWJxqK62WLdWn81mRumLJkrBM7qxZMH487Lxz3ImkllAhEakLVq2CP/4R/vUvePJJOOCAuBNJLaJCIlIXXHopDB8Ot90Gxx0XdxqpZdRGIlLb/eMf4XbhhXDRRXGnkVpIhUSkNnv6abj44jCP1q23xp1Gaild2hKpTYYMgd69OWj27NC9d+5caN06TIGynj43Sn6okIjUFkOGQK9eUFqKAXz7bRit3r07bLRR3OmkFtNHFJHaondvKC1de5s7/P3v8eSROkOFRKS2mD27cttFaogKiUhtUdaKhtttV9gcUucUvJCY2a5mNsHMSs1sjpn1M7N6FRzzWzMbZGafRsdNN7M+ZtagULlFipo77LDDutsbNgzTxIvkUUELiZk1A8YDDnQG+gGXANdUcGhXYAfgRqADcA9wMTAkb2FFkuT662HixDAFSsuWuBm0bBnWG+nWLe50UssVutfW2cBGQBd3XwiMM7MmQF8zuynals2N7v592v1JZrYUeMDMWrr7rDznFilejz0Gf/tbmALlkUfAjMmTJnHwwQfHnUzqiEJf2moPjM0oGEMJxeWgsg7KKCIp/46+bllz8UQSZvx46NkzrLP+0ENanEpiUehCsjPwUfoGd58NlEaPVcbvgdXA9JqJJpIw770HXbrALruEebQ22CDuRFJHmbsX7oeZrQAuc/d/ZGz/EnjU3XNaNNrMtgLeA0a5e48y9ukF9AJo3rx5q6FDh1Yp86JFi2icoIV/kpQ3SVmhuPJu+N137H3uuQC8e++9LNtii7UeL6asuUhS3iRlherlbdOmzVR336fCHd29YDdgBXBBlu1fAf1zfI4NgFeAGUCzXI5p1aqVV9XEiROrfGwckpQ3SVndiyjv/Pnuu+/u3qSJ+3vvZd2laLLmKEl5k5TVvXp5gSmew3tsoRvb5wObZNneFFhQ0cFmZsCjwG7A/u4+v2bjiRS55cvD5azp08MKh3vsEXcikYIXko/IaAsxs22BRmS0nZThdkK34cPcPZf9RWoP99CwPnEiPPpoaGAXKQKFbmwfDbQzs43TtnUFlgCTyzvQzK4EzgdOcffX8hdRpEj17h0mZuzfP3T1FSkShS4k9wPLgGfM7NCoQbwvcJundQmORrAPTLt/MnA94bLWV2a2X9pt7VZGkdrogQfC5Iu9esGVV8adRmQtBb205e7zzewQ4G5gJKFd5HZCMcnMlT5tyuHR1x7RLd1pwOCaTSpSRF54Af70J+jYEe65R2NFpOgUfD0Sd58GtK1gn5KM+z1Yt4CI1H7vvANdu8Lee8OwYVBfSwhJ8dHsvyLFasYM6NQJmjcPZyWNGsWdSCQrFRKRYjR3LhxxBKxcGbr5Nm8edyKRMuk8WaTYLFkSZvGdPRsmTICddoo7kUi5VEhEismqVXDKKfDmm/DUU7D//nEnEqmQColIsXCHiy+GZ56Bf/wDjj027kQiOVEbiUixuP12uPNOuOgiuOCCuNOI5EyFRKQYPPUUXHIJHHcc3HJL3GlEKkUSbRLJAAAaZUlEQVSFRCRur74apjw54ICw2uF6+m8pyaJXrEicPvwQOneGkhJ4/nlo0CDuRCKVpkIiEpdvvoH27cPKhqNHw6abxp1IpErUa0skDosWhbmz5s6FSZPgl7+MO5FIlamQiBTaypVwwgnw3//CiBGwT8UrmYoUMxUSkUJyh3POCZeyBgyADh3iTiRSbWojESmk/v3hoYfgb3+DM8+MO41IjVAhESmURx6Bq66C7t2hX7+404jUGBUSkUIYNw7OOAMOPRQefFCLU0mtokIikm///W+YN2vXXeHpp0N3X5FaRIVEJJ+++CI0qDdtCqNGha8itYx6bYnky4IFYcDhokXw2mvwi1/EnUgkL1RIRPJh2TI45hj4+GMYMwb22CPuRCJ5o0IiUtNWr4aePcOI9X/+E9q2jTuRSF6pjUSkpvXuDY8/DtdfD926xZ1GJO9USERq0n33wQ03wNlnwxVXxJ1GpCBUSERqyogRcN550KkT3HWXxopInaFCIlIT3n4bTjwRWrWCoUOhvpofpe5QIRGprs8+C2chLVrAyJHQqFHciUQKSoVEpDrmzg1jRVavDjP6Nm8edyKRgtP5t0hVLVkCRx0VRq9PmAA77hh3IpFYqJCIVMWqVaFr75tvhvmzfv/7uBOJxEaFRKSy3OGii+DZZ+GOO6BLl7gTicSq4G0kZrarmU0ws1Izm2Nm/cysXg7HNTWzQWY238x+NLMhZrZZITKLrOW220L33osvhj//Oe40IrEr6BmJmTUDxgPTgM7ADsCthIL2twoOHwbsBJwBrAZuBJ4DDsxXXpF1DBsGl14a1ly/+ea404gUhUKfkZwNbAR0cfdx7n4/cA1wsZk1KesgM2sNtANOdffh7v4scApwgJkdmpekQ4ZASQkHtW0LJSXhfjFLUt4kZYU1edu0CWNFdtoprHa4njo9ikDhC0l7YKy7L0zbNpRQXA6q4Lhv3f2V1AZ3fxv4PHqsZg0ZAr16waxZmDvMmhXuF+sbXpLyJikrrJ03tW32bBg+PM5UIkWl0I3tOwMvp29w99lmVho9NrKc4z7Ksv3D6LGa1bs3lJauva20FHr0CBPxFZuPP4aVK9feVqx5y8t67bXhvvvaX7Nty/VrdY/5/vswRiTdkiXhNaIJGUWAwheSZsCCLNvnR49V5bjtsx1gZr2AXgDNmzdn0qRJOYc8aPZsss2S5CtX8v0WW+T8PIWyxbRpiclbbtYWLX6en8qzzVOV2lbWPhmP57JPRT+nxciR2fPOns3kSrymCm3RokWVes3HLUl5k5QVCpTX3Qt2A1YAF2TZ/hXQv5zjxgHPZtk+BHi9op/bqlUrr5SWLd3DZ9K1by1bVu55CiVJeZOU1T15eSMTJ06MO0KlJClvkrK6Vy8vMMVzeG8vdBvJfGCTLNubkv2Mo6LjNqnguKrp3x8aNlx7W8OGYXsxSlLeJGWF5OUViUGhC8lHZLRpmNm2QCOyt4GUeVykrLaT6unWDQYMgJYtw6WPli3D/WK9Jp6kvEnKCsnLKxKDQheS0UA7M9s4bVtXYAkwuYLjtjKzA1IbzGwfQvvI6HwEpVs3mDmTyS+/DDNnFv8bR5LyJikrJC+vSIEVupDcDywDnjGzQ6MG8b7AbZ7WJdjMPjWzgan77v4vYCzwqJl1MbOjCe0jr7n7+IL+BiIispaCFhJ3nw8cAtQjdPW9Brgd6JOxa/1on3QnEs5aHgYeBaYCx+Qzr4iIVKzgkza6+zSgbQX7lGTZtgA4LbqJiEiR0BwPIiJSLSokIiJSLebp00LUUmb2PTCriodvDsytwTj5lqS8ScoKycqbpKyQrLxJygrVy9vS3SucHqNOFJLqMLMp7r5P3DlylaS8ScoKycqbpKyQrLxJygqFyatLWyIiUi0qJCIiUi0qJBUbEHeASkpS3iRlhWTlTVJWSFbeJGWFAuRVG4mIiFSLzkhERKRaVEhERKRaVEhERKRaVEhERKRaVEhERKRaCj77r9SMaGXJDoABT7n7PDPbBrgU2AGYCQxw9/fjSwlm9hdgVNw5cmVmGwH13f2ntG1bAOcBuwKrgf8A97r7j/GkFCku6v4bMTMjrG/SEdgF2BRYBXwLvAkMdveP40u4hpn9DngJaAysBH4A2gGjCJk/AHYHtgIOdfdXY4qKma0GnLAk8uPAMHf/NK48FTGzUcAn7n5BdL81YRXO1YQ1cAxoBSwH2rr7BzFm3QvYyN3fSNt2BHAla4ref4G+6fsUi+j/3JHA3oTXyBTCh46iflMysyaEuavauvtrceeBnzO1BTYAXnT3xdEHoHMJK8nOIHywnJOXn1/k/2YFEf3BRxHeIL4lrOL4C8KLezThH2In4Fp3vzaunClmNo5wNnkMsJiwONjRhDe649x9hZltCDwHNHD3NjFmXQ3cCOwBHEbI/S6hqDzp7l/FlS0bM5sLnO7uz0f33yT8jY9OnaWYWVNgBLDU3dvFmPVNYKS794/u9wQeAiYCLxOK3iHAgcCxqd8ppqxvEP6uH0b3mxE+DLUCFkW7NSZ8aGuXfkYYBzP7UzkPbwTcDNwBfALg7vcWIlc2ZvYrYAKwbbTpc+BwYBywCfAZ4f1rCdDK3b+s8RDuXudvwBOEF8Qeadu2BsYAw6P7BxFe8D2LIO88oH3a/S0Jnz4Pz9ivIzA35qyrgd9F3zcDekUv+pXRbVK0bbO4/65RxlLgD2n3l2f+XdP+totjzrowPRvwKXBXlv3uB/5bLK+D6P5Awpn0EWnbjgDmA7cXwetgNeHsfnUZt/THVsWc9UnCmeevCFdSHovez94ANo722Tza54F8ZFBje9AeuMLTruN7OAU8GzjazFq4+2TgeuCCmDKm8+iWfp+Mbdnux8rd57v7AHc/BNgGuIRwKn4/MMfMXow1YPA/IP0M7lvCf85MmxGKTpxWZ9xvCTydZb+nCZ9Ii8lRQD93H5PaEH3fH+gSW6o1RgDfAacD9dx9vdSN8How4OBoW+ay4IV2ANDf3T919x+AvxHaSW/x6MzO3ecC/2Dt13aNUSEJjPAJI9Oq6LGm0f23gB0LFaocU4FLzWxjM1sP+CvwFXCOmdUDMLP6wJ8Ib4xFx92/cfc73P33wC+BPoSzwLjdAFxhZj2jv2F/4GYzO8zMNjCzDaN2iL8TPgnG6VWgW9r9D4Bs04X/lvD6KCabENpEMk0ltO3Fyt2PBk4FLgPeMbP90x+OJ1WZmgHfpN1P/VtnrsE0g/ABrsap11YwHrjOzN5z9xnw8zXcOwn/QKlG9sZAMfTU6U24/vkD4fJQKaGh7WngEzNLNbZvTbhcUNTcfRbhDfyGIsjyjJmdT/j0djswnfBBIvXJ2QkfLkYQ3mTi9Ffg9ejDxF2ERvZHzGxTwiVDCG0kFwJXxJJwbceaWarQzQeyLZi0OeGSXezc/SUz25Pw93vRzMYQekXG2n6TxXeEs9GUVcADhLPpdFuSp+xqbAeibrNjCKf/swjXxX9JaHQ/yd1HR/vdRFgxrGtcWVOizJ0IHwaGu/vXZrYVcDlrfo+H3P3dGGNiZn2ABz1PvUXyxcw2A7oCvyN8Ql6PULg/BF5w96kxxvuZmf0GuA/YlzVFjrTv5xMuId0RT8Ig6nSRabC798zY7wFgV3c/sDDJchP937qJcNntAUJxaePur8QaDDCz54AfMv+WWfa7C9jF3Q+t8QwqJEF0SegE4P+ABoSGy8eja44iRc3MdiEUk8yi94a7r4gzW2WY2ZnAZ+7+ctxZsom6g99O+LDW0YugW7WZNQcauvvnFex3MaHTxYQaz6BCUvuYWT13z9bmUzTMrAGhQXA18GkxvtlFbSTbkzamyN1nx5tKpPiosT2Dme1mZsea2Rlmdnr0/W5x58pkZl3M7DkzG2VmR0bbuprZTGC5mc2KPt3FysxOicY3pO7XN7MbCJ+Y3yN0BvjBzIrhGj4AZtbKzEYQrid/CLxOGN/wuZl9ZWb9zKxhrCFrEYvEnSMbM9so89/azH4TvS+0iitX0Ymz/3Mx3YCehHaFbH3HVxGmHDkt7pxR1hOiXK8BzxMa288ktO0MJIxmfSLK3S7mrNOAc9Lu3xrlvQrYn9B1sS9hsNRfi+BvezihbWwKoWdWX8Kg1OVR5ksIvaP+AzQrgrydCONy3geGkTYGJm2ffYl/rMPhRGMa0rYdTRicuhJYEf3NO8b9N42yNQWejXKtBB4E6gGPZLwvvA5sHnfeHH+nY/P1Ooj9lyuGG3B+9IK5hzAKePPoRVMv+v4A4O7oDebcIsj7DnB/2v1uUbZbM/YbBIyPOWspcFDa/e+AC7Lsdykwqwj+tlOBR8p4jcwknMU3iN4A740562Fpb2Z3R9lXRcXa0vYrhkKyirUHJB4TvRm/Ef3bXxp9v5IsA0BjyHsnYRqU84Hu0YeH4cAXUVHcgjD+7Cvgvrjz5vg75a2QqI0EMLMZhDfmmyrY73LgbHffvjDJysyxEOji7uOj+00JvXMO9bRGyuiS1wPuHtv4DDP7GjjP3YdH95cRzpImZex3GDDC3TcqfMq1ciwBjnL3cRnbmxFmFNjN3T80s+7Aje7eIo6cUabXCPOCnZa2rSfhTXAcocfhUjPbl9DoHtvAuajX1n7u/nZ0/13gK3c/MmO/UUAjdz8ohpjpOT4Hrnf3B6P7exEK9Wnu/kjafmcSzqR/GU9SMLOHc9y1JWEQZY2/DtRGEmwFvJ3Dfm9TBIOlCF07018MqbmKFmTst4gw8CtOIwiDJzeI7o8HTsqy30mET31x+47Qcy/T/xH+7qlxRLNYM1A1LrsD/0zf4O4PE6bz2Q94ORpTUox2J3SjzTSAMIlj3LZkzfgxiObUIsxble5Tso+HKaRTCWdJe1Rwa1nWE1SXBiQG7wFnmtkr7p6tv3tqptIzo33jNoswu+tYAHdfFXVL/DBjv+1Ze8RrHK4kjMD+n5k9BIwEbjSz3VkzaK4tsBdhJti4DQCuNbNGhLaH5YSR4b2Bib5mPMz2QNw9uJYCjTI3uvvUaCT2WMLlor4FzlWW9MsfP7LmA1C6xRTHB9zPCQV5cnT/QMKluN8T2iZT9if+18EnwNvu3r28nczsOEI7Wo1TIQkuIQxInGZmzxCmPF9AeOFvAuxMuKa7DcUxUvwZMqY6cPe3sux3Mmu/6AvO3X8ws/0Ib8QXEz7pAbSObssJl2EOdPd34km5hrv3jy7DXEGYtgXC6+AJwiC0lBWEudfi9B7hOv2IzAfcfUZUTEYBgwucqyxjzWxl9H1T4Des+TCRsjPwdSFDleF+4A4z24NQ9E4gfCi62swaEyZA3Bu4CIh7RvA3CQWuIukDVmuU2kgiZrYDYVT4EayZjjnlC0LPnZvdPfPUtmiZ2XbAAncviiknAMyshLUHzX3mxTmGZH3COJcGwIxi+hummNlZhGlS9vIyBs5GZ1bPEtrPYvukH81wkOkTd388Y79J0fZi6Lr+Z8Il1/UJs0Tcb2YnEdqgUpN2DgD+EudrOOqGvL+731nBfpsT2vgml7dflTKokKwr6jeealtY4O5xz/IqIkUiusy9ubt/H3eWYqFCUstEp93vAt2K4VKRJXDpWkvIMsYixUKFJE30BrIlMN3d12kIjE4NO7j7owUPt3aODuU83IjQoHYF0RTy7j6qELmysQQtXQvJWsY4V9E8XMe7e7+Yc8S6HGx1RWci6UsDTyX8HrG/iVqYVflYwv+nwe7+kZn9H3ANaz783ONp67/UqLgHyRTDDdgQeIrwRrGK0JA6EGiasV/sA7uiHElavW0u0Dnt/puE3lAbp21rSugdM7YI/rbjCEvVbkK4Nn438CVhBoH1014vowm9uGJ//ebwO+VtIFolMvyK0Nsw9br8jPAGN4NQrN8hTB//LbBNEfzN3iDMlJu63yzKuDrKuZA1Ayo3jitnlK0d4YPYN9HfdSFhAav5hMGq90T/71YRloyu+Qxx/4MVww24mtBL60zCwkAXRC/oT4Bfp+1XLIVkKqFny2mEvuHptz2jF/gJqW0xZ03M0rVRjiQtY7xdjrez437dUgTLwVYyb2KWBo6KxVOElRwhdMCYDwzM2O8x4M28ZIj7H6wYboTuvudlbNsKeAX4HmgdbSuWQmKEdc6/I0zb8Mu0x5pG/wnWmXMppqxvA33S7n8BnJhlv+7A90WQd27Gm8UW0d/zsIz9OhRBIUmdfVZ0K4Yz0znACWn3W0a5umTsdxrwcRG8DjILyffAhVn2i31qH0L35EPT7jeL8rfN2O9wQuehGs+gcSTBtmQMNHT3b8zsEEIVH29m3SiO/u14eFUMMLMngeuA98zs7uj7YnMDMMTMvgAeZc3StfMIl7OMcBpeDEvXwppljF8nDI5LX8b4ZQ+DP4tlGeOfgJeBhyrY7wBC1/Y4xb4cbDUV89LAS1h7YGrq+8zphhoSBrHWOBWSYA7wa8IZyM889A0/0cz+QTh1jLWRPZO7LwDOM7MBhL7tnwA3UkRrSnuylq6FZC1j/DahHe/F8naK1n6JW+zLwVZBUpYGfp0wUPKTKMsthFm3/xLN1vFTNB/f5YTCV+PUa4ufJz3b3t0PLmefKwmfpt1jnPyuPGZ2ImE50G0Ik7PFvgxoiiVk6VpI1DLGVwG93D1zAG3mfn8ArnH3NoVJljVD7MvBVoYlaGlgM/sVYQ671OtgJuEs/2nCTAGzgBLCB6M27v6fGs+gQvJz17muwA3uPq+c/U4mXCs/rax94hZddmkELPIiXyVR6g4rguVg88GKZGngaPzY/oSehhPcfUk0sPoM1nz4edzdv8zLz1chERGR6iiGWTYlT8zsQTMbGHeOXCQpKyQvr0g+qbG9EszsQWA9dz897iw5akNyPiwkKSskKK+ZjSdcfTgk7iwVSVJWSFbefGZVIamcxLx5ALj7r+LOkKskZYXE5TWS87pNUlZIVt68ZVUbSS0Wdfvc0t3jXninQknKCsnLK5JPSamkRcHMGkRrfCRFR8JKb0mQpKyQoLxmtn5SXrdJygrJypvPrCoklZOYNw+pG8zsXDP7zMx+MrO3zOyPWXbbmyJ43SYpKyQrb9xZ1UaSQGaWa5/1bCNxCypJWSFZeaMBqHcRlgH+N2EcwWAz6wz80d2XxJkvXZKyQrLyFkNWtZFQ6TePXeMe2W5h3evphGkQyvMLYN848yYpKyQrr5lNAV5298vTth0CDCGMbu7oYVGufYE3lDV3ScpbDFlVSEjWmweAmf2HsPhW1wr2Ow4YFvOLPDFZoxyJyWtmPwFHuvukjO0lhPVS6gHtCfNBxf1ml5iskKy8xZBVbSTB/4D/ufvx5d2A2+IOGnkL2C+H/VITIsYpSVkhWXl/JLw5rMXdZwK/J0yJ/wbw28LGyipJWSFZeWPPqjMSfp547Qh3b1nBfscS1vCOtQCb2Q7Abu4+ooL9NiJ0Uc2cqrtgkpQ1ypGYvGb2PPCTu59SxuMbESbua0/Mk40mKWuUJzF5iyGrCgnJevMQSTGz44GLgE7u/kMZ+9QD7iNMNvrLQubLyJGYrFGWxOQthqwqJCIiUi1qIxERkWpRIRERkWpRIZE6xcx6mNnUaATwfDP7t5nlpTeeme1oZn3NbJMc9u1rZp52m2Nmw6P2u4qO7REd07hmkotUjgqJ1BkWlkt+CBgLdAG6A88DR+XpR+4I9AEqLCSRH4HW0e1S4DfABDNrVMFxL0bHlFYxp0i1aIoUqUvOAx5w97+mbRtpZtfEFSjDSnd/M/r+TTObDbwKdACeytw56olTz92/B74vXEyRtemMROqSTYBvMjd6WtdFMyuJLhOdbGaPRZfAvjOzPpnHmVnbaIK8pWb2rZndm7q8ZGYHAyOjXT+PnnNmJfNOjb6WRM852MymmNnRZvYBsBTYN9ulLTPbyMxuMrNZZrbMzD43s79n5D/DzD6IHp9lZpcjUgU6I5G65F3g/OiT/gvuPq+cfW8GXgCOA/4A9DGzue5+D4CZ7QqMAcYBxwLbAjcA2wNHRD/rUuAWwmW0r4FllcxbEn39JmPbTUA/4FvCbK5rtaOYmREu2bUGriUUpF8AB6btcxlwffRck4BWwLVmVurud1cyp9R17q6bbnXiBuwJzCBMb7Ia+IDwhtwkbZ+S6PGXMo59EPiKsNQywFDgE8KlpdQ+J0THto7ud4rul+SQrS9hKov60W1HYCKwEGgR7TM4er7fZBzbI9reOLrfLrp/VBk/qwmwCOiTsb0foWjVqyivbrql33RpS+oMd38P2IXQuH4vYa6sq4ApWXo8PZtx/xlga2Cb6P7vgGfdfVXaPsOBlcABVYy4GbAiuk0nnN10dfev0/b5yt3/U8HztAV+8LJnamgNNAKeMrP6qRvwMtCcNb+jSE50aUvqFHdfRmi7GAlgZqcTenKdDtyRtut3GYem7rcAZkdfv8147lVmNg/YtIrxfgQOJZxNfAPMcffMqSe+XeeodW1GuJRWltQEfx+U8fi2gKYBkpypkEid5u4DzewmYOeMh7Ys4/7XaV/X2ifqRbUZkHW+oxysdPcpFeyTy5xG8wiFriypfJ3IXpim5/AzRH6mS1tSZ5hZZnHAzLYAmrLuG+oxGfdTDeZfRvffAo6Jikf6PvWB16L7y6OvDaoRuyomAJuaWacyHv8XsATY2t2nZLn9VLioUhvojETqkvejKbdfIlyqaknoWVUKPJKx727R8gLDCb22TgcucPfV0ePXEZY1fc7M7iO0K9wIjHX3f0X7pD7Zn2VmQ4FSd38/P7/aWsYRBl0+bmb9CD3IWgB/cPez3H2BmfUF7jCzlsArhA+VOwJt3D2ziIqUS4VE6pJ+QGfgTkI7xjeEBX+6uvvnGfteTrj0M5wwXuNa4Oduse7+gZm1J3ShfYbQu+qJ6LjUPrPM7FLgz8D5hLOZknz8Yunc3c3smCjzhYQloucAj6ftc5OZzSFMP34J4Xf8GBiW73xS+2gaeZE00fKknxOWLn0h3jQiyaA2EhERqRYVEhERqRZd2hIRkWrRGYmIiFSLComIiFSLComIiFSLComIiFSLComIiFTL/wMSBNLPLRyYmQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -248,8 +248,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "exact expected value:\t0.1133\n", - "exact delta value: \t0.4700\n" + "exact expected value:\t0.1623\n", + "exact delta value: \t0.8098\n" ] } ], @@ -300,9 +300,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Exact value: \t0.1133\n", - "Estimated value:\t0.1061\n", - "Probability: \t0.9378\n" + "Exact value: \t0.1623\n", + "Estimated value:\t0.1196\n", + "Probability: \t0.4973\n" ] } ], @@ -319,7 +319,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHe9JREFUeJzt3Xm0XGWd7vHvwyCEKcyBRpoIDhFalleOCH1pSWQO98ogmiz09oqNRr0qdC+0QUQIaLMMtoAu2gUsbbjc1oRuoLkNIYQwnDCrQYLYScCgARlEsQ+JMRCB/O4f7w5W9qlzatdw3sqp83zWqlVV7373W+9+U6nf2fsdtiICMzOzkbZZtytgZmZjgwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGM2DEmzJPUXr/slzWpy/8mSolzWEHlvkfTYMNsvlzQgaauKn/1WSSHp2GbqbDZSHHDMNh1zgL+QdEB5g6TNgVOAGyNiXfaamXWAA47ZpuP/AWuB6XW2TQEmkIKS2ajkgGPWIkmHSvoPSc9J+oOkJZI+2mp5EbEGuAWYVmfzdOAF4O7is/eSdLWkX0p6WdITki6QtOUw9d2iuMT26VL61yT9upS2j6Trikt4ayXNl/S2Vo/NDGCLblfAbFMWEbNqXk8ubd4HuB+4AngF+O/A1ZLWR8ScYp9+QOWyhjEH+IikgyLiYYAiiJwEfD8iXi/y7Qa8CPwt8BIwCTgf2BX4bJOHuRFJuxbH9QIwszi2c4CFkt7hS3rWKgccsxZFxNwNryUJuAd4M/BJWr/0NZ8UQKYDDxdpxwA715YZEUuAJTWffz/wMnCFpDMi4rUWPx/gTGAr4IiIeKko/wFgJTADuLKNsm0M8yU1sxZJ2knStyU9BbxaPGYCb2+1zOLs4d9JZzkqkqcBTwEP1Xz2ZpLOlLRM0svFZ/8fYBwp6LXjSGABsKa4DLcFsAr4CdDXZtk2hjngmLXuGlIw+AZwNPBe4J+Brdssdw7w58ChkrYGTgDmxMZLu58JzAb+DfggcDBwerGt3c/fFfgofwqiGx7vB/Zus2wbw3xJzawFRSA4HvhcRFxRk96JP+LuIvWfTAf2BLZn8CW6DwNzI+K8ms8+sEG5rwOvAW8qpe9cev9fwCPARXXKWN3gM8yG5IBj1pqtgM2BNzrQJW1POtto6yZTEfG6pH8jBZW9gGUR8dNStnG1n10YdoRcRISkZ4F31tR5c+ADpax3ks6qHvMAAeskBxyzFkTEKkk/Bs6TtBpYD5xN6uvYoQMfMQf4HGl02nl1ti8EPiNpMfAL4K+BiRXK/XdgpqRHSf1CnwS2KeX5R+BU4C5JlwPPAXsAhwP9EfGvTR+NGQ44Zu04FbgKuBb4HXA56cf7cx0o+0HSqLCJwNw6288HdiFd9grgeuDvgJsalHseqY/mIuCPwLeBpcAnNmSIiN9IOgT4B+AyYEfgeeBeYMild8waUe5bTEt6K/BF4BDgL4B768xvqLffeNKX/0TSYIdbgNMj4nelfCcAXwPeRvrL74KIuK6Tx2BmZs3rxii1A4CpwBPFo6rrgMmkv8RmkEYEbfTXnKTDgBtIs7GPA+YBcyQd3W6lzcysPd04w9ksItYXr68Hdm10hiPpUOAB4PCIuKdIOxj4IXBURNxRpC0AtoyID9TseyuwQ0QcNhLHY2Zm1WQ/w9kQbJp0HPDChmBTlPMj4JfFNool26cA5Q7NuaT5DONbq7GZmXXCaJn4OQlYXid9WbENYD9gyzr5lpGOs+XZ32Zm1r7RMkptJ9L6UmUDwL41eaiTb6C0fSOSZpKWI2HcuHEH7b13exOp169fz2abjZY43l1uq+rcVtW5rarrRFs98cQTL0bEblXyjpaAA/Un06lOevm9hkhPiRFXkYa20tfXF4sXL26njvT39zN58uS2yhgr3FbVua2qc1tV14m2KtYSrGS0/BkwQJoLULYjfzqjGahJK+eB+mdIZmaWyWgJOMv5U19Nrdq+nSdJCwyW800izQJvZgi2mZl12GgJOPOBPYp5NgBI6iP138yHN5Z1v5u0/lStacCDEbEqU13NzKyO7H04krYhTfyEtDDhDpJOKd7fGhFrJa0AFkXEaQAR8WAxx+ZaSV8gnbHMBu7bMAen8FWgX9JlpEmhU4vHsSN+YGZmNqxuDBrYnXQPj1ob3r+FtH7UFqSVeGtNBy4l3W/kjaVtajNExH1F8Poa8BnSPJ1TI+L2DtbfzMxakD3gRMRK/jRybKg8E+ukvQR8vHgMt+9NNF7A0MzMMhstfThmZjbKOeCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRajafFOs7ZNPHveoLSVXz++CzUxG3t8hmNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZF9oAjaX9Jd0paK+k5SRdK2rzBPrMkxRCPL9Xku2aIPJNG/sjMzGw4W+T8MEk7AXcAS4ETgP2Ab5IC37nD7Ppd4LZS2onAWcD8Uvpy4OOltJWt1djMzDola8ABPg2MA06OiNXAQkk7ALMkXVykDRIRzwDP1KZJ+gqwPCKWlLL/ISIeGoG6m5lZG3JfUjsOWFAKLHNJQejwqoVI2hk4CpjT2eqZmdlIyR1wJpEueb0hIp4G1hbbqjoF2JIUrMr2l7Ra0jpJ90mqHMjMzGzkKCLyfZj0KvDFiLislP4McG1EnFOxnLuA8RFxUCn9DOCPpD6i3YAzgYOAwyLiR0OUNROYCTBhwoSD5s6tF8OqW7NmDdttt11bZYwV3Wirx55dNSjtXXuNz1qHVvh7VZ3bqrpOtNWUKVMejoi+Knlz9+EA1ItwGiJ9cEZpT9Llt7MGFRzxrVLeeaTgcw5pkMHgykRcBVwF0NfXF5MnT65SjSH19/fTbhljRTfaasbZ8walrfxo3jq0wt+r6txW1eVuq9yX1AaAHeukjwdeqljGR0gB6rpGGSPiZeBW4D1VK2hmZiMjd8BZTqmvRtLewLaU+naGMR24LyJ+1cTn5rtuaGZmdeUOOPOBYyRtX5M2DXgZWNRoZ0kTgUOoODpN0jjSyLiHm62omZl1Vu6AcwWwDrhR0pFFh/0s4JLaodKSVkj6Xp39pwOvAdeXN0gaL+leSZ+SdISkacDdwF7ARSNwLGZm1oSsgwYiYkDSEcDlwM2kfptLSUGnXK96y91MB+6MiN/W2bYO+C1pxYLdgVeAB4HDI2JxRw7AzMxaln2UWkQsBT7QIM/EIdLfPcw+rwAnt1U5MzMbMV4t2szMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJoKuBIqrfcjJmZWUPNnuE8K+liSe8ckdqYmVnPajbgXAmcAvxM0g8lzZS0wwjUy8zMekxTAScizo+IfYGjgMeBS4DnJX1f0pEjUUEzM+sNLQ0aiIi7IuKvgT2AzwPvABZIWilplqQ/62Qlzcxs9Gt3lFof8H7SbaMHgHuBTwArJH2szbLNzKyHNB1wJO0j6XxJTwJ3AnsCfwP8WUT8L2AfUl/PNzpaUzMzG9WaugGbpLtIZzTPANcAV0fEU7V5IuJ1ST8AzuhUJc3MbPRr9o6fLwJTgYUREcPkWwK8peVamZlZz2n2ktrlwAP1go2k7SS9HyAiXi2f+ZiZ2djWbMC5G9h/iG3vKLabmZkN0mzA0TDbtgPWtlEXMzPrYQ37cIrLZJNrkj4h6dhStq2B44HHOlc1MzPrJVUGDbyPNLkTIIAPA6+V8vwRWA58sXNVMzOzXtIw4ETENyjm1Ej6JXBSRCwZ6YqZmVlvaWpYdER4qLOZmbWkSh/OVOC+iFhdvB5WRNzakZqZmVlPqXKGcwtwCPCj4nUw9Gi1AHyTNjMzG6RKwHkL8HzNazMzs6ZVGTTwVL3XZmZmzajSh7NNMwVGhCd/mpnZIFUuqa0h9c1U5T4cMzMbpErA+RuaCzhmZmaDVOnDuSZDPczMrMe1e4tpMzOzSqoMGvgRMCMilkr6MQ0ur0XEwZ2qnJmZ9Y4qfTj/Cbxc89r9OWZm1rQqfTgfr3k9Y0RrY2ZmPavlPhwlu0ka7qZsZmZmQAsBR9JUSQ8ArwC/Bl6R9ICk4zteOzMz6xlNBRxJnwJuJk0GPYN0M7Yzivf/UWw3MzMbpKn74QDnAFdFxGdK6VdIugL4MnBlR2pmZmY9pdlLarsANw6x7QZg50YFSNpf0p2S1kp6TtKFkoZdDkfSRElR5zG3Tt4TJD0m6RVJSyVNq3RkZmY2opo9w7kbOBxYWGfb4cA9w+0saSfgDmApcAKwH/BNUuA7t8LnfwG4v+b9i6XyDyMFvu8ApwNTgTmSBiLi9grlm5nZCKky8XP/mrffBr4raRfgJuA3wO7AScBxwCcaFPdpYBxwckSsBhZK2gGYJeniIm04j0fEQ8Ns/wpwT0ScXry/W9IBwHmAA46ZWRdVOcP5GRtP9hTwqeJRvvvnbQy/WvRxwIJSYJkLzCadId1coT51SdoKmEI6s6k1F7ha0viIWNVq+WZm1p4qAWdKBz9vEnBXbUJEPC1pbbGtUcC5WtLOpDOrOcCXI2LDKgj7AVsCy0v7LCNdsns78OP2qm9mZq2qstLAog5+3k7AS3XSB4ptQ1kH/BPpsthqYDJwFinInFBTNnXKHyht34ikmcBMgAkTJtDf3z9c/Rtas2ZN22WMFd1oqzPf9dqgtNHw7+XvVXVuq+pyt1WzgwbeIGkzYOtyeoU7ftZbi01DpG8o83ngczVJ/ZJeAL4j6d0RsWSY8jVE+oayrwKuAujr64vJkycPX/sG+vv7abeMsaIbbTXj7HmD0lZ+NG8dWuHvVXVuq+pyt1WzEz8l6SxJK4BXgd/XeQxnANixTvp46p/5DOf64vk9NWVTp/wN75st38zMOqjZeTinA2cD3yOdOfwDcCHwBLCS4tLUMJaT+mreIGlvYFsG9700EqXnJ0lBcFIp3yRgfVFHMzPrkmYDzieB84GLi/c3RcQFwAGkgPG2BvvPB46RtH1N2jTS7Q+a7Ss6pXh+GCAi1pHmCX24lG8a8KBHqJmZdVezfThvAZZExOuSXqW4XBUR6yV9B/gu6QxoKFeQzpJulDQb2BeYBVxSO1S6uGS3KCJOK97PArYnTfpcDbwf+CJwY0T8tKb8r5L6dy4jzROaWjyObfI4zcysw5o9w/kdsF3x+mngv9Vs24k0qXNIETEAHEGaq3MzcAFwKemsqdYWbDyfZzlpns7VwK3AqcA3iufa8u8jnfkcCSwAPgic6lUGzMy6r9kznPuB95J+9H9AWiFgZ+CPwGeBOxsVEBFLgQ80yDOx9H4uaQJnQxFxE+nsxszMNiHNBpxZwF7F64tIl9RmkM5sFgKf71TFzMystzQVcCLiceDx4vU60r1wzhiBepmZWY9pZ+Lnm4E9geci4tnOVcnMzHpRK7eY/oykXwFPAT8Enpb0jKT/3fHamZlZz2h2pYHzgMtJ82mOB/qK5/nAt4vtZmZmgzR7Se2zwEUR8ZVS+m3F2mafJa08YGZmtpFmL6mNY+i7ei6izmKeZmZm0HzAuQk4eYhtHwJuaa86ZmbWq6rcYnpqzdv5wMWSJjL4FtMHAH/f+SqamVkvqNKHcwuDbyW9F3BMnbz/QroTp5mZ2UaqBJy3jHgtzMys51W5xfRTOSpiZma9remVBiRtQRogcBiwM/BfwL2kWwUMvmG8mZkZTQYcSbsDtwMHku7w+QJwKGn+zaOSjo6I33a6kmZmNvo1Oyz6EmAX4H0RsW9EHBoR+wLvK9Iv6XQFzcysNzQbcKYCZ0XEj2sTi/dfIi1zY2ZmNkizAWcr4PdDbPs98Kb2qmNmZr2q2YDzEHCWpG1rE4v3ZxXbzczMBml2lNqZwN3AryTdTho0sDtpEqiAyR2tnZmZ9YymznAiYgnwNuAqYDfgKFLAuQJ4W0Q82vEamplZT6h8hiNpS+Bg4JcRcfbIVcnMzHpRM2c4rwN3Ae8cobqYmVkPqxxwImI98HNgwshVx8zMelWzo9S+DJwn6V0jURkzM+tdzY5SO5e0osASSc+SRqlFbYaIOLhDdTMzsx7SbMD5WfEwMzNrSqWAI2kcaVmbnwG/Bu6IiBdGsmJmZtZbqtxiel/gDmBiTfJqSR+JiNtHqmJmZtZbqgwauBhYD/wVsA1wAPAIcOUI1svMzHpMlYBzKHBuRNwfEa9ExDLgU8CfS9pzZKtnZma9okrA2RP4RSntSdLaaXt0vEZmZtaTqs7DicZZzMzMhlZ1WPQCSa/VSb+znB4Ru7dfLTMz6zVVAs4FI14LMzPreQ0DTkQ44JiZWduaXUvNzMysJQ44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZF9oAjaX9Jd0paK+k5SRdK2rzBPu+VdLWkFcV+j0s6X9LWpXyzJEWdx7Eje1RmZtZIszdga4uknUi3OlgKnADsB3yTFPjOHWbXaUXe2cDPgQOBrxbPHyrlXQWUA8yydutuZmbtyRpwgE8D44CTI2I1sFDSDsAsSRcXafXMjojf1rzvl/QKcKWkfSLiqZptr0XEQyNTfTMza1XuS2rHAQtKgWUuKQgdPtROpWCzwSPFs9duMzMbBXIHnEnA8tqEiHgaWFtsa8Zfkm4M93gpfUdJL0p6VdIjkk5uubZmZtYxish35wFJrwJfjIjLSunPANdGxDkVy9kD+Clwa0TMqEn/GOmMZwmwHelGcVOBD0XEjUOUNROYCTBhwoSD5s6d2+xhbWTNmjVst912bZUxVnSjrR57dtWgtHftNT5rHVrh71V1bqvqOtFWU6ZMeTgi+qrk7UbA+UJEfKuU/ixwTUR8uUIZbyINPHgzcFBEDAyTV8ADwLiIeHejsvv6+mLx4sWNsg2rv7+fyZMnt1XGWNGNtpp49rxBaSu/fnzWOrTC36vq3FbVdaKtJFUOOLkvqQ0AO9ZJHw+81GjnIoBcCxwATB0u2ABEiqY3Agc2GnptZmYjK/coteWU+mok7Q1sS6lvZwiXkoZTHxURVfJv4DuWmpl1We4znPnAMZK2r0mbBrwMLBpuR0lfAj4PfCwi7qvyYcUZ0UnAoxHxemtVNjOzTsh9hnMFcDpwo6TZwL7ALOCS2qHSklYAiyLitOL9qcBFwDXAs5IOqSnzyQ3DpiUtAm4gnS1tC3wSOAQ4cWQPy8zMGskacCJiQNIRwOXAzaR+m0tJQadcr9o+l6OL5xnFo9bHSYEIYAXwt8CepCHTPwGOj4j5nai/mZm1LvcZDhGxFPhAgzwTS+9nMDjQ1NvvtDaqZmZmI8irRZuZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFlt0uwJmo8HEs+cNSlv59eO7UBOz0Sv7GY6k/SXdKWmtpOckXShp8wr7jZd0taQBSaskfV/SLnXynSDpMUmvSFoqadrIHImZmTUja8CRtBNwBxDACcCFwJnABRV2vw6YDHwCmAG8F7ipVP5hwA3A3cBxwDxgjqSjO3IAZmbWstyX1D4NjANOjojVwEJJOwCzJF1cpA0i6VDgGODwiLinSHsW+KGkIyPijiLrV4B7IuL04v3dkg4AzgNuH7nDstx8icts9Ml9Se04YEEpsMwlBaHDG+z3woZgAxARPwJ+WWxD0lbAFOBfS/vOBQ6VNL796puZWatyn+FMAu6qTYiIpyWtLbbdPMx+y+ukLyu2AewHbFkn3zJSYH078OPWqm1VtXLm0etnK+0c34Z9z3zXa8w4e15PtYuNPbkDzk7AS3XSB4ptrey3b00e6uQbKG3fiKSZwMzi7RpJjw9Tjyp2BV5ss4yeotlDbhqyrYbZp5XP2aT2a2Xf04u2auczxxD/H6yuE221T9WM3RgWHXXSNER6K/uV32uY/YmIq4CrGnx2ZZIWR0Rfp8rrZW6r6txW1bmtqsvdVrn7cAaAHeukj6f+GUyj/Xas2W+gJq2chwblm5nZCMsdcJbzpz4XACTtDWxL/T6aIfcr1PbtPAm8WiffJGA98EQL9TUzsw7JHXDmA8dI2r4mbRrwMrCowX57FPNsAJDUR+q/mQ8QEetI828+XNp3GvBgRKxqv/qVdOzy3BjgtqrObVWd26q6rG2liEZdJx38sDTxcynwM2A2KWBcAlwWEefW5FsBLIqI02rSbiONNPsC6YxlNvCbiPirmjyHAf3A5aRJoVOL/MdGhOfhmJl1UdYznIgYAI4ANicNgb4AuBQ4v5R1iyJPremks6B/Bq4FHgZOKpV/H3AKcCSwAPggcKqDjZlZ92U9wzEzs7HLtyeowwuMVtdKW0l6b9FOK4r9Hpd0vqStS/lmSYo6j2NH9qhGRottNXGINphbJ+9Y/14N9X0JSV+qyXfNEHnqDUza5El6q6QrJT0q6XVJ/RX3y/575dsTlNQsMLqUtMDofsA3ScH53GF2hbTA6DtIC4xu6Ge6CSj3M90AfAc4ndTPNEfSwGi79NdGW00r8s4Gfg4cCHy1eP5QKe8qoBxglrVb99za/F5B6ou8v+b9RpP1/L0C4LvAbaW0E4GzKAYX1VgOfLyUtrK1GnfdAaR/74eANzWxX/7fq4jwo+YBfIk0p2eHmrS/B9bWptXZ71DS5NL316QdXKQdWZO2ALirtO+twH3dPvaMbbVbnbSZRVvtU5M2C3ix28fZ5baaWLTL/2hQ/pj/Xg1R1jxgWSntGmBxt4+zg+21Wc3r64H+Cvt05ffKl9QG8wKj1bXUVhHx2zrJjxTPu3euepuUVr9XDfl7VZ+knYGjgDmdrd6mJSLWt7BbV36vHHAGG7RQaEQ8TfrrarhrvJ1aYHQ0abWt6vlL0ml9eS27HSW9KOlVSY9IOrnl2nZXu211dXF9/nlJl0gaV7PN36v6TiG1y6D+LmB/SaslrZN0n6S2gv4o1JXfKwecwUZigdGdavJQJ9+wC4xuwlptq41I2gP4MvB/S3/VriBdSvkIqW/nOeCGURp0Wm2rdcA/AaeRphRcCXyGjX9E/b2qbzrwk4gorzLyCOnGj/8T+ChpCsZCSQe3UNfRqiu/Vx40UN8mtcDoJq7VtkoZpTeRTtnXAH+3UcER/1LKezPwAOmGeje2Utkua7qtIuJ54HM1Sf2SXgC+I+ndEbFkmPLH8vdqT9Llt7MGFRzxrVLeeaQBCueQBhmMFdl/r3yGM5gXGK2u1bYCQJJIk3gPAKZGmhg8pEg9ljcCB1YZpr6JaautSq4vnt9TUzZ1yh+T36vCR0g/jNc1yhgRL5M6wt/TKG8P6crvlQPOYF5gtLpW22qDS0nDXk+IiCr5NxiNf7G321a1ovTs79Vg00kjqX7VxOeOxu9Vq7rye+WAM9hYWGC0U1ptK4qJeJ8HPhZpSaKGijOik4BHI+L11qrcNS23VR2nFM8Pg79XZZImAodQcXRaMQDjOIr2HCO683vV7THkm9qD1BH2PLCQtCbbTFL/wtdK+VYA3yul3Qb8AjiZdC34ceDeUp7DgNeAy4DJwMWkvxaO7vax52or4FTSX5NXk34Yah+71eRbRJpsdjQp0NxatNUHu33sGdtqFmnS48nFfheSfnhv8Pdq8P/BIv1s0l/m9eZ7jQfuBT5FGoQxjTRhch3Q1+1jb7G9tiH9EXIK8CDwnzXvtxmqrbrxe9X1xtoUH8D+wF3Ff+znSbPgNy/lWQlcU0rbsfgRfQlYDfwA2LVO+SeSVsxeRzp9nd7tY87ZVqSJdzHEY0ZNvu8V/yFeBv5Q/FAc1+1jztxW04HFpBUX/lj8cFwIbOXv1eD/g0X6EuC2IcrdmtQP+KuinVYVP7yHdPuY22iricP8f5o4VFt14/fKi3eamVkW7sMxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsvj/ZHaRRfrB76AAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdhJREFUeJzt3XuwXFWd9vHvw0UItxAEAoMMEbxEGClHI4LDSJB7eEcuokmh7xQOGvVVcabQAREhoEMJjoAWYwGlE15GTZgBhne4hBAuJxAuapAgThIwaEAuojgHYgxEIL/3j7UDnX36nN59W53T5/lUdXX32muvXnul07+z9l5rbUUEZmZm3bZJrytgZmZjgwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGM2AkmzJA0UrwckzWpy/6mSolzWMHlvkPTQCNsvkTQoaYuKn/0mSSHpyGbqbNYtDjhmG485wF9I2qe8QdKmwAnAtRGxNnvNzDrAAcds4/H/gDXAjDrbDgYmkoKS2ajkgGPWIkkHSPovSU9J+qOkJZI+0mp5EbEauAGYXmfzDOAZ4I7is3eTNFvSryS9IOkRSedI2nyE+m5WnGL7VCn9a5J+U0rbQ9JVxSm8NZLmSXpzq8dmBrBZrytgtjGLiFk1r6eWNu8B3A1cCrwI/BUwW9K6iJhT7DMAqFzWCOYAH5b0roi4H6AIIscBP4iIV4p8OwHPAn8PPAdMBs4GdgQ+0+RhbkDSjsVxPQPMLI7tDGCBpLf6lJ61ygHHrEURMXf9a0kC7gTeAHyC1k99zSMFkBnA/UXaEcAOtWVGxBJgSc3n3w28AFwq6fMR8XKLnw9wKrAFcEhEPFeUfw+wEjgJuKyNsm0M8yk1sxZJmiDp25IeA14qHjOBt7RaZtF7+E9SL0dF8nTgMeC+ms/eRNKpkpZJeqH47P8LjCMFvXYcCswHVhen4TYDngd+Ckxps2wbwxxwzFp3BSkYfAM4HHg38K/Alm2WOwf4c+AASVsCxwBzYsOl3U8Fzgf+A/gAsB9wSrGt3c/fEfgIrwXR9Y/3Abu3WbaNYT6lZtaCIhAcDXw2Ii6tSe/EH3G3k66fzAB2BbZl6Cm6DwFzI+Ksms/et0G5rwAvA68rpe9Qev8/wAPAeXXKWNXgM8yG5YBj1potgE2BVy+gS9qW1Nto6yZTEfGKpP8gBZXdgGUR8bNStnG1n10YcYRcRISkJ4G31dR5U+D9pay3kXpVD3mAgHWSA45ZCyLieUk/Ac6StApYB5xOutaxXQc+Yg7wWdLotLPqbF8AfFrSYuCXwN8CkyqU+5/ATEkPkq4LfQLYqpTnn4ETgdslXQI8BewCHAQMRMS/N300ZjjgmLXjROBy4Erg98AlpB/vz3ag7HtJo8ImAXPrbD8beD3ptFcAVwP/AFzXoNyzSNdozgP+BHwbWAp8fH2GiPitpP2BfwIuBrYHngbuAoZdesesEeW+xbSkNwFfBPYH/gK4q878hnr7jSd9+Y8lDXa4ATglIn5fyncM8DXgzaS//M6JiKs6eQxmZta8XoxS2weYBjxSPKq6CphK+kvsJNKIoA3+mpN0IHANaTb2UcCNwBxJh7dbaTMza08vejibRMS64vXVwI6NejiSDgDuAQ6KiDuLtP2AHwGHRcStRdp8YPOIeH/NvjcB20XEgd04HjMzqyZ7D2d9sGnSUcAz64NNUc6PgV8V2yiWbD8YKF/QnEuazzC+tRqbmVknjJaJn5OB5XXSlxXbAPYCNq+TbxnpOFue/W1mZu0bLaPUJpDWlyobBPasyUOdfIOl7RuQNJO0HAnjxo171+67tzeRet26dWyyyWiJ473ltqrObVWd26q6TrTVI4888mxE7FQl72gJOFB/Mp3qpJffa5j0lBhxOWloK1OmTInFixe3U0cGBgaYOnVqW2WMFW6r6txW1bmtqutEWxVrCVYyWv4MGCTNBSjbntd6NIM1aeU8UL+HZGZmmYyWgLOc167V1Kq9tvMoaYHBcr7JpFngzQzBNjOzDhstAWcesEsxzwYASVNI12/mwavLut9BWn+q1nTg3oh4PlNdzcysjuzXcCRtRZr4CWlhwu0knVC8vyki1khaASyMiJMBIuLeYo7NlZK+QOqxnA8sWj8Hp/BVYEDSxaRJodOKx5FdPzAzMxtRLwYN7Ey6h0et9e/fSFo/ajPSSry1ZgAXke438urSNrUZImJREby+BnyaNE/nxIi4pYP1NzOzFmQPOBGxktdGjg2XZ1KdtOeAjxWPkfa9jsYLGJqZWWaj5RqOmZmNcg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZF9oAjaW9Jt0laI+kpSedK2rTBPrMkxTCPL9Xku2KYPJO7f2RmZjaSzXJ+mKQJwK3AUuAYYC/gm6TAd+YIu34XuLmUdixwGjCvlL4c+FgpbWVrNTYzs07JGnCATwHjgOMjYhWwQNJ2wCxJFxRpQ0TEE8ATtWmSvgIsj4glpex/jIj7ulB3MzNrQ+5TakcB80uBZS4pCB1UtRBJOwCHAXM6Wz0zM+uW3AFnMumU16si4nFgTbGtqhOAzUnBqmxvSaskrZW0SFLlQGZmZt2T+5TaBOC5OumDxbaqZgA/jYhHSukPAD8iXSPaCTiVdNruwIj4cb2CJM0EZgJMnDiRgYGBJqox1OrVq9suY6xwW1XntqrObVVd7rbKHXAAok6ahkkfmlHalXT67bQhBUd8q5T3RlLwOYM0yGBoZSIuBy4HmDJlSkydOrVKNYY1MDBAu2WMFW6r6txW1bmtqsvdVrlPqQ0C29dJH0/9nk89HyYFqKsaZYyIF4CbgHdWraCZmXVH7oCznNK1Gkm7A1tTurYzghnAooj4dROfW6n3ZGZm3ZM74MwDjpC0bU3adOAFYGGjnSVNAvan4ug0SeNII+Pub7aiZmbWWbkDzqXAWuBaSYcWF+xnARfWDpWWtELS9+rsPwN4Gbi6vEHSeEl3SfqkpEMkTQfuAHYDzuvCsZiZWROyDhqIiEFJhwCXANeTrttcRAo65XrVW+5mBnBbRPyuzra1wO9IKxbsDLwI3AscFBGLO3IAZmbWsuyj1CJiKfD+BnkmDZP+jhH2eRE4vq3KmZlZ13i1aDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8uiqYAjqd5yM2ZmZg0128N5UtIFkt7WldqYmVnfajbgXAacAPxc0o8kzZS0XRfqZWZmfaapgBMRZ0fEnsBhwMPAhcDTkn4g6dBuVNDMzPpDS4MGIuL2iPhbYBfgc8BbgfmSVkqaJenPOllJMzMb/dodpTYFeB/pttGDwF3Ax4EVkj7aZtlmZtZHmg44kvaQdLakR4HbgF2BvwP+LCL+N7AH6VrPNzpaUzMzG9WaugGbpNtJPZongCuA2RHxWG2eiHhF0g+Bz3eqkmZmNvo1e8fPZ4FpwIKIiBHyLQHe2HKtzMys7zR7Su0S4J56wUbSNpLeBxARL5V7PmZmNrY1G3DuAPYeZttbi+1mZmZDNBtwNMK2bYA1bdTFzMz6WMNrOMVpsqk1SR+XdGQp25bA0cBDnauamZn1kyqDBt5DmtwJEMCHgJdLef4ELAe+2LmqmZlZP2kYcCLiGxRzaiT9CjguIpZ0u2JmZtZfmhoWHREe6mxmZi2pcg1nGrAoIlYVr0cUETd1pGZmZtZXqvRwbgD2B35cvA6GH60WgG/SZmZmQ1QJOG8Enq55bWZm1rQqgwYeq/fazMysGVWu4WzVTIER4cmfZmY2RJVTaqtJ12aq8jUcMzMbokrA+TuaCzhmZmZDVLmGc0WGepiZWZ9r9xbTZmZmlVQZNPBj4KSIWCrpJzQ4vRYR+3WqcmZm1j+qXMP5b+CFmte+nmNmZk2rcg3nYzWvT+pqbczMrG+1fA1HyU6SRropm5mZGdBCwJE0TdI9wIvAb4AXJd0j6eiO187MzPpGUwFH0ieB60mTQT9Puhnb54v3/1VsNzMzG6Kp++EAZwCXR8SnS+mXSroU+DJwWUdqZmZmfaXZU2qvB64dZts1wA6NCpC0t6TbJK2R9JSkcyWNuByOpEmSos5jbp28x0h6SNKLkpZKml7pyMzMrKua7eHcARwELKiz7SDgzpF2ljQBuBVYChwD7AV8kxT4zqzw+V8A7q55/2yp/ANJge87wCnANGCOpMGIuKVC+WZm1iVVJn7uXfP228B3Jb0euA74LbAzcBxwFPDxBsV9ChgHHB8Rq4AFkrYDZkm6oEgbycMRcd8I278C3BkRpxTv75C0D3AW4IBjZtZDVXo4P2fDyZ4CPlk8ynf/vJmRV4s+CphfCixzgfNJPaTrK9SnLklbAAeTeja15gKzJY2PiOdbLd/MzNpTJeAc3MHPmwzcXpsQEY9LWlNsaxRwZkvagdSzmgN8OSLWr4KwF7A5sLy0zzLSKbu3AD9pr/pmZtaqKisNLOzg500AnquTPlhsG85a4F9Ip8VWAVOB00hB5piasqlT/mBp+wYkzQRmAkycOJGBgYGR6t/Q6tWr2y5jrHBbVee2qs5tVV3utmp20MCrJG0CbFlOr3DHz3prsWmY9PVlPg18tiZpQNIzwHckvSMiloxQvoZJX1/25cDlAFOmTImpU6eOXPsGBgYGaLeMsaIXbTXp9BuHpK38+sY/Z9nfq+rcVtXlbqtmJ35K0mmSVgAvAX+o8xjJILB9nfTx1O/5jOTq4vmdNWVTp/z175st38zMOqjZeTinAKcD3yP1HP4JOBd4BFhJcWpqBMtJ12peJWl3YGuGXntpJErPj5KC4ORSvsnAuqKOZmbWI80GnE8AZwMXFO+vi4hzgH1IAePNDfafBxwhaduatOmk2x80e63ohOL5foCIWEuaJ/ShUr7pwL0eoWZm1lvNXsN5I7AkIl6R9BLF6aqIWCfpO8B3ST2g4VxK6iVdK+l8YE9gFnBh7VDp4pTdwog4uXg/C9iWNOlzFfA+4IvAtRHxs5ryv0q6vnMxaZ7QtOJxZJPHaWZmHdZsD+f3wDbF68eBv6zZNoE0qXNYETEIHEKaq3M9cA5wEanXVGszNpzPs5w0T2c2cBNwIvCN4rm2/EWkns+hwHzgA8CJXmXAzKz3mu3h3A28m/Sj/0PSCgE7AH8CPgPc1qiAiFgKvL9Bnkml93NJEzgbiojrSL0bMzPbiDQbcGYBuxWvzyOdUjuJ1LNZAHyuUxUzM7P+0lTAiYiHgYeL12tJ98L5fBfqZWZmfaadiZ9vAHYFnoqIJztXJTMz60et3GL605J+DTwG/Ah4XNITkv5Px2tnZmZ9o9mVBs4CLiHNpzkamFI8zwO+XWw3MzMbotlTap8BzouIr5TSby7WNvsMaeUBMzOzDTR7Sm0cw9/VcyF1FvM0MzOD5gPOdcDxw2z7IHBDe9UxM7N+VeUW09Nq3s4DLpA0iaG3mN4H+MfOV9HMzPpBlWs4NzD0VtK7AUfUyft90p04zczMNlAl4Lyx67UwM7O+V+UW04/lqIiZmfW3plcakLQZaYDAgcAOwP8Ad5FuFfByZ6tnZmb9oqmAI2ln4BZgX9IdPp8BDiDNv3lQ0uER8btOV9LMzEa/ZodFXwi8HnhPROwZEQdExJ7Ae4r0CztdQTMz6w/NBpxpwGkR8ZPaxOL9l0jL3JiZmQ3RbMDZAvjDMNv+ALyuveqYmVm/ajbg3AecJmnr2sTi/WnFdjMzsyGaHaV2KnAH8GtJt5AGDexMmgQqYGpHa2dmZn2jqR5ORCwB3gxcDuwEHEYKOJcCb46IBzteQzMz6wuVeziSNgf2A34VEad3r0pmZtaPmunhvALcDrytS3UxM7M+VjngRMQ64BfAxO5Vx8zM+lWzo9S+DJwl6e3dqIyZmfWvZkepnUlaUWCJpCdJo9SiNkNE7NehupmZWR9pNuD8vHiYmZk1pVLAkTSOtKzNz4HfALdGxDPdrJiZmfWXKreY3hO4FZhUk7xK0ocj4pZuVczMzPpLlUEDFwDrgL8GtgL2AR4ALutivczMrM9UCTgHAGdGxN0R8WJELAM+Cfy5pF27Wz0zM+sXVQLOrsAvS2mPktZO26XjNTIzs75UdZRaNM5i1r8mnX7jkLSVX/ftn8yaUTXgzJf0cp3028rpEbFz+9UyM7N+UyXgnNP1WpiZWd9rGHAiwgHHzMza1uxaamZmZi1xwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLLIHHEl7S7pN0hpJT0k6V9KmDfZ5t6TZklYU+z0s6WxJW5byzZIUdR5HdveozMyskWZvwNYWSRNItzpYChwD7AV8kxT4zhxh1+lF3vOBXwD7Al8tnj9Yyvs8UA4wy9qtu5mZtSdrwAE+BYwDjo+IVcACSdsBsyRdUKTVc35E/K7m/YCkF4HLJO0REY/VbHs5Iu7rTvXNzKxVuU+pHQXMLwWWuaQgdNBwO5WCzXoPFM9eu83MbBTIHXAmA8trEyLicWBNsa0Z7yXdGO7hUvr2kp6V9JKkByQd33JtzcysYxSR784Dkl4CvhgRF5fSnwCujIgzKpazC/Az4KaIOKkm/aOkHs8SYBvSjeKmAR+MiGuHKWsmMBNg4sSJ75o7d26zh7WB1atXs80227RVxljRi7Z66Mnnh6S9fbfxXduvU/y9qs5tVV0n2urggw++PyKmVMnbi4DzhYj4Vin9SeCKiPhyhTJeRxp48AbgXRExOEJeAfcA4yLiHY3KnjJlSixevLhRthENDAwwderUtsoYK3rRVq3e16bX98Px96o6t1V1nWgrSZUDTu5TaoPA9nXSxwPPNdq5CCBXAvsA00YKNgCRoum1wL6Nhl6bmVl35R6ltpzStRpJuwNbU7q2M4yLSMOpD4uIKvnX8x1Lzcx6LHcPZx5whKRta9KmAy8AC0faUdKXgM8BH42IRVU+rOgRHQc8GBGvtFZlMzPrhNw9nEuBU4BrJZ0P7AnMAi6sHSotaQWwMCJOLt6fCJwHXAE8KWn/mjIfXT9sWtJC4BpSb2lr4BPA/sCx3T0sMzNrJGvAiYhBSYcAlwDXk67bXEQKOuV61V5zObx4Pql41PoYKRABrAD+HtiVNGT6p8DRETGvE/U3M7PW5e7hEBFLgfc3yDOp9P4khgaaevud3EbVzMysi7xatJmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmlsVmva6AWSsmnX7jkLSVXz+6BzUxs6rcwzEzsyzcwzHrMvfGzBL3cMzMLAsHHDMzy8IBx8zMssgecCTtLek2SWskPSXpXEmbVthvvKTZkgYlPS/pB5JeXyffMZIekvSipKWSpnfnSMzMrBlZBw1ImgDcCiwFjgH2Ar5JCnxnNtj9KuCtwMeBdcD5wHXAX9eUfyBwDfAd4BRgGjBH0mBE3NLRg7GO8UX14a1vm1Pf/jInnX6j28VGtdyj1D4FjAOOj4hVwAJJ2wGzJF1QpA0h6QDgCOCgiLizSHsS+JGkQyPi1iLrV4A7I+KU4v0dkvYBzgIccMzMeih3wDkKmF8KLHNJvZWDgOtH2O+Z9cEGICJ+LOlXxbZbJW0BHEzq2dSaC8yWND4inu/Qcdgw3FvZOPjfwTZGuQPOZOD22oSIeFzSmmLbcAFnMrC8TvqyYhuk03Ob18m3jHTK7i3AT1qrduvq/cevZ+XXj274I1HlR6ScZ7gfmar5ms1ro1+r/96tBrlW9suxj7/3naeIyPdh0kvAFyPi4lL6E8CVEXHGMPstAP4YEceW0r8P7BkR75X0V8Ai4C8jYklNnjcBvwCOqHcdR9JMYGbx9q3Awy0fYLIj8GybZYwVbqvq3FbVua2q60Rb7RERO1XJ2IuVBupFOA2T3sp+5fcaYX8i4nLg8gafXZmkxRExpVPl9TO3VXVuq+rcVtXlbqvcw6IHge3rpI8Hnmthv+1r9husSSvnoUH5ZmbWZbkDznJeu+YCgKTdga2pf41m2P0Ktdd2HgVeqpNvMmkY9SMt1NfMzDokd8CZBxwhaduatOnAC8DCBvvtUsyzAUDSFGDPYhsRsRa4A/hQad/pwL0ZR6h17PTcGOC2qs5tVZ3bqrqsbZV70MAE0qTPn5OGQu8JXAhcHBFn1uRbASyMiJNr0m4mjTT7Aq9N/PxtRJQnfg4Al5AmhU4r8h/piZ9mZr2VtYcTEYPAIcCmpCHQ5wAXAWeXsm5W5Kk1g9QL+lfgSuB+4LhS+YuAE4BDgfnAB4ATHWzMzHovaw/HzMzGLq8WXYcXGK2ulbaS9O6inVYU+z0s6WxJW5byzZIUdR5HdveouqPFtpo0TBvMrZN3rH+vhvu+hKQv1eS7Ypg89QYmbfQkvUnSZZIelPSKpIGK+2X/vfIdP0u8wGh1bbTV9CLv+aRJufsCXy2eP1jK+zxQDjDL2q17bm1+ryBdi7y75v0Gk/X8vQLgu8DNpbRjgdMoBhfVWA58rJS2srUa99w+pH/v+4DXNbFf/t+riPCj5gF8iTSnZ7uatH8E1tSm1dnvANLk0vfVpO1XpB1akzYfuL20703Aol4fe8a22qlO2syirfaoSZsFPNvr4+xxW00q2uV/NSh/zH+vhinrRmBZKe0KYHGvj7OD7bVJzeurgYEK+/Tk98qn1IYaboHRcaQFRkfab8gCo8D6BUapWWD030v7zgUOkDS+/epn1VJbRcTv6iQ/UDzv3LnqbVRa/V415O9VfZJ2AA4D5nS2ehuXiFjXwm49+b1ywBlqyEKhEfE46a+rkc7xdmqB0dGk1baq572kbn15LbvtJT0r6SVJD0g6vuXa9la7bTW7OD//tKQLJY2r2ebvVX0nkNplyPUuYG9JqyStlbRIUltBfxTqye+VA85QE6i/DM5gsa2d/dY/l/MNlraPFq221QYk7QJ8Gfi30l+1K0inUj5MurbzFHDNKA06rbbVWuBfgJNJUwouAz7Nhj+i/l7VNwP4aUSUVxl5ADgV+BvgI6QpGAsk7ddCXUernvxeedBAfRvVAqMbuVbbKmWUXkfqsq8G/mGDgiO+X8p7PXAP6YZ617ZS2R5ruq0i4mngszVJA5KeAb4j6R1RszJ6nXLG8vdqV9Lpt9OGFBzxrVLeG0kDFM4gDTIYK7L/XrmHM5QXGK2u1bYCQJJIk3j3AaZFmhg8rEhXLK8F9q0yTH0j01ZblVxdPL+zpmzqlD8mv1eFD5N+GK9qlDEiXiBdCH9no7x9pCe/Vw44Q3mB0epabav1LiINez0mIqrkX280/sXeblvVitKzv1dDzSCNpPp1E587Gr9XrerJ75UDzlBjYYHRTmm1rSgm4n0O+GikJYkaKnpExwEPRsQrrVW5Z1puqzpOKJ7vB3+vyiRNAvan4ui0YgDGURTtOUb05veq12PIN7YH6ULY08AC0ppsM0nXF75WyrcC+F4p7Wbgl8DxpHPBDwN3lfIcCLwMXAxMBS4g/bVweK+PPVdbASeS/pqcTfphqH3sVJNvIWmy2eGkQHNT0VYf6PWxZ2yrWaRJj8cX+51L+uG9xt+rof8Hi/TTSX+Z15vvNR64C/gkaRDGdNKEybXAlF4fe4vttRXpj5ATgHuB/655v9VwbdWL36ueN9bG+AD2Bm4v/mM/TZoFv2kpz0rgilLa9sWP6HPAKuCHwI51yj+WtGL2WlL3dUavjzlnW5Em3sUwj5Nq8n2v+A/xAvDH4ofiqF4fc+a2mgEsJq248Kfih+NcYAt/r4b+HyzSlwA3D1PulqTrgL8u2un54od3/14fcxttNWmE/0+ThmurXvxeefFOMzPLwtdwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsyz+P+FH0I72V+suAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -331,7 +331,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYHVWd//H3h0WIrGEL6CAxIDIsihIQZhiJggYwGkWQRUejYHBjmQc1gKgBNU5QNmH8AY9KcBTCDDDMECCRJR3AAWVLBgwJBg17EDAQQkIk8P39caqhcvv2Xbrvrdvd9Xk9z31u16lTdb91Uulv16lT5yoiMDMza7e1Oh2AmZmVgxOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHCspSRNlhS9vD7T4D52zPazaUX5hGw/G7Yn+sbi6Oc+r5TU1UC9dSSdKGmepJWSlkq6XtK+ffzcgdKmEyrOib9ImiXpvQ1sOybbZtciYrXWc8KxdngB2KfKa2aD2+8IfBeo/EV/XbafFa0Js89xtJWktYFrgCnA/wAHAxOAV4EuSUf1YbcDpU27fTD73GOBLYHZkt5SZ5t7s20ebnNs1ibrdDoAG5JWR8Sdrd5pRDwDPNPq/Q5AxwEfAQ6KiHyS/m9J04GLJc2JiCf6+0EdbNO7ImI5gKS7gUeATwM/qqwoScB6EbEMaPl5ZcXxFY51hKRTJC2S9LKkpyXNlLS1pDHAtVm1P2ddKIuzbdbo/pE0Mls+QtIlkpZJery7607SNyU9KekZSVMlrZX7/J0kTZf0mKQVkv6QdWGtla3vNY5s/duy7f+abT9L0jsrjnHbrBtspaTFko5psHlOAGZXJJtu3wLWB47Ofc5iST+W9G1JSyQtl/RrSZvUO5ZqXWqStpB0qaTnsmPrkjS64ti6P/NfsjZfmrVH01eDEfEYKemNzPY9WdKzkvaVdBfwMnBYtS41SWtn59JDklZlsUyriHW8pLuzc22JpDMlrdtsnNZ/vsKxtpDU49yKiNXZus8CpwKTgD8Am5O6WDYgdZt8HfgxcAjwFLCqzsdNBX4NfBL4AnCppPcA22XLewDfB+4DpmfbvBVYmG33IrA7cDowDPhhrTgkbQbcDjwHfInUHXUycJOkHSNiZfZX+X8DW5CSw8vZ/jcD/lij3bYl/eI9p9r6iHhY0v3A+ytWHQksAr4IbAOcCfwMOKzWsfTiGmCHbJtngW+QurzeExGLcvU+BfwfMBH4O+BsUjfgV2rsuwdJG5HaZUmu+M3ApdlxPAQ8mR1XpYuAz2b15mT7OTS3708Bl2f1TgW2J/37rpUdnxUpIvzyq2UvYDIQvbxGZnUuAK6qsY9x+fq58glZ+YbZ8shs+ZJcnY2BV0i/1NfOlf8euKKXzxPpj69TgT81EMf3SMlms1zZcNK9q69mywdn274vV2c7YDXQVePY9862G1+jzjXAg7nlxcBfu9slK/s08Brw90226YHZ8n65OhuQrkAuqvjMh4F1cmXnAkvqnB/dn7dJ1ubbAldk7bJ7xTk0vmLbMVn5rtnyTtny8TX+XR/Jnx9Z+ReAlcDmnf7/UraXr3CsHV4ADqhS/mT2Phc4WtLppJvW90TEq/34vJu7f4iIZZKeAeZU7HMR8LbuBUnrA6eQfjG/DVg3t26dyK7GenEAcCOwLHcl9yJwD9Dd9bQX8HRE/C4X2yOS7unD8TXixsjuiWSuBn4F7Ak82MR+9gKeiYg53QUR8ZKkGUDlCLnZFe00H9hK0psi4m91Puf53M/PAl+IiLm5sgBuqLOPD2Tv03pZvyPp3/Y/Kq64byF1S+5KuiqygjjhWDusjoi7a6z/BbARqSvmO8Bzkv4fMLmPief5iuW/9VK2fm55KnAMqZvr3qz+eOC0rN5yercF6Urk8CrrupPf1sBfqqz/C+nYe9M9EGC7GnW2y9XL7/d1kbr1llO9G6qWbYCnq5Q/TequyqvWxgLelP1cy/tJXZHPAo9FxGsV65c2kLQ2B16KNJigmi2y9+t7Wb9tnf1biznhWOGyXy7nAOdk9yw+DfyA9Ev0woLCOAw4PyLO7C6Q9JEGt/0rabjy96qsezF7XwJsVWX9VqTunKoi4rHshv7HgJ9Urpf0dtJf5pWfvVVFvWHAhqT7Nc14qnJfmRGk426V+yquyCo18r0pzwEbSNq4l6TTHe9E0v27Sn9u4DOshTxKzToqIh6LiH8ldXntnBV3/2W7fvWtWmIYuRvnSs++HFFRp7c4bgZ2Af4QEXdXvBZmde4CRkh6X+4z3gbUfcAROA/YX9KHq6z7fhb3zyvKP6Q1H948hPRLu/tKs9E2/R2pW+z1QQmS3kwapn17A7EX6Zbs/bO9rF9I+iNmZJV/p7sj4rliwrRuvsKxdlhH0t5Vyh+LiCckXUT66/NO0v2eDwDvII1ag/SLAuBYpedOVkTE/S2O8Ubgq5IWZbF8FVivok5vcZwNfAa4RdL5pF9qI4D9gNsj4nJSN8484D8lTSKNUjuD6t1slc4n3Sf6L0k/BrpI3XBHk27+/3P0fAZnJXCdpB+RusV+BPxXRMyvcyxriIhZkn4LXCHpZNJVxNdJCbrHMzKdFBELJV0MnCVpK+BW0oOth0bEERHxmqSTgH+XtDHpntDfgFHAx7N6RT/wWm6dHrXg19B6UXuU2mlZnQnAb0m/6FeQhtYeXbGfk0gjjFYDi3PbVRulNq5i28XAjyvKpgF355ZHAP8FLCPdnziTNKT49f33FkdW/hbgkmzbVdln/grYJVfnbaTZFVZm+zgWuJIao9Ry264D/EvWNiuBpaRfmPtWqbsYOCtr+6eBl0hDgTdttk2zsi2BX2afuZJ0Y33PBtq4x76qxNpIncnAs1XKx5AbpZaVrU02upCUTB6n56i0g4DbsnZZRhq08n1yI+z8Kual7B+kMJJ2II3r35vUF31bRIxpYLtNSMMuP07qCpxBGg75XEW98aST6R2kk/D0iLiilcdgNpBk93yujAg/V2IDWifu4exCekbhoezVqCtIf+EcQ/oraU/S8wivU5rY8CpgNumvmuuAy3vpCzczswJ14gpnrciGQEq6Etii3hWOpH2A/yU9jHZrVrYX6QbnhyLipqxsFrBuRHwwt+31wMYR0adZds0GOl/h2GBR+BVO9Bxv34iDSA/R3Zrbz+9JwxoPApC0Hunm839UbDsd2Kd7XimzoSYiRjrZ2GAwWIZF7wQsqFL+YLYO0hxJ61ap9yDpOHdsW3RmZlbXYBkWPZyeTzVDGkUzKleHKvWWVqxfg6SJpAfDGDZs2B7bbjtwHj5+7bXXWGutwfI3QfH60z4bPZRuH76449D9O8TnT31uo9oaaZ+HHnro2YjYspH9DZaEA9WfPFaV8spl1dieiLgYuBhg9OjRcffdtWZkKVZXVxdjxozpdBgDVr/aR9lpsXBh7XqDmM+f+txGtTXSPpIeaXR/gyW1L6X6ty5uyhtXNEtzZZV1oPoVkpmZFWSwJJwFvHGvJi9/b+dh0rT0lfV2Ik3T3swQbDMza7HBknBuALbOnrMBIPsGwlHZOiJiFen5m8Mqtj0cuCMiXigoVjMzq6LwezjZRIAHZ4tvBTaW1P0NfddHxIpsfqs5EXE0QETckT1j80tJXyddsUwlzVt1U2733wO6JJ1Leij04Ox1YNsPzMzMaurEoIGtgP+sKOtefjtpjqZ1SHMk5R1BmtL+F+SmtslXiIjbs+T1feDLpOd0joqI37QwfhsKCn7g2cw6kHAiYjFvjBzrrc7IKmXPA5/PXrW2vYaKKW/MzKzzBss9HDMzG+SccKyc9tgjvcysMIPpwU+z1rn33k5HYFY6vsIxM7NCOOGYmVkhnHDMzKwQTjhWKiNPvo6RJ1+3xrKZFcMJx8zMCuFRalZKl717bKdDMCsdJxwrpVMPPK7TIZiVjrvUzMysEE44Vkq7LlnErksWdToMs1Jxl5qV0oxLTwRg5KQZHY7ErDx8hWNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4SHRVspjfvcuZ0Owax0nHCslB7YeodOh2BWOu5SMzOzQjjhWClNmXk+U2ae3+kwzErFCcdK6ah5szhq3qxOh2FWKk44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8IOfVkr3j9i+0yGYlY4TjpXSRyec1+kQzErHXWpmZlYIJxwzMyuEE46V0uKp41g8dVynwzArFSccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhPNOAldIpY7/W6RDMSscJx0rp8t0P7HQIZqVTeJeapJ0l3SxphaQnJZ0hae0620yWFL28TsnVm9ZLnZ3af2RmZlZLoVc4koYDNwHzgfHA9sBZpMR3Wo1NfwbMrCj7ODAJuKGifAHw+YqyxX2L2IaqI+em08lXOmbFKbpL7UvAMOCQiFgG3ChpY2CypDOzsh4i4nHg8XyZpG8DCyJibkX1lyLizjbEbkPID2ddADjhmBWp6C61g4BZFYllOikJ7dfoTiRtBnwIuLy14ZmZWbsUnXB2InV5vS4iHgVWZOsadSiwLilZVdpZ0jJJqyTdLqnhRGZmZu1TdJfacOD5KuVLs3WNOgK4NyIeqii/D/gd6R7RlsBJpG67fSPi99V2JGkiMBFgxIgRdHV1NRFGey1fvnxAxTPQ9KV9TtptdY/lodrGPn/qcxvV1ur26cSw6KhSpl7Ke1aUtiF1v03qseOI8yrqXkdKPqeSBhn0DCbiYuBigNGjR8eYMWMaCaMQXV1dDKR4Bpq+tM+Ek68D4Lhs+az712Hxp5vbx2Dh86c+t1FtrW6forvUlgKbVinfhOpXPtV8ipSgrqhXMSJWAtcD7200QDMza4+iE84CKu7VSNoW2ICKezs1HAHcHhGPNfG5DV09mZlZ+xTdpXYD8A1JG0XEi1nZ4cBKYE69jSWNBPYGvtLIh0kaRhoZd09fgrWha+SkGZ0Owax0ir7CuRBYBVwt6YDshv1k4Oz8UGlJiyT9vMr2RwCrgSsrV0jaRNJtko6VtL+kw4HZwFuBKW04FjMza0KhVzgRsVTS/sAFwLWk+zbnkJJOZVzVprs5Arg5Ip6psm4V8AxpxoKtgJeBO4D9IuLulhyAmZn1WeGj1CJiPvDBOnVG9lK+e41tXgYO6VdwVhrXTjsBgI9OOK9OTTNrFc8WbaW029MPdzoEs9LxF7CZmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCo9SslC5799hOh2BWOk44VkqnHnhc/Upm1lLuUjMzs0I0lXAkVZtuxmzQ2XXJInZdsqjTYZiVSrNXOE9IOlPS37clGrOCzLj0RGZcemKnwzArlWYTzkXAocADkn4naaKkjdsQl5mZDTFNJZyI+G5EjAI+BCwEzgaekvRrSQe0I0AzMxsa+jRoICJuiYjPAluTvh7+ncAsSYslTZb0llYGaWZmg19/R6mNBt5P+tropcBtwDHAIkmf6ee+zcxsCGk64UjaTtJ3JT0M3AxsA3wBeEtE/DOwHelez49aGqmZmQ1qTT34KekW0hXN48A04JKIeCRfJyJelXQZcEKrgjQzs8Gv2ZkGngUOBm6MiKhRby7w9j5HZdZm4z53bqdDMCudZhPOBcC91ZKNpA2B90bErRHxCvBIj63NBogHtt6h0yGYlU6z93BmAzv3su6d2XozM7Memk04qrFuQ2BFP2IxK8yUmeczZeb5nQ7DrFTqdqlJej8wJld0jKQDK6qtD3wEuL91oZm1z1HzZgGeNdqsSI3cw3kf6eFOgAAOA1ZX1PkbsAD4RutCMzOzoaRuwomIH5E9UyPpz8AnImJuuwMzM7OhpalRahHhoc5mZtYnjdzDORi4PSKWZT/XFBHXtyQyMzMbUhq5wpkB7A38Pvs56H20WgD+kjYzM+uhkYTzduCp3M9mg979I7bvdAhmpdPIoIFHqv1sNph9dMJ5nQ7BrHQauYfz5mZ2GBF++NPMzHpopEttOeneTKN8D8fMzHpoJOF8geYSjtmAt3jqOABGTprR4UjMyqORezjTCojDzMyGuP5+xbSZmVlDGhk08HtgQkTMl3QXdbrXImKvVgVnZmZDRyP3cP4ArMz97Ps5ZmbWtEbu4Xw+9/OEtkZjZmZDVp/v4SjZUlKtL2UzMzMDmpwtGl6fzPM0YI9s+9WS7gF+EBHXtTg+s7Y4ZezXOh2CWek0lXAkHQv8FLgZOAH4C7AVcAjwP5K+EhEXtTxKsxa7fPfKL601s3Zr9grnVODiiPhyRfmFki4EvgU44ZiZWQ/N3sPZHLi6l3VXAZvV24GknSXdLGmFpCclnSGp5nQ4kkZKiiqv6VXqjpd0v6SXJc2XdHhDR2alcuTcmRw5d2anwzArlWavcGYD+wE3Vlm3H3BrrY0lDQduAuYD44HtgbNIie+0Bj7/68Bvc8vPVux/X1Li+ylwPHAwcLmkpRHxmwb2byXxw1kXAO5aMytSIw9+7pxb/AnwM0mbA9fwxj2cTwAHAcfU2d2XgGHAIRGxDLhR0sbAZElnZmW1LIyIO2us/zZwa0Qcny3PlrQL8B3ACcfMrIMaucJ5gDUf9hRwbPaq/PbPmdSeLfogYFZFYpkOTCVdIV3bQDxVSVoP+ADpyiZvOnCJpE0i4oW+7t/MzPqnkYTzgRZ+3k7ALfmCiHhU0opsXb2Ec4mkzUhXVpcD34qI7lkQtgfWBRZUbPMgqctuR+Cu/oVvZmZ91chMA3Na+HnDgeerlC/N1vVmFfBvpG6xZcAYYBIpyYzP7Zsq+19asX4NkiYCEwFGjBhBV1dXrfgLtXz58gEVz0DTl/Y5abfVPZaHahv7/KnPbVRbq9un6Qc/u0laC1i/sryBb/ysNhebeinv3udTQP5JvS5JTwM/lbR7RMytsX/1Ut6974uBiwFGjx4dY8aMqR19gbq6uhhI8Qw0fWmfCSenZ5OPy5bPun8dFn+6uX0MFj5/6nMb1dbq9mlqWHQ2nc0kSYuAV4AXq7xqWQpsWqV8E6pf+dRyZfb+3ty+qbL/7uVm929mZi3U7BXO8cDJwJnAD4DvA68CRwBvAqbU2X4B6V7N6yRtC2xAz3sv9UTF+8OkJLgTkO8G3Al4DXioyf3bEOZv+jQrXrMPfn4R+C4p4QBcExGnA7uQEsY76mx/AzBW0ka5ssNJX3/Q7L2iQ7P3ewAiYhXpOaHDKuodDtzhEWpmZp3V7BXO24G5EfGqpFfIuqsi4jVJPwV+RroC6s2FpKukqyVNBUYBk4Gz80Olsy67ORFxdLY8GdiI9NDnMuD9wDeAqyPi/3L7/x7p/s65pOeEDs5efrrPzKzDmr3CeQ7YMPv5UeA9uXXDSQ919ioilgL7k57VuRY4HTiHdNWUtw5rPs+zgPScziXA9cBRwI+y9/z+bydd+RwAzAI+BhzlWQas0rXTTuDaaSd0OgyzUmn2Cue3wJ6kX/qXkWYI2Az4G/BV0izSNUXEfOCDdeqMrFieTnqAs66IuIZ0dWPWq92efrjTIZiVTrMJZzLw1uznKaQutQmkK5sbeWO0qZmZ2RqaSjgRsRBYmP28ivSdOO6XMDOzuvrz4OffAdsAT0bEE60LyczMhqJmBw0g6cuSHgMeAX4HPCrpcUlfaXl0ZmY2ZDQ708B3gAtIz9N8BBidvd8A/CRbb2Zm1kOzXWpfBaZExLcrymdmc5t9FTijJZGZtdFl7x7b6RDMSqfZhDOM3r/Vcw4epWaDxKkH+lQ1K1qz93CuAQ7pZd0nAU9QZWZmVTXyFdMH5xZvAM6UNJKeXzG9C/DN1odo1nq7LlkEwANb79DhSMzKo5EutRn0/CrptwLVOsF/RfomTrMBbcalJwKeNdqsSI0knLe3PQozMxvyGvmK6UeKCMTMzIa2pmcakLQOaYDAvsBmwF+B20hfFbC61rZmZlZeTSUcSVsBvwHeBSwGngb2IT1/M0/ShyPimVYHaWZmg1+zw6LPBjYH3hcRoyJin4gYBbwvKz+71QGamdnQ0GzCORiYFBF35Quz5VNI09yYmZn10Ow9nPWAF3tZ9yLwpv6FY1aMcZ87t9MhmJVOswnnTmCSpFsi4qXuQkkbAJOy9WYDnh/4NCteswnnJGA28Jik35AGDWxFeghUwJiWRmdmZkNGU/dwImIu8A7gYmBL4EOkhHMh8I6ImNfyCM3aYMrM85ky8/xOh2FWKg1f4UhaF9gL+HNEnNy+kMza76h5swDPGm1WpGaucF4FbgH+vk2xmJnZENZwwomI14A/AiPaF46ZmQ1VzT6H8y3gO5J2a0cwZmY2dDU7Su000owCcyU9QRqlFvkKEbFXi2IzM7MhpNmE80D2MjMza0pDCUfSMNK0Ng8AS4CbIuLpdgZm1k73j9i+0yGYlU4jXzE9CrgJGJkrXibpUxHxm3YFZtZOH51wXqdDMCudRgYNnAm8BvwT8GZgF+A+4KI2xmVmZkNMIwlnH+C0iPhtRLwcEQ8CxwJvk7RNe8MzM7OhopGEsw3wp4qyh0lzp23d8ojMCrB46jgWTx3X6TDMSqXR53CifhUzM7PeNTosepak1VXKb64sj4it+h+WmZkNNY0knNPbHoWZmQ15dRNORDjhmJlZvzU7l5qZmVmfOOGYmVkhmp1LzWxIOGXs1zodglnpOOFYKV2++4GdDsGsdNylZmZmhXDCsVI6cu5Mjpw7s9NhmJVK4QlH0s6Sbpa0QtKTks6QtHadbfaUdImkRdl2CyV9V9L6FfUmS4oqL/ef2Bp+OOsCfjjrgk6HYVYqhd7DkTSc9FUH84HxwPbAWaTEd1qNTQ/P6k4F/gi8C/he9v7JirovAJUJ5sH+xm5mZv1T9KCBLwHDgEMiYhlwo6SNgcmSzszKqpkaEc/klrskvQxcJGm7iHgkt251RNzZnvDNzKyviu5SOwiYVZFYppOS0H69bVSRbLrdl7177jYzs0Gg6ISzE7AgXxARjwIrsnXN+AfSF8MtrCjfVNKzkl6RdJ+kQ/ocrZmZtUzRXWrDgeerlC/N1jVE0tbAt4B/r7haWgR8E5gLbEj6orirJH0yIq7uZV8TgYkAI0aMoKurq9Ew2m758uUDKp6Bpi/tc9Juq3ssD9U29vlTn9uotpa3T0QU9gJeAU6oUv4E8IMG9/Em4FbSl8INr1NXwB3A3Eb2vccee8RAMnv27E6HMKD1pX22mzQjtps0IwIiIP08RPn8qc9tVFsj7QPcHQ3mgKKvcJYCm1Yp34TqVz5rkCTgl8AuwD9GxNJa9SMiJF0NTJW0dkS82oeYbQgaOWlGp0MwK52iE84CKu7VSNoW2ICKezu9OIc0nPpDEdFI/W7+xlIzsw4retDADcBYSRvlyg4HVgJzam0o6RTgOOAzEXF7Ix+WXRF9Apjnqxszs84q+grnQuB44GpJU4FRwGTg7Mjd/Je0CJgTEUdny0cBU4BpwBOS9s7t8+HIhk1LmgNcRbpa2gD4IrA38PH2HpYNNtdOOwGAj044r8ORmJVHoQknIpZK2h+4ALiWdN/mHFLSqYwrP93Nh7P3Cdkr7/OkRARplNqJwDakIdP3Ah+JiBtaEb8NHbs9/XCnQzArncK/niAi5gMfrFNnZMXyBHommmrbHd2P0MzMrI08W7SZmRXCCcfMzArhhGNmZoVwwjEzs0IUPmjAbCC47N1jOx2CWek44VgpnXrgcZ0Owax03KVmZmaFcMKxUtp1ySJ2XbKo02GYlYq71KyUZlx6IuBZo82K5CscMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhPCzaSmnc587tdAhmpeOEY6X0wNY7dDoEs9Jxl5qZmRXCCcdKacrM85ky8/xOh2FWKk44VkpHzZvFUfNmdToMs1JxwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4Qf/LRSun/E9p0Owax0nHCslD464bxOh2BWOu5SMzOzQjjhmJlZIZxwrJQWTx3H4qnjOh2GWak44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGZBqyUThn7tU6HYFY6TjhWSpfvfmCnQzArHXepmZlZIZxwrJSOnDuTI+fO7HQYZqXiLjUrpR/OugBw15pZkZxwzBo08uTr1lhe/K8f6VAkZoNT4V1qknaWdLOkFZKelHSGpLUb2G4TSZdIWirpBUm/lrR5lXrjJd0v6WVJ8yUd3p4jMTOzZhSacCQNB24CAhgPnAGcBJzewOZXAGOAY4AJwJ7ANRX73xe4CpgNHARcB1wu6cMtOQAzM+uzorvUvgQMAw6JiGXAjZI2BiZLOjMr60HSPsBYYL+IuDUrewL4naQDIuKmrOq3gVsj4vhsebakXYDvAL9p32FZ0UaefB0n7baaCbluLndxmQ1sRXepHQTMqkgs00lJaL862z3dnWwAIuL3wJ+zdUhaD/gA8B8V204H9pG0Sf/DNzOzvir6Cmcn4JZ8QUQ8KmlFtu7aGtstqFL+YLYOYHtg3Sr1HiQl1h2Bu/oWtjWq8sY61L/yGOo34/tzfEO9baxcFBHFfZj0CvCNiDi3ovxx4JcRcWov290IvBQRH68o/xUwKiL+QdI/ArcD74mIubk6OwB/BMZGRI9uNUkTgYnZ4juBhX0+wNbbAni200EMYG6f2tw+9bmNamukfbaLiC0b2VknhkVXy3Dqpbwv21Uuq8b2RMTFwMV1PrsjJN0dEaM7HcdA5fapze1Tn9uotla3T9H3cJYCm1Yp3wR4vg/bbZrbbmmurLIOdfZvZmZtVnTCWcAb91wAkLQtsAHV79H0ul0mf2/nYeCVKvV2Al4DHupDvGZm1iJFJ5wbgLGSNsqVHQ6sBObU2W7r7DkbACSNBkZl64iIVaTnbw6r2PZw4I6IeKH/4RduQHb1DSBun9rcPvW5jWprafsUPWhgODAfeACYSkoYZwPnRsRpuXqLgDkRcXSubCZppNnXSVcsU4G/RMQ/5ersC3QBF5AeCj04q39gtQEDZmZWnEKvcCJiKbA/sDZpCPTpwDnAdyuqrpPVyTuCdBX0C+CXwD3AJyr2fztwKHAAMAv4GHCUk42ZWecVeoVjZmbl5e/DGUD09nnYAAAD60lEQVQkfVHSH7OJR++RtH8D20yWFFVeg3be/XZP8DoU9KWNJI3s5VyZXlTcRZG0g6SLJM2T9Kqkrga3K8U51Jf2acX5468nGCAkHQFcCEwmPcD6eWCGpD0j4oE6m78AVCaYB1seZAFyE7zOJ03wuj1wFumPo9NqbAppgtd3kiZ47b7Pdw3wT7U2Gmz62UaQ7mv+Nrc8FB983IV0D/dO4E1NbFeKc4i+tw/05/yJCL8GwIs0w8EvcstrAfcDv6qz3WTg2U7H38J2OIX0TNXGubJvAivyZVW224f0cO/7c2V7ZWUHdPq4BkgbjczaY1ynj6GANlor9/OVQFcD25TpHOpL+/T7/HGX2gAgaRRpBN7rE49GxGvAf5JNTloibZvgdQjpaxuVRvb/p1mlOYf62D795oQzMHQ/rFpt4tHNJNWbp2hTSc9KekXSfZIOaX2IhekxUWtEPEr6673aw7+9bpfJT/A6VPS1jbpdkvXbPyXpbEnD2hHkIFSmc6g/+nz++B7OwDA8e6+cfmdpbv0zvWy7iNSdMhfYEDgWuErSJyPi6lYHWoDhVJ+GaClvtFOz241qQVwDSV/baBXwb6TvhlpG+kLDSaR7QONbG+KgVKZzqC/6ff444bRJ9v0729SrFxH5v6iamng02/5XFZ97LfC/pC+dG4wJB9o/wetQ0PSxRsRTwNdyRV2SngZ+Kmn3yM2yXmJlOoea0orzx11q7XMY6VK83gtaOPFopLt7VwPvamQo8QDUzgleh4q+tlE1V2bv7+1XRENDmc6hVmnq/HHCaZOI+FlEqN4rq959lVNt4tG/RkRv3Wk1Q+hz8J3Vzgleh4q+tlE1UfFeZmU6h1qlqfPHCWcAiIg/kWazfn3iUUlrZcs3NLMvSSJN+TMvIl5tZZwFadsEr0NIX9uomkOz93taEdggV6ZzqFWaO386PR7cr9fHuB8JvEp6cO8DwDTSL5Bdc3X2A1YD++XK5gDHAx8mJZrrSQ+sfazTx9THdhgOPAXcSJoTbyKwHPh+Rb1FwM8rymYCfwIOAT5Oerbptk4f00BpI9IzW2dl7XMAcEZ2jl3V6WNqQxu9OftleChwB/CH3PKbfQ413z6tOH86fuB+rXESfDH7R14F3AvsX7F+DOnSdUyu7OfZf5CVwEvAbcBBnT6WfrbDzsAt2TE9BXwPWLuizmJgWkXZpsAlpP72ZcBlwBadPp6B0kakCXDvJs1M8bfsXDsDWK/Tx9OG9hmZ/V+p9hpZ9nOoL+3TivPHk3eamVkhfA/HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPwCFufQ3YMYwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu0HFWd9vHvw0WIXEK4BXSQGBUz4LiURIR5GQmCAsFlFEEYx3GhkMTREWeWKKioAS8jKOCo40uCCvKqBAWGGeQml5wAjihJgEEhwaDhLgIeCCEhEvi9f+xqKOp09+k+p6v6dOf5rFWrT+3au3rv6j7nd2rXrl2KCMzMzMq2UbcrYGZmGwYHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgWEdJmispGizvb3Efu2X72aaQfnS2ny3LqX1r9RjlPi+UNNBCvk0k/Yuk2yStlTQo6XJJ+47wfcfKMT268J34k6SrJO3ZQtnpWZnXVVFX6zwHHCvDE8A+dZYrWyy/G/AFoPiH/rJsP2s6U80R16NUkjYGLgG+Avw3MAM4GngWGJD0vhHsdqwc05q3Zu87B9gBWCjpZcOUWZqVubvkullJNul2BawvrY+Imzq904h4BHik0/sdgz4GHAocEhH5IP1fkhYA8yUtiogHRvtGXTymN0fEagBJi4F7gH8AvlbMKEnAZhGxCuj498qq4zMc6wpJn5a0QtLTkh6WdKWknSRNBy7Nsv0h60JZmZV5UfePpEnZ+lGSzpG0StL9ta47SZ+S9KCkRySdKmmj3PtPkbRA0n2S1kj6bdaFtVG2vWE9su2vyMr/OSt/laTXFtq4S9YNtlbSSknHtnh4Pg4sLASbms8CmwPH5N5npaSvS/qcpD9KWi3pR5LGD9eWel1qkraX9ANJj2VtG5A0rdC22nv+a3bMB7Pj0fbZYETcRwp6k7J9z5X0qKR9Jd0MPA0cUa9LTdLG2XfpLknrsrqcW6jrTEmLs+/aHyWdJmnTdutpo+czHCuFpCHfrYhYn237APAZ4ATgt8B2pC6WLUjdJscDXwcOAx4C1g3zdqcCPwLeA3wI+IGkNwK7ZutTgS8BtwALsjIvB5Zn5Z4E3gCcDIwD/q1ZPSRtC9wIPAZ8mNQddSJwjaTdImJt9l/5fwHbk4LD09n+twV+1+S47UL6w3tmve0Rcbek24G3FDb9PbACmAXsDJwGfBc4ollbGrgEeHVW5lHgk6QurzdGxIpcvvcC/wvMBv4KOIPUDfiRJvseQtJWpOPyx1zyS4EfZO24C3gwa1fRPOADWb5F2X4Oz+37vcD5Wb7PAK8ifb4bZe2zKkWEFy8dW4C5QDRYJmV5vg1c1GQf78jnz6UfnaVvma1PytbPyeXZGniG9Ed941z6r4ELGryfSP98fQb4fQv1+CIp2GybS5tAunb10Wx9Rlb2zbk8uwLrgYEmbd87KzezSZ5LgDtz6yuBP9eOS5b2D8BzwF+3eUwPztb3y+XZgnQGMq/wnncDm+TSvgH8cZjvR+39xmfHfBfgguy4vKHwHZpZKDs9S39dtj4lWz+uyed6T/77kaV/CFgLbNft35cNbfEZjpXhCeDAOukPZq+3AsdIOpl00XpJRDw7ive7tvZDRKyS9AiwqLDPFcAraiuSNgc+TfrD/Apg09y2TSI7G2vgQOBqYFXuTO5JYAlQ63raC3g4In6Vq9s9kpaMoH2tuDqyayKZi4EfAm8C7mxjP3sBj0TEolpCRDwl6WdAcYTcwsJxugPYUdJLIuIvw7zP47mfHwU+FBG35tICuGKYfeyfvZ7bYPtupM/2J4Uz7utI3ZKvI50VWUUccKwM6yNicZPt3we2InXFfB54TNL/BeaOMPA8Xlj/S4O0zXPrpwLHkrq5lmb5ZwInZflW09j2pDORI+tsqwW/nYA/1dn+J1LbG6kNBNi1SZ5dc/ny+31epG691dTvhmpmZ+DhOukPk7qr8uodYwEvyX5u5i2krshHgfsi4rnC9sEWgtZ2wFORBhPUs332enmD7bsMs3/rMAccq1z2x+VM4MzsmsU/AF8m/RE9q6JqHAF8KyJOqyVIOrTFsn8mDVf+Yp1tT2avfwR2rLN9R1J3Tl0RcV92Qf+dwDeL2yW9kvSfefG9dyzkGwdsSbpe046HivvKTCS1u1NuKZyRFbXy3JTHgC0kbd0g6NTqO5t0/a7oDy28h3WQR6lZV0XEfRHxVVKX1+5Zcu0/283rl+qIceQunCvd+3JUIU+jelwL7AH8NiIWF5blWZ6bgYmS3px7j1cAw97gCPw7cICkt9fZ9qWs3t8rpL9NL7558zDSH+3amWarx/RXpG6x5wclSHopaZj2jS3UvUrXZa8faLB9OemfmEl1PqfFEfFYNdW0Gp/hWBk2kbR3nfT7IuIBSfNI/33eRLresz/wGtKoNUh/KADmKN13siYibu9wHa8GPippRVaXjwKbFfI0qscZwPuB6yR9i/RHbSKwH3BjRJxP6sa5DfippBNIo9ROoX43W9G3SNeJ/lPS14EBUjfcMaSL//8YQ+/BWQtcJulrpG6xrwH/GRF3DNOWF4mIqyT9ArhA0omks4jjSQF6yD0y3RQRyyXNB06XtCNwPenG1sMj4qiIeE7SJ4D/J2lr0jWhvwCTgXdl+aq+4XXD1u1RC176a6H5KLWTsjxHA78g/aFfQxpae0xhP58gjTBaD6zMlas3Su0dhbIrga8X0s4FFufWJwL/CawiXZ84jTSk+Pn9N6pHlv4y4Jys7LrsPX8I7JHL8wrS7Aprs33MAS6kySi1XNlNgH/Njs1aYJD0B3PfOnlXAqdnx/5h4CnSUOBt2j2mWdoOwHnZe64lXVh/UwvHeMi+6tS1lTxzgUfrpE8nN0otS9uYbHQhKZjcz9BRaYcAN2THZRVp0MqXyI2w81LNouwDqYykV5PG9e9N6ou+ISKmt1BuPGnY5btIXYE/Iw2HfKyQbybpy/Qa0pfw5Ii4oJNtMBtLsms+F0aE7yuxMa0b13D2IN2jcFe2tOoC0n84x5L+S3oT6X6E5ylNbHgRsJD0X81lwPkN+sLNzKxC3TjD2SiyIZCSLgS2H+4MR9I+wP+Qbka7Pkvbi3SB820RcU2WdhWwaUS8NVf2cmDriBjRLLtmY53PcKxXVH6GE0PH27fiENJNdNfn9vNr0rDGQwAkbUa6+PyTQtkFwD61eaXM+k1ETHKwsV7QK8OipwDL6qTfmW2DNEfSpnXy3Ulq526l1c7MzIbVK8OiJzD0rmZIo2gm5/JQJ99gYfuLSJpNujGMcePGTd1ll965+fi5555jo4165X+Gzut0+7e6K11SfHK33vjfZEP//MHHYCy0/6677no0InZoJW+vBByof+ex6qQX19WkPBExH5gPMG3atFi8uNmMLGPLwMAA06dP73Y1uqbj7Vf2VVm+vHm+MWJD//zBx2AstF/SPa3m7ZV/DQap/9TFbXjhjGYwl1bMA/XPkMzMrCK9EnCW8cK1mrz8tZ27SdPSF/NNIU3T3s4QbDMz67BeCThXADtl99kAkD2BcHK2jYhYR7r/5ohC2SOBX0bEExXV1czM6qj8Gk42EeCMbPXlwNaSak/ouzwi1mTzWy2KiGMAIuKX2T0250k6nnTGcipp3qprcrv/IjAg6Rukm0JnZMvBpTfMzMya6saggR2BnxbSauuvJM3RtAlpjqS8o0hT2n+f3NQ2+QwRcWMWvL4E/BPpPp33RcTPO1h/61cV3wRttqGpPOBExEpeGDnWKM+kOmmPAx/MlmZlL6Ew5Y2ZmXVfr1zDMTOzHueAY1YzdWpazKwUvXTjp1m5li7tdg3M+prPcMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuFRamY1s2Z1uwZmfc0Bx6xm/vxu18Csr7lLzczMKuGAY1azZElazKwU7lIzq5k2Lb161mizUvgMx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQ+LNqtZvLjbNTDraw44ZjV+vLRZqdylZmZmlXDAMauZPTstZlYKBxyzmrPPTouZlcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEr7x06xmzz27XQOzvuaAY1bjx0ublcpdamZmVgkHHDMzq4QDjlmNlBYzK4UDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEp5pwKxm3rxu18CsrzngmNX48dJmpaq8S03S7pKulbRG0oOSTpG08TBl5kqKBsunc/nObZBnSvktMzOzZio9w5E0AbgGuAOYCbwKOJ0U+E5qUvS7wJWFtHcBJwBXFNKXAR8spK0cWY1tgzJ/fnr1mY5ZKaruUvswMA44LCJWAVdL2hqYK+m0LG2IiLgfuD+fJulzwLKIuLWQ/amIuKmEulu/mzMnvTrgmJWi6i61Q4CrCoFlASkI7dfqTiRtC7wNOL+z1TMzs7JUHXCmkLq8nhcR9wJrsm2tOhzYlBSsinaXtErSOkk3Smo5kJmZWXmq7lKbADxeJ30w29aqo4ClEXFXIf0W4Feka0Q7AJ8gddvtGxG/rrcjSbOB2QATJ05kYGCgjWp01+rVq3uqvp3W6fZPz1575Zhu6J8/+Bj0XPsjorIFeAb4eJ30B4Avt7iPnYFngeNbyDsO+ANwSSv7njp1avSShQsXdrsKXdXx9kNaesSG/vlH+BiMhfYDi6PFGFB1l9ogsE2d9PHUP/Op572AgAuGyxgRa4HLAT+s3sysy6oOOMsoXKuRtAuwBYVrO00cBdwYEfe18b7RRl4zMytB1QHnCuAgSVvl0o4E1gKLhissaRKwNy2OTpM0jjQybkm7FbUNUK1TzcxKUXXAOQtYB1ws6cDsgv1c4IzIDZWWtELS9+qUPwpYD1xY3CBpvKQbJM2RdICkI4GFwMuBr5TQFjMza0Olo9QiYlDSAcC3gUtJ123OJAWdYr3qTXdzFHBtRDxSZ9s64BHSjAU7Ak8DvwT2i4jFHWmAmZmNWOWTd0bEHcBbh8kzqUH6G5qUeRo4bFSVsw3b1KnpdYl7YM3K4NmizWqWLu12Dcz6mh/AZmZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCY9SM6uZNavbNTDraw44ZjW1R0ybWSncpWZmZpVoK+BIqjfdjFl/WLLEswyYlajdLrUHJJ0HnBMRd5ZRIbOumTYtvXrGaLNStNulNg84HPiNpF9Jmi1p6xLqZWZmfaatgBMRX4iIycDbgOXAGcBDkn4k6cAyKmhmZv1hRIMGIuK6iPgAsBPwMeC1wFWSVkqaK+llnaykmZn1vtGOUpsGvIX02OhB4AbgWGCFpPePct9mZtZH2g44knaV9AVJdwPXAjsDHwJeFhH/COxKutbztY7W1MzMelpbo9QkXUc6o7kfOJc0Wu2efJ6IeFbSj4GPd6qSZmbW+9odFv0oMAO4OqLp2NFbgVeOuFZm3bDYTyI3K1O7AefbwNJ6wUbSlsCeEXF9RDwD3DOktNlYVnvEtJmVot1rOAuB3Rtse2223czMbIh2A46abNsSWDOKuph11+zZaTGzUgzbpSbpLcD0XNKxkg4uZNscOBS4vXNVM6vY2WenV88abVaKVq7hvJl0cydAAEcA6wt5/gIsAz7ZuaqZmVk/GTbgRMTXyO6pkfQH4N0RcWvZFTMzs/7S1ii1iPBQZzMzG5FWruHMAG6MiFXZz01FxOUdqZmZmfWVVs5wfgbsDfw6+zloPFotAD+kzczMhmgl4LwSeCj3s1l/2nPPbtfArK+1Mmjgnno/m/UdP17arFStXMN5aTs7jAjf/GlmZkO00qW2mnRtplW+hmNmZkO0EnA+RHsBx6w3KRsL03QidDMbqVau4ZxbQT3MzKzPjfYR02ZmZi1pZdDAr4GjI+IOSTczTPdaROzVqcqZmVn/aOUazm+Btbmf3cFtZmZta+UazgdzPx9dam3MzKxvjfgajpIdJDV7KJuZmRnQ5mzR8PxknicBU7Py6yUtAb4cEZd1uH5m1Zk3r9s1MOtrbQUcSXOA7wDXAh8H/gTsCBwG/Lekj0SEf2utN/nx0malavcM5zPA/Ij4p0L6WZLOAj4LOOCYmdkQ7V7D2Q64uMG2i4Bth9uBpN0lXStpjaQHJZ0iqel0OJImSYo6y4I6eWdKul3S05LukHRkSy0zmz8/LWZWinbPcBYC+wFX19m2H3B9s8KSJgDXAHcAM4FXAaeTAt9JLbz/8cAvcuuPFva/LynwfQc4DpgBnC9pMCJ+3sL+bUM2Z056ddeaWSlaufFz99zqN4HvStoOuIQXruG8GzgEOHaY3X0YGAccFhGrgKslbQ3MlXRaltbM8oi4qcn2zwHXR8Rx2fpCSXsAnwcccMzMuqiVM5zf8OKbPQXMyZbi0z+vpPls0YcAVxUCywLgVNIZ0qUt1KcuSZsB+5PObPIWAOdIGh8RT4x0/2ZmNjqtBJz9O/h+U4Dr8gkRca+kNdm24QLOOZK2JZ1ZnQ98NiJqsyC8CtgUWFYocyepy2434ObRVd/MzEaqlZkGFnXw/SYAj9dJH8y2NbIO+A9St9gqYDpwAinIzMztmzr7HyxsfxFJs4HZABMnTmRgYKBZ/ceU1atX91R9O63T7Z+evfbKMd3QP3/wMei19rd942eNpI2AzYvpLTzxs95cbGqQXtvnQ8A/55IGJD0MfEfSGyLi1ib7V4P02r7nA/MBpk2bFtOnT29e+zFkYGCAXqpvp42k/ZNOfPG9ySu/euiQPL1yTDf0zx98DHqt/W0Ni86mszlB0grgGeDJOkszg8A2ddLHU//Mp5kLs9c9c/umzv5r6+3u38zMOqjd+3COA04Evkc6c/gycApwF7CSrGuqiWWkazXPk7QLsAVDr70MJwqvd5OC4JRCvinAc1kdzRqL8NM+zUrUbsCZBXwBOC1bvyQiTgb2IAWM1wxT/grgIElb5dKOJD3+oN1rRYdnr0sAImId6T6hIwr5jgR+6RFqZmbd1e41nFcCt0bEs5KeIeuuiojnJH0H+C7pDKiRs0hnSRdLOhWYDMwFzsgPlc667BZFxDHZ+lxgK9JNn6uAtwCfBC6OiP/N7f+LpOs73yDdJzQjWw5us51mZtZh7Z7hPAZsmf18L/DG3LYJpJs6G4qIQeAA0r06lwInA2eSzpryNuHF9/MsI92ncw5wOfA+4GvZa37/N5LOfA4ErgLeCbzPswxYS6ZOTYuZlaLdM5xfAG8i/dH/MWmGgG2BvwAfJc0i3VRE3AG8dZg8kwrrC0g3cA4rIi4hnd2YtWfp0m7XwKyvtRtw5gIvz37+CqlL7WjSmc3VwMc6VTEzM+svbQWciFgOLM9+Xkd6Js7HS6iXmZn1mdHc+PlXwM7AgxHxQOeqZGZm/ajdQQNI+idJ9wH3AL8C7pV0v6SPdLx2ZmbWN9qdaeDzwLdJ99McCkzLXq8AvpltNzMzG6LdLrWPAl+JiM8V0q/M5jb7KGnmAbPeM2tWt2tg1tfaDTjjaPxUz0V4lJr1Mj9e2qxU7V7DuQQ4rMG29wA/G111zMysX7XyiOkZudUrgNMkTWLoI6b3AD7V+SqaVWTJkvTq2QbMStFKl9rPGPoo6ZcDB9XJ+0PSkzjNes+0aenVM0ablaKVgPPK0mthZmZ9r5VHTN9TRUXMzKy/tT3TgKRNSAME9gW2Bf4M3EB6VMD6zlbPzMz6RVsBR9KOwM+B15Oe8PkwsA/p/pvbJL09Ih7pdCXNzKz3tTss+gxgO+DNETE5IvaJiMnAm7P0MzpdQTMz6w/tBpwZwAkRcXM+MVv/NGmaGzMzsyHavYazGfBkg21PAi8ZXXXMumjx4m7XwKyvtRtwbgJOkHRdRDxVS5S0BXBCtt2sN/mGT7NStRtwPgEsBO6T9HPSoIEdSTeBCpje0dqZmVnfaOsaTkTcCrwGmA/sALyNFHDOAl4TEbd1vIZmVZk9Oy1mVoqWz3AkbQrsBfwhIk4sr0pmXXL22enVs0ablaKdM5xngeuAvy6pLmZm1sdaDjgR8RzwO2BiedUxM7N+1e59OJ8FPi/pb8qojJmZ9a92R6mdRJpR4FZJD5BGqb1oLveI2KtDdTMzsz7SbsD5TbaYmZm1paWAI2kcaVqb3wB/BK6JiIfLrJhZ5fbcs9s1MOtrrTxiejJwDTApl7xK0nsj4udlVcyscrVHTJtZKVoZNHAa8Bzwd8BLgT2AW4B5JdbLzMz6TCsBZx/gpIj4RUQ8HRF3AnOAV0jaudzqmZlZv2gl4OwM/L6Qdjdp7rSdOl4js26R0mJmpWh1lFoMn8Wsv0068bIXra/8qh//ZNaOVgPOVZLW10m/tpgeETuOvlpmZtZvWgk4J5deCzMz63vDBpyIcMAxM7NRa3cuNTMzsxFxwDEzs0q0O5eaWf+a53uZzcrkgGNW48dLm5XKXWpmZlYJBxyzmvnz02Jmpag84EjaXdK1ktZIelDSKZI2HqbMmySdI2lFVm65pC9I2ryQb66kqLMcXG6rrC/MmZMWMytFpddwJE0gPergDmAm8CrgdFLgO6lJ0SOzvKcCvwNeD3wxe31PIe8TQDHA3DnaupuZ2ehUPWjgw8A44LCIWAVcLWlrYK6k07K0ek6NiEdy6wOSngbmSdo1Iu7JbVsfETeVU30zMxupqrvUDgGuKgSWBaQgtF+jQoVgU3NL9uq528zMekDVAWcKsCyfEBH3Amuybe34W9KD4ZYX0reR9KikZyTdIumwEdfWzMw6RhHVPXlA0jPAJyPiG4X0+4HzIuIzLe5nJ+B/gcsj4uhc+vtJZzy3AluSHhQ3A3hPRFzcYF+zgdkAEydOnLpgwYJ2m9U1q1evZsstt+x2NbpmJO2//YEnXrT+Ny8f//zP0/ffH4CBhQvbLtsNG/rnDz4GY6H9+++//5KImNZK3m4EnOMj4t8L6Q8A50bEZ1vYx0tIAw/+CpgaEYNN8gr4H2BcRLxhuH1PmzYtFi9ePFy2MWNgYIDp06d3uxpdM5L2N32mTe3haw1+J8ba83A29M8ffAzGQvsltRxwqu5SGwS2qZM+Hnh8uMJZADkP2AOY0SzYAESKphcDrx9u6LUZEQ2DjZmNXtWj1JZRuFYjaRdgCwrXdho4kzSc+m0R0Ur+Gv8VMTPrsqrPcK4ADpK0VS7tSGAtsKhZQUmfBj4GvD8ibmzlzbIzoncDt0XEsyOrspmZdULVZzhnAccBF0s6FZgMzAXOyA+VlrQCWBQRx2Tr7wO+ApwLPCBp79w+764Nm5a0CLiIdLa0BTAL2Bt4V7nNsr4wdWp6XbKku/Uw61OVBpyIGJR0APBt4FLSdZszSUGnWK/8NZe3Z69HZ0veB0mBCGAF8C/AzqQh00uBQyPiik7U3/rc0qXdroFZX6v88QQRcQfw1mHyTCqsH83QQFOv3DGjqJqZmZXIs0WbmVklHHDMzKwSDjhmZlYJBxwzM6tE5YMGzMasWbO6XQOzvuaAY1bjx0ublcpdamZmVgkHHLOaJUs8y4BZidylZlYzLZth3TNGm5XCZzhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0p4WLRZzeLF3a6BWV9zwDGrqT1i2sxK4S41MzOrhAOOWc3s2Wkxs1I44JjVnH12WsysFA44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaV8I2fZjV77tntGpj1NQccsxo/XtqsVO5SMzOzSjjgmJlZJRxwzGqktJhZKRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaV8EwD1rNuf+AJjj7xMgBWfvXQ0e9w3rzR78PMGnLAMavx46XNSuWAY1aySdlZWE1HzsbMepCv4ZjVzJ+fFjMrhc9wzGrmzEmv7lozK4XPcMzMrBKVBxxJu0u6VtIaSQ9KOkXSxi2UGy/pHEmDkp6Q9CNJ29XJN1PS7ZKelnSHpCPLaYmZmbWj0i41SROAa4A7gJnAq4DTSYHvpGGKXwC8FjgWeA44FbgE+Lvc/vcFLgK+AxwHzADOlzQYET/vaGOsY3xRvTEfG+snVV/D+TAwDjgsIlYBV0vaGpgr6bQsbQhJ+wAHAftFxPVZ2gPAryQdGBHXZFk/B1wfEcdl6wsl7QF8HnDAMTProqoDziHAVYXAsoB0trIfcGmTcg/Xgg1ARPxa0h+ybddI2gzYn3Rmk7cAOEfS+Ih4okPtsCby/5X7P/Lu8dmRjTVVB5wpwHX5hIi4V9KabFujgDMFWFYn/c5sG6TuuU3r5LuT1GW3G3DzyKo9cvV+6Zv9IWj2x7pY7tyDt2jp/VqtVyP+w7VhGc3nPdKyI/knZdKJl/GJv1nf8mwT7dbN3/vOU0RU92bSM8AnI+IbhfT7gfMi4jMNyl0NPBUR7yqk/xCYHBF/K+n/ADcCb4yIW3N5Xg38Djio3nUcSbOB2jjY1wLLR9zA6m0PPNrtSnSR279htx98DMZC+3eNiB1aydiN+3DqRTg1SB9JueK6GqSnxIj5QE/e7SdpcURM63Y9usXt37DbDz4Gvdb+qodFDwLb1EkfDzw+gnLb5MoN5tKKeRhm/2ZmVrKqA84yXrjmAoCkXYAtqH+NpmG5TP7azt3AM3XyTSENo75rBPU1M7MOqTrgXAEcJGmrXNqRwFpg0TDldsruswFA0jRgcraNiFgHLASOKJQ9Evhln45Q68muwA5y+21DPwY91f6qBw1MIN30+RvSUOjJwBnANyLipFy+FcCiiDgml3YlaaTZ8bxw4+efIqJ44+cA8G3STaEzsvwH+8ZPM7PuqvQMJyIGgQOAjUlDoE8GzgS+UMi6SZYn7yjSWdD3gfOAJcC7C/u/ETgcOBC4Cngn8D4HGzOz7qv0DMfMzDZcni26h0iaJel32cSkSyQd0EKZuZKiznJwFXUeibIneB3rRtJ+SZMafM4Lqqp3p0h6taR5km6T9KykgRbL9cXnDyM7Br3wHfDzcHqEpKOAs4C5pBtcPwj8TNKbIuI3wxR/AigGmDs7XskOKHuC17FulO2HdM3yF7n1bt8UOBJ7kK6/3gS8pI1yPf/554z0GMBY/g5EhJceWEgzIHw/t74RcDvww2HKzQUe7XZyZNliAAADNklEQVT922jnp0n3VG2dS/sUsCafVqfcPqSbe9+SS9srSzuw2+2qoP2Tsra+o9tt6MAx2Cj384XAQAtl+uLzH+UxGPPfAXep9QBJk0kj9H5SS4uI54CfkiYv7SeNJngdR5rgtVm5IRO8ArUJXnvFSNvfN7Lvdrv65fMHRnwMxjwHnN5Qu5m13sSk20oabh6jbSQ9KukZSbdIOqzzVeyYIRO1RsS9pP/w693827BcJj/Bay8Yaftrzsn6/B+SdIakcWVUcgzql8+/E8bsd8DXcHrDhOy1OD3PYG77Iw3KriB1ydwKbAnMAS6S9J6IuLjTFe2ACdSfhmiQF45Du+Umd6BeVRlp+9cB/0F67tMqYDpwAuka0MzOVnFM6pfPfzTG/HfAAadLJI0Hdh4uX0Tk/2tra2LSrPwPC+97KfA/pIfSjcWAA+VP8DrWtd2OiHgI+Odc0oCkh4HvSHpD5GZQ72P98vmPSC98B9yl1j1HkE73h1uggxOTRrq6eDHw+laGGndBmRO89oKRtr+eC7PXPUdVo97QL59/p42p74ADTpdExHcjQsMtWfbaWU69iUn/HBGNutOaVmHElS9XmRO89oKRtr+eKLz2s375/DttTH0HHHB6QET8njTb9fMTk0raKFu/op19SRJpSqDbIuLZTtazQ0qb4LVHjLT99RyevS7pRMXGuH75/DttbH0Huj0u20trC/D3wLOkm//2B84l/RF6XS7PfsB6YL9c2iLgOODtpEBzOemmuHd2u00N2jkBeAi4mjQn3mxgNfClQr4VwPcKaVcCvwcOA95Funfphm63qYr2k+63Oj1r+4HAKdn346Jut2kEx+ClpD+UhwO/BH6bW39pP3/+ozkGvfAd6HoFvLTxYcGs7Eu2DlgKHFDYPp106jw9l/a97JdwLfAUcANwSLfbMkw7dweuy+r8EPBFYONCnpXAuYW0bYBzSH32q4AfA9t3uz1VtJ80ue1i0qwSf8m+J6cAm3W7PSNo/6Tse1xvmdTvn/9Ij0EvfAc8eaeZmVXC13DMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSX+PxnXeRNYLQ4+AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -440,9 +440,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Exact delta: \t0.4700\n", - "Esimated value:\t0.4510\n", - "Probability: \t0.5918\n" + "Exact delta: \t0.8098\n", + "Esimated value:\t0.8172\n", + "Probability: \t0.8829\n" ] } ], @@ -459,7 +459,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XucXEWd9/HPl4sSCSRBSGARiKAYYfVRErm4riQCIsFnUUCD6GpcSKLrirsvQC6iBFAfAQVWXZcEFZZHJa6I7MqdQCaIC0oSQQQSDBLuYoCBEBIwIb/9o07LSU/PTF9Pz3R/36/XefV0nTrVVd0z/ZuqU6eOIgIzM7NW26TdFTAzs+7ggGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVggHHGsaSbMlRT/bx6osY/esnNFl6dOzcka2pvbV1aPBMi+X1FNFvs0k/bOkuyStldQr6RpJ76rzdYfKezo99/uwQdJzkn4r6QJJu9VZZo+ky3PP3yvpn5tXa2smBxxrtueA/Sps11V5/O7A6UD5F/3VWTlrmlPNuuvRUpI2Ba4Evgr8NzAVmA68DPRIOrqOYofKe1ryHuCdwBHA94D3Ar+VdEgTyn4v4IAzRG3W7gpYx1kfEbc3u9CIWAmsbHa5Q9BngUOBQyIiH6T/S9I8YK6khRHxWKMv1Mb39I6IWJ39PF/ShcBVwI8kjY+I59pQJyuAezhWOEmnSFou6UVJT0q6TtL2kiYDP8+yPZgNvazIjtlo+EfS+Oz5UZIulrRK0qOloTtJn5f0uKSVks6WtEnu9SdImifpEUlrJN2TDWFtku3vtx7Z/p2z45/Jjr9e0pvK2rhTNgy2VtIKScdW+fZ8DlhQFmxKvgBsARyTe50Vkr4u6YuS/ihptaQfSho1WFsqDalJ2lbSf0h6Omtbj6RJZW0rvea/ZO95b/Z+1NUbjIiXSIF2NPCR3OtsIunk7HflJUn3S/pEf+VImg0cD+ySG7q7JNu3n6T/zn4nXpB0p6SP1lNfq597ONZ0kvr8XkXE+mzfx4FTgZOAe4DXkoZYtgSWACcAXwcOB54AXhrk5c4GfkganvkH4D8kvR3YJXs+Efgy8BtgXnbMjsCy7LjngbcBZwAjgP83UD0kbQPcCjwNfIo0HHUy6T/13SNirSQB/wVsSwoOL2blbwP8foD3bSdgPHB+pf0R8YCku4F3l+36CLAcmAHsAJwDfBf40EBt6ceVwBuyY54CTgQWSHp7RCzP5fsw8FtgJvA64DzSMOA/DlB2vyJiqaRHgX2BC7PkbwGfAM7M2nEQ8H1JT0fEVRWK+S7wRtLv0weztFIPbhfgl1nZLwJ/A1wsaUNEXFZPna0OEeHNW1M2YDYQ/WzjszzfBn46QBnvz+fPpU/P0kdmz8dnzy/O5dkaWEf6Ut80l/5r4Mf9vJ5I/3idCvyhinqcRQo22+TSxpDOXX0mez41O3afXJ5dgPVAzwBt3zc77rAB8lwJ3Jd7vgJ4pvS+ZGkfBTYAb67xPX1f9nz/XJ4tSV/ac8pe8wFgs1zaBcAfB/n92Oj1Kuy/Dbg2+/kNWRs+UZbnUtKQXOl5D3B57vnXgRWD1KP0mc8Bbm733003be7hWLM9BxxYIf3x7PFO4BhJZ5BOWi+OiJcbeL2bSj9ExCpJK4GFZWUuB3YuPZG0BXAK6Yt5Z2Dz3L7NIuuN9eNA4EZgVa4n9zywGCgNPe0NPBkRv8rV7SFJi+toXzVujFfOiQBcAfwAeAdwXw3l7A2sjIiFpYSIeEHSVUD5DLkFZe/TvcBYSa+KiD/XVv2/UO7nA0gB52dlPeabgI9I2rSW3xtJY0i9zMNIPdxNs10Nnwuz6jngWLOtj4hFA+z/PrAVaSjmS8DTkv4dmF1n4Hm27Pmf+0nbIvf8bOBY0hfQkiz/YcBpWb7V9G9bUk9kWoV9peC3PfCnCvv/RGp7f0pffrsMkGcX+n5JbvRakYb1VpOG12qxA/BkhfQnScOBeZXeYwGvyn6ux47A0uznbUlBob8JBDsAj9ZQ9iWkz+0sUnBcBXya9LlbQRxwrFARsYF0juL87JzFR4GvkL5ELxzo2Cb6EPCtiDinlCDp0CqPfYY0XfmsCvuezx7/CIytsH8ssLa/giPikeyE/t8B3yzfL+n1wF9XeO2xZflGACNJ52tq8UR5WZlxpHa3jKQ3k84F3ZYlPUMagvwbUk+nXKWA3l/ZW5Bm/v1TRFyYS/ekqYL5Dbe2iYhHIuJrpCGvPbLk0n/HW1Q+qilGkDtxrnTty1Flefqrx03AnsA9EbGobFuW5bkDGCdpn9xr7AzsVUXd/hU4QNJ7K+z7clbv75WlH6SNL948nHSupNTTrPY9/RVpWOwvkxIkvYb0ZX1rFXWvi6RXkwLss7wyseNmUg9nVIX3edEAw3blvVmAV2dl5T/zrUiB3QrkHo4122aS9q2Q/khEPCZpDum/19tJwyVTSDOLTsrylb60Zyldd7ImIu5uch1vBD4jaXlWl8+QvpTy+qvHecDHgJslfYvUMxsH7A/cGmnG0zXAXcBPJJ1EmhV1JtX9V/4t0nmin0n6Oumk+Fak2W7vB/4++l6Dsxa4WtK5pKGmc4GfRcS9g7RlIxFxvaRfAj+WdDJpcsQJpAB9bhV1r9Y7JK0FXkPqsc0iTQI5MrJrcCJimdL1OfMknUMKnluQgv3uEdHfNPOlpGA/Hfgd8FRErJB0B/AlSatIPaaTSb9/WzexXTaYds9a8NY5GwPPUjstyzOdND31GdKU4t8Cx5SVczzwEGlIZUXuuEqz1N5fduwK4OtlaZcAi3LPxwE/I43jP0maRjyDshlUleqRpf8VcHF27EvZa/4A2DOXZ2fS6gprszJmAZczwCy13LGbAf+SvTdrgV7gWuBdFfKuAL6RvfdPAi8AlwGja31Ps7TtSDPBerPXXgi8o4r3uE9ZFepaylPangfuJvXqdquQX6RVA+7J3ueVWX0+nsvTw8az1LbIPps/Za9xSZb+BlKv6QXgYeDz2Xv2VLv/brppU/ZhFEbSG0hz+/cl/Xfzi4iYXMVxo0hTLz9AGgq8CjguIp4uy3cYaejhjcAfgDMi4sfNbIPZUJGd87k8Ik5od13MBtOOczh7kq5TuD/bqvVjYDJpdtF00pTPK/MZlBY3/CmwADiENO32sn7Gw83MrEDt6OFsEmmmEkqrvG47WA9H0n7A/5AuSLslS9ubdJLzoIiYn6VdD2weEe/JHXsNsHVE1LXSrtlQ5h6ODSeF93BKwaZGh5AupLslV86vgQezfaWZLlOA/yw7dh6wX2ltKbNOEhHjHWxsuBgu06In8MoFYXn3ZfsAdiNdMV6e7z5SO3dvWe3MzGxQw2Va9Bj6XtkMaSbNrrk8VMjXW7Z/I5Jmkq56Z8SIERN32mmnhiq6YcMGNtlkuMTxxrm9jdnq/nQa8/ndh+b/Q/58O1sz2nv//fc/FRHbVZN3uAQcSFMcy6lCevlz9ZOeEiPmAnMBJk2aFIsWDbQqy+B6enqYPHlyQ2UMJ25vg5T9ei5bNnC+NvHn29ma0V5JD1Wbd7iE8l4q33lxNK/0aHpzaeV5oHIPyczMCjJcAs5SXjlXk5c/t/MAaWn68nwTSFcW1zIF28zMmmy4BJxrge2z62wAyO5CuGu2j0h3DVxAWpgxbxpwW/i2tWZmbVX4OZxsMcCp2dMdga0lHZk9vyYi1mRrXC2MiGMAIuK27BqbSyWdQOqxnE1au2p+rvizgB5JF5AuCp2abe9recPMzGxA7Zg0MBb4SVla6fnrSes0bcYrN0gqOYq0rP33yS1tk88QEbdmwevLpHtdPAgcHRE3NLH+Zs1T8IXXZu1UeMCJiBVsfGe/SnnGV0h7Fvhktg107JWULXljZmbtN1zO4ZiZ2TDngGPWThMnps2sCwynCz/NOs+SJe2ugVlh3MMxM7NCOOCYmVkhHHDMzKwQDjhmZlYIBxwzMyuEZ6mZtdOMGe2ugVlhHHDM2mnu3HbXwKwwHlIzM7NCOOCYtdPixWkz6wIeUjNrp0mT0qNXjbYu4B6OmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQnhZt1k6LFrW7BmaFccAxayffXtq6iIfUzMysEA44Zu00c2bazLqAA45ZO110UdrMuoADjpmZFcIBx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIXzhp1k77bVXu2tgVhgHHLN28u2lrYt4SM3MzArhgGNmZoVwwDFrJyltZl3AAcfMzArhgGNmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVgivNGDWTnPmtLsGZoVxwDFrJ99e2rpI4UNqkvaQdJOkNZIel3SmpE0HOWa2pOhnOyWX75J+8kxofcvMzGwghfZwJI0B5gP3AocBuwHfIAW+0wY49LvAdWVpHwBOAq4tS18KfLIsbUV9NTZrsblz06N7OtYFih5S+xQwAjg8IlYBN0raGpgt6ZwsrY+IeBR4NJ8m6YvA0oi4syz7CxFxewvqbtZ8s2alRwcc6wJFD6kdAlxfFljmkYLQ/tUWImkb4CDgsuZWz8zMWqXogDOBNOT1FxHxMLAm21etI4HNScGq3B6SVkl6SdKtkqoOZGZm1jqKiOJeTFoHnBgRF5SlPwpcGhGnVlnOzcCoiJhYlv454M+kc0TbAccDE4F3RcSv+ylrJjATYNy4cRPnzasUw6q3evVqRo4c2VAZw4nb25jJU6YA0LNgQdPKbCZ/vp2tGe2dMmXK4oiYVFXmiChsA9YBn6uQ/hjwlSrL2AF4GTihirwjgAeBK6spe+LEidGoBQsWNFzGcOL2NgjSNkT58+1szWgvsCiqjAFFD6n1AqMrpI8Cnq2yjA8DAn48WMaIWAtcA/jG8WZmbVZ0wFlK2bkaSTsBW1J2bmcARwG3RsQjNbxuceOGZmZWUdEB51rgYElb5dKmAWuBhYMdLGk8sC9Vzk6TNII0M25xrRU1K0RpUM2sCxQdcC4EXgKukHRgdsJ+NnBe5KZKS1ou6XsVjj8KWA9cXr5D0ihJv5A0S9IBkqYBC4Adga+2oC1mZlaDQi/8jIheSQcA3wZ+Tjpvcz4p6JTXq9JyN0cBN0XEygr7XgJWklYsGAu8CNwG7B8Ri5rSADMzq1vhi3dGxL3AewbJM76f9LcNcMyLwOENVc6saBOzmf2LPeprnc+rRZu105Il7a6BWWF8AzYzMyuEA46ZmRXCAcfMzArhgGNmZoVwwDEzs0J4lppZO82Y0e4amBXGAcesnUq3mDbrAh5SMzOzQtQUcCRVWm7GzOq1eLFXGbCuUeuQ2mOSLgUujoj7WlEhs64yKbtRoleMti5Q65DaHOBI4HeSfiVppqStW1AvMzPrMDUFnIg4PSJ2BQ4ClgHnAU9I+qGkA1tRQTMz6wx1TRqIiJsj4uPA9sBngTcB10taIWm2pL9qZiXNzGz4a3SW2iTg3aTbRvcCvwCOBZZL+liDZZuZWQepOeBI2kXS6ZIeAG4CdgD+AfiriPh7YBfSuZ5zm1pTMzMb1mqapSbpZlKP5lHgEtJstYfyeSLiZUk/Aj7XrEqamdnwV+u06KeAqcCNEQPO47wTeH3dtTLrFot893PrHrUGnG8DSyoFG0kjgb0i4paIWAc81OdoM9tY6RbTZl2g1nM4C4A9+tn3pmy/mZlZH7UGHA2wbySwpoG6mHWfmTPTZtYFBh1Sk/RuYHIu6VhJ7yvLtgVwKHB386pm1gUuuig9etVo6wLVnMPZh3RxJ0AAHwLWl+X5M7AUOLF5VTMzs04yaMCJiHPJrqmR9CDwwYi4s9UVMzOzzlLTLLWI8FRnMzOrSzXncKYCt0bEquznAUXENU2pmZmZdZRqejhXAfsCv85+DvqfrRaAb9JmljP+5Kv7pK342qFtqIlZe1UTcF4PPJH72cyaZa+92l0Ds8JUM2ngoUo/m1kT+PbS1kWqOYfzmloKjAhf/GlmZn1UM6S2mnRuplo+h2NmZn1UE3D+gdoCjplVS9n8mwEXXzfrDNWcw7mkgHqYmVmHa/QW02ZmZlWpZtLAr4HpEXGvpDsYZHgtIvZuVuXMzKxzVHMO5x5gbe5nDzabmVnNqjmH88ncz9NbWhszM+tYdZ/DUbKdpIFuymZmZgbUuFo0/GUxz9OAidnx6yUtBr4SEX0XjTKz/s2Z0+4amBWmpoAjaRbwHeAm4HPAn4CxwOHAf0v6x4jwX5BZtXx7aesitfZwTgXmRsSny9IvlHQh8AXAAcfMzPqo9RzOa4Er+tn3U2CbwQqQtIekmyStkfS4pDMlDbgcjqTxkqLCNq9C3sMk3S3pRUn3SppWVcvM2mHu3LSZdYFaezgLgP2BGyvs2x+4ZaCDJY0B5gP3AocBuwHfIAW+06p4/ROAX+aeP1VW/rtIge87wHHAVOAySb0RcUMV5ZsVa9as9OihNesC1Vz4uUfu6TeB70p6LXAlr5zD+SBwCHDsIMV9ChgBHB4Rq4AbJW0NzJZ0TpY2kGURcfsA+78I3BIRx2XPF0jaE/gS4IBjZtZG1fRwfsfGF3sKmJVt5Xf/vI6BV4s+BLi+LLDMA84m9ZB+XkV9KpL0amAKqWeTNw+4WNKoiHiu3vLNzKwx1QScKU18vQnAzfmEiHhY0pps32AB52JJ25B6VpcBX4iI0ioIuwGbA0vLjrmPNGS3O3BHY9U3M7N6VbPSwMImvt4Y4NkK6b3Zvv68BPwbaVhsFTAZOIkUZA7LlU2F8nvL9m9E0kxgJsC4cePo6ekZqP6DWr16dcNlDCdu7+COf8v6PmmlMiaXPR9q/Pl2tqLbW/OFnyWSNgG2KE+v4o6fldZiUz/ppTKfAP4pl9Qj6UngO5LeFhF3DlC++kkvlT0XmAswadKkmDx58sC1H0RPTw+NljGcuL2Dm35y3+uhV3x04zKG6nvoz7ezFd3emqZFZ8vZnCRpObAOeL7CNpBeYHSF9FFU7vkM5PLsca9c2VQov/S81vLNzKyJar0O5zjgZOB7pJ7DV4AzgfuBFWRDUwNYSjpX8xeSdgK2pO+5l8FE2eMDpCA4oSzfBGBDVkezoSXCd/u0rlFrwJkBnA6ckz2/MiLOAPYkBYw3DnL8tcDBkrbKpU0j3f6g1nNFR2aPiwEi4iXSdUIfKss3DbjNM9TMzNqr1nM4rwfujIiXJa0jG66KiA2SvgN8l9QD6s+FpF7SFZLOBnYFZgPn5adKZ0N2CyPimOz5bGAr0kWfq4B3AycCV0TEb3Pln0U6v3MB6Tqhqdn2vhrbaWZmTVZrD+dpYGT288PA23P7xpAu6uxXRPQCB5Cu1fk5cAZwPqnXlLcZG1/Ps5R0nc7FwDXA0cC52WO+/FtJPZ8DgeuBvwOO9ioDNmRNnJg2sy5Qaw/nl8A7SF/6PyKtELAN8GfgM6RVpAcUEfcC7xkkz/iy5/NIF3AOKiKuJPVuzIa+JUvaXQOzwtQacGYDO2Y/f5U0pDad1LO5EfhssypmZmadpaaAExHLgGXZzy+R7onzuRbUy8zMOkwjF36+DtgBeDwiHmtelczMrBPVOmkASZ+W9AjwEPAr4GFJj0r6x6bXzszMOkatKw18Cfg26XqaQ4FJ2eO1wDez/WZmZn3UOqT2GeCrEfHFsvTrsrXNPkNaecDMqjFjRrtrYFaYWgPOCPq/q+dCPEvNrDa+vbR1kVrP4VwJHN7PviOAqxqrjpmZdapqbjE9Nff0WuAcSePpe4vpPYHPN7+KZh1s8eL06NUGrAtUM6R2FX1vJb0jcHCFvD8g3YnTzKoxaVJ69IrR1gWqCTivb3ktzMys41Vzi+mHiqiImZl1tppXGpC0GWmCwLuAbYBngF+QbhXQ9+btZmZm1BhwJI0FbgDeSrrD55PAfqTrb+6S9N6IWNnsSpqZ2fBX67To84DXAvtExK4RsV9E7Arsk6Wf1+wKmplZZ6g14EwFToqIO/KJ2fNTSMvcmJmZ9VHrOZxXA8/3s+954FWNVcesyyxa1O4amBWm1oBzO3CSpJsj4oVSoqQtgZOy/WZWLV/waV2k1oBzPLAAeETSDaRJA2NJF4EKmNzU2pmZWceo6RxORNwJvBGYC2wHHEQKOBcCb4yIu5peQ7NONnNm2sy6QNU9HEmbA3sDD0bEya2rklkXueii9OhVo60L1NLDeRm4GXhzi+piZmYdrOqAExEbgN8D41pXHTMz61S1XofzBeBLkt7SisqYmVnnqnWW2mmkFQXulPQYaZbaRuuqR8TeTaqbmZl1kFoDzu+yzczMrCZVBRxJI0jL2vwO+CMwPyKebGXFzLrCXnu1uwZmhanmFtO7AvOB8bnkVZI+HBE3tKpiZl2hdItpsy5QzaSBc4ANwN8CrwH2BH4DzGlhvczMrMNUE3D2A06LiF9GxIsRcR8wC9hZ0g6trZ6ZmXWKagLODsAfytIeIK2dtn3Ta2TWTaS0mXWBaq/DicGzmJmZ9a/aadHXS1pfIf2m8vSIGNt4tczMrNNUE3DOaHktzMys4w0acCLCAcfMzBpW61pqZmZmdXHAMTOzQtS6lpqZNdMcXz9t3cMBx6ydfHtp6yIeUjMzs0I44Ji109y5aTPrAoUHHEl7SLpJ0hpJj0s6U9KmgxzzDkkXS1qeHbdM0umStijLN1tSVNje19pWmdVp1qy0mXWBQs/hSBpDutXBvcBhwG7AN0iB77QBDp2W5T0b+D3wVuCs7PGIsrzPAeUB5r5G625mZo0petLAp4ARwOERsQq4UdLWwGxJ52RplZwdEStzz3skvQjMkbRLRDyU27c+Im5vTfXNzKxeRQ+pHQJcXxZY5pGC0P79HVQWbEp+kz167TYzs2Gg6IAzAViaT4iIh4E12b5avJN0Y7hlZemjJT0laZ2k30g6vO7amplZ0yiiuDsPSFoHnBgRF5SlPwpcGhGnVlnO9sBvgWsiYnou/WOkHs+dwEjSjeKmAkdExBX9lDUTmAkwbty4ifPmzau1WRtZvXo1I0eObKiM4cTtHdzdjz3XJ+0tO44CYPKUKQD0LFjQeOVawJ9vZ2tGe6dMmbI4IiZVk7cdAeeEiPjXsvTHgEsi4gtVlPEq0sSD1wETI6J3gLwC/gcYERFvG6zsSZMmxaJFiwbLNqCenh4mT57cUBnDids7uPEnX90nbcXXDk0/lG6+VuDfYS38+Xa2ZrRXUtUBp+ghtV5gdIX0UcCzgx2cBZBLgT2BqQMFG4BI0fQK4K2DTb02a4uIIRtszJqt6FlqSyk7VyNpJ2BLys7t9ON80nTqgyKimvwl/ou2Yam8d/SXnpHZMFR0D+da4GBJW+XSpgFrgYUDHSjpFOCzwMci4tZqXizrEX0QuCsiXq6vymZm1gxF93AuBI4DrpB0NrArMBs4Lz9VWtJyYGFEHJM9Pxr4KnAJ8JikfXNlPlCaNi1pIfBTUm9pS2AGsC/wgdY2y6xOEyemx8WL21sPswIUGnAiolfSAcC3gZ+TztucTwo65fXKn3N5b/Y4PdvyPkkKRADLgX8GdiBNmV4CHBoR1zaj/mZNt2RJu2tgVpjCb08QEfcC7xkkz/iy59PpG2gqHXdMA1UzM7MW8mrRZmZWCAccMzMrhAOOmZkVwgHHzMwKUfikATPLmTGj3TUwK4wDjlk7+fbS1kU8pGZmZoVwwDFrp8WLvcqAdQ0PqZm106RsVXevGG1dwD0cMzMrhAOOmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhPC3arJ0WLWp3DcwK44Bj1k6lW0ybdQEPqZmZWSEccMzaaebMtJl1AQccs3a66KK0mXUBBxwzMyuEA46ZmRXCAcfMzArhgGNmZoVwwDEzs0L4wk+zdtprr3bXwKwwDjhm7eTbS1sX8ZCamZkVwgHHzMwK4YBj1k5S2sy6gAOOmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQXmnArJ3mzGl3DcwK44BjVoXxJ18NwPFvWc/07OcVXzu08YJ9e2nrIh5SMzOzQriHY9ZOc+emxyb3dEo9srym9MjMGuCAY9ZOs2alRw+tWRfwkJqZmRWi8IAjaQ9JN0laI+lxSWdK2rSK40ZJulhSr6TnJP1Q0msr5DtM0t2SXpR0r6RprWmJmZnVotAhNUljgPnAvcBhwG7AN0iB77RBDv8x8CbgWGADcDZwJfC3ufLfBfwU+A5wHDAVuExSb0Tc0NTG2LDkcxtm7VP0OZxPASOAwyNiFXCjpK2B2ZLOydL6kLQfcDCwf0TckqU9BvxK0oERMT/L+kXglog4Lnu+QNKewJcABxyzKuSD8vFvWc/k9lXFOkzRAecQ4PqywDKP1FvZH/j5AMc9WQo2ABHxa0kPZvvmS3o1MIXUs8mbB1wsaVREPNekdlibuacy9PgzscEUHXAmADfnEyLiYUlrsn39BZwJwNIK6fdl+yANz21eId99pCG73YE76qv28FH+R9/fH3y1+RrNO1j+eo+xzlHU70ytx7Tqb6SbKSKKezFpHXBiRFxQlv4ocGlEnNrPcTcCL0TEB8rSfwDsGhHvlPQ3wK3A2yPizlyeNwC/Bw6udB5H0kygNCf1TcCyuhuYbAs81WAZw4nb29nc3s7WjPbuEhHbVZOxHdfhVIpw6ie9nuPKn6uf9JQYMReYO8hrV03SooiY1Kzyhjq3t7O5vZ2t6PYWPS26FxhdIX0U8Gwdx43OHdebSyvPwyDlm5lZixUdcJbyyjkXACTtBGxJ5XM0/R6XyZ/beQBYVyHfBNI06vvrqK+ZmTVJ0QHnWuBgSVvl0qYBa4GFgxy3fXadDQCSJgG7ZvuIiJeABcCHyo6dBtxW4Ay1pg3PDRNub2dzeztboe0tetLAGNJFn78jTYXeFTgPuCAiTsvlWw4sjIhjcmnXkWaancArF37+KSLKL/zsAb5Nuih0apb/fb7w08ysvQrt4UREL3AAsClpCvQZwPnA6WVZN8vy5B1F6gV9H7gUWAx8sKz8W4EjgQOB64G/A452sDEza79CezhmZta9vFp0lVq96OhQU097Jb0ja+vy7Lhlkk6XtEVR9a5XvZ9v7vhNJC2WFJLe38q6NkMj7ZV0uKQ7JK2V9LSk6yRt2eo6N6KBv99Jkm7I2vkcdGfsAAAEjklEQVSMpPmS9imizo2Q9AZJcyTdJellST1VHtfS7yvfD6cKrV50dKhpoL3Tsrxnky62fStwVvZ4RAur3JAGP9+SY4EdW1LBJmukvZKOJZ0jPQc4ERgDvIch/F1Sb3uzGbTzgSXAx7PkE4EbJL01Ih5qZb0btCfpHPbtwKtqOK6131cR4W2QDTiFdJ3P1rm0zwNr8mkVjtuPdMHpu3Npe2dpB7a7XS1o73YV0mZm7d2l3e1qdntzeccAK4Fjsra+v91tatHnuy3wPDCj3W0oqL2fAl4GRpd91i8Dn253uwZp8ya5ny8Heqo4puXfVx5Sq05/i46OIC06OtBxfRYdBUqLjg5VdbU3IlZWSP5N9ji2edVruno/35KzgF8CN7Wgbq1Qb3s/nD3+R6sq1iL1tndzYD2wOpe2OktTxSOGiIjYUMdhLf++csCpTp/FQyPiYdJ/SJUuSO33uEx+0dGhqN72VvJOUte80TXqWqnu9kp6K/BJ0vT74aLe9u5D+hyPkfSopHWSfiXpna2ralPU296fZnm+IWmspLGkWbW9wE9aVNd2avn3lQNOdcZQeWmc3mxfs49rt6bUW9L2wBeA/x/93OtoiGikvd8C/i0ilje9Vq1Tb3u3J43vnwacBPxf4AXgOknjml3JJqqrvRHxOOmWJ0cAT2bb4aSFgCv15oe7ln9fOeBUr9WLjg41DdVb0quA/yQNQfxLE+vVKjW3V9JRpC/gL7eqUi1Uz+e7CTASOCYifhgR1wEfIJ3T+KfmV7Gp6vl8dyCd/1hMGlI6JPv5akk7t6KSQ0BLv68ccKrTykVHh6J62wuAJJEuzt0TmBrpgt+hrOb2StocOJc0i2cTSaOBrbPdW5Yt3zTU1Pv5PpM99pQSsp7rYmCPZlWuBept74mk2XdHRsR1WYA9ghRgh9MQarVa/n3lgFOdVi46OhTV296S80nTTw+LiKHczpJ62rsl8DrS0ky92XZXtm8er0yWGIrq/XzvI/2nW37CXKTzdENVve2dANwTEetKCRHxZ+Ae0tTqTtPy7ysHnOq0bNHRIare9iLpFOCzwMciLTU0HNTT3tWk8f389pFs36nAR1tT1aao9/O9ihRcppQSJI0CJvJKsB2K6m3vQ8BfZ8PDACjdyv6vgRUtqGe7tf77qt3zxYfDRjph9gRwI2mdtpmkL5wvl+VbDnyvLO064A+kk40fIM3y+UW729SK9gJHk/4DvhjYt2zrc43OUNka+XzL9o9neFyH08jv85XZsZ8ADiV9Ya8ExrS7Xc1uLymQrgOuztr6ftIX7zrg/7S7XYO0+TWkdSWPBG4j9cpKz18zwOfb0u+rtr8xw2UjjVHfTPqv6AnStRebluVZAVxSljY6+wJ+FlgF/AjYtt3taUV7gUuyL9xK2/R2t6kVn2/Z/mERcBppL2nSwL8DT2fHzgfe0u72tLC9BwC3kM5fPUMKsJPb3Z4q2lv6Xay0jR+gvS39vvLinWZmVgifwzEzs0I44JiZWSEccMzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuGAY2Zmhfhf0iRe8/WZSJgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHVWd//H3h0WJrEEgMAwQARFB/ClpNoeRIHvAQQFlczQO0NFxQH0QA4gQwMEJyDITZoY0KuhPIY6IjGwJa4NRtgSDYQkYMOwgSyCEBGT5zh+nGirVt7vvvX1v3e6bz+t56umuU6fqfs+9yf32qTp1ShGBmZlZs63Q6gDMzGz54IRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxxrGEmTJEUfyxeqPMYW2XHWKpSPz46zWnOiry6OQR7zMkndVdRbSdI3JN0jaamkhZKukbRzna87VN7T8bl/D29LelnSHyWdJ2mzOo/ZLemy3Pqekr7RuKitkZxwrNFeBnaqsEyvcv8tgFOA4hf91dlxljQmzLrjaCpJKwJXAGcAvwHGAeOBt4BuSYfVcdih8p72+BTwCeBA4EfAnsAfJe3TgGPvCTjhDFErtToAaztvRsTtjT5oRDwHPNfo4w5BRwP7AvtERD5J/6+kaUCXpFsi4snBvlAL39O7ImJx9vsNki4ArgIukTQ6Il5uQUxWAvdwrHSSTpA0X9Jrkp6VNF3S+pLGAldm1f6cnXpZkO2zzOkfSaOz9UMkXSRpkaQnek7dSfq2pKckPSdpsqQVcq+/paRpkh6XtETSfdkprBWy7X3GkW3fONv/xWz/GZI+VGjjRtlpsKWSFkg6ssq35+vAzYVk0+M7wCrAEbnXWSDpB5K+K+kZSYsl/VzSmgO1pdIpNUnrSPqJpBeytnVL6ii0rec1v5m95wuz96Ou3mBEvE5KtGsBh+ZeZwVJx2f/Vl6X9JCkL/V1HEmTgGOBTXKn7i7Otu0k6TfZv4lXJc2RdHg98Vr93MOxhpPU699VRLyZbfsicCIwEbgPeD/pFMuqwN3At4AfAAcATwOvD/Byk4Gfk07P/BPwE0kfBzbJ1scA3wP+AEzL9tkQeDDb7xXgY8CpwAjg+/3FIWltYCbwAvAV0umo40l/qW8REUslCfhfYB1ScngtO/7awJ/6ed82AkYD51baHhEPS5oLfLKw6VBgPnAUsAFwJvBD4HP9taUPVwCbZ/s8DxwH3Czp4xExP1fv88AfgU7gb4FzSKcB/7mfY/cpIuZJegLYEbggK54CfAk4LWvHHsCPJb0QEVdVOMwPgQ+S/j19Nivr6cFtAvwuO/ZrwN8BF0l6OyIurSdmq0NEePHSkAWYBEQfy+iszvnAr/o5xn75+rny8Vn5atn66Gz9olydNYA3SF/qK+bK7wR+0cfrifSH14nAI1XEcTop2aydKxtJunb1tWx9XLbvDrk6mwBvAt39tH3HbL/9+6lzBfBAbn0B8GLP+5KVHQ68DXy4xvd072x9l1ydVUlf2lMLr/kwsFKu7DzgmQH+fSzzehW23wZcm/2+edaGLxXq/JR0Sq5nvRu4LLf+A2DBAHH0fOZTgZta/f9meVrcw7FGexnYvUL5U9nPOcARkk4lXbSeHRFvDeL1buz5JSIWSXoOuKVwzPnAxj0rklYBTiB9MW8MrJzbtlJkvbE+7A5cDyzK9eReAWYDPaeetgeejYg7crE9Kml2He2rxvXx7jURgMuBnwHbAQ/UcJztgeci4paegoh4VdJVQHGE3M2F9+l+YD1J74mIv9YW/juU+303UsL5daHHfCNwqKQVa/l3I2kkqZe5P6mHu2K2adDXwqx6TjjWaG9GxKx+tv8YWJ10KuZk4AVJ/w1MqjPxvFRY/2sfZavk1icDR5K+gO7O6u8PnJTVW0zf1iH1RA6usK0n+a0P/KXC9r+Q2t6Xni+/Tfqpswm9vySXea1Ip/UWk06v1WID4NkK5c+STgfmVXqPBbwn+70eGwLzst/XISWFvgYQbAA8UcOxLyZ9bqeTkuMi4Kukz91K4oRjpYqIt0nXKM7NrlkcDvwr6Uv0gv72baDPAVMi4syeAkn7Vrnvi6ThyqdX2PZK9vMZYL0K29cDlvZ14Ih4PLug/w/AfxS3S/oA8JEKr71eod4IYDXS9ZpaPF08VmYUqd1NI+nDpGtBt2VFL5JOQf4dqadTVCmh93XsVUgj//4lIi7IlXvQVMn8hlvLRMTjEfFvpFNeW2XFPX8dr1J5r4YYQe7CudK9L4cU6vQVx43A1sB9ETGrsDyY1bkLGCVph9xrbAxsW0Vs/w7sJmnPCtu+l8X9o0L5Hlr25s0DSNdKenqa1b6nd5BOi70zKEHS+0hf1jOriL0ukt5LSrAv8e7AjptIPZw1K7zPs/o5bVfszQK8NztW/jNfnZTYrUTu4VijrSRpxwrlj0fEk5Kmkv56vZ10umRX0siiiVm9ni/tCUr3nSyJiLkNjvF64GuS5mexfI30pZTXVxznAF8AbpI0hdQzGwXsAsyMNOLpGuAe4JeSJpJGRZ1GdX+VTyFdJ/q1pB+QLoqvThrtth/wj9H7HpylwNWSziKdajoL+HVE3D9AW5YRETMk/Q74haTjSYMjvkVK0GdVEXu1tpO0FHgfqcc2gTQI5KDI7sGJiAeV7s+ZJulMUvJchZTst4iIvoaZzyMl+/HAvcDzEbFA0l3AyZIWkXpMx5P+/a3RwHbZQFo9asFL+yz0P0rtpKzOeNLw1BdJQ4r/CBxROM6xwKOkUyoLcvtVGqW2X2HfBcAPCmUXA7Ny66OAX5PO4z9LGkZ8FIURVJXiyMr/Brgo2/f17DV/Bmydq7MxaXaFpdkxJgCX0c8otdy+KwHfzN6bpcBC4Fpg5wp1FwBnZ+/9s8CrwKXAWrW+p1nZuqSRYAuz174F2K6K97jXsSrE2lOnZ3kFmEvq1W1Wob5Iswbcl73Pz2XxfDFXp5tlR6mtkn02f8le4+KsfHNSr+lV4DHg29l79nyr/98sT4uyD6M0kjYnje3fkfTXzW8jYmwV+61JGnr5GdKpwKuAYyLihUK9/UmnHj4IPAKcGhG/aGQbzIaK7JrPZRHxrVbHYjaQVlzD2Zp0n8JD2VKtXwBjSaOLxpOGfF6Rr6A0ueGvgJuBfUjDbi/t43y4mZmVqBU9nBUijVRCaZbXdQbq4UjaCfg96Ya0W7Oy7UkXOfeIiBuyshnAyhHxqdy+1wBrRERdM+2aDWXu4dhwUnoPpyfZ1Ggf0o10t+aOcyfw52xbz0iXXYH/Kew7DdipZ24ps3YSEaOdbGy4GC7Dorfk3RvC8h7ItgFsRrpjvFjvAVI7t2hadGZmNqDhMix6JL3vbIY0kmbTXB0q1FtY2L4MSZ2ku94ZMWLEmI022mhQgb799tussMJwyeOD5/a2t+W1vas/lC4vv7JFe/+d2ojP96GHHno+Itatpu5wSTiQhjgWqUJ5cV19lKfCiC6gC6CjoyNmzepvVpaBdXd3M3bs2EEdYzhxe9vbctteZV8bDz7Yb/3hrhGfr6RHq607XP50WUjlJy+uxbs9moW5smIdqNxDMjOzkgyXhDOPd6/V5OWv7TxMmpq+WG9L0p3FtQzBNjOzBhsuCedaYP3sPhsAsqcQbpptI9JTA28mTcyYdzBwW/ixtWZmLVX6NZxsMsBx2eqGwBqSDsrWr4mIJdkcV7dExBEAEXFbdo/NTyV9i9RjmUyau+qG3OFPB7olnUe6KXRctuzd9IaZmVm/WjFoYD3gl4WynvUPkOZpWol3H5DU4xDStPY/Jje1Tb5CRMzMktf3SM+6+DNwWERc18D4zazdlXxD/PKi9IQTEQtY9sl+leqMrlD2EvDlbOlv3ysoTHljZmatN1yu4ZiZ2TDnhGNmVjRmTFqsoYbTjZ9mZuW4++5WR9CW3MMxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFR6mZmRUddVSrI2hLTjhmZkVdXa2OoC35lJqZmZXCCcfMrGj27LRYQ/mUmplZUUdH+ulZoxvKPRwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJqZWR9GH3/1O78v+Ld9WxhJe3DCMTMrmjWL/abMbHUUbccJx8ysaMwY7l3/mVZH0XZ8DcfMzErhhGNmVtTZyRnTp7Q6irbjhGNmVnThhRx2z4xWR9F2nHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhGz/NzIq23Za5T77c6ijajhOOmVnR7Nl8OjePmjWGT6mZmVkpnHDMzKwUTjhmZkUSCybv1+oo2o4TjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFJ5pwMysaOpUTrh8bqujaDtOOGZmRZ2dXPqIp7ZptNJPqUnaStKNkpZIekrSaZJWHGCfSZKij+WEXL2L+6izZfNbZmZm/Sm1hyNpJHADcD+wP7AZcDYp8Z3Uz64/BKYXyj4DTASuLZTPA75cKFtQX8Rmtlzq6uLQOXO59GN7tzqStlL2KbWvACOAAyJiEXC9pDWASZLOzMp6iYgngCfyZZK+C8yLiDmF6q9GxO1NiN3MlhcTJvB9cMJpsLJPqe0DzCgklmmkJLRLtQeRtDawB3BpY8MzM7NmKTvhbEk65fWOiHgMWJJtq9ZBwMqkZFW0laRFkl6XNFNS1YnMzMyap+xTaiOBlyqUL8y2VesQ4O6IeKhQ/gfgDtI1onWBY0mn7XaOiDsrHUhSJ9AJMGrUKLq7u2sIo7fFixcP+hjDidvb3pbX9o7N1o/d5s13trXj+1D259uKYdFRoUx9lPeuKG1AOv02sdeBI/69UPdqUvI5kTTIoHcwEV1AF0BHR0eMHTu2mjD61N3dzWCPMZy4ve1teW/v2XPf/YpccPjY3jsMc2V/vmWfUlsIrFWhfE0q93wq+TwpQf1ioIoRsRS4Bti22gDNzKw5yk448yhcq5G0EbAqhWs7/TgEmBkRj9fwulX1nszMrHnKTjjXAntJWj1XdjCwFLhloJ0ljQZ2pMrRaZJGkEbGza41UDNbjkUweuJVrY6i7ZSdcC4AXgcul7R7dsF+EnBOfqi0pPmSflRh/0OAN4HLihskrSnpt5ImSNpN0sHAzcCGwBlNaIuZmdWg1EEDEbFQ0m7A+cCVpOs255KSTjGuStPdHALcGBHPVdj2OvAcacaC9YDXgNuAXSJiVkMaYGZmdSt9lFpE3A98aoA6o/so/1g/+7wGHDCo4MzMAMaM4conX+bT4/994LpWNc8WbWZWdPfdbNPqGNqQH8BmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1IzMys66iguufOxVkfRdtzDMTMr6urixL2PbnUUbccJx8zMSlFTwpFUaboZM7P2Mns2H3lmfqujaDu19nCelHSmpA83JRozs6Ggo4OrfvKNVkfRdmpNOFOBg4B7Jd0hqVPSGk2Iy8zM2kxNCSciTomITYE9gAeBc4CnJf1c0u7NCNDMzNpDXYMGIuKmiPgisD5wNPAhYIakBZImSfqbRgZpZmbD32BHqXUAnyQ9Nnoh8FvgSGC+pC8M8thmZtZGak44kjaRdIqkh4EbgQ2AfwL+JiL+EdiEdK3nrIZGamZmw1pNMw1IuonUo3kCuBi4KCIezdeJiLckXQJ8vVFBmpnZ8Ffr1DbPA+OA6yMi+qk3B/hA3VGZmbXSrFnsN2Vmq6NoO7WeUjsf+H2lZCNpNUmfBIiIN4o9HzOzYWPMGO5df/NWR9F2ak04NwNb9bHtQ9l2MzOzXmpNOOpn22rAkkHEYmY2NHR2csb0Ka2Oou0MeA0nO002Nld0pKS9C9VWAfYF5jYuNDOzFrnwQg4DzxjdYNUMGtiBdHMnQACfA94s1PkrMA84rnGhmZlZOxkw4UTEWWT31Ej6M/DZiJjT7MDMzKy91DQsOiI81NnMzOpSzTWcccDMiFiU/d6viLimIZGZmVlbqaaHcxWwI3Bn9nvQ92i1APyQNjMz66WahPMB4Onc72Zm7W3bbZn75MutjqLtVDNo4NFKv5uZta3Zs/n08Ve3Ooq2U801nPfVcsCI8M2fZmbWSzWn1BaTrs1Uy9dwzMysl2oSzj9RW8IxMxveJBYAoyde1epI2ko113AuLiEOMzNrc4N9xLSZmVlVqhk0cCcwPiLul3QXA5xei4jtGxWcmZm1j2qu4dwHLM397us5ZmZWs2qu4Xw59/v4pkZjZmZtq+5rOErWldTfQ9nMzMyAOhKOpHGSfg+8BjwDvCbp95L2bXh0ZmatMHUqJ+z1L62Oou3UlHAkTQCuJN0M+nXSw9i+nq3/JttuZja8dXZy6ceKDza2warpeTjAiUBXRHy1UH6BpAuA7wBTGxKZmZm1lVpPqb0fuLyPbb8C1h7oAJK2knSjpCWSnpJ0mqR+p8ORNFpSVFimVai7v6S5kl6TdL+kg6tqmZlZj64uDp0zvdVRtJ1aezg3A7sA11fYtgtwa387SxoJ3ADcD+wPbAacTUp8J1Xx+t8Cfpdbf75w/J1Jie+/gGOAccClkhZGxHVVHN/MDCZM4Pvg02oNVs2Nn1vlVv8D+KGk9wNXAH8B1gM+C+wDHDnA4b4CjAAOiIhFwPWS1gAmSTozK+vPgxFxez/bvwvcGhHHZOs3S9oaOBlwwjEza6Fqejj3suzNngImZEvx6Z/T6X+26H2AGYXEMg2YTOohXVlFPBVJei+wK6lnkzcNuEjSmhHhJyqZmbVINQln1wa+3pbATfmCiHhM0pJs20AJ5yJJa5N6VpcC34mInlkQNgNWBuYV9nmAdMpuC+CuwYVvZmb1qmamgVsa+HojgZcqlC/MtvXldeA/SafFFgFjgYmkJLN/7thUOP7CwvZlSOoEOgFGjRpFd3d3f/EPaPHixYM+xnDi9ra35bW9Y7P1Y7d5851t7fg+lP351jpo4B2SVgBWKZZX8cTPSnOxqY/ynmM+DeTvwuqW9CzwX5I+FhFz+jm++ijvOXYX0AXQ0dERY8eO7T/6AXR3dzPYYwwnbm97W97be/bcd78iFxw+tvcOw1zZn2+tN35K0kRJ84E3gFcqLP1ZCKxVoXxNKvd8+nNZ9nPb3LGpcPye9VqPb2ZmDVTrfTjHAMcDPyL1HP4VOA14CFhAdmqqH/NI12reIWkjYFV6X3sZSBR+PkxKglsW6m0JvJ3FaGY2sAg/7bMJak04RwGnAGdm61dExKnA1qSE8cEB9r8W2EvS6rmyg0mPP6j1WtFB2c/ZABHxOuk+oc8V6h0M3OYRamZmrVXrNZwPAHMi4i1Jb5CdroqItyX9F/BDUg+oLxeQekmXS5oMbApMAs7JD5XOTtndEhFHZOuTgNVJN30uAj4JHAdcHhF/zB3/dNL1nfNI9wmNyxbfvWVm1mK19nBeAFbLfn8M+Hhu20jSTZ19ioiFwG6ke3WuBE4FziX1mvJWYtn7eeaR7tO5CLgGOAw4K/uZP/5MUs9nd2AG8A/AYZ5lwMxqMmYMV1789VZH0XZq7eH8DtiO9KV/CWmGgLWBvwJfA24c6AARcT/wqQHqjC6sTyPdwDmgiLiC1LsxM6vP3XezTatjaEO1JpxJwIbZ72eQTqmNJ/VsrgeOblRgZmbWXmpKOBHxIPBg9vvrpGfhuN9pZmYDGsyNn38LbAA8FRFPNi4kMzNrR/U8Yvqrkh4HHgXuAB6T9ISkf254dGZm1jZqnWngZOB80v00+wId2c9rgf/ItpuZmfVS6ym1rwFnRMR3C+XTs7nNvkaaecDMbPg66iguufOxVkfRdmo9pTaCvp/qeQsVJvM0Mxt2uro4cW8Pum20WhPOFcABfWw7EPDkQ2ZmVlE1j5gel1u9FjhT0mh6P2J6a+DbjQ/RzKxks2fzkWfmc+/6m7c6krZSzTWcq+j9KOkNgb0q1P0Z6UmcZmbDV0cHV4FnjG6wahLOB5oehZmZtb1qHjH9aBmBmJlZe6t5pgFJK5EGCOwMrA28CPyW9KiAN/vb18zMll81JRxJ6wHXAR8lPeHzWWAn0v0390jaMyKea3SQZmY2/NU6LPoc4P3ADhGxaUTsFBGbAjtk5ec0OkAzM2sPtSacccDEiLgrX5itn0Ca5sbMzKyXWq/hvBd4pY9trwDvGVw4ZmZDwKxZ7DdlZqujaDu19nBuByZKWjVfmK1PzLabmQ1vY8b4ps8mqLWHcyxwM/C4pOtIgwbWI90EKmBsQ6MzM7O2UVMPJyLmAB8EuoB1gT1ICecC4IMRcU/DIzQzK1tnJ2dMn9LqKNpO1T0cSSsD2wN/jojjmxeSmVmLXXghh4FnjG6wWno4bwE3AR9uUixmZtbGqk44EfE28CdgVPPCMTOzdlXrKLXvACdL2qYZwZiZWfuqdZTaSaQZBeZIepI0Si3yFSJi+wbFZmZmbaTWhHNvtpiZmdWkqoQjaQRpWpt7gWeAGyLi2WYGZmbWMttuy9wnX251FG2nmkdMbwrcAIzOFS+S9PmIuK5ZgZmZtczs2Xz6+KtbHUXbqWbQwJnA28DfA+8Dtgb+AExtYlxmZtZmqkk4OwEnRcTvIuK1iHgAmABsLGmD5oZnZmbtopqEswHwSKHsYdLcaes3PCIzs1aTWDB5v1ZH0XaqvQ8nBq5iZmbWt2qHRc+Q9GaF8huL5RGx3uDDMjOzdlNNwjm16VGYmVnbGzDhRIQTjpmZDVqtc6mZmZnVxQnHzMxKUetcamZm7W/qVE64fG6ro2g7TjhmZkWdnVz6iKe2aTSfUjMzs1I44ZiZFXV1ceic6a2Oou2UnnAkbSXpRklLJD0l6TRJKw6wz3aSLpI0P9vvQUmnSFqlUG+SpKiw7N3cVplZW5kwge/POL/VUbSdUq/hSBpJetTB/cD+wGbA2aTEd1I/ux6c1Z0M/An4KHB69vPAQt2XgWKCeWCwsZuZ2eCUPWjgK8AI4ICIWARcL2kNYJKkM7OySiZHxHO59W5JrwFTJW0SEY/mtr0ZEbc3J3wzM6tX2afU9gFmFBLLNFIS2qWvnQrJpscfsp+eu83MbBgoO+FsCczLF0TEY8CSbFstPkF6MNyDhfK1JD0v6Q1Jf5B0QN3RmplZwyiivCcPSHoDOC4iziuUPwH8NCJOrPI46wN/BK6JiPG58i+QejxzgNVID4obBxwYEZf3caxOoBNg1KhRY6ZNm1Zrs5axePFiVltttUEdYzhxe9vb8tresbvuCsCUn13xzrZtNlyzVWE1TSM+31133XV2RHRUU7cVN35WynDqo7x3Rek9wP8Ai4FvLnPgiJ8V6l4J/B44GaiYcCKiC+gC6OjoiLFjx1YTRp+6u7sZ7DGGE7e3vS3v7T177rtfkQsOH9t7h2Gu7M+37FNqC4G1KpSvCbw00M6SBPwU2BoYFxEL+6sfqft2OfDRgYZem5m9I4LRE69qdRRtp+wezjwK12okbQSsSuHaTh/OJQ2n3iMiqqnfw08sNTNrsbJ7ONcCe0laPVd2MLAUuKW/HSWdABwNfCEiZlbzYlmP6LPAPRHxVn0hm5lZI5SdcC4AXgcul7R7dsF+EnBOfqh0NqPAj3LrhwFnkE6nPSlpx9yybq7eLZKOkbSnpM8CVwM7Zq9hZladMWO48uKvtzqKtlPqKbWIWChpN+B84ErSdZtz6Z0QVgLy11z2zH6Oz5a8LwMXZ7/PB74BbEAaMn03sG9EXNuI+M1sOXH33WzT6hjaUOmj1CLifuBTA9QZXVgfT+9EU2m/IwYRmpmZNZFnizYzs1I44ZiZWSmccMzMrBROOGZmVopWTG1jZja0HXUUl9z5WKujaDvu4ZiZFXV1ceLeR7c6irbjhGNmZqVwwjEzK5o9m488M7/VUbQdJxwzs6KODq76yTdaHUXbccIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCU9uYmRXNmsV+U6p6kr3VwAnHzKxozBjuXf+ZVkfRdnxKzczMSuGEY2ZW1NnJGdOntDqKtuOEY2ZWdOGFHHbPjFZH0XaccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuEbP83MirbdlrlPvtzqKNqOE46ZWdHs2Xz6+KtbHUXb8Sk1MzMrhROOmZmVwgnHzKxIYsHk/VodRdtxwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIzDZjZcmF0hZkDFvzbvpUrT53KCZfPbXJEyx8nHDOzos5OLn3EU9s0mk+pmZlZKZxwzMyKuro4dM70VkfRdpxwzMyKJkzg+zPOb3UUbccJx8zMSlF6wpG0laQbJS2R9JSk0yStWMV+a0q6SNJCSS9L+rmk91eot7+kuZJek3S/pIOb0xIzs2T08Vcvs1hlpSYcSSOBG4AA9gdOA44FTq1i918AY4EjgfHAdsAVhePvDPwKuBnYB7gauFTSng1pgJmZ1a3sYdFfAUYAB0TEIuB6SWsAkySdmZX1ImknYC9gl4i4NSt7ErhD0u4RcUNW9bvArRFxTLZ+s6StgZOB65rXLDMzG0jZCWcfYEYhsUwDJgO7AFf2s9+zPckGICLulPTnbNsNkt4L7AocU9h3GnCRpDUjwg8pN2sDNd3EOYQU4x4OMTdS2QlnS+CmfEFEPCZpSbatr4SzJTCvQvkD2TaAzYCVK9R7gHTqcAvgrvrCNlt+5L8Uj93mTcbWsV+Par5Qh2vyaIaB3ou+EtZweQ8VEeW9mPQGcFxEnFcofwL4aUSc2Md+1wOvRsRnCuU/AzaNiE9I+jtgJvDxiJiTq7M58Cdgr4jodVpNUifQma1+CHiw7gYm6wDPD/IYw4nb297c3vbWiPZuEhHrVlOxFVPbVMpw6qO8nv2K6+pnfyKiC+ga4LWrJmlWRHQ06nhDndvb3tze9lZ2e8seFr0QWKtC+ZrAS3Xst1Zuv4W5smIdBji+mZk1WdkJZx7vXnMBQNJGwKpUvkbT536Z/LWdh4E3KtTbEngbeKiOeM3MrEHKTjjXAntJWj1XdjCwFLhlgP3Wz+6zAUBSB7Bpto2IeJ10/83nCvseDNxW4gi1hp2eGybc3vbm9ra3Uttb9qCBkcD9wL2kodCbAucA50XESbl684FbIuKSL16YAAAFX0lEQVSIXNl00kizb5F6LJOBv0TE3+fq7Ax0A+eTbgodl9Xfu9KAATMzK0+pPZyIWAjsBqxIGgJ9KnAucEqh6kpZnbxDSL2gHwM/BWYDny0cfyZwELA7MAP4B+AwJxszs9YrtYdjZmbLL88WXaVmTzo61NTTXknbZW2dn+33oKRTJK1SVtz1qvfzze2/gqTZkkLSfs2MtREG015JB0i6S9JSSS9Imi5p1WbHPBiD+P/bIem6rJ0vSrpB0g5lxDwYkjaXNFXSPZLektRd5X5N/b7yI6arkJt09H7SpKObAWeTEvZJ/ewKadLRD5EmHe259nQF8Pf97dRKg2jvwVndyaSbbT8KnJ79PLCJIQ/KID/fHkcCGzYlwAYbTHslHUm6RnomcBwwEvgUQ/i7pN72ZiNobwDuBr6YFR8HXCfpoxHxaDPjHqStSdewbwfeU8N+zf2+iggvAyzACaT7fNbIlX0bWJIvq7DfTqQbTj+ZK9s+K9u91e1qQnvXrVDWmbV3k1a3q9HtzdUdCTwHHJG1db9Wt6lJn+86wCvAUa1uQ0nt/QrwFrBW4bN+C/hqq9s1QJtXyP1+GdBdxT5N/77yKbXq9DXp6AjSpKP97ddr0lGgZ9LRoaqu9kbEcxWK/5D9XK9x4TVcvZ9vj9OB3wE3NiG2Zqi3vZ/Pfv6kWYE1Sb3tXRl4E1icK1uclaniHkNERLxdx25N/75ywqlOr8lDI+Ix0l9IlW5I7XO/TH7S0aGo3vZW8glS13ywc9Q1U93tlfRR4Muk4ffDRb3t3YH0OR4h6QlJb0i6Q9InmhdqQ9Tb3l9ldc6WtJ6k9UijahcCv2xSrK3U9O8rJ5zqjKTy1DgLs22N3q/VGhK3pPWB7wD/P/p41tEQMZj2TgH+MyLmNzyq5qm3veuTzu+fBEwEPg28CkyXNKrRQTZQXe2NiKdIjzw5EHg2Ww4gTQRcqTc/3DX9+8oJp3rNnnR0qBlU3JLeA/wP6RTENxsYV7PU3F5Jh5C+gL/XrKCaqJ7PdwVgNeCIiPh5REwHPkO6pvEvjQ+xoer5fDcgXf+YTTqltE/2+9WSNm5GkENAU7+vnHCq08xJR4eietsLgCSRbs7dGhgX6Ybfoazm9kpaGTiLNIpnBUlrAWtkm1ctTN801NT7+b6Y/ezuKch6rrOBrRoVXBPU297jSKPvDoqI6VmCPZCUYIfTKdRqNf37ygmnOs2cdHQoqre9Pc4lDT/dPyKGcjt71NPeVYG/JU3NtDBb7sm2TePdwRJDUb2f7wOkv3SLF8xFuk43VNXb3i2B+yLijZ6CiPgrcB9paHW7afr3lRNOdZo26egQVW97kXQCcDTwhUhTDQ0H9bR3Men8fn45NNt2InB4c0JtiHo/36tIyWXXngJJawJjeDfZDkX1tvdR4CPZ6WEAlB5l/xFgQRPibLXmf1+1erz4cFhIF8yeBq4nzdPWSfrC+V6h3nzgR4Wy6cAjpIuNnyGN8vltq9vUjPYCh5H+Ar4I2LGw9LpHZ6gsg/l8C9tHMzzuwxnMv+crsn2/BOxL+sJ+DhjZ6nY1ur2kRPoGcHXW1v1IX7xvAP+v1e0aoM3vI80reRBwG6lX1rP+vn4+36Z+X7X8jRkuC+kc9U2kv4qeJt17sWKhzgLg4kLZWtkX8EvAIuASYJ1Wt6cZ7QUuzr5wKy3jW92mZny+he3DIuEMpr2kQQP/DbyQ7XsDsE2r29PE9u4G3Eq6fvUiKcGObXV7qmhvz7/FSsvoftrb1O8rT95pZmal8DUcMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaK/wMevZSoec8I7gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/european_put_option_pricing.ipynb b/qiskit/finance/simulation/european_put_option_pricing.ipynb index 24df0749c..d9897256a 100644 --- a/qiskit/finance/simulation/european_put_option_pricing.ipynb +++ b/qiskit/finance/simulation/european_put_option_pricing.ipynb @@ -118,7 +118,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -177,7 +177,7 @@ "outputs": [], "source": [ "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price = 2\n", + "strike_price = 2.126\n", "\n", "# set the approximation scaling for the payoff function\n", "c_approx = 0.25\n", @@ -214,7 +214,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYFNXZxuHfA6hsCgiK5BOZmKgETaKOiaKJCqK4RRQXEFxww13c45IIoijuSxRxIeKOirtRkU2MGo2giUaESBQQUFTEZQSR5f3+ODXSND3TPVtV18x7X1ddM119qufppum3q07VOTIznHPOuepqlHQA55xz6eaFxDnnXI14IXHOOVcjXkicc87ViBcS55xzNeKFxDnnXI14IXFFS9IQSZaxLJD0mKSfJZhpF0lvSfpekkXrWkgaI2lRlHNABduOzno+5ctdsT6J1XkGSjowx/rZkq5NIpNLpyZJB3Auj6+BvaPfNwcuAyZK2trMvksgz+3AZ0BPYFm07mTgD8BRwHzgf5VsPwM4JmvdZ7WcsVADgf8AT2atPwhYFH8cl1ZeSFyxW2Fmr0e/vy5pLvB3YF/g0QTydAbuMLMpWetmmtljBWz/XcbzKUpm9nbSGVy6+KEtlzbTop8lAJK6Sno6Ouz1naR/Sepf3ljShtFhqKMzH0TBR5Kuz1jXXdIbUfuFkkZIahndt3t0KKsxcFN0SGq0pNnAccB25YeqqvvEyv+GpG2y1r8kaWzG7dGSpkraU9I70fN+RdLWWds1lnShpP9KWiZpnqTR5Y8JlAJHZxxiGxDdt9ahLUmHSXo3epyPJQ2T1CTj/gHRY/xS0vgo0wxJvav7erj08ELi0qYk+vlp9LMT8CpwPOHw0mPA3ZIOBzCzL4EnWPtw0u7RY90NIKkL8ALwBXAwMBjoB5R/gL8FdI1+vy76/TLCYaDnCIesuma0qZCkJplLQc96bZsB1wDDgMOBjYFHJCmjze3ApcAjwP7AOUCL6L5ToszPZeT+WwV59wIeJrwGvYC/AOcCt+Ro/iDwNOF1+QAYI2nTaj5HlxJ+aMsVvYwP282BEcC3wAQAMxuT0U7Ay8CmwAnAQ9Fdo4AXJW1uZh9G644BppnZu9HtS4A5wAFmtjJ6vC+BhyV1NbN/EA6tAczOPDwl6XOgfYGHrEqB5VnPbwszm1XAtpk2BHYxsw+ix2hEKJhbATMkdSbsKQ0ys5sztnsYwMymS/oO+LyA3EOBl8ysfK/uheh1uFLS5WY2L6PtDWb21yjTNGAhoYiNrOLzcynieySu2LUlfPAuB2YSikkfM/sEQFIbSTdLmpPRbiCwZcZjTCQUiaOjbdYHehPtjUR+CzxRXkQijwErgN/V4vN5H/hN1vJxNR5ndnkRiUyPfpZ/++8W/Rxdjcf+kaTGwPas3R/1MOHzI3sP7MXyX8xsEeFEAt8jqed8j8QVu6+BHoARDmctsDWHrB4N7EQ4zDQd+IZwFlWv8gZmZpLuBo6VNAQ4jPDefzDjcToQvj2Tsd1KSYsI3/5ryxIzm1oLj/NV1u0fop9No59tCR3739Tw77QD1iHrtcm4nf3a5MrVFFeveSFxxW5FRR+8kpoC+wGnmdnIjPW59rTvJvR7dAMGAE+a2eKM+z8h9DNkPn5jwgfylzV5AlXwffRz3az1GxL6bqpiEdBC0gY1LCZfEPbyNs5a3z76Gddr44qYH9pyabYe4Syq8us5yg9bHZDd0Mw+Jhx2uZRwqOrurCZvAAdFxaNcb8KXrVdqN3aFyvsaflG+QlJHQr9HVU2Kfh5VSZu8ewvRob5pwKFZdx0GrAL+UY1srp7xPRKXWmb2taQ3gUskfUP4YLuAcDhsgxybjCIc658HjM+673LgbeBJSbcRjutfBYyLOtrrnJnNi57PZZKWEL7oXUQ1vvWb2UxJdwDXSdqYcBJCa+AQM+sbNZsB9JTUk7AH81HUr5FtMDAuOjw4Bvgl4VDinVkd7a6B8j0Sl3b9gI+Ae4GbCB3k91bQ9llC5/k9ZrYq8w4zew/Yh3AI53FCYXkIOKRuYleoHzAXuB+4gnDG1MxqPtYphD2wIwin+d4ILM24/3JC5/8jwJuE06fXYmYvAn2BHYBngDMJp0CfVs1crp6RT7XrGgpJ+xKKyZbVON3WOVcBLySu3pP0E2ALwoV0c81s/4QjOVev+KEt1xAMJFxL8j1wesJZnKt3fI/EOedcjfgeiXPOuRppEKf/tmvXzkpKSqq17XfffUeLFi3yNywSacqbpqyQrrxpygrpypumrFCzvNOmTfvCzDbK29DM6v1SWlpq1TV58uRqb5uENOVNU1azdOVNU1azdOVNU1azmuUFploBn7F+aMs551yNxF5IJHWRNFHSkmgyoqFZw1JUtN0Okl5UmBf7S0kTJO0YR2bnnHMVi7WQSGpDmEfCCKOzDiVMtnNpnu06Rts1IYwddGT0+4uSOtVlZuecc5WLu7P9JKAZ0NvCiKTjJW0ADJF0tVU8Sul+wPrRdl8BSHqNMDLpvsBtdR/dOedcLnEf2tqHMAheZsEYQyguu1Wy3TqEMZLKMtaVReuUcwvnnHOxiLuQdCaMOPojM5sLLInuq8hjUZvrJG0cjWZ6A7CYtWduqx0PPAAlJezWvTuUlITbzjnn1hLrle2SlgPnmdmNWevnAfea2UWVbLstYcC9/4tWfQLsY2b/rqD9QMLQGLRv3750zJgxuZrltPGECWx17bU0XvbjNBesXG89Zp57Lp/16FHw4yShrKyMli1bJh2jIGnKCunKm6askK68acoKNcvbrVu3aWa2Q96GhZwjXFsLYaa1QTnWzweGVbJdB2AW8BSwd7Q8Q5hXYrN8f7fK15F06mQGay+dOlXtcRKQpnPc05TVLF1505TVLF1505TVLJ7rSOLubF9MmFwnWyvWnus503mEEwMOMbPlAJImAR8A5wJn1GrKuXOrtt455xqwuPtIZpDVFxKd2tuCrL6TLJ2B98qLCICZ/QC8B/ys1lNutlnV1jvnXAMWdyF5njC15/oZ6/oQZm2bUsl2c4BtJK1bvkLSesA2wOxaTzlsGDRvvuY6CS68sNb/lHPOpV3chWQksAx4XFKPqEN8CHC9ZZwSLGmWpFEZ290F/AR4QtJ+kvYHniT0ndxR6yn794c77oBOnTAJNtkkFJKnn4ZVq/Jv75xzDUishcTMFgN7AI0JneWXEk7jHZzVtEnUpny7aYQO9vWB+whzcjcH9rQKztqqsf79YfZspkyaBJ98AjfdBM89B1dfXSd/zjnn0ir2YeTNbDrQPU+bkhzrJhJmuUvGqafC3/8OF18MXbvCbpVdP+mccw2Hj/5bKAnuvBN+9jM4/HBYuDDpRM45VxS8kFTFBhvA2LGweDH06wcrVyadyDnnEueFpKp+9Su49VaYNAmGDk06jXPOJc4LSXUccwwcfTRcdhm8+GLSaZxzLlFeSKpDghEjYOutw9ld8+Ylncg55xLjhaS6mjeHRx+FpUuhb19Yvjz/Ns45Vw95IamJzp3DmVyvvgoXVThwsXPO1WteSGrq8MPh5JPh2mvhqaeSTuOcc7HzQlIbrr8ett8eBgyAjz5KOo1zzsXKC0ltaNo09JeYwWGHQcaEWM45V995Iaktm28Oo0fD1KlwzjlJp3HOudh4IalNBx4IZ58dLlh8+OGk0zjnXCxiLySSukiaKGmJpAWShkpqnGebIZKsgqW4JgkZPjwM6nj88TBzZtJpnHOuzsVaSCS1ASYABvQChgLnEIaTr8xdQNes5arovufrJGx1rbNO2BtZbz049FBYsiTpRM45V6fi3iM5CWgG9Daz8WY2klBEzpa0QUUbmdk8M3s9cwF+Ccwws3/FE70KOnaE+++H//wHTjst6TTOOVen4i4k+wDjMmdDBMYQikvBE3xI2hDYE3ioduPVor33DnOX3H13WJxzrp6Ku5B0BmZkrjCzucCS6L5CHQKsQyhCxWvIEOjWLUyK9e67Sadxzrk6ITOL749Jy4HzzOzGrPXzgHvNrKBxRiRNAlqZWWklbQYCAwHat29fOmZM9WpOWVkZLVu2rNa2AOt++SWlJ5zAyhYtmDZyJCubN6/2YxWipnnjlKaskK68acoK6cqbpqxQs7zdunWbZmY75G1oZrEtwHJgUI7184FhBT5GB2AlcG6hf7e0tNSqa/LkydXeNuNBzBo1Muvb12zVqpo/XqV/anKdPn5tSlNWs3TlTVNWs3TlTVNWs5rlBaZaAZ+xcR/aWgy0zrG+FfBVgY9xGCAgPRdq7L57mLtkzBi47bak0zjnXK2Ku5DMIKsvRFJHoAVZfSeV6Au8YmYf13K2unXBBbDPPnDWWeHqd+ecqyfiLiTPAz0lrZ+xrg+wFJiSb2NJJcBOFPPZWhVp1Ajuuw/atw/XlyxenHQi55yrFXEXkpHAMuBxST2iDvEhwPWWcUqwpFmSRuXYvi+wAhgbR9ha17YtPPJImFHxmGPCII/OOZdysRYSM1sM7AE0Bp4hXIx4AzA4q2mTqE22vsBEM/u8LnPWqZ12gmuuCXOXXH990mmcc67GmsT9B81sOtA9T5uSCtZvWxeZYjdoEPz97/DHP4bCsssuSSdyzrlq89F/kyDBX/8KnTpBnz7weXp3sJxzzgtJUlq1CpNhffEFHHEErFqVdCLnnKsWLyRJ2n57uOkmePFFGDYs6TTOOVctXkiSNnAg9O8PgwfDxIlJp3HOuSrzQpI0CUaOhM6doV8/WLAg6UTOOVclXkiKQcuWMHYslJXB4YfDihVJJ3LOuYJ5ISkWXbqEPZOXX4ZLLkk6jXPOFcwLSTE58sgw1/uVV8Lf/pZ0GuecK4gXkmJz883w61+HojJnTtJpnHMuLy8kxaZZs3B9yYoV4WLFH35IOpFzzlXKC0kx2mKLcOX7G2/A+ecnncY55yrlhaRYHXIInHFGuGDxsceSTuOccxWKvZBI6iJpoqQlkhZIGiop10i/ubbtLelNSUslLZL0gqQWdZ05MddcA7/9LRx7LMyalXQa55zLKdZCIqkNMAEwoBcwFDiHMJx8vm2PBx4kTI61D3A88AEJjGAcm3XXDfOXNG4cJsNaujTpRM45t5a4P4RPApoBvaOJrMZL2gAYIunqzMmtMklqR5i35HQzuzPjrifqPHHSOnWCe++FP/wBzjwTbr896UTOObeGuA9t7QOMyyoYYwjFZbdKtjss+nlPXQUravvvH+YuueMOuP/+pNM459wa4i4knYEZmSvMbC6wJLqvIjsCM4HjJM2TtFzSG5J2rruoRebyy+H3v4cTT4Tp05NO45xzP5LFOG+4pOXAeWZ2Y9b6ecC9ZnZRBduNA3YGvgHOBxZFP3cAtjCzhTm2GQgMBGjfvn3pmDFjqpW5rKyMli1bVmvb2rbuF1+ww8CBLN9gA9667TZWNmu2VptiyptPmrJCuvKmKSukK2+askLN8nbr1m2ame2Qt6GZxbYAy4FBOdbPB4ZVst14Qgf93hnrNgAWA5fl+7ulpaVWXZMnT672tnViwgQzyax/f7NVq9a6u+jyViJNWc3SlTdNWc3SlTdNWc1qlheYagV8tsd9aGsx0DrH+lbAV5Vs92X086XyFRb6WaYBXWorXCrssQcMGQIPPAB33ZV0Gueci72QzCCrL0RSR6AFWX0nWd4n7JEoa72AhjdH7cUXw557wumnw9tvJ53GOdfAxV1Ingd6Slo/Y10fYCkwpZLtniUUjW7lKyS1AkqBf9dBzuLWuHHYI2nXLlxf8vXXSSdyzjVgcReSkcAy4HFJPaIO8SHA9ZZxSrCkWZJGld82s6nAU8AoSUdL2g94mtDncmucT6BobLQRjBkDs2fDccdBjCdNOOdcplgLiZktBvYAGgPPEK5ovwEYnNW0SdQm0xHAk8D1wFhCEekePWbD9LvfwfDhYSyum29OOo1zroGKfXgRM5sOdM/TpiTHujLg5Ghx5c45J8yqeNZZMHw4uy1cCJttBsOGQf/+SadzzjUAPvpv2knhyneATz9FZmFCrIEDQz+Kc87VMS8k9cEVV6zdR7JkSTi7yznn6pgXkvpg7tyqrXfOuVrkhaQ+2Gyzqq13zrla5IWkPhg2DJo3X3u9T9PrnIuBF5L6oH//MMR8p06YBB06QJMm4bTglSuTTuecq+e8kNQX/fvD7NlMmTQJFiwIhWXSJLg07+STzjlXI15I6qtjjoEBA8I8JuPGJZ3GOVePeSGpz269FbbeGo44AubNSzqNc66e8kJSnzVvDmPHwvffQ58+sHx50omcc/WQF5L6bqut4M474bXX4MILk07jnKuHvJA0BH37wimnwHXXwVNPJZ3GOVfPxF5IJHWRNFHSEkkLJA2VlD3Sb/Y2JZIsx1K9idgbouuvh9JSOPpo+PDDpNM45+qRWEf/ldQGmABMB3oBPwOuIxS0PxXwEOcCr2bc/qK2M9Zb660HjzwC228Phx0Gr7wCTZsmnco5Vw/EvUdyEtAM6G1m481sJGFOkrMlbVDA9jPN7PWMZVadpq1vNt8c7rkHpk0Lw88751wtiLuQ7AOMy5wNERhDKC67xZylYerVKxSRESPCDIvOOVdDcReSzsCMzBVmNhdYEt2Xz92SVkr6RNL1kprVRch678orYeed4YQTYObMpNM451JOFuNc35KWA+eZ2Y1Z6+cB95rZRRVs1wG4GHgR+AbYHfgj8KKZ9apgm4HAQID27duXjqnmt++ysjJatmxZrW2TUGje9T7/nB2OP55lbdvy1ogRrEqgv6S+vrbFIE1ZIV1505QVapa3W7du08xsh7wNzSy2hTDP+qAc6+cDw6r4WCcDBmybr21paalV1+TJk6u9bRKqlPeFF8wkswED6ixPZer1a5uwNGU1S1feNGU1q1leYKoV8Hkc96GtxUDrHOtbAV9V8bHGRj+3r1GihqxnT/jTn2D0aLj77qTTOOdSKu5CMoOsvhBJHYEWZPWdFMCyfrrqGDwYunULFyy+807SaZxzKRR3IXke6Clp/Yx1fYClwJQqPtYh0c9ptRGswWrcGB58EFq3hkMPhW++yb+Nc85lyFtIJB0lqW0t/b2RwDLgcUk9og7xIcD1lnFKsKRZkkZl3B4i6TpJvaPthgI3AI+bmX+NrqlNNgmnAs+aBQMHQownYDjn0q+QPZK7CVegE516+9vq/jEzWwzsATQGniFcjHgDMDiraZOoTbkZhOtM7gaeA/oB10Q/XW3Ybbcwd8nDD4drTJxzrkCFDJGyGPhJ9LuoYZ+EmU0HuudpU5J1ewzhwkVXl/74xzB0yllnwW9/C7/5TdKJnHMpUEghmQDcJ2kmoYiMlvRdRY3NrNp7LC5hjRrBvffCdtuF8bjeegvatEk6lXOuyBVSSI4FTgG2Ipxq+xHweV2Gcglq2zYM7rjrrmGq3iefBCnpVM65Ipa3kJjZEuBaAEk9gIvN7N91HcwlaKed4Jpr4Mwzwxwm556bdCLnXBEr5KytlZLKD5a/RBiixNV3Z5wBBx8MF1wAr76av71zrsEq5KytH4D1ot+PAjaquziuaEgwahSUlIT53j/3o5nOudwK6SOZDgyR9CThrK1DJFU0iJeZ2W21ls4lq1UrePRR6NoVjjgCnnsuXMDonHMZCikkpwO3E673MMIshRUxwAtJfbLddnDzzXDiiTBsGFxySdKJnHNFJu+hLTN7zcx+aWbrEPZIdjKzRhUs/nW1PjrhhLBHMmQITJyYdBrnXJGp6lhb3QiHulxDIsFtt0HnztCvHyxYkHQi51wRKeTQ1o/MbAqApB2B3wEbAl8Cr5jZG7UfzxWNli1h7Nhwtfvhh4c9kyZVevs45+qpKu2RSGoh6TngNeBKwsWKVwKvSfqbpOZ1kNEViy5d4Pbb4eWX4c9/TjqNc65IVPXQ1tVAV6Av0NTMOgBNo9tdgatqN54rOkccEfpMhg+HZ59NOo1zrghUtZAcDPzRzB41s1UAZrbKzB4FLgAOzfcAkrpImihpiaQFkoZKKriTXlIjSdMkmaT9q5jf1Yabb4Ztt4WjjoI5c5JO45xLWFULSSvg4wru+xjYoLKNJbUhDAJpQC9gKHAOYTj5Qh0P/F8V2rva1rRpuL5kxYowuOMPPySdyDmXoKoWkn8DJ0trjuIX3T45ur8yJwHNgN5mNt7MRhKKyNmSKi1C0d9pAwwDLq5iblfbfv7zMM/7P/8J552XdBrnXIKqWkguAnoCMyQNl3SWpCuB94G9ovsrsw8wLnM2RMI8I80IE1flcxnwKuAXMxSDgw+GQYPCoa6xY5NO45xLSJUKiZlNArYD3ib0hwwDDgPeArY3s8l5HqIzYbbDzMecCyyJ7quQpF8Bx1D5lfUubldfDTvuCMceCx98kHQa51wCZDHOzy1pOXCemd2YtX4ecK+ZVbhHI2kK8IaZnS+phDAvyh/MLOepQ9F88AMB2rdvXzpmTPUmWCwrK6Nly5bV2jYJSeRdb+FCdhg4kGUbbcRbt97KqvXWy78R/trWpTRlhXTlTVNWqFnebt26TTOzisZWXM3MCl4I85J0qco2WdsvBwblWD8fGFbJdn2BT4ENotslhA77/Qv5u6WlpVZdkydPrva2SUgs77PPmoHZCScUvIm/tnUnTVnN0pU3TVnNapYXmGoFfMZW5/TfdyX9U9JJklpVcfvFQOsc61sBX+XaQNI6wDWEa1QaSWrN6rPDWkhav4oZXF3Yb78wd8mdd8J99yWdxjkXo6r2kfwU6EHo57gG+ETSg9HMiYWYQVZfiKSOQAuy+k4ytAA2Ba4nFKLFrD47bAyhv8YVg8suC1P0nnQSvPde0mmcczGp6h4JZjbZzI4COhCGmN8UGCdpjqRLJW1eyebPAz2z9iL6AEuBKRVsU0YYLDJzOTy67yKgf1Wfg6sjTZrAmDFhXK5DD4WysqQTOediUOVCUs7MysxsFDCYcEpuR+BC4L+SnpLUKcdmI4FlwOOSekQd4kOA6y3jlGBJsySNiv7OCjN7KXMBXo+avms+WGRx6dABHnoIZswIeyYxnszhnEtGtQqJpBJJgyV9CLxI2Gs4FFgfOIDQGb7WaVJmthjYA2gMPEO4GPEGQjHK1CRq49Koe3e49FJ44IHQZ+Kcq9eqNA64pCMJ13LsCswF7gbuNrN5Gc2ek/QdYSiUtZjZdKB7ZX/HzEry3D+bMMmWK1YXXwyvvAJnnAE77ADbb590IudcHanqHskdhNNwe5rZ5mZ2WVYRKfdf4PIap3Pp1agR3H8/tGsX+ku+/jrpRM65OlLVQvITM+tnZpUOUWJmn5hZVQZidPXRRhvBww+HEYKPPdb7S5yrp6p6+u/iugri6qlddoGrroLHH4ebbko6jXOuDlS5s11SH0kTJM2V9Fn2UhchXcqdfTb06hVGCX799fztnXOpUtWpdvsB9wCzCNePPA08Gz3ON8AttR3Q1QNSGHJ+003D/CWLFiWdyDlXi6q6R3IeYSj3U6PbI8zsWOCnwBeEUXydW1ubNmEyrIUL4cgjYdWqpBM552pJVQvJFsCrZrYSWEk05pWZfUsYC+u02o3n6pUddoAbboDnn4e2bdmte3coKQnXmzjnUquqheRroHyM8PnALzLuE9C2NkK5eqxVK2jcGL76CpmFM7oGDvRi4lyKVbWQTAV+Ff3+NHCJpBMkHU0YxNGHK3GVu/hiWLlyzXVLloT1zrlUqtKV7cCVQPkYWpdEv48gDGfyJtFEUs5VaO7cqq13zhW9ggqJpGbAvoQxtD6V1N7MFgK9JK0HrGdrzsPuXG6bbRYOZ+Va75xLpbyHtqJh4d8DHiUcvroPmClpLwAzW+ZFxBVs2DBo3nzt9YcdFn8W51ytKKSP5GpgFfB7oDmwNWEyqdur8wcldZE0UdISSQskDZVU6Ui/kraW9ELUfll0MeRdkjpUJ4NLUP/+cMcd0KkTJkHHjuH6kr/+FT7+OOl0zrlqKKSQdAX+ZGavmtn3ZvY+cCKwWVU/yCW1IYwKbEAvYChwDmE4+cq0Aj4CzgV6Eoad70EYabiq/Twuaf37w+zZTJk0KfSNTJgAy5ZBnz6wfHnS6ZxzVVRIIekAfJi17n+E0303qeLfOwloBvQ2s/FmNpJQRM6WtEFFG5nZa2Z2spk9GE1udTdwArAtq88ic2m11VZw113wj3/AhRcmncY5V0WFnv5bW8O27gOMy+pTGUMoLrtV8bHKx9lYtzaCuYT16QOnngrXXQdPPpl0GudcFRRaSMZlDcz4SbR+YhUHbewMzMhcYWZzCUOrdM4XQlIjSetK2goYTjjl+J8FPgdX7K67DkpLYcAA+DB7J9g5V6xkeeaIkJQ9DW6lKpuHRNJy4DwzuzFr/TzgXjO7KE+WFwh9JADTgH3NLGfxiuaDHwjQvn370jFj1pr5tyBlZWW0bNmyWtsmIU15c2Vt+sknlA4cyPcdOvD2Lbewat3i2eFM+2tbzNKUN01ZoWZ5u3XrNs3Mdsjb0MxiW4DlwKAc6+cDwwrYfgtgR+AIwp7NNKBpvu1KS0utuiZPnlztbZOQprwVZn3qKTMwO/nkWPPkUy9e2yKVprxpympWs7zAVCvgs73K85HU0GKgdY71rYCv8m1sZh+Y2Rtmdj9hz2Q7oF/tRnSJO+AAOPdcuO02eOihpNM45/KIu5DMIKsvRFJHoAVZfSf5mNkc4Etg81pL54rHFVeE2RVPOAFmVOmt4ZyLWdyF5Hmgp6T1M9b1AZYCU6ryQFGHe1vC9SWuvllnHRgzBpo1g0MOCQM7OueKUtyFZCSwDHhcUo+oQ3wIcL1lnBIsaZakURm3r5U0XNJBkrpJOgUYR7iepXq96K74bbppGF5++vRwarBzrijFWkjMbDGwB2G04GcIFyPeQLhSPVOTqE25qYQhWkYBfwPOAB4DdjKz7+o4tkvSXnvBn/8Mo0eHYVScc0Un9uFFzGw60D1Pm5Ks22PwPY+G65JL4JVXwl7JDjvAr3wwA+eKSdyHtpyrusaN4cEHw7zvhxwC3/hg084VEy8kLh3atw+d7//7XziTK8+FtM65+Hghcemx665hPpNHHoERI5JO45yLeCFx6XL++bDffnDWWfDmm0mncc7hhcSlTaNGcM890KEDHHooLF6cdCLO/MjgAAAgAElEQVTnGjwvJC592rYNh7cWLICjj/b+EucS5oXEpdOOO8K118Izz4SfzrnEeCFx6XX66XDwwWFWxVdeSTqNcw2WFxKXXhKMGgU//WmYYfHzz5NO5FyD5IXEpVurVvDoo7BoEfTvDytXJp3IuQbHC4lLv223hb/8BcaPD9eZOOdi5YXE1Q/HHw9HHglDhsCECUmnca5Bib2QSOoiaaKkJZIWSBoqqXGebX4j6e5oePklkmZKGiypaVy5XZGTwoyKv/gF9OsXTg12zsUi1kIiqQ0wATCgFzAUOIcwnHxl+gA/A64C9gVuBc4GHqizsC59WrQI/SXffQd9+8KKFUkncq5BiHsY+ZOAZkDvaCKr8ZI2AIZIujpzcqssV5lZ5ik5L0n6HrhdUqdo2l3noEsXuP32cJjrT3+C4cOTTuRcvRf3oa19gHFZBWMMobjsVtFGWUWk3NvRz41rL56rF444AgYOhKuugmefTTqNc/Ve3IWkMzAjc4WZzQWWRPdVxc7AKmBm7URz9cpNN4WzuY46Cub4DqtzdUkW4zhFkpYD55nZjVnr5wH3mtlFBT7OJsA7wHNmNqCCNgOBgQDt27cvHTOmehMslpWV0bJly2ptm4Q05a3rrM3mz6f0xBNZ0rEjb998M7bOOjV6PH9t606a8qYpK9Qsb7du3aaZ2Q55G5pZbAuwHBiUY/18YFiBj7Eu8DLwIdCmkG1KS0utuiZPnlztbZOQpryxZH3sMTMwO+OMGj+Uv7Z1J01505TVrGZ5galWwGds3Ie2FgOtc6xvBXyVb2NJAu4Ftgb2NTMfQ9xVrndvOPNMuPlmGDs26TTO1UtxF5IZZPWFSOoItCCr76QCNxBOG+5lZoW0dy50uu+0Exx7LHzwQdJpnKt34i4kzwM9Ja2fsa4PsBSYUtmGki4ETgeOMDMf6tUVbt114eGHYZ11wmRYS5cmnci5eiXuQjISWAY8LqlH1CE+BLjeMk4Jjq5gH5Vxux9wBeGw1nxJO2UsG8X7FFwqbbYZ3Hcf/PvfcMYZSadxrl6JtZBEfRp7AI2BZwhXtN8ADM5q2iRqU26v6OcA4B9Zy351l9jVK/vuG+YuuesuuPfepNM4V2/EfWU7ZjYd6J6nTUnW7QGEIuJczQwdCq+9BiefDKWlsPXWSSdyLvV89F/XsDRpAg89BOuvH/pLysqSTuRc6nkhcQ1Phw6hmMycCSeeCDFelOtcfeSFxDVM3brBpZfCgw/CnXcmnca5VPNC4hquiy6Cnj3DWVxvvZV0GudSywuJa7gaNYL774d27UJ/yddfJ53IuVTyQuIatnbt4JFHYO5cOOYY7y9xrhq8kDi3885hAqwnngjDzzvnqsQLiXMAZ58NvXrBeefB668nnca5VPFC4hyABKNHQ8eOcNhhsGhR0omcSw0vJM6Va90aHn0UFi4Mc76vWpV0IudSwQuJc5lKS+HGG+H558Pw8865vLyQOJftpJOgb1/405/gpZeSTuNc0Yu9kEjqImmipCWSFkgaKqlxnm3WlXSNpL9LWirJz9F0dUeCO+6ALbaAww+HTz9NOpFzRS3WQiKpDTABMMJMh0OBcwjDyVemOXA8sAR4rS4zOgeEQR3Hjg0XKXbvDp06sVv37lBSAg88kHQ654pK3HskJwHNgN5mNt7MRhKKyNmSNqhoIzP7CtjQzHoCT8QT1TV422wTOt3ffx/mzkVmMGcODBzoxcS5DHEXkn2AcZmzIQJjCMVlt8o2NPNLjl0Cxo1be92SJXDxxfFnca5IxV1IOgMzMleY2VzCIavOMWdxLr+5c6u23rkGKO4ZEtsAX+VYvzi6r9ZE88EPBGjfvj0vVfPsm7Kysmpvm4Q05U1D1p023pimCxeutX5F06a88dRTLG/VKoFU+aXhtc2Uprxpygox5TWz2BZgOTAox/r5wLACH+M0oiNdhS6lpaVWXZMnT672tklIU95UZL3/frPmzc3CcI5hadLETDJr08ZsxAizFSuSTrmWVLy2GdKUN01ZzWqWF5hqBXzGxn1oazHQOsf6VuTeU3EuWf37h1OBO3XCJOjUKQyl8u67sO22cMop8JvfwD/+kXRS5xITdyGZQVZfiKSOQAuy+k6cKxr9+8Ps2UyZNAlmzw63t94aJk6Ehx+Gzz4LIwgPGBCGV3GugYm7kDwP9JS0fsa6PsBSYErMWZyrGSkM8DhjBlxwQZi2d8stw1D0K1Yknc652MRdSEYCy4DHJfWIOsSHANdbxinBkmZJGpW5oaR9JB0CbBvdPiRaOsUX37kcWraEK6+E//wHunaFM8+E7baDKf7dyDUMsRYSM1sM7AE0Bp4hXIx4AzA4q2mTqE2m24BHgeOi249GS7e6yutclWy5ZRjs8Ykn4NtvYffdoV8/WLAg6WTO1anYx9oys+lm1t3MmplZBzP7s5mtzGpTYmYDcqxTjmV0nPmdq5QEBx4I06fDJZfA44/DVlvBNdfADz8knc65OuGj/zpXF5o3h0svDQWlWzc4/3z49a9hwoSkkzlX67yQOFeXNt8cnn4ann0Wli+HPfeEQw7xK+NdveKFxLk47Ldf6Iy//HJ47jno3BmGDYNly5JO5lyNeSFxLi5Nm4bBHmfMgH33DRNnbbNNKCzOpZgXEufittlmYa6TF1+Exo3D3soBB8CHHyadzLlq8ULiXFL23BPeeQeuvhomTYIuXWDwYFi6NOlkzlWJFxLnkrTuunDeeTBzJvTuDUOHhoLy5JNhiEjnUsALiXPF4P/+Lwyx8tJL4Ur5gw4K/Sj//W/SyZzLywuJc8Vkt93grbfgxhvhtddCZ/yFF8J33yWdzLkKeSFxrtissw4MGhT2Rvr1g+HDw+nCjzzih7tcUfJC4lyxat8+zH3y6quw0UbQpw/06BGulneuiHghca7Y7bwzvPkmjBgBb78dhlo55xz45pv82zoXg9gLiaQukiZKWiJpgaShkrJH+s21XStJd0taLOlrSQ9IahtHZucS17gxnHxyONx1zDFwww1hMMj77/fDXS5xsRYSSW2ACYABvYChwDmE4eTzeRjYHTgeGAD8BniyLnI6V7TatQtT/77xRriw8cgjYddd4d//TjqZa8Di3iM5CWgG9Daz8WY2klBEzpa0QUUbSeoK9ASONrPHzOwJ4Ajgd5J6xBHcuaJSPk/8XXeFIVe23x5OPx3uvBNKStite3coKYEHHkg6aeUeeCA9edOUFeLNa2axLcDLwJisdZsR9lD+UMl2Q4FPc6z/ELgu398tLS216po8eXK1t01CmvKmKatZEeddtMjs1FPNwkGuNZfmzc3uvz/phLndf3/Il4a8acpqVmt5galWwGd7k7orUTl1BiZlrjCzuZKWRPc9U8l2M3Ksfz+6z7mGa8MN4ZZbwiRan3yy5n1LlsCAAXDFFYlEq9R//7v23PbFmjdNWaHivBdfDP371/qfi7uQtAG+yrF+cXRfdbbbPNcG0XzwAwHat2/PSy+9VKWg5crKyqq9bRLSlDdNWaH48+726acox3pbsYLPN9oo9jz5bDR9emrypikrVJJ37lym1MV7uJDdltpagOXAoBzr5wPDKtluPPBEjvUPAK/m+7t+aKs4pSmrWQryduqU+/BWp05JJ8stTXnTlNWs1vJS4KGtuDvbFwOtc6xvRe49jnzbtc6znXMNx7BhYYrfTM2bh/XFKE1505QVYs8bdyGZQVafhqSOQAty94FUuF2kor4T5xqe/v3DqcGdOmESdOoUbtfBMfFakaa8acoKseeNu5A8D/SUtH7Guj7AUmBKnu02kfS78hWSdiD0jzxfF0GdS6X+/WH2bKZMmgSzZxfvB125NOVNU1aINW/chWQksAx4XFKPqEN8CHC9mf043oOkWZJGld82s38A44B7JfWWdCChf+QVM5sQ6zNwzjm3hlgLiZktBvYAGhNO9b0UuAEYnNW0SdQmU1/CXstfgXuBacBBdZnXOedcfnGf/ouZTQe652lTkmPdV8Ax0eKcc65I+Oi/zjnnasQLiXPOuRpRuOakfpP0OTCnmpu3A76oxTh1LU1505QV0pU3TVkhXXnTlBVqlreTmeW9dL9BFJKakDTVzHZIOkeh0pQ3TVkhXXnTlBXSlTdNWSGevH5oyznnXI14IXHOOVcjXkjyuyPpAFWUprxpygrpypumrJCuvGnKCjHk9T4S55xzNeJ7JM4552rEC4lzzrka8ULinHOuRryQOOecqxEvJM4552ok9tF/Xe2IZpbcFxDwqJktkrQpcC7wM2A2cIeZvZtcSpD0R+C5pHMUSlIzoImZfZuxbiPgNKALsAr4FzDCzL5OJqVzxcVP/41IEmF+k/2AXwAbAiuBhcDrwGgz+29yCVeT9FvgRaAlsAL4EugJPEfI/B6wDbAJ0MPM/p5QVCStAowwJfKDwMNmNiupPPlIeg74wMwGRbe7EmbhXEWYA0dAKfAD0N3M3ksw63ZAMzN7LWPd3sCFrC56/waGZLYpFtH/uT8A2xPeI1MJXzqK+kNJ0gaEsau6m9krSeeBHzN1B9YF/mZm30VfgE4lzCT7IeGL5YI6+ftF/m8Wi+gFf47wAbGQMIvj/xHe3M8T/iG2Ai4zs8uSyllO0njC3uRBwHeEycEOJHzQHWJmyyWtBzwJNDWzbglmXQVcBfwS2JOQ+y1CUXnEzOYnlS0XSV8Ax5nZU9Ht1wmv8YHleymSWgFPA9+bWc8Es74OPGNmw6LbxwJ3AZOBSYSitwfwe+Dg8ueUUNbXCK/r+9HtNoQvQ6VAWdSsJeFLW8/MPcIkSDqlkrubAdcANwEfAJjZiDhy5SLp58BEoGO06iNgL2A80Br4H+HzaylQambzaj2EmTX4BXiI8Ib4Zca6nwAvAI9Ft3cjvOGPLYK8i4B9Mm5vTPj2uVdWu/2ALxLOugr4bfR7G2Bg9KZfES0vRevaJv26RhmXALtm3P4h+3XNeG2/SzjrN5nZgFnAX3K0Gwn8u1jeB9HtUYQ96b0z1u0NLAZuKIL3wSrC3v2qCpbM+1YmnPURwp7nzwlHUu6LPs9eA9aP2rSL2txeFxm8sz3YB7jAMo7jW9gFPAk4UFIHM5sCXAEMSihjJouWzNtkrct1O1FmttjM7jCzPYBNgXMIu+IjgQWS/pZowOA/QOYe3ELCf85sbQlFJ0mrsm53AsbmaDeW8I20mBwADDWzF8pXRL8PA3onlmq1p4HPgOOAxmbWqHwhvB8E7B6ty54WPG6/A4aZ2Swz+xL4E6Gf9FqL9uzM7AvgRtZ8b9caLySBCN8wsq2M7msV3X4D2DKuUJWYBpwraX1JjYCLgPnAyZIaA0hqApxC+GAsOmb2qZndZGY7Az8FBhP2ApM2HLhA0rHRazgMuEbSnpLWlbRe1A9xJeGbYJL+DvTPuP0ekGu48N8Q3h/FpDWhTyTbNELfXqLM7EDgaOA84E1Ju2TenUyqCrUBPs24Xf5vnT0H04eEL3C1zs/aCiYAl0t6x8w+hB+P4d5M+Acq72RvCRTDmToXE45/fkk4PLSE0NE2FvhAUnln+08IhwuKmpnNIXyADy+CLI9LOp3w7e0GYCbhi0T5N2cjfLl4mvAhk6SLgFejLxN/IXSy3yNpQ8IhQwh9JGcCFySScE0HSyovdIuBXBMmtSMcskucmb0o6VeE1+9vkl4gnBWZaP9NDp8R9kbLrQRuJ+xNZ9qYOsrune1AdNrsC4Td/zmE4+I/JXS6H25mz0ftribMGNYnqazlosz7E74MPGZmn0jaBDif1c/jLjN7K8GYSBoM3Gl1dLZIXZHUFugD/JbwDbkRoXC/DzxrZtMSjPcjSdsCtwE7srrIkfH7YsIhpJuSSRhEJ11kG21mx2a1ux3oYma/jydZYaL/W1cTDrvdTigu3czs5USDAZKeBL7Mfi1ztPsL8Asz61HrGbyQBNEhocOAXwNNCR2XD0bHHJ0rapJ+QSgm2UXvNTNbnmS2qpB0AvA/M5uUdJZcotPBbyB8WdvPiuC0akntgeZm9lGedmcTTrqYWOsZvJDUP5Iam1muPp+iIakpoUNwFTCrGD/soj6Szcm4psjM5iabyrni453tWSRtLelgScdLOi76feukc2WT1FvSk5Kek/SHaF0fSbOBHyTNib7dJUrSEdH1DeW3m0gaTvjG/A7hZIAvJRXDMXwAJJVKeppwPPl94FXC9Q0fSZovaaik5omGrEcUSTpHLpKaZf9bS9o2+lwoTSpX0Uny/OdiWoBjCf0Kuc4dX0kYcuSYpHNGWQ+Lcr0CPEXobD+B0LczinA160NR7p4JZ50OnJxx+7oo75+BXQinLg4hXCx1URG8tnsR+samEs7MGkK4KPWHKPM5hLOj/gW0KYK8+xOuy3kXeJiMa2Ay2uxI8tc67EV0TUPGugMJF6euAJZHr/l+Sb+mUbZWwBNRrhXAnUBj4J6sz4VXgXZJ5y3wOR1cV++DxJ9cMSzA6dEb5lbCVcDtojdN4+j33wG3RB8wpxZB3jeBkRm3+0fZrstqdzcwIeGsS4DdMm5/BgzK0e5cYE4RvLbTgHsqeI/MJuzFN40+AEcknHXPjA+zW6LsK6NirYx2xVBIVrLmBYkHRR/Gr0X/9udGv68gxwWgCeS9mTAMyunAUdGXh8eAj6OiuBHh+rP5wG1J5y3wOdVZIfE+EkDSh4QP5qvztDsfOMnMNo8nWYU5vgF6m9mE6HYrwtk5PSyjkzI65HW7mSV2fYakT4DTzOyx6PYywl7SS1nt9gSeNrNm8adcI8dS4AAzG5+1vg1hRIGtzex9SUcBV5lZhyRyRpleIYwLdkzGumMJH4LjCWccfi9pR0Kne2IXzkVnbe1kZv+Mbr8FzDezP2S1ew5oYWa7JRAzM8dHwBVmdmd0eztCoT7GzO7JaHcCYU/6p8kkBUl/LbBpJ8JFlLX+PvA+kmAT4J8FtPsnRXCxFOHUzsw3Q/lYRV9ltSsjXPiVpKcJF0+uG92eAByeo93hhG99SfuMcOZetl8TXvfy64jmsPpC1aRsA9yfucLM/koYzmcnYFJ0TUkx2oZwGm22OwiDOCZtY1ZfPwbRmFqEcasyzSL39TBxOpqwl/TLPEunih6gpvyCxOAd4ARJL5tZrvPdy0cqPSFqm7Q5hNFdxwGY2crotMT3s9ptzppXvCbhQsIV2P+RdBfwDHCVpG1YfdFcd2A7wkiwSbsDuExSC0Lfww+EK8MvBibb6uthNgeSPoPre6BF9kozmxZdiT2OcLhoSMy5KpJ5+ONrVn8ByvQdxfEF9yNCQZ4S3f494VDczoS+yXK7kPz74APgn2Z2VGWNJB1C6EerdV5IgnMIFyROl/Q4Ycjzrwhv/NZAZ8Ix3U0pjivFHydrqAMzeyNHu36s+aaPnZl9KWknwgfx2YRvegBdo+UHwmGY35vZm8mkXM3MhkWHYS4gDNsC4X3wEOEitHLLCWOvJekdwnH6p7PvMLMPo2LyHDA65lwVGSdpRfR7K2BbVn+ZKNcZ+CTOUBUYCdwk6ZeEoncY4UvRJZJaEgZA3B44C0h6RPDXCQUun8wLVmuV95FEJP2McFX43qwejrncx4Qzd64xs+xd26IlaTPgKzMriiEnACSVsOZFc/+z4ryGZB3CdS5NgQ+L6TUsJ+lEwjAp21kFF85Ge1ZPEPrPEvumH41wkO0DM3swq91L0fpiOHX9DMIh13UIo0SMlHQ4oQ+qfNDOO4A/Jvkejk5D3sXMbs7Trh2hj29KZe2qlcELydqi88bL+xa+MrOkR3l1zhWJ6DB3OzP7POksxcILST0T7Xa/BfQvhkNFSuHUtUrJNMbOFQsvJBmiD5CNgZlmtlZHYLRruK+Z3Rt7uDVz7FvJ3S0IHWoXEA0hb2bPxZErF6Vo6lpI1zTGhYrG4TrUzIYmnCPR6WBrKtoTyZwaeBrheST+IaowqvLBhP9Po81shqRfA5ey+svPrZYx/0utSvoimWJYgPWARwkfFCsJHamjgFZZ7RK/sCvKkabZ274AemXcfp1wNtT6GetaEc6OGVcEr+14wlS1rQnHxm8B5hFGEFgn4/3yPOEsrsTfvwU8pzq7EK0KGX5OONuw/H35P8IH3IeEYv0mYfj4hcCmRfCavUYYKbf8dpso46oo5zesvqBy/aRyRtl6Er6IfRq9rt8QJrBaTLhY9dbo/91KwpTRtZ8h6X+wYliASwhnaZ1AmBhoUPSG/gDYIqNdsRSSaYQzW44hnBueufwqeoMfVr4u4aypmbo2ypGmaYw3K3A5Ken3LUUwHWwV86ZmauCoWDxKmMkRwgkYi4FRWe3uA16vkwxJ/4MVw0I43fe0rHWbAC8DnwNdo3XFUkhEmOf8M8KwDT/NuK9V9J9grTGXEsr6T2Bwxu2Pgb452h0FfF4Eeb/I+rDYKHo998xqt28RFJLyvc98SzHsmS4ADsu43SnK1Tur3THAf4vgfZBdSD4HzszRLvGhfQinJ/fIuN0myt89q91ehJOHaj2DX0cSdCTrQkMz+1TSHoQqPkFSf4rj/HYsvCvukPQIcDnwjqRbot+LzXDgAUkfA/eyeuraRYTDWSLshhfD1LWwehrjVwkXx2VOYzzJwsWfxTKN8bfAJOCuPO1+Rzi1PUmJTwdbQ8U8NfBS1rwwtfz37OGGmhMuYq11XkiCBcAWhD2QH1k4N7yvpBsJu46JdrJnM7OvgNMk3UE4t/0D4CqKaE5pS9fUtZCuaYz/SejH+1tljaK5X5KW+HSw1ZCWqYFfJVwo+UGU5VrCqNt/jEbr+DYaj+98QuGrdX7WFj8Oera5me1eSZsLCd+mzRIc/K4ykvoSpgPdlDA4W+LTgJZTSqauhVRNY/xnYKCZZV9Am91uV+BSM+sWT7KcGRKfDrYqlKKpgSX9nDCGXfn7YDZhL38sYaSAOUAJ4YtRNzP7V61n8ELy46lzfYDhZraoknb9CMfKj6moTdKiwy4tgDIr8lkSXcOhIpgOti6oSKYGjq4f24VwpuFEM1saXVh9PKu//DxoZvPq5O97IXHOOVcTxTDKpqsjku6UNCrpHIVIU1ZIX17n6pJ3tleBpDuBRmZ2XNJZCtSN9HxZSFNWSFFeSRMIRx/2SDpLPmnKCunKW5dZvZBUTWo+PADM7OdJZyhUmrJC6vKK9Lxv05QV0pW3zrJ6H0k9Fp32ubGZJT3xTl5pygrpy+tcXUpLJS0KkppGc3ykxX6Emd7SIE1ZIUV5Ja2TlvdtmrJCuvLWZVYvJFWTmg8P1zBIOlXS/yR9K+kNSUfmaLY9RfC+TVNWSFfepLN6H0kKSSr0nPVcV+LGKk1ZIV15owtQ/0KYBvhtwnUEoyX1Ao40s6VJ5suUpqyQrrzFkNX7SKjyh0eXpK9sV5j3eiZhGITK/B+wY5J505QV0pVX0lRgkpmdn7FuD+ABwtXN+1mYlGtH4DXPWrg05S2GrF5ISNeHB4CkfxEm3+qTp90hwMMJv8lTkzXKkZq8kr4F/mBmL2WtLyHMl9IY2IcwHlTSH3apyQrpylsMWb2PJPgP8B8zO7SyBbg+6aCRN4CdCmhXPiBiktKUFdKV92vCh8MazGw2sDNhSPzXgN/EGyunNGWFdOVNPKvvkfDjwGt7m1mnPO0OJszhnWgBlvQzYGszezpPu2aEU1Szh+qOTZqyRjlSk1fSU8C3ZnZEBfc3Iwzctw8JDzaapqxRntTkLYasXkhI14eHc+UkHQqcBexvZl9W0KYxcBthsNGfxpkvK0dqskZZUpO3GLJ6IXHOOVcj3kfinHOuRryQOOecqxEvJK5BkTRA0rToCuDFkt6WVCdn40naUtIQSa0LaDtEkmUsCyQ9FvXf5dt2QLRNy9pJ7lzVeCFxDYbCdMl3AeOA3sBRwFPAAXX0J7cEBgN5C0nka6BrtJwLbAtMlNQiz3Z/i7ZZUs2cztWID5HiGpLTgNvN7KKMdc9IujSpQFlWmNnr0e+vS5oL/B3YF3g0u3F0Jk5jM/sc+Dy+mM6tyfdIXEPSGvg0e6VlnLooqSQ6TNRP0n3RIbDPJA3O3k5S92iAvO8lLZQ0ovzwkqTdgWeiph9Fjzm7inmnRT9LosccLWmqpAMlvQd8D+yY69CWpGaSrpY0R9IySR9JujIr//GS3ovunyPpfJyrBt8jcQ3JW8Dp0Tf9Z81sUSVtrwGeBQ4BdgUGS/rCzG4FkNQFeAEYDxwMdASGA5sDe0d/61zgWsJhtE+AZVXMWxL9/DRr3dXAUGAhYTTXNfpRJIlwyK4rcBmhIP0f8PuMNucBV0SP9RJQClwmaYmZ3VLFnK6hMzNffGkQC/Ar4EPC8CargPcIH8gbZLQpie5/MWvbO4H5hKmWAcYAHxAOLZW3OSzatmt0e//odkkB2YYQhrJoEi1bApOBb4AOUZvR0eNtm7XtgGh9y+h2z+j2ARX8rQ2AMmBw1vqhhKLVOF9eX3zJXPzQlmswzOwd4BeEzvURhLGy/gxMzXHG0xNZtx8HfgJsGt3+LfCEma3MaPMYsAL4XTUjtgWWR8tMwt5NHzP7JKPNfDP7V57H6Q58aRWP1NAVaAE8KqlJ+QJMAtqz+jk6VxA/tOUaFDNbRui7eAZA0nGEM7mOA27KaPpZ1qbltzsAc6OfC7Mee6WkRcCG1Yz3NdCDsDfxKbDAzLKHnli41lZra0s4lFaR8gH+3qvg/o6ADwPkCuaFxDVoZjZK0tVA56y7Nq7g9icZP9doE51F1RbIOd5RAVaY2dQ8bQoZ02gRodBVpDzf/uQuTDML+BvO/cgPbbkGQ1J2cUDSRkAr1v5APSjrdnmH+bzo9hvAQVHxyGzTBHgluv1D9LNpDWJXx0RgQ0n7V3D/P4ClwE/MbGqO5dv4orr6wPdIXEPybjTk9ouEQ1WdCGdWLQHuyWq7dTS9wGOEs7aOAwaZ2aro/ssJ05o+Kek2Qr/CVcA4M/tH1Kb8m/2JksYAS8zs3bp5amsYT7jo8kFJQwlnkP5sLIQAAADXSURBVHUAdjWzE83sK0lDgJskdQJeJnyp3BLoZmbZRdS5SnkhcQ3JUKAXcDOhH+NTwoQ/fczso6y25xMO/TxGuF7jMuDH02LN7D1J+xBOoX2ccHbVQ9F25W3mSDoXOAM4nbA3U1IXTyyTmZmkg6LMZxKmiF4APJjR5mpJCwjDj59DeI7/BR6u63yu/vFh5J3LEE1P+hFh6tJnk03jXDp4H4lzzrka8ULinHOuRvzQlnPOuRrxPRLnnHM14oXEOedcjXghcc45VyNeSJxzztWIFxLnnHM18v+Uexx1pZGDtAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XeYVPXZxvHvDag0KTZEQVaSGGPUN4qNqDGgBimKgoJKVCygxhYVK1EQxIK9xIKiqEGxYEHEgoIkdkGTGBE7IM2CKOBaKM/7x++MDMNsmS1z5uw8n+uaa3fOnLN77zDMM+f8mswM55xzrqrqxR3AOedcsnkhcc45Vy1eSJxzzlWLFxLnnHPV4oXEOedctXghcc45Vy1eSFzBkjRUkqXdFkgaL+kXMWbaU9Jbkn6QZNG2JpLGSVoc5exfxrFjMv6e1O3OvP4Ra/IMlHRwlu2zJV0dRyaXTA3iDuBcBb4FDoi+bw8MB16Q9Fsz+y6GPLcDXwBdgB+jbScDBwJHA/OBj8s5fhZwbMa2L2o4Y2UNBP4HPJ6x/RBgcf7juKTyQuIK3Uozey36/jVJc4F/Ad2Ah2PIsy0wysymZWx738zGV+L479L+noJkZm/HncEli1/ackkzI/paAiCpo6QJ0WWv7yT9W1K/1M6SNoouQx2T/kMUfCrp2rRtnSW9Hu3/uaRbJDWNHvtjdCmrPnBDdElqjKTZwPHATqlLVVX9w1K/Q9L2GdtflPRI2v0xkqZL2l/Sf6O/+yVJv804rr6kCyR9IOlHSfMkjUn9TKADcEzaJbb+0WPrXNqS1EfSO9HP+UzSCEkN0h7vH/2MHSRNjjLNktSrqs+HSw4vJC5pSqKvi6Kv7YCXgRMIl5fGA3dLOgLAzL4GHmPdy0l/jH7W3QCStgOeAb4CegNDgCOB1Bv4W0DH6Ptrou+HEy4DTSJcsuqYtk+ZJDVIv1Xqr17XVsBVwAjgCGAz4CFJStvnduAS4CGgB3A20CR67C9R5klpuZ8qI++fgAcJz0FP4CZgEHBzlt3vByYQnpcPgXGS2lTxb3QJ4Ze2XMFLe7NtD9wCLAOeBzCzcWn7Cfgn0AYYADwQPTQaeE5SezP7JNp2LDDDzN6J7l8MzAEOMrNV0c/7GnhQUkcze5VwaQ1gdvrlKUlfAq0qecmqA7Ai4+/7lZl9VIlj020E7GlmH0Y/ox6hYP4amCVpW8KZ0hlmdmPacQ8CmNlMSd8BX1Yi9zDgRTNLndU9Ez0Pl0u61Mzmpe17nZndFWWaAXxOKGK35fj3uQTxMxJX6DYmvPGuAN4nFJO+ZrYQQFJLSTdKmpO230Bgm7Sf8QKhSBwTHbMh0IvobCSyG/BYqohExgMrgb1q8O95D9g14/ZZFX7O7FQRicyMvqY+/XeKvo6pws/+maT6wM6s2x71IOH9I/MM7LnUN2a2mNCRwM9I6jg/I3GF7ltgP8AIl7MW2NpTVo8B9iBcZpoJLCX0ouqZ2sHMTNLdwHGShgJ9CK/9+9N+TmvCp2fSjlslaTHh039NKTWz6TXwc77JuP9T9LVh9HVjQsP+0mr+nk2A9ch4btLuZz432XI1xNVpXkhcoVtZ1huvpIZAd+BUM7stbXu2M+27Ce0enYD+wONmtiTt8YWEdob0n1+f8Ib8dXX+gBz8EH1dP2P7RoS2m1wsBppIalbNYvIV4Sxvs4ztraKv+XpuXAHzS1suyTYg9KJKjedIXbY6KHNHM/uMcNnlEsKlqrszdnkdOCQqHim9CB+2XqrZ2GVKtTX8JrVBUltCu0eupkRfjy5nnwrPFqJLfTOAwzIe6gOsBl6tQjZXx/gZiUssM/tW0pvAxZKWEt7YzidcDmuW5ZDRhGv984DJGY9dCrwNPC7pVsJ1/SuBZ6OG9lpnZvOiv2e4pFLCB70LqcKnfjN7X9Io4BpJmxE6IbQADjWzw6PdZgFdJHUhnMF8GrVrZBoCPBtdHhwH7EC4lHhHRkO7K1J+RuKS7kjgU+Be4AZCA/m9Zew7kdB4fo+ZrU5/wMzeBboSLuE8SigsDwCH1k7sMh0JzAX+AVxG6DH1fhV/1l8IZ2B/JnTzvR74Pu3xSwmN/w8BbxK6T6/DzJ4DDgd2AZ4E/kroAn1qFXO5Oka+1K4rFpK6EYrJNlXobuucK4MXElfnSdoC+BVhIN1cM+sRcyTn6hS/tOWKwUDCWJIfgNNizuJcneNnJM4556rFz0icc85VS1F0/91kk02spKSkSsd+9913NGnSpOIdC0SS8iYpKyQrb5KyQrLyJikrVC/vjBkzvjKzTSvc0czq/K1Dhw5WVVOnTq3ysXFIUt4kZTVLVt4kZTVLVt4kZTWrXl5gulXiPdYvbTnnnKsWLyTOOeeqxQuJc865avFC4pxzrlq8kDjnnKsWLyRlGTsWSkrYp3NnKCkJ951zzq2jKMaR5GzsWBg4EEpLEcCcOeE+QL9+cSZzzrmC42ck2QweDKWla28rLQ3bnXPOrcULSTZz5+a23TnnipgXkmy22iq37c45V8S8kGQzYgQ0brzu9kPzvViec84VPi8k2fTrB6NGQbt2mARt24aeW7feCtOnx53OOecKiheSsvTrB7NnM23KlNA28uqrsNlm0L07fPJJ3Omcc65geCGprM03h6efhhUroGtXWLw47kTOOVcQvJDkYtttYcKEMK7koIPg++/jTuScc7HzQpKrvfaCf/wjXOo66ihYtSruRM45FysvJFVx6KFwzTUwfjwMGhR3Gueci5VPkVJVZ54ZLnFdf30YX3LmmXEncs65WHghqY5rroF58+Dss0MXYR9n4pwrQl5IqqN+fbjvPli4EP7859Cza6+94k7lnHN55W0k1dWoUejJ1a4d9OwJs2bFncg55/LKC0lN2HjjMMakQYMwxmTRorgTOedc3nghqSnt28NTT8EXX0CPHrB8edyJnHMuL7yQ1KRddoEHH4S334a+fWHlyrgTOedcrfNCUtN69IBbboFJk+AvfwGzuBM551yt8l5bteHEE8NEj5ddFhrhfWVF51wd5oWktlx6aSgmf/tbGGNy9NFxJ3LOuVrhhaS2SDB6dBhjcvzxsMUWsN9+cadyzrkal/c2EknbSXpBUqmkBZKGSapfieN2kfScpMWSvpb0vKTd85G5ytZfP8zH9ZvfQK9e8J//xJ3IOedqXF4LiaSWwPOAAT2BYcDZwCUVHNc2Oq4BcDRwVPT9c5La1WbmamvePDS8N2sG3brBZ5/Fncg552pUvs9ITgIaAb3MbLKZ3UYoImdJalbOcd2BDaPjnjKzp4BDgKZAt9oOXW1t2oQBi8uXh2LyzTdxJ3LOuRqT70LSFXjWzJambRtHKC77lHPcesBKIH2U3/Jom2o6ZK3YYQd49FF4//1wmeunn+JO5JxzNSLfhWRbYK3JqMxsLlAaPVaW8dE+10jaTNJmwHXAEuDhWspa8/bdNzTAT50Kxx3nY0ycc3VCvntttQSyXddZEj2WlZktkNQJmAicHm1eCHQxsy9rPGVtOuqo0E4yeHBYx+Syy+JO5Jxz1SLL46diSSuAQWZ2Q8b2+cAYM8s6ck9Sa+BfwLvArdHmU4CdgN9HZzWZxwwEBgK0atWqw7hx46qUefny5TRt2rRKx5bJjG2uvZYtJk7kgzPPZMFBB9XYj66VvLUkSVkhWXmTlBWSlTdJWaF6eTt16jTDzHapcEczy9sN+AIYkmX7cuCcco67FpgNrJe2bX1gDnBjRb+3Q4cOVlVTp06t8rHlWrHCrHt3s3r1zCZMqLEfW2t5a0GSspolK2+SspolK2+SsppVLy8w3Srx3p7vNpJZZLSFRF17m5DRdpJhW+BdM1uR2mBmPxHOUH5RCzlrX4MGMG4c7LwzHH44vPlm3Imcc65K8l1Inga6SNowbVtf4HtgWjnHzQG2l7R+aoOkDYDtCWcqydS0KUycCK1aQffu8PHHcSdyzrmc5buQ3Ab8CDwqab+oHWMocK2ldQmW9JGk0WnH3QlsATwmqbukHsDjQGtgVN7S14ZWrcIYk1WrwqJYX30VdyLnnMtJXguJmS0B9gXqA08SBiNeBwzJ2LVBtE/quBnAAYRBifcB9wKNgf3NLPnzjvz612G53rlz4aCD4Pvv407knHOVlvdJG81sJtC5gn1Ksmx7AXihlmLFb889YexYOOww6NcPHn4Y6lc4BZlzzsXOF7YqJL17w7XXwmOPwVln+YBF51wi+DTyheavfw2XuK67LiyKddZZcSdyzrlyeSEpRFdfHUa/n312mPCxT5+4EznnXJm8kBSievXgvvvColhHHQWtW8Pee8edyjnnsvI2kkLVsCE88QRsvTX07AnvvRd3Iuecy8oLSSHbeOMwxmT99cMYk0WL4k7knHPr8EJS6LbeOox+//LLMPp9+fKKj3HOuTzyQpIEu+wSxpX85z+h4X3lyrgTOefcz7yQJEW3bnDrreFS18kn+xgT51zB8F5bSTJgAMyZAyNGhEWxLroo7kTOOeeFJHGGDw9jTC6+OBSTY46JO5Fzrsh5IUkaCe64AxYsgBNOgC22gP33jzuVc66IeRtJEq2/PjzyCPzmN2F+rv8kfwJk51xyeSFJqubNYdKk8LVbt3C5yznnYuCFJMnatAnFZPly6NgR2rZln86doaQkTEnvnHN54IUk6XbYAU45BebPh3nzkFno2TVwoBcT51xeeCGpC+6/f91tpaUweHD+szjnio4Xkrpg7tzctjvnXA3yQlIXbLVVbtudc64GeSGpC0aMgMaN193eu3f+szjnio4XkrqgXz8YNQratcMkaNs2zBp8663wxhtxp3PO1XFeSOqKfv1g9mymTZkS2kZefRU23xx69ICPP447nXOuDvNCUle1agXPPAOrV4dFsb76Ku5Ezrk6ygtJXbbNNjBhQhj1fuCBoUuwc87VMC8kdd3vfx8GJr7+erj8tWpV3Imcc3WMF5Ji0KsXXH89PP44nHmmL4rlnKtRPo18sTj99DB1yrXXQrt2cPbZcSdyztURXkiKyVVXhfaSQYPChI99+8adyDlXB3ghKSb16sG998LChXD00dC6NfzhD3Gncs4lnLeRFJuGDeGJJ6B9e+jZE2bOjDuRcy7h8l5IJG0n6QVJpZIWSBomqX4lj+0l6U1J30taLOkZSU1qO3Ods9FG8PTTsMEGYYzJwoVxJ3LOJVheC4mklsDzgAE9gWHA2cAllTj2BOB+4GmgK3AC8CF+ea5qSkrgqadg8WLo3h2WLYs7kXMuofL9JnwS0AjoZWZLgcmSmgFDJY2Mtq1D0ibAdcBpZnZH2kOP1XriuqxDB3j44TBYsU+fMHhxvfXiTuWcS5h8X9rqCjybUTDGEYrLPuUc1yf6ek9tBStaXbvCbbeF6VROOsnHmDjncpbvQrItMCt9g5nNBUqjx8qyO/A+cLykeZJWSHpd0u9rL2oROeEEuOgiuOsuGD487jTOuYTJdyFpCXyTZfuS6LGybA78GvgbcB5wIPAd8IykVjUdsihdcgkccwwMGQJjxsSdxjmXILI8XsqQtAIYZGY3ZGyfD4wxs6yLjEuaDOwHdDWzZ6JtzYA5wM1mdlGWYwYCAwFatWrVYdy4cVXKvHz5cpo2bVqlY+NQnbxasYIdLriAFv/+N+9cfjlLdt21htOtrZie23xLUlZIVt4kZYXq5e3UqdMMM9ulwh3NLG834AtgSJbty4FzyjnuQUJPr4YZ258Hxlf0ezt06GBVNXXq1CofG4dq5/32W7MddzRr2tTs7bdrJFNZiu65zaMkZTVLVt4kZTWrXl5gulXivT3fl7ZmkdEWIqkt0ISMtpMM7xEKiTK2C1hdkwGLXrNmMGkStGgB3bqFRbKcc64c+S4kTwNdJG2Ytq0v8D0wrZzjJhKKRqfUBknNgQ7Af2ohZ3HbcsswYLG0NPTqWrIk7kTOuQKW70JyG/Aj8Kik/aJ2jKHAtZbWJVjSR5JGp+6b2XTgCWC0pGMkdQcmACuAv+fzDyga228Pjz0GH34IhxwCP/4YdyLnXIHKayExsyXAvkB94EnCiPbrgCEZuzaI9kn3Z+Bx4FrgEUIR6Rz9TFcbOnUKPbimTYP+/cOyvc45lyHv04uY2UygcwX7lGTZthw4Obq5fDnyyNBOcsEFsNVWcOWVcSdyzhUYn6fKVey880IxGTkyFJNTTok7kXOugHghcRWT4MYbYd68sNJimzZhCnrnnKMSbSSSjpa0cT7CuALWoAE88ECY6PGII+D11+NO5JwrEJVpbL8b+AWApFWSdqvdSK5gNWkCEyeGlRV79ICPPoo7kXOuAFSmkCwBtoi+F2FgoCtWm20WZgo2C2NMvvwy7kTOuZhVpo3keeA+Se8TisgYSd+VtbOZ+RlLXferX8GTT0LnzmEtkylToHHjuFM552JSmUJyHPAXwuy7OwOfAv4xtNh17Aj33w+9e4cuwuPHQ/1KrZjsnKtjKiwkZlYKXA0gaT9gsJn5tCQujHi/4YbQk+uMM+Cmm0IPL+dcUamwkEhaBexhZm8CLwJZl8N1Req002DOHLjmGmjXDs45J+5Ezrk8q0xj+0/ABtH3RwOb1l4cl0gjR4Y13889F6q47otzLrkq00YyExgq6XFCr61DJZW10ImZ2a01ls4lQ716cM89sGhRWGWxdWvYZ5+4Uznn8qQyheQ04HbC5IoGDCpnXwO8kBSjhg3DbMF77gkHHwwvvwzbbRd3KudcHlR4acvMXjGzHcxsPcIZyR5mVq+Mm3fbKWYbbRTWMWnYMIwxWbAg7kTOuTzIdRr5ToRLXc5lV1ICTz0FixdD9+6wbFnciZxztSynSRvNbBqApN2BvYCNgK+Bl8zMJ19ywc47wyOPhGlUDj00TKuy3npxp3LO1ZKczkgkNZE0CXgFuJwwWPFy4BVJT0ny4c0uOOAAuP12eO45OPHEMKWKc65OyvXS1kigI3A40NDMWgMNo/sdAV/1yK1x/PFw8cVw990wbFjcaZxztSTX9Uh6A+eZ2cOpDWa2GnhYUktgGKGXl3PB0KFhUayhQ8OiWMceG3ci51wNy7WQNAc+K+Oxz4Bm1Yvj6hwJRo2C+fNhwADYYgvo0iXuVM65GpTrpa3/ACdLa0+oFN0/OXrcubWtt15ofN9++9D4/vbbcSdyztWgXM9ILgSeBmZJegz4HNgMOAQoAbrWaDpXdzRrBpMmwR57QKdO0LQp+yxYEC53jRgB/frFndA5V0U5nZGY2RRgJ+Bt4DBgBNAHeAvY2cym1nhCV3dssQWccgp8+y3Mn4/MwoSPAwfC2LFxp3POVVGuZySY2UxCLy3ncndrlhl0Skth8GA/K3EuoXIdR3K1JJ9AyVXd3Lm5bXfOFbxcG9t7A+9IekPSSZKa10YoV4dttVVu251zBS/XNpKtgf2AWcBVwEJJ90crJzpXsREjsq/v/sc/5j2Kc65m5HpGgplNNbOjgdaEwYdtgGclzZF0iaT2NR3S1SH9+oVxJe3aYVI4E9l5Z7j3Xnj88bjTOeeqIOdCkmJmy81sNDAEeBloC1wAfCDpCUntaiijq2v69YPZs5k2ZUrotfWvf8Fuu8ERR8Brr8WdzjmXoyoVEkklkoZI+gR4DlhO6A68IXAQYUyJr7nqKqdxY3jySdhySzjwQPjoo7gTOedykGuvraMkTQE+Ao4B7ga2NrNuZjbezH40s0nA6UBZy/E6t65NNw2LYkGYOfjLL+PN45yrtFzPSEYBi4AuZtbezIab2bws+30AXFrtdK64/OpX4cxk/vywlklpadyJnHOVkGsh2cLMjjSzF8rbycwWmtkl2R6TtJ2kFySVSlogaZikSi/RK6mepBmSTFKPHPO7QrfHHvDAA/Dmm3DkkbBqVdyJnHMVyLX775Lq/LJoqvnnAQN6EqadPxvIWnTKcAKwZXVyuAJ38MFw443wxBNw+um+KJZzBS7nKVIk9QUGANsQFrVai5ltVs7hJwGNgF5mthSYLKkZMFTSyGhbeb+7JWF+r/OBO3PN7hLk1FPDaPerroJ27eDcc+NO5JwrQ66N7UcC9xAa29sAE4CJ0c9ZCtxcwY/oCjybUTDGEYrLPpWIMJzQ1bjcS2uujrjiCjj8cDjvvHC5yzlXkHJtIzmH8GZ+SnT/FjM7Dtga+AqoqHV0W8Ko+J+Z2dzouG3LO1DSjsCxwKAcM7ukqlcPxoyBP/wB+veHF1+MOZBzLhtZDtefJS0HepjZi5JWAPub2YvRY4cA15lZSTnHrwDOMbPrM7bPA+41swvLOXYa8LqZnSupBPgUONDMJpax/0BgIECrVq06jBtXtWEty5cvp2nTplU6Ng5JylvZrA2WLWOn005jg6++4q2bbqJ0663zkG5ddfG5LRRJypukrFC9vJ06dZphZhUP5TCzSt+A+YSuvwCzgZPTHusFLKvg+BXAGWX83BHlHHc4odtxs+h+CaHBvkdlcnfo0MGqaurUqVU+Ng5JyptT1tmzzTbf3KxtW7P582stU3nq7HNbAJKUN0lZzaqXF5hulXiPzfXS1nRgx+j7CcDFkgZIOoYwiePrFRy/BGiRZXtz4JtsB0haL/rZVwL1JLVgzdrwTSRtmNuf4BKpXbuwwuKSJdCtGywtt1+Gcy6Pci0klwOphSMuBt4AbiGMcP+K6FJSOWaR0RYiqS3QhIy2kzRNCA371xIK0RLWrA0/jrBaoysGO+0U1n7/3//C2u8rVsSdyDlHJQuJpEaSegN7Ag0ktTKzb8ysJ9AUaGFmu5vZJxX8qKeBLhlnEX2B74FpZRyzHOiUcTsieuxCwJfVKyZdusAdd8DkyWGJXh9j4lzsKhxHEk0L/zyhXSJlqaQ+Zvacmf0I/FjJ33cbYR6uRyVdCbQHhgLXWlqXYEkfAdPM7HgzWwm8mJEpleUdM6vocpqra449NowxGTo0XPIaOjTuRM4VtcqckYwEVgN7A42B3xIuJ92e6y+zMDJ+X6A+8CRhRPt1hKno0zWI9nEuu4svhuOOg0sugdGj407jXFGrzMj2jsDZZvZydP89SSdGX1ub2cJcfqGZzQQ6V7BPSQWPzwaUy+91dYwEt90WJng88cQwBf0BB8SdyrmiVJkzktZAZtvHx4Q38s1rPJFzlbXeevDww7DDDnDYYfDWW3Encq4oVbbXlrdousK04YahW/BGG0H37jB7dtyJnCs6lS0kz0r6InUDUpezXkjfHj3mXH61bh0WxfrhhzDGZEm1Jql2zuWoMm0kuUzx7lw8ttsOHn8c/vSnMA39s89Cw3Ump3bO1YIKC4mVsUCVcwVnn33gnnvgiCPgmGPCjMH1ch1z65zLVc7rkThX0A4/HD77LKxfstVWYT0T51yt8kLi6p5Bg8KAxauvDsXktNPiTuRcneaFxNU9Elx/PcybB2ecAW3awCGHxJ3KuTrLLyC7uql+fRg7FnbfHY48El59Ne5EztVZXkhc3dW4MUyYEM5IDjwQPvgg7kTO1UleSFzdtummYYyJBF27whc+1Mm5muaFxNV9v/wlTJwICxeGM5Pvvos7kXN1ihcSVxx23x3GjYPp08M4k5Ur407kXJ3hhcQVj4MOgptugiefhNNP90WxnKsh3v3XFZe//AXmzIGRI8OiWOedF3ci5xLPC4krPpdfHka/n38+tG0bugc756rMC4krPvXqwd13h8b3/v3D7MGdOsWdyrnE8jYSV5w22AAeewy22SaMev/f/+JO5FxieSFxxatFi7AoVpMmYR2T+fPjTuRcInkhccVtq63gqafCYljdusHSpXEnci5xvJA497vfwfjxMHMmHHoorFgRdyLnEsULiXMQVla84w6YPBkGDPAxJs7lwHttOZfSv39Yx2TIkHDJa9iwuBM5lwheSJxLd9FFoZgMHx6KyQknxJ3IuYLnhcS5dBLcemvowXXSSbDllmHWYOdcmbyNxLlM660HDz0EO+4Ihx0Gl14KJSXs07kzlJSEBbOccz/zQuJcNhtuGLoFN2wYLnfNmYPMwjxdAwd6MXEujRcS58rSujWsv/6620tLYfDg/OdxrkB5IXGuPIsWZd8+d25+czhXwLyQOFeerbbKbbtzRSjvhUTSdpJekFQqaYGkYZLqV3DMrpLulvRRdNz7koZIapiv3K5IjRgBjRuvva1Bg7DdOQfkufuvpJbA88BMoCfwC+AaQkH7WzmH9o32vRL4ENgRGB597V2LkV2x69cvfB08GJs7FzVtCsuWweLF8eZyroDkexzJSUAjoJeZLQUmS2oGDJU0MtqWzZVm9mXa/Rcl/QDcLqmdmc2p5dyumPXrB/36Me3FF/nj3nuHLsF//Su0aQO9esWdzrnY5fvSVlfg2YyCMY5QXPYp66CMIpLydvR1s5qL51wF6tcPXX/32CMUmFdeiTuRc7HLdyHZFpiVvsHM5gKl0WO5+D2wGni/ZqI5V0mNGsGECWGZ3oMOgg8+iDuRc7GS5XGWU0krgHPM7PqM7fOAe83swkr+nM2B/wKTzKx/GfsMBAYCtGrVqsO4ceOqlHn58uU0bdq0SsfGIUl5k5QV1s3bcP58dj71VFY1bsxbN9/MipYtY0y3tqQ/t4UsSVmhenk7deo0w8x2qXBHM8vbDVgBnJFl+3xgRCV/xvrAP4FPgJaVOaZDhw5WVVOnTq3ysXFIUt4kZTUrI+/rr5s1amS2665my5fnPVNZ6sRzW6CSlNWsenmB6VaJ99h8X9paArTIsr058E1FB0sScC/wW6CbmS2p2XjO5Wi33eDBB2HGDDj8cFi5Mu5EzuVdvgvJLDLaQiS1BZqQ0XZShusI3YZ7mlll9neu9h14IPz97zBxIpx2mi+K5YpOvrv/Pg2cI2lDM1sWbesLfA9MK+9ASRcApwF9zOyl2o3pXI5OOilM6HjFFdCuHZx/ftyJnMubfJ+R3Ab8CDwqab+oQXwocK2ldQmORrCPTrt/JHAZ4bLWfEl7pN02ze+f4FwZRoyAI4+ECy7w2YFdUcnrGYmZLZG0L3Az8CShXeQ6QjHJzJU+bcqfoq/9o1u6Y4ExNZvUuSqoVw/uugsWLoRjjw2zB3fuHHcq52pd3ldINLOZQLn/u8ysJON+f9YtIM4Vng02gEcfhb32gkMOgZdegh12iDuVc7XKZ/91rqbFzNNnAAAa9ElEQVS1aAFPPw1Nm0K3bjBvXtyJnKtVXkicqw1t28KkSfDtt9C9Oywtaxo555LPC4lzteX//g/Gj4eZM6F3b/jpp7gTOVcrvJA4V5v23x/uvBOefx4GDPAxJq5Oyntju3NF55hj4LPP4KKLwsqKw4fHnci5GuWFxLl8GDw4DFi89NJQTAYMiDuRczXGC4lz+SDBrbfC/Plw8smw5ZahR5dzdYC3kTiXLw0awEMPhUb4Pn3CRI/O1QFeSJzLp6ZN4amnYNNNQ7fgTz+NO5Fz1eaFxLl823zzMGDxp5+ga1dYvDjuRM5VixcS5+Kw7bZhud7Zs6FnT/jhh7gTOVdlXkici8tee8F998Err8BRR8Hq1XEncq5KvJA4F6fDDoOrr4ZHHoFBg+JO41yVePdf5+J25pkwdy5cd11YFOuMM+JO5FxOvJA4FzcJrrkmjH4/80xo0ybMzeVcQvilLecKQf368I9/QMeO0K8fvPxy3ImcqzQvJM4VikaN4IknwuWtgw6C99+PO5FzleKFxLlCsskmYYxJgwZhjMnnn8edyLkKeSFxrtC0bw8TJ4Yi0qMHfPdd3ImcK5cXEucK0a67woMPwltvQd++sHJl3ImcK5MXEucKVY8ecMstYW6uU07xRbFcwfLuv84VshNPDOuYXH55aIS/8MK4Ezm3Di8kzhW6ESPCGJPBg8OiWH/+c9yJnFuLFxLnCp0Eo0fDggVw3HHQujXsu2/cqZz7mbeROJcE668Pjz4Kv/419OoF77wTdyLnfuaFxLmkaN4cJk2CDTcMY0zmzYs7kXOAFxLnkqVt21BMli0La75/+23ciZzzQuJc4uy4Y7jM9d57YXLHn36KO5Ercl5InEuiffeFu+6CF16AE07wMSYuVt5ry7mkOuqosI7J3/4WugVfemnciVyRyvsZiaTtJL0gqVTSAknDJNWvxHHNJd0taYmkbyWNlbRxPjI7V7AuvBAGDAhjTUaNijuNK1J5PSOR1BJ4HpgJ9AR+AVxDKGh/q+DwB4FfAycAq4ErgceBvWsrr3MFTwrTqMyfDyefDFtuCd27x53KFZl8n5GcBDQCepnZZDO7DbgEOEtSs7IOktQR6AIcY2bjzewx4M/AXpL2y0dw5wpWgwZhgseddoJDDoHWrdmnc2coKYGxY+NOV76xY6GkJBl5k5QV8po334WkK/CsmS1N2zaOUFz2qeC4z83sn6kNZvYG8Gn0mHPFrWnTMOp95UpYtAiZhTm6Bg4s3De8sWNDvjlzCj9vkrJC3vPmu7F9W2BK+gYzmyupNHrsyXKOm5Vl+3vRY865kSPX7b1VWgpHHw1nnRUug0HuX6tyTGW+fvTRutPjl5ZC//5w2WUV/rl59cEHyckKZecdPDgs5VzD8l1IWgLfZNm+JHqsKse1z3aApIHAQIBWrVrx4osv5hQ0Zfny5VU+Ng5JypukrFD4efeZOxdl2W6rV7Ngjz0AwqdTWFNwMgpPeY9X59hsj286a1b2vCtX8uWmm2Z5JD6bzpyZmKxQTt65c5lWG69hM8vbDVgBnJFl+3xgRDnHTQYey7J9LPByRb+3Q4cOVlVTp06t8rFxSFLeJGU1S0Dedu3Mwtv02rd27eJOll2S8iYpq1mN5QWmWyXe2/PdRrIEaJFle3Oyn3FUdFyLCo5zrniMGAGNG6+9rXHjsL0QJSlvkrJC3vPmu5DMIqNNQ1JboAnZ20DKPC5SVtuJc8WnX78wlqRdO0wKC2GNGlUr18RrRJLyJikr5D1vvgvJ00AXSRumbesLfA9Mq+C4zSXtldogaRdC+8jTtRHUuUTq1w9mz2balCkwe3bhvtGlJClvkrJCXvPmu5DcBvwIPCppv6hBfChwraV1CZb0kaTRqftm9irwLHCvpF6SDia0j7xkZs/n9S9wzjm3lrwWEjNbAuwL1Cd09b0EuA4YkrFrg2ifdIcTzlruAu4FZgCH1GZe55xzFcv7pI1mNhPoXME+JVm2fQMcG92cc84VCJ9G3jnnXLV4IXHOOVctsiJYEEfSl8CcKh6+CfBVDcapbUnKm6SskKy8ScoKycqbpKxQvbztzKzCoftFUUiqQ9J0M9sl7hyVlaS8ScoKycqbpKyQrLxJygr5yeuXtpxzzlWLFxLnnHPV4oWkYklbvzRJeZOUFZKVN0lZIVl5k5QV8pDX20icc85Vi5+ROOecqxYvJM4556rFC4lzzrlq8ULinHOuWryQOOecq5a8z/7raka0smQ3QMDDZrZYUhtgEPALYDYwyszeiS8lSDoPmBR3jsqS1AhoYGbL0rZtCpwKbAesBv4N3GJm38aT0rnC4t1/I5JEWN+kO/AbYCNgFfA58Bowxsw+iC/hGpJ2A54DmgIrga+BLsAkQuZ3ge2BzYH9zOxfMUVF0mrACEsi3w88aGYfxZWnIpImAR+a2RnR/Y6EVThXE9bAEdAB+AnobGbvxph1J6CRmb2Stu0A4ALWFL3/AEPT9ykU0f+5A4GdCa+R6YQPHQX9piSpGWHuqs5m9lLceeDnTJ2B9YGnzOy76APQKYSVZD8hfLBcUCu/v8D/zfIiesInEd4gPies4rgl4cX9NOEf4tfAcDMbHlfOFEmTCWeThwDfERYHO5jwRneoma2QtAHwONDQzDrFmHU1cCWwA7A/IfdbhKLykJnNjytbNpK+Ao43syei+68RnuODU2cpkpoDE4AfzKxLjFlfA540sxHR/eOAO4GpwBRC0dsX2BvonfqbYsr6CuF5fS+635LwYagDsDzarSnhQ1uX9DPCOEj6SzkPNwKuAm4APgQws1vykSsbSb8EXgDaRps+Bf4ETAZaAB8T3r++BzqY2bwaD2FmRX8DHiC8IHZI27YF8AwwPrq/D+EFf1wB5F0MdE27vxnh0+efMvbrDnwVc9bVwG7R9y2BgdGLfmV0ezHatnHcz2uUsRT4Q9r9nzKf17Tn9ruYsy5NzwZ8BNyUZb/bgP8Uyusguj+acCZ9QNq2A4AlwHUF8DpYTTi7X13GLf2xVTFnfYhw5vlLwpWU+6L3s1eADaN9Non2ub02Mnhje9AVON/SruNbOAU8CThYUmszmwZcBpwRU8Z0Ft3S75OxLdv9WJnZEjMbZWb7Am2Aswmn4rcBCyQ9FWvA4H9A+hnc54T/nJk2JhSdOK3OuN8OeCTLfo8QPpEWkoOAYWb2TGpD9P0IoFdsqdaYAHwBHA/UN7N6qRvh9SDgj9G2zGXB820vYISZfWRmXwN/I7STXm3RmZ2ZfQVcz9qv7RrjhSQQ4RNGplXRY82j+68D2+QrVDlmAIMkbSipHnAhMB84WVJ9AEkNgL8Q3hgLjpktMrMbzOz3wNbAEMJZYNyuAM6XdFz0HI4ArpK0v6T1JW0QtUNcTvgkGKd/Af3S7r8LZJsufFfC66OQtCC0iWSaQWjbi5WZHQwcA5wDvClpz/SH40lVppbAorT7qX/rzDWYPiF8gKtx3msreB64VNJ/zewT+Pka7o2Ef6BUI3tToBB66gwmXP/8mnB5qJTQ0PYI8KGkVGP7FoTLBQXNzOYQ3sCvKIAsj0o6jfDp7TrgfcIHidQnZyN8uJhAeJOJ04XAy9GHiZsIjez3SNqIcMkQQhvJX4HzY0m4tt6SUoVuCZBtwaRNCJfsYmdmz0nakfD8PSXpGUKvyFjbb7L4gnA2mrIKuJ1wNp1uM2opuze2A1G32WcIp/9zCNfFtyY0uh9hZk9H+40krBjWN66sKVHmHoQPA+PNbKGkzYFzWfN33Glmb8UYE0lDgDuslnqL1BZJGwN9gd0In5DrEQr3e8BEM5sRY7yfSfodcCuwO2uKHGnfLyFcQrohnoRB1Oki0xgzOy5jv9uB7cxs7/wkq5zo/9ZIwmW32wnFpZOZ/TPWYICkx4GvM5/LLPvdBPzGzPar8QxeSILoklAf4P+AhoSGy/uja47OFTRJvyEUk8yi94qZrYgzWy4kDQA+NrMpcWfJJuoOfh3hw1p3K4Bu1ZJaAY3N7NMK9juL0OnihRrP4IWk7pFU38yytfkUDEkNCQ2Cq4GPCvHNLmojaU/amCIzmxtvKucKjze2Z5D0W0m9JZ0g6fjo+9/GnSuTpF6SHpc0SdKB0ba+kmYDP0maE326i5WkP0fjG1L3G0i6gvCJ+b+EzgBfSyqEa/gASOogaQLhevJ7wMuE8Q2fSpovaZikxrGGrEMUiTtHNpIaZf5bS/pd9L7QIa5cBSfO/s+FdAOOI7QrZOs7voow5cixceeMsvaJcr0EPEFobB9AaNsZTRjN+kCUu0vMWWcCJ6fdvybKexGwJ6Hr4lDCYKkLC+C5/ROhbWw6oWfWUMKg1J+izGcTekf9G2hZAHl7EMblvAM8SNoYmLR9dif+sQ5/IhrTkLbtYMLg1JXAiug57x73cxplaw48FuVaCdwB1AfuyXhfeBnYJO68lfybetfW6yD2P64QbsBp0Qvm74RRwJtEL5r60fd7ATdHbzCnFEDeN4Hb0u73i7Jdk7Hf3cDzMWctBfZJu/8FcEaW/QYBcwrguZ0B3FPGa2Q24Sy+YfQGeEvMWfdPezO7Ocq+KirWStuvEArJKtYekHhI9Gb8SvRvPyj6fiVZBoDGkPdGwjQopwFHRx8exgOfRUVxU8L4s/nArXHnreTfVGuFxNtIAEmfEN6YR1aw37nASWbWPj/JysyxFOhlZs9H95sTeufsZ2mNlNElr9vNLLbxGZIWAqea2fjo/o+Es6QXM/bbH5hgZo3yn3KtHN8DB5nZ5IztLQkzCvzWzN6TdDRwpZm1jiNnlOklwrxgx6ZtO47wJjiZ0OPwB0m7ExrdYxs4F/Xa2sPM3ojuvwXMN7MDM/abBDQxs31iiJme41PgMjO7I7q/E6FQH2tm96TtN4BwJr11PElB0l2V3LUdYRBljb8OvI0k2Bx4oxL7vUEBDJYidO1MfzGk5ir6JmO/5YSBX3GaQBg8uX50/3ngiCz7HUH41Be3Lwg99zL9H+F5T40jmsOagapx2R74R/oGM7uLMJ3PHsCUaExJIdqe0I020yjCJI5x24w148cgmlOLMG9Vuo/IPh4mn44hnCXtUMGtXVk/oLp8QGLwX2CApH+aWbb+7qmZSgdE+8ZtDmF212cBzGxV1C3xvYz92rP2iNc4XEAYgf0/SXcCTwJXStqeNYPmOgM7EWaCjdsoYLikJoS2h58II8MHA1NtzXiY9kDcPbh+AJpkbjSzGdFI7GcJl4uG5jlXWdIvf3zLmg9A6b6jMD7gfkooyNOi+3sTLsX9ntA2mbIn8b8OPgTeMLOjy9tJ0qGEdrQa54UkOJswIHGmpEcJU55/Q3jhtwC2JVzTbUNhjBR/lIypDszs9Sz7HcnaL/q8M7OvJe1BeCM+i/BJD6BjdPuJcBlmbzN7M56Ua5jZiOgyzPmEaVsgvA4eIAxCS1lBmHstTv8lXKefkPmAmX0SFZNJwJg85yrLs5JWRt83B37Hmg8TKdsCC/MZqgy3ATdI2oFQ9PoQPhRdLKkpYQLEnYEzgbhnBH+NUOAqkj5gtUZ5G0lE0i8Io8IPYM10zCmfEXruXGVmmae2BUvSVsA3ZlYQU04ASCph7UFzH1thjiFZjzDOpSHwSSE9hymSTiRMk7KTlTFwNjqzeozQfhbbJ/1ohoNMH5rZ/Rn7vRhtL4Su66cTLrmuR5gl4jZJRxDaoFKTdo4CzovzNRx1Q97TzG6sYL9NCG1808rbr0oZvJCsK+o3nmpb+MbM4p7l1TlXIKLL3JuY2ZdxZykUXkjqmOi0+y2gXyFcKlICl65VQpYxdq5QeCFJE72BbAa8b2brNARGp4bdzOzevIdbO0e3ch5uQmhQO59oCnkzm5SPXNkoQUvXQrKWMa6saB6uw8xsWMw5Yl0OtrqiM5H0pYFnEP6O2N9EFWZV7k34/zTGzGZJ+j/gEtZ8+Pm7pa3/UqPiHiRTCDdgA+BhwhvFKkJD6migecZ+sQ/sinIkafW2r4CeafdfI/SG2jBtW3NC75hnC+C5nUxYqrYF4dr4zcA8wgwC66W9Xp4m9OKK/fVbib+p1gai5ZDhl4TehqnX5ceEN7hPCMX6TcL08Z8DbQrgOXuFMFNu6n7LKOPqKOdS1gyo3DCunFG2LoQPYoui53UpYQGrJYTBqn+P/t+tIiwZXfMZ4v4HK4QbcDGhl9YAwsJAZ0Qv6A+BX6XtVyiFZAahZ8uxhL7h6bcdoxd4n9S2mLMmZunaKEeSljHeqpK3k+J+3VIAy8HmmDcxSwNHxeJhwkqOEDpgLAFGZ+x3H/BarWSI+x+sEG6E7r6nZmzbHPgn8CXQMdpWKIVEhHXOvyBM27B12mPNo/8E68y5FFPWN4Ahafc/Aw7Pst/RwJcFkPerjDeLTaPnc/+M/boVQCFJnX1WdCuEM9MFQJ+0++2iXL0y9jsW+KAAXgeZheRL4K9Z9ot9ah9C9+T90u63jPJ3ztjvT4TOQzWewceRBG3JGGhoZosk7Uuo4s9L6kdh9G/HwqtilKSHgEuB/0q6Ofq+0FwBjJX0GXAva5auXUy4nCXCaXghLF0La5YxfpkwOC59GeMpFgZ/FsoyxsuAKcCdFey3F6Fre5xiXw62mgp5aeDvWXtgaur7zOmGGhMGsdY4LyTBAuBXhDOQn1noG364pOsJp46xNrJnMrNvgFMljSL0bf8QuJICWlPakrV0LSRrGeM3CO14T5W3U7T2S9xiXw62CpKyNPDLhIGSH0ZZribMun1eNFvHsmg+vnMJha/Gea8tfp70rL2Z/bGcfS4gfJo2i3Hyu/JIOpywHGgbwuRssS8DmqKELF0LiVrG+CJgoJllDqDN3O8PwCVm1ik/ybJmiH052FwoQUsDS/olYQ671OtgNuEs/xHCTAFzgBLCB6NOZvbvGs/gheTnrnN9gSvMbHE5+x1JuFZ+bFn7xC267NIEWG4FvkqiKx4qgOVga4MKZGngaPzYnoSehi+Y2ffRwOoTWPPh534zm1crv98LiXPOueoohFk2XS2RdIek0XHnqIwkZYXk5XWuNnljew4k3QHUM7Pj485SSZ1IzoeFJGWFBOWV9Dzh6sO+cWepSJKyQrLy1mZWLyS5ScybB4CZ/TLuDJWVpKyQuLwiOa/bJGWFZOWttazeRlKHRd0+NzOzuBfeqVCSskLy8jpXm5JSSQuCpIbRGh9J0Z2w0lsSJCkrJCivpPWS8rpNUlZIVt7azOqFJDeJefNwxUHSKZI+lrRM0uuSjsqy284UwOs2SVkhWXnjzuptJAkkqbJ91rONxM2rJGWFZOWNBqDeRFgG+G3COIIxknoCR5nZ93HmS5ekrJCsvIWQ1dtIyPnNY7u4R7YrrHv9PmEahPJsCeweZ94kZYVk5ZU0HZhiZuembdsXGEsY3dzdwqJcuwOveNbKS1LeQsjqhYRkvXkASPo3YfGtvhXsdyjwYMwv8sRkjXIkJq+kZcCBZvZixvYSwnop9YGuhPmg4n6zS0xWSFbeQsjqbSTB/4D/mdlh5d2Aa+MOGnkd2KMS+6UmRIxTkrJCsvJ+S3hzWIuZzQZ+T5gS/xVg1/zGyipJWSFZeWPP6mck/Dzx2gFm1q6C/XoT1vCOtQBL+gXwWzObUMF+jQhdVDOn6s6bJGWNciQmr6QngGVm9ucyHm9EmLivKzFPNpqkrFGexOQthKxeSEjWm4dzKZIOA84EepjZ12XsUx+4lTDZ6Nb5zJeRIzFZoyyJyVsIWb2QOOecqxZvI3HOOVctXkicc85VixcSV1Qk9Zc0IxoBvETS25JqpTeepG0kDZXUohL7DpVkabcFksZH7XcVHds/OqZpzSR3LjdeSFzRUFgu+U7gWaAXcDTwBHBQLf3KbYAhQIWFJPIt0DG6DQJ+B7wgqUkFxz0VHVNaxZzOVYtPkeKKyanA7WZ2Ydq2JyVdElegDCvN7LXo+9ckzQX+BXQDHs7cOeqJU9/MvgS+zF9M59bmZySumLQAFmVutLSui5JKostER0q6L7oE9oWkIZnHSeocTZD3g6TPJd2Surwk6Y/Ak9Gun0Y/c3aOeWdEX0uinzlG0nRJB0t6F/gB2D3bpS1JjSSNlDRH0o+SPpV0eUb+EyS9Gz0+R9K5OFcFfkbiislbwGnRJ/2JZra4nH2vAiYChwJ/AIZI+srM/g4gaTvgGWAy0BtoC1wBtAcOiH7XIOBqwmW0hcCPOeYtib4uytg2EhgGfE6YzXWtdhRJIlyy6wgMJxSkLYG90/Y5B7gs+lkvAh2A4ZJKzezmHHO6YmdmfvNbUdyAHYFPCNObrAbeJbwhN0vbpyR6/LmMY+8A5hOWWgYYB3xIuLSU2qdPdGzH6H6P6H5JJbINJUxl0SC6bQNMBZYCraN9xkQ/73cZx/aPtjeN7neJ7h9Uxu9qBiwHhmRsH0YoWvUryus3v6Xf/NKWKxpm9l/gN4TG9VsIc2VdBEzP0uPpsYz7jwJbAG2i+7sBj5nZqrR9xgMrgb2qGHFjYEV0e59wdtPXzBam7TPfzP5dwc/pDHxtZc/U0BFoAjwsqUHqBkwBWrHmb3SuUvzSlisqZvYjoe3iSQBJxxN6ch0P3JC26xcZh6butwbmRl8/z/jZqyQtBjaqYrxvgf0IZxOLgAVmljn1xOfrHLWujQmX0sqSmuDv3TIebwv4NECu0ryQuKJmZqMljQS2zXhoszLuL0z7utY+US+qjYGs8x1Vwkozm17BPpWZ02gxodCVJZWvB9kL0/uV+B3O/cwvbbmiISmzOCBpU6A5676hHpJxP9VgPi+6/zpwSFQ80vdpALwU3f8p+tqwGrGr4gVgI0k9ynj8VeB7YAszm57ltix/UV1d4Gckrpi8E025/RzhUlU7Qs+qUuCejH1/Gy0vMJ7Qa+t44AwzWx09filhWdPHJd1KaFe4EnjWzF6N9kl9sj9R0jig1MzeqZ0/bS2TCYMu75c0jNCDrDXwBzM70cy+kTQUuEFSO+CfhA+V2wCdzCyziDpXLi8krpgMA3oCNxLaMRYRFvzpa2afZux7LuHSz3jCeI3hwM/dYs3sXUldCV1oHyX0rnogOi61zxxJg4DTgdMIZzMltfGHpTMzk3RIlPmvhCWiFwD3p+0zUtICwvTjZxP+xg+AB2s7n6t7fBp559JEy5N+Sli6dGK8aZxLBm8jcc45Vy1eSJxzzlWLX9pyzjlXLX5G4pxzrlq8kDjnnKsWLyTOOeeqxQuJc865avFC4pxzrlr+H2VW7fkh3ZMIAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -248,8 +248,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "exact expected value:\t0.1040\n", - "exact delta value: \t-0.5300\n" + "exact expected value:\t0.1709\n", + "exact delta value: \t-0.8193\n" ] } ], @@ -300,9 +300,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Exact value: \t0.1040\n", - "Estimated value:\t0.1032\n", - "Probability: \t0.9826\n" + "Exact value: \t0.1709\n", + "Estimated value:\t0.2308\n", + "Probability: \t0.4343\n" ] } ], @@ -319,7 +319,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHfdJREFUeJzt3XuwXGWd7vHvw0UItwACgUGGCF4ijJRHtghzGEm4E84RQTQp9EzFQaMeFWYKHRARAjqUwRHQYiygdMLhjCbMAMMZLiGEyw6EixokiJMEDBqQiyjOJjEGIpDf+eNd0c7avXevvuy3s3s/n6qu7n7Xu95+15tO//Za72UpIjAzMxtpW3S7AmZmNjY44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZsOQNEtSf/G6X9KsJvefLCnKZQ2R9xZJjw2z/QpJA5K2qfjZb5EUko5vps5mI8UBx2zzMRf4C0kHljdI2hI4FbgxItZnr5lZBzjgmG0+/h+wDpheZ9sUYAIpKJmNSg44Zi2SdJik/5D0nKTfS1oq6SOtlhcRa4FbgGl1Nk8HXgDuKT57b0lzJP1C0suSnpB0oaSth6nvVsUltk+V0r8q6VeltH0lXVdcwlsnab6kt7Z6bGYAW3W7Amabs4iYVfN6cmnzvsD9wJXAK8B/B+ZI2hARc4t9+gGVyxrGXODDkg6OiIcBiiByMvC9iHi9yLc78CLwt8BLwCTgAmA34DNNHuYmJO1WHNcLwMzi2M4FFkp6uy/pWasccMxaFBHzNr6WJOBe4E3AJ2j90td8UgCZDjxcpB0H7FpbZkQsBZbWfP79wMvAlZLOjIjXWvx8gLOAbYCjIuKlovwHgFXADOCqNsq2McyX1MxaJGkXSd+S9BTwavGYCbyt1TKLs4d/J53lqEieBjwFPFTz2VtIOkvSckkvF5/9f4BxpKDXjqOBBcDa4jLcVsBq4MdAX5tl2xjmgGPWumtIweDrwLHAe4B/BrZts9y5wJ8Dh0naFjgJmBubLu1+FjAb+Dfg/cAhwBnFtnY/fzfgI/wpiG58vA/Yp82ybQzzJTWzFhSB4ETgsxFxZU16J/6Iu5vUfzId2AvYkcGX6D4EzIuI82s++6AG5b4OvAa8oZS+a+n9fwGPABfXKWNNg88wG5IDjllrtgG2BP7YgS5pR9LZRls3mYqI1yX9Gymo7A0sj4iflLKNq/3swrAj5CIiJD0LvKOmzlsCR5ay3kU6q3rMAwSskxxwzFoQEasl/Qg4X9IaYANwDqmvY6cOfMRc4LOk0Wnn19m+EPi0pCXAz4G/BiZWKPffgZmSHiX1C30C2K6U5x+B04C7JV0BPAfsCRwB9EfEvzZ9NGY44Ji14zTgauBa4LfAFaQf7892oOwHSaPCJgLz6my/AHgj6bJXANcDfwfc1KDc80l9NBcDfwC+BSwDPr4xQ0T8WtKhwD8AlwM7A88D9wFDLr1j1ohy32Ja0luALwCHAn8B3FdnfkO9/caTvvwfIA12uAU4IyJ+W8p3EvBV4K2kv/wujIjrOnkMZmbWvG6MUjsQmAo8UTyqug6YTPpLbAZpRNAmf81JOhy4gTQb+wTgVmCupGPbrbSZmbWnG2c4W0TEhuL19cBujc5wJB0GPAAcERH3FmmHAD8AjomIO4u0BcDWEXFkzb63ATtFxOEjcTxmZlZN9jOcjcGmSScAL2wMNkU5PwR+UWyjWLJ9ClDu0JxHms8wvrUam5lZJ4yWiZ+TgBV10pcX2wD2B7auk2856Thbnv1tZmbtGy2j1HYhrS9VNgDsV5OHOvkGSts3IWkmaTkSxo0bd/A++7Q3kXrDhg1sscVoiePd5baqzm1Vnduquk601RNPPPFiROxeJe9oCThQfzKd6qSX32uI9JQYcTVpaCt9fX2xZMmSdupIf38/kydPbquMscJtVZ3bqjq3VXWdaKtiLcFKRsufAQOkuQBlO/OnM5qBmrRyHqh/hmRmZpmMloCzgj/11dSq7dt5krTAYDnfJNIs8GaGYJuZWYeNlktq84EvSzo8IhYDSOoj9d/Mh7Ssu6R7SOtP1d6vYxrwYESszlxn2wxNPOfWQWmrvnZiF2piNvZkDziStiNN/IS0MOFOkk4t3t8WEeskrQQWRcTpABHxYDHH5lpJnyedscwGFm+cg1P4CtAv6XLSpNCpxeP4ET8wMzMbVjfOcPYg3cOj1sb3byatH7UVaSXeWtOBy0j3G/nj0ja1GSJicRG8vgp8mjRP57SIuKOD9TczsxZkDzgRsYo/jRwbKs/EOmkvAR8rHsPtexONFzA0M7PMRsugATMzG+UccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsi+wBR9IBku6StE7Sc5IukrRlg31mSYohHl+syXfNEHkmjfyRmZnZcLbK+WGSdgHuBJYBJwH7A98gBb7zhtn1O8DtpbQPAGcD80vpK4CPldJWtVZjMzPrlKwBB/gUMA44JSLWAAsl7QTMknRJkTZIRDwDPFObJunLwIqIWFrK/vuIeGgE6m5mZm3IfUntBGBBKbDMIwWhI6oWImlX4BhgbmerZ2ZmIyV3wJlEuuT1RxHxNLCu2FbVqcDWpGBVdoCkNZLWS1osqXIgMzOzkaOIyPdh0qvAFyLi8lL6M8C1EXFuxXLuBsZHxMGl9DOBP5D6iHYHzgIOBg6PiB8OUdZMYCbAhAkTDp43r14Mq27t2rXssMMObZUxVnSjrR57dvWgtHfuPT5rHVrh71V1bqvqOtFWU6ZMeTgi+qrkzd2HA1AvwmmI9MEZpb1Il9/OHlRwxDdLeW8lBZ9zSYMMBlcm4mrgaoC+vr6YPHlylWoMqb+/n3bLGCu60VYzzrl1UNqqj+StQyv8varObVVd7rbKfUltANi5Tvp44KWKZXyYFKCua5QxIl4GbgPeXbWCZmY2MnIHnBWU+mok7QNsT6lvZxjTgcUR8csmPjffdUMzM6srd8CZDxwnaceatGnAy8CiRjtLmggcSsXRaZLGkUbGPdxsRc3MrLNyB5wrgfXAjZKOLjrsZwGX1g6VlrRS0nfr7D8deA24vrxB0nhJ90n6pKSjJE0D7gH2Bi4egWMxM7MmZB00EBEDko4CrgBuJvXbXEYKOuV61VvuZjpwV0T8ps629cBvSCsW7AG8AjwIHBERSzpyAGZm1rLso9QiYhlwZIM8E4dIf9cw+7wCnNJW5czMbMR4tWgzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLoqmAI6necjNmZmYNNXuG86ykSyS9Y0RqY2ZmPavZgHMVcCrwU0k/kDRT0k4jUC8zM+sxTQWciLggIvYDjgEeBy4Fnpf0PUlHj0QFzcysN7Q0aCAi7o6Ivwb2BD4HvB1YIGmVpFmS/qyTlTQzs9Gv3VFqfcD7SLeNHgDuAz4OrJT00TbLNjOzHtJ0wJG0r6QLJD0J3AXsBfwN8GcR8b+AfUl9PV/vaE3NzGxUa+oGbJLuJp3RPANcA8yJiKdq80TE65K+D5zZqUqamdno1+wdP18EpgILIyKGybcUeHPLtTIzs57T7CW1K4AH6gUbSTtIeh9ARLxaPvMxM7OxrdmAcw9wwBDb3l5sNzMzG6TZgKNhtu0ArGujLmZm1sMa9uEUl8km1yR9XNLxpWzbAicCj3WuamZm1kuqDBp4L2lyJ0AAHwJeK+X5A7AC+ELnqmZmZr2kYcCJiK9TzKmR9Avg5IhYOtIVMzOz3tLUsOiI8FBnMzNrSZU+nKnA4ohYU7weVkTc1pGamZlZT6lyhnMLcCjww+J1MPRotQB8kzYzMxukSsB5M/B8zWszM7OmVRk08FS912ZmZs2o0oezXTMFRoQnf5qZ2SBVLqmtJfXNVOU+HDMzG6RKwPkbmgs4ZmZmg1Tpw7kmQz3MzKzHtXuLaTMzs0qqDBr4ITAjIpZJ+hENLq9FxCGdqpyZmfWOKn04/wm8XPPa/TlmZta0Kn04H6t5PWNEa2NmZj2r5T4cJbtLGu6mbGZmZkALAUfSVEkPAK8AvwJekfSApBM7XjszM+sZTQUcSZ8EbiZNBj2TdDO2M4v3/1FsNzMzG6Sp++EA5wJXR8SnS+lXSroS+BJwVUdqZmZmPaXZS2pvBG4cYtsNwK6NCpB0gKS7JK2T9JykiyQNuxyOpImSos5jXp28J0l6TNIrkpZJmlbpyMzMbEQ1e4ZzD3AEsLDOtiOAe4fbWdIuwJ3AMuAkYH/gG6TAd16Fz/88cH/N+xdL5R9OCnzfBs4ApgJzJQ1ExB0VyjczsxFSZeLnATVvvwV8R9IbgZuAXwN7ACcDJwAfb1Dcp4BxwCkRsQZYKGknYJakS4q04TweEQ8Ns/3LwL0RcUbx/h5JBwLnAw44ZmZdVOUM56dsOtlTwCeLR/nun7cz/GrRJwALSoFlHjCbdIZ0c4X61CVpG2AK6cym1jxgjqTxEbG61fLNzKw9VQLOlA5+3iTg7tqEiHha0rpiW6OAM0fSrqQzq7nAlyJi4yoI+wNbAytK+ywnXbJ7G/Cj9qpvZmatqrLSwKIOft4uwEt10geKbUNZD/wT6bLYGmAycDYpyJxUUzZ1yh8obd+EpJnATIAJEybQ398/XP0bWrt2bdtljBXdaKuz3vnaoLTR8O/l71V1bqvqcrdVs4MG/kjSFsC25fQKd/ystxabhkjfWObzwGdrkvolvQB8W9K7ImLpMOVriPSNZV8NXA3Q19cXkydPHr72DfT399NuGWNFN9pqxjm3Dkpb9ZG8dWiFv1fVua2qy91WzU78lKSzJa0EXgV+V+cxnAFg5zrp46l/5jOc64vnd9eUTZ3yN75vtnwzM+ugZufhnAGcA3yXdObwD8BFwBPAKopLU8NYQeqr+SNJ+wDbM7jvpZEoPT9JCoKTSvkmARuKOpqZWZc0G3A+AVwAXFK8vykiLgQOJAWMtzbYfz5wnKQda9KmkW5/0Gxf0anF88MAEbGeNE/oQ6V804AHPULNzKy7mu3DeTOwNCJel/QqxeWqiNgg6dvAd0hnQEO5knSWdKOk2cB+wCzg0tqh0sUlu0URcXrxfhawI2nS5xrgfcAXgBsj4ic15X+F1L9zOWme0NTicXyTx2lmZh3W7BnOb4EditdPA/+tZtsupEmdQ4qIAeAo0lydm4ELgctIZ021tmLT+TwrSPN05gC3AacBXy+ea8tfTDrzORpYALwfOM2rDJiZdV+zZzj3A+8h/eh/n7RCwK7AH4DPAHc1KiAilgFHNsgzsfR+HmkCZ0MRcRPp7MbMzDYjzQacWcDexeuLSZfUZpDObBYCn+tUxczMrLc0FXAi4nHg8eL1etK9cM4cgXqZmVmPaWfi55uAvYDnIuLZzlXJzMx6USu3mP60pF8CTwE/AJ6W9Iyk/93x2pmZWc9odqWB84ErSPNpTgT6iuf5wLeK7WZmZoM0e0ntM8DFEfHlUvrtxdpmnyGtPGBmZraJZi+pjWPou3ouos5inmZmZtB8wLkJOGWIbR8EbmmvOmZm1quq3GJ6as3b+cAlkiYy+BbTBwJ/3/kqmplZL6jSh3MLg28lvTdwXJ28/0K6E6eZmdkmqgScN494LczMrOdVucX0UzkqYmZmva3plQYkbUUaIHA4sCvwX8B9pFsFDL5hvJmZGU0GHEl7AHcAB5Hu8PkCcBhp/s2jko6NiN90upJmZjb6NTss+lLgjcB7I2K/iDgsIvYD3lukX9rpCpqZWW9oNuBMBc6OiB/VJhbvv0ha5sbMzGyQZgPONsDvhtj2O+AN7VXHzMx6VbMB5yHgbEnb1yYW788utpuZmQ3S7Ci1s4B7gF9KuoM0aGAP0iRQAZM7WjszM+sZTZ3hRMRS4K3A1cDuwDGkgHMl8NaIeLTjNTQzs55Q+QxH0tbAIcAvIuKckauSmZn1ombOcF4H7gbeMUJ1MTOzHlY54ETEBuBnwISRq46ZmfWqZkepfQk4X9I7R6IyZmbWu5odpXYeaUWBpZKeJY1Si9oMEXFIh+pmZmY9pNmA89PiYWZm1pRKAUfSONKyNj8FfgXcGREvjGTFzMyst1S5xfR+wJ3AxJrkNZI+HBF3jFTFzMyst1QZNHAJsAH4K2A74EDgEeCqEayXmZn1mCoB5zDgvIi4PyJeiYjlwCeBP5e018hWz8zMekWVgLMX8PNS2pOktdP27HiNzMysJ1WdhxONs5iZmQ2t6rDoBZJeq5N+Vzk9IvZov1pmZtZrqgScC0e8FmZm1vMaBpyIcMAxM7O2NbuWmpmZWUsccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsi+wBR9IBku6StE7Sc5IukrRlg33eI2mOpJXFfo9LukDStqV8syRFncfxI3tUZmbWSLM3YGuLpF1ItzpYBpwE7A98gxT4zhtm12lF3tnAz4CDgK8Uzx8s5V0NlAPM8nbrbmZm7ckacIBPAeOAUyJiDbBQ0k7ALEmXFGn1zI6I39S875f0CnCVpH0j4qmaba9FxEMjU30zM2tV7ktqJwALSoFlHikIHTHUTqVgs9EjxbPXbjMzGwVyB5xJwIrahIh4GlhXbGvGX5JuDPd4KX1nSS9KelXSI5JOabm2ZmbWMYrId+cBSa8CX4iIy0vpzwDXRsS5FcvZE/gJcFtEzKhJ/yjpjGcpsAPpRnFTgQ9GxI1DlDUTmAkwYcKEg+fNm9fsYW1i7dq17LDDDm2VMVZ0o60ee3b1oLR37j0+ax1a4e9VdW6r6jrRVlOmTHk4Ivqq5O1GwPl8RHyzlP4scE1EfKlCGW8gDTx4E3BwRAwMk1fAA8C4iHhXo7L7+vpiyZIljbINq7+/n8mTJ7dVxljRjbaaeM6tg9JWfe3ErHVohb9X1bmtqutEW0mqHHByX1IbAHaukz4eeKnRzkUAuRY4EJg6XLABiBRNbwQOajT02szMRlbuUWorKPXVSNoH2J5S384QLiMNpz4mIqrk38h3LDUz67LcZzjzgeMk7ViTNg14GVg03I6Svgh8DvhoRCyu8mHFGdHJwKMR8XprVTYzs07IfYZzJXAGcKOk2cB+wCzg0tqh0pJWAosi4vTi/WnAxcA1wLOSDq0p88mNw6YlLQJuIJ0tbQ98AjgU+MDIHpaZmTWSNeBExICko4ArgJtJ/TaXkYJOuV61fS7HFs8ziketj5ECEcBK4G+BvUhDpn8MnBgR8ztRfzMza13uMxwiYhlwZIM8E0vvZzA40NTb7/Q2qmZmZiPIq0WbmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmlkX2gCPpAEl3SVon6TlJF0nassJ+4yXNkTQgabWk70l6Y518J0l6TNIrkpZJmjYyR2JmZs3IGnAk7QLcCQRwEnARcBZwYYXdrwMmAx8HZgDvAW4qlX84cANwD3ACcCswV9KxHTkAMzNr2VaZP+9TwDjglIhYAyyUtBMwS9IlRdogkg4DjgOOiIh7i7RngR9IOjoi7iyyfhm4NyLOKN7fI+lA4HzgjpE7LDMzayR3wDkBWFAKLPOA2cARwM3D7PfCxmADEBE/lPSLYtudkrYBpgBnlPadB8yRND4iVnfoOGyMmXjOrYPSVn3txC7UxGz0yh1wJgF31yZExNOS1hXbhgo4k4AVddKXF9sA9ge2rpNvOenS4duAH7VWbdvcjKYAMJrqajaScgecXYCX6qQPFNta2W+/mjzUyTdQ2r4JSTOBmcXbtZIeH6YeVewGvNhmGWNFR9tKs0fHfi3u6+9VdW6r6jrRVvtWzZg74EAaMFCmIdJb2a/8XsPsT0RcDVzd4LMrk7QkIvo6VV4vc1tV57aqzm1VXe62yj0segDYuU76eOqfwTTab+ea/QZq0sp5aFC+mZmNsNwBZwV/6nMBQNI+wPbU76MZcr9Cbd/Ok8CrdfJNAjYAT7RQXzMz65DcAWc+cJykHWvSpgEvA4sa7LdnMc8GAEl9pP6b+QARsZ40/+ZDpX2nAQ9mHKHWsctzY4Dbqjq3VXVuq+qytpUiGnWddPDD0sTPZcBPSUOh9wMuBS6PiPNq8q0EFkXE6TVpt5NGmn2edMYyG/h1RPxVTZ7DgX7gCtKk0KlF/uMjwvNwzMy6KOsZTkQMAEcBW5KGQF8IXAZcUMq6VZGn1nTSWdA/A9cCDwMnl8pfDJwKHA0sAN4PnOZgY2bWfVnPcMzMbOzyatF1eIHR6lppK0nvKdppZbHf45IukLRtKd8sSVHncfzIHtXIaLGtJg7RBvPq5B3r36uhvi8h6Ys1+a4ZIk+9gUmbPUlvkXSVpEclvS6pv+J+2X+vujEPZ7NWs8DoMtICo/sD3yAF5/OG2RXSAqNvJy0wurGf6Sag3M90A/Bt0jI8U0kLjA6Mtkt/bbTVtCLvbOBnwEHAV4rnD5byrgbKAWZ5u3XPrc3vFaS+yPtr3m8yWc/fKwC+A9xeSvsAcDbF4KIaK4CPldJWtVbjrjuQ9O/9EPCGJvbL/3sVEX7UPIAvkub07FST9vfAutq0OvsdRppc+r6atEOKtKNr0hYAd5f2vQ1Y3O1jz9hWu9dJm1m01b41abOAF7t9nF1uq4lFu/yPBuWP+e/VEGXdCiwvpV0DLOn2cXawvbaoeX090F9hn678XvmS2mBDLTA6jrTA6HD7DVpgFNi4wCg1C4z+a2nfecBhksa3X/2sWmqriPhNneRHiuc9Ole9zUqr36uG/L2qT9KuwDHA3M5Wb/MSERta2K0rv1cOOIMNWig0Ip4m/XU13DXeTi0wOpq02lb1/CXptL68lt3Okl6U9KqkRySd0nJtu6vdtppTXJ9/XtKlksbVbPP3qr5TSe0yqL8LOEDSGknrJS2W1FbQH4W68nvlgDPYSCwwuktNHurkG3aB0c1Yq221CUl7Al8C/m/pr9qVpEspHyb17TwH3DBKg06rbbUe+CfgdNKUgquAT7Ppj6i/V/VNB34cEeVVRh4h3fjxfwIfIU3BWCjpkBbqOlp15ffKgwbq26wWGN3MtdpWKaP0BtIp+1rg7zYpOOJfSnlvBh4g3VDvxlYq22VNt1VEPA98tiapX9ILwLclvSsilg5T/lj+Xu1Fuvx29qCCI75ZynsraYDCuaRBBmNF9t8rn+EM5gVGq2u1rQCQJNIk3gOBqZEmBg8pUo/ljcBBVYapb2baaquS64vnd9eUTZ3yx+T3qvBh0g/jdY0yRsTLpI7wdzfK20O68nvlgDOYFxitrtW22ugy0rDXkyKiSv6NRuNf7O22Va0oPft7Ndh00kiqXzbxuaPxe9WqrvxeOeAMNhYWGO2UVtuKYiLe54CPRlqSqKHijOhk4NGIeL21KndNy21Vx6nF88Pg71WZpInAoVQcnVYMwDiBoj3HiO78XnV7DPnm9iB1hD0PLCStyTaT1L/w1VK+lcB3S2m3Az8HTiFdC34cuK+U53DgNeByYDJwCemvhWO7fey52go4jfTX5BzSD0PtY/eafItIk82OJQWa24q2en+3jz1jW80iTXo8pdjvItIP7w3+Xg3+P1ikn0P6y7zefK/xwH3AJ0mDMKaRJkyuB/q6fewtttd2pD9CTgUeBP6z5v12Q7VVN36vut5Ym+MDOAC4u/iP/TxpFvyWpTyrgGtKaTsXP6IvAWuA7wO71Sn/A6QVs9eTTl+nd/uYc7YVaeJdDPGYUZPvu8V/iJeB3xc/FCd0+5gzt9V0YAlpxYU/FD8cFwHb+Hs1+P9gkb4UuH2Icrcl9QP+smin1cUP76HdPuY22mriMP+fJg7VVt34vfLinWZmloX7cMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7Ms/j98rI3cKFEY0QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdhJREFUeJzt3Xm0XFWd9vHvwyCEKYQp0EgTQSVCy7I1Iti0BEGG8LYMoslC317YaNRXxe6FNogIAW2WYAvool3A0g4vrSZ0A83bDCGE4QbCoAaJYicBgwZkEMW+EGMgAvm9f+wTqJxbdevUcHfl1n0+a9Wqqn322bXPTqV+95w9HEUEZmZmI22TXlfAzMzGBgccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcdsGJJmSRooXg9ImtXi/lMlRbmsBnlvlPTQMNsvlTQoaYuKn/1GSSHpqFbqbDZSHHDMNh5zgL+QtF95g6RNgROB6yJibfaamXWBA47ZxuP/AWuAGXW2HQpMJAUls1HJAcesTZIOkvRfkp6S9EdJSyR9uN3yImI1cCMwvc7mGcAzwJ3FZ+8uabakX0l6QdIjks6VtPkw9d2suMT2yVL6VyX9ppS2p6Sri0t4ayTNk/Smdo/NDGCzXlfAbGMWEbNqXk8tbd4TuAe4DHgR+CtgtqR1ETGn2GcAULmsYcwBPiTpHRHxAEARRI4Hvh8RrxT5dgaeBf4eeA6YDJwD7AR8usXD3ICknYrjegaYWRzbmcACSfv4kp61ywHHrE0RMXf9a0kC7gJeD3yc9i99zSMFkBnAA0XakcAOtWVGxBJgSc3n3wO8AFwm6XMR8XKbnw9wGrAFcFhEPFeUfy+wEjgZuLyDsm0M8yU1szZJmiDpW5IeA14qHjOBN7dbZnH28J+ksxwVydOBx4D7az57E0mnSVom6YXis/8vMI4U9DpxODAfWF1chtsMeB74CTClw7JtDHPAMWvflaRg8HXgCOCdwL8CW3ZY7hzgz4GDJG0JHAvMiQ2Xdj8NuAD4D+D9wAHAqcW2Tj9/J+DDvBZE1z/eA+zRYdk2hvmSmlkbikBwDPCZiLisJr0bf8TdQeo/mQHsBmzL0Et0HwTmRsTZNZ+9f5NyXwFeBl5XSt+h9P5/gAeB8+uUsarJZ5g15IBj1p4tgE2BVzvQJW1LOtvo6CZTEfGKpP8gBZXdgWUR8bNStnG1n10YdoRcRISkJ4G31NR5U+C9pay3k86qHvIAAesmBxyzNkTE85J+DJwtaRWwDjiD1NexXRc+Yg7wGdLotLPrbF8AfErSYuCXwN8CkyqU+5/ATEk/JfULfRzYqpTnn4GTgDskXQo8BewKHAIMRMS/t3w0ZjjgmHXiJOAK4Crg98ClpB/vz3Sh7PtIo8ImAXPrbD8H2JF02SuAa4B/AK5vUu7ZpD6a84E/Ad8ClgIfW58hIn4r6UDgn4BLgO2Bp4G7gYZL75g1o9y3mJb0RuALwIHAXwB315nfUG+/8aQv/3GkwQ43AqdGxO9L+Y4Fvgq8ifSX37kRcXU3j8HMzFrXi1Fq+wHTgEeKR1VXA1NJf4mdTBoRtMFfc5IOBq4lzcY+GrgJmCPpiE4rbWZmnenFGc4mEbGueH0NsFOzMxxJBwH3AodExF1F2gHAD4H3RcRtRdp8YPOIeG/NvjcD20XEwSNxPGZmVk32M5z1waZFRwPPrA82RTk/An5VbKNYsv1QoNyhOZc0n2F8ezU2M7NuGC0TPycDy+ukLyu2AewNbF4n3zLScbY9+9vMzDo3WkapTSCtL1U2COxVk4c6+QZL2zcgaSZpORLGjRv3jj326Gwi9bp169hkk9ESx3vLbVWd26o6t1V13WirRx555NmI2LlK3tEScKD+ZDrVSS+/V4P0lBhxBWloK1OmTInFixd3UkcGBgaYOnVqR2WMFW6r6txW1bmtqutGWxVrCVYyWv4MGCTNBSjbntfOaAZr0sp5oP4ZkpmZZTJaAs5yXuurqVXbt/MoaYHBcr7JpFngrQzBNjOzLhstAWcesGsxzwYASVNI/Tfz4NVl3e8krT9VazpwX0Q8n6muZmZWR/Y+HElbkSZ+QlqYcDtJJxbvb46INZJWAAsj4hSAiLivmGNzlaTPk85YLgAWrZ+DU/gKMCDpEtKk0GnF46gRPzAzMxtWLwYN7EK6h0et9e/fQFo/ajPSSry1ZgAXk+438urSNrUZImJREby+CnyKNE/npIi4tYv1NzOzNmQPOBGxktdGjjXKM6lO2nPAR4vHcPteT/MFDM3MLLPR0odjZmajnAOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lfS7ZLWSHpK0nmSNm2yzyxJ0eDxxZp8VzbIM3nkj8zMzIazWc4PkzQBuA1YChwL7A18gxT4zhpm1+8At5TSjgNOB+aV0pcDHy2lrWyvxmZm1i1ZAw7wSWAccEJErAIWSNoOmCXpwiJtiIh4AniiNk3Sl4HlEbGklP2PEXH/CNTdzMw6kPuS2tHA/FJgmUsKQodULUTSDsD7gDndrZ6ZmY2U3AFnMumS16si4nFgTbGtqhOBzUnBqmxfSaskrZW0SFLlQGZmZiMn9yW1CcBzddIHi21VzQB+EhGPlNIfBH5I6iPaGTiNdNnu4Ij4Ub2CJM0EZgJMnDiRgYGBFqox1OrVqzsuY6xwW1XntqrObVVd7rbKHXAAok6aGqQPzSjtRrr8dvqQgiO+Wcp7Eyn4nEkaZDC0MhFXAFcATJkyJaZOnVqlGg0NDAzQaRljhduqOrdVdW6r6nK3Ve5LaoPA9nXSx1P/zKeeD5EC1NXNMkbEC8DNwNurVtDMzEZG7oCznFJfjaQ9gK0p9e0MYwawKCJ+3cLnVjp7MjOzkZM74MwDjpS0bU3adOAFYGGznSVNAg6k4ug0SeNII+MeaLWiZmbWXbkDzmXAWuA6SYcXHfazgItqh0pLWiHpu3X2nwG8DFxT3iBpvKS7JX1C0mGSpgN3ArsD54/AsZiZWQuyDhqIiEFJhwGXAjeQ+m0uJgWdcr3qLXczA7g9In5XZ9ta4HekFQt2AV4E7gMOiYjFXTkAMzNrW/ZRahGxFHhvkzyTGqS/bZh9XgRO6KhyZmY2YrxatJmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXRUsCRVG+5GTMzs6ZaPcN5UtKFkt4yIrUxM7O+1WrAuRw4Efi5pB9KmilpuxGol5mZ9ZmWAk5EnBMRewHvAx4GLgKelvR9SYePRAXNzKw/tDVoICLuiIi/BXYFPgvsA8yXtFLSLEl/1s1KmpnZ6NfpKLUpwHtIt40eBO4GPgaskPSRDss2M7M+0nLAkbSnpHMkPQrcDuwG/B3wZxHxv4E9SX09X+9qTc3MbFRr6QZsku4gndE8AVwJzI6Ix2rzRMQrkn4AfK5blTQzs9Gv1Tt+PgtMAxZERAyTbwnwhrZrZWZmfafVS2qXAvfWCzaStpH0HoCIeKl85mNmZmNbqwHnTmDfBtv2KbabmZkN0WrA0TDbtgHWdFAXMzPrY037cIrLZFNrkj4m6ahSti2BY4CHulc1MzPrJ1UGDbyLNLkTIIAPAi+X8vwJWA58oXtVMzOzftI04ETE1ynm1Ej6FXB8RCwZ6YqZmVl/aWlYdER4qLOZmbWlSh/ONGBRRKwqXg8rIm7uSs3MzKyvVDnDuRE4EPhR8TpoPFotAN+kzczMhqgScN4APF3z2szMrGVVBg08Vu+1mZlZK6r04WzVSoER4cmfZmY2RJVLaqtJfTNVuQ/HzMyGqBJw/o7WAo6ZmdkQVfpwrsxQDzMz63Od3mLazMyskiqDBn4EnBwRSyX9mCaX1yLigG5VzszM+keVPpz/Bl6oee3+HDMza1mVPpyP1rw+eURrY2ZmfavtPhwlO0sa7qZsZmZmQBsBR9I0SfcCLwK/AV6UdK+kY7peOzMz6xstBRxJnwBuIE0G/RzpZmyfK97/V7HdzMxsiJbuhwOcCVwREZ8qpV8m6TLgS8DlXamZmZn1lVYvqe0IXNdg27XADs0KkLSvpNslrZH0lKTzJA27HI6kSZKizmNunbzHSnpI0ouSlkqaXunIzMxsRLV6hnMncAiwoM62Q4C7httZ0gTgNmApcCywN/ANUuA7q8Lnfx64p+b9s6XyDyYFvm8DpwLTgDmSBiPi1grlm5nZCKky8XPfmrffAr4jaUfgeuC3wC7A8cDRwMeaFPdJYBxwQkSsAhZI2g6YJenCIm04D0fE/cNs/zJwV0ScWry/U9J+wNmAA46ZWQ9VOcP5ORtO9hTwieJRvvvnLQy/WvTRwPxSYJkLXEA6Q7qhQn3qkrQFcCjpzKbWXGC2pPER8Xy75ZuZWWeqBJxDu/h5k4E7ahMi4nFJa4ptzQLObEk7kM6s5gBfioj1qyDsDWwOLC/ts4x0ye7NwI87q76ZmbWrykoDC7v4eROA5+qkDxbbGlkL/AvpstgqYCpwOinIHFtTNnXKHyxt34CkmcBMgIkTJzIwMDBc/ZtavXp1x2WMFW6r6txW1bmtqsvdVq0OGniVpE2ALcvpFe74WW8tNjVIX1/m08BnapIGJD0DfFvS2yJiyTDlq0H6+rKvAK4AmDJlSkydOnX42jcxMDBAp2WMFW6r6txW1bmtqsvdVq1O/JSk0yWtAF4C/lDnMZxBYPs66eOpf+YznGuK57fXlE2d8te/b7V8MzProlbn4ZwKnAF8l3Tm8E/AecAjwEqKS1PDWE7qq3mVpD2ArRna99JMlJ4fJQXByaV8k4F1RR3NzKxHWg04HwfOAS4s3l8fEecC+5ECxpua7D8POFLStjVp00m3P2i1r+jE4vkBgIhYS5on9MFSvunAfR6hZmbWW6324bwBWBIRr0h6ieJyVUSsk/Rt4DukM6BGLiOdJV0n6QJgL2AWcFHtUOnikt3CiDileD8L2JY06XMV8B7gC8B1EfGzmvK/QurfuYQ0T2ha8TiqxeM0M7Mua/UM5/fANsXrx4G/rNk2gTSps6GIGAQOI83VuQE4F7iYdNZUazM2nM+znDRPZzZwM3AS8PXiubb8RaQzn8OB+cD7gZO8yoCZWe+1eoZzD/BO0o/+D0grBOwA/An4NHB7swIiYinw3iZ5JpXezyVN4GwqIq4nnd2YmdlGpNWAMwvYvXh9PumS2smkM5sFwGe7VTEzM+svLQWciHgYeLh4vZZ0L5zPjUC9zMysz3Qy8fP1wG7AUxHxZPeqZGZm/aidW0x/StKvgceAHwKPS3pC0v/peu3MzKxvtLrSwNnApaT5NMcAU4rnecC3iu1mZmZDtHpJ7dPA+RHx5VL6LcXaZp8mrTxgZma2gVYDzjga39VzIR6lZn1q0hk3DUlb+bVjelATs9Gr1T6c64ETGmz7AHBjZ9UxM7N+VeUW09Nq3s4DLpQ0iaG3mN4P+MfuV9HMzPpBlUtqNzL0VtK7A0fWyfs90p04zczMNlAl4LxhxGthZmZ9r8otph/LUREzM+tvLa80IGkz0gCBg4EdgP8B7ibdKuDl7lbPzMz6RUsBR9IuwK3A/qQ7fD4DHESaf/NTSUdExO+6XUkzMxv9Wh0WfRGwI/CuiNgrIg6KiL2AdxXpF3W7gmZm1h9aDTjTgNMj4se1icX7L5KWuTEzMxui1YCzBfCHBtv+ALyus+qYmVm/ajXg3A+cLmnr2sTi/enFdjMzsyFaHaV2GnAn8GtJt5IGDexCmgQqYGpXa2dmZn2j1Tt+LpH0JuDzwDtJo9WeBi4DLoqIZ7tfRbPu8SKcZr1TOeBI2hw4APhVRJwxclUyM7N+1EofzivAHcBbRqguZmbWxyoHnIhYB/wCmDhy1TEzs37V6ii1LwFnS3rrSFTGzMz6V6uj1M4irSiwRNKTpFFqUZshIg7oUt3MzKyPtBpwfl48zMzMWlIp4EgaR1rW5ufAb4DbIuKZkayYmZn1lyq3mN4LuA2YVJO8StKHIuLWkaqYmZn1lyqDBi4E1gF/DWwF7Ac8CFw+gvUyM7M+UyXgHAScFRH3RMSLEbEM+ATw55J2G9nqmZlZv6gScHYDfllKe5S0dtquXa+RmZn1parzcKJ5FjMzs8aqDoueL+nlOum3l9MjYpfOq2VmZv2mSsA5d8RrYWZmfa9pwIkIBxwzM+tYq2upmZmZtcUBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyyyB5wJO0r6XZJayQ9Jek8SZs22eedkmZLWlHs97CkcyRtWco3S1LUeRw1skdlZmbNtHoDto5ImkC61cFS4Fhgb+AbpMB31jC7Ti/yXgD8Atgf+Erx/IFS3ueBcoBZ1mndzcysM1kDDvBJYBxwQkSsAhZI2g6YJenCIq2eCyLidzXvByS9CFwuac+IeKxm28sRcf/IVN/MzNqV+5La0cD8UmCZSwpChzTaqRRs1nuwePbabWZmo0DugDMZWF6bEBGPA2uKba14N+nGcA+X0reX9KyklyQ9KOmEtmtrZmZdo4h8dx6Q9BLwhYi4pJT+BHBVRJxZsZxdgZ8BN0fEyTXpHyGd8SwBtiHdKG4a8IGIuK5BWTOBmQATJ058x9y5c1s9rA2sXr2abbbZpqMyxopetNVDTz4/JO2tu48fsf26xd+r6txW1XWjrQ499NAHImJKlby9CDifj4hvltKfBK6MiC9VKON1pIEHrwfeERGDw+QVcC8wLiLe1qzsKVOmxOLFi5tlG9bAwABTp07tqIyxohdtNemMm4akrfzaMSO2X7f4e1Wd26q6brSVpMoBJ/cltUFg+zrp44Hnmu1cBJCrgP2AacMFG4BI0fQ6YP9mQ6/NzGxk5R6ltpxSX42kPYCtKfXtNHAxaTj1+yKiSv71fMdSM7Mey32GMw84UtK2NWnTgReAhcPtKOmLwGeBj0TEoiofVpwRHQ/8NCJeaa/KZmbWDbnPcC4DTgWuk3QBsBcwC7iodqi0pBXAwog4pXh/EnA+cCXwpKQDa8p8dP2waUkLgWtJZ0tbAx8HDgSOG9nDMjOzZrIGnIgYlHQYcClwA6nf5mJS0CnXq7bP5Yji+eTiUeujpEAEsAL4e2A30pDpnwDHRMS8btTfzMzal/sMh4hYCry3SZ5JpfcnMzTQ1NvvlA6qZmZmI8irRZuZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRab9boCZu2YdMZNQ9JWfu2YHtSkudFUV7OR5DMcMzPLwgHHzMyycMAxM7MsHHDMzCyL7AFH0r6Sbpe0RtJTks6TtGmF/cZLmi1pUNLzkr4vacc6+Y6V9JCkFyUtlTR9ZI7EzMxakXWUmqQJwG3AUuBYYG/gG6TAd1aT3a8G9gE+BqwDLgCuB/66pvyDgWuBbwOnAtOAOZIGI+LWrh6MdY1HcTW2vm1Oe+vLnHzGTW4XG9VyD4v+JDAOOCEiVgELJG0HzJJ0YZE2hKSDgCOBQyLiriLtSeCHkg6PiNuKrF8G7oqIU4v3d0raDzgbcMAxM+uh3AHnaGB+KbDMJZ2tHALcMMx+z6wPNgAR8SNJvyq23SZpC+BQ0plNrbnAbEnjI+L5Lh2HNeCzlY2D/x1sY5Q74EwG7qhNiIjHJa0ptjUKOJOB5XXSlxXbIF2e27xOvmWkS3ZvBn7cXrXbV+8/fj0rv3ZM0x+JKj8i5TyNfmSq5ms1r41+7f57txvk2tkvxz7+3nefIiLfh0kvAV+IiEtK6U8AV0XEmQ32WwD8MSKOK6V/D9grIt4t6a+ARcBfRsSSmjxvBH4BHFmvH0fSTGBm8XYf4OG2DzDZCXi2wzLGCrdVdW6r6txW1XWjrfaMiJ2rZOzF0jb1IpwapLezX/m9htmfiLgCuKLJZ1cmaXFETOlWef3MbVWd26o6t1V1udsq97DoQWD7Ounjgefa2G/7mv0Ga9LKeWhSvpmZjbDcAWc5r/W5ACBpD2Br6vfRNNyvUNu38yjwUp18k0nDqB9po75mZtYluQPOPOBISdvWpE0HXgAWNtlv12KeDQCSpgB7FduIiLXAncAHS/tOB+7LOEKta5fnxgC3VXVuq+rcVtVlbavcgwYmkCZ9/pw0FHov4CLgkog4qybfCmBhRJxSk3YLaaTZ53lt4udvI6I88XMAuJQ0KXRakf8oT/w0M+utrGc4ETEIHAZsShoCfS5wMXBOKetmRZ5aM0hnQf8KXAU8ABxfKn8RcCJwODAfeD9wkoONmVnvZT3DMTOzscurRdfhBUara6etJL2zaKcVxX4PSzpH0palfLMkRZ3HUSN7VCOjzbaa1KAN5tbJO9a/V42+LyHpizX5rmyQp97ApI2epDdKulzSTyW9Immg4n7Zf698i+kSLzBaXQdtNb3IewFpUu7+wFeK5w+U8j4PlAPMsk7rnluH3ytIfZH31LzfYLKev1cAfAe4pZR2HHA6xeCiGsuBj5bSVrZX457bj/TvfT/wuhb2y/97FRF+1DyAL5Lm9GxXk/aPwJratDr7HUSaXPqemrQDirTDa9LmA3eU9r0ZWNTrY8/YVjvXSZtZtNWeNWmzgGd7fZw9bqtJRbv8ryblj/nvVYOybgKWldKuBBb3+ji72F6b1Ly+BhiosE9Pfq98SW2oRguMjiMtMDrcfkMWGAXWLzBKzQKj/17ady5wkKTxnVc/q7baKiJ+Vyf5weJ5l+5Vb6PS7veqKX+v6pO0A/A+YE53q7dxiYh1bezWk98rB5yhhiwUGhGPk/66Gu4ab7cWGB1N2m2ret5NOq0vr2W3vaRnJb0k6UFJJ7Rd297qtK1mF9fnn5Z0kaRxNdv8varvRFK7DOnvAvaVtErSWkmLJHUU9EehnvxeOeAMNYH6y+AMFts62W/9cznfYGn7aNFuW21A0q7Al4B/K/1Vu4J0KeVDpL6dp4BrR2nQabet1gL/ApxCmlJwOfApNvwR9feqvhnATyKivMrIg8BpwN8AHyZNwVgg6YA26jpa9eT3yoMG6tuoFhjdyLXbVimj9DrSKftq4B82KDjie6W8NwD3km6od107le2xltsqIp4GPlOTNCDpGeDbkt4WNSuj1ylnLH+vdiNdfjt9SMER3yzlvYk0QOFM0iCDsSL775XPcIbyAqPVtdtWAEgSaRLvfsC0SBODG4rUY3kdsH+VYeobmY7aquSa4vntNWVTp/wx+b0qfIj0w3h1s4wR8QKpI/ztzfL2kZ78XjngDOUFRqtrt63Wu5g07PXYiKiSf73R+Bd7p21VK0rP/l4NNYM0kurXLXzuaPxetasnv1cOOEONhQVGu6XdtqKYiPdZ4CORliRqqjgjOh74aUS80l6Ve6bttqrjxOL5AfD3qkzSJOBAKo5OKwZgHE3RnmNEb36vej2GfGN7kDrCngYWkNZkm0nqX/hqKd8K4LultFuAXwInkK4FPwzcXcpzMPAycAkwFbiQ9NfCEb0+9lxtBZxE+mtyNumHofaxc02+haTJZkeQAs3NRVu9v9fHnrGtZpEmPZ5Q7Hce6Yf3Wn+vhv4fLNLPIP1lXm++13jgbuATpEEY00kTJtcCU3p97G2211akP0JOBO4D/rvm/VaN2qoXv1c9b6yN8QHsC9xR/Md+mjQLftNSnpXAlaW07Ysf0eeAVcAPgJ3qlH8cacXstaTT1xm9PuacbUWaeBcNHifX5Ptu8R/iBeCPxQ/F0b0+5sxtNQNYTFpx4U/FD8d5wBb+Xg39P1ikLwFuaVDulqR+wF8X7fR88cN7YK+PuYO2mjTM/6dJjdqqF79XXrzTzMyycB+OmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmlsX/ByRX0i7BqSM2AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -331,7 +331,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEPCAYAAADrvntcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuUHVWZ9/Hvj4sQuYZbQAdpATHDRVEDwvsyEgXlYjSKIBcdjYLBUbnMQg0gakCNE5SbML7AUgmOQpgBhpkESOSSDuCAApIMGBJMNIBAImBDiAmRwPP+sauxqJzurtN9zqnuPr/PWmedrl276jy1U+mna9eufRQRmJmZVWG9qgMwM7P25SRkZmaVcRIyM7PKOAmZmVllnITMzKwyTkJmZlYZJyFrKEmTJUUPr0+W3Mdu2X62LJRPyPazaXOiLxfHAPd5raTOEvU2kHSqpPmSVkvqknSTpAP6+bmDpU0nFM6JP0maLemdJbYdm22zZytitdZwErJmeB7Yv8ZrVsntdwO+CRR/+d+Y7WdVY8LsdxxNJWl94AZgCvDfwOHABOBloFPScf3Y7WBp027vyz73RGBbYI6kN/SxzW+ybZY0OTZroQ2qDsCGpbURcU+jdxoRTwNPN3q/g9BJwAeBwyIin7j/S9J04HJJcyPiiYF+UIVtem9ErASQdB/wKPAJ4HvFipIEbBQRK4CGn1dWLV8JWSUknSFpsaQXJS2XNEvS9pLGAjOyan/Iul+WZtu8putIUke2fIykKyStkPTH7m4/SV+V9KSkpyVNlbRe7vNHS5ou6XFJqyT9Nuv+Wi9b32Mc2fo3Zdv/Odt+tqS3Fo5xx6wLbbWkpZJOKNk8pwBzCgmo29eAjYHjc5+zVNL3JX1d0jJJKyX9XNIWfR1Lre44SdtIulLSs9mxdUoaUzi27s/856zNu7L2qPuqMSIeJyXCjmzfkyU9I+kASfcCLwJH1eqOk7R+di49ImlNFsu0QqzjJd2XnWvLJJ0racN647Tm8JWQNYWkdc6tiFibrfsUcCYwCfgtsDWpe2YTUpfLl4HvA0cATwFr+vi4qcDPgY8BnwWulPQOYKds+V3At4EHgOnZNm8EFmXbvQDsDZwNjAC+21sckrYC7gKeBT5P6so6HbhV0m4RsTr76/2/gG1ICePFbP9bAb/rpd12JP0yvqDW+ohYIulB4D2FVccCi4HPATsA5wI/Ao7q7Vh6cAOwa7bNM8BXSN1l74iIxbl6Hwf+F5gI/B1wPqkL8Qu97HsdkjYjtcuyXPHrgSuz43gEeDI7rqLLgE9l9eZm+zkyt++PA1dn9c4EdiH9+66XHZ9VLSL88qthL2AyED28OrI6lwDX9bKPcfn6ufIJWfmm2XJHtnxFrs7mwEukX/Tr58p/DVzTw+eJ9AfZmcDvS8TxLVIC2ipXNpJ0L+yL2fLh2bbvztXZCVgLdPZy7Ptl243vpc4NwMO55aXAn7vbJSv7BPAK8Pd1tumh2fKBuTqbkK5ULit85hJgg1zZhcCyPs6P7s/bImvzHYFrsnbZu3AOjS9sOzYr3zNbHp0tn9zLv+uj+fMjK/8ssBrYuur/L36Fr4SsKZ4HDq5R/mT2Pg84XtLZpBvj90fEywP4vNu6f4iIFZKeBuYW9rkYeFP3gqSNgTNIv6zfBGyYW7dBZFdtPTgYuAVYkbviewG4H+juttoXWB4Rv8rF9qik+/txfGXcEtk9lsz1wM+AfYCH69jPvsDTETG3uyAi/iJpJlAcmTen0E4LgO0kvS4i/trH5zyX+/kZ4LMRMS9XFsDNfezjvdn7tB7W70b6t/33wpX57aQuzT1JV09WIScha4a1EXFfL+t/AmxG6sb5BvCspP8HTO5nMnqusPzXHso2zi1PBU4gdZH9Jqs/Hjgrq7eSnm1DumI5usa67oS4PfCnGuv/RDr2nnQPNtiplzo75erl9/uqSF2CK6ndhdWbHYDlNcqXk7q68mq1sYDXZT/35j2kbsxngMcj4pXC+q4SiWxr4C+RBizUsk32flMP63fsY//WAk5C1nLZL5wLgAuyeyCfAL5D+sV6aYvCOAq4OCLO7S6Q9MGS2/6ZNHT6WzXWvZC9LwO2q7F+O1JXUE0R8Xg2aODDwA+K6yW9mfQXfPGztyvUGwFsSrr/U4+nivvKjCIdd6M8ULhyKyrzHTPPAptI2ryHRNQd70TS/cCiP5T4DGsyj46zSkXE4xHxL6Tust2z4u6/gDeuvVVDjCB3c17p2ZxjCnV6iuM2YA/gtxFxX+G1KKtzLzBK0rtzn/EmoM+HMoGLgIMkfaDGum9ncf+4UP5+vfaB0yNIv8i7r0jLtumvSF1qrw58kPR60pDxu0rE3kq3Z++f6mH9ItIfNh01/p3ui4hnWxOm9cZXQtYMG0jar0b54xHxhKTLSH+l3kO6f/Re4C2k0XKQfnkAnKj0XMyqiHiwwTHeAnxR0uIsli8CGxXq9BTH+cAngdslXUz6RTcKOBC4KyKuJnUBzQf+Q9Ik0ui4c6jdRVd0Mem+039K+j7QSerCO540wOAfY91nhFYDN0r6HqlL7XvAf0bEgj6O5TUiYrakXwLXSDqddLXxZVLSXucZnipFxCJJlwPnSdoOuIP0MO6REXFMRLwi6TTg3yRtTrrH9FdgZ+AjWb1WP6RrRVWPjPBreL3ofXTcWVmdCcAvSb/8V5GG+R5f2M9ppJFNa4Glue1qjY4bV9h2KfD9Qtk04L7c8ijgP4EVpPsd55KGN7+6/57iyMrfAFyRbbsm+8yfAXvk6ryJNEvE6mwfJwLX0svouNy2GwD/nLXNaqCL9Ev0gBp1lwLnZW2/HPgLaVjylvW2aVa2LfDT7DNXk27e71OijdfZV41Yy9SZDDxTo3wsudFxWdn6ZKMaSQnmj6w7Gu4w4M6sXVaQBsZ8m9zIPr+qeyn7R2oZSbuSnjvYj9S3fWdEjC2x3RakIaAfIXUjziQNzXy2UG886QR7C+nEPDsirmnkMZgNJtk9pGsjws+92JBTxT2hPUjPUDySvcq6hvSX0Amkv6b2IT0v8SqlyR2vA+aQ/vq5Ebi6h751MzOrWBVXQutFNhxT0rXANn1dCUnaH/gf0gN0d2Rl+5Juor4/Im7NymYDG0bE+3Lb3gRsHhH9mn3YbLDzlZANZS2/Eop1nwco4zDSg3935Pbza9IQy8MAJG1EusH974VtpwP7d8+jZTbcRESHE5ANVUNliPZoYGGN8oezdZDmhNqwRr2HSce5W9OiMzOzfhkqQ7RHsu7T2ZBG7+ycq0ONel2F9a8haSLpYTZGjBjxrh13rP4h6ldeeYX11hsqfx9UZyDttNkj6XbkC7sN/79NfD6V57YqJ99OjzzyyDMRsW1/9zVUkhDUfoJaNcqLy+pleyLicuBygDFjxsR99/U220xrdHZ2Mnbs2KrDGPQG1E7KTotFi3qvNwz4fCrPbVVOvp0kPTqQfQ2VlN9F7W+33JK/Xfl05cqKdaD2lZSZmVVoqCShhfzt3k9e/l7REtIU/sV6o0lT2tczHNzMzFpgqCShm4Hts+eAAMi+6XHnbB0RsYb0fNBRhW2PBu6OiOdbFKsNYh2n30jH6Te+ZtnMqtPye0LZZIiHZ4tvBDaX1P1NiDdFxKpsPq+5EXE8QETcnT0D9FNJXyZd2UwlzdN1a2733wI6JV1IepD18Ox1aNMPzMzM6lbFwITtgP8olHUvv5k0J9UGpDmh8o4hTf//E3LT9uQrRMRdWUL7NvBPpOeIjouIXzQwfhsGOibNrDoEM6OCJBQRS/nbiLWe6nTUKHsO+Ez26m3bGyhM52NmZoPTULknZGZmw5CTkLWlGdNOYca0U6oOw6ztDaWHVc0aZq/lS6oOwczwlZCZmVXIScjMzCrjJGRmZpVxEjIzs8o4CZmZWWU8Os7a0lVvP6TqEMwMJyFrU2ceelLVIZgZ7o4zM7MKOQlZW9pz2WL2XLa46jDM2p6746wtzbzyVMCzaZtVzVdCZmZWGSchMzOrjJOQmZlVxknIzMwq4yRkZmaVcRIyM7PKeIi2taVxn76w6hDMDCcha1MPbb9r1SGYGe6OMzOzCjkJWVuaMutipsy6uOowzNqek5C1pePmz+a4+bOrDsOs7TkJmZlZZZyEzMysMk5CZmZWGSchMzOrjJOQmZlVxg+rWlt6cNQuVYdgZjgJWZv60ISLqg7BzHB3nJmZVchJyMzMKuMkZG1p6dRxLJ06ruowzNqek5CZmVXGScjMzCrjJGRmZpVxEjIzs8o4CZmZWWWchMzMrDKeMcHa0hmHfKnqEMwMJyFrU1fvfWjVIZgZFXTHSdpd0m2SVkl6UtI5ktbvY5vJkqKH1xm5etN6qDO6+UdmZmb1aumVkKSRwK3AAmA8sAtwHikZntXLpj8CZhXKPgJMAm4ulC8EPlMoW9q/iG24OnZeOp18RWRWrVZ3x30eGAEcERErgFskbQ5MlnRuVraOiPgj8Md8maSvAwsjYl6h+l8i4p4mxG7DyHdnXwI4CZlVrdXdcYcBswvJZjopMR1YdieStgLeD1zd2PDMzKyVWp2ERpO6y14VEY8Bq7J1ZR0JbEhKYEW7S1ohaY2kuySVTm5mZtZare6OGwk8V6O8K1tX1jHAbyLikUL5A8CvSPectgVOI3X5HRARv661I0kTgYkAo0aNorOzs44wmmPlypWDIo7Brj/tdNpea9dZHu5t7fOpPLdVOY1spyqGaEeNMvVQvm5FaQdS192kdXYccVGh7o2khHQmaSDDusFEXA5cDjBmzJgYO3ZsmTCaqrOzk8EQx2DXn3aacPqNAJyULZ/34AYs/UR9+xhqfD6V57Yqp5Ht1OruuC5gyxrlW1D7CqmWj5OS1jV9VYyI1cBNwDvLBmhmZq3T6iS0kMK9H0k7AptQuFfUi2OAuyLi8To+t9RVlpmZtVaru+NuBr4iabOIeCErOxpYDczta2NJHcB+wBfKfJikEaQReff3J1gbvjomzaw6BDOj9VdClwJrgOslHZwNCpgMnJ8fti1psaQf19j+GGAtcG1xhaQtJN0p6URJB0k6GpgDvBGY0oRjMTOzAWrplVBEdEk6CLgEmEG6D3QBKREV46o1lc8xwG0R8XSNdWuAp0kzL2wHvAjcDRwYEfc15ADMzKyhWj46LiIWAO/ro05HD+V797LNi8ARAwrO2saMaacA8KEJF/VR08yaybNoW1vaa/mSqkMwM/yldmZmViEnITMzq4yTkJmZVcZJyMzMKuMkZGZmlfHoOGtLV739kKpDMDOchKxNnXnoSX1XMrOmc3ecmZlVpq4kJKnWVDpmQ86eyxaz57LFVYdh1vbqvRJ6QtK5kv6+KdGYtcjMK09l5pWnVh2GWdurNwldBhwJPCTpV5ImStq8CXGZmVkbqCsJRcQ3I2Jn4P3AIuB84ClJP5d0cDMCNDOz4atfAxMi4vaI+BSwPXAS8FZgtqSlkiZLekMjgzQzs+FpoKPjxgDvIX1ldxdwJ3ACsFjSJwe4bzMzG+bqTkKSdpL0TUlLgNuAHYDPAm+IiH8EdiLdO/peQyM1M7Nhp66HVSXdTrry+SMwDbgiIh7N14mIlyVdBZzSqCDNzGx4qnfGhGeAw4FbIiJ6qTcPeHO/ozJrsnGfvrDqEMyM+pPQJcBvaiUgSZsC74yIOyLiJeDRdbY2GyQe2n7XqkMwM+q/JzQH2L2HdW/N1puZmZVSbxJSL+s2BVYNIBazlpky62KmzLq46jDM2l6f3XGS3gOMzRWdIOnQQrWNgQ8CDzYuNLPmOW7+bMCzaZtVrcw9oXeTHkgFCOAoYG2hzl+BhcBXGheamZkNd30moYj4HtkzP5L+AHw0IuY1OzAzMxv+6hodFxEedm1mZg1T5p7Q4cBdEbEi+7lXEXFTQyIzM7Nhr8yV0ExgP+DX2c9Bz6PkAvAX35mZWSllktCbgadyP5sNeQ+O2qXqEMyMcgMTHq31s9lQ9qEJF1UdgplR7p7Q6+vZYUT4gVUzMyulTHfcStK9nrJ8T8jMzEopk4Q+S31JyGzQWzp1HAAdk2ZWHIlZeytzT2haC+IwM7M2NNCv9zYzM+u3MgMTfg1MiIgFku6lj665iNi3UcGZmdnwVuae0G+B1bmffX/IzMwaosw9oc/kfp7Q1GjMzKyt9PuekJJtJfX2RXdmZmY9qmsWbXh1QtOzgHdl26+VdD/wnYi4scHxmTXFGYd8qeoQzIw6k5CkE4EfArcBpwB/ArYDjgD+W9IXIuKyhkdp1mBX7138cmAzq0K9V0JnApdHxD8Vyi+VdCnwNcBJyMzMSqn3ntDWwPU9rLsO2KqvHUjaXdJtklZJelLSOZJ6nepHUoekqPGaXqPueEkPSnpR0gJJR5c6Mmsrx86bxbHzZlUdhlnbq/dKaA5wIHBLjXUHAnf0trGkkcCtwAJgPLALcB4pGZ5V4vO/DPwyt/xMYf8HkJLhD4GTgcOBqyV1RcQvSuzf2sR3Z18CuFvOrGplHlbdPbf4A+BHkrYGbuBv94Q+ChwGnNDH7j4PjACOiIgVwC2SNgcmSzo3K+vNooi4p5f1XwfuiIiTs+U5kvYAvgE4CZmZDTJlroQe4rUPqAo4MXsVv2V1Fr3Pon0YMLuQbKYDU0lXUjNKxFOTpI2A95KugPKmA1dI2iIinu/v/s3MrPHKJKH3NvDzRgO35wsi4jFJq7J1fSWhKyRtRboCuxr4WkR0z+awC7AhsLCwzcOk7r7dgHsHFr6ZmTVSmRkT5jbw80YCz9Uo78rW9WQN8K+kLrUVwFhgEinxjM/tmxr77yqsfw1JE4GJAKNGjaKzs7O3+Fti5cqVgyKOwa4/7XTaXmvXWR7ube3zqTy3VTmNbKe6H1btJmk9YONieYlvVq0195x6KO/e51NA/unCTknLgR9K2jsi5vWyf/VQ3r3vy4HLAcaMGRNjx47tPfoW6OzsZDDEMdj1p50mnJ6epz4pWz7vwQ1Y+on69jHU+Hwqz21VTiPbqa4h2tlUPZMkLQZeAl6o8epNF7BljfItqH2F1Jtrs/d35vZNjf13L9e7fzMza7J6r4ROBk4HzgW+A3wbeBk4BngdMKWP7ReS7v28StKOwCasey+nL1F4X0JKjKOBfBfiaOAV4JE692/DmL9R1WxwqPdh1c8B3yQlIYAbIuJsYA9SEnlLH9vfDBwiabNc2dGkr4qo997Tkdn7/QARsYb0HNNRhXpHA3d7ZJyZ2eBT75XQm4F5EfGypJfIuroi4hVJPwR+RLpS6smlpKup6yVNBXYGJgPn54dtZ919cyPi+Gx5MrAZ6UHVFcB7gK8A10fE/+b2/y3S/aILSc8xHZ69/ESimdkgVO+V0LPAptnPjwHvyK0bSXoQtUcR0QUcRHqWaAZwNnAB6eoqbwNe+7zRQtJzRFcANwHHAd/L3vP7v4t0hXQwMBv4MHCcZ0uwohnTTmHGtFOqDsOs7dV7JfRLYB9SIriKNNPBVsBfgS+SZtfuVUQsAN7XR52OwvJ00kOnfYqIG0hXQWY92mv5kqpDMDPqT0KTgTdmP08hdcdNIF0B3cLfRr6amZn1qa4kFBGLgEXZz2tI3ynkPg0zM+uXgTys+nfADsCTEfFE40IyM7N2Ue/ABCT9k6THgUeBXwGPSfqjpC80PDozMxvW6p0x4RvAJaTnfT4IjMnebwZ+kK03MzMrpd7uuC8CUyLi64XyWdlcbl8EzmlIZGZNdNXbD6k6BDOj/iQ0gp6/PXUuHh1nQ8SZh/pUNRsM6r0ndANwRA/rPgZ4Qi4zMyutzNd7H55bvBk4V1IH63699x7AVxsfolnj7blsMQAPbb9rxZGYtbcy3XEzWfdrvN8I1OpU/xnpG0/NBrWZV54KeDZts6qVSUJvbnoUZmbWlsp8vfejrQjEzMzaT90zJkjagDQI4QBgK+DPwJ2kr1VY29jwzMxsOKsrCUnaDvgF8DZgKbAc2J/0fNB8SR+IiKcbHaSZmQ1P9Q7RPh/YGnh3ROwcEftHxM7Au7Py8xsdoJmZDV/1JqHDgUkRcW++MFs+gzSFj5mZWSn13hPaCHihh3UvAK8bWDhmrTHu0xdWHYKZUX8SugeYJOn2iPhLd6GkTYBJ2XqzQc8PqZoNDvUmodOAOcDjkn5BGpiwHenBVQFjGxqdmZkNa3XdE4qIecBbgMuBbYH3k5LQpcBbImJ+wyM0a4Ipsy5myqyLqw7DrO2VvhKStCGwL/CHiDi9eSGZNd9x82cDnk3brGr1XAm9DNwO/H2TYjEzszZTOglFxCvA74BRzQvHzMzaSb3PCX0N+IakvZoRjJmZtZd6R8edRZoZYZ6kJ0ij4yJfISL2bVBsZmY2zNWbhB7KXmZmZgNWKglJGkGasuchYBlwa0Qsb2ZgZs304Khdqg7BzCj39d47A7cCHbniFZI+HhG/aFZgZs30oQkXVR2CmVFuYMK5wCvAPwCvB/YAHgAua2JcZmbWBsokof2BsyLilxHxYkQ8DJwIvEnSDs0Nz8zMhrMySWgH4PeFsiWkueK2b3hEZi2wdOo4lk4dV3UYZm2v7HNC0XcVMzOz+pQdoj1b0toa5bcVyyNiu4GHZWZm7aBMEjq76VGYmVlb6jMJRYSTkJmZNUW9c8eZmZk1jJOQmZlVpt6548yGhTMO+VLVIZgZTkLWpq7e+9CqQzAz3B1nZmYVchKytnTsvFkcO29W1WGYtb2WJyFJu0u6TdIqSU9KOkfS+n1ss4+kKyQtzrZbJOmbkjYu1JssKWq83Pdir/Hd2Zfw3dmXVB2GWdtr6T0hSSNJXwuxABgP7AKcR0qGZ/Wy6dFZ3anA74C3Ad/K3j9WqPs8UEw6Dw80djMza7xWD0z4PDACOCIiVgC3SNocmCzp3KyslqkR8XRuuVPSi8BlknaKiEdz69ZGxD3NCd/MzBqp1d1xhwGzC8lmOikxHdjTRoUE1O2B7N1z1ZmZDVGtTkKjgYX5goh4DFiVravH/yF92d6iQvmWkp6R9JKkByQd0e9ozcysqVrdHTcSeK5GeVe2rhRJ2wNfA/6tcFW1GPgqMA/YlPTle9dJ+lhEXN/DviYCEwFGjRpFZ2dn2TCaZuXKlYMijsGuP+102l5r11ke7m3t86k8t1U5DW2niGjZC3gJOKVG+RPAd0ru43XAHaQv2hvZR10BdwPzyuz7Xe96VwwGc+bMqTqEIaE/7bTTpJmx06SZERAB6edhzudTeW6rcvLtBNwXA8gLrb4S6gK2rFG+BbWvkF5DkoCfAnsA/zciunqrHxEh6XpgqqT1I+LlfsRsw1DHpJlVh2BmtL47biGFez+SdgQ2oXCvqAcXkIZ2vz8iytTv5m+GNTMbhFo9MOFm4BBJm+XKjgZWA3N721DSGcBJwCcj4q4yH5ZdOX0UmO+rIDOzwafVV0KXAicD10uaCuwMTAbOj9wAA0mLgbkRcXy2fBwwBZgGPCFpv9w+l0Q2hFvSXOA60lXVJsDngP2AjzT3sGyomTHtFAA+NOGiiiMxa28tTUIR0SXpIOASYAbpPtAFpERUjCs/lc8HsvcJ2SvvM6TkBGl03KnADqTh278BPhgRNzcifhs+9lq+pOoQzIwKvsohIhYA7+ujTkdheQLrJp9a2x0/gNDMzKzFPIu2mZlVxknIzMwq4yRkZmaVcRIyM7PKtHxggtlgcNXbD6k6BDPDScja1JmHnlR1CGaGu+PMzKxCTkLWlvZctpg9ly2uOgyztufuOGtLM688FfBs2mZV85WQmZlVxknIzMwq4yRkZmaVcRIyM7PKOAmZmVllnITMzKwyHqJtbWncpy+sOgQzw0nI2tRD2+9adQhmhrvjzMysQk5C1pamzLqYKbMurjoMs7bnJGRt6bj5szlu/uyqwzBre05CZmZWGSchMzOrjJOQmZlVxknIzMwq4yRkZmaV8cOq1pYeHLVL1SGYGU5C1qY+NOGiqkMwM9wdZ2ZmFXISMjOzyjgJWVtaOnUcS6eOqzoMs7bnJGRmZpVxEjIzs8o4CZmZWWWchMzMrDJOQmZmVhknITMzq4xnTLC2dMYhX6o6BDPDScja1NV7H1p1CGaGu+PMzKxCTkLWlo6dN4tj582qOgyztufuOGtL3519CeBuObOq+UrIzMwq0/IkJGl3SbdJWiXpSUnnSFq/xHZbSLpCUpek5yX9XNLWNeqNl/SgpBclLZB0dHOOxMzMBqqlSUjSSOBWIIDxwDnAacDZJTa/BhgLnABMAPYBbijs/wDgOmAOcBhwI3C1pA805ADMzKyhWn1P6PPACOCIiFgB3CJpc2CypHOzsnVI2h84BDgwIu7Iyp4AfiXp4Ii4Nav6deCOiDg5W54jaQ/gG8AvmndYZmbWH61OQocBswvJZjowFTgQmNHLdsu7ExBARPxa0h+ydbdK2gh4L3ByYdvpwBWStoiI5xt0HNZmOk6/cZ2ypf/ywQoiMRteWp2ERgO35wsi4jFJq7J1PSWh0cDCGuUPZ+sAdgE2rFHvYVK3427Avf0L2wabjtNv5LS91jIhlxwGa1JwAjPrWauT0EjguRrlXdm6/my3c64ONep1Fda/hqSJwMRscaWkRb3E0SrbAM9UHcRgd3KhnTS1/Lbq/mHquLq2e80++rndQLftB59P5bmtysm3004D2VEVzwlFjTL1UN6f7YrL6qE8FUZcDlzex2e3lKT7ImJM1XEMdm6nctxO5bmtymlkO7V6iHYXsGWN8i2ofaXT13Zb5rbrypUV69DH/s3MrAKtTkIL+ds9HAAk7QhsQu17Pj1ul8nfK1oCvFSj3mjgFeCRfsRrZmZN1OokdDNwiKTNcmVHA6uBuX1st332HBAAksaQ7gfdDBARa0jPBx1V2PZo4O4hNjJuUHUPDmJup3LcTuW5rcppWDspoq9bMY2TPay6AHiINCx7Z+B84MKIOCtXbzEwNyKOz5XNIo1w+zLpymYq8KeI+IdcnQOATuAS0oOsh2f1D40IPydkZjbItPRKKCK6gIOA9UnDsc8GLgC+Wai6QVYn7xjS1dJPgJ8C9wMfLez/LuBI4GBgNvBh4DgnIDOzwamlV0JmZmZ5nkV7EJD0OUm/yyZdvV/SQSW2mSwparyG/HcTNHuS2+GkP20lqaOHc2d6q+Kji43mAAADuklEQVRuNUm7SrpM0nxJL0vqLLldW51T/WmngZ5P/j6hikk6BrgUmAzcBXwGmClpn4h4qI/NnweKSefhhgfZQrlJbheQJrndBTiP9AfTWb1sCmmS27eSJrntvm94A/APvW00VA2wrSDdL/1lbnk4P6S5B+ke8T3A6+rYrq3OKfrfTtDf8yki/KrwBSwCfpJbXg94EPhZH9tNBp6pOv4mtMcZpGe+Ns+VfRVYlS+rsd3+pAeS35Mr2zcrO7jq4xpkbdWRtcu4qo+hhW21Xu7na4HOEtu04znVn3Ya0Pnk7rgKSdqZNOLv37vLIuIV4D9IE7O2o54muR1BmuS2t+3WmeQW6J7kdjjqb1u1nez/Vb3a7pzqZzsNiJNQtbofrK016epWkrbtY/stJT0j6SVJD0g6ovEhttw6k9VGxGOkv+5rPbDc43aZ/CS3w01/26rbFVm//1OSzpc0ohlBDmHteE4NRL/OJ98TqlaZSVef7mHbxaSul3nApsCJwHWSPhYR1zc60BZq5iS3w01/22oN8K+k79haQfqyyEmke0rjGxvikNaO51R/DOh8chJqMElbADv0VS8i8n9h1TXparb9zwqfOwP4H9IX+A3lJATNn+R2OKn7mCPiKeBLuaJOScuBH0raOyLmNTjGoawdz6m6DPR8cndc4x1Fulzv6wUNnHQ10h3C64G3lRnOPIg1c5Lb4aa/bVXLtdn7OwcU0fDSjudUo5Q+n5yEGiwifhQR6uuVVe++Gqo16eqfI6KnrrheQ+h38INDMye5HW7621a1ROHd2vOcapTS55OTUIUi4vek2b1fnXRV0nrZ8s317EuSSNMYzY+IlxsZZ4s1bZLbYai/bVXLkdn7/Y0IbJhox3OqUcqfT1WPS2/3F3As8DLp4cL3AtNIv0T2zNU5EFgLHJgrmwucDHyAlHxuIj1M9+Gqj2mA7TESeAq4hTQH4ERgJfDtQr3FwI8LZbOA3wNHAB8hPYN1Z9XHNNjaivSM2XlZOx0MnJOdc9dVfUxNbKvXZ78YjwTuBn6bW369z6n+t9NAz6fKD9qvAPhc9g+7BvgNcFBh/VjSZe3YXNmPs/8cq4G/AHcCh1V9LA1qj92B27Njewr4FrB+oc5SYFqhbEvgClJ//QrgKmCbqo9nsLUVaTLg+0gzbvw1O/fOATaq+nia2E4d2f+hWq8On1P9b6eBnk+ewNTMzCrje0JmZlYZJyEzM6uMk5CZmVXGScjMzCrjJGRmZpVxEjIzs8o4CZmZWWWchMzMrDL/H3eMm+91HpXKAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu0HFWd9vHvw0WIXEK4BXSQGBUzoC4lAWFeRoKgQHAZRRAGHRcKSVRGnFmioKIGvIyggKMMLwkqyKsSFJAZ5CaXnAAqShJQEBIMGu4iwQMhJEQCv/ePXQcqle4+3edUV5/uPJ+1avWpXXtX713d5/xO7dq1SxGBmZlZu23Q6QqYmdn6wQHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhWKkkzJUWd5YNN7mOXbD9bFdKPzvazeXtq31w9hrnPSyT1NZFvI0n/Lul3klZJ6pd0laR9hvi+I+WYHl34TvxV0rWSdm+i7OSszBuqqKuVzwHH2uEpYO8ayzVNlt8F+BJQ/EN/ZbafleVUc8j1aCtJGwKXA18D/heYAhwNPA/0STpqCLsdKcd0wNuz950BbAfMlfSKQcoszMrc1+a6WZts1OkKWE9aExG3lr3TiHgceLzs/Y5AnwAOAQ6OiHyQ/h9Jc4DZkuZFxMPDfaMOHtPbImIFgKT5wP3AB4BvFDNKErBJRCwHSv9eWXV8hmMdIemzkpZIelbSY5KukbSDpMnAFVm2P2ddKEuzMmt1/0gal60fKel8ScslPTTQdSfpM5IekfS4pNMkbZB7/wmS5kh6UNJKSX/IurA2yLbXrUe2/VVZ+b9l5a+V9PpCG3fKusFWSVoq6dgmD88ngbmFYDPg88CmwDG591kq6ZuSviDpL5JWSPqRpNGDtaVWl5qkbSX9QNITWdv6JE0qtG3gPf8jO+b92fFo+WwwIh4kBb1x2b5nSlomaR9JtwHPAofX6lKTtGH2XbpX0uqsLhcU6jpV0vzsu/YXSadL2rjVetrw+QzH2kLSOt+tiFiTbfsQ8DngROAPwDakLpbNSN0mJwDfBA4FHgVWD/J2pwE/At4HfAT4gaS3ADtn6xOBrwC3A3OyMq8EFmflngbeDJwCjAL+s1E9JG0N3AI8AXyU1B11EnC9pF0iYlX2X/n/ANuSgsOz2f63Bv7Y4LjtRPrDe1at7RFxn6Q7gbcVNv0LsASYBuwInA58Fzi8UVvquBx4bVZmGfBpUpfXWyJiSS7f+4HfA9OBfwDOJHUDfrzBvtchaQvScflLLvnlwA+ydtwLPJK1q2gW8KEs37xsP4fl9v1+4KIs3+eA15A+3w2y9lmVIsKLl9IWYCYQdZZxWZ6zgUsb7ONd+fy59KOz9M2z9XHZ+vm5PFsCz5H+qG+YS/8tcHGd9xPpn6/PAX9qoh5fJgWbrXNpY0jXro7L1qdkZd+ay7MzsAboa9D2vbJyUxvkuRy4J7e+FPjbwHHJ0j4AvAD8Y4vH9KBsfd9cns1IZyCzCu95H7BRLu1bwF8G+X4MvN/o7JjvBFycHZc3F75DUwtlJ2fpb8jWJ2Trxzf4XO/Pfz+y9I8Aq4BtOv37sr4tPsOxdngKOKBG+iPZ6x3AMZJOIV20XhARzw/j/W4Y+CEilkt6HJhX2OcS4FUDK5I2BT5L+sP8KmDj3LaNIjsbq+MA4Dpgee5M7mlgATDQ9bQn8FhE/CZXt/slLRhC+5pxXWTXRDKXAT8E9gDuaWE/ewKPR8S8gYSIeEbSz4HiCLm5heN0N7C9pJdFxN8HeZ8ncz8vAz4SEXfk0gK4epB97Je9XlBn+y6kz/YnhTPuG0ndkm8gnRVZRRxwrB3WRMT8Btu/D2xB6or5IvCEpP8LzBxi4HmysP73Ommb5tZPA44ldXMtzPJPBU7O8q2gvm1JZyJH1Ng2EPx2AP5aY/tfSW2vZ2AgwM4N8uycy5ff74sideutoHY3VCM7Ao/VSH+M1F2VV+sYC3hZ9nMjbyN1RS4DHoyIFwrb+5sIWtsAz0QaTFDLttnrVXW27zTI/q1kDjhWueyPy1nAWdk1iw8AXyX9ET23omocDnwnIk4fSJB0SJNl/0YarvzlGtuezl7/AmxfY/v2pO6cmiLiweyC/ruBbxe3S3o16T/z4ntvX8g3CticdL2mFY8W95UZS2p3WW4vnJEVNfPclCeAzSRtWSfoDNR3Oun6XdGfm3gPK5FHqVlHRcSDEfF1UpfXrlnywH+2m9YuVYpR5C6cK937cmQhT7163ADsBvwhIuYXlsVZntuAsZLemnuPVwGD3uAI/Bewv6R31tj2laze3yukv0Nr37x5KOmP9sCZZrPH9DekbrEXByVIejlpmPYtTdS9Sjdmrx+qs30x6Z+YcTU+p/kR8UQ11bQBPsOxdthI0l410h+MiIclzSL993kr6XrPfsDrSKPWIP2hAJihdN/Jyoi4s+Q6XgccJ2lJVpfjgE0KeerV40zgg8CNkr5D+qM2FtgXuCUiLiJ14/wO+KmkE0mj1E6ldjdb0XdI14l+JumbQB+pG+4Y0sX/f41178FZBVwp6RukbrFvAD+LiLsHactaIuJaSb8ELpZ0Euks4gRSgF7nHplOiojFkmYDZ0jaHriJdGPrYRFxZES8IOlTwP+TtCXpmtDfgfHAe7J8Vd/wun7r9KgFL7210HiU2slZnqOBX5L+0K8kDa09prCfT5FGGK0BlubK1Rql9q5C2aXANwtpFwDzc+tjgZ8By0nXJ04nDSl+cf/16pGlvwI4Pyu7OnvPHwK75fK8ijS7wqpsHzOAS2gwSi1XdiPgP7JjswroJ/3B3KdG3qXAGdmxfwx4hjQUeKtWj2mWth1wYfaeq0gX1vdo4hivs68adW0mz0xgWY30yeRGqWVpG5KNLiQFk4dYd1TawcDN2XFZThq08hVyI+y8VLMo+0AqI+m1pHH9e5H6om+OiMlNlBtNGnb5HlJX4M9JwyGfKOSbSvoyvY70JTwlIi4usw1mI0l2zeeSiPB9JTaideIazm6kexTuzZZmXUz6D+dY0n9Je5DuR3iR0sSGlwJzSf/VXAlcVKcv3MzMKtSJM5wNIhsCKekSYNvBznAk7Q38inQz2k1Z2p6kC5zviIjrs7RrgY0j4u25slcBW0bEkGbZNRvpfIZj3aLyM5xYd7x9Mw4m3UR3U24/vyUNazwYQNImpIvPPymUnQPsPTCvlFmviYhxDjbWDbplWPQEYFGN9HuybZDmSNq4Rr57SO3cpW21MzOzQXXLsOgxrHtXM6RRNONzeaiRr7+wfS2SppNuDGPUqFETd9qpe24+fuGFF9hgg275n6F87Wj/Fvemy4pP7zLy/z9Z3z9/8DEYCe2/9957l0XEds3k7ZaAA7XvPFaN9OK6GpQnImYDswEmTZoU8+c3mpFlZOnr62Py5MmdrkbHtKX9yr4uixc3zjcCrO+fP/gYjIT2S7q/2bzd8q9BP7WfurgVL53R9OfSinmg9hmSmZlVpFsCziJeulaTl7+2cx9pWvpivgmkadpbGYJtZmYl65aAczWwQ3afDQDZEwjHZ9uIiNWk+28OL5Q9Avh1RDxVUV3NzKyGyq/hZBMBTslWXwlsKWngCX1XRcTKbH6reRFxDEBE/Dq7x+ZCSSeQzlhOI81bdX1u918G+iR9i3RT6JRsOajtDTMzs4Y6MWhge+CnhbSB9VeT5mjaiDRHUt6RpCntv09uapt8hoi4JQteXwE+RrpP56iI+EWJ9bdeVvGN0Gbrk8oDTkQs5aWRY/XyjKuR9iTw4WxpVPZyClPemJlZ53XLNRwzM+tyDjhmeRMnpsXMStdNN36atd/ChZ2ugVnP8hmOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklPErNLG/atE7XwKxnOeCY5c2e3ekamPUsd6mZmVklHHDM8hYsSIuZlc5damZ5kyalV88abVY6n+GYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhYdFmefPnd7oGZj3LAccsz4+XNmsbd6mZmVklHHDM8qZPT4uZlc4BxyzvvPPSYmalc8AxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEb/w0y9t9907XwKxnOeCY5fnx0mZt4y41MzOrhAOOmZlVwgHHLE9Ki5mVzgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJzzRgljdrVqdrYNazHHDM8vx4abO2qbxLTdKukm6QtFLSI5JOlbThIGVmSoo6y2dz+S6ok2dC+1tmZmaNVHqGI2kMcD1wNzAVeA1wBinwndyg6HeBawpp7wFOBK4upC8CPlxIWzq0Gtt6Z/bs9OozHbPSVd2l9lFgFHBoRCwHrpO0JTBT0ulZ2joi4iHgoXyapC8AiyLijkL2ZyLi1jbU3dYHM2akVwccs9JV3aV2MHBtIbDMIQWhfZvdiaStgXcAF5VbPTMza5eqA84EUpfXiyLiAWBltq1ZhwEbk4JV0a6SlktaLekWSU0HMjMza5+qu9TGAE/WSO/PtjXrSGBhRNxbSL8d+A3pGtF2wKdI3Xb7RMRva+1I0nRgOsDYsWPp6+troRqdtWLFiq6qb9na0f7J2Ws3HNf1/fMHH4Oua39EVLYAzwGfrJH+MPDVJvexI/A8cEITeUcBfwYub2bfEydOjG4yd+7cTleho9rSfkhLF1jfP/8IH4OR0H5gfjQZA6ruUusHtqqRPpraZz61vB8QcPFgGSNiFXAV4AfVm5l1WNUBZxGFazWSdgI2o3Btp4EjgVsi4sEW3jdayGtmZm1QdcC5GjhQ0ha5tCOAVcC8wQpLGgfsRZOj0ySNIo2MW9BqRW09NdCpZmalqzrgnAusBi6TdEB2wX4mcGbkhkpLWiLpezXKHwmsAS4pbpA0WtLNkmZI2l/SEcBc4JXA19rQFjMza0Glo9Qiol/S/sDZwBWk6zZnkYJOsV61prs5ErghIh6vsW018DhpxoLtgWeBXwP7RsT8UhpgZmZDVvnknRFxN/D2QfKMq5P+5gZlngUOHVblzCZOTK8L3AtrVjbPFm2Wt3Bhp2tg1rP8ADYzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0p4lJpZ3rRpna6BWc9ywDHLG3jEtJmVzl1qZmZWiZYCjqRa082Y9Y4FCzzLgFmbtNql9rCkC4HzI+KedlTIrKMmTUqvnjHarHStdqnNAg4D7pL0G0nTJW3ZhnqZmVmPaSngRMSXImI88A5gMXAm8KikH0k6oB0VNDOz3jCkQQMRcWNEfAjYAfgE8HrgWklLJc2U9IoyK2lmZt1vuKPUJgFvIz02uh+4GTgWWCLpg8Pct5mZ9ZCWA46knSV9SdJ9wA3AjsBHgFdExL8CO5Ou9Xyj1JqamVlXa2mUmqQbSWc0DwEXkEar3Z/PExHPS/ox8MmyKmlmZt2v1WHRy4ApwHURDceN3gG8esi1MuuU+X4auVm7tBpwzgYW1go2kjYHdo+ImyLiOeD+dUqbjXQDj5g2s9K1eg1nLrBrnW2vz7abmZmto9WAowbbNgdWDqMuZp03fXpazKx0g3apSXobMDmXdKykgwrZNgUOAe4sr2pmHXDeeenVs0abla6ZazhvJd3cCRDA4cCaQp6/A4uAT5dXNTMz6yWDBpyI+AbZPTWS/gy8NyLuaHfFzMyst7Q0Si0iPNTZzMyGpJlrOFOAWyJiefZzQxFxVSk1MzOzntLMGc7Pgb2A32Y/B/VHqwXgh7SZmdk6mgk4rwYezf1s1rt2373TNTDrWc0MGri/1s9mPcmPlzZrm2au4by8lR1GhG/+NDOzdTTTpbaCdG2mWb6GY2Zm62gm4HyE1gKOWfdSNh6m4WToZjYUzVzDuaCCepiZWY8b7iOmzczMmtLMoIHfAkdHxN2SbmOQ7rWI2LOsypmZWe9o5hrOH4BVuZ/duW1mZi1r5hrOh3M/H93W2piZWc8a8jUcJdtJavRQNjMzM6DF2aLhxck8TwYmZuXXSFoAfDUiriy5fmbVmjWr0zUw61ktBRxJM4BzgBuATwJ/BbYHDgX+V9LHI8K/sda9/Hhps7Zp9Qznc8DsiPhYIf1cSecCnwcccMzMbB2tXsPZBriszrZLga0H24GkXSXdIGmlpEcknSqp4XQ4ksZJihrLnBp5p0q6U9Kzku6WdERTLTMDmD07LWZWulbPcOYC+wLX1di2L3BTo8KSxgDXA3cDU4HXAGeQAt/JTbz/CcAvc+vLCvvfhxT4zgGOB6YAF0nqj4hfNLF/W9/NmJFe3bVmVrpmbvzcNbf6beC7krYBLuelazjvBQ4Gjh1kdx8FRgGHRsRy4DpJWwIzJZ2epTWyOCJubbD9C8BNEXF8tj5X0m7AFwEHHDOzDmrmDOcu1r7ZU8CMbCk+/fMaGs8WfTBwbSGwzAFOI50hXdFEfWqStAmwH+nMJm8OcL6k0RHx1FD3b2Zmw9NMwNmvxPebANyYT4iIByStzLYNFnDOl7Q16czqIuDzETEwC8JrgI2BRYUy95C67HYBbhte9c3MbKiamWlgXonvNwZ4skZ6f7atntXAf5O6xZYDk4ETSUFmam7f1Nh/f2H7WiRNB6YDjB07lr6+vkb1H1FWrFjRVfUtWzvaPzl77Ybjur5//uBj0G3tb/nGzwGSNgA2LaY38cTPWnOxqU76wD4fBf4tl9Qn6THgHElvjog7GuxfddIH9j0bmA0wadKkmDx5cuPajyB9fX10U33L1s72d8NxXd8/f/Ax6Lb2tzQsOpvO5kRJS4DngKdrLI30A1vVSB9N7TOfRi7JXnfP7Zsa+x9Yb3X/ZmZWolbvwzkeOAn4HunM4avAqcC9wFKyrqkGFpGu1bxI0k7AZqx77WUwUXi9jxQEJxTyTQBeyOpo1liEn/Zp1iatBpxpwJeA07P1yyPiFGA3UsB43SDlrwYOlLRFLu0I0uMPWr1WdFj2ugAgIlaT7hM6vJDvCODXHqFmZtZZrV7DeTVwR0Q8L+k5su6qiHhB0jnAd0lnQPWcSzpLukzSacB4YCZwZn6odNZlNy8ijsnWZwJbkG76XA68Dfg0cFlE/D63/y+Tru98i3Sf0JRsOajFdpqZWclaPcN5Atg8+/kB4C25bWNIN3XWFRH9wP6ke3WuAE4BziKdNeVtxNr38ywi3adzPnAVcBTwjew1v/9bSGc+BwDXAu8GjvIsA9a0iRPTYmala/UM55fAHqQ/+j8mzRCwNfB34DjSLNINRcTdwNsHyTOusD6HdAPnoCLictLZjVnrFi7sdA3MelarAWcm8Mrs56+RutSOJp3ZXAd8oqyKmZlZb2kp4ETEYmBx9vNq0jNxPtmGepmZWY8Zzo2f/wDsCDwSEQ+XVyUzM+tFrQ4aQNLHJD0I3A/8BnhA0kOSPl567czMrGe0OtPAF4GzSffTHAJMyl6vBr6dbTczM1tHq11qxwFfi4gvFNKvyeY2O44084BZd5o2rdM1MOtZrQacUdR/quc8PErNul2Dx0uPO+nKtdaXfv2QdtfGrKe0eg3ncuDQOtveB/x8eNUxM7Ne1cwjpqfkVq8GTpc0jnUfMb0b8Jnyq2hWoQUL0qtnGzArXTNdaj9n3UdJvxI4sEbeH5KexGnWnSZNSq+eMdqsdM0EnFe3vRZmZtbzmnnE9P1VVMTMzHpbyzMNSNqINEBgH2Br4G/AzaRHBawpt3pmZtYrWgo4krYHfgG8ifSEz8eAvUn33/xO0jsj4vGyK2lmZt2v1WHRZwLbAG+NiPERsXdEjAfemqWfWXYFzcysN7QacKYAJ0bEbfnEbP2zpGluzMzM1tHqNZxNgKfrbHsaeNnwqmPWYfPnd7oGZj2r1YBzK3CipBsj4pmBREmbASdm2826l2/4NGubVgPOp4C5wIOSfkEaNLA96SZQAZNLrZ2ZmfWMVp/4eYek1wEnAHuQRqs9CpwLnBkRy8qvoll5Bp2Ac/r09NpgEk8zG5qmA46kjYE9gT9HxEntq5JZB513Xnp1wDErXSuj1J4HbgT+sU11MTOzHtZ0wImIF4A/AmPbVx0zM+tVrd6H83ngi5Le2I7KmJlZ72p1lNrJpBkF7pD0MGmU2lrzuEfEniXVzczMekirAeeubDEzM2tJUwFH0ijStDZ3AX8Bro+Ix9pZMbOO2H33TtfArGc184jp8cD1wLhc8nJJ74+IX7SrYmYdMfCIaTMrXTODBk4HXgD+GXg5sBtwOzCrjfUyM7Me00zA2Rs4OSJ+GRHPRsQ9wAzgVZJ2bG/1zMysVzQTcHYE/lRIu480d9oOpdfIrJOktJhZ6Zq9DycGz2JmZlZfs8Oir5W0pkb6DcX0iNh++NUyM7Ne00zAOaXttTAzs543aMCJCAccMzMbtlbnUjMzMxsSBxwzM6tEq3OpmfW2Wb6f2axdHHDM8gYeMW1mpXOXmpmZVcIBxyxv9uy0mFnpKg84knaVdIOklZIekXSqpA0HKbOHpPMlLcnKLZb0JUmbFvLNlBQ1loPa2yrrGTNmpMXMSlfpNRxJY0iPOrgbmAq8BjiDFPhOblD0iCzvacAfgTcBX85e31fI+xRQDDD3DLfuZmY2PFUPGvgoMAo4NCKWA9dJ2hKYKen0LK2W0yLi8dx6n6RngVmSdo6I+3Pb1kTEre2pvpmZDVXVXWoHA9cWAsscUhDat16hQrAZcHv26rnbzMy6QNUBZwKwKJ8QEQ8AK7Ntrfgn0oPhFhfSt5K0TNJzkm6XdOiQa2tmZqVRRHVPHpD0HPDpiPhWIf0h4MKI+FyT+9kB+D1wVUQcnUv/IOmM5w5gc9KD4qYA74uIy+rsazowHWDs2LET58yZ02qzOmbFihVsvvnmna5Gxwyl/Xc+/NRa62985ei11ifvtx8AfXPntly2auv75w8+BiOh/fvtt9+CiJjUTN5OBJwTIuK/CukPAxdExOeb2MfLSAMP/gGYGBH9DfIK+BUwKiLePNi+J02aFPPnzx8s24jR19fH5MmTO12NjhlK+8eddOVa60u/fsjaGQYevlbj92LQshVb3z9/8DEYCe2X1HTAqbpLrR/Yqkb6aODJwQpnAeRCYDdgSqNgAxApml4GvGmwoddmQAo0Ff4TZrY+qXqU2iIK12ok7QRsRuHaTh1nkYZTvyMimsk/wH9BzMw6rOoznKuBAyVtkUs7AlgFzGtUUNJngU8AH4yIW5p5s+yM6L3A7yLi+aFV2czMylD1Gc65wPHAZZJOA8YDM4Ez80OlJS0B5kXEMdn6UcDXgAuAhyXtldvnfQPDpiXNAy4lnS1tBkwD9gLe095mWc+YODG9LljQ2XqY9aBKA05E9EvaHzgbuIJ03eYsUtAp1it/zeWd2evR2ZL3YVIgAlgC/DuwI2nI9ELgkIi4uoz623pg4cJO18CsZ1X+eIKIuBt4+yB5xhXWj2bdQFOr3DHDqJqZmbWRZ4s2M7NKOOCYmVklHHDMzKwSDjhmZlaJygcNmI1o06Z1ugZmPcsBxyzPj5c2axt3qZmZWSUccMzyFizwLANmbeIuNbO8Sdks654x2qx0PsMxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCw6LN8ubP73QNzHqWA45Z3sAjps2sdO5SMzOzSjjgmOVNn54WMyudA45Z3nnnpcXMSueAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCd/4aZa3++6droFZz3LAMcvz46XN2sZdamZmVgkHHDMzq4QDjlmelBYzK50DjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEp5pwCxv1qxO18CsZzngWNe68+GnOPqkKwFY+vVDytlpGx4vPS6r44DS6mrWZdylZmZmlXDAMcubPTstZlY6d6mZ5c2YkV7b0LVmtr7zGY6ZmVWi8oAjaVdJN0haKekRSadK2rCJcqMlnS+pX9JTkn4kaZsa+aZKulPSs5LulnREe1piZmatqLRLTdIY4HrgbmAq8BrgDFLgO3mQ4hcDrweOBV4ATgMuB/45t/99gEuBc4DjgSnARZL6I+IXpTbGSuNRXPX52FgvqfoazkeBUcChEbEcuE7SlsBMSadnaeuQtDdwILBvRNyUpT0M/EbSARFxfZb1C8BNEXF8tj5X0m7AFwEHHDOzDqo64BwMXFsILHNIZyv7Alc0KPfYQLABiIjfSvpztu16SZsA+5HObPLmAOdLGh0RT5XUDmsg/1+5/yPvHJ8d2UhTdcCZANyYT4iIByStzLbVCzgTgEU10u/JtkHqntu4Rr57SF12uwC3Da3aQ1frl77RH4JGf6yL5S44aLOm3q/ZetXjP1zrl+F83kMtO5R/UsaddCWfeuOapm/+bbVu/t6XTxFR3ZtJzwGfjohvFdIfAi6MiM/VKXcd8ExEvKeQ/kNgfET8k6T/A9wCvCUi7sjleS3wR+DAWtdxJE0HBsbAvh5YPOQGVm9bYFmnK9FBbv/63X7wMRgJ7d85IrZrJmMn7sOpFeFUJ30o5YrrqpOeEiNmA115p5+k+RExqdP16BS3f/1uP/gYdFv7qx4W3Q9sVSN9NPDkEMptlSvXn0sr5mGQ/ZuZWZtVHXAW8dI1FwAk7QRsRu1rNHXLZfLXdu4DnquRbwJpGPW9Q6ivmZmVpOqAczVwoKQtcmlHAKuAeYOU2yG7zwYASZOA8dk2ImI1MBc4vFD2CODXPTpCrSu7Akvk9tv6fgy6qv1VDxoYQ7rp8y7SUOjxwJnAtyLi5Fy+JcC8iDgml3YNaaTZCbx04+dfI6J442cfcDbpptApWf6DfOOnmVlnVXqGExH9wP7AhqQh0KcAZwFfKmTdKMuTdyTpLOj7wIXAAuC9hf3fAhwGHABcC7wbOMrBxsys8yo9wzEzs/WXZ4vuIpKmSfpjNjHpAkn7N1FmpqSosRxURZ2Hot0TvI50Q2m/pHF1Puc5VdW7LJJeK2mWpN9Jel5SX5PleuLzh6Edg274Dvh5OF1C0pHAucBM0g2uHwZ+LmmPiLhrkOJPAcUAc0/plSxBuyd4HemG2X5I1yx/mVvv9E2BQ7Eb6frrrcDLWijX9Z9/zlCPAYzk70BEeOmChTQDwvdz6xsAdwI/HKQ6XxvsAAADO0lEQVTcTGBZp+vfQjs/S7qnastc2meAlfm0GuX2Jt3c+7Zc2p5Z2gGdblcF7R+XtfVdnW5DCcdgg9zPlwB9TZTpic9/mMdgxH8H3KXWBSSNJ43Q+8lAWkS8APyUNHlpL6k3weso0gSvjcqtM8ErMDDBa7cYavt7RvbdblWvfP7AkI/BiOeA0x0GbmatNTHp1pIGm8doK0nLJD0n6XZJh5ZfxdKsM1FrRDxA+g+/1s2/dctl8hO8doOhtn/A+Vmf/6OSzpQ0qh2VHIF65fMvw4j9DvgaTncYk70Wp+fpz21/vE7ZJaQumTuAzYEZwKWS3hcRl5Vd0RKMofY0RP28dBxaLTe+hHpVZajtXw38N+m5T8uBycCJpGtAU8ut4ojUK5//cIz474ADTodIGg3sOFi+iMj/19bSxKRZ+R8W3vcK4Fekh9KNxIAD7Z/gdaRruR0R8Sjwb7mkPkmPAedIenPkZlDvYb3y+Q9JN3wH3KXWOYeTTvcHW6DEiUkjXV28DHhTM0ONO6CdE7x2g6G2v5ZLstfdh1Wj7tArn3/ZRtR3wAGnQyLiuxGhwZYs+8BZTq2JSf8WEfW60xpWYciVb692TvDaDYba/lqi8NrLeuXzL9uI+g444HSBiPgTabbrFycmlbRBtn51K/uSJNKUQL+LiOfLrGdJ2jbBa5cYavtrOSx7XVBGxUa4Xvn8yzayvgOdHpftpbkF+BfgedLNf/sBF5D+CL0hl2dfYA2wby5tHnA88E5SoLmKdFPcuzvdpjrtHAM8ClxHmhNvOrAC+Eoh3xLge4W0a4A/AYcC7yHdu3Rzp9tURftJ91udkbX9AODU7PtxaafbNIRj8HLSH8rDgF8Df8itv7yXP//hHINu+A50vAJeWviwYFr2JVsNLAT2L2yfTDp1npxL+172S7gKeAa4GTi4020ZpJ27AjdmdX4U+DKwYSHPUuCCQtpWwPmkPvvlwI+BbTvdniraT5rcdj5pVom/Z9+TU4FNOt2eIbR/XPY9rrWM6/XPf6jHoBu+A56808zMKuFrOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEv8fqlZ6tMgSuLcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -440,9 +440,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Exact delta: \t-0.5300\n", - "Esimated value:\t-0.5490\n", - "Probability: \t0.5918\n" + "Exact delta: \t-0.8193\n", + "Esimated value:\t-0.8172\n", + "Probability: \t0.9895\n" ] } ], @@ -459,7 +459,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu0XEWZ/vHvw0WJBEIQExgEYlBgYJwlJCKMjCRyDy5RBIPoOFFI4gyKM4urghrAG6CAyjgkoEF+KmEGkRmQW4CcIAwISUS5BQwS7iJIIIQEJPD+/qjdsNOnu09fd+ecfj5r7dWna9euruo+p99TtWvXVkRgZmbWaet0uwJmZtYbHHDMzKwQDjhmZlYIBxwzMyuEA46ZmRXCAcfMzArhgGNtI2mGpKiyfarOMrbLytmkLH1KVs7wztS+vnq0WOalkvrqyLeepH+T9DtJqyQtk3SVpD2afN215T2dkvt9eE3S85J+L+kcSds2WWafpEtzz/eV9G/tq7W1kwOOtdvzwO4VtmvqPH474GtA+Rf9r7JyVranmk3Xo6MkrQtcDnwT+F9gEjAFeBXok3R4E8WuLe9pyQeBfwA+BvwI2Bf4vaQD2lD2voADzlpqvW5XwIac1RFxW7sLjYingafbXe5a6AvAgcABEZEP0v8jaQ4wS9L8iHi81Rfq4nt6R0SsyH6+XtJ5wJXAzyWNiYjnu1AnK4B7OFY4SV+StETSS5KeknSNpM0lTQCuyLI9lA29LM2OWWP4R9KY7PlhkmZLWi7psdLQnaTjJT0h6WlJp0taJ/f6O0iaI+lRSSsl3ZMNYa2T7a9aj2z/1tnxz2bHXytp+7I2bpUNg62StFTSkXW+PV8E5pUFm5KTgA2AI3Kvs1TSdyR9RdKfJK2Q9DNJIwZqS6UhNUmbSfqJpL9kbeuTNL6sbaXX/PfsPV+WvR9N9QYj4mVSoN0E+ETuddaRdGL2u/KypAck/XO1ciTNAI4BtskN3V2Y7dtd0v9mvxMvSrpT0iebqa81zz0caztJ/X6vImJ1tu/TwJeBE4B7gLeShlg2BBYBxwLfAQ4GngReHuDlTgd+Rhqe+SzwE0k7A9tkz8cBXwd+C8zJjtkSuD877gXgPcApwDDgW7XqIWlT4GbgL8DnSMNRJ5L+U98uIlZJEvA/wGak4PBSVv6mwB9qvG9bAWOAsyvtj4gHJd0FfKBs1yeAJcBUYAvgDOAC4NBabanicuCd2THPAMcB8yTtHBFLcvk+DvwemAa8HTiLNAz4rzXKrioiFkt6DNgNOC9L/gHwz8CpWTv2AX4s6S8RcWWFYi4A3kX6ffpollbqwW0D3JKV/RLwfmC2pNci4uJm6mxNiAhv3tqyATOAqLKNyfKcC/yiRhkfyufPpU/J0odnz8dkz2fn8mwMvEL6Ul83l347cEmV1xPpH68vA3+sox6nkYLNprm0kaRzV0dlzydlx74vl2cbYDXQV6Ptu2XHHVQjz+XAfbnnS4FnS+9LlvZJ4DXgbxt8T/fPnu+Zy7Mh6Ut7ZtlrPgisl0s7B/jTAL8fa7xehf23AldnP78za8M/l+W5iDQkV3reB1yae/4dYOkA9Sh95jOBG7v9d9NLm3s41m7PA3tXSH8ie7wTOELSKaST1gsj4tUWXu+G0g8RsVzS08D8sjKXAFuXnkjaAPgS6Yt5a2D93L71IuuNVbE3MBdYnuvJvQAsBEpDT7sCT0XEb3J1e1jSwibaV4+58cY5EYDLgJ8C7wXua6CcXYGnI2J+KSEiXpR0JVA+Q25e2ft0LzBK0psi4q+NVf91yv28Fyng/LKsx3wD8AlJ6zbyeyNpJKmXeRCph7tutqvlc2FWPwcca7fVEbGgxv4fAxuRhmK+CvxF0n8CM5oMPM+VPf9rlbQNcs9PB44kfQEtyvIfBJyc5VtBdZuReiKTK+wrBb/NgT9X2P9nUturKX35bVMjzzb0/5Jc47UiDeutIA2vNWIL4KkK6U+RhgPzKr3HAt6U/dyMLYHF2c+bkYJCtQkEWwCPNVD2haTP7TRScFwO/Avpc7eCOOBYoSLiNdI5irOzcxafBL5B+hI9r9axbXQo8IOIOKOUIOnAOo99ljRd+bQK+17IHv8EjKqwfxSwqlrBEfFodkL/w8D3y/dLegfwdxVee1RZvmHAcNL5mkY8WV5WZjSp3R0j6W9J54JuzZKeJQ1Bvp/U0ylXKaBXK3sD0sy/z0fEebl0T5oqmN9w65qIeDQivk0a8toxSy79d7xB5aPaYhi5E+dK174cVpanWj1uAHYC7omIBWXb/VmeO4DRkt6Xe42tgV3qqNv3gL0k7Vth39ezev+oLH0frXnx5sGkcyWlnma97+lvSMNir09KkPQW0pf1zXXUvSmS3kwKsM/xxsSOG0k9nBEV3ucFNYbtynuzAG/Oysp/5huRArsVyD0ca7f1JO1WIf3RiHhc0kzSf6+3kYZLJpJmFp2Q5St9aU9Xuu5kZUTc1eY6zgWOkrQkq8tRpC+lvGr1OAv4FHCjpB+QemajgT2BmyPNeLoK+B3w35JOIM2KOpX6/iv/Aek80S8lfYd0Unwj0my3DwH/FP2vwVkF/ErSmaShpjOBX0bEvQO0ZQ0Rca2kW4BLJJ1ImhxxLClAn1lH3ev1XkmrgLeQemzTSZNADonsGpyIuF/p+pw5ks4gBc8NSMF+u4ioNs18MSnYTwHuBp6JiKWS7gC+Kmk5qcd0Iun3b+M2tssG0u1ZC96GzkbtWWonZ3mmkKanPkuaUvx74Iiyco4BHiYNqSzNHVdpltqHyo5dCnynLO1CYEHu+Wjgl6Rx/KdI04inUjaDqlI9svS/AWZnx76cveZPgZ1yebYmra6wKitjOnApNWap5Y5dD/j37L1ZBSwDrgb2qJB3KfDd7L1/CngRuBjYpNH3NEt7G2km2LLstecD763jPe5XVoW6lvKUtheAu0i9um0r5Bdp1YB7svf56aw+n87l6WPNWWobZJ/Nn7PXuDBLfyep1/Qi8AhwfPaePdPtv5te2pR9GIWR9E7S3P7dSP/d/DoiJtRx3AjS1MuPkIYCrwSOjoi/lOU7iDT08C7gj8ApEXFJO9tgtrbIzvlcGhHHdrsuZgPpxjmcnUjXKTyQbfW6BJhAml00hTTl8/J8BqXFDX8BzAMOIE27vbjKeLiZmRWoGz2cdSLNVEJpldfNBurhSNod+D/SBWk3ZWm7kk5y7hMR12dp1wLrR8QHc8deBWwcEU2ttGu2NnMPxwaTwns4pWDToANIF9LdlCvnduChbF9ppstE4L/Kjp0D7F5aW8psKImIMQ42NlgMlmnRO/DGBWF592X7ALYlXTFenu8+Uju361jtzMxsQINlWvRI+l/ZDGkmzdhcHirkW1a2fw2SppGuemfYsGHjttpqq5Yq+tprr7HOOoMljrfO7W3NRg+k05gvbLd2/j/kz3doa0d7H3jggWci4m315B0sAQfSFMdyqpBe/lxV0lNixCxgFsD48eNjwYJaq7IMrK+vjwkTJrRUxmDi9rZI2a/n/ffXztcl/nyHtna0V9LD9eYdLKF8GZXvvLgJb/RoluXSyvNA5R6SmZkVZLAEnMW8ca4mL39u50HS0vTl+XYgXVncyBRsMzNrs8EScK4GNs+uswEguwvh2Gwfke4aOI+0MGPeZODW8G1rzcy6qvBzONligJOyp1sCG0s6JHt+VUSszNa4mh8RRwBExK3ZNTYXSTqW1GM5nbR21fW54k8D+iSdQ7oodFK27d/xhpmZWU3dmDQwCvjvsrTS83eQ1mlajzdukFRyGGlZ+x+TW9omnyEibs6C19dJ97p4CDg8Iq5rY/3N2qfgC6/NuqnwgBMRS1nzzn6V8oypkPYc8Jlsq3Xs5ZQteWNmZt03WM7hmJnZIOeAY9ZN48alzawHDKYLP82GnkWLul0Ds8K4h2NmZoVwwDEzs0I44JiZWSEccMzMrBAOOGZmVgjPUjPrpqlTu10Ds8I44Jh106xZ3a6BWWE8pGZmZoVwwDHrpoUL02bWAzykZtZN48enR68abT3APRwzMyuEA46ZmRXCAcfMzArhgGNmZoVwwDEzs0I44JiZWSE8LdqsmxYs6HYNzArjgGPWTb69tPUQD6mZmVkhHHDMumnatLSZ9QAHHLNuOv/8tJn1AAccMzMrhAOOmZkVwgHHzMwK4YBjZmaFcMAxM7NC+MJPs27aZZdu18CsMA44Zt3k20tbD/GQmpmZFcIBx8zMCuGAY9ZNUtrMeoADjpmZFcIBx8zMCuGAY2ZmhXDAMTOzQjjgmJlZIRxwzMysEF5pwKybZs7sdg3MCuOAY9ZNvr209ZDCh9Qk7SjpBkkrJT0h6VRJ6w5wzAxJUWX7Ui7fhVXy7ND5lpmZWS2F9nAkjQSuB+4FDgK2Bb5LCnwn1zj0AuCasrSPACcAV5elLwY+U5a2tLkam3XYrFnp0T0d6wFFD6l9DhgGHBwRy4G5kjYGZkg6I0vrJyIeAx7Lp0n6CrA4Iu4sy/5iRNzWgbqbtd/06enRAcd6QNFDagcA15YFljmkILRnvYVI2hTYB7i4vdUzM7NOKTrg7EAa8npdRDwCrMz21esQYH1SsCq3o6Tlkl6WdLOkugOZmZl1jiKiuBeTXgGOi4hzytIfAy6KiC/XWc6NwIiIGFeW/kXgr6RzRG8DjgHGAXtExO1VypoGTAMYPXr0uDlzKsWw+q1YsYLhw4e3VMZg4va2ZsLEiQD0zZvXtjLbyZ/v0NaO9k6cOHFhRIyvK3NEFLYBrwBfrJD+OPCNOsvYAngVOLaOvMOAh4DL6yl73Lhx0ap58+a1XMZg4va2CNK2lvLnO7S1o73AgqgzBhQ9pLYM2KRC+gjguTrL+Dgg4JKBMkbEKuAqwDeONzPrsqIDzmLKztVI2grYkLJzOzUcBtwcEY828LrFjRuamVlFRQecq4H9JG2US5sMrALmD3SwpDHAbtQ5O03SMNLMuIWNVtSsEKVBNbMeUHTAOQ94GbhM0t7ZCfsZwFmRmyotaYmkH1U4/jBgNXBp+Q5JIyT9WtJ0SXtJmgzMA7YEvtmBtpiZWQMKvfAzIpZJ2gs4F7iCdN7mbFLQKa9XpeVuDgNuiIinK+x7GXiatGLBKOAl4FZgz4hY0JYGmJlZ0wpfvDMi7gU+OECeMVXS31PjmJeAg1uqnFnRxmUz+xd61NeGPq8WbdZNixZ1uwZmhfEN2MzMrBAOOGZmVggHHDMzK4QDjpmZFcIBx8zMCuFZambdNHVqt2tgVhgHHLNuKt1i2qwHeEjNzMwK0VDAkVRpuRkza9bChV5lwHpGo0Nqj0u6CJgdEfd1okJmPWV8dqNErxhtPaDRIbWZwCHA3ZJ+I2mapI07UC8zMxtiGgo4EfG1iBgL7APcD5wFPCnpZ5L27kQFzcxsaGhq0kBE3BgRnwY2B74AbA9cK2mppBmS/qadlTQzs8Gv1Vlq44EPkG4bvQz4NXAksETSp1os28zMhpCGA46kbSR9TdKDwA3AFsBngb+JiH8CtiGd6zmzrTU1M7NBraFZapJuJPVoHgMuJM1WezifJyJelfRz4IvtqqSZmQ1+jU6LfgaYBMyNqDmP807gHU3XyqxXLPDdz613NBpwzgUWVQo2koYDu0TETRHxCvBwv6PNbE2lW0yb9YBGz+HMA3assm/7bL+ZmVk/jQYc1dg3HFjZQl3Mes+0aWkz6wEDDqlJ+gAwIZd0pKT9y7JtABwI3NW+qpn1gPPPT49eNdp6QD3ncN5HurgTIIBDgdVlef4KLAaOa1/VzMxsKBkw4ETEmWTX1Eh6CPhoRNzZ6YqZmdnQ0tAstYjwVGczM2tKPedwJgE3R8Ty7OeaIuKqttTMzMyGlHp6OFcCuwG3Zz8H1WerBeCbtJnljDnxV/3Sln77wC7UxKy76gk47wCezP1sZu2yyy7droFZYeqZNPBwpZ/NrA18e2nrIfWcw3lLIwVGhC/+NDOzfuoZUltBOjdTL5/DMTOzfuoJOJ+lsYBjZvVSNv+m5uLrZkNDPedwLiygHmZmNsS1eotpMzOzutQzaeB2YEpE3CvpDgYYXouIXdtVOTMzGzrqOYdzD7Aq97MHm83MrGH1nMP5TO7nKR2tjZmZDVlNn8NR8jZJtW7KZmZmBjS4WjS8vpjnycC47PjVkhYC34iI/otGmVl1M2d2uwZmhWko4EiaDvwQuAH4IvBnYBRwMPC/kv41IvwXZFYv317aekijPZwvA7Mi4l/K0s+TdB5wEuCAY2Zm/TR6DuetwGVV9v0C2HSgAiTtKOkGSSslPSHpVEk1l8ORNEZSVNjmVMh7kKS7JL0k6V5Jk+tqmVk3zJqVNrMe0GgPZx6wJzC3wr49gZtqHSxpJHA9cC9wELAt8F1S4Du5jtc/Frgl9/yZsvL3IAW+HwJHA5OAiyUti4jr6ijfrFjTp6dHD61ZD6jnws8dc0+/D1wg6a3A5bxxDuejwAHAkQMU9zlgGHBwRCwH5kraGJgh6YwsrZb7I+K2Gvu/AtwUEUdnz+dJ2gn4KuCAY2bWRfX0cO5mzYs9BUzPtvK7f15D7dWiDwCuLQssc4DTST2kK+qoT0WS3gxMJPVs8uYAsyWNiIjnmy3fzMxaU0/AmdjG19sBuDGfEBGPSFqZ7Rso4MyWtCmpZ3UxcFJElFZB2BZYH1hcdsx9pCG77YA7Wqu+mZk1q56VBua38fVGAs9VSF+W7avmZeA/SMNiy4EJwAmkIHNQrmwqlL+sbP8aJE0DpgGMHj2avr6+WvUf0IoVK1ouYzBxewd2zLtX90srlTGh7Pnaxp/v0FZ0exu+8LNE0jrABuXpddzxs9JabKqSXirzSeDzuaQ+SU8BP5T0noi4s0b5qpJeKnsWMAtg/PjxMWHChNq1H0BfXx+tljGYuL0Dm3Ji/+uhl35yzTLW1vfQn+/QVnR7G5oWnS1nc4KkJcArwAsVtlqWAZtUSB9B5Z5PLZdmj7vkyqZC+aXnjZZvZmZt1Oh1OEcDJwI/IvUcvgGcCjwALCUbmqphMelczeskbQVsSP9zLwOJsscHSUFwh7J8OwCvZXU0W7tE+G6f1jMaDThTga8BZ2TPL4+IU4CdSAHjXQMcfzWwn6SNcmmTSbc/aPRc0SHZ40KAiHiZdJ3QoWX5JgO3eoaamVl3NXoO5x3AnRHxqqRXyIarIuI1ST8ELiD1gKo5j9RLukzS6cBYYAZwVn6qdDZkNz8ijsiezwA2Il30uRz4AHAccFlE/D5X/mmk8zvnkK4TmpRt+zfYTjMza7NGezh/AYZnPz8C7JzbN5J0UWdVEbEM2It0rc4VwCnA2aReU956rHk9z2LSdTqzgauAw4Ezs8d8+TeTej57A9cCHwYO9yoDttYaNy5tZj2g0R7OLcB7SV/6PyetELAp8FfgKNIq0jVFxL3ABwfIM6bs+RzSBZwDiojLSb0bs7XfokXdroFZYRoNODOALbOfv0kaUptC6tnMBb7QroqZmdnQ0lDAiYj7gfuzn18m3RPnix2ol5mZDTGtXPj5dmAL4ImIeLx9VTIzs6Go0UkDSPoXSY8CDwO/AR6R9Jikf2177czMbMhodKWBrwLnkq6nORAYnz1eDXw/229mZtZPo0NqRwHfjIivlKVfk61tdhRp5QEzq8fUqd2ugVlhGg04w6h+V8/5eJaaWWN8e2nrIY2ew7kcOLjKvo8BV7ZWHTMzG6rqucX0pNzTq4EzJI2h/y2mdwKOb38VzYawhQvTo1cbsB5Qz5DalfS/lfSWwH4V8v6UdCdOM6vH+PHp0StGWw+oJ+C8o+O1MDOzIa+eW0w/XERFzMxsaGt4pQFJ65EmCOwBbAo8C/yadKuA/jdvNzMzo8GAI2kUcB3w96Q7fD4F7E66/uZ3kvaNiKfbXUkzMxv8Gp0WfRbwVuB9ETE2InaPiLHA+7L0s9pdQTMzGxoaDTiTgBMi4o58Yvb8S6RlbszMzPpp9BzOm4EXqux7AXhTa9Ux6zELFnS7BmaFaTTg3AacIOnGiHixlChpQ+CEbL+Z1csXfFoPaTTgHAPMAx6VdB1p0sAo0kWgAia0tXZmZjZkNHQOJyLuBN4FzALeBuxDCjjnAe+KiN+1vYZmQ9m0aWkz6wF193AkrQ/sCjwUESd2rkpmPeT889OjV422HtBID+dV4EbgbztUFzMzG8LqDjgR8RrwB2B056pjZmZDVaPX4ZwEfFXSuztRGTMzG7oanaV2MmlFgTslPU6apbbGuuoRsWub6mZmZkNIowHn7mwzMzNrSF0BR9Iw0rI2dwN/Aq6PiKc6WTGznrDLLt2ugVlh6rnF9FjgemBMLnm5pI9HxHWdqphZTyjdYtqsB9QzaeAM4DXgH4G3ADsBvwVmdrBeZmY2xNQTcHYHTo6IWyLipYi4D5gObC1pi85Wz8zMhop6As4WwB/L0h4krZ22edtrZNZLpLSZ9YB6r8OJgbOYmZlVV++06Gslra6QfkN5ekSMar1aZmY21NQTcE7peC3MzGzIGzDgRIQDjpmZtazRtdTMzMya4oBjZmaFaHQtNTNrp5m+ftp6hwOOWTf59tLWQzykZmZmhXDAMeumWbPSZtYDCg84knaUdIOklZKekHSqpHUHOOa9kmZLWpIdd7+kr0naoCzfDElRYdu/s60ya9L06Wkz6wGFnsORNJJ0q4N7gYOAbYHvkgLfyTUOnZzlPR34A/D3wGnZ48fK8j4PlAeY+1qtu5mZtaboSQOfA4YBB0fEcmCupI2BGZLOyNIqOT0ins4975P0EjBT0jYR8XBu3+qIuK0z1Tczs2YVPaR2AHBtWWCZQwpCe1Y7qCzYlPw2e/TabWZmg0DRAWcHYHE+ISIeAVZm+xrxD6Qbw91flr6JpGckvSLpt5IObrq2ZmbWNooo7s4Dkl4BjouIc8rSHwMuiogv11nO5sDvgasiYkou/VOkHs+dwHDSjeImAR+LiMuqlDUNmAYwevTocXPmzGm0WWtYsWIFw4cPb6mMwcTtHdhdjz/fL+3dW44AYMLEiQD0zZvXeuU6wJ/v0NaO9k6cOHFhRIyvJ283As6xEfG9svTHgQsj4qQ6yngTaeLB24FxEbGsRl4B/wcMi4j3DFT2+PHjY8GCBQNlq6mvr48JEya0VMZg4vYObMyJv+qXtvTbB6YfSjdfK/DvsBH+fIe2drRXUt0Bp+ghtWXAJhXSRwDPDXRwFkAuAnYCJtUKNgCRoullwN8PNPXarCsi1tpgY9ZuRc9SW0zZuRpJWwEbUnZup4qzSdOp94mIevKX+C/aBqXy3tHrPSOzQajoHs7VwH6SNsqlTQZWAfNrHSjpS8AXgE9FxM31vFjWI/oo8LuIeLW5KpuZWTsU3cM5DzgauEzS6cBYYAZwVn6qtKQlwPyIOCJ7fjjwTeBC4HFJu+XKfLA0bVrSfOAXpN7ShsBUYDfgI51tllmTxo1LjwsXdrceZgUoNOBExDJJewHnAleQztucTQo65fXKn3PZN3uckm15nyEFIoAlwL8BW5CmTC8CDoyIq9tRf7O2W7So2zUwK0zhtyeIiHuBDw6QZ0zZ8yn0DzSVjjuihaqZmVkHebVoMzMrhAOOmZkVwgHHzMwK4YBjZmaFKHzSgJnlTJ3a7RqYFcYBx6ybfHtp6yEeUjMzs0I44Jh108KFXmXAeoaH1My6aXy2qrtXjLYe4B6OmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQnhZt1k0LFnS7BmaFccAx66bSLabNeoCH1MzMrBAOOGbdNG1a2sx6gAOOWTedf37azHqAA46ZmRXCAcfMzArhgGNmZoVwwDEzs0I44JiZWSF84adZN+2yS7drYFYYBxyzbvLtpa2HeEjNzMwK4YBjZmaFcMAx6yYpbWY9wAHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQDjhmZlYIrzRg1k0zZ3a7BmaFccAxq8OYE38FwDHvXs2U7Oel3z6w9YJ9e2nrIR5SMzOzQriHY9ZNs2alxzb3dEo9sry29MjMWuCAY9ZN06enRw+tWQ/wkJqZmRWi8IAjaUdJN0haKekJSadKWreO40ZImi1pmaTnJf1M0lsr5DtI0l2SXpJ0r6TJnWmJmZk1otAhNUkjgeuBe4GDgG2B75IC38kDHH4JsD1wJPAacDpwOfCPufL3AH4B/BA4GpgEXCxpWURc19bG2KDkcxtm3VP0OZzPAcOAgyNiOTBX0sbADElnZGn9SNod2A/YMyJuytIeB34jae+IuD7L+hXgpog4Ons+T9JOwFcBBxyzOuSD8jHvXs2E7lXFhpiiA84BwLVlgWUOqbeyJ3BFjeOeKgUbgIi4XdJD2b7rJb0ZmEjq2eTNAWZLGhERz7epHdZl7qmsffyZ2ECKDjg7ADfmEyLiEUkrs33VAs4OwOIK6fdl+yANz61fId99pCG77YA7mqv24FH+R1/tD77efK3mHSh/s8fY0FHU70yjx3Tqb6SXKSKKezHpFeC4iDinLP0x4KKI+HKV4+YCL0bER8rSfwqMjYh/kPR+4GZg54i4M5fnncAfgP0qnceRNA0ozUndHri/6QYmmwHPtFjGYOL2Dm1u79DWjvZuExFvqydjN67DqRThVCW9mePKn6tKekqMmAXMGuC16yZpQUSMb1d5azu3d2hze4e2ottb9LToZcAmFdJHAM81cdwmueOW5dLK8zBA+WZm1mFFB5zFvHHOBQBJWwEbUvkcTdXjMvlzOw8Cr1TItwNpGvUDTdTXzMzapOiAczWwn6SNcmmTgVXA/AGO2zy7zgYASeOBsdk+IuJlYB5waNmxk4FbC5yh1rbhuUHC7R3a3N6hrdD2Fj1pYCTpos+7SVOhxwJnAedExMm5fEuA+RFxRC7tGtJMs2N548LPP0dE+YWffcC5pItCJ2X59/eFn2Zm3VVoDycilgF7AeuSpkCfApwNfK0s63pZnrzDSL2gHwMXAQuBj5aVfzNwCLA3cC3wYeBwBxszs+4rtIdjZma9y6tFt0DSZEmXSXpSUkia0sCx75f0G0mrJD0kqXyFhLWSpKmS/pAtjrpQ0l51HCNJn5d0T7Zo61JJP5BUaebhWqWZ9mbHvUXS6ZIeyY79o6RRTJ2TAAAF10lEQVTjO13fVjXb3tzxO0t6VdKguJalyd/n6ZLmSnoqW0j4Fkn7FlHfenV6keRmOeC05hBgDHBlIwdlF6NeCzwEHAjMBM6SdGS7K9hOkg4DziMNaR4A3ANcKenvBjj0C8D3gUtJ7f0WcDjwk87VtnXNtjf7w76KtEDtScD+wDc6W9vWtfD5lo4X6fzp0x2rZBu10N6TSH+700nfAUuAayR9uIPVrVtukeQg/Q6eChxDOoUxkEuACaRFkqcA7yWdD2+PiPDW5Aaskz0Ozz7cKXUeN5M0TXu9XNoPgUfJhjnXxo20CsOP8+0H7gJ+OsBxtwG/KEs7GngV2LDb7epAez9Hui5sVLfbUER7c/n/ifTl+03gmW63p4Of72YV0v4PmNftNmV1+VL2+7dxLu14YGU+rcJxu2ffYx/Ipe2ape3djrq5h9OCiHityUMPAC6LiNW5tDnA24G6/pssmqSxpFmC/1VKy9r/36T21LI+UD4t/TnSKhDqn737WmzvZ4H/iog/d66G7dVie8kudTidNCv0rx2qZtu00t6IqDRc+FtgVDvr2IJqiyQPIy2SXOu4foskk3pzA/4O1MMBp2CSNgS2ovIio1D5Ate1Qaleleq9qaRaayldAHxc0iRJG0naGTgRuDAiVnSgru3QVHslvQnYGXgsG/9elY2Fz1a6FcfaqpXPF9ItQO6LiPYNv3RWq+0ttzvpko+1Qb/FjiPiEVIPp9b3Sz2LJLekG2up9bpqS+2UluYZWWBdGlGqV616Vxy7j4j/zP4DvoI3/sm5nDQGvrZqtr1vJf1dHQ/cQJqavzVwJmlFjY+3vabt0fTnK2l74CjgfZ2pWkc03d5ykj5L+ifjmPZUrWUjqbyU1zJqf7/UOm5sG+rlgJMnaQSwxUD5IqLWMjz1qjYfvbB56k22t6HFUbPX+QTpP+CTgVtIt5I4DfgR8OkGqtySgtpbCqjLgEMj4pXstV8BfiJp24h4sP5aN6+ozxf4Hqm3eldjNWyvAtubf81xwA+A70XEvHqOKUinF0luigPOmg4Fzq8jXyvnHUr/QZRPCa72H1cnNdLe/OKo+fMxNRdHlbQOb/xBfitLvknSE6SZPedExKKGa96cjrc3d9wtpWCTKd0HakfSun9FKOLzPQB4P/D53DT3DdIubQKsirTsVBGK+HzfKCSdB/oVqSe7tvRuoLVFkisNJeYXSW6Jz+HkRMQFEaGBthZf40XSbLRKi4xC7UVM26rB9pbqVanez0ZEteGHzUjDTHeWpf82e9y25YbUqYj2RsRK4OEKu0rlNjvRpGEFfb7bk2Zp/oH0hbUMOAHYNPv5uLY2qoaC2guApFGkSxseBg6LiFfb2pjWdHKR5JY44HTH1cBHyy7EmkwKRHd3p0q1RcQfSVO5X18cNeu9HEq2gGoVT5NOVu5Slj4ue1zavlq2TwvthXRd1h7ZBIKSvUjBpqvDTtW00N5LSbd2z28/AZZnP/+/DlW5Ja18vpKGk66zAvhQ9k/G2qRjiyS3rB1zq3t1Iw2PHAJ8ijTGeW72fM9cnj2B1WVp7wRWAD8n/VEeT7q1wpHdbtMA7f0E6dqZk7N6X0j6Jf67Adp7NvAS8BXgg8BU4AnS9TnrdLtdHWjvNqQhiCtI00mnkf7bP7/bbepEeyuUM4PBcR1Os5/vdaSp34cDu+W3brcpq99I4ElgLmldyWnZ983Xy/ItAX5UlnYN8EfgYOAjpGuVft22unX7zRnMW/aHFRW2vlyeCVnahLJj9wBuz76IlwJHd7s9dbZ5avaL+jKwCNirbH+/9gJvJl2dvZjU23mYtCz6Wn9hZDPtzdLHA7/OvsCeAs4BNuh2ezrV3rI8gyLgNNveKn/zAUS325Or446k84arsuBzGrBuWZ6lpMke+bRNgNmkf5iWk/4p7neha7ObF+80M7NC+ByOmZkVwgHHzMwK4YBjZmaFcMAxM7NCOOCYmVkhHHDMzKwQDjhmZlYIBxwzMyvE/weGMzbfCuSABgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXFWd//H3h0VBdkQCwwCRICLLiBIRRkaC7BBFEQxER6JsjqzzoAQQNYCGCSiL4ecAgxL8KcQZRGYSIGFLB2HYIRiWgEGanQjSEEICEvjOH+c23FRX19JVdau7+Lyep57uOvfcW99T3V3fPueee64iAjMzs1Zbrt0BmJnZe4MTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwrGkkTZAU/Ty+VuMxNsuOs2ZJ+bjsOKu2Jvra4mjwmFdI6qqh3gqSjpN0v6QlknokXSNpxwG+7mB5T8flfh/elvSKpD9KOlfSiAEes0vSFbnnu0s6rnlRWzM54VizvQLsUOYxo8b9NwN+CJR+0F+dHWdxc8IccBwtJWl54CpgIvA/wN7AOOAtoEvS2AEcdrC8p70+B/wj8GXgF8DuwB8l7dWEY+8OOOEMUiu0OwDrOEsj4vZmHzQiXgBeaPZxB6GjgX2AvSIin6T/W9JU4CJJsyPimUZfqI3v6V0RsSj7/gZJFwDTgcskDY+IV9oQkxXAPRwrnKSTJM2X9LqkBZJmSFpP0ihgWlbt8WzopTvbZ5nhH0nDs+cHSrpE0kJJT/cO3Uk6QdKzkl6QNEnScrnX31zSVElPSVos6cFsCGu5bHu/cWTbN8r2fynbf6akj5a0ccNsGGyJpG5Jh9b49hwLzCpJNr2+B6wEHJJ7nW5JP5H0fUnPS1ok6TeS1qjWlnJDapLWkXSppL9mbeuSNLKkbb2v+a/Ze96TvR8D6g1GxBukRLsmcFDudZaTdGL2u/KGpEclHdzfcSRNAI4HNs4N3U3Jtu0g6X+y34nXJM2R9NWBxGsD5x6ONZ2kPr9XEbE02/Z14GRgPPAg8EHSEMsqwL3Ad4CfAPsBzwFvVHm5ScBvSMMz3wQulfQJYOPs+bbAj4D7gKnZPhsAj2T7vQpsA5wKrAycUSkOSWsDtwB/Bb5FGo46kfSf+mYRsUSSgP8G1iElh9ez468N/KnC+7YhMBw4p9z2iHhM0lzgsyWbDgLmA4cB6wNnAhcDB1RqSz+uAjbN9nkR+C4wS9InImJ+rt5XgD8ChwN/D5xNGgb8doVj9ysi5kl6GtgeuCArngwcDJyWtWM34JeS/hoR08sc5mLgI6Tfpy9lZb09uI2BW7Njvw58BrhE0tsRcflAYrYBiAg//GjKA5gARD+P4Vmd84HfVTjG6Hz9XPm4rHzV7Pnw7PkluTqrA2+SPtSXz5XfCfy2n9cT6R+vk4E/1xDH6aRks3aubC3Suasjs+d7Z/t+OldnY2Ap0FWh7dtn++1boc5VwMO5593AS73vS1b2VeBt4GN1vqd7Zs93ytVZhfShfWHJaz4GrJArOxd4vsrvxzKvV2b7bcC12febZm04uKTOr0hDcr3Pu4Arcs9/AnRXiaP3Z34hcFO7/27eSw/3cKzZXgF2LVP+bPZ1DnCIpFNJJ63viYi3Gni9G3u/iYiFkl4AZpcccz6wUe8TSSsBJ5E+mDcCVsxtWyGy3lg/dgWuBxbmenKvAvcAvUNP2wELIuKOXGxPSLpnAO2rxfXx7jkRgCuBXwOfAh6u4zjbAS9ExOzegoh4TdJ0oHSG3KyS9+khYF1J74uIv9UX/juU+34XUsL5fUmP+UbgIEnL1/N7I2ktUi9zX1IPd/lsU8Pnwqx2TjjWbEsj4u4K238JrEYaivkB8FdJ/w5MGGDiebnk+d/6KVsp93wScCjpA+jerP6+wClZvUX0bx1ST2RMmW29yW894C9ltv+F1Pb+9H74bVyhzsb0/ZBc5rUiDestIg2v1WN9YEGZ8gWk4cC8cu+xgPdl3w/EBsC87Pt1SEmhvwkE6wNP13HsKaSf2+mk5LgQ+BfSz90K4oRjhYqIt0nnKM7Jzll8Ffgx6UP0gkr7NtEBwOSIOLO3QNI+Ne77Emm68ulltr2afX0eWLfM9nWBJf0dOCKeyk7ofwH4Wel2SR8Gtirz2uuW1FsZWJV0vqYez5UeKzOM1O6WkfQx0rmg27Kil0hDkJ8h9XRKlUvo/R17JdLMv6Mi4oJcuSdNFcxvuLVNRDwVEf9GGvLaIivu/e94pfJ7NcXK5E6cK137cmBJnf7iuBHYEngwIu4ueTyS1bkLGCbp07nX2Aj4ZA2xnQfsImn3Mtt+lMX9i5Ly3bTsxZv7kc6V9PY0a31P7yANi70zKUHSB0gf1rfUEPuASHo/KcG+zLsTO24i9XDWKPM+311h2K60Nwvw/uxY+Z/5aqTEbgVyD8eabQVJ25cpfyoinpF0Iem/19tJwyU7k2YWjc/q9X5oH6F03cniiJjb5BivB46UND+L5UjSh1Jef3GcDXwNuEnSZFLPbBiwE3BLpBlP1wD3A/8laTxpVtRp1PZf+WTSeaLfS/oJ6aT4aqTZbqOBf46+1+AsAa6WdBZpqOks4PcR8VCVtiwjImZKuhX4raQTSZMjvkNK0GfVEHutPiVpCfABUo/tCNIkkP0juwYnIh5Ruj5nqqQzSclzJVKy3ywi+ptmPo+U7McBDwAvRkS3pLuAH0haSOoxnUj6/Vu9ie2yato9a8GPznlQeZbaKVmdcaTpqS+RphT/ETik5DjHA0+QhlS6c/uVm6U2umTfbuAnJWVTgLtzz4cBvyeN4y8gTSM+jJIZVOXiyMr/Drgk2/eN7DV/DWyZq7MRaXWFJdkxjgCuoMIstdy+KwD/mr03S4Ae4FpgxzJ1u4GfZu/9AuA14HJgzXrf06zsQ6SZYD3Za88GPlXDe9znWGVi7a3T+3gVmEvq1Y0oU1+kVQMezN7nF7J4vp6r08Wys9RWyn42f8leY0pWvimp1/Qa8CRwQvaevdjuv5v30kPZD6MwkjYlze3fnvTfzR8iYlQN+61Bmnr5RdJQ4HTgmIj4a0m9fUlDDx8B/gycGhG/bWYbzAaL7JzPFRHxnXbHYlZNO87hbEm6TuHR7FGr3wKjSLOLxpGmfF6Vr6C0uOHvgFnAXqRpt5f3Mx5uZmYFakcPZ7lIM5VQWuV1nWo9HEk7AP9LuiDt5qxsO9JJzt0i4oasbCawYkR8LrfvNcDqETGglXbNBjP3cGwoKbyH05ts6rQX6UK6m3PHuRN4PNvWO9NlZ+A/S/adCuzQu7aUWSeJiOFONjZUDJVp0Zvz7gVheQ9n2wBGkK4YL633MKmdm7UsOjMzq2qoTItei75XNkOaSbNJrg5l6vWUbF+GpMNJV72z8sorb7vhhhs2FOjbb7/NcssNlTxem9UeTafaXt2sb87uxPZW4vZ2Nre3fo8++uiLEfGhWuoOlYQDaYpjKZUpL32ufspTYcRFwEUAI0eOjLvvrrQqS3VdXV2MGjWqoWMMOsrewkce6bOpI9tbgdvb2dze+kl6ota6QyWV91D+zotr8m6PpidXVloHyveQzMysIEMl4czj3XM1eflzO4+RlqYvrbc56crieqZgWxnDT7ya4Sde3e4wzGyIGioJ51pgvew6GwCyuxBukm0j0l0DZ5EWZswbA9wWvm2tmVlbFX4OJ1sMcO/s6QbA6pL2z55fExGLszWuZkfEIQARcVt2jc2vJH2H1GOZRFq76obc4U8HuiSdS7oodO/ssWfLG2ZmZhW1Y9LAusB/lZT1Pv8waZ2mFXj3Bkm9DiQta/9Lckvb5CtExC1Z8voR6V4XjwNjI+K6Jsb/njN8fLm7+ZqZ1afwhBMR3Sx7Z79ydYaXKXsZ+Eb2qLTvVZQseWNmZu03VM7hmJnZEOeEY1VNm3Is06Yc2+4wzGyIG0oXflqbbL3gsXaHYGYdwD0cMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeJaaVXXZx/dodwhm1gGccKyqk/c8ut0hmFkH8JCamZkVwgnHqtrq+fls9fz8dodhZkOch9SsqumXHgd41Wgza4x7OGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQnhatFU1+uBz2x2CmXUAJxyr6oH1Nm13CGbWATykZmZmhXDCsaomzpjMxBmT2x2GmQ1xTjhW1dj7ZzL2/pntDsPMhjgnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQvjCT6tq7rAR7Q7BzDqAE45V9flx57U7BDPrAB5SMzOzQjjhmJlZIZxwrKruSaPpnjS63WGY2RDnhGNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4RXGrCqTtrjqHaHYGYdwAnHqrp8mz3bHYKZdYDCh9QkbSHpRkmLJT0r6TRJy1fZZ4Kk6OdxUq7elH7qbN76lpmZWSWF9nAkrQXcADwE7AuMAH5KSnynVNj1YmBGSdkXgfHAtSXl84BvlJR1DyxiAzhoTnrr3dMxs0YUPaT2LWBlYL+IWAhcL2l1YIKkM7OyPiLiaeDpfJmk7wPzImJOSfXXIuL2FsT+nnXGzPMBJxwza0zRQ2p7ATNLEstUUhLaqdaDSFob2A24vLnhmZlZqxSdcDYnDXm9IyKeBBZn22q1P7AiKVmV2kLSQklvSLpFUs2JzMzMWqfoIbW1gJfLlPdk22p1IHBvRDxaUn4fcAfpHNGHgONJw3Y7RsSd5Q4k6XDgcIBhw4bR1dVVRxh9LVq0qOFjDDajsq/Hb70UYJn2dWJ7K3F7O5vb21rtmBYdZcrUT3nfitL6pOG38X0OHHFeSd2rScnnZNIkg77BRFwEXAQwcuTIGDVqVC1h9Kurq4tGjzFY/XRu+nXp/uqod8o6ub3luL2dze1traKH1HqANcuUr0H5nk85XyElqN9WqxgRS4BrgE/WGqCZmbVG0QlnHiXnaiRtCKxCybmdCg4EbomIp+p43Zp6T2Zm1jpFD6ldC3xX0moR8WpWNgZYAsyutrOk4cD2wLdreTFJK5Nmxt0zkGAtGT5+ertDMLMOUHQP5wLgDeBKSbtmJ+wnAGfnp0pLmi/pF2X2PxBYClxRukHSGpL+IOkISbtIGgPMAjYAJragLWZmVodCezgR0SNpF+B8YBrpvM05pKRTGle55W4OBG6MiBfKbHsDeIG0YsG6wOvAbcBOEXF3UxpgZmYDVvgstYh4CPhclTrD+ynfpsI+rwP7NRSclTVtyrEAfH7ceVVqmpn1z6tFW1VbL3is3SGYWQfwDdjMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhWWpW1WUf36PdIZhZB3DCsapO3vPododgZh3AQ2pmZlaIuhKOpHLLzViH2+r5+Wz1/Px2h2FmQ1y9PZxnJJ0p6WMticYGpemXHsf0S49rdxhmNsTVm3AuBPYHHpB0h6TDJa3egrjMzKzD1JVwIuKHEbEJsBvwCHA28Jyk30jatRUBmplZZxjQpIGIuCkivg6sBxwNfBSYKalb0gRJf9fMIM3MbOhrdJbaSOCzpNtG9wB/AA4F5kv6WoPHNjOzDlJ3wpG0saQfSnoMuBFYH/gm8HcR8c/AxqRzPWc1NVIzMxvS6rrwU9JNpB7N08AU4JKIeCJfJyLeknQZcGyzgjQzs6Gv3pUGXgT2Bq6PiKhQbw7w4QFHZYPK6IPPbXcIZtYB6k045wP3lks2klYFPhkRN0fEm8ATffa2IemB9TZtdwhm1gHqPYczC9iin20fzbabmZn1UW/CUYVtqwKLG4jFBqmJMyYzccbkdodhZkNc1SE1SZ8FRuWKDpW0Z0m1lYB9gLnNC80Gi7H3zwS8arSZNaaWczifJl3cCRDAAcDSkjp/A+YB321eaGZm1kmqJpyIOIvsmhpJjwNfiog5rQ7MzMw6S12z1CLCU53NzGxAajmHszdwS0QszL6vKCKuaUpkZmbWUWrp4UwHtgfuzL4P+p+tFoBv0mZmZn3UknA+DDyX+97eY+YOG9HuEMysA9QyaeCJct/be8fnx53X7hDMrAPUcg7nA/UcMCJ88aeZmfVRy5DaItK5mVr5HI6ZmfVRS8L5JvUlHOsw3ZNGAzB8/PQ2R2JmQ1kt53CmFBCHmZl1uEZvMW1mZlaTWiYN3AmMi4iHJN1FleG1iNiuWcGZmVnnqOUczoPAktz3Pp9jZmZ1q+Uczjdy349raTRmZtaxBnwOR8mHJFW6KZuZmRlQ52rR8M5inqcA22b7L5V0D/DjiLi6yfHZIHDSHke1OwQz6wB1JRxJRwA/B24EjgX+AqwL7Af8j6RvR8SFTY/S2urybUpv8GpmVr96ezgnAxdFxL+UlF8g6QLge4ATjpmZ9VHvOZwPAlf2s+13wNrVDiBpC0k3Slos6VlJp0mquByOpOGSosxjapm6+0qaK+l1SQ9JGlNTy6xfB82ZwUFzZrQ7DDMb4urt4cwCdgKuL7NtJ+DmSjtLWgu4AXgI2BcYAfyUlPhOqeH1vwPcmnv+YsnxdyQlvp8DxwB7A5dL6omI62o4vpVxxszzAQ+tmVljarnwc4vc058BF0v6IHAV757D+RKwF3BolcN9C1gZ2C8iFgLXS1odmCDpzKyskkci4vYK278P3BwRx2TPZ0naEvgB4IRjZtZGtfRwHmDZiz0FHJE9Su/+OYPKq0XvBcwsSSxTgUmkHtK0GuIpS9L7gZ1JPZu8qcAlktaIiFcGenwzM2tMLQln5ya+3ubATfmCiHhS0uJsW7WEc4mktUk9q8uB70VE7yoII4AVgXkl+zxMGrLbDLirsfDNzGygallpYHYTX28t4OUy5T3Ztv68Afw/0rDYQmAUMJ6UZPbNHZsyx+8p2b4MSYcDhwMMGzaMrq6uSvFXtWjRooaPMdiMyr4ev/VSgGXa14ntrcTt7Wxub2vVfeFnL0nLASuVltdwx89ya7Gpn/LeYz4H5K8+7JK0APi5pG0iYk6F46uf8t5jXwRcBDBy5MgYNWpU5eir6OrqotFjDFY/nZt+Xbq/Ouqdsk5ubzlub2dze1urrmnR2XI24yXNB94EXi3zqKQHWLNM+RqU7/lUckX29ZO5Y1Pm+L3P6z2+mZk1Ub09nGOAE4EzgR8DPwLeAg4E3gdMrLL/PNK5mndI2hBYhb7nXqqJkq+PkZLg5kB+GHBz4G3g0TqPbxnf6dPMmqHeCz8PA35ISjgAV0XEqcCWpITxkSr7XwvsIWm1XNkY0u0P6j1XtH/29R6AiHiDdJ3QASX1xgC3eYaamVl71dvD+TAwJyLekvQm2XBVRLwt6efAxaQeUH8uIPWSrpQ0CdgEmACcnZ8qnQ3ZzY6IQ7LnE4DVSBd9LgQ+C3wXuDIi/pg7/umk8zvnkq4T2jt7+IpFM7M2q7eH81dg1ez7J4FP5LatRbqos18R0QPsQrpWZxpwKnAOqdeUtwLLXs8zj3SdziXANcBY4Kzsa/74t5B6PrsCM4EvAGO9ykBjpk05lmlTjm13GGY2xNXbw7kV+BTpQ/8y0goBawN/A44krSJdUUQ8BHyuSp3hJc+nki7grCoiriL1bqxJtl7wWLtDMLMOUG/CmQBskH0/kTSkNo7Us7keOLpZgZmZWWepK+FExCPAI9n3b5DuieOxFjMzq6qRCz//HlgfeDYinmleSGZm1onqnTSApH+R9BTwBHAH8KSkpyV9u+nRmZlZx6h3pYEfAOeTrqfZBxiZfb0W+Fm23czMrI96h9SOBCZGxPdLymdka5sdCZzWlMhs0Ljs43u0OwQz6wD1JpyV6f+unrPxLLWOdPKe/rGaWePqPYdzFbBfP9u+DHjRLTMzK6uWW0zvnXt6LXCmpOH0vcX0lsAJzQ/R2m2r5+cD8MB6m7Y5EjMbymoZUptO31tJbwCUG9j/NelOnNZBpl96HOBVo82sMbUknA+3PAozM+t4tdxi+okiAjEzs85W90oDklYgTRDYEVgbeAn4A+lWAUubG56ZmXWKuhKOpHWB64B/ALqBBcAOpOtv7pe0e0S80Owgzcxs6Kt3WvTZwAeBT0fEJhGxQ0RsAnw6Kz+72QGamVlnqDfh7A2Mj4i78oXZ85NIy9yYmZn1Ue85nPcDr/az7VXgfY2FY4PR6IPPbXcIZtYB6k04twPjJd0UEa/1FkpaBRifbbcO4ws+zawZ6k04xwOzgKckXUeaNLAu6SJQAaOaGp2ZmXWMus7hRMQc4CPARcCHgN1ICecC4CMRcX/TI7S2mzhjMhNnTG53GGY2xNXcw5G0IrAd8HhEnNi6kGywGXv/TMCrRptZY+rp4bwF3AR8rEWxmJlZB6s54UTE28CfgGGtC8fMzDpVvdfhfA/4gaStWxGMmZl1rnpnqZ1CWlFgjqRnSLPUIl8hIrZrUmxmZtZB6k04D2QPMzOzutSUcCStTFrW5gHgeeCGiFjQysBs8Jg7bES7QzCzDlDLLaY3AW4AhueKF0r6SkRc16rAbPD4/Ljz2h2CmXWAWiYNnAm8DfwT8AFgS+A+4MIWxmVmZh2mloSzA3BKRNwaEa9HxMPAEcBGktZvbXhmZtYpakk46wN/Lil7jLR22npNj8gGne5Jo+meNLrdYZjZEFfrdThRvYqZmVn/ap0WPVPS0jLlN5aWR8S6jYdlZmadppaEc2rLozAzs45XNeFEhBOOmZk1rN611MzMzAbECcfMzApR71pq9h500h5HtTsEM+sATjhW1eXb7NnuEMysA3hIzczMCuGEY1UdNGcGB82Z0e4wzGyIKzzhSNpC0o2SFkt6VtJpkpavss+nJF0iaX623yOSfihppZJ6EyRFmYfHhBpwxszzOWPm+e0Ow8yGuELP4Uhai3Srg4eAfYERwE9Jie+UCruOyepOAv4E/ANwevb1yyV1XwFKE8zDjcZuZmaNKXrSwLeAlYH9ImIhcL2k1YEJks7MysqZFBEv5J53SXoduFDSxhHxRG7b0oi4vTXhm5nZQBU9pLYXMLMksUwlJaGd+tupJNn0ui/76rXbzMyGgKITzubAvHxBRDwJLM621eMfSTeGe6SkfE1JL0p6U9J9kvYbcLRmZtY0iijuzgOS3gS+GxHnlpQ/DfwqIk6u8TjrAX8EromIcbnyr5F6PHOAVUk3itsb+HJEXNnPsQ4HDgcYNmzYtlOnTq23WctYtGgRq666akPHGGxG7bwzAJN/fRUAW2+wxjvbOrG9lbi9nc3trd/OO+98T0SMrKlyRBT2AN4Eji1T/gzw4xqP8T7gZtJN4daqUlfAbcCcWo697bbbRqNmzZrV8DEGHYiA2Hj89Nh4/PRlNnVkeytwezub21s/4O6oMQcUPWmgB1izTPkawMvVdpYk4FfAlsBnIqKnUv2ICElXApMkLR8Rbw0g5ve84eOntzsEM+sARSeceZScq5G0IbAKJed2+nEOaTr1bhFRS/1evmOpmVmbFT1p4FpgD0mr5crGAEuA2ZV2lHQScDTwtYi4pZYXy3pEXwLud+/GzKy9iu7hXAAcA1wpaRKwCTABODtyU6UlzQdmR8Qh2fOxwERgCvCMpO1zx3wssmnTkmYDvyP1llYBDgO2B77Y2mZ1tmlTjgXg8+POa3MkZjaUFZpwIqJH0i7A+cA00nmbc0hJpzSu/HI3u2dfx2WPvG+QEhHAfOA4YH3SlOl7gX0i4tpmxP9etfWCx9odgpl1gMJvTxARDwGfq1JneMnzcfRNNOX2O6SB0MzMrIW8WrSZmRXCCcfMzArhhGNmZoVwwjEzs0IUPmnAhp7LPr5Hu0Mwsw7ghGNVnbzn0e0Owcw6gIfUzMysEE44VtVWz89nq+fntzsMMxviPKRmVU2/9DjAq0abWWPcwzEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcLToq2q0Qef2+4QzKwDOOFYVQ+st2m7QzCzDuAhNTMzK4QTjlU1ccZkJs6Y3O4wzGyIc8KxqsbeP5Ox989sdxhmNsQ54ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIXflpVc4eNaHcIZtYBnHCsqs+PO6/dIZhZB/CQmpmZFcIJx8zMCuGEY1V1TxpN96TR7Q7DzIY4JxwzMyuEE46ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSG80oBVddIeR7U7BDPrAE44VtXl2+zZ7hDMrAN4SM3MzArhhGNVHTRnBgfNmdHuMMxsiPOQmlV1xszzAQ+tmVlj3MMxM7NCFJ5wJG0h6UZJiyU9K+k0ScvXsN8aki6R1CPpFUm/kfTBMvX2lTRX0uuSHpI0pjUtMTOzehSacCStBdwABLAvcBpwPHBqDbv/FhgFHAqMAz4FXFVy/B2B3wGzgL2Aq4HLJe3elAaYmdmAFX0O51vAysB+EbEQuF7S6sAESWdmZX1I2gHYA9gpIm7Oyp4B7pC0a0TckFX9PnBzRByTPZ8laUvgB8B1rWuWmZlVU/SQ2l7AzJLEMpWUhHaqst+C3mQDEBF3Ao9n25D0fmBn4D9L9p0K7CBpjcbDNzOzgSq6h7M5cFO+ICKelLQ42zatwn7zypQ/nG0DGAGsWKbew6TEuhlw18DC7jzDT7x6mefd/7ZPS47bzGOb2dBWdMJZC3i5THlPtm0g+22Sq0OZej0l25ch6XDg8OzpIkmPVIijFusALzZ4jMJpUg2Vsrt+ltSt2t6ajj10DMmfbwPc3s7WjPZuXGvFdlyHE2XK1E/5QPYrfa4K+xMRFwEXVXntmkm6OyJGNut4g53b29nc3s5WdHuLPofTA6xZpnwNyvdgqu23Zm6/nlxZaR2qHN/MzFqs6IQzj3fPuQAgaUNgFcqfo+l3v0z+3M5jwJtl6m0OvA08OoB4zcysSYpOONcCe0haLVc2BlgCzK6y33rZdTYASBpJOn9zLUBEvEG6/uaAkn3HALdFxCuNh1+Tpg3PDRFub2dzeztboe1VRLVTJ018sXTh50PAA8AkUsI4Gzg3Ik7J1ZsPzI6IQ3JlM0gzzb5D6rFMAv4SEf+Uq7Mj0AWcT7oodO+s/p4R4etwzMzaqNAeTkT0ALsAy5OmQJ8KnAP8sKTqClmdvANJvaBfAr8C7gFN+hZLAAAGDElEQVS+VHL8W4D9gV2BmcAXgLFONmZm7VdoD8fMzN67vFp0AySNkXSlpOckhaRxdez7GUl3SFoi6XFJx1Tfq/0kHSbpT9niqPdI2qWGfSTpKEkPZou2dkuaLKnczMNBZSDtzfb7gKRJkp7M9v2zpBNaHW+jBtre3P6fkPSWpCFxLcsAf5+PkHS9pAXZQsK3Drb1Glu9SPJAOeE0Zn9gODC9np0kbUoa8nsc2Ae4EDhb0qHNDrCZJB0IXEAa0twLeBCYLmmrKrseDfwMuILU3jOAscClrYu2cQNtb/aHfQ1pgdrvAXsCP25ttI1r4Ofbu79I509faFmQTdRAe79H+ts9gvQZMB+YIekLLQy3Zq1eJLkhEeHHAB/ActnXVbMf7rga97uQNE17hVzZz4GnyIY5B+MDeAT4Zb79wFzg11X2ux34XUnZMcBbwCrtblcL2vst0nVh67a7DUW0N1f/n0kfvhOBF9vdnhb+fNcpU/a/wKx2tymL5aTs92/1XNkJwOJ8WZn9dsg+xz6bK9suK9u1GbG5h9OAiHh7gLvuBVwZEUtzZVOBvwdq+m+yaJI2Ic0SfGdx1Kz9/0W2gGoFKwKl09JfJq0Cob7V26/B9n4T+M+I+EvrImyuBttLdqnDJNKs0L+1KMymaaS9EVFuuPA+YN1mxtiAli2S3CgnnIJJWgXYkPKLjEL5C1wHg964ysW9tqQPVdj3YuArkvaWtJqkTwAnAlMiYlELYm2GAbVX0vuATwBPZ+PfS7Kx8EuyW3EMVo38fCHdAuThiGje8EtrNdreUjuQLvkYDPosdhwRT5J6OJU+X2pZJLkh7VhL7b2uv6V2Ki4yOgjUsjhq2bH7iPj37D/gabz7T85VpDHwwWqg7f0g6e/qBOBG0tT8jYCzSCtqfKXpkTbHgH++kj4KHAl8ujWhtcSA21tK0jdJ/2Qc35zQGtbKRZIb4oSTk90zZ/1q9SKi0jI8tepvPnph89QH2N66FkfNXucg0n/ApwC3km4lcTrwC+DrdYTckILa25tQe4ADIuLN7LXfBC6VNCIiHqs96oEr6ucLnEfqrc6tL8LmKrC9+dfcFpgMnBcRs2rZpyCtXiR5QJxwlnUA8B811GvkvEPvfxClU4L7+4+rleppb35x1Pz5mIqLo0pajnf/IM/Iim+W9CxpZs+5EXFv3ZEPTMvbm9vv1t5kk+m9D9QWpHX/ilDEz3cv4DPAUblp7iulTVoTWBJp2akiFPHzffcg6TzQ1aSe7GDp3UBjiySXG0rML5LcEJ/DyYmIiyNC1R4NvsZrpNlo5RYZhcqLmDZVne3tjatc3C9FRH/DD+uQhpnmlJTfl30d0XBDalREeyNiMfBEmU29xx3oRJO6FfTz/ShpluafSB9YPcB4YO3s++82tVEVFNReACStS7q04QngwIh4q6mNaUwrF0luiBNOe1wLfKnkQqwxpET0QHtCqiwi/kyayv3O4qhZ7+UAsgVU+/EC6WTlJ0vKt82+djcvyuZpoL2QrsvaMZtA0GsXUrJp67BTfxpo7xWkW7vnH5cCC7Pv/3+LQm5IIz9fSauSrrMCGJ39kzGYtGyR5IY1Y271e/VBGh7ZH/gaaYzz/Oz5Trk6OwFLS8o2BRYBl5H+KE8g3Vrh0Ha3qUp7DyJdO3NKFvcU0i/xVlXaew7wOvB94HPAYcCzpOtzlmt3u1rQ3o1JQxDTSNNJDyf9t/8f7W5TK9pb5jgTGBrX4Qz053sdaer3WGD7/KPdbcriWwt4DrietK7k4dnnzY9K6s0HflFSNgP4M7Af8EXStUp/aFps7X5zhvIj+8OKMo+uXJ1RWdmokn13BO7MPoi7gWPa3Z4a23xY9ov6BnAvsEvJ9j7tBd5Pujp7Hqm38wRpWfRBf2HkQNqblY8E/pB9gC0AzgVWand7WtXekjpDIuEMtL39/M0HEO1uTy7GLUjnDZdkyed0YPmSOt2kyR75sjWBS0j/MC0k/VPc50LXgT68eKeZmRXC53DMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSH+D6dW9oWBOX3EAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/iron_condor_pricing.ipynb b/qiskit/finance/simulation/iron_condor_pricing.ipynb index 511e62073..0b05d3395 100644 --- a/qiskit/finance/simulation/iron_condor_pricing.ipynb +++ b/qiskit/finance/simulation/iron_condor_pricing.ipynb @@ -118,7 +118,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -217,7 +217,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XeYVPX1x/H3AVQ6YsPOWmJBUxRLVNSAKBI7FlAUFRRRQNjENM0vtpBiCktRAUUQRcHeoqIoYC8QYwyKjaZUaSIu0vb8/jh3ZRh2d2a2zHfuzHk9zzy7c+fe3c8Ow5y599tEVXHOOeeqq17oAM455+LNC4lzzrka8ULinHOuRryQOOecqxEvJM4552rEC4lzzrka8ULicpaI3CQimnBbKCKPish+ATMdJyL/FpHvRESjbU1EZIKILI9yXlbJsWOT/p7y291Z/SM25+ktImdXsH2uiPw9RCYXTw1CB3Auha+BU6Pv9wVuBV4SkUNU9dsAeUYCS4FOwLpo29XAGUAPYAHweRXHzwIuT9q2tJYzpqs38D/giaTt5wDLsx/HxZUXEpfrNqrqW9H3b4nIfOBV4OfAwwHyHASMUtVpSds+VtVH0zj+24S/Jyep6nuhM7h48UtbLm5mRF+LAETkGBF5Krrs9a2I/EdEupfvLCI7RJehLk38IWLmiMg/E7Z1EJG3o/2XiMgdItI0euxn0aWs+sCQ6JLUWBGZC/QCDiu/VFXdP6z8d4jIoUnbp4rIIwn3x4rIdBE5WUT+G/3dr4nIIUnH1ReR34nIJyKyTkS+FJGx5T8TaAtcmnCJ7bLosa0ubYnIBSLyQfRzvhCRQSLSIOHxy6Kf8UMReTHKNEtEulT3+XDx4YXExU1R9HVx9LU18DpwBXZ56VFgjIhcCKCqK4DH2fpy0s+inzUGQETaAM8Dy4BzgRuBi4DyN/B/A8dE3/8j+v5W7DLQs9glq2MS9qmUiDRIvKX1V29tb+BvwCDgQmAX4CERkYR9RgI3Aw8BpwO/BJpEj10TZX42Ife/Ksl7CjARew7OAoYB1wHDK9j9AeAp7Hn5FJggIntW8290MeGXtlzOS3iz3Re4A/gGmAygqhMS9hPgFWBP4Ergweih0cALIrKvqs6Otl0OzFDVD6L7fwDmAWeq6qbo560AJorIMar6JnZpDWBu4uUpEfkKaJXmJau2wIakv+8HqvpZGscm2gE4TlU/jX5GPaxgHgjMEpGDsDOlAao6NOG4iQCq+qGIfAt8lUbuW4Cpqlp+Vvd89Dz8WUT+qKpfJuw7WFXviTLNAJZgRWxEhn+fixE/I3G5bkfsjXcD8DFWTLqq6iIAEWkpIkNFZF7Cfr2BAxJ+xktYkbg0OqYZ0IXobCRyFPB4eRGJPApsBNrV4t/zEXBk0u2LavycueVFJPJh9LX803/76OvYavzs74lIfeBwtm6Pmoi9fySfgb1Q/o2qLsc6EvgZSZ7zMxKX674GOgKKXc5aqFtOWT0W+Cl2melDYDXWi+qs8h1UVUVkDNBTRG4CLsBe+w8k/JzdsE/PJBy3SUSWY5/+a0upqk6vhZ+zKun++uhrw+jrjljD/uoa/p6dgG1Iem4S7ic/NxXlaojLa15IXK7bWNkbr4g0BE4D+qnqiITtFZ1pj8HaPdoDlwFPqOrKhMcXYe0MiT+/PvaGvKImf0AGvou+bpu0fQes7SYTy4EmItK8hsVkGXaWt0vS9lbR12w9Ny6H+aUtF2fbYb2oysdzlF+2OjN5R1X9ArvscjN2qWpM0i5vA+dExaNcF+zD1mu1G7tS5W0NB5dvEJG9sHaPTL0cfe1RxT4pzxaiS30zgPOTHroAKAPerEY2l2f8jMTFlqp+LSLvAn8QkdXYG9tvscthzSs4ZDR2rf9L4MWkx/4IvAc8ISJ3Ytf1/wpMihra65yqfhn9PbeKSCn2Qe96qvGpX1U/FpFRwD9EZBesE8L2wHmq2i3abRbQSUQ6YWcwc6J2jWQ3ApOiy4MTgB9ilxLvSmpodwXKz0hc3F0EzAHGAUOwBvJxlez7DNZ4fq+qliU+oKozgc7YJZzHsMLyIHBe3cSu1EXAfOB+4E9Yj6mPq/mzrsHOwC7GuvmWAGsTHv8j1vj/EPAu1n16K6r6AtANOAJ4GhiIdYHuV81cLs+IL7XrCoWI/BwrJgdUo7utc64SXkhc3hOR3YEfYAPp5qvq6YEjOZdX/NKWKwS9sbEk3wH9A2dxLu/4GYlzzrka8TMS55xzNVIQ3X932mknLSoqqtax3377LU2aNEm9Y46IU944ZYV45Y1TVohX3jhlhZrlnTFjxjJV3Tnljqqa97e2bdtqdU2ZMqXax4YQp7xxyqoar7xxyqoar7xxyqpas7zAdE3jPdYvbTnnnKsRLyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOpTJ+PBQVcWKHDlBUZPdzVZyyurxREONInKu28eOhd28oLUUA5s2z+wDdu4dMtrU4ZXV5xQuJc1W54QYoLd1yW2kp9O0LH1d3dvc6MnRoxVlvuMELiatTXkicq8r8+RVv//pr+OMfs5sllcrmzavsb3CulngbiXNV2Xvvire3bg1lZbl1a906s7/BuVrihcS5qlx33dbbGjeGQYOynyWVQYMsW6JGjXIzq8srXkicq8rChfZ1991REfvUP2pUbrY5dO9u2Vq35vuLXGeckZtZXV7xQuJcZUpLYeRIOOccWLCAaS+/DHPn5vYbc/fuMHcu06ZMgZNOgtdfhw0bQqdyec4LiXOVue8+WLECiotDJ6me4mJYsAAeeSR0EpfnvJA4V5GyMigpgbZtoV270Gmqp3NnOOAAGDy48h5dztUCLyTOVeSFF2DWLBg4EERCp6meevVgwAB49114443QaVwe80LiXEUGD4bddoMLLgidpGYuvRRatrSzK+fqiBcS55LNnGlnJP36wbbbhk5TM02a2DQpjz1mHQWcqwNeSJxLVlICDRtunqcq7vr2tctzw4aFTuLylBcS5xJ99ZX11urRA3baKXSa2rHXXnD++XD33fDNN6HTuDzkhcS5RCNHwrp11kidT4qLYfVqGDMmdBKXh7yQOFdu3Tq4/Xbo1AnatAmdpnYddRQceywMGQKbNoVO4/KMFxLnyj30ECxeHN8BiKkMHAizZ8Mzz4RO4vKMFxLnwAbsDR4MBx8Mp5wSOk3dOOccmyts8ODQSVye8ULiHMArr8B778V7AGIqDRpA//4wbZr9rc7VEi8kzoF1+d1xR7jkktBJ6lavXja2xAcoulrkhcS5zz+HJ5+EPn1s/Y58tv320LMnPPggLFoUOo3LE15InBs61C77XHNN6CTZce21sHEj3HFH6CQuT2S9kIhIGxF5SURKRWShiNwiIvUzOL6eiMwQERWR0+syqysAX38N99wDXbvC7ruHTpMd++9vC16NGAFr14ZO4/JAVguJiLQEJgMKnAXcAvwSuDmDH3MFsEftp3MFafRoWLPGGtkLSXExLFsG48eHTuLyQLbPSPoAjYAuqvqiqo7AisgvRKR5qoOjQjQIuKFuY7qCsHGjXdY6/nhbd6SQnHgi/OQn1ujua5W4Gsp2IekMTFLV1QnbJmDF5cQ0jr8VeB14qQ6yuULz5JMwb17+DkCsioidhc2cCS++GDqNi7lsF5KDgFmJG1R1PlAaPVYpEfkRcDlwXZ2lc4Vl8GDYZx8488zQScLo1g1atfKuwK7GRLN4WisiG4BfqWpJ0vYvgXGqen0Vx04D3lbVX4tIETAHOENVK5zvQUR6A70BWrVq1XbChAnVyrxmzRqaNm1arWNDiFPekFmbzZpF26uv5rO+ffnyvPPSOiYfn9vW48axz5gxvDN2LKWtW2chWcXy8bnNFTXJ2759+xmqekTKHVU1azdgAzCggu0LgEFVHNcNWAw0j+4XYQ32p6fze9u2bavVNWXKlGofG0Kc8gbNetFFqs2aqX79ddqH5OVzu2SJ6nbbqV51VZ3mSSUvn9scUZO8wHRN4z0225e2VgLbV7C9BbCqogNEZBvgb8BfgXoisj1Q3jDfRESa1UVQl8cWLLAJGq+4Apqn7OOR33bZBS6+GMaNg+XLQ6dxMZXtQjKLpLYQEdkLaEJS20mCJsCewD+xQrQSeD96bALgkwa5zAwfDmVlNu+Us0b3tWth1KjQSVxMZbuQPAd0SjqL6AqsBaZVcswaoH3S7cLoseuB7nUT1eWl0lJbvOrss62h3cGhh0LHjlZg168PncbFULYLyQhgHfCYiHSMGsRvAv6pCV2CReQzERkNoKobVXVq4g14K9r1A1V9O7t/gou1ceNg5crC7PJbleJiWLgQHnkkdBIXQ1ktJKq6EjgJqA88jQ1GHAzcmLRrg2gf52pPWZl1dW3bFo47LnSa3HLqqXDggdYl2gcougw1yPYvVNUPgQ4p9ilK8fhcIE8XjXB1ZtIk+PhjuP/+/F1zpLrq1bN16q+5Bl5/Hdq1C53IxYjP/usKx+DBNjHj+eeHTpKbevSAli19gKLLmBcSVxj+9z+bCqRvX9h229BpclOTJnDVVfD44zBnTug0Lka8kLjCMGSILVp11VWhk+S2vn3tMtewYaGTuBjxQuLy31dfwX332aWbHXcMnSa37bmnXfq7+25YvTr1/s7hhcQVghEjYN06a0x2qRUXwzffwJgxoZO4mPBC4vLbunW2pOypp8LBB4dOEw9HHmndo4cMgU2bQqdxMeCFxOW3iRNh8WIfgJipgQOtwf2pp0IncTHghcTlL1Xr8tumDZx8cug08XL22dC6tXcFdmnxQuLy1yuvwH/+Y5+ufQBiZho0gGuvtefw3/8OncblOC8kLn8NHmy9tC6+OHSSeOrVC5o2tefRuSp4IXH56bPP7Pp+nz42fsRlrkUL6NnT2pkWLgydxuUwLyQuPw0bZpdn+vYNnSTerr0WNm60nm/OVcILics/X38N99wD3brBbruFThNv++0HZ55pY3HWrg2dxuUoLyQu/9x9N6xZY43sruaKi20Z3vvvD53E5SgvJC6/bNxol7VOOAEOPzx0mvxwwglw2GHWFdjXKnEV8ELi8ssTT8C8eT4AsTaJ2Nndhx/CCy+ETuNykBcSl18GD4Z994UzzgidJL906wa77uoDFF2FvJC4/PHOO/DGG9bTqL6v1Fyrtt3WesA9/zx89FHoNC7HeCFx+aOkBJo3t7EPrvZddRVst52flbiteCFx+eHLL+Hhh200drNmodPkp513hksugXHjYNmy0GlcDvFC4vLD8OFQVmaXtVzdGTgQvvsORo0KncTlEC8kLv6+/dbe2M45B4qKQqfJb4ccYjMpDx8O69eHTuNyhBcSF3/jxsHKlT4AMVuKi2HRInjoodBJXI7wQuLirazMGn+POMJW9XN1r1MnOOgg62rtAxQdXkhc3D3/PHzyiX1K9jVHsqNePRgwwNYpee210GlcDvBC4uJt8GDYfXc477zQSQpLjx6www6+VokDvJC4OPvgA5g8Gfr1swFzLnsaN7ZxJU88AbNnh07jAvNC4uJryBBbtKp379BJClPfvjaDwLBhoZO4wLyQuHhautSmNe/Rw5bTddm3xx5wwQUwejSsXh06jQvIC4mLpxEjYN067/IbWnExfPONLSTmClbWC4mItBGRl0SkVEQWisgtIlLlDHsicoiIPB/tv05E5ovI3SLiy98VonXrbOnXzp2tG6oL54gjoF07GDoUNm0KncYFktVCIiItgcmAAmcBtwC/BG5OcWgLYA5wHdAJuBHoCDwrIg3qLLDLTRMmwJIlfjaSKwYOhDlz4MknQydxgWT7TbgP0AjooqqrgRdFpDlwk4jcFm3biqq+AbyRsGmqiHwJvAD8CPh3Hed2uULVupyWT9Xhwjv7bJuapqQEunQJncYFkO1LW52BSUkFYwJWXE7M8Gctj756v89CMm0avP++fQr2AYi5oX59myzz1VdhxozQaVwA2S4kBwGzEjeo6nygNHqsSiJST0S2FZEDgb8A7wLv1EVQl6MGD4addoLu3UMncYl69oSmTX2AYoESzeJcOSKyAfiVqpYkbf8SGKeq16c4/nmsjQRgBvBzVV1ayb69gd4ArVq1ajthwoRqZV6zZg1Nmzat1rEhxClvplkbLVjAUZdcwryLL2ZugMWr8vm5rQ37Dx/O7k88wVsPPsj6nXfO6Fh/butOTfK2b99+hqoekXJHVc3aDdgADKhg+wJgUBrH/wA4GrgYO7OZATRMdVzbtm21uqZMmVLtY0OIU96Ms/bvr7rNNqoLF9ZJnlTy+rmtDZ9/riqiev31GR/qz23dqUleYLqm8d6e7UtbK4HtK9jeAliV6mBV/VRV31bV+7Ezk8OAi2o3ostJq1bZWIVu3WA37/Wdk/bdF846y8b4lJaGTuOyKNuFZBZJbSEishfQhKS2k1RUdR6wAti31tK53HX33baAVXFx6CSuKsXFsGIF3Hdf6CQui7JdSJ4DOolI4qLaXYG1wLRMflDU4L4jNr7E5bONG20+pxNPhMMOC53GVeX44+Hww60rcFlZ6DQuS7JdSEYA64DHRKRj1CB+E/BPTegSLCKficjohPt/F5G/iMg5ItJeRK4BJgGfY92HXT57/HGYP98HIMaBiP07zZoFL7wQOo3LkqwWElVdCZwE1Aeexka0D8ZGqidqEO1TbjpwPDAa+BdwLfAo8FNV/baOY7vQBg+26+9nnBE6iUtH167WjuVdgQtG1qcXUdUPgQ4p9ilKuj8BP/MoTG+/DW++aVPG169ySjaXK7bd1qaY//3vYeZMm4XA5TWf/dfltpISaN4cLr88dBKXiauugoYN7QOAy3teSFzu+uILePhhuOIKaNYs9f4ud+y0E1xyifXeWrYsdBpXx1IWEhHpISK+cpDLvttvt0ka+/cPncRVx8CB8N13MHJk6CSujqVzRjIG2A9ARDaJyFF1G8k5bMzIqFFwzjk2s6yLnzZt4JRT7APB+vWh07g6lE4hWQnsHn0v2FoiztWte++FlSt9AGLcFRfDokUwcWLoJK4OpdNrazJwn4h8jBWRsSJSaZdbVfUzFlczZWXWSHvkkXDssaHTuJro1AkOPti6Al98sU/9n6fSKSQ9gWuAA4HDsZHkX9VlKFfgnnsOPvkExo/3N564E4EBA6BPH1uv5IQTQidydSBlIVHVUuDvACLSEbhBVd+v62CugA0eDHvsAeefHzqJqw2XXALXX2//rl5I8lI6vbY2iciR0d2pQIXL4TpXKz74AF56Cfr1g222CZ3G1YbGje2M5Mkn4fPPQ6dxdSCdxvb1wHbR9z2AzFascS4TJSXQqBH07h06iatN11xjMxMMGxY6iasD6bSRfAjcJCJPYL22zhORylbMUlW9s9bSucKydKm1i1x+OeywQ+g0rjbtsYfNwTV6NNx8M7RoETqRq0XpFJL+wEhsckUFrqtiXwW8kLjqGTEC1q2zxlmXf4qL7YPC6NHwi1+ETuNqUcpLW6r6hqr+UFW3wc5Ifqqq9Sq5+ax6rnrWrYM77oDOneGgg1Lv7+KnbVto1w6GDrU1ZlzeyHSurfbYpS7nateDD8KSJT4AMd8VF8O8edbw7vJGRtPIq+o0ABE5GmgH7IAtd/uaqr5d+/FcQVC1RvZDDoGOHUOncXXprLNgn32sK/C554ZO42pJRoVERJoADwOdgE3Acmy52/oi8jxwfjTuxLn0TZ0K778Pd93lAxDzXf36cO21dmby7rs2e4GLvUwvbd0GHAN0Axqq6m5Aw+j+McBfazeeKwiDB9u04927h07isqFnT1sWoKQkdBJXSzItJOcCv1HVh1W1DEBVy1T1YeC3gA9Fdpn59FN45hm4+mobP+LyX/Pm0KsXPPQQLFgQOo2rBZkWkhbAF5U89gXQvGZxXMEZOhQaNLBC4grHtdfa5Jy33x46iasFmRaS94GrRba8kB3dvzp63Lm0NFizBsaMgQsvhN12Cx3HZdM++1jD+8iRUOrNqnGXaSG5HmtonyUifxGRYhH5M/ARcEr0uHNVGz8eioo47owzbAGrAw4InciFUFwMK1bAXntxYocOtoDZ+PGhU7lqyLT778sichjwB6w9ZDdgEfA20EVVfYyJq9r48TaPVmkp35/W/ulP9ibije2FZf5866W3YoW9FubN2zzHmr8WYiXTMxJU9UNV7aaq+6lq4+jrRV5EXFpuuGHrSxmlpbbdFZYbbrAxRIn8tRBLGRUSEfm7iLSpqzCuAMyfn9l2l7/8tZA3qtP99wMReUdE+oiIT+HpMrP33pltd/nLXwt5I6NCoqr7AB2BWcDfgEUi8kC0cqJzqQ0aZKObEzVubNtdYRk0yP7tE/lrIZaq00YyRVV7YA3t/YE9gUkiMk9EbhaRfWs7pMsjJ5xg4weaNUNFoHVrGDXKG1cLUffu9m/fujXft5T84x/+WoihjAtJOVVdo6qjgRuB14G9gN8Bn4jIkyLSupYyunwyfLj11Pnvf5n28sswd66/cRSy7t1h7lzeHTPG7i9bFjaPq5ZqFRIRKRKRG0VkNvACsAbrDtwMOBMoAibUVkiXJ7791j6Bduli3X2di5QWFUGnTjbSff360HFchjLttXWJiLwMfAZcCowB9lHVn6vqo6q6TlWfBa4FKluO1xWqe++FVatg4MDQSVwuGjgQFi+GiRNDJ3EZyvSMZBSwGOikqvuq6q2q+mUF+30C/LGiHyAibUTkJREpFZGFInKLiFS5sqKIHCkiY0Tks+i4j6MzooYZ5nehlJXBkCE2bfixx4ZO43JRp05w8ME2G3Ty+BKX0zIa2Q7srqorU+2kqouAm5O3i0hLYDK2yuJZwH7AP7CC9vsqfmTXaN+/Ap8CPwJujb766jhx8Nxz8MknNrLd1xxxFRGBAQOgTx949VXrmOFiIdMpUlIWkRT6AI2w6VRWAy+KSHPgJhG5LdpWkb+q6lcJ96eKyHfASBFprarzapjL1bWSEth9dzjfVxpwVbjkErj+ejsr8UISGxk3totIVxGZLCLzRWRp8i3F4Z2BSUkFYwJWXE6s7KCkIlLuvejrLhn9AS77PvgAJk+Gfv1gm21Cp3G5rHFjOyN58kmYPTt0GpemTBvbLwLuxRrb9wSeAp6Jfs5qYHiKH3EQNpjxe6o6HyiNHsvEsUAZ8HGGx7lsKymxRavKJ+RzrirXXGODVocODZ3EpSnTM5JfYW0TfaP7d6hqT2AfYBlWEKrSElhVwfaV0WNpEZFdgRuA+6q4HOZywdKl1i7SowfsuGPoNC4O9tgDunaFe+6B1f7fOw5EM+gdISJrgNNVdaqIbABOVtWp0WPnAINVtaiK4zcA16nqkKTtC4Cxqppy2k8R2RZrsN8TaFtZu42I9AZ6A7Rq1arthAnVG9ayZs0amjZtWq1jQ8i1vK3vvZd9xo7lnXvvpTRpDqVcy5pKnPLGKStsnbfZxx/Ttk8fPrvmGr7MsXa1uD+3mWjfvv0MVU09lENV074BC7CuvwBzgasTHusCfJPi+KXAjRVsXwP8Ko3fL1ibynLgoHRzt23bVqtrypQp1T42hJzK+913qq1aqXbuXOHDOZU1DXHKG6esqpXkbddOtahIdePGrOepSl48t2kCpmsa77GZXtqajnW5BWsf+YOIXCkil2KTOL6d4vhZJLWFiMheQBOS2k4qMRjrNnyWqqazvwtpwgRYssQHILrqGTjQptB58snQSVwKmRaSPwPliwX8AXgHuAMb4b6M6FJSFZ4DOolIs4RtXYG1wLSqDhSR32GTRF6sqq9lmNtlm6o1srdpAyefHDqNi6Ozz7apdEpKQidxKaRVSESkkYicCxwHNBCRVqq6SlXPApoC26vq0aqaqr/eCGAd8JiIdIzaMW4C/qkJjebRCPbRCfcvAv4EjAMWiMhPE247Z/D3umyZNg3+8x/7VOkDEF111K8P/fvb4MQZM0KncVVIWUiiaeFnAg9jl6/uAz4WkVMA1ObXSqtrhVrD+ElAfeBpbPT7YGwG4UQNon3KnRJ9vQx4M+l2Wjq/22VZSYn10rr44tBJXJz16gVNm9oARZez0jkjuQ0br3E80Bg4BBsMOLI6v1BtzfcOqtpIVXdT1f9T1U1J+xSp6mUJ9y9TVankNrY6OVwd+uwzeOopG1jWqFHoNC7OWrSwYjJxIixcGDqNq0Q6heQY4Peq+rqqfqeqHwFXAXuLyG51G8/F0tCh0KAB9O2bel/nUunfHzZtsinmXU5Kp5DsBiS3fXyOdcXdtdYTuXhbtcoGknXrBrv55wxXC/bbD846C0aOhNJUY55dCOn22vI5nV16Ro+2Bay8y6+rTQMHwvLlcP/9oZO4CqRbSCYlTcy4KNr+UoaTNrp8tnEjDBtms7YefnjoNC6fnHACHHaYdeLwtUpyTjrTyG+1rohzFXriCZg3z3vYuNonYmcll14KL7xgi2C5nJGykKiqFxKXnpIS2GcfOPPM0ElcPuraFX7zG3udeSHJKRmvR+Jchd59F15/Ha691gaSOVfbttvOpph//nn46KPQaVwCLySudpSUQLNm0LNn6CQun/XpYwVlyJDU+7qs8ULiam7BAnjoIbjiCmjePHQal8923tmW4x03znpxuZzghcTV3PDhUFZmA8ecq2sDBsDatTauxOUELySuZkpL7T/02WdbQ7tzde3QQ21G6dtvh/XrQ6dxeCFxNTVuHKxc6QMQXXYNHGhzbz38cOgkDi8kribKyqzRs21baNcudBpXSE49FQ480Aco5ggvJK76Jk2CWbN8zRGXffXqWVvJ9OnW7dwF5YXEVV9JiU3MeMEFoZO4QtSjB7Rs6Sso5gAvJK56Zs60qSr69YNttw2dxhWiJk2gd294/HGYMyd0moLmhcRVT0kJNGxo/5GdC6VfP7vMNXx46CQFzQuJy9xXX8F999mlhZ12Cp3GFbI994Tzz4e774ZvvgmdpmB5IXGZGzkS1q2zxk7nQhs4EFavhjFjQicpWF5IXGbWr7eBYJ06QZs2odM4B0cdBccea13RN20KnaYgeSFxmZk4ERYv9gGILrcMHAizZ8PTT4dOUpC8kLj0qdqiVQcf7OtBuNxyzjmw997eFTgQLyQufa++Cu+95wMQXe5p0MCo1nPKAAAfqUlEQVQmDZ02zV6jLqu8kLj0lZTADjvAxReHTuLc1q64wsaW+FlJ1nkhcemZPdvWZO/TBxo3Dp3Gua1tvz1cfjk8+CAsWhQ6TUHxQuLSM3SoLaF7zTWhkzhXuQEDYONGuPPO0EkKihcSl9rq1XDPPdC1K+yxR+g0zlVu//3hjDOskKxdGzpNwfBC4lIbPdpGDXuXXxcHAwfCsmXwwAOhkxQMLySuaps22WWtdu3giCNCp3EutZ/9DH78Y+uq7muVZIUXEle1J5+EuXP9bMTFh4i9XmfOhJdeCp2mIHghcVUrKYGiIluT3bm4uPBC2GUXOytxdS7rhURE2ojISyJSKiILReQWEamf4phtReRvIvKqiKwVET9fzYYZM2wQ4rXXWo8t5+Jiu+2sh+Gzz9oqnq5OZbWQiEhLYDKgwFnALcAvgZtTHNoYuAIoBd6oy4wuQUkJNG0KPXuGTuJc5q6+2hZdGzo0dJK8l+0zkj5AI6CLqr6oqiOwIvILEWle2UGqugrYQVU7AY9nJ2qBW7gQJkyAXr2gRYvQaZzL3C67QPfucO+9sGJF6DR5LduFpDMwSVVXJ2ybgBWXE6s6UNW7X2TV7bdbj63+/UMnca76Bg6E0lK4667QSfJatgvJQcAWFyxVdT52yeqgLGdxlSkttcWrzjoL9tsvdBrnqu9HP4IOHWDYMNiwIXSavNUgy7+vJbCqgu0ro8dqjYj0BnoDtGrViqlTp1br56xZs6bax4ZQG3l3e/ppDly+nPdOPJGv6/BvL8TnNlvilBXqNu+OHTvyw5df5sNbb2Vphw41/nn+3FZAVbN2AzYAAyrYvgAYlObP6Ed0pSvdW9u2bbW6pkyZUu1jQ6hx3rIy1YMPVj3sMPu+DhXcc5tFccqqWsd5N21S/cEPVI86qlZe04X03ALTNY332Gxf2loJbF/B9hZUfKbisu2FF+Cjj6C42NcccfmhXj2bzPGdd+Ctt0KnyUvZLiSzSGoLEZG9gCYktZ24QEpKYNddbYJG5/LFpZfaNPM+QLFOZLuQPAd0EpFmCdu6AmuBaVnO4pJ99BE8/zz07Wv9753LF02bwpVXwqOPwrx5odPknWwXkhHAOuAxEekYNYjfBPxTE7oEi8hnIjI68UAR6Swi5wE/ie6fF91aZy9+nhsyxEYEX3VV6CTO1b5+/exy7fDhoZPknawWElVdCZwE1AeexgYjDgZuTNq1QbRPojuBh4Fe0f2Ho1v7uspbUJYvh3Hj4JJLYOedQ6dxrvbtvTece66NKVmzJnSavJLt7r+o6odAlX3wVLUonW2uFo0caQsBDRgQOolzdae4GB56CMaOtTMUVyt89l8H69fbSPaTT4ZDDw2dxrm689OfwtFH22XcsrLQafKGFxIHDz9sc2sVF4dO4lzdKy6Gzz6Df/0rdJK84YWk0Klal98DD4ROnUKnca7unXsu7LWXdwWuRV5ICt3rr8P06Ta5XT1/ObgC0KCBtY9MmQLvvx86TV7wd45CV1ICLVtaby3nCsWVV0Ljxvb6dzXmhaSQzZkDjz9u40aaNAmdxrnsadkSLrsMHngAliwJnSb2vJAUsmHD7HJW376hkziXfQMGWI/FO+8MnST2vJAUqtWr4e674fzzYc89Q6dxLvsOOABOO80KyXffhU4Ta15ICtWYMfDNN9bI7lyhKi6GpUvhwQdDJ4k1LySFaNMmGDoUjj0WjjoqdBrnwunQAX74Q+sK7Kt5V5sXkkL09NMwe7YPQHROxM7KP/jAugO7avFCUohKSqB1azj77NBJnAvvootsolIfoFhtXkgKzXvvwbRp0L+/DcxyrtA1bAhXXw3PPAOffho6TSx5ISk0JSU2ZqRXr9T7Olcorr7aFnMbMiR0kljyQlJIFi2y3ik9e9qyo845s+uucOGF1ptx5crQaWLHC0khueMO2LgRrr02dBLncs/AgVBaauOrXEa8kBSKtWthxAg44wzYf//QaZzLPT/5CfzsZzbjw8aNodPEiheSQjF+PCxb5l1+natKcTF88QU89ljoJLHihaQQlK858uMfw4knhk7jXO467TTYbz+fFThDXkgKweTJMHOmfdoSCZ3GudxVv75N5vjmm/D226HTxIYXkkJQUgKtWkG3bqGTOJf7Lr8cWrTwAYoZ8EKS72bNgmefhWuuge22C53GudzXtClccQU88oi1l7iUvJDku6FDrYD06RM6iXPx0b+/tS0OHx46SSx4IclnK1bAvfdC9+6wyy6h0zgXH61bQ5cuMGoUfPtt6DQ5zwtJPhs1ygZY+ZojzmWuuBhWrbIPY65KXkjy1YYNdlp+0km23oJzLjPHHANHHmnzb5WVhU6T07yQ5KtHHoEFC3wAonPVJWL/fz75BJ57LnSanOaFJB+pWtfFAw6Azp1Dp3Euvs47D/bYwwcopuCFJB+9+Sa8+64NrKrn/8TOVds220C/fjao94MPQqfJWf4uk49KSmya+B49QidxLv5694ZGjXytkipkvZCISBsReUlESkVkoYjcIiL10ziuhYiMEZGVIvK1iIwXkR2zkTlOtlu8GB591F78TZuGjuNc/O2wA1x6Kdx/PyxdGjpNTspqIRGRlsBkQIGzgFuAXwI3p3H4ROBnwBXAZcCRwBN1kTPO9njiCWsk7NcvdBTn8seAAbBunS3F4LaS7TOSPkAjoIuqvqiqI7Ai8gsRaV7ZQSJyDNAJuFRVH1XVx4GLgXYi0rFOko4fD0VFnNihAxQV2f1cNn487L03e02caCPZX3kldCLn8sdBB8GPfgQ33xyv94QsvYdlu5B0Biap6uqEbROw4lLV/OadgSWq+v27o6q+A8yJHqtd48fbpaF58xBVmDfP7ufqC6c87xdfIGCDEHM5r3NxM348fPwxlJXF6z0hS+9hDerkp1buIODlxA2qOl9ESqPHnq7iuFkVbP8oeqx23XCDvRknKi2Fyy6DP/2p1n9djX3yydYrupWW2t/RvXuYTM7lkxtusEtbifw94XvZLiQtgVUVbF8ZPVad4/at6AAR6Q30BmjVqhVTp05NO+SJ8+dT0aodunEjX+28c9o/J1t2/vDDivPOn8+0DP7ubFuzZk1G/y6hxSlvnLJC7uf194QUVDVrN2ADMKCC7QuAQVUc9yLweAXbxwOvp/q9bdu21Yy0bq1qw/q2vLVundnPyZa45Y1MmTIldISMxClvnLKqxiBv3P6P1VJeYLqm8d6e7TaSlcD2FWxvQcVnHKmO2z7FcdUzaBA0brzltsaNbXsuilte5+Imbv/Hspw324VkFkltGiKyF9CEittAKj0uUlnbSc10724z57ZujYrYlNKjRuVue0Pc8joXN3H7P5blvNkuJM8BnUSkWcK2rsBaYFqK43YVkXblG0TkCKx9pG5mU+veHebOZdrLL8Pcubn7gikXt7zOxU3c/o9lMW+2C8kIYB3wmIh0jBrEbwL+qQldgkXkMxEZXX5fVd8EJgHjRKSLiJyNtY+8pqqTs/oXOOec20JWC4mqrgROAupjXX1vBgYDNybt2iDaJ1E37KzlHmAcMAM4py7zOuecSy3b3X9R1Q+BDin2Kapg2yrg8ujmnHMuR/jsv84552rEC4lzzrkaERtzkt9E5CtgXjUP3wlYVotx6lqc8sYpK8Qrb5yyQrzyxikr1Cxva1VNOXS/IApJTYjIdFU9InSOdMUpb5yyQrzyxikrxCtvnLJCdvL6pS3nnHM14oXEOedcjXghSW1U6AAZilPeOGWFeOWNU1aIV944ZYUs5PU2EuecczXiZyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOOedqJOuz/7raEa0s+XNAgIdVdbmI7AlcB+wHzAVGqeoH4VKCiPwGeDZ0jnSJSCOggap+k7BtZ6Af0AYoA/4D3KGqX4dJ6Vxu8e6/ERERbH2T04CDgR2ATcAS4C1grKp+Ei7hZiJyFPAC0BTYCKwAOgHPYplnAocCuwIdVfXVQFERkTJAsSWRHwAmqupnofKkIiLPAp+q6oDo/jHYKpxl2Bo4ArQF1gMdVHVmwKyHAY1U9Y2EbacCv2Nz0XsfuClxn1wR/Z87Azgce41Mxz505PSbkog0x+au6qCqr4XOA99n6gBsC/xLVb+NPgD1xVaSnY19sFxYJ78/x//NsiJ6wp/F3iCWYKs47oG9uJ/D/iEOBG5V1VtD5SwnIi9iZ5PnAN9ii4Odjb3RnaeqG0RkO+AJoKGqtg+YtQz4K/BD4GQs97+xovKQqi4Ila0iIrIM6KWqT0b338Ke47PLz1JEpAXwFPCdqnYKmPUt4GlVHRTd7wncDUwBXsaK3knA8cC55X9ToKxvYM/rR9H9ltiHobbAmmi3ptiHtk6JZ4QhiMg1VTzcCPgbMAT4FEBV78hGroqIyP7AS8Be0aY5wCnAi8D2wOfY+9daoK2qflnrIVS14G/Ag9gL4ocJ23YHngceje6fiL3ge+ZA3uVA54T7u2CfPk9J2u80YFngrGXAUdH3LYHe0Yt+Y3SbGm3bMfTzGmUsBU5IuL8++XlNeG6/DZx1dWI24DNgWAX7jQDez5XXQXR/NHYmfWrCtlOBlcDgHHgdlGFn92WV3BIf2xQ460PYmef+2JWU+6L3szeAZtE+O0X7jKyLDN7YbjoDv9WE6/hqp4B9gLNFZDdVnQb8CRgQKGMijW6J90naVtH9oFR1paqOUtWTgD2BX2Kn4iOAhSLyr6ABzf+AxDO4Jdh/zmQ7YkUnpLKk+62BRyrY7xHsE2kuORO4RVWfL98QfT8I6BIs1WZPAUuBXkB9Va1XfsNeDwL8LNqWvCx4trUDBqnqZ6q6Avg91k76d43O7FR1GVDClq/tWuOFxAj2CSPZpuixFtH9t4EDshWqCjOA60SkmYjUA64HFgBXi0h9ABFpAFyDvTHmHFVdrKpDVPVYYB/gRuwsMLS/AL8VkZ7RczgI+JuInCwi24rIdlE7xJ+xT4IhvQp0T7g/E6houvAjsddHLtkeaxNJNgNr2wtKVc8GLgV+BbwrIsclPhwmVaVaAosT7pf/WyevwTQb+wBX67zXlpkM/FFE/quqs+H7a7hDsX+g8kb2pkAu9NS5Abv+uQK7PFSKNbQ9AnwqIuWN7btjlwtymqrOw97A/5IDWR4Tkf7Yp7fBwMfYB4nyT86Kfbh4CnuTCel64PXow8QwrJH9XhHZAbtkCNZGMhD4bZCEWzpXRMoL3UqgogWTdsIu2QWnqi+IyI+w5+9fIvI81isyaPtNBZZiZ6PlNgEjsbPpRLtQR9m9sR2Ius0+j53+z8Oui++DNbpfqKrPRfvdhq0Y1jVU1nJR5tOxDwOPquoiEdkV+DWb/467VfXfAWMiIjcCd2kd9RapKyKyI9AVOAr7hFwPK9wfAc+o6oyA8b4nIj8B7gSOZnORI+H7ldglpCFhEpqo00WysaraM2m/kUAbVT0+O8nSE/3fug277DYSKy7tVfWVoMEAEXkCWJH8XFaw3zDgYFXtWOsZvJCY6JLQBcCPgYZYw+UD0TVH53KaiByMFZPkoveGqm4ImS0TInIl8Lmqvhw6S0Wi7uCDsQ9rp2kOdKsWkVZAY1Wdk2K/X2CdLl6q9QxeSPKPiNRX1YrafHKGiDTEGgTLgM9y8c0uaiPZl4QxRao6P2wq53KPN7YnEZFDRORcEblCRHpF3x8SOlcyEekiIk+IyLMicka0rauIzAXWi8i86NNdUCJycTS+ofx+AxH5C/aJ+b9YZ4AVIpIL1/ABEJG2IvIUdj35I+B1bHzDHBFZICK3iEjjoCHziERC56iIiDRK/rcWkZ9E7wttQ+XKOSH7P+fSDeiJtStU1Hd8EzblyOWhc0ZZL4hyvQY8iTW2X4m17YzGRrM+GOXuFDjrh8DVCff/EeX9P+A4rOviTdhgqetz4Lk9BWsbm471zLoJG5S6Psr8S6x31H+AljmQ93RsXM4HwEQSxsAk7HM04cc6nEI0piFh29nY4NSNwIboOT8t9HMaZWsBPB7l2gjcBdQH7k16X3gd2Cl03jT/pnPr6nUQ/I/LhRvQP3rB3I6NAt4petHUj75vBwyP3mD65kDed4ERCfe7R9n+kbTfGGBy4KylwIkJ95cCAyrY7zpgXg48tzOAeyt5jczFzuIbRm+AdwTOenLCm9nwKPumqFhLwn65UEg2seWAxHOiN+M3on/766LvN1LBANAAeYdi06D0B3pEHx4eBb6IiuLO2PizBcCdofOm+TfVWSHxNhJARGZjb8y3pdjv10AfVd03O8kqzbEa6KKqk6P7LbDeOR01oZEyuuQ1UlWDjc8QkUVAP1V9NLq/DjtLmpq038nAU6raKPspt8ixFjhTVV9M2t4Sm1HgEFX9SER6AH9V1d1C5IwyvYbNC3Z5wrae2Jvgi1iPw+9E5Gis0T3YwLmo19ZPVfWd6P6/gQWqekbSfs8CTVT1xAAxE3PMAf6kqndF9w/DCvXlqnpvwn5XYmfS+4RJCiJyT5q7tsYGUdb668DbSMyuwDtp7PcOOTBYCuvamfhiKJ+raFXSfmuwgV8hPYUNntw2uj8ZuLCC/S7EPvWFthTruZfsx9jzXj6OaB6bB6qGcihwf+IGVb0Hm87np8DL0ZiSXHQo1o022ShsEsfQdmHz+DGI5tTC5q1K9BkVj4fJpkuxs6Qfpri1ruwH1JQPSDT/Ba4UkVdUtaL+7uUzlV4Z7RvaPGx210kAqrop6pb4UdJ++7LliNcQfoeNwP6fiNwNPA38VUQOZfOguQ7AYdhMsKGNAm4VkSZY28N6bGT4DcAU3TweZl8gdA+u74AmyRtVdUY0EnsSdrnopiznqkzi5Y+v2fwBKNG35MYH3DlYQZ4W3T8euxR3LNY2We44wr8OPgXeUdUeVe0kIudh7Wi1zguJ+SU2IPFDEXkMm/J8FfbC3x44CLumuye5MVL8MZKmOlDVtyvY7yK2fNFnnaquEJGfYm/Ev8A+6QEcE93WY5dhjlfVd8Ok3ExVB0WXYX6LTdsC9jp4EBuEVm4DNvdaSP/FrtM/lfyAqs6OismzwNgs56rMJBHZGH3fAvgJmz9MlDsIWJTNUJUYAQwRkR9iRe8C7EPRH0SkKTYB4uFAMRB6RvC3sAKXSuKA1VrlbSQREdkPGxV+KpunYy73BdZz52+qmnxqm7NEZG9glarmxJQTACJSxJaD5j7X3BxDsg02zqUhMDuXnsNyInIVNk3KYVrJwNnozOpxrP0s2Cf9aIaDZJ+q6gNJ+02NtudC1/VrsUuu22CzRIwQkQuxNqjySTtHAb8J+RqOuiEfp6pDU+y3E9bGN62q/aqVwQvJ1qJ+4+VtC6tUNfQsr865HBFd5t5JVb8KnSVXeCHJM9Fp97+B7rlwqUhiuHStxGQZY+dyhReSBNEbyC7Ax6q6VUNgdGr4c1Udl/VwW+b4eRUPN8Ea1H5LNIW8qj6bjVwVkRgtXQvxWsY4XdE8XOer6i2BcwRdDramojORxKWBZ2B/R/A3UbFZlc/F/j+NVdVZIvJj4GY2f/i5XRPWf6lVoQfJ5MIN2A54GHuj2IQ1pI4GWiTtF3xgV5QjTqu3LQPOSrj/FtYbqlnCthZY75hJOfDcvogtVbs9dm18OPAlNoPANgmvl+ewXlzBX79p/E11NhAtgwz7Y70Ny1+Xn2NvcLOxYv0uNn38EmDPHHjO3sBmyi2/3zLKWBblXM3mAZXNQuWMsnXCPogtjp7X1dgCViuxwaq3R//vNmFLRtd+htD/YLlwA/6A9dK6ElsYaED0gv4U+EHCfrlSSGZgPVsux/qGJ95+FL3ALyjfFjhrbJaujXLEaRnjvdO89Qn9uiUHloPNMG9slgaOisXD2EqOYB0wVgKjk/a7D3irTjKE/gfLhRvW3bdf0rZdgVeAr4Bjom25UkgEW+d8KTZtwz4Jj7WI/hNsNedSoKzvADcm3P8C6FbBfj2Ar3Ig77KkN4udo+fz5KT9fp4DhaT87DPVLRfOTBcCFyTcbx3l6pK03+XAJznwOkguJF8BAyvYL/jUPlj35I4J91tG+Tsk7XcK1nmo1jP4OBKzF0kDDVV1sYichFXxySLSndzo347aq2KUiDwE/BH4r4gMj77PNX8BxovIF8A4Ni9duxy7nCXYaXguLF0Lm5cxfh0bHJe4jPHLaoM/c2UZ42+Al4G7U+zXDuvaHlLw5WBrKJeXBl7LlgNTy79Pnm6oMTaItdZ5ITELgR9gZyDfU+sb3k1ESrBTx6CN7MlUdRXQT0RGYX3bPwX+Sg6tKa3xWroW4rWM8TtYO96/qtopWvsltODLwVZDXJYGfh0bKPlplOXv2Kzbv4lm6/gmmo/v11jhq3Xea4vvJz3bV1V/VsU+v8M+TasGnPyuKiLSDVsOdE9scrbgy4CWk5gsXQuxWsb4/4Deqpo8gDZ5vxOAm1W1fXaSVZgh+HKwmZAYLQ0sIvtjc9iVvw7mYmf5j2AzBcwDirAPRu1V9T+1nsELyfdd57oCf1HV5VXsdxF2rfzyyvYJLbrs0gRYozm+SqIrHJIDy8HWBcmRpYGj8WPHYT0NX1LVtdHA6ivY/OHnAVX9sk5+vxcS55xzNZELs2y6OiIid4nI6NA50hGnrBC/vM7VJW9sz4CI3AXUU9VeobOkqT3x+bAQp6wQo7wiMhm7+nBS6CypxCkrxCtvXWb1QpKZ2Lx5AKjq/qEzpCtOWSF2eYX4vG7jlBXilbfOsnobSR6Lun3uoqqhF95JKU5ZIX55natLcamkOUFEGkZrfMTFadhKb3EQp6wQo7wisk1cXrdxygrxyluXWb2QZCY2bx6uMIhIXxH5XES+EZG3ReSSCnY7nBx43cYpK8Qrb+is3kYSQyKSbp/1ikbiZlWcskK88kYDUIdhywC/h40jGCsiZwGXqOrakPkSxSkrxCtvLmT1NhIyfvNoE3pku9i61x9j0yBUZQ/g6JB545QV4pVXRKYDL6vqrxO2nQSMx0Y3n6a2KNfRwBueNX1xypsLWb2QEK83DwAR+Q+2+FbXFPudB0wM/CKPTdYoR2zyisg3wBmqOjVpexG2Xkp9oDM2H1ToN7vYZIV45c2FrN5GYv4H/E9Vz6/qBvwzdNDI28BP09ivfELEkOKUFeKV92vszWELqjoXOBabEv8N4MjsxqpQnLJCvPIGz+pnJHw/8dqpqto6xX7nYmt4By3AIrIfcIiqPpViv0ZYF9XkqbqzJk5ZoxyxySsiTwLfqOrFlTzeCJu4rzOBJxuNU9YoT2zy5kJWLyTE683DuXIicj5QDJyuqisq2ac+cCc22eg+2cyXlCM2WaMsscmbC1m9kDjnnKsRbyNxzjlXI15InHPO1YgXEldQROQyEZkRjQBeKSLviUid9MYTkQNE5CYR2T6NfW8SEU24LRSRR6P2u1THXhYd07R2kjuXGS8krmCILZd8NzAJ6AL0AJ4EzqyjX3kAcCOQspBEvgaOiW7XAT8BXhKRJimO+1d0TGk1czpXIz5Fiisk/YCRqnp9wranReTmUIGSbFTVt6Lv3xKR+cCrwM+Bh5N3jnri1FfVr4CvshfTuS35GYkrJNsDi5M3akLXRREpii4TXSQi90WXwJaKyI3Jx4lIh2iCvO9EZImI3FF+eUlEfgY8He06J/qZczPMOyP6WhT9zLEiMl1EzhaRmcB3wNEVXdoSkUYicpuIzBORdSIyR0T+nJT/ChGZGT0+T0R+jXPV4GckrpD8G+gffdJ/RlWXV7Hv34BngPOAE4AbRWSZqt4OICJtgOeBF4Fzgb2AvwD7AqdGv+s64O/YZbRFwLoM8xZFXxcnbbsNuAVYgs3mukU7iogIdsnuGOBWrCDtARyfsM+vgD9FP2sq0Ba4VURKVXV4hjldoVNVv/mtIG7Aj4DZ2PQmZcBM7A25ecI+RdHjLyQdexewAFtqGWAC8Cl2aal8nwuiY4+J7p8e3S9KI9tN2FQWDaLbAcAUYDWwW7TP2Ojn/STp2Mui7U2j+52i+2dW8ruaA2uAG5O234IVrfqp8vrNb4k3v7TlCoaq/hc4GGtcvwObK+v/gOkV9Hh6POn+Y8DuwJ7R/aOAx1V1U8I+jwIbgXbVjLgjsCG6fYyd3XRV1UUJ+yxQ1f+k+DkdgBVa+UwNxwBNgIdFpEH5DXgZaMXmv9G5tPilLVdQVHUd1nbxNICI9MJ6cvUChiTsujTp0PL7uwHzo69Lkn72JhFZDuxQzXhfAx2xs4nFwEJVTZ56YslWR21tR+xSWmXKJ/ibWcnjewE+DZBLmxcSV9BUdbSI3AYclPTQLpXcX5TwdYt9ol5UOwIVzneUho2qOj3FPunMabQcK3SVKc93OhUXpo/T+B3Ofc8vbbmCISLJxQER2RlowdZvqOck3S9vMP8yuv82cE5UPBL3aQC8Ft1fH31tWIPY1fESsIOInF7J428Ca4HdVXV6BbdvshfV5QM/I3GF5INoyu0XsEtVrbGeVaXAvUn7HhItL/Ao1murFzBAVcuix/+ILWv6hIjcibUr/BWYpKpvRvuUf7K/SkQmAKWq+kHd/GlbeBEbdPmAiNyC9SDbDThBVa9S1VUichMwRERaA69gHyoPANqranIRda5KXkhcIbkFOAsYirVjLMYW/OmqqnOS9v01dunnUWy8xq3A991iVXWmiHTGutA+hvWuejA6rnyfeSJyHXAt0B87mymqiz8skaqqiJwTZR6ILRG9EHggYZ/bRGQhNv34L7G/8RNgYl3nc/nHp5F3LkG0POkcbOnSZ8KmcS4evI3EOedcjXghcc45VyN+acs551yN+BmJc865GvFC4pxzrka8kDjnnKsRLyTOOedqxAuJc865Gvl/T2D1lNDCAdoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XeYVPX1x/H3AVQ6YsPOWmJBUxRLVNSAKBI7FlAUFRRRQNjENM0vtpBiCktRAUUQRcHeoqIoYC8QYwyKjaZUaSIu0vb8/jh3ZRh2d2a2zHfuzHk9zzy7c+fe3c8Ow5y599tEVXHOOeeqq17oAM455+LNC4lzzrka8ULinHOuRryQOOecqxEvJM4552rEC4lzzrka8ULicpaI3CQimnBbKCKPish+ATMdJyL/FpHvRESjbU1EZIKILI9yXlbJsWOT/p7y291Z/SM25+ktImdXsH2uiPw9RCYXTw1CB3Auha+BU6Pv9wVuBV4SkUNU9dsAeUYCS4FOwLpo29XAGUAPYAHweRXHzwIuT9q2tJYzpqs38D/giaTt5wDLsx/HxZUXEpfrNqrqW9H3b4nIfOBV4OfAwwHyHASMUtVpSds+VtVH0zj+24S/Jyep6nuhM7h48UtbLm5mRF+LAETkGBF5Krrs9a2I/EdEupfvLCI7RJehLk38IWLmiMg/E7Z1EJG3o/2XiMgdItI0euxn0aWs+sCQ6JLUWBGZC/QCDiu/VFXdP6z8d4jIoUnbp4rIIwn3x4rIdBE5WUT+G/3dr4nIIUnH1ReR34nIJyKyTkS+FJGx5T8TaAtcmnCJ7bLosa0ubYnIBSLyQfRzvhCRQSLSIOHxy6Kf8UMReTHKNEtEulT3+XDx4YXExU1R9HVx9LU18DpwBXZ56VFgjIhcCKCqK4DH2fpy0s+inzUGQETaAM8Dy4BzgRuBi4DyN/B/A8dE3/8j+v5W7DLQs9glq2MS9qmUiDRIvKX1V29tb+BvwCDgQmAX4CERkYR9RgI3Aw8BpwO/BJpEj10TZX42Ife/Ksl7CjARew7OAoYB1wHDK9j9AeAp7Hn5FJggIntW8290MeGXtlzOS3iz3Re4A/gGmAygqhMS9hPgFWBP4Ergweih0cALIrKvqs6Otl0OzFDVD6L7fwDmAWeq6qbo560AJorIMar6JnZpDWBu4uUpEfkKaJXmJau2wIakv+8HqvpZGscm2gE4TlU/jX5GPaxgHgjMEpGDsDOlAao6NOG4iQCq+qGIfAt8lUbuW4Cpqlp+Vvd89Dz8WUT+qKpfJuw7WFXviTLNAJZgRWxEhn+fixE/I3G5bkfsjXcD8DFWTLqq6iIAEWkpIkNFZF7Cfr2BAxJ+xktYkbg0OqYZ0IXobCRyFPB4eRGJPApsBNrV4t/zEXBk0u2LavycueVFJPJh9LX803/76OvYavzs74lIfeBwtm6Pmoi9fySfgb1Q/o2qLsc6EvgZSZ7zMxKX674GOgKKXc5aqFtOWT0W+Cl2melDYDXWi+qs8h1UVUVkDNBTRG4CLsBe+w8k/JzdsE/PJBy3SUSWY5/+a0upqk6vhZ+zKun++uhrw+jrjljD/uoa/p6dgG1Iem4S7ic/NxXlaojLa15IXK7bWNkbr4g0BE4D+qnqiITtFZ1pj8HaPdoDlwFPqOrKhMcXYe0MiT+/PvaGvKImf0AGvou+bpu0fQes7SYTy4EmItK8hsVkGXaWt0vS9lbR12w9Ny6H+aUtF2fbYb2oysdzlF+2OjN5R1X9ArvscjN2qWpM0i5vA+dExaNcF+zD1mu1G7tS5W0NB5dvEJG9sHaPTL0cfe1RxT4pzxaiS30zgPOTHroAKAPerEY2l2f8jMTFlqp+LSLvAn8QkdXYG9tvscthzSs4ZDR2rf9L4MWkx/4IvAc8ISJ3Ytf1/wpMihra65yqfhn9PbeKSCn2Qe96qvGpX1U/FpFRwD9EZBesE8L2wHmq2i3abRbQSUQ6YWcwc6J2jWQ3ApOiy4MTgB9ilxLvSmpodwXKz0hc3F0EzAHGAUOwBvJxlez7DNZ4fq+qliU+oKozgc7YJZzHsMLyIHBe3cSu1EXAfOB+4E9Yj6mPq/mzrsHOwC7GuvmWAGsTHv8j1vj/EPAu1n16K6r6AtANOAJ4GhiIdYHuV81cLs+IL7XrCoWI/BwrJgdUo7utc64SXkhc3hOR3YEfYAPp5qvq6YEjOZdX/NKWKwS9sbEk3wH9A2dxLu/4GYlzzrka8TMS55xzNVIQ3X932mknLSoqqtax3377LU2aNEm9Y46IU944ZYV45Y1TVohX3jhlhZrlnTFjxjJV3Tnljqqa97e2bdtqdU2ZMqXax4YQp7xxyqoar7xxyqoar7xxyqpas7zAdE3jPdYvbTnnnKsRLyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOpTJ+PBQVcWKHDlBUZPdzVZyyurxREONInKu28eOhd28oLUUA5s2z+wDdu4dMtrU4ZXV5xQuJc1W54QYoLd1yW2kp9O0LH1d3dvc6MnRoxVlvuMELiatTXkicq8r8+RVv//pr+OMfs5sllcrmzavsb3CulngbiXNV2Xvvire3bg1lZbl1a906s7/BuVrihcS5qlx33dbbGjeGQYOynyWVQYMsW6JGjXIzq8srXkicq8rChfZ1991REfvUP2pUbrY5dO9u2Vq35vuLXGeckZtZXV7xQuJcZUpLYeRIOOccWLCAaS+/DHPn5vYbc/fuMHcu06ZMgZNOgtdfhw0bQqdyec4LiXOVue8+WLECiotDJ6me4mJYsAAeeSR0EpfnvJA4V5GyMigpgbZtoV270Gmqp3NnOOAAGDy48h5dztUCLyTOVeSFF2DWLBg4EERCp6meevVgwAB49114443QaVwe80LiXEUGD4bddoMLLgidpGYuvRRatrSzK+fqiBcS55LNnGlnJP36wbbbhk5TM02a2DQpjz1mHQWcqwNeSJxLVlICDRtunqcq7vr2tctzw4aFTuLylBcS5xJ99ZX11urRA3baKXSa2rHXXnD++XD33fDNN6HTuDzkhcS5RCNHwrp11kidT4qLYfVqGDMmdBKXh7yQOFdu3Tq4/Xbo1AnatAmdpnYddRQceywMGQKbNoVO4/KMFxLnyj30ECxeHN8BiKkMHAizZ8Mzz4RO4vKMFxLnwAbsDR4MBx8Mp5wSOk3dOOccmyts8ODQSVye8ULiHMArr8B778V7AGIqDRpA//4wbZr9rc7VEi8kzoF1+d1xR7jkktBJ6lavXja2xAcoulrkhcS5zz+HJ5+EPn1s/Y58tv320LMnPPggLFoUOo3LE15InBs61C77XHNN6CTZce21sHEj3HFH6CQuT2S9kIhIGxF5SURKRWShiNwiIvUzOL6eiMwQERWR0+syqysAX38N99wDXbvC7ruHTpMd++9vC16NGAFr14ZO4/JAVguJiLQEJgMKnAXcAvwSuDmDH3MFsEftp3MFafRoWLPGGtkLSXExLFsG48eHTuLyQLbPSPoAjYAuqvqiqo7AisgvRKR5qoOjQjQIuKFuY7qCsHGjXdY6/nhbd6SQnHgi/OQn1ujua5W4Gsp2IekMTFLV1QnbJmDF5cQ0jr8VeB14qQ6yuULz5JMwb17+DkCsioidhc2cCS++GDqNi7lsF5KDgFmJG1R1PlAaPVYpEfkRcDlwXZ2lc4Vl8GDYZx8488zQScLo1g1atfKuwK7GRLN4WisiG4BfqWpJ0vYvgXGqen0Vx04D3lbVX4tIETAHOENVK5zvQUR6A70BWrVq1XbChAnVyrxmzRqaNm1arWNDiFPekFmbzZpF26uv5rO+ffnyvPPSOiYfn9vW48axz5gxvDN2LKWtW2chWcXy8bnNFTXJ2759+xmqekTKHVU1azdgAzCggu0LgEFVHNcNWAw0j+4XYQ32p6fze9u2bavVNWXKlGofG0Kc8gbNetFFqs2aqX79ddqH5OVzu2SJ6nbbqV51VZ3mSSUvn9scUZO8wHRN4z0225e2VgLbV7C9BbCqogNEZBvgb8BfgXoisj1Q3jDfRESa1UVQl8cWLLAJGq+4Apqn7OOR33bZBS6+GMaNg+XLQ6dxMZXtQjKLpLYQEdkLaEJS20mCJsCewD+xQrQSeD96bALgkwa5zAwfDmVlNu+Us0b3tWth1KjQSVxMZbuQPAd0SjqL6AqsBaZVcswaoH3S7cLoseuB7nUT1eWl0lJbvOrss62h3cGhh0LHjlZg168PncbFULYLyQhgHfCYiHSMGsRvAv6pCV2CReQzERkNoKobVXVq4g14K9r1A1V9O7t/gou1ceNg5crC7PJbleJiWLgQHnkkdBIXQ1ktJKq6EjgJqA88jQ1GHAzcmLRrg2gf52pPWZl1dW3bFo47LnSa3HLqqXDggdYl2gcougw1yPYvVNUPgQ4p9ilK8fhcIE8XjXB1ZtIk+PhjuP/+/F1zpLrq1bN16q+5Bl5/Hdq1C53IxYjP/usKx+DBNjHj+eeHTpKbevSAli19gKLLmBcSVxj+9z+bCqRvX9h229BpclOTJnDVVfD44zBnTug0Lka8kLjCMGSILVp11VWhk+S2vn3tMtewYaGTuBjxQuLy31dfwX332aWbHXcMnSa37bmnXfq7+25YvTr1/s7hhcQVghEjYN06a0x2qRUXwzffwJgxoZO4mPBC4vLbunW2pOypp8LBB4dOEw9HHmndo4cMgU2bQqdxMeCFxOW3iRNh8WIfgJipgQOtwf2pp0IncTHghcTlL1Xr8tumDZx8cug08XL22dC6tXcFdmnxQuLy1yuvwH/+Y5+ufQBiZho0gGuvtefw3/8OncblOC8kLn8NHmy9tC6+OHSSeOrVC5o2tefRuSp4IXH56bPP7Pp+nz42fsRlrkUL6NnT2pkWLgydxuUwLyQuPw0bZpdn+vYNnSTerr0WNm60nm/OVcILics/X38N99wD3brBbruFThNv++0HZ55pY3HWrg2dxuUoLyQu/9x9N6xZY43sruaKi20Z3vvvD53E5SgvJC6/bNxol7VOOAEOPzx0mvxwwglw2GHWFdjXKnEV8ELi8ssTT8C8eT4AsTaJ2Nndhx/CCy+ETuNykBcSl18GD4Z994UzzgidJL906wa77uoDFF2FvJC4/PHOO/DGG9bTqL6v1Fyrtt3WesA9/zx89FHoNC7HeCFx+aOkBJo3t7EPrvZddRVst52flbiteCFx+eHLL+Hhh200drNmodPkp513hksugXHjYNmy0GlcDvFC4vLD8OFQVmaXtVzdGTgQvvsORo0KncTlEC8kLv6+/dbe2M45B4qKQqfJb4ccYjMpDx8O69eHTuNyhBcSF3/jxsHKlT4AMVuKi2HRInjoodBJXI7wQuLirazMGn+POMJW9XN1r1MnOOgg62rtAxQdXkhc3D3/PHzyiX1K9jVHsqNePRgwwNYpee210GlcDvBC4uJt8GDYfXc477zQSQpLjx6www6+VokDvJC4OPvgA5g8Gfr1swFzLnsaN7ZxJU88AbNnh07jAvNC4uJryBBbtKp379BJClPfvjaDwLBhoZO4wLyQuHhautSmNe/Rw5bTddm3xx5wwQUwejSsXh06jQvIC4mLpxEjYN067/IbWnExfPONLSTmClbWC4mItBGRl0SkVEQWisgtIlLlDHsicoiIPB/tv05E5ovI3SLiy98VonXrbOnXzp2tG6oL54gjoF07GDoUNm0KncYFktVCIiItgcmAAmcBtwC/BG5OcWgLYA5wHdAJuBHoCDwrIg3qLLDLTRMmwJIlfjaSKwYOhDlz4MknQydxgWT7TbgP0AjooqqrgRdFpDlwk4jcFm3biqq+AbyRsGmqiHwJvAD8CPh3Hed2uULVupyWT9Xhwjv7bJuapqQEunQJncYFkO1LW52BSUkFYwJWXE7M8Gctj756v89CMm0avP++fQr2AYi5oX59myzz1VdhxozQaVwA2S4kBwGzEjeo6nygNHqsSiJST0S2FZEDgb8A7wLv1EVQl6MGD4addoLu3UMncYl69oSmTX2AYoESzeJcOSKyAfiVqpYkbf8SGKeq16c4/nmsjQRgBvBzVV1ayb69gd4ArVq1ajthwoRqZV6zZg1Nmzat1rEhxClvplkbLVjAUZdcwryLL2ZugMWr8vm5rQ37Dx/O7k88wVsPPsj6nXfO6Fh/butOTfK2b99+hqoekXJHVc3aDdgADKhg+wJgUBrH/wA4GrgYO7OZATRMdVzbtm21uqZMmVLtY0OIU96Ms/bvr7rNNqoLF9ZJnlTy+rmtDZ9/riqiev31GR/qz23dqUleYLqm8d6e7UtbK4HtK9jeAliV6mBV/VRV31bV+7Ezk8OAi2o3ostJq1bZWIVu3WA37/Wdk/bdF846y8b4lJaGTuOyKNuFZBZJbSEishfQhKS2k1RUdR6wAti31tK53HX33baAVXFx6CSuKsXFsGIF3Hdf6CQui7JdSJ4DOolI4qLaXYG1wLRMflDU4L4jNr7E5bONG20+pxNPhMMOC53GVeX44+Hww60rcFlZ6DQuS7JdSEYA64DHRKRj1CB+E/BPTegSLCKficjohPt/F5G/iMg5ItJeRK4BJgGfY92HXT57/HGYP98HIMaBiP07zZoFL7wQOo3LkqwWElVdCZwE1Aeexka0D8ZGqidqEO1TbjpwPDAa+BdwLfAo8FNV/baOY7vQBg+26+9nnBE6iUtH167WjuVdgQtG1qcXUdUPgQ4p9ilKuj8BP/MoTG+/DW++aVPG169ySjaXK7bd1qaY//3vYeZMm4XA5TWf/dfltpISaN4cLr88dBKXiauugoYN7QOAy3teSFzu+uILePhhuOIKaNYs9f4ud+y0E1xyifXeWrYsdBpXx1IWEhHpISK+cpDLvttvt0ka+/cPncRVx8CB8N13MHJk6CSujqVzRjIG2A9ARDaJyFF1G8k5bMzIqFFwzjk2s6yLnzZt4JRT7APB+vWh07g6lE4hWQnsHn0v2FoiztWte++FlSt9AGLcFRfDokUwcWLoJK4OpdNrazJwn4h8jBWRsSJSaZdbVfUzFlczZWXWSHvkkXDssaHTuJro1AkOPti6Al98sU/9n6fSKSQ9gWuAA4HDsZHkX9VlKFfgnnsOPvkExo/3N564E4EBA6BPH1uv5IQTQidydSBlIVHVUuDvACLSEbhBVd+v62CugA0eDHvsAeefHzqJqw2XXALXX2//rl5I8lI6vbY2iciR0d2pQIXL4TpXKz74AF56Cfr1g222CZ3G1YbGje2M5Mkn4fPPQ6dxdSCdxvb1wHbR9z2AzFascS4TJSXQqBH07h06iatN11xjMxMMGxY6iasD6bSRfAjcJCJPYL22zhORylbMUlW9s9bSucKydKm1i1x+OeywQ+g0rjbtsYfNwTV6NNx8M7RoETqRq0XpFJL+wEhsckUFrqtiXwW8kLjqGTEC1q2zxlmXf4qL7YPC6NHwi1+ETuNqUcpLW6r6hqr+UFW3wc5Ifqqq9Sq5+ax6rnrWrYM77oDOneGgg1Lv7+KnbVto1w6GDrU1ZlzeyHSurfbYpS7nateDD8KSJT4AMd8VF8O8edbw7vJGRtPIq+o0ABE5GmgH7IAtd/uaqr5d+/FcQVC1RvZDDoGOHUOncXXprLNgn32sK/C554ZO42pJRoVERJoADwOdgE3Acmy52/oi8jxwfjTuxLn0TZ0K778Pd93lAxDzXf36cO21dmby7rs2e4GLvUwvbd0GHAN0Axqq6m5Aw+j+McBfazeeKwiDB9u04927h07isqFnT1sWoKQkdBJXSzItJOcCv1HVh1W1DEBVy1T1YeC3gA9Fdpn59FN45hm4+mobP+LyX/Pm0KsXPPQQLFgQOo2rBZkWkhbAF5U89gXQvGZxXMEZOhQaNLBC4grHtdfa5Jy33x46iasFmRaS94GrRba8kB3dvzp63Lm0NFizBsaMgQsvhN12Cx3HZdM++1jD+8iRUOrNqnGXaSG5HmtonyUifxGRYhH5M/ARcEr0uHNVGz8eioo47owzbAGrAw4InciFUFwMK1bAXntxYocOtoDZ+PGhU7lqyLT778sichjwB6w9ZDdgEfA20EVVfYyJq9r48TaPVmkp35/W/ulP9ibije2FZf5866W3YoW9FubN2zzHmr8WYiXTMxJU9UNV7aaq+6lq4+jrRV5EXFpuuGHrSxmlpbbdFZYbbrAxRIn8tRBLGRUSEfm7iLSpqzCuAMyfn9l2l7/8tZA3qtP99wMReUdE+oiIT+HpMrP33pltd/nLXwt5I6NCoqr7AB2BWcDfgEUi8kC0cqJzqQ0aZKObEzVubNtdYRk0yP7tE/lrIZaq00YyRVV7YA3t/YE9gUkiMk9EbhaRfWs7pMsjJ5xg4weaNUNFoHVrGDXKG1cLUffu9m/fujXft5T84x/+WoihjAtJOVVdo6qjgRuB14G9gN8Bn4jIkyLSupYyunwyfLj11Pnvf5n28sswd66/cRSy7t1h7lzeHTPG7i9bFjaPq5ZqFRIRKRKRG0VkNvACsAbrDtwMOBMoAibUVkiXJ7791j6Bduli3X2di5QWFUGnTjbSff360HFchjLttXWJiLwMfAZcCowB9lHVn6vqo6q6TlWfBa4FKluO1xWqe++FVatg4MDQSVwuGjgQFi+GiRNDJ3EZyvSMZBSwGOikqvuq6q2q+mUF+30C/LGiHyAibUTkJREpFZGFInKLiFS5sqKIHCkiY0Tks+i4j6MzooYZ5nehlJXBkCE2bfixx4ZO43JRp05w8ME2G3Ty+BKX0zIa2Q7srqorU+2kqouAm5O3i0hLYDK2yuJZwH7AP7CC9vsqfmTXaN+/Ap8CPwJujb766jhx8Nxz8MknNrLd1xxxFRGBAQOgTx949VXrmOFiIdMpUlIWkRT6AI2w6VRWAy+KSHPgJhG5LdpWkb+q6lcJ96eKyHfASBFprarzapjL1bWSEth9dzjfVxpwVbjkErj+ejsr8UISGxk3totIVxGZLCLzRWRp8i3F4Z2BSUkFYwJWXE6s7KCkIlLuvejrLhn9AS77PvgAJk+Gfv1gm21Cp3G5rHFjOyN58kmYPTt0GpemTBvbLwLuxRrb9wSeAp6Jfs5qYHiKH3EQNpjxe6o6HyiNHsvEsUAZ8HGGx7lsKymxRavKJ+RzrirXXGODVocODZ3EpSnTM5JfYW0TfaP7d6hqT2AfYBlWEKrSElhVwfaV0WNpEZFdgRuA+6q4HOZywdKl1i7SowfsuGPoNC4O9tgDunaFe+6B1f7fOw5EM+gdISJrgNNVdaqIbABOVtWp0WPnAINVtaiK4zcA16nqkKTtC4Cxqppy2k8R2RZrsN8TaFtZu42I9AZ6A7Rq1arthAnVG9ayZs0amjZtWq1jQ8i1vK3vvZd9xo7lnXvvpTRpDqVcy5pKnPLGKStsnbfZxx/Ttk8fPrvmGr7MsXa1uD+3mWjfvv0MVU09lENV074BC7CuvwBzgasTHusCfJPi+KXAjRVsXwP8Ko3fL1ibynLgoHRzt23bVqtrypQp1T42hJzK+913qq1aqXbuXOHDOZU1DXHKG6esqpXkbddOtahIdePGrOepSl48t2kCpmsa77GZXtqajnW5BWsf+YOIXCkil2KTOL6d4vhZJLWFiMheQBOS2k4qMRjrNnyWqqazvwtpwgRYssQHILrqGTjQptB58snQSVwKmRaSPwPliwX8AXgHuAMb4b6M6FJSFZ4DOolIs4RtXYG1wLSqDhSR32GTRF6sqq9lmNtlm6o1srdpAyefHDqNi6Ozz7apdEpKQidxKaRVSESkkYicCxwHNBCRVqq6SlXPApoC26vq0aqaqr/eCGAd8JiIdIzaMW4C/qkJjebRCPbRCfcvAv4EjAMWiMhPE247Z/D3umyZNg3+8x/7VOkDEF111K8P/fvb4MQZM0KncVVIWUiiaeFnAg9jl6/uAz4WkVMA1ObXSqtrhVrD+ElAfeBpbPT7YGwG4UQNon3KnRJ9vQx4M+l2Wjq/22VZSYn10rr44tBJXJz16gVNm9oARZez0jkjuQ0br3E80Bg4BBsMOLI6v1BtzfcOqtpIVXdT1f9T1U1J+xSp6mUJ9y9TVankNrY6OVwd+uwzeOopG1jWqFHoNC7OWrSwYjJxIixcGDqNq0Q6heQY4Peq+rqqfqeqHwFXAXuLyG51G8/F0tCh0KAB9O2bel/nUunfHzZtsinmXU5Kp5DsBiS3fXyOdcXdtdYTuXhbtcoGknXrBrv55wxXC/bbD846C0aOhNJUY55dCOn22vI5nV16Ro+2Bay8y6+rTQMHwvLlcP/9oZO4CqRbSCYlTcy4KNr+UoaTNrp8tnEjDBtms7YefnjoNC6fnHACHHaYdeLwtUpyTjrTyG+1rohzFXriCZg3z3vYuNonYmcll14KL7xgi2C5nJGykKiqFxKXnpIS2GcfOPPM0ElcPuraFX7zG3udeSHJKRmvR+Jchd59F15/Ha691gaSOVfbttvOpph//nn46KPQaVwCLySudpSUQLNm0LNn6CQun/XpYwVlyJDU+7qs8ULiam7BAnjoIbjiCmjePHQal8923tmW4x03znpxuZzghcTV3PDhUFZmA8ecq2sDBsDatTauxOUELySuZkpL7T/02WdbQ7tzde3QQ21G6dtvh/XrQ6dxeCFxNTVuHKxc6QMQXXYNHGhzbz38cOgkDi8kribKyqzRs21baNcudBpXSE49FQ480Aco5ggvJK76Jk2CWbN8zRGXffXqWVvJ9OnW7dwF5YXEVV9JiU3MeMEFoZO4QtSjB7Rs6Sso5gAvJK56Zs60qSr69YNttw2dxhWiJk2gd294/HGYMyd0moLmhcRVT0kJNGxo/5GdC6VfP7vMNXx46CQFzQuJy9xXX8F999mlhZ12Cp3GFbI994Tzz4e774ZvvgmdpmB5IXGZGzkS1q2zxk7nQhs4EFavhjFjQicpWF5IXGbWr7eBYJ06QZs2odM4B0cdBccea13RN20KnaYgeSFxmZk4ERYv9gGILrcMHAizZ8PTT4dOUpC8kLj0qdqiVQcf7OtBuNxyzjmw997eFTgQLyQufa++Cu+95wMQXe5p0MCo1nPKAAAfqUlEQVQmDZ02zV6jLqu8kLj0lZTADjvAxReHTuLc1q64wsaW+FlJ1nkhcemZPdvWZO/TBxo3Dp3Gua1tvz1cfjk8+CAsWhQ6TUHxQuLSM3SoLaF7zTWhkzhXuQEDYONGuPPO0EkKihcSl9rq1XDPPdC1K+yxR+g0zlVu//3hjDOskKxdGzpNwfBC4lIbPdpGDXuXXxcHAwfCsmXwwAOhkxQMLySuaps22WWtdu3giCNCp3EutZ/9DH78Y+uq7muVZIUXEle1J5+EuXP9bMTFh4i9XmfOhJdeCp2mIHghcVUrKYGiIluT3bm4uPBC2GUXOytxdS7rhURE2ojISyJSKiILReQWEamf4phtReRvIvKqiKwVET9fzYYZM2wQ4rXXWo8t5+Jiu+2sh+Gzz9oqnq5OZbWQiEhLYDKgwFnALcAvgZtTHNoYuAIoBd6oy4wuQUkJNG0KPXuGTuJc5q6+2hZdGzo0dJK8l+0zkj5AI6CLqr6oqiOwIvILEWle2UGqugrYQVU7AY9nJ2qBW7gQJkyAXr2gRYvQaZzL3C67QPfucO+9sGJF6DR5LduFpDMwSVVXJ2ybgBWXE6s6UNW7X2TV7bdbj63+/UMnca76Bg6E0lK4667QSfJatgvJQcAWFyxVdT52yeqgLGdxlSkttcWrzjoL9tsvdBrnqu9HP4IOHWDYMNiwIXSavNUgy7+vJbCqgu0ro8dqjYj0BnoDtGrViqlTp1br56xZs6bax4ZQG3l3e/ppDly+nPdOPJGv6/BvL8TnNlvilBXqNu+OHTvyw5df5sNbb2Vphw41/nn+3FZAVbN2AzYAAyrYvgAYlObP6Ed0pSvdW9u2bbW6pkyZUu1jQ6hx3rIy1YMPVj3sMPu+DhXcc5tFccqqWsd5N21S/cEPVI86qlZe04X03ALTNY332Gxf2loJbF/B9hZUfKbisu2FF+Cjj6C42NcccfmhXj2bzPGdd+Ctt0KnyUvZLiSzSGoLEZG9gCYktZ24QEpKYNddbYJG5/LFpZfaNPM+QLFOZLuQPAd0EpFmCdu6AmuBaVnO4pJ99BE8/zz07Wv9753LF02bwpVXwqOPwrx5odPknWwXkhHAOuAxEekYNYjfBPxTE7oEi8hnIjI68UAR6Swi5wE/ie6fF91aZy9+nhsyxEYEX3VV6CTO1b5+/exy7fDhoZPknawWElVdCZwE1AeexgYjDgZuTNq1QbRPojuBh4Fe0f2Ho1v7uspbUJYvh3Hj4JJLYOedQ6dxrvbtvTece66NKVmzJnSavJLt7r+o6odAlX3wVLUonW2uFo0caQsBDRgQOolzdae4GB56CMaOtTMUVyt89l8H69fbSPaTT4ZDDw2dxrm689OfwtFH22XcsrLQafKGFxIHDz9sc2sVF4dO4lzdKy6Gzz6Df/0rdJK84YWk0Klal98DD4ROnUKnca7unXsu7LWXdwWuRV5ICt3rr8P06Ta5XT1/ObgC0KCBtY9MmQLvvx86TV7wd45CV1ICLVtaby3nCsWVV0Ljxvb6dzXmhaSQzZkDjz9u40aaNAmdxrnsadkSLrsMHngAliwJnSb2vJAUsmHD7HJW376hkziXfQMGWI/FO+8MnST2vJAUqtWr4e674fzzYc89Q6dxLvsOOABOO80KyXffhU4Ta15ICtWYMfDNN9bI7lyhKi6GpUvhwQdDJ4k1LySFaNMmGDoUjj0WjjoqdBrnwunQAX74Q+sK7Kt5V5sXkkL09NMwe7YPQHROxM7KP/jAugO7avFCUohKSqB1azj77NBJnAvvootsolIfoFhtXkgKzXvvwbRp0L+/DcxyrtA1bAhXXw3PPAOffho6TSx5ISk0JSU2ZqRXr9T7Olcorr7aFnMbMiR0kljyQlJIFi2y3ik9e9qyo845s+uucOGF1ptx5crQaWLHC0khueMO2LgRrr02dBLncs/AgVBaauOrXEa8kBSKtWthxAg44wzYf//QaZzLPT/5CfzsZzbjw8aNodPEiheSQjF+PCxb5l1+natKcTF88QU89ljoJLHihaQQlK858uMfw4knhk7jXO467TTYbz+fFThDXkgKweTJMHOmfdoSCZ3GudxVv75N5vjmm/D226HTxIYXkkJQUgKtWkG3bqGTOJf7Lr8cWrTwAYoZ8EKS72bNgmefhWuuge22C53GudzXtClccQU88oi1l7iUvJDku6FDrYD06RM6iXPx0b+/tS0OHx46SSx4IclnK1bAvfdC9+6wyy6h0zgXH61bQ5cuMGoUfPtt6DQ5zwtJPhs1ygZY+ZojzmWuuBhWrbIPY65KXkjy1YYNdlp+0km23oJzLjPHHANHHmnzb5WVhU6T07yQ5KtHHoEFC3wAonPVJWL/fz75BJ57LnSanOaFJB+pWtfFAw6Azp1Dp3Euvs47D/bYwwcopuCFJB+9+Sa8+64NrKrn/8TOVds220C/fjao94MPQqfJWf4uk49KSmya+B49QidxLv5694ZGjXytkipkvZCISBsReUlESkVkoYjcIiL10ziuhYiMEZGVIvK1iIwXkR2zkTlOtlu8GB591F78TZuGjuNc/O2wA1x6Kdx/PyxdGjpNTspqIRGRlsBkQIGzgFuAXwI3p3H4ROBnwBXAZcCRwBN1kTPO9njiCWsk7NcvdBTn8seAAbBunS3F4LaS7TOSPkAjoIuqvqiqI7Ai8gsRaV7ZQSJyDNAJuFRVH1XVx4GLgXYi0rFOko4fD0VFnNihAxQV2f1cNn487L03e02caCPZX3kldCLn8sdBB8GPfgQ33xyv94QsvYdlu5B0Biap6uqEbROw4lLV/OadgSWq+v27o6q+A8yJHqtd48fbpaF58xBVmDfP7ufqC6c87xdfIGCDEHM5r3NxM348fPwxlJXF6z0hS+9hDerkp1buIODlxA2qOl9ESqPHnq7iuFkVbP8oeqx23XCDvRknKi2Fyy6DP/2p1n9djX3yydYrupWW2t/RvXuYTM7lkxtusEtbifw94XvZLiQtgVUVbF8ZPVad4/at6AAR6Q30BmjVqhVTp05NO+SJ8+dT0aodunEjX+28c9o/J1t2/vDDivPOn8+0DP7ubFuzZk1G/y6hxSlvnLJC7uf194QUVDVrN2ADMKCC7QuAQVUc9yLweAXbxwOvp/q9bdu21Yy0bq1qw/q2vLVundnPyZa45Y1MmTIldISMxClvnLKqxiBv3P6P1VJeYLqm8d6e7TaSlcD2FWxvQcVnHKmO2z7FcdUzaBA0brzltsaNbXsuilte5+Imbv/Hspw324VkFkltGiKyF9CEittAKj0uUlnbSc10724z57ZujYrYlNKjRuVue0Pc8joXN3H7P5blvNkuJM8BnUSkWcK2rsBaYFqK43YVkXblG0TkCKx9pG5mU+veHebOZdrLL8Pcubn7gikXt7zOxU3c/o9lMW+2C8kIYB3wmIh0jBrEbwL+qQldgkXkMxEZXX5fVd8EJgHjRKSLiJyNtY+8pqqTs/oXOOec20JWC4mqrgROAupjXX1vBgYDNybt2iDaJ1E37KzlHmAcMAM4py7zOuecSy3b3X9R1Q+BDin2Kapg2yrg8ujmnHMuR/jsv84552rEC4lzzrkaERtzkt9E5CtgXjUP3wlYVotx6lqc8sYpK8Qrb5yyQrzyxikr1Cxva1VNOXS/IApJTYjIdFU9InSOdMUpb5yyQrzyxikrxCtvnLJCdvL6pS3nnHM14oXEOedcjXghSW1U6AAZilPeOGWFeOWNU1aIV944ZYUs5PU2EuecczXiZyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOOedqJOuz/7raEa0s+XNAgIdVdbmI7AlcB+wHzAVGqeoH4VKCiPwGeDZ0jnSJSCOggap+k7BtZ6Af0AYoA/4D3KGqX4dJ6Vxu8e6/ERERbH2T04CDgR2ATcAS4C1grKp+Ei7hZiJyFPAC0BTYCKwAOgHPYplnAocCuwIdVfXVQFERkTJAsSWRHwAmqupnofKkIiLPAp+q6oDo/jHYKpxl2Bo4ArQF1gMdVHVmwKyHAY1U9Y2EbacCv2Nz0XsfuClxn1wR/Z87Azgce41Mxz505PSbkog0x+au6qCqr4XOA99n6gBsC/xLVb+NPgD1xVaSnY19sFxYJ78/x//NsiJ6wp/F3iCWYKs47oG9uJ/D/iEOBG5V1VtD5SwnIi9iZ5PnAN9ii4Odjb3RnaeqG0RkO+AJoKGqtg+YtQz4K/BD4GQs97+xovKQqi4Ila0iIrIM6KWqT0b338Ke47PLz1JEpAXwFPCdqnYKmPUt4GlVHRTd7wncDUwBXsaK3knA8cC55X9ToKxvYM/rR9H9ltiHobbAmmi3ptiHtk6JZ4QhiMg1VTzcCPgbMAT4FEBV78hGroqIyP7AS8Be0aY5wCnAi8D2wOfY+9daoK2qflnrIVS14G/Ag9gL4ocJ23YHngceje6fiL3ge+ZA3uVA54T7u2CfPk9J2u80YFngrGXAUdH3LYHe0Yt+Y3SbGm3bMfTzGmUsBU5IuL8++XlNeG6/DZx1dWI24DNgWAX7jQDez5XXQXR/NHYmfWrCtlOBlcDgHHgdlGFn92WV3BIf2xQ460PYmef+2JWU+6L3szeAZtE+O0X7jKyLDN7YbjoDv9WE6/hqp4B9gLNFZDdVnQb8CRgQKGMijW6J90naVtH9oFR1paqOUtWTgD2BX2Kn4iOAhSLyr6ABzf+AxDO4Jdh/zmQ7YkUnpLKk+62BRyrY7xHsE2kuORO4RVWfL98QfT8I6BIs1WZPAUuBXkB9Va1XfsNeDwL8LNqWvCx4trUDBqnqZ6q6Avg91k76d43O7FR1GVDClq/tWuOFxAj2CSPZpuixFtH9t4EDshWqCjOA60SkmYjUA64HFgBXi0h9ABFpAFyDvTHmHFVdrKpDVPVYYB/gRuwsMLS/AL8VkZ7RczgI+JuInCwi24rIdlE7xJ+xT4IhvQp0T7g/E6houvAjsddHLtkeaxNJNgNr2wtKVc8GLgV+BbwrIsclPhwmVaVaAosT7pf/WyevwTQb+wBX67zXlpkM/FFE/quqs+H7a7hDsX+g8kb2pkAu9NS5Abv+uQK7PFSKNbQ9AnwqIuWN7btjlwtymqrOw97A/5IDWR4Tkf7Yp7fBwMfYB4nyT86Kfbh4CnuTCel64PXow8QwrJH9XhHZAbtkCNZGMhD4bZCEWzpXRMoL3UqgogWTdsIu2QWnqi+IyI+w5+9fIvI81isyaPtNBZZiZ6PlNgEjsbPpRLtQR9m9sR2Ius0+j53+z8Oui++DNbpfqKrPRfvdhq0Y1jVU1nJR5tOxDwOPquoiEdkV+DWb/467VfXfAWMiIjcCd2kd9RapKyKyI9AVOAr7hFwPK9wfAc+o6oyA8b4nIj8B7gSOZnORI+H7ldglpCFhEpqo00WysaraM2m/kUAbVT0+O8nSE/3fug277DYSKy7tVfWVoMEAEXkCWJH8XFaw3zDgYFXtWOsZvJCY6JLQBcCPgYZYw+UD0TVH53KaiByMFZPkoveGqm4ImS0TInIl8Lmqvhw6S0Wi7uCDsQ9rp2kOdKsWkVZAY1Wdk2K/X2CdLl6q9QxeSPKPiNRX1YrafHKGiDTEGgTLgM9y8c0uaiPZl4QxRao6P2wq53KPN7YnEZFDRORcEblCRHpF3x8SOlcyEekiIk+IyLMicka0rauIzAXWi8i86NNdUCJycTS+ofx+AxH5C/aJ+b9YZ4AVIpIL1/ABEJG2IvIUdj35I+B1bHzDHBFZICK3iEjjoCHziERC56iIiDRK/rcWkZ9E7wttQ+XKOSH7P+fSDeiJtStU1Hd8EzblyOWhc0ZZL4hyvQY8iTW2X4m17YzGRrM+GOXuFDjrh8DVCff/EeX9P+A4rOviTdhgqetz4Lk9BWsbm471zLoJG5S6Psr8S6x31H+AljmQ93RsXM4HwEQSxsAk7HM04cc6nEI0piFh29nY4NSNwIboOT8t9HMaZWsBPB7l2gjcBdQH7k16X3gd2Cl03jT/pnPr6nUQ/I/LhRvQP3rB3I6NAt4petHUj75vBwyP3mD65kDed4ERCfe7R9n+kbTfGGBy4KylwIkJ95cCAyrY7zpgXg48tzOAeyt5jczFzuIbRm+AdwTOenLCm9nwKPumqFhLwn65UEg2seWAxHOiN+M3on/766LvN1LBANAAeYdi06D0B3pEHx4eBb6IiuLO2PizBcCdofOm+TfVWSHxNhJARGZjb8y3pdjv10AfVd03O8kqzbEa6KKqk6P7LbDeOR01oZEyuuQ1UlWDjc8QkUVAP1V9NLq/DjtLmpq038nAU6raKPspt8ixFjhTVV9M2t4Sm1HgEFX9SER6AH9V1d1C5IwyvYbNC3Z5wrae2Jvgi1iPw+9E5Gis0T3YwLmo19ZPVfWd6P6/gQWqekbSfs8CTVT1xAAxE3PMAf6kqndF9w/DCvXlqnpvwn5XYmfS+4RJCiJyT5q7tsYGUdb668DbSMyuwDtp7PcOOTBYCuvamfhiKJ+raFXSfmuwgV8hPYUNntw2uj8ZuLCC/S7EPvWFthTruZfsx9jzXj6OaB6bB6qGcihwf+IGVb0Hm87np8DL0ZiSXHQo1o022ShsEsfQdmHz+DGI5tTC5q1K9BkVj4fJpkuxs6Qfpri1ruwH1JQPSDT/Ba4UkVdUtaL+7uUzlV4Z7RvaPGx210kAqrop6pb4UdJ++7LliNcQfoeNwP6fiNwNPA38VUQOZfOguQ7AYdhMsKGNAm4VkSZY28N6bGT4DcAU3TweZl8gdA+u74AmyRtVdUY0EnsSdrnopiznqkzi5Y+v2fwBKNG35MYH3DlYQZ4W3T8euxR3LNY2We44wr8OPgXeUdUeVe0kIudh7Wi1zguJ+SU2IPFDEXkMm/J8FfbC3x44CLumuye5MVL8MZKmOlDVtyvY7yK2fNFnnaquEJGfYm/Ev8A+6QEcE93WY5dhjlfVd8Ok3ExVB0WXYX6LTdsC9jp4EBuEVm4DNvdaSP/FrtM/lfyAqs6OismzwNgs56rMJBHZGH3fAvgJmz9MlDsIWJTNUJUYAQwRkR9iRe8C7EPRH0SkKTYB4uFAMRB6RvC3sAKXSuKA1VrlbSQREdkPGxV+KpunYy73BdZz52+qmnxqm7NEZG9glarmxJQTACJSxJaD5j7X3BxDsg02zqUhMDuXnsNyInIVNk3KYVrJwNnozOpxrP0s2Cf9aIaDZJ+q6gNJ+02NtudC1/VrsUuu22CzRIwQkQuxNqjySTtHAb8J+RqOuiEfp6pDU+y3E9bGN62q/aqVwQvJ1qJ+4+VtC6tUNfQsr865HBFd5t5JVb8KnSVXeCHJM9Fp97+B7rlwqUhiuHStxGQZY+dyhReSBNEbyC7Ax6q6VUNgdGr4c1Udl/VwW+b4eRUPN8Ea1H5LNIW8qj6bjVwVkRgtXQvxWsY4XdE8XOer6i2BcwRdDramojORxKWBZ2B/R/A3UbFZlc/F/j+NVdVZIvJj4GY2f/i5XRPWf6lVoQfJ5MIN2A54GHuj2IQ1pI4GWiTtF3xgV5QjTqu3LQPOSrj/FtYbqlnCthZY75hJOfDcvogtVbs9dm18OPAlNoPANgmvl+ewXlzBX79p/E11NhAtgwz7Y70Ny1+Xn2NvcLOxYv0uNn38EmDPHHjO3sBmyi2/3zLKWBblXM3mAZXNQuWMsnXCPogtjp7X1dgCViuxwaq3R//vNmFLRtd+htD/YLlwA/6A9dK6ElsYaED0gv4U+EHCfrlSSGZgPVsux/qGJ95+FL3ALyjfFjhrbJaujXLEaRnjvdO89Qn9uiUHloPNMG9slgaOisXD2EqOYB0wVgKjk/a7D3irTjKE/gfLhRvW3bdf0rZdgVeAr4Bjom25UkgEW+d8KTZtwz4Jj7WI/hNsNedSoKzvADcm3P8C6FbBfj2Ar3Ig77KkN4udo+fz5KT9fp4DhaT87DPVLRfOTBcCFyTcbx3l6pK03+XAJznwOkguJF8BAyvYL/jUPlj35I4J91tG+Tsk7XcK1nmo1jP4OBKzF0kDDVV1sYichFXxySLSndzo347aq2KUiDwE/BH4r4gMj77PNX8BxovIF8A4Ni9duxy7nCXYaXguLF0Lm5cxfh0bHJe4jPHLaoM/c2UZ42+Al4G7U+zXDuvaHlLw5WBrKJeXBl7LlgNTy79Pnm6oMTaItdZ5ITELgR9gZyDfU+sb3k1ESrBTx6CN7MlUdRXQT0RGYX3bPwX+Sg6tKa3xWroW4rWM8TtYO96/qtopWvsltODLwVZDXJYGfh0bKPlplOXv2Kzbv4lm6/gmmo/v11jhq3Xea4vvJz3bV1V/VsU+v8M+TasGnPyuKiLSDVsOdE9scrbgy4CWk5gsXQuxWsb4/4Deqpo8gDZ5vxOAm1W1fXaSVZgh+HKwmZAYLQ0sIvtjc9iVvw7mYmf5j2AzBcwDirAPRu1V9T+1nsELyfdd57oCf1HV5VXsdxF2rfzyyvYJLbrs0gRYozm+SqIrHJIDy8HWBcmRpYGj8WPHYT0NX1LVtdHA6ivY/OHnAVX9sk5+vxcS55xzNZELs2y6OiIid4nI6NA50hGnrBC/vM7VJW9sz4CI3AXUU9VeobOkqT3x+bAQp6wQo7wiMhm7+nBS6CypxCkrxCtvXWb1QpKZ2Lx5AKjq/qEzpCtOWSF2eYX4vG7jlBXilbfOsnobSR6Lun3uoqqhF95JKU5ZIX55natLcamkOUFEGkZrfMTFadhKb3EQp6wQo7wisk1cXrdxygrxyluXWb2QZCY2bx6uMIhIXxH5XES+EZG3ReSSCnY7nBx43cYpK8Qrb+is3kYSQyKSbp/1ikbiZlWcskK88kYDUIdhywC/h40jGCsiZwGXqOrakPkSxSkrxCtvLmT1NhIyfvNoE3pku9i61x9j0yBUZQ/g6JB545QV4pVXRKYDL6vqrxO2nQSMx0Y3n6a2KNfRwBueNX1xypsLWb2QEK83DwAR+Q+2+FbXFPudB0wM/CKPTdYoR2zyisg3wBmqOjVpexG2Xkp9oDM2H1ToN7vYZIV45c2FrN5GYv4H/E9Vz6/qBvwzdNDI28BP09ivfELEkOKUFeKV92vszWELqjoXOBabEv8N4MjsxqpQnLJCvPIGz+pnJHw/8dqpqto6xX7nYmt4By3AIrIfcIiqPpViv0ZYF9XkqbqzJk5ZoxyxySsiTwLfqOrFlTzeCJu4rzOBJxuNU9YoT2zy5kJWLyTE683DuXIicj5QDJyuqisq2ac+cCc22eg+2cyXlCM2WaMsscmbC1m9kDjnnKsRbyNxzjlXI15InHPO1YgXEldQROQyEZkRjQBeKSLviUid9MYTkQNE5CYR2T6NfW8SEU24LRSRR6P2u1THXhYd07R2kjuXGS8krmCILZd8NzAJ6AL0AJ4EzqyjX3kAcCOQspBEvgaOiW7XAT8BXhKRJimO+1d0TGk1czpXIz5Fiisk/YCRqnp9wranReTmUIGSbFTVt6Lv3xKR+cCrwM+Bh5N3jnri1FfVr4CvshfTuS35GYkrJNsDi5M3akLXRREpii4TXSQi90WXwJaKyI3Jx4lIh2iCvO9EZImI3FF+eUlEfgY8He06J/qZczPMOyP6WhT9zLEiMl1EzhaRmcB3wNEVXdoSkUYicpuIzBORdSIyR0T+nJT/ChGZGT0+T0R+jXPV4GckrpD8G+gffdJ/RlWXV7Hv34BngPOAE4AbRWSZqt4OICJtgOeBF4Fzgb2AvwD7AqdGv+s64O/YZbRFwLoM8xZFXxcnbbsNuAVYgs3mukU7iogIdsnuGOBWrCDtARyfsM+vgD9FP2sq0Ba4VURKVXV4hjldoVNVv/mtIG7Aj4DZ2PQmZcBM7A25ecI+RdHjLyQdexewAFtqGWAC8Cl2aal8nwuiY4+J7p8e3S9KI9tN2FQWDaLbAcAUYDWwW7TP2Ojn/STp2Mui7U2j+52i+2dW8ruaA2uAG5O234IVrfqp8vrNb4k3v7TlCoaq/hc4GGtcvwObK+v/gOkV9Hh6POn+Y8DuwJ7R/aOAx1V1U8I+jwIbgXbVjLgjsCG6fYyd3XRV1UUJ+yxQ1f+k+DkdgBVa+UwNxwBNgIdFpEH5DXgZaMXmv9G5tPilLVdQVHUd1nbxNICI9MJ6cvUChiTsujTp0PL7uwHzo69Lkn72JhFZDuxQzXhfAx2xs4nFwEJVTZ56YslWR21tR+xSWmXKJ/ibWcnjewE+DZBLmxcSV9BUdbSI3AYclPTQLpXcX5TwdYt9ol5UOwIVzneUho2qOj3FPunMabQcK3SVKc93OhUXpo/T+B3Ofc8vbbmCISLJxQER2RlowdZvqOck3S9vMP8yuv82cE5UPBL3aQC8Ft1fH31tWIPY1fESsIOInF7J428Ca4HdVXV6BbdvshfV5QM/I3GF5INoyu0XsEtVrbGeVaXAvUn7HhItL/Ao1murFzBAVcuix/+ILWv6hIjcibUr/BWYpKpvRvuUf7K/SkQmAKWq+kHd/GlbeBEbdPmAiNyC9SDbDThBVa9S1VUichMwRERaA69gHyoPANqranIRda5KXkhcIbkFOAsYirVjLMYW/OmqqnOS9v01dunnUWy8xq3A991iVXWmiHTGutA+hvWuejA6rnyfeSJyHXAt0B87mymqiz8skaqqiJwTZR6ILRG9EHggYZ/bRGQhNv34L7G/8RNgYl3nc/nHp5F3LkG0POkcbOnSZ8KmcS4evI3EOedcjXghcc45VyN+acs551yN+BmJc865GvFC4pxzrka8kDjnnKsRLyTOOedqxAuJc865Gvl/T2D1lNDCAdoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -330,7 +330,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHjVJREFUeJzt3XvUHFWd7vHvw0UIt3APDDJE8BJhZHnkFWEOI4ncwzlyEU0WembFQaMeFWYWOiAiBHRYBkdAF+MClk44nNGEGWA4wyWEcHnDXQgSxEkCBg13EZyXxBiIQH7nj13BSr39dlffqvN2ns9avd7uXbt27dqp9K+rau9digjMzMy6bZNeV8DMzDYODjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDGrQ9IMSYPZ+0FJM5pcf6KkKJY1Qt4bJT1WZ/mlkoYkbVFy2++UFJKObqbOZt3igGO24ZgN/IWk/YoLJG0KnARcFxFrKq+ZWQc44JhtOP4fsBqYWmPZJGAcKSiZjUoOOGYtknSwpP+Q9LykP0haJOmTrZYXEauAG4EpNRZPBV4E7sy2vYekWZJ+LelVSU9IOk/S5nXqu1l2ie3zhfRvSfpNIW0vSVdnl/BWS5or6V2t7psZwGa9roDZhiwiZuTeTyws3gu4F7gMeA3478AsSWsjYna2ziCgYll1zAY+IemAiHgYIAsiJwA/jog3s3y7AC8Dfwu8AkwAzgV2Br7Y5G6uR9LO2X69CEzP9u0sYL6k9/iSnrXKAcesRRExZ917SQLuAt4OfJbWL33NJQWQqcDDWdpRwI75MiNiEbAot/17gVeByySdFhFvtLh9gNOBLYDDIuKVrPz7gOXANODyNsq2jZgvqZm1SNIOkr4v6Sng9ew1HXh3q2VmZw//TjrLUZY8BXgKeCC37U0knS5piaRXs23/H2AMKei143BgHrAquwy3GbAC+Bkw0GbZthFzwDFr3ZWkYPAd4Ejgg8A/A1u2We5s4M+BgyVtCRwHzI71p3Y/HZgJ/BvwUeBA4NRsWbvb3xn4JH8KouteHwb2bLNs24j5kppZC7JAcCzwpYi4LJfeiR9xd5Dun0wFdge2Zfgluo8DcyLinNy2929Q7pvAG8DbCuk7Fj7/F/AIcEGNMlY22IbZiBxwzFqzBbAp8NYNdEnbks422nrIVES8KenfSEFlD2BJRPy8kG1MftuZuj3kIiIkPQe8N1fnTYGPFLLeTjqreswdBKyTHHDMWhARKyQ9BJwjaSWwFjiTdK9juw5sYjbwJVLvtHNqLJ8PfEHSQuBXwF8D40uU++/AdEmPku4LfRbYqpDnH4GTgTskXQo8D+wGHAoMRsS/Nr03ZjjgmLXjZOAK4Crgd8ClpC/vL3Wg7PtJvcLGA3NqLD8X2Il02SuAa4C/A65vUO45pHs0FwB/BL4PLAY+sy5DRPxW0kHAPwCXANsDLwB3AyNOvWPWiKp+xLSkdwJfBQ4C/gK4u8b4hlrrjSUd/MeTOjvcCJwaEb8r5DsO+BbwLtIvv/Mi4upO7oOZmTWvF73U9gMmA09kr7KuBiaSfolNI/UIWu/XnKRDgGtJo7GPAW4CZks6st1Km5lZe3pxhrNJRKzN3l8D7NzoDEfSwcB9wKERcVeWdiDwU+CIiLgtS5sHbB4RH8mtezOwXUQc0o39MTOzcio/w1kXbJp0DPDiumCTlfMg8OtsGdmU7ZOA4g3NOaTxDGNbq7GZmXXCaBn4OQFYWiN9SbYMYB9g8xr5lpD2s+XR32Zm1r7R0kttB9L8UkVDwN65PNTIN1RYvh5J00nTkTBmzJgD9tyzMwOp165dyyabjJZ43jtup3LcTuW4ncrpZDs98cQTL0fELmXyjpaAA7UH06lGevGzRkhPiRFXkLq2MjAwEAsXLmynjm8ZHBxk4sSJHSmrn7mdynE7leN2KqeT7ZTNJVjKaPkpMEQaC1C0PX86oxnKpRXzQO0zJDMzq8hoCThL+dO9mrz8vZ0nSRMMFvNNII0Cb6YLtpmZddhoCThzgd2ycTYASBog3b+ZC29N634naf6pvCnA/RGxoqK6mplZDZXfw5G0FWngJ6SJCbeTdFL2+eaIWC1pGbAgIk4BiIj7szE2V0n6CumMZSZwz7oxOJlvAoOSLiENCp2cvY7u+o6ZmVldveg0sCvpGR556z6/gzR/1GakmXjzpgIXk5438tbUNvkMEXFPFry+BXyBNE7n5Ii4tYP1NzOzFlQecCJiOX/qOTZSnvE10l4BPp296q17PY0nMDSznPFn3tQwz/JvH1tBTayfjZZ7OGZmNso54JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklKg84kvaVdLuk1ZKel3S+pE0brDNDUozw+lou35Uj5JnQ/T0zM7N6NqtyY5J2AG4DFgPHAfsA3yUFvrPrrPpD4JZC2vHAGcDcQvpS4NOFtOWt1djMzDql0oADfB4YA5wYESuB+ZK2A2ZIujBLGyYingWezadJ+gawNCIWFbL/ISIe6ELdzcysDVVfUjsGmFcILHNIQejQsoVI2hE4Apjd2eqZmVm3VB1wJpAueb0lIp4GVmfLyjoJ2JwUrIr2lbRS0hpJ90gqHcjMzKx7FBHVbUx6HfhqRFxSSH8WuCoizipZzh3A2Ig4oJB+GvBH0j2iXYDTgQOAQyLiwRHKmg5MBxg3btwBc+bUimHNW7VqFdtss01Hyupnbqdyut1Ojz23omGe9+0xtmvb7xQfT+V0sp0mTZr0cEQMlMlb9T0cgFoRTiOkD88o7U66/HbGsIIjvlfIexMp+JxF6mQwvDIRVwBXAAwMDMTEiRPLVKOhwcFBOlVWP3M7ldPtdpp25k0N8yz/ZPe23yk+nsrpVTtVfUltCNi+RvpY4JWSZXyCFKCubpQxIl4FbgY+ULaCZmbWHVUHnKUU7tVI2hPYmsK9nTqmAvdExDNNbLe664ZmZlZT1QFnLnCUpG1zaVOAV4EFjVaWNB44iJK90ySNIfWMe7jZipqZWWdVHXAuA9YA10k6PLthPwO4KN9VWtIyST+qsf5U4A3gmuICSWMl3S3pc5IOkzQFuBPYA7igC/tiZmZNqLTTQEQMSToMuBS4gXTf5mJS0CnWq9Z0N1OB2yPipRrL1gAvkWYs2BV4DbgfODQiFnZkB8zMrGWV91KLiMXARxrkGT9C+vvrrPMacGJblTMzs67xbNFmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVommAo6kWtPNmJmZNdTsGc5zki6U9N6u1MbMzPpWswHncuAk4BeSfippuqTtulAvMzPrM00FnIg4NyL2Bo4AHgcuAl6Q9GNJh3ejgmZm1h9a6jQQEXdExF8DuwFfBt4DzJO0XNIMSX/WyUqamdno124vtQHgw6THRg8BdwOfAZZJ+lSbZZuZWR9pOuBI2kvSuZKeBG4Hdgf+BviziPhfwF6kez3f6WhNzcxsVGvqAWyS7iCd0TwLXAnMioin8nki4k1JPwFO61Qlzcxs9Gv2iZ8vA5OB+RERdfItAt7Rcq3MzKzvNHtJ7VLgvlrBRtI2kj4MEBGvF898zMxs49ZswLkT2HeEZe/JlpuZmQ3TbMBRnWXbAKvbqIuZmfWxhvdwsstkE3NJn5F0dCHblsCxwGOdq5qZmfWTMp0GPkQa3AkQwMeBNwp5/ggsBb7auaqZmVk/aRhwIuI7ZGNqJP0aOCEiFnW7YmZm1l+a6hYdEe7qbGZmLSlzD2cycE9ErMze1xURN3ekZmZm1lfKnOHcCBwEPJi9D0burRaAH9JmZmbDlAk47wBeyL03MzNrWplOA0/Vem9mZtaMMvdwtmqmwIjw4E8zMxumzCW1VaR7M2X5Ho6ZmQ1TJuD8Dc0FHDMzs2HK3MO5soJ6mJlZn2v3EdNmZmallOk08CAwLSIWS3qIBpfXIuLATlXOzMz6R5l7OP8JvJp77/s5ZmbWtDL3cD6dez+tq7UxM7O+1fI9HCW7SKr3UDYzMzOghYAjabKk+4DXgN8Ar0m6T9KxHa+dmZn1jaYCjqTPATeQBoOeRnoY22nZ5//IlpuZmQ3T1PNwgLOAKyLiC4X0yyRdBnwduLwjNTMzs77S7CW1nYDrRlh2LbBjowIk7SvpdkmrJT0v6XxJdafDkTReUtR4zamR9zhJj0l6TdJiSVNK7ZmZmXVVs2c4dwKHAvNrLDsUuKveypJ2AG4DFgPHAfsA3yUFvrNLbP8rwL25zy8Xyj+EFPh+AJwKTAZmSxqKiFtLlG9mZl1SZuDnvrmP3wd+KGkn4Hrgt8CuwAnAMcBnGhT3eWAMcGJErATmS9oOmCHpwiytnscj4oE6y78B3BURp2af75S0H3AO4IBjZtZDZc5wfsH6gz0FfC57FZ/+eQv1Z4s+BphXCCxzgJmkM6QbStSnJklbAJNIZzZ5c4BZksZGxIpWyzczs/aUCTiTOri9CcAd+YSIeFrS6mxZo4AzS9KOpDOr2cDXI2LdLAj7AJsDSwvrLCFdsns38FB71Tczs1aVmWlgQQe3twPwSo30oWzZSNYA/0S6LLYSmAicQQoyx+XKpkb5Q4Xl65E0HZgOMG7cOAYHB+vVv7RVq1Z1rKx+5nYqp9vtdPr73miYZzT8O/l4KqdX7dRsp4G3SNoE2LKYXuKJn7XmYtMI6evKfAH4Ui5pUNKLwA8kvT8iFtUpXyOkryv7CuAKgIGBgZg4cWL92pc0ODhIp8rqZ26ncrrdTtPOvKlhnuWf7N72O8XHUzm9aqdmB35K0hmSlgGvA7+v8apnCNi+RvpYap/51HNN9vcDubKpUf66z82Wb2ZmHdTsOJxTgTOBH5HOHP4BOB94AlhOdmmqjqWkezVvkbQnsDXD7700EoW/T5KC4IRCvgnA2qyOZmbWI80GnM8C5wIXZp+vj4jzgP1IAeNdDdafCxwladtc2hTS4w+avVd0Uvb3YYCIWEMaJ/TxQr4pwP3uoWZm1lvN3sN5B7AoIt6U9DrZ5aqIWCvpB8APSWdAI7mMdJZ0naSZwN7ADOCifFfp7JLdgog4Jfs8A9iWNOhzJfBh4KvAdRHx81z53yTd37mENE5ocvY6usn9NDOzDmv2DOd3wDbZ+6eB/5ZbtgNpUOeIImIIOIw0VucG4DzgYtJZU95mrD+eZylpnM4s4GbgZOA72d98+feQznwOB+YBHwVO9iwDZma91+wZzr3AB0lf+j8hzRCwI/BH4IvA7Y0KiIjFwEca5Blf+DyHNICzoYi4nnR2Y2ZmG5BmA84MYI/s/QWkS2rTSGc284Evd6piZmbWX5oKOBHxOPB49n4N6Vk4p3WhXmZm1mfaGfj5dmB34PmIeK5zVTIzs37UyiOmvyDpGeAp4KfA05KelfS/O147MzPrG83ONHAOcClpPM2xwED2dy7w/Wy5mZnZMM1eUvsicEFEfKOQfks2t9kXSTMPmJmZrafZS2pjGPmpnguoMZmnmZkZNB9wrgdOHGHZx4Ab26uOmZn1qzKPmJ6c+zgXuFDSeIY/Yno/4O87X0UzM+sHZe7h3MjwR0nvARxVI++/kJ7EaWZmtp4yAecdXa+FmZn1vTKPmH6qioqYmVl/a3qmAUmbkToIHALsCPwXcDfpUQGNH4xuZmYbpaYCjqRdgVuB/UlP+HwROJg0/uZRSUdGxEudrqSZmY1+zXaLvgjYCfhQROwdEQdHxN7Ah7L0izpdQTMz6w/NBpzJwBkR8VA+Mfv8NdI0N2ZmZsM0G3C2AH4/wrLfA29rrzpmZtavmg04DwBnSNo6n5h9PiNbbmZmNkyzvdROB+4EnpF0K6nTwK6kQaACJna0dmZm1jeaOsOJiEXAu4ArgF2AI0gB5zLgXRHxaMdraGZmfaH0GY6kzYEDgV9HxJndq5KZmfWjZs5w3gTuAN7bpbqYmVkfKx1wImIt8EtgXPeqY2Zm/arZXmpfB86R9L5uVMbMzPpXs73UzibNKLBI0nOkXmqRzxARB3aobmZm1keaDTi/yF5mZmZNKRVwJI0hTWvzC+A3wG0R8WI3K2ZmZv2lzCOm9wZuA8bnkldK+kRE3NqtipmZWX8p02ngQmAt8FfAVsB+wCPA5V2sl5mZ9ZkyAedg4OyIuDciXouIJcDngD+XtHt3q2dmZv2iTMDZHfhVIe1J0txpu3W8RmZm1pfKjsOJxlnMzMxGVrZb9DxJb9RIv72YHhG7tl8tMzPrN2UCznldr4WZmfW9hgEnIhxwzMysbc3OpWZmZtYSBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0pUHnAk7SvpdkmrJT0v6XxJmzZY54OSZklalq33uKRzJW1ZyDdDUtR4Hd3dvTIzs0aafQBbWyTtQHrUwWLgOGAf4LukwHd2nVWnZHlnAr8E9ge+mf39WCHvCqAYYJa0W3czM2tPpQEH+DwwBjgxIlYC8yVtB8yQdGGWVsvMiHgp93lQ0mvA5ZL2ioincsveiIgHulN9MzNrVdWX1I4B5hUCyxxSEDp0pJUKwWadR7K/nrvNzGwUqDrgTACW5hMi4mlgdbasGX9JejDc44X07SW9LOl1SY9IOrHl2pqZWccooronD0h6HfhqRFxSSH8WuCoizipZzm7Az4GbI2JaLv1TpDOeRcA2pAfFTQY+FhHXjVDWdGA6wLhx4w6YM2dOs7tV06pVq9hmm206UlY/czuV0+12euy5FQ3zvG+PsV3bfqf4eCqnk+00adKkhyNioEzeXgScr0TE9wrpzwFXRsTXS5TxNlLHg7cDB0TEUJ28Au4DxkTE+xuVPTAwEAsXLmyUrZTBwUEmTpzYkbL6mdupnG630/gzb2qYZ/m3j+3a9jvFx1M5nWwnSaUDTtWX1IaA7WukjwVeabRyFkCuAvYDJtcLNgCRoul1wP6Nul6bmVl3Vd1LbSmFezWS9gS2pnBvZwQXk7pTHxERZfKv4yeWmpn1WNVnOHOBoyRtm0ubArwKLKi3oqSvAV8GPhUR95TZWHZGdALwaES82VqVzcysE6o+w7kMOBW4TtJMYG9gBnBRvqu0pGXAgog4Jft8MnABcCXwnKSDcmU+ua7btKQFwLWks6Wtgc8CBwHHd3e3zMyskUoDTkQMSToMuBS4gXTf5mJS0CnWK3/P5cjs77TslfdpUiACWAb8LbA7qcv0z4BjI2JuJ+pvZmatq/oMh4hYDHykQZ7xhc/TGB5oaq13ShtVMzOzLvJs0WZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6tE5QFH0r6Sbpe0WtLzks6XtGmJ9cZKmiVpSNIKST+WtFONfMdJekzSa5IWS5rSnT0xM7NmVBpwJO0A3AYEcBxwPnA6cF6J1a8GJgKfAaYBHwSuL5R/CHAtcCdwDHATMFvSkR3ZATMza9lmFW/v88AY4MSIWAnMl7QdMEPShVnaMJIOBo4CDo2Iu7K054CfSjo8Im7Lsn4DuCsiTs0+3ylpP+Ac4Nbu7ZaZNWP8mTc1zLP828dWUBOrUtUB5xhgXiGwzAFmAocCN9RZ78V1wQYgIh6U9Ots2W2StgAmAacW1p0DzJI0NiJWdGg/zLqq+IV8+vveYFouzV/GNhpVHXAmAHfkEyLiaUmrs2UjBZwJwNIa6UuyZQD7AJvXyLeEdOnw3cBDrVXbNmaNfo37y3/D5X+7DUvVAWcH4JUa6UPZslbW2zuXhxr5hgrL1yNpOjA9+7hK0uN16tGMnYGXO1RWPxv17aSZ3d/GqYV2qmKbRVVvs8XtNXU89aIdNxCd/H+3V9mMVQccSB0GijRCeivrFT+rzvpExBXAFQ223TRJCyNioNPl9hu3Uzlup3LcTuX0qp2q7hY9BGxfI30stc9gGq23fW69oVxaMQ8Nyjczsy6rOuAs5U/3XACQtCewNbXv0Yy4XiZ/b+dJ4PUa+SYAa4EnWqivmZl1SNUBZy5wlKRtc2lTgFeBBQ3W2y0bZwOApAHS/Zu5ABGxhjT+5uOFdacA9/egh1rHL9P1KbdTOW6nctxO5fSknRTR6NZJBzeWBn4uBn5B6gq9N3ARcElEnJ3LtwxYEBGn5NJuIfU0+wrpjGUm8NuI+KtcnkOAQeBS0qDQyVn+oyPC43DMzHqo0jOciBgCDgM2JXWBPg+4GDi3kHWzLE/eVNJZ0D8DVwEPAycUyr8HOAk4HJgHfBQ42cHGzKz3Kj3DMTOzjZdni27Ak4021kobSfpg1j7LsvUel3SupC0L+WZIihqvo7u7V53XYjuNH2H/59TIO+qPJWi5nUY6TkLS13L5rhwhT61OSRs0Se+UdLmkRyW9KWmw5Ho9+27qxTicUSM32ehi0mSj+wDfJQXqs+usCmmy0feQJhtdd8/peqB4z+la4AekKXkmkyYbHRotlwHbaKMpWd6ZwC+B/YFvZn8/Vsi7AigGmCXt1r1KbR5LkO5F3pv7vN6gvX44lqCtdvohcEsh7XjgDLKORTlLgU8X0pa3VuOe2o/07/wA8LYm1uvdd1NE+DXCC/gaaXzPdrm0vwdW59NqrHcwaaDph3NpB2Zph+fS5gF3FNa9Gbin1/teQRvtUiNtetZGe+XSZgAv93o/e9hO47M2+R8Nyh/1x1I77TRCWTcBSwppVwILe72fHWqrTXLvrwEGS6zT0+8mX1Krb6TJRseQJhutt96wyUaBdZONkpts9F8L684BDpY0tv3qV6KlNoqIl2okP5L93bVz1dtgtHosNdRHxxJ0qJ0k7QgcAczubPU2HBGxtoXVevrd5IBT37BJQyPiadKvrXrXfDs12eho0Gob1fKXpFP84nx220t6WdLrkh6RdGLLte2ddttpVnad/gVJF0kak1vWL8cSdO54OonUJsPudQH7SlopaY2keyS1FfBHmZ5+Nzng1NeNyUZ3yOWhRr66k41ugFpto/VI2g34OvB/C79ul5EuqXyCdG/neeDaURh0Wm2nNcA/AaeQhhRcDnyB9b9I++VYgg4dT6RhFD+LiOIMI4+QHvr4P4FPkoZfzJd0YAt1HY16+t3kTgONbVCTjW6gWm2jlFF6G+n0fRXwd+sVHPEvhbw3APeRHqp3XSuV7aGm2ykiXgC+lEsalPQi8ANJ74+IRXXKH43HErR/PO1Ouvx2xrCCI75XyHsTqYPCWaROBhuDnn03+QynPk822lirbQSAJJEG8u4HTI40OHhEke5eXgfsX6Z7+gakrXYquCb7+4Fc2dQof7QdS9CZdvoE6cvx6kYZI+JV0s3wDzTK2yd6+t3kgFOfJxttrNU2WudiUvfX4yKiTP51Rtuv9nbbKS8Kf/vlWILOtNNUUm+qZ5rY7mg7nlrV0+8mB5z6NqbJRlvVahuRDcj7MvCpSNMSNZSdEZ0APBoRb7ZW5Z5ouZ1qOCn7+zD01bEEbbaTpPHAQZTsnZZ1vjiGrC03Ar39bup1X/IN+UW6OfYCMJ80P9t00n2GbxXyLQN+VEi7BfgVcCLp2vDjwN2FPIcAbwCXABOBC0m/II7s9b53u42Ak0m/KmeRviDyr11y+RaQBp4dSQo0N2dt9NFe73tF7TSDNPDxxGy980lfvtf227HUTjvl0s8k/TqvNc5rLHA38DlSB4wppEGTa4CBXu97C221FenHx0nA/cB/5j5vNVI79fK7qeeNtqG/gH2BO7L/5C+QRsNvWsizHLiykLZ99mX6CrAS+Amwc43yjyfNnr2GdEo7tdf7XEUbkQbgxQivabl8P8r+c7wK/CH7wjim1/tcYTtNBRaSZlv4Y/YFcj6wRT8eS622Uy59EXDLCOVuSbr/90zWRiuyL9+Der3PLbbT+Dr/h8aP1E69/G7y5J1mZlYJ38MxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpX4/3wikDlpOrGeAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHjVJREFUeJzt3XvUHFWd7vHvw0UIt3APDDJE8BJhZHnkFWEOI4ncwzlyEU0WembFQaMeFWYWOiAiBHRYBkdAF+MClk44nNGEGWA4wyWEcHnDXQgSxEkCBg13EZyXxBiIQH7nj13BSr39dlffqvN2ns9avd7uXbt27dqp9K+rau9digjMzMy6bZNeV8DMzDYODjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDGrQ9IMSYPZ+0FJM5pcf6KkKJY1Qt4bJT1WZ/mlkoYkbVFy2++UFJKObqbOZt3igGO24ZgN/IWk/YoLJG0KnARcFxFrKq+ZWQc44JhtOP4fsBqYWmPZJGAcKSiZjUoOOGYtknSwpP+Q9LykP0haJOmTrZYXEauAG4EpNRZPBV4E7sy2vYekWZJ+LelVSU9IOk/S5nXqu1l2ie3zhfRvSfpNIW0vSVdnl/BWS5or6V2t7psZwGa9roDZhiwiZuTeTyws3gu4F7gMeA3478AsSWsjYna2ziCgYll1zAY+IemAiHgYIAsiJwA/jog3s3y7AC8Dfwu8AkwAzgV2Br7Y5G6uR9LO2X69CEzP9u0sYL6k9/iSnrXKAcesRRExZ917SQLuAt4OfJbWL33NJQWQqcDDWdpRwI75MiNiEbAot/17gVeByySdFhFvtLh9gNOBLYDDIuKVrPz7gOXANODyNsq2jZgvqZm1SNIOkr4v6Sng9ew1HXh3q2VmZw//TjrLUZY8BXgKeCC37U0knS5piaRXs23/H2AMKei143BgHrAquwy3GbAC+Bkw0GbZthFzwDFr3ZWkYPAd4Ejgg8A/A1u2We5s4M+BgyVtCRwHzI71p3Y/HZgJ/BvwUeBA4NRsWbvb3xn4JH8KouteHwb2bLNs24j5kppZC7JAcCzwpYi4LJfeiR9xd5Dun0wFdge2Zfgluo8DcyLinNy2929Q7pvAG8DbCuk7Fj7/F/AIcEGNMlY22IbZiBxwzFqzBbAp8NYNdEnbks422nrIVES8KenfSEFlD2BJRPy8kG1MftuZuj3kIiIkPQe8N1fnTYGPFLLeTjqreswdBKyTHHDMWhARKyQ9BJwjaSWwFjiTdK9juw5sYjbwJVLvtHNqLJ8PfEHSQuBXwF8D40uU++/AdEmPku4LfRbYqpDnH4GTgTskXQo8D+wGHAoMRsS/Nr03ZjjgmLXjZOAK4Crgd8ClpC/vL3Wg7PtJvcLGA3NqLD8X2Il02SuAa4C/A65vUO45pHs0FwB/BL4PLAY+sy5DRPxW0kHAPwCXANsDLwB3AyNOvWPWiKp+xLSkdwJfBQ4C/gK4u8b4hlrrjSUd/MeTOjvcCJwaEb8r5DsO+BbwLtIvv/Mi4upO7oOZmTWvF73U9gMmA09kr7KuBiaSfolNI/UIWu/XnKRDgGtJo7GPAW4CZks6st1Km5lZe3pxhrNJRKzN3l8D7NzoDEfSwcB9wKERcVeWdiDwU+CIiLgtS5sHbB4RH8mtezOwXUQc0o39MTOzcio/w1kXbJp0DPDiumCTlfMg8OtsGdmU7ZOA4g3NOaTxDGNbq7GZmXXCaBn4OQFYWiN9SbYMYB9g8xr5lpD2s+XR32Zm1r7R0kttB9L8UkVDwN65PNTIN1RYvh5J00nTkTBmzJgD9tyzMwOp165dyyabjJZ43jtup3LcTuW4ncrpZDs98cQTL0fELmXyjpaAA7UH06lGevGzRkhPiRFXkLq2MjAwEAsXLmynjm8ZHBxk4sSJHSmrn7mdynE7leN2KqeT7ZTNJVjKaPkpMEQaC1C0PX86oxnKpRXzQO0zJDMzq8hoCThL+dO9mrz8vZ0nSRMMFvNNII0Cb6YLtpmZddhoCThzgd2ycTYASBog3b+ZC29N634naf6pvCnA/RGxoqK6mplZDZXfw5G0FWngJ6SJCbeTdFL2+eaIWC1pGbAgIk4BiIj7szE2V0n6CumMZSZwz7oxOJlvAoOSLiENCp2cvY7u+o6ZmVldveg0sCvpGR556z6/gzR/1GakmXjzpgIXk5438tbUNvkMEXFPFry+BXyBNE7n5Ii4tYP1NzOzFlQecCJiOX/qOTZSnvE10l4BPp296q17PY0nMDSznPFn3tQwz/JvH1tBTayfjZZ7OGZmNso54JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklKg84kvaVdLuk1ZKel3S+pE0brDNDUozw+lou35Uj5JnQ/T0zM7N6NqtyY5J2AG4DFgPHAfsA3yUFvrPrrPpD4JZC2vHAGcDcQvpS4NOFtOWt1djMzDql0oADfB4YA5wYESuB+ZK2A2ZIujBLGyYingWezadJ+gawNCIWFbL/ISIe6ELdzcysDVVfUjsGmFcILHNIQejQsoVI2hE4Apjd2eqZmVm3VB1wJpAueb0lIp4GVmfLyjoJ2JwUrIr2lbRS0hpJ90gqHcjMzKx7FBHVbUx6HfhqRFxSSH8WuCoizipZzh3A2Ig4oJB+GvBH0j2iXYDTgQOAQyLiwRHKmg5MBxg3btwBc+bUimHNW7VqFdtss01Hyupnbqdyut1Ojz23omGe9+0xtmvb7xQfT+V0sp0mTZr0cEQMlMlb9T0cgFoRTiOkD88o7U66/HbGsIIjvlfIexMp+JxF6mQwvDIRVwBXAAwMDMTEiRPLVKOhwcFBOlVWP3M7ldPtdpp25k0N8yz/ZPe23yk+nsrpVTtVfUltCNi+RvpY4JWSZXyCFKCubpQxIl4FbgY+ULaCZmbWHVUHnKUU7tVI2hPYmsK9nTqmAvdExDNNbLe664ZmZlZT1QFnLnCUpG1zaVOAV4EFjVaWNB44iJK90ySNIfWMe7jZipqZWWdVHXAuA9YA10k6PLthPwO4KN9VWtIyST+qsf5U4A3gmuICSWMl3S3pc5IOkzQFuBPYA7igC/tiZmZNqLTTQEQMSToMuBS4gXTf5mJS0CnWq9Z0N1OB2yPipRrL1gAvkWYs2BV4DbgfODQiFnZkB8zMrGWV91KLiMXARxrkGT9C+vvrrPMacGJblTMzs67xbNFmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVommAo6kWtPNmJmZNdTsGc5zki6U9N6u1MbMzPpWswHncuAk4BeSfippuqTtulAvMzPrM00FnIg4NyL2Bo4AHgcuAl6Q9GNJh3ejgmZm1h9a6jQQEXdExF8DuwFfBt4DzJO0XNIMSX/WyUqamdno124vtQHgw6THRg8BdwOfAZZJ+lSbZZuZWR9pOuBI2kvSuZKeBG4Hdgf+BviziPhfwF6kez3f6WhNzcxsVGvqAWyS7iCd0TwLXAnMioin8nki4k1JPwFO61Qlzcxs9Gv2iZ8vA5OB+RERdfItAt7Rcq3MzKzvNHtJ7VLgvlrBRtI2kj4MEBGvF898zMxs49ZswLkT2HeEZe/JlpuZmQ3TbMBRnWXbAKvbqIuZmfWxhvdwsstkE3NJn5F0dCHblsCxwGOdq5qZmfWTMp0GPkQa3AkQwMeBNwp5/ggsBb7auaqZmVk/aRhwIuI7ZGNqJP0aOCEiFnW7YmZm1l+a6hYdEe7qbGZmLSlzD2cycE9ErMze1xURN3ekZmZm1lfKnOHcCBwEPJi9D0burRaAH9JmZmbDlAk47wBeyL03MzNrWplOA0/Vem9mZtaMMvdwtmqmwIjw4E8zMxumzCW1VaR7M2X5Ho6ZmQ1TJuD8Dc0FHDMzs2HK3MO5soJ6mJlZn2v3EdNmZmallOk08CAwLSIWS3qIBpfXIuLATlXOzMz6R5l7OP8JvJp77/s5ZmbWtDL3cD6dez+tq7UxM7O+1fI9HCW7SKr3UDYzMzOghYAjabKk+4DXgN8Ar0m6T9KxHa+dmZn1jaYCjqTPATeQBoOeRnoY22nZ5//IlpuZmQ3T1PNwgLOAKyLiC4X0yyRdBnwduLwjNTMzs77S7CW1nYDrRlh2LbBjowIk7SvpdkmrJT0v6XxJdafDkTReUtR4zamR9zhJj0l6TdJiSVNK7ZmZmXVVs2c4dwKHAvNrLDsUuKveypJ2AG4DFgPHAfsA3yUFvrNLbP8rwL25zy8Xyj+EFPh+AJwKTAZmSxqKiFtLlG9mZl1SZuDnvrmP3wd+KGkn4Hrgt8CuwAnAMcBnGhT3eWAMcGJErATmS9oOmCHpwiytnscj4oE6y78B3BURp2af75S0H3AO4IBjZtZDZc5wfsH6gz0FfC57FZ/+eQv1Z4s+BphXCCxzgJmkM6QbStSnJklbAJNIZzZ5c4BZksZGxIpWyzczs/aUCTiTOri9CcAd+YSIeFrS6mxZo4AzS9KOpDOr2cDXI2LdLAj7AJsDSwvrLCFdsns38FB71Tczs1aVmWlgQQe3twPwSo30oWzZSNYA/0S6LLYSmAicQQoyx+XKpkb5Q4Xl65E0HZgOMG7cOAYHB+vVv7RVq1Z1rKx+5nYqp9vtdPr73miYZzT8O/l4KqdX7dRsp4G3SNoE2LKYXuKJn7XmYtMI6evKfAH4Ui5pUNKLwA8kvT8iFtUpXyOkryv7CuAKgIGBgZg4cWL92pc0ODhIp8rqZ26ncrrdTtPOvKlhnuWf7N72O8XHUzm9aqdmB35K0hmSlgGvA7+v8apnCNi+RvpYap/51HNN9vcDubKpUf66z82Wb2ZmHdTsOJxTgTOBH5HOHP4BOB94AlhOdmmqjqWkezVvkbQnsDXD7700EoW/T5KC4IRCvgnA2qyOZmbWI80GnM8C5wIXZp+vj4jzgP1IAeNdDdafCxwladtc2hTS4w+avVd0Uvb3YYCIWEMaJ/TxQr4pwP3uoWZm1lvN3sN5B7AoIt6U9DrZ5aqIWCvpB8APSWdAI7mMdJZ0naSZwN7ADOCifFfp7JLdgog4Jfs8A9iWNOhzJfBh4KvAdRHx81z53yTd37mENE5ocvY6usn9NDOzDmv2DOd3wDbZ+6eB/5ZbtgNpUOeIImIIOIw0VucG4DzgYtJZU95mrD+eZylpnM4s4GbgZOA72d98+feQznwOB+YBHwVO9iwDZma91+wZzr3AB0lf+j8hzRCwI/BH4IvA7Y0KiIjFwEca5Blf+DyHNICzoYi4nnR2Y2ZmG5BmA84MYI/s/QWkS2rTSGc284Evd6piZmbWX5oKOBHxOPB49n4N6Vk4p3WhXmZm1mfaGfj5dmB34PmIeK5zVTIzs37UyiOmvyDpGeAp4KfA05KelfS/O147MzPrG83ONHAOcClpPM2xwED2dy7w/Wy5mZnZMM1eUvsicEFEfKOQfks2t9kXSTMPmJmZrafZS2pjGPmpnguoMZmnmZkZNB9wrgdOHGHZx4Ab26uOmZn1qzKPmJ6c+zgXuFDSeIY/Yno/4O87X0UzM+sHZe7h3MjwR0nvARxVI++/kJ7EaWZmtp4yAecdXa+FmZn1vTKPmH6qioqYmVl/a3qmAUmbkToIHALsCPwXcDfpUQGNH4xuZmYbpaYCjqRdgVuB/UlP+HwROJg0/uZRSUdGxEudrqSZmY1+zXaLvgjYCfhQROwdEQdHxN7Ah7L0izpdQTMz6w/NBpzJwBkR8VA+Mfv8NdI0N2ZmZsM0G3C2AH4/wrLfA29rrzpmZtavmg04DwBnSNo6n5h9PiNbbmZmNkyzvdROB+4EnpF0K6nTwK6kQaACJna0dmZm1jeaOsOJiEXAu4ArgF2AI0gB5zLgXRHxaMdraGZmfaH0GY6kzYEDgV9HxJndq5KZmfWjZs5w3gTuAN7bpbqYmVkfKx1wImIt8EtgXPeqY2Zm/arZXmpfB86R9L5uVMbMzPpXs73UzibNKLBI0nOkXmqRzxARB3aobmZm1keaDTi/yF5mZmZNKRVwJI0hTWvzC+A3wG0R8WI3K2ZmZv2lzCOm9wZuA8bnkldK+kRE3NqtipmZWX8p02ngQmAt8FfAVsB+wCPA5V2sl5mZ9ZkyAedg4OyIuDciXouIJcDngD+XtHt3q2dmZv2iTMDZHfhVIe1J0txpu3W8RmZm1pfKjsOJxlnMzMxGVrZb9DxJb9RIv72YHhG7tl8tMzPrN2UCznldr4WZmfW9hgEnIhxwzMysbc3OpWZmZtYSBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0pUHnAk7SvpdkmrJT0v6XxJmzZY54OSZklalq33uKRzJW1ZyDdDUtR4Hd3dvTIzs0aafQBbWyTtQHrUwWLgOGAf4LukwHd2nVWnZHlnAr8E9ge+mf39WCHvCqAYYJa0W3czM2tPpQEH+DwwBjgxIlYC8yVtB8yQdGGWVsvMiHgp93lQ0mvA5ZL2ioincsveiIgHulN9MzNrVdWX1I4B5hUCyxxSEDp0pJUKwWadR7K/nrvNzGwUqDrgTACW5hMi4mlgdbasGX9JejDc44X07SW9LOl1SY9IOrHl2pqZWccooronD0h6HfhqRFxSSH8WuCoizipZzm7Az4GbI2JaLv1TpDOeRcA2pAfFTQY+FhHXjVDWdGA6wLhx4w6YM2dOs7tV06pVq9hmm206UlY/czuV0+12euy5FQ3zvG+PsV3bfqf4eCqnk+00adKkhyNioEzeXgScr0TE9wrpzwFXRsTXS5TxNlLHg7cDB0TEUJ28Au4DxkTE+xuVPTAwEAsXLmyUrZTBwUEmTpzYkbL6mdupnG630/gzb2qYZ/m3j+3a9jvFx1M5nWwnSaUDTtWX1IaA7WukjwVeabRyFkCuAvYDJtcLNgCRoul1wP6Nul6bmVl3Vd1LbSmFezWS9gS2pnBvZwQXk7pTHxERZfKv4yeWmpn1WNVnOHOBoyRtm0ubArwKLKi3oqSvAV8GPhUR95TZWHZGdALwaES82VqVzcysE6o+w7kMOBW4TtJMYG9gBnBRvqu0pGXAgog4Jft8MnABcCXwnKSDcmU+ua7btKQFwLWks6Wtgc8CBwHHd3e3zMyskUoDTkQMSToMuBS4gXTf5mJS0CnWK3/P5cjs77TslfdpUiACWAb8LbA7qcv0z4BjI2JuJ+pvZmatq/oMh4hYDHykQZ7xhc/TGB5oaq13ShtVMzOzLvJs0WZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6tE5QFH0r6Sbpe0WtLzks6XtGmJ9cZKmiVpSNIKST+WtFONfMdJekzSa5IWS5rSnT0xM7NmVBpwJO0A3AYEcBxwPnA6cF6J1a8GJgKfAaYBHwSuL5R/CHAtcCdwDHATMFvSkR3ZATMza9lmFW/v88AY4MSIWAnMl7QdMEPShVnaMJIOBo4CDo2Iu7K054CfSjo8Im7Lsn4DuCsiTs0+3ylpP+Ac4Nbu7ZaZNWP8mTc1zLP828dWUBOrUtUB5xhgXiGwzAFmAocCN9RZ78V1wQYgIh6U9Ots2W2StgAmAacW1p0DzJI0NiJWdGg/zLqq+IV8+vveYFouzV/GNhpVHXAmAHfkEyLiaUmrs2UjBZwJwNIa6UuyZQD7AJvXyLeEdOnw3cBDrVXbNmaNfo37y3/D5X+7DUvVAWcH4JUa6UPZslbW2zuXhxr5hgrL1yNpOjA9+7hK0uN16tGMnYGXO1RWPxv17aSZ3d/GqYV2qmKbRVVvs8XtNXU89aIdNxCd/H+3V9mMVQccSB0GijRCeivrFT+rzvpExBXAFQ223TRJCyNioNPl9hu3Uzlup3LcTuX0qp2q7hY9BGxfI30stc9gGq23fW69oVxaMQ8Nyjczsy6rOuAs5U/3XACQtCewNbXv0Yy4XiZ/b+dJ4PUa+SYAa4EnWqivmZl1SNUBZy5wlKRtc2lTgFeBBQ3W2y0bZwOApAHS/Zu5ABGxhjT+5uOFdacA9/egh1rHL9P1KbdTOW6nctxO5fSknRTR6NZJBzeWBn4uBn5B6gq9N3ARcElEnJ3LtwxYEBGn5NJuIfU0+wrpjGUm8NuI+KtcnkOAQeBS0qDQyVn+oyPC43DMzHqo0jOciBgCDgM2JXWBPg+4GDi3kHWzLE/eVNJZ0D8DVwEPAycUyr8HOAk4HJgHfBQ42cHGzKz3Kj3DMTOzjZdni27Ak4021kobSfpg1j7LsvUel3SupC0L+WZIihqvo7u7V53XYjuNH2H/59TIO+qPJWi5nUY6TkLS13L5rhwhT61OSRs0Se+UdLmkRyW9KWmw5Ho9+27qxTicUSM32ehi0mSj+wDfJQXqs+usCmmy0feQJhtdd8/peqB4z+la4AekKXkmkyYbHRotlwHbaKMpWd6ZwC+B/YFvZn8/Vsi7AigGmCXt1r1KbR5LkO5F3pv7vN6gvX44lqCtdvohcEsh7XjgDLKORTlLgU8X0pa3VuOe2o/07/wA8LYm1uvdd1NE+DXCC/gaaXzPdrm0vwdW59NqrHcwaaDph3NpB2Zph+fS5gF3FNa9Gbin1/teQRvtUiNtetZGe+XSZgAv93o/e9hO47M2+R8Nyh/1x1I77TRCWTcBSwppVwILe72fHWqrTXLvrwEGS6zT0+8mX1Krb6TJRseQJhutt96wyUaBdZONkpts9F8L684BDpY0tv3qV6KlNoqIl2okP5L93bVz1dtgtHosNdRHxxJ0qJ0k7QgcAczubPU2HBGxtoXVevrd5IBT37BJQyPiadKvrXrXfDs12eho0Gob1fKXpFP84nx220t6WdLrkh6RdGLLte2ddttpVnad/gVJF0kak1vWL8cSdO54OonUJsPudQH7SlopaY2keyS1FfBHmZ5+Nzng1NeNyUZ3yOWhRr66k41ugFpto/VI2g34OvB/C79ul5EuqXyCdG/neeDaURh0Wm2nNcA/AaeQhhRcDnyB9b9I++VYgg4dT6RhFD+LiOIMI4+QHvr4P4FPkoZfzJd0YAt1HY16+t3kTgONbVCTjW6gWm2jlFF6G+n0fRXwd+sVHPEvhbw3APeRHqp3XSuV7aGm2ykiXgC+lEsalPQi8ANJ74+IRXXKH43HErR/PO1Ouvx2xrCCI75XyHsTqYPCWaROBhuDnn03+QynPk822lirbQSAJJEG8u4HTI40OHhEke5eXgfsX6Z7+gakrXYquCb7+4Fc2dQof7QdS9CZdvoE6cvx6kYZI+JV0s3wDzTK2yd6+t3kgFOfJxttrNU2WudiUvfX4yKiTP51Rtuv9nbbKS8Kf/vlWILOtNNUUm+qZ5rY7mg7nlrV0+8mB5z6NqbJRlvVahuRDcj7MvCpSNMSNZSdEZ0APBoRb7ZW5Z5ouZ1qOCn7+zD01bEEbbaTpPHAQZTsnZZ1vjiGrC03Ar39bup1X/IN+UW6OfYCMJ80P9t00n2GbxXyLQN+VEi7BfgVcCLp2vDjwN2FPIcAbwCXABOBC0m/II7s9b53u42Ak0m/KmeRviDyr11y+RaQBp4dSQo0N2dt9NFe73tF7TSDNPDxxGy980lfvtf227HUTjvl0s8k/TqvNc5rLHA38DlSB4wppEGTa4CBXu97C221FenHx0nA/cB/5j5vNVI79fK7qeeNtqG/gH2BO7L/5C+QRsNvWsizHLiykLZ99mX6CrAS+Amwc43yjyfNnr2GdEo7tdf7XEUbkQbgxQivabl8P8r+c7wK/CH7wjim1/tcYTtNBRaSZlv4Y/YFcj6wRT8eS622Uy59EXDLCOVuSbr/90zWRiuyL9+Der3PLbbT+Dr/h8aP1E69/G7y5J1mZlYJ38MxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpX4/3wikDlpOrGeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -342,7 +342,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmYXFWd//H3h0WIBMKagAwSQTHDMqKEzWGkIyBbMIgg62gUDCqy+CATQISwTJyAbBPGgfwcCQ5CcIBhhgAJa4LgBkiYIBAMGlYTWQIhJuzf3x/nNhTVVdW3qqtudVc+r+epp7vOPefW91RV17fvueeeUkRgZmbWaiu1OwAzM1sxOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCceaStIESVHldkTOfWyR7WftsvKx2X4Gtyb6fHH0cZ/XSpqVo94qkk6Q9JCk5ZIWS7pZ0i4NPm5/eU7Hlr0n/iJppqRP5WjblbXZuohYrfmccKwVXgF2rnCbkbP9FsAZQPkH/U3ZfpY1J8yG42gpSSsDNwATgf8F9gHGAm8DsyQd1sBu+8tz2u2z2eMeDWwA3CXpQ720+V3W5okWx2Ytskq7A7CO9FZE/LrZO42I54Hnm73ffuhYYF9g74goTdL/I2kaMEXS7Ih4tq8P1Mbn9L6IWAog6X7gSeBw4LzyipIErBYRS4Cmv6+sOD7CsbaQdIqk+ZJek7RI0gxJG0rqAm7Mqv0pG0JZkLV53/CPpOHZ/UMkXS5piaRnuofuJP2TpOckPS9pkqSVSh5/hKRpkp6WtEzS77MhrJWy7VXjyLZ/OGv/UtZ+pqSPl/Vxk2wYbLmkBZKOyvn0HA/cVZZsun0PWB04suRxFkj6oaTvS1ooaamkn0ka0ltfKg2pSVpf0hWSXsz6NkvSyLK+dT/md7LnfHH2fNR9NBgRT5OS3vBs3xMkvSBpF0n3Aa8BB1UaUpO0cvZeelzS61ksU8tiHSPp/uy9tlDSuZJWrTdO6zsf4VhLSOrx3oqIt7JtXwZOBcYDvwfWIw2xrEEaNvku8EPgAODPwOu9PNwk4GfAF4GvAVdI+iSwaXZ/O+Ac4EFgWtZmY2Be1u5VYFvgTGAQ8INacUhaF7gHeBH4Bmk46mTgdklbRMTy7L/y/wHWJyWH17L9rwv8ocbztgnpg/fCStsj4glJc4HPlG06FJgPfB3YCDgX+DFwUK2+VHED8NGszQvASaQhr09GxPySel8C/g8YB/wNcAFpGPBbNfbdg6Q1Sc/LwpLiDwJXZP14HHgu61e5y4AvZ/VmZ/s5sGTfXwKuzuqdCmxOen1XyvpnRYoI33xr2g2YAESV2/CsziXAdTX2Mbq0fkn52Kx8cHZ/eHb/8pI6awFvkj7UVy4p/y1wTZXHE+mfr1OBP+aI42xSslm3pGwd0rmrY7L7+2RtdyypsynwFjCrRt93ytqNqVHnBuDRkvsLgJe6n5es7HDgHeBv63xO98ru71pSZw3SEchlZY/5BLBKSdlFwMJe3h/djzcke843Aa7Jnpdty95DY8radmXlW2f3R2T3j6vxuj5Z+v7Iyr8GLAfWa/ffy4p28xGOtcIrwO4Vyp/Lfs4BjpR0Jumk9QMR8XYfHu+O7l8iYomk54HZZfucD3y4+46k1YFTSB/MHwZWLdm2SmRHY1XsDtwGLCk5knsVeADoHnraAVgUEb8pie1JSQ800L88bovsnEjmeuBKYHvg0Tr2swPwfETM7i6IiL9Kmg6Uz5C7q+x5egQYKukDEfFGL4/zcsnvLwBfi4g5JWUB3NLLPkZlP6dW2b4F6bX9edkR952kYcmtSUdFVhAnHGuFtyLi/hrbfwKsSRqKOR14UdK/AxMaTDwvl91/o0rZ6iX3JwFHkYa5fpfVHwOcltVbSnXrk45EDq6wrTv5bQj8pcL2v5D6Xk33RIBNa9TZtKRe6X7fFWlYbymVh6Fq2QhYVKF8EWm4qlSl51jAB7Lfa/kMaSjyBeDpiHinbPviHElrPeCvkSYTVLJ+9vPmKts36WX/1mROOFa47MPlQuDC7JzF4cA/kz5ELy0ojIOAyRFxbneBpH1ztn2JNF357ArbXs1+LgSGVtg+lDScU1FEPJ2d0P888K/l2yV9hPSfefljDy2rNwgYTDpfU48/l+8rM4zU72Z5sOyIrFye7015EVhD0lpVkk53vONI5+/K/SnHY1gTeZaatVVEPB0R/0Ia8toyK+7+z3b1yq2aYhAlJ86Vrn05pKxOtTjuALYCfh8R95fd5mV17gOGSdqx5DE+DPR6gSNwMbCbpM9V2HZOFvd/lJXvofdfvHkA6UO7+0gz73P6G9Kw2LuTEiR9kDRN+54csRfpzuznl6tsn0f6J2Z4hdfp/oh4sZgwrZuPcKwVVpG0U4XypyPiWUmXkf77/DXpfM8o4GOkWWuQPigAjla67mRZRMxtcoy3AcdImp/FcgywWlmdanFcABwB3ClpMulDbRiwK3BPRFxNGsZ5CPgvSeNJs9TOovIwW7nJpPNE/y3ph8As0jDckaST//8YPa/BWQ7cJOk80rDYecB/R8QjvfTlfSJipqR7gWsknUw6ivguKUH3uEamnSJinqQpwPmShgJ3ky5sPTAiDomIdySdCPynpLVI54TeADYD9s/qFX3B64qt3bMWfOusG7VnqZ2W1RkL3Ev6oF9Gmlp7ZNl+TiTNMHoLWFDSrtIstdFlbRcAPywrmwrcX3J/GPDfwBLS+YlzSVOK391/tTiy8g8Bl2dtX88e80pgq5I6HyatrrA828fRwLXUmKVW0nYV4DvZc7McWEz6wNylQt0FwPnZc78I+CtpKvDa9T6nWdkGwE+zx1xOOrG+fY7nuMe+KsSap84E4IUK5V2UzFLLylYmm11ISibP0HNW2t7AL7LnZQlp0so5lMyw862Ym7IXpDCSPkqa178TaSz6FxHRlaPdENK0y/1JQ4HTSdMhXyyrN4b0ZvoY6U14ZkRc08w+mPUn2TmfayPC15VYv9aOczhbka5ReDy75XUN6T+co0j/JW1Puh7hXUoLG14H3EX6r+Ym4OoqY+FmZlagdhzhrBTZFEhJ1wLr93aEI2ln4Jeki9Huzsp2IJ3g3CMibs/KZgKrRsRnS9reDKwVEQ2tsmvW3/kIxwaKwo9woud8+zz2Jl1Ed3fJfn5Lmta4N4Ck1Ugnn39e1nYasHP3ulJmnSYihjvZ2EAwUKZFjwAeq1D+aLYN0hpJq1ao9yipn1u0LDozM+vVQJkWvQ49r2qGNItms5I6VKi3uGz7+0gaR7owjEGDBm23ySb5Lj5+5513WGmlgZKvK+uEPoD70WprPp5Otb66Re//s/XXPtTL/cjv8ccffyEiNshTd6AkHKh85bEqlJffV432RMQUYArAyJEj4/77a63I8p5Zs2bR1dWVq25/1Ql9APej5ZT9Cc2bV7se/bgPdXI/8pP0ZN66AyWFL6byty6uzXtHNItLysrrQOUjJDMzK8hASTiP8d65mlKl53aeIC1LX15vBGmZ9nqmYJuZWZMNlIRzC7Bhdp0NANk3EG6WbSMiXiddf3NQWduDgV9FxCsFxWpmZhUUfg4nWwhwn+zuxsBakrq/oe/miFiWrW81OyKOBIiIX2XX2PxU0ndJRyyTSOtW3V6y+7OBWZIuIl0Uuk9226vlHTMzs5raMWlgKPBfZWXd9z9CWqNpFdIaSaUOIS1p/xNKlrYprRAR92TJ6xzgm6TrdA6LiFubGL/ZiqXgi8OtcxWecCJiAe/NHKtWZ3iFspeBr2a3Wm1voGzJGzPrafjJNzXcdsG/5P3qILP3DJRzOGZmNsA54ZhZTTdOPZ4bpx7f7jCsAwykCz/NrA22WfREu0OwDuEjHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQniWmpnVdNUn9mx3CNYhnHDMrKZT9zq23SFYh/CQmpmZFcIJx8xq2nrhfLZeOL/dYVgH8JCamdU0/YoTABg+fnqbI7GBzkc4ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeFq0mdU0+isXtTsE6xBOOGZW08MbfrTdIViH8JCamZkVwgnHzGqaOGMyE2dMbncY1gGccMyspsMemslhD81sdxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4Qs/zaymucM2b3cI1iGccMyspv3GXtzuEKxDeEjNzMwK4YRjZmaFcMIxs5oWTBrNgkmj2x2GdQAnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIbzSgJnVdMqe3253CNYhnHDMrKart92r3SFYhyh8SE3SlpLukLRM0nOSzpK0ci9tJkiKKrdTSupNrVJnROt7ZmZmtRR6hCNpHeB24BFgDLA5cD4p8Z1Wo+mPgRllZfsD44FbysofA75aVragsYjN7NA56U/PRzrWV0UPqX0DGAQcEBFLgNskrQVMkHRuVtZDRDwDPFNaJun7wGMRMaes+l8j4tctiN1shfSDmZcATjjWd0UPqe0NzCxLLNNISWjXvDuRtC6wB3B1c8MzM7NWKTrhjCANeb0rIp4ClmXb8joQWJWUrMptKWmJpNcl3SMpdyIzM7PWUUQU92DSm8BJEXFRWfkzwE8j4tSc+7kTGBIR25WVHw+8QTpHtAFwIrAdsEtE/LbKvsYB4wCGDRu23bRplXJYT0uXLmXw4MG56vZXndAHcD8aNffZV3LVO/aI/QGYfOUN75Zts/GQinX9WvQvRfRj1KhRD0TEyDx12zEtulKGU5XynhWljUjDb+N77Dji4rK6N5GSz6mkSQY9g4mYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ih5SWwysXaF8CPByzn18iZSgrumtYkQsB24GPpU3QDMza42iE85jlJ2rkbQJsAZl53ZqOAS4JyKeruNxixs3NDOziooeUrsFOEnSmhHxalZ2MLAcmN1bY0nDgZ2Ab+V5MEmDSDPjHmgkWDOD4eOntzsE6xBFH+FcCrwOXC9p9+yE/QTggtKp0pLmS/qPCu0PAd4Cri3fIGmIpF9IOlrSbpIOBu4CNgYmtqAvZmZWh0KPcCJisaTdgEuAG0nnbS4kJZ3yuCotd3MIcEdEPF9h2+vA86QVC4YCrwG/AnaNiPub0gEzM2tY4bPUIuIR4LO91BlepXzbGm1eAw7oU3Bm1sONU48HYL+xF/dS06w2rxZtZjVts+iJdodgHcJfwGZmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVgjPUjOzmq76xJ7tDsE6hBOOmdV06l7H9l7JLAcPqZmZWSHqSjiSKi03Y2YdbOuF89l64fx2h2EdoN4jnGclnSvpb1sSjZn1O9OvOIHpV5zQ7jCsA9SbcC4DDgQelvQbSeMkrdWCuMzMrMPUlXAi4oyI2AzYA5gHXAD8WdLPJO3eigDNzKwzNDRpICLujIgvAxuSvvL848BMSQskTZD0oWYGaWZmA19fZ6mNBD5D+troxcAvgKOA+ZKO6OO+zcysg9SdcCRtKukMSU8AdwAbAV8DPhQR/whsSjrXc15TIzUzswGtrgs/Jd1JOqJ5BpgKXB4RT5bWiYi3JV0FHN+sIM3MbOCrd6WBF4B9gNsiImrUmwN8pOGozKzfGP2Vi9odgnWIehPOJcDvKiUbSYOBT0XE3RHxJvBkj9ZmNuA8vOFH2x2CdYh6z+HcBWxZZdvHs+1mZmY91JtwVGPbYGBZH2Ixs35o4ozJTJwxud1hWAfodUhN0meArpKioyTtVVZtdWBfYG7zQjOz/uCwh2YCXjXa+i7POZwdSRd3AgRwEPBWWZ03gMeAk5oXmpmZdZJeE05EnEd2TY2kPwFfiIg5rQ7MzMw6S12z1CLCU53NzKwhec7h7APcExFLst9rioibmxKZmZl1lDxHONOBnYDfZr8H1WerBeAvaTMzsx7yJJyPAH8u+d3MViBzh23e7hCsQ+SZNPBkpd/NbMWw39iL2x2CdYg853A+WM8OI8IXf5qZWQ95htSWks7N5OVzOGZm1kOehPM16ks4ZtZBFkwaDcDw8dPbHIkNdHnO4UwtIA4zM+twff2KaTMzs1zyTBr4LTA2Ih6RdB+9DK9FxA7NCs7MzDpHnnM4vweWl/zu8zlmZla3POdwvlry+9iWRmNmZh2r4XM4SjaQVOtL2czMzIA6V4uGdxfzPA3YLmv/lqQHgH+OiJuaHJ+Ztdkpe3673SFYh6gr4Ug6GvgRcAdwPPAXYChwAPC/kr4VEZc1PUoza5urty3/gl+zxtR7hHMqMCUivllWfqmkS4HvAU44ZmbWQ73ncNYDrq+y7Tpg3d52IGlLSXdIWibpOUlnSaq5HI6k4ZKiwm1ahbpjJM2V9JqkRyQdnKtnZlbRoXNmcOicGe0OwzpAvUc4dwG7ArdV2LYrcHetxpLWAW4HHgHGAJsD55MS32k5Hv+7wL0l918o2/8upMT3I+A4YB/gakmLI+LWHPs3szI/mHkJ4KE167s8F35uWXL3X4EfS1oPuIH3zuF8AdgbOKqX3X0DGAQcEBFLgNskrQVMkHRuVlbLvIj4dY3t3wfujojjsvt3SdoKOB1wwjEza6M8RzgP8/6LPQUcnd3Kv/1zBrVXi94bmFmWWKYBk0hHSDfmiKciSasBo0hHNqWmAZdLGhIRrzS6fzMz65s8CWdUEx9vBHBnaUFEPCVpWbatt4RzuaR1SUdWVwPfi4juVRA2B1YFHitr8yhpyG4L4L6+hW9mZo3Ks9LA7CY+3jrAyxXKF2fbqnkd+DfSsNgSoAsYT0oyY0r2TYX9Ly7b/j6SxgHjAIYNG8asWbNqxf+upUuX5q7bX3VCH8D9aNSJ27zVcP1qcfq16F/6Wz/qvvCzm6SVgNXLy3N842eltdhUpbx7n38GSq8+myVpEfAjSdtGxJwa+1eV8u59TwGmAIwcOTK6urpqR98dwKxZ5K3bX3VCH8D9aNTYk/Ndp31s9vP8ue99XCw4vKtiXb8W/Ut/60dd06Kz5WzGS5oPvAm8WuFWy2Jg7QrlQ6h85FPLtdnPT5Xsmwr7775f7/7NzKyJ6j3COQ44GTgX+GfgHOBt4BDgA8DEXto/RjpX8y5JmwBr0PPcS2+i7OcTpCQ4AigdBhwBvAM8Xuf+zQx/06c1T70Xfn4dOIOUcABuiIgzga1ICeNjvbS/BdhT0polZQeTvv6g3nNFB2Y/HwCIiNdJ1wkdVFbvYOBXnqFmZtZe9R7hfASYExFvS3qTbLgqIt6R9CPgx6QjoGouJR0lXS9pErAZMAG4oHSqdDZkNzsijszuTwDWJF30uQT4DHAScH1E/F/J/s8mnd+5iHSd0D7ZzVesmZm1Wb1HOC8Cg7PfnwI+WbJtHdJFnVVFxGJgN9K1OjcCZwIXko6aSq3C+6/neYx0nc7lwM3AYcB52c/S/d9DOvLZHZgJfB44zKsMmDXuxqnHc+PU49sdhnWAeo9w7gW2J33oX0VaIWBd4A3gGNIq0jVFxCPAZ3upM7zs/jTSBZy9iogbSEc3ZtYE2yx6ot0hWIeoN+FMADbOfp9IGlIbSzqyuY33ZlCamZm9T10JJyLmAfOy318nfSeOj7XNzKxXfbnw82+AjYDnIuLZ5oVkZmadqN5JA0j6pqSngSeB3wBPSXpG0reaHp2ZmXWMelcaOB24hHQ9zb7AyOznLcC/ZtvNzMx6qHdI7RhgYkR8v6x8Rra22THAWU2JzMz6has+sWe7Q7AOUW/CGUT1b/WcjWepmXWcU/fyn7U1R73ncG4ADqiy7YuAF10yM7OK8nzF9D4ld28BzpU0nJ5fMb0V8E/ND9HM2mnrhfMBeHjDj7Y5Ehvo8gypTafnV0lvDFQa2L2S9E2cZtYhpl9xAuBVo63v8iScj7Q8CjMz63h5vmL6ySICMTOzzlb3SgOSViFNENgFWBd4CfgF6asC6vuSdDMzW2HUlXAkDQVuBf4OWAAsAnYmXX/zkKTPRcTzzQ7SzMwGvnqnRV8ArAfsGBGbRcTOEbEZsGNWfkGzAzQzs85Qb8LZBxgfEfeVFmb3TyEtc2NmZtZDvedwVgNerbLtVeADfQvHzPqb0V+5qN0hWIeoN+H8Ghgv6c6I+Gt3oaQ1gPHZdjPrIL7g05ql3oRzInAX8LSkW0mTBoaSLgIV0NXU6MzMrGPUdQ4nIuYAHwOmABsAe5ASzqXAxyLioaZHaGZtNXHGZCbOmNzuMKwD5D7CkbQqsAPwp4g4uXUhmVl/cthDMwGvGm19V88RztvAncDftigWMzPrYLkTTkS8A/wBGNa6cMzMrFPVex3O94DTJW3TimDMzKxz1TtL7TTSigJzJD1LmqUWpRUiYocmxWZmZh2k3oTzcHYzMzOrS66EI2kQaVmbh4GFwO0RsaiVgZlZ/zB32ObtDsE6RJ6vmN4MuB0YXlK8RNKXIuLWVgVmZv3DfmMvbncI1iHyTBo4F3gH+Afgg8BWwIPAZS2My8zMOkyehLMzcFpE3BsRr0XEo8DRwIclbdTa8MzMrFPkSTgbAX8sK3uCtHbahk2PyMz6lQWTRrNg0uh2h2EdIO91ONF7FTMzs+ryToueKemtCuV3lJdHxNC+h2VmZp0mT8I5s+VRmJlZx+s14USEE46ZmfVZvWupmZmZNcQJx8zMClHvWmpmtoI5Zc9vtzsE6xBOOGZW09Xb7tXuEKxDeEjNzMwK4YRjZjUdOmcGh86Z0e4wrAMUnnAkbSnpDknLJD0n6SxJK/fSZntJl0uan7WbJ+kMSauX1ZsgKSrcPCZg1qAfzLyEH8y8pN1hWAco9ByOpHVIX3XwCDAG2Bw4n5T4TqvR9OCs7iTgD8DfAWdnP79YVvcVoDzBPNrX2M3MrG+KnjTwDWAQcEBELAFuk7QWMEHSuVlZJZMi4vmS+7MkvQZcJmnTiHiyZNtbEfHr1oRvZmaNKnpIbW9gZllimUZKQrtWa1SWbLo9mP302m1mZgNA0QlnBPBYaUFEPAUsy7bV49OkL4abV1a+tqQXJL0p6UFJBzQcrZmZNY0iivvmAUlvAidFxEVl5c8AP42IU3PuZ0Pg/4CbI2JsSfkRpCOeOcBg0hfF7QN8MSKur7KvccA4gGHDhm03bdq0XH1ZunQpgwcPzlW3v+qEPoD70ai5z76Sq96xR+wPwOQrb3i3bJuNh1Ss69eifymiH6NGjXogIkbmqduOCz8rZThVKe9ZUfoA8HNgKfCd9+044sqyujcCvwROByomnIiYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ik44i4G1K5QPAV7urbEkAT8FtgL+PiIW16ofESHpemCSpJUj4u0GYjZboQ0fP73dIViHKDrhPEbZuRpJmwBrUHZup4oLSdOp94iIPPW7+RtLzczarOhJA7cAe0pas6TsYGA5MLtWQ0mnkI7uj4iIe/I8WHZE9AXgIR/dmJm1V9FHOJcCxwHXS5oEbAZMAC4onSotaT4wOyKOzO4fBkwEpgLPStqpZJ9PdE+bljQbuI50tLQG8HVgJ2D/1nbLrHPdOPV4APYbe3GbI7GBrtCEExGLJe0GXALcSDpvcyEp6ZTHVbrczeeyn2OzW6mvkhIRwHzgBGAj0pTp3wH7RsQtzYjfbEW0zaIn2h2CdYjCZ6lFxCPAZ3upM7zs/lh6JppK7Y7sQ2hmZtZCXi3azMwK4YRjZmaFcMIxM7NCOOGYmVkh2rG0jZkNIFd9Ys92h2AdwgnHzGo6da9je69kloOH1MzMrBBOOGZW09YL57P1wvntDsM6gIfUzKym6VecAHjVaOs7H+GYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhadFmVtPor1zU7hCsQzjhmFlND2/40XaHYB3CQ2pmZlYIJxwzq2nijMlMnDG53WFYB3DCMbOaDntoJoc9NLPdYVgHcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEL/w0s5rmDtu83SFYh3DCMbOa9ht7cbtDsA7hITUzMyuEE46ZmRXCCcfMalowaTQLJo1udxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZlbTKXt+u90hWIdwwjGzmq7edq92h2AdwkNqZmZWCCccM6vp0DkzOHTOjHaHYR3AQ2pmVtMPZl4CeGjN+s5HOGZmVojCE46kLSXdIWmZpOcknSVp5Rzthki6XNJiSa9I+pmk9SrUGyNprqTXJD0i6eDW9MTMzOpRaMKRtA5wOxDAGOAs4ETgzBzNrwG6gKOAscD2wA1l+98FuA64C9gbuAm4WtLnmtIBMzNrWNHncL4BDAIOiIglwG2S1gImSDo3K+tB0s7AnsCuEXF3VvYs8BtJu0fE7VnV7wN3R8Rx2f27JG0FnA7c2rpumVktw0++qeG2C/5l3yZGYu1UdMLZG5hZllimAZOAXYEba7Rb1J1sACLit5L+lG27XdJqwCjguLK204DLJQ2JiFea1A+zppv77CuMbeCD2R/INlAUnXBGAHeWFkTEU5KWZduqJZwRwGMVyh/NtgFsDqxaod6jpKHDLYD7GgvbVjT+j3zg8WvW/xWdcNYBXq5Qvjjb1ki7zUrqUKHe4rLt7yNpHDAuu7tU0rwacZRaH3ghZ93+qhP6AP2sH5rUcNOG+tGHx8u3/+5fSr71s8ZjNv21aHX/qjxGv3pP9UER/dg0b8V2XIcTFcpUpbyRduX3VaU8FUZMAab08tg9H1i6PyJG1tuuP+mEPoD70Z90Qh/A/WiVoqdFLwbWrlA+hMpHML21W7uk3eKSsvI69LJ/MzNrsaITzmO8d84FAEmbAGtQ+RxN1XaZ0nM7TwBvVqg3AngHeLyBeM3MrEmKTji3AHtKWrOk7GBgOTC7l3YbZtfZACBpJOn8zS0AEfE66fqbg8raHgz8qgUz1OoehuuHOqEP4H70J53QB3A/WkIRvZ06aeKDpQs/HwEeJk2F3gy4ALgoIk4rqTcfmB0RR5aUzSDNNPusb93LAAAGwUlEQVQu6YhlEvCXiPiHkjq7ALOAS0gXhe6T1d8rInwdjplZGxV6hBMRi4HdgJVJU6DPBC4EziirukpWp9QhpKOgnwA/BR4AvlC2/3uAA4HdgZnA54HDnGzMzNqv0CMcMzNbcXm16JwkfV3SH7JFQR+QtFud7T8p6W1JbZ3b30g/JB0t6TZJi7KFU+8tYn26Vi/0WpRG+iFp+6wP87N28ySdIWn1ouKuEFNDr0dJ+5Wy91xIGt17i+brSx8kHSDpPknLJb0oaYakNVodc5VYGv3bGCnp1iz+lyTdLmnHImIGICJ86+VGGs57m7RW2yjSkN5yYOuc7QXcCywEXhho/QCeIp183B/YA7iCdB7t8y2MdR3gOdJir3uQ1uH7K3BOjrYzgD8BXyQNuz4O/KJNz3lD/QB+CNwNfJ20aO1xwCvAdQOpH2X7GJf9DQQweiD1gbRo8GukBYe7svfVZGDIQOkHsAnp8pA7gX2z26zsfbVpIbEX/WQNxBswD/hJyf2VgLnAlTnb/yMwH5jY5oTTUD+A9SuU/RK4q4WxnkK6tmqtkrJ/ApaVllVot3P2gfaZkrIdsrLd2/CcN9qPDSqUjcv6selA6UdJ3XWA54Ej25hwGn0t1gdeBb5edMxN7sc3SP9wrl32urwNfLOI2D2k1gtJm5Fmx/28uywi3gH+i7RwaG/t1yTNqPsu8EaLwuxVX/oREZWGAR8EhjYzxjLVFnodRFrotVa7Hgu9ko54en29WqChfkTE8xWKH8x+tvJ5r6bR16Pb2aSj/DtaEFtejfbhS9nPK1oVWJ0a7ceqwFvA0pKypVmZKrZoMiec3nVfSFppUdB1JW3QS/vTgUcj4oZe6rVaX/tRbmfSFPdW6bFga0Q8RfovrtJFwFXbZUoXei1So/2o5NOkocy86/01U8P9kPR3wFdJ/3S1U6N92JH0nB8p6RlJb0r6jaRPty7Umhrtx3VZnfMlDZU0lDRLeDHpH8+Wc8LpXUOLggJI+jhwDHBCC+KqV8P9KCfpa8AngR81Ia5qWrHQa+4+NlFT4pG0IfA94D+jyvdGtVhf+jEZ+LeImN/0qOrTaB82BD4OnAaMB/YjnTOZIWlYs4PMoaF+RMRzpHO3XwQWZbcDgD2rHFE3XTsW72w7SUOAjXqrFxGl/0XUtSho5mJgakTMrS/CfArsR+ljbkf6ALk4Iu7K06YPWr3Qa1H6FI+kD5CGQpcC32liXPWqux+SDiF9WO/XqqDq1MhrsRIwGDgoImYASPol8CTwbdIknKI18lpsBFxLuobxqKz4GOAmSZ/OjpJaaoVMOKTlb/5fjnri/YuCli6PU3NRUEl7A38PfFtSd93V0yatDSyPtBxPX7S8H+/bSToPdBNpHP7E/GE2pC8LvVYaHixd6LVIjfYDSG8W0mzCrYC/j3TxdDvU3Q9JqwLnkc5hrpS979fKNq8hac2IeLUVwVbR6GvxUvZzVndBRCyR9ACwZdOiy6/RfpxE+sw/MCLeBJB0J/AH0nBn+ZdXNt0KOaQWET+OCPV2y6p3Hx1UWhT0pRqHoh8n/Vf0B9IbZDHpcHzd7PeTBkg/AMjGe2eS/qs7JCLe7mv8vWjlQq9FarQf3S4ExgBjyo5Ui9ZIP9YA/oa0fFX338BD2bZpvDcJoiiNvhaPko4cyk+si3ROrWiN9mME8PvuZAMQEW8Avyd9gWXLrZAJpx4R8UfSdRzvLgoqaaXs/i01ml5LGi8tvV0BLMl+/88WhVxRH/qBpMHAzdnd0RGxrFVxlmjZQq8Fa7QfSDoFOBY4ItKyTe3USD+W0vNv4NBs26nA4a0JtapGX4vppOQyqrsgG87ejvcSaJEa7ceTwNbZEC0AklYDtgYWtCDOnto5n3yg3Eh/JG+TThqOAqZSdsEkaTriW8CuNfYzgfZeh9NQP4BbSVO6DwN2Kr21MNZ1gD8Dt5HWxhtH+gA7p6zefOA/yspmAH8knRDdnzTDqJ0Xftbdj+y5DuDy8uecCtfo9Nd+VNjPcNp74Wej76kbsrZfIV0wOZt0XdE6A6UfpAT5JmlYfF9gNCl5vQl8opDYi36yBuqNdMX3fOB14HfAbmXbu7I/pK4a+5hAGxNOo/3I7le8tTjWLUlXRS/P/sDOBlYuq7OANDGjtGzt7IP6ZdIR5VVUuHi1wOe87n6Q/hmo9ryPHSj9qLCPtiWcPr6nBgP/DryYtb0d2GYgvaeyst1IK1i8lN1m1/rMavbNi3eamVkhfA7HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPqkbRjapwSQAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXFWd//H3h0WIBMKagAwSQTHDMqKEzWGkIyBbMIgg62gUDCqy+CATQISwTJyAbBPGgfwcCQ5CcIBhhgAJa4LgBkiYIBAMGlYTWQIhJuzf3x/nNhTVVdW3qqtudVc+r+epp7vOPefW91RV17fvueeeUkRgZmbWaiu1OwAzM1sxOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCceaStIESVHldkTOfWyR7WftsvKx2X4Gtyb6fHH0cZ/XSpqVo94qkk6Q9JCk5ZIWS7pZ0i4NPm5/eU7Hlr0n/iJppqRP5WjblbXZuohYrfmccKwVXgF2rnCbkbP9FsAZQPkH/U3ZfpY1J8yG42gpSSsDNwATgf8F9gHGAm8DsyQd1sBu+8tz2u2z2eMeDWwA3CXpQ720+V3W5okWx2Ytskq7A7CO9FZE/LrZO42I54Hnm73ffuhYYF9g74goTdL/I2kaMEXS7Ih4tq8P1Mbn9L6IWAog6X7gSeBw4LzyipIErBYRS4Cmv6+sOD7CsbaQdIqk+ZJek7RI0gxJG0rqAm7Mqv0pG0JZkLV53/CPpOHZ/UMkXS5piaRnuofuJP2TpOckPS9pkqSVSh5/hKRpkp6WtEzS77MhrJWy7VXjyLZ/OGv/UtZ+pqSPl/Vxk2wYbLmkBZKOyvn0HA/cVZZsun0PWB04suRxFkj6oaTvS1ooaamkn0ka0ltfKg2pSVpf0hWSXsz6NkvSyLK+dT/md7LnfHH2fNR9NBgRT5OS3vBs3xMkvSBpF0n3Aa8BB1UaUpO0cvZeelzS61ksU8tiHSPp/uy9tlDSuZJWrTdO6zsf4VhLSOrx3oqIt7JtXwZOBcYDvwfWIw2xrEEaNvku8EPgAODPwOu9PNwk4GfAF4GvAVdI+iSwaXZ/O+Ac4EFgWtZmY2Be1u5VYFvgTGAQ8INacUhaF7gHeBH4Bmk46mTgdklbRMTy7L/y/wHWJyWH17L9rwv8ocbztgnpg/fCStsj4glJc4HPlG06FJgPfB3YCDgX+DFwUK2+VHED8NGszQvASaQhr09GxPySel8C/g8YB/wNcAFpGPBbNfbdg6Q1Sc/LwpLiDwJXZP14HHgu61e5y4AvZ/VmZ/s5sGTfXwKuzuqdCmxOen1XyvpnRYoI33xr2g2YAESV2/CsziXAdTX2Mbq0fkn52Kx8cHZ/eHb/8pI6awFvkj7UVy4p/y1wTZXHE+mfr1OBP+aI42xSslm3pGwd0rmrY7L7+2RtdyypsynwFjCrRt93ytqNqVHnBuDRkvsLgJe6n5es7HDgHeBv63xO98ru71pSZw3SEchlZY/5BLBKSdlFwMJe3h/djzcke843Aa7Jnpdty95DY8radmXlW2f3R2T3j6vxuj5Z+v7Iyr8GLAfWa/ffy4p28xGOtcIrwO4Vyp/Lfs4BjpR0Jumk9QMR8XYfHu+O7l8iYomk54HZZfucD3y4+46k1YFTSB/MHwZWLdm2SmRHY1XsDtwGLCk5knsVeADoHnraAVgUEb8pie1JSQ800L88bovsnEjmeuBKYHvg0Tr2swPwfETM7i6IiL9Kmg6Uz5C7q+x5egQYKukDEfFGL4/zcsnvLwBfi4g5JWUB3NLLPkZlP6dW2b4F6bX9edkR952kYcmtSUdFVhAnHGuFtyLi/hrbfwKsSRqKOR14UdK/AxMaTDwvl91/o0rZ6iX3JwFHkYa5fpfVHwOcltVbSnXrk45EDq6wrTv5bQj8pcL2v5D6Xk33RIBNa9TZtKRe6X7fFWlYbymVh6Fq2QhYVKF8EWm4qlSl51jAB7Lfa/kMaSjyBeDpiHinbPviHElrPeCvkSYTVLJ+9vPmKts36WX/1mROOFa47MPlQuDC7JzF4cA/kz5ELy0ojIOAyRFxbneBpH1ztn2JNF357ArbXs1+LgSGVtg+lDScU1FEPJ2d0P888K/l2yV9hPSfefljDy2rNwgYTDpfU48/l+8rM4zU72Z5sOyIrFye7015EVhD0lpVkk53vONI5+/K/SnHY1gTeZaatVVEPB0R/0Ia8toyK+7+z3b1yq2aYhAlJ86Vrn05pKxOtTjuALYCfh8R95fd5mV17gOGSdqx5DE+DPR6gSNwMbCbpM9V2HZOFvd/lJXvofdfvHkA6UO7+0gz73P6G9Kw2LuTEiR9kDRN+54csRfpzuznl6tsn0f6J2Z4hdfp/oh4sZgwrZuPcKwVVpG0U4XypyPiWUmXkf77/DXpfM8o4GOkWWuQPigAjla67mRZRMxtcoy3AcdImp/FcgywWlmdanFcABwB3ClpMulDbRiwK3BPRFxNGsZ5CPgvSeNJs9TOovIwW7nJpPNE/y3ph8As0jDckaST//8YPa/BWQ7cJOk80rDYecB/R8QjvfTlfSJipqR7gWsknUw6ivguKUH3uEamnSJinqQpwPmShgJ3ky5sPTAiDomIdySdCPynpLVI54TeADYD9s/qFX3B64qt3bMWfOusG7VnqZ2W1RkL3Ev6oF9Gmlp7ZNl+TiTNMHoLWFDSrtIstdFlbRcAPywrmwrcX3J/GPDfwBLS+YlzSVOK391/tTiy8g8Bl2dtX88e80pgq5I6HyatrrA828fRwLXUmKVW0nYV4DvZc7McWEz6wNylQt0FwPnZc78I+CtpKvDa9T6nWdkGwE+zx1xOOrG+fY7nuMe+KsSap84E4IUK5V2UzFLLylYmm11ISibP0HNW2t7AL7LnZQlp0so5lMyw862Ym7IXpDCSPkqa178TaSz6FxHRlaPdENK0y/1JQ4HTSdMhXyyrN4b0ZvoY6U14ZkRc08w+mPUn2TmfayPC15VYv9aOczhbka5ReDy75XUN6T+co0j/JW1Puh7hXUoLG14H3EX6r+Ym4OoqY+FmZlagdhzhrBTZFEhJ1wLr93aEI2ln4Jeki9Huzsp2IJ3g3CMibs/KZgKrRsRnS9reDKwVEQ2tsmvW3/kIxwaKwo9woud8+zz2Jl1Ed3fJfn5Lmta4N4Ck1Ugnn39e1nYasHP3ulJmnSYihjvZ2EAwUKZFjwAeq1D+aLYN0hpJq1ao9yipn1u0LDozM+vVQJkWvQ49r2qGNItms5I6VKi3uGz7+0gaR7owjEGDBm23ySb5Lj5+5513WGmlgZKvK+uEPoD70WprPp5Otb66Re//s/XXPtTL/cjv8ccffyEiNshTd6AkHKh85bEqlJffV432RMQUYArAyJEj4/77a63I8p5Zs2bR1dWVq25/1Ql9APej5ZT9Cc2bV7se/bgPdXI/8pP0ZN66AyWFL6byty6uzXtHNItLysrrQOUjJDMzK8hASTiP8d65mlKl53aeIC1LX15vBGmZ9nqmYJuZWZMNlIRzC7Bhdp0NANk3EG6WbSMiXiddf3NQWduDgV9FxCsFxWpmZhUUfg4nWwhwn+zuxsBakrq/oe/miFiWrW81OyKOBIiIX2XX2PxU0ndJRyyTSOtW3V6y+7OBWZIuIl0Uuk9226vlHTMzs5raMWlgKPBfZWXd9z9CWqNpFdIaSaUOIS1p/xNKlrYprRAR92TJ6xzgm6TrdA6LiFubGL/ZiqXgi8OtcxWecCJiAe/NHKtWZ3iFspeBr2a3Wm1voGzJGzPrafjJNzXcdsG/5P3qILP3DJRzOGZmNsA54ZhZTTdOPZ4bpx7f7jCsAwykCz/NrA22WfREu0OwDuEjHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQniWmpnVdNUn9mx3CNYhnHDMrKZT9zq23SFYh/CQmpmZFcIJx8xq2nrhfLZeOL/dYVgH8JCamdU0/YoTABg+fnqbI7GBzkc4ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeFq0mdU0+isXtTsE6xBOOGZW08MbfrTdIViH8JCamZkVwgnHzGqaOGMyE2dMbncY1gGccMyspsMemslhD81sdxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4Qs/zaymucM2b3cI1iGccMyspv3GXtzuEKxDeEjNzMwK4YRjZmaFcMIxs5oWTBrNgkmj2x2GdQAnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIbzSgJnVdMqe3253CNYhnHDMrKart92r3SFYhyh8SE3SlpLukLRM0nOSzpK0ci9tJkiKKrdTSupNrVJnROt7ZmZmtRR6hCNpHeB24BFgDLA5cD4p8Z1Wo+mPgRllZfsD44FbysofA75aVragsYjN7NA56U/PRzrWV0UPqX0DGAQcEBFLgNskrQVMkHRuVtZDRDwDPFNaJun7wGMRMaes+l8j4tctiN1shfSDmZcATjjWd0UPqe0NzCxLLNNISWjXvDuRtC6wB3B1c8MzM7NWKTrhjCANeb0rIp4ClmXb8joQWJWUrMptKWmJpNcl3SMpdyIzM7PWUUQU92DSm8BJEXFRWfkzwE8j4tSc+7kTGBIR25WVHw+8QTpHtAFwIrAdsEtE/LbKvsYB4wCGDRu23bRplXJYT0uXLmXw4MG56vZXndAHcD8aNffZV3LVO/aI/QGYfOUN75Zts/GQinX9WvQvRfRj1KhRD0TEyDx12zEtulKGU5XynhWljUjDb+N77Dji4rK6N5GSz6mkSQY9g4mYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ih5SWwysXaF8CPByzn18iZSgrumtYkQsB24GPpU3QDMza42iE85jlJ2rkbQJsAZl53ZqOAS4JyKeruNxixs3NDOziooeUrsFOEnSmhHxalZ2MLAcmN1bY0nDgZ2Ab+V5MEmDSDPjHmgkWDOD4eOntzsE6xBFH+FcCrwOXC9p9+yE/QTggtKp0pLmS/qPCu0PAd4Cri3fIGmIpF9IOlrSbpIOBu4CNgYmtqAvZmZWh0KPcCJisaTdgEuAG0nnbS4kJZ3yuCotd3MIcEdEPF9h2+vA86QVC4YCrwG/AnaNiPub0gEzM2tY4bPUIuIR4LO91BlepXzbGm1eAw7oU3Bm1sONU48HYL+xF/dS06w2rxZtZjVts+iJdodgHcJfwGZmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVgjPUjOzmq76xJ7tDsE6hBOOmdV06l7H9l7JLAcPqZmZWSHqSjiSKi03Y2YdbOuF89l64fx2h2EdoN4jnGclnSvpb1sSjZn1O9OvOIHpV5zQ7jCsA9SbcC4DDgQelvQbSeMkrdWCuMzMrMPUlXAi4oyI2AzYA5gHXAD8WdLPJO3eigDNzKwzNDRpICLujIgvAxuSvvL848BMSQskTZD0oWYGaWZmA19fZ6mNBD5D+troxcAvgKOA+ZKO6OO+zcysg9SdcCRtKukMSU8AdwAbAV8DPhQR/whsSjrXc15TIzUzswGtrgs/Jd1JOqJ5BpgKXB4RT5bWiYi3JV0FHN+sIM3MbOCrd6WBF4B9gNsiImrUmwN8pOGozKzfGP2Vi9odgnWIehPOJcDvKiUbSYOBT0XE3RHxJvBkj9ZmNuA8vOFH2x2CdYh6z+HcBWxZZdvHs+1mZmY91JtwVGPbYGBZH2Ixs35o4ozJTJwxud1hWAfodUhN0meArpKioyTtVVZtdWBfYG7zQjOz/uCwh2YCXjXa+i7POZwdSRd3AgRwEPBWWZ03gMeAk5oXmpmZdZJeE05EnEd2TY2kPwFfiIg5rQ7MzMw6S12z1CLCU53NzKwhec7h7APcExFLst9rioibmxKZmZl1lDxHONOBnYDfZr8H1WerBeAvaTMzsx7yJJyPAH8u+d3MViBzh23e7hCsQ+SZNPBkpd/NbMWw39iL2x2CdYg853A+WM8OI8IXf5qZWQ95htSWks7N5OVzOGZm1kOehPM16ks4ZtZBFkwaDcDw8dPbHIkNdHnO4UwtIA4zM+twff2KaTMzs1zyTBr4LTA2Ih6RdB+9DK9FxA7NCs7MzDpHnnM4vweWl/zu8zlmZla3POdwvlry+9iWRmNmZh2r4XM4SjaQVOtL2czMzIA6V4uGdxfzPA3YLmv/lqQHgH+OiJuaHJ+Ztdkpe3673SFYh6gr4Ug6GvgRcAdwPPAXYChwAPC/kr4VEZc1PUoza5urty3/gl+zxtR7hHMqMCUivllWfqmkS4HvAU44ZmbWQ73ncNYDrq+y7Tpg3d52IGlLSXdIWibpOUlnSaq5HI6k4ZKiwm1ahbpjJM2V9JqkRyQdnKtnZlbRoXNmcOicGe0OwzpAvUc4dwG7ArdV2LYrcHetxpLWAW4HHgHGAJsD55MS32k5Hv+7wL0l918o2/8upMT3I+A4YB/gakmLI+LWHPs3szI/mHkJ4KE167s8F35uWXL3X4EfS1oPuIH3zuF8AdgbOKqX3X0DGAQcEBFLgNskrQVMkHRuVlbLvIj4dY3t3wfujojjsvt3SdoKOB1wwjEza6M8RzgP8/6LPQUcnd3Kv/1zBrVXi94bmFmWWKYBk0hHSDfmiKciSasBo0hHNqWmAZdLGhIRrzS6fzMz65s8CWdUEx9vBHBnaUFEPCVpWbatt4RzuaR1SUdWVwPfi4juVRA2B1YFHitr8yhpyG4L4L6+hW9mZo3Ks9LA7CY+3jrAyxXKF2fbqnkd+DfSsNgSoAsYT0oyY0r2TYX9Ly7b/j6SxgHjAIYNG8asWbNqxf+upUuX5q7bX3VCH8D9aNSJ27zVcP1qcfq16F/6Wz/qvvCzm6SVgNXLy3N842eltdhUpbx7n38GSq8+myVpEfAjSdtGxJwa+1eV8u59TwGmAIwcOTK6urpqR98dwKxZ5K3bX3VCH8D9aNTYk/Ndp31s9vP8ue99XCw4vKtiXb8W/Ut/60dd06Kz5WzGS5oPvAm8WuFWy2Jg7QrlQ6h85FPLtdnPT5Xsmwr7775f7/7NzKyJ6j3COQ44GTgX+GfgHOBt4BDgA8DEXto/RjpX8y5JmwBr0PPcS2+i7OcTpCQ4AigdBhwBvAM8Xuf+zQx/06c1T70Xfn4dOIOUcABuiIgzga1ICeNjvbS/BdhT0polZQeTvv6g3nNFB2Y/HwCIiNdJ1wkdVFbvYOBXnqFmZtZe9R7hfASYExFvS3qTbLgqIt6R9CPgx6QjoGouJR0lXS9pErAZMAG4oHSqdDZkNzsijszuTwDWJF30uQT4DHAScH1E/F/J/s8mnd+5iHSd0D7ZzVesmZm1Wb1HOC8Cg7PfnwI+WbJtHdJFnVVFxGJgN9K1OjcCZwIXko6aSq3C+6/neYx0nc7lwM3AYcB52c/S/d9DOvLZHZgJfB44zKsMmDXuxqnHc+PU49sdhnWAeo9w7gW2J33oX0VaIWBd4A3gGNIq0jVFxCPAZ3upM7zs/jTSBZy9iogbSEc3ZtYE2yx6ot0hWIeoN+FMADbOfp9IGlIbSzqyuY33ZlCamZm9T10JJyLmAfOy318nfSeOj7XNzKxXfbnw82+AjYDnIuLZ5oVkZmadqN5JA0j6pqSngSeB3wBPSXpG0reaHp2ZmXWMelcaOB24hHQ9zb7AyOznLcC/ZtvNzMx6qHdI7RhgYkR8v6x8Rra22THAWU2JzMz6has+sWe7Q7AOUW/CGUT1b/WcjWepmXWcU/fyn7U1R73ncG4ADqiy7YuAF10yM7OK8nzF9D4ld28BzpU0nJ5fMb0V8E/ND9HM2mnrhfMBeHjDj7Y5Ehvo8gypTafnV0lvDFQa2L2S9E2cZtYhpl9xAuBVo63v8iScj7Q8CjMz63h5vmL6ySICMTOzzlb3SgOSViFNENgFWBd4CfgF6asC6vuSdDMzW2HUlXAkDQVuBf4OWAAsAnYmXX/zkKTPRcTzzQ7SzMwGvnqnRV8ArAfsGBGbRcTOEbEZsGNWfkGzAzQzs85Qb8LZBxgfEfeVFmb3TyEtc2NmZtZDvedwVgNerbLtVeADfQvHzPqb0V+5qN0hWIeoN+H8Ghgv6c6I+Gt3oaQ1gPHZdjPrIL7g05ql3oRzInAX8LSkW0mTBoaSLgIV0NXU6MzMrGPUdQ4nIuYAHwOmABsAe5ASzqXAxyLioaZHaGZtNXHGZCbOmNzuMKwD5D7CkbQqsAPwp4g4uXUhmVl/cthDMwGvGm19V88RztvAncDftigWMzPrYLkTTkS8A/wBGNa6cMzMrFPVex3O94DTJW3TimDMzKxz1TtL7TTSigJzJD1LmqUWpRUiYocmxWZmZh2k3oTzcHYzMzOrS66EI2kQaVmbh4GFwO0RsaiVgZlZ/zB32ObtDsE6RJ6vmN4MuB0YXlK8RNKXIuLWVgVmZv3DfmMvbncI1iHyTBo4F3gH+Afgg8BWwIPAZS2My8zMOkyehLMzcFpE3BsRr0XEo8DRwIclbdTa8MzMrFPkSTgbAX8sK3uCtHbahk2PyMz6lQWTRrNg0uh2h2EdIO91ONF7FTMzs+ryToueKemtCuV3lJdHxNC+h2VmZp0mT8I5s+VRmJlZx+s14USEE46ZmfVZvWupmZmZNcQJx8zMClHvWmpmtoI5Zc9vtzsE6xBOOGZW09Xb7tXuEKxDeEjNzMwK4YRjZjUdOmcGh86Z0e4wrAMUnnAkbSnpDknLJD0n6SxJK/fSZntJl0uan7WbJ+kMSauX1ZsgKSrcPCZg1qAfzLyEH8y8pN1hWAco9ByOpHVIX3XwCDAG2Bw4n5T4TqvR9OCs7iTgD8DfAWdnP79YVvcVoDzBPNrX2M3MrG+KnjTwDWAQcEBELAFuk7QWMEHSuVlZJZMi4vmS+7MkvQZcJmnTiHiyZNtbEfHr1oRvZmaNKnpIbW9gZllimUZKQrtWa1SWbLo9mP302m1mZgNA0QlnBPBYaUFEPAUsy7bV49OkL4abV1a+tqQXJL0p6UFJBzQcrZmZNY0iivvmAUlvAidFxEVl5c8AP42IU3PuZ0Pg/4CbI2JsSfkRpCOeOcBg0hfF7QN8MSKur7KvccA4gGHDhm03bdq0XH1ZunQpgwcPzlW3v+qEPoD70ai5z76Sq96xR+wPwOQrb3i3bJuNh1Ss69eifymiH6NGjXogIkbmqduOCz8rZThVKe9ZUfoA8HNgKfCd9+044sqyujcCvwROByomnIiYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ik44i4G1K5QPAV7urbEkAT8FtgL+PiIW16ofESHpemCSpJUj4u0GYjZboQ0fP73dIViHKDrhPEbZuRpJmwBrUHZup4oLSdOp94iIPPW7+RtLzczarOhJA7cAe0pas6TsYGA5MLtWQ0mnkI7uj4iIe/I8WHZE9AXgIR/dmJm1V9FHOJcCxwHXS5oEbAZMAC4onSotaT4wOyKOzO4fBkwEpgLPStqpZJ9PdE+bljQbuI50tLQG8HVgJ2D/1nbLrHPdOPV4APYbe3GbI7GBrtCEExGLJe0GXALcSDpvcyEp6ZTHVbrczeeyn2OzW6mvkhIRwHzgBGAj0pTp3wH7RsQtzYjfbEW0zaIn2h2CdYjCZ6lFxCPAZ3upM7zs/lh6JppK7Y7sQ2hmZtZCXi3azMwK4YRjZmaFcMIxM7NCOOGYmVkh2rG0jZkNIFd9Ys92h2AdwgnHzGo6da9je69kloOH1MzMrBBOOGZW09YL57P1wvntDsM6gIfUzKym6VecAHjVaOs7H+GYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhadFmVtPor1zU7hCsQzjhmFlND2/40XaHYB3CQ2pmZlYIJxwzq2nijMlMnDG53WFYB3DCMbOaDntoJoc9NLPdYVgHcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEL/w0s5rmDtu83SFYh3DCMbOa9ht7cbtDsA7hITUzMyuEE46ZmRXCCcfMalowaTQLJo1udxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZlbTKXt+u90hWIdwwjGzmq7edq92h2AdwkNqZmZWCCccM6vp0DkzOHTOjHaHYR3AQ2pmVtMPZl4CeGjN+s5HOGZmVojCE46kLSXdIWmZpOcknSVp5Rzthki6XNJiSa9I+pmk9SrUGyNprqTXJD0i6eDW9MTMzOpRaMKRtA5wOxDAGOAs4ETgzBzNrwG6gKOAscD2wA1l+98FuA64C9gbuAm4WtLnmtIBMzNrWNHncL4BDAIOiIglwG2S1gImSDo3K+tB0s7AnsCuEXF3VvYs8BtJu0fE7VnV7wN3R8Rx2f27JG0FnA7c2rpumVktw0++qeG2C/5l3yZGYu1UdMLZG5hZllimAZOAXYEba7Rb1J1sACLit5L+lG27XdJqwCjguLK204DLJQ2JiFea1A+zppv77CuMbeCD2R/INlAUnXBGAHeWFkTEU5KWZduqJZwRwGMVyh/NtgFsDqxaod6jpKHDLYD7GgvbVjT+j3zg8WvW/xWdcNYBXq5Qvjjb1ki7zUrqUKHe4rLt7yNpHDAuu7tU0rwacZRaH3ghZ93+qhP6AP2sH5rUcNOG+tGHx8u3/+5fSr71s8ZjNv21aHX/qjxGv3pP9UER/dg0b8V2XIcTFcpUpbyRduX3VaU8FUZMAab08tg9H1i6PyJG1tuuP+mEPoD70Z90Qh/A/WiVoqdFLwbWrlA+hMpHML21W7uk3eKSsvI69LJ/MzNrsaITzmO8d84FAEmbAGtQ+RxN1XaZ0nM7TwBvVqg3AngHeLyBeM3MrEmKTji3AHtKWrOk7GBgOTC7l3YbZtfZACBpJOn8zS0AEfE66fqbg8raHgz8qgUz1OoehuuHOqEP4H70J53QB3A/WkIRvZ06aeKDpQs/HwEeJk2F3gy4ALgoIk4rqTcfmB0RR5aUzSDNNPusb93LAAAGwUlEQVQu6YhlEvCXiPiHkjq7ALOAS0gXhe6T1d8rInwdjplZGxV6hBMRi4HdgJVJU6DPBC4EziirukpWp9QhpKOgnwA/BR4AvlC2/3uAA4HdgZnA54HDnGzMzNqv0CMcMzNbcXm16JwkfV3SH7JFQR+QtFud7T8p6W1JbZ3b30g/JB0t6TZJi7KFU+8tYn26Vi/0WpRG+iFp+6wP87N28ySdIWn1ouKuEFNDr0dJ+5Wy91xIGt17i+brSx8kHSDpPknLJb0oaYakNVodc5VYGv3bGCnp1iz+lyTdLmnHImIGICJ86+VGGs57m7RW2yjSkN5yYOuc7QXcCywEXhho/QCeIp183B/YA7iCdB7t8y2MdR3gOdJir3uQ1uH7K3BOjrYzgD8BXyQNuz4O/KJNz3lD/QB+CNwNfJ20aO1xwCvAdQOpH2X7GJf9DQQweiD1gbRo8GukBYe7svfVZGDIQOkHsAnp8pA7gX2z26zsfbVpIbEX/WQNxBswD/hJyf2VgLnAlTnb/yMwH5jY5oTTUD+A9SuU/RK4q4WxnkK6tmqtkrJ/ApaVllVot3P2gfaZkrIdsrLd2/CcN9qPDSqUjcv6selA6UdJ3XWA54Ej25hwGn0t1gdeBb5edMxN7sc3SP9wrl32urwNfLOI2D2k1gtJm5Fmx/28uywi3gH+i7RwaG/t1yTNqPsu8EaLwuxVX/oREZWGAR8EhjYzxjLVFnodRFrotVa7Hgu9ko54en29WqChfkTE8xWKH8x+tvJ5r6bR16Pb2aSj/DtaEFtejfbhS9nPK1oVWJ0a7ceqwFvA0pKypVmZKrZoMiec3nVfSFppUdB1JW3QS/vTgUcj4oZe6rVaX/tRbmfSFPdW6bFga0Q8RfovrtJFwFXbZUoXei1So/2o5NOkocy86/01U8P9kPR3wFdJ/3S1U6N92JH0nB8p6RlJb0r6jaRPty7Umhrtx3VZnfMlDZU0lDRLeDHpH8+Wc8LpXUOLggJI+jhwDHBCC+KqV8P9KCfpa8AngR81Ia5qWrHQa+4+NlFT4pG0IfA94D+jyvdGtVhf+jEZ+LeImN/0qOrTaB82BD4OnAaMB/YjnTOZIWlYs4PMoaF+RMRzpHO3XwQWZbcDgD2rHFE3XTsW72w7SUOAjXqrFxGl/0XUtSho5mJgakTMrS/CfArsR+ljbkf6ALk4Iu7K06YPWr3Qa1H6FI+kD5CGQpcC32liXPWqux+SDiF9WO/XqqDq1MhrsRIwGDgoImYASPol8CTwbdIknKI18lpsBFxLuobxqKz4GOAmSZ/OjpJaaoVMOKTlb/5fjnri/YuCli6PU3NRUEl7A38PfFtSd93V0yatDSyPtBxPX7S8H+/bSToPdBNpHP7E/GE2pC8LvVYaHixd6LVIjfYDSG8W0mzCrYC/j3TxdDvU3Q9JqwLnkc5hrpS979fKNq8hac2IeLUVwVbR6GvxUvZzVndBRCyR9ACwZdOiy6/RfpxE+sw/MCLeBJB0J/AH0nBn+ZdXNt0KOaQWET+OCPV2y6p3Hx1UWhT0pRqHoh8n/Vf0B9IbZDHpcHzd7PeTBkg/AMjGe2eS/qs7JCLe7mv8vWjlQq9FarQf3S4ExgBjyo5Ui9ZIP9YA/oa0fFX338BD2bZpvDcJoiiNvhaPko4cyk+si3ROrWiN9mME8PvuZAMQEW8Avyd9gWXLrZAJpx4R8UfSdRzvLgoqaaXs/i01ml5LGi8tvV0BLMl+/88WhVxRH/qBpMHAzdnd0RGxrFVxlmjZQq8Fa7QfSDoFOBY4ItKyTe3USD+W0vNv4NBs26nA4a0JtapGX4vppOQyqrsgG87ejvcSaJEa7ceTwNbZEC0AklYDtgYWtCDOnto5n3yg3Eh/JG+TThqOAqZSdsEkaTriW8CuNfYzgfZeh9NQP4BbSVO6DwN2Kr21MNZ1gD8Dt5HWxhtH+gA7p6zefOA/yspmAH8knRDdnzTDqJ0Xftbdj+y5DuDy8uecCtfo9Nd+VNjPcNp74Wej76kbsrZfIV0wOZt0XdE6A6UfpAT5JmlYfF9gNCl5vQl8opDYi36yBuqNdMX3fOB14HfAbmXbu7I/pK4a+5hAGxNOo/3I7le8tTjWLUlXRS/P/sDOBlYuq7OANDGjtGzt7IP6ZdIR5VVUuHi1wOe87n6Q/hmo9ryPHSj9qLCPtiWcPr6nBgP/DryYtb0d2GYgvaeyst1IK1i8lN1m1/rMavbNi3eamVkhfA7HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPqkbRjapwSQAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/simulation/option_pricing.ipynb b/qiskit/finance/simulation/option_pricing.ipynb index ab1dff8c3..ba63cbd2c 100644 --- a/qiskit/finance/simulation/option_pricing.ipynb +++ b/qiskit/finance/simulation/option_pricing.ipynb @@ -52,10 +52,7 @@ "- Asian Barrier Spread (multivariate, path-dependent, payoff with 3 segments)\n", "\n", "All examples illustrate how to use the genereric Qiskit Finance framework to construct QAE-operators (uncertainty problems). The same framework can be easily adjusted to estimate risk as well, for instance, the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also known as Expected Shortfall). How to use Qiskit Finance for risk analysis is illustrated in the following tutorial:\n", - "Credit Risk Analysis.\n", - "\n", - "An example of how quantum Generative Adversarial Networks (qGANs) can be used to learn and efficiently load generic random distributions for option pricing can be found here:\n", - "QGANs to learn and load random distributions for option pricing" + "Credit Risk Analysis." ] }, { From c952321f309294dfec2b206e667fe8c3b2999816 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Mon, 29 Apr 2019 23:49:18 +0200 Subject: [PATCH 093/116] merge use of time series --- .../finance/data_providers/time_series.ipynb | 19 ++++--- .../portfolio_diversification.ipynb | 56 ++++++++++++------- 2 files changed, 45 insertions(+), 30 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index 04e73c145..9f15aed81 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "scrolled": true }, @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -141,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -196,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -339,7 +339,7 @@ "source": [ "from qiskit.aqua.translators.data_providers.data_on_demand_provider import StockMarket\n", "try:\n", - " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", + " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", " tickers = stocks,\n", " stockmarket = StockMarket.NASDAQ.value,\n", " start = datetime.datetime(2016,1,1),\n", @@ -361,6 +361,7 @@ "\n", "The access again requires a valid access token to replace REPLACE-ME below. The token can be obtained on a trial or paid-for basis at:\n", "https://www.quandl.com/\n", + "\n", "In the following example, you need to replace TICKER1 and TICKER2 with valid tickers at the London Stock Exchange. " ] }, @@ -372,7 +373,7 @@ "source": [ "from qiskit.aqua.translators.data_providers.exchangedataprovider import StockMarket\n", "try:\n", - " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", + " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", " tickers = [\"TICKER1\", \"TICKER2\"],\n", " stockmarket = StockMarket.LONDON.value,\n", " start = datetime.datetime(2019,1,1),\n", @@ -394,9 +395,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "qiskit_master", "language": "python", - "name": "python3" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index fc36d3f1a..54f1ba939 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -192,7 +192,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -238,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": { "scrolled": true }, @@ -270,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -288,7 +288,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -375,9 +375,18 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of feasible combinations= 2\n", + "Total number of combinations= 64\n" + ] + } + ], "source": [ "# Instantiate the classical optimizer class\n", "classical_optimizer = ClassicalOptimizer(rho, n, q)\n", @@ -391,12 +400,11 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Visualize the solution\n", - "\n", "def visualize_solution(xc, yc, x, C, n, K, title_str):\n", " plt.figure()\n", " plt.scatter(xc, yc, s=200)\n", @@ -418,8 +426,7 @@ " plt.plot([xc[ix], xc[iy]], [yc[ix], yc[iy]], 'C2')\n", "\n", " plt.title(title_str +' cost = ' + str(int(C * 100) / 100.))\n", - " plt.show()\n", - " " + " plt.show() " ] }, { @@ -444,7 +451,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -514,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -535,12 +542,11 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# Check if the binary representation is correct. This requires CPLEX\n", - "\n", "try: \n", " import cplex\n", " warnings.filterwarnings('ignore')\n", @@ -566,9 +572,17 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0 1 0 1 0 1]\n" + ] + } + ], "source": [ "ground_state, ground_level = quantum_optimizer.exact_solution()\n", "print(ground_state)\n", @@ -591,14 +605,14 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1 0 1 0 1 0]\n", + "[1 0 1 0 1 1]\n", "VQE does not produce the same solution as the exact eigensolver, but that is to be expected.\n" ] } @@ -625,12 +639,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcjeX/x/HX58zKjG0sQyVLtNCiTJZKjVDIbLYSopJK2mhR5Nuelp9SyTchkky2mTkjkkYjFUJZoqzRWMo6GIbZrt8f59R3YsYMZ7nPzPk8H495nOW+5r7fc6X33HOdTYwxKKWU8i82qwMopZTyPi1/pZTyQ1r+Sinlh7T8lVLKD2n5K6WUH9LyV0opP6Tlr7xCRJ4XkU89uP/1IhLt4j48mlEpX6Llr9xGRO4UkZUikiUie0Rkvojc4I1jG2OaGmPSvXEsdxCR+iJiRCTQC8cKFpFZIrLdeczoEsZHiEiSiBwTkR0icqenMyrv0/JXbiEiQ4B3gFeBSOBC4AMgzspc6h/fAX2AP0sxdiyQg+O/Y29gnIg09WA2ZQEtf+UyEakCvAg8ZIyZY4w5ZozJNcakGmOeLOZ7ZorInyJyWES+LVwuItJZRDaIyFER2SUiTzjvryEic0UkU0QOisgSEbE5t20XkfbO6wEi8qyIbHXuY5WI1HVuGyMiGSJyxHl/m7P4OeNEZLXze7eKSEfn/eeJiN2ZaYuI3Ffoe1o4/xo6IiJ/icho56ZvnZeZzr+UWpc2x9kyxuQYY94xxnwH5J9prIiEAd2A54wxWc7vsQN9PZVPWUPLX7lDayAUSDqL75kPNAZqAT8B0wptmwjcb4ypBFwOLHLePxTYCdTEcVb6LFDU+5MMAXoBnYHKwD3Acee2FUAzIAL4DJgpIqElhRWRFsAnwJNAVeBGYLtz83RnrvOA7sCrItLOuW0MMMYYUxm4CJjhvP9G52VVY0y4MWZpEce80/mLrrivC0vKfQ4uBvKNMZsK3bcG0DP/csbj643KL1QH9htj8kr7DcaYSX9fF5HngUMiUsUYcxjIBZqIyBpjzCHgkHNoLlAHqGeM2QIsKWb3A4CnjDEbnbfXFDpu4Qd0/09ERgCXFB5TjHuBScaYhc7bu5zZ6wI3AF2MMSeA1SIyAceZcpozcyMRqWGM2Q8sK+E4/zDGfIbjF5Q3hQOHT7nvMFDJyzmUh+mZv3KHA0CN0j546VyWGeVcOjnC/86gazgvu+E4a98hIosLLYm8CWwBvhKRbSIyrJhD1AW2FnPsoSLyq3O5KROoUui4Z1LcPs8DDhpjjha6bwdwvvP6vTjOpn8TkRUi0qUUxzpnInKhcxkpS0SyzmEXWTj+WiqsMnC0iLGqDNPyV+6wFDgBxJdy/J04Hghuj6N86zvvFwBjzApjTByOJaFknEslxpijxpihxpiGQAwwpNDySmEZOJZY/sW5vv800BOoZoypiuOsVkqRuch9AruBCBEpfGZ8Ic6/DIwxm40xvZw/y+vALOe6eolvpysivQsXeRFfpy37GGP+cC4jhRtjwkvxc51qExAoIo0L3XcVsP4c9qV8mJa/cplzqWYkMFZE4kWkoogEiUgnEXmjiG+pBJzE8RdDRRzPEAL+eVpib+cSUC5wBOeDlCLSRUQaiYgUur+oBzAnAC+JSGNxuFJEqjuPmwfsw1FwIzn9LLc4E4G7RaSdiNhE5HwRudQYkwH8ALwmIqEiciWOs/1pzsx9RKSmMaYAyHTuK9+ZoQBoWNwBjTHTChd5EV9/lDI7IhJS6LGNYGfW037pGWOOAXOAF0UkTESux/GLemppj6XKBi1/5RbGmNE4HmgdgaPYMoDBOM7cT/UJjqWRXcAGTl8H7wtsdy4JPYDjKYrgeID4axxLE0uBD4p5bv9oHH8tfIXjl8REoAKwAMcDzZucxz/hzFman+9H4G7gbRx/LSwG6jk398Lx18tuHA96/6fQYwMdgfXOJZgxwB3GmBPGmOPAK8D3zgdvW5Umhws2Atk4lqMWOK/XA3A+M2p+obGDcMzXXhwPZj9ojNEz/3JG9MNclFLK/+iZv1JK+SEtf6WU8kNa/kop5Ye0/JVSyg/57Ct8a9SoYerXr291jH85duwYYWFhVsfwSTo3RdN5KZ7OTfFcmZtVq1btN8bULGmcz5Z//fr1WblypdUx/iU9PZ3o6GirY/gknZui6bwUT+emeK7MjYjsKM04XfZRSik/pOWvlFJ+SMtfKaX8kJa/Ukr5IS1/pZTyQ1r+Sinlh7T8lVLKD2n5K6WUH9LyV0opP6Tlf6qMDOjeHapUgcqVoWtX+KPUH5iklFJlgs++vYMljh+Hm2+GkBCYMgVEYMQIaNsW1q61Op1SSrmNln9hH30E27bBxo3QqJHjviuvhMaN4cMP4ZprrM2nlFJu4nfLPnn5BRw5kUt+QREfX2m3Q6tW/yt+gAYN4PrrISXFeyGVUsrD/OLM/2RePvPW7WFc+lY2780i0CbkFRgurhXOA9EX0fmKOoQEBsD69RAXd/oOmjaFmTO9H1wppTyk3Jf/6oxM+k/6kdz8Ao7l5AOQm+8469/4VxYjkn7hBfsGptzTgqsOHoRq1U7fSUQEHDrkzdhKKeVR5br812Rk0mv8MrJz84sd4/iFkM8d45exHrCJnD7IFLFEpJRSZVi5XfM/mZdPv0k/nrH4C8vOzedQcBj5+w+cvvHQoaL/IlBKqTKq3Jb/vHV7yM0vOKvv2VKzHpkrV5++YcMGaNLETcmUUsp65bb8x6Vv/WeN/1/kJEhekd+zoGELqq5d5Xi659+2b4fvv4fYWM8EVUopC5TL8s8vMGzem1XktpBa8wlr8A4BYZtO2zb9qlvJqByJiYtzPLXTbnc8+6duXbj/fk/HVkoprymX5X8sJ49AWxEP3AJ5WY7lm4oXTiL0/GlI4OF/tmUHh3JX71fJu6gR9O0LvXs7nue/aBGEh3slu1JKeUO5fLZPWHAgeUW9iAvIP3Yxx35/jOCIbwmu8Q2B4RvJ2deOnIPXA4FkVKqJbc4cKOaXh1JKlQfl8sw/wCY0rnWGM3UTSM6Bmzm27XHyjjUiJHI+FRu+S0DFLVxcK5wALX6lVDlXLssf4MHoiwgLDjjjGJMbwYmdd3E8oz8ieVSsN4HqDWay9/he74RUSimLuKX8RaSjiGwUkS0iMqyI7TeKyE8ikici3d1xzJJ0vqIOQQGl+/Hysy7l2LbHkUO3sPHoUmKSYpiyfgq5BbkeTqmUUtZwufxFJAAYC3QCmgC9ROTUJ8X/AfQHPnP1eKUVEhjAlHtaUCHozGf/f6sQGMrUbs+RHJdM88jmvLXyLXqm9mTlnys9nFQppbzPHWf+LYAtxphtxpgcIBH417ujGWO2G2PWAmf3qisXXVW3KokDW1G1QlCxS0BhwQFUrRBE4sBWXFW3KnUr12Vsu7G82/Zdjuce5+4Fd/PMkmfYn73fm9GVUsqjxLj4vjXOZZyOxpgBztt9gZbGmMFFjJ0MzDXGzCpmXwOBgQCRkZHNExMTXcr2NwMczs5l39GTnMjNR0QwxhAaFEDNSiFUqRBEUQ/x5hTk8NWRr0g7nEagBNK+Qnva12hPgJTurwl/kpWVRbg+HfY0Oi/F07kpnitz07Zt21XGmKiSxrnjqZ5F9eY5/UYxxowHxgNERUWZ6OhoF2IVLb/AcCwnj7DgwFI9q+cWbmH74e289uNrzN09l81HNzOi1Qia1Wrm9mxlWXp6Op7471XW6bwUT+emeN6YG3cs++wE6ha6fQGw2w379YgAm1A5NOisns5Zv0p9/tv+v9xb414yT2bSd35fnvv+OQ5kF/EmcEopVQa4o/xXAI1FpIGIBAN3AHY37NeniAjNwpphj7dzz+X3MHfrXGKSY0j8LZH8gtK9c6hSSvkKl8vfGJMHDAYWAL8CM4wx60XkRRGJBRCRa0VkJ9AD+FBE1rt6XKtUDKrI480fZ3bsbJpENOGV5a/Q64terN2nH/CulCo73PL2DsaYecC8U+4bWej6ChzLQeVGw6oN+eiWj1iwfQFvrniTPvP60LVxVx695lGqhep7/yulfFu5fYWvN4gIHRt0xJ5gp1/TfqRsSSEmOYaZm2ZSYLz6rFallDorWv5uEBYUxtCoocyMmUnjqo15cemL9JnXh/X7y+zqllKqnNPyd6NG1Rox6dZJvNbmNXZn7abXF714aelLHD55uORvVkopL9LydzMRoUvDLqQmpNL7st7M2jyLmKQYkjYn6VKQUspnaPl7SKXgSjzd4mlmdJlB/Sr1GfnDSO6afxe/HfzN6mhKKaXl72mXRFzC5I6Tefn6l8k4msHtc2/nteWvcSTniNXRlFJ+TMvfC2xiI65RHPZ4Oz0v7knixkRik2JJ3ZqKq++tpJRS50LL34uqhFRheKvhTL9tOueHn8+z3z1L/y/7s+nQ6R8mr5RSnqTlb4Em1ZswtfNUXrjuBbYd3kbP1J68seINsnKyrI6mlPITWv4WsYmNro27MjdhLl0bd+XTDZ8SmxzLvG3zdClIKeVxWv4WqxJShZGtR/LZbZ9Rq2Itnl7yNAO+GsDWzK1WR1NKlWNa/j7i8hqXM63zNJ5r9Ry/HfyN7vbujF45muO5x62OppQqh7T8fUiALYCel/QkNSGV2EaxfLz+Y2KSY1iwfYEuBSml3ErL3wdFhEbwwnUvMLXTVCJCI3hi8RPcv/B+fj/8u9XRlFLlhJa/D2tWqxmJtyXybMtn+WX/L3S1d2XMT2N0KUgp5TItfx8XYAug16W9sCfY6dygMxPWTSA+JZ60HWm6FKSUOmda/mVEjQo1eOWGV5jccTLhweE8lv4Yg9IG8ceRP6yOppQqg7T8y5jmkc2Z0WUGT1/7ND/v/Zn4lHje//l9TuSdsDqaUqoM0fIvgwJtgfRp0ofU+FQ61OvAh2s/JD4lnvSMdKujKaXKCC3/MqxmxZq8fuPrTLp1EqEBoTy86GEeTnuYnUd3Wh1NKeXjtPzLgWtrX8vM2JkMbT6U5X8uJz4lnv+u+S8n809aHU0p5aO0/MuJIFsQ/S/vjz3eTnTdaMauHktCSgJLdi6xOppSygdp+ZcztcNq89ZNbzG+w3gCJIBBaYN47JvH2JO1x+poSikfouVfTrU+rzVzYufw6DWP8sPuH4hNjmXCugnk5OdYHU0p5QO0/MuxoIAgBlwxgJS4FNpc0IYxP42hm70bS3cvtTqaUspiWv5+oE54HUZHj2Zc+3EUmAIGLhzI0PSh/HnsT6ujKaUs4pbyF5GOIrJRRLaIyLAitoeIyOfO7ctFpL47jqvOzg3n38CcuDkMbjaYxTsXE5scy8e/fExufq7V0ZRSXuZy+YtIADAW6AQ0AXqJSJNTht0LHDLGNALeBl539bjq3IQEhHD/VfeTHJdMyzotGb1qNN1Tu/Pjnh+tjqaU8iJ3nPm3ALYYY7YZY3KARCDulDFxwBTn9VlAOxERNxxbnaMLKl3Aeze/x/s3v8/J/JPc+9W9PPXtU+w9vtfqaEopL3BH+Z8PZBS6vdN5X5FjjDF5wGGguhuOrVx0U92bSI5L5sGrHiRtRxqxybF8sv4Tcgt0KUip8kxcfVtgEekB3GqMGeC83RdoYYx5uNCY9c4xO523tzrHHDhlXwOBgQCRkZHNExMTXcrmbllZWYSHh1sdw2P25e5j1qFZbMjewHlB59EjogeNQhuV6nvL+9ycK52X4uncFM+VuWnbtu0qY0xUiQONMS59Aa2BBYVuPwM8c8qYBUBr5/VAYD/OXzzFfTVv3tz4mm+++cbqCB5XUFBg0nakmVtm3mIun3y5eXbJs2bf8X0lfp8/zM250Hkpns5N8VyZG2ClKUV3u2PZZwXQWEQaiEgwcAdgP2WMHejnvN4dWOQMqXyMiHDzhTeTHJ/MfVfcx/zf5xOTFMO0X6eRV5BndTyllJu4XP7GsYY/GMfZ/a/ADGPMehF5UURincMmAtVFZAswBDjt6aDKt1QIrMAj1zzCnNg5XFHjCkb9OIpeX/Ri9d7VVkdTSrlBoDt2YoyZB8w75b6Rha6fAHq441jKu+pXqc+HHT5k4Y6FvLHiDfrO70tCowQea/4YEaERVsdTSp0jfYWvKpGIcEv9W7DH27nn8ntI3ZpKl6QufP7b5+QX5FsdTyl1DrT8ValVDKrI480fZ3bsbC6LuIyXl7/MnfPuZN2+dVZHU0qdJS1/ddYaVm3IhFsm8MaNb7Dv+D56z+vN9APTyTyRaXU0pVQpafmrcyIidGrQidSEVO5qchfLspYRkxzD7E2zKTAFVsdTSpVAy1+5JCwojCeufYKn6zzNRVUv4vmlz9N3Xl/WH1hvdTSl1Blo+Su3OC/4PD6+9WNeveFVdmXtotfcXry87GUOnzxsdTSlVBG0/JXbiAgxF8WQmpDKnZfdycxNM4lNjiV5S7IuBSnlY7T8ldtVCq7EsBbDmNFlBhdWupDnvn+O/l/2Z+PBjVZHU0o5afkrj7kk4hKmdJrCS9e/xI4jO+g5tyejfhzF0ZyjVkdTyu9p+SuPsomN+Ebx2OPt9Li4B5/9+hkxSTGkbk1F395JKeto+SuvqBJShRGtRjC9y3TODz+fZ797lrsX3M3mQ5utjqaUX9LyV17VtHpTpnaeyvOtn2dr5lZ6pPbgzRVvciz3mNXRlPIrWv7K62xio9vF3UiNTyWhcQJTN0wlNimW+b/P16UgpbxEy19ZpmpoVf7T+j9M6zyNGhVr8NS3T3HfV/exLXOb1dGUKve0/JXlrqh5BZ91/oznWj3Hrwd/pZu9G6NXjeZ47nGroylVbmn5K58QYAug5yU9SU1IJeaiGD7+5WNik2P5avtXuhSklAdo+SufEhEawYvXv8jUTlOpFlqNoYuH8sDXD7D98HaroylVrmj5K5/UrFYzpt82nWdaPMO6fevoau/Kuz+9S3ZettXRlCoXtPyVzwq0BXLnZXdiT7DTqUEnPlr3EXHJcaT9kaZLQUq5SMtf+bwaFWrwyg2vMLnjZMKCwnjsm8d4KO0hMo5kWB1NqTJLy1+VGc0jmzMjZgZPRj3JT3t/Ij4lng9Wf8CJvBNWR1OqzNHyV2VKkC2Iu5rehT3eTvt67Rm3ZhzxKfEszlhsdTSlyhQtf1Um1apYi9dvfJ2Jt0wkJCCEwYsG8/Cih9l5dKfV0ZQqE7T8VZnWok4LZsXMYkjzISzfs5z4lHg+XPMhJ/NPWh1NKZ+m5a/KvKCAIO6+/G7s8Xai60bz/ur36ZrSle93fW91NKV8lpa/Kjdqh9XmrZve4sMOH2ITGw98/QCPf/M4e7L2WB1NKZ+j5a/KnevOu47ZsbN59JpH+W7Xd8SlxDFh3QRy83OtjqaUz3Cp/EUkQkQWishm52W1YsZ9KSKZIjLXleMpVVrBAcEMuGIA9ng71513HWN+GkNXe1eW7VlmdTSlfIKrZ/7DgDRjTGMgzXm7KG8CfV08llJnrU54Hd5p+w4ftPuAfJPPfV/dxxOLn+CvY39ZHU0pS7la/nHAFOf1KUB8UYOMMWmAfmq3skybC9qQFJfEQ80eIj0jnZjkGCb/MpncAl0KUv5JXHmPFBHJNMZULXT7kDGmuKWfaOAJY0yXM+xvIDAQIDIysnliYuI5Z/OErKwswsPDrY7hk8rS3OzP3c/sQ7P5JfsXagfVpmdETxqHNvbIscrSvHibzk3xXJmbtm3brjLGRJU0rsTyF5GvgdpFbBoOTHFn+RcWFRVlVq5cWZqhXpOenk50dLTVMXxSWZyb9Ix0Rv04il1Zu7it4W0MbT6UmhVruvcYZXBevEXnpniuzI2IlKr8A0saYIxpf4aD/CUidYwxe0SkDrD3LHMqZZnoutG0qtOKib9MZNK6SaRnpPNQs4fodWkvAm0l/q+hVJnm6pq/HejnvN4PSHFxf0p5VWhgKA81e4ikuCSa1WrGGyveoOfcnvz0109WR1PKo1wt/1FABxHZDHRw3kZEokRkwt+DRGQJMBNoJyI7ReRWF4+rlFtdWPlCxrUbxztt3yErJ4t+X/Zj+HfD2Z+93+poSnmES3/bGmMOAO2KuH8lMKDQ7TauHEcpbxAR2l3YjtZ1WjNh3QQ+Xv8x3/zxDYOvHsztl9xOgC3A6ohKuY2+wlepU1QMqsgj1zzCnNg5NK3RlNd+fI1eX/Ri9d7VVkdTym20/JUqRoMqDRjfYTxv3fQWB04coO/8voz8fiQHTxy0OppSLtPyV+oMRIRb699Kanwqd19+N6lbU4lJimHGxhnkF+RbHU+pc6blr1QpVAyqyJDmQ5gVO4tLIy7lpWUv0Xteb37Z/4vV0ZQ6J1r+Sp2Fi6pexIRbJvB6m9fZe3wvd35xJy8ufZHME5lWR1PqrGj5K3WWRITODTtjj7fTp0kf5myeQ0xyDHM2z6HAFFgdT6lS0fJX6hyFB4fz1LVPMSNmBg2rNOQ/P/yHvvP7suHABqujKVUiLX+lXHRxtYuZ3HEyr97wKjuP7qTXF714ZdkrHD552OpoShVLy18pNxARYi6KITUhlTsuuYMZm2YQmxzL8qzluhSkfJKWv1JuVDm4Ms+0fIbPu3xO3Up1+fTAp/T/sj8bD260OppS/6Llr5QHXBpxKZ90+oTe1Xuz/fB2bp97O6//+DpHc/QzjZRv0PJXykNsYqNVeCtSE1LpfnF3pv06jdjkWOZum4srH6KklDto+SvlYVVCqjCi1Qimd5lOnbA6PLPkGe5ZcA9bDm2xOpryY1r+SnlJ0+pN+bTzp/yn9X/YnLmZHqk9eGvFWxzLPWZ1NOWHtPyV8iKb2Oh+cXdS41OJaxTHJxs+ITYpli9//1KXgpRXafkrZYFqodV4/rrn+bTzp1SvUJ0nv32S+xbex7bD26yOpvyElr9SFrqy5pVMv206I1qOYMOBDXSzd+PtVW9zPPe41dFUOaflr5TFAmwB3H7p7aTGp9KlYRcm/TKJuJQ4Fu5YqEtBymO0/JXyEdUrVOel61/ik06fUCW4CkPSh/Dg1w+y48gOq6OpckjLXykfc3Wtq0nsksiwFsNYs28NCSkJvPfze2TnZVsdTZUjWv5K+aBAWyC9L+tNakIqHet3ZPza8cQnx7Poj0W6FKTcQstfKR9Wo0INXm3zKh/f+jEVgyry6DePMnjRYDKOZlgdTZVxWv5KlQFRtaOYETODJ6OeZOWfK4lPjmfc6nGcyDthdTRVRmn5K1VGBNmCuKvpXaQmpNKuXjs+WPMBCSkJfLvzW6ujqTJIy1+pMqZWxVq8ceMbTLhlAkEBQTyU9hCPLHqEXVm7rI6myhAtf6XKqJZ1WjI7ZjaPN3+cZXuWEZ8cz/i148nJz7E6mioDXCp/EYkQkYUistl5Wa2IMc1EZKmIrBeRtSJyuyvHVEr9T1BAEPdcfg/2eDttLmjDez+/R1d7V37Y9YPV0ZSPc/XMfxiQZoxpDKQ5b5/qOHCXMaYp0BF4R0SqunhcpVQhtcNqMzp6NB+2/xBBuP/r+xmSPoQ/j/1pdTTlo1wt/zhgivP6FCD+1AHGmE3GmM3O67uBvUBNF4+rlCrCdedfx+zY2Txy9SMs2bmE2ORYJq6bSG5+rtXRlI8RV14wIiKZxpiqhW4fMsactvRTaHsLHL8kmhpz+qdai8hAYCBAZGRk88TExHPO5glZWVmEh4dbHcMn6dwUzcp5OZh3kNkHZ7M2ey2RgZH0iOjBJRUusSRLUfTfTPFcmZu2bduuMsZElTSuxPIXka+B2kVsGg5MKW35i0gdIB3oZ4xZVlKwqKgos3LlypKGeVV6ejrR0dFWx/BJOjdF84V5+Xbnt4z6cRQZRzPoVL8TQ6OGEhkWaWkm8I258VWuzI2IlKr8A0saYIxpf4aD/CUidYwxe5zlvreYcZWBL4ARpSl+pZT73HjBjbSs05JJv0xi4rqJLN65mEHNBnHnZXcSZAuyOp6yiKtr/nagn/N6PyDl1AEiEgwkAZ8YY2a6eDyl1DkICQjhwaseJCkuiajaUby18i16pvZkxZ8rrI6mLOJq+Y8COojIZqCD8zYiEiUiE5xjegI3Av1FZLXzq5mLx1VKnYO6leoytt1Y3rvZ8S6h9yy4h2FLhrE/e7/V0ZSXlbjscybGmANAuyLuXwkMcF7/FPjUleMopdwrum40Leu0ZOK6iUz6ZRKLMxbzULOHuOPSOwi0uVQLqozQV/gq5acqBFZg8NWDSYpL4qqaV/H6ite5fe7t/Lz3Z6ujKS/Q8lfKz9WrXI9x7cfxTvQ7HMk5wl3z72L4d8M5kH3A6mjKg7T8lVKICO3qtSMlLoUBVwxg3u/ziEmOIfG3RPIL8q2OpzxAy18p9Y+KQRV59JpHmR07m6bVm/LK8lfo9UUv1uxbY3U05WZa/kqp0zSs0pDxHcbz5k1vciD7AH3m9eH5H57n0IlDVkdTbqLlr5QqkojQsX5H7Al27m56NylbUohJjmHmppm6FFQOaPkrpc4oLCiMIVFDmBkzk4urXcyLS1+kz7w+rN+/3upoygVa/kqpUmlUrRETb5nIqDaj+PP4n/T6ohcvLX2JwycPWx1NnQMtf6VUqYkItzW8jdT4VPo06cPszbOJSYohaXMSBae/Ua/yYVr+SqmzFh4czlPXPsXnXT6nQZUGjPxhJHfNv4tfD/xqdTRVSlr+SqlzdknEJUzuOJlXbniFjKMZ3PHFHby6/FWO5ByxOpoqgZa/UsolIkLsRbGkJqRy+yW38/nGz4lJisG+1Y4rHxalPEvLXynlFpWDK/Nsy2dJvC2RCypdwPDvhtP/y/5sOrTJ6miqCFr+Sim3uqz6ZUztNJUXr3uR3w//Ts/Unrz+4+tk5WRZHU0VouWvlHI7m9hIaJxAakIq3Rp3Y9qv04hJjuGLbV/oUpCP0PJXSnlMlZAqPNf6OabfNp3aFWszbMkw7v3qXrZmbrU6mt/T8ldKeVzTGk35tPOnjGw9kk2HNtHd3p3kQ8kcyz1mdTS/peWvlPKKAFsAPS7uQWp8KnGN4kg7kkZscixfbv9Sl4IsoOWvlPKqaqHVeP665xlSewjVQ6vz5OInGbhwIL8f/t3qaH5Fy18pZYkGIQ2Yftt0hrcczvoD6+lq78qYn8ZwPPe41dH8gpa/UsoyAbZ3p3X0AAAOS0lEQVQA7rj0DlLjU7mtwW1MWDeBuJQ4vt7xtS4FeZiWv1LKctUrVOflG17mk06fUDm4Mo+nP86DaQ+y48gOq6OVW1r+SimfcXWtq/m8y+cMazGMNXvXkJCSwHs/v0d2XrbV0codLX+llE8JtAXS+7Le2OPt3Fr/VsavHU9CSgLpGelWRytXtPyVUj6pZsWavNbmNSbdOokKgRV4eNHDDE4bTMbRDKujlQta/kopn3Zt7WuZETODJ6KeYMWfK0hISWDcmnGczD9pdbQyTctfKeXzgmxB9GvaD3u8nbZ12/LB6g9ISElgyc4lVkcrs1wqfxGJEJGFIrLZeVmtiDH1RGSViKwWkfUi8oArx1RK+a/IsEjevOlNPrrlIwJtgQxKG8Sjix5ld9Zuq6OVOa6e+Q8D0owxjYE05+1T7QGuM8Y0A1oCw0TkPBePq5TyY63qtGJ2zGweu+Yxlu5ZSlxyHB+t/Yic/Byro5UZrpZ/HDDFeX0KEH/qAGNMjjHm78W5EDccUymlCAoI4t4r7sUeb6fNBW149+d36Wbvxg+7f7A6WpkgrryKTkQyjTFVC90+ZIwpaumnLvAF0Ah40hgztpj9DQQGAkRGRjZPTEw852yekJWVRXh4uNUxfJLOTdF0Xorn7rn5NftXZh6cyb68fVxd8WoSqiVQLfC0OioTXJmbtm3brjLGRJU0rsTyF5GvgdpFbBoOTClN+Rfafh6QDMQYY/4603GjoqLMypUrz5jN29LT04mOjrY6hk/SuSmazkvxPDE3Ofk5TF4/mY/WfoSI8MBVD9D3sr4EBQS59Tie5srciEipyr/EJRhjTHtjzOVFfKUAf4lIHecB6wB7S9jXbmA90KZ0P4ZSSpVecEAwA68cSHJ8Mq3rtObtVW/TPbU7y/cstzqaz3F1/d0O9HNe7weknDpARC4QkQrO69WA64GNLh5XKaWKdX74+Yy5eQxj240lJz+HAV8N4KnFT7H3+BnPT/2Kq+U/CuggIpuBDs7biEiUiExwjrkMWC4ia4DFwFvGmHUuHlcppUp04wU3khSXxKCrBpH2RxoxSTFMWT+F3IJcq6NZzqXyN8YcMMa0M8Y0dl4edN6/0hgzwHl9oTHmSmPMVc7L8e4IrpRSpREaGMqDzR4kOS6Z5pHNeWvlW/RM7cnKP33rMUVv06ddKqX8Qt3KdRnbbizvtn2X47nHuXvB3Tyz5Bn2Z++3OpoltPyVUn5DRGh7YVuS45MZeOVAFmxfQExSDNN+nUZeQZ7V8bxKy18p5XcqBFbg4asfJikuiatqXsWoH0dxx9w7WL13tdXRvEbLXynlt+pVrse49uMYHT2azJOZ9J3fl+e+f44D2QesjuZxWv5KKb8mInSo1wF7vJ17L7+XudvmEpMcw+e/fU5+Qb7V8TxGy18ppYCKQRV5rPljzI6dTZOIJry8/GV6fdGLtfvWWh3NI7T8lVKqkIZVGvLRLR/x5k1vciD7AH3m9eH5H54n80Sm1dHcSstfKaVOISJ0rN8Re4Kdfk37kbIlhS7JXZi1aRYFpsDqeG6h5a+UUsUICwpjaNRQZsbMpHHVxryw9AX6zOvD+gPrPXrckH374OGHoXVrqFgRRGD7drceQ8tfKaVK0KhaIybdOonX2rzGnmN76DW3Fy8ve5nDJw+f2w6zsqBnT8dlESrs2gUzZkC1atDGM++DqeWvlFKlICJ0adgFe7yd3pf1ZtamWcQkxZC0Oensl4LS0mDmTFi0qMjNmVdeCX/9BfPmQY8ebkh/Oi1/pZQ6C5WCK/F0i6f5vMvn1K9Sn5E/jKTf/H78dvC3Uu+jYM4cjPOySDbPV7OWv1JKnYNLIi5hcsfJvHz9y/xx9A9un3s7ry1/jSM5R4ocfzIvn6Sfd3LL6HQOz0hCgMwZc7h1dDpJP+/kZJ53X1Og5a+UUufIJjbiGsWRmpBKz4t7krgxkdikWFK3plL4UxJXZ2TS8pU0RiT9glm/gRDnB82H5uWQv+FXRiT9QstX0liT4b2nk2r5K6WUiyoHV2Z4q+FMv20651c6n2e/e5b+X/Zn06FNrMnIpNf4ZWRm53IsJ5+221ZiK3A8RmArKKDt1hUcy8knMzuXO8Yv89ovAC1/pZRykybVmzC101ReuO4Fth3eRs/UnvRNGk52/rF/xnT5bQmh+Y4PkwnNz6XLb9/9sy07N59+k37kzJ+s7h6BXjiGUkr5DVv3HnSdM4d2YQGM6R7JrJsW07AgjScS/6TT8sPkBvy7di/d9zvbX+9S/A6vvtozOT2yV6WU8lejRkGzZlQhlJFTdvPZS9uodSiXpx+sy4Cn6pMRGfCv4SH5xXyOQFiYo/i7dfNITC1/pZRyp8aNYeVKCp5/nuzAEC7dfpJpL23jucm7+O3CULq/2IjRPSI5HlJ0/eaJjdzgYAq6doVhw2DnTseG+fNh1ixYvNgtMXXZRyml3C0ggKzBj9J1axXGzBlFg0O76Jl+iParjjCmeyQf31aTxjtPELP0368QPh4UwrZq5/Pz00/Sd+iDMHXq/zYOGuS4vOkmSE93OaKWv1JKeUBYcCBbq55HTL+3eXDZLB7+IZGIo7m88PFueqUd5OKME/8afyIgiLGtevJB6x4MiSwgP7+AAJt4LJ8u+yillAcE2ITGtcIpsAWwqWY9cgOC/tl26R8nsJ3ylJ7cgCA21qyPERuhQQEeLX7Q8ldKKY95MPoiwoIDuHXTD4TlZJ9xbFhOtmNccAA1K4V4PJuWv1JKeUjnK+oQZBPabVmBrdCz9/PERnZgMHnyvwq2YWi39UeCbEKVCkFF7c6ttPyVUspDQgIDSLyh8j9v5wCOB3V/q1mf+7o+x28163M86H9n+aF5OSS2qYJnF3wctPyVUsqDLv35O0IF8sVGdmAI/3dDH2L6v8N3Da4mtt/bjL6hN9mBIeSLjVCbY7w3uFT+IhIhIgtFZLPzstoZxlYWkV0i8r4rx1RKqTJlxgxsebnIVVfy3ayFfBfTF2w2ggIEExDAkph+fDdrIXLlFdhycx0f4uIFrj7VcxiQZowZJSLDnLefLmbsS4B7Xp2glFJlRe3a8Oab2B57jA42Gx2A/ALDsZw8woID//esni6r4J133PIc/tJwddknDpjivD4FiC9qkIg0ByKBr1w8nlJKlS2pqTBkyL8+oCXAJlQODfr30zkDAmDoUMd4L5DC7zl91t8skmmMqVro9iFjTLVTxtiARUBfoB0QZYwZXMz+BgIDASIjI5snJiaeczZPyMrKIjw83OoYPknnpmg6L8XTuSmeK3PTtm3bVcaYqJLGlbjsIyJfA7WL2DS8lFkGAfOMMRkiZ34M2xgzHhgPEBUVZaKjo0t5CO9IT0/H1zL5Cp2boum8FE/npnjemJsSy98Y0764bSLyl4jUMcbsEZE6wN4ihrUG2ojIICAcCBaRLGPMsHNOrZRSyiWuPuBrB/oBo5yXKacOMMb0/vu6iPTHseyjxa+UUhZy9QHfUUAHEdkMdHDeRkSiRGSCq+GUUkp5hktn/saYAzgexD31/pXAgCLunwxMduWYSimlXKev8FVKKT+k5a+UUn5Iy18ppfyQlr9SSvkhLX+llPJDWv5KKeWHXHpvH08SkX3ADqtznKIGsN/qED5K56ZoOi/F07kpnitzU88YU7OkQT5b/r5IRFaW5g2T/JHOTdF0Xoqnc1M8b8yNLvsopZQf0vJXSik/pOV/dsZbHcCH6dwUTeeleDo3xfP43Oiav1JK+SE981dKKT+k5a+UUn5Iy/8MRCRCRBaKyGbnZbUzjK0sIrtE5H1vZrRKaeZGRJqJyFIRWS8ia0XkdiuyeoOIdBSRjSKyRURO+7AiEQkRkc+d25eLSH3vp7RGKeZmiIhscP4bSRORelbk9LaS5qXQuO4iYkTErU/91PI/s2FAmjGmMZDmvF2cl4DFXknlG0ozN8eBu4wxTYGOwDsiUtWLGb1CRAKAsUAnoAnQS0SanDLsXuCQMaYR8DbwundTWqOUc/Mzjk/4uxKYBbzh3ZTeV8p5QUQqAY8Ay92dQcv/zOKAKc7rU4D4ogaJSHMgEvjKS7l8QYlzY4zZZIzZ7Ly+G8dnPJf4ysMyqAWwxRizzRiTAyTimJ/CCs/XLKCdiIgXM1qlxLkxxnxjjDnuvLkMuMDLGa1Qmn8z4DipfAM44e4AWv5nFmmM2QPgvKx16gARsQH/Bzzp5WxWK3FuChORFkAwsNUL2bztfCCj0O2dzvuKHGOMyQMOA9W9ks5apZmbwu4F5ns0kW8ocV5E5GqgrjFmricCuPoB7mWeiHwN1C5i0/BS7mIQMM8Yk1HeTuTcMDd/76cOMBXoZ4wpcEc2H1PUf/hTn0NdmjHlUal/bhHpA0QBN3k0kW8447w4TyrfBvp7KoDfl78xpn1x20TkLxGpY4zZ4yywvUUMaw20EZFBQDgQLCJZxpgzPT5QJrhhbhCRysAXwAhjzDIPRbXaTqBuodsXALuLGbNTRAKBKsBB78SzVGnmBhFpj+Ok4iZjzEkvZbNSSfNSCbgcSHeeVNYG7CIS6/yMdJfpss+Z2YF+zuv9gJRTBxhjehtjLjTG1AeeAD4pD8VfCiXOjYgEA0k45mSmF7N52wqgsYg0cP7Md+CYn8IKz1d3YJHxj1dYljg3zuWND4FYY0yRJxHl0BnnxRhz2BhTwxhT39kty3DMj1uKH7T8SzIK6CAim4EOztuISJSITLA0mfVKMzc9gRuB/iKy2vnVzJq4nuNcwx8MLAB+BWYYY9aLyIsiEuscNhGoLiJbgCGc+Zlj5UYp5+ZNHH81z3T+Gzn1F2e5U8p58Sh9ewellPJDeuavlFJ+SMtfKaX8kJa/Ukr5IS1/pZTyQ1r+Sinlh7T8lVLKD2n5K6WUH/p/NX8sVJF/6lsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VHXaxvHvkxACJvQmSFXAtdAEKTZgQdFdFVdBsa3uilh3X/taUEJZVFCBVWStqyi72BVdXF0VXJVQFVR6EQ1VKQFSIO15/5gRY0hIMCeZJHN/rmsu5sz85pw7A9w5c+Y3Z8zdERGR6BIT6QAiIlL+VP4iIlFI5S8iEoVU/iIiUUjlLyIShVT+IiJRSOUv5cLMkszsxTJc/1Iz61PKdZRpRpGKROUvgTGzS8xsoZmlmdlmM3vXzE4pj227+3HuPrs8thUEM2ttZm5m1cphW9XN7FUzWx/eZp9ixtc3szfMLN3MvjWzS8o6o5Q/lb8EwsxuASYCY4EmQEvgcWBgJHPJfp8ClwFbSjB2MpBF6O/xUmCKmR1XhtkkAlT+UmpmVgcYBdzg7q+7e7q7Z7v72+5+exGPecXMtpjZLjP7X/5yMbPfmNkyM9tjZhvN7Lbw7Q3N7B0zSzWzHWb2iZnFhO9bb2b9w9djzexuM1sbXsciM2sRvm+SmaWY2e7w7acews850MwWhx+71szODN/ezMxmhDOtMbOr8z2me/jV0G4z22pmj4Tv+l/4z9TwK6VeJc1xqNw9y90nuvunQO7BxppZAnABcK+7p4UfMwO4vKzySWSo/CUIvYAawBuH8Jh3gXZAY+BzYFq++54BrnH3WsDxwEfh228FNgCNCO2V3g0Udn6SW4CLgd8AtYE/Ahnh+xYAnYH6wD+BV8ysRnFhzaw7MBW4HagLnAasD9/9r3CuZsAgYKyZ9QvfNwmY5O61gaOAl8O3nxb+s667J7p7ciHbvCT8i66oS8vicv8C7YFcd1+V77YlgPb8q5gyP94oUaEBsM3dc0r6AHd/9sfrZpYE7DSzOu6+C8gGjjWzJe6+E9gZHpoNNAVaufsa4JMiVj8UuMPdV4aXl+Tbbv43dB82s+HA0fnHFOEq4Fl3/294eWM4ewvgFOBsd98LLDazpwntKX8YztzWzBq6+zZgbjHb2c/d/0noF1R5SgR2FbhtF1CrnHNIGdOevwRhO9CwpG9ehg/LPBA+dLKbn/agG4b/vIDQXvu3ZvZxvkMi44E1wPtmts7M7ixiEy2AtUVs+1YzWx4+3JQK1Mm33YMpap3NgB3uviffbd8CR4SvX0Vob3qFmS0ws7NLsK1fzMxahg8jpZlZ2i9YRRqhV0v51Qb2FDJWKjGVvwQhGdgLnFfC8ZcQeiO4P6HybR2+3QDcfYG7DyR0SOhNwodK3H2Pu9/q7kcC5wC35Du8kl8KoUMsPxM+vv8X4EKgnrvXJbRXayXIXOg6gU1AfTPLv2fckvArA3df7e4Xh3+WB4FXw8fViz2drpldmr/IC7kccNjH3b8LH0ZKdPfEEvxcBa0CqplZu3y3dQKW/oJ1SQWm8pdSCx+quQ+YbGbnmdlhZhZnZmeZ2bhCHlIL2EfoFcNhhGYIAfunJV4aPgSUDewm/CalmZ1tZm3NzPLdXtgbmE8Do82snYV0NLMG4e3mAD8QKrj7OHAvtyjPAH8ws35mFmNmR5jZr9w9BZgD3G9mNcysI6G9/WnhzJeZWSN3zwNSw+vKDWfIA44saoPuPi1/kRdy+a6E2TGz+HzvbVQPZz3gl567pwOvA6PMLMHMTib0i/qFkm5LKgeVvwTC3R8h9EbrcELFlgLcSGjPvaCphA6NbASWceBx8MuB9eFDQtcSmqIIoTeIPyB0aCIZeLyIuf2PEHq18D6hXxLPADWB9wi90bwqvP294Zwl+fnmA38AJhB6tfAx0Cp898WEXr1sIvSm94h87w2cCSwNH4KZBAxx973ungH8Ffgs/OZtz5LkKIWVQCahw1Hvha+3AgjPjHo339jrCT1f3xN6M/s6d9eefxVj+jIXEZHooz1/EZEopPIXEYlCKn8RkSik8hcRiUIV9hO+DRs29NatW5fZ+tPT00lISCiz9QdFOYOlnMFSzmAFkXPRokXb3L1RsQPdvUJeunbt6mVp1qxZZbr+oChnsJQzWMoZrCByAgu9BB2rwz4iIlFI5S8iEoVU/iIiUUjlLyIShVT+IiJRSOUvIlKRpKTAoEFQpw7Urg3nnw/flfgEriWm8hcRqSBi9u6FX/8aVqyA55+HF16A1auhb19ITw90WxX2Q14iItGm6TvvwLp1sHIltG0burFjR2jXDp54Am65JbBtac9fRKSc5OTmsXtvNrl5hZ9Kv+GcOdCz50/FD9CmDZx8Mrz1VqBZtOcvIlKG9uXkMvOrzUyZvZbV36dRLcbIyXPaN07k2j5H8ZsOTYmvFgtAwvr1MHjwgSs57jh45ZVAc6n8RUTKyOKUVK58dj7ZuXmkZ4W+cTQ7N7TXv3JrGsPf+JqRM5bx/B+706lFXart2QP16h24ovr1YefOQLPpsI+ISBlYkpLKxU/OJTUze3/xF5SelUtqZjZDnpzLkpTwVzwf+NXKUAbfuKjyFxEJ2L6cXK54dj6Z2YWXfkGZ2aHxObVqwY4dBw7YubPwVwSloPIXEQnYzK82k52bd0iPyc7NY1eLlrB06YF3LlsGxx4bULoQlb+ISMCmzF5b5KEeKPyXQnpWLms6nwhz54ame/5o/Xr47DM499xAM6r8RUQClJvnrP4+7cA7LJvqjf5DzZZPUdQvgMWn9cdbt4aBA0NTO2fMCF1v0QKuuSbQnCp/EZEApWflUC3m52/axh62hoQjJxLfcDaeXR8sp9DH5tasSdrM96B9e7j8crj00tA8/48+gsTEQHNqqqeISIASqlcj58cPccWmU6PxTOLqLiIvqwEZ3w4lN6NtkY91dw5reyS89lqZ51T5i4gEKDbGaNs4gW8yPyO+ydtYbCb7tvUha1s/8LiDPrZGXCyxMYVM9SwDKn8RkQBtSttErVbPU3PPQnIzm5P53VDy9jUt9nEJ1WNpVCu2HBKGqPxFRAKQm5fLtOXTeGzxYwDY9oFkfN+Dkr61GhcbQ52aB39lECS94SsiUkord6zk0pmXMn7heLo16cabA9/khcG3UTOuZGVeMy6W5//YnfI54BMSSPmb2ZlmttLM1pjZnQcZN8jM3My6BbFdEZFI2puzlwmLJnDROxexOX0z408bz+R+k2mW2IxOLeoyfVhP6taMI6F64YdzEqrHUrdmHNOH9aRTi7rlmr3Uh33MLBaYDJwObAAWmNkMd19WYFwt4M/AvNJuU0Qk0uZunsuo5FGk7Enhd21/x63dbqVOfJ2fjenUoi7z7unHu19tYcrsNaz62Vk9a3Fdn6M4q8Ph+8/qWZ6COObfHVjj7usAzGw6MBBYVmDcaGAccFsA2xQRiYjUvamMXzieGWtn0LJWS5454xm6N+1e5Pj4arGc1+UIzutyBLl5TnpWDgnVq5XbrJ6imJfybHFmNgg4092HhpcvB3q4+435xnQBhrv7BWY2G7jN3RcWsq5hwDCAJk2adJ0+fXqpsh1MWloaiQF/aKIsKGewlDNY0ZTT3VmUsYjXdrxGRl4G/Wv3Z0CdAVSPqR5QymBy9u3bd5G7F39o3d1LdQEGA0/nW74ceDTfcgwwG2gdXp4NdCtuvV27dvWyNGvWrDJdf1CUM1jKGaxoyblhzwa/5r/X+PHPHe8Xv3Oxr9i+IphgBQTxfAILvQTdHcRhnw1Ai3zLzYFN+ZZrAccDsy10nurDgRlmdq4XsvcvIlJR5OTlMG35NCYvngzAnd3vZMjRQ4iNKf9j9EELovwXAO3MrA2wERgCXPLjne6+C2j44/LBDvuIiFQUK3asYMScESzbvozezXtzT497aJpY/Ie1KotSl7+755jZjcB7QCzwrLsvNbNRhF5+zCjtNkREyktmTiZTlkxh6tKp1I2vy/je4xnQagBW2DdsVWKBfMLX3WcCMwvcdl8RY/sEsU0RkaAlb0pmVPIoNqRt4IJ2F3Bz15sPmL5ZVej0DiIS9Xbu3clDCx9ixtoZtKrdimcHPMuJh58Y6VhlSuUvIlHL3fn3N/9m3Pxx7Mnaw9UdruaaTtcQHxsf6WhlTuUvIlFpw54NjJk7hs82fUbHhh0ZcdII2tdrH+lY5UblLyJRJf/0TcO4q/tdXHT0RVVi+uahUPmLSNRYtn0ZSXOSWL5jOX2a9+GenvdweMLhkY4VESp/EanysvKyeHjhw7yw7AXqxtflod4PcUarM6rc9M1DofIXkSptzqY5jN08lu0p26v89M1DofIXkSpp596djF8wnrfXvU3jao2jYvrmoVD5i0iV4u68s+4dxi0YR1pWGsM6DuNXqb9S8Reg8heRKiNlTwpj5o5hzqY5dGrUiRG9RtCuXjtmz54d6WgVjspfRCq9nLwcXlz2IpMXTyY2Jpa7e9zNRUdfRIzpa8qLovIXkUrtZ9M3W/Thnh7RO33zUKj8RaRSysjO4PHFj/PC8heoX6M+j/R5hP4t+0f19M1DofIXkUpnzsY5jJo7io1pGxnUfhA3d72Z2tVrRzpWpaLyF5FKY8feHYxfMJ531r1D69qt+ceAf9Dt8OK/rlYOpPIXkQrP3Xl73duMXzCetOw0ru10LUM7DI2Ks2+WFZW/iFRoKXtSGJ08muTNyXRq1ImkXkm0rdc20rEqPZW/iFRIOXk5TF02lSmLpxAbE8s9Pe7hwqMv1PTNgKj8RaTCWbp9KUlzklixYwV9W/Tl7h53a/pmwFT+IlJhZGRnMHnxZF5c/iINajRgQp8J9G/VP9KxqiSVv4hUCJ9u/JTRyaPZlL6Jwe0Hc1PXmzR9swyp/EUkorZnbmfcgnHM/GYmbeq04bkzn6Nrk66RjlXlqfxFJCLcnRlrZzB+4XjSs9O5rtN1DO0wlOqx1SMdLSqo/EWk3KXsTmHk3JHM2zyPzo06k3RSEkfVPSrSsaKKyl9Eyk12XjZTl05lypIpxMXEMbzHcAYfPVjTNyNA5S8i5WLptqWMmDOClTtX0q9lP+7qfhdNEppEOlbUUvmLSJnKyM7gscWPMW35NBrUaMDEPhPp16pfpGNFPZW/iJSZTzZ8wpi5Y9iUvomLjr6I/zvh/6hVvVakYwkqfxEpA9szt/Pgggd595t3ObLOkUw9aypdGneJdCzJR+UvIoFxd95c8yYPLXyIzJxMru90PVd1uErTNysglb+IBOK73d8xKnkU87bMo0vjLiT1SuLIukdGOpYUQeUvIqWSnZfN80uf5+9L/k5cTBz39ryXQe0HafpmBafyF5FfbP2+9Tz6zqOs2rmK/i37c1ePu2h8WONIx5ISUPmLyCHLyM7g0S8eZdqWaTSq2YiJfSfSr6Wmb1YmKn8ROST/2/A/xswdw5b0LZySeAoPnvOgpm9WQip/ESmRbZnbGDd/HO+uf5ej6hzF1LOmkrosVcVfSan8ReSgDpi+2fl6rjo+NH1z9rLZkY4nv5DKX0SK9O3ubxmVPIr5W+ZzQuMTGHHSCI6so+mbVYHKX0QO8OP0zSmLpxAfG899ve7jgnYXaPpmFRJI+ZvZmcAkIBZ42t0fKHD/LcBQIAf4Afiju38bxLZFJFhf/vAlSclJrN65mtNbnc5d3e+i0WGNIh1LAlbq8jezWGAycDqwAVhgZjPcfVm+YV8A3dw9w8yuA8YBF5V22yISnPTsdB794lH+ufyfNDqsEX/r+zf6tuwb6VhSRoLY8+8OrHH3dQBmNh0YCOwvf3eflW/8XOCyALYrIgH5OOVjxswbw9b0rfvPvplYPTHSsaQMmbuXbgVmg4Az3X1oePlyoIe731jE+MeALe4+ppD7hgHDAJo0adJ1+vTppcp2MGlpaSQmVvx/3MoZLOX8ud25u3l1x6t8kfEFTeOacnGDi2kT36bEj9fzGawgcvbt23eRu3crdqC7l+oCDCZ0nP/H5cuBR4sYexmhPf/44tbbtWtXL0uzZs0q0/UHRTmDpZwheXl5/tqq17zXP3t5l6ld/O+L/+5ZOVmHvB49n8EKIiew0EvQ3UEc9tkAtMi33BzYVHCQmfUH7gF6u/u+ALYrIr/A+l3rGTV3FAu2LKBrk66M6DWCNnVKvrcvVUMQ5b8AaGdmbYCNwBDgkvwDzKwL8AShw0PfB7BNETlE2bnZ/GPpP3hiyRPEx8YzotcIzm93vqZvRqlSl7+755jZjcB7hKZ6PuvuS81sFKGXHzOA8UAi8IqZAXzn7ueWdtsiUjJf/vAlI+aMYE3qGs5odQZ3dr9T0zejXCDz/N19JjCzwG335bveP4jtiMihSc9O52+f/41/rfgXjQ9rzKO/fpQ+LfpEOpZUAPqEr0gVNTtlNmPmjuH7jO8Z8qsh/LnLnzV9U/ZT+YtUMdsyt3H/vPt5/9v3aVu3LQ/3eZhOjTpFOpZUMCp/kSrC3Xl99es8vOhh9uXs409d/sQfjvsDcbFxkY4mFZDKX6QK+GbXN4xKHsXCrQvp1qQbI3qNoHWd1pGOJRWYyl+kEsvOzebZr5/lyS+fJL5aPEm9kvhdu99p+qYUS+UvUkkt+WEJSXOSWJO6hgGtB3Bn9ztpWLNhpGNJJaHyF6lk0rLSmPT5JF5a+RKND2vMY79+jN4tekc6llQyKn+RSmTWd7MYM28MP2T8wCXHXMKfuvyJhLiESMeSSkjlL1IJ/JDxA/fPv5//fvtf2tVrx4Q+E+jYqGOkY0klpvIXqcDyPI/XVr/GhIUT2Je7jz93+TNXHn8lcTGavimlo/IXqaDW7VrHqORRLNq6iBMPP5H7et6n6ZsSGJW/SAWTnZvNf1L/w/sz3qdmtZqMOmkU57U9j/BJEUUCofIXqUAWf7+YkckjWbNrDWe2PpO/dP+Lpm9KmVD5i1QAaVlpTPx8Ii+vfJkmCU24ptE13Ni70G9CFQmEPgYoEmEfffcRA98ayMsrX+bSYy7lrYFvcfxhx0c6llRx2vMXiZDvM77ngfkP7J++ObHPRDo06hDpWBIlVP4i5SzP83h11atMXDSRfbn7+L8T/o8rjrtC0zelXKn8RcrRul3rGDlnJJ9//zndD+/Ofb3uo1XtVpGOJVFI5S9SDrJzs3n666d56sunNH1TKgSVv0gZ++L7Lxg5ZyRrd63lrNZncUf3OzR9UyJO5S9SRvZk7dl/9s2mCU2Z3G8ypzU/LdKxRACVv0iZ+PDbDxk7byzb9m7jsmMu409d/sRhcYdFOpbIfip/kQB9n/E9Y+eN5cPvPqR9vfZM+vUkjm+oOftS8aj8RQLw4/TNCYsmkJ2XzU0n3MTvj/u9pm9KhaXyFymldanrGJkcmr7Z4/Ae3NfrPlrWbhnpWCIHpfIX+YWycrN4+quneeqrp0iIS2D0yaMZeNRATd+USkHlL/ILfL71c0Ymj2TdrnWc1eYs/nLiX2hQs0GkY4mUmMpf5BDsydrDxEUTeXnVyzRLaMbj/R7n1OanRjqWyCFT+YuU0AfffsDYeWPZvnc7vz/299zQ+QZN35RKS+UvUoyt6VsZO28sH6V8xK/q/4pHf/0oxzU8LtKxREpF5S9ShDzP45WVrzDx84lk52Vzc9ebufzYyzV9U6oElb9IIdamriVpThKLf1hMj6Y9GNFzBC1qt4h0LJHAqPxF8snKzeKpr57i6a+eJiEugb+e8lfOOfIcTd+UKkflLxK2aOsiRiaP5Jtd3/DbI3/LHSfeQf0a9SMdS6RMqPwl6u3O2s2ERRN4ddWrHJF4BFP6T+GUI06JdCyRMqXyl6jl7nzw3QfcP+9+tu/dzhXHXsH1na/X9E2JCip/iUpb0rcwdt5YZqXM4pj6x/Bov0c5roGmb0r0UPlLVMnzPP614l9M+nwSuXm53NL1Fi4/9nKqxei/gkSXQP7Fm9mZwCQgFnja3R8ocH88MBXoCmwHLnL39UFsW6Sk1uxcw8StE/nmu2/o2bQn9/W6jxa1NH1TolOpy9/MYoHJwOnABmCBmc1w92X5hl0F7HT3tmY2BHgQuKi02xYpiX25+3jqy6d45utniCeesaeM5ewjz9b0TYlqQez5dwfWuPs6ADObDgwE8pf/QCApfP1V4DEzM3f3ALYvUqSFWxYyMnkk63ev5+wjz+akrJM456hzIh1LJOKstP1rZoOAM919aHj5cqCHu9+Yb8zX4TEbwstrw2O2FVjXMGAYQJMmTbpOnz69VNkOJi0tjcTExDJbf1CU85fJyMvgrZ1vMSdtDvVj6zOkwRCOqXlMhctZFOUMVjTl7Nu37yJ371bsQHcv1QUYTOg4/4/LlwOPFhizFGieb3kt0OBg6+3atauXpVmzZpXp+oOinIcmLy/P3/vmPe/zUh/v+HxHf2jBQ56elb7//oqSszjKGaxoygks9BJ0dxCHfTYA+d81aw5sKmLMBjOrBtQBdgSwbZH9tqRv4a/z/srslNkcU/8YJvebzLENjo10LJEKKYjyXwC0M7M2wEZgCHBJgTEzgCuAZGAQ8FH4N5RIqeXm5fLSypeY9Pkk8jyP27rdxqXHXKrpmyIHUer/He6eY2Y3Au8Rmur5rLsvNbNRhF5+zACeAV4wszWE9viHlHa7IgCrd64mKTmJL3/4kpOancS9Pe+lea3mkY4lUuEFsmvk7jOBmQVuuy/f9b2E3hsQCcS+3H08seQJ/vH1P6hVvZamb4ocIr0ulkpnwZYFjEoexfrd6znnyHO4/cTbqVejXqRjiVQqKn+pNHbt28WERRN4bfVrHJF4BE+c/gQnNTsp0rFEKiWVv1R47s77377P/fPuJ3VfKn847g9c1/k6alarGeloIpWWyl8qtC3pWxgzdwwfb/iYY+ofw5T+UzimwTGRjiVS6an8pULKzctl+srp/O3zv+G4pm+KBEz/k6TCWbVzFSPnjOTLbV9ycrOTGd5zuKZvigRM5S8VRsHpm/efej+/bfNbTd8UKQMqf6kQFmxZwMjkkXy7+1vOPepcbu92O3Vr1I10LJEqS+UvEbVr3y4eWfQIr69+neaJzXny9Cfp1axXpGOJVHkqf4kId+e99e/xwPwHQtM3j/8D13XS9E2R8qLyl3K3OW0zY+aN4X8b/sexDY7V9E2RCFD5S7nJzcvlXyv+xd+++BsAt3e7nUuOuUTTN0UiQP/rpFys3LGSkckj+WrbV5x8xMnc2/Nejkg8ItKxRKKWyl/K1N6cvTzx5RM89/Vz1I6vzYOnPshZbc7S9E2RCFP5S5mZv3k+I5NH8t2e7xh41EBu63abpm+KVBAqfwncrn27eGjhQ7y55k1a1GrBU2c8Rc+mPSMdS0TyUflLYNyd/6z/Dw/Mf4Bd+3bxx+P/yHWdrqNGtRqRjiYiBaj8JRA7cnZww4c38MnGTzi+wfE8efqTHF3/6EjHEpEiqPylVHLzcvnnin8ycdNEYmNjuePEO7jkV5cQGxMb6WgichAqf/nFVu5YSdKcJL7e/jXH1jyWCb+ZQLPEZpGOJSIloPKXQ7Y3Zy9/X/J3nlv6HHXi6zDutHHUWF9DxS9Siaj85ZDM3TyXUcmjSNmTwnltz+O2brdRJ74Os7+dHeloInIIVP5SIql7U3lo4UO8tfYtWtZqydNnPE2Ppj0iHUtEfiGVvxyUu/PuN+/y4IIH2b1vN0M7DOWajtdo+qZIJafylyJtTNvImLlj+HTjp5q+KVLFqPzlALl5uUxbPo3HFj8GwJ3d72TI0UM0fVOkClH5y8+s2LGCpDlJLN2+lNOan8bwHsNpmtg00rFEJGAqfwEgMyeTKUumMHXpVOrE12H8aeMZ0HqAzr4pUkWp/IXkTcmMnjualD0p/K7t77i1263Uia8T6VgiUoZU/lEsdW8q4xeOZ8baGbSq3YpnzniG7k27RzqWiJQDlX8UcndmfjOTcQvGsXvfbq7ucDXDOg7T9E2RKKLyjzIb0zYyeu5oPtv4GR0adtD0TZEopfKPEjl5OUxbPo3JiydjmKZvikQ5lX8UWL59OUnJSSzbvozezXszvOdwDk84PNKxRCSCVP5VWGZOJlMWT2HqsqnUja/L+N7jGdBK0zdFROVfZc3ZNIfRyaPZkLaBC9pdwM1db9b0TRHZT+Vfxezcu5OHFj7EjLUzaF27Nc8OeJYTDz8x0rFEpIJR+VcR7s47695h/ILx7Mnaw9UdruaaTtcQHxsf6WgiUgGVqvzNrD7wEtAaWA9c6O47C4zpDEwBagO5wF/d/aXSbFd+bsOeDYyZO4bPNn1Gx4YdGXHSCNrXax/pWCJSgZV2z/9O4EN3f8DM7gwv/6XAmAzg9+6+2syaAYvM7D13Ty3ltqNewembd3W/i4uOvkjTN0WkWKUt/4FAn/D154HZFCh/d1+V7/omM/seaASo/Eth2fZlJM1JYvmO5fRp3od7et6j6ZsiUmLm7r/8wWap7l433/JOd693kPHdCf2SOM7d8wq5fxgwDKBJkyZdp0+f/ouzFSctLY3ExMQyW39QCubMysti5q6ZzNo9i8TYRAbVG0TnwzpHfPpmZX0+KyrlDFY05ezbt+8id+9W7EB3P+gF+AD4upDLQCC1wNidB1lPU2Al0LO4bbo7Xbt29bI0a9asMl1/UPLn/GzDZz7g1QF+/HPH+4jPRnjq3tTIBSugMj6fFZlyBiuacgILvQQdW+xhH3fvX9R9ZrbVzJq6+2Yzawp8X8S42sC/geHuPrfY30jyMzv37mTcgnG8s+4dTd8UkUCU9pj/DOAK4IHwn28VHGBm1YE3gKnu/koptxdV3J35afO59817SctKY1jHYQzrOEzTN0Wk1Epb/g8AL5vZVcB3wGAAM+sGXOvuQ4ELgdOABmZ2ZfhxV7r74lJuu0pL2ZPC6OTRJG9PplOjTozoNYJ29dpFOpaIVBGlKn933w70K+T2hcDQ8PUXgRdLs51okpOXw4vLXmTy4snExsQyuP5ghp81nBiLiXQ0EalC9AnfCmTp9qWMnDOS5TuW07dFX+7ucTcrFqxQ8YtI4FT+FUBGdgaPL36cF5a/QP0a9XmkzyP0b9kfM2MFKyIdT0SqIJV/hH228TNGzx3NxrSNDGo/iJu73kzt6rVLnnjjAAALK0lEQVQjHUtEqjiVf4Ts2LuDcQvG8e91/6Z17db8Y8A/6HZ48Z/LEBEJgsq/nLk7b697m/ELxpOWnca1na7l6g5XUz22eqSjiUgUUfmXo5TdKYyaO4q5m+fSuVFnRvQaQdt6bSMdS0SikMq/HOTk5TB12VSmLJ5CbEws9/S4hwuPvlCzeEQkYlT+ZWzptqUkJSexYseK/dM3dfZNEYk0lX8ZycjO4LHFjzFt+TQa1GjAhD4T6N+qyNMkiYiUK5V/Gfh046eMTh7NpvRNDG4/mJu63qTpmyJSoaj8A7Q9czvjFoxj5jczaVOnDc+f+TwnNDkh0rFERA6g8g+AuzNj7QzGLxxPenY613W6jqEdhmr6pohUWCr/UkrZncLIuSOZt3keXRp3YUSvERxV96hIxxIROSiV/y+UnZfN1KVTmbJkCnExcdzb814GtR+k6ZsiUimo/A9mwwZ48EFYuBCWLIHMTPjmG75OTCNpThIrd66kX8t+3NX9LpokNIl0WhGREova3dTYzEy48EJISyt60Jo18PLLUK8enHoqAFMWT+HSmZeyc+9OJvaZyMS+E1X8IlLpRG351120CF55BT76qOhBp50GW7fCzJms6t8ZgDfXvMng9oN587w36dfqgO+xERGpFKK2/Bt9+ikO5L3+etGDYmLYnrmdOz6+g2nLQ19G9kifRxjeczi1qtcqn6AiImUgqsp/X04ub3yxgTMemU2dz+ZgQOrLrzPgkdm88cUG9uXk7h/r7ryx+g3OffNcPvjuA/o27wvAcQ2Pi1B6EZHgRM0bvotTUrny2flk5+bRbOM6qmVnAVAjJ4vcZcsZnrqXkTOW8fwfu1Ovzm5GJY9i3pZ5nND4BEb0GsGRr34ETIvsDyEiEpCoKP8lKalc/ORcMrNDe/Z91y3EcvMAiMnLo+/aBTzVsCWQxcUvj6VG4w+Jj61eYPrmQd4bEBGpZKp8+e/LyeWKZ+fvL36As1d8QrWcbABq5GZz9opPeaZ3d2o0fY3YGlvI3tOBGZc9TPPaTSMVW0SkTFXN8r/gAgi/kRsPLC5wd1bsTz92RnwM/+6XTmKrx2iUmsPdT26i3+dfww3/+ukB558PZ51V9rlFRMpJ1Sz/Bx6Adetg9WpITz/g7uq5OQD8r2MiY37fjC3147hw1g5uemUriXvzfhqYkADt24fW9/HH5ZVeRKTMVc3yb9cOFi4kb8IE9t01nLjcbKr5T6W+rXYsD17alP/0qMtRG/cydew6Oq/J3H9/jsWQHRtH/MiRxLRoEfp076JFoTvffRcaNQpdevcu759MRCQQVbP8AWJjSbvx/zh/bR0mvf4AbXZu5LDsfQBsrRfHx51rc8PrW7nq39uIy/X9D8uIi2ddvSO46fw7ef2GK6lds8CZOa+/PvRn794we3Y5/TAiIsGquuUPJFSvxtq6zTjniglcN/dV/jRnOjVysznu2728f8tK6qbn/mz83tg4Jve8kMd7DYaYGBKqVwP3ItYuIlJ5VekPecXGGO0aJ5IXE8uqRq3Ijo3bf1/B4gfIjo1jZaPWuMXQvnEisTFWnnFFRMpNlS5/gOv6HEVC9VgGrJpDQlbmQccmZGWGxlWP5bo+bcspoYhI+avy5f+bDk2JizH6rVlADD8dwsmzGDKrVScn3/n3Y3D6rZ1PXIxxVofDIxFXRKRcVPnyj68Wy/RTahOfm7X/toy4eLa1bMXV59/LikatyYiL339fjZwspp9ah/hqsZGIKyJSLqp8+QP86otPqWGQazFkVovn4VMu46XRD/Npmy6ce8UEHjnlUjKrxZNrMdSICY0XEanKoqL8efllYnKysU4d+fTV//LpOZdDTAxxsYbHxvLJOVfw6av/xTp2ICY7O/QFLiIiVViVnuq53+GHw/jxxNx0E6fHxHA6MHv2bBZdcDIJ1av9NKvn7EUwcaLm74tIlRcd5f/224XeXLtG3M9viI2FW28NXUREqrDoOOwjIiI/o/IXEYlCKn8RkSik8hcRiUKlKn8zq29m/zWz1eE/6x1kbG0z22hmj5VmmyIiUnql3fO/E/jQ3dsBH4aXizIa0DeiiIhUAKUt/4HA8+HrzwPnFTbIzLoCTYD3S7k9EREJgHkpzldvZqnuXjff8k53r1dgTAzwEXA50A/o5u43FrG+YcAwgCZNmnSdPn36L85WnLS0NBITE8ts/UFRzmApZ7CUM1hB5Ozbt+8id+9W3LhiP+RlZh8AhZ3i8p4SZrkemOnuKWYHPz++uz8JPBne7g99+/b9toTb+CUaAtvKcP1BUc5gKWewlDNYQeRsVZJBxZa/u/cv6j4z22pmTd19s5k1Bb4vZFgv4FQzux5IBKqbWZq7H+z9Ady9UXHZSsPMFpbkt2OkKWewlDNYyhms8sxZ2tM7zACuAB4I//lWwQHufumP183sSkKHfQ5a/CIiUrZK+4bvA8DpZrYaOD28jJl1M7OnSxtORETKRqn2/N19O6E3cQvevhAYWsjtzwHPlWabAXoy0gFKSDmDpZzBUs5glVvOUs32ERGRykmndxARiUIqfxGRKBQ15V9ZzkNUkpxm1srMFpnZYjNbambXVtCcnc0sOZzxSzO7qCLmDI/7j5mlmtk75ZzvTDNbaWZrzOyAWXBmFm9mL4Xvn2dmrcszX74cxeU8zcw+N7McMxtUQTPeYmbLwv8WPzSzEs2HLwslyHqtmX0V/j/+qZkdG3gId4+KCzAOuDN8/U7gwYOMnQT8E3isIuYEqgPx4euJwHqgWQXM2R5oF77eDNgM1K1oOcP39QPOAd4px2yxwFrgyPDf6RLg2AJjrgf+Hr4+BHipPJ+/Q8jZGugITAUGVdCMfYHDwtevi8RzeQhZa+e7fi7wn6BzRM2eP5XnPETF5nT3LHffF16MJzKv4EqSc5W7rw5f30ToQ4Bl+uG9QpTo793dPwT2lFeosO7AGndf5+5ZwHRCefPLn/9VoJ8V91H54BWb093Xu/uXQF45Z/tRSTLOcveM8OJcoHk5Z/xRSbLuzreYAAQ+Myeayr+Ju28GCP/ZuOCA8HmIHgZuL+ds+RWbE8DMWpjZl0AKob3ZTeWYEUqY80dm1p3QXs7acsiW3yHlLGdHEPr7+9GG8G2FjnH3HGAX0KBc0hWSIaywnJF2qBmvAt4t00RFK1FWM7vBzNYSevX656BDVKkvcC/P8xCVRgA5cfcUoKOZNQPeNLNX3X1rUBkhmJzh9TQFXgCucPfA9wyDyhkBhf0jK7iHV5IxZa0iZChOiTOa2WVAN6B3mSYqWomyuvtkYLKZXQIMJ3QWhcBUqfL3CJ2HKAI5869rk5ktBU4ldFigQuU0s9rAv4Hh7j43yHxB5oyQDUCLfMvNgYKv4H4cs8HMqgF1gB3lE++ADD8qLGeklSijmfUntFPQO9+h0/J2qM/ndGBK0CGi6bDPj+chgoOch8jdW7p7a+A2YGrQxV8CxeY0s+ZmVjN8vR5wMrCy3BKGlCRndeANQs/jK+WYLb9ic0bQAqCdmbUJP1dDCOXNL3/+QcBHHn4XsByVJGekFZvRzLoATwDnunskdwJKkrVdvsXfAqsDTxGJd7sjcSF0nPTD8JP4IVA/fHs34OlCxl9JZGb7FJuT0HmUviQ0S+BLYFgFzXkZkA0sznfpXNFyhpc/AX4AMgntmQ0op3y/AVYRei/knvBtowgVFEAN4BVgDTAfOLK8/65LmPPE8POWDmwHllbAjB8AW/P9W5wRieeyhFknAUvDOWcBxwWdQad3EBGJQtF02EdERMJU/iIiUUjlLyIShVT+IiJRSOUvIhKFVP4iIlFI5S8iEoX+HxZjG0Eq14sCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -642,7 +656,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VGX6xvHvMym00EtARQHBAhaQKOCKBhEFJQ0BRUBQERuuig1FXRuK5Yd9XRGRoksEMQ1R1GhcGwgWVCw0QVCUjgSQtPf3R8bdGBISmGROkrk/1zXXzJnzzjnPPOKdM++cmTHnHCIiElp8XhcgIiLBp/AXEQlBCn8RkRCk8BcRCUEKfxGREKTwFxEJQQp/EZEQpPAXEQlBCn/xhJktMLN7S7g/wcx+NbNw//KpZvaume00sx1mlm5mxxQZH2tmBWaWXezSI0jPI8vMRgVpX2PMbImZ7TWzaeUYf4O/lzvMbKqZ1QpCmVJNKPzFK9OA4WZmxe4fDrzsnMvzB/hbQBpwCNAW+Ar4yMzaFHnML865qGKXTyr9GQTfL8D9wNSyBprZOcA4oDfQBmgH3FOZxUn1ovAXr6QCTYCef95hZo2B/sAM/10PAzOcc08453Y657Y65+4APgX+cTA7NbPWZvaamW0ysy1m9rT/fp+Z3WFma81so5nNMLOG/nW1zewl//jtZrbYzKLNbIK//qf9rzaePthmlIdz7jXnXCqwpRzDRwAvOOeWOee2AfcBIyuzPqleFP7iCefcHmA2cHGRuwcD3zvnlppZXeBUYE4JD58NnH2g+zSzMGAesJbCo+FDgWT/6pH+Sy8Kj5KjgD/DfATQEGgNNAWuBPY458YDHwBj/K82xpSy3+37uYw70OdRTp2ApUWWlwLRZta0kvYn1Uy41wVISJsOvG5m1/r/GFzsvw8KXxX4gA0lPG4D0LzI8iFmtr3YmEOdc7uK3XcKhdNHNzvn8vz3fei/HgpMcs6tBjCz24BvzOwSIJfC0G/vnPsK+OxAnqRzrtGBjK8gUcCOIst/3q5P+V45SA2nI3/xjHPuQ2ATkGBm7YCTgX/7V28DCoBWJTy0lf9xf/rFOdeo2KV48EPhkfvaIsFf1CEUviL401oKD46igZnAAiDZzH4xs4fNLKL8z/TAmdkbRd68HnoQm8gGGhRZ/vP2zsCrk5pA4S9em0HhEf9w4C3n3G8A/vD+BBhUwmMGA+8fxL7WAYf/eSZRMb8ARxRZPhzIA35zzuU65+5xznWkcCqqP/+brirzO9FLOBOp6OX2kh7jnOtX5M3rlw/kSfotA04ssnyi/7noqF8ATfuI92YAdwAnADcUWzcOWGBm3wMvUvjv9UbgdKD7QezrUwqnjCaa2T+AfKCrc+4jYBZwq5m9QeGrigeAV/xnHfUCNgPfAr9TOA2U79/mbxS+R1Aq51zUQdS6D/8frXAgDAgzs9pAXimvZGYA08zsZQqf8x0UnmElUsg5p4sunl6ALAqneWqVsO40//psCo+y1wHdiqyPpXB6KLvY5fxS9nU4hWcabaEw0J/03+8D7vJvfxPwEtDYv24I8AOwi8KwfxII96/rASz31/9kJffpbn8Pil7uLvK8soHDi4wf66/3dwr/eO7TX11C92LO6Ze8pHowsxOBd4GLnHMLvK5HpDrTnL9UG865pUAicHwp8/YiUk468hcRCUE68hcRCUFV9qVzs2bNXJs2bbwu4y927dpFvXr1vC6jSlJvSqa+lE69KV0gvfnss882O+ealzWuyoZ/mzZtWLJkiddl/EVWVhaxsbFel1ElqTclU19Kp96ULpDemNnaskdp2kdEJCQp/EVEQpDCX0QkBCn8RURCkMJfRCQEKfxFREKQwl9EJAQp/EVEQpDCX0QkBCn8i1u3DgYOhIYNoUEDGDAAfvrJ66pERCpU6IV/djYMHlx4Xdzu3XDmmfD99zB9OsycCStWQK9esKukn4QVEamequx3+1SazEyYMweGDYP4+L+ue/55WL0afvgB2rcvvO+EE6BDB3juOTjppODXKyJSCULuyL/gtddw/ut9pKdD9+7/C36Atm3hb3+DtLSg1SgiUtlCIvz35uWT8sV6zp6UxY7ZKRiwffZrnDMpi5Qv1rM3z/9b3MuWwXHH7buBTp3g22+DWrOISGWq8dM+X67bzsipn5KbX8AhP6+mVn4OALXzcsj/9jvu2P4H96R/y/RLT+HErVuhceN9N9KkCWzbFuTKRUQqT40+8l+6bjtDJi9k+55cduXk02v1EnwFBQD4CgrotWoxu3Ly2b4nlwsnL6QAwGzfDemnLkWkhqmx4b83L58RUz9lT27+f+/r//0H1M7PBaB2fi79v//wv+v25OazLbIe+Zu37LuxbdtKfkUgIlJN1axpn/PPB/8bubWAL4utzgn769M9ZtOPrHmo/18HTXm+8AKF5/jPnVs439+xY+XULCLigZp15D9xInTuDKX89mVkfh67a/nICS+c2qmVn1fydurUgS5dCre3Zg189NG+p4WKiFRjNSv8O3SAJUsouPtu9oTXIs/2fXqTBkcz4P72fNwpap91eRgFgGvYEO68E777DhISoHVruOKKIDwBEZHgqFnhDxAWRvaY64gb9RQ/NG/D7ohaf1l95uc7Abji5jaMvaY1vzYunAraHVGL71u0ZdjQB8nr1h1GjIChQwvP83/3XYja94+FiEh1VbPm/P3qRYazqtEhxI14jKsWvsq1Hyf/943eU5dl89odK5nWrxnP92/Oh8dHMSpjK1uzz+K5bheAz4dvwq3gK+GsHxGRGqLmHfkDYT6jQ4soCnxhLG9+BLlhEX9ZH5nnGJ2xidTxK+j+7S6eGtScuQNX46u3mqNaRBGm4BeRGq5Ghj/AVbFHUi8yjHOWf0y9nD0ljjl0cy5PPvkTTz22ljr5u6l7xBSatp3Dxt0bg1ytiEhwVUj4m1lfM/vBzFaa2bgS1p9uZp+bWZ6ZDayIfZbl3ONbEeEzeq9cjI//fUgrz3zsCY/8y5vBsUt38spdP2LbzuaHnZ8QlxLH9GXTyS3IDUapIiJBF3D4m1kY8AzQD+gIDDGz4ifF/wSMBP4d6P7Kq1Z4GMmnNfjv1zmA/03d5m24fMCdfF/szeCGe/Yy+/hBpCak0jW6K48ueZTBGYNZ8uuSYJUsIhI0FXHkfwqw0jm32jmXAyQDCUUHOOfWOOe+gsJvUAiWY774kNoG+eZjT3gt/u+0YcSNfJwP23YhfsRjTDptKHvCa5FvPmr7Cse3btCaZ3o/w5O9nmR37m4uWXAJt31wG5v3bA5m6SIilcpcgN9b45/G6eucG+VfHg50c86NKWHsNGCec+7VUrY1GhgNEB0d3TU5OTmg2k664grqr1xJdrt2LLx1PGsaNOOP3HzMDOcctSPCaPP7Zro/NIGo1avZ2aEDn//rX/99fE5BDm/9/haZOzIJt3DOqnMWZzU7izALC6iumig7O5sonQ67D/WldOpN6QLpTa9evT5zzsWUNa4iTvUs6dSYg/qL4pybDEwGiImJcbGxsQGUBRx1FFxxBfWvv54+vsIXOfkFjl05edSLDP/fWT2XDIfHH6dBVhbF93k2Z7Nmxxoe/PRB5v0yjxU7V3BH9zvo3KJzYLXVMFkl9E7Ul/1Rb0oXjN5UxLTPeqB1keXDgF8qYLuBy8iAsWPB97+nGeYzGtSO+OvpnGFhcOONheNL0KZhG/511r+4rNllbN+7neFvDOfOj+5ky54SvgRORKQaqIjwXwx0MLO2ZhYJXAikV8B2qxQzo3O9zqQnpnPpcZcyb9U84lLjSP4+mfyC/LI3ICJShQQc/s65PGAMsAD4DpjtnFtmZveaWTyAmZ1sZuuBQcBzZrYs0P16pW5EXW7oegNz4+fSsUlHJiyawJDXh/DVpq+8Lk1EpNwq5OsdnHPzgfnF7ruryO3FFE4H1RjtGrXj+bOfZ8GaBTyy+BGGzR/GgA4DuO6k62hcW9/9LyJVW439hG8wmBl92/YlPSmdEZ1GkLYyjbjUOOYsn0OBC+pZrSIiB0ThXwHqRdTjxpgbmRM3hw6NOnDvJ/cybP4wlm2utrNbIlLDKfwrUPvG7Zl6zlQe7Pkgv2T/wpDXh3DfJ/exY+8Or0sTEfkLhX8FMzP6t+tPRlIGQ48dyqsrXiUuJY6UFSmaChKRKkPhX0nqR9bn1lNuZXb/2bRp2Ia7Pr6Li9+4mO+3fu91aSIiCv/KdnSTo5nWdxr3/+1+1u1cxwXzLuDBRQ/ye87vXpcmIiFM4R8EPvOR0D6B9MR0Bh81mOQfkolPiSdjVQaBfreSiMjBUPgHUcNaDRnffTyzzpvFoVGHcvuHtzPyzZEs37bc69JEJMQo/D3QsWlHZp47k3tOvYfVO1YzOGMwDy9+mOycbK9LE5EQofD3iM98DOgwgHlJ8xjQYQAvffsS8anxzF89X1NBIlLpFP4ea1irIXf1uIt/n/dvWtRtwa0f3Mqot0axavsqr0sTkRpM4V9FHNfsOF4+92Xu7H4n32/9noHpA5m0ZBK7c3d7XZqI1EAK/yokzBfG4KMHk5GUQXz7eF5c9iJxqXEsWLNAU0EiUqEU/lVQk9pNuOfUe5jZbyZNajfhpvdv4oq3r+DHHT96XZqI1BAK/yqsc4vOJJ+XzO3dbuebzd8wIH0AT3z+hKaCRCRgCv8qLswXxpBjhpCelM65bc9lytdTSExLJHNtpqaCROSgKfyriWZ1mjHhtAlM6zuNqMgors+6nqszr+an33/yujQRqYYU/tVM1+iuzO4/m1tPvpUvNn5BYloiT3/xNH/k/eF1aSJSjSj8q6FwXzjDOg4jIzGDPkf04bmvniMxLZGsdVlelyYi1YTCvxprXrc5D53+EFPPmUrtsNpc++61XJt5Let3rve6NBGp4hT+NcDJLU9mTvwcbux6I4t+XURiWiL/Wvov9ubv9bo0EamiFP41RIQvgpHHjSQ9MZ3Y1rE88+UzJKUl8cH6D7wuTUSqIIV/DdOyXksePeNRJveZTJiFcXXm1Vz/3vVsyN7gdWkiUoUo/GuoHof04LX417jupOv4+JePiU+NZ8rXU8jJz/G6NBGpAhT+NVhEWASjjh9FWkIaPQ/ryROfP8H56efzyS+feF2aiHhM4R8CWkW1YlLsJJ4961kKXAGj3x7NjVk38uuuX70uTUQ8UiHhb2Z9zewHM1tpZuNKWF/LzF7xr19kZm0qYr9yYE479DReS3iNMZ3H8P7694lPjefFb14kNz/X69JEJMgCDn8zCwOeAfoBHYEhZtax2LDLgG3OufbAY8BDge5XDk6tsFpcceIVpCak0q1VNyZ9NomBGQP5dMOnXpcmIkFUEUf+pwArnXOrnXM5QDKQUGxMAjDdf/tVoLeZWQXsWw7SYfUP46kzn+LpM59mb/5eLnvrMm75zy1s3L3R69JEJAgqIvwPBdYVWV7vv6/EMc65PGAH0LQC9i0BOqP1GaQmpHLViVeRuTaT+NR4ZiybQW6BpoJEajIL9GuBzWwQcI5zbpR/eThwinPu2iJjlvnHrPcvr/KP2VJsW6OB0QDR0dFdk5OTA6qtomVnZxMVFeV1GZVmU+4mXt32Kt/u+ZZDIg5hUJNBtK/dvlyPrem9OVjqS+nUm9IF0ptevXp95pyLKXOgcy6gC9ADWFBk+TbgtmJjFgA9/LfDgc34//CUdunataurat577z2vS6h0BQUFLnNtpjt7ztnuuGnHuds/uN1t2r2pzMeFQm8OhvpSOvWmdIH0BljiypHdFTHtsxjoYGZtzSwSuBBILzYmHRjhvz0QeNdfpFQxZsaZh59JamIqlx9/OW/8+AZxKXG8/N3L5BXkeV2eiFSQgMPfFc7hj6Hw6P47YLZzbpmZ3Wtm8f5hLwBNzWwlMBbY53RQqVrqhNfh7yf9ndfiX+P4Zscz8dOJDHl9CF9u/NLr0kSkAoRXxEacc/OB+cXuu6vI7T+AQRWxLwmuNg3b8Fyf53h77ds8vPhhhr8xnKT2SVzf9Xqa1G7idXkicpD0CV8pk5lxdpuzSU9M59LjLiVjVQb9U/rzyvevkF+Q73V5InIQFP5SbnUj6nJD1xuYGz+XY5scy/2L7uei+Rfx9aavvS5NRA6Qwl8OWLtG7Zhy9hQePv1hNu3exND5Q5m1ZRbb/9judWkiUk4KfzkoZka/tv3ISMrg4o4XszB7IXGpccxdPpcCV+B1eSJSBoW/BKReRD1uOvkmbm11K0c2OpK7P7mb4fOHs2zLMq9LE5H9UPhLhTgk8hBePOdFHjjtAX7O/pkh84Zw/8L72bF3h9eliUgJFP5SYcyMuCPjyEjK4KJjL2LO8jnEp8aTujJVU0EiVYzCXypc/cj6jDtlHLP7z+bw+odz50d3MvLNkfyw9QevSxMRP4W/VJqjmxzN9H7Tue9v97H297UMnjeYiZ9OZGfOTq9LEwl5Cn+pVD7zkdg+kfTEdAYdNYh/f/dv4lLiyFiVgb7eScQ7Cn8Jioa1GnJH9zuY1X8Wh0Ydyu0f3s4lCy5hxbYVXpcmEpIU/hJUnZp2Yua5M7m7x92s2r6KQRmDeGTxI+zK3eV1aSIhReEvQeczH+cfdT4ZiRkkdUhi5rcziU+J540f39BUkEiQKPzFM41qN+IfPf7By+e+TLO6zbjlP7dw+VuXs3r7aq9LE6nxFP7iueObH8+/z/03d3a/k++2fsf56ecz6bNJ7M7d7XVpIjWWwl+qhDBfGIOPHkxGUgZxR8bx4jcvEp8az1tr3tJUkEglUPhLldKkdhPu/du9zOw3k8a1G3Pj+zdy5TtXsmbHGq9LE6lRFP5SJXVu0ZlZ583itlNu4+tNXzMgfQBPfv4ke/L2eF2aSI2g8JcqK9wXzkXHXkR6Ujr92vbj+a+fJyE1gcyfMjUVJBIghb9Uec3qNGPCaROY1nca9SLqcf1713NN5jWs+32d16WJVFsKf6k2ukZ3ZXbcbG6OuZnPN35OYloi//zyn/yR94fXpYlUOwp/qVYifBFc3Oli0hPTOeuIs3h26bMkpiXy/rr3vS5NpFpR+Eu11KJuCx46/SFeOPsFaoXVYsy7Y7j23WtZv3O916WJVAsKf6nWTml1Cq/GvcrYrmNZtGERiWmJPLf0Ofbm7/W6NJEqTeEv1V5EWASXHHcJ6YnpxLaO5ekvn2ZA2gA++vkjr0sTqbIU/lJjtKzXkkfPeJTn+jyHz3xc+c6V3PDeDWzI3uB1aSJVjsJfapxTDzmVufFzue6k6/jw5w9JSEtgytdTyM3P9bo0kSojoPA3syZm9raZrfBfNy5l3Jtmtt3M5gWyP5HyigyLZNTxo0hPTOfUQ07lic+fYED6ABZuWOh1aSJVQqBH/uOATOdcByDTv1ySR4DhAe5L5IC1imrF470e55+9/0m+y+fyty7npvdv4rddv3ldmoinAg3/BGC6//Z0ILGkQc65TEC/2i2e6XlYT1ISUrim8zVkrcsiLjWOad9MI7dAU0ESmiyQ70gxs+3OuUZFlrc550qb+okFbnLO9d/P9kYDowGio6O7JicnH3RtlSE7O5uoqCivy6iSqlNvNuduZu62uXyz5xtaRrRkcJPBdKjdoVL2VZ36EmzqTekC6U2vXr0+c87FlDWuzPA3s3eAliWsGg9Mr8jwLyomJsYtWbKkPEODJisri9jYWK/LqJKqY2+y1mUx8dOJ/Jz9M+e1O48bu95I87rNK3Yf1bAvwaLelC6Q3phZucI/vKwBzrmz9rOT38yslXNug5m1AjYeYJ0inoltHUv3Vt154ZsXmPr1VLLWZXFN52sYcswQwn1l/q8hUq0FOuefDozw3x4BpAW4PZGgqh1em2s6X0NKQgqdW3Tm4cUPM3jeYD7/7XOvSxOpVIGG/0Sgj5mtAPr4lzGzGDOb8ucgM/sAmAP0NrP1ZnZOgPsVqVCHNzicZ3s/y+O9Hic7J5sRb45g/Ifj2bxns9eliVSKgF7bOue2AL1LuH8JMKrIcs9A9iMSDGZG78N706NVD6Z8PYUXl73Iez+9x5guY7jg6AsI84V5XaJIhdEnfEWKqRtRl7+f9Hdei3+NTs068eCnDzLk9SF8ufFLr0sTqTAKf5FStG3Ylsl9JvPoGY+y5Y8tDH9jOHd9dBdb/9jqdWkiAVP4i+yHmXFOm3PISMzgkuMuIWNVBnEpccz+YTb5Bflelydy0BT+IuVQN6IuY7uO5dX4VzmmyTHct/A+hs4fyjebv/G6NJGDovAXOQBHNjqSKWdP4aGeD7Fx90Yuev0i7v3kXrb/sd3r0kQOiMJf5ACZGee2O5f0xHSGdRzGayteIy41jtdWvEaBK/C6PJFyUfiLHKSoyChuOfkWZsfNpl3Ddvzj438w/I3hfLvlW69LEymTwl8kQEc1PoppfafxwGkPsH7neoa8PoQJCyewY+8Or0sTKZXCX6QCmBlxR8aRkZTBhUdfyOzls4lPjWdR9iJNBUmVpPAXqUANIhtwW7fbeKX/K7Su35qXtrzEyDdH8sPWH7wuTeQvFP4ileCYJscwo98MhjYdypoda7hg3gU89OlD7MzRbxpJ1aDwF6kkPvPRPao7GUkZDDxqIC9/9zLxqfHMWz2PQH5ESaQiKPxFKlnDWg25o/sdzOo/i1b1WnHbB7dx6YJLWbltpdelSQhT+IsESaemnXjp3Jf4R49/sGL7CgZlDOLRxY+yK3eX16VJCFL4iwSRz3wMPGogGYkZJLRPYMa3M4hPiefNH9/UVJAElcJfxAONazfm7lPv5qVzX6Jpnabc/J+bufzty1m9Y7XXpUmIUPiLeOiE5icw67xZ3NHtDr7d8i3np5/PY589xu7c3V6XJjWcwl/EY2G+MC445gIyEjPo364/U7+ZSkJaAm+vfVtTQVJpFP4iVUTTOk2572/3MaPfDBpGNmRs1liueucq1v6+1uvSpAZS+ItUMV1adCG5fzLjThnH0k1LSUpL4qkvnmJP3h6vS5MaROEvUgWF+8IZeuxQMpIy6NumL5O/mkxiaiLv/vSupoKkQij8RaqwZnWa8UDPB3jxnBepG1GX6967jjHvjmHdznVelybVnMJfpBqIaRnD7LjZ3BxzM0t+XUJiaiLPfvksf+T94XVpUk0p/EWqiQhfBBd3upiMpAx6H9Gbfy79J0lpSfxn/X+8Lk2qIYW/SDXTom4LHj79YaacPYWIsAiuybyGv7/7d37O/tnr0qQaUfiLVFPdWnVjbtxcbuh6Aws3LCQxNZHJX00mJz/H69KkGggo/M2siZm9bWYr/NeNSxjT2cw+MbNlZvaVmV0QyD5F5H8iwiK49LhLSU9Mp+dhPXnqi6cYkD6Aj3/+2OvSpIoL9Mh/HJDpnOsAZPqXi9sNXOyc6wT0BR43s0YB7ldEimhZryWTYifx3FnPYRhXvHMFY7PG8uuuX70uTaqoQMM/AZjuvz0dSCw+wDm33Dm3wn/7F2Aj0DzA/YpICU499FTmxs/l713+zgfrPyA+NZ4Xvn6B3Pxcr0uTKsYC+cCImW13zjUqsrzNObfP1E+R9adQ+Eeik3P7/qq1mY0GRgNER0d3TU5OPujaKkN2djZRUVFel1ElqTcl87IvW/O2MnfrXL7a8xXR4dEMajKIo+sc7UktJdG/mdIF0ptevXp95pyLKWtcmeFvZu8ALUtYNR6YXt7wN7NWQBYwwjm3sKzCYmJi3JIlS8oaFlRZWVnExsZ6XUaVpN6UrCr05T/r/8PETyeybuc6+rXpx40xNxJdL9rTmqBq9KaqCqQ3Zlau8A8va4Bz7qz97OQ3M2vlnNvgD/eNpYxrALwO3FGe4BeRinP6YafTrVU3pn4zlRe+foH317/P1Z2v5qJjLyLCF+F1eeKRQOf804ER/tsjgLTiA8wsEkgBZjjn5gS4PxE5CLXCanHViVeRkpBCTMsYHl3yKIMzBrP418VelyYeCTT8JwJ9zGwF0Me/jJnFmNkU/5jBwOnASDP70n/pHOB+ReQgtK7fmmd6P8NTZxZ+S+ilCy5l3Afj2Lxns9elSZCVOe2zP865LUDvEu5fAozy334JeCmQ/YhIxYptHUu3Vt144esXmPrNVN5f9z7XdL6GC4+5kHBfQLEg1YQ+4SsSouqE12FMlzGkJKRwYvMTeWjxQ1ww7wK+2PiF16VJECj8RULcEQ2O4NmznuXx2Mf5Ped3Ln7jYsZ/OJ4te7Z4XZpUIoW/iGBm9D6iN2kJaYw6fhTzf5xPXGocyd8nk1+Q73V5UgkU/iLyX3Uj6nLdSdcxN34unZp2YsKiCQx5fQhLNy31ujSpYAp/EdlHu4btmNxnMo+c8Qhb9mxh2Pxh3P3x3Wz7Y5vXpUkFUfiLSInMjL5t+pKelM4lnS4hbWUacalxzFk+R1NBNYDCX0T2q15EPcbGjGVO3ByOanwU935yL8PmD2PZ5mVelyYBUPiLSLm0b9yeF85+gYk9J/Lr7l8Z8voQ7vvkPnbs3eF1aXIQFP4iUm5mxnntziMjMYNhHYcxd8Vc4lLiSFmRQsG+X9QrVZjCX0QOWFRkFLecfAuv9H+Ftg3bctfHd3HxGxfz3ZbvvC5NyknhLyIH7egmRzOt7zQmnDaBdTvXceHrF/LAogf4Ped3r0uTMij8RSQgZkb8kfFkJGVwwdEX8MoPrxCXEkf6qnQC+bEoqVwKfxGpEA0iG3B7t9tJPi+Zw+ofxvgPxzPyzZEs37bc69KkBAp/EalQxzY9lpn9ZnLvqffy444fGZwxmIc+fYjsnGyvS5MiFP4iUuF85iOpQxIZSRmc3+F8Xv7uZeJS43h99euaCqoiFP4iUmka1mrInT3uZNZ5s2hZtyXjPhjHZW9dxqrtq7wuLeQp/EWk0nVq1omXzn2Ju3rcxfJtyxmYPpDUbansyt3ldWkhS+EvIkER5gtj0FGDyEjMIKF9Apm/ZxKfGs+ba97UVJAHFP4iElSNazfm7lPvZmzLsTSt3ZSb37+Z0W+P5scdP3pdWkhR+IuIJ9rWasus82Yxvtt4lm1ZxoD0ATzx+RPszt3tdWkhQeEvIp4J84Vx4TEXkpGYwXltz2PK11NISEvgnbXvaCqokin8RcRzTes05f7T7mdGvxk0iGzADVk3cFVWwdXhAAANLElEQVTmVaz9fa3XpdVYCn8RqTK6tOjCK/1fYdwp41i6cSlJaUk89cVT7Mnb43VpNY7CX0SqlHBfOEOPHUp6YjrntDmHyV9NJiktiax1WV6XVqMo/EWkSmpetzkP9nyQqedMpU54Ha5991rGZI5h3c51XpdWIyj8RaRKO7nlycyOm81NMTex+NfFJKUl8ezSZ9mbv9fr0qo1hb+IVHkRvghGdBpBemI6vVr34p9f/pOktCQ+WP+B16VVWwGFv5k1MbO3zWyF/7pxCWOOMLPPzOxLM1tmZlcGsk8RCV3R9aJ55IxHeP7s5wn3hXN15tVc9+51/JL9i9elVTuBHvmPAzKdcx2ATP9ycRuAU51znYFuwDgzOyTA/YpICOveqjtz4+Zy/UnX88mGT0hITeD5r54nJz/H69KqjUDDPwGY7r89HUgsPsA5l+Oc+3NyrlYF7FNEhIiwCC47/jLSE9PpeVhPnvziSc5PP5+Pf/nY69KqBQvkU3Rmtt0516jI8jbnXElTP62B14H2wM3OuWdK2d5oYDRAdHR01+Tk5IOurTJkZ2cTFRXldRlVknpTMvWldBXdm+/2fMecrXPYlLeJLnW7kNQ4icbh+8RRtRBIb3r16vWZcy6mrHFlhr+ZvQO0LGHVeGB6ecK/yPpDgFQgzjn32/72GxMT45YsWbLf2oItKyuL2NhYr8uoktSbkqkvpauM3uTk5zBt2TSe/+p5zIwrT7yS4ccOJyIsokL3U9kC6Y2ZlSv8y5yCcc6d5Zw7roRLGvCbmbXy77AVsLGMbf0CLAN6lu9piIiUX2RYJKNPGE1qYio9WvXgsc8eY2DGQBZtWOR1aVVOoPPv6cAI/+0RQFrxAWZ2mJnV8d9uDPwN+CHA/YqIlOrQqEN54swneKb3M+Tk5zDqrVHc8v4tbNy93+PTkBJo+E8E+pjZCqCPfxkzizGzKf4xxwKLzGwp8D7wqHPu6wD3KyJSptMPO52UhBSuPvFqMn/KJC4ljunLppNbkOt1aZ4LKPydc1ucc72dcx3811v99y9xzo3y337bOXeCc+5E//XkiihcRKQ8aofX5qrOV5GakErX6K48uuRRBmcMZsmvVes9xWDTaZciEhJaN2jNM72f4cleT7I7dzeXLLiE2z64jc17NntdmicU/iISMsyMXof3IjUxldEnjGbBmgXEpcTx8ncvk1eQ53V5QaXwF5GQUye8Dtd2uZaUhBRObH4iEz+dyIXzLuTLjV96XVrQKPxFJGQd0eAInj3rWSbFTmL73u0Mf2M4d350J1v2bPG6tEqn8BeRkGZm9DmiD+mJ6Vx23GXMWz2PuNQ4Xvn+FfIL8r0ur9Io/EVEgLoRdbm+6/XMjZ9LxyYduX/R/Qx5fQhfbfrK69IqhcJfRKSIdg3b8fzZz/PIGY+wZc8Whs0fxt0f3832P7Z7XVqFUviLiBRjZvRt05f0pHRGdBpB2so0+qf259Xlr1LgCrwur0Io/EVESlEvoh43xtzInLg5dGjUgXs+uYdh84exbMuySt1vrU2b4NproUcPqFsXzGDNmgrdh8JfRKQM7Ru3Z+o5U3mw54Ns2LWBIfOGcP/C+9mxd0el7K/Ozz/D7NnQuDH0rJzvwVT4i4iUg5nRv11/0hPTGXrsUF5d/ipxKXGkrEip8Kmg7SecAL/9BvPnw6BBFbrtPyn8RUQOQP3I+tx6yq280v8V2jRsw10f38WIN0bw/dbvy72NvPwCfv8jl/yCUn5PxVf50Rxe6XsQEamBjm5yNNP6TiNjVQaTPpvEBfMu4MKjL+SaLtfQILLBPuP35uUz/+sNPJu1ihUbswn3GXkFjqNaRHFl7JGce3wraoWHBa1+HfmLiBwkn/lIaJ9ARlIGg48aTPIPycSnxJOxKoOiv5L45brtdJuQyR0p37D8t2ycg9x8h3Pww2/Z3JHyDd0mZLJ0XfBOJ1X4i4gEqEFkA8Z3H8+s82ZxaP1Duf3D2xn55kiWb1vO0nXbGTJ5Idv35LIrp+RPDO/KyWf7nlwunLwwaH8AFP4iIhWkY9OOzOw3k3tOvYfVO1YzOGMww1PGsyd/V7kevyc3nxFTP2X/v6xeMRT+IiIVyGc+BnQYwLykeXRpfA4FDT6gXrv/I7zBl1COWM/NL2DHnsr/pTGFv4hIJWhYqyE/rzyX3WuuxuU1pM6hydQ5/Hl8kb/t93G7cvLZtHNvpdens31ERCpBfoFjxcZsnGvN7jVXE9FoMbVavEnddk+Qs6UnOZvPBFerxMf+kZtP/uw5hPkMPvus8M433oDmzQsvZ5wRcH0KfxGRSrArJ49wn5Gb7wAfudu7kbezE5Et3qRWs/cp2NuSvN+7lPhYMyPsgsF/vfPqqwuvzzgDsrICrk/hLyJSCepFhpNX7ENcLj+KvRsGkrv1VAr2tiz1sc458vMLCo/8K4nm/EVEKkGYz+jQIqrEdQV7D2F/8Vs7IqxSg5/97l1ERAJyVeyR1Is8sE/t1osMo3n9kt8LqEgKfxGRSnLu8a2ICDuwmI0I89GwTkQlVfQ/Cn8RkUpSKzyM6ZeeQp2I8h3914koHF+5Ez6FFP4iIpXoxNaNSB7dnUZ1IkqdAqoXGUajOhEkj+7Oia0bBaWugMLfzJqY2dtmtsJ/3Xg/YxuY2c9m9nQg+xQRqW5ObN2IReN7MyHpeI6OjsIMIsIMMzg6uj4Tko5n0fjeQQt+CPxUz3FApnNuopmN8y/fWsrY+4D3A9yfiEi1VCs8jMQuh5LY5VDyCxy7cvKoFxle6Wf1lCbQaZ8EYLr/9nQgsaRBZtYViAbeCnB/IiLVXpjPaFA7wrPgB7Ci3zl9wA822+6ca1RkeZtzrnGxMT7gXWA40BuIcc6NKWV7o4HRANHR0V2Tk5MPurbKkJ2dTVRUyefthjr1pmTqS+nUm9IF0ptevXp95pyLKWtcmdM+ZvYOUNJH0caXs5argfnOuXVm+/8r55ybDEwGiImJcbGxseXcRXBkZWVR1WqqKtSbkqkvpVNvSheM3pQZ/s65s0pbZ2a/mVkr59wGM2sFbCxhWA+gp5ldDUQBkWaW7Zwbd9BVi4hIQAJ9wzcdGAFM9F+nFR/gnBv6520zG0nhtI+CX0TEQ4G+4TsR6GNmK4A+/mXMLMbMpgRanIiIVI6Ajvydc1sofBO3+P1LgFEl3D8NmBbIPkVEJHD6hK+ISAhS+IuIhCCFv4hICFL4i4iEIIW/iEgIUviLiISggL7bpzKZ2SZgrdd1FNMM2Ox1EVWUelMy9aV06k3pAunNEc655mUNqrLhXxWZ2ZLyfGFSKFJvSqa+lE69KV0weqNpHxGREKTwFxEJQQr/AzPZ6wKqMPWmZOpL6dSb0lV6bzTnLyISgnTkLyISghT+IiIhSOG/H2bWxMzeNrMV/uvG+xnbwMx+NrOng1mjV8rTGzPrbGafmNkyM/vKzC7wotZgMLO+ZvaDma00s31+rMjMapnZK/71i8ysTfCr9EY5ejPWzL71/xvJNLMjvKgz2MrqS5FxA83MmVmFnvqp8N+/cUCmc64DkOlfLs19wPtBqapqKE9vdgMXO+c6AX2Bx82sURBrDAozCwOeAfoBHYEhZtax2LDLgG3OufbAY8BDwa3SG+XszRcU/sLfCcCrwMPBrTL4ytkXzKw+8HdgUUXXoPDfvwRguv/2dCCxpEFm1hWIBt4KUl1VQZm9cc4td86t8N/+hcLfeC7zk4fV0CnASufcaudcDpBMYX+KKtqvV4HeZmZBrNErZfbGOfeec263f3EhcFiQa/RCef7NQOFB5cPAHxVdgMJ//6KdcxsA/Nctig8wMx/wf8DNQa7Na2X2pigzOwWIBFYFobZgOxRYV2R5vf++Esc45/KAHUDToFTnrfL0pqjLgDcqtaKqocy+mFkXoLVzbl5lFBDoD7hXe2b2DtCyhFXjy7mJq4H5zrl1Ne1ArgJ68+d2WgEzgRHOuYKKqK2KKek/fPFzqMszpiYq9/M2s2FADHBGpVZUNey3L/6DyseAkZVVQMiHv3PurNLWmdlvZtbKObfBH2AbSxjWA+hpZlcDUUCkmWU75/b3/kC1UAG9wcwaAK8DdzjnFlZSqV5bD7QusnwY8EspY9abWTjQENganPI8VZ7eYGZnUXhQcYZzbm+QavNSWX2pDxwHZPkPKlsC6WYW7/+N9IBp2mf/0oER/tsjgLTiA5xzQ51zhzvn2gA3ATNqQvCXQ5m9MbNIIIXCnswJYm3BthjoYGZt/c/5Qgr7U1TRfg0E3nWh8QnLMnvjn954Doh3zpV4EFED7bcvzrkdzrlmzrk2/mxZSGF/KiT4QeFflolAHzNbAfTxL2NmMWY2xdPKvFee3gwGTgdGmtmX/ktnb8qtPP45/DHAAuA7YLZzbpmZ3Wtm8f5hLwBNzWwlMJb9nzlWY5SzN49Q+Kp5jv/fSPE/nDVOOftSqfT1DiIiIUhH/iIiIUjhLyISghT+IiIhSOEvIhKCFP4iIiFI4S8iEoIU/iIiIej/AcQ6sEv9RHUnAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8FPX9x/HXZ0NIhHDLKbeAcoMghxekoOivKlYB8aDYFrFa22qrLSpKOIpIVPBA6q2oFRGvSPGoClYkHEGByn2bcClHgISEXN/fH7vgGgIJZJJNsu/n4zEPdnZmZ967Ce/Mzn4zMeccIiISXnyhDiAiIqVP5S8iEoZU/iIiYUjlLyIShlT+IiJhSOUvIhKGVP4iImFI5S8iEoZU/lJsZvaJmY0r4P6BZrbLzCoF5i8wsy/M7JCZHTCzBDM7N2j9vmaWZ2Zp+abepfQ85pvZiBLYbmUzm21mW83MmVnffMtrmtmrZvZDYIrLt/wCM1sSeN1WmtlF+Zb/0cy2mNlBM0vKvzzfum0DX4MDZrbRzH6Vb/mIwP1pZvaxmTUq/isgZZHKX7zwCjDMzCzf/cOAN5xzOYEC/xT4AGgEtABWAl+bWfOgx+xwzsXkmxJL/BmUvAXAzcCuApZNAaoAzYEe+F/L3wCYWW0gAYgHagKTgQ/NrFZgeU9gEjAIqAG8CLxnZhH5dxL4IfwBMAeoDYwEXjezNoHlfYCJwMDA8i3Am8V/6lImOec0aSrWBJwBHAAuCbqvFpAJdA7MfwU8U8BjPwJeDtzuC6Scwn6bAO8CPwJ7gacD9/uA0cA24AdgBlAjsCwaeD2wfiqwFKgP/APIDWROO7qtEnitUoC++e7bA5wfNH8/8FXg9pXAqnzrrwd+F7h9PbAkaFlVwAENC9h3h8Bzs6D7PgXGB24/CkwLWtYosK2zQ/09psn7SUf+UmzOuQxgFvDroLuHAGudcyvMrApwAfB2AQ+fBVx2qvsMHNnOwV/wzYGzgJmBxbcEpligJRADPB1YNhz/EXIToA7weyDDOfcA/h9Qdzr/u407T7Df1JNMo071eQRvOt/tDkG387+jCl7+ERBhZj0Dr8lvgeUU/A4j/3YK29fR2x2QCkflL155FRhsZmcE5n8duA/8pxB8wM4CHrcTqBs036iAUq1awON64D8yvdc5l+6cy3TOLQgsuwl43Dm32TmXBtwHDA2c9sjGX/qtnHO5zrllzrmDRX2SzrmaJ5kmFXU7+XwMjDKzambWCn+BVwksW4j/NbnBzCLNbDhwdtDyQ8A7+E8rHQHGACOdcwVdsXEt/ndC9wa2dRnQJ2hbc4EhZtYp8HV8CP+Rf5UCtiXlnMpfPBEo3h+BgWbWEjgf+Fdg8X4gD2hYwEMbBh531I4CSjW9gMc1AbY553IKWNYI/zuCo7YBlfCf3nkN+ASYaWY7zGyymUUW/ZmWiD8BGcAG/Ofk38R/egjn3F785+D/AuwGLgc+O7ocGIH/h0V7oDL+zxXmFPRBrXMuG7gG+CX+dwZ/xf/O6+i+Psf/w+Md/K/ZVvw/XFLyb0vKP5W/eGkG/iP+YcCnzrndAIHyTgQGF/CYIcCXp7GvZKDp0ZFE+ewAmgXNNwVygN3OuWzn3FjnXDv8p6Ku5KfTVYVe37yAkUjB0/2n8Txwzu1zzt3knGvgnGuP///lkqDlXzrnznfO1cb/2p4TtLwz8KFzbr1zLs859zH+d1MXnGBfK51zfZxzdZxzA/CfFgve1zTnXGvnXD38PwQqAd+dzvOSsk3lL16aAfQHbuWnUz5HjQKGm9mfAqc3apnZBOAS4OHT2NcS/CU3ycyqmlm0mV0YWPYmcLeZtTCzGPwjWN5y/lFHsWbWMXB+/CD+00C5gcftxl+GJ+SOH4kUPE080ePMLMrMogOzlQN5LbDsbDOrY2YRZnYF/lE4E4Ie2zVwmqY6/g9lU5xznwQWLwV+aWYtze9SoA0nKOzAKZ1oM6tiZvfgf+f1SmBZtJl1CGynKfAc8IRzbv/JXhMpp0L9ibOmijUB8/Gf5okqYNlFgeVp+I+yk4GeQcv74j89lJZvuu4E+2oKvI9/5M4e4MnA/T7856uT8Z9Seh2oFVh2A7AOSMdf9k8ClQLLeuMfSbP/6LY8fF22Bp5z8NQ8sGwI/ncrh/F/WDsg32PfxD+a6gDwFlAvaJkB44Dv8Z+iWQMMC1p+P/BR0Hx84Pml4f+wuFXQspr4h9+m4z8t9DAQEervKU0lM1ngiy5SqsysM/AFcKP76ShWREqJTvtISDjnVuD/8LHjCc7bi0gJ0pG/iEgY0pG/iEgYKrNvt88880zXvHnzEtt+eno6VasW9LtDZYtyeks5vaWc3vIi57Jly/Y45+oWumKoP3E+0dStWzdXkubNm1ei2/eKcnpLOb2lnN7yIieQ5IrQsTrtIyIShlT+IiJhSOUvIhKGVP4iImFI5S8iEoZU/iIiZUlyMgwaBDVqQPXqcO218P33nu9G5S8iUlrS0mDIEP+/BfBlZsIvfgFr18Krr8Jrr8GGDRAbC+kF/VmL06fyFxEpLZ9/Dm+/DV98UeDihnPmwObN8P77cM01MHAgJCTAtm3w7LOeRlH5i4iUkrx338UF/i3ImQsXQq9e0KrVT3e2aAEXXggffOBpFpW/iEgJOpKTy3vfpnDZ4/M5MOs9DEid9S4DHp/Pe9+mcCQn99i6VbduhQ4djt9I+/awerWnucrstX1ERMq75cmp3PLSErJz82i0fTNRuVkAROdkkbt6DaNTMxmbsJpXf9uDzk1qUunQIahV6/gN1a4N+739g2o68hcRKQErklO54blFpGZkk56VS+zmJHx5eQD48vKI3bSU9KxcUjOyGfrcIlYkp/of6P/rnj9XApfeV/mLiHjsSE4uw19aQkb2T6d0rlz7FdG52QBE52Zz5doFx5ZlZPvXz6lWDfbtO36D+/cX/I6gGHTaR0TEC9ddB4EPcqPw/zHmYFkRP6/bc3/cwtZHrjx+O88955+uvRbeecd/3+rV0K6dp3F15C8i4oVJk6BLFzjB9fgr5+YAkBs4qxMVmC9Qu3b+7QFs3Qpffw1XX+1hWJW/iIg3WreGpCTy4uLIqBRFjv28XjMjjamD6jPi7y3IK+C0fo75yI6MxNWpAz6f/2g/IcE/1r9JE7jtNk/jqvxFRLwSEUHanX/mqhFPsa5ucw5HRgGwuG1VrhvfihevrEvjH7I4Evnz9j8cGcXaus2ZOelJ0hYuhjZtYNgwuOkm/zj/L76AmBhPo+qcv4iIh6pWrsSmmo24avgUfvPtTDKaL+DDi2rQZPcRXnhkCz3X/PwyDZkRkUzrNYRneg/mL/XzqNKq5U/n+kuQyl9ExEMRPqNVvapsyfiadwevw1WqzogPf+S2hB+Izj5+yGZ2RCTr6jbHmY/oSCPCV8A5oRKg8hcR8dCOtB1Ua/YqZxxKot7OSjwxbRPnpmSecP2qWRkMWL+QxPYXULdaRKnl1Dl/EREP5OblMmPVDK754BpSMlZhewfyxrifF3+O+cioVPlnHwb7cPTbtIRIn1HjjMhSy6vyFxEppnX71nHT3JuIT4qne/3uvD/wfWZ1+iVVcrKOrXP0Q91br32QtUEfBoP/cg8zL65B6Zzw8fOk/M3scjNbZ2YbzWzUSdYbZGbOzLp7sV8RkVDKzMlkyrIpXD/nenam7yT+knim9ZtGo5hGnPvtAqINcs1HRqUoHrvoZq66ZSoLWnTl6uFTePyim8ioFEWu+Yj2wbnfLih8hx4qdvmbWQQwDbgCaAfcYGbH/SqamVUD/gQsLu4+RURCbdHORVybcC0vffcSV599NQnXJHB5i8uxo9fmmTULX0421rkTC2b/hwVXDQOfj8gIw0VE8NVVw1kw+z9Yp474srNh1qxSze/FB749gI3Ouc0AZjYTGAjkv/7oeGAycI8H+xQRCYnUzFTik+JJ2JRA02pNefGyF+nRsMfxKzZoAPHx+O66i0t9Pi4FcvMc6Vk5VK1c6adRPVcug6lTYf780nwamCvm1eLMbBBwuXNuRGB+GNDTOXdn0DpdgdHOuevMbD5wj3MuqYBtjQRGAtSvX7/bzJkzi5XtZNLS0ojx+JcmSoJyeks5vRVOOZ1zLDu8jHf2vcPhvMP0r96fATUGUNlX2aOU3uSMjY1d5pwr/NS6c65YEzAYeCFofhjwVNC8D5gPNA/Mzwe6F7bdbt26uZI0b968Et2+V5TTW8rprXDJmXIoxd32n9tch1c6uBvm3ODW7l3rTbB8vHg9gSRXhO724rRPCtAkaL4xsCNovhrQAZgfOBfWAEgws6tdAUf/IiJlRU5eDm+seYNpy6cBMKrHKIaeM5QIX+mNxy8pXpT/UqC1mbUAtgNDgRuPLnTOHQDOPDp/stM+IiJlxdp9axmzcAyr966mT+M+PNDzARrGNAx1LM8Uu/ydczlmdifwCRABvOScW2Vm4/C//Ugo7j5EREpLRk4G01dMZ8aqGdSMqkl8n3gGNBvw0yieCsKTyzs45+YCc/Pd99AJ1u3rxT5FRLyWuCORcYnjSElL4brW13F3t7upEVUj1LFKhK7tIyJhb3/mfh5NepSETQk0q96Mlwa8xPkNzg91rBKl8heRsOWc499b/s3kJZM5lHWIWzveym2dbyMqIqrwB5dzKn8RCUsph1KYsGgCX+/4mk5ndmLMBWNoU6tNqGOVGpW/iISV4OGbhnFfj/u4/pzrK8TwzVOh8heRsLF672riFsaxZt8a+jbuywO9HqBB1QahjhUSKn8RqfCy8rJ4LOkxXlv9GjWjavJon0e5rNllFW745qlQ+YtIhbZwx0Im7pzI3uS9FX745qlQ+YtIhbQ/cz/xS+P5cPOH1KtULyyGb54Klb+IVCjOOeZsnsPkpZNJy0pjZKeRnJt6roo/H5W/iFQYyYeSmbBoAgt3LKRz3c6M6T2G1rVaM7+Ur5VfHqj8RaTcy8nL4fXVrzNt+TQifBHc3/N+rj/nenymP1N+Iip/ESnXfjZ8s0lfHugZvsM3T4XKX0TKpcPZh3lm+TO8tuY1akfX5vG+j9O/af+wHr55KlT+IlLuLNy+kHGLxrE9bTuD2gzi7m53U71y9VDHKldU/iJSbuzL3Ef80njmbJ5D8+rNeXnAy3RvUPifq5XjqfxFpMxzzvHh5g+JXxpPWnYav+/8e0Z0HBEWV98sKSp/ESnTkg8lMz5xPIk7E+lctzNxveNoVatVqGOVeyp/ESmTcvJymLF6BtOXTyfCF8EDPR9gyDlDNHzTIyp/ESlzVu1dRdzCONbuW0tsk1ju73m/hm96TOUvImXG4ezDTFs+jdfXvE6d6DpM6TuF/s36hzpWhaTyF5EyYcH2BYxPHM+O9B0MbjOYu7rdpeGbJUjlLyIhtTdjL5OXTmbulrm0qNGCVy5/hW71u4U6VoWn8heRkHDOkbApgfikeNKz07m98+2M6DiCyhGVQx0tLKj8RaTUJR9MZuyisSzeuZgudbsQd0EcZ9c8O9SxworKX0RKTXZeNjNWzWD6iulE+iIZ3XM0g88ZrOGbIaDyF5FSsWrPKsYsHMO6/evo17Qf9/W4j/pV64c6VthS+YtIiTqcfZinlz/NG2veoE50Hab2nUq/Zv1CHSvsqfxFpMR8lfIVExZNYEf6Dq4/53r+fN6fqVa5WqhjCSp/ESkBezP28sjSR/hoy0e0rNGSGVfMoGu9rqGOJUFU/iLiGecc7298n0eTHiUjJ4M7Ot/B7zr+TsM3yyCVv4h44vuD3zMucRyLdy2ma72uxPWOo2XNlqGOJSeg8heRYsnOy+bVVa/yzxX/JNIXyYO9HmRQm0EavlnGqfxF5LRtPbKVp+Y8xfr96+nftD/39byPelXqhTqWFIHKX0RO2eHswzz17VO8sesN6p5Rl6mxU+nXVMM3yxOVv4ickv+m/JcJiyawK30XF8VcxCNXPaLhm+WQyl9EimRPxh4mL5nMR1s/4uwaZzPjihmkrk5V8ZdTKn8ROanjhm92uYPfdfAP35y/en6o48lpUvmLyAltO7iNcYnjWLJrCefVO48xF4yhZQ0N36wIVP4icpyjwzenL59OVEQUD/V+iOtaX6fhmxWIJ+VvZpcDTwARwAvOuUn5lv8FGAHkAD8Cv3XObfNi3yLirZU/riQuMY4N+zdwabNLua/HfdStUjfUscRjxS5/M4sApgGXAinAUjNLcM6tDlrtW6C7c+6wmd0OTAauL+6+RcQ76dnpPPXtU/xrzb+oW6UuT8Y+SWzT2FDHkhLixZF/D2Cjc24zgJnNBAYCx8rfOTcvaP1FwM0e7FdEPPJl8pdMWDyB3em7j119M6ZyTKhjSQky51zxNmA2CLjcOTciMD8M6Omcu/ME6z8N7HLOTShg2UhgJED9+vW7zZw5s1jZTiYtLY2YmLL/za2c3lLOnzuYe5DZ+2bz7eFvaRjZkBvq3ECLqBZFfrxeT295kTM2NnaZc657oSs654o1AYPxn+c/Oj8MeOoE696M/8g/qrDtduvWzZWkefPmlej2vaKc3lJOv7y8PPfO+ndc73/1dl1ndHX/XP5Pl5WTdcrb0evpLS9yAkmuCN3txWmfFKBJ0HxjYEf+lcysP/AA0Mc5d8SD/YrIadh6YCvjFo1j6a6ldKvfjTG9x9CiRtGP9qVi8KL8lwKtzawFsB0YCtwYvIKZdQWexX966AcP9ikipyg7N5uXV73MsyueJSoiijG9x3Bt62s1fDNMFbv8nXM5ZnYn8An+oZ4vOedWmdk4/G8/EoB4IAZ428wAvnfOXV3cfYtI0az8cSVjFo5hY+pGLmt2GaN6jNLwzTDnyTh/59xcYG6++x4Kut3fi/2IyKlJz07nyW+e5M21b1KvSj2e+sVT9G3SN9SxpAzQb/iKVFDzk+czYdEEfjj8A0PPHcqfuv5JwzflGJW/SAWzJ2MPDy9+mE+3fUqrmq14rO9jdK7bOdSxpIxR+YtUEM453t3wLo8te4wjOUf4Y9c/8pv2vyEyIjLU0aQMUvmLVABbDmxhXOI4knYn0b1+d8b0HkPzGs1DHUvKMJW/SDmWnZvNS9+9xHMrnyOqUhRxveP4VetfafimFErlL1JOrfhxBXEL49iYupEBzQcwqscozjzjzFDHknJC5S9SzqRlpfHEN0/w1rq3qFelHk//4mn6NOkT6lhSzqj8RcqRed/PY8LiCfx4+EdubHsjf+z6R6pGVg11LCmHVP4i5cCPh3/k4SUP859t/6F1rdZM6TuFTnU7hTqWlGMqf5EyLM/l8c6Gd5iSNIUjuUf4U9c/cUuHW4j0afimFI/KX6SM2nxgM+MSx7Fs9zLOb3A+D/V6SMM3xTMqf5EyJjs3m49TP+bThE85o9IZjLtgHNe0uobARRFFPKHyFylDlv+wnLGJY9l4YCOXN7+cv/f4u4ZvSolQ+YuUAWlZaUz9Ziqz1s2iftX63Fb3Nu7sU+BfQhXxhH4NUCTEvvj+CwZ+MJBZ62ZxU9ub+GDgB3So0iHUsaSC05G/SIj8cPgHJi2ZdGz45tS+U+lYt2OoY0mYUPmLlLI8l8fs9bOZumwqR3KP8Ofz/szw9sM1fFNKlcpfpBRtPrCZsQvH8s0P39CjQQ8e6v0Qzao3C3UsCUMqf5FSkJ2bzQvfvcDzK5/X8E0pE1T+IiXs2x++ZezCsWw6sIkrml/B33r8TcM3JeRU/iIl5FDWoWNX32xYtSHT+k3jksaXhDqWCKDyFykRn2/7nImLJ7Incw83t72ZP3b9I1Uiq4Q6lsgxKn8RD/1w+AcmLp7I599/TptabXjiF0/Q4UyN2ZeyR+Uv4oGjwzenLJtCdl42d513F79u/2sN35QyS+UvUkybUzczNtE/fLNng5481PshmlZvGupYIiel8hc5TVm5Wbzwvxd4/n/PUzWyKuMvHM/Aswdq+KaUCyp/kdPwze5vGJs4ls0HNnNFiyv4+/l/p84ZdUIdS6TIVP4ip+BQ1iGmLpvKrPWzaFS1Ec/0e4aLG18c6lgip0zlL1JEn237jImLJ7I3cy+/bvdr/tDlDxq+KeWWyl+kELvTdzNx8US+SP6Cc2ufy1O/eIr2Z7YPdSyRYlH5i5xAnsvj7XVvM/WbqWTnZXN3t7sZ1m6Yhm9KhaDyFynAptRNxC2MY/mPy+nZsCdjeo2hSfUmoY4l4hmVv0iQrNwsnv/f87zwvxeoGlmVf1z0D65qeZWGb0qFo/IXCVi2exljE8ey5cAWftnyl/zt/L9RO7p2qGOJlAiVv4S9g1kHmbJsCrPXz+asmLOY3n86F511UahjiZQolb+ELeccn33/GQ8vfpi9mXsZ3m44d3S5Q8M3JSyo/CUs7UrfxcTFE5mXPI+2tdvyVL+naF9HwzclfKj8JazkuTzeXPsmT3zzBLl5ufyl218Y1m4YlXz6ryDhxZPveDO7HHgCiABecM5Nyrc8CpgBdAP2Atc757Z6sW+Rotq4fyNTd09ly/db6NWwFw/1fogm1TR8U8JTscvfzCKAacClQAqw1MwSnHOrg1b7HbDfOdfKzIYCjwDXF3ffIkVxJPcIz698nhe/e5Eooph40USubHmlhm9KWPPiyL8HsNE5txnAzGYCA4Hg8h8IxAVuzwaeNjNzzjkP9i9yQkm7khibOJatB7dyZcsruSDrAq46+6pQxxIJOStu/5rZIOBy59yIwPwwoKdz7s6gdb4LrJMSmN8UWGdPvm2NBEYC1K9fv9vMmTOLle1k0tLSiImJKbHte0U5T8/hvMN8sP8DFqYtpHZEbYbWGUrbM9qWuZwnopzeCqecsbGxy5xz3Qtd0TlXrAkYjP88/9H5YcBT+dZZBTQOmt8E1DnZdrt16+ZK0rx580p0+15RzlOTl5fnPtnyiev7Vl/X6dVO7tGlj7r0rPRjy8tKzsIop7fCKSeQ5IrQ3V6c9kkBgj81awzsOME6KWZWCagB7PNg3yLH7ErfxT8W/4P5yfNpW7st0/pNo12ddqGOJVImeVH+S4HWZtYC2A4MBW7Mt04CMBxIBAYBXwR+QokUW25eLm+te4snvnmCPJfHPd3v4aa2N2n4pshJFPt/h3Mux8zuBD7BP9TzJefcKjMbh//tRwLwIvCamW3Ef8Q/tLj7FQHYsH8DcYlxrPxxJRc0uoAHez1I42qNQx1LpMzz5NDIOTcXmJvvvoeCbmfi/2xAxBNHco/w7Ipnefm7l6lWuZqGb4qcIr0vlnJn6a6ljEscx9aDW7mq5VXce/691IquFepYIuWKyl/KjQNHDjBl2RTe2fAOZ8WcxbOXPssFjS4IdSyRcknlL2Wec45Pt33Kw4sfJvVIKr9p/xtu73I7Z1Q6I9TRRMotlb+UabvSdzFh0QS+TPmStrXbMr3/dNrWaRvqWCLlnspfyqTcvFxmrpvJk988icNp+KaIx/Q/Scqc9fvXM3bhWFbuWcmFjS5kdK/RGr4p4jGVv5QZ+YdvPnzxw/yyxS81fFOkBKj8pUxYumspYxPHsu3gNq4++2ru7X4vNaNrhjqWSIWl8peQOnDkAI8ve5x3N7xL45jGPHfpc/Ru1DvUsUQqPJW/hIRzjk+2fsKkJZP8wzc7/IbbO2v4pkhpUflLqduZtpMJiyfw35T/0q5OOw3fFAkBlb+Umty8XN5c+yZPfvskAPd2v5cb296o4ZsiIaD/dVIq1u1bx9jEsfxvz/+48KwLebDXg5wVc1aoY4mELZW/lKjMnEyeXfksr3z3CtWjqvPIxY9wRYsrNHxTJMRU/lJiluxcwtjEsXx/6HsGnj2Qe7rfo+GbImWEyl88d+DIAR5NepT3N75Pk2pNeP6y5+nVsFeoY4lIEJW/eMY5x8dbP2bSkkkcOHKA33b4Lbd3vp3oStGhjiYi+aj8xRP7cvbxh8//wFfbv6JDnQ48d+lznFP7nFDHEpETUPlLseTm5fKvtf9i6o6pRERE8Lfz/8aN595IhC8i1NFE5CRU/nLa1u1bR9zCOL7b+x3tzmjHlP+bQqOYRqGOJSJFoPKXU5aZk8k/V/yTV1a9Qo2oGky+ZDLRW6NV/CLliMpfTsminYsYlziO5EPJXNPqGu7pfg81omowf9v8UEcTkVOg8pciSc1M5dGkR/lg0wc0rdaUFy57gZ4Ne4Y6loicJpW/nJRzjo+2fMQjSx/h4JGDjOg4gts63abhmyLlnMpfTmh72nYmLJrAgu0LNHxTpIJR+ctxcvNyeWPNGzy9/GkARvUYxdBzhmr4pkgFovKXn1m7by1xC+NYtXcVlzS+hNE9R9MwpmGoY4mIx1T+AkBGTgbTV0xnxqoZ1IiqQfwl8QxoPkBX3xSpoFT+QuKORMYvGk/yoWR+1epX/LX7X6kRVSPUsUSkBKn8w1hqZirxSfEkbEqgWfVmvHjZi/Ro2CPUsUSkFKj8w5Bzjrlb5jJ56WQOHjnIrR1vZWSnkRq+KRJGVP5hZnvadsYvGs/X27+m45kdNXxTJEyp/MNETl4Ob6x5g2nLp2GYhm+KhDmVfxhYs3cNcYlxrN67mj6N+zC612gaVG0Q6lgiEkIq/wosIyeD6cunM2P1DGpG1SS+TzwDmmn4poio/CushTsWMj5xPClpKVzX+jru7na3hm+KyDEq/wpmf+Z+Hk16lIRNCTSv3pyXBrzE+Q3OD3UsESljVP4VhHOOOZvnEL80nkNZh7i1463c1vk2oiKiQh1NRMqgYpW/mdUG3gKaA1uBIc65/fnW6QJMB6oDucA/nHNvFWe/8nMph1KYsGgCX+/4mk5ndmLMBWNoU6tNqGOJSBlW3CP/UcDnzrlJZjYqMP/3fOscBn7tnNtgZo2AZWb2iXMutZj7Dnv5h2/e1+M+rj/neg3fFJFCFbf8BwJ9A7dfBeaTr/ydc+uDbu8wsx+AuoDKvxhW711N3MI41uxbQ9/GfXmg1wMavikiRWbOudN/sFmqc65m0Px+51ytk6zfA/8PifbOubwClo8ERgLUr1+/28yZM087W2HS0tKIiYkpse17JX/OrLws5h6Yy7yD84iJiGFQrUF0qdIl5MM3y+vrWVYpp7fCKWdsbOwy51z3Qld0zp10Aj4DvitgGgik5lt3/0m20xBYB/QqbJ/OObp16+ZK0rxMaZJCAAAMmElEQVR580p0+14Jzvl1ytduwOwBrsMrHdyYr8e41MzU0AXLpzy+nmWZcnornHICSa4IHVvoaR/nXP8TLTOz3WbW0Dm308waAj+cYL3qwL+B0c65RYX+RJKf2Z+5n8lLJzNn8xwN3xQRTxT3nH8CMByYFPj3g/wrmFll4D1ghnPu7WLuL6w451iStoQH33+QtKw0RnYaychOIzV8U0SKrbjlPwmYZWa/A74HBgOYWXfg9865EcAQ4BKgjpndEnjcLc655cXcd4WWfCiZ8YnjSdybSOe6nRnTewyta7UOdSwRqSCKVf7Oub1AvwLuTwJGBG6/DrxenP2Ek5y8HF5f/TrTlk8jwhfB4NqDGX3FaHzmC3U0EalA9Bu+ZciqvasYu3Asa/atIbZJLPf3vJ+1S9eq+EXEcyr/MuBw9mGeWf4Mr615jdrRtXm87+P0b9ofM2Mta0MdT0QqIJV/iH29/WvGLxrP9rTtDGoziLu73U31ytVDHUtEKjiVf4jsy9zH5KWT+ffmf9O8enNeHvAy3RsU/nsZIiJeUPmXMuccH27+kPil8aRlp/H7zr/n1o63UjmicqijiUgYUfmXouSDyYxbNI5FOxfRpW4XxvQeQ6tarUIdS0TCkMq/FOTk5TBj9QymL59OhC+CB3o+wJBzhmgUj4iEjMq/hK3as4q4xDjW7lt7bPimrr4pIqGm8i8hh7MP8/Typ3ljzRvUia7DlL5T6N/shJdJEhEpVSr/ErBg+wLGJ45nR/oOBrcZzF3d7tLwTREpU1T+HtqbsZfJSyczd8tcWtRowauXv8p59c8LdSwRkeOo/D3gnCNhUwLxSfGkZ6dze+fbGdFxhIZvikiZpfIvpuSDyYxdNJbFOxfTtV5XxvQew9k1zw51LBGRk1L5n6bsvGxmrJrB9BXTifRF8mCvBxnUZpCGb4pIuaDyP5mUFHjkEUhKghUrICMDtmzhu5g04hbGsW7/Ovo17cd9Pe6jftX6oU4rIlJkYXuYGpGRAUOGQFraiVfauBFmzYJateDiiwGYvnw6N829if2Z+5nadypTY6eq+EWk3Anb8q+5bBm8/TZ88cWJV7rkEti9G+bOZX3/LgC8v/F9BrcZzPvXvE+/Zsf9HRsRkXIhbMu/7oIFOCDv3XdPvJLPx96Mvfzty7/xxhr/HyN7vO/jjO41mmqVq5VOUBGREhBW5X8kJ5f3vk3hssfnU+PrhRiQOutdBjw+n/e+TeFITu6xdZ1zvLfhPa5+/2o++/4zYhvHAtD+zPYhSi8i4p2w+cB3eXIqt7y0hOzcPBpt30yl7CwAonOyyF29htGpmYxNWM2rv+1BrRoHGZc4jsW7FnNevfMY03sMLWd/AbwR2ichIuKRsCj/Fcmp3PDcIjKy/Uf2sZuTsNw8AHx5ecRuWsrzZzYFsrhh1kSi631OVETlfMM3T/LZgIhIOVPhy/9ITi7DX1pyrPgBrlz7FZVysgGIzs3myrULeLFPD6IbvkNE9C6yD3Uk4ebHaFy9Yahii4iUqIpZ/tddB4EPcqOA5fkWZ0X89LQPR/n4d790Ypo9Td3UHO5/bgf9vvkO/vDmTw+49lq44oqSzy0iUkoqZvlPmgSbN8OGDZCeftziyrk5APy3UwwTft2IXbUjGTJvH3e9vZuYzLyfVqxaFdq08W/vyy9LK72ISImrmOXfujUkJZE3ZQpH7htNZG42ldxPpb6negSP3NSQj3vW5OztmcyYuJkuGzOOLc8xH9kRkUSNHYuvSRP/b/cuW+Zf+NFHULeuf+rTp7SfmYiIJypm+QNERJB255+5dlMNnnh3Ei32b6dK9hEAdteK5Msu1fnDu7v53b/3EJnrjj3scGQUm2udxV3XjuLdP9xC9TPyXZnzjjv8//bpA/Pnl9KTERHxVsUtf6Bq5UpsqtmIq4ZP4fZFs/njwplE52bTflsmn/5lHTXTc3+2fmZEJNN6DeGZ3oPB56Nq5Urg3Am2LiJSflXoX/KK8Bmt68WQ54tgfd1mZEdEHluWv/gBsiMiWVe3Oc58tKkXQ4TPSjOuiEipqdDlD3B737OpWjmCAesXUjUr46TrVs3K8K9XOYLb+7YqpYQiIqWvwpf//3VsSKTP6LdxKT5+OoWTZz4yKlUmJ+j6+z4c/TYtIdJnXNGxQSjiioiUigpf/lGVIph5UXWicrOO3Xc4Moo9TZtx67UPsrZucw5HRh1bFp2TxcyLaxBVKSIUcUVESkWFL3+Ac79dQLRBrvnIqBTFYxfdzFvjH2NBi65cPXwKj190ExmVosg1H9E+//oiIhVZWJQ/s2bhy8nGOndiwez/sOCqYeDzERlhuIgIvrpqOAtm/wfr1BFfdrb/D7iIiFRgFXqo5zENGkB8PL677uJSn49Lgfnz57PsugupWrnST6N6rlwGU6dq/L6IVHjhUf4ffljg3dWjI39+R0QE/PWv/klEpAILj9M+IiLyMyp/EZEwpPIXEQlDKn8RkTBUrPI3s9pm9h8z2xD4t9ZJ1q1uZtvN7Oni7FNERIqvuEf+o4DPnXOtgc8D8ycyHtBfRBERKQOKW/4DgVcDt18FriloJTPrBtQHPi3m/kRExAPminG9ejNLdc7VDJrf75yrlW8dH/AFMAzoB3R3zt15gu2NBEYC1K9fv9vMmTNPO1th0tLSiImJKbHte0U5vaWc3lJOb3mRMzY2dplzrnth6xX6S15m9hlQ0CUuHyhiljuAuc65ZLOTXx/fOfcc8Fxgvz/GxsZuK+I+TseZwJ4S3L5XlNNbyukt5fSWFzmbFWWlQsvfOdf/RMvMbLeZNXTO7TSzhsAPBazWG7jYzO4AYoDKZpbmnDvZ5wM45+oWlq04zCypKD8dQ005vaWc3lJOb5VmzuJe3iEBGA5MCvz7Qf4VnHM3Hb1tZrfgP+1z0uIXEZGSVdwPfCcBl5rZBuDSwDxm1t3MXihuOBERKRnFOvJ3zu3F/yFu/vuTgBEF3P8K8Epx9umh50IdoIiU01vK6S3l9Fap5SzWaB8RESmfdHkHEZEwpPIXEQlDYVP+5eU6REXJaWbNzGyZmS03s1Vm9vsymrOLmSUGMq40s+vLYs7Aeh+bWaqZzSnlfJeb2Toz22hmx42CM7MoM3srsHyxmTUvzXxBOQrLeYmZfWNmOWY2qIxm/IuZrQ58L35uZkUaD18SipD192b2v8D/8QVm1s7zEM65sJiAycCowO1RwCMnWfcJ4F/A02UxJ1AZiArcjgG2Ao3KYM42QOvA7UbATqBmWcsZWNYPuAqYU4rZIoBNQMvA13QF0C7fOncA/wzcHgq8VZqv3ynkbA50AmYAg8poxligSuD27aF4LU8ha/Wg21cDH3udI2yO/Ck/1yEqNKdzLss5dyQwG0Vo3sEVJed659yGwO0d+H8JsER/ea8ARfq6O+c+Bw6VVqiAHsBG59xm51wWMBN/3mDB+WcD/aywX5X3XqE5nXNbnXMrgbxSznZUUTLOc84dDswuAhqXcsajipL1YNBsVcDzkTnhVP71nXM7AQL/1su/QuA6RI8B95ZytmCF5gQwsyZmthJIxn80u6MUM0IRcx5lZj3wH+VsKoVswU4pZyk7C//X76iUwH0FruOcywEOAHVKJV0BGQIKyhlqp5rxd8BHJZroxIqU1cz+YGab8L97/ZPXISrUH3AvzesQFYcHOXHOJQOdzKwR8L6ZzXbO7fYqI3iTM7CdhsBrwHDnnOdHhl7lDIGCvsnyH+EVZZ2SVhYyFKbIGc3sZqA70KdEE51YkbI656YB08zsRmA0/qsoeKZClb8L0XWIQpAzeFs7zGwVcDH+0wJlKqeZVQf+DYx2zi3yMp+XOUMkBWgSNN8YyP8O7ug6KWZWCagB7CudeMdlOKqgnKFWpIxm1h//QUGfoFOnpe1UX8+ZwHSvQ4TTaZ+j1yGCk1yHyDnX1DnXHLgHmOF18RdBoTnNrLGZnRG4XQu4EFhXagn9ipKzMvAe/tfx7VLMFqzQnCG0FGhtZi0Cr9VQ/HmDBecfBHzhAp8ClqKi5Ay1QjOaWVfgWeBq51woDwKKkrV10OwvgQ2epwjFp92hmPCfJ/088CJ+DtQO3N8deKGA9W8hNKN9Cs2J/zpKK/GPElgJjCyjOW8GsoHlQVOXspYzMP8V8COQgf/IbEAp5fs/YD3+z0IeCNw3Dn9BAUQDbwMbgSVAy9L+Whcx5/mB1y0d2AusKoMZPwN2B30vJoTitSxi1ieAVYGc84D2XmfQ5R1ERMJQOJ32ERGRAJW/iEgYUvmLiIQhlb+ISBhS+YuIhCGVv4hIGFL5i4iEof8H9ZsQUr11n/gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] From d7d40e37f33aa386a5557ab2b6bbc1589edb3e11 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 30 Apr 2019 00:26:30 +0200 Subject: [PATCH 094/116] rerun all notebooks with fetched terra / aqua --- .../optimization/portfolio_optimization.ipynb | 58 +++++++++---------- .../simulation/credit_risk_analysis.ipynb | 4 +- .../simulation/fixed_income_pricing.ipynb | 8 +-- 3 files changed, 35 insertions(+), 35 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index 3ff6db9cf..abfa3c09f 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -13,7 +13,7 @@ "collapsed": true }, "source": [ - "# _*Qiskit Finance: Financial Portfolio Optimization*_ \n", + "# _*Qiskit Finance: Portfolio Optimization*_ \n", "\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", "\n", @@ -241,27 +241,27 @@ "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", " [1 0 0 1]\t-0.4158\t\t0.9322\n", - " [1 0 1 0]\t-0.2876\t\t0.0667\n", - " [1 1 0 0]\t-0.5110\t\t0.0011\n", + " [1 0 1 0]\t-0.2876\t\t0.0656\n", + " [1 1 0 0]\t-0.5110\t\t0.0022\n", + " [0 0 0 1]\t4.0314\t\t0.0000\n", " [1 1 0 1]\t4.6445\t\t0.0000\n", - " [0 0 1 1]\t-0.7012\t\t0.0000\n", - " [1 0 0 0]\t4.0242\t\t0.0000\n", - " [0 1 0 1]\t2.1421\t\t0.0000\n", + " [1 0 1 1]\t3.0617\t\t0.0000\n", " [0 0 1 0]\t3.4782\t\t0.0000\n", - " [0 1 1 0]\t-0.5149\t\t0.0000\n", + " [0 0 1 1]\t-0.7012\t\t0.0000\n", + " [1 1 1 0]\t2.6688\t\t0.0000\n", " [0 1 1 1]\t4.9012\t\t0.0000\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n", - " [0 1 0 0]\t4.5153\t\t0.0000\n", + " [0 1 1 0]\t-0.5149\t\t0.0000\n", " [1 1 1 1]\t15.6136\t\t0.0000\n", - " [0 0 0 1]\t4.0314\t\t0.0000\n", - " [1 1 1 0]\t2.6688\t\t0.0000\n", - " [1 0 1 1]\t3.0617\t\t0.0000\n" + " [1 0 0 0]\t4.0242\t\t0.0000\n", + " [0 1 0 0]\t4.5153\t\t0.0000\n", + " [0 1 0 1]\t2.1421\t\t0.0000\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } ], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", - "seed = 42\n", + "seed = 50\n", "\n", "cobyla = COBYLA()\n", "cobyla.set_options(maxiter=500)\n", @@ -269,7 +269,7 @@ "vqe = VQE(qubitOp, ry, cobyla)\n", "vqe.random_seed = seed\n", "\n", - "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend=backend, seed=seed)\n", "\n", "result = vqe.run(quantum_instance)\n", "\n", @@ -324,21 +324,21 @@ "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 0 1 1]\t-0.7012\t\t0.1719\n", - " [1 0 0 1]\t-0.4158\t\t0.1714\n", - " [1 1 0 0]\t-0.5110\t\t0.1706\n", - " [0 1 1 0]\t-0.5149\t\t0.1691\n", - " [1 0 1 0]\t-0.2876\t\t0.1515\n", - " [0 1 0 1]\t2.1421\t\t0.1508\n", - " [1 1 1 0]\t2.6688\t\t0.0073\n", - " [0 0 0 1]\t4.0314\t\t0.0028\n", - " [1 0 1 1]\t3.0617\t\t0.0025\n", - " [0 1 1 1]\t4.9012\t\t0.0007\n", - " [0 1 0 0]\t4.5153\t\t0.0004\n", + " [0 0 1 1]\t-0.7012\t\t0.1771\n", + " [1 0 0 1]\t-0.4158\t\t0.1748\n", + " [1 1 0 0]\t-0.5110\t\t0.1743\n", + " [0 1 1 0]\t-0.5149\t\t0.1709\n", + " [1 0 1 0]\t-0.2876\t\t0.1479\n", + " [0 1 0 1]\t2.1421\t\t0.1369\n", + " [1 1 1 0]\t2.6688\t\t0.0098\n", + " [1 0 1 1]\t3.0617\t\t0.0043\n", + " [0 0 0 1]\t4.0314\t\t0.0016\n", + " [0 0 1 0]\t3.4782\t\t0.0009\n", + " [0 1 1 1]\t4.9012\t\t0.0008\n", " [1 0 0 0]\t4.0242\t\t0.0004\n", - " [0 0 1 0]\t3.4782\t\t0.0003\n", - " [1 1 1 1]\t15.6136\t\t0.0001\n", - " [1 1 0 1]\t4.6445\t\t0.0000\n", + " [0 1 0 0]\t4.5153\t\t0.0003\n", + " [1 1 0 1]\t4.6445\t\t0.0002\n", + " [1 1 1 1]\t15.6136\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } @@ -353,7 +353,7 @@ "\n", "qaoa.random_seed = seed\n", "\n", - "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_mapper=seed)\n", + "quantum_instance = QuantumInstance(backend=backend, seed=seed)\n", "\n", "result = qaoa.run(quantum_instance)\n", "\n", diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb index fc9fdca94..21d5fd2e2 100644 --- a/qiskit/finance/simulation/credit_risk_analysis.ipynb +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -549,7 +549,7 @@ "« ░ └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -895,7 +895,7 @@ "« └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 21, diff --git a/qiskit/finance/simulation/fixed_income_pricing.ipynb b/qiskit/finance/simulation/fixed_income_pricing.ipynb index 82c826368..3eed08902 100644 --- a/qiskit/finance/simulation/fixed_income_pricing.ipynb +++ b/qiskit/finance/simulation/fixed_income_pricing.ipynb @@ -111,7 +111,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4HFWd//H3h8QbthCWqPgjhIRFM3Hc2NSRVbagzxDFMCw6A7/BQZS4DILiAgIuM8gA6g8cjYRNhwHE5YljMCIoyKgYBARDEk0QwiWiRC4EDMkl5Pv7o6qx0+nb3be3qur+vJ6nn9t16pyq05Wb++2z1ClFBGZmZs3YLOsKmJlZcTmImJlZ0xxEzMysaQ4iZmbWNAcRMzNrmoOImZk1LfMgImm6pFskrZG0UtL5ksbUKbOPpCslLUvLLZX0KUmb1yjzOknPS1rV/k9hZtafxmZ5cknbAT8CHgBmArsBF5EEt0/WKHpsmvcC4HfAq4FPpz/fUeU8Ai4FHifjz2xm1kuybomcCmwBHB0RN0fEV4DzgNMlbVOj3AURcUBEfC0ifhIRXwLOBI6WtEuV/O8CXgpc0e4PYGaWN5JmpD00yySdVWX/AZLulrRe0qyKfZMl/VDSYkkPSJpS61xZB5EjgQURsbos7TqSwHLgSIUi4vEqyfekP19SnihpPEmL5QxguKXampnlXDoccBnJ39fpwPGSpldkWwGcBFxb5RDXABdGxN8A+wJ/qnW+rIPINGBJeUJErADWpPtG4++ADcDSivRzgMUR8d1mK2lmViD7Assi4sGIGCb5Yj6zPENEPBQR95H8zXxBGmzGRsTNab5nImJNrZNlHUS2A56skj6U7muIpB2BTwBfL2/VSHoFcBrwoRbraWZWFDsBj5RtD6ZpjXg58KSkb0u6R9KF9SY65WGQudoKkBohfdOM0gBwA/AM8K8Vu78IXBUR9zd4rFOAUwDGjRu3144veVkjxdompK6er+M2q/15xm4m1m9o/wKg0Y3LqO4sXKo2fM0bG2J9k/Udow31M+XAWLKt5+9+98iqiHhxK8fY/6DNY+iJ+p9j0f3PLQLWliXNiYg5ZdvV/gc0+gswFtgfeB1Jl9f1JN1ec2sVyNIQsG2V9AlUb6FsJJ11dQ3wSuBNETFUtu9I4E3AbEmlc2yeFtsWeDYi1pUfL/2HmAMwZfLU+Jvn3jL6T9SC4WmTunq+Tntqt3E195+8/07M/emjbT/v07t0Poqsm9yd4bUpk6oN/43OCWtey7Vb3ttU2cN2XFI/U07M2ubuzM49bTIPt3qMoSc28K3vT2zgXH9YGxF718gyCOxctj0JWNlgNQaBeyLiQQBJ3wXeQI0gknV31hIqxj4k7QxsRcVYyQguIenrmxkRlflfAWxNMgV4KH19FNg+fX9mSzW3vjZuxUDWVeiKmx8b7dCk5cBCYA9JU9OemuOAeaMou52kUqvqzSS3YIwo6yByE3BEOoOq5FjgWeC2WgUlfQx4P/CuiLijSpYbgYMrXlcDq9P3X2+59mYd9tBgSz0k1ociYj0wG1gALAZuiIhF6Y3cR8ELN2wPAscAX5W0KC37PMlM1lsk3U/SNfa1WufLujvrK8AHgG9LugDYFTgXuLhigHwZcFtEnJxunwB8DrgKeFTSG8qOuTwiHo+IQZKmGWXHOQh4LiJ+0qkPZGbZuHH1npl2aeVJRMwH5leknVP2fiFJN1e1sjeT3LjdkExbIukYxiHAGOB7JDcaXgJ8qiLr2DRPyeHpz5OAn1e83tq5Gpv1H3dpWS1Zt0SIiAdI+t1q5ZlSsX0SSQAZ7bnOJWnpWBdMWL6u7uC6mRVb1mMiZmZtc+PqPbOuQt9xEDEzs6Y5iJhZXR4XsZE4iFjPGf9wd+4m79a9Ip7mOzru0uouB5EcGVgyWD+TmVmOOIiYWUPcpWXVOIiYWc9xl1b3OIhYR01Yvq5+JjMrLAcRMzNrmoOImTWsSOMi7tLqDgcRswLwNF/LKwcRsxb0y3NFzEbiIGJmo+IuLSvnIGJmZk1zEDEzs6Y5iFjHZXGvSLfWz+pX7tKyEgcRs4LwDC1rlKQZkpZKWibprCr7D5B0t6T1kmZV2b+NpEclXVrvXA4iZmY9RNIY4DLgSGA6cLyk6RXZVpA8HfbaEQ7zaeC2Rs7nIGJmPa/PurT2BZZFxIMRMQxcB8wszxARD0XEfcCGysKS9gJeCvywkZM5iJhZU4o0LtJndgIeKdseTNPqkrQZcBFwZqMncxDJGT9TpHh8w6F12URJd5W9TqnYryplGp1p8j5gfkQ8UjdnamyjGc3MiuzG1Xsya5u7s67GiIae37LBbrfvr4qIvWtkGAR2LtueBKxssBpvBPaX9D5ga2BA0jMRscngfIlbImbWNHdp5dJCYA9JUyUNAMcB8xopGBHvjIjJETEFOAO4plYAAQcRs0LxNF+rJyLWA7OBBcBi4IaIWCTpfElHAUjaR9IgcAzwVUmLmj2fu7OsKyYsX8dTu43LuhrW5/LepdUuETEfmF+Rdk7Z+4Uk3Vy1jnEVcFW9c7klYmZmTXMQsZ7lpU+6w+Mi/c1BxMz6Sp/deNhxDiJmbeB7RaxfOYiYWcvcpdW/HETMCsbTfFvnLq32cRAxM7OmOYhY12TxcCoz6ywHETNri6KNi7hLqz0cRMzMrGkOImZm1jQHETNrG3dp9R8HkRzyg6nap5tLn3TzhkNP87W8cBAxs77m1khrHETMzKxpDiJm1lZFGxex1jiIWFf5hkPLI3dpNc9BxMzMmuYgYlZQeZ6h5S6t/uEgYmZGb3VpSZohaamkZZLOqrL/AEl3S1ovaVZZ+msl/VzSIkn3STq23rkcRMzayA+nsqxJGgNcBhwJTAeOlzS9ItsK4CTg2or0NcA/RcQrgRnAFyRtW+t8DiJm1hHu0srMvsCyiHgwIoaB64CZ5Rki4qGIuA/YUJH+24j4Xfp+JfAnoGa/qYOImVmqIF1aEyXdVfY6pWL/TsAjZduDadqoSNoXGACW18o3drQHNiua8Q8HT++irKthVtPq9Zs32Hr7/qqI2LtGhmq/7KNa/0fSy4CvAydGxIZaed0Ssa7zvSJmHTUI7Fy2PQlY2WhhSdsA3wc+GRG/qJffQcSswPI8zReKOS5SkC6tWhYCe0iaKmkAOA6Y10jBNP93gGsi4puNlHEQMTPrIRGxHpgNLAAWAzdExCJJ50s6CkDSPpIGgWOAr0palBb/B+AA4CRJ96av19Y6n8dEzMx6TETMB+ZXpJ1T9n4hSTdXZblvAN8YzbncEjGzjnKXVm9zEMkpP5iquHzDofUTBxEzM2uag4iZWRXu0mqMg4hZweV9mi8Uc1zEGuMgYpnwDYdmvcFBxMxsBO7Sqi/zICJpuqRbJK2RtDK9IWZMnTIDki6U9FNJz0oacV0YSTtI+qqkx9K8SyT9U/s/ieXZ+IdHtXSQdYC7tHpTpjcbStoO+BHwAMlSxbsBF5EEt0/WKLol8G7gl8DPgDePcPxtgNuBZ4D3A6tI1tf3HEwzszbI+o71U4EtgKMjYjVwc/qH/1xJn0/TNhERT0raPiJC0mxGCCLAx4FxwN4R8Wya9uM2fwazTYxbMcC6ycNZV8Pa4MbVezJrm7uzrkZuZd2ddSSwoCJYXEcSWA6sVTAiGumf+L/A3LIAYmZmbZR1EJkGLClPiIgVJI9obKkDVdJU4CXAk5LmSxqW9Liki9OVKs16RhGm+YLHRXpR1t1Z2wFPVkkfSve1Ysf05+dJWjczgNcAnwPWAx+pLJA+IewUgIkTJ3L02a9vsQqtic17O9Ztt/UAJ+8/6geuNW3DQHcfTLVhoOazfNpu3Jrq13L7DVtywpqaC7F21TaPFC+Q3MPb2G7Mmho5Pti1uuRN1kEEqj9xSyOkj0aplbUoIv4lfX+rpPHAxyWdGxEb/VZExBxgDsCUyVPj2/92Z4tVaM3wtE0W2ewps07albk/fbRr5+v20w27PSYyZdLjVdNPWPNart3y3q7WpZ7DdlxSP1POeFykuqy7s4aAbaukT6B6C2U0nkh/Vg6k30oy2L5bi8fvuF5fhHHMuu5Ou+32NN9uL8RYlC4tKGa3lu8ZqS7rILKEirEPSTsDW1ExVtKE5UC1r4Klr6Pd7Wsws404kPSGrIPITcARaRdTybHAs8BtrRw4IoaBm9l0+u8hJAP3y1o5vpm1zoGk+LIOIl8B1gHflnRoOrB9LnBx+bRfScskzS0vKOlISbOA16bbs9LXLmXZzgdeJ+lKSYdLOgM4C/hcRHjxpj7kLq38cSAptkyDSEQMkbQMxgDfA84DLgE+VZF1bJqn3H8C3wROTre/mb4OLjv+L4G/J5mV9T2SKRSfBf6tnZ/DzFrjQNJekmZIWpp+AT+ryv4DJN0taX36Zbx834mSfpe+Tqx3rsxnZ0XEA4x8x3kpz5RG0kYou4DkgfWFNLBksKdnaU1Yvo6ndhuXdTU6qtt3rz80+OIRZ2rl2c2PTSvcrK083s2erj14GXAYMAgslDQv/VtbsgI4CTijouz2JF/i9yaZIfurtOzQSOfLujvLzKzQctgi2RdYFhEPpmPD15GsTfiCiHgoIu5j0wlGRwA3R8QTaeC4meQeuxE5iFjfyWJFX4+NNKaI3VoZmCjprrLXKRX7dwIeKdseTNMaMeqymXdnmZmVK2K3VjsMD49tNPivioi9a+yvdldto9+cRl3WLREzyx23SFoyCOxctj0JWNmpsg4iBdDrd65n8ahcd2nlnwNJ0xYCe0iami42exwwr8GyC4DDJW2XPu/pcOpMTHIQMbPcciAZvYhYD8wm+eO/GLghIhalT409CkDSPpIGgWOAr0palJZ9Avg0SSBaCJyfpo3IYyJmXZTFdF+279rpOqJfx0haERHzgfkVaeeUvV9I0lVVrewVwBWNnsstEetb/fLc9XXDxf+u6BZJfo36t0vSq0jmIe8IbE6yWu5vgZ/VuiHFWtPrNx1aZxX1BsRybpHkU0NBRNKuwHuBdwIvJblB5UmSda+2BbYENki6DbgcuD4ivEquNawf7lwvyer56w4k1gl1u7MkXQ4sIlno8HzgdcDmEfHiiJgUEVuTPIb274H7SZ4kuFjSfp2rtll79EuXVknRZ2yBu7byppExkbXAtIg4LCK+EhH3RcTz5RkiYlVE3BQRHwJ2Ac6h8TskzfpOt6f7lnMgsXaqG0QiYnZEPNzoASNiQ0RcHxHXt1Y1M+sUBxJrF8/OKpBev+kwK1l1aWXZGukVDiTZaymISPpbSadJmp3O2jJrWhZ3rvezXmiNgANJ1poOIpLeC9wOHAS8BfilpPe1qV5m1gUOJNaqRmZnbTnCro8Cb4yIYyLiLcBpwCfaWTmzXpeHLi0HEmtFIy2R30p6Z5V0sfEDTfprrqT1lH6b6lvJgcSa1UgQOQE4XdLPJe1Tlv554BeSbpD0P8CXgX/vRCXtr3p9cL0fx0Xy0BoBBxJrTiNTfG8ned7uFcA8SddIellEXEbybPQ7gB+SdG39v47W1sw6yoHERquhgfVIfA14BfBH4H5JHweWRMSX0te9nayoWaf1e5dWiQOJjcaoZmdFxOqIOBN4A/B6YImkWR2pmVkfyUuXVokDiTWqodlZkj4j6U5J90iaA6yNiJnAvwCfknSbpNd0vLZmZqPkQNJZjbRE5pIsrngRcDbJEvA3S1JE/IhkYcZvpmlzOlZTe4EH1zsnyy4tt0Y6x4GkcxoJIkcCZ0TEDRHxP8CJJGMjuwFExPMRcWma9mzHampmXedAYvU0EkSWAP8oafv0xsP3AH8BNvo6HBFDEfHBDtTRrG/krTUCvRVI+oWkGZKWSlom6awq+8dJuj7df6ekKWn6iyRdLel+SYslfazeuRoJIicCewCrgKeBdwPHRMTa0Xwos6LwLK1N9Uog6YfWiKQxwGUkvUjTgeMlTa/IdjIwFBG7A5cAF6TpxwDjIuJVwF7Ae0oBZiSN3CeyNCLeCIwHJkbE7hHxg8Y/knVCr4+LWP44kBTGvsCyiHgwIoaB64CZFXlmAlen728EDpEkkpVHtpI0FtgCGAZW1zpZI7Oz/lHSZhHxl0afoS5pd0n7N5LXrJp+vHO9JI9dWiUOJIWwE/BI2fYgmz4k8IU8EbEeeArYgSSg/AX4A7AC+I+IeKLWyRrpzvow8KCkT9eaxitpB0nvlPQ94B7gZQ0c2yyX3KU1MgeSztCwGLdioO4LmCjprrLXKZWHqnL4yl/okfLsCzwP/B9gKvBhSbvWqvfYeh8sIl4r6Vjg/cAnJD0DLCYZI1kHbJuebDIwBHwDODUiHq13bDOrbtyKAdZNHs66GiN6aPDFTJn0eNbVaNnNj03jsB2XZF2N0VoVEXvX2D8I7Fy2PQlYOUKewbTragLwBMlaiT+IiOeAP0n6X5Jlrx4c6WSNLntyfUTsRzLAfiZwL7Ae2IpkGZSrgRnAyyLiQw4gZlYUeWuRtMFCYA9JUyUNAMcB8yryzCOZNAUwC7g1IoKkC+vNSmxFsjpJzShbtyVSLiKWA8tHU8Y6Z2DJIMPTJmVdDetTvdIagcK2SKqKiPWSZgMLgDHAFRGxSNL5wF0RMY/kJvKvS1pG0gI5Li1+GXAl8BuSLq8rI+K+WucbVRAx66YJy9fx1G7jMjv/+IeDp3ep1nXcHXnv0gIHkryKiPnA/Iq0c8reryWZzltZ7plq6bW09Ix1M7NeGWiHnuza6jgHEbMcy/N033IOJP3LQcSsBk/1bZwDSX9yECk437ne+4rSGgEHkn7kIGK51s93rheVA0l/aSmISHq7pA9IekVF+uzWqmWWH+7SGj0Hkv7RdBCR9O/AB4HdSR5I9aGy3f/casXM7K+K1KXVixxIRtZKS+StwKER8QHgdcBRki5M92U3ud7McqGXWiPgQDKSVoLIZunqj0TEn0mWPZkiaW6Lx7VR6vXB9TyMi+ShS6uIrREHkt7Xyh/7P0jas7SRrlt/LMlKkH/basXMrDc4kPS2hoNI+tjE35Q9J+QkKlaGjIgNEfFuwM8SMeuAIrZGwIGklzUcRNKlgV8CDKTbgxHx2Ah5f9ae6pnlRx66tIrMgaQ3jbY761rg7Z2oiLWm18dFrDc4kPSe0QaR3wNvk3SepOyWV7W+k4fB9bwoapdWiQNJbxntUvCfBbYEzgZOl/QT4G7g18Cv0+eNmJlZnxhtS2Q8ydMN3wFcCKwleZjJDcDvJD3d3uqZ5UtexkXcGrG8GO2TDYPkyYbLge+U0iVtTjKt11N7zawhvfRAq37WlpsCI2JtRNwVEVe143jWHA+uW9G4RVJ8vrPcCiMvg+vu0movB5L2kzRD0lJJyySdVWX/OEnXp/vvlDSlbN+rJf1c0iJJ96c9TSNyEDGzzDmQtI+kMcBlwJHAdOB4SdMrsp0MDEXE7sAlwAVp2bHAN4BTI+KVwEHAc7XO5yBiVmC90hoBB5I22hdYFhEPpstRXQfMrMgzE7g6fX8jcIgkAYcD90XEryFZFzEinq91MgcRsybkpUur1ziQtMVOwCNl24NpWtU86UK6TwE7AC8HQtICSXdL+ki9k432PhHLuYElgwxPm5R1NayLxq0YYN3k4ayr0Tb9OmtrzHDDX04mSrqrbHtORMwp2672KI7KA4+UZyywH7APsAa4RdKvIuKWkSrjIGKFMmH5Op7azYslWF9bFRF719g/COxctj2JisVyy/IMpuMgE4An0vTbImIVgKT5wJ7AiEHE3VlmTXKXVue4W6slC4E9JE2VNEByQ/i8ijzzgBPT97OAW9P7ABcAr5a0ZRpcDgQeqHWyzIOIpOmSbpG0RtJKSeenswvqlZsg6UpJQ5KekvRfknaoyDMg6Zx0Gtuz6U+v+2U9p5cG2EscSJqTjnHMJgkIi4EbImJR+rf1qDTbXGAHScuA04Gz0rJDwMUkgehe4O6I+H6t82XanSVpO+BHJJFuJrAbcBFJcPtkneLXA68A3g1sIJmi9l02fpbJvwOnpse6h6RZ9hlgW5Lnw5tZjvXr+EirImI+ML8i7Zyy92uBY0Yo+w2Sab4NyXpM5FRgC+DoiFgN3CxpG+BcSZ9P0zYh6Y3AEcCBEXF7mvYocKekQyPiR2nWE4D/jIiL0+0fS9oJeCc9HEQ8uN494x8Ont6l2hhl9/XaAHuJA0m+Zd2ddSSwoCJYXEcSWA6sU+6PpQACEBG/JFmq/siyfC8imbpW7kmqz0ywgsjLnevWPe7ayq+sg8g0YEl5QkSsIJlaVmuR/k3KpRZXlLsceI+kN0naOn2073uBS1uqtZl1nQNJPmUdRLYjaRlUGkr3tVruLOBbwB3A08DtwLcj4vymamuWc704wF7OgSR/sh4TgU1vgoGku6ne/MlGyp0JvAt4P3Af8Brg05L+XD7I9EJh6RTgFICJEydy9Nmvr1/7HIvN8/0HZfvtx3Hs8VObKvv8uHz1SG4YyE99Ngxs2Gj7pWPG8eGtd8moNh3w5C6MG1ifdS02clvWFchQ1kFkiGSmVKUJVG9plJer9pVk21I5SRNJZmKdFhFfS/ffLmkYuFTSpRHxp/LC6V2fcwCmTJ4a3/63O0fzWXIn74Prxx4/lev/+/dNl8/bTYd5GWAHNhpg//DWu3DRMw9nWJvO8GB7PmTdnbWEirEPSTsDW1F9zGPEcqnysZJdSQbW763Icw9J8Oyhr2bV+fki/avXu7Ug6dpy91b2sg4iNwFHSBpflnYs8Cy1W4g3ATtK2q+UIGlvksBxU5pU+uq1Z0XZvdKfDzVZZ8uJvM3S8h3s2XAgyVbWQeQrwDrg25IOTcckzgUuLp/2m95pPre0HRE/J7kb8xpJR0t6G/BfwB2le0Qi4o8kNx9eIOmDkg6W9K8kNyB+MyL6oi3s1kj/6ofWSIlbJdnJNIikt9gfAowBvgecR/KAlE9VZB2b5il3HElr5QrgGuBXwNsr8pxIMs33AyR3b54GfJXkgSzWA9waqa2fAgm4VZKFrAfWiYgHgDfXyTOlStqTwP9NXyOVWw2ckb7MuiJPd7EDbDa8Wc/ezV5NKZB44L07su7Osi7o9S6tvLVG8sqtEusEBxGzDshbt1bJuBUDfRVMHEg6z0GkT7g10n15DSTQX60SD7p3loOIWZ9yq8TawUGkj7g10n15bo2U9FsgcTBpLwcRsw4rSiDpt2Bi7eEg0mfcGrFa+i2QOJi0zkHErAuK0Bopcauk+CTNkLQ0Xe3jrCr7x0m6Pt1/p6QpFfsnS3pGUt177BxE+pBbI9koUiABt0qKStIY4DKSp7xOB46XNL0i28nAUETsTrJKyAUV+y/hr+sQ1uQgYmYjcqukkPYFlkXEgxExTPLI8ZkVeWYCV6fvbwQOkSSAdC3CB4FFjZzMQaRPuTWSjaK1Rkr6LZAUPJjsBDxStj2YplXNExHrgaeAHSRtBXyUZB3DhjiImHVZkQNJvwWTnJoo6a6y1ykV+6st3Fb5SzdSnvOASyLimUYrk/kCjJadgSWDuX/6YSsmLF+Xu6cf9gIv5tgZY9ZGoy3oVRGxd439g8DOZduTgJUj5BmUNJbkabJPAK8HZkn6PMmTYjdIWhsRl450MrdEzDJQ1NZIiVslubYQ2EPSVEkDJI/NmFeRZx7JozIAZgG3RmL/iJiSrpz+BeBztQIIOIj0vV4fG8mzogcS8FhJHqVjHLNJHty3GLghIhZJOl/SUWm2uSRjIMuA04FNpgE3yt1Z1tPcpdV5pUDST11ceX9WSUTMJ3kQX3naOWXv1wLH1DnGuY2cyy0Rc2skQ73QGinppy6uorRKusFBxHpeXqf7lvRSIIH+6+Lqdw4iBrg1Yu3Vb62SfuYgYn3BrZFs9Esg6WcOIvYCt0ay1cuBxMGkdzmIWN/Ie2uk1zmQ9CYHEduIWyPZ6tXWSIlbJb3HQcT6ShFaI70eSMCtkl7iIGKbcGvEusGtkt7gIGJ9x62RfHEgKTYHEavKrZHs9VsgcTApJgcR60tFaI30IweS4nEQsRG5NZK9fmqNlLhVUiwOIta3itIa6cdAAm6VFIWDiNXk1ohlya2S/HMQsb7m1kgxOJDkl4OI1eXWSD44kLhVkkcOItb3itIasYQDSb44iFhD3BrJh35vjZS4VVKbpBmSlkpaJmmT56dLGifp+nT/nZKmpOmHSfqVpPvTn2+udy4HETPcGikqB5JNSRoDXAYcCUwHjpc0vSLbycBQROwOXAJckKavAv4+Il4FnAh8vd75HETMCsatkY25VbKJfYFlEfFgRAwD1wEzK/LMBK5O398IHCJJEXFPRKxM0xcBm0saV+tkDiLWsF7v0ipSa8SBZFMOJC/YCXikbHswTauaJyLWA08BO1TkeQdwT0TU/I8xtqWqmpnlSCmQrJs8nHFNOmqipLvKtudExJyybVUpU/mto2YeSa8k6eI6vF5lHERsVAaWDDI8bVLW1eiYCcvX8dRuNVvvuTH+4eDpXar9LbBxKwYKF0i0drjR1v6qiNi7xv5BYOey7UnAyhHyDEoaC0wAngCQNAn4DvBPEbG8XmXcnWVWYO7WGlkfj5UsBPaQNFXSAHAcMK8izzySgXOAWcCtERGStgW+D3wsIv63kZM5iNio9frYiPWWfgsk6RjHbGABsBi4ISIWSTpf0lFptrnADpKWAacDpWnAs4HdgbMl3Zu+XlLrfO7OMqtQpC4tcLdWI/pkrOQFETEfmF+Rdk7Z+7XAMVXKfQb4zGjO5ZaINcWtkXxxt1Zj+q1V0g0OImZVFGm6r41OH4+VdISDiDXNrZF8cWtkdBxI2sNBxGwERWyNOJCMjlslrXMQsZa4NWK9wIGkeQ4iZjW4NdI/3CppjoOItcytkfxxIGmeA8noOIiY1VHE1oi1xq2SxjmIWFu4NZI/bo20zoGkPgcRswYUtTUy/uFgs2EHk1a4VVKbg4i1jVsj+eVWSescSKpzEDFrUFFbIyXjHw4Hkxa5VbIpBxFrK7dG8s+BpHUOJH/lIGI2CkVvjZS4VdI6t0oSDiLWdm6NFIeDSev6PZA4iJiNUq+0Rso5kFizHESsI9waKR63SqwZmQcRSdMl3SJpjaSV6SMcxzRQboKkKyUNSXpK0n9J2qFKvpmS7pe0VtIDko77q6QrAAAKtUlEQVTtzCexftKLrZESBxIbjUyDiKTtgB8BAcwEzgc+DJzXQPHrgYOAdwMnAfsA3604/n7At4AfA0eSPID+vyUd3pYPYDW5NVJcbpVYo7JuiZwKbAEcHRE3R8RXSALI6ZK2GamQpDcCRwAnRsS3IuI7wLuA/SQdWpb1bOD2iPhARPw4Is4EfgCcs+lRzUanl1sjJQ4mxSRphqSlkpZJOqvK/nGSrk/33ylpStm+j6XpSyUdUe9cWQeRI4EFEbG6LO06ksByYJ1yf4yI20sJEfFL4PfpPiSNAw4Gbqgoex3wRkkTWq++1ePWSG9wICmOdDjgMpK/hdOB4yVNr8h2MjAUEbsDlwAXpGWnA8cBrwRmAF+uN7yQdRCZBiwpT4iIFcCadF/D5VKLy8rtBryoSr7FJJ/75U3U12wj/dAaKXGrpDD2BZZFxIMRMUzyxXlmRZ6ZwNXp+xuBQyQpTb8uItZFxO+BZenxRjS2rVUfve2AJ6ukD6X7mim3a1kequQbqtj/AkmnAKekm+se5su/qVEHa9Rj1ZNv/QkTgVVdrUsn/CTrCtT2q7k9cp3z7RWtHmD1+scX/OCxL09sIOvmku4q254TEXPKtncCHinbHgReX3GMF/JExHpJTwE7pOm/qCi7U63KZB1EIBlUr6QR0pspV7mtkcqn/xBzACTdFRF716mDtcDXuDt8nTuv4o96UyJiRjvqwl//xm10+AbzNFJ2I1l3Zw0B21ZJn0D1lka9ctuWlRsqS6vMQ53jm5kV1SCwc9n2JGDlSHkkjSX5m/tEg2U3knUQWULF2IeknYGtqD7mMWK5VPlYyXLguSr5pgEbgN82UV8zs7xbCOwhaaqkAZKB8nkVeeYBJ6bvZwG3RkSk6cels7emAnsAv6x1sqyDyE3AEZLGl6UdCzwL3Fan3I7pfSAASNqbZDzkJoCIWEdyf8gxFWWPBX4eEU/VqducOvutdb7G3eHr3Hm5ucYRsR6YDSwgmUh0Q0QsSm/kPirNNhfYQdIy4HTgrLTsIpIZrQ+Q3A5xWkQ8X+t8SoJPNtKbDR8AfkMyxWxX4GLgCxHxybJ8y4DbIuLksrQfkMywOoOkZXEB8KeI2L8sz34kw56XktyI+JY0/4yI+GFHP5yZWR/ItCUSEUPAIcAY4HskNxpeAnyqIuvYNE+540haK1cA1wC/At5ecfw7SJpqh5JE5aOAExxAzMzaI9OWiJmZFVvWYyId5cUdu6PT17ks/9skRTumUxZNJ6+xpAFJ56RLXTyb/jwvXfWhbzRzjdNrd6Gkn6bXbpNv5ZLGSPpomufP6euHkvbp3KfpoojoyRfJzYQrSRZ4PIxkna6/AJ9poOwPSJZQeQdJF9lvgZ9W5NkPWA98iWR5lQtJxmYOz/qz99J1Lsu7OfAgya2Ld2X9uXvpGpOMQ64hGWA9mGQR1GeBL2b92fN+jUluGRgi6S6/JfmTukmerdM8F5OMy5YWg10H7JX1Z2/52mVdgQ7+Unws/YfbpiztI+l/lm1qlHsjyc01B5Sl7ZumHVqWtoBkWlx52fnAHVl/9l66zmX7zgZ+ClzVh0Gk07/LjwEXVZS9mGR9usw/f56vcZqvNCwwe4QgMgbYriJtAHgIuDLrz97qq5e7s7y4Y3d07DqXSJpM8h/6g+2qdMF0+hq/CKic8v4k1e9e7lXNXuMkatTe/3wkk4jK04aBRcBLmqtufvRyEPHijt3RyetcchHJXPe7W6hnkXX6Gl8OvEfSmyRtLWl/4L0kU+P7RbPXuCnpF9G9SG5xKLQ8rJ3VKbla3LGHdfI6I+lgkmfH9FNgrtTRa0xyo9kWwB1laV+OiPNHWc8ia/YaN+sT6XEv78Cxu6qXgwjkaHHHHteR65yu6fMlksHNEdYC7hud/F0+k+Shbu8H7gNeA3xa0p8jop8e4NbsNR4VSW8lCSIfjoil7Tx2Fno5iLSyuOOLq6R7ccfqOnmd/yXdvlpS6RwDwJh0+y8R8VxTtS6Wjl1jSROBz5Asb/G1dP/tkoaBSyVdGhF/arrmxdHsNR6VdFrv9cBXI+IL7Tpulnp5TMSLO3ZHJ6/zK0hWEX2M5D/5EHA88Nr0fb/cl9PJa7wryfjevRV57iH5krlLE/UtomavccMkvZxkau8tJK2+ntDLQSTPizv2ko5dZ5KB3YMrXgtIgvTBwM1t+gx518lr/HD6c8+KsnulPx9qss5F0+w1boikl5H87i4Hjo86ixoWStZzjDv1Ihm0+gPJH5pDSZ5Y+AwVNw+RPP5xbkXaD0hubDsaeBuwlJFvNvwCcBDwefr3ZsOOXecq57uK/rtPpNO/y98h6bL5IElw/leSKb83ZP3ZC3KNjyRZo+9ykvGTWelrl3T/FiQtvSeBtwJvKHu9LuvP3vK1y7oCHf7FmA7cSvJt4g/Ap4ExFXkeAq6qSNsWuDL9R18NXAtMrHL8t5GsQLyOpMl7XNafuRevc0WZvgsinb7GwDbAf5B8S342/UP5eWB81p+7INf4oTR4VL5OSvdPGWF/AA9l/blbfXkBRjMza1ovj4mYmVmHOYiYmVnTHETMzKxpDiJmZtY0BxEzM2uag4iZmTXNQcTMzJrmIGLWICV+LenEdHuapDvTZ5dfJ2nrivwHSHq0Mj3dd5mkud2qu1mnOIiYNe4fSJbHuDbdvork7u5/ILnb+eOljJI2I1kS52MR8UyVY10IvFPS7p2ssFmnOYhY35E00GTRDwBfj4jn0tbF64EPRcQC4LPAYWV5TyZZ6fnr1Q4UEQ+RPATqvU3WxSwXHESsp0naTNJfJH1I0hclPc6my543cpzdgb8DbkyTSoHo2fTnmlKapG1I1l36YNReV+hbJK0R/z+0wvIvr/W6XYEtgY+QPDfjBJr79n8I8Bfg1wAR8QTwe+D9krYnWfX1rjTv2cCPIuIXdY75M+ClwKuaqI9ZLvTykw3NAF6d/rwiIj7ZwnH2AhZHxIaytNOAbwKfA34HnJa2WE4uO28ti4DngX1Jg5NZ0bglYr3uVSRdTZ8tT5T0n+nMqUaXsd4RWFWeEBE3AS8heQLj30TECuBi4JKIGJR0mqQV6et9lQeMiPUkS7TvOOpPZZYTbolYr3sV8JOIeLYi/b+Bc0kevduIzUmC0UYiYg3p45AlHQq8BjhW0mtIxkX+Ls36c0l3RMR9FYdYlx7brJDcErFe92rg7srEiLg9Iv44iuM8QfKAp6okjSWZ0vuRNGAdBNwaEUsiYgnJc7UPrFJ02/TYZoXkIGI9S9IWwG60Z7xhKTC1xv5TgaGIuL4sbcuy91sBqqjfi9M8v21D/cwy4SBiveyVJL/j7Qgi/wtMTv/wb0TSdsCnSJ5RXnI7cIikf5b0z8Cbgdsqiu5N8ojUn7WhfmaZ8JiI9bLSoPryNhzrJyTdTjPY9AbC84B5EfFCt1lE3CPpI/x1QP+MiKgMZjOA2yLiz22on1km/Ix162uSIiJUPydI+iKwe0S8tQ3nHQM8DJwVEd9o9XhmWXF3lvUlSZdLGkzfD0q6vIFiFwIHSXp5G6pwDMnd7te14VhmmXFLxGwUJB0H/CEiKsc3Rnuc44FHI+L29tTMLBsOImZm1jR3Z5mZWdMcRMzMrGkOImZm1jQHETMza5qDiJmZNc1BxMzMmuYgYmZmTXMQMTOzpv1/ZzufzULIqxUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm4HFWd//H3h8QbthCWqPgjhIRFM3Hc2NSRVbagzxDFMCw6A7/BQZS4DILiAgIuM8gA6g8cjYRNhwHE5YljMCIoyKgYBARDEk0QwiWiRC4EDMkl5Pv7o6qx0+nb3be3qur+vJ6nn9t16pyq05Wb++2z1ClFBGZmZs3YLOsKmJlZcTmImJlZ0xxEzMysaQ4iZmbWNAcRMzNrmoOImZk1LfMgImm6pFskrZG0UtL5ksbUKbOPpCslLUvLLZX0KUmb1yjzOknPS1rV/k9hZtafxmZ5cknbAT8CHgBmArsBF5EEt0/WKHpsmvcC4HfAq4FPpz/fUeU8Ai4FHifjz2xm1kuybomcCmwBHB0RN0fEV4DzgNMlbVOj3AURcUBEfC0ifhIRXwLOBI6WtEuV/O8CXgpc0e4PYGaWN5JmpD00yySdVWX/AZLulrRe0qyKfZMl/VDSYkkPSJpS61xZB5EjgQURsbos7TqSwHLgSIUi4vEqyfekP19SnihpPEmL5QxguKXampnlXDoccBnJ39fpwPGSpldkWwGcBFxb5RDXABdGxN8A+wJ/qnW+rIPINGBJeUJErADWpPtG4++ADcDSivRzgMUR8d1mK2lmViD7Assi4sGIGCb5Yj6zPENEPBQR95H8zXxBGmzGRsTNab5nImJNrZNlHUS2A56skj6U7muIpB2BTwBfL2/VSHoFcBrwoRbraWZWFDsBj5RtD6ZpjXg58KSkb0u6R9KF9SY65WGQudoKkBohfdOM0gBwA/AM8K8Vu78IXBUR9zd4rFOAUwDGjRu3144veVkjxdompK6er+M2q/15xm4m1m9o/wKg0Y3LqO4sXKo2fM0bG2J9k/Udow31M+XAWLKt5+9+98iqiHhxK8fY/6DNY+iJ+p9j0f3PLQLWliXNiYg5ZdvV/gc0+gswFtgfeB1Jl9f1JN1ec2sVyNIQsG2V9AlUb6FsJJ11dQ3wSuBNETFUtu9I4E3AbEmlc2yeFtsWeDYi1pUfL/2HmAMwZfLU+Jvn3jL6T9SC4WmTunq+Tntqt3E195+8/07M/emjbT/v07t0Poqsm9yd4bUpk6oN/43OCWtey7Vb3ttU2cN2XFI/U07M2ubuzM49bTIPt3qMoSc28K3vT2zgXH9YGxF718gyCOxctj0JWNlgNQaBeyLiQQBJ3wXeQI0gknV31hIqxj4k7QxsRcVYyQguIenrmxkRlflfAWxNMgV4KH19FNg+fX9mSzW3vjZuxUDWVeiKmx8b7dCk5cBCYA9JU9OemuOAeaMou52kUqvqzSS3YIwo6yByE3BEOoOq5FjgWeC2WgUlfQx4P/CuiLijSpYbgYMrXlcDq9P3X2+59mYd9tBgSz0k1ociYj0wG1gALAZuiIhF6Y3cR8ELN2wPAscAX5W0KC37PMlM1lsk3U/SNfa1WufLujvrK8AHgG9LugDYFTgXuLhigHwZcFtEnJxunwB8DrgKeFTSG8qOuTwiHo+IQZKmGWXHOQh4LiJ+0qkPZGbZuHH1npl2aeVJRMwH5leknVP2fiFJN1e1sjeT3LjdkExbIukYxiHAGOB7JDcaXgJ8qiLr2DRPyeHpz5OAn1e83tq5Gpv1H3dpWS1Zt0SIiAdI+t1q5ZlSsX0SSQAZ7bnOJWnpWBdMWL6u7uC6mRVb1mMiZmZtc+PqPbOuQt9xEDEzs6Y5iJhZXR4XsZE4iFjPGf9wd+4m79a9Ip7mOzru0uouB5EcGVgyWD+TmVmOOIiYWUPcpWXVOIiYWc9xl1b3OIhYR01Yvq5+JjMrLAcRMzNrmoOImTWsSOMi7tLqDgcRswLwNF/LKwcRsxb0y3NFzEbiIGJmo+IuLSvnIGJmZk1zEDEzs6Y5iFjHZXGvSLfWz+pX7tKyEgcRs4LwDC1rlKQZkpZKWibprCr7D5B0t6T1kmZV2b+NpEclXVrvXA4iZmY9RNIY4DLgSGA6cLyk6RXZVpA8HfbaEQ7zaeC2Rs7nIGJmPa/PurT2BZZFxIMRMQxcB8wszxARD0XEfcCGysKS9gJeCvywkZM5iJhZU4o0LtJndgIeKdseTNPqkrQZcBFwZqMncxDJGT9TpHh8w6F12URJd5W9TqnYryplGp1p8j5gfkQ8UjdnamyjGc3MiuzG1Xsya5u7s67GiIae37LBbrfvr4qIvWtkGAR2LtueBKxssBpvBPaX9D5ga2BA0jMRscngfIlbImbWNHdp5dJCYA9JUyUNAMcB8xopGBHvjIjJETEFOAO4plYAAQcRs0LxNF+rJyLWA7OBBcBi4IaIWCTpfElHAUjaR9IgcAzwVUmLmj2fu7OsKyYsX8dTu43LuhrW5/LepdUuETEfmF+Rdk7Z+4Uk3Vy1jnEVcFW9c7klYmZmTXMQsZ7lpU+6w+Mi/c1BxMz6Sp/deNhxDiJmbeB7RaxfOYiYWcvcpdW/HETMCsbTfFvnLq32cRAxM7OmOYhY12TxcCoz6ywHETNri6KNi7hLqz0cRMzMrGkOImZm1jQHETNrG3dp9R8HkRzyg6nap5tLn3TzhkNP87W8cBAxs77m1khrHETMzKxpDiJm1lZFGxex1jiIWFf5hkPLI3dpNc9BxMzMmuYgYlZQeZ6h5S6t/uEgYmZGb3VpSZohaamkZZLOqrL/AEl3S1ovaVZZ+msl/VzSIkn3STq23rkcRMzayA+nsqxJGgNcBhwJTAeOlzS9ItsK4CTg2or0NcA/RcQrgRnAFyRtW+t8DiJm1hHu0srMvsCyiHgwIoaB64CZ5Rki4qGIuA/YUJH+24j4Xfp+JfAnoGa/qYOImVmqIF1aEyXdVfY6pWL/TsAjZduDadqoSNoXGACW18o3drQHNiua8Q8HT++irKthVtPq9Zs32Hr7/qqI2LtGhmq/7KNa/0fSy4CvAydGxIZaed0Ssa7zvSJmHTUI7Fy2PQlY2WhhSdsA3wc+GRG/qJffQcSswPI8zReKOS5SkC6tWhYCe0iaKmkAOA6Y10jBNP93gGsi4puNlHEQMTPrIRGxHpgNLAAWAzdExCJJ50s6CkDSPpIGgWOAr0palBb/B+AA4CRJ96av19Y6n8dEzMx6TETMB+ZXpJ1T9n4hSTdXZblvAN8YzbncEjGzjnKXVm9zEMkpP5iquHzDofUTBxEzM2uag4iZWRXu0mqMg4hZweV9mi8Uc1zEGuMgYpnwDYdmvcFBxMxsBO7Sqi/zICJpuqRbJK2RtDK9IWZMnTIDki6U9FNJz0oacV0YSTtI+qqkx9K8SyT9U/s/ieXZ+IdHtXSQdYC7tHpTpjcbStoO+BHwAMlSxbsBF5EEt0/WKLol8G7gl8DPgDePcPxtgNuBZ4D3A6tI1tf3HEwzszbI+o71U4EtgKMjYjVwc/qH/1xJn0/TNhERT0raPiJC0mxGCCLAx4FxwN4R8Wya9uM2fwazTYxbMcC6ycNZV8Pa4MbVezJrm7uzrkZuZd2ddSSwoCJYXEcSWA6sVTAiGumf+L/A3LIAYmZmbZR1EJkGLClPiIgVJI9obKkDVdJU4CXAk5LmSxqW9Liki9OVKs16RhGm+YLHRXpR1t1Z2wFPVkkfSve1Ysf05+dJWjczgNcAnwPWAx+pLJA+IewUgIkTJ3L02a9vsQqtic17O9Ztt/UAJ+8/6geuNW3DQHcfTLVhoOazfNpu3Jrq13L7DVtywpqaC7F21TaPFC+Q3MPb2G7Mmho5Pti1uuRN1kEEqj9xSyOkj0aplbUoIv4lfX+rpPHAxyWdGxEb/VZExBxgDsCUyVPj2/92Z4tVaM3wtE0W2ewps07albk/fbRr5+v20w27PSYyZdLjVdNPWPNart3y3q7WpZ7DdlxSP1POeFykuqy7s4aAbaukT6B6C2U0nkh/Vg6k30oy2L5bi8fvuF5fhHHMuu5Ou+32NN9uL8RYlC4tKGa3lu8ZqS7rILKEirEPSTsDW1ExVtKE5UC1r4Klr6Pd7Wsws404kPSGrIPITcARaRdTybHAs8BtrRw4IoaBm9l0+u8hJAP3y1o5vpm1zoGk+LIOIl8B1gHflnRoOrB9LnBx+bRfScskzS0vKOlISbOA16bbs9LXLmXZzgdeJ+lKSYdLOgM4C/hcRHjxpj7kLq38cSAptkyDSEQMkbQMxgDfA84DLgE+VZF1bJqn3H8C3wROTre/mb4OLjv+L4G/J5mV9T2SKRSfBf6tnZ/DzFrjQNJekmZIWpp+AT+ryv4DJN0taX36Zbx834mSfpe+Tqx3rsxnZ0XEA4x8x3kpz5RG0kYou4DkgfWFNLBksKdnaU1Yvo6ndhuXdTU6qtt3rz80+OIRZ2rl2c2PTSvcrK083s2erj14GXAYMAgslDQv/VtbsgI4CTijouz2JF/i9yaZIfurtOzQSOfLujvLzKzQctgi2RdYFhEPpmPD15GsTfiCiHgoIu5j0wlGRwA3R8QTaeC4meQeuxE5iFjfyWJFX4+NNKaI3VoZmCjprrLXKRX7dwIeKdseTNMaMeqymXdnmZmVK2K3VjsMD49tNPivioi9a+yvdldto9+cRl3WLREzyx23SFoyCOxctj0JWNmpsg4iBdDrd65n8ahcd2nlnwNJ0xYCe0iami42exwwr8GyC4DDJW2XPu/pcOpMTHIQMbPcciAZvYhYD8wm+eO/GLghIhalT409CkDSPpIGgWOAr0palJZ9Avg0SSBaCJyfpo3IYyJmXZTFdF+279rpOqJfx0haERHzgfkVaeeUvV9I0lVVrewVwBWNnsstEetb/fLc9XXDxf+u6BZJfo36t0vSq0jmIe8IbE6yWu5vgZ/VuiHFWtPrNx1aZxX1BsRybpHkU0NBRNKuwHuBdwIvJblB5UmSda+2BbYENki6DbgcuD4ivEquNawf7lwvyer56w4k1gl1u7MkXQ4sIlno8HzgdcDmEfHiiJgUEVuTPIb274H7SZ4kuFjSfp2rtll79EuXVknRZ2yBu7byppExkbXAtIg4LCK+EhH3RcTz5RkiYlVE3BQRHwJ2Ac6h8TskzfpOt6f7lnMgsXaqG0QiYnZEPNzoASNiQ0RcHxHXt1Y1M+sUBxJrF8/OKpBev+kwK1l1aWXZGukVDiTZaymISPpbSadJmp3O2jJrWhZ3rvezXmiNgANJ1poOIpLeC9wOHAS8BfilpPe1qV5m1gUOJNaqRmZnbTnCro8Cb4yIYyLiLcBpwCfaWTmzXpeHLi0HEmtFIy2R30p6Z5V0sfEDTfprrqT1lH6b6lvJgcSa1UgQOQE4XdLPJe1Tlv554BeSbpD0P8CXgX/vRCXtr3p9cL0fx0Xy0BoBBxJrTiNTfG8ned7uFcA8SddIellEXEbybPQ7gB+SdG39v47W1sw6yoHERquhgfVIfA14BfBH4H5JHweWRMSX0te9nayoWaf1e5dWiQOJjcaoZmdFxOqIOBN4A/B6YImkWR2pmVkfyUuXVokDiTWqodlZkj4j6U5J90iaA6yNiJnAvwCfknSbpNd0vLZmZqPkQNJZjbRE5pIsrngRcDbJEvA3S1JE/IhkYcZvpmlzOlZTe4EH1zsnyy4tt0Y6x4GkcxoJIkcCZ0TEDRHxP8CJJGMjuwFExPMRcWma9mzHampmXedAYvU0EkSWAP8oafv0xsP3AH8BNvo6HBFDEfHBDtTRrG/krTUCvRVI+oWkGZKWSlom6awq+8dJuj7df6ekKWn6iyRdLel+SYslfazeuRoJIicCewCrgKeBdwPHRMTa0Xwos6LwLK1N9Uog6YfWiKQxwGUkvUjTgeMlTa/IdjIwFBG7A5cAF6TpxwDjIuJVwF7Ae0oBZiSN3CeyNCLeCIwHJkbE7hHxg8Y/knVCr4+LWP44kBTGvsCyiHgwIoaB64CZFXlmAlen728EDpEkkpVHtpI0FtgCGAZW1zpZI7Oz/lHSZhHxl0afoS5pd0n7N5LXrJp+vHO9JI9dWiUOJIWwE/BI2fYgmz4k8IU8EbEeeArYgSSg/AX4A7AC+I+IeKLWyRrpzvow8KCkT9eaxitpB0nvlPQ94B7gZQ0c2yyX3KU1MgeSztCwGLdioO4LmCjprrLXKZWHqnL4yl/okfLsCzwP/B9gKvBhSbvWqvfYeh8sIl4r6Vjg/cAnJD0DLCYZI1kHbJuebDIwBHwDODUiHq13bDOrbtyKAdZNHs66GiN6aPDFTJn0eNbVaNnNj03jsB2XZF2N0VoVEXvX2D8I7Fy2PQlYOUKewbTragLwBMlaiT+IiOeAP0n6X5Jlrx4c6WSNLntyfUTsRzLAfiZwL7Ae2IpkGZSrgRnAyyLiQw4gZlYUeWuRtMFCYA9JUyUNAMcB8yryzCOZNAUwC7g1IoKkC+vNSmxFsjpJzShbtyVSLiKWA8tHU8Y6Z2DJIMPTJmVdDetTvdIagcK2SKqKiPWSZgMLgDHAFRGxSNL5wF0RMY/kJvKvS1pG0gI5Li1+GXAl8BuSLq8rI+K+WucbVRAx66YJy9fx1G7jMjv/+IeDp3ep1nXcHXnv0gIHkryKiPnA/Iq0c8reryWZzltZ7plq6bW09Ix1M7NeGWiHnuza6jgHEbMcy/N033IOJP3LQcSsBk/1bZwDSX9yECk437ne+4rSGgEHkn7kIGK51s93rheVA0l/aSmISHq7pA9IekVF+uzWqmWWH+7SGj0Hkv7RdBCR9O/AB4HdSR5I9aGy3f/casXM7K+K1KXVixxIRtZKS+StwKER8QHgdcBRki5M92U3ud7McqGXWiPgQDKSVoLIZunqj0TEn0mWPZkiaW6Lx7VR6vXB9TyMi+ShS6uIrREHkt7Xyh/7P0jas7SRrlt/LMlKkH/basXMrDc4kPS2hoNI+tjE35Q9J+QkKlaGjIgNEfFuwM8SMeuAIrZGwIGklzUcRNKlgV8CDKTbgxHx2Ah5f9ae6pnlRx66tIrMgaQ3jbY761rg7Z2oiLWm18dFrDc4kPSe0QaR3wNvk3SepOyWV7W+k4fB9bwoapdWiQNJbxntUvCfBbYEzgZOl/QT4G7g18Cv0+eNmJlZnxhtS2Q8ydMN3wFcCKwleZjJDcDvJD3d3uqZ5UtexkXcGrG8GO2TDYPkyYbLge+U0iVtTjKt11N7zawhvfRAq37WlpsCI2JtRNwVEVe143jWHA+uW9G4RVJ8vrPcCiMvg+vu0movB5L2kzRD0lJJyySdVWX/OEnXp/vvlDSlbN+rJf1c0iJJ96c9TSNyEDGzzDmQtI+kMcBlwJHAdOB4SdMrsp0MDEXE7sAlwAVp2bHAN4BTI+KVwEHAc7XO5yBiVmC90hoBB5I22hdYFhEPpstRXQfMrMgzE7g6fX8jcIgkAYcD90XEryFZFzEinq91MgcRsybkpUur1ziQtMVOwCNl24NpWtU86UK6TwE7AC8HQtICSXdL+ki9k432PhHLuYElgwxPm5R1NayLxq0YYN3k4ayr0Tb9OmtrzHDDX04mSrqrbHtORMwp2672KI7KA4+UZyywH7APsAa4RdKvIuKWkSrjIGKFMmH5Op7azYslWF9bFRF719g/COxctj2JisVyy/IMpuMgE4An0vTbImIVgKT5wJ7AiEHE3VlmTXKXVue4W6slC4E9JE2VNEByQ/i8ijzzgBPT97OAW9P7ABcAr5a0ZRpcDgQeqHWyzIOIpOmSbpG0RtJKSeenswvqlZsg6UpJQ5KekvRfknaoyDMg6Zx0Gtuz6U+v+2U9p5cG2EscSJqTjnHMJgkIi4EbImJR+rf1qDTbXGAHScuA04Gz0rJDwMUkgehe4O6I+H6t82XanSVpO+BHJJFuJrAbcBFJcPtkneLXA68A3g1sIJmi9l02fpbJvwOnpse6h6RZ9hlgW5Lnw5tZjvXr+EirImI+ML8i7Zyy92uBY0Yo+w2Sab4NyXpM5FRgC+DoiFgN3CxpG+BcSZ9P0zYh6Y3AEcCBEXF7mvYocKekQyPiR2nWE4D/jIiL0+0fS9oJeCc9HEQ8uN494x8Ont6l2hhl9/XaAHuJA0m+Zd2ddSSwoCJYXEcSWA6sU+6PpQACEBG/JFmq/siyfC8imbpW7kmqz0ywgsjLnevWPe7ayq+sg8g0YEl5QkSsIJlaVmuR/k3KpRZXlLsceI+kN0naOn2073uBS1uqtZl1nQNJPmUdRLYjaRlUGkr3tVruLOBbwB3A08DtwLcj4vymamuWc704wF7OgSR/sh4TgU1vgoGku6ne/MlGyp0JvAt4P3Af8Brg05L+XD7I9EJh6RTgFICJEydy9Nmvr1/7HIvN8/0HZfvtx3Hs8VObKvv8uHz1SG4YyE99Ngxs2Gj7pWPG8eGtd8moNh3w5C6MG1ifdS02clvWFchQ1kFkiGSmVKUJVG9plJer9pVk21I5SRNJZmKdFhFfS/ffLmkYuFTSpRHxp/LC6V2fcwCmTJ4a3/63O0fzWXIn74Prxx4/lev/+/dNl8/bTYd5GWAHNhpg//DWu3DRMw9nWJvO8GB7PmTdnbWEirEPSTsDW1F9zGPEcqnysZJdSQbW763Icw9J8Oyhr2bV+fki/avXu7Ug6dpy91b2sg4iNwFHSBpflnYs8Cy1W4g3ATtK2q+UIGlvksBxU5pU+uq1Z0XZvdKfDzVZZ8uJvM3S8h3s2XAgyVbWQeQrwDrg25IOTcckzgUuLp/2m95pPre0HRE/J7kb8xpJR0t6G/BfwB2le0Qi4o8kNx9eIOmDkg6W9K8kNyB+MyL6oi3s1kj/6ofWSIlbJdnJNIikt9gfAowBvgecR/KAlE9VZB2b5il3HElr5QrgGuBXwNsr8pxIMs33AyR3b54GfJXkgSzWA9waqa2fAgm4VZKFrAfWiYgHgDfXyTOlStqTwP9NXyOVWw2ckb7MuiJPd7EDbDa8Wc/ezV5NKZB44L07su7Osi7o9S6tvLVG8sqtEusEBxGzDshbt1bJuBUDfRVMHEg6z0GkT7g10n15DSTQX60SD7p3loOIWZ9yq8TawUGkj7g10n15bo2U9FsgcTBpLwcRsw4rSiDpt2Bi7eEg0mfcGrFa+i2QOJi0zkHErAuK0Bopcauk+CTNkLQ0Xe3jrCr7x0m6Pt1/p6QpFfsnS3pGUt177BxE+pBbI9koUiABt0qKStIY4DKSp7xOB46XNL0i28nAUETsTrJKyAUV+y/hr+sQ1uQgYmYjcqukkPYFlkXEgxExTPLI8ZkVeWYCV6fvbwQOkSSAdC3CB4FFjZzMQaRPuTWSjaK1Rkr6LZAUPJjsBDxStj2YplXNExHrgaeAHSRtBXyUZB3DhjiImHVZkQNJvwWTnJoo6a6y1ykV+6st3Fb5SzdSnvOASyLimUYrk/kCjJadgSWDuX/6YSsmLF+Xu6cf9gIv5tgZY9ZGoy3oVRGxd439g8DOZduTgJUj5BmUNJbkabJPAK8HZkn6PMmTYjdIWhsRl450MrdEzDJQ1NZIiVslubYQ2EPSVEkDJI/NmFeRZx7JozIAZgG3RmL/iJiSrpz+BeBztQIIOIj0vV4fG8mzogcS8FhJHqVjHLNJHty3GLghIhZJOl/SUWm2uSRjIMuA04FNpgE3yt1Z1tPcpdV5pUDST11ceX9WSUTMJ3kQX3naOWXv1wLH1DnGuY2cyy0Rc2skQ73QGinppy6uorRKusFBxHpeXqf7lvRSIIH+6+Lqdw4iBrg1Yu3Vb62SfuYgYn3BrZFs9Esg6WcOIvYCt0ay1cuBxMGkdzmIWN/Ie2uk1zmQ9CYHEduIWyPZ6tXWSIlbJb3HQcT6ShFaI70eSMCtkl7iIGKbcGvEusGtkt7gIGJ9x62RfHEgKTYHEavKrZHs9VsgcTApJgcR60tFaI30IweS4nEQsRG5NZK9fmqNlLhVUiwOIta3itIa6cdAAm6VFIWDiNXk1ohlya2S/HMQsb7m1kgxOJDkl4OI1eXWSD44kLhVkkcOItb3itIasYQDSb44iFhD3BrJh35vjZS4VVKbpBmSlkpaJmmT56dLGifp+nT/nZKmpOmHSfqVpPvTn2+udy4HETPcGikqB5JNSRoDXAYcCUwHjpc0vSLbycBQROwOXAJckKavAv4+Il4FnAh8vd75HETMCsatkY25VbKJfYFlEfFgRAwD1wEzK/LMBK5O398IHCJJEXFPRKxM0xcBm0saV+tkDiLWsF7v0ipSa8SBZFMOJC/YCXikbHswTauaJyLWA08BO1TkeQdwT0TU/I8xtqWqmpnlSCmQrJs8nHFNOmqipLvKtudExJyybVUpU/mto2YeSa8k6eI6vF5lHERsVAaWDDI8bVLW1eiYCcvX8dRuNVvvuTH+4eDpXar9LbBxKwYKF0i0drjR1v6qiNi7xv5BYOey7UnAyhHyDEoaC0wAngCQNAn4DvBPEbG8XmXcnWVWYO7WGlkfj5UsBPaQNFXSAHAcMK8izzySgXOAWcCtERGStgW+D3wsIv63kZM5iNio9frYiPWWfgsk6RjHbGABsBi4ISIWSTpf0lFptrnADpKWAacDpWnAs4HdgbMl3Zu+XlLrfO7OMqtQpC4tcLdWI/pkrOQFETEfmF+Rdk7Z+7XAMVXKfQb4zGjO5ZaINcWtkXxxt1Zj+q1V0g0OImZVFGm6r41OH4+VdISDiDXNrZF8cWtkdBxI2sNBxGwERWyNOJCMjlslrXMQsZa4NWK9wIGkeQ4iZjW4NdI/3CppjoOItcytkfxxIGmeA8noOIiY1VHE1oi1xq2SxjmIWFu4NZI/bo20zoGkPgcRswYUtTUy/uFgs2EHk1a4VVKbg4i1jVsj+eVWSescSKpzEDFrUFFbIyXjHw4Hkxa5VbIpBxFrK7dG8s+BpHUOJH/lIGI2CkVvjZS4VdI6t0oSDiLWdm6NFIeDSev6PZA4iJiNUq+0Rso5kFizHESsI9waKR63SqwZmQcRSdMl3SJpjaSV6SMcxzRQboKkKyUNSXpK0n9J2qFKvpmS7pe0VtIDko77q6QrAAAKtUlEQVTtzCexftKLrZESBxIbjUyDiKTtgB8BAcwEzgc+DJzXQPHrgYOAdwMnAfsA3604/n7At4AfA0eSPID+vyUd3pYPYDW5NVJcbpVYo7JuiZwKbAEcHRE3R8RXSALI6ZK2GamQpDcCRwAnRsS3IuI7wLuA/SQdWpb1bOD2iPhARPw4Is4EfgCcs+lRzUanl1sjJQ4mxSRphqSlkpZJOqvK/nGSrk/33ylpStm+j6XpSyUdUe9cWQeRI4EFEbG6LO06ksByYJ1yf4yI20sJEfFL4PfpPiSNAw4Gbqgoex3wRkkTWq++1ePWSG9wICmOdDjgMpK/hdOB4yVNr8h2MjAUEbsDlwAXpGWnA8cBrwRmAF+uN7yQdRCZBiwpT4iIFcCadF/D5VKLy8rtBryoSr7FJJ/75U3U12wj/dAaKXGrpDD2BZZFxIMRMUzyxXlmRZ6ZwNXp+xuBQyQpTb8uItZFxO+BZenxRjS2rVUfve2AJ6ukD6X7mim3a1kequQbqtj/AkmnAKekm+se5su/qVEHa9Rj1ZNv/QkTgVVdrUsn/CTrCtT2q7k9cp3z7RWtHmD1+scX/OCxL09sIOvmku4q254TEXPKtncCHinbHgReX3GMF/JExHpJTwE7pOm/qCi7U63KZB1EIBlUr6QR0pspV7mtkcqn/xBzACTdFRF716mDtcDXuDt8nTuv4o96UyJiRjvqwl//xm10+AbzNFJ2I1l3Zw0B21ZJn0D1lka9ctuWlRsqS6vMQ53jm5kV1SCwc9n2JGDlSHkkjSX5m/tEg2U3knUQWULF2IeknYGtqD7mMWK5VPlYyXLguSr5pgEbgN82UV8zs7xbCOwhaaqkAZKB8nkVeeYBJ6bvZwG3RkSk6cels7emAnsAv6x1sqyDyE3AEZLGl6UdCzwL3Fan3I7pfSAASNqbZDzkJoCIWEdyf8gxFWWPBX4eEU/VqducOvutdb7G3eHr3Hm5ucYRsR6YDSwgmUh0Q0QsSm/kPirNNhfYQdIy4HTgrLTsIpIZrQ+Q3A5xWkQ8X+t8SoJPNtKbDR8AfkMyxWxX4GLgCxHxybJ8y4DbIuLksrQfkMywOoOkZXEB8KeI2L8sz34kw56XktyI+JY0/4yI+GFHP5yZWR/ItCUSEUPAIcAY4HskNxpeAnyqIuvYNE+540haK1cA1wC/At5ecfw7SJpqh5JE5aOAExxAzMzaI9OWiJmZFVvWYyId5cUdu6PT17ks/9skRTumUxZNJ6+xpAFJ56RLXTyb/jwvXfWhbzRzjdNrd6Gkn6bXbpNv5ZLGSPpomufP6euHkvbp3KfpoojoyRfJzYQrSRZ4PIxkna6/AJ9poOwPSJZQeQdJF9lvgZ9W5NkPWA98iWR5lQtJxmYOz/qz99J1Lsu7OfAgya2Ld2X9uXvpGpOMQ64hGWA9mGQR1GeBL2b92fN+jUluGRgi6S6/JfmTukmerdM8F5OMy5YWg10H7JX1Z2/52mVdgQ7+Unws/YfbpiztI+l/lm1qlHsjyc01B5Sl7ZumHVqWtoBkWlx52fnAHVl/9l66zmX7zgZ+ClzVh0Gk07/LjwEXVZS9mGR9usw/f56vcZqvNCwwe4QgMgbYriJtAHgIuDLrz97qq5e7s7y4Y3d07DqXSJpM8h/6g+2qdMF0+hq/CKic8v4k1e9e7lXNXuMkatTe/3wkk4jK04aBRcBLmqtufvRyEPHijt3RyetcchHJXPe7W6hnkXX6Gl8OvEfSmyRtLWl/4L0kU+P7RbPXuCnpF9G9SG5xKLQ8rJ3VKbla3LGHdfI6I+lgkmfH9FNgrtTRa0xyo9kWwB1laV+OiPNHWc8ia/YaN+sT6XEv78Cxu6qXgwjkaHHHHteR65yu6fMlksHNEdYC7hud/F0+k+Shbu8H7gNeA3xa0p8jop8e4NbsNR4VSW8lCSIfjoil7Tx2Fno5iLSyuOOLq6R7ccfqOnmd/yXdvlpS6RwDwJh0+y8R8VxTtS6Wjl1jSROBz5Asb/G1dP/tkoaBSyVdGhF/arrmxdHsNR6VdFrv9cBXI+IL7Tpulnp5TMSLO3ZHJ6/zK0hWEX2M5D/5EHA88Nr0fb/cl9PJa7wryfjevRV57iH5krlLE/UtomavccMkvZxkau8tJK2+ntDLQSTPizv2ko5dZ5KB3YMrXgtIgvTBwM1t+gx518lr/HD6c8+KsnulPx9qss5F0+w1boikl5H87i4Hjo86ixoWStZzjDv1Ihm0+gPJH5pDSZ5Y+AwVNw+RPP5xbkXaD0hubDsaeBuwlJFvNvwCcBDwefr3ZsOOXecq57uK/rtPpNO/y98h6bL5IElw/leSKb83ZP3ZC3KNjyRZo+9ykvGTWelrl3T/FiQtvSeBtwJvKHu9LuvP3vK1y7oCHf7FmA7cSvJt4g/Ap4ExFXkeAq6qSNsWuDL9R18NXAtMrHL8t5GsQLyOpMl7XNafuRevc0WZvgsinb7GwDbAf5B8S342/UP5eWB81p+7INf4oTR4VL5OSvdPGWF/AA9l/blbfXkBRjMza1ovj4mYmVmHOYiYmVnTHETMzKxpDiJmZtY0BxEzM2uag4iZmTXNQcTMzJrmIGLWICV+LenEdHuapDvTZ5dfJ2nrivwHSHq0Mj3dd5mkud2qu1mnOIiYNe4fSJbHuDbdvork7u5/ILnb+eOljJI2I1kS52MR8UyVY10IvFPS7p2ssFmnOYhY35E00GTRDwBfj4jn0tbF64EPRcQC4LPAYWV5TyZZ6fnr1Q4UEQ+RPATqvU3WxSwXHESsp0naTNJfJH1I0hclPc6my543cpzdgb8DbkyTSoHo2fTnmlKapG1I1l36YNReV+hbJK0R/z+0wvIvr/W6XYEtgY+QPDfjBJr79n8I8Bfg1wAR8QTwe+D9krYnWfX1rjTv2cCPIuIXdY75M+ClwKuaqI9ZLvTykw3NAF6d/rwiIj7ZwnH2AhZHxIaytNOAbwKfA34HnJa2WE4uO28ti4DngX1Jg5NZ0bglYr3uVSRdTZ8tT5T0n+nMqUaXsd4RWFWeEBE3AS8heQLj30TECuBi4JKIGJR0mqQV6et9lQeMiPUkS7TvOOpPZZYTbolYr3sV8JOIeLYi/b+Bc0kevduIzUmC0UYiYg3p45AlHQq8BjhW0mtIxkX+Ls36c0l3RMR9FYdYlx7brJDcErFe92rg7srEiLg9Iv44iuM8QfKAp6okjSWZ0vuRNGAdBNwaEUsiYgnJc7UPrFJ02/TYZoXkIGI9S9IWwG60Z7xhKTC1xv5TgaGIuL4sbcuy91sBqqjfi9M8v21D/cwy4SBiveyVJL/j7Qgi/wtMTv/wb0TSdsCnSJ5RXnI7cIikf5b0z8Cbgdsqiu5N8ojUn7WhfmaZ8JiI9bLSoPryNhzrJyTdTjPY9AbC84B5EfFCt1lE3CPpI/x1QP+MiKgMZjOA2yLiz22on1km/Ix162uSIiJUPydI+iKwe0S8tQ3nHQM8DJwVEd9o9XhmWXF3lvUlSZdLGkzfD0q6vIFiFwIHSXp5G6pwDMnd7te14VhmmXFLxGwUJB0H/CEiKsc3Rnuc44FHI+L29tTMLBsOImZm1jR3Z5mZWdMcRMzMrGkOImZm1jQHETMza5qDiJmZNc1BxMzMmuYgYmZmTXMQMTOzpv1/ZzufzULIqxUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -155,7 +155,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEUCAYAAAAfooCMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYXVV5x/Hvz8gl3JJQzIiIBkGbkoZ6GSwgyiA3gbZcBILCU4NoxEdJ1UDBIhDxCnJrKVQilBQFogIFIUQkyASjgCZcjA0BQwlIQC7tEMy1JHn7x9pDdjZn5pwzc84+M5Pf53nOc7LXXmuf9xw2ebP2WnsvRQRmZmbN9oZWB2BmZpsGJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVoo3tjqAgWSHHXaIMWPGtDqMQW/FihVsvfXWrQ7DrFc+Txtj/vz5L0XEm2qp64STM2bMGObNm9fqMAa9zs5OOjo6Wh2GWa98njaGpKdqretLamZmVgonHDMzK4UTjpmZlaLUhCPpWEk/kbRU0nJJ8yV9rIZ2W0i6SNILklZImilpTIV6H5D0gKRVkp6UNLkZ38PMzOpXdg/nS8By4IvA3wH3ANdLOrVKu38BJgKnAccAOwB3Sdqyu4Kk3YA7gSeBw4ErgYslfarB38HMzPqg7FlqfxsRL+W2fy7pLaREdFmlBpLeCpwMfDIirs3KfktKLCcCV2VVTweeBU6MiLXZsd8GnCvp6vBKc2ZmLVVqD6eQbLo9BIzupdnB2fvNueMsBeYCh+bqHQrcnCWbbjOAtwJ/2aeAzcysYQbCpIF9gIW97B8LPBMRywvlj2b7kLQ1sDOwqEKd7mOYmVkLtfTGT0kHAEcAn+yl2ijg5QrlXdk+gJHZe7FeV+4YZmbWQi1LONkss+uBWyNiepXqlcZfVKG8p3GaHsdvJE0CJgG0tbXR2dlZJRSrZvny5f4dB6AFS5e1OoQBpW04XHbdra0OY0AYv9OIUj6nJQlH0vbALOBp0sB/b7rY0IPJG8mGHs3LubK8UYX9rxMR04BpAO3t7eFHXfSfHxkyME08c2arQxhQpoxfy0UL/HQvgCUndJTyOaWP4UjaCrgd2Bw4PCJWVGmyCNg5G6fJG5vtIzvGH3j9WE33dnFsx8zMSlb2jZ9vBH4MvBM4NCJeqKHZz7L3o3LHeQvwQVIvqdss4ChJw3JlE0iJ6Hf9idvMzPqv7P7kFcBhwD8A20vaK7fvoYhYI+lugIg4IHt/RtLVwKWSBLwITAWeAn6Qa/8d4ATg+5K+B+wJfAb4rO/BMTNrvbITTvc9Nf9cYd8uwBJgWIV9k4EVwMXAVsAc4GMRsbq7QkQslvSRrM4s4I/AlIi4qsLxzMysZKUmnIgYU0Odjgpla0hPI/hSlbZzgff3MTwzM2uigXDjp5mZbQKccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVohUrfu4m6UpJj0haJ6mzhjZTJUUPry/n6k3voU5xJVAzMytZKxb0HkdahO1+0jLTtbgK+Gmh7EjgDDZe9RPSctInFcqW1BeimZk1WisSzm0RcSuApBuBHao1iIhngGfyZZLOBhZFxMOF6isi4v5GBWtmZo1R+iW1iFjf32NI2h44CLih/xGZmVkZBuukgWOAzYAZFfbtLukVSWskzZW0X8mxmZlZBYM14RwPPBgRjxfKHwKmAH8LnAAMA+6S5GWnzcxaTBHRug/PxnAioqOONjuSxnPOiIgLq9QdDiwEHomII3uoMwmYBNDW1va+GTMqdZqsHsuXL2ebbbZpdRhWsGDpslaHMKC0DYfnV7U6ioFh/E4j+tx2//33nx8R7bXUbcWkgf46DhDww2oVI2KVpDtIPZ6e6kwDpgG0t7dHR0dHg8LcdHV2duLfceCZeObMVocwoEwZv5aLFgzGvwIbb8kJHaV8zmC8pHY8MDci/lBHm9Z148zMDBhkCUfSGGAvapydll1SOxSY37yozMysFqX3JyVtRbrxE2AnYDtJx2Tbd0TESkmLgTkRcXKh+fHAWuDGCscdAdwO/ABYTLq/54vZZxzX8C9iZmZ1acUFzNHAjwtl3du7kJ4K8EbSDLOi44G7I+LFCvvWAC8CX8k+YzVwH7BfRMzrf9hmZtYfpSeciFhCGvTvrc6YHsrf3Uub1cDR/YnNzMyaZ1CN4ZiZ2eDlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFKUnHEm7SbpS0iOS1knqrKHNGElR4TWjQt0jJC2QtFrSQkkTmvJFzMysLq1YD2ccaQG2+4HN62x7GvDL3PZL+Z2S9gVuAq4AJmefc4Okroj4WZ8jNjOzfmtFwrktIm4FkHQjaWXOWj0WEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCpV9Si4j1zTiupC2A/YEfFXbNAPbOlqA2M7MWGWyTBq7Jxn2ek3SxpOG5fbsCmwGLCm0eJX3Pd5UVpJmZvV4rLqn1xRrgctJlsVeADuAMUpI5IqszKnt/udC2q7B/I5ImAZMA2tra6OzsbFTMm6zly5f7dxyApoxf2+oQBpS24f5NupX1/+ugSDgR8Rzw+VxRp6TngSskvTsiHs5XLzRXD+Xdx54GTANob2+Pjo6OxgS9Cevs7MS/48Az8cyZrQ5hQJkyfi0XLRgUfwU23ZITOkr5nMF2SS3vxuz9vdl7d09mZKFe93ax52NmZiWqOb1LGgl8EHg/8GZgS+B/gceBXxZ6GWWIwvsTwKvAWGBOrt5YYD0pTjMza5GqCUfSh4BTgb8h3TfzNOn+lzXAe4CTgK0lPQlcDVweEa80LeINjsne5wNExBpJ9wDHAlfm6k0A7ouIZSXEZGZmPeg14UiaTbpkdRNwFPCrYjKRJODPgUNJf9mfJukTEXF7D8fcinRDJsBOwHaSupPHHRGxUtJiYE5EnJy1mQpsS7rp8xXgQ8DpwM0R8dvc4b9GGt+5FLgl+5zDgI9U+yHMzKy5qvVwfgocGRHLe6oQEUGairwIuETS+4HteznmaODHhbLu7V2AJVlcw3L7F5GeMvApYDipl/Ud4BuFWOZmyevrwGeBJ4GP+ykDZmat12vCiYgL6z1gRPy6yv4lbJg51lOdMYXtGaQbOGv5/FtIvRszMxtABvMsNTMzG0RqSjiS2iS9o1C2j6S7JD0o6XxJWzYnRDMzGwpq7eH8gDSGAoCkNwN3kAby55HGSy5oeHRmZjZk1Jpw2kkJpttxwDLggxExCfgMcHSDYzMzsyGk2rToe7I/jgCmSvoSacD/ncAWwJ1pVjRbATtK+nlWf3pEXNuckM3MbDCqNkttfwBJLwNTI+L27L6bPwCnR8T0bP/upHt0PtzkeM3MbJCq9dE29wEXStoG2I/0fLL8JbZxwH83ODYzMxtCak04k4GbgeuBlcDnIuKF3P7PAz9pcGxmZjaE1JRwIuL3wHhJo4BXImJdocrfAy+8vqWZmVlS12IQEdHVQ/lTjQnHzMyGql6nRUv6YL0HlDRC0vi+h2RmZkNRtftwfiTpl5I+mV1O65GkD0i6DHgK2LthEZqZ2ZBQ7ZLaO0gTBs4FrpT0OPA7NqyHM5L0hOf3kJ7ifAdwYETMa1rEZmY2KPXaw4mIVRFxPjCGtN7NraQksy9wOPAXpB7N6cDOEXFUtWQjaTdJV0p6RNI6SZ3VgpS0p6RrJC2WtFLSY5LOLT6/TdJUSVHh5fVwzMxarNZZagHMzl79NY60KNr9pBVEazEB2BU4H/g9sAdpsbU9gI8W6i7j9QuuPdrXYM3MrDHqmqXWILdFxK0Akm4EdqihzfkR8WJuu1PSatJlvrcXZsmtjYj7GxivmZk1QOnr4UTE+j60ebFC8UPZ++j+RWRmZmUYzAuw7QOsBx4rlI+U9JKkVyU9JMlPsTYzGwBacUmt37L1eM4Cvh8Rr+R2LQb+EXgY2Ia0bMJNkj4aETf3cKxJwCSAtrY2Ojs7mxn6JmH58uX+HQegKePXtjqEAaVtuH+TbmX9/6o0H6A1usdwIqKjjjabkyYvvBV4X09PP8jqCvgVMDwi3l3t2O3t7TFvnmd091dnZycdHR2tDsMKxpw5s9UhDChTxq/logWD8t/cDbfk24f3ua2k+RHRXkvdmi+pSTpZ0jv7HFUDZAnkWrKZbr0lG3htdt3NwB6ShpUQopmZ9aCe9H4hsJ2kF4G5wC+y18N9mQjQR5cARwAHRcSiOtq1rhtnZmZAfZMGtictNf1N0l/gZwLzgC5JP5V0VhPie42kLwOnAidGxNwa2wg4CnikwhOuzcysRDX3cLLLUw9lr38BkHQQafD+YOAg4BvVjiNpK9KNnwA7kXpNx2Tbd0TESkmLgTkRcXLW5uOkRDcdWCppr9whn+ieNi1pDnATsAjYGvg0sBdwZK3f08zMmqOuETNJfwF8MPfaCfgv4HLS5bVajAZ+XCjr3t4FWJLFlR9zOTh7n5i98k4iJSJIs9S+AOxImjL9IHB4RMyqMTYzM2uSmhOOpBeA7YD5wL3A54C5EbGsng+MiCWAqtQZU9ieyOsTTaV2J9cTi5mZlaeeMZy1pF7H5tlrMzbuhZiZmfWo5oQTEW8hPR36CtIEgguBFyT9TtIVkiY0KUYzMxsC6nq0TUQsjohrIuKkiNiNtGTBS8ApwPXNCNDMzIaGesZwhgHvZcOEgX1JPZ1lwExqnzRgZmaboHpmqS0jrer5R9KNn1NJSWZBtPL5OGZmNijUk3BOBe6NiCeaFYyZmQ1d9dz4eU1+W9JmEfFq40MyM7OhqK5JA5L2kTRL0p+A1ZL+JOkOSXs3KT4zMxsi6pk0cBBpcsBjwHeA54E24BjSks+HR8TspkRpZmaDXj1jON8AfgIcW5gkcJ6km0jPOnPCMTOziuq5pDYe+F4PM9KmZfvNzMwqqifhvAzs2sO+3bL9ZmZmFdWTcH4MfEvSiZK2BJC0paQTSZfbftSMAM3MbGioJ+GcAdwO/AewQtIyYEW2fXu2vypJu0m6UtIjktZJ6qyx3QhJ10jqkrRM0nWS/qxCvSMkLZC0WtJCP+PNzGxgqOc+nFXACZK+BuxJWnPmOeA3dS73PI60ANv9pKdO1+qHwJ8DnyKtdXM+cAvpMTsASNqXtADbFcDk7HNukNQVET+r47PMzKzB6lqADSBLLvUkmKLbIuJWAEk3AjtUa5Dd53MIsF9E3JuVLQUekHRgbjr22aSnIUzOtu+RNA44B3DCMTNroV4TjqTd6zlYRCysoc76eo6ZORR4vjvZZMf5taQns32zJW0B7E/q2eTNAK6RNKLexeLMzKxxqvVwfgfU8mBOZfWatSDbWCr3qh7N9kGaQbdZhXqPksaq3gX8pknxmZlZFdUSzv6lRFHdKCpPu+4C3pGrQ4V6XYX9G5E0CZgE0NbWRmdnZ58CXLDUnadubcPhsutubXUYA8b4nUa0OgQApoxf2+oQBpS24f5NuvX17716VUs4nwC+FhFPSvoQ8GBELC8hrkoq9bRUoby4rV7aExHTSDeu0t7eHh0dHX0KbuKZM/vUbiiaMn4tFy2oe3hwyFpyQkerQwB8jhb5PN2grHO02rToTwBvyv58D1DXmE4DdQEjK5SPZEOPpitXVqwDvjHVzKylqiWc54AOSduQegpbStqqp1cT41zEhrGavPzYzhPAqxXqjSVNo368adGZmVlV1RLONODbpNU+g9TL+VMvr2aZBbw5u88GAEntpPGbWQARsSaL79hC2wnAfZ6hZmbWWr1ewIyI8yTNBP4CuBb4Oqkn0WdZT+iwbHMnYDtJx2Tbd0TESkmLgTkRcXIWx32S7gSulXQaG278nFtYEuFrpKUSLiXdFHpY9vpIf2I2M7P+qzpiFhHzgfmSDgCuiYgn+/mZo0nPZcvr3t4FWJLFVZxifTxwCfDvpJ7Z7RTuuYmIuVny+jrwWeBJ4ON+yoCZWevV82ibkxrxgRGxhA0zx3qqM6ZC2cvASdmrt7a3kHo3ZmY2gNQ1JzAbNzkaeCuwZXF/RBzXoLjMzGyIqWeJ6c8ClwMvAb8H/q9ZQZmZ2dBTTw/nNNL4ySkR4dtzzcysLvWshzMauMHJxszM+qKehDML+OtmBWJmZkNbPcsTXA5Mk7QZcBcVHhVTy/IEZma2aap3eQIB55IWNKNQ3szlCczMbJAbLMsTmJnZIFft0TZzygrEzMyGtponDUgaLWmX3LYkTZJ0qaS/bU54ZmY2VNQzS2068MXc9leBK0gPxvxPSRMbF5aZmQ019SSc9wI/B5D0BtLDMf8pIsYC3wC+0PjwzMxsqKgn4YwA/if78/uA7YHrsu2fA7vVchBJu0u6W9JKSc9KOk9Sr7PbJE2VFD28vpyrN72HOpUWbzMzsxLV82ibZ0hLTP8COBxYFBFLs30jgNXVDiBpFDAbWAgcAewKXERKfF/ppelVwE8LZUcCZ5AtwJaziNc/UXpJtdjMzKy56kk4/w5cIOlAUsL5cm7fXsCjNRzjFGA4cHREvALcJWk7YKqkC7Ky14mIZ0gJ7zWSziYlvYcL1VdExP01fSMzMytNzZfUIuJbwKnAH7P3f8nt3p7UC6nmUODOQmKZQUpC+9Uai6TtgYOAG2ptY2ZmrVXXejgRcS1pqeli+Sk1HmIs2cSDXNunJa3M9t1W43GOATYjJaui3SW9AmwB/AY4y/cTmZm1Xl0JB0DSG4G3UXkBtmrPUhtFhWewAV3ZvlodDzwYEY8Xyh8CHiCNEb0JmEK6bLdvRPy6juObmVmD1bMA22aky2ifIPUeKqnlWWpRoUw9lFeKY0fS5bczXnfgiH8u1J1JSj7/RJpkUOl4k4BJAG1tbXR2dtYSxutMGe9VG7q1DffvkdfXc6rR/N9kYz5PNyjrHK2nh3MO8DfAyaTp0J8DVgAnkmabnVrDMbqAkRXKR1C551PJcaQE9cNqFSNilaQ7gB6fhBAR04BpAO3t7dHR0VFjGBubeObMPrUbiqaMX8tFC+ruPA9ZS07oaHUIgM/RIp+nG5R1jtZzH85xwFTgR9n2ryPi2og4GJhLmuZczSLSWM1rJO0MbJ3tq8XxwNyI+EON9aHG3pOZmTVPPQlnZ+DxiFhHuucmP+ZyHfDRGo4xCzhE0ra5sgnAKqDqwL6kMaQp2DXNTpM0nDQzbn4t9c3MrHnqSTjPseFy2JPAh3L7dq3xGN8F1gA3SzowGz+ZClycnyotabGkqyu0Px5YC9xY3CFphKRfSPqMpAMkTQDuAXYCvlljfGZm1iT1XMDsBD5Imrr8PeBCSbuREsgEauh1RESXpAOAf82O8zJwCSnpFOOqNAHheODuiHixwr41wIukJxaMJvXC7gP2i4h51WIzM7PmqifhnAXsABARl0oS6X6Y4cBlwHm1HCSbOv3hKnXG9FD+7l7arAaOriUGMzMrX80JJyL+SHrKQPf2JaTeiZmZWVX1LMD2V5IO62HfYZL2aFxYZmY21NQzaeAS4K972Lcn7u2YmVkv6l2A7Zc97LsPeE//wzEzs6GqnoQzjHSDZiVbA5v3PxwzMxuq6kk4vyF75lgFkwBPPTYzsx7VMy16KjBb0gPAf5BmrO0I/D3wV6T1aczMzCqqZ1r0vZIOBr5Fuu9GwHrScgAHRcQvmhOimZkNBfUuwNYJ7C1pK9Kz1LoiYmUzAjMzs6GlT8/mzpKME42ZmdWsnkkDZmZmfeaEY2ZmpXDCMTOzUpSecCTtLuluSSslPSvpPEmVliLItxkjKSq8ZlSoe4SkBZJWS1qYrYtjZmYtVuqC3pJGAbOBhaQlqXcFLiIlvq/UcIjT2PjxOi8Vjr8vcBNwBTAZOAy4QVJXRPys31/AzMz6rNSEA5xCWj/n6GyFz7skbQdMlXRBftXPHjwWEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCZV9SOxS4s5BYZpCS0H79ObCkLYD9gR8Vds0g3Ts0oj/HNzOz/ik74YwFFuULIuJp0j09Y2tof42kdZKek3SxpOG5fbsCmxWPDzxK+p7v6nvYZmbWX2VfUhsFvFyhvCvb15M1wOWky2KvAB3AGaQkc0Tu2FQ4fldhv5mZtUDZCQcgKpSph/LUIOI54PO5ok5JzwNXSHp3RDzcy/HVy+ciaRLZU7Db2tro7OzsPfoeTBm/tk/thqK24f498vp6TjWa/5tszOfpBmWdo2UnnC5gZIXyEVTu+fTmRtJstPcCD7OhJ1M8fvd2xeNHxDRgGkB7e3t0dHTUGUYy8cyZfWo3FE0Zv5aLFrTi3zID05ITOlodAuBztMjn6QZlnaNlj+EsojBWI2ln0gJuxbGXaqLw/gTwavH42fZ64PE6j29mZg1UdsKZBRwiadtc2QRgFTCnzmMdk73PB4iINcA9wLGFehOA+yJiWf3hmplZo5Tdn/wu6YbMmyWdD7yDtLDbxfmp0pIWA3Mi4uRseyqwLemmz1eADwGnAzdHxG9zx/8aaXznUuAW0o2fhwEfae7XMjOzakrt4UREF3AAMAy4DfgqcAlwbqHqG7M63RaR7tO5BrgD+Djwnew9f/y5pJ7PgcCdwN8BH/dTBszMWq/0EbOIWAh8uEqdMYXtGaQbOGs5/i2k3o2ZmQ0gflq0mZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSlKTziSdpd0t6SVkp6VdJ6kYVXa7CnpGkmLs3aPSTpX0paFelMlRYWX18MxM2uxUpcnkDQKmA0sBI4AdgUuIiW+r/TSdEJW93zg98AepMXW9gA+Wqi7jNcvuPZof2M3M7P+KXs9nFOA4cDR2Qqfd0naDpgq6YL8qp8F50fEi7ntTkmrgSslvT0insrtWxsR9zcnfDMz66uyL6kdCtxZSCwzSElov54aFZJNt4ey99GNC8/MzJql7IQzlrRc9Gsi4mlgZbavHvsA64HHCuUjJb0k6VVJD0k6us/RmplZw5SdcEYBL1co78r21UTSm4GzgO8XekuLgX8EjiON7TwL3OSkY2bWeoqI8j5MehU4LSL+uVC+FJgeEWfVcIzNSRMP3gq8LyK6eqkr4FfA8Ih4dw91JgGTANra2t43Y8aMWr/ORhYsXdandkNR23B4flWroxg4xu80otUhAD5Hi3yebtCfc3T//fefHxHttdQte9JAFzCyQvkIKvd8NpIlkGuBccAHeks2ABERkm4Gzpc0LCLWVagzDZgG0N7eHh0dHVW/RCUTz5zZp3ZD0ZTxa7loQdmn1sC15ISOVocA+Bwt8nm6QVnnaNm/9iIKYzWSdga2pjC204NLSNOpD4qIWup3K68bZ2ZmFZU9hjMLOETStrmyCcAqYE5vDSV9GTgVODEi5tbyYVmP6CjgkUq9GzMzK0/ZPZzvApOBmyWdD7wDmApcnB/8l7QYmBMRJ2fbHwe+CUwHlkraK3fMJ7qnTUuaA9xE6i1tDXwa2As4srlfy8zMqik14UREl6QDgH8FbiON21xCSjrFuPKPuzk4e5+YvfJOIiUiSLPUvgDsSJoy/SBweETMakT8ZmbWd6WPmEXEQuDDVeqMKWxP5PWJplK7k/sRmpmZNZGfFm1mZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWitITjqTdJd0taaWkZyWdJ2lYDe1GSLpGUpekZZKuk/RnFeodIWmBpNWSFkqa0JxvYmZm9Sg14UgaBcwmLfl8BHAeMAX4ag3Nfwh0AJ8iLVWwJ3BL4fj7khZguwc4FJgJ3CDpYMzMrKXKXg/nFGA4cHS2wuddkrYDpkq6IL/qZ56kvYFDgP0i4t6sbCnwgKQDI2J2VvVs4N6ImJxt3yNpHHAO8LPmfS0zM6um7EtqhwJ3FhLLDFIS2q9Ku+e7kw1ARPwaeDLbh6QtgP2BHxXazgD2ljSi/+GbmVlflZ1wxgKL8gUR8TSwMttXc7vMo7l2uwKbVaj3KOl7vqsP8ZqZWYOUnXBGAS9XKO/K9vWnXfd7sV5XYb+ZmbVA2WM4kCYMFKmH8r60K26rl/ZImgRMyjaXS3qsShxWxWTYAXip1XEMFDq/1RFYJT5PN+jnOfr2WiuWnXC6gJEVykdQuQeTb/emCuUjc+26cmXFOvR0/IiYBkzr5bOtTpLmRUR7q+Mw643P0/KVfUltEYWxGkk7A1tTeYymx3aZ/NjOE8CrFeqNBdYDj/chXjMza5CyE84s4BBJ2+bKJgCrgDlV2r05u88GAEntwDuyfUTEGtL9N8cW2k4A7ouIZf0P38zM+qrshPNdYA1ws6QDs/GTqcDF+anSkhZLurp7OyLuA+4ErpV0tKQjgeuAubl7cAC+BnRIulRSh6QLgMNIN5haeXyJ0gYDn6clU0S1sfoGf6C0O/CvwN6kcZWrgKkRsS5XZwnQGRETc2UjgUuAo0iJ8nZgckRsNOiXJaOvA+8k3aczNSJmNPErmZlZDUpPOGZmtmny06KtISTtJulKSY9IWieps9UxmeVJOlbSTyQtlbRc0nxJH2t1XJuSVtyHY0PTONJ42f3A5i2OxaySL5Eus3+RdP/NYcD1knaIiMtaGtkmwpfUrCEkvSEi1md/vhHYISI6WhuV2QZZYimO+V4P7B0Ru7QorE2KL6lZQ3QnG7OBqphsMg8Bo8uOZVPlhGNmm7J9gIWtDmJT4TEcM9skSTqAtBDkJ1sdy6bCPRwz2+RIGgNcD9waEdNbGswmxAnHzDYpkrYnPRLraeDEFoezSXHCMbNNhqStSE8p2Rw4PCJWtDikTYrHcMxskyDpjcCPSY+9+kBEvNDikDY5TjjWENm/HA/LNncCtpN0TLZ9R0SsbE1kZq+5gnSO/gOwvaS9cvseyp44b03kGz+tIbJB2Cd72L1LRCwpLRizCrKHAve0OqXP0RI44ZiZWSm4FeB6AAADsklEQVQ8acDMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHLMBStJUSZXWcOnLsS7M7kMxaxknHLOB6yrgkFYHYdYofrSN2QAjaTNgfUQ8AzzT6njMGsU9HLM+kjRd0jxJR0paJGm1pLmSds/VeYOkMyUtlrRG0uOSPlE4TqekGyVNkvQEsBp4S6VLapJ2kXSLpFck/UnSbZJ2K9QZKel6SSskPSfprAqxj5R0laRns7iflvS9xv5CZhtzD8esf94OXAycDawCvgrcKemdEbEauAz4BHAe8CBwEPDvkv4nIm7PHecDwK7AGcBKYFnxgyRtAdwNvAp8Glibfd4cSeMj4n+zqtcAHcAXgD8Cp2XHXps73MWk5ZW/mNXZGfhQf34Is2qccMz6ZwfgiIj4FYCk+cATwERJs4HPAidFxH9k9WdL2hE4l7QuS7eRwHsi4o/dBZKKn3US8DbgXRHx31mdB4D/Bj4DfEvSOOBI4PiI+GFW5x7SYmOv5I71fuDy7jqZH/TtJzCrjROOWf+80J1sACLiqSzpvB8IYD3wn9laLN3uBj4maVhErMvK5ueTTQ/eDzzYnWyyz3tG0i+BfbOiPbP3n+TqLJd0F/DXuWM9DJwuaR0wOyIer/ULm/WVx3DM+qfSIl4vADuSej/DSJfHXs29ppP+sbdjrs3zNXzWjj3Uex7YPvvzm4E/RcSqKnF+HrgFOAd4TNLvJR1fQwxmfeYejln/jO6h7L+A/yWNm3yA1NMpyieBWtYJeQ4YV6G8LfssSOMx20oaXkg6G8UZES8Dk4HJkvYA/hG4TtJvI2JhDbGY1c09HLP+GS1pn+4NSW8D3gv8Gvg5qYczIiLmVXj9X52f9QDwPkm75D5vJ9Lg/9ys6DfZ+9/l6mxDmqxQUUT8Fjid9PfB2DpjMquZezhm/fMS8H1J3bPUziP1XKZHxGpJ3wVmSLoAmAdsSeqlvCsiPlXnZ00nzWKbJekcYB0wNYvhSoCI+C9JPwH+TdJ2pF7R6aSZb6+RNBf4T+B3pN7Vp4EVpERp1hROOGb98xTwTeDbpCnS84CPZVOiAT4HPE76C/080kyxhcDV9X5QRKyRdCBpSvPVgIBO4OjclGiAicC/AZcCy4HLST2fY3J17svqjSElroeAQ7ObTc2awktMm/WRpOnAX0ZEe6tjMRsMPIZjZmalcMIxM7NS+JKamZmVwj0cMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkp/h/WI2xAUloInAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEUCAYAAAAfooCMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXVV5x/Hvz8gl3JJQzIiIBkGbkoZ6GSwgyiA3gbZcBILCU4NoxEdJ1UDBIhDxCnJrKVQilBQFogIFIUQkyASjgCZcjA0BQwlIQC7tEMy1JHn7x9pDdjZn5pwzc84+M5Pf53nOc7LXXmuf9xw2ebP2WnsvRQRmZmbN9oZWB2BmZpsGJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVoo3tjqAgWSHHXaIMWPGtDqMQW/FihVsvfXWrQ7DrFc+Txtj/vz5L0XEm2qp64STM2bMGObNm9fqMAa9zs5OOjo6Wh2GWa98njaGpKdqretLamZmVgonHDMzK4UTjpmZlaLUhCPpWEk/kbRU0nJJ8yV9rIZ2W0i6SNILklZImilpTIV6H5D0gKRVkp6UNLkZ38PMzOpXdg/nS8By4IvA3wH3ANdLOrVKu38BJgKnAccAOwB3Sdqyu4Kk3YA7gSeBw4ErgYslfarB38HMzPqg7FlqfxsRL+W2fy7pLaREdFmlBpLeCpwMfDIirs3KfktKLCcCV2VVTweeBU6MiLXZsd8GnCvp6vBKc2ZmLVVqD6eQbLo9BIzupdnB2fvNueMsBeYCh+bqHQrcnCWbbjOAtwJ/2aeAzcysYQbCpIF9gIW97B8LPBMRywvlj2b7kLQ1sDOwqEKd7mOYmVkLtfTGT0kHAEcAn+yl2ijg5QrlXdk+gJHZe7FeV+4YZmbWQi1LONkss+uBWyNiepXqlcZfVKG8p3GaHsdvJE0CJgG0tbXR2dlZJRSrZvny5f4dB6AFS5e1OoQBpW04XHbdra0OY0AYv9OIUj6nJQlH0vbALOBp0sB/b7rY0IPJG8mGHs3LubK8UYX9rxMR04BpAO3t7eFHXfSfHxkyME08c2arQxhQpoxfy0UL/HQvgCUndJTyOaWP4UjaCrgd2Bw4PCJWVGmyCNg5G6fJG5vtIzvGH3j9WE33dnFsx8zMSlb2jZ9vBH4MvBM4NCJeqKHZz7L3o3LHeQvwQVIvqdss4ChJw3JlE0iJ6Hf9idvMzPqv7P7kFcBhwD8A20vaK7fvoYhYI+lugIg4IHt/RtLVwKWSBLwITAWeAn6Qa/8d4ATg+5K+B+wJfAb4rO/BMTNrvbITTvc9Nf9cYd8uwBJgWIV9k4EVwMXAVsAc4GMRsbq7QkQslvSRrM4s4I/AlIi4qsLxzMysZKUmnIgYU0Odjgpla0hPI/hSlbZzgff3MTwzM2uigXDjp5mZbQKccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVohUrfu4m6UpJj0haJ6mzhjZTJUUPry/n6k3voU5xJVAzMytZKxb0HkdahO1+0jLTtbgK+Gmh7EjgDDZe9RPSctInFcqW1BeimZk1WisSzm0RcSuApBuBHao1iIhngGfyZZLOBhZFxMOF6isi4v5GBWtmZo1R+iW1iFjf32NI2h44CLih/xGZmVkZBuukgWOAzYAZFfbtLukVSWskzZW0X8mxmZlZBYM14RwPPBgRjxfKHwKmAH8LnAAMA+6S5GWnzcxaTBHRug/PxnAioqOONjuSxnPOiIgLq9QdDiwEHomII3uoMwmYBNDW1va+GTMqdZqsHsuXL2ebbbZpdRhWsGDpslaHMKC0DYfnV7U6ioFh/E4j+tx2//33nx8R7bXUbcWkgf46DhDww2oVI2KVpDtIPZ6e6kwDpgG0t7dHR0dHg8LcdHV2duLfceCZeObMVocwoEwZv5aLFgzGvwIbb8kJHaV8zmC8pHY8MDci/lBHm9Z148zMDBhkCUfSGGAvapydll1SOxSY37yozMysFqX3JyVtRbrxE2AnYDtJx2Tbd0TESkmLgTkRcXKh+fHAWuDGCscdAdwO/ABYTLq/54vZZxzX8C9iZmZ1acUFzNHAjwtl3du7kJ4K8EbSDLOi44G7I+LFCvvWAC8CX8k+YzVwH7BfRMzrf9hmZtYfpSeciFhCGvTvrc6YHsrf3Uub1cDR/YnNzMyaZ1CN4ZiZ2eDlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFKUnHEm7SbpS0iOS1knqrKHNGElR4TWjQt0jJC2QtFrSQkkTmvJFzMysLq1YD2ccaQG2+4HN62x7GvDL3PZL+Z2S9gVuAq4AJmefc4Okroj4WZ8jNjOzfmtFwrktIm4FkHQjaWXOWj0WEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCpV9Si4j1zTiupC2A/YEfFXbNAPbOlqA2M7MWGWyTBq7Jxn2ek3SxpOG5fbsCmwGLCm0eJX3Pd5UVpJmZvV4rLqn1xRrgctJlsVeADuAMUpI5IqszKnt/udC2q7B/I5ImAZMA2tra6OzsbFTMm6zly5f7dxyApoxf2+oQBpS24f5NupX1/+ugSDgR8Rzw+VxRp6TngSskvTsiHs5XLzRXD+Xdx54GTANob2+Pjo6OxgS9Cevs7MS/48Az8cyZrQ5hQJkyfi0XLRgUfwU23ZITOkr5nMF2SS3vxuz9vdl7d09mZKFe93ax52NmZiWqOb1LGgl8EHg/8GZgS+B/gceBXxZ6GWWIwvsTwKvAWGBOrt5YYD0pTjMza5GqCUfSh4BTgb8h3TfzNOn+lzXAe4CTgK0lPQlcDVweEa80LeINjsne5wNExBpJ9wDHAlfm6k0A7ouIZSXEZGZmPeg14UiaTbpkdRNwFPCrYjKRJODPgUNJf9mfJukTEXF7D8fcinRDJsBOwHaSupPHHRGxUtJiYE5EnJy1mQpsS7rp8xXgQ8DpwM0R8dvc4b9GGt+5FLgl+5zDgI9U+yHMzKy5qvVwfgocGRHLe6oQEUGairwIuETS+4HteznmaODHhbLu7V2AJVlcw3L7F5GeMvApYDipl/Ud4BuFWOZmyevrwGeBJ4GP+ykDZmat12vCiYgL6z1gRPy6yv4lbJg51lOdMYXtGaQbOGv5/FtIvRszMxtABvMsNTMzG0RqSjiS2iS9o1C2j6S7JD0o6XxJWzYnRDMzGwpq7eH8gDSGAoCkNwN3kAby55HGSy5oeHRmZjZk1Jpw2kkJpttxwDLggxExCfgMcHSDYzMzsyGk2rToe7I/jgCmSvoSacD/ncAWwJ1pVjRbATtK+nlWf3pEXNuckM3MbDCqNkttfwBJLwNTI+L27L6bPwCnR8T0bP/upHt0PtzkeM3MbJCq9dE29wEXStoG2I/0fLL8JbZxwH83ODYzMxtCak04k4GbgeuBlcDnIuKF3P7PAz9pcGxmZjaE1JRwIuL3wHhJo4BXImJdocrfAy+8vqWZmVlS12IQEdHVQ/lTjQnHzMyGql6nRUv6YL0HlDRC0vi+h2RmZkNRtftwfiTpl5I+mV1O65GkD0i6DHgK2LthEZqZ2ZBQ7ZLaO0gTBs4FrpT0OPA7NqyHM5L0hOf3kJ7ifAdwYETMa1rEZmY2KPXaw4mIVRFxPjCGtN7NraQksy9wOPAXpB7N6cDOEXFUtWQjaTdJV0p6RNI6SZ3VgpS0p6RrJC2WtFLSY5LOLT6/TdJUSVHh5fVwzMxarNZZagHMzl79NY60KNr9pBVEazEB2BU4H/g9sAdpsbU9gI8W6i7j9QuuPdrXYM3MrDHqmqXWILdFxK0Akm4EdqihzfkR8WJuu1PSatJlvrcXZsmtjYj7GxivmZk1QOnr4UTE+j60ebFC8UPZ++j+RWRmZmUYzAuw7QOsBx4rlI+U9JKkVyU9JMlPsTYzGwBacUmt37L1eM4Cvh8Rr+R2LQb+EXgY2Ia0bMJNkj4aETf3cKxJwCSAtrY2Ojs7mxn6JmH58uX+HQegKePXtjqEAaVtuH+TbmX9/6o0H6A1usdwIqKjjjabkyYvvBV4X09PP8jqCvgVMDwi3l3t2O3t7TFvnmd091dnZycdHR2tDsMKxpw5s9UhDChTxq/logWD8t/cDbfk24f3ua2k+RHRXkvdmi+pSTpZ0jv7HFUDZAnkWrKZbr0lG3htdt3NwB6ShpUQopmZ9aCe9H4hsJ2kF4G5wC+y18N9mQjQR5cARwAHRcSiOtq1rhtnZmZAfZMGtictNf1N0l/gZwLzgC5JP5V0VhPie42kLwOnAidGxNwa2wg4CnikwhOuzcysRDX3cLLLUw9lr38BkHQQafD+YOAg4BvVjiNpK9KNnwA7kXpNx2Tbd0TESkmLgTkRcXLW5uOkRDcdWCppr9whn+ieNi1pDnATsAjYGvg0sBdwZK3f08zMmqOuETNJfwF8MPfaCfgv4HLS5bVajAZ+XCjr3t4FWJLFlR9zOTh7n5i98k4iJSJIs9S+AOxImjL9IHB4RMyqMTYzM2uSmhOOpBeA7YD5wL3A54C5EbGsng+MiCWAqtQZU9ieyOsTTaV2J9cTi5mZlaeeMZy1pF7H5tlrMzbuhZiZmfWo5oQTEW8hPR36CtIEgguBFyT9TtIVkiY0KUYzMxsC6nq0TUQsjohrIuKkiNiNtGTBS8ApwPXNCNDMzIaGesZwhgHvZcOEgX1JPZ1lwExqnzRgZmaboHpmqS0jrer5R9KNn1NJSWZBtPL5OGZmNijUk3BOBe6NiCeaFYyZmQ1d9dz4eU1+W9JmEfFq40MyM7OhqK5JA5L2kTRL0p+A1ZL+JOkOSXs3KT4zMxsi6pk0cBBpcsBjwHeA54E24BjSks+HR8TspkRpZmaDXj1jON8AfgIcW5gkcJ6km0jPOnPCMTOziuq5pDYe+F4PM9KmZfvNzMwqqifhvAzs2sO+3bL9ZmZmFdWTcH4MfEvSiZK2BJC0paQTSZfbftSMAM3MbGioJ+GcAdwO/AewQtIyYEW2fXu2vypJu0m6UtIjktZJ6qyx3QhJ10jqkrRM0nWS/qxCvSMkLZC0WtJCP+PNzGxgqOc+nFXACZK+BuxJWnPmOeA3dS73PI60ANv9pKdO1+qHwJ8DnyKtdXM+cAvpMTsASNqXtADbFcDk7HNukNQVET+r47PMzKzB6lqADSBLLvUkmKLbIuJWAEk3AjtUa5Dd53MIsF9E3JuVLQUekHRgbjr22aSnIUzOtu+RNA44B3DCMTNroV4TjqTd6zlYRCysoc76eo6ZORR4vjvZZMf5taQns32zJW0B7E/q2eTNAK6RNKLexeLMzKxxqvVwfgfU8mBOZfWatSDbWCr3qh7N9kGaQbdZhXqPksaq3gX8pknxmZlZFdUSzv6lRFHdKCpPu+4C3pGrQ4V6XYX9G5E0CZgE0NbWRmdnZ58CXLDUnadubcPhsutubXUYA8b4nUa0OgQApoxf2+oQBpS24f5NuvX17716VUs4nwC+FhFPSvoQ8GBELC8hrkoq9bRUoby4rV7aExHTSDeu0t7eHh0dHX0KbuKZM/vUbiiaMn4tFy2oe3hwyFpyQkerQwB8jhb5PN2grHO02rToTwBvyv58D1DXmE4DdQEjK5SPZEOPpitXVqwDvjHVzKylqiWc54AOSduQegpbStqqp1cT41zEhrGavPzYzhPAqxXqjSVNo368adGZmVlV1RLONODbpNU+g9TL+VMvr2aZBbw5u88GAEntpPGbWQARsSaL79hC2wnAfZ6hZmbWWr1ewIyI8yTNBP4CuBb4Oqkn0WdZT+iwbHMnYDtJx2Tbd0TESkmLgTkRcXIWx32S7gSulXQaG278nFtYEuFrpKUSLiXdFHpY9vpIf2I2M7P+qzpiFhHzgfmSDgCuiYgn+/mZo0nPZcvr3t4FWJLFVZxifTxwCfDvpJ7Z7RTuuYmIuVny+jrwWeBJ4ON+yoCZWevV82ibkxrxgRGxhA0zx3qqM6ZC2cvASdmrt7a3kHo3ZmY2gNQ1JzAbNzkaeCuwZXF/RBzXoLjMzGyIqWeJ6c8ClwMvAb8H/q9ZQZmZ2dBTTw/nNNL4ySkR4dtzzcysLvWshzMauMHJxszM+qKehDML+OtmBWJmZkNbPcsTXA5Mk7QZcBcVHhVTy/IEZma2aap3eQIB55IWNKNQ3szlCczMbJAbLMsTmJnZIFft0TZzygrEzMyGtponDUgaLWmX3LYkTZJ0qaS/bU54ZmY2VNQzS2068MXc9leBK0gPxvxPSRMbF5aZmQ019SSc9wI/B5D0BtLDMf8pIsYC3wC+0PjwzMxsqKgn4YwA/if78/uA7YHrsu2fA7vVchBJu0u6W9JKSc9KOk9Sr7PbJE2VFD28vpyrN72HOpUWbzMzsxLV82ibZ0hLTP8COBxYFBFLs30jgNXVDiBpFDAbWAgcAewKXERKfF/ppelVwE8LZUcCZ5AtwJaziNc/UXpJtdjMzKy56kk4/w5cIOlAUsL5cm7fXsCjNRzjFGA4cHREvALcJWk7YKqkC7Ky14mIZ0gJ7zWSziYlvYcL1VdExP01fSMzMytNzZfUIuJbwKnAH7P3f8nt3p7UC6nmUODOQmKZQUpC+9Uai6TtgYOAG2ptY2ZmrVXXejgRcS1pqeli+Sk1HmIs2cSDXNunJa3M9t1W43GOATYjJaui3SW9AmwB/AY4y/cTmZm1Xl0JB0DSG4G3UXkBtmrPUhtFhWewAV3ZvlodDzwYEY8Xyh8CHiCNEb0JmEK6bLdvRPy6juObmVmD1bMA22aky2ifIPUeKqnlWWpRoUw9lFeKY0fS5bczXnfgiH8u1J1JSj7/RJpkUOl4k4BJAG1tbXR2dtYSxutMGe9VG7q1DffvkdfXc6rR/N9kYz5PNyjrHK2nh3MO8DfAyaTp0J8DVgAnkmabnVrDMbqAkRXKR1C551PJcaQE9cNqFSNilaQ7gB6fhBAR04BpAO3t7dHR0VFjGBubeObMPrUbiqaMX8tFC+ruPA9ZS07oaHUIgM/RIp+nG5R1jtZzH85xwFTgR9n2ryPi2og4GJhLmuZczSLSWM1rJO0MbJ3tq8XxwNyI+EON9aHG3pOZmTVPPQlnZ+DxiFhHuucmP+ZyHfDRGo4xCzhE0ra5sgnAKqDqwL6kMaQp2DXNTpM0nDQzbn4t9c3MrHnqSTjPseFy2JPAh3L7dq3xGN8F1gA3SzowGz+ZClycnyotabGkqyu0Px5YC9xY3CFphKRfSPqMpAMkTQDuAXYCvlljfGZm1iT1XMDsBD5Imrr8PeBCSbuREsgEauh1RESXpAOAf82O8zJwCSnpFOOqNAHheODuiHixwr41wIukJxaMJvXC7gP2i4h51WIzM7PmqifhnAXsABARl0oS6X6Y4cBlwHm1HCSbOv3hKnXG9FD+7l7arAaOriUGMzMrX80JJyL+SHrKQPf2JaTeiZmZWVX1LMD2V5IO62HfYZL2aFxYZmY21NQzaeAS4K972Lcn7u2YmVkv6l2A7Zc97LsPeE//wzEzs6GqnoQzjHSDZiVbA5v3PxwzMxuq6kk4vyF75lgFkwBPPTYzsx7VMy16KjBb0gPAf5BmrO0I/D3wV6T1aczMzCqqZ1r0vZIOBr5Fuu9GwHrScgAHRcQvmhOimZkNBfUuwNYJ7C1pK9Kz1LoiYmUzAjMzs6GlT8/mzpKME42ZmdWsnkkDZmZmfeaEY2ZmpXDCMTOzUpSecCTtLuluSSslPSvpPEmVliLItxkjKSq8ZlSoe4SkBZJWS1qYrYtjZmYtVuqC3pJGAbOBhaQlqXcFLiIlvq/UcIjT2PjxOi8Vjr8vcBNwBTAZOAy4QVJXRPys31/AzMz6rNSEA5xCWj/n6GyFz7skbQdMlXRBftXPHjwWEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCZV9SOxS4s5BYZpCS0H79ObCkLYD9gR8Vds0g3Ts0oj/HNzOz/ik74YwFFuULIuJp0j09Y2tof42kdZKek3SxpOG5fbsCmxWPDzxK+p7v6nvYZmbWX2VfUhsFvFyhvCvb15M1wOWky2KvAB3AGaQkc0Tu2FQ4fldhv5mZtUDZCQcgKpSph/LUIOI54PO5ok5JzwNXSHp3RDzcy/HVy+ciaRLZU7Db2tro7OzsPfoeTBm/tk/thqK24f498vp6TjWa/5tszOfpBmWdo2UnnC5gZIXyEVTu+fTmRtJstPcCD7OhJ1M8fvd2xeNHxDRgGkB7e3t0dHTUGUYy8cyZfWo3FE0Zv5aLFrTi3zID05ITOlodAuBztMjn6QZlnaNlj+EsojBWI2ln0gJuxbGXaqLw/gTwavH42fZ64PE6j29mZg1UdsKZBRwiadtc2QRgFTCnzmMdk73PB4iINcA9wLGFehOA+yJiWf3hmplZo5Tdn/wu6YbMmyWdD7yDtLDbxfmp0pIWA3Mi4uRseyqwLemmz1eADwGnAzdHxG9zx/8aaXznUuAW0o2fhwEfae7XMjOzakrt4UREF3AAMAy4DfgqcAlwbqHqG7M63RaR7tO5BrgD+Djwnew9f/y5pJ7PgcCdwN8BH/dTBszMWq/0EbOIWAh8uEqdMYXtGaQbOGs5/i2k3o2ZmQ0gflq0mZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSlKTziSdpd0t6SVkp6VdJ6kYVXa7CnpGkmLs3aPSTpX0paFelMlRYWX18MxM2uxUpcnkDQKmA0sBI4AdgUuIiW+r/TSdEJW93zg98AepMXW9gA+Wqi7jNcvuPZof2M3M7P+KXs9nFOA4cDR2Qqfd0naDpgq6YL8qp8F50fEi7ntTkmrgSslvT0insrtWxsR9zcnfDMz66uyL6kdCtxZSCwzSElov54aFZJNt4ey99GNC8/MzJql7IQzlrRc9Gsi4mlgZbavHvsA64HHCuUjJb0k6VVJD0k6us/RmplZw5SdcEYBL1co78r21UTSm4GzgO8XekuLgX8EjiON7TwL3OSkY2bWeoqI8j5MehU4LSL+uVC+FJgeEWfVcIzNSRMP3gq8LyK6eqkr4FfA8Ih4dw91JgGTANra2t43Y8aMWr/ORhYsXdandkNR23B4flWroxg4xu80otUhAD5Hi3yebtCfc3T//fefHxHttdQte9JAFzCyQvkIKvd8NpIlkGuBccAHeks2ABERkm4Gzpc0LCLWVagzDZgG0N7eHh0dHVW/RCUTz5zZp3ZD0ZTxa7loQdmn1sC15ISOVocA+Bwt8nm6QVnnaNm/9iIKYzWSdga2pjC204NLSNOpD4qIWup3K68bZ2ZmFZU9hjMLOETStrmyCcAqYE5vDSV9GTgVODEi5tbyYVmP6CjgkUq9GzMzK0/ZPZzvApOBmyWdD7wDmApcnB/8l7QYmBMRJ2fbHwe+CUwHlkraK3fMJ7qnTUuaA9xE6i1tDXwa2As4srlfy8zMqik14UREl6QDgH8FbiON21xCSjrFuPKPuzk4e5+YvfJOIiUiSLPUvgDsSJoy/SBweETMakT8ZmbWd6WPmEXEQuDDVeqMKWxP5PWJplK7k/sRmpmZNZGfFm1mZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWitITjqTdJd0taaWkZyWdJ2lYDe1GSLpGUpekZZKuk/RnFeodIWmBpNWSFkqa0JxvYmZm9Sg14UgaBcwmLfl8BHAeMAX4ag3Nfwh0AJ8iLVWwJ3BL4fj7khZguwc4FJgJ3CDpYMzMrKXKXg/nFGA4cHS2wuddkrYDpkq6IL/qZ56kvYFDgP0i4t6sbCnwgKQDI2J2VvVs4N6ImJxt3yNpHHAO8LPmfS0zM6um7EtqhwJ3FhLLDFIS2q9Ku+e7kw1ARPwaeDLbh6QtgP2BHxXazgD2ljSi/+GbmVlflZ1wxgKL8gUR8TSwMttXc7vMo7l2uwKbVaj3KOl7vqsP8ZqZWYOUnXBGAS9XKO/K9vWnXfd7sV5XYb+ZmbVA2WM4kCYMFKmH8r60K26rl/ZImgRMyjaXS3qsShxWxWTYAXip1XEMFDq/1RFYJT5PN+jnOfr2WiuWnXC6gJEVykdQuQeTb/emCuUjc+26cmXFOvR0/IiYBkzr5bOtTpLmRUR7q+Mw643P0/KVfUltEYWxGkk7A1tTeYymx3aZ/NjOE8CrFeqNBdYDj/chXjMza5CyE84s4BBJ2+bKJgCrgDlV2r05u88GAEntwDuyfUTEGtL9N8cW2k4A7ouIZf0P38zM+qrshPNdYA1ws6QDs/GTqcDF+anSkhZLurp7OyLuA+4ErpV0tKQjgeuAubl7cAC+BnRIulRSh6QLgMNIN5haeXyJ0gYDn6clU0S1sfoGf6C0O/CvwN6kcZWrgKkRsS5XZwnQGRETc2UjgUuAo0iJ8nZgckRsNOiXJaOvA+8k3aczNSJmNPErmZlZDUpPOGZmtmny06KtISTtJulKSY9IWieps9UxmeVJOlbSTyQtlbRc0nxJH2t1XJuSVtyHY0PTONJ42f3A5i2OxaySL5Eus3+RdP/NYcD1knaIiMtaGtkmwpfUrCEkvSEi1md/vhHYISI6WhuV2QZZYimO+V4P7B0Ru7QorE2KL6lZQ3QnG7OBqphsMg8Bo8uOZVPlhGNmm7J9gIWtDmJT4TEcM9skSTqAtBDkJ1sdy6bCPRwz2+RIGgNcD9waEdNbGswmxAnHzDYpkrYnPRLraeDEFoezSXHCMbNNhqStSE8p2Rw4PCJWtDikTYrHcMxskyDpjcCPSY+9+kBEvNDikDY5TjjWENm/HA/LNncCtpN0TLZ9R0SsbE1kZq+5gnSO/gOwvaS9cvseyp44b03kGz+tIbJB2Cd72L1LRCwpLRizCrKHAve0OqXP0RI44ZiZWSm4FeB6AAADsklEQVQ8acDMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHLMBStJUSZXWcOnLsS7M7kMxaxknHLOB6yrgkFYHYdYofrSN2QAjaTNgfUQ8AzzT6njMGsU9HLM+kjRd0jxJR0paJGm1pLmSds/VeYOkMyUtlrRG0uOSPlE4TqekGyVNkvQEsBp4S6VLapJ2kXSLpFck/UnSbZJ2K9QZKel6SSskPSfprAqxj5R0laRns7iflvS9xv5CZhtzD8esf94OXAycDawCvgrcKemdEbEauAz4BHAe8CBwEPDvkv4nIm7PHecDwK7AGcBKYFnxgyRtAdwNvAp8Glibfd4cSeMj4n+zqtcAHcAXgD8Cp2XHXps73MWk5ZW/mNXZGfhQf34Is2qccMz6ZwfgiIj4FYCk+cATwERJs4HPAidFxH9k9WdL2hE4l7QuS7eRwHsi4o/dBZKKn3US8DbgXRHx31mdB4D/Bj4DfEvSOOBI4PiI+GFW5x7SYmOv5I71fuDy7jqZH/TtJzCrjROOWf+80J1sACLiqSzpvB8IYD3wn9laLN3uBj4maVhErMvK5ueTTQ/eDzzYnWyyz3tG0i+BfbOiPbP3n+TqLJd0F/DXuWM9DJwuaR0wOyIer/ULm/WVx3DM+qfSIl4vADuSej/DSJfHXs29ppP+sbdjrs3zNXzWjj3Uex7YPvvzm4E/RcSqKnF+HrgFOAd4TNLvJR1fQwxmfeYejln/jO6h7L+A/yWNm3yA1NMpyieBWtYJeQ4YV6G8LfssSOMx20oaXkg6G8UZES8Dk4HJkvYA/hG4TtJvI2JhDbGY1c09HLP+GS1pn+4NSW8D3gv8Gvg5qYczIiLmVXj9X52f9QDwPkm75D5vJ9Lg/9ys6DfZ+9/l6mxDmqxQUUT8Fjid9PfB2DpjMquZezhm/fMS8H1J3bPUziP1XKZHxGpJ3wVmSLoAmAdsSeqlvCsiPlXnZ00nzWKbJekcYB0wNYvhSoCI+C9JPwH+TdJ2pF7R6aSZb6+RNBf4T+B3pN7Vp4EVpERp1hROOGb98xTwTeDbpCnS84CPZVOiAT4HPE76C/080kyxhcDV9X5QRKyRdCBpSvPVgIBO4OjclGiAicC/AZcCy4HLST2fY3J17svqjSElroeAQ7ObTc2awktMm/WRpOnAX0ZEe6tjMRsMPIZjZmalcMIxM7NS+JKamZmVwj0cMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkp/h/WI2xAUloInAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -272,7 +272,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEPCAYAAAD4aTuoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAHiZJREFUeJzt3XuQHNV99vHvw11gkASISzAgwFgyGMqxAYNDYLmDeGMuxkgFflMiYAGvMSQl21wNAjuUhV8udhEKVHZEiG2JBAhvuAghLisQdzAiEF2wMOJuDM6CLEvICP3eP04vtHpnd2dmZ2Z7d59P1dTMnD595vSpnvlNd59zWhGBmZlZGa3T3xUwMzPrjoOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUWQ8kTZHUnr1ulzSlxvXbJEWxrG7y3inp+R6WXyupQ9KGVX72ZySFpCNrqbNZmThImZXHDODzknYvLpC0LnACcFtErGp5zcz6iYOUWXn8P2AFMKHCsoOArUmBzGzIcJAyq5Ok/ST9p6Q3Jf1J0nxJJ9dbXkQsB+4ExldYPAF4G3gw++ztJE2X9LKklZJelHSppPV7qO962em/MwrpP5T0u0LajpJuzk4vrpA0S9Ku9W6bWb3W6+8KmJVZREzJvW4rLN4ReAS4HvgA+CtguqQ1ETEjW6cdULGsHswATpT0pYh4BiALPMcBv4yIj7J8o4B3gb8H3gPGApcAWwLfqnEz1yJpy2y73gYmZdt2ATBH0hifbrRWcpAyq1NEzOx8LUnAQ8CngW9S/2m5WaSgMwF4Jks7Atg8X2ZEzAfm5z7/EWAlcL2kcyJidZ2fDzAZ2BA4JCLey8p/FFgKTARu6EPZZjXx6T6zOkkaKemnkl4BPswek4DP1ltmdpTyH6SjKWXJ44FXgMdzn72OpMmSFkpamX32vwDDSIGyLw4FZgPLs1OE6wHvA78G9upj2WY1cZAyq9+NpADyY+BwYG/gn4GN+ljuDGAHYD9JGwHHADNi7VsWTAamAv8OfBXYBzg7W9bXz98SOJlPAm/n4wBg+z6WbVYTn+4zq0MWPI4GzoqI63Ppjfjj9wDpetAEYFtgU7qePvw6MDMiLs599p69lPsRsBrYoJC+eeH9/wDPApdXKGNZL59h1lAOUmb12RBYF/i4E4GkTUlHNX26SVtEfCTp30mBaDtgYUT8VyHbsPxnZ3rsWRgRIekN4HO5Oq8LHFzIej/p6O15d5Kw/uYgZVaHiHhf0lPAxZKWAWuA80jXbjZrwEfMAM4i9eq7uMLyOcCZkp4Gfgv8LTC6inL/A5gk6TnSda5vAhsX8vxf4CTgAUnXAm8C2wAHAu0R8W81b41ZnRykzOp3EjANuAn4A3At6Qf/rAaU/RipN91oYGaF5ZcAW5BOyQVwC/APwO29lHsx6ZrT5cCfgZ8CC4DTOjNExO8l7Qv8I3ANMAJ4C3gY6HbaJrNmUKtvHy/pM8B3gX2BzwMPVxh/Umm94aQvzLGkDh93AmdHxB8K+Y4BfgjsSvqHeWlE3NzIbTAzs9boj959uwPjgBezR7VuBtpI//gmknpSrfWvUdL+wK2kUflHAXcBMyQd3tdKm5lZ6/XHkdQ6EbEme30LsGVvR1KS9gMeBQ6MiIeytH2AJ4DDIuK+LG02sH5EHJxb925gs4jYvxnbY2ZmzdPyI6nOAFWjo4C3OwNUVs6TwMvZMrLbFxwEFC/qziSNNxleX43NzKy/DJTBvGOBRRXSF2bLAHYB1q+QbyFpO+ueBcDMzPrHQOndN5I0n1lRB7BzLg8V8nUUlq9F0iTSVDZstNFGX9phhx36VlMDYM2aNayzzkD5D1R+bs/Gcns2zosvvvhuRIxqVvkDJUhB5QGSqpBefK9u0lNixDRSN2LGjBkTixcv7ksdLdPe3k5bW1t/V2PQcHs2ltuzcbK5K5tmoPyV6CCN1SgawSdHTh25tGIeqHwkZmZmJTZQgtQiPrn2lJe/VvUSaRLMYr6xpNkAaunubmZmJTBQgtQsYJtsHBQAkvYiXY+aBR/f4uBB0nxneeOBxyLi/RbV1czMGqTl16QkbUwazAtp8szNJJ2Qvb87IlZIWgLMjYhTASLisWwM1E2SvkM6MpoKzOscI5X5AdAu6RrSQN9x2ePIpm+YmZk1XH90nNiKdA+cvM73O5HmK1uPNMN03gTgatL9ej6eFimfISLmZQHvh8CZpHFUJ0XEvQ2sv5mZtUjLg1RELOWTHnfd5RldIe094JTs0dO6t9P7JJtmZjYADJRrUmZmNgQ5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWmt198VMLO1jT7vri5pk/dYzcRC+tIfHd2qKpn1Gx9JmZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZabU8SEnaTdL9klZIelPSZZLW7WWdKZKim8f5uXw3dpNnbPO3zMzMGq2ld+aVNBK4D1gAHAPsAlxJCpYX9bDqz4B7CmnHAucCswrpi4BTCmlL66uxmZn1p1bfPv4MYBhwfEQsA+ZI2gyYIumKLK2LiHgdeD2fJun7wKKImF/I/qeIeLwJdTczsxZr9em+o4DZhWA0kxS4Dqy2EEmbA4cBMxpbPTMzK5NWB6mxpNNxH4uIV4EV2bJqnQCsTwpwRbtJWiZplaR5kqoOfmZmVi6tPt03EnivQnpHtqxaE4BfR8SLhfRngSdI17xGAZNJpxT3j4gnKxUkaRIwCWDUqFG0t7fXUA3rzvLly92WdZq8x+ouaVsP65ru9q2f98+Bo9VBCiAqpKmb9K4ZpW1JpwbP7VJwxE8Kee8iBawLSB0tulYmYhowDWDMmDHR1tZWTTWsF+3t7bgt6zPxvLu6pE3eYzVXPr/213XpyW0tqtHg4/1z4Gj16b4OYESF9OFUPsKq5ERSULu5t4wRsRK4G/hitRU0M7PyaHWQWkTh2pOk7YFNKFyr6sEEYF5EvFbD51Z1lGZmZuXS6iA1CzhC0qa5tPHASmBubytLGg3sS5W9+iQNI/UofKbWipqZWf9rdZC6HlgF3Cbp0KzTwhTgqny3dElLJP28wvoTgNXALcUFkoZLeljS6ZIOkTQeeBDYDri8CdtiZmZN1tKOExHRIekQ4FrgDtJ1qKtJgapYr0pTJU0A7o+IdyosWwW8Q5q5YivgA+Ax4MCIeLohG2BmZi3V8t59EbEAOLiXPKO7Sf9CD+t8ABzfp8qZmVmpeBZ0MzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrrZqClKRKUxWZmZk1Ra1HUm9IukLS55pSGzMzs5xag9QNwAnAC5KekDRJ0mZNqJeZmVltQSoiLomInYHDgMXAVcBbkn4p6dBmVNDMzIauujpORMQDEfG3wDbAt4ExwGxJSyVNkfQXjaykmZkNTX3t3bcXcADplvAdwMPAacASSd/oY9lmZjbE1RykJO0o6RJJLwH3A9sCfwf8RUT8b2BH0rWrHze0pmZmNuTUdNNDSQ+QjpxeB24EpkfEK/k8EfGRpF8B5zSqkmZmNjTVemfed4FxwJyIiB7yzQd2qrtWZmZm1H6671rg0UoBStKnJB0AEBEfFo+wzMzMalVrkHoQ2K2bZWOy5WZmZg1Ra5BSD8s+BazoQ13MzMzW0us1qewUXlsu6TRJRxaybQQcDTzfuKqZmdlQV03HiS+TBuwCBPB1YHUhz5+BRcB3G1c1MzMb6noNUhHxY7IxT5JeBo6LiPnNrpiZmVlNXdAjwt3KzcysZaq5JjUOmBcRy7LXPYqIuxtSMzMzG/KqOZK6E9gXeDJ7HXTfyy8A3xjRzMwaopogtRPwVu61mZlZS1TTceKVSq/NzMyarZprUhvXUmBEeECvmZk1RDWn+5aTrjVVy9ekzMysIaoJUn9HbUHKzMysIaq5JnVjC+phZmbWRV9vH29mZtY01XSceBKYGBELJD1FL6f+ImKfRlXOzMyGtmquSf03sDL32tenzMysJaq5JnVK7vXEptbGzMwsp+5rUkpGSerpRohmZmZ1qzlISRon6VHgA+B3wAeSHpV0dMNrZ2ZmQ1pNQUrS6cAdpAG+55BugHhO9v4/s+VmZmYNUdP9pIALgGkRcWYh/XpJ1wMXAjc0pGZmZjbk1Xq6bwvgtm6W3Qps3lsBknaTdL+kFZLelHSZpB6nUpI0WlJUeMyskPcYSc9L+kDSAknjq9oyMzMrnVqPpB4EDgTmVFh2IPBQTytLGgncBywAjgF2Aa4kBcuLqvj87wCP5N6/Wyh/f1KwvA44GxgHzJDUERH3VlG+mZmVSDWDeXfLvf0p8DNJWwC3A78HtgKOA44CTuuluDOAYcDxEbEMmCNpM2CKpCuytJ4sjojHe1j+feChiDg7e/+gpN2BiwEHKTOzAaaaI6kXWHsAr4DTs0fxLr330PMs6EcBswvBaCYwlXQkdkcV9alI0obAQaQjqLyZwHRJwyPi/XrLNzOz1qsmSB3UwM8bCzyQT4iIVyWtyJb1FqSmS9qcdAQ3A7gwIjpnw9gFWB9YVFhnIel04meBp/pWfTMza6VqZpyY28DPGwm8VyG9I1vWnVXAP5FO2S0D2oBzSYHpmFzZVCi/o7B8LZImAZMARo0aRXt7e0/1tyotX77cbVmnyXus7pK29bCu6W7f+nn/HDhq7TjxMUnrABsV06u4M2+luf/UTXpnmW8BZ+WS2iW9DVwn6QsRMb+H8tVNemfZ04BpAGPGjIm2traea29VaW9vx21Zn4nn3dUlbfIeq7ny+bW/rktPbmtRjQYf758DR62DeSXpXElLgA+BP1Z49KQDGFEhfTiVj7B6ckv2/MVc2VQov/N9reWbmVk/q3Wc1NnAecDPSUco/whcBrwILCU7bdaDRaRrTx+TtD2wCV2vJfUmCs8vkQLn2EK+scCarI5mZjaA1BqkvglcAlyRvb89Ii4FdicFmV17WX8WcISkTXNp40m3Aqn12tcJ2fMzABGxijSO6+uFfOOBx9yzz8xs4Kn1mtROwPyI+EjSh2Sn0iJijaTrgJ+RjrS6cz3paOw2SVOBnYEpwFX5bunZ6cS5EXFq9n4KsClpIO8y4ADgu8BtEfFfufJ/QLpedQ1pHNe47HFkjdtpZmYlUOuR1B+AT2WvXwX+MrdsJGmgbrciogM4hDSW6g7gUuBq0tFZ3nqsPd5qEWkc1XTgbuAk4MfZc778eaQjrEOB2cBXgZM824SZ2cBU65HUI8DepEDxK9JMEZsDfwa+BdzfWwERsQA4uJc8owvvZ5IG5fYqIm4nHUWZmdkAV2uQmgJsl72+nHS6byLpCGoO8O1GVczMzKymIBURi4HF2etVpHtJndOEepmZmfVpMO+ngW2BNyPijcZVyczMLKnn9vFnSnoNeAV4AnhV0uuS/k/Da2dmZkNarTNOXAxcSxrvdDSwV/Y8C/hpttzMzKwhaj3d9y3g8oj4fiH9nmwuvW+RZqAwMzPrs1pP9w2j+7vvzqXChLNmZmb1qjVI3Q4c382yrwF39q06ZmZmn6jm9vHjcm9nAVdIGk3X28fvDnyv8VU0M7OhqpprUnfS9Tbx2wFHVMj7C9Idc83MzPqsmiC1U9NrYWZmVkE1t49/pRUVMTMzK6p5xglJ65E6SewPbA78D/Aw6bYZqxtbPTMzG8pqClKStgLuBfYk3Yn3bWA/0vio5yQdHhHvNLqSZmY2NNXaBf0qYAvgyxGxc0TsFxE7A1/O0q9qdAXNzGzoqjVIjQPOjYin8onZ+/NJUySZmZk1RK1BakPgj90s+yOwQd+qY2Zm9olag9TjwLmSNsknZu/PzZabmZk1RK29+yYDDwKvSbqX1HFiK9LAXgFtDa2dmZkNaTUdSUXEfGBXYBowCjiMFKSuB3aNiOcaXkMzMxuyqj6SkrQ+sA/wckSc17wqmZmZJbUcSX0EPAB8rkl1MTMzW0vVQSoi1gC/AbZuXnXMzMw+UWvvvguBiyXt0YzKmJmZ5dXau+8i0swS8yW9QerdF/kMEbFPg+pmZmZDXK1B6oXsYWZm1nRVBSlJw0hTIr0A/A64LyLebmbFzMzMqrl9/M7AfcDoXPIySSdGxL3NqpiZmVk1HSeuANYAfw1sDOwOPAvc0MR6mZmZVRWk9gMuiohHIuKDiFgInA7sIGnb5lbPzMyGsmqC1LbAbwtpL5Hm6tum4TUyMzPLVDtOKnrPYmZm1ljVdkGfLWl1hfT7i+kRsVXfq2VmZlZdkLq06bUwMzOroNcgFREOUmZm1i9qnbvPzMysZRykzMystBykzMystBykzMystBykzMystBykzMystFoepCTtJul+SSskvSnpMknr9rLO3pKmS1qSrbdY0iWSNirkmyIpKjyObO5WmZlZM9R608M+kTSSdNuPBcAxwC7AlaRgeVEPq47P8k4FfgPsCfwge/5aIe/7QDEoLexr3c3MrPVaGqSAM4BhwPERsQyYI2kzYIqkK7K0SqZGxDu59+2SPgBukLRjRLySW7Y6Ih5vTvXNzKyVWn267yhgdiEYzSQFrgO7W6kQoDo9mz17rkAzs0Gq1UFqLLAonxARrwIrsmW1+ArpZoyLC+kjJL0r6UNJz0o6vu7amplZv2r16b6RwHsV0juyZVWRtA1wIfCvhaOyJcD3gPnAp0g3Z7xV0tci4rZuypoETAIYNWoU7e3t1VbDerB8+XK3ZZ0m79H1hgNbD+ua7vatn/fPgUMRrbtVlKQPge9ExE8K6W8AN0bEhVWUsQGp88WngS9FREcPeQU8CgyLiC/0VvaYMWNi8eLigZnVo729nba2tv6uxoA0+ry7uqRN3mM1Vz6/9n/KpT86ulVVGnS8fzaOpGciYq9mld/q030dwIgK6cOpfIS1lizo3ATsDozrKUABRIrAtwF79tbN3czMyqfVp/sWUbj2JGl7YBMK16q6cTWp6/phEVFN/k6+s7CZ2QDU6iOpWcARkjbNpY0HVgJze1pR0vnAt4FvRMS8aj4sO/I6DnguIj6qr8pmZtZfWn0kdT1wNnCbpKnAzsAU4Kp8BwhJS4C5EXFq9v4k4HLgRuANSfvmynyps4u6pLnAraSjsk2AbwL7Asc2d7PMzKwZWhqkIqJD0iHAtcAdpOtQV5MCVbFe+WtIh2fPE7NH3imk4AWpd9/fA9uSuqf/Gjg6ImY1ov5mZtZarT6SIiIWAAf3kmd04f1EuganSuud2oeqmZlZyXgWdDMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzK631+rsCZmUy+ry7qsq39EdHN7kmZgY+kjIzsxJzkDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9LyYF4z68KDmq0sWn4kJWk3SfdLWiHpTUmXSVq3ivWGS5ouqUPS+5J+KWmLCvmOkfS8pA8kLZA0vjlbYmZmzdbSICVpJHAfEMAxwGXAZODSKla/GWgDTgMmAnsDtxfK3x+4FXgQOAq4C5gh6fCGbICZmbVUq0/3nQEMA46PiGXAHEmbAVMkXZGldSFpP+AI4MCIeChLewN4QtKhEXFflvX7wEMRcXb2/kFJuwMXA/c2b7OskXyqycw6tTpIHQXMLgSjmcBU4EDgjh7We7szQAFExJOSXs6W3SdpQ+Ag4OzCujOB6ZKGR8T7DdqOIcMBw1rN+5zltTpIjQUeyCdExKuSVmTLugtSY4FFFdIXZssAdgHWr5BvIem05meBp3qq3MoPP6r6C9Kd7r44zfji+cts1hit+C6V8Tegr793raCIaN2HSR8C342IawrprwM3RcQF3aw3B/hTRBxbSP8FsHNEfEXSXwHzgL+MiPm5PJ8BfgMcERFdTvlJmgRMyt5+Hnih7g20vC2Bd/u7EoOI27Ox3J6NMyYiNm1W4f3RBb1SVFQ36fWsV3yvHtYnIqYB0wAkPR0Re/VSD6uC27Kx3J6N5fZsHElPN7P8VndB7wBGVEgfDrxXx3ojcut15NKKeeilfDMzK6FWB6lFfHINCQBJ2wObUPmaU7frZfLXql4CPqyQbyywBnixjvqamVk/anWQmgUcISl//nI8sBKY28t622TjoACQtBewc7aMiFhFGh/19cK644HHquzZN62KPFYdt2VjuT0by+3ZOE1ty1Z3nBgJLCB1TphKCjJXAddExEW5fEuAuRFxai7tHlIPve+QjoymAr+PiL/O5dkfaAeuJQ30HZflP7JSpwkzMyu3lh5JRUQHcAiwLqm7+aXA1cAlhazrZXnyJpCOtv4ZuAl4BjiuUP484ATgUGA28FXgJAcoM7OBqaVHUmZmZrUYdLfq8AS2jVVPe0raO2vLJdl6iyVdImmjQr4pkqLC48jmblX/qLMtR3fTRjMr5PW+2Xt7drfPhaTzc/lu7CZPpQ5cA56kz0i6QdJzkj6S1F7lek3/3RxUt+rITWC7gDSB7S7AlaRgfFEPq0KawHYMaQLbzmtetwPFa163AteRpl8aR5rAtmMwnlLsQ3uOz/JOJQ2k3hP4Qfb8tULe94FiUFrY17qXTR/3TUjXVh/JvV9rIKr3zarb82fAPYW0Y4FzyTph5SwCTimkLa2vxqW3O2mfeRzYoIb1mv+7GRGD5gGcTxovtVku7XvAinxahfX2Iw32PSCXtk+WdmgubTbwQGHdu4F5/b3tJWvPURXSJmXtuWMubQrwbn9vZ8nbcnTWbv+rl/K9b1bRnt2UdRewsJB2I/B0f29nC9tzndzrW4D2KtZpye/mYDvd190EtsNIE9j2tF6XCWyBzglsyU1g+2+FdWcC+0ka3vfql05d7RkR71RIfjZ73qpx1RtQ6t03e+V982M1t6ekzYHDgBmNrd7AEhFr6litJb+bgy1IdZmINiJeJf276ulccqMmsB1s6m3PSr5COh2wuJA+QtK7kj6U9Kyk4+uubbn1tS2nZ9cK3pJ0laRhuWXeN6l73zyB1HZdrvEBu0laJmmVpHmS+vRnYhBqye/mYAtSI6k8/VFHtqwv63U+F/N1FJYPJvW251okbQNcCPxr4Z/vEtIpmhNJ16reBG4dpIGq3rZcBfwTcCpp+MYNwJms/aPqffMTNe2bpKEtv46I4ow0z5JuyPo3wMmkITFzJO1TR10Hq5b8bg6qjhOZUk1gOwjU254po7QB6VB/OfAPaxUc8YtC3juAR0k3qbytnsqWXM1tGRFvAWflktolvQ1cJ+kLkZvxv0I53jd7IGlb0qnBc7sUHPGTQt67SJ00LiB1tLCk6b+bg+1IyhPYNla97QmAJJEGXu8OjIs0mLtbka6o3gbsWc2wgQGmT21ZcEv2/MVc2VQo3/tmz04k/Vje3FvGiFhJutj/xd7yDiEt+d0cbEHKE9g2Vr3t2elqUvfgYyKimvydBuM//762ZV4Unr1vUld7TiD1MHuths8djPtmvVryuznYglTZJ7AdaOptT7KBkd8GvhFpuqpeZUdexwHPRcRH9VW5tOpuywpOyJ6fAe+bubSq21PSaGBfquzVl3VUOYqszQ1o1e9mf/fPb3Bf/5HAW8Ac0vx9k0jXQn5YyLcE+Hkh7R7gt8DxpHPOi4GHC3n2B1YD1wBtwBWkfwOH9/e2l6k9gZNI/zink34I8o9RuXxzSYP7DicFp7uz9vxqf297idpyCmmQ6vHZepeRfohv9b5Z33c9Sz+P9A+/0pi+4cDDwOmkzirjSYNcVwF79fe2N6k9Nyb9+TkBeAz479z7jbtry1b8bvZ74zShsXcDHsi+yG+RZjpYt5BnKXBjIW1E9qP6HrAM+BWwZYXyjyXN4r6KdEg7ob+3uWztSRoIGd08Juby/TzbwVcCf8p+GI7q720uWVtOAJ4mzczx5+yH4jJgQ++b9X3Xs/T5wD3dlLsR6droa1lbvp/9GO/b39vcxLYc3cN3dnR3bdmK301PMGtmZqU12K5JmZnZIOIgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpfX/AftE5VrVUDbMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEPCAYAAAD4aTuoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHiZJREFUeJzt3XuQHNV99vHvw11gkASISzAgwFgyGMqxAYNDYLmDeGMuxkgFflMiYAGvMSQl21wNAjuUhV8udhEKVHZEiG2JBAhvuAghLisQdzAiEF2wMOJuDM6CLEvICP3eP04vtHpnd2dmZ2Z7d59P1dTMnD595vSpnvlNd59zWhGBmZlZGa3T3xUwMzPrjoOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUWQ8kTZHUnr1ulzSlxvXbJEWxrG7y3inp+R6WXyupQ9KGVX72ZySFpCNrqbNZmThImZXHDODzknYvLpC0LnACcFtErGp5zcz6iYOUWXn8P2AFMKHCsoOArUmBzGzIcJAyq5Ok/ST9p6Q3Jf1J0nxJJ9dbXkQsB+4ExldYPAF4G3gw++ztJE2X9LKklZJelHSppPV7qO962em/MwrpP5T0u0LajpJuzk4vrpA0S9Ku9W6bWb3W6+8KmJVZREzJvW4rLN4ReAS4HvgA+CtguqQ1ETEjW6cdULGsHswATpT0pYh4BiALPMcBv4yIj7J8o4B3gb8H3gPGApcAWwLfqnEz1yJpy2y73gYmZdt2ATBH0hifbrRWcpAyq1NEzOx8LUnAQ8CngW9S/2m5WaSgMwF4Jks7Atg8X2ZEzAfm5z7/EWAlcL2kcyJidZ2fDzAZ2BA4JCLey8p/FFgKTARu6EPZZjXx6T6zOkkaKemnkl4BPswek4DP1ltmdpTyH6SjKWXJ44FXgMdzn72OpMmSFkpamX32vwDDSIGyLw4FZgPLs1OE6wHvA78G9upj2WY1cZAyq9+NpADyY+BwYG/gn4GN+ljuDGAHYD9JGwHHADNi7VsWTAamAv8OfBXYBzg7W9bXz98SOJlPAm/n4wBg+z6WbVYTn+4zq0MWPI4GzoqI63Ppjfjj9wDpetAEYFtgU7qePvw6MDMiLs599p69lPsRsBrYoJC+eeH9/wDPApdXKGNZL59h1lAOUmb12RBYF/i4E4GkTUlHNX26SVtEfCTp30mBaDtgYUT8VyHbsPxnZ3rsWRgRIekN4HO5Oq8LHFzIej/p6O15d5Kw/uYgZVaHiHhf0lPAxZKWAWuA80jXbjZrwEfMAM4i9eq7uMLyOcCZkp4Gfgv8LTC6inL/A5gk6TnSda5vAhsX8vxf4CTgAUnXAm8C2wAHAu0R8W81b41ZnRykzOp3EjANuAn4A3At6Qf/rAaU/RipN91oYGaF5ZcAW5BOyQVwC/APwO29lHsx6ZrT5cCfgZ8CC4DTOjNExO8l7Qv8I3ANMAJ4C3gY6HbaJrNmUKtvHy/pM8B3gX2BzwMPVxh/Umm94aQvzLGkDh93AmdHxB8K+Y4BfgjsSvqHeWlE3NzIbTAzs9boj959uwPjgBezR7VuBtpI//gmknpSrfWvUdL+wK2kUflHAXcBMyQd3tdKm5lZ6/XHkdQ6EbEme30LsGVvR1KS9gMeBQ6MiIeytH2AJ4DDIuK+LG02sH5EHJxb925gs4jYvxnbY2ZmzdPyI6nOAFWjo4C3OwNUVs6TwMvZMrLbFxwEFC/qziSNNxleX43NzKy/DJTBvGOBRRXSF2bLAHYB1q+QbyFpO+ueBcDMzPrHQOndN5I0n1lRB7BzLg8V8nUUlq9F0iTSVDZstNFGX9phhx36VlMDYM2aNayzzkD5D1R+bs/Gcns2zosvvvhuRIxqVvkDJUhB5QGSqpBefK9u0lNixDRSN2LGjBkTixcv7ksdLdPe3k5bW1t/V2PQcHs2ltuzcbK5K5tmoPyV6CCN1SgawSdHTh25tGIeqHwkZmZmJTZQgtQiPrn2lJe/VvUSaRLMYr6xpNkAaunubmZmJTBQgtQsYJtsHBQAkvYiXY+aBR/f4uBB0nxneeOBxyLi/RbV1czMGqTl16QkbUwazAtp8szNJJ2Qvb87IlZIWgLMjYhTASLisWwM1E2SvkM6MpoKzOscI5X5AdAu6RrSQN9x2ePIpm+YmZk1XH90nNiKdA+cvM73O5HmK1uPNMN03gTgatL9ej6eFimfISLmZQHvh8CZpHFUJ0XEvQ2sv5mZtUjLg1RELOWTHnfd5RldIe094JTs0dO6t9P7JJtmZjYADJRrUmZmNgQ5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWmt198VMLO1jT7vri5pk/dYzcRC+tIfHd2qKpn1Gx9JmZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZabU8SEnaTdL9klZIelPSZZLW7WWdKZKim8f5uXw3dpNnbPO3zMzMGq2ld+aVNBK4D1gAHAPsAlxJCpYX9bDqz4B7CmnHAucCswrpi4BTCmlL66uxmZn1p1bfPv4MYBhwfEQsA+ZI2gyYIumKLK2LiHgdeD2fJun7wKKImF/I/qeIeLwJdTczsxZr9em+o4DZhWA0kxS4Dqy2EEmbA4cBMxpbPTMzK5NWB6mxpNNxH4uIV4EV2bJqnQCsTwpwRbtJWiZplaR5kqoOfmZmVi6tPt03EnivQnpHtqxaE4BfR8SLhfRngSdI17xGAZNJpxT3j4gnKxUkaRIwCWDUqFG0t7fXUA3rzvLly92WdZq8x+ouaVsP65ru9q2f98+Bo9VBCiAqpKmb9K4ZpW1JpwbP7VJwxE8Kee8iBawLSB0tulYmYhowDWDMmDHR1tZWTTWsF+3t7bgt6zPxvLu6pE3eYzVXPr/213XpyW0tqtHg4/1z4Gj16b4OYESF9OFUPsKq5ERSULu5t4wRsRK4G/hitRU0M7PyaHWQWkTh2pOk7YFNKFyr6sEEYF5EvFbD51Z1lGZmZuXS6iA1CzhC0qa5tPHASmBubytLGg3sS5W9+iQNI/UofKbWipqZWf9rdZC6HlgF3Cbp0KzTwhTgqny3dElLJP28wvoTgNXALcUFkoZLeljS6ZIOkTQeeBDYDri8CdtiZmZN1tKOExHRIekQ4FrgDtJ1qKtJgapYr0pTJU0A7o+IdyosWwW8Q5q5YivgA+Ax4MCIeLohG2BmZi3V8t59EbEAOLiXPKO7Sf9CD+t8ABzfp8qZmVmpeBZ0MzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrrZqClKRKUxWZmZk1Ra1HUm9IukLS55pSGzMzs5xag9QNwAnAC5KekDRJ0mZNqJeZmVltQSoiLomInYHDgMXAVcBbkn4p6dBmVNDMzIauujpORMQDEfG3wDbAt4ExwGxJSyVNkfQXjaykmZkNTX3t3bcXcADplvAdwMPAacASSd/oY9lmZjbE1RykJO0o6RJJLwH3A9sCfwf8RUT8b2BH0rWrHze0pmZmNuTUdNNDSQ+QjpxeB24EpkfEK/k8EfGRpF8B5zSqkmZmNjTVemfed4FxwJyIiB7yzQd2qrtWZmZm1H6671rg0UoBStKnJB0AEBEfFo+wzMzMalVrkHoQ2K2bZWOy5WZmZg1Ra5BSD8s+BazoQ13MzMzW0us1qewUXlsu6TRJRxaybQQcDTzfuKqZmdlQV03HiS+TBuwCBPB1YHUhz5+BRcB3G1c1MzMb6noNUhHxY7IxT5JeBo6LiPnNrpiZmVlNXdAjwt3KzcysZaq5JjUOmBcRy7LXPYqIuxtSMzMzG/KqOZK6E9gXeDJ7HXTfyy8A3xjRzMwaopogtRPwVu61mZlZS1TTceKVSq/NzMyarZprUhvXUmBEeECvmZk1RDWn+5aTrjVVy9ekzMysIaoJUn9HbUHKzMysIaq5JnVjC+phZmbWRV9vH29mZtY01XSceBKYGBELJD1FL6f+ImKfRlXOzMyGtmquSf03sDL32tenzMysJaq5JnVK7vXEptbGzMwsp+5rUkpGSerpRohmZmZ1qzlISRon6VHgA+B3wAeSHpV0dMNrZ2ZmQ1pNQUrS6cAdpAG+55BugHhO9v4/s+VmZmYNUdP9pIALgGkRcWYh/XpJ1wMXAjc0pGZmZjbk1Xq6bwvgtm6W3Qps3lsBknaTdL+kFZLelHSZpB6nUpI0WlJUeMyskPcYSc9L+kDSAknjq9oyMzMrnVqPpB4EDgTmVFh2IPBQTytLGgncBywAjgF2Aa4kBcuLqvj87wCP5N6/Wyh/f1KwvA44GxgHzJDUERH3VlG+mZmVSDWDeXfLvf0p8DNJWwC3A78HtgKOA44CTuuluDOAYcDxEbEMmCNpM2CKpCuytJ4sjojHe1j+feChiDg7e/+gpN2BiwEHKTOzAaaaI6kXWHsAr4DTs0fxLr330PMs6EcBswvBaCYwlXQkdkcV9alI0obAQaQjqLyZwHRJwyPi/XrLNzOz1qsmSB3UwM8bCzyQT4iIVyWtyJb1FqSmS9qcdAQ3A7gwIjpnw9gFWB9YVFhnIel04meBp/pWfTMza6VqZpyY28DPGwm8VyG9I1vWnVXAP5FO2S0D2oBzSYHpmFzZVCi/o7B8LZImAZMARo0aRXt7e0/1tyotX77cbVmnyXus7pK29bCu6W7f+nn/HDhq7TjxMUnrABsV06u4M2+luf/UTXpnmW8BZ+WS2iW9DVwn6QsRMb+H8tVNemfZ04BpAGPGjIm2traea29VaW9vx21Zn4nn3dUlbfIeq7ny+bW/rktPbmtRjQYf758DR62DeSXpXElLgA+BP1Z49KQDGFEhfTiVj7B6ckv2/MVc2VQov/N9reWbmVk/q3Wc1NnAecDPSUco/whcBrwILCU7bdaDRaRrTx+TtD2wCV2vJfUmCs8vkQLn2EK+scCarI5mZjaA1BqkvglcAlyRvb89Ii4FdicFmV17WX8WcISkTXNp40m3Aqn12tcJ2fMzABGxijSO6+uFfOOBx9yzz8xs4Kn1mtROwPyI+EjSh2Sn0iJijaTrgJ+RjrS6cz3paOw2SVOBnYEpwFX5bunZ6cS5EXFq9n4KsClpIO8y4ADgu8BtEfFfufJ/QLpedQ1pHNe47HFkjdtpZmYlUOuR1B+AT2WvXwX+MrdsJGmgbrciogM4hDSW6g7gUuBq0tFZ3nqsPd5qEWkc1XTgbuAk4MfZc778eaQjrEOB2cBXgZM824SZ2cBU65HUI8DepEDxK9JMEZsDfwa+BdzfWwERsQA4uJc8owvvZ5IG5fYqIm4nHUWZmdkAV2uQmgJsl72+nHS6byLpCGoO8O1GVczMzKymIBURi4HF2etVpHtJndOEepmZmfVpMO+ngW2BNyPijcZVyczMLKnn9vFnSnoNeAV4AnhV0uuS/k/Da2dmZkNarTNOXAxcSxrvdDSwV/Y8C/hpttzMzKwhaj3d9y3g8oj4fiH9nmwuvW+RZqAwMzPrs1pP9w2j+7vvzqXChLNmZmb1qjVI3Q4c382yrwF39q06ZmZmn6jm9vHjcm9nAVdIGk3X28fvDnyv8VU0M7OhqpprUnfS9Tbx2wFHVMj7C9Idc83MzPqsmiC1U9NrYWZmVkE1t49/pRUVMTMzK6p5xglJ65E6SewPbA78D/Aw6bYZqxtbPTMzG8pqClKStgLuBfYk3Yn3bWA/0vio5yQdHhHvNLqSZmY2NNXaBf0qYAvgyxGxc0TsFxE7A1/O0q9qdAXNzGzoqjVIjQPOjYin8onZ+/NJUySZmZk1RK1BakPgj90s+yOwQd+qY2Zm9olag9TjwLmSNsknZu/PzZabmZk1RK29+yYDDwKvSbqX1HFiK9LAXgFtDa2dmZkNaTUdSUXEfGBXYBowCjiMFKSuB3aNiOcaXkMzMxuyqj6SkrQ+sA/wckSc17wqmZmZJbUcSX0EPAB8rkl1MTMzW0vVQSoi1gC/AbZuXnXMzMw+UWvvvguBiyXt0YzKmJmZ5dXau+8i0swS8yW9QerdF/kMEbFPg+pmZmZDXK1B6oXsYWZm1nRVBSlJw0hTIr0A/A64LyLebmbFzMzMqrl9/M7AfcDoXPIySSdGxL3NqpiZmVk1HSeuANYAfw1sDOwOPAvc0MR6mZmZVRWk9gMuiohHIuKDiFgInA7sIGnb5lbPzMyGsmqC1LbAbwtpL5Hm6tum4TUyMzPLVDtOKnrPYmZm1ljVdkGfLWl1hfT7i+kRsVXfq2VmZlZdkLq06bUwMzOroNcgFREOUmZm1i9qnbvPzMysZRykzMystBykzMystBykzMystBykzMystBykzMystFoepCTtJul+SSskvSnpMknr9rLO3pKmS1qSrbdY0iWSNirkmyIpKjyObO5WmZlZM9R608M+kTSSdNuPBcAxwC7AlaRgeVEPq47P8k4FfgPsCfwge/5aIe/7QDEoLexr3c3MrPVaGqSAM4BhwPERsQyYI2kzYIqkK7K0SqZGxDu59+2SPgBukLRjRLySW7Y6Ih5vTvXNzKyVWn267yhgdiEYzSQFrgO7W6kQoDo9mz17rkAzs0Gq1UFqLLAonxARrwIrsmW1+ArpZoyLC+kjJL0r6UNJz0o6vu7amplZv2r16b6RwHsV0juyZVWRtA1wIfCvhaOyJcD3gPnAp0g3Z7xV0tci4rZuypoETAIYNWoU7e3t1VbDerB8+XK3ZZ0m79H1hgNbD+ua7vatn/fPgUMRrbtVlKQPge9ExE8K6W8AN0bEhVWUsQGp88WngS9FREcPeQU8CgyLiC/0VvaYMWNi8eLigZnVo729nba2tv6uxoA0+ry7uqRN3mM1Vz6/9n/KpT86ulVVGnS8fzaOpGciYq9mld/q030dwIgK6cOpfIS1lizo3ATsDozrKUABRIrAtwF79tbN3czMyqfVp/sWUbj2JGl7YBMK16q6cTWp6/phEVFN/k6+s7CZ2QDU6iOpWcARkjbNpY0HVgJze1pR0vnAt4FvRMS8aj4sO/I6DnguIj6qr8pmZtZfWn0kdT1wNnCbpKnAzsAU4Kp8BwhJS4C5EXFq9v4k4HLgRuANSfvmynyps4u6pLnAraSjsk2AbwL7Asc2d7PMzKwZWhqkIqJD0iHAtcAdpOtQV5MCVbFe+WtIh2fPE7NH3imk4AWpd9/fA9uSuqf/Gjg6ImY1ov5mZtZarT6SIiIWAAf3kmd04f1EuganSuud2oeqmZlZyXgWdDMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzK631+rsCZmUy+ry7qsq39EdHN7kmZgY+kjIzsxJzkDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9LyYF4z68KDmq0sWn4kJWk3SfdLWiHpTUmXSVq3ivWGS5ouqUPS+5J+KWmLCvmOkfS8pA8kLZA0vjlbYmZmzdbSICVpJHAfEMAxwGXAZODSKla/GWgDTgMmAnsDtxfK3x+4FXgQOAq4C5gh6fCGbICZmbVUq0/3nQEMA46PiGXAHEmbAVMkXZGldSFpP+AI4MCIeChLewN4QtKhEXFflvX7wEMRcXb2/kFJuwMXA/c2b7OskXyqycw6tTpIHQXMLgSjmcBU4EDgjh7We7szQAFExJOSXs6W3SdpQ+Ag4OzCujOB6ZKGR8T7DdqOIcMBw1rN+5zltTpIjQUeyCdExKuSVmTLugtSY4FFFdIXZssAdgHWr5BvIem05meBp3qq3MoPP6r6C9Kd7r44zfji+cts1hit+C6V8Tegr793raCIaN2HSR8C342IawrprwM3RcQF3aw3B/hTRBxbSP8FsHNEfEXSXwHzgL+MiPm5PJ8BfgMcERFdTvlJmgRMyt5+Hnih7g20vC2Bd/u7EoOI27Ox3J6NMyYiNm1W4f3RBb1SVFQ36fWsV3yvHtYnIqYB0wAkPR0Re/VSD6uC27Kx3J6N5fZsHElPN7P8VndB7wBGVEgfDrxXx3ojcut15NKKeeilfDMzK6FWB6lFfHINCQBJ2wObUPmaU7frZfLXql4CPqyQbyywBnixjvqamVk/anWQmgUcISl//nI8sBKY28t622TjoACQtBewc7aMiFhFGh/19cK644HHquzZN62KPFYdt2VjuT0by+3ZOE1ty1Z3nBgJLCB1TphKCjJXAddExEW5fEuAuRFxai7tHlIPve+QjoymAr+PiL/O5dkfaAeuJQ30HZflP7JSpwkzMyu3lh5JRUQHcAiwLqm7+aXA1cAlhazrZXnyJpCOtv4ZuAl4BjiuUP484ATgUGA28FXgJAcoM7OBqaVHUmZmZrUYdLfq8AS2jVVPe0raO2vLJdl6iyVdImmjQr4pkqLC48jmblX/qLMtR3fTRjMr5PW+2Xt7drfPhaTzc/lu7CZPpQ5cA56kz0i6QdJzkj6S1F7lek3/3RxUt+rITWC7gDSB7S7AlaRgfFEPq0KawHYMaQLbzmtetwPFa163AteRpl8aR5rAtmMwnlLsQ3uOz/JOJQ2k3hP4Qfb8tULe94FiUFrY17qXTR/3TUjXVh/JvV9rIKr3zarb82fAPYW0Y4FzyTph5SwCTimkLa2vxqW3O2mfeRzYoIb1mv+7GRGD5gGcTxovtVku7XvAinxahfX2Iw32PSCXtk+WdmgubTbwQGHdu4F5/b3tJWvPURXSJmXtuWMubQrwbn9vZ8nbcnTWbv+rl/K9b1bRnt2UdRewsJB2I/B0f29nC9tzndzrW4D2KtZpye/mYDvd190EtsNIE9j2tF6XCWyBzglsyU1g+2+FdWcC+0ka3vfql05d7RkR71RIfjZ73qpx1RtQ6t03e+V982M1t6ekzYHDgBmNrd7AEhFr6litJb+bgy1IdZmINiJeJf276ulccqMmsB1s6m3PSr5COh2wuJA+QtK7kj6U9Kyk4+uubbn1tS2nZ9cK3pJ0laRhuWXeN6l73zyB1HZdrvEBu0laJmmVpHmS+vRnYhBqye/mYAtSI6k8/VFHtqwv63U+F/N1FJYPJvW251okbQNcCPxr4Z/vEtIpmhNJ16reBG4dpIGq3rZcBfwTcCpp+MYNwJms/aPqffMTNe2bpKEtv46I4ow0z5JuyPo3wMmkITFzJO1TR10Hq5b8bg6qjhOZUk1gOwjU254po7QB6VB/OfAPaxUc8YtC3juAR0k3qbytnsqWXM1tGRFvAWflktolvQ1cJ+kLkZvxv0I53jd7IGlb0qnBc7sUHPGTQt67SJ00LiB1tLCk6b+bg+1IyhPYNla97QmAJJEGXu8OjIs0mLtbka6o3gbsWc2wgQGmT21ZcEv2/MVc2VQo3/tmz04k/Vje3FvGiFhJutj/xd7yDiEt+d0cbEHKE9g2Vr3t2elqUvfgYyKimvydBuM//762ZV4Unr1vUld7TiD1MHuths8djPtmvVryuznYglTZJ7AdaOptT7KBkd8GvhFpuqpeZUdexwHPRcRH9VW5tOpuywpOyJ6fAe+bubSq21PSaGBfquzVl3VUOYqszQ1o1e9mf/fPb3Bf/5HAW8Ac0vx9k0jXQn5YyLcE+Hkh7R7gt8DxpHPOi4GHC3n2B1YD1wBtwBWkfwOH9/e2l6k9gZNI/zink34I8o9RuXxzSYP7DicFp7uz9vxqf297idpyCmmQ6vHZepeRfohv9b5Z33c9Sz+P9A+/0pi+4cDDwOmkzirjSYNcVwF79fe2N6k9Nyb9+TkBeAz479z7jbtry1b8bvZ74zShsXcDHsi+yG+RZjpYt5BnKXBjIW1E9qP6HrAM+BWwZYXyjyXN4r6KdEg7ob+3uWztSRoIGd08Juby/TzbwVcCf8p+GI7q720uWVtOAJ4mzczx5+yH4jJgQ++b9X3Xs/T5wD3dlLsR6droa1lbvp/9GO/b39vcxLYc3cN3dnR3bdmK301PMGtmZqU12K5JmZnZIOIgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpfX/AftE5VrVUDbMAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -284,7 +284,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYHFWd//H3h4sQCIRrArJIAMUsrPsoiQguKxNBgbDPoggGlfWJXBKVFXd/gFxEDXhZAbmorEuCLsiqhF1k8QIYuWSCURGSAKIhQVjCVREwEEICEvj+/jg12FR6eqpnuqtmuj+v56mnp06dqv6enst36tSpU4oIzMzM2m29qgMwM7Pu4IRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxxrKUkzJUU/y1EFj7FbdpwtcuXTsuOMbk/0xeIY4jGvktRboN4Gkv5F0l2S1khaIek6SfsO8n2Hy2c6Lfcz8UdJcyXtWWDfnmyfvykjVms9Jxxrh2eAfeosPym4/27A54D8H/prs+Osbk2Yg46jrSStD1wDfAn4ITAFmAa8BPRK+uAgDjtcPtM+78zedwawLTBP0msH2Gdxts/9bY7N2mSDqgOwjrQ2Im5t9UEj4gngiVYfdxj6BHAIcHBE1CbpH0iaA8yWND8iHh3qG1X4md4eEasAJC0EHgQ+BJybryhJwEYRsRJo+c+VlcdnOFYJSadJuk/S85Iel/QTSdtJ6gF+lFV7IOtCWZ7t86ruH0njs/UjJV0qaaWkR/q67iR9StJjkp6QdLak9Wref4KkOZIelrRa0m+zLqz1su39xpFtf122/5+y/edKemOujTtm3WBrJC2XdGzBj+eTwLxcsunzaWBj4Jia91ku6SuSPiPpD5JWSfqupDEDtaVel5qkbSR9W9JTWdt6JU3Kta3vPf81+8xXZJ9H02eDEfEwKemNz449U9KTkvaVdDvwPHBEvS41SetnP0v3Snohi+WyXKyHSlqY/az9QdI5kjZsNk4bOp/hWFtIWudnKyLWZts+DJwOnAL8Ftia1MWyKanb5CTgK8BhwO+BFwZ4u7OB7wLvA44Gvi3pLcBO2fpE4AvAHcCcbJ8dgGXZfs8CbwbOBEYB/9YoDklbAQuAp4CPkrqjTgVulLRbRKzJ/iv/AbANKTk8nx1/K+B3DT63HUl/eC+otz0i7pd0N/CO3KYPAPcBxwHbA+cA3wSOaNSWflwDvD7b50ngZFKX11si4r6aeu8Hfg1MB/4KOJ/UDfjxBsdeh6TNSJ/LH2qKNwG+nbXjXuCxrF15s4APZ/XmZ8c5vObY7weuyOqdDuxK+v6ul7XPyhQRXry0bAFmAtHPMj6rcxHw/QbH+Ifa+jXl07Ly0dn6+Gz90po6mwMvkv6or19TfhtwZT/vJ9I/X6cD/1cgjs+Tks1WNWVbkq5dHZ+tT8n2fVtNnZ2AtUBvg7bvne13aIM61wD31KwvB/7U97lkZR8CXgb+usnP9KBsfb+aOpuSzkBm5d7zfmCDmrILgT8M8PPR935jss98R+DK7HN5c+5n6NDcvj1Z+d9k6xOy9RMafF8frP35yMqPBtYAW1f9+9Jti89wrB2eAQ6oU/5Y9noncIykM0kXrRdFxEtDeL+b+r6IiJWSngDm5455H/C6vhVJGwOnkf4wvw7YsGbbBpGdjfXjAOAGYGXNmdyzwCKgr+tpL+DxiPhVTWwPSlo0iPYVcUNk10QyVwPfAd4K3NPEcfYCnoiI+X0FEfGcpB8D+RFy83Kf0xJgrKTXRMSfB3ifp2u+fhI4OiLurCkL4PoBjjE5e72sn+27kb63/507476Z1C35N6SzIiuJE461w9qIWNhg+38Cm5G6Yj4LPCXpP4CZg0w8T+fW/9xP2cY162cDx5K6uRZn9Q8FzsjqraJ/25DORKbW2daX/LYD/lhn+x9Jbe9P30CAnRrU2ammXu1xXxGpW28V9buhGtkeeLxO+eOk7qpa9T5jAa/Jvm7kHaSuyCeBhyPi5dz2FQWS1tbAc5EGE9SzTfZ6XT/bdxzg+NZiTjhWuuyPywXABdk1iw8BXyT9Eb24pDCOAL4eEef0FUg6pOC+fyINV/58nW3PZq9/AMbW2T6W1J1TV0Q8nF3Q/0fga/ntknYm/Weef++xuXqjgNGk6zXN+H3+WJlxpHa3yh25M7K8Is9NeQrYVNLm/SSdvnink67f5T1Q4D2shTxKzSoVEQ9HxJdJXV67Z8V9/9luXH+vlhhFzYVzpXtfjszV6S+Om4A9gN9GxMLcsiyrczswTtLbat7jdcCANzgCXwX2l/TuOtu+kMX9rVz5u/TqmzcPI/3R7jvTLPqZ/orULfbKoARJm5CGaS8oEHuZbs5eP9zP9mWkf2LG1/k+LYyIp8oJ0/r4DMfaYQNJe9cpfzgiHpU0i/Tf562k6z2TgTeQRq1B+kMBMEPpvpPVEXF3i2O8AThe0n1ZLMcDG+Xq9BfH+cBRwM2Svk76ozYO2A9YEBFXkLpx7gL+R9IppFFqZ1G/my3v66TrRP8r6StAL6kb7hjSxf9/inXvwVkDXCvpXFK32LnA/0bEkgHa8ioRMVfSz4ErJZ1KOos4iZSg17lHpkoRsUzSbOA8SWOBW0g3th4eEUdGxMuSTgT+S9LmpGtCfwZ2Ad6T1Sv7htfuVvWoBS+dtdB4lNoZWZ1pwM9Jf+hXk4bWHpM7zomkEUZrgeU1+9UbpfYPuX2XA1/JlV0GLKxZHwf8L7CSdH3iHNKQ4leO318cWflrgUuzfV/I3vM7wB41dV5Hml1hTXaMGcBVNBilVrPvBsC/Zp/NGmAF6Q/mvnXqLgfOyz77x4HnSEOBt2j2M83KtgUuz95zDenC+lsLfMbrHKtOrEXqzASerFPeQ80otaxsfbLRhaRk8gjrjko7GPhZ9rmsJA1a+QI1I+y8lLMo+4aURtLrSeP69yb1Rf8sInoK7DeGNOzyPaSuwB+ThkM+lat3KOmH6Q2kH8IzI+LKVrbBbDjJrvlcFRG+r8SGtSqu4exBukfh3mwp6krSfzjHkv5LeivpfoRXKE1s+H1gHum/mmuBK/rpCzczsxJVcYazXmRDICVdBWwz0BmOpH2AX5BuRrslK9uLdIHzXRFxY1Y2F9gwIt5Zs+91wOYRMahZds2GO5/h2EhR+hlOrDvevoiDSTfR3VJznNtIwxoPBpC0Eeni83/n9p0D7NM3r5RZp4mI8U42NhKMlGHRE4CldcrvybZBmiNpwzr17iG1c7e2RWdmZgMaKcOit2Tdu5ohjaLZpaYOdeqtyG1/FUnTSTeGMWrUqIk77jg8bj5++eWXWW+9kfL/QHGd2K6ibdrs3nTJ8tndRsb/Pp34vYLObFeVbbr33nufjIhti9QdKQkH6t95rDrl+XU12J+ImA3MBpg0aVIsXNhoRpby9Pb20tPTU3UYLdeJ7SrcJmU/isuWNa43THTi9wo6s11VtknSg0XrjpQ0v4L6T13cgr+c0ayoKcvXgfpnSGZmVpKRknCW8pdrNbVqr+3cT5qWPl9vAmma9maGYJuZWYuNlIRzPbBddp8NANkTCHfJthERL5Duvzkit+9U4JcR8UxJsZqZWR2lX8PJJgKckq3uAGwuqe8JfddFxOpsfqv5EXEMQET8MrvH5nJJJ5HOWM4mzVt1Y83hPw/0SrqQdFPolGw5qO0NMzOzhqoYNDAW+J9cWd/6zqQ5mjYgzZFU60jSlPb/Sc3UNrUVImJBlry+AHyMdJ/OByPipy2M32xwSr7J2my4KT3hRMRy/jJyrL864+uUPQ18JFsa7XsNuSlvzMyseiPlGo6ZmY1wTjhmZZk4MS1mXWok3fhpNrItXlx1BGaV8hmOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpPErNrCzHHVd1BGaVcsIxK8vs2VVHYFYpd6mZmVkpnHDMyrJoUVrMupS71MzKMmlSevWs0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfx4aety7lIzM7NSOOGYlWX69LSYdSknHLOyXHJJWsy6lBOOmZmVwoMGzIaZ8adeW6je8i8f0uZIzFrLZzhmZlYKJxwzMyuFE46ZmZXC13DMyrLnnlVHYFYpJxyzsvjx0tbl3KVmZmalcMIxM7NSOOGYlUVKi1mXcsIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YlWXWrKojMKuUE45ZWfx4aetypXepSdpd0k2SVkt6TNJZktYfYJ+ZkqKf5bSaepf1U2dC+1tmZmaNlHqGI2lL4EZgCXAosCtwHinxndFg128CP8mVvQc4Bbg+V74U+EiubPngIjZrodmz06vPdKxLld2l9lFgFHBYRKwEbpC0OTBT0jlZ2Toi4hHgkdoySZ8BlkbEnbnqz0XErW2I3WxoZsxIr0441qXK7lI7GJibSyxzSElov6IHkbQV8C7gitaGZ2Zm7VJ2wplA6vJ6RUQ8BKzOthV1OLAhKVnl7S5ppaQXJC2QVDiRmZlZ+ygiynsz6UXg5Ii4MFf+CHB5RJxe8Dg3A2MiYmKu/JPAn0nXiLYFTgQmAvtGxG39HGs6MB1g3LhxE+fMqZfDyrdq1SpGjx5ddRgt14ntKtqmnsmTAeidN69hvbsffabQ+75phzGF6g1WJ36voDPbVWWbJk+evCgiJhWpW0XCOSkivporfxS4LCI+XeAY25Ou55wSEV8ZoO4oUvK5KyLeM9CxJ02aFAsXLhyoWil6e3vp6empOoyW68R2FW5T36MJBvidG3/qtYXed/mXDylUb7A68XsFndmuKtskqXDCKbtLbQWwRZ3yMcDTBY/xfkDAlQNVjIg1wHWAHyZvZlaxshPOUnLXaiTtCGxK7tpOA0cCCyLi4Sbet7zTODMzq6vshHM9cKCkzWrKpgJrgPkD7SxpPLA3BUenZV1qBwOLmg3UrOUiBuxOM+tkZSeci4EXgKslHZBdsJ8JnF87VFrSfZK+VWf/I4G1wFX5DZLGSPqZpBmS9pc0FZgH7AB8qQ1tMTOzJpR642dErJC0P3AR8CPSdZsLSEknH1e96W6OBG6KiCfqbHsBeII0Y8FY4Hngl8B+ETE8RgKYmXWx0ifvjIglwDsHqDO+n/I3N9jneeCwIQVn1k4Ts1H8i9zDa93Js0WblWXx4qojMKuUH8BmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1IzK8txx1UdgVmlnHDMytL3iGmzLuUuNTMzK0VTCUdSvelmzKyIRYs8y4B1tWa71B6VdDlwaUTc046AzDrWpOwZVZ4x2rpUs11qs4DDgd9I+pWk6ZI2b0NcZmbWYZpKOBHxuYjYBXgXsAw4H/i9pO9KOqAdAZqZWWcY1KCBiLg5Ij4MbAd8AngjMFfSckkzJb22lUGamdnIN9RRapOAd5AeG70C+BlwLHCfpKOGeGwzM+sgTSccSTtJ+pyk+4GbgO2Bo4HXRsQ/ATuRrvWc29JIzcxsRGtqlJqkm0lnNI8Al5FGqz1YWyciXpL0PeCTrQrSzMxGvmaHRT8JTAFuiGg4tvNOYOdBR2XWiRb6SefW3ZpNOBcBi+slG0mjgT0j4paIeBF4cJ29zbpZ3yOmzbpUs9dw5gG797Ptjdl2MzOzdTSbcNRg22hg9RBiMets06enxaxLDdilJukdQE9N0bGSDspV2xg4BLi7daGZdZhLLkmvnjXaulSRazhvI93cCRDAEcDaXJ0/A0uBk1sXmpmZdZIBE05EnEt2T42kB4D3RsSd7Q7MzMw6S1Oj1CLCQ53NzGxQilzDmQIsiIiV2dcNRcR1LYnMzMw6SpEznB8DewO3ZV8H/Y9WC8APaTMzs3UUSTg7A7+v+drMBmPPPauOwKxSRQYNPFjvazNrkh8vbV2uyDWcTZo5YET45k8zM1tHkS61VaRrM0X5Go6Zma2jSMI5muYSjpnVo2ysTcOJ1s06V5FrOJeVEIeZmXW4oT5i2szMrJAigwZuA6ZFxBJJtzNA91pE7NWq4MzMrHMUuYbzW2BNzdfugDYzs6YVuYbzkZqvp7U1GjMz61iDvoajZFtJjR7KZmZmBjQ5WzS8MpnnGcDEbP+1khYBX4yIa1scn1nnmDWr6gjMKtVUwpE0A/gGcBPwSeCPwFjgMOCHkj4eEf6tMqvHj5e2LtfsGc7pwOyI+Fiu/GJJFwOfBpxwzMxsHc1ew9kauLqfbd8HthroAJJ2l3STpNWSHpN0lqSG0+FIGi8p6ixz6tQ9VNLdkp6XtETS1EItM2u32bPTYtalmj3DmQfsB9xQZ9t+wC2Ndpa0JXAjsAQ4FNgVOI+U+M4o8P4nAT+vWX8yd/x9SYnvG8AJwBTgCkkrIuKnBY5v1j4zZqRXd61Zlypy4+fuNatfA74paWvgGv5yDee9wMHAsQMc7qPAKOCwiFgJ3CBpc2CmpHOyskaWRcStDbZ/BrglIk7I1udJ2gP4LOCEY2ZWoSJnOL/h1Td7CpiRLfmnf/6ExrNFHwzMzSWWOcDZpDOkHxWIpy5JGwGTSWc2teYAl0oaExHPDPb4ZmY2NEUSzuQWvt8E4Obagoh4SNLqbNtACedSSVuRzqyuAD4dEX2zIOwKbAgsze1zD6nLbjfg9qGFb2Zmg1VkpoH5LXy/LYGn65SvyLb15wXg30ndYiuBHuAUUpI5tObY1Dn+itz2V5E0HZgOMG7cOHp7exvFX5pVq1YNm1haqRPbVbRNPdnrQHVPfNPaQu/b7s+xE79X0JntGiltavrGzz6S1gM2zpcXeOJnvbnY1E953zF/D/xzTVGvpMeBb0h6c0Tc2eD46qe879izgdkAkyZNip6ensbRl6S3t5fhEksrdWK7mm3TQHWnnVrs/unlHyr+noPRid8r6Mx2jZQ2NTUsOpvO5hRJ9wEvAs/WWRpZAWxRp3wM9c98Grkqe92z5tjUOX7ferPHNzOzFmr2PpwTgFOBb5HOHL4InAXcCywn65pqYCnpWs0rJO0IbMq6114GErnX+0lJcEKu3gTg5SxGs+pE+Gmf1tWaTTjHAZ8DzsnWr4mIM4E9SAnjDQPsfz1woKTNasqmkh5/0Oy1osOz10UAEfEC6T6hI3L1pgK/9Ag1M7NqNXsNZ2fgzoh4SdKLZN1VEfGypG8A3ySdAfXnYtJZ0tWSzgZ2AWYC59cOlc667OZHxDHZ+kxgM9JNnyuBdwAnA1dHxK9rjv950vWdC0n3CU3JloOabKeZmbVYs2c4TwGjs68fAt5Ss21L0k2d/YqIFcD+pHt1fgScCVxAOmuqtQGvvp9nKek+nUuB64APAudmr7XHX0A68zkAmAv8I/BBzzJgw8LEiWkx61LNnuH8HHgr6Y/+90gzBGwF/Bk4njSLdEMRsQR45wB1xufW55Bu4BxQRFxDOrsxG14WL646ArNKNZtwZgI7ZF9/idSlNo10ZnMD8IlWBWZmZp2lqYQTEcuAZdnXL5CeifPJNsRlZmYdZig3fv4VsD3wWEQ82rqQzMysEzU7aABJH5P0MPAg8CvgIUmPSPp4y6MzM7OO0exMA58FLiLdT3MIMCl7vR74WrbdzMxsHc12qR0PfCkiPpMr/0k2t9nxpJkHzCzvuOOqjsCsUs0mnFH0/1TP+XiUmln//Hhp63LNXsO5Bjisn23vA348tHDMzKxTFXnE9JSa1euBcySNZ91HTO8BfKr1IZp1iEWL0qtnG7AuVaRL7ces+yjpHYAD69T9DulJnGaWN2lSevWM0daliiScndsehZmZdbwij5h+sIxAzMysszU904CkDUgDBPYFtgL+BPyM9KiAYg9jNzOzrtNUwpE0Fvgp8LekJ3w+DuxDuv/mLknvjognWh2kmZmNfM0Oiz4f2Bp4W0TsEhH7RMQuwNuy8vNbHaCZmXWGZhPOFOCUiLi9tjBbP400zY2Zmdk6mr2GsxHwbD/bngVeM7RwzDrYwoVVR2BWqWYTzq3AKZJujojn+golbQqckm03s3p8w6d1uWYTzonAPOBhST8lDRoYS7oJVEBPS6MzM7OO0dQ1nIi4E3gDMBvYFngXKeFcDLwhIu5qeYRmnWL69LSYdanCZziSNgT2Ah6IiFPbF5JZh7rkkvTqWaOtSzVzhvMScDPw122KxczMOljhhBMRLwO/A8a1LxwzM+tUzd6H82ngs5Le1I5gzMysczU7Su0M0owCd0p6lDRK7VVzrUfEXi2KzczMOkizCec32WJmZtaUQglH0ijStDa/Af4A3BgRj7czMLOOs+eeVUdgVqkij5jeBbgRGF9TvFLS+yPip+0KzKzj9D1i2qxLFRk0cA7wMvD3wCbAHsAdwKw2xmVmZh2mSMLZBzgjIn4eEc9HxD3ADOB1krZvb3hmZtYpiiSc7YH/y5XdT5o7bbuWR2TWqaS0mHWpovfhxMBVzMzM+ld0WPRcSWvrlN+UL4+IsUMPy8zMOk2RhHNm26MwM7OON2DCiQgnHDMzG7Jm51IzMzMbFCccMzMrRbNzqZnZYM3yvdLW3ZxwzMrix0tbl3OXmpmZlcIJx6wss2enxaxLlZ5wJO0u6SZJqyU9JuksSesPsM9bJV0q6b5sv2WSPidp41y9mZKiznJQe1tlVsCMGWkx61KlXsORtCXpUQdLgEOBXYHzSInvjAa7Ts3qng38Dvhb4PPZ6/tydZ8B8gnmnqHGbmZmQ1P2oIGPAqOAwyJiJXCDpM2BmZLOycrqOTsinqhZ75X0PDBL0k4R8WDNtrURcWt7wjczs8Equ0vtYGBuLrHMISWh/frbKZds+tyRvXruNjOzEaDshDMBWFpbEBEPAauzbc14O+nBcMty5VtIelLSi5LukHTYoKM1M7OWUUR5Tx6Q9CJwckRcmCt/BLg8Ik4veJztgF8D10XEtJryo0hnPHcCo0kPipsCvC8iru7nWNOB6QDjxo2bOGfOnGab1RarVq1i9OjRVYfRcp3YrqJt6pk8GYDeefMa1rv70WcKve+bdhhTqN5gdeL3CjqzXVW2afLkyYsiYlKRulUknJMi4qu58keByyLi0wWO8RrSwIO/AiZGxIoGdQX8AhgVEW8e6NiTJk2KhQsXDlStFL29vfT09FQdRst1YrsKt6nv4WsD/M6NP/XaQu+7/MuHFKo3WJ34vYLObFeVbZJUOOGU3aW2AtiiTvkY4OmBds4SyOXAHsCURskGIFI2vRr424GGXpu1XcSAycask5U9Sm0puWs1knYENiV3bacfF5CGU78rIorU7+PfcjOzipV9hnM9cKCkzWrKpgJrgPmNdpR0GvAJ4KiIWFDkzbIzovcCd0XES4ML2czMWqHsM5yLgROAqyWdDewCzATOrx0qLek+YH5EHJOtfxD4EnAZ8KikvWuOeX/fsGlJ84Hvk86WNgWOA/YG3tPeZpkVMHFiel20qNo4zCpSasKJiBWS9gcuAn5Eum5zASnp5OOqveby7ux1WrbU+ggpEQHcB/wLsD1pyPRi4JCIuL4V8ZsNyeLFVUdgVqnSH08QEUuAdw5QZ3xufRrrJpp6+x0zhNDMzKyNPFu0mZmVwgnHzMxK4YRjZmalcMIxM7NSlD5owKxrHXdc1RGYVcoJx6wsfry0dTl3qZmZWSmccMzKsmiRZxmwruYuNbOyTMpmcPeM0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfoeMW3WpdylZmZmpXDCMSvL9OlpMetSTjhmZbnkkrSYdSknHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUvjGT7Oy7Lln1RGYVcoJx6wsfry0dTl3qZmZWSmccMzMrBROOGZlkdJi1qWccMzMrBROOGZmVgqPUjNrYPyp1w5Y58Q3raWn/aGYjXg+wzEzs1I44ZiZWSmccMzMrBS+hmNWllmzqo7ArFJOOGZl8eOlrcu5S83MzErhhGNWltmz02LWpdylZlaWGTPSq7vWrEs54ZhZ3RtcT3zTWqbVlC//8iFlhmQdqPQuNUm7S7pJ0mpJj0k6S9L6BfYbI+lSSSskPSPpu5K2rlPvUEl3S3pe0hJJU9vTEjMza0apCUfSlsCNQACHAmcBJwJnFtj9SqAHOBaYBrwVuCZ3/H2B7wPzgIOBa4ErJL27JQ0wM7NBK7tL7aPAKOCwiFgJ3CBpc2CmpHOysnVI2gc4ENgvIm7Jyh4FfiXpgIi4Mav6GeCWiDghW58naQ/gs8BP29csK1OR+c3c/WM2/JSdcA4G5uYSyxzgbGA/4EcN9nu8L9kARMRtkh7Itt0oaSNgMnBCbt85wKWSxkTEMy1qh9XhiS6tKP/T0J3KTjgTgJtrCyLiIUmrs239JZwJwNI65fdk2wB2BTasU+8eUtfhbsDtgwu7OUV+mQZy2UGbDuq4RX5J/ctu3aC/n/NWDIao8nexyACPIqr4HVdElPdm0ovAyRFxYa78EeDyiDi9n/1uAJ6LiPfkyr8D7BIRb5f0d8AC4C0RcWdNndcDvwMOjIh1utUkTQf6xqm+EVg26Aa21jbAk1UH0Qad2K5ObBO4XSNJlW3aKSK2LVKximHR9TKc+ikfzH75dfVTngojZgPD7m48SQsjYlLVcbRaJ7arE9sEbtdIMlLaVPaw6BXAFnXKxwBPD2K/LWr2W1FTlq/DAMc3M7M2KzvhLOUv11wAkLQjsCn1r9H0u1+m9trO/cCLdepNAF4G7h1EvGZm1iJlJ5zrgQMlbVZTNhVYA8wfYL/tsvtsAJA0Cdgl20ZEvEC6/+aI3L5TgV+OwBFqw66br0U6sV2d2CZwu0aSEdGmsgcNbAksAX5DGgq9C3A+cGFEnFFT7z5gfkQcU1P2E9JIs5NIZyxnA3+MiL+vqbMv0AtcRLopdEpW/6B6AwbMzKw8pZ7hRMQKYH9gfdIQ6DOBC4DP5apukNWpdSTpLOg/gcuBRcB7c8dfABwOHADMBf4R+KCTjZlZ9Uo9wzEzs+7l5+EMI4Od2HS4k/R6SbMk3SXpJUm9Vcc0VJKOkPRDSY9KWiVpkaQPVB3XUEg6XNIvJD2VTX67TNIZkl5t2TrcAAADk0lEQVRTdWytImmH7PsVkkZXHc9QSJqWtSO/fLTq2PrjxxMMEzUTmy4hTWy6K3Ae6Z+CMxrsOhLsQbqedivQKX+8/h/wAPCvpBvupgDfk7RNRHy90sgGb2vSwJtzSbcR7AXMBLYD/rm6sFrqXGAVaWRsp3gnaeBVn/+rKpCBuEttmJB0GvAp0l27K7OyT5H9wvc3selIIGm9iHg5+/oqYJuI6Kk2qqHJEsuTubLvAftExM4VhdVykr4IHA9sGSP8j4Wkvwd+AHyJlHg2i4hV1UY1eJKmAZcygtrhLrXho7+JTUeRJjYdsfqSTSfJJ5vMHcDYsmNps6fogLPSrGv666RHonTatDYjhhPO8LHOBKUR8RDQN7GpDX9vJ3WJjmiS1pe0SXabwQnAf4z0sxvSo1E2Bv696kDa4H5Ja7NrbjOqDqYRX8MZPrak/vQ7K7JtNoxJ2p907e3oqmNpgeeAjbKvLwdOrjCWIcueDPx54KiIeFHSQLuMFL8nPQPsNtJtJB8ALpa0SURcUGlk/XDCGV4GO7GpVUjSeOB7wA8i4rJKg2mNtwObkAYNfJZ0I/XHK41oaL4I/Coirqs6kFaKiLmk+w37XJ89F+wMSV8djl3ZTjjDx2AnNrUKSdqKNL3SQ8BRFYfTEhGxOPtygaQngW9LOi8i7q8yrsHInvh7NPAOSX2/X5tkr2MkvRQRa+rvPSJdBbwfGM8wHK3mhDN8DHZiU6uIpE2AH5Muqh8SEc9VHFI79CWfnUkT5I40byA9mPGXdbY9AnwLOLbUiMoxLHtFnHCGj+uBkyVtFhHPZmVFJja1CkjaAPgf0h+0v4uIP1YcUrv8Xfb6QKVRDN4C0qPnax0EnEK6d2rYnQUM0ftIo/AerDqQepxwho+LSSOCrpbUN7HpTOD8kXwPDrxyJjAlW90B2FzS4dn6dRGxuprIhuQbpDZ9EthK0t412+7IZi8fUbIJcm8Efgu8REo2JwJXjsTuNHhl+HpvbVl2zQ3gZyPl/pV6JH2fNGDg16RBA1Oz5YTheP0GnHCGjYhYkY10uog0senTpIlNZ1YZV4uMJZ0N1Opb3xlYXmo0rfHu7PWrdbaN1DbdDkwj9f+vJf33fxrpnyEbfpaRrk/tSBpctAT4cET8V6VRNeCZBszMrBS+8dPMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZleL/A3AAGz/5q1y3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYHFWd//H3h4sQCIRrArJIAMUsrPsoiQguKxNBgbDPoggGlfWJXBKVFXd/gFxEDXhZAbmorEuCLsiqhF1k8QIYuWSCURGSAKIhQVjCVREwEEICEvj+/jg12FR6eqpnuqtmuj+v56mnp06dqv6enst36tSpU4oIzMzM2m29qgMwM7Pu4IRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxxrKUkzJUU/y1EFj7FbdpwtcuXTsuOMbk/0xeIY4jGvktRboN4Gkv5F0l2S1khaIek6SfsO8n2Hy2c6Lfcz8UdJcyXtWWDfnmyfvykjVms9Jxxrh2eAfeosPym4/27A54D8H/prs+Osbk2Yg46jrSStD1wDfAn4ITAFmAa8BPRK+uAgDjtcPtM+78zedwawLTBP0msH2Gdxts/9bY7N2mSDqgOwjrQ2Im5t9UEj4gngiVYfdxj6BHAIcHBE1CbpH0iaA8yWND8iHh3qG1X4md4eEasAJC0EHgQ+BJybryhJwEYRsRJo+c+VlcdnOFYJSadJuk/S85Iel/QTSdtJ6gF+lFV7IOtCWZ7t86ruH0njs/UjJV0qaaWkR/q67iR9StJjkp6QdLak9Wref4KkOZIelrRa0m+zLqz1su39xpFtf122/5+y/edKemOujTtm3WBrJC2XdGzBj+eTwLxcsunzaWBj4Jia91ku6SuSPiPpD5JWSfqupDEDtaVel5qkbSR9W9JTWdt6JU3Kta3vPf81+8xXZJ9H02eDEfEwKemNz449U9KTkvaVdDvwPHBEvS41SetnP0v3Snohi+WyXKyHSlqY/az9QdI5kjZsNk4bOp/hWFtIWudnKyLWZts+DJwOnAL8Ftia1MWyKanb5CTgK8BhwO+BFwZ4u7OB7wLvA44Gvi3pLcBO2fpE4AvAHcCcbJ8dgGXZfs8CbwbOBEYB/9YoDklbAQuAp4CPkrqjTgVulLRbRKzJ/iv/AbANKTk8nx1/K+B3DT63HUl/eC+otz0i7pd0N/CO3KYPAPcBxwHbA+cA3wSOaNSWflwDvD7b50ngZFKX11si4r6aeu8Hfg1MB/4KOJ/UDfjxBsdeh6TNSJ/LH2qKNwG+nbXjXuCxrF15s4APZ/XmZ8c5vObY7weuyOqdDuxK+v6ul7XPyhQRXry0bAFmAtHPMj6rcxHw/QbH+Ifa+jXl07Ly0dn6+Gz90po6mwMvkv6or19TfhtwZT/vJ9I/X6cD/1cgjs+Tks1WNWVbkq5dHZ+tT8n2fVtNnZ2AtUBvg7bvne13aIM61wD31KwvB/7U97lkZR8CXgb+usnP9KBsfb+aOpuSzkBm5d7zfmCDmrILgT8M8PPR935jss98R+DK7HN5c+5n6NDcvj1Z+d9k6xOy9RMafF8frP35yMqPBtYAW1f9+9Jti89wrB2eAQ6oU/5Y9noncIykM0kXrRdFxEtDeL+b+r6IiJWSngDm5455H/C6vhVJGwOnkf4wvw7YsGbbBpGdjfXjAOAGYGXNmdyzwCKgr+tpL+DxiPhVTWwPSlo0iPYVcUNk10QyVwPfAd4K3NPEcfYCnoiI+X0FEfGcpB8D+RFy83Kf0xJgrKTXRMSfB3ifp2u+fhI4OiLurCkL4PoBjjE5e72sn+27kb63/507476Z1C35N6SzIiuJE461w9qIWNhg+38Cm5G6Yj4LPCXpP4CZg0w8T+fW/9xP2cY162cDx5K6uRZn9Q8FzsjqraJ/25DORKbW2daX/LYD/lhn+x9Jbe9P30CAnRrU2ammXu1xXxGpW28V9buhGtkeeLxO+eOk7qpa9T5jAa/Jvm7kHaSuyCeBhyPi5dz2FQWS1tbAc5EGE9SzTfZ6XT/bdxzg+NZiTjhWuuyPywXABdk1iw8BXyT9Eb24pDCOAL4eEef0FUg6pOC+fyINV/58nW3PZq9/AMbW2T6W1J1TV0Q8nF3Q/0fga/ntknYm/Weef++xuXqjgNGk6zXN+H3+WJlxpHa3yh25M7K8Is9NeQrYVNLm/SSdvnink67f5T1Q4D2shTxKzSoVEQ9HxJdJXV67Z8V9/9luXH+vlhhFzYVzpXtfjszV6S+Om4A9gN9GxMLcsiyrczswTtLbat7jdcCANzgCXwX2l/TuOtu+kMX9rVz5u/TqmzcPI/3R7jvTLPqZ/orULfbKoARJm5CGaS8oEHuZbs5eP9zP9mWkf2LG1/k+LYyIp8oJ0/r4DMfaYQNJe9cpfzgiHpU0i/Tf562k6z2TgTeQRq1B+kMBMEPpvpPVEXF3i2O8AThe0n1ZLMcDG+Xq9BfH+cBRwM2Svk76ozYO2A9YEBFXkLpx7gL+R9IppFFqZ1G/my3v66TrRP8r6StAL6kb7hjSxf9/inXvwVkDXCvpXFK32LnA/0bEkgHa8ioRMVfSz4ErJZ1KOos4iZSg17lHpkoRsUzSbOA8SWOBW0g3th4eEUdGxMuSTgT+S9LmpGtCfwZ2Ad6T1Sv7htfuVvWoBS+dtdB4lNoZWZ1pwM9Jf+hXk4bWHpM7zomkEUZrgeU1+9UbpfYPuX2XA1/JlV0GLKxZHwf8L7CSdH3iHNKQ4leO318cWflrgUuzfV/I3vM7wB41dV5Hml1hTXaMGcBVNBilVrPvBsC/Zp/NGmAF6Q/mvnXqLgfOyz77x4HnSEOBt2j2M83KtgUuz95zDenC+lsLfMbrHKtOrEXqzASerFPeQ80otaxsfbLRhaRk8gjrjko7GPhZ9rmsJA1a+QI1I+y8lLMo+4aURtLrSeP69yb1Rf8sInoK7DeGNOzyPaSuwB+ThkM+lat3KOmH6Q2kH8IzI+LKVrbBbDjJrvlcFRG+r8SGtSqu4exBukfh3mwp6krSfzjHkv5LeivpfoRXKE1s+H1gHum/mmuBK/rpCzczsxJVcYazXmRDICVdBWwz0BmOpH2AX5BuRrslK9uLdIHzXRFxY1Y2F9gwIt5Zs+91wOYRMahZds2GO5/h2EhR+hlOrDvevoiDSTfR3VJznNtIwxoPBpC0Eeni83/n9p0D7NM3r5RZp4mI8U42NhKMlGHRE4CldcrvybZBmiNpwzr17iG1c7e2RWdmZgMaKcOit2Tdu5ohjaLZpaYOdeqtyG1/FUnTSTeGMWrUqIk77jg8bj5++eWXWW+9kfL/QHGd2K6ibdrs3nTJ8tndRsb/Pp34vYLObFeVbbr33nufjIhti9QdKQkH6t95rDrl+XU12J+ImA3MBpg0aVIsXNhoRpby9Pb20tPTU3UYLdeJ7SrcJmU/isuWNa43THTi9wo6s11VtknSg0XrjpQ0v4L6T13cgr+c0ayoKcvXgfpnSGZmVpKRknCW8pdrNbVqr+3cT5qWPl9vAmma9maGYJuZWYuNlIRzPbBddp8NANkTCHfJthERL5Duvzkit+9U4JcR8UxJsZqZWR2lX8PJJgKckq3uAGwuqe8JfddFxOpsfqv5EXEMQET8MrvH5nJJJ5HOWM4mzVt1Y83hPw/0SrqQdFPolGw5qO0NMzOzhqoYNDAW+J9cWd/6zqQ5mjYgzZFU60jSlPb/Sc3UNrUVImJBlry+AHyMdJ/OByPipy2M32xwSr7J2my4KT3hRMRy/jJyrL864+uUPQ18JFsa7XsNuSlvzMyseiPlGo6ZmY1wTjhmZZk4MS1mXWok3fhpNrItXlx1BGaV8hmOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpPErNrCzHHVd1BGaVcsIxK8vs2VVHYFYpd6mZmVkpnHDMyrJoUVrMupS71MzKMmlSevWs0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfx4aety7lIzM7NSOOGYlWX69LSYdSknHLOyXHJJWsy6lBOOmZmVwoMGzIaZ8adeW6je8i8f0uZIzFrLZzhmZlYKJxwzMyuFE46ZmZXC13DMyrLnnlVHYFYpJxyzsvjx0tbl3KVmZmalcMIxM7NSOOGYlUVKi1mXcsIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YlWXWrKojMKuUE45ZWfx4aetypXepSdpd0k2SVkt6TNJZktYfYJ+ZkqKf5bSaepf1U2dC+1tmZmaNlHqGI2lL4EZgCXAosCtwHinxndFg128CP8mVvQc4Bbg+V74U+EiubPngIjZrodmz06vPdKxLld2l9lFgFHBYRKwEbpC0OTBT0jlZ2Toi4hHgkdoySZ8BlkbEnbnqz0XErW2I3WxoZsxIr0441qXK7lI7GJibSyxzSElov6IHkbQV8C7gitaGZ2Zm7VJ2wplA6vJ6RUQ8BKzOthV1OLAhKVnl7S5ppaQXJC2QVDiRmZlZ+ygiynsz6UXg5Ii4MFf+CHB5RJxe8Dg3A2MiYmKu/JPAn0nXiLYFTgQmAvtGxG39HGs6MB1g3LhxE+fMqZfDyrdq1SpGjx5ddRgt14ntKtqmnsmTAeidN69hvbsffabQ+75phzGF6g1WJ36voDPbVWWbJk+evCgiJhWpW0XCOSkivporfxS4LCI+XeAY25Ou55wSEV8ZoO4oUvK5KyLeM9CxJ02aFAsXLhyoWil6e3vp6empOoyW68R2FW5T36MJBvidG3/qtYXed/mXDylUb7A68XsFndmuKtskqXDCKbtLbQWwRZ3yMcDTBY/xfkDAlQNVjIg1wHWAHyZvZlaxshPOUnLXaiTtCGxK7tpOA0cCCyLi4Sbet7zTODMzq6vshHM9cKCkzWrKpgJrgPkD7SxpPLA3BUenZV1qBwOLmg3UrOUiBuxOM+tkZSeci4EXgKslHZBdsJ8JnF87VFrSfZK+VWf/I4G1wFX5DZLGSPqZpBmS9pc0FZgH7AB8qQ1tMTOzJpR642dErJC0P3AR8CPSdZsLSEknH1e96W6OBG6KiCfqbHsBeII0Y8FY4Hngl8B+ETE8RgKYmXWx0ifvjIglwDsHqDO+n/I3N9jneeCwIQVn1k4Ts1H8i9zDa93Js0WblWXx4qojMKuUH8BmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1IzK8txx1UdgVmlnHDMytL3iGmzLuUuNTMzK0VTCUdSvelmzKyIRYs8y4B1tWa71B6VdDlwaUTc046AzDrWpOwZVZ4x2rpUs11qs4DDgd9I+pWk6ZI2b0NcZmbWYZpKOBHxuYjYBXgXsAw4H/i9pO9KOqAdAZqZWWcY1KCBiLg5Ij4MbAd8AngjMFfSckkzJb22lUGamdnIN9RRapOAd5AeG70C+BlwLHCfpKOGeGwzM+sgTSccSTtJ+pyk+4GbgO2Bo4HXRsQ/ATuRrvWc29JIzcxsRGtqlJqkm0lnNI8Al5FGqz1YWyciXpL0PeCTrQrSzMxGvmaHRT8JTAFuiGg4tvNOYOdBR2XWiRb6SefW3ZpNOBcBi+slG0mjgT0j4paIeBF4cJ29zbpZ3yOmzbpUs9dw5gG797Ptjdl2MzOzdTSbcNRg22hg9RBiMets06enxaxLDdilJukdQE9N0bGSDspV2xg4BLi7daGZdZhLLkmvnjXaulSRazhvI93cCRDAEcDaXJ0/A0uBk1sXmpmZdZIBE05EnEt2T42kB4D3RsSd7Q7MzMw6S1Oj1CLCQ53NzGxQilzDmQIsiIiV2dcNRcR1LYnMzMw6SpEznB8DewO3ZV8H/Y9WC8APaTMzs3UUSTg7A7+v+drMBmPPPauOwKxSRQYNPFjvazNrkh8vbV2uyDWcTZo5YET45k8zM1tHkS61VaRrM0X5Go6Zma2jSMI5muYSjpnVo2ysTcOJ1s06V5FrOJeVEIeZmXW4oT5i2szMrJAigwZuA6ZFxBJJtzNA91pE7NWq4MzMrHMUuYbzW2BNzdfugDYzs6YVuYbzkZqvp7U1GjMz61iDvoajZFtJjR7KZmZmBjQ5WzS8MpnnGcDEbP+1khYBX4yIa1scn1nnmDWr6gjMKtVUwpE0A/gGcBPwSeCPwFjgMOCHkj4eEf6tMqvHj5e2LtfsGc7pwOyI+Fiu/GJJFwOfBpxwzMxsHc1ew9kauLqfbd8HthroAJJ2l3STpNWSHpN0lqSG0+FIGi8p6ixz6tQ9VNLdkp6XtETS1EItM2u32bPTYtalmj3DmQfsB9xQZ9t+wC2Ndpa0JXAjsAQ4FNgVOI+U+M4o8P4nAT+vWX8yd/x9SYnvG8AJwBTgCkkrIuKnBY5v1j4zZqRXd61Zlypy4+fuNatfA74paWvgGv5yDee9wMHAsQMc7qPAKOCwiFgJ3CBpc2CmpHOyskaWRcStDbZ/BrglIk7I1udJ2gP4LOCEY2ZWoSJnOL/h1Td7CpiRLfmnf/6ExrNFHwzMzSWWOcDZpDOkHxWIpy5JGwGTSWc2teYAl0oaExHPDPb4ZmY2NEUSzuQWvt8E4Obagoh4SNLqbNtACedSSVuRzqyuAD4dEX2zIOwKbAgsze1zD6nLbjfg9qGFb2Zmg1VkpoH5LXy/LYGn65SvyLb15wXg30ndYiuBHuAUUpI5tObY1Dn+itz2V5E0HZgOMG7cOHp7exvFX5pVq1YNm1haqRPbVbRNPdnrQHVPfNPaQu/b7s+xE79X0JntGiltavrGzz6S1gM2zpcXeOJnvbnY1E953zF/D/xzTVGvpMeBb0h6c0Tc2eD46qe879izgdkAkyZNip6ensbRl6S3t5fhEksrdWK7mm3TQHWnnVrs/unlHyr+noPRid8r6Mx2jZQ2NTUsOpvO5hRJ9wEvAs/WWRpZAWxRp3wM9c98Grkqe92z5tjUOX7ferPHNzOzFmr2PpwTgFOBb5HOHL4InAXcCywn65pqYCnpWs0rJO0IbMq6114GErnX+0lJcEKu3gTg5SxGs+pE+Gmf1tWaTTjHAZ8DzsnWr4mIM4E9SAnjDQPsfz1woKTNasqmkh5/0Oy1osOz10UAEfEC6T6hI3L1pgK/9Ag1M7NqNXsNZ2fgzoh4SdKLZN1VEfGypG8A3ySdAfXnYtJZ0tWSzgZ2AWYC59cOlc667OZHxDHZ+kxgM9JNnyuBdwAnA1dHxK9rjv950vWdC0n3CU3JloOabKeZmbVYs2c4TwGjs68fAt5Ss21L0k2d/YqIFcD+pHt1fgScCVxAOmuqtQGvvp9nKek+nUuB64APAudmr7XHX0A68zkAmAv8I/BBzzJgw8LEiWkx61LNnuH8HHgr6Y/+90gzBGwF/Bk4njSLdEMRsQR45wB1xufW55Bu4BxQRFxDOrsxG14WL646ArNKNZtwZgI7ZF9/idSlNo10ZnMD8IlWBWZmZp2lqYQTEcuAZdnXL5CeifPJNsRlZmYdZig3fv4VsD3wWEQ82rqQzMysEzU7aABJH5P0MPAg8CvgIUmPSPp4y6MzM7OO0exMA58FLiLdT3MIMCl7vR74WrbdzMxsHc12qR0PfCkiPpMr/0k2t9nxpJkHzCzvuOOqjsCsUs0mnFH0/1TP+XiUmln//Hhp63LNXsO5Bjisn23vA348tHDMzKxTFXnE9JSa1euBcySNZ91HTO8BfKr1IZp1iEWL0qtnG7AuVaRL7ces+yjpHYAD69T9DulJnGaWN2lSevWM0daliiScndsehZmZdbwij5h+sIxAzMysszU904CkDUgDBPYFtgL+BPyM9KiAYg9jNzOzrtNUwpE0Fvgp8LekJ3w+DuxDuv/mLknvjognWh2kmZmNfM0Oiz4f2Bp4W0TsEhH7RMQuwNuy8vNbHaCZmXWGZhPOFOCUiLi9tjBbP400zY2Zmdk6mr2GsxHwbD/bngVeM7RwzDrYwoVVR2BWqWYTzq3AKZJujojn+golbQqckm03s3p8w6d1uWYTzonAPOBhST8lDRoYS7oJVEBPS6MzM7OO0dQ1nIi4E3gDMBvYFngXKeFcDLwhIu5qeYRmnWL69LSYdanCZziSNgT2Ah6IiFPbF5JZh7rkkvTqWaOtSzVzhvMScDPw122KxczMOljhhBMRLwO/A8a1LxwzM+tUzd6H82ngs5Le1I5gzMysczU7Su0M0owCd0p6lDRK7VVzrUfEXi2KzczMOkizCec32WJmZtaUQglH0ijStDa/Af4A3BgRj7czMLOOs+eeVUdgVqkij5jeBbgRGF9TvFLS+yPip+0KzKzj9D1i2qxLFRk0cA7wMvD3wCbAHsAdwKw2xmVmZh2mSMLZBzgjIn4eEc9HxD3ADOB1krZvb3hmZtYpiiSc7YH/y5XdT5o7bbuWR2TWqaS0mHWpovfhxMBVzMzM+ld0WPRcSWvrlN+UL4+IsUMPy8zMOk2RhHNm26MwM7OON2DCiQgnHDMzG7Jm51IzMzMbFCccMzMrRbNzqZnZYM3yvdLW3ZxwzMrix0tbl3OXmpmZlcIJx6wss2enxaxLlZ5wJO0u6SZJqyU9JuksSesPsM9bJV0q6b5sv2WSPidp41y9mZKiznJQe1tlVsCMGWkx61KlXsORtCXpUQdLgEOBXYHzSInvjAa7Ts3qng38Dvhb4PPZ6/tydZ8B8gnmnqHGbmZmQ1P2oIGPAqOAwyJiJXCDpM2BmZLOycrqOTsinqhZ75X0PDBL0k4R8WDNtrURcWt7wjczs8Equ0vtYGBuLrHMISWh/frbKZds+tyRvXruNjOzEaDshDMBWFpbEBEPAauzbc14O+nBcMty5VtIelLSi5LukHTYoKM1M7OWUUR5Tx6Q9CJwckRcmCt/BLg8Ik4veJztgF8D10XEtJryo0hnPHcCo0kPipsCvC8iru7nWNOB6QDjxo2bOGfOnGab1RarVq1i9OjRVYfRcp3YrqJt6pk8GYDeefMa1rv70WcKve+bdhhTqN5gdeL3CjqzXVW2afLkyYsiYlKRulUknJMi4qu58keByyLi0wWO8RrSwIO/AiZGxIoGdQX8AhgVEW8e6NiTJk2KhQsXDlStFL29vfT09FQdRst1YrsKt6nv4WsD/M6NP/XaQu+7/MuHFKo3WJ34vYLObFeVbZJUOOGU3aW2AtiiTvkY4OmBds4SyOXAHsCURskGIFI2vRr424GGXpu1XcSAycask5U9Sm0puWs1knYENiV3bacfF5CGU78rIorU7+PfcjOzipV9hnM9cKCkzWrKpgJrgPmNdpR0GvAJ4KiIWFDkzbIzovcCd0XES4ML2czMWqHsM5yLgROAqyWdDewCzATOrx0qLek+YH5EHJOtfxD4EnAZ8KikvWuOeX/fsGlJ84Hvk86WNgWOA/YG3tPeZpkVMHFiel20qNo4zCpSasKJiBWS9gcuAn5Eum5zASnp5OOqveby7ux1WrbU+ggpEQHcB/wLsD1pyPRi4JCIuL4V8ZsNyeLFVUdgVqnSH08QEUuAdw5QZ3xufRrrJpp6+x0zhNDMzKyNPFu0mZmVwgnHzMxK4YRjZmalcMIxM7NSlD5owKxrHXdc1RGYVcoJx6wsfry0dTl3qZmZWSmccMzKsmiRZxmwruYuNbOyTMpmcPeM0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfoeMW3WpdylZmZmpXDCMSvL9OlpMetSTjhmZbnkkrSYdSknHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUvjGT7Oy7Lln1RGYVcoJx6wsfry0dTl3qZmZWSmccMzMrBROOGZlkdJi1qWccMzMrBROOGZmVgqPUjNrYPyp1w5Y58Q3raWn/aGYjXg+wzEzs1I44ZiZWSmccMzMrBS+hmNWllmzqo7ArFJOOGZl8eOlrcu5S83MzErhhGNWltmz02LWpdylZlaWGTPSq7vWrEs54ZhZ3RtcT3zTWqbVlC//8iFlhmQdqPQuNUm7S7pJ0mpJj0k6S9L6BfYbI+lSSSskPSPpu5K2rlPvUEl3S3pe0hJJU9vTEjMza0apCUfSlsCNQACHAmcBJwJnFtj9SqAHOBaYBrwVuCZ3/H2B7wPzgIOBa4ErJL27JQ0wM7NBK7tL7aPAKOCwiFgJ3CBpc2CmpHOysnVI2gc4ENgvIm7Jyh4FfiXpgIi4Mav6GeCWiDghW58naQ/gs8BP29csK1OR+c3c/WM2/JSdcA4G5uYSyxzgbGA/4EcN9nu8L9kARMRtkh7Itt0oaSNgMnBCbt85wKWSxkTEMy1qh9XhiS6tKP/T0J3KTjgTgJtrCyLiIUmrs239JZwJwNI65fdk2wB2BTasU+8eUtfhbsDtgwu7OUV+mQZy2UGbDuq4RX5J/ctu3aC/n/NWDIao8nexyACPIqr4HVdElPdm0ovAyRFxYa78EeDyiDi9n/1uAJ6LiPfkyr8D7BIRb5f0d8AC4C0RcWdNndcDvwMOjIh1utUkTQf6xqm+EVg26Aa21jbAk1UH0Qad2K5ObBO4XSNJlW3aKSK2LVKximHR9TKc+ikfzH75dfVTngojZgPD7m48SQsjYlLVcbRaJ7arE9sEbtdIMlLaVPaw6BXAFnXKxwBPD2K/LWr2W1FTlq/DAMc3M7M2KzvhLOUv11wAkLQjsCn1r9H0u1+m9trO/cCLdepNAF4G7h1EvGZm1iJlJ5zrgQMlbVZTNhVYA8wfYL/tsvtsAJA0Cdgl20ZEvEC6/+aI3L5TgV+OwBFqw66br0U6sV2d2CZwu0aSEdGmsgcNbAksAX5DGgq9C3A+cGFEnFFT7z5gfkQcU1P2E9JIs5NIZyxnA3+MiL+vqbMv0AtcRLopdEpW/6B6AwbMzKw8pZ7hRMQKYH9gfdIQ6DOBC4DP5apukNWpdSTpLOg/gcuBRcB7c8dfABwOHADMBf4R+KCTjZlZ9Uo9wzEzs+7l5+EMI4Od2HS4k/R6SbMk3SXpJUm9Vcc0VJKOkPRDSY9KWiVpkaQPVB3XUEg6XNIvJD2VTX67TNIZkl5t2TrcAAADk0lEQVRTdWytImmH7PsVkkZXHc9QSJqWtSO/fLTq2PrjxxMMEzUTmy4hTWy6K3Ae6Z+CMxrsOhLsQbqedivQKX+8/h/wAPCvpBvupgDfk7RNRHy90sgGb2vSwJtzSbcR7AXMBLYD/rm6sFrqXGAVaWRsp3gnaeBVn/+rKpCBuEttmJB0GvAp0l27K7OyT5H9wvc3selIIGm9iHg5+/oqYJuI6Kk2qqHJEsuTubLvAftExM4VhdVykr4IHA9sGSP8j4Wkvwd+AHyJlHg2i4hV1UY1eJKmAZcygtrhLrXho7+JTUeRJjYdsfqSTSfJJ5vMHcDYsmNps6fogLPSrGv666RHonTatDYjhhPO8LHOBKUR8RDQN7GpDX9vJ3WJjmiS1pe0SXabwQnAf4z0sxvSo1E2Bv696kDa4H5Ja7NrbjOqDqYRX8MZPrak/vQ7K7JtNoxJ2p907e3oqmNpgeeAjbKvLwdOrjCWIcueDPx54KiIeFHSQLuMFL8nPQPsNtJtJB8ALpa0SURcUGlk/XDCGV4GO7GpVUjSeOB7wA8i4rJKg2mNtwObkAYNfJZ0I/XHK41oaL4I/Coirqs6kFaKiLmk+w37XJ89F+wMSV8djl3ZTjjDx2AnNrUKSdqKNL3SQ8BRFYfTEhGxOPtygaQngW9LOi8i7q8yrsHInvh7NPAOSX2/X5tkr2MkvRQRa+rvPSJdBbwfGM8wHK3mhDN8DHZiU6uIpE2AH5Muqh8SEc9VHFI79CWfnUkT5I40byA9mPGXdbY9AnwLOLbUiMoxLHtFnHCGj+uBkyVtFhHPZmVFJja1CkjaAPgf0h+0v4uIP1YcUrv8Xfb6QKVRDN4C0qPnax0EnEK6d2rYnQUM0ftIo/AerDqQepxwho+LSSOCrpbUN7HpTOD8kXwPDrxyJjAlW90B2FzS4dn6dRGxuprIhuQbpDZ9EthK0t412+7IZi8fUbIJcm8Efgu8REo2JwJXjsTuNHhl+HpvbVl2zQ3gZyPl/pV6JH2fNGDg16RBA1Oz5YTheP0GnHCGjYhYkY10uog0senTpIlNZ1YZV4uMJZ0N1Opb3xlYXmo0rfHu7PWrdbaN1DbdDkwj9f+vJf33fxrpnyEbfpaRrk/tSBpctAT4cET8V6VRNeCZBszMrBS+8dPMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZleL/A3AAGz/5q1y3AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] From 97447162ed39e270ca540a002829a6d7fc699796 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Mon, 29 Apr 2019 23:29:04 +0100 Subject: [PATCH 095/116] The vehicle routing notebook --- .../aqua/optimization/vehicle_routing.ipynb | 952 ++++++++++++++++++ 1 file changed, 952 insertions(+) create mode 100644 qiskit/aqua/optimization/vehicle_routing.ipynb diff --git a/qiskit/aqua/optimization/vehicle_routing.ipynb b/qiskit/aqua/optimization/vehicle_routing.ipynb new file mode 100644 index 000000000..50578702f --- /dev/null +++ b/qiskit/aqua/optimization/vehicle_routing.ipynb @@ -0,0 +1,952 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# _*Qiskit Aqua: Vehicle Routing*_\n", + "\n", + "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Andrea Simonetto[1], Jakub Marecek[1], Martin Mevissen[1]\n", + "\n", + "### Affiliation\n", + "- [1]IBMQ\n", + "\n", + "## The Introduction\n", + "\n", + "Logistics is a major industry, with some estimates valuing it at USD 8183 billion globally in 2015. Most service providers operate a number of vehicles (e.g., trucks and container ships), a number of depots, where the vehicles are based overnight, and serve a number of client locations with each vehicle during each day. There are many optimisation and control problems that consider these parameters. Computationally, the key challenge is how to design routes from depots to a number of client locations and back to the depot, so as to minimise vehicle-miles travelled, time spent, or similar objective functions. In this notebook we formalise an idealised version of the problem and showcase its solution using the quantum approximate optimization approach of Farhi, Goldstone, and Gutman (2014). \n", + "\n", + "The overall workflow we demonstrate comprises:\n", + "\n", + "1. establish the client locations. Normally, these would be available ahead of the day of deliveries from a database. In our use case, we generate these randomly.\n", + "\n", + "3. compute the pair-wise distances, travel times, or similar. In our case, we consider the Euclidean distance, \"as the crow flies\", which is perhaps the simplest possible.\n", + "\n", + "4. compute the actual routes. This step is run twice, actually. First, we obtain a reference value by a run of a classical solver (IBM CPLEX) on the classical computer. Second, we run an alternative, hybrid algorithm partly on the quantum computer.\n", + "\n", + "5. visualisation of the results. In our case, this is again a simplistic plot.\n", + "\n", + "In the following, we first explain the model, before we proceed with the installation of the pre-requisites and the data loading.\n", + "\n", + "## The Model \n", + "\n", + "Mathematically speaking, the vehicle routing problem (VRP) is a combinatorial problem, wherein the best routes from a depot to a number of clients and back to the depot are sought, given a number of available vehicles. There are a number of formulations possible, extending a number of formulations of the travelling salesman problem [Applegate et al, 2006]. Here, we present a formulation known as MTZ [Miller, Tucker, Zemlin, 1960]. \n", + "\n", + "Let $n$ be the number of clients (indexed as $1,\\dots,n$), and $K$ be the number of available vehicles. Let $x_{ij} = \\{0,1\\}$ be the binary decision variable which, if it is $1$, activates the segment from node $i$ to node $j$. The node index runs from $0$ to $n$, where $0$ is (by convention) the depot. There are twice as many distinct decision variables as edges. For example, in a fully connected graph, there are $n(n+1)$ binary decision variables. \n", + "\n", + "If two nodes $i$ and $j$ have a link from $i$ to $j$, we write $i \\sim j$. We also denote with $\\delta(i)^+$ the set of nodes to which $i$ has a link, i.e., $j \\in \\delta(i)^+$ if and only if $i \\sim j$. Similarly, we denote with \n", + "$\\delta(i)^-$ the set of nodes which are connected to $i$, in the sense that $j \\in \\delta(i)^-$ if and only if $j \\sim i$. \n", + "\n", + "In addition, we consider continuous variables, for all nodes $i = 1,\\dots, n$, denoted $u_i$. These variables are needed in the MTZ formulation of the problem to eliminate sub-tours between clients. \n", + "\n", + "The VRP can be formulated as:\n", + "\n", + "$$\n", + "(VRP) \\quad f = \\min_{\\{x_{ij}\\}_{i\\sim j}\\in \\{0,1\\}, \\{u_i\\}_{i=1,\\dots,n}\\in \\mathbb{R}} \\quad \\sum_{i \\sim j} w_{ij} x_{ij}\n", + "$$\n", + "\n", + "subject to the node-visiting constraint:\n", + "\n", + "$$\n", + "\\sum_{j \\in \\delta(i)^+} x_{ij} = 1, \\,\\sum_{j \\in \\delta(i)^-} x_{ji} = 1,\\, \\forall i \\in \\{1,\\dots,n\\},\n", + "$$\n", + "\n", + "the depot-visiting constraints:\n", + "\n", + "$$\n", + "\\sum_{i \\in \\delta(0)^+} x_{0i} = K, \\, \\sum_{j \\in \\delta(0)^+} x_{j0} = K,\n", + "$$\n", + "\n", + "and the sub-tour elimination constraints:\n", + "\n", + "$$\n", + "u_i - u_j + Q x_{ij} \\leq Q-q_j, \\, \\forall i \\sim j, \\,i ,j \\neq 0, \\quad q_i \\leq u_i \\leq Q,\\, \\forall i, i \\neq 0.\n", + "$$\n", + "\n", + "In particular, \n", + "- The cost function is linear in the cost functions and weighs the different arches based on a positive weight $w_{ij}>0$ (typically the distance between node $i$ and node $j$);\n", + "- The first set of constraints enforce that from and to every client, only one link is allowed;\n", + "- The second set of constraints enforce that from and to the depot, exactly $K$ links are allowed;\n", + "- The third set of constraints enforce the sub-tour elimination constraints and are bounds on $u_i$, with $Q>q_j>0$, and $Q,q_i \\in \\mathbb{R}$.\n", + "\n", + "\n", + "## Classical solution\n", + "\n", + "We can solve the VRP classically, e.g., by using CPLEX. CPLEX uses a branch-and-bound-and-cut method to find an approximate solution of the VRP, which, in this formulation, is a mixed-integer linear program (MILP). For the sake of notation, we pack the decision variables in one vector as\n", + "\n", + "$$\n", + "{\\bf z} = [x_{01},x_{02},\\ldots,x_{10}, x_{12},\\ldots,x_{n(n-1)}]^T,\n", + "$$\n", + "\n", + "wherein ${\\bf z} \\in \\{0,1\\}^N$, with $N = n (n+1)$. So the dimension of the problem scales quadratically with the number of nodes. Let us denote the optimal solution by ${\\bf z}^*$, and the associated optimal cost $f^*$. \n", + "\n", + "\n", + "## Quantum solution\n", + "\n", + "Here, we demonstrate an approach that combines classical and quantum computing steps, following the quantum approximate optimization approach of Farhi, Goldstone, and Gutman (2014). In particular, we use the variational quantum eigensolver (VQE). We stress that given the use of limited depth of the quantum circuits employed (variational forms), it is hard to discuss the speed-up of the algorithm, as the solution obtained is heuristic in nature. At the same time, due to the nature and importance of the target problems, it is worth investigating heuristic approaches, which may be worthwhile for some problem classes. \n", + "\n", + "Following [5], the algorithm can be summarised as follows:\n", + "- Preparation steps: \n", + "\t- Transform the combinatorial problem into a binary polynomial optimization problem with equality constraints only;\n", + "\t- Map the resulting problem into an Ising Hamiltonian ($H$) for variables ${\\bf z}$ and basis $Z$, via penalty methods if necessary;\n", + "\t- Choose the depth of the quantum circuit $m$. Note that the depth can be modified adaptively.\n", + "\t- Choose a set of controls $\\theta$ and make a trial function $\\big|\\psi(\\boldsymbol\\theta)\\rangle$, built using a quantum circuit made of C-Phase gates and single-qubit Y rotations, parameterized by the components of $\\boldsymbol\\theta$.\n", + "\n", + "\n", + "- Algorithm steps: \n", + "\t- Evaluate $C(\\boldsymbol\\theta) = \\langle\\psi(\\boldsymbol\\theta)\\big|H\\big|\\psi(\\boldsymbol\\theta)\\rangle$ by sampling the outcome of the circuit in the Z-basis and adding the expectation values of the individual Ising terms together. In general, different control points around $\\boldsymbol\\theta$ have to be estimated, depending on the classical optimizer chosen.\n", + "\t- Use a classical optimizer to choose a new set of controls.\n", + "\t- Continue until $C(\\boldsymbol\\theta)$ reaches a minimum, close enough to the solution $\\boldsymbol\\theta^*$.\n", + "\t- Use the last $\\boldsymbol\\theta$ to generate a final set of samples from the distribution $\\Big|\\langle z_i\\big|\\psi(\\boldsymbol\\theta)\\rangle\\Big|^2\\;\\forall i$ to obtain the answer.\n", + "\n", + "\n", + "There are many parameters throughout, notably the choice of the trial wavefunction. Below, we consider:\n", + "\n", + "$$\n", + "\\big|\\psi(\\theta)\\rangle = [U_\\mathrm{single}(\\boldsymbol\\theta) U_\\mathrm{entangler}]^m \\big|+\\rangle\n", + "$$\n", + "\n", + "where $U_\\mathrm{entangler}$ is a collection of C-Phase gates (fully-entangling gates), and $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^N Y(\\theta_{i})$, where $N$ is the number of qubits and $m$ is the depth of the quantum circuit. \n", + "\n", + "\n", + "### Construct the Ising Hamiltonian\n", + "\n", + "From $VRP$ one can construct a binary polynomial optimization with equality constraints only by considering cases in which $K=n-1$. In these cases the sub-tour elimination constraints are not necessary and the problem is only on the variable ${\\bf z}$. In particular, we can write an augmented Lagrangian as\n", + "\n", + "$$\n", + "(IH) \\quad H = \\sum_{i \\sim j} w_{ij} x_{ij} + A \\sum_{i \\in \\{1,\\dots,n\\}} \\Big(\\sum_{j \\in \\delta(i)^+} x_{ij} - 1\\Big)^2 + A \\sum_{i \\in \\{1,\\dots,n\\}}\\Big(\\sum_{j \\in \\delta(i)^-} x_{ji} - 1\\Big)^2 +A \\Big(\\sum_{i \\in \\delta(0)^+} x_{0i} - K\\Big)^2 + A\\Big(\\sum_{j \\in \\delta(0)^+} x_{j0} - K\\Big)^2\n", + "$$\n", + "\n", + "where $A$ is a big enough parameter. \n", + "\n", + "### From Hamiltonian to QP formulation \n", + "\n", + "In the vector ${\\bf z}$, and for a complete graph ($\\delta(i)^+ = \\delta(i)^- = \\{0,1,\\dots,i-1,i+1,\\dots,n\\}$), $H$ can be written as follows.\n", + "\n", + "$$\n", + "\\min_{{\\bf z}\\in \\{0,1\\}^{n(n+1)}} {\\bf w}^T {\\bf z} + A \\sum_{i \\in \\{1,\\dots,n\\}} \\Big({\\bf e}_i \\otimes {\\bf 1}_n^T {\\bf z} - 1\\Big)^2 + A \\sum_{i \\in \\{1,\\dots,n\\}}\\Big({\\bf v}_i^T {\\bf z} - 1\\Big)^2 + A \\Big(({\\bf e}_0 \\otimes {\\bf 1}_n)^T{\\bf z} - K\\Big)^2 + A\\Big({\\bf v}_0^T{\\bf z} - K\\Big)^2.\n", + "$$\n", + "\n", + "That is:\n", + "\n", + "$$\n", + "\\min_{\\bf z\\in \\{0,1\\}^{n(n+1)}} \\bf z^T {\\bf Q} \\bf z + {\\bf g}^T \\bf z + c,\n", + "$$\n", + "\n", + "Where: first term:\n", + "\n", + "$$\n", + "{\\bf Q} = A \\sum_{i \\in \\{0,1,\\dots,n\\}} \\Big[({\\bf e}_i \\otimes {\\bf 1}_n)({\\bf e}_i \\otimes {\\bf 1}_n)^T + {\\bf v}_i{\\bf v}_i^T \\Big] \n", + "$$\n", + "\n", + "Second term:\n", + "\n", + "$$\n", + "{\\bf g} = {\\bf w} -2 A \\sum_{i \\in \\{1,\\dots,n\\}} \\Big[({\\bf e}_i \\otimes {\\bf 1}_n) + {\\bf v}_i \\Big] -2 A K \\Big[({\\bf e}_0 \\otimes {\\bf 1}_n) + {\\bf v}_0 \\Big]\n", + "$$\n", + "\n", + "Third term:\n", + "\n", + "$$\n", + "c = 2An +2AK^2.\n", + "$$\n", + "\n", + "The QP formulation of the Ising Hamiltonian is ready for the use of VQE. \n", + "\n", + "\n", + "\n", + "## References\n", + "\n", + "[1] E. Farhi, J. Goldstone, S. Gutmann e-print arXiv 1411.4028, 2014\n", + "\n", + "[2] https://github.com/Qiskit/qiskit-tutorial/blob/master/qiskit/aqua/optimization/maxcut_and_tsp.ipynb\n", + "\n", + "[3] C. E. Miller, E. W. Tucker, and R. A. Zemlin (1960). \"Integer Programming Formulations and Travelling Salesman Problems\". J. ACM. 7: 326–329. doi:10.1145/321043.321046.\n", + "\n", + "[4] D. L. Applegate, R. M. Bixby, V. Chvátal, and W. J. Cook (2006). The Traveling Salesman Problem. Princeton University Press, ISBN 978-0-691-12993-8." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initialization\n", + "\n", + "First of all we load all the packages that we need: \n", + " - Python 3.6 or greater is required;\n", + " - CPLEX 12.8 or greater is required for the classical computations;\n", + " - Latest Qiskit is required for the quantum computations." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: Cplex not found.\n" + ] + } + ], + "source": [ + "# Load the packages that are required\n", + "import numpy as np\n", + "import operator\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import sys\n", + "if sys.version_info < (3, 6):\n", + " raise Exception('Please use Python version 3.6 or greater.')\n", + "\n", + "try:\n", + " import cplex\n", + " from cplex.exceptions import CplexError\n", + "except: \n", + " print(\"Warning: Cplex not found.\")\n", + "import math\n", + "\n", + "# Qiskit packages\n", + "from qiskit.quantum_info import Pauli\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "\n", + "# setup aqua logging\n", + "import logging\n", + "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", + "#set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We then initialize the variables" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the problem by defining the parameters\n", + "\n", + "n = 3 # number of nodes + depot (n+1)\n", + "K = 2 # number of vehicles" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define an initializer class that randomly places the nodes in a 2-D plane and computes the distance between them. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Get the data\n", + "class Initializer():\n", + "\n", + " def __init__(self, n):\n", + " self.n = n\n", + "\n", + " def generate_instance(self):\n", + "\n", + " n = self.n\n", + "\n", + " # np.random.seed(33)\n", + " np.random.seed(1543)\n", + "\n", + " xc = (np.random.rand(n) - 0.5) * 10\n", + " yc = (np.random.rand(n) - 0.5) * 10\n", + "\n", + " instance = np.zeros([n, n])\n", + " for ii in range(0, n):\n", + " for jj in range(ii + 1, n):\n", + " instance[ii, jj] = (xc[ii] - xc[jj]) ** 2 + (yc[ii] - yc[jj]) ** 2\n", + " instance[jj, ii] = instance[ii, jj]\n", + "\n", + " return xc, yc, instance" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Initialize the problem by randomly generating the instance\n", + "\n", + "initializer = Initializer(n)\n", + "xc,yc,instance = initializer.generate_instance()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Classical solution using IBM ILOG CPLEX\n", + "\n", + "For a classical solution, we use IBM ILOG CPLEX. CPLEX is able to find the exact solution of this problem. We first define a ClassicalOptimizer class that encodes the problem in a way that CPLEX can solve, and then instantiate the class and solve it. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "class ClassicalOptimizer:\n", + "\n", + " def __init__(self, instance,n,K):\n", + "\n", + " self.instance = instance\n", + " self.n = n # number of nodes\n", + " self.K = K # number of vehicles\n", + "\n", + "\n", + " def compute_allowed_combinations(self):\n", + " f = math.factorial\n", + " return f(self.n) / f(self.K) / f(self.n-self.K)\n", + "\n", + "\n", + " def cplex_solution(self):\n", + "\n", + " # refactoring\n", + " instance = self.instance\n", + " n = self.n\n", + " K = self.K\n", + "\n", + " my_obj = list(instance.reshape(1, n**2)[0])+[0. for x in range(0,n-1)]\n", + " my_ub = [1 for x in range(0,n**2+n-1)]\n", + " my_lb = [0 for x in range(0,n**2)] + [0.1 for x in range(0,n-1)]\n", + " my_ctype = \"\".join(['I' for x in range(0,n**2)]) + \"\".join(['C' for x in range(0,n-1)])\n", + "\n", + " my_rhs = 2*([K] + [1 for x in range(0,n-1)]) + [1-0.1 for x in range(0,(n-1)**2-(n-1))] + [0 for x in range(0,n)]\n", + " my_sense = \"\".join(['E' for x in range(0,2*n)]) + \"\".join(['L' for x in range(0,(n-1)**2-(n-1))])+\"\".join(['E' for x in range(0,n)])\n", + "\n", + "\n", + "\n", + " try:\n", + " my_prob = cplex.Cplex()\n", + " self.populatebyrow(my_prob,my_obj,my_ub,my_lb,my_ctype,my_sense,my_rhs)\n", + "\n", + " my_prob.solve()\n", + "\n", + " except CplexError as exc:\n", + " print(exc)\n", + " return\n", + "\n", + "\n", + " x = my_prob.solution.get_values()\n", + " x = np.array(x)\n", + " cost = my_prob.solution.get_objective_value()\n", + "\n", + " return x,cost\n", + " \n", + "\n", + " def populatebyrow(self,prob,my_obj,my_ub,my_lb,my_ctype,my_sense,my_rhs):\n", + "\n", + " n = self.n\n", + " \n", + " prob.objective.set_sense(prob.objective.sense.minimize)\n", + " prob.variables.add(obj = my_obj, lb = my_lb, ub = my_ub, types = my_ctype)\n", + " \n", + " prob.set_log_stream(None)\n", + " prob.set_error_stream(None)\n", + " prob.set_warning_stream(None)\n", + " prob.set_results_stream(None)\n", + "\n", + " rows = []\n", + " for ii in range(0,n):\n", + " col = [x for x in range(0+n*ii,n+n*ii)]\n", + " coef = [1 for x in range(0,n)]\n", + " rows.append([col, coef])\n", + "\n", + " for ii in range(0,n):\n", + " col = [x for x in range(0+ii,n**2,n)]\n", + " coef = [1 for x in range(0,n)]\n", + "\n", + " rows.append([col, coef])\n", + "\n", + " # Sub-tour elimination constraints:\n", + " for ii in range(0, n):\n", + " for jj in range(0,n):\n", + " if (ii != jj)and(ii*jj>0):\n", + "\n", + " col = [ii+(jj*n), n**2+ii-1, n**2+jj-1]\n", + " coef = [1, 1, -1]\n", + "\n", + " rows.append([col, coef])\n", + "\n", + " for ii in range(0,n):\n", + " col = [(ii)*(n+1)]\n", + " coef = [1]\n", + " rows.append([col, coef])\n", + "\n", + " prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of feasible solutions = 3.0\n" + ] + } + ], + "source": [ + "# Instantiate the classical optimizer class\n", + "classical_optimizer = ClassicalOptimizer(instance,n,K)\n", + "\n", + "# Print number of feasible solutions\n", + "print('Number of feasible solutions = ' + str(classical_optimizer.compute_allowed_combinations()))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPLEX may be missing.\n" + ] + } + ], + "source": [ + "# Solve the problem in a classical fashion via CPLEX\n", + "x = None\n", + "z = None\n", + "try:\n", + " x,classical_cost = classical_optimizer.cplex_solution()\n", + " # Put the solution in the z variable\n", + " z = [x[ii] for ii in range(n**2) if ii//n != ii%n]\n", + " # Print the solution\n", + " print(z)\n", + "except: \n", + " print(\"CPLEX may be missing.\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Visualize the solution\n", + "\n", + "def visualize_solution(xc, yc, x, C, n, K, title_str):\n", + " plt.figure()\n", + " plt.scatter(xc, yc, s=200)\n", + " for i in range(len(xc)):\n", + " plt.annotate(i, (xc[i] + 0.15, yc[i]), size=16, color='r')\n", + " plt.plot(xc[0], yc[0], 'r*', ms=20)\n", + "\n", + " plt.grid()\n", + "\n", + " for ii in range(0, n ** 2):\n", + "\n", + " if x[ii] > 0:\n", + " ix = ii // n\n", + " iy = ii % n\n", + " plt.arrow(xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=.25)\n", + "\n", + " plt.title(title_str+' cost = ' + str(int(C * 100) / 100.))\n", + " plt.show()\n", + " \n", + "\n", + "if x: visualize_solution(xc, yc, x, classical_cost, n, K, 'Classical')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you have CPLEX, the solution shows the depot with a star and the selected routes for the vehicles with arrows. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantum solution from the ground up\n", + "\n", + "For the quantum solution, we use Qiskit. \n", + "\n", + "First, we derive the solution from the ground up, using a class QuantumOptimizer that encodes the quantum approach to solve the problem and then we instantiate it and solve it. We define the following methods inside the class:\n", + "- `binary_representation` : encodes the problem $(M)$ into a the Ising Hamiltonian QP (that's basically linear algebra);\n", + "- `construct_hamiltonian` : constructs the Ising Hamiltonian in terms of the $Z$ basis;\n", + "- `check_hamiltonian` : makes sure that the Ising Hamiltonian is correctly encoded in the $Z$ basis: to do this, it solves a eigenvalue-eigenvector problem for a symmetric matrix of dimension $2^N \\times 2^N$. For the problem at hand $n=3$, that is $N = 12$ seems the limit; \n", + "- `vqe_solution` : solves the problem $(M)$ via VQE by using the SPSA solver (with default parameters);\n", + "- `_q_solution` : internal routine to represent the solution in a usable format.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "class QuantumOptimizer:\n", + "\n", + " def __init__(self, instance, n, K, max_trials=1000):\n", + "\n", + " self.instance = instance\n", + " self.n = n\n", + " self.K = K\n", + " self.max_trials = max_trials\n", + "\n", + "\n", + " def binary_representation(self,x_sol=0):\n", + "\n", + " instance = self.instance\n", + " n = self.n\n", + " K = self.K\n", + "\n", + " A = np.max(instance) * 100 # A parameter of cost function\n", + "\n", + " # Determine the weights w\n", + " instance_vec = instance.reshape(n ** 2)\n", + " w_list = [instance_vec[x] for x in range(n ** 2) if instance_vec[x] > 0]\n", + " w = np.zeros(n * (n - 1))\n", + " for ii in range(len(w_list)):\n", + " w[ii] = w_list[ii]\n", + "\n", + " # Some variables I will use\n", + " Id_n = np.eye(n)\n", + " Im_n_1 = np.ones([n - 1, n - 1])\n", + " Iv_n_1 = np.ones(n)\n", + " Iv_n_1[0] = 0\n", + " Iv_n = np.ones(n-1)\n", + " neg_Iv_n_1 = np.ones(n) - Iv_n_1\n", + "\n", + " v = np.zeros([n, n*(n-1)])\n", + " for ii in range(n):\n", + " count = ii-1\n", + " for jj in range(n*(n-1)):\n", + "\n", + " if jj//(n-1) == ii:\n", + " count = ii\n", + "\n", + " if jj//(n-1) != ii and jj%(n-1) == count:\n", + " v[ii][jj] = 1.\n", + "\n", + " vn = np.sum(v[1:], axis=0)\n", + "\n", + " # Q defines the interactions between variables\n", + " Q = A*(np.kron(Id_n, Im_n_1) + np.dot(v.T, v))\n", + "\n", + " # g defines the contribution from the individual variables\n", + " g = w - 2 * A * (np.kron(Iv_n_1,Iv_n) + vn.T) - \\\n", + " 2 * A * K * (np.kron(neg_Iv_n_1, Iv_n) + v[0].T)\n", + "\n", + " # c is the constant offset\n", + " c = 2 * A * (n-1) + 2 * A * (K ** 2)\n", + "\n", + " try:\n", + " max(x_sol)\n", + " # Evaluates the cost distance from a binary representation of a path\n", + " fun = lambda x: np.dot(np.around(x), np.dot(Q, np.around(x))) + np.dot(g, np.around(x)) + c\n", + " cost = fun(x_sol)\n", + " except:\n", + " cost = 0\n", + "\n", + " return Q,g,c,cost\n", + "\n", + " def construct_hamiltonian(self):\n", + "\n", + " instance = self.instance\n", + " n = self.n\n", + " K = self.K\n", + "\n", + " N = (n - 1) * n # number of qubits\n", + " Q,g,c,_ = self.binary_representation()\n", + "\n", + " # Defining the new matrices in the Z-basis\n", + "\n", + " Iv = np.ones(N)\n", + " Qz = (Q / 4)\n", + " gz = (-g / 2 - np.dot(Iv, Q / 4) - np.dot(Q / 4, Iv))\n", + " cz = (c + np.dot(g / 2, Iv) + np.dot(Iv, np.dot(Q / 4, Iv)))\n", + "\n", + " cz = cz + np.trace(Qz)\n", + " Qz = Qz - np.diag(np.diag(Qz))\n", + "\n", + " # Getting the Hamiltonian in the form of a list of Pauli terms\n", + "\n", + " pauli_list = []\n", + " for i in range(N):\n", + " if gz[i] != 0:\n", + " wp = np.zeros(N)\n", + " vp = np.zeros(N)\n", + " vp[i] = 1\n", + " pauli_list.append((gz[i], Pauli(vp, wp)))\n", + " for i in range(N):\n", + " for j in range(i):\n", + " if Qz[i, j] != 0:\n", + " wp = np.zeros(N)\n", + " vp = np.zeros(N)\n", + " vp[i] = 1\n", + " vp[j] = 1\n", + " pauli_list.append((2 * Qz[i, j], Pauli(vp, wp)))\n", + "\n", + " pauli_list.append((cz, Pauli(np.zeros(N), np.zeros(N))))\n", + "\n", + " return cz, pauli_list\n", + "\n", + " def check_hamiltonian(self):\n", + "\n", + " cz, op = self.construct_hamiltonian()\n", + " Op = Operator(paulis=op)\n", + "\n", + " qubitOp, offset = Op, 0\n", + " algo_input = EnergyInput(qubitOp)\n", + "\n", + " # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", + "\n", + " algorithm_cfg = {\n", + " 'name': 'ExactEigensolver',\n", + " }\n", + "\n", + " params = {\n", + " 'problem': {'name': 'ising'},\n", + " 'algorithm': algorithm_cfg\n", + " }\n", + " result = run_algorithm(params, algo_input)\n", + "\n", + " quantum_solution = self._q_solution(result['eigvecs'][0],self.n*(self.n+1))\n", + " ground_level = result['energy'] + offset\n", + "\n", + " return quantum_solution, ground_level\n", + "\n", + " def vqe_solution(self):\n", + "\n", + " cz, op = self.construct_hamiltonian()\n", + " Op = Operator(paulis=op)\n", + "\n", + " qubitOp, offset = Op, cz\n", + " algo_input = EnergyInput(qubitOp)\n", + "\n", + "\n", + " algorithm_cfg = {\n", + " 'name': 'VQE',\n", + " 'operator_mode': 'paulis'\n", + " }\n", + "\n", + " optimizer_cfg = {\n", + " 'name': 'SPSA',\n", + " 'max_trials': self.max_trials\n", + " }\n", + "\n", + " var_form_cfg = {\n", + " 'name': 'RY',\n", + " 'depth': 5,\n", + " 'entanglement': 'linear'\n", + " }\n", + "\n", + " params = {\n", + " 'problem': {'name': 'ising', 'random_seed': 10598},\n", + " 'algorithm': algorithm_cfg,\n", + " 'optimizer': optimizer_cfg,\n", + " 'variational_form': var_form_cfg,\n", + " 'backend': {'name': 'qasm_simulator'\n", + " }\n", + " }\n", + "\n", + " result = run_algorithm(params, algo_input)\n", + "\n", + " #quantum_solution = self._q_solution(result['eigvecs'][0], self.n * (self.n + 1))\n", + " quantum_solution_dict = result['eigvecs'][0]\n", + "\n", + " q_s = max(quantum_solution_dict.items(), key=operator.itemgetter(1))[0]\n", + " quantum_solution= [int(chars) for chars in q_s]\n", + " quantum_solution = np.flip(quantum_solution, axis=0)\n", + "\n", + " _,_,_,level = self.binary_representation(x_sol=quantum_solution)\n", + " return quantum_solution_dict, quantum_solution, level\n", + "\n", + " def _q_solution(self, v, N):\n", + "\n", + " index_value = [x for x in range(len(v)) if v[x] == max(v)][0]\n", + " string_value = \"{0:b}\".format(index_value)\n", + "\n", + " while len(string_value)" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Put the solution in a way that is compatible with the classical variables\n", + "x_quantum = np.zeros(n**2)\n", + "kk = 0\n", + "for ii in range(n ** 2):\n", + " if ii // n != ii % n:\n", + " x_quantum[ii] = quantum_solution[kk]\n", + " kk += 1\n", + "\n", + "\n", + "# visualize the solution \n", + "visualize_solution(xc, yc, x_quantum, quantum_cost, n, K, 'Quantum')\n", + " \n", + "# and visualize the classical for comparison\n", + "if x: visualize_solution(xc, yc, x, classical_cost, n, K, 'Classical')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The plots present the depot with a star and the selected routes for the vehicles with arrows. Note that in this particular case, we can find the optimal solution of the QP formulation, which happens to coincide with the optimal solution of the ILP.\n", + "\n", + "Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian, though. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the ILP. While for some small instances, as above, we can find optimal solutions of the QP formulation which coincide with optima of the ILP, finding optimal solutions of the ILP is harder than finding local optima of the QP formulation, in general, which in turn is harder than finding feasible solutions of the ILP. Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). \n", + "\n", + "Last but not least, you may be pleased to learn that the above has been packaged in Qiskit Aqua." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 1 1 0 1 0]\n", + "132.11148115684045\n" + ] + } + ], + "source": [ + "from qiskit import BasicAer\n", + "from qiskit.aqua import QuantumInstance\n", + "from qiskit.aqua import Operator, run_algorithm\n", + "from qiskit.aqua.input import EnergyInput\n", + "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", + "from qiskit.aqua.components.optimizers import COBYLA\n", + "from qiskit.aqua.components.variational_forms import RY\n", + "from qiskit.aqua.translators.ising.vehicle_routing import *\n", + "\n", + "qubitOp = get_vehiclerouting_qubitops(instance, n, K)\n", + "backend = BasicAer.get_backend('statevector_simulator')\n", + "seed = 50\n", + "cobyla = COBYLA()\n", + "cobyla.set_options(maxiter=250)\n", + "ry = RY(qubitOp.num_qubits, depth=3, entanglement='full')\n", + "vqe = VQE(qubitOp, ry, cobyla, 'matrix')\n", + "vqe.random_seed = seed\n", + "quantum_instance = QuantumInstance(backend=backend, seed=seed, seed_transpiler=seed)\n", + "result = vqe.run(quantum_instance)\n", + "# print(result)\n", + "x_quantum2 = get_vehiclerouting_solution(instance, n, K, result)\n", + "print(x_quantum2)\n", + "quantum_cost2 = get_vehiclerouting_cost(instance, n, K, x_quantum2)\n", + "print(quantum_cost2)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} From 39a217c2eb7aad5bdb1b93c31d88c27c028a4598 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 30 Apr 2019 00:31:19 +0200 Subject: [PATCH 096/116] Update portfolio_diversification.ipynb --- .../finance/optimization/portfolio_diversification.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index 54f1ba939..c0db092a5 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -612,8 +612,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "[1 0 1 0 1 1]\n", - "VQE does not produce the same solution as the exact eigensolver, but that is to be expected.\n" + "[0 1 0 1 0 1]\n", + "VQE produces the same solution as the exact eigensolver.\n" ] } ], @@ -644,7 +644,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VHXaxvHvkxACJvQmSFXAtdAEKTZgQdFdFVdBsa3uilh3X/taUEJZVFCBVWStqyi72BVdXF0VXJVQFVR6EQ1VKQFSIO15/5gRY0hIMCeZJHN/rmsu5sz85pw7A9w5c+Y3Z8zdERGR6BIT6QAiIlL+VP4iIlFI5S8iEoVU/iIiUUjlLyIShVT+IiJRSOUv5cLMkszsxTJc/1Iz61PKdZRpRpGKROUvgTGzS8xsoZmlmdlmM3vXzE4pj227+3HuPrs8thUEM2ttZm5m1cphW9XN7FUzWx/eZp9ixtc3szfMLN3MvjWzS8o6o5Q/lb8EwsxuASYCY4EmQEvgcWBgJHPJfp8ClwFbSjB2MpBF6O/xUmCKmR1XhtkkAlT+UmpmVgcYBdzg7q+7e7q7Z7v72+5+exGPecXMtpjZLjP7X/5yMbPfmNkyM9tjZhvN7Lbw7Q3N7B0zSzWzHWb2iZnFhO9bb2b9w9djzexuM1sbXsciM2sRvm+SmaWY2e7w7acews850MwWhx+71szODN/ezMxmhDOtMbOr8z2me/jV0G4z22pmj4Tv+l/4z9TwK6VeJc1xqNw9y90nuvunQO7BxppZAnABcK+7p4UfMwO4vKzySWSo/CUIvYAawBuH8Jh3gXZAY+BzYFq++54BrnH3WsDxwEfh228FNgCNCO2V3g0Udn6SW4CLgd8AtYE/Ahnh+xYAnYH6wD+BV8ysRnFhzaw7MBW4HagLnAasD9/9r3CuZsAgYKyZ9QvfNwmY5O61gaOAl8O3nxb+s667J7p7ciHbvCT8i66oS8vicv8C7YFcd1+V77YlgPb8q5gyP94oUaEBsM3dc0r6AHd/9sfrZpYE7DSzOu6+C8gGjjWzJe6+E9gZHpoNNAVaufsa4JMiVj8UuMPdV4aXl+Tbbv43dB82s+HA0fnHFOEq4Fl3/294eWM4ewvgFOBsd98LLDazpwntKX8YztzWzBq6+zZgbjHb2c/d/0noF1R5SgR2FbhtF1CrnHNIGdOevwRhO9CwpG9ehg/LPBA+dLKbn/agG4b/vIDQXvu3ZvZxvkMi44E1wPtmts7M7ixiEy2AtUVs+1YzWx4+3JQK1Mm33YMpap3NgB3uviffbd8CR4SvX0Vob3qFmS0ws7NLsK1fzMxahg8jpZlZ2i9YRRqhV0v51Qb2FDJWKjGVvwQhGdgLnFfC8ZcQeiO4P6HybR2+3QDcfYG7DyR0SOhNwodK3H2Pu9/q7kcC5wC35Du8kl8KoUMsPxM+vv8X4EKgnrvXJbRXayXIXOg6gU1AfTPLv2fckvArA3df7e4Xh3+WB4FXw8fViz2drpldmr/IC7kccNjH3b8LH0ZKdPfEEvxcBa0CqplZu3y3dQKW/oJ1SQWm8pdSCx+quQ+YbGbnmdlhZhZnZmeZ2bhCHlIL2EfoFcNhhGYIAfunJV4aPgSUDewm/CalmZ1tZm3NzPLdXtgbmE8Do82snYV0NLMG4e3mAD8QKrj7OHAvtyjPAH8ws35mFmNmR5jZr9w9BZgD3G9mNcysI6G9/WnhzJeZWSN3zwNSw+vKDWfIA44saoPuPi1/kRdy+a6E2TGz+HzvbVQPZz3gl567pwOvA6PMLMHMTib0i/qFkm5LKgeVvwTC3R8h9EbrcELFlgLcSGjPvaCphA6NbASWceBx8MuB9eFDQtcSmqIIoTeIPyB0aCIZeLyIuf2PEHq18D6hXxLPADWB9wi90bwqvP294Zwl+fnmA38AJhB6tfAx0Cp898WEXr1sIvSm94h87w2cCSwNH4KZBAxx973ungH8Ffgs/OZtz5LkKIWVQCahw1Hvha+3AgjPjHo339jrCT1f3xN6M/s6d9eefxVj+jIXEZHooz1/EZEopPIXEYlCKn8RkSik8hcRiUIV9hO+DRs29NatW5fZ+tPT00lISCiz9QdFOYOlnMFSzmAFkXPRokXb3L1RsQPdvUJeunbt6mVp1qxZZbr+oChnsJQzWMoZrCByAgu9BB2rwz4iIlFI5S8iEoVU/iIiUUjlLyIShVT+IiJRSOUvIlKRpKTAoEFQpw7Urg3nnw/flfgEriWm8hcRqSBi9u6FX/8aVqyA55+HF16A1auhb19ITw90WxX2Q14iItGm6TvvwLp1sHIltG0burFjR2jXDp54Am65JbBtac9fRKSc5OTmsXtvNrl5hZ9Kv+GcOdCz50/FD9CmDZx8Mrz1VqBZtOcvIlKG9uXkMvOrzUyZvZbV36dRLcbIyXPaN07k2j5H8ZsOTYmvFgtAwvr1MHjwgSs57jh45ZVAc6n8RUTKyOKUVK58dj7ZuXmkZ4W+cTQ7N7TXv3JrGsPf+JqRM5bx/B+706lFXart2QP16h24ovr1YefOQLPpsI+ISBlYkpLKxU/OJTUze3/xF5SelUtqZjZDnpzLkpTwVzwf+NXKUAbfuKjyFxEJ2L6cXK54dj6Z2YWXfkGZ2aHxObVqwY4dBw7YubPwVwSloPIXEQnYzK82k52bd0iPyc7NY1eLlrB06YF3LlsGxx4bULoQlb+ISMCmzF5b5KEeKPyXQnpWLms6nwhz54ame/5o/Xr47DM499xAM6r8RUQClJvnrP4+7cA7LJvqjf5DzZZPUdQvgMWn9cdbt4aBA0NTO2fMCF1v0QKuuSbQnCp/EZEApWflUC3m52/axh62hoQjJxLfcDaeXR8sp9DH5tasSdrM96B9e7j8crj00tA8/48+gsTEQHNqqqeISIASqlcj58cPccWmU6PxTOLqLiIvqwEZ3w4lN6NtkY91dw5reyS89lqZ51T5i4gEKDbGaNs4gW8yPyO+ydtYbCb7tvUha1s/8LiDPrZGXCyxMYVM9SwDKn8RkQBtSttErVbPU3PPQnIzm5P53VDy9jUt9nEJ1WNpVCu2HBKGqPxFRAKQm5fLtOXTeGzxYwDY9oFkfN+Dkr61GhcbQ52aB39lECS94SsiUkord6zk0pmXMn7heLo16cabA9/khcG3UTOuZGVeMy6W5//YnfI54BMSSPmb2ZlmttLM1pjZnQcZN8jM3My6BbFdEZFI2puzlwmLJnDROxexOX0z408bz+R+k2mW2IxOLeoyfVhP6taMI6F64YdzEqrHUrdmHNOH9aRTi7rlmr3Uh33MLBaYDJwObAAWmNkMd19WYFwt4M/AvNJuU0Qk0uZunsuo5FGk7Enhd21/x63dbqVOfJ2fjenUoi7z7unHu19tYcrsNaz62Vk9a3Fdn6M4q8Ph+8/qWZ6COObfHVjj7usAzGw6MBBYVmDcaGAccFsA2xQRiYjUvamMXzieGWtn0LJWS5454xm6N+1e5Pj4arGc1+UIzutyBLl5TnpWDgnVq5XbrJ6imJfybHFmNgg4092HhpcvB3q4+435xnQBhrv7BWY2G7jN3RcWsq5hwDCAJk2adJ0+fXqpsh1MWloaiQF/aKIsKGewlDNY0ZTT3VmUsYjXdrxGRl4G/Wv3Z0CdAVSPqR5QymBy9u3bd5G7F39o3d1LdQEGA0/nW74ceDTfcgwwG2gdXp4NdCtuvV27dvWyNGvWrDJdf1CUM1jKGaxoyblhzwa/5r/X+PHPHe8Xv3Oxr9i+IphgBQTxfAILvQTdHcRhnw1Ai3zLzYFN+ZZrAccDsy10nurDgRlmdq4XsvcvIlJR5OTlMG35NCYvngzAnd3vZMjRQ4iNKf9j9EELovwXAO3MrA2wERgCXPLjne6+C2j44/LBDvuIiFQUK3asYMScESzbvozezXtzT497aJpY/Ie1KotSl7+755jZjcB7QCzwrLsvNbNRhF5+zCjtNkREyktmTiZTlkxh6tKp1I2vy/je4xnQagBW2DdsVWKBfMLX3WcCMwvcdl8RY/sEsU0RkaAlb0pmVPIoNqRt4IJ2F3Bz15sPmL5ZVej0DiIS9Xbu3clDCx9ixtoZtKrdimcHPMuJh58Y6VhlSuUvIlHL3fn3N/9m3Pxx7Mnaw9UdruaaTtcQHxsf6WhlTuUvIlFpw54NjJk7hs82fUbHhh0ZcdII2tdrH+lY5UblLyJRJf/0TcO4q/tdXHT0RVVi+uahUPmLSNRYtn0ZSXOSWL5jOX2a9+GenvdweMLhkY4VESp/EanysvKyeHjhw7yw7AXqxtflod4PcUarM6rc9M1DofIXkSptzqY5jN08lu0p26v89M1DofIXkSpp596djF8wnrfXvU3jao2jYvrmoVD5i0iV4u68s+4dxi0YR1pWGsM6DuNXqb9S8Reg8heRKiNlTwpj5o5hzqY5dGrUiRG9RtCuXjtmz54d6WgVjspfRCq9nLwcXlz2IpMXTyY2Jpa7e9zNRUdfRIzpa8qLovIXkUrtZ9M3W/Thnh7RO33zUKj8RaRSysjO4PHFj/PC8heoX6M+j/R5hP4t+0f19M1DofIXkUpnzsY5jJo7io1pGxnUfhA3d72Z2tVrRzpWpaLyF5FKY8feHYxfMJ531r1D69qt+ceAf9Dt8OK/rlYOpPIXkQrP3Xl73duMXzCetOw0ru10LUM7DI2Ks2+WFZW/iFRoKXtSGJ08muTNyXRq1ImkXkm0rdc20rEqPZW/iFRIOXk5TF02lSmLpxAbE8s9Pe7hwqMv1PTNgKj8RaTCWbp9KUlzklixYwV9W/Tl7h53a/pmwFT+IlJhZGRnMHnxZF5c/iINajRgQp8J9G/VP9KxqiSVv4hUCJ9u/JTRyaPZlL6Jwe0Hc1PXmzR9swyp/EUkorZnbmfcgnHM/GYmbeq04bkzn6Nrk66RjlXlqfxFJCLcnRlrZzB+4XjSs9O5rtN1DO0wlOqx1SMdLSqo/EWk3KXsTmHk3JHM2zyPzo06k3RSEkfVPSrSsaKKyl9Eyk12XjZTl05lypIpxMXEMbzHcAYfPVjTNyNA5S8i5WLptqWMmDOClTtX0q9lP+7qfhdNEppEOlbUUvmLSJnKyM7gscWPMW35NBrUaMDEPhPp16pfpGNFPZW/iJSZTzZ8wpi5Y9iUvomLjr6I/zvh/6hVvVakYwkqfxEpA9szt/Pgggd595t3ObLOkUw9aypdGneJdCzJR+UvIoFxd95c8yYPLXyIzJxMru90PVd1uErTNysglb+IBOK73d8xKnkU87bMo0vjLiT1SuLIukdGOpYUQeUvIqWSnZfN80uf5+9L/k5cTBz39ryXQe0HafpmBafyF5FfbP2+9Tz6zqOs2rmK/i37c1ePu2h8WONIx5ISUPmLyCHLyM7g0S8eZdqWaTSq2YiJfSfSr6Wmb1YmKn8ROST/2/A/xswdw5b0LZySeAoPnvOgpm9WQip/ESmRbZnbGDd/HO+uf5ej6hzF1LOmkrosVcVfSan8ReSgDpi+2fl6rjo+NH1z9rLZkY4nv5DKX0SK9O3ubxmVPIr5W+ZzQuMTGHHSCI6so+mbVYHKX0QO8OP0zSmLpxAfG899ve7jgnYXaPpmFRJI+ZvZmcAkIBZ42t0fKHD/LcBQIAf4Afiju38bxLZFJFhf/vAlSclJrN65mtNbnc5d3e+i0WGNIh1LAlbq8jezWGAycDqwAVhgZjPcfVm+YV8A3dw9w8yuA8YBF5V22yISnPTsdB794lH+ufyfNDqsEX/r+zf6tuwb6VhSRoLY8+8OrHH3dQBmNh0YCOwvf3eflW/8XOCyALYrIgH5OOVjxswbw9b0rfvPvplYPTHSsaQMmbuXbgVmg4Az3X1oePlyoIe731jE+MeALe4+ppD7hgHDAJo0adJ1+vTppcp2MGlpaSQmVvx/3MoZLOX8ud25u3l1x6t8kfEFTeOacnGDi2kT36bEj9fzGawgcvbt23eRu3crdqC7l+oCDCZ0nP/H5cuBR4sYexmhPf/44tbbtWtXL0uzZs0q0/UHRTmDpZwheXl5/tqq17zXP3t5l6ld/O+L/+5ZOVmHvB49n8EKIiew0EvQ3UEc9tkAtMi33BzYVHCQmfUH7gF6u/u+ALYrIr/A+l3rGTV3FAu2LKBrk66M6DWCNnVKvrcvVUMQ5b8AaGdmbYCNwBDgkvwDzKwL8AShw0PfB7BNETlE2bnZ/GPpP3hiyRPEx8YzotcIzm93vqZvRqlSl7+755jZjcB7hKZ6PuvuS81sFKGXHzOA8UAi8IqZAXzn7ueWdtsiUjJf/vAlI+aMYE3qGs5odQZ3dr9T0zejXCDz/N19JjCzwG335bveP4jtiMihSc9O52+f/41/rfgXjQ9rzKO/fpQ+LfpEOpZUAPqEr0gVNTtlNmPmjuH7jO8Z8qsh/LnLnzV9U/ZT+YtUMdsyt3H/vPt5/9v3aVu3LQ/3eZhOjTpFOpZUMCp/kSrC3Xl99es8vOhh9uXs409d/sQfjvsDcbFxkY4mFZDKX6QK+GbXN4xKHsXCrQvp1qQbI3qNoHWd1pGOJRWYyl+kEsvOzebZr5/lyS+fJL5aPEm9kvhdu99p+qYUS+UvUkkt+WEJSXOSWJO6hgGtB3Bn9ztpWLNhpGNJJaHyF6lk0rLSmPT5JF5a+RKND2vMY79+jN4tekc6llQyKn+RSmTWd7MYM28MP2T8wCXHXMKfuvyJhLiESMeSSkjlL1IJ/JDxA/fPv5//fvtf2tVrx4Q+E+jYqGOkY0klpvIXqcDyPI/XVr/GhIUT2Je7jz93+TNXHn8lcTGavimlo/IXqaDW7VrHqORRLNq6iBMPP5H7et6n6ZsSGJW/SAWTnZvNf1L/w/sz3qdmtZqMOmkU57U9j/BJEUUCofIXqUAWf7+YkckjWbNrDWe2PpO/dP+Lpm9KmVD5i1QAaVlpTPx8Ii+vfJkmCU24ptE13Ni70G9CFQmEPgYoEmEfffcRA98ayMsrX+bSYy7lrYFvcfxhx0c6llRx2vMXiZDvM77ngfkP7J++ObHPRDo06hDpWBIlVP4i5SzP83h11atMXDSRfbn7+L8T/o8rjrtC0zelXKn8RcrRul3rGDlnJJ9//zndD+/Ofb3uo1XtVpGOJVFI5S9SDrJzs3n666d56sunNH1TKgSVv0gZ++L7Lxg5ZyRrd63lrNZncUf3OzR9UyJO5S9SRvZk7dl/9s2mCU2Z3G8ypzU/LdKxRACVv0iZ+PDbDxk7byzb9m7jsmMu409d/sRhcYdFOpbIfip/kQB9n/E9Y+eN5cPvPqR9vfZM+vUkjm+oOftS8aj8RQLw4/TNCYsmkJ2XzU0n3MTvj/u9pm9KhaXyFymldanrGJkcmr7Z4/Ae3NfrPlrWbhnpWCIHpfIX+YWycrN4+quneeqrp0iIS2D0yaMZeNRATd+USkHlL/ILfL71c0Ymj2TdrnWc1eYs/nLiX2hQs0GkY4mUmMpf5BDsydrDxEUTeXnVyzRLaMbj/R7n1OanRjqWyCFT+YuU0AfffsDYeWPZvnc7vz/299zQ+QZN35RKS+UvUoyt6VsZO28sH6V8xK/q/4pHf/0oxzU8LtKxREpF5S9ShDzP45WVrzDx84lk52Vzc9ebufzYyzV9U6oElb9IIdamriVpThKLf1hMj6Y9GNFzBC1qt4h0LJHAqPxF8snKzeKpr57i6a+eJiEugb+e8lfOOfIcTd+UKkflLxK2aOsiRiaP5Jtd3/DbI3/LHSfeQf0a9SMdS6RMqPwl6u3O2s2ERRN4ddWrHJF4BFP6T+GUI06JdCyRMqXyl6jl7nzw3QfcP+9+tu/dzhXHXsH1na/X9E2JCip/iUpb0rcwdt5YZqXM4pj6x/Bov0c5roGmb0r0UPlLVMnzPP614l9M+nwSuXm53NL1Fi4/9nKqxei/gkSXQP7Fm9mZwCQgFnja3R8ocH88MBXoCmwHLnL39UFsW6Sk1uxcw8StE/nmu2/o2bQn9/W6jxa1NH1TolOpy9/MYoHJwOnABmCBmc1w92X5hl0F7HT3tmY2BHgQuKi02xYpiX25+3jqy6d45utniCeesaeM5ewjz9b0TYlqQez5dwfWuPs6ADObDgwE8pf/QCApfP1V4DEzM3f3ALYvUqSFWxYyMnkk63ev5+wjz+akrJM456hzIh1LJOKstP1rZoOAM919aHj5cqCHu9+Yb8zX4TEbwstrw2O2FVjXMGAYQJMmTbpOnz69VNkOJi0tjcTExDJbf1CU85fJyMvgrZ1vMSdtDvVj6zOkwRCOqXlMhctZFOUMVjTl7Nu37yJ371bsQHcv1QUYTOg4/4/LlwOPFhizFGieb3kt0OBg6+3atauXpVmzZpXp+oOinIcmLy/P3/vmPe/zUh/v+HxHf2jBQ56elb7//oqSszjKGaxoygks9BJ0dxCHfTYA+d81aw5sKmLMBjOrBtQBdgSwbZH9tqRv4a/z/srslNkcU/8YJvebzLENjo10LJEKKYjyXwC0M7M2wEZgCHBJgTEzgCuAZGAQ8FH4N5RIqeXm5fLSypeY9Pkk8jyP27rdxqXHXKrpmyIHUer/He6eY2Y3Au8Rmur5rLsvNbNRhF5+zACeAV4wszWE9viHlHa7IgCrd64mKTmJL3/4kpOancS9Pe+lea3mkY4lUuEFsmvk7jOBmQVuuy/f9b2E3hsQCcS+3H08seQJ/vH1P6hVvZamb4ocIr0ulkpnwZYFjEoexfrd6znnyHO4/cTbqVejXqRjiVQqKn+pNHbt28WERRN4bfVrHJF4BE+c/gQnNTsp0rFEKiWVv1R47s77377P/fPuJ3VfKn847g9c1/k6alarGeloIpWWyl8qtC3pWxgzdwwfb/iYY+ofw5T+UzimwTGRjiVS6an8pULKzctl+srp/O3zv+G4pm+KBEz/k6TCWbVzFSPnjOTLbV9ycrOTGd5zuKZvigRM5S8VRsHpm/efej+/bfNbTd8UKQMqf6kQFmxZwMjkkXy7+1vOPepcbu92O3Vr1I10LJEqS+UvEbVr3y4eWfQIr69+neaJzXny9Cfp1axXpGOJVHkqf4kId+e99e/xwPwHQtM3j/8D13XS9E2R8qLyl3K3OW0zY+aN4X8b/sexDY7V9E2RCFD5S7nJzcvlXyv+xd+++BsAt3e7nUuOuUTTN0UiQP/rpFys3LGSkckj+WrbV5x8xMnc2/Nejkg8ItKxRKKWyl/K1N6cvTzx5RM89/Vz1I6vzYOnPshZbc7S9E2RCFP5S5mZv3k+I5NH8t2e7xh41EBu63abpm+KVBAqfwncrn27eGjhQ7y55k1a1GrBU2c8Rc+mPSMdS0TyUflLYNyd/6z/Dw/Mf4Bd+3bxx+P/yHWdrqNGtRqRjiYiBaj8JRA7cnZww4c38MnGTzi+wfE8efqTHF3/6EjHEpEiqPylVHLzcvnnin8ycdNEYmNjuePEO7jkV5cQGxMb6WgichAqf/nFVu5YSdKcJL7e/jXH1jyWCb+ZQLPEZpGOJSIloPKXQ7Y3Zy9/X/J3nlv6HHXi6zDutHHUWF9DxS9Siaj85ZDM3TyXUcmjSNmTwnltz+O2brdRJ74Os7+dHeloInIIVP5SIql7U3lo4UO8tfYtWtZqydNnPE2Ppj0iHUtEfiGVvxyUu/PuN+/y4IIH2b1vN0M7DOWajtdo+qZIJafylyJtTNvImLlj+HTjp5q+KVLFqPzlALl5uUxbPo3HFj8GwJ3d72TI0UM0fVOkClH5y8+s2LGCpDlJLN2+lNOan8bwHsNpmtg00rFEJGAqfwEgMyeTKUumMHXpVOrE12H8aeMZ0HqAzr4pUkWp/IXkTcmMnjualD0p/K7t77i1263Uia8T6VgiUoZU/lEsdW8q4xeOZ8baGbSq3YpnzniG7k27RzqWiJQDlX8UcndmfjOTcQvGsXvfbq7ucDXDOg7T9E2RKKLyjzIb0zYyeu5oPtv4GR0adtD0TZEopfKPEjl5OUxbPo3JiydjmKZvikQ5lX8UWL59OUnJSSzbvozezXszvOdwDk84PNKxRCSCVP5VWGZOJlMWT2HqsqnUja/L+N7jGdBK0zdFROVfZc3ZNIfRyaPZkLaBC9pdwM1db9b0TRHZT+Vfxezcu5OHFj7EjLUzaF27Nc8OeJYTDz8x0rFEpIJR+VcR7s47695h/ILx7Mnaw9UdruaaTtcQHxsf6WgiUgGVqvzNrD7wEtAaWA9c6O47C4zpDEwBagO5wF/d/aXSbFd+bsOeDYyZO4bPNn1Gx4YdGXHSCNrXax/pWCJSgZV2z/9O4EN3f8DM7gwv/6XAmAzg9+6+2syaAYvM7D13Ty3ltqNewembd3W/i4uOvkjTN0WkWKUt/4FAn/D154HZFCh/d1+V7/omM/seaASo/Eth2fZlJM1JYvmO5fRp3od7et6j6ZsiUmLm7r/8wWap7l433/JOd693kPHdCf2SOM7d8wq5fxgwDKBJkyZdp0+f/ouzFSctLY3ExMQyW39QCubMysti5q6ZzNo9i8TYRAbVG0TnwzpHfPpmZX0+KyrlDFY05ezbt+8id+9W7EB3P+gF+AD4upDLQCC1wNidB1lPU2Al0LO4bbo7Xbt29bI0a9asMl1/UPLn/GzDZz7g1QF+/HPH+4jPRnjq3tTIBSugMj6fFZlyBiuacgILvQQdW+xhH3fvX9R9ZrbVzJq6+2Yzawp8X8S42sC/geHuPrfY30jyMzv37mTcgnG8s+4dTd8UkUCU9pj/DOAK4IHwn28VHGBm1YE3gKnu/koptxdV3J35afO59817SctKY1jHYQzrOEzTN0Wk1Epb/g8AL5vZVcB3wGAAM+sGXOvuQ4ELgdOABmZ2ZfhxV7r74lJuu0pL2ZPC6OTRJG9PplOjTozoNYJ29dpFOpaIVBGlKn933w70K+T2hcDQ8PUXgRdLs51okpOXw4vLXmTy4snExsQyuP5ghp81nBiLiXQ0EalC9AnfCmTp9qWMnDOS5TuW07dFX+7ucTcrFqxQ8YtI4FT+FUBGdgaPL36cF5a/QP0a9XmkzyP0b9kfM2MFKyIdT0SqIJV/hH228TNGzx3NxrSNDGo/iJu73kzt6rVLnnjjAAALK0lEQVQjHUtEqjiVf4Ts2LuDcQvG8e91/6Z17db8Y8A/6HZ48Z/LEBEJgsq/nLk7b697m/ELxpOWnca1na7l6g5XUz22eqSjiUgUUfmXo5TdKYyaO4q5m+fSuVFnRvQaQdt6bSMdS0SikMq/HOTk5TB12VSmLJ5CbEws9/S4hwuPvlCzeEQkYlT+ZWzptqUkJSexYseK/dM3dfZNEYk0lX8ZycjO4LHFjzFt+TQa1GjAhD4T6N+qyNMkiYiUK5V/Gfh046eMTh7NpvRNDG4/mJu63qTpmyJSoaj8A7Q9czvjFoxj5jczaVOnDc+f+TwnNDkh0rFERA6g8g+AuzNj7QzGLxxPenY613W6jqEdhmr6pohUWCr/UkrZncLIuSOZt3keXRp3YUSvERxV96hIxxIROSiV/y+UnZfN1KVTmbJkCnExcdzb814GtR+k6ZsiUimo/A9mwwZ48EFYuBCWLIHMTPjmG75OTCNpThIrd66kX8t+3NX9LpokNIl0WhGREova3dTYzEy48EJISyt60Jo18PLLUK8enHoqAFMWT+HSmZeyc+9OJvaZyMS+E1X8IlLpRG351120CF55BT76qOhBp50GW7fCzJms6t8ZgDfXvMng9oN587w36dfqgO+xERGpFKK2/Bt9+ikO5L3+etGDYmLYnrmdOz6+g2nLQ19G9kifRxjeczi1qtcqn6AiImUgqsp/X04ub3yxgTMemU2dz+ZgQOrLrzPgkdm88cUG9uXk7h/r7ryx+g3OffNcPvjuA/o27wvAcQ2Pi1B6EZHgRM0bvotTUrny2flk5+bRbOM6qmVnAVAjJ4vcZcsZnrqXkTOW8fwfu1Ovzm5GJY9i3pZ5nND4BEb0GsGRr34ETIvsDyEiEpCoKP8lKalc/ORcMrNDe/Z91y3EcvMAiMnLo+/aBTzVsCWQxcUvj6VG4w+Jj61eYPrmQd4bEBGpZKp8+e/LyeWKZ+fvL36As1d8QrWcbABq5GZz9opPeaZ3d2o0fY3YGlvI3tOBGZc9TPPaTSMVW0SkTFXN8r/gAgi/kRsPLC5wd1bsTz92RnwM/+6XTmKrx2iUmsPdT26i3+dfww3/+ukB558PZ51V9rlFRMpJ1Sz/Bx6Adetg9WpITz/g7uq5OQD8r2MiY37fjC3147hw1g5uemUriXvzfhqYkADt24fW9/HH5ZVeRKTMVc3yb9cOFi4kb8IE9t01nLjcbKr5T6W+rXYsD17alP/0qMtRG/cydew6Oq/J3H9/jsWQHRtH/MiRxLRoEfp076JFoTvffRcaNQpdevcu759MRCQQVbP8AWJjSbvx/zh/bR0mvf4AbXZu5LDsfQBsrRfHx51rc8PrW7nq39uIy/X9D8uIi2ddvSO46fw7ef2GK6lds8CZOa+/PvRn794we3Y5/TAiIsGquuUPJFSvxtq6zTjniglcN/dV/jRnOjVysznu2728f8tK6qbn/mz83tg4Jve8kMd7DYaYGBKqVwP3ItYuIlJ5VekPecXGGO0aJ5IXE8uqRq3Ijo3bf1/B4gfIjo1jZaPWuMXQvnEisTFWnnFFRMpNlS5/gOv6HEVC9VgGrJpDQlbmQccmZGWGxlWP5bo+bcspoYhI+avy5f+bDk2JizH6rVlADD8dwsmzGDKrVScn3/n3Y3D6rZ1PXIxxVofDIxFXRKRcVPnyj68Wy/RTahOfm7X/toy4eLa1bMXV59/LikatyYiL339fjZwspp9ah/hqsZGIKyJSLqp8+QP86otPqWGQazFkVovn4VMu46XRD/Npmy6ce8UEHjnlUjKrxZNrMdSICY0XEanKoqL8efllYnKysU4d+fTV//LpOZdDTAxxsYbHxvLJOVfw6av/xTp2ICY7O/QFLiIiVViVnuq53+GHw/jxxNx0E6fHxHA6MHv2bBZdcDIJ1av9NKvn7EUwcaLm74tIlRcd5f/224XeXLtG3M9viI2FW28NXUREqrDoOOwjIiI/o/IXEYlCKn8RkSik8hcRiUKlKn8zq29m/zWz1eE/6x1kbG0z22hmj5VmmyIiUnql3fO/E/jQ3dsBH4aXizIa0DeiiIhUAKUt/4HA8+HrzwPnFTbIzLoCTYD3S7k9EREJgHkpzldvZqnuXjff8k53r1dgTAzwEXA50A/o5u43FrG+YcAwgCZNmnSdPn36L85WnLS0NBITE8ts/UFRzmApZ7CUM1hB5Ozbt+8id+9W3LhiP+RlZh8AhZ3i8p4SZrkemOnuKWYHPz++uz8JPBne7g99+/b9toTb+CUaAtvKcP1BUc5gKWewlDNYQeRsVZJBxZa/u/cv6j4z22pmTd19s5k1Bb4vZFgv4FQzux5IBKqbWZq7H+z9Ady9UXHZSsPMFpbkt2OkKWewlDNYyhms8sxZ2tM7zACuAB4I//lWwQHufumP183sSkKHfQ5a/CIiUrZK+4bvA8DpZrYaOD28jJl1M7OnSxtORETKRqn2/N19O6E3cQvevhAYWsjtzwHPlWabAXoy0gFKSDmDpZzBUs5glVvOUs32ERGRykmndxARiUIqfxGRKBQ15V9ZzkNUkpxm1srMFpnZYjNbambXVtCcnc0sOZzxSzO7qCLmDI/7j5mlmtk75ZzvTDNbaWZrzOyAWXBmFm9mL4Xvn2dmrcszX74cxeU8zcw+N7McMxtUQTPeYmbLwv8WPzSzEs2HLwslyHqtmX0V/j/+qZkdG3gId4+KCzAOuDN8/U7gwYOMnQT8E3isIuYEqgPx4euJwHqgWQXM2R5oF77eDNgM1K1oOcP39QPOAd4px2yxwFrgyPDf6RLg2AJjrgf+Hr4+BHipPJ+/Q8jZGugITAUGVdCMfYHDwtevi8RzeQhZa+e7fi7wn6BzRM2eP5XnPETF5nT3LHffF16MJzKv4EqSc5W7rw5f30ToQ4Bl+uG9QpTo793dPwT2lFeosO7AGndf5+5ZwHRCefPLn/9VoJ8V91H54BWb093Xu/uXQF45Z/tRSTLOcveM8OJcoHk5Z/xRSbLuzreYAAQ+Myeayr+Ju28GCP/ZuOCA8HmIHgZuL+ds+RWbE8DMWpjZl0AKob3ZTeWYEUqY80dm1p3QXs7acsiW3yHlLGdHEPr7+9GG8G2FjnH3HGAX0KBc0hWSIaywnJF2qBmvAt4t00RFK1FWM7vBzNYSevX656BDVKkvcC/P8xCVRgA5cfcUoKOZNQPeNLNX3X1rUBkhmJzh9TQFXgCucPfA9wyDyhkBhf0jK7iHV5IxZa0iZChOiTOa2WVAN6B3mSYqWomyuvtkYLKZXQIMJ3QWhcBUqfL3CJ2HKAI5869rk5ktBU4ldFigQuU0s9rAv4Hh7j43yHxB5oyQDUCLfMvNgYKv4H4cs8HMqgF1gB3lE++ADD8qLGeklSijmfUntFPQO9+h0/J2qM/ndGBK0CGi6bDPj+chgoOch8jdW7p7a+A2YGrQxV8CxeY0s+ZmVjN8vR5wMrCy3BKGlCRndeANQs/jK+WYLb9ic0bQAqCdmbUJP1dDCOXNL3/+QcBHHn4XsByVJGekFZvRzLoATwDnunskdwJKkrVdvsXfAqsDTxGJd7sjcSF0nPTD8JP4IVA/fHs34OlCxl9JZGb7FJuT0HmUviQ0S+BLYFgFzXkZkA0sznfpXNFyhpc/AX4AMgntmQ0op3y/AVYRei/knvBtowgVFEAN4BVgDTAfOLK8/65LmPPE8POWDmwHllbAjB8AW/P9W5wRieeyhFknAUvDOWcBxwWdQad3EBGJQtF02EdERMJU/iIiUUjlLyIShVT+IiJRSOUvIhKFVP4iIlFI5S8iEoX+HxZjG0Eq14sCAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlcVPX+x/HXh1UFFffdSMWsXMPMFksyE1FcUNNSs8Vsse7tZ5u3zOu1TeumedvMzLKscAEUFTBDrczMpdzLNU3TMlNUFJXl+/tjjsUQCDrDnBn5PB+PeTDnnO+ZeYM+5j3nnJlzxBiDUkopdZaf3QGUUkp5Fy0GpZRSTrQYlFJKOdFiUEop5USLQSmllBMtBqWUUk60GJStRGSMiMwoxcffLCIdXXyMUs2olLfRYlClTkTuEJE1IpIpIgdEJFVEbvDEcxtjrjTGLPPEc7mDiISLiBGRAA88V5CIzBGR3dZzdixmfFURSRKREyKyR0TuKO2Myh5aDKpUicgI4DXgRaAW0BB4C+hpZy71p+XAIODXEox9EziD499xIPC2iFxZitmUTbQYVKkRkcrAWGC4MSbRGHPCGJNtjJlvjHmiiHVmi8ivInJURL7M/8IjIjEiskVEjovILyLyuDW/uogsEJEMETksIl+JiJ+1bLeI3GLd9xeRp0Vkp/UYa0WkgbVskojsFZFj1vwO5/F79hSRdda6O0Uk2ppfV0SSrUw7ROS+fOu0s7aijonIbyIywVr0pfUzw9rCurakOc6XMeaMMeY1Y8xyIPdcY0UkBOgDPGuMybTWSQYGl1Y+ZR8tBlWargXKAUnnsU4qEAHUBL4DPs637D3gfmNMRaA5sMSa/xiwD6iB493s00Bh53oZAdwOxACVgHuAk9ay1UBroCrwCTBbRMoVF1ZE2gEfAk8AYcCNwG5r8adWrrpAX+BFEelkLZsETDLGVAIaA7Os+TdaP8OMMaHGmG8Kec47rBIs6tawuNwXoCmQa4zZlm/eekC3GC5Cpb4fU5Vp1YBDxpickq5gjJl29r6IjAGOiEhlY8xRIBu4QkTWG2OOAEesodlAHeASY8wO4KsiHn4o8KQxZqs1vT7f8+Y/uPyqiIwCLss/pgj3AtOMMYut6V+s7A2AG4DuxphTwDoRmYrjHXa6lbmJiFQ3xhwCVhbzPH8yxnyCo7w8KRQ4WmDeUaCih3MoD9AtBlWa/gCql/RAqrWrZ5y1O+YYf73zrm797IPj3f4eEfki326WV4AdwGcisktERhbxFA2AnUU892Mi8oO1CysDqJzvec+lqMesCxw2xhzPN28PUM+6fy+Od+E/ishqEelegue6YCLS0No1lSkimRfwEJk4trLyqwQcL2Ss8nFaDKo0fQOcAnqVcPwdOA5K34LjhTncmi8AxpjVxpieOHYzzcXa/WKMOW6MecwY0wiIBUbk22WT314cu22cWMcTngJuA6oYY8JwvBuWEmQu9DGB/UBVEcn/jroh1haFMWa7MeZ263cZD8yx9uMXe7pjERmY/0W+kNvfdiUZY362dk2FGmNCS/B7FbQNCBCRiHzzWgGbL+CxlJfTYlClxtr9Mxp4U0R6iUgFEQkUka4i8nIhq1QETuPY0qiA45NMwJ8frRxo7VbKBo5hHTAVke4i0kREJN/8wg6mTgWeE5EIcWgpItWs580Bfsfx4jeav787Lsp7wN0i0klE/ESknog0M8bsBVYAL4lIORFpiWMr4WMr8yARqWGMyQMyrMfKtTLkAY2KekJjzMf5X+QLuf1cwuyISHC+YylBVta/FaIx5gSQCIwVkRARuR5HiX9U0udSvkOLQZUqY8wEHAd9R+F40dsLPIzjHX9BH+LY3fILsIW/73cfDOy2djM9gONjluA4WP05jt0d3wBvFfHdhQk4tjI+w1Eg7wHlgUU4Dnpvs57/lJWzJL/fKuBuYCKOrYwvgEusxbfj2OrZj+MA/L/zHYuIBjZbu3UmAQOMMaeMMSeBF4CvrQPJ7UuSwwVbgSwcu7gWWfcvAbA+wZWab+xDOP5eB3EcWH/QGKNbDBch0Qv1KKWUyk+3GJRSSjnRYlBKKeVEi0EppZQTLQallFJOfPKbz9WrVzfh4eF2xyjSiRMnCAkJsTtGiflSXl/KCr6V15eygm/l9Zasa9euPWSMqVHcOJ8shvDwcNasWWN3jCItW7aMjh072h2jxHwpry9lBd/K60tZwbfyektWEdlTknG6K0kppZQTtxSDiESLyFbr1MJ/O0+N9e3Kmdbyb0Uk3JofLiJZ1imL14nIZHfkUUopdeFc3pUkIv44LuDRGccphleLSLIxZku+YfcCR4wxTURkAI5zw/S3lu00xrR2NYdSSin3cMcWQztghzFmlzHmDBDP36/O1ROYbt2fA3Qq7HwsSiml7OfyKTFEpC8QbYwZak0PBq4xxjycb8wma8w+a3oncA2Oc7xvxnGOmmPAKGNMoefSF5FhwDCAWrVqRcbHx7uUuzRlZmYSGnohJ7C0hy/l9aWs4Ft5fSkr+FZeb8kaFRW11hjTtrhx7vhUUmHv/Au2TVFjDgANjTF/iEgkMFdErjTGHPvbYGOmAFMA2rZta7zhCH9RvOUTCCXlS3l9KSv4Vl5fygq+ldeXsoJ7diXtw3GxkrPq4zibZKFjrIu2VMZxEZPTxpg/AIwxa3Fc8KSpGzIppZS6QO4ohtVAhIhcKiJBwAAcFwnPLxkYYt3vCywxxhgRqWEdvEZEGuE4ffIuN2RSSil1gVzelWSMyRGRh3Gcy90fx/VvN4vIWGCNMSYZx3nvPxKRHcBhHOUBjgufjxWRHBwXKXnAGHPY1UxKKaUunFu++WyMSQFSCswbne/+KaBfIeslAAnuyKCUUso99JvPSimlnGgxKKWUcqLFoJRSyokWg1JKKSdaDEoppZxoMSillHKixaCUUsqJFoNSSiknWgxKKaWcaDEopZRyosWglFLKiRaDUkopJ1oMSimlnGgxXKi9e6FvX6hcGSpVgrg4+Plnu1MppZTL3HLa7TLn5Em4+WYIDobp00EERo2CqCjYsMHudEop5RIthgvx7ruwaxds3QpNmjjmtWwJERHwzjtw1VX25lNKKRforqQCcnLzOHYqm9w8U/Sg5GRo3/6vUgC49FK4/nqYN6/0QyqlVCnSLQbgdE4uKRsP8PaynWw/mEmAn5CTZ2haM5QHOjYmpkUdggP8/1ph82bo2fPvD3TllTB7tueCK6VUKSjzxbBubwZ3TVtFdm4eJ87kApCd69ha2PpbJqOSNvGf5C1Mv6cdrRqEOVY6fBiqVPn7g1WtCkeOeCq6UkqVijK9K2n93gxun7KSjKzsP0uhoBNncsnIymbAlJWs35vx1wKRvw8259j9pJRSPqLMFsPpnFyGTFtFVnbhhVBQVrZj/OmcXMfWwuHDfx905EjhWxJKKeVDymwxpGw8QHZu3nmtk52bR+rGXx3HEjZv/vuALVvgiivclFAppexRZovh7WU7C999JDlA0buV3l62A3r0gJUrHR9ZPWv3bvj6a8cypZTyYWWyGHLzDNsPZha6LLDKCkIav0pA5bXA37coth3MJPfeoRAe7vhk0rx5jo+v9uwJDRrA/feXbnillCplZbIYTpzJIcCvkIPHQN7pOpi8cpSvO5sKjSYSUGk9+QsiwE84ERgMS5ZA06YweDAMHOj4HsOSJRAa6qHfQimlSkeZ/LhqSFAAOUV8gS33RAQnf2pMQMUtBFVfTPl6n5JbbQlnDnUm5/iV5OQ51qdhQ0hI8HBypZQqfWWyGPz9hIiaoWz7rfDdSeBHzvHm5By/goBKGwiu/jnl688gN6seNXJiKWJjQymlLgplclcSwIMdGxMS5F/MKD9yjrXmxK7/I2t/P/wCsjhccTKDUgaxYv8KjH5vQSl1ESqzxRDTog6B/iX99f3JORqJ/y8jeeaaZzmYdZD7F9/PXWl3sfrX1aWaUymlPK3MFkNwgD/T72lH+cDithocygf68+E91zKg2W0s7L2Qp695mr3H93LPonsY+tlQ1h1cV8qJlVLKM9xSDCISLSJbRWSHiIwsZHmwiMy0ln8rIuH5lv3Lmr9VRLq4I09JtWoQRvyw9oSVDyxyt1JIkD9h5QOJH9b+z3MlBfkHcXuz20mJS+Hxto+z/ch2BqcO5qHPH2LzH4V88U0ppXyIywefRcQfeBPoDOwDVotIsjFmS75h9wJHjDFNRGQAMB7oLyJXAAOAK4G6wOci0tQYU7LzVLhBqwZhfPtMJ1I3/srby3awzensqhV5sGNjurao7Xx2VUu5gHIMuXII/Zr245MfP+H9Te8zYMEAWpZvSZ3Ddbis6mWe+jWUUspt3PGppHbADmPMLgARiQd6AvmLoScwxro/B3hDRMSaH2+MOQ38JCI7rMf7xg25Siw4wJ9eberRq009cvMMJ87kEBIUgH8JP35UIbACQ1sMZcBlA/joh4+Ytn4afef3pUt4Fx5q9RCNwhqV8m+glFLu445iqAfszTe9D7imqDHGmBwROQpUs+avLLBuPTdkumD+fkKlcoEXtG5oUCgPtnqQhocasrPKTmb8MIPFexbT7dJuPNDqARpWaujmtEop5X7uKIbC3lYX/BxnUWNKsq7jAUSGAcMAatWqxbJly84jomeZLENL/5Y8W/tZ0o+lk/ZTGgt3LeSa0GuIrhxN1YCqdkd0kpmZ6dV/z/x8KSv4Vl5fygq+ldeXsoJ7imEf0CDfdH1gfxFj9olIAFAZOFzCdQEwxkwBpgC0bdvWdOzY0Q3RS8eyZcs4my+WWA5lHWLqxqnM2jqL1SdX0yeiD/e1uI9aIbXsDWrJn9fb+VJW8K28vpQVfCuvL2UF93wqaTUQISKXikgQjoPJyQXGJANDrPt9gSXG8e2wZGCA9amlS4EIYJUbMnmV6uWrM7LdSFLiUujdpDcJ2xKISYxh/KrxHMo6ZHc8pZRy4nIxGGNygIeBRcAPwCxjzGYRGSsiZ89B/R5QzTq4PAIYaa27GZiF40B1GjDck59I8rTaIbUZfe1o5veeT0yjGD798VNiEmOYsHYCR07pJUGVUt7BLedKMsakACkF5o3Od/8U0K+IdV8AXnBHDl9Rv2J9nrv+OYa2GMrb69/mg00fMPPHmQy6YhBDrhxCpaBKdkdUSpVhZfabz97gkkqXMK7DOJJ6JnFDvRuYsmEK0XOimbx+MplnijrBn1JKlS4tBi/QOKwxr3Z8ldmxs4msHcmb694kOjGaaZumcTL7pN3xlFJljBaDF2lWtRmv3/w6n3b7lObVmzNx7US6Jnbloy0fcTr3tN3xlFJlhBaDF2pevTmTb5nMR10/IiIsgpdXv0xMQgzxP8ZzJveM3fGUUhc5LQYv1rpma6Z2mcp7t75HvYr1eOHbF+ie1J2EbQlk52XbHU8pdZHSYvAB7eq0Y3r0dCbfMplq5aox5psx9Jzbk/k755Obd9F+ulcpZRMtBh8hIlxf73o+6fYJr9/8OiGBITy9/Gl6J/cm7ac08kye3RGVUhcJLQYfIyJ0bNCRmd1nMqHjBPzFnye+fIK+8/uSviddLzeqlHKZFoOP8hM/Ol/SmTmxcxjXYRxncs/w6LJH6b+gP1/u+1ILQil1wbQYfJy/nz/dGnVjbs+5PHf9cxw7c4zh6cMZlDqIb/Z/owWhlDpvWgwXiQC/AHo16cX83vMZfe1oDp48yLDFw7h70d2s+XWN3fGUUj5Ei+EiE+gXSL+m/VjYeyH/avcv9hzbw92L7ua+z+5j/e/r7Y6nlPIBWgwXqSD/IO64/A5S4lJ4vO3jbD28lUEpgxiePpwtf2wp/gGUUmWWFsNFrnxAeYZcOYS0Pmn886p/su7gOvov6M+jSx9l25FtdsdTSnkht5x2W3m/CoEVGNpiKP0v68+MLTP4cMuHLPl5CV3CuxCZHWl3PKWUF9EthjKmYlBFHmz9IGl90hjaYihf7PuCF/e/yNNfPc3eY3vtjqeU8gJaDGVU5eDK/OOqf5DWJ42oSlF8tuczYufGMmbFGPZnFnrZbaVUGaHFUMZVLVeV3lV6kxqXSv/L+pO8M5luSd14fuXz/HbiN7vjKaVsoMWgAKhRoQb/uuZfpMSl0LtJbxK2JRCTGMP4VeM5lHXI7nhKKQ/SYlBOaofUZvS1o5nfez4xjWL45MdPiEmMYcLaCWScyrA7nlLKA7QYVKHqV6zPc9c/x7ye84hqEMUHmz4gOjGaN75/g2NnjtkdTylVirQY1DmFVw5n/I3jSeyRyHV1r+OdDe8QnRDNO+vf4UT2CbvjKaVKgRaDKpEmVZowoeMEZsfOJrJWJG+se4PohGimbZrGyeyTdsdTSrmRFoM6L82qNuP1m1/n026fcmX1K5m4diIxiTHM2DKD07mn7Y6nlHIDLQZ1QZpXb87kWybzYdcPaRzWmPGrxxOTGMPMH2eSnavXo1bKl2kxKJe0qdmG97q8x3u3vke90Ho8/+3zdE/qTuL2RLLztCCU8kVaDMot2tVpx/To6Uy+ZTJVy1Xl3yv+Tc+5PZm/cz65ebl2x1NKnQctBuU2IsL19a7nk26f8PrNr1MhoAJPL3+auOQ40nankWfy7I6olCoBLQbldiJCxwYdmRU7i1dvehVBeOKLJ+g3vx/pP6fr5UaV8nJaDKrU+Ikft4bfSkKPBMZ1GMfp3NM8uvRRBiwcwJf7vtSCUMpLaTGoUufv50+3Rt2Y23Muz13/HEdPH2V4+nAGpw7mm/3faEEo5WVcKgYRqSoii0Vku/WzShHjhlhjtovIkHzzl4nIVhFZZ91qupJHebcAvwB6NenF/F7zGX3taH498SvDFg/jnkX3sPa3tXbHU0pZXN1iGAmkG2MigHRr2omIVAX+DVwDtAP+XaBABhpjWlu3gy7mUT4g0D+Qfk37sTBuISPbjWT3sd3clXYXwz4bxobfN9gdT6kyz9Vi6AlMt+5PB3oVMqYLsNgYc9gYcwRYDES7+LzqIhDsH8zAyweSEpfC420f58fDPzIwZSDD04ez5Y8tdsdTqswSV/bvikiGMSYs3/QRY0yVAmMeB8oZY563pp8Fsowx/xWRZUA1IBdIAJ43RQQSkWHAMIBatWpFxsfHX3Du0paZmUloaKjdMUrMW/KezjvNF8e/IP1YOifzTtKqQitiKsdQN6jun2O8JWtJ+VJeX8oKvpXXW7JGRUWtNca0LXagMeacN+BzYFMht55ARoGxRwpZ/wlgVL7pZ4HHrPv1rJ8Vgc+AO4vLY4whMjLSeLOlS5faHeG8eFveY6ePmTe/f9O0/7i9afFBC/PEsifMroxdxhjvy1ocX8rrS1mN8a283pIVWGNK8BobUILiuKWoZSLym4jUMcYcEJE6QGHHCPYBHfNN1weWWY/9i/XzuIh8guMYxIfFZVIXt4pBFXmo9UMMvHwgH2z+gI9/+JhFexbRvVF3Wme3tjueUhc9V48xJANnP2U0BJhXyJhFwK0iUsU66HwrsEhEAkSkOoCIBALdcWyJKAVA5eDK/POqf5Ial8rgywezaPcint//PGNWjOFA5gG74yl10XK1GMYBnUVkO9DZmkZE2orIVABjzGHgOWC1dRtrzQvGURAbgHXAL8C7LuZRF6Fq5avx+NWPkxqXSoeKHUjemUy3pG68sPIFDp7UD7Ip5W7F7ko6F2PMH0CnQuavAYbmm54GTCsw5gQQ6crzq7KlRoUa9K3al1FdRvHOhneYs20OSTuSuO2y27i3+b1UK1/N7ohKXRT0m8/K59QOqc2/r/03yb2TiQ6P5uMfPqZrYlcmrp1IxqkMu+Mp5fO0GJTPalCxAc/f8Dzzes4jqkEU7296n+jEaN5c9ybHzhyzO55SPkuLQfm88MrhjL9xPIk9Ermu7nVMXj+Z6IRopmyYwonsE3bHU8rnaDGoi0aTKk2Y0HECs7rPIrJmJK9//zpdE7ry/qb3ycrJsjueUj5Di0FddC6vdjmvd3qdT2I+4YpqVzBh7QS6JnRlxpYZnM49bXc8pbyeFoO6aLWo0YLJnSczPXo6jcMaM371eGISY5i1dRbZuXo9aqWKosWgLnpX1bqK97q8x9Rbp1I3pC7PrXyO2LmxJG1PIicvx+54SnkdLQZVZlxT5xo+7Pohb9/yNmHBYYxeMZqec3syf+d8cvNy7Y6nlNfQYlBliohwQ70b+LTbp/wv6n+UDyjP08ufJi45jkW7F5Fn8uyOqJTttBhUmSQiRDWMYlbsLF696VUAHv/icfrN78eSn5fo5UZVmabFoMo0P/Hj1vBbSeyRyEsdXuJUzin+ufSf3L7wdr7a95UWhCqTtBiUAvz9/OneqDvzes1j7HVjyTidwUPpD3Fn6p18e+Bbu+Mp5VFaDErlE+AXQO+I3szvNZ9n2z/LgRMHGPrZUO5ZdA/f/fad3fGU8ggtBqUKEegfyG2X3cbCuIWMbDeSXRm7GJI2hPsX38/G3zfaHU+pUqXFoNQ5BPsHM/DygaT2SeWxyMf44Y8fuCPlDh5Of5gf/vjB7nhKlQotBqVKoHxAee5qfhepfVL5R5t/8N3B77htwW2MWDaCHUd22B1PKbfSYlDqPIQEhnBfy/tY1GcRD7Z6kBX7VxCXHMeTXz7JT0d/sjueUm6hxaDUBagYVJGHWj9EWlwa9zS/h2V7l9FrXi+eWf4Me4/vtTueUi7RYlDKBWHlwng08lFS41IZdPkgFu1eRI+kHoxZMYYDmQfsjqfUBdFiUMoNqpWvxhNXP0FKXAr9LutH8s5kuiV1Y/bh2fx+8ne74yl1XrQYlHKjmhVq8vQ1T7Ow90J6NO7B8uPL6ZrYlVdWv8IfWX/YHU+pEgmwO4BSF6M6oXUYc90Ymp9ozvflv2fGDzOYvW02dzS7g7ub303l4Mp2R1SqSLrFoFQpqh5YnRdueIG5PefSsUFHpm2aRpeELry17i2OnzludzylCqXFoJQHXFr5Ul6+8WUSeiRwbZ1reXv920QnRPPuhnc5mX3S7nhKOdFiUMqDIqpEMDFqIrO6z6JNzTb87/v/EZ0QzQebPiArJ8vueEoBWgxK2eLyapfzRqc3+DjmYy6vdjmvrn2VmMQYPv7hY07nnrY7nirjtBiUslHLGi15p/M7TI+eTnilcMatGke3xG7M2jqL7Nxsu+OpMkqLQSkvcFWtq5jWZRrv3voutUNq89zK54idG0vS9iRy8nLsjqfKGC0GpbyEiNC+Tns+6voRb3V6i7DgMEavGE2veb1YsGsBuXm5dkdUZYQWg1JeRkToUL8Dn3b7lElRkwj2D+ZfX/2LPsl9+Gz3Z+SZPLsjqoucS8UgIlVFZLGIbLd+ViliXJqIZIjIggLzLxWRb631Z4pIkCt5lLqYiAg3N7yZ2bGz+e9N/8VgeOyLx7ht/m0s/XmpXo9alRpXtxhGAunGmAgg3ZouzCvA4ELmjwcmWusfAe51MY9SFx0/8aNLeBcSeyTy4g0vkpWTxT+W/oM7Ft7B8l+Wa0Eot3O1GHoC063704FehQ0yxqQDTl/zFBEBbgbmFLe+Ugr8/fyJbRzLvF7zGHvdWA6fOsyDnz/Inal3surAKrvjqYuIuPJuQ0QyjDFh+aaPGGOK2p3UEXjcGNPdmq4OrDTGNLGmGwCpxpjmRaw/DBgGUKtWrcj4+PgLzl3aMjMzCQ0NtTtGiflSXl/KCqWbN8fksDJzJYuOLiIjN4OI4Ai6h3WnUblGF/R4+rctPd6SNSoqaq0xpm2xA40x57wBnwObCrn1BDIKjD1yjsfpCCzIN10D2JFvugGwsbg8xhgiIyONN1u6dKndEc6LL+X1pazGeCbvqZxTZsaWGeam+JtM8w+am/s/u99sOLjhvB9H/7alx1uyAmtMCV5jiz27qjHmlqKWichvIlLHGHNAROoAB4ttor8cAsJEJMAYkwPUB/afx/pKKSDYP5iBlw8kLiKO+B/jmbZpGnek3EHH+h0Z3mY4zao2szui8jGuHmNIBoZY94cA80q6otVeS4G+F7K+UspZ+YDy3N38btL6pPFIm0dYe3At/eb3Y8SyEew4ssPueMqHuFoM44DOIrId6GxNIyJtRWTq2UEi8hUwG+gkIvtEpIu16ClghIjsAKoB77mYR6kyLyQwhGEth5HWJ40HWj3Aiv0riEuO46kvn2L30d12x1M+wKUL9Rhj/gA6FTJ/DTA033SHItbfBbRzJYNSqnCVgioxvPVwBjYbyAebP+CTHz8hbXcasY1ieaDVA9SvWN/uiMpL6TeflbrIhZUL49HIR0mJS2Hg5QMd5ZAUy3+++Q+/nvjV7njKC2kxKFVGVC9fnSevfpKUuBT6Nu3L3B1ziUmM4aVvX+L3k7/bHU95ES0GpcqYmhVq8kz7Z0jpnUKPxj2YuXUmXRO7knQkicOnDtsdT3kBLQalyqg6oXUYc90Y5veaT5fwLiw9tpTohGgmfTeJo6eP2h1P2cilg89KKd/XoFIDXrjhBVpkteC7oO94b+N7xP8Yz+ArBjP4isFUDKpod0TlYbrFoJQCoHZgbV6+6WUSeiTQvk573l7/NtEJ0UzdOJWT2Sftjqc8SItBKeUkokoEE6MmMqv7LNrUbMOk7ybRNbEr0zdPJysny+54ygO0GJRShbq82uW80ekNZsTM4LIql/HfNf8lJjGGj3/4mDO5Z+yOp0qRFoNS6pxa1WjFlFun8EH0B4RXCmfcqnF0S+rG7G2zyc7LtjueKgVaDEqpEomsFcm0LtN499Z3qVWhFmO/GUtsUixzd8wlJy/H7njKjbQYlFIlJiK0r9Oej7p+xFud3qJycGWe/fpZes/rzcJdC8nNy7U7onIDLQal1HkTETrU70B8t3hei3qNQP9ARn41kj7JfVi8ZzF5Js/uiMoFWgxKqQsmInRq2Ik5sXN45aZXyCOPEctG0H9Bf5btXabXo/ZRWgxKKZf5iR/R4dEk9UjixRte5GT2SR5Z8ggDUwby9S9fa0H4GC0GpZTb+Pv5E9s4lnm95jH2urH8kfUHD3z+AEPShrDqwCq746kS0mJQSrldgF8AvSN6s6D3AkZdM4pfMn/h3s/u5d5F9/L9we/tjqeKocWglCo1gf6B9G/Wn5S4FJ66+il2ZuzkztQ7eeDzB9h0aJN4rittAAAQJ0lEQVTd8VQRtBiUUqUu2D+YQVcMIiUuhRGRI9h8aDO3L7ydR5Y8wtbDW+2OpwrQYlBKeUyFwArc3fxu0vqk8UibR1j721r6zu/LiGUj2Jmx0+54yqLFoJTyuJDAEIa1HEZanzTub3k/K/avoPe83oz8aiR7ju2xO16Zp8WglLJNpaBKPNzmYdLi0ri7+d0s+XkJPef25Nmvn2Xf8X12xyuztBiUUrYLKxfG/0X+HylxKdxx+R2k7EohNimWsd+M5dcTv9odr8zRYlBKeY3q5avz5NVPkhKXQp+mfUjakURMYgwvffsSv5/83e54ZYYWg1LK69QKqcWo9qNY2HshPRr3YObWmcQkxvDqmlc5fOqw3fEueloMSimvVTe0LmOuG8P8XvO5NfxWPtzyIdEJ0fzvu/9xIveE3fEuWgF2B1BKqeI0qNSAF254gXtb3MvkdZOZunEqwRLMz+t+ZtAVg6gYVNHuiBcV3WJQSvmMRpUb8fJNLzOnxxyalmvKW+vfIjohmqkbp3Iy+6Td8S4aWgxKKZ/TtEpT7qt5HzO7z6R1zdZM+m4SXRO7Mn3zdE7lnLI7ns/TYlBK+awrql3Bm53eZEbMDC6rchn/XfNfYhJj+OSHTziTe8bueD5Li0Ep5fNa1WjFlFun8H6X92lYqSEvrXqJbkndmL1tNtl52XbH8zkuFYOIVBWRxSKy3fpZpYhxaSKSISILCsz/QER+EpF11q21K3mUUmVb29pteb/L+0zpPIWaFWoy9puxxCbFMm/HPHLycuyO5zNc3WIYCaQbYyKAdGu6MK8Ag4tY9oQxprV1W+diHqVUGSciXFv3WmZ0ncGbnd6kUlAlRn09it7zepOyK0WvR10CrhZDT2C6dX860KuwQcaYdOC4i8+llFIlJiLcWP9GZnafyWtRrxHoH8hTXz1Fn+Q+LN6zWAviHFwthlrGmAMA1s+aF/AYL4jIBhGZKCLBLuZRSiknIkKnhp2YEzuHV256hVyTy4hlI+i/oD9f7P1Cr0ddCCnujyIinwO1C1n0DDDdGBOWb+wRY0xRxxk6Ao8bY7rnm1cH+BUIAqYAO40xY4tYfxgwDKBWrVqR8fHx58xtp8zMTEJDQ+2OUWK+lNeXsoJv5fWlrHDhefNMHmtOrCH1aCqHcg4RHhROTFgMzco1Q0RKIan3/G2joqLWGmPaFjvQGHPBN2ArUMe6XwfYeo6xHYEFF7o8/y0yMtJ4s6VLl9od4bz4Ul5fymqMb+X1pazGuJ73TO4Zk7AtwXSe3dk0/6C5uTPlTrPqwCr3hCvAW/62wBpTgtdYV3clJQNDrPtDgHnns7K1xYA4aroXoBeBVUp5RKBfIHERcSzsvZBR14xi3/F93LPoHoYuGsq6g2X7czCuFsM4oLOIbAc6W9OISFsRmXp2kIh8BcwGOonIPhHpYi36WEQ2AhuB6sDzLuZRSqnzEugfSP9m/VkYt5Anr36S7RnbGZw6mAc/f5DNhzbbHc8WLp1EzxjzB9CpkPlrgKH5pjsUsf7Nrjy/Ukq5S7mAcgy+YjB9IvoQvzWe9ze9z4CFA4hqEMXw1sO5rOpldkf0GP3ms1JK5VMhsAL3NL+H1LhUHm79MGt+XUPf+X15bNlj7MzYaXc8j9BiUEqpQoQGhXJ/q/tJ7ZPKsJbDWP7LcnrP683Ir0ay59geu+OVKi0GpZQ6h8rBlXmkzSOk9UnjruZ3kb4nnZ5zezL669H8kvmL54Ls2wePPALXXgsVKoAI7N5dKk+lxaCUUiVQpVwVRkSOILVPKrc3u52FuxbSPak7z33zHL+e+NW1B8/MhNtuc/wsyo4dMGsWVKkCHQo9bOs2WgxKKXUeqpevzlPtniIlLoU+EX1I3JFIt8RujFs1jkNZhy7sQdPTYfZsWLKk6DE33gi//QYpKdCv34U9TwlpMSil1AWoFVKLUe1HsbD3Qro37k78j/F0TejKhDUTOHLqyHk9Vl5iIsb6WSQ/z71cazEopZQL6obW5T/X/YfkXsl0vqQz07dMJzohmv999z+Onj5a5Hqnc3JJ+n4ft05YxtFZSQiQMSuRLhOWkfT9Pk7n5HrulyhAi0EppdygYaWGvNjhRZJ6JHFj/Rt5d+O7dE3oytvr3yYrL8tp7Lq9GVzzQjqjkjZhNm8h2LraXLmcM+Ru+YFRSZu45oV01u/NsONX0WJQSil3ahTWiFdueoU5sXO4uvbVvLXuLcb8MoapG6dyMvsk6/dmcPuUlWRkZXPiTC5Ru9bgl+c4BbhfXh5RO1dz4kwuGVnZDJiy0pZy0GJQSqlScFnVy5h08yTiu8cTHhzOpO8mEZ0QzeA5r5CVc+rPcd1//IpyuY7Lj5bLzab7j8v/XJaVncuQaas8vlvJpVNiKKWUOrcrh41mZmIi6xqX583etVjZPJnGksDQBb/T54sjYPydxjf7/Sd2j+/u/CBj8t2Pi4OuXUs1s24xKKVUaRo3juNNmtD6Vz/e/e9upr20i/oHz/Di4Lp0HxdB8g0Vyc7XDcG5RVybOiQE2rSBceNKPbIWg1JKlaaICNZOnkzemDFkBQTTZtspPnjpJ9555SdqHM3hP3fXo8dLTZl3fRg5hbwi54gfWQHB5P3nPzByJKxfD2vXOhampsKcOfDFF26NrLuSlFKqtPn7k/nwP4nbWZlJieO49MgvXLf5BNdu3sVXrUJ5o3ctXrm9Np3WHiP01F/Xoj4ZGMyuKvV4NG4kicPvolL5IOfHfeghx8+bboJly9wWV4tBKaU8ICQogJ1hdYkdMpEHV87hkRXxlMvN5sb1mXRYn8nemkFOpXDKP5A329/GW9f2Az8/QoICwEPXp9ZdSUop5QH+fkJEzVDy/PzZVuMSsv0D/1wmQMODZ5zGZ/sHsrVGOEb8aFozFH+/0rkedWG0GJRSykMe7NiYkCB/umxbQciZrHOODTmT5RgX5M+DHZt4KKGDFoNSSnlITIs6BPoJnXasxo+/dgs5DjAHkSN/vST7Yei0cxWBfkLXFrU9mlOLQSmlPCQ4wJ/4Gyr9eQoMcBxg/rFGOPfFPcuPNcI5GRj857JyOWeI71CZ4AD/wh6u1GgxKKWUBzX7fjnlBHKtj6G+esMgYu96jeWXtqHHkIlMuGEgWQHB5Iof5fwc4z1Ni0EppTxp1iz8crKRVi1ZPmcxy2MHg58fgf6C8ffnq9ghLJ+zGGnZAr/sbMfFeTxMP66qlFKeVLs2vPIKfo8+Smc/PzoDuXmGE2dyCAkK+OvTR93XwmuvufX7CSWlxaCUUp40f/7fZvn7CZXKBRaY6Q+PPea4eZjuSlJKKeVEi0EppZQTLQallFJOtBiUUko50WJQSinlRItBKaWUEy0GpZRSTrQYlFJKOXGpGESkqogsFpHt1s8qhYxpLSLfiMhmEdkgIv3zLbtURL611p8pIkEF11dKKeVZrm4xjATSjTERQLo1XdBJ4E5jzJVANPCaiIRZy8YDE631jwD3uphHKaWUi1wthp7AdOv+dKBXwQHGmG3GmO3W/f3AQaCGiAhwMzDnXOsrpZTyLDEuXENURDKMMWH5po8YY/62Oynf8nY4CuBKoCqw0hjTxFrWAEg1xjQvYt1hwDCAWrVqRcbHx19w7tKWmZlJaGio3TFKzJfy+lJW8K28vpQVfCuvt2SNiopaa4xpW+xAY8w5b8DnwKZCbj2BjAJjj5zjceoAW4H21nQNYEe+5Q2AjcXlMcYQGRlpvNnSpUvtjnBefCmvL2U1xrfy+lJWY3wrr7dkBdaYErzGFnt2VWPMLUUtE5HfRKSOMeaAiNTBsZuosHGVgIXAKGPMSmv2ISBMRAKMMTlAfWB/cXmUUkqVLlePMSQDQ6z7Q4B5BQdYnzRKAj40xsw+O99qr6VA33Otr5RSyrNcLYZxQGcR2Q50tqYRkbYiMtUacxtwI3CXiKyzbq2tZU8BI0RkB1ANeM/FPEoppVzk0oV6jDF/AJ0Kmb8GGGrdnwHMKGL9XUA7VzIopZRyL/3ms1JKKSdaDEoppZxoMSillHKixaCUUsqJFoNSSiknWgxKKaWcaDEopZRyosWglFLKiRaDUkopJy6ddtsuIvI7sMfuHOdQHcdJAn2FL+X1pazgW3l9KSv4Vl5vyXqJMaZGcYN8shi8nYisMSU557mX8KW8vpQVfCuvL2UF38rrS1lBdyUppZQqQItBKaWUEy2G0jHF7gDnyZfy+lJW8K28vpQVfCuvL2XVYwxKKaWc6RaDUkopJ1oMSimlnGgxuImIVBWRxSKy3fpZpZAxl4jIWuvypptF5AEvztpaRL6xcm4Qkf7emtUalyYiGSKywNMZreePFpGtIrJDREYWsjxYRGZay78VkXDPp/wzS3FZbxSR70QkR0T6FvYYnlSCvCNEZIv1/zRdRC6xI6eVpbisD4jIRus1YLmIXGFHzmIZY/TmhhvwMjDSuj8SGF/ImCAg2LofCuwG6npp1qZAhHW/LnAACPPGrNayTkAssMCGjP7ATqCR9W+8HriiwJiHgMnW/QHATE/nPI+s4UBL4EOgrx05zzNvFFDBuv+gl/9tK+W73wNIs/PvW9RNtxjcpycw3bo/HehVcIAx5owx5rQ1GYx9W2wlybrNGLPdur8fOAgU+43JUlBsVgBjTDpw3FOhCmgH7DDG7DLGnAHiceTOL//vMQfoJCLiwYxnFZvVGLPbGLMByLMhX0ElybvUGHPSmlwJ1PdwxrNKkvVYvskQwCs//aPF4D61jDEHAKyfNQsbJCINRGQDsBfHu9/9Hsx4VomyniUi7XC8A9rpgWwFnVdWm9TD8e951j5rXqFjjDE5wFGgmkfSFZHDUlhWb3K+ee8FUks1UdFKlFVEhovIThxbw//wULbzEmB3AF8iIp8DtQtZ9ExJH8MYsxdoKSJ1gbkiMscY85u7Mp7ljqzW49QBPgKGGGNK5R2ku7LaqLB3/gXfCZZkjCd4S46SKnFeERkEtAVuKtVERStRVmPMm8CbInIHMAoYUtrBzpcWw3kwxtxS1DIR+U1E6hhjDlgvpgeLeaz9IrIZ6IBj14JbuSOriFQCFgKjjDEr3Z3xLHf+XW2yD2iQb7o+UHBL8OyYfSISAFQGDnsmXqE5ziosqzcpUV4RuQXHG4mb8u2u9bTz/dvGA2+XaqILpLuS3CeZv5p/CDCv4AARqS8i5a37VYDrga0eS/iXkmQNApKAD40xsz2YraBis3qB1UCEiFxq/d0G4MidX/7foy+wxFhHID2sJFm9SbF5RaQN8A7Qwxhj5xuHkmSNyDfZDdjuwXwlZ/fR74vlhmN/cTqOf+h0oKo1vy0w1brfGdiA49MKG4BhXpx1EJANrMt3a+2NWa3pr4DfgSwc79y6eDhnDLANx3GYZ6x5Y3G8WAGUA2YDO4BVQCMb/68Wl/Vq6294AvgD2GxX1hLm/Rz4Ld//02QvzjoJ2GzlXApcaefftqibnhJDKaWUE92VpJRSyokWg1JKKSdaDEoppZxoMSillHKixaCUUsqJFoNSSiknWgxKKaWc/D8tFfsERwICUwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -656,7 +656,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8FPX9x/HXZ0NIhHDLKbeAcoMghxekoOivKlYB8aDYFrFa22qrLSpKOIpIVPBA6q2oFRGvSPGoClYkHEGByn2bcClHgISEXN/fH7vgGgIJZJJNsu/n4zEPdnZmZ967Ce/Mzn4zMeccIiISXnyhDiAiIqVP5S8iEoZU/iIiYUjlLyIShlT+IiJhSOUvIhKGVP4iImFI5S8iEoZU/lJsZvaJmY0r4P6BZrbLzCoF5i8wsy/M7JCZHTCzBDM7N2j9vmaWZ2Zp+abepfQ85pvZiBLYbmUzm21mW83MmVnffMtrmtmrZvZDYIrLt/wCM1sSeN1WmtlF+Zb/0cy2mNlBM0vKvzzfum0DX4MDZrbRzH6Vb/mIwP1pZvaxmTUq/isgZZHKX7zwCjDMzCzf/cOAN5xzOYEC/xT4AGgEtABWAl+bWfOgx+xwzsXkmxJL/BmUvAXAzcCuApZNAaoAzYEe+F/L3wCYWW0gAYgHagKTgQ/NrFZgeU9gEjAIqAG8CLxnZhH5dxL4IfwBMAeoDYwEXjezNoHlfYCJwMDA8i3Am8V/6lImOec0aSrWBJwBHAAuCbqvFpAJdA7MfwU8U8BjPwJeDtzuC6Scwn6bAO8CPwJ7gacD9/uA0cA24AdgBlAjsCwaeD2wfiqwFKgP/APIDWROO7qtEnitUoC++e7bA5wfNH8/8FXg9pXAqnzrrwd+F7h9PbAkaFlVwAENC9h3h8Bzs6D7PgXGB24/CkwLWtYosK2zQ/09psn7SUf+UmzOuQxgFvDroLuHAGudcyvMrApwAfB2AQ+fBVx2qvsMHNnOwV/wzYGzgJmBxbcEpligJRADPB1YNhz/EXIToA7weyDDOfcA/h9Qdzr/u407T7Df1JNMo071eQRvOt/tDkG387+jCl7+ERBhZj0Dr8lvgeUU/A4j/3YK29fR2x2QCkflL155FRhsZmcE5n8duA/8pxB8wM4CHrcTqBs036iAUq1awON64D8yvdc5l+6cy3TOLQgsuwl43Dm32TmXBtwHDA2c9sjGX/qtnHO5zrllzrmDRX2SzrmaJ5kmFXU7+XwMjDKzambWCn+BVwksW4j/NbnBzCLNbDhwdtDyQ8A7+E8rHQHGACOdcwVdsXEt/ndC9wa2dRnQJ2hbc4EhZtYp8HV8CP+Rf5UCtiXlnMpfPBEo3h+BgWbWEjgf+Fdg8X4gD2hYwEMbBh531I4CSjW9gMc1AbY553IKWNYI/zuCo7YBlfCf3nkN+ASYaWY7zGyymUUW/ZmWiD8BGcAG/Ofk38R/egjn3F785+D/AuwGLgc+O7ocGIH/h0V7oDL+zxXmFPRBrXMuG7gG+CX+dwZ/xf/O6+i+Psf/w+Md/K/ZVvw/XFLyb0vKP5W/eGkG/iP+YcCnzrndAIHyTgQGF/CYIcCXp7GvZKDp0ZFE+ewAmgXNNwVygN3OuWzn3FjnXDv8p6Ku5KfTVYVe37yAkUjB0/2n8Txwzu1zzt3knGvgnGuP///lkqDlXzrnznfO1cb/2p4TtLwz8KFzbr1zLs859zH+d1MXnGBfK51zfZxzdZxzA/CfFgve1zTnXGvnXD38PwQqAd+dzvOSsk3lL16aAfQHbuWnUz5HjQKGm9mfAqc3apnZBOAS4OHT2NcS/CU3ycyqmlm0mV0YWPYmcLeZtTCzGPwjWN5y/lFHsWbWMXB+/CD+00C5gcftxl+GJ+SOH4kUPE080ePMLMrMogOzlQN5LbDsbDOrY2YRZnYF/lE4E4Ie2zVwmqY6/g9lU5xznwQWLwV+aWYtze9SoA0nKOzAKZ1oM6tiZvfgf+f1SmBZtJl1CGynKfAc8IRzbv/JXhMpp0L9ibOmijUB8/Gf5okqYNlFgeVp+I+yk4GeQcv74j89lJZvuu4E+2oKvI9/5M4e4MnA/T7856uT8Z9Seh2oFVh2A7AOSMdf9k8ClQLLeuMfSbP/6LY8fF22Bp5z8NQ8sGwI/ncrh/F/WDsg32PfxD+a6gDwFlAvaJkB44Dv8Z+iWQMMC1p+P/BR0Hx84Pml4f+wuFXQspr4h9+m4z8t9DAQEervKU0lM1ngiy5SqsysM/AFcKP76ShWREqJTvtISDjnVuD/8LHjCc7bi0gJ0pG/iEgY0pG/iEgYKrNvt88880zXvHnzEtt+eno6VasW9LtDZYtyeks5vaWc3vIi57Jly/Y45+oWumKoP3E+0dStWzdXkubNm1ei2/eKcnpLOb2lnN7yIieQ5IrQsTrtIyIShlT+IiJhSOUvIhKGVP4iImFI5S8iEoZU/iIiZUlyMgwaBDVqQPXqcO218P33nu9G5S8iUlrS0mDIEP+/BfBlZsIvfgFr18Krr8Jrr8GGDRAbC+kF/VmL06fyFxEpLZ9/Dm+/DV98UeDihnPmwObN8P77cM01MHAgJCTAtm3w7LOeRlH5i4iUkrx338UF/i3ImQsXQq9e0KrVT3e2aAEXXggffOBpFpW/iEgJOpKTy3vfpnDZ4/M5MOs9DEid9S4DHp/Pe9+mcCQn99i6VbduhQ4djt9I+/awerWnucrstX1ERMq75cmp3PLSErJz82i0fTNRuVkAROdkkbt6DaNTMxmbsJpXf9uDzk1qUunQIahV6/gN1a4N+739g2o68hcRKQErklO54blFpGZkk56VS+zmJHx5eQD48vKI3bSU9KxcUjOyGfrcIlYkp/of6P/rnj9XApfeV/mLiHjsSE4uw19aQkb2T6d0rlz7FdG52QBE52Zz5doFx5ZlZPvXz6lWDfbtO36D+/cX/I6gGHTaR0TEC9ddB4EPcqPw/zHmYFkRP6/bc3/cwtZHrjx+O88955+uvRbeecd/3+rV0K6dp3F15C8i4oVJk6BLFzjB9fgr5+YAkBs4qxMVmC9Qu3b+7QFs3Qpffw1XX+1hWJW/iIg3WreGpCTy4uLIqBRFjv28XjMjjamD6jPi7y3IK+C0fo75yI6MxNWpAz6f/2g/IcE/1r9JE7jtNk/jqvxFRLwSEUHanX/mqhFPsa5ucw5HRgGwuG1VrhvfihevrEvjH7I4Evnz9j8cGcXaus2ZOelJ0hYuhjZtYNgwuOkm/zj/L76AmBhPo+qcv4iIh6pWrsSmmo24avgUfvPtTDKaL+DDi2rQZPcRXnhkCz3X/PwyDZkRkUzrNYRneg/mL/XzqNKq5U/n+kuQyl9ExEMRPqNVvapsyfiadwevw1WqzogPf+S2hB+Izj5+yGZ2RCTr6jbHmY/oSCPCV8A5oRKg8hcR8dCOtB1Ua/YqZxxKot7OSjwxbRPnpmSecP2qWRkMWL+QxPYXULdaRKnl1Dl/EREP5OblMmPVDK754BpSMlZhewfyxrifF3+O+cioVPlnHwb7cPTbtIRIn1HjjMhSy6vyFxEppnX71nHT3JuIT4qne/3uvD/wfWZ1+iVVcrKOrXP0Q91br32QtUEfBoP/cg8zL65B6Zzw8fOk/M3scjNbZ2YbzWzUSdYbZGbOzLp7sV8RkVDKzMlkyrIpXD/nenam7yT+knim9ZtGo5hGnPvtAqINcs1HRqUoHrvoZq66ZSoLWnTl6uFTePyim8ioFEWu+Yj2wbnfLih8hx4qdvmbWQQwDbgCaAfcYGbH/SqamVUD/gQsLu4+RURCbdHORVybcC0vffcSV599NQnXJHB5i8uxo9fmmTULX0421rkTC2b/hwVXDQOfj8gIw0VE8NVVw1kw+z9Yp474srNh1qxSze/FB749gI3Ouc0AZjYTGAjkv/7oeGAycI8H+xQRCYnUzFTik+JJ2JRA02pNefGyF+nRsMfxKzZoAPHx+O66i0t9Pi4FcvMc6Vk5VK1c6adRPVcug6lTYf780nwamCvm1eLMbBBwuXNuRGB+GNDTOXdn0DpdgdHOuevMbD5wj3MuqYBtjQRGAtSvX7/bzJkzi5XtZNLS0ojx+JcmSoJyeks5vRVOOZ1zLDu8jHf2vcPhvMP0r96fATUGUNlX2aOU3uSMjY1d5pwr/NS6c65YEzAYeCFofhjwVNC8D5gPNA/Mzwe6F7bdbt26uZI0b968Et2+V5TTW8rprXDJmXIoxd32n9tch1c6uBvm3ODW7l3rTbB8vHg9gSRXhO724rRPCtAkaL4xsCNovhrQAZgfOBfWAEgws6tdAUf/IiJlRU5eDm+seYNpy6cBMKrHKIaeM5QIX+mNxy8pXpT/UqC1mbUAtgNDgRuPLnTOHQDOPDp/stM+IiJlxdp9axmzcAyr966mT+M+PNDzARrGNAx1LM8Uu/ydczlmdifwCRABvOScW2Vm4/C//Ugo7j5EREpLRk4G01dMZ8aqGdSMqkl8n3gGNBvw0yieCsKTyzs45+YCc/Pd99AJ1u3rxT5FRLyWuCORcYnjSElL4brW13F3t7upEVUj1LFKhK7tIyJhb3/mfh5NepSETQk0q96Mlwa8xPkNzg91rBKl8heRsOWc499b/s3kJZM5lHWIWzveym2dbyMqIqrwB5dzKn8RCUsph1KYsGgCX+/4mk5ndmLMBWNoU6tNqGOVGpW/iISV4OGbhnFfj/u4/pzrK8TwzVOh8heRsLF672riFsaxZt8a+jbuywO9HqBB1QahjhUSKn8RqfCy8rJ4LOkxXlv9GjWjavJon0e5rNllFW745qlQ+YtIhbZwx0Im7pzI3uS9FX745qlQ+YtIhbQ/cz/xS+P5cPOH1KtULyyGb54Klb+IVCjOOeZsnsPkpZNJy0pjZKeRnJt6roo/H5W/iFQYyYeSmbBoAgt3LKRz3c6M6T2G1rVaM7+Ur5VfHqj8RaTcy8nL4fXVrzNt+TQifBHc3/N+rj/nenymP1N+Iip/ESnXfjZ8s0lfHugZvsM3T4XKX0TKpcPZh3lm+TO8tuY1akfX5vG+j9O/af+wHr55KlT+IlLuLNy+kHGLxrE9bTuD2gzi7m53U71y9VDHKldU/iJSbuzL3Ef80njmbJ5D8+rNeXnAy3RvUPifq5XjqfxFpMxzzvHh5g+JXxpPWnYav+/8e0Z0HBEWV98sKSp/ESnTkg8lMz5xPIk7E+lctzNxveNoVatVqGOVeyp/ESmTcvJymLF6BtOXTyfCF8EDPR9gyDlDNHzTIyp/ESlzVu1dRdzCONbuW0tsk1ju73m/hm96TOUvImXG4ezDTFs+jdfXvE6d6DpM6TuF/s36hzpWhaTyF5EyYcH2BYxPHM+O9B0MbjOYu7rdpeGbJUjlLyIhtTdjL5OXTmbulrm0qNGCVy5/hW71u4U6VoWn8heRkHDOkbApgfikeNKz07m98+2M6DiCyhGVQx0tLKj8RaTUJR9MZuyisSzeuZgudbsQd0EcZ9c8O9SxworKX0RKTXZeNjNWzWD6iulE+iIZ3XM0g88ZrOGbIaDyF5FSsWrPKsYsHMO6/evo17Qf9/W4j/pV64c6VthS+YtIiTqcfZinlz/NG2veoE50Hab2nUq/Zv1CHSvsqfxFpMR8lfIVExZNYEf6Dq4/53r+fN6fqVa5WqhjCSp/ESkBezP28sjSR/hoy0e0rNGSGVfMoGu9rqGOJUFU/iLiGecc7298n0eTHiUjJ4M7Ot/B7zr+TsM3yyCVv4h44vuD3zMucRyLdy2ma72uxPWOo2XNlqGOJSeg8heRYsnOy+bVVa/yzxX/JNIXyYO9HmRQm0EavlnGqfxF5LRtPbKVp+Y8xfr96+nftD/39byPelXqhTqWFIHKX0RO2eHswzz17VO8sesN6p5Rl6mxU+nXVMM3yxOVv4ickv+m/JcJiyawK30XF8VcxCNXPaLhm+WQyl9EimRPxh4mL5nMR1s/4uwaZzPjihmkrk5V8ZdTKn8ROanjhm92uYPfdfAP35y/en6o48lpUvmLyAltO7iNcYnjWLJrCefVO48xF4yhZQ0N36wIVP4icpyjwzenL59OVEQUD/V+iOtaX6fhmxWIJ+VvZpcDTwARwAvOuUn5lv8FGAHkAD8Cv3XObfNi3yLirZU/riQuMY4N+zdwabNLua/HfdStUjfUscRjxS5/M4sApgGXAinAUjNLcM6tDlrtW6C7c+6wmd0OTAauL+6+RcQ76dnpPPXtU/xrzb+oW6UuT8Y+SWzT2FDHkhLixZF/D2Cjc24zgJnNBAYCx8rfOTcvaP1FwM0e7FdEPPJl8pdMWDyB3em7j119M6ZyTKhjSQky51zxNmA2CLjcOTciMD8M6Omcu/ME6z8N7HLOTShg2UhgJED9+vW7zZw5s1jZTiYtLY2YmLL/za2c3lLOnzuYe5DZ+2bz7eFvaRjZkBvq3ECLqBZFfrxeT295kTM2NnaZc657oSs654o1AYPxn+c/Oj8MeOoE696M/8g/qrDtduvWzZWkefPmlej2vaKc3lJOv7y8PPfO+ndc73/1dl1ndHX/XP5Pl5WTdcrb0evpLS9yAkmuCN3txWmfFKBJ0HxjYEf+lcysP/AA0Mc5d8SD/YrIadh6YCvjFo1j6a6ldKvfjTG9x9CiRtGP9qVi8KL8lwKtzawFsB0YCtwYvIKZdQWexX966AcP9ikipyg7N5uXV73MsyueJSoiijG9x3Bt62s1fDNMFbv8nXM5ZnYn8An+oZ4vOedWmdk4/G8/EoB4IAZ428wAvnfOXV3cfYtI0az8cSVjFo5hY+pGLmt2GaN6jNLwzTDnyTh/59xcYG6++x4Kut3fi/2IyKlJz07nyW+e5M21b1KvSj2e+sVT9G3SN9SxpAzQb/iKVFDzk+czYdEEfjj8A0PPHcqfuv5JwzflGJW/SAWzJ2MPDy9+mE+3fUqrmq14rO9jdK7bOdSxpIxR+YtUEM453t3wLo8te4wjOUf4Y9c/8pv2vyEyIjLU0aQMUvmLVABbDmxhXOI4knYn0b1+d8b0HkPzGs1DHUvKMJW/SDmWnZvNS9+9xHMrnyOqUhRxveP4VetfafimFErlL1JOrfhxBXEL49iYupEBzQcwqscozjzjzFDHknJC5S9SzqRlpfHEN0/w1rq3qFelHk//4mn6NOkT6lhSzqj8RcqRed/PY8LiCfx4+EdubHsjf+z6R6pGVg11LCmHVP4i5cCPh3/k4SUP859t/6F1rdZM6TuFTnU7hTqWlGMqf5EyLM/l8c6Gd5iSNIUjuUf4U9c/cUuHW4j0afimFI/KX6SM2nxgM+MSx7Fs9zLOb3A+D/V6SMM3xTMqf5EyJjs3m49TP+bThE85o9IZjLtgHNe0uobARRFFPKHyFylDlv+wnLGJY9l4YCOXN7+cv/f4u4ZvSolQ+YuUAWlZaUz9Ziqz1s2iftX63Fb3Nu7sU+BfQhXxhH4NUCTEvvj+CwZ+MJBZ62ZxU9ub+GDgB3So0iHUsaSC05G/SIj8cPgHJi2ZdGz45tS+U+lYt2OoY0mYUPmLlLI8l8fs9bOZumwqR3KP8Ofz/szw9sM1fFNKlcpfpBRtPrCZsQvH8s0P39CjQQ8e6v0Qzao3C3UsCUMqf5FSkJ2bzQvfvcDzK5/X8E0pE1T+IiXs2x++ZezCsWw6sIkrml/B33r8TcM3JeRU/iIl5FDWoWNX32xYtSHT+k3jksaXhDqWCKDyFykRn2/7nImLJ7Incw83t72ZP3b9I1Uiq4Q6lsgxKn8RD/1w+AcmLp7I599/TptabXjiF0/Q4UyN2ZeyR+Uv4oGjwzenLJtCdl42d513F79u/2sN35QyS+UvUkybUzczNtE/fLNng5481PshmlZvGupYIiel8hc5TVm5Wbzwvxd4/n/PUzWyKuMvHM/Aswdq+KaUCyp/kdPwze5vGJs4ls0HNnNFiyv4+/l/p84ZdUIdS6TIVP4ip+BQ1iGmLpvKrPWzaFS1Ec/0e4aLG18c6lgip0zlL1JEn237jImLJ7I3cy+/bvdr/tDlDxq+KeWWyl+kELvTdzNx8US+SP6Cc2ufy1O/eIr2Z7YPdSyRYlH5i5xAnsvj7XVvM/WbqWTnZXN3t7sZ1m6Yhm9KhaDyFynAptRNxC2MY/mPy+nZsCdjeo2hSfUmoY4l4hmVv0iQrNwsnv/f87zwvxeoGlmVf1z0D65qeZWGb0qFo/IXCVi2exljE8ey5cAWftnyl/zt/L9RO7p2qGOJlAiVv4S9g1kHmbJsCrPXz+asmLOY3n86F511UahjiZQolb+ELeccn33/GQ8vfpi9mXsZ3m44d3S5Q8M3JSyo/CUs7UrfxcTFE5mXPI+2tdvyVL+naF9HwzclfKj8JazkuTzeXPsmT3zzBLl5ufyl218Y1m4YlXz6ryDhxZPveDO7HHgCiABecM5Nyrc8CpgBdAP2Atc757Z6sW+Rotq4fyNTd09ly/db6NWwFw/1fogm1TR8U8JTscvfzCKAacClQAqw1MwSnHOrg1b7HbDfOdfKzIYCjwDXF3ffIkVxJPcIz698nhe/e5Eooph40USubHmlhm9KWPPiyL8HsNE5txnAzGYCA4Hg8h8IxAVuzwaeNjNzzjkP9i9yQkm7khibOJatB7dyZcsruSDrAq46+6pQxxIJOStu/5rZIOBy59yIwPwwoKdz7s6gdb4LrJMSmN8UWGdPvm2NBEYC1K9fv9vMmTOLle1k0tLSiImJKbHte0U5T8/hvMN8sP8DFqYtpHZEbYbWGUrbM9qWuZwnopzeCqecsbGxy5xz3Qtd0TlXrAkYjP88/9H5YcBT+dZZBTQOmt8E1DnZdrt16+ZK0rx580p0+15RzlOTl5fnPtnyiev7Vl/X6dVO7tGlj7r0rPRjy8tKzsIop7fCKSeQ5IrQ3V6c9kkBgj81awzsOME6KWZWCagB7PNg3yLH7ErfxT8W/4P5yfNpW7st0/pNo12ddqGOJVImeVH+S4HWZtYC2A4MBW7Mt04CMBxIBAYBXwR+QokUW25eLm+te4snvnmCPJfHPd3v4aa2N2n4pshJFPt/h3Mux8zuBD7BP9TzJefcKjMbh//tRwLwIvCamW3Ef8Q/tLj7FQHYsH8DcYlxrPxxJRc0uoAHez1I42qNQx1LpMzz5NDIOTcXmJvvvoeCbmfi/2xAxBNHco/w7Ipnefm7l6lWuZqGb4qcIr0vlnJn6a6ljEscx9aDW7mq5VXce/691IquFepYIuWKyl/KjQNHDjBl2RTe2fAOZ8WcxbOXPssFjS4IdSyRcknlL2Wec45Pt33Kw4sfJvVIKr9p/xtu73I7Z1Q6I9TRRMotlb+UabvSdzFh0QS+TPmStrXbMr3/dNrWaRvqWCLlnspfyqTcvFxmrpvJk988icNp+KaIx/Q/Scqc9fvXM3bhWFbuWcmFjS5kdK/RGr4p4jGVv5QZ+YdvPnzxw/yyxS81fFOkBKj8pUxYumspYxPHsu3gNq4++2ru7X4vNaNrhjqWSIWl8peQOnDkAI8ve5x3N7xL45jGPHfpc/Ru1DvUsUQqPJW/hIRzjk+2fsKkJZP8wzc7/IbbO2v4pkhpUflLqduZtpMJiyfw35T/0q5OOw3fFAkBlb+Umty8XN5c+yZPfvskAPd2v5cb296o4ZsiIaD/dVIq1u1bx9jEsfxvz/+48KwLebDXg5wVc1aoY4mELZW/lKjMnEyeXfksr3z3CtWjqvPIxY9wRYsrNHxTJMRU/lJiluxcwtjEsXx/6HsGnj2Qe7rfo+GbImWEyl88d+DIAR5NepT3N75Pk2pNeP6y5+nVsFeoY4lIEJW/eMY5x8dbP2bSkkkcOHKA33b4Lbd3vp3oStGhjiYi+aj8xRP7cvbxh8//wFfbv6JDnQ48d+lznFP7nFDHEpETUPlLseTm5fKvtf9i6o6pRERE8Lfz/8aN595IhC8i1NFE5CRU/nLa1u1bR9zCOL7b+x3tzmjHlP+bQqOYRqGOJSJFoPKXU5aZk8k/V/yTV1a9Qo2oGky+ZDLRW6NV/CLliMpfTsminYsYlziO5EPJXNPqGu7pfg81omowf9v8UEcTkVOg8pciSc1M5dGkR/lg0wc0rdaUFy57gZ4Ne4Y6loicJpW/nJRzjo+2fMQjSx/h4JGDjOg4gts63abhmyLlnMpfTmh72nYmLJrAgu0LNHxTpIJR+ctxcvNyeWPNGzy9/GkARvUYxdBzhmr4pkgFovKXn1m7by1xC+NYtXcVlzS+hNE9R9MwpmGoY4mIx1T+AkBGTgbTV0xnxqoZ1IiqQfwl8QxoPkBX3xSpoFT+QuKORMYvGk/yoWR+1epX/LX7X6kRVSPUsUSkBKn8w1hqZirxSfEkbEqgWfVmvHjZi/Ro2CPUsUSkFKj8w5Bzjrlb5jJ56WQOHjnIrR1vZWSnkRq+KRJGVP5hZnvadsYvGs/X27+m45kdNXxTJEyp/MNETl4Ob6x5g2nLp2GYhm+KhDmVfxhYs3cNcYlxrN67mj6N+zC612gaVG0Q6lgiEkIq/wosIyeD6cunM2P1DGpG1SS+TzwDmmn4poio/CushTsWMj5xPClpKVzX+jru7na3hm+KyDEq/wpmf+Z+Hk16lIRNCTSv3pyXBrzE+Q3OD3UsESljVP4VhHOOOZvnEL80nkNZh7i1463c1vk2oiKiQh1NRMqgYpW/mdUG3gKaA1uBIc65/fnW6QJMB6oDucA/nHNvFWe/8nMph1KYsGgCX+/4mk5ndmLMBWNoU6tNqGOJSBlW3CP/UcDnzrlJZjYqMP/3fOscBn7tnNtgZo2AZWb2iXMutZj7Dnv5h2/e1+M+rj/neg3fFJFCFbf8BwJ9A7dfBeaTr/ydc+uDbu8wsx+AuoDKvxhW711N3MI41uxbQ9/GfXmg1wMavikiRWbOudN/sFmqc65m0Px+51ytk6zfA/8PifbOubwClo8ERgLUr1+/28yZM087W2HS0tKIiYkpse17JX/OrLws5h6Yy7yD84iJiGFQrUF0qdIl5MM3y+vrWVYpp7fCKWdsbOwy51z3Qld0zp10Aj4DvitgGgik5lt3/0m20xBYB/QqbJ/OObp16+ZK0rxMaZJCAAAMmElEQVR580p0+14Jzvl1ytduwOwBrsMrHdyYr8e41MzU0AXLpzy+nmWZcnornHICSa4IHVvoaR/nXP8TLTOz3WbW0Dm308waAj+cYL3qwL+B0c65RYX+RJKf2Z+5n8lLJzNn8xwN3xQRTxT3nH8CMByYFPj3g/wrmFll4D1ghnPu7WLuL6w451iStoQH33+QtKw0RnYaychOIzV8U0SKrbjlPwmYZWa/A74HBgOYWXfg9865EcAQ4BKgjpndEnjcLc655cXcd4WWfCiZ8YnjSdybSOe6nRnTewyta7UOdSwRqSCKVf7Oub1AvwLuTwJGBG6/DrxenP2Ek5y8HF5f/TrTlk8jwhfB4NqDGX3FaHzmC3U0EalA9Bu+ZciqvasYu3Asa/atIbZJLPf3vJ+1S9eq+EXEcyr/MuBw9mGeWf4Mr615jdrRtXm87+P0b9ofM2Mta0MdT0QqIJV/iH29/WvGLxrP9rTtDGoziLu73U31ytVDHUtEKjiVf4jsy9zH5KWT+ffmf9O8enNeHvAy3RsU/nsZIiJeUPmXMuccH27+kPil8aRlp/H7zr/n1o63UjmicqijiUgYUfmXouSDyYxbNI5FOxfRpW4XxvQeQ6tarUIdS0TCkMq/FOTk5TBj9QymL59OhC+CB3o+wJBzhmgUj4iEjMq/hK3as4q4xDjW7lt7bPimrr4pIqGm8i8hh7MP8/Typ3ljzRvUia7DlL5T6N/shJdJEhEpVSr/ErBg+wLGJ45nR/oOBrcZzF3d7tLwTREpU1T+HtqbsZfJSyczd8tcWtRowauXv8p59c8LdSwRkeOo/D3gnCNhUwLxSfGkZ6dze+fbGdFxhIZvikiZpfIvpuSDyYxdNJbFOxfTtV5XxvQew9k1zw51LBGRk1L5n6bsvGxmrJrB9BXTifRF8mCvBxnUZpCGb4pIuaDyP5mUFHjkEUhKghUrICMDtmzhu5g04hbGsW7/Ovo17cd9Pe6jftX6oU4rIlJkYXuYGpGRAUOGQFraiVfauBFmzYJateDiiwGYvnw6N829if2Z+5nadypTY6eq+EWk3Anb8q+5bBm8/TZ88cWJV7rkEti9G+bOZX3/LgC8v/F9BrcZzPvXvE+/Zsf9HRsRkXIhbMu/7oIFOCDv3XdPvJLPx96Mvfzty7/xxhr/HyN7vO/jjO41mmqVq5VOUBGREhBW5X8kJ5f3vk3hssfnU+PrhRiQOutdBjw+n/e+TeFITu6xdZ1zvLfhPa5+/2o++/4zYhvHAtD+zPYhSi8i4p2w+cB3eXIqt7y0hOzcPBpt30yl7CwAonOyyF29htGpmYxNWM2rv+1BrRoHGZc4jsW7FnNevfMY03sMLWd/AbwR2ichIuKRsCj/Fcmp3PDcIjKy/Uf2sZuTsNw8AHx5ecRuWsrzZzYFsrhh1kSi631OVETlfMM3T/LZgIhIOVPhy/9ITi7DX1pyrPgBrlz7FZVysgGIzs3myrULeLFPD6IbvkNE9C6yD3Uk4ebHaFy9Yahii4iUqIpZ/tddB4EPcqOA5fkWZ0X89LQPR/n4d790Ypo9Td3UHO5/bgf9vvkO/vDmTw+49lq44oqSzy0iUkoqZvlPmgSbN8OGDZCeftziyrk5APy3UwwTft2IXbUjGTJvH3e9vZuYzLyfVqxaFdq08W/vyy9LK72ISImrmOXfujUkJZE3ZQpH7htNZG42ldxPpb6negSP3NSQj3vW5OztmcyYuJkuGzOOLc8xH9kRkUSNHYuvSRP/b/cuW+Zf+NFHULeuf+rTp7SfmYiIJypm+QNERJB255+5dlMNnnh3Ei32b6dK9hEAdteK5Msu1fnDu7v53b/3EJnrjj3scGQUm2udxV3XjuLdP9xC9TPyXZnzjjv8//bpA/Pnl9KTERHxVsUtf6Bq5UpsqtmIq4ZP4fZFs/njwplE52bTflsmn/5lHTXTc3+2fmZEJNN6DeGZ3oPB56Nq5Urg3Am2LiJSflXoX/KK8Bmt68WQ54tgfd1mZEdEHluWv/gBsiMiWVe3Oc58tKkXQ4TPSjOuiEipqdDlD3B737OpWjmCAesXUjUr46TrVs3K8K9XOYLb+7YqpYQiIqWvwpf//3VsSKTP6LdxKT5+OoWTZz4yKlUmJ+j6+z4c/TYtIdJnXNGxQSjiioiUigpf/lGVIph5UXWicrOO3Xc4Moo9TZtx67UPsrZucw5HRh1bFp2TxcyLaxBVKSIUcUVESkWFL3+Ac79dQLRBrvnIqBTFYxfdzFvjH2NBi65cPXwKj190ExmVosg1H9E+//oiIhVZWJQ/s2bhy8nGOndiwez/sOCqYeDzERlhuIgIvrpqOAtm/wfr1BFfdrb/D7iIiFRgFXqo5zENGkB8PL677uJSn49Lgfnz57PsugupWrnST6N6rlwGU6dq/L6IVHjhUf4ffljg3dWjI39+R0QE/PWv/klEpAILj9M+IiLyMyp/EZEwpPIXEQlDKn8RkTBUrPI3s9pm9h8z2xD4t9ZJ1q1uZtvN7Oni7FNERIqvuEf+o4DPnXOtgc8D8ycyHtBfRBERKQOKW/4DgVcDt18FriloJTPrBtQHPi3m/kRExAPminG9ejNLdc7VDJrf75yrlW8dH/AFMAzoB3R3zt15gu2NBEYC1K9fv9vMmTNPO1th0tLSiImJKbHte0U5vaWc3lJOb3mRMzY2dplzrnth6xX6S15m9hlQ0CUuHyhiljuAuc65ZLOTXx/fOfcc8Fxgvz/GxsZuK+I+TseZwJ4S3L5XlNNbyukt5fSWFzmbFWWlQsvfOdf/RMvMbLeZNXTO7TSzhsAPBazWG7jYzO4AYoDKZpbmnDvZ5wM45+oWlq04zCypKD8dQ005vaWc3lJOb5VmzuJe3iEBGA5MCvz7Qf4VnHM3Hb1tZrfgP+1z0uIXEZGSVdwPfCcBl5rZBuDSwDxm1t3MXihuOBERKRnFOvJ3zu3F/yFu/vuTgBEF3P8K8Epx9umh50IdoIiU01vK6S3l9Fap5SzWaB8RESmfdHkHEZEwpPIXEQlDYVP+5eU6REXJaWbNzGyZmS03s1Vm9vsymrOLmSUGMq40s+vLYs7Aeh+bWaqZzSnlfJeb2Toz22hmx42CM7MoM3srsHyxmTUvzXxBOQrLeYmZfWNmOWY2qIxm/IuZrQ58L35uZkUaD18SipD192b2v8D/8QVm1s7zEM65sJiAycCowO1RwCMnWfcJ4F/A02UxJ1AZiArcjgG2Ao3KYM42QOvA7UbATqBmWcsZWNYPuAqYU4rZIoBNQMvA13QF0C7fOncA/wzcHgq8VZqv3ynkbA50AmYAg8poxligSuD27aF4LU8ha/Wg21cDH3udI2yO/Ck/1yEqNKdzLss5dyQwG0Vo3sEVJed659yGwO0d+H8JsER/ea8ARfq6O+c+Bw6VVqiAHsBG59xm51wWMBN/3mDB+WcD/aywX5X3XqE5nXNbnXMrgbxSznZUUTLOc84dDswuAhqXcsajipL1YNBsVcDzkTnhVP71nXM7AQL/1su/QuA6RI8B95ZytmCF5gQwsyZmthJIxn80u6MUM0IRcx5lZj3wH+VsKoVswU4pZyk7C//X76iUwH0FruOcywEOAHVKJV0BGQIKyhlqp5rxd8BHJZroxIqU1cz+YGab8L97/ZPXISrUH3AvzesQFYcHOXHOJQOdzKwR8L6ZzXbO7fYqI3iTM7CdhsBrwHDnnOdHhl7lDIGCvsnyH+EVZZ2SVhYyFKbIGc3sZqA70KdEE51YkbI656YB08zsRmA0/qsoeKZClb8L0XWIQpAzeFs7zGwVcDH+0wJlKqeZVQf+DYx2zi3yMp+XOUMkBWgSNN8YyP8O7ug6KWZWCagB7CudeMdlOKqgnKFWpIxm1h//QUGfoFOnpe1UX8+ZwHSvQ4TTaZ+j1yGCk1yHyDnX1DnXHLgHmOF18RdBoTnNrLGZnRG4XQu4EFhXagn9ipKzMvAe/tfx7VLMFqzQnCG0FGhtZi0Cr9VQ/HmDBecfBHzhAp8ClqKi5Ay1QjOaWVfgWeBq51woDwKKkrV10OwvgQ2epwjFp92hmPCfJ/088CJ+DtQO3N8deKGA9W8hNKN9Cs2J/zpKK/GPElgJjCyjOW8GsoHlQVOXspYzMP8V8COQgf/IbEAp5fs/YD3+z0IeCNw3Dn9BAUQDbwMbgSVAy9L+Whcx5/mB1y0d2AusKoMZPwN2B30vJoTitSxi1ieAVYGc84D2XmfQ5R1ERMJQOJ32ERGRAJW/iEgYUvmLiIQhlb+ISBhS+YuIhCGVv4hIGFL5i4iEof8H9ZsQUr11n/gAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VGXexvHvL5USeq8bKVYQ2CBiJyISAqEEEBQRC4t919eysoouYkNddV0bIiIgaigJECQEkeKKighKV6ogCIoIEYEAKc/7xwxrEhMSSJkZcn+ua66c8pyZewauueecmTljzjlERESOC/J1ABER8S8qBhERyUXFICIiuagYREQkFxWDiIjkomIQEZFcVAwiIpKLikFERHJRMYjfMbN5ZjYqn+W9zOxHMwvxzl9sZgvN7Dcz+9XMks3s7BzjO5lZtpkdzHO5qIzux2IzG1pGt3WXmS03s6NmNqEI4//P+1j+ambjzSy8DGJKgFAxiD+aAAw2M8uzfDDwrnMu0/vk/iEwC2gInAGsBj41s8gc2+xyzkXkuXxe6veg7O0CngDGFzbQzLoCw4HOQCTQDHisNMNJYFExiD+aCdQELju+wMxqAD2ASd5FzwKTnHMvOed+c87tc86NAJYB/zyVGzWzJmaWZGY/m9kvZvaKd3mQmY0ws+1mtsfMJplZNe+6CmY22Ts+zcy+NLN6ZvakN/8r3r2UV071wSgK51ySc24m8EsRhg8B3nLOrXPO7QceB24szXwSWFQM4necc+nAVOCGHIuvAb51zq0ys0rAxcC0fDafClx9srdpZsHAB8B2PK+iGwEJ3tU3ei/ReF5dRwDHn+iHANWAJkAt4DYg3Tn3MPAJcJd3L+WuAm437QSX4Sd7P4roPGBVjvlVQD0zq1VKtycBJsTXAUQKMBGYY2Z3e4viBu8y8OxNBAG789luN1Anx3xDM0vLM6aRc+5QnmUd8BySesA5l+ldtsT7dxDwgnNuK4CZ/QNYa2Y3ARl4CqGFc241sOJk7qRzrvrJjC8hEcCvOeaPT1ehaHsccprTHoP4JefcEuBnoJeZNQMuAN7zrt4PZAMN8tm0gXe743Y556rnueQtBfC84t+eoxRyaohnT+K47XheVNUD3gHmAQlmtsvMnjWz0KLf05NnZnNzvJE+6BSu4iBQNcf88enfip9OTgcqBvFnk/DsKQwGPnTO/QTgfWL/HOifzzbXAB+fwm3tAJoe/8RTHruAP+WYbwpkAj855zKcc485587Fc3irB78fAiv0nPb5fGIq5+Wh/LZxznXL8Ub6uydzJ73WAW1yzLfx3hftLQigQ0ni3yYBI4Dzgf/Ls244MM/MvgXexvN/+T7gcqDjKdzWMjyHoUab2T+BLCDKOfcp8D7woJnNxbM38hQwxfvpqGhgL7AeOIDn0FKW9zp/wvOeRIGccxGnkPUPvIUWAgQDwWZWAcgsYA9oEjDBzN7Fc59H4PkkmAigPQbxY865bcBnQGUgOc+6JUBXIB7Pk9s+PG8EX+mcW5NjaMN8Xon3zee2soA4oAXwPbATGOBdPR7PIaP/At8BR4C7vevqA9PxlMI3ePZWJnvXvQT0M7P9ZvafU30cimgEkI6nMK/3To8AMLOm3vvdFMA5l4rnU12L8BwW284pfpJLTk+mX3CT04GZtQEWAtc55+b5Oo9IINMeg5wWnHOrgN5A6wLeJxCRItIeg4iI5KI9BhERySUgd7lr167tIiMjfR2jQIcOHaJy5cq+jlFkgZQ3kLJCYOUNpKwQWHn9JeuKFSv2OufqFDYuIIshMjKS5cuX+zpGgRYvXkynTp18HaPIAilvIGWFwMobSFkhsPL6S1Yz2174KB1KEhGRPEqkGMwsxsw2mNnm/E78ZWbhZjbFu/6L46dFNrNIM0s3s5Xey5iSyCMiIqeu2IeSvGelfBXogudLQV+aWbJzbn2OYbcA+51zLcxsIPAMv395aItzrm1xc4iISMkoiT2GDsBm59xW59wxPKcq7pVnTC9+PzPmdKBzPj/CIiIifqDY32Mws35AjHNuqHd+MHBhzvPPm9la75id3vktwIV4Tv+7DtiI55QCI5xznxRwO8OAYQD16tWLSkhIyG+YXzh48CARESVyCpwyEUh5AykrBFbeQMoKgZXXX7JGR0evcM61L2xcSXwqKb9X/nnbpqAxu4GmzrlfzCwKmGlm5znnDvxhsHNjgbEA7du3d/7wDn9B/OUTCEUVSHkDKSsEVt5AygqBlTeQskLJHEraiedc9sc1xnOa4nzHeE9XUA3Y55w7evxUv865FcAW4MwSyCQiIqeoJIrhS6ClmZ1hZmHAQPKcCdM7P8Q73Q9Y6JxzZlbH++Y13h9jaQlsLYFMIiJyiop9KMl7Tvq78PyKVTAw3jm3zsxGAcudc8nAW8A7ZrYZz+mRB3o3vxwYZWaZeM5hf5tzbl9xM4mIyKkrkW8+O+dSgJQ8yx7NMX2EfH5tyzmXCCSWRAYRESkZ+uaziIjkomIQEZFcVAwiIpKLikFERHJRMYiISC4qBhERyUXFICIiuagYREQkFxWDiIjkomIQEZFcVAwiIpKLikFERHJRMYiISC4qhlO1Ywf06wfVqkHVqhAfD99/7+tUIiLFViKn3S53Dh+GK6+E8HCYOBHMYMQIiI6G1at9nU5EpFhUDKfizTdh61bYsAFatPAsO/98aNkS3ngD/vxn3+YTESkGHUrKIzMrmwNHMsjKdgUPSk6Gjh1/LwWAM86ASy6BWbNKP6SISCnSHgNwNDOLlDW7eX3xFjbtOUhIkJGZ7TizbgS3dWpObOsGhIcE/77BunXQq9cfr+i882DatLILLiJSCsp9MazckcaN45eRkZXNoWNZAGRkefYWNvx0kBEz1vJY8nom3tyBNk2qezbatw9q1PjjldWsCfv3l1V0EZFSUa4PJa3akca1Y5eSlp7xv1LI69CxLNLSMxg4dimrdqT9vsLsj4PdCQ4/iYgEiHJbDEczsxgyfhnpGfkXQl7pGZ7xRzOzPHsL+/b9cdD+/fnvSYiIBJByWwwpa3aTkZV9UttkZGUzd82PnvcS1q3744D16+Hcc0sooYiIb5TbYnh98Zb8Dx9ZJlDwYaXXF2+Gnj1h6VLPR1aP27YNPv3Us05EJICVy2LIynZs2nMw33WhNT6jcvPnCam2AvjjHsXGPQfJumUoREZ6Ppk0a5bn46u9ekGTJnDrraUbXkSklJXLYjh0LJOQoHzePAayjzbAZVegYsNpVGr2IiFVV5GzIEKCjEOh4bBwIZx5JgweDIMGeb7HsHAhRESU0b0QESkd5fLjqpXDQsgs4AtsWYdacvi75oRUWU9Y7flUbPQ+WbUWcmxvFzJ/O4/MbM/2NG0KiYllnFxEpPSVy2IIDjJa1o1g40/5H06CIDJ/a0Xmb+cSUnU14bU/omLjyWSlN6JOZhwF7GyIiJwWyuWhJIDbOzWnclhwIaOCyDzQlkNb/4/0Xf0JCklnX5UxXJ9yPZ/t+gyn7y2IyGmo3BZDbOsGhAYX9e4Hk/lrFME/DOfhCx9hT/oebp1/Kzem3siXP35ZqjlFRMpauS2G8JBgJt7cgYqhhe01eFQMDWbSzRcx8OxrmNNnDg9d+BA7ftvBzfNuZuiHQ1m5Z2UpJxYRKRslUgxmFmNmG8xss5kNz2d9uJlN8a7/wswic6z7h3f5BjPrWhJ5iqpNk+okDOtI9YqhBR5WqhwWTPWKoSQM6/i/cyWFBYdx7dnXkhKfwv3t72fT/k0MnjuYOz66g3W/5PPFNxGRAFLsN5/NLBh4FegC7AS+NLNk59z6HMNuAfY751qY2UDgGWCAmZ0LDATOAxoCH5nZmc65op2nogS0aVKdLx7uzNw1P/L64s1szHV21Src3qk53VrXz312Va8KIRUYct4Q+p/Zn/e+fY+3177NwA8Gcn7F82mwrwFn1TyrrO6GiEiJKYlPJXUANjvntgKYWQLQC8hZDL2Akd7p6cArZmbe5QnOuaPAd2a22Xt9n5dAriILDwmmd7tG9G7XiKxsx6FjmVQOCyG4iB8/qhRaiaGthzLwrIG88807jF81nn6z+9E1sit3tLmDZtWblfI9EBEpOSVRDI2AHTnmdwIXFjTGOZdpZr8CtbzLl+bZtlEJZDplwUFG1Qqhp7RtRFgEt7e5naZ7m7KlxhYmfzOZ+dvn0/2M7tzW5jaaVm1awmlFREpeSRRDfi+r836Os6AxRdnWcwVmw4BhAPXq1WPx4sUnEbFsuXTH+cHn80j9R1hwYAGp36UyZ+scLoy4kJhqMdQMqenriLkcPHjQrx/PnAIpKwRW3kDKCoGVN5CyQskUw06gSY75xsCuAsbsNLMQoBqwr4jbAuCcGwuMBWjfvr3r1KlTCUQvHYsXL+Z4vjji2Ju+l3FrxjF1w1S+PPwlfVv25S+t/0K9yvV8G9QrZ15/F0hZIbDyBlJWCKy8gZQVSuZTSV8CLc3sDDMLw/NmcnKeMcnAEO90P2Ch83w7LBkY6P3U0hlAS2BZCWTyK7Ur1mZ4h+GkxKfQp0UfEjcmEpsUyzPLnmFv+l5fxxMRyaXYxeCcywTuAuYB3wBTnXPrzGyUmR0/B/VbQC3vm8v3AsO9264DpuJ5ozoVuLMsP5FU1upXrs+jFz3K7D6ziW0Wy/vfvk9sUiwvrHiB/Uf0k6Ai4h9K5FxJzrkUICXPskdzTB8B+hew7ZPAkyWRI1A0rtKYxy95nKGth/L6qteZsHYCU76dwvXnXs+Q84ZQNayqryOKSDlWbr/57A/+VPVPjL5sNDN6zeDSRpcydvVYYqbHMGbVGA4eK+gEfyIipUvF4AeaV2/O852eZ1rcNKLqR/HqyleJSYph/NrxHM447Ot4IlLOqBj8yNk1z+blK1/m/e7v06p2K15c8SLdkrrxzvp3OJp11NfxRKScUDH4oVa1WzHmqjG80+0dWlZvybNfPktsYiwJ3yZwLOuYr+OJyGlOxeDH2tZty7iu43jr6rdoVKURT37xJD1m9CBxYyIZ2Rm+jicipykVQwDo0KADE2MmMuaqMdSqUIuRn4+k18xezN4ym6zs0/bTvSLiIyqGAGFmXNLoEt7r/h4vX/kylUMr89CSh+iT3IfU71LJdtm+jigipwkVQ4AxMzo16cSUHlN4odMLBFswD/z3AfrN7seC7Qv0c6MiUmwqhgAVZEF0+VMXpsdNZ/RlozmWdYx7Ft/DgA8G8N+d/1VBiMgpUzEEuOCgYLo3687MXjN5/JLHOXDsAHcuuJPr517P57s+V0GIyElTMZwmQoJC6N2iN7P7zObRix5lz+E9DJs/jJvm3cTyH5f7Op6IBBAVw2kmNCiU/mf2Z06fOfyjwz/YfmA7N827ib98+BdW/bzK1/FEJACoGE5TYcFhXHfOdaTEp3B/+/vZsG8D16dcz50L7mT9L+sLvwIRKbdUDKe5iiEVGXLeEFL7pvK3P/+NlXtWMuCDAdyz6B427t/o63gi4odK5LTb4v8qhVZiaOuhDDhrAJPXT2bS+kks/H4hXSO7EpUR5et4IuJHtMdQzlQJq8LtbW8ntW8qQ1sP5eOdH/PUrqd46JOH2HFgh6/jiYgfUDGUU9XCq/HXP/+V1L6pRFeN5sPtHxI3M46Rn41k18F8f3ZbRMoJFUM5V7NCTfrU6MPc+LkMOGsAyVuS6T6jO08sfYKfDv3k63gi4gMqBgGgTqU6/OPCf5ASn0KfFn1I3JhIbFIszyx7hr3pe30dT0TKkIpBcqlfuT6PXvQos/vMJrZZLO99+x6xSbG8sOIF0o6k+TqeiJQBFYPkq3GVxjx+yePM6jWL6CbRTFg7gZikGF75+hUOHDvg63giUopUDHJCkdUieebyZ0jqmcTFDS/mjdVvEJMYwxur3uBQxiFfxxORUqBikCJpUaMFL3R6gWlx04iqF8UrK18hJjGG8WvHczjjsK/jiUgJUjHISTm75tm8fOXLvN/9fc6rfR4vrniR2KRYJq+fzNGso76OJyIlQMUgp6RV7VaMuWoMk7pNonn15jzz5TPEJsUy5dspZGTp96hFApmKQYqlXd12vNX1Ld66+i0aRTTiiS+eoMeMHiRtSiIjWwUhEohUDFIiOjTowMSYiYy5agw1K9Tkn5/9k14zezF7y2yysrN8HU9EToKKQUqMmXFJo0t4r/t7vHzly1QKqcRDSx4iPjme1G2pZLtsX0cUkSJQMUiJMzM6NenE1LipPH/F8xjGAx8/QP/Z/Vnw/QL93KiIn1MxSKkJsiCujryaxJ6JjL5sNEezjnLPonsYOGcg/935XxWEiJ9SMUipCw4Kpnuz7szsNZPHL3mcX4/+yp0L7mTw3MF8vutzFYSInylWMZhZTTObb2abvH9rFDBuiHfMJjMbkmP5YjPbYGYrvZe6xckj/i0kKITeLXozu/dsHr3oUX489CPD5g/j5nk3s+KnFb6OJyJexd1jGA4scM61BBZ453Mxs5rAP4ELgQ7AP/MUyCDnXFvvZU8x80gACA0Opf+Z/ZkTP4fhHYaz7cA2bky9kWEfDmP1z6t9HU+k3CtuMfQCJnqnJwK98xnTFZjvnNvnnNsPzAdiinm7choIDw5n0DmDSIlP4f729/Ptvm8ZlDKIOxfcyfpf1vs6nki5ZcU5vmtmac656jnm9zvnauQZcz9QwTn3hHf+ESDdOfcvM1sM1AKygETgCVdAIDMbBgwDqFevXlRCQsIp5y5tBw8eJCIiwtcxisxf8h7NPsrHv33MggMLOJx9mDaV2hBbLZaGYQ3/N8ZfshZVIOUNpKwQWHn9JWt0dPQK51z7Qgc65054AT4C1uZz6QWk5Rm7P5/tHwBG5Jh/BLjPO93I+7cK8CFwQ2F5nHNERUU5f7Zo0SJfRzgp/pb3wNED7tWvX3Ud3+3oWk9o7R5Y/IDbmrbVOed/WQsTSHkDKatzgZXXX7ICy10RnmNDilAcVxW0zsx+MrMGzrndZtYAyO89gp1ApxzzjYHF3uv+wfv3NzN7D897EJMKyySntyphVbij7R0MOmcQE9ZN4N1v3mXe9nn0aNaDthltfR1P5LRX3PcYkoHjnzIaAszKZ8w84Gozq+F90/lqYJ6ZhZhZbQAzCwV64NkTEQGgWng1/vbnvzE3fi6DzxnMvG3zeGLXE4z8bCS7D+72dTyR01Zxi2E00MXMNgFdvPOYWXszGwfgnNsHPA586b2M8i4Lx1MQq4GVwA/Am8XMI6ehWhVrcf8F9zM3fi6XVbmM5C3JdJ/RnSeXPsmew/ogm0hJK/RQ0ok4534BOuezfDkwNMf8eGB8njGHgKji3L6UL3Uq1aFfzX6M6DqCN1a/wfSN05mxeQbXnHUNt7S6hVoVa/k6oshpQd98loBTv3J9/nnRP0nuk0xMZAzvfvMu3ZK68eKKF0k7kubreCIBT8UgAatJlSY8cekTzOo1i+gm0by99m1ikmJ4deWrHDh2wNfxRAKWikECXmS1SJ65/BmSeiZxccOLGbNqDDGJMYxdPZZDGYd8HU8k4KgY5LTRokYLXuj0AlN7TCWqbhQvf/0y3RK78fbat0nPTPd1PJGAoWKQ0845tc7h5c4v817se5xb61xeWPEC3RK7MXn9ZI5mHfV1PBG/p2KQ01brOq0Z02UME2Mm0rx6c5758hlik2KZumEqGVn6PWqRgqgY5LT353p/5q2ubzHu6nE0rNyQx5c+TtzMOGZsmkFmdqav44n4HRWDlBsXNriQSd0m8fpVr1M9vDqPfvYovWb2YvaW2WRlZ/k6nojfUDFIuWJmXNroUt7v/j7/if4PFUMq8tCSh4hPjmfetnlku2xfRxTxORWDlEtmRnTTaKbGTeX5K54H4P6P76f/7P4s/H6hfm5UyjUVg5RrQRbE1ZFXk9Qziacve5ojmUf426K/ce2ca/lk5ycqCCmXVAwiQHBQMD2a9WBW71mMungUaUfTuGPBHdww9wa+2P2Fr+OJlCkVg0gOIUEh9GnZh9m9Z/NIx0fYfWg3Qz8cys3zbuarn77ydTyRMqFiEMlHaHAo15x1DXPi5zC8w3C2pm1lSOoQbp1/K2t+XuPreCKlSsUgcgLhweEMOmcQc/vO5b6o+/jml2+4LuU67lpwF9/88o2v44mUChWDSBFUDKnIja1uZG7fufy13V/5as9XXPPBNdy7+F4279/s63giJUrFIHISKodW5i/n/4V5fedxe5vb+WzXZ8Qnx/P3//6d7379ztfxREqEikHkFFQJq8Idbe8gNT6Vm1vdzOIdi+k9qzcPL3mYHb/t8HU8kWJRMYgUQ/UK1bkn6h7mxs/l+nOuZ962efSc0ZORn41k98Hdvo4nckpUDCIloFbFWjxwwQOkxKfQ/6z+JG9JpvuM7kzbN42fD//s63giJ0XFIFKC6laqy0MXPsScPnPo2bwnS35bQrekbjz35XP8kv6Lr+OJFEmIrwOInI4aRDRg5MUjaXWoFV9X/JrJ30xm2sZpXHf2ddzU6iaqhVfzdUSRAmmPQaQU1Q6tzZOXPsnMXjPp1KQT49eOp2tiV15b+Rq/HfvN1/FE8qViECkDZ1Q7g2cvf5bEnolc1OAiXl/1OjGJMby5+k0OZxz2dTyRXFQMImWoZY2WvBj9IlN7TKVd3Xb85+v/EJMYw4S1E0jPTPd1PBFAxSDiE+fUOodXOr/Cu7Hvck6tc3h+xfPEJsXy7jfvcjTrqK/jSTmnYhDxofPrnM8bXd5gYsxEIqtGMnrZaLondWfqhqlkZGX4Op6UUyoGET/w53p/ZnzX8bx59ZvUr1yfx5c+TtzMOGZsmkFmdqav40k5o2IQ8RNmRscGHXmn2zu81vk1qodX59HPHqX3rN58sPUDsrKzfB1RygkVg4ifMTMua3wZ73d/n5eiXyI8OJx/fPIP+ib35cNtH5Ltsn0dUU5zxSoGM6tpZvPNbJP3b40CxqWaWZqZfZBn+Rlm9oV3+ylmFlacPCKnEzPjyqZXMi1uGv+64l84HPd9fB/XzL6GRd8v0u9RS6kp7h7DcGCBc64lsMA7n5/ngMH5LH8GeNG7/X7glmLmETntBFkQXSO7ktQziacufYr0zHT+uuivXDfnOpb8sEQFISWuuMXQC5jonZ4I9M5vkHNuAZDra55mZsCVwPTCthcRCA4KJq55HLN6z2LUxaPYd2Qft390OzfMvYFlu5f5Op6cRqw4rzbMLM05Vz3H/H7nXEGHkzoB9zvnenjnawNLnXMtvPNNgLnOuVYFbD8MGAZQr169qISEhFPOXdoOHjxIRESEr2MUWSDlDaSsULp5M10mSw8uZd6v80jLSqNleEt6VO9BswrNTun69NiWHn/JGh0dvcI5177Qgc65E16Aj4C1+Vx6AWl5xu4/wfV0Aj7IMV8H2JxjvgmwprA8zjmioqKcP1u0aJGvI5yUQMobSFmdK5u8RzKPuMnrJ7srEq5wrSa0crd+eKtbvWf1SV+PHtvS4y9ZgeWuCM+xhZ5d1Tl3VUHrzOwnM2vgnNttZg2APYU20e/2AtXNLMQ5lwk0BnadxPYiAoQHhzPonEHEt4wn4dsExq8dz3Up19GpcSfubHcnZ9c829cRJcAU9z2GZGCId3oIMKuoG3rbaxHQ71S2F5HcKoZU5KZWN5HaN5W7293Nij0r6D+7P/cuvpfN+zf7Op4EkOIWw2igi5ltArp45zGz9mY27vggM/sEmAZ0NrOdZtbVu+pB4F4z2wzUAt4qZh6Rcq9yaGWGnT+M1L6p3NbmNj7b9RnxyfE8+N8H2fbrNl/HkwBQrB/qcc79AnTOZ/lyYGiO+csK2H4r0KE4GUQkf1XDqnJn2zsZdPYgJqybwHvfvkfqtlTimsVxW5vbaFylsa8jip/SN59FTnPVK1Tnnqh7SIlPYdA5gzzlMCOOxz5/jB8P/ejreOKHVAwi5UTtirX5+wV/JyU+hX5n9mPm5pnEJsXy9BdP8/Phn30dT/yIikGknKlbqS4Pd3yYlD4p9GzekykbptAtqRsz9s9g35F9vo4nfkDFIFJONYhowMiLRzK792y6RnZl0YFFxCTG8NJXL/Hr0V99HU98qFhvPotI4GtStQlPXvokrdNb81XYV7y15i0Svk1g8LmDGXzuYKqEVfF1RClj2mMQEQDqh9bn2SueJbFnIh0bdOT1Va8TkxjDuDXjOJxx2NfxpAypGEQkl5Y1WvJi9ItM7TGVdnXb8dJXL9EtqRsT100kPTPd1/GkDKgYRCRf59Q6h1c6v8Lk2MmcVeMs/rX8X8QmxfLuN+9yLOuYr+NJKVIxiMgJtanThrFXj2VCzAQiq0Yyetlous/ozrSN08jIzvB1PCkFKgYRKZKoelGM7zqeN69+k3qV6jHq81HEzYhj5uaZZGZn+jqelCAVg4gUmZnRsUFH3un2Dq91fo1q4dV45NNH6DOrD3O2ziErO8vXEaUEqBhE5KSZGZc1voyE7gn8O/rfhAaHMvyT4fRN7sv87fPJdtm+jijFoGIQkVNmZnRu2pnpcdN57ornyCabexffy4APBrB4x2L9HnWAUjGISLEFWRAxkTHM6DmDpy59isMZh7l74d0MShnEpz98qoIIMCoGESkxwUHBxDWPY1bvWYy6eBS/pP/CbR/dxpDUISzbvczX8aSIVAwiUuJCgkLo07IPH/T5gBEXjuCHgz9wy4e3cMu8W/h6z9e+jieFUDGISKkJDQ5lwNkDSIlP4cELHmRL2hZumHsDt310G2v3rvV1PCmAikFESl14cDjXn3s9KfEp3Bt1L+v2ruPaOddy98K72bBvg6/jSR4qBhEpM5VCK3FTq5tI7ZvK3e3uZsVPK+g3ux/3Lr6XLWlbfB1PvFQMIlLmKodWZtj5w0jtm8qt59/KZ7s+o8+sPgz/ZDjbD2z3dbxyT8UgIj5TNawqd7W7i9T4VG5qdRMLv19Ir5m9eOTTR9j5205fxyu3VAwi4nPVK1Tn/6L+j5T4FK475zpStqYQNyOOUZ+P4sdDP/o6XrmjYhARv1G7Ym3+fsHfSYlPoe+ZfZmxeQaxSbE8/cXT/Hz4Z1/HKzdUDCLid+pVrseIjiOY02cOPZv3ZMqGKcQmxfL88ufZd2Sfr+Od9lQMIuK3GkY0ZOTFI5nSCb/7AAAPDElEQVTdezZXR17NpPWTiEmM4T9f/YdDWYd8He+0FeLrACIihWlStQlPXvokt7S+hTErxzBuzTjCLZzvV37P9edeT5WwKr6OeFrRHoOIBIxm1Zrx7BXPMr3ndM6scCavrXqNmMQYxq0Zx+GMw76Od9pQMYhIwDmzxpn8pe5fmNJjCm3rtuWlr16iW1I3Jq6byJHMI76OF/BUDCISsM6tdS6vdn6VybGTOavGWfxr+b+ITYrlvW/e41jWMV/HC1gqBhEJeG3qtGHs1WN5u+vbNK3alKeXPU33Gd2ZtnEaGdkZvo4XcIpVDGZW08zmm9km798aBYxLNbM0M/sgz/IJZvadma30XtoWJ4+IlG/t67fn7a5vM7bLWOpWqsuoz0cRNyOOWZtnkZmd6et4AaO4ewzDgQXOuZbAAu98fp4DBhew7gHnXFvvZWUx84hIOWdmXNTwIiZ3m8yrnV+lalhVRnw6gj6z+pCyNUW/R10ExS2GXsBE7/REoHd+g5xzC4DfinlbIiJFZmZc3vhypvSYwr+j/01ocCgPfvIgfZP7Mn/7fBXECRS3GOo553YDeP/WPYXreNLMVpvZi2YWXsw8IiK5mBmdm3Zmetx0nrviObJcFvcuvpcBHwzg4x0f6/eo82GFPShm9hFQP59VDwMTnXPVc4zd75wr6H2GTsD9zrkeOZY1AH4EwoCxwBbn3KgCth8GDAOoV69eVEJCwglz+9LBgweJiIjwdYwiC6S8gZQVAitvIGWFU8+b7bJZfmg5c3+dy97MvUSGRRJbPZazK5yNmZVCUv95bKOjo1c459oXOtA5d8oXYAPQwDvdANhwgrGdgA9OdX3OS1RUlPNnixYt8nWEkxJIeQMpq3OBlTeQsjpX/LzHso65xI2Jrsu0Lq7VhFbuhpQb3LLdy0omXB7+8tgCy10RnmOLeygpGRjinR4CzDqZjb17DJinpnsD+hFYESkToUGhxLeMZ06fOYy4cAQ7f9vJzfNuZui8oazcU74/B1PcYhgNdDGzTUAX7zxm1t7Mxh0fZGafANOAzma208y6ele9a2ZrgDVAbeCJYuYRETkpocGhDDh7AHPi5/D3C/7OprRNDJ47mNs/up11e9f5Op5PFOskes65X4DO+SxfDgzNMX9ZAdtfWZzbFxEpKRVCKjD43MH0bdmXhA0JvL32bQbOGUh0k2jubHsnZ9U8y9cRy4y++SwikkOl0Erc3Opm5sbP5a62d7H8x+X0m92P+xbfx5a0Lb6OVyZUDCIi+YgIi+DWNrcyt+9chp0/jCU/LKHPrD4M/2Q42w9s93W8UqViEBE5gWrh1bi73d2k9k3lxlY3smD7AnrN7MWjnz7KDwd/KLsgO3fC3XfDRRdBpUpgBtu2lcpNqRhERIqgRoUa3Bt1L3P7zuXas69lztY59JjRg8c/f5wfD/1YvCs/eBCuucbztyCbN8PUqVCjBlyW79u2JUbFICJyEmpXrM2DHR4kJT6Fvi37krQ5ie5J3Rm9bDR70/ee2pUuWADTpsHChQWPufxy+OknSEmB/v1P7XaKSMUgInIK6lWux4iOI5jTZw49mvcg4dsEuiV244XlL7D/yP6Tuq7spCSc92+Bgsru6VrFICJSDA0jGvLYxY+R3DuZLn/qwsT1E4lJjOE/X/2HX4/+WuB2RzOzmPH1Tq5+YTG/Tp2BAWlTk+j6wmJmfL2To5lZZXcn8lAxiIiUgKZVm/LUZU8xo+cMLm98OW+ueZNuid14fdXrpGen5xq7ckcaFz65gBEz1uLWrSfc+2tzFTKPkbX+G0bMWMuFTy5g1Y40X9wVFYOISElqVr0Zz13xHNPjpnNB/Qt4beVrjPxhJOPWjONwxmFW7Ujj2rFLSUvP4NCxLKK3Lico23MK8KDsbKK3fMmhY1mkpWcwcOxSn5SDikFEpBScVfMsXrryJRJ6JBAZHslLX71ETGIMg6c/R3rmkf+N6/HtJ1TI8vz8aIWsDHp8u+R/69IzshgyflmZH1Yq1ikxRETkxM4b9ihTkpJY2bwir/apx9JWyTS3RIZ+8DN9P94PLjjX+LN//o5tz/TIfSUjc0zHx0O3bqWaWXsMIiKlafRofmvRgrY/BvHmv7Yx/umtNN5zjKcGN6TH6JYkX1qFjBzdEJ5VwG9TV64M7drB6NGlHlnFICJSmlq2ZMWYMWSPHEl6SDjtNh5hwtPf8cZz31Hn10weu6kRPZ8+k1mXVCczn2fkTAsiPSSc7Mceg+HDYdUqWLHCs3LuXJg+HT7+uEQj61CSiEhpCw7m4F1/I35LNV5KGs0Z+3/g4nWHuGjdVj5pE8Erferx3LX16bziABFHfv8t6sOh4Wyt0Yh74oeTdOeNVK0Ylvt677jD8/eKK2Dx4hKLq2IQESkDlcNC2FK9IXFDXuT2pdO5+7MEKmRlcPmqg1y26iA76oblKoUjwaG82vEaXruoPwQFUTksBMro96l1KElEpAwEBxkt60aQHRTMxjp/IiM49H/rDGi651iu8RnBoWyoE4mzIM6sG0FwUOn8HnV+VAwiImXk9k7NqRwWTNeNn1H5WPoJx1Y+lu4ZFxbM7Z1alFFCDxWDiEgZiW3dgNAgo/PmLwni98NCnjeYw8i035+Sg3B03rKM0CCjW+v6ZZpTxSAiUkbCQ4JJuLTq/06BAZ43mL+tE8lf4h/h2zqRHA4N/9+6CpnHSLisGuEhwfldXalRMYiIlKGzv15CBYMs78dQn7/0euJu/DdLzmhHzyEv8sKlg0gPCSfLgqgQ5Blf1lQMIiJlaepUgjIzsDbns2T6fJbEDYagIEKDDRcczCdxQ1gyfT52fmuCMjI8P85TxvRxVRGRslS/Pjz3HEH33EOXoCC6AFnZjkPHMqkcFvL7p496rIB//7tEv59QVCoGEZGyNHv2HxYFBxlVK4TmWRgM993nuZQxHUoSEZFcVAwiIpKLikFERHJRMYiISC4qBhERyUXFICIiuagYREQkFxWDiIjkUqxiMLOaZjbfzDZ5/9bIZ0xbM/vczNaZ2WozG5Bj3Rlm9oV3+ylmFpZ3exERKVvF3WMYDixwzrUEFnjn8zoM3OCcOw+IAf5tZtW9654BXvRuvx+4pZh5RESkmIpbDL2Aid7piUDvvAOccxudc5u807uAPUAdMzPgSmD6ibYXEZGyZa4YvyFqZmnOueo55vc75/5wOCnH+g54CuA8oCaw1DnXwruuCTDXOdeqgG2HAcMA6tWrF5WQkHDKuUvbwYMHiYiI8HWMIgukvIGUFQIrbyBlhcDK6y9Zo6OjVzjn2hc60Dl3wgvwEbA2n0svIC3P2P0nuJ4GwAago3e+DrA5x/omwJrC8jjniIqKcv5s0aJFvo5wUgIpbyBldS6w8gZSVucCK6+/ZAWWuyI8xxZ6dlXn3FUFrTOzn8ysgXNut5k1wHOYKL9xVYE5wAjn3FLv4r1AdTMLcc5lAo2BXYXlERGR0lXc9xiSgSHe6SHArLwDvJ80mgFMcs5NO77c216LgH4n2l5ERMpWcYthNNDFzDYBXbzzmFl7MxvnHXMNcDlwo5mt9F7aetc9CNxrZpuBWsBbxcwjIiLFVKwf6nHO/QJ0zmf5cmCod3oyMLmA7bcCHYqTQURESpa++SwiIrmoGEREJBcVg4iI5KJiEBGRXFQMIiKSi4pBRERyUTGIiEguKgYREclFxSAiIrkU67TbvmJmPwPbfZ3jBGrjOUlgoAikvIGUFQIrbyBlhcDK6y9Z/+Scq1PYoIAsBn9nZstdUc557icCKW8gZYXAyhtIWSGw8gZSVtChJBERyUPFICIiuagYSsdYXwc4SYGUN5CyQmDlDaSsEFh5Aymr3mMQEZHctMcgIiK5qBhERCQXFUMJMbOaZjbfzDZ5/9bIZ8yfzGyF9+dN15nZbX6cta2Zfe7NudrMBvhrVu+4VDNLM7MPyjqj9/ZjzGyDmW02s+H5rA83syne9V+YWWTZp/xflsKyXm5mX5lZppn1y+86ylIR8t5rZuu9/08XmNmffJHTm6WwrLeZ2Rrvc8ASMzvXFzkL5ZzTpQQuwLPAcO/0cOCZfMaEAeHe6QhgG9DQT7OeCbT0TjcEdgPV/TGrd11nIA74wAcZg4EtQDPvv/Eq4Nw8Y+4AxninBwJTyjrnSWSNBM4HJgH9fJHzJPNGA5W807f7+WNbNcd0TyDVl49vQRftMZScXsBE7/REoHfeAc65Y865o97ZcHy3x1aUrBudc5u807uAPUCh35gsBYVmBXDOLQB+K6tQeXQANjvntjrnjgEJeHLnlPN+TAc6m5mVYcbjCs3qnNvmnFsNZPsgX15FybvIOXfYO7sUaFzGGY8rStYDOWYrA3756R8VQ8mp55zbDeD9Wze/QWbWxMxWAzvwvPrdVYYZjytS1uPMrAOeV0BbyiBbXieV1Uca4fn3PG6nd1m+Y5xzmcCvQK0ySVdADq/8svqTk817CzC3VBMVrEhZzexOM9uCZ2/4r2WU7aSE+DpAIDGzj4D6+ax6uKjX4ZzbAZxvZg2BmWY23Tn3U0llPK4ksnqvpwHwDjDEOVcqryBLKqsP5ffKP+8rwaKMKQv+kqOoipzXzK4H2gNXlGqighUpq3PuVeBVM7sOGAEMKe1gJ0vFcBKcc1cVtM7MfjKzBs653d4n0z2FXNcuM1sHXIbn0EKJKomsZlYVmAOMcM4tLemMx5Xk4+ojO4EmOeYbA3n3BI+P2WlmIUA1YF/ZxMs3x3H5ZfUnRcprZlfheSFxRY7DtWXtZB/bBOD1Uk10inQoqeQk83vzDwFm5R1gZo3NrKJ3ugZwCbChzBL+rihZw4AZwCTn3LQyzJZXoVn9wJdASzM7w/u4DcSTO6ec96MfsNB534EsY0XJ6k8KzWtm7YA3gJ7OOV++cChK1pY5ZrsDm8owX9H5+t3v0+WC53jxAjz/0AuAmt7l7YFx3ukuwGo8n1ZYDQzz46zXAxnAyhyXtv6Y1Tv/CfAzkI7nlVvXMs4ZC2zE8z7Mw95lo/A8WQFUAKYBm4FlQDMf/l8tLOsF3sfwEPALsM5XWYuY9yPgpxz/T5P9OOtLwDpvzkXAeb58bAu66JQYIiKSiw4liYhILioGERHJRcUgIiK5qBhERCQXFYOIiOSiYhARkVxUDCIiksv/A9EXsUDmlKbXAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] From 88db21ba296a645c6df623a85117bba7b3b00397 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 30 Apr 2019 00:53:36 +0200 Subject: [PATCH 097/116] running optimization notebooks with fetched aqua / terra --- .../aqua/optimization/vehicle_routing.ipynb | 62 ++++++++----------- .../optimization/portfolio_optimization.ipynb | 32 +++++++++- 2 files changed, 57 insertions(+), 37 deletions(-) diff --git a/qiskit/aqua/optimization/vehicle_routing.ipynb b/qiskit/aqua/optimization/vehicle_routing.ipynb index 50578702f..f602e8f68 100644 --- a/qiskit/aqua/optimization/vehicle_routing.ipynb +++ b/qiskit/aqua/optimization/vehicle_routing.ipynb @@ -238,7 +238,6 @@ "outputs": [], "source": [ "# Initialize the problem by defining the parameters\n", - "\n", "n = 3 # number of nodes + depot (n+1)\n", "K = 2 # number of vehicles" ] @@ -288,7 +287,6 @@ "outputs": [], "source": [ "# Initialize the problem by randomly generating the instance\n", - "\n", "initializer = Initializer(n)\n", "xc,yc,instance = initializer.generate_instance()" ] @@ -337,8 +335,6 @@ " my_rhs = 2*([K] + [1 for x in range(0,n-1)]) + [1-0.1 for x in range(0,(n-1)**2-(n-1))] + [0 for x in range(0,n)]\n", " my_sense = \"\".join(['E' for x in range(0,2*n)]) + \"\".join(['L' for x in range(0,(n-1)**2-(n-1))])+\"\".join(['E' for x in range(0,n)])\n", "\n", - "\n", - "\n", " try:\n", " my_prob = cplex.Cplex()\n", " self.populatebyrow(my_prob,my_obj,my_ub,my_lb,my_ctype,my_sense,my_rhs)\n", @@ -349,7 +345,6 @@ " print(exc)\n", " return\n", "\n", - "\n", " x = my_prob.solution.get_values()\n", " x = np.array(x)\n", " cost = my_prob.solution.get_objective_value()\n", @@ -438,13 +433,13 @@ "x = None\n", "z = None\n", "try:\n", - " x,classical_cost = classical_optimizer.cplex_solution()\n", - " # Put the solution in the z variable\n", - " z = [x[ii] for ii in range(n**2) if ii//n != ii%n]\n", - " # Print the solution\n", - " print(z)\n", + " x,classical_cost = classical_optimizer.cplex_solution()\n", + " # Put the solution in the z variable\n", + " z = [x[ii] for ii in range(n**2) if ii//n != ii%n]\n", + " # Print the solution\n", + " print(z)\n", "except: \n", - " print(\"CPLEX may be missing.\")" + " print(\"CPLEX may be missing.\")" ] }, { @@ -454,7 +449,6 @@ "outputs": [], "source": [ "# Visualize the solution\n", - "\n", "def visualize_solution(xc, yc, x, C, n, K, title_str):\n", " plt.figure()\n", " plt.scatter(xc, yc, s=200)\n", @@ -472,8 +466,7 @@ " plt.arrow(xc[ix], yc[ix], xc[iy] - xc[ix], yc[iy] - yc[ix], length_includes_head=True, head_width=.25)\n", "\n", " plt.title(title_str+' cost = ' + str(int(C * 100) / 100.))\n", - " plt.show()\n", - " \n", + " plt.show() \n", "\n", "if x: visualize_solution(xc, yc, x, classical_cost, n, K, 'Classical')" ] @@ -516,7 +509,6 @@ " self.K = K\n", " self.max_trials = max_trials\n", "\n", - "\n", " def binary_representation(self,x_sol=0):\n", "\n", " instance = self.instance\n", @@ -754,18 +746,18 @@ "source": [ "# Check if the binary representation is correct\n", "try:\n", - " if z:\n", - " Q,g,c,binary_cost = quantum_optimizer.binary_representation(x_sol = z)\n", - " print(binary_cost,classical_cost)\n", - " if np.abs(binary_cost - classical_cost)<0.01:\n", - " print('Binary formulation is correct')\n", - " else: print('Error in the binary formulation')\n", - " else:\n", - " print('Could not verify the correctness, due to CPLEX solution being unavailable.')\n", - " Q,g,c,binary_cost = quantum_optimizer.binary_representation()\n", + " if z:\n", + " Q,g,c,binary_cost = quantum_optimizer.binary_representation(x_sol = z)\n", + " print(binary_cost,classical_cost)\n", + " if np.abs(binary_cost - classical_cost)<0.01:\n", + " print('Binary formulation is correct')\n", + " else: print('Error in the binary formulation')\n", + " else:\n", + " print('Could not verify the correctness, due to CPLEX solution being unavailable.')\n", + " Q,g,c,binary_cost = quantum_optimizer.binary_representation()\n", "except NameError as e:\n", - " print(\"Warning: Please run the cells above first.\")\n", - " print(e)" + " print(\"Warning: Please run the cells above first.\")\n", + " print(e)" ] }, { @@ -797,9 +789,9 @@ "print(ground_state)\n", "\n", "if z:\n", - " if np.abs(ground_level - classical_cost)<0.01:\n", - " print('Ising Hamiltonian in Z basis is correct')\n", - " else: print('Error in the Ising Hamiltonian formulation')" + " if np.abs(ground_level - classical_cost)<0.01:\n", + " print('Ising Hamiltonian in Z basis is correct')\n", + " else: print('Error in the Ising Hamiltonian formulation')" ] }, { @@ -888,15 +880,15 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[1 1 1 0 1 0]\n", - "132.11148115684045\n" + "[1 1 1 0 0 1]\n", + "12434.909288240102\n" ] } ], @@ -930,9 +922,9 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "qiskit_master", "language": "python", - "name": "python3" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { @@ -944,7 +936,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index 4600febd8..1cd9e827f 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -312,9 +312,37 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal: selection [0 0 1 1], value -0.7012\n", + "\n", + "----------------- Full result ---------------------\n", + "selection\tvalue\t\tprobability\n", + "---------------------------------------------------\n", + " [0 0 1 1]\t-0.7012\t\t0.1771\n", + " [1 0 0 1]\t-0.4158\t\t0.1748\n", + " [1 1 0 0]\t-0.5110\t\t0.1743\n", + " [0 1 1 0]\t-0.5149\t\t0.1709\n", + " [1 0 1 0]\t-0.2876\t\t0.1479\n", + " [0 1 0 1]\t2.1421\t\t0.1369\n", + " [1 1 1 0]\t2.6688\t\t0.0098\n", + " [1 0 1 1]\t3.0617\t\t0.0043\n", + " [0 0 0 1]\t4.0314\t\t0.0016\n", + " [0 0 1 0]\t3.4782\t\t0.0009\n", + " [0 1 1 1]\t4.9012\t\t0.0008\n", + " [1 0 0 0]\t4.0242\t\t0.0004\n", + " [0 1 0 0]\t4.5153\t\t0.0003\n", + " [1 1 0 1]\t4.6445\t\t0.0002\n", + " [1 1 1 1]\t15.6136\t\t0.0000\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n" + ] + } + ], "source": [ "backend = BasicAer.get_backend('statevector_simulator')\n", "seed = 50\n", From d547a286b9af96e9525361015bea0f53842258a9 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 30 Apr 2019 01:06:30 +0200 Subject: [PATCH 098/116] delete empty readmes --- qiskit/finance/data_providers/readme.txt | 0 qiskit/finance/optimization/readme.txt | 0 qiskit/finance/simulation/readme.txt | 0 3 files changed, 0 insertions(+), 0 deletions(-) delete mode 100644 qiskit/finance/data_providers/readme.txt delete mode 100644 qiskit/finance/optimization/readme.txt delete mode 100644 qiskit/finance/simulation/readme.txt diff --git a/qiskit/finance/data_providers/readme.txt b/qiskit/finance/data_providers/readme.txt deleted file mode 100644 index e69de29bb..000000000 diff --git a/qiskit/finance/optimization/readme.txt b/qiskit/finance/optimization/readme.txt deleted file mode 100644 index e69de29bb..000000000 diff --git a/qiskit/finance/simulation/readme.txt b/qiskit/finance/simulation/readme.txt deleted file mode 100644 index e69de29bb..000000000 From 4e1f49c3d075767b3aa9ff7c85e79c08262d6d55 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Tue, 30 Apr 2019 14:21:27 +0100 Subject: [PATCH 099/116] For the updated Qiskit Aqua (as of April 30th) --- .../finance/data_providers/time_series.ipynb | 35 +++++++++++-------- 1 file changed, 21 insertions(+), 14 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index fd72ff6ab..e3342626a 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 9, "metadata": { "scrolled": true }, @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -72,13 +72,15 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "Means:\n", + "[16.66722941 72.03026566]\n", "A time-series similarity measure:\n", "[[1.0000000e+00 6.2284804e-04]\n", " [6.2284804e-04 1.0000000e+00]]\n" @@ -119,6 +121,10 @@ } ], "source": [ + "means = data.get_mean_vector()\n", + "print(\"Means:\")\n", + "print(means)\n", + "\n", "rho = data.get_similarity_matrix()\n", "print(\"A time-series similarity measure:\")\n", "print(rho)\n", @@ -141,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -196,7 +202,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -233,10 +239,11 @@ "\n", "While the access to real-time data usually requires a payment, it is possible \n", "to access historical (adjusted) closing prices via Wikipedia and Quandl\n", - "free of charge.\n", + "free of charge, following registration at:\n", + "https://www.quandl.com/?modal=register\n", "In the code below, one needs to specify actual tickers of actual NASDAQ\n", - "issues; by running the code below, you agree to the Quandl terms and \n", - "conditions, including their liability waiver.\n", + "issues and the access token you obtain from Quandl; by running the code below, you agree to the Quandl terms and \n", + "conditions, including a liability waiver.\n", "Notice that at least two tickers are required for the computation\n", "of covariance and time-series matrices, but hundreds of tickers may go \n", "beyond the fair usage limits of Quandl." @@ -249,10 +256,10 @@ "outputs": [], "source": [ "stocks = [\"REPLACEME1\", \"REPLACEME2\"]\n", - "from qiskit.aqua.translators.data_providers.wikipedia_data_provider import StockMarket\n", - "wiki = WikipediaDataProvider(token = \"\",\n", + "wiki = WikipediaDataProvider(\n", + " token = \"REPLACEME\",\n", " tickers = stocks,\n", - " stockmarket = StockMarket.NASDAQ.value,\n", + " stockmarket = StockMarket.NASDAQ,\n", " start = datetime.datetime(2016,1,1),\n", " end = datetime.datetime(2016,1,30))\n", "wiki.run()" @@ -325,7 +332,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "If you don't have NASDAQ Data on Demand license, you can contact NASDAQ at https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html to obtain a trial or paid license.\n", + "If you don't have NASDAQ Data on Demand license, you can contact NASDAQ (cf. https://business.nasdaq.com/intel/GIS/Nasdaq-Data-on-Demand.html) to obtain a trial or paid license.\n", "\n", "If and when you have access to NASDAQ Data on Demand using your own token, you should replace REPLACE-ME below with the token. \n", "To assure the security of the connection, you should also have your own means of validating NASDAQ's certificates. DataOnDemandProvider constructor has an optional argument verify, which can be None or a string or a boolean. If it is None, certifi certificates will be used (default). If verify is a string, it should be poiting to a cerfificate for the HTTPS connection to NASDAQ (dataondemand.nasdaq.com), either in the form of a CA_BUNDLE file or a directory wherein to look.\n" @@ -341,7 +348,7 @@ "try:\n", " nasdaq = DataOnDemandProvider(token = \"REPLACE-ME\",\n", " tickers = stocks,\n", - " stockmarket = StockMarket.NASDAQ.value,\n", + " stockmarket = StockMarket.NASDAQ,\n", " start = datetime.datetime(2016,1,1),\n", " end = datetime.datetime(2016,1,2))\n", " nasdaq.run()\n", @@ -374,7 +381,7 @@ "try:\n", " lse = ExchangeDataProvider(token = \"REPLACE-ME\",\n", " tickers = [\"TICKER1\", \"TICKER2\"],\n", - " stockmarket = StockMarket.LONDON.value,\n", + " stockmarket = StockMarket.LONDON,\n", " start = datetime.datetime(2019,1,1),\n", " end = datetime.datetime(2019,1,30))\n", " lse.run()\n", From 79fbeb2e701990a1c7077c8d005a826eafef095a Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Tue, 30 Apr 2019 20:07:11 +0200 Subject: [PATCH 100/116] use data provider in portfolio optimization and rerun all notebooks with most recent aqua/terra --- .../portfolio_diversification.ipynb | 4 +- .../optimization/portfolio_optimization.ipynb | 133 ++++++++++-------- .../simulation/credit_risk_analysis.ipynb | 4 +- 3 files changed, 79 insertions(+), 62 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index c0db092a5..5da6c4eff 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -644,7 +644,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XlcVPX+x/HXh1UFFffdSMWsXMPMFksyE1FcUNNSs8Vsse7tZ5u3zOu1TeumedvMzLKscAEUFTBDrczMpdzLNU3TMlNUFJXl+/tjjsUQCDrDnBn5PB+PeTDnnO+ZeYM+5j3nnJlzxBiDUkopdZaf3QGUUkp5Fy0GpZRSTrQYlFJKOdFiUEop5USLQSmllBMtBqWUUk60GJStRGSMiMwoxcffLCIdXXyMUs2olLfRYlClTkTuEJE1IpIpIgdEJFVEbvDEcxtjrjTGLPPEc7mDiISLiBGRAA88V5CIzBGR3dZzdixmfFURSRKREyKyR0TuKO2Myh5aDKpUicgI4DXgRaAW0BB4C+hpZy71p+XAIODXEox9EziD499xIPC2iFxZitmUTbQYVKkRkcrAWGC4MSbRGHPCGJNtjJlvjHmiiHVmi8ivInJURL7M/8IjIjEiskVEjovILyLyuDW/uogsEJEMETksIl+JiJ+1bLeI3GLd9xeRp0Vkp/UYa0WkgbVskojsFZFj1vwO5/F79hSRdda6O0Uk2ppfV0SSrUw7ROS+fOu0s7aijonIbyIywVr0pfUzw9rCurakOc6XMeaMMeY1Y8xyIPdcY0UkBOgDPGuMybTWSQYGl1Y+ZR8tBlWargXKAUnnsU4qEAHUBL4DPs637D3gfmNMRaA5sMSa/xiwD6iB493s00Bh53oZAdwOxACVgHuAk9ay1UBroCrwCTBbRMoVF1ZE2gEfAk8AYcCNwG5r8adWrrpAX+BFEelkLZsETDLGVAIaA7Os+TdaP8OMMaHGmG8Kec47rBIs6tawuNwXoCmQa4zZlm/eekC3GC5Cpb4fU5Vp1YBDxpickq5gjJl29r6IjAGOiEhlY8xRIBu4QkTWG2OOAEesodlAHeASY8wO4KsiHn4o8KQxZqs1vT7f8+Y/uPyqiIwCLss/pgj3AtOMMYut6V+s7A2AG4DuxphTwDoRmYrjHXa6lbmJiFQ3xhwCVhbzPH8yxnyCo7w8KRQ4WmDeUaCih3MoD9AtBlWa/gCql/RAqrWrZ5y1O+YYf73zrm797IPj3f4eEfki326WV4AdwGcisktERhbxFA2AnUU892Mi8oO1CysDqJzvec+lqMesCxw2xhzPN28PUM+6fy+Od+E/ishqEelegue6YCLS0No1lSkimRfwEJk4trLyqwQcL2Ss8nFaDKo0fQOcAnqVcPwdOA5K34LjhTncmi8AxpjVxpieOHYzzcXa/WKMOW6MecwY0wiIBUbk22WT314cu22cWMcTngJuA6oYY8JwvBuWEmQu9DGB/UBVEcn/jroh1haFMWa7MeZ263cZD8yx9uMXe7pjERmY/0W+kNvfdiUZY362dk2FGmNCS/B7FbQNCBCRiHzzWgGbL+CxlJfTYlClxtr9Mxp4U0R6iUgFEQkUka4i8nIhq1QETuPY0qiA45NMwJ8frRxo7VbKBo5hHTAVke4i0kREJN/8wg6mTgWeE5EIcWgpItWs580Bfsfx4jeav787Lsp7wN0i0klE/ESknog0M8bsBVYAL4lIORFpiWMr4WMr8yARqWGMyQMyrMfKtTLkAY2KekJjzMf5X+QLuf1cwuyISHC+YylBVta/FaIx5gSQCIwVkRARuR5HiX9U0udSvkOLQZUqY8wEHAd9R+F40dsLPIzjHX9BH+LY3fILsIW/73cfDOy2djM9gONjluA4WP05jt0d3wBvFfHdhQk4tjI+w1Eg7wHlgUU4Dnpvs57/lJWzJL/fKuBuYCKOrYwvgEusxbfj2OrZj+MA/L/zHYuIBjZbu3UmAQOMMaeMMSeBF4CvrQPJ7UuSwwVbgSwcu7gWWfcvAbA+wZWab+xDOP5eB3EcWH/QGKNbDBch0Qv1KKWUyk+3GJRSSjnRYlBKKeVEi0EppZQTLQallFJOfPKbz9WrVzfh4eF2xyjSiRMnCAkJsTtGiflSXl/KCr6V15eygm/l9Zasa9euPWSMqVHcOJ8shvDwcNasWWN3jCItW7aMjh072h2jxHwpry9lBd/K60tZwbfyektWEdlTknG6K0kppZQTtxSDiESLyFbr1MJ/O0+N9e3Kmdbyb0Uk3JofLiJZ1imL14nIZHfkUUopdeFc3pUkIv44LuDRGccphleLSLIxZku+YfcCR4wxTURkAI5zw/S3lu00xrR2NYdSSin3cMcWQztghzFmlzHmDBDP36/O1ROYbt2fA3Qq7HwsSiml7OfyKTFEpC8QbYwZak0PBq4xxjycb8wma8w+a3oncA2Oc7xvxnGOmmPAKGNMoefSF5FhwDCAWrVqRcbHx7uUuzRlZmYSGnohJ7C0hy/l9aWs4Ft5fSkr+FZeb8kaFRW11hjTtrhx7vhUUmHv/Au2TVFjDgANjTF/iEgkMFdErjTGHPvbYGOmAFMA2rZta7zhCH9RvOUTCCXlS3l9KSv4Vl5fygq+ldeXsoJ7diXtw3GxkrPq4zibZKFjrIu2VMZxEZPTxpg/AIwxa3Fc8KSpGzIppZS6QO4ohtVAhIhcKiJBwAAcFwnPLxkYYt3vCywxxhgRqWEdvEZEGuE4ffIuN2RSSil1gVzelWSMyRGRh3Gcy90fx/VvN4vIWGCNMSYZx3nvPxKRHcBhHOUBjgufjxWRHBwXKXnAGHPY1UxKKaUunFu++WyMSQFSCswbne/+KaBfIeslAAnuyKCUUso99JvPSimlnGgxKKWUcqLFoJRSyokWg1JKKSdaDEoppZxoMSillHKixaCUUsqJFoNSSiknWgxKKaWcaDEopZRyosWglFLKiRaDUkopJ1oMSimlnGgxXKi9e6FvX6hcGSpVgrg4+Plnu1MppZTL3HLa7TLn5Em4+WYIDobp00EERo2CqCjYsMHudEop5RIthgvx7ruwaxds3QpNmjjmtWwJERHwzjtw1VX25lNKKRforqQCcnLzOHYqm9w8U/Sg5GRo3/6vUgC49FK4/nqYN6/0QyqlVCnSLQbgdE4uKRsP8PaynWw/mEmAn5CTZ2haM5QHOjYmpkUdggP8/1ph82bo2fPvD3TllTB7tueCK6VUKSjzxbBubwZ3TVtFdm4eJ87kApCd69ha2PpbJqOSNvGf5C1Mv6cdrRqEOVY6fBiqVPn7g1WtCkeOeCq6UkqVijK9K2n93gxun7KSjKzsP0uhoBNncsnIymbAlJWs35vx1wKRvw8259j9pJRSPqLMFsPpnFyGTFtFVnbhhVBQVrZj/OmcXMfWwuHDfx905EjhWxJKKeVDymwxpGw8QHZu3nmtk52bR+rGXx3HEjZv/vuALVvgiivclFAppexRZovh7WU7C999JDlA0buV3l62A3r0gJUrHR9ZPWv3bvj6a8cypZTyYWWyGHLzDNsPZha6LLDKCkIav0pA5bXA37coth3MJPfeoRAe7vhk0rx5jo+v9uwJDRrA/feXbnillCplZbIYTpzJIcCvkIPHQN7pOpi8cpSvO5sKjSYSUGk9+QsiwE84ERgMS5ZA06YweDAMHOj4HsOSJRAa6qHfQimlSkeZ/LhqSFAAOUV8gS33RAQnf2pMQMUtBFVfTPl6n5JbbQlnDnUm5/iV5OQ51qdhQ0hI8HBypZQqfWWyGPz9hIiaoWz7rfDdSeBHzvHm5By/goBKGwiu/jnl688gN6seNXJiKWJjQymlLgplclcSwIMdGxMS5F/MKD9yjrXmxK7/I2t/P/wCsjhccTKDUgaxYv8KjH5vQSl1ESqzxRDTog6B/iX99f3JORqJ/y8jeeaaZzmYdZD7F9/PXWl3sfrX1aWaUymlPK3MFkNwgD/T72lH+cDithocygf68+E91zKg2W0s7L2Qp695mr3H93LPonsY+tlQ1h1cV8qJlVLKM9xSDCISLSJbRWSHiIwsZHmwiMy0ln8rIuH5lv3Lmr9VRLq4I09JtWoQRvyw9oSVDyxyt1JIkD9h5QOJH9b+z3MlBfkHcXuz20mJS+Hxto+z/ch2BqcO5qHPH2LzH4V88U0ppXyIywefRcQfeBPoDOwDVotIsjFmS75h9wJHjDFNRGQAMB7oLyJXAAOAK4G6wOci0tQYU7LzVLhBqwZhfPtMJ1I3/srby3awzensqhV5sGNjurao7Xx2VUu5gHIMuXII/Zr245MfP+H9Te8zYMEAWpZvSZ3Ddbis6mWe+jWUUspt3PGppHbADmPMLgARiQd6AvmLoScwxro/B3hDRMSaH2+MOQ38JCI7rMf7xg25Siw4wJ9eberRq009cvMMJ87kEBIUgH8JP35UIbACQ1sMZcBlA/joh4+Ytn4afef3pUt4Fx5q9RCNwhqV8m+glFLu445iqAfszTe9D7imqDHGmBwROQpUs+avLLBuPTdkumD+fkKlcoEXtG5oUCgPtnqQhocasrPKTmb8MIPFexbT7dJuPNDqARpWaujmtEop5X7uKIbC3lYX/BxnUWNKsq7jAUSGAcMAatWqxbJly84jomeZLENL/5Y8W/tZ0o+lk/ZTGgt3LeSa0GuIrhxN1YCqdkd0kpmZ6dV/z/x8KSv4Vl5fygq+ldeXsoJ7imEf0CDfdH1gfxFj9olIAFAZOFzCdQEwxkwBpgC0bdvWdOzY0Q3RS8eyZcs4my+WWA5lHWLqxqnM2jqL1SdX0yeiD/e1uI9aIbXsDWrJn9fb+VJW8K28vpQVfCuvL2UF93wqaTUQISKXikgQjoPJyQXGJANDrPt9gSXG8e2wZGCA9amlS4EIYJUbMnmV6uWrM7LdSFLiUujdpDcJ2xKISYxh/KrxHMo6ZHc8pZRy4nIxGGNygIeBRcAPwCxjzGYRGSsiZ89B/R5QzTq4PAIYaa27GZiF40B1GjDck59I8rTaIbUZfe1o5veeT0yjGD798VNiEmOYsHYCR07pJUGVUt7BLedKMsakACkF5o3Od/8U0K+IdV8AXnBHDl9Rv2J9nrv+OYa2GMrb69/mg00fMPPHmQy6YhBDrhxCpaBKdkdUSpVhZfabz97gkkqXMK7DOJJ6JnFDvRuYsmEK0XOimbx+MplnijrBn1JKlS4tBi/QOKwxr3Z8ldmxs4msHcmb694kOjGaaZumcTL7pN3xlFJljBaDF2lWtRmv3/w6n3b7lObVmzNx7US6Jnbloy0fcTr3tN3xlFJlhBaDF2pevTmTb5nMR10/IiIsgpdXv0xMQgzxP8ZzJveM3fGUUhc5LQYv1rpma6Z2mcp7t75HvYr1eOHbF+ie1J2EbQlk52XbHU8pdZHSYvAB7eq0Y3r0dCbfMplq5aox5psx9Jzbk/k755Obd9F+ulcpZRMtBh8hIlxf73o+6fYJr9/8OiGBITy9/Gl6J/cm7ac08kye3RGVUhcJLQYfIyJ0bNCRmd1nMqHjBPzFnye+fIK+8/uSviddLzeqlHKZFoOP8hM/Ol/SmTmxcxjXYRxncs/w6LJH6b+gP1/u+1ILQil1wbQYfJy/nz/dGnVjbs+5PHf9cxw7c4zh6cMZlDqIb/Z/owWhlDpvWgwXiQC/AHo16cX83vMZfe1oDp48yLDFw7h70d2s+XWN3fGUUj5Ei+EiE+gXSL+m/VjYeyH/avcv9hzbw92L7ua+z+5j/e/r7Y6nlPIBWgwXqSD/IO64/A5S4lJ4vO3jbD28lUEpgxiePpwtf2wp/gGUUmWWFsNFrnxAeYZcOYS0Pmn886p/su7gOvov6M+jSx9l25FtdsdTSnkht5x2W3m/CoEVGNpiKP0v68+MLTP4cMuHLPl5CV3CuxCZHWl3PKWUF9EthjKmYlBFHmz9IGl90hjaYihf7PuCF/e/yNNfPc3eY3vtjqeU8gJaDGVU5eDK/OOqf5DWJ42oSlF8tuczYufGMmbFGPZnFnrZbaVUGaHFUMZVLVeV3lV6kxqXSv/L+pO8M5luSd14fuXz/HbiN7vjKaVsoMWgAKhRoQb/uuZfpMSl0LtJbxK2JRCTGMP4VeM5lHXI7nhKKQ/SYlBOaofUZvS1o5nfez4xjWL45MdPiEmMYcLaCWScyrA7nlLKA7QYVKHqV6zPc9c/x7ye84hqEMUHmz4gOjGaN75/g2NnjtkdTylVirQY1DmFVw5n/I3jSeyRyHV1r+OdDe8QnRDNO+vf4UT2CbvjKaVKgRaDKpEmVZowoeMEZsfOJrJWJG+se4PohGimbZrGyeyTdsdTSrmRFoM6L82qNuP1m1/n026fcmX1K5m4diIxiTHM2DKD07mn7Y6nlHIDLQZ1QZpXb87kWybzYdcPaRzWmPGrxxOTGMPMH2eSnavXo1bKl2kxKJe0qdmG97q8x3u3vke90Ho8/+3zdE/qTuL2RLLztCCU8kVaDMot2tVpx/To6Uy+ZTJVy1Xl3yv+Tc+5PZm/cz65ebl2x1NKnQctBuU2IsL19a7nk26f8PrNr1MhoAJPL3+auOQ40nankWfy7I6olCoBLQbldiJCxwYdmRU7i1dvehVBeOKLJ+g3vx/pP6fr5UaV8nJaDKrU+Ikft4bfSkKPBMZ1GMfp3NM8uvRRBiwcwJf7vtSCUMpLaTGoUufv50+3Rt2Y23Muz13/HEdPH2V4+nAGpw7mm/3faEEo5WVcKgYRqSoii0Vku/WzShHjhlhjtovIkHzzl4nIVhFZZ91qupJHebcAvwB6NenF/F7zGX3taH498SvDFg/jnkX3sPa3tXbHU0pZXN1iGAmkG2MigHRr2omIVAX+DVwDtAP+XaBABhpjWlu3gy7mUT4g0D+Qfk37sTBuISPbjWT3sd3clXYXwz4bxobfN9gdT6kyz9Vi6AlMt+5PB3oVMqYLsNgYc9gYcwRYDES7+LzqIhDsH8zAyweSEpfC420f58fDPzIwZSDD04ez5Y8tdsdTqswSV/bvikiGMSYs3/QRY0yVAmMeB8oZY563pp8Fsowx/xWRZUA1IBdIAJ43RQQSkWHAMIBatWpFxsfHX3Du0paZmUloaKjdMUrMW/KezjvNF8e/IP1YOifzTtKqQitiKsdQN6jun2O8JWtJ+VJeX8oKvpXXW7JGRUWtNca0LXagMeacN+BzYFMht55ARoGxRwpZ/wlgVL7pZ4HHrPv1rJ8Vgc+AO4vLY4whMjLSeLOlS5faHeG8eFveY6ePmTe/f9O0/7i9afFBC/PEsifMroxdxhjvy1ocX8rrS1mN8a283pIVWGNK8BobUILiuKWoZSLym4jUMcYcEJE6QGHHCPYBHfNN1weWWY/9i/XzuIh8guMYxIfFZVIXt4pBFXmo9UMMvHwgH2z+gI9/+JhFexbRvVF3Wme3tjueUhc9V48xJANnP2U0BJhXyJhFwK0iUsU66HwrsEhEAkSkOoCIBALdcWyJKAVA5eDK/POqf5Ial8rgywezaPcint//PGNWjOFA5gG74yl10XK1GMYBnUVkO9DZmkZE2orIVABjzGHgOWC1dRtrzQvGURAbgHXAL8C7LuZRF6Fq5avx+NWPkxqXSoeKHUjemUy3pG68sPIFDp7UD7Ip5W7F7ko6F2PMH0CnQuavAYbmm54GTCsw5gQQ6crzq7KlRoUa9K3al1FdRvHOhneYs20OSTuSuO2y27i3+b1UK1/N7ohKXRT0m8/K59QOqc2/r/03yb2TiQ6P5uMfPqZrYlcmrp1IxqkMu+Mp5fO0GJTPalCxAc/f8Dzzes4jqkEU7296n+jEaN5c9ybHzhyzO55SPkuLQfm88MrhjL9xPIk9Ermu7nVMXj+Z6IRopmyYwonsE3bHU8rnaDGoi0aTKk2Y0HECs7rPIrJmJK9//zpdE7ry/qb3ycrJsjueUj5Di0FddC6vdjmvd3qdT2I+4YpqVzBh7QS6JnRlxpYZnM49bXc8pbyeFoO6aLWo0YLJnSczPXo6jcMaM371eGISY5i1dRbZuXo9aqWKosWgLnpX1bqK97q8x9Rbp1I3pC7PrXyO2LmxJG1PIicvx+54SnkdLQZVZlxT5xo+7Pohb9/yNmHBYYxeMZqec3syf+d8cvNy7Y6nlNfQYlBliohwQ70b+LTbp/wv6n+UDyjP08ufJi45jkW7F5Fn8uyOqJTttBhUmSQiRDWMYlbsLF696VUAHv/icfrN78eSn5fo5UZVmabFoMo0P/Hj1vBbSeyRyEsdXuJUzin+ufSf3L7wdr7a95UWhCqTtBiUAvz9/OneqDvzes1j7HVjyTidwUPpD3Fn6p18e+Bbu+Mp5VFaDErlE+AXQO+I3szvNZ9n2z/LgRMHGPrZUO5ZdA/f/fad3fGU8ggtBqUKEegfyG2X3cbCuIWMbDeSXRm7GJI2hPsX38/G3zfaHU+pUqXFoNQ5BPsHM/DygaT2SeWxyMf44Y8fuCPlDh5Of5gf/vjB7nhKlQotBqVKoHxAee5qfhepfVL5R5t/8N3B77htwW2MWDaCHUd22B1PKbfSYlDqPIQEhnBfy/tY1GcRD7Z6kBX7VxCXHMeTXz7JT0d/sjueUm6hxaDUBagYVJGHWj9EWlwa9zS/h2V7l9FrXi+eWf4Me4/vtTueUi7RYlDKBWHlwng08lFS41IZdPkgFu1eRI+kHoxZMYYDmQfsjqfUBdFiUMoNqpWvxhNXP0FKXAr9LutH8s5kuiV1Y/bh2fx+8ne74yl1XrQYlHKjmhVq8vQ1T7Ow90J6NO7B8uPL6ZrYlVdWv8IfWX/YHU+pEgmwO4BSF6M6oXUYc90Ymp9ozvflv2fGDzOYvW02dzS7g7ub303l4Mp2R1SqSLrFoFQpqh5YnRdueIG5PefSsUFHpm2aRpeELry17i2OnzludzylCqXFoJQHXFr5Ul6+8WUSeiRwbZ1reXv920QnRPPuhnc5mX3S7nhKOdFiUMqDIqpEMDFqIrO6z6JNzTb87/v/EZ0QzQebPiArJ8vueEoBWgxK2eLyapfzRqc3+DjmYy6vdjmvrn2VmMQYPv7hY07nnrY7nirjtBiUslHLGi15p/M7TI+eTnilcMatGke3xG7M2jqL7Nxsu+OpMkqLQSkvcFWtq5jWZRrv3voutUNq89zK54idG0vS9iRy8nLsjqfKGC0GpbyEiNC+Tns+6voRb3V6i7DgMEavGE2veb1YsGsBuXm5dkdUZYQWg1JeRkToUL8Dn3b7lElRkwj2D+ZfX/2LPsl9+Gz3Z+SZPLsjqoucS8UgIlVFZLGIbLd+ViliXJqIZIjIggLzLxWRb631Z4pIkCt5lLqYiAg3N7yZ2bGz+e9N/8VgeOyLx7ht/m0s/XmpXo9alRpXtxhGAunGmAgg3ZouzCvA4ELmjwcmWusfAe51MY9SFx0/8aNLeBcSeyTy4g0vkpWTxT+W/oM7Ft7B8l+Wa0Eot3O1GHoC063704FehQ0yxqQDTl/zFBEBbgbmFLe+Ugr8/fyJbRzLvF7zGHvdWA6fOsyDnz/Inal3surAKrvjqYuIuPJuQ0QyjDFh+aaPGGOK2p3UEXjcGNPdmq4OrDTGNLGmGwCpxpjmRaw/DBgGUKtWrcj4+PgLzl3aMjMzCQ0NtTtGiflSXl/KCqWbN8fksDJzJYuOLiIjN4OI4Ai6h3WnUblGF/R4+rctPd6SNSoqaq0xpm2xA40x57wBnwObCrn1BDIKjD1yjsfpCCzIN10D2JFvugGwsbg8xhgiIyONN1u6dKndEc6LL+X1pazGeCbvqZxTZsaWGeam+JtM8w+am/s/u99sOLjhvB9H/7alx1uyAmtMCV5jiz27qjHmlqKWichvIlLHGHNAROoAB4ttor8cAsJEJMAYkwPUB/afx/pKKSDYP5iBlw8kLiKO+B/jmbZpGnek3EHH+h0Z3mY4zao2szui8jGuHmNIBoZY94cA80q6otVeS4G+F7K+UspZ+YDy3N38btL6pPFIm0dYe3At/eb3Y8SyEew4ssPueMqHuFoM44DOIrId6GxNIyJtRWTq2UEi8hUwG+gkIvtEpIu16ClghIjsAKoB77mYR6kyLyQwhGEth5HWJ40HWj3Aiv0riEuO46kvn2L30d12x1M+wKUL9Rhj/gA6FTJ/DTA033SHItbfBbRzJYNSqnCVgioxvPVwBjYbyAebP+CTHz8hbXcasY1ieaDVA9SvWN/uiMpL6TeflbrIhZUL49HIR0mJS2Hg5QMd5ZAUy3+++Q+/nvjV7njKC2kxKFVGVC9fnSevfpKUuBT6Nu3L3B1ziUmM4aVvX+L3k7/bHU95ES0GpcqYmhVq8kz7Z0jpnUKPxj2YuXUmXRO7knQkicOnDtsdT3kBLQalyqg6oXUYc90Y5veaT5fwLiw9tpTohGgmfTeJo6eP2h1P2cilg89KKd/XoFIDXrjhBVpkteC7oO94b+N7xP8Yz+ArBjP4isFUDKpod0TlYbrFoJQCoHZgbV6+6WUSeiTQvk573l7/NtEJ0UzdOJWT2Sftjqc8SItBKeUkokoEE6MmMqv7LNrUbMOk7ybRNbEr0zdPJysny+54ygO0GJRShbq82uW80ekNZsTM4LIql/HfNf8lJjGGj3/4mDO5Z+yOp0qRFoNS6pxa1WjFlFun8EH0B4RXCmfcqnF0S+rG7G2zyc7LtjueKgVaDEqpEomsFcm0LtN499Z3qVWhFmO/GUtsUixzd8wlJy/H7njKjbQYlFIlJiK0r9Oej7p+xFud3qJycGWe/fpZes/rzcJdC8nNy7U7onIDLQal1HkTETrU70B8t3hei3qNQP9ARn41kj7JfVi8ZzF5Js/uiMoFWgxKqQsmInRq2Ik5sXN45aZXyCOPEctG0H9Bf5btXabXo/ZRWgxKKZf5iR/R4dEk9UjixRte5GT2SR5Z8ggDUwby9S9fa0H4GC0GpZTb+Pv5E9s4lnm95jH2urH8kfUHD3z+AEPShrDqwCq746kS0mJQSrldgF8AvSN6s6D3AkZdM4pfMn/h3s/u5d5F9/L9we/tjqeKocWglCo1gf6B9G/Wn5S4FJ66+il2ZuzkztQ7eeDzB9h0aJN4rittAAAQJ0lEQVTd8VQRtBiUUqUu2D+YQVcMIiUuhRGRI9h8aDO3L7ydR5Y8wtbDW+2OpwrQYlBKeUyFwArc3fxu0vqk8UibR1j721r6zu/LiGUj2Jmx0+54yqLFoJTyuJDAEIa1HEZanzTub3k/K/avoPe83oz8aiR7ju2xO16Zp8WglLJNpaBKPNzmYdLi0ri7+d0s+XkJPef25Nmvn2Xf8X12xyuztBiUUrYLKxfG/0X+HylxKdxx+R2k7EohNimWsd+M5dcTv9odr8zRYlBKeY3q5avz5NVPkhKXQp+mfUjakURMYgwvffsSv5/83e54ZYYWg1LK69QKqcWo9qNY2HshPRr3YObWmcQkxvDqmlc5fOqw3fEueloMSimvVTe0LmOuG8P8XvO5NfxWPtzyIdEJ0fzvu/9xIveE3fEuWgF2B1BKqeI0qNSAF254gXtb3MvkdZOZunEqwRLMz+t+ZtAVg6gYVNHuiBcV3WJQSvmMRpUb8fJNLzOnxxyalmvKW+vfIjohmqkbp3Iy+6Td8S4aWgxKKZ/TtEpT7qt5HzO7z6R1zdZM+m4SXRO7Mn3zdE7lnLI7ns/TYlBK+awrql3Bm53eZEbMDC6rchn/XfNfYhJj+OSHTziTe8bueD5Li0Ep5fNa1WjFlFun8H6X92lYqSEvrXqJbkndmL1tNtl52XbH8zkuFYOIVBWRxSKy3fpZpYhxaSKSISILCsz/QER+EpF11q21K3mUUmVb29pteb/L+0zpPIWaFWoy9puxxCbFMm/HPHLycuyO5zNc3WIYCaQbYyKAdGu6MK8Ag4tY9oQxprV1W+diHqVUGSciXFv3WmZ0ncGbnd6kUlAlRn09it7zepOyK0WvR10CrhZDT2C6dX860KuwQcaYdOC4i8+llFIlJiLcWP9GZnafyWtRrxHoH8hTXz1Fn+Q+LN6zWAviHFwthlrGmAMA1s+aF/AYL4jIBhGZKCLBLuZRSiknIkKnhp2YEzuHV256hVyTy4hlI+i/oD9f7P1Cr0ddCCnujyIinwO1C1n0DDDdGBOWb+wRY0xRxxk6Ao8bY7rnm1cH+BUIAqYAO40xY4tYfxgwDKBWrVqR8fHx58xtp8zMTEJDQ+2OUWK+lNeXsoJv5fWlrHDhefNMHmtOrCH1aCqHcg4RHhROTFgMzco1Q0RKIan3/G2joqLWGmPaFjvQGHPBN2ArUMe6XwfYeo6xHYEFF7o8/y0yMtJ4s6VLl9od4bz4Ul5fymqMb+X1pazGuJ73TO4Zk7AtwXSe3dk0/6C5uTPlTrPqwCr3hCvAW/62wBpTgtdYV3clJQNDrPtDgHnns7K1xYA4aroXoBeBVUp5RKBfIHERcSzsvZBR14xi3/F93LPoHoYuGsq6g2X7czCuFsM4oLOIbAc6W9OISFsRmXp2kIh8BcwGOonIPhHpYi36WEQ2AhuB6sDzLuZRSqnzEugfSP9m/VkYt5Anr36S7RnbGZw6mAc/f5DNhzbbHc8WLp1EzxjzB9CpkPlrgKH5pjsUsf7Nrjy/Ukq5S7mAcgy+YjB9IvoQvzWe9ze9z4CFA4hqEMXw1sO5rOpldkf0GP3ms1JK5VMhsAL3NL+H1LhUHm79MGt+XUPf+X15bNlj7MzYaXc8j9BiUEqpQoQGhXJ/q/tJ7ZPKsJbDWP7LcnrP683Ir0ay59geu+OVKi0GpZQ6h8rBlXmkzSOk9UnjruZ3kb4nnZ5zezL669H8kvmL54Ls2wePPALXXgsVKoAI7N5dKk+lxaCUUiVQpVwVRkSOILVPKrc3u52FuxbSPak7z33zHL+e+NW1B8/MhNtuc/wsyo4dMGsWVKkCHQo9bOs2WgxKKXUeqpevzlPtniIlLoU+EX1I3JFIt8RujFs1jkNZhy7sQdPTYfZsWLKk6DE33gi//QYpKdCv34U9TwlpMSil1AWoFVKLUe1HsbD3Qro37k78j/F0TejKhDUTOHLqyHk9Vl5iIsb6WSQ/z71cazEopZQL6obW5T/X/YfkXsl0vqQz07dMJzohmv999z+Onj5a5Hqnc3JJ+n4ft05YxtFZSQiQMSuRLhOWkfT9Pk7n5HrulyhAi0EppdygYaWGvNjhRZJ6JHFj/Rt5d+O7dE3oytvr3yYrL8tp7Lq9GVzzQjqjkjZhNm8h2LraXLmcM+Ru+YFRSZu45oV01u/NsONX0WJQSil3ahTWiFdueoU5sXO4uvbVvLXuLcb8MoapG6dyMvsk6/dmcPuUlWRkZXPiTC5Ru9bgl+c4BbhfXh5RO1dz4kwuGVnZDJiy0pZy0GJQSqlScFnVy5h08yTiu8cTHhzOpO8mEZ0QzeA5r5CVc+rPcd1//IpyuY7Lj5bLzab7j8v/XJaVncuQaas8vlvJpVNiKKWUOrcrh41mZmIi6xqX583etVjZPJnGksDQBb/T54sjYPydxjf7/Sd2j+/u/CBj8t2Pi4OuXUs1s24xKKVUaRo3juNNmtD6Vz/e/e9upr20i/oHz/Di4Lp0HxdB8g0Vyc7XDcG5RVybOiQE2rSBceNKPbIWg1JKlaaICNZOnkzemDFkBQTTZtspPnjpJ9555SdqHM3hP3fXo8dLTZl3fRg5hbwi54gfWQHB5P3nPzByJKxfD2vXOhampsKcOfDFF26NrLuSlFKqtPn7k/nwP4nbWZlJieO49MgvXLf5BNdu3sVXrUJ5o3ctXrm9Np3WHiP01F/Xoj4ZGMyuKvV4NG4kicPvolL5IOfHfeghx8+bboJly9wWV4tBKaU8ICQogJ1hdYkdMpEHV87hkRXxlMvN5sb1mXRYn8nemkFOpXDKP5A329/GW9f2Az8/QoICwEPXp9ZdSUop5QH+fkJEzVDy/PzZVuMSsv0D/1wmQMODZ5zGZ/sHsrVGOEb8aFozFH+/0rkedWG0GJRSykMe7NiYkCB/umxbQciZrHOODTmT5RgX5M+DHZt4KKGDFoNSSnlITIs6BPoJnXasxo+/dgs5DjAHkSN/vST7Yei0cxWBfkLXFrU9mlOLQSmlPCQ4wJ/4Gyr9eQoMcBxg/rFGOPfFPcuPNcI5GRj857JyOWeI71CZ4AD/wh6u1GgxKKWUBzX7fjnlBHKtj6G+esMgYu96jeWXtqHHkIlMuGEgWQHB5Iof5fwc4z1Ni0EppTxp1iz8crKRVi1ZPmcxy2MHg58fgf6C8ffnq9ghLJ+zGGnZAr/sbMfFeTxMP66qlFKeVLs2vPIKfo8+Smc/PzoDuXmGE2dyCAkK+OvTR93XwmuvufX7CSWlxaCUUp40f/7fZvn7CZXKBRaY6Q+PPea4eZjuSlJKKeVEi0EppZQTLQallFJOtBiUUko50WJQSinlRItBKaWUEy0GpZRSTrQYlFJKOXGpGESkqogsFpHt1s8qhYxpLSLfiMhmEdkgIv3zLbtURL611p8pIkEF11dKKeVZrm4xjATSjTERQLo1XdBJ4E5jzJVANPCaiIRZy8YDE631jwD3uphHKaWUi1wthp7AdOv+dKBXwQHGmG3GmO3W/f3AQaCGiAhwMzDnXOsrpZTyLDEuXENURDKMMWH5po8YY/62Oynf8nY4CuBKoCqw0hjTxFrWAEg1xjQvYt1hwDCAWrVqRcbHx19w7tKWmZlJaGio3TFKzJfy+lJW8K28vpQVfCuvt2SNiopaa4xpW+xAY8w5b8DnwKZCbj2BjAJjj5zjceoAW4H21nQNYEe+5Q2AjcXlMcYQGRlpvNnSpUvtjnBefCmvL2U1xrfy+lJWY3wrr7dkBdaYErzGFnt2VWPMLUUtE5HfRKSOMeaAiNTBsZuosHGVgIXAKGPMSmv2ISBMRAKMMTlAfWB/cXmUUkqVLlePMSQDQ6z7Q4B5BQdYnzRKAj40xsw+O99qr6VA33Otr5RSyrNcLYZxQGcR2Q50tqYRkbYiMtUacxtwI3CXiKyzbq2tZU8BI0RkB1ANeM/FPEoppVzk0oV6jDF/AJ0Kmb8GGGrdnwHMKGL9XUA7VzIopZRyL/3ms1JKKSdaDEoppZxoMSillHKixaCUUsqJFoNSSiknWgxKKaWcaDEopZRyosWglFLKiRaDUkopJy6ddtsuIvI7sMfuHOdQHcdJAn2FL+X1pazgW3l9KSv4Vl5vyXqJMaZGcYN8shi8nYisMSU557mX8KW8vpQVfCuvL2UF38rrS1lBdyUppZQqQItBKaWUEy2G0jHF7gDnyZfy+lJW8K28vpQVfCuvL2XVYwxKKaWc6RaDUkopJ1oMSimlnGgxuImIVBWRxSKy3fpZpZAxl4jIWuvypptF5AEvztpaRL6xcm4Qkf7emtUalyYiGSKywNMZreePFpGtIrJDREYWsjxYRGZay78VkXDPp/wzS3FZbxSR70QkR0T6FvYYnlSCvCNEZIv1/zRdRC6xI6eVpbisD4jIRus1YLmIXGFHzmIZY/TmhhvwMjDSuj8SGF/ImCAg2LofCuwG6npp1qZAhHW/LnAACPPGrNayTkAssMCGjP7ATqCR9W+8HriiwJiHgMnW/QHATE/nPI+s4UBL4EOgrx05zzNvFFDBuv+gl/9tK+W73wNIs/PvW9RNtxjcpycw3bo/HehVcIAx5owx5rQ1GYx9W2wlybrNGLPdur8fOAgU+43JUlBsVgBjTDpw3FOhCmgH7DDG7DLGnAHiceTOL//vMQfoJCLiwYxnFZvVGLPbGLMByLMhX0ElybvUGHPSmlwJ1PdwxrNKkvVYvskQwCs//aPF4D61jDEHAKyfNQsbJCINRGQDsBfHu9/9Hsx4VomyniUi7XC8A9rpgWwFnVdWm9TD8e951j5rXqFjjDE5wFGgmkfSFZHDUlhWb3K+ee8FUks1UdFKlFVEhovIThxbw//wULbzEmB3AF8iIp8DtQtZ9ExJH8MYsxdoKSJ1gbkiMscY85u7Mp7ljqzW49QBPgKGGGNK5R2ku7LaqLB3/gXfCZZkjCd4S46SKnFeERkEtAVuKtVERStRVmPMm8CbInIHMAoYUtrBzpcWw3kwxtxS1DIR+U1E6hhjDlgvpgeLeaz9IrIZ6IBj14JbuSOriFQCFgKjjDEr3Z3xLHf+XW2yD2iQb7o+UHBL8OyYfSISAFQGDnsmXqE5ziosqzcpUV4RuQXHG4mb8u2u9bTz/dvGA2+XaqILpLuS3CeZv5p/CDCv4AARqS8i5a37VYDrga0eS/iXkmQNApKAD40xsz2YraBis3qB1UCEiFxq/d0G4MidX/7foy+wxFhHID2sJFm9SbF5RaQN8A7Qwxhj5xuHkmSNyDfZDdjuwXwlZ/fR74vlhmN/cTqOf+h0oKo1vy0w1brfGdiA49MKG4BhXpx1EJANrMt3a+2NWa3pr4DfgSwc79y6eDhnDLANx3GYZ6x5Y3G8WAGUA2YDO4BVQCMb/68Wl/Vq6294AvgD2GxX1hLm/Rz4Ld//02QvzjoJ2GzlXApcaefftqibnhJDKaWUE92VpJRSyokWg1JKKSdaDEoppZxoMSillHKixaCUUsqJFoNSSiknWgxKKaWc/D8tFfsERwICUwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4FfX59/H3nYSwJKyCgIBsghRBFlFxw7ihuOFWRa0bKiog/mp9ntpfrbZYq62tNWwCRao+VlHciharVJoWqiiYsG8GhBIWQbYYCFnv549zxEMM5AAnOUnm87quXDkz85059x30k8ksZ8zdERGRYEiIdwEiIlJ1FPoiIgGi0BcRCRCFvohIgCj0RUQCRKEvIhIgCn2pVGb2SzN7uRK3v8zM0o5yG5Vao0h1otCXo2ZmN5nZAjPLM7PNZva+mZ1dFe/t7ie5e0ZVvFcsmFkHM3MzS6qC90o2szfMbF34PdMqGN/MzN42sz1mtt7MbqrsGqXqKfTlqJjZg8CzwG+AlsDxwARgcDzrkv3mAj8CtkQxdjxQSOjf8WbgOTM7qRJrkzhQ6MsRM7PGwGhghLu/5e573L3I3d919/9zkHWmm9kWM9ttZv+ODBUzu9TMlpvZN2a20cweCs9vbmbvmdkuM9thZnPMLCG8bJ2ZXRh+nWhm/2tma8Lb+NzM2oWXpZvZBjPLDc8/5zD6HGxmC8PrrjGzS8LzjzOzGeGass3s7oh1Tgv/9ZNrZl+Z2TPhRf8Of98V/svojGjrOFzuXujuz7r7XKDkUGPNLAW4FviFu+eF15kB3FJZ9Ul8KPTlaJwB1APePox13ge6AMcCmcBfIpY9D9zj7g2BHsDs8PyfADlAC0J7of8LlPf5IQ8CNwKXAo2AocDe8LL5QG+gGfAKMN3M6lVUrJmdBrwE/B+gCTAAWBde/Gq4ruOA64DfmNkF4WXpQLq7NwI6A6+H5w8If2/i7qnu/kk573lT+Bfcwb6Or6juI9AVKHH31RHzFgHa069lKv24otRqxwBfu3txtCu4+9RvX5vZL4GdZtbY3XcDRUB3M1vk7juBneGhRUBroL27ZwNzDrL5u4D/6+6rwtOLIt438kTtH8zsEeDEyDEHcScw1d1nhac3hmtvB5wNXO7u+4CFZjaF0J7xR+GaTzCz5u7+NTCvgvfZz91fIfSLqSqlArvLzNsNNKziOqSSaU9fjsZ2oHm0JyXDh1+eCh8iyeW7Pebm4e/XEtpLX29m/4o49PE0kA18aGZrzezhg7xFO2DNQd77J2a2InxYaRfQOOJ9D+Vg2zwO2OHu30TMWw+0Cb++k9De80ozm29ml0fxXkfMzI4PHy7KM7O8I9hEHqG/jiI1Ar4pZ6zUYAp9ORqfAPuAq6IcfxOhE7wXEgrdDuH5BuDu8919MKFDP+8QPiTi7t+4+0/cvRNwBfBgxGGUSBsIHUo5QPj4/U+B64Gm7t6E0F6sRVFzudsENgHNzCxyT/h4wn8JuPsX7n5juJffAm+Ej5tX+LG2ZnZzZICX8/W9wzvu/t/w4aJUd0+Noq+yVgNJZtYlYl4vYNkRbEuqMYW+HLHwIZlHgfFmdpWZNTCzOmY2yMx+V84qDYECQn8hNCB0xQ+w//LCm8OHeoqAXMInH83scjM7wcwsYn55JyanAI+bWRcLOdnMjgm/bzGwjVCwPcr392oP5nngDjO7wMwSzKyNmXVz9w3Ax8CTZlbPzE4mtHf/l3DNPzKzFu5eCuwKb6skXEMp0Olgb+juf4kM8HK+/htl7ZhZ3YhzF8nhWr/3y87d9wBvAaPNLMXMziL0C/r/RfteUjMo9OWouPszhE6gPkIo0DYAIwntqZf1EqFDIBuB5Xz/OPctwLrwoZ97CV1qCKETv/8gdAjiE2DCQa7Nf4bQXwcfEvrl8DxQH/iA0Ank1eH33xeuM5r+PgPuAP5I6K+DfwHtw4tvJPTXyiZCJ7Mfizj2fwmwLHyoJR0Y4u773H0v8ATwn/BJ2f7R1HEUVgH5hA47fRB+3R4gfKXT+xFjhxP6eW0ldJL6PnfXnn4tY3qIiohIcGhPX0QkQBT6IiIBotAXEQkQhb6ISIBUuztymzdv7h06dIjpNvfs2UNKSkpMt1mTBLn/IPcOwe4/aL1//vnnX7t7i4rGVbvQ79ChAwsWLIjpNjMyMkhLS4vpNmuSIPcf5N4h2P0HrXczWx/NOB3eEREJEIW+iEiAKPRFRAJEoS8iEiAKfRGRAIkq9M3sEjNbFX4k3Pc+y9zMbjezbeFHyi00s7silt1mZl+Ev26LZfEiInJ4Krxk08wSCT0w+SJCj4abb2Yz3H15maGvufvIMus2Ax4D+hH6HPHPw+vuREREqlw0e/qnAdnuvtbdC4FphD5nOxoXA7PcfUc46GcR+shZERGJg2huzmrDgZ89ngOcXs64a81sAKHPLP9x+CET5a3bpuyKZjYMGAbQsmVLMjIyoio+Wnl5eTHfZk0S5P6D3DsEu/8g934o0YR+eY+UK/sh/O8Cr7p7gZndC7wInB/lurj7ZGAyQL9+/TzWd9EF7c68soLcf5B7h2D3H+TeDyWawzs5hB4O/a22hJ4UtJ+7b3f3gvDkn4BTol1XRESqTjShPx/oYmYdzSwZGALMiBxgZq0jJq8EVoRffwAMNLOmZtYUGBieJyIicVDh4R13LzazkYTCOhGY6u7LzGw0sMDdZwCjzOxKQg+f3gHcHl53h5k9TugXB8Bod99RCX2IiEgUovqUTXefCcwsM+/RiNc/A352kHWnAlOPokYREYkR3ZErIhIgCn0RkQBR6IuIBIhCX0QkQBT6IiIBotAXEQkQhb6ISIAo9EVEAkShLyISIAp9EZF4y8mB+++HM86ABg3ADNatq5S3UuiLiMRaXh5cf33oezSys+H116FpUzjnnEotTaEvIhJrH30E06fD7NnRjR8wAL76CmbOhB/+sFJLU+iLiMRY6Vtv4eHvUUmouihW6IuIxEBBcQlvZ+Uw8JkMdr/+Ngbsev0tLn4mg7ezcigoLol3iUCUH60sIiIHt3DDLm6f+hlFJaUct3EtdUsKAahXXEjJ8hU8smsfv5qxnBeHnkavdk3iWqv29EVEjsKiDbu4cfI8duUXsaewhPPWLiChtBSAhNJSzlsznz2FJezKL2LI5Hks2rArrvUq9EVEjlBBcQm3Tf2M/KLvDt1cvnIO9UqKAKhXUsTlK+fuX5ZfFBofz0M9OrwjInI4rr0Wwido6wILyywuTDwwVrtt+5J1v738wEG/jHh9zTXw5puxrvKgtKcvInI4nnoKeveGlJRyFyeXFFNq303XLSkufzspKdCnT2h7VUihLyJyOLp0gQULKP3lL8lPqkuxfRejDnzUtyHXPn4C809sUO7qxZZAflJdSn/1K1iwILQ9gDfeCH19/nlo+v33Q9P/+ldMy9fhHRGRw5WYSN7IB7hmTWPS33qKjjs3suSEJMZc15LFnRvQYXMBpQn2vdX21qnL2qZt+J9rHuatEbfTKPL6/LI3ZQ0fHvp+7rmQkRGz0hX6IiJHICU5iTVNjmPwPT+hU72X2dzmG1ptL2T08zlc8Z9dJJUeOH5fYh3G97+eCWf8EBISSEkuE7/uVVK3Ql9E5Aisy13LMZ1epSB5EdsKknngta+55R9fUbeo/PAuSqzDqhYdcEvgxGNTSSznL4GqoGP6IiKHYWPeRn4+9+dcM+MaqLea0h0DeWhiI4a+f/DAB0gpzOfi1R+TkpzIfWknVGHFB1Loi4hE4ev8r3ny0ye5/O3L+fuXf+eWH9zC366eSZ3dA7l0xeck8F3gh07WJh9wkjcB54I1n1EnwRjUs1U8WgB0eEdE5JByC3N5YekLvLziZQpLCrm6y9Xcc/I9tEoJBfe0sxtR9zeF+8d/e7L2qbQ7eDjjz3TauZEGRQVA6GMZpp3TmLpJiXHpBRT6IiLlyi/O59WVr/L8kufJLcxlUIdBjOgzgvaN2h8wrlvWXEoNSiyBwsQ6/OHsHzH11MG4JXBl+5MZuuCv/GTOX0guKaJeQmg8F/SPU1c6vCMicoCi0iJeW/kal711GX/8/I/0atGL6VdM53fn/u57gQ/A66+TUFyE9TqZuW/MYu4Vt0BCAnUSDU9MZM4VtzH3jVnYyT1JKCoKPSwljrSnLyIClHopM7+cyfis8eTk5dD32L48fe7TnNLylEOv2KoVPP00Cf/zP1yUkMBFQEmps6ewmJTkpO+u0rn8c3j22Zhec38kFPoiEmjuzr9y/sWYrDF8sfMLTmx6IuMvGM85bc7BLIrLKt9993uzEhOMRvXqlJmZCD/5SegrjqIKfTO7BEgHEoEp7l7uh0WY2XXAdOBUd19gZh2AFcCq8JB57n7v0RYtIhIL87fMZ0zmGBZuW0j7Ru15esDTDOwwkASrvUe+Kwx9M0sExgMXATnAfDOb4e7Ly4xrCIwCPi2ziTXu3jtG9YqIHLXl25czJnMM/9n0H45tcCyPnfEYg08YTJ2EOhWvXMNFs6d/GpDt7msBzGwaMBhYXmbc48DvgIdiWqGISIx8uftLxmWN48P1H9KkbhMe6vcQN5x4A/WS6sW7tCoTTei3ATZETOcAp0cOMLM+QDt3f8/MyoZ+RzPLAnKBR9x9ztEULCJyuLbs2cJzi57jr9l/pW5iXe7tdS+3db+N1OTUeJdW5aIJ/fLOZOy/9czMEoA/AreXM24zcLy7bzezU4B3zOwkd8894A3MhgHDAFq2bElGjM9u5+XlxXybNUmQ+w9y7xDs/vPy8nj3o3f5cPeHzP0m9PSqcxqew8DGA2m4qyELPl4Q5wrjI5rQzwHaRUy3BTZFTDcEegAZ4TPdrYAZZnaluy8ACgDc/XMzWwN0BQ74abv7ZGAyQL9+/TwtLe2ImjmYjIwMYr3NmiTI/Qe5dwhu/3mFefxq5q/495Z/s69kH4NPGMx9ve6jdWrreJcWd9GE/nygi5l1BDYCQ4Cbvl3o7ruB5t9Om1kG8FD46p0WwA53LzGzTkAXYG0M6xcR2W9f8T5eW/UaU5ZMYVfBLi5qfxEj+4ykU+NO8S6t2qgw9N292MxGAh8QumRzqrsvM7PRwAJ3n3GI1QcAo82sGCgB7nX3HbEoXETkW8WlxbyT/Q7PLXqOrXu3ctZxZ3Fm6ZncmnZrvEurdqK6Tt/dZwIzy8x79CBj0yJevwlU3RN/RSRQSr2UD9d9yLiF41ifu55eLXrx1DlPcWqrUwN7LqMiuiNXRGocd2fOxjmMzRrLyh0r6dK0C2PPH8u5bc+N7i7aAFPoi0iNkvlVJumZ6WRuzaRtaluePOdJBnUYRGJC/D6uuCZR6ItIjbByx0rGZI5hzsY5tKjfgkdOf4RrulxDncTafxdtLCn0RaRaW5+7nvFZ43l/3fs0Sm7Ej0/5MTd2u5H6SfXjXVqNpNAXkWrpqz1fMXHxRN7+4m2SE5O5u+fd3N7jdholN4p3aTWaQl9EqpVd+3bx/NLneXXlq5R4CTeceAN3n3w3zes3r3hlqZBCX0SqhT1Fe3hp+Uu8uOxF8ovzubzT5QzvPZw2qW3iXVqtotAXkbgqKCng9VWvM2XJFHbs28EFx1/A/X3up3OTzvEurVZS6ItIXBSXFvPumneZsGgCW/ZsoX/r/ozqM4qeLXrGu7RaTaEvIlXK3Zm1fhbjFo7jy91f0rN5Tx4/63H6t+4f79ICQaEvIlXC3flk0yekZ6WzfPtyOjfuzLNpz3L+8efrLtoqpNAXkUq3aNsi0jPTmb9lPm1S2/DE2U9wWcfLdBdtHCj0RaTSrN65mrFZY8nYkMEx9Y7hZ6f9jOu6XkdyYnK8Swsshb6IxNyGbzYwfuF4Zq6dSWqdVEb1GcXNP7iZBnUaxLu0wFPoi0jMbNu7jUmLJ/Hm6jdJSkjijh53MLTHUBrXbRzv0iRMoS8iR213wW6mLp3KKyteobi0mGu7Xss9J99DiwYt4l2alKHQF5EjtrdoL39Z8Rf+vPTP5BXlcVmnyxjeezjtGrareGWJC4W+iBy2wpJC3lj9BpMXT2b7vu2ktUvj/j7307Vp13iXJhVQ6ItI1EpKS/jbl39jwsIJbMzbyKmtTuXZPs/S+9je8S5NoqTQF5EKuTuzN8xmXNY4sndl0/2Y7jza/1HOOO4M3VhVwyj0ReSQ5m2ex5jMMSz5egkdGnXgD+f+gYvaX6Swr6EU+iJSriXblpCelc6nmz+ldUprRp85mis6X0FSgmKjJtO/nogcYM2uNYzNGstH//2IZvWa8dNTf8r1J16vu2hrCYW+iACwMW8jExZO4L2179EgqQEjeo/glu63kFInJd6lSQwp9EUC7uv8r/nT4j/x+urXSbREbu1+K3f2uJMm9ZrEuzSpBAp9kYDKLczlhaUv8PKKlyksKeTqLldz78n30jKlZbxLk0qk0BcJmPzifF5Z8QpTl04ltzCXQR0GMaLPCNo3ah/v0qQKKPRFAqKotIi3Vr/FpMWT2Ja/jXPanMOovqPo1qxbvEuTKqTQF6nlSr2UmV/OZHzWeHLycuh7bF9+f+7v6duyb7xLkzhQ6IvUUu7Okr1LGPPuGL7Y+QXdmnVjwgUTOLvN2bqxKsAU+iK10Pwt80nPTGfRtkW0b9Sepwc8zcAOA0mwhHiXJnEW1X8BZnaJma0ys2wze/gQ464zMzezfhHzfhZeb5WZXRyLokWkfMu2L+OeWfcw9IOhbN6zmSHNhvD24Le5pOMlCnwBotjTN7NEYDxwEZADzDezGe6+vMy4hsAo4NOIed2BIcBJwHHAP8ysq7uXxK4FEVm7ey3jssYxa/0smtRtwkP9HuKGE29g3tx51EmoE+/ypBqJ5vDOaUC2u68FMLNpwGBgeZlxjwO/Ax6KmDcYmObuBcCXZpYd3t4nR1u4iMDmvM08t+g5/rrmr9RLrMd9ve7j1u63kpqcGu/SpJqKJvTbABsipnOA0yMHmFkfoJ27v2dmD5VZd16ZdduUfQMzGwYMA2jZsiUZGRlRFR+tvLy8mG+zJgly/7W1929KvuHD3R8y95u5AJzb8FwuanwRDXc1ZMHHC/aPq639RyPIvR9KNKFf3ml+37/QLAH4I3D74a67f4b7ZGAyQL9+/TwtLS2KsqKXkZFBrLdZkwS5/9rWe15hHi8uf5GXlr3EvpJ9XNXlKu49+V5ap7Yud3xt6/9wBLn3Q4km9HOAyAdetgU2RUw3BHoAGeHLwFoBM8zsyijWFZEo7Cvex2urXmPKkinsKtjFwPYDGdlnJB0bd4x3aVLDRBP684EuZtYR2EjoxOxN3y50991A82+nzSwDeMjdF5hZPvCKmT1D6ERuF+Cz2JUvUrsVlRbxTvY7TFw0ka17t3LWcWdxf9/7OemYk+JdmtRQFYa+uxeb2UjgAyARmOruy8xsNLDA3WccYt1lZvY6oZO+xcAIXbkjUrFSL+WDdR8wfuF41ueup1eLXjx1zlOc2urUeJcmNVxUN2e5+0xgZpl5jx5kbFqZ6SeAJ46wPpFAcXfmbJzD2KyxrNyxki5NuzDu/HEMaDtAd9FKTOiOXJFqIvOrTNIz08ncmknb1LY8ec6TXNrxUt1UJTGl0BeJs5U7VjImcwxzNs6hRf0W/KL/L7i6y9W6qUoqhUJfJE7W565nfNZ43l/3Po2SG/HjU37Mjd1upH5S/XiXJrWYQl+kim3Zs4WJiybyTvY7JCcmc3fPu7m9x+00Sm4U79IkABT6IlVk175dTFkyhVdXvkoppdxw4g3cffLdNK/fvOKVRWJEoS9SyfYU7eGl5S/x4rIXyS/O5/JOlzO893DapH7vE0lEKp1CX6SSFJQU8Pqq15myZAo79u3gwuMvZGSfkXRu0jnepUmAKfRFYqy4tJh317zLhEUT2LJnC/1b9+eBvg/Qo3mPeJcmotAXiRV3Z9b6WYzNGsu63HX0bN6TX5/1a05vfXrFK4tUEYW+yFFydz7Z9AnpWeks376czo078+x5z3J+u/N1F61UOwp9kaOwcOtC0jPTWfDVAtqktuGJs5/gso6XkZiQGO/SRMql0Bc5Aqt3rmZs5lgycjI4pt4x/Oy0n/HDrj+kTqLuopXqTaEvchg2fLOB8QvHM3PtTFLrpDKqzyhu/sHNNKjTIN6liURFoS8ShW17tzFp8STeXP0mSQlJDO0xlDt63EHjuo3jXZrIYVHoixzC7oLdTF06lVdWvEJxaTHXdr2We06+hxYNWsS7NJEjotAXKcfeor28vOJlXlj6AnlFeVzW6TKG9x5Ou4btKl5ZpBpT6ItEKCwpZPrq6UxePJkd+3aQ1i6N+/vcT9emXeNdmkhMKPRFgJLSEt5b+x4TFk5g055NnNrqVNL7pNP72N7xLk0kphT6Emjuzuz/zmZs1ljW7F5D92O689iZj3FG6zN0Y5XUSgp9Cax5m+cxJnMMS75eQsfGHXkm7RkuPP5Chb3Uagp9CZwl25aQnpXOp5s/pXVKa0afOZorOl9BUoL+d5DaT/+VS2Bk78xmbNZYZm+YTbN6zfjpqT/l+hOvJzkxOd6liVQZhb7UehvzNjJh4QTeW/seDZIaMKL3CG7pfgspdVLiXZpIlVPoS631df7XTN8xnY/f/phES+S27rcxtMdQmtRrEu/SROJGoS+1Tm5hLi8sfYGXV7xMQXHB/rtoW6a0jHdpInGn0JdaI784n1dWvMLUpVPJLcxlUMdB9Cvox/VnXB/v0kSqDYW+1HhFJUW89cVbTFo8iW352xjQdgCj+ozixGYnkpGREe/yRKoVhb7UWCWlJcz8ciYTFk4gJy+Hvsf25ffn/p6+LfvGuzSRakuhLzWOu5OxIYMxWWPI3pVNt2bdmHDBBM5uc7ZurBKpgEJfapT5W+aTnpnOom2LaN+oPU8PeJqBHQaSYAnxLk2kRogq9M3sEiAdSASmuPtTZZbfC4wASoA8YJi7LzezDsAKYFV46Dx3vzc2pUuQLNu+jDGZY/h408cc2+BYHjvjMQafMJg6CXo8ocjhqDD0zSwRGA9cBOQA881shrsvjxj2irtPDI+/EngGuCS8bI2766MK5Yis3b2WcVnjmLV+Fk3qNuGhfg8xpNsQ6ibWjXdpIjVSNHv6pwHZ7r4WwMymAYOB/aHv7rkR41MAj2WREjyb8zbz3KLn+Ouav1IvsR739bqPW7vfSmpyarxLE6nRogn9NsCGiOkc4PSyg8xsBPAgkAycH7Goo5llAbnAI+4+58jLldpue/52piyZwmurXsMwbv7BzdzV8y6a1WsW79JEagVzP/ROuZn9ELjY3e8KT98CnObu9x9k/E3h8beZWV0g1d23m9kpwDvASWX+MsDMhgHDAFq2bHnKtGnTjravA+Tl5ZGaGtw9xJrQf35pPrNzZ/PP3H9S6IX0T+3PoMaDaJrU9Ki2WxN6r0xB7j9ovZ933nmfu3u/isZFs6efA0Q+GLQtsOkQ46cBzwG4ewFQEH79uZmtAboCCyJXcPfJwGSAfv36eVpaWhRlRS8jI4NYb7Mmqc797yvex7SV05iydAq7C3YzsP1ARvYZScfGHWOy/erce1UIcv9B7v1Qogn9+UAXM+sIbASGADdFDjCzLu7+RXjyMuCL8PwWwA53LzGzTkAXYG2sipeaq6i0iHey32Hiools3buVs9qcxag+o+h+TPd4lyZSq1UY+u5ebGYjgQ8IXbI51d2XmdloYIG7zwBGmtmFQBGwE7gtvPoAYLSZFRO6nPNed99RGY1IzVDqpXyw7gPGZY3jv9/8l94tevPbc35Lv1YV/lUqIjEQ1XX67j4TmFlm3qMRrx84yHpvAm8eTYFSO7g7czbOYUzmGFbtXEXXpl0Zd/44BrQdoLtoRaqQ7siVSpf5VSbpmelkbs2kXcN2PHXOUwzqOEh30YrEgUJfKs3KHStJz0xn7sa5tKjfgl/0/wVXd7lad9GKxJFCX2Jufe56xmWN4+/r/k6j5Eb8+JQfc2O3G6mfVD/epYkEnkJfYmbLni1MXDSRd7LfITkxmbt73s3tPW6nUXKjeJcmImEKfTlqO/ft5Pklz/PqyldxnCHdhnBXz7toXr95vEsTkTIU+nLE9hTt4aXlL/HishfJL87nik5XMLz3cI5LPS7epYnIQSj05bAVlBTw2srXmLJkCjsLdnLh8Rcyss9IOjfpHO/SRKQCCn2JWnFpMTPWzOC5Rc+xZc8W+rfuzwN9H6BH8x7xLk1EoqTQlwqVeimz1s9iXNY41uWuo2fznvz6rF9zeuvvfdiqiFRzCn05KHfn400fk56ZzoodKzihyQmkn5fOee3O0120IjWUQl/KtXDrQtIz01nw1QLapLbhN2f/hks7XkpiQmK8SxORo6DQlwOs2rGKcVnjyMjJ4Jh6x/C/p/8v13W5jjqJuotWpDZQ6AsAG3I3MG7hON7/8n1Sk1N5oO8D3NTtJhrUaRDv0kQkhhT6Abd171YmLZrEW1+8RVJCEkN7DOWOHnfQuG7jeJcmIpVAoR9Quwt28/zS53l1xasUezHXdb2OYScPo0WDFvEuTUQqkUI/YPYW7eXlFS/zwtIXyCvK47JOlzG893DaNWxX8coiUuMp9AOisKSQ6aunM3nxZHbs28F57c5jZJ+RdG3aNd6liUgVUujXciWlJXya9ylPvv0km/Zs4rRWpzGq7yh6tegV79JEJA4U+rWUu/PRfz9ibNZY1u5ey0nHnMRjZz7GGa3P0I1VIgGm0K+FPtn0CWMyx7B0+1I6Nu7Inc3v5IFLH1DYi4hCvzZZsm0J6ZnpfLrlU1qntGb0maO5ovMVzP33XAW+iAAK/Vohe2c2Y7PGMnvDbJrVa8ZPT/0p1594PcmJyfEuTUSqGYV+DbYxbyMTFk7g3TXvklInhZG9R3JL91t0F62IHJRCvwb6Ov9rJi+ezPTV00m0RG4/6XaG9hhKk3pN4l2aiFRzCv0aJLcwlxeWvsDLK16msKSQa7pcwz0n30PLlJbxLk1EagiFfg2QX5zPKyteYerSqeQW5jKo4yBG9h7J8Y2Oj3dpIlLDKPSrsaKSIt784k0mLZ7E1/lfM6DtAEb1GcWJzU6Md2kiUkMp9KuhktISZn45kwkLJ5CTl0PfY/vyTNoz9Dm2T7xLE5EaTqGXSkSaAAALyUlEQVRfjbg7GRsyGJM1huxd2XRr1o0JF0zg7DZn6zp7EYkJhX41MX/LfJ7NfJbF2xbToVEHnj73aQa2H0iCJcS7NBGpRRT6cbZs+zLGZI7h400f07JBS355xi8ZfMJgkhL0TyMisRdVspjZJUA6kAhMcfenyiy/FxgBlAB5wDB3Xx5e9jPgzvCyUe7+QezKr7nW7l7LuKxxzFo/iyZ1m/BQv4cY0m0IdRPrxrs0EanFKgx9M0sExgMXATnAfDOb8W2oh73i7hPD468EngEuMbPuwBDgJOA44B9m1tXdS2LcR42xOW8zExZNYMaaGdRLrMd9ve7j1u63kpqcGu/SRCQAotnTPw3Idve1AGY2DRgM7A99d8+NGJ8CePj1YGCauxcAX5pZdnh7n8Sg9hple/52piyZwmurXsMwbv7BzdzV8y6a1WsW79JEJECiCf02wIaI6Rzg9LKDzGwE8CCQDJwfse68Muu2KWfdYcAwgJYtW5KRkRFFWdHLy8uL+TajlV+az+zc2fwz958UeRGnp57OoMaDaLqnKYvnLa6SGuLZf7wFuXcIdv9B7v1Qogn98q4V9O/NcB8PjDezm4BHgNsOY93JwGSAfv36eVpaWhRlRS8jI4NYb7Mi+4r3MW3lNKYsncLugt1c3OFiRvQeQcfGHau0DohP/9VFkHuHYPcf5N4PJZrQzwEin5rdFth0iPHTgOeOcN0ar6i0iLe/eJtJiyaxNX8rZ7U5i1F9RtH9mO7xLk1EhGguAp8PdDGzjmaWTOjE7IzIAWbWJWLyMuCL8OsZwBAzq2tmHYEuwGdHX3acbdgA110HjRtDo0ZwzTWUrl/HzLUzueqdq3h83uMcl3ocf774z0y8cKICX0SqjQr39N292MxGAh8QumRzqrsvM7PRwAJ3nwGMNLMLgSJgJ6FDO4THvU7opG8xMKLGX7mzdy+cfz7UrQsvvogDex9+kG/69+CXv2pPu1bdGHf+OAa0HaC7aEWk2onqOn13nwnMLDPv0YjXDxxi3SeAJ460wGrnT3+CtWth1So+b7ibMZlj+OquOvztp3t5cf2ZnHj3JN1FKyLVVuBv+ywuKWVvUQkpyUkkJkSxZz5jBnv79eIn6/7A3I1zaVG/Bfde8Tj27jh+MHc1KPBFpBoLZOgXFJcwc8lmnstYwxdb80hKMIpLna7HpnJvWmcu7dmaukmJ31tvfe56mmXN4++96rJ4W30ePOVBhnQbQv2k+nBSBkyfXvXNiIgchsCF/sINu7h96mcUlZSypzB0eqGoJHQV6aqv8njk7aX8asZyXhx6Gr3ahR4/uGXPFiYumsg72e8wPzefTh3O5O/XvkXD5IbfbbhZM9i5s8r7ERE5HIEK/UUbdnHj5HnkFx38XHLoF0EJQybP40+3d+OTHdOZtnIajjOk2xCSEpZzSqt+EBn4AP692w9ERKqdwIR+QXEJt0397JCBv19CASWN53Dfvx8hIbGIKzpdwfDewzku9Tho+kfYseP76+zcCU2bxr5wEZEYCkzoz1yymaKS0kMPsiLqNJ1H8jEZJCTtwfN6MKLv/Qw748zvxpx0Eixb9v11ly+H7roeX0Sqt8BcavJcxpr9x/C/r4Q6jeeT0vn31Gv5N0r3HceeL0eQt+FHvDmv6MChV14J8+aFLtv81rp18J//hJaJiFRjgdnT/2JrXrnzkxouIbnFhyTW3UZJfjv2brqekr2d9y9fvTWPklL/7nLOu++GceNg8GD49a/BDH7xC2jXDu65pypaERE5YoHY0y91J+kg1+AnNVwOnkD+hlvYu274AYEPkJRg7Cks/m5GSgrMng1du8Itt8DNN0PHjqF5qfpMfBGp3gKxp59goevwy7Nvy2AoTeZgv/+KS52U5DI/puOPhzffjHGVIiKVLxB7+gBdjj3IXnhpPQ71Y+h6bGp0d+qKiNQAgQn9+9I6k5L8/btsDyUlOZH70k6opIpERKpeYEL/0p6tqZN4eO3WSUxgUM9WlVSRiEjVC0zo101K5MWhp1G/TnR7+/XrhMaX9xk8IiI1VWBCH6BXuyZMG9afJvXrHPRQT0pyIk3q12HasP77P3tHRKS2CMTVO5F6tWvCpz+/gPeXbOG5jGxWH/Apmw25L60zg3q20h6+iNRKgQt9CB3quapPG67q04aSUmdPYXH0n6cvIlKDBTL0IyUmGI3q1Yl3GSIiVSJQx/RFRIJOoS8iEiAKfRGRAFHoi4gEiEJfRCRAFPoiIgGi0BcRCRCFvohIgCj0RUQCRKEvIhIgCn0RkQBR6IuIBEhUoW9ml5jZKjPLNrOHy1n+oJktN7PFZvaRmbWPWFZiZgvDXzNiWbyIiByeCj9l08wSgfHARUAOMN/MZrj78ohhWUA/d99rZvcBvwNuCC/Ld/feMa5bRESOQDR7+qcB2e6+1t0LgWnA4MgB7v5Pd98bnpwHtI1tmSIiEgvRhH4bYEPEdE543sHcCbwfMV3PzBaY2Twzu+oIahQRkRiJ5iEq5T1OyssdaPYjoB9wbsTs4919k5l1Amab2RJ3X1NmvWHAMICWLVuSkZERTe1Ry8vLi/k2a5Ig9x/k3iHY/Qe590OJJvRzgHYR022BTWUHmdmFwM+Bc9294Nv57r4p/H2tmWUAfYADQt/dJwOTAfr16+dpaWmH1URFMjIyiPU2a5Ig9x/k3iHY/Qe590OJ5vDOfKCLmXU0s2RgCHDAVThm1geYBFzp7lsj5jc1s7rh182Bs4DIE8AiIlKFKtzTd/diMxsJfAAkAlPdfZmZjQYWuPsM4GkgFZhuZgD/dfcrgR8Ak8yslNAvmKfKXPUjIiJVKKoHo7v7TGBmmXmPRry+8CDrfQz0PJoCRUQkdnRHrohIgCj0RUQCRKEvIhIgCn0RkQBR6IuIBIi5l3tzbdyY2TZgfYw32xz4OsbbrEmC3H+Qe4dg9x+03tu7e4uKBlW70K8MZrbA3fvFu454CXL/Qe4dgt1/kHs/FB3eEREJEIW+iEiABCX0J8e7gDgLcv9B7h2C3X+Qez+oQBzTFxGRkKDs6YuICAp9EZFAqZWhb2bNzGyWmX0R/t70IOP+bma7zOy9qq6xMpjZJWa2ysyyzezhcpbXNbPXwss/NbMOVV9l5Yii9wFmlmlmxWZ2XTxqrCxR9P6gmS03s8Vm9pGZtY9HnZUliv7vNbMlZrbQzOaaWfd41FltuHut+wJ+Bzwcfv0w8NuDjLsAuAJ4L941x6DnREJPJOsEJAOLgO5lxgwHJoZfDwFei3fdVdh7B+Bk4CXgunjXXMW9nwc0CL++r7b8ux9G/40iXl8J/D3edcfzq1bu6QODgRfDr18Eyn0gu7t/BHxTVUVVstOAbHdf6+6FwDRCP4dIkT+XN4ALLPzUmxquwt7dfZ27LwZK41FgJYqm93+6+97w5DxCjzytLaLpPzdiMoWDPOM7KGpr6Ld0980A4e/HxrmeqtAG2BAxnROeV+4Ydy8GdgPHVEl1lSua3murw+39TuD9Sq2oakXVv5mNMLM1hI4CjKqi2qqlqJ6cVR2Z2T+AVuUs+nlV11JNlLfHXnaPJpoxNVFt7SsaUfduZj8C+gHnVmpFVSuq/t19PDDezG4CHgFuq+zCqqsaG/p+kEc0ApjZV2bW2t03m1lrYOvBxtYiOUC7iOm2wKaDjMkxsySgMbCjasqrVNH0XltF1buZXUhoh+hcdy+ootqqwuH+208DnqvUiqq52np4Zwbf/Sa/DfhrHGupKvOBLmbW0cySCZ2onVFmTOTP5TpgtofPbtVw0fReW1XYu5n1ASYBV7p7bdsBiqb/LhGTlwFfVGF91U+8zyRXxheh49QfEfrH/QhoFp7fD5gSMW4OsA3IJ7THcHG8az/Kvi8FVhO6muHn4XmjCf3PDlAPmA5kA58BneJdcxX2fmr433gPsB1YFu+aq7D3fwBfAQvDXzPiXXMV958OLAv3/k/gpHjXHM8vfQyDiEiA1NbDOyIiUg6FvohIgCj0RUQCRKEvIhIgCn0RkQBR6IuIBIhCX0QkQP4/1MjN9npAkKsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -656,7 +656,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xd4VGXexvHvL5USeq8bKVYQ2CBiJyISAqEEEBQRC4t919eysoouYkNddV0bIiIgaigJECQEkeKKighKV6ogCIoIEYEAKc/7xwxrEhMSSJkZcn+ua66c8pyZewauueecmTljzjlERESOC/J1ABER8S8qBhERyUXFICIiuagYREQkFxWDiIjkomIQEZFcVAwiIpKLikFERHJRMYjfMbN5ZjYqn+W9zOxHMwvxzl9sZgvN7Dcz+9XMks3s7BzjO5lZtpkdzHO5qIzux2IzG1pGt3WXmS03s6NmNqEI4//P+1j+ambjzSy8DGJKgFAxiD+aAAw2M8uzfDDwrnMu0/vk/iEwC2gInAGsBj41s8gc2+xyzkXkuXxe6veg7O0CngDGFzbQzLoCw4HOQCTQDHisNMNJYFExiD+aCdQELju+wMxqAD2ASd5FzwKTnHMvOed+c87tc86NAJYB/zyVGzWzJmaWZGY/m9kvZvaKd3mQmY0ws+1mtsfMJplZNe+6CmY22Ts+zcy+NLN6ZvakN/8r3r2UV071wSgK51ySc24m8EsRhg8B3nLOrXPO7QceB24szXwSWFQM4necc+nAVOCGHIuvAb51zq0ys0rAxcC0fDafClx9srdpZsHAB8B2PK+iGwEJ3tU3ei/ReF5dRwDHn+iHANWAJkAt4DYg3Tn3MPAJcJd3L+WuAm437QSX4Sd7P4roPGBVjvlVQD0zq1VKtycBJsTXAUQKMBGYY2Z3e4viBu8y8OxNBAG789luN1Anx3xDM0vLM6aRc+5QnmUd8BySesA5l+ldtsT7dxDwgnNuK4CZ/QNYa2Y3ARl4CqGFc241sOJk7qRzrvrJjC8hEcCvOeaPT1ehaHsccprTHoP4JefcEuBnoJeZNQMuAN7zrt4PZAMN8tm0gXe743Y556rnueQtBfC84t+eoxRyaohnT+K47XheVNUD3gHmAQlmtsvMnjWz0KLf05NnZnNzvJE+6BSu4iBQNcf88enfip9OTgcqBvFnk/DsKQwGPnTO/QTgfWL/HOifzzbXAB+fwm3tAJoe/8RTHruAP+WYbwpkAj855zKcc485587Fc3irB78fAiv0nPb5fGIq5+Wh/LZxznXL8Ub6uydzJ73WAW1yzLfx3hftLQigQ0ni3yYBI4Dzgf/Ls244MM/MvgXexvN/+T7gcqDjKdzWMjyHoUab2T+BLCDKOfcp8D7woJnNxbM38hQwxfvpqGhgL7AeOIDn0FKW9zp/wvOeRIGccxGnkPUPvIUWAgQDwWZWAcgsYA9oEjDBzN7Fc59H4PkkmAigPQbxY865bcBnQGUgOc+6JUBXIB7Pk9s+PG8EX+mcW5NjaMN8Xon3zee2soA4oAXwPbATGOBdPR7PIaP/At8BR4C7vevqA9PxlMI3ePZWJnvXvQT0M7P9ZvafU30cimgEkI6nMK/3To8AMLOm3vvdFMA5l4rnU12L8BwW284pfpJLTk+mX3CT04GZtQEWAtc55+b5Oo9IINMeg5wWnHOrgN5A6wLeJxCRItIeg4iI5KI9BhERySUgd7lr167tIiMjfR2jQIcOHaJy5cq+jlFkgZQ3kLJCYOUNpKwQWHn9JeuKFSv2OufqFDYuIIshMjKS5cuX+zpGgRYvXkynTp18HaPIAilvIGWFwMobSFkhsPL6S1Yz2174KB1KEhGRPEqkGMwsxsw2mNnm/E78ZWbhZjbFu/6L46dFNrNIM0s3s5Xey5iSyCMiIqeu2IeSvGelfBXogudLQV+aWbJzbn2OYbcA+51zLcxsIPAMv395aItzrm1xc4iISMkoiT2GDsBm59xW59wxPKcq7pVnTC9+PzPmdKBzPj/CIiIifqDY32Mws35AjHNuqHd+MHBhzvPPm9la75id3vktwIV4Tv+7DtiI55QCI5xznxRwO8OAYQD16tWLSkhIyG+YXzh48CARESVyCpwyEUh5AykrBFbeQMoKgZXXX7JGR0evcM61L2xcSXwqKb9X/nnbpqAxu4GmzrlfzCwKmGlm5znnDvxhsHNjgbEA7du3d/7wDn9B/OUTCEUVSHkDKSsEVt5AygqBlTeQskLJHEraiedc9sc1xnOa4nzHeE9XUA3Y55w7evxUv865FcAW4MwSyCQiIqeoJIrhS6ClmZ1hZmHAQPKcCdM7P8Q73Q9Y6JxzZlbH++Y13h9jaQlsLYFMIiJyiop9KMl7Tvq78PyKVTAw3jm3zsxGAcudc8nAW8A7ZrYZz+mRB3o3vxwYZWaZeM5hf5tzbl9xM4mIyKkrkW8+O+dSgJQ8yx7NMX2EfH5tyzmXCCSWRAYRESkZ+uaziIjkomIQEZFcVAwiIpKLikFERHJRMYiISC4qBhERyUXFICIiuagYREQkFxWDiIjkomIQEZFcVAwiIpKLikFERHJRMYiISC4qhlO1Ywf06wfVqkHVqhAfD99/7+tUIiLFViKn3S53Dh+GK6+E8HCYOBHMYMQIiI6G1at9nU5EpFhUDKfizTdh61bYsAFatPAsO/98aNkS3ngD/vxn3+YTESkGHUrKIzMrmwNHMsjKdgUPSk6Gjh1/LwWAM86ASy6BWbNKP6SISCnSHgNwNDOLlDW7eX3xFjbtOUhIkJGZ7TizbgS3dWpObOsGhIcE/77BunXQq9cfr+i882DatLILLiJSCsp9MazckcaN45eRkZXNoWNZAGRkefYWNvx0kBEz1vJY8nom3tyBNk2qezbatw9q1PjjldWsCfv3l1V0EZFSUa4PJa3akca1Y5eSlp7xv1LI69CxLNLSMxg4dimrdqT9vsLsj4PdCQ4/iYgEiHJbDEczsxgyfhnpGfkXQl7pGZ7xRzOzPHsL+/b9cdD+/fnvSYiIBJByWwwpa3aTkZV9UttkZGUzd82PnvcS1q3744D16+Hcc0sooYiIb5TbYnh98Zb8Dx9ZJlDwYaXXF2+Gnj1h6VLPR1aP27YNPv3Us05EJICVy2LIynZs2nMw33WhNT6jcvPnCam2AvjjHsXGPQfJumUoREZ6Ppk0a5bn46u9ekGTJnDrraUbXkSklJXLYjh0LJOQoHzePAayjzbAZVegYsNpVGr2IiFVV5GzIEKCjEOh4bBwIZx5JgweDIMGeb7HsHAhRESU0b0QESkd5fLjqpXDQsgs4AtsWYdacvi75oRUWU9Y7flUbPQ+WbUWcmxvFzJ/O4/MbM/2NG0KiYllnFxEpPSVy2IIDjJa1o1g40/5H06CIDJ/a0Xmb+cSUnU14bU/omLjyWSlN6JOZhwF7GyIiJwWyuWhJIDbOzWnclhwIaOCyDzQlkNb/4/0Xf0JCklnX5UxXJ9yPZ/t+gyn7y2IyGmo3BZDbOsGhAYX9e4Hk/lrFME/DOfhCx9hT/oebp1/Kzem3siXP35ZqjlFRMpauS2G8JBgJt7cgYqhhe01eFQMDWbSzRcx8OxrmNNnDg9d+BA7ftvBzfNuZuiHQ1m5Z2UpJxYRKRslUgxmFmNmG8xss5kNz2d9uJlN8a7/wswic6z7h3f5BjPrWhJ5iqpNk+okDOtI9YqhBR5WqhwWTPWKoSQM6/i/cyWFBYdx7dnXkhKfwv3t72fT/k0MnjuYOz66g3W/5PPFNxGRAFLsN5/NLBh4FegC7AS+NLNk59z6HMNuAfY751qY2UDgGWCAmZ0LDATOAxoCH5nZmc65op2nogS0aVKdLx7uzNw1P/L64s1szHV21Src3qk53VrXz312Va8KIRUYct4Q+p/Zn/e+fY+3177NwA8Gcn7F82mwrwFn1TyrrO6GiEiJKYlPJXUANjvntgKYWQLQC8hZDL2Akd7p6cArZmbe5QnOuaPAd2a22Xt9n5dAriILDwmmd7tG9G7XiKxsx6FjmVQOCyG4iB8/qhRaiaGthzLwrIG88807jF81nn6z+9E1sit3tLmDZtWblfI9EBEpOSVRDI2AHTnmdwIXFjTGOZdpZr8CtbzLl+bZtlEJZDplwUFG1Qqhp7RtRFgEt7e5naZ7m7KlxhYmfzOZ+dvn0/2M7tzW5jaaVm1awmlFREpeSRRDfi+r836Os6AxRdnWcwVmw4BhAPXq1WPx4sUnEbFsuXTH+cHn80j9R1hwYAGp36UyZ+scLoy4kJhqMdQMqenriLkcPHjQrx/PnAIpKwRW3kDKCoGVN5CyQskUw06gSY75xsCuAsbsNLMQoBqwr4jbAuCcGwuMBWjfvr3r1KlTCUQvHYsXL+Z4vjji2Ju+l3FrxjF1w1S+PPwlfVv25S+t/0K9yvV8G9QrZ15/F0hZIbDyBlJWCKy8gZQVSuZTSV8CLc3sDDMLw/NmcnKeMcnAEO90P2Ch83w7LBkY6P3U0hlAS2BZCWTyK7Ur1mZ4h+GkxKfQp0UfEjcmEpsUyzPLnmFv+l5fxxMRyaXYxeCcywTuAuYB3wBTnXPrzGyUmR0/B/VbQC3vm8v3AsO9264DpuJ5ozoVuLMsP5FU1upXrs+jFz3K7D6ziW0Wy/vfvk9sUiwvrHiB/Uf0k6Ai4h9K5FxJzrkUICXPskdzTB8B+hew7ZPAkyWRI1A0rtKYxy95nKGth/L6qteZsHYCU76dwvXnXs+Q84ZQNayqryOKSDlWbr/57A/+VPVPjL5sNDN6zeDSRpcydvVYYqbHMGbVGA4eK+gEfyIipUvF4AeaV2/O852eZ1rcNKLqR/HqyleJSYph/NrxHM447Ot4IlLOqBj8yNk1z+blK1/m/e7v06p2K15c8SLdkrrxzvp3OJp11NfxRKScUDH4oVa1WzHmqjG80+0dWlZvybNfPktsYiwJ3yZwLOuYr+OJyGlOxeDH2tZty7iu43jr6rdoVKURT37xJD1m9CBxYyIZ2Rm+jicipykVQwDo0KADE2MmMuaqMdSqUIuRn4+k18xezN4ym6zs0/bTvSLiIyqGAGFmXNLoEt7r/h4vX/kylUMr89CSh+iT3IfU71LJdtm+jigipwkVQ4AxMzo16cSUHlN4odMLBFswD/z3AfrN7seC7Qv0c6MiUmwqhgAVZEF0+VMXpsdNZ/RlozmWdYx7Ft/DgA8G8N+d/1VBiMgpUzEEuOCgYLo3687MXjN5/JLHOXDsAHcuuJPr517P57s+V0GIyElTMZwmQoJC6N2iN7P7zObRix5lz+E9DJs/jJvm3cTyH5f7Op6IBBAVw2kmNCiU/mf2Z06fOfyjwz/YfmA7N827ib98+BdW/bzK1/FEJACoGE5TYcFhXHfOdaTEp3B/+/vZsG8D16dcz50L7mT9L+sLvwIRKbdUDKe5iiEVGXLeEFL7pvK3P/+NlXtWMuCDAdyz6B427t/o63gi4odK5LTb4v8qhVZiaOuhDDhrAJPXT2bS+kks/H4hXSO7EpUR5et4IuJHtMdQzlQJq8LtbW8ntW8qQ1sP5eOdH/PUrqd46JOH2HFgh6/jiYgfUDGUU9XCq/HXP/+V1L6pRFeN5sPtHxI3M46Rn41k18F8f3ZbRMoJFUM5V7NCTfrU6MPc+LkMOGsAyVuS6T6jO08sfYKfDv3k63gi4gMqBgGgTqU6/OPCf5ASn0KfFn1I3JhIbFIszyx7hr3pe30dT0TKkIpBcqlfuT6PXvQos/vMJrZZLO99+x6xSbG8sOIF0o6k+TqeiJQBFYPkq3GVxjx+yePM6jWL6CbRTFg7gZikGF75+hUOHDvg63giUopUDHJCkdUieebyZ0jqmcTFDS/mjdVvEJMYwxur3uBQxiFfxxORUqBikCJpUaMFL3R6gWlx04iqF8UrK18hJjGG8WvHczjjsK/jiUgJUjHISTm75tm8fOXLvN/9fc6rfR4vrniR2KRYJq+fzNGso76OJyIlQMUgp6RV7VaMuWoMk7pNonn15jzz5TPEJsUy5dspZGTp96hFApmKQYqlXd12vNX1Ld66+i0aRTTiiS+eoMeMHiRtSiIjWwUhEohUDFIiOjTowMSYiYy5agw1K9Tkn5/9k14zezF7y2yysrN8HU9EToKKQUqMmXFJo0t4r/t7vHzly1QKqcRDSx4iPjme1G2pZLtsX0cUkSJQMUiJMzM6NenE1LipPH/F8xjGAx8/QP/Z/Vnw/QL93KiIn1MxSKkJsiCujryaxJ6JjL5sNEezjnLPonsYOGcg/935XxWEiJ9SMUipCw4Kpnuz7szsNZPHL3mcX4/+yp0L7mTw3MF8vutzFYSInylWMZhZTTObb2abvH9rFDBuiHfMJjMbkmP5YjPbYGYrvZe6xckj/i0kKITeLXozu/dsHr3oUX489CPD5g/j5nk3s+KnFb6OJyJexd1jGA4scM61BBZ453Mxs5rAP4ELgQ7AP/MUyCDnXFvvZU8x80gACA0Opf+Z/ZkTP4fhHYaz7cA2bky9kWEfDmP1z6t9HU+k3CtuMfQCJnqnJwK98xnTFZjvnNvnnNsPzAdiinm7choIDw5n0DmDSIlP4f729/Ptvm8ZlDKIOxfcyfpf1vs6nki5ZcU5vmtmac656jnm9zvnauQZcz9QwTn3hHf+ESDdOfcvM1sM1AKygETgCVdAIDMbBgwDqFevXlRCQsIp5y5tBw8eJCIiwtcxisxf8h7NPsrHv33MggMLOJx9mDaV2hBbLZaGYQ3/N8ZfshZVIOUNpKwQWHn9JWt0dPQK51z7Qgc65054AT4C1uZz6QWk5Rm7P5/tHwBG5Jh/BLjPO93I+7cK8CFwQ2F5nHNERUU5f7Zo0SJfRzgp/pb3wNED7tWvX3Ud3+3oWk9o7R5Y/IDbmrbVOed/WQsTSHkDKatzgZXXX7ICy10RnmNDilAcVxW0zsx+MrMGzrndZtYAyO89gp1ApxzzjYHF3uv+wfv3NzN7D897EJMKyySntyphVbij7R0MOmcQE9ZN4N1v3mXe9nn0aNaDthltfR1P5LRX3PcYkoHjnzIaAszKZ8w84Gozq+F90/lqYJ6ZhZhZbQAzCwV64NkTEQGgWng1/vbnvzE3fi6DzxnMvG3zeGLXE4z8bCS7D+72dTyR01Zxi2E00MXMNgFdvPOYWXszGwfgnNsHPA586b2M8i4Lx1MQq4GVwA/Am8XMI6ehWhVrcf8F9zM3fi6XVbmM5C3JdJ/RnSeXPsmew/ogm0hJK/RQ0ok4534BOuezfDkwNMf8eGB8njGHgKji3L6UL3Uq1aFfzX6M6DqCN1a/wfSN05mxeQbXnHUNt7S6hVoVa/k6oshpQd98loBTv3J9/nnRP0nuk0xMZAzvfvMu3ZK68eKKF0k7kubreCIBT8UgAatJlSY8cekTzOo1i+gm0by99m1ikmJ4deWrHDh2wNfxRAKWikECXmS1SJ65/BmSeiZxccOLGbNqDDGJMYxdPZZDGYd8HU8k4KgY5LTRokYLXuj0AlN7TCWqbhQvf/0y3RK78fbat0nPTPd1PJGAoWKQ0845tc7h5c4v817se5xb61xeWPEC3RK7MXn9ZI5mHfV1PBG/p2KQ01brOq0Z02UME2Mm0rx6c5758hlik2KZumEqGVn6PWqRgqgY5LT353p/5q2ubzHu6nE0rNyQx5c+TtzMOGZsmkFmdqav44n4HRWDlBsXNriQSd0m8fpVr1M9vDqPfvYovWb2YvaW2WRlZ/k6nojfUDFIuWJmXNroUt7v/j7/if4PFUMq8tCSh4hPjmfetnlku2xfRxTxORWDlEtmRnTTaKbGTeX5K54H4P6P76f/7P4s/H6hfm5UyjUVg5RrQRbE1ZFXk9Qziacve5ojmUf426K/ce2ca/lk5ycqCCmXVAwiQHBQMD2a9WBW71mMungUaUfTuGPBHdww9wa+2P2Fr+OJlCkVg0gOIUEh9GnZh9m9Z/NIx0fYfWg3Qz8cys3zbuarn77ydTyRMqFiEMlHaHAo15x1DXPi5zC8w3C2pm1lSOoQbp1/K2t+XuPreCKlSsUgcgLhweEMOmcQc/vO5b6o+/jml2+4LuU67lpwF9/88o2v44mUChWDSBFUDKnIja1uZG7fufy13V/5as9XXPPBNdy7+F4279/s63giJUrFIHISKodW5i/n/4V5fedxe5vb+WzXZ8Qnx/P3//6d7379ztfxREqEikHkFFQJq8Idbe8gNT6Vm1vdzOIdi+k9qzcPL3mYHb/t8HU8kWJRMYgUQ/UK1bkn6h7mxs/l+nOuZ962efSc0ZORn41k98Hdvo4nckpUDCIloFbFWjxwwQOkxKfQ/6z+JG9JpvuM7kzbN42fD//s63giJ0XFIFKC6laqy0MXPsScPnPo2bwnS35bQrekbjz35XP8kv6Lr+OJFEmIrwOInI4aRDRg5MUjaXWoFV9X/JrJ30xm2sZpXHf2ddzU6iaqhVfzdUSRAmmPQaQU1Q6tzZOXPsnMXjPp1KQT49eOp2tiV15b+Rq/HfvN1/FE8qViECkDZ1Q7g2cvf5bEnolc1OAiXl/1OjGJMby5+k0OZxz2dTyRXFQMImWoZY2WvBj9IlN7TKVd3Xb85+v/EJMYw4S1E0jPTPd1PBFAxSDiE+fUOodXOr/Cu7Hvck6tc3h+xfPEJsXy7jfvcjTrqK/jSTmnYhDxofPrnM8bXd5gYsxEIqtGMnrZaLondWfqhqlkZGX4Op6UUyoGET/w53p/ZnzX8bx59ZvUr1yfx5c+TtzMOGZsmkFmdqav40k5o2IQ8RNmRscGHXmn2zu81vk1qodX59HPHqX3rN58sPUDsrKzfB1RygkVg4ifMTMua3wZ73d/n5eiXyI8OJx/fPIP+ib35cNtH5Ltsn0dUU5zxSoGM6tpZvPNbJP3b40CxqWaWZqZfZBn+Rlm9oV3+ylmFlacPCKnEzPjyqZXMi1uGv+64l84HPd9fB/XzL6GRd8v0u9RS6kp7h7DcGCBc64lsMA7n5/ngMH5LH8GeNG7/X7glmLmETntBFkQXSO7ktQziacufYr0zHT+uuivXDfnOpb8sEQFISWuuMXQC5jonZ4I9M5vkHNuAZDra55mZsCVwPTCthcRCA4KJq55HLN6z2LUxaPYd2Qft390OzfMvYFlu5f5Op6cRqw4rzbMLM05Vz3H/H7nXEGHkzoB9zvnenjnawNLnXMtvPNNgLnOuVYFbD8MGAZQr169qISEhFPOXdoOHjxIRESEr2MUWSDlDaSsULp5M10mSw8uZd6v80jLSqNleEt6VO9BswrNTun69NiWHn/JGh0dvcI5177Qgc65E16Aj4C1+Vx6AWl5xu4/wfV0Aj7IMV8H2JxjvgmwprA8zjmioqKcP1u0aJGvI5yUQMobSFmdK5u8RzKPuMnrJ7srEq5wrSa0crd+eKtbvWf1SV+PHtvS4y9ZgeWuCM+xhZ5d1Tl3VUHrzOwnM2vgnNttZg2APYU20e/2AtXNLMQ5lwk0BnadxPYiAoQHhzPonEHEt4wn4dsExq8dz3Up19GpcSfubHcnZ9c829cRJcAU9z2GZGCId3oIMKuoG3rbaxHQ71S2F5HcKoZU5KZWN5HaN5W7293Nij0r6D+7P/cuvpfN+zf7Op4EkOIWw2igi5ltArp45zGz9mY27vggM/sEmAZ0NrOdZtbVu+pB4F4z2wzUAt4qZh6Rcq9yaGWGnT+M1L6p3NbmNj7b9RnxyfE8+N8H2fbrNl/HkwBQrB/qcc79AnTOZ/lyYGiO+csK2H4r0KE4GUQkf1XDqnJn2zsZdPYgJqybwHvfvkfqtlTimsVxW5vbaFylsa8jip/SN59FTnPVK1Tnnqh7SIlPYdA5gzzlMCOOxz5/jB8P/ejreOKHVAwi5UTtirX5+wV/JyU+hX5n9mPm5pnEJsXy9BdP8/Phn30dT/yIikGknKlbqS4Pd3yYlD4p9GzekykbptAtqRsz9s9g35F9vo4nfkDFIFJONYhowMiLRzK792y6RnZl0YFFxCTG8NJXL/Hr0V99HU98qFhvPotI4GtStQlPXvokrdNb81XYV7y15i0Svk1g8LmDGXzuYKqEVfF1RClj2mMQEQDqh9bn2SueJbFnIh0bdOT1Va8TkxjDuDXjOJxx2NfxpAypGEQkl5Y1WvJi9ItM7TGVdnXb8dJXL9EtqRsT100kPTPd1/GkDKgYRCRf59Q6h1c6v8Lk2MmcVeMs/rX8X8QmxfLuN+9yLOuYr+NJKVIxiMgJtanThrFXj2VCzAQiq0Yyetlous/ozrSN08jIzvB1PCkFKgYRKZKoelGM7zqeN69+k3qV6jHq81HEzYhj5uaZZGZn+jqelCAVg4gUmZnRsUFH3un2Dq91fo1q4dV45NNH6DOrD3O2ziErO8vXEaUEqBhE5KSZGZc1voyE7gn8O/rfhAaHMvyT4fRN7sv87fPJdtm+jijFoGIQkVNmZnRu2pnpcdN57ornyCabexffy4APBrB4x2L9HnWAUjGISLEFWRAxkTHM6DmDpy59isMZh7l74d0MShnEpz98qoIIMCoGESkxwUHBxDWPY1bvWYy6eBS/pP/CbR/dxpDUISzbvczX8aSIVAwiUuJCgkLo07IPH/T5gBEXjuCHgz9wy4e3cMu8W/h6z9e+jieFUDGISKkJDQ5lwNkDSIlP4cELHmRL2hZumHsDt310G2v3rvV1PCmAikFESl14cDjXn3s9KfEp3Bt1L+v2ruPaOddy98K72bBvg6/jSR4qBhEpM5VCK3FTq5tI7ZvK3e3uZsVPK+g3ux/3Lr6XLWlbfB1PvFQMIlLmKodWZtj5w0jtm8qt59/KZ7s+o8+sPgz/ZDjbD2z3dbxyT8UgIj5TNawqd7W7i9T4VG5qdRMLv19Ir5m9eOTTR9j5205fxyu3VAwi4nPVK1Tn/6L+j5T4FK475zpStqYQNyOOUZ+P4sdDP/o6XrmjYhARv1G7Ym3+fsHfSYlPoe+ZfZmxeQaxSbE8/cXT/Hz4Z1/HKzdUDCLid+pVrseIjiOY02cOPZv3ZMqGKcQmxfL88ufZd2Sfr+Od9lQMIuK3GkY0ZOTFI5nSCb/7AAAPDElEQVTdezZXR17NpPWTiEmM4T9f/YdDWYd8He+0FeLrACIihWlStQlPXvokt7S+hTErxzBuzTjCLZzvV37P9edeT5WwKr6OeFrRHoOIBIxm1Zrx7BXPMr3ndM6scCavrXqNmMQYxq0Zx+GMw76Od9pQMYhIwDmzxpn8pe5fmNJjCm3rtuWlr16iW1I3Jq6byJHMI76OF/BUDCISsM6tdS6vdn6VybGTOavGWfxr+b+ITYrlvW/e41jWMV/HC1gqBhEJeG3qtGHs1WN5u+vbNK3alKeXPU33Gd2ZtnEaGdkZvo4XcIpVDGZW08zmm9km798aBYxLNbM0M/sgz/IJZvadma30XtoWJ4+IlG/t67fn7a5vM7bLWOpWqsuoz0cRNyOOWZtnkZmd6et4AaO4ewzDgQXOuZbAAu98fp4DBhew7gHnXFvvZWUx84hIOWdmXNTwIiZ3m8yrnV+lalhVRnw6gj6z+pCyNUW/R10ExS2GXsBE7/REoHd+g5xzC4DfinlbIiJFZmZc3vhypvSYwr+j/01ocCgPfvIgfZP7Mn/7fBXECRS3GOo553YDeP/WPYXreNLMVpvZi2YWXsw8IiK5mBmdm3Zmetx0nrviObJcFvcuvpcBHwzg4x0f6/eo82GFPShm9hFQP59VDwMTnXPVc4zd75wr6H2GTsD9zrkeOZY1AH4EwoCxwBbn3KgCth8GDAOoV69eVEJCwglz+9LBgweJiIjwdYwiC6S8gZQVAitvIGWFU8+b7bJZfmg5c3+dy97MvUSGRRJbPZazK5yNmZVCUv95bKOjo1c459oXOtA5d8oXYAPQwDvdANhwgrGdgA9OdX3OS1RUlPNnixYt8nWEkxJIeQMpq3OBlTeQsjpX/LzHso65xI2Jrsu0Lq7VhFbuhpQb3LLdy0omXB7+8tgCy10RnmOLeygpGRjinR4CzDqZjb17DJinpnsD+hFYESkToUGhxLeMZ06fOYy4cAQ7f9vJzfNuZui8oazcU74/B1PcYhgNdDGzTUAX7zxm1t7Mxh0fZGafANOAzma208y6ele9a2ZrgDVAbeCJYuYRETkpocGhDDh7AHPi5/D3C/7OprRNDJ47mNs/up11e9f5Op5PFOskes65X4DO+SxfDgzNMX9ZAdtfWZzbFxEpKRVCKjD43MH0bdmXhA0JvL32bQbOGUh0k2jubHsnZ9U8y9cRy4y++SwikkOl0Erc3Opm5sbP5a62d7H8x+X0m92P+xbfx5a0Lb6OVyZUDCIi+YgIi+DWNrcyt+9chp0/jCU/LKHPrD4M/2Q42w9s93W8UqViEBE5gWrh1bi73d2k9k3lxlY3smD7AnrN7MWjnz7KDwd/KLsgO3fC3XfDRRdBpUpgBtu2lcpNqRhERIqgRoUa3Bt1L3P7zuXas69lztY59JjRg8c/f5wfD/1YvCs/eBCuucbztyCbN8PUqVCjBlyW79u2JUbFICJyEmpXrM2DHR4kJT6Fvi37krQ5ie5J3Rm9bDR70/ee2pUuWADTpsHChQWPufxy+OknSEmB/v1P7XaKSMUgInIK6lWux4iOI5jTZw49mvcg4dsEuiV244XlL7D/yP6Tuq7spCSc92+Bgsru6VrFICJSDA0jGvLYxY+R3DuZLn/qwsT1E4lJjOE/X/2HX4/+WuB2RzOzmPH1Tq5+YTG/Tp2BAWlTk+j6wmJmfL2To5lZZXcn8lAxiIiUgKZVm/LUZU8xo+cMLm98OW+ueZNuid14fdXrpGen5xq7ckcaFz65gBEz1uLWrSfc+2tzFTKPkbX+G0bMWMuFTy5g1Y40X9wVFYOISElqVr0Zz13xHNPjpnNB/Qt4beVrjPxhJOPWjONwxmFW7Ujj2rFLSUvP4NCxLKK3Lico23MK8KDsbKK3fMmhY1mkpWcwcOxSn5SDikFEpBScVfMsXrryJRJ6JBAZHslLX71ETGIMg6c/R3rmkf+N6/HtJ1TI8vz8aIWsDHp8u+R/69IzshgyflmZH1Yq1ikxRETkxM4b9ihTkpJY2bwir/apx9JWyTS3RIZ+8DN9P94PLjjX+LN//o5tz/TIfSUjc0zHx0O3bqWaWXsMIiKlafRofmvRgrY/BvHmv7Yx/umtNN5zjKcGN6TH6JYkX1qFjBzdEJ5VwG9TV64M7drB6NGlHlnFICJSmlq2ZMWYMWSPHEl6SDjtNh5hwtPf8cZz31Hn10weu6kRPZ8+k1mXVCczn2fkTAsiPSSc7Mceg+HDYdUqWLHCs3LuXJg+HT7+uEQj61CSiEhpCw7m4F1/I35LNV5KGs0Z+3/g4nWHuGjdVj5pE8Erferx3LX16bziABFHfv8t6sOh4Wyt0Yh74oeTdOeNVK0Ylvt677jD8/eKK2Dx4hKLq2IQESkDlcNC2FK9IXFDXuT2pdO5+7MEKmRlcPmqg1y26iA76oblKoUjwaG82vEaXruoPwQFUTksBMro96l1KElEpAwEBxkt60aQHRTMxjp/IiM49H/rDGi651iu8RnBoWyoE4mzIM6sG0FwUOn8HnV+VAwiImXk9k7NqRwWTNeNn1H5WPoJx1Y+lu4ZFxbM7Z1alFFCDxWDiEgZiW3dgNAgo/PmLwni98NCnjeYw8i035+Sg3B03rKM0CCjW+v6ZZpTxSAiUkbCQ4JJuLTq/06BAZ43mL+tE8lf4h/h2zqRHA4N/9+6CpnHSLisGuEhwfldXalRMYiIlKGzv15CBYMs78dQn7/0euJu/DdLzmhHzyEv8sKlg0gPCSfLgqgQ5Blf1lQMIiJlaepUgjIzsDbns2T6fJbEDYagIEKDDRcczCdxQ1gyfT52fmuCMjI8P85TxvRxVRGRslS/Pjz3HEH33EOXoCC6AFnZjkPHMqkcFvL7p496rIB//7tEv59QVCoGEZGyNHv2HxYFBxlVK4TmWRgM993nuZQxHUoSEZFcVAwiIpKLikFERHJRMYiISC4qBhERyUXFICIiuagYREQkFxWDiIjkUqxiMLOaZjbfzDZ5/9bIZ0xbM/vczNaZ2WozG5Bj3Rlm9oV3+ylmFpZ3exERKVvF3WMYDixwzrUEFnjn8zoM3OCcOw+IAf5tZtW9654BXvRuvx+4pZh5RESkmIpbDL2Aid7piUDvvAOccxudc5u807uAPUAdMzPgSmD6ibYXEZGyZa4YvyFqZmnOueo55vc75/5wOCnH+g54CuA8oCaw1DnXwruuCTDXOdeqgG2HAcMA6tWrF5WQkHDKuUvbwYMHiYiI8HWMIgukvIGUFQIrbyBlhcDK6y9Zo6OjVzjn2hc60Dl3wgvwEbA2n0svIC3P2P0nuJ4GwAago3e+DrA5x/omwJrC8jjniIqKcv5s0aJFvo5wUgIpbyBldS6w8gZSVucCK6+/ZAWWuyI8xxZ6dlXn3FUFrTOzn8ysgXNut5k1wHOYKL9xVYE5wAjn3FLv4r1AdTMLcc5lAo2BXYXlERGR0lXc9xiSgSHe6SHArLwDvJ80mgFMcs5NO77c216LgH4n2l5ERMpWcYthNNDFzDYBXbzzmFl7MxvnHXMNcDlwo5mt9F7aetc9CNxrZpuBWsBbxcwjIiLFVKwf6nHO/QJ0zmf5cmCod3oyMLmA7bcCHYqTQURESpa++SwiIrmoGEREJBcVg4iI5KJiEBGRXFQMIiKSi4pBRERyUTGIiEguKgYREclFxSAiIrkU67TbvmJmPwPbfZ3jBGrjOUlgoAikvIGUFQIrbyBlhcDK6y9Z/+Scq1PYoIAsBn9nZstdUc557icCKW8gZYXAyhtIWSGw8gZSVtChJBERyUPFICIiuagYSsdYXwc4SYGUN5CyQmDlDaSsEFh5Aymr3mMQEZHctMcgIiK5qBhERCQXFUMJMbOaZjbfzDZ5/9bIZ8yfzGyF9+dN15nZbX6cta2Zfe7NudrMBvhrVu+4VDNLM7MPyjqj9/ZjzGyDmW02s+H5rA83syne9V+YWWTZp/xflsKyXm5mX5lZppn1y+86ylIR8t5rZuu9/08XmNmffJHTm6WwrLeZ2Rrvc8ASMzvXFzkL5ZzTpQQuwLPAcO/0cOCZfMaEAeHe6QhgG9DQT7OeCbT0TjcEdgPV/TGrd11nIA74wAcZg4EtQDPvv/Eq4Nw8Y+4AxninBwJTyjrnSWSNBM4HJgH9fJHzJPNGA5W807f7+WNbNcd0TyDVl49vQRftMZScXsBE7/REoHfeAc65Y865o97ZcHy3x1aUrBudc5u807uAPUCh35gsBYVmBXDOLQB+K6tQeXQANjvntjrnjgEJeHLnlPN+TAc6m5mVYcbjCs3qnNvmnFsNZPsgX15FybvIOXfYO7sUaFzGGY8rStYDOWYrA3756R8VQ8mp55zbDeD9Wze/QWbWxMxWAzvwvPrdVYYZjytS1uPMrAOeV0BbyiBbXieV1Uca4fn3PG6nd1m+Y5xzmcCvQK0ySVdADq/8svqTk817CzC3VBMVrEhZzexOM9uCZ2/4r2WU7aSE+DpAIDGzj4D6+ax6uKjX4ZzbAZxvZg2BmWY23Tn3U0llPK4ksnqvpwHwDjDEOVcqryBLKqsP5ffKP+8rwaKMKQv+kqOoipzXzK4H2gNXlGqighUpq3PuVeBVM7sOGAEMKe1gJ0vFcBKcc1cVtM7MfjKzBs653d4n0z2FXNcuM1sHXIbn0EKJKomsZlYVmAOMcM4tLemMx5Xk4+ojO4EmOeYbA3n3BI+P2WlmIUA1YF/ZxMs3x3H5ZfUnRcprZlfheSFxRY7DtWXtZB/bBOD1Uk10inQoqeQk83vzDwFm5R1gZo3NrKJ3ugZwCbChzBL+rihZw4AZwCTn3LQyzJZXoVn9wJdASzM7w/u4DcSTO6ec96MfsNB534EsY0XJ6k8KzWtm7YA3gJ7OOV++cChK1pY5ZrsDm8owX9H5+t3v0+WC53jxAjz/0AuAmt7l7YFx3ukuwGo8n1ZYDQzz46zXAxnAyhyXtv6Y1Tv/CfAzkI7nlVvXMs4ZC2zE8z7Mw95lo/A8WQFUAKYBm4FlQDMf/l8tLOsF3sfwEPALsM5XWYuY9yPgpxz/T5P9OOtLwDpvzkXAeb58bAu66JQYIiKSiw4liYhILioGERHJRcUgIiK5qBhERCQXFYOIiOSiYhARkVxUDCIiksv/A9EXsUDmlKbXAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4FfX5///nnR0SdjCssglSBFmMihvGDcUNtypqUUoVERA/tv6u6qfWBWtra2tNCAgUqfizClIV0eJCpekHqiiYsK8BoYRdthgIWd/fP85BDzGQA5xkkszrcV1z5czMeyb3HfSVyZyZM+acQ0RE/CHK6wJERKT6KPRFRHxEoS8i4iMKfRERH1Hoi4j4iEJfRMRHFPoiIj6i0BcR8RGFvlQrM/vYzMZWsHyQme0ws5jg/IVmNs/MvjWzA2Y228y6hYxPNbMyM8svN11QTX1kmtl91fS9RpvZYjMrNLNXwxj/SPBnecDMpppZfDWUKbWEQl+q26vAEDOzcsuHAH9zzpUEg/sT4D2gNdARWAb8x8w6hGyzzTmXVG76vMo7qH7bgN8AUysbaGZXA48BVwAdgE7AM1VZnNQuCn2pbrOApsAlRxaYWRPgeuC14KI/AK8559Kcc9865/Y6554AvgSeOplvambtzOwdM9ttZnvMLCO4PMrMnjCzzWa2y8xeM7NGwXUJZvZ6cPx+M1tkZslm9lyw/ozgXxcZJ/vDCIdz7h3n3CxgTxjD7wVecc6tdM7tA54FhlZlfVK7KPSlWjnnCoC3gHtCFt8OrHHOLTWz+sCFwMwKNn8LGHCi39PMooEPgM0Ejn7bANODq4cGp8sIHBUnAUdC/F6gEdAOaAaMAAqcc78C5gOjg39djD7G991/nOmxE+0jTGcBS0PmlwLJZtasir6f1DIxXhcgvjQN+IeZPRT8JXBPcBkE/gqIArZXsN12oEXIfGsz219uTBvn3MFyy84jcJro/3POlQSXLQh+vRt40Tm3EcDMHgdWmNlPgWICYX+Gc24Z8NWJNOmca3wi4yMkCTgQMn/kdQPC+0tB6jgd6Uu1c84tAHYDg8ysE3Au8EZw9T6gDGhVwaatgtsdsc0517jcVD7wIXCkvjkk8EO1JvAXwBGbCRwMJQP/P/AxMN3MtpnZH8wsNvxOT5yZfRjypvTdJ7GLfKBhyPyR19+eenVSFyj0xSuvETjCHwJ84pzbCRAM7c+BH1ewze3Av0/ie20BTj9yZVA524D2IfOnAyXATudcsXPuGedcdwKnnK7n+9NSlX4meQVXFoVO/1vRNs65gSFvSv/tRJoMWgn0CpnvFexFR/kC6PSOeOc14AngbOCRcuseAz42szXAXwn8d/oLoD/Q7yS+15cETg09b2ZPAaXAOc65/wBvAr80sw8J/BXxW2BG8Cqiy4BvgFVAHoHTPaXBfe4k8B7AMTnnkk6i1h8I/rKKAaKBaDNLAEqO8ZfLa8CrZvY3Aj0/QeCKKZEA55wmTZ5MQCaB0znxFay7OLg+n8BR9Rbg/JD1qQROA+WXm249xvc6ncCVQ3sIBHl6cHkU8GRw/7uB14EmwXV3AmuBgwRCPh2ICa67AFgXrD+9in9OTwd/BqHT0yF95QOnh4z/ebDePAK/NH/w89Xk38mc05OzpGYzs17APOAu59zHXtcjUpvpnL7UeM65pcBNQM9jnJcXkTDpSF9ExEd0pC8i4iM17k/l5s2buw4dOkR0nwcPHiQxMTGi+6xN/Ny/n3sHf/fvt96/+uqrb5xzLSobV+NCv0OHDixevDii+8zMzCQ1NTWi+6xN/Ny/n3sHf/fvt97NbHPlo3R6R0TEVxT6IiI+otAXEfERhb6IiI8o9EVEfCSs0Deza8xsrZnlVPTwBzMbGnwi0ZLgdF/IunvNbH1wujeSxYuIyImp9JLN4FOHxgNXAbnAIjOb7ZxbVW7oDFfuCUJm1pTA4+1SCHxI1FfBbfdFpHoRETkh4RzpnwfkOOc2OueKCDxmblCY+78amOsCzzjdB8wFrjm5UkVE5FSFc3NWGwIfO3tELnB+BeNuNbP+BD5u9hHn3JZjbNum/IZmNhwYDpCcnExmZmZYxYcrPz8/4vusTfzcv597B3/37+fejyec0LcKlpX/lLb3gTedc4VmNoLA804vD3NbnHOTgckAKSkpLtJ30fntzrzy/Ny/n3sHf/fv596PJ5zTO7kEnjF6RFsCj5j7jnNuj3OuMDj7F+CccLcVEZHqE07oLwK6mFlHM4sDBgOzQweYWehDrG8EVgdffwwMMLMmZtYEGBBcJiIiHqj09I4LPCt0NIGwjgamOudWmtlYYLFzbjYwxsxuJPBA6b3A0OC2e83sWQK/OADGOuf2VkEfIiIShrA+ZdM5NweYU27ZkyGvHwceP8a2U4Gpp1CjiIhEiO7IFRHxEYW+iIiPKPRFRHxEoS8i4iMKfRERH1Hoi4j4iEJfRMRHFPoiIj6i0BcR8RGFvoiI13Jz4aGH4IILoH59MINNm6rkWyn0RUQiLT8fbr898DUcOTnw1lvQpAlcckmVlqbQFxGJtE8/hZkzYd688Mb37w87d8KcOfDjH1dpaQp9EZEIK3vnHVzwa1iiqi+KFfoiIhFQWFLKu9m5DHgxkwNvvYsB+996h6tfzOTd7FwKS0q9LhEI86OVRUTk2JZs2c/QqV9SXFpG660biS8tAiChpIjSVat5Yv9hnpm9imnDzqNXu8ae1qojfRGRU7B0y37unLyQ/QXFHCwq5bKNi4kqKwMgqqyMyzYs4mBRKfsLihk8eSFLt+z3tF6FvojISSosKeXeqV9SUPz9qZvr18wnobQYgITSYq5fs+C7dQXFgfFenurR6R0RkRNx660QfIM2HlhSbnVR9NGx2m3312z6/fVHD3o65PUtt8Dbb0e6ymPSkb6IyIl4/nno3RsSEytcHVdaQpl9Px9fWlLxfhIToU+fwP6qkUJfROREdOkCixdT9vTTFMTEU2Lfx6gDPu3bgFufPYNFZ9avcPMSi6IgJp6yZ56BxYsD+wP4+98D01dfBeY//DAw/+9/R7R8nd4RETlR0dHkj36YWzY0Iu2d5+m4byvLz4gh/bZklnWuT4fthZRF2Q82OxQbz8YmbfifWx7jnVFDaRh6fX75m7JGjgx8vfRSyMyMWOkKfRGRk5AYF8OGxq0Z9MAv6JTwOtvbfEvLPUWMfSWXG/6zn5iyo8cfjo5lfL/bmXDBjyEqisS4cvHrXLXUrdAXETkJm/I20qzTmxTGLWV3YRwPz/iGIf/cSXxxxeFdHB3L2hYdcBbFmaclEV3BXwLVQef0RUROwNb8rfxqwa+4ZfYtkLCOsr0DeHRiQ4Z9eOzAB0gsKuDqdZ+RGBfNg6lnVGPFR1Poi4iE4ZuCb/jdF7/j+nev56OvP2LIj4bwj5vnEHtgANeu/ooovg/8wJu1cUe9yRuF44oNXxIbZQzs2dKLFgCd3hEROa68ojxeXfEqr69+naLSIm7ucjMPnP0ALRMDwT394obE/7bou/FH3qx9PvWnPJb5Vzrt20r94kIg8LEM0y9pRHxMtCe9gEJfRKRCBSUFvLnmTV5Z/gp5RXkM7DCQUX1G0b5h+6PGdcteQJlBqUVRFB3Lny7+CVPPHYSzKG5sfzbDFr/HL+b/jbjSYhKiAuO5op9HXen0jojIUYrLipmxZgbXvXMdf/7qz/Rq0YuZN8zkD5f+4QeBD8BbbxFVUoz1OpsFf5/LghuGQFQUsdGGi45m/g33suDvc7GzexJVXBx4WIqHdKQvIgKUuTLmfD2H8dnjyc3Ppe9pfXnh0hc4J/mc42/YsiW88AJR//M/XBUVxVVAaZnjYFEJiXEx31+lc/1X8NJLEb3m/mQo9EXE15xz/Dv336Rnp7N+33rObHIm468YzyVtLsEsjMsq33//B4uio4yGCbHlFkbDL34RmDwUVuib2TVAGhANTHHOVfhhEWZ2GzATONc5t9jMOgCrgbXBIQudcyNOtWgRkUhYtGMR6VnpLNm9hPYN2/NC/xcY0GEAUVZ3z3xXGvpmFg2MB64CcoFFZjbbObeq3LgGwBjgi3K72OCc6x2hekVETtmqPatIz0rnP9v+w2n1T+OpC55i0BmDiI2KrXzjWi6cI/3zgBzn3EYAM5sODAJWlRv3LPAH4NGIVigiEiFfH/iajOwMPtn8CY3jG/NoyqPcceYdJMQkeF1atQkn9NsAW0Lmc4HzQweYWR+gnXPuAzMrH/odzSwbyAOecM7NP5WCRURO1I6DO3h56cu8l/Me8dHxjOg1gnu730tSXJLXpVW7cEK/oncyvrv1zMyigD8DQysYtx043Tm3x8zOAWaZ2VnOubyjvoHZcGA4QHJyMpkRfnc7Pz8/4vusTfzcv597B3/3n5+fz/ufvs8nBz5hwbeBp1dd0uASBjQaQIP9DVj82WKPK/RGOKGfC7QLmW8LbAuZbwD0ADKD73S3BGab2Y3OucVAIYBz7isz2wB0BY76aTvnJgOTAVJSUlxqaupJNXMsmZmZRHqftYmf+/dz7+Df/vOL8nlmzjP8347/43DpYQadMYgHez1Iq6RWXpfmuXBCfxHQxcw6AluBwcBdR1Y65w4AzY/Mm1km8Gjw6p0WwF7nXKmZdQK6ABsjWL+IyHcOlxxmxtoZTFk+hf2F+7mq/VWM7jOaTo06eV1ajVFp6DvnSsxsNPAxgUs2pzrnVprZWGCxc272cTbvD4w1sxKgFBjhnNsbicJFRI4oKSthVs4sXl76MrsO7eKi1hdxYdmF3JN6j9el1ThhXafvnJsDzCm37MljjE0Nef02UH1P/BURXylzZXyy6RMylmSwOW8zvVr04vlLnufcluf69r2MyuiOXBGpdZxzzN86n3HZ41izdw1dmnRh3OXjuLTtpeHdRetjCn0RqVWydmaRlpVG1q4s2ia15XeX/I6BHQYSHeXdxxXXJgp9EakV1uxdQ3pWOvO3zqdFvRY8cf4T3NLlFmKj6/5dtJGk0BeRGm1z3mbGZ4/nw00f0jCuIY+c8wh3druTejH1vC6tVlLoi0iNtPPgTiYum8i7698lLjqO+3vez9AeQ2kY19Dr0mo1hb6I1Cj7D+/nlRWv8OaaNyl1pdxx5h3cf/b9NK/XvPKNpVIKfRGpEQ4WH+S1Va8xbeU0CkoKuL7T9YzsPZI2SW28Lq1OUeiLiKcKSwt5a+1bTFk+hb2H93LF6VfwUJ+H6Ny4s9el1UkKfRHxRElZCe9veJ8JSyew4+AO+rXqx5g+Y+jZoqfXpdVpCn0RqVbOOeZunkvGkgy+PvA1PZv35NmLnqVfq35el+YLCn0RqRbOOT7f9jlp2Wms2rOKzo0681LqS1x++uW6i7YaKfRFpMot3b2UtKw0Fu1YRJukNjx38XNc1/E63UXrAYW+iFSZdfvWMS57HJlbMmmW0IzHz3uc27reRlx0nNel+ZZCX0Qibsu3Wxi/ZDxzNs4hKTaJMX3GcPeP7qZ+bH2vS/M9hb6IRMzuQ7uZtGwSb697m5ioGH7a46cM6zGMRvGNvC5NghT6InLKDhQeYOqKqbyx+g1Kykq4teutPHD2A7So38Lr0qQchb6InLRDxYf42+q/8dcVfyW/OJ/rOl3HyN4jadegXeUbiycU+iJywopKi/j7ur8zedlk9hzeQ2q7VB7q8xBdm3T1ujSphEJfRMJWWlbKP77+BxOWTGBr/lbObXkuL/V5id6n9fa6NAmTQl9EKuWcY96WeWRkZ5CzP4fuzbrzZL8nuaD1BbqxqpZR6IvIcS3cvpD0rHSWf7OcDg078KdL/8RV7a9S2NdSCn0RqdDy3ctJy07ji+1f0CqxFWMvHMsNnW8gJkqxUZvpX09EjrJh/wbGZY/j0/9+StOEpvzy3F9y+5m36y7aOkKhLyIAbM3fyoQlE/hg4wfUj6nPqN6jGNJ9CImxiV6XJhGk0BfxuW8KvuEvy/7CW+veItqiuaf7Pfysx89onNDY69KkCij0RXwqryiPV1e8yuurX6eotIibu9zMiLNHkJyY7HVpUoUU+iI+U1BSwBur32DqiqnkFeUxsMNARvUZRfuG7b0uTaqBQl/EJ4rLinln3TtMWjaJ3QW7uaTNJYzpO4ZuTbt5XZpUI4W+SB1X5sqY8/UcxmePJzc/l76n9eWPl/6Rvsl9vS5NPKDQF6mjnHMsP7Sc9PfTWb9vPd2admPCFRO4uM3FurHKxxT6InXQoh2LSMtKY+nupbRv2J4X+r/AgA4DiLIor0sTj4X1X4CZXWNma80sx8weO86428zMmVlKyLLHg9utNbOrI1G0iFRs5Z6VPDD3AYZ9PIztB7czuOlg3h30Ltd0vEaBL0AYR/pmFg2MB64CcoFFZjbbObeq3LgGwBjgi5Bl3YHBwFlAa+CfZtbVOVcauRZEZOOBjWRkZzB381waxzfm0ZRHuePMO1i4YCGxUbFelyc1SDind84DcpxzGwHMbDowCFhVbtyzwB+AR0OWDQKmO+cKga/NLCe4v89PtXARge3523l56cu8t+E9EqITeLDXg9zT/R6S4pK8Lk1qqHBCvw2wJWQ+Fzg/dICZ9QHaOec+MLNHy227sNy2bcp/AzMbDgwHSE5OJjMzM6ziw5Wfnx/xfdYmfu6/rvb+bem3fHLgExZ8uwCASxtcylWNrqLB/gYs/mzxd+Pqav/h8HPvxxNO6Ff0Nr/7bqVZFPBnYOiJbvvdAucmA5MBUlJSXGpqahhlhS8zM5NI77M28XP/da33/KJ8pq2axmsrX+Nw6WFu6nITI84eQaukVhWOr2v9nwg/93484YR+LhD6wMu2wLaQ+QZADyAzeBlYS2C2md0YxrYiEobDJYeZsXYGU5ZPYX/hfga0H8DoPqPp2Kij16VJLRNO6C8CuphZR2ArgTdm7zqy0jl3AGh+ZN7MMoFHnXOLzawAeMPMXiTwRm4X4MvIlS9StxWXFTMrZxYTl05k16FdXNT6Ih7q+xBnNTvL69Kklqo09J1zJWY2GvgYiAamOudWmtlYYLFzbvZxtl1pZm8ReNO3BBilK3dEKlfmyvh408eMXzKezXmb6dWiF89f8jzntjzX69Kklgvr5izn3BxgTrllTx5jbGq5+eeA506yPhFfcc4xf+t8xmWPY83eNXRp0oWMyzPo37a/7qKViNAduSI1RNbOLNKy0sjalUXbpLb87pLfcW3Ha3VTlUSUQl/EY2v2riE9K535W+fTol4Lft3v19zc5WbdVCVVQqEv4pHNeZsZnz2eDzd9SMO4hjxyziPc2e1O6sXU87o0qcMU+iLVbMfBHUxcOpFZObOIi47j/p73M7THUBrGNfS6NPEBhb5INdl/eD9Tlk/hzTVvUkYZd5x5B/effT/N6zWvfGORCFHoi1Sxg8UHeW3Va0xbOY2CkgKu73Q9I3uPpE3SDz6RRKTKKfRFqkhhaSFvrX2LKcunsPfwXq48/UpG9xlN58advS5NfEyhLxJhJWUlvL/hfSYsncCOgzvo16ofD/d9mB7Ne3hdmohCXyRSnHPM3TyXcdnj2JS3iZ7Ne/Kbi37D+a3Or3xjkWqi0Bc5Rc45Pt/2OWnZaazas4rOjTrz0mUvcXm7y3UXrdQ4Cn2RU7Bk1xLSstJYvHMxbZLa8NzFz3Fdx+uIjor2ujSRCin0RU7Cun3rGJc1jszcTJolNOPx8x7nx11/TGy07qKVmk2hL3ICtny7hfFLxjNn4xySYpMY02cMd//oburH1ve6NJGwKPRFwrD70G4mLZvE2+veJiYqhmE9hvHTHj+lUXwjr0sTOSEKfZHjOFB4gKkrpvLG6jcoKSvh1q638sDZD9CifguvSxM5KQp9kQocKj7E66tf59UVr5JfnM91na5jZO+RtGvQrvKNRWowhb5IiKLSImaum8nkZZPZe3gvqe1SeajPQ3Rt0tXr0kQiQqEvApSWlfLBxg+YsGQC2w5u49yW55LWJ43ep/X2ujSRiFLoi68555j333mMyx7HhgMb6N6sO09d+BQXtLpAN1ZJnaTQF99auH0h6VnpLP9mOR0bdeTF1Be58vQrFfZSpyn0xXeW715OWnYaX2z/glaJrRh74Vhu6HwDMVH630HqPv1XLr6Rsy+HcdnjmLdlHk0TmvLLc3/J7WfeTlx0nNeliVQbhb7UeVvztzJhyQQ+2PgB9WPqM6r3KIZ0H0JibKLXpYlUO4W+1FnfFHzDzL0z+ezdz4i2aO7tfi/DegyjcUJjr0sT8YxCX+qcvKI8Xl3xKq+vfp3CksLv7qJNTkz2ujQRzyn0pc4oKCngjdVvMHXFVPKK8hjYcSAphSncfsHtXpcmUmMo9KXWKy4t5p317zBp2SR2F+ymf9v+jOkzhjObnklmZqbX5YnUKAp9qbVKy0qZ8/UcJiyZQG5+Ln1P68sfL/0jfZP7el2aSI2l0JdaxzlH5pZM0rPTydmfQ7em3ZhwxQQubnOxbqwSqYRCX2qVRTsWkZaVxtLdS2nfsD0v9H+BAR0GEGVRXpcmUiuEFfpmdg2QBkQDU5xzz5dbPwIYBZQC+cBw59wqM+sArAbWBocudM6NiEzp4icr96wkPSudz7Z9xmn1T+OpC55i0BmDiI3S4wlFTkSloW9m0cB44CogF1hkZrOdc6tChr3hnJsYHH8j8CJwTXDdBuecPqpQTsrGAxvJyM5g7ua5NI5vzKMpjzK422Dio+O9Lk2kVgrnSP88IMc5txHAzKYDg4DvQt85lxcyPhFwkSxS/Gd7/nZeXvoy7214j4ToBB7s9SD3dL+HpLgkr0sTqdXCCf02wJaQ+Vzg/PKDzGwU8HMgDrg8ZFVHM8sG8oAnnHPzT75cqev2FOxhyvIpzFg7A8O4+0d3c1/P+2ia0NTr0kTqBHPu+AflZvZj4Grn3H3B+SHAec65h44x/q7g+HvNLB5Ics7tMbNzgFnAWeX+MsDMhgPDAZKTk8+ZPn36qfZ1lPz8fJKS/HuEWBv6LygrYF7ePP6V9y+KXBH9kvoxsNFAmsQ0OaX91obeq5Kf+/db75dddtlXzrmUysaFc6SfC4Q+GLQtsO0446cDLwM45wqBwuDrr8xsA9AVWBy6gXNuMjAZICUlxaWmpoZRVvgyMzOJ9D5rk5rc/+GSw0xfM50pK6ZwoPAAA9oPYHSf0XRs1DEi+6/JvVcHP/fv596PJ5zQXwR0MbOOwFZgMHBX6AAz6+KcWx+cvQ5YH1zeAtjrnCs1s05AF2BjpIqX2qu4rJhZObOYuHQiuw7t4qI2FzGmzxi6N+vudWkidVqloe+cKzGz0cDHBC7ZnOqcW2lmY4HFzrnZwGgzuxIoBvYB9wY37w+MNbMSApdzjnDO7a2KRqR2KHNlfLzpYzKyM/jvt/+ld4ve/P6S35PSstK/SkUkAsK6Tt85NweYU27ZkyGvHz7Gdm8Db59KgVI3OOeYv3U+6VnprN23lq5NupJxeQb92/bXXbQi1Uh35EqVy9qZRVpWGlm7smjXoB3PX/I8AzsO1F20Ih5Q6EuVWbN3DWlZaSzYuoAW9Vrw636/5uYuN+suWhEPKfQl4jbnbSYjO4OPNn1Ew7iGPHLOI9zZ7U7qxdTzujQR31PoS8TsOLiDiUsnMitnFnHRcdzf836G9hhKw7iGXpcmIkEKfTll+w7v45Xlr/DmmjdxOAZ3G8x9Pe+jeb3mXpcmIuUo9OWkHSw+yGurXmPaymkUlBRwQ6cbGNl7JK2TWntdmogcg0JfTlhhaSEz1sxgyvIp7Cvcx5WnX8noPqPp3Liz16WJSCUU+hK2krISZm+YzctLX2bHwR30a9WPh/s+TI/mPbwuTUTCpNCXSpW5MuZunktGdgab8jbRs3lPfnPRbzi/1Q8+bFVEajiFvhyTc47Ptn1GWlYaq/eu5ozGZ5B2WRqXtbtMd9GK1FIKfanQkl1LSMtKY/HOxbRJasNvL/4t13a8luioaK9LE5FToNCXo6zdu5aM7AwyczNpltCM/z3/f7mty23ERusuWpG6QKEvAGzJ20LGkgw+/PpDkuKSeLjvw9zV7S7qx9b3ujQRiSCFvs/tOrSLSUsn8c76d4iJimFYj2H8tMdPaRTfyOvSRKQKKPR96kDhAV5Z8Qpvrn6TElfCbV1vY/jZw2lRv4XXpYlIFVLo+8yh4kO8vvp1Xl3xKvnF+VzX6TpG9h5JuwbtKt9YRGo9hb5PFJUWMXPdTCYvm8zew3u5rN1ljO4zmq5NunpdmohUI4V+HVdaVsoX+V/wu3d/x7aD2ziv5XmM6TuGXi16eV2aiHhAoV9HOef49L+fMi57HBsPbOSsZmfx1IVPcUGrC3RjlYiPKfTroM+3fU56Vjor9qygY6OO/Kz5z3j42ocV9iKi0K9Llu9eTlpWGl/s+IJWia0Ye+FYbuh8Awv+b4ECX0QAhX6dkLMvh3HZ45i3ZR5NE5ryy3N/ye1n3k5cdJzXpYlIDaPQr8W25m9lwpIJvL/hfRJjExndezRDug/RXbQickwK/Vrom4JvmLxsMjPXzSTaohl61lCG9RhG44TGXpcmIjWcQr8WySvK49UVr/L66tcpKi3ili638MDZD5CcmOx1aSJSSyj0a4GCkgLeWP0GU1dMJa8oj4EdBzK692hOb3i616WJSC2j0K/BikuLeXv920xaNolvCr6hf9v+jOkzhjObnul1aSJSSyn0a6DSslLmfD2HCUsmkJufS9/T+vJi6ov0Oa2P16WJSC2n0K9BnHNkbskkPTudnP05dGvajQlXTODiNhfrOnsRiQiFfg2xaMciXsp6iWW7l9GhYQdeuPQFBrQfQJRFeV2aiNQhCn2PrdyzkvSsdD7b9hnJ9ZN5+oKnGXTGIGKi9E8jIpEXVrKY2TVAGhANTHHOPV9u/QhgFFAK5APDnXOrguseB34WXDfGOfdx5MqvvTYe2EhGdgZzN8+lcXxjHk15lMHdBhMfHe91aSJSh1Ua+mYWDYwHrgJygUVmNvtIqAe94ZybGBx/I/AicI2ZdQcGA2cBrYF/mllX51xphPuoNbbnb2fC0gnM3jCbhOgEHuz1IPd0v4ekuCSvSxMRHwjnSP88IMc5txHAzKYDg4DvQt85lxcyPhFwwdeDgOnOuULgazPLCe7v8whTfzRAAAAKpElEQVTUXqvsKdjDlOVTmLF2BoZx94/u5r6e99E0oanXpYmIj4QT+m2ALSHzucD55QeZ2Sjg50AccHnItgvLbdumgm2HA8MBkpOTyczMDKOs8OXn50d8n+EqKCtgXt48/pX3L4pdMecnnc/ARgNpcrAJyxYuq5YavOzfa37uHfzdv597P55wQr+iawXdDxY4Nx4Yb2Z3AU8A957AtpOByQApKSkuNTU1jLLCl5mZSaT3WZnDJYeZvmY6U1ZM4UDhAa7ucDWjeo+iY6OO1VoHeNN/TeHn3sHf/fu59+MJJ/RzgdCnZrcFth1n/HTg5ZPcttYrLivm3fXvMmnpJHYV7OKiNhcxps8Yujfr7nVpIiKEcxH4IqCLmXU0szgCb8zODh1gZl1CZq8D1gdfzwYGm1m8mXUEugBfnnrZHtuyBW67DRo1goYN4ZZbKNu8iTkb53DTrJt4duGztE5qzV+v/isTr5yowBeRGqPSI33nXImZjQY+JnDJ5lTn3EozGwssds7NBkab2ZVAMbCPwKkdguPeIvCmbwkwqtZfuXPoEFx+OcTHw7RpOODQYz/n2349ePqZ9rRr2Y2MyzPo37a/7qIVkRonrOv0nXNzgDnllj0Z8vrh42z7HPDcyRZY4/zlL7BxI6xdy1cNDpCelc7O+2L5xy8PMW3zhZx5/yTdRSsiNZbvb/ssKS3jUHEpiXExREeFcWQ+ezaHUnrxi01/YsHWBbSo14IRNzyLvZ/BjxasAwW+iNRgvgz9wpJS5izfzsuZG1i/K5+YKKOkzNH1tCRGpHbm2p6tiI+J/sF2m/M20zR7IR/1imfZ7nr8/JyfM7jbYOrF1IOzMmHmzOpvRkTkBPgu9Jds2c/QqV9SXFrGwaLA2wvFpYGrSNfuzOeJd1fwzOxVTBt2Hr3aBR4/uOPgDiYuncisnFksyiugU4cL+ejWd2gQ1+D7HTdtCvv2VXs/IiInwlehv3TLfu6cvJCC4mO/lxz4RVDK4MkL+cvQbny+dybT10zH4RjcbTAxUas4p2UKhAY+gPvB7QciIjWOb0K/sKSUe6d+edzA/05UIaWN5vPg/z1BVHQxN3S6gZG9R9I6qTU0+TPs3fvDbfbtgyZNIl+4iEgE+Sb05yzfTnFp2fEHWTGxTRYS1yyTqJiDuPwejOr7EMMvuPD7MWedBStX/nDbVaugu67HF5GazTeXmrycueG7c/g/VEpso0Ukdv4jCcn/oOxwaw5+PYr8LT/h7YXFRw+98UZYuDBw2eYRmzbBf/4TWCciUoP55kh//a78CpfHNFhOXItPiI7fTWlBOw5tu53SQ52/W79uVz6lZe77yznvvx8yMmDQIPjNb8AMfv1raNcOHnigOloRETlpvjjSL3OOmGNcgx/TYBW4KAq2DOHQppFHBT5ATJRxsKjk+wWJiTBvHnTtCkOGwN13Q8eOgWVJ+kx8EanZfHGkH2WB6/ArcnjHICiL41i//0rKHIlx5X5Mp58Ob78d4SpFRKqeL470Abqcdoyj8LIEjvdj6HpaUnh36oqI1AK+Cf0HUzuTGPfDu2yPJzEumgdTz6iiikREqp9vQv/anq2IjT6xdmOjoxjYs2UVVSQiUv18E/rxMdFMG3Ye9WLDO9qvFxsYX9Fn8IiI1Fa+CX2AXu0aM314PxrXiz3mqZ7EuGga14tl+vB+3332johIXeGLq3dC9WrXmC9+dQUfLt/By5k5rDvqUzYb8GBqZwb2bKkjfBGpk3wX+hA41XNTnzbc1KcNpWWOg0Ul4X+evohILebL0A8VHWU0TIj1ugwRkWrhq3P6IiJ+p9AXEfERhb6IiI8o9EVEfEShLyLiIwp9EREfUeiLiPiIQl9ExEcU+iIiPqLQFxHxEYW+iIiPKPRFRHwkrNA3s2vMbK2Z5ZjZYxWs/7mZrTKzZWb2qZm1D1lXamZLgtPsSBYvIiInptJP2TSzaGA8cBWQCywys9nOuVUhw7KBFOfcITN7EPgDcEdwXYFzrneE6xYRkZMQzpH+eUCOc26jc64ImA4MCh3gnPuXc+5QcHYh0DayZYqISCSEE/ptgC0h87nBZcfyM+DDkPkEM1tsZgvN7KaTqFFERCIknIeoVPQ4KVfhQLOfACnApSGLT3fObTOzTsA8M1vunNtQbrvhwHCA5ORkMjMzw6k9bPn5+RHfZ23i5/793Dv4u38/93484YR+LtAuZL4tsK38IDO7EvgVcKlzrvDIcufctuDXjWaWCfQBjgp959xkYDJASkqKS01NPaEmKpOZmUmk91mb+Ll/P/cO/u7fz70fTzindxYBXcyso5nFAYOBo67CMbM+wCTgRufcrpDlTcwsPvi6OXAREPoGsIiIVKNKj/SdcyVmNhr4GIgGpjrnVprZWGCxc2428AKQBMw0M4D/OuduBH4ETDKzMgK/YJ4vd9WPiIhUo7AejO6cmwPMKbfsyZDXVx5ju8+AnqdSoIiIRI7uyBUR8RGFvoiIjyj0RUR8RKEvIuIjCn0RER8x5yq8udYzZrYb2Bzh3TYHvonwPmsTP/fv597B3/37rff2zrkWlQ2qcaFfFcxssXMuxes6vOLn/v3cO/i7fz/3fjw6vSMi4iMKfRERH/FL6E/2ugCP+bl/P/cO/u7fz70fky/O6YuISIBfjvRFRASFvoiIr9TJ0DezpmY218zWB782Oca4j8xsv5l9UN01VgUzu8bM1ppZjpk9VsH6eDObEVz/hZl1qP4qq0YYvfc3sywzKzGz27yosaqE0fvPzWyVmS0zs0/NrL0XdVaVMPofYWbLzWyJmS0ws+5e1FljOOfq3AT8AXgs+Pox4PfHGHcFcAPwgdc1R6DnaAJPJOsExAFLge7lxowEJgZfDwZmeF13NfbeATgbeA24zeuaq7n3y4D6wdcP1pV/9xPov2HI6xuBj7yu28upTh7pA4OAacHX04AKH8junPsU+La6iqpi5wE5zrmNzrkiYDqBn0Oo0J/L34ErLPjUm1qu0t6dc5ucc8uAMi8KrELh9P4v59yh4OxCAo88rSvC6T8vZDaRYzzj2y/qaugnO+e2AwS/nuZxPdWhDbAlZD43uKzCMc65EuAA0Kxaqqta4fReV51o7z8DPqzSiqpXWP2b2Sgz20DgLMCYaqqtRgrryVk1kZn9E2hZwapfVXctNURFR+zlj2jCGVMb1dW+whF272b2EyAFuLRKK6peYfXvnBsPjDezu4AngHururCaqtaGvjvGIxoBzGynmbVyzm03s1bArmONrUNygXYh822BbccYk2tmMUAjYG/1lFelwum9rgqrdzO7ksAB0aXOucJqqq06nOi//XTg5SqtqIarq6d3ZvP9b/J7gfc8rKW6LAK6mFlHM4sj8Ebt7HJjQn8utwHzXPDdrVounN7rqkp7N7M+wCTgRudcXTsACqf/LiGz1wHrq7G+msfrd5KrYiJwnvpTAv+4nwJNg8tTgCkh4+YDu4ECAkcMV3td+yn2fS2wjsDVDL8KLhtL4H92gARgJpADfAl08rrmauz93OC/8UFgD7DS65qrsfd/AjuBJcFpttc1V3P/acDKYO//As7yumYvJ30Mg4iIj9TV0zsiIlIBhb6IiI8o9EVEfEShLyLiIwp9EREfUeiLiPiIQl9ExEf+H3ukTZhfe0KCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index 1cd9e827f..494016f51 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -65,10 +65,12 @@ "from qiskit.aqua import Operator, run_algorithm\n", "from qiskit.aqua.input import EnergyInput\n", "from qiskit.aqua.translators.ising import portfolio\n", + "from qiskit.aqua.translators.data_providers import RandomDataProvider\n", "from qiskit.aqua.algorithms import VQE, QAOA, ExactEigensolver\n", "from qiskit.aqua.components.optimizers import COBYLA\n", "from qiskit.aqua.components.variational_forms import RY\n", - "import numpy as np" + "import numpy as np\n", + "import datetime" ] }, { @@ -97,7 +99,8 @@ "source": [ "### Define problem instance\n", "\n", - "Here an Operator instance is created for our Hamiltonian. In this case the paulis are from an Ising Hamiltonian translated from the portfolio problem. We use a random portfolio problem for this notebook." + "Here an Operator instance is created for our Hamiltonian. In this case the paulis are from an Ising Hamiltonian translated from the portfolio problem. We use a random portfolio problem for this notebook. It is straight-forward to extend this to using real financial data as illustrated here:
\n", + "[Loading and Processing Stock-Market Time-Series Data](../data_providers/time_series.ipynb)" ] }, { @@ -108,9 +111,23 @@ "source": [ "# set number of assets (= number of qubits)\n", "num_assets = 4\n", - "# get random expected return vector (mu) and covariance matrix (sigma)\n", - "mu, sigma = portfolio.random_model(num_assets, seed=42)\n", "\n", + "# Generate expected return and covariance matrix from (random) time-series\n", + "stocks = [(\"TICKER%s\" % i) for i in range(num_assets)]\n", + "data = RandomDataProvider(tickers=stocks,\n", + " start=datetime.datetime(2016,1,1),\n", + " end=datetime.datetime(2016,1,30))\n", + "data.run()\n", + "mu = data.get_period_return_mean_vector()\n", + "sigma = data.get_period_return_covariance_matrix()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ "q = 0.5 # set risk factor\n", "budget = int(num_assets / 2) # set budget\n", "penalty = num_assets # set parameter to scale the budget penalty term\n", @@ -128,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -166,33 +183,33 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 0 1 1], value -0.7012\n", + "Optimal: selection [0 0 1 1], value -0.0026\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 0 1 1]\t-0.7012\t\t1.0000\n", - " [1 1 1 1]\t15.6136\t\t0.0000\n", - " [0 1 1 1]\t4.9012\t\t0.0000\n", - " [1 0 1 1]\t3.0617\t\t0.0000\n", - " [1 1 0 1]\t4.6445\t\t0.0000\n", - " [0 1 0 1]\t2.1421\t\t0.0000\n", - " [1 0 0 1]\t-0.4158\t\t0.0000\n", - " [0 0 0 1]\t4.0314\t\t0.0000\n", - " [1 1 1 0]\t2.6688\t\t0.0000\n", - " [0 1 1 0]\t-0.5149\t\t0.0000\n", - " [1 0 1 0]\t-0.2876\t\t0.0000\n", - " [0 0 1 0]\t3.4782\t\t0.0000\n", - " [1 1 0 0]\t-0.5110\t\t0.0000\n", - " [0 1 0 0]\t4.5153\t\t0.0000\n", - " [1 0 0 0]\t4.0242\t\t0.0000\n", + " [0 0 1 1]\t-0.0026\t\t1.0000\n", + " [1 1 1 1]\t15.9996\t\t0.0000\n", + " [0 1 1 1]\t3.9984\t\t0.0000\n", + " [1 0 1 1]\t3.9985\t\t0.0000\n", + " [1 1 0 1]\t4.0000\t\t0.0000\n", + " [0 1 0 1]\t-0.0011\t\t0.0000\n", + " [1 0 0 1]\t-0.0011\t\t0.0000\n", + " [0 0 0 1]\t3.9978\t\t0.0000\n", + " [1 1 1 0]\t4.0017\t\t0.0000\n", + " [0 1 1 0]\t0.0006\t\t0.0000\n", + " [1 0 1 0]\t0.0006\t\t0.0000\n", + " [0 0 1 0]\t3.9995\t\t0.0000\n", + " [1 1 0 0]\t0.0021\t\t0.0000\n", + " [0 1 0 0]\t4.0010\t\t0.0000\n", + " [1 0 0 0]\t4.0011\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } @@ -228,34 +245,34 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [1 0 0 1], value -0.4158\n", + "Optimal: selection [0 1 1 0], value 0.0006\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [1 0 0 1]\t-0.4158\t\t0.9322\n", - " [1 0 1 0]\t-0.2876\t\t0.0656\n", - " [1 1 0 0]\t-0.5110\t\t0.0022\n", - " [0 0 0 1]\t4.0314\t\t0.0000\n", - " [1 1 0 1]\t4.6445\t\t0.0000\n", - " [1 0 1 1]\t3.0617\t\t0.0000\n", - " [0 0 1 0]\t3.4782\t\t0.0000\n", - " [0 0 1 1]\t-0.7012\t\t0.0000\n", - " [1 1 1 0]\t2.6688\t\t0.0000\n", - " [0 1 1 1]\t4.9012\t\t0.0000\n", - " [0 1 1 0]\t-0.5149\t\t0.0000\n", - " [1 1 1 1]\t15.6136\t\t0.0000\n", - " [1 0 0 0]\t4.0242\t\t0.0000\n", - " [0 1 0 0]\t4.5153\t\t0.0000\n", - " [0 1 0 1]\t2.1421\t\t0.0000\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n" + " [0 1 1 0]\t0.0006\t\t0.7038\n", + " [1 0 0 1]\t-0.0011\t\t0.2120\n", + " [1 0 1 0]\t0.0006\t\t0.0272\n", + " [0 1 0 1]\t-0.0011\t\t0.0251\n", + " [1 1 0 0]\t0.0021\t\t0.0167\n", + " [0 0 1 1]\t-0.0026\t\t0.0151\n", + " [1 0 0 0]\t4.0011\t\t0.0000\n", + " [0 1 1 1]\t3.9984\t\t0.0000\n", + " [0 0 0 1]\t3.9978\t\t0.0000\n", + " [1 0 1 1]\t3.9985\t\t0.0000\n", + " [0 1 0 0]\t4.0010\t\t0.0000\n", + " [1 1 1 0]\t4.0017\t\t0.0000\n", + " [1 1 0 1]\t4.0000\t\t0.0000\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n", + " [0 0 1 0]\t3.9995\t\t0.0000\n", + " [1 1 1 1]\t15.9996\t\t0.0000\n" ] } ], @@ -312,34 +329,34 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 0 1 1], value -0.7012\n", + "Optimal: selection [1 1 0 0], value 0.0021\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 0 1 1]\t-0.7012\t\t0.1771\n", - " [1 0 0 1]\t-0.4158\t\t0.1748\n", - " [1 1 0 0]\t-0.5110\t\t0.1743\n", - " [0 1 1 0]\t-0.5149\t\t0.1709\n", - " [1 0 1 0]\t-0.2876\t\t0.1479\n", - " [0 1 0 1]\t2.1421\t\t0.1369\n", - " [1 1 1 0]\t2.6688\t\t0.0098\n", - " [1 0 1 1]\t3.0617\t\t0.0043\n", - " [0 0 0 1]\t4.0314\t\t0.0016\n", - " [0 0 1 0]\t3.4782\t\t0.0009\n", - " [0 1 1 1]\t4.9012\t\t0.0008\n", - " [1 0 0 0]\t4.0242\t\t0.0004\n", - " [0 1 0 0]\t4.5153\t\t0.0003\n", - " [1 1 0 1]\t4.6445\t\t0.0002\n", - " [1 1 1 1]\t15.6136\t\t0.0000\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n" + " [1 1 0 0]\t0.0021\t\t0.1667\n", + " [1 0 1 0]\t0.0006\t\t0.1667\n", + " [0 1 1 0]\t0.0006\t\t0.1667\n", + " [1 0 0 1]\t-0.0011\t\t0.1666\n", + " [0 1 0 1]\t-0.0011\t\t0.1666\n", + " [0 0 1 1]\t-0.0026\t\t0.1666\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n", + " [1 1 1 1]\t15.9996\t\t0.0000\n", + " [1 1 1 0]\t4.0017\t\t0.0000\n", + " [1 0 0 0]\t4.0011\t\t0.0000\n", + " [0 1 0 0]\t4.0010\t\t0.0000\n", + " [1 1 0 1]\t4.0000\t\t0.0000\n", + " [0 0 1 0]\t3.9995\t\t0.0000\n", + " [1 0 1 1]\t3.9985\t\t0.0000\n", + " [0 1 1 1]\t3.9984\t\t0.0000\n", + " [0 0 0 1]\t3.9978\t\t0.0000\n" ] } ], diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb index 21d5fd2e2..7a842f4cb 100644 --- a/qiskit/finance/simulation/credit_risk_analysis.ipynb +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -549,7 +549,7 @@ "« ░ └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -895,7 +895,7 @@ "« └───┘ └───┘ ░ " ], "text/plain": [ - "" + "" ] }, "execution_count": 21, From b83e8e6c47cad7e1f5996a978ec3ab72f33d24da Mon Sep 17 00:00:00 2001 From: CZ Date: Wed, 1 May 2019 18:38:32 +0200 Subject: [PATCH 101/116] update qgan notebooks --- ...ans_for_loading_random_distributions.ipynb | 12979 ++++++++++++++-- .../qgan_option_pricing.ipynb | 69 +- 2 files changed, 12000 insertions(+), 1048 deletions(-) diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb index 14ed3f906..5a7e12ff6 100644 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb +++ b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb @@ -29,16 +29,7 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", - " from collections import MutableMapping\n" - ] - } - ], + "outputs": [], "source": [ "#!/usr/bin/env python\n", "# coding: utf-8\n", @@ -58,15 +49,17 @@ "start = time.time()\n", "\n", "from torch import optim\n", - "\n", + "from qiskit import QuantumRegister, QuantumCircuit\n", "from qiskit.aqua.components.optimizers import ADAM\n", "from qiskit.aqua.components.uncertainty_models import UniformDistribution, UnivariateVariationalDistribution \n", "from qiskit.aqua.components.variational_forms import RY\n", "\n", "from qiskit.aqua.algorithms.adaptive import QGAN\n", - "from qiskit.aqua.algorithms.adaptive.qgan.discriminator import DiscriminatorNet\n", + "from qiskit.aqua.components.neural_networks.quantum_generator import QuantumGenerator\n", + "from qiskit.aqua.components.neural_networks.classical_discriminator import ClassicalDiscriminator, DiscriminatorNet\n", "\n", "from qiskit.aqua import aqua_globals, QuantumInstance\n", + "from qiskit.aqua.components.initial_states import Custom\n", "\n", "from qiskit import BasicAer" ] @@ -115,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -125,38 +118,34 @@ "# Batch size\n", "batch_size = 1000\n", "\n", - "# Initialize qGAN\n", + " # Initialize qGAN\n", "qgan = QGAN(real_data, bounds, num_qubits, batch_size, num_epochs, snapshot_dir=None)\n", - "\n", + "qgan.seed = 1\n", "# Set quantum instance to run the quantum generator\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "qgan.set_quantum_instance(QuantumInstance(backend=backend, shots=batch_size, coupling_map=None, circuit_caching=False))\n", - "\n", + "quantum_instance = QuantumInstance(backend=BasicAer.get_backend('statevector_simulator'),shots=batch_size, \n", + " circuit_caching=False)\n", "\n", "# Set entangler map\n", "entangler_map = [[0, 1]]\n", - " \n", - "# Set variational form\n", - "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", + "\n", + "\n", + "# Set an initial state for the generator circuit\n", + "init_dist = UniformDistribution(sum(num_qubits), low=bounds[0], high=bounds[1])\n", + "q = QuantumRegister(sum(num_qubits), name='q')\n", + "qc = QuantumCircuit(q)\n", + "init_dist.build(qc, q)\n", + "init_distribution = Custom(num_qubits=sum(num_qubits), circuit=qc)\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state = init_distribution, \n", + " entangler_map=entangler_map, entanglement_gate='cz')\n", "# Set generator's initial parameters\n", "init_params = aqua_globals.random.rand(var_form._num_parameters) * 2 * 1e-2\n", - "# Set an initial state for the generator circuit\n", - "init_dist = UniformDistribution(np.sum(num_qubits), low=bounds[0], high=bounds[1])\n", "# Set generator circuit\n", - "g_circuit = UnivariateVariationalDistribution(sum(num_qubits), var_form, init_params,\n", - " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", - "# Set generator optimizer\n", - "g_optimizer = ADAM(maxiter=1, tol=1e-6, lr=1e-5, beta_1=0.9, beta_2=0.99, noise_factor=1e-6,\n", - " eps=1e-10, amsgrad=True)\n", + "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, init_params,\n", + " low=bounds[0], high=bounds[1])\n", "# Set quantum generator\n", - "qgan.set_generator(generator_circuit=g_circuit, generator_optimizer=g_optimizer)\n", - "\n", - "# Set discriminator network\n", - "d_net = DiscriminatorNet(n_features=k)\n", - "# Set discriminator optimizer\n", - "d_optimizer = optim.Adam(d_net.parameters(), lr=1e-5, amsgrad=True)\n", + "qgan.set_generator(generator_circuit=g_circuit)\n", "# Set classical discriminator neural network\n", - "qgan.set_discriminator(discriminator_net=d_net, discriminator_optimizer=d_optimizer)" + "qgan.set_discriminator()" ] }, { @@ -174,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -182,1230 +171,12222 @@ "output_type": "stream", "text": [ "Epoch 1/3000...\n", - "Loss Discriminator: 0.6972\n", - "Loss Generator: 0.6728\n", - "Relative Entropy: 0.168\n", + "Loss Discriminator: 0.6948\n", + "Loss Generator: 0.6307\n", + "Relative Entropy: 0.1998\n", + "Epoch 2/3000...\n", + "Loss Discriminator: 0.6919\n", + "Loss Generator: 0.6591\n", + "Relative Entropy: 0.1998\n", + "Epoch 3/3000...\n", + "Loss Discriminator: 0.6902\n", + "Loss Generator: 0.6836\n", + "Relative Entropy: 0.1997\n", + "Epoch 4/3000...\n", + "Loss Discriminator: 0.6892\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.1996\n", + "Epoch 5/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.1996\n", + "Epoch 6/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.1995\n", + "Epoch 7/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.1995\n", + "Epoch 8/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.6961\n", + "Relative Entropy: 0.1994\n", + "Epoch 9/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.6931\n", + "Relative Entropy: 0.1993\n", + "Epoch 10/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.6936\n", + "Relative Entropy: 0.1993\n", "Epoch 11/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.6919\n", - "Relative Entropy: 0.1678\n", - "Epoch 21/3000...\n", - "Loss Discriminator: 0.6799\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.6969\n", + "Relative Entropy: 0.1992\n", + "Epoch 12/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.1991\n", + "Epoch 13/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.1991\n", + "Epoch 14/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.199\n", + "Epoch 15/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.1989\n", + "Epoch 16/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.1988\n", + "Epoch 17/3000...\n", + "Loss Discriminator: 0.6803\n", "Loss Generator: 0.7046\n", - "Relative Entropy: 0.1671\n", + "Relative Entropy: 0.1988\n", + "Epoch 18/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.1987\n", + "Epoch 19/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.1986\n", + "Epoch 20/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.1985\n", + "Epoch 21/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.1985\n", + "Epoch 22/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.1984\n", + "Epoch 23/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.1983\n", + "Epoch 24/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.1983\n", + "Epoch 25/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.1982\n", + "Epoch 26/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.1981\n", + "Epoch 27/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.198\n", + "Epoch 28/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.198\n", + "Epoch 29/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1979\n", + "Epoch 30/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1978\n", "Epoch 31/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1664\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1978\n", + "Epoch 32/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1977\n", + "Epoch 33/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1976\n", + "Epoch 34/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1975\n", + "Epoch 35/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1975\n", + "Epoch 36/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1974\n", + "Epoch 37/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1973\n", + "Epoch 38/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1973\n", + "Epoch 39/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1972\n", + "Epoch 40/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1971\n", "Epoch 41/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1657\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.197\n", + "Epoch 42/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.197\n", + "Epoch 43/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1969\n", + "Epoch 44/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1968\n", + "Epoch 45/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1967\n", + "Epoch 46/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1967\n", + "Epoch 47/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1966\n", + "Epoch 48/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1965\n", + "Epoch 49/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1965\n", + "Epoch 50/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1964\n", "Epoch 51/3000...\n", - "Loss Discriminator: 0.673\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1963\n", + "Epoch 52/3000...\n", + "Loss Discriminator: 0.6687\n", "Loss Generator: 0.7303\n", - "Relative Entropy: 0.165\n", + "Relative Entropy: 0.1962\n", + "Epoch 53/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1962\n", + "Epoch 54/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1961\n", + "Epoch 55/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.196\n", + "Epoch 56/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.196\n", + "Epoch 57/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1959\n", + "Epoch 58/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1958\n", + "Epoch 59/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1957\n", + "Epoch 60/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1957\n", "Epoch 61/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1644\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1956\n", + "Epoch 62/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1955\n", + "Epoch 63/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1955\n", + "Epoch 64/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1954\n", + "Epoch 65/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1953\n", + "Epoch 66/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1952\n", + "Epoch 67/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1952\n", + "Epoch 68/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1951\n", + "Epoch 69/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.195\n", + "Epoch 70/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.195\n", "Epoch 71/3000...\n", + "Loss Discriminator: 0.665\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1949\n", + "Epoch 72/3000...\n", "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1637\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1948\n", + "Epoch 73/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1947\n", + "Epoch 74/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1947\n", + "Epoch 75/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1946\n", + "Epoch 76/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1945\n", + "Epoch 77/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.1945\n", + "Epoch 78/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1944\n", + "Epoch 79/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1943\n", + "Epoch 80/3000...\n", + "Loss Discriminator: 0.6639\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1942\n", "Epoch 81/3000...\n", - "Loss Discriminator: 0.6697\n", + "Loss Discriminator: 0.6654\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1942\n", + "Epoch 82/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1941\n", + "Epoch 83/3000...\n", + "Loss Discriminator: 0.6691\n", "Loss Generator: 0.7371\n", - "Relative Entropy: 0.163\n", + "Relative Entropy: 0.194\n", + "Epoch 84/3000...\n", + "Loss Discriminator: 0.664\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.194\n", + "Epoch 85/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1939\n", + "Epoch 86/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1938\n", + "Epoch 87/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1937\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 88/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1937\n", + "Epoch 89/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1936\n", + "Epoch 90/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7393\n", + "Relative Entropy: 0.1935\n", "Epoch 91/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1623\n", + "Loss Discriminator: 0.6658\n", + "Loss Generator: 0.7414\n", + "Relative Entropy: 0.1935\n", + "Epoch 92/3000...\n", + "Loss Discriminator: 0.6665\n", + "Loss Generator: 0.7406\n", + "Relative Entropy: 0.1934\n", + "Epoch 93/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1933\n", + "Epoch 94/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.1933\n", + "Epoch 95/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7396\n", + "Relative Entropy: 0.1932\n", + "Epoch 96/3000...\n", + "Loss Discriminator: 0.6652\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.1931\n", + "Epoch 97/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7392\n", + "Relative Entropy: 0.193\n", + "Epoch 98/3000...\n", + "Loss Discriminator: 0.6651\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.193\n", + "Epoch 99/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1929\n", + "Epoch 100/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1928\n", "Epoch 101/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1617\n", - "Epoch 111/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.1928\n", + "Epoch 102/3000...\n", "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.161\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1927\n", + "Epoch 103/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7393\n", + "Relative Entropy: 0.1926\n", + "Epoch 104/3000...\n", + "Loss Discriminator: 0.6626\n", + "Loss Generator: 0.7409\n", + "Relative Entropy: 0.1925\n", + "Epoch 105/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7412\n", + "Relative Entropy: 0.1925\n", + "Epoch 106/3000...\n", + "Loss Discriminator: 0.6642\n", + "Loss Generator: 0.7392\n", + "Relative Entropy: 0.1924\n", + "Epoch 107/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1923\n", + "Epoch 108/3000...\n", + "Loss Discriminator: 0.6639\n", + "Loss Generator: 0.7395\n", + "Relative Entropy: 0.1923\n", + "Epoch 109/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1922\n", + "Epoch 110/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1921\n", + "Epoch 111/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1921\n", + "Epoch 112/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7392\n", + "Relative Entropy: 0.192\n", + "Epoch 113/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7415\n", + "Relative Entropy: 0.1919\n", + "Epoch 114/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7427\n", + "Relative Entropy: 0.1918\n", + "Epoch 115/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7405\n", + "Relative Entropy: 0.1918\n", + "Epoch 116/3000...\n", + "Loss Discriminator: 0.665\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1917\n", + "Epoch 117/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1916\n", + "Epoch 118/3000...\n", + "Loss Discriminator: 0.6653\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1916\n", + "Epoch 119/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7404\n", + "Relative Entropy: 0.1915\n", + "Epoch 120/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7413\n", + "Relative Entropy: 0.1914\n", "Epoch 121/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1603\n", + "Loss Discriminator: 0.6646\n", + "Loss Generator: 0.7398\n", + "Relative Entropy: 0.1913\n", + "Epoch 122/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.741\n", + "Relative Entropy: 0.1913\n", + "Epoch 123/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.74\n", + "Relative Entropy: 0.1912\n", + "Epoch 124/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.742\n", + "Relative Entropy: 0.1911\n", + "Epoch 125/3000...\n", + "Loss Discriminator: 0.6644\n", + "Loss Generator: 0.7397\n", + "Relative Entropy: 0.1911\n", + "Epoch 126/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7387\n", + "Relative Entropy: 0.191\n", + "Epoch 127/3000...\n", + "Loss Discriminator: 0.6655\n", + "Loss Generator: 0.7375\n", + "Relative Entropy: 0.1909\n", + "Epoch 128/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.1909\n", + "Epoch 129/3000...\n", + "Loss Discriminator: 0.6655\n", + "Loss Generator: 0.7398\n", + "Relative Entropy: 0.1908\n", + "Epoch 130/3000...\n", + "Loss Discriminator: 0.6646\n", + "Loss Generator: 0.7406\n", + "Relative Entropy: 0.1907\n", "Epoch 131/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1597\n", + "Loss Discriminator: 0.6639\n", + "Loss Generator: 0.7409\n", + "Relative Entropy: 0.1906\n", + "Epoch 132/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7398\n", + "Relative Entropy: 0.1906\n", + "Epoch 133/3000...\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1905\n", + "Epoch 134/3000...\n", + "Loss Discriminator: 0.6654\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1904\n", + "Epoch 135/3000...\n", + "Loss Discriminator: 0.6652\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1904\n", + "Epoch 136/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7381\n", + "Relative Entropy: 0.1903\n", + "Epoch 137/3000...\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1902\n", + "Epoch 138/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7416\n", + "Relative Entropy: 0.1902\n", + "Epoch 139/3000...\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.7436\n", + "Relative Entropy: 0.1901\n", + "Epoch 140/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7414\n", + "Relative Entropy: 0.19\n", "Epoch 141/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.159\n", + "Loss Discriminator: 0.6657\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.1899\n", + "Epoch 142/3000...\n", + "Loss Discriminator: 0.6635\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.1899\n", + "Epoch 143/3000...\n", + "Loss Discriminator: 0.6662\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.1898\n", + "Epoch 144/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7395\n", + "Relative Entropy: 0.1897\n", + "Epoch 145/3000...\n", + "Loss Discriminator: 0.6648\n", + "Loss Generator: 0.7409\n", + "Relative Entropy: 0.1897\n", + "Epoch 146/3000...\n", + "Loss Discriminator: 0.6662\n", + "Loss Generator: 0.7397\n", + "Relative Entropy: 0.1896\n", + "Epoch 147/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1895\n", + "Epoch 148/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7409\n", + "Relative Entropy: 0.1895\n", + "Epoch 149/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7416\n", + "Relative Entropy: 0.1894\n", + "Epoch 150/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7393\n", + "Relative Entropy: 0.1893\n", "Epoch 151/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1892\n", + "Epoch 152/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1892\n", + "Epoch 153/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7385\n", + "Relative Entropy: 0.1891\n", + "Epoch 154/3000...\n", "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1583\n", + "Loss Generator: 0.7404\n", + "Relative Entropy: 0.189\n", + "Epoch 155/3000...\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.7416\n", + "Relative Entropy: 0.189\n", + "Epoch 156/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.74\n", + "Relative Entropy: 0.1889\n", + "Epoch 157/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1888\n", + "Epoch 158/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7396\n", + "Relative Entropy: 0.1888\n", + "Epoch 159/3000...\n", + "Loss Discriminator: 0.6645\n", + "Loss Generator: 0.7416\n", + "Relative Entropy: 0.1887\n", + "Epoch 160/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1886\n", "Epoch 161/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1577\n", + "Loss Discriminator: 0.6645\n", + "Loss Generator: 0.7385\n", + "Relative Entropy: 0.1885\n", + "Epoch 162/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7399\n", + "Relative Entropy: 0.1885\n", + "Epoch 163/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7393\n", + "Relative Entropy: 0.1884\n", + "Epoch 164/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7391\n", + "Relative Entropy: 0.1883\n", + "Epoch 165/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7421\n", + "Relative Entropy: 0.1883\n", + "Epoch 166/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1882\n", + "Epoch 167/3000...\n", + "Loss Discriminator: 0.6658\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1881\n", + "Epoch 168/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1881\n", + "Epoch 169/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7402\n", + "Relative Entropy: 0.188\n", + "Epoch 170/3000...\n", + "Loss Discriminator: 0.6664\n", + "Loss Generator: 0.7419\n", + "Relative Entropy: 0.1879\n", "Epoch 171/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.157\n", + "Loss Discriminator: 0.6662\n", + "Loss Generator: 0.7418\n", + "Relative Entropy: 0.1879\n", + "Epoch 172/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7392\n", + "Relative Entropy: 0.1878\n", + "Epoch 173/3000...\n", + "Loss Discriminator: 0.666\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1877\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 174/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7394\n", + "Relative Entropy: 0.1876\n", + "Epoch 175/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1876\n", + "Epoch 176/3000...\n", + "Loss Discriminator: 0.662\n", + "Loss Generator: 0.7398\n", + "Relative Entropy: 0.1875\n", + "Epoch 177/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7406\n", + "Relative Entropy: 0.1874\n", + "Epoch 178/3000...\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.741\n", + "Relative Entropy: 0.1874\n", + "Epoch 179/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1873\n", + "Epoch 180/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1872\n", "Epoch 181/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1564\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1872\n", + "Epoch 182/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1871\n", + "Epoch 183/3000...\n", + "Loss Discriminator: 0.6653\n", + "Loss Generator: 0.7401\n", + "Relative Entropy: 0.187\n", + "Epoch 184/3000...\n", + "Loss Discriminator: 0.6652\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.187\n", + "Epoch 185/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1869\n", + "Epoch 186/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1868\n", + "Epoch 187/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1867\n", + "Epoch 188/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7394\n", + "Relative Entropy: 0.1867\n", + "Epoch 189/3000...\n", + "Loss Discriminator: 0.6657\n", + "Loss Generator: 0.7402\n", + "Relative Entropy: 0.1866\n", + "Epoch 190/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7387\n", + "Relative Entropy: 0.1865\n", "Epoch 191/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1557\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1865\n", + "Epoch 192/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1864\n", + "Epoch 193/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1863\n", + "Epoch 194/3000...\n", + "Loss Discriminator: 0.6654\n", + "Loss Generator: 0.7406\n", + "Relative Entropy: 0.1863\n", + "Epoch 195/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1862\n", + "Epoch 196/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1861\n", + "Epoch 197/3000...\n", + "Loss Discriminator: 0.6665\n", + "Loss Generator: 0.7414\n", + "Relative Entropy: 0.1861\n", + "Epoch 198/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7392\n", + "Relative Entropy: 0.186\n", + "Epoch 199/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7381\n", + "Relative Entropy: 0.1859\n", + "Epoch 200/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1858\n", "Epoch 201/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.155\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1858\n", + "Epoch 202/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1857\n", + "Epoch 203/3000...\n", + "Loss Discriminator: 0.6637\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1856\n", + "Epoch 204/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1856\n", + "Epoch 205/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7397\n", + "Relative Entropy: 0.1855\n", + "Epoch 206/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7385\n", + "Relative Entropy: 0.1854\n", + "Epoch 207/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7396\n", + "Relative Entropy: 0.1854\n", + "Epoch 208/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7401\n", + "Relative Entropy: 0.1853\n", + "Epoch 209/3000...\n", + "Loss Discriminator: 0.6654\n", + "Loss Generator: 0.7381\n", + "Relative Entropy: 0.1852\n", + "Epoch 210/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7385\n", + "Relative Entropy: 0.1852\n", "Epoch 211/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1544\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.1851\n", + "Epoch 212/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7397\n", + "Relative Entropy: 0.185\n", + "Epoch 213/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7404\n", + "Relative Entropy: 0.185\n", + "Epoch 214/3000...\n", + "Loss Discriminator: 0.6662\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1849\n", + "Epoch 215/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1848\n", + "Epoch 216/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1847\n", + "Epoch 217/3000...\n", + "Loss Discriminator: 0.6647\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1847\n", + "Epoch 218/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7395\n", + "Relative Entropy: 0.1846\n", + "Epoch 219/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7378\n", + "Relative Entropy: 0.1845\n", + "Epoch 220/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7385\n", + "Relative Entropy: 0.1845\n", "Epoch 221/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1538\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1844\n", + "Epoch 222/3000...\n", + "Loss Discriminator: 0.6665\n", + "Loss Generator: 0.7395\n", + "Relative Entropy: 0.1843\n", + "Epoch 223/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1843\n", + "Epoch 224/3000...\n", + "Loss Discriminator: 0.6654\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1842\n", + "Epoch 225/3000...\n", + "Loss Discriminator: 0.6629\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1841\n", + "Epoch 226/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7385\n", + "Relative Entropy: 0.1841\n", + "Epoch 227/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.184\n", + "Epoch 228/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1839\n", + "Epoch 229/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1839\n", + "Epoch 230/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7393\n", + "Relative Entropy: 0.1838\n", "Epoch 231/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1531\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1837\n", + "Epoch 232/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1837\n", + "Epoch 233/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7393\n", + "Relative Entropy: 0.1836\n", + "Epoch 234/3000...\n", + "Loss Discriminator: 0.6662\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1835\n", + "Epoch 235/3000...\n", + "Loss Discriminator: 0.6657\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1834\n", + "Epoch 236/3000...\n", + "Loss Discriminator: 0.6654\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1834\n", + "Epoch 237/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1833\n", + "Epoch 238/3000...\n", + "Loss Discriminator: 0.6647\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1832\n", + "Epoch 239/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1832\n", + "Epoch 240/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1831\n", "Epoch 241/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1525\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7381\n", + "Relative Entropy: 0.183\n", + "Epoch 242/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7405\n", + "Relative Entropy: 0.183\n", + "Epoch 243/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1829\n", + "Epoch 244/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7396\n", + "Relative Entropy: 0.1828\n", + "Epoch 245/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1828\n", + "Epoch 246/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1827\n", + "Epoch 247/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1826\n", + "Epoch 248/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1826\n", + "Epoch 249/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7401\n", + "Relative Entropy: 0.1825\n", + "Epoch 250/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1824\n", "Epoch 251/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1518\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1824\n", + "Epoch 252/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1823\n", + "Epoch 253/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1822\n", + "Epoch 254/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7391\n", + "Relative Entropy: 0.1822\n", + "Epoch 255/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1821\n", + "Epoch 256/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.182\n", + "Epoch 257/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.182\n", + "Epoch 258/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1819\n", + "Epoch 259/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1818\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 260/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1818\n", "Epoch 261/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1512\n", - "Epoch 271/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1817\n", + "Epoch 262/3000...\n", "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1505\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1816\n", + "Epoch 263/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1815\n", + "Epoch 264/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.1815\n", + "Epoch 265/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1814\n", + "Epoch 266/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1813\n", + "Epoch 267/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7393\n", + "Relative Entropy: 0.1813\n", + "Epoch 268/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1812\n", + "Epoch 269/3000...\n", + "Loss Discriminator: 0.6664\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1811\n", + "Epoch 270/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1811\n", + "Epoch 271/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.181\n", + "Epoch 272/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1809\n", + "Epoch 273/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1809\n", + "Epoch 274/3000...\n", + "Loss Discriminator: 0.6658\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1808\n", + "Epoch 275/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7381\n", + "Relative Entropy: 0.1807\n", + "Epoch 276/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1807\n", + "Epoch 277/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1806\n", + "Epoch 278/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1805\n", + "Epoch 279/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7392\n", + "Relative Entropy: 0.1805\n", + "Epoch 280/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1804\n", "Epoch 281/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1499\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7391\n", + "Relative Entropy: 0.1803\n", + "Epoch 282/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1803\n", + "Epoch 283/3000...\n", + "Loss Discriminator: 0.6657\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1802\n", + "Epoch 284/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1801\n", + "Epoch 285/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1801\n", + "Epoch 286/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.18\n", + "Epoch 287/3000...\n", + "Loss Discriminator: 0.6657\n", + "Loss Generator: 0.7399\n", + "Relative Entropy: 0.1799\n", + "Epoch 288/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1799\n", + "Epoch 289/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.1798\n", + "Epoch 290/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1797\n", "Epoch 291/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1493\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1797\n", + "Epoch 292/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7391\n", + "Relative Entropy: 0.1796\n", + "Epoch 293/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1795\n", + "Epoch 294/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.1795\n", + "Epoch 295/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1794\n", + "Epoch 296/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1793\n", + "Epoch 297/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.1793\n", + "Epoch 298/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1792\n", + "Epoch 299/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1791\n", + "Epoch 300/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1791\n", "Epoch 301/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1486\n", + "Loss Discriminator: 0.6643\n", + "Loss Generator: 0.7364\n", + "Relative Entropy: 0.179\n", + "Epoch 302/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1789\n", + "Epoch 303/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1789\n", + "Epoch 304/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1788\n", + "Epoch 305/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1787\n", + "Epoch 306/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1787\n", + "Epoch 307/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7391\n", + "Relative Entropy: 0.1786\n", + "Epoch 308/3000...\n", + "Loss Discriminator: 0.6657\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1785\n", + "Epoch 309/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1785\n", + "Epoch 310/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1784\n", "Epoch 311/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.148\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.739\n", + "Relative Entropy: 0.1783\n", + "Epoch 312/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1783\n", + "Epoch 313/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7387\n", + "Relative Entropy: 0.1782\n", + "Epoch 314/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1781\n", + "Epoch 315/3000...\n", + "Loss Discriminator: 0.6666\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1781\n", + "Epoch 316/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.178\n", + "Epoch 317/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7379\n", + "Relative Entropy: 0.1779\n", + "Epoch 318/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1779\n", + "Epoch 319/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1778\n", + "Epoch 320/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1777\n", "Epoch 321/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1474\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1777\n", + "Epoch 322/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7386\n", + "Relative Entropy: 0.1776\n", + "Epoch 323/3000...\n", + "Loss Discriminator: 0.6656\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1775\n", + "Epoch 324/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1775\n", + "Epoch 325/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1774\n", + "Epoch 326/3000...\n", + "Loss Discriminator: 0.6658\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1773\n", + "Epoch 327/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7383\n", + "Relative Entropy: 0.1773\n", + "Epoch 328/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7388\n", + "Relative Entropy: 0.1772\n", + "Epoch 329/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1771\n", + "Epoch 330/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1771\n", "Epoch 331/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1467\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.177\n", + "Epoch 332/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1769\n", + "Epoch 333/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1769\n", + "Epoch 334/3000...\n", + "Loss Discriminator: 0.6665\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1768\n", + "Epoch 335/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1767\n", + "Epoch 336/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1767\n", + "Epoch 337/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1766\n", + "Epoch 338/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1765\n", + "Epoch 339/3000...\n", + "Loss Discriminator: 0.6667\n", + "Loss Generator: 0.7365\n", + "Relative Entropy: 0.1765\n", + "Epoch 340/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7377\n", + "Relative Entropy: 0.1764\n", "Epoch 341/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1461\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1763\n", + "Epoch 342/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1763\n", + "Epoch 343/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1762\n", + "Epoch 344/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7389\n", + "Relative Entropy: 0.1761\n", + "Epoch 345/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1761\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 346/3000...\n", + "Loss Discriminator: 0.666\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.176\n", + "Epoch 347/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1759\n", + "Epoch 348/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1759\n", + "Epoch 349/3000...\n", + "Loss Discriminator: 0.6657\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1758\n", + "Epoch 350/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1757\n", "Epoch 351/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1455\n", + "Loss Discriminator: 0.6665\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1757\n", + "Epoch 352/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.737\n", + "Relative Entropy: 0.1756\n", + "Epoch 353/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1755\n", + "Epoch 354/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1755\n", + "Epoch 355/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1754\n", + "Epoch 356/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1753\n", + "Epoch 357/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1753\n", + "Epoch 358/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1752\n", + "Epoch 359/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7372\n", + "Relative Entropy: 0.1751\n", + "Epoch 360/3000...\n", + "Loss Discriminator: 0.6671\n", + "Loss Generator: 0.7376\n", + "Relative Entropy: 0.1751\n", "Epoch 361/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1449\n", - "Epoch 371/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1443\n", - "Epoch 381/3000...\n", - "Loss Discriminator: 0.6719\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.175\n", + "Epoch 362/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1749\n", + "Epoch 363/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.1749\n", + "Epoch 364/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1748\n", + "Epoch 365/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1747\n", + "Epoch 366/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1747\n", + "Epoch 367/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1746\n", + "Epoch 368/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7373\n", + "Relative Entropy: 0.1746\n", + "Epoch 369/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1745\n", + "Epoch 370/3000...\n", + "Loss Discriminator: 0.6665\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1744\n", + "Epoch 371/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1744\n", + "Epoch 372/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1743\n", + "Epoch 373/3000...\n", + "Loss Discriminator: 0.67\n", "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1436\n", + "Relative Entropy: 0.1742\n", + "Epoch 374/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1742\n", + "Epoch 375/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7382\n", + "Relative Entropy: 0.1741\n", + "Epoch 376/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7371\n", + "Relative Entropy: 0.174\n", + "Epoch 377/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.174\n", + "Epoch 378/3000...\n", + "Loss Discriminator: 0.6669\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1739\n", + "Epoch 379/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1738\n", + "Epoch 380/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7384\n", + "Relative Entropy: 0.1738\n", + "Epoch 381/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1737\n", + "Epoch 382/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1736\n", + "Epoch 383/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1736\n", + "Epoch 384/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1735\n", + "Epoch 385/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1734\n", + "Epoch 386/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7354\n", + "Relative Entropy: 0.1734\n", + "Epoch 387/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1733\n", + "Epoch 388/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1732\n", + "Epoch 389/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7357\n", + "Relative Entropy: 0.1732\n", + "Epoch 390/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7374\n", + "Relative Entropy: 0.1731\n", "Epoch 391/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.143\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.173\n", + "Epoch 392/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.173\n", + "Epoch 393/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1729\n", + "Epoch 394/3000...\n", + "Loss Discriminator: 0.6659\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1728\n", + "Epoch 395/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1728\n", + "Epoch 396/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1727\n", + "Epoch 397/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7363\n", + "Relative Entropy: 0.1727\n", + "Epoch 398/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1726\n", + "Epoch 399/3000...\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1725\n", + "Epoch 400/3000...\n", + "Loss Discriminator: 0.6665\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1725\n", "Epoch 401/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1424\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.738\n", + "Relative Entropy: 0.1724\n", + "Epoch 402/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1723\n", + "Epoch 403/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1723\n", + "Epoch 404/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7368\n", + "Relative Entropy: 0.1722\n", + "Epoch 405/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1721\n", + "Epoch 406/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1721\n", + "Epoch 407/3000...\n", + "Loss Discriminator: 0.6662\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.172\n", + "Epoch 408/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1719\n", + "Epoch 409/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1719\n", + "Epoch 410/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1718\n", "Epoch 411/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1418\n", + "Loss Discriminator: 0.6677\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1717\n", + "Epoch 412/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1717\n", + "Epoch 413/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1716\n", + "Epoch 414/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7401\n", + "Relative Entropy: 0.1716\n", + "Epoch 415/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1715\n", + "Epoch 416/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1714\n", + "Epoch 417/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1714\n", + "Epoch 418/3000...\n", + "Loss Discriminator: 0.6675\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1713\n", + "Epoch 419/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1712\n", + "Epoch 420/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1712\n", "Epoch 421/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1412\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1711\n", + "Epoch 422/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.171\n", + "Epoch 423/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.171\n", + "Epoch 424/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1709\n", + "Epoch 425/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1708\n", + "Epoch 426/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1708\n", + "Epoch 427/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1707\n", + "Epoch 428/3000...\n", + "Loss Discriminator: 0.6662\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1706\n", + "Epoch 429/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7369\n", + "Relative Entropy: 0.1706\n", + "Epoch 430/3000...\n", + "Loss Discriminator: 0.667\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1705\n", "Epoch 431/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1406\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1705\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 432/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1704\n", + "Epoch 433/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.1703\n", + "Epoch 434/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7358\n", + "Relative Entropy: 0.1703\n", + "Epoch 435/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1702\n", + "Epoch 436/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1701\n", + "Epoch 437/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1701\n", + "Epoch 438/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7366\n", + "Relative Entropy: 0.17\n", + "Epoch 439/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7344\n", + "Relative Entropy: 0.1699\n", + "Epoch 440/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1699\n", "Epoch 441/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.14\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1698\n", + "Epoch 442/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1697\n", + "Epoch 443/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1697\n", + "Epoch 444/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1696\n", + "Epoch 445/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1696\n", + "Epoch 446/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1695\n", + "Epoch 447/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1694\n", + "Epoch 448/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1694\n", + "Epoch 449/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1693\n", + "Epoch 450/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1692\n", "Epoch 451/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1394\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1692\n", + "Epoch 452/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1691\n", + "Epoch 453/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.169\n", + "Epoch 454/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.169\n", + "Epoch 455/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1689\n", + "Epoch 456/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1688\n", + "Epoch 457/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1688\n", + "Epoch 458/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1687\n", + "Epoch 459/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1687\n", + "Epoch 460/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.1686\n", "Epoch 461/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1685\n", + "Epoch 462/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1685\n", + "Epoch 463/3000...\n", + "Loss Discriminator: 0.6674\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1684\n", + "Epoch 464/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1683\n", + "Epoch 465/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7353\n", + "Relative Entropy: 0.1683\n", + "Epoch 466/3000...\n", "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1388\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1682\n", + "Epoch 467/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1681\n", + "Epoch 468/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1681\n", + "Epoch 469/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.168\n", + "Epoch 470/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.168\n", "Epoch 471/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1382\n", - "Epoch 481/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.736\n", + "Relative Entropy: 0.1679\n", + "Epoch 472/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1678\n", + "Epoch 473/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7362\n", + "Relative Entropy: 0.1678\n", + "Epoch 474/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7355\n", + "Relative Entropy: 0.1677\n", + "Epoch 475/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1676\n", + "Epoch 476/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1676\n", + "Epoch 477/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1675\n", + "Epoch 478/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7346\n", + "Relative Entropy: 0.1674\n", + "Epoch 479/3000...\n", "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1376\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1674\n", + "Epoch 480/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.735\n", + "Relative Entropy: 0.1673\n", + "Epoch 481/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7324\n", + "Relative Entropy: 0.1673\n", + "Epoch 482/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1672\n", + "Epoch 483/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1671\n", + "Epoch 484/3000...\n", + "Loss Discriminator: 0.6686\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1671\n", + "Epoch 485/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.167\n", + "Epoch 486/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1669\n", + "Epoch 487/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1669\n", + "Epoch 488/3000...\n", + "Loss Discriminator: 0.6672\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1668\n", + "Epoch 489/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7329\n", + "Relative Entropy: 0.1667\n", + "Epoch 490/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1667\n", "Epoch 491/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.137\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1666\n", + "Epoch 492/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7348\n", + "Relative Entropy: 0.1666\n", + "Epoch 493/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7361\n", + "Relative Entropy: 0.1665\n", + "Epoch 494/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7352\n", + "Relative Entropy: 0.1664\n", + "Epoch 495/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1664\n", + "Epoch 496/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1663\n", + "Epoch 497/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1662\n", + "Epoch 498/3000...\n", + "Loss Discriminator: 0.6673\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.1662\n", + "Epoch 499/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7347\n", + "Relative Entropy: 0.1661\n", + "Epoch 500/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.166\n", "Epoch 501/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1364\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.166\n", + "Epoch 502/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1659\n", + "Epoch 503/3000...\n", + "Loss Discriminator: 0.6663\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1659\n", + "Epoch 504/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1658\n", + "Epoch 505/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1657\n", + "Epoch 506/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1657\n", + "Epoch 507/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1656\n", + "Epoch 508/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1655\n", + "Epoch 509/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1655\n", + "Epoch 510/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1654\n", "Epoch 511/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1358\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1654\n", + "Epoch 512/3000...\n", + "Loss Discriminator: 0.668\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1653\n", + "Epoch 513/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7327\n", + "Relative Entropy: 0.1652\n", + "Epoch 514/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7351\n", + "Relative Entropy: 0.1652\n", + "Epoch 515/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1651\n", + "Epoch 516/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.165\n", + "Epoch 517/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7345\n", + "Relative Entropy: 0.165\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 518/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1649\n", + "Epoch 519/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1649\n", + "Epoch 520/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1648\n", "Epoch 521/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1352\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1647\n", + "Epoch 522/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7359\n", + "Relative Entropy: 0.1647\n", + "Epoch 523/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1646\n", + "Epoch 524/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7335\n", + "Relative Entropy: 0.1645\n", + "Epoch 525/3000...\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7336\n", + "Relative Entropy: 0.1645\n", + "Epoch 526/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1644\n", + "Epoch 527/3000...\n", + "Loss Discriminator: 0.6679\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1644\n", + "Epoch 528/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1643\n", + "Epoch 529/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1642\n", + "Epoch 530/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1642\n", "Epoch 531/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1346\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1641\n", + "Epoch 532/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.164\n", + "Epoch 533/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7367\n", + "Relative Entropy: 0.164\n", + "Epoch 534/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1639\n", + "Epoch 535/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1639\n", + "Epoch 536/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1638\n", + "Epoch 537/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1637\n", + "Epoch 538/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1637\n", + "Epoch 539/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7343\n", + "Relative Entropy: 0.1636\n", + "Epoch 540/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7349\n", + "Relative Entropy: 0.1635\n", "Epoch 541/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.134\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7342\n", + "Relative Entropy: 0.1635\n", + "Epoch 542/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1634\n", + "Epoch 543/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7328\n", + "Relative Entropy: 0.1634\n", + "Epoch 544/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1633\n", + "Epoch 545/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1632\n", + "Epoch 546/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1632\n", + "Epoch 547/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1631\n", + "Epoch 548/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7356\n", + "Relative Entropy: 0.163\n", + "Epoch 549/3000...\n", + "Loss Discriminator: 0.6661\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.163\n", + "Epoch 550/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1629\n", "Epoch 551/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1334\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1629\n", + "Epoch 552/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1628\n", + "Epoch 553/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.733\n", + "Relative Entropy: 0.1627\n", + "Epoch 554/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1627\n", + "Epoch 555/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1626\n", + "Epoch 556/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1625\n", + "Epoch 557/3000...\n", + "Loss Discriminator: 0.6668\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1625\n", + "Epoch 558/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1624\n", + "Epoch 559/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7337\n", + "Relative Entropy: 0.1624\n", + "Epoch 560/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1623\n", "Epoch 561/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1328\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1622\n", + "Epoch 562/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1622\n", + "Epoch 563/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1621\n", + "Epoch 564/3000...\n", + "Loss Discriminator: 0.6678\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.162\n", + "Epoch 565/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.162\n", + "Epoch 566/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1619\n", + "Epoch 567/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1619\n", + "Epoch 568/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1618\n", + "Epoch 569/3000...\n", + "Loss Discriminator: 0.6684\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1617\n", + "Epoch 570/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1617\n", "Epoch 571/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1323\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1616\n", + "Epoch 572/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7331\n", + "Relative Entropy: 0.1616\n", + "Epoch 573/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1615\n", + "Epoch 574/3000...\n", + "Loss Discriminator: 0.6682\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1614\n", + "Epoch 575/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1614\n", + "Epoch 576/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1613\n", + "Epoch 577/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1612\n", + "Epoch 578/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1612\n", + "Epoch 579/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7338\n", + "Relative Entropy: 0.1611\n", + "Epoch 580/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1611\n", "Epoch 581/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1317\n", - "Epoch 591/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1311\n", - "Epoch 601/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1305\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.161\n", + "Epoch 582/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1609\n", + "Epoch 583/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1609\n", + "Epoch 584/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7339\n", + "Relative Entropy: 0.1608\n", + "Epoch 585/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1608\n", + "Epoch 586/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1607\n", + "Epoch 587/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1606\n", + "Epoch 588/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1606\n", + "Epoch 589/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1605\n", + "Epoch 590/3000...\n", + "Loss Discriminator: 0.6681\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1604\n", + "Epoch 591/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7333\n", + "Relative Entropy: 0.1604\n", + "Epoch 592/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1603\n", + "Epoch 593/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1603\n", + "Epoch 594/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1602\n", + "Epoch 595/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1601\n", + "Epoch 596/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1601\n", + "Epoch 597/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.16\n", + "Epoch 598/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.16\n", + "Epoch 599/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1599\n", + "Epoch 600/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1598\n", + "Epoch 601/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1598\n", + "Epoch 602/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1597\n", + "Epoch 603/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1596\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 604/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1596\n", + "Epoch 605/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1595\n", + "Epoch 606/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1595\n", + "Epoch 607/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1594\n", + "Epoch 608/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7313\n", + "Relative Entropy: 0.1593\n", + "Epoch 609/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7325\n", + "Relative Entropy: 0.1593\n", + "Epoch 610/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1592\n", "Epoch 611/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1299\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1592\n", + "Epoch 612/3000...\n", + "Loss Discriminator: 0.6696\n", + "Loss Generator: 0.7341\n", + "Relative Entropy: 0.1591\n", + "Epoch 613/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.159\n", + "Epoch 614/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.159\n", + "Epoch 615/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7318\n", + "Relative Entropy: 0.1589\n", + "Epoch 616/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1589\n", + "Epoch 617/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1588\n", + "Epoch 618/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1587\n", + "Epoch 619/3000...\n", + "Loss Discriminator: 0.6683\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1587\n", + "Epoch 620/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1586\n", "Epoch 621/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1294\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.734\n", + "Relative Entropy: 0.1585\n", + "Epoch 622/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1585\n", + "Epoch 623/3000...\n", + "Loss Discriminator: 0.669\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1584\n", + "Epoch 624/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.1584\n", + "Epoch 625/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1583\n", + "Epoch 626/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1582\n", + "Epoch 627/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1582\n", + "Epoch 628/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1581\n", + "Epoch 629/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1581\n", + "Epoch 630/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.158\n", "Epoch 631/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1288\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1579\n", + "Epoch 632/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1579\n", + "Epoch 633/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1578\n", + "Epoch 634/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1578\n", + "Epoch 635/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1577\n", + "Epoch 636/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1576\n", + "Epoch 637/3000...\n", + "Loss Discriminator: 0.6689\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1576\n", + "Epoch 638/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1575\n", + "Epoch 639/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1575\n", + "Epoch 640/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1574\n", "Epoch 641/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1282\n", + "Loss Discriminator: 0.6693\n", + "Loss Generator: 0.7319\n", + "Relative Entropy: 0.1573\n", + "Epoch 642/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1573\n", + "Epoch 643/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1572\n", + "Epoch 644/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1572\n", + "Epoch 645/3000...\n", + "Loss Discriminator: 0.6695\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1571\n", + "Epoch 646/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.157\n", + "Epoch 647/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.157\n", + "Epoch 648/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.731\n", + "Relative Entropy: 0.1569\n", + "Epoch 649/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1568\n", + "Epoch 650/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1568\n", "Epoch 651/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1277\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1567\n", + "Epoch 652/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7334\n", + "Relative Entropy: 0.1567\n", + "Epoch 653/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1566\n", + "Epoch 654/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1565\n", + "Epoch 655/3000...\n", + "Loss Discriminator: 0.6685\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1565\n", + "Epoch 656/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1564\n", + "Epoch 657/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1564\n", + "Epoch 658/3000...\n", + "Loss Discriminator: 0.6676\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1563\n", + "Epoch 659/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1562\n", + "Epoch 660/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7304\n", + "Relative Entropy: 0.1562\n", "Epoch 661/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1271\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1561\n", + "Epoch 662/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1561\n", + "Epoch 663/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.156\n", + "Epoch 664/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1559\n", + "Epoch 665/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.732\n", + "Relative Entropy: 0.1559\n", + "Epoch 666/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.7332\n", + "Relative Entropy: 0.1558\n", + "Epoch 667/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1558\n", + "Epoch 668/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1557\n", + "Epoch 669/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1556\n", + "Epoch 670/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7326\n", + "Relative Entropy: 0.1556\n", "Epoch 671/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1265\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1555\n", + "Epoch 672/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1555\n", + "Epoch 673/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1554\n", + "Epoch 674/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1553\n", + "Epoch 675/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1553\n", + "Epoch 676/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1552\n", + "Epoch 677/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.1552\n", + "Epoch 678/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7323\n", + "Relative Entropy: 0.1551\n", + "Epoch 679/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7307\n", + "Relative Entropy: 0.155\n", + "Epoch 680/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.155\n", "Epoch 681/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.126\n", - "Epoch 691/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1254\n", - "Epoch 701/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1249\n", - "Epoch 711/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1243\n", - "Epoch 721/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1237\n", - "Epoch 731/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1232\n", - "Epoch 741/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1226\n", - "Epoch 751/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1221\n", - "Epoch 761/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1216\n", - "Epoch 771/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.121\n", - "Epoch 781/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1205\n", - "Epoch 791/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1199\n", - "Epoch 801/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1194\n", - "Epoch 811/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1188\n", - "Epoch 821/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1183\n", - "Epoch 831/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1178\n", - "Epoch 841/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1172\n", - "Epoch 851/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1167\n" + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1549\n", + "Epoch 682/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7316\n", + "Relative Entropy: 0.1549\n", + "Epoch 683/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1548\n", + "Epoch 684/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.1547\n", + "Epoch 685/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1547\n", + "Epoch 686/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1546\n", + "Epoch 687/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1546\n", + "Epoch 688/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1545\n", + "Epoch 689/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1545\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 861/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1162\n", - "Epoch 871/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1157\n", - "Epoch 881/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1151\n", - "Epoch 891/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1146\n", - "Epoch 901/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1141\n", - "Epoch 911/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1136\n", + "Epoch 690/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1544\n", + "Epoch 691/3000...\n", + "Loss Discriminator: 0.6688\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1543\n", + "Epoch 692/3000...\n", + "Loss Discriminator: 0.6692\n", + "Loss Generator: 0.73\n", + "Relative Entropy: 0.1543\n", + "Epoch 693/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1542\n", + "Epoch 694/3000...\n", + "Loss Discriminator: 0.6697\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1542\n", + "Epoch 695/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1541\n", + "Epoch 696/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.154\n", + "Epoch 697/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.154\n", + "Epoch 698/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1539\n", + "Epoch 699/3000...\n", + "Loss Discriminator: 0.6691\n", + "Loss Generator: 0.7297\n", + "Relative Entropy: 0.1539\n", + "Epoch 700/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1538\n", + "Epoch 701/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1537\n", + "Epoch 702/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1537\n", + "Epoch 703/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1536\n", + "Epoch 704/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1536\n", + "Epoch 705/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1535\n", + "Epoch 706/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1534\n", + "Epoch 707/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1534\n", + "Epoch 708/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1533\n", + "Epoch 709/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.1533\n", + "Epoch 710/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1532\n", + "Epoch 711/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1531\n", + "Epoch 712/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1531\n", + "Epoch 713/3000...\n", + "Loss Discriminator: 0.6699\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.153\n", + "Epoch 714/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.153\n", + "Epoch 715/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1529\n", + "Epoch 716/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1528\n", + "Epoch 717/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7315\n", + "Relative Entropy: 0.1528\n", + "Epoch 718/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1527\n", + "Epoch 719/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1527\n", + "Epoch 720/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1526\n", + "Epoch 721/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7309\n", + "Relative Entropy: 0.1526\n", + "Epoch 722/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1525\n", + "Epoch 723/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1524\n", + "Epoch 724/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1524\n", + "Epoch 725/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1523\n", + "Epoch 726/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1523\n", + "Epoch 727/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7312\n", + "Relative Entropy: 0.1522\n", + "Epoch 728/3000...\n", + "Loss Discriminator: 0.6687\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1521\n", + "Epoch 729/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1521\n", + "Epoch 730/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.152\n", + "Epoch 731/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.152\n", + "Epoch 732/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1519\n", + "Epoch 733/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1518\n", + "Epoch 734/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7305\n", + "Relative Entropy: 0.1518\n", + "Epoch 735/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1517\n", + "Epoch 736/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1517\n", + "Epoch 737/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1516\n", + "Epoch 738/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1516\n", + "Epoch 739/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7322\n", + "Relative Entropy: 0.1515\n", + "Epoch 740/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1514\n", + "Epoch 741/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1514\n", + "Epoch 742/3000...\n", + "Loss Discriminator: 0.6701\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1513\n", + "Epoch 743/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1513\n", + "Epoch 744/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1512\n", + "Epoch 745/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1511\n", + "Epoch 746/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1511\n", + "Epoch 747/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.151\n", + "Epoch 748/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7302\n", + "Relative Entropy: 0.151\n", + "Epoch 749/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1509\n", + "Epoch 750/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7269\n", + "Relative Entropy: 0.1509\n", + "Epoch 751/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1508\n", + "Epoch 752/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1507\n", + "Epoch 753/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1507\n", + "Epoch 754/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7311\n", + "Relative Entropy: 0.1506\n", + "Epoch 755/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7284\n", + "Relative Entropy: 0.1506\n", + "Epoch 756/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1505\n", + "Epoch 757/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1504\n", + "Epoch 758/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1504\n", + "Epoch 759/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1503\n", + "Epoch 760/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7306\n", + "Relative Entropy: 0.1503\n", + "Epoch 761/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1502\n", + "Epoch 762/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1502\n", + "Epoch 763/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1501\n", + "Epoch 764/3000...\n", + "Loss Discriminator: 0.6702\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.15\n", + "Epoch 765/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7314\n", + "Relative Entropy: 0.15\n", + "Epoch 766/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7308\n", + "Relative Entropy: 0.1499\n", + "Epoch 767/3000...\n", + "Loss Discriminator: 0.6711\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1499\n", + "Epoch 768/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1498\n", + "Epoch 769/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1497\n", + "Epoch 770/3000...\n", + "Loss Discriminator: 0.6703\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1497\n", + "Epoch 771/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1496\n", + "Epoch 772/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1496\n", + "Epoch 773/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7299\n", + "Relative Entropy: 0.1495\n", + "Epoch 774/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1495\n", + "Epoch 775/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1494\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 776/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1493\n", + "Epoch 777/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1493\n", + "Epoch 778/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1492\n", + "Epoch 779/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7287\n", + "Relative Entropy: 0.1492\n", + "Epoch 780/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1491\n", + "Epoch 781/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.149\n", + "Epoch 782/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.149\n", + "Epoch 783/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.1489\n", + "Epoch 784/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1489\n", + "Epoch 785/3000...\n", + "Loss Discriminator: 0.6698\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1488\n", + "Epoch 786/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1488\n", + "Epoch 787/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1487\n", + "Epoch 788/3000...\n", + "Loss Discriminator: 0.6694\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1486\n", + "Epoch 789/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7295\n", + "Relative Entropy: 0.1486\n", + "Epoch 790/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1485\n", + "Epoch 791/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1485\n", + "Epoch 792/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1484\n", + "Epoch 793/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7321\n", + "Relative Entropy: 0.1484\n", + "Epoch 794/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7298\n", + "Relative Entropy: 0.1483\n", + "Epoch 795/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1482\n", + "Epoch 796/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1482\n", + "Epoch 797/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.1481\n", + "Epoch 798/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7317\n", + "Relative Entropy: 0.1481\n", + "Epoch 799/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.148\n", + "Epoch 800/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.148\n", + "Epoch 801/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.1479\n", + "Epoch 802/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1478\n", + "Epoch 803/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1478\n", + "Epoch 804/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1477\n", + "Epoch 805/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1477\n", + "Epoch 806/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7289\n", + "Relative Entropy: 0.1476\n", + "Epoch 807/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7301\n", + "Relative Entropy: 0.1475\n", + "Epoch 808/3000...\n", + "Loss Discriminator: 0.6705\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1475\n", + "Epoch 809/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1474\n", + "Epoch 810/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7281\n", + "Relative Entropy: 0.1474\n", + "Epoch 811/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1473\n", + "Epoch 812/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1473\n", + "Epoch 813/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1472\n", + "Epoch 814/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1471\n", + "Epoch 815/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1471\n", + "Epoch 816/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7303\n", + "Relative Entropy: 0.147\n", + "Epoch 817/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7283\n", + "Relative Entropy: 0.147\n", + "Epoch 818/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1469\n", + "Epoch 819/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1469\n", + "Epoch 820/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1468\n", + "Epoch 821/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1467\n", + "Epoch 822/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7285\n", + "Relative Entropy: 0.1467\n", + "Epoch 823/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1466\n", + "Epoch 824/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1466\n", + "Epoch 825/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1465\n", + "Epoch 826/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1465\n", + "Epoch 827/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1464\n", + "Epoch 828/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1463\n", + "Epoch 829/3000...\n", + "Loss Discriminator: 0.67\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1463\n", + "Epoch 830/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1462\n", + "Epoch 831/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7279\n", + "Relative Entropy: 0.1462\n", + "Epoch 832/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1461\n", + "Epoch 833/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1461\n", + "Epoch 834/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.146\n", + "Epoch 835/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.146\n", + "Epoch 836/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1459\n", + "Epoch 837/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1458\n", + "Epoch 838/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1458\n", + "Epoch 839/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7273\n", + "Relative Entropy: 0.1457\n", + "Epoch 840/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1457\n", + "Epoch 841/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1456\n", + "Epoch 842/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.728\n", + "Relative Entropy: 0.1456\n", + "Epoch 843/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7292\n", + "Relative Entropy: 0.1455\n", + "Epoch 844/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1454\n", + "Epoch 845/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1454\n", + "Epoch 846/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1453\n", + "Epoch 847/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.1453\n", + "Epoch 848/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1452\n", + "Epoch 849/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1452\n", + "Epoch 850/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1451\n", + "Epoch 851/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.145\n", + "Epoch 852/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.145\n", + "Epoch 853/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1449\n", + "Epoch 854/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1449\n", + "Epoch 855/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1448\n", + "Epoch 856/3000...\n", + "Loss Discriminator: 0.6708\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1448\n", + "Epoch 857/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1447\n", + "Epoch 858/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1446\n", + "Epoch 859/3000...\n", + "Loss Discriminator: 0.6706\n", + "Loss Generator: 0.7294\n", + "Relative Entropy: 0.1446\n", + "Epoch 860/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1445\n", + "Epoch 861/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1445\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 862/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1444\n", + "Epoch 863/3000...\n", + "Loss Discriminator: 0.6712\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1444\n", + "Epoch 864/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1443\n", + "Epoch 865/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1443\n", + "Epoch 866/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1442\n", + "Epoch 867/3000...\n", + "Loss Discriminator: 0.6716\n", + "Loss Generator: 0.7267\n", + "Relative Entropy: 0.1441\n", + "Epoch 868/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1441\n", + "Epoch 869/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.144\n", + "Epoch 870/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.144\n", + "Epoch 871/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7291\n", + "Relative Entropy: 0.1439\n", + "Epoch 872/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1439\n", + "Epoch 873/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1438\n", + "Epoch 874/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1437\n", + "Epoch 875/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7266\n", + "Relative Entropy: 0.1437\n", + "Epoch 876/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1436\n", + "Epoch 877/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1436\n", + "Epoch 878/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1435\n", + "Epoch 879/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1435\n", + "Epoch 880/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1434\n", + "Epoch 881/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1434\n", + "Epoch 882/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1433\n", + "Epoch 883/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1432\n", + "Epoch 884/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1432\n", + "Epoch 885/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1431\n", + "Epoch 886/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1431\n", + "Epoch 887/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7293\n", + "Relative Entropy: 0.143\n", + "Epoch 888/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.143\n", + "Epoch 889/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1429\n", + "Epoch 890/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1429\n", + "Epoch 891/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1428\n", + "Epoch 892/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7288\n", + "Relative Entropy: 0.1427\n", + "Epoch 893/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1427\n", + "Epoch 894/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1426\n", + "Epoch 895/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1426\n", + "Epoch 896/3000...\n", + "Loss Discriminator: 0.673\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1425\n", + "Epoch 897/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1425\n", + "Epoch 898/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7278\n", + "Relative Entropy: 0.1424\n", + "Epoch 899/3000...\n", + "Loss Discriminator: 0.6704\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1423\n", + "Epoch 900/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1423\n", + "Epoch 901/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1422\n", + "Epoch 902/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1422\n", + "Epoch 903/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7276\n", + "Relative Entropy: 0.1421\n", + "Epoch 904/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1421\n", + "Epoch 905/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.729\n", + "Relative Entropy: 0.142\n", + "Epoch 906/3000...\n", + "Loss Discriminator: 0.6715\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.142\n", + "Epoch 907/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1419\n", + "Epoch 908/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1418\n", + "Epoch 909/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1418\n", + "Epoch 910/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1417\n", + "Epoch 911/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1417\n", + "Epoch 912/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7264\n", + "Relative Entropy: 0.1416\n", + "Epoch 913/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1416\n", + "Epoch 914/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1415\n", + "Epoch 915/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7282\n", + "Relative Entropy: 0.1415\n", + "Epoch 916/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1414\n", + "Epoch 917/3000...\n", + "Loss Discriminator: 0.6707\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1414\n", + "Epoch 918/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1413\n", + "Epoch 919/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.1412\n", + "Epoch 920/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1412\n", "Epoch 921/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1411\n", + "Epoch 922/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1411\n", + "Epoch 923/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.141\n", + "Epoch 924/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.141\n", + "Epoch 925/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1409\n", + "Epoch 926/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1409\n", + "Epoch 927/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1408\n", + "Epoch 928/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1407\n", + "Epoch 929/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1407\n", + "Epoch 930/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7255\n", + "Relative Entropy: 0.1406\n", + "Epoch 931/3000...\n", + "Loss Discriminator: 0.6725\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1406\n", + "Epoch 932/3000...\n", + "Loss Discriminator: 0.6722\n", + "Loss Generator: 0.7259\n", + "Relative Entropy: 0.1405\n", + "Epoch 933/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1405\n", + "Epoch 934/3000...\n", + "Loss Discriminator: 0.6718\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1404\n", + "Epoch 935/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1404\n", + "Epoch 936/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1403\n", + "Epoch 937/3000...\n", + "Loss Discriminator: 0.6713\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1402\n", + "Epoch 938/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7296\n", + "Relative Entropy: 0.1402\n", + "Epoch 939/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1401\n", + "Epoch 940/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1401\n", + "Epoch 941/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.14\n", + "Epoch 942/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7272\n", + "Relative Entropy: 0.14\n", + "Epoch 943/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1399\n", + "Epoch 944/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1399\n", + "Epoch 945/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1398\n", + "Epoch 946/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1398\n", + "Epoch 947/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1397\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 948/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7268\n", + "Relative Entropy: 0.1396\n", + "Epoch 949/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1396\n", + "Epoch 950/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1395\n", + "Epoch 951/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7286\n", + "Relative Entropy: 0.1395\n", + "Epoch 952/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1394\n", + "Epoch 953/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.1394\n", + "Epoch 954/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1393\n", + "Epoch 955/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1393\n", + "Epoch 956/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1392\n", + "Epoch 957/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1392\n", + "Epoch 958/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1391\n", + "Epoch 959/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.139\n", + "Epoch 960/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7271\n", + "Relative Entropy: 0.139\n", + "Epoch 961/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1389\n", + "Epoch 962/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1389\n", + "Epoch 963/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1388\n", + "Epoch 964/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1388\n", + "Epoch 965/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1387\n", + "Epoch 966/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1387\n", + "Epoch 967/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1386\n", + "Epoch 968/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1386\n", + "Epoch 969/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1385\n", + "Epoch 970/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.1384\n", + "Epoch 971/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1384\n", + "Epoch 972/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1383\n", + "Epoch 973/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1383\n", + "Epoch 974/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1382\n", + "Epoch 975/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.727\n", + "Relative Entropy: 0.1382\n", + "Epoch 976/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1381\n", + "Epoch 977/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1381\n", + "Epoch 978/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.138\n", + "Epoch 979/3000...\n", + "Loss Discriminator: 0.672\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.138\n", + "Epoch 980/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1379\n", + "Epoch 981/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1378\n", + "Epoch 982/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1378\n", + "Epoch 983/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1377\n", + "Epoch 984/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1377\n", + "Epoch 985/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1376\n", + "Epoch 986/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1376\n", + "Epoch 987/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1375\n", + "Epoch 988/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1375\n", + "Epoch 989/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1374\n", + "Epoch 990/3000...\n", + "Loss Discriminator: 0.6709\n", + "Loss Generator: 0.7262\n", + "Relative Entropy: 0.1374\n", + "Epoch 991/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1373\n", + "Epoch 992/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1373\n", + "Epoch 993/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1372\n", + "Epoch 994/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7252\n", + "Relative Entropy: 0.1371\n", + "Epoch 995/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1371\n", + "Epoch 996/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.137\n", + "Epoch 997/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.137\n", + "Epoch 998/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1369\n", + "Epoch 999/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1369\n", + "Epoch 1000/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7254\n", + "Relative Entropy: 0.1368\n", + "Epoch 1001/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1368\n", + "Epoch 1002/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1367\n", + "Epoch 1003/3000...\n", + "Loss Discriminator: 0.6724\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1367\n", + "Epoch 1004/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1366\n", + "Epoch 1005/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1366\n", + "Epoch 1006/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1365\n", + "Epoch 1007/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1364\n", + "Epoch 1008/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1364\n", + "Epoch 1009/3000...\n", + "Loss Discriminator: 0.671\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1363\n", + "Epoch 1010/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1363\n", + "Epoch 1011/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1362\n", + "Epoch 1012/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1362\n", + "Epoch 1013/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1361\n", + "Epoch 1014/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1361\n", + "Epoch 1015/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7265\n", + "Relative Entropy: 0.136\n", + "Epoch 1016/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.136\n", + "Epoch 1017/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1359\n", + "Epoch 1018/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7261\n", + "Relative Entropy: 0.1359\n", + "Epoch 1019/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1358\n", + "Epoch 1020/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1357\n", + "Epoch 1021/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1357\n", + "Epoch 1022/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7248\n", + "Relative Entropy: 0.1356\n", + "Epoch 1023/3000...\n", + "Loss Discriminator: 0.6714\n", + "Loss Generator: 0.7258\n", + "Relative Entropy: 0.1356\n", + "Epoch 1024/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1355\n", + "Epoch 1025/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1355\n", + "Epoch 1026/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1354\n", + "Epoch 1027/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1354\n", + "Epoch 1028/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1353\n", + "Epoch 1029/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7274\n", + "Relative Entropy: 0.1353\n", + "Epoch 1030/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1352\n", + "Epoch 1031/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1352\n", + "Epoch 1032/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1351\n", + "Epoch 1033/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7275\n", + "Relative Entropy: 0.1351\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1034/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.135\n", + "Epoch 1035/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1349\n", + "Epoch 1036/3000...\n", + "Loss Discriminator: 0.6717\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1349\n", + "Epoch 1037/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7242\n", + "Relative Entropy: 0.1348\n", + "Epoch 1038/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1348\n", + "Epoch 1039/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1347\n", + "Epoch 1040/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7263\n", + "Relative Entropy: 0.1347\n", + "Epoch 1041/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7277\n", + "Relative Entropy: 0.1346\n", + "Epoch 1042/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1346\n", + "Epoch 1043/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1345\n", + "Epoch 1044/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1345\n", + "Epoch 1045/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1344\n", + "Epoch 1046/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1344\n", + "Epoch 1047/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1343\n", + "Epoch 1048/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1343\n", + "Epoch 1049/3000...\n", + "Loss Discriminator: 0.6728\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1342\n", + "Epoch 1050/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1342\n", + "Epoch 1051/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1341\n", + "Epoch 1052/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.134\n", + "Epoch 1053/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.134\n", + "Epoch 1054/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1339\n", + "Epoch 1055/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1339\n", + "Epoch 1056/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1338\n", + "Epoch 1057/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1338\n", + "Epoch 1058/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1337\n", + "Epoch 1059/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1337\n", + "Epoch 1060/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1336\n", + "Epoch 1061/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1336\n", + "Epoch 1062/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1335\n", + "Epoch 1063/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1335\n", + "Epoch 1064/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.725\n", + "Relative Entropy: 0.1334\n", + "Epoch 1065/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1334\n", + "Epoch 1066/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1333\n", + "Epoch 1067/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7251\n", + "Relative Entropy: 0.1333\n", + "Epoch 1068/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1332\n", + "Epoch 1069/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1332\n", + "Epoch 1070/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1331\n", + "Epoch 1071/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.133\n", + "Epoch 1072/3000...\n", + "Loss Discriminator: 0.6726\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.133\n", + "Epoch 1073/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1329\n", + "Epoch 1074/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1329\n", + "Epoch 1075/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7249\n", + "Relative Entropy: 0.1328\n", + "Epoch 1076/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1328\n", + "Epoch 1077/3000...\n", + "Loss Discriminator: 0.6721\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1327\n", + "Epoch 1078/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1327\n", + "Epoch 1079/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1326\n", + "Epoch 1080/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1326\n", + "Epoch 1081/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1325\n", + "Epoch 1082/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7256\n", + "Relative Entropy: 0.1325\n", + "Epoch 1083/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1324\n", + "Epoch 1084/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1324\n", + "Epoch 1085/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1323\n", + "Epoch 1086/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1323\n", + "Epoch 1087/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1322\n", + "Epoch 1088/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1322\n", + "Epoch 1089/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1321\n", + "Epoch 1090/3000...\n", + "Loss Discriminator: 0.6729\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1321\n", + "Epoch 1091/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.132\n", + "Epoch 1092/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1319\n", + "Epoch 1093/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7243\n", + "Relative Entropy: 0.1319\n", + "Epoch 1094/3000...\n", + "Loss Discriminator: 0.6723\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1318\n", + "Epoch 1095/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1318\n", + "Epoch 1096/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1317\n", + "Epoch 1097/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.723\n", + "Relative Entropy: 0.1317\n", + "Epoch 1098/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1316\n", + "Epoch 1099/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1316\n", + "Epoch 1100/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7234\n", + "Relative Entropy: 0.1315\n", + "Epoch 1101/3000...\n", + "Loss Discriminator: 0.6719\n", + "Loss Generator: 0.7236\n", + "Relative Entropy: 0.1315\n", + "Epoch 1102/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1314\n", + "Epoch 1103/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.726\n", + "Relative Entropy: 0.1314\n", + "Epoch 1104/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1313\n", + "Epoch 1105/3000...\n", + "Loss Discriminator: 0.6735\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1313\n", + "Epoch 1106/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1312\n", + "Epoch 1107/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1312\n", + "Epoch 1108/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1311\n", + "Epoch 1109/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1311\n", + "Epoch 1110/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.131\n", + "Epoch 1111/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.131\n", + "Epoch 1112/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1309\n", + "Epoch 1113/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1309\n", + "Epoch 1114/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7257\n", + "Relative Entropy: 0.1308\n", + "Epoch 1115/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1308\n", + "Epoch 1116/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1307\n", + "Epoch 1117/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1307\n", + "Epoch 1118/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7245\n", + "Relative Entropy: 0.1306\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1119/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7253\n", + "Relative Entropy: 0.1305\n", + "Epoch 1120/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1305\n", + "Epoch 1121/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1304\n", + "Epoch 1122/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1304\n", + "Epoch 1123/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1303\n", + "Epoch 1124/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1303\n", + "Epoch 1125/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7232\n", + "Relative Entropy: 0.1302\n", + "Epoch 1126/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7247\n", + "Relative Entropy: 0.1302\n", + "Epoch 1127/3000...\n", + "Loss Discriminator: 0.6731\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1301\n", + "Epoch 1128/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1301\n", + "Epoch 1129/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.13\n", + "Epoch 1130/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.13\n", + "Epoch 1131/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1299\n", + "Epoch 1132/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1299\n", + "Epoch 1133/3000...\n", + "Loss Discriminator: 0.6732\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1298\n", + "Epoch 1134/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1298\n", + "Epoch 1135/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1297\n", + "Epoch 1136/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1297\n", + "Epoch 1137/3000...\n", + "Loss Discriminator: 0.6738\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1296\n", + "Epoch 1138/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1296\n", + "Epoch 1139/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1295\n", + "Epoch 1140/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1295\n", + "Epoch 1141/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1294\n", + "Epoch 1142/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1294\n", + "Epoch 1143/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1293\n", + "Epoch 1144/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1293\n", + "Epoch 1145/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1292\n", + "Epoch 1146/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1292\n", + "Epoch 1147/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7228\n", + "Relative Entropy: 0.1291\n", + "Epoch 1148/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1291\n", + "Epoch 1149/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.129\n", + "Epoch 1150/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.129\n", + "Epoch 1151/3000...\n", + "Loss Discriminator: 0.6746\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1289\n", + "Epoch 1152/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1289\n", + "Epoch 1153/3000...\n", + "Loss Discriminator: 0.6727\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1288\n", + "Epoch 1154/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1288\n", + "Epoch 1155/3000...\n", + "Loss Discriminator: 0.674\n", + "Loss Generator: 0.7241\n", + "Relative Entropy: 0.1287\n", + "Epoch 1156/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1287\n", + "Epoch 1157/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1286\n", + "Epoch 1158/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1286\n", + "Epoch 1159/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1285\n", + "Epoch 1160/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1284\n", + "Epoch 1161/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7238\n", + "Relative Entropy: 0.1284\n", + "Epoch 1162/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7237\n", + "Relative Entropy: 0.1283\n", + "Epoch 1163/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1283\n", + "Epoch 1164/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1282\n", + "Epoch 1165/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1282\n", + "Epoch 1166/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7246\n", + "Relative Entropy: 0.1281\n", + "Epoch 1167/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1281\n", + "Epoch 1168/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.128\n", + "Epoch 1169/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7223\n", + "Relative Entropy: 0.128\n", + "Epoch 1170/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.724\n", + "Relative Entropy: 0.1279\n", + "Epoch 1171/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1279\n", + "Epoch 1172/3000...\n", + "Loss Discriminator: 0.6741\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1278\n", + "Epoch 1173/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1278\n", + "Epoch 1174/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1277\n", + "Epoch 1175/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1277\n", + "Epoch 1176/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1276\n", + "Epoch 1177/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1276\n", + "Epoch 1178/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1275\n", + "Epoch 1179/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1275\n", + "Epoch 1180/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1274\n", + "Epoch 1181/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1274\n", + "Epoch 1182/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1273\n", + "Epoch 1183/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1273\n", + "Epoch 1184/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1272\n", + "Epoch 1185/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7233\n", + "Relative Entropy: 0.1272\n", + "Epoch 1186/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1271\n", + "Epoch 1187/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1271\n", + "Epoch 1188/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.127\n", + "Epoch 1189/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.127\n", + "Epoch 1190/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1269\n", + "Epoch 1191/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1269\n", + "Epoch 1192/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1268\n", + "Epoch 1193/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1268\n", + "Epoch 1194/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1267\n", + "Epoch 1195/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1267\n", + "Epoch 1196/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7235\n", + "Relative Entropy: 0.1266\n", + "Epoch 1197/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1266\n", + "Epoch 1198/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1265\n", + "Epoch 1199/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1265\n", + "Epoch 1200/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1264\n", + "Epoch 1201/3000...\n", + "Loss Discriminator: 0.6734\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1264\n", + "Epoch 1202/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1263\n", + "Epoch 1203/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1263\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1204/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1262\n", + "Epoch 1205/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1262\n", + "Epoch 1206/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1261\n", + "Epoch 1207/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1261\n", + "Epoch 1208/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.126\n", + "Epoch 1209/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.126\n", + "Epoch 1210/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1259\n", + "Epoch 1211/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7244\n", + "Relative Entropy: 0.1259\n", + "Epoch 1212/3000...\n", + "Loss Discriminator: 0.6736\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1258\n", + "Epoch 1213/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1258\n", + "Epoch 1214/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1257\n", + "Epoch 1215/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1257\n", + "Epoch 1216/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1256\n", + "Epoch 1217/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1256\n", + "Epoch 1218/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1255\n", + "Epoch 1219/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1255\n", + "Epoch 1220/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1254\n", + "Epoch 1221/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1254\n", + "Epoch 1222/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1253\n", + "Epoch 1223/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1253\n", + "Epoch 1224/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1252\n", + "Epoch 1225/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7239\n", + "Relative Entropy: 0.1252\n", + "Epoch 1226/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1251\n", + "Epoch 1227/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1251\n", + "Epoch 1228/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.125\n", + "Epoch 1229/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.125\n", + "Epoch 1230/3000...\n", + "Loss Discriminator: 0.6743\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1249\n", + "Epoch 1231/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1249\n", + "Epoch 1232/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1248\n", + "Epoch 1233/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1248\n", + "Epoch 1234/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1247\n", + "Epoch 1235/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1247\n", + "Epoch 1236/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1246\n", + "Epoch 1237/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1246\n", + "Epoch 1238/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1245\n", + "Epoch 1239/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1245\n", + "Epoch 1240/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1244\n", + "Epoch 1241/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1244\n", + "Epoch 1242/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1243\n", + "Epoch 1243/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1243\n", + "Epoch 1244/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1242\n", + "Epoch 1245/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1242\n", + "Epoch 1246/3000...\n", + "Loss Discriminator: 0.6733\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1241\n", + "Epoch 1247/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1241\n", + "Epoch 1248/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.124\n", + "Epoch 1249/3000...\n", + "Loss Discriminator: 0.6737\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.124\n", + "Epoch 1250/3000...\n", + "Loss Discriminator: 0.6745\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1239\n", + "Epoch 1251/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1239\n", + "Epoch 1252/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1238\n", + "Epoch 1253/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1238\n", + "Epoch 1254/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1237\n", + "Epoch 1255/3000...\n", + "Loss Discriminator: 0.6747\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1237\n", + "Epoch 1256/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1236\n", + "Epoch 1257/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1236\n", + "Epoch 1258/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1235\n", + "Epoch 1259/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1235\n", + "Epoch 1260/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1234\n", + "Epoch 1261/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7211\n", + "Relative Entropy: 0.1234\n", + "Epoch 1262/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1233\n", + "Epoch 1263/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1233\n", + "Epoch 1264/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1232\n", + "Epoch 1265/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1232\n", + "Epoch 1266/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7231\n", + "Relative Entropy: 0.1231\n", + "Epoch 1267/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1231\n", + "Epoch 1268/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.123\n", + "Epoch 1269/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.123\n", + "Epoch 1270/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1229\n", + "Epoch 1271/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1229\n", + "Epoch 1272/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1228\n", + "Epoch 1273/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1228\n", + "Epoch 1274/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1227\n", + "Epoch 1275/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1227\n", + "Epoch 1276/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1226\n", + "Epoch 1277/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1226\n", + "Epoch 1278/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7215\n", + "Relative Entropy: 0.1225\n", + "Epoch 1279/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1225\n", + "Epoch 1280/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1224\n", + "Epoch 1281/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1224\n", + "Epoch 1282/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7222\n", + "Relative Entropy: 0.1223\n", + "Epoch 1283/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1223\n", + "Epoch 1284/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1222\n", + "Epoch 1285/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1222\n", + "Epoch 1286/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1221\n", + "Epoch 1287/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1221\n", + "Epoch 1288/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.122\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1289/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.122\n", + "Epoch 1290/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1219\n", + "Epoch 1291/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1219\n", + "Epoch 1292/3000...\n", + "Loss Discriminator: 0.6739\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1218\n", + "Epoch 1293/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1218\n", + "Epoch 1294/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1217\n", + "Epoch 1295/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1217\n", + "Epoch 1296/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1216\n", + "Epoch 1297/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1216\n", + "Epoch 1298/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1215\n", + "Epoch 1299/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1215\n", + "Epoch 1300/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1214\n", + "Epoch 1301/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1214\n", + "Epoch 1302/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7227\n", + "Relative Entropy: 0.1213\n", + "Epoch 1303/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1212\n", + "Epoch 1304/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1212\n", + "Epoch 1305/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.1211\n", + "Epoch 1306/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7224\n", + "Relative Entropy: 0.1211\n", + "Epoch 1307/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.121\n", + "Epoch 1308/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.121\n", + "Epoch 1309/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1209\n", + "Epoch 1310/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1209\n", + "Epoch 1311/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1208\n", + "Epoch 1312/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1208\n", + "Epoch 1313/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1207\n", + "Epoch 1314/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1207\n", + "Epoch 1315/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1206\n", + "Epoch 1316/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1206\n", + "Epoch 1317/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1205\n", + "Epoch 1318/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1205\n", + "Epoch 1319/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1204\n", + "Epoch 1320/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1204\n", + "Epoch 1321/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7229\n", + "Relative Entropy: 0.1203\n", + "Epoch 1322/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1203\n", + "Epoch 1323/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1202\n", + "Epoch 1324/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1202\n", + "Epoch 1325/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1201\n", + "Epoch 1326/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1201\n", + "Epoch 1327/3000...\n", + "Loss Discriminator: 0.6748\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.12\n", + "Epoch 1328/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1199\n", + "Epoch 1329/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1199\n", + "Epoch 1330/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7213\n", + "Relative Entropy: 0.1198\n", + "Epoch 1331/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1198\n", + "Epoch 1332/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1197\n", + "Epoch 1333/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1197\n", + "Epoch 1334/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7209\n", + "Relative Entropy: 0.1196\n", + "Epoch 1335/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1196\n", + "Epoch 1336/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1195\n", + "Epoch 1337/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.1195\n", + "Epoch 1338/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1194\n", + "Epoch 1339/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1194\n", + "Epoch 1340/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1193\n", + "Epoch 1341/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1193\n", + "Epoch 1342/3000...\n", + "Loss Discriminator: 0.6762\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1192\n", + "Epoch 1343/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1192\n", + "Epoch 1344/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1191\n", + "Epoch 1345/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1191\n", + "Epoch 1346/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.119\n", + "Epoch 1347/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1189\n", + "Epoch 1348/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1189\n", + "Epoch 1349/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1188\n", + "Epoch 1350/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1188\n", + "Epoch 1351/3000...\n", + "Loss Discriminator: 0.675\n", + "Loss Generator: 0.7217\n", + "Relative Entropy: 0.1187\n", + "Epoch 1352/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1187\n", + "Epoch 1353/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1186\n", + "Epoch 1354/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1186\n", + "Epoch 1355/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7193\n", + "Relative Entropy: 0.1185\n", + "Epoch 1356/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1185\n", + "Epoch 1357/3000...\n", + "Loss Discriminator: 0.6751\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1184\n", + "Epoch 1358/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7204\n", + "Relative Entropy: 0.1183\n", + "Epoch 1359/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1183\n", + "Epoch 1360/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1182\n", + "Epoch 1361/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1182\n", + "Epoch 1362/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1181\n", + "Epoch 1363/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1181\n", + "Epoch 1364/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.118\n", + "Epoch 1365/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.118\n", + "Epoch 1366/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1179\n", + "Epoch 1367/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1179\n", + "Epoch 1368/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1178\n", + "Epoch 1369/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7205\n", + "Relative Entropy: 0.1178\n", + "Epoch 1370/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.722\n", + "Relative Entropy: 0.1177\n", + "Epoch 1371/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1176\n", + "Epoch 1372/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1176\n", + "Epoch 1373/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1175\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1374/3000...\n", + "Loss Discriminator: 0.6753\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1175\n", + "Epoch 1375/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1174\n", + "Epoch 1376/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1174\n", + "Epoch 1377/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1173\n", + "Epoch 1378/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7207\n", + "Relative Entropy: 0.1173\n", + "Epoch 1379/3000...\n", + "Loss Discriminator: 0.6742\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1172\n", + "Epoch 1380/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1172\n", + "Epoch 1381/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1171\n", + "Epoch 1382/3000...\n", + "Loss Discriminator: 0.6749\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.117\n", + "Epoch 1383/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.117\n", + "Epoch 1384/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1169\n", + "Epoch 1385/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7212\n", + "Relative Entropy: 0.1169\n", + "Epoch 1386/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1168\n", + "Epoch 1387/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1168\n", + "Epoch 1388/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1167\n", + "Epoch 1389/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7218\n", + "Relative Entropy: 0.1167\n", + "Epoch 1390/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1166\n", + "Epoch 1391/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1166\n", + "Epoch 1392/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7184\n", + "Relative Entropy: 0.1165\n", + "Epoch 1393/3000...\n", + "Loss Discriminator: 0.6756\n", + "Loss Generator: 0.7203\n", + "Relative Entropy: 0.1164\n", + "Epoch 1394/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1164\n", + "Epoch 1395/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1163\n", + "Epoch 1396/3000...\n", + "Loss Discriminator: 0.6754\n", + "Loss Generator: 0.7201\n", + "Relative Entropy: 0.1163\n", + "Epoch 1397/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1162\n", + "Epoch 1398/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1162\n", + "Epoch 1399/3000...\n", + "Loss Discriminator: 0.6744\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1161\n", + "Epoch 1400/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1161\n", + "Epoch 1401/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.116\n", + "Epoch 1402/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.116\n", + "Epoch 1403/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1159\n", + "Epoch 1404/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1159\n", + "Epoch 1405/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7202\n", + "Relative Entropy: 0.1158\n", + "Epoch 1406/3000...\n", "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1131\n", - "Epoch 931/3000...\n", + "Loss Generator: 0.72\n", + "Relative Entropy: 0.1157\n", + "Epoch 1407/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1157\n", + "Epoch 1408/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1156\n", + "Epoch 1409/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1156\n", + "Epoch 1410/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1155\n", + "Epoch 1411/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7214\n", + "Relative Entropy: 0.1155\n", + "Epoch 1412/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1154\n", + "Epoch 1413/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1154\n", + "Epoch 1414/3000...\n", + "Loss Discriminator: 0.6757\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.1153\n", + "Epoch 1415/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1153\n", + "Epoch 1416/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7219\n", + "Relative Entropy: 0.1152\n", + "Epoch 1417/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1152\n", + "Epoch 1418/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1151\n", + "Epoch 1419/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7196\n", + "Relative Entropy: 0.115\n", + "Epoch 1420/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.115\n", + "Epoch 1421/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1149\n", + "Epoch 1422/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1149\n", + "Epoch 1423/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7208\n", + "Relative Entropy: 0.1148\n", + "Epoch 1424/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1148\n", + "Epoch 1425/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1147\n", + "Epoch 1426/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1147\n", + "Epoch 1427/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1146\n", + "Epoch 1428/3000...\n", + "Loss Discriminator: 0.6761\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1146\n", + "Epoch 1429/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1145\n", + "Epoch 1430/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7225\n", + "Relative Entropy: 0.1145\n", + "Epoch 1431/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1144\n", + "Epoch 1432/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1144\n", + "Epoch 1433/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1143\n", + "Epoch 1434/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1143\n", + "Epoch 1435/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.1142\n", + "Epoch 1436/3000...\n", + "Loss Discriminator: 0.6755\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1141\n", + "Epoch 1437/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1141\n", + "Epoch 1438/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.114\n", + "Epoch 1439/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.114\n", + "Epoch 1440/3000...\n", + "Loss Discriminator: 0.676\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1139\n", + "Epoch 1441/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1139\n", + "Epoch 1442/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1138\n", + "Epoch 1443/3000...\n", + "Loss Discriminator: 0.6758\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.1138\n", + "Epoch 1444/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1137\n", + "Epoch 1445/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1137\n", + "Epoch 1446/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7177\n", + "Relative Entropy: 0.1136\n", + "Epoch 1447/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1136\n", + "Epoch 1448/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1135\n", + "Epoch 1449/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1134\n", + "Epoch 1450/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1134\n", + "Epoch 1451/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7195\n", + "Relative Entropy: 0.1133\n", + "Epoch 1452/3000...\n", "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1133\n", + "Epoch 1453/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1132\n", + "Epoch 1454/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1132\n", + "Epoch 1455/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1131\n", + "Epoch 1456/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1131\n", + "Epoch 1457/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.113\n", + "Epoch 1458/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.113\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1459/3000...\n", + "Loss Discriminator: 0.6774\n", + "Loss Generator: 0.7226\n", + "Relative Entropy: 0.1129\n", + "Epoch 1460/3000...\n", + "Loss Discriminator: 0.6792\n", "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1129\n", + "Epoch 1461/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.1128\n", + "Epoch 1462/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1128\n", + "Epoch 1463/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7221\n", + "Relative Entropy: 0.1127\n", + "Epoch 1464/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.1127\n", + "Epoch 1465/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1126\n", + "Epoch 1466/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1126\n", + "Epoch 1467/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7186\n", "Relative Entropy: 0.1125\n", - "Epoch 941/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7201\n", + "Epoch 1468/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1124\n", + "Epoch 1469/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1124\n", + "Epoch 1470/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1123\n", + "Epoch 1471/3000...\n", + "Loss Discriminator: 0.6759\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1123\n", + "Epoch 1472/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1122\n", + "Epoch 1473/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1122\n", + "Epoch 1474/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1121\n", + "Epoch 1475/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1121\n", + "Epoch 1476/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7206\n", "Relative Entropy: 0.112\n", - "Epoch 951/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7191\n", + "Epoch 1477/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.112\n", + "Epoch 1478/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1119\n", + "Epoch 1479/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.721\n", + "Relative Entropy: 0.1119\n", + "Epoch 1480/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1118\n", + "Epoch 1481/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1118\n", + "Epoch 1482/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1117\n", + "Epoch 1483/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7216\n", + "Relative Entropy: 0.1117\n", + "Epoch 1484/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1116\n", + "Epoch 1485/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7152\n", "Relative Entropy: 0.1115\n", - "Epoch 961/3000...\n", + "Epoch 1486/3000...\n", "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7193\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1115\n", + "Epoch 1487/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1114\n", + "Epoch 1488/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1114\n", + "Epoch 1489/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1113\n", + "Epoch 1490/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1113\n", + "Epoch 1491/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1112\n", + "Epoch 1492/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7188\n", + "Relative Entropy: 0.1112\n", + "Epoch 1493/3000...\n", + "Loss Discriminator: 0.6766\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1111\n", + "Epoch 1494/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1111\n", + "Epoch 1495/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7195\n", "Relative Entropy: 0.111\n", - "Epoch 971/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7217\n", + "Epoch 1496/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.719\n", + "Relative Entropy: 0.111\n", + "Epoch 1497/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1109\n", + "Epoch 1498/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1109\n", + "Epoch 1499/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.1108\n", + "Epoch 1500/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1107\n", + "Epoch 1501/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7197\n", + "Relative Entropy: 0.1107\n", + "Epoch 1502/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1106\n", + "Epoch 1503/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1106\n", + "Epoch 1504/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7155\n", "Relative Entropy: 0.1105\n", - "Epoch 981/3000...\n", + "Epoch 1505/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1105\n", + "Epoch 1506/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1104\n", + "Epoch 1507/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1104\n", + "Epoch 1508/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7199\n", + "Relative Entropy: 0.1103\n", + "Epoch 1509/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.1103\n", + "Epoch 1510/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.1102\n", + "Epoch 1511/3000...\n", + "Loss Discriminator: 0.6763\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1102\n", + "Epoch 1512/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1101\n", + "Epoch 1513/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1101\n", + "Epoch 1514/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.11\n", + "Epoch 1515/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.11\n", + "Epoch 1516/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1099\n", + "Epoch 1517/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7198\n", + "Relative Entropy: 0.1099\n", + "Epoch 1518/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.1098\n", + "Epoch 1519/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.1098\n", + "Epoch 1520/3000...\n", + "Loss Discriminator: 0.6752\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1097\n", + "Epoch 1521/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1096\n", + "Epoch 1522/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1096\n", + "Epoch 1523/3000...\n", "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1095\n", + "Epoch 1524/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1095\n", + "Epoch 1525/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1094\n", + "Epoch 1526/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1094\n", + "Epoch 1527/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1093\n", + "Epoch 1528/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1093\n", + "Epoch 1529/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1092\n", + "Epoch 1530/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1092\n", + "Epoch 1531/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1091\n", + "Epoch 1532/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.1091\n", + "Epoch 1533/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.109\n", + "Epoch 1534/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7206\n", + "Relative Entropy: 0.109\n", + "Epoch 1535/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1089\n", + "Epoch 1536/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.1089\n", + "Epoch 1537/3000...\n", + "Loss Discriminator: 0.6764\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1088\n", + "Epoch 1538/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1088\n", + "Epoch 1539/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1087\n", + "Epoch 1540/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1086\n", + "Epoch 1541/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1086\n", + "Epoch 1542/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1085\n", + "Epoch 1543/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1085\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1544/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7194\n", + "Relative Entropy: 0.1084\n", + "Epoch 1545/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1084\n", + "Epoch 1546/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.1083\n", + "Epoch 1547/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1083\n", + "Epoch 1548/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7191\n", + "Relative Entropy: 0.1082\n", + "Epoch 1549/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1082\n", + "Epoch 1550/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.1081\n", + "Epoch 1551/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1081\n", + "Epoch 1552/3000...\n", + "Loss Discriminator: 0.6773\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.108\n", + "Epoch 1553/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7182\n", + "Relative Entropy: 0.108\n", + "Epoch 1554/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1079\n", + "Epoch 1555/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.1079\n", + "Epoch 1556/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.1078\n", + "Epoch 1557/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1078\n", + "Epoch 1558/3000...\n", + "Loss Discriminator: 0.6799\n", "Loss Generator: 0.7181\n", - "Relative Entropy: 0.11\n", - "Epoch 991/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1095\n", - "Epoch 1001/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.109\n", - "Epoch 1011/3000...\n", + "Relative Entropy: 0.1077\n", + "Epoch 1559/3000...\n", "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1085\n", - "Epoch 1021/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.108\n", - "Epoch 1031/3000...\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1076\n", + "Epoch 1560/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1076\n", + "Epoch 1561/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7192\n", + "Relative Entropy: 0.1075\n", + "Epoch 1562/3000...\n", "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7204\n", + "Loss Generator: 0.718\n", "Relative Entropy: 0.1075\n", - "Epoch 1041/3000...\n", + "Epoch 1563/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1074\n", + "Epoch 1564/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1074\n", + "Epoch 1565/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.1073\n", + "Epoch 1566/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1073\n", + "Epoch 1567/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1072\n", + "Epoch 1568/3000...\n", "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7181\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1072\n", + "Epoch 1569/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1071\n", + "Epoch 1570/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1071\n", + "Epoch 1571/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.714\n", "Relative Entropy: 0.107\n", - "Epoch 1051/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.718\n", + "Epoch 1572/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.107\n", + "Epoch 1573/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7186\n", + "Relative Entropy: 0.1069\n", + "Epoch 1574/3000...\n", + "Loss Discriminator: 0.6769\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1069\n", + "Epoch 1575/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7189\n", + "Relative Entropy: 0.1068\n", + "Epoch 1576/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1068\n", + "Epoch 1577/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1067\n", + "Epoch 1578/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1067\n", + "Epoch 1579/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1066\n", + "Epoch 1580/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7177\n", "Relative Entropy: 0.1065\n", - "Epoch 1061/3000...\n", + "Epoch 1581/3000...\n", "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7219\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1065\n", + "Epoch 1582/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1064\n", + "Epoch 1583/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1064\n", + "Epoch 1584/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1063\n", + "Epoch 1585/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.1063\n", + "Epoch 1586/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1062\n", + "Epoch 1587/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1062\n", + "Epoch 1588/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1061\n", + "Epoch 1589/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7179\n", + "Relative Entropy: 0.1061\n", + "Epoch 1590/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7165\n", "Relative Entropy: 0.106\n", - "Epoch 1071/3000...\n", + "Epoch 1591/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.106\n", + "Epoch 1592/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.1059\n", + "Epoch 1593/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1059\n", + "Epoch 1594/3000...\n", + "Loss Discriminator: 0.6776\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1058\n", + "Epoch 1595/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.1058\n", + "Epoch 1596/3000...\n", "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7175\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.1057\n", + "Epoch 1597/3000...\n", + "Loss Discriminator: 0.6765\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1057\n", + "Epoch 1598/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1056\n", + "Epoch 1599/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1056\n", + "Epoch 1600/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7163\n", "Relative Entropy: 0.1055\n", - "Epoch 1081/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.105\n", - "Epoch 1091/3000...\n", + "Epoch 1601/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1055\n", + "Epoch 1602/3000...\n", "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.717\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1054\n", + "Epoch 1603/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1053\n", + "Epoch 1604/3000...\n", + "Loss Discriminator: 0.6772\n", + "Loss Generator: 0.7183\n", + "Relative Entropy: 0.1053\n", + "Epoch 1605/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1052\n", + "Epoch 1606/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.1052\n", + "Epoch 1607/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.1051\n", + "Epoch 1608/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7175\n", + "Relative Entropy: 0.1051\n", + "Epoch 1609/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.105\n", + "Epoch 1610/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.105\n", + "Epoch 1611/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1049\n", + "Epoch 1612/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1049\n", + "Epoch 1613/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.718\n", + "Relative Entropy: 0.1048\n", + "Epoch 1614/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.1048\n", + "Epoch 1615/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1047\n", + "Epoch 1616/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1047\n", + "Epoch 1617/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7155\n", "Relative Entropy: 0.1046\n", - "Epoch 1101/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7187\n", + "Epoch 1618/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1046\n", + "Epoch 1619/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.1045\n", + "Epoch 1620/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1045\n", + "Epoch 1621/3000...\n", + "Loss Discriminator: 0.677\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1044\n", + "Epoch 1622/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1044\n", + "Epoch 1623/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.1043\n", + "Epoch 1624/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7165\n", + "Relative Entropy: 0.1043\n", + "Epoch 1625/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1042\n", + "Epoch 1626/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1042\n", + "Epoch 1627/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7189\n", "Relative Entropy: 0.1041\n", - "Epoch 1111/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7174\n", + "Epoch 1628/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.1041\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1629/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.104\n", + "Epoch 1630/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.104\n", + "Epoch 1631/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.1039\n", + "Epoch 1632/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1038\n", + "Epoch 1633/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1038\n", + "Epoch 1634/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1037\n", + "Epoch 1635/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.1037\n", + "Epoch 1636/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7164\n", "Relative Entropy: 0.1036\n", - "Epoch 1121/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7174\n", + "Epoch 1637/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1036\n", + "Epoch 1638/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1035\n", + "Epoch 1639/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1035\n", + "Epoch 1640/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1034\n", + "Epoch 1641/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1034\n", + "Epoch 1642/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.1033\n", + "Epoch 1643/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1033\n", + "Epoch 1644/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1032\n", + "Epoch 1645/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.1032\n", + "Epoch 1646/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7148\n", "Relative Entropy: 0.1031\n", - "Epoch 1131/3000...\n", + "Epoch 1647/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.1031\n", + "Epoch 1648/3000...\n", "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.103\n", + "Epoch 1649/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.103\n", + "Epoch 1650/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.1029\n", + "Epoch 1651/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.1029\n", + "Epoch 1652/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1028\n", + "Epoch 1653/3000...\n", + "Loss Discriminator: 0.6767\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1028\n", + "Epoch 1654/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.1027\n", + "Epoch 1655/3000...\n", + "Loss Discriminator: 0.6785\n", "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1027\n", + "Epoch 1656/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7172\n", "Relative Entropy: 0.1026\n", - "Epoch 1141/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.719\n", + "Epoch 1657/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1026\n", + "Epoch 1658/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.1025\n", + "Epoch 1659/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1025\n", + "Epoch 1660/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.1024\n", + "Epoch 1661/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1024\n", + "Epoch 1662/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7174\n", + "Relative Entropy: 0.1023\n", + "Epoch 1663/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1023\n", + "Epoch 1664/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.714\n", "Relative Entropy: 0.1022\n", - "Epoch 1151/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7168\n", + "Epoch 1665/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.1022\n", + "Epoch 1666/3000...\n", + "Loss Discriminator: 0.678\n", + "Loss Generator: 0.7171\n", + "Relative Entropy: 0.1021\n", + "Epoch 1667/3000...\n", + "Loss Discriminator: 0.6783\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.1021\n", + "Epoch 1668/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.102\n", + "Epoch 1669/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.102\n", + "Epoch 1670/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.1019\n", + "Epoch 1671/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.1019\n", + "Epoch 1672/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.1018\n", + "Epoch 1673/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7163\n", "Relative Entropy: 0.1017\n", - "Epoch 1161/3000...\n", + "Epoch 1674/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1017\n", + "Epoch 1675/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.1016\n", + "Epoch 1676/3000...\n", "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7168\n", + "Loss Generator: 0.7164\n", + "Relative Entropy: 0.1016\n", + "Epoch 1677/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7187\n", + "Relative Entropy: 0.1015\n", + "Epoch 1678/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.1015\n", + "Epoch 1679/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.1014\n", + "Epoch 1680/3000...\n", + "Loss Discriminator: 0.6778\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1014\n", + "Epoch 1681/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.1013\n", + "Epoch 1682/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.1013\n", + "Epoch 1683/3000...\n", + "Loss Discriminator: 0.6777\n", + "Loss Generator: 0.7162\n", "Relative Entropy: 0.1012\n", - "Epoch 1171/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7174\n", + "Epoch 1684/3000...\n", + "Loss Discriminator: 0.6781\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1012\n", + "Epoch 1685/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.1011\n", + "Epoch 1686/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1011\n", + "Epoch 1687/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.101\n", + "Epoch 1688/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7185\n", + "Relative Entropy: 0.101\n", + "Epoch 1689/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.1009\n", + "Epoch 1690/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.1009\n", + "Epoch 1691/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.1008\n", + "Epoch 1692/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7181\n", + "Relative Entropy: 0.1008\n", + "Epoch 1693/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7151\n", "Relative Entropy: 0.1007\n", - "Epoch 1181/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7193\n", + "Epoch 1694/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.1007\n", + "Epoch 1695/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1006\n", + "Epoch 1696/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1006\n", + "Epoch 1697/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.1005\n", + "Epoch 1698/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.1005\n", + "Epoch 1699/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.1004\n", + "Epoch 1700/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.1004\n", + "Epoch 1701/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.715\n", "Relative Entropy: 0.1003\n", - "Epoch 1191/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.0998\n", - "Epoch 1201/3000...\n", + "Epoch 1702/3000...\n", "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.717\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.1003\n", + "Epoch 1703/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.1002\n", + "Epoch 1704/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1002\n", + "Epoch 1705/3000...\n", + "Loss Discriminator: 0.6771\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.1001\n", + "Epoch 1706/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.1001\n", + "Epoch 1707/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.1\n", + "Epoch 1708/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.1\n", + "Epoch 1709/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7176\n", + "Relative Entropy: 0.0999\n", + "Epoch 1710/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0999\n", + "Epoch 1711/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0998\n", + "Epoch 1712/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0998\n", + "Epoch 1713/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0997\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1714/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7168\n", + "Relative Entropy: 0.0997\n", + "Epoch 1715/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7178\n", + "Relative Entropy: 0.0996\n", + "Epoch 1716/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0996\n", + "Epoch 1717/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0995\n", + "Epoch 1718/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0995\n", + "Epoch 1719/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0994\n", + "Epoch 1720/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0994\n", + "Epoch 1721/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7129\n", "Relative Entropy: 0.0993\n", - "Epoch 1211/3000...\n", - "Loss Discriminator: 0.6804\n", + "Epoch 1722/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0993\n", + "Epoch 1723/3000...\n", + "Loss Discriminator: 0.6813\n", "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0992\n", + "Epoch 1724/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0992\n", + "Epoch 1725/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0991\n", + "Epoch 1726/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0991\n", + "Epoch 1727/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7172\n", + "Relative Entropy: 0.099\n", + "Epoch 1728/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.099\n", + "Epoch 1729/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7134\n", "Relative Entropy: 0.0989\n", - "Epoch 1221/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7175\n", + "Epoch 1730/3000...\n", + "Loss Discriminator: 0.6791\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0989\n", + "Epoch 1731/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.0988\n", + "Epoch 1732/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0988\n", + "Epoch 1733/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0987\n", + "Epoch 1734/3000...\n", + "Loss Discriminator: 0.6784\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0987\n", + "Epoch 1735/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0986\n", + "Epoch 1736/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0986\n", + "Epoch 1737/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7159\n", + "Relative Entropy: 0.0985\n", + "Epoch 1738/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0985\n", + "Epoch 1739/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7143\n", "Relative Entropy: 0.0984\n", - "Epoch 1231/3000...\n", + "Epoch 1740/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0984\n", + "Epoch 1741/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0983\n", + "Epoch 1742/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0983\n", + "Epoch 1743/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7156\n", + "Relative Entropy: 0.0982\n", + "Epoch 1744/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0982\n", + "Epoch 1745/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0981\n", + "Epoch 1746/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0981\n", + "Epoch 1747/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.098\n", + "Epoch 1748/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.098\n", + "Epoch 1749/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0979\n", + "Epoch 1750/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0979\n", + "Epoch 1751/3000...\n", "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7162\n", + "Relative Entropy: 0.0978\n", + "Epoch 1752/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0978\n", + "Epoch 1753/3000...\n", + "Loss Discriminator: 0.6795\n", "Loss Generator: 0.715\n", - "Relative Entropy: 0.098\n", - "Epoch 1241/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7164\n", + "Relative Entropy: 0.0977\n", + "Epoch 1754/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7161\n", + "Relative Entropy: 0.0977\n", + "Epoch 1755/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0976\n", + "Epoch 1756/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0976\n", + "Epoch 1757/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7167\n", "Relative Entropy: 0.0975\n", - "Epoch 1251/3000...\n", + "Epoch 1758/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0975\n", + "Epoch 1759/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0974\n", + "Epoch 1760/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.0974\n", + "Epoch 1761/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0973\n", + "Epoch 1762/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0973\n", + "Epoch 1763/3000...\n", + "Loss Discriminator: 0.6768\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0972\n", + "Epoch 1764/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0972\n", + "Epoch 1765/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0971\n", + "Epoch 1766/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0971\n", + "Epoch 1767/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.097\n", + "Epoch 1768/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.097\n", + "Epoch 1769/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0969\n", + "Epoch 1770/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.716\n", + "Relative Entropy: 0.0969\n", + "Epoch 1771/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0968\n", + "Epoch 1772/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.0968\n", + "Epoch 1773/3000...\n", + "Loss Discriminator: 0.6785\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0967\n", + "Epoch 1774/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0967\n", + "Epoch 1775/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0966\n", + "Epoch 1776/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0966\n", + "Epoch 1777/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7154\n", + "Relative Entropy: 0.0965\n", + "Epoch 1778/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0965\n", + "Epoch 1779/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0964\n", + "Epoch 1780/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7173\n", + "Relative Entropy: 0.0964\n", + "Epoch 1781/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0963\n", + "Epoch 1782/3000...\n", + "Loss Discriminator: 0.6779\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0963\n", + "Epoch 1783/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0962\n", + "Epoch 1784/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7167\n", + "Relative Entropy: 0.0962\n", + "Epoch 1785/3000...\n", + "Loss Discriminator: 0.679\n", + "Loss Generator: 0.7151\n", + "Relative Entropy: 0.0961\n", + "Epoch 1786/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0961\n", + "Epoch 1787/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.096\n", + "Epoch 1788/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.096\n", + "Epoch 1789/3000...\n", + "Loss Discriminator: 0.6775\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0959\n", + "Epoch 1790/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0959\n", + "Epoch 1791/3000...\n", + "Loss Discriminator: 0.6786\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0958\n", + "Epoch 1792/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7166\n", + "Relative Entropy: 0.0958\n", + "Epoch 1793/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0957\n", + "Epoch 1794/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0957\n", + "Epoch 1795/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0956\n", + "Epoch 1796/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0956\n", + "Epoch 1797/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0955\n", + "Epoch 1798/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.0955\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1799/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0954\n", + "Epoch 1800/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0954\n", + "Epoch 1801/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0953\n", + "Epoch 1802/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0953\n", + "Epoch 1803/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0952\n", + "Epoch 1804/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0952\n", + "Epoch 1805/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0951\n", + "Epoch 1806/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0951\n", + "Epoch 1807/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.095\n", + "Epoch 1808/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.095\n", + "Epoch 1809/3000...\n", + "Loss Discriminator: 0.6788\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0949\n", + "Epoch 1810/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0949\n", + "Epoch 1811/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.717\n", + "Relative Entropy: 0.0948\n", + "Epoch 1812/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0948\n", + "Epoch 1813/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0947\n", + "Epoch 1814/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0947\n", + "Epoch 1815/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0946\n", + "Epoch 1816/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0946\n", + "Epoch 1817/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0945\n", + "Epoch 1818/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0945\n", + "Epoch 1819/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0944\n", + "Epoch 1820/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7146\n", + "Relative Entropy: 0.0944\n", + "Epoch 1821/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0943\n", + "Epoch 1822/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0943\n", + "Epoch 1823/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0943\n", + "Epoch 1824/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0942\n", + "Epoch 1825/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0942\n", + "Epoch 1826/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0941\n", + "Epoch 1827/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0941\n", + "Epoch 1828/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.094\n", + "Epoch 1829/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7153\n", + "Relative Entropy: 0.094\n", + "Epoch 1830/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0939\n", + "Epoch 1831/3000...\n", + "Loss Discriminator: 0.6789\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0939\n", + "Epoch 1832/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0938\n", + "Epoch 1833/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0938\n", + "Epoch 1834/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0937\n", + "Epoch 1835/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0937\n", + "Epoch 1836/3000...\n", + "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0936\n", + "Epoch 1837/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0936\n", + "Epoch 1838/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0935\n", + "Epoch 1839/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0935\n", + "Epoch 1840/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0934\n", + "Epoch 1841/3000...\n", + "Loss Discriminator: 0.6801\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0934\n", + "Epoch 1842/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0933\n", + "Epoch 1843/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0933\n", + "Epoch 1844/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7163\n", + "Relative Entropy: 0.0932\n", + "Epoch 1845/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0932\n", + "Epoch 1846/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0931\n", + "Epoch 1847/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.715\n", + "Relative Entropy: 0.0931\n", + "Epoch 1848/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.093\n", + "Epoch 1849/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.093\n", + "Epoch 1850/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0929\n", + "Epoch 1851/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0929\n", + "Epoch 1852/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7157\n", + "Relative Entropy: 0.0928\n", + "Epoch 1853/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0928\n", + "Epoch 1854/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0927\n", + "Epoch 1855/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0927\n", + "Epoch 1856/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0926\n", + "Epoch 1857/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0926\n", + "Epoch 1858/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0925\n", + "Epoch 1859/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0925\n", + "Epoch 1860/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0925\n", + "Epoch 1861/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0924\n", + "Epoch 1862/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0924\n", + "Epoch 1863/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0923\n", + "Epoch 1864/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0923\n", + "Epoch 1865/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0922\n", + "Epoch 1866/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0922\n", + "Epoch 1867/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0921\n", + "Epoch 1868/3000...\n", "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.097\n", - "Epoch 1261/3000...\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0921\n", + "Epoch 1869/3000...\n", "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0966\n", - "Epoch 1271/3000...\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.092\n", + "Epoch 1870/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.092\n", + "Epoch 1871/3000...\n", + "Loss Discriminator: 0.6799\n", + "Loss Generator: 0.7155\n", + "Relative Entropy: 0.0919\n", + "Epoch 1872/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0919\n", + "Epoch 1873/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0918\n", + "Epoch 1874/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0918\n", + "Epoch 1875/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0917\n", + "Epoch 1876/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7169\n", + "Relative Entropy: 0.0917\n", + "Epoch 1877/3000...\n", + "Loss Discriminator: 0.6793\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0916\n", + "Epoch 1878/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0916\n", + "Epoch 1879/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7139\n", + "Relative Entropy: 0.0915\n", + "Epoch 1880/3000...\n", + "Loss Discriminator: 0.6782\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0915\n", + "Epoch 1881/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0914\n", + "Epoch 1882/3000...\n", "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.0961\n", - "Epoch 1281/3000...\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0914\n", + "Epoch 1883/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7158\n", + "Relative Entropy: 0.0913\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1884/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0913\n", + "Epoch 1885/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0912\n", + "Epoch 1886/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0912\n", + "Epoch 1887/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0911\n", + "Epoch 1888/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0911\n", + "Epoch 1889/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0911\n", + "Epoch 1890/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.091\n", + "Epoch 1891/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7148\n", + "Relative Entropy: 0.091\n", + "Epoch 1892/3000...\n", "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0957\n", - "Epoch 1291/3000...\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0909\n", + "Epoch 1893/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0909\n", + "Epoch 1894/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0908\n", + "Epoch 1895/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0908\n", + "Epoch 1896/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0907\n", + "Epoch 1897/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0907\n", + "Epoch 1898/3000...\n", + "Loss Discriminator: 0.6797\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0906\n", + "Epoch 1899/3000...\n", + "Loss Discriminator: 0.6792\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0906\n", + "Epoch 1900/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0905\n", + "Epoch 1901/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0905\n", + "Epoch 1902/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0904\n", + "Epoch 1903/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0904\n", + "Epoch 1904/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0903\n", + "Epoch 1905/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0903\n", + "Epoch 1906/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0902\n", + "Epoch 1907/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0902\n", + "Epoch 1908/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0901\n", + "Epoch 1909/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0901\n", + "Epoch 1910/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.09\n", + "Epoch 1911/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.09\n", + "Epoch 1912/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.09\n", + "Epoch 1913/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0899\n", + "Epoch 1914/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0899\n", + "Epoch 1915/3000...\n", "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0952\n", - "Epoch 1301/3000...\n", - "Loss Discriminator: 0.6787\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0898\n", + "Epoch 1916/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0898\n", + "Epoch 1917/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0897\n", + "Epoch 1918/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0897\n", + "Epoch 1919/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0896\n", + "Epoch 1920/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0896\n", + "Epoch 1921/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0895\n", + "Epoch 1922/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0895\n", + "Epoch 1923/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0894\n", + "Epoch 1924/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0894\n", + "Epoch 1925/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0893\n", + "Epoch 1926/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0893\n", + "Epoch 1927/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0892\n", + "Epoch 1928/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0892\n", + "Epoch 1929/3000...\n", + "Loss Discriminator: 0.6808\n", "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0948\n", - "Epoch 1311/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0943\n", - "Epoch 1321/3000...\n", + "Relative Entropy: 0.0891\n", + "Epoch 1930/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0891\n", + "Epoch 1931/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.089\n", + "Epoch 1932/3000...\n", "Loss Discriminator: 0.6806\n", "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0939\n", - "Epoch 1331/3000...\n", + "Relative Entropy: 0.089\n", + "Epoch 1933/3000...\n", "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0935\n", - "Epoch 1341/3000...\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.089\n", + "Epoch 1934/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0889\n", + "Epoch 1935/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0889\n", + "Epoch 1936/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0888\n", + "Epoch 1937/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0888\n", + "Epoch 1938/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0887\n", + "Epoch 1939/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.714\n", + "Relative Entropy: 0.0887\n", + "Epoch 1940/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0886\n", + "Epoch 1941/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0886\n", + "Epoch 1942/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0885\n", + "Epoch 1943/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0885\n", + "Epoch 1944/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7134\n", + "Relative Entropy: 0.0884\n", + "Epoch 1945/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0884\n", + "Epoch 1946/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0883\n", + "Epoch 1947/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0883\n", + "Epoch 1948/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0882\n", + "Epoch 1949/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7149\n", + "Relative Entropy: 0.0882\n", + "Epoch 1950/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7143\n", + "Relative Entropy: 0.0881\n", + "Epoch 1951/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7126\n", + "Relative Entropy: 0.0881\n", + "Epoch 1952/3000...\n", + "Loss Discriminator: 0.6802\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0881\n", + "Epoch 1953/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.088\n", + "Epoch 1954/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.088\n", + "Epoch 1955/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0879\n", + "Epoch 1956/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0879\n", + "Epoch 1957/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0878\n", + "Epoch 1958/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0878\n", + "Epoch 1959/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0877\n", + "Epoch 1960/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0877\n", + "Epoch 1961/3000...\n", + "Loss Discriminator: 0.6794\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0876\n", + "Epoch 1962/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0876\n", + "Epoch 1963/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0875\n", + "Epoch 1964/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0875\n", + "Epoch 1965/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0874\n", + "Epoch 1966/3000...\n", + "Loss Discriminator: 0.6796\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0874\n", + "Epoch 1967/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0873\n", + "Epoch 1968/3000...\n", + "Loss Discriminator: 0.6795\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0873\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1969/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0873\n", + "Epoch 1970/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0872\n", + "Epoch 1971/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7152\n", + "Relative Entropy: 0.0872\n", + "Epoch 1972/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0871\n", + "Epoch 1973/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0871\n", + "Epoch 1974/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.087\n", + "Epoch 1975/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.087\n", + "Epoch 1976/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0869\n", + "Epoch 1977/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0869\n", + "Epoch 1978/3000...\n", + "Loss Discriminator: 0.6803\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0868\n", + "Epoch 1979/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0868\n", + "Epoch 1980/3000...\n", + "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0867\n", + "Epoch 1981/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0867\n", + "Epoch 1982/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7147\n", + "Relative Entropy: 0.0866\n", + "Epoch 1983/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0866\n", + "Epoch 1984/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0866\n", + "Epoch 1985/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0865\n", + "Epoch 1986/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0865\n", + "Epoch 1987/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0864\n", + "Epoch 1988/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0864\n", + "Epoch 1989/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0863\n", + "Epoch 1990/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0863\n", + "Epoch 1991/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0862\n", + "Epoch 1992/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0862\n", + "Epoch 1993/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0861\n", + "Epoch 1994/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0861\n", + "Epoch 1995/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.086\n", + "Epoch 1996/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.086\n", + "Epoch 1997/3000...\n", "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.093\n", - "Epoch 1351/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0926\n", - "Epoch 1361/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0921\n", - "Epoch 1371/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0917\n", - "Epoch 1381/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0913\n", - "Epoch 1391/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0908\n", - "Epoch 1401/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0904\n", - "Epoch 1411/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0899\n", - "Epoch 1421/3000...\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0859\n", + "Epoch 1998/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0859\n", + "Epoch 1999/3000...\n", + "Loss Discriminator: 0.68\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0859\n", + "Epoch 2000/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0858\n", + "Epoch 2001/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0858\n", + "Epoch 2002/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0857\n", + "Epoch 2003/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0857\n", + "Epoch 2004/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0856\n", + "Epoch 2005/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0856\n", + "Epoch 2006/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0855\n", + "Epoch 2007/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0855\n", + "Epoch 2008/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0854\n", + "Epoch 2009/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0854\n", + "Epoch 2010/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0853\n", + "Epoch 2011/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0853\n", + "Epoch 2012/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0852\n", + "Epoch 2013/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0852\n", + "Epoch 2014/3000...\n", + "Loss Discriminator: 0.6808\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0852\n", + "Epoch 2015/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0851\n", + "Epoch 2016/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0851\n", + "Epoch 2017/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.085\n", + "Epoch 2018/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.085\n", + "Epoch 2019/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0849\n", + "Epoch 2020/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0849\n", + "Epoch 2021/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0848\n", + "Epoch 2022/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0848\n", + "Epoch 2023/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7145\n", + "Relative Entropy: 0.0847\n", + "Epoch 2024/3000...\n", "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0847\n", + "Epoch 2025/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0846\n", + "Epoch 2026/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0846\n", + "Epoch 2027/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7138\n", + "Relative Entropy: 0.0846\n", + "Epoch 2028/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0845\n", + "Epoch 2029/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0845\n", + "Epoch 2030/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0844\n", + "Epoch 2031/3000...\n", + "Loss Discriminator: 0.6823\n", "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0895\n", - "Epoch 1431/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.089\n", - "Epoch 1441/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0886\n", - "Epoch 1451/3000...\n", + "Relative Entropy: 0.0844\n", + "Epoch 2032/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0843\n", + "Epoch 2033/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0843\n", + "Epoch 2034/3000...\n", "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0881\n", - "Epoch 1461/3000...\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0842\n", + "Epoch 2035/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0842\n", + "Epoch 2036/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0841\n", + "Epoch 2037/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0841\n", + "Epoch 2038/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0841\n", + "Epoch 2039/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.084\n", + "Epoch 2040/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.084\n", + "Epoch 2041/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0839\n", + "Epoch 2042/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0839\n", + "Epoch 2043/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0838\n", + "Epoch 2044/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7141\n", + "Relative Entropy: 0.0838\n", + "Epoch 2045/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7137\n", + "Relative Entropy: 0.0837\n", + "Epoch 2046/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0837\n", + "Epoch 2047/3000...\n", "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0836\n", + "Epoch 2048/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0836\n", + "Epoch 2049/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7132\n", + "Relative Entropy: 0.0835\n", + "Epoch 2050/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0835\n", + "Epoch 2051/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0835\n", + "Epoch 2052/3000...\n", + "Loss Discriminator: 0.6814\n", "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0877\n", - "Epoch 1471/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0872\n", - "Epoch 1481/3000...\n", + "Relative Entropy: 0.0834\n", + "Epoch 2053/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.0834\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2054/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0833\n", + "Epoch 2055/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0833\n", + "Epoch 2056/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7133\n", + "Relative Entropy: 0.0832\n", + "Epoch 2057/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0832\n", + "Epoch 2058/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0831\n", + "Epoch 2059/3000...\n", + "Loss Discriminator: 0.6809\n", + "Loss Generator: 0.7127\n", + "Relative Entropy: 0.0831\n", + "Epoch 2060/3000...\n", + "Loss Discriminator: 0.6817\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.083\n", + "Epoch 2061/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.083\n", + "Epoch 2062/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.083\n", + "Epoch 2063/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0829\n", + "Epoch 2064/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0829\n", + "Epoch 2065/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0828\n", + "Epoch 2066/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0828\n", + "Epoch 2067/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0827\n", + "Epoch 2068/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0827\n", + "Epoch 2069/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0826\n", + "Epoch 2070/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0826\n", + "Epoch 2071/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0825\n", + "Epoch 2072/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0825\n", + "Epoch 2073/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0825\n", + "Epoch 2074/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0824\n", + "Epoch 2075/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0824\n", + "Epoch 2076/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0823\n", + "Epoch 2077/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0823\n", + "Epoch 2078/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0822\n", + "Epoch 2079/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0822\n", + "Epoch 2080/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0821\n", + "Epoch 2081/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0821\n", + "Epoch 2082/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.082\n", + "Epoch 2083/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.082\n", + "Epoch 2084/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.082\n", + "Epoch 2085/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0819\n", + "Epoch 2086/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0819\n", + "Epoch 2087/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.713\n", + "Relative Entropy: 0.0818\n", + "Epoch 2088/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0818\n", + "Epoch 2089/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0817\n", + "Epoch 2090/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0817\n", + "Epoch 2091/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0816\n", + "Epoch 2092/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0816\n", + "Epoch 2093/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7131\n", + "Relative Entropy: 0.0815\n", + "Epoch 2094/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0815\n", + "Epoch 2095/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0815\n", + "Epoch 2096/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0814\n", + "Epoch 2097/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7129\n", + "Relative Entropy: 0.0814\n", + "Epoch 2098/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0813\n", + "Epoch 2099/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0813\n", + "Epoch 2100/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0812\n", + "Epoch 2101/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7142\n", + "Relative Entropy: 0.0812\n", + "Epoch 2102/3000...\n", + "Loss Discriminator: 0.6807\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0811\n", + "Epoch 2103/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0811\n", + "Epoch 2104/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.0811\n", + "Epoch 2105/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.081\n", + "Epoch 2106/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.081\n", + "Epoch 2107/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7128\n", + "Relative Entropy: 0.0809\n", + "Epoch 2108/3000...\n", + "Loss Discriminator: 0.6806\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0809\n", + "Epoch 2109/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0808\n", + "Epoch 2110/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0808\n", + "Epoch 2111/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0807\n", + "Epoch 2112/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0807\n", + "Epoch 2113/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0806\n", + "Epoch 2114/3000...\n", "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0806\n", + "Epoch 2115/3000...\n", + "Loss Discriminator: 0.682\n", "Loss Generator: 0.711\n", - "Relative Entropy: 0.0868\n", - "Epoch 1491/3000...\n", + "Relative Entropy: 0.0806\n", + "Epoch 2116/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0805\n", + "Epoch 2117/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0805\n", + "Epoch 2118/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0804\n", + "Epoch 2119/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0804\n", + "Epoch 2120/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0803\n", + "Epoch 2121/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0803\n", + "Epoch 2122/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0802\n", + "Epoch 2123/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0802\n", + "Epoch 2124/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0802\n", + "Epoch 2125/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0801\n", + "Epoch 2126/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0801\n", + "Epoch 2127/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.08\n", + "Epoch 2128/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.08\n", + "Epoch 2129/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0799\n", + "Epoch 2130/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0799\n", + "Epoch 2131/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0798\n", + "Epoch 2132/3000...\n", "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0863\n", - "Epoch 1501/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0858\n", - "Epoch 1511/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0854\n", - "Epoch 1521/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0849\n", - "Epoch 1531/3000...\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0798\n", + "Epoch 2133/3000...\n", + "Loss Discriminator: 0.6804\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0798\n", + "Epoch 2134/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0797\n", + "Epoch 2135/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0797\n", + "Epoch 2136/3000...\n", "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0845\n", - "Epoch 1541/3000...\n", + "Loss Generator: 0.7113\n", + "Relative Entropy: 0.0796\n", + "Epoch 2137/3000...\n", "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.084\n", - "Epoch 1551/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0835\n", - "Epoch 1561/3000...\n", - "Loss Discriminator: 0.6798\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0796\n", + "Epoch 2138/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0795\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2139/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0795\n", + "Epoch 2140/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0794\n", + "Epoch 2141/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0794\n", + "Epoch 2142/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0794\n", + "Epoch 2143/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0793\n", + "Epoch 2144/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0793\n", + "Epoch 2145/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0792\n", + "Epoch 2146/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0792\n", + "Epoch 2147/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0791\n", + "Epoch 2148/3000...\n", + "Loss Discriminator: 0.6811\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0791\n", + "Epoch 2149/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.079\n", + "Epoch 2150/3000...\n", + "Loss Discriminator: 0.6823\n", "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0831\n", - "Epoch 1571/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0826\n", - "Epoch 1581/3000...\n", + "Relative Entropy: 0.079\n", + "Epoch 2151/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.079\n", + "Epoch 2152/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0789\n", + "Epoch 2153/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0789\n", + "Epoch 2154/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0788\n", + "Epoch 2155/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0788\n", + "Epoch 2156/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0787\n", + "Epoch 2157/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0787\n", + "Epoch 2158/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0786\n", + "Epoch 2159/3000...\n", "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0786\n", + "Epoch 2160/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0786\n", + "Epoch 2161/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0785\n", + "Epoch 2162/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0785\n", + "Epoch 2163/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7114\n", + "Relative Entropy: 0.0784\n", + "Epoch 2164/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0784\n", + "Epoch 2165/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0783\n", + "Epoch 2166/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0783\n", + "Epoch 2167/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0782\n", + "Epoch 2168/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0782\n", + "Epoch 2169/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0782\n", + "Epoch 2170/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0781\n", + "Epoch 2171/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0781\n", + "Epoch 2172/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.078\n", + "Epoch 2173/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7122\n", + "Relative Entropy: 0.078\n", + "Epoch 2174/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0779\n", + "Epoch 2175/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0779\n", + "Epoch 2176/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0779\n", + "Epoch 2177/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0778\n", + "Epoch 2178/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0778\n", + "Epoch 2179/3000...\n", + "Loss Discriminator: 0.6823\n", "Loss Generator: 0.712\n", - "Relative Entropy: 0.0822\n", - "Epoch 1591/3000...\n", - "Loss Discriminator: 0.6809\n", + "Relative Entropy: 0.0777\n", + "Epoch 2180/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0777\n", + "Epoch 2181/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0776\n", + "Epoch 2182/3000...\n", + "Loss Discriminator: 0.6812\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0776\n", + "Epoch 2183/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7105\n", + "Relative Entropy: 0.0775\n", + "Epoch 2184/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0775\n", + "Epoch 2185/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0775\n", + "Epoch 2186/3000...\n", + "Loss Discriminator: 0.6832\n", "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0817\n", - "Epoch 1601/3000...\n", - "Loss Discriminator: 0.6806\n", + "Relative Entropy: 0.0774\n", + "Epoch 2187/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0774\n", + "Epoch 2188/3000...\n", + "Loss Discriminator: 0.6823\n", "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0813\n", - "Epoch 1611/3000...\n", + "Relative Entropy: 0.0773\n", + "Epoch 2189/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0773\n", + "Epoch 2190/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0772\n", + "Epoch 2191/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0772\n", + "Epoch 2192/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0771\n", + "Epoch 2193/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0771\n", + "Epoch 2194/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0771\n", + "Epoch 2195/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7119\n", + "Relative Entropy: 0.077\n", + "Epoch 2196/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.077\n", + "Epoch 2197/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0769\n", + "Epoch 2198/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0769\n", + "Epoch 2199/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7123\n", + "Relative Entropy: 0.0768\n", + "Epoch 2200/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0768\n", + "Epoch 2201/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0768\n", + "Epoch 2202/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0767\n", + "Epoch 2203/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0767\n", + "Epoch 2204/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0766\n", + "Epoch 2205/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0766\n", + "Epoch 2206/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0765\n", + "Epoch 2207/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7136\n", + "Relative Entropy: 0.0765\n", + "Epoch 2208/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0765\n", + "Epoch 2209/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0764\n", + "Epoch 2210/3000...\n", + "Loss Discriminator: 0.6819\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0764\n", + "Epoch 2211/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0763\n", + "Epoch 2212/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0763\n", + "Epoch 2213/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0762\n", + "Epoch 2214/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0762\n", + "Epoch 2215/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0761\n", + "Epoch 2216/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0761\n", + "Epoch 2217/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0761\n", + "Epoch 2218/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.076\n", + "Epoch 2219/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.076\n", + "Epoch 2220/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0759\n", + "Epoch 2221/3000...\n", + "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0759\n", + "Epoch 2222/3000...\n", + "Loss Discriminator: 0.6825\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0758\n", + "Epoch 2223/3000...\n", "Loss Discriminator: 0.6818\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0758\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2224/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7124\n", + "Relative Entropy: 0.0758\n", + "Epoch 2225/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0757\n", + "Epoch 2226/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0757\n", + "Epoch 2227/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0756\n", + "Epoch 2228/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0756\n", + "Epoch 2229/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0755\n", + "Epoch 2230/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7115\n", + "Relative Entropy: 0.0755\n", + "Epoch 2231/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0755\n", + "Epoch 2232/3000...\n", + "Loss Discriminator: 0.6805\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0754\n", + "Epoch 2233/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0754\n", + "Epoch 2234/3000...\n", + "Loss Discriminator: 0.6816\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0753\n", + "Epoch 2235/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.712\n", + "Relative Entropy: 0.0753\n", + "Epoch 2236/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0752\n", + "Epoch 2237/3000...\n", + "Loss Discriminator: 0.6833\n", "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0808\n", - "Epoch 1621/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0804\n", - "Epoch 1631/3000...\n", - "Loss Discriminator: 0.6818\n", + "Relative Entropy: 0.0752\n", + "Epoch 2238/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0752\n", + "Epoch 2239/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0751\n", + "Epoch 2240/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0751\n", + "Epoch 2241/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.075\n", + "Epoch 2242/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.075\n", + "Epoch 2243/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0749\n", + "Epoch 2244/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0749\n", + "Epoch 2245/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7108\n", + "Relative Entropy: 0.0749\n", + "Epoch 2246/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0748\n", + "Epoch 2247/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0748\n", + "Epoch 2248/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0747\n", + "Epoch 2249/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0747\n", + "Epoch 2250/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0746\n", + "Epoch 2251/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0746\n", + "Epoch 2252/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0746\n", + "Epoch 2253/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0745\n", + "Epoch 2254/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0745\n", + "Epoch 2255/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0744\n", + "Epoch 2256/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0744\n", + "Epoch 2257/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7107\n", + "Relative Entropy: 0.0743\n", + "Epoch 2258/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0743\n", + "Epoch 2259/3000...\n", + "Loss Discriminator: 0.6813\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0743\n", + "Epoch 2260/3000...\n", + "Loss Discriminator: 0.6831\n", "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0799\n", - "Epoch 1641/3000...\n", - "Loss Discriminator: 0.6819\n", + "Relative Entropy: 0.0742\n", + "Epoch 2261/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0742\n", + "Epoch 2262/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0741\n", + "Epoch 2263/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0741\n", + "Epoch 2264/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.074\n", + "Epoch 2265/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.074\n", + "Epoch 2266/3000...\n", + "Loss Discriminator: 0.6838\n", "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0795\n", - "Epoch 1651/3000...\n", - "Loss Discriminator: 0.6818\n", + "Relative Entropy: 0.074\n", + "Epoch 2267/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0739\n", + "Epoch 2268/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0739\n", + "Epoch 2269/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0738\n", + "Epoch 2270/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0738\n", + "Epoch 2271/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7125\n", + "Relative Entropy: 0.0737\n", + "Epoch 2272/3000...\n", + "Loss Discriminator: 0.681\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0737\n", + "Epoch 2273/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0737\n", + "Epoch 2274/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0736\n", + "Epoch 2275/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0736\n", + "Epoch 2276/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7109\n", + "Relative Entropy: 0.0735\n", + "Epoch 2277/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0735\n", + "Epoch 2278/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0734\n", + "Epoch 2279/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7144\n", + "Relative Entropy: 0.0734\n", + "Epoch 2280/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0734\n", + "Epoch 2281/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0733\n", + "Epoch 2282/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0733\n", + "Epoch 2283/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0732\n", + "Epoch 2284/3000...\n", + "Loss Discriminator: 0.6838\n", "Loss Generator: 0.7088\n", - "Relative Entropy: 0.079\n", - "Epoch 1661/3000...\n", - "Loss Discriminator: 0.6798\n", + "Relative Entropy: 0.0732\n", + "Epoch 2285/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0731\n", + "Epoch 2286/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0731\n", + "Epoch 2287/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0731\n", + "Epoch 2288/3000...\n", + "Loss Discriminator: 0.6814\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.073\n", + "Epoch 2289/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.073\n", + "Epoch 2290/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0729\n", + "Epoch 2291/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0729\n", + "Epoch 2292/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0729\n", + "Epoch 2293/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0728\n", + "Epoch 2294/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0728\n", + "Epoch 2295/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0727\n", + "Epoch 2296/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0727\n", + "Epoch 2297/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7117\n", + "Relative Entropy: 0.0726\n", + "Epoch 2298/3000...\n", + "Loss Discriminator: 0.682\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0726\n", + "Epoch 2299/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0726\n", + "Epoch 2300/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0725\n", + "Epoch 2301/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0725\n", + "Epoch 2302/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0724\n", + "Epoch 2303/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0724\n", + "Epoch 2304/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0723\n", + "Epoch 2305/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0723\n", + "Epoch 2306/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0723\n", + "Epoch 2307/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0722\n", + "Epoch 2308/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0722\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2309/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0721\n", + "Epoch 2310/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0721\n", + "Epoch 2311/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0721\n", + "Epoch 2312/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.072\n", + "Epoch 2313/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.072\n", + "Epoch 2314/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0719\n", + "Epoch 2315/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0719\n", + "Epoch 2316/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0718\n", + "Epoch 2317/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7095\n", + "Relative Entropy: 0.0718\n", + "Epoch 2318/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0718\n", + "Epoch 2319/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0717\n", + "Epoch 2320/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0717\n", + "Epoch 2321/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0716\n", + "Epoch 2322/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0716\n", + "Epoch 2323/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0716\n", + "Epoch 2324/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0715\n", + "Epoch 2325/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0715\n", + "Epoch 2326/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0714\n", + "Epoch 2327/3000...\n", + "Loss Discriminator: 0.6829\n", "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0786\n", - "Epoch 1671/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0781\n", - "Epoch 1681/3000...\n", - "Loss Discriminator: 0.6813\n", + "Relative Entropy: 0.0714\n", + "Epoch 2328/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0713\n", + "Epoch 2329/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0713\n", + "Epoch 2330/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0713\n", + "Epoch 2331/3000...\n", + "Loss Discriminator: 0.6843\n", "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0777\n", - "Epoch 1691/3000...\n", + "Relative Entropy: 0.0712\n", + "Epoch 2332/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0712\n", + "Epoch 2333/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0711\n", + "Epoch 2334/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7118\n", + "Relative Entropy: 0.0711\n", + "Epoch 2335/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0711\n", + "Epoch 2336/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.071\n", + "Epoch 2337/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.071\n", + "Epoch 2338/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7111\n", + "Relative Entropy: 0.0709\n", + "Epoch 2339/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0709\n", + "Epoch 2340/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0708\n", + "Epoch 2341/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0708\n", + "Epoch 2342/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7098\n", + "Relative Entropy: 0.0708\n", + "Epoch 2343/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0707\n", + "Epoch 2344/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0707\n", + "Epoch 2345/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7121\n", + "Relative Entropy: 0.0706\n", + "Epoch 2346/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.711\n", + "Relative Entropy: 0.0706\n", + "Epoch 2347/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0706\n", + "Epoch 2348/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0705\n", + "Epoch 2349/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0705\n", + "Epoch 2350/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0704\n", + "Epoch 2351/3000...\n", + "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0704\n", + "Epoch 2352/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0703\n", + "Epoch 2353/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0703\n", + "Epoch 2354/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7102\n", + "Relative Entropy: 0.0703\n", + "Epoch 2355/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0702\n", + "Epoch 2356/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0702\n", + "Epoch 2357/3000...\n", + "Loss Discriminator: 0.6826\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0701\n", + "Epoch 2358/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0701\n", + "Epoch 2359/3000...\n", "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0772\n", - "Epoch 1701/3000...\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0701\n", + "Epoch 2360/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.07\n", + "Epoch 2361/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.07\n", + "Epoch 2362/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0699\n", + "Epoch 2363/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0699\n", + "Epoch 2364/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0699\n", + "Epoch 2365/3000...\n", "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0698\n", + "Epoch 2366/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0698\n", + "Epoch 2367/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0697\n", + "Epoch 2368/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0697\n", + "Epoch 2369/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0696\n", + "Epoch 2370/3000...\n", + "Loss Discriminator: 0.683\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0696\n", + "Epoch 2371/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0696\n", + "Epoch 2372/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0695\n", + "Epoch 2373/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0695\n", + "Epoch 2374/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0694\n", + "Epoch 2375/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0694\n", + "Epoch 2376/3000...\n", + "Loss Discriminator: 0.6822\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0694\n", + "Epoch 2377/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0693\n", + "Epoch 2378/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7101\n", + "Relative Entropy: 0.0693\n", + "Epoch 2379/3000...\n", + "Loss Discriminator: 0.6828\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0692\n", + "Epoch 2380/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0692\n", + "Epoch 2381/3000...\n", + "Loss Discriminator: 0.6815\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0692\n", + "Epoch 2382/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.71\n", + "Relative Entropy: 0.0691\n", + "Epoch 2383/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0691\n", + "Epoch 2384/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.069\n", + "Epoch 2385/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.069\n", + "Epoch 2386/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0689\n", + "Epoch 2387/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0689\n", + "Epoch 2388/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0689\n", + "Epoch 2389/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0688\n", + "Epoch 2390/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0688\n", + "Epoch 2391/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0687\n", + "Epoch 2392/3000...\n", + "Loss Discriminator: 0.6849\n", "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0768\n" + "Relative Entropy: 0.0687\n", + "Epoch 2393/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.0687\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1711/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0763\n", - "Epoch 1721/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0759\n", - "Epoch 1731/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0755\n", - "Epoch 1741/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.075\n", - "Epoch 1751/3000...\n", + "Epoch 2394/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0686\n", + "Epoch 2395/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0686\n", + "Epoch 2396/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0685\n", + "Epoch 2397/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0685\n", + "Epoch 2398/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0685\n", + "Epoch 2399/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7099\n", + "Relative Entropy: 0.0684\n", + "Epoch 2400/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0684\n", + "Epoch 2401/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0683\n", + "Epoch 2402/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0683\n", + "Epoch 2403/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0683\n", + "Epoch 2404/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7094\n", + "Relative Entropy: 0.0682\n", + "Epoch 2405/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0682\n", + "Epoch 2406/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0681\n", + "Epoch 2407/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0681\n", + "Epoch 2408/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0681\n", + "Epoch 2409/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.068\n", + "Epoch 2410/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.068\n", + "Epoch 2411/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0679\n", + "Epoch 2412/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0679\n", + "Epoch 2413/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7135\n", + "Relative Entropy: 0.0679\n", + "Epoch 2414/3000...\n", "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0746\n", - "Epoch 1761/3000...\n", + "Loss Generator: 0.7112\n", + "Relative Entropy: 0.0678\n", + "Epoch 2415/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0678\n", + "Epoch 2416/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0677\n", + "Epoch 2417/3000...\n", + "Loss Discriminator: 0.6821\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0677\n", + "Epoch 2418/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0677\n", + "Epoch 2419/3000...\n", + "Loss Discriminator: 0.6827\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0676\n", + "Epoch 2420/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0676\n", + "Epoch 2421/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0675\n", + "Epoch 2422/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0675\n", + "Epoch 2423/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0674\n", + "Epoch 2424/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0674\n", + "Epoch 2425/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7116\n", + "Relative Entropy: 0.0674\n", + "Epoch 2426/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0673\n", + "Epoch 2427/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0673\n", + "Epoch 2428/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7071\n", + "Relative Entropy: 0.0672\n", + "Epoch 2429/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0672\n", + "Epoch 2430/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.0672\n", + "Epoch 2431/3000...\n", "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0742\n", - "Epoch 1771/3000...\n", - "Loss Discriminator: 0.6823\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0671\n", + "Epoch 2432/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7104\n", + "Relative Entropy: 0.0671\n", + "Epoch 2433/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.067\n", + "Epoch 2434/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.067\n", + "Epoch 2435/3000...\n", + "Loss Discriminator: 0.6855\n", "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0737\n", - "Epoch 1781/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0733\n", - "Epoch 1791/3000...\n", + "Relative Entropy: 0.067\n", + "Epoch 2436/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0669\n", + "Epoch 2437/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0669\n", + "Epoch 2438/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0668\n", + "Epoch 2439/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0668\n", + "Epoch 2440/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0668\n", + "Epoch 2441/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0667\n", + "Epoch 2442/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0667\n", + "Epoch 2443/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0666\n", + "Epoch 2444/3000...\n", "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0729\n", - "Epoch 1801/3000...\n", + "Loss Generator: 0.7092\n", + "Relative Entropy: 0.0666\n", + "Epoch 2445/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7091\n", + "Relative Entropy: 0.0666\n", + "Epoch 2446/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0665\n", + "Epoch 2447/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0665\n", + "Epoch 2448/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0664\n", + "Epoch 2449/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0664\n", + "Epoch 2450/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0664\n", + "Epoch 2451/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0663\n", + "Epoch 2452/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0663\n", + "Epoch 2453/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7079\n", + "Relative Entropy: 0.0662\n", + "Epoch 2454/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0662\n", + "Epoch 2455/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0662\n", + "Epoch 2456/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7087\n", + "Relative Entropy: 0.0661\n", + "Epoch 2457/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0661\n", + "Epoch 2458/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.066\n", + "Epoch 2459/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.066\n", + "Epoch 2460/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.066\n", + "Epoch 2461/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0659\n", + "Epoch 2462/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0659\n", + "Epoch 2463/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0658\n", + "Epoch 2464/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0658\n", + "Epoch 2465/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7097\n", + "Relative Entropy: 0.0658\n", + "Epoch 2466/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0657\n", + "Epoch 2467/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0657\n", + "Epoch 2468/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0657\n", + "Epoch 2469/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0656\n", + "Epoch 2470/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0656\n", + "Epoch 2471/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0655\n", + "Epoch 2472/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0655\n", + "Epoch 2473/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0655\n", + "Epoch 2474/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0654\n", + "Epoch 2475/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7093\n", + "Relative Entropy: 0.0654\n", + "Epoch 2476/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0653\n", + "Epoch 2477/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0653\n", + "Epoch 2478/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0653\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2479/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0652\n", + "Epoch 2480/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0652\n", + "Epoch 2481/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0651\n", + "Epoch 2482/3000...\n", "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0724\n", - "Epoch 1811/3000...\n", - "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0651\n", + "Epoch 2483/3000...\n", + "Loss Discriminator: 0.6843\n", "Loss Generator: 0.7097\n", - "Relative Entropy: 0.072\n", - "Epoch 1821/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0716\n", - "Epoch 1831/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0711\n", - "Epoch 1841/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0707\n", - "Epoch 1851/3000...\n", + "Relative Entropy: 0.0651\n", + "Epoch 2484/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.065\n", + "Epoch 2485/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.065\n", + "Epoch 2486/3000...\n", "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0703\n", - "Epoch 1861/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0699\n", - "Epoch 1871/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0694\n", - "Epoch 1881/3000...\n", - "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0649\n", + "Epoch 2487/3000...\n", + "Loss Discriminator: 0.6856\n", "Loss Generator: 0.7076\n", - "Relative Entropy: 0.069\n", - "Epoch 1891/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0686\n", - "Epoch 1901/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0682\n", - "Epoch 1911/3000...\n", - "Loss Discriminator: 0.6831\n", + "Relative Entropy: 0.0649\n", + "Epoch 2488/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0649\n", + "Epoch 2489/3000...\n", + "Loss Discriminator: 0.6829\n", "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0678\n", - "Epoch 1921/3000...\n", - "Loss Discriminator: 0.6831\n", + "Relative Entropy: 0.0648\n", + "Epoch 2490/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7085\n", + "Relative Entropy: 0.0648\n", + "Epoch 2491/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0647\n", + "Epoch 2492/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0647\n", + "Epoch 2493/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0647\n", + "Epoch 2494/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0646\n", + "Epoch 2495/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0646\n", + "Epoch 2496/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0645\n", + "Epoch 2497/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0645\n", + "Epoch 2498/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0645\n", + "Epoch 2499/3000...\n", + "Loss Discriminator: 0.6829\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0644\n", + "Epoch 2500/3000...\n", + "Loss Discriminator: 0.6832\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0644\n", + "Epoch 2501/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0644\n", + "Epoch 2502/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0643\n", + "Epoch 2503/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0643\n", + "Epoch 2504/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7096\n", + "Relative Entropy: 0.0642\n", + "Epoch 2505/3000...\n", + "Loss Discriminator: 0.6855\n", "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0674\n", - "Epoch 1931/3000...\n", + "Relative Entropy: 0.0642\n", + "Epoch 2506/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0642\n", + "Epoch 2507/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0641\n", + "Epoch 2508/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0641\n", + "Epoch 2509/3000...\n", "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0669\n", - "Epoch 1941/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0665\n", - "Epoch 1951/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0661\n", - "Epoch 1961/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0657\n", - "Epoch 1971/3000...\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.064\n", + "Epoch 2510/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.064\n", + "Epoch 2511/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.064\n", + "Epoch 2512/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0639\n", + "Epoch 2513/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0639\n", + "Epoch 2514/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0638\n", + "Epoch 2515/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0638\n", + "Epoch 2516/3000...\n", "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0638\n", + "Epoch 2517/3000...\n", + "Loss Discriminator: 0.6848\n", "Loss Generator: 0.707\n", - "Relative Entropy: 0.0653\n", - "Epoch 1981/3000...\n", + "Relative Entropy: 0.0637\n", + "Epoch 2518/3000...\n", "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7103\n", + "Relative Entropy: 0.0637\n", + "Epoch 2519/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0636\n", + "Epoch 2520/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0636\n", + "Epoch 2521/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0636\n", + "Epoch 2522/3000...\n", + "Loss Discriminator: 0.6872\n", "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0649\n", - "Epoch 1991/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0645\n", - "Epoch 2001/3000...\n", + "Relative Entropy: 0.0635\n", + "Epoch 2523/3000...\n", "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0641\n", - "Epoch 2011/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0637\n", - "Epoch 2021/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7088\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0635\n", + "Epoch 2524/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0635\n", + "Epoch 2525/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0634\n", + "Epoch 2526/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0634\n", + "Epoch 2527/3000...\n", + "Loss Discriminator: 0.6838\n", + "Loss Generator: 0.7069\n", "Relative Entropy: 0.0633\n", - "Epoch 2031/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7083\n", + "Epoch 2528/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0633\n", + "Epoch 2529/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0633\n", + "Epoch 2530/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0632\n", + "Epoch 2531/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0632\n", + "Epoch 2532/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0631\n", + "Epoch 2533/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0631\n", + "Epoch 2534/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0631\n", + "Epoch 2535/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.063\n", + "Epoch 2536/3000...\n", + "Loss Discriminator: 0.6835\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.063\n", + "Epoch 2537/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.063\n", + "Epoch 2538/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7067\n", "Relative Entropy: 0.0629\n", - "Epoch 2041/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.708\n", + "Epoch 2539/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0629\n", + "Epoch 2540/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0628\n", + "Epoch 2541/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0628\n", + "Epoch 2542/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0628\n", + "Epoch 2543/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0627\n", + "Epoch 2544/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0627\n", + "Epoch 2545/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7086\n", + "Relative Entropy: 0.0626\n", + "Epoch 2546/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0626\n", + "Epoch 2547/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0626\n", + "Epoch 2548/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7025\n", "Relative Entropy: 0.0625\n", - "Epoch 2051/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0621\n", - "Epoch 2061/3000...\n", + "Epoch 2549/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0625\n", + "Epoch 2550/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7089\n", + "Relative Entropy: 0.0625\n", + "Epoch 2551/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0624\n", + "Epoch 2552/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0624\n", + "Epoch 2553/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0623\n", + "Epoch 2554/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0623\n", + "Epoch 2555/3000...\n", + "Loss Discriminator: 0.684\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0623\n", + "Epoch 2556/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0622\n", + "Epoch 2557/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0622\n", + "Epoch 2558/3000...\n", "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7069\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0621\n", + "Epoch 2559/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0621\n", + "Epoch 2560/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0621\n", + "Epoch 2561/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.062\n", + "Epoch 2562/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.062\n", + "Epoch 2563/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.062\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2564/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0619\n", + "Epoch 2565/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0619\n", + "Epoch 2566/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0618\n", + "Epoch 2567/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0618\n", + "Epoch 2568/3000...\n", + "Loss Discriminator: 0.6844\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0618\n", + "Epoch 2569/3000...\n", + "Loss Discriminator: 0.6834\n", + "Loss Generator: 0.7029\n", "Relative Entropy: 0.0617\n", - "Epoch 2071/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7072\n", + "Epoch 2570/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0617\n", + "Epoch 2571/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0616\n", + "Epoch 2572/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0616\n", + "Epoch 2573/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0616\n", + "Epoch 2574/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0615\n", + "Epoch 2575/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0615\n", + "Epoch 2576/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0615\n", + "Epoch 2577/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0614\n", + "Epoch 2578/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0614\n", + "Epoch 2579/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7057\n", "Relative Entropy: 0.0613\n", - "Epoch 2081/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0609\n", - "Epoch 2091/3000...\n", + "Epoch 2580/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0613\n", + "Epoch 2581/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0613\n", + "Epoch 2582/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0612\n", + "Epoch 2583/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0612\n", + "Epoch 2584/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0612\n", + "Epoch 2585/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0611\n", + "Epoch 2586/3000...\n", + "Loss Discriminator: 0.6833\n", + "Loss Generator: 0.7082\n", + "Relative Entropy: 0.0611\n", + "Epoch 2587/3000...\n", + "Loss Discriminator: 0.6836\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.061\n", + "Epoch 2588/3000...\n", "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.061\n", + "Epoch 2589/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.061\n", + "Epoch 2590/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0609\n", + "Epoch 2591/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0609\n", + "Epoch 2592/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0609\n", + "Epoch 2593/3000...\n", + "Loss Discriminator: 0.6859\n", "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0608\n", + "Epoch 2594/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7106\n", + "Relative Entropy: 0.0608\n", + "Epoch 2595/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0607\n", + "Epoch 2596/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0607\n", + "Epoch 2597/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0607\n", + "Epoch 2598/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0606\n", + "Epoch 2599/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0606\n", + "Epoch 2600/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0606\n", + "Epoch 2601/3000...\n", + "Loss Discriminator: 0.6845\n", + "Loss Generator: 0.7094\n", "Relative Entropy: 0.0605\n", - "Epoch 2101/3000...\n", - "Loss Discriminator: 0.6843\n", + "Epoch 2602/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7081\n", + "Relative Entropy: 0.0605\n", + "Epoch 2603/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0604\n", + "Epoch 2604/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0604\n", + "Epoch 2605/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0604\n", + "Epoch 2606/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0603\n", + "Epoch 2607/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0603\n", + "Epoch 2608/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0603\n", + "Epoch 2609/3000...\n", + "Loss Discriminator: 0.6834\n", "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0602\n", + "Epoch 2610/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0602\n", + "Epoch 2611/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7063\n", "Relative Entropy: 0.0601\n", - "Epoch 2111/3000...\n", + "Epoch 2612/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0601\n", + "Epoch 2613/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0601\n", + "Epoch 2614/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7078\n", + "Relative Entropy: 0.06\n", + "Epoch 2615/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.06\n", + "Epoch 2616/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.06\n", + "Epoch 2617/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0599\n", + "Epoch 2618/3000...\n", "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7085\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0599\n", + "Epoch 2619/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7058\n", "Relative Entropy: 0.0598\n", - "Epoch 2121/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7032\n", + "Epoch 2620/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0598\n", + "Epoch 2621/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0598\n", + "Epoch 2622/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0597\n", + "Epoch 2623/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0597\n", + "Epoch 2624/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0597\n", + "Epoch 2625/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0596\n", + "Epoch 2626/3000...\n", + "Loss Discriminator: 0.6837\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0596\n", + "Epoch 2627/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0595\n", + "Epoch 2628/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0595\n", + "Epoch 2629/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.709\n", + "Relative Entropy: 0.0595\n", + "Epoch 2630/3000...\n", + "Loss Discriminator: 0.6841\n", + "Loss Generator: 0.7051\n", "Relative Entropy: 0.0594\n", - "Epoch 2131/3000...\n", + "Epoch 2631/3000...\n", "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0594\n", + "Epoch 2632/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0594\n", + "Epoch 2633/3000...\n", + "Loss Discriminator: 0.6831\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0593\n", + "Epoch 2634/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0593\n", + "Epoch 2635/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0592\n", + "Epoch 2636/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7083\n", + "Relative Entropy: 0.0592\n", + "Epoch 2637/3000...\n", + "Loss Discriminator: 0.6852\n", "Loss Generator: 0.7073\n", + "Relative Entropy: 0.0592\n", + "Epoch 2638/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0591\n", + "Epoch 2639/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0591\n", + "Epoch 2640/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0591\n", + "Epoch 2641/3000...\n", + "Loss Discriminator: 0.685\n", + "Loss Generator: 0.7057\n", "Relative Entropy: 0.059\n", - "Epoch 2141/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7076\n", + "Epoch 2642/3000...\n", + "Loss Discriminator: 0.6849\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.059\n", + "Epoch 2643/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.059\n", + "Epoch 2644/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0589\n", + "Epoch 2645/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0589\n", + "Epoch 2646/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7074\n", + "Relative Entropy: 0.0588\n", + "Epoch 2647/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0588\n", + "Epoch 2648/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0588\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2649/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0587\n", + "Epoch 2650/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0587\n", + "Epoch 2651/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0587\n", + "Epoch 2652/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.705\n", "Relative Entropy: 0.0586\n", - "Epoch 2151/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7064\n", + "Epoch 2653/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0586\n", + "Epoch 2654/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0585\n", + "Epoch 2655/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0585\n", + "Epoch 2656/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0585\n", + "Epoch 2657/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0584\n", + "Epoch 2658/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0584\n", + "Epoch 2659/3000...\n", + "Loss Discriminator: 0.6839\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0584\n", + "Epoch 2660/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7088\n", + "Relative Entropy: 0.0583\n", + "Epoch 2661/3000...\n", + "Loss Discriminator: 0.6824\n", + "Loss Generator: 0.706\n", + "Relative Entropy: 0.0583\n", + "Epoch 2662/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0583\n", + "Epoch 2663/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7065\n", "Relative Entropy: 0.0582\n", - "Epoch 2161/3000...\n", + "Epoch 2664/3000...\n", "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7029\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0582\n", + "Epoch 2665/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0581\n", + "Epoch 2666/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0581\n", + "Epoch 2667/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0581\n", + "Epoch 2668/3000...\n", + "Loss Discriminator: 0.6842\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.058\n", + "Epoch 2669/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.058\n", + "Epoch 2670/3000...\n", + "Loss Discriminator: 0.6843\n", + "Loss Generator: 0.7073\n", + "Relative Entropy: 0.058\n", + "Epoch 2671/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7069\n", + "Relative Entropy: 0.0579\n", + "Epoch 2672/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0579\n", + "Epoch 2673/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7057\n", "Relative Entropy: 0.0578\n", - "Epoch 2171/3000...\n", + "Epoch 2674/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0578\n", + "Epoch 2675/3000...\n", + "Loss Discriminator: 0.6853\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0578\n", + "Epoch 2676/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0577\n", + "Epoch 2677/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0577\n", + "Epoch 2678/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0577\n", + "Epoch 2679/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0576\n", + "Epoch 2680/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0576\n", + "Epoch 2681/3000...\n", "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7045\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0576\n", + "Epoch 2682/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7044\n", "Relative Entropy: 0.0575\n", - "Epoch 2181/3000...\n", - "Loss Discriminator: 0.6838\n", + "Epoch 2683/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0575\n", + "Epoch 2684/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0574\n", + "Epoch 2685/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0574\n", + "Epoch 2686/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0574\n", + "Epoch 2687/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.707\n", + "Relative Entropy: 0.0573\n", + "Epoch 2688/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0573\n", + "Epoch 2689/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0573\n", + "Epoch 2690/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0572\n", + "Epoch 2691/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0572\n", + "Epoch 2692/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0572\n", + "Epoch 2693/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0571\n", + "Epoch 2694/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7067\n", + "Relative Entropy: 0.0571\n", + "Epoch 2695/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.057\n", + "Epoch 2696/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.057\n", + "Epoch 2697/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7048\n", + "Relative Entropy: 0.057\n", + "Epoch 2698/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0569\n", + "Epoch 2699/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7076\n", + "Relative Entropy: 0.0569\n", + "Epoch 2700/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0569\n", + "Epoch 2701/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0568\n", + "Epoch 2702/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0568\n", + "Epoch 2703/3000...\n", + "Loss Discriminator: 0.6848\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0568\n", + "Epoch 2704/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0567\n", + "Epoch 2705/3000...\n", + "Loss Discriminator: 0.6869\n", "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0571\n", - "Epoch 2191/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.703\n", "Relative Entropy: 0.0567\n", - "Epoch 2201/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7071\n", + "Epoch 2706/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0567\n", + "Epoch 2707/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0566\n", + "Epoch 2708/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7066\n", + "Relative Entropy: 0.0566\n", + "Epoch 2709/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0565\n", + "Epoch 2710/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0565\n", + "Epoch 2711/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0565\n", + "Epoch 2712/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0564\n", + "Epoch 2713/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0564\n", + "Epoch 2714/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0564\n", + "Epoch 2715/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7052\n", "Relative Entropy: 0.0563\n", - "Epoch 2211/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.056\n", - "Epoch 2221/3000...\n", + "Epoch 2716/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0563\n", + "Epoch 2717/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0563\n", + "Epoch 2718/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0562\n", + "Epoch 2719/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0562\n", + "Epoch 2720/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0561\n", + "Epoch 2721/3000...\n", "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7078\n", + "Loss Generator: 0.7077\n", + "Relative Entropy: 0.0561\n", + "Epoch 2722/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0561\n", + "Epoch 2723/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.056\n", + "Epoch 2724/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.056\n", + "Epoch 2725/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.056\n", + "Epoch 2726/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0559\n", + "Epoch 2727/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0559\n", + "Epoch 2728/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0559\n", + "Epoch 2729/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0558\n", + "Epoch 2730/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0558\n", + "Epoch 2731/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0558\n", + "Epoch 2732/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0557\n", + "Epoch 2733/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0557\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2734/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7053\n", "Relative Entropy: 0.0556\n", - "Epoch 2231/3000...\n", - "Loss Discriminator: 0.6863\n", + "Epoch 2735/3000...\n", + "Loss Discriminator: 0.6872\n", "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0556\n", + "Epoch 2736/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0556\n", + "Epoch 2737/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0555\n", + "Epoch 2738/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0555\n", + "Epoch 2739/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0555\n", + "Epoch 2740/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0554\n", + "Epoch 2741/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0554\n", + "Epoch 2742/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0554\n", + "Epoch 2743/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0553\n", + "Epoch 2744/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0553\n", + "Epoch 2745/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0553\n", + "Epoch 2746/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7046\n", "Relative Entropy: 0.0552\n", - "Epoch 2241/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7088\n", + "Epoch 2747/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0552\n", + "Epoch 2748/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0552\n", + "Epoch 2749/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0551\n", + "Epoch 2750/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0551\n", + "Epoch 2751/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.055\n", + "Epoch 2752/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.055\n", + "Epoch 2753/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.055\n", + "Epoch 2754/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7043\n", "Relative Entropy: 0.0549\n", - "Epoch 2251/3000...\n", + "Epoch 2755/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7052\n", + "Relative Entropy: 0.0549\n", + "Epoch 2756/3000...\n", "Loss Discriminator: 0.6855\n", "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0549\n", + "Epoch 2757/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0548\n", + "Epoch 2758/3000...\n", + "Loss Discriminator: 0.6847\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0548\n", + "Epoch 2759/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.708\n", + "Relative Entropy: 0.0548\n", + "Epoch 2760/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0547\n", + "Epoch 2761/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0547\n", + "Epoch 2762/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0547\n", + "Epoch 2763/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0546\n", + "Epoch 2764/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0546\n", + "Epoch 2765/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0546\n", + "Epoch 2766/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7036\n", "Relative Entropy: 0.0545\n", - "Epoch 2261/3000...\n", - "Loss Discriminator: 0.685\n", + "Epoch 2767/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0545\n", + "Epoch 2768/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0544\n", + "Epoch 2769/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0544\n", + "Epoch 2770/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0544\n", + "Epoch 2771/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0543\n", + "Epoch 2772/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0543\n", + "Epoch 2773/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0543\n", + "Epoch 2774/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0542\n", + "Epoch 2775/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0542\n", + "Epoch 2776/3000...\n", + "Loss Discriminator: 0.6878\n", "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0542\n", + "Epoch 2777/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7059\n", "Relative Entropy: 0.0541\n", - "Epoch 2271/3000...\n", - "Loss Discriminator: 0.6845\n", + "Epoch 2778/3000...\n", + "Loss Discriminator: 0.6852\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0541\n", + "Epoch 2779/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0541\n", + "Epoch 2780/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.054\n", + "Epoch 2781/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.054\n", + "Epoch 2782/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.054\n", + "Epoch 2783/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0539\n", + "Epoch 2784/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0539\n", + "Epoch 2785/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0539\n", + "Epoch 2786/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.0538\n", + "Epoch 2787/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0538\n", + "Epoch 2788/3000...\n", + "Loss Discriminator: 0.6861\n", "Loss Generator: 0.7044\n", "Relative Entropy: 0.0538\n", - "Epoch 2281/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7052\n", + "Epoch 2789/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0537\n", + "Epoch 2790/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0537\n", + "Epoch 2791/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0536\n", + "Epoch 2792/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0536\n", + "Epoch 2793/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0536\n", + "Epoch 2794/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0535\n", + "Epoch 2795/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7057\n", + "Relative Entropy: 0.0535\n", + "Epoch 2796/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0535\n", + "Epoch 2797/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7022\n", "Relative Entropy: 0.0534\n", - "Epoch 2291/3000...\n", + "Epoch 2798/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7064\n", + "Relative Entropy: 0.0534\n", + "Epoch 2799/3000...\n", + "Loss Discriminator: 0.6846\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0534\n", + "Epoch 2800/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7003\n", + "Relative Entropy: 0.0533\n", + "Epoch 2801/3000...\n", + "Loss Discriminator: 0.6854\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0533\n", + "Epoch 2802/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0533\n", + "Epoch 2803/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0532\n", + "Epoch 2804/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0532\n", + "Epoch 2805/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0532\n", + "Epoch 2806/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7084\n", + "Relative Entropy: 0.0531\n", + "Epoch 2807/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0531\n", + "Epoch 2808/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0531\n", + "Epoch 2809/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.053\n", + "Epoch 2810/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.053\n", + "Epoch 2811/3000...\n", + "Loss Discriminator: 0.6851\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.053\n", + "Epoch 2812/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0529\n", + "Epoch 2813/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0529\n", + "Epoch 2814/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0529\n", + "Epoch 2815/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7068\n", + "Relative Entropy: 0.0528\n", + "Epoch 2816/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0528\n", + "Epoch 2817/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7004\n", + "Relative Entropy: 0.0528\n", + "Epoch 2818/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7051\n", + "Relative Entropy: 0.0527\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2819/3000...\n", "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.053\n", - "Epoch 2301/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7027\n", + "Loss Generator: 0.7059\n", "Relative Entropy: 0.0527\n", - "Epoch 2311/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0523\n", - "Epoch 2321/3000...\n", - "Loss Discriminator: 0.6866\n", + "Epoch 2820/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0526\n", + "Epoch 2821/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0526\n", + "Epoch 2822/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0526\n", + "Epoch 2823/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7058\n", + "Relative Entropy: 0.0525\n", + "Epoch 2824/3000...\n", + "Loss Discriminator: 0.6857\n", "Loss Generator: 0.7034\n", - "Relative Entropy: 0.052\n", - "Epoch 2331/3000...\n", - "Loss Discriminator: 0.6845\n", + "Relative Entropy: 0.0525\n", + "Epoch 2825/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0525\n", + "Epoch 2826/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0524\n", + "Epoch 2827/3000...\n", + "Loss Discriminator: 0.6872\n", "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0516\n", - "Epoch 2341/3000...\n", - "Loss Discriminator: 0.6855\n", + "Relative Entropy: 0.0524\n", + "Epoch 2828/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0524\n", + "Epoch 2829/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0523\n", + "Epoch 2830/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0523\n", + "Epoch 2831/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0523\n", + "Epoch 2832/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0522\n", + "Epoch 2833/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7072\n", + "Relative Entropy: 0.0522\n", + "Epoch 2834/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0522\n", + "Epoch 2835/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0521\n", + "Epoch 2836/3000...\n", + "Loss Discriminator: 0.6863\n", "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0513\n", - "Epoch 2351/3000...\n", - "Loss Discriminator: 0.6867\n", + "Relative Entropy: 0.0521\n", + "Epoch 2837/3000...\n", + "Loss Discriminator: 0.687\n", "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0509\n", - "Epoch 2361/3000...\n", + "Relative Entropy: 0.0521\n", + "Epoch 2838/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.052\n", + "Epoch 2839/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.052\n", + "Epoch 2840/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.052\n", + "Epoch 2841/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0519\n", + "Epoch 2842/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0519\n", + "Epoch 2843/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0519\n", + "Epoch 2844/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7075\n", + "Relative Entropy: 0.0518\n", + "Epoch 2845/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0518\n", + "Epoch 2846/3000...\n", "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0506\n", - "Epoch 2371/3000...\n", - "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.6992\n", + "Relative Entropy: 0.0518\n", + "Epoch 2847/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7045\n", + "Relative Entropy: 0.0517\n", + "Epoch 2848/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7061\n", + "Relative Entropy: 0.0517\n", + "Epoch 2849/3000...\n", + "Loss Discriminator: 0.6864\n", "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0502\n", - "Epoch 2381/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0499\n", - "Epoch 2391/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0495\n", - "Epoch 2401/3000...\n", + "Relative Entropy: 0.0517\n", + "Epoch 2850/3000...\n", "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0492\n", - "Epoch 2411/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0488\n", - "Epoch 2421/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0485\n", - "Epoch 2431/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0481\n", - "Epoch 2441/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0478\n", - "Epoch 2451/3000...\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0516\n", + "Epoch 2851/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0516\n", + "Epoch 2852/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0516\n", + "Epoch 2853/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0515\n", + "Epoch 2854/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0515\n", + "Epoch 2855/3000...\n", "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0475\n", - "Epoch 2461/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0471\n", - "Epoch 2471/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0468\n", - "Epoch 2481/3000...\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0515\n", + "Epoch 2856/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0514\n", + "Epoch 2857/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0514\n", + "Epoch 2858/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7062\n", + "Relative Entropy: 0.0514\n", + "Epoch 2859/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0513\n", + "Epoch 2860/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0513\n", + "Epoch 2861/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0513\n", + "Epoch 2862/3000...\n", "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0465\n", - "Epoch 2491/3000...\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0512\n", + "Epoch 2863/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0512\n", + "Epoch 2864/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0512\n", + "Epoch 2865/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0511\n", + "Epoch 2866/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0511\n", + "Epoch 2867/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0511\n", + "Epoch 2868/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.051\n", + "Epoch 2869/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.051\n", + "Epoch 2870/3000...\n", "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.051\n", + "Epoch 2871/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0509\n", + "Epoch 2872/3000...\n", + "Loss Discriminator: 0.6865\n", "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0461\n", - "Epoch 2501/3000...\n", + "Relative Entropy: 0.0509\n", + "Epoch 2873/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0509\n", + "Epoch 2874/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0508\n", + "Epoch 2875/3000...\n", "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0458\n", - "Epoch 2511/3000...\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0508\n", + "Epoch 2876/3000...\n", + "Loss Discriminator: 0.6884\n", + "Loss Generator: 0.7054\n", + "Relative Entropy: 0.0508\n", + "Epoch 2877/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0507\n", + "Epoch 2878/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0507\n", + "Epoch 2879/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0507\n", + "Epoch 2880/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0506\n", + "Epoch 2881/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0506\n", + "Epoch 2882/3000...\n", "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0455\n", - "Epoch 2521/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0451\n", - "Epoch 2531/3000...\n", - "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0506\n", + "Epoch 2883/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0505\n", + "Epoch 2884/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0505\n", + "Epoch 2885/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0505\n", + "Epoch 2886/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0504\n", + "Epoch 2887/3000...\n", + "Loss Discriminator: 0.686\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0504\n", + "Epoch 2888/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0504\n", + "Epoch 2889/3000...\n", + "Loss Discriminator: 0.6875\n", "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0448\n", - "Epoch 2541/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0445\n", - "Epoch 2551/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0442\n" + "Relative Entropy: 0.0503\n", + "Epoch 2890/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.0503\n", + "Epoch 2891/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0503\n", + "Epoch 2892/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7049\n", + "Relative Entropy: 0.0502\n", + "Epoch 2893/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0502\n", + "Epoch 2894/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0502\n", + "Epoch 2895/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0501\n", + "Epoch 2896/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0501\n", + "Epoch 2897/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0501\n", + "Epoch 2898/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.05\n", + "Epoch 2899/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.05\n", + "Epoch 2900/3000...\n", + "Loss Discriminator: 0.6885\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.05\n", + "Epoch 2901/3000...\n", + "Loss Discriminator: 0.6871\n", + "Loss Generator: 0.7037\n", + "Relative Entropy: 0.0499\n", + "Epoch 2902/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7042\n", + "Relative Entropy: 0.0499\n", + "Epoch 2903/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0499\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 2561/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0438\n", - "Epoch 2571/3000...\n", + "Epoch 2904/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7032\n", + "Relative Entropy: 0.0498\n", + "Epoch 2905/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7039\n", + "Relative Entropy: 0.0498\n", + "Epoch 2906/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0498\n", + "Epoch 2907/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0497\n", + "Epoch 2908/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0497\n", + "Epoch 2909/3000...\n", + "Loss Discriminator: 0.6863\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0497\n", + "Epoch 2910/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0496\n", + "Epoch 2911/3000...\n", "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0435\n", - "Epoch 2581/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.6993\n", - "Relative Entropy: 0.0432\n", - "Epoch 2591/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0429\n", - "Epoch 2601/3000...\n", + "Loss Generator: 0.7034\n", + "Relative Entropy: 0.0496\n", + "Epoch 2912/3000...\n", "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.6994\n", - "Relative Entropy: 0.0426\n", - "Epoch 2611/3000...\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0496\n", + "Epoch 2913/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0495\n", + "Epoch 2914/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0495\n", + "Epoch 2915/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0495\n", + "Epoch 2916/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0494\n", + "Epoch 2917/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0494\n", + "Epoch 2918/3000...\n", "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0423\n", - "Epoch 2621/3000...\n", + "Loss Generator: 0.7056\n", + "Relative Entropy: 0.0494\n", + "Epoch 2919/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7011\n", + "Relative Entropy: 0.0493\n", + "Epoch 2920/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0493\n", + "Epoch 2921/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0493\n", + "Epoch 2922/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7025\n", + "Relative Entropy: 0.0493\n", + "Epoch 2923/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0492\n", + "Epoch 2924/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0492\n", + "Epoch 2925/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.7046\n", + "Relative Entropy: 0.0492\n", + "Epoch 2926/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0491\n", + "Epoch 2927/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0491\n", + "Epoch 2928/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0491\n", + "Epoch 2929/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.049\n", + "Epoch 2930/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.049\n", + "Epoch 2931/3000...\n", "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.6985\n", - "Relative Entropy: 0.042\n", - "Epoch 2631/3000...\n", - "Loss Discriminator: 0.6879\n", "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0416\n", - "Epoch 2641/3000...\n", + "Relative Entropy: 0.049\n", + "Epoch 2932/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.0489\n", + "Epoch 2933/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0489\n", + "Epoch 2934/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0489\n", + "Epoch 2935/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7059\n", + "Relative Entropy: 0.0488\n", + "Epoch 2936/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7053\n", + "Relative Entropy: 0.0488\n", + "Epoch 2937/3000...\n", "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0413\n", - "Epoch 2651/3000...\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0488\n", + "Epoch 2938/3000...\n", + "Loss Discriminator: 0.6878\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.0487\n", + "Epoch 2939/3000...\n", + "Loss Discriminator: 0.6855\n", + "Loss Generator: 0.7038\n", + "Relative Entropy: 0.0487\n", + "Epoch 2940/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7055\n", + "Relative Entropy: 0.0487\n", + "Epoch 2941/3000...\n", + "Loss Discriminator: 0.6882\n", + "Loss Generator: 0.7008\n", + "Relative Entropy: 0.0487\n", + "Epoch 2942/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7001\n", + "Relative Entropy: 0.0486\n", + "Epoch 2943/3000...\n", + "Loss Discriminator: 0.6858\n", + "Loss Generator: 0.7044\n", + "Relative Entropy: 0.0486\n", + "Epoch 2944/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.7041\n", + "Relative Entropy: 0.0486\n", + "Epoch 2945/3000...\n", + "Loss Discriminator: 0.6883\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0485\n", + "Epoch 2946/3000...\n", + "Loss Discriminator: 0.6859\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0485\n", + "Epoch 2947/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7019\n", + "Relative Entropy: 0.0485\n", + "Epoch 2948/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0484\n", + "Epoch 2949/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0484\n", + "Epoch 2950/3000...\n", "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.041\n", - "Epoch 2661/3000...\n", - "Loss Discriminator: 0.688\n", "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0407\n", - "Epoch 2671/3000...\n", + "Relative Entropy: 0.0484\n", + "Epoch 2951/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7035\n", + "Relative Entropy: 0.0483\n", + "Epoch 2952/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0483\n", + "Epoch 2953/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7014\n", + "Relative Entropy: 0.0483\n", + "Epoch 2954/3000...\n", "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0404\n", - "Epoch 2681/3000...\n", - "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7007\n", + "Relative Entropy: 0.0482\n", + "Epoch 2955/3000...\n", + "Loss Discriminator: 0.6865\n", + "Loss Generator: 0.7005\n", + "Relative Entropy: 0.0482\n", + "Epoch 2956/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7065\n", + "Relative Entropy: 0.0482\n", + "Epoch 2957/3000...\n", + "Loss Discriminator: 0.688\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0481\n", + "Epoch 2958/3000...\n", + "Loss Discriminator: 0.6861\n", + "Loss Generator: 0.7012\n", + "Relative Entropy: 0.0481\n", + "Epoch 2959/3000...\n", + "Loss Discriminator: 0.6862\n", "Loss Generator: 0.702\n", - "Relative Entropy: 0.0401\n", - "Epoch 2691/3000...\n", + "Relative Entropy: 0.0481\n", + "Epoch 2960/3000...\n", "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0398\n", - "Epoch 2701/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0395\n", - "Epoch 2711/3000...\n", - "Loss Discriminator: 0.6873\n", "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0392\n", - "Epoch 2721/3000...\n", + "Relative Entropy: 0.0481\n", + "Epoch 2961/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7043\n", + "Relative Entropy: 0.048\n", + "Epoch 2962/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.048\n", + "Epoch 2963/3000...\n", + "Loss Discriminator: 0.6867\n", + "Loss Generator: 0.7027\n", + "Relative Entropy: 0.048\n", + "Epoch 2964/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.6985\n", + "Relative Entropy: 0.0479\n", + "Epoch 2965/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7022\n", + "Relative Entropy: 0.0479\n", + "Epoch 2966/3000...\n", "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7\n", - "Relative Entropy: 0.0389\n", - "Epoch 2731/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0386\n", - "Epoch 2741/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0383\n", - "Epoch 2751/3000...\n", + "Loss Generator: 0.7047\n", + "Relative Entropy: 0.0479\n", + "Epoch 2967/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.7024\n", + "Relative Entropy: 0.0478\n", + "Epoch 2968/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7006\n", + "Relative Entropy: 0.0478\n", + "Epoch 2969/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7036\n", + "Relative Entropy: 0.0478\n", + "Epoch 2970/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.705\n", + "Relative Entropy: 0.0477\n", + "Epoch 2971/3000...\n", "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.6997\n", + "Relative Entropy: 0.0477\n", + "Epoch 2972/3000...\n", + "Loss Discriminator: 0.6862\n", "Loss Generator: 0.7003\n", - "Relative Entropy: 0.038\n", - "Epoch 2761/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0378\n", - "Epoch 2771/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0375\n", - "Epoch 2781/3000...\n", + "Relative Entropy: 0.0477\n", + "Epoch 2973/3000...\n", + "Loss Discriminator: 0.6873\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0476\n", + "Epoch 2974/3000...\n", "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0372\n", - "Epoch 2791/3000...\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0476\n", + "Epoch 2975/3000...\n", + "Loss Discriminator: 0.6881\n", + "Loss Generator: 0.701\n", + "Relative Entropy: 0.0476\n", + "Epoch 2976/3000...\n", + "Loss Discriminator: 0.6875\n", + "Loss Generator: 0.7023\n", + "Relative Entropy: 0.0476\n", + "Epoch 2977/3000...\n", "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0369\n", - "Epoch 2801/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0366\n", - "Epoch 2811/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0363\n", - "Epoch 2821/3000...\n", - "Loss Discriminator: 0.6885\n", "Loss Generator: 0.7034\n", - "Relative Entropy: 0.036\n", - "Epoch 2831/3000...\n", - "Loss Discriminator: 0.6889\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0358\n", - "Epoch 2841/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0355\n", - "Epoch 2851/3000...\n", - "Loss Discriminator: 0.6898\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0352\n", - "Epoch 2861/3000...\n", - "Loss Discriminator: 0.6896\n", - "Loss Generator: 0.6983\n", - "Relative Entropy: 0.0349\n", - "Epoch 2871/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.6971\n", - "Relative Entropy: 0.0347\n", - "Epoch 2881/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0344\n", - "Epoch 2891/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.699\n", - "Relative Entropy: 0.0341\n", - "Epoch 2901/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0339\n", - "Epoch 2911/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0336\n", - "Epoch 2921/3000...\n", + "Relative Entropy: 0.0475\n", + "Epoch 2978/3000...\n", "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0333\n", - "Epoch 2931/3000...\n", - "Loss Discriminator: 0.6901\n", + "Loss Generator: 0.704\n", + "Relative Entropy: 0.0475\n", + "Epoch 2979/3000...\n", + "Loss Discriminator: 0.6866\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0475\n", + "Epoch 2980/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.7013\n", + "Relative Entropy: 0.0474\n", + "Epoch 2981/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7033\n", + "Relative Entropy: 0.0474\n", + "Epoch 2982/3000...\n", + "Loss Discriminator: 0.6874\n", + "Loss Generator: 0.7029\n", + "Relative Entropy: 0.0474\n", + "Epoch 2983/3000...\n", + "Loss Discriminator: 0.6864\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0473\n", + "Epoch 2984/3000...\n", + "Loss Discriminator: 0.6879\n", + "Loss Generator: 0.7002\n", + "Relative Entropy: 0.0473\n", + "Epoch 2985/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7021\n", + "Relative Entropy: 0.0473\n", + "Epoch 2986/3000...\n", + "Loss Discriminator: 0.687\n", "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0331\n", - "Epoch 2941/3000...\n", + "Relative Entropy: 0.0472\n", + "Epoch 2987/3000...\n", + "Loss Discriminator: 0.6868\n", + "Loss Generator: 0.702\n", + "Relative Entropy: 0.0472\n", + "Epoch 2988/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.7026\n", + "Relative Entropy: 0.0472\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 2989/3000...\n", + "Loss Discriminator: 0.6856\n", + "Loss Generator: 0.7031\n", + "Relative Entropy: 0.0472\n", + "Epoch 2990/3000...\n", + "Loss Discriminator: 0.687\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.0471\n", + "Epoch 2991/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7016\n", + "Relative Entropy: 0.0471\n", + "Epoch 2992/3000...\n", + "Loss Discriminator: 0.6886\n", + "Loss Generator: 0.7015\n", + "Relative Entropy: 0.0471\n", + "Epoch 2993/3000...\n", + "Loss Discriminator: 0.6869\n", + "Loss Generator: 0.6996\n", + "Relative Entropy: 0.047\n", + "Epoch 2994/3000...\n", + "Loss Discriminator: 0.6872\n", + "Loss Generator: 0.7028\n", + "Relative Entropy: 0.047\n", + "Epoch 2995/3000...\n", + "Loss Discriminator: 0.6862\n", + "Loss Generator: 0.7063\n", + "Relative Entropy: 0.047\n", + "Epoch 2996/3000...\n", + "Loss Discriminator: 0.6877\n", + "Loss Generator: 0.703\n", + "Relative Entropy: 0.0469\n", + "Epoch 2997/3000...\n", "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0328\n", - "Epoch 2951/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.697\n", - "Relative Entropy: 0.0326\n", - "Epoch 2961/3000...\n", + "Loss Generator: 0.7009\n", + "Relative Entropy: 0.0469\n", + "Epoch 2998/3000...\n", + "Loss Discriminator: 0.6876\n", + "Loss Generator: 0.7018\n", + "Relative Entropy: 0.0469\n", + "Epoch 2999/3000...\n", "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0323\n", - "Epoch 2971/3000...\n", - "Loss Discriminator: 0.6891\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.032\n", - "Epoch 2981/3000...\n", - "Loss Discriminator: 0.6887\n", "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0318\n", - "Epoch 2991/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6988\n", - "Relative Entropy: 0.0315\n", - "qGAN training runtime: 35.40391653776169 min\n" + "Relative Entropy: 0.0468\n", + "Epoch 3000/3000...\n", + "Loss Discriminator: 0.6857\n", + "Loss Generator: 0.7017\n", + "Relative Entropy: 0.0468\n", + "qGAN training runtime: 61.47158089876175 min\n" ] } ], "source": [ "# Run qGAN\n", - "qgan.run()\n", + "qgan.run(quantum_instance)\n", "\n", "# Runtime\n", "end = time.time()\n", @@ -1423,12 +12404,12 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd8VMX2wL8nPSSUQCBAQAgdUoFQFEFEUfBZUFEpKqhPREF9duyKP32iKDYUeSgqjycgNlRsCFGQFkroHQKEngRIL5vM748t2U12k03Z7CbM9/PJJ3vnzsw9cze5586cM+eIUgqNRqPRaMrDy90CaDQajcbz0cpCo9FoNBWilYVGo9FoKkQrC41Go9FUiFYWGo1Go6kQrSw0Go1GUyFaWWguOERkh4gMrqG+BotISg31NV5EVtVEX05e70YROSoiWSLSsxavO1ZEfqut62lqBq0sNGUQkWQRyTU9RE6JyGciEuxuuWoKpVSkUiqhKm1FRIlIpxoWyV1MByYrpYKVUptdcQERaW+6Zz7mMqXUfKXUVa64nsZ1aGWhccR1SqlgoBcQDzxXuoIYqbG/IesHiqZWaAfscLcQmrqBVhaaclFKHQN+BqIARCRBRF4Vkb+BHKCDiLQWkSUiki4i+0XkXnN7EQkUkc9F5KyI7BKRJ62XbUyzmKdEZCuQLSI+pv6+FpEzInJIRB6yqt9XRDaISIZp1vO2qTxARP4rImkick5EEkUkzN6YTNe80vT5JRFZJCJfiEimaYkq3kG7v0wft5hmXbdZnXtMRE6LyAkRucuq3F9EpovIEZO8s0Qk0Jl7LyKXmMZx3vT7Eqtz40XkoEnmQyIy1lTeSUT+NLVJFZGFdvr1F5EswNs0lgOmcptZk2lG+X+mz4NFJKWccQaKyFsicth07VWmcZrv2TnTPbu49HJbBeNMEJFXRORv01h/E5FQZ+6fpmbRykJTLiLSFrgGsF6muAOYADQEDgMLgBSgNTASeE1Ehpjqvgi0BzoAQ4Hb7VxmNPAPoAlQDPwAbAHCgSuAf4nI1aa67wLvKqUaAR2BRabycUBjoC3QDJgI5Do5zOtNY2gCLAE+sFdJKTXI9DHWtHRjfhC3NF07HLgHmCkiIaZzrwNdgDigk6nOCxUJJCJNgZ+A90zjeRv4SUSaiUiQqXy4UqohcAmQZGr6CvAbEAK0Ad63M45806zRPJaOFcnjxDinA71NsjQFnsT4XZrvWRPTPVvj7Ditqo0B7gJaAH7A407Kq6lBtLLQOOI7ETkHrAL+BF6zOveZUmqHUsqA8QEyAHhKKZWnlEoC5gB3mureCrymlDqrlErB+FAozXtKqaNKqVygD9BcKTVVKVWglDoI/AcYZapbCHQSkVClVJZSaq1VeTOgk1KqSCm1USmV4eRYVymlliqlioB5QKyT7cwUAlOVUoVKqaVAFtBVRASjUn1EKZWulMrEeB9HldOXmX8A+5RS85RSBqXUl8Bu4DrT+WIgSkQClVInlFLm5aRCjMtLrU3fR00azB2N0wu4G3hYKXXMdP9XK6Xya2CcAHOVUntNfx+LMCpeTS2jlYXGESOUUk2UUu2UUg+Y/lHNHLX63BowPwjNHMb49mk+b13f+rO9snZAa9NS0jmTwnoGMC8p3YPxTX23acniWlP5POBXYIGIHBeRN0TE18mxnrT6nAMESOXsJ2kmxWndRzDQHGgAbLQayy+m8opojfE+WnMYCFdKZQO3YZw9nRCRn0Skm6nOk4AA601LandXYhwV4WicoUAAcKAKfTocp9Vx6e+n3jhb1CW0stBUBetQxceBpiLS0KrsIuCY6fMJjMshZtpW0N9R4JBJUZl/GiqlrgFQSu1TSo3GuCQxDVgsIkGmt92XlVI9MC6FXEvJ7MZdpGJcCou0GktjqyWg8jiOUXFaY7mvSqlflVJDgVYY38T/Yyo/qZS6VynVGrgP+FCc997KwajczLR0sl0qkIdxWbA0FYW1LnecGs9BKwtNtVBKHQVWA/82GZljML79/9dUZRHwtIiEiEg4MLmCLtcDmWI0egeKiLeIRIlIHwARuV1EmiulioFzpjbFInK5iESLiDeQgXHJpLhmRwvAKYz2lwoxyfgfYIaItAAQkXAr+0t5LAW6iMgYMRr9bwN6AD+KSJiI3GCyXeRjXA4qNvV/i4iYlfNZjA9rZ+9DEjDGdM+HAZdVYpyfAm+L0TnB22TI9gfOmK7v6J45HKeTMmtqCa0sNDXBaIxG7OPAt8CLSqllpnNTMRq/DwHLgMUYH3B2MdkNrsW4Ln0I41vrHIyGVYBhwA6TN8+7wCjTEllLU98ZwC6MdpZ5NTbCEl4CPjctK93qRP2ngP3AWhHJwHgPulbUSCmVhvE+PAakYVxeulYplYrx//ZRjPc7HeND/X5T0z7AOtP9WYLRjnDQybE9jNFWcA4YC3znZDswGp23AYkmmaYBXkqpHOBV4G/TPetfiXFqPAjRyY80tYmI3I/xAe/UW6tGo/EM9MxC41JEpJWIDBARLxHpivEN8lt3y6XRaCqH3jGrcTV+wMdABMbljQXAh26VSKPRVBq9DKXRaDSaCtHLUBqNRqOpEK0sNBqNRlMhLrVZmHy138UYsGyOUur1UudnAJebDhsALZRSTazONwJ2At8ppcr1zw8NDVXt27evsqzZ2dkEBQVVub2nUF/GAXosnkp9GUt9GQdUbywbN25MVUpVHFVAKeWSH4wK4gDGzTh+GAPD9Sin/oPAp6XK3gX+B3xQ0fV69+6tqsOKFSuq1d5TqC/jUEqPxVOpL2OpL+NQqnpjATYoJ57prlyG6gvsV0odVEoVYPSCuaGc+qOBL80HItIbYzwgnVFLo9Fo3IwrlUU4tgHiUrANDmZBRNphdK1cbjr2At5ChyLWaDQaj8BT9lmMAhYrY6gHgAeApUqpFGOUZ/uIyASMIaAJCwsjISGhygJkZWVVq72nUF/GAXosnkp9GUt9GQfUzlhcqSyOYRthtA2OI0mOAiZZHV8MDBSRBzCGI/YTkSyl1BTrRkqp2cBsgPj4eDV48OAqC5uQkEB12nsK9WUcULfGUlhYSEpKCnl5eXbPN27cmICAgFqWyjXUl7HUl3GAc2MJCAigTZs2+Po6G7nfFlcqi0Sgs4hEYFQSozBmvLLBFIc/BLBk0FJKjbU6Px6IL60oNBpPIiUlhYYNG9K+fXvszYYzMzNp2LChnZZ1j/oylvoyDqh4LEop0tLSSElJISIiokrXcJnNQhmTpEzGmJBmF7BIKbVDRKaKyPVWVUcBC0xWeY2mTpKXl0ezZs3sKgqNxt2ICM2aNXM483UGl9oslDH14tJSZS+UOn6pgj4+Az6rYdE0mhpHKwqNJ1Pdv0+9g1ujqSecOnWKMWPG0KFDB3r37s3FF1/Mt9+6L8BvQkICq1evrnYf1157bcUVq8Dq1auJjIwkLi6O3Nzcihs4yWuvvWZzfMkll9RY3+5EKwuNph6glGLEiBEMGjSIgwcPsnHjRhYsWEBKSopLr2swGByeq4qyKK+/mmbRokU8/fTTJCUlERgYWGP9llYW1VWYnoJWFlWgKKuAw1OXk739lLtF0WgAWL58OX5+fkycONFS1q5dOx588EEAioqKeOKJJ+jTpw8xMTF8/PHHQInH2ciRI+nWrRtjx441R09g48aNXHbZZfTu3Zurr76aEydOAHDNNdfwr3/9i/j4eN59911++OEH+vXrR8+ePbnyyis5deoUycnJzJo1ixkzZhAXF8fKlStJTk5myJAhxMTEcMUVV3DkyBEAxo8fz8SJE+nXrx9PPvmkwzGmp6czYsQIYmJi6N+/P1u3bgXgzz//JC4ujri4OHr27ElmZiYnTpxg0KBBxMXFERUVxcqVK236mjNnDt988w3PP/88Y8eOLTODmTx5Mp999hkA7du358UXX6RXr15ER0eze/duwOiuetdddxEdHU1MTAxff/01U6ZMITc3l7i4OMaONfrpBAcbU64rpXjiiSeIiooiOjqahQsXVvgdeBKess/Coyk8k41PSCAInPpsE+cTDnH2132c+GAt8fsexadx/XC/09RdduzYQa9evRye/+STT2jcuDGJiYnk5+czYMAArrrqKgA2b97Mjh07aN26NQMGDODvv/+mX79+PPjgg3z//fc0b96chQsX8uyzz/Lpp58CUFBQwIYNGwA4e/Ysa9euRUSYM2cOb7zxBm+99RYTJ04kODiYxx837q297rrrGDduHOPGjePTTz/loYce4rvvjJlbU1JSWL16Nd7e3g7H8OKLL9KzZ0++++47li9fzp133klSUhLTp09n5syZDBgwgKysLAICApg9ezZXX301zz77LEVFReTk5Nj09c9//pMVK1Zw4403MnLkyAr3KISGhrJp0yY+/PBDpk+fzpw5c3jllVdo3Lgx27Zts9yHm2++mQ8++ICkpKQyfXzzzTckJSWxZcsWUlNT6dOnD4MGDXL4HVx66aXlylTbaGVRAXkH00nqP4sG0WG0vLcPyU/bRh/Z0Pltwh+7lNy9qRTnFNL1f7dqQ+cFztoWr1VcqQr0P/2M03UnTZrEqlWr8PPzIzExkd9++42tW7eyePFiAM6fP8++ffvw8/Ojb9++tGnTBoC4uDiSk5Np0qQJ27dvZ+jQoYBxZtKqVStL/7fddpvlc0pKCrfddhsnTpygoKDAoWvmmjVr+OabbwC44447bGYRt9xyS7mKAmDVqlV8/fXXAAwZMoS0tDQyMjIYMGAAjz76KGPHjuWmm26iTZs29OnTh7vvvpvCwkJGjBhBXFyc0/fOHjfddBMAvXv3toxh2bJlLFiwwFInJCSkQvlHjx6Nt7c3YWFhXHbZZSQmJtKoUSO734GnKQu9DFUB51YYc93nbDvFwYd+tFvn2FurSP9hN+f+OEBxdmFtiqfRABAZGcmmTZssxzNnzuSPP/7gzJkzgHEJ5P333ycpKYmkpCQOHTpkmVn4+/tb2nl7e2MwGFBKERkZaam/bds2fvut5EXJOsLpgw8+yOTJk9m2bRsff/xxldwzqxP9dcqUKcyZM4fc3FwGDBjA7t27GTRoEH/99Rfh4eGMHz+eL774otw+fHx8KC4uthyXHoP5HpnvT01j7zvwNPTMosbxvLVGTe1ibwbg6g1gQ4YM4ZlnnuGjjz7i/vvvB7BZern66qv56KOPGDJkCL6+vuzdu5fwcLuh2gDo2rUrZ86cYc2aNVx88cUUFhayd+9eIiMjy9Q9f/68pa/PP//cUt6wYUMyMjIsx5dccgkLFizgjjvuYP78+QwcOLBSYxw4cCDz58/n+eefJyEhgdDQUBo1asSBAweIjo4mOjqaxMREdu/eTWBgIG3atOHee+8lPz+fTZs2ceeddzrsu127duzcuZP8/Hxyc3P5448/KnyzHzp0KDNnzuSdd94BjMtQISEh+Pr6UlhYWGan9MCBA/n4448ZN24c6enp/PXXX7z55psWG4ino2cWFVHJJSVVbAznm7nhGKcXbMVwtuZc8jQaR4gI3333HX/++ScRERH07duXcePGMW3aNMC4Rt+jRw969epFVFQU9913X7lvr35+fixevJinnnqK2NhY4uLiHHr1vPTSS9xyyy307t2b0NBQS/l1113Ht99+azFwv//++8ydO5eYmBjmzZvHu+++W6kxvvTSS2zcuJGYmBimTJliUUzvvPMOUVFRxMTE4Ovry/Dhw0lISCA2NpaePXuycOFCHn744XL7btu2LbfeeitRUVHceuut9OzZs0J5nnvuOc6ePUtUVBSxsbGsWLECgAkTJhATE2MxcJu58cYbiYmJITY2liFDhvDGG2/QsmXLSt0Dd1JvcnDHx8crs8GtKjiKQ3Tqs00cevIX5+XY8wjnVyWz7x6jf7v4etH3yJOId+3o5boUT6ki6tJYdu3aRffu3R2ev5BCS9QV6ss4wPmx2Ps7FZGNSqn4itrqmUU5KKUoyiqoVJvigiKLogBQhcUceWVFTYum0Wg0tYpWFuVwZOoKjkxdXqk2WwZ8XKbsxIfrakokjUajcQtaWZTDiZlrK92mKCPfbrkqrvpyn1KKglNZVW6v0Wg01UUri1oiMeJNtg//jB0j/kvG2qMVN7Ai5c2VbIp+j5OfVN0mo9FoNNVBK4taojjXQNbG42SuPsLO6+ex/ZrPOfjEz061PTZ9FQBHp/3lShE1Go3GIVpZuImsDcc4/flmCk5kcvz9NRgy8iqOB1M/HNc0Gk0dRCsLN7Pz5vkceWUFGzq9zbqwf3Ny7kYA8g6dpfBMtk1dVVhkrwuNBjDu/I2LiyMyMpLY2Fjeeusty67kDRs28NBDD1X7GrNmzeJ///tfpdpUJ0T3Z599xvHjx6vcHoz7M6ZPn16tPhzx3nvv0b179zJ7KqpDcnKyzT2uqe+uuugd3G4mb3+6zXHyU78SelMkSf0+Amx3Axfn6FAiGscEBgZaAtidPn2aMWPGkJGRwcsvv0x8fDzx8RW60peLwWBg4sSJZGZmVqpddUJ0f/bZZ0RFRdG6dWun2xQVFVUYZ6qm+PDDD1m2bJklrlNNYFYWY8YYs1DXxHdXE+iZhQPyDp9z27ULjmdUXEmjKYcWLVowe/ZsPvjgA5RSNiG47YX0Bpg2bRrR0dHExsYyZYox5f3gwYNtwpG/9NJLvPfee5ZzjzzyCPHx8XTv3p3ExERuuukmOnfuzHPPPWeRxRyiu7xQ3FOnTqVPnz5ERUUxYcIElFIsXryYDRs2MHbsWEuCoj/++IOePXsSHR3N3XffTX6+0fuwffv2PPXUU/Tq1YuvvvrK4X1JSkqif//+xMTEMGbMGM6ePQsYZwg9evQgJiaGUaNGlXufzEycOJGDBw8yfPhwZsyYUWYGExUVRXJyMsnJyXTv3p17772XyMhIrrrqKkuypf3793PllVcSGxtLr169OHDgAFOmTGHlypXExcUxY8YMm+/OUZj21157jbvvvpvBgwfToUMHy3dUk2hl4YBjM/5227ULU0ti+uQeTC+npkbjmA4dOlBUVMTp06dtys0hvZOSkli5ciWBgYH8/PPPfP/996xbt44tW7bYRIQ1hyN/7LHHylzDz8+PDRs2MHHiRG644QZmzpzJ9u3b+eyzz0hLSytTf/Pmzbzzzjvs3LmTgwcP8vffxv+zyZMnk5iYyPbt28nNzeXHH39k5MiRxMfHM3/+fJKSkhARxo8fz8KFC9m2bRsGg4GPPvrI0nezZs3YtGmT5WFvjzvvvJNp06axdetWevTowcsvvwzA66+/zubNm9m6dSuzZs1yeJ+smTVrFq1bt2bFihU88sgj5X4X+/btY9KkSezYsYMmTZpYoueOHTuWSZMmsWXLFlavXk2rVq14/fXXGThwIElJSWX6NYdp37p1K6+99ppNvKvdu3fz66+/sn79el5++WUKC2t2JUIvQzlAvNwXZjzfalazpf8su3WUUhSezsbLz9uYa0PjMdwXP9sl/X68YUKN9GMvpPeyZcu46667aNCgAQBNmza11LcOR16a66+/HoDo6GgiIyMtYcw7dOjA0aNHadasmU19R6G4V6xYwRtvvEFOTg7p6elERkZy3XXX2bTds2cPERERdOnSBYBx48Yxc+ZM/vWvf1UoJxgDHp47d47LLrsMgDFjxnDXXXcBWGI5jRgxghEjRji8T1UlIiLCEia9d+/eJCcnk5mZybFjx7jxxhsBCAioOC+OozDtAP/4xz/w9/fH39+fFi1acOrUqRpdHtMzCwcUu9GYfOyd8mc1ObtOk9jhLTZFv8eGrjNqSSpNXePgwYN4e3vTokULm3J7Ib3Lo7zw4ebQ2l5eXjZhtr28vOwGKrQXijsvL48HHniAxYsXs23bNu69995aD3P+008/MWnSJDZt2kSfPn0wGAyVvk/lhTmvjRDkrr6Gnlk4IHXhNpvjbgtu48SH68jccMzlhub8I+fLPZ/83O8UZ1cuZpWm9rA3A6jtoHVnzpxh4sSJTJ48uUwyLnshvYcOHcrUqVMZO3YsDRo0ID093WZ24UrMD9XQ0FCysrJYvHgxI0eOBIxhzs22gq5du5KcnMz+/fvp1KkT8+bNs8wSnKFx48aEhISwcuVKBg4cyIIFC7jssssoLi7m6NGjXH755Vx66aUsWLCArKws0tLSytynbt26Oey/ffv2/PijMefNpk2bOHToULnyNGzYkDZt2vDdd98xYsQI8vPzKSoqshlzaRyFaa8NtLKwQ87uMzbHEW8Oo8mQjjQZ0hFwXSY0ZxGf2vH00NQtzLmfCwsL8fHx4Y477uDRRx8tU++dd95hxYoVeHl5ERkZyfDhw/H39ycpKYn4+Hj8/Py45ppreO212vk7b9KkCffeey9RUVG0bNmSPn36WM6Z83MHBgayZs0a5s6dyy233ILBYKBPnz42Oced4fPPP2fixInk5ORw0UUXMW/ePIqKirj99ts5f/48SikeeughmjRpwvPPP1/mPpXHzTffzBdffEFkZCT9+vWzLJeVx7x587jvvvt44YUX8PX15auvviImJgZvb29iY2MZP368Tbj0l156ibvvvpuYmBgaNGhgkz/E1egQ5Sasw2Gn/7ibvXd/YzkXvexugmJK4s67U1n03DyZzT0/sCmzdq+tS2G9K6IujUWHKK971JdxgA5R7jH4tbGd5kUuHecmSeD4e1X3Wa8uRdkFnJ6fRGFaTsWVNRpNvUIrCzuUnmz5Nm1gc9wwPpyu/73FpqzlhD7UBqfmbipTduSVFWyO/9AmMm3hmWzSluxCGYrL1K8qh1/8g4OPLGX3mIU11qdGo6kbuFRZiMgwEdkjIvtFZIqd8zNEJMn0s1dEzpnK24nIJlP5DhGp3MJktal4aS7kqs6Wz+LvjXdD/3Jqu5bj768h/8g5jr+/xlK2/ZrP2ffPbzn5n0SK8wwU51XfM+J8wkEAsjefqHZfGo2mbuEyA7eIeAMzgaFACpAoIkuUUjvNdZRSj1jVfxAwW3JOABcrpfJFJBjYbmpbvSAxrsQDbD+qoAjwxXA+z7JX49j7azg8dTni7UW/lKeqeQX37T2pCyilyngeaTSeQnXt066cWfQF9iulDiqlCoAFwA3l1B8NfAmglCpQSpmzCPm7WM4aoTrJjWqKU59twnvZKQ4+XhL63JCaA0UKVVBU7T8WrSscExAQQFpaWvXvsUbjApRSpKWlObXxzxGudJ0NB6yz/KQA/exVFJF2QASw3KqsLfAT0Al4olZnFZX9fxcBD1AWAL6zD5DZwsHmpGIF3vqJ7wratGlDSkoKZ86csXs+Ly+vWv+onkR9GUt9GQc4N5aAgIBq7ej2lH0Wo4DFSinLtmml1FEgRkRaA9+JyGKl1CnrRiIyAZgAEBYWRkJCQpUFyMrKsrT32p6Kn9U5R/36N/ZFzhdSFOLDkeNHLTez4MHO+PxwnML7O+L33DaksHYVSUFWnt1JwJ8rEsCn6pM0v/w8yxSvOvfaWay/k7pOVlaWJaBeXae+jKW+jAOcH8vhw4erfA1XKotjQFur4zamMnuMAibZO6GUOi4i24GBwOJS52YDs8G4z6I6PvnWPv1p53eyj70AhFzdma4O+s1Z0oOjr//FRc9fjm/zIHYfWkiL22NpMTYOnjfWWffCDhQloUN8mgZiSM+tspzOIDn2Q5UMGjgIL3/jV5536CxF2QUERYU53W9Sg93kYdxtWxv7H+rSPouK0GPxPOrLOKB2xuJKW0Ai0FlEIkTED6NCWFK6koh0A0KANVZlbUQk0PQ5BLgU2ONCWR3S9tnBDs816N6Crp+PJLBTM3waBxD18zijonBA+9eG0nvXv2jYr+aCe1UGVWSc4ZxbfoCkfh+xbcgnGDIqH4NHo9FceLhMWSilDMBk4FdgF7BIKbVDRKaKyPVWVUcBC5StZbA7sE5EtgB/AtOVUrbBmlxIkVXsJ6+A6k2+ml1rjCXT5KpOtPxnH7d6y5z7Yz+5+9PYPapkn4R1OPQK0eYOjeaCxaU2C6XUUmBpqbIXSh2/ZKfd70CMK2Urj4MP/1RyUM1Q5RFvDqfxkI6EDCvZl6EMJXoxOD4cMObkdjX77vm2bGFlvHe0stBoLlg8xcDtsYh39SZf3sF+NL8lyqZMWYUxbv/qUBpEhZH27U4OTP4BAK8GvrWXQtUznLg0Go2H4/H7F9yNuMLVtMjqCS2Cl683fi1LPBlajI2t+Ws6Qinyj2dQnG+oOIeH3nCm0Vyw6JlFRbjgARnYrTnZW086rlCLb/sp01eR9q1lUz2hI6Po9OH1dutqXaHRXLjomUVFuOAB2f7/rqz5TquItaIASF283U2SaDQaT0YrCzfg06RszuyAjiW5it0dMsLh9fXUQqO5YNHKws34hzey/I7+4x56bXnQ7Ubn/fd/T+6+VAznjJsHDedyOT5zLYWp2e4VTKPRuA1ts6gAqabrrCN6bp6M4Vwevs1L4jgFRTu/m9qVpH2zk7RvjMtTMQn/5Oi0vzj78143S6XRaNyJnlmUwnDWNhSHb6iDoHzVxD+8EUGRLeyfdLAMFP7oAJfIUh5bB8+xqygy1x21U1uj0dRXtLIoxe4xi9wtAo0ubV+mrPXDl+DXulHZyiYi3hjmQonKkv6TW6KvaDQaN6GVRSmyNrp+J3VFNL22K90Xj7Ypu+jZweXuthY/bxdLZcuJWetJ/2VvjWTg02g0no9WFh6IiNB4UATeTWzj0zeItLVphD9+Kd7BfoSN70WzET0I6tmqNsVk752LWX/RG6S8uZLc/WnsuPYLMlZXPQSyRqPxXLSyKIeAjk3dev3Wky8GoOWEPgA0jA+n24LbLOfDHxlA/IHHiHhjGN4NfIn+9S63yJny5kr2T/yezPUp7Bwxn62Xz2HXLV9asgdmrD5M3sF0AM7+uo/dYxeVsQ1pNBrPRntDlUP3RaMrruRCWj/Yn6bDO9vswWgypCMxCf9EGYrx8q3dpafyMLvZAuTsOA1A9taT+DTyZ+eI+QD0P/0Me+74CoCUt1fR/pWhtS+oRqOpElpZlIN/28Zuvb6IENg5tEx5gx4OvKjciD1zSsbKZJShuOwJoOh8vt1yjUbjmWhlUc8oeLQrzVbnUJRVQM72UxU3qKnVNPLzAAAgAElEQVTrHj1fpuzIKytq7foajca1aJtFPaO4fzMil9xBty9vq7iyOzHtdVTFCkNmPmf/OOBwFqLRaNyPVhb1FL+wYCLeGIZvaANLWbOberhRIjj7+36b44JTWSR2mM6Gjm+xZ/RCtl4+h4LTWQBkJZ3Ab9JGzv62zx2iajSaUmhlUY8JG9+L8CcGWo47vn8d4u8+o/iesVYbHkU4PT/JJslT7p5Udt5oNIbvv+87vM7ks+f2r2pbTI1GYwetLOo7VoZnL19v+h19iu5fj7GpErd2Yi0LBalfbYPislbxvH1pAKgincJPo/EktLKo71QQ7rzjzOsJ6FD7+0lUYXG50XWtMxQWF1SQwU+j0bgcrSzqOXbDgFgpkNL5wQFa/+sSV4pk4di7qx2ftIr2m59S1tNKo9HULtp1tp7TfGQUqYu20fTabiWFdt7oY9fcR/pPe2gypCOBnZtx/J1yHuQ1hCpnxmCT+7zI1ktKFSuXhY7XaDT20cqinuMV6EvkD3dWWC+wYzPCHzLOKFSRB7iwepdMepWVbSP5+WWc+nwTPdffj1/Lhu6QTKO5INHLUFYUnMpytwi1QkVZW8XbvX8WiV3epuBEpuX4yMvLyT1gNHyf/Hg9Ks/A6flb3CWeRnNBopWFNW7OfV1bBHQIcbcI5VJ0Lo+ic3mW43PLDrDl4o/dKJFGo9HKwooLxV0z4KImRC4dR8+NkxzWCerVuhYlcg57y2O5+1JJ+35nue1yD6aT/Nzvlg1/Go2m8rjUZiEiw4B3AW9gjlLq9VLnZwCXmw4bAC2UUk1EJA74CGgEFAGvKqUWulJWsH0YucOdtDZpGB9e7vmuc2/m5NyNtBgbx7nlB/Bv3cgSMdZdFOeWJFpKmfYXGauPkLEyGYB9935H/IHH8GnoX6bdjmu/wJCaQ96hs3Sbf2ttiavR1CtcpixExBuYCQwFUoBEEVmilLK8BiqlHrGq/yDQ03SYA9yplNonIq2BjSLyq1LqnKvkBWw2ibWbeoVLL+Xp+LVqyEXPDAag5V293SuMidJZDM2KwsyZBVtpdW8fm7L8o+cxpOYAkLvnjEvl02jqM65chuoL7FdKHVRKFQALgBvKqT8a+BJAKbVXKbXP9Pk4cBpo7kJZAVuvG0S7ZpZH5A93EJf4QK1ec9ctX5Z73nA2l7UtXuPAwz9ayjb3nulqsTSaCwJXKotw4KjVcYqprAwi0g6IAJbbOdcX8AMOuEBGWzzBZbQO4BXkR8N+bQlo14R+J5+m36mnCezSrOKGLubY9FUAnPlyq63it2D/BcC6blFWgY5+q9HYwVP2WYwCFiulbHZpiUgrYB4wTilV5j9YRCYAEwDCwsJISEiosgBZWVmsX7ce84r3tm1bKfZNqXJ/7iIrK6ta96E8zBnBCzsGlrmGbyh473XJZavEupb/pnBCR3ytynLzc/lzzg9IloHiOKNHmCRn4/fUFgy3t6NoaEsC7lxHcZg/Be/X7NKbK7+X2qa+jKW+jANqZyyuVBbHgLZWx21MZfYYBdi45ohII+An4Fml1Fp7jZRSs4HZAPHx8Wrw4MFVFjYhIYE+HXqwlSQAYuJiaTK4Y5X7cxcJCQlU5z6Ux1qMu7qbhjSle6lrZDftxrYrP3XJdauK72zbyWhgQCBez2wDoPeOh/FtHsSuUQs4r8B33mHixgxmB+vwOpVf4/fQld9LbVNfxlJfxgG1MxZXLkMlAp1FJEJE/DAqhCWlK4lINyAEWGNV5gd8C3yhlFrsQhltsHaddffGNE/E/6ImADQa2K7MuaCYlrS6v19ti1RlClOzydx4jMx1JbPHE7PWO6xfnG+gKEungtVcuLhsZqGUMojIZOBXjK6znyqldojIVGCDUsqsOEYBC5Sy2RF3KzAIaCYi401l45VSSa6SF0AVW610+WhlUZrIpXeSseowTa/rZvd8u5evwK9VQw6/sKyWJXMSK6cFZShmx/DPbU6nf7/LYdNNPT/AkJpDn+Qn8G7g67CeRlNfcekTUSm1VCnVRSnVUSn1qqnsBStFgVLqJaXUlFLt/quU8lVKxVn9uFRRADaus3pmURa/FsGE3hSJl6/jBEqNLjXOOsTPm06zynN+q33yk89aPqvC8o3YWZuP2xyb3W8LTBFwT36ygf33f+/AkK7R1D/0E9EK62WoijataewTFBVG9LK76bXlQUJviqTvsadoY5Wtz1OoKEfG9qs/s1telFXA0Tf+Ivnp30j9egcZqw/bnC9My2H/A0vIXF/3nCM0mvLwFG8oz8DkOhvcpw2il6GqTFBMS8tnL19v2jwxkPDHL0VEKMouIDFiuhulM1O1GcHR1xI4/1ey5bg431bpHHl5OamLt5O6eDv9Tz9TDfk0Gs9CKwsrzEsKovVEjSMme4F3kB/xex5B/H3wCvQhP/kcSf0+qnV5dl7/3yq1s1YU9ig4nlGlfjUaT0crCyss68/aXuFSfEICLZ8DIjw3Am5e8llOfb6ZrE2OPL7toHf+a+op+qlojWkZyiZLm6bW8G4cwEUvDMGvbWM6vnetu8Uhqe9HnJi5lsw1Rx3WKaMbHPzpeP2dyplF22pOOI2mltHKwgqzgVu89G1xB+1fHUrryf3ptXGSXffcBtFhbpCqYpRSZKw+jOF8no32SP16h+Wz37t7OTD5B4oLyzesazSein4qWmPe6qFnFrVKs5t6IH7ehAztZCnzDvKjYHJn2jw1iIteGIJ3kwC6fHqzG6W0T3F+Eek/7GbniPlsv2quzczi8Et/oIoV+SZ3W6CqdnWNxu1om4UVZs+W8vYRaGqezrNGoAzFZTzQigc1p83gSwFoNamfxUjuSewdt5jmo2MAyDt01jYPilIcevxnTv/X9VuENBpXo2cWVhTnFALgpXfo1joVuSp7oqIwk2e12e/cH1bxqIpVWUVxgaTu1dQ/tLKwwnDemPfZO8jPzZJo6hKODOCFpl3fNugd35o6ilYWVhjSjP/cvi2C3CyJpr6iJxaauopWFlYog9FmIX7aZlEXaBDlmd5R5VKOtjjz1fYy4UM0Gk9BKwsrlMHkOqtDfXgsQXGtAAgdGUXM8nvcLE3lOfr6Xxx84ucy5Tk7T3Ng0hJ2jphPxpojbpBMoykf7Q1lhTmdpo4467l0m38raUt2EXprtLtFqRInPzbmzAhoH0KD7i1Imb6STh9eT+HZXEud4++vodHFFznd55HXEvBpEkjrB+pOPhFN3UMrCyuUeQe3nll4LL7Ng2h5T7zlOGL6cA49bnxTD+zSjNy9ae4SrVIcebkk3fyBh34kc62VkVxBxtojiAgN+7W107qErKQTHH/HmMFQKwuNK9HKwgpl2l2rlUXdIezOnuQdOosyFBH+8CVs7PGu5Vxg9+bk7jrjRumcw0ZRYHxpMQc6rChybfLTv7lMLo3GGv1UtMKyDKWVRZ2i3YtDaP/KUHxDS7zYGg1sT49vxrpRqqpzPuGQ5XNRVoHDekopsreesBzrHBoaV6KfilZYYkNpZVFn6fTh9YTd1Yvui0fj26yBu8WpNgf+9SNrW7zGjhFlQ6qnfrXdJuPfjmu/wGBl+7CHealVo6ks+qlohTZw131CR0YRMW2YR+/4rgzpS3YDkLn6CKe+2MzhF5aRufEYqd/u4MDkH8rU326VV/zMom0k9Z9l2WFuOJtLYse3OPDQj7UjvKZeoW0WVlh83LWy0HggZkP+iVnrHdbJO5hu+WxWJkdeXk6XuTeTvnQPxTmFnFmw1SYEvFKKonN5NnlGNJrS6KeiFQUpxixn51ccdLMkmprCvC+jyxcj6fD2NW6WpnY48NCPNvGqzMur1jnmi/MNls9HXl7Ohq4zSP95b+0JqalzaGVhh/xj5yuupKkTRC0dR+8dD9N0WBda3B6Hd5MAANpNvbLCtk2v7epq8VzCmQVb2XP7opIC04qctb3i+Adrydl9hpNzN3Liw3UAHJvxd22Kqalj6GUoO4Rc1dndImhqCPHxwrd5iZdU7KoJ5Gw/RePLO3D4hWXltu0083q27vmUvH11Y++GNXb3m1gFMUyZ9hcp0/5yeF6jKY1WFlZ4B/tRlFVAsxu6u1sUjYvwaxGM35Bgp+p6BfoSu2oChrO5bOz2joslcx3nlu1nffs3Ce7dutx6qgrKoriwCJVfhHdw5SI1q2KFMhTjpeOw1Rn0MpQVEmDUnTqQoMaMiODbtG674KrCYopzCslYWUGQwkoqi8K0HNaHTyOxw3Tyj2VUqu2Of3zB+rbTKMq2v4/E7Jmo8Ry0srDC7LOu91lcGET+PM7m2NpDqNx2P9zhCnHcjnIQEbe4sMjuuSNTS0KWnP2lcsbxrI3HQEHO9lNlzqUv3cO61q+Tunh7pfrUuBaXPhVFZJiI7BGR/SIyxc75GSKSZPrZKyLnrM79IiLnRKTWnMIt4T50WtULgoa9wy2f/cIb0XxUjMV7yvy7NC3/GY9feKNaka/WMRnAc/emkr31JGD0mtrY4112Xj+vTPUzX24tOfCquX0t+x9YYvNb4xm4zGYhIt7ATGAokAIkisgSpdROcx2l1CNW9R8Eelp18SbQALjPVTKWxuwt4qVnFhcM3o0DKDqfZ8md3eWzmzn5nw20vDfebv3Abs1rU7xaxWyz2HLpbAB6bXuIwjPZFJ3PI3NdCvnHMhwmBhMHyqI4z8Chp36h6fXdCbmio2sE19QKrnwq9gX2K6UOKqUKgAXADeXUHw18aT5QSv0BZLpQvjJYlqH0zOKCIfLHO2hxRxydZl4HgH/rRrR7cQj+rW1nD7GrJtDu1aG0GBtrU9726cto939X0nPz5FqT2WUUG/NqmEme8iunPt1oOd7c8wPWh0/Da3VqmaZpS3bZ7fLU3I2c+XIre0YvdF6OerL7vr4hjtYpq92xyEhgmFLqn6bjO4B+Sqky/1Ui0g5YC7RRShVZlQ8GHldK2V1MFpEJwASAsLCw3gsWLKiyvFkZmYT+cxsAeQsvrrN/sFlZWQQHO+ft4+l47FjO5BEwaRMAeYsusRT7/nsn3pvPOWoFQHHnYLz2ZblUvNrAcE0rfJaesCnLW3QJFBaDb8k7aMCtq23PlyrPnxqF6marmP3vXIvkFZdpU9N47N9XFajOWC6//PKNSin7U2krPMV1dhSw2FpROINSajYwGyA+Pl4NHjy4ygIk/G401omvF4Mvv7zK/bibhIQEqnMfPAlPHUv+0fNsxqgsrOXLi4gjqc+HNnV9QgItwf0a9GhBjyW3k510guztpzmfcNAmwmxdorSiAIhv0pXtV82l9cOXcNGzgwFYS4mysL5X5vJePXuWydmR6LOBIgrKtKlpPPXvqyrUxlhcuQx1DLD+K2hjKrPHKKyWoNyCOeKsXoLSVBH/ixoTems04Y8OsJRFL7u7pIKAT6MAGg+KoPUD/ei+aDRBvcrf+1CXOP7uapvfVSF7x+lyw7Jr3IcrZxaJQGcRicCoJEYBY0pXEpFuQAiwxoWyVIzOv61xEkf7cESETh8YbR+tJvVH5RnwbR5Eu1eHcvjZ32n3StkQI4Gdm5G96bhL5a0t0n/aY/mcvfUkQTEt7dYznLMKo15quXfb5XNcIpum+rhMWSilDCIyGfgV8AY+VUrtEJGpwAallNkvbhSwQJUynojISqAbECwiKcA9SqlfXSWv2W1QfLWy0JSPX1gwrSb1x8+BZxCAT0N/aOgPQKt7+7AnIpPGl7YvU6/91CtJXbjNVaK6jVOfb6LghK1/Su6+VAwZ+eywCqNuRilV6bDyhvN5nPp0I6G3ROHfpnG15NVUjEttFkqppcDSUmUvlDp+yUHbga6TzA6WxEd6GUpTMe1eHFK5Bg5mrD4hgcSuuY8tF3/sVDdeDXwpzims3LXdwOl5SWXKMv4+wqEnf7EpS/16Oz7NAtk+/HPaPHap3b7yU86T/OzvtH7oYvxaNoRihX/bxhx66lfSvtnB6flb6LnhAZeMQ1OCpxi43Y7oZSiNmwjs2Iy+R54k6eJZFJjCZrR7+QoOv/iHpU7vXf/i3LID+DYPYveoqnv9uZPSigLg1NxNFKbmUHQuj8PPlw3smP7LXk7+ZwMZK5M5axVCvd/xKcZd4ED+kfI90Bzhtfksp45sJuzOnhVX1uhwHxZ0SlWNG/EK8KHznBvxbRlMl89H0ur+fjS82Ogf0mpSf3ybNaD5bdH4NC0/QZF3sB9+rRrWhsg1RzkxqU7MWk/B8bJxp1RhkY29w7zjvDL4/XsXhx7/2Sb3h8YxemZhxuINpZWFxj007B1O760PWY57fHs7RVn5+DQKsJQFxbQkICKEvEP2H3ANYlrSfeEodt38PzLXp7hc5prA2jBemszVRywBPq0pOGW7V2XblZ/S//QzluPifAOZG45xfMbfiL8P3ebf6vAahvN5QNXsJhcSWlmY0a6zGg9DvMRGUZjLYtdO5NDjP+MV6MvJ2Yk25/3DG+Hl74NXA9/aFNWlqDxDmbI9d3xlt27BiUyKC4tIeXOljeNAUXYB3kEOwqgrKDyTzZbL/kPYHXG0fXpwTYhd79Cv0Wb0MpSmjiAidHjrGtr/39Ay58wZAJ3JBFiXyd2TSr6d5aNNse+TFP9hGQ+z4+879swvTM3m1OebMKTmcGyG/T0iZ77azub4D8k9UPcSYdUU+sloxqBnFpq6h29oSa6Nzp/chG8z43GDbs1p0KOFu8TyOPJTHOfb2DNmUYUviQcmLSH/yDmSn/3d7vn0pXvIO1w1Q3tdQSsLM6aZhY44q6lL9FhSkluj9HJ7509upPHgCKf76vj+dTbr/nUNR4mUAJShgkhCXiX/9+XuIC8qa4w//+ch9o7/ukyol/qGfjKaEG3g1tRBAjs1KzkopS0COzaj+6LRtSyR+0iMmO7wnMo3KgtzGPairHyb8+Jdcu8SO0zn4KNLyTuY7tR1s3ecrrhSPUA/Gc0YzFny9DKUpo7iwJGn6fXdnGruqgjUnkD6T3soOJXFhs5vc+SVFZz5yjYLn3jbPgpP/zeJLYP+g+F8nsP7UnAqi91jF5GxKtlSlm/l5qsMxWW8tpylKvnQXY1WFmb0zEJTxwno2NRuecd3r6XL5yPpvePhctsHRdZvG8epTzdQlJlvNHaXehibs2TalBUUsaHz2+y7+xtLWcbaI5xflczuMQvZFP0e537fz7llB0rO/33E8nnHDf9lU/R7ZNtJHVseBaeySIx4k+Rnf6tUO1ejXWfNaG8oTR0ldu1E8o+cp0FX+1n8vIP8aDq8i+P2qyZQmJpNULT9wH8hw7pUOse2J3L8o/WWzxl/H7Y5d+SVFQ7bWe8DUflF7Lrpf44vYpqF5O5NJSsxxdI+KCrMaTnPLNhKca6Bk//ZQPtXr3K6navRT0YzOtyHpo4S2KEpTZw0ZHf68HrL55iV9xL1y3gCu4TS6JJ2dus37NuGDm8NrxE53Y31fo30Hx1vBKwWpVLTAmSsSraNtOuAjLVHyT+W4XA50d3oJ6OZYu06q6n/BPdtY/ncoGtzgu3k0wiKLZlhiK8Xvs2D6L3jYfzbh9SKjPWNzHUpbL+mbKRda3J2nmbn9fPY3PMDHGkLd9sxtLIwo2cWmguAgIua0OLOnrR95jKHdSKXjiOwi9HLKvTmKAB8mwfRc/39+F+kQ4GXR1F2Acdnri1Tnrc/HVWsyNl9xu5D39qjSrzKKovjM9eyvv2b5Ow5U7MCVwJtszAhOtyH5gKhw/Tyl5W8fL2J/v1ucnadIahnK5tzzrzdht3Vi5b/jCdzXQoHH11aYf36xNFXExzu00h5cyXH3lpFqwf60e6lK2xPWt3X8yuTy7Q98vJySx9d5txkKc/acgL/1o3K1HcFTr1Gi8jDItJIjHwiIptExHMsLzWBNnBrNBa8An0J7tW6TGC9oCj7RnAzTYZ2ImLaMAI7hzrM4VGfKW9D3/H3jKFETny4rqw7rtXx+RUHHfaRvmQ3e+74iqLsAnJ2nWb70LlsjHy3ekI7ibPf5t1KqQzgKowpUO8AXneZVO7AoF1nNZqK6PD2cAwjwh2et15CKb2Y0uHta1wkVd1AFRZbPm/oOoO1rf7NurbTKEzLqdQel7O/7uPkJxvISjrhCjEd4uwylPl7vwaYZ0qP6qE2+ypSpDflaTQV4RsahGFMO3y+O2a/gvVjodTae0An+/tALkSKzpnCohcVsbH7Ow7rHX7xD7v3rSizAN8WwS6Tzx7OvkZvFJHfMCqLX0WkIVBcQZu6hd6Up9E4TY8lt9Nl7s1lysPGl2SdC4optWTl4OW54/vX4RfeiNi/J9SkiPWCEx+t49BjP5c9Uaxslq5qA2dnFvcAccBBpVSOiDQF7nKdWG7AtAzlpZWFRlMhjfpfBBi9pArPZNPhnX/Q5IqO+IWVvO026Naczp/cyL57vgUgoEPZN2S/8EY0vy2a5rdF147g9YTyQq67CmeVxcVAklIqW0RuB3oBtWNVqSXM3lB4a2Wh0ThL9Ip7yNpwjJBhXey6fAb3LNnH4RcWTNRvd7FvwneEXN2Jdi9fabeNMzTo0YKcnRdGAD9Pwdkn40dAjojEAo8BB4AvXCaVOzCHKNeusxqN0/i1CKbpNV0dP/RLrZQEx7Wi5/r7af/KULttmo+Kceq6Ub+Mr6Sk9Ruf/ya7/BrOKguDMprrbwA+UErNBOpYVvgK0K6zGk2N4xVUufSurSb1sznu/J8R9vu1yssd1LMVkT+Pq7xw9QifJcddfg1nn4yZIvI0RpfZn0TEC6g/SX5B5+DWaFyAb9MGdJo9gm4LRznXoNSmv2Y39HBYtcO7/8A3tAEd3/kHDXuHI376f9eVOKssbgPyMe63OAm0Ad50mVTuQO+z0GhcQuiIHjS5vINTdb0b+pcpa/3QxQC0vK+PTXmL0bH02vEwDbqbQquXY/4QXy9CR0bRsG8benx/u3OC1zGUwbUOqk4ZuJVSJ0VkPtBHRK4F1iul6qXNQi9DaTTuw79N2dhTFz13OW2fvozUUgmLANsd5uVs/YqYPpwWo2MBKM4trL6gHkhxXiHewWWVbU3hbLiPW4H1wC3ArcA6ERnpRLthIrJHRPaLyBQ752eISJLpZ6+InLM6N05E9pl+XL8gad6Up5ehNBq30ufgYzQZ2onOc260lJXOZGcPa13R9unLaPfq0JICq9Wt+rpc5UpFAc67zj4L9FFKnQYQkebAMmCxowYi4g3MBIYCKUCiiCxRSu0011FKPWJV/0Ggp+lzU+BFIB7j17zR1PZsJcZWKURHndVoPALvYH+6zb+1THmTKzoC0HiIgyWtUjMLm0OrDWzi7UXPzZNN4cA1zuLsk9HLrChMpDnRti+wXyl1UClVACzA6E3liNHAl6bPVwO/K6XSTQrid2CYk7JWDb2DW6PxaHybB9H3yJN0+/I2+xWstEPTa7varhKUcuH1D2+EYVj5QRE1tjg7s/hFRH6l5GF+G1BR7OFw4KjVcQrQz15FEWkHRADLy2lbJnqZiEwAJgCEhYWRkJBQgUiOkfxCvIGde3ZTnOC+mPHVJSsrq1r3wZPQY/FMPHUs/sVFFhv3umPbIayIANPxnt172JlwzqZ+1i3NCb4hHK/jufhO34Pkls3DXZdw9XfirIH7CRG5GRhgKpqtlPq2BuUYBSxWSlXq21JKzQZmA8THx6vBgwdXWYC/X98FQFRsNE0HO85X7OkkJCRQnfvgSeixeCaeOpazn7Zlz9hFdP74BpoNNrrcrmUdALHXXmwJUWLGehwbZ79HYW5Wrcpb07j6O3F6zUUp9bVS6lHTjzOK4hjQ1uq4janMHqMombVUtm3NUKyXoTSaukzIFR3pd3yKzd6M2L8n0HnOjWUURWk6fXg94udNp1nlrZRf2JT7ZBSRTBHJsPOTKSIZFfSdCHQWkQgR8cOoEJbYuUY3jDkyrCNj/QpcJSIhIhKCMY/Gr5UZWKWxuM7WT08JjeZCoHQIkcDOoTS7vnuF7RoPbE/fI08SelOkU9fpm/JUleSry5S7DKWUqnJID6WUQUQmY3zIewOfmvJgTAU2KKXMimMUsEBZZf9QSqWLyCsYFQ7AVKVUelVlcQbRm/I0mgua0oomuHdrmv6jG74tgjg67S8Kjp63nPNy4H7bec6NNIgKI2vDMQ5M/sFunYjpw0mZvpLCk3Vr2culObiVUkspZQhXSr1Q6vglB20/BT51mXClMQcS1K6zGo0GAKH15P6AMTtduklZNOzbxmGLptd1Q0QI7NDUrrKIXTuRgIgQQoZ1ZlPUewD4t2tC/uFzZepWBtXctXssoBI2i3qP3pSn0Wgw2i98w4KJmD7cUtZh+nDCH7uU6D/uLhMupOn13Syfy0sg2vK+PgR2aIqI4GeV5c4vLJiu/72lWjLXRhokrSzMZBkdsayjWWo0mguP0JFR9Nr6IEGRLSxlPiGBtH1qEEHRLcvsJm8xJs5uP+GPDrA5bv/KULv18BZCrurMRS8OqbrQtZDkWisLE5JtAMA3rHbz2mo0Gs+jvBmCmUYD2yM+XjTs24b4A4/R5+DjNufbTrmMqN8rTijq16oRAE2v7VZBzXKoBWVxwb9G71ybwrcfrKdRQAB9srK0gVuj0ThF98WjUYbichOmBce2ot3/XUlAx2ZlzkX+eCcnP91A+1euNBZU64Hvem1xwSuL3KwCjuxOpZ0YlYR2ndVoNM4gIk7ZOFtN6Gu3vGHfNjbGcp/GAXbrOSdM1Zs6ywX/Gu1t8n4yR4LXgQQ1Go078GkcQLcFtnGvfFs6uSyulYXr8fEtpSz0MpRGo3ETTYZ05KLnLweM+cgjf7yTts8NRqwcb9qZl61qmQt+GcrbNI0sFsBbnDJsaTQajatoNak/jQdHENitOV6+3oQ/dAknPlqHIc9Qpm6jge3JWJlMcf+yNpGa5oJXFiUzC+fWHzUajcaViJcQFF0qfLr1Rgqr99kun91M5uojbPE+iqu54NdczDaLInEuG5dGo9F4Cj4N/SPbqeYAACAASURBVAm5ujPUgq31gn86+liWoUTbKzQajWdinRbWTR6bF/wylLU3lI4LpdFoPBGrOKs0vy2a1K+2ORVNtya54JWFxWbhpM+0RqPR1DbiXWKo8A7yI+rn8bUuwwX/Km32hioSamXdT6PRaCpL1y9uwa9tY7otGOU2GfTMwmpmoZehNBqNJ9KwTxt6bZzkVhku+KejxcCN3pCn0Wg0jrjgn47mmUWRiI4LpdFoNA7QysKvxGah40JpNBqNfS74p6PZdVaJgI8O9aHRaDT2uOCVhYjgbVISxXpmodFoNHbRT0fAxxTmo1jbLDQajcYuWlkA3mZl4aWXoTQajcYeWlkAPuZlKB1IUKPRaOyin46At5dpZqGVhUaj0dhFPx0Bb2/zzEIvQ2k0Go09tLIAfMzKQtssNBqNxi4uVRYiMkxE9ojIfhGZ4qDOrSKyU0R2iMj/rMqnich2089t9trWFN6ilYVGo9GUh8sCCYqINzATGAqkAIkiskQptdOqTmfgaWCAUuqsiLQwlf8D6AXEAf5Agoj8rJTKcIWs5mWoIi890dJoNBp7uPLp2BfYr5Q6qJQqABYAN5Sqcy8wUyl1FkApddpU3gP4SyllUEplA1uBYa4SVM8sNBqNO7FObmRm59oU1v60F4Cf527mu5nryc7I58DWU5Y6edkFbPnrMEWGsu1rGleGKA8HrLOIpwD9StXpAiAifwPewEtKqV+ALcCLIvIW0AC4HNhZqi0iMgGYABAWFkZCQkKVBM3PywHgTHpalfvwFLKysur8GMzosXgm9WUstTGO3EwDvgFeloCl9iguUvwy4zDBzXy59M7WiMDpg7ksn5UCwOnsZH6amQzAz3OTALh8QjiNwvz4/pVDAHQeGIy3j2vH4u58Fj5AZ2Aw0Ab4S0SilVK/iUgfYDVwBlgDFJVurJSaDcwGiI+PV4MHD66SEJveOwlpGTQJDaWqfXgKCQkJdX4MZvRYPJP6MhZXjyPzbC6PD50HQI/+bbjjuUEsX7idpmHBDBkVxZHdqXz/YSLbVxvfqc+fLGDZuyfpN7wTyz/ZZ+nnpzeSy/RdcDKY72fvsRyf2JnP4BmuGwu4VlkcA9paHbcxlVmTAqxTShUCh0RkL0blkaiUehV4FcBk+N7rKkEty1Cil6E0Go3zHN2bxt6Nx7n8tih2rD7K2VNZDLq5B7lZBRzcdtpSb+faFJ6+1uK/w5BRUbwz6Seyz+fb9Jd2PJOln2yu8Lp/L9ljc5yVVoihsMiSn8cVuFJZJAKdRSQCo5IYBYwpVec7YDQwV0RCMS5LHTQZx5sopdJEJAaIAX5zlaDm7RVFWlloNJpSKKVY9/N+IqJaEHZRY7LO5bH97yP0vrID/zfmawAahgTyyXPLAQhr14S3J/5Ybp9fv7eujKKoLtnn82kc2qBG+7TGZcpCKWUQkcnArxjtEZ8qpXaIyFRgg1JqiencVSKyE+My0xMmBREArBTjwzsDuF0pZXCVrGZlUeyqC2g0mhqnyFBMkaEYv4Cae4wV5BnwC/ChuFixf/MJ2nYNZc+G48x9YQUAXfu0Ji+7kMM7zzD3xQRLO7OiACpUFAC/fbGlxmQ240pFAS62WSillgJLS5W9YPVZAY+afqzr5GH0iKoVzKanIj2x0GjqDM+NWED6ySxmrrmHc6ezOXHoHNGXXmRTZ8+G45xPzaHvsE5l2hsKikn4agexl7UnpEUQfy7eyf9eX8W9/74CpWDOM3/QpVcrWncMKekv8bjLx+WpuNvA7RGYV/nKWNA1Go1HYSgswtvHCxEh/WQWAOfO5PDsDQsAeGLO9XSKa0nyzjOs/HYXq77dDUBIWBCde7YiL7uA9x78mfNpOaQeywT28+W0vxl6Rwy/z9sKwPx/ryInw7hEtHfTCfZuOlH7A60knS5u7PJr6F1olCgLvQyl0XguWefymHTxJ8x68nebclVcsscgZV8aAP++81uLogCYfu8PAMx++g/+v73zjo+i2h7496QDoSQEQgm99y5NINIUVLAgggVsYC/PZ+eh6O8p9gZ2HzYQLE8FG1IkUpT2lI50hID0Ggip9/fHTDa72d0sCdlkNznfzyefzNy5M3NOZrNn7j33nLNtzX7bUOSSYygAh6EIJuq1r+j3e6ixwGkayv9xLYqiOHHyaCpfT17Oob0nWbt4F4f2nvTad82ivwBYtWCnS/sU258AEBIiHgPcAJK+WM/6X3d7PBbsVIgJ9/s91FgAofaHS42FohQvHz31C7M/XMW4IdOZfN9sxg2Zzr6dxzz29WID2O4U0Txt4mJu6/Kex37Tn1tyzvL6m4nfXcOgmzq4td/35sVubTdMSHRsh0X5/6tcfRZA6h9/Q0wFMk6nl7QoihKUnDmdQVT5gr/d7tp4yK3tiWGf89byMYSECBlpmbz32HxW//KXS59g8CP4osvARrTqUYdajWL4/KXfGP7P7sTWiOayO7owb9oaMtKyeDXpBkLDQtxWfHUb3IRuFzfhwwlJAIRHqrEoFnJGFql7vA+BFUXxzBev/Ma8aWu55Zl+dBnYyOXYoq83MvOtlQy8vi1NO9WiWkIlKlSK5MDu44y//DOv1/xq0jISGseycdkeN0MB8NLYb4tcj+Jm1ON9HEbgwfeHuBx7ad4oMtOzKBcd4Whr06suaxftcjjxAZ74bJi1zHfPWr/Lq8aC3Lk4TSSoKAVn3jTri+r9x+bTPrE+4RGhZGdl89t3m5n69CIA/vvaMgAqVS3HA+9eyuNXfp7vNZ0dzsFC6551WLdkN3VbxFExphzrf93NZXd2oWaDGN56wIop7n1lCxKvakVGela+8SGR5cKJLOc6UrvrlYswxiBOwcO1GsUCsDVvbgw/oMYCJ59FpP9C5RWlJNmwNJlta/ZzyZiOLl82hWHdvMNk71tH3xGt3Y6lp2awZ+sRVv+y02PaihOHU30aikCjep1KHNjtXh2hU/+GZGdl84ftcL/7tUFer/HOyrFFIsu5PrtzQY0FkBJmGYkNB1JLWBJF8Q+v3WXFxjZoXZ3WPer46O2d1JR01s4+zNrZv1K1VkU2rXQNUlv6wxY+f+m3c5I10Hjyy+Hc3vV9x35UhXD+7+sRVIotxzdvroA8q7NKK2osgCPRkSUtgqIUCyePWC9ER/alEB4ZSsWYcgU6PzMjN3T1zft/cjsebIaibos4Fyf7W8tucTEM9799CSGhIfzznUtI3nKExOGtyM7KdiTsCwktO1PXaiyADhkZ7ArVKSgl8Dh1/Aw7NxykRdcEQmyfWlZmNqFhvle/ZKRnsfibP91SYKSfyXRkQH1r2S2EhIZw6vgZACpUjvJ4rSP7Uph832yuuPu8c1GnRKjVKIa92466tSeOqc3IWy/GGMO8aWtJaFqVkNAQIsuHk3Y6gz7DWtKscy0AmnaqRdNO1nZISO53RbkKEW7XLa2osQDKZWRBFFTxcyIuRSkoE0d/w8HkE4x+og89Lm3Gsh+3MGX8AsY+259O/Rvme+6cj1cz6+2VzHg+N75AxIqEzuHp675i/PRh3N/vY+t+313Do5d8SnhkKBFRYZSvGMmjH1/uMC6T7p3tBy39w0vzRhESKpSvGMmtnd91O14xzvqiFxEGXNfW0T5u6hUs+3ELA65t63ZOXvoMa8mfy/fQOc8qsNKIBuUBYZlWoo/0NL8ltlWUs+bUiTT2brfehA8mW47VDUutqmlTxlvRys5ZTr2xYVmye6OIS12F5C1H+HnGOsd+zrGMtCxOHU/jYPIJ7u/7UeEUKUEuHtOR6CpRlK9oTTFP/C5vdQSIruo5LiS+bmWG3NrZZdmqNyKiwrj79UF0v6TpuQkcBOjIAgjNtOZh09M0laBS8jx04SdkZmTz1H+HO9ryroLJysw/k9n+v46x9Y99bu3HD55ya/vsxV8LKWngMfjmDrTtVY8Grau7tMfWiHbZH3Rje+B0MUoW/OjIAgjJzAZjyEzPIjtL0wkqRU/KkQzHKMEXmRnWZ3DnhoOONk8rJlNTvGccmPwPd+czwFeTlp+VDMFCfN3KTPjiKnpf0YLx069k6O1d3AxFDmOf7U/1upWJrRFN35FtilnS4EdHFgCZ2YQZyBTL+RdVhpxWSvHw7TM7+JYdDodyQRERThxxXdq9d/tRTLbh68nLuW5cLzLTs/jP+AXUax7HgV3Hi0r0EqF8pUjOnEon20vCtpBQoV7Lalw/rjc1G8Rw7WO9fF6zU/+GdOrf0C2wTTk7yryxMNkGDIQZQyZCWqoaC8V/ZGZkE+FkLIwx7N12lBr1qxAaFkL6mVy/2ZlTGY7tI/tTeCVPBbbnb5rp2J5w1ReO7b+3u6/8CWQe/egyUk9l8Ood3wOQ0LQq4z+9ksN/n2Tl3O189foyR98elzalVqNYelza1OvKLV+ooSgcZX4aythzv2F2FLfzP6uiFBbnz1HOslSwpo4O7cmdjvp11iaeGvEl74+bT8qxMzx/c64B+PTZxY7tzf/72+H0DnQSmlb1esx5GW90lSjufn0Q9VtVp8V5tR3tOUuEq9asyIWj2jFp8U2OYw1aV2fAdW0LbSiUwqMjC9tY5ERxr5izjcEeUgQrytmybc1+nr9pJgNHtePKe7ryhlPw2kMXTQWst+m3H5rL0f2Ww/n3+TvYs+UI+4N8+qhNr7rc+fKFHNpzkvDIUF6/+0d6X9nCkR78thcGcGf3/wDw4tzrPb7lx1Sv4LLvnENJjUTJocYij0N75psr1FgoBSItNYMNS5Np1b0OEVFhzP7Ayok05+PV7Nl6hG2r97udM3H0N25twW4obpiQ6FhCWi2hEgCPzxhGVmY2059bQkioEBYeytOzRgLu00EPTRnKvKlruPrBHm7XHvtsf/5csYcOF9T3qw6Kd8q8scDHEkRFcebQ3pNM+dfPDL65A617WlMqU59exPLZWwEYM7EfaxbtcvQP5spsg2/u4JYMsGJMFCePnnHrW6N+Fa+xBqFhIY66DABxtTyXAG3UNp5Gzw/weCzHOa2UHOqzUGNRqtm6ah/fv/872dnuq2oO7T3JyaOpZKRnefRV7dt5jNkfrnI5NuP5JWxbs59J985mwvAvOH7otMNQALz36Hz/KFLMTPjiKobe3oV3Vo7lpXmjHO3/njmSdoPjXPrG163Mox9fnu/1ykVH5JuSWwl8yvzTyzsNpZQuXrhlFmC9+TbrXIvoKtacd2pKOuOGTAesGgsnDqfyxm83OxLEgVWxDeDQnhNcdX93IsuFk3oqN7bh7+1H+fK1pcWlSrHRomttajaIcexHV4micYcapJ/JJLJcGM16V6Fxk0bE1ojmz+V7GHpHl0JVyVOCCzUWOrIISjYsTWb2h6u4YUKiW3SuJ6ZNXMSp42mMerwPPYc04/ih3OjdE4et+IW1i3fRPrE+m1bu5YtXco3Aoq//ZNHXf3q87h8/7zhHTQKH/te2oVajWHoOaeZ27IF3LwUsP0NoWAj9rm8HQOcBpT8nkmKh01BqLIKS1+76gU0r9zL9ucW+OwOnjqcB8M0bVgSzp6ytbz84l7lT1/DK7d+TvPnwWV03oxSliOk6qIlHQwGWkdD4hLJNmTcW2HPZ1bKtf/qEJrElKY1SQE7nk/IiP/JGQ+eQU/6zNHD1A7mrijoP8OwcHjiqnWNbbYGSH341FiJykYhsEpGtIvKIlz7DRWSDiKwXkU+d2p+32zaKyOvip9eaHLdns2wrWjahifeAIiUAyeO3tuo+LyTl2BkyPGQRPnE4lbvPn+IS/Vxa6XV5c8d2t4ubcu/kwTzw3qWOtja96nL5XU71KdRaKPngN5+FiIQCbwADgGRghYjMMsZscOrTBHgU6GmMOSoi1e32HkBPICeh/GKgD5BU5ILaI4ucfxNf2TyVwCLv8/pwQhKAVx8DBG+Uvgjc8OQF/DxjHX85JRn0RmhYCFfd350tv/9Nq+4JhISGuMRy3PXKRS79I7QGvZIP/hxZnAdsNcZsN8akAzOAoXn6jAHeMMYcBTDGHLDbDRAFRACRQDjgHtlUFNjGws4woMYiyNix7oBLMZ/SzD2TBtNtcBO3oNFbnukHQL2W1Rxt46ZeQUhoCP2vacPtLw50JC+sllCJZl1q0XNorm9ixEM96X9tG+LrVSkGLZRgxZ+roWoDzhFJyUDXPH2aAojIEiAUmGCMmW2M+U1EFgB/Y730TzbGbMx7AxEZC4wFiI+PJykpqcBCyu7TRALYuaH27z9QqOsECikpKUEtvzM5uuzfepr184/Qql8sJw6k06hrZZd+E0ZOp1X/qtTv4DnYK5gZMq4Bs562VlytXr2aA2e2uhzvfk0NTkXs5uKH6lMhNpx2KdGER4awfd86truXswCg49XRgHF8TqQ6VKvOWX9uSstnrLToAcWjS0kvnQ0DmgCJQAKwUETaAHFAC7sNYK6I9DLGLHI+2RjzLvAuQOfOnU1iYmKBBTi98QBrWEXOCLxCZCUKc51AISkpKajldyZHl1sfsEpi7t9iLXetHBXv0u/kwQyWTt/H0ulevh2DmIsvH8D8yR9x6ngal18/0BHPEPNyAzYsTebqe7sXKuX5uVBaPmOlRQ8oHl38aSz2AHWc9hPsNmeSgWXGmAxgh4hsJtd4LDXGpACIyI9Ad2ARRYyxZ52i7GmoI/tTivoWSj5kZ2U7vuzWLt7F4pl/Ur9lNSrGlOPnGbsJOeI2oGT+p2uLW8xC0axLLTat2Ov1+APvXUqdZnHc2/sDl/bI8uGknc5NT/7SvFFkZxmX5b7tetejXe96RS+0onjBn8ZiBdBERBpgGYkRQN5CuN8AI4EPRCQOa1pqO9AQGCMiE7GmofoAr/pFSttnEWkvqzm05yTHD52mclx5v9yuLLFuyS4+e+k3xjzTj7rN4ziYfAIRiKttJZl779F5bFi2h4nfXcPMt1bw83SrFvSqBTsd15j2TJG/HxQbMdUqeD3mHC0eERXmcLo361yLGyYkMm/aGmrYUdRWIJyuVFJKFr+NX40xmcBdwE/ARuBzY8x6EXlKRIbY3X4CDovIBmAB8KAx5jDwJbANWAusBlYbY771k6AARDotG1yVtNMvtypLrErayaR7Z3Ng13HeeXgu2dmGf102g3FDZzj6rJy7ndMn0tj8v70OQxFsXHprJ15beCPx9Vz9KDf/uy+teuQOrC8YW5s6zXKXZTunFclpj69XmfvfvoTYGtEM/2cPel/Rws/SK8rZ41efhTHmB+CHPG2PO20b4H77x7lPFnCrP2VzuhcAoSGAHYyrdbjPniP7Uvj+/d8ZcF1batS3VtPc2vldlz6pKekuf9MfpvzBzDdXOPaDOTK4TrM4osqH8+SXw7mty3sATFp8ExFRYRhjqBhbjrrN41jx+28MvWYA3733P7fsrGMm9mfOJ6vpN6J1SaigKGdFSTu4S56cbKROxiIzQ43F2fLJvxeyYWkyqxf+xYtzrid5i3uajFPH01zSYjgbCoDFM73HRAQiYeEhjs9I215WmnIRoWX3BDLTswi3V0uIiEsFuHLREVz1j+5u14upXoGr/+lew0FRAokybyyMI3V17tttZLky/2dxYIxh/W/J1G1WlUpV3f04B3ZbQV4nj6Ty0EVTXRL0OXNf4ode7+Hsowh0np45gl+/3cz37/8OuI6K7nl9kFubopQWNDdUjq0IgZBQ6588Jt53FtNAIeXYGb6evJyDySd8dy4Eq3/5i0n3/Mj4Kz7z2deboQg0+l3TxuuxOs2qElUhN9129bqVadktgbCIUCZ+dw1xtSt5TEIImmxPKd3oK3TOyEKE1j3qsGbRrqDyWTxy8TQy0rL47bvNPD/7uiK//tZVVuzCmVMZpBw7w+/zt9PlwsaUi44AIDvLvahQIPPE51flmyrjX9OuJDUlnTmfrKbroCYOP4zzEt8Lrm7F+l9308NLhlZFKY2UeWPhmIYSCLHfGIMp5UeOL8DbW/3Mt1aQmZ5F35FtiKnufSmnN3IWAAC8euf37N50mGkTF/POyrFkZWZzZF9gx6U4xzrExFegVsMYn3mVykVHMPT2Li5tzoFv5StG8tCUvJlrFKV0U+aNRc7SWSS3xkFWkL0teyMjLdNRQ3nOJ2t4ZcFoyleMBCA72xASIqxbsovf5+/g2sd6ERoWQnZWNhNHf0NszWgatKrOvGm5AXC7N+U6r+d8spqNy/LGWJYsnQc0ZOXc7Y79d1aO5ddvNzmMxaMfWaU/nQ2goihnhxoLkzsNFRoafCMLZw7tPenksM9VzXF8z0nqNo9k08q9TLr3R0Y/3of3x/0MQOqpdKrXqczsD1cBsOvPQ/k6ngOx7oMnG+A8IsgJtDQe6nEripI/Zd7BnfPFYUJyRxanT6SVpEhu7Nt5jLWLd7m0ZWdlM3fqGpe2cUOms+K/Bxz7f210nW7JeaOeMv5nMtKyHIYC4Pf5OxyGIhh55tuRHo1AeIR72m1no5I35kFRFM/oyMLJwf3nCmta5bMXf6XviNaOqZqS5olhnwPw+Ixh1G5sVfJb9uNWvnx1qVvfbcty6xW8OMY16P3o/lMsn72VYweDY9XS2fLkl8OpWrMi2U7G4vYXBwLQtnc9GrWNp2X3BI/njn6iD1fe25Vtq/eT0FQLXymKN8q8schJJIhYX6Y5HDt4inFDZ9DnyhYML4GAqexsg4jrmv2DySccxmLfX8fyPd/TVNpbD8wpWiEDhJwVS+FOxXvaJ9a32iJC3ZzRzktfRYSKMeUc/RVF8UyZn4ZydnA7s2TmJjLTs5hfAjmLUo6d4fbz3nPJo1QQpj2ziBfH+ieVlr9wjm0oLFfc3ZV6Lasx9tn++fbr1L8hjdvXYNh93c75nopSVlBj4eTg9jdZmdlMfXohaxb9lW+/yffNBuDw3pMu7WmpVtrqjLRMMvIpDbrwq41sX+OfwoL+4rpxvfM9/vLPo31eI7ZGNI99fDmd+jfMt19EVBgPvj+EAde1zbefoii5lHlj4RxnUZSsXbyLDUuTXdqWzNrEoq//5I1//OTSnn4mk58+WuWoj7x3+1GP15wyfgE7Nxzkrp5TSmTE40/KV4zI93iFSpHFJImiKJ4o88YC99RQAPzx845CXzIzI4vJ983mtbtcEu5y8kiq++2N4e7zp/DVpOU8OfwLS5R8DNfEUV8XWq5AoVG73Ep3Hfs14IKrW9Giq7sDOjRc6HV5c4ez+r43L6Zu8zie+GyYI/13w7bxbucpilL0lHkHt/NqKGd2b3bPnnq2eMtam+1haafzdFFWZjapKemcOZVbJS09n+mmYKXroCZsW23pfd5FjelwQQMAHnx/CC/cMguwVjit3fQ7Ay7MnZ5qcV5txk29AoDbXxjAHwt20srLKidFUYqWMm8sjFOK8tCwkEIH5K1K2klmRhadBzTyfi8PUWPpTqm7AT58Msll/+7zpxRKnkDklmf6kXI0lfMva86nzy4GcFma3Lh9DXpc2pS0M5nUqF+FP3d6H/iGR4Zx3kWN/S6zoigWZd5Y4JSiPLJcGKdPphfqMjnLUtv1qe/SvmPdAY7uT6Fjv4YuSfemP7+EpM/X03mAqzM2mNJ1F5QuA90NqXOENcDoJxKLSRpFUQqC+ixM7sii/7Vnvzpm6febefm270hNSXcZMRw7cMolRPjZG77hnYfncTD5hEuEcdLn6wFcchkFOv9855Iiv6ZzbISiKIFLmTcWxinOIu9bfg6PDZnOL19uwBjjWL76wRNJbFq5l3mfrnUZMXzw+AKPOYpOHEklK4hSn3uiaadaXo/F1a7o1dkcV7si90wa5NJ2xT1daX9BfZp2rFmUIiqK4id0GsrJwR1VwfPyzcN7T/Lps4tZ+N8NJG85wjPfjnQcSz+T6eLn2Lv9qEdHNsDcT9Z4bC8pLrqhfYHzQfW6vDmLvnYtg/rCT9dRqWp5kr5Y7zG+o+eQZrTqXsel7cJR7QousKIoJUaZH1lENYgl/qZOZLer4shK6o3kLUcAHGm/ATCGjPRcJ3X6mUyPtSWev2lm0QhchFx+13k++9z92kUA9BxqFfq5blxvmtt1pePrVealeaMc5VabdLBGCdFVong16QbHNXoObV6UYiuKUgKU+ZFFhbY1aNC2Bn8lJZ31OYu/yX2znvPJGheneFZmtiNeIhi49bn+vPPwPJe2ui3iCA8PBYGW3RJ4Z+VYl+O3PN2Xpd9vofslTYmuEuVor904lqe+uprKceWJKh9OrUYxnD6RRsXYcsWii6Io/qPMG4uiwNl4BAth4dagsmM/Vz/NP9+5JF/fBEDFmHJeU2XE163s2B4/fRgmQDL3KopybqixKKsUQy6skBABNRSKUioo8z6LssrgmzqUtAiKogQRaizKAFWqV3Br6zOspce+Wp5aURRP+NVYiMhFIrJJRLaKyCNe+gwXkQ0isl5EPrXbLhCRVU4/Z0TkMn/KmsOYif2K4zbFSt+rW+Wb4nv89CuLURpFUYIRvxkLEQkF3gAGAS2BkSLSMk+fJsCjQE9jTCvgPgBjzAJjTHtjTHugL3AaKJYyb50HNOKSMR2L41bnxMMfDHVru/bR8132u13chPDIUAaOapdviu+EJlpOVFGU/PHnyOI8YKsxZrsxJh2YAeT9hhsDvGGMOQpgjDng4TrDgB+NMcVWOPqSsZ2K61aF4uZ/96Vhm3iueeR8GrSpzqtJN/Dyz6PpfaXr1NKNT17A5CU3O0qzXnFPV6/X7DeyNfVbVaNx+xp+lV1RlODEn6uhagO7nfaTgbzfVk0BRGQJEApMMMbMztNnBPCypxuIyFhgLEB8fDxJBYiVyEtKSso5ne8v+t6WwOljmSydsc/RtmHjBk5HJUMcdBtdhWUrf3Uci44LI+VQJh2GVHPTJ7Ju7vbSZb8SFpn7rlC9E1TvFMOixQv9pktBCdRnUhhUl8CjtOgBxaNLSS+dDQOaAIlAArBQRNoYY44BiEhNoA3wk6eTjTHvAu8CdO7c2SQmJhZakKSk66lc7QAAClJJREFUJJzPn87mQl/LE5Hlw0k7neG7oxOX3dmFQTd2wBhDj8S/efm27wAYcOn51G4c6/GcrIxs2rfuQtWaFT0ej3+jMelnMt2y4wYieZ9JMKO6BB6lRQ8oHl38OQ21B3BOCJRgtzmTDMwyxmQYY3YAm7GMRw7Dga+NMQX7li0CJn53TZFdq37Lary+8Eaf/UJCc2MSGraNd+RPEhGada7Fcz9ey0P/GeLVUACEhod4NRQALbomBIWhUBQlsPDnyGIF0EREGmAZiRFA3m/gb4CRwAciEoc1LeWcs3sklgO82ImtEX3O16hUtRz1W1bjjpcvPKv+d782iNW/7CRxeCtqNohxO16lWgWqVHNfBqsoiuJv/GYsjDGZInIX1hRSKDDFGLNeRJ4CVhpjZtnHBorIBiALeNAYcxhAROpjjUx+8ZeM/uaaR853lAw9G6pUK8/Ih8/33VFRFKWY8avPwhjzA/BDnrbHnbYNcL/9k/fcnVhO8qClXe96+R6v2zyOXX8ecux7S5GuKIpS0mgEtx/JWzI0LCK3KlxUhXDGTb3C5XilqpqdVVGUwESNRRETVSHc67FnZuUWTYqxU3Dc+NQFtOhamxfnXk9YuJYYVRQlMCnppbNBSUx8BY7uP+XxmOSTzbVyXHnGT7+SWW+tdATIdRvchG6Dm3g9R1EUJRDQkUUBiKtdkVueyT93lK/M3wlNqnLHyxdSo36VIpRMURTFv6ixyIcX5lzv2A4LD+HpmSPpMrCRo/BP6x65YST1W1UjLCKUei2rFbuciqIo/kanofKhUmw5bn9xIO+Pm89tzw9wtPcd0ZrWPepQrU5llv+4hdga0TTpWJPsLMMvX25g47I9HtOCK4qiBCtqLHzQPrE+ry+6yaU0qIgQX8+aRup2cVNHe2iY0GdYSyrHladJB03IpyhK6UGNxVlQkBrSoWEhdOrf0HdHRVGUIEJ9FoqiKIpP1FgoiqIoPlFjoSiKovhEjYWiKIriEzUWiqIoik/UWCiKoig+UWOhKIqi+ESNhaIoiuITNRaKoiiKT9RYKIqiKD4Rq7Jp8CMiB4G/zuESccAhn70Cn9KiB6gugUpp0aW06AHnpks9Y4zPdNmlxlicKyKy0hjTuaTlOFdKix6gugQqpUWX0qIHFI8uOg2lKIqi+ESNhaIoiuITNRa5vFvSAhQRpUUPUF0CldKiS2nRA4pBF/VZKIqiKD7RkYWiKIrikzJvLETkIhHZJCJbReSRkpbnbBCRnSKyVkRWichKuy1WROaKyBb7d4zdLiLyuq3fGhHpWMKyTxGRAyKyzqmtwLKLyGi7/xYRGR0gekwQkT32c1klIoOdjj1q67FJRC50ai/xz5+I1BGRBSKyQUTWi8i9dnswPhdvugTVsxGRKBFZLiKrbT2etNsbiMgyW6bPRCTCbo+097fax+v70q/AGGPK7A8QCmwDGgIRwGqgZUnLdRZy7wTi8rQ9Dzxibz8CPGdvDwZ+BAToBiwrYdl7Ax2BdYWVHYgFttu/Y+ztmADQYwLwgIe+Le3PViTQwP7MhQbK5w+oCXS0tysCm22Zg/G5eNMlqJ6N/beNtrfDgWX23/pzYITd/jZwu719B/C2vT0C+Cw//QojU1kfWZwHbDXGbDfGpAMzgKElLFNhGQp8ZG9/BFzm1P6xsVgKVBGRmiUhIIAxZiFwJE9zQWW/EJhrjDlijDkKzAUu8r/0uXjRwxtDgRnGmDRjzA5gK9ZnLyA+f8aYv40xv9vbJ4GNQG2C87l408UbAfls7L9tir0bbv8YoC/wpd2e95nkPKsvgX4iInjXr8CUdWNRG9jttJ9M/h+sQMEAc0TkfyIy1m6LN8b8bW/vA+Lt7WDQsaCyB7JOd9lTM1Nypm0IIj3s6YsOWG+yQf1c8ugCQfZsRCRURFYBB7AM7zbgmDEm04NMDnnt48eBqhShHmXdWAQr5xtjOgKDgDtFpLfzQWONP4NymVswyw68BTQC2gN/Ay+VrDgFQ0Sigf8C9xljTjgfC7bn4kGXoHs2xpgsY0x7IAFrNNC8JOUp68ZiD1DHaT/BbgtojDF77N8HgK+xPkj7c6aX7N8H7O7BoGNBZQ9InYwx++1/8GzgPXKH+wGvh4iEY325TjPGfGU3B+Vz8aRLMD8bY8wxYAHQHWvKL8yDTA557eOVgcMUoR5l3VisAJrYKwwisBxDs0pYpnwRkQoiUjFnGxgIrMOSO2f1yWhgpr09Cxhlr2DpBhx3mloIFAoq+0/AQBGJsacTBtptJUoeX9DlWM8FLD1G2CtWGgBNgOUEyOfPntv+D7DRGPOy06Ggey7edAm2ZyMi1USkir1dDhiA5X9ZAAyzu+V9JjnPahjwsz0a9KZfwSku736g/mCt7NiMNR84rqTlOQt5G2KtblgNrM+RGWt+cj6wBZgHxJrcVRVv2PqtBTqXsPzTsaYBMrDmT28ujOzATVjOuq3AjQGixye2nGvsf9KaTv3H2XpsAgYF0ucPOB9rimkNsMr+GRykz8WbLkH1bIC2wB+2vOuAx+32hlhf9luBL4BIuz3K3t9qH2/oS7+C/mgEt6IoiuKTsj4NpSiKopwFaiwURVEUn6ixUBRFUXyixkJRFEXxiRoLRVEUxSdqLJQyjYhUEZE7nPZriciX+Z1ThPeuLyLXFMe9FOVcUWOhlHWqYGXsBMAYs9cYMyyf/kVJfUCNhRIUqLFQyjrPAo3sGgcv2G/76wBE5AYR+UasWg47ReQuEblfRP4QkaUiEmv3ayQis+3EjotExC2Hj4j0kdxaCn/YUfjPAr3stn/YieNeEJEVdsK7W+1zE0VkoYh8b9ckeFtEQuz+H4rIOrHqm/yjGP9uShkjzHcXRSnVPAK0NlbCtpxMpc60xspcGoUVHfuwMaaDiLwCjAJexap/fJsxZouIdAXexEol7cwDwJ3GmCV2krsz9r0fMMZcYt97LFbqjC4iEgksEZE59vnnYdUm+AuYDVwB7ABqG2Na2+dXKYo/iKJ4Qo2FouTPAmPVRTgpIseBb+32tUBb+4u/B/CFlZYIsArN5GUJ8LKITAO+MsYkO/XPYaB9zZxpsMpYuXzSgeXGmO0AIjIdK63FfKChiEwCvgfm5L2gohQVaiwUJX/SnLaznfazsf5/QrBqDLTP7yLGmGdF5HusfENLxHN5SwHuNsa4JN8TkUTc04MbY8xREWmHVXToNmA4Vm4mRSly1GehlHVOYpXfLBTGqpWwQ0SuAkd96nZ5+4lII2PMWmPMc1gZTZt7uPdPwO12im1EpKmdWRjgPDsDaghwNbBYROKAEGPMf4F/YZV5VRS/oMZCKdMYYw5jvemvE5EXCnmZa4GbRSQnE7Cn8pv32fdYg5Wp9kesjKJZIrLadk6/D2wAfred7O+QO/pfAUzGSlO9A6uOSW0gSaxqalOBRwspv6L4RLPOKkqAY09DORzhilIS6MhCURRF8YmOLBRFURSf6MhCURRF8YkaC0VRFMUnaiwURVEUn6ixUBRFUXyixkJRFEXxiRoLRVEUxSf/D6DkUAVlmL7dAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnWd4VNXWgN+dXiEJIaEESeiQCglFpImABZQiHZEmiIL1XhXvZ8FysV4pioKioogGBVRUVKSE3gKE3kMgoQRIIb3N7O/HTCYzyUwSQiaN/T4PD3P2WWfvtc5Mzjq7rSWklCgUCoVCURo21a2AQqFQKGo+ylkoFAqFokyUs1AoFApFmShnoVAoFIoyUc5CoVAoFGWinIVCoVAoykQ5C8VthxDiqBCiTyXV1UcIkVBJdU0UQmyrjLrK2d5QIUS8ECJDCNGxCtsdJ4RYV1XtKSoH5SwUJRBCxAkhsvUPkUQhxFIhhFt161VZSCkDpZRRFblWCCGFEK0qWaXq4kNgppTSTUp5wBoNCCH89ffMrrBMSrlcSjnAGu0prIdyFgpLPCildAM6ARHAK8UFhI5K+w0ZP1AUVUJz4Gh1K6GoHShnoSgVKeVF4E8gCEAIESWE+K8QYjuQBbQQQjQRQqwRQiQLIc4IIaYWXi+EcBZCfCOESBFCHBdCvGg8bKPvxbwkhDgEZAoh7PT1rRJCXBNCnBNCPG0k30UIES2ESNP3ej7SlzsJIb4TQiQJIVKFEHuFEL7mbNK32U//ebYQ4kchxLdCiHT9EFWEheu26D8e1Pe6Rhmd+5cQ4qoQ4rIQYpJRuaMQ4kMhxAW9vouEEM7lufdCiO56O27o/+9udG6iECJWr/M5IcQ4fXkrIcRm/TXXhRArzNTrKITIAGz1tpzVl5v0mvQ9yrf1n/sIIRJKsdNZCPE/IcR5fdvb9HYW3rNU/T27s/hwWxl2Rgkh3hJCbNfbuk4I4V2e+6eoXJSzUJSKEKIZ8ABgPEwxHpgGuAPngUggAWgCDAfmCCH66mVfB/yBFkB/4BEzzYwBBgIegBb4DTgINAXuAZ4VQtyrl50PzJdS1gNaAj/qyycA9YFmQANgOpBdTjMf0tvgAawBPjEnJKXspf8Yqh+6KXwQN9K33RSYAiwUQnjqz70LtAHCgFZ6mdfKUkgI4QX8ASzQ2/MR8IcQooEQwlVffr+U0h3oDsToL30LWAd4An7Ax2bsyNX3GgttaVmWPuWw80MgXK+LF/Aiuu+y8J556O/ZzvLaaSQ2FpgE+AAOwL/Lqa+iElHOQmGJX4QQqcA2YDMwx+jcUinlUSllAboHyF3AS1LKHCllDLAEeFQvOxKYI6VMkVImoHsoFGeBlDJeSpkNdAYaSinflFLmSSljgS+A0XrZfKCVEMJbSpkhpdxlVN4AaCWl1Egp90kp08pp6zYp5VoppQZYBoSW87pC8oE3pZT5Usq1QAbQVggh0DnV56SUyVLKdHT3cXQpdRUyEDgtpVwmpSyQUv4AnAAe1J/XAkFCCGcp5WUpZeFwUj664aUm+u+jMifMLdlpA0wGnpFSXtTf/x1SytxKsBPgaynlKf3v40d0jldRxShnobDEECmlh5SyuZTySf0faiHxRp+bAIUPwkLOo3v7LDxvLG/82VxZc6CJfigpVe+w/gMUDilNQfemfkI/ZDFIX74M+BuIFEJcEkK8L4SwL6etV4w+ZwFO4ubmT5L0jtO4DjegIeAC7DOy5S99eVk0QXcfjTkPNJVSZgKj0PWeLgsh/hBCtNPLvAgIYI9+SG3yTdhRFpbs9AacgLMVqNOinUbHxb+fOrPYojahnIWiIhiHKr4EeAkh3I3K7gAu6j9fRjccUkizMuqLB87pHVXhP3cp5QMAUsrTUsox6IYk3gNWCiFc9W+7b0gpO6AbChlEUe+muriObigs0MiW+kZDQKVxCZ3jNMZwX6WUf0sp+wON0b2Jf6EvvyKlnCqlbAI8Dnwqyr96KwudcyukUTmvuw7koBsWLE5ZYa1LtVNRc1DOQnFLSCnjgR3AO/pJ5hB0b//f6UV+BF4WQngKIZoCM8uocg+QLnST3s5CCFshRJAQojOAEOIRIURDKaUWSNVfoxVC3C2ECBZC2AJp6IZMtJVrLQCJ6OZfykSv4xfAXCGED4AQoqnR/EtprAXaCCHGCt2k/yigA/C7EMJXCDFYP3eRi244SKuvf4QQotA5p6B7WJf3PsQAY/X3/D6g903Y+RXwkdAtTrDVT2Q7Atf07Vu6ZxbtLKfOiipCOQtFZTAG3ST2JeBn4HUp5Xr9uTfRTX6fA9YDK9E94MyinzcYhG5c+hy6t9Yl6CZWAe4DjupX88wHRuuHyBrp604DjqObZ1lWaRYWMRv4Rj+sNLIc8i8BZ4BdQog0dPegbVkXSSmT0N2HfwFJ6IaXBkkpr6P7u30e3f1ORvdQf0J/aWdgt/7+rEE3jxBbTtueQTdXkAqMA34p53Wgm3Q+DOzV6/QeYCOlzAL+C2zX37NuN2GnogYhVPIjRVUihHgC3QO+XG+tCoWiZqB6FgqrIoRoLIS4SwhhI4Roi+4N8ufq1kuhUNwcaseswto4AIuBAHTDG5HAp9WqkUKhuGnUMJRCoVAoykQNQykUCoWiTJSzUCgUCkWZ1Jk5C29vb+nv71/h6zMzM3F1da08haqJumIHKFtqKnXFlrpiB9yaLfv27bsupSwzqkCdcRb+/v5ER0dX+PqoqCj69OlTeQpVE3XFDlC21FTqii11xQ64NVuEEMXDrZhFDUMpFAqFokyUs1AoFApFmShnoVAoFIoyqTNzFgpFdZKfn09CQgI5OTlmz9evX5/jx49XsVbWoa7YUlfsgPLZ4uTkhJ+fH/b25Y3cb4pyFgpFJZCQkIC7uzv+/v7och6Zkp6ejru7u5krax91xZa6YgeUbYuUkqSkJBISEggICKhQG2oYSqGoBHJycmjQoIFZR6FQVDdCCBo0aGCx51selLNQKCoJ5SgUNZlb/X0qZ6FQ1BESExMZO3YsLVq0IDw8nDvvvJOff66+AL9RUVHs2LHjlusYNGhQ2YIVYMeOHQQGBhIWFkZ2dnbZF5STOXPmmBx379690uquTpSzUCjqAFJKhgwZQq9evYiNjWXfvn1ERkaSkJBg1XYLCgosnquIsyitvsrmxx9/5OWXXyYmJgZnZ+dKq7e4s7hVh1lTUM6igmiy8rnw1iYyD18pW1ihsDIbN27EwcGB6dOnG8qaN2/OU089BYBGo+GFF16gc+fOhISEsHjxYqBo5+/w4cNp164d48aNozAS9b59++jduzfh4eHce++9XL58GYAHHniAZ599loiICObPn89vv/1G165d6dixI/369SMxMZG4uDgWLVrE3LlzCQsLY+vWrcTFxdG3b19CQkK45557uHDhAgATJ05k+vTpdO3alRdffNGijcnJyQwZMoSQkBC6devGoUOHANi8eTNhYWGEhYXRsWNH0tPTuXz5Mr169SIsLIygoCC2bt1qUteSJUtYvXo1r776KuPGjSvRg5k5cyZLly4FdNEhXn/9dTp16kRwcDAnTpwAICMjg0mTJhEcHExISAirVq1i1qxZZGdnExYWxrhx4wBwc9OlXJdS8sILLxAUFERwcDArVqwo8zuoUUgp68S/8PBweSts2rTppuQvvBMldzb8r9zZ8L+31G5lc7N21GRqky3Hjh0r9XxaWppV258/f7589tlnLZ5fvHixfOutt6SUUubk5Mjw8HAZGxsrN23aJOvVqyfj4+OlRqOR3bp1k1u3bpV5eXnyzjvvlFevXpVSShkZGSknTZokpZSyR48e8oknnjDUnZycLLVarZRSyi+++EI+//zzUkopX3/9dfnBBx8Y5AYNGiSXLl0qpZTyyy+/lIMHD5ZSSjlhwgQ5cOBAWVBQUELvTZs2yYEDB0oppZw5c6acPXu2lFLKDRs2yNDQUEO927Ztk1JKmZ6eLvPz8+WHH34o3377bSmllAUFBWbv/9ixY+VPP/1Uoh0ppZwxY4b8+uuvpZRSNm/eXC5YsEBKKeXChQvllClTpJRSvvjii/KZZ54xuQ9SSunq6mrSTuHxypUrZb9+/WRBQYG8cuWKbNasmbx06ZLF7+BmKO/vy9zvFIiW5XjGqqWzN8mVr/aRefAymoy86lZFUUPZ5TOnbKEK0O3qf8otO2PGDLZt24aDgwN79+5l3bp1HDp0iJUrVwJw48YNTp8+jYODA126dMHPzw+AsLAw4uLi8PDw4MiRI/Tv3x/Q9UwaN25sqH/UqFGGzwkJCYwaNYrLly+Tl5dncWnmzp07Wb16NQDjx4836UWMGDECW1vbUm3atm0bq1atAqBv374kJSWRlpbGXXfdxfPPP8+4ceMYNmwYfn5+dO7cmcmTJ5Ofn8+QIUMICwsr970zx7BhwwAIDw832LB+/XoiIyMNMp6enmXqP2bMGGxtbfH19aV3797s3buXevXqmf0OevTocUs6VzZqGOomiZv1N9d+OETybycMZTlxKSR+sx9ZoK1GzRS3M4GBgezfv99wvHDhQjZs2MC1a9cA3QjCxx9/TExMDDExMZw7d44BAwYA4OjoaLjO1taWgoICpJQEBgYa5A8fPsy6desMcsYRTp966ilmzpzJ4cOHWbx4cYWWZ95K9NdZs2axZMkSsrOzueuuuzhx4gS9evViy5YtNG3alIkTJ/Ltt9+WWoednR1abdHfb3EbCu9R4f2pbMx9BzUN1bOoBGK6fAbA+dfW0+W85TFXxe2BuR6AtTeA9e3bl//85z989tlnPPHEEwBkZWUZzt9777189tln9O3bF3t7e06dOkXTpk0t1te2bVuuXbvGzp07ufPOO8nPz+fUqVMEBgaWkL1x44ahrm+++cZQ7u7uTlpamuG4e/fuREZGMn78eJYvX07Pnj1vysaePXuyfPlyXn31VaKiovD29qZevXqcPXuW4OBggoOD2bt3LydOnMDZ2Rk/Pz+mTp1Kbm4u+/fv59FHH7VYd/PmzTl27Bi5ublkZ2ezYcOGMt/s+/fvz8KFC5k3bx4AKSkpeHp6Ym9vT35+fomd0j179mTx4sVMmDCB5ORktmzZwgcffGCYA6npWLVnIYS4TwhxUghxRggxy8z5uUKIGP2/U0KI1GLn6wkhEoQQn1hTz7LQZOQS020Rx0dFliqnzS4g89AVYrovInXj2SrSTqHQraH/5Zdf2Lx5MwEBAXTp0oUJEybw3nvvAfDYY4/RoUMHOnXqRFBQEI8//nipb68ODg6sXLmSl156idDQUMLCwiyu6pk9ezYjRowgPDwcb29vQ/mDDz7Izz//bJjg/vjjj/n6668JCQlh2bJlzJ8//6ZsnD17Nvv27SMkJIRZs2YZHNO8efMICgoiJCQEe3t77r//fqKioggNDaVjx46sWLGCZ555ptS6mzVrxsiRIwkKCmLkyJF07NixTH1eeeUVUlJSCAoKIjQ0lE2bNgEwbdo0QkJCDBPchQwdOpSQkBBCQ0Pp27cv77//Po0aNbqpe1CdWC0HtxDCFjgF9AcSgL3AGCnlMQvyTwEdpZSTjcrmAw2BZCnlzNLai4iIkNbKZ3E18hCxT/9+03XezBhzZaFi9FcPx48fp3379hbP306hJWoLdcUOKL8t5n6nQoh9UsqIsq61Zs+iC3BGShkrpcwDIoHBpciPAX4oPBBChAO+wDqLV1QRNg6lT7xZ4vwbG5FaycV52zk+OhKpubU5DWs5doVCoSgLazqLpkC80XGCvqwEQojmQACwUX9sA/wP+LcV9Ss/NhXbJn954S5SN54lfs5mbmyMZY//BwBocwuIf3fzTe3RSI++SHTL/3HtpyMV0kWhUChuhZoywT0aWCml1OiPnwTWSikTSotnIoSYBkwD8PX1JSoqqsIKZGRkWLze5sg1HCpY78mxPxo+y1wNUav+xm59InarErj40XZyfixfKACH5w5gk5HH2RlrONrwukW50uyobdQmW+rXr096errF8xqNptTztYm6YktdsQPKb0tOTk6F/6as6SwuAs2Mjv30ZeYYDcwwOr4T6CmEeBJwAxyEEBlSSpNJcinl58DnoJuzuJXx7dLGx68nHeUMpytctzFOT+wzPR65A+c2DQj48AFS1p3GzsMJ30nh2Lk7msgddDtFNrr4NaXZWZvG+cuiNtly/PjxUseMb8fx8ZpOXbEDym+Lk5NTuSbvzWFNZ7EXaC2ECEDnJEYDY4sLCSHaAZ7AzsIyKeU4o/MTgYjijqIqub7SukM/2aeSOPbQMsNx5uFE2nwxlILUbApSc3Dy9wQV0FShUFQjVpuzkFIWADOBv4HjwI9SyqNCiDeFEA8ZiY4GImUNnr1N3VC1y2CTfz1O9unrRLeZS0yXz8g8nEj2CctDTwqFQmFtrLrPQkq5VkrZRkrZUkr5X33Za1LKNUYys0vrNUgpl5a1bNaaXP5ib7W0e/Cuzw2fD9/zZbXooKhd2NraEhYWRmBgIKGhofzvf/8z7EqOjo7m6aefvuU2Fi1axPfff39T19xKiO6lS5dy6dKlCl8Puv0ZH3744S3VYYkFCxbQvn37EnsqboW4uDiTe1xZ392tUlMmuGss5//vn+pWQaEoF87OzsTExABw9epVxo4dS1paGm+88QYRERFERJS5lL5UCgoKmD59+k1PCt9KiO6lS5cSFBREkyZNyn2NRqMpM85UZfHpp5+yfv16Q1ynyqDQWYwdqxu1r4zvrjJQsaEqgN8LPfGdEl5t7e/ymUPyHydLldFk5RP/7mayjl+tIq0UNQkfHx8+//xzPvnkE6SUJiG4zYX0BnjvvfcIDg4mNDSUWbN0nf0+ffqYhCOfPXs2CxYsMJx77rnniIiIoH379uzdu5dhw4bRunVrXnnlFYMuhSG6SwvF/eabb9K5c2eCgoKYNm0aUkpWrlxJdHQ048aNMyQo2rBhAx07diQ4OJjJkyeTm5sL6MKIv/TSS3Tq1ImffvrJ4n2JiYmhW7duhISEMHbsWFJSUgBdD6FDhw6EhIQwevToUu9TIdOnTyc2Npb777+fuXPnlujBBAUFERcXR1xcHO3bt2fq1KkEBgYyYMAAQ7KlM2fO0K9fP0JDQ+nUqRNnz55l1qxZbN26lbCwMObOnWvy3VkK0z5nzhwmT55Mnz59aNGiheE7qkyUsygFc4EBPe5pid8LPQl4514aP9EVAJ/xYbRZ+jDhJ56l0eOd8R4RZHXdTk1ahTZfgyYjj8uL95CXmEHarguQq1t9fHHedi5+tJ1DvZdYXRdFzaRFixZoNBquXjV9Yfjwww9ZuHAhMTExbN26FWdnZ/78809+/fVXdu/ezcGDB00iwubl5REdHc2//vWvEm04ODgQHR3N9OnTGTx4MAsXLuTIkSMsXbqUpKSkEvIHDhxg3rx5HDt2jNjYWLZv3w7o8kfs3buXI0eOkJ2dze+//87w4cOJiIhg+fLlxMTEIIRg4sSJrFixgsOHD1NQUMBnn31mqLtBgwbs37/f8LA3x6OPPsp7773HoUOH6NChA2+88QYA7777LgcOHODQoUMsWrTI4n0yZtGiRTRp0oRNmzbx3HPPlfpdnD59mhkzZnD06FE8PDwM0XPHjRvHjBkzOHjwIDt27KBx48a8++679OzZk5iYmBL1vv7663Ts2JFDhw4xZ84ck3hXJ06c4O+//2bPnj288cYb5Ofnl6rTzaKGoUpBm2MaOyds13QcA4rCEDd/4x6av3GPiYz/W7qQzterYPPctR8Oce7ffwJw/tX1ADj4OZMdEMqleUVd//zrmdh7Vzyqp+LmeDzi87KFKsDi6GmVUo+5kN7r169n0qRJuLi4AODl5WWQNw5HXpyHHtKtVQkODiYwMNAQxrxFixbEx8fToEEDE3lLobg3bdrE+++/T1ZWFsnJyQQGBvLggw+aXHvy5EkCAgJo06YNABMmTGDhwoU8++yzZeoJuoCHqamp9O7dG4CxY8cyadIkAEMspyFDhjBkyBCL96miBAQEGMKkh4eHExcXR3p6OhcvXmTo0KGAbllrWVgK0w4wcOBAHB0dcXR0xMfHh8TExEodHlM9i1I48+Svhs/BG6bg1MLrppOe23o4EbptGl0TXyZky1Q6x5Z8O6sohY7CGJuEbI4OXmZStq/DfHITblRau4raQWxsLLa2tvj4+JiUmwvpXRqlhQ8vDK1tY2NjEmbbxsbGbKBCc6G4c3JyePLJJ1m5ciWHDx9m6tSpVR7m/I8//mDGjBns37+fzp07U1BQcNP3qbQw51URgtzabaieRSmk/FW0Ec8lyKcUyZIEfHg/51/9h/YrRuPcRheJ06VdwxK9FWtQkFQy+XzatvM0HB1i9bYV5nsAVb0B7Nq1a0yfPp2ZM2eWeMExF9K7f//+vPnmm4wbNw4XFxeSk5NNehfWpPCh6u3tTUZGBitXrmT48OGALsx54VxB27ZtiYuL48yZM7Rq1Yply5YZegnloX79+nh6erJ161Z69uxJZGQkvXv3RqvVEh8fz913302PHj2IjIwkIyODpKSkEvepXbt2Fuv39/fn9991AUf379/PuXPnStXH3d0dPz8/fvnlF4YMGUJubi4ajcbE5uJYCtNeFShnYYHi8xU326PwfbQjPo+EIYrFlbJxsqPR1AiEgx03Np8j60jiLetaHmrsJhZFpVGY+zk/Px87OzvGjx/P888/X0Ju3rx5bNq0CRsbGwIDA7n//vtxdHQkJiaGiIgIHBwceOCBB5gzxzoZ/4rj4eHB1KlTCQoKolGjRnTu3NlwrjA/t7OzMzt37uTrr79mxIgRFBQU0LlzZ5Oc4+Xhm2++Yfr06WRlZXHHHXewbNkyNBoNjzzyCDdu3EBKydNPP42HhwevvvpqiftUGg8//DDffvstgYGBdO3a1TBcVhrLli3j8ccf57XXXsPe3p6ffvqJkJAQbG1tCQ0NZeLEiSY7rmfPns3kyZMJCQnBxcXFJH+ItbFaiPKqprJDlOclZrA/uGhFgTXCjR+5fykZ+25tDXl5aTF/IK6Bvhzu9xVtvhqGe7dmHHv4e/IS0ujw8zhcQ2peXP3aFu5DhSivXdQVO6D2hyiv1SQuLUpR2ejxLlZp447X++o+FOu0uEVYzmBWUWKf+YPD/b4C4NTk1Zx5Yg3Zx6+hSc/lcL+vkFJybcVhcmKTK71thUJR+1HDUBZwMlr15OTvYZU26nW7gy4JLwFwY8s5Q4Ra985+ZERbirlYOdzYbDqemvTrcc4+9ZtOr57NaRc5Ghv7qtnYpFAoaj6qZ2GBzIOXDZ99Hq1YlMbyYONgi42DLZ79WhUVVsPQYOahotwaaVvPc/XbA1Wug0KhqLkoZ2GBK1/o5j8c7/CosjdsYa/7OtzCm9DslburpM1Cci+YpD8n7uV1ZJ8x3VSVl5hB7L//JOvkNZPy9N3xpEaVvvLjdqCuzP8p6ia3+vtUzqIM8hKrLjlK2J4naf3lMLweao/XA0UrKYL+mWT43PRfPazSdvKakmvIj4+KBHQ/susrj7A/eAFXvz3A0QdN93EcfXAZJ0b+QPqeBKvoVhtwcnIiKSlJOQxFjURKSVJSUrk2/llCzVmUhabq/vgdm9bDsal+zbTRpLdbaGNCt0/DztMZWzdH0rafx7N/KxpN7Uzit/s5/8p6q+iTF3+DgpRsToxdYbJqS5Oaw/ERP5CflEXgmkcM5UcHfWuVVWO1AT8/PxISErh27ZrZ8zk5Obf0h1qTqCu21BU7oHy2ODk53dKObuUszGDydljB/NuVjXNrb8PnwDXjDZ+L7+OobKLbzjVbXjhBfnX5Qau2X1uwt7cnICDA4vmoqKgKZyiradQVW+qKHVA1tqhhKDPIPI3hs1MLz1IkrYeDr1u55GQV9nzMURiTqpC4/1tHQWrJHeQKhaJ2o5yFGfIuphk+t1kyrFp0sHVzJGzPE3Q6UnrSk+LOQrrZEbx+sjVVK5UrX0Rz/o2N5ZbXGjlmhUJRc1HOwgwFN3SxalxDGhniOlUHTv6eOPiU3sOo36M5APaN3Ig4/Ty5iyNwDWlEt6v/MdkrUpVk7LtIfnIW2WeSiH93M2m74pEFWtJ3x5vExsq9lMYev/c4+9wf1aKnQqEoP2rOwgyazDwAbNwcqlmTsnENaUTI1qk4NKmHnbsj2Bf5f59HO3JB/5Zv18DZbIBBa5B94jr72s0zHF/8aLvJeY97WuL/3r1cX6kL435t+UFazh1YJbopFIqKoXoWZtBm6pKG2LrWfGcB4NK2oc5RFKPxE10J/G08bb8bwR2v32PmyuohdcNZYov1Jk5OXKmWnSoUNRjlLMxwfvYGALJPl8z0VZsQNgL3rs3wHNAaGzvTrzos+knCTzyLU+sGFq62Lmlbz5N98rrhOGXtKXLOqrhUCkVNRTkLMxQ+tHLjUqpZk8rDoWlRzHuXYF+c7vDA3suF5oXBDKuBpJ+PmRznX880K5dzLoWjg5dx7OHlaLMrN1WkQqEoH2rOwgz2jdzIv5JB6y+HVrcqlYZ7t2b4vzOA/GuZNJ5eFEXXo38rgv6aiFPrBmhu5HDh7U0krT5WSk3W49hD39H6y6G6npCj7qcppSSma1Ge5Ws/HcHXirG6FAqFeVTPohhSSvKvZAC6uFB1BSEEjaZE0GxWb+w8nE3K3To1wc7dEUe/+rReNMTkuvATz9LBaBOgtTk95WfiXl6nO5DSZKgKQJujehYKRXWgehbFyEso2mNhWwtWQ1mT1kuGYu/lgl1X57KFK5Gr38WgzdPg9ONhDrHT9GSxOXApJblxqTj6e9x0NkOFQlF+VM+iFMq7i7quYuumW2Fl/BCuql7G9R8Pmy3PPpOENl+DNjufjP2XuDR/BzFdPyO6zVxyE25UiW4Kxe2I6lkUQ5tXtGms8GF5u9H6y6Gk70mg/t0lYx05BXjSatFgzkz/tRo0g6vfHCAnNgWQpG09byjX3MjhQKeFt20gQ4XC2qieRTG0ObrwEy7tG1azJtVHgwfb4/9Wf7PDOjbOdngPC6TToaeqQTMdaVvjTByFMdd/Pmr4rM3XqL0bCkUloZxFMQonUIWT6nQZ0+arYbRYMAi7erowyA6Namai+zOP/0rCR9soSM8luvUFNddpAAAgAElEQVRHHB1UlHsj50Iq519bT15iRjVqqFDUTpSzKIbM1Q1DFS7dVOjwGtQOn9Ehpcp43tsaT6OkTQCe97exIG09Et7dQnTL/6HNyidjbwL5yVkAnBgZyeVFe9gfvIArX0ZXuV4KRW1GPRGLUTgMZaN6FjeN75QIPPoEoM0p4MS4FXj2a0Wj6V1I/Gpf0XLYamBfu3k0mhpBTmzRDvG4l9fRaEpEtemkUNQ21BOxGDn6XduyQFvNmtQe/N8ZQIPB7bH3dgV0jrbDqnGG842mRFSrs4CinOrGaDLySNt1geQ1JyhIzabNN8MN8zRSo+XG5nO4RTQ1DL0pFLczylkUI27W3wCkbTM/gaooovmb/Uj69RgNR4XUyj0p+0MWoMnIMxznXUon89AVTk1YiZ2XMwXJuii9Za2wkgVarn5/kPo9/bFxsuPsU7/R+MmuePRtaVX9FYqqRDkLRYVpPL2LSeiQm8XW3RGXDg1J351QiVqVH2NHAXCg4yeGz4WOAqAgJRs7T2e0eRpS/j5F/R7+2HnqNipq8zTEv7OZywt3AeA1uD03tsRxY0ucWsarqFMoZ6GoElovGcrpx34GIHTbNFLWn8VrYFts3R1Mcl8A1O/lz40tcdWgpXnOPv07mUcScWxWn/Rd8WArcGnXEP85Azj/xkYy918yyGpSipxMatQ50Eo8+raoDrUVikrFqs5CCHEfMB+wBZZIKd8tdn4ucLf+0AXwkVJ6CCHCgM+AeoAG+K+UcoU1dS2Oz/iwqmyuztPgofY0uNoeKSVCCJMMhF0TX2a37ztA0aa/fR3mV5eqJUj5+zRglG5XI8k6epVjg78rISu1Rfs6Toz8AYDw489aX0mFwspYzVkIIWyBhUB/IAHYK4RYI6U0hDSVUj5nJP8UUBhONAt4VEp5WgjRBNgnhPhbSplqLX0LcW7TgOxTSTSa2tnaTd2WmNvoJ4QgeOMUCpKyqN9bt2u86fN3kfD5bkRGQQn5moy5hREFqUW9DW12PrmX03Fu4VWVaikUt4w191l0Ac5IKWOllHlAJDC4FPkxwA8AUspTUsrT+s+XgKtAlWypVktnqwfXIF+DowBoNqs3uV/WPodtdhWd0SbywwO+5mC3RWQYDV0pFLUBazqLpkC80XGCvqwEQojmQACw0cy5LoADcNYKOpZAW7gpTzmL6qcWRpHNiL5YouzaisM4jdzBkQe+MYRcT/nnTFWrplDcEsJasXOEEMOB+6SUj+mPxwNdpZQzzci+BPhJKZ8qVt4YiAImSCl3mbluGjANwNfXNzwyMrLC+mZkZODm5objpD2IzAJyvuoMbvYVrq+6KLSjLpCRkUH9PZmIWH0GPRuw++uKiUxBHx/soq5Wg3a3Ts4XEeBoC0621a3KTVFXfmN1xQ64NVvuvvvufVLKMneoWvP1+SLQzOjYT19mjtHADOMCIUQ94A/g/8w5CgAp5efA5wARERGyT58+FVY2KiqKPn36sEe7By3Qs28fbF1qn7MotKMuEBUVRc83B5mUSSm5+OE2Ej7YCkD4nKEc7L7YcN65fUNazh/EkQFfV6muFcFpqm6joM+EjjR7sRf2DXWbGrU5BVyctx2vge1wDfY1yGvzNNg4VL9jqSu/sbpiB1SNLdYchtoLtBZCBAghHNA5hDXFhYQQ7QBPKMpyo5f/GfhWSrnSijqaoM0tQJuthqFqMkIIbIycuHOrBnRJeKnouKUXbmGNaTgutDrUqxBXvznA2Wf/QJtbQNaxq1xetJuLH23n8D1fGmRyL6axx+89dvnM4ZqFXB8KhTWx2hNRSlkghJgJ/I1u6exXUsqjQog3gWgpZaHjGA1EStPxsJFAL6CBEGKivmyilDLGWvoCpO8ummIRNrVvvPx2QdiavuOYvG2bmefwGtwe51YNSN1wFtdgX64uK/kzavHRA8Q+v7bSdS0vqf+c4UDEp+QXi4hbkJrN8dEryL+WaSg7O/M3PO9tTe6FVJzbeKugl4oqwaq/MinlWmBtsbLXih3PNnPdd0DJRexWJu9SelU3qagAPo+Ecn31UbwfDjSUObfzJvvEdTz6tyoh3+aLoQA0e6kXgFln4fNIGF4PtiO69UdW0rpsijsKgMuf7TbZ9FdIoZ6eD7Sh7dLhJuekRosmPdck17pCcauoEOVGFOaw8Brcvpo1UZSGrZsjwesm0fjxolAjgb89SvuVY2g4MhgAr4FtAXANaVTierfwJiZDWYXY1XfCe1SwlbSuGMl/nCz1fMraU5yashrQOYn8a5nsafY+0W3mkhOXQu6lNBK/PWBY5WdM/vVMCm7kWEVvRd1D9V+NkDkql0Vtxa6+E/V7Fe3T8LinJcEbp+BkZvNb4B8TkAVa9rWbWyI+VONpnbm+oubMCWSfSipTJvm3E1xcsIP4t6NMymO6fAY2ArSS/GuZ+P2rh2EHvTZPY9glr2JYKcqD6lkYoc3Tb8hzrP4VJ4pbQwiBa5Cv2RVtwkZg42BLk2e7A9D4ya6Gc+Z6HIDJhsGaSHFHYUAffiR9bwK5F9PYH7SASwt3oUlTPQrFzaGchRFalSXvtqLJU3cSuuNx7nitr6HMuWWDEnIOTdxpFzmKej39q1C7yuXGxlgOdPyE/GuZXHhjI7mFca6AlHWnq1EzRW1BOQsjCoehhHIWtwVCCJxbNbC48k042BK0bhId989E2NrQLnIUYXufNPRIjHFu522mhprLkf5F+1BOPvKTRTlNRh6XPt1NbsKNqlBLUYNRzsIIrWHOQg1DKcB7eBBuYY0NzsTG3han5h4msZ4KafvtCLpeebmKNaw8Ls7bTn6SLle5NqeA1I1nOTZsOWdmrOHC7A0c6LSQ/OtFy3e1+RqsFf1BUTNRr9BGFE522ro5VrMmihqBpYehhfLavDcnfs5mEr85gHvXZiStPmpWZl+H+brJ8FwN0a3+h0sHHwJ/exREyb0vObHJ2Pu43VIGRSkl5/79J24dm+DziEoZUN2onoURmoxcgFqZIlRReXjrl9/6PNrR7Pl63ZsDYOdVtI/BxtlyaBi/F3tWonbWI+9imkVHUUhq1DnsPzyJNruAjH2X2N3kXQ50/tSkl5F14hox3RYR031Rudq11ENJ3xXP1WUx1bpZUlGEchZGaLPyAcsrYhS3By0/HkTE6edxDzcbJBmPvi3o8Ms4Qrc/TpuvhuH/3r04+JoP4mbn7YJTQNHy3QZDO+DczhuXDj44NKtvKA/8c0LlGmElToz8AduDpmll8hLSSN95wXCctl2Xvz7/SgZXv4vh3Et/WXQIabsuEN12Lsm/nyhxrjD0zs2SeSSRU1NWkxOXUqHrFeZRw1BGaPTOojYGEFRUHkII7Oo7lSpT2LvwGtTOpNy9+x2k79A9ODvH/gsbJ3uuryp6W2+9eIiJvDZfg7ARCFsbGgztQNLPutxgbb4dTvbxa8S/s/mW7akKjg1ZTsNxoTgFeBH/9iZDeWGvwHtksFnne/qxn9Gk5nBq8uqS+z0qOKx3bPB3aNJzyYlLIWTDlArVoSiJchZGFPUs1DCUomI0fryLwVkUzn3V7+UPgGtY4xLyNvZFiyn85wxA5mvwnRRO/Z7+cF+bWuMsAK4tP2jxXO6FVJxbepUIQWKcLCrz8BVcg4t23F+LtFxfaWjSc/VtqhVclYkahjJCo4ahFLeIR98WuHZsbLK81qGxOzlfdyGojKEm+wYutPnqYZ2jqGOcefxXotvM1U1av/gXu3zmcGNbHAXJRSlnD9/zFWef+d2w3ylp9TFL1ZF14hrHhn5H+p4Ey41qzGQtVFQY5SyM0GbpV0O5KmehqBg2jnYE/z2JO/7Tx/SEq12JFUPlwc6zbgUD3O37DolL9wNwfNj3Jc5f++EQF+duL1F+dMh3JP2mm9e4+l0Mh3p9Qdr2Cxwd9K3FtjQZeWSfvl5JmiuUszBCTXArahqBv483GwyxNFyCihImdU2sfXs/UjfGlihL33GB0/qAiTezOurgXZ9Xml63O8pZGFE0wa3mLBQ1A+fW3gT9M4mm/+5Bm2+Hl30B0ODBokl3UQvzmGfGXObEmBXVrQYA6dEXybuiUheAchZFSGnIJ6B6FoqahBCCZi/2wuu+NniPCsYtvCnBG6bgZmFpr88jYXgMaIX/nP5VrGnlkbrhrNnyva3+V6Is91Ia6XsSyDpxzew1GWbygRRyedEezj7zu9mlvVknr3H0gW/YH/JxObWu26jVUHrE5aIonMpZKGoqrT5+0PA56M8JnJ7+K0mrj+LaqQltlgxFk56LfUNX2n030iDn1NKLnLPJJvVEnHkeWxcHhJ3ufTHlnzPc2BLHlcV7qsaQCqJJyy1RdiDsE8Nnp9YlA0HGvfIPgb+N58qSaNy7NaMgKRv3rn6I2AzOv7YDAN/J4biFmq5Wyzp6tZK1r90oZ1GI0RI+4+WMCkVNJuCD+3CPaEKDwR2wb+hqVqbd96OI+791CAdb8q9mUr+XP3b1TPeRePZvhWf/Vvg9fxcp689ydXmMYQlwbSLndMn8HxnRF7m6LIbzr64vKhTgaNSZkPr0BIAh54cxabsuUK/bHZWub21COYtCcnTOwi28STUrolCUHzt3Rxo91rlUGacAT9p9P6p89Xk603BEEFmHr9RKZ2GJcy/+ZVpQfNRJCG5sP8/xoctxaFqPjtFPmpw+9tB3tP5iCPHvbKHtsuE4NKlHyrrTePRrhZ377RFLTs1ZAGk7L2C7WdflVBvyFApo+txd1O/bwqSs1acPVZM21uf6qiMcH7oc0MXIim43j6zjpnMgp6f+Qk5sMkcGfkvcf9Zx5vFfOfvkmptuK+PAJc7N+puC9JJDajUZ5SzQhQew+ycRUEEEFQrQ9TDaR46m/coxhjLv4UG0XTaC3NmBFq/rsOaRqlCv0kn8cp/JseZGDpfm7zArq0nN4doPhwBI+btk4ihNVr5hwjz7bBJHH1pG2o7zhvNH7l1K4lf7SHh/S2WpXyUoZ1EM5SwUiiLq9fQn4MP7CfpnEgCe97ZGdqhvVtajX8vbclxfm68h48Aljj74LddXHWWv/weGvSBnnlxD+q54jg1ZXuK63As3kFKS9NsJzr38N7KG7zhXcxbFUM5CoShCCIGvhVDtxriFN6HF3IFVoFHN4/jD35O+Kx6A9N268CPXlh+k5dyBFKRYznWuzczj6MBvyYi+CEC97nfQ4MH21le4gihnUQyV+EihKD+Bf07ANdAXG6eyHyW+U8Jp8tSdXP5kF1eWRFeBdlVDoaMwR2EIIXPc2BJnclyaYzHUl1tAyroz1O9dtKKtMMOntVHDUMWwUXGhFIpyY+vqUC5HAdDs5d44NqmH/5wBdI57gXaR5VuhVZuR2qJlVxcX7ODq8hiLsuf+/SfJf54yHOclZhjmPuJe/YeYbou48OZGTk9ZzalJqwC4/vNR9tzxPrYbEq1kQRGqZ1EMNQylUJSNz/gwss8m49zGu8Q5l2Bfsg7rHl5Nn+tO2o4LtF4yzGRvh62LPR59W2LjYm+IyVbX2BeygILrWYbj+Lejyrzm1ISVdE18mZQ/TnJq8moaP9GVer38ubJ4LwBXYnWbK9O26ibMY5/TzY3YLz4Lb1WyAcVQzqIYahhKoSibFv97wOK5Vgsf4vTUn2n67F14P2x55RRA2O4n2B+8AICgfyZxpP/XADT7T2/i5xTl8rDzdMa5dQOkVhrG+Gs6+VcyKnTdbt93DImfLn+2m8uf7TYrV5BW9rBVZaKcRTFUeHKF4tZwadeQ0K3TyiXr4OtGSNRj5MQmm4TbaDC4A41ndOPC6xvw6N8Kj7uL9nzs8pljUkezl3vXqiRR5UJrPg2tMdGtPsLGtepGQpSzKIaN6lkoFFWKSwcfXDr4ANAucjS5CTdwCvAEdNkDi9N6yVBOP/YzoBsOa/rcXTQcF0pBSjaHen5RdYrfZihnUZxyeHSFQmEdPIrtGjeH14PtCNk6FacAL2wcdHHcHHzccPBxKyHbYv5AhBCcffr3Ste1JqDNtLzaqrJRq6GK4dDIvbpVUCgUpSCEwKVtQ4OjMKb5G/eYHPuMCaXh6BCz9eQ/0dIq+tVVlLMohmuwb9lCCoWiRtL4ia74vdCzRHmDoR1wDTMNQW4cTNBSxF5FEbe9szCX9EShUNRefB4JAwG+EzsZylovHkLQ2gkIR11vpOOBmWgbFS3l7bh/RpXrWdtQcxbKVygUdQqHxu50vTjLkNipEGFnQ+cz/0LY2iDsbJAd6tNywSBcgnyxcSx6FIZEPYbUaHFoWo997eYBUL9PAC0+eoDzszfQZEY3HJvVZ1+H+SXa7pLwEtrMPDTZ+Tg2qVdi5VZtRjkL1bNQKOocxR1FIcZOATCZzwg/8Sz51zJxaduwZH22Njj61afNkmGGsohTz3F8+A80HBeK7/iOhjZtHJyx83SuDDNuCqmVCBvr5Vy36jCUEOI+IcRJIcQZIcQsM+fnCiFi9P9OCSFSjc5NEEKc1v+bYC0dpVr9pFAoAHsvF7OOAsw7HzsPZ4LXT6bRpHCLzsl4KKzxE10rR1ELaG5Yd5Oe1ZyFEMIWWAjcD3QAxgghOhjLSCmfk1KGSSnDgI+B1fprvYDXga5AF+B1IYSnVRRVvkKhUJSBJWdQFr6TwwFdbvDiK7UqG2v3ZqzZs+gCnJFSxkop84BIYHAp8mOAH/Sf7wX+kVImSylTgH+A+6yipepZKBQKCzR7pQ8IzK6wKg8u7RrScd8MQjZMKZe8g189XDs2pvHMbjR/q1+525Fu1p9RsGYLTQHj2L0J6HoKJRBCNAcCgI2lXNvUCjoqFAqFRZo+3Z0mM7ohbCv+Xu3YrChZVOMnuhpiPTm386blxw8a4mE5tfQidPvjJvMO519dX642NF28KqxfeakpE9yjgZVSSs3NXCSEmAZMA/D19SUqKurmW87T4GR0WKE6ahAZGRm13oZClC01k7piS7XYcbct3NkVHG3IEYLolJOG50+WNpfNW0xjXNn38MZ22/Uyq81zs/6zy5rO4iLQzOjYT19mjtGA8ULni0CfYtdGFb9ISvk58DlARESE7NOnT3GRMtFm57OHoqiOFamjJhEVFVXrbShE2VIzqSu21BQ7DjQ/Ru75VJr074B/MX00nbuTuv4Mdl4uHB/+Pe1XjuX4w9/rTgoI+nMi11cfJa6HjdVtsaaz2Au0FkIEoHv4jwbGFhcSQrQDPIGdRsV/A3OMJrUHAC9bQ0m1clahUFQngWvGk7z2JA3HhJY4Z+vqQIPBunVB3RL/Y3LOvWsz3Do1wa1TE+KqoIdktQluKWUBMBPdg/848KOU8qgQ4k0hxENGoqOBSGm0lVpKmYwulcde/b839WUKhUJRp3Bo7E6jKRHYupQvPULT57oD4PfvHtZUqwRWnbOQUq4F1hYre63Y8WwL134FfGU15YoasnoTCoVCUVk0e7kPTZ7ujm0V5rIAFRtKoVAoah1V7ShAOQu1KU+hUCjKgXIWCoVCoSgT5SxU10KhUCjKRDkLhUKhUJTJbe8sDmw5z/dNvdjqVTJ/r0KhUCh03PbOQmoh19aGPCvGgVcoFIrazm3vLOzsdE5CK5SzUCgUCksoZ2Gvy8mrrWY9FAqFoiZz2zsLW31SE40Q2Hm7VLM2CoVCUTO57Z2Fnb3uFmgFtP+pRJxDhUKhUKCcBbb6pCZaW4FroE81a6NQKBQ1k9veWRT2LDSoCW6FQqGwhHIWdkXDUAqFQqEwz23vLAwT3KpnoVAoFBZRzsJe9SwUCoWiLMrlLIQQzwgh6gkdXwoh9gshBlhbuarAMAxVzXooFApFTaa8PYvJUso0dLmwPYHxwLtW06oKKVwNpVE7uBUKhcIi5U2rWvgkfQBYps+lXSeeroU7uDWAlJI6YpZCoajllPU8On3gMm4eTmg1VZNmobzOYp8QYh0QALwshHCnjozc2NvbYCslGiHIz9Xg4GTVtOQKheI2QqvRsvrjPXTo5keHbn6lyqYlZfHqsBXkZOYza+kQls6Owr9DQ0a/eBdbVh1j7VcHcHCy442VI7kan8aHU38zXNu8ozt9+ljXlvI+GacAYUCslDJLCOEFTLKeWlWLkICA7Iw85SwUCkWFuRSbgkdDF1zcHQF44d7vyEjN4Z/vDvHwM11pE96Edx79mRHP30nTVl60jWiCjY2gIF/Djx/tJCczH4B3J/4CwJW4VHatPW2oPyczn+fu/qZEu+cPpFvdtvI+Ge8EYqSUmUKIR4BOwHzrqVWFSLCROm8RfyqJ+io+lEJx2yClJPH8DXzuqI9NOdMUGA8PSSkpyNPwz/LDpCRmsGXVcYPc2Fk9yEjNMRyvmr/b8Pmnj3YaPns3def6Res/7G+V8jqLz4BQIUQo8C9gCfAt0NtailUlefpJbqlVKVYVirpMTlY+F05cp1VYIwD+/DqGXz/dy32Twhg6o4vF6zQFWtYsiuavpTEAvLDkITwauvB/gyMtXvP9u9vKpVNtcBRQfmdRIKWUQojBwCdSyi+FEFOsqVhVIaWkWVYu8S6OaArqxDSMQqGwwMfP/MmZA1cY/0ov8IC1X+4H4K+vYxgwPhTXerrho6z0XBJOJ9MyxJe/lsZw9lAiR3fEG+r54LE11aJ/dVJeZ5EuhHgZ3ZLZnkIIG8DeempVIRIuOzkAcHx3AmF9/KtXH4VCYeDCiev8+tleRjx3J438PQzlv32+j9P7L/PMJw8YojAAJJxOIvlKBiE9m5vUI6Xk+sV0zhy4AsDuP0/j3qyA/FyNQearVzcibAQNGrsT9eNRK1tW+yivsxgFjEW33+KKEOIO4APrqVW1FOjHKqN+OsaYl3pUszYKhaKQ/z3+GzmZ+SRdSmf2TyMN5b9/vg+AT577i2c+fsBQ/taYVQC8Fjkc3+b1iYmKo1VYI166f7lJvaf2XYZ9pm0d2R5PbUarleWed6kI5XIWegexHOgshBgE7JFSfms1rRQKRa2i8M3du6n7Le9V0hRoObIjnk0rjhhWB6VczTScv3E9y/D52M4Evnkjii73tcLdy9lQ/ubolbekQ1Vi72hr0sMp5IkPB/D165sM96A4Y2f1MJkXyc3Kx9nNwWp6lstZCCFGoutJRKHboPexEOIFKWXt+UZKoUl2HpecHQjueUd1q6JQ1Eo2rTjKig93MGB8CA8/0+2mrs3P03BwcxweDV1p3qEhLw9cTnpKjolMTmY+j0d8bvb6Hb+dYsdvpyqse3XyyvJhNGvrjZSSK3Gp2NnbEn8qCTcPJ9p0aszcTRM5vf8yzTs0ZPWC3fQY0o763i5kZ+TRyN+D8H4tSEvK4uCx/Ti6WHdmoLzDUP8HdJZSXgUQQjQE1gO131lISXO9szh/7Fp1a6NQ1EiuxKXi6GKPp4+roSw9JZuczHwa+tXjjyW6ieJ1yw4ZnIWUkoJ8LbZ2NhTk6Ta8bow8Qk5WPg9M7siGHw6TeSOX5CsZ7Py9dj7sixPauzkHN58H4PUfR7Dxh8Ns/fmEWdl3fh+LVyM3AIQQNA7wBKChXz2DjI2NoG1EE0DXkyikcIm/m4cTbh5OnIq3s+oQFJTfWdgUOgo9SdShiLXnnXVdt7Sk7GrWRKGwLpfPpVDf2wVnNwf2bzhH8/beeDctejhpNVqkxGTSOCs9l9eH/wjAp7seIzutAIB/918GwLt/jCUrPdcgP/+ptRzbmVCi7f7jQ/hn2SEAfv10b+UbV41Me7cfHe/2R9gIw5CSg5Mdo1+8i24D2+DXpgHR684SdFcz4k8m0TLU17Bxr7ZQXmfxlxDib+AH/fEoYK11VKpiJDhp1ZJZRd3nSlwqs0f8hJOrPY/99x4+n7UegMXR0wwyb45ZReaNHN778xHDm2pKYtF8wZPdlgAQ1C7JUDZr4Pcm7ZhzFIDBUdQ1Fu2dajJPYxwFws7e1rCno8eQdgB4NHSlNlKu3oGU8gXgcyBE/+9zKeVL1lSsKglJUz0KRd3n7EHdstGczHwSTieZlbkcm0JaUjY5mXkc2RHPB4+t4fqlkpvG3h67yqq6Vgdhd/szdGbJjXnDn+2GvaOtSVmb8MaGz7dL8NFyB0KSUq4C6twvREqJo0b1LBTVS2VEPE6+koGzm4NhRYymQMuZmCsEBPng4GSHNApQ8MvComGg5e9sZcuq48ycd5+h7NLZFD5++k8AzsRcuSW9qpLwfi3Ytz7W4vm+o4PYGHnEcPz4+/1xcrHnjnbeuHk4IaWk28DW2NnbkpdTgFYr8W7izj1jgtBoJF+9upHQXs3Z/uvJqjCnRlGqsxBCpAPmYmAIQEop65k5V+uwM7Iw5WqmySSeQmEtcrPzeX/yryScTsa7qTuzfxyBvWP53t+MncvFM8lkpecaopC+/ctolvzfBgDijl6j84CWjH25B3k5BWbrKoxn9MmzfxnKausO5ZBezU2cxeLoaRzblcD8mWvxaVaPUf/uzoBHQ8lKy2Xv3r106htgcr0QwuwwkY2tDTa28Ph7/QHQaCSn9l8muMfts4Ky1F+mlNK9qhSpNiTYGb1ypSRmKGehqBKi150l4XQyoIsPFHv4qmHlS3EKncON61nMffIPLsem8ND0CJKvZLDtF9PVNq8MMY1XtHfdWfauO2sdI6oQr0Zu9BsXTPP2DfnhvW2Ge2dMfm4BE2f3YensKENZ+65NmbV0iGEHuKePK54+rpxOqPgEc/cH23BH2wY00q9guh2w6oomIcR9QoiTQogzQohZFmRGCiGOCSGOCiG+Nyp/X192XAixwJrJloxvQlUlElHcXuTnaPh54R4un0spKiz2k9ZaGA7dvPIY0zt/wV9LY3jxvu+4HKurY82i6BKOorbx8jdDyi37WuRw7hkTTKuwRrz6w3DuGtwWgPsmhuHbvD4AbcKbcOegNny0cYJh4l4IQUCQT6VuWBNC0KytN/YOtmUL1xGslrxBCGELLAT6AwnAXiHEGinlMSOZ1sDLwF1SyhQhhI++vDtwF7rJdIBt6N4tbWkAAB6LSURBVCLcRlW6otLUOfzx5X6T8AEKxc1wJuYK1y+m0W1gG5PymD+uc2bnWdYvP8zCHVM4d+Qqvy2ONpE5HXOF9l11CXLycgpYsyiaf74rWkH08yd7rG9AFTDl7b7s/P0UTq72+Af6GFYTFW666zWsPW6eTqz98gAA/cYFc+egNiUe9mNn9aD7g20JCPJh0NROpKfkGPYtFAYEVFQe1sz00wU4I6WMBRBCRAKDgWNGMlOBhVLKFACjvRwScAIc0M2P2AOJVtTVgKVlfwpFca5fTGPTj0cZMD6UxPOpfP16FMlXMgBo3qEhZw8mknI1kwenhXMtVrfiriBPw/6N51j84j8l6vvji/207tiYgCAfnun1dZXacqvY2tnw7tpxHNpyHr/WXrwz4ReLsk1befHMJ0UvZMUHDR6Y0hFPXze6PdCa5CsZBgdaHONlqbZ2NgZHobAO1nQWTQHjyFwJQNdiMm0AhBDbAVtgtpTyLynlTiHEJuAyOmfxiZTyONZA37Fw1WrJtLEhvF8LqzSjqN1cik3BxkaYRD6dP3MtV+PTiD+ZxMnoSybyqVczWfb2FgD+/OqASfh7c46ikHlP/lHJmluHEc914/cv9hMQ7EOj5h6MeK4bNrY2hr0E86Im8taYlSRdzsCjoQsPP9ONlqG+XL+YTtNWXmbrfH7RIG5cz8LTV/fQ923ugW9zD7OyiqpHSGmdMXohxHDgPinlY/rj8UBXKeVMI5nfgXxgJOAHbAGCAW90mfhG6UX/AV6UUm4t1sY0YBqAr69veGSk5UQkFrmWg9OM/Rz1dWWPozOt7qxP54d9b76eGkJGRgZubnXjDasybdFqJDa2Jae9CnK1HI9K5o4wd+r7mh+60GokK17SpbYc+W5rALJS8/n93bhK0a0m4VzPluy0kkHtjOk51Ru/tuYf+LUJ9bei4+67794npYwoS86aPYuLQDOjYz99mTEJwG4pZT5wTghxCmgN9AF2SSkzAIQQf6JL7WriLKSUn6PbLEhERITsU4GM5TkXUolhvyE5R8MGvlSknppCVFRUrdbfmMqyZcuqY/zwzjaeWnA/Qd2LfpIF+Rp+/XQvR/45w5F/kg0ToslXMnDzcDLsxM3JzGMFOmfx46zTJRuoZbi4O5CVnmf23AufD8XNw4kX7/vOpPzjbZNxcLIjP0/D9h1b68RvTP2t3BzWdBZ7gdZCiAB0TmI0upwYxvwCjAG+FkJ4oxuWigVaAFOFEO+gG4bqDcyzoq4UvnTm5Zpfi66ovSx/RxfG+Yf3tvHW6lFcPJvCyb0X+WnuLuzsi9bC7fz9FHe08+bN0Stp0MSdN34awcy7viKif+0fmhz2VBdWf6ybIJ+7aSKAYUL5/9u77zgpq3uP45/fLiy9LyC9uSsgvSggGERAQRFRVGKJBhVsuTY0EBNjYryxJMRrJRi9aq5RgRAliiBRFhQFISq9uIJUA4iArIV67h/PM8PM7M4OCzu7U77v12tfPHOeMufsM+xvTnnOqdOwGqPvH0BO15OC/QehU4CESqfRPxIubsHCOXfIzG4BZuP1RzznnFtpZr8FljjnZvj7BpvZKuAwcJdzbpeZTQMGAMvxehVmOef+GZ+Mev8EnrX495z18Pu4vJOUoYMHvFpD17NaBtMyMozpj38UNsLo0MGjfQmhY/N3bdvHLWc8B8CSOdGfCE4Uo+8/i+d+NbdQ+q1PDA0OG23Rvj416hxd86FqzUp8981++gw7hdxujQqdKxIqnjULnHMziZhw0Dl3b8i2A+7wf0KPOQyMjWfeIlUN6bs5eOCwvkElgEMHjhzzNBhv/uVjZkxaQr8RbbnynjN59+XlzPm/ZWGBAbPw1yngsfd+SqUqXiNqUcGiYqXM4JDTtj2bhO375UsXsXTeRvqNaBv/jErSi2uwSAp+kKgYMqvJvq+/1zC8OIsMyJFB4att+5j6i3ym/iKf3sNy6dCnGc5Bz8FtirzejEneMwvv/WNN1PUDdmzaW4oliL+Rt/Vi2qMLAcjt1ojtm/aGrRIHBANFpAbNa7F7ewHN22ZHvX69RjUYMKpD6WVYUpqCha9mSLDYtOYrBYs42rnlG3554Sv0HdGWtj0a88WqnSx6K5/BV3Vi8FWdAfhoVn7w+A//uY4P/ZXQug1oxcbVO3nx/vkMvLwjG1buoGocl5IsTwNGdQgGi4YtanHn5GEcOXyErf4kfyNvC1+Rrk2nhny+bDu53Rpxx5/P59DBI6ohS6lRsChi5PDT496O2sEnJy4wRcX7/1jD+yG1gL//zyLqnlSdHoPa4I4UPaT71yOnsHPLNwDB5xiSUcv29Znw4gi+LzjA7u0FfLlhD5PH/4uMTOOphdfhnNfHctPEc8ibspLhN/UEvAntmuXW46G3rijUPDf24UHMn76aH13cDjNToJBSpWARkB5T0pepH747SGaFDCpmZeKcY+qfFtKoVe1il699ZsI71KhThSNRgkUgUCSy3sNygzWhgFqNstj7pTdcddRdfeg+yGtO86YUr0uj1nX49ZRLaNCsJmYWnDaq85kt6Hxmi0LvUVQ/Tq3sqgwb072USyPiUbCI00OJ5e3DN9axaOZn3PCHwVSO40LuM5/7hP3fH2TEzeGLxuzYvJdfjXgVgPumXsILv5nHhhU7irpEIRNveKPU81lWatarwjW/7k9Ol5PIblIzWJac3rVZMt0r/1mXFe4nMDMat06fGUwl+ShYBFlwLHrkqljJKDAMNG/KSs69pkvc3iewlvKQa7pQuZrXdzB3ykpeeXhB8Jj7Lpkat/ePl/Ou68abf/n4mI69bFwfep+fy9b8r2nT2Xv6/4zhbXHOcVLL2mRkGo3bVaNS1Yr0Pi8nntkWiZu0Dxah9YqOfZsz/fGPyG6cOst4/PDdweM+1znHkcOOzAoZbFrzFVmVK4TNjRQ6Vcz0Jz6idceGrFm8tVATTDIaNrY7FbIy+WDGWn7+v8NZ+cFmamVX5fFbZ4XN8wTQ76J2VMw6OqldgJnx61dHghnz589j4js/oULF5P8iIukp7YNFkHkzVwJ8uWFPqSxzmQiidRSDN+X1js17GfPgwCLL+rffv8+iWfnc89cRPHDldAD+MOcqFr2Vz5rFW9m78+gwznlTVzFv6qpC10hWZsbQ0V0ZOrorQHDK8Uvv7M3LDy3gtCEn858Ne7z1mYvpSM7IPPqEuAKFJDMFi5Bvx4FgAd5Tu9HG9Ccy5xz/eunog2fROooBZj3/KQCf5n1Bs9x6vPfaGgZe3jH4lO/86d5Ev1P94ZsA4wb9NR7ZLlP1Gtdg17Z9YWn3Tb2E7/Yd4OHRr3PJ7b2inAn9LzmVbme3pmbdKlGPEUlFChYB5q2rGxBYlyAZbF63iy/X76bDGc3Yuf573nn66B935xx7dn7LlIkfMuiKTrRol82hg0fCyjfprjm0O70JqxdtZfHsz3ng9VEsnbcxuH/5e5vKtDylKTAEesUHm3n+vjxO7dWUi/7Lmyk/MFne04uuC9YAAgvxFEeBQtKRgkXIF+/Q5oTpjy1i4OUdw2obZe3g/kO89Pv36T6wddSF4ZfO38hTd8wOvq6RHT7yaf2y7bz0xR6WvbfJm/cqitWLvAmBd23bx4NXv8YXxQxvTUTdzm7FKT0as3HVTr4vOMAnc78gu8nRvqcOfZrxh7evCjvniQWjvecZQpqKUqHpUSQeFCxCRD61PeWPH/Djn/ctp9x4zUAfvrGOD99Yx6i7z2DxrHxO6dmY4Td6D2htXvtVWKAA2PdVeIf250tLvsBgIgeKu58bzqbVO3nlkQ/C0qvVrET/S04F4PuCAzQ7ZQW9Yow8qlhJH3+RY1V+X5sTRTHPWeRNXcV3+/aX4FKO41lMyjnH608v5uN3N4Slf/vN0fd+5eEFfL5sOzOf/YTtm/byzdff87srppf4vRLZBTfEXH+FNp0a8qOR7enQpxlDr+0aTA885Abeg27nXdeNeo1SZ1SbSHnTV6uAKM0Pk+6ewx1Pn39Ml3j05pkU7PmBcZOHMe3RhfQ+P5eTu5zE3q++46X/fo+zL+/IKT0aFzpv46qdwcXpLxvXh/pNa9Kxb3MyMorO0/7vDgZHJ6WKB14fRb3GNeh9fi4Tzv9bof0VK2Vy+1PnAV6z0c8eGwJ4z0Ps3v4t9ZvWLNP8iqQbBYuIikDkSJm1i7dxrNZ85LX7v/jbeXz87gbef20NkxZfz9SJH7J0/kaWzt8Y7HA98MMh1izeStueTcLWVHj1D17zyqTF13Nwf9HLW+7YvJf9J/D8RCLpe2Fb+lxwCtlNvD/2RU3gOOHFEbRol11kf0KFipkKFCJlQMEiwP87FLpy2vEKbU568o7ZYaOJ1i7ZxkktazNj0hLef20NDZrXKrIT/Yaez0S9/jMT3jnhPJaFa383gGd/+S4NmtWk3elNmTft6HMYud0bcc7VXcKWOQ245dFz2f/9QbbuyqdXn140bF6rLLMtIkVI+2AR2cdw6R29efzWWYWO2b5xLx/8cy39RrQL+yZ76OBh/nTTm+zZ8W2R148cdho571GyrbFQnLEPD2LXtn1Me9RbrvS0c08mt3sjatSpQmaFDEbdfQbTH1tEbvdGdOpXeHK8gMDIr4K8zQoUIgki7YNFpPrNCv9x+uPYN/js4y8BmP3C0mBT0v/eO5eFMz8r0/wlgsffH01W5QoU7PmBOwe+GEzvNqAVRw4foXrtyuR295bprF2/WnB/RoYVWoNBRJKDRkMdw+ClQKAItXrRlpQOFO17Nw1unzH8lOB27fpVyarsfceoXrsyv3r5YlqeWp9xzwwDvM7n3ufnaiSSSIpRsAgowbNYzjk2rd0Vv7yUg65ntQxut+rYgIGXdwy+/vHP+9Kpn9c01CNiCpSmOfWY8MIIcro2Kotsikg5UTNURJ9F/SaxvxHf0PMZ+qbAIvf1GlVn15cF3Pync+jUrwVje0wGvBrDqb2bcfdzw6nfpAYVszK59oGzWbtkG+17NY1xVRFJRQoWAX7NIiMzg0mLry92NBIQthxooqrTsBq7t4d3vI99eBDrl29n8FWdqVGnMt/u3U/12pXDjgl04Lfp1DCYVrlqxSJXbBOR9KBmqCL6LMyMOycPK/u8lKI/LxnDg29eEZb2i7+OoNuAVoy8tRc161bBzMICxYQXR9D/0lO5YGzsJ6lFJL2oZhEU3mmR2y3x2+AvG9eHZqfUY+INb3DkcOye+lrZVYvd37J9fVq2r19a2RORFJL2waK4qZx6nZfDwjcTc8TTsLHdGTDKW8v5gdd/zOfLtrPu39uY//fVRT5Y2KBZzbBhrCIiJaFmqIAiRkOFLiFaGqrVqnTMxz618DoezbuGMy9uF0wb8+BAWvjf/Adf1TmYXvek6vQc3IaLfnY67c+uy69eHhncd8WEvjRuU4e7nh1eCiUQkXSV9jWL4qoWpb22wcR3rmbnlm+4/8fT2P/9oUL7fzSyPfOmraLX0BwyK2RQpXoWl9zem5O7nESHM5pTrWYlug9sHfX6Vapn0XlIdliQO/Pi9px5cftSLYeIpB8Fi4Ai4kJRM8SeqPpNa/LYe6MBgkNVxz9/IS1PrY+Zcfn48PUzsipX4PQhxa/LICISb2qGKqbPolWHBjRvl12iyzWIMpfR8Jt6FnueVmgTkUSmYBHDKd1j1y66nNWy2P3N22YzdHTXQumDruxEbvdGtChhQBIRKWsKFjEmhxoyuiuVq1XktCEnB9MuvLln2HxJNz4y+LjeeeRtvbjzz8PC1oAWEUlE6rMIiNIMVK1mJf5n3k8B+OitfADadD6JIT/tStOcelSslFnonIfeuoLd27/lwWtei19+RUTKkL7SlnzJbKrWyAJgwKgO9BvRLnync9SuX41WHRpwzX39qVytIldM6FvEVUREkodqFgHH0L889qGB/OeLPTTNqXdMl+x9fi69zstR57WIJL20r1lErpRXnG5nt2botd2K3HflPf0ACg19VaAQkVQQ12BhZuea2Vozyzez8VGOudTMVpnZSjP7W0h6czN728xW+/tbxjOvJ6rfiHY8tfA62p2uKbxFJPXErRnKzDKBJ4FBwBZgsZnNcM6tCjkmB5gAnOGc221mDUIu8SLwgHNujplVB47EJaPH0WcRTWaFtK+oiUiKiudft9OAfOfceufcAeAVIHKCouuBJ51zuwGcczsAzKw9UME5N8dPL3DOfRfHvJZopTwRkXQTzw7uJsDmkNdbgNMjjskFMLMFQCZwn3Nulp++x8ymA62AfwHjnXOHQ082szHAGICGDRuSl5dX4kxa/j4qAYcPHzmu8xNNQUFBSpQDVJZElSplSZVyQNmUpbxHQ1UAcoD+QFNgvpl19NP7AV2BTcCrwDXAs6EnO+cmA5MBevTo4fr371/iDBTU2sYKlpNZIYN+x3F+osnLy+N4fg+JSGVJTKlSllQpB5RNWeLZDLUVaBbyuqmfFmoLMMM5d9A5twFYhxc8tgCf+k1Yh4DXgKKHIZ2oUuyzEBFJVfEMFouBHDNrZWZZwChgRsQxr+HVKjCzbLzmp/X+ubXNLLBs2wBgFXGlTgsRkWjiFiz8GsEtwGxgNTDFObfSzH5rZhf4h80GdpnZKmAucJdzbpffNzEOeMfMluP9JX8mTvmMx2VFRFJKXPssnHMzgZkRafeGbDvgDv8n8tw5QKd45i+MKhYiIlHpwQBVLEREYlKwCFDNQkQkKgUL9VmIiMSkYCEiIjEpWKhiISISk4JFgKYSFxGJSsFCfRYiIjEpWASoYiEiElXaBwtVLEREYkv7YCEiIrEpWGg4lIhITAoWAeqzEBGJSsFCFQsRkZgULAL0nIWISFQKFhoOJSISU9oHC8UKEZHY0j5YiIhIbAoWgaqFuixERKJSsPA5BQsRkagULNRnISISk4KFiIjEpGCh4VAiIjEpWATooTwRkagULFSxEBGJScEiQBULEZGo0j5YqMtCRCS2tA8WIiISm4KFqhYiIjEpWASoz0JEJCoFC1UsRERiUrAI0HMWIiJRKVioaiEiEpOChYiIxJT2wUKDoUREYotrsDCzc81srZnlm9n4KMdcamarzGylmf0tYl9NM9tiZk/EM5/em8X9HUREklaFeF3YzDKBJ4FBwBZgsZnNcM6tCjkmB5gAnOGc221mDSIucz8wP155BFS1EBE5BvGsWZwG5Dvn1jvnDgCvAMMjjrkeeNI5txvAObcjsMPMugMNgbfjmMejVLMQEYkqnsGiCbA55PUWPy1ULpBrZgvMbKGZnQtgZhnAH4FxccyfRxULEZGY4tYMVYL3zwH6A02B+WbWEbgSmOmc22LFPP9gZmOAMQANGzYkLy+vxBnIWP41WcDhw4eP6/xEU1BQkBLlAJUlUaVKWVKlHFA2ZYlnsNgKNAt53dRPC7UFWOScOwhsMLN1eMGjN9DPzG4CqgNZZlbgnAvrJHfOTQYmA/To0cP179+/xJncfeAz1rKGzMxMzjyO8xNNXl4ex/N7SEQqS2JKlbKkSjmgbMoSz2aoxUCOmbUysyxgFDAj4pjX8GoVmFk2XrPUeufcFc655s65lnhNUS9GBopSpye4RUSiiluwcM4dAm4BZgOrgSnOuZVm9lszu8A/bDawy8xWAXOBu5xzu+KVp6IzWqbvJiKSlOLaZ+GcmwnMjEi7N2TbAXf4P9Gu8TzwfHxyKCIix0JPcOs5CxGRmNI+WASpy0JEJCoFC1UsRERiUrAIUM1CRCQqBQv1WYiIxKRgEaSqhYhINAoWqliIiMSkYBGgioWISFQKFuqzEBGJScEiQDULEZGo0j5YqGIhIhJb2gcLERGJTcFCw6FERGJSsAhQn4WISFQKFqpYiIjEpGARoJXyRESiiuviR8mg6qkNaPGbs/ns28jlwUVEJCDtaxZV2tSj0Y2nc6RH3fLOiohIwkr7YCEiIrEpWIiISEwKFiIiEpOChYiIxKRgISIiMSlYiIhITAoWIiISk4KFiIjEpGAhIiIxKViIiEhM5lJkqTgz2wlsPIFLZANflVJ2ylOqlANUlkSVKmVJlXLAiZWlhXOufqyDUiZYnCgzW+Kc61He+ThRqVIOUFkSVaqUJVXKAWVTFjVDiYhITAoWIiISk4LFUZPLOwOlJFXKASpLokqVsqRKOaAMyqI+CxERiUk1CxERiSntg4WZnWtma80s38zGl3d+joWZfWFmy83sUzNb4qfVNbM5ZvaZ/28dP93M7DG/fMvMrFs55/05M9thZitC0kqcdzO72j/+MzO7OkHKcZ+ZbfXvy6dmNjRk3wS/HGvN7JyQ9HL//JlZMzOba2arzGylmd3qpyfjfYlWlqS6N2ZW2cw+MrOlfjl+46e3MrNFfp5eNbMsP72S/zrf398yVvlKzDmXtj9AJvA50BrIApYC7cs7X8eQ7y+A7Ii0h4Hx/vZ44CF/eyjwFmBAL2BROef9TKAbsOJ48w7UBdb7/9bxt+skQDnuA8YVcWx7/7NVCWjlf+YyE+XzBzQCuvnbNYB1fp6T8b5EK0tS3Rv/d1vd364ILPJ/11OAUX76JOBGf/smYJK/PQp4tbjyHU+e0r1mcRqQ75xb75w7ALwCDC/nPB2v4cAL/vYLwIUh6S86z0Kgtpk1Ko8MAjjn5gNfRySXNO/nAHOcc18753YDc4Bz45/7o6KUI5rhwCvOuf3OuQ1APt5nLyE+f865L51zH/vb+4DVQBOS875EK0s0CXlv/N9tgf+yov/jgAHAND898p4E7tU04GwzM6KXr8TSPVg0ATaHvN5C8R+sROGAt83s32Y2xk9r6Jz70t/+D9DQ306GMpY074lcplv8ppnnAs02JFE5/OaLrnjfZJP6vkSUBZLs3phZppl9CuzAC7yfA3ucc4eKyFMwv/7+vUA9SrEc6R4sklVf51w3YAhws5mdGbrTefXPpBzmlsx5B54G2gBdgC+BP5ZvdkrGzKoDfwduc859E7ov2e5LEWVJunvjnDvsnOsCNMWrDbQtz/yke7DYCjQLed3UT0tozrmt/r87gH/gfZC2B5qX/H93+IcnQxlLmveELJNzbrv/H/wI8AxHq/sJXw4zq4j3x/Ul59x0Pzkp70tRZUnme+Oc2wPMBXrjNflVKCJPwfz6+2sBuyjFcqR7sFgM5PgjDLLwOoZmlHOeimVm1cysRmAbGAyswMt3YPTJ1cDr/vYM4Cf+CJZewN6QpoVEUdK8zwYGm1kdvzlhsJ9WriL6gkbg3RfwyjHKH7HSCsgBPiJBPn9+2/azwGrn3MSQXUl3X6KVJdnujZnVN7Pa/nYVYBBe/8tcYKR/WOQ9CdyrkcC7fm0wWvlKrqx69xP1B29kxzq89sB7yjs/x5Df1nijG5YCKwN5xmuffAf4DPgXUNcdHVXxpF++5UCPcs7/y3jNAAfx2k+vPZ68A6PxOuvygZ8mSDn+6udzmf+ftFHI8ff45VgLDEmkzx/QF6+JaRnwqf8zNEnvS7SyJNW9AToBn/j5XQHc66e3xvtjnw9MBSr56ZX91/n+/taxylfSHz3BLSIiMaV7M5SIiBwDBQsREYlJwUJERGJSsBARkZgULEREJCYFC0lrZlbbzG4Ked3YzKYVd04pvndLM7u8LN5L5EQpWEi6q403YycAzrltzrmRxRxfmloCChaSFBQsJN09CLTx1zh4xP+2vwLAzK4xs9fMW8vhCzO7xczuMLNPzGyhmdX1j2tjZrP8iR3fM7NCc/iY2Y/s6FoKn/hP4T8I9PPTbvcnjnvEzBb7E96N9c/tb2bzzexNf02CSWaW4R//vJmtMG99k9vL8PcmaaZC7ENEUtp4oIPzJmwLzFQaqgPezKWV8Z6O/blzrquZ/Qn4CfAo3vrHNzjnPjOz04Gn8KaSDjUOuNk5t8Cf5O4H/73HOefO9997DN7UGT3NrBKwwMze9s8/DW9tgo3ALOAiYAPQxDnXwT+/dmn8QkSKomAhUry5zlsXYZ+Z7QX+6acvBzr5f/j7AFO9aYkAb6GZSAuAiWb2EjDdObcl5PiAwf41A81gtfDm8jkAfOScWw9gZi/jTWvxDtDazB4H3gTejrygSGlRsBAp3v6Q7SMhr4/g/f/JwFtjoEtxF3HOPWhmb+LNN7TAil7e0oCfOefCJt8zs/4Unh7cOed2m1lnvEWHbgAuxZubSaTUqc9C0t0+vOU3j4vz1krYYGaXQHB96s6Rx5lZG+fccufcQ3gzmrYt4r1nAzf6U2xjZrn+zMIAp/kzoGYAlwHvm1k2kOGc+zvwS7xlXkXiQsFC0ppzbhfeN/0VZvbIcV7mCuBaMwvMBFzU8pu3+e+xDG+m2rfwZhQ9bGZL/c7pvwCrgI/9TvY/c7T2vxh4Am+a6g1465g0AfLMW03t/4AJx5l/kZg066xIgvOboYId4SLlQTULERGJSTULERGJSTULERGJScFCRERiUrAQEZGYFCxERCQmBQsREYlJwUJERGL6f0fQ796/3DPBAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1440,7 +12421,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8FdX5x/HPk4Sw70tEQAFBKbijuNQFtSpuYBUtaF1aK7WKlSq2YC0qtta1Wpe61r2KQq3FHyhuRMG6gQLKHtkFZRGFsIUkz++PmeAlJrmXJDd3+75fr/ti5syZO8/JDffJzDlzxtwdERGRqmQlOgAREUl+ShYiIhKVkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShaQlM+trZitqsP9DZvan2oxJJJUpWUjSMrMlZrbFzArN7Csze9LMmsThOBeb2dTIMne/zN1vjsOxIttU9ro/xn3zzexXtR2TSCyULCTZneHuTYADgYOAkQmOpzac4e5NIl5Da+NNzSynNt5HpCJKFpIS3P0rYBJB0gDAzOqb2Z1mtszMvg4vHTWsaH8zG2FmX5jZRjObY2Y/Dct/BDwEHBH+lf9tWP6kmf05XJ5rZqdHvFeOma0xs4PD9cPN7H9m9q2ZzTSzvtVpY9kZTtim9Wa22MxOCbf9BTgauD/ybMTM3MyuMLOFwMKw7Egz+9jMvgv/PTLiGPlm9lcz+8jMNpjZf82sVbhtgpldWS6mWWU/K8lsShaSEsysI3AKUBBRfCuwN0EC6QZ0AEZV8hZfEHzZNgduAp41s/buPhe4DHg//Cu/RQX7Pg8Mjlg/GVjr7p+YWQdgAvBnoBUwHPi3mbWtXks5DJgPtAFuB/5pZubufwSmAEMrOBs5M9yvZ/jFPwG4F2gN/A2YYGatI+pfCPwSaA8Uh3UBngJ+XlbJzA4g+JlOqGZbJI0oWUiye9nMNgLLgdXADQBmZsAQ4Hfu/o27bwRuAQZV9CbuPtbdV7p7qbu/QPBXeJ8YY3gO6G9mjcL18wgSCARfrhPdfWL43m8A04BTo7Tp24jXpRHblrr7o+5eQvDl3R7IixLfX8OfwRbgNGChuz/j7sXu/jwwDzgjov4z7v65u28C/gSca2bZwHhgbzPrHta7AHjB3YuiHF8ygJKFJLsz3b0p0BfoQfAXN0BboBEwvexLF3gtLP8BM7vQzGZE1N034r2q5O4FwFzgjDBh9CdIIAB7AudEfvkDRxF8yVfVphYRr0cjtn0VcdzN4WK0Tv3lEcu7A0vLbV9KcIZQUf2lQD2gjbtvBV4Afm5mWQRnU89EObZkCHWISUpw93fM7EngToLLLmuBLUAvd/+yqn3NbE/gUeAEgstNJWY2A7Cyt48hhLJLUVnAnDCBQPDF+4y7X1rpnrWnsjgjy1cSJLBIexAk0jKdym3bTvDzhOBs5hlgKrDZ3d+vdrSSVnRmIankHuBEMzvA3UsJEsDdZtYOwMw6mNnJFezXmOALdU1Y7xcEZxZlvgY6mlluFcceA5wE/IbvzyoAniU44zjZzLLNrEF4j0fHaraxKl8DXaPUmUhwKem8sCP+Z0BP4P8i6vzczHqGZ0mjgXHhZS/C5FAK3IXOKiSCkoWkDHdfAzzN953YfyDo8P7AzDYAbwL7VLDfHIIvv/cJvnD3A96LqPI2MBv4yszWlt8/fI9V4f5HElyqKStfDgwAriNIRsuBa6n6/9Yr5e6z+E+Uppf5OzAwHCl1b0UV3H0dcDpwDbAO+D1wurtHtusZ4EmCS14NgN+We5unCX5Gz8YYl2QA08OPRDKHmeUDz7r7Y1XUuRAY4u5H1VlgkvR0ZiEiO4SXpi4HHkl0LJJclCxEBICwv2cNwaW656JUlwyjy1AiIhKVzixERCQqJQsREYkqbW7Ka9OmjXfu3Lna+2/atInGjRvXXkAJki7tALUlWaVLW9KlHVCztkyfPn2tu0edyyxtkkXnzp2ZNm1atffPz8+nb9++tRdQgqRLO0BtSVbp0pZ0aQfUrC1mVn56mArpMpSIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiISVdrclFddX3+9nXvvXc3y5fXZf/9iWrXK+B+JiMgPZPw344QJ33HLLV8D9fnww/m8++7e5OXVS3RYIiJJJeMvQ/3yl2346193B2DBgm2ceeYitm4tTXBUIiLJJeOTxZo12znmmCb07l0MwAcfbOKaa1YkOCoRkeSS8cmiefNsbrxxFdOnB1fk9tmnPldd1S7BUYmIJJeMTxa5uVm8+GIXOnUq4eSTm/HBB/uw994NEh2WiEhSyfgOboAWLXK4++7NDBhwCDk5luhwRESSTsafWZRp3dqVKEREKqFkEYPSUqeoSCOkRCRzKVlEsWlTCeeeu5hLL12Guyc6HBGRhFCfRRVWrCiif/8v+PTTLQD06tWA3/9+twRHJSJS93RmUYWf/3zJjkQBMGLESv7v/75LYEQiIomhZFGFhx/egxYtsnes77tvA/bbT8NqRSTzxDVZmFk/M5tvZgVmNqKC7ceY2SdmVmxmA8tt28PMXjezuWY2x8w6xzPWiuyzTwPGju1Cdjb079+c997bhz33rF/XYYiIJFzc+izMLBt4ADgRWAF8bGbj3X1ORLVlwMXA8Are4mngL+7+hpk1ARIyHOknP2nGlCl706dPY7KzNbRWRDJTPDu4+wAF7r4IwMzGAAOAHcnC3ZeE23ZKBGbWE8hx9zfCeoVxjDOqI45oksjDi4gkXDwvQ3UAlkesrwjLYrE38K2ZvWRmn5rZHeGZStLRcFoRyQTJOnQ2BzgaOIjgUtULBJer/hlZycyGAEMA8vLyyM/Pr/YBCwsLd3n/wkK4+eZGnHJKEX37Flf72LWpOu1IVmpLckqXtqRLO6CO2uLucXkBRwCTItZHAiMrqfskMDBi/XDgnYj1C4AHqjpe7969vSYmT568S/WXLNnqvXrNdpju9et/4u+/X1ij49eWXW1HMlNbklO6tCVd2uFes7YA0zyG7/R4Xob6GOhuZl3MLBcYBIzfhX1bmFnbcP14Ivo6Em3r1lKOPnoBs2dvBWDbNqd//y9YtGhbgiMTEYmPuCULdy8GhgKTgLnAi+4+28xGm1l/ADM71MxWAOcAD5vZ7HDfEoIRUm+Z2WeAAY/GK9Zd1aBBFqNH775TWZcuuTRurNtWRCQ9xbXPwt0nAhPLlY2KWP4Y6FjJvm8A+8czvpq4+OLWLFy4lVtu+Zqzz27B0093plEjJQsRSU/J2sGdEm6+eXd69WrIoEEtycrSPRgikr6ULGogK8s477xWiQ5DRCTudN1ERESiUrKIk2++KaZfvwLefz+hN5+LiNQKJYs4KCjYyuGHz2fSpA0MGLBIQ2pFJOUpWdSyNWu2c/jh81m4cFu4XsxppxWwfn1y3OEtIlIdSha1rG3belx2Wdudytq3r6fRUiKS0pQs4mD06PYMGtQSgPPPb8lrr3WjefOknAdRRCQmGjobB1lZxhNP7MkxxzTh179uo7MKEUl5ShZx0qBBFr/5TdvoFUVEUoAuQyWI6zkYIpJClCwSYNWq7Rx99ALdgyEiKUPJoo7NnbuFI46Yz3vvbeKMM75gwYKtiQ5JRCQqJYs6tHr1do46agFLlxYBsG5dCf36FfD119sTHJmISNWULOpQu3b1GDp0507vHj0a6DkYIpL09C1Vx268sT2/+EVrAH71q9aMH78XTZroHgwRSW4aOlvHzIyHH96DE05oynnntcRM92CISPJTskiAevWM88/XczBEJHXoMlQS2r5d92CISHJRskgyS5du44AD5vLSS+sTHYqIyA5KFknk88+3cOSRC5g7dyuDBy8hP39jokMSEQGULJLGxo0lHH/8QlauDO65KCpy+vf/grlztyQ4MhERJYuk0bRpNrff3mGnslNPbU7XrvUTFJGIyPeULJLIxRe35rbbdgdg6NC2PPdcZ+rX10ckIomnobNJ5tpr8zjooEb85CdNdQ+GiCQNJYskY2aceGKzRIchIrITXeNIMWvXFlNSovswRKRuxTVZmFk/M5tvZgVmNqKC7ceY2SdmVmxmAyvY3szMVpjZ/fGMM1UsXLiVPn3mMXTocj08SUTqVNyShZllAw8ApwA9gcFm1rNctWXAxcBzlbzNzcC78YoxlXzyyWZ+/OMFLF5cxEMPreXGG1clOiQRySDxPLPoAxS4+yJ3LwLGAAMiK7j7EnefBZSW39nMegN5wOtxjDEllJQ4F1ywhDVrineUjR79Fa+88m0CoxKRTBLPZNEBWB6xviIsi8rMsoC7gOFxiCvlZGcbY8d2oWXL76cy/+UvW3Pqqc0TGJWIZJJkHQ11OTDR3VdUNXzUzIYAQwDy8vLIz8+v9gELCwtrtH9d+POfs7nmmkacfnoR55+/mClTFv+gTiq0I1ZqS3JKl7akSzugjtri7nF5AUcAkyLWRwIjK6n7JDAwYv1fBP0ZS4C1wAbg1qqO17t3b6+JyZMn12j/uvLFF1u9tLS00u2p0o5YqC3JKV3aki7tcK9ZW4BpHsN3ejzPLD4GuptZF+BLYBBwXiw7uvv5ZctmdjFwiLv/YDRVJtL0HyKSCHHrs3D3YmAoMAmYC7zo7rPNbLSZ9Qcws0PNbAVwDvCwmc2OVzyZYNGibSxcqFtnRKT2xbXPwt0nAhPLlY2KWP4Y6BjlPZ4kuEwlVZg9ewsnnljA5s2NOProrfTo0SDRIYlIGtGfoWlg2rRNHHvsAlat2s5332Xxk58sZMmSbYkOS0TSiJJFGhg//jvWrSvZsf7ll9t56KG1CYxIRNKNkkUauOmm9gwZ0mbH+uWXt+GWW3ZPYEQikm6S9T4L2QVmxj/+0YkNG0rIzv6K++/vpOnNRaRWKVmkiexs49lnOzNlylIlChGpdboMlUays5UkRCQ+lCwyxJw5W7jwwiVs3fqDORtFRKLSZagMMHPmZk48sYA1a4r59tsSxo3rQm6u/k4QkdjpGyPNzZixmeOOW7hjevNXXvmO885bQnGxHp4kIrFTskhzu+9ej912q7dTWdu2OWTpkxeRXaCvjDTXrl093nqrO926BRMQDhvWjn/8oxNZWeoMF5HYqc8iA7RvX4+33+7OmDHrGT68nYbWisguU7LIEJ065XLttXmJDkNEUpQuQwkAX35ZVPbgKRGRH1CyEGbO3Mz++89lxIiVShgiUiEliww3c+Zmjj9+Id98U8Ltt3+thCEiFVKyyGDFxc455yzmm2++n9789tu/ZsKEDQmMSkSSkZJFBsvJMcaM6ULLltk7yq6+uh2nndYsgVGJSDJSsshwBx/ciDff7E7LltlcfXU77ryzg4bWisgPaOiscPDBjZg580d07FhPiUJEKqRkIUBwH4aISGV0GUqimjFjMzffvEqjpEQymM4spEozZmzmhBOCobWFhaXceuvuulQlkoF0ZiGVikwUEAyrHT78S51hiGQgJQupVGkplM8LjRpl6cxCJAMpWUilIofVAgwf3o7Ro9snOCoRSQT1WUiVDj64EW+/3Z2xY9fz5z+rv0IkUylZSFQHHtiIAw9slOgwRCSB4noZysz6mdl8MyswsxEVbD/GzD4xs2IzGxhRfqCZvW9ms81slpn9LJ5xSs18/vkWtm0rTXQYIhJHUZOFmZ1hZrucVMwsG3gAOAXoCQw2s57lqi0DLgaeK1e+GbjQ3XsB/YB7zKzFrsYg8Tdt2iZ+/OP5nHnmIrZsUcIQSVexJIGfAQvN7HYz67EL790HKHD3Re5eBIwBBkRWcPcl7j4LKC1XvsDdF4bLK4HVQNtdOLbUgZkzN3PSSQVs2FDKa69t4PTTv2DTppLoO4pIyrFYxsybWTNgMPALwIEngOfdfWMV+wwE+rn7r8L1C4DD3H1oBXWfBP7P3cdVsK0P8BTQy91Ly20bAgwByMvL6z1mzJiobalMYWEhTZo0qfb+yaKu2uEOw4Y1Ytasnbu9fv/7LZxyyvZaOUa6fCagtiSjdGkH1Kwtxx133HR3PyRqRXeP6QW0BoYBS4BXgYXAlVXUHwg8FrF+AXB/JXWfBAZWUN4emA8cHi2+3r17e01Mnjy5Rvsni7psx9dfF/l++812mO4w3UeOXOGlpaW19v7p8pm4qy3JKF3a4V6ztgDTPIYcEHU0lJn1Jzij6AY8DfRx99Vm1giYA9xXya5fAp0i1juGZTEJz2YmAH909w9i3U/qTrt29Zg8eW9OOmkhxx7blL/8RUNrRdJVLENnzwbudvd3IwvdfbOZXVLFfh8D3c2sC0GSGAScF0tQZpYL/Ad42iu4NCXJo3XrHN55Z28aN9ad3SLpLGoHt7tfBCwws/7hyKjdIra9VcV+xcBQYBIwF3jR3Web2ejwbAUzO9TMVgDnAA+b2exw93OBY4CLzWxG+Dqwuo2U+GrSJLvKRFFUpFFSIqkulqGzlwAfAWcR9EN8YGa/jOXN3X2iu+/t7nu5+1/CslHuPj5c/tjdO7p7Y3dv7cFQWdz9WXev5+4HRrxmVLeRkjhTpxbSvfscpk3blOhQRKQGYrkM9XvgIHdfB2BmrYH/AY/HMzBJfZ9+upnTTguG1h5//EJeeWUvjj22aaLDEpFqiOU+i3VA5BDZjWGZSKVWrdrOyScHiQJg48ZS+vUrYOnSbQmOTESqI5ZkUQB8aGY3mtkNwAcEfRhXm9nV8Q1PUtVuu+Xwq1+13qns+ut3Y8896ycoIhGpiVguQ30Rvsr8N/xX1xOkUmbGLbd0oHnzbEaMWMnw4e247rrdou8oIkkparJw95sAzKxJuF4Y76AkffzhD7tx2GGNOfbYJhpaK5LCYhkNta+ZfQrMBmab2XQz6xX/0CRd9O3bVIlCJMXF0mfxCHC1u+/p7nsC1wCPxjcsyRSTJm3gwguX6F4MkSQXS59FY3efXLbi7vlm1jiOMUmG+OijTZx99iI2bSpl1artvPRSV5o2zU50WCJSgVjOLBaZ2Z/MrHP4uh5YFO/AJL3Nn7+V0077gk2bgjOKN9/cyAknLGT79uizIItI3YslWfyS4FkSLwH/BtqEZSLVVr++0arVzmcRF1zQinr11LchkoyqvAwVPu3uj+7+2zqKRzJE5871mTp1b0499QumTdvMddflceWV7RIdlohUospk4e4lZnZUXQUjmaVt23pMntydxx9fx5VX6kGIIskslg7uT81sPDAW2DEbnLu/FLeoJGM0aZLNb3+rMwqRZBdLsmhAMBfU8RFlTtCHIRJXL764nlWrtnPVVUooIokUS7J4zN3fiywwsx/HKR6RHWbNyubaa5dQVOQsWVLEXXd1ICtLHeAiiRDLaKiKHpta2aNURWrF/Plbuf76RhQVBUNp77lnNeefv6Ts2ewiUscqPbMwsyOAI4G25WaXbQbozimJqy+/3E5x8c5lp57aTNOGiCRIVWcWuUATgoTSNOK1geCJeSJxc/zxTbn33k20b18PgNGj23PBBa2j7CUi8VLpmYW7vwO8Y2ZPuvvSOoxJBIBu3Ur54IN9eOqpdVx/vaY3F0mkWDq465vZI0DnyPrufnyle4jUkj32yOVPf2qf6DBEMl4syWIs8BDwGFAS33BEds2TT67j229LGDZMQ2tF4imWZFHs7g/GPRKRXfTmmxu49NKlFBfDokXbuPvujmRnqwNcJB5iGTr7ipldbmbtzaxV2SvukYlUYdaszZx11qIdI6buu28NgwcvTmxQImksljOLi8J/r40oc6Br7YcjEps1a4qJvOXCDM47T3/DiMRL1DMLd+9SwUuJQhLqhBOaMXXq3nToEAytve22Dpx5ZosERyWSvqKeWZhZI+BqYA93H2Jm3YF93P3/4h6dSBUOOKARH320D08//Q3Dh6uDWySeYumzeAIoIribG+BL4M9xi0hkF+y+ey4jRuxW6Z3d7q4pQkRqQSzJYi93vx3YDuDum4GYhpyYWT8zm29mBWY2ooLtx5jZJ2ZWbGYDy227yMwWhq+Lyu8rEot77lnNeectYcuW0kSHIpLSYungLjKzhgSd2pjZXsC2aDuFT9l7ADgRWAF8bGbj3X1ORLVlwMXA8HL7tgJuAA4Jjzs93Hd9DPGKAPDKK99yzTVf4g6LF2/j5Zf3Yrfd6iU6LJGUFMuZxQ3Aa0AnM/sX8Bbw+xj26wMUuPsidy8CxgADIiu4+xJ3nwWU/7PvZOANd/8mTBBvAP1iOKYIADNnbmbw4CU7Rkx9+OFmTjxxIaWluiQlUh1Rzyzc/Q0z+wQ4nODy01XuvjaG9+4ALI9YXwEcFmNcFe3boXwlMxsCDAHIy8sjPz8/xrf/ocLCwhrtnyzSpR1Qs7asXGm0adOITZuCCZKzspwLLljHu+++U4sRxk6fS/JJl3ZA3bQllstQuPs6YEJcI6kGd38EeATgkEMO8b59+1b7vfLz86nJ/skiXdoBNW/LaaeVcO65i3j99Y3ce+8eXHFF4p7zrc8l+aRLO6Bu2hJTsqimL4FOEesdw7JY9+1bbt/8WolKMkbz5tlMmNCN//znW845p2WiwxFJabH0WVTXx0B3M+tiZrnAIGB8jPtOAk4ys5Zm1hI4KSwT2SU5OVZloigtdVasKKrDiERSU0zJwsyOMrNfhMttzaxLtH3cvRgYSvAlPxd40d1nm9loM+sfvtehZrYCOAd42Mxmh/t+A9xMkHA+BkaHZSK1avToVey331xef31DokMRSWqx3MFdNoR1H4Ib9OoBzwI/jravu08EJpYrGxWx/DHBJaaK9n0ceDzaMUSq66WX1nPTTV8BcMopBdxxRwd+97t2enSrSAViObP4KdAf2ATg7isJHq8qkrKWLt3GhRd+/wDI0lK49davWbu2uIq9RDJXLMmiyIP5Espuymsc35BE4m+PPXK54Yb2lJ1E5OTAv//dlbZtddOeSEViSRYvmtnDQAszuxR4E3g0vmGJxJeZce21eUycuBfNm2dz//2dOProJokOSyRpxXJT3p1mdiKwgaDfYpS7vxH3yETqQL9+zZk/vyd5eTqjEKlK1DMLM7samOPu17r7cCUKSTdVJYriYufmm1excaMePy+ZLZbLUE2B181sipkNNbO8eAclkixGjvySUaNW0afPPObN25rocEQSJpYn5d3k7r2AK4D2wDtm9mbcIxNJsLFj13PnnasBmDdvG4ceOo/JkzcmOCqRxNiVO7hXA18B6wA9lkzSmrtz331rdipr3jybXr0aJCgikcSKpc/icjPLJ5iavDVwqbvvH+/ARBLJzJg0qRsXXdQKgHr1jHHjutKunTrCJTPFMpFgJ2CYu8+IdzAiyaRhwyyeeGJPDj+8MdnZxuGH6xYjyVyVJgsza+buG4A7wvVWkds1V5NkAjPjssuqntp869ZSGjSI55ycIolX1ZnFc8DpwHSCu7cjJ8xxoGsc4xJJCdu3OyefXEDPng34+987kpurpCHpqdJk4e6nh/9GnWFWJFNde+0K3n23kHffLWTWrC2MHduF3XfPTXRYIrUulg7ut2IpE8k0zz67jr///fsRU//73yauuSbW53uJpJaq+iwaAI2ANuEDiMouQzWjgudhi2Sa/fZrSJcuuSxeHDw8aY89crn33gpn3BdJeVWdWfyaoL+iR/hv2eu/wP3xD00kuR1wQCOmTevBSSc1pUED4z//0ay1kr6q6rP4O/B3M7vS3e+rw5hEUkarVjlMnNiNGTO2cPDBjRIdjkjcxDLr7H1mti/QE2gQUf50PAMTSRXZ2Ubv3pUnitWrt7NkiUZJSWqL9bGqfQmSxUTgFGAqoGQhEkVRUSlnn72I6dMb06rVt/Tv3yLRIYlUSyx/7gwETgC+cvdfAAcAzeMalUgacHeuvHIFU6duYssW48wzF/GXv6wiePCkSGqJJVlscfdSoNjMmhFMKNgpvmGJpL78/EIeeWTtjnV3ePvtQkr0aAxJQbEki2lm1oLgUarTgU+A9+MalUga6Nu3Cfff34ns7GC9a9dcXnyxCzk5VvWOIkkolg7uy8PFh8zsNaCZu8+Kb1giqc/MuOKKtvTq1YDBg+fz3//uRevWsczdKZJ8qrop7+Cqtrn7J/EJSSS99O3blGeeKWTffRsmOhSRaqvqz5y7qtjmwPG1HItI2sqp4n/aypVF3HvvGkaPbq+JCCVpVXVT3nF1GYhIJtq6tZSf/nQRH320mf/9bxNjx3YhL093gUvyiWUiwUZmdr2ZPRKudzez0+Mfmkh6c3d+/etlfPTRZgCmTCnkkEPmsWxZUYIjE/mhWM55nwCKgCPD9S+BP8fy5mbWz8zmm1mBmY2oYHt9M3sh3P6hmXUOy+uZ2VNm9pmZzTWzkTG1RiSFrF1bzJQphTuVHXBAQzp21JmFJJ9YksVe7n47sB3A3Tez84OQKmRm2cADBHd89wQGm1nPctUuAda7ezfgbuC2sPwcoL677wf0Bn5dlkhE0kXbtvX46KMeHH98UwC6d6/Ps892JitLQ2sl+cSSLIrMrCFBpzZmthewLYb9+gAF7r7I3YuAMcCAcnUGAE+Fy+OAE8zMwmM1NrMcoCHBmc2GGI4pklLatMlh0qRujBiRx8svd6VFCw2tleQUy2/mDcBrQCcz+xfwY+DiGPbrACyPWF8BHFZZHXcvNrPvgNYEiWMAsIrgmRq/0zO/JV3l5Bh//WvVj4jRc74l0apMFuFf+fOAs4DDCS4/XeXua6varxb0AUqA3YGWwBQze9PdF5WLbwgwBCAvL4/8/PxqH7CwsLBG+yeLdGkHqC1lvvrK+O1vG3PJJds4+eTttRtYNaTL55Iu7YA6aou7V/kCPotWp5L9jgAmRayPBEaWqzMJOCJczgHWEiSkB4ALIuo9Dpxb1fF69+7tNTF58uQa7Z8s0qUd7mqLu/umTSV+0EFzHKY7TPehQ5f5tm0ltRvcLkqXzyVd2uFes7YA0zyG7/RYzms/MbNDq5GHPga6m1kXM8sFBgHjy9UZD1wULg8E3g6DX0Z405+ZNSY4q5lXjRhEUpa7M2TIUj79dMuOsvvvX8Pzz69PYFSSqWJJFocB75vZF2Y2KxzOGnVuKHcvBoYSnD3MBV5099lmNtrM+ofV/gm0NrMC4GqgbHjtA0ATM5tNkHSxTIN3AAAUAUlEQVSecM1HJRnGzDj55GY0aPD96KizzmrBhRe2SmBUkqli6eA+ubpv7u4TCR6YFFk2KmJ5K8Ew2fL7FVZULpJpLrigNT17NuTssxfRsKHxxBN7EnQlitStWGadXVoXgYhIxXr3bsT06T1Yv76YZs2yEx2OZCiNxRNJAa1b59CtW4NKt7/11gbmz99ahxFJplGyEElxBQVbOfvsxRx66DxefvnbRIcjaUrJQiSFbd5cyllnLeK770rYuDGYwXbUqJWJDkvSkJKFSAp75pl1fPbZzpef2rXTlCFS+5QsRFLYkCFtuO++jjsernTuuS244oq2iQ1K0pKShUgKMzOGDm3HO+/szXHHNeGxxzS0VuJD56siaeDII5vw9tt7V1lny5ZSGjbU34dSPfrNEckAY8eup0ePOXz44aZEhyIpSslCJM0tWLCVSy5ZyrJlRRx99ALuu2912QSdIjFTshBJY1u2lHLOOYvZuLEUgO3bneHDv6SgIJbnl4l8T8lCJI1lZ7Pjsa1l/va3jnTvXvnd4CIVUbIQSWO5uVncfXdHxo3rQrNmWQwa1JLLL2+T6LAkBWk0lEgGOPvslhxwQEPy8uppaK1Ui84sRDJEt24NaNq08llrR41ayfvvF9ZhRJJKlCxEhDFjvuHmm7/i6KMXcNttX1FaqtFSsjMlC5EMV1CwlSFDlgFQUgIjRqzkiiuWJzgqSTZKFiIZ7tVXN+wYWgtQv77x61+rE1x2pmQhkuGuvLId48d3pVWroD/jrrs6cuCBjRIclSQbjYYSEc44owUzZjTi8cfXaWitVEhnFiICQKdOudxwQ/tKh9YWFpYwbtz6Oo5KkoXOLEQkJlddtYLHH1/HCSc05KCDSmjevPJhuJJ+dGYhIlGNG7eexx9fB8Bbb9XjgAPmMm/e1ih7STpRshCRKm3bVspVV63YqaxhQ2OPPXITFJEkgpKFiFSpfv0sXn+9G/vv3xCAnBznuee60KiRvj4yifosRCSqXr0a8tFH+3DddSvZsmUZBx2kobWZRn8aiEhM6tfP4q67OnLuuUWV1pk9ewtr1xbXYVRSV+KaLMysn5nNN7MCMxtRwfb6ZvZCuP1DM+scsW1/M3vfzGab2Wdmpgn4RZLYpk0l/PSni9hvvzlMmPBdosORWha3ZGFm2cADwClAT2CwmfUsV+0SYL27dwPuBm4L980BngUuc/deQF9ge7xiFZGa+8MfVrJw4Ta++qqY00//gksvXaoJCdNIPM8s+gAF7r7I3YuAMcCAcnUGAE+Fy+OAEyy4I+gkYJa7zwRw93XuXhLHWEWkBqZOLeSBB9bsVJadbWRl6dkZ6SKeyaIDEDl15YqwrMI67l4MfAe0BvYG3MwmmdknZvb7OMYpIjV02GGNGTVqN7LD+/S6ds3lzjvL/3eXVJaso6FygKOAQ4HNwFtmNt3d34qsZGZDgCEAeXl55OfnV/uAhYWFNdo/WaRLO0BtSVaVteW446B9+yxuvbUhw4atZ9q0KXUf3C7IhM+kVrl7XF7AEcCkiPWRwMhydSYBR4TLOcBawIBBwFMR9f4EXFvV8Xr37u01MXny5BrtnyzSpR3uakuyitaW4uLSKrdPnbrRi4qqrlMXMukzqQowzWP4To/nZaiPge5m1sXMcsMEML5cnfHAReHyQODtMPhJwH5m1ijs7D4WmBPHWEWklmRnV95PMWvWZo47biFHHjmfOXO21GFUUlNxSxYe9EEMJfjinwu86O6zzWy0mfUPq/0TaG1mBcDVwIhw3/XA3wgSzgzgE3efEK9YRST+tm0r5YILlrJ9uzNt2mYOOmge//jHmug7SlKIa5+Fu08EJpYrGxWxvBU4p5J9nyUYPisiaeD2279m1qzvzyaKipwOHeolMCLZFbqDW0TqxGWXteGss1rsWB88uCUDBrSoYg9JJkoWIlIn2ratx7hxXXj++c707NmAe+/tlOiQZBcoWYhInTEzBg1qxWef/Yg2bSq+Cl5a6jz44Bq2bi2t4+ikKkoWIlLnqrqz+/7713D55cs5+OB5fPDBpjqMSqqiZCEiSeOLL7YxcuRKAObO3cqRR87nqafWJTgqASULEUki11+/ks2bv7/81KxZNied1CyBEUkZJQsRSRoPPtiJSy5pvWP9jjs60L69htcmAyULEUkaLVrk8Nhje/L669248MJWOyUOSSwlCxFJOiee2IynnupcaUf48uVFnH56AfPnb63bwDKYkoWIpBR354orljNhwgb2338uN9+8iqIiDbONNyULEUkp48Z9yyuvBI9tLSpyRo1axcsv6zGu8aZkISIpZeLEnRPDUUc1ZuBATRsSb0oWIpJSHn98T557rjNt2+aQnQ0PPriHHt9aB5QsRCSlmBmDB7di3ryejBnThX33bVhhPXdn7lw9M6O2KFmISEpq1SqHgQNbVrp97Nhv6dVrLldcsYz164vrMLL0pGQhImlnw4YShg1bgTv84x9r6dFjDm+8sSHRYaU0JQsRSTs33riKVau271hfv76ETp1yExhR6lOyEJG0069fM7p1q79j/dpr29GjR4MERpT6lCxEJO2cdFIzPvvsR9x0U3t69KjPH//YPtEhpTwlCxFJSw0aZDFqVHtmzepJo0YVf9WtXVvMMccs4K231J8RjZKFiKS1evUqvwfjT39ayZQphfzkJwWcffYilizZVoeRpRYlCxHJSAUFWTzyyNod6y+99C0vvLA+gRElNyULEclI06fnUBox/2C3bvUZNqxd4gJKckoWIpKRfvazIj74YB8OPbQRAPfc05H69fWVWBn9ZEQkYx12WGM++GAfXn11L047rXml9f7616+YMyezpw5RshCRjJaVZfTrV3mieOedjVx33Ur2338ul1++jNWrt1daN50pWYiIVKK01Ln66hUAlJTAgw+u5ec/X5LYoBIkrsnCzPqZ2XwzKzCzERVsr29mL4TbPzSzzuW272FmhWY2PJ5xiohU5NVXN/DJJztffrrxxsy8wS9uycLMsoEHgFOAnsBgM+tZrtolwHp37wbcDdxWbvvfgFfjFaOISFVOPbUZ//53F/baK5g65JxzWnDkkU0SHFVixPPMog9Q4O6L3L0IGAMMKFdnAPBUuDwOOMHMDMDMzgQWA7PjGKOISKXMjLPOasmcOT/i7rs7cuutHSqtO2HCd+Tnb6zD6OpWPJNFB2B5xPqKsKzCOu5eDHwHtDazJsAfgJviGJ+ISExyc7MYNqwdXbvWr3D71q2l/OY3yzjuuIX061fAp59uruMI4y8n0QFU4kbgbncvDE80KmRmQ4AhAHl5eeTn51f7gIWFhTXaP1mkSztAbUlW6dKW2mzHiy/msnx5MKvtpEkbmDz5O8aO3UizZrXy9lHVyWfi7nF5AUcAkyLWRwIjy9WZBBwRLucAawEDpgBLwte3wDfA0KqO17t3b6+JyZMn12j/ZJEu7XBXW5JVurSlttqxeXOJt249w2H6jtfvfre8Vt47VjVpCzDNY/hOj+dlqI+B7mbWxcxygUHA+HJ1xgMXhcsDgbfD+I92987u3hm4B7jF3e+PY6wiItXSsGEWr7yyF8ccE3R8N22axciReQmOqvbFLVl40AcxlODsYS7worvPNrPRZtY/rPZPgj6KAuBq4AfDa0VEkt0RRzQhP787r766F/fc05G2betVWG/FiiKGDFmakrPbxrXPwt0nAhPLlY2KWN4KnBPlPW6MS3AiIrXIrOo7wSGYNuTRR9fxxBPr+MUvWnPddbvRuXPFnebJRndwi4jUgeXLi3jssXUAFBfDo4+u4403UmeorZKFiEgdePjhtRQV+Y71zp1zueiiVgmMaNcoWYiI1IEbb2zPU0/tueNu8D/+cTdycyv+Ci4u9grLE0nJQkSkDuTkGBde2Jp583ryr3915qKLWldYz9057rgFnHfeYmbOTJ6b+5QsRETqUE6Ocd55rSp9NviUKYVMnbqJ559fz4EHzuOUUwrYtq20wrp1SclCRCSJ3Hbb1zutZ2WRFE/wS3wEIiICwKZNJSxdWrRT2R/+kBw3+ClZiIgkicaNs5k160eMH9+VH/+4MUcc0Zijj654SvQtW0r5+99Xs2FDSZ3EpmQhIpJEsrKMM85owdSp+/Dqq92obDLVJ59cx7BhK+jU6TPGjMmNf1xxP4KIiFRL8+bZFZYXFzt33BH0bWzYUDed30oWIiIpZty49SxeHPRtNGmSxemnF0XZo+aULEREUsyJJzbjxhvb06ZNDr/6VRua1MGTXpUsRERSTOvWOdxwQ3uWLduXUaN2q5NjJuuT8kREJIqGDbNo2LBu/ubXmYWIiESlZCEiIlEpWYiISFRKFiIiEpWShYiIRKVkISIiUSlZiIhIVEoWIiISlZKFiIhEZe7J92Dw6jCzNcDSGrxFG2BtLYWTSOnSDlBbklW6tCVd2gE1a8ue7t42WqW0SRY1ZWbT3P2QRMdRU+nSDlBbklW6tCVd2gF10xZdhhIRkaiULEREJColi+89kugAakm6tAPUlmSVLm1Jl3ZAHbRFfRYiIhKVzixERCSqjE8WZtbPzOabWYGZjUh0PLEwsyVm9pmZzTCzaWFZKzN7w8wWhv+2DMvNzO4N2zfLzA5OcOyPm9lqM/s8omyXYzezi8L6C83soiRpx41m9mX4ucwws1Mjto0M2zHfzE6OKE/475+ZdTKzyWY2x8xmm9lVYXlKfS5VtCPlPhcza2BmH5nZzLAtN4XlXczswzCuF8wsNyyvH64XhNs7R2vjLnP3jH0B2cAXQFcgF5gJ9Ex0XDHEvQRoU67sdmBEuDwCuC1cPhV4FTDgcODDBMd+DHAw8Hl1YwdaAYvCf1uGyy2ToB03AsMrqNsz/N2qD3QJf+eyk+X3D2gPHBwuNwUWhDGn1OdSRTtS7nMJf7ZNwuV6wIfhz/pFYFBY/hDwm3D5cuChcHkQ8EJVbaxOTJl+ZtEHKHD3Re5eBIwBBiQ4puoaADwVLj8FnBlR/rQHPgBamFn7RAQI4O7vAt+UK97V2E8G3nD3b9x9PfAG0C/+0X+vknZUZgAwxt23uftioIDgdy8pfv/cfZW7fxIubwTmAh1Isc+linZUJmk/l/BnWxiu1gtfDhwPjAvLy38mZZ/VOOAEMzMqb+Muy/Rk0QFYHrG+gqp/uZKFA6+b2XQzGxKW5bn7qnD5KyAvXE6FNu5q7MncpqHhpZnHyy7bkELtCC9fHETwl2zKfi7l2gEp+LmYWbaZzQBWEyTeL4Bv3b24grh2xBxu/w5oTS22JdOTRao6yt0PBk4BrjCzYyI3enD+mZLD3FI5duBBYC/gQGAVcFdiw9k1ZtYE+DcwzN03RG5Lpc+lgnak5Ofi7iXufiDQkeBsoEci48n0ZPEl0ClivWNYltTc/cvw39XAfwh+kb4uu7wU/rs6rJ4KbdzV2JOyTe7+dfgfvBR4lO9P95O+HWZWj+AL9l/u/lJYnHKfS0XtSOXPBcDdvwUmA0cQXPLLqSCuHTGH25sD66jFtmR6svgY6B6OMMgl6Bgan+CYqmRmjc2sadkycBLwOUHcZaNPLgL+Gy6PBy4MR7AcDnwXcWkhWexq7JOAk8ysZXhJ4aSwLKHK9QX9lOBzgaAdg8IRK12A7sBHJMnvX3ht+5/AXHf/W8SmlPpcKmtHKn4uZtbWzFqEyw2BEwn6YCYDA8Nq5T+Tss9qIPB2eDZYWRt3XV328Cfji2BkxwKC64F/THQ8McTblWB0w0xgdlnMBNcn3wIWAm8Crfz7URUPhO37DDgkwfE/T3ApYDvB9dNLqhM78EuCzroC4BdJ0o5nwjhnhf9J20fU/2PYjvnAKcn0+wccRXCJaRYwI3ydmmqfSxXtSLnPBdgf+DSM+XNgVFjeleDLvgAYC9QPyxuE6wXh9q7R2rirL93BLSIiUWX6ZSgREYmBkoWIiESlZCEiIlEpWYiISFRKFiIiEpWShWQ0M2thZpdHrO9uZuOq2qcWj93ZzM6ri2OJ1JSShWS6FgQzdgLg7ivdfWAV9WtTZ0DJQlKCkoVkuluBvcLnHNwR/rX/OYCZXWxmL1vwLIclZjbUzK42s0/N7AMzaxXW28vMXgsndpxiZj+Yw8fMjrXvn6fwaXgX/q3A0WHZ78KJ4+4ws4/DSe9+He7b18zeNbMJ4TMJHjKzrLD+k2b2uQXPN/ldHf7cJMPkRK8iktZGAPt6MGFb2WylkfYlmL20AcHdsX9w94PM7G7gQuAegucfX+buC83sMOAfBFNJRxoOXOHu74UT3W0Njz3c3U8Pjz2EYOqMQ82sPvCemb0e7t+H4NkES4HXgLOAxUAHd9833L9FbfxARCqiZCFStckePBtho5l9B7wSln8G7B9+8R8JjA2mJgKCB82U9x7wNzP7F/CSu6+IqF/mpPA9yy6DNSeYy6cI+MjdFwGY2fMEU1u8BXQ1s/uACcDr5d9QpLYoWYhUbVvEcmnEeinB/58sgmcMHFjVm7j7rWY2gWDOofes4sdbGnClu+80+Z6Z9eWH04O7u683swMIHjp0GXAuwdxMIrVOfRaS6TYSPIKzWjx4XsJiMzsHdjyf+oDy9cxsL3f/zN1vI5jVtEcFx54E/CacZhsz2zucWRigTzgLahbwM2CqmbUBstz938D1BI95FYkLJQvJaO6+juAv/c/N7I5qvs35wCVmVjYTcEWP4BwWHmMWwUy1rxLMKFpiZjPDzunHgDnAJ2En+8N8f/b/MXA/wTTViwmeY9IByLfgaWrPAiOrGb9IVJp1ViTJhZehdnSEiySCzixERCQqnVmIiEhUOrMQEZGolCxERCQqJQsREYlKyUJERKJSshARkaiULEREJKr/B8LP7aFdpVM8AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX5x/HPkxAIq6yNCsiOikprQXAvqFW0KlpBobaKWrFVrMuvtVqtW23dtVptK8WKW4sUbUVBES1xqwuLiuyEPQgiyBYghCTP7497CUPMMgmZzPZ9v17zYu6558w8JxPmyb333HPM3REREalKRrwDEBGRxKdkISIi1VKyEBGRailZiIhItZQsRESkWkoWIiJSLSULSUlmNsDM8veh/V/N7Ld1GZNIMlOykIRlZsvNbIeZFZjZWjMba2bNYvA+I8zsvcgyd/+Zu/8uBu8V2afdj8eibJtrZj+t65hEoqFkIYnuLHdvBnwHOBK4Kc7x1IWz3L1ZxGNUXbyomTWoi9cRqYiShSQFd18LTCFIGgCYWSMze8DMVprZl+Gpo8YVtTezG81siZltNbN5ZnZuWH4o8FfgmPCv/E1h+Vgzuyt8Pt/Mzox4rQZm9pWZfTfcPtrM/mdmm8zsMzMbUJs+7j7CCfu00cyWmdnp4b7fAycAj0UejZiZm9lVZrYYWByWHWtm081sc/jvsRHvkWtmd5vZx2a2xcxeNrPW4b5JZnZ1uZhm7/5ZSXpTspCkYGYdgNOBvIjie4CeBAmkO9AeuLWSl1hC8GW7H3AH8JyZHeDu84GfAR+Ef+W3rKDtP4HhEdunAevdfZaZtQcmAXcBrYFfAi+aWbva9ZT+wEKgLXAf8KSZmbvfDLwLjKrgaOScsF2v8It/EvAo0AZ4CJhkZm0i6l8EXAocABSHdQGeBn68u5KZfZvgZzqpln2RFKJkIYnuP2a2FVgFrANuAzAzA0YC17n71+6+FfgDMKyiF3H3f7n7F+5e6u4vEPwV3i/KGP4BnG1mTcLtHxEkEAi+XCe7++TwtacCM4AzqunTpojH5RH7Vrj739y9hODL+wAgp5r47g5/BjuAHwCL3f1Zdy92938CC4CzIuo/6+5z3H0b8FvgfDPLBCYCPc2sR1jvJ8AL7l5UzftLGlCykER3jrs3BwYAhxD8xQ3QDmgCzNz9pQu8HpZ/g5ldZGafRtQ9POK1quTuecB84KwwYZxNkEAAOgFDI7/8geMJvuSr6lPLiMffIvatjXjf7eHT6i7qr4p4fiCwotz+FQRHCBXVXwFkAW3dvRB4AfixmWUQHE09W817S5rQBTFJCu7+tpmNBR4gOO2yHtgBHObuq6tqa2adgL8BJxOcbioxs08B2/3yUYSw+1RUBjAvTCAQfPE+6+6XV9qy7lQWZ2T5FwQJLNJBBIl0t47l9u0i+HlCcDTzLPAesN3dP6h1tJJSdGQhyeSPwPfN7NvuXkqQAB42s28BmFl7MzutgnZNCb5QvwrrXUJwZLHbl0AHM2tYxXuPA04Ffs6eowqA5wiOOE4zs0wzyw7v8ehQyz5W5UugazV1JhOcSvpReCH+AqAX8GpEnR+bWa/wKOlOYEJ42oswOZQCD6KjComgZCFJw92/Ap5hz0XsXxNc8P7QzLYAbwIHV9BuHsGX3wcEX7hHAO9HVPkvMBdYa2bry7cPX2NN2P5YglM1u8tXAYOB3xAko1XAr6j6/9Yr5e6z+Hc1Xd/tEWBIOFLq0YoquPsG4Ezg/4ANwA3Ame4e2a9ngbEEp7yygV+Ue5lnCH5Gz0UZl6QB0+JHIunDzHKB59x9TBV1LgJGuvvx9RaYJDwdWYhImfDU1JXA6HjHIolFyUJEAAiv93xFcKruH9VUlzSj01AiIlItHVmIiEi1lCxERKRaKXNTXtu2bb1z5861br9t2zaaNm1adwHFSar0A9SXRJUqfUmVfsC+9WXmzJnr3b3aucxSJll07tyZGTNm1Lp9bm4uAwYMqLuA4iRV+gHqS6JKlb6kSj9g3/piZuWnh6mQTkOJiEi1lCxERKRaShYiIlItJQsREamWkoWIiFRLyUJERKoV02RhZoPMbKGZ5ZnZjRXsv97M5oWLwr8VLlKze9/FZrY4fFwcyzhFRKRqMUsW4Zq+jwOnEyy+MtzMepWr9gnQ1917AxMIFqgnXHT+NoJF6PsBt5lZq1jFKiIiVYvlkUU/IM/dl4YLvo8jWCSmjLtPi1hn+ENg9+pipwFTw0XoNwJTgUExjFVERKoQy2TRnr0Xhs9n70Xjy7sMeK2WbffZpElZ/OIXq9AsvCIi35QQ032Y2Y+BvsD3athuJDASICcnh9zc3Bq/tzs8/XQjnn66MfAVO3as4sILi2r8OomioKCgVj+HRKS+JKZU6Uuq9APqqS/uHpMHcAwwJWL7JuCmCuqdAswHvhVRNhx4ImL7CWB4Ve/Xp08fr42bbsp3mLnX45ln1tfqtRLBtGnT4h1CnVFfElOq9CVV+uG+b30BZngU3+mxPA01HehhZl3MrCEwDJgYWcHMjgwTwdnuvi5i1xTgVDNrFV7YPjUsq3MXXtia/fbLLNvOzjaaN8+sooWISPqJWbJw92JgFMGX/HxgvLvPNbM7zezssNr9QDPgX2b2qZlNDNt+DfyOIOFMB+4My+rcYYc15uWXu5KV5bRunclbb/XgnHNaxuKtRESSVkyvWbj7ZGByubJbI56fUkXbvwN/j110e3zve8257bYdDBnSl4MPzq6PtxQRSSq6gzt03HHFShQiIpVQsoiSa0itiKQxJYsoPProOs4/fxklJUoYIpKelCyqUFrq3HBDPtdck8+ECZu49tp8HWGISFpSsqjCrbeu4f7794zofeyxr3jggXVVtBARSU1KFlW44oq2tG+fVbbdtGkGvXs3jmNEIiLxoWRRhY4dG/Laa91p0SKDnJwGvP12T047rUW8wxIRqXcJMTdUIjviiMa8+mp3OnTIokuXRvEOR0QkLpQsonDCCc3iHYKISFzpNFQd2LmzNN4hiIjElJLFPnB3fv/7NRx77EK2bCmJdzgiIjGjZFFLJSXO1Vfnc8sta5g1awc//OFSiop0hCEiqUnJopYefPBLHn/8q7Ltt97ayhVXrIxjRCIisaNkUUtXXdWOfv2alG23bJnJpZe2jWNEIiKxo2RRS02bZjJpUnd69mxE+/ZZvPtuT42aEpGUpaGz+6Bt2wZMmdKdjAzjoIMaxjscEZGYUbLYR50760Y9EUl9Og0VY198URTvEERE9pmSRYy4O7/+9WoOP3w+c+bsiHc4IiL7RMkiBkpKnJEjV3LffV+ycWMJp56ax7JlO+MdlohIrSlZxMCLL25izJgNZdtr1uzihz9cSmmpFk4SkeSkZBEDQ4e2ZNSodmXbbds2YMyYTmRkWByjEhGpPY2GigEz45FHOrBxYzHvvFPAG2/04JBDsuMdlohIrSlZxEhGhvHUU51Zv76YAw7Iqr6BiEgCi+lpKDMbZGYLzSzPzG6sYP+JZjbLzIrNbEi5ffeZ2Vwzm29mj5pZ0p3DycoyJQoRSQkxSxZmlgk8DpwO9AKGm1mvctVWAiOAf5RreyxwHNAbOBw4CvherGKNB3dn0qTNuOuit4gkvlgeWfQD8tx9qbsXAeOAwZEV3H25u88Gys/t7UA20BBoBGQBX8Yw1npVWupce20+Z565hFtu+SLe4YiIVCuW1yzaA6sitvOB/tE0dPcPzGwasAYw4DF3n1++npmNBEYC5OTkkJubW+tgCwoK9ql9tIqL4b77spk6NZhL6g9/+JKNG1dw/vl1c6d3ffWjPqgviSlV+pIq/YB66ou7x+QBDAHGRGz/hOBLv6K6Y4EhEdvdgUlAs/DxAXBCVe/Xp08f3xfTpk3bp/bRWrq00Fu3/tRhZtmjVatP/auvdtXJ69dXP+qD+pKYUqUvqdIP933rCzDDo/hOj+VpqNVAx4jtDmFZNM4FPnT3AncvAF4Djqnj+OKiS5dGvPZad5o2DX70++/fgLff7knbthqYJiKJK5bJYjrQw8y6mFlDYBgwMcq2K4HvmVkDM8siuLj9jdNQyapfv6a8/HJXDj00m/feO5gjjmgc75BERKoUs2Th7sXAKGAKwRf9eHefa2Z3mtnZAGZ2lJnlA0OBJ8xsbth8ArAE+Bz4DPjM3V+JVazxcPLJLZg9+1C6ddMU5yKS+GJ67sPdJwOTy5XdGvF8OsHpqfLtSoArYhlbImjQIOluHRGRNKW5oRKQu/Ob36zm44+3xTsUERFAySLh7J7e/O67v2TQoDxmz94e75BERJQsEklpqXPRRcvLpjffuLGE738/jwULCuMcmYikOyWLBJKRYXTu3PAb5UVF5W9wFxGpX0oWCeauuw7kmmuCtTDat8/inXd60rt3kzhHJSLpTneCJRgz4+GHO9C8eSaXXtqGLl00tFZE4k/JIgGZGb/73YHxDkNEpIxOQyWh0lJn69aSeIchImlEySLJlJYGQ2sHDlzMpk3F8Q5HRNKEkkUSKSlxLrtsBU8+uYGZM7dz2ml5bN6sIwwRiT0liyTywANfMnbs12XbH3+8nUsvXRHHiEQkXShZJJGrrmrHccc1Lds+8MAs7r5bF8JFJPaULJJIs2aZvPZad445pikdO2bx9ts96NkzO95hiUga0NDZJNO8eZAwNm4spnNn3YMhIvVDySIJ7bdfJvvtlxnvMEQkjeg0VIopLYU//WkdhYWaT0pE6o6SRQopKXHuuy+bX/winyFDlrJzpxKGiNQNJYsUUVzsXHzxcqZMCWatnTRpC+edt1RHGCJSJ5QsUsSWLSXMmrVjr7LZs3fw1Ve6y1tE9p2SRYpo3boB//1vDzp2DO7o7tAhi2nTetKx4zfXxxARqSklixSy//5Z/PGP2znllOb897896NZNQ2tFpG5o6GyKad3amTq1R7zDEJEUoyOLNFNc7GzbpskHRaRmYposzGyQmS00szwzu7GC/Sea2SwzKzazIeX2HWRmb5jZfDObZ2adYxlrOigpCUZMnXZaHlu2KGGISPRilizMLBN4HDgd6AUMN7Ne5aqtBEYA/6jgJZ4B7nf3Q4F+wLpYxZoOSkqcSy5ZwT/+sZH339+m6c1FpEZieWTRD8hz96XuXgSMAwZHVnD35e4+G9jrZoAwqTRw96lhvQJ33x7DWFPevfd+ybPP7pne/MMPt/HTn2p6cxGJTiyTRXtgVcR2flgWjZ7AJjN7ycw+MbP7wyMVqaWrrmpH//5NyrYPOqgh998f7cchIunO3D02Lxxcgxjk7j8Nt38C9Hf3URXUHQu86u4TIto+CRxJcKrqBWCyuz9Zrt1IYCRATk5On3HjxtU63oKCApo1a1br9omiqn5s2wa//nUT1q3L4OGHt9G+fWw++7qSKp8JqC+JKFX6AfvWl4EDB850977V1Yvl0NnVQMeI7Q5hWTTygU/dfSmAmf0HOJoggZRx99HAaIC+ffv6gAEDah1sbm4u+9I+UVTXjxNPLGH9+mK6dEn8ezBS5TMB9SURpUo/oH76EsvTUNOBHmbWxcwaAsOAiTVo29LM2oXbJwHzYhBj2mnePDMpEoWIJJaYJQt3LwZGAVOA+cB4d59rZnea2dkAZnaUmeUDQ4EnzGxu2LYE+CXwlpl9Dhjwt1jFKoFdu5yf/3wlixYVxjsUEUkwMb2D290nA5PLld0a8Xw6wempitpOBXrHMj7Zo6TEueii5Ywbt5F//3sTU6f24IgjGsc7LBFJELqDWygtdUaOXMm4cRsB+PLLYgYMWMSsWRqtLCIBJQvBHTLK/Sa0bJlJTo6mDhORgJKFkJlpPPHEQfziF8F4gg4dsnjrrR60b6/pzUUkoD8dBYCMDOOPf+zA/vtncd55LencWSOmRGQPJQspY2bcdNP+8Q5DRBKQTkNJ1AoLS3n55U3xDkNE4kDJQqJSXOwMG7aMc85Zyt13ryVW08SISGJSspBqlZY6l1++gpdf3gzAb37zBb/61WolDJE0omQh1Zo3r7DsHozdXnttC1u3llbSQkRSjZKFVOvwwxszZUp3WrQIfl06dWrIG290p0ULzRovki6ULCQqJ57YnNzcnhxxRDZTp3bXPRgiaUZDZyVqRx7ZhE8/PZSMDIt3KCJSz3RkITVSVaLYtq2E1auL6jEaEakvShZSJ4qKShkyZBnHHLOQBQs0xblIqlGykH1WUuJcfPEKXn99C6tW7eKEExbx0Ufb4h2WiNShapOFmZ1lZkoqUqmxYzfsNbR2/fpibrpJ92GIpJJoksAFwGIzu8/MDol1QJJ8Roxow09/2qZsu0ePRrzwQhfMdCFcJFVUOxrK3X9sZi2A4cBYM3PgKeCf7r411gFK4svMNEaPPoicnCzGjFnP6693p127rHiHJSJ1KKrTS+6+BZgAjAMOAM4FZpnZ1TGMTZKImXHXXQcyZ04vunbV9OYiqSaaaxZnm9m/gVwgC+jn7qcD3wb+L7bhSbJp27byg9VNm4rZsUNThIgko2huyjsPeNjd34ksdPftZnZZbMKSVLNjRylnnbUEd5g4sRutW+t+UJFkUu2RhbtfDCwKjzDOMrP9I/a9FdPoJCWUlDgXXriM997bxvvvb+P44xexcqVu3hNJJtGchroM+Bj4ITAE+NDMLo11YJI67rlnLf/+9+ay7fnzC7nhhtVxjEhEaiqaC9w3AEe6+4jwKKMP8OtoXtzMBpnZQjPLM7MbK9h/opnNMrNiMxtSwf4WZpZvZo9F836SmK68sh0nnNCsbPuww7L5y186xjEiEampaJLFBiByiOzWsKxKZpYJPA6cDvQChptZr3LVVgIjgH9U8jK/A96pZJ8kiVatGvDGG90577yWdOiQxeuvd6dVK12zEEkm0fyPzQM+MrOXAQcGA7PN7HoAd3+oknb9gDx3XwpgZuPCtvN2V3D35eG+bwyRMbM+QA7wOtA3yv5IgsrOzuCFF7qwZs0uOnTQ9OYiySaaI4slwH8IEgXAy8AyoHn4qEx7YFXEdn5YVq1wepEHgV9GU1+SQ2amVZkovvpqF0VFGlorkoiiuYP7DgAzaxZuF8Q6KOBKYLK751c1ZYSZjQRGAuTk5JCbm1vrNywoKNin9okiWfuxfTtcc01Tmjd37rhjO82bJ29fKqK+JJ5U6QfUU1/cvcoHcDjwCbAifMwEDoui3THAlIjtm4CbKqk7FhgSsf08wfWM5cB6YAtwT1Xv16dPH98X06ZN26f2iSIZ+7FrV6mfccZih5kOM/2QQ+b40qWFSdmXyqgviSdV+uG+b30BZng13+fuHtVpqNHA9e7eyd07Edy1/bco2k0HephZFzNrCAwDJkbRDne/0N0PcvfOBKeinnH3b4ymktTw+9+vZfLkLWXbCxbs5M4718QxIhEpL5pk0dTdp+3ecPdcoGl1jdy9GBgFTAHmA+Pdfa6Z3WlmZwOY2VFmlg8MBZ4ws7m16IMkuauuasdxx+35lerTpwmPPaahtSKJJJrRUEvN7LfAs+H2j4Gl0by4u08GJpcruzXi+XSgQzWvMZbgNJWkqLZtG/Dmmz245JIV/O9/23jllW40bZoZ77BEJEI0yeJS4A7gJYIRUe+GZSJ1Jjs7g+ef78zatbs44ABNby6SaKpMFuGNdTe7+y/qKR5JYxkZxoEHVj60dtmynbRsmakb+kTioMprFu5eAhxfT7GIVGrjxmIGDcrj6KMXsmhRYbzDEUk70fyJ9omZTQT+BWzbXejuL8UsKpEIu3Y5Q4cuY9GinQAcffRCJkzoykknVXVPqIjUpWiSRTbBXFAnRZQ5wTUMkZj705/W8dZbe6Yn27ixhOee+1rJQqQeRZMsxrj7+5EFZnZcjOIR+YarrmrHZ5/t4Jlnvgbg2GObatZakXoWzX0Wf4qyTCQmGjXKYOzYTtxzz4F06dKQf/+7K40aRbV8vIjUkUqPLMzsGOBYoN3uGWZDLQANgpd6ZWb8+tf7M2pUO92DIRIHVf151hBoRpBQmkc8thCsmCdS76pKFJ9+up1p07ZWul9Eaq/SIwt3fxt428zGuvuKeoxJpMa++moXgwcvZfXqIh56qANXX92OqmYsFpGaieYCdyMzGw10jqzv7idV2kKkHu3a5QwZsoyVK4sAuOaafD75ZDtjxnQiM1MJQ6QuRJMs/gX8FRgDlMQ2HJGa++9/t/Luu3svs9K8eaYShUgdiiZZFLv7X2IeiUgtnXZaC15+uSsXXricrVtLGTiwGQ8+WOX8lCJSQ9GMP3zFzK40swPMrPXuR8wjE6mBs85qyUcfHcyppzZn/PiuZGXpqEKkLkVzZHFx+O+vIsoc6Fr34YjU3qGHNmbKlB7xDkMkJVV7ZOHuXSp4KFFI0vn4422cdtpi1q3bFe9QRJJOtcnCzJqY2S3hiCjMrIeZnRn70ETqzpo1uzj33KW88cZWjjpqIZ98sj3eIYkklWiuWTwFFBHczQ2wGrgrZhGJ1LGdO0s577ylfPFFcESxcmURxx23kFWriuIcmUjyiCZZdHP3+4BdAO6+HdDVQ0ka27eXkp2996/sqFHt6Nix8oWWRGRv0SSLIjNrTHBRGzPrBuyMaVQidahVqwZMmdKDq69uB8Cppzbn7rvbxzkqkeQSzWio24DXgY5m9jxwHDAilkGJ1LWsLOPRRzty7LFNOfXUFrphT6SGqk0W7j7VzGYBRxOcfrrG3dfHPDKRGBg2rOpbhFas2EmnTo3qKRqR5BHVogDuvsHdJ7n7q0oUkqree6+Anj3n8dvffkFpqcc7HJGEEtMVZMxskJktNLM8M7uxgv0nmtksMys2syER5d8xsw/MbK6ZzTazC2IZp0h+fhFDhiylqMi56661DB68hM2bNRWayG4xSxZmlgk8DpwO9AKGm1mvctVWElz/+Ee58u3ARe5+GDAI+KOZtYxVrJLe3J0LLljGl18Wl5W9+uoW3nuvoIpWIuklqmRhZseb2SXh83Zm1iWKZv2APHdf6u5FwDhgcGQFd1/u7rOB0nLli9x9cfj8C2Ad0C6aWEVqysy499725OTsuYR3yy3784Mf7BfHqEQSSzR3cN8G/Bq4KSzKAp6L4rXbA6sitvPDshoxs34Eq/YtqWlbkWgdf3wzZsw4hL59m3DmmS24444D4h2SSEIx96ov5JnZp8CRwCx3PzIsm+3uvatpNwQY5O4/Dbd/AvR391EV1B0LvOruE8qVHwDkAhe7+4cVtBsJjATIycnpM27cuCr7UpWCggKaNWtW6/aJIlX6AfHpy86dUFwMTZvW7evqc0k8qdIP2Le+DBw4cKa7962uXjT3WRS5u5vZ7pvyov1vtBroGLHdISyLipm1ACYBN1eUKADcfTQwGqBv374+YMCAaF/+G3Jzc9mX9okiVfoBidmXqVO30L9/U1q0qHwt8IokYl9qK1X6kir9gPrpSzTXLMab2RNASzO7HHgT+FsU7aYDPcysi5k1BIYBE6MJKqz/b+CZ8kcbIvHyzjtb+cEPlnD88QvLlnAVSRfRTFH+ADABeBE4GLjV3f8URbtiYBQwBZgPjHf3uWZ2p5mdDWBmR5lZPjAUeMLM5obNzwdOBEaY2afh4zu16J9InVi8uJBzz13Krl3O558X0r//AmbM2BbvsETqTbWnoczseuAFd59a0xd398nA5HJlt0Y8n05weqp8u+eI7iK6SL249dY1fP31nvsu1q4tZvHinfTtW8cXN0QSVDSnoZoDb5jZu2Y2ysxyYh2USKIZM+Ygzj13z1DaO+88gOHDtbqwpI9o5oa6A7jDzHoDFwBvm1m+u58S8+hEEkTTpplMmNCVG29czZdfFnPLLfvHOySRehXNaKjd1gFrgQ3At2ITjkjiysgw7ruvA6WljplmrZX0Es1NeVeaWS7wFtAGuLy6eyxEUllGRuWJYvz4jSxfruVeJPVEc2TREbjW3T+NdTAiyeyNN7bwox8to02bBkyc2I3+/XXxW1JHpUcW4U1xAPcDK82sdeSjfsITSQ5z5uxg6NCllJTAunXFDBiwiH/9a2O8wxKpM1UdWfwDOBOYSbCkauSxtwNdYxiXSFIZM2Y9W7bsmQ9z506nceOYrgAgUq8qTRbufmb4bzQzzIqktYce6kDjxhncc8+XADzwQHvOPFOz1krqiOamvLfc/eTqykTSWUaGcffd7Tn44GymT9/GdddpwKCklkqThZllA02AtmbWij2noVpQi6nGRdLBiBFtGDGiTbzDEKlzVR1ZXAFcCxxIcN1id7LYAjwW47hEUtKjj66jc+eGnH22Fn6U5FLVNYtHgEfM7OpoJg4UkapNnLiJa6/NB+Dee9vzy19+Szf3SdKIZrqPP5nZ4QTraGdHlD8Ty8BEUkleXgbXXruc3WuN3XDDavLzi3jkkY5VNxRJENFc4L4NGECQLCYDpwPvAUoWIlFasiSTwsI9Q2szM+HsszVaSpJHNAPBhwAnA2vd/RLg24B+y0Vq4LTTdvHaa93Zb79ghb1HH+3IySe3qKaVSOKIZrqPHe5eambF4V3d69h7uVQRicL3v9+Cjz46mAkTNnLlle3iHY5IjUSTLGaYWUuCpVRnAgXABzGNSiRFHXxwNjfffECl+0tLg4saVU1WKBIP0VzgvjJ8+lczex1o4e6zYxuWSHq64441zJtXyNixnWjaNDPe4YiUqeqmvO9Wtc/dZ8UmJJH0NH78Ru68cy0AS5bs5OWXu9GxY8M4RyUSqOrI4sEq9jlwUh3HIpK2Zs3azogRy8u2P/lkB2eeuYRPPjlEp6QkIVR1U97A+gxEJJ21bp1J9+6N+PzzQgCysow//7mjEoUkjGhWymtiZreY2ehwu4eZnRn70ETSR+fOjXj//YMZPDgYlf7Xv3bkuOOaxTkqkT2iuc/iKaAIODbcXg3cFbOIRNJU8+aZvPRSVyZN6sall7aNdzgie4kmWXRz9/uAXQDuvp29F0ISkTqSkWGccUbl97wWFzt5eYX1GJFIIJpkUWRmjQkuamNm3YCoVqQ3s0FmttDM8szsxgr2n2hms8Ib/oaU23exmS0OHxdH834iqe6GG1Zz5JELeOklLdkq9SuaZHEb8DrQ0cyeB94CbqiukZllAo8TzCXVCxhuZr3KVVsJjCDKXYDqAAAXDUlEQVRYwjWybevwffsD/YDbwjU1RNLWc89t4OGH11FQUMp55y3jt7/9ouwmPpFYqzJZWDB/8gLghwRf6v8E+rp7bhSv3Q/Ic/el7l4EjAMGR1Zw9+XhDX6l5dqeBkx196/dfSMwFRgUxXuKpKTly3dy+eUr9yp7+ukNbNxYEqeIJN1UmSzc3YHJ7r7B3Se5+6vuvj7K124PrIrYzif6Ffb2pa1IyunUqSEPPtiBBuFg90aNjJde6kqbNtHM2COy76L5TZtlZke5+/SYR1NDZjYSGAmQk5NDbm5urV+roKBgn9onilTpB6gv5fXqBQ89lMlttzXmiit2UlAwnXj8eFLlc0mVfkD99CWaZNEfuNDMVgDbCEZCubv3rqbdavaenbZDWBaN1QRraES2zS1fyd1HA6MB+vbt6wMGDChfJWq5ubnsS/tEkSr9APWlIgMGwEUXlZRNdR4PqfK5pEo/oH76Es0F7tOAbgTTe5wFnBn+W53pQA8z62JmDYFhwMQo45oCnGpmrcIL26eGZSJpr6pEUVRUyi23fMHmzbqWIXWr2mTh7isqekTRrhgYRfAlPx8Y7+5zzexOMzsbwMyOMrN8YCjwhJnNDdt+DfyOIOFMB+4My0SkCtddl8/vf7+W/v0XMH/+jniHIykkplfH3H0ywVKskWW3RjyfTnCKqaK2fwf+Hsv4RFLJk0+u589/DsafLFy4k379FjJpUjdOPLF5nCOTVBDNaSgRSXClpc5TT23YqywnJ4vevRvHKSJJNUoWIikgI8OYOrUHF1/cGoDGjY0XX+xCy5YaWit1Q79JIimiceMMnnqqE8cc05QmTTL49rebxDskSSFKFiIpxMy44op2VdbZtKmY/fbLJJigQSQ6Og0lkkYKC0s55ZQ8hg5dxpYtGl4r0VOyEEkjV1+9ipkzt/Pii5vo128Bc+dqeK1ER8lCJE2MHbuBMWP2jJhauHAnd9+9No4RSTJRshBJEyee2IzvfGfPUNoePRrx+OMHxTEiSSZKFiJpomvXRvzvfwdzySVtaNIkg5de6hrXOaYkuShZiKSRxo0zePLJg5g9+1AOP1w37En0lCxE0oyZ0a1bo0r3L1xYyA035FNUVH5NMklnShYiUmbHjlLOP38Z99+/jhNOWMTy5TvjHZIkCCULESnzi1+sYvbsYDjtxx9v58gjFyhhCKBkISKhr78uZurUrXuVDRrUgk6dGsYpIkkkShYiAkDr1g2YNesQzj57PyAYWvvEEwdpWhABNDeUiERo3boB//lPVx5+eB0nn9ycFi00tFYCOrIQkb2YGddfn1PlrLX/+18BhYUaLZVOlCxEpEZWrMjglFMWc/TRC1mwoDDe4Ug9UbIQkagVFpZy552N2bHD+eyzHfTps4BnntlQfUNJekoWIhK1u+9ey9Kle65jbN9eSqnORqUFJQsRidr11+cwcOCusu3hw1uVLeUqqU3JQkSitt9+mfz2tzt48smDOPzwbP7yFw2tTRdKFiJSI2Zw6aVt+fTTQyudtdbd+frr4nqOTGIppsnCzAaZ2UIzyzOzGyvY38jMXgj3f2RmncPyLDN72sw+N7P5ZnZTLOMUkZrLzKz8iOLpp7+mZ8+5vPLKpnqMSGIpZsnCzDKBx4HTgV7AcDPrVa7aZcBGd+8OPAzcG5YPBRq5+xFAH+CK3YlERBLbwoWFjBq1ig0bSjj77KVceeVKtm/XVfBkF8sji35AnrsvdfciYBwwuFydwcDT4fMJwMkWnAB1oKmZNQAaA0XAlhjGKiJ1YOfOUoYPX8a2bXuSwzPPfM2aNbuqaCXJIJbJoj2wKmI7PyyrsI67FwObgTYEiWMbsAZYCTzg7l/HMFYRqQMNGhhDhrQiM+JSxiOPdKhy/QxJDok6N1Q/oAQ4EGgFvGtmb7r70shKZjYSGAmQk5NDbm5urd+woKBgn9onilTpB6gviaq6vhx7LDz6aCZ/+EM2XbqU0rXrHBKx6+n0mdQJd4/JAzgGmBKxfRNwU7k6U4BjwucNgPWAEVzr+ElEvb8D51f1fn369PF9MW3atH1qnyhSpR/u6kuiirYvW7cW+4YNuyrdX1hY4qWlpXUUVc2l42dSEWCGR/GdHsvTUNOBHmbWxcwaAsOAieXqTAQuDp8PAf4bBr8SOAnAzJoCRwMLYhiriNSxZs0yad264pMX7s5FFy1n6NBlbNigIbbJIGbJwoNrEKMIjh7mA+Pdfa6Z3WlmZ4fVngTamFkecD2we3jt40AzM5tLkHSecvfZsYpVROrX889/zfjxm3jxxU0cccR83nhD41cSXUyvWbj7ZGByubJbI54XEgyTLd+uoKJyEUl+K1bs5Kqr9ox9WbNmFzfeuJpTTmlORobuBk9UuoNbROrVrl1Ojx7ZZdvZ2cZzz3VWokhwShYiUq+6d8/mf//ryc03709GBtx3X3t69Woc77CkGok6dFZEUljDhhncddeBDB3akiOOqDxRFBaWkp2tv2kTgT4FEYmbb3+7SaWnnzZvLuGww+Zxxx1r2LXL6zkyKU/JQkQS0nXX5bN0aRG3376Go49ewJw5O+IdUlpTshCRhPPqq5t56qk9y7XOmrWD557TjD/xpGQhIgmnQQPIydlzSbVXr2xuv/2AOEYkShYiknAGDdqPOXN6cf75LcnMhGee6awL3XGm0VAikpDatm3ACy90Zd68HVUOrV27dhf7759Vj5GlJ6VqEUloVSWKd98toFOnOdx66xfs3KkFlmJJyUJEktKOHaVcdtkKioqc3/1uLd/97gJmzNgW77BSlpKFiCSl229fw+LFO8u2580rZOtWHV3EipKFiCSlY45pyv7777nsesUVbRk4sHkcI0ptShYikpTOOacl8+b1YsSI1nTokMV995VftVnqkpKFiCStVq0a8NRTnZk9+1BatMissE5hYSkTJ27aveqm1JKShYgkvVatKr8L4O671zJ48FLOOmsJK1bsrLSeVE3JQkRS1vz5O7j77i8BmDRpC4cdNp8339SqfLWhZCEiKevqq/P3mrG2WbMM+vRpEseIkpeShYikrEce6cBxxzXda7uqU1ZSOf3URCRlHXZYY955pydjxmzg7be3cv75reIdUtLSkYWIpLSMDGPkyLY8/3wXzCpeaGnhwkIuuGApK1cW1XN0yUPJQkTSmrtzxRUrGT9+E4ceOo977llLUZHuBC9PyUJE0tpTT23g7bcLANi+vZSbbvqCN9/cGueoEk9Mk4WZDTKzhWaWZ2Y3VrC/kZm9EO7/yMw6R+zrbWYfmNlcM/vczLJjGauIpKcJEzbttX3GGS04/fQWcYomccUsWZhZJvA4cDrQCxhuZr3KVbsM2Oju3YGHgXvDtg2A54CfufthwABgV6xiFZH09eqr3Rg9+iBat86kUSPj0Uc7VnptI53F8siiH5Dn7kvdvQgYBwwuV2cw8HT4fAJwsgWf0qnAbHf/DMDdN7h7SQxjFZE0lZFhXH55WxYtOox//asL3bo1qrBeaanz4YfpOwV6LJNFe2BVxHZ+WFZhHXcvBjYDbYCegJvZFDObZWY3xDBOERHatGnAWWe1rHT/mDEbOOaYhQwfvoz8/PQbNWWxmlzLzIYAg9z9p+H2T4D+7j4qos6csE5+uL0E6A+MAK4CjgK2A28Bt7j7W+XeYyQwEiAnJ6fPuHHjah1vQUEBzZo1q3X7RJEq/QD1JVGlSl9q0o/Nm42LLmrKli3B39fZ2c4tt+zguOOKYxli1PblMxk4cOBMd+9bXb1Y3pS3GugYsd0hLKuoTn54nWI/YAPBUcg77r4ewMwmA98lSBpl3H00MBqgb9++PmDAgFoHm5uby760TxSp0g9QXxJVqvSlJv0YOXIFW7ZsKNvOzMzkkkv6ceCBDWMUXc3Ux2cSy9NQ04EeZtbFzBoCw4CJ5epMBC4Onw8B/uvBoc4U4AgzaxImke8B82IYq4hIpS65pA3f+c6etcBvvnn/hEkU9SVmySK8BjGK4It/PjDe3eea2Z1mdnZY7UmgjZnlAdcDN4ZtNwIPESScT4FZ7j4pVrGKiFTlmGOaMWPGITzxxEH069eE6677VqV1IycuTCUxnRvK3ScDk8uV3RrxvBAYWknb5wiGz4qIxF1mZjBtyOWXt6l0aO3q1UX077+QX/0qhyuvbEdWVuoMwdUd3CIiNVDVPRg33vgFq1fv4tpr8+nde15KrZ2hZCEiUgc++KCA5577umx7wYKd5Oenzr3EShYiInVgxYoiWrTY85Xau3djfvKT1nGMqG4pWYiI1IFhw1qzaNFhXHZZG8zggQfak5mpaxYiIlJOTk4WY8Z0YtGiXnz/+xVPRujuXHDBUh5//KukGjmlZCEiUse6d698kuxJk7YwfvwmRo1axeGHz+M//9lErGbSqEtKFiIi9aS42Lnhhj0TWSxatJO//OWrpJjlVslCRKSefPbZjr2WbjWD++8vP79qYlKyEBGpJ336NGHx4sO4/PI2ZGTAiBFt6N27SbzDioqShYhIPTrggCxGj+7EZ58dyl13HVBpvT//+Ssuv3xFwkyHrmQhIhIHhx/euNLJCLduLeH229cwZswGunefy//9Xz6bNsV3OnQlCxGRBPPHP67jq6+C5LBzpzNmzHriPWBKyUJEJIG4O6+8snmvsmuu+RatWsV03tdqKVmIiCQQM+P99w9m9OiDaN8+i+bNM7j22sqnRC8oKKmXuJQsREQSTFaWcfnlbcnLO4zXX+9O69YVH1UsWbKTAw/8nKeeahTzmJQsREQSVHZ2BsceW/na2r///Vq2bi2lPu7pU7IQEUlCS5fu5JlnNtCiRQbnnbcz5u8X3ysmIiJSK8uXF7H//llcemkbmjffFPP3U7IQEUlCJ53UnLy8wygpcaZPXxTz91OyEBFJUtnZ9XclQdcsRESkWkoWIiJSLSULERGplpKFiIhUK6bJwswGmdlCM8szsxsr2N/IzF4I939kZp3L7T/IzArM7JexjFNERKoWs2RhZpnA48DpQC9guJn1KlftMmCju3cHHgbuLbf/IeC1WMUoIiLRieWRRT8gz92XunsRMA4YXK7OYODp8PkE4GQLF6M1s3OAZcDcGMYoIiJRMI/RJOlmNgQY5O4/Dbd/AvR391ERdeaEdfLD7SVAf6AQmAp8H/glUODuD1TwHiOBkQA5OTl9xo0bV+t4CwoKaNas8jlYkkWq9APUl0SVKn1JlX7AvvVl4MCBM929b3X1EvWmvNuBh929wKqYIcvdRwOjAfr27esDBgyo9Rvm5uayL+0TRar0A9SXRJUqfUmVfkD99CWWyWI10DFiu0NYVlGdfDNrAOwHbCA4uhhiZvcBLYFSMyt098cqe7OZM2euN7MV+xBvW2D9PrRPFKnSD1BfElWq9CVV+gH71pdO0VSKZbKYDvQwsy4ESWEY8KNydSYCFwMfAEOA/3pwXuyE3RXM7HaC01CVJgoAd2+3L8Ga2YxoDsUSXar0A9SXRJUqfUmVfkD99CVmycLdi81sFDAFyAT+7u5zzexOYIa7TwSeBJ41szzga4KEIiIiCSam1yzcfTIwuVzZrRHPC4Gh1bzG7TEJTkREoqY7uPcYHe8A6kiq9APUl0SVKn1JlX5APfQlZkNnRUQkdejIQkREqpX2yaK6+asSkZktN7PPzexTM5sRlrU2s6lmtjj8t1VYbmb2aNi/2Wb23TjH/nczWxfekLm7rMaxm9nFYf3FZnZxgvTjdjNbHX4un5rZGRH7bgr7sdDMTosoj/vvn5l1NLNpZjbPzOaa2TVheVJ9LlX0I+k+FzPLNrOPzeyzsC93hOVdLJhHL8+CefUahuWVzrNXWR9rzN3T9kEwSmsJ0BVoCHwG9Ip3XFHEvRxoW67sPuDG8PmNwL3h8zMI5tcy4GjgozjHfiLwXWBObWMHWgNLw39bhc9bJUA/bgd+WUHdXuHvViOgS/g7l5kov3/AAcB3w+fNgUVhzEn1uVTRj6T7XMKfbbPweRbwUfizHg8MC8v/Cvw8fH4l8Nfw+TDghar6WJuY0v3IIpr5q5JF5DxbTwPnRJQ/44EPgZZmdkA8AgRw93cIhklHqmnspwFT3f1rd99IMDXMoNhHv0cl/ajMYGCcu+9092VAHsHvXkL8/rn7GnefFT7fCswH2pNkn0sV/ahMwn4u4c+2INzMCh8OnEQwjx588zOpaJ69yvpYY+meLNoDqyK286n6lytROPCGmc20YH4sgBx3XxM+XwvkhM+ToY81jT2R+zQqPDXz992nbUiifoSnL44k+Es2aT+Xcv2AJPxczCzTzD4F1hEk3iXAJncvriCuspjD/ZuBNtRhX9I9WSSr4939uwTTv19lZidG7vTg+DMph7klc+zAX4BuwHeANcCD8Q2nZsysGfAicK27b4ncl0yfSwX9SMrPxd1L3P07BFMl9QMOiWc86Z4sopm/KuG4++rw33XAvwl+kb7cfXop/HddWD0Z+ljT2BOyT+7+ZfgfvBT4G3sO9xO+H2aWRfAF+7y7vxQWJ93nUlE/kvlzAXD3TcA04BiCU367b6aOjKssZtt7nr0660u6J4uy+avCUQXDCOarSlhm1tTMmu9+DpwKzGHPPFuE/74cPp8IXBSOYDka2BxxaiFR1DT2KcCpZtYqPKVwalgWV+WuBZ1L8LlA0I9h4YiVLkAP4GMS5PcvPLf9JDDf3R+K2JVUn0tl/UjGz8XM2plZy/B5Y4LlGuYTJI0hYbXyn8nuzypynr3K+lhz9XmFPxEfBCM7FhGcD7w53vFEEW9XgtENnxEsDHVzWN4GeAtYDLwJtPY9oyoeD/v3OdA3zvH/k+BUwC6C86eX1SZ24FKCi3V5wCUJ0o9nwzhnh/9JD4iof3PYj4XA6Yn0+wccT3CKaTbwafg4I9k+lyr6kXSfC9Ab+CSMeQ5wa1jeleDLPg/4F9AoLM8Ot/PC/V2r62NNH7qDW0REqpXup6FERCQKShYiIlItJQsREamWkoWIiFRLyUJERKqlZCFpzcxamtmVEdsHmtmEqtrU4Xt3NrPy69KLJCQlC0l3LQlm7ATA3b9w9yFV1K9LnQElC0kKShaS7u4BuoXrHNwf/rU/B8DMRpjZfyxYy2G5mY0ys+vN7BMz+9DMWof1upnZ6+HEju+a2Tfm8DGz79me9RQ+Ce/Cvwc4ISy7Lpw47n4zmx5OendF2HaAmb1jZpPCNQn+amYZYf2xZjbHgvVNrqvHn5ukmQbVVxFJaTcCh3swYdvu2UojHU4we2k2wd2xv3b3I83sYeAi4I8E6x//zN0Xm1l/4M8EU0lH+iVwlbu/H050Vxi+9y/d/czwvUcSTJ1xlJk1At43szfC9v0I1iZYAbwO/BBYBrR398PD9i3r4gciUhElC5GqTfNgbYStZrYZeCUs/xzoHX7xHwv8K5iaCAgWminvfeAhM3seeMnd8yPq73Zq+Jq7T4PtRzCXTxHwsbsvBTCzfxJMbfEW0NXM/gRMAt4o/4IidUXJQqRqOyOel0ZslxL8/8kgWGPgO1W9iLvfY2aTCOYcet8qXt7SgKvdfa/J98xsAN+cHtzdfaOZfZtg0aGfAecTzM0kUud0zULS3VaCJThrxYP1EpaZ2VAoW5/62+XrmVk3d//c3e8lmNX0kAreewrw83CabcysZzizMEC/cBbUDOAC4D0zawtkuPuLwC0Ey7yKxISShaQ1d99A8Jf+HDO7v5YvcyFwmZntngm4oiU4rw3fYzbBTLWvEcwoWmJmn4UXp8cA84BZ4UX2J9hz9D8deIxgmuplBOuYtAdyLVhN7TngplrGL1ItzTorkuDC01BlF8JF4kFHFiIiUi0dWYiISLV0ZCEiItVSshARkWopWYiISLWULEREpFpKFiIiUi0lCxERqdb/A8TPU9Wd164DAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1452,7 +12433,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8XXWd//HX52Zp1qZNUrqlpQtdkqYraalUoWwjiFIZAUERHWHQYZgZcWRkHPTH4E905Oc4+hNwGAf96agU0ZE6VhApYSmULlBom6SldE1b2ixdsjbL/f7+uGnIvUma7Z577k3ez8ejj0fu93zvuZ+epnnnnO8536855xAREQEI+F2AiIjED4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIJ4WCSD+Y2SfMbLOZ1ZvZETP7g5m938zuM7NWM6vr+LPLzH5gZhO7vHelmQU73nvmz+/8/PuI9EahINIHM/si8G/AA8B4YCrwMLCqo8tq51w2kAtcC0wAtnQNBuCwcy6ry5+PxO5vINJ/CgWRszCzHOB+4K+dc79xzjU451qdc79zzt3dtW9H+w7g40AV8Pc+lCwyJAoFkbN7H5AG/Hd/3+CcaweeAj7gVVEiXlEoiJxdHlDtnGsb4PsOE7qcdMYkMzvR5c8N0StRJHqS/S5AJM7VAPlmljzAYJgM1HZ5fdg5VxDd0kSiT2cKImf3KnAa+Gh/32BmAeAjwEteFSXiFZ0piJyFc+6kmX0NeMjM2oA/Aq3A5cAlQOOZvmaWDMwC7iN0B9K/xrxgkSHSmYJIH5xz3wG+CNxL6K6ig8CdwG87unzczOqBk8AaQpecznfOHfahXJEhMS2yIyIiZ+hMQUREOikURESkk0JBREQ6KRRERKSTQkFERDol3HMK+fn5btq0aX6XMSgNDQ1kZmb6XUbC0vEbOh3DoUnk47dly5Zq59y4vvolXChMmzaNzZs3+13GoJSWlrJy5Uq/y0hYOn5Dp2M4NIl8/Mxsf3/66fKRiIh0UiiIiEgnhYKIiHRKuDGFnrS2tlJZWUlzc7PfpZxVTk4O5eXlfpcxKGlpaRQUFJCSkuJ3KSLioWERCpWVlWRnZzNt2jTMzO9yelVXV0d2drbfZQyYc46amhoqKyuZPn263+WIiIeGxeWj5uZm8vLy4joQEpmZkZeXF/dnYiLR5hy8dgqu3wGZL8KlXEzmi3DDDth4KrR9uBkWZwpAvwLBOdhYB//nIKytgaYgpAfg6jz40hRYmg3KlZ4pcGWkaQ3CLRWwphqagxAEwGgMwq+rQj9DPpIPP50LKcPi1+sQz/4qZvaYmR0zs+29bDcz+76Z7Tazt8xsiVe1QOgf+BPlcOlW+E0VNAbBQec/8KVbQ9tbg4Pbf1ZWVlTr9dO0adOorq72uwwR3zj3XiA0dgbCe4JAQxCeqg71G05nDF7m20+AK8+y/SpCq1TNAm4HHvGqkJH0D9ze3u53CSIJb2Md/K7j58XZNAVD/TbVxaauWPAsFJxzLxK+cHmkVcBPXcgGYIyZTfSillj+AzvnuPvuuykuLmb+/PmsXr0agGAwyF133cXcuXO54oor+NCHPsSTTz7Z7f1nnpi87rrrmDt3Lp/85Cc5sxDSc889x+LFi5k/fz6f/exnOX36NBD6zf7LX/4yS5Ys4Ve/+hUrV67krrvuoqSkhMLCQjZt2sSf//mfM2vWLO69997Oz/roRz/K+eefz7x583j00UcH/5cWGWa+czD086A/moKh/sOFn2MKkwkta3hGZUfbkcHu0EqHWBGhM4YLXu95m1vZ9/t/85vfsHXrVt58802qq6tZunQpF110EevXr+fAgQOUlZVx7NgxCgsL+exnP9vjPt544w127NjBpEmTWLFiBevXr6ekpITPfOYzPPfcc8yePZtbbrmFRx55hC984QsA5OXl8frrocJ/+MMfkpqayubNm/ne977HqlWr2LJlC7m5ucycOZO77rqLvLw8HnvsMXJzc2lqamLp0qV87GMfIy8vbzCHTWRY+X1N9ysKvQl29B8uEmKg2cxuJ3SJifHjx1NaWhq2PScnh7q6OsDb2z1Dn3H27evWrePaa6+lsbGRjIwMLrzwQl588UVeeOEFVq1a1Tmh1gc+8AGampq67bOxsZHzzz+fnJwcGhoamDdvHuXl5QQCAaZOncrEiROpq6vj+uuv5z/+4z+49dZbcc5x9dVXd+6rvb2dyy+/nLq6OmbOnMncuXPJysqipaWFc889l4qKChYsWMCDDz7I//zP/wBw8OBBtm7dyrJly3DOUV9fz6hRo8Jqa25u7nbsY6m+vt7Xzx8OEv0Y7jrQEpPPaZxyxYDuOmlsdzz602c9rChk9tRUzz/Dz1A4BEzp8rqgo60b59yjwKMAJSUlLnJCqvLy8pjc/9/XZ2RnZ5OamkpaWlpn35SUFNLT00lNTSUQCHS2Jycnk56eTllZGZ/73OcAuP/++xk9ejQZGRmd/dLS0khJSSEzM5OkpKTO9oyMDJKTk8nOzsbMGD9+fOe2pKQkxo4dS3Z2NllZWWH7S0lJYdSoUWzZsoWXXnqJ1157jYyMDFauXNm5fzMjKyur2983LS2NxYsXR+loDlwiT0YWLxL9GN5/xwHPP6MxKzn8J1M/WLvj8Q1zvSmoi3W3TPX8M/y8kWoNcEvHXUjLgZPOuUFfOooXH/jAB1i9ejXt7e1UVVXx4osvsmzZMlasWMFTTz1FMBjk6NGjnb+tXXDBBWzdupWtW7dyzTXX9LrfOXPmsG/fPnbv3g3Az372My6++OJB13ny5EnGjh1LRkYGFRUVbNiwYdD7EhkOHHBkWiabr5gwsHvTg468w02e1RVrnp0pmNkvgZVAvplVAv8LSAFwzv0QWAt8CNgNNAJ/MdTP7O2a/w07Qred9ucaYQC4bhysnje4Gq699lpeffVVFi5ciJnx7W9/mwkTJvCxj32Mp59+mqKiIqZMmcKSJUvIycnp937T0tL48Y9/zPXXX09bWxtLly7l85///OCKBK688kp++MMfUlhYyJw5c1i+fPmg9yWS6NpSjJ3n53Js6sDXSggEHVN3DZ/bj8wl2P2XJSUlLnI9hfLycgoLC3t9z2un4LKtoUHkvmQE4PlFsGz0UCvt7siRI0ycOJGamhqWLVvG+vXrmTBhQvQ/yCN9HWevJfqlj3iQ6MfwUg8uH53MTaVseT7NWT38jhx0EOj9rCHQFiT/UBNFr9UQi8c71z08+MtHZrbFOVfSV7+EGGgeqmXZoScPn6o++21m6QG4Jj/0ZLMXbrjhBurq6mhpaeGrX/1qQgWCyHDjDPbPHc2+eTm4iB/8gbYg5209zolxaVRPTicYsPBwCDoCQUf+oSYKN8YmEGJlRISCWehR9FsqQs8hNEU8wBYA0joC4adzvZvqYu3atQk5IZ7IcHM6PYmyZXmcGJ/WbVvmiRbmvVpNZl0bk/Y0UJebyoHZ2dRMSsclGdYeGkOYurOO0cdjczdULI2IUIDQ3CS/KAw9mNbr3EceXDISkfhSPSmdiqW5tI5K6ratYFcdM946TlLHb40GjK5toXhD6EGEG5dXxOQuIz+NmFCA0BnAstHwxCAHkUUkcbUnGe8sGMOhWd3P1lOa25m7qYb8I5oJeESFgoiMTA2jk9mxPJ+GMd0f/hp7tJnC12oY1ax5w0ChICLDmAMOz8hi96IxBJPDH8uyoGP69hNMragbVgPFQzWMZgGPP7fddhtlZWVR2Vd/prN+4IEHwl5feOGFUflskUTUmhpgx4X57CrJ7RYIafWtLFl3lHMVCN0MyzOFaN/LPNh7g3/0ox9FtY6+PPDAA3zlK1/pfP3KK6/E9PNF4sWJ/FGULc/jdEb3H3Hj9zcwe0styW2J9YxWrOhMIUoaGhq4+uqrWbhwIcXFxaxevZqVK1dy5kG7rKws7r33XubNm8fll1/Oxo0bWblyJTNmzGDNmjUA/OQnP+HOO+/s3OeHP/zhHicv62nK63vuuYempiYWLVrEJz/5yc7PhN6n8z7bNN0iiShosHdeDm+sPKdbICS1Bil8rZqi12oUCGcxLM8U/PD0008zadIkfv/73wOhuYUeeeS9dYMaGhq46KKL+N73vse1117Lvffey7PPPktZWRmf/vSnzzrvUaSeprz+1re+xQ9+8AO2bt3arX9v03lDz9N0v//97x/i0RCJveaMJMouyOPkuO7PHmTXnqZoQw0Z9W0+VJZYdKYQJfPnz+fZZ5/ly1/+Mi+99FK3eY1SU1O54oorOvtefPHFpKSkMH/+fPbt2zegz/r+97/PwoULWb58OQcPHuTtt98+a/+XX36Zm266iaSkJMaPH8/FF1/Mpk2bAFi2bBkFBQUEAgEWLVo04FpE4sGxgnQ2/dnEHgNhSsUplqw7qkDoJ50pRMns2bN5/fXXWbt2Lffeey+XXXZZ2PaUlBSs41HpQCDQuVZBIBCgrS30zZqcnEww+N6z1s3N3e+ZLi0t5U9/+hOvvvpq55TXPfXrr65rJiQlJXXWIpII2pOMtxeP5ciM7mukpza1U7ixhtyjevZgIHSmECWHDx8mIyODm2++mbvvvrtzFbSBmDZtGlu3biUYDHLw4EE2btzYrc/ZprxOSUmhtbW123t6m85bJJHV56Sw+YoJPQZC7pEmlv7xiAJhEHSmECXbtm3j7rvvJhAIkJKSwiOPPMKXvvSlAe1jxYoVTJ8+naKiIgoLC1myZEm3Pmeb8vr2229nwYIFLFmyhJ///Oed7b1N511RUTH4v7CITxxwaFYWuxeMxSWF31Bq7Y6Zb52g4G3dajpYI2Lq7HhRV1eX0BPi+X2cE33a53iQ6Mfw/XdVUrE0j5pJ6d22pZ9qZd6GarJPdD9bjha/5z7S1NkiIh2eOw6b/mwCLendf2xN3FPPeVuP61bTKFAoiEhcaw3CV/fCtw+CiwiEpJYgc7bUMv5go0/VDT8KBRGJW+80wU1loSnvI42uPk3RhmrSGzWRXTQNm1BwznXe8inRl2hjT5L4fn4U/moX1EX+zHeOc8tPMW3HSQL6toy6YREKaWlp1NTUkJeXp2DwgHOOmpoa0tK6PxgkEm11bfDXb8PPjnbfNqqxjcLXahhbdTr2hY0QwyIUCgoKqKyspKqqyu9Szqq5uTlhf7CmpaVRUFDgdxkyzG06BZ8oh91N3betyoOa375LSstZFlqXIRsWoZCSksL06dP9LqNPpaWlLF682O8yROJO0MF3DsJX9kLkDURpAfjXmfD5SXCZAsFzwyIURCRxHTkNn66AZ4933zYvAx4vguLuDy2LRxQKIuKbtTXwmQqo6uF5s7+aBN+ZCelJsa9rJFMoiEjMnQ7CPXvg3yq7bxubDI/NgY+Oi31dolAQkRiraICbymFrffdtF+fAfxVCQWLejzEsaJZUEYkJ5+A/j8D5W7oHQhLw9Wnw3CIFgt90piAinjvRCp/bBU/0cNf4uaPgF0VwYU73bRJ7CgUR8dQrJ+ETZbC/h+fNbhgH/z4bxqTEvi7pmUJBRDzR7uCB/fDP+yBypoqMAPzfWfAXE0CTEMQXhYKIRF1lM9xcDi+c7L5tUVbo2YM5GbGvS/qmUBCRqPptFdy6E2p7WO77CwXwrRkwSre4xC2FgohERVM7/P078Mjh7tvGpcBP5sKH8mJflwyMQkFEhmx7PdxYBjt6WOvm8rHw07kwcVTs65KB00mciAyac/DwIVj6evdASDb49gx4ZoECIZHoTEFEBqWmFW6tgKdqum+bmQa/LIKlo2NflwyNQkFEBqz0eOjuokMt3bfdMh5+MAuy9dMlIemfTUT6rS0I/7wfvrEfIlfCzEqCR2bBzRN8KU2iRKEgIv2yrym0Ktqrp7pvW5odulw0Mz32dUl0aaBZRPq0+hgs3Nw9EAz48hR4ebECYbjQmYKI9KqhHf72bXjs3e7bJqTCz+bC5bmxr0u8o1AQkR69URd69mBXU/dtV+fCj+fCuNTY1yXeUiiISJigg+9VhlZGa4kYTU41eHAm/M1kTWQ3XHk6pmBmV5rZTjPbbWb39LB9qpk9b2ZvmNlbZvYhL+sRkbM71gIf3gZffKd7IMzNgNeWwN8WKBCGM89CwcySgIeAq4Ai4CYzK4rodi/whHNuMXAj8LBX9YjI2f2xFhZsgj/Udt/2lxNh8/mwKDv2dUlseXmmsAzY7Zzb45xrAR4HVkX0ccCZZx5zgB6m0hIRL7UE4R/egQ++BUdbw7eNSYZfFcGjcyAzyZ/6JLa8HFOYDBzs8roSuCCiz33AH83sb4BM4HIP6xGRCG83hp492FzXfduK0fDzIjhXayaPKH4PNN8E/MQ59x0zex/wMzMrds4Fu3Yys9uB2wHGjx9PaWlp7CuNgvr6+oStPR7o+A2cA8rJ5gmmsIE8WtzFpJa2s5wazqWB1UzlNOGnAAEcN7OfW07tZ+8Gx15fKu/Zjct7mFcjhnIzm7lxeYVvn19ausfzzzDnIh9Wj9KOQz/k73POfbDj9T8COOe+2aXPDuBK59zBjtd7gOXOuWO97bekpMRt3rzZk5q9VlpaysqVK/0uI2El+vG79I4DMf28oEH5sjyqJ6cTDBgEuowOO9fjaPGoxjaKNtQwprqHBZWjYN3DU4f0/lgfw0g3Lq/g8Q1zffv8oRw/M9vinCvpq5+XYwqbgFlmNt3MUgkNJK+J6HMAuAzAzAqBNKDKw5pERgRHl0BIDoQHAvQYCOMqG1n6x3c9CwRJDJ5dPnLOtZnZncAzQBLwmHNuh5ndD2x2zq0B/h74DzO7i9D38WecV6cuIiPIqdzU9wKhL84xpeIUM7edRHeaiqdjCs65tcDaiLavdfm6DFjhZQ0iI9HB2dmhS0b94aA5M1mBIIAmxBMZlmompXe/ZNSbgIX6i6BQEBmWgkkD+71/oP1l+FIoiAxDgfaBDc0NtL8MXwoFkWGmPQBJrcG+O54RdOQd7mEqVBmRFAoiw0gwADsuHEdrev/vIQkEHVN39fBIs4xICgWRYSJosON9+QMaNA60Bck/1ER2rb9PCkv88HuaCxGJgqBB2fJ8qidnhLUntQRxAbo/0Rx0BIKO/ENNFG6s0e2o0kmhIJLgggblF+RRNSU8ENJPtbKo9CgtGckcmJ1NzaR0XJJh7aExhKk76xh9XGcIEk6hIJLAnEHFsjyOTc0Ma0+va2XxC8cY1RwkrbmF4g01gP9z90j805iCSIJyQEVJLkfPDQ+EtPo2FpUeY1RTuz+FSUJTKIgkIAfsLMnl3elZYe1pDW0sLj1KmgJBBkmhIJJgHLBryViOzAgPhFGNbSwqPUpaowJBBk+hIJJAHPD24rEcPi98seTUxtAlo/QGBYIMjUJBJEE4YPfCMRyaFREITe0sfuEYGfVt/hQmw4pCQSQBOGDPgjFUzhkd1p7S3M6iF46SUadAkOhQKIjEOQfsLc7hwNyIQDjdzqLSY2SeUiBI9CgUROLcvqLR7C/KCWtLPt3OwheOkXWq1aeqZLhSKIjEsX2Fo9lXPCasLbklyKIXj5F9QoEg0adQEIlTB+Zks3d+eCAktQRZ+OIxso8rEMQbCgWROHRwdjbvLBwb1pbUGmThS8cYrRlNxUMKBZE4U3leFrsXdQ+EBS9VkVOjQBBvKRRE4sihGVm8vSQ3rC3QFmT+y1WMqT7tU1UykigUROLE4emZ7CrpORDGVikQJDYUCiJx4Mi5meyMCARrdxSvryb3mAJBYkehIOKzo1MzqFiWC/be+mfW7pi/voq8o80+ViYjkUJBxEfHCjIoW5YXHghBR/Gr1eS9q0CQ2FMoiPjk2OR0ypbnha2dbEFH0avV5B9u8rEyGckUCiI+qJqUTtn78nFdAoGgo/C1Gs45pEAQ/ygURGKsemIaOyIDwTkKN9Yw/mCjf4WJoFAQiama8Wlsv3AcLik8EOZurGXCAQWC+E+hIBIjteeMYvuK/PBAAOZsrmXi/gafqhIJp1AQiYHS47Dt/eMIJof/l5u9pZZJexUIEj8UCiIee/kEfHgb3QJh1uu1TH6n3qeqRHqmUBDx0Ksn4apt0BAMbz9v63EKdisQJP4oFEQ8svEUXPkW1LeHt8988zhTdtX5U5RIHxQKIh54vQ4++BacigiE6dtOMHWnAkHil0JBJMrerIfL34QTbeHt07afYFr5KX+KEuknhYJIFG3vCITjEYHwT1NhWpkCQeKfQkEkSsob4LI3oTpi+eR/mAJfnw7W89tE4opCQSQKdjbCpW/CsYhAuKsAvjUjbBJUkbimUBAZot2NcOlWeDdi+eS/mQzfmalAkMSiUBAZgj1NcMmbcDgiED4/Cb53ngJBEo9CQWSQ9jfDJVuhMmK1zNsmwkOzFAiSmDwNBTO70sx2mtluM7unlz43mFmZme0ws194WY9ItBzsCIQDEYHw6fHw77PD1s0RSSjJXu3YzJKAh4ArgEpgk5mtcc6VdekzC/hHYIVz7riZneNVPSLRcuh0aFB5b8RqmZ88B/5zrgJBEpuXZwrLgN3OuT3OuRbgcWBVRJ+/BB5yzh0HcM4d87AekSF793RoUHl3xOJoHx8HP5kLSQoESXDmnPNmx2bXAVc6527reP0p4ALn3J1d+vwW2AWsAJKA+5xzT/ewr9uB2wHGjx9//uOPP+5JzV6rr68nKyvL7zISlt/H7zgp3MUi9pMZ1n4RVXyVMpI5+/+lXQdazro9FnIzm6ltSPPt82dPTR3S+/0+hol8/C655JItzrmSvvp5dvmon5KBWcBKoAB40czmO+dOdO3knHsUeBSgpKTErVy5MsZlRkdpaSmJWns88PP4VbeELhlFroWzKg9+NW8cKYGL+9zH/Xcc8Ki6/rtxeQWPb5jr2+evu2XqkN7v9zFM9OPXH15ePjoETOnyuqCjratKYI1zrtU5t5fQWcMsD2sSGbDaVrjiLdgWEQhX58LqeZCie/hkGPHy23kTMMvMpptZKnAjsCaiz28JnSVgZvnAbGCPhzWJDMiJVvizN2FrxNIHHxwLT86DUQoEGWY8+5Z2zrUBdwLPAOXAE865HWZ2v5ld09HtGaDGzMqA54G7nXM1XtUkMhAn20LTX2+JCITLx8J/F0Nakj91iXjJ0zEF59xaYG1E29e6fO2AL3b8EYkbdW1w1VuwMWLpg5Vj4KliSFcgyDClk1+RCPVt8KFt8GrETNfvz4HfFUOGAkGGMYWCSBeN7fCR7fDyyfD2942GtfMhy+/79UQ8plAQ6dDUDtdsg9IT4e3LsuEPCyBbgSAjgEJBBGhuh2u3w3MRgbAkC55ZADkKBBkhFAoy4p0OwnU74Jnj4e0LM+HZhTAmxZ+6RPygUJARrTUIH98Bv68Nby/OhD8thFwFgowwAwoFM8vsmP1UJOG1BuGmMngq4smYwgx4biHkD22aHpGEdNZQMLOAmX3CzH5vZseACuBIx/oHD5rZebEpUyS62oLwqXL4dXV4+5x0WLcQzlEgyAjV15nC88BMQmseTHDOTXHOnQO8H9gA/IuZ3exxjSJR1e7gMxWwuiq8/bx0WLcIJozypy6ReNDXPRWXO+daIxudc7XAr4Ffm5muukrCCDq4bSf8PGLljulpoTOESQoEGeHOeqZwJhDM7PLIbWb26a59ROJd0MHndsFP3g1vP3cUPL8Ipvg3Tb5I3OjvQPPXzOyRjoHm8Wb2O+AjXhYmEk3OwZ1vw4+OhLcXjApdMjpXgSAC9D8ULgbeAbYCLwO/cM5d51lVIlHkHPzdbnjkcHj7pFR4fiHMSPenLpF41N9QGEtozeV3gNPAuWam1Wgl7jkHf/8O/N+I5Z0mpIbOEM7L8KcukXjV31DYADztnLsSWApMAtZ7VpVIFDgH9+yB71aGt49LCT2HMEeBINJNf2d0udw5dwDAOdcE/K2ZXeRdWSJD4xx8dS98+2B4e15y6C6jokx/6hKJd309vDYN4EwgdOWce9FCCrwpTWTw7t8P34j4rh2bHJq6ojjLn5pEEkFfZwoPmlkAeArYAlQBacB5wCXAZcD/Aip73YNIjD2wH+7bF96WkxSa3G5Rti8liSSMs4aCc+56MysCPgl8FpgANBFac3kt8A3nXLPnVYr004MH4J/2hreNToI/LoTzFQgifepzoNk5Vwb8b+B3hMJgL7AJeFKBIPHkuwfhH/aEt2UlwdMLYNlof2oSSTT9HWj+f8Ap4Psdrz8B/BS4wYuiJD5deke3oaWYunF5C/f3UkPleVm8vSQ3rC2pNcisdVX80y9PR+Xz1z08NSr7EYln/Q2FYudcUZfXz5tZmRcFiQzUoRndAyHQFmT+y1WMqY5OIIiMFP19TuF1M1t+5oWZXQBs9qYkkf47PD2TXSU9B8LYKgWCyED190zhfOAVMztz7j4V2Glm2wDnnFvgSXUiZ3Hk3Ex2RgSCtTuK11eTe0yBIDIY/Q2FKz2tQmSAjk7NoGJZLnSZbcXaHfPXV5F3VPc/iAxWv0LBObff60JEIjngVG4qB+eMpmZiGs8nTSEwyZF5opW63NTwQAg6il+tJu9dBYLIUPT3TEEkpoIG5cvyqJ6cTjBgEAgFQDDZqMvrHghFr1aTf7jJr3JFhg2FgsQdR5dASO7hXoiuE/Q6x9zXajjnkAJBJBr6e/eRSMycyk3tPRAiWBAyGtpiUJXIyKBQkLhzcHZ26JJRPziDA7M1f4VItCgUJO7UTErvHEPoU8BC/UUkKhQKEneCSQNb1G+g/UWkdwoFiTuBdudpfxHpnUJB4k7e4abQ0mn9EXSh/iISFQoFiTtjqvr/AFog6Ji6q87DakRGFoWCxJWmjCT2Fo8JfxahF4G2IPmHmsiubYlBZSIjgx5ek7jRnmRsXzGOtlFJ7zU6F3qarevdSEFHIOjIP9RE4cYaNMwsEj0KBYkLDqhYmkv92NSw9knv1NOaGqBmUjouybD20BjC1J11jD6uMwSRaFMoSFw4MCebY1Mzw9rGHWxk9uvHO88EblxeweMb5sa+OJERRGMK4ruaCWnsWTAmrC3zRAtzN+nSkEisKRTEV41ZyZQtzw8bWE4+3c789dUkt+n5A5FYUyiIb9qSjW0r8mlL7fJtGHTM21BDuia5E/GFp6FgZlea2U4z222h4UFCAAAP6UlEQVRm95yl38fMzJlZiZf1SPw4Mz12Y074wPLMt06Qq5XTRHzjWSiYWRLwEHAVUATcZGZFPfTLBv4OeM2rWiT+7CsaTXVBRljb+P0NTNGDaCK+8vJMYRmw2zm3xznXAjwOrOqh39eBfwH06+EIUT0pnX3F4QPLWcdbmLO5VgPLIj7zMhQmAwe7vK7saOtkZkuAKc6533tYh8SRhuxkyi7IC2tLaW5n/voqkjSxnYjvfHtOwcwCwL8Cn+lH39uB2wHGjx9PaWmpp7V5pb6+PmFrB7hx+dAeFmu0ZL454QLaU977XSTggvztydeZveB4n+/PzWzmxuUVQ6phKEpL9wzp/UM9ftGgYzg0iX78+sNcf2ejHOiOzd4H3Oec+2DH638EcM59s+N1DvAOUN/xlglALXCNc25zb/stKSlxmzf3ujmulZaWsnLlSr/LGLRL7zgw6Pc6g7dWjKM2YkGcWa/XUrC7vpd3hfP74bV1D08d0vuHcvyiRcdwaBL5+JnZFudcnzfzeHn5aBMwy8ymm1kqcCOw5sxG59xJ51y+c26ac24asIE+AkES1955Od0CYcLeeib3MxBEJDY8CwXnXBtwJ/AMUA484ZzbYWb3m9k1Xn2uxJ9jBensL8oJa8uuOc3sLRpYFok3no4pOOfWAmsj2r7WS9+VXtYi/qjPSaF8WfjAcmpTO/NfqSYp6FNRItIrPdEsnmlNDbBtxTiCye99m1m7o/iVKkY1tftYmYj0RqEgngga7FieR3NW+Mno7Ddqyanx/y4cEemZQkE8sWfBGI5PCB9YnrS7jkl7GnyqSET6Q6EgUffu1AwOzhkd1pZT1cysrX0/iyAi/lIoSFTVjU1hZ0luWNuoxjaKX6kmoIFlkbinUJCoaRkVYNuF4QPLgXZH8fpqUk8rEUQSgUJBoiJosP19+ZzODB9YnrO5VmspiyQQhYJExe5FYzl5TlpYW8GuU0zYr4FlkUSiUJAhOzw9k0OzssPaxhxtZuabJ3yqSEQGS6EgQ3IyN5VdS8IHltPq25j3ajUBzYQtknAUCjJop9MCbF+Rj0t6bwajQFuQ+eurSG3RwLJIIlIoyKAEA7D9wnG0pIcPLM/dVEvWyVafqhKRoVIoyIA5YNeSXE7ljwprn1p+kvEHG/0pSkSiQqEgA3Z4ZhZHZmSFteUeaWLG9pM+VSQi0aJQkAE5kT+KtxePDWtLr2ulaEM1poFlkYSnUJB+a05PYvuF+bjAewPLSa1B5q+vJqVViSAyHCgUpF+a2mH7inxa05LC2gs31pB5SgPLIsOFQkH65BzcvgvqcsMHlqftOMm4Q00+VSUiXlAoSJ/+rRL+62h4W/6hRqbt0MCyyHCjUJCz+lMtfOmd8LaMU60UvlaD9fwWEUlgCgXp1d4m+HgZdH02OaklyPyXq0hu08CyyHCkUJAeNbTDR7dDbVuXRueYt6GajPq2Xt8nIolNoSDdOAd/UQFvRcx6PWPbSfLebfanKBGJieS+u8hI8y8H4FdV4W3XjYPqilP+FCQiMaMzBQnzhxr4yt7wtvmZ8OM5aGBZZARQKEintxvhprLQhHdn5CbDb4shS+eUIiOCQkEAONUGq7bDyfb32gLA6iKYke5bWSISYwoFIejglnIoj5j1+sGZcHluz+8RkeFJoSB8fT88VRPedvN4uKvAn3pExD8KhRHut1Vw377wtiVZ8OhsMI0si4w4CoURrKwBPlUR3jYuBf67GNKTen6PiAxvCoUR6kRraGC5vsvAcrLBk/Ngapp/dYmIvxQKI1C7g0+Uw+6IWa//7Ty4aIw/NYlIfFAojED37oU/1Ia33ToB7pjkTz0iEj8UCiPME8fgWwfC25aPhoc0sCwiKBRGlDfrQxPddTUhFX49D0bpO0FEUCiMGDWtoamwG7ssjpBq8Jt5MGlU7+8TkZFFoTACtAXhhh2wL2LW64dmwfty/KlJROKTQmEE+Ic9sO5EeNsdk+A2DSyLSASFwjD3s3fhu5XhbR/Ige+e5089IhLfFArD2OZT8Jc7w9sKRsGv5kGq/uVFpAf60TBMHW2Ba3fA6S6LI6QFQmsjjE/1ry4RiW8KhWGoJQjX7YDK0+Htj86G87P9qUlEEoOnoWBmV5rZTjPbbWb39LD9i2ZWZmZvmdlzZnaul/WMFHfthpdPRrQVwKcm+FOPiCQOz0LBzJKAh4CrgCLgJjMriuj2BlDinFsAPAl826t6RoofHYaHD4e3XTYGvj3Dn3pEJLF4eaawDNjtnNvjnGsBHgdWde3gnHveOXdmva8NgJZ1GYJXTsIdb4e3TUuD1fMgWRcKRaQfvPxRMRk42OV1ZUdbb24F/uBhPcPa4dPwsR3Q2mVgOaNjYDkvxb+6RCSxmHOu716D2bHZdcCVzrnbOl5/CrjAOXdnD31vBu4ELnbOne5h++3A7QDjx48///HHH/ekZq/V19eTlZUV9f22YHyBxZQzOqz9a+zgEqqi9jm7DrREbV+DkZvZTG2Df4s9zJ46tNu2/D5+oGM4VIl8/C655JItzrmSvvolD/oT+nYImNLldUFHWxgzuxz4J3oJBADn3KPAowAlJSVu5cqVUS82FkpLS4l27c7BbTuh/N3w9n+cCv88Y15UP+v+Ow703clDNy6v4PENc337/HW3TB3S+/0+fqBjOFSJfvz6w8vLR5uAWWY23cxSgRuBNV07mNli4N+Ba5xzxzysZdh6+DA8FhEIV+XC16f7U4+IJDbPQsE510boktAzQDnwhHNuh5ndb2bXdHR7EMgCfmVmW81sTS+7kx68cAK+sDu8bVY6/KIQkrQ2gogMgpeXj3DOrQXWRrR9rcvXl3v5+cPZgWa4fge0dRkSykoKDSyP0cCyiAySblRMQI3tcO12qGoNb/+vQijK9KcmERkeFAoJxjm4fSe8Xh/eft80WJXvS0kiMowoFBLMdyvh5xFD8qvy4KuaIEREokChkECerYW73wlvK8yAnxZCQAPLIhIFCoUEsacJPl4GXZZYJicJniqG0Z7eLiAiI4lCIQHUt8FHt8PxtvfaDPhlEczK8K0sERmGFApxzjn4i52wrSG8/YHpcFWePzWJyPClUIhz3zwAT0ZMX3TDOPiy90+7i8gIpFCIY7+vgXv3hrctyITH5oJpYFlEPKBQiFM7G+ETZdB1Dtvc5NATy5lJvpUlIsOcQiEOneoYWD7V/l5bAHhiHkxP960sERkBRtTNjJf6Pu1uS59T/zpg24p8aiaH31Y0Y+txvvFEHd8Ywueve1gDESJydjpTiDP75uV0C4Tx+xoo2FXnU0UiMpIoFOJI1eR09s3LCWvLrj3NnC21aFxZRGJBoRAnGkanUL4s/MGDlOZ2itdXk9TuzZKpIiKRFApxoDXF2LYin/aU9/45LOgofqWatKb2s7xTRCS6FAo+cwZly/Npyg5fGWfWG8cZU93jktUiIp5RKPhsT3EOtRPD7zOduKeeSe/U9/IOERHvKBR8dHRKBgcKwweWR1efZvbrGlgWEX8oFHxSNyaFiqW5YW2pTW0Uv1JFINjLm0REPKZQ8EFLaoDtK8YRTO4ysNzuKF5fzahmJYKI+GdEPdEcaw44lZvKwTmjqZmYxvNJUwhMciS1OVrTwicwmvN6LTm1Lf4UKiLSQaHgkaBB+bI8qienEwxY53qZwWQjGHHUJ79dx8S9DT3sRUQkthQKHnB0CYTks1+hS25qY+bW47EpTESkDxpT8MCp3NR+BQJAMCVAw9jUGFQlItI3hYIHDs7ODl0y6odgwDgwO9vjikRE+keh4IGaSemdYwh9Cliov4hIHFAoeCCYNLBHzwbaX0TEKwoFDwQGOKvpQPuLiHhFoeCBvMNNEOznD/qgC/UXEYkDCgUPTNlVR6CfoRAIOqZqVTURiRMKBQ+Mrm0h/1ATgbazT1kRaAuSf6iJbD3JLCJxQqHgAQMKN9a8FwyRZw1B1xkIhRtrNCOqiMQNPdHskYCDotdqqMtN5cDsbGompeOSDGsPjSFM3VnH6OM6QxCR+KJQ8JARupRUvKEGgBuXV/D4hrn+FiUicha6fCQiIp0UCiIi0kmhICIinRQKIiLSSaEgIiKdFAoiItJJoSAiIp0UCiIi0snTUDCzK81sp5ntNrN7etg+ysxWd2x/zcymeVmPiIicnWehYGZJwEPAVUARcJOZFUV0uxU47pw7D/gu8C9e1SMiIn3z8kxhGbDbObfHOdcCPA6siuizCvh/HV8/CVxmZpofTkTEJ16GwmTgYJfXlR1tPfZxzrUBJ4E8D2sSEZGzMOe8WQrSzK4DrnTO3dbx+lPABc65O7v02d7Rp7Lj9Tsdfaoj9nU7cHvHyznATk+K9l4+UN1nL+mNjt/Q6RgOTSIfv3Odc+P66uTlLKmHgCldXhd0tPXUp9LMkoEcoCZyR865R4FHPaozZsxss3OuxO86EpWO39DpGA7NSDh+Xl4+2gTMMrPpZpYK3AisieizBvh0x9fXAeucV6cuIiLSJ8/OFJxzbWZ2J/AMkAQ85pzbYWb3A5udc2uA/wR+Zma7gVpCwSEiIj7xdJEd59xaYG1E29e6fN0MXO9lDXEm4S+B+UzHb+h0DIdm2B8/zwaaRUQk8WiaCxER6aRQiJG+pvyQ3pnZY2Z2rOMWZhkgM5tiZs+bWZmZ7TCzv/O7pkRiZmlmttHM3uw4fv/sd01e0uWjGOiY8mMXcAWhh/g2ATc558p8LSxBmNlFQD3wU+dcsd/1JBozmwhMdM69bmbZwBbgo/r+65+OWRYynXP1ZpYCvAz8nXNug8+leUJnCrHRnyk/pBfOuRcJ3Z0mg+CcO+Kce73j6zqgnO6zC0gvXEh9x8uUjj/D9rdphUJs9GfKDxHPdcxEvBh4zd9KEouZJZnZVuAY8KxzbtgeP4WCyAhhZlnAr4EvOOdO+V1PInHOtTvnFhGamWGZmQ3by5gKhdjoz5QfIp7puBb+a+Dnzrnf+F1PonLOnQCeB670uxavKBRioz9Tfoh4omOg9D+Bcufcv/pdT6Ixs3FmNqbj63RCN4xU+FuVdxQKMdAxLfiZKT/KgSecczv8rSpxmNkvgVeBOWZWaWa3+l1TglkBfAq41My2dvz5kN9FJZCJwPNm9hahX/Cedc79j881eUa3pIqISCedKYiISCeFgoiIdFIoiIhIJ4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgsgQmdlSM3urY979zI4594ft3DgyvOnhNZEoMLP/DaQB6UClc+6bPpckMigKBZEo6JjTahPQDFzonGv3uSSRQdHlI5HoyAOygGxCZwwiCUlnCiJRYGZrCK2oN53Q0pd3+lySyKAk+12ASKIzs1uAVufcLzrW437FzC51zq3zuzaRgdKZgoiIdNKYgoiIdFIoiIhIJ4WCiIh0UiiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIp/8P5RNXTTn1oS8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXGWd7/HPr3rvdKeT7k46OwkhS2chIXRCJCxhc1BmQGQRREFB0etFR0a5ohcdZWZ0lBkdHVlEx42LE1C4GiUXRKAJBrJCQpLuzkpIOoH0lqX3rZ77R3Warl7SW506VdXf9+uV16vrOU9V/XK6u759znPO85hzDhEREYCA3wWIiEjsUCiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIJ4WCiIh0UiiIDICZfdTMNptZnZm9Y2b/z8wuMLNvmlmrmdV2/NttZj82s4ldnrvSzIIdzz31749+/n9E+qJQEOmHmf0D8B/At4ECYBrwEHBNR5cnnHPZQC5wLTAB2NI1GIAjzrmsLv/+Lnr/A5GBUyiInIaZ5QD3A//TOfe0c67eOdfqnPujc+6ern072ncCHwEqgS/5ULLIsCgURE7vfUA68H8H+gTnXDvwB+BCr4oS8YpCQeT08oAq51zbIJ93hNDppFMmmdnxLv9ujFyJIpGT7HcBIjGuGsg3s+RBBsNkoKbL4yPOuSmRLU0k8nSkIHJ6rwHNwIcG+gQzCwB/B7ziVVEiXtGRgshpOOdOmNk3gAfNrA34M9AKXA5cAjSc6mtmycAs4JuErkD6ftQLFhkmHSmI9MM59+/APwD3Ebqq6BBwF/D7ji4fMbM64ASwmtApp3Odc0d8KFdkWEyL7IiIyCk6UhARkU4KBRER6aRQEBGRTgoFERHppFAQEZFOcXefQn5+vps+fbrfZQxJfX09o0aN8ruMuKX9N3zah8MTz/tvy5YtVc65cf31i7tQmD59Ops3b/a7jCEpLi5m5cqVfpcRt7T/hk/7cHjief+Z2dsD6afTRyIi0kmhICIinRQKIiLSKe7GFHrT2tpKeXk5TU1NfpdyWjk5OZSWlvpdxpCkp6czZcoUUlJS/C5FRDyUEKFQXl5OdnY206dPx8z8LqdPtbW1ZGdn+13GoDnnqK6upry8nBkzZvhdjoh4KCFOHzU1NZGXlxfTgRDPzIy8vLyYPxITiTTnYMNJuGEnjFoLl3Ixo9bCjTth48nQ9kSTEEcKwIACwTnYWAv/dgjWVENjEDICcFUefHkqLM0G5UrvFLgy0rQG4dYyWF0FTUEIAmA0BOGpytBnyN/lw6/nQkpC/Hkd4tl/xcx+bmYVZrajj+1mZj8ys71m9qaZLfGqFgh9gz9aCpduhacroSEIDjq/wZduDW1vDQ7t9bOysiJar5+mT59OVVWV32WI+Ma59wKhoTMQ3hME6oPwh6pQv0Q6YvAy334JXHma7R8gtErVLOBO4GGvChlJ3+D29na/SxCJextr4Y8dnxen0xgM9dtUG526osGzUHDOrSV84fLurgF+7ULWA2PMbKIXtUTzG+yc45577mHBggUsXLiQJ554AoBgMMjdd9/N3LlzueKKK/jgBz/I7373ux7PP3XH5PXXX8/cuXO55ZZbOLUQ0gsvvMA555zDwoULuf3222lubgZCf9l/5StfYcmSJfz2t79l5cqV3H333RQVFVFYWMimTZv48Ic/zKxZs7jvvvs63+tDH/oQ5557LvPnz+fRRx8d+n9aJMH8+6HQ58FANAZD/ROFn2MKkwkta3hKeUfbO0N9QSseZkWEjhjOe733bW5l/89/+umn2bp1K9u2baOqqoqlS5dy0UUXsW7dOg4ePEhJSQkVFRUUFhZy++239/oab7zxBjt37mTSpEmsWLGCdevWUVRUxCc+8QleeOEFZs+eza233srDDz/MF7/4RQDy8vJ4/fVQ4Y888gipqals3ryZH/7wh1xzzTVs2bKF3NxcZs6cyd13301eXh4///nPyc3NpbGxkaVLl3LdddeRl5c3lN0mklCeqe55RqEvwY7+iSIuBprN7E5Cp5goKCiguLg4bHtOTg61tbWAt5d7ht7j9NtffPFFrr32WhoaGsjMzOT8889n7dq1vPzyy1xzzTWdE2pdeOGFNDY29njNhoYGzj33XHJycqivr2f+/PmUlpYSCASYNm0aEydOpLa2lhtuuIGf/vSn3HHHHTjnuOqqqzpfq729ncsvv5za2lpmzpzJ3LlzycrKoqWlhTPOOIOysjLOPvtsHnjgAf70pz8BcOjQIbZu3cqyZctwzlFXV0daWlpYbU1NTT32fTTV1dX5+v6JIN734e6DLVF5n4apVwzqqpOGdsejv37ew4pCZk9L9fw9/AyFw8DULo+ndLT14Jx7FHgUoKioyHWfkKq0tDQq1//39x7Z2dmkpqaSnp7e2TclJYWMjAxSU1MJBAKd7cnJyWRkZFBSUsJnPvMZAO6//35Gjx5NZmZmZ7/09HRSUlIYNWoUSUlJne2ZmZkkJyeTnZ2NmVFQUNC5LSkpibFjx5KdnU1WVlbY66WkpJCWlsaWLVt45ZVX2LBhA5mZmaxcubLz9c2MrKysHv/f9PR0zjnnnAjtzcGL58nIYkW878P7P3fQ8/c4OTY1/JNpAKzdsWr9XG8K6uLFW6d5/h5+Xki1Gri14yqk5cAJ59yQTx3FigsvvJAnnniC9vZ2KisrWbt2LcuWLWPFihX84Q9/IBgMcvTo0c6/1s477zy2bt3K1q1bufrqq/t83Tlz5nDgwAH27t0LwGOPPcbFF1885DpPnDjB2LFjyczMpKysjPXr1w/5tUQSgTN4e+5oXr+sYHDXpgcdeUcavSssyjw7UjCz/wZWAvlmVg78I5AC4Jx7BFgDfBDYCzQAnxzue/Z1zv/GnaHLTgdyjjAAXD8Onpg/tBquvfZaXnvtNRYtWoSZ8b3vfY8JEyZw3XXX8eyzzzJv3jymTp3KkiVLyMnJGfDrpqen84tf/IIbbriBtrY2li5dymc/+9mhFQlceeWVPPLIIxQWFjJnzhyWL18+5NcSiXdNmUmULMvjxPj0QT83EHRM2504lx+Zi7PrL4uKilz39RRKS0spLCzs8zkbTsJlW0ODyP3JDMBLi2HZ6OFW2tM777zDxIkTqa6uZtmyZaxbt44JEyZE/o080t9+9lq8n/qIBfG+Dy/14PTR0WmZ7F6SS1tqLydOgg4CfR81BNqC5B9uZN6GaqJxe+eLDw399JGZbXHOFfXXLy4GmodrWXbozsM/VJ3+MrOMAFydH7qz2Qs33ngjtbW1tLS08PWvfz2uAkEk0bSlGLuX5HL0jJ4rqaU0tzN7cw2VUzKpmpxBMGDh4RB0BIKO/MONFG6MTiBEy4gIBbPQrei3loXuQ2jsdgNbAEjvCIRfz/Vuqos1a9bE5YR4IonmeH4apefl0TSq50dg7juNzN1UTVpTkHGHG6nNTeXg7GyqJ2XgkgxrD40hTNtVy+hj0bkaKppGRChAaG6S3xSGbkzrc+4jD04ZiUjsCBocmJ/D23NH9zgtFGh3zHzzGJP31HX+5W/A6JoWFqwP3Yhw0/KyqFxl5KcREwoQOgJYNhqeHOIgsojEr4asZEqW51Gbm9Zj26jjLcxbX03WyVYfKostIyoURGTkccA7Z45iz+KxBJN7DiZP2XWSM7cfJ2mIk2EmGoWCiCSsltQAu5bmUjU5s8e21MY2CjfWkHtU64R0lUCzgMeeT33qU5SUlETktQYynfW3v/3tsMfnn39+RN5bJB5VF6Sz6W8m9hoI48obWPbcuwqEXiTkkUKkr2Ue6rXBP/vZzyJaR3++/e1v87Wvfa3z8auvvhrV9xeJBe1Jxv6FYyif3fNKv6TWILO2HmPCW/UJdRlpJOlIIULq6+u56qqrWLRoEQsWLOCJJ55g5cqVnLrRLisri/vuu4/58+dz+eWXs3HjRlauXMmZZ57J6tWrAfjlL3/JXXfd1fmaf/u3f9vr5GW9TXl977330tjYyOLFi7nllls63xP6ns77dNN0i8SjupwUtlxe0GsgZFc3U/T8u0xUIJxWQh4p+OHZZ59l0qRJPPPMM0BobqGHH35v3aD6+nouuugifvjDH3Lttddy33338fzzz1NSUsJtt9122nmPuuttyut//dd/5cc//jFbt27t0b+v6byh92m6L7jggmHuDZHockD57Gz2LRyDS+r2kR90nFF6kuklJwjob55+6UghQhYuXMjzzz/PV77yFV555ZUe8xqlpqZyxRVXdPa9+OKLSUlJYeHChRw4cGBQ7/WjH/2IRYsWsXz5cg4dOsSePXtO2/+vf/0rN998M0lJSRQUFHDxxRezadMmAJYtW8aUKVMIBAIsXrx40LWI+K05PYltF41j7+KxPQIhva6Nc146ypk7FQgDpSOFCJk9ezavv/46a9as4b777uOyyy4L256SkoJ13CodCAQ61yoIBAK0tbUBoem0g8H3rotrauo5CFZcXMxf/vIXXnvttc4pr3vrN1Bd10xISkrqrEUkHlROzqCsKJe2tKQe2yYcqGPW68dIblMaDIaOFCLkyJEjZGZm8rGPfYx77rmncxW0wZg+fTpbt24lGAxy6NAhNm7c2KPP6aa8TklJobW15803fU3nLRKv2pKNsqJcdqwY1yMQkluCzHutisKNNQqEIdCRQoRs376de+65h0AgQEpKCg8//DBf/vKXB/UaK1asYMaMGcybN4/CwkKWLFnSo8/ppry+8847Ofvss1myZAmPP/54Z3tf03mXlZUN/T8s4pMTuamUnpdHY3ZKj21jKpoo3FBNemO7D5UlhhExdXasqK2tjesJ8fzez/E+7XMsiOd92BaE2Q8d58C8HFy3eYus3TFjx3Gm7a7FPPxI83vuI02dLSICvNUIHyuFtxaM6bEt82Qr89ZXkX1c8xZFgkJBRGKWc/DYUbhrD9T2ckZo0t5aztp2nKT2+DrjEcsUCiISk461wmd3w5OVPbelNLUzd1M1+e9omopIS5hQcM51XvIpkRdvY08S3146FloUq7y557bcI40UbqomtVnTmnohIUIhPT2d6upq8vLyFAwecM5RXV1NevrgFzUXGYyWIHz9LXjgUOgu5a7SAzB1cw2T99ZpmgoPJUQoTJkyhfLycioreznOjCFNTU1x+8Ganp7OlClT/C5DElhpPdxSCm/U9dy2OAseL4S7VvWyUSIqIUIhJSWFGTNm+F1Gv4qLiznnnHP8LkMkpjgHDx+BL+8LLZHblRFaKvefZkCabrWNioQIBRGJTxUtcHsZPFPTc9vkVHisEC4ZG/26RjKFgoj4Yk01fLIMKnq5veCGcfDIbMjtedOyeEyhICJR1dAO9+yDh4703JaVBD+eBbcWgK4Z8YdCQUSi5o3a0GByaUPPbe8bDf+nEM7MiH5d8h4N3YiI54IOHjgI573eMxCSgG9Nh7WLFQixQEcKIuKpQ01wWxm8dLzntjPTQ5eaLs/puU38oVAQEc88WQGf2Q3He1m76ZMT4IdnQbY+hWKKvh0iEnEn2+ALe+BXR3tuG5sMP50D142Lfl3SP4WCiETUqyc6prnuZa66y8bArwphclrPbRIbNNAsIhHRFoR/fAsufKNnIKQa/NtM+PMiBUKs05GCiAzb3obQ0cGG2p7b5mXCb+bBoqzo1yWDp1AQkSFzDn75Lnx+D9T3MpP15yfDd8+EjKTo1yZDo1AQkSGpboXP7IKnqnpuK0iBX8yFD+RFvy4ZHoWCiAzaX2pC9x4caem57eo8+NkcGJca/bpk+BQKIjJgzUH42n74fnnPbRkB+MFZcOdEzVsUzxQKIjIgO+vhoyXwZn3PbedmwePzYE5m9OuSyNIlqSJyWs7Bf5ZD0ZaegWDAV6fBq0sUCIlCRwoi0qd3m+GTu+DZXhbBmZYWWgTnojHRr0u8o1AQkV6troI7dkFVL4vgfHQ8PDgLxmgRnISjUBCRMPXt8KW98JN3em4bnQQPzYZbCqJfl0SHQkFEOm2pDQ0m727sue2CHHhsLkzXmgcJzdOBZjO70sx2mdleM7u3l+3TzOwlM3vDzN40sw96WY+I9K7dwXfehuWv9wyEZIN/mQHFixUII4FnRwpmlgQ8CFwBlAObzGy1c66kS7f7gCedcw+b2TxgDTDdq5pEpKe3m+DWUlh7oue2WRmhRXCWjo5+XeIPL48UlgF7nXP7nXMtwCrgmm59HHDqxy0H6GUpbxHxyn8fhUWbeg+ET0+EN4oUCCONl2MKk4FDXR6XA+d16/NN4M9m9nlgFHC5h/WIjDjOwcZa+LdDsKYaGrmYjLXw/rHQGITnjvV8Tl5yaJqKD2kRnBHJ74Hmm4FfOuf+3czeBzxmZgucc2HzLZrZncCdAAUFBRQXF0e/0gioq6uL29pjgfbf4LRhfIe5vEo+zRiOAGA0BOH31Y7QrWfhllLDV9rKGLOzheJoFzwANy3vZbKlKMod1cRNy8t8e//i4v2ev4eXoXAYmNrl8ZSOtq7uAK4EcM69ZmbpQD5Q0bWTc+5R4FGAoqIit3LlSo9K9lZxcTHxWnss0P4bOOfgo6WwvgqaepnSunsgpAIPnAV3Tc4lYOdHo8Qhuf9zB319/5uWl7Fq/Vzf3v/FW6d5/h5ehsImYJaZzSAUBjcBH+3W5yBwGfBLMysE0oFKD2sS8c2lUfxAO5GbytaV4wkmD2DY0Dlmbqjm90828HuP63rxIe8/1GR4PBtods61AXcBzwGlhK4y2mlm95vZ1R3dvgR82sy2Af8NfMI557yqSWSkODQ7m2BggFOVOqiapGtNJcTTMQXn3BpCl5l2bftGl69LgBVe1iAyElVPyoCBhkLAQv1F0CypIgkpmDS4BQ0G218Sl0JBJAEF2gd3Fnaw/SVxKRREEkxDVjKD+ogPOvKO9DLZkYxICgWRBNKYmcTWi8fjBnLVUYdA0DFtd62HVUk8USiIJIimjCS2riygedTArx8JtAXJP9xIdo2/N4VJ7FAoiCSA5vQAWy8eT1NWeCCk17USaAtCsNsJpaDrDITCjdW93NssI5Xf01yIyDC1pIUCoXF0+DJo49+up3BjNXVjUzk4O5vqSRm4JMPaQ2MI03bVMvqYjhAknEJBJI61pgbYdtF4GnJSw9rHlTdQuLGagIPRNS0sWF8N+D9Ng8Q+nT4SiVNtKca2C8dRNzY8EPKONDJvfRUBXWUqQ6BQEIlDbcnGmxeMozYvLax97LuNzH+1kkCvk+CJ9E+hIBJn2pOM7ReM48S49LD2nIomFq6rIkmBIMOgUBCJI8EAbF+Rz/Hx4YEwuqqZs/9aSZLuTJZhUiiIxIlgAHa8L59jE8Inr8uuaWbRKxUktykQZPgUCiJxIGhQcl4+1ZMzw9pHHW9h0dpKklsVCBIZCgWRGOcMypblUTk1PBAyT7Sy+OUKUlo0iCCRo1AQiWEO2HVuLkfPGBXWnlEbCoTUZgWCRJZCQSRGOWDPkrG8c2ZWWHt6XRuLiytIa2r3pzBJaAoFkRjkgH2LxnD4rOyw9rSGNha/fJT0RgWCeEOhIBKD3lqQw6E5o8PaUhvbWVxcQUa9AkG8o1AQiTEHCkfz9rycsLaUpnYWv1xBZl2bT1XJSKFQEIkhB+dk89bCMWFtyS1BFq2tYNTJVp+qkpFEoSASI8rPymLforFhbUmtQRa9XEH2cQWCRIdCQSQGHJkxij1LcsPaklqDnL22QmseSFQpFER89u4ZmewqCg+EQFuQhX+tZEy1AkGiS6Eg4qOKKZmULs0De29BTGt3LFhXxdjKZh8rk5FKoSDik8pJGZQsz4NAl0AIOha8VkXe0SYfK5ORTKEg4oPqCensfF8+rksgEHTMW19F/pFG/wqTEU+hIBJlx8anseP8fFxSl0BwjsKN1YwvVyCIvxQKIlF0PD+NNy8YRzA5/FdvzuYaJhxs8KkqkfcoFESi5GRuKm9e2DMQZm+pYdJb9T5VJRJOoSASBW/UwraLxtOeEv4rN3PrMSbvq/OpKpGeFAoiHttRB1dsg7bU8F+3GduPM213rU9VifROoSDioV0NcNk2qO42j90ZJSeYXnrSn6JETkOhIOKRfY1w6Vao6DZt0dSyk8zYccKfokT6oVAQ8cDBplAgHOk2S8XkPbXMfPM41vvTRHynUBCJsCPNoUA42G2Wion765j1xjEFgsQ0hYJIBB1tCY0h7Os2S8XHC2DOlhoFgsQ8hYJIhFS3hq4yKut2D9oN4+Dnc8CcP3WJDIZCQSQCjrfC+7fB9m73oF2TB48XQrJ+0yRO6EdVZJhq2+DKN+H1bvegXZkLT8yHFP2WSRzRj6vIMNS3w1XbYUO3e9AuHQNPz4c0/YZJnNGPrMgQNbbDNdvhlW63HFyQA6sXQkaSP3WJDIdCQWQIWoJw/U544Xh4+7JseGYhjFIgSJzyNBTM7Eoz22Vme83s3j763GhmJWa208x+42U9IpHQGoSbSmBNTXj74ix49mwYnexPXSKR4NmPr5klAQ8CVwDlwCYzW+2cK+nSZxbwVWCFc+6YmY33qh6RSGh38PFS+L9V4e3zM+H5s2Fsij91iUSKl0cKy4C9zrn9zrkWYBVwTbc+nwYedM4dA3DOVXhYj8iwBB3cXgZPVIa3z86AFxZDfqo/dYlEkjnnzR01ZnY9cKVz7lMdjz8OnOecu6tLn98Du4EVQBLwTefcs7281p3AnQAFBQXnrlq1ypOavVZXV0dWVpbfZcQtP/efA77PbP7EpLD2STTyH7zBOFp6f2IXuw/238druaOaqKlP9+39Z08bXnL6vQ/jef9dcsklW5xzRf318/vsZzIwC1gJTAHWmtlC51zY8J1z7lHgUYCioiK3cuXKKJcZGcXFxcRr7bHAr/3nHHxxL/zpcHj7tDRYe04GZ6SfP6DXuf9zBz2obnBuWl7GqvVzfXv/F2+dNqzn+70P433/DYSXp48OA1O7PJ7S0dZVObDaOdfqnHuL0FHDLA9rEhkU5+De/fCjbj+5E1PhhUVwhn9/NIp4wstQ2ATMMrMZZpYK3ASs7tbn94SOEjCzfGA2sN/DmkQG5VsH4HuHwtvGp8CLi+CsTF9KEvGUZ6HgnGsD7gKeA0qBJ51zO83sfjO7uqPbc0C1mZUALwH3OOeqvapJZDD+9W341tvhbbnJ8JdFMHeUPzWJeM3TMQXn3BpgTbe2b3T52gH/0PFPJGb8xyH46lvhbTlJ8OdFsFDXCkgC0x3NIt08fBju3hfelpUUujHt3Gx/ahKJFoWCSBe/eAc+tye8LSMQmrpieY4/NYlEk0JBpMNvjsIdu8Lb0gxWL4CLxvhTk0i0KRREgKcq4dbS0E1qp6QYPL0ALs/1rSyRqFMoyIj3pyq4uQTau7QlAU/Mgw/m+VWViD8UCjKi/bkGrtsJrV0OEQLA4/Pg2nG+lSXim0GFgpmN6pj9VCTuvXwcPrQDWrpN//XzufARzdcrI9RpQ8HMAmb2UTN7xswqgDLgnY71Dx4ws7OiU6ZIZL16Aq56ExqD4e0/mQ23TfCnJpFY0N+RwkvATEJrHkxwzk11zo0HLgDWA981s495XKNIRG0+CR94E+q7BcIPz4I7J/X+HJGRor87mi93zrV2b3TO1QBPAU+ZmZYVkbixrQ7e/yacbA9v/+6Z8IUp/tQkEktOe6RwKhDM7PLu28zstq59RGJdST1csQ2OtYW3f2s6/C/vZyQWiQsDHWj+hpk93DHQXGBmfwT+zsvCRCJpTwNctg0qu/0Jc+80+PoZ/tQkEosGGgoXA/uArcBfgd845673rCqRCHqrES7dBu92W7Tri1Pg2zPAzJ+6RGLRQENhLKE1l/cBzcAZZvpVkth3qCl0hFDeHN7+PybB92cqEES6G2gorAeedc5dCSwFJgHrPKtKJALeaQ4FwltN4e2fnAA/nqVAEOnNQNdTuNw5dxDAOdcIfMHMLvKuLJHhqWyBy7fBnsbw9pvHw0/nQECBINKr/m5emw5wKhC6cs6ttRBdyCcxpaY1dJVRSUN4+4fz4ddzIUmBINKn/o4UHjCzAPAHYAtQCaQDZwGXAJcB/wiUe1mkxIZLP9fjb4Oouml5C/f3U0NbirH1ovHU5qWFtecdaaT6d5W8P9jHEwfgxYd03aokvtOGgnPuBjObB9wC3A5MABoJrbm8BvgX51zTaV5CJGrako1tF/YMhLHvNjL/1UoCwwgEkZGi34Fm51wJ8M/AHwmFwVvAJuB3CgSJFe1JxvYLxnEyPzwQxlQ0sXBdFUkKBJEBGehA86+Ak8CPOh5/FPg1cKMXRYkMRnsAtq/I5/j49LD20VXNLPxrJUntro9nikh3Aw2FBc65eV0ev2RmJV4UJDIYwQDsfF8+xyZkhLVn1zSz6JUKktsUCCKDMdD7FF43s+WnHpjZecBmb0oSGZigQcl5+VRPzgxrH3W8hUVrK0luVSCIDNZAjxTOBV41s1OXfkwDdpnZdsA55872pDqRPjiDsmV5VE4ND4TME60sfrmClBYNIogMxUBD4UpPqxDphQNO5qZyaM5oqiem81LSVAKTHHlHGgkmWY8jhIzaVha/fJTUZgWCyFANKBScc297XYhIV0GD0mV5VE3OIBiwzluQg8kWOjroNkdFel0bi4srSGtSIIgMx0CPFESixtElEJJ7GfbqFgipDW0sfvko6Y3tPfuKyKAMdKBZJGpO5qb2HQjdOcesN46RUa9AEIkEhYLEnEOzs0OnjAbCQUW3wWYRGTqFgsSc6kkZA5/GNGCh/iISEQoFiTnBQU5jOtj+ItI3hYLEnMAgp6UYbH8R6ZtCQWJO3pFGCA7wgz4Yum9BRCJDoSAxZ+ruWgZ6QigQdEzbXetpPSIjiUJBYk7t2FTcAAaaA21B8g83kl3TEoWqREYG3bwmMeV4fhp7zxkb3uhc+A1rQUcg6Mg/3EjhxuoBH1WISP8UChIzmjKS2HF+fthRQqAtSE5lMyfGpeGSDGsPjSFM21XL6GM6QhCJNIWCxIT2JGPHinxa05PC2udtqGbc4dBA8k3Ly1i1fq4f5YmMGBpTEN85YPe5Y6nNDV9K84ydJzoDQUSiQ6Egviuflc2707PC2vKONDJj5wmfKhIZuRQK4qvpBJOaAAAQEUlEQVRj49PYt2hMWFvmyVbmbajSALKIDxQK4pvGzCR2vi98YDmpJcjCdVpKU8QvnoaCmV1pZrvMbK+Z3XuafteZmTOzIi/rkdgRGlgeR2tal4Fl55i3oYrM2jb/ChMZ4TwLBTNLAh4EPgDMA242s3m99MsG/h7Y4FUtElscULY0l7qxqWHtM3acIP+dJn+KEhHA2yOFZcBe59x+51wLsAq4ppd+/wR8F9CnwQhxaE42FdNGhbWNK2/gjNKTPlUkIqd4GQqTgUNdHpd3tHUysyXAVOfcMx7WITGkuiCdfQvDB5ZHnWhhru5MFokJvt28ZmYB4PvAJwbQ907gToCCggKKi4s9rc0rdXV1cVs7wE3Lh3cHcUVyBt+ZsDxsAZ3MYCv31m9gfFH/9yPkjmripuVlw6phOIqL9w/r+cPdf5GgfTg88b7/BsKc8+YqDzN7H/BN59zfdDz+KoBz7jsdj3OAfUBdx1MmADXA1c65zX29blFRkdu8uc/NMa24uJiVK1f6XcaQXfq5g0N+bluy8fplBdTndBlHCDrOfqWSvKMDO3Po9x3NLz40bVjPH87+ixTtw+GJ5/1nZlucc/1ezOPl6aNNwCwzm2FmqcBNwOpTG51zJ5xz+c656c656cB6+gkEiU8OKFuWFx4IwJnbjw84EEQkOjwLBedcG3AX8BxQCjzpnNtpZveb2dVeva/EnrcLR1M5JTOsbfzBeqbt0joIIrHG0zEF59waYE23tm/00Xell7WIP6ompvPWgpywtqxjLczdVKOBZZEYpDuaxTMN2cmUnJcfthZCSnM7C9ZVkqR1lUVikkJBPNGWYmxfMY721Pd+xCzomPdaFRkN7T5WJiKno1CQiHNAybI8GkanhLXP3Hac3Ipmf4oSkQFRKEjEHZifQ/Xk8IHlggP1TNmjgWWRWKdQkIiqnJzBgfnhA8vZNc3M2aKBZZF4oFCQiKkfnUzpsrywtpSmdhasq9LAskicUChIRLSeGlhOCR9YXvBqFemNGlgWiRcKBRk2Z1CyPJ/G7PCB5VlvHGNMlQaWReKJQkGGbf+CHGomZoS1Tdxfx6R9dX08Q0RilUJBhqViSiYHC8MHlkdXNzP7dQ0si8QjhYIMWV1OCqXLcsPaUhvbWfBqFYGgT0WJyLAoFGRIWlMDbF8xjmByl4HldseCVytJ08CySNxSKMigBQ12Ls+jKSt8PsXZb9SQU+3/QjIiMnQKBRm0/WeP4diE8IHlSXtrmbS/3qeKRCRSFAoyKO9Oy+TQnNFhbTmVTczaesynikQkkhQKMmC1Y1LYVRQ+sJzW0Mb81zSwLJIoFAoyIBUt9BhYDrQ7FqyrIq1JiSCSKBQK0q/WINy4E5pHdRtY3lLD6GMaWBZJJAoF6deX9sHLJ8LbpuyuZeIBDSyLJBqFgpzWL96B/zwc3jamoomZ2zSwLJKIFArSpw0n4bO7w9vS6jsGljUTtkhCUihIr95thg/vgJYuH/6BtiAL11WS2qyBZZFEpVCQHlqCcN1OONJtDHnu5hqyj7f6U5SIRIVCQXr4wh549WR425enQsHBBn8KEpGoUShImJ8cgZ+8E952xVj4zgx/6hGR6FIoSKd1J+Dze8LbzkyHVfMgWT8pIiOCftUFgMPNcN0OaO0ysJwZgN8vgNyUvp8nIolFoSA0tYeuNDrabQz5V3NhYZY/NYmIPxQKI5xz8D/2wMba8PavTYPrx/tTk4j4R6Ewwj14GH75bnjbB3Phfg0si4xICoUR7OXjcPe+8LZZGfB4ISSZPzWJiL8UCiPUwSa4YSe0dRlYzk6CPyyAMRpYFhmxFAojUGM7XLsDKrsNLD9WCIWj/KlJRGKDQmGEcQ7u3A2v14W3f3M6XJPvS0kiEkMUCiPMf5TD/zka3nZNHnz9DH/qEZHYolAYQf5SA1/uNrA8NxN+XQgBDSyLCAqFEeOtRvhICXSd9Hp0x8Dy6OQ+nyYiI4xCYQSob4cP7YCatvfaDPjNPJid6VtZIhKDFAoJzjm4vQze7Lac8j/PgKvy/KlJRGKXQiHBfe8QPFkZ3nb9OPjqNH/qEZHYplBIYM9Ww1f3h7ctGAW/mAOmgWUR6YVCIUHtaYCbS6HLDcuMTQ5NhZ2lgWUR6YNCIQHVtoUGlo93GVgOEFosZ2aGb2WJSBzwNBTM7Eoz22Vme83s3l62/4OZlZjZm2b2gpnpFqphCjq4tQxKui2n/N0z4f25/tQkIvHDs1AwsyTgQeADwDzgZjOb163bG0CRc+5s4HfA97yqZ6T4l7fh91XhbTePhy9N9aceEYkvXh4pLAP2Ouf2O+dagFXANV07OOdecs6d+pt2PTDFw3oS3uoq+MaB8LbFWfAzDSyLyAB5GQqTgUNdHpd3tPXlDuD/eVhPQiurh4+Vhrflp4QGljOT/KlJROKPOef67zWUFza7HrjSOfepjscfB85zzt3VS9+PAXcBFzvnmnvZfidwJ0BBQcG5q1at8qRmr9XV1ZGVFflFj+tI4nOcyyHeuz05gOPf2MY5HI/Y++w+2BKx1xqK3FFN1NSn+/b+s6elDuv5fu8/0D4crnjef5dccskW51xRf/28vDjxMND1TPaUjrYwZnY58L/pIxAAnHOPAo8CFBUVuZUrV0a82GgoLi4m0rUHHVy9HQ7VhLf/4CzjC1MWR/S97v/cwYi+3mDdtLyMVevn+vb+L946vDv+/N5/oH04XPG+/wbCy9NHm4BZZjbDzFKBm4DVXTuY2TnAT4CrnXMVHtaSsP7xADzTLRBuK4DPn+5EnYhIHzwLBedcG6FTQs8BpcCTzrmdZna/mV3d0e0BIAv4rZltNbPVfbyc9OKpSvjnt8PblmbDI7M1sCwiQ+Ppva3OuTXAmm5t3+jy9eVevn8i21EHt3UbWB6fAk/Ph3QNLIvIEOmO5jh0rDV0x3J9l8URkg2emg9T/BsDE5EEoFCIM+0Obi6BfU3h7f95Flwwxp+aRCRxKBTizP/eD88dC2/79ET4zCR/6hGRxKJQiCNPVMB3D4W3vW80/OcsDSyLSGQoFOLEtjr4ZFl428TU0DhCmr6LIhIh+jiJA1UtoYHlxi4Dy6kWutJoYpp/dYlI4lEoxLi2IHykBA50G1h+eDYsz/GnJhFJXAqFGPe/9sOL3aYv+p+T4PaJ/tQjIolNoRDDHnsXflAe3nZRDvzgLH/qEZHEp1CIUZtPwqd3hbdNSYPfzocUfddExCMjagn3S32fYbFlQLM8tqQF2HzFBJoz3/v2BNodBX86yk2PDX3q4Bcf8n6GRRGJb/qbM8YEDXacnx8WCABzNtcw+pj/8/GLSGJTKMSYvYvHcmJc+ARGU3afZMLb9T5VJCIjiUIhhhyZMYrDs7LD2sYcbWLmtsitniYicjoKhRhxIjeV3Utyw9rS69uY/1oVAW9WTBUR6UGhEAOa0wPsWJGPS3pvAqNAW5AF6ypJbQme5pkiIpGlUPBZMAA7zh9HS0b4wPLcTTVkH2/1qSoRGakUCj5ywO4luZzMD5/AaFrZSQoONfhTlIiMaAoFHx2ZmcU7Z2aFtY19t5Ezt2tgWUT8oVDwyfH8NPacMzasLaO2lfnrqzENLIuITxQKPmjKSGLH+fm4wHsDy0mtQRasqyJFA8si4qMRNc1FtDngZG4qh+aMpnpiOi8lTSUwyRFod7SlJYX1LdxYTdZJDSyLiL8UCh4JGpQuy6NqcgbBgEHHUUEw2Qh22+tnlJxg3OFGH6oUEQmnUPCAo0sgJJ/+DF1qQxvTd5yITmEiIv3QmIIHTuamDigQANpSA9TlpkahKhGR/ikUPHBodnbolNEABAPGwdnZ/XcUEYkChYIHqidldI4h9Ctgof4iIjFAoeCBYNIAA2GI/UVEvKJQ8ECgfXB3nw22v4iIVxQKHsg70gjBAX7QB12ov4hIDFAoeGDq7loCAwyFQNAxbXetxxWJiAyMQsEDo2tayD/cSKDt9FNWBNqC5B9uJLtGay+LSGxQKHjACE1b0RkM3Y8agq4zEAo3VqNhZhGJFbqj2SMBB/M2VFObm8rB2dlUT8rAJRnWHhpDmLarltHHdIQgIrFFoeAhI3QqacH6agBuWl7GqvVz/S1KROQ0dPpIREQ6KRRERKSTQkFERDopFEREpJNCQUREOikURESkk0JBREQ6KRRERKSTp6FgZlea2S4z22tm9/ayPc3MnujYvsHMpntZj4iInJ5noWBmScCDwAeAecDNZjavW7c7gGPOubOAHwDf9aoeERHpn5dHCsuAvc65/c65FmAVcE23PtcAv+r4+nfAZWam+eFERHziZShMBg51eVze0dZrH+dcG3ACyPOwJhEROQ1zzpulIM3seuBK59ynOh5/HDjPOXdXlz47OvqUdzze19Gnqttr3Qnc2fFwDrDLk6K9lw9U9dtL+qL9N3zah8MTz/vvDOfcuP46eTlL6mFgapfHUzraeutTbmbJQA5Q3f2FnHOPAo96VGfUmNlm51yR33XEK+2/4dM+HJ6RsP+8PH20CZhlZjPMLBW4CVjdrc9q4LaOr68HXnReHbqIiEi/PDtScM61mdldwHNAEvBz59xOM7sf2OycWw38F/CYme0FaggFh4iI+MTTRXacc2uANd3avtHl6ybgBi9riDFxfwrMZ9p/w6d9ODwJv/88G2gWEZH4o2kuRESkk0IhSvqb8kP6ZmY/N7OKjkuYZZDMbKqZvWRmJWa208z+3u+a4omZpZvZRjPb1rH/vuV3TV7S6aMo6JjyYzdwBaGb+DYBNzvnSnwtLE6Y2UVAHfBr59wCv+uJN2Y2EZjonHvdzLKBLcCH9PM3MB2zLIxyztWZWQrwV+DvnXPrfS7NEzpSiI6BTPkhfXDOrSV0dZoMgXPuHefc6x1f1wKl9JxdQPrgQuo6HqZ0/EvYv6YVCtExkCk/RDzXMRPxOcAGfyuJL2aWZGZbgQrgeedcwu4/hYLICGFmWcBTwBedcyf9rieeOOfanXOLCc3MsMzMEvY0pkIhOgYy5YeIZzrOhT8FPO6ce9rveuKVc+448BJwpd+1eEWhEB0DmfJDxBMdA6X/BZQ6577vdz3xxszGmdmYjq8zCF0wUuZvVd5RKERBx7Tgp6b8KAWedM7t9Leq+GFm/w28Bswxs3Izu8PvmuLMCuDjwKVmtrXj3wf9LiqOTAReMrM3Cf2B97xz7k8+1+QZXZIqIiKddKQgIiKdFAoiItJJoSAiIp0UCiIi0kmhICIinRQKIiLSSaEgIiKdFAoiw2RmS83szY5590d1zLmfsHPjSGLTzWsiEWBm/wykAxlAuXPuOz6XJDIkCgWRCOiY02oT0ASc75xr97kkkSHR6SORyMgDsoBsQkcMInFJRwoiEWBmqwmtqDeD0NKXd/lcksiQJPtdgEi8M7NbgVbn3G861uN+1cwudc696HdtIoOlIwUREemkMQUREemkUBARkU4KBRER6aRQEBGRTgoFERHppFAQEZFOCgUREemkUBARkU7/H/zwTX7A35byAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1497,7 +12478,7 @@ "\n", "plt.figure(figsize=(6,5))\n", "plt.title(\"CDF\")\n", - "samples_g, prob_g = qgan.generator.get_samples(qgan.quantum_instance, shots=10000)\n", + "samples_g, prob_g = qgan.generator.get_output(qgan.quantum_instance, shots=10000)\n", "samples_g = np.array(samples_g)\n", "samples_g = samples_g.flatten()\n", "num_bins = len(prob_g)\n", diff --git a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb index d21327bbe..6bae69baa 100644 --- a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb +++ b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb @@ -22,18 +22,9 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/ouf/anaconda3/envs/QiskitDevenv/lib/python3.7/site-packages/qiskit_terra-0.8.0-py3.7-macosx-10.7-x86_64.egg/qiskit/circuit/variabletable.py:10: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n", - " from collections import MutableMapping\n" - ] - } - ], + "outputs": [], "source": [ "#!/usr/bin/env python\n", "# coding: utf-8\n", @@ -46,6 +37,8 @@ "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue\n", "from qiskit.aqua.components.uncertainty_models import UnivariateVariationalDistribution, NormalDistribution\n", "from qiskit.aqua.components.variational_forms import RY\n", + "from qiskit import QuantumRegister, QuantumCircuit\n", + "from qiskit.aqua.components.initial_states import Custom\n", "\n", "from qiskit.aqua import aqua_globals, QuantumInstance\n", "\n", @@ -64,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -78,49 +71,20 @@ "for i in range(sum(num_qubits)):\n", " entangler_map.append([i, int(np.mod(i+1, sum(num_qubits)))])\n", "\n", - "# Set variational form\n", - "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", "# Load the trained circuit parameters\n", "g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]\n", "# Set an initial state for the generator circuit\n", "init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1])\n", + "init_distribution = np.sqrt(init_dist.probabilities)\n", + "init_distribution = Custom(num_qubits=sum(num_qubits), state_vector=init_distribution)\n", + "# Set variational form\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state=init_distribution,\n", + " entangler_map=entangler_map, entanglement_gate='cz')\n", "# Set generator circuit\n", "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params,\n", - " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", - "\n", + " low=bounds[0], high=bounds[1])\n", "# construct circuit factory for uncertainty model\n", - "uncertainty_model = g_circuit" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW5x/HvTxAJBEJkCauE1QhGwQQxgiYRZb3XIALxgl6DaARF1It4EVHC4r0ssqiAiAoREYdFLsome4KRPYJEQpAgIZIgCGQhqwl57x+nRmsq3dPdMz1TM5nf53n6melTp6re6unpt6vOqXMUEZiZmXW3N5UdgJmZ9U1OQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKUpPQJJ2kXS3pCWS5ko6XdJaNdbZVdJvs/rLJc2W9BNJW1SoO0bSNEnLJE2XNLbrjsbMzOq1dpk7lzQQuAuYDowBdgDOIyXGU9pZdQDwHHAlMBfYDjgVGCZpj4hYmW1/b+BXwCXA8cCBwC8lzYuIO2rFt8kmm8TgwYM7dnAFixcvZv3112/KtrpSb4kTek+sjrO5ekuc0HtibWacU6dOfSUiNq2rckSU9gC+AcwDNsyVfR1Yki+rc1sfAQJ4T67sduCeQr1bgSn1bHPYsGHRLPfee2/TttWVekucEb0nVsfZXL0lzojeE2sz4wQejTo/t8u+BHcAcHtELMyVtQD9gJENbuvV7Oc6AJLeAowGri3UawFGSBrQeLhmZtYsZSegIcCMfEFEzCadAQ2ptbKkN0laR9LbgbOAR4CHs8U7AG8ubh94inTcO3cudDMz6wxFiaNhS1oBnBgRFxbKXwCujIiTa6z/W2C/7OlU4MCIeDlbthcwBdg9Ih7PrbMj8AywX1RoB5I0HhgPMGjQoGEtLS0dPbw2Fi1aRP/+/Zuyra7UW+KE3hOr42yu3hIn9J5Ymxnn6NGjp0bE8Loq13utrisewArgKxXKXwD+p471dwL2BD5JOtOZCqybLduL1Ca0W2GdHbPyfWtt321APVtvidVxNldviTOi98RaVhtQqb3gSB0QKrXFDMyWtSsinsl+fUjS70g9444ALs+tX9z+wNy+zcysJGW3Ac2g0NYjaRtgPVZvu2lXRDwPvAZsnxU9SzrDKrYlDQFWAX/uQLxmZtYkZSeg24D9JG2QKxsLLAUmN7KhrCPCxqSzICJiOXAvcFih6ljggYhY0NGgzcys88q+BHcp6QbRGySdTTp7mQCcH7mu2ZJmApMj4ujs+XeBlcBDwHzgHaT7h54ldbNudQYwSdKFwI2kG1EPBPbv2sMyM7NaSk1AETFP0j7ARcBNpGRyASkJ5a0N5IfneRT4Eqm32rrAbNKIB/8bEYtz258i6VDgTOBYsjaiqGMUhL5i8Em3tHl+wtCVjCuUzTrroO4Mycz6iLLPgIiI6cCHatQZXHjeQtsznfbWvZF09mNmZj1I2W1AZmbWRzkBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlaL0BCRpF0l3S1oiaa6k0yWtVWOdPSRdIWlmtt7Tkk6VtG6h3gRJUeGxf9celZmZ1bJ2mTuXNBC4C5gOjAF2AM4jJcZT2ll1bFb3bOAZ4F3AGdnPjxfqLgCKCeepzsZuZmadU2oCAo4B+gGHRMRC4E5JGwITJJ2TlVVyVkS8kns+SdIy4EeSto2I53PLVkbEg10TvpmZdVTZl+AOAG4vJJoWUlIaWW2lQvJp9Vj2c8vmhWdmZl2l7AQ0BJiRL4iI2cCSbFkjRgCrgGcL5RtJekXSCkmPSTqkw9GamVnTKCLK27m0AjgxIi4slL8AXBkRJ9e5nc2BJ4BbI2JcrvyTwGaks6MNgM8DBwIfj4gbqmxrPDAeYNCgQcNaWloaPayKFi1aRP/+/ZuyrWaaNmdBm+eD+sFLS9vWGbrVgG6MqH499TUtcpzN1VvihN4TazPjHD169NSIGF5P3V6fgCStQ+rIsDUwLCLmtVNXwP1Av4jYrda2hw8fHo8++mitanWZNGkSo0aNasq2mmnwSbe0eX7C0JWcN61t0+Cssw7qzpDq1lNf0yLH2Vy9JU7oPbE2M05JdSegsi/BzQMqfb0emC1rV5ZQrgR2BQ5sL/kARMq2NwDvqtXV28zMulbZveBmUGjrkbQNsB6FtqEqLiR13/5IRNRTHyCyh5mZlajsM6DbgP0kbZArGwssBSa3t6KkbwDHAZ+MiCn17Cw7Y/o48MeIeKNjIZuZWTOUfQZ0KXA8cIOks4HtgQnA+fmu2ZJmApMj4ujs+RHA/wATgTmS3pfb5rMR8fes3mTgV6SzqfWBzwF7Agd37WGZmVktpSagiJgnaR/gIuAmYD5wASkJ5a0N5Nts9s1+jsseeUeREhPATOArwBakLtp/AA6KiNuaEb+ZmXVc2WdARMR04EM16gwuPB/H6omn0npHdyI0MzPrQmW3AZmZWR/lBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMStHwSAiShgLvBTYH1gVeA/4M3F9rOgQzM7NWdSUgSdsDxwJHAoNI46rNB5YDG5GmT1iVDf75E+CaiFjVJRGbmdkaoeYlOEk/AZ4EdgNOB3YH1o2ITSNi64joT5r2+t+BacA5wFOS9u66sM3MrLer5wxoKTAkIp6vViEiXiHN7XObpP8CDgO2ak6IZma2JqqZgCLiS41sMLv0dk2HIzIzsz6hU9MxSHonMBIQacK4aU2Jyqxg8Em3rFZ2wtCVjMuVzzrroO4Mycw6qcPdsCUdC9wHjAIOBB6W9IUmxWVmZmu4mmdAktaLiCUVFv03MCIins7qHU3qpHBJc0M0M7M1UT1nQH+WdGSFcpG6Y7dyt2szM6tbPQnoCOAESQ9Kem+u/BzgQUnXSrqZdOZzVlcEaWZma56aCSgi7gOGkW4w/bWkKyVtEREXAx8CpgB3kC7H/aBLozUzszVGXb3gIiKAn0i6FvgW8CdJ5wPfjYg/dmWAZma2ZmqoF1xELIyIE4E9SePBzZB0aJdEZmZma7R6huJZT9KZkh6S9Jiky4BlETEGGA+cKmmypHd3ebRmZrbGqOcM6Kekcd7OI11+2xy4U5Ii4k7g3cB1WdlljQYgaRdJd0taImmupNMlrVVjnT0kXSFpZrbe05JOlbRuhbp7ZclzmaTnJB3faIxmZtZ89bQBHQAcliUbJP0eeBXYAZiZDb1zkaSrgVMb2bmkgcBdwHRgTLbN80iJ8ZR2Vh2b1T0beAZ4F3BG9vPjue3vCNwO3Ax8g3TZ8HxJSyLiJ43EamZmzVVPApoBfErSVGAZ8HlgMfBCvlJEvAZ8ucH9HwP0Aw6JiIWks6gNgQmSzsnKKjkrGwC11SRJy4AfSdo2N3DqicBc4JMRsRK4R9LbSJcNf5p1rjAzsxLUcwnu08BOwCvA68DnSGdEy5qw/wOA2wuJpoWUlEZWW6mQfFo9lv3csrD9G7Lkk9/+1sA7OxSxmZk1RT33AT0dESOADYBNImKHiPhtk/Y/hHSGld/fbGBJtqwRI0ijMTwLIGl9YJvi9oGncvs2M7OSqMyrUJJWACdGxIWF8heAKyPi5Dq3sznwBHBrRIzLyrYiXSb8WETcmKu7NrAC+HxErNZpQtJ4Uu8+Bg0aNKylpaUjh7aaRYsW0b9//6Zsq5mmzVnQ5vmgfvDS0rZ1hm41oBsjqqwYJ6wea0+Is5Ke+rcvcpzN11tibWaco0ePnhoRw+upW89gpJ8Cro6IN+oNIGv83yIiflfvOh0laR3gWmAR8NXObi9LSpcBDB8+PEaNGtXZTQIwadIkmrWtZhpXmObghKErOW9a27fFrCNHdWNElRXjhNVj7QlxVtJT//ZFjrP5ekusZcVZTxvQfwHPSjqjvXt9JG0s6UhJNwGPA1vUse15QKWvrQOzZe2SJOBKYFfgwIjIrzM/+1nc/sDcvs3MrCT1zIi6u6SxwJeAb0paRGpHeQVYDmwEbAe8jfShfhVwTETMqWP/Myi0xUjaBliP1dtuKrmQ1H37IxFRbEtaLOmvxe3nntezfTMz6yJ1DcUTEddExN6k3nAnks5wVgLrAy8BPwP2J112+0qdyQfgNmA/SRvkysYCS4HJ7a0o6RvAcaQu1lPa2f7HCje2jgX+CvypzhjNzKwLNDQld0Q8S9bLrEkuBY4HbpB0NrA9MAE4P981W9JM0pTfR2fPjwD+B5gIzJH0vtw2n42Iv2e/nwscCfxc0o+BPUj3MR3re4DMzMrVUAJqtoiYJ2kf4CLgJlK7zQWkJJS3NpA/i9k3+zkue+QdRUpMRMRMSfsD55POhv4GnOBREMzMyldqAgKIiOmkeYXaqzO48HwcqyeeautOIQ3BY2ZmPUhD0zGYmZk1S+lnQGZrmsEV7q3K38c066yDujsksx6poTMgSf8uyWdNZmbWaY0mkxuBFySdLekdXRGQmZn1DY0moB2AHwOHA3+S9ICkz2VTKJiZmdWtoQQUEbMi4tSI2A74CDCT1G36RUk/lzS6K4I0M7M1T4fbcyLinoj4FLAzMJV0w+ddkv4i6avZqNNmZmYVdTgBSRopaSLwNGlyt4tJN4heD5xGGiTUzMysoobOUiRtS5oh9dPAYGASae6cGyJieVbtbkkPkAYlNTMzq6jRy2R/AeaShrq5PCKeq1LvSeDhTsRlZmZruEYT0L8Bt0fEqvYqRcSfAXdIMDOzqhptA9oD2LzSAklbSPp250MyM7O+oNEEdCqwdZVlW2bLzczMamo0AQmoNo/O1niaazMzq1PNNiBJrb3eICWfH0paWKi2LjAUuKO54ZmZ2Zqqnk4IS4BXs98FLABeK9T5B2nCt0uaF5qZma3JaiagiLgOuA5A0hXA6e10vzYzM6tLQ92wI+KorgrEzMz6Fs/tY2ZmpainE8LDwLiImC7pEar3ggMgIt7brODMzGzNVc8luCeBpbnf201AZmZm9ainE8JRud/HdWk0ZmbWZ5TeBiRpF0l3S1oiaa6k0yWtVWOddSSdK+l3kpZKqnhWJmmipKjwGNI1R2NmZvWqpw2oZrtPXiNtQJIGAncB04ExpCm/zyMlxlPaWXU94LOkEbfvBz7UTt0ZQLH33qx6YzQzs65RbxtQV7X7HAP0Aw6JiIXAnZI2BCZIOicrW01EzJf01ogIScfRfgJaHBEPNj90MzPrjHragMZ14f4PIE3vkE80LcDZwEjgpnbicmcIM7NerOw2oCGkS2T/FBGzScP/NKudZhdJCyUtlzRF0sgmbdfMzDqh7PuABgLzK5TPy5Z11mPAQ6Q2pk2BE0iX+faOCM/YamZWItW6kpUf/03SRGonoLqH65G0AjgxIi4slL8AXBkRJ9exjeOAH0SE6qi7HqlN648RcXCVOuOB8QCDBg0a1tLSUvtA6rBo0SL69+/flG0107Q5C9o8H9QPXlrats7QrQZ0Y0SVFeOE1WPtCXFC7de0p8RZ1FPfo0W9JU7oPbE2M87Ro0dPjYjh9dQt+z6geUCl/8aBdMHcQhGxRNKtwL+3U+cy4DKA4cOHx6hRo5qy70mTJtGsbTXTuJNuafP8hKErOW9a27fFrCNHdWNElRXjhNVj7QlxQu3XtKfEWdRT36NFvSVO6D2xlhVnQ4ORQroHBxgHvBfYAniRdJnrZxHxjwY3N4NCW4+kbUjdrGdUXKPzAo/mYGZWuoY6IUh6B/AMcDHwTuCN7OfFwExJuzS4/9uA/SRtkCsbSxr6Z3KD26pJUj/gIGBqs7dtZmaNafQM6DLShHQfyHqrASDpbcDNwKXABxvY3qXA8cANks4GtgcmAOfnu2ZLmglMjoijc2UHAOsDu2XPD80WPRIRz0sakMV0FTAT2AT4KrAlcFgDMZqZWRdoNAENB/4jn3wgdZ2WdCpwdSMbi4h5kvYBLiLd8zMfuICUhIpxFofn+SGwbe75ddnPo4CJwHLg76QRFTYDlgEPACMj4tFG4jQzs+ZrNAHNAtatsmxdYHaVZVVFxHTaH8mAiBhcT1lh+TLgkEbjMTOz7tHojagnAWdK2jNfKOl9wBnAfzcrMDMzW7N1ZDDSDYH7Jb0MvEy6vLUZ8CpwMnBjF8RpZmZrmI4MRvpkF8ViZmZ9SNmDkZqZWR9V9mCkZmbWRzkBmZlZKToyFM9Y4HPAzlTokh0RmzUhLjMzW8M1OhTPEcDPSCMLbA38hjTawJuAhaQbSs3MzGpq9BLciaT7fb6YPb8kIj4DbAe8QppIzszMrKZGE9BOwO8j4g3SQKQbAkTE66RptI9rbnhmZramajQBLQTekv0+B3hHbpmAjZsRlJmZrfka7YTwCPAu4HZS+8+3Ja0E/gF8G3iwueGZmdmaqtEE9L/8awTqb2e//5B0JvUI8PnmhWZmZmuyhhJQRDxIdpYTEfOBMZLeArwlP3+PmZlZLU2bkltSR6bkNjOzPqrsKbnNzKyPKntKbjMz66Ma7YY9HPh2pSm5gVOBPZoVmJmZrdkaTUCzaPKU3GZm1jd5Sm4zMyuFp+Q2M7NSeEpuMzMrhafkNjOzUnRoRlRJW0r6uKTPSTpE0pYdDUDSLpLulrRE0lxJp0taq8Y660g6V9LvJC2VFO3UHSNpmqRlkqZnE+qZmVnJGr0RdS1JlwDPA9cBPwKuB56XdLGkRrc3ELiLdIlvDHA6cAJwWo1V1wM+S5p/6P52tr838CvgXuAA4Bbgl5L2bSROMzNrvkZvRD0N+Ayps8E1wEvAIGAsKXm8ShqktF7HAP2AQ7Kx5O6UtCEwQdI51caXi4j5kt4aESHpOOBDVbb/LeC+iDg+e36vpF2zGO9oIE4zM2uyRi/B/SdwSkScGxGzI2J59vNc0of9uAa3dwBweyHRtJCS0sj2VoyIqpfdALJBUkcD1xYWtQAjJA1oMFYzM2uiRhPQZsATVZY9kS1vxBBgRr4gG1VhSbasM3YA3lzcPvAU6bh37uT2zcysE1TjRKJtZekJ4NGI+EyFZZcDwyLi3Q1sbwVwYkRcWCh/AbgyIk6uYxvHAT+ICBXK9wKmALtHxOO58h1JA6ruFxGrXYaTNB4YDzBo0KBhLS0t9R5OuxYtWkT//v2bsq1mmjZnQZvng/rBS0vb1hm6Vfkni8U4YfVYe0KcUPs17SlxFvXU92hRb4kTek+szYxz9OjRUyNieD11G20DOhNoyQYfvZ7UBrQZcBjpctcnGtxejxMRl5EGXWX48OExatSopmx30qRJNGtbzTTupFvaPD9h6ErOm9b2bTHryFHdGFFlxThh9Vh7QpxQ+zXtKXEW9dT3aFFviRN6T6xlxdnohHTXSppP6ozwPdIlrhXAVGD/iLizwf3PAyp9HRyYLeuM1vWL2x9YWG5mZiWoOwFJejNpEro/RcSIrMv1JsArEbGqg/ufQaGtR9I2pG7WxbabRj1LSo5DgMm58iHAKuDPndy+mZl1QiOdEN4A7iFLGBGxKiJe7kTyAbgN2E/SBrmyscBS2iaNhkXEctL9P4cVFo0FHoiI1RsVzMys29R9BhQRqyQ9A2zexP1fChwP3CDpbGB7YAJwfr5rtqSZwOSIODpXdgCwPrBb9vzQbNEjEfF89vsZwCRJF5IGST0we+zfxGMwM7MOaLQTwjeBsyVNi4hpnd15RMyTtA9wEXATMB+4gJSEinEWh+f5IbBt7vl12c+jgInZ9qdkielM4FjgOeCISr3fzMysezWagE4BNgYelzSH1AuuTT/uiHhvIxuMiOlUH8mgtc7gesqqrHsjniLCzKzHaTQBPQn8qSsCMTOrZHCFbu3Fru6zzjqoO0OyJmm0G/a4LorDzMz6mLoSkKR+pMb7wcCLwN0R8VIXxmVmZmu4eqbk3p40ZcLgXPFCSYe7Md/MzDqqnvuAziHduPkB0g2iuwKPkeYCMjMz65B6EtAI0hQMv4+IZRHxFPB54G2Stuja8MzMbE1VTwLaAvhLoexZQDT3plQzM+tD6h2Kp/45G8zMzOpQbzfs2yWtrFB+d7E8IhqdlM7MzPqgehLQaV0ehZmZ9Tk1E1BEOAGZmVnTNToUj9Wp1vAhHjrEzPq6RuYDMjMzaxonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFL4R1cysCYo3n4NvQK/FZ0BmZlYKJyAzMytF6QlI0i6S7pa0RNJcSadLWquO9QZIukLSPEkLJP1C0saFOhMlRYXHkK47IjMzq0epbUCSBgJ3AdOBMcAOwHmkxHhKjdWvBXYGPgusAs4GbgQ+UKg3AziqUDarM3GbmVnnld0J4RigH3BIRCwE7pS0ITBB0jlZ2WokjQD2BUZGxH1Z2RzgIUkfjoi7ctUXR8SDXXsYZmbWqLIvwR0A3F5INC2kpDSyxnovtSYfgIh4GHguW2ZmZj1c2QloCOkS2T9FxGxgSbas7vUyT1VYbxdJCyUtlzRFUnuJzczMuokiorydSyuAEyPiwkL5C8CVEXFylfXuJF1aO7hQfhWwfUS8P3v+ZeAfpDamTYETgGHA3tkZU6VtjwfGAwwaNGhYS0tLh45t2pwFbZ4P6gcvLf3X86FbDejQdputVpzQM2Itxgm99zXtKXEWLVq0iP79+5cdxmr8Hu16zfzbjx49empEDK+nbtltQF0qIr6Xfy7pVuBJ4GTg4CrrXAZcBjB8+PAYNWpUh/Y9rsKMqOdN+9fLPevIjm232WrFCT0j1mKc0Htf054SZ9GkSZPo6Pu9K/k92vXK+tuXfQluHlDpK8HAbFlT14uIJcCtwHsaiNHMzLpA2QloBoU2G0nbAOtRuY2n6nqZam1DeZE9zMysRGUnoNuA/SRtkCsbCywFJtdYb3NJe7cWSBoObJ8tq0hSP+AgYGpngjYzs84ruw3oUuB44AZJZ5MSyATg/HzXbEkzgckRcTRARDwg6Q7gSklf4183ok5pvQdI0gDgZuAqYCawCfBVYEvgsO45PDOznqc4cGpZg6aWmoAiYp6kfYCLgJuA+cAFpCSUtzZQHJ5nbFb3ctKZ3M2kZNZqOfB30ogKmwHLgAdIN68+2tQDMTOzhpV9BkRETAc+VKPO4Apl80lD7BSH2Wldvgw4pAkhmplZFyg9AZlZOXrKZRjru8ruhGBmZn2UE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSlJ6AJO0i6W5JSyTNlXS6pLXqWG+ApCskzZO0QNIvJG1cod4YSdMkLZM0XdLYrjkSMzNrRKkJSNJA4C4ggDHA6cAJwGl1rH4tMAr4LDAO2AO4sbD9vYFfAfcCBwC3AL+UtG9TDsDMzDps7ZL3fwzQDzgkIhYCd0raEJgg6ZysbDWSRgD7AiMj4r6sbA7wkKQPR8RdWdVvAfdFxPHZ83sl7Qp8G7ij6w7LzMxqKfsS3AHA7YVE00JKSiNrrPdSa/IBiIiHgeeyZUh6CzCadKaU1wKMkDSg8+GbmVlHlZ2AhgAz8gURMRtYki2re73MU7n1dgDeXKHeU6Tj3rkD8ZqZWZMoIsrbubQCODEiLiyUvwBcGREnV1nvTmBxRBxcKL8K2D4i3i9pL2AKsHtEPJ6rsyPwDLBfRKx2GU7SeGB89vTtwNMdPsC2NgFeadK2ulJviRN6T6yOs7l6S5zQe2JtZpzbRsSm9VQsuw2ox4mIy4DLmr1dSY9GxPBmb7fZekuc0HtidZzN1VvihN4Ta1lxln0Jbh5QqS1mYLasM+u1/izWG1hYbmZmJSg7Ac2g0NYjaRtgPSq38VRdL5NvG3oWWFGh3hBgFfDnDsRrZmZNUnYCug3YT9IGubKxwFJgco31Ns/u8wFA0nBg+2wZEbGcdP/PYYV1xwIPRMSCzoffkKZf1usivSVO6D2xOs7m6i1xQu+JtZQ4y+6EMBCYDvwJOJuUQM4HLoyIU3L1ZgKTI+LoXNntwE7A10hnNGcDL0fEB3J19gYmAReRblI9MKu/f6UOCGZm1n1KPQOKiHnAPsBawE2kERAuAE4tVF07q5M3lnSWdDlwJTAV+Fhh+1OAQ4EPA7cDHwWOcPIxMytfqWdAZmbWd5XdBmRmZn2UE5CZmZXCCcjMkLSupMsk7VR2LNZ3uA2oC0jqTxpMdQhtb3ydQerNt6is2BohaV1gs2x8vh5L0puBLXpinJK2A7YDnouI50qOZb12Fm8E/JU0mO8UgIhY0h1xNUrSYCAi4vmSQ6lK0mhgF1IP3T9GxP0lh4SkPYFHImJV2bH8U0T40aQHINKcRotIb7xFpH/qvxbKTiNL/j35AXwceKPkGL5Iuql4KfBH4FMV6uxZZpykQW+/D7yW/X3PycovBt7I/u5vAL8A1ioxzjdqPFbln5f8dx8PbFIo+zLw91yMLwFfKDnO84Azc8+3AB7IXstlwPIs1t8CA0qOdVX2ml0E7FVmLK0PjwXXXBOA/yIlmJaI+Gt+oaStgU+QuplHVt+qkPQJ4AfAL4HHgPcDEyWNAT4ZEcvKjC/n66SJEc8nJaEvSdoUOJg0WeIfgL2B7wKfBy4pJ0yWAguzOF4tLFuf9MF0Du2PQtJdfgg8TjZAZjZI8AWk6VWuJ/3/HAb8QNL8iLi6pDgPB/479/wiUhIaSXYmmf1+Jen9cTTlehz4D+DYbNDna0ifVX8oJZqyM+Ca9ADmAOPrqDcemFNinPfU+ZhGuWcWj5KdTeTK9gH+RvqWuXFWVvYZ0AzSqO6tz/cmfdv8SqHeacCjJca5JXA16UP9S+TOxkhjJq4CPlhWfIVYVwHvLbzGV1So93PSZaWy4lwGfCD3fDFwWIV6RwCv9oTXlHTG/tHsvfA66QztadIX47d3Z0zuhNBcG5EuF9XybFa3LB+UWGc2AAALs0lEQVQEBpG+Bbf3eL2sADNvB27NF0TE3cD7SK/fA5K2LyOwgm2Bh3PPp2Y/Hy7Um0Ia7aMUETE3Io4ADiF9E58mab+y4mnQDqTJJItaSG0tZZlNep+2Wkk6yyxaCKzTLRHVEBErIuI32XthM1JynA6cBEyX9AdJJ3ZHLL4E11wPAl+X9GBELK5UQdL6pFP2B7o1sraeBGZExNj2Kkk6lHSKXpYFpHlK2oiIWZLeD9xCeh3P6O7AChbT9gvF8uxRbMRfix7wPxcR90l6D3AscLWk+yn/Naxk3VzHiVdJ39SL3iBdjivL5cAESb+LiKdJl9q+KemhiJgPIOmtwMm0P75lKSJiKel//BpJG5K+nHwCOBM4t6v3X/o/wxrmOOAuYHY2Vt0MYH62bACpV9x+pA+nfUqJMHkQ2L+OekHqWFGWqaR2lOuLCyJinqR9smXfp9wPoaeBYcCvs9hWkaaVL9oVmNV9YVWXxXixpBbgO8DvKPc1rOTe3O8iXT66q1DnXaROPmU5F3gn8ISke0ij7O9G+gyYRop7KCmBfrK0KOsQEQuBiaR21o27Y5/uht1kkjYifbPcn8rdsG8DLm39dlQGSTsAu0bEb2rU60fqhl1Kd1dJhwFfBf4tIl6rUmctUoP1RyJiu+6MLxfDx0ntUe2OKCzpNuDhiCiOdVg6SbuQBvf9XbXXupvj+XSF4hejMI6jpOtJZ/OnVKjfbSTtDxxFao/cnJR45gFPATcDl0VEqZe0Jd0LHBsRPaGTCeAEZGZmJXEnBDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACsnZJGidpqqTXJc2T9Jik87toX4dLGldHvQmSIveYK+lXWe++evYzUdKjnQ64Ceo95qxu63E/U2X5M9nyCV0VQ4PbbfM6N3s/kt4k6bjsPblU0kJJT0r6vqQO3T6g5PEqvfBaj2lwlWUXSfppR/bbVzkBWVWSvgH8hDSd+SHAf5LudfloF+3ycNLYafVYAIzIHl8j3Xtxd3ajby1nNLCfrtbIMUMa+mU7ScPzhZL2AAZny7s6hnoVX+dm7+ca0g2TN5Dek58mjZzx/uh4997DgbeShqlp1HeBIyXt2MF99zm+EdXacxzwo4g4OVd2k6TTygooZ2VEPJj9/qCk2aSbKQ8EritWzu4XWisi/hER9QyX1FMtJg1u+gnSWHmtPkEav29YGUG16q7XWdIBwKHAgRFxW27R/3X07CdzPPDziFiR29fapGT6KdJ4ev8h6VngtIj450gh2QgdU0j3AZ7QiRj6DJ8BWXs2Ig382Ub+22XrZRZJB0uaIWmZpCnZjY1tZJdgpklaLumvkr6T/XMjaSJp+oeRuUtrExqItXX8tcEV4nqSdGawZ35ZIbYPSrpX0iJJCyRNkrR7bvkHJE2WtETSq5J+LGmD9gKSNELSbyS9KGlxdmnnyPxr18FjbgEOb/2gzX4eToWx0joTQ/YaXF/Y3qiszjvzr2Wt17nafiQdKGmV0rxJ+f1sl5WPqfIajMx+3lNc0NGzn+zM5f2sPvLGl0kjnn+fdIb1GdIQPJVGC/gV6SzIn6118BmQtecPpKkFZgM3R0RxCP9W25KGmv8Wacj/04DbJe0U2ZQJkvYlXTK5EjiRNITKGaR/4mOy399GSnpfyLb7QgOxDs5+/q1Qdg5pjqa/ARUnhJM0CriTNPTLp0lnGXsBWwGPSdqLNATMjaRv3RsDZ5FGuTi0nZi2BX4PXEr6YN4LuELSqoj4JR0/5htIoz/sTTrr+wCwaVZeHL+rq2LIG0zt17nafl4E5pJe9wm5+uOAl0nj/VXSOtbiuZLOa9JoHftk2/1joXwkcE9EnJN9sfp9RMyqso37SQP9Dq2wHSsqc3hwP3r2g5Qk/kIaI2wVaRDT04ENc3UmZsvfnyvbljQq8DG5sgeBewvb/zppMMmts+fXA5PqiGsCaUqBtbPHzqTksZA0M2o+rt0qrD+R3LQIpAFNH6XKJIGkD/li7B/Ktv/OOl9LZbH+iPRh1lpe1zHnjzv7/dfAxdnvlwA3Zr+/AkxoRgzAJOD6Qtmo/HE3+DpX28+ZpKSlXJyzgO+281psDjyR7TuAP5EG/Ozfiff7ZVSY2iF7vf6a7XMiMLidbaydvfc/19E4+tLDp4lWVUQ8AbyD1MB7CemD4VvAo0rTjrd6OXJTDkf6NjqVNHhka7vAe1i9beYa0mXgER0Ib2NgRfZ4mjTNwdiIeDFXZ05EPN7eRrJOC3sCP4vsE6SwfL0svmslrd36IE2tsIJ22lwkDVTqkfV8LtbxpITZWS3AoZLeQjoLqzRVQVfH0Krm61zD5aQvLaOy56Oz51dUWyEi/gbsThrc94ekM6vvAPdLWgfSeHLZJcfHs8u+M7LfpypN4160OdkEeAXfIZ0ZPUf6X/hadlZcKa6VpAGIN69xzIbbgKyGiFgeETdFxHERsQtp5s+daDuz48sVVn2ZNDMkpCkV3kyaDjiv9flbOxDaAmAPYDiwNelb6W2FOsX9VTKQlFhfbGf5WqQEvCL3WE46pm3a2fZEYCzpsti+WbyXA+vWEVctvwH6kz4c1wduKiGGVvW8zlVFxF9IZ1tHZUVHkQZtfbLGem9ExB0R8QXS5b0rSJe+RmTLfxYRu5G+/KwkTUO9W0QMi1wng5x1SX/X4n5mZ9v9GOmKwN7AFFW/HWE5zX1911huA7KGRMRPJZ1DGum71WYVqm5GumQH6Vvligr1BmU/OzL68sqIqHUvTz2N0fNIlxe3qLJ8Pv+aPv3WCsvnVlpJ0rrAvwFfjIhLc+VN+dIXEYsl3UwaLfy6qDD/VBNiWMbqk6gNrFCvGSMa/wT4sVLX/0NosBdZRKySdAcpeRU//HcC5kX1NsxWr1HlzCVLWL9VmiZ+AmmakAskXZglqLyN6Nh7us/xGZBVJWm1xCJpU9LcRvlvvZspTRDXWudtpG+dD0P6pkq6JHdYYXOHkz78Wyfn+wfd/M0x++B+CPjP1l5lFZY/SJqq+NEKj4oJCHgL6f/rn9+os15zxXuoOnPMPySd+VxaZXlnY3iBtl80IJ1FdVR7x3pDtryFFHPFS4oAkgZVWfRR0iSADxXK3019HQKeBlab0qPS+wJ4JPv51kLdTYH1SPMCWQ0+A7L2TJP0a+AO0iW1bUk3fS4Bfpar9wpwlaRT+FcvuJdJl39anUrqGXcF6cNlKKln1I8jorXX1QxgjKSDSR9+c9v5gG+mk0i93G6TdBnpev8IUgP6zaTOEndLWkVqSH+ddMnnIOCbEbHah01ELJD0CPBtSQtJifYk0qXDDXNVO3zMETGJdOmq2vLOxvB/wNGSLiD1RhtNfRMZVlP1WCNimaRfAF8Efhntz5d1raTXgWtJnRU2A44ExpAa/4vrvpvUYaGW35Neq00j4u+58qslPQbcR7rcOYx05jmHNN9P3nDSGeH9WG1l94Lwo+c+SB8Gd5AuMy0j/bNfDQzJ1ZlI6kF2COlb33LSP/JqvcNIbRHTSN90XyC1X6ydW74J6UPvNbLLXlXimkDWG6yd2CeS64FVaxmpq+19pOQ6n9Srbrfc8j2B35J62i0GppO6ng9oJ4Ydgbuz+rNJiaxN7PUecwPH3aYXXGdjAL5B6gH2OnAV6Syj2Auurte51rECH87KP1zjGD+T/S1eyN5Lr5ES5Kgq9W8CPlHH+30d0sylnyqUfyzb399ISXwhKfHvXmEb36PQY9KP6g9PSGedkt1g+M6IGF6rrll7srbFw4HtI00Z3qztzgb2i4ji2Uqlut8DdoyIg6osn0hKnLMqLFsLeB44KSKu6lTQfYQvwZlZqSS9HdiFNITNaU1OPgNJN+nW2yZzLvBnSTtHhUurNRxGugRdtf3K2nInBDMr249Il3ZvJQ130zQRMS8i+kXqCFNP/RdIl/iq9Yq8kXSJthIBR0e6F8jq4EtwZmZWCp8BmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmal+H/C0E4RTJkX9wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot probability distribution\n", - "x = uncertainty_model.values\n", - "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", - "plt.ylabel('Probability ($\\%$)', size=15)\n", - "plt.show()" + "uncertainty_model = g_circuit\n" ] }, { @@ -133,7 +97,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -168,6 +132,13 @@ "print('Estimated value:\\t%.4f' % result['estimation'])\n", "print('Probability: \\t%.4f' % result['max_probability'])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From bce7774e00269905e8700198c9dfa2e237fb112e Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Wed, 1 May 2019 19:27:54 +0200 Subject: [PATCH 102/116] Update time_series.ipynb --- qiskit/finance/data_providers/time_series.ipynb | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb index f79e36525..441d1d0f4 100644 --- a/qiskit/finance/data_providers/time_series.ipynb +++ b/qiskit/finance/data_providers/time_series.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 1, "metadata": { "scrolled": true }, @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -147,7 +147,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -202,7 +202,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "metadata": {}, "outputs": [ { From 4ab2088bf52caa22e95f9190734401aac3ab50a6 Mon Sep 17 00:00:00 2001 From: woodsp Date: Wed, 1 May 2019 19:21:40 -0400 Subject: [PATCH 103/116] Mover domain folders like chemistry, ai etc out of aqua as peers --- community/aqua/README.md | 26 ++++++--- .../algorithm_introduction_with_vqe.ipynb | 0 .../{general => }/bernstein_vazirani.ipynb | 0 .../aqua/{general => }/deutsch_jozsa.ipynb | 0 community/aqua/{general => }/eoh.ipynb | 0 community/aqua/{general => }/evolution.ipynb | 0 community/aqua/general/README.md | 12 ----- community/aqua/index.ipynb | 50 +++++++++--------- .../{general => }/input_files/H2-0.735.json | 0 .../aqua/{general => }/input_files/eoh.json | 0 .../aqua/{general => }/input_files/vqe.json | 0 community/aqua/{general => }/shors.ipynb | 0 community/aqua/{general => }/simon.ipynb | 0 .../simulations_with_noise.ipynb | 0 community/aqua/{general => }/vqe2iqpe.ipynb | 0 .../aqua/{general => }/vqe_convergence.ipynb | 0 .../artificial_intelligence/README.md | 2 +- .../artificial_intelligence/datasets.py | 0 .../input_files/qsvm.json | 0 .../input_files/svm_classical.json | 0 .../input_files/vqc.json | 0 .../qsvm_directly.ipynb | 0 .../qsvm_multiclass.ipynb | 0 .../svm_classical.ipynb | 0 .../svm_classical_multiclass.ipynb | 0 .../artificial_intelligence/vqc.ipynb | 0 community/{aqua => }/chemistry/LiH.png | Bin .../LiH_with_qubit_tapering_and_uccsd.ipynb | 0 .../ParticleHoleTransformation.ipynb | 0 .../chemistry/PySCFChemistryDriver.ipynb | 0 .../{aqua => }/chemistry/QSE_pytket.ipynb | 0 .../{aqua => }/chemistry/QubitMappings.ipynb | 0 community/{aqua => }/chemistry/README.md | 0 .../chemistry/beh2_reductions.ipynb | 0 community/{aqua => }/chemistry/dictinput.py | 0 .../{aqua => }/chemistry/energyplot.ipynb | 0 .../{aqua => }/chemistry/h2_0.735_6-31g.hdf5 | Bin .../{aqua => }/chemistry/h2_0.735_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/h2_basis_sets.ipynb | 0 .../chemistry/h2_excited_states.ipynb | 0 community/{aqua => }/chemistry/h2_iqpe.ipynb | 0 .../{aqua => }/chemistry/h2_mappings.ipynb | 0 .../chemistry/h2_particle_hole.ipynb | 0 community/{aqua => }/chemistry/h2_qpe.ipynb | 0 .../{aqua => }/chemistry/h2_swaprz.ipynb | 0 community/{aqua => }/chemistry/h2_uccsd.ipynb | 0 .../{aqua => }/chemistry/h2_var_forms.ipynb | 0 .../chemistry/h2_vqe_initial_point.ipynb | 0 .../{aqua => }/chemistry/h2_vqe_spsa.ipynb | 0 community/{aqua => }/chemistry/h2o.ipynb | 0 .../input_files/gaussian_h2_0.735_sto-3g.txt | 0 .../input_files/gaussian_lih_1.6_sto-3g.txt | 0 .../chemistry/input_files/h2_on_device.txt | 0 .../input_files/hdf5_h2_0.735_sto-3g.txt | 0 .../input_files/hdf5_lih_1.6_sto-3g.txt | 0 .../input_files/input_file_sample.txt | 0 .../chemistry/input_files/iqpe_h2.txt | 0 .../input_files/psi4_h2_0.735_sto-3g.txt | 0 .../input_files/psi4_lih_1.6_sto-3g.txt | 0 .../chemistry/input_files/psi4_save_hdf5.txt | 0 .../input_files/pyquante_h2_0.735_sto-3g.txt | 0 .../input_files/pyquante_lih_1.6_sto-3g.txt | 0 .../input_files/pyscf_h2_0.735_sto-3g.txt | 0 .../input_files/pyscf_lih_1.6_sto-3g.txt | 0 .../chemistry/input_files/pyscf_minimal.txt | 0 .../chemistry/input_files/qpe_h2.txt | 0 .../{aqua => }/chemistry/lih_1.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/lih_dissoc.ipynb | 0 .../{aqua => }/chemistry/lih_uccsd.ipynb | 0 .../{aqua => }/chemistry/nah_1.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/nah_uccsd.ipynb | 0 community/{aqua => }/finance/README.md | 2 +- .../finance/input_files/portfolio.json | 0 ...Coloring Oracle via Reduction to SAT.ipynb | 0 community/{aqua => }/optimization/3sat2-3.cnf | 0 community/{aqua => }/optimization/README.md | 2 +- .../{aqua => }/optimization/clique.ipynb | 0 .../{aqua => }/optimization/exact_cover.ipynb | 0 .../optimization/graph_partition.ipynb | 0 .../{aqua => }/optimization/grover.ipynb | 0 .../optimization/input_files/grover.json | 0 .../optimization/input_files/maxcut.json | 0 .../{aqua => }/optimization/max_cut.ipynb | 0 .../{aqua => }/optimization/partition.ipynb | 0 .../{aqua => }/optimization/sample.exactcover | 0 .../{aqua => }/optimization/sample.maxcut | 0 .../{aqua => }/optimization/sample.partition | 0 .../{aqua => }/optimization/sample.setpacking | 0 .../{aqua => }/optimization/set_packing.ipynb | 0 .../{aqua => }/optimization/stable_set.ipynb | 0 .../optimization/vertex_cover.ipynb | 0 ...ild_a_pluggable_algorithm_components.ipynb | 0 .../{general => }/amplitude_estimation.ipynb | 0 .../evolutionfidelity/__init__.py | 0 .../evolutionfidelity/evolutionfidelity.py | 0 .../{general => }/evolutionfidelity/setup.py | 0 .../generating_random_variates.ipynb | 0 .../linear_systems_of_equations.ipynb | 0 .../artificial_intelligence/index.ipynb | 0 .../qsvm_classification.ipynb | 0 .../artificial_intelligence/qsvm_datasets.py | 0 .../{aqua => }/chemistry/H2/0.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/0.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/0.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/0.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/0.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/0.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/0.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/0.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.0_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.1_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/1.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.0_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.1_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/2.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.0_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.1_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/3.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/H2/4.0_sto-3g.hdf5 | Bin .../H2/H2_equilibrium_0.735_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/0.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/0.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/0.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/0.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.0_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.1_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/1.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.0_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.1_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/2.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.0_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.1_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/3.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.0_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.1_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.2_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.3_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.4_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.5_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.6_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.7_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.8_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/4.9_sto-3g.hdf5 | Bin .../{aqua => }/chemistry/LiH/5.0_sto-3g.hdf5 | Bin .../LiH/LiH_equilibrium_1.595_sto-3g.hdf5 | Bin .../chemistry/declarative_approach.ipynb | 0 .../dissociation_profile_of_molecule.ipynb | 0 qiskit/{aqua => }/chemistry/index.ipynb | 0 .../chemistry/programmatic_approach.ipynb | 0 qiskit/{aqua => }/optimization/docplex.ipynb | 0 qiskit/{aqua => }/optimization/index.ipynb | 0 .../optimization/max_cut_and_tsp.ipynb | 0 .../optimization/vehicle_routing.ipynb | 0 195 files changed, 47 insertions(+), 47 deletions(-) rename community/aqua/{general => }/algorithm_introduction_with_vqe.ipynb (100%) rename community/aqua/{general => }/bernstein_vazirani.ipynb (100%) rename community/aqua/{general => }/deutsch_jozsa.ipynb (100%) rename community/aqua/{general => }/eoh.ipynb (100%) rename community/aqua/{general => }/evolution.ipynb (100%) delete mode 100644 community/aqua/general/README.md rename community/aqua/{general => }/input_files/H2-0.735.json (100%) rename community/aqua/{general => }/input_files/eoh.json (100%) rename community/aqua/{general => }/input_files/vqe.json (100%) rename community/aqua/{general => }/shors.ipynb (100%) rename community/aqua/{general => }/simon.ipynb (100%) rename community/aqua/{general => }/simulations_with_noise.ipynb (100%) rename community/aqua/{general => }/vqe2iqpe.ipynb (100%) rename community/aqua/{general => }/vqe_convergence.ipynb (100%) rename community/{aqua => }/artificial_intelligence/README.md (92%) rename community/{aqua => }/artificial_intelligence/datasets.py (100%) rename community/{aqua => }/artificial_intelligence/input_files/qsvm.json (100%) rename community/{aqua => }/artificial_intelligence/input_files/svm_classical.json (100%) rename community/{aqua => }/artificial_intelligence/input_files/vqc.json (100%) rename community/{aqua => }/artificial_intelligence/qsvm_directly.ipynb (100%) rename community/{aqua => }/artificial_intelligence/qsvm_multiclass.ipynb (100%) rename community/{aqua => }/artificial_intelligence/svm_classical.ipynb (100%) rename community/{aqua => }/artificial_intelligence/svm_classical_multiclass.ipynb (100%) rename community/{aqua => }/artificial_intelligence/vqc.ipynb (100%) rename community/{aqua => }/chemistry/LiH.png (100%) rename community/{aqua => }/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb (100%) rename community/{aqua => }/chemistry/ParticleHoleTransformation.ipynb (100%) rename community/{aqua => }/chemistry/PySCFChemistryDriver.ipynb (100%) rename community/{aqua => }/chemistry/QSE_pytket.ipynb (100%) rename community/{aqua => }/chemistry/QubitMappings.ipynb (100%) rename community/{aqua => }/chemistry/README.md (100%) rename community/{aqua => }/chemistry/beh2_reductions.ipynb (100%) rename community/{aqua => }/chemistry/dictinput.py (100%) rename community/{aqua => }/chemistry/energyplot.ipynb (100%) rename community/{aqua => }/chemistry/h2_0.735_6-31g.hdf5 (100%) rename community/{aqua => }/chemistry/h2_0.735_sto-3g.hdf5 (100%) rename community/{aqua => }/chemistry/h2_basis_sets.ipynb (100%) rename community/{aqua => }/chemistry/h2_excited_states.ipynb (100%) rename community/{aqua => }/chemistry/h2_iqpe.ipynb (100%) rename community/{aqua => }/chemistry/h2_mappings.ipynb (100%) rename community/{aqua => }/chemistry/h2_particle_hole.ipynb (100%) rename community/{aqua => }/chemistry/h2_qpe.ipynb (100%) rename community/{aqua => }/chemistry/h2_swaprz.ipynb (100%) rename community/{aqua => }/chemistry/h2_uccsd.ipynb (100%) rename community/{aqua => }/chemistry/h2_var_forms.ipynb (100%) rename community/{aqua => }/chemistry/h2_vqe_initial_point.ipynb (100%) rename community/{aqua => }/chemistry/h2_vqe_spsa.ipynb (100%) rename community/{aqua => }/chemistry/h2o.ipynb (100%) rename community/{aqua => }/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/h2_on_device.txt (100%) rename community/{aqua => }/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/input_file_sample.txt (100%) rename community/{aqua => }/chemistry/input_files/iqpe_h2.txt (100%) rename community/{aqua => }/chemistry/input_files/psi4_h2_0.735_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/psi4_lih_1.6_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/psi4_save_hdf5.txt (100%) rename community/{aqua => }/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt (100%) rename community/{aqua => }/chemistry/input_files/pyscf_minimal.txt (100%) rename community/{aqua => }/chemistry/input_files/qpe_h2.txt (100%) rename community/{aqua => }/chemistry/lih_1.6_sto-3g.hdf5 (100%) rename community/{aqua => }/chemistry/lih_dissoc.ipynb (100%) rename community/{aqua => }/chemistry/lih_uccsd.ipynb (100%) rename community/{aqua => }/chemistry/nah_1.9_sto-3g.hdf5 (100%) rename community/{aqua => }/chemistry/nah_uccsd.ipynb (100%) rename community/{aqua => }/finance/README.md (92%) rename community/{aqua => }/finance/input_files/portfolio.json (100%) rename community/{aqua => }/optimization/3-Coloring Oracle via Reduction to SAT.ipynb (100%) rename community/{aqua => }/optimization/3sat2-3.cnf (100%) rename community/{aqua => }/optimization/README.md (92%) rename community/{aqua => }/optimization/clique.ipynb (100%) rename community/{aqua => }/optimization/exact_cover.ipynb (100%) rename community/{aqua => }/optimization/graph_partition.ipynb (100%) rename community/{aqua => }/optimization/grover.ipynb (100%) rename community/{aqua => }/optimization/input_files/grover.json (100%) rename community/{aqua => }/optimization/input_files/maxcut.json (100%) rename community/{aqua => }/optimization/max_cut.ipynb (100%) rename community/{aqua => }/optimization/partition.ipynb (100%) rename community/{aqua => }/optimization/sample.exactcover (100%) rename community/{aqua => }/optimization/sample.maxcut (100%) rename community/{aqua => }/optimization/sample.partition (100%) rename community/{aqua => }/optimization/sample.setpacking (100%) rename community/{aqua => }/optimization/set_packing.ipynb (100%) rename community/{aqua => }/optimization/stable_set.ipynb (100%) rename community/{aqua => }/optimization/vertex_cover.ipynb (100%) rename qiskit/aqua/{general => }/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb (100%) rename qiskit/aqua/{general => }/amplitude_estimation.ipynb (100%) rename qiskit/aqua/{general => }/evolutionfidelity/evolutionfidelity/__init__.py (100%) rename qiskit/aqua/{general => }/evolutionfidelity/evolutionfidelity/evolutionfidelity.py (100%) rename qiskit/aqua/{general => }/evolutionfidelity/setup.py (100%) rename qiskit/aqua/{general => }/generating_random_variates.ipynb (100%) rename qiskit/aqua/{general => }/linear_systems_of_equations.ipynb (100%) rename qiskit/{aqua => }/artificial_intelligence/index.ipynb (100%) rename qiskit/{aqua => }/artificial_intelligence/qsvm_classification.ipynb (100%) rename qiskit/{aqua => }/artificial_intelligence/qsvm_datasets.py (100%) rename qiskit/{aqua => }/chemistry/H2/0.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/0.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/0.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/0.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/0.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/0.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/0.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/0.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.1_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/1.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.1_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/2.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.1_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/3.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/4.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/H2/H2_equilibrium_0.735_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/0.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/0.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/0.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/0.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.1_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/1.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.1_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/2.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.1_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/3.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.1_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.2_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.3_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.4_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.5_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.6_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.7_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.8_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/4.9_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/5.0_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/LiH/LiH_equilibrium_1.595_sto-3g.hdf5 (100%) rename qiskit/{aqua => }/chemistry/declarative_approach.ipynb (100%) rename qiskit/{aqua => }/chemistry/dissociation_profile_of_molecule.ipynb (100%) rename qiskit/{aqua => }/chemistry/index.ipynb (100%) rename qiskit/{aqua => }/chemistry/programmatic_approach.ipynb (100%) rename qiskit/{aqua => }/optimization/docplex.ipynb (100%) rename qiskit/{aqua => }/optimization/index.ipynb (100%) rename qiskit/{aqua => }/optimization/max_cut_and_tsp.ipynb (100%) rename qiskit/{aqua => }/optimization/vehicle_routing.ipynb (100%) diff --git a/community/aqua/README.md b/community/aqua/README.md index 30b4a711a..c6a2bd5b9 100644 --- a/community/aqua/README.md +++ b/community/aqua/README.md @@ -1,17 +1,29 @@ -# Qiskit Aqua Tutorials +# Qiskit Aqua Tutorials Qiskit Algorithms for QUantum Applications (Qiskit Aqua) is a library of algorithms for quantum computing that uses [Qiskit Terra](https://qiskit.org/terra) to build out and run quantum circuits. -## Contents +This folder contains some Jupyter Notebook examples showing how to run algorithms in Qiskit Aqua. +There are also Python code files too. + +For more detail see the main [index](../index.ipynb#aqua) + +## Input files + +The folder [input_files](../input_files) contains a number of example json input files that can be loaded +and run by the Qiskit Aqua [GUI](https://github.com/Qiskit/aqua/README.md#gui) or by the Qiskit Aqua +[command line](https://github.com/Qiskit/aqua/README.md#command-line) tool. + + +## Domains Aqua provides a library of cross-domain algorithms upon which domain-specific applications and stacks can be built. Tutorials, sample code and sample input files may be found here for: -* [General](general) -* [Qiskit Chemistry](chemistry) -* [Aqua Optimization](optimization) -* [Aqua Artificial Intelligence](artificial_intelligence) -* [Aqua Finance](finance) +* [Qiskit Chemistry](../chemistry) +* [Qiskit Optimization](../optimization) +* [Qiskit Artificial Intelligence](../artificial_intelligence) +* [Qiskit Finance](../finance) More information may be found the [main index notebook](index.ipynb). + diff --git a/community/aqua/general/algorithm_introduction_with_vqe.ipynb b/community/aqua/algorithm_introduction_with_vqe.ipynb similarity index 100% rename from community/aqua/general/algorithm_introduction_with_vqe.ipynb rename to community/aqua/algorithm_introduction_with_vqe.ipynb diff --git a/community/aqua/general/bernstein_vazirani.ipynb b/community/aqua/bernstein_vazirani.ipynb similarity index 100% rename from community/aqua/general/bernstein_vazirani.ipynb rename to community/aqua/bernstein_vazirani.ipynb diff --git a/community/aqua/general/deutsch_jozsa.ipynb b/community/aqua/deutsch_jozsa.ipynb similarity index 100% rename from community/aqua/general/deutsch_jozsa.ipynb rename to community/aqua/deutsch_jozsa.ipynb diff --git a/community/aqua/general/eoh.ipynb b/community/aqua/eoh.ipynb similarity index 100% rename from community/aqua/general/eoh.ipynb rename to community/aqua/eoh.ipynb diff --git a/community/aqua/general/evolution.ipynb b/community/aqua/evolution.ipynb similarity index 100% rename from community/aqua/general/evolution.ipynb rename to community/aqua/evolution.ipynb diff --git a/community/aqua/general/README.md b/community/aqua/general/README.md deleted file mode 100644 index eb23cc4fb..000000000 --- a/community/aqua/general/README.md +++ /dev/null @@ -1,12 +0,0 @@ -# Qiskit Aqua Tutorials, samples and input files - -This folder contains some Jupyter Notebook examples showing how to run algorithms in Qiskit Aqua. -There are also Python code files too. - -For more detail see the main [index](../index.ipynb#aqua) - -## Input files - -The folder [input_files](input_files) contains a number of example json input files that can be loaded -and run by the Qiskit Aqua [GUI](https://github.com/Qiskit/aqua/README.md#gui) or by the Qiskit Aqua -[command line](https://github.com/Qiskit/aqua/README.md#command-line) tool. diff --git a/community/aqua/index.ipynb b/community/aqua/index.ipynb index 6e9a52e53..bca7bd5a7 100644 --- a/community/aqua/index.ipynb +++ b/community/aqua/index.ipynb @@ -13,7 +13,7 @@ "***\n", "\n", "## Contents\n", - "Qiskit Aqua has the following tutorials, samples and input files for the cross-domain library and domain-specific application and stacks built upon this:\n", + "Qiskit Aqua has the following tutorials, samples and input files for the cross-domain library and domain-specific application and stacks built upon it. Aqua currently provides AI, Chemistry, Finance and Optimization domain applications.\n", "\n", "### 1. [Qiskit Aqua](aqua/)\n", "\n", @@ -35,56 +35,56 @@ "The repository here may be viewed for the\n", "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/aqua/general).\n", "\n", - "### 2. [Qiskit Chemistry](chemistry/)\n", + "### 2. [Qiskit Chemistry](../chemistry/)\n", "\n", "This folder contains some Jupyter Notebook examples showing how to run algorithms in Qiskit Chemistry along with some Python code files too. There are also some .hdf5 files containing saved molecular data that can be used in experiments, see the main Qiskit Chemistry documentation for more information on the HDF5 driver and .hdf5 files. \n", "\n", - "The folder [input_files](chemistry/input_files) contains a number of example input files that can be loaded and run by the Qiskit Chemistry\n", + "The folder [input_files](../chemistry/input_files) contains a number of example input files that can be loaded and run by the Qiskit Chemistry\n", "[GUI](https://github.com/Qiskit/qiskit-chemistry/blob/master/README.md#gui) or \n", "[command line](https://github.com/Qiskit/qiskit-chemistry/blob/master/README.md#command-line) tool.\n", "\n", "The following notebooks are noted:\n", "\n", - "* [LiH plot using ExactEigensolver](chemistry/energyplot.ipynb) One step up from getting started\n", - "* [H2 dissociation curve using VQE with UCCSD](chemistry/h2_uccsd.ipynb)\n", - "* [LiH dissociation curve using VQE with UCCSD](chemistry/lih_uccsd.ipynb)\n", - "* [NaH dissociation curve using VQE with UCCSD](chemistry/nah_uccsd.ipynb)\n", - "* [Qiskit Chemistry, H2O ground state computation](chemistry/h2o.ipynb) Water using VQE and UCCSD\n", - "* [H2 ground state energy computation using Iterative QPE](chemistry/h2_iqpe.ipynb)\n", - "* [H2 ground state energy with VQE and SPSA](chemistry/h2_vqe_spsa.ipynb) Near-term device experiment\n", + "* [LiH plot using ExactEigensolver](../chemistry/energyplot.ipynb) One step up from getting started\n", + "* [H2 dissociation curve using VQE with UCCSD](../chemistry/h2_uccsd.ipynb)\n", + "* [LiH dissociation curve using VQE with UCCSD](../chemistry/lih_uccsd.ipynb)\n", + "* [NaH dissociation curve using VQE with UCCSD](../chemistry/nah_uccsd.ipynb)\n", + "* [Qiskit Chemistry, H2O ground state computation](../chemistry/h2o.ipynb) Water using VQE and UCCSD\n", + "* [H2 ground state energy computation using Iterative QPE](../chemistry/h2_iqpe.ipynb)\n", + "* [H2 ground state energy with VQE and SPSA](../chemistry/h2_vqe_spsa.ipynb) Near-term device experiment\n", "\n", "There are many more notebooks. The repository here may be viewed for the\n", - "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/aqua/chemistry).\n", + "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/chemistry).\n", "\n", - "### 3. [Qiskit Aqua Artificial Intelligence](artificial_intelligence/)\n", + "### 3. [Qiskit Artificial Intelligence](../artificial_intelligence/)\n", "\n", - "Qiskit Aqua Artificial Intelligence is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve artificial intelligence problems. \n", + "Qiskit Artificial Intelligence is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve artificial intelligence problems. \n", "\n", "* [Quantum SVM algorithm: multiclass classifier extension](artificial_intelligence/qsvm_multiclass.ipynb)\n", "* [Variational Quantum Classifier (vqc)](artificial_intelligence/vqc.ipynb)\n", "\n", "The repository here may be viewed for the\n", - "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/artificial_intelligence).\n", + "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/artificial_intelligence).\n", "\n", - "### 4. [Qiskit Aqua Optimization](optimization/)\n", + "### 4. [Qiskit Optimization](../optimization/)\n", "\n", - "Qiskit Aqua Optimization is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve optimization problems. \n", + "Qiskit Optimization is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve optimization problems. \n", "\n", - "* [Using Grover Search for 3SAT problems](optimization/grover.ipynb)\n", - "* [Using Aqua for partition problems](optimization/partition.ipynb)\n", - "* [Using Aqua for stable-set problems](optimization/stable_set.ipynb)\n", + "* [Using Grover Search for 3SAT problems](../optimization/grover.ipynb)\n", + "* [Using Aqua for partition problems](../optimization/partition.ipynb)\n", + "* [Using Aqua for stable-set problems](../optimization/stable_set.ipynb)\n", "\n", "The repository here may be viewed for the\n", - "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/aqua/optimization).\n", + "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/optimization).\n", "\n", - "### 5. [Qiskit Aqua Finance](finance/)\n", + "### 5. [Qiskit Finance](../finance/)\n", "\n", - "Qiskit Aqua Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the Financial domain. \n", + "Qiskit Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the Financial domain. \n", "\n", - "* [Portfolio Optimization](../../qiskit/aqua/finance/portfolio_optimization.ipynb)\n", + "* [Portfolio Optimization](../../qiskit/finance/portfolio_optimization.ipynb)\n", "\n", "The repository here may be viewed for the\n", - "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/aqua/finance).\n", + "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/qiskit/finance).\n", "\n", "\n", "*** " @@ -116,7 +116,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/community/aqua/general/input_files/H2-0.735.json b/community/aqua/input_files/H2-0.735.json similarity index 100% rename from community/aqua/general/input_files/H2-0.735.json rename to community/aqua/input_files/H2-0.735.json diff --git a/community/aqua/general/input_files/eoh.json b/community/aqua/input_files/eoh.json similarity index 100% rename from community/aqua/general/input_files/eoh.json rename to community/aqua/input_files/eoh.json diff --git a/community/aqua/general/input_files/vqe.json b/community/aqua/input_files/vqe.json similarity index 100% rename from community/aqua/general/input_files/vqe.json rename to community/aqua/input_files/vqe.json diff --git a/community/aqua/general/shors.ipynb b/community/aqua/shors.ipynb similarity index 100% rename from community/aqua/general/shors.ipynb rename to community/aqua/shors.ipynb diff --git a/community/aqua/general/simon.ipynb b/community/aqua/simon.ipynb similarity index 100% rename from community/aqua/general/simon.ipynb rename to community/aqua/simon.ipynb diff --git a/community/aqua/general/simulations_with_noise.ipynb b/community/aqua/simulations_with_noise.ipynb similarity index 100% rename from community/aqua/general/simulations_with_noise.ipynb rename to community/aqua/simulations_with_noise.ipynb diff --git a/community/aqua/general/vqe2iqpe.ipynb b/community/aqua/vqe2iqpe.ipynb similarity index 100% rename from community/aqua/general/vqe2iqpe.ipynb rename to community/aqua/vqe2iqpe.ipynb diff --git a/community/aqua/general/vqe_convergence.ipynb b/community/aqua/vqe_convergence.ipynb similarity index 100% rename from community/aqua/general/vqe_convergence.ipynb rename to community/aqua/vqe_convergence.ipynb diff --git a/community/aqua/artificial_intelligence/README.md b/community/artificial_intelligence/README.md similarity index 92% rename from community/aqua/artificial_intelligence/README.md rename to community/artificial_intelligence/README.md index 9b7965cc5..23b6c440f 100644 --- a/community/aqua/artificial_intelligence/README.md +++ b/community/artificial_intelligence/README.md @@ -10,7 +10,7 @@ quantum computation. This folder contains some Jupyter Notebook examples. There are Python code files too. -For more detail see the main [index](../index.ipynb#artificial_intelligence) +For more detail see the main [index](../aqua/index.ipynb#artificial_intelligence) ## Input files diff --git a/community/aqua/artificial_intelligence/datasets.py b/community/artificial_intelligence/datasets.py similarity index 100% rename from community/aqua/artificial_intelligence/datasets.py rename to community/artificial_intelligence/datasets.py diff --git a/community/aqua/artificial_intelligence/input_files/qsvm.json b/community/artificial_intelligence/input_files/qsvm.json similarity index 100% rename from community/aqua/artificial_intelligence/input_files/qsvm.json rename to community/artificial_intelligence/input_files/qsvm.json diff --git a/community/aqua/artificial_intelligence/input_files/svm_classical.json b/community/artificial_intelligence/input_files/svm_classical.json similarity index 100% rename from community/aqua/artificial_intelligence/input_files/svm_classical.json rename to community/artificial_intelligence/input_files/svm_classical.json diff --git a/community/aqua/artificial_intelligence/input_files/vqc.json b/community/artificial_intelligence/input_files/vqc.json similarity index 100% rename from community/aqua/artificial_intelligence/input_files/vqc.json rename to community/artificial_intelligence/input_files/vqc.json diff --git a/community/aqua/artificial_intelligence/qsvm_directly.ipynb b/community/artificial_intelligence/qsvm_directly.ipynb similarity index 100% rename from community/aqua/artificial_intelligence/qsvm_directly.ipynb rename to community/artificial_intelligence/qsvm_directly.ipynb diff --git a/community/aqua/artificial_intelligence/qsvm_multiclass.ipynb b/community/artificial_intelligence/qsvm_multiclass.ipynb similarity index 100% rename from community/aqua/artificial_intelligence/qsvm_multiclass.ipynb rename to community/artificial_intelligence/qsvm_multiclass.ipynb diff --git a/community/aqua/artificial_intelligence/svm_classical.ipynb b/community/artificial_intelligence/svm_classical.ipynb similarity index 100% rename from community/aqua/artificial_intelligence/svm_classical.ipynb rename to community/artificial_intelligence/svm_classical.ipynb diff --git a/community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb b/community/artificial_intelligence/svm_classical_multiclass.ipynb similarity index 100% rename from community/aqua/artificial_intelligence/svm_classical_multiclass.ipynb rename to community/artificial_intelligence/svm_classical_multiclass.ipynb diff --git a/community/aqua/artificial_intelligence/vqc.ipynb b/community/artificial_intelligence/vqc.ipynb similarity index 100% rename from community/aqua/artificial_intelligence/vqc.ipynb rename to community/artificial_intelligence/vqc.ipynb diff --git a/community/aqua/chemistry/LiH.png b/community/chemistry/LiH.png similarity index 100% rename from community/aqua/chemistry/LiH.png rename to community/chemistry/LiH.png diff --git a/community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb b/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb similarity index 100% rename from community/aqua/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb rename to community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb diff --git a/community/aqua/chemistry/ParticleHoleTransformation.ipynb b/community/chemistry/ParticleHoleTransformation.ipynb similarity index 100% rename from community/aqua/chemistry/ParticleHoleTransformation.ipynb rename to community/chemistry/ParticleHoleTransformation.ipynb diff --git a/community/aqua/chemistry/PySCFChemistryDriver.ipynb b/community/chemistry/PySCFChemistryDriver.ipynb similarity index 100% rename from community/aqua/chemistry/PySCFChemistryDriver.ipynb rename to community/chemistry/PySCFChemistryDriver.ipynb diff --git a/community/aqua/chemistry/QSE_pytket.ipynb b/community/chemistry/QSE_pytket.ipynb similarity index 100% rename from community/aqua/chemistry/QSE_pytket.ipynb rename to community/chemistry/QSE_pytket.ipynb diff --git a/community/aqua/chemistry/QubitMappings.ipynb b/community/chemistry/QubitMappings.ipynb similarity index 100% rename from community/aqua/chemistry/QubitMappings.ipynb rename to community/chemistry/QubitMappings.ipynb diff --git a/community/aqua/chemistry/README.md b/community/chemistry/README.md similarity index 100% rename from community/aqua/chemistry/README.md rename to community/chemistry/README.md diff --git a/community/aqua/chemistry/beh2_reductions.ipynb b/community/chemistry/beh2_reductions.ipynb similarity index 100% rename from community/aqua/chemistry/beh2_reductions.ipynb rename to community/chemistry/beh2_reductions.ipynb diff --git a/community/aqua/chemistry/dictinput.py b/community/chemistry/dictinput.py similarity index 100% rename from community/aqua/chemistry/dictinput.py rename to community/chemistry/dictinput.py diff --git a/community/aqua/chemistry/energyplot.ipynb b/community/chemistry/energyplot.ipynb similarity index 100% rename from community/aqua/chemistry/energyplot.ipynb rename to community/chemistry/energyplot.ipynb diff --git a/community/aqua/chemistry/h2_0.735_6-31g.hdf5 b/community/chemistry/h2_0.735_6-31g.hdf5 similarity index 100% rename from community/aqua/chemistry/h2_0.735_6-31g.hdf5 rename to community/chemistry/h2_0.735_6-31g.hdf5 diff --git a/community/aqua/chemistry/h2_0.735_sto-3g.hdf5 b/community/chemistry/h2_0.735_sto-3g.hdf5 similarity index 100% rename from community/aqua/chemistry/h2_0.735_sto-3g.hdf5 rename to community/chemistry/h2_0.735_sto-3g.hdf5 diff --git a/community/aqua/chemistry/h2_basis_sets.ipynb b/community/chemistry/h2_basis_sets.ipynb similarity index 100% rename from community/aqua/chemistry/h2_basis_sets.ipynb rename to community/chemistry/h2_basis_sets.ipynb diff --git a/community/aqua/chemistry/h2_excited_states.ipynb b/community/chemistry/h2_excited_states.ipynb similarity index 100% rename from community/aqua/chemistry/h2_excited_states.ipynb rename to community/chemistry/h2_excited_states.ipynb diff --git a/community/aqua/chemistry/h2_iqpe.ipynb b/community/chemistry/h2_iqpe.ipynb similarity index 100% rename from community/aqua/chemistry/h2_iqpe.ipynb rename to community/chemistry/h2_iqpe.ipynb diff --git a/community/aqua/chemistry/h2_mappings.ipynb b/community/chemistry/h2_mappings.ipynb similarity index 100% rename from community/aqua/chemistry/h2_mappings.ipynb rename to community/chemistry/h2_mappings.ipynb diff --git a/community/aqua/chemistry/h2_particle_hole.ipynb b/community/chemistry/h2_particle_hole.ipynb similarity index 100% rename from community/aqua/chemistry/h2_particle_hole.ipynb rename to community/chemistry/h2_particle_hole.ipynb diff --git a/community/aqua/chemistry/h2_qpe.ipynb b/community/chemistry/h2_qpe.ipynb similarity index 100% rename from community/aqua/chemistry/h2_qpe.ipynb rename to community/chemistry/h2_qpe.ipynb diff --git a/community/aqua/chemistry/h2_swaprz.ipynb b/community/chemistry/h2_swaprz.ipynb similarity index 100% rename from community/aqua/chemistry/h2_swaprz.ipynb rename to community/chemistry/h2_swaprz.ipynb diff --git a/community/aqua/chemistry/h2_uccsd.ipynb b/community/chemistry/h2_uccsd.ipynb similarity index 100% rename from community/aqua/chemistry/h2_uccsd.ipynb rename to community/chemistry/h2_uccsd.ipynb diff --git a/community/aqua/chemistry/h2_var_forms.ipynb b/community/chemistry/h2_var_forms.ipynb similarity index 100% rename from community/aqua/chemistry/h2_var_forms.ipynb rename to community/chemistry/h2_var_forms.ipynb diff --git a/community/aqua/chemistry/h2_vqe_initial_point.ipynb b/community/chemistry/h2_vqe_initial_point.ipynb similarity index 100% rename from community/aqua/chemistry/h2_vqe_initial_point.ipynb rename to community/chemistry/h2_vqe_initial_point.ipynb diff --git a/community/aqua/chemistry/h2_vqe_spsa.ipynb b/community/chemistry/h2_vqe_spsa.ipynb similarity index 100% rename from community/aqua/chemistry/h2_vqe_spsa.ipynb rename to community/chemistry/h2_vqe_spsa.ipynb diff --git a/community/aqua/chemistry/h2o.ipynb b/community/chemistry/h2o.ipynb similarity index 100% rename from community/aqua/chemistry/h2o.ipynb rename to community/chemistry/h2o.ipynb diff --git a/community/aqua/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt b/community/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt rename to community/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt b/community/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt rename to community/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/h2_on_device.txt b/community/chemistry/input_files/h2_on_device.txt similarity index 100% rename from community/aqua/chemistry/input_files/h2_on_device.txt rename to community/chemistry/input_files/h2_on_device.txt diff --git a/community/aqua/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt b/community/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt rename to community/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt b/community/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt rename to community/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/input_file_sample.txt b/community/chemistry/input_files/input_file_sample.txt similarity index 100% rename from community/aqua/chemistry/input_files/input_file_sample.txt rename to community/chemistry/input_files/input_file_sample.txt diff --git a/community/aqua/chemistry/input_files/iqpe_h2.txt b/community/chemistry/input_files/iqpe_h2.txt similarity index 100% rename from community/aqua/chemistry/input_files/iqpe_h2.txt rename to community/chemistry/input_files/iqpe_h2.txt diff --git a/community/aqua/chemistry/input_files/psi4_h2_0.735_sto-3g.txt b/community/chemistry/input_files/psi4_h2_0.735_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/psi4_h2_0.735_sto-3g.txt rename to community/chemistry/input_files/psi4_h2_0.735_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/psi4_lih_1.6_sto-3g.txt b/community/chemistry/input_files/psi4_lih_1.6_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/psi4_lih_1.6_sto-3g.txt rename to community/chemistry/input_files/psi4_lih_1.6_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/psi4_save_hdf5.txt b/community/chemistry/input_files/psi4_save_hdf5.txt similarity index 100% rename from community/aqua/chemistry/input_files/psi4_save_hdf5.txt rename to community/chemistry/input_files/psi4_save_hdf5.txt diff --git a/community/aqua/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt b/community/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt rename to community/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt b/community/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt rename to community/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt b/community/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt rename to community/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt b/community/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt similarity index 100% rename from community/aqua/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt rename to community/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt diff --git a/community/aqua/chemistry/input_files/pyscf_minimal.txt b/community/chemistry/input_files/pyscf_minimal.txt similarity index 100% rename from community/aqua/chemistry/input_files/pyscf_minimal.txt rename to community/chemistry/input_files/pyscf_minimal.txt diff --git a/community/aqua/chemistry/input_files/qpe_h2.txt b/community/chemistry/input_files/qpe_h2.txt similarity index 100% rename from community/aqua/chemistry/input_files/qpe_h2.txt rename to community/chemistry/input_files/qpe_h2.txt diff --git a/community/aqua/chemistry/lih_1.6_sto-3g.hdf5 b/community/chemistry/lih_1.6_sto-3g.hdf5 similarity index 100% rename from community/aqua/chemistry/lih_1.6_sto-3g.hdf5 rename to community/chemistry/lih_1.6_sto-3g.hdf5 diff --git a/community/aqua/chemistry/lih_dissoc.ipynb b/community/chemistry/lih_dissoc.ipynb similarity index 100% rename from community/aqua/chemistry/lih_dissoc.ipynb rename to community/chemistry/lih_dissoc.ipynb diff --git a/community/aqua/chemistry/lih_uccsd.ipynb b/community/chemistry/lih_uccsd.ipynb similarity index 100% rename from community/aqua/chemistry/lih_uccsd.ipynb rename to community/chemistry/lih_uccsd.ipynb diff --git a/community/aqua/chemistry/nah_1.9_sto-3g.hdf5 b/community/chemistry/nah_1.9_sto-3g.hdf5 similarity index 100% rename from community/aqua/chemistry/nah_1.9_sto-3g.hdf5 rename to community/chemistry/nah_1.9_sto-3g.hdf5 diff --git a/community/aqua/chemistry/nah_uccsd.ipynb b/community/chemistry/nah_uccsd.ipynb similarity index 100% rename from community/aqua/chemistry/nah_uccsd.ipynb rename to community/chemistry/nah_uccsd.ipynb diff --git a/community/aqua/finance/README.md b/community/finance/README.md similarity index 92% rename from community/aqua/finance/README.md rename to community/finance/README.md index c459edde1..cb5cf353c 100644 --- a/community/aqua/finance/README.md +++ b/community/finance/README.md @@ -10,7 +10,7 @@ quantum computation. This folder contains some Jupyter Notebook examples. There are Python code files too. -For more detail see the main [index](../index.ipynb#optimization) +For more detail see the main [index](../aqua/index.ipynb#optimization) ## Input files diff --git a/community/aqua/finance/input_files/portfolio.json b/community/finance/input_files/portfolio.json similarity index 100% rename from community/aqua/finance/input_files/portfolio.json rename to community/finance/input_files/portfolio.json diff --git a/community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb b/community/optimization/3-Coloring Oracle via Reduction to SAT.ipynb similarity index 100% rename from community/aqua/optimization/3-Coloring Oracle via Reduction to SAT.ipynb rename to community/optimization/3-Coloring Oracle via Reduction to SAT.ipynb diff --git a/community/aqua/optimization/3sat2-3.cnf b/community/optimization/3sat2-3.cnf similarity index 100% rename from community/aqua/optimization/3sat2-3.cnf rename to community/optimization/3sat2-3.cnf diff --git a/community/aqua/optimization/README.md b/community/optimization/README.md similarity index 92% rename from community/aqua/optimization/README.md rename to community/optimization/README.md index b5ff7c4a9..5106864fd 100644 --- a/community/aqua/optimization/README.md +++ b/community/optimization/README.md @@ -10,7 +10,7 @@ quantum computation. This folder contains some Jupyter Notebook examples. There are Python code files too. -For more detail see the main [index](../index.ipynb#optimization) +For more detail see the main [index](../aqua/index.ipynb#optimization) ## Input files diff --git a/community/aqua/optimization/clique.ipynb b/community/optimization/clique.ipynb similarity index 100% rename from community/aqua/optimization/clique.ipynb rename to community/optimization/clique.ipynb diff --git a/community/aqua/optimization/exact_cover.ipynb b/community/optimization/exact_cover.ipynb similarity index 100% rename from community/aqua/optimization/exact_cover.ipynb rename to community/optimization/exact_cover.ipynb diff --git a/community/aqua/optimization/graph_partition.ipynb b/community/optimization/graph_partition.ipynb similarity index 100% rename from community/aqua/optimization/graph_partition.ipynb rename to community/optimization/graph_partition.ipynb diff --git a/community/aqua/optimization/grover.ipynb b/community/optimization/grover.ipynb similarity index 100% rename from community/aqua/optimization/grover.ipynb rename to community/optimization/grover.ipynb diff --git a/community/aqua/optimization/input_files/grover.json b/community/optimization/input_files/grover.json similarity index 100% rename from community/aqua/optimization/input_files/grover.json rename to community/optimization/input_files/grover.json diff --git a/community/aqua/optimization/input_files/maxcut.json b/community/optimization/input_files/maxcut.json similarity index 100% rename from community/aqua/optimization/input_files/maxcut.json rename to community/optimization/input_files/maxcut.json diff --git a/community/aqua/optimization/max_cut.ipynb b/community/optimization/max_cut.ipynb similarity index 100% rename from community/aqua/optimization/max_cut.ipynb rename to community/optimization/max_cut.ipynb diff --git a/community/aqua/optimization/partition.ipynb b/community/optimization/partition.ipynb similarity index 100% rename from community/aqua/optimization/partition.ipynb rename to community/optimization/partition.ipynb diff --git a/community/aqua/optimization/sample.exactcover b/community/optimization/sample.exactcover similarity index 100% rename from community/aqua/optimization/sample.exactcover rename to community/optimization/sample.exactcover diff --git a/community/aqua/optimization/sample.maxcut b/community/optimization/sample.maxcut similarity index 100% rename from community/aqua/optimization/sample.maxcut rename to community/optimization/sample.maxcut diff --git a/community/aqua/optimization/sample.partition b/community/optimization/sample.partition similarity index 100% rename from community/aqua/optimization/sample.partition rename to community/optimization/sample.partition diff --git a/community/aqua/optimization/sample.setpacking b/community/optimization/sample.setpacking similarity index 100% rename from community/aqua/optimization/sample.setpacking rename to community/optimization/sample.setpacking diff --git a/community/aqua/optimization/set_packing.ipynb b/community/optimization/set_packing.ipynb similarity index 100% rename from community/aqua/optimization/set_packing.ipynb rename to community/optimization/set_packing.ipynb diff --git a/community/aqua/optimization/stable_set.ipynb b/community/optimization/stable_set.ipynb similarity index 100% rename from community/aqua/optimization/stable_set.ipynb rename to community/optimization/stable_set.ipynb diff --git a/community/aqua/optimization/vertex_cover.ipynb b/community/optimization/vertex_cover.ipynb similarity index 100% rename from community/aqua/optimization/vertex_cover.ipynb rename to community/optimization/vertex_cover.ipynb diff --git a/qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb b/qiskit/aqua/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb similarity index 100% rename from qiskit/aqua/general/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb rename to qiskit/aqua/Aqua_how_to_build_a_pluggable_algorithm_components.ipynb diff --git a/qiskit/aqua/general/amplitude_estimation.ipynb b/qiskit/aqua/amplitude_estimation.ipynb similarity index 100% rename from qiskit/aqua/general/amplitude_estimation.ipynb rename to qiskit/aqua/amplitude_estimation.ipynb diff --git a/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/__init__.py b/qiskit/aqua/evolutionfidelity/evolutionfidelity/__init__.py similarity index 100% rename from qiskit/aqua/general/evolutionfidelity/evolutionfidelity/__init__.py rename to qiskit/aqua/evolutionfidelity/evolutionfidelity/__init__.py diff --git a/qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py b/qiskit/aqua/evolutionfidelity/evolutionfidelity/evolutionfidelity.py similarity index 100% rename from qiskit/aqua/general/evolutionfidelity/evolutionfidelity/evolutionfidelity.py rename to qiskit/aqua/evolutionfidelity/evolutionfidelity/evolutionfidelity.py diff --git a/qiskit/aqua/general/evolutionfidelity/setup.py b/qiskit/aqua/evolutionfidelity/setup.py similarity index 100% rename from qiskit/aqua/general/evolutionfidelity/setup.py rename to qiskit/aqua/evolutionfidelity/setup.py diff --git a/qiskit/aqua/general/generating_random_variates.ipynb b/qiskit/aqua/generating_random_variates.ipynb similarity index 100% rename from qiskit/aqua/general/generating_random_variates.ipynb rename to qiskit/aqua/generating_random_variates.ipynb diff --git a/qiskit/aqua/general/linear_systems_of_equations.ipynb b/qiskit/aqua/linear_systems_of_equations.ipynb similarity index 100% rename from qiskit/aqua/general/linear_systems_of_equations.ipynb rename to qiskit/aqua/linear_systems_of_equations.ipynb diff --git a/qiskit/aqua/artificial_intelligence/index.ipynb b/qiskit/artificial_intelligence/index.ipynb similarity index 100% rename from qiskit/aqua/artificial_intelligence/index.ipynb rename to qiskit/artificial_intelligence/index.ipynb diff --git a/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb b/qiskit/artificial_intelligence/qsvm_classification.ipynb similarity index 100% rename from qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb rename to qiskit/artificial_intelligence/qsvm_classification.ipynb diff --git a/qiskit/aqua/artificial_intelligence/qsvm_datasets.py b/qiskit/artificial_intelligence/qsvm_datasets.py similarity index 100% rename from qiskit/aqua/artificial_intelligence/qsvm_datasets.py rename to qiskit/artificial_intelligence/qsvm_datasets.py diff --git a/qiskit/aqua/chemistry/H2/0.2_sto-3g.hdf5 b/qiskit/chemistry/H2/0.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.2_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/0.3_sto-3g.hdf5 b/qiskit/chemistry/H2/0.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.3_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/0.4_sto-3g.hdf5 b/qiskit/chemistry/H2/0.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.4_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/0.5_sto-3g.hdf5 b/qiskit/chemistry/H2/0.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.5_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/0.6_sto-3g.hdf5 b/qiskit/chemistry/H2/0.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.6_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/0.7_sto-3g.hdf5 b/qiskit/chemistry/H2/0.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.7_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/0.8_sto-3g.hdf5 b/qiskit/chemistry/H2/0.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.8_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/0.9_sto-3g.hdf5 b/qiskit/chemistry/H2/0.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/0.9_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.0_sto-3g.hdf5 b/qiskit/chemistry/H2/1.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.0_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.1_sto-3g.hdf5 b/qiskit/chemistry/H2/1.1_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.1_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.1_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.2_sto-3g.hdf5 b/qiskit/chemistry/H2/1.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.2_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.3_sto-3g.hdf5 b/qiskit/chemistry/H2/1.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.3_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.4_sto-3g.hdf5 b/qiskit/chemistry/H2/1.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.4_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.5_sto-3g.hdf5 b/qiskit/chemistry/H2/1.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.5_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.6_sto-3g.hdf5 b/qiskit/chemistry/H2/1.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.6_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.7_sto-3g.hdf5 b/qiskit/chemistry/H2/1.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.7_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.8_sto-3g.hdf5 b/qiskit/chemistry/H2/1.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.8_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/1.9_sto-3g.hdf5 b/qiskit/chemistry/H2/1.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/1.9_sto-3g.hdf5 rename to qiskit/chemistry/H2/1.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.0_sto-3g.hdf5 b/qiskit/chemistry/H2/2.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.0_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.1_sto-3g.hdf5 b/qiskit/chemistry/H2/2.1_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.1_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.1_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.2_sto-3g.hdf5 b/qiskit/chemistry/H2/2.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.2_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.3_sto-3g.hdf5 b/qiskit/chemistry/H2/2.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.3_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.4_sto-3g.hdf5 b/qiskit/chemistry/H2/2.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.4_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.5_sto-3g.hdf5 b/qiskit/chemistry/H2/2.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.5_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.6_sto-3g.hdf5 b/qiskit/chemistry/H2/2.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.6_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.7_sto-3g.hdf5 b/qiskit/chemistry/H2/2.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.7_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.8_sto-3g.hdf5 b/qiskit/chemistry/H2/2.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.8_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/2.9_sto-3g.hdf5 b/qiskit/chemistry/H2/2.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/2.9_sto-3g.hdf5 rename to qiskit/chemistry/H2/2.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.0_sto-3g.hdf5 b/qiskit/chemistry/H2/3.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.0_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.1_sto-3g.hdf5 b/qiskit/chemistry/H2/3.1_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.1_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.1_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.2_sto-3g.hdf5 b/qiskit/chemistry/H2/3.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.2_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.3_sto-3g.hdf5 b/qiskit/chemistry/H2/3.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.3_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.4_sto-3g.hdf5 b/qiskit/chemistry/H2/3.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.4_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.5_sto-3g.hdf5 b/qiskit/chemistry/H2/3.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.5_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.6_sto-3g.hdf5 b/qiskit/chemistry/H2/3.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.6_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.7_sto-3g.hdf5 b/qiskit/chemistry/H2/3.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.7_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.8_sto-3g.hdf5 b/qiskit/chemistry/H2/3.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.8_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/3.9_sto-3g.hdf5 b/qiskit/chemistry/H2/3.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/3.9_sto-3g.hdf5 rename to qiskit/chemistry/H2/3.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/4.0_sto-3g.hdf5 b/qiskit/chemistry/H2/4.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/4.0_sto-3g.hdf5 rename to qiskit/chemistry/H2/4.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/H2/H2_equilibrium_0.735_sto-3g.hdf5 b/qiskit/chemistry/H2/H2_equilibrium_0.735_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/H2/H2_equilibrium_0.735_sto-3g.hdf5 rename to qiskit/chemistry/H2/H2_equilibrium_0.735_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/0.6_sto-3g.hdf5 b/qiskit/chemistry/LiH/0.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/0.6_sto-3g.hdf5 rename to qiskit/chemistry/LiH/0.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/0.7_sto-3g.hdf5 b/qiskit/chemistry/LiH/0.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/0.7_sto-3g.hdf5 rename to qiskit/chemistry/LiH/0.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/0.8_sto-3g.hdf5 b/qiskit/chemistry/LiH/0.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/0.8_sto-3g.hdf5 rename to qiskit/chemistry/LiH/0.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/0.9_sto-3g.hdf5 b/qiskit/chemistry/LiH/0.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/0.9_sto-3g.hdf5 rename to qiskit/chemistry/LiH/0.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.0_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.0_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.1_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.1_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.1_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.1_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.2_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.2_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.3_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.3_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.4_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.4_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.5_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.5_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.6_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.6_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.7_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.7_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.8_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.8_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/1.9_sto-3g.hdf5 b/qiskit/chemistry/LiH/1.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/1.9_sto-3g.hdf5 rename to qiskit/chemistry/LiH/1.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.0_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.0_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.1_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.1_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.1_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.1_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.2_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.2_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.3_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.3_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.4_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.4_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.5_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.5_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.6_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.6_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.7_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.7_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.8_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.8_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/2.9_sto-3g.hdf5 b/qiskit/chemistry/LiH/2.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/2.9_sto-3g.hdf5 rename to qiskit/chemistry/LiH/2.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.0_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.0_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.1_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.1_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.1_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.1_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.2_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.2_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.3_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.3_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.4_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.4_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.5_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.5_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.6_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.6_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.7_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.7_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.8_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.8_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/3.9_sto-3g.hdf5 b/qiskit/chemistry/LiH/3.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/3.9_sto-3g.hdf5 rename to qiskit/chemistry/LiH/3.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.0_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.0_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.1_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.1_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.1_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.1_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.2_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.2_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.2_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.2_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.3_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.3_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.3_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.3_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.4_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.4_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.4_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.4_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.5_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.5_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.5_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.5_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.6_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.6_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.6_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.6_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.7_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.7_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.7_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.7_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.8_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.8_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.8_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.8_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/4.9_sto-3g.hdf5 b/qiskit/chemistry/LiH/4.9_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/4.9_sto-3g.hdf5 rename to qiskit/chemistry/LiH/4.9_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/5.0_sto-3g.hdf5 b/qiskit/chemistry/LiH/5.0_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/5.0_sto-3g.hdf5 rename to qiskit/chemistry/LiH/5.0_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/LiH/LiH_equilibrium_1.595_sto-3g.hdf5 b/qiskit/chemistry/LiH/LiH_equilibrium_1.595_sto-3g.hdf5 similarity index 100% rename from qiskit/aqua/chemistry/LiH/LiH_equilibrium_1.595_sto-3g.hdf5 rename to qiskit/chemistry/LiH/LiH_equilibrium_1.595_sto-3g.hdf5 diff --git a/qiskit/aqua/chemistry/declarative_approach.ipynb b/qiskit/chemistry/declarative_approach.ipynb similarity index 100% rename from qiskit/aqua/chemistry/declarative_approach.ipynb rename to qiskit/chemistry/declarative_approach.ipynb diff --git a/qiskit/aqua/chemistry/dissociation_profile_of_molecule.ipynb b/qiskit/chemistry/dissociation_profile_of_molecule.ipynb similarity index 100% rename from qiskit/aqua/chemistry/dissociation_profile_of_molecule.ipynb rename to qiskit/chemistry/dissociation_profile_of_molecule.ipynb diff --git a/qiskit/aqua/chemistry/index.ipynb b/qiskit/chemistry/index.ipynb similarity index 100% rename from qiskit/aqua/chemistry/index.ipynb rename to qiskit/chemistry/index.ipynb diff --git a/qiskit/aqua/chemistry/programmatic_approach.ipynb b/qiskit/chemistry/programmatic_approach.ipynb similarity index 100% rename from qiskit/aqua/chemistry/programmatic_approach.ipynb rename to qiskit/chemistry/programmatic_approach.ipynb diff --git a/qiskit/aqua/optimization/docplex.ipynb b/qiskit/optimization/docplex.ipynb similarity index 100% rename from qiskit/aqua/optimization/docplex.ipynb rename to qiskit/optimization/docplex.ipynb diff --git a/qiskit/aqua/optimization/index.ipynb b/qiskit/optimization/index.ipynb similarity index 100% rename from qiskit/aqua/optimization/index.ipynb rename to qiskit/optimization/index.ipynb diff --git a/qiskit/aqua/optimization/max_cut_and_tsp.ipynb b/qiskit/optimization/max_cut_and_tsp.ipynb similarity index 100% rename from qiskit/aqua/optimization/max_cut_and_tsp.ipynb rename to qiskit/optimization/max_cut_and_tsp.ipynb diff --git a/qiskit/aqua/optimization/vehicle_routing.ipynb b/qiskit/optimization/vehicle_routing.ipynb similarity index 100% rename from qiskit/aqua/optimization/vehicle_routing.ipynb rename to qiskit/optimization/vehicle_routing.ipynb From 33bc50dd23c65d9cbfa9c7b7cb755a5fb6cfb70a Mon Sep 17 00:00:00 2001 From: woodsp Date: Wed, 1 May 2019 19:44:48 -0400 Subject: [PATCH 104/116] Update index to reflect chem, ai, opt folder moves --- index.ipynb | 28 ++++++++++++++++++++-------- 1 file changed, 20 insertions(+), 8 deletions(-) diff --git a/index.ipynb b/index.ipynb index 4b5d6bc62..ebd822002 100644 --- a/index.ipynb +++ b/index.ipynb @@ -33,7 +33,7 @@ "These tutorials aim to explain how to use Qiskit. We assume you have installed Qiskit if not please look at [qiskit.org](http://www.qiskit.org) or the install [documentation](https://github.com/qiskit/qiskit-tutorial/blob/master/INSTALL.md). \n", "\n", "\n", - "We've collected a core reference set of notebooks in this section outlining the features of Qiskit. We will be keeping them up to date with the latest Qiskit version, currently 0.7. The focus of this section will be how to use Qiskit and not so much on teaching you about quantum computing. For those interested in learning about quantum computing we recommend the awesome notebooks in the community section.\n", + "We've collected a core reference set of notebooks in this section outlining the features of Qiskit. We will be keeping them up to date with the latest official release Qiskit version, currently 0.7. The focus of this section will be how to use Qiskit and not so much on teaching you about quantum computing. For those interested in learning about quantum computing we recommend the awesome notebooks in the community section.\n", "\n", "\n", "Qiskit is made up of four elements: Terra, Aer, Ignis, and Aqua with each element having its own goal and together they make the full Qiskit framework. \n", @@ -75,16 +75,21 @@ " * [Quantum process tomography](qiskit/ignis/process_tomography.ipynb) - using quantum process tomography to reconstruct the behavior of a quantum process and measure its fidelity, i.e., how closely it matches the ideal version\n", "\n", "#### 1.6 Qiskit Aqua\n", - "Aqua, the ‘water’ element, is the element of life. To make quantum computing live up to its expectations, we need to find real-world applications. Aqua is where algorithms for NISQ computers are built. These algorithms can be used to build applications for quantum computing. Aqua is accessible to domain experts in chemistry, optimization, AI or finance, who want to explore the benefits of using quantum computers as accelerators for specific computational tasks, without needing to worry about how to translate the problem into the language of quantum machines.\n", - " * [Chemistry](qiskit/aqua/chemistry/index.ipynb) - using variational quantum eigensolver to experiment with molecular ground-state energy on a quantum computer\n", - " * [Optimization](qiskit/aqua/optimization/index.ipynb) - using variational quantum eigensolver to experiment with optimization problems (max-cut and traveling salesman problem) on a quantum computer \n", - " * [Artificial Intelligence](qiskit/aqua/artificial_intelligence/index.ipynb) - using quantum-enhanced support vector machine to experiment with classification problems on a quantum computer\n", + "Aqua, the ‘water’ element, is the element of life. To make quantum computing live up to its expectations, we need to find real-world applications. Aqua is where algorithms for NISQ computers are built. These algorithms can be used to build applications for quantum computing. Aqua is accessible to domain experts in `chemistry`, `optimization`, `AI` or `finance`, who want to explore the benefits of using quantum computers as accelerators for specific computational tasks, without needing to worry about how to translate the problem into the language of quantum machines. \n", "\n", - "#### 1.7 Qiskit Finance\n", + "#### 1.7 Qiskit AI \n", + "[Qiskit AI](qiskit/artificial_intelligence/index.ipynb) - using quantum-enhanced support vector machine to experiment with classification problems on a quantum computer\n", "\n", + "#### 1.8 Qiskit Chemistry \n", + "[Qiskit Chemistry](qiskit/chemistry/index.ipynb) - using variational quantum eigensolver to experiment with molecular ground-state energy on a quantum computer\n", + "\n", + "#### 1.9 Qiskit Finance\n", "[Qiskit Finance](qiskit/finance/index.ipynb) provides a colleaction of applications of quantum algorithms to use cases relevant in finance.\n", "This includes use cases like portfolio management, derivative pricing, or credit risk analysis.\n", "\n", + "#### 1.10 Qiskit Optimization\n", + "[Qiskit Optimization](qiskit/optimization/index.ipynb) - using variational quantum eigensolver to experiment with optimization problems (max-cut and traveling salesman problem) on a quantum computer\n", + "\n", "\n", "### 2. Community Notebooks\n", "\n", @@ -115,7 +120,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": { "scrolled": false }, @@ -225,6 +230,13 @@ "This project is licensed under the Apache License 2.0 - see the [LICENSE](https://github.com/Qiskit/qiskit-tutorials/blob/master/LICENSE) file for details." ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, @@ -250,7 +262,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.6.1" } }, "nbformat": 4, From a7e9348fa16f599dea9a17c102d7cf5f00a69eb9 Mon Sep 17 00:00:00 2001 From: woodsp Date: Wed, 1 May 2019 20:22:52 -0400 Subject: [PATCH 105/116] Update section numbers for Aqua domains --- index.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/index.ipynb b/index.ipynb index ebd822002..b5831dc92 100644 --- a/index.ipynb +++ b/index.ipynb @@ -77,17 +77,17 @@ "#### 1.6 Qiskit Aqua\n", "Aqua, the ‘water’ element, is the element of life. To make quantum computing live up to its expectations, we need to find real-world applications. Aqua is where algorithms for NISQ computers are built. These algorithms can be used to build applications for quantum computing. Aqua is accessible to domain experts in `chemistry`, `optimization`, `AI` or `finance`, who want to explore the benefits of using quantum computers as accelerators for specific computational tasks, without needing to worry about how to translate the problem into the language of quantum machines. \n", "\n", - "#### 1.7 Qiskit AI \n", + "#### 1.6.1 Qiskit AI \n", "[Qiskit AI](qiskit/artificial_intelligence/index.ipynb) - using quantum-enhanced support vector machine to experiment with classification problems on a quantum computer\n", "\n", - "#### 1.8 Qiskit Chemistry \n", + "#### 1.6.2 Qiskit Chemistry \n", "[Qiskit Chemistry](qiskit/chemistry/index.ipynb) - using variational quantum eigensolver to experiment with molecular ground-state energy on a quantum computer\n", "\n", - "#### 1.9 Qiskit Finance\n", + "#### 1.6.3 Qiskit Finance\n", "[Qiskit Finance](qiskit/finance/index.ipynb) provides a colleaction of applications of quantum algorithms to use cases relevant in finance.\n", "This includes use cases like portfolio management, derivative pricing, or credit risk analysis.\n", "\n", - "#### 1.10 Qiskit Optimization\n", + "#### 1.6.4 Qiskit Optimization\n", "[Qiskit Optimization](qiskit/optimization/index.ipynb) - using variational quantum eigensolver to experiment with optimization problems (max-cut and traveling salesman problem) on a quantum computer\n", "\n", "\n", From 48b61a72dea37524922334c0f16639bd1aecedbb Mon Sep 17 00:00:00 2001 From: woodsp Date: Wed, 1 May 2019 20:33:26 -0400 Subject: [PATCH 106/116] Re-ran notebook to remove old warning --- .../LiH_with_qubit_tapering_and_uccsd.ipynb | 40 ++++++++++--------- 1 file changed, 21 insertions(+), 19 deletions(-) diff --git a/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb b/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb index ddb7c9f28..4bc113cd5 100644 --- a/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb +++ b/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb @@ -1,19 +1,21 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## _*Tapering an Operator*_\n", + "\n", + "This notebook demonstrates how symmetries can be taken advantage of to reduce the size (number of qubits needed) for an Operator when using Qiskit Chemistry.\n", + "\n", + "This notebook has been written to use the PYSCF chemistry driver." + ] + }, { "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/manoel/Documents/Quantum/qiskit-terra/qiskit/tools/qcvv/__init__.py:13: DeprecationWarning: The qiskit.tools.qcvv package is deprecated. Please use qiskit-ignis available on PIP for similar functionality and more.\n", - " 'functionality and more.', DeprecationWarning)\n" - ] - } - ], + "outputs": [], "source": [ "# import common packages\n", "import itertools\n", @@ -38,7 +40,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -50,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -80,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -127,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -158,7 +160,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": { "scrolled": true }, @@ -194,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -235,7 +237,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -266,7 +268,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -275,7 +277,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { From ade33230d03d11d6281e0edd6fcbb3f8c99756c3 Mon Sep 17 00:00:00 2001 From: Shaohan Hu Date: Wed, 1 May 2019 23:05:25 -0400 Subject: [PATCH 107/116] add notebook for vqc comparing feature maps --- .../vqc_feature_map_comparison.ipynb | 178 ++++++++++++++++++ 1 file changed, 178 insertions(+) create mode 100644 community/artificial_intelligence/vqc_feature_map_comparison.ipynb diff --git a/community/artificial_intelligence/vqc_feature_map_comparison.ipynb b/community/artificial_intelligence/vqc_feature_map_comparison.ipynb new file mode 100644 index 000000000..9d8ba3baa --- /dev/null +++ b/community/artificial_intelligence/vqc_feature_map_comparison.ipynb @@ -0,0 +1,178 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Variational Quantum Classifier Feature Map Comparison\n", + "\n", + "Both the first-order and second-order expansion feature maps provided by Aqua use $n$ qubits to encode $n$-dim datapoints. However, raw feature vectors can also be directly used in `VQC` circuit constructions, requiring only $log_2(n)$ qubits to encode $n$-dim datapoints. \n", + "\n", + "### Experiment\n", + "Below we compare the classification performance of `VQC` on the [Wine dataset](https://scikit-learn.org/stable/datasets/index.html#wine-dataset) using `RawFeatureVector` and `SecondOrderExpansion` feature maps. As you'll see, the former leads to about $90\\%$ accuracy using only $2$ qubits, whereas the latter achieves only around $50\\%$ accuracy, using $4$ qubits and taking $3\\times$ as long. \n", + "\n", + "We first prepare the Wine dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from sklearn import datasets\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", + "from sklearn.decomposition import PCA\n", + "\n", + "\n", + "def Wine(training_size, test_size, n):\n", + " class_labels = [r'A', r'B', r'C']\n", + "\n", + " data, target = datasets.load_wine(True)\n", + " sample_train, sample_test, label_train, label_test = train_test_split(\n", + " data, target, test_size=test_size, random_state=7\n", + " )\n", + "\n", + " # Now we standarize for gaussian around 0 with unit variance\n", + " std_scale = StandardScaler().fit(sample_train)\n", + " sample_train = std_scale.transform(sample_train)\n", + " sample_test = std_scale.transform(sample_test)\n", + "\n", + " # Now reduce number of features to number of qubits\n", + " pca = PCA(n_components=n).fit(sample_train)\n", + " sample_train = pca.transform(sample_train)\n", + " sample_test = pca.transform(sample_test)\n", + "\n", + " # Scale to the range (-1,+1)\n", + " samples = np.append(sample_train, sample_test, axis=0)\n", + " minmax_scale = MinMaxScaler((-1, 1)).fit(samples)\n", + " sample_train = minmax_scale.transform(sample_train)\n", + " sample_test = minmax_scale.transform(sample_test)\n", + " # Pick training size number of samples from each distro\n", + " training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)}\n", + " test_input = {key: (sample_train[label_train == k, :])[training_size:(\n", + " training_size+test_size)] for k, key in enumerate(class_labels)}\n", + " return sample_train, training_input, test_input, class_labels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then set up the experiment as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import scipy\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.input import ClassificationInput\n", + "from qiskit.aqua import run_algorithm, QuantumInstance, aqua_globals\n", + "from qiskit.aqua.components.optimizers import SPSA, COBYLA\n", + "\n", + "feature_dim = 4 # dimension of each data point\n", + "training_dataset_size = 20\n", + "testing_dataset_size = 10\n", + "random_seed = 10598\n", + "np.random.seed(random_seed)\n", + "\n", + "sample_Total, training_input, test_input, class_labels = Wine(\n", + " training_size=training_dataset_size,\n", + " test_size=testing_dataset_size,\n", + " n=feature_dim\n", + ")\n", + "\n", + "classification_input = ClassificationInput(training_input, test_input)\n", + "params = {\n", + " 'problem': {'name': 'classification', 'random_seed': random_seed},\n", + " 'algorithm': {'name': 'VQC'},\n", + " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'},\n", + " 'optimizer': {'name': 'COBYLA', 'maxiter':200},\n", + " 'variational_form': {'name': 'RYRZ', 'depth': 3},\n", + " 'feature_map': {'name': None},\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try `RawFeatureVector` first:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "VQC accuracy with RawFeatureVector: 0.8666666666666667\n" + ] + } + ], + "source": [ + "params['feature_map']['name'] = 'RawFeatureVector'\n", + "result = run_algorithm(params, classification_input)\n", + "print(\"VQC accuracy with RawFeatureVector: \", result['testing_accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's try `SecondOrderExpansion`:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Test accuracy with SecondOrderExpansion: 0.5333333333333333\n" + ] + } + ], + "source": [ + "params['feature_map']['name'] = 'SecondOrderExpansion'\n", + "result = run_algorithm(params, classification_input)\n", + "print(\"Test accuracy with SecondOrderExpansion: \", result['testing_accuracy'])" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 2032cd4465e2e215da5edaa8c71cf9110b2308f2 Mon Sep 17 00:00:00 2001 From: CZ Date: Thu, 2 May 2019 10:58:13 +0200 Subject: [PATCH 108/116] Update the notebbooks --- ...ans_for_loading_random_distributions.ipynb | 12235 +--------------- .../qgan_option_pricing.ipynb | 144 +- 2 files changed, 134 insertions(+), 12245 deletions(-) diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb index 5a7e12ff6..3889f56a8 100644 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb +++ b/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb @@ -31,16 +31,9 @@ "metadata": {}, "outputs": [], "source": [ - "#!/usr/bin/env python\n", - "# coding: utf-8\n", - "from __future__ import absolute_import, division, print_function\n", - "\n", "import numpy as np\n", "\n", - "import matplotlib\n", - "matplotlib.use('TkAgg')\n", "import matplotlib.pyplot as plt\n", - "\n", "%matplotlib inline\n", "\n", "\n", @@ -108,7 +101,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -158,12229 +151,21 @@ "and\n", "$$ L_D\\left(\\phi, \\theta\\right) =\n", "\t\\frac{1}{m}\\sum\\limits_{l=1}^{m}\\left[\\log D_{\\phi}\\left(x^{l}\\right) + \\log\\left(1-D_{\\phi}\\left(g^{l}\\right)\\right)\\right], $$\n", - "with $m$ denoting the batch size and $g^l$ describing the data samples generated by the quantum generator." + "with $m$ denoting the batch size and $g^l$ describing the data samples generated by the quantum generator.\n", + "\n", + "Please not that the training will take a while ($\\sim 60$ min)." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Epoch 1/3000...\n", - "Loss Discriminator: 0.6948\n", - "Loss Generator: 0.6307\n", - "Relative Entropy: 0.1998\n", - "Epoch 2/3000...\n", - "Loss Discriminator: 0.6919\n", - "Loss Generator: 0.6591\n", - "Relative Entropy: 0.1998\n", - "Epoch 3/3000...\n", - "Loss Discriminator: 0.6902\n", - "Loss Generator: 0.6836\n", - "Relative Entropy: 0.1997\n", - "Epoch 4/3000...\n", - "Loss Discriminator: 0.6892\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.1996\n", - "Epoch 5/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.1996\n", - "Epoch 6/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.1995\n", - "Epoch 7/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.1995\n", - "Epoch 8/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.6961\n", - "Relative Entropy: 0.1994\n", - "Epoch 9/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.6931\n", - "Relative Entropy: 0.1993\n", - "Epoch 10/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.6936\n", - "Relative Entropy: 0.1993\n", - "Epoch 11/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.6969\n", - "Relative Entropy: 0.1992\n", - "Epoch 12/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.1991\n", - "Epoch 13/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.1991\n", - "Epoch 14/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.199\n", - "Epoch 15/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.1989\n", - "Epoch 16/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.1988\n", - "Epoch 17/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.1988\n", - "Epoch 18/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.1987\n", - "Epoch 19/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.1986\n", - "Epoch 20/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.1985\n", - "Epoch 21/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.1985\n", - "Epoch 22/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.1984\n", - "Epoch 23/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.1983\n", - "Epoch 24/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.1983\n", - "Epoch 25/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.1982\n", - "Epoch 26/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.1981\n", - "Epoch 27/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.198\n", - "Epoch 28/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.198\n", - "Epoch 29/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1979\n", - "Epoch 30/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1978\n", - "Epoch 31/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1978\n", - "Epoch 32/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1977\n", - "Epoch 33/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1976\n", - "Epoch 34/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1975\n", - "Epoch 35/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1975\n", - "Epoch 36/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1974\n", - "Epoch 37/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1973\n", - "Epoch 38/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1973\n", - "Epoch 39/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1972\n", - "Epoch 40/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1971\n", - "Epoch 41/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.197\n", - "Epoch 42/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.197\n", - "Epoch 43/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1969\n", - "Epoch 44/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1968\n", - "Epoch 45/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1967\n", - "Epoch 46/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1967\n", - "Epoch 47/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1966\n", - "Epoch 48/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1965\n", - "Epoch 49/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1965\n", - "Epoch 50/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1964\n", - "Epoch 51/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1963\n", - "Epoch 52/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1962\n", - "Epoch 53/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1962\n", - "Epoch 54/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1961\n", - "Epoch 55/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.196\n", - "Epoch 56/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.196\n", - "Epoch 57/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1959\n", - "Epoch 58/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1958\n", - "Epoch 59/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1957\n", - "Epoch 60/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1957\n", - "Epoch 61/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1956\n", - "Epoch 62/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1955\n", - "Epoch 63/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1955\n", - "Epoch 64/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1954\n", - "Epoch 65/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1953\n", - "Epoch 66/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1952\n", - "Epoch 67/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1952\n", - "Epoch 68/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1951\n", - "Epoch 69/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.195\n", - "Epoch 70/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.195\n", - "Epoch 71/3000...\n", - "Loss Discriminator: 0.665\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1949\n", - "Epoch 72/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1948\n", - "Epoch 73/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1947\n", - "Epoch 74/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1947\n", - "Epoch 75/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1946\n", - "Epoch 76/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1945\n", - "Epoch 77/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.1945\n", - "Epoch 78/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1944\n", - "Epoch 79/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1943\n", - "Epoch 80/3000...\n", - "Loss Discriminator: 0.6639\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1942\n", - "Epoch 81/3000...\n", - "Loss Discriminator: 0.6654\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1942\n", - "Epoch 82/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1941\n", - "Epoch 83/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.194\n", - "Epoch 84/3000...\n", - "Loss Discriminator: 0.664\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.194\n", - "Epoch 85/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1939\n", - "Epoch 86/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1938\n", - "Epoch 87/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1937\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 88/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1937\n", - "Epoch 89/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1936\n", - "Epoch 90/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7393\n", - "Relative Entropy: 0.1935\n", - "Epoch 91/3000...\n", - "Loss Discriminator: 0.6658\n", - "Loss Generator: 0.7414\n", - "Relative Entropy: 0.1935\n", - "Epoch 92/3000...\n", - "Loss Discriminator: 0.6665\n", - "Loss Generator: 0.7406\n", - "Relative Entropy: 0.1934\n", - "Epoch 93/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1933\n", - "Epoch 94/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.1933\n", - "Epoch 95/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7396\n", - "Relative Entropy: 0.1932\n", - "Epoch 96/3000...\n", - "Loss Discriminator: 0.6652\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.1931\n", - "Epoch 97/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7392\n", - "Relative Entropy: 0.193\n", - "Epoch 98/3000...\n", - "Loss Discriminator: 0.6651\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.193\n", - "Epoch 99/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1929\n", - "Epoch 100/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1928\n", - "Epoch 101/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.1928\n", - "Epoch 102/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1927\n", - "Epoch 103/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7393\n", - "Relative Entropy: 0.1926\n", - "Epoch 104/3000...\n", - "Loss Discriminator: 0.6626\n", - "Loss Generator: 0.7409\n", - "Relative Entropy: 0.1925\n", - "Epoch 105/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7412\n", - "Relative Entropy: 0.1925\n", - "Epoch 106/3000...\n", - "Loss Discriminator: 0.6642\n", - "Loss Generator: 0.7392\n", - "Relative Entropy: 0.1924\n", - "Epoch 107/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1923\n", - "Epoch 108/3000...\n", - "Loss Discriminator: 0.6639\n", - "Loss Generator: 0.7395\n", - "Relative Entropy: 0.1923\n", - "Epoch 109/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1922\n", - "Epoch 110/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1921\n", - "Epoch 111/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1921\n", - "Epoch 112/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7392\n", - "Relative Entropy: 0.192\n", - "Epoch 113/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7415\n", - "Relative Entropy: 0.1919\n", - "Epoch 114/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7427\n", - "Relative Entropy: 0.1918\n", - "Epoch 115/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7405\n", - "Relative Entropy: 0.1918\n", - "Epoch 116/3000...\n", - "Loss Discriminator: 0.665\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1917\n", - "Epoch 117/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1916\n", - "Epoch 118/3000...\n", - "Loss Discriminator: 0.6653\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1916\n", - "Epoch 119/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7404\n", - "Relative Entropy: 0.1915\n", - "Epoch 120/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7413\n", - "Relative Entropy: 0.1914\n", - "Epoch 121/3000...\n", - "Loss Discriminator: 0.6646\n", - "Loss Generator: 0.7398\n", - "Relative Entropy: 0.1913\n", - "Epoch 122/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.741\n", - "Relative Entropy: 0.1913\n", - "Epoch 123/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.74\n", - "Relative Entropy: 0.1912\n", - "Epoch 124/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.742\n", - "Relative Entropy: 0.1911\n", - "Epoch 125/3000...\n", - "Loss Discriminator: 0.6644\n", - "Loss Generator: 0.7397\n", - "Relative Entropy: 0.1911\n", - "Epoch 126/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7387\n", - "Relative Entropy: 0.191\n", - "Epoch 127/3000...\n", - "Loss Discriminator: 0.6655\n", - "Loss Generator: 0.7375\n", - "Relative Entropy: 0.1909\n", - "Epoch 128/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.1909\n", - "Epoch 129/3000...\n", - "Loss Discriminator: 0.6655\n", - "Loss Generator: 0.7398\n", - "Relative Entropy: 0.1908\n", - "Epoch 130/3000...\n", - "Loss Discriminator: 0.6646\n", - "Loss Generator: 0.7406\n", - "Relative Entropy: 0.1907\n", - "Epoch 131/3000...\n", - "Loss Discriminator: 0.6639\n", - "Loss Generator: 0.7409\n", - "Relative Entropy: 0.1906\n", - "Epoch 132/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7398\n", - "Relative Entropy: 0.1906\n", - "Epoch 133/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1905\n", - "Epoch 134/3000...\n", - "Loss Discriminator: 0.6654\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1904\n", - "Epoch 135/3000...\n", - "Loss Discriminator: 0.6652\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1904\n", - "Epoch 136/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7381\n", - "Relative Entropy: 0.1903\n", - "Epoch 137/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1902\n", - "Epoch 138/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7416\n", - "Relative Entropy: 0.1902\n", - "Epoch 139/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.7436\n", - "Relative Entropy: 0.1901\n", - "Epoch 140/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7414\n", - "Relative Entropy: 0.19\n", - "Epoch 141/3000...\n", - "Loss Discriminator: 0.6657\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.1899\n", - "Epoch 142/3000...\n", - "Loss Discriminator: 0.6635\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.1899\n", - "Epoch 143/3000...\n", - "Loss Discriminator: 0.6662\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.1898\n", - "Epoch 144/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7395\n", - "Relative Entropy: 0.1897\n", - "Epoch 145/3000...\n", - "Loss Discriminator: 0.6648\n", - "Loss Generator: 0.7409\n", - "Relative Entropy: 0.1897\n", - "Epoch 146/3000...\n", - "Loss Discriminator: 0.6662\n", - "Loss Generator: 0.7397\n", - "Relative Entropy: 0.1896\n", - "Epoch 147/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1895\n", - "Epoch 148/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7409\n", - "Relative Entropy: 0.1895\n", - "Epoch 149/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7416\n", - "Relative Entropy: 0.1894\n", - "Epoch 150/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7393\n", - "Relative Entropy: 0.1893\n", - "Epoch 151/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1892\n", - "Epoch 152/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1892\n", - "Epoch 153/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7385\n", - "Relative Entropy: 0.1891\n", - "Epoch 154/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7404\n", - "Relative Entropy: 0.189\n", - "Epoch 155/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.7416\n", - "Relative Entropy: 0.189\n", - "Epoch 156/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.74\n", - "Relative Entropy: 0.1889\n", - "Epoch 157/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1888\n", - "Epoch 158/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7396\n", - "Relative Entropy: 0.1888\n", - "Epoch 159/3000...\n", - "Loss Discriminator: 0.6645\n", - "Loss Generator: 0.7416\n", - "Relative Entropy: 0.1887\n", - "Epoch 160/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1886\n", - "Epoch 161/3000...\n", - "Loss Discriminator: 0.6645\n", - "Loss Generator: 0.7385\n", - "Relative Entropy: 0.1885\n", - "Epoch 162/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7399\n", - "Relative Entropy: 0.1885\n", - "Epoch 163/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7393\n", - "Relative Entropy: 0.1884\n", - "Epoch 164/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7391\n", - "Relative Entropy: 0.1883\n", - "Epoch 165/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7421\n", - "Relative Entropy: 0.1883\n", - "Epoch 166/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1882\n", - "Epoch 167/3000...\n", - "Loss Discriminator: 0.6658\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1881\n", - "Epoch 168/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1881\n", - "Epoch 169/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7402\n", - "Relative Entropy: 0.188\n", - "Epoch 170/3000...\n", - "Loss Discriminator: 0.6664\n", - "Loss Generator: 0.7419\n", - "Relative Entropy: 0.1879\n", - "Epoch 171/3000...\n", - "Loss Discriminator: 0.6662\n", - "Loss Generator: 0.7418\n", - "Relative Entropy: 0.1879\n", - "Epoch 172/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7392\n", - "Relative Entropy: 0.1878\n", - "Epoch 173/3000...\n", - "Loss Discriminator: 0.666\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1877\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 174/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7394\n", - "Relative Entropy: 0.1876\n", - "Epoch 175/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1876\n", - "Epoch 176/3000...\n", - "Loss Discriminator: 0.662\n", - "Loss Generator: 0.7398\n", - "Relative Entropy: 0.1875\n", - "Epoch 177/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7406\n", - "Relative Entropy: 0.1874\n", - "Epoch 178/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.741\n", - "Relative Entropy: 0.1874\n", - "Epoch 179/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1873\n", - "Epoch 180/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1872\n", - "Epoch 181/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1872\n", - "Epoch 182/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1871\n", - "Epoch 183/3000...\n", - "Loss Discriminator: 0.6653\n", - "Loss Generator: 0.7401\n", - "Relative Entropy: 0.187\n", - "Epoch 184/3000...\n", - "Loss Discriminator: 0.6652\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.187\n", - "Epoch 185/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1869\n", - "Epoch 186/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1868\n", - "Epoch 187/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1867\n", - "Epoch 188/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7394\n", - "Relative Entropy: 0.1867\n", - "Epoch 189/3000...\n", - "Loss Discriminator: 0.6657\n", - "Loss Generator: 0.7402\n", - "Relative Entropy: 0.1866\n", - "Epoch 190/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7387\n", - "Relative Entropy: 0.1865\n", - "Epoch 191/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1865\n", - "Epoch 192/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1864\n", - "Epoch 193/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1863\n", - "Epoch 194/3000...\n", - "Loss Discriminator: 0.6654\n", - "Loss Generator: 0.7406\n", - "Relative Entropy: 0.1863\n", - "Epoch 195/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1862\n", - "Epoch 196/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1861\n", - "Epoch 197/3000...\n", - "Loss Discriminator: 0.6665\n", - "Loss Generator: 0.7414\n", - "Relative Entropy: 0.1861\n", - "Epoch 198/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7392\n", - "Relative Entropy: 0.186\n", - "Epoch 199/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7381\n", - "Relative Entropy: 0.1859\n", - "Epoch 200/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1858\n", - "Epoch 201/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1858\n", - "Epoch 202/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1857\n", - "Epoch 203/3000...\n", - "Loss Discriminator: 0.6637\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1856\n", - "Epoch 204/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1856\n", - "Epoch 205/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7397\n", - "Relative Entropy: 0.1855\n", - "Epoch 206/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7385\n", - "Relative Entropy: 0.1854\n", - "Epoch 207/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7396\n", - "Relative Entropy: 0.1854\n", - "Epoch 208/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7401\n", - "Relative Entropy: 0.1853\n", - "Epoch 209/3000...\n", - "Loss Discriminator: 0.6654\n", - "Loss Generator: 0.7381\n", - "Relative Entropy: 0.1852\n", - "Epoch 210/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7385\n", - "Relative Entropy: 0.1852\n", - "Epoch 211/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.1851\n", - "Epoch 212/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7397\n", - "Relative Entropy: 0.185\n", - "Epoch 213/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7404\n", - "Relative Entropy: 0.185\n", - "Epoch 214/3000...\n", - "Loss Discriminator: 0.6662\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1849\n", - "Epoch 215/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1848\n", - "Epoch 216/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1847\n", - "Epoch 217/3000...\n", - "Loss Discriminator: 0.6647\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1847\n", - "Epoch 218/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7395\n", - "Relative Entropy: 0.1846\n", - "Epoch 219/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7378\n", - "Relative Entropy: 0.1845\n", - "Epoch 220/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7385\n", - "Relative Entropy: 0.1845\n", - "Epoch 221/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1844\n", - "Epoch 222/3000...\n", - "Loss Discriminator: 0.6665\n", - "Loss Generator: 0.7395\n", - "Relative Entropy: 0.1843\n", - "Epoch 223/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1843\n", - "Epoch 224/3000...\n", - "Loss Discriminator: 0.6654\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1842\n", - "Epoch 225/3000...\n", - "Loss Discriminator: 0.6629\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1841\n", - "Epoch 226/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7385\n", - "Relative Entropy: 0.1841\n", - "Epoch 227/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.184\n", - "Epoch 228/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1839\n", - "Epoch 229/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1839\n", - "Epoch 230/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7393\n", - "Relative Entropy: 0.1838\n", - "Epoch 231/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1837\n", - "Epoch 232/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1837\n", - "Epoch 233/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7393\n", - "Relative Entropy: 0.1836\n", - "Epoch 234/3000...\n", - "Loss Discriminator: 0.6662\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1835\n", - "Epoch 235/3000...\n", - "Loss Discriminator: 0.6657\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1834\n", - "Epoch 236/3000...\n", - "Loss Discriminator: 0.6654\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1834\n", - "Epoch 237/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1833\n", - "Epoch 238/3000...\n", - "Loss Discriminator: 0.6647\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1832\n", - "Epoch 239/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1832\n", - "Epoch 240/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1831\n", - "Epoch 241/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7381\n", - "Relative Entropy: 0.183\n", - "Epoch 242/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7405\n", - "Relative Entropy: 0.183\n", - "Epoch 243/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1829\n", - "Epoch 244/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7396\n", - "Relative Entropy: 0.1828\n", - "Epoch 245/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1828\n", - "Epoch 246/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1827\n", - "Epoch 247/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1826\n", - "Epoch 248/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1826\n", - "Epoch 249/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7401\n", - "Relative Entropy: 0.1825\n", - "Epoch 250/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1824\n", - "Epoch 251/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1824\n", - "Epoch 252/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1823\n", - "Epoch 253/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1822\n", - "Epoch 254/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7391\n", - "Relative Entropy: 0.1822\n", - "Epoch 255/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1821\n", - "Epoch 256/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.182\n", - "Epoch 257/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.182\n", - "Epoch 258/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1819\n", - "Epoch 259/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1818\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 260/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1818\n", - "Epoch 261/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1817\n", - "Epoch 262/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1816\n", - "Epoch 263/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1815\n", - "Epoch 264/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.1815\n", - "Epoch 265/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1814\n", - "Epoch 266/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1813\n", - "Epoch 267/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7393\n", - "Relative Entropy: 0.1813\n", - "Epoch 268/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1812\n", - "Epoch 269/3000...\n", - "Loss Discriminator: 0.6664\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1811\n", - "Epoch 270/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1811\n", - "Epoch 271/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.181\n", - "Epoch 272/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1809\n", - "Epoch 273/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1809\n", - "Epoch 274/3000...\n", - "Loss Discriminator: 0.6658\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1808\n", - "Epoch 275/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7381\n", - "Relative Entropy: 0.1807\n", - "Epoch 276/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1807\n", - "Epoch 277/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1806\n", - "Epoch 278/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1805\n", - "Epoch 279/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7392\n", - "Relative Entropy: 0.1805\n", - "Epoch 280/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1804\n", - "Epoch 281/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7391\n", - "Relative Entropy: 0.1803\n", - "Epoch 282/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1803\n", - "Epoch 283/3000...\n", - "Loss Discriminator: 0.6657\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1802\n", - "Epoch 284/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1801\n", - "Epoch 285/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1801\n", - "Epoch 286/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.18\n", - "Epoch 287/3000...\n", - "Loss Discriminator: 0.6657\n", - "Loss Generator: 0.7399\n", - "Relative Entropy: 0.1799\n", - "Epoch 288/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1799\n", - "Epoch 289/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.1798\n", - "Epoch 290/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1797\n", - "Epoch 291/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1797\n", - "Epoch 292/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7391\n", - "Relative Entropy: 0.1796\n", - "Epoch 293/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1795\n", - "Epoch 294/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.1795\n", - "Epoch 295/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1794\n", - "Epoch 296/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1793\n", - "Epoch 297/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.1793\n", - "Epoch 298/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1792\n", - "Epoch 299/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1791\n", - "Epoch 300/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1791\n", - "Epoch 301/3000...\n", - "Loss Discriminator: 0.6643\n", - "Loss Generator: 0.7364\n", - "Relative Entropy: 0.179\n", - "Epoch 302/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1789\n", - "Epoch 303/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1789\n", - "Epoch 304/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1788\n", - "Epoch 305/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1787\n", - "Epoch 306/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1787\n", - "Epoch 307/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7391\n", - "Relative Entropy: 0.1786\n", - "Epoch 308/3000...\n", - "Loss Discriminator: 0.6657\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1785\n", - "Epoch 309/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1785\n", - "Epoch 310/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1784\n", - "Epoch 311/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.739\n", - "Relative Entropy: 0.1783\n", - "Epoch 312/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1783\n", - "Epoch 313/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7387\n", - "Relative Entropy: 0.1782\n", - "Epoch 314/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1781\n", - "Epoch 315/3000...\n", - "Loss Discriminator: 0.6666\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1781\n", - "Epoch 316/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.178\n", - "Epoch 317/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7379\n", - "Relative Entropy: 0.1779\n", - "Epoch 318/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1779\n", - "Epoch 319/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1778\n", - "Epoch 320/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1777\n", - "Epoch 321/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1777\n", - "Epoch 322/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7386\n", - "Relative Entropy: 0.1776\n", - "Epoch 323/3000...\n", - "Loss Discriminator: 0.6656\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1775\n", - "Epoch 324/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1775\n", - "Epoch 325/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1774\n", - "Epoch 326/3000...\n", - "Loss Discriminator: 0.6658\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1773\n", - "Epoch 327/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7383\n", - "Relative Entropy: 0.1773\n", - "Epoch 328/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7388\n", - "Relative Entropy: 0.1772\n", - "Epoch 329/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1771\n", - "Epoch 330/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1771\n", - "Epoch 331/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.177\n", - "Epoch 332/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1769\n", - "Epoch 333/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1769\n", - "Epoch 334/3000...\n", - "Loss Discriminator: 0.6665\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1768\n", - "Epoch 335/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1767\n", - "Epoch 336/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1767\n", - "Epoch 337/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1766\n", - "Epoch 338/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1765\n", - "Epoch 339/3000...\n", - "Loss Discriminator: 0.6667\n", - "Loss Generator: 0.7365\n", - "Relative Entropy: 0.1765\n", - "Epoch 340/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7377\n", - "Relative Entropy: 0.1764\n", - "Epoch 341/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1763\n", - "Epoch 342/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1763\n", - "Epoch 343/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1762\n", - "Epoch 344/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7389\n", - "Relative Entropy: 0.1761\n", - "Epoch 345/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1761\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 346/3000...\n", - "Loss Discriminator: 0.666\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.176\n", - "Epoch 347/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1759\n", - "Epoch 348/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1759\n", - "Epoch 349/3000...\n", - "Loss Discriminator: 0.6657\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1758\n", - "Epoch 350/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1757\n", - "Epoch 351/3000...\n", - "Loss Discriminator: 0.6665\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1757\n", - "Epoch 352/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.737\n", - "Relative Entropy: 0.1756\n", - "Epoch 353/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1755\n", - "Epoch 354/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1755\n", - "Epoch 355/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1754\n", - "Epoch 356/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1753\n", - "Epoch 357/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1753\n", - "Epoch 358/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1752\n", - "Epoch 359/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7372\n", - "Relative Entropy: 0.1751\n", - "Epoch 360/3000...\n", - "Loss Discriminator: 0.6671\n", - "Loss Generator: 0.7376\n", - "Relative Entropy: 0.1751\n", - "Epoch 361/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.175\n", - "Epoch 362/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1749\n", - "Epoch 363/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.1749\n", - "Epoch 364/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1748\n", - "Epoch 365/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1747\n", - "Epoch 366/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1747\n", - "Epoch 367/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1746\n", - "Epoch 368/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7373\n", - "Relative Entropy: 0.1746\n", - "Epoch 369/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1745\n", - "Epoch 370/3000...\n", - "Loss Discriminator: 0.6665\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1744\n", - "Epoch 371/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1744\n", - "Epoch 372/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1743\n", - "Epoch 373/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1742\n", - "Epoch 374/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1742\n", - "Epoch 375/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7382\n", - "Relative Entropy: 0.1741\n", - "Epoch 376/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7371\n", - "Relative Entropy: 0.174\n", - "Epoch 377/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.174\n", - "Epoch 378/3000...\n", - "Loss Discriminator: 0.6669\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1739\n", - "Epoch 379/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1738\n", - "Epoch 380/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7384\n", - "Relative Entropy: 0.1738\n", - "Epoch 381/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1737\n", - "Epoch 382/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1736\n", - "Epoch 383/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1736\n", - "Epoch 384/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1735\n", - "Epoch 385/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1734\n", - "Epoch 386/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7354\n", - "Relative Entropy: 0.1734\n", - "Epoch 387/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1733\n", - "Epoch 388/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1732\n", - "Epoch 389/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7357\n", - "Relative Entropy: 0.1732\n", - "Epoch 390/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7374\n", - "Relative Entropy: 0.1731\n", - "Epoch 391/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.173\n", - "Epoch 392/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.173\n", - "Epoch 393/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1729\n", - "Epoch 394/3000...\n", - "Loss Discriminator: 0.6659\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1728\n", - "Epoch 395/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1728\n", - "Epoch 396/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1727\n", - "Epoch 397/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7363\n", - "Relative Entropy: 0.1727\n", - "Epoch 398/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1726\n", - "Epoch 399/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1725\n", - "Epoch 400/3000...\n", - "Loss Discriminator: 0.6665\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1725\n", - "Epoch 401/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.738\n", - "Relative Entropy: 0.1724\n", - "Epoch 402/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1723\n", - "Epoch 403/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1723\n", - "Epoch 404/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7368\n", - "Relative Entropy: 0.1722\n", - "Epoch 405/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1721\n", - "Epoch 406/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1721\n", - "Epoch 407/3000...\n", - "Loss Discriminator: 0.6662\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.172\n", - "Epoch 408/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1719\n", - "Epoch 409/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1719\n", - "Epoch 410/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1718\n", - "Epoch 411/3000...\n", - "Loss Discriminator: 0.6677\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1717\n", - "Epoch 412/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1717\n", - "Epoch 413/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1716\n", - "Epoch 414/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7401\n", - "Relative Entropy: 0.1716\n", - "Epoch 415/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1715\n", - "Epoch 416/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1714\n", - "Epoch 417/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1714\n", - "Epoch 418/3000...\n", - "Loss Discriminator: 0.6675\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1713\n", - "Epoch 419/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1712\n", - "Epoch 420/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1712\n", - "Epoch 421/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1711\n", - "Epoch 422/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.171\n", - "Epoch 423/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.171\n", - "Epoch 424/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1709\n", - "Epoch 425/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1708\n", - "Epoch 426/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1708\n", - "Epoch 427/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1707\n", - "Epoch 428/3000...\n", - "Loss Discriminator: 0.6662\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1706\n", - "Epoch 429/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7369\n", - "Relative Entropy: 0.1706\n", - "Epoch 430/3000...\n", - "Loss Discriminator: 0.667\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1705\n", - "Epoch 431/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1705\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 432/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1704\n", - "Epoch 433/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.1703\n", - "Epoch 434/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7358\n", - "Relative Entropy: 0.1703\n", - "Epoch 435/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1702\n", - "Epoch 436/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1701\n", - "Epoch 437/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1701\n", - "Epoch 438/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7366\n", - "Relative Entropy: 0.17\n", - "Epoch 439/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7344\n", - "Relative Entropy: 0.1699\n", - "Epoch 440/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1699\n", - "Epoch 441/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1698\n", - "Epoch 442/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1697\n", - "Epoch 443/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1697\n", - "Epoch 444/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1696\n", - "Epoch 445/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1696\n", - "Epoch 446/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1695\n", - "Epoch 447/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1694\n", - "Epoch 448/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1694\n", - "Epoch 449/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1693\n", - "Epoch 450/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1692\n", - "Epoch 451/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1692\n", - "Epoch 452/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1691\n", - "Epoch 453/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.169\n", - "Epoch 454/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.169\n", - "Epoch 455/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1689\n", - "Epoch 456/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1688\n", - "Epoch 457/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1688\n", - "Epoch 458/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1687\n", - "Epoch 459/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1687\n", - "Epoch 460/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.1686\n", - "Epoch 461/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1685\n", - "Epoch 462/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1685\n", - "Epoch 463/3000...\n", - "Loss Discriminator: 0.6674\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1684\n", - "Epoch 464/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1683\n", - "Epoch 465/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7353\n", - "Relative Entropy: 0.1683\n", - "Epoch 466/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1682\n", - "Epoch 467/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1681\n", - "Epoch 468/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1681\n", - "Epoch 469/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.168\n", - "Epoch 470/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.168\n", - "Epoch 471/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.736\n", - "Relative Entropy: 0.1679\n", - "Epoch 472/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1678\n", - "Epoch 473/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7362\n", - "Relative Entropy: 0.1678\n", - "Epoch 474/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7355\n", - "Relative Entropy: 0.1677\n", - "Epoch 475/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1676\n", - "Epoch 476/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1676\n", - "Epoch 477/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1675\n", - "Epoch 478/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7346\n", - "Relative Entropy: 0.1674\n", - "Epoch 479/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1674\n", - "Epoch 480/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.735\n", - "Relative Entropy: 0.1673\n", - "Epoch 481/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7324\n", - "Relative Entropy: 0.1673\n", - "Epoch 482/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1672\n", - "Epoch 483/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1671\n", - "Epoch 484/3000...\n", - "Loss Discriminator: 0.6686\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1671\n", - "Epoch 485/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.167\n", - "Epoch 486/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1669\n", - "Epoch 487/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1669\n", - "Epoch 488/3000...\n", - "Loss Discriminator: 0.6672\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1668\n", - "Epoch 489/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7329\n", - "Relative Entropy: 0.1667\n", - "Epoch 490/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1667\n", - "Epoch 491/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1666\n", - "Epoch 492/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7348\n", - "Relative Entropy: 0.1666\n", - "Epoch 493/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7361\n", - "Relative Entropy: 0.1665\n", - "Epoch 494/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7352\n", - "Relative Entropy: 0.1664\n", - "Epoch 495/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1664\n", - "Epoch 496/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1663\n", - "Epoch 497/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1662\n", - "Epoch 498/3000...\n", - "Loss Discriminator: 0.6673\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.1662\n", - "Epoch 499/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7347\n", - "Relative Entropy: 0.1661\n", - "Epoch 500/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.166\n", - "Epoch 501/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.166\n", - "Epoch 502/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1659\n", - "Epoch 503/3000...\n", - "Loss Discriminator: 0.6663\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1659\n", - "Epoch 504/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1658\n", - "Epoch 505/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1657\n", - "Epoch 506/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1657\n", - "Epoch 507/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1656\n", - "Epoch 508/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1655\n", - "Epoch 509/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1655\n", - "Epoch 510/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1654\n", - "Epoch 511/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1654\n", - "Epoch 512/3000...\n", - "Loss Discriminator: 0.668\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1653\n", - "Epoch 513/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7327\n", - "Relative Entropy: 0.1652\n", - "Epoch 514/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7351\n", - "Relative Entropy: 0.1652\n", - "Epoch 515/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1651\n", - "Epoch 516/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.165\n", - "Epoch 517/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7345\n", - "Relative Entropy: 0.165\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 518/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1649\n", - "Epoch 519/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1649\n", - "Epoch 520/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1648\n", - "Epoch 521/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1647\n", - "Epoch 522/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7359\n", - "Relative Entropy: 0.1647\n", - "Epoch 523/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1646\n", - "Epoch 524/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7335\n", - "Relative Entropy: 0.1645\n", - "Epoch 525/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7336\n", - "Relative Entropy: 0.1645\n", - "Epoch 526/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1644\n", - "Epoch 527/3000...\n", - "Loss Discriminator: 0.6679\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1644\n", - "Epoch 528/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1643\n", - "Epoch 529/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1642\n", - "Epoch 530/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1642\n", - "Epoch 531/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1641\n", - "Epoch 532/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.164\n", - "Epoch 533/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7367\n", - "Relative Entropy: 0.164\n", - "Epoch 534/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1639\n", - "Epoch 535/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1639\n", - "Epoch 536/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1638\n", - "Epoch 537/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1637\n", - "Epoch 538/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1637\n", - "Epoch 539/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7343\n", - "Relative Entropy: 0.1636\n", - "Epoch 540/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7349\n", - "Relative Entropy: 0.1635\n", - "Epoch 541/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7342\n", - "Relative Entropy: 0.1635\n", - "Epoch 542/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1634\n", - "Epoch 543/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7328\n", - "Relative Entropy: 0.1634\n", - "Epoch 544/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1633\n", - "Epoch 545/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1632\n", - "Epoch 546/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1632\n", - "Epoch 547/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1631\n", - "Epoch 548/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7356\n", - "Relative Entropy: 0.163\n", - "Epoch 549/3000...\n", - "Loss Discriminator: 0.6661\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.163\n", - "Epoch 550/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1629\n", - "Epoch 551/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1629\n", - "Epoch 552/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1628\n", - "Epoch 553/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.733\n", - "Relative Entropy: 0.1627\n", - "Epoch 554/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1627\n", - "Epoch 555/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1626\n", - "Epoch 556/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1625\n", - "Epoch 557/3000...\n", - "Loss Discriminator: 0.6668\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1625\n", - "Epoch 558/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1624\n", - "Epoch 559/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7337\n", - "Relative Entropy: 0.1624\n", - "Epoch 560/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1623\n", - "Epoch 561/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1622\n", - "Epoch 562/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1622\n", - "Epoch 563/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1621\n", - "Epoch 564/3000...\n", - "Loss Discriminator: 0.6678\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.162\n", - "Epoch 565/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.162\n", - "Epoch 566/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1619\n", - "Epoch 567/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1619\n", - "Epoch 568/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1618\n", - "Epoch 569/3000...\n", - "Loss Discriminator: 0.6684\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1617\n", - "Epoch 570/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1617\n", - "Epoch 571/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1616\n", - "Epoch 572/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7331\n", - "Relative Entropy: 0.1616\n", - "Epoch 573/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1615\n", - "Epoch 574/3000...\n", - "Loss Discriminator: 0.6682\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1614\n", - "Epoch 575/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1614\n", - "Epoch 576/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1613\n", - "Epoch 577/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1612\n", - "Epoch 578/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1612\n", - "Epoch 579/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7338\n", - "Relative Entropy: 0.1611\n", - "Epoch 580/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1611\n", - "Epoch 581/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.161\n", - "Epoch 582/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1609\n", - "Epoch 583/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1609\n", - "Epoch 584/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7339\n", - "Relative Entropy: 0.1608\n", - "Epoch 585/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1608\n", - "Epoch 586/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1607\n", - "Epoch 587/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1606\n", - "Epoch 588/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1606\n", - "Epoch 589/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1605\n", - "Epoch 590/3000...\n", - "Loss Discriminator: 0.6681\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1604\n", - "Epoch 591/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7333\n", - "Relative Entropy: 0.1604\n", - "Epoch 592/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1603\n", - "Epoch 593/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1603\n", - "Epoch 594/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1602\n", - "Epoch 595/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1601\n", - "Epoch 596/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1601\n", - "Epoch 597/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.16\n", - "Epoch 598/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.16\n", - "Epoch 599/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1599\n", - "Epoch 600/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1598\n", - "Epoch 601/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1598\n", - "Epoch 602/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1597\n", - "Epoch 603/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1596\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 604/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1596\n", - "Epoch 605/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1595\n", - "Epoch 606/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1595\n", - "Epoch 607/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1594\n", - "Epoch 608/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7313\n", - "Relative Entropy: 0.1593\n", - "Epoch 609/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7325\n", - "Relative Entropy: 0.1593\n", - "Epoch 610/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1592\n", - "Epoch 611/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1592\n", - "Epoch 612/3000...\n", - "Loss Discriminator: 0.6696\n", - "Loss Generator: 0.7341\n", - "Relative Entropy: 0.1591\n", - "Epoch 613/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.159\n", - "Epoch 614/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.159\n", - "Epoch 615/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7318\n", - "Relative Entropy: 0.1589\n", - "Epoch 616/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1589\n", - "Epoch 617/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1588\n", - "Epoch 618/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1587\n", - "Epoch 619/3000...\n", - "Loss Discriminator: 0.6683\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1587\n", - "Epoch 620/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1586\n", - "Epoch 621/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.734\n", - "Relative Entropy: 0.1585\n", - "Epoch 622/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1585\n", - "Epoch 623/3000...\n", - "Loss Discriminator: 0.669\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1584\n", - "Epoch 624/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.1584\n", - "Epoch 625/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1583\n", - "Epoch 626/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1582\n", - "Epoch 627/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1582\n", - "Epoch 628/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1581\n", - "Epoch 629/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1581\n", - "Epoch 630/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.158\n", - "Epoch 631/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1579\n", - "Epoch 632/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1579\n", - "Epoch 633/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1578\n", - "Epoch 634/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1578\n", - "Epoch 635/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1577\n", - "Epoch 636/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1576\n", - "Epoch 637/3000...\n", - "Loss Discriminator: 0.6689\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1576\n", - "Epoch 638/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1575\n", - "Epoch 639/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1575\n", - "Epoch 640/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1574\n", - "Epoch 641/3000...\n", - "Loss Discriminator: 0.6693\n", - "Loss Generator: 0.7319\n", - "Relative Entropy: 0.1573\n", - "Epoch 642/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1573\n", - "Epoch 643/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1572\n", - "Epoch 644/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1572\n", - "Epoch 645/3000...\n", - "Loss Discriminator: 0.6695\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1571\n", - "Epoch 646/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.157\n", - "Epoch 647/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.157\n", - "Epoch 648/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.731\n", - "Relative Entropy: 0.1569\n", - "Epoch 649/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1568\n", - "Epoch 650/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1568\n", - "Epoch 651/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1567\n", - "Epoch 652/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7334\n", - "Relative Entropy: 0.1567\n", - "Epoch 653/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1566\n", - "Epoch 654/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1565\n", - "Epoch 655/3000...\n", - "Loss Discriminator: 0.6685\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1565\n", - "Epoch 656/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1564\n", - "Epoch 657/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1564\n", - "Epoch 658/3000...\n", - "Loss Discriminator: 0.6676\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1563\n", - "Epoch 659/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1562\n", - "Epoch 660/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7304\n", - "Relative Entropy: 0.1562\n", - "Epoch 661/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1561\n", - "Epoch 662/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1561\n", - "Epoch 663/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.156\n", - "Epoch 664/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1559\n", - "Epoch 665/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.732\n", - "Relative Entropy: 0.1559\n", - "Epoch 666/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.7332\n", - "Relative Entropy: 0.1558\n", - "Epoch 667/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1558\n", - "Epoch 668/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1557\n", - "Epoch 669/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1556\n", - "Epoch 670/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7326\n", - "Relative Entropy: 0.1556\n", - "Epoch 671/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1555\n", - "Epoch 672/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1555\n", - "Epoch 673/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1554\n", - "Epoch 674/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1553\n", - "Epoch 675/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1553\n", - "Epoch 676/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1552\n", - "Epoch 677/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.1552\n", - "Epoch 678/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7323\n", - "Relative Entropy: 0.1551\n", - "Epoch 679/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7307\n", - "Relative Entropy: 0.155\n", - "Epoch 680/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.155\n", - "Epoch 681/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1549\n", - "Epoch 682/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7316\n", - "Relative Entropy: 0.1549\n", - "Epoch 683/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1548\n", - "Epoch 684/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.1547\n", - "Epoch 685/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1547\n", - "Epoch 686/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1546\n", - "Epoch 687/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1546\n", - "Epoch 688/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1545\n", - "Epoch 689/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1545\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 690/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1544\n", - "Epoch 691/3000...\n", - "Loss Discriminator: 0.6688\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1543\n", - "Epoch 692/3000...\n", - "Loss Discriminator: 0.6692\n", - "Loss Generator: 0.73\n", - "Relative Entropy: 0.1543\n", - "Epoch 693/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1542\n", - "Epoch 694/3000...\n", - "Loss Discriminator: 0.6697\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1542\n", - "Epoch 695/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1541\n", - "Epoch 696/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.154\n", - "Epoch 697/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.154\n", - "Epoch 698/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1539\n", - "Epoch 699/3000...\n", - "Loss Discriminator: 0.6691\n", - "Loss Generator: 0.7297\n", - "Relative Entropy: 0.1539\n", - "Epoch 700/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1538\n", - "Epoch 701/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1537\n", - "Epoch 702/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1537\n", - "Epoch 703/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1536\n", - "Epoch 704/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1536\n", - "Epoch 705/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1535\n", - "Epoch 706/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1534\n", - "Epoch 707/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1534\n", - "Epoch 708/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1533\n", - "Epoch 709/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.1533\n", - "Epoch 710/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1532\n", - "Epoch 711/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1531\n", - "Epoch 712/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1531\n", - "Epoch 713/3000...\n", - "Loss Discriminator: 0.6699\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.153\n", - "Epoch 714/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.153\n", - "Epoch 715/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1529\n", - "Epoch 716/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1528\n", - "Epoch 717/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7315\n", - "Relative Entropy: 0.1528\n", - "Epoch 718/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1527\n", - "Epoch 719/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1527\n", - "Epoch 720/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1526\n", - "Epoch 721/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7309\n", - "Relative Entropy: 0.1526\n", - "Epoch 722/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1525\n", - "Epoch 723/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1524\n", - "Epoch 724/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1524\n", - "Epoch 725/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1523\n", - "Epoch 726/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1523\n", - "Epoch 727/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7312\n", - "Relative Entropy: 0.1522\n", - "Epoch 728/3000...\n", - "Loss Discriminator: 0.6687\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1521\n", - "Epoch 729/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1521\n", - "Epoch 730/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.152\n", - "Epoch 731/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.152\n", - "Epoch 732/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1519\n", - "Epoch 733/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1518\n", - "Epoch 734/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7305\n", - "Relative Entropy: 0.1518\n", - "Epoch 735/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1517\n", - "Epoch 736/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1517\n", - "Epoch 737/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1516\n", - "Epoch 738/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1516\n", - "Epoch 739/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7322\n", - "Relative Entropy: 0.1515\n", - "Epoch 740/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1514\n", - "Epoch 741/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1514\n", - "Epoch 742/3000...\n", - "Loss Discriminator: 0.6701\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1513\n", - "Epoch 743/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1513\n", - "Epoch 744/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1512\n", - "Epoch 745/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1511\n", - "Epoch 746/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1511\n", - "Epoch 747/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.151\n", - "Epoch 748/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7302\n", - "Relative Entropy: 0.151\n", - "Epoch 749/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1509\n", - "Epoch 750/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7269\n", - "Relative Entropy: 0.1509\n", - "Epoch 751/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1508\n", - "Epoch 752/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1507\n", - "Epoch 753/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1507\n", - "Epoch 754/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7311\n", - "Relative Entropy: 0.1506\n", - "Epoch 755/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7284\n", - "Relative Entropy: 0.1506\n", - "Epoch 756/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1505\n", - "Epoch 757/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1504\n", - "Epoch 758/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1504\n", - "Epoch 759/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1503\n", - "Epoch 760/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7306\n", - "Relative Entropy: 0.1503\n", - "Epoch 761/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1502\n", - "Epoch 762/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1502\n", - "Epoch 763/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1501\n", - "Epoch 764/3000...\n", - "Loss Discriminator: 0.6702\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.15\n", - "Epoch 765/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7314\n", - "Relative Entropy: 0.15\n", - "Epoch 766/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7308\n", - "Relative Entropy: 0.1499\n", - "Epoch 767/3000...\n", - "Loss Discriminator: 0.6711\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1499\n", - "Epoch 768/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1498\n", - "Epoch 769/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1497\n", - "Epoch 770/3000...\n", - "Loss Discriminator: 0.6703\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1497\n", - "Epoch 771/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1496\n", - "Epoch 772/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1496\n", - "Epoch 773/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7299\n", - "Relative Entropy: 0.1495\n", - "Epoch 774/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1495\n", - "Epoch 775/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1494\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 776/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1493\n", - "Epoch 777/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1493\n", - "Epoch 778/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1492\n", - "Epoch 779/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7287\n", - "Relative Entropy: 0.1492\n", - "Epoch 780/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1491\n", - "Epoch 781/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.149\n", - "Epoch 782/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.149\n", - "Epoch 783/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.1489\n", - "Epoch 784/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1489\n", - "Epoch 785/3000...\n", - "Loss Discriminator: 0.6698\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1488\n", - "Epoch 786/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1488\n", - "Epoch 787/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1487\n", - "Epoch 788/3000...\n", - "Loss Discriminator: 0.6694\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1486\n", - "Epoch 789/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7295\n", - "Relative Entropy: 0.1486\n", - "Epoch 790/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1485\n", - "Epoch 791/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1485\n", - "Epoch 792/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1484\n", - "Epoch 793/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7321\n", - "Relative Entropy: 0.1484\n", - "Epoch 794/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7298\n", - "Relative Entropy: 0.1483\n", - "Epoch 795/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1482\n", - "Epoch 796/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1482\n", - "Epoch 797/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.1481\n", - "Epoch 798/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7317\n", - "Relative Entropy: 0.1481\n", - "Epoch 799/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.148\n", - "Epoch 800/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.148\n", - "Epoch 801/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.1479\n", - "Epoch 802/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1478\n", - "Epoch 803/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1478\n", - "Epoch 804/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1477\n", - "Epoch 805/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1477\n", - "Epoch 806/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7289\n", - "Relative Entropy: 0.1476\n", - "Epoch 807/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7301\n", - "Relative Entropy: 0.1475\n", - "Epoch 808/3000...\n", - "Loss Discriminator: 0.6705\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1475\n", - "Epoch 809/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1474\n", - "Epoch 810/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7281\n", - "Relative Entropy: 0.1474\n", - "Epoch 811/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1473\n", - "Epoch 812/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1473\n", - "Epoch 813/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1472\n", - "Epoch 814/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1471\n", - "Epoch 815/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1471\n", - "Epoch 816/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7303\n", - "Relative Entropy: 0.147\n", - "Epoch 817/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7283\n", - "Relative Entropy: 0.147\n", - "Epoch 818/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1469\n", - "Epoch 819/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1469\n", - "Epoch 820/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1468\n", - "Epoch 821/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1467\n", - "Epoch 822/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7285\n", - "Relative Entropy: 0.1467\n", - "Epoch 823/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1466\n", - "Epoch 824/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1466\n", - "Epoch 825/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1465\n", - "Epoch 826/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1465\n", - "Epoch 827/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1464\n", - "Epoch 828/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1463\n", - "Epoch 829/3000...\n", - "Loss Discriminator: 0.67\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1463\n", - "Epoch 830/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1462\n", - "Epoch 831/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7279\n", - "Relative Entropy: 0.1462\n", - "Epoch 832/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1461\n", - "Epoch 833/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1461\n", - "Epoch 834/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.146\n", - "Epoch 835/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.146\n", - "Epoch 836/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1459\n", - "Epoch 837/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1458\n", - "Epoch 838/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1458\n", - "Epoch 839/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7273\n", - "Relative Entropy: 0.1457\n", - "Epoch 840/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1457\n", - "Epoch 841/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1456\n", - "Epoch 842/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.728\n", - "Relative Entropy: 0.1456\n", - "Epoch 843/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7292\n", - "Relative Entropy: 0.1455\n", - "Epoch 844/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1454\n", - "Epoch 845/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1454\n", - "Epoch 846/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1453\n", - "Epoch 847/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.1453\n", - "Epoch 848/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1452\n", - "Epoch 849/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1452\n", - "Epoch 850/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1451\n", - "Epoch 851/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.145\n", - "Epoch 852/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.145\n", - "Epoch 853/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1449\n", - "Epoch 854/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1449\n", - "Epoch 855/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1448\n", - "Epoch 856/3000...\n", - "Loss Discriminator: 0.6708\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1448\n", - "Epoch 857/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1447\n", - "Epoch 858/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1446\n", - "Epoch 859/3000...\n", - "Loss Discriminator: 0.6706\n", - "Loss Generator: 0.7294\n", - "Relative Entropy: 0.1446\n", - "Epoch 860/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1445\n", - "Epoch 861/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1445\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 862/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1444\n", - "Epoch 863/3000...\n", - "Loss Discriminator: 0.6712\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1444\n", - "Epoch 864/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1443\n", - "Epoch 865/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1443\n", - "Epoch 866/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1442\n", - "Epoch 867/3000...\n", - "Loss Discriminator: 0.6716\n", - "Loss Generator: 0.7267\n", - "Relative Entropy: 0.1441\n", - "Epoch 868/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1441\n", - "Epoch 869/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.144\n", - "Epoch 870/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.144\n", - "Epoch 871/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7291\n", - "Relative Entropy: 0.1439\n", - "Epoch 872/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1439\n", - "Epoch 873/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1438\n", - "Epoch 874/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1437\n", - "Epoch 875/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7266\n", - "Relative Entropy: 0.1437\n", - "Epoch 876/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1436\n", - "Epoch 877/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1436\n", - "Epoch 878/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1435\n", - "Epoch 879/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1435\n", - "Epoch 880/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1434\n", - "Epoch 881/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1434\n", - "Epoch 882/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1433\n", - "Epoch 883/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1432\n", - "Epoch 884/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1432\n", - "Epoch 885/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1431\n", - "Epoch 886/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1431\n", - "Epoch 887/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7293\n", - "Relative Entropy: 0.143\n", - "Epoch 888/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.143\n", - "Epoch 889/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1429\n", - "Epoch 890/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1429\n", - "Epoch 891/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1428\n", - "Epoch 892/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7288\n", - "Relative Entropy: 0.1427\n", - "Epoch 893/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1427\n", - "Epoch 894/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1426\n", - "Epoch 895/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1426\n", - "Epoch 896/3000...\n", - "Loss Discriminator: 0.673\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1425\n", - "Epoch 897/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1425\n", - "Epoch 898/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7278\n", - "Relative Entropy: 0.1424\n", - "Epoch 899/3000...\n", - "Loss Discriminator: 0.6704\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1423\n", - "Epoch 900/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1423\n", - "Epoch 901/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1422\n", - "Epoch 902/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1422\n", - "Epoch 903/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7276\n", - "Relative Entropy: 0.1421\n", - "Epoch 904/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1421\n", - "Epoch 905/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.729\n", - "Relative Entropy: 0.142\n", - "Epoch 906/3000...\n", - "Loss Discriminator: 0.6715\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.142\n", - "Epoch 907/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1419\n", - "Epoch 908/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1418\n", - "Epoch 909/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1418\n", - "Epoch 910/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1417\n", - "Epoch 911/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1417\n", - "Epoch 912/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7264\n", - "Relative Entropy: 0.1416\n", - "Epoch 913/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1416\n", - "Epoch 914/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1415\n", - "Epoch 915/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7282\n", - "Relative Entropy: 0.1415\n", - "Epoch 916/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1414\n", - "Epoch 917/3000...\n", - "Loss Discriminator: 0.6707\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1414\n", - "Epoch 918/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1413\n", - "Epoch 919/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.1412\n", - "Epoch 920/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1412\n", - "Epoch 921/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1411\n", - "Epoch 922/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1411\n", - "Epoch 923/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.141\n", - "Epoch 924/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.141\n", - "Epoch 925/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1409\n", - "Epoch 926/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1409\n", - "Epoch 927/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1408\n", - "Epoch 928/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1407\n", - "Epoch 929/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1407\n", - "Epoch 930/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7255\n", - "Relative Entropy: 0.1406\n", - "Epoch 931/3000...\n", - "Loss Discriminator: 0.6725\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1406\n", - "Epoch 932/3000...\n", - "Loss Discriminator: 0.6722\n", - "Loss Generator: 0.7259\n", - "Relative Entropy: 0.1405\n", - "Epoch 933/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1405\n", - "Epoch 934/3000...\n", - "Loss Discriminator: 0.6718\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1404\n", - "Epoch 935/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1404\n", - "Epoch 936/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1403\n", - "Epoch 937/3000...\n", - "Loss Discriminator: 0.6713\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1402\n", - "Epoch 938/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7296\n", - "Relative Entropy: 0.1402\n", - "Epoch 939/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1401\n", - "Epoch 940/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1401\n", - "Epoch 941/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.14\n", - "Epoch 942/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7272\n", - "Relative Entropy: 0.14\n", - "Epoch 943/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1399\n", - "Epoch 944/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1399\n", - "Epoch 945/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1398\n", - "Epoch 946/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1398\n", - "Epoch 947/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1397\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 948/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7268\n", - "Relative Entropy: 0.1396\n", - "Epoch 949/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1396\n", - "Epoch 950/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1395\n", - "Epoch 951/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7286\n", - "Relative Entropy: 0.1395\n", - "Epoch 952/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1394\n", - "Epoch 953/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.1394\n", - "Epoch 954/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1393\n", - "Epoch 955/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1393\n", - "Epoch 956/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1392\n", - "Epoch 957/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1392\n", - "Epoch 958/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1391\n", - "Epoch 959/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.139\n", - "Epoch 960/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7271\n", - "Relative Entropy: 0.139\n", - "Epoch 961/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1389\n", - "Epoch 962/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1389\n", - "Epoch 963/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1388\n", - "Epoch 964/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1388\n", - "Epoch 965/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1387\n", - "Epoch 966/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1387\n", - "Epoch 967/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1386\n", - "Epoch 968/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1386\n", - "Epoch 969/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1385\n", - "Epoch 970/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.1384\n", - "Epoch 971/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1384\n", - "Epoch 972/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1383\n", - "Epoch 973/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1383\n", - "Epoch 974/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1382\n", - "Epoch 975/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.727\n", - "Relative Entropy: 0.1382\n", - "Epoch 976/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1381\n", - "Epoch 977/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1381\n", - "Epoch 978/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.138\n", - "Epoch 979/3000...\n", - "Loss Discriminator: 0.672\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.138\n", - "Epoch 980/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1379\n", - "Epoch 981/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1378\n", - "Epoch 982/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1378\n", - "Epoch 983/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1377\n", - "Epoch 984/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1377\n", - "Epoch 985/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1376\n", - "Epoch 986/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1376\n", - "Epoch 987/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1375\n", - "Epoch 988/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1375\n", - "Epoch 989/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1374\n", - "Epoch 990/3000...\n", - "Loss Discriminator: 0.6709\n", - "Loss Generator: 0.7262\n", - "Relative Entropy: 0.1374\n", - "Epoch 991/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1373\n", - "Epoch 992/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1373\n", - "Epoch 993/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1372\n", - "Epoch 994/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7252\n", - "Relative Entropy: 0.1371\n", - "Epoch 995/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1371\n", - "Epoch 996/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.137\n", - "Epoch 997/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.137\n", - "Epoch 998/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1369\n", - "Epoch 999/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1369\n", - "Epoch 1000/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7254\n", - "Relative Entropy: 0.1368\n", - "Epoch 1001/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1368\n", - "Epoch 1002/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1367\n", - "Epoch 1003/3000...\n", - "Loss Discriminator: 0.6724\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1367\n", - "Epoch 1004/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1366\n", - "Epoch 1005/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1366\n", - "Epoch 1006/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1365\n", - "Epoch 1007/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1364\n", - "Epoch 1008/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1364\n", - "Epoch 1009/3000...\n", - "Loss Discriminator: 0.671\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1363\n", - "Epoch 1010/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1363\n", - "Epoch 1011/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1362\n", - "Epoch 1012/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1362\n", - "Epoch 1013/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1361\n", - "Epoch 1014/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1361\n", - "Epoch 1015/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7265\n", - "Relative Entropy: 0.136\n", - "Epoch 1016/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.136\n", - "Epoch 1017/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1359\n", - "Epoch 1018/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7261\n", - "Relative Entropy: 0.1359\n", - "Epoch 1019/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1358\n", - "Epoch 1020/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1357\n", - "Epoch 1021/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1357\n", - "Epoch 1022/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7248\n", - "Relative Entropy: 0.1356\n", - "Epoch 1023/3000...\n", - "Loss Discriminator: 0.6714\n", - "Loss Generator: 0.7258\n", - "Relative Entropy: 0.1356\n", - "Epoch 1024/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1355\n", - "Epoch 1025/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1355\n", - "Epoch 1026/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1354\n", - "Epoch 1027/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1354\n", - "Epoch 1028/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1353\n", - "Epoch 1029/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7274\n", - "Relative Entropy: 0.1353\n", - "Epoch 1030/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1352\n", - "Epoch 1031/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1352\n", - "Epoch 1032/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1351\n", - "Epoch 1033/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7275\n", - "Relative Entropy: 0.1351\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1034/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.135\n", - "Epoch 1035/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1349\n", - "Epoch 1036/3000...\n", - "Loss Discriminator: 0.6717\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1349\n", - "Epoch 1037/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7242\n", - "Relative Entropy: 0.1348\n", - "Epoch 1038/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1348\n", - "Epoch 1039/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1347\n", - "Epoch 1040/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7263\n", - "Relative Entropy: 0.1347\n", - "Epoch 1041/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7277\n", - "Relative Entropy: 0.1346\n", - "Epoch 1042/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1346\n", - "Epoch 1043/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1345\n", - "Epoch 1044/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1345\n", - "Epoch 1045/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1344\n", - "Epoch 1046/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1344\n", - "Epoch 1047/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1343\n", - "Epoch 1048/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1343\n", - "Epoch 1049/3000...\n", - "Loss Discriminator: 0.6728\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1342\n", - "Epoch 1050/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1342\n", - "Epoch 1051/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1341\n", - "Epoch 1052/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.134\n", - "Epoch 1053/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.134\n", - "Epoch 1054/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1339\n", - "Epoch 1055/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1339\n", - "Epoch 1056/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1338\n", - "Epoch 1057/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1338\n", - "Epoch 1058/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1337\n", - "Epoch 1059/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1337\n", - "Epoch 1060/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1336\n", - "Epoch 1061/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1336\n", - "Epoch 1062/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1335\n", - "Epoch 1063/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1335\n", - "Epoch 1064/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.725\n", - "Relative Entropy: 0.1334\n", - "Epoch 1065/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1334\n", - "Epoch 1066/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1333\n", - "Epoch 1067/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7251\n", - "Relative Entropy: 0.1333\n", - "Epoch 1068/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1332\n", - "Epoch 1069/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1332\n", - "Epoch 1070/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1331\n", - "Epoch 1071/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.133\n", - "Epoch 1072/3000...\n", - "Loss Discriminator: 0.6726\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.133\n", - "Epoch 1073/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1329\n", - "Epoch 1074/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1329\n", - "Epoch 1075/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7249\n", - "Relative Entropy: 0.1328\n", - "Epoch 1076/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1328\n", - "Epoch 1077/3000...\n", - "Loss Discriminator: 0.6721\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1327\n", - "Epoch 1078/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1327\n", - "Epoch 1079/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1326\n", - "Epoch 1080/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1326\n", - "Epoch 1081/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1325\n", - "Epoch 1082/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7256\n", - "Relative Entropy: 0.1325\n", - "Epoch 1083/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1324\n", - "Epoch 1084/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1324\n", - "Epoch 1085/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1323\n", - "Epoch 1086/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1323\n", - "Epoch 1087/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1322\n", - "Epoch 1088/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1322\n", - "Epoch 1089/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1321\n", - "Epoch 1090/3000...\n", - "Loss Discriminator: 0.6729\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1321\n", - "Epoch 1091/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.132\n", - "Epoch 1092/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1319\n", - "Epoch 1093/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7243\n", - "Relative Entropy: 0.1319\n", - "Epoch 1094/3000...\n", - "Loss Discriminator: 0.6723\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1318\n", - "Epoch 1095/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1318\n", - "Epoch 1096/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1317\n", - "Epoch 1097/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.723\n", - "Relative Entropy: 0.1317\n", - "Epoch 1098/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1316\n", - "Epoch 1099/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1316\n", - "Epoch 1100/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7234\n", - "Relative Entropy: 0.1315\n", - "Epoch 1101/3000...\n", - "Loss Discriminator: 0.6719\n", - "Loss Generator: 0.7236\n", - "Relative Entropy: 0.1315\n", - "Epoch 1102/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1314\n", - "Epoch 1103/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.726\n", - "Relative Entropy: 0.1314\n", - "Epoch 1104/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1313\n", - "Epoch 1105/3000...\n", - "Loss Discriminator: 0.6735\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1313\n", - "Epoch 1106/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1312\n", - "Epoch 1107/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1312\n", - "Epoch 1108/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1311\n", - "Epoch 1109/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1311\n", - "Epoch 1110/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.131\n", - "Epoch 1111/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.131\n", - "Epoch 1112/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1309\n", - "Epoch 1113/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1309\n", - "Epoch 1114/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7257\n", - "Relative Entropy: 0.1308\n", - "Epoch 1115/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1308\n", - "Epoch 1116/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1307\n", - "Epoch 1117/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1307\n", - "Epoch 1118/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7245\n", - "Relative Entropy: 0.1306\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1119/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7253\n", - "Relative Entropy: 0.1305\n", - "Epoch 1120/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1305\n", - "Epoch 1121/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1304\n", - "Epoch 1122/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1304\n", - "Epoch 1123/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1303\n", - "Epoch 1124/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1303\n", - "Epoch 1125/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7232\n", - "Relative Entropy: 0.1302\n", - "Epoch 1126/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7247\n", - "Relative Entropy: 0.1302\n", - "Epoch 1127/3000...\n", - "Loss Discriminator: 0.6731\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1301\n", - "Epoch 1128/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1301\n", - "Epoch 1129/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.13\n", - "Epoch 1130/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.13\n", - "Epoch 1131/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1299\n", - "Epoch 1132/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1299\n", - "Epoch 1133/3000...\n", - "Loss Discriminator: 0.6732\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1298\n", - "Epoch 1134/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1298\n", - "Epoch 1135/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1297\n", - "Epoch 1136/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1297\n", - "Epoch 1137/3000...\n", - "Loss Discriminator: 0.6738\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1296\n", - "Epoch 1138/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1296\n", - "Epoch 1139/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1295\n", - "Epoch 1140/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1295\n", - "Epoch 1141/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1294\n", - "Epoch 1142/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1294\n", - "Epoch 1143/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1293\n", - "Epoch 1144/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1293\n", - "Epoch 1145/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1292\n", - "Epoch 1146/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1292\n", - "Epoch 1147/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7228\n", - "Relative Entropy: 0.1291\n", - "Epoch 1148/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1291\n", - "Epoch 1149/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.129\n", - "Epoch 1150/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.129\n", - "Epoch 1151/3000...\n", - "Loss Discriminator: 0.6746\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1289\n", - "Epoch 1152/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1289\n", - "Epoch 1153/3000...\n", - "Loss Discriminator: 0.6727\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1288\n", - "Epoch 1154/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1288\n", - "Epoch 1155/3000...\n", - "Loss Discriminator: 0.674\n", - "Loss Generator: 0.7241\n", - "Relative Entropy: 0.1287\n", - "Epoch 1156/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1287\n", - "Epoch 1157/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1286\n", - "Epoch 1158/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1286\n", - "Epoch 1159/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1285\n", - "Epoch 1160/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1284\n", - "Epoch 1161/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7238\n", - "Relative Entropy: 0.1284\n", - "Epoch 1162/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7237\n", - "Relative Entropy: 0.1283\n", - "Epoch 1163/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1283\n", - "Epoch 1164/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1282\n", - "Epoch 1165/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1282\n", - "Epoch 1166/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7246\n", - "Relative Entropy: 0.1281\n", - "Epoch 1167/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1281\n", - "Epoch 1168/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.128\n", - "Epoch 1169/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7223\n", - "Relative Entropy: 0.128\n", - "Epoch 1170/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.724\n", - "Relative Entropy: 0.1279\n", - "Epoch 1171/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1279\n", - "Epoch 1172/3000...\n", - "Loss Discriminator: 0.6741\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1278\n", - "Epoch 1173/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1278\n", - "Epoch 1174/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1277\n", - "Epoch 1175/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1277\n", - "Epoch 1176/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1276\n", - "Epoch 1177/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1276\n", - "Epoch 1178/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1275\n", - "Epoch 1179/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1275\n", - "Epoch 1180/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1274\n", - "Epoch 1181/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1274\n", - "Epoch 1182/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1273\n", - "Epoch 1183/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1273\n", - "Epoch 1184/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1272\n", - "Epoch 1185/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7233\n", - "Relative Entropy: 0.1272\n", - "Epoch 1186/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1271\n", - "Epoch 1187/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1271\n", - "Epoch 1188/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.127\n", - "Epoch 1189/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.127\n", - "Epoch 1190/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1269\n", - "Epoch 1191/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1269\n", - "Epoch 1192/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1268\n", - "Epoch 1193/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1268\n", - "Epoch 1194/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1267\n", - "Epoch 1195/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1267\n", - "Epoch 1196/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7235\n", - "Relative Entropy: 0.1266\n", - "Epoch 1197/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1266\n", - "Epoch 1198/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1265\n", - "Epoch 1199/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1265\n", - "Epoch 1200/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1264\n", - "Epoch 1201/3000...\n", - "Loss Discriminator: 0.6734\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1264\n", - "Epoch 1202/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1263\n", - "Epoch 1203/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1263\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1204/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1262\n", - "Epoch 1205/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1262\n", - "Epoch 1206/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1261\n", - "Epoch 1207/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1261\n", - "Epoch 1208/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.126\n", - "Epoch 1209/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.126\n", - "Epoch 1210/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1259\n", - "Epoch 1211/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7244\n", - "Relative Entropy: 0.1259\n", - "Epoch 1212/3000...\n", - "Loss Discriminator: 0.6736\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1258\n", - "Epoch 1213/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1258\n", - "Epoch 1214/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1257\n", - "Epoch 1215/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1257\n", - "Epoch 1216/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1256\n", - "Epoch 1217/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1256\n", - "Epoch 1218/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1255\n", - "Epoch 1219/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1255\n", - "Epoch 1220/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1254\n", - "Epoch 1221/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1254\n", - "Epoch 1222/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1253\n", - "Epoch 1223/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1253\n", - "Epoch 1224/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1252\n", - "Epoch 1225/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7239\n", - "Relative Entropy: 0.1252\n", - "Epoch 1226/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1251\n", - "Epoch 1227/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1251\n", - "Epoch 1228/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.125\n", - "Epoch 1229/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.125\n", - "Epoch 1230/3000...\n", - "Loss Discriminator: 0.6743\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1249\n", - "Epoch 1231/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1249\n", - "Epoch 1232/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1248\n", - "Epoch 1233/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1248\n", - "Epoch 1234/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1247\n", - "Epoch 1235/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1247\n", - "Epoch 1236/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1246\n", - "Epoch 1237/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1246\n", - "Epoch 1238/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1245\n", - "Epoch 1239/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1245\n", - "Epoch 1240/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1244\n", - "Epoch 1241/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1244\n", - "Epoch 1242/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1243\n", - "Epoch 1243/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1243\n", - "Epoch 1244/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1242\n", - "Epoch 1245/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1242\n", - "Epoch 1246/3000...\n", - "Loss Discriminator: 0.6733\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1241\n", - "Epoch 1247/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1241\n", - "Epoch 1248/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.124\n", - "Epoch 1249/3000...\n", - "Loss Discriminator: 0.6737\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.124\n", - "Epoch 1250/3000...\n", - "Loss Discriminator: 0.6745\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1239\n", - "Epoch 1251/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1239\n", - "Epoch 1252/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1238\n", - "Epoch 1253/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1238\n", - "Epoch 1254/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1237\n", - "Epoch 1255/3000...\n", - "Loss Discriminator: 0.6747\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1237\n", - "Epoch 1256/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1236\n", - "Epoch 1257/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1236\n", - "Epoch 1258/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1235\n", - "Epoch 1259/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1235\n", - "Epoch 1260/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1234\n", - "Epoch 1261/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7211\n", - "Relative Entropy: 0.1234\n", - "Epoch 1262/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1233\n", - "Epoch 1263/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1233\n", - "Epoch 1264/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1232\n", - "Epoch 1265/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1232\n", - "Epoch 1266/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7231\n", - "Relative Entropy: 0.1231\n", - "Epoch 1267/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1231\n", - "Epoch 1268/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.123\n", - "Epoch 1269/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.123\n", - "Epoch 1270/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1229\n", - "Epoch 1271/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1229\n", - "Epoch 1272/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1228\n", - "Epoch 1273/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1228\n", - "Epoch 1274/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1227\n", - "Epoch 1275/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1227\n", - "Epoch 1276/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1226\n", - "Epoch 1277/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1226\n", - "Epoch 1278/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7215\n", - "Relative Entropy: 0.1225\n", - "Epoch 1279/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1225\n", - "Epoch 1280/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1224\n", - "Epoch 1281/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1224\n", - "Epoch 1282/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7222\n", - "Relative Entropy: 0.1223\n", - "Epoch 1283/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1223\n", - "Epoch 1284/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1222\n", - "Epoch 1285/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1222\n", - "Epoch 1286/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1221\n", - "Epoch 1287/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1221\n", - "Epoch 1288/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.122\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1289/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.122\n", - "Epoch 1290/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1219\n", - "Epoch 1291/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1219\n", - "Epoch 1292/3000...\n", - "Loss Discriminator: 0.6739\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1218\n", - "Epoch 1293/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1218\n", - "Epoch 1294/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1217\n", - "Epoch 1295/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1217\n", - "Epoch 1296/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1216\n", - "Epoch 1297/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1216\n", - "Epoch 1298/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1215\n", - "Epoch 1299/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1215\n", - "Epoch 1300/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1214\n", - "Epoch 1301/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1214\n", - "Epoch 1302/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7227\n", - "Relative Entropy: 0.1213\n", - "Epoch 1303/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1212\n", - "Epoch 1304/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1212\n", - "Epoch 1305/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.1211\n", - "Epoch 1306/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7224\n", - "Relative Entropy: 0.1211\n", - "Epoch 1307/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.121\n", - "Epoch 1308/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.121\n", - "Epoch 1309/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1209\n", - "Epoch 1310/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1209\n", - "Epoch 1311/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1208\n", - "Epoch 1312/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1208\n", - "Epoch 1313/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1207\n", - "Epoch 1314/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1207\n", - "Epoch 1315/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1206\n", - "Epoch 1316/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1206\n", - "Epoch 1317/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1205\n", - "Epoch 1318/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1205\n", - "Epoch 1319/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1204\n", - "Epoch 1320/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1204\n", - "Epoch 1321/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7229\n", - "Relative Entropy: 0.1203\n", - "Epoch 1322/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1203\n", - "Epoch 1323/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1202\n", - "Epoch 1324/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1202\n", - "Epoch 1325/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1201\n", - "Epoch 1326/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1201\n", - "Epoch 1327/3000...\n", - "Loss Discriminator: 0.6748\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.12\n", - "Epoch 1328/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1199\n", - "Epoch 1329/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1199\n", - "Epoch 1330/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7213\n", - "Relative Entropy: 0.1198\n", - "Epoch 1331/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1198\n", - "Epoch 1332/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1197\n", - "Epoch 1333/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1197\n", - "Epoch 1334/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7209\n", - "Relative Entropy: 0.1196\n", - "Epoch 1335/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1196\n", - "Epoch 1336/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1195\n", - "Epoch 1337/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.1195\n", - "Epoch 1338/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1194\n", - "Epoch 1339/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1194\n", - "Epoch 1340/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1193\n", - "Epoch 1341/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1193\n", - "Epoch 1342/3000...\n", - "Loss Discriminator: 0.6762\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1192\n", - "Epoch 1343/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1192\n", - "Epoch 1344/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1191\n", - "Epoch 1345/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1191\n", - "Epoch 1346/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.119\n", - "Epoch 1347/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1189\n", - "Epoch 1348/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1189\n", - "Epoch 1349/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1188\n", - "Epoch 1350/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1188\n", - "Epoch 1351/3000...\n", - "Loss Discriminator: 0.675\n", - "Loss Generator: 0.7217\n", - "Relative Entropy: 0.1187\n", - "Epoch 1352/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1187\n", - "Epoch 1353/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1186\n", - "Epoch 1354/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1186\n", - "Epoch 1355/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7193\n", - "Relative Entropy: 0.1185\n", - "Epoch 1356/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1185\n", - "Epoch 1357/3000...\n", - "Loss Discriminator: 0.6751\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1184\n", - "Epoch 1358/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7204\n", - "Relative Entropy: 0.1183\n", - "Epoch 1359/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1183\n", - "Epoch 1360/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1182\n", - "Epoch 1361/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1182\n", - "Epoch 1362/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1181\n", - "Epoch 1363/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1181\n", - "Epoch 1364/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.118\n", - "Epoch 1365/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.118\n", - "Epoch 1366/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1179\n", - "Epoch 1367/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1179\n", - "Epoch 1368/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1178\n", - "Epoch 1369/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7205\n", - "Relative Entropy: 0.1178\n", - "Epoch 1370/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.722\n", - "Relative Entropy: 0.1177\n", - "Epoch 1371/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1176\n", - "Epoch 1372/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1176\n", - "Epoch 1373/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1175\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1374/3000...\n", - "Loss Discriminator: 0.6753\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1175\n", - "Epoch 1375/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1174\n", - "Epoch 1376/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1174\n", - "Epoch 1377/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1173\n", - "Epoch 1378/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7207\n", - "Relative Entropy: 0.1173\n", - "Epoch 1379/3000...\n", - "Loss Discriminator: 0.6742\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1172\n", - "Epoch 1380/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1172\n", - "Epoch 1381/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1171\n", - "Epoch 1382/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.117\n", - "Epoch 1383/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.117\n", - "Epoch 1384/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1169\n", - "Epoch 1385/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7212\n", - "Relative Entropy: 0.1169\n", - "Epoch 1386/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1168\n", - "Epoch 1387/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1168\n", - "Epoch 1388/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1167\n", - "Epoch 1389/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7218\n", - "Relative Entropy: 0.1167\n", - "Epoch 1390/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1166\n", - "Epoch 1391/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1166\n", - "Epoch 1392/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7184\n", - "Relative Entropy: 0.1165\n", - "Epoch 1393/3000...\n", - "Loss Discriminator: 0.6756\n", - "Loss Generator: 0.7203\n", - "Relative Entropy: 0.1164\n", - "Epoch 1394/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1164\n", - "Epoch 1395/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1163\n", - "Epoch 1396/3000...\n", - "Loss Discriminator: 0.6754\n", - "Loss Generator: 0.7201\n", - "Relative Entropy: 0.1163\n", - "Epoch 1397/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1162\n", - "Epoch 1398/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1162\n", - "Epoch 1399/3000...\n", - "Loss Discriminator: 0.6744\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1161\n", - "Epoch 1400/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1161\n", - "Epoch 1401/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.116\n", - "Epoch 1402/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.116\n", - "Epoch 1403/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1159\n", - "Epoch 1404/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1159\n", - "Epoch 1405/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7202\n", - "Relative Entropy: 0.1158\n", - "Epoch 1406/3000...\n", - "Loss Discriminator: 0.6749\n", - "Loss Generator: 0.72\n", - "Relative Entropy: 0.1157\n", - "Epoch 1407/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1157\n", - "Epoch 1408/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1156\n", - "Epoch 1409/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1156\n", - "Epoch 1410/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1155\n", - "Epoch 1411/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7214\n", - "Relative Entropy: 0.1155\n", - "Epoch 1412/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1154\n", - "Epoch 1413/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1154\n", - "Epoch 1414/3000...\n", - "Loss Discriminator: 0.6757\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.1153\n", - "Epoch 1415/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1153\n", - "Epoch 1416/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7219\n", - "Relative Entropy: 0.1152\n", - "Epoch 1417/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1152\n", - "Epoch 1418/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1151\n", - "Epoch 1419/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7196\n", - "Relative Entropy: 0.115\n", - "Epoch 1420/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.115\n", - "Epoch 1421/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1149\n", - "Epoch 1422/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1149\n", - "Epoch 1423/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7208\n", - "Relative Entropy: 0.1148\n", - "Epoch 1424/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1148\n", - "Epoch 1425/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1147\n", - "Epoch 1426/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1147\n", - "Epoch 1427/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1146\n", - "Epoch 1428/3000...\n", - "Loss Discriminator: 0.6761\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1146\n", - "Epoch 1429/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1145\n", - "Epoch 1430/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7225\n", - "Relative Entropy: 0.1145\n", - "Epoch 1431/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1144\n", - "Epoch 1432/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1144\n", - "Epoch 1433/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1143\n", - "Epoch 1434/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1143\n", - "Epoch 1435/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1142\n", - "Epoch 1436/3000...\n", - "Loss Discriminator: 0.6755\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1141\n", - "Epoch 1437/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1141\n", - "Epoch 1438/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.114\n", - "Epoch 1439/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.114\n", - "Epoch 1440/3000...\n", - "Loss Discriminator: 0.676\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1139\n", - "Epoch 1441/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1139\n", - "Epoch 1442/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1138\n", - "Epoch 1443/3000...\n", - "Loss Discriminator: 0.6758\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.1138\n", - "Epoch 1444/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1137\n", - "Epoch 1445/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1137\n", - "Epoch 1446/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1136\n", - "Epoch 1447/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1136\n", - "Epoch 1448/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1135\n", - "Epoch 1449/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1134\n", - "Epoch 1450/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1134\n", - "Epoch 1451/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.1133\n", - "Epoch 1452/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1133\n", - "Epoch 1453/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1132\n", - "Epoch 1454/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1132\n", - "Epoch 1455/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1131\n", - "Epoch 1456/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1131\n", - "Epoch 1457/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.113\n", - "Epoch 1458/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.113\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1459/3000...\n", - "Loss Discriminator: 0.6774\n", - "Loss Generator: 0.7226\n", - "Relative Entropy: 0.1129\n", - "Epoch 1460/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1129\n", - "Epoch 1461/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.1128\n", - "Epoch 1462/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1128\n", - "Epoch 1463/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7221\n", - "Relative Entropy: 0.1127\n", - "Epoch 1464/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.1127\n", - "Epoch 1465/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1126\n", - "Epoch 1466/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1126\n", - "Epoch 1467/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1125\n", - "Epoch 1468/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1124\n", - "Epoch 1469/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1124\n", - "Epoch 1470/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1123\n", - "Epoch 1471/3000...\n", - "Loss Discriminator: 0.6759\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1123\n", - "Epoch 1472/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1122\n", - "Epoch 1473/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1122\n", - "Epoch 1474/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1121\n", - "Epoch 1475/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1121\n", - "Epoch 1476/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.112\n", - "Epoch 1477/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.112\n", - "Epoch 1478/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1119\n", - "Epoch 1479/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.721\n", - "Relative Entropy: 0.1119\n", - "Epoch 1480/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1118\n", - "Epoch 1481/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1118\n", - "Epoch 1482/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1117\n", - "Epoch 1483/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7216\n", - "Relative Entropy: 0.1117\n", - "Epoch 1484/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1116\n", - "Epoch 1485/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1115\n", - "Epoch 1486/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1115\n", - "Epoch 1487/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1114\n", - "Epoch 1488/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1114\n", - "Epoch 1489/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1113\n", - "Epoch 1490/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1113\n", - "Epoch 1491/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1112\n", - "Epoch 1492/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7188\n", - "Relative Entropy: 0.1112\n", - "Epoch 1493/3000...\n", - "Loss Discriminator: 0.6766\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1111\n", - "Epoch 1494/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1111\n", - "Epoch 1495/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7195\n", - "Relative Entropy: 0.111\n", - "Epoch 1496/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.719\n", - "Relative Entropy: 0.111\n", - "Epoch 1497/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1109\n", - "Epoch 1498/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1109\n", - "Epoch 1499/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1108\n", - "Epoch 1500/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1107\n", - "Epoch 1501/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7197\n", - "Relative Entropy: 0.1107\n", - "Epoch 1502/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1106\n", - "Epoch 1503/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1106\n", - "Epoch 1504/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1105\n", - "Epoch 1505/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1105\n", - "Epoch 1506/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1104\n", - "Epoch 1507/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1104\n", - "Epoch 1508/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7199\n", - "Relative Entropy: 0.1103\n", - "Epoch 1509/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.1103\n", - "Epoch 1510/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.1102\n", - "Epoch 1511/3000...\n", - "Loss Discriminator: 0.6763\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1102\n", - "Epoch 1512/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1101\n", - "Epoch 1513/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1101\n", - "Epoch 1514/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.11\n", - "Epoch 1515/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.11\n", - "Epoch 1516/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1099\n", - "Epoch 1517/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7198\n", - "Relative Entropy: 0.1099\n", - "Epoch 1518/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.1098\n", - "Epoch 1519/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.1098\n", - "Epoch 1520/3000...\n", - "Loss Discriminator: 0.6752\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1097\n", - "Epoch 1521/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1096\n", - "Epoch 1522/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1096\n", - "Epoch 1523/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1095\n", - "Epoch 1524/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1095\n", - "Epoch 1525/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1094\n", - "Epoch 1526/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1094\n", - "Epoch 1527/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1093\n", - "Epoch 1528/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1093\n", - "Epoch 1529/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1092\n", - "Epoch 1530/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1092\n", - "Epoch 1531/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1091\n", - "Epoch 1532/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.1091\n", - "Epoch 1533/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.109\n", - "Epoch 1534/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7206\n", - "Relative Entropy: 0.109\n", - "Epoch 1535/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1089\n", - "Epoch 1536/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.1089\n", - "Epoch 1537/3000...\n", - "Loss Discriminator: 0.6764\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1088\n", - "Epoch 1538/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1088\n", - "Epoch 1539/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1087\n", - "Epoch 1540/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1086\n", - "Epoch 1541/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1086\n", - "Epoch 1542/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1085\n", - "Epoch 1543/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1085\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1544/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7194\n", - "Relative Entropy: 0.1084\n", - "Epoch 1545/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1084\n", - "Epoch 1546/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.1083\n", - "Epoch 1547/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1083\n", - "Epoch 1548/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7191\n", - "Relative Entropy: 0.1082\n", - "Epoch 1549/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1082\n", - "Epoch 1550/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.1081\n", - "Epoch 1551/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1081\n", - "Epoch 1552/3000...\n", - "Loss Discriminator: 0.6773\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.108\n", - "Epoch 1553/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7182\n", - "Relative Entropy: 0.108\n", - "Epoch 1554/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1079\n", - "Epoch 1555/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.1079\n", - "Epoch 1556/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.1078\n", - "Epoch 1557/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1078\n", - "Epoch 1558/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1077\n", - "Epoch 1559/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1076\n", - "Epoch 1560/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1076\n", - "Epoch 1561/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7192\n", - "Relative Entropy: 0.1075\n", - "Epoch 1562/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1075\n", - "Epoch 1563/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1074\n", - "Epoch 1564/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1074\n", - "Epoch 1565/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.1073\n", - "Epoch 1566/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1073\n", - "Epoch 1567/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1072\n", - "Epoch 1568/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1072\n", - "Epoch 1569/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1071\n", - "Epoch 1570/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1071\n", - "Epoch 1571/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.107\n", - "Epoch 1572/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.107\n", - "Epoch 1573/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7186\n", - "Relative Entropy: 0.1069\n", - "Epoch 1574/3000...\n", - "Loss Discriminator: 0.6769\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1069\n", - "Epoch 1575/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1068\n", - "Epoch 1576/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1068\n", - "Epoch 1577/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1067\n", - "Epoch 1578/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1067\n", - "Epoch 1579/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1066\n", - "Epoch 1580/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7177\n", - "Relative Entropy: 0.1065\n", - "Epoch 1581/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1065\n", - "Epoch 1582/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1064\n", - "Epoch 1583/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1064\n", - "Epoch 1584/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1063\n", - "Epoch 1585/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.1063\n", - "Epoch 1586/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1062\n", - "Epoch 1587/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1062\n", - "Epoch 1588/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1061\n", - "Epoch 1589/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7179\n", - "Relative Entropy: 0.1061\n", - "Epoch 1590/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.106\n", - "Epoch 1591/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.106\n", - "Epoch 1592/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.1059\n", - "Epoch 1593/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1059\n", - "Epoch 1594/3000...\n", - "Loss Discriminator: 0.6776\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1058\n", - "Epoch 1595/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.1058\n", - "Epoch 1596/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1057\n", - "Epoch 1597/3000...\n", - "Loss Discriminator: 0.6765\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1057\n", - "Epoch 1598/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1056\n", - "Epoch 1599/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1056\n", - "Epoch 1600/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1055\n", - "Epoch 1601/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1055\n", - "Epoch 1602/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1054\n", - "Epoch 1603/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1053\n", - "Epoch 1604/3000...\n", - "Loss Discriminator: 0.6772\n", - "Loss Generator: 0.7183\n", - "Relative Entropy: 0.1053\n", - "Epoch 1605/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1052\n", - "Epoch 1606/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.1052\n", - "Epoch 1607/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.1051\n", - "Epoch 1608/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7175\n", - "Relative Entropy: 0.1051\n", - "Epoch 1609/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.105\n", - "Epoch 1610/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.105\n", - "Epoch 1611/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1049\n", - "Epoch 1612/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1049\n", - "Epoch 1613/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.718\n", - "Relative Entropy: 0.1048\n", - "Epoch 1614/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1048\n", - "Epoch 1615/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1047\n", - "Epoch 1616/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1047\n", - "Epoch 1617/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1046\n", - "Epoch 1618/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1046\n", - "Epoch 1619/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.1045\n", - "Epoch 1620/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1045\n", - "Epoch 1621/3000...\n", - "Loss Discriminator: 0.677\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1044\n", - "Epoch 1622/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1044\n", - "Epoch 1623/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.1043\n", - "Epoch 1624/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7165\n", - "Relative Entropy: 0.1043\n", - "Epoch 1625/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1042\n", - "Epoch 1626/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1042\n", - "Epoch 1627/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7189\n", - "Relative Entropy: 0.1041\n", - "Epoch 1628/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.1041\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1629/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.104\n", - "Epoch 1630/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.104\n", - "Epoch 1631/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.1039\n", - "Epoch 1632/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1038\n", - "Epoch 1633/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1038\n", - "Epoch 1634/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1037\n", - "Epoch 1635/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.1037\n", - "Epoch 1636/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1036\n", - "Epoch 1637/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1036\n", - "Epoch 1638/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1035\n", - "Epoch 1639/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1035\n", - "Epoch 1640/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1034\n", - "Epoch 1641/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1034\n", - "Epoch 1642/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.1033\n", - "Epoch 1643/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1033\n", - "Epoch 1644/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1032\n", - "Epoch 1645/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.1032\n", - "Epoch 1646/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.1031\n", - "Epoch 1647/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.1031\n", - "Epoch 1648/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.103\n", - "Epoch 1649/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.103\n", - "Epoch 1650/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.1029\n", - "Epoch 1651/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1029\n", - "Epoch 1652/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1028\n", - "Epoch 1653/3000...\n", - "Loss Discriminator: 0.6767\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1028\n", - "Epoch 1654/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.1027\n", - "Epoch 1655/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1027\n", - "Epoch 1656/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.1026\n", - "Epoch 1657/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1026\n", - "Epoch 1658/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.1025\n", - "Epoch 1659/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1025\n", - "Epoch 1660/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.1024\n", - "Epoch 1661/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1024\n", - "Epoch 1662/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7174\n", - "Relative Entropy: 0.1023\n", - "Epoch 1663/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1023\n", - "Epoch 1664/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1022\n", - "Epoch 1665/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.1022\n", - "Epoch 1666/3000...\n", - "Loss Discriminator: 0.678\n", - "Loss Generator: 0.7171\n", - "Relative Entropy: 0.1021\n", - "Epoch 1667/3000...\n", - "Loss Discriminator: 0.6783\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.1021\n", - "Epoch 1668/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.102\n", - "Epoch 1669/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.102\n", - "Epoch 1670/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1019\n", - "Epoch 1671/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.1019\n", - "Epoch 1672/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.1018\n", - "Epoch 1673/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.1017\n", - "Epoch 1674/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1017\n", - "Epoch 1675/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.1016\n", - "Epoch 1676/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.1016\n", - "Epoch 1677/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7187\n", - "Relative Entropy: 0.1015\n", - "Epoch 1678/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.1015\n", - "Epoch 1679/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.1014\n", - "Epoch 1680/3000...\n", - "Loss Discriminator: 0.6778\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1014\n", - "Epoch 1681/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.1013\n", - "Epoch 1682/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.1013\n", - "Epoch 1683/3000...\n", - "Loss Discriminator: 0.6777\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.1012\n", - "Epoch 1684/3000...\n", - "Loss Discriminator: 0.6781\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1012\n", - "Epoch 1685/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.1011\n", - "Epoch 1686/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1011\n", - "Epoch 1687/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.101\n", - "Epoch 1688/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7185\n", - "Relative Entropy: 0.101\n", - "Epoch 1689/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.1009\n", - "Epoch 1690/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.1009\n", - "Epoch 1691/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.1008\n", - "Epoch 1692/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7181\n", - "Relative Entropy: 0.1008\n", - "Epoch 1693/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.1007\n", - "Epoch 1694/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.1007\n", - "Epoch 1695/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1006\n", - "Epoch 1696/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1006\n", - "Epoch 1697/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.1005\n", - "Epoch 1698/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.1005\n", - "Epoch 1699/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1004\n", - "Epoch 1700/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.1004\n", - "Epoch 1701/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.1003\n", - "Epoch 1702/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.1003\n", - "Epoch 1703/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.1002\n", - "Epoch 1704/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1002\n", - "Epoch 1705/3000...\n", - "Loss Discriminator: 0.6771\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.1001\n", - "Epoch 1706/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.1001\n", - "Epoch 1707/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.1\n", - "Epoch 1708/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.1\n", - "Epoch 1709/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7176\n", - "Relative Entropy: 0.0999\n", - "Epoch 1710/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0999\n", - "Epoch 1711/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0998\n", - "Epoch 1712/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0998\n", - "Epoch 1713/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0997\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1714/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7168\n", - "Relative Entropy: 0.0997\n", - "Epoch 1715/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7178\n", - "Relative Entropy: 0.0996\n", - "Epoch 1716/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0996\n", - "Epoch 1717/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0995\n", - "Epoch 1718/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0995\n", - "Epoch 1719/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0994\n", - "Epoch 1720/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0994\n", - "Epoch 1721/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0993\n", - "Epoch 1722/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0993\n", - "Epoch 1723/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7164\n", - "Relative Entropy: 0.0992\n", - "Epoch 1724/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0992\n", - "Epoch 1725/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0991\n", - "Epoch 1726/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0991\n", - "Epoch 1727/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7172\n", - "Relative Entropy: 0.099\n", - "Epoch 1728/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.099\n", - "Epoch 1729/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0989\n", - "Epoch 1730/3000...\n", - "Loss Discriminator: 0.6791\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0989\n", - "Epoch 1731/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.0988\n", - "Epoch 1732/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0988\n", - "Epoch 1733/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0987\n", - "Epoch 1734/3000...\n", - "Loss Discriminator: 0.6784\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0987\n", - "Epoch 1735/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0986\n", - "Epoch 1736/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0986\n", - "Epoch 1737/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7159\n", - "Relative Entropy: 0.0985\n", - "Epoch 1738/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0985\n", - "Epoch 1739/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0984\n", - "Epoch 1740/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0984\n", - "Epoch 1741/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0983\n", - "Epoch 1742/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0983\n", - "Epoch 1743/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7156\n", - "Relative Entropy: 0.0982\n", - "Epoch 1744/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0982\n", - "Epoch 1745/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0981\n", - "Epoch 1746/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0981\n", - "Epoch 1747/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.098\n", - "Epoch 1748/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.098\n", - "Epoch 1749/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0979\n", - "Epoch 1750/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0979\n", - "Epoch 1751/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7162\n", - "Relative Entropy: 0.0978\n", - "Epoch 1752/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0978\n", - "Epoch 1753/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0977\n", - "Epoch 1754/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7161\n", - "Relative Entropy: 0.0977\n", - "Epoch 1755/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0976\n", - "Epoch 1756/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0976\n", - "Epoch 1757/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.0975\n", - "Epoch 1758/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0975\n", - "Epoch 1759/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0974\n", - "Epoch 1760/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.0974\n", - "Epoch 1761/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0973\n", - "Epoch 1762/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0973\n", - "Epoch 1763/3000...\n", - "Loss Discriminator: 0.6768\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0972\n", - "Epoch 1764/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0972\n", - "Epoch 1765/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0971\n", - "Epoch 1766/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0971\n", - "Epoch 1767/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.097\n", - "Epoch 1768/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.097\n", - "Epoch 1769/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0969\n", - "Epoch 1770/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.716\n", - "Relative Entropy: 0.0969\n", - "Epoch 1771/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0968\n", - "Epoch 1772/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.0968\n", - "Epoch 1773/3000...\n", - "Loss Discriminator: 0.6785\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0967\n", - "Epoch 1774/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0967\n", - "Epoch 1775/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0966\n", - "Epoch 1776/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0966\n", - "Epoch 1777/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7154\n", - "Relative Entropy: 0.0965\n", - "Epoch 1778/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0965\n", - "Epoch 1779/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0964\n", - "Epoch 1780/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7173\n", - "Relative Entropy: 0.0964\n", - "Epoch 1781/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0963\n", - "Epoch 1782/3000...\n", - "Loss Discriminator: 0.6779\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0963\n", - "Epoch 1783/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0962\n", - "Epoch 1784/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7167\n", - "Relative Entropy: 0.0962\n", - "Epoch 1785/3000...\n", - "Loss Discriminator: 0.679\n", - "Loss Generator: 0.7151\n", - "Relative Entropy: 0.0961\n", - "Epoch 1786/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0961\n", - "Epoch 1787/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.096\n", - "Epoch 1788/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.096\n", - "Epoch 1789/3000...\n", - "Loss Discriminator: 0.6775\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0959\n", - "Epoch 1790/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0959\n", - "Epoch 1791/3000...\n", - "Loss Discriminator: 0.6786\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0958\n", - "Epoch 1792/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7166\n", - "Relative Entropy: 0.0958\n", - "Epoch 1793/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0957\n", - "Epoch 1794/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0957\n", - "Epoch 1795/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0956\n", - "Epoch 1796/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0956\n", - "Epoch 1797/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0955\n", - "Epoch 1798/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.0955\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1799/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0954\n", - "Epoch 1800/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0954\n", - "Epoch 1801/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0953\n", - "Epoch 1802/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0953\n", - "Epoch 1803/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0952\n", - "Epoch 1804/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0952\n", - "Epoch 1805/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0951\n", - "Epoch 1806/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0951\n", - "Epoch 1807/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.095\n", - "Epoch 1808/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.095\n", - "Epoch 1809/3000...\n", - "Loss Discriminator: 0.6788\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0949\n", - "Epoch 1810/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0949\n", - "Epoch 1811/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.717\n", - "Relative Entropy: 0.0948\n", - "Epoch 1812/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0948\n", - "Epoch 1813/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0947\n", - "Epoch 1814/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0947\n", - "Epoch 1815/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0946\n", - "Epoch 1816/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0946\n", - "Epoch 1817/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0945\n", - "Epoch 1818/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0945\n", - "Epoch 1819/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0944\n", - "Epoch 1820/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0944\n", - "Epoch 1821/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0943\n", - "Epoch 1822/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0943\n", - "Epoch 1823/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0943\n", - "Epoch 1824/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0942\n", - "Epoch 1825/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0942\n", - "Epoch 1826/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0941\n", - "Epoch 1827/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0941\n", - "Epoch 1828/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.094\n", - "Epoch 1829/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7153\n", - "Relative Entropy: 0.094\n", - "Epoch 1830/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0939\n", - "Epoch 1831/3000...\n", - "Loss Discriminator: 0.6789\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0939\n", - "Epoch 1832/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0938\n", - "Epoch 1833/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0938\n", - "Epoch 1834/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0937\n", - "Epoch 1835/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0937\n", - "Epoch 1836/3000...\n", - "Loss Discriminator: 0.6787\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0936\n", - "Epoch 1837/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0936\n", - "Epoch 1838/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0935\n", - "Epoch 1839/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0935\n", - "Epoch 1840/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0934\n", - "Epoch 1841/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0934\n", - "Epoch 1842/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0933\n", - "Epoch 1843/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0933\n", - "Epoch 1844/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7163\n", - "Relative Entropy: 0.0932\n", - "Epoch 1845/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0932\n", - "Epoch 1846/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0931\n", - "Epoch 1847/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.715\n", - "Relative Entropy: 0.0931\n", - "Epoch 1848/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.093\n", - "Epoch 1849/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.093\n", - "Epoch 1850/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0929\n", - "Epoch 1851/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0929\n", - "Epoch 1852/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7157\n", - "Relative Entropy: 0.0928\n", - "Epoch 1853/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0928\n", - "Epoch 1854/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0927\n", - "Epoch 1855/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0927\n", - "Epoch 1856/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0926\n", - "Epoch 1857/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0926\n", - "Epoch 1858/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0925\n", - "Epoch 1859/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0925\n", - "Epoch 1860/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0925\n", - "Epoch 1861/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0924\n", - "Epoch 1862/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0924\n", - "Epoch 1863/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0923\n", - "Epoch 1864/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0923\n", - "Epoch 1865/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0922\n", - "Epoch 1866/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0922\n", - "Epoch 1867/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0921\n", - "Epoch 1868/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0921\n", - "Epoch 1869/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.092\n", - "Epoch 1870/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.092\n", - "Epoch 1871/3000...\n", - "Loss Discriminator: 0.6799\n", - "Loss Generator: 0.7155\n", - "Relative Entropy: 0.0919\n", - "Epoch 1872/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0919\n", - "Epoch 1873/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0918\n", - "Epoch 1874/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0918\n", - "Epoch 1875/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0917\n", - "Epoch 1876/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7169\n", - "Relative Entropy: 0.0917\n", - "Epoch 1877/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0916\n", - "Epoch 1878/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0916\n", - "Epoch 1879/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7139\n", - "Relative Entropy: 0.0915\n", - "Epoch 1880/3000...\n", - "Loss Discriminator: 0.6782\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0915\n", - "Epoch 1881/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0914\n", - "Epoch 1882/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0914\n", - "Epoch 1883/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7158\n", - "Relative Entropy: 0.0913\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1884/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0913\n", - "Epoch 1885/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0912\n", - "Epoch 1886/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0912\n", - "Epoch 1887/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0911\n", - "Epoch 1888/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0911\n", - "Epoch 1889/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0911\n", - "Epoch 1890/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.091\n", - "Epoch 1891/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7148\n", - "Relative Entropy: 0.091\n", - "Epoch 1892/3000...\n", - "Loss Discriminator: 0.6793\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0909\n", - "Epoch 1893/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0909\n", - "Epoch 1894/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0908\n", - "Epoch 1895/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0908\n", - "Epoch 1896/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0907\n", - "Epoch 1897/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0907\n", - "Epoch 1898/3000...\n", - "Loss Discriminator: 0.6797\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0906\n", - "Epoch 1899/3000...\n", - "Loss Discriminator: 0.6792\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0906\n", - "Epoch 1900/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0905\n", - "Epoch 1901/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0905\n", - "Epoch 1902/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0904\n", - "Epoch 1903/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0904\n", - "Epoch 1904/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0903\n", - "Epoch 1905/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0903\n", - "Epoch 1906/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0902\n", - "Epoch 1907/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0902\n", - "Epoch 1908/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0901\n", - "Epoch 1909/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0901\n", - "Epoch 1910/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.09\n", - "Epoch 1911/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.09\n", - "Epoch 1912/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.09\n", - "Epoch 1913/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0899\n", - "Epoch 1914/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0899\n", - "Epoch 1915/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0898\n", - "Epoch 1916/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0898\n", - "Epoch 1917/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0897\n", - "Epoch 1918/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0897\n", - "Epoch 1919/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0896\n", - "Epoch 1920/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0896\n", - "Epoch 1921/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0895\n", - "Epoch 1922/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0895\n", - "Epoch 1923/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0894\n", - "Epoch 1924/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0894\n", - "Epoch 1925/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0893\n", - "Epoch 1926/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0893\n", - "Epoch 1927/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0892\n", - "Epoch 1928/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0892\n", - "Epoch 1929/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7146\n", - "Relative Entropy: 0.0891\n", - "Epoch 1930/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0891\n", - "Epoch 1931/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.089\n", - "Epoch 1932/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.089\n", - "Epoch 1933/3000...\n", - "Loss Discriminator: 0.6801\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.089\n", - "Epoch 1934/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0889\n", - "Epoch 1935/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0889\n", - "Epoch 1936/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0888\n", - "Epoch 1937/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0888\n", - "Epoch 1938/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0887\n", - "Epoch 1939/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.714\n", - "Relative Entropy: 0.0887\n", - "Epoch 1940/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0886\n", - "Epoch 1941/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0886\n", - "Epoch 1942/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0885\n", - "Epoch 1943/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0885\n", - "Epoch 1944/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7134\n", - "Relative Entropy: 0.0884\n", - "Epoch 1945/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0884\n", - "Epoch 1946/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0883\n", - "Epoch 1947/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0883\n", - "Epoch 1948/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0882\n", - "Epoch 1949/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7149\n", - "Relative Entropy: 0.0882\n", - "Epoch 1950/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7143\n", - "Relative Entropy: 0.0881\n", - "Epoch 1951/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7126\n", - "Relative Entropy: 0.0881\n", - "Epoch 1952/3000...\n", - "Loss Discriminator: 0.6802\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0881\n", - "Epoch 1953/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.088\n", - "Epoch 1954/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.088\n", - "Epoch 1955/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0879\n", - "Epoch 1956/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0879\n", - "Epoch 1957/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0878\n", - "Epoch 1958/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0878\n", - "Epoch 1959/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0877\n", - "Epoch 1960/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0877\n", - "Epoch 1961/3000...\n", - "Loss Discriminator: 0.6794\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0876\n", - "Epoch 1962/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0876\n", - "Epoch 1963/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0875\n", - "Epoch 1964/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0875\n", - "Epoch 1965/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0874\n", - "Epoch 1966/3000...\n", - "Loss Discriminator: 0.6796\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0874\n", - "Epoch 1967/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0873\n", - "Epoch 1968/3000...\n", - "Loss Discriminator: 0.6795\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0873\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1969/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0873\n", - "Epoch 1970/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0872\n", - "Epoch 1971/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7152\n", - "Relative Entropy: 0.0872\n", - "Epoch 1972/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0871\n", - "Epoch 1973/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0871\n", - "Epoch 1974/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.087\n", - "Epoch 1975/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.087\n", - "Epoch 1976/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0869\n", - "Epoch 1977/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0869\n", - "Epoch 1978/3000...\n", - "Loss Discriminator: 0.6803\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0868\n", - "Epoch 1979/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0868\n", - "Epoch 1980/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0867\n", - "Epoch 1981/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0867\n", - "Epoch 1982/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7147\n", - "Relative Entropy: 0.0866\n", - "Epoch 1983/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0866\n", - "Epoch 1984/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0866\n", - "Epoch 1985/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0865\n", - "Epoch 1986/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0865\n", - "Epoch 1987/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0864\n", - "Epoch 1988/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0864\n", - "Epoch 1989/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0863\n", - "Epoch 1990/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0863\n", - "Epoch 1991/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0862\n", - "Epoch 1992/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0862\n", - "Epoch 1993/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0861\n", - "Epoch 1994/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0861\n", - "Epoch 1995/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.086\n", - "Epoch 1996/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.086\n", - "Epoch 1997/3000...\n", - "Loss Discriminator: 0.6798\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0859\n", - "Epoch 1998/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0859\n", - "Epoch 1999/3000...\n", - "Loss Discriminator: 0.68\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0859\n", - "Epoch 2000/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0858\n", - "Epoch 2001/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0858\n", - "Epoch 2002/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0857\n", - "Epoch 2003/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0857\n", - "Epoch 2004/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0856\n", - "Epoch 2005/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0856\n", - "Epoch 2006/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0855\n", - "Epoch 2007/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0855\n", - "Epoch 2008/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0854\n", - "Epoch 2009/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0854\n", - "Epoch 2010/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0853\n", - "Epoch 2011/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0853\n", - "Epoch 2012/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0852\n", - "Epoch 2013/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0852\n", - "Epoch 2014/3000...\n", - "Loss Discriminator: 0.6808\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0852\n", - "Epoch 2015/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0851\n", - "Epoch 2016/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0851\n", - "Epoch 2017/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.085\n", - "Epoch 2018/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.085\n", - "Epoch 2019/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0849\n", - "Epoch 2020/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0849\n", - "Epoch 2021/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0848\n", - "Epoch 2022/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0848\n", - "Epoch 2023/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7145\n", - "Relative Entropy: 0.0847\n", - "Epoch 2024/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0847\n", - "Epoch 2025/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0846\n", - "Epoch 2026/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0846\n", - "Epoch 2027/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7138\n", - "Relative Entropy: 0.0846\n", - "Epoch 2028/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0845\n", - "Epoch 2029/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0845\n", - "Epoch 2030/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0844\n", - "Epoch 2031/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0844\n", - "Epoch 2032/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0843\n", - "Epoch 2033/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0843\n", - "Epoch 2034/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0842\n", - "Epoch 2035/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0842\n", - "Epoch 2036/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0841\n", - "Epoch 2037/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0841\n", - "Epoch 2038/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0841\n", - "Epoch 2039/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.084\n", - "Epoch 2040/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.084\n", - "Epoch 2041/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0839\n", - "Epoch 2042/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0839\n", - "Epoch 2043/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0838\n", - "Epoch 2044/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7141\n", - "Relative Entropy: 0.0838\n", - "Epoch 2045/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7137\n", - "Relative Entropy: 0.0837\n", - "Epoch 2046/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0837\n", - "Epoch 2047/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0836\n", - "Epoch 2048/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0836\n", - "Epoch 2049/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7132\n", - "Relative Entropy: 0.0835\n", - "Epoch 2050/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0835\n", - "Epoch 2051/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0835\n", - "Epoch 2052/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0834\n", - "Epoch 2053/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.0834\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2054/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0833\n", - "Epoch 2055/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0833\n", - "Epoch 2056/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7133\n", - "Relative Entropy: 0.0832\n", - "Epoch 2057/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0832\n", - "Epoch 2058/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0831\n", - "Epoch 2059/3000...\n", - "Loss Discriminator: 0.6809\n", - "Loss Generator: 0.7127\n", - "Relative Entropy: 0.0831\n", - "Epoch 2060/3000...\n", - "Loss Discriminator: 0.6817\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.083\n", - "Epoch 2061/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.083\n", - "Epoch 2062/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.083\n", - "Epoch 2063/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0829\n", - "Epoch 2064/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0829\n", - "Epoch 2065/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0828\n", - "Epoch 2066/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0828\n", - "Epoch 2067/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0827\n", - "Epoch 2068/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0827\n", - "Epoch 2069/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0826\n", - "Epoch 2070/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0826\n", - "Epoch 2071/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0825\n", - "Epoch 2072/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0825\n", - "Epoch 2073/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0825\n", - "Epoch 2074/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0824\n", - "Epoch 2075/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0824\n", - "Epoch 2076/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0823\n", - "Epoch 2077/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0823\n", - "Epoch 2078/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0822\n", - "Epoch 2079/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0822\n", - "Epoch 2080/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0821\n", - "Epoch 2081/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0821\n", - "Epoch 2082/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.082\n", - "Epoch 2083/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.082\n", - "Epoch 2084/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.082\n", - "Epoch 2085/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0819\n", - "Epoch 2086/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0819\n", - "Epoch 2087/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.713\n", - "Relative Entropy: 0.0818\n", - "Epoch 2088/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0818\n", - "Epoch 2089/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0817\n", - "Epoch 2090/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0817\n", - "Epoch 2091/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0816\n", - "Epoch 2092/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0816\n", - "Epoch 2093/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7131\n", - "Relative Entropy: 0.0815\n", - "Epoch 2094/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0815\n", - "Epoch 2095/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0815\n", - "Epoch 2096/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0814\n", - "Epoch 2097/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7129\n", - "Relative Entropy: 0.0814\n", - "Epoch 2098/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0813\n", - "Epoch 2099/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0813\n", - "Epoch 2100/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0812\n", - "Epoch 2101/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7142\n", - "Relative Entropy: 0.0812\n", - "Epoch 2102/3000...\n", - "Loss Discriminator: 0.6807\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0811\n", - "Epoch 2103/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0811\n", - "Epoch 2104/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.0811\n", - "Epoch 2105/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.081\n", - "Epoch 2106/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.081\n", - "Epoch 2107/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7128\n", - "Relative Entropy: 0.0809\n", - "Epoch 2108/3000...\n", - "Loss Discriminator: 0.6806\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0809\n", - "Epoch 2109/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0808\n", - "Epoch 2110/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0808\n", - "Epoch 2111/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0807\n", - "Epoch 2112/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0807\n", - "Epoch 2113/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0806\n", - "Epoch 2114/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0806\n", - "Epoch 2115/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0806\n", - "Epoch 2116/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0805\n", - "Epoch 2117/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0805\n", - "Epoch 2118/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0804\n", - "Epoch 2119/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0804\n", - "Epoch 2120/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0803\n", - "Epoch 2121/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0803\n", - "Epoch 2122/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0802\n", - "Epoch 2123/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0802\n", - "Epoch 2124/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0802\n", - "Epoch 2125/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0801\n", - "Epoch 2126/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0801\n", - "Epoch 2127/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.08\n", - "Epoch 2128/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.08\n", - "Epoch 2129/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0799\n", - "Epoch 2130/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0799\n", - "Epoch 2131/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0798\n", - "Epoch 2132/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0798\n", - "Epoch 2133/3000...\n", - "Loss Discriminator: 0.6804\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0798\n", - "Epoch 2134/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0797\n", - "Epoch 2135/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0797\n", - "Epoch 2136/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7113\n", - "Relative Entropy: 0.0796\n", - "Epoch 2137/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0796\n", - "Epoch 2138/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0795\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2139/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0795\n", - "Epoch 2140/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0794\n", - "Epoch 2141/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0794\n", - "Epoch 2142/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0794\n", - "Epoch 2143/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0793\n", - "Epoch 2144/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0793\n", - "Epoch 2145/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0792\n", - "Epoch 2146/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0792\n", - "Epoch 2147/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0791\n", - "Epoch 2148/3000...\n", - "Loss Discriminator: 0.6811\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0791\n", - "Epoch 2149/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.079\n", - "Epoch 2150/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.079\n", - "Epoch 2151/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.079\n", - "Epoch 2152/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0789\n", - "Epoch 2153/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0789\n", - "Epoch 2154/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0788\n", - "Epoch 2155/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0788\n", - "Epoch 2156/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0787\n", - "Epoch 2157/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0787\n", - "Epoch 2158/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0786\n", - "Epoch 2159/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0786\n", - "Epoch 2160/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0786\n", - "Epoch 2161/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0785\n", - "Epoch 2162/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0785\n", - "Epoch 2163/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7114\n", - "Relative Entropy: 0.0784\n", - "Epoch 2164/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0784\n", - "Epoch 2165/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0783\n", - "Epoch 2166/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0783\n", - "Epoch 2167/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0782\n", - "Epoch 2168/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0782\n", - "Epoch 2169/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0782\n", - "Epoch 2170/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0781\n", - "Epoch 2171/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0781\n", - "Epoch 2172/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.078\n", - "Epoch 2173/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7122\n", - "Relative Entropy: 0.078\n", - "Epoch 2174/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0779\n", - "Epoch 2175/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0779\n", - "Epoch 2176/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0779\n", - "Epoch 2177/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0778\n", - "Epoch 2178/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0778\n", - "Epoch 2179/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0777\n", - "Epoch 2180/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0777\n", - "Epoch 2181/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0776\n", - "Epoch 2182/3000...\n", - "Loss Discriminator: 0.6812\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0776\n", - "Epoch 2183/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0775\n", - "Epoch 2184/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0775\n", - "Epoch 2185/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0775\n", - "Epoch 2186/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0774\n", - "Epoch 2187/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0774\n", - "Epoch 2188/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0773\n", - "Epoch 2189/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0773\n", - "Epoch 2190/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0772\n", - "Epoch 2191/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0772\n", - "Epoch 2192/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0771\n", - "Epoch 2193/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0771\n", - "Epoch 2194/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0771\n", - "Epoch 2195/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7119\n", - "Relative Entropy: 0.077\n", - "Epoch 2196/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.077\n", - "Epoch 2197/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0769\n", - "Epoch 2198/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0769\n", - "Epoch 2199/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7123\n", - "Relative Entropy: 0.0768\n", - "Epoch 2200/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0768\n", - "Epoch 2201/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0768\n", - "Epoch 2202/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0767\n", - "Epoch 2203/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0767\n", - "Epoch 2204/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0766\n", - "Epoch 2205/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0766\n", - "Epoch 2206/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0765\n", - "Epoch 2207/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7136\n", - "Relative Entropy: 0.0765\n", - "Epoch 2208/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0765\n", - "Epoch 2209/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0764\n", - "Epoch 2210/3000...\n", - "Loss Discriminator: 0.6819\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0764\n", - "Epoch 2211/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0763\n", - "Epoch 2212/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0763\n", - "Epoch 2213/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0762\n", - "Epoch 2214/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0762\n", - "Epoch 2215/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0761\n", - "Epoch 2216/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0761\n", - "Epoch 2217/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0761\n", - "Epoch 2218/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.076\n", - "Epoch 2219/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.076\n", - "Epoch 2220/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0759\n", - "Epoch 2221/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0759\n", - "Epoch 2222/3000...\n", - "Loss Discriminator: 0.6825\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0758\n", - "Epoch 2223/3000...\n", - "Loss Discriminator: 0.6818\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0758\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2224/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7124\n", - "Relative Entropy: 0.0758\n", - "Epoch 2225/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0757\n", - "Epoch 2226/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0757\n", - "Epoch 2227/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0756\n", - "Epoch 2228/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0756\n", - "Epoch 2229/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0755\n", - "Epoch 2230/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7115\n", - "Relative Entropy: 0.0755\n", - "Epoch 2231/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0755\n", - "Epoch 2232/3000...\n", - "Loss Discriminator: 0.6805\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0754\n", - "Epoch 2233/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0754\n", - "Epoch 2234/3000...\n", - "Loss Discriminator: 0.6816\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0753\n", - "Epoch 2235/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.712\n", - "Relative Entropy: 0.0753\n", - "Epoch 2236/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0752\n", - "Epoch 2237/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0752\n", - "Epoch 2238/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0752\n", - "Epoch 2239/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0751\n", - "Epoch 2240/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0751\n", - "Epoch 2241/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.075\n", - "Epoch 2242/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.075\n", - "Epoch 2243/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0749\n", - "Epoch 2244/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0749\n", - "Epoch 2245/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7108\n", - "Relative Entropy: 0.0749\n", - "Epoch 2246/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0748\n", - "Epoch 2247/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0748\n", - "Epoch 2248/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0747\n", - "Epoch 2249/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0747\n", - "Epoch 2250/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0746\n", - "Epoch 2251/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0746\n", - "Epoch 2252/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0746\n", - "Epoch 2253/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0745\n", - "Epoch 2254/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0745\n", - "Epoch 2255/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0744\n", - "Epoch 2256/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0744\n", - "Epoch 2257/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7107\n", - "Relative Entropy: 0.0743\n", - "Epoch 2258/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0743\n", - "Epoch 2259/3000...\n", - "Loss Discriminator: 0.6813\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0743\n", - "Epoch 2260/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0742\n", - "Epoch 2261/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0742\n", - "Epoch 2262/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0741\n", - "Epoch 2263/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0741\n", - "Epoch 2264/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.074\n", - "Epoch 2265/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.074\n", - "Epoch 2266/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.074\n", - "Epoch 2267/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0739\n", - "Epoch 2268/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0739\n", - "Epoch 2269/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0738\n", - "Epoch 2270/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0738\n", - "Epoch 2271/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7125\n", - "Relative Entropy: 0.0737\n", - "Epoch 2272/3000...\n", - "Loss Discriminator: 0.681\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0737\n", - "Epoch 2273/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0737\n", - "Epoch 2274/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0736\n", - "Epoch 2275/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0736\n", - "Epoch 2276/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7109\n", - "Relative Entropy: 0.0735\n", - "Epoch 2277/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0735\n", - "Epoch 2278/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0734\n", - "Epoch 2279/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7144\n", - "Relative Entropy: 0.0734\n", - "Epoch 2280/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0734\n", - "Epoch 2281/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0733\n", - "Epoch 2282/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0733\n", - "Epoch 2283/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0732\n", - "Epoch 2284/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0732\n", - "Epoch 2285/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0731\n", - "Epoch 2286/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0731\n", - "Epoch 2287/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0731\n", - "Epoch 2288/3000...\n", - "Loss Discriminator: 0.6814\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.073\n", - "Epoch 2289/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.073\n", - "Epoch 2290/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0729\n", - "Epoch 2291/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0729\n", - "Epoch 2292/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0729\n", - "Epoch 2293/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0728\n", - "Epoch 2294/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0728\n", - "Epoch 2295/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0727\n", - "Epoch 2296/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0727\n", - "Epoch 2297/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7117\n", - "Relative Entropy: 0.0726\n", - "Epoch 2298/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0726\n", - "Epoch 2299/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0726\n", - "Epoch 2300/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0725\n", - "Epoch 2301/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0725\n", - "Epoch 2302/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0724\n", - "Epoch 2303/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0724\n", - "Epoch 2304/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0723\n", - "Epoch 2305/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0723\n", - "Epoch 2306/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0723\n", - "Epoch 2307/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0722\n", - "Epoch 2308/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0722\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2309/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0721\n", - "Epoch 2310/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0721\n", - "Epoch 2311/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0721\n", - "Epoch 2312/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.072\n", - "Epoch 2313/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.072\n", - "Epoch 2314/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0719\n", - "Epoch 2315/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0719\n", - "Epoch 2316/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0718\n", - "Epoch 2317/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7095\n", - "Relative Entropy: 0.0718\n", - "Epoch 2318/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0718\n", - "Epoch 2319/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0717\n", - "Epoch 2320/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0717\n", - "Epoch 2321/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0716\n", - "Epoch 2322/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0716\n", - "Epoch 2323/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0716\n", - "Epoch 2324/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0715\n", - "Epoch 2325/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0715\n", - "Epoch 2326/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0714\n", - "Epoch 2327/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7105\n", - "Relative Entropy: 0.0714\n", - "Epoch 2328/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0713\n", - "Epoch 2329/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0713\n", - "Epoch 2330/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0713\n", - "Epoch 2331/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0712\n", - "Epoch 2332/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0712\n", - "Epoch 2333/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0711\n", - "Epoch 2334/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7118\n", - "Relative Entropy: 0.0711\n", - "Epoch 2335/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0711\n", - "Epoch 2336/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.071\n", - "Epoch 2337/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.071\n", - "Epoch 2338/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7111\n", - "Relative Entropy: 0.0709\n", - "Epoch 2339/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0709\n", - "Epoch 2340/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0708\n", - "Epoch 2341/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0708\n", - "Epoch 2342/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7098\n", - "Relative Entropy: 0.0708\n", - "Epoch 2343/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0707\n", - "Epoch 2344/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0707\n", - "Epoch 2345/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7121\n", - "Relative Entropy: 0.0706\n", - "Epoch 2346/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.711\n", - "Relative Entropy: 0.0706\n", - "Epoch 2347/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0706\n", - "Epoch 2348/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0705\n", - "Epoch 2349/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0705\n", - "Epoch 2350/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0704\n", - "Epoch 2351/3000...\n", - "Loss Discriminator: 0.6823\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0704\n", - "Epoch 2352/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0703\n", - "Epoch 2353/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0703\n", - "Epoch 2354/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7102\n", - "Relative Entropy: 0.0703\n", - "Epoch 2355/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0702\n", - "Epoch 2356/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0702\n", - "Epoch 2357/3000...\n", - "Loss Discriminator: 0.6826\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0701\n", - "Epoch 2358/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0701\n", - "Epoch 2359/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0701\n", - "Epoch 2360/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.07\n", - "Epoch 2361/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.07\n", - "Epoch 2362/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0699\n", - "Epoch 2363/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0699\n", - "Epoch 2364/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0699\n", - "Epoch 2365/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0698\n", - "Epoch 2366/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0698\n", - "Epoch 2367/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0697\n", - "Epoch 2368/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0697\n", - "Epoch 2369/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0696\n", - "Epoch 2370/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0696\n", - "Epoch 2371/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0696\n", - "Epoch 2372/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0695\n", - "Epoch 2373/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0695\n", - "Epoch 2374/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0694\n", - "Epoch 2375/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0694\n", - "Epoch 2376/3000...\n", - "Loss Discriminator: 0.6822\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0694\n", - "Epoch 2377/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0693\n", - "Epoch 2378/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7101\n", - "Relative Entropy: 0.0693\n", - "Epoch 2379/3000...\n", - "Loss Discriminator: 0.6828\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0692\n", - "Epoch 2380/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0692\n", - "Epoch 2381/3000...\n", - "Loss Discriminator: 0.6815\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0692\n", - "Epoch 2382/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.71\n", - "Relative Entropy: 0.0691\n", - "Epoch 2383/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0691\n", - "Epoch 2384/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.069\n", - "Epoch 2385/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.069\n", - "Epoch 2386/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0689\n", - "Epoch 2387/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0689\n", - "Epoch 2388/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0689\n", - "Epoch 2389/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0688\n", - "Epoch 2390/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0688\n", - "Epoch 2391/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0687\n", - "Epoch 2392/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0687\n", - "Epoch 2393/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.0687\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2394/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0686\n", - "Epoch 2395/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0686\n", - "Epoch 2396/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0685\n", - "Epoch 2397/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0685\n", - "Epoch 2398/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0685\n", - "Epoch 2399/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7099\n", - "Relative Entropy: 0.0684\n", - "Epoch 2400/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0684\n", - "Epoch 2401/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0683\n", - "Epoch 2402/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0683\n", - "Epoch 2403/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0683\n", - "Epoch 2404/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0682\n", - "Epoch 2405/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0682\n", - "Epoch 2406/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0681\n", - "Epoch 2407/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0681\n", - "Epoch 2408/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0681\n", - "Epoch 2409/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.068\n", - "Epoch 2410/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.068\n", - "Epoch 2411/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0679\n", - "Epoch 2412/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0679\n", - "Epoch 2413/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7135\n", - "Relative Entropy: 0.0679\n", - "Epoch 2414/3000...\n", - "Loss Discriminator: 0.682\n", - "Loss Generator: 0.7112\n", - "Relative Entropy: 0.0678\n", - "Epoch 2415/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0678\n", - "Epoch 2416/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0677\n", - "Epoch 2417/3000...\n", - "Loss Discriminator: 0.6821\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0677\n", - "Epoch 2418/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0677\n", - "Epoch 2419/3000...\n", - "Loss Discriminator: 0.6827\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0676\n", - "Epoch 2420/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0676\n", - "Epoch 2421/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0675\n", - "Epoch 2422/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0675\n", - "Epoch 2423/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0674\n", - "Epoch 2424/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0674\n", - "Epoch 2425/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7116\n", - "Relative Entropy: 0.0674\n", - "Epoch 2426/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0673\n", - "Epoch 2427/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0673\n", - "Epoch 2428/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7071\n", - "Relative Entropy: 0.0672\n", - "Epoch 2429/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0672\n", - "Epoch 2430/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.0672\n", - "Epoch 2431/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0671\n", - "Epoch 2432/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7104\n", - "Relative Entropy: 0.0671\n", - "Epoch 2433/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.067\n", - "Epoch 2434/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.067\n", - "Epoch 2435/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.067\n", - "Epoch 2436/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0669\n", - "Epoch 2437/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0669\n", - "Epoch 2438/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0668\n", - "Epoch 2439/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0668\n", - "Epoch 2440/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0668\n", - "Epoch 2441/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0667\n", - "Epoch 2442/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0667\n", - "Epoch 2443/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0666\n", - "Epoch 2444/3000...\n", - "Loss Discriminator: 0.683\n", - "Loss Generator: 0.7092\n", - "Relative Entropy: 0.0666\n", - "Epoch 2445/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7091\n", - "Relative Entropy: 0.0666\n", - "Epoch 2446/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0665\n", - "Epoch 2447/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0665\n", - "Epoch 2448/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0664\n", - "Epoch 2449/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0664\n", - "Epoch 2450/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0664\n", - "Epoch 2451/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0663\n", - "Epoch 2452/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0663\n", - "Epoch 2453/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0662\n", - "Epoch 2454/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0662\n", - "Epoch 2455/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0662\n", - "Epoch 2456/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7087\n", - "Relative Entropy: 0.0661\n", - "Epoch 2457/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0661\n", - "Epoch 2458/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.066\n", - "Epoch 2459/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.066\n", - "Epoch 2460/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.066\n", - "Epoch 2461/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0659\n", - "Epoch 2462/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0659\n", - "Epoch 2463/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0658\n", - "Epoch 2464/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0658\n", - "Epoch 2465/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0658\n", - "Epoch 2466/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0657\n", - "Epoch 2467/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0657\n", - "Epoch 2468/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0657\n", - "Epoch 2469/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0656\n", - "Epoch 2470/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0656\n", - "Epoch 2471/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0655\n", - "Epoch 2472/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0655\n", - "Epoch 2473/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0655\n", - "Epoch 2474/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0654\n", - "Epoch 2475/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7093\n", - "Relative Entropy: 0.0654\n", - "Epoch 2476/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0653\n", - "Epoch 2477/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0653\n", - "Epoch 2478/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0653\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2479/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0652\n", - "Epoch 2480/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0652\n", - "Epoch 2481/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0651\n", - "Epoch 2482/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0651\n", - "Epoch 2483/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7097\n", - "Relative Entropy: 0.0651\n", - "Epoch 2484/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.065\n", - "Epoch 2485/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.065\n", - "Epoch 2486/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0649\n", - "Epoch 2487/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0649\n", - "Epoch 2488/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0649\n", - "Epoch 2489/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7079\n", - "Relative Entropy: 0.0648\n", - "Epoch 2490/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7085\n", - "Relative Entropy: 0.0648\n", - "Epoch 2491/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0647\n", - "Epoch 2492/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0647\n", - "Epoch 2493/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0647\n", - "Epoch 2494/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0646\n", - "Epoch 2495/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0646\n", - "Epoch 2496/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0645\n", - "Epoch 2497/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0645\n", - "Epoch 2498/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0645\n", - "Epoch 2499/3000...\n", - "Loss Discriminator: 0.6829\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0644\n", - "Epoch 2500/3000...\n", - "Loss Discriminator: 0.6832\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0644\n", - "Epoch 2501/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0644\n", - "Epoch 2502/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0643\n", - "Epoch 2503/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0643\n", - "Epoch 2504/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7096\n", - "Relative Entropy: 0.0642\n", - "Epoch 2505/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0642\n", - "Epoch 2506/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0642\n", - "Epoch 2507/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0641\n", - "Epoch 2508/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0641\n", - "Epoch 2509/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.064\n", - "Epoch 2510/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.064\n", - "Epoch 2511/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.064\n", - "Epoch 2512/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0639\n", - "Epoch 2513/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0639\n", - "Epoch 2514/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0638\n", - "Epoch 2515/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0638\n", - "Epoch 2516/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0638\n", - "Epoch 2517/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0637\n", - "Epoch 2518/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7103\n", - "Relative Entropy: 0.0637\n", - "Epoch 2519/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0636\n", - "Epoch 2520/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0636\n", - "Epoch 2521/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0636\n", - "Epoch 2522/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0635\n", - "Epoch 2523/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0635\n", - "Epoch 2524/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0635\n", - "Epoch 2525/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0634\n", - "Epoch 2526/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0634\n", - "Epoch 2527/3000...\n", - "Loss Discriminator: 0.6838\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0633\n", - "Epoch 2528/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0633\n", - "Epoch 2529/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0633\n", - "Epoch 2530/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0632\n", - "Epoch 2531/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0632\n", - "Epoch 2532/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0631\n", - "Epoch 2533/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0631\n", - "Epoch 2534/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0631\n", - "Epoch 2535/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.063\n", - "Epoch 2536/3000...\n", - "Loss Discriminator: 0.6835\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.063\n", - "Epoch 2537/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.063\n", - "Epoch 2538/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0629\n", - "Epoch 2539/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0629\n", - "Epoch 2540/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0628\n", - "Epoch 2541/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0628\n", - "Epoch 2542/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0628\n", - "Epoch 2543/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0627\n", - "Epoch 2544/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0627\n", - "Epoch 2545/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7086\n", - "Relative Entropy: 0.0626\n", - "Epoch 2546/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0626\n", - "Epoch 2547/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0626\n", - "Epoch 2548/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0625\n", - "Epoch 2549/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0625\n", - "Epoch 2550/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7089\n", - "Relative Entropy: 0.0625\n", - "Epoch 2551/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0624\n", - "Epoch 2552/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0624\n", - "Epoch 2553/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0623\n", - "Epoch 2554/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0623\n", - "Epoch 2555/3000...\n", - "Loss Discriminator: 0.684\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0623\n", - "Epoch 2556/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0622\n", - "Epoch 2557/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0622\n", - "Epoch 2558/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0621\n", - "Epoch 2559/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0621\n", - "Epoch 2560/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0621\n", - "Epoch 2561/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.062\n", - "Epoch 2562/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.062\n", - "Epoch 2563/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.062\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2564/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0619\n", - "Epoch 2565/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0619\n", - "Epoch 2566/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0618\n", - "Epoch 2567/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0618\n", - "Epoch 2568/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0618\n", - "Epoch 2569/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0617\n", - "Epoch 2570/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0617\n", - "Epoch 2571/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0616\n", - "Epoch 2572/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0616\n", - "Epoch 2573/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0616\n", - "Epoch 2574/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0615\n", - "Epoch 2575/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0615\n", - "Epoch 2576/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0615\n", - "Epoch 2577/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0614\n", - "Epoch 2578/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0614\n", - "Epoch 2579/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0613\n", - "Epoch 2580/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0613\n", - "Epoch 2581/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0613\n", - "Epoch 2582/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0612\n", - "Epoch 2583/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0612\n", - "Epoch 2584/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0612\n", - "Epoch 2585/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0611\n", - "Epoch 2586/3000...\n", - "Loss Discriminator: 0.6833\n", - "Loss Generator: 0.7082\n", - "Relative Entropy: 0.0611\n", - "Epoch 2587/3000...\n", - "Loss Discriminator: 0.6836\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.061\n", - "Epoch 2588/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.061\n", - "Epoch 2589/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.061\n", - "Epoch 2590/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0609\n", - "Epoch 2591/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0609\n", - "Epoch 2592/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0609\n", - "Epoch 2593/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0608\n", - "Epoch 2594/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7106\n", - "Relative Entropy: 0.0608\n", - "Epoch 2595/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0607\n", - "Epoch 2596/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0607\n", - "Epoch 2597/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0607\n", - "Epoch 2598/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0606\n", - "Epoch 2599/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0606\n", - "Epoch 2600/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0606\n", - "Epoch 2601/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.7094\n", - "Relative Entropy: 0.0605\n", - "Epoch 2602/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7081\n", - "Relative Entropy: 0.0605\n", - "Epoch 2603/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0604\n", - "Epoch 2604/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0604\n", - "Epoch 2605/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0604\n", - "Epoch 2606/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0603\n", - "Epoch 2607/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0603\n", - "Epoch 2608/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0603\n", - "Epoch 2609/3000...\n", - "Loss Discriminator: 0.6834\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0602\n", - "Epoch 2610/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0602\n", - "Epoch 2611/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0601\n", - "Epoch 2612/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0601\n", - "Epoch 2613/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0601\n", - "Epoch 2614/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7078\n", - "Relative Entropy: 0.06\n", - "Epoch 2615/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.06\n", - "Epoch 2616/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.06\n", - "Epoch 2617/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0599\n", - "Epoch 2618/3000...\n", - "Loss Discriminator: 0.6845\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0599\n", - "Epoch 2619/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0598\n", - "Epoch 2620/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0598\n", - "Epoch 2621/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0598\n", - "Epoch 2622/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0597\n", - "Epoch 2623/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0597\n", - "Epoch 2624/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0597\n", - "Epoch 2625/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0596\n", - "Epoch 2626/3000...\n", - "Loss Discriminator: 0.6837\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0596\n", - "Epoch 2627/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0595\n", - "Epoch 2628/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0595\n", - "Epoch 2629/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.709\n", - "Relative Entropy: 0.0595\n", - "Epoch 2630/3000...\n", - "Loss Discriminator: 0.6841\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0594\n", - "Epoch 2631/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0594\n", - "Epoch 2632/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0594\n", - "Epoch 2633/3000...\n", - "Loss Discriminator: 0.6831\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0593\n", - "Epoch 2634/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0593\n", - "Epoch 2635/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0592\n", - "Epoch 2636/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7083\n", - "Relative Entropy: 0.0592\n", - "Epoch 2637/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.0592\n", - "Epoch 2638/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0591\n", - "Epoch 2639/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0591\n", - "Epoch 2640/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0591\n", - "Epoch 2641/3000...\n", - "Loss Discriminator: 0.685\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.059\n", - "Epoch 2642/3000...\n", - "Loss Discriminator: 0.6849\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.059\n", - "Epoch 2643/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.059\n", - "Epoch 2644/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0589\n", - "Epoch 2645/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0589\n", - "Epoch 2646/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7074\n", - "Relative Entropy: 0.0588\n", - "Epoch 2647/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0588\n", - "Epoch 2648/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0588\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2649/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0587\n", - "Epoch 2650/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0587\n", - "Epoch 2651/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0587\n", - "Epoch 2652/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0586\n", - "Epoch 2653/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0586\n", - "Epoch 2654/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0585\n", - "Epoch 2655/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0585\n", - "Epoch 2656/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0585\n", - "Epoch 2657/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0584\n", - "Epoch 2658/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0584\n", - "Epoch 2659/3000...\n", - "Loss Discriminator: 0.6839\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0584\n", - "Epoch 2660/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7088\n", - "Relative Entropy: 0.0583\n", - "Epoch 2661/3000...\n", - "Loss Discriminator: 0.6824\n", - "Loss Generator: 0.706\n", - "Relative Entropy: 0.0583\n", - "Epoch 2662/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0583\n", - "Epoch 2663/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0582\n", - "Epoch 2664/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0582\n", - "Epoch 2665/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0581\n", - "Epoch 2666/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0581\n", - "Epoch 2667/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0581\n", - "Epoch 2668/3000...\n", - "Loss Discriminator: 0.6842\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.058\n", - "Epoch 2669/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.058\n", - "Epoch 2670/3000...\n", - "Loss Discriminator: 0.6843\n", - "Loss Generator: 0.7073\n", - "Relative Entropy: 0.058\n", - "Epoch 2671/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7069\n", - "Relative Entropy: 0.0579\n", - "Epoch 2672/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0579\n", - "Epoch 2673/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0578\n", - "Epoch 2674/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0578\n", - "Epoch 2675/3000...\n", - "Loss Discriminator: 0.6853\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0578\n", - "Epoch 2676/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0577\n", - "Epoch 2677/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0577\n", - "Epoch 2678/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0577\n", - "Epoch 2679/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0576\n", - "Epoch 2680/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0576\n", - "Epoch 2681/3000...\n", - "Loss Discriminator: 0.6844\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0576\n", - "Epoch 2682/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0575\n", - "Epoch 2683/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0575\n", - "Epoch 2684/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0574\n", - "Epoch 2685/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0574\n", - "Epoch 2686/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0574\n", - "Epoch 2687/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.707\n", - "Relative Entropy: 0.0573\n", - "Epoch 2688/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0573\n", - "Epoch 2689/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0573\n", - "Epoch 2690/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0572\n", - "Epoch 2691/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0572\n", - "Epoch 2692/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0572\n", - "Epoch 2693/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0571\n", - "Epoch 2694/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7067\n", - "Relative Entropy: 0.0571\n", - "Epoch 2695/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.057\n", - "Epoch 2696/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.057\n", - "Epoch 2697/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7048\n", - "Relative Entropy: 0.057\n", - "Epoch 2698/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0569\n", - "Epoch 2699/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7076\n", - "Relative Entropy: 0.0569\n", - "Epoch 2700/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0569\n", - "Epoch 2701/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0568\n", - "Epoch 2702/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0568\n", - "Epoch 2703/3000...\n", - "Loss Discriminator: 0.6848\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0568\n", - "Epoch 2704/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0567\n", - "Epoch 2705/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0567\n", - "Epoch 2706/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0567\n", - "Epoch 2707/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0566\n", - "Epoch 2708/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7066\n", - "Relative Entropy: 0.0566\n", - "Epoch 2709/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0565\n", - "Epoch 2710/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0565\n", - "Epoch 2711/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0565\n", - "Epoch 2712/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0564\n", - "Epoch 2713/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0564\n", - "Epoch 2714/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0564\n", - "Epoch 2715/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0563\n", - "Epoch 2716/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0563\n", - "Epoch 2717/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0563\n", - "Epoch 2718/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0562\n", - "Epoch 2719/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0562\n", - "Epoch 2720/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0561\n", - "Epoch 2721/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7077\n", - "Relative Entropy: 0.0561\n", - "Epoch 2722/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0561\n", - "Epoch 2723/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.056\n", - "Epoch 2724/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.056\n", - "Epoch 2725/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.056\n", - "Epoch 2726/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0559\n", - "Epoch 2727/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0559\n", - "Epoch 2728/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0559\n", - "Epoch 2729/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0558\n", - "Epoch 2730/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0558\n", - "Epoch 2731/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0558\n", - "Epoch 2732/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0557\n", - "Epoch 2733/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0557\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2734/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0556\n", - "Epoch 2735/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0556\n", - "Epoch 2736/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0556\n", - "Epoch 2737/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0555\n", - "Epoch 2738/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0555\n", - "Epoch 2739/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0555\n", - "Epoch 2740/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0554\n", - "Epoch 2741/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0554\n", - "Epoch 2742/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0554\n", - "Epoch 2743/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0553\n", - "Epoch 2744/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0553\n", - "Epoch 2745/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0553\n", - "Epoch 2746/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0552\n", - "Epoch 2747/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0552\n", - "Epoch 2748/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0552\n", - "Epoch 2749/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0551\n", - "Epoch 2750/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0551\n", - "Epoch 2751/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.055\n", - "Epoch 2752/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.055\n", - "Epoch 2753/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.055\n", - "Epoch 2754/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0549\n", - "Epoch 2755/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7052\n", - "Relative Entropy: 0.0549\n", - "Epoch 2756/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0549\n", - "Epoch 2757/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0548\n", - "Epoch 2758/3000...\n", - "Loss Discriminator: 0.6847\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0548\n", - "Epoch 2759/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.708\n", - "Relative Entropy: 0.0548\n", - "Epoch 2760/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0547\n", - "Epoch 2761/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0547\n", - "Epoch 2762/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0547\n", - "Epoch 2763/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0546\n", - "Epoch 2764/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0546\n", - "Epoch 2765/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0546\n", - "Epoch 2766/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0545\n", - "Epoch 2767/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0545\n", - "Epoch 2768/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0544\n", - "Epoch 2769/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0544\n", - "Epoch 2770/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0544\n", - "Epoch 2771/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0543\n", - "Epoch 2772/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0543\n", - "Epoch 2773/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0543\n", - "Epoch 2774/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0542\n", - "Epoch 2775/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0542\n", - "Epoch 2776/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0542\n", - "Epoch 2777/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0541\n", - "Epoch 2778/3000...\n", - "Loss Discriminator: 0.6852\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0541\n", - "Epoch 2779/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0541\n", - "Epoch 2780/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.054\n", - "Epoch 2781/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.054\n", - "Epoch 2782/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.054\n", - "Epoch 2783/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0539\n", - "Epoch 2784/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0539\n", - "Epoch 2785/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0539\n", - "Epoch 2786/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.0538\n", - "Epoch 2787/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0538\n", - "Epoch 2788/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0538\n", - "Epoch 2789/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0537\n", - "Epoch 2790/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0537\n", - "Epoch 2791/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0536\n", - "Epoch 2792/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0536\n", - "Epoch 2793/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0536\n", - "Epoch 2794/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0535\n", - "Epoch 2795/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7057\n", - "Relative Entropy: 0.0535\n", - "Epoch 2796/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0535\n", - "Epoch 2797/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0534\n", - "Epoch 2798/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7064\n", - "Relative Entropy: 0.0534\n", - "Epoch 2799/3000...\n", - "Loss Discriminator: 0.6846\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0534\n", - "Epoch 2800/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0533\n", - "Epoch 2801/3000...\n", - "Loss Discriminator: 0.6854\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0533\n", - "Epoch 2802/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0533\n", - "Epoch 2803/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0532\n", - "Epoch 2804/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0532\n", - "Epoch 2805/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0532\n", - "Epoch 2806/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7084\n", - "Relative Entropy: 0.0531\n", - "Epoch 2807/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0531\n", - "Epoch 2808/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0531\n", - "Epoch 2809/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.053\n", - "Epoch 2810/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.053\n", - "Epoch 2811/3000...\n", - "Loss Discriminator: 0.6851\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.053\n", - "Epoch 2812/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0529\n", - "Epoch 2813/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0529\n", - "Epoch 2814/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0529\n", - "Epoch 2815/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7068\n", - "Relative Entropy: 0.0528\n", - "Epoch 2816/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0528\n", - "Epoch 2817/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7004\n", - "Relative Entropy: 0.0528\n", - "Epoch 2818/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7051\n", - "Relative Entropy: 0.0527\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2819/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0527\n", - "Epoch 2820/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0526\n", - "Epoch 2821/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0526\n", - "Epoch 2822/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0526\n", - "Epoch 2823/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7058\n", - "Relative Entropy: 0.0525\n", - "Epoch 2824/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0525\n", - "Epoch 2825/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0525\n", - "Epoch 2826/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0524\n", - "Epoch 2827/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0524\n", - "Epoch 2828/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0524\n", - "Epoch 2829/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0523\n", - "Epoch 2830/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0523\n", - "Epoch 2831/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0523\n", - "Epoch 2832/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0522\n", - "Epoch 2833/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7072\n", - "Relative Entropy: 0.0522\n", - "Epoch 2834/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0522\n", - "Epoch 2835/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0521\n", - "Epoch 2836/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0521\n", - "Epoch 2837/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0521\n", - "Epoch 2838/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.052\n", - "Epoch 2839/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.052\n", - "Epoch 2840/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.052\n", - "Epoch 2841/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0519\n", - "Epoch 2842/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0519\n", - "Epoch 2843/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0519\n", - "Epoch 2844/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7075\n", - "Relative Entropy: 0.0518\n", - "Epoch 2845/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0518\n", - "Epoch 2846/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.6992\n", - "Relative Entropy: 0.0518\n", - "Epoch 2847/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7045\n", - "Relative Entropy: 0.0517\n", - "Epoch 2848/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7061\n", - "Relative Entropy: 0.0517\n", - "Epoch 2849/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0517\n", - "Epoch 2850/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0516\n", - "Epoch 2851/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0516\n", - "Epoch 2852/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0516\n", - "Epoch 2853/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0515\n", - "Epoch 2854/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0515\n", - "Epoch 2855/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0515\n", - "Epoch 2856/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0514\n", - "Epoch 2857/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0514\n", - "Epoch 2858/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7062\n", - "Relative Entropy: 0.0514\n", - "Epoch 2859/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0513\n", - "Epoch 2860/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0513\n", - "Epoch 2861/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0513\n", - "Epoch 2862/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0512\n", - "Epoch 2863/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0512\n", - "Epoch 2864/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0512\n", - "Epoch 2865/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0511\n", - "Epoch 2866/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0511\n", - "Epoch 2867/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0511\n", - "Epoch 2868/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.051\n", - "Epoch 2869/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.051\n", - "Epoch 2870/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.051\n", - "Epoch 2871/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0509\n", - "Epoch 2872/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0509\n", - "Epoch 2873/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0509\n", - "Epoch 2874/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0508\n", - "Epoch 2875/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0508\n", - "Epoch 2876/3000...\n", - "Loss Discriminator: 0.6884\n", - "Loss Generator: 0.7054\n", - "Relative Entropy: 0.0508\n", - "Epoch 2877/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0507\n", - "Epoch 2878/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0507\n", - "Epoch 2879/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0507\n", - "Epoch 2880/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0506\n", - "Epoch 2881/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0506\n", - "Epoch 2882/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0506\n", - "Epoch 2883/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0505\n", - "Epoch 2884/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0505\n", - "Epoch 2885/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0505\n", - "Epoch 2886/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0504\n", - "Epoch 2887/3000...\n", - "Loss Discriminator: 0.686\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0504\n", - "Epoch 2888/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0504\n", - "Epoch 2889/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0503\n", - "Epoch 2890/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.0503\n", - "Epoch 2891/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0503\n", - "Epoch 2892/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7049\n", - "Relative Entropy: 0.0502\n", - "Epoch 2893/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0502\n", - "Epoch 2894/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0502\n", - "Epoch 2895/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0501\n", - "Epoch 2896/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0501\n", - "Epoch 2897/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0501\n", - "Epoch 2898/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.05\n", - "Epoch 2899/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.05\n", - "Epoch 2900/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.05\n", - "Epoch 2901/3000...\n", - "Loss Discriminator: 0.6871\n", - "Loss Generator: 0.7037\n", - "Relative Entropy: 0.0499\n", - "Epoch 2902/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0499\n", - "Epoch 2903/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0499\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2904/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7032\n", - "Relative Entropy: 0.0498\n", - "Epoch 2905/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0498\n", - "Epoch 2906/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0498\n", - "Epoch 2907/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0497\n", - "Epoch 2908/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0497\n", - "Epoch 2909/3000...\n", - "Loss Discriminator: 0.6863\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0497\n", - "Epoch 2910/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0496\n", - "Epoch 2911/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0496\n", - "Epoch 2912/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0496\n", - "Epoch 2913/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0495\n", - "Epoch 2914/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0495\n", - "Epoch 2915/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0495\n", - "Epoch 2916/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0494\n", - "Epoch 2917/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0494\n", - "Epoch 2918/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7056\n", - "Relative Entropy: 0.0494\n", - "Epoch 2919/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7011\n", - "Relative Entropy: 0.0493\n", - "Epoch 2920/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0493\n", - "Epoch 2921/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0493\n", - "Epoch 2922/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7025\n", - "Relative Entropy: 0.0493\n", - "Epoch 2923/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0492\n", - "Epoch 2924/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0492\n", - "Epoch 2925/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.7046\n", - "Relative Entropy: 0.0492\n", - "Epoch 2926/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0491\n", - "Epoch 2927/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0491\n", - "Epoch 2928/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0491\n", - "Epoch 2929/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.049\n", - "Epoch 2930/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.049\n", - "Epoch 2931/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.049\n", - "Epoch 2932/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.0489\n", - "Epoch 2933/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0489\n", - "Epoch 2934/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0489\n", - "Epoch 2935/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7059\n", - "Relative Entropy: 0.0488\n", - "Epoch 2936/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7053\n", - "Relative Entropy: 0.0488\n", - "Epoch 2937/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0488\n", - "Epoch 2938/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.0487\n", - "Epoch 2939/3000...\n", - "Loss Discriminator: 0.6855\n", - "Loss Generator: 0.7038\n", - "Relative Entropy: 0.0487\n", - "Epoch 2940/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7055\n", - "Relative Entropy: 0.0487\n", - "Epoch 2941/3000...\n", - "Loss Discriminator: 0.6882\n", - "Loss Generator: 0.7008\n", - "Relative Entropy: 0.0487\n", - "Epoch 2942/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7001\n", - "Relative Entropy: 0.0486\n", - "Epoch 2943/3000...\n", - "Loss Discriminator: 0.6858\n", - "Loss Generator: 0.7044\n", - "Relative Entropy: 0.0486\n", - "Epoch 2944/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.7041\n", - "Relative Entropy: 0.0486\n", - "Epoch 2945/3000...\n", - "Loss Discriminator: 0.6883\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0485\n", - "Epoch 2946/3000...\n", - "Loss Discriminator: 0.6859\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0485\n", - "Epoch 2947/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7019\n", - "Relative Entropy: 0.0485\n", - "Epoch 2948/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0484\n", - "Epoch 2949/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0484\n", - "Epoch 2950/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7042\n", - "Relative Entropy: 0.0484\n", - "Epoch 2951/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7035\n", - "Relative Entropy: 0.0483\n", - "Epoch 2952/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0483\n", - "Epoch 2953/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7014\n", - "Relative Entropy: 0.0483\n", - "Epoch 2954/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7007\n", - "Relative Entropy: 0.0482\n", - "Epoch 2955/3000...\n", - "Loss Discriminator: 0.6865\n", - "Loss Generator: 0.7005\n", - "Relative Entropy: 0.0482\n", - "Epoch 2956/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7065\n", - "Relative Entropy: 0.0482\n", - "Epoch 2957/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0481\n", - "Epoch 2958/3000...\n", - "Loss Discriminator: 0.6861\n", - "Loss Generator: 0.7012\n", - "Relative Entropy: 0.0481\n", - "Epoch 2959/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0481\n", - "Epoch 2960/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0481\n", - "Epoch 2961/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7043\n", - "Relative Entropy: 0.048\n", - "Epoch 2962/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.048\n", - "Epoch 2963/3000...\n", - "Loss Discriminator: 0.6867\n", - "Loss Generator: 0.7027\n", - "Relative Entropy: 0.048\n", - "Epoch 2964/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.6985\n", - "Relative Entropy: 0.0479\n", - "Epoch 2965/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0479\n", - "Epoch 2966/3000...\n", - "Loss Discriminator: 0.6878\n", - "Loss Generator: 0.7047\n", - "Relative Entropy: 0.0479\n", - "Epoch 2967/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7024\n", - "Relative Entropy: 0.0478\n", - "Epoch 2968/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7006\n", - "Relative Entropy: 0.0478\n", - "Epoch 2969/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7036\n", - "Relative Entropy: 0.0478\n", - "Epoch 2970/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.705\n", - "Relative Entropy: 0.0477\n", - "Epoch 2971/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.6997\n", - "Relative Entropy: 0.0477\n", - "Epoch 2972/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7003\n", - "Relative Entropy: 0.0477\n", - "Epoch 2973/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0476\n", - "Epoch 2974/3000...\n", - "Loss Discriminator: 0.688\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0476\n", - "Epoch 2975/3000...\n", - "Loss Discriminator: 0.6881\n", - "Loss Generator: 0.701\n", - "Relative Entropy: 0.0476\n", - "Epoch 2976/3000...\n", - "Loss Discriminator: 0.6875\n", - "Loss Generator: 0.7023\n", - "Relative Entropy: 0.0476\n", - "Epoch 2977/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7034\n", - "Relative Entropy: 0.0475\n", - "Epoch 2978/3000...\n", - "Loss Discriminator: 0.6887\n", - "Loss Generator: 0.704\n", - "Relative Entropy: 0.0475\n", - "Epoch 2979/3000...\n", - "Loss Discriminator: 0.6866\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0475\n", - "Epoch 2980/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.7013\n", - "Relative Entropy: 0.0474\n", - "Epoch 2981/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7033\n", - "Relative Entropy: 0.0474\n", - "Epoch 2982/3000...\n", - "Loss Discriminator: 0.6874\n", - "Loss Generator: 0.7029\n", - "Relative Entropy: 0.0474\n", - "Epoch 2983/3000...\n", - "Loss Discriminator: 0.6864\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0473\n", - "Epoch 2984/3000...\n", - "Loss Discriminator: 0.6879\n", - "Loss Generator: 0.7002\n", - "Relative Entropy: 0.0473\n", - "Epoch 2985/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7021\n", - "Relative Entropy: 0.0473\n", - "Epoch 2986/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7039\n", - "Relative Entropy: 0.0472\n", - "Epoch 2987/3000...\n", - "Loss Discriminator: 0.6868\n", - "Loss Generator: 0.702\n", - "Relative Entropy: 0.0472\n", - "Epoch 2988/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.7026\n", - "Relative Entropy: 0.0472\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 2989/3000...\n", - "Loss Discriminator: 0.6856\n", - "Loss Generator: 0.7031\n", - "Relative Entropy: 0.0472\n", - "Epoch 2990/3000...\n", - "Loss Discriminator: 0.687\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.0471\n", - "Epoch 2991/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7016\n", - "Relative Entropy: 0.0471\n", - "Epoch 2992/3000...\n", - "Loss Discriminator: 0.6886\n", - "Loss Generator: 0.7015\n", - "Relative Entropy: 0.0471\n", - "Epoch 2993/3000...\n", - "Loss Discriminator: 0.6869\n", - "Loss Generator: 0.6996\n", - "Relative Entropy: 0.047\n", - "Epoch 2994/3000...\n", - "Loss Discriminator: 0.6872\n", - "Loss Generator: 0.7028\n", - "Relative Entropy: 0.047\n", - "Epoch 2995/3000...\n", - "Loss Discriminator: 0.6862\n", - "Loss Generator: 0.7063\n", - "Relative Entropy: 0.047\n", - "Epoch 2996/3000...\n", - "Loss Discriminator: 0.6877\n", - "Loss Generator: 0.703\n", - "Relative Entropy: 0.0469\n", - "Epoch 2997/3000...\n", - "Loss Discriminator: 0.6885\n", - "Loss Generator: 0.7009\n", - "Relative Entropy: 0.0469\n", - "Epoch 2998/3000...\n", - "Loss Discriminator: 0.6876\n", - "Loss Generator: 0.7018\n", - "Relative Entropy: 0.0469\n", - "Epoch 2999/3000...\n", - "Loss Discriminator: 0.6873\n", - "Loss Generator: 0.7022\n", - "Relative Entropy: 0.0468\n", - "Epoch 3000/3000...\n", - "Loss Discriminator: 0.6857\n", - "Loss Generator: 0.7017\n", - "Relative Entropy: 0.0468\n", - "qGAN training runtime: 61.47158089876175 min\n" + "qGAN training runtime: 38.464039981365204 min\n" ] } ], @@ -12404,12 +189,12 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnWd4VNXWgN+dXiEJIaEESeiQCglFpImABZQiHZEmiIL1XhXvZ8FysV4pioKioogGBVRUVKSE3gKE3kMgoQRIIb3N7O/HTCYzyUwSQiaN/T4PD3P2WWfvtc5Mzjq7rSWklCgUCoVCURo21a2AQqFQKGo+ylkoFAqFokyUs1AoFApFmShnoVAoFIoyUc5CoVAoFGWinIVCoVAoykQ5C8VthxDiqBCiTyXV1UcIkVBJdU0UQmyrjLrK2d5QIUS8ECJDCNGxCtsdJ4RYV1XtKSoH5SwUJRBCxAkhsvUPkUQhxFIhhFt161VZSCkDpZRRFblWCCGFEK0qWaXq4kNgppTSTUp5wBoNCCH89ffMrrBMSrlcSjnAGu0prIdyFgpLPCildAM6ARHAK8UFhI5K+w0ZP1AUVUJz4Gh1K6GoHShnoSgVKeVF4E8gCEAIESWE+K8QYjuQBbQQQjQRQqwRQiQLIc4IIaYWXi+EcBZCfCOESBFCHBdCvGg8bKPvxbwkhDgEZAoh7PT1rRJCXBNCnBNCPG0k30UIES2ESNP3ej7SlzsJIb4TQiQJIVKFEHuFEL7mbNK32U//ebYQ4kchxLdCiHT9EFWEheu26D8e1Pe6Rhmd+5cQ4qoQ4rIQYpJRuaMQ4kMhxAW9vouEEM7lufdCiO56O27o/+9udG6iECJWr/M5IcQ4fXkrIcRm/TXXhRArzNTrKITIAGz1tpzVl5v0mvQ9yrf1n/sIIRJKsdNZCPE/IcR5fdvb9HYW3rNU/T27s/hwWxl2Rgkh3hJCbNfbuk4I4V2e+6eoXJSzUJSKEKIZ8ABgPEwxHpgGuAPngUggAWgCDAfmCCH66mVfB/yBFkB/4BEzzYwBBgIegBb4DTgINAXuAZ4VQtyrl50PzJdS1gNaAj/qyycA9YFmQANgOpBdTjMf0tvgAawBPjEnJKXspf8Yqh+6KXwQN9K33RSYAiwUQnjqz70LtAHCgFZ6mdfKUkgI4QX8ASzQ2/MR8IcQooEQwlVffr+U0h3oDsToL30LWAd4An7Ax2bsyNX3GgttaVmWPuWw80MgXK+LF/Aiuu+y8J556O/ZzvLaaSQ2FpgE+AAOwL/Lqa+iElHOQmGJX4QQqcA2YDMwx+jcUinlUSllAboHyF3AS1LKHCllDLAEeFQvOxKYI6VMkVImoHsoFGeBlDJeSpkNdAYaSinflFLmSSljgS+A0XrZfKCVEMJbSpkhpdxlVN4AaCWl1Egp90kp08pp6zYp5VoppQZYBoSW87pC8oE3pZT5Usq1QAbQVggh0DnV56SUyVLKdHT3cXQpdRUyEDgtpVwmpSyQUv4AnAAe1J/XAkFCCGcp5WUpZeFwUj664aUm+u+jMifMLdlpA0wGnpFSXtTf/x1SytxKsBPgaynlKf3v40d0jldRxShnobDEECmlh5SyuZTySf0faiHxRp+bAIUPwkLOo3v7LDxvLG/82VxZc6CJfigpVe+w/gMUDilNQfemfkI/ZDFIX74M+BuIFEJcEkK8L4SwL6etV4w+ZwFO4ubmT5L0jtO4DjegIeAC7DOy5S99eVk0QXcfjTkPNJVSZgKj0PWeLgsh/hBCtNPLvAgIYI9+SG3yTdhRFpbs9AacgLMVqNOinUbHxb+fOrPYojahnIWiIhiHKr4EeAkh3I3K7gAu6j9fRjccUkizMuqLB87pHVXhP3cp5QMAUsrTUsox6IYk3gNWCiFc9W+7b0gpO6AbChlEUe+muriObigs0MiW+kZDQKVxCZ3jNMZwX6WUf0sp+wON0b2Jf6EvvyKlnCqlbAI8Dnwqyr96KwudcyukUTmvuw7koBsWLE5ZYa1LtVNRc1DOQnFLSCnjgR3AO/pJ5hB0b//f6UV+BF4WQngKIZoCM8uocg+QLnST3s5CCFshRJAQojOAEOIRIURDKaUWSNVfoxVC3C2ECBZC2AJp6IZMtJVrLQCJ6OZfykSv4xfAXCGED4AQoqnR/EtprAXaCCHGCt2k/yigA/C7EMJXCDFYP3eRi244SKuvf4QQotA5p6B7WJf3PsQAY/X3/D6g903Y+RXwkdAtTrDVT2Q7Atf07Vu6ZxbtLKfOiipCOQtFZTAG3ST2JeBn4HUp5Xr9uTfRTX6fA9YDK9E94MyinzcYhG5c+hy6t9Yl6CZWAe4DjupX88wHRuuHyBrp604DjqObZ1lWaRYWMRv4Rj+sNLIc8i8BZ4BdQog0dPegbVkXSSmT0N2HfwFJ6IaXBkkpr6P7u30e3f1ORvdQf0J/aWdgt/7+rEE3jxBbTtueQTdXkAqMA34p53Wgm3Q+DOzV6/QeYCOlzAL+C2zX37NuN2GnogYhVPIjRVUihHgC3QO+XG+tCoWiZqB6FgqrIoRoLIS4SwhhI4Roi+4N8ufq1kuhUNwcaseswto4AIuBAHTDG5HAp9WqkUKhuGnUMJRCoVAoykQNQykUCoWiTJSzUCgUCkWZ1Jk5C29vb+nv71/h6zMzM3F1da08haqJumIHKFtqKnXFlrpiB9yaLfv27bsupSwzqkCdcRb+/v5ER0dX+PqoqCj69OlTeQpVE3XFDlC21FTqii11xQ64NVuEEMXDrZhFDUMpFAqFokyUs1AoFApFmShnoVAoFIoyqTNzFgpFdZKfn09CQgI5OTlmz9evX5/jx49XsVbWoa7YUlfsgPLZ4uTkhJ+fH/b25Y3cb4pyFgpFJZCQkIC7uzv+/v7och6Zkp6ejru7u5krax91xZa6YgeUbYuUkqSkJBISEggICKhQG2oYSqGoBHJycmjQoIFZR6FQVDdCCBo0aGCx51selLNQKCoJ5SgUNZlb/X0qZ6FQ1BESExMZO3YsLVq0IDw8nDvvvJOff66+AL9RUVHs2LHjlusYNGhQ2YIVYMeOHQQGBhIWFkZ2dnbZF5STOXPmmBx379690uquTpSzUCjqAFJKhgwZQq9evYiNjWXfvn1ERkaSkJBg1XYLCgosnquIsyitvsrmxx9/5OWXXyYmJgZnZ+dKq7e4s7hVh1lTUM6igmiy8rnw1iYyD18pW1ihsDIbN27EwcGB6dOnG8qaN2/OU089BYBGo+GFF16gc+fOhISEsHjxYqBo5+/w4cNp164d48aNozAS9b59++jduzfh4eHce++9XL58GYAHHniAZ599loiICObPn89vv/1G165d6dixI/369SMxMZG4uDgWLVrE3LlzCQsLY+vWrcTFxdG3b19CQkK45557uHDhAgATJ05k+vTpdO3alRdffNGijcnJyQwZMoSQkBC6devGoUOHANi8eTNhYWGEhYXRsWNH0tPTuXz5Mr169SIsLIygoCC2bt1qUteSJUtYvXo1r776KuPGjSvRg5k5cyZLly4FdNEhXn/9dTp16kRwcDAnTpwAICMjg0mTJhEcHExISAirVq1i1qxZZGdnExYWxrhx4wBwc9OlXJdS8sILLxAUFERwcDArVqwo8zuoUUgp68S/8PBweSts2rTppuQvvBMldzb8r9zZ8L+31G5lc7N21GRqky3Hjh0r9XxaWppV258/f7589tlnLZ5fvHixfOutt6SUUubk5Mjw8HAZGxsrN23aJOvVqyfj4+OlRqOR3bp1k1u3bpV5eXnyzjvvlFevXpVSShkZGSknTZokpZSyR48e8oknnjDUnZycLLVarZRSyi+++EI+//zzUkopX3/9dfnBBx8Y5AYNGiSXLl0qpZTyyy+/lIMHD5ZSSjlhwgQ5cOBAWVBQUELvTZs2yYEDB0oppZw5c6acPXu2lFLKDRs2yNDQUEO927Ztk1JKmZ6eLvPz8+WHH34o3377bSmllAUFBWbv/9ixY+VPP/1Uoh0ppZwxY4b8+uuvpZRSNm/eXC5YsEBKKeXChQvllClTpJRSvvjii/KZZ54xuQ9SSunq6mrSTuHxypUrZb9+/WRBQYG8cuWKbNasmbx06ZLF7+BmKO/vy9zvFIiW5XjGqqWzN8mVr/aRefAymoy86lZFUUPZ5TOnbKEK0O3qf8otO2PGDLZt24aDgwN79+5l3bp1HDp0iJUrVwJw48YNTp8+jYODA126dMHPzw+AsLAw4uLi8PDw4MiRI/Tv3x/Q9UwaN25sqH/UqFGGzwkJCYwaNYrLly+Tl5dncWnmzp07Wb16NQDjx4836UWMGDECW1vbUm3atm0bq1atAqBv374kJSWRlpbGXXfdxfPPP8+4ceMYNmwYfn5+dO7cmcmTJ5Ofn8+QIUMICwsr970zx7BhwwAIDw832LB+/XoiIyMNMp6enmXqP2bMGGxtbfH19aV3797s3buXevXqmf0OevTocUs6VzZqGOomiZv1N9d+OETybycMZTlxKSR+sx9ZoK1GzRS3M4GBgezfv99wvHDhQjZs2MC1a9cA3QjCxx9/TExMDDExMZw7d44BAwYA4OjoaLjO1taWgoICpJQEBgYa5A8fPsy6desMcsYRTp966ilmzpzJ4cOHWbx4cYWWZ95K9NdZs2axZMkSsrOzueuuuzhx4gS9evViy5YtNG3alIkTJ/Ltt9+WWoednR1abdHfb3EbCu9R4f2pbMx9BzUN1bOoBGK6fAbA+dfW0+W85TFXxe2BuR6AtTeA9e3bl//85z989tlnPPHEEwBkZWUZzt9777189tln9O3bF3t7e06dOkXTpk0t1te2bVuuXbvGzp07ufPOO8nPz+fUqVMEBgaWkL1x44ahrm+++cZQ7u7uTlpamuG4e/fuREZGMn78eJYvX07Pnj1vysaePXuyfPlyXn31VaKiovD29qZevXqcPXuW4OBggoOD2bt3LydOnMDZ2Rk/Pz+mTp1Kbm4u+/fv59FHH7VYd/PmzTl27Bi5ublkZ2ezYcOGMt/s+/fvz8KFC5k3bx4AKSkpeHp6Ym9vT35+fomd0j179mTx4sVMmDCB5ORktmzZwgcffGCYA6npWLVnIYS4TwhxUghxRggxy8z5uUKIGP2/U0KI1GLn6wkhEoQQn1hTz7LQZOQS020Rx0dFliqnzS4g89AVYrovInXj2SrSTqHQraH/5Zdf2Lx5MwEBAXTp0oUJEybw3nvvAfDYY4/RoUMHOnXqRFBQEI8//nipb68ODg6sXLmSl156idDQUMLCwiyu6pk9ezYjRowgPDwcb29vQ/mDDz7Izz//bJjg/vjjj/n6668JCQlh2bJlzJ8//6ZsnD17Nvv27SMkJIRZs2YZHNO8efMICgoiJCQEe3t77r//fqKioggNDaVjx46sWLGCZ555ptS6mzVrxsiRIwkKCmLkyJF07NixTH1eeeUVUlJSCAoKIjQ0lE2bNgEwbdo0QkJCDBPchQwdOpSQkBBCQ0Pp27cv77//Po0aNbqpe1CdWC0HtxDCFjgF9AcSgL3AGCnlMQvyTwEdpZSTjcrmAw2BZCnlzNLai4iIkNbKZ3E18hCxT/9+03XezBhzZaFi9FcPx48fp3379hbP306hJWoLdcUOKL8t5n6nQoh9UsqIsq61Zs+iC3BGShkrpcwDIoHBpciPAX4oPBBChAO+wDqLV1QRNg6lT7xZ4vwbG5FaycV52zk+OhKpubU5DWs5doVCoSgLazqLpkC80XGCvqwEQojmQACwUX9sA/wP+LcV9Ss/NhXbJn954S5SN54lfs5mbmyMZY//BwBocwuIf3fzTe3RSI++SHTL/3HtpyMV0kWhUChuhZoywT0aWCml1OiPnwTWSikTSotnIoSYBkwD8PX1JSoqqsIKZGRkWLze5sg1HCpY78mxPxo+y1wNUav+xm59InarErj40XZyfixfKACH5w5gk5HH2RlrONrwukW50uyobdQmW+rXr096errF8xqNptTztYm6YktdsQPKb0tOTk6F/6as6SwuAs2Mjv30ZeYYDcwwOr4T6CmEeBJwAxyEEBlSSpNJcinl58DnoJuzuJXx7dLGx68nHeUMpytctzFOT+wzPR65A+c2DQj48AFS1p3GzsMJ30nh2Lk7msgddDtFNrr4NaXZWZvG+cuiNtly/PjxUseMb8fx8ZpOXbEDym+Lk5NTuSbvzWFNZ7EXaC2ECEDnJEYDY4sLCSHaAZ7AzsIyKeU4o/MTgYjijqIqub7SukM/2aeSOPbQMsNx5uFE2nwxlILUbApSc3Dy9wQV0FShUFQjVpuzkFIWADOBv4HjwI9SyqNCiDeFEA8ZiY4GImUNnr1N3VC1y2CTfz1O9unrRLeZS0yXz8g8nEj2CctDTwqFQmFtrLrPQkq5VkrZRkrZUkr5X33Za1LKNUYys0vrNUgpl5a1bNaaXP5ib7W0e/Cuzw2fD9/zZbXooKhd2NraEhYWRmBgIKGhofzvf/8z7EqOjo7m6aefvuU2Fi1axPfff39T19xKiO6lS5dy6dKlCl8Puv0ZH3744S3VYYkFCxbQvn37EnsqboW4uDiTe1xZ392tUlMmuGss5//vn+pWQaEoF87OzsTExABw9epVxo4dS1paGm+88QYRERFERJS5lL5UCgoKmD59+k1PCt9KiO6lS5cSFBREkyZNyn2NRqMpM85UZfHpp5+yfv16Q1ynyqDQWYwdqxu1r4zvrjJQsaEqgN8LPfGdEl5t7e/ymUPyHydLldFk5RP/7mayjl+tIq0UNQkfHx8+//xzPvnkE6SUJiG4zYX0BnjvvfcIDg4mNDSUWbN0nf0+ffqYhCOfPXs2CxYsMJx77rnniIiIoH379uzdu5dhw4bRunVrXnnlFYMuhSG6SwvF/eabb9K5c2eCgoKYNm0aUkpWrlxJdHQ048aNMyQo2rBhAx07diQ4OJjJkyeTm5sL6MKIv/TSS3Tq1ImffvrJ4n2JiYmhW7duhISEMHbsWFJSUgBdD6FDhw6EhIQwevToUu9TIdOnTyc2Npb777+fuXPnlujBBAUFERcXR1xcHO3bt2fq1KkEBgYyYMAAQ7KlM2fO0K9fP0JDQ+nUqRNnz55l1qxZbN26lbCwMObOnWvy3VkK0z5nzhwmT55Mnz59aNGiheE7qkyUsygFc4EBPe5pid8LPQl4514aP9EVAJ/xYbRZ+jDhJ56l0eOd8R4RZHXdTk1ahTZfgyYjj8uL95CXmEHarguQq1t9fHHedi5+tJ1DvZdYXRdFzaRFixZoNBquXjV9Yfjwww9ZuHAhMTExbN26FWdnZ/78809+/fVXdu/ezcGDB00iwubl5REdHc2//vWvEm04ODgQHR3N9OnTGTx4MAsXLuTIkSMsXbqUpKSkEvIHDhxg3rx5HDt2jNjYWLZv3w7o8kfs3buXI0eOkJ2dze+//87w4cOJiIhg+fLlxMTEIIRg4sSJrFixgsOHD1NQUMBnn31mqLtBgwbs37/f8LA3x6OPPsp7773HoUOH6NChA2+88QYA7777LgcOHODQoUMsWrTI4n0yZtGiRTRp0oRNmzbx3HPPlfpdnD59mhkzZnD06FE8PDwM0XPHjRvHjBkzOHjwIDt27KBx48a8++679OzZk5iYmBL1vv7663Ts2JFDhw4xZ84ck3hXJ06c4O+//2bPnj288cYb5Ofnl6rTzaKGoUpBm2MaOyds13QcA4rCEDd/4x6av3GPiYz/W7qQzterYPPctR8Oce7ffwJw/tX1ADj4OZMdEMqleUVd//zrmdh7Vzyqp+LmeDzi87KFKsDi6GmVUo+5kN7r169n0qRJuLi4AODl5WWQNw5HXpyHHtKtVQkODiYwMNAQxrxFixbEx8fToEEDE3lLobg3bdrE+++/T1ZWFsnJyQQGBvLggw+aXHvy5EkCAgJo06YNABMmTGDhwoU8++yzZeoJuoCHqamp9O7dG4CxY8cyadIkAEMspyFDhjBkyBCL96miBAQEGMKkh4eHExcXR3p6OhcvXmTo0KGAbllrWVgK0w4wcOBAHB0dcXR0xMfHh8TExEodHlM9i1I48+Svhs/BG6bg1MLrppOe23o4EbptGl0TXyZky1Q6x5Z8O6sohY7CGJuEbI4OXmZStq/DfHITblRau4raQWxsLLa2tvj4+JiUmwvpXRqlhQ8vDK1tY2NjEmbbxsbGbKBCc6G4c3JyePLJJ1m5ciWHDx9m6tSpVR7m/I8//mDGjBns37+fzp07U1BQcNP3qbQw51URgtzabaieRSmk/FW0Ec8lyKcUyZIEfHg/51/9h/YrRuPcRheJ06VdwxK9FWtQkFQy+XzatvM0HB1i9bYV5nsAVb0B7Nq1a0yfPp2ZM2eWeMExF9K7f//+vPnmm4wbNw4XFxeSk5NNehfWpPCh6u3tTUZGBitXrmT48OGALsx54VxB27ZtiYuL48yZM7Rq1Yply5YZegnloX79+nh6erJ161Z69uxJZGQkvXv3RqvVEh8fz913302PHj2IjIwkIyODpKSkEvepXbt2Fuv39/fn9991AUf379/PuXPnStXH3d0dPz8/fvnlF4YMGUJubi4ajcbE5uJYCtNeFShnYYHi8xU326PwfbQjPo+EIYrFlbJxsqPR1AiEgx03Np8j60jiLetaHmrsJhZFpVGY+zk/Px87OzvGjx/P888/X0Ju3rx5bNq0CRsbGwIDA7n//vtxdHQkJiaGiIgIHBwceOCBB5gzxzoZ/4rj4eHB1KlTCQoKolGjRnTu3NlwrjA/t7OzMzt37uTrr79mxIgRFBQU0LlzZ5Oc4+Xhm2++Yfr06WRlZXHHHXewbNkyNBoNjzzyCDdu3EBKydNPP42HhwevvvpqiftUGg8//DDffvstgYGBdO3a1TBcVhrLli3j8ccf57XXXsPe3p6ffvqJkJAQbG1tCQ0NZeLEiSY7rmfPns3kyZMJCQnBxcXFJH+ItbFaiPKqprJDlOclZrA/uGhFgTXCjR+5fykZ+25tDXl5aTF/IK6Bvhzu9xVtvhqGe7dmHHv4e/IS0ujw8zhcQ2peXP3aFu5DhSivXdQVO6D2hyiv1SQuLUpR2ejxLlZp447X++o+FOu0uEVYzmBWUWKf+YPD/b4C4NTk1Zx5Yg3Zx6+hSc/lcL+vkFJybcVhcmKTK71thUJR+1HDUBZwMlr15OTvYZU26nW7gy4JLwFwY8s5Q4Ra985+ZERbirlYOdzYbDqemvTrcc4+9ZtOr57NaRc5Ghv7qtnYpFAoaj6qZ2GBzIOXDZ99Hq1YlMbyYONgi42DLZ79WhUVVsPQYOahotwaaVvPc/XbA1Wug0KhqLkoZ2GBK1/o5j8c7/CosjdsYa/7OtzCm9DslburpM1Cci+YpD8n7uV1ZJ8x3VSVl5hB7L//JOvkNZPy9N3xpEaVvvLjdqCuzP8p6ia3+vtUzqIM8hKrLjlK2J4naf3lMLweao/XA0UrKYL+mWT43PRfPazSdvKakmvIj4+KBHQ/susrj7A/eAFXvz3A0QdN93EcfXAZJ0b+QPqeBKvoVhtwcnIiKSlJOQxFjURKSVJSUrk2/llCzVmUhabq/vgdm9bDsal+zbTRpLdbaGNCt0/DztMZWzdH0rafx7N/KxpN7Uzit/s5/8p6q+iTF3+DgpRsToxdYbJqS5Oaw/ERP5CflEXgmkcM5UcHfWuVVWO1AT8/PxISErh27ZrZ8zk5Obf0h1qTqCu21BU7oHy2ODk53dKObuUszGDydljB/NuVjXNrb8PnwDXjDZ+L7+OobKLbzjVbXjhBfnX5Qau2X1uwt7cnICDA4vmoqKgKZyiradQVW+qKHVA1tqhhKDPIPI3hs1MLz1IkrYeDr1u55GQV9nzMURiTqpC4/1tHQWrJHeQKhaJ2o5yFGfIuphk+t1kyrFp0sHVzJGzPE3Q6UnrSk+LOQrrZEbx+sjVVK5UrX0Rz/o2N5ZbXGjlmhUJRc1HOwgwFN3SxalxDGhniOlUHTv6eOPiU3sOo36M5APaN3Ig4/Ty5iyNwDWlEt6v/MdkrUpVk7LtIfnIW2WeSiH93M2m74pEFWtJ3x5vExsq9lMYev/c4+9wf1aKnQqEoP2rOwgyazDwAbNwcqlmTsnENaUTI1qk4NKmHnbsj2Bf5f59HO3JB/5Zv18DZbIBBa5B94jr72s0zHF/8aLvJeY97WuL/3r1cX6kL435t+UFazh1YJbopFIqKoXoWZtBm6pKG2LrWfGcB4NK2oc5RFKPxE10J/G08bb8bwR2v32PmyuohdcNZYov1Jk5OXKmWnSoUNRjlLMxwfvYGALJPl8z0VZsQNgL3rs3wHNAaGzvTrzos+knCTzyLU+sGFq62Lmlbz5N98rrhOGXtKXLOqrhUCkVNRTkLMxQ+tHLjUqpZk8rDoWlRzHuXYF+c7vDA3suF5oXBDKuBpJ+PmRznX880K5dzLoWjg5dx7OHlaLMrN1WkQqEoH2rOwgz2jdzIv5JB6y+HVrcqlYZ7t2b4vzOA/GuZNJ5eFEXXo38rgv6aiFPrBmhu5HDh7U0krT5WSk3W49hD39H6y6G6npCj7qcppSSma1Ge5Ws/HcHXirG6FAqFeVTPohhSSvKvZAC6uFB1BSEEjaZE0GxWb+w8nE3K3To1wc7dEUe/+rReNMTkuvATz9LBaBOgtTk95WfiXl6nO5DSZKgKQJujehYKRXWgehbFyEso2mNhWwtWQ1mT1kuGYu/lgl1X57KFK5Gr38WgzdPg9ONhDrHT9GSxOXApJblxqTj6e9x0NkOFQlF+VM+iFMq7i7quYuumW2Fl/BCuql7G9R8Pmy3PPpOENl+DNjufjP2XuDR/BzFdPyO6zVxyE25UiW4Kxe2I6lkUQ5tXtGms8GF5u9H6y6Gk70mg/t0lYx05BXjSatFgzkz/tRo0g6vfHCAnNgWQpG09byjX3MjhQKeFt20gQ4XC2qieRTG0ObrwEy7tG1azJtVHgwfb4/9Wf7PDOjbOdngPC6TToaeqQTMdaVvjTByFMdd/Pmr4rM3XqL0bCkUloZxFMQonUIWT6nQZ0+arYbRYMAi7erowyA6Namai+zOP/0rCR9soSM8luvUFNddpAAAgAElEQVRHHB1UlHsj50Iq519bT15iRjVqqFDUTpSzKIbM1Q1DFS7dVOjwGtQOn9Ehpcp43tsaT6OkTQCe97exIG09Et7dQnTL/6HNyidjbwL5yVkAnBgZyeVFe9gfvIArX0ZXuV4KRW1GPRGLUTgMZaN6FjeN75QIPPoEoM0p4MS4FXj2a0Wj6V1I/Gpf0XLYamBfu3k0mhpBTmzRDvG4l9fRaEpEtemkUNQ21BOxGDn6XduyQFvNmtQe/N8ZQIPB7bH3dgV0jrbDqnGG842mRFSrs4CinOrGaDLySNt1geQ1JyhIzabNN8MN8zRSo+XG5nO4RTQ1DL0pFLczylkUI27W3wCkbTM/gaooovmb/Uj69RgNR4XUyj0p+0MWoMnIMxznXUon89AVTk1YiZ2XMwXJuii9Za2wkgVarn5/kPo9/bFxsuPsU7/R+MmuePRtaVX9FYqqRDkLRYVpPL2LSeiQm8XW3RGXDg1J351QiVqVH2NHAXCg4yeGz4WOAqAgJRs7T2e0eRpS/j5F/R7+2HnqNipq8zTEv7OZywt3AeA1uD03tsRxY0ucWsarqFMoZ6GoElovGcrpx34GIHTbNFLWn8VrYFts3R1Mcl8A1O/lz40tcdWgpXnOPv07mUcScWxWn/Rd8WArcGnXEP85Azj/xkYy918yyGpSipxMatQ50Eo8+raoDrUVikrFqs5CCHEfMB+wBZZIKd8tdn4ucLf+0AXwkVJ6CCHCgM+AeoAG+K+UcoU1dS2Oz/iwqmyuztPgofY0uNoeKSVCCJMMhF0TX2a37ztA0aa/fR3mV5eqJUj5+zRglG5XI8k6epVjg78rISu1Rfs6Toz8AYDw489aX0mFwspYzVkIIWyBhUB/IAHYK4RYI6U0hDSVUj5nJP8UUBhONAt4VEp5WgjRBNgnhPhbSplqLX0LcW7TgOxTSTSa2tnaTd2WmNvoJ4QgeOMUCpKyqN9bt2u86fN3kfD5bkRGQQn5moy5hREFqUW9DW12PrmX03Fu4VWVaikUt4w191l0Ac5IKWOllHlAJDC4FPkxwA8AUspTUsrT+s+XgKtAlWypVktnqwfXIF+DowBoNqs3uV/WPodtdhWd0SbywwO+5mC3RWQYDV0pFLUBazqLpkC80XGCvqwEQojmQACw0cy5LoADcNYKOpZAW7gpTzmL6qcWRpHNiL5YouzaisM4jdzBkQe+MYRcT/nnTFWrplDcEsJasXOEEMOB+6SUj+mPxwNdpZQzzci+BPhJKZ8qVt4YiAImSCl3mbluGjANwNfXNzwyMrLC+mZkZODm5objpD2IzAJyvuoMbvYVrq+6KLSjLpCRkUH9PZmIWH0GPRuw++uKiUxBHx/soq5Wg3a3Ts4XEeBoC0621a3KTVFXfmN1xQ64NVvuvvvufVLKMneoWvP1+SLQzOjYT19mjtHADOMCIUQ94A/g/8w5CgAp5efA5wARERGyT58+FVY2KiqKPn36sEe7By3Qs28fbF1qn7MotKMuEBUVRc83B5mUSSm5+OE2Ej7YCkD4nKEc7L7YcN65fUNazh/EkQFfV6muFcFpqm6joM+EjjR7sRf2DXWbGrU5BVyctx2vge1wDfY1yGvzNNg4VL9jqSu/sbpiB1SNLdYchtoLtBZCBAghHNA5hDXFhYQQ7QBPKMpyo5f/GfhWSrnSijqaoM0tQJuthqFqMkIIbIycuHOrBnRJeKnouKUXbmGNaTgutDrUqxBXvznA2Wf/QJtbQNaxq1xetJuLH23n8D1fGmRyL6axx+89dvnM4ZqFXB8KhTWx2hNRSlkghJgJ/I1u6exXUsqjQog3gWgpZaHjGA1EStPxsJFAL6CBEGKivmyilDLGWvoCpO8ummIRNrVvvPx2QdiavuOYvG2bmefwGtwe51YNSN1wFtdgX64uK/kzavHRA8Q+v7bSdS0vqf+c4UDEp+QXi4hbkJrN8dEryL+WaSg7O/M3PO9tTe6FVJzbeKugl4oqwaq/MinlWmBtsbLXih3PNnPdd0DJRexWJu9SelU3qagAPo+Ecn31UbwfDjSUObfzJvvEdTz6tyoh3+aLoQA0e6kXgFln4fNIGF4PtiO69UdW0rpsijsKgMuf7TbZ9FdIoZ6eD7Sh7dLhJuekRosmPdck17pCcauoEOVGFOaw8Brcvpo1UZSGrZsjwesm0fjxolAjgb89SvuVY2g4MhgAr4FtAXANaVTierfwJiZDWYXY1XfCe1SwlbSuGMl/nCz1fMraU5yashrQOYn8a5nsafY+0W3mkhOXQu6lNBK/PWBY5WdM/vVMCm7kWEVvRd1D9V+NkDkql0Vtxa6+E/V7Fe3T8LinJcEbp+BkZvNb4B8TkAVa9rWbWyI+VONpnbm+oubMCWSfSipTJvm3E1xcsIP4t6NMymO6fAY2ArSS/GuZ+P2rh2EHvTZPY9glr2JYKcqD6lkYoc3Tb8hzrP4VJ4pbQwiBa5Cv2RVtwkZg42BLk2e7A9D4ya6Gc+Z6HIDJhsGaSHFHYUAffiR9bwK5F9PYH7SASwt3oUlTPQrFzaGchRFalSXvtqLJU3cSuuNx7nitr6HMuWWDEnIOTdxpFzmKej39q1C7yuXGxlgOdPyE/GuZXHhjI7mFca6AlHWnq1EzRW1BOQsjCoehhHIWtwVCCJxbNbC48k042BK0bhId989E2NrQLnIUYXufNPRIjHFu522mhprLkf5F+1BOPvKTRTlNRh6XPt1NbsKNqlBLUYNRzsIIrWHOQg1DKcB7eBBuYY0NzsTG3han5h4msZ4KafvtCLpeebmKNaw8Ls7bTn6SLle5NqeA1I1nOTZsOWdmrOHC7A0c6LSQ/OtFy3e1+RqsFf1BUTNRr9BGFE522ro5VrMmihqBpYehhfLavDcnfs5mEr85gHvXZiStPmpWZl+H+brJ8FwN0a3+h0sHHwJ/exREyb0vObHJ2Pu43VIGRSkl5/79J24dm+DziEoZUN2onoURmoxcgFqZIlRReXjrl9/6PNrR7Pl63ZsDYOdVtI/BxtlyaBi/F3tWonbWI+9imkVHUUhq1DnsPzyJNruAjH2X2N3kXQ50/tSkl5F14hox3RYR031Rudq11ENJ3xXP1WUx1bpZUlGEchZGaLPyAcsrYhS3By0/HkTE6edxDzcbJBmPvi3o8Ms4Qrc/TpuvhuH/3r04+JoP4mbn7YJTQNHy3QZDO+DczhuXDj44NKtvKA/8c0LlGmElToz8AduDpmll8hLSSN95wXCctl2Xvz7/SgZXv4vh3Et/WXQIabsuEN12Lsm/nyhxrjD0zs2SeSSRU1NWkxOXUqHrFeZRw1BGaPTOojYGEFRUHkII7Oo7lSpT2LvwGtTOpNy9+x2k79A9ODvH/gsbJ3uuryp6W2+9eIiJvDZfg7ARCFsbGgztQNLPutxgbb4dTvbxa8S/s/mW7akKjg1ZTsNxoTgFeBH/9iZDeWGvwHtksFnne/qxn9Gk5nBq8uqS+z0qOKx3bPB3aNJzyYlLIWTDlArVoSiJchZGFPUs1DCUomI0fryLwVkUzn3V7+UPgGtY4xLyNvZFiyn85wxA5mvwnRRO/Z7+cF+bWuMsAK4tP2jxXO6FVJxbepUIQWKcLCrz8BVcg4t23F+LtFxfaWjSc/VtqhVclYkahjJCo4ahFLeIR98WuHZsbLK81qGxOzlfdyGojKEm+wYutPnqYZ2jqGOcefxXotvM1U1av/gXu3zmcGNbHAXJRSlnD9/zFWef+d2w3ylp9TFL1ZF14hrHhn5H+p4Ey41qzGQtVFQY5SyM0GbpV0O5KmehqBg2jnYE/z2JO/7Tx/SEq12JFUPlwc6zbgUD3O37DolL9wNwfNj3Jc5f++EQF+duL1F+dMh3JP2mm9e4+l0Mh3p9Qdr2Cxwd9K3FtjQZeWSfvl5JmiuUszBCTXArahqBv483GwyxNFyCihImdU2sfXs/UjfGlihL33GB0/qAiTezOurgXZ9Xml63O8pZGFE0wa3mLBQ1A+fW3gT9M4mm/+5Bm2+Hl30B0ODBokl3UQvzmGfGXObEmBXVrQYA6dEXybuiUheAchZFSGnIJ6B6FoqahBCCZi/2wuu+NniPCsYtvCnBG6bgZmFpr88jYXgMaIX/nP5VrGnlkbrhrNnyva3+V6Is91Ia6XsSyDpxzew1GWbygRRyedEezj7zu9mlvVknr3H0gW/YH/JxObWu26jVUHrE5aIonMpZKGoqrT5+0PA56M8JnJ7+K0mrj+LaqQltlgxFk56LfUNX2n030iDn1NKLnLPJJvVEnHkeWxcHhJ3ufTHlnzPc2BLHlcV7qsaQCqJJyy1RdiDsE8Nnp9YlA0HGvfIPgb+N58qSaNy7NaMgKRv3rn6I2AzOv7YDAN/J4biFmq5Wyzp6tZK1r90oZ1GI0RI+4+WMCkVNJuCD+3CPaEKDwR2wb+hqVqbd96OI+791CAdb8q9mUr+XP3b1TPeRePZvhWf/Vvg9fxcp689ydXmMYQlwbSLndMn8HxnRF7m6LIbzr64vKhTgaNSZkPr0BIAh54cxabsuUK/bHZWub21COYtCcnTOwi28STUrolCUHzt3Rxo91rlUGacAT9p9P6p89Xk603BEEFmHr9RKZ2GJcy/+ZVpQfNRJCG5sP8/xoctxaFqPjtFPmpw+9tB3tP5iCPHvbKHtsuE4NKlHyrrTePRrhZ377RFLTs1ZAGk7L2C7WdflVBvyFApo+txd1O/bwqSs1acPVZM21uf6qiMcH7oc0MXIim43j6zjpnMgp6f+Qk5sMkcGfkvcf9Zx5vFfOfvkmptuK+PAJc7N+puC9JJDajUZ5SzQhQew+ycRUEEEFQrQ9TDaR46m/coxhjLv4UG0XTaC3NmBFq/rsOaRqlCv0kn8cp/JseZGDpfm7zArq0nN4doPhwBI+btk4ihNVr5hwjz7bBJHH1pG2o7zhvNH7l1K4lf7SHh/S2WpXyUoZ1EM5SwUiiLq9fQn4MP7CfpnEgCe97ZGdqhvVtajX8vbclxfm68h48Aljj74LddXHWWv/weGvSBnnlxD+q54jg1ZXuK63As3kFKS9NsJzr38N7KG7zhXcxbFUM5CoShCCIGvhVDtxriFN6HF3IFVoFHN4/jD35O+Kx6A9N268CPXlh+k5dyBFKRYznWuzczj6MBvyYi+CEC97nfQ4MH21le4gihnUQyV+EihKD+Bf07ANdAXG6eyHyW+U8Jp8tSdXP5kF1eWRFeBdlVDoaMwR2EIIXPc2BJnclyaYzHUl1tAyroz1O9dtKKtMMOntVHDUMWwUXGhFIpyY+vqUC5HAdDs5d44NqmH/5wBdI57gXaR5VuhVZuR2qJlVxcX7ODq8hiLsuf+/SfJf54yHOclZhjmPuJe/YeYbou48OZGTk9ZzalJqwC4/vNR9tzxPrYbEq1kQRGqZ1EMNQylUJSNz/gwss8m49zGu8Q5l2Bfsg7rHl5Nn+tO2o4LtF4yzGRvh62LPR59W2LjYm+IyVbX2BeygILrWYbj+Lejyrzm1ISVdE18mZQ/TnJq8moaP9GVer38ubJ4LwBXYnWbK9O26ibMY5/TzY3YLz4Lb1WyAcVQzqIYahhKoSibFv97wOK5Vgsf4vTUn2n67F14P2x55RRA2O4n2B+8AICgfyZxpP/XADT7T2/i5xTl8rDzdMa5dQOkVhrG+Gs6+VcyKnTdbt93DImfLn+2m8uf7TYrV5BW9rBVZaKcRTFUeHKF4tZwadeQ0K3TyiXr4OtGSNRj5MQmm4TbaDC4A41ndOPC6xvw6N8Kj7uL9nzs8pljUkezl3vXqiRR5UJrPg2tMdGtPsLGtepGQpSzKIaN6lkoFFWKSwcfXDr4ANAucjS5CTdwCvAEdNkDi9N6yVBOP/YzoBsOa/rcXTQcF0pBSjaHen5RdYrfZihnUZxyeHSFQmEdPIrtGjeH14PtCNk6FacAL2wcdHHcHHzccPBxKyHbYv5AhBCcffr3Ste1JqDNtLzaqrJRq6GK4dDIvbpVUCgUpSCEwKVtQ4OjMKb5G/eYHPuMCaXh6BCz9eQ/0dIq+tVVlLMohmuwb9lCCoWiRtL4ia74vdCzRHmDoR1wDTMNQW4cTNBSxF5FEbe9szCX9EShUNRefB4JAwG+EzsZylovHkLQ2gkIR11vpOOBmWgbFS3l7bh/RpXrWdtQcxbKVygUdQqHxu50vTjLkNipEGFnQ+cz/0LY2iDsbJAd6tNywSBcgnyxcSx6FIZEPYbUaHFoWo997eYBUL9PAC0+eoDzszfQZEY3HJvVZ1+H+SXa7pLwEtrMPDTZ+Tg2qVdi5VZtRjkL1bNQKOocxR1FIcZOATCZzwg/8Sz51zJxaduwZH22Njj61afNkmGGsohTz3F8+A80HBeK7/iOhjZtHJyx83SuDDNuCqmVCBvr5Vy36jCUEOI+IcRJIcQZIcQsM+fnCiFi9P9OCSFSjc5NEEKc1v+bYC0dpVr9pFAoAHsvF7OOAsw7HzsPZ4LXT6bRpHCLzsl4KKzxE10rR1ELaG5Yd5Oe1ZyFEMIWWAjcD3QAxgghOhjLSCmfk1KGSSnDgI+B1fprvYDXga5AF+B1IYSnVRRVvkKhUJSBJWdQFr6TwwFdbvDiK7UqG2v3ZqzZs+gCnJFSxkop84BIYHAp8mOAH/Sf7wX+kVImSylTgH+A+6yipepZKBQKCzR7pQ8IzK6wKg8u7RrScd8MQjZMKZe8g189XDs2pvHMbjR/q1+525Fu1p9RsGYLTQHj2L0J6HoKJRBCNAcCgI2lXNvUCjoqFAqFRZo+3Z0mM7ohbCv+Xu3YrChZVOMnuhpiPTm386blxw8a4mE5tfQidPvjJvMO519dX642NF28KqxfeakpE9yjgZVSSs3NXCSEmAZMA/D19SUqKurmW87T4GR0WKE6ahAZGRm13oZClC01k7piS7XYcbct3NkVHG3IEYLolJOG50+WNpfNW0xjXNn38MZ22/Uyq81zs/6zy5rO4iLQzOjYT19mjtGA8ULni0CfYtdGFb9ISvk58DlARESE7NOnT3GRMtFm57OHoqiOFamjJhEVFVXrbShE2VIzqSu21BQ7DjQ/Ru75VJr074B/MX00nbuTuv4Mdl4uHB/+Pe1XjuX4w9/rTgoI+nMi11cfJa6HjdVtsaaz2Au0FkIEoHv4jwbGFhcSQrQDPIGdRsV/A3OMJrUHAC9bQ0m1clahUFQngWvGk7z2JA3HhJY4Z+vqQIPBunVB3RL/Y3LOvWsz3Do1wa1TE+KqoIdktQluKWUBMBPdg/848KOU8qgQ4k0hxENGoqOBSGm0lVpKmYwulcde/b839WUKhUJRp3Bo7E6jKRHYupQvPULT57oD4PfvHtZUqwRWnbOQUq4F1hYre63Y8WwL134FfGU15YoasnoTCoVCUVk0e7kPTZ7ujm0V5rIAFRtKoVAoah1V7ShAOQu1KU+hUCjKgXIWCoVCoSgT5SxU10KhUCjKRDkLhUKhUJTJbe8sDmw5z/dNvdjqVTJ/r0KhUCh03PbOQmoh19aGPCvGgVcoFIrazm3vLOzsdE5CK5SzUCgUCksoZ2Gvy8mrrWY9FAqFoiZz2zsLW31SE40Q2Hm7VLM2CoVCUTO57Z2Fnb3uFmgFtP+pRJxDhUKhUKCcBbb6pCZaW4FroE81a6NQKBQ1k9veWRT2LDSoCW6FQqGwhHIWdkXDUAqFQqEwz23vLAwT3KpnoVAoFBZRzsJe9SwUCoWiLMrlLIQQzwgh6gkdXwoh9gshBlhbuarAMAxVzXooFApFTaa8PYvJUso0dLmwPYHxwLtW06oKKVwNpVE7uBUKhcIi5U2rWvgkfQBYps+lXSeeroU7uDWAlJI6YpZCoajllPU8On3gMm4eTmg1VZNmobzOYp8QYh0QALwshHCnjozc2NvbYCslGiHIz9Xg4GTVtOQKheI2QqvRsvrjPXTo5keHbn6lyqYlZfHqsBXkZOYza+kQls6Owr9DQ0a/eBdbVh1j7VcHcHCy442VI7kan8aHU38zXNu8ozt9+ljXlvI+GacAYUCslDJLCOEFTLKeWlWLkICA7Iw85SwUCkWFuRSbgkdDF1zcHQF44d7vyEjN4Z/vDvHwM11pE96Edx79mRHP30nTVl60jWiCjY2gIF/Djx/tJCczH4B3J/4CwJW4VHatPW2oPyczn+fu/qZEu+cPpFvdtvI+Ge8EYqSUmUKIR4BOwHzrqVWFSLCROm8RfyqJ+io+lEJx2yClJPH8DXzuqI9NOdMUGA8PSSkpyNPwz/LDpCRmsGXVcYPc2Fk9yEjNMRyvmr/b8Pmnj3YaPns3def6Res/7G+V8jqLz4BQIUQo8C9gCfAt0NtailUlefpJbqlVKVYVirpMTlY+F05cp1VYIwD+/DqGXz/dy32Twhg6o4vF6zQFWtYsiuavpTEAvLDkITwauvB/gyMtXvP9u9vKpVNtcBRQfmdRIKWUQojBwCdSyi+FEFOsqVhVIaWkWVYu8S6OaArqxDSMQqGwwMfP/MmZA1cY/0ov8IC1X+4H4K+vYxgwPhTXerrho6z0XBJOJ9MyxJe/lsZw9lAiR3fEG+r54LE11aJ/dVJeZ5EuhHgZ3ZLZnkIIG8DeempVIRIuOzkAcHx3AmF9/KtXH4VCYeDCiev8+tleRjx3J438PQzlv32+j9P7L/PMJw8YojAAJJxOIvlKBiE9m5vUI6Xk+sV0zhy4AsDuP0/j3qyA/FyNQearVzcibAQNGrsT9eNRK1tW+yivsxgFjEW33+KKEOIO4APrqVW1FOjHKqN+OsaYl3pUszYKhaKQ/z3+GzmZ+SRdSmf2TyMN5b9/vg+AT577i2c+fsBQ/taYVQC8Fjkc3+b1iYmKo1VYI166f7lJvaf2XYZ9pm0d2R5PbUarleWed6kI5XIWegexHOgshBgE7JFSfms1rRQKRa2i8M3du6n7Le9V0hRoObIjnk0rjhhWB6VczTScv3E9y/D52M4Evnkjii73tcLdy9lQ/ubolbekQ1Vi72hr0sMp5IkPB/D165sM96A4Y2f1MJkXyc3Kx9nNwWp6lstZCCFGoutJRKHboPexEOIFKWXt+UZKoUl2HpecHQjueUd1q6JQ1Eo2rTjKig93MGB8CA8/0+2mrs3P03BwcxweDV1p3qEhLw9cTnpKjolMTmY+j0d8bvb6Hb+dYsdvpyqse3XyyvJhNGvrjZSSK3Gp2NnbEn8qCTcPJ9p0aszcTRM5vf8yzTs0ZPWC3fQY0o763i5kZ+TRyN+D8H4tSEvK4uCx/Ti6WHdmoLzDUP8HdJZSXgUQQjQE1gO131lISXO9szh/7Fp1a6NQ1EiuxKXi6GKPp4+roSw9JZuczHwa+tXjjyW6ieJ1yw4ZnIWUkoJ8LbZ2NhTk6Ta8bow8Qk5WPg9M7siGHw6TeSOX5CsZ7Py9dj7sixPauzkHN58H4PUfR7Dxh8Ns/fmEWdl3fh+LVyM3AIQQNA7wBKChXz2DjI2NoG1EE0DXkyikcIm/m4cTbh5OnIq3s+oQFJTfWdgUOgo9SdShiLXnnXVdt7Sk7GrWRKGwLpfPpVDf2wVnNwf2bzhH8/beeDctejhpNVqkxGTSOCs9l9eH/wjAp7seIzutAIB/918GwLt/jCUrPdcgP/+ptRzbmVCi7f7jQ/hn2SEAfv10b+UbV41Me7cfHe/2R9gIw5CSg5Mdo1+8i24D2+DXpgHR684SdFcz4k8m0TLU17Bxr7ZQXmfxlxDib+AH/fEoYK11VKpiJDhp1ZJZRd3nSlwqs0f8hJOrPY/99x4+n7UegMXR0wwyb45ZReaNHN778xHDm2pKYtF8wZPdlgAQ1C7JUDZr4Pcm7ZhzFIDBUdQ1Fu2dajJPYxwFws7e1rCno8eQdgB4NHSlNlKu3oGU8gXgcyBE/+9zKeVL1lSsKglJUz0KRd3n7EHdstGczHwSTieZlbkcm0JaUjY5mXkc2RHPB4+t4fqlkpvG3h67yqq6Vgdhd/szdGbJjXnDn+2GvaOtSVmb8MaGz7dL8NFyB0KSUq4C6twvREqJo0b1LBTVS2VEPE6+koGzm4NhRYymQMuZmCsEBPng4GSHNApQ8MvComGg5e9sZcuq48ycd5+h7NLZFD5++k8AzsRcuSW9qpLwfi3Ytz7W4vm+o4PYGHnEcPz4+/1xcrHnjnbeuHk4IaWk28DW2NnbkpdTgFYr8W7izj1jgtBoJF+9upHQXs3Z/uvJqjCnRlGqsxBCpAPmYmAIQEop65k5V+uwM7Iw5WqmySSeQmEtcrPzeX/yryScTsa7qTuzfxyBvWP53t+MncvFM8lkpecaopC+/ctolvzfBgDijl6j84CWjH25B3k5BWbrKoxn9MmzfxnKausO5ZBezU2cxeLoaRzblcD8mWvxaVaPUf/uzoBHQ8lKy2Xv3r106htgcr0QwuwwkY2tDTa28Ph7/QHQaCSn9l8muMfts4Ky1F+mlNK9qhSpNiTYGb1ypSRmKGehqBKi150l4XQyoIsPFHv4qmHlS3EKncON61nMffIPLsem8ND0CJKvZLDtF9PVNq8MMY1XtHfdWfauO2sdI6oQr0Zu9BsXTPP2DfnhvW2Ge2dMfm4BE2f3YensKENZ+65NmbV0iGEHuKePK54+rpxOqPgEc/cH23BH2wY00q9guh2w6oomIcR9QoiTQogzQohZFmRGCiGOCSGOCiG+Nyp/X192XAixwJrJloxvQlUlElHcXuTnaPh54R4un0spKiz2k9ZaGA7dvPIY0zt/wV9LY3jxvu+4HKurY82i6BKOorbx8jdDyi37WuRw7hkTTKuwRrz6w3DuGtwWgPsmhuHbvD4AbcKbcOegNny0cYJh4l4IQUCQT6VuWBNC0KytN/YOtmUL1xGslrxBCGELLAT6AwnAXiHEGinlMSOZ1sDLwF1SyhQhhI++vDtwF7rJdIBt6N4tbWkAAB6LSURBVCLcRlW6otLUOfzx5X6T8AEKxc1wJuYK1y+m0W1gG5PymD+uc2bnWdYvP8zCHVM4d+Qqvy2ONpE5HXOF9l11CXLycgpYsyiaf74rWkH08yd7rG9AFTDl7b7s/P0UTq72+Af6GFYTFW666zWsPW6eTqz98gAA/cYFc+egNiUe9mNn9aD7g20JCPJh0NROpKfkGPYtFAYEVFQe1sz00wU4I6WMBRBCRAKDgWNGMlOBhVLKFACjvRwScAIc0M2P2AOJVtTVgKVlfwpFca5fTGPTj0cZMD6UxPOpfP16FMlXMgBo3qEhZw8mknI1kwenhXMtVrfiriBPw/6N51j84j8l6vvji/207tiYgCAfnun1dZXacqvY2tnw7tpxHNpyHr/WXrwz4ReLsk1befHMJ0UvZMUHDR6Y0hFPXze6PdCa5CsZBgdaHONlqbZ2NgZHobAO1nQWTQHjyFwJQNdiMm0AhBDbAVtgtpTyLynlTiHEJuAyOmfxiZTyONZA37Fw1WrJtLEhvF8LqzSjqN1cik3BxkaYRD6dP3MtV+PTiD+ZxMnoSybyqVczWfb2FgD+/OqASfh7c46ikHlP/lHJmluHEc914/cv9hMQ7EOj5h6MeK4bNrY2hr0E86Im8taYlSRdzsCjoQsPP9ONlqG+XL+YTtNWXmbrfH7RIG5cz8LTV/fQ923ugW9zD7OyiqpHSGmdMXohxHDgPinlY/rj8UBXKeVMI5nfgXxgJOAHbAGCAW90mfhG6UX/AV6UUm4t1sY0YBqAr69veGSk5UQkFrmWg9OM/Rz1dWWPozOt7qxP54d9b76eGkJGRgZubnXjDasybdFqJDa2Jae9CnK1HI9K5o4wd+r7mh+60GokK17SpbYc+W5rALJS8/n93bhK0a0m4VzPluy0kkHtjOk51Ru/tuYf+LUJ9bei4+67794npYwoS86aPYuLQDOjYz99mTEJwG4pZT5wTghxCmgN9AF2SSkzAIQQf6JL7WriLKSUn6PbLEhERITsU4GM5TkXUolhvyE5R8MGvlSknppCVFRUrdbfmMqyZcuqY/zwzjaeWnA/Qd2LfpIF+Rp+/XQvR/45w5F/kg0ToslXMnDzcDLsxM3JzGMFOmfx46zTJRuoZbi4O5CVnmf23AufD8XNw4kX7/vOpPzjbZNxcLIjP0/D9h1b68RvTP2t3BzWdBZ7gdZCiAB0TmI0upwYxvwCjAG+FkJ4oxuWigVaAFOFEO+gG4bqDcyzoq4UvnTm5Zpfi66ovSx/RxfG+Yf3tvHW6lFcPJvCyb0X+WnuLuzsi9bC7fz9FHe08+bN0Stp0MSdN34awcy7viKif+0fmhz2VBdWf6ybIJ+7aSKAYUL5/9u77zgpq3uP45/fLiy9LyC9uSsgvSggGERAQRFRVGKJBhVsuTY0EBNjYryxJMRrJRi9aq5RgRAliiBRFhQFISq9uIJUA4iArIV67h/PM8PM7M4OCzu7U77v12tfPHOeMufsM+xvTnnOqdOwGqPvH0BO15OC/QehU4CESqfRPxIubsHCOXfIzG4BZuP1RzznnFtpZr8FljjnZvj7BpvZKuAwcJdzbpeZTQMGAMvxehVmOef+GZ+Mev8EnrX495z18Pu4vJOUoYMHvFpD17NaBtMyMozpj38UNsLo0MGjfQmhY/N3bdvHLWc8B8CSOdGfCE4Uo+8/i+d+NbdQ+q1PDA0OG23Rvj416hxd86FqzUp8981++gw7hdxujQqdKxIqnjULnHMziZhw0Dl3b8i2A+7wf0KPOQyMjWfeIlUN6bs5eOCwvkElgEMHjhzzNBhv/uVjZkxaQr8RbbnynjN59+XlzPm/ZWGBAbPw1yngsfd+SqUqXiNqUcGiYqXM4JDTtj2bhO375UsXsXTeRvqNaBv/jErSi2uwSAp+kKgYMqvJvq+/1zC8OIsMyJFB4att+5j6i3ym/iKf3sNy6dCnGc5Bz8FtirzejEneMwvv/WNN1PUDdmzaW4oliL+Rt/Vi2qMLAcjt1ojtm/aGrRIHBANFpAbNa7F7ewHN22ZHvX69RjUYMKpD6WVYUpqCha9mSLDYtOYrBYs42rnlG3554Sv0HdGWtj0a88WqnSx6K5/BV3Vi8FWdAfhoVn7w+A//uY4P/ZXQug1oxcbVO3nx/vkMvLwjG1buoGocl5IsTwNGdQgGi4YtanHn5GEcOXyErf4kfyNvC1+Rrk2nhny+bDu53Rpxx5/P59DBI6ohS6lRsChi5PDT496O2sEnJy4wRcX7/1jD+yG1gL//zyLqnlSdHoPa4I4UPaT71yOnsHPLNwDB5xiSUcv29Znw4gi+LzjA7u0FfLlhD5PH/4uMTOOphdfhnNfHctPEc8ibspLhN/UEvAntmuXW46G3rijUPDf24UHMn76aH13cDjNToJBSpWARkB5T0pepH747SGaFDCpmZeKcY+qfFtKoVe1il699ZsI71KhThSNRgkUgUCSy3sNygzWhgFqNstj7pTdcddRdfeg+yGtO86YUr0uj1nX49ZRLaNCsJmYWnDaq85kt6Hxmi0LvUVQ/Tq3sqgwb072USyPiUbCI00OJ5e3DN9axaOZn3PCHwVSO40LuM5/7hP3fH2TEzeGLxuzYvJdfjXgVgPumXsILv5nHhhU7irpEIRNveKPU81lWatarwjW/7k9Ol5PIblIzWJac3rVZMt0r/1mXFe4nMDMat06fGUwl+ShYBFlwLHrkqljJKDAMNG/KSs69pkvc3iewlvKQa7pQuZrXdzB3ykpeeXhB8Jj7Lpkat/ePl/Ou68abf/n4mI69bFwfep+fy9b8r2nT2Xv6/4zhbXHOcVLL2mRkGo3bVaNS1Yr0Pi8nntkWiZu0Dxah9YqOfZsz/fGPyG6cOst4/PDdweM+1znHkcOOzAoZbFrzFVmVK4TNjRQ6Vcz0Jz6idceGrFm8tVATTDIaNrY7FbIy+WDGWn7+v8NZ+cFmamVX5fFbZ4XN8wTQ76J2VMw6OqldgJnx61dHghnz589j4js/oULF5P8iIukp7YNFkHkzVwJ8uWFPqSxzmQiidRSDN+X1js17GfPgwCLL+rffv8+iWfnc89cRPHDldAD+MOcqFr2Vz5rFW9m78+gwznlTVzFv6qpC10hWZsbQ0V0ZOrorQHDK8Uvv7M3LDy3gtCEn858Ne7z1mYvpSM7IPPqEuAKFJDMFi5Bvx4FgAd5Tu9HG9Ccy5xz/eunog2fROooBZj3/KQCf5n1Bs9x6vPfaGgZe3jH4lO/86d5Ev1P94ZsA4wb9NR7ZLlP1Gtdg17Z9YWn3Tb2E7/Yd4OHRr3PJ7b2inAn9LzmVbme3pmbdKlGPEUlFChYB5q2rGxBYlyAZbF63iy/X76bDGc3Yuf573nn66B935xx7dn7LlIkfMuiKTrRol82hg0fCyjfprjm0O70JqxdtZfHsz3ng9VEsnbcxuH/5e5vKtDylKTAEesUHm3n+vjxO7dWUi/7Lmyk/MFne04uuC9YAAgvxFEeBQtKRgkXIF+/Q5oTpjy1i4OUdw2obZe3g/kO89Pv36T6wddSF4ZfO38hTd8wOvq6RHT7yaf2y7bz0xR6WvbfJm/cqitWLvAmBd23bx4NXv8YXxQxvTUTdzm7FKT0as3HVTr4vOMAnc78gu8nRvqcOfZrxh7evCjvniQWjvecZQpqKUqHpUSQeFCxCRD61PeWPH/Djn/ctp9x4zUAfvrGOD99Yx6i7z2DxrHxO6dmY4Td6D2htXvtVWKAA2PdVeIf250tLvsBgIgeKu58bzqbVO3nlkQ/C0qvVrET/S04F4PuCAzQ7ZQW9Yow8qlhJH3+RY1V+X5sTRTHPWeRNXcV3+/aX4FKO41lMyjnH608v5uN3N4Slf/vN0fd+5eEFfL5sOzOf/YTtm/byzdff87srppf4vRLZBTfEXH+FNp0a8qOR7enQpxlDr+0aTA885Abeg27nXdeNeo1SZ1SbSHnTV6uAKM0Pk+6ewx1Pn39Ml3j05pkU7PmBcZOHMe3RhfQ+P5eTu5zE3q++46X/fo+zL+/IKT0aFzpv46qdwcXpLxvXh/pNa9Kxb3MyMorO0/7vDgZHJ6WKB14fRb3GNeh9fi4Tzv9bof0VK2Vy+1PnAV6z0c8eGwJ4z0Ps3v4t9ZvWLNP8iqQbBYuIikDkSJm1i7dxrNZ85LX7v/jbeXz87gbef20NkxZfz9SJH7J0/kaWzt8Y7HA98MMh1izeStueTcLWVHj1D17zyqTF13Nwf9HLW+7YvJf9J/D8RCLpe2Fb+lxwCtlNvD/2RU3gOOHFEbRol11kf0KFipkKFCJlQMEiwP87FLpy2vEKbU568o7ZYaOJ1i7ZxkktazNj0hLef20NDZrXKrIT/Yaez0S9/jMT3jnhPJaFa383gGd/+S4NmtWk3elNmTft6HMYud0bcc7VXcKWOQ245dFz2f/9QbbuyqdXn140bF6rLLMtIkVI+2AR2cdw6R29efzWWYWO2b5xLx/8cy39RrQL+yZ76OBh/nTTm+zZ8W2R148cdho571GyrbFQnLEPD2LXtn1Me9RbrvS0c08mt3sjatSpQmaFDEbdfQbTH1tEbvdGdOpXeHK8gMDIr4K8zQoUIgki7YNFpPrNCv9x+uPYN/js4y8BmP3C0mBT0v/eO5eFMz8r0/wlgsffH01W5QoU7PmBOwe+GEzvNqAVRw4foXrtyuR295bprF2/WnB/RoYVWoNBRJKDRkMdw+ClQKAItXrRlpQOFO17Nw1unzH8lOB27fpVyarsfceoXrsyv3r5YlqeWp9xzwwDvM7n3ufnaiSSSIpRsAgowbNYzjk2rd0Vv7yUg65ntQxut+rYgIGXdwy+/vHP+9Kpn9c01CNiCpSmOfWY8MIIcro2Kotsikg5UTNURJ9F/SaxvxHf0PMZ+qbAIvf1GlVn15cF3Pync+jUrwVje0wGvBrDqb2bcfdzw6nfpAYVszK59oGzWbtkG+17NY1xVRFJRQoWAX7NIiMzg0mLry92NBIQthxooqrTsBq7t4d3vI99eBDrl29n8FWdqVGnMt/u3U/12pXDjgl04Lfp1DCYVrlqxSJXbBOR9KBmqCL6LMyMOycPK/u8lKI/LxnDg29eEZb2i7+OoNuAVoy8tRc161bBzMICxYQXR9D/0lO5YGzsJ6lFJL2oZhEU3mmR2y3x2+AvG9eHZqfUY+INb3DkcOye+lrZVYvd37J9fVq2r19a2RORFJL2waK4qZx6nZfDwjcTc8TTsLHdGTDKW8v5gdd/zOfLtrPu39uY//fVRT5Y2KBZzbBhrCIiJaFmqIAiRkOFLiFaGqrVqnTMxz618DoezbuGMy9uF0wb8+BAWvjf/Adf1TmYXvek6vQc3IaLfnY67c+uy69eHhncd8WEvjRuU4e7nh1eCiUQkXSV9jWL4qoWpb22wcR3rmbnlm+4/8fT2P/9oUL7fzSyPfOmraLX0BwyK2RQpXoWl9zem5O7nESHM5pTrWYlug9sHfX6Vapn0XlIdliQO/Pi9px5cftSLYeIpB8Fi4Ai4kJRM8SeqPpNa/LYe6MBgkNVxz9/IS1PrY+Zcfn48PUzsipX4PQhxa/LICISb2qGKqbPolWHBjRvl12iyzWIMpfR8Jt6FnueVmgTkUSmYBHDKd1j1y66nNWy2P3N22YzdHTXQumDruxEbvdGtChhQBIRKWsKFjEmhxoyuiuVq1XktCEnB9MuvLln2HxJNz4y+LjeeeRtvbjzz8PC1oAWEUlE6rMIiNIMVK1mJf5n3k8B+OitfADadD6JIT/tStOcelSslFnonIfeuoLd27/lwWtei19+RUTKkL7SlnzJbKrWyAJgwKgO9BvRLnync9SuX41WHRpwzX39qVytIldM6FvEVUREkodqFgHH0L889qGB/OeLPTTNqXdMl+x9fi69zstR57WIJL20r1lErpRXnG5nt2botd2K3HflPf0ACg19VaAQkVQQ12BhZuea2Vozyzez8VGOudTMVpnZSjP7W0h6czN728xW+/tbxjOvJ6rfiHY8tfA62p2uKbxFJPXErRnKzDKBJ4FBwBZgsZnNcM6tCjkmB5gAnOGc221mDUIu8SLwgHNujplVB47EJaPH0WcRTWaFtK+oiUiKiudft9OAfOfceufcAeAVIHKCouuBJ51zuwGcczsAzKw9UME5N8dPL3DOfRfHvJZopTwRkXQTzw7uJsDmkNdbgNMjjskFMLMFQCZwn3Nulp++x8ymA62AfwHjnXOHQ082szHAGICGDRuSl5dX4kxa/j4qAYcPHzmu8xNNQUFBSpQDVJZElSplSZVyQNmUpbxHQ1UAcoD+QFNgvpl19NP7AV2BTcCrwDXAs6EnO+cmA5MBevTo4fr371/iDBTU2sYKlpNZIYN+x3F+osnLy+N4fg+JSGVJTKlSllQpB5RNWeLZDLUVaBbyuqmfFmoLMMM5d9A5twFYhxc8tgCf+k1Yh4DXgKKHIZ2oUuyzEBFJVfEMFouBHDNrZWZZwChgRsQxr+HVKjCzbLzmp/X+ubXNLLBs2wBgFXGlTgsRkWjiFiz8GsEtwGxgNTDFObfSzH5rZhf4h80GdpnZKmAucJdzbpffNzEOeMfMluP9JX8mTvmMx2VFRFJKXPssnHMzgZkRafeGbDvgDv8n8tw5QKd45i+MKhYiIlHpwQBVLEREYlKwCFDNQkQkKgUL9VmIiMSkYCEiIjEpWKhiISISk4JFgKYSFxGJSsFCfRYiIjEpWASoYiEiElXaBwtVLEREYkv7YCEiIrEpWGg4lIhITAoWAeqzEBGJSsFCFQsRkZgULAL0nIWISFQKFhoOJSISU9oHC8UKEZHY0j5YiIhIbAoWgaqFuixERKJSsPA5BQsRkagULNRnISISk4KFiIjEpGCh4VAiIjEpWATooTwRkagULFSxEBGJScEiQBULEZGo0j5YqMtCRCS2tA8WIiISm4KFqhYiIjEpWASoz0JEJCoFC1UsRERiUrAI0HMWIiJRKVioaiEiEpOChYiIxJT2wUKDoUREYotrsDCzc81srZnlm9n4KMdcamarzGylmf0tYl9NM9tiZk/EM5/em8X9HUREklaFeF3YzDKBJ4FBwBZgsZnNcM6tCjkmB5gAnOGc221mDSIucz8wP155BFS1EBE5BvGsWZwG5Dvn1jvnDgCvAMMjjrkeeNI5txvAObcjsMPMugMNgbfjmMejVLMQEYkqnsGiCbA55PUWPy1ULpBrZgvMbKGZnQtgZhnAH4FxccyfRxULEZGY4tYMVYL3zwH6A02B+WbWEbgSmOmc22LFPP9gZmOAMQANGzYkLy+vxBnIWP41WcDhw4eP6/xEU1BQkBLlAJUlUaVKWVKlHFA2ZYlnsNgKNAt53dRPC7UFWOScOwhsMLN1eMGjN9DPzG4CqgNZZlbgnAvrJHfOTQYmA/To0cP179+/xJncfeAz1rKGzMxMzjyO8xNNXl4ex/N7SEQqS2JKlbKkSjmgbMoSz2aoxUCOmbUysyxgFDAj4pjX8GoVmFk2XrPUeufcFc655s65lnhNUS9GBopSpye4RUSiiluwcM4dAm4BZgOrgSnOuZVm9lszu8A/bDawy8xWAXOBu5xzu+KVp6IzWqbvJiKSlOLaZ+GcmwnMjEi7N2TbAXf4P9Gu8TzwfHxyKCIix0JPcOs5CxGRmNI+WASpy0JEJCoFC1UsRERiUrAIUM1CRCQqBQv1WYiIxKRgEaSqhYhINAoWqliIiMSkYBGgioWISFQKFuqzEBGJScEiQDULEZGo0j5YqGIhIhJb2gcLERGJTcFCw6FERGJSsAhQn4WISFQKFqpYiIjEpGARoJXyRESiiuviR8mg6qkNaPGbs/ns28jlwUVEJCDtaxZV2tSj0Y2nc6RH3fLOiohIwkr7YCEiIrEpWIiISEwKFiIiEpOChYiIxKRgISIiMSlYiIhITAoWIiISk4KFiIjEpGAhIiIxKViIiEhM5lJkqTgz2wlsPIFLZANflVJ2ylOqlANUlkSVKmVJlXLAiZWlhXOufqyDUiZYnCgzW+Kc61He+ThRqVIOUFkSVaqUJVXKAWVTFjVDiYhITAoWIiISk4LFUZPLOwOlJFXKASpLokqVsqRKOaAMyqI+CxERiUk1CxERiSntg4WZnWtma80s38zGl3d+joWZfWFmy83sUzNb4qfVNbM5ZvaZ/28dP93M7DG/fMvMrFs55/05M9thZitC0kqcdzO72j/+MzO7OkHKcZ+ZbfXvy6dmNjRk3wS/HGvN7JyQ9HL//JlZMzOba2arzGylmd3qpyfjfYlWlqS6N2ZW2cw+MrOlfjl+46e3MrNFfp5eNbMsP72S/zrf398yVvlKzDmXtj9AJvA50BrIApYC7cs7X8eQ7y+A7Ii0h4Hx/vZ44CF/eyjwFmBAL2BROef9TKAbsOJ48w7UBdb7/9bxt+skQDnuA8YVcWx7/7NVCWjlf+YyE+XzBzQCuvnbNYB1fp6T8b5EK0tS3Rv/d1vd364ILPJ/11OAUX76JOBGf/smYJK/PQp4tbjyHU+e0r1mcRqQ75xb75w7ALwCDC/nPB2v4cAL/vYLwIUh6S86z0Kgtpk1Ko8MAjjn5gNfRySXNO/nAHOcc18753YDc4Bz45/7o6KUI5rhwCvOuf3OuQ1APt5nLyE+f865L51zH/vb+4DVQBOS875EK0s0CXlv/N9tgf+yov/jgAHAND898p4E7tU04GwzM6KXr8TSPVg0ATaHvN5C8R+sROGAt83s32Y2xk9r6Jz70t/+D9DQ306GMpY074lcplv8ppnnAs02JFE5/OaLrnjfZJP6vkSUBZLs3phZppl9CuzAC7yfA3ucc4eKyFMwv/7+vUA9SrEc6R4sklVf51w3YAhws5mdGbrTefXPpBzmlsx5B54G2gBdgC+BP5ZvdkrGzKoDfwduc859E7ov2e5LEWVJunvjnDvsnOsCNMWrDbQtz/yke7DYCjQLed3UT0tozrmt/r87gH/gfZC2B5qX/H93+IcnQxlLmveELJNzbrv/H/wI8AxHq/sJXw4zq4j3x/Ul59x0Pzkp70tRZUnme+Oc2wPMBXrjNflVKCJPwfz6+2sBuyjFcqR7sFgM5PgjDLLwOoZmlHOeimVm1cysRmAbGAyswMt3YPTJ1cDr/vYM4Cf+CJZewN6QpoVEUdK8zwYGm1kdvzlhsJ9WriL6gkbg3RfwyjHKH7HSCsgBPiJBPn9+2/azwGrn3MSQXUl3X6KVJdnujZnVN7Pa/nYVYBBe/8tcYKR/WOQ9CdyrkcC7fm0wWvlKrqx69xP1B29kxzq89sB7yjs/x5Df1nijG5YCKwN5xmuffAf4DPgXUNcdHVXxpF++5UCPcs7/y3jNAAfx2k+vPZ68A6PxOuvygZ8mSDn+6udzmf+ftFHI8ff45VgLDEmkzx/QF6+JaRnwqf8zNEnvS7SyJNW9AToBn/j5XQHc66e3xvtjnw9MBSr56ZX91/n+/taxylfSHz3BLSIiMaV7M5SIiBwDBQsREYlJwUJERGJSsBARkZgULEREJCYFC0lrZlbbzG4Ked3YzKYVd04pvndLM7u8LN5L5EQpWEi6q403YycAzrltzrmRxRxfmloCChaSFBQsJN09CLTx1zh4xP+2vwLAzK4xs9fMW8vhCzO7xczuMLNPzGyhmdX1j2tjZrP8iR3fM7NCc/iY2Y/s6FoKn/hP4T8I9PPTbvcnjnvEzBb7E96N9c/tb2bzzexNf02CSWaW4R//vJmtMG99k9vL8PcmaaZC7ENEUtp4oIPzJmwLzFQaqgPezKWV8Z6O/blzrquZ/Qn4CfAo3vrHNzjnPjOz04Gn8KaSDjUOuNk5t8Cf5O4H/73HOefO9997DN7UGT3NrBKwwMze9s8/DW9tgo3ALOAiYAPQxDnXwT+/dmn8QkSKomAhUry5zlsXYZ+Z7QX+6acvBzr5f/j7AFO9aYkAb6GZSAuAiWb2EjDdObcl5PiAwf41A81gtfDm8jkAfOScWw9gZi/jTWvxDtDazB4H3gTejrygSGlRsBAp3v6Q7SMhr4/g/f/JwFtjoEtxF3HOPWhmb+LNN7TAil7e0oCfOefCJt8zs/4Unh7cOed2m1lnvEWHbgAuxZubSaTUqc9C0t0+vOU3j4vz1krYYGaXQHB96s6Rx5lZG+fccufcQ3gzmrYt4r1nAzf6U2xjZrn+zMIAp/kzoGYAlwHvm1k2kOGc+zvwS7xlXkXiQsFC0ppzbhfeN/0VZvbIcV7mCuBaMwvMBFzU8pu3+e+xDG+m2rfwZhQ9bGZL/c7pvwCrgI/9TvY/c7T2vxh4Am+a6g1465g0AfLMW03t/4AJx5l/kZg066xIgvOboYId4SLlQTULERGJSTULERGJSTULERGJScFCRERiUrAQEZGYFCxERCQmBQsREYlJwUJERGL6f0fQ796/3DPBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsnXd4VEXXwH+TTYc0EkgggSQIBEgIAULvWCiKgtIUpehHUcH+2gs2FF9UUJEiIoL4goICIooihCK9BEIvIUAoIYWS3na+P3az2U02DbK7SZjf8/Cwd+7M3HPubu65c87MGSGlRKFQKBSK0rCztQAKhUKhqPooY6FQKBSKMlHGQqFQKBRlooyFQqFQKMpEGQuFQqFQlIkyFgqFQqEoE2UsFLcdQojDQoheldRXLyFEfCX1NUYIsbUy+irn9QYLIc4LIdKEEG2seN2RQoi/rHU9ReWgjIWiGEKIOCFEpv4hkiCEWCiEqG1ruSoLKWWolDLqZtoKIaQQokkli2QrpgOTpJS1pZT7LXEBIUSQ/p7ZF5RJKZdIKe+xxPUUlkMZC0VJDJRS1gbaApHAm0UrCB2V9hsyfqAorEIgcNjWQiiqB8pYKEpFSnkB+AMIAxBCRAkhPhRC/AtkAI2FEA2EEKuFEClCiFNCiHEF7YUQLkKI74UQV4UQR4UQLxu7bfSjmFeEEAeBdCGEvb6/FUKIRCHEGSHEM0b1Owgh9gghbuhHPZ/py52FED8IIZKFENeEELuFEL7mdNJf8y795ylCiJ+EEIuEEKl6F1VkCe026z8e0I+6hhude1EIcUUIcUkIMdao3EkIMV0IcU4v7xwhhEt57r0Qootej+v6/7sYnRsjhIjVy3xGCDFSX95ECLFJ3yZJCLHMTL9OQog0QKPX5bS+3GTUpB9RfqD/3EsIEV+Kni5CiE+FEGf1196q17Pgnl3T37PORd1tZegZJYR4Xwjxr17Xv4QQPuW5f4rKRRkLRakIIRoCAwBjN8VjwHjADTgLLAXigQbAEGCqEKKPvu47QBDQGLgbeNTMZR4G7gU8AS3wG3AA8AfuBJ4TQvTV150JzJRSugN3AD/py0cDHkBDwBuYCGSWU8379Tp4AquBr8xVklL20H9srXfdFDyI/fTX9geeAGYJIbz05z4GmgERQBN9nbfLEkgIUQf4HfhCr89nwO9CCG8hRC19eX8ppRvQBYjWN30f+AvwAgKAL83oka0fNRbockdZ8pRDz+lAO70sdYCX0X2XBffMU3/PtpdXT6NqjwBjgXqAI/BSOeVVVCLKWChKYqUQ4hqwFdgETDU6t1BKeVhKmYfuAdIVeEVKmSWljAbmA6P0dYcBU6WUV6WU8egeCkX5Qkp5XkqZCbQH6kop35NS5kgpY4FvgBH6urlAEyGEj5QyTUq5w6jcG2gipcyXUu6VUt4op65bpZRrpZT5wGKgdTnbFZALvCelzJVSrgXSgBAhhEBnVJ+XUqZIKVPR3ccRpfRVwL3ASSnlYillnpTyf8AxYKD+vBYIE0K4SCkvSSkL3Em56NxLDfTfR2UGzEvS0w54HHhWSnlBf/+3SSmzK0FPgO+klCf0v4+f0BlehZVRxkJREoOklJ5SykAp5VP6P9QCzht9bgAUPAgLOIvu7bPgvHF948/mygKBBnpX0jW9wXodKHApPYHuTf2Y3mVxn758MbAOWCqEuCiE+EQI4VBOXS8bfc4AnEXF4ifJesNp3EdtoC7gCuw10uVPfXlZNEB3H405C/hLKdOB4ehGT5eEEL8LIZrr67wMCGCX3qX2eAX0KIuS9PQBnIHTN9FniXoaHRf9fmrMZIvqhDIWipvBOFXxRaCOEMLNqKwRcEH/+RI6d0gBDcvo7zxwRm+oCv65SSkHAEgpT0opH0bnkpgGLBdC1NK/7b4rpWyJzhVyH4WjG1uRhM4VFmqki4eRC6g0LqIznMYY7quUcp2U8m6gPro38W/05ZellOOklA2ACcDXovyztzLQGbcC/MrZLgnIQucWLEpZaa1L1VNRdVDGQnFLSCnPA9uAj/RB5nB0b/8/6Kv8BLwmhPASQvgDk8rocheQKnRBbxchhEYIESaEaA8ghHhUCFFXSqkFrunbaIUQvYUQrYQQGuAGOpeJtnK1BSABXfylTPQyfgN8LoSoByCE8DeKv5TGWqCZEOIRoQv6DwdaAmuEEL5CiAf0sYtsdO4grb7/oUKIAuN8Fd3Durz3IRp4RH/P+wE9K6DnAuAzoZucoNEHsp2ARP31S7pnJepZTpkVVkIZC0Vl8DC6IPZF4FfgHSnlev2599AFv88A64Hl6B5wZtHHDe5D55c+g+6tdT66wCpAP+CwfjbPTGCE3kXmp+/7BnAUXZxlcaVpWMgU4Hu9W2lYOeq/ApwCdgghbqC7ByFlNZJSJqO7Dy8CyejcS/dJKZPQ/d2+gO5+p6B7qD+pb9oe2Km/P6vRxRFiy6nbs+hiBdeAkcDKcrYDXdA5Btitl2kaYCelzAA+BP7V37NOFdBTUYUQavMjhTURQjyJ7gFfrrdWhUJRNVAjC4VFEULUF0J0FULYCSFC0L1B/mpruRQKRcVQK2YVlsYRmAsEo3NvLAW+tqlECoWiwig3lEKhUCjKRLmhFAqFQlEmylgoFAqFokxqTMzCx8dHBgUF3XT79PR0atWqVXkC2YiaogcoXaoqNUWXmqIH3Joue/fuTZJSlplVoMYYi6CgIPbs2XPT7aOioujVq1flCWQjaooeoHSpqtQUXWqKHnBrugghiqZbMYtyQykUCoWiTJSxUCgUCkWZKGOhUCgUijKpMTELhcKW5ObmEh8fT1ZWltnzHh4eHD161MpSWYaaoktN0QPKp4uzszMBAQE4OJQ3c78pylgoFJVAfHw8bm5uBAUFodvzyJTU1FTc3NzMtKx+1BRdaooeULYuUkqSk5OJj48nODj4pq6h3FAKRSWQlZWFt7e3WUOhUNgaIQTe3t4ljnzLgzIWCkUloQyFoipzq79PZSwUihpCQkICjzzyCI0bN6Zdu3Z07tyZX3+1XYLfqKgotm3bdst93HfffWVXvAm2bdtGaGgoERERZGZmlt2gnEydOtXkuEuXLpXWty1RxkKhqAFIKRk0aBA9evQgNjaWvXv3snTpUuLj4y163by8vBLP3YyxKK2/yuann37itddeIzo6GhcXl0rrt6ixuFWDWVVQxuIWyI6/ztl3/iHnUirZF2+QuCwGmWeJnTwVitLZsGEDjo6OTJw40VAWGBjI5MmTAcjPz+c///kP7du3Jzw8nLlz5wKFK3+HDBlC8+bNGTlyJAWZqPfu3UvPnj1p164dffv25dKlSwAMGDCA5557jsjISGbOnMlvv/1Gx44dadOmDXfddRcJCQnExcUxZ84cPv/8cyIiItiyZQtxcXH06dOH8PBw7rzzTs6dOwfAmDFjmDhxIh07duTll18uUceUlBQGDRpEeHg4nTp14uDBgwBs2rSJiIgIIiIiaNOmDampqVy6dIkePXoQERFBWFgYW7ZsMelr/vz5/PLLL7z11luMHDmy2Ahm0qRJLFy4ENBlh3jnnXdo27YtrVq14tixYwCkpaUxduxYWrVqRXh4OCtWrODVV18lMzOTiIgIRo4cCUDt2rot16WU/Oc//yEsLIxWrVqxbNmyMr+DqoSaDXULHBm8hOyz10jbd4GM40nkX8si70YW9ce1t7VoituMw4cP07Zt2xLPf/vtt3h4eLB7926ys7Pp2rUr99xzDwD79+/n8OHDNGjQgK5du/Lvv//SsWNHJk+ezKpVq6hbty7Lli3jjTfeYMGCBQDk5OQY0utcvXqVHTt2IIRg/vz5fPLJJ3z66adMnDiR2rVr89JLLwEwcOBARo8ezejRo1mwYAHPPPMMK1fqdm6Nj49n27ZtaDSaEnV45513aNOmDStXrmTDhg2MGjWK6Ohopk+fzqxZs+jatStpaWk4Ozszb948+vbtyxtvvEF+fj4ZGRkmff3f//0fGzduZPDgwQwZMoSoqKhS76+Pjw/79u3j66+/Zvr06cyfP5/3338fDw8PYmJiDPfhoYce4quvviI6OrpYH7/88gvR0dEcOHCApKQk2rdvT48ePUr8Drp161aqTNZGGYub5PKCvWSfvQZAWvQlZHY+AGff+FsZi9ucHfWmll3pJuh05fVy13366afZunUrjo6O7N69m7/++ouDBw+yfPlyAK5fv87JkydxdHSkQ4cOBAQEABAREUFcXByenp4cOnSIu+++G9CNTOrXr2/of/jw4YbP8fHxDB8+nEuXLpGTk1Pi1Mzt27fzyy+/APDYY4+ZjCKGDh1aqqEA2Lp1KytWrACgT58+JCcnc+PGDbp27coLL7zAyJEjefDBBwkICKB9+/Y8/vjj5ObmMmjQICIiIsp978zx4IMPAtCuXTuDDuvXr2fp0qWGOl5eXmXK//DDD6PRaPD19aVnz57s3r0bd3d3s99BVTMWyg11E0gpiXt1XeGx3lAYc3nBXqK7ziXnSpo1RVPcpoSGhrJv3z7D8axZs/jnn39ITEwEdL/ZL7/8kujoaKKjozlz5oxhZOHk5GRop9FoyMvLQ0pJaGiooX5MTAx//fWXoZ5xhtPJkyczadIkYmJimDt37k1Nz7yV7K+vvvoq8+fPJzMzk65du3Ls2DF69OjB5s2b8ff3Z8yYMSxatKjUPuzt7dFqC13IRXUouEcF96eyMfcdVDXUyKKCJK86wuVvSs9umx6TYDAmpyf9RvNlIxBCIKU0TF/LTcnA3stFTbesgZgbAVh6AVifPn14/fXXmT17Nk8++SSAieulb9++zJ49mz59+uDg4MCJEyfw9/cvsb+QkBASExPZvn07nTt3Jjc3lxMnThAaGlqs7vXr1w19ff/994ZyNzc3bty4YTju0qULS5cu5bHHHmPJkiV07969Qjp2796dJUuW8NZbbxEVFYWPjw/u7u6cPn2aVq1a0apVK3bv3s2xY8dwcXEhICCAcePGkZ2dzb59+xg1alSJfQcGBnLkyBGys7PJzMzkn3/+KfPN/u6772bWrFnMmDED0LmhvLy8cHBwIDc3t9hK6e7duzN37lxGjx5NSkoKmzdv5r///a8hBlLVUSOLCnBuahQnx60kdVfpM0xi7vzW8Pl61Bl2+n5E3Ot/sSfkc65tOE3qngvsbT6DUxNWWlhixe2CEIKVK1eyadMmgoOD6dChA6NHj2batGmAzkffsmVL2rZtS1hYGBMmTCj17dXR0ZHly5fzyiuv0Lp1ayIiIkqc1TNlyhSGDh1Ku3bt8PHxMZQPHDiQX3/91RDg/vLLL/nuu+8IDw9n8eLFzJw5s0I6Tpkyhb179xIeHs6rr75qMEwzZswgLCyM8PBwHBwc6N+/P1FRUbRu3Zo2bdqwbNkynn322VL7btiwIcOGDSMsLIxhw4bRpk2bMuV58803uXr1KmFhYbRu3ZqNGzcCMH78eMLDww0B7gIGDx5MeHg4rVu3pk+fPnzyySf4+flV6B7YkhqzB3dkZKS05H4WV9ef4vgjP910/yVh7i308nd7yTqdQuD7d1V45KFy9NuGo0eP0qJFixLP306pJaoLNUUPKL8u5n6nQoi9UsrIstqqkUU5kHlaixiKArIv3ODqXyeRUqLNziPulXVcnrebzGOJFrumQqFQVAQVsygHyb9ZNjPl/jZfAeD/YjfSoy8ZyvMzci16XYVCoSgvyliUA0u+4Sd8XziD5cKnW03OpUdfwq1dyUFIhUKhsBYWdUMJIfoJIY4LIU4JIV41c/5zIUS0/t8JIcS1IufdhRDxQoivLClnWVz43HLL9c/8588Sz8W99hcyX60IVygUtsdixkIIoQFmAf2BlsDDQoiWxnWklM9LKSOklBHAl8AvRbp5H9hsKRnLg60nACQs3Mf+9l8T0/c70g8lALpptwd7zefygr02lU2hUNw+WNIN1QE4JaWMBRBCLAUeAI6UUP9h4J2CAyFEO8AX+BMoM1JvKRJs/ECOe023ECr77DVi+nyLR89gtJm5ZBy5Qtyr6/B7vJ1N5VMoFLcHlnRD+QPnjY7j9WXFEEIEAsHABv2xHfAp8JIF5SsX56duMjn2f9626YavbzpTbJ1H3rXKS6+sqL5oNBoiIiIIDQ2ldevWfPrpp4ZVyXv27OGZZ5655WvMmTOHH3/8sUJtbiVF98KFC7l48eJNtwfd+ozp06ffUh8l8cUXX9CiRYtiaypuhbi4OJN7XFnf3a1SVQLcI4DlUsqCvBlPAWullPGlrTMQQowHxgP4+vqWmQysNNLS0sy2d2jlhmZbtuE4NjATpyJ1sma1xfnpwkB1Xq+62EdZZ9rr5qnLcZxxgtxhDZEBrjgsjGXTq+nIoJtPn1BVKOk7qYp4eHiQmppa4vn8/PxSz1cGLi4uhuyqiYmJPPHEEyQmJvLGG28QEhLChx9+eEsy5OXlMXLkyArrsm7dupu+7rfffktwcHCF1kPk5+eb5JnKzs7GwcGhmAyV8Z189dVXrF69Gn9//0r7fo8cOcKiRYsYOHAgQLm+u/LqkpWVddN/UxZblCeE6AxMkVL21R+/BiCl/MhM3f3A01LKbfrjJUB3QAvUBhyBr6WUxYLkBVhiUV5ucgZ7W8wwKet05XXyUrOxc9Bwef4evPo1xaWJtyF5XMvVj+LeqZHFksmVB9cWdQnfNM6kTJuTj51j6YnaqhpqUV7FqF27NmlphbnIYmNjad++PUlJSWzatInp06ezZs0aNm3aZFjRLIRg8+bNuLm5MW3aNH744Qfs7Ozo378/H3/8Mb169SIiIsKQBC81NRUHBwfeeOMNevXqRZs2bdiyZQvp6eksWrSIjz76iJiYGIYPH84HH3xgIldUVBRTpkzBx8eHQ4cO0a5dO3744QeEELz33nv89ttvZGZm0qVLF+bOncuKFSsYM2YM/v7+uLi4sH37drZt28ZLL71EXl4e7du3Z/bs2Tg5OREUFMTw4cP5+++/efnllxkxYoThPkyZMsWQ/TY6OpqJEyeSkZFBYGAgixYtwsvLiy+++II5c+Zgb29Py5YtWbp0aYn3qYCJEyeyYMECQkJCePzxx7l+/bpJlt2wsDDWrFkDQP/+/enWrRvbtm3D39+fVatW4eLiwqlTp5g4cSKJiYloNBp+/vlnRo4cydGjRwkODmb06NG0adPG8N2lpKTw+OOPExsbi6urK/PmzSM8PJzXXnuNhIQEYmNjOXfuHM8995zZ0UhVXZS3G2gqhAgWQjiiGz2sLlpJCNEc8AK2F5RJKUdKKRtJKYPQuaIWlWYoLEXca+vMltu7OWHnbE+DSZ1waeJtes5Lt4nKHbPup+GbvQn+pJ/hXL1RbWgy9wHLCaxHak1fADKOJ7IrYBpxb/xVQgtFTaRx48bk5+dz5coVk/KClN7R0dFs2bIFFxcX/vjjD1atWsXOnTs5cOCASUbYgnTkL774YrFrODo6smfPHiZOnMgDDzzArFmzOHToEAsXLiQ5OblY/f379zNjxgyOHDlCbGws//77L6DbP2L37t0cOnSIzMxM1qxZw5AhQ4iMjGTJkiVER0cjhGDMmDEsW7aMmJgY8vLymD17tqFvb29v9u3bZ2IoijJq1CimTZvGwYMHadmyJe+++y4AH3/8Mfv37+fgwYPMmTOnxPtkzJw5c2jQoAEbN27k+eefL/W7OHnyJE8//TSHDx/G09PTkD135MiRPP300xw4cIBt27ZRv359Pv74Y7p37050dHSxfgvStB88eJCpU6ea5Ls6duwY69atY9euXbz77rvk5lbuOi2LuaGklHlCiEnAOkADLJBSHhZCvAfskVIWGI4RwFJp62lHZkjdfaHcdVv8/DCZsSm4htQFoO7QMMM5nyGhCAcNdk725Kdll9RFpZF5PInr/54lPzUbz96NDYkPL3+zh6AP77H49W93JkTOs0i/c/eMr5R+zKX0Xr9+PWPHjsXV1RWAOnXqGOobpyMvyv333w9Aq1atCA0NNaQxb9y4MefPn8fb2/RlqqRU3Bs3buSTTz4hIyODlJQUQkNDDW6YAo4fP05wcDDNmjUDYPTo0cyaNYvnnnuuTDlBl/Dw2rVr9OzZE4BHHnmEsWPHAhhyOQ0aNIhBgwaVeJ9uluDgYEOa9Hbt2hEXF0dqaioXLlxg8ODBADg7O5fZT0lp2gHuvfdenJyccHJyol69eiQkJNySzEWx6DoLKeVaKWUzKeUdUsoP9WVvGxkKpJRTShs1SCkXSiknWVLOEinyht7gmc4lVvXoGYzfWPMzkzS1nbBz0ttlO+tkWDk6eAknRi3n8P2LrXI9RdUjNjYWjUZDvXr1TMrNpfQujdLShxek1razszNJs21nZ2c2UaG5VNxZWVk89dRTLF++nJiYGMaNG2f1NOe///47Tz/9NPv27aN9+/bk5eVV+D6VlubcGinILX2NqhLgrpIYD3ZabXgC1xZ1b7lPoSkM2Ad9dI9haqylSN9/ifT9l8quaETO5VQc6tVG2Kn06TeDuRGAtZPWJSYmMnHiRCZNmlQsGaW5lN5333037733HiNHjsTV1ZWUlBST0YUlKXio+vj4kJaWxvLlyxkyZAigS3NeELgNCQkhLi6OU6dO0aRJExYvXmwYJZQHDw8PvLy82LJlC927d2fp0qX07NkTrVbL+fPn6d27N926dWPp0qWkpaWRnJxc7D41b968xP6DgoIMMYp9+/Zx5syZUuVxc3MjICCAlStXMmjQILKzs8nPzzfRuSglpWm3BspYlJNaYb6V0o+dkz2N3umDnZMGvyciubb+NNf+OW22brujz4FWsje0YqmcSyPvWia5KZmk7YrHZ1grEJCfmk3msSRS1hzDrVNDToxZARqBc6AXIYuG4NLMp+yOFTanYO/n3Nxc7O3teeyxx3jhhReK1ZsxYwYbN27Ezs6O0NBQ+vfvj5OTE9HR0URGRuLo6MiAAQOYOtU6kzQ8PT0ZN24cYWFh+Pn50b594U6TBftzFwS4v/vuO4YOHWoIcBvvOV4evv/+e0OAu1GjRixevJj8/HweffRRrl+/jpSSZ555Bk9PT956661i96k0HnroIRYtWkRoaCgdO3Y0uMtKY/HixUyYMIG3334bBwcHfv75Z8LDw9FoNLRu3ZoxY8aYpEufMmUKjz/+OOHh4bi6uprsH2JpVIpyPeZm3hjPaKrIlpYV4eiIpVzfEGv2XME1L3z+L+c/2mS2jqVx6xhA6G+FQbTTz/9OdtxVWqwYafGRh5oNVTWpKbrUFD1ApSi3Kdnx1w2fG73dx3IXMrLV4VvG4Vi/+Bfu/3xXy12/DLS5prmpEpcc4Ma/58g6k2IjiRQKhS1QxqIEMo4WLqqz93G13IWMguiuIXUJWTzUcte6SZJWHObc+xtN82Rpa8aIVKFQlA8VsyiBlN8KZz7Y2VvOprp3D+T6pjM4BXoC4Brmi+c9TXBtUc9sfbfODUErSd1Z+taulYaUnHpyFQB17gsxKrfO5RUKRdVAGYsSSFx6sPBAYznffP0nO+IU4IF7t0AAhJ2g+Q/DSm3T+LMBHOiqm8vf6K3enHt/o8XkM55JdWzEMsPnogv/FLrZcxXdBlehsBa3Gp9Wbqhy4NTAclPT7Bw0+DwYimO92qXW8xqgm1lR9+HWYPRAqnOfbiqfcxPLT3PMu2qUsFBKklYe4VD/heQkpJXc6DbB2dmZ5ORkm6e0VyjMIaUkOTm5XAv/SkKNLMqBW8eGthaBpt8MJutUMi7N65IVWxhcdg72IvLUC2hqO7HTr1jaLYsRc/d3yBxd3scLn241SWtyOxIQEEB8fDyJieYTSGZlZd3SH2pVoqboUlP0gPLp4uzsfEsrupWxqCbYOWgK4xhFXB327tb/wRcYCoCsc9e48uMBfIaGYeegS1aYdyOLpJ8P4T2oJQ7eFpwgUEVwcHAgODi4xPNRUVEm8+WrMzVFl5qiB1hHF+WGqoaU5BV361B5eWAqwvUNscQ+9zunJ/3G9S1xAMQ+9ztxr/3FyXG/2kQmhUJRuShjUQaOAdZZSl8RnAI9cQnxwfPuJiblQR/3RbrZ03jmvSblTb8ZZBW5kn89wtGHfuTS3F2krDkOwI2tZ0lYvJ8b289ZRQaFQmEZlBuqDMqamWQLhMaO8M3jipXXCvMle3576vVujZ2zPVcW7afhqz1x69gQ7wd0259bY5+Ns2+tNzk+8+IfQMVWwct8bdmVFAqF1VDGwgxSSoS9HTJPi/Md1kmmVlFKnKKpL/cZHIrP4NBip1v88gjX1p/GKdCThG/3kHmi+J4DliJTH5h3DvYqdYrphZnbOP9hFOKT1tYSTaFQlIEyFmaQ2fnIPC3Cwa4wtXgNwaNbEB7dggDwG9uOG9vPcXryGrLPXbP4tQ900m0q49LMm9ZbJ6DNyefMy3/i1a8pdfoVJl07/2EUAE4vH0A7sp8haK5QKGyHilmYIeeyLj2wzK35rhD3zo1os+cpq14z80QyN3acJ/HHAyT+eIATo5Yb1idos01z8F+avcuqsikUCvMoY2GGy/N221oEq6PxtO702yP3L+bS7J2G432hM0n69TC7Gn5iUu/GtrNWlUuhUJhHGQtz3IYZG5r/OBynQE8CXu4OgLC3w2dYK4I+7muxa2aduWr4nJuUwakJq4rVMU7fnhmbwqXZO4uNPhQKheWpWQ75SibwvbtsLYLVcIv0p81unTsq4KXuhnLj1eK2IivuKs5BXoaYhzYrj/pPd8LOUcUyFAproUYWZshPzQFA4+ZoY0lsj72Xi61FILrDbJPj8x9tYm+LGWhz80tooVAoKhtlLMyQm5gOgL1HzcgbcytUBWMBsLflDJPj/NRsci6a36dYoVBUPspYmKHAWDj6V73V27ag0Tu6nQJtaThykzKKld3YEkducgYpf5xgR72pHB3yo2FWVeaJJJJ+PWxtMRWKGouKWZgh/eBlADS1lBsKoMHTnfAd0xY7VwfOvPgHnnfdQdbplBL30bjjy4GcnvybxeWKfWEtvLDWcHx9cxz5qdnYuztzoJtuv48rP0TTcsVIi8uiUNR01MiiCMYBXTtlLAxoajkihKDxZwOoMyCEBpM7Y+fqUKxeyJJh+AwLs4GEOlL75JBZAAAgAElEQVS3nyf9UILh+MaW4lNv0w5c4vDARYaXgqvrT3Fjh8pdpVCUhhpZFCHtQOHOcBozD0OFEUYpOzqcexltbj72bk42FAiOP/ZzsbKsc9dwbuRpOD465H/kX8/i0IDvaXfkWY4/8hNQsdxVCsXthjIWRTBOLaGx8YOvqtP8f8M4NWEVjT+/Fztne+ycC39O9Z/uxKVZO2woXSExvebjNSAEjZsjtds0IP96FqDbkyNX7fKnUJQL5YYqQn5GLgDuXRsh7NXtKQ33To1oe2Aynn0aFz9pZnvRWq39DJ+dGxcmaAx8906LyFdAfloOST/FkPDtXk5PMo2lGCdSPPLQErQ5ajquQmEO9TQsQn66bo2F8x3eNpakelO7nX+xMv/nuxo+e/VravjsPailYaaV/wtdi7WzJFJbaNRubDnLtfWnrHp9haK6oIxFEbTpupGFmgl1a9S5L4RmCx8ifNP/FZYNCKH1tgk0+fp+Gr7a01Bu7+lMq41P0GTOAwS83MOqciYs3GdynJeSSd7VTMOx1EpOTljJpTkqoaHi9kbFLIpQMLKwq6WC27eCEII6A0LI08cHCnBp4o1LE92ore2hZ5A5+di5OODk4oDTg8X337A0N/TbwBYQ+8JaYl9YS8SOiVz95zTOwV4k/3qE5F+P4BTgjmffpipluuK2RBmLImgz1MiiMrH3cKbeYxFo3IuvhnesV7vUttqGLvj1DOHKD9GWEq9EovV5qIw58fgvBLzSg/pPdiT/ehbanHwSFuzF94l2JrOtFIqaiDIWRTCMLNS02Uqj8acDbqpd3mNBBD/bH212Hkk/Hyp2vnY7f9L2XrhV8SpE/LTNxE/bbFJ2afZO6tzfnGbzHzQpl1KizchVLx6KGoGKWRRBm6kfWbiqP/CqgBCiRMN9x5f3WVmakklZfYzcxHROTfqNE4+vIO96Fqcn/cbu4OlkHEs020abmYs2S6VbV1QP1MiiCAXGws5V3Zqqgr2RCyvw/bs4+9Z6QBf/aPzFfcQ+s8ZWopmwN3Sm4bNDvdqG0VDCwn3Y1bpBblg6Dj61AN2oY1fwdIS9HR3jX7GJvApFRbDoyEII0U8IcVwIcUoI8aqZ858LIaL1/04IIa7pyyOEENuFEIeFEAeFEMMtKacxKWuOA2DnotxQtsJvfHtcw3zRhnkA0OCZznjeeQfNFjyI3/j2+L/YjWbfPQRAvRHhNJ5xLwDu3QNpsfxhm8ltjPHGTgkL9uL45Un2tiw0JjJXC1qJzMlHSmlIgKhQVFUs9voshNAAs4C7gXhgtxBitZTySEEdKeXzRvUnA230hxnAKCnlSSFEA2CvEGKdlPKapeTVy2N0YMkrKUoj6IO7AYiKigJ0QfLm/yt8X2j4iun02nqPtKbOvSFo3J0QQuBQrxa5V9KtJq85rm+MNVueceQKri3roc3KNap7hpMTV9Lky4F43t2ErDMpODeugxC34ZaNiiqLJUcWHYBTUspYKWUOsBR4oJT6DwP/A5BSnpBSntR/vghcAepaUFZA/7anx7GBSk9enbD3cDY8XH2GtrKxNCVzsNd8TvzfLyYZe489vJT8a1kcf+xnzr23gQOd53Jp1s5SelEorI8lHfP+wHmj43igo7mKQohAIBjYYOZcB8AROG0BGU0w3tu5Vmg9S19OYSEavtYTbXoOuSkZpKw+ZnLOWunTS6OoTMaj2Etf64zExa+202BSJ5NqiUsPkpuUgTYrl8xTyTSZ/YDBQJ7/KAq7Wo74P9PForIrbl+qShR3BLBcSmmSmEcIUR9YDIyWUmqLNhJCjAfGA/j6+hrcFjdDWloaWzdswhmQ7va31JctSUtLq7ayF+WWdBngDLmOOJx2R9vWi/xO3uDlyJHTZzBOD5nzWgscPzpaGeJWKnkpmfzb+yvsLmaS82JzNHtTsP/VdJrwxU4OyKBakJmP8+c6I3PK8yrS3xU0RVxYUppkCb4VaspvrKboAdbRxZLG4gLQ0Og4QF9mjhHA08YFQgh34HfgDSml2fSlUsp5wDyAyMhI2atXr5sWNioqis5N2rCfPTi5udL5FvqyJVFRUdzKfahKVIoud/cxOUz1iOcwhWs2ejw/mB1V0FgAaA7fAMDpzRiz50M9g/Hp1ZK81Gz2oDMWTi8dwPvBUJrOeYDcxHQyTyXj6OfGoQEL8X+hG/XHtb9luWrKb6ym6AHW0cWSMYvdQFMhRLAQwhGdQVhdtJIQojngBWw3KnMEfgUWSSmXW1BGEwrcUHZOVWXApahs7OsUbg3r0SPIbJ0ms0sLrVUdTo1fCRQfMCT/cpj4z7ayv8NsjjzwA4cHLiIvOZOzb/xtAykVNQWLPRWllHlCiEnAOkADLJBSHhZCvAfskVIWGI4RwFJpOndwGNAD8BZCjNGXjZFSWjTvgzZL5wWzc1K5f2oqLnd4E/TRPeRcTDVkuHVuXMdkh0Sfh0Lx6B1MdKc55F/LKqmrKsGFmdvMLlqM/7hwlbmtZ4YpagYWfYWWUq4F1hYpe7vI8RQz7X4AfrCkbOaQ+pGFcFYji5qM3xORJsctfn6YuDf+Im3/Je6YqVsV7lDHlXaHniVt30WO3L+YBs914eKMbbYQt1TOfxh1S+0zTyRx6qnVNHyjF569C/clkVJyevIaaoX7Un98h1uUUlETUE9FI5Qb6vbEqaEHIYuGFiu3c9Tg3qkhHc6/jJ2TPR5dAzk69H82kLDySFp+iMyTSdS5rwVOQZ6cemYN6Qcvc2z4UsO2she+2MbFr3aQfy2LpJ9ilLFQAMpYmKDNVMZCUZyC34NHz2CT8sYz7yX22d9tIdJNc+opnff3wufbcAryMutyPf9BlJWlUlQHVCJBI3Iu6Waf2Hu72lgSRVUlaFpfAFqseIR6D7c2lNeKqE/t9gG2EuumyI67CkbBcZmnJf3g5XK1zbuWSc6lVLLOXOXyd3uRecVmtitqGOoV2oici6kAOAd62FgSRVXFb2w7fB9rY9ifvcnsBzj/URRNvhpI7H/+KLFd9rRwnF45aC0xy03BaBp0e3hknyueUUebk8+NrWdxDvbCOdgLgD3NPjepI/O0xablJizez9W1J2j23UPYqThgtUd9g0YYYhYqPbmiFAoMBehmTvk8pNvhT+PmZLa+nasDMrj0jZ4KcAnxIfN40q0LWU6yzxYaB3OGAuBAt3m6UQjQ6crraNZeLFanYESizckn43ACjg3cOfOizngmLT+Ez/BWkKdVCTqrMcpYGKEC3IpbIWjqPZy+lkWD57ty9o2/DdNx3doHkAHUf7Ijl2aXnvNJaKqeZ7jAUAAk/hSDw8K4YnWSlsUgc7Wk7b1gYoAA8q5nsct/GgAd4l/BzlFNTa+OqKeiEQUb0Qi1zkJxEzg38iR0zSgA3Ds2JHV3PGl7L+A7pi0Jh3YT+O6d+L/QlXPvbiA/LZvklcVXjt/x1UBOTliJ/7NdcO/cCKeGHmQcucLRIT+Sm5RhbZWKcXpSyXm1kn85bLbcOGliXnIGjvXdKl0uheWpeq8xNkRm6xflKf+q4hbR1HbEs3djAl7qbtjwCHTZcRt/NoDakf6GssD379K18XSmVpgvEf9OoO6wVjg11MXOXFvWo92R56yrQGWiLVxve25qFNrc/JLrKqos6qlohHJDKayGUY4Ov/HtcW1eF9eWNT/TcdKyGJKWxdBgcmcavdXbbB2plVxZEo17l0a43OFtZQkVJaFGFkYUuKGUsVBYGuN8TkIIPHoG41C3VskNgOZLR+BaQ1LnX/xyOze2nzN77uSElZx58Q8OdJ4LQF5qNtGd5xD/3y3WFFFRBGUsjJA5uuGxSvehsDQ3s7mWZ5/GNP5sgAWksQ1HHviBo8OXkpOQxvWtcbrYzIilpKwqjOVIrSTxxwNknU4pZiyKurNyE9PJSUiziuy3I+qpaITBDaVmaygsjFf/ZjR8sxfuHRuWXdmYErb7bX/mJS7N3WWSQLA6cH1jLPtafVHi+Z1+H5kcSynJOHSF/PRsjtz/A/4vdaPhy7ptdveG6vY473jxVZPpzYrKQRkLI5QbSmEthBA3taudQ71CV1Xr7RM4MWYFAS91Q1PLEf/nu+LRNRDnJt44eLuyo97UMvtruXIkRwYtqbActmKnr6nxuDB9K/UejcDJaKSmzc5DY69bK5WfnkPa/osk/3oE3zFtcQ3zVXub3yTqqWiEYWSh3FCKKopTgAfNFg3B0c8Nlzu8ab1lvOGcEAK3Co5UXJrXJfLkC+QmpHGg27zKFtcq7I/4ilYb/6+wQD/6Ov/JZi5M32oovrI4Gq9+zQhZNERXkJWPlNKs8cg4nsiVxdH4v9AVhzoq/Q8oY1GIVpIRkwCodRaKqk2dfs0qVN/ey4VarXzx6t+MuNf+MpT7v9TN8CC093CuVBmtTUzv+YbPJ8auQGolN7bEFat39c8TSK0kNyEN51E72clOwv4ai8bVgTOvrqNWuB++Y9pysPs3gC4O0nTuIGupUaVRxkKPuFy4yY2dgzIWiupPyA9DOfPKOprOH4xbO926DmFvx8Uvt9Py10cN6zjKosm8QYZd+XweCiVphfnFd1WF65vOlHp+T5NPTYLjh+75DqcgL7LjrnJj61kufV24yj794GWuLD2IZ69gHP1u78WEylgUYLRRn7mdxxSK6obXPU3xuqepSZnv6Lb4jm5rtn7D13tyfuqmYuU+g1qSl5KJo19t6gwIIX64Bz06d8POyZ59rb8k51KqReS3FPlpOcXKjFOaGJN1OoXYZ9bg6O9O2/2Tytd/eg756Tk41itfPrDqgjIWBWQXpli+3d8gFLcn/s91xfeJSHIvp5L48yFkdj4+w1oB4Pd4O5O6BZNAGs+8j2PDqveGUOUh58IN0mMS0Gbn4Wa0+l6bk8/5D6NwauSB3xORaHPz2R08HYB2x54rFu/IjE1BU8sRR9/qZ0iUsSggR2csjNMwKBS3G/ZuTti7OdHo9V7lqu/RM8ii8lQlYu78FtAZAXsvF86+/Q+X5+4ynPd7IpKra48bjjOPJ+HQuZHhOO9GFgc6zQGg7aFnqt3IQ01G1iP0xkKlUFYoyo8QgsafD8BvXKRhr4uazsEe37DT7yMTQ1GA8f4gRx74gfjPCmdj5SamGz7HPlfyDovph69w4vEVZJ0x7xqzFcpYFGAwFmqwpVBUhHojIwj68B5a/fNEmXVrtzNNoOhYziB7VSL3SrrZxZEFU++NKVgkqc3N58a/helNrq0/Tc4V86vNjwxcRMqa45wc92u55DnU/3scXzlgWCdmKZSxKEAfs1BrLBSKm0NT2xGnQE/DcdGJIoEf3EXo76MMx24dGxK+8QlcW9Q121+90W0sI6iF2NXwE04/s6ZY+fmPN7HLfxpnXjLdSfHcuxuQsrjVKQjAZ1+4Xq7rpsdcxu5MetkVbxFlLPSInIL05MoNpVDcLC5NdFli7VwdaLnqUbwHtyTkx2EEfnAXfv/XHmFnugDO3t2ZO2bdb9pHcx8iTzxP4//2t5rcluTCZ/+aLU/6+RAnRi2vUF/arDyOj1pO0vJDuuPcfENOO+wsuzJdGQsgYeE+7H84Cyg3lEJxKzSecS/1Hosg7M8x1G5dn6ZzB+F1VxPqj+9QzFCgP6wV5kvEridxbOCGc1NvWm8ej72nCwDNvh9i0qTdkWetoYbVuLruJJfn7+b8R1Fknk42OZeXnEl6zGXDsczXEv/fLVz98wSnnloNYLLzYrH7W8moJyNw5uU/C363amShUNwCjr61afxp6Zlx/cZFknHkCrXCfA1lzkFetNn7tGnudqBO/2aE/jGaw/2/B8DBpxZN5w/m5P+Vz59fHYh7/W8ALn69k3DjtCVAzJ0L8JvQAdcWdYl9cS3kF7qtzr63gUtf7SisbOGUV8pYFEGNLBQKyxL04T1my0vcfzzf1K/vfX8LtF/mcXpy4Rav9Z/uxKVZO4q2NMGtSyNSt5nfQ6MqILPzOdBlbrFyc7OuAFNDARZ3Q6knYxFUgFuhqFq4NPcBwMGncIFb3eGtcOvckCs/RGPv6YLf2LZknU7h6p8nDHWafH0/aQcuGx62jV7ryeGBi60rvBWxdDZd9WQsgnJDKRRVC3t3ZyJPPF9sDZRzI0+TxYPNvn8IbUauYQW1XS1Hgt6/i/oTO5B5Mhm3jg0JfPdOzr7zjzXFrzGoAHcRtFm5thZBoVAUwd7Tpcx9ZoQQaGo5Go5dmtQBwMnfHc9ewQB43nmH5YSs4ShjUZT8ErYiUygU1YKInU/SYsUjuDT1KXbOpZkP/i91Q9jbkfN2KJ2uvE6nK6/j0btxif0FvnunJcWtNihjUYR6o6rXQiCFQmGKc7AXHt2DSjzf8OUedLz4KtqwwtXjLZaNMKlTq7UfLiE+NJk3iPpPdjQ55z2oRaXKW11QxqII1X0TGIVCcXM0/Ua3yZFXv2aE/TWW1lvG4zOoZbF6Dr5uNJjc2dri2RwV4C6CcFD2U6G4HfF+oCXeDxQ3DkWpc28z3Ds1wv/5ruxuPN1QHrJ4KFd+PMDVP06U0rr6op6MRShxrrdCobjtEQ52uHfSpR3X1HbEq3/hFrdefZsSYrTi3PvBloaYSNP5g60ua2Vj0SejEKKfEOK4EOKUEOJVM+c/F0JE6/+dEEJcMzo3WghxUv9vtKVkNJfIS6FQKIxptmgI/i90pUP8KyblvmaSHWo8da5stw4NDWXe97eg7cHJZvt269wQNBZefl0JWMwNJYTQALOAu4F4YLcQYrWU8khBHSnl80b1JwNt9J/rAO8AkeiSAe/Vt638BO/KVigUijKo068Zdfo1K1bu0bsxIYuH4hpaz1DWetM4bmw7VywQbrwDZ8PXe3L1r1M0nt4f15b1yLmSxtU/TuAztBV7Qj5DZhfuER48vT++o9qQ+FMMpyf9hq2w5MiiA3BKShkrpcwBlgIPlFL/YaBgf8a+wN9SyhS9gfgb6GcRKbXKWigUiptDCIFX36Y4BRTOrHKs74bPQ6FmXdoa/QSaeo+1IWztaFxb6oyMY73a+I5ui8bVgXaHn6XeoxEETevLHV/ch69+hmbdYa3wGRpm6MtvQgdLqlYMSwa4/YHzRsfxQEdzFYUQgUAwsKGUthbZ71S5oRQKhbVoe2Ay+WnZOHi7lljH3t2Zxp+ZT8YY9OHdJP2sS08e+E4fPHoGcfyRnywiazG5rHKVshkBLJdS5pdZ0wghxHhgPICvry9RUVEVv3KuFuPJsjfVRxUiLS2t2utQgNKlalJTdLGpHkfKrmKWjDzD82rTlk3YHbhKwZp1S+tiSWNxAWhodBygLzPHCODpIm17FWkbVbSRlHIeMA8gMjJS9urVq2iVMtFm5bGLwuyNN9NHVSIqKqra61CA0qVqUlN0qY565KVmswddYsRevXuTkn2CExzTHVtYF0vGLHYDTYUQwUIIR3QGYXXRSkKI5oAXsN2oeB1wjxDCSwjhBdyjL6t8lBtKoVBUE+zsizyyrRhztdjIQkqZJ4SYhO4hrwEWSCkPCyHeA/ZIKQsMxwhgqTQKHkgpU4QQ76MzOADvSSlTLCWrQqFQVAfsXBy4Y9b9hq0UpBVz2Vk0ZiGlXAusLVL2dpHjKSW0XQAssJhwhutY+goKhUJRedQ1mhFlzQeYWq6sUCgU1RSZr7XatZSxUEMLhUJRTXHvrEs9ovV3sfi1qsrUWYVCoVBUEEc/N9ode45/95W+/3hloEYWamChUCiqMQ51XKHoLCkLoIyFQqFQKMrktjcWR/dcYLWvB3s8Sl5+r1AoFLc7t33MIis9l2QnB2pbcVaBQqFQVDdu+5GFRu/r04qqn09eoVAobMVtbyzs9duoViiDoUKhUNxm3PbGomBkka9GFgqFQlEit72xsHfQAKAV4BTkZWNpFAqFomqijIXRyKLJ7PttLI1CoVBUTZSxsNe5n7R2Ard2FtmMT6FQKKo95TIWQohnhRDuQse3Qoh9Qoh7LC2cNShwQ+WrkIVCoVCUSHlHFo9LKW+g24TIC3gM+NhiUlkRw9RZlLVQKBSKkiivsSh4kg4AFkspDxuVVWvUyEKhUCjKprzGYq8Q4i90xmKdEMINqBFLnjUafczCxnIoFApFVaa86T6eACKAWCllhhCiDjDWcmJZj8KRhRpaKBQKRUmUd2TRGTgupbwmhHgUeBO4bjmxrIeDY6Gx0Kr8UAqFwkZcjL1KTlaercUokfIai9lAhhCiNfAicBpYZDGprIidncBBqzMS2ZlV94tSKBQ1l+N7LvLusJ/5eMxKpJRcvZJuOCel5M+F0RzZEc/8N/7hkydWkZWeg5SS43su8tNn28nNsvyLbnndUHlSSimEeAD4Skr5rRDiCUsKZjWkxEErybWDzLQcXGo72loihUJRhZFSIqXuRbM85GTlkZebz+kDCbh5OXP57HW+e3sjrbo14v6JkTRq7sNnE9cAcOFUCmu/3c/qOXvo/3gb/II8OXcsiX9+jDHp89meC02OnWppuLtfpahXIuU1FqlCiNfQTZntLoSwAxwsJ5Z1cdDvw52VnmNjSRQKRVVGSsnHY1ai0djxn2/vJyM1hzOHrhDSrj52Gjs09nbs+fs0l85cY+D4duTl5jO52wKzfcVsPUfM1nOMfa+3SfnqOXsA+GPB/nLLlZ1u+VSo5TUWw4FH0K23uCyEaAT813JiWREJ1x10t+Fy3DUa3FHHxgIpFAprknDuOpuWH6HfmAjc67gAutGAg5MGbb5kw9JDhEQ2oFFzH3Kz84k7nAjoPBEzJ63l7BHdsZdvLV6aN5BvXvsHgEbNffj6hXVlXv+7tzdaSLPKpVzGQm8glgDthRD3AbuklDUiZmHM/o1xtL2zsa3FUCgUVuSjUb+SmZbDgU1xRPQKYsPSQ2jzJfYOduTlFsYCnvqsr8nD//ne35v0czUhnTceWGo4Lo+hqEyklAgLzuosb7qPYcAuYCgwDNgphBhiMamsiJSSwIxsABqGeNtYGoVCUREunbnKlfO6iZmHtp1nw9JDACRfSkXq3ctF0Wp1AePEuEym6g0FQNKFVNYviUGbr2tnbCjA+g//ipKbbVlXVHndUG8A7aWUVwCEEHWB9cBySwlmTbxy8zkLZGXk2loUhaJGo9VKrl1Jp45f7VvuKz9Py5ShPwMwd894vnzmDwD++V8MSRdSuWtkK0I7N+TvJQd59PXunD+ezNaVx2gS4cevX+265etXJTo97IcoZ8D9ZimvsbArMBR6kqkpGWsl2GsLAtzKWCgUluSHDzbz7+rjPPFBHzr0a2K2zvkTyZyJSaD7gy3ISs9l+rjVdOjXhOBWvix8ZyP5eVoCmnkT2LKuoc3fPxw0fE66kArA+iUxrF+im0X0+sD/Gc7HbD1nCdVsxpzd49i0aZNhzZilKK+x+FMIsQ4ouOPDgbWWEcn6FMyGys5UxkKhqEwunEph7/pY+o2JwNHZnn9XHwfg2zc3lGgsPnhkBQC/fLmLHg+1IP5kCvEnd+HkYm9YC3UtMYND/543tFk+Y4eFNbEtI1/vTmALHxo19+Hk/ss0bObN+iUHqRvgbtE4hTHlDXD/RwjxENBVXzRPSvmr5cSyLvZ6Y5FbhVdPKhS2ICsjF2fXsmfJnzl0hVWzdzPgibb8Pn8f6deyeOqzvrw3Quepjo6K48HJHUz7Ts/BuVbhuqZln27j1P7LhuPMtBzWfX/AcFwTFs32eKgFm1ccNSl7d/kwYrae46/FB7iRnAnA8Je64BfkycxJawlo5k2PB1sY6jdrWx+AgRMirSc45R9ZIKVcAaywoCw2o8ANVZWX2isU1mbV7N2s/XY/z341gJadAgzl5gLHn074jdzsfI7uvGAo+3HaVsPnC6dS+PLZP03aTBu7ind+Gsqp6MvsWneKTT8fsYAWlU9wWD3OHLpiUjbgiTas/bb4uoimbetzct8lAD5a8wh1/GrTMMSHozviuXAqhS73h+AX5IlfkCdt+gSz/bfj9BkRRi0PZwBmbhqDo0vVWNJWqrEQQqQC5qYUCEBKKd0tIpU1kRKN/sefGH/DxsIoFJZl3z+xuNVxoWmb+mXWLXj4rZm312As5vznL86fuUy3LnmGRWhgfibOhZMppfZ/MfYqEyLnVVQFmzP5i/58/cI6TkXrRkFfbBmLk4uD4X51H9ycgRMiSb2aiaubEzOe/p2+oyMMQf0eD7YwGSkU4NPArdhowXjkZWtKNRZSSjdrCWIzJOTY6X7w8WX8uBWKqsDxPRf5Y8F+Hn2zBz4Nyv8nej0pg7mvrAd0s4fy87SGh31pnD6YwLvDf6b3sFD2b4wDYFLXwlXJ4d0bmW2Xcjmt3LJVBR54qj2rvt5drHzwpA6G2VPN2tanlrsTz8++ly+e+YOWHQNw0r/5T57Zj21rTjDkuU4413LEw8cVgPdWDLeeEhak3G6omoxbnuWXyisUlUVBHqElU7fw7FcDyqyfk5XHnwujqR/saSg7dyyJDx/9BYD7xrdj4Ph2gC5Gse+fWIPvvICLp6+y5KOtmOPglqo5u2jaHyP5bMIaEs4VJsies3scCWev886QnwB4Yc59hvsZ2jmA0M4BuHm54OrmyHsPr6BN7yD6jYkwGIvIe+4AdFsbvDD7PpPrhXVtRFhX84azJnDbGwspJV65KlahsB3b15wgOiqO/5t6Z4WmP2akZpdZJzYmgWljVxUrXzNvr8nnfmMi+PqFdRzZEV/u61dVPOvVYtrakQAMe7EzXz77J617BPLYWz0QQuAX5Mmc3eOIiooiJLIBT3zQhwunU2jU3MdkZtGHq0YYjl/6ZiAHNp+l26DmNtGpKmBRYyGE6AfMBDTAfCllsX279avDp6CLjRyQUj6iL/8EuBfdeo6/gWdlSUsybxF7o17LOzRXKCqLhVOiAJ3RMOfLNubCqUJXqUZjx8EtZ2nU3AfPurVIOHsNV3cnDm4+y6L3NzN4Ugc2/3LUbD8HNp81OZ7U5dtbU8JKdBnYjG2/nW2wnDMAACAASURBVCi1jnE22LCujZi5aUwx378QwmAISprCa2w4mrapX644T03GYsZCCKEBZgF3A/HAbiHEainlEaM6TYHXgK5SyqtCiHr68i7opumG66tuBXoCUZUuqDTdTHzH2pN0vT+k0i+jqLlotZKDm88SHFbP4Kcui8y0HKY+9gvtjR5U2UYZBHKz8zh/IhknFweWTd/Gg5M74FLb0TAVFXSxhFnP61JQ/Hfdo7z90E8m16jOq5R9G3ng4ePKCf1MIoAX595H07b1adExgFWzdxsW3zVo7MVTn/XlzUG6vEz2RUZnVSlIXJ2x5MiiA3BKShkLIIRYCjwAGM+PGwfMklJeBTBaJS4BZ8AR3bPcAUiwoKwG4k8kW+MyihqAlJK8XC17/z7Nd+9EUdvTmU/XjyqzXdq1LLauPMaV8zf4/Zt9Jv0VMP/NDUTrg8kA08f/Vmrun+oyOSO4VT3OxFwps97jH/QhsIUP+zfG0ai5D+51XHB01j2uOvRrQod+TdDma0m7loW7t85AP/XpPSz7dDvjpt5pUR1uVyxpLPyB80bH8UDHInWaAQgh/kXnqpoipfxTSrldCLERuITOWHwlpTQ/nr5V9H+gPvl5JGnscdOnKFYoyuKrZ//k8PbzhkzFadeyzNbbvOIIF6+kQS/48tk/TFYeG3M1IR2tVrJy1i4TQwFlJ4mbOal6JFR49ssBvP3QMm4kZ5qsQYjoHYSzqwM5mXmMn3aXwQXUtk9wiX3ZaewMhgKgdc8gWvcMsqT4tzW2DnDbA02BXkAAsFkI0QrwAVroywD+FkJ0l1JuMW4shBgPjAfw9fUlKiqq4hIkZeMMBOflkqSx57d5e3BtXH23F09LS7u5+1AFqeq6HNqme+gf3lno/9+4caOJr/vqxWz+/Ex33st/fYmGAmDD0kOGrKnVjeY9vTi26Wqx8t4TAsi8kceO/13Gt6krO/ds497XGpKXq8XewY62w2uTeCYTn0B7NA46J8KmTZusInNV/31VBGvoYkljcQFoaHQcoC8zJh7YKaXMBc4IIU5QaDx2SCnTAIQQfwCdARNjIaWcB8wDiIyMlL169aqwkNnnr7OfvVzU6OZKa/MkN9NPVSEqKqpay2+MLXSRUrJx2WECW9bljnDfYue0+dIwAeJ/6AKtWamFb/1xUTD23V5kpuXw+7f7+HtxYTD29IaaNevOydXBEGcZ++oAjva+wMXYqzRuVY+Apt4knL1GWNdGSCnp1TcR/yZ1DK6kqoD6W6kYlvzmdgNNhRDB6IzECHS77RmzEngY+E4I4YPOLRULNAbGCSE+QueG6gnMsKCsNNDmccHmAy1FZZJyOY3ans4VekAd3XmBZdO3AfDx2pEc332B9n11Qej/jltNQtw1Pln3GH8vPmC2/Y7fT1KvoYdha0xjqlu2U3dvF5P1FpF3N8a59v+3d9/xUVV5H8c/vxRCr4GAoUMQpRdRWMGogKjYVkXsHRv7+Ijo6roqlnVVnl23yK5tbWtbQUVcUUQEQVSKjSq9KorSBJSS5Dx/3DuTmUmGIZAhM5nv+/XKiztnzsyckxvyyznn3t+pwkdvfM3gYT3oc1o73n3mS7r3b03dhjXoPbhd2OsbNvUSPJgZrTo2OqRtl/IXt9+OzrkCMxsOTMJbj3jaObfQzO4F5jrnJvjPDTSzRUAhcItzbpOZjQNOAObjLXa/65x7K07tBKBZ4V7mUJXMrPim+ZX4+3zKSp783RSKCh3ZubX4w5vn89PmX1j2+Qa65rfc56XRH735dfD4gYtf56dNv/DM3dPC6jx02XjW7eNCiNICRSKxNMMVOZq0qsuGVVtLrZPTog79L+gUvBHv0Y+vJLNKOoUFRVRrupNTL+pGWnoaF/6u76FsulSguP4p7ZybSEQqc+fcXSHHDhjhf4XWKQSuiWfbImX4F9Du3V2435k2JTEFUlpA8d4Go6+awMa12+g1qC1nDe9F/cY1WfDxOgoLiqiTXZ1vV2ymXfcmfDZ5ZfC1kXcxB+wrUCSa80b2odegttzc39sF+e5Xz6VG7SwmvziP/HM78MDFr7NzW/jNfY/PHQZAUWER36/dxhG9coM3C6ZnpJHdohpp6boXKdVo3sW/WjE9JF/ihpVbNGxOMnt2FTD/o7V06N201Oc3+ikfZr+7nNnvLueiO/rywh9mlFq3shhyc29OGNoRgD+9fwlmBLOZnnPjMYCX7uLNf8yh+4mteXbUNDqF5HlKS0/j3Jt6H/qGS0JSsPCF3phXsFe5ohLVuqWbmP3OMk69ugdVq2dSsLeQx26dzHw/P1HtBiUvfd72488lyipToOjctznzZqzlmFPz6HvWEYy+agIAHXoXX19Ss27VUl/bNK8BNzwyyK/fNGo9EQULf80idKXi/Rfnp/yt/YkqsItaRpV0GjWrE0yVEVDa1NGtg144FE2Lq9y29cNSfeS0qMPtz53F3t0FYfcaAIz55Eq2b9lFvUY1yvQZke8jEkoTj77Qvc6/nLa6wtpRGUx/fTGv/vmTUjfJibT5ux18t7r0RdZQhQVFfP7BquDjLRt3lggUlc3QW/oEj6/+44lkZHr/XavWyOSecUOoVrNKqb/gMzLTyxwoRGLRyKKU32dtuzU+9O2oRF58wJvi+dXph5Pbtv4+694++CXAuyxzwEWdaXZ4NuPHzOaj8V/T89xsivoWUVTkuOn458J2MvwkRjK5ZNGoWW06HducOtnVqVqjCp2ObU712llkVkln8aziDLBNWtVjzCdXsWrBxkO677JIgIJFgMH5v/0VLz80k9ULf8A5p/+QB2nv7gL27Crg8w9W0enY5tSonRUs375lV3DnMIC5k1cyN+RKJIDpT3/L3LHPs2dXAQV7iw5p2+Mpq1pGcD/p+94YGrVehz7NOPnyrrTpUvzHiy68kIqiYBEyVRL4ZVawp5BFn64PWyCU6IoKi5g3Yy1tuzYusUA67i+f8uE4L3fkw+9eRJ3s6jx42XjWL9tMn9PalfZ2YX7evicubS4vZtB7cHja7HY9mtD+qFx6DmjN8/dNp/+FnVjz3VLe+ZOX9qNN18Ys+iT2vhFmxpk39Ipb20XKQsEiyKjuBwuA71ZvTelg4ZzDFTm+W72VajWrUC+neBQw651lvP/SfNYu/hGAHv1b89n7K6nbqAbXPNQ/WG/2pBXBQAHeQnPdRjXYunEnQMx9CSpS+165fD07MjsNHDWwDXPeWxF8fN7IPuQP6RDWl5sfPy14fMtTpwOwbdoahj3Yny+mruLSu/P55L9Lad1JowRJHikfLEKXLGqEBItUSFVeVOSCG8Vs2rCdHVt3UateNeo3rskj17/NynnfB7OdBm7UmvD43LC02gCfve9NH23duDNsV7YpL80v8ZmBQJHoLrmzH7877eUS5flDOgSDxbWjB9ClX4v9nq7s0b81Pfp7GWpjbXIkkmhSPlgEp6EMqtUs3iRl4X5MEySzvXsKuXfoOFp2aMgZ1/bkjjNeCT531vBeLJnzbVj9zd/tYO3XP5YIFMnk7BuP5rW/zopZr/dp7WjQpBb3jBtC9dpZ3DLw3wCcfHlX2nZtzGWj8sltW5/m7bODrxk19lymvDSf80b2ifa2IklNwSLAoE7D4ssN+56VPHvt7t1dwM/b9zDrnWVMfGYF3Tr2ok52dXb+tJuMzDSyqpVMXfLN8s1sXLuNjWu3Mfud5WHPlbbDWuCqpWRWu0F1OvRpxsKP13Fk76Yl1g3+Ov1ysqplBEcKjVvWBYqzq7bq5GWhjUyYB97VShfd0S/OPRCpOAoWIfNQVatn0u/sI5j+2mL+++TnDB7WI65XRK1euJEtG3fS7fjoG7wA/LD+J1bO/55eg9qW2p5RQ8YGcyABPH/vh1xx3/HcPODfHNa6Hrc/dyabNuygccu6FBU5Xrh/Oju37y7xPpVdyyMbctTANmz78Weq187ixn7PhD0fLR/Yfa+fx7olP9KhT+quYYkoWEQ4rE3xfQG7du4Nm5oqb3+8dDwAf3hzKNm5tdn248+MGTGJ/hd0Yv2yTeR1a0KnY5sX7y2cmR6c8w4VGijA25RnxIle4rhvlm/mkevfZsVX33Pjo6ewasFGZk5YErc+VbQGTWrS7+wjS4yOevRvHRwpBC7ZffDtC9j5027eeuIzau9jh8Q62dWpk9086vMiqUDBIuIu48yQzd7nzVjD0Sfnxb0J2zb9QnZubSY8Ppc1i37gX7//AIBJz30VXFgGWLP4h1KDRSwrvvK2L0+WrTczqqRTsMdbWK9RJ4tRY4fw9J0fsHhW8dVJhx91WHBdZeSTp7H0sw2cMLQjVWtkYmYUFXmbFB3RK5e5k1cw+OoeJT6nXk5N6uXU5LrRAw9Nx0SSmNJ9BPjTO8u+2BAsevrOqaxb8uNBvW1RYRHP3D2Vj9+K/df83l373kmtqCg8sE18+gvGPvLJQbUvET068wqatmsAQNuujaldvxqXjcoPqzP4qu7B47xuTTj1qu5Uq1klOE13yhXdOOmSLjRvn82vf3N0Qu3QJpKMFCwi0n2ETkMB/POWyWV6u53bdlFYUHy38bwZa/n07WU8d0/sfYVLW4/4+/+8U/xe09fw7KhpPHrTuzx95we8+Y85vP9iyctTk82YT64MHjc/IhszY/hfBtHppAZccudxANRtWINL7z4uWC/0nhgRiT8FiwD/93T/CzqFFW/6dnsplcO9/dTn3DNkLD+s/4kRJz7PqCFjg8/t/mXvQTVrwcfrgsffr9nGJ/9dyvwZa5kVcQVTIklLLxn02vVowjGnlpzS63p8SzIy0+noLx738rcwrdeoBh0HNAi7I/yogW1omlefARd3pmleA06/tidX//HE+HRCRMKk/Ng8MjNqaVtufjpxGS2PbMi6pZvY9sNOsnNr0zW/JeDdrxDYRvOlB70tKAMb7UTz6dtLw+7j+HDsQpZ+9u0+XlHxuh3fki+mrt6vulWrZ4al6ciqnsmIxwZjZnTp1yJsJ7su/VoAcM3DA1iz+AfadM6J+r6ZWRnc+fI5wcenhkxFiUh8pXyw2B/P3DW1RFlg4fk/o2cGy0LXFLZs3EndhtXD0l38tPkX5k1fw7/vnx72XoFRwuFHHVau7S4v9RvX5NrRAynYW8gNvf8Vs36LIxuGLUbXrJMVnGLrclxLevRvTauOjWjePpu87t6+IVWqZmgPEZEEpmBRSoryBofVijn99PkHq0hPN2a88XWwLDSX0G2nvFjiNYE7gaOJvGs6UZw13Etml5GZzuNzh3FNzydK1LlsVD7fLN9M8/bZdDq2OU/c/n7wprfQwVt6RhrDHuxf4vUiktgULAJCptlLm4qK9PitZVv4Tga3PXsmO7buYsrL88NGBtEu1z1reC/WLvmRBo1rlrir+ca/n8Lz933IzDeXkD+kQ1zbLSLxp2BRym5uvQe3481/zKmAxlSctHSjxRHZpKWncXjPw/jNsU8Hn4sMnne88Gu++nA1/S/sREZmeuRbBV14e1+OP68jTfP2vQGSiCQ+BYuAkJFFKgWL0Jv+AkLvSQik2A7VvH12WBK9aNIz0mjm3y8hIslNwaKUNYv0Ui79rEzuGTeEh654k9OGlbyrOeBvMy5n+2bvznIREQWLoOIAUbtB9QpsR/l54K3zqV4rixlvLCanRV0mPfcl597Um8Yt6/LnKZfsM0liVrVMsnJLT6wnIqkn5YNFKUsWAFz3fwP558j3Dm1joqhaI5NdO72b+2rVq8r2Lbui1q3fLIvOvdsy6NIuwd3tBl7cBSi+pwFKv1tcRCQa3cEdEPG7M57ZZsvqoYkXBo9HPhm+hlC9Vng7T7qxBeff+quwbVBFRA6WgkWUoUVofqeKlJ1bi6o1wgPCDY+cRIc+zbh//FDuePHsYPkDb51/qJsnIiki5aehgiJGFvtzr8WBqJdTg5Mv7xZMDRKZRuOxOVfz8/Y9jDjhOa9Z/nRRr0Ft2bhuG42a1aZxy7p07ls8pXTzE6dRJ7s6DZrUgsq7VYWIVCCNLKKsWeR1a0znvuW/4c1vnzmT0OWCax4ewJX3nxB8bGbUCMmoamle5SvvP4Hbnj2TtPSSp6xd9ybkNK9T7m0VEQlQsIgSLdLS07jhkUHl/mn1GtUIm/kyM9rvIydU6IBHi9IiUlEULAKi/CL+24zLuWfckDK9VYPDapVafty5RwLeTnChatWvRl73JnQ/oXgv7u4nesd9Tj+8TJ8tIhIPWrOIMg0VkFUtM7h3czQnXtCJKS95mxB17NOMS+46jlsHvRBW5/RrezLosq4A9DqpDbPeWUbX41oC3ojh5scHh40crrj3ePpf0IlWHRuVsUMiIuVPwSJgP2d4atWryrWjBzL6qgmAlyepaV59zr3pGL5dsYWcFnXIyEzn7BuP5rW/zqLb8S255uEBYYEgMyuDEf8cHP7xESObzKwM2nRpfFBdEhEpL3ENFmY2CPgrkA485Zx7sJQ6Q4BReH/jf+Wcu8Avbw48BTTznzvFObe6vNsYuflRNJ37NmfejLUMe2gAbbs25uLf9yOnRZ2wHEm5bYsT5vW/sDNtOufQvH221hpEJOnFLViYWTowBhgArAfmmNkE59yikDp5wO3Ar5xzW8wsdM7leeAPzrnJZlYTqNAbH677v4H8tPkX6jasAcCxZ7bfZ/20NNPIQEQqjXgucPcCljvnVjrn9gCvAGdE1LkaGOOc2wLgnNsIYGZHAhnOucl++Q7n3M9xaeX+DSxIS08LBgoRkVQTz2CRC6wLebzeLwvVDmhnZjPN7FN/2ipQvtXMXjezL8xstD9SiR/NFImIRFXRC9wZQB6QDzQFpptZJ7+8L9ANWAv8B7gMCNsA2syGAcMAcnJymDZtWpkbYMu3kwUUFhYd0OsTzY4dOypFP0B9SVSVpS+VpR9waPoSz2DxDd7idEBTvyzUemCWc24vsMrMluIFj/XAl865lQBmNh44hohg4Zx7AngCoGfPni4/P7/MjdxR51sWMJ/0jDT6HsDrE820adM4kO9DIlJfElNl6Utl6Qccmr7EcxpqDpBnZq3MrAowFJgQUWc83qgCM8vGm35a6b+2rpk19OudACwiHvZzzUJEJJXFLVg45wqA4cAkYDHwqnNuoZnda2aBPNuTgE1mtgiYCtzinNvknCsERgJTzGw+3orCk/Fqq0eLFiIi0cR1zcI5NxGYGFF2V8ixA0b4X5GvnQx0jmf7/M+J90eIiCQ95YYK0MBCRCQqBQsNLEREYlKwCNDIQkQkKgULrVmIiMSkYCEiIjEpWGhgISISk4JFYBpKacRFRKJSsAhQrBARiSrlg4XWt0VEYkv5YCEiIrEpWGiFW0QkJgWLAK1ZiIhEpWChgYWISEwKFgG6dFZEJCoFC10OJSISk4KFiIjElPLBQgMLEZHYUj5YBGnJQkQkKgULDS1ERGJSsPA5jSxERKJSsNDAQkQkJgULERGJScFCaxYiIjEpWAToDm4RkagULDSwEBGJScEiQAMLEZGoUj5YaMlCRCS2lA8WihYiIrEpWARoGkpEJCoFCw0sRERiUrAI0KWzIiJRKVhoaCEiEpOChYiIxJTywUIXQ4mIxBbXYGFmg8xsiZktN7PbotQZYmaLzGyhmb0U8VxtM1tvZo/Gs53eh8X9E0REklZGvN7YzNKBMcAAYD0wx8wmOOcWhdTJA24HfuWc22JmjSLe5j5gerzaCGhoISKyH+I5sugFLHfOrXTO7QFeAc6IqHM1MMY5twXAObcx8ISZ9QBygPfi2MZiGlmIiEQVz2CRC6wLebzeLwvVDmhnZjPN7FMzGwRgZmnAn4CRcWyfRwMLEZGY4jYNVYbPzwPygabAdDPrBFwETHTOrbd93P9gZsOAYQA5OTlMmzatzA1Im7+ZKkBhYeEBvT7R7Nixo1L0A9SXRFVZ+lJZ+gGHpi/xDBbfAM1CHjf1y0KtB2Y55/YCq8xsKV7w6A30NbPrgZpAFTPb4ZwLWyR3zj0BPAHQs2dPl5+fX+ZGbtmzjCV8TXp6Ov0O4PWJZtq0aRzI9yERqS+JqbL0pbL0Aw5NX+I5DTUHyDOzVmZWBRgKTIioMx5vVIGZZeNNS610zl3onGvunGuJNxX1fGSgKHe6g1tEJKq4BQvnXAEwHJgELAZedc4tNLN7zex0v9okYJOZLQKmArc45zbFq02lN/SQfpqISFKK65qFc24iMDGi7K6QYweM8L+ivcezwLPxaaGIiOwP3cGt+yxERGJK+WARpCULEZGoFCw0sBARiUnBIkAjCxGRqBQstGYhIhKTgkUwVmhoISISjYJFgGKFiEhUChaahhIRiUnBIkAjCxGRqFI+WGhgISISW8oHCxERiU3BQnfliYjEpGARoDULEZGoFCw0sBARiUnBIkCbH4mIRFXRe3BXuOodGtHinhNZtjNyx1cREQlI+ZFFtTYNaHLd0RT1rF/RTRERSVgpHyxERCQ2BQsREYlJwUJERGJSsBARkZgULEREJCYFCxERiUnBQkREYlKwEBGRmBQsREQkJgULERGJyVwl2SrOzH4A1hzEW2QDP5ZTcypSZekHqC+JqrL0pbL0Aw6uLy2ccw1jVao0weJgmdlc51zPim7Hwaos/QD1JVFVlr5Uln7AoemLpqFERCQmBQsREYlJwaLYExXdgHJSWfoB6kuiqix9qSz9gEPQF61ZiIhITBpZiIhITCkfLMxskJktMbPlZnZbRbdnf5jZajObb2Zfmtlcv6y+mU02s2X+v/X8cjOzv/n9m2dm3Su47U+b2UYzWxBSVua2m9mlfv1lZnZpgvRjlJl945+XL83slJDnbvf7scTMTgopr/CfPzNrZmZTzWyRmS00sxv98mQ8L9H6klTnxsyqmtlsM/vK78c9fnkrM5vlt+k/ZlbFL8/yHy/3n28Zq39l5pxL2S8gHVgBtAaqAF8BR1Z0u/aj3auB7Iiyh4Hb/OPbgIf841OAdwADjgFmVXDb+wHdgQUH2nagPrDS/7eef1wvAfoxChhZSt0j/Z+tLKCV/zOXnig/f0AToLt/XAtY6rc5Gc9LtL4k1bnxv7c1/eNMYJb/vX4VGOqXPwZc5x9fDzzmHw8F/rOv/h1Im1J9ZNELWO6cW+mc2wO8ApxRwW06UGcAz/nHzwFnhpQ/7zyfAnXNrElFNBDAOTcd2BxRXNa2nwRMds5tds5tASYDg+Lf+mJR+hHNGcArzrndzrlVwHK8n72E+Plzzm1wzn3uH28HFgO5JOd5idaXaBLy3Pjf2x3+w0z/ywEnAOP88shzEjhX44ATzcyI3r8yS/VgkQusC3m8nn3/YCUKB7xnZp+Z2TC/LMc5t8E//g7I8Y+ToY9lbXsi92m4PzXzdGDahiTqhz990Q3vL9mkPi8RfYEkOzdmlm5mXwIb8QLvCmCrc66glDYF2+s/vw1oQDn2I9WDRbI61jnXHTgZuMHM+oU+6bzxZ1Je5pbMbQf+CbQBugIbgD9VbHPKxsxqAq8B/+uc+yn0uWQ7L6X0JenOjXOu0DnXFWiKNxpoX5HtSfVg8Q3QLORxU78soTnnvvH/3Qi8gfeD9H1gesn/d6NfPRn6WNa2J2SfnHPf+//Bi4AnKR7uJ3w/zCwT75fri8651/3ipDwvpfUlmc+Nc24rMBXojTfll1FKm4Lt9Z+vA2yiHPuR6sFiDpDnX2FQBW9haEIFt2mfzKyGmdUKHAMDgQV47Q5cfXIp8KZ/PAG4xL+C5RhgW8jUQqIoa9snAQPNrJ4/nTDQL6tQEWtBZ+GdF/D6MdS/YqUVkAfMJkF+/vy57X8Bi51zfw55KunOS7S+JNu5MbOGZlbXP64GDMBbf5kKnONXizwngXN1DvCBPxqM1r+yO1Sr+4n6hXdlx1K8+cA7Kro9+9He1nhXN3wFLAy0GW9+cgqwDHgfqO+Kr6oY4/dvPtCzgtv/Mt40wF68+dMrD6TtwBV4i3XLgcsTpB//9ts5z/9P2iSk/h1+P5YAJyfSzx9wLN4U0zzgS//rlCQ9L9H6klTnBugMfOG3dwFwl1/eGu+X/XJgLJDll1f1Hy/3n28dq39l/dId3CIiElOqT0OJiMh+ULAQEZGYFCxERCQmBQsREYlJwUJERGJSsJCUZmZ1zez6kMeHmdm4fb2mHD+7pZldcCg+S+RgKVhIqquLl7ETAOfct865c/ZRvzy1BBQsJCkoWEiqexBo4+9xMNr/a38BgJldZmbjzdvLYbWZDTezEWb2hZl9amb1/XptzOxdP7HjDDMrkcPHzI6z4r0UvvDvwn8Q6OuX3eQnjhttZnP8hHfX+K/NN7PpZva2vyfBY2aW5td/1swWmLe/yU2H8PsmKSYjdhWRSu02oKPzErYFMpWG6oiXubQq3t2xv3XOdTOzR4BLgL/g7X98rXNumZkdDfwDL5V0qJHADc65mX6Su13+Z490zg32P3sYXuqMo8wsC5hpZu/5r++FtzfBGuBd4NfAKiDXOdfRf33d8viGiJRGwUJk36Y6b1+E7Wa2DXjLL58PdPZ/8fcBxnppiQBvo5lIM4E/m9mLwOvOufUh9QMG+u8ZmAarg5fLZw8w2zm3EsDMXsZLazEFaG1mfwfeBt6LfEOR8qJgIbJvu0OOi0IeF+H9/0nD22Og677exDn3oJm9jZdvaKaVvr2lAb9xzoUl3zOzfEqmB3fOuS1m1gVv06FrgSF4uZlEyp3WLCTVbcfbfvOAOG+vhFVmdi4E96fuElnPzNo45+Y75x7Cy2javpTPngRc56fYxsza+ZmFAXr5GVDTgPOAj8wsG0hzzr0G/B5vm1eRuFCwkJTmnNuE95f+AjMbfYBvcyFwpZkFMgGXtv3m//qfMQ8vU+07eBlFC83sK39x+ilgEfC5v8j+OMWj/znAo3hpqlfh7WOSC0wzbze1F4DbD7D9IjEp66xIgvOnoYIL4SIVQSMLERGJSSMLERGJSSMLERGJScFCRERiUrAQEZGYgNfSEwAAABdJREFUFCxERCQmBQsREYlJwUJERGL6fzyEfI5JSpL8AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -12421,7 +206,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX5x/HPkxAIq6yNCsiOikprQXAvqFW0KlpBobaKWrFVrMuvtVqtW23dtVptK8WKW4sUbUVBES1xqwuLiuyEPQgiyBYghCTP7497CUPMMgmZzPZ9v17zYu6558w8JxPmyb333HPM3REREalKRrwDEBGRxKdkISIi1VKyEBGRailZiIhItZQsRESkWkoWIiJSLSULSUlmNsDM8veh/V/N7Ld1GZNIMlOykIRlZsvNbIeZFZjZWjMba2bNYvA+I8zsvcgyd/+Zu/8uBu8V2afdj8eibJtrZj+t65hEoqFkIYnuLHdvBnwHOBK4Kc7x1IWz3L1ZxGNUXbyomTWoi9cRqYiShSQFd18LTCFIGgCYWSMze8DMVprZl+Gpo8YVtTezG81siZltNbN5ZnZuWH4o8FfgmPCv/E1h+Vgzuyt8Pt/Mzox4rQZm9pWZfTfcPtrM/mdmm8zsMzMbUJs+7j7CCfu00cyWmdnp4b7fAycAj0UejZiZm9lVZrYYWByWHWtm081sc/jvsRHvkWtmd5vZx2a2xcxeNrPW4b5JZnZ1uZhm7/5ZSXpTspCkYGYdgNOBvIjie4CeBAmkO9AeuLWSl1hC8GW7H3AH8JyZHeDu84GfAR+Ef+W3rKDtP4HhEdunAevdfZaZtQcmAXcBrYFfAi+aWbva9ZT+wEKgLXAf8KSZmbvfDLwLjKrgaOScsF2v8It/EvAo0AZ4CJhkZm0i6l8EXAocABSHdQGeBn68u5KZfZvgZzqpln2RFKJkIYnuP2a2FVgFrANuAzAzA0YC17n71+6+FfgDMKyiF3H3f7n7F+5e6u4vEPwV3i/KGP4BnG1mTcLtHxEkEAi+XCe7++TwtacCM4AzqunTpojH5RH7Vrj739y9hODL+wAgp5r47g5/BjuAHwCL3f1Zdy92938CC4CzIuo/6+5z3H0b8FvgfDPLBCYCPc2sR1jvJ8AL7l5UzftLGlCykER3jrs3BwYAhxD8xQ3QDmgCzNz9pQu8HpZ/g5ldZGafRtQ9POK1quTuecB84KwwYZxNkEAAOgFDI7/8geMJvuSr6lPLiMffIvatjXjf7eHT6i7qr4p4fiCwotz+FQRHCBXVXwFkAW3dvRB4AfixmWUQHE09W817S5rQBTFJCu7+tpmNBR4gOO2yHtgBHObuq6tqa2adgL8BJxOcbioxs08B2/3yUYSw+1RUBjAvTCAQfPE+6+6XV9qy7lQWZ2T5FwQJLNJBBIl0t47l9u0i+HlCcDTzLPAesN3dP6h1tJJSdGQhyeSPwPfN7NvuXkqQAB42s28BmFl7MzutgnZNCb5QvwrrXUJwZLHbl0AHM2tYxXuPA04Ffs6eowqA5wiOOE4zs0wzyw7v8ehQyz5W5UugazV1JhOcSvpReCH+AqAX8GpEnR+bWa/wKOlOYEJ42oswOZQCD6KjComgZCFJw92/Ap5hz0XsXxNc8P7QzLYAbwIHV9BuHsGX3wcEX7hHAO9HVPkvMBdYa2bry7cPX2NN2P5YglM1u8tXAYOB3xAko1XAr6j6/9Yr5e6z+Hc1Xd/tEWBIOFLq0YoquPsG4Ezg/4ANwA3Ame4e2a9ngbEEp7yygV+Ue5lnCH5Gz0UZl6QB0+JHIunDzHKB59x9TBV1LgJGuvvx9RaYJDwdWYhImfDU1JXA6HjHIolFyUJEAAiv93xFcKruH9VUlzSj01AiIlItHVmIiEi1lCxERKRaKXNTXtu2bb1z5861br9t2zaaNm1adwHFSar0A9SXRJUqfUmVfsC+9WXmzJnr3b3aucxSJll07tyZGTNm1Lp9bm4uAwYMqLuA4iRV+gHqS6JKlb6kSj9g3/piZuWnh6mQTkOJiEi1lCxERKRaShYiIlItJQsREamWkoWIiFRLyUJERKoV02RhZoPMbKGZ5ZnZjRXsv97M5oWLwr8VLlKze9/FZrY4fFwcyzhFRKRqMUsW4Zq+jwOnEyy+MtzMepWr9gnQ1917AxMIFqgnXHT+NoJF6PsBt5lZq1jFKiIiVYvlkUU/IM/dl4YLvo8jWCSmjLtPi1hn+ENg9+pipwFTw0XoNwJTgUExjFVERKoQy2TRnr0Xhs9n70Xjy7sMeK2WbffZpElZ/OIXq9AsvCIi35QQ032Y2Y+BvsD3athuJDASICcnh9zc3Bq/tzs8/XQjnn66MfAVO3as4sILi2r8OomioKCgVj+HRKS+JKZU6Uuq9APqqS/uHpMHcAwwJWL7JuCmCuqdAswHvhVRNhx4ImL7CWB4Ve/Xp08fr42bbsp3mLnX45ln1tfqtRLBtGnT4h1CnVFfElOq9CVV+uG+b30BZngU3+mxPA01HehhZl3MrCEwDJgYWcHMjgwTwdnuvi5i1xTgVDNrFV7YPjUsq3MXXtia/fbLLNvOzjaaN8+sooWISPqJWbJw92JgFMGX/HxgvLvPNbM7zezssNr9QDPgX2b2qZlNDNt+DfyOIOFMB+4My+rcYYc15uWXu5KV5bRunclbb/XgnHNaxuKtRESSVkyvWbj7ZGByubJbI56fUkXbvwN/j110e3zve8257bYdDBnSl4MPzq6PtxQRSSq6gzt03HHFShQiIpVQsoiSa0itiKQxJYsoPProOs4/fxklJUoYIpKelCyqUFrq3HBDPtdck8+ECZu49tp8HWGISFpSsqjCrbeu4f7794zofeyxr3jggXVVtBARSU1KFlW44oq2tG+fVbbdtGkGvXs3jmNEIiLxoWRRhY4dG/Laa91p0SKDnJwGvP12T047rUW8wxIRqXcJMTdUIjviiMa8+mp3OnTIokuXRvEOR0QkLpQsonDCCc3iHYKISFzpNFQd2LmzNN4hiIjElJLFPnB3fv/7NRx77EK2bCmJdzgiIjGjZFFLJSXO1Vfnc8sta5g1awc//OFSiop0hCEiqUnJopYefPBLHn/8q7Ltt97ayhVXrIxjRCIisaNkUUtXXdWOfv2alG23bJnJpZe2jWNEIiKxo2RRS02bZjJpUnd69mxE+/ZZvPtuT42aEpGUpaGz+6Bt2wZMmdKdjAzjoIMaxjscEZGYUbLYR50760Y9EUl9Og0VY198URTvEERE9pmSRYy4O7/+9WoOP3w+c+bsiHc4IiL7RMkiBkpKnJEjV3LffV+ycWMJp56ax7JlO+MdlohIrSlZxMCLL25izJgNZdtr1uzihz9cSmmpFk4SkeSkZBEDQ4e2ZNSodmXbbds2YMyYTmRkWByjEhGpPY2GigEz45FHOrBxYzHvvFPAG2/04JBDsuMdlohIrSlZxEhGhvHUU51Zv76YAw7Iqr6BiEgCi+lpKDMbZGYLzSzPzG6sYP+JZjbLzIrNbEi5ffeZ2Vwzm29mj5pZ0p3DycoyJQoRSQkxSxZmlgk8DpwO9AKGm1mvctVWAiOAf5RreyxwHNAbOBw4CvherGKNB3dn0qTNuOuit4gkvlgeWfQD8tx9qbsXAeOAwZEV3H25u88Gys/t7UA20BBoBGQBX8Yw1npVWupce20+Z565hFtu+SLe4YiIVCuW1yzaA6sitvOB/tE0dPcPzGwasAYw4DF3n1++npmNBEYC5OTkkJubW+tgCwoK9ql9tIqL4b77spk6NZhL6g9/+JKNG1dw/vl1c6d3ffWjPqgviSlV+pIq/YB66ou7x+QBDAHGRGz/hOBLv6K6Y4EhEdvdgUlAs/DxAXBCVe/Xp08f3xfTpk3bp/bRWrq00Fu3/tRhZtmjVatP/auvdtXJ69dXP+qD+pKYUqUvqdIP933rCzDDo/hOj+VpqNVAx4jtDmFZNM4FPnT3AncvAF4Djqnj+OKiS5dGvPZad5o2DX70++/fgLff7knbthqYJiKJK5bJYjrQw8y6mFlDYBgwMcq2K4HvmVkDM8siuLj9jdNQyapfv6a8/HJXDj00m/feO5gjjmgc75BERKoUs2Th7sXAKGAKwRf9eHefa2Z3mtnZAGZ2lJnlA0OBJ8xsbth8ArAE+Bz4DPjM3V+JVazxcPLJLZg9+1C6ddMU5yKS+GJ67sPdJwOTy5XdGvF8OsHpqfLtSoArYhlbImjQIOluHRGRNKW5oRKQu/Ob36zm44+3xTsUERFAySLh7J7e/O67v2TQoDxmz94e75BERJQsEklpqXPRRcvLpjffuLGE738/jwULCuMcmYikOyWLBJKRYXTu3PAb5UVF5W9wFxGpX0oWCeauuw7kmmuCtTDat8/inXd60rt3kzhHJSLpTneCJRgz4+GHO9C8eSaXXtqGLl00tFZE4k/JIgGZGb/73YHxDkNEpIxOQyWh0lJn69aSeIchImlEySLJlJYGQ2sHDlzMpk3F8Q5HRNKEkkUSKSlxLrtsBU8+uYGZM7dz2ml5bN6sIwwRiT0liyTywANfMnbs12XbH3+8nUsvXRHHiEQkXShZJJGrrmrHccc1Lds+8MAs7r5bF8JFJPaULJJIs2aZvPZad445pikdO2bx9ts96NkzO95hiUga0NDZJNO8eZAwNm4spnNn3YMhIvVDySIJ7bdfJvvtlxnvMEQkjeg0VIopLYU//WkdhYWaT0pE6o6SRQopKXHuuy+bX/winyFDlrJzpxKGiNQNJYsUUVzsXHzxcqZMCWatnTRpC+edt1RHGCJSJ5QsUsSWLSXMmrVjr7LZs3fw1Ve6y1tE9p2SRYpo3boB//1vDzp2DO7o7tAhi2nTetKx4zfXxxARqSklixSy//5Z/PGP2znllOb897896NZNQ2tFpG5o6GyKad3amTq1R7zDEJEUoyOLNFNc7GzbpskHRaRmYposzGyQmS00szwzu7GC/Sea2SwzKzazIeX2HWRmb5jZfDObZ2adYxlrOigpCUZMnXZaHlu2KGGISPRilizMLBN4HDgd6AUMN7Ne5aqtBEYA/6jgJZ4B7nf3Q4F+wLpYxZoOSkqcSy5ZwT/+sZH339+m6c1FpEZieWTRD8hz96XuXgSMAwZHVnD35e4+G9jrZoAwqTRw96lhvQJ33x7DWFPevfd+ybPP7pne/MMPt/HTn2p6cxGJTiyTRXtgVcR2flgWjZ7AJjN7ycw+MbP7wyMVqaWrrmpH//5NyrYPOqgh998f7cchIunO3D02Lxxcgxjk7j8Nt38C9Hf3URXUHQu86u4TIto+CRxJcKrqBWCyuz9Zrt1IYCRATk5On3HjxtU63oKCApo1a1br9omiqn5s2wa//nUT1q3L4OGHt9G+fWw++7qSKp8JqC+JKFX6AfvWl4EDB850977V1Yvl0NnVQMeI7Q5hWTTygU/dfSmAmf0HOJoggZRx99HAaIC+ffv6gAEDah1sbm4u+9I+UVTXjxNPLGH9+mK6dEn8ezBS5TMB9SURpUo/oH76EsvTUNOBHmbWxcwaAsOAiTVo29LM2oXbJwHzYhBj2mnePDMpEoWIJJaYJQt3LwZGAVOA+cB4d59rZnea2dkAZnaUmeUDQ4EnzGxu2LYE+CXwlpl9Dhjwt1jFKoFdu5yf/3wlixYVxjsUEUkwMb2D290nA5PLld0a8Xw6wempitpOBXrHMj7Zo6TEueii5Ywbt5F//3sTU6f24IgjGsc7LBFJELqDWygtdUaOXMm4cRsB+PLLYgYMWMSsWRqtLCIBJQvBHTLK/Sa0bJlJTo6mDhORgJKFkJlpPPHEQfziF8F4gg4dsnjrrR60b6/pzUUkoD8dBYCMDOOPf+zA/vtncd55LencWSOmRGQPJQspY2bcdNP+8Q5DRBKQTkNJ1AoLS3n55U3xDkNE4kDJQqJSXOwMG7aMc85Zyt13ryVW08SISGJSspBqlZY6l1++gpdf3gzAb37zBb/61WolDJE0omQh1Zo3r7DsHozdXnttC1u3llbSQkRSjZKFVOvwwxszZUp3WrQIfl06dWrIG290p0ULzRovki6ULCQqJ57YnNzcnhxxRDZTp3bXPRgiaUZDZyVqRx7ZhE8/PZSMDIt3KCJSz3RkITVSVaLYtq2E1auL6jEaEakvShZSJ4qKShkyZBnHHLOQBQs0xblIqlGykH1WUuJcfPEKXn99C6tW7eKEExbx0Ufb4h2WiNShapOFmZ1lZkoqUqmxYzfsNbR2/fpibrpJ92GIpJJoksAFwGIzu8/MDol1QJJ8Roxow09/2qZsu0ePRrzwQhfMdCFcJFVUOxrK3X9sZi2A4cBYM3PgKeCf7r411gFK4svMNEaPPoicnCzGjFnP6693p127rHiHJSJ1KKrTS+6+BZgAjAMOAM4FZpnZ1TGMTZKImXHXXQcyZ04vunbV9OYiqSaaaxZnm9m/gVwgC+jn7qcD3wb+L7bhSbJp27byg9VNm4rZsUNThIgko2huyjsPeNjd34ksdPftZnZZbMKSVLNjRylnnbUEd5g4sRutW+t+UJFkUu2RhbtfDCwKjzDOMrP9I/a9FdPoJCWUlDgXXriM997bxvvvb+P44xexcqVu3hNJJtGchroM+Bj4ITAE+NDMLo11YJI67rlnLf/+9+ay7fnzC7nhhtVxjEhEaiqaC9w3AEe6+4jwKKMP8OtoXtzMBpnZQjPLM7MbK9h/opnNMrNiMxtSwf4WZpZvZo9F836SmK68sh0nnNCsbPuww7L5y186xjEiEampaJLFBiByiOzWsKxKZpYJPA6cDvQChptZr3LVVgIjgH9U8jK/A96pZJ8kiVatGvDGG90577yWdOiQxeuvd6dVK12zEEkm0fyPzQM+MrOXAQcGA7PN7HoAd3+oknb9gDx3XwpgZuPCtvN2V3D35eG+bwyRMbM+QA7wOtA3yv5IgsrOzuCFF7qwZs0uOnTQ9OYiySaaI4slwH8IEgXAy8AyoHn4qEx7YFXEdn5YVq1wepEHgV9GU1+SQ2amVZkovvpqF0VFGlorkoiiuYP7DgAzaxZuF8Q6KOBKYLK751c1ZYSZjQRGAuTk5JCbm1vrNywoKNin9okiWfuxfTtcc01Tmjd37rhjO82bJ29fKqK+JJ5U6QfUU1/cvcoHcDjwCbAifMwEDoui3THAlIjtm4CbKqk7FhgSsf08wfWM5cB6YAtwT1Xv16dPH98X06ZN26f2iSIZ+7FrV6mfccZih5kOM/2QQ+b40qWFSdmXyqgviSdV+uG+b30BZng13+fuHtVpqNHA9e7eyd07Edy1/bco2k0HephZFzNrCAwDJkbRDne/0N0PcvfOBKeinnH3b4ymktTw+9+vZfLkLWXbCxbs5M4718QxIhEpL5pk0dTdp+3ecPdcoGl1jdy9GBgFTAHmA+Pdfa6Z3WlmZwOY2VFmlg8MBZ4ws7m16IMkuauuasdxx+35lerTpwmPPaahtSKJJJrRUEvN7LfAs+H2j4Gl0by4u08GJpcruzXi+XSgQzWvMZbgNJWkqLZtG/Dmmz245JIV/O9/23jllW40bZoZ77BEJEI0yeJS4A7gJYIRUe+GZSJ1Jjs7g+ef78zatbs44ABNby6SaKpMFuGNdTe7+y/qKR5JYxkZxoEHVj60dtmynbRsmakb+kTioMprFu5eAhxfT7GIVGrjxmIGDcrj6KMXsmhRYbzDEUk70fyJ9omZTQT+BWzbXejuL8UsKpEIu3Y5Q4cuY9GinQAcffRCJkzoykknVXVPqIjUpWiSRTbBXFAnRZQ5wTUMkZj705/W8dZbe6Yn27ixhOee+1rJQqQeRZMsxrj7+5EFZnZcjOIR+YarrmrHZ5/t4Jlnvgbg2GObatZakXoWzX0Wf4qyTCQmGjXKYOzYTtxzz4F06dKQf/+7K40aRbV8vIjUkUqPLMzsGOBYoN3uGWZDLQANgpd6ZWb8+tf7M2pUO92DIRIHVf151hBoRpBQmkc8thCsmCdS76pKFJ9+up1p07ZWul9Eaq/SIwt3fxt428zGuvuKeoxJpMa++moXgwcvZfXqIh56qANXX92OqmYsFpGaieYCdyMzGw10jqzv7idV2kKkHu3a5QwZsoyVK4sAuOaafD75ZDtjxnQiM1MJQ6QuRJMs/gX8FRgDlMQ2HJGa++9/t/Luu3svs9K8eaYShUgdiiZZFLv7X2IeiUgtnXZaC15+uSsXXricrVtLGTiwGQ8+WOX8lCJSQ9GMP3zFzK40swPMrPXuR8wjE6mBs85qyUcfHcyppzZn/PiuZGXpqEKkLkVzZHFx+O+vIsoc6Fr34YjU3qGHNmbKlB7xDkMkJVV7ZOHuXSp4KFFI0vn4422cdtpi1q3bFe9QRJJOtcnCzJqY2S3hiCjMrIeZnRn70ETqzpo1uzj33KW88cZWjjpqIZ98sj3eIYkklWiuWTwFFBHczQ2wGrgrZhGJ1LGdO0s577ylfPFFcESxcmURxx23kFWriuIcmUjyiCZZdHP3+4BdAO6+HdDVQ0ka27eXkp2996/sqFHt6Nix8oWWRGRv0SSLIjNrTHBRGzPrBuyMaVQidahVqwZMmdKDq69uB8Cppzbn7rvbxzkqkeQSzWio24DXgY5m9jxwHDAilkGJ1LWsLOPRRzty7LFNOfXUFrphT6SGqk0W7j7VzGYBRxOcfrrG3dfHPDKRGBg2rOpbhFas2EmnTo3qKRqR5BHVogDuvsHdJ7n7q0oUkqree6+Anj3n8dvffkFpqcc7HJGEEtMVZMxskJktNLM8M7uxgv0nmtksMys2syER5d8xsw/MbK6ZzTazC2IZp0h+fhFDhiylqMi56661DB68hM2bNRWayG4xSxZmlgk8DpwO9AKGm1mvctVWElz/+Ee58u3ARe5+GDAI+KOZtYxVrJLe3J0LLljGl18Wl5W9+uoW3nuvoIpWIuklqmRhZseb2SXh83Zm1iWKZv2APHdf6u5FwDhgcGQFd1/u7rOB0nLli9x9cfj8C2Ad0C6aWEVqysy499725OTsuYR3yy3784Mf7BfHqEQSSzR3cN8G/Bq4KSzKAp6L4rXbA6sitvPDshoxs34Eq/YtqWlbkWgdf3wzZsw4hL59m3DmmS24444D4h2SSEIx96ov5JnZp8CRwCx3PzIsm+3uvatpNwQY5O4/Dbd/AvR391EV1B0LvOruE8qVHwDkAhe7+4cVtBsJjATIycnpM27cuCr7UpWCggKaNWtW6/aJIlX6AfHpy86dUFwMTZvW7evqc0k8qdIP2Le+DBw4cKa7962uXjT3WRS5u5vZ7pvyov1vtBroGLHdISyLipm1ACYBN1eUKADcfTQwGqBv374+YMCAaF/+G3Jzc9mX9okiVfoBidmXqVO30L9/U1q0qHwt8IokYl9qK1X6kir9gPrpSzTXLMab2RNASzO7HHgT+FsU7aYDPcysi5k1BIYBE6MJKqz/b+CZ8kcbIvHyzjtb+cEPlnD88QvLlnAVSRfRTFH+ADABeBE4GLjV3f8URbtiYBQwBZgPjHf3uWZ2p5mdDWBmR5lZPjAUeMLM5obNzwdOBEaY2afh4zu16J9InVi8uJBzz13Krl3O558X0r//AmbM2BbvsETqTbWnoczseuAFd59a0xd398nA5HJlt0Y8n05weqp8u+eI7iK6SL249dY1fP31nvsu1q4tZvHinfTtW8cXN0QSVDSnoZoDb5jZu2Y2ysxyYh2USKIZM+Ygzj13z1DaO+88gOHDtbqwpI9o5oa6A7jDzHoDFwBvm1m+u58S8+hEEkTTpplMmNCVG29czZdfFnPLLfvHOySRehXNaKjd1gFrgQ3At2ITjkjiysgw7ruvA6WljplmrZX0Es1NeVeaWS7wFtAGuLy6eyxEUllGRuWJYvz4jSxfruVeJPVEc2TREbjW3T+NdTAiyeyNN7bwox8to02bBkyc2I3+/XXxW1JHpUcW4U1xAPcDK82sdeSjfsITSQ5z5uxg6NCllJTAunXFDBiwiH/9a2O8wxKpM1UdWfwDOBOYSbCkauSxtwNdYxiXSFIZM2Y9W7bsmQ9z506nceOYrgAgUq8qTRbufmb4bzQzzIqktYce6kDjxhncc8+XADzwQHvOPFOz1krqiOamvLfc/eTqykTSWUaGcffd7Tn44GymT9/GdddpwKCklkqThZllA02AtmbWij2noVpQi6nGRdLBiBFtGDGiTbzDEKlzVR1ZXAFcCxxIcN1id7LYAjwW47hEUtKjj66jc+eGnH22Fn6U5FLVNYtHgEfM7OpoJg4UkapNnLiJa6/NB+Dee9vzy19+Szf3SdKIZrqPP5nZ4QTraGdHlD8Ty8BEUkleXgbXXruc3WuN3XDDavLzi3jkkY5VNxRJENFc4L4NGECQLCYDpwPvAUoWIlFasiSTwsI9Q2szM+HsszVaSpJHNAPBhwAnA2vd/RLg24B+y0Vq4LTTdvHaa93Zb79ghb1HH+3IySe3qKaVSOKIZrqPHe5eambF4V3d69h7uVQRicL3v9+Cjz46mAkTNnLlle3iHY5IjUSTLGaYWUuCpVRnAgXABzGNSiRFHXxwNjfffECl+0tLg4saVU1WKBIP0VzgvjJ8+lczex1o4e6zYxuWSHq64441zJtXyNixnWjaNDPe4YiUqeqmvO9Wtc/dZ8UmJJH0NH78Ru68cy0AS5bs5OWXu9GxY8M4RyUSqOrI4sEq9jlwUh3HIpK2Zs3azogRy8u2P/lkB2eeuYRPPjlEp6QkIVR1U97A+gxEJJ21bp1J9+6N+PzzQgCysow//7mjEoUkjGhWymtiZreY2ehwu4eZnRn70ETSR+fOjXj//YMZPDgYlf7Xv3bkuOOaxTkqkT2iuc/iKaAIODbcXg3cFbOIRNJU8+aZvPRSVyZN6sall7aNdzgie4kmWXRz9/uAXQDuvp29F0ISkTqSkWGccUbl97wWFzt5eYX1GJFIIJpkUWRmjQkuamNm3YCoVqQ3s0FmttDM8szsxgr2n2hms8Ib/oaU23exmS0OHxdH834iqe6GG1Zz5JELeOklLdkq9SuaZHEb8DrQ0cyeB94CbqiukZllAo8TzCXVCxhuZr3KVVsJjCDKXYDqAAAXDUlEQVRYwjWybevwffsD/YDbwjU1RNLWc89t4OGH11FQUMp55y3jt7/9ouwmPpFYqzJZWDB/8gLghwRf6v8E+rp7bhSv3Q/Ic/el7l4EjAMGR1Zw9+XhDX6l5dqeBkx196/dfSMwFRgUxXuKpKTly3dy+eUr9yp7+ukNbNxYEqeIJN1UmSzc3YHJ7r7B3Se5+6vuvj7K124PrIrYzif6Ffb2pa1IyunUqSEPPtiBBuFg90aNjJde6kqbNtHM2COy76L5TZtlZke5+/SYR1NDZjYSGAmQk5NDbm5urV+roKBgn9onilTpB6gv5fXqBQ89lMlttzXmiit2UlAwnXj8eFLlc0mVfkD99CWaZNEfuNDMVgDbCEZCubv3rqbdavaenbZDWBaN1QRraES2zS1fyd1HA6MB+vbt6wMGDChfJWq5ubnsS/tEkSr9APWlIgMGwEUXlZRNdR4PqfK5pEo/oH76Es0F7tOAbgTTe5wFnBn+W53pQA8z62JmDYFhwMQo45oCnGpmrcIL26eGZSJpr6pEUVRUyi23fMHmzbqWIXWr2mTh7isqekTRrhgYRfAlPx8Y7+5zzexOMzsbwMyOMrN8YCjwhJnNDdt+DfyOIOFMB+4My0SkCtddl8/vf7+W/v0XMH/+jniHIykkplfH3H0ywVKskWW3RjyfTnCKqaK2fwf+Hsv4RFLJk0+u589/DsafLFy4k379FjJpUjdOPLF5nCOTVBDNaSgRSXClpc5TT23YqywnJ4vevRvHKSJJNUoWIikgI8OYOrUHF1/cGoDGjY0XX+xCy5YaWit1Q79JIimiceMMnnqqE8cc05QmTTL49rebxDskSSFKFiIpxMy44op2VdbZtKmY/fbLJJigQSQ6Og0lkkYKC0s55ZQ8hg5dxpYtGl4r0VOyEEkjV1+9ipkzt/Pii5vo128Bc+dqeK1ER8lCJE2MHbuBMWP2jJhauHAnd9+9No4RSTJRshBJEyee2IzvfGfPUNoePRrx+OMHxTEiSSZKFiJpomvXRvzvfwdzySVtaNIkg5de6hrXOaYkuShZiKSRxo0zePLJg5g9+1AOP1w37En0lCxE0oyZ0a1bo0r3L1xYyA035FNUVH5NMklnShYiUmbHjlLOP38Z99+/jhNOWMTy5TvjHZIkCCULESnzi1+sYvbsYDjtxx9v58gjFyhhCKBkISKhr78uZurUrXuVDRrUgk6dGsYpIkkkShYiAkDr1g2YNesQzj57PyAYWvvEEwdpWhABNDeUiERo3boB//lPVx5+eB0nn9ycFi00tFYCOrIQkb2YGddfn1PlrLX/+18BhYUaLZVOlCxEpEZWrMjglFMWc/TRC1mwoDDe4Ug9UbIQkagVFpZy552N2bHD+eyzHfTps4BnntlQfUNJekoWIhK1u+9ey9Kle65jbN9eSqnORqUFJQsRidr11+cwcOCusu3hw1uVLeUqqU3JQkSitt9+mfz2tzt48smDOPzwbP7yFw2tTRdKFiJSI2Zw6aVt+fTTQyudtdbd+frr4nqOTGIppsnCzAaZ2UIzyzOzGyvY38jMXgj3f2RmncPyLDN72sw+N7P5ZnZTLOMUkZrLzKz8iOLpp7+mZ8+5vPLKpnqMSGIpZsnCzDKBx4HTgV7AcDPrVa7aZcBGd+8OPAzcG5YPBRq5+xFAH+CK3YlERBLbwoWFjBq1ig0bSjj77KVceeVKtm/XVfBkF8sji35AnrsvdfciYBwwuFydwcDT4fMJwMkWnAB1oKmZNQAaA0XAlhjGKiJ1YOfOUoYPX8a2bXuSwzPPfM2aNbuqaCXJIJbJoj2wKmI7PyyrsI67FwObgTYEiWMbsAZYCTzg7l/HMFYRqQMNGhhDhrQiM+JSxiOPdKhy/QxJDok6N1Q/oAQ4EGgFvGtmb7r70shKZjYSGAmQk5NDbm5urd+woKBgn9onilTpB6gviaq6vhx7LDz6aCZ/+EM2XbqU0rXrHBKx6+n0mdQJd4/JAzgGmBKxfRNwU7k6U4BjwucNgPWAEVzr+ElEvb8D51f1fn369PF9MW3atH1qnyhSpR/u6kuiirYvW7cW+4YNuyrdX1hY4qWlpXUUVc2l42dSEWCGR/GdHsvTUNOBHmbWxcwaAsOAieXqTAQuDp8PAf4bBr8SOAnAzJoCRwMLYhiriNSxZs0yad264pMX7s5FFy1n6NBlbNigIbbJIGbJwoNrEKMIjh7mA+Pdfa6Z3WlmZ4fVngTamFkecD2we3jt40AzM5tLkHSecvfZsYpVROrX889/zfjxm3jxxU0cccR83nhD41cSXUyvWbj7ZGByubJbI54XEgyTLd+uoKJyEUl+K1bs5Kqr9ox9WbNmFzfeuJpTTmlORobuBk9UuoNbROrVrl1Ojx7ZZdvZ2cZzz3VWokhwShYiUq+6d8/mf//ryc03709GBtx3X3t69Woc77CkGok6dFZEUljDhhncddeBDB3akiOOqDxRFBaWkp2tv2kTgT4FEYmbb3+7SaWnnzZvLuGww+Zxxx1r2LXL6zkyKU/JQkQS0nXX5bN0aRG3376Go49ewJw5O+IdUlpTshCRhPPqq5t56qk9y7XOmrWD557TjD/xpGQhIgmnQQPIydlzSbVXr2xuv/2AOEYkShYiknAGDdqPOXN6cf75LcnMhGee6awL3XGm0VAikpDatm3ACy90Zd68HVUOrV27dhf7759Vj5GlJ6VqEUloVSWKd98toFOnOdx66xfs3KkFlmJJyUJEktKOHaVcdtkKioqc3/1uLd/97gJmzNgW77BSlpKFiCSl229fw+LFO8u2580rZOtWHV3EipKFiCSlY45pyv7777nsesUVbRk4sHkcI0ptShYikpTOOacl8+b1YsSI1nTokMV995VftVnqkpKFiCStVq0a8NRTnZk9+1BatMissE5hYSkTJ27aveqm1JKShYgkvVatKr8L4O671zJ48FLOOmsJK1bsrLSeVE3JQkRS1vz5O7j77i8BmDRpC4cdNp8339SqfLWhZCEiKevqq/P3mrG2WbMM+vRpEseIkpeShYikrEce6cBxxzXda7uqU1ZSOf3URCRlHXZYY955pydjxmzg7be3cv75reIdUtLSkYWIpLSMDGPkyLY8/3wXzCpeaGnhwkIuuGApK1cW1XN0yUPJQkTSmrtzxRUrGT9+E4ceOo977llLUZHuBC9PyUJE0tpTT23g7bcLANi+vZSbbvqCN9/cGueoEk9Mk4WZDTKzhWaWZ2Y3VrC/kZm9EO7/yMw6R+zrbWYfmNlcM/vczLJjGauIpKcJEzbttX3GGS04/fQWcYomccUsWZhZJvA4cDrQCxhuZr3KVbsM2Oju3YGHgXvDtg2A54CfufthwABgV6xiFZH09eqr3Rg9+iBat86kUSPj0Uc7VnptI53F8siiH5Dn7kvdvQgYBwwuV2cw8HT4fAJwsgWf0qnAbHf/DMDdN7h7SQxjFZE0lZFhXH55WxYtOox//asL3bo1qrBeaanz4YfpOwV6LJNFe2BVxHZ+WFZhHXcvBjYDbYCegJvZFDObZWY3xDBOERHatGnAWWe1rHT/mDEbOOaYhQwfvoz8/PQbNWWxmlzLzIYAg9z9p+H2T4D+7j4qos6csE5+uL0E6A+MAK4CjgK2A28Bt7j7W+XeYyQwEiAnJ6fPuHHjah1vQUEBzZo1q3X7RJEq/QD1JVGlSl9q0o/Nm42LLmrKli3B39fZ2c4tt+zguOOKYxli1PblMxk4cOBMd+9bXb1Y3pS3GugYsd0hLKuoTn54nWI/YAPBUcg77r4ewMwmA98lSBpl3H00MBqgb9++PmDAgFoHm5uby760TxSp0g9QXxJVqvSlJv0YOXIFW7ZsKNvOzMzkkkv6ceCBDWMUXc3Ux2cSy9NQ04EeZtbFzBoCw4CJ5epMBC4Onw8B/uvBoc4U4AgzaxImke8B82IYq4hIpS65pA3f+c6etcBvvnn/hEkU9SVmySK8BjGK4It/PjDe3eea2Z1mdnZY7UmgjZnlAdcDN4ZtNwIPESScT4FZ7j4pVrGKiFTlmGOaMWPGITzxxEH069eE6677VqV1IycuTCUxnRvK3ScDk8uV3RrxvBAYWknb5wiGz4qIxF1mZjBtyOWXt6l0aO3q1UX077+QX/0qhyuvbEdWVuoMwdUd3CIiNVDVPRg33vgFq1fv4tpr8+nde15KrZ2hZCEiUgc++KCA5577umx7wYKd5Oenzr3EShYiInVgxYoiWrTY85Xau3djfvKT1nGMqG4pWYiI1IFhw1qzaNFhXHZZG8zggQfak5mpaxYiIlJOTk4WY8Z0YtGiXnz/+xVPRujuXHDBUh5//KukGjmlZCEiUse6d698kuxJk7YwfvwmRo1axeGHz+M//9lErGbSqEtKFiIi9aS42Lnhhj0TWSxatJO//OWrpJjlVslCRKSefPbZjr2WbjWD++8vP79qYlKyEBGpJ336NGHx4sO4/PI2ZGTAiBFt6N27SbzDioqShYhIPTrggCxGj+7EZ58dyl13HVBpvT//+Ssuv3xFwkyHrmQhIhIHhx/euNLJCLduLeH229cwZswGunefy//9Xz6bNsV3OnQlCxGRBPPHP67jq6+C5LBzpzNmzHriPWBKyUJEJIG4O6+8snmvsmuu+RatWsV03tdqKVmIiCQQM+P99w9m9OiDaN8+i+bNM7j22sqnRC8oKKmXuJQsREQSTFaWcfnlbcnLO4zXX+9O69YVH1UsWbKTAw/8nKeeahTzmJQsREQSVHZ2BsceW/na2r///Vq2bi2lPu7pU7IQEUlCS5fu5JlnNtCiRQbnnbcz5u8X3ysmIiJSK8uXF7H//llcemkbmjffFPP3U7IQEUlCJ53UnLy8wygpcaZPXxTz91OyEBFJUtnZ9XclQdcsRESkWkoWIiJSLSULERGplpKFiIhUK6bJwswGmdlCM8szsxsr2N/IzF4I939kZp3L7T/IzArM7JexjFNERKoWs2RhZpnA48DpQC9guJn1KlftMmCju3cHHgbuLbf/IeC1WMUoIiLRieWRRT8gz92XunsRMA4YXK7OYODp8PkE4GQLF6M1s3OAZcDcGMYoIiJRMI/RJOlmNgQY5O4/Dbd/AvR391ERdeaEdfLD7SVAf6AQmAp8H/glUODuD1TwHiOBkQA5OTl9xo0bV+t4CwoKaNas8jlYkkWq9APUl0SVKn1JlX7AvvVl4MCBM929b3X1EvWmvNuBh929wKqYIcvdRwOjAfr27esDBgyo9Rvm5uayL+0TRar0A9SXRJUqfUmVfkD99CWWyWI10DFiu0NYVlGdfDNrAOwHbCA4uhhiZvcBLYFSMyt098cqe7OZM2euN7MV+xBvW2D9PrRPFKnSD1BfElWq9CVV+gH71pdO0VSKZbKYDvQwsy4ESWEY8KNydSYCFwMfAEOA/3pwXuyE3RXM7HaC01CVJgoAd2+3L8Ga2YxoDsUSXar0A9SXRJUqfUmVfkD99CVmycLdi81sFDAFyAT+7u5zzexOYIa7TwSeBJ41szzga4KEIiIiCSam1yzcfTIwuVzZrRHPC4Gh1bzG7TEJTkREoqY7uPcYHe8A6kiq9APUl0SVKn1JlX5APfQlZkNnRUQkdejIQkREqpX2yaK6+asSkZktN7PPzexTM5sRlrU2s6lmtjj8t1VYbmb2aNi/2Wb23TjH/nczWxfekLm7rMaxm9nFYf3FZnZxgvTjdjNbHX4un5rZGRH7bgr7sdDMTosoj/vvn5l1NLNpZjbPzOaa2TVheVJ9LlX0I+k+FzPLNrOPzeyzsC93hOVdLJhHL8+CefUahuWVzrNXWR9rzN3T9kEwSmsJ0BVoCHwG9Ip3XFHEvRxoW67sPuDG8PmNwL3h8zMI5tcy4GjgozjHfiLwXWBObWMHWgNLw39bhc9bJUA/bgd+WUHdXuHvViOgS/g7l5kov3/AAcB3w+fNgUVhzEn1uVTRj6T7XMKfbbPweRbwUfizHg8MC8v/Cvw8fH4l8Nfw+TDghar6WJuY0v3IIpr5q5JF5DxbTwPnRJQ/44EPgZZmdkA8AgRw93cIhklHqmnspwFT3f1rd99IMDXMoNhHv0cl/ajMYGCcu+9092VAHsHvXkL8/rn7GnefFT7fCswH2pNkn0sV/ahMwn4u4c+2INzMCh8OnEQwjx588zOpaJ69yvpYY+meLNoDqyK286n6lytROPCGmc20YH4sgBx3XxM+XwvkhM+ToY81jT2R+zQqPDXz992nbUiifoSnL44k+Es2aT+Xcv2AJPxczCzTzD4F1hEk3iXAJncvriCuspjD/ZuBNtRhX9I9WSSr4939uwTTv19lZidG7vTg+DMph7klc+zAX4BuwHeANcCD8Q2nZsysGfAicK27b4ncl0yfSwX9SMrPxd1L3P07BFMl9QMOiWc86Z4sopm/KuG4++rw33XAvwl+kb7cfXop/HddWD0Z+ljT2BOyT+7+ZfgfvBT4G3sO9xO+H2aWRfAF+7y7vxQWJ93nUlE/kvlzAXD3TcA04BiCU367b6aOjKssZtt7nr0660u6J4uy+avCUQXDCOarSlhm1tTMmu9+DpwKzGHPPFuE/74cPp8IXBSOYDka2BxxaiFR1DT2KcCpZtYqPKVwalgWV+WuBZ1L8LlA0I9h4YiVLkAP4GMS5PcvPLf9JDDf3R+K2JVUn0tl/UjGz8XM2plZy/B5Y4LlGuYTJI0hYbXyn8nuzypynr3K+lhz9XmFPxEfBCM7FhGcD7w53vFEEW9XgtENnxEsDHVzWN4GeAtYDLwJtPY9oyoeD/v3OdA3zvH/k+BUwC6C86eX1SZ24FKCi3V5wCUJ0o9nwzhnh/9JD4iof3PYj4XA6Yn0+wccT3CKaTbwafg4I9k+lyr6kXSfC9Ab+CSMeQ5wa1jeleDLPg/4F9AoLM8Ot/PC/V2r62NNH7qDW0REqpXup6FERCQKShYiIlItJQsREamWkoWIiFRLyUJERKqlZCFpzcxamtmVEdsHmtmEqtrU4Xt3NrPy69KLJCQlC0l3LQlm7ATA3b9w9yFV1K9LnQElC0kKShaS7u4BuoXrHNwf/rU/B8DMRpjZfyxYy2G5mY0ys+vN7BMz+9DMWof1upnZ6+HEju+a2Tfm8DGz79me9RQ+Ce/Cvwc4ISy7Lpw47n4zmx5OendF2HaAmb1jZpPCNQn+amYZYf2xZjbHgvVNrqvHn5ukmQbVVxFJaTcCh3swYdvu2UojHU4we2k2wd2xv3b3I83sYeAi4I8E6x//zN0Xm1l/4M8EU0lH+iVwlbu/H050Vxi+9y/d/czwvUcSTJ1xlJk1At43szfC9v0I1iZYAbwO/BBYBrR398PD9i3r4gciUhElC5GqTfNgbYStZrYZeCUs/xzoHX7xHwv8K5iaCAgWminvfeAhM3seeMnd8yPq73Zq+Jq7T4PtRzCXTxHwsbsvBTCzfxJMbfEW0NXM/gRMAt4o/4IidUXJQqRqOyOel0ZslxL8/8kgWGPgO1W9iLvfY2aTCOYcet8qXt7SgKvdfa/J98xsAN+cHtzdfaOZfZtg0aGfAecTzM0kUud0zULS3VaCJThrxYP1EpaZ2VAoW5/62+XrmVk3d//c3e8lmNX0kAreewrw83CabcysZzizMEC/cBbUDOAC4D0zawtkuPuLwC0Ey7yKxISShaQ1d99A8Jf+HDO7v5YvcyFwmZntngm4oiU4rw3fYzbBTLWvEcwoWmJmn4UXp8cA84BZ4UX2J9hz9D8deIxgmuplBOuYtAdyLVhN7TngplrGL1ItzTorkuDC01BlF8JF4kFHFiIiUi0dWYiISLV0ZCEiItVSshARkWopWYiISLWULEREpFpKFiIiUi0lCxERqdb/A8TPU9Wd164DAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAFNCAYAAADxUUMiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecVPXVx/HP2V2WLlVWqnQUawRBTUTURMGoRIMGK1ZsWB71UYiPikRjjSYajSUqUaKoqBEDEVFZY0MBOyBSpCO9LXXLef64FxjW3Z3ZMjtlv+/Xa17c8vvNPWdnmbO3/a65OyIiImXJSHQAIiKS/FQsREQkKhULERGJSsVCRESiUrEQEZGoVCxERCQqFQtJS2bW18yWVKL/42Z2a1XGJJLKVCwkaZnZAjPbamZ5ZvajmY0yswZx2M4FZvZh5DJ3v9zd/xCHbUXmtPP11xj75prZJVUdk0gsVCwk2Z3i7g2AQ4GfAcMTHE9VOMXdG0S8hlbFm5pZVlW8j0hJVCwkJbj7j8BEgqIBgJnVNrMHzGyRma0IDx3VLam/mQ0zs3lmtsnMZprZaeHy/YHHgSPDv/LXh8tHmdmd4fQsMzs54r2yzGyVmR0Wzh9hZh+b2Xoz+8rM+lYkx517OGFO68zsBzPrH667Czga+Gvk3oiZuZldZWZzgDnhsqPMbKqZbQj/PSpiG7lmdreZfWZmG83sDTNrGq4bb2ZXF4vp650/K6nZVCwkJZhZG6A/MDdi8T1AV4IC0hloDdxWylvMI/iybQTcAYw2s5buPgu4HPgk/Cu/cQl9XwTOipg/EVjt7p+bWWtgPHAn0BS4EXjVzPauWKb0BmYDzYH7gKfNzNz9FuADYGgJeyO/Cft1D7/4xwMPA82AB4HxZtYsov35wEVAS6AgbAvwD+DcnY3M7BCCn+n4CuYiaUTFQpLdv8xsE7AYWAncDmBmBgwB/sfd17r7JuCPwKCS3sTdX3H3Ze5e5O4vEfwV3ivGGF4ATjWzeuH82QQFBIIv1wnuPiF870nANOCkKDmtj3hdGrFuobs/5e6FBF/eLYGcKPHdHf4MtgK/Bua4+/PuXuDuLwLfAadEtH/e3b91983ArcCZZpYJjAO6mlmXsN15wEvuviPK9qUGULGQZPcbd28I9AX2I/iLG2BvoB4wfeeXLvBWuPwnzOx8M/syou2BEe9VJnefC8wCTgkLxqkEBQRgX+CMyC9/4BcEX/Jl5dQ44vVUxLofI7a7JZyMdlJ/ccR0K2BhsfULCfYQSmq/EKgFNHf3bcBLwLlmlkGwN/V8lG1LDaETYpIS3P19MxsFPEBw2GU1sBU4wN2XltXXzPYFngKOJzjcVGhmXwK28+1jCGHnoagMYGZYQCD44n3e3S8ttWfVKS3OyOXLCApYpHYEhXSntsXW5RP8PCHYm3ke+BDY4u6fVDhaSSvas5BU8mfgV2Z2iLsXERSAh8ysBYCZtTazE0voV5/gC3VV2O5Cgj2LnVYAbcwsu4xtjwFOAK5g914FwGiCPY4TzSzTzOqE93i0qWCOZVkBdIzSZgLBoaSzwxPxvwO6A/+OaHOumXUP95JGAmPDw16ExaEI+BPaq5AIKhaSMtx9FfAcu09i30xwwnuKmW0E3gG6ldBvJsGX3ycEX7gHAR9FNHkPmAH8aGari/cP32N52P8ogkM1O5cvBgYAvycoRouB/6Xs/1tvFrvP4vUoqe/0F2BgeKXUwyU1cPc1wMnADcAa4CbgZHePzOt5YBTBIa86wDXF3uY5gp/R6BjjkhrA9PAjkZrDzHKB0e7+9zLanA8McfdfVFtgkvS0ZyEiu4SHpq4Enkx0LJJcVCxEBIDwfM8qgkN1L0RpLjWMDkOJiEhU2rMQEZGoVCxERCSqtLkpr3nz5t6+ffsK99+8eTP169evuoASJF3yAOWSrNIll3TJAyqXy/Tp01e7e9SxzNKmWLRv355p06ZVuH9ubi59+/atuoASJF3yAOWSrNIll3TJAyqXi5kVHx6mRDoMJSIiUalYiIhIVCoWIiISlYqFiIhEpWIhIiJRqViIiEhUKhYiIhKVioWIiESlYiEiIlGpWITGj6/FtdcuRqPwioj8VNoM91FR7s6IEct54IG6wCpat67FTTftk+iwRESSSo3fs/j975cxcuSPu+ZvvnkZL7ywNoERiYgkn7gWCzPrZ2azzWyumQ0rYf31ZjbTzL42s3fNbN+IdYPNbE74GhyvGM85pymNGmXumq9Tx6hbt8bXUBGRPcTtW9HMMoFHgf5Ad+AsM+terNkXQE93PxgYC9wX9m0K3A70BnoBt5tZk3jEeeCBdXn99Y5kZTlNm2by7rtdOO20xvHYlIhIyornn9C9gLnuPt/ddwBjgAGRDdx9srtvCWenAG3C6ROBSe6+1t3XAZOAfvEK9NhjG3LbbVv5+ONuHHVUg3htRkQkZcWzWLQGFkfMLwmXleZi4D8V7FtpRx9dQLdudeK5CRGRlJUUV0OZ2blAT+CYcvYbAgwByMnJITc3t8Ix5OXlldnfHcwq/PbVJloeqUS5JKd0ySVd8oBqysXd4/ICjgQmRswPB4aX0O6XwCygRcSys4AnIuafAM4qa3s9evTwypg8eXKp6x55ZIVfeOECLyoqqtQ2qkNZeaQa5ZKc0iWXdMnDvXK5ANM8hu/0eO5ZTAW6mFkHYCkwCDg7soGZ/SwsBP3cfWXEqonAHyNOap9AUGyqVVGRc/PNS3nggSC01q1r8Yc/tKruMEREEi5u5yzcvQAYSvDFPwt42d1nmNlIMzs1bHY/0AB4xcy+NLNxYd+1wB8ICs5UYGS4rFpFFgqAO+/8kaeeWl3dYYiIJFxcz1m4+wRgQrFlt0VM/7KMvs8Az8Qvuuguu6w5o0atZfXqAgDq18+gTZtaiQxJRCQhdPdZGTp3rsO//92JunWNnJws3n+/K/37N0p0WCIi1S4proZKZr171+df/+pE1661ad++dqLDERFJCBWLGJxwwl6JDkFEJKF0GKoKFBZqWHMRSW8qFpXg7vzxjz9y6qnzyM9XwRCR9KViUUGFhc7VVy/hlluWMWHCRoYMWagHJ4lI2lKxqKBbb13Go4+u2jU/atRaRoxYnsCIRETiR8Wigq65pgUdOmTvmm/UKJPjj2+YwIhEROJHxaKC9tmnFm+91ZnmzbNo3boWH3zQlT59VCxEJD3p0tlK6Nq1Dm+91ZkWLbJo2zY7egcRkRSlYlFJPXrUS3QIIiJxp8NQcbZ5c2GiQxARqTQVizhxd/7v/5bRu/ds1q0rSHQ4IiKVomIRB/n5ziWXLOKuu35kxoxtnHLKPLZsKUp0WCIiFaZiEQcPPbSCZ55Zs2v+o482c/HFCxMYkYhI5ahYxME117Tg6KMb7Jpv3jyLG2/MSWBEIiKVo2IRB3XqZPDGGx056KA6tG1biw8/7KqrpkQkpenS2Thp0iSLiRO7UFDgugdDRFKeikUctWypR7CKSHrQYagEcXe+/XZrosMQEYmJikUCFBU51167hMMO+46JEzcmOhwRkahULKpZfr5z/vkLeOSRVeTnO6efPp8pUzYnOiwRkTKpWFSzDz7I45//XLdrfsuWIs49dwEFBXpwkogkr7gWCzPrZ2azzWyumQ0rYX0fM/vczArMbGCxdfeZ2Qwzm2VmD5uZxTPW6nLccQ15+OE2u+ZbtqzF6693JCsrLdITkTQVt6uhzCwTeBT4FbAEmGpm49x9ZkSzRcAFwI3F+h4F/Bw4OFz0IXAMkBuveKvT1Ve3YM2aAkaPXsfbb3emY8faiQ5JRKRM8dyz6AXMdff57r4DGAMMiGzg7gvc/Wug+MBJDtQBsoHaQC1gRRxjrXa3396S6dP3U6EQkZQQz/ssWgOLI+aXAL1j6ejun5jZZGA5YMBf3X1W8XZmNgQYApCTk0Nubm6Fg83Ly6tU/2SRLnmAcklW6ZJLuuQB1ZNLUt6UZ2adgf2BnQf3J5nZ0e7+QWQ7d38SeBKgZ8+e3rdv3wpvMzc3l8r0r0pFRc7f/raaiy5qRt265dv5S6Y8Kku5JKd0ySVd8oDqySWeh6GWAm0j5tuEy2JxGjDF3fPcPQ/4D3BkFceXlAoLnUsvXcTQoYv57W/ns2OHhjYXkcSLZ7GYCnQxsw5mlg0MAsbF2HcRcIyZZZlZLYKT2z85DJVu8vOdc85ZsGt48//8ZyPnnKPLakUk8eJWLNy9ABgKTCT4on/Z3WeY2UgzOxXAzA43syXAGcATZjYj7D4WmAd8A3wFfOXub8Yr1mSxeXMhs2Zt22PZBx/ksWTJjgRFJCISiOs5C3efAEwotuy2iOmp7D4vEdmmELgsnrElo8aNs3j77c706fM933+/nbZta/HOO11o315XTIlIYukO7iSTkxMUiF/+siEffNCVrl3rJDokEZHkvBqqpmvbNptJk7okOgwRkV20ZyEiIlGpWKSYoiLniisW8fTTqxMdiojUIDoMlUIKCpwLL1zI6NFrMQue9X3OOU0THZaI1ADas0gh55+/gNGj1wLgHsy/9tq6KL1ERCpPxSKF/O53TcjM3D3fqlUtDjqobuICEpEaQ8UihQwY0JgXXuhARga0a5fN++93pUsXXVorIvGncxYp5swzm5CVBT161GPffXWznohUDxWLFHT66U0SHYKI1DA6DJVmCgthxoytiQ5DRNKMikUaKShw7r23Dr16zea//92U6HBEJI2oWKSJggLnvPMWMGlSNlu2FHHSSfP4+OO8RIclImlCxSJNTJiwgTFjdt9zsXlzEZdeuojCQj0LQ0QqT8UiTZx6amPuvrvVrvl27bJ5881OZGZaAqMSkXShq6HSyLBh+zB79nzef38v3ntPz8EQkaqjPYs0M3jwDr74Yn8VChGpUioWaahRo8zojUREykHFogYpKHAuuWQhU6ZsTnQoIpJiVCxqiIIC59xzF/D002s44YQ5fPKJLqsVkdipWNQARUXO+ecv4KWXgktrN20q4oQT5qpgiEjMVCxqgIwMo2vXPU94N2+eRatWtRIUkYikmrgWCzPrZ2azzWyumQ0rYX0fM/vczArMbGCxde3M7G0zm2VmM82sfTxjTXcjRrTijjtaArDvvtlMntxFo9aKSMzidp+FmWUCjwK/ApYAU81snLvPjGi2CLgAuLGEt3gOuMvdJ5lZA6AoXrHWFLfd1pImTTI5+eRGurRWRMolnjfl9QLmuvt8ADMbAwwAdhULd18QrtujEJhZdyDL3SeF7XRwvYpcfXWLRIcgIikonoehWgOLI+aXhMti0RVYb2avmdkXZnZ/uKcicbR9exGffabLakXkp5J1uI8s4GjgZwSHql4iOFz1dGQjMxsCDAHIyckhNze3whvMy8urVP9kUdE8CgvhjjvqMmVKFrffvpWf/7yg6oMrp3T5TEC5JKN0yQOqKRd3j8sLOBKYGDE/HBheSttRwMCI+SOA9yPmzwMeLWt7PXr08MqYPHlypfoni4rkUVBQ5GefPd9husN0z8qa7mPGrKn64MopXT4Td+WSjNIlD/fK5QJM8xi+0+N5GGoq0MXMOphZNjAIGFeOvo3NbO9w/jgiznVI1crN3cQLL+we3rygAEaO/JH8fA1vLiKBuBULdy8AhgITgVnAy+4+w8xGmtmpAGZ2uJktAc4AnjCzGWHfQoIrpN41s28AA56KV6w13fHH78Xf/94OC0cz79Ahm4kTO1OrloY3F5FAXM9ZuPsEYEKxZbdFTE8F2pTSdxJwcDzjk90uvrg5detmcMsty3j33S60aZOd6JBEJInoDm7Z5eyzmzJrVnc6dNA9GCKyJxUL2UOdOqX/SuTn77rgQERqGBULicmOHUWcdto8rr9+qQqGSA2UrPdZSBIpKHDOOWcB48dvBDaydWsRjz3WlowMnQAXqSm0ZyFRXXfdEsaOXb9r/oknVnPHHcsTGJGIVDcVC4nq0kubsffeu3dCu3atzVVX7V1GDxFJNyoWEtUhh9Tj/fe70KpVLdq2rcWkSV1o0ULPwhCpSXTOQmKy//51+fDDruzY4bRrp3swRGoaFQuJme6/EKm5dBhKqsTWrUWcd94CZs/eluhQRCQOVCyk0vLznd/97gdGj17L0Ud/z+efb0l0SCJSxaIWCzM7xcxUVKRERUXORRct5M03NwCwalUBxx77vR6iJJJmYikCvwPmmNl9ZrZfvAOS1OIOtWvveXNe27bZdO6s8xsi6SRqsXD3cwmeWDcPGGVmn5jZEDNrGPfoJOllZhpPPdWOG24Inu3doUM2b7/dmaZNde2ESDqJ6X+0u280s7FAXeA64DTgf83sYXd/JJ4BSvIzM+6/vzVt2mRzyimNaNVKl9aKpJuoxSJ8UNGFQGfgOaCXu680s3oET69TsRDMjOuua5HoMEQkTmI5Z/Fb4CF3P8jd73f3lQDuvgW4OK7RSdrYtKmQESOW6VGtIikq6p6Fuw82s33CPQwHprr7j+G6d+MdoKS+HTuKOP30+bzzziamTNnC2LEdaNAgM9FhiUg5xHLp7MXAZ8DpwEBgipldFO/AJD0UFTkXXLCQd97ZBMDEiRs59tg5rF5dkODIRKQ8YjnBfRPwM3dfA2BmzYCPgWfiGZikh9WrC/jssz1v0jODOnX0LAyRVBLLOYs1wKaI+U3hMpGoWrSoxccfd6VHj3oAdOlSm/HjO+kwlEiKiWXPYi7wqZm9QXDOYgDwtZldD+DuD8YxPkkDLVrUYvLkLlx55WJGjmzJ3ntreHORVBNLsZgXvnZ6I/xXN+VJzBo2zOT559snOgwRqaBYroa6A8DMGoTzebG+uZn1A/4CZAJ/d/d7iq3vA/wZOBgY5O5ji63fi+Bejn+5+9BYtyupZ/XqAsaOXcdllzXHTOczRJJNLFdDHWhmXwAzgBlmNt3MDoihXybwKNAf6A6cZWbdizVbBFwAvFDK2/wB+G+0bUlq27q1iAED5nHFFYu58srFFBToXgyRZBPLCe4ngevdfV933xe4AXgqhn69gLnuPt/ddwBjCM537OLuC9z9a6CoeGcz6wHkAG/HsC1JUUVFzuDBC/j442CU2scfX81vfjOPzZsLExyZiESK5ZxFfXefvHPG3XPNrH4M/VoDiyPmlwC9YwkqHBL9T8C5wC/LaDcEGAKQk5NDbm5uLG9fory8vEr1TxaplsfixRlMmFAf2H3oadmytXz88RK2b0+tXMqSap9LWdIll3TJA6onl1iKxXwzuxV4Ppw/F5gfv5AAuBKY4O5Lyjp+7e5PEuz50LNnT+/bt2+FN5ibm0tl+ieLVMzjsMO20r//XBYvzqd79zq8915XGjfOSslcSqNckk+65AHVk0ssh6EuAvYGXgNeBZqHy6JZCrSNmG8TLovFkcBQM1sAPACcb2b3lN1FUtUBB9RlypRunHTSXkyY0InGjTW8uUiyKfN/ZXiS+hZ3v6YC7z0V6GJmHQiKxCDg7Fg6uvs5ETFcAPR092EViEFSRKtW2Ywf3znRYYhIKcrcs3D3QuAXFXljdy8AhgITgVnAy+4+w8xGhoMSYmaHm9kS4AzgCTObUZFtSfr78cd8Hn54Je66UkokEWLZ3//CzMYBrwC7Hqzs7q9F6+juE4AJxZbdFjE9leDwVFnvMQoYFUOckqby8go5+eR5TJ++ha+/3spjj7UlO1uPhRepTrEUizoEY0EdF7HMCc5hiMRVQYFz1lk/MH16MBjh00+vYd687Ywb14mGDTW+lEh1iaVY/N3dP4pcYGY/j1M8InuYN287H320eY9ljRplUq+e9ixEqlMs/+NKemyqHqUq1aJbtzp8/HE3OnYMnut9yCF1GT26PZmZGhJEpDqVumdhZkcCRwF77xxhNrQXwVhPItViv/3q8Omn+3HFFYt48ME2Gt5cJAHKOgyVDTQI20SOMLuR4Il5ItWmefMsXnmlY6LDEKmxSi0W7v4+8L6ZjXL3hdUYk0i5/fDDdkaOXM4jj7TVnodIHMRygru2mT0JtI9s7+7HldpDpBpt2BBcWjtz5ja++GIrb77ZibZtsxMdlkhaiaVYvAI8Dvwd0FCgklQKCpxBg35g5sxtAHz11VZ69fqOTz/dj3btVDBEqkosxaLA3f8W90hEKmDDhkJWrszfY1mfPg1o00aPbhWpSrFcOvummV1pZi3NrOnOV9wjE4lBs2ZZ/Pe/XTnttEYA9OpVj1Gj2pORoUtrRapSLHsWg8N//zdimQO6NEWSQv36mYwd25F7713BhRc2o25d3bAnUtVieQZ3h+oIRKQyMjKM4cP3KbPN9u1F1K6tQiJSEbE8g7uemf1feEUUZtbFzE6Of2giVWfmzK107jyD8eM3JDoUkZQUy59ZzwI7CO7mhuDZFHfGLSKRKrZuXQEDBsxnyZJ8TjllHvfc86OGOhcpp1iKRSd3vw/IB3D3LUQ+MFkkiRUWBpfWzp27HQB3GD58GW+9tTHBkYmklliKxQ4zq0twUhsz6wRsj2tUIlUkIwP6929ERsRv+sUXN6Nfv70SF5RICoqlWNwOvAW0NbN/Au8CN8U1KpEqYmZcd10LJk7sTJMmmRx1VH0efbQtZto5FimPWK6GmmRmnwNHEBx+utbdV8c9MpEq9Mtf7sXUqftRv36GrogSqYBY7rPA3dcA4+Mci0hcdepUu8z177+/iR496mkgQpES6E8sEeCLL7bQr99ceveezezZ2xIdjkjSUbGQGm/t2gJ++9v5bNvmzJy5jcMP/4433lif6LBEkkpMxcLMfmFmF4bTe5uZ7uqWtHHHHcv54Ycdu+Y3bSpiwwYNsCwSKZY7uG8HbgaGh4tqAaNjeXMz62dms81srpkNK2F9HzP73MwKzGxgxPJDzewTM5thZl+b2e9iS0ek/O6+uzXnnNNk1/xVV+3N+ec3S2BEIsknlhPcpwE/Az4HcPdlZtaw7C5gZpnAo8CvgCXAVDMb5+4zI5otAi4AbizWfQtwvrvPMbNWwHQzm+juOjYgVa5evQyef749vXvX59VX1/Pgg60THZJI0onppjwPxkbYeVNe/Rjfuxcw193nu/sOYAwwILKBuy9w96+BomLLv3f3OeH0MmAlsHeM2xUpNzPj6qtb8N57XcjO1qk8keJi+V/xspk9ATQ2s0uBd4CnYujXGlgcMb8kXFYuZtYLyAbmlbevSHmV9RyMp55azWWXLWLbtqJS24ikK4tlQDUz+xVwAsFNeRPdfVIMfQYC/dz9knD+PKC3uw8toe0o4N/uPrbY8pZALjDY3aeU0G8IMAQgJyenx5gxY6LmUpq8vDwaNGhQ4f7JIl3ygOTK5bvvMrjmmvrk5xvduhUyYsQW9tkn9sEIkymXykqXXNIlD6hcLscee+x0d+8ZtaG7l/kCrgdaR2tXQr8jCQrLzvnhwPBS2o4CBhZbthfBeZKBsWyvR48eXhmTJ0+uVP9kkS55uCdPLqtW5Xu7dt84TN/1atfuG9++vTDm90iWXKpCuuSSLnm4Vy4XYJrH8B0by2GohsDbZvaBmQ01s5wYC9ZUoIuZdTCzbGAQMC6WjmH714HnvNjehkh1W7OmgFq19jw8de+9rXRuQ2qUqL/t7n6Hux8AXAW0BN43s3di6FcADAUmArOAl919hpmNNLNTAczscDNbApwBPGFmM8LuZwJ9gAvM7MvwdWhFEhSprG7d6jBtWjdOPTV4zve11+7NoEF6DL3ULDGNDRVaCfwIrAFaxNLB3ScAE4otuy1ieirQpoR+o4nxXg6R6tC4cRavv96R555byznnqFBIzRPLTXlXmlkuwdDkzYBL3f3geAcmkmwyMowLLmj2k0NSO7k7//3vpmqOSqR6xHLQtS1wnbsf4O4jfM+b6kQk9PjjqznmmDlcccUitm/X5bWSXkotFma281Fi9wOLzKxp5Kt6whNJDVOmbObaa5cAQdHo0+d7Fi3aEaWXSOoo65zFC8DJwHSCu7cj970d6BjHuERSRmGhM3jwAvLzd993MXPmNrZs0d6FpI9S9yzc/eTw3w7u3jH8d+dLhUIklJlpvPxyBzp2zN617Nln92W//eokMCqRqhXLCe53Y1kmUpMdckg9pk3bj5NP3osbbmjBwIFNoncSSSGlHoYyszpAPaC5mTVh92GovajAGE8i6a5JkyzeeKMTRTr6JGmorD2LywjOV+wX/rvz9Qbw1/iHJpJ6MjKMrKzSL6295JKFPPfcmmqOSqTyyjpn8Rd37wDcWOycxSHurmIhUk5//esqnn56DYMHL9TltZJyot7B7e6PmNmBQHegTsTy5+IZmEg6+fbbTK6/fsmu+ccfX83mzUU891z7xAUlUg5Ri0X4WNW+BMViAtAf+BBQsRCJ0apVweGpgoLg8tqGDTMYPjzWMTlFEi+WO7gHAscDP7r7hcAhQKO4RiWSZo49toBPPum26/La559vz/77101wVCKxi2Ugwa3uXmRmBeFd3SsJhgARkXI49NDg8tq33trIgAGNEx2OSLnEUiymmVljgkepTgfygE/iGpVImmrSJIuzzip9tJytW4vYsqWIZs3KMyC0SPzF8jyLK919vbs/DvyK4BGnF8Y/NJGaxd0ZMmQRvXp9x7ffbk10OCJ7KOumvMPKWufun8cnJJGa6U9/Wsno0WsBOPLI2Ywe3V6HqyRplLWv+6cy1jlwXBXHIlJjffhhHjfdtHTXfF5eEbfeuoxf/7pRqTf5iVSnUouFux9bnYGI1GS9etVjyJDmPPHEagAaN87ktdc6qlBI0ohlIMF6ZvZ/ZvZkON/FzE6Of2giNUd2dgaPP96Oxx5rS3a28eKL7encWaPWSvKI5T6LZ4EdwFHh/FLgzrhFJFKDXXHF3sybdwD9+ulWJkkusRSLTu5+H5AP4O5b2PNBSCJShdq0yS513aZNhTz66CqKirzUNiLxEEux2GFmdQlOamNmnYDtcY1KRH7C3bnwwoUMHbqY3/52Phs3FiY6JKlBYikWtwNvAW3N7J/Au8BNcY1KRH7inntW8Oqr6wH417820Lv3d3rOt1SbMouFmRnwHXA6cAHwItDT3XNjeXMz62dms81srpkNK2F9HzP7PBxKZGCxdYPNbE74GhxjPiJpaePGQv7yl5V7LKtTJ4PmzXWnt1SPMouFuzswwd0OR3uWAAAWx0lEQVTXuPt4d/+3u6+O5Y3NLBN4lGCU2u7AWWbWvVizRQRF6IVifZsS7NH0BnoBt4dP6xOpkfbaK5NPP+3GYYcFgw82a5bJ6693pF69WA4OiFReLL9pn5vZ4RV4717AXHef7+47gDHAgMgG7r7A3b8Gij8F5kRgkruvdfd1wCSgXwViEEkb++5bmw8/7MYFFzTlpZc60L597USHJDVILPuwvYFzzGwhsJngSih394Oj9GsNLI6YXxK+VyxK6qvnfkuNV7duBs8+277MNoWFTmamLliUqhVLsTgx7lFUkJkNAYYA5OTkkJubW+H3ysvLq1T/ZJEueYByqdh24Npr63PGGTvo1y8/TttIj88lXfKA6skllseqLqzgey9lz+detAmXxdq3b7G+uSXE9iTwJEDPnj29b9++xZvELDc3l8r0Txbpkgcol/IqKnJ+85v5zJ+/gXvvrcvGjW3585/bkJ1dtec10uVzSZc8oHpyiefZsalAFzPrYGbZwCBgXIx9JwInmFmT8MT2CeEyESnFXXf9yJtvbtg1/7e/reahh1aW0UMkdnErFu5eAAwl+JKfBbzs7jPMbKSZnQpgZoeb2RLgDOAJM5sR9l0L/IGg4EwFRobLRKQU7dtnU6fO7nMVhx9ej+uua5HAiCSdxPUibXefAEwotuy2iOmpBIeYSur7DPBMPOMTSSfnndeMgw6qy+mnz2fTpiJefbUjtWvr0lqpGrqjRySN7HzO9/z522nbtvQxpkTKS8VCJM00bZpF06al/9eePn0LWVlwyCH1qjEqSXXaRxWpQdasKeD00+dzxBGzefbZNYkOR1KIioVIDVFU5Jx//gIWLdrBtm3ORRct5OKLF2q4c4mJioVIDfHWWxuZMGHjHssaNswgI0N3e0t0KhYiNcRJJzXiH//Yl7p1g+JwxBH1ue8+jaIjsVGxEKlBzj+/GZ9+uh8//3l9XnqpQ5Xf3S3pS1dDidQwBx1Ulw8+6ErwuJqSbd9epHs0ZA/6bRCpgcoqFJ9+uplOnWbw1lsbSm0jNY+KhYjssmZNAWecMZ+lS/Pp338eN9+8lPx8XS0lKhYiEioqcs47bwGLF+8e2vy++1bw0Ud5CYxKkoWKhYjs8vOf1ycj4lvhhhta0Ldvw8QFJElDxUJEAMjIMG65pSWTJ3ehdeta9OpVjz/+sVWiw5IkoauhRGQPffo05Msv92fr1iJdWiu7qFiIyE80b172V8PDD6+kRYssBg1qWk0RSaKpWIhIuXz7bSbXX7+EwkJ4991N/OUvbalXT3sg6U6fsIjEbO3aAu68sy6FhcH83/++hpNOmou7Lq9NdyoWIhKzTz/dzNq1e97Qd8MNLcq8yU/Sg4qFiMSsf/9GPPbYZrp2rQ3A9de34JRTGic4KqkOOmchIuXSuXMR06btx4MPrmT48JxEhyPVRHsWIlJuDRtmcvvtLUu9tLaw0HnssVVs315UzZFJvKhYiEiVu+++FVx11WKOPHI23323LdHhSBWIa7Ews35mNtvM5prZsBLW1zazl8L1n5pZ+3B5LTP7h5l9Y2azzGx4POMUkarz2Webue22ZQB88cVWDjtsFhMmaATbVBe3YmFmmcCjQH+gO3CWmXUv1uxiYJ27dwYeAu4Nl58B1Hb3g4AewGU7C4mIJLfhw5dRULB7vl69DA49tG7iApIqEc89i17AXHef7+47gDHAgGJtBgD/CKfHAsdbcA2eA/XNLAuoC+wANiIiSW/s2A6ceebuK6SeeWZfWrXKTmBEUhXieTVUa2BxxPwSoHdpbdy9wMw2AM0ICscAYDlQD/gfd18bx1hFpIo0aZLFmDEd6NdvLTNmbOXUU3VpbTqweN15aWYDgX7ufkk4fx7Q292HRrT5NmyzJJyfR1BQugFXAhcATYAPgP7uPr/YNoYAQwBycnJ6jBkzpsLx5uXl0aBBgwr3Txbpkgcol2RVVbmsXGls2GB06ZKYK6b0mQSOPfbY6e7eM2pDd4/LCzgSmBgxPxwYXqzNRODIcDoLWA0YwbmO8yLaPQOcWdb2evTo4ZUxefLkSvVPFumSh7tySVZVkUthYZEfe+xsr1Xrc7/rruWen19U+cDKSZ9JAJjmMXynx/OcxVSgi5l1MLNsYBAwrlibccDgcHog8F4Y/CLgOAAzqw8cAXwXx1hFpBo9/PAqJk/OIz/fueWWZfTp8z1r1xZE7ygJE7di4e4FwFCCvYdZwMvuPsPMRprZqWGzp4FmZjYXuB7YeXnto0ADM5tBUHSedfev4xWriFSfZct2MHz40j2W1auXQePGmQmKSGIR1+E+3H0CMKHYstsiprcRXCZbvF9eSctFJPW1apXNCy90YMiQRaxeXUCjRpk8++y+ZGRoMMJkpju4RaTanXZaY775Zn9OPnkvHn20LW3b6tLaZKeBBEUkIfbZpxbjxnUqs81HH+XRvXsdmjTRV1Wiac9CRBLGzEp9Fsby5fmccso8DjxwFuPHa7iQRFOxEJGk4+5cfvki1q0rZNmyfE4+eR6XX74o0WHVaCoWIpJ0Xn99PePG7bk30alT7QRFI6BiISJJ6Ne/bsTvf59DZng17RFH1Of661skNqgaTsVCRJJO7doZ3HVXa6ZM6UbPnvUYNWpfMjN1aW0iqViISNLq2bM+n33WjW7d6pTaZtSoNaxfr7u/403FQkSSWmlXSwFMmLCBCy9cyIEH6gFL8aZiISIpaf36Ai69NLhCaunSfH7963mMHLk8wVGlLxULEUlJ99+/gmXL8nfNZ2bCKac0SmBE6U3FQkRS0q23tmTYsBwywm+xG2/M4Wc/q5fYoNKYioWIpKQ6dTK4++7giqnTTmvE7be3THRIaU3FQkRS2uGH1+e11zpRt27JX2ebNxcyaNAPzJy5tZojSy8qFiKS1m67bTkvvbSOQw/9jjvuWM6OHYl5jGuqU7EQkbQ1depm/vznlQDk5zsjRizngQdWJjiq1KRiISJp66WX1lEUsSOx777ZXHPN3okLKIWpWIhI2rr//ta89FIHWrQInofxxBPtaNBAj2+tCBULEUlbZsaZZzZh5szuPPVUO048ca9S265dqyFDyqJiISJpr1mzLC65pHmp66dN20zbtt9yxx3L2bZNJ8BLomIhIjVaYaFz+eWL2bKliBEjlnPwwbP44IO8RIeVdFQsRKRGe+yxVUyfvmXX/Jw529m8uTCBESUnFQsRqdFatqy16wQ4wJlnNqZfP40xVVxci4WZ9TOz2WY218yGlbC+tpm9FK7/1MzaR6w72Mw+MbMZZvaNmZU+oL2ISAUNHNiE777rzuWXN6dx40weeqhNokNKSnErFmaWCTwK9Ae6A2eZWfdizS4G1rl7Z+Ah4N6wbxYwGrjc3Q8A+gL5iIjEQZMmWfztb+2YO/cAWrXKLrHNjh1F3HzzUpYvr5lfRfHcs+gFzHX3+e6+AxgDDCjWZgDwj3B6LHC8BU86OQH42t2/AnD3Ne6ug4giElfNmmWVuu6RR1Zx330r6NZtBg89tIL8fK/GyBIvnsWiNbA4Yn5JuKzENu5eAGwAmgFdATeziWb2uZndFMc4RUTKtHx5PiNGBA9W2rSpiOuvX8odd9SsBy2VXkYTKwv4BXA4sAV418ymu/u7kY3MbAgwBCAnJ4fc3NwKbzAvL69S/ZNFuuQByiVZpUsu5cnjqadqk5dXe9d8gwZOz55zyM39Pk7RlU+1fCbuHpcXcCQwMWJ+ODC8WJuJwJHhdBawGjBgEPCPiHa3Av9b1vZ69OjhlTF58uRK9U8W6ZKHu3JJVumSS3nyyM8v8ocfXuGNGn3pMN0feWRF/AKrgMp8JsA0j+E7PZ6HoaYCXcysg5llhwVgXLE244DB4fRA4L0w+InAQWZWLzzZfQwwM46xioiUKivLuPrqFnz/fXduvXUfLr+89MEIv/lm684/ctNK3IqFB+cghhJ88c8CXnb3GWY20sxODZs9DTQzs7nA9cCwsO864EGCgvMl8Lm7j49XrCIisWjRohYjR7YiK8tKXD937jZ69PiOY46Zs8eNfukgrucs3H0CMKHYstsiprcBZ5TSdzTB5bMiIinhppuWkp/vfPBBHocf/h3DhuXwxz8Wv64nNekObhGRKjB58iZef33Drnl3OOCAugmMqGqpWIiIVIHWrWvx61/vHgK9d+96nHVWkwRGVLVULEREqkDXrnX4978789ZbnTnwwDr8+c9tycgo+dzG1q2pNwy6ioWISBU68cS9+Oqr/TniiPolrnd3jjtuDmecMZ85c7ZVc3QVp2IhIlLFStujAHj11fVMmbKZsWPX0737TIYOXUxhYfJfaqtiISJSTXbsKGL48GW75gsKYOnSHWRmll5ckoWKhYhINVmxooDGjTN3zWdmwt13p8altSoWIiLVpG3bbD79tBsvvtieDh2yufTS5uy3X8mP6iks9KS6E1zFQkSkGmVkGIMGNWXWrO7cc0/pexUPP7ySX/zie95/f1M1Rlc6FQsRkQSoXTuDRo0yS1y3fn0Bd975Ix9/vJm+fedwwglz+OGH7dUc4Z5ULEREksw996xg7drdz3v77LMte5zrSAQVCxGRJOLuzJu3517EjTe2oEmTxD5+SMVCRCSJmBmvvNKRjz7qyjHHNKB58yyuvbZFqe03bqyeJ06rWIiIJKGjjmrA5Mld+PLL/WjYsORDUHPmbKNVq2945pnaJa6vSioWIiJJysxo3Tq71PUjRixn8+YirBru6VOxEBFJQd9+u5UXX1zHXntlMHBg/K+USuwZExERqZAff8ynTZtaXHhhMxo2XB/37alYiIikoF/+ci/mzDmAggJn6tTv4749FQsRkRRVu3YGteN/bhvQOQsREYmBioWIiESlYiEiIlHFtViYWT8zm21mc81sWAnra5vZS+H6T82sfbH17cwsz8xujGecIiJStrgVCzPLBB4F+gPdgbPMrHuxZhcD69y9M/AQcG+x9Q8C/4lXjCIiEpt47ln0Aua6+3x33wGMAQYUazMA+Ec4PRY43iy4F9HMfgP8AMyIY4wiIhKDeBaL1sDiiPkl4bIS27h7AbABaGZmDYCbgTviGJ+IiMQoWe+zGAE85O55VsagJ2Y2BBgCkJOTQ25uboU3mJeXV6n+ySJd8gDlkqzSJZd0yQOqKRd3j8sLOBKYGDE/HBherM1E4MhwOgtYDRjwAbAgfK0H1gJDy9pejx49vDImT55cqf7JIl3ycFcuySpdckmXPNwrlwswzWP4TjeP0wPBzSwL+B44HlgKTAXOdvcZEW2uAg5y98vNbBBwurufWex9RgB57v5AlO2tAhZWIuTmBMUq1aVLHqBcklW65JIueUDlctnX3feO1ihuh6HcvcDMhhLsPWQCz7j7DDMbSVDJxgFPA8+b2VyCvYdBldhe1GTLYmbT3L1nZd4jGaRLHqBcklW65JIueUD15BLXcxbuPgGYUGzZbRHT24AzorzHiLgEJyIiMdMd3CIiEpWKxW5PJjqAKpIueYBySVbpkku65AHVkEvcTnCLiEj60J6FiIhEVeOLRbTBDpORmS0ws2/M7EszmxYua2pmk8xsTvhvk3C5mdnDYX5fm9lhCY79GTNbaWbfRiwrd+xmNjhsP8fMBidJHiPMbGn4uXxpZidFrBse5jHbzE6MWJ7w3z8za2tmk81sppnNMLNrw+Up9bmUkUfKfS5mVsfMPjOzr8Jc7giXd7Bg0NW5FgzCmh0uL3VQ1tJyLLdYbsZI1xfBJb3zgI5ANvAV0D3RccUQ9wKgebFl9wHDwulhwL3h9EkEgzEacATwaYJj7wMcBnxb0diBpsD88N8m4XSTJMhjBHBjCW27h79btYEO4e9cZrL8/gEtgcPC6YYE90d1T7XPpYw8Uu5zCX+2DcLpWsCn4c/6ZWBQuPxx4Ipw+krg8XB6EPBSWTlWJKaavmcRy2CHqSJyUMZ/AL+JWP6cB6YAjc2sZSICBHD3/xLcUxOpvLGfCExy97Xuvg6YBPSLf/S7lZJHaQYAY9x9u7v/AMwl+N1Lit8/d1/u7p+H05uAWQTjtqXU51JGHqVJ2s8l/NnmhbO1wpcDxxEMugo//UxKGpS1tBzLraYXi1gGO0xGDrxtZtMtGB8LIMfdl4fTPwI54XQq5Fje2JM5p6HhoZlndh62IYXyCA9f/IzgL9mU/VyK5QEp+LmYWaaZfQmsJCi884D1Hgy6WjyuEgdlpQpzqenFIlX9wt0PI3hWyFVm1idypQf7nyl5mVsqxw78DegEHAosB/6U2HDKx4LRnl8FrnP3jZHrUulzKSGPlPxc3L3Q3Q8F2hDsDeyXyHhqerFYCrSNmG8TLktq7r40/Hcl8DrBL9KKnYeXwn9Xhs1TIcfyxp6UObn7ivA/eBHwFLt395M+DzOrRfAF+093fy1cnHKfS0l5pPLnAuDu64HJBIOzNrZg3L3ice2KOVzfCFhDFeZS04vFVKBLeIVBNsGJoXEJjqlMZlbfzBrunAZOAL4liHvn1SeDgTfC6XHA+eEVLEcAGyIOLSSL8sY+ETjBzJqEhxROCJclVLFzQacRfC4Q5DEovGKlA9AF+Iwk+f0Lj20/Dcxy9wcjVqXU51JaHqn4uZjZ3mbWOJyuC/yK4BzMZGBg2Kz4Z7LzsxoIvBfuDZaWY/lV5xn+ZHwRXNnxPcHxwFsSHU8M8XYkuLrhK4KnCN4SLm8GvAvMAd4BmvruqyoeDfP7BuiZ4PhfJDgUkE9w/PTiisQOXERwsm4ucGGS5PF8GOfX4X/SlhHtbwnzmA30T6bfP+AXBIeYvga+DF8npdrnUkYeKfe5AAcDX4QxfwvcFi7vSPBlPxd4BagdLq8Tzs8N13eMlmN5X7qDW0REoqrph6FERCQGKhYiIhKVioWIiESlYiEiIlGpWIiISFQqFlKjmVljM7syYr6VmY0tq08Vbru9mZ1dHdsSqSwVC6npGhOM2AmAuy9z94FltK9K7QEVC0kJKhZS090DdAqfc3B/+Nf+twBmdoGZ/cuCZzksMLOhZna9mX1hZlPMrGnYrpOZvRUO7PiBmf1kDB8zO8Z2P0/hi/Au/HuAo8Nl/xMOHHe/mU0NB727LOzb18z+a2bjw2cSPG5mGWH7UWb2rQXPN/mfavy5SQ2TFb2JSFobBhzowYBtO0crjXQgweildQjujr3Z3X9mZg8B5wN/Jnj+8eXuPsfMegOPEQwlHelG4Cp3/ygc6G5buO0b3f3kcNtDCIbOONzMagMfmdnbYf9eBM8mWAi8BZwO/AC0dvcDw/6Nq+IHIlISFQuRsk324NkIm8xsA/BmuPwb4ODwi/8o4JVgaCIgeNBMcR8BD5rZP4HX3H1JRPudTgjfc+dhsEYEY/nsAD5z9/kAZvYiwdAW7wIdzewRYDzwdvE3FKkqKhYiZdseMV0UMV9E8P8ng+AZA4eW9Sbufo+ZjScYc+gjK/nxlgZc7e57DL5nZn356fDg7u7rzOwQgocOXQ6cSTA2k0iV0zkLqek2ETyCs0I8eF7CD2Z2Bux6PvUhxduZWSd3/8bd7yUY1XS/ErY9EbgiHGYbM+sajiwM0CscBTUD+B3woZk1BzLc/VXg/wge8yoSFyoWUqO5+xqCv/S/NbP7K/g25wAXm9nOkYBLegTndeE2viYYqfY/BCOKFprZV+HJ6b8DM4HPw5PsT7B7738q8FeCYap/IHiOSWsg14KnqY0GhlcwfpGoNOqsSJILD0PtOhEukgjasxARkai0ZyEiIlFpz0JERKJSsRARkahULEREJCoVCxERiUrFQkREolKxEBGRqP4f46ZvYZE2y34AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -12433,7 +218,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXGWd7/HPr3rvdKeT7k46OwkhS2chIXRCJCxhc1BmQGQRREFB0etFR0a5ohcdZWZ0lBkdHVlEx42LE1C4GiUXRKAJBrJCQpLuzkpIOoH0lqX3rZ77R3Warl7SW506VdXf9+uV16vrOU9V/XK6u759znPO85hzDhEREYCA3wWIiEjsUCiIiEgnhYKIiHRSKIiISCeFgoiIdFIoiIhIJ4WCiIh0UiiIDICZfdTMNptZnZm9Y2b/z8wuMLNvmlmrmdV2/NttZj82s4ldnrvSzIIdzz31749+/n9E+qJQEOmHmf0D8B/At4ECYBrwEHBNR5cnnHPZQC5wLTAB2NI1GIAjzrmsLv/+Lnr/A5GBUyiInIaZ5QD3A//TOfe0c67eOdfqnPujc+6ern072ncCHwEqgS/5ULLIsCgURE7vfUA68H8H+gTnXDvwB+BCr4oS8YpCQeT08oAq51zbIJ93hNDppFMmmdnxLv9ujFyJIpGT7HcBIjGuGsg3s+RBBsNkoKbL4yPOuSmRLU0k8nSkIHJ6rwHNwIcG+gQzCwB/B7ziVVEiXtGRgshpOOdOmNk3gAfNrA34M9AKXA5cAjSc6mtmycAs4JuErkD6ftQLFhkmHSmI9MM59+/APwD3Ebqq6BBwF/D7ji4fMbM64ASwmtApp3Odc0d8KFdkWEyL7IiIyCk6UhARkU4KBRER6aRQEBGRTgoFERHppFAQEZFOcXefQn5+vps+fbrfZQxJfX09o0aN8ruMuKX9N3zah8MTz/tvy5YtVc65cf31i7tQmD59Ops3b/a7jCEpLi5m5cqVfpcRt7T/hk/7cHjief+Z2dsD6afTRyIi0kmhICIinRQKIiLSKe7GFHrT2tpKeXk5TU1NfpdyWjk5OZSWlvpdxpCkp6czZcoUUlJS/C5FRDyUEKFQXl5OdnY206dPx8z8LqdPtbW1ZGdn+13GoDnnqK6upry8nBkzZvhdjoh4KCFOHzU1NZGXlxfTgRDPzIy8vLyYPxITiTTnYMNJuGEnjFoLl3Ixo9bCjTth48nQ9kSTEEcKwIACwTnYWAv/dgjWVENjEDICcFUefHkqLM0G5UrvFLgy0rQG4dYyWF0FTUEIAmA0BOGpytBnyN/lw6/nQkpC/Hkd4tl/xcx+bmYVZrajj+1mZj8ys71m9qaZLfGqFgh9gz9aCpduhacroSEIDjq/wZduDW1vDQ7t9bOysiJar5+mT59OVVWV32WI+Ma59wKhoTMQ3hME6oPwh6pQv0Q6YvAy334JXHma7R8gtErVLOBO4GGvChlJ3+D29na/SxCJextr4Y8dnxen0xgM9dtUG526osGzUHDOrSV84fLurgF+7ULWA2PMbKIXtUTzG+yc45577mHBggUsXLiQJ554AoBgMMjdd9/N3LlzueKKK/jgBz/I7373ux7PP3XH5PXXX8/cuXO55ZZbOLUQ0gsvvMA555zDwoULuf3222lubgZCf9l/5StfYcmSJfz2t79l5cqV3H333RQVFVFYWMimTZv48Ic/zKxZs7jvvvs63+tDH/oQ5557LvPnz+fRRx8d+n9aJMH8+6HQ58FANAZD/ROFn2MKkwkta3hKeUfbO0N9QSseZkWEjhjOe733bW5l/89/+umn2bp1K9u2baOqqoqlS5dy0UUXsW7dOg4ePEhJSQkVFRUUFhZy++239/oab7zxBjt37mTSpEmsWLGCdevWUVRUxCc+8QleeOEFZs+eza233srDDz/MF7/4RQDy8vJ4/fVQ4Y888gipqals3ryZH/7wh1xzzTVs2bKF3NxcZs6cyd13301eXh4///nPyc3NpbGxkaVLl3LdddeRl5c3lN0mklCeqe55RqEvwY7+iSIuBprN7E5Cp5goKCiguLg4bHtOTg61tbWAt5d7ht7j9NtffPFFrr32WhoaGsjMzOT8889n7dq1vPzyy1xzzTWdE2pdeOGFNDY29njNhoYGzj33XHJycqivr2f+/PmUlpYSCASYNm0aEydOpLa2lhtuuIGf/vSn3HHHHTjnuOqqqzpfq729ncsvv5za2lpmzpzJ3LlzycrKoqWlhTPOOIOysjLOPvtsHnjgAf70pz8BcOjQIbZu3cqyZctwzlFXV0daWlpYbU1NTT32fTTV1dX5+v6JIN734e6DLVF5n4apVwzqqpOGdsejv37ew4pCZk9L9fw9/AyFw8DULo+ndLT14Jx7FHgUoKioyHWfkKq0tDQq1//39x7Z2dmkpqaSnp7e2TclJYWMjAxSU1MJBAKd7cnJyWRkZFBSUsJnPvMZAO6//35Gjx5NZmZmZ7/09HRSUlIYNWoUSUlJne2ZmZkkJyeTnZ2NmVFQUNC5LSkpibFjx5KdnU1WVlbY66WkpJCWlsaWLVt45ZVX2LBhA5mZmaxcubLz9c2MrKysHv/f9PR0zjnnnAjtzcGL58nIYkW878P7P3fQ8/c4OTY1/JNpAKzdsWr9XG8K6uLFW6d5/h5+Xki1Gri14yqk5cAJ59yQTx3FigsvvJAnnniC9vZ2KisrWbt2LcuWLWPFihX84Q9/IBgMcvTo0c6/1s477zy2bt3K1q1bufrqq/t83Tlz5nDgwAH27t0LwGOPPcbFF1885DpPnDjB2LFjyczMpKysjPXr1w/5tUQSgTN4e+5oXr+sYHDXpgcdeUcavSssyjw7UjCz/wZWAvlmVg78I5AC4Jx7BFgDfBDYCzQAnxzue/Z1zv/GnaHLTgdyjjAAXD8Onpg/tBquvfZaXnvtNRYtWoSZ8b3vfY8JEyZw3XXX8eyzzzJv3jymTp3KkiVLyMnJGfDrpqen84tf/IIbbriBtrY2li5dymc/+9mhFQlceeWVPPLIIxQWFjJnzhyWL18+5NcSiXdNmUmULMvjxPj0QT83EHRM2504lx+Zi7PrL4uKilz39RRKS0spLCzs8zkbTsJlW0ODyP3JDMBLi2HZ6OFW2tM777zDxIkTqa6uZtmyZaxbt44JEyZE/o080t9+9lq8n/qIBfG+Dy/14PTR0WmZ7F6SS1tqLydOgg4CfR81BNqC5B9uZN6GaqJxe+eLDw399JGZbXHOFfXXLy4GmodrWXbozsM/VJ3+MrOMAFydH7qz2Qs33ngjtbW1tLS08PWvfz2uAkEk0bSlGLuX5HL0jJ4rqaU0tzN7cw2VUzKpmpxBMGDh4RB0BIKO/MONFG6MTiBEy4gIBbPQrei3loXuQ2jsdgNbAEjvCIRfz/Vuqos1a9bE5YR4IonmeH4apefl0TSq50dg7juNzN1UTVpTkHGHG6nNTeXg7GyqJ2XgkgxrD40hTNtVy+hj0bkaKppGRChAaG6S3xSGbkzrc+4jD04ZiUjsCBocmJ/D23NH9zgtFGh3zHzzGJP31HX+5W/A6JoWFqwP3Yhw0/KyqFxl5KcREwoQOgJYNhqeHOIgsojEr4asZEqW51Gbm9Zj26jjLcxbX03WyVYfKostIyoURGTkccA7Z45iz+KxBJN7DiZP2XWSM7cfJ2mIk2EmGoWCiCSsltQAu5bmUjU5s8e21MY2CjfWkHtU64R0lUCzgMeeT33qU5SUlETktQYynfW3v/3tsMfnn39+RN5bJB5VF6Sz6W8m9hoI48obWPbcuwqEXiTkkUKkr2Ue6rXBP/vZzyJaR3++/e1v87Wvfa3z8auvvhrV9xeJBe1Jxv6FYyif3fNKv6TWILO2HmPCW/UJdRlpJOlIIULq6+u56qqrWLRoEQsWLOCJJ55g5cqVnLrRLisri/vuu4/58+dz+eWXs3HjRlauXMmZZ57J6tWrAfjlL3/JXXfd1fmaf/u3f9vr5GW9TXl977330tjYyOLFi7nllls63xP6ns77dNN0i8SjupwUtlxe0GsgZFc3U/T8u0xUIJxWQh4p+OHZZ59l0qRJPPPMM0BobqGHH35v3aD6+nouuugifvjDH3Lttddy33338fzzz1NSUsJtt9122nmPuuttyut//dd/5cc//jFbt27t0b+v6byh92m6L7jggmHuDZHockD57Gz2LRyDS+r2kR90nFF6kuklJwjob55+6UghQhYuXMjzzz/PV77yFV555ZUe8xqlpqZyxRVXdPa9+OKLSUlJYeHChRw4cGBQ7/WjH/2IRYsWsXz5cg4dOsSePXtO2/+vf/0rN998M0lJSRQUFHDxxRezadMmAJYtW8aUKVMIBAIsXrx40LWI+K05PYltF41j7+KxPQIhva6Nc146ypk7FQgDpSOFCJk9ezavv/46a9as4b777uOyyy4L256SkoJ13CodCAQ61yoIBAK0tbUBoem0g8H3rotrauo5CFZcXMxf/vIXXnvttc4pr3vrN1Bd10xISkrqrEUkHlROzqCsKJe2tKQe2yYcqGPW68dIblMaDIaOFCLkyJEjZGZm8rGPfYx77rmncxW0wZg+fTpbt24lGAxy6NAhNm7c2KPP6aa8TklJobW15803fU3nLRKv2pKNsqJcdqwY1yMQkluCzHutisKNNQqEIdCRQoRs376de+65h0AgQEpKCg8//DBf/vKXB/UaK1asYMaMGcybN4/CwkKWLFnSo8/ppry+8847Ofvss1myZAmPP/54Z3tf03mXlZUN/T8s4pMTuamUnpdHY3ZKj21jKpoo3FBNemO7D5UlhhExdXasqK2tjesJ8fzez/E+7XMsiOd92BaE2Q8d58C8HFy3eYus3TFjx3Gm7a7FPPxI83vuI02dLSICvNUIHyuFtxaM6bEt82Qr89ZXkX1c8xZFgkJBRGKWc/DYUbhrD9T2ckZo0t5aztp2nKT2+DrjEcsUCiISk461wmd3w5OVPbelNLUzd1M1+e9omopIS5hQcM51XvIpkRdvY08S3146FloUq7y557bcI40UbqomtVnTmnohIUIhPT2d6upq8vLyFAwecM5RXV1NevrgFzUXGYyWIHz9LXjgUOgu5a7SAzB1cw2T99ZpmgoPJUQoTJkyhfLycioreznOjCFNTU1x+8Ganp7OlClT/C5DElhpPdxSCm/U9dy2OAseL4S7VvWyUSIqIUIhJSWFGTNm+F1Gv4qLiznnnHP8LkMkpjgHDx+BL+8LLZHblRFaKvefZkCabrWNioQIBRGJTxUtcHsZPFPTc9vkVHisEC4ZG/26RjKFgoj4Yk01fLIMKnq5veCGcfDIbMjtedOyeEyhICJR1dAO9+yDh4703JaVBD+eBbcWgK4Z8YdCQUSi5o3a0GByaUPPbe8bDf+nEM7MiH5d8h4N3YiI54IOHjgI573eMxCSgG9Nh7WLFQixQEcKIuKpQ01wWxm8dLzntjPTQ5eaLs/puU38oVAQEc88WQGf2Q3He1m76ZMT4IdnQbY+hWKKvh0iEnEn2+ALe+BXR3tuG5sMP50D142Lfl3SP4WCiETUqyc6prnuZa66y8bArwphclrPbRIbNNAsIhHRFoR/fAsufKNnIKQa/NtM+PMiBUKs05GCiAzb3obQ0cGG2p7b5mXCb+bBoqzo1yWDp1AQkSFzDn75Lnx+D9T3MpP15yfDd8+EjKTo1yZDo1AQkSGpboXP7IKnqnpuK0iBX8yFD+RFvy4ZHoWCiAzaX2pC9x4caem57eo8+NkcGJca/bpk+BQKIjJgzUH42n74fnnPbRkB+MFZcOdEzVsUzxQKIjIgO+vhoyXwZn3PbedmwePzYE5m9OuSyNIlqSJyWs7Bf5ZD0ZaegWDAV6fBq0sUCIlCRwoi0qd3m+GTu+DZXhbBmZYWWgTnojHRr0u8o1AQkV6troI7dkFVL4vgfHQ8PDgLxmgRnISjUBCRMPXt8KW98JN3em4bnQQPzYZbCqJfl0SHQkFEOm2pDQ0m727sue2CHHhsLkzXmgcJzdOBZjO70sx2mdleM7u3l+3TzOwlM3vDzN40sw96WY+I9K7dwXfehuWv9wyEZIN/mQHFixUII4FnRwpmlgQ8CFwBlAObzGy1c66kS7f7gCedcw+b2TxgDTDdq5pEpKe3m+DWUlh7oue2WRmhRXCWjo5+XeIPL48UlgF7nXP7nXMtwCrgmm59HHDqxy0H6GUpbxHxyn8fhUWbeg+ET0+EN4oUCCONl2MKk4FDXR6XA+d16/NN4M9m9nlgFHC5h/WIjDjOwcZa+LdDsKYaGrmYjLXw/rHQGITnjvV8Tl5yaJqKD2kRnBHJ74Hmm4FfOuf+3czeBzxmZgucc2HzLZrZncCdAAUFBRQXF0e/0gioq6uL29pjgfbf4LRhfIe5vEo+zRiOAGA0BOH31Y7QrWfhllLDV9rKGLOzheJoFzwANy3vZbKlKMod1cRNy8t8e//i4v2ev4eXoXAYmNrl8ZSOtq7uAK4EcM69ZmbpQD5Q0bWTc+5R4FGAoqIit3LlSo9K9lZxcTHxWnss0P4bOOfgo6WwvgqaepnSunsgpAIPnAV3Tc4lYOdHo8Qhuf9zB319/5uWl7Fq/Vzf3v/FW6d5/h5ehsImYJaZzSAUBjcBH+3W5yBwGfBLMysE0oFKD2sS8c2lUfxAO5GbytaV4wkmD2DY0Dlmbqjm90828HuP63rxIe8/1GR4PBtods61AXcBzwGlhK4y2mlm95vZ1R3dvgR82sy2Af8NfMI557yqSWSkODQ7m2BggFOVOqiapGtNJcTTMQXn3BpCl5l2bftGl69LgBVe1iAyElVPyoCBhkLAQv1F0CypIgkpmDS4BQ0G218Sl0JBJAEF2gd3Fnaw/SVxKRREEkxDVjKD+ogPOvKO9DLZkYxICgWRBNKYmcTWi8fjBnLVUYdA0DFtd62HVUk8USiIJIimjCS2riygedTArx8JtAXJP9xIdo2/N4VJ7FAoiCSA5vQAWy8eT1NWeCCk17USaAtCsNsJpaDrDITCjdW93NssI5Xf01yIyDC1pIUCoXF0+DJo49+up3BjNXVjUzk4O5vqSRm4JMPaQ2MI03bVMvqYjhAknEJBJI61pgbYdtF4GnJSw9rHlTdQuLGagIPRNS0sWF8N+D9Ng8Q+nT4SiVNtKca2C8dRNzY8EPKONDJvfRUBXWUqQ6BQEIlDbcnGmxeMozYvLax97LuNzH+1kkCvk+CJ9E+hIBJn2pOM7ReM48S49LD2nIomFq6rIkmBIMOgUBCJI8EAbF+Rz/Hx4YEwuqqZs/9aSZLuTJZhUiiIxIlgAHa8L59jE8Inr8uuaWbRKxUktykQZPgUCiJxIGhQcl4+1ZMzw9pHHW9h0dpKklsVCBIZCgWRGOcMypblUTk1PBAyT7Sy+OUKUlo0iCCRo1AQiWEO2HVuLkfPGBXWnlEbCoTUZgWCRJZCQSRGOWDPkrG8c2ZWWHt6XRuLiytIa2r3pzBJaAoFkRjkgH2LxnD4rOyw9rSGNha/fJT0RgWCeEOhIBKD3lqQw6E5o8PaUhvbWVxcQUa9AkG8o1AQiTEHCkfz9rycsLaUpnYWv1xBZl2bT1XJSKFQEIkhB+dk89bCMWFtyS1BFq2tYNTJVp+qkpFEoSASI8rPymLforFhbUmtQRa9XEH2cQWCRIdCQSQGHJkxij1LcsPaklqDnL22QmseSFQpFER89u4ZmewqCg+EQFuQhX+tZEy1AkGiS6Eg4qOKKZmULs0De29BTGt3LFhXxdjKZh8rk5FKoSDik8pJGZQsz4NAl0AIOha8VkXe0SYfK5ORTKEg4oPqCensfF8+rksgEHTMW19F/pFG/wqTEU+hIBJlx8anseP8fFxSl0BwjsKN1YwvVyCIvxQKIlF0PD+NNy8YRzA5/FdvzuYaJhxs8KkqkfcoFESi5GRuKm9e2DMQZm+pYdJb9T5VJRJOoSASBW/UwraLxtOeEv4rN3PrMSbvq/OpKpGeFAoiHttRB1dsg7bU8F+3GduPM213rU9VifROoSDioV0NcNk2qO42j90ZJSeYXnrSn6JETkOhIOKRfY1w6Vao6DZt0dSyk8zYccKfokT6oVAQ8cDBplAgHOk2S8XkPbXMfPM41vvTRHynUBCJsCPNoUA42G2Wion765j1xjEFgsQ0hYJIBB1tCY0h7Os2S8XHC2DOlhoFgsQ8hYJIhFS3hq4yKut2D9oN4+Dnc8CcP3WJDIZCQSQCjrfC+7fB9m73oF2TB48XQrJ+0yRO6EdVZJhq2+DKN+H1bvegXZkLT8yHFP2WSRzRj6vIMNS3w1XbYUO3e9AuHQNPz4c0/YZJnNGPrMgQNbbDNdvhlW63HFyQA6sXQkaSP3WJDIdCQWQIWoJw/U544Xh4+7JseGYhjFIgSJzyNBTM7Eoz22Vme83s3j763GhmJWa208x+42U9IpHQGoSbSmBNTXj74ix49mwYnexPXSKR4NmPr5klAQ8CVwDlwCYzW+2cK+nSZxbwVWCFc+6YmY33qh6RSGh38PFS+L9V4e3zM+H5s2Fsij91iUSKl0cKy4C9zrn9zrkWYBVwTbc+nwYedM4dA3DOVXhYj8iwBB3cXgZPVIa3z86AFxZDfqo/dYlEkjnnzR01ZnY9cKVz7lMdjz8OnOecu6tLn98Du4EVQBLwTefcs7281p3AnQAFBQXnrlq1ypOavVZXV0dWVpbfZcQtP/efA77PbP7EpLD2STTyH7zBOFp6f2IXuw/238druaOaqKlP9+39Z08bXnL6vQ/jef9dcsklW5xzRf318/vsZzIwC1gJTAHWmtlC51zY8J1z7lHgUYCioiK3cuXKKJcZGcXFxcRr7bHAr/3nHHxxL/zpcHj7tDRYe04GZ6SfP6DXuf9zBz2obnBuWl7GqvVzfXv/F2+dNqzn+70P433/DYSXp48OA1O7PJ7S0dZVObDaOdfqnHuL0FHDLA9rEhkU5+De/fCjbj+5E1PhhUVwhn9/NIp4wstQ2ATMMrMZZpYK3ASs7tbn94SOEjCzfGA2sN/DmkQG5VsH4HuHwtvGp8CLi+CsTF9KEvGUZ6HgnGsD7gKeA0qBJ51zO83sfjO7uqPbc0C1mZUALwH3OOeqvapJZDD+9W341tvhbbnJ8JdFMHeUPzWJeM3TMQXn3BpgTbe2b3T52gH/0PFPJGb8xyH46lvhbTlJ8OdFsFDXCkgC0x3NIt08fBju3hfelpUUujHt3Gx/ahKJFoWCSBe/eAc+tye8LSMQmrpieY4/NYlEk0JBpMNvjsIdu8Lb0gxWL4CLxvhTk0i0KRREgKcq4dbS0E1qp6QYPL0ALs/1rSyRqFMoyIj3pyq4uQTau7QlAU/Mgw/m+VWViD8UCjKi/bkGrtsJrV0OEQLA4/Pg2nG+lSXim0GFgpmN6pj9VCTuvXwcPrQDWrpN//XzufARzdcrI9RpQ8HMAmb2UTN7xswqgDLgnY71Dx4ws7OiU6ZIZL16Aq56ExqD4e0/mQ23TfCnJpFY0N+RwkvATEJrHkxwzk11zo0HLgDWA981s495XKNIRG0+CR94E+q7BcIPz4I7J/X+HJGRor87mi93zrV2b3TO1QBPAU+ZmZYVkbixrQ7e/yacbA9v/+6Z8IUp/tQkEktOe6RwKhDM7PLu28zstq59RGJdST1csQ2OtYW3f2s6/C/vZyQWiQsDHWj+hpk93DHQXGBmfwT+zsvCRCJpTwNctg0qu/0Jc+80+PoZ/tQkEosGGgoXA/uArcBfgd845673rCqRCHqrES7dBu92W7Tri1Pg2zPAzJ+6RGLRQENhLKE1l/cBzcAZZvpVkth3qCl0hFDeHN7+PybB92cqEES6G2gorAeedc5dCSwFJgHrPKtKJALeaQ4FwltN4e2fnAA/nqVAEOnNQNdTuNw5dxDAOdcIfMHMLvKuLJHhqWyBy7fBnsbw9pvHw0/nQECBINKr/m5emw5wKhC6cs6ttRBdyCcxpaY1dJVRSUN4+4fz4ddzIUmBINKn/o4UHjCzAPAHYAtQCaQDZwGXAJcB/wiUe1mkxIZLP9fjb4Oouml5C/f3U0NbirH1ovHU5qWFtecdaaT6d5W8P9jHEwfgxYd03aokvtOGgnPuBjObB9wC3A5MABoJrbm8BvgX51zTaV5CJGrako1tF/YMhLHvNjL/1UoCwwgEkZGi34Fm51wJ8M/AHwmFwVvAJuB3CgSJFe1JxvYLxnEyPzwQxlQ0sXBdFUkKBJEBGehA86+Ak8CPOh5/FPg1cKMXRYkMRnsAtq/I5/j49LD20VXNLPxrJUntro9nikh3Aw2FBc65eV0ev2RmJV4UJDIYwQDsfF8+xyZkhLVn1zSz6JUKktsUCCKDMdD7FF43s+WnHpjZecBmb0oSGZigQcl5+VRPzgxrH3W8hUVrK0luVSCIDNZAjxTOBV41s1OXfkwDdpnZdsA55872pDqRPjiDsmV5VE4ND4TME60sfrmClBYNIogMxUBD4UpPqxDphQNO5qZyaM5oqiem81LSVAKTHHlHGgkmWY8jhIzaVha/fJTUZgWCyFANKBScc297XYhIV0GD0mV5VE3OIBiwzluQg8kWOjroNkdFel0bi4srSGtSIIgMx0CPFESixtElEJJ7GfbqFgipDW0sfvko6Y3tPfuKyKAMdKBZJGpO5qb2HQjdOcesN46RUa9AEIkEhYLEnEOzs0OnjAbCQUW3wWYRGTqFgsSc6kkZA5/GNGCh/iISEQoFiTnBQU5jOtj+ItI3hYLEnMAgp6UYbH8R6ZtCQWJO3pFGCA7wgz4Yum9BRCJDoSAxZ+ruWgZ6QigQdEzbXetpPSIjiUJBYk7t2FTcAAaaA21B8g83kl3TEoWqREYG3bwmMeV4fhp7zxkb3uhc+A1rQUcg6Mg/3EjhxuoBH1WISP8UChIzmjKS2HF+fthRQqAtSE5lMyfGpeGSDGsPjSFM21XL6GM6QhCJNIWCxIT2JGPHinxa05PC2udtqGbc4dBA8k3Ly1i1fq4f5YmMGBpTEN85YPe5Y6nNDV9K84ydJzoDQUSiQ6Egviuflc2707PC2vKONDJj5wmfKhIZuRQK4qvpBJOaAAAQEUlEQVRj49PYt2hMWFvmyVbmbajSALKIDxQK4pvGzCR2vi98YDmpJcjCdVpKU8QvnoaCmV1pZrvMbK+Z3XuafteZmTOzIi/rkdgRGlgeR2tal4Fl55i3oYrM2jb/ChMZ4TwLBTNLAh4EPgDMA242s3m99MsG/h7Y4FUtElscULY0l7qxqWHtM3acIP+dJn+KEhHA2yOFZcBe59x+51wLsAq4ppd+/wR8F9CnwQhxaE42FdNGhbWNK2/gjNKTPlUkIqd4GQqTgUNdHpd3tHUysyXAVOfcMx7WITGkuiCdfQvDB5ZHnWhhru5MFokJvt28ZmYB4PvAJwbQ907gToCCggKKi4s9rc0rdXV1cVs7wE3Lh3cHcUVyBt+ZsDxsAZ3MYCv31m9gfFH/9yPkjmripuVlw6phOIqL9w/r+cPdf5GgfTg88b7/BsKc8+YqDzN7H/BN59zfdDz+KoBz7jsdj3OAfUBdx1MmADXA1c65zX29blFRkdu8uc/NMa24uJiVK1f6XcaQXfq5g0N+bluy8fplBdTndBlHCDrOfqWSvKMDO3Po9x3NLz40bVjPH87+ixTtw+GJ5/1nZlucc/1ezOPl6aNNwCwzm2FmqcBNwOpTG51zJ5xz+c656c656cB6+gkEiU8OKFuWFx4IwJnbjw84EEQkOjwLBedcG3AX8BxQCjzpnNtpZveb2dVeva/EnrcLR1M5JTOsbfzBeqbt0joIIrHG0zEF59waYE23tm/00Xell7WIP6ompvPWgpywtqxjLczdVKOBZZEYpDuaxTMN2cmUnJcfthZCSnM7C9ZVkqR1lUVikkJBPNGWYmxfMY721Pd+xCzomPdaFRkN7T5WJiKno1CQiHNAybI8GkanhLXP3Hac3Ipmf4oSkQFRKEjEHZifQ/Xk8IHlggP1TNmjgWWRWKdQkIiqnJzBgfnhA8vZNc3M2aKBZZF4oFCQiKkfnUzpsrywtpSmdhasq9LAskicUChIRLSeGlhOCR9YXvBqFemNGlgWiRcKBRk2Z1CyPJ/G7PCB5VlvHGNMlQaWReKJQkGGbf+CHGomZoS1Tdxfx6R9dX08Q0RilUJBhqViSiYHC8MHlkdXNzP7dQ0si8QjhYIMWV1OCqXLcsPaUhvbWfBqFYGgT0WJyLAoFGRIWlMDbF8xjmByl4HldseCVytJ08CySNxSKMigBQ12Ls+jKSt8PsXZb9SQU+3/QjIiMnQKBRm0/WeP4diE8IHlSXtrmbS/3qeKRCRSFAoyKO9Oy+TQnNFhbTmVTczaesynikQkkhQKMmC1Y1LYVRQ+sJzW0Mb81zSwLJIoFAoyIBUt9BhYDrQ7FqyrIq1JiSCSKBQK0q/WINy4E5pHdRtY3lLD6GMaWBZJJAoF6deX9sHLJ8LbpuyuZeIBDSyLJBqFgpzWL96B/zwc3jamoomZ2zSwLJKIFArSpw0n4bO7w9vS6jsGljUTtkhCUihIr95thg/vgJYuH/6BtiAL11WS2qyBZZFEpVCQHlqCcN1OONJtDHnu5hqyj7f6U5SIRIVCQXr4wh549WR425enQsHBBn8KEpGoUShImJ8cgZ+8E952xVj4zgx/6hGR6FIoSKd1J+Dze8LbzkyHVfMgWT8pIiOCftUFgMPNcN0OaO0ysJwZgN8vgNyUvp8nIolFoSA0tYeuNDrabQz5V3NhYZY/NYmIPxQKI5xz8D/2wMba8PavTYPrx/tTk4j4R6Ewwj14GH75bnjbB3Phfg0si4xICoUR7OXjcPe+8LZZGfB4ISSZPzWJiL8UCiPUwSa4YSe0dRlYzk6CPyyAMRpYFhmxFAojUGM7XLsDKrsNLD9WCIWj/KlJRGKDQmGEcQ7u3A2v14W3f3M6XJPvS0kiEkMUCiPMf5TD/zka3nZNHnz9DH/qEZHYolAYQf5SA1/uNrA8NxN+XQgBDSyLCAqFEeOtRvhICXSd9Hp0x8Dy6OQ+nyYiI4xCYQSob4cP7YCatvfaDPjNPJid6VtZIhKDFAoJzjm4vQze7Lac8j/PgKvy/KlJRGKXQiHBfe8QPFkZ3nb9OPjqNH/qEZHYplBIYM9Ww1f3h7ctGAW/mAOmgWUR6YVCIUHtaYCbS6HLDcuMTQ5NhZ2lgWUR6YNCIQHVtoUGlo93GVgOEFosZ2aGb2WJSBzwNBTM7Eoz22Vme83s3l62/4OZlZjZm2b2gpnpFqphCjq4tQxKui2n/N0z4f25/tQkIvHDs1AwsyTgQeADwDzgZjOb163bG0CRc+5s4HfA97yqZ6T4l7fh91XhbTePhy9N9aceEYkvXh4pLAP2Ouf2O+dagFXANV07OOdecs6d+pt2PTDFw3oS3uoq+MaB8LbFWfAzDSyLyAB5GQqTgUNdHpd3tPXlDuD/eVhPQiurh4+Vhrflp4QGljOT/KlJROKPOef67zWUFza7HrjSOfepjscfB85zzt3VS9+PAXcBFzvnmnvZfidwJ0BBQcG5q1at8qRmr9XV1ZGVFflFj+tI4nOcyyHeuz05gOPf2MY5HI/Y++w+2BKx1xqK3FFN1NSn+/b+s6elDuv5fu8/0D4crnjef5dccskW51xRf/28vDjxMND1TPaUjrYwZnY58L/pIxAAnHOPAo8CFBUVuZUrV0a82GgoLi4m0rUHHVy9HQ7VhLf/4CzjC1MWR/S97v/cwYi+3mDdtLyMVevn+vb+L946vDv+/N5/oH04XPG+/wbCy9NHm4BZZjbDzFKBm4DVXTuY2TnAT4CrnXMVHtaSsP7xADzTLRBuK4DPn+5EnYhIHzwLBedcG6FTQs8BpcCTzrmdZna/mV3d0e0BIAv4rZltNbPVfbyc9OKpSvjnt8PblmbDI7M1sCwiQ+Ppva3OuTXAmm5t3+jy9eVevn8i21EHt3UbWB6fAk/Ph3QNLIvIEOmO5jh0rDV0x3J9l8URkg2emg9T/BsDE5EEoFCIM+0Obi6BfU3h7f95Flwwxp+aRCRxKBTizP/eD88dC2/79ET4zCR/6hGRxKJQiCNPVMB3D4W3vW80/OcsDSyLSGQoFOLEtjr4ZFl428TU0DhCmr6LIhIh+jiJA1UtoYHlxi4Dy6kWutJoYpp/dYlI4lEoxLi2IHykBA50G1h+eDYsz/GnJhFJXAqFGPe/9sOL3aYv+p+T4PaJ/tQjIolNoRDDHnsXflAe3nZRDvzgLH/qEZHEp1CIUZtPwqd3hbdNSYPfzocUfddExCMjagn3S32fYbFlQLM8tqQF2HzFBJoz3/v2BNodBX86yk2PDX3q4Bcf8n6GRRGJb/qbM8YEDXacnx8WCABzNtcw+pj/8/GLSGJTKMSYvYvHcmJc+ARGU3afZMLb9T5VJCIjiUIhhhyZMYrDs7LD2sYcbWLmtsitniYicjoKhRhxIjeV3Utyw9rS69uY/1oVAW9WTBUR6UGhEAOa0wPsWJGPS3pvAqNAW5AF6ypJbQme5pkiIpGlUPBZMAA7zh9HS0b4wPLcTTVkH2/1qSoRGakUCj5ywO4luZzMD5/AaFrZSQoONfhTlIiMaAoFHx2ZmcU7Z2aFtY19t5Ezt2tgWUT8oVDwyfH8NPacMzasLaO2lfnrqzENLIuITxQKPmjKSGLH+fm4wHsDy0mtQRasqyJFA8si4qMRNc1FtDngZG4qh+aMpnpiOi8lTSUwyRFod7SlJYX1LdxYTdZJDSyLiL8UCh4JGpQuy6NqcgbBgEHHUUEw2Qh22+tnlJxg3OFGH6oUEQmnUPCAo0sgJJ/+DF1qQxvTd5yITmEiIv3QmIIHTuamDigQANpSA9TlpkahKhGR/ikUPHBodnbolNEABAPGwdnZ/XcUEYkChYIHqidldI4h9Ctgof4iIjFAoeCBYNIAA2GI/UVEvKJQ8ECgfXB3nw22v4iIVxQKHsg70gjBAX7QB12ov4hIDFAoeGDq7loCAwyFQNAxbXetxxWJiAyMQsEDo2tayD/cSKDt9FNWBNqC5B9uJLtGay+LSGxQKHjACE1b0RkM3Y8agq4zEAo3VqNhZhGJFbqj2SMBB/M2VFObm8rB2dlUT8rAJRnWHhpDmLarltHHdIQgIrFFoeAhI3QqacH6agBuWl7GqvVz/S1KROQ0dPpIREQ6KRRERKSTQkFERDopFEREpJNCQUREOikURESkk0JBREQ6KRRERKSTp6FgZlea2S4z22tm9/ayPc3MnujYvsHMpntZj4iInJ5noWBmScCDwAeAecDNZjavW7c7gGPOubOAHwDf9aoeERHpn5dHCsuAvc65/c65FmAVcE23PtcAv+r4+nfAZWam+eFERHziZShMBg51eVze0dZrH+dcG3ACyPOwJhEROQ1zzpulIM3seuBK59ynOh5/HDjPOXdXlz47OvqUdzze19Gnqttr3Qnc2fFwDrDLk6K9lw9U9dtL+qL9N3zah8MTz/vvDOfcuP46eTlL6mFgapfHUzraeutTbmbJQA5Q3f2FnHOPAo96VGfUmNlm51yR33XEK+2/4dM+HJ6RsP+8PH20CZhlZjPMLBW4CVjdrc9q4LaOr68HXnReHbqIiEi/PDtScM61mdldwHNAEvBz59xOM7sf2OycWw38F/CYme0FaggFh4iI+MTTRXacc2uANd3avtHl6ybgBi9riDFxfwrMZ9p/w6d9ODwJv/88G2gWEZH4o2kuRESkk0IhSvqb8kP6ZmY/N7OKjkuYZZDMbKqZvWRmJWa208z+3u+a4omZpZvZRjPb1rH/vuV3TV7S6aMo6JjyYzdwBaGb+DYBNzvnSnwtLE6Y2UVAHfBr59wCv+uJN2Y2EZjonHvdzLKBLcCH9PM3MB2zLIxyztWZWQrwV+DvnXPrfS7NEzpSiI6BTPkhfXDOrSV0dZoMgXPuHefc6x1f1wKl9JxdQPrgQuo6HqZ0/EvYv6YVCtExkCk/RDzXMRPxOcAGfyuJL2aWZGZbgQrgeedcwu4/hYLICGFmWcBTwBedcyf9rieeOOfanXOLCc3MsMzMEvY0pkIhOgYy5YeIZzrOhT8FPO6ce9rveuKVc+448BJwpd+1eEWhEB0DmfJDxBMdA6X/BZQ6577vdz3xxszGmdmYjq8zCF0wUuZvVd5RKERBx7Tgp6b8KAWedM7t9Leq+GFm/w28Bswxs3Izu8PvmuLMCuDjwKVmtrXj3wf9LiqOTAReMrM3Cf2B97xz7k8+1+QZXZIqIiKddKQgIiKdFAoiItJJoSAiIp0UCiIi0kmhICIinRQKIiLSSaEgIiKdFAoiw2RmS83szY5590d1zLmfsHPjSGLTzWsiEWBm/wykAxlAuXPuOz6XJDIkCgWRCOiY02oT0ASc75xr97kkkSHR6SORyMgDsoBsQkcMInFJRwoiEWBmqwmtqDeD0NKXd/lcksiQJPtdgEi8M7NbgVbn3G861uN+1cwudc696HdtIoOlIwUREemkMQUREemkUBARkU4KBRER6aRQEBGRTgoFERHppFAQEZFOCgUREemkUBARkU7/H/zwTX7A35byAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAFNCAYAAADvmHORAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xt8XWWd7/HPb+d+6yVJm17TltJL0pTeQqlUaLidqeKAKCAIIoNM9Tico6gccQYvB2dw1BkdHAWno453iwoOVXpQBGqh0DsF2iQtpUCbttAkveTSpLns5/yxN5vs3C97Ze2dfN+vV16v7Gc/e+9fV9t8s9ZvrWeZcw4RERGAgN8FiIhI/FAoiIhIhEJBREQiFAoiIhKhUBARkQiFgoiIRCgUREQkQqEg0g9m9mEz22FmDWZ2zMz+n5m928y+YmatZlYf/tpvZt81s8kdXltmZsHwa9/++r2ffx6RnigURPpgZp8B/g24DygACoEHgKvDUx5yzuUAucA1wCRgZ8dgAI4657I7fP318P0JRPpPoSDSCzMbC9wL/J1z7hHnXKNzrtU593vn3F0d54bH9wIfAqqBz/pQssiQKBREevcuIB34XX9f4JxrBx4FLvKqKBGvKBREepcH1Djn2gb4uqOEDie9bYqZnerwdX3sShSJnWS/CxCJc7VAvpklDzAYpgInOjw+6pybFtvSRGJPewoivXseOAu8v78vMLMA8NfAM14VJeIV7SmI9MI5d9rMvgR8z8zagD8BrcDlwCXAmbfnmlkyMAf4CqEzkL417AWLDJH2FET64Jz7V+AzwD2Ezio6DNwB/Hd4yofMrAE4DawndMhpmXPuqA/ligyJ6SY7IiLyNu0piIhIhEJBREQiFAoiIhKhUBARkQiFgoiIRCTcdQr5+flu5syZfpcxKI2NjWRlZfldRsLS9hs6bcOhSeTtt3Pnzhrn3IS+5iVcKMycOZMdO3b4XcagbNy4kbKyMr/LSFjafkOnbTg0ibz9zOyN/szT4SMREYlQKIiISIRCQUREIhKup9Cd1tZWqqqqaG5u9ruUXo0dO5aKigq/yxiU9PR0pk2bRkpKit+liIiHRkQoVFVVkZOTw8yZMzEzv8vpUX19PTk5OX6XMWDOOWpra6mqqmLWrFl+lyMiHhoRh4+am5vJy8uL60BIZGZGXl5e3O+JicSac7C1Dq7bC1mb4FJWkbUJrt8L2+pCz480I2JPAehXIDgH2+rhXw7DhlpoCkJGAK7Mg89Nh/NzQLnSPQWujDatQbilEtbXQHMQggAYZ4LwcHXoZ8hf58NP50PKiPj1OsSzP4qZ/cjMjpvZnh6eNzP7jpkdMLOXzGypV7VA6C/4wxVw6W54pBrOBMFB5C/40t2h51uDg3v/7OzsmNbrp5kzZ1JTU+N3GSK+ce6dQDgTCYR3BIHGIDxaE5o3kvYYvMy3HwOre3n+PYTuUjUHWAM86FUho+kvuL293e8SRBLetnr4ffjnRW+agqF52+uHp67h4FkoOOc2EX3j8s6uBn7qQrYA48xsshe1DOdfsHOOu+66i5KSEhYuXMhDDz0EQDAY5M4772T+/PlcccUVvPe97+W3v/1tl9e/fcXktddey/z587npppt4+0ZITz75JEuWLGHhwoXcdtttnD17Fgj9Zv/5z3+epUuX8pvf/IaysjLuvPNOSktLKSoqYvv27XzgAx9gzpw53HPPPZHPev/738+yZctYsGABa9euHfwfWmSE+dfDoZ8H/dEUDM0fKfzsKUwldFvDt1WFx44N9g1t4xArIrTHcMGu7p9zZX2//pFHHmH37t28+OKL1NTUcP7553PxxRezefNmDh06RHl5OcePH6eoqIjbbrut2/d44YUX2Lt3L1OmTGHlypVs3ryZ0tJSbr31Vp588knmzp3LLbfcwoMPPsinP/1pAPLy8ti1K1T497//fVJTU9mxYwf3338/V199NTt37iQ3N5fZs2dz5513kpeXx49+9CNyc3Npamri/PPP54Mf/CB5eXmD2WwiI8pjtV2PKPQkGJ4/UiREo9nM1hA6xERBQQEbN26Men7s2LHU19cD3p7uGfqM3p9/6qmnuOaaazhz5gyZmZlceOGFbNq0ib/85S9cffXVkQW1LrroIpqamrq855kzZ1i2bBljx46lsbGRBQsWUFFRQSAQoLCwkMmTJ1NfX891113Hf/7nf/Kxj30M5xxXXnll5L3a29u5/PLLqa+vZ/bs2cyfP5/s7GxaWlqYMWMGlZWVnHfeeXzzm9/kD3/4AwCHDx9m9+7dLF++HOccDQ0NpKWlRdXW3NzcZdsPp4aGBl8/fyRI9G24/1DLsHzOmelXDOiskzPtjrU/fcLDikLmFqZ6/hl+hsIRYHqHx9PCY10459YCawFKS0td5wWpKioqhuX8/74+Iycnh9TUVNLT0yNzU1JSyMjIIDU1lUAgEBlPTk4mIyOD8vJyPv7xjwNw7733MmbMGDIzMyPz0tPTSUlJISsri6SkpMh4ZmYmycnJ5OTkYGYUFBREnktKSmL8+PHk5OSQnZ0d9X4pKSmkpaWxc+dOnnnmGbZu3UpmZiZlZWWR9zczsrOzu/x509PTWbJkSYy25sAl8mJk8SLRt+G9nzzk+WfUj0uJ/snUD9buWLdlvjcFdfDULYWef4afJ1KtB24Jn4W0AjjtnBv0oaN4cdFFF/HQQw/R3t5OdXU1mzZtYvny5axcuZJHH32UYDDIW2+9Fflt7YILLmD37t3s3r2bq666qsf3nTdvHq+//joHDhwA4Gc/+xmrVq0adJ2nT59m/PjxZGZmUllZyZYtWwb9XiIjgQMOzc1h52WTBnZuetCRd7TJs7qGm2d7Cmb2K6AMyDezKuDLQAqAc+77wAbgvcAB4AzwN0P9zJ6O+V+/N3TaaX+OEQaAayfAQwsGV8M111zD888/z6JFizAzvvGNbzBp0iQ++MEP8vjjj1NcXMz06dNZunQpY8eO7ff7pqen81//9V9cd911tLW1cf755/OJT3xicEUCq1ev5vvf/z5FRUXMmzePFStWDPq9RBLd2fQkKpbncnJSxoBfGwg6CvePnNOPzCXY+ZelpaWu8/0UKioqKCoq6vE1W+vgst2hJnJfMgPw9GJYPmaolXZ17NgxJk+eTG1tLcuXL2fz5s1MmjQp9h/kkb62s9cS/dBHPEj0bXipB4ePqqdksO/8XFrTkro+GXQQ6HmvIdAWJP9IE8VbaxmOyzufemDwh4/MbKdzrrSveQnRaB6q5TmhKw8fren9NLOMAFyVH7qy2QvXX3899fX1tLS08MUvfjGhAkFkpGlPMg4sHsfR2V3/wye3BJm7s5aaKZnUTM0gGLDocAg6AkFH/pEmirYNTyAMl1ERCmahS9FvqQxdh9DU6QK2AJAeDoSfzvduqYsNGzYk5IJ4IiNN/bgUylfkc2ZM11V/xx1vpmhrLelN7Uw83ER9biqH5uZQOyUDl2RYe6iHULivnjEnh+dsqOE0KkIBQmuT/LIodGFaj2sfeXDISETihwMOzcvhtZJxuKTo3/4s6Ji15xSF++qx8FF1A8acaKFkS+hChBtWVA7LWUZ+GjWhAKE9gOVj4NeDbCKLSOJqzkiiYnkepwrSuzyXUdfKgq015Jxs9aGy+DKqQkFERqfjUzPYV5pLWzfN5MmvNjBn90mS2hPrpBuvKBREZMRqSzYOLB7PsXO6rmKcfLad+TtOMOHIyLnGIBZG0Crg8ef222+nvLw8Ju/Vn+Ws77vvvqjHF154YUw+WyQR1Y1PZccVk7oNhPFvNbP8T28qELoxIvcUYn0u82DPDf7BD34Q0zr6ct999/H3f//3kcfPPffcsH6+SDxwBofmjeG1krG4TtcYWLvjnJdPMX1//Yg6jTSWtKcQI42NjVx55ZUsWrSIkpISHnroIcrKynj7Qrvs7GzuueceFixYwOWXX862bdsoKyvjnHPOYf369QD8+Mc/5o477oi85/ve975uFy/rbsnru+++m6amJhYvXsxNN90U+UzoeTnv3pbpFklEzZlJvLBqIgfPG9clEDLrWln25JsUKhB6NSL3FPzw+OOPM2XKFB577DEgtLbQgw++c9+gxsZGLr74Yu6//36uueYa7rnnHp544gnKy8v56Ec/2uu6R511t+T1P//zP/Pd736X3bt3d5nf03Le0P0y3e9+97uHuDVEht/xaZmhZnJq1991pxyo59wXT6mZ3A/aU4iRhQsX8sQTT/D5z3+eZ555psu6RqmpqVxxxRWRuatWrSIlJYWFCxfy+uuvD+izvvOd77Bo0SJWrFjB4cOHeeWVV3qd/+yzz3LjjTeSlJREQUEBq1atYvv27QAsX76cadOmEQgEWLx48YBrEfFbW7JRcX4uey/M7xIIKc3tLHy2mnm7dHZRf2lPIUbmzp3Lrl272LBhA/fccw+XXXZZ1PMpKSlY+FLpQCAQuVdBIBCgra0NCC2nHQy+c611c3Nzl8/ZuHEjf/7zn3n++ecjS153N6+/Ot4zISkpKVKLSCI4nZtK+Yo8mrO7Xpk8/s3QEhRpzYO88foopT2FGDl69CiZmZncfPPN3HXXXZG7oA3EzJkz2b17N8FgkMOHD7Nt27Yuc3pb8jolJYXW1q4X3/S0nLdIonIGrxeP4YVLC7oEgrU7zn3hJIs2VSsQBkF7CjHy8ssvc9dddxEIBEhJSeHBBx/kc5/73IDeY+XKlcyaNYvi4mKKiopYunRplzm9LXm9Zs0azjvvPJYuXcovfvGLyHhPy3lXVlYO/g8s4pOmzCQqLsjj9ISuVyZnnm5hwZZask/ryuTBGhVLZ8eL+vr6hF4Qz+/tnOjLPseDRN+GC75Ww75lubR300ye+ko9s1/ytpns99pHWjpbRAQ43QZ3vALl78rv8lxKczvzt9eSf2zwvTV5h0JBROLa5tNwcwW83s3P/NxjoWZy6ln1DmJFoSAicaktCP/4Bnz1ja630g20O2a/eJKpBxp0IVqMjZhQcM5FTvmU2Eu03pMktoNNob2D5+u6Ppd1qoXiLbVk16mZ7IUREQrp6enU1taSl5enYPCAc47a2lrS07ue7SESS87Bz9+Cv3sF6tu7Pj9tfx3nvHSKJB0t8syICIVp06ZRVVVFdXW136X0qrm5OWF/sKanpzNt2jS/y5AR7FQr/M9XYN3xrs8VpMCP58M3fn1q+AsbZUZEKKSkpDBr1iy/y+jTxo0bWbJkid9liMSdZ06FDhcdOtv1ufflwQ/nwcRU+MbwlzbqjIhQEJHE1BqEe9+A+7ppJqcH4Fuz4RNTQrfSleGhUBARXxw4AzdVwLb6rs8tyoJfFkNx1vDXNdopFERkWDkHP3kT/tcBaOimmfzZafBP50CaVmbzhUJBRIbNyVb4+H74TTfnhExOhZ/Mhytyh78ueYdCQUSGxcaT8JFKqOqmmXx1HvxgHuSnDn9dEk2hICKeagnCl1+Hrx+CzpdAZgTg386Fv52sZnK8UCiIiGf2h5vJO7ppJi/Nhl8UwXw1k+OKQkFEYs45+OEx+NQBONPpXFMD7poOX50F3ayALT5TKIhITNW2wpp98EhN1+empsJPi+DS8cNfl/SPQkFEYubJk3BLBRxt6frcB/Jh7TzI63o7ZYkjCgURGbKWINzzGvzL4a7N5MwAfGcO3DZJzeREoFAQkSGpbIQPV8ALDV2fK80JNZPnZg5/XTI4avOIyKA4B/9xFJbu7BoIBnyhEJ5bokBINNpTEJEBq2mB2/fBo7Vdn5uWBj8vglXjhr8uGTqFgogMyJ9OwEcr4c1umsnXTYD/mAvj1UxOWAoFEemXs0H4wkH4dlXX57KT4Ltz4JYCNZMTnUJBRPpU3gg3lsNLjV2fuyAndLjoXPUORgQ1mkWkR87BA0dg2c6ugRAAvjgDnlmiQBhJtKcgIt063gK3VcJjJ7o+VxhuJl+kZvKIo1AQkS4er4VbK+Gt1q7P3TgRHpgD49RMHpEUCiIS0dwOnz8I3znS9bmcpFAY3Dxp+OuS4eNpT8HMVpvZPjM7YGZ3d/N8oZk9bWYvmNlLZvZeL+sRkZ693ADn7+o+EN41Bl4sVSCMBp6FgpklAd8D3gMUAzeaWXGnafcAv3bOLQFuAB7wqh4R6Z5z8J0qOH8n7OmmmfyVmbBpMczK8KM6GW5eHj5aDhxwzh0EMLN1wNVAeYc5DhgT/n4scNTDekSkkzfPwt/sg8e7aSbPSg81ky8cO/x1iX+8DIWpwOEOj6uACzrN+QrwJzP7X0AWcLmH9YiMOs7BtvrQ6qUbaqGJVWRsgivzYEUOfO0Q1LR1fd1HCkIXo41R13HUMec6L3Qbozc2uxZY7Zy7Pfz4I8AFzrk7Osz5TLiGfzWzdwE/BEqcc8FO77UGWANQUFCwbN26dZ7U7LWGhgays7P9LiNhafsNTBvG15jPc+RzFsNFHS12hJati5ZFG3eyn8s4Pmx1DsT+Q92srTGMcrOaOdGY7tvnzy1MHfRrL7nkkp3OudK+5nn5e8ARYHqHx9PCYx19DFgN4Jx73szSgXyI/hfpnFsLrAUoLS11ZWVlHpXsrY0bN5KotccDbb/+cy60nPWWGmgOdjejayC8eyz8vCiZGenFhNqA8efeTx7y9fNvWFHJui3zffv8p24p9PwzvDz7aDswx8xmmVkqoUby+k5zDgGXAZhZEZAOVHtYk8iosK0efl/T9f7IPfn4ZNi4GGb490uwxAnP9hScc21mdgfwRyAJ+JFzbq+Z3QvscM6tBz4L/KeZ3Ulof/ZW59XxLBGfXTqMv+XuWZFH47RMCPRjdbqg45GtZ9h/fzfrYMfYUw94/5uuDI2nbSTn3AZgQ6exL3X4vhxY6WUNIqNR7ZSM/gUCQMBC80XQgngiI1IwaWDrVw90voxcCgWRESjQPrCjsAOdLyOXQkFkhAkaJJ/tZ4cZIOjIO9rkXUGSUBQKIiOIM6hcnkdLVv/bhYGgo3B/vYdVSSJRKIiMEA7YtyyXt2Zk9fs1gbYg+UeayDnh70VhEj90EbvICOCAV5aO59g50Vd8B1qDYBAMWPTZSEFHIOjIP9JE0bbabi5lk9FKoSCS4Bzw6qJxHDk3J2o87Uwbi59+i7a0JA7NzaF2SgYuybD2UA+hcF89Y05qD0GiKRREEtxrJWM5PG9M1FhqUzuLNx4ns7EdGtsp2RK6MM3vZRok/qmnIJLAXi8awxvF0WtbpzS3s/gvx8ls6Gb5U5E+KBREEtSheTm8tnBc1FhyS5BFm46TVdfNzZVF+kGhIJKAqs7N5tVF46PGklqDLPrLcXJOKRBk8BQKIgnm6KwsXlmaGzWW1BrkvE3H1TiWIVMoiCSQNwsz2VcaHQiBtiALn61mXK0CQYZOoSCSII5Py6BieR7YO1cVWLujZHMN46vP+liZjCQKBZEEUD0lg/IV+VEXoFnQUfJ8DXlvNftYmYw0CgWROFc7KZ2978rHdboiuXhLDflayE5iTKEgEsdOTkxjz4X5uI73O3COom21TKxSIEjsKRRE4tSp/DReevcEgsnR/03n7TjBpENnfKpKRjqFgkgcqstN5aWLugbCnF0nmPJao09VyWigUBCJM/XjUnjx4om0p0T/95y9+yTTDjT4VJWMFgoFkTjSMCaFF1dNpC01+r/mrJdP6UY4MiwUCiJx4kx2Mi+umkhrWlLU+Izy08ysqPOpKhltFAoicaApK4ndZRNpyYgOhOn76pi157RPVclopFAQ8VlzZhK7ywo4mxl9e5Opr9Qz+8VTuiuaDCuFgoiPzqYnsXvVRJqzogNh8sEG5rxwUoEgw06hIOKTlrQAu8sm0pSTEjVe8Hoj83aeUCCILxQKIj5oTQ2we9VEzoyJDoQJhxuZv70Wcz4VJqOeQkFkmLWmGC9ePIHGcalR4/lHzlC8pZaAAkF8pFAQGUZtycZLF02kPjctajz3WBMLnq9RIIjvFAoiw6Q9yXjp3ROoy48OhHFvNVPyXA2BoE+FiXSgUBAZBs3t8PLKfE5PTI8aH1vdzMLN1SS1axdB4oNCQcRjLUG4di+cnJQRNZ5Te5bznqkmuU2BIPFDoSDiodYg3FAOj52IHs8+2cKiTccVCBJ3FAoiHml3cEsl/K4mejzrdCgQUloVCBJ/FAoiHgg6uH0frDsePZ5R18qivxwn9ay6yhKfFAoiMeYc/N0r8OM3o8fTG9pY/JfjpDUrECR+Jfc9RUT6yzm48wB8/2j0+PQ0mPqHt0hvavenMJF+0p6CSIw4B184CPcfiR6fnApPLoKMMwoEiX8KBZEYufcN+Prh6LEJKaFAmJPpT00iA6VQEImBrx+Cr7wePZabDH9eBEVZvpQkMigKBZEhur8K7j4YPTYmCf60CM7L9qcmkcFSKIgMwX8chU8fiB7LCsDj58GyHH9qEhkKhYLIIP3kTfjE/uixjAA8dh68a6w/NYkMlaehYGarzWyfmR0ws7t7mHO9mZWb2V4z+6WX9YjEyrq34LbK6LE0g0dLYNU4f2oSiQXPrlMwsyTge8AVQBWw3czWO+fKO8yZA3wBWOmcO2lmE72qRyRWflcNN1dAx0vQUgx+uwCuyPWtLJGY8HJPYTlwwDl30DnXAqwDru4052+B7znnTgI45zotCiASXzbUwofKoeMVB0nAumJ4X75fVYnEjjnnzaJcZnYtsNo5d3v48UeAC5xzd3SY89/AfmAlof9bX3HOPd7Ne60B1gAUFBQsW7dunSc1e62hoYHsbJ2OMlh+b7+djOcLLKS1w+9ShuMfqOAy+v59Zv+hFi/L65fcrGZONKb3PdEjcwtT+57UC7+3YSJvv0suuWSnc660r3l+L3ORDMwByoBpwCYzW+icO9VxknNuLbAWoLS01JWVlQ1zmbGxceNGErX2eODn9tt0Cr74Umgp7I5+NM+4dXIxUNzne9z7yUPeFDcAN6yoZN2W+b59/lO3FA7p9X5vw0Tffv3h5eGjI8D0Do+nhcc6qgLWO+danXOvEdprmONhTSIDtuU0XPkyNHUKhAfnwK2T/alJxCtehsJ2YI6ZzTKzVOAGYH2nOf9NaC8BM8sH5gKdLgMS8c+uelj9EjR0Wrbo27PhE1P9qUnES56FgnOuDbgD+CNQAfzaObfXzO41s6vC0/4I1JpZOfA0cJdzrtarmkQG4uUGuOJFON0pEL42Cz49vfvXiCQ6T3sKzrkNwIZOY1/q8L0DPhP+EokbFY1w2Ytwoi16/Msz4O4Z/tQkMhx0RbNIJwfOhAKhujV6/P9Mhy/P9KUkkWGjUBDp4I3mUCAc63Tm4/+eCv98Dpj5U5fIcFEoiIQdOQuX7oZDZ6PH10yGfztXgSCjg0JBBHgzHAgHm6PHP1oAD85VIMjooVCQUa+mBS5/EfY3RY/fMBF+OB8CCgQZRRQKMqqdbIX/8RLsPRM9fk0+/HQ+JCkQZJQZUCiYWVZ49VORhFfXFrow7YWG6PH35sKviiFFvzLJKNTrP3szC5jZh83sMTM7DlQCx8L3P/immZ07PGWKxFZje2jpim310eOXjYOHF0CaAkFGqb7+6T8NzCZ0z4NJzrnpzrmJwLuBLcDXzexmj2sUiammdrjqZXj2dPT4RWPh0YWQrn1hGcX6uqL5cudca+dB59wJ4GHgYTNL8aQyEQ+cDcIH9sJTp6LHL8iBxxZClgJBRrle9xTeDgQzu7zzc2b20Y5zROJdaxA+tBcePxE9vjQbHj8PcvxeSF4kDvT3yOmXzOzBcKO5wMx+D/y1l4WJxFJbMHQLzUc7LbdYkgV/WgTjtL8rAvQ/FFYBrwK7gWeBXzrnrvWsKpEYCjq4bR/8ujp6fF4G/HkR5CkQRCL6GwrjCd1z+VXgLDDDTNd4SvwLOvj4fvjZW9Hjs9PhycVQMLS7Q4qMOP0NhS3A48651cD5wBRgs2dVicSAc/CpA/CDY9HjhWmhQJia5k9dIvGsv621y51zhwCcc03A/zazi70rS2RonIP/cxC+2+kGsFNS4anFMMO/e6+LxLW+Ll6bCfB2IHTknNtkIdO8KU1k8L78OvzL4eixiSnw5CKYneFLSSIJoa89hW+aWQB4FNgJVAPpwLnAJcBlwJeBKi+LFBmI+96Ar74RPZaXHAqE+Vn+1CSSKHoNBefcdWZWDNwE3AZMApoI3XN5A/BPzrnmXt5CZFh9+zD8w2vRY2OTQqedlmT7U5NIIumzp+CcKzezfwQ+SWh5CwdsB36rQBhdLv1kl6OIw+qGFS3c20sNR2Zns39ZbtRYUmuQ2X8+zud+1dLDq/rvqQcKh/weIvGuv43mnwB1wHfCjz8M/BS43ouiRAbq2KysLoEQaAty3jPVjD0x9EAQGS36GwolzrniDo+fNrNyLwoSGag3CzOpLO0UCO2Ohc9WM67mbA+vEpHu9Pc6hV1mtuLtB2Z2AbDDm5JE+u/4tAwql+dF3S/T2h0lm6vJPa5AEBmo/u4pLAOeM7O3D+gWAvvM7GXAOefO86Q6kV7UTM6gfEU+rsP9Mi3oWPB8DXlvqt0lMhj9DYXVnlYhMkAnCtLZc2F0IBB0FG2tZcLRpp5fKCK96lcoOOfe6HuWSGw5oC43lcPzxlA7OZ2nk6YTmOIYU9vC6bxUXMcbKDtH0fYTFBw+0+P7iUjftIK8xKWgQcXyPGqmZhAMGIT3CILJxqmJaVE9BIB5O08w6Y1GP0oVGVEUChJ3HB0CIbmbcyE6BcK5u04w5aACQSQWdHtyiTt1uak9B0In1u50HYJIDCkUJO4cnpsTOmTUD87g0NwcjysSGT0UChJ3aqdkRHoIfQpYaL6IxIRCQeJOMGlgN/Ub6HwR6ZlCQeJOoN15Ol9EeqZQkLiTd7QpdHPl/gi60HwRiQmFgsSdCVVnoL8thaCjcH+9twWJjCIKBYkrbSnGwZJxXa5F6E6gLUj+kSZydEqqSMzo4jWJGw4ovyCf5jEpnZ5w0SERdASCjvwjTRRtq+3vToWI9INCQeLGawvGdjm9NPfoGZLaHLVTMnBJhrWHegiF++oZc1J7CCKxplCQuFA9NYM3FoyNGss5cZaS52tJCp9ddMOKStZtme9HeSKjhnoK4rvGMSlULM+LGktpbqdkc00kEERkeCgUxFetKcZ0QDlsAAAP80lEQVTLK/NpT3nnn6IFHSXP1ZDe1O5jZSKjk0JBfOMMylfk05QT3Vie88JJ3VtZxCeehoKZrTazfWZ2wMzu7mXeB83MmVmpl/VIfDlYMpYTk6Mby5MPNjDl1QafKhIRz0LBzJKA7wHvAYqBG82suJt5OcCngK1e1SLx5/i0TA4VRTeWx9ScZe6uEzrFVMRHXu4pLAcOOOcOOudagHXA1d3M+yrwdUB3Wh8lGsamULE8N2ostamdkudqCAR9KkpEAG9DYSpwuMPjqvBYhJktBaY75x7zsA6JI62pAV5eOSHqBjrW7ih5rpq0ZjWWRfzm23UKZhYAvgXc2o+5a4A1AAUFBWzcuNHT2rzS0NCQsLUD3LBiaBeLtWP8+4SlNGdE/7O76VQ5F805AnN6f31uVjM3rKgcUg1DsXHjwSG9fqjbLxa0DYcm0bdff5hz3pwHbmbvAr7inPur8OMvADjnvhZ+PBZ4FXi7qzgJOAFc5Zzb0dP7lpaWuh07enw6rm3cuJGysjK/yxi0Sz95aEivP7BoHIfnjYkam3Kgnnm7Tvbr9X5fvPbUA4VDev1Qt18saBsOTSJvPzPb6Zzr82QeLw8fbQfmmNksM0sFbgDWv/2kc+60cy7fOTfTOTcT2EIfgSCJ663CzC6BMLa6mTm7+xcIIjI8PAsF51wbcAfwR6AC+LVzbq+Z3WtmV3n1uRJ/6selUFka3VhOO9PGgufVWBaJN572FJxzG4ANnca+1MPcMi9rEX+0pHVtLAfaQ1cspzUrEUTija5oFs8EDfauyOdsVvTvHnN3nmCM7oEgEpcUCuKZVxeN41RBetTY1Ffqmfx6o08ViUhfFAriiWMzsqiaG91YHne8mXPVWBaJawoFibm68ans79xYbgw3lrUStkhcUyhITLWkBdizMp9g0jsrGAXagix8rprUs2osi8Q7hYLETDAAey7M52xmdGN53o4T5Jxs9akqERkIhYLEzIHF4zk9IbqxPH1fHZMOnfGpIhEZKIWCxMTRWVkcOTcnamz8W82c89IpnyoSkcFQKMiQnc5NZf/S6MZyekMbxWosiyQchYIMydn0UGPZdW4sb64mtUWNZZFEo1CQQQs1lifQ0mkp7PnbT5B9Wo1lkUSkUJBB278kl7r8tKixwso6Cg6rsSySqBQKMihHzsnm2OzsqLHxbzZxzstqLIskMoWCDNip/DReWTI+aiyjvpUFW2oxNZZFEppCQQakOSOJve+KbiwntQYp2VxDihrLIglPoSD91h6+YrklIylqfP62WrLr1FgWGQkUCtIvzsH+ZbnU50U3lmeUn2bikSafqhKRWFMoSL987wi8OSu6sZx3tIlZe0/7VJGIeEGhIH3aeBI+fSB6LKOulaKtNWosi4wwCgXp1aFmuK4c2juMJbWGrlhOaVUiiIw0CgXpUVM7XLMHajr1kIu21pJV3+ZPUSLiKYWCdMs5WLMfdjVEj8/cc4oJR9VYFhmpFArSrX+rgp+/FT2Wf+QMM8vr/ClIRIZFct9TZLR58iR87tXosfmZMGFrLdb9S0RkhNCegkR5rQk+tBc6Xps8JgkeLYHkNjWWRUY6hYJENIYby7UdesgG/LIY5mb6VpaIDCOFggChxvLHKuHFxujxf5wFV+b5U5OIDD+FggDwzcPwUHX02Afz4QuF/tQjIv5QKAh/PAFfOBg9VpIFP54Pps6yyKiiUBjlDpyBG8qjG8vjkuG/SyBb56aJjDoKhVGsoQ3evwdOdWgsB4B1xTA7w7eyRMRHCoVRyjm4tRL2drqd8tfOgb/K9acmEfGfQmGU+toheLgmeuxDE+Cu6f7UIyLxQaEwCj1WC/e8Fj22KAt+qMayyKinUBhl9p+BD5dDx2uT88KN5aykHl8mIqOEQmEUqQs3lus63BwhADy0AGaqsSwiKBRGjaCDWyqgolNj+V9mw2Xj/alJROKPQmGU+Oob8Ght9NjNBfDpaf7UIyLxSaEwCjxaA195PXpsaTasnavGsohEUyiMcBWN8JGK6LEJKfC7EshQY1lEOlEojGCnWuHqPVDfobGcbPCbBVCY7l9dIhK/FAojVLuDmyrglU63U/72bFg1zp+aRCT+KRRGqC+/BhtORI/9zST4u6n+1CMiicHTUDCz1Wa2z8wOmNnd3Tz/GTMrN7OXzOxJM5vhZT2jxcPV8E+HoseW58ADc9RYFpHeeRYKZpYEfA94D1AM3GhmxZ2mvQCUOufOA34LfMOrekaLPQ3w0U6N5YIUeKQE0tVYFpE+eLmnsBw44Jw76JxrAdYBV3ec4Jx72jn39uVUWwCdNT8EJ8KN5cYON0dIMXi4BKam+VeXiCQOL0NhKnC4w+Oq8FhPPgb8Pw/rGdHaHdxYDgebo8f/fQ6sHOtPTSKSeMw51/eswbyx2bXAaufc7eHHHwEucM7d0c3cm4E7gFXOubPdPL8GWANQUFCwbN26dZ7U7LWGhgays7M9ee+1nMOviL6h8vs4ymfZH7PP2H+oJWbvNRi5Wc2caPTvXNq5halDer3f2w+0DYcqkbffJZdcstM5V9rXPC9vuHgE6Lg6/7TwWBQzuxz4B3oIBADn3FpgLUBpaakrKyuLebHDYePGjXhR+0PH4Vfl0WPvGgO/XTyFtMCUmH3OvZ881PckD92wopJ1W+b79vlP3VLY96Re+L39QNtwqBJ9+/WHl4ePtgNzzGyWmaUCNwDrO04wsyXAfwBXOeeOe1jLiPViA/xNZfTY5FR4eAGk6YRjERkgz35sOOfaCB0S+iNQAfzaObfXzO41s6vC074JZAO/MbPdZra+h7eTbtS2hpbCburQWE41eGQBTFZjWUQGwcvDRzjnNgAbOo19qcP3l3v5+SNZWxA+tBde79RYfnAurFBjWUQGSQcYEtTnD8KTp6LHPjkFbpvsTz0iMjIoFBLQz9+Eb1VFj100Fr59rj/1iMjIoVBIMLvq4W87nWU6LS208mmq/jZFZIj0YySBHG8JNZabOzSW0wx+twAKhnb6t4gIoFBIGK1BuH4vHO50JcfaeVA6xp+aRGTkUSgkiM++Cn85HT32qalwyyR/6hGRkUmhkAB+fAz+vdO14JeMg2/O9qceERm5FApxblsdfKJTY3lGGjxUDCn62xORGNOPlTj25ln4wB4422HNwowA/K4EJqixLCIeUCjEqZYgXLsXjnRaFPIH82BJjj81icjIp1CIU586AJvrosc+Nx0+XOBPPSIyOni69lG8udT3ZXdb+rX079FzsthXmhc1Nv7NJrb/pppLh3D7i6ce8H7ZXRFJbNpTiDOn81LZvyQ3aiy9oY0FW2oJeHM/JBGRCIVCHDmbnsSeCyfgkiwyFmgLsnBzNSktwV5eKSISGwqFOBEMwJ4L82nJSIoaL9pWS/bpVp+qEpHRRqEQBxywf2kudfnRd8YprDjNxKomf4oSkVFJoRAHjs7O5tg52VFjuceaOGfP6R5eISLiDYWCz07lp/HKkvFRYxn1rRRvqcHUWBaRYaZQ8FFzRhJ7LszHBd5pLCe1Blm4uYaUViWCiAw/hYJP2gOwZ2U+reldG8tZdWosi4g/FAo+cMD+ZbnU50Y3lmfsPc2EI2osi4h/RtUVzcPNAXW5qRyeN4bayek8nTSdwBRHZn0rDeOjAyHvaBOz9qqxLCL+Uih4JGhQsTyPmqkZBAMG4b5BMNloGBe9xGlmXSvFW2uw7t5IRGQYKRQ84OgQCMndHKGzDj/+2x0lm6tJVmNZROKAegoeqMtN7TkQOjEc7bpbjojECf008sDhuTmhQ0b94Mw4NFc3SBCR+KBQ8EDtlIxID6FPAQvNFxGJAwoFDwSTBtYyHuh8ERGvKBQ8EGgfWNN4oPNFRLyiUPBA3tEmCPbzB33QheaLiMQBhYIHpu+vJ9DPUAgEHYX76z2uSESkfxQKHhhzooX8I00E2nq/W1qgLUj+kSZyTrQMU2UiIr1TKHjACC1sFwmGznsNQRcJhKJttbqSWUTihq5o9kjAQfHWWupzUzk0N4faKRm4JMPaQz2Ewn31jDmpPQQRiS8KBQ8ZoUNJJVtqAbhhRSXrtsz3tygRkV7o8JGIiEQoFEREJEKhICIiEQoFERGJUCiIiEiEQkFERCIUCiIiEqFQEBGRCE9DwcxWm9k+MztgZnd383yamT0Ufn6rmc30sh4REemdZ6FgZknA94D3AMXAjWZW3Gnax4CTzrlzgW8DX/eqHhER6ZuXewrLgQPOuYPOuRZgHXB1pzlXAz8Jf/9b4DIz0/pwIiI+8TIUpgKHOzyuCo91O8c51wacBvI8rElERHphznlzK0gzuxZY7Zy7Pfz4I8AFzrk7OszZE55TFX78anhOTaf3WgOsCT+cB+zzpGjv5QM1fc6Snmj7DZ224dAk8vab4Zyb0NckL1dJPQJM7/B4WnisuzlVZpYMjAVqO7+Rc24tsNajOoeNme1wzpX6XUei0vYbOm3DoRkN28/Lw0fbgTlmNsvMUoEbgPWd5qwHPhr+/lrgKefVrouIiPTJsz0F51ybmd0B/BFIAn7knNtrZvcCO5xz64EfAj8zswPACULBISIiPvH0JjvOuQ3Ahk5jX+rwfTNwnZc1xJmEPwTmM22/odM2HJoRv/08azSLiEji0TIXIiISoVAYJn0t+SE9M7Mfmdnx8CnMMkBmNt3MnjazcjPba2af8rumRGJm6Wa2zcxeDG+//+t3TV7S4aNhEF7yYz9wBaGL+LYDNzrnyn0tLEGY2cVAA/BT51yJ3/UkGjObDEx2zu0ysxxgJ/B+/fvrn/AqC1nOuQYzSwGeBT7lnNvic2me0J7C8OjPkh/SA+fcJkJnp8kgOOeOOed2hb+vByrourqA9MCFNIQfpoS/Ruxv0wqF4dGfJT9EPBdeiXgJsNXfShKLmSWZ2W7gOPCEc27Ebj+FgsgoYWbZwMPAp51zdX7Xk0icc+3OucWEVmZYbmYj9jCmQmF49GfJDxHPhI+FPwz8wjn3iN/1JCrn3CngaWC137V4RaEwPPqz5IeIJ8KN0h8CFc65b/ldT6IxswlmNi78fQahE0Yq/a3KOwqFYRBeFvztJT8qgF875/b6W1XiMLNfAc8D88ysysw+5ndNCWYl8BHgUjPbHf56r99FJZDJwNNm9hKhX/CecM79weeaPKNTUkVEJEJ7CiIiEqFQEBGRCIWCiIhEKBRERCRCoSAiIhEKBRERiVAoiIhIhEJBZIjM7Hwzeym87n5WeM39Ebs2joxsunhNJAbM7B+BdCADqHLOfc3nkkQGRaEgEgPhNa22A83Ahc65dp9LEhkUHT4SiY08IBvIIbTHIJKQtKcgEgNmtp7QHfVmEbr15R0+lyQyKMl+FyCS6MzsFqDVOffL8P24nzOzS51zT/ldm8hAaU9BREQi1FMQEZEIhYKIiEQoFEREJEKhICIiEQoFERGJUCiIiEiEQkFERCIUCiIiEvH/AbpoPTg93rDjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] diff --git a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb index 6bae69baa..59882e8f2 100644 --- a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb +++ b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb @@ -22,14 +22,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ - "#!/usr/bin/env python\n", - "# coding: utf-8\n", - "from __future__ import absolute_import, division, print_function\n", - "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import numpy as np\n", @@ -57,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ @@ -97,18 +93,9 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 35, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Estimated value:\t1.2580\n", - "Probability: \t0.8785\n" - ] - } - ], + "outputs": [], "source": [ "# set the strike price (should be within the low and the high value of the uncertainty)\n", "strike_price = 2\n", @@ -121,7 +108,112 @@ " uncertainty_model,\n", " strike_price=strike_price,\n", " c_approx=c_approx\n", - ")\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the probability distribution\n", + "Next, we plot the trained probability distribution and, for reasons of comparison, also the target probability distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VOX1+PHPSQgkYQk7yr4oO8guCrKIRcUqoiL+0CJ111ptVVpLreJS61KX2mr52motrYpacataFSEgsskSlR2RHRUIBAhJIGHO749nEiY3k2QmmWRmyHm/XnnB3Ln3zpkQcubZziOqijHGGFPdEqIdgDHGmJrJEpAxxpiosARkjDEmKiwBGWOMiQpLQMYYY6LCEpAxxpiosARkjDEmKiwBGWOMiYqoJyAR6S4in4pIjojsEpEHRCSxnGt6iMj//OcfEZFtIvJ3ETk5yLljReRrEckTkTUiMqHq3o0xxphQ1Yrmi4tII2A2sAYYC3QCnsAlxnvKuDQN2AzMAHYBHYD7gP4iMlBVC/z3Hwq8CTwH3AaMAV4Vkf2q+nF58TVt2lTbt29fsTfncfjwYerWrRuRe1WleIkT4idWizOy4iVOiJ9YIxnn8uXL96pqs5BOVtWofQG/AfYDDQKO/QrICTwW4r1+BCjQL+DYR8Acz3kfAAtCuWf//v01UubOnRuxe1WleIlTNX5itTgjK17iVI2fWCMZJ7BMQ/y9He0uuPOBj1T1YMCxmUAKMDzMe2X6/6wNICJ1gJHA657zZgJniEha+OEaY4yJlGgnoK7AusADqroN1wLqWt7FIpIgIrVFpAvwCPAFsNT/dCcgyXt/YC3ufXeuXOjGGGMqQzSK1bBFJB+YoqpPe47vAGao6tRyrv8fcK7/4XJgjKru9j83BFgA9FXVjIBrTgE2AudqkHEgEbkBuAGgRYsW/WfOnFnRt1dMdnY29erVi8i9qlK8xAnxE6vFGVnxEifET6yRjHPkyJHLVXVAKOdGdRJCBPwcaAycipu08KGIDFHVvIreUFWfB54HGDBggI4YMSIScZKenk6k7lWV4iVOiJ9YT6Q48/Pz2bFjB3l5Ff4vVmlpaWkkJydH7fXDES+xViTO5ORkWrduTVJSUoVfN9oJaD9uRptXI/9zZVLVjf6/LhGRz3Az4yYCLwZc771/o4DXNsaEYceOHdSvX5/27dsjIlGJ4dChQ9SvXz8qrx2ueIk13DhVlczMTHbs2EGHDh0q/LrRHgNah2esR0TaAKmUHLspk6puBfYBHf2HNgH53vv7H/uADRWI15gaLS8vjyZNmpSbfFRhyUEYvxrqzoeEdPfn5ath6UH3vIlfIkKTJk0q3RKOdgL6EDhXRAJT7wQgF5gXzo38ExGa4FpBqOoRYC4w3nPqBGCRqh6oaNDG1GTlJZ98H0xcC2dnwKw9kONz6yNyfPDmHnd84lp3nolfkWgBR7sLbjpugegsEXkU13qZBjwZODVbRL4B5qnqtf7HfwQKgCVAFtANt35oE26adaEHgXQReRp4G7cQdQxwXtW+LWNqJlWYtA7e3esSjpcPOOyDd/a6817pBlHqyTMxIKotIFXdD4wCEoH3gPuBp3BVDQLV8p9TaBlwFvAC8D4uib0JDFbVwwH3XwBcBpyDW5R6ETAx2Oy3mursW7YV+9qw7WiJY8aEaukheK+U5BMo1+fO++JQePfPysrib3/7W8UDDEN6ejoLFy4M6dz27duzd+9eAM4888wyz3344YfLfH7MmDFkZWWxZcsWevbsGVqwft6Yp0+fzowZM8K6R3WKdgsIVV0DnF3OOe09j2dSvKVT1rVv41o/xpgIkfTK3+OwD05fEfw5HRH8eFZWFn//+9+54447Qn6dolX3CeF93k5PT6devXrlJhSv8pLWww8/zNSpJVeYFMb5wQcfAO69hssb80033RT2PapTtMeAjDEmZHfffTebN2+mT58+TJkyhezsbEaNGkW/fv3o1asX77zzDgBbtmyhS5cuTJo0iZ49e7J9+3ZeeOEFOnfuzKBBg7j++uu59dZbAdizZw+XXnopAwcOZODAgXz++eds2bKF6dOn89RTT9GnTx8+++yzYnFkZmYyevRoevTowXXXXUfgesrC9TTfffcd5513Hn369KFnz5589tln3H333eTm5tKnTx+uvPLKoHEGtqYKCgq48sor6datG5dddhk5OTlA8RbXsmXLGDFiRNCYp02bxh//+EcAMjIyGDx4ML1792bcuHHs3+8mAo8YMYJ7772XQYMG0blz5xLvtSpZAjLGxI1HHnmEDh06kJGRweOPP05ycjJvvfUWK1asYO7cudx5551FyWDjxo3ccsstrF69mqSkJB588EEWL17M559/zrp1xyfZ3n777fzyl7/kiy++4M033+S6666jffv23HTTTfzyl78kIyODs846q1gc999/P0OHDmX16tWMGzeObdtKdlW/8sorjBo1ioyMDL788kv69OnDI488QkpKChkZGbz88ssl4mzXrl2xe6xfv55bbrmFtWvX0qBBA5577rlSvzflxTxp0iQeffRRvvrqK3r16sX9999f9FxBQQFLly7l6aefLna8qkW9C84YYypKVZk6dSrz588nISGBnTt38sMPPwDQrl07Bg8eDMDSpUsZPnw4jRs3BmD8+PFs2OBWYsyePZs1a9YU3fPgwYNkZ2eX+brz589n1qxZAFxwwQU0atSoxDkDBw5k8uTJJCQkcPHFF9OnT5+g9wqM06tNmzYMGTIEgKuuuopnnnmGu+66q8zYgjlw4ABZWVkMH+5KbF599dWMH398gvBFF10EQP/+/dmyZUvY968oS0DGmLCVNkZz+Wo31TqUGdYJwGXN4LUeFY/j5ZdfZs+ePSxfvpykpCTat29ftDYl1O0FfD4fixcvjnjFgmHDhvG///2PefPmMXnyZO644w4mTZpU4ryy4vROdS58XKtWLXw+912ORFWK2rVrA5CYmEhBQUGl7xcq64Kr4RQ40Lg2q85oyrxLWnNjmx8x75LWrBrchIONa2PrBU047mwDKSH+VklOcOeHo379+sVaJwcOHKB58+YkJSUxd+5ctm7dGvS6gQMHMm/ePPbv309BQQFvvvlm0XOjR4/mz3/+c9HjjIyMotc6dCj4NL1hw4bxyiuvAPDhhx8WjacE2rp1K82bN+f666/nuuuuY8UKN+MiKSmJ/Pz8kN7vtm3bWLRoEeC69IYOHQq47rbly5cDFHsvpcWclpZGo0aNisZ3/vWvfxW1hqLJElANlu+DNac3IWNEc/a0SsFXKwFE8NVKYE/rVFaOaM6a05vYgkETskH14cKm5SehlAS4qCkMDLNKTZMmTTj99NPp2bMnU6ZM4corr2TZsmX06tWLGTNm0LVr8CL6rVq1YurUqQwaNIghQ4bQvn170tJcla5nnnmGZcuW0bt3b7p378706dMBuPDCC3nrrbeCTkK47777mD9/Pj169GDWrFm0bdu2xGump6dz5pln0rdvX1577TVuv/12AG644QZ69+7NlVdeWe777dKlC88++yzdunVj//793HzzzUWvf/vttzNgwAASE4+vUCkr5n/+859MmTKF3r17k5GRwb333lvu61e1qFbDjnUDBgzQZcuWReResVaQUtWtRn99l88lnlIkFPi4vGVCTC4YjLXvaWlOpDjXrl1Lt27dyjwn3+cWmb631633Cfz8koBr+VzUFGZ0haQKfASuaH21worPBQUFjBs3jmuuuYZx48aFH0AYTtRacIWC/TyISMjVsK0FVEMVLhgsK/mAe74iCwZNzZWU4CoczOkDlzaDugnuF03dBDfmk94HXu1eseRTGdOmTSuaEt2hQwcuvvji6g3AlGCTEGqoJ7a7T6ehyPW58yszWGxqFhEY1ABej6GfmcL1MCZ2WAuohno/M7SZSuDOez+z3NOMMSYsloBqqFBbPxU93xhjymMJqIYKdapsRc83xpjy2K+VGuqCJuH94w9rWGWhGGNqKJuEUEPd2QY+yHQViUMxP8uNA13QpGrjMvEl0tt1zHmu5HqaQFlZWbz44othVcMuNGbMGF555RUaNqz8p6l69eqVW65n2rRpJCUl8dvf/pZ7772XYcOGcc455wQ99+2336Zz585079496PPTp08nNTWVSZMmMWLECP74xz8yYEBIM53JysrilVde4ZZbbgFg165d3HbbbfznP/8J6fqqZC2gGqpwwWBCQWgZ6LAPLvwaHtoCPls6ZqKkcDuGYMorIfPBBx9EJPlUxAMPPFBq8gGXgALr0QUqKCjgpptuClrGJxRZWVnFipi2bNkyJpIPWAKqsUTcQsBGP5RSR8qnJTKNAr/bAuNXw6HqKxdlTBHvdgzp6emcddZZXHTRRUWth4svvpj+/fvTo0cPnn/++aJrC7cw2LJlC926deP666+nR48ejB49mtzcXAA2bdrEeeedR//+/TnrrLOKqmZv3ryZM844g169enHPPfeUGt/vf/97OnfuzNChQ1m/fn3R8cmTJxf90r/77rvp3r07vXv35q677mLhwoW8++67TJkyhT59+rBp0yZGjBjBL37xCwYMGMCf/vSnYtsqgCulU7imaenSpQAlzunZsydbtmzh7rvvZtOmTUXfs8CN7vLy8vjpT3/K4MGD6du3L3PnzgXgpZde4pJLLuG8887j1FNP5Ve/+lXF/9HKYF1wNVhSAjT+Po/MVqnHD6qScExpsiuXNusPcbBpHTb3bcSxgOtm7YX1K+DtnnBKaonbGlNlHnnkEb766quiem3p6emsWLGCVatW0aFDBwBefPFFGjduTG5uLgMHDuTSSy+lSZPifccbN27k1Vdf5W9/+xuXX345b775JldddRU33HAD06dP59RTT2XJkiXccsstzJkzh9tvv52bb76ZSZMm8eyzzwaNbfny5cycOZOMjAwKCgro169fiR1NMzMzeeutt1i3bh0iQlZWFg0bNuSiiy7ixz/+MZdddlnRuUePHqWwEsu0adOK3ScnJ4eMjAzmz5/PNddcw6pVq8r8nq1ataroexZY7frZZ59FRFi8eDE7d+5k9OjRRVXCMzIyWLlyJXXq1KFLly78/Oc/p02bMIv3lcNaQDVcVoviFYAvPvANw2ftoOfiTNL2H6XNxkN8dBo08XxUWZ0DA1fA/2x9kImyQYMGFSUfcLXdTjvtNAYPHsz27dvZuHFjiWs6dOhQtD1C4RYE2dnZLFy4kPHjx9OnTx9uvPFGvvvuOwA+//xz/t//+38A/OQnPwkax2effca4ceNITU2lQYMGRVscBEpLSyM5OZlrr72WWbNmkZpa+ie4CRMmlPpcYSzDhg3j4MGDFdo9FWDBggVcddVVAHTt2pV27doVJaBRo0YVxdu9e/dSC71WhiWgGuyYwv7mxRNQ99y9Jc4b1QiW9YfTPFXjswpgzNfwyFZXW86YaAjcziA9PZ3Zs2ezaNEivvzyS/r27Rt0u4I6deoU/b1wCwKfz0fDhg3JyMgo+lq7dm3Red6tESqiVq1aLF26lMsuu4z//ve/nHfeeSG9L69g2zQEbtEAld+mIdj3KNIsAdVgyw5BQe3jPwJJR47RJj940bf2KbCwH1zRvPhxBX6zGa5YA4ePBb3UmIjxbsfgdeDAARo1akRqairr1q1j8eLFId+7QYMGdOjQgTfeeANwm919+eWXAAwZMoSZM2cCFO1k6jVs2DDefvttcnNzOXToEO+9916Jc7Kzszlw4ABjxozhqaeeKrp/WVs/BPPaa68BrgWTlpZGWloa7du3L9ryYcWKFWzevLnce5911llF72fDhg1s27aNLl26hBxHZdkYUA32yb7ijxv9kFfmJ5LURFdksn89+PW3xUv5vL4H1uXAWz2hY0pVRGtiUXnTpiMtcDuG888/nwsuuKDY8+eddx7Tp0+nW7dudOnSpdSdRkvz8ssvc/PNN/PQQw+Rn5/PFVdcwWmnncaf/vQnJk6cyKOPPsrYsWODXtuvXz8mTJjAaaedRvPmzRk4cGCJcw4dOsTYsWPJy8tDVXnyyScBuOKKK7j++ut55plnQpqhlpycTN++fcnPz+fFF18E4NJLL2XGjBn06NGD008/nc6dOxd9z4YMGVL0PfvZz35WdJ9bbrmFm2++mcGDB1O7dm1eeumlYi2fqmbbMZThRN6OAWDYSvjswPHHXb7I5I4Wy5m5uPieKsF+yXy8z7V69nta5Y1rwWvd4ZzGVRFxcbH4PQ3mRIozlO0Yqlq8bHEA8RNrjd2OQUS6i8inIpIjIrtE5AERSSznmoEi8g8R+cZ/3XoRuU9Ekj3nTRMRDfJVesdrDXGoABYdLH6scWlTsoMY3Ri+6A+9PN3U+wrg3K/gj9tsXMgYU7aodsGJSCNgNrAGGAt0Ap7AJcbSJ9vDBP+5jwIbgd7Ag/4/L/WcewDwJpy11HDzsqAgIEGkHMonOSe8QZxOKbCwL/x0Pfxnz/HjPmDKt7AyG/7WxXXdGWOMV7THgG4CUoBLVPUg8ImINACmichj/mPBPKKqgdO10kUkD/g/EWmnqoHzBQtUNfSRyBriE88W9o2/r9iMmXq14PXu8Og2mLrZTUoo9MpuWJPj1gu1Sy71FibOqGpEZoSZ+BaJ4Ztod8GdD3zkSTQzcUlpeGkXeZJPoZX+P1tGLrwTlzcBlVoRIQQicHc7eL8XpHlaOxnZMGA5zN0f/FoTX5KTk8nMzIzILx8Tv1SVzMxMkpMr98ky2i2grsCcwAOquk1EcvzPlZzHWLozcL0/mzzHG4rIXiANWAU8qKqzKh5y/NuRB2tzjj8Wn9JoT+XWDACc38SNC128yrV8Cu3Nhx99CU+cAre1cgnLxKfWrVuzY8cO9uzZU/7JVSQvL6/Sv/iqS7zEWpE4k5OTad26daVeN6qz4EQkH5iiqk97ju8AZqjq1BDvcxLwFfCBqk4OOH4V0BzXOqoP3AiMAS4tLQmJyA3ADQAtWrToXzj3v7Kys7OpV69eRO5VWR9yEo9xfKZbpyP7+dUPXwDQuG4e+w4X/0Hs3LZ2WPfPIZFH6MpnNCvx3Gi+5w42UCfk/VhLF0vf07JYnJEVL3FC/MQayThHjhwZ8iy4uE9AIlIbN5GhNdBfVUvt7BHXcb0QSFHVPuXd+0Sdhj1xDby6+/jj9qsP0GG1m499xeB1IU3DLo9P4eGtrnipV/96br1Qm0p+MIyl72lZLM7Iipc4IX5ijWSc8TQNez+ua8yrkf+5MvkTygygBzCmrOQDoC7bzgJ6lzfV+0TlU5jtHf/5Pjfir5MgcE97eLcnNPB8p5dnQ//lbo8hY0zNFe0EtA4o9nFbRNoAqf7nyvM0bvr2WFUN5XxwE7Vq7AjqV9mwJ//448SjPhrsO1plr3dhU1jaH7p4qiPsyYdRX8KzO229kDE1VbQT0IfAuSISuAR3ApALzCvrQhH5DXArcJWqLgjlxfwtpkuBL1W1RlYuKzH7bU8eCVWcALqkwpL+cKFnN9UChVs3wnXrIa9G/msYU7NFOwFNB44As0TkHP8EgGnAk4FTs/0VD14IeDwReBjX/bZTRAYHfDULOG+eiNwmIqNFZBzwPnC6/zVqpI8jOP06HGm13Hqg+9qVfO7F72F4Buw8Ui2hGGNiRFQTkH/MZhSQiJtyfT/wFHCf59Ra/nMKjfb/ORlY5PkKrE74DfAL4B3g37iZcBeo6ruRfB/xIvcYfOYZd6noAtSKSBCY1gHe6gH1PONCSw9B/2Xw+YHg1xpjTjzRXgeEqq4Bzi7nnPaex5Nxyae8e19bidBOOAsOwJGA7ra2dSAlu/r31r64GSxJdeuFNgbMf/ghH0ZmwJ9PhRttObExJ7xod8GZauQd/xndGKK1JrR7XVjaD8Z4qmbnK9y0AW5cD0cqv1TIGBPDLAHVIN4E9KNG0YmjUMMkeLcX/DbIMqPnv4OzM+A7Gxcy5oRlCaiG2H3U1WUrJLittqMtUeChjvBGd6jr+WlceNDVkVts40LGnJAsAdUQ3sWn/epBk6ToxBLMZc1hcT/o6KmOsOuomyH3wnduvdCSgzB+NdSdD2cznLrz4fLVsPSgrScyJt5YAqohSnS/VcOOpeHqWc8VMx3taZkdVbdWqPMS1y03aw/k+EARcnzw5h53fOJayLdxI2PihiWgGkAVPtlX/Fi0x39K0zgJPugNv2pT8rlv8lzi8eYYH3DYB+/shUnrrCVkTLywBFQDrMuBnQHVdlISYEiwCnwxIlHg0U7wajcXa6hyffDeXvjiUNXFZoyJHEtANYC3+214Q6gTB//yV7SARf0gNcwk9MT2qovJGBM5cfBryFTWx3HS/RbMafXCqxzrA97PrKpojDGRFHYlBBHpBQwCTgKSgX3ABmBhedshmOp31AfpnvI78ZSAAPLCnFiQaxMRjIkLISUgEekI3AxcCbTAfdDMwhUSbYjbPsEnIvOAvwOvqar9GogBiw+6AfpCJ9WGnnWjF09FpCS4yQfhnG+MiX3l/lcVkb8Dq4E+wANAXyBZVZupamtVrYfb9vpC4GvgMWCtiAyturBNqLzjP+c0AolW/Z0KuqBJ6H3FCf7zjTGxL5QWUC7QVVW3lnaCqu7F7e3zoYjcAYwHWkUmRFMZ3unX3jU28eDONvBBZvGWXGnqJLjzjTGxr9wEpKo/D+eG/q631yockYmY/fklpySfE4cJaFB9t7PqO3vLH99JTYAeqdUTlzGmcirVWy4iPUXkZyJyq39ygokhc7KKL9rsWRdOrhO1cCpMBL57dhv1Nx8mocAHvtLnxWUWuIoIBTYCaUzMq3ACEpGbgfnACGAMsFREbolQXCYC4qX6QSgSFLovyaRv+m6a7cghocCHqJJQ4CMpr/ieRu9mwm3fWEUEY2JduV1wIpKqqjlBnvo1cIaqrvefdy1uksJzkQ3RVFSsbb9QWQI02HeUnovdQp8rBq9j5uKuFCQJK0a24HDD2kXn/nUXtKkDvwmyBbgxJjaE0gLaICJXBjkuFO/hsU6PGPJtLnwbsNt2bYFhDaMXT1Wqla+c9tke2ni6F6duhn99H52YjDHlCyUBTQTuFJHFIjIo4PhjwGIReV1E/otr+TxSFUGa8HlbP0PSoG5idGKpDnVyj/Fhb0jzvMdr1sPsfcGvMcZEV7kJSFXnA/1xC0zfEZEZInKyqj4LnA0sAD7Gdcf9uUqjNSE7kcZ/QtWjLrzTy7X2ChUoXLIavswu/TpjTHSENAlBnb8DXYAfgFUi8ltgnao+4//KqMpATeiOKXwa5+V3Kmp4Q5jRrfixQ8dgzFewLS/4NcaY6AhrFpyqHlTVKcDpuHpw60TksiqJzFTYskOQFTAxrHEt6Fs/evFUtwnN4Y+dih/bdRTO/8qtjTLGxIZQSvGkishDIrJERFaKyPNAnqqOBW4A7hOReSJyWpVHa0Li7X4b1cjtsVOT3NEabvfU4liTA+NWwRGbLmNMTAilBfQCrs7bE8DvcFWwPxERUdVPgNOAN/zHng83ABHpLiKfikiOiOwSkQdEpMzhchEZKCL/EJFv/NetF5H7RCQ5yLlD/MkzT0Q2i8ht4cYYb7wTEOKx/E5licATp8ClTYsfn3cArl5b5lpWY0w1CSUBnQ/cpaqvq+p/gatxY0GdwJXeUdW/AF1xdeNCJiKNgNm4LV/G4tYR3QncX86lE/yv/yhuEeyzwB3Ay577nwJ8BGz2n/d/wJMicl04ccaTQwWw6GDxYz9qHJ1Yoi1R4F/dYEiD4sdf2wO/2hSdmIwxx4VSjHQd8BMRWQ7kATcCh4EdgSep6j7g9jBf/yYgBbhEVQ/iWlENgGki8pj/WDCP+AugFkoXkTzg/0SkXUDh1CnALuAqVS0A5ohIW1y34QuqJ95a+XlZkB/wrk5NgXYl2oU1R0oivNsLhqx0W5MXemIHtEmG21tHLzZjarpQWkBXA6cCe4FDwPXAeFWNxJyi84GPPIlmJi4pDS/tIk/yKbTS/2dLz/1n+ZNP4P1bAz0rFHGMO9GqH0RC4yT4sJfbCynQL7+BN/dEJyZjTGjrgNar6hlAfaCpqnZS1f9F6PW74lpYga+3DcjxPxeOM3DVGDYBiEhdoI33/sDagNc+4VgCCq59CrzfC+oFjC4qcOUaWJBV6mXGmCok0eyFEpF8YIqqPu05vgOYoapTQ7zPScBXwAeqOtl/rBWum3Ccqr4dcG4tIB+4UVVLTJoQkRtws/to0aJF/5kzZ1bkrZWQnZ1NvXr1InKv0uyhDpdzRtHjBJR3WEA9jpV6zYZtR4s9blw3j32Hi/fZdW7raTpEgTdOKBlrKHEupRG/oTc+jk8LrE8+f2ElbQlW8rDyquPfPhIszsiLl1gjGefIkSOXq+qAUM4NpRjpT4BXVLX032IlrzkFOFlVPwv1mooSkdrA60A28MvK3s+flJ4HGDBggI4YMaKytwQgPT2dSN2rNC99B6w//nhwA+HH/c4q85oHbtlW7HFhgc9Acya1jVSIFeaNE0rGGkqcI4Bm37kSPYUOkcS9dQaxuB+cVAXbVVTHv30kWJyRFy+xRivOUMaA7gA2iciDZa31EZEmInKliLwHZAAnh3Dv/UBakOON/M+VSUQEmAH0AMaoauA1hR0r3vsXdkqVe/94Y91vofnpyXB/++LHth6BMV+7WYTGmOoRyhhQX9zWCyOBlSJy0L+u5n0RmSUic0RkM7Ab+BNuDKaLqr4ewuuvwzMWIyJtgFRKjt0E8zRu+vZYVfWOJR0GtnvvH/A4lPvHDZ8GSUA1dPp1KH7XDq7zfERamQ3jV0O+LVQ1plqEWgvuNVUdipsNNwXXwikA6uJqw/0TOA/X7fYLVd0Z4ut/CJwrIoGFYibg1hPNK+tCEfkNcCtuivWCMu4/zrOwdQIuMa0KMca48FU27AkoM1M/0W1lbYITgb+eCmM8Sfqj/XDDBtvMzpjqEMo6oCKqugn/LLMImQ7cBswSkUeBjsA04MnAqdki8g0wT1Wv9T+eCDwMvATsFJHBAffcpKqFk2sfB64E/iUifwMG4tYx3XyirQHytn5GNoSkSm24fuKrlQCvdYeRX7r6eYVe+h7a1oH7O0QvNmNqgqj+ivKP2YwCEoH3cBUQngJ1xlSyAAAgAElEQVTu85xay39OodH+PycDizxfFwTc/xtcy+wUXGvoFuBOf2XvE4qN/1RMvVrw317QwbNY94Gt8Pdd0YnJmJoirBZQVVDVNbh9hco6p73n8WRc8gnl/gtwlbtPWHnH4LMDxY+NtvGfkLWoDf/rDWeugMyASQg3bYCWdWBMk+jFZsyJzDppTgALDkBewMB52zquBI8JXedUeK8XJAf8jziGm5SwrLSCUMaYSol6C8hU3sdBut+khm2/EAlnpMGr3dwOqoUDhDk+uOBrWNQPOoaY1M8usbbqaLF1THOei/66KmNiQVgtIBG5UESs1RRjbPp15FzcDP58avFju/PhvK9gb8liDMaYSgg3mbwN7BCRR0WkW7lnmyq3+yhkZB9/LMCohlEL54Tws1bw6zbFj23MhQtXQU7I9UCMMeUJNwF1Av4GXA6sEpFFInK9fwsFEwWfelo/fetB0+iXbot7D3eEic2LH1t8EK5cC8dOqAn8xkRPWAlIVbeo6n2q2gH4EfANbtr0dyLyLxEZWRVBmtKV2P3Uut8iIkHgxa5uPVWgt/fCbRttoaoxkVDh8RxVnaOqPwE6A8txCz5ni8i3IvJLf9VpU4VU4eN9xY/Z+p/IqZMAb/WEXnWLH39uFzy+PToxGXMiqXACEpHhIvISrv5yT9y22KOB/+AWlM6IRICmdOtyYGfAwHhKAgwJVtrVVFhaLfigF7T2VMn+9bfwyg/RicmYE0VYrRQRaYfbIfVqoD2Qjts7Z5aqHvGf9qmILAL+HbkwTTDe7rdhae5Tu4ms1sluR9WhK+FAwCSEyevcLqtnW6vTmAoJ99fVt7gtuV8BTlHVUar6akDyKbQaWBqJAE3pbPp19elZz3XHJQWsr8pXGLfKFYI1xoQv3AT0Y6Cdqv5OVTeXdpKqblBVm5BQhfJ9kO7ZSnq0fRKvUiMbwT89m3scPAZjvoLtedGJyZh4Fm4CGgicFOwJETlZRO6tfEgmFIsPQnZAd9BJtaFn3dLPN5Hx/1rAYx2LH9t5FM7/CrLyg19jjAku3AR0H9C6lOdaUrKKtaki3vI751j5nWpzVxu4tVXxY6tzYNxqOGKb2RkTsnATkHC8TJZXa07Aba5j1Sc2/TpqRODpU2Bc0+LH07PcxARbImRMaMqdBScihbPewP3f+quIeOsDJwO9gI8jG54JZn8+fHGo+LFzLAFVq0SBl7vBqC9hUcD/hpm7oW3vhnT6Kqv0i40xQGjTsHOATP/fBTgAeD5/cxS34dtzkQvNlGZuFgT29PRIdfvWmOqVkgjv9oQhK2FD7vHj27o2QFHy6iaReXIycxPbkNBSabIrl7YbDqFq3aXGQAgJSFXfAN4AEJF/AA+UNQPOVD0rvxM7mtaGD3vDGStc1exC27s0cP0FCS7T+GoJe1qnktkyhYlrYUZX2zLdmHBrwf3Ukk/0Wfmd2NIxBd7vBamBrRqRouRTJEHw1Urgnb0waZ3VkzPGPoPFmW9z4duANSe1BYbZ9gtRN6ABPNSx/PMAcn3w3t6S43jG1DShTEJYCkxW1TUi8gXlTPJR1UGRCs6U5O1+OzMN6iZGJxZT3KKDZU8TDZTrgye2w2s9qjoqY2JXKJMQVgO5AX+3joMosunXsev9zND/c/j85xtTk4UyCeGnAX+fXKXRmDIdU5jjmd1rCSh25Ia5CDXc84050UR9DEhEuovIpyKSIyK7ROQBESmzU0lEaovI4yLymYjkikjQD54i8pKIaJCvrsHOj3XLD8H+guOPG9eCfvWjF48pLiXM/03hnm/MiSaUMaByx30ChTMGJCKNgNnAGmAsbsvvJ3CJ8Z4yLk0FrsNV3F4InF3GueuAn3qObQk1xljinf02qpFbEGliwwVN4M09xddolUb85xtTk4U6BlRV4z43ASnAJap6EPhERBoA00TkMf+xElQ1S0Qaq6qKyK2UnYAOq+riyIde/Upsv2DdbzHlzjbwQSYcDiEDKbAvH/KOQbJNIjE1VChjQJOr8PXPBz7yJJqZwKPAcOC9MuKqUZMhsguKl3wBS0CxZlB9uLApvL7Lh69W+f1rs7NcKZ+3e0Kz2tUQoDExJtq90F1xXWRFVHUbrvxPpMZpuovIQRE5IiILRGR4hO5breYdcBugFTolBdqnRC8eU5KIq3DQdGcuCQU+8Hk+I/m0xOrThQdh8ApYn1ONgRoTI6K9DqgREKxq437/c5W1EliCG2NqBtyJ6+YbqqpxtWOrd/q1bT4Xm5ISoPuSTA41rs22zvXJbJmCJgpyzNWCa7HtMMdGN2dtQML5Ns+V8pnVA0bYv6upQaS8nqzA+m8i8hLlJyDvgH9Z984Hpqjq057jO4AZqjo1hHvcCvxZVcsdjheRVNyY1peqenEp59wA3ADQokWL/jNnziz/jYQgOzubevXqVfj6yQxkK8d3nHuQVQxlb6Xj2rDtaLHHjevmse9wcrFjndtGv3/IGyeUjDUW4oTyv6cnt03lPnqw0vMZqxY+7mI95/JDtcTpVdmf0eoSL3FC/MQayThHjhy5XFUHhHJuuQmoKonIbuBZVb3fc/wwME1VHw/hHiEnIP/5zwIXqmrb8s4dMGCALlu2LJTblis9PZ0RI0ZU6NodedAmYBpFIpA5FNJCmUJSjrNv2Vbs8RWD1zFzcfHezznPlfutqnLeOKFkrLEQJ5T/PZ3zXFuO+uCmDfCP70tef287mNa++itmV+ZntDrFS5wQP7FGMk4RCTkBhf0rTERqA5OBQcDJwHe4bq5/qmrJj6llW4dnrEdE2uCmWa8LekXlKXFWzWG2Z/bboAaRST4memonwAtd3Fjebz3lfR/YCpty4YWuUCfao7TGVKGwfrxFpBuwEXgW6Akc8//5LPCNiHQP8/U/BM4VkcDllBNwpX/mhXmvcolICnABsDzS965KNv36xCQCU9vBzO5Qx9PaeXk3/OhLyMwPfq0xJ4JwP189j9uQrpOqDlbVi1R1MHAKbjLB9DDvNx04AswSkXP84y/TgCcDp2aLyDci8kLghSJyvohcBvTxP77M/9XO/zjNXynhRhEZJSITgLlAS+DhMOOMGp+WbAFZAjqxTGgOc/pA06Tixz874CYnbLQZcuYEFW4CGgDc658qXcT/+D5gYDg3U9X9wCjcsMZ7wP3AU/57BarlPyfQX3Eb5V3rf1y4cd5I/+MjwB5cRYUPcMkzCxiuqpEZ2KkGXx8uvtFZ/UQ4vUH04jFV48w0WNwPunim1m/MddO0P7Mdvs0JKNyRhC1AcinPJQMlR4rLoaprKLuSAaraPpRjnufzgEvCjSfWeMvvjGxoO2meqDqlwMJ+cMkqt+6r0L4COOdL+EdXmNgievEZE2nh/iq7G3hIRE4PPCgig4EHgV9HKjDj2PhPzdI4CT4+DX7iSTRHFa5cCw9usZ1UzYmjIsVIGwAL/VOodwPN/V+ZwFTg7SqIs0bKO+bGAQL9qHF0YjHVp3YC/LOrmyF335biz927xc2Qe76LO8+YeFaRYqSrqygW47HgAOQFFLZsUwc6W/mdGkEE7m0PHZPh2vWuBVTonz/A1iOuckKjpFJvYUzMi3YxUlOGYN1v1b040UTXVSdB22QYt8qNBRVKz3Iz5D7oDR3tQ4mJU9aIj2HeBDTaut9qpGENYVE/1yUXaH0unL4CFh4Ifp0xsc4SUIzafRRWZh9/LMCohlELx0RZ51RY1BeGphU/vjcfzs6A13ZHJy5jKiPsBCQiE0RktohsE5Hd3q+qCLIm+tTT+ulbD5rGRq1NEyVNa8Ps02Bi8+LHjyhcsQb+sNVmyJn4Em4pnonAP4FvgNbAu8B//fc5CPwl0gHWVDb92gRTJwH+3Q1+167kc1M3w/XrIT+UPcGNiQHhtoCm4Nb7/Mz/+DlVvQboAOzFbSRnKkk1SAKy8R/jJwIPdICXukKSZ1LKC9/D+V9BltWQM3Eg3AR0KvC5qh7DFSJtAKCqh3DbaN8a2fBqpvU5sOPI8cfJCTDEyu8Yj6tPgo96Q0PPXNZPs2DIStiSG524jAlVuAnoIFDH//edQLeA5wRoEomgajpv62d4GiR7K+EZA4xs5CYndPAUyFqT42bILT0Y/DpjYkG4CegLoLf/7+8C94rI9SJyNfA4sLjUK03IPrbuNxOGrnVhST84w9NK3p0PwzPgzT3RicuY8oSbgP7A8YKj9wJLcVWp/4EbA7oxcqHVTPk+t8gwkE1AMOVpVhs+PQ0ub1b8eJ4Pxq+Gx7fZDDkTe8Kqhq2qi/G3clQ1CxgrInWAOoH795iKW3wQso8df9wiCXrVjV48Jn6kJMKr3aHTZvhDQF16BX71LXyTC3851aqpm9gRsS25RaQiW3IbD+/4zzlWfseEIUHg4Y5ua4ebNkBBQKvn+e9gSx680QMa2JbuJgZEe0tu42Hld0wkXHsyfNgLGngmr3y8H4auhG150YnLmEDR3pLbBNifX3LW0jk2/mMq6JzGboO7dnWKH//6sJsht/xQdOIyplBUt+Q2xc3NgsBF7D1SoWWdUk83plw96sKS/jCofvHj3x+Fs1a4yQnjV0Pd+XA2w6k7Hy5f7T4I2aQFU9XCTUBbiPCW3OY4q35gqkKL2jC3D1zStPjxXHWTE97cAzk+UIQcn3t8dgZMXGtlfUzVsi25Y8gn+4o/tunXJlJSE93kgyltSj7nbej4gMM+eGcvTFpnLSFTdWxL7hixORc2BQwMJwkMt+0XTAQlCDzWyX3qfHR7+efn+uC9vfDFIRhkpaBMFbAtuWOEt/ttSBrUtfI7pgp8m+fqZoXSsMn1wRPb4bUeVR2VqYlsS+4Y8bF1v5lq8n5maMkHXHfc+5lVGY2pySq0JlpEWorIpf46cJeISMuKBiAi3UXkUxHJEZFdIvKAiJT52V9EaovI4yLymYjkikip/59EZKyIfC0ieSKyRkQmVDTWqnJMYY6V3zHVJDfMiQU5PjhQUDWxmJot3IWoiSLyHLAVeAP4P+A/wFYReVZEwr1fI2A27gPZWOAB4E7g/nIuTQWuw+0/tLCM+w8F3gTmAucD7wOvisjocOKsassPwf6A/+CNakG/+qWfb0xlpIT5sVOB9ovh/i22z5CJrHBbQPcD1+AmG7QHUvx/TvUfnxbm/W7y3+MSVf1EVaf7X+MOESl12NNfh66xqp4LvFXG/X8HzFfV21R1rqpOAf6HK6QaM7zjP6MaQaKV3zFV5IIm4f/HzyqAaVug3WK4dzPss0RkIiDcn8NJwD2q+riqblPVI/4/H8f9sp8c5v3OBz7yFDKdiUtKw8u6ULXsyaH+Iqkjgdc9T80EzhCRtDBjrTI2/dpUpzvbhN8KKnTwGDy41bWI7vkWMi0RmUoI98ewOfBVKc995X8+HF2BdYEH/FUVcvzPVUYnIMl7f2At7n13ruT9IyK7ABZ6yu9YAjJVaVB9uLBp+UkoJcFVYm8YZET20DH4/TaXiKZ+C3utDLGpACmnIVH8ZJGvgGWqek2Q514E+qvqaWHcLx+YoqpPe47vAGao6tQQ7nEr8GdVFc/xIcACoK+qZgQcPwVXUPVcVf04yP1uAG4AaNGiRf+ZM2eG+nbKlJ2dTb169UocX0Rjphbt8QetyOHfLI3Ia4Ziw7bivzka181j3+HixS46t61dbfGUxhsnlIw1FuKE8r+nsRBnAcIf6MpCmnIEQQM+iwo+aqMMYS+/YR1HSOAtWvEGbThIUtD7JXOMi9nJBLbTkKptFpX2fykWxUuskYxz5MiRy1V1QCjnhluU/SFgpoi0xU0++AHX6hmP6+66Isz7xRxVfR5XdJUBAwboiBEjInLf9PR0gt3r7Y24zc39LmqZyojOkXnNUDxwS/HqSVcMXsfMxcUbn3Mmta22eErjjRNKxhoLcUL539NYiXOUukWmf9wOH2RCjk9JTRAuaJLAXW1gYIMWQAsALgCeKoBnd7rzMz2z4vJIZCZteTehLbe0grvauBJAVaG0/0uxKF5ijVacYXXBqerrwHlAXeBPuBlmz+BmpZ2nqm+E+fr7gWBjMY38z1VG4fXe+zfyPB9VJeq/WfebqSYirsLB6z0gexjMYR7Zw9yi04FBpgDVrwV3t4Mtg+HRjtAsSGMox+cSVIfFcMc38P2Rqn8fJn6FnIBEJMnfrbVKVc/ATRQ4CUhR1TNV9ZMKvP46PGM9ItIGl9C8Yzfh2gTke+/vf+wDNlTy/pW28wisyTn+OAEYaeV3TIyrVwt+1RY2D4Y/doLmQRJRrg+e2gEdlsAvNsIuS0QmiHBaQMeAOfh/oauqT1V3q2pl6uV+CJwrIoGrXiYAucC8StwXVT2CW/8z3vPUBGCRqh6ozP0jYban9XN6A2gYvIvdmJhTN9HNqNs8GJ7sBCcF6XLL88GfdkLHxXDbRvehy5hCIScgf6LZiGv1RMp04AgwS0TO8U8AmAY8GTg1W0S+EZEXAi8UkfNF5DKgj//xZf6vdgGnPQiMEJGnRWSEiDwGjMEteI06K79jTgSpifDLNvDt6fCnU+DkIInoiMKf/YnoZxtgu+3Iagh/GvZvgXtFpFckXlxV9wOjgETgPdwi1Kdwm9sFquU/J9BfcdUYrvU/fsP/NTLg/guAy4BzgI+Ai4CJwWa/VTeflmwBWQIy8SwlEW5r7RLRn0+BVkES0VGF53ZBpyVw8wbYaomoRgt3Ftw9QBMgQ0R24mbBFZvHraqDwrmhqq4Bzi7nnPahHCvl2reJwS0ivj4MuwNmq9ZPdF1wxsS75ES4tTVc3xJe/A7+sA22e7re8hWm74IXvoPJJ8HUttA+JTrxmugJNwGtBlZVRSA1jbf6wYiGkFTB1enGxKI6CXBzK7jmZHjpe3h4K2wLkoj+9h3843u4ugVMbQcdPYno7BLT2o+WmOo+57nYmNpuwhNWArKtGSLHpl+bmqJOAtzYEn56Esz43lVQ2OLpeitQeOF7l6h+chL8ti2ckhqdeE31CSkBiUgKbvC+PfAd8Kmq/lCFcZ3Q8o7BfM8cvNGNoxOLMdWldgJc1xKuPgn+9QP8fqvbHC/QMVwS+tf3cGULuKed6+M/2Lg227s0IPPkZOYmtiGhpdJkVy5tNxyi/j6rAxSvQtmSuyNuy4T2AYcPisjlsTCYH48WHHDTUwu1qQOdrf/b1BBJCa5b7ict4JXd8NBW+Ca3+DnHgBk/uERVZ8zJHE1OxJcgbl9xwFdL2NM6lcyWKTTdmUu+z7qw41Eo/2SP4RZunoVbINoDWInbC8hUQLDuN7HtF0wNk5TgWkNrB8KMrsE/hCmQVy8JX62EouRTJEHw1Upgb6sUJq2DMMpamhgRSgI6A7cFw+eqmqeqa4EbgbYicnLVhndisvEfY46rleDGfdYMgpe7Qdcwx358tRJ4b6+ra2fiSygJ6GTgW8+xTYAQ2UWpNcKeo7Ayu/ixUZaAjCFRYGILWDUQXu0G9cPoUsv1wRPbqy42UzVC/Se2xm2EfOpp/fStB82iX53fmJiRKHBFCzcOFCof8NZeWHHIuuLiSajTsD8SkYIgxz/1HlfVcDelq1E+9iSg0db6MSao3DCrTOYr9F8OnZLh8uYwoTn0rmvjq7EslAR0f5VHUUOoBhn/senXxgSVkuC2dwjXpjxXfeEP29zEhsubw+XNoKclo5hTbgJSVUtAEbI+B3YErARPToAhVn7HmKAuaAJv7nHdaxW1IddN835oq5vccHkz1zLqXjdiYZpKCLcUjwlRsPIhN6zYB/2ON3mGpbm6WcaYku5s43ZqPRxCBqotcHp9WHLIFTwNZl0OPLDVffVIPd4y6mrJKGps6VY12tciudhjm35tTOkG1YcLm0JCQdkZKKHAxyXNYF5f2D3ErSn6cRNIKqO7bXUO3LcFun0Bp33hqjJszCn9fFM1LAFVk2MIWc09CcjGf4wplYhLJk135rok5PM0bXxKQoGPpjtzmdHVnZ9Wy60peq8X/HAm/KMLnN8YapWRjL46DPdshs5Loe8y+MNW2JRb+vkmcqwLrpp8WyeNYwG1QlokQS9r+htTpqQE6L4kk0ONa7Otc30yW6agiYIc89eCW3+IBvuPknR1yf9MjZJg8snua18+vL0XXtvtlkKUNsU7I9t9Td0M/eu5brrxzaCDlcqqEpaAqsna5CbFHp/TqGRlEWNMSQI02HeUnoszAbhi8DpmLu4a1j0aJ7n6c9ecDHuPujVDr++BOftLn+SwPNt9/fpb1x1YmIzaJpdygQmbdcFVkzWeBGTdb8ZER9PabrO8T06D786Ev54KIxuW/ctw6SG4axO0WwxnrICntgffVlwVlhyE8auh7nw4m+HUnQ+Xr4alB22RrJe1gKpBfpKwpXZasWPn2AQEY6KueW24qZX7+v4IzNoLr+9226WUlisWH3Rfd2xyyygubw6XNYNmSTBpHby711W7dy0rIcfnppN/kOkmVczoapW7C9m3oRpkNU9GA1bApR44Sqs6UQzIGFPCSXXgllaQ3hd2nAHPnAJD08q+5vODcPs30GoRtFroEk2Or2S3ng83nfydvVjl7gCWgKqIAgca12bVGU1ZfUbTYs/VO3DUfgCNiWEt68DPW8NnfWH7YHj6FDiznEXjewpcOaCy5Pqwyt0BLAFVgXwfrDm9CRkjmrOnVQrqmW2wp1UqE9e684wxsa11MtzeGj7vB1sHwxOd3KLXirLK3cdZAoowVdfE3tsqJfgmWoAmJlhT3Jg41DYZ7mgDi/vD5tPhsY4wIMxk5OP4WNPuGr6buCWgCFt6yDWxfbXK/tZaU9yY+NY+Baa0hS/6u6ni4ShQmLAGWiyEHkvh1g3wn91uv7CaJOoJSES6i8inIpIjIrtE5AERKbdCmoikicg/RGS/iBwQkZdFpInnnJdERIN8hbeIIAxPbA+9jLw1xY05MaRU4jfpmhx4dheMXwPNF0KvL+DnG2HWHrdm6UQW1WnYItIImA2sAcYCnYAncInxnnIufx3oDFyHa9U+CrwNnOU5bx3wU8+xLZWJuyzvZ4ZevdfnP98YE98uaAJv/KARWV2+6rD7+stO97hXXbdOaURDGN7QLao9UUR7HdBNQApwiaoeBD4RkQbANBF5zH+sBBE5AxgNDFfV+f5jO4ElInKOqs4OOP2wqi6u2rdxXLibaIV7vjEm9tzZBt78TvGFkIDqiKuosD4Xlh8q/wPr14fd1zM7XVdf77owspFLSMPSXMmheBXtLrjzgY88iWYmLikNL+e6HwqTD4CqLgU2+5+LmnCb4pVpuhtjYsOg+gFFU8uQkgDjmsGMbrC0P+wbCv/tBXe2drXnyvt1oMCXh+HpHXDxKmjyOfRbBnd848aUs/JDizdWKjZEuwXUFZgTeEBVt4lIjv+598q4bl2Q42v9zwXqLiIHgTrAF8BvVXVepaIuQzibaCX4zzfGxDcR6LY0k7WDmrgZsAlSvDvOpyT4lLEtE4oqd4Or3n1Bk+O/B7Ly4bMDkJ4Fc7NcYdSycoECK7Pd11M7XAupb73jXXZnNXSvESjfFzsVG0SjOA9YRPKBKar6tOf4DmCGqk4t5bpPcF1rF3uO/xvoqKpn+h/fDhzFjTE1A+4E+gND/S2mYPe+AbgBoEWLFv1nzpwZ1ntaQ33upA95lL/TXB2O8RQZdCN6U+E2bCs+ytm4bh77Dhevtti5be3qDCkob5xQMtZYiBPK/57GSpxe2dnZ1KtXL9phlBBPP6MKbKndgE/qt+frlKbkSyJJeozeuXv40aGtjD4pSAG5MhyiFl+Sxpc0JIOGbKIeGsacuwSUUzlEH7LoQxY9OcBTdOZzmnKkjN9RdTjGEPZyD2vDnuE3cuTI5ao6IJRzT+gEFOS6VGA18KX32mAGDBigy5YtC+3N+KnCxLXw+i5fmVOxUxJgbFN4pVt096kvuXNryUrDc55rW50hBeWNE0rGGgtxQvnf01iJ0ys9PZ0RI0ZEO4wS7Gf0uH35MN/fOkrPcnsZhaPwN1IoPTR1E2BOHxhUTgUILxEJOQFFewRiPxCs2lIj/3MRvU5Vc4APgH5hxBiWUDfRGutv4kYz+Rhj4kvjJLi4GfzpVPhyIOwdAm/2gJ+3gp4h7C/mI/RZutWxTCTaY0Dr8IzZiEgbIJXgYzyB13mnW+O/19vlvKZSdrdqpYWyidarvz+pKkMwxtQATZLgkmbuC9xC1nn+1lF6ltt6vKKqY5lItBPQh8AUEamvqoUDIROAXKCsiQIfAr8TkaGqugBARAYAHf3PBSUiKcAFwPJIBF+WSGyiZYwx4WhWGy5r7r7AlfqZF9BltzbMhFTVy0SinYCmA7cBs0TkUVwCmQY8GTg1W0S+Aeap6rUAqrpIRD4GZojIXRxfiLqgcA2QiKQB/wX+DXwDNAV+CbQExlfP2zPGmOhpXhvGN3dfAKnzw0sqVb1MJKpjQKq6HxgFJOKmXN8PPAXc5zm1lv+cQBNwraQXgRm4Vs24gOePAHtwFRU+AJ4HsnCLV8ObWWCMMSeAHzcJ/Zd+dSwTiXYLCFVdA5xdzjntgxzLwpXY8ZbZKXw+D7gkAiEaY8wJ4c42bp3P4RBaQckJ7vyqFPUEZIyJjpLTm4/yQMCxWJjabCJrUH23yDSUZSIXNYWBldj3KBTRnoZtjDGmmsTaMhFLQMYYU4MULhPpm76bZjtySCjwIeoST7MdOfSdu5tXu1d9GR6wLjhjjKlxYmWZiLWAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVER9QQkIt1F5FMRyRGRXSLygIgkhnBdmoj8Q0T2i8gBEXlZRJoEOW+siHwtInkiskZEJlTNOzHGGBOOqCYgEWkEzAYUGAs8ANwJ3B/C5a8DI4DrgMnAQLTT4w8AABBYSURBVOBtz/2HAm8Cc4HzgfeBV0VkdETegDHGmAqrFeXXvwlIAS5R1YPAJyLSAJgmIo/5j5UgImcAo4Hhqjrff2wnsEREzlHV2f5TfwfMV9Xb/I/nikgP4F7g46p7W8YYY8oT7S6484GPPIlmJi4pDS/nuh8Kkw+Aqi4FNvufQ0TqACNxLaVAM4EzRCSt8uEbY4ypqGgnoK7AusADqroNyPE/F/J1fmsDrusEJAU5by3ufXeuQLzGGGMiRFQ1ei8ukg9MUdWnPcd3ADNUdWop130CHFbViz3H/w10VNUzRWQIsADoq6oZAeecAmwEzlXVEt1wInIDcIP/YRdgfYXfYHFNgb0RuldVipc4IX5itTgjK17ihPiJNZJxtlPVZqGcGO0xoJijqs8Dz0f6viKyTFUHRPq+kRYvcUL8xGpxRla8xAnxE2u04ox2F9x+INhYTCP/c5W5rvBP73mNPM8bY4yJgmgnoHV4xnpEpA2QSvAxnlKv8wscG9oE5Ac5ryvgAzZUIF5jjDEREu0E9CFwrojUDzg2AcgF5pVz3Un+dT4AiMgAoKP/OVT1CG79z3jPtROARap6oPLhhyXi3XpVJF7ihPiJ1eKMrHiJE+In1qjEGe1JCI2ANcAq4FFcAnkSeFpV7wk47xtgnqpeG3DsI+BU4C5ci+ZRYLeqnhVwzlAgHfgLbpHqGP/55wWbgGCMMab6RLUFpKr7gVFAIvAergLCU8B9nlNr+c8JNAHXSnoRmAEsB8Z57r8AuAw4B/gIuAiYaMnHGGOiL6otIGOMMTVXtMeAjDHG1FCWgIwxxkSFJSBjDCKSLCLPi8ip0Y7F1Bw2BlQFRKQerphqV4ovfF2Hm82XHa3YwiEiyUBzf32+mCUiScDJsRiniHQAOgCbVXVzlGNJLePphsB2XDHfBcD/b+/Mg60orjj8/QJRXKIogpiYgHviEnELARcwGjVquQLivlWIa8yixjV5RK1K4RZxw5Xnhqi4GzHGLYqICIoSDcTSICIQVFZREHgnf5y+Om+Yufe+9y5vKOmvquve6e47fabvTK9nzsHMPm8NuZqKpK6AmdkHBYuSi6Q9ga1xDd03zWx0wSIhqTvwmpk1FC3LV5hZDDUKgHCfRp/hN95n+EP9YSpuIKHzX5kDcDiwrGAZTsdfKv4CeBM4NiNP9yLlxI3eDgZmh/93UIi/HlgW/vdlwD1AmwLlXFYhNCSPC/7fBwAbpOLOAj5OyPg/4LSC5bwSuDRxvBHwSqjLRcDiIOtTwLoFy9oQ6uw6YNciZSmFaAuuttQBv8M7mOFm9mEyUdLGQH9czdxC/kgOkvoD1wL3Am8APYF6SQcDx5jZoiLlS3Au7hjxKrwTOlNSR+AQ3Fni68BuwBXAr4AbihGTL4D5QY5PU2lr4Q3TIMpbIWktbgQmEAxkBiPBV+PuVUbgz09f4FpJc81sWEFy9gP+kDi+Du+EehFmkuH7nfj9cTLFMgE4Ejg1GH2+D2+rXi9EmqJ7wG9SAD4CBlSRbwDwUYFyPldlmEixM4txhNlEIm4vYCY+yuwQ4oqeAU3CrbqXjnfDR5u/SeUbCIwrUM7vAsPwRv1MErMx3GZiA7BHUfKlZG0AfpKq46EZ+e7Cl5WKknMRsHvieCHQNyPfUcCnK0Od4jP2g8K9sACfoU3GB8ZbtaZMUQmhtrTHl4sq8V7IWxR7ABvio+ByYUFRAga2Ap5MRpjZs8BP8fp7RdKmRQiWogswNnE8PnyOTeUbhVv7KAQzm25mRwGH4SPxiZL2LUqeJrIZ7kwyzXB8r6UopuL3aYml+CwzzXxgtVaRqAJmtsTMHgv3Qie8c3wHOA94R9Lrks5pDVniElxtGQOcK2mMmS3MyiBpLXzK/kqrStaYt4FJZnZEuUyS+uBT9KKYh/spaYSZTZHUE/gbXo+XtLZgKRbSeECxOIT0Jn4bVoJnzsxelLQjcCowTNJoiq/DLNolFCc+xUfqaZbhy3FFcTtQJ+klM5uML7VdKOlVM5sLIGl94ALK27csBDP7An/G75O0Dj446Q9cCly+ossv/GH4hnEG8AwwNdiqmwTMDWnr4lpx++KN016FSOiMAfarIp/hihVFMR7fRxmRTjCzOZL2CmmDKbYRmgzsBDwaZGvA3cqn2QaY0npi5RNkvF7ScOAy4CWKrcMsnk98F7589Ewqz49xJZ+iuBzYFnhL0nO4lf1ueBswEZd7O7wDPaYwKavAzOYD9fg+a4fWKDOqYdcYSe3xkeV+ZKthjwSGlEZHRSBpM2AbM3usQr41cDXsQtRdJfUFfgscaGazc/K0wTesf25mm7SmfAkZDsf3o8paFJY0EhhrZmlbh4UjaWvcuO9LeXXdyvIcnxE9w1J2HCWNwGfzF2XkbzUk7QeciO9HdsY7njnAv4EngJvNrNAlbUnPA6ea2cqgZALEDigSiUQiBRGVECKRSCRSCLEDikQikUghxA4oEolEIoUQO6BIJBKJFELsgCJlkXSCpPGSFkiaI+kNSVetoLL6STqhinx1kiwRpkt6MGj3VVNOvaRxLRa4BlR7zSFv6brfzUl/N6TXrSgZmnjeRvVc63IkfUvSGeGe/ELSfElvSxosqVmvD8iZkKOFV7qmrjlp10m6rTnlrqrEDiiSi6TzgVtxd+aHAcfh77octIKK7IfbTquGeUCPEM7G3714NrzoW4lLmlDOiqYp1wxu+mUTSTsnIyXtAnQN6StahmpJ13Oty7kPf2HyIfyePB63nNHTmq/e2w9YHzdT01SuAI6WtHkzy17liC+iRspxBnCTmV2QiHtc0sCiBEqw1MzGhO9jJE3FX6bcH3ggnTm8L9TGzL40s2rMJa2sLMSNm/bHbeWV6I/b79upCKFKtFY9S/oF0AfY38xGJpIebu7sJ/Br4C4zW5Ioqy3emR6L29M7UtJ7wEAz+8pSSLDQMQp/D/D3LZBhlSHOgCLlaI8b/mxEcnRZWmaRdIikSZIWSRoVXmxsRFiCmShpsaQPJV0WHm4k1ePuH3olltbqmiBryf5a1wy53sZnBt2TaSnZ9pD0vKTPJM2T9IKkHRLpu0v6p6TPJX0q6RZJ3yknkKQekh6TNEPSwrC0c3Sy7pp5zcOBfqWGNnz2I8NWWktkCHUwInW+3iHPtsm6rFTPeeVI2l9Sg9xvUrKcTUL8wTl10Ct8PpdOaO7sJ8xcerK85Y2zcIvng/EZ1km4CZ4sawEP4rOg2LZWQZwBRcrxOu5aYCrwhJmlTfiX6IKbmr8YN/k/EPi7pC0suEyQtA++ZHIncA5uQuUS/CE+JXz/Ad7pnRbOO60JsnYNnzNTcYNwH00zgUyHcJJ6A//ATb8cj88ydgW+B7whaVfcBMwj+Ki7A/AX3MpFnzIydQFeBobgDfOuwFBJDWZ2L82/5odw6w+74bO+3YGOIT5tv2tFyZCkK5XrOa+cGcB0vN7rEvlPAGbh9v6yKNlavFzSlTWy1rFXOO+bqfhewHNmNigMrF42syk55xiNG/rdLuM8kTRFmgePYeUOeCfxPm4jrAE3YvpnYJ1EnvqQ3jMR1wW3CnxKIm4M8Hzq/OfixiQ3DscjgBeqkKsOdynQNoQt8c5jPu4ZNSlXt4zf15Nwi4AbNB1HjpNAvJFPy/6zcP5tq6xLBVlvwhuzUnxV15y87vD9UeD68P0G4JHw/ROgrhYyAC8AI1JxvZPX3cR6zivnUrzTUkLOKcAVZeqiM/BWKNuAf+EGP9duwf1+MxmuHUJ9fRjKrAe6ljlH23Dv/7K5cqxKIU4TI7mY2VvAj/AN3hvwhuFiYJzc7XiJWZZwOWw+Gh2PG48s7QvsyPJ7M/fhy8A9miFeB2BJCJNxNwdHmNmMRJ6PzGxCuZMEpYXuwB0WWpBU+ppBvvsltS0F3LXCEsrsuUhaT66R9UFC1gF4h9lShgN9JK2Oz8KyXBWsaBlKVKznCtyOD1p6h+M9w/HQvB+Y2UxgB9y47434zOoyYLSk1cDtyYUlxwlh2XdS+D5e7sY9TWeCA7wUl+Ezo//iz8LZYVacJddS3ABx5wrXHCHuAUUqYGaLzexxMzvDzLbGPX9uQWPPjrMyfjoL9wwJ7lLh27g74CSl4/WbIdo8YBdgZ2BjfFQ6MpUnXV4W6+Ed64wy6W3wDnhJIizGr+n7Zc5dDxyBL4vtE+S9HWhXhVyVeAxYG28c1wIeL0CGEtXUcy5m9j4+2zoxRJ2IG219u8LvlpnZ02Z2Gr68NxRf+uoR0u8ws2744Gcp7oa6m5ntZAklgwTt8P81Xc7UcN5D8RWB3YBRyn8dYTG1rd9vLHEPKNIkzOw2SYNwS98lOmVk7YQv2YGPKpdk5NswfDbH+vJSM6v0Lk81m9Fz8OXFjXLS5/K1+/QnM9KnZ/1IUjvgQOB0MxuSiK/JoM/MFkp6ArcW/oBl+J+qgQyLWN6J2noZ+Wph0fhW4Ba56v9hNFGLzMwaJD2Nd17pxn8LYI7l72GWmE3OzCV0WE/J3cTX4W5Crpb019BBJWlP8+7pVY44A4rkImm5jkVSR9y3UXLU20nuIK6U5wf4qHMs+EgVX5LrmzpdP7zxLznn+5JWHjmGhvtV4LiSVllG+hjcVfG4jJDZAQGr48/XVyPqoDWXfoeqJdd8Iz7zGZKT3lIZptF4oAE+i2ou5a71oZA+HJc5c0kRQNKGOUkH4U4AX03Fb091CgGTgeVcemTdF8Br4XP9VN6OwJq4X6BIBeIMKFKOiZIeBZ7Gl9S64C99fg7ckcj3CXC3pIv4WgtuFr78U+JPuGbcULxx2Q7XjLrFzEpaV5OAgyUdgjd+08s08LXkPFzLbaSkm/H1/h74BvoTuLLEs5Ia8I30BfiSzwHAhWa2XGNjZvMkvQb8UdJ8vKM9D186XCeRtdnXbGYv4EtXeektleFh4GRJV+PaaHtSnSPDPHKv1cwWSboHOB2418r7y7pf0gLgflxZoRNwNHAwvvmf/u32uMJCJV7G66qjmX2ciB8m6Q3gRXy5cyd85vkR7u8nyc74jHA0kcoUrQURw8ob8MbgaXyZaRH+sA8DfpjIU49rkB2Gj/oW4w/yctph+F7ERHykOw3fv2ibSN8Ab/RmE5a9cuSqI2iDlZG9noQGVqU0XNX2RbxznYtr1XVLpHcHnsI17RYC7+Cq5+uWkWFz4NmQfyrekTWSvdprbsJ1N9KCa6kMwPm4BtgC4G58lpHWgquqnitdK7B3iN+7wjWeFP6LaeFemo13kL1z8j8O9K/ifl8N91x6bCr+0FDeTLwTn493/DtknOMaUhqTMeSH6JAu0iLCC4bbmtnOlfJGIuUIe4v9gE3NXYbX6rxTgX3NLD1bycp7DbC5mR2Qk16Pd5xTMtLaAB8A55nZ3S0SehUhLsFFIpFCkbQVsDVuwmZgjTuf9fCXdKvdk7kc+I+kLS1jabUCffEl6Nz9q0hjohJCJBIpmpvwpd0ncXM3NcPM5pjZGuaKMNXkn4Yv8eVpRT6CL9FmIeBk83eBIlUQl+AikUgkUghxBhSJRCKRQogdUCQSiUQKIXZAkUgkEimE2AFFIpFIpBBiBxSJRCKRQogdUCQSiUQKIXZAkUgkEimE/wMP6CcJJ2HImAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "#trained probability distribution\n", + "init_distribution = np.sqrt(init_dist.probabilities)\n", + "init_distribution = Custom(num_qubits=sum(num_qubits), state_vector=init_distribution)\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state=init_distribution,\n", + " entangler_map=entangler_map, entanglement_gate='cz')\n", + "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params, low=bounds[0], high=bounds[1])\n", + "uncertainty_model = g_circuit\n", + "uncertainty_model.set_probabilities(QuantumInstance(BasicAer.get_backend('statevector_simulator')))\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "#target probability distribution\n", + "N = 100000\n", + "log_normal = np.random.lognormal(mean=1, sigma=1, size=N)\n", + "log_normal = np.round(log_normal)\n", + "log_normal = log_normal[log_normal <= 7]\n", + "\n", + "log_normal_samples = []\n", + "for i in range(8):\n", + " log_normal_samples += [np.sum(log_normal==i)]\n", + "log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples))\n", + "\n", + "\n", + "plt.bar(x, y, width=0.2, label='trained distribution', color='royalblue')\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.plot(log_normal_samples,'-o', color ='deepskyblue', label='target distribution', linewidth=4, markersize=12)\n", + "plt.legend(loc='best')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff\n", + "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function analytically and with Quantum Amplitude Estimation." + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Analytically calculated expected payoff w.r.t. the target distribution: 1.0585480647564538\n", + "Analytically calculated expected payoff w.r.t. the trained distribution: 0.980530833264945\n", + "Expected payoff calculated with Quantum Amplitude Estimation: \t1.2580\n", + "Probability: \t0.8785\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEdCAYAAAAM1BBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX9//HXR1xoxKWiRP1WE+2v9qu0/bbFLrhBohVqKdZ9iSJu6aa1da1Q64rWrdZqXagK6jcaqxZ3xYVFEDfQFpVK+60QRCkKaiGkApLP749zR4Yhy8xkZu7c5P18PO5jMnfuzP1kCPOZe875nGPujoiIyAZxByAiIuVBCUFERAAlBBERiSghiIgIoIQgIiIRJQQREQGUEKQEzOwCM/O07V0zu9/MPh9jTHua2Stm9rGZebRvUzNrNLOlUZwj23nu+IzfJ7XdUtJfYm089Wb2gzb2zzezq+KISZJpw7gDkB7j38DQ6OedgYuBZ8ysv7uviCGem4H3gCHAymjfj4HvAyOAd4B/dvD8N4HjM/a9V+AYs1UPvA48kLH/IGBp6cORpFJCkFL5xN1fiH5+wcwWANOAA4B7Y4jnv4Gx7j41Y99cd78/i+evSPt9ypK7vxp3DJIsajKSuMyKbqsBzGygmT1kZovMbIWZ/cXM6lIHm9lWUfPOyPQXseAtM7smbV+tmb0YHb/YzG4wsz7RY4OjJqJewLVRU894M5sPnAh8LdUElO8vljqHmX0pY/8UM7sv7f54M5tpZt8xs9nR7z3dzPpnPK+XmZ1rZn83s5VmttDMxqdeExgAHJfWdDUyemy9JiMzO9zMXote520zG2NmG6Y9PjJ6jS+b2VNRTG+a2cH5vh+SHEoIEpfq6PZf0W0V8BzhQ/n7wP3AODM7CsDdPwAmACMzXmcwsBNwG0D0YfoEsAQ4BDgfOBpIfRC/AgyMfr46+vliQvPKY4SmoIFpx7TLzDZM37L6rde3I3AlMAY4CugH3GNmlnbMzcCFwJ+AYcAZQEX02E+imB9Li/vRduLdH7iH8B4cCFwHnAlc38bhdwEPEd6XfwCNZva5PH9HSQg1GUnJpH1o7gzcACwHngZw98a04wx4FvgccDJwd/TQrcCTZrazu78V7TsemOXur0X3zwOagOHuviZ6vQ8IH7ID3f15QpMVwPz0Zh8zex+ozLIpaACwOuP3+4K7/18Wz023FbCnu/8jeo0NCInvi8CbZvbfhCR5mrv/Pu159wC4+xwzWwG8n0XcFwFT3P246P4T0ftwmZld4u4L0469xt1TSXYWsJiQjG7K8feTBNEVgpRKX8IH6GpgLiEpHOHuiwDM7LNm9nsza0o7rh7YJe01niF82B8XPWczwlXAuLRjvglMSCWDyP3AJ8BeBfx9/gZ8I2N7O4/XmZ9KBpE50W3q23hNdDs+j9f+lJn1Ar7O+v019xA+BzKviJ5M/eDuSwkd5rpC6OZ0hSCl8m9gP8AJzUTv+rpT7Y4Hvk1ovpkDLCOM+jkwdYC7u5mNA04wswuAwwl9AXelvc52hG+zpD1vjZktJXwbL5QWd59ZgNf5KOP+qui2d3Tbl9CBvayL59ka2IiM9ybtfuZ701ZcvZFuTQlBSuWT9j5Azaw3oTnip+5+U9r+tq5gxxH6BWoI/QkPuPuHaY8vIrTDp79+L8IH6wdd+QVy8HF0u3HG/s8S+jZysRTY1Mw272JSWEK46uqXsb8yui3VeyNlTE1GUg42IfwtpuoBUs1BwzMPdPe3Cc0ZFxKagMZlHPIicFCUBFIOJnz5mV7YsNuVaovfNbXDzHYgDGvN1aTodkQHx3T67T1qQpsFHJbx0OFAK/B8HrFJN6MrBImdu//bzF4Gfm1mywgfUL8kNDNt3sZTbiW0hS8Ensp47BLgVeABM7uR0O59OTAx6lAuOndfaGYzgYvNrIWQ7EaRx7dwd59rZmOBq82sH6GzfUvgUHc/MjrsTWCImQ0hXFHMi9r9M50PTIya3RqBLxOa6P6Y0aEsPZSuEKRcHA28BdwBXEvoCL6jnWMfIXQS3+7urekPuPsbwHcJTSN/JiSIu4FDixN2u44CFgD/C1xKGOEzN8/X+gnhiugYwvDS3wEtaY9fQujk/hPwMmHY7nrc/UngSGB34GHg54Sht6fkGZd0M6YlNCVpzOwAQlLYJY9hniLSDiUESQwz2x74AqGgaoG7D4s5JJFuRU1GkiT1hFqEj4FTY45FpNvRFYKIiAC6QhARkYgSgoiIAAmrQ9h66629uro6r+euWLGCTTfdtLABFVGS4lWsxZOkeJMUKyQr3q7GOmvWrCXuvk2nB7p7YrYBAwZ4viZPnpz3c+OQpHgVa/EkKd4kxeqerHi7Gisw07P4jFWTkYiIAOpDEBGRSMkTQtoSfZnbj0odi4iIrBVnp3It8J+0+2+1d6CIiBRfnAnhZXdvjvH8IiKSRn0IIiLlqqEBqqsZVFsL1dXhfhHFmRD+aWafmNlcM/thjHGIiJSfhgaor4emJswdmprC/SImhTgSwiLgPOBYwrztLwA3mdkvYohFRKQ8jR4NLS3r7mtpCfuLpCwmtzOzewgLsG/jGQuemFk9YZZLKisrBzQ2NuZ1jubmZvr06dPVUEsmSfEq1uJJUrxJihXKP95BtbXhyiCDmzF10qQ2ntG+mpqaWe6+e6cHZlO9VuyNsM6rAzt3dJwqlcuTYi2eJMWbpFjdyzzeZcvce/d2h/W3qqqcX46EVSp7xq2ISM/03ntQUwMrV8LGG6/7WEUFjBlTtFOXS0I4FFgCNMUdiIhIbObNgz33hDlz4JFH4LbboKoKN4OqKhg7Furqinb6ktchmNn9wEvAbKAXcES0/cwz+g9ERHqMv/4Vhg4NVwbPPAMDB4b9dXVMnTKFwYMHFz2EOArT5gInADsABswBRrj7nTHEIiISv6lTYfhw2HzzkAx22y2WMEqeENx9FDCq1OcVESlLEybAUUfBzjvDxImwww6xhVIufQgiIj3PH/8Ihx4KX/saTJsWazIAJQQRkdJzh0suCZXHQ4bA009D375xR5WsJTRFRBKvtRVOOw2uvx6OPRZuvRU22ijuqABdIYiIlM7KlXD00SEZnHEGjB9fNskAdIUgIlIay5fDwQeH5qErr4Qzz4w7ovUoIYiIFNt778EBB8Bf/gK33w4jRsQdUZuUEEREimnevNBxvHAhPPggfO97cUfULiUEEZFiaa/6uEypU1lEpBiefRb22Qc23BCmTy/7ZABKCCIihffAA7D//rD99jBjRmxTUeRKCUFEpJBuuQUOOQS++tVwZRBz9XEulBBERArBPaxVcPLJoRP5mWfKovo4F+pUFhHpqvTq42OOCesYlFHBWbZ0hSAi0hWZ1ce3357IZAC6QhARyV969fEVV8BZZ8UdUZcoIYiI5OO990KR2auvhjmJjjsu7oi6TAlBRCRXCao+zoUSgohILmbPDslg5crQVLTHHnFHVDDqVBYRyVaq+rhXr7DCWTdKBqCEICKSnVT18Xbbherj/v3jjqjglBBERDqTWX28445xR1QUSggiIu3pBtXHuVCnsohIW1pb4ec/h+uuS3T1cS50hSAikmnVKqirC8ng9NMTXX2cC10hiIik62bVx7lQQhARSXn//bD2cTeqPs6FEoKICMD8+WFY6cKFYYjpsGFxR1RysfYhmNl/mVmzmbmZ9YkzFhHpwWbPDkVmS5aEpqIemAwg/k7lK4HmmGMQkZ4sVX28wQbdsvo4F7ElBDPbBxgKXBVXDCLSAzU0QHU1g2proV8/qK3t1tXHuYilD8HMegHXARcBH8URg4j0QA0NUF8PLS0YhE7kDTYIq5110+rjXMR1hfAjYBPgDzGdX0R6otGjoaVl3X2trfCb38QTT5kxdy/tCc36Av8AjnH3x8xsJDAO2Mzd1+tPMLN6oB6gsrJyQGNjY17nbW5upk+f5PRbJylexVo8SYo3CbEOqq3F2vjMczOmTpoUQ0TZ6ep7W1NTM8vdd+/0QHcv6QbcBDyWdn8k4ECfzp47YMAAz9fkyZPzfm4ckhSvYi2eJMVb9rGuXOleUeEeZihad6uqiju6DnX1vQVmehafzyXtQzCz/sAJwD5mtmW0uyK63cLM1rj7f0oZk4j0AMuXh9lKW1rCFBSrV699rKIiTGAnJe9D+AKwEfA88GG0pfoRFhI6mkVECuf998NIokmTYNy4sFVV4WZQVQVjx4Z5i6Tko4ymAzUZ+4YC5wAHAG+VOB4R6c7aqz6uq2PqlCkMHjw4zujKTkkTgrsvAaak7zOz6ujHad5Gp7KISF5mz4ahQ+Hjj7vd2sfFEnelsohI4U2bpurjPMSeENx9vLubrg5EpCAefBC+8x3YdltVH+co9oQgIlIwt9wS1jLo5msfF4sSgogknztcemlY+3j//cPax1tvHXdUiaOEICLJllr7ePToMHz0oYdg003jjiqRlBBEJLlSax///vfwi1/AHXf0iLWPi0UrpolIMqWqj596Ci6/PKx9bBZ3VImmhCAiyZO+9vG4cTByZNwRdQtKCCKSLPPnw5Ah8PbbPXbt42JRQhCR5EhVH//nP6o+LgJ1KotIMqRXH0+frmRQBEoIIlL+Hnww1Beo+riolBBEpLzdemuoPv7KV1R9XGRKCCJSntzhssvgpJPC3ESTJqn6uMiUEESk/KSqj0eNUvVxCSkhiEh5WbUKjjlm3erjjTeOO6oeQcNORaR8NDeH6uMnn4Tf/AbOPlvVxyWkhCAi5eH99+F734NXXoHbboPjj487oh5HCUFE4peqPl6wACZMgO9/P+6IeiQlBBGJ12uvherjlpZQfbznnnFH1GOpU1lE4jNtGuy999qflQxipYQgIvF46KF1q4+/9KW4I+rxlBBEpPRuvRUOOmht9XFVVdwRCUoIIlJKmdXHWvu4rCghiEhptLaGQrNRo+Doo0OTUZ8+cUclaZQQRKT4UtXH114bpqS4805VH5chDTsVkeJS9XFiKCGISPGo+jhRStpkZGaHmtkMM1tqZh+b2Vwz+5WZ6dpRpLtpaoK99gqFZxMmKBkkQKmvEPoCk4ArgY+AbwIXANsCp5Q4FhEpFlUfJ1JJE4K735yxa7KZbQ781MxOdXcvZTwiUgTTp4e5iCoqQvWxCs4SoxxGGS0F1GQkklQNDVBdzaDaWujXD2pqoLJS1ccJ1GlCMLMRZta3kCc1s15mVmFmewE/A27U1YFIAjU0QH09NDVh7qETObXamaqPEyebK4RxwOcBzGyNmX2zAOddEW3TgKnAWQV4TREptdGjQz9ButbWMLxUEsc6+2JuZkuAk9z9ATNrBb7l7i936aRmXwcqCJ3KvwbucveftHNsPVAPUFlZOaCxsTGvczY3N9MnQVWRSYpXsRZPucc7qLY2XBlkcDOmTpoUQ0TZK/f3Nl1XY62pqZnl7rt3eqC7d7gBjcByYCawBngDeKm9rbPXa+P1RwAOfL6zYwcMGOD5mjx5ct7PjUOS4lWsxVPW8a5c6V5R4R5mKFp3q6qKO7pOlfV7m6GrsQIzPYvP42xGGZ0A/AT4IvB1YB7wfg7JqTOvRLc7Af8s4OuKSLGkqo9bWmCjjWD16rWPVVTAmDHxxSZ56zQhuHsLcBWAme0HjHb3vxYwhtQA5XkFfE0RKZbM6uONN4bRo/EFC7AddwzJoK4u7iglD50mBDNbA3zbQ7/BFGBZviczsyeApwnNTmsIyeAM4B5319WBSLlragqL2mSufVxXx9QpUxg8eHCs4UnXZNNktArYJPp5BHAj+X+bfxkYCVQDnwBvAecCN+X5eiJSKq+/DkOGhGaip54K01JIt5JNQpgDXGBmDwAGHGpm7fVWu7vf2N4Luft5wHm5hykisVL1cY+QTUI4FbgZuIYwGujMDo51whWEiHQXDz8Mhx8eCs0mTlTBWTfWaWGau89w9y+7+0aEK4Rvu/sG7Wy9ih+yiJTMbbeFtY+//GWtfdwD5DqXUQ2hCUlEujP3UG184omw774waZLWPu4Bcprt1N2nApjZt4C9gK2AD4Dp7v5i4cMTkZJrbYUzzoDf/Q6OOgrGj9dylz1ETgnBzDYF7gWGEIaNLiWscdArGlJ6WFS3ICJJtGpVWMjmrrvgtNPgt7+FDcphUmQphVz/pa8ABgJHAr3dfTugd3R/IHB5YcMTkZJpbobhw0MyuOwyuOYaJYMeJtcFcg4BznH3e1M73L0VuNfMPgtcRBiVJCJJsmRJqD6eORNuvRVOOCHuiCQGuSaELYC323nsbWDzroUjIiXX1BQKzpqaQvXx8OFxRyQxyfV68K/Aj83M0ndG938cPS4iSfH667DHHrB4cag+VjLo0XK9QhgFPA68aWYTgMVAP+AgwnQU3y1odCJSPOnVx88+G2oNpEfLddjppGhxm/OAw4DtgEXAi8DB7q4aBZEkSFUf77gjPPmkCs4EyP0KAXd/gzCqSESSaNw4OPlk+PrX4dFHYZtt4o5IykROfQhmdrWZ7VasYESkiFLVxyecsLb6WMlA0uTaqXwQ8JqZvWRmPzKzLYoRlIgUWGsrnH46nHtuqD5++GFIyHrCUjo5JQR33xnYD3iTsIraIjO7K1pJTUTK0apVcOyxYSqK006D//1fTUUhbcq5DNHdJ7v7CGBbQhHa54CJZtZkZhea2c6FDlJE8qTqY8lB3n8Z7t7s7rcC5wPPATsQVj/7u5k9aGYatiASpyVLQl/BU0/BLbfAL38J65YQiawjr4RgZtVmdr6ZvQU8CTQThqFuBgwn1CQ0FipIEclRU1NY4nL27FB9fOKJcUckCZDrbKcjCGsi7wMsAMYB49x9Ydphj5nZCuDpQgUpIjl4/XUYOhRWrAg1BnvvHXdEkhC51iHcDEwAhrj7Mx0c93fgkryjEpH8PPccDBum6mPJS64JYXt3/7Czg9x9EXBhfiGJSF7Sq48nToTq6rgjkoTJddhpp8lARGIwbty6ax8rGUgecu5UNrMjzOxpM1tgZu9lbsUIUkTa4Q6XX67qYymIXKeuOBq4Hfg/Qv3BQ8Aj0essA64vdIAi0o7U2se//KWqj6Ugcr1COAu4GPhpdP8Gdz8B2AlYAmg9ZZFSWLUKRowIhWY/+5mqj6Ugck0IXwCec/c1wBqiFdLcfTlhPeVTChueiKwnVX3c0ACXXhqmpFD1sRRArn9Fy4BNop/fAXZNe8yAvoUISkTakVl9fO65qj6Wgsl12OnLwFeAiYT+g1+b2SfAKuDXwAsdPdnMDgOOBQYQ1meeC1zl7nfnGIdIz5O+9vGf/wwHHhh3RNLN5JoQLgNScxT9Ovr5RsKVxsvADzt5/unAPOAXhD6HA4C7zGxrd78ux1hEeo433gjJoLlZ1cdSNFklBDP7DOHDuxr4l5lVuvti4EAz2wTYxN2XZfFS33f3JWn3J5nZ9oREoYQgktLQAKNHM2jBAujXD5Ytgy23hGnTVH0sRdNpQoims36akAxSlpnZ4e7+pLuvBFZmc7KMZJDyKnBINs8X6REaGqC+HlpaMIDFi0M/wdlnKxlIUWXTqXwF0ArsDVQA/Qkf4jcXKIaBhLmPRARg9GhoyRjB7R5GE4kUkbl7xweYvQOc4e6Naft2Af4GfC6atyi/k5vtCzwFnODu49s5ph6oB6isrBzQ2JjfrNrNzc30SVDRTpLiVayFNai2Fmvj/6WbMXXSpBgiyk4S3tt0SYq3q7HW1NTMcvfdOz3Q3TvcCFcH38zY1yva/7XOnt/B61YDi4EJ2T5nwIABnq/Jkyfn/dw4JClexVpAa9a4b7aZe7gmWHerqoo7ug6V/XubIUnxdjVWYKZn8RmbbR1Cx5cROTKzrYDHgSagrpCvLZJYqerj5cthw4zuvYoKGDMmnrikx8h22OnEqN4g0zOZ+929X0cvZGYVhPmPNgaGubumuxBZsQIOOSRMW33ppWEK69Gj8QULsB13DMmgTt+dpLiySQgFW9fAzDYE7iVMgbGHu2t2VJElS+B734OZM+GPf4STTgr76+qYOmUKgwcPjjU86Tk6TQjuXsiFbm4g1DOcBvQ1s/SpLl71MIRVpOdYsAD231/Vx1IWcq1U7qr9o9tr23hsJ2B+6UIRiZmqj6XMlDQhuHt1Kc8nUrZmzAhrH/fuHdY+/spX4o5IJPcV00Skix55BPbbL6xsNmOGkoGUDSUEkVIaPx5+8APo319rH0vZUUIQKQV3uOIKOP54qK3V2sdSlpQQRIqttRXOPBPOOQeOPDI0GW22WdxRiayn1KOMRHqW1avhhBPCmsennqrlLqWsKSGIFMuKFXDoofDEE6HSWMtdSplTQhAphqVLQ/Xxyy+vW30sUsaUEEQKbcGCUHA2bx7cf38YVSSSAEoIIoWUWX28zz5xRySSNfVuiRTKjBlh+onW1lB9rGQgCaOEIFIIjz4aqo+33hqee07Vx5JISggiXXX77WGW0v79QzLYaae4IxLJixKCSFdceSWMHAk1Nao+lsRTQhDJR6r6+OyzQ/Xxo4+q+lgST6OMRHKl6mPpppQQRHKh6mPpxpQQRLKl6mPp5pQQRLKh6mPpAZQQRDrzxhswdCgsX67qY+nW1BMm0pFU9fEnn6j6WLo9JQSR9qRXH2vtY+kBlBBE2pKqPt5tt7D2saqPpQdQQhDJlF59PHky9OsXd0QiJaGEIJKSXn18xBGqPpYeR6OMRCBUH594Itx5p6qPpcdSQhBZsQIOOwwefxwuuQRGjVL1sfRIJf8KZGb/z8xuNrPZZrbGzKaUOgaRTy1dCvvuCxMnwtixMHq0koH0WHFcIfQHDgBeADaK4fwigaqPRdYRR0J42N0fBDCz+4CtY4hBero5c0IyUPWxyKdK3mTk7q2lPqcIDQ1QXc2g2lrYdlv4xjdUfSySQZ3K0v01NEB9PbS0YACLF4d+gjFjVH0skkbj6qT7Gz0aWlrW3ecehpaKyKfM3eM7edSH4O6DOzimHqgHqKysHNDY2JjXuZqbm+nTp09ez41DkuIt91gH1dZibfyduxlTJ02KIaLslft7my5JsUKy4u1qrDU1NbPcffdOD3T32DbgPmBKtscPGDDA8zV58uS8nxuHJMVb1rGuWeO+2Wbu4Zpg3a2qKu7oOlXW722GJMXqnqx4uxorMNOz+IxVk5F0X6tXhzmJli+HDTO6yyoqQh+CiHxKCUG6pxUrQl3BnXeG6uPx46GqCjeDqqpQhFZXF3eUImWl5KOMzKyCUJgG8F/A5mZ2aHT/MXdvafuZIllauhSGDYOXXgof/CefHPbX1TF1yhQGDx4ca3gi5SqOYaf9gHsz9qXu7wTML2k00r28/XYoOHvrLbjvPjjooLgjEkmMkicEd58PaLIYKbxU9fGyZWFuokGD4o5IJFHUhyDdw/PPw157ra0+VjIQyZkSgiTfo4+GGUv79g1rH//P/8QdkUgiKSFIst1xx9q1j597Tmsfi3SBEoIk11VXwXHHweDBWvtYpACUECR5WlvhrLPCprWPRQpGs51KsqxeDSedFJqKTjkFrr1Wax+LFIgSgiTHihVw+OHw2GNw8cVa7lKkwJQQJBnaqz4WkYJRQpDyp+pjkZJQQpDypupjkZJRb5yUr+efh733VvWxSIkoIUh5euyxUH281Vah4EzVxyJFp4Qg5eeOO2D4cNh115AMdt457ohEegQlBCkvqj4WiY0SgpSH9Orjww8P1cebbx53VCI9ikYZSfxUfSxSFpQQJF6qPhYpG0oIEp/06uObb4b6+rgjEunRlBAkHunVx/feCwcfHHdEIj2eEoKU3t/+Bvvvr+pjkTKjnjspLa19LFK2lBCkdFR9LFLWlBCkNO68c2318fTpqj4WKUNKCFJ8V18NI0aE5qHJk6GyMu6IRKQNSghSPO5w9tlw5plw2GGhyUjVxyJlSwlBimP1ajj+eLjySvjpT+Huu2GTTeKOSkQ6oGGnUngtLWvnI7roIvjVr1R9LJIAJb9CMLPdzOwZM2sxs3fN7CIz61XqOKRIPvgA9tsPHn88VB+fd56SgUhClPQKwcw+CzwNzAEOBD4PXE1ITL8qZSxSBKo+Fkm0Ul8h/Aj4DHCwuz/l7jcBFwKnm1lxehsbGqC6mkG1tVBdHe6XsyTFmx7r9tuHuoJ33oEnnlAyEEmgUieE7wIT3X1Z2r5GQpIofMlqQ0OYMK2pCXOHpqZwv1w/ZJMUb2asixbBhx/COeeExW1EJHFK3an838Ck9B3uvsDMWqLHHi7o2UaPDh2c6Vpawpz7775b0FMVxKWXJifetmIFGDsWRo0qfTwi0mXm7qU7mdlq4Cx3/13G/oXAHe6+3ieJmdUD9QCVlZUDGhsbsz7foNra8O1VSsbNmDppUucHxqS5uZk+ffrEHUbWkhRvkmKFZMXb1VhrampmufvunR1X9sNO3X0sMBZg991398G5NEfsuGNodsm0ww5hxs1ys+uuoWM2UznG206stuOO5PRvVGJTpkwp6/gyJSneJMUKyYq3VLGWOiF8CGzRxv7PRo8V1pgxoZ07vWmjogIuuww23bTgp+uyyy5LTrztxTpmTHwxiUiXlLpT+U1CX8GnzGwHoCJ6rLDq6kKbdlUVbgZVVeF+XV3BT1UQSYo3SbGKSFZKnRAeB4aY2WZp+44A/gNMLcoZ6+pg/vzQrj1/fvl/YCUp3iTFKiKdKnVCuAlYCfzZzPaLOowvAH6bMRRVRERKrKR9CO7+oZntC1xPGGL6EXANISmIiEiMSj7KyN3nALWlPq+IiHRM01+LiAighCAiIpGSVip3lZm9D7RRaZaVrYElBQyn2JIUr2ItniTFm6RYIVnxdjXWKnffprODEpUQusLMZmZTul0ukhSvYi2eJMWbpFghWfGWKlY1GYmICKCEICIikZ6UEMbGHUCOkhSvYi2eJMWbpFghWfGWJNYe04cgIiId60lXCCIi0gElBBERAZQQREQkooQgUqbMrLeZjTWzL8Qdi/QM3bJT2cz6AIMIi/F8Ntr9IWERnqnu3hxXbPkws95AP3dfEHcsnTGzjYDtyjVWM9sJ2AmY5+7zyiCeig4e3hJ4G/guMB3A3Vs6OD5WZlYNuLvnO5tASZhZDbAb0Ar81d1nxBwSAGb2LeBld2+NMnybAAAIhElEQVSNLQh37zYbYMBFQDPhH7uZ8B/q7Yx9FxIlwyRswCHAmjKI46fAPwkLGv0VOLaNY74Vd6zARsDvgQ+if+8rov1/ANZEfwdrgAagV8yxrulka02/XwZ/A/XA1hn7TgPeT4tzMfCTMoj1auCStPvbAc9H7+nHhLVZ1gBPAFuUQbyt0Xt3PbBnHDGUfPrrIrsAOJ3wgd/o7uusAm9mnwOOBM4HHK3DkDUzOxK4DrgbeBXYAxhvZgcCx7j7x3HGl+Fs4CTgt4SkcKqZbQP8ABgJvALsBVwF/BC4IZ4wgZBcl0WxLM14bFPCh8MVFGOJ2fzcCPyFaF6daJGra4A/AfcR/l8dBlxnZh+5+11xBQocDpyTdv96QlIYRHTFFf18B+Fv5cSSRte2vwBHAT82s4XAPYTPsldKcva4s2KBM+w7QH0Wx9UD75RBvJOy3F4j/m/dM4m+aaft2xf4F+FbV99oXzlcIbwJnJV2fy/Ct6+fZxx3ITAz5li3B+4ifMCeStoVC7BFFPc+ccaYEW8r8M2M93pcG8fdSWj+iDPWj4G90+6vAA5r47ijgaXl8t4SrnCHR38XywlXMXMJX2S/WMwYulun8paEJo3O/DM6Nm77AJWEb4YdbcvjCjDNF4HH0ne4+zPAtwnv5fNmtnMcgbWhCngp7f6s6PaljOOmA7HG7O7vuvvRwMGEb6ivmdmQOGPK0eeBxjb2NxLa6eO0gPB3m/IJ4Wos0zJg45JElAV3X+3uD0V/F/0ICWsO8Etgjpm9YmZnFePc3a3J6AXgbDN7wd1XtHWAmW1KuIx8vqSRte0N4E13P6Kjg8zsUMKlY5z+TZiCdx3uPt/M9gAeJbynF5c6sDasYN2EvzLaMjtke1Em/wfc/Vkz+zrwY+AuM5tBebyXbemd1hm+lPANNtMaQvNRnG4DLjCzae4+l9A0NNrMXnT3jwDMbCtgFDA1xjjb5e7/Ifzfv8fMNid8cTgSuAS4stDnK4v/DAV0CvA0sMDMJhIuZz+KHtuCMOpoCOHDYd9YIlzXC8DQLI5zQod5nGYR2uDvy3zA166VfR+hMzfuD4K5wADgQQAPozY+08Zx/YH5pQurY1GcfzCzRmAMMI3438u2TE772QjNHE9nHPMVwmCOOF0JfAmYbWaTgL8DXyV8PrxGiP3LhKR2TGxRZsndlwHjCX13fYtxjm437NTMtiR8yxpK28NOHwduSn1DiJOZfR7o7+4PdXLcZwjDTmMbzmdmhwG/AIa5+wftHNOL0On4HXffqZTxZcRxCKFPo8MJwczsceAldz+/NJHlxsx2A74ATGvvPS81Mzuujd2L3P3JjOPuI1z9/qo0kbXPzIYCxxP6t7YlJIIPgb8BjwBj3T32Zlkzmwz82N1jG0DQ7RKCiIjkp7t1KouISJ6UEEREBFBCkIQys5FmNsvMlpvZh2b2qpn9tkjn2sXMLoj6pzo79gIz87TtXTO7P+ov6uy5I6Pn9ClM5CK5UUKQxDGzc4FbgImEYXgjCCOKhhfplLsQioKyrV35NzAw2s4kjGx5Jhry3JFHo+eU7XxF0r11t2Gn0jOcAtzs7qPS9j1sZhfGFVCGT9z9hejnF8xsAWEI6QHAvZkHR6Ozern7+4Q5gURioSsESaItCVNmrMPThsyZWXXU/HK0md0ZNS29Z2brDTE1s1oze9HMPjazxWZ2Q6rZxswGAw9Hh86LXnN+jvGmKqWro9ccb2YzzewHZvYGYYqFb7XVZGRmnzGzK8ysycxWmtk8M7ssI/6TzOyN6PEmMzs7x/hEAF0hSDK9QpiwbgHwiLtnTgqX7krCWPNDCVOFnG9mS9z9DwBm1p8w2+VThFlldwB+Q5jSYmh0rjMJk88dDCwiFDbmojq6/VfGvisIs/P+C5hHmAbiU2ZmhKawgYSq5VnAfwF7px1zFnBp9FpTCAV5F5tZi7tfn2Oc0tPFPaGTNm25boQq2LcIVbythClALgI2TzumOnr8yYzn/pEwCeIG0f1G4B+sO6nc4dFzB0b3h0X3q7OI7QLCRHUbRtsuhMreZYR1IiBUmzrw1Yznjoz294nuD4nuD2/nXJsTpvc+P2N/KsnEOrW3tuRtajKSxHH32cCuhE7kGwiVp+cBM9sYoTMh4/6fCTOMfi66/01ggrunz8dzP2EitL3yDLEvsDra5hKuNo5w90Vpx7zj7n/p5HVqgQ+8/Ur2gYQpsu81sw1TG2GG3ErW/o4iWVGTkSSSu68ktO0/DGBmJxJGHp0IXJt26HsZT03d344wG+Z2hEVJ0l97jZktBbbKM7x/A/sRvt3/C3jX3TOnBFi83rPW15fQRNWe1GSDb7Tz+A5AWa9eJuVFCUG6BXe/1cyuIMxfla5fO/cXpd2uc0w06qcvYXGdfHzi7jM7OSabOWOWEhJWe1LxDaPtBDM3i3OIfEpNRpI4Zpb5IU+0ItoWrP/BeFDG/VTH8MLo/ovAQVESSD9mQ9auqrUquu3dhbDz8QywlZkNa+fx5wkrrm3v7jPb2GKfsE2SRVcIkkSvmdmDwJOEJqAqwkigFuD2jGP7m9nNhH6BfQhNSqf52oXMLyEsCfqAmd1IaHe/HJjo7qk1M1LftH8YTU3d4u6vFedXW8dThOK7u8zsIsKIp+0IK6j90N0/MrMLgGvNrAp4lvAlbxegxt0zk6FIh5QQJIkuAg4krL2wFaGdfgah43ZexrFnE5pU7ieM97+YsLYuAO7+hpl9lzB088+E0UB3R89LHdNkZmcCPyMsc7mQtUNJi8bd3cwOimL+ObAN8C5hacXUMVeY2buEqcnPIPyOfyf+BZUkgTT9tXRLZlZNGNv/fXd/JN5oRJJBfQgiIgIoIYiISERNRiIiAugKQUREIkoIIiICKCGIiEhECUFERAAlBBERiSghiIgIAP8f+UDAfdfb52gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "payoff = np.array([0,0,0,1,2,3,4,5])\n", + "ep = np.dot(log_normal_samples, payoff)\n", + "print(\"Analytically calculated expected payoff w.r.t. the target distribution: \", ep)\n", + "ep_trained = np.dot(y, payoff)\n", + "print(\"Analytically calculated expected payoff w.r.t. the trained distribution: \", ep_trained)\n", + "\n", "# set number of evaluation qubits (samples)\n", "m = 5\n", "\n", @@ -129,8 +221,20 @@ "ae = AmplitudeEstimation(m, european_call)\n", "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" + "print('Expected payoff calculated with Quantum Amplitude Estimation: \\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])\n", + "\n", + "# plot exact payoff function (evaluated on the grid of the trained uncertainty model)\n", + "x = uncertainty_model.values\n", + "y_strike = np.maximum(0, x - strike_price)\n", + "plt.plot(x, y_strike, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" ] }, { From c06ccc5d3c1458586e77b96f06fb64a871ac98bc Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Thu, 2 May 2019 11:45:45 +0200 Subject: [PATCH 109/116] add finance notebooks to community section and adjust indices where necessary --- community/aqua/index.ipynb | 12 +- community/{aqua => }/finance/README.md | 4 +- community/finance/index.ipynb | 63 +++ .../finance/input_files/portfolio.json | 0 .../finance/simulation/iron_condor.ipynb | 9 +- .../finance/simulation/long_butterfly.ipynb | 397 ++++++++++++++++++ .../finance/simulation/short_butterfly.ipynb | 397 ++++++++++++++++++ index.ipynb | 1 + .../finance/simulation/option_pricing.ipynb | 3 +- 9 files changed, 864 insertions(+), 22 deletions(-) rename community/{aqua => }/finance/README.md (82%) create mode 100644 community/finance/index.ipynb rename community/{aqua => }/finance/input_files/portfolio.json (100%) rename qiskit/finance/simulation/iron_condor_pricing.ipynb => community/finance/simulation/iron_condor.ipynb (99%) create mode 100644 community/finance/simulation/long_butterfly.ipynb create mode 100644 community/finance/simulation/short_butterfly.ipynb diff --git a/community/aqua/index.ipynb b/community/aqua/index.ipynb index 6e9a52e53..a92f04e35 100644 --- a/community/aqua/index.ipynb +++ b/community/aqua/index.ipynb @@ -77,16 +77,6 @@ "The repository here may be viewed for the\n", "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/aqua/optimization).\n", "\n", - "### 5. [Qiskit Aqua Finance](finance/)\n", - "\n", - "Qiskit Aqua Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the Financial domain. \n", - "\n", - "* [Portfolio Optimization](../../qiskit/aqua/finance/portfolio_optimization.ipynb)\n", - "\n", - "The repository here may be viewed for the\n", - "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/aqua/finance).\n", - "\n", - "\n", "*** " ] }, @@ -116,7 +106,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/community/aqua/finance/README.md b/community/finance/README.md similarity index 82% rename from community/aqua/finance/README.md rename to community/finance/README.md index c459edde1..05c1f3d0c 100644 --- a/community/aqua/finance/README.md +++ b/community/finance/README.md @@ -1,10 +1,10 @@ # Qiskit Aqua Finance Tutorials, Samples and Input Files -Qiskit Aqua Finance is a set of tools, algorithms and software for use with quantum computers to +Qiskit Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the financial domain. -Qiskit Aqua Finance translates finance-specific problems into inputs +Qiskit Finance translates finance-specific problems into inputs for a quantum algorithm residing in Qiskit Aqua, which in turn uses [Qiskit](https://www.qiskit.org/) for the relevant quantum computation. diff --git a/community/finance/index.ipynb b/community/finance/index.ipynb new file mode 100644 index 000000000..c2e2ee53e --- /dev/null +++ b/community/finance/index.ipynb @@ -0,0 +1,63 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Qiskit Finance Community Tutorials" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome Qiskitters to the Qiskit Finance community tutorials.\n", + "\n", + "Qiskit Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the Financial domain.\n", + "\n", + "In the following, you'll find a list of currently available community tutorials.\n", + "Please also see the [Qiskit Finance Tutorials](../../qiskit/finance/index.ipynb) for more examples.\n", + "\n", + "Further contributions to simulation or other use cases in finance, such as optimization or machine learning, are very welcome!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Option pricing on a quantum computer:\n", + "- Long Butterfly (univariate, payoff with 4 segments)\n", + "- Short Butterfly (univariate, payoff with 4 segments)\n", + "- Iron Condor (univariate, payoff with 5 segments)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/community/aqua/finance/input_files/portfolio.json b/community/finance/input_files/portfolio.json similarity index 100% rename from community/aqua/finance/input_files/portfolio.json rename to community/finance/input_files/portfolio.json diff --git a/qiskit/finance/simulation/iron_condor_pricing.ipynb b/community/finance/simulation/iron_condor.ipynb similarity index 99% rename from qiskit/finance/simulation/iron_condor_pricing.ipynb rename to community/finance/simulation/iron_condor.ipynb index 0b05d3395..96d23bc5f 100644 --- a/qiskit/finance/simulation/iron_condor_pricing.ipynb +++ b/community/finance/simulation/iron_condor.ipynb @@ -4,14 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Finance: Pricing Iron Condor Option*_ \n", + "# _*Pricing Iron Condor Option*_ \n", "\n", "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", "\n", diff --git a/community/finance/simulation/long_butterfly.ipynb b/community/finance/simulation/long_butterfly.ipynb new file mode 100644 index 000000000..52c9ae6f6 --- /dev/null +++ b/community/finance/simulation/long_butterfly.ipynb @@ -0,0 +1,397 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Pricing Long Butterfly Options*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "Suppose a long butterfly option with strike prices $K_1 < K_2 < K_3$, with $K_2 - K_1 = K_3 - K_2$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$ F(S_T) = \n", + "\\begin{cases}\n", + "0 ,& S_T < K_1 \\\\\n", + "S_T - K_1 ,& K_1 \\leq S_T < K_2 \\\\\n", + "2K_2 - K_1 - S_T ,& K_2 \\leq S_T < K_3 \\\\\n", + "0 ,& S_T \\geq K_3. \n", + "\\end{cases}$$\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ F(S_T) \\right].$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", + "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", + "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits to represent the uncertainty\n", + "num_uncertainty_qubits = 3\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K_1$, then increases linearly, and is bounded by $K_2$.\n", + "The implementation uses two comparators, that flip an ancilla qubit each from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K_1$ and $S_T \\leq K_2, and these ancillas are used to control the linear part of the payoff function.\n", + "\n", + "The linear part itself is then approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price_1 = 1.438\n", + "strike_price_2 = 1.896\n", + "strike_price_3 = 2*strike_price_2 - strike_price_1\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2, strike_price_3]\n", + "slopes = [0, 1, -1, 0]\n", + "offsets = [0, 0, strike_price_2 - strike_price_1, 0]\n", + "f_min = 0\n", + "f_max = strike_price_2 - strike_price_1\n", + "butterfly_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "butterfly = UnivariateProblem(\n", + " uncertainty_model,\n", + " butterfly_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecVPXVx/HPAUSaFBtqVNZek6gYlUSjYMFOwIIVwYIFkCUxpvg8ETU8STTJIioCiiIKYkOxIyqY2AW72BVQUEGKVKWd549zV4Zhd2dmp/zmzpz36zWvZe7cO/udYfaeuff+iqgqzjnnXH01CB3AOedcvHkhcc45lxUvJM4557LihcQ551xWvJA455zLihcS55xzWfFC4oqWiAwUEU24zRGRB0Rkp4CZfiUir4vI9yKi0bLmIjJOROZHOXvWsu2opNdTfbu1oC9iXZ7eIvKbGpbPEJF/hsjk4qlR6ADOpfAdcHT07x2Ba4BnRGQvVV0WIM9wYC7QGfghWnYxcALQA5gNfFrH9h8AvZKWzc1xxnT1Bt4FHkpa3hWYX/g4Lq68kLhit1pVX47+/bKIzAL+CxwL3Bcgz+7ACFV9LmnZh6r6QBrbL0t4PUVJVd8IncHFi5/acnEzLfpZASAiHUTk4ei01zIReVNEzqxeWUQ2jU5DnZP4JGI+F5F/JyzrJCKvROt/IyJDRaRF9Nhh0amshsD10SmpUSIyAzgP2Lf6VFV9X1j17xCRvZOWTxGR+xPujxKRqSJypIi8Hb3u50Vkr6TtGorIn0TkIxH5QUS+FJFR1c8JtAfOSTjF1jN6bINTWyJyqoi8Ez3PFyIySEQaJTzeM3qOn4rIpCjTByLSrb7vh4sPLyQubiqin19HP9sBLwDnY6eXHgBuF5HTAVR1AfAgG55OOix6rtsBRGRP4EngW+Ak4ErgDKB6B/460CH697+if1+DnQZ6HDtl1SFhnVqJSKPEW1qvekPbA9cBg4DTgS2Be0VEEtYZDlwF3AscD/wOaB49dkmU+fGE3I/Vkvco4B7sPegC3ABcBtxYw+pjgYex9+VjYJyIbFvP1+hiwk9tuaKXsLPdERgKLAGeBlDVcQnrCfAfYFvgAuDu6KGRwFMisqOqfhYt6wVMU9V3ovt/AWYCJ6rqmuj5FgD3iEgHVX0JO7UGMCPx9JSIzAPapnnKqj2wKun17aKqn6SxbaJNgV+p6sfRczTACuZuwAcisjt2pNRfVYckbHcPgKpOF5FlwLw0cl8NTFHV6qO6J6P34W8i8ldV/TJh3SpVvS3KNA34BitiwzJ8fS5G/IjEFbvNsB3vKuBDrJh0V9WvAESkjYgMEZGZCev1BnZNeI5nsCJxTrTNJkA3oqORyAHAg9VFJPIAsBo4OIev533gF0m3L+rxPDOqi0hkevSz+tt/x+jnqHo8949EpCGwHxtej7oH238kH4E9Vf0PVZ2PNSTwI5IS50ckrth9BxwBKHY6a46uP2T1KOAg7DTTdGAx1oqqS/UKqqoicjtwrogMBE7FPvtjE55na+zbMwnbrRGR+di3/1xZrqpTc/A8i5Lur4x+Nol+boZd2F+c5e/ZHNiIpPcm4X7ye1NTria4kuaFxBW71bXteEWkCXAc0FdVhyUsr+lI+3bsukdHoCfwkKouTHj8K+w6Q+LzN8R2yAuyeQEZ+D762Thp+abYtZtMzAeai0jLLIvJt9hR3pZJy9tGPwv13rgi5qe2XJxtjLWiqu7PUX3a6sTkFVX1C+y0y1XYqarbk1Z5BegaFY9q3bAvW8/nNnatqq817FG9QES2w657ZOrZ6GePOtZJebQQneqbBpyS9NCpwFrgpXpkcyXGj0hcbKnqdyLyGvAXEVmM7dj+iJ0Oa1nDJiOxc/1fApOSHvsr8AbwkIjcjJ3X/wcwMbrQnneq+mX0eq4RkeXYF70/U49v/ar6oYiMAP4lIltijRBaAyer6mnRah8AnUWkM3YE83l0XSPZlcDE6PTgOOCn2KnEW5IutLsy5UckLu7OAD4HRgPXYxfIR9ey7qPYxfM7VHVt4gOq+h5wDHYKZzxWWO4GTs5P7FqdAcwC7gL+D2sx9WE9n+sS7AjsLKyZ72BgRcLjf8Uu/t8LvIY1n96Aqj4FnAbsDzwCVGJNoPvWM5crMeJT7bpyISLHYsVk13o0t3XO1cILiSt5IrINsAvWkW6Wqh4fOJJzJcVPbbly0BvrS/I90C9wFudKjh+ROOecy4ofkTjnnMtKWTT/3XzzzbWioqJe2y5btozmzZunXrFIxClvnLJCvPLGKSvEK2+cskJ2eadNm/atqm6RckVVLflb+/bttb4mT55c721DiFPeOGVVjVfeOGVVjVfeOGVVzS4vMFXT2Mf6qS3nnHNZ8ULinHMuK15InHPOZcULiXPOuax4IXHOOZcVLyTOpTJmDFRUcGinTlBRYfedcz8qi34kztXbmDHQuzcsX44AzJxp9wHOPDNkMueKhh+ROFeXK66A5cvXX7Z8uS13zgFeSJyr26xZmS13rgx5IXGuLttvn9ly58qQFxLn6nLZZRsua9YMBg0qfBbnipQXEufqMmeO/dxmGxRABG64wS+0O5fAC4lztVm+HIYPh65dYfZs3rjpJlDd8OK7c2XOC4lztRk9GhYsgAEDAFi8555w0EFw/fWwdm3gcM4VDy8kztVk7VorGO3bw8EHr1teWQmffAKPPRYum3NFxguJczWZOBE++MAKh8i65SedBNttB4MHh8vmXJHxQuJcTaqqYOut4dRT11/eqBH07QvPPgtvvRUmm3NFxguJc8nefRcmTbKC0bjxho9fcIE1Ab7++sJnc64IeSFxLtngwdCkCVx4Yc2Pt2kDPXvaOFzffFPQaM4VIy8kziWaNw/uugt69IDNNqt9vUsvhZUrYdiwwmVzrkh5IXEu0bBh8MMPdpG9LrvtBscdB0OH2vrOlTEvJM5V++EHuOkmOPpo2GOP1OtXVsLcuXD33fnP5lwR80LiXLVx4+yaR9QBMaXDD4e997ZrKqr5zeZcEfNC4hxYIRg8GPbcE448Mr1tROyo5K23YMqUvMZzrph5IXEO4Lnn4M03N+yAmMoZZ8Dmm3sHRVfWvJA4B9YBcfPN4ayzMtuuaVO4+GJ45BEbOsW5MuSFxLlPPrFCcNFFVhgydfHF1uN9yJDcZ3MuBryQODdkiBWCSy6p3/Zbbw2nnQa33QaLFuU2m3MxUPBCIiJ7isgzIrJcROaIyNUi0jCD7RuIyDQRURE5Pp9ZXRlYtMgKwGmnWUGor8pKWLYMRo7MXTbnYqKghURE2gBPAwp0Aa4GfgdclcHTnA/8JPfpXFm69VYrAOk2+a3NfvvBr39tsyeuXp2bbM7FRKGPSC4CmgLdVHWSqg7DishvRaRlqo2jQjQIuCK/MV1ZWL3advyHHgr77pv98w0YADNnwoQJ2T+XczFS6EJyDDBRVRcnLBuHFZdD09j+GuAF4Jk8ZHPl5sEHYdas7I9Gqp1wAuywg7UAc66MFLqQ7A58kLhAVWcBy6PHaiUiPwN6AZflLZ0rL1VVsOOOcHyOLrU1bGiDOb7wArz2Wm6e07kYEC3g0A4isgr4vaoOTlr+JTBaVf9cx7bPAa+o6uUiUgF8Dpygqo/Wsn5voDdA27Zt248bN65emZcuXUqLFi3qtW0IccobMusm06fTvk8fPu7bl9knnZTWNunkbbhsGR1OPZX5HTrw/v/8Ty6i1kucPgcQr7xxygrZ5e3YseM0Vd0/5YqqWrAbsAroX8Py2cCgOrY7DfgaaBndr8Au2B+fzu9t37691tfkyZPrvW0IccobNGv37qotW6ouXpz2JmnnraxUbdRI9csv65ctB+L0OVCNV944ZVXNLi8wVdPYxxb61NZCoHUNy1sBNTbAF5GNgOuAfwANRKQ1UH1hvrmIbJKPoK6EffEF3H+/zXS4SR4+PpdeCmvX2kjCzpWBQheSD0i6FiIi2wHNSbp2kqA5sC3wb6wQLQSqJ8seB7yRl6SudN14ow3S2K9ffp5/hx2gSxcYPhyWL8/P73CuiBS6kDwBdE46iugOrACeq2WbpUDHpNvp0WN/Bs7MT1RXkpYuhREjoFs3aNcuf7+nshIWLLDZFp0rcYUuJMOAH4DxInJEdEF8IPBvTWgSLCKfiMhIAFVdrapTEm/Ay9Gq76jqK4V9CS7W7rjDerPnqslvbQ45xDop+lwlrgwUtJCo6kLgcKAh8AjWGbEKuDJp1UbROs7lztq1cP31cMAB0KFDfn9X9Vwl778PTz2V39/lXGCNCv0LVXU60CnFOhUpHp8BZDBphHPA44/Dxx/b1LiZzDlSX927w+WXW3+Vzp3z//ucC8RH/3Xlo6oKtt0W0uw3krXGjaFPH5g4EaZPL8zvdC4ALySuPLz1Fjz7LPTtCxttVLjfe+GFsPHGPleJK2leSFx5GDwYmjWD3r0L+3u32ALOPhtGj4b58wv7u50rEC8krvR98w2MHQs9e0KbNoX//f37w4oV1uzYuRLkhcSVvptvhpUrrcd5CHvvDUceaR0hV64Mk8G5PPJC4krb99/D0KFw3HGw227hclRWwpw5NjSLcyXGC4krbWPHwrx5+e+AmMrRR1shq6ryDoqu5HghcaVL1S6y//Sn0KnOrkv516CBXSuZOhVefDFsFudyzAuJK13PPgvvvGOnlQrRATGVHj3sYv/gwanXdS5GvJC40lVVBVtuCWecETqJad7cmh+PHw8zZoRO41zOeCFxpenDD+Gxx+Dii6FJk9Bp1unTx46ObrwxdBLncsYLiStNQ4bYECUXXxw6yfq22w5OPhluvRWWLAmdxrmc8ELiSs+CBTBqFJx5JrRtGzrNhgYMgO++s4zOlQAvJK703HKLzUzYv3/oJDU78EA46CAb0n7t2tBpnMuaFxJXWlatghtusOa+P/956DS1GzAAPv0UHn00dBLnsuaFxJWW+++H2bPDd0BMpVs3u17iTYFdCfBC4kqHqjX53WUXOPbY0Gnq1qiRDWk/ebINce9cjHkhcaXjpZfgtdfs2kiDGHy0L7jAhrb3oxIXczH4a3MuTVVV0Lo1nHNO6CTpadPGhrYfO9aGuncupryQuNIwY4b1GO/dG1q0CJ0mff3729DyN98cOolz9eaFxJWGG2+0HuN9+4ZOkpldd7Uh7m++2Ya8dy6GvJC4+FuyxPqOnHyytYSKm8pKmDsX7r47dBLn6sULiYu/22+HxYuLv8lvbQ4/3GZRHDzY5ypxseSFxMXbmjXWQ7xDB+sxHkcidlTy9tswZUroNM5lzAuJi7dHH4XPPovv0Ui1M8+EzTe3lmfOxYwXEhdvVVWw/fbQtWvoJNlp0sRGKn70Ufj449BpnMuIFxIXX2+8Ac89B/36WU/xuLv4YnsdQ4aETuJcRryQuPiqqrJZB88/P3SS3Nh6azj9dGs8sGhR6DTOpc0LiYunr76CcePg3HOtN3upqKyEZctg5MjQSZxLmxcSF09Dh8Lq1XDppaGT5Na++8Khh9rprdWrQ6dxLi0FLyQisqeIPCMiy0VkjohcLSINU2yzl4g8Ga3/g4jMEpFbRWTrQuV2RWTFChg2DE44AXbeOXSa3KushFmz4KGHQidxLi0FLSQi0gZ4GlCgC3A18DvgqhSbtgI+By4DOgNXAkcAj4tICVxldRm56y749tv4N/mtzQknwI47elNgFxuF3glfBDQFuqnqYmCSiLQEBorItdGyDajqi8CLCYumiMiXwFPAz4DX85zbFQtV6wG+zz52CqgUNWxop+wqK+HVV+GAA0Incq5OhT61dQwwMalgjMOKS6Z7hfnRz8a5COZiYtIkmD7djkZEQqfJn169YJNNrNe+c0Wu0IVkd+CDxAWqOgtYHj1WJxFpICKNRWQ34O/Aa8Cr+QjqilRVFbRtC927h06SXy1bWrPme++1qYOdK2KiBRwkTkRWAb9X1cFJy78ERqvqn1Ns/yR2jQRgGnCsqs6tZd3eQG+Atm3bth83bly9Mi9dupQWMZrfIk55M83abOZMDujZk8979WJmjx55TFazQr+3Tb76igPPOotZp53G5xdckNG2cfocQLzyxikrZJe3Y8eO01R1/5QrqmrBbsAqoH8Ny2cDg9LYfhfgQOAs7MhmGtAk1Xbt27fX+po8eXK9tw0hTnkzztq7t+rGG6vOnZuXPKkEeW+7dlXddFPVZcsy2ixOnwPVeOWNU1bV7PICUzWNfXuhT20tBGrqPdYKSNmVV1U/VtVXVPUu7MhkX+CM3EZ0RWn+fBg9Gs4+G7bYInSawhkwABYsgDvvDJ3EuVoVupB8QNK1EBHZDmhO0rWTVFR1JrAA2DFn6VzxGj7cZhDs3z90ksI6+GDYbz9rqbZ2beg0ztWo0IXkCaCziGySsKw7sAJ4LpMnii64b4b1L3GlbOVKm0r3yCNtAqhyImJHJR98AE89FTqNczUqdCEZBvwAjBeRI6IL4gOBf2tCk2AR+URERibc/6eI/F1EuopIRxG5BJgIfIo1H3al7N57bWytUu2AmMqpp8JWW9lRiXNFqKCFRFUXAocDDYFHsB7tVVhP9USNonWqTQUOAUYCjwGXAg8AB6nqsjzHdiGpWpPf3XeHzp1Tr1+KGjeGPn1g4kTrQ+NckSn48CKqOh3olGKdiqT74/Ajj/L0/PPw+utw883QoIzHGL3wQhg0yDooDh8eOo1z6ynjv0wXC1VVsOmmEKDfSFHZYgs46yxruTZ/fur1nSsgLySueH32mY2Ae+GF0KxZ6DThVVZayzU/InFFJmUhEZEeIrJZIcI4t54bbrABDPv0CZ2kOOy1l7Vcu+kma8nmXJFI54jkdmAnABFZIyI+FKnLv8WLbZbA7t3hJz8JnaZ4VFbCnDlw332hkzj3o3QKyUJgm+jfgs0l4lx+jRwJS5bYjtOtc/TRsNtu1hS4gOPkOVeXdFptPQ3cKSIfYkVklIjU2uRWVf2IxWVnzRqbavbgg2H/1OPFlZUGDax3/yWXwAsv2HvkXGDpHJGci/X3eAM7IvkceK+Om3PZmTABZswo3w6IqfToAW3aeAdFVzRSHpGo6nLgnwAicgRwhaq+le9groxVVUFFBXTpEjpJcWreHHr3huuus4JbURE6kStz6bTaWiMiv4juTgFqnA7XuZyYOtU6IV56qbXYcjXr08fG4brhhtBJnEvr1NZKYOPo3z2AMhrD2xVcVZVNMXveeaGTFLfttoNTToFbb7VGCc4FlM7F9unAQBF5CLtGcrKI1HYFVFX15pylc+Vl9mwboLFvX5tq1tWtshLGjYPbb7cjOOcCSaeQ9AOGY4MrKnBZHesq4IXE1c9NN9mcG75TTM+BB0KHDtbCrU8fPxXogkl5aktVX1TVn6rqRtgRyUGq2qCWm3+SXf0sX25Df3TpAjvsEDpNfFRWwqefwmOPhU7iylimY211xE51OZdbo0fblLLe5Dcz3brZ9ZKqqtBJXBnLaBh5VX0OQEQOBA4GNsWmu31eVV/JfTxXFtautT4R7dt7B7tMNWoE/frB5ZfDm2/CPvuETuTKUEZHJCLSXEQeB14E/oZ1Vvwb8KKIPCYiPkSry9zEifDhh3Y0IhI6Tfycf76NjuwdFF0gmZ7auhboAJwGNFHVrYEm0f0OwD9yG8+Vhaoq2GYba87qMtemDfTqBXffDV9/HTqNK0OZFpKTgD+o6n2quhZAVdeq6n3AHwHfE7jMvPsuTJpkrY4aNw6dJr4uvdSGlh82LHQSV4YyLSStgC9qeewLwBv/u8wMHgxNm9rkVa7+dt0VjjsOhg61ya+cK6BMC8lbwMUi65/Iju5fHD3uXFo2WrQI7rrLBiHczOdOy9qAATBvnp3icq6AMmq1BfwZeAL4QEQeBL4BtgS6AhXAMTlN50rTmDFwxRX8cuZMu7/TTmHzlIpOnWDbbeHCCzl09WrYfnsYNAjOPDN0MlfiMm3++6yI7Av8BbsesjXwFfAK0E1VvY+Jq9uYMTZy7fLl/HhYO3CgXWz3HV52xo6FuXNh1Sp7b2fOtPca/L11eZXpqS1UdbqqnqaqO6lqs+jnGV5EXFquuMJ6sSdavtyWu+xcccWGc7n7e+sKINN+JP8UkT3zFcaVgVmzMlvu0ufvrQukPs1/3xGRV0XkIhFplY9QroRtv31my136/L11gWRUSFR1B+AI4APgOuArERkbzZzoXGqDBm04Sm2zZrbcZWfQIHsvEzVt6u+ty7v6XCOZrKo9sAvt/YBtgYkiMlNErhKRHXMd0pWQgw6CNWugZUtUBNq1gxEj/GJwLpx5pr2X7dqh1ctOPNHfW5d3GReSaqq6VFVHAlcCLwDbAX8CPhKRCSLSLkcZXSkZMgQ22gjef5/nnn3W5hz3HV3unHkmzJjBc5Mnw2GHwQsvwKpVoVO5ElevQiIiFSJypYh8BjwFLMWaA28CnIj1KRmXq5CuRHz3Hdx2G3Tvbs19XX4NGABffgnjx4dO4kpcpq22zhaRZ4FPgHOA24EdVPVYVX1AVX9Q1ceBS4HapuN15WrkSFi61CZjcvl3/PGw884+V4nLu0yPSEYAXwOdVXVHVb1GVb+sYb2PgL/W9AQisqeIPCMiy0VkjohcLSJ1zqwoIr8QkdtF5JNouw+jI6ImGeZ3oaxebae1DjnE5h1x+degAfTvD6+8Ai+9FDqNK2GZFpJtos6Hz9S1kqp+papXJS8XkTbA09jc7l2Aq4HfARusm6Q7sBM2TP2xwE3Ab4ExGeZ3oUyYYD2tfQbEwurZE1q39qMSl1eZDpGyMMvfdxHQFBtOZTEwSURaAgNF5NpoWU3+oarzEu5PEZHvgeEi0k5VZ2aZy+Xb4ME2F/uJJ4ZOUl5atIALLoB//csKeTtvA+NyL+OL7SLSXUSeFpFZIjI3+ZZi82OAiUkFYxxWXA6tbaOkIlLtjejnlhm9AFd4U6fC88/bnBnJfUhc/vXtazNP3nBD6CSuRGV6sf0M4A7sYvu2wMPAo9HzLAZuTPEUu2OdGX+kqrOA5dFjmfglsBb4MMPtXKENHgybbALnnhs6SXnafns46SS49VZYsiR0GleCMj0i+T1wDdAnuj9UVc8FdgC+xQpCXdoAi2pYvjB6LC0ishVwBXBnHafDXDGYPRvuuQfOOw9a+rxnwQwYYM2vR40KncSVIFHV1GtVryyyFDheVaeIyCrgSFWdEj3WFahS1Yo6tl8FXKaq1yctnw2MUtWUw5SKSGPsgv22QPvartuISG+gN0Dbtm3bjxtXv24tS5cupUWLFvXaNoRiy7vDrbey/dixvHLXXXyf1Hek2LKmEqe8NWXdt08fGi9axCujRxfdKca4v7fFLJu8HTt2nKaqqbtyqGraN2A21vQXYAZwccJj3YAlKbafC1xZw/KlwO/T+P2CXVOZD+yebu727dtrfU2ePLne24ZQVHmXLVPddFPVrl1rfLiosqYhTnlrzHrPPaqg+tBDBc+TSuzf2yKWTV5gqqaxj8301NZU4GfRvx8G/iIiF4jIOdggjq+k2P4Dkq6FiMh2QHOSrp3UogprNtxFVdNZ34V0112wYIF3QCwW3brZ9RJvCuxyLNNC8jegenKDvwCvAkOxHu7fEp1KqsMTQGcR2SRhWXdgBfBcXRuKyJ+wQSLPUtXnM8ztCk3VLrLvt591QnThNWoE/frBc8/BG2+kXt+5NKVVSESkqYicBPwKaCQibVV1kap2AVoArVX1QFX9LMVTDQN+AMaLyBHRdYyBwL814aJ51IN9ZML9M4D/A0YDs0XkoITbFhm8XlcoTz0F779vRyMiqdd3hXH++dC8uRV553IkZSGJhoV/D7gPO311J/ChiBwFoDa+Vlotp9QujB8ONAQewXq0V2EjCCdqFK1T7ajoZ0/gpaTbcen8bldgVVWw1VY2QKMrHq1bQ69ecPfd8NVXodO4EpHOEcm1WH+NQ4BmwF5YZ8Dh9fmFanO+d1LVpqq6tar+r6quSVqnQlV7JtzvqapSy21UfXK4PJo+HSZOhD59oHHj0Glcsv79beyzoUNDJ3ElIp1C0gH4H1V9QVW/V9X3gQuB7UVk6/zGc7E0ZAhsvDFceGHoJK4mO+8MJ5wAw4bBihWh07gSkE4h2RpIvvbxKdYUd6ucJ3LxNn8+jB4NZ58NW/jlq6I1YAB8+621rHMuS+m22kq/16IrbyNG2Lfc/v1DJ3F1OfRQ2Gcfu+ieQadk52qSbiGZmDQwY/VVumcyHLTRlbKVK+HGG+HII2HvvUOncXURsRZ106fDpEmh07iYS2cY+VRzhThn7r8f5syBW24JncSl47TT4A9/sBZ2Rx2Ven3napGykGgNE1Q5twFV2yHtthscfXToNC4dG29sLev+8hfr87PHHqETuZjKeD4S52r04os270j//jbFq4uHiy6yguIdFF0W/C/e5UZVFbRpAz16hE7iMrHFFtbCbvRoa8XlXD14IXHZmzEDHnwQeve24TdcvFRWwvffW4s75+rBC4nL3g03WCugvn1DJ3H1sdde1tLuxhut5Z1zGfJC4rKzZIlN4XrKKbDttqHTuPoaMMDG3rr33tBJXAx5IXHZuf12WLzYdkQuvjp3ht13t2td3kHRZcgLiau/NWtsXK0OHeCAA0Kncdlo0MCulbz+Ovz3v6HTuJjxQuLq79FH4dNP/WikVJx9Nmy6qc+g6DLmhcTV3+DBNnVr166hk7hcaNbM+pVMmACfpZqjzrl1vJC4+nnzTZgyxaZubZTOSDsuFi65BBo2tFOWzqXJC4mrn8GDrc/IeeeFTuJy6Sc/sVktR46E774LncbFhBcSl7mvv7apWnv2tN7srrQMGABLl1oxcS4NXkhc5m6+2Tqu+Zwjpal9ezjkEDu9tXp16DQuBryQuMx8/70VkuOPh112CZ3G5cuAATBzJjz0UOgkLga8kLjMjB0L8+Z5k99Sd+KJsMMOPiqwS4sXEpc+Vdux/Oxn0LFj6DQunxo2hEsvhRdegNdeC53GFTkvJC59zz4L77xjPaBFQqdx+XbuubDJJt5B0aXkhcSlb/Bg2HJLOP300ElcIbRsCeefD/fdB19+GTqNK2JeSFx6PvrIhkS5+GJo0iR0Glcol14Ka9faEPPO1cJjCZXoAAAfeElEQVQLiUvPkCHQuLEVElc+KipsCJwRI2DZstBpXJHyQuJSW7jQhos/4wxo2zZ0GldoAwbYZ2D06NBJXJHyQuJSu/VWWL7cLrK78vPLX8L++9s1srVrQ6dxRcgLiavb6tU2lW7HjvDzn4dO40IQsaOSjz6CJ54IncYVIS8krm7jx8MXX/jRSLk75RQb0NGbArsaeCFxdauqgp12siFRXPnaaCPo2xeeeQbefjt0GldkCl5IRGRPEXlGRJaLyBwRuVpEGqbYprGIXCci/xWRFSLik0oXwssv261/f5uK1ZW33r1t8qvrrw+dxBWZgu4dRKQN8DSgQBfgauB3wFUpNm0GnA8sB17MZ0aX4PrroVUr6NUrdBJXDDbdFM45B8aMgblzQ6dxRaTQXzMvApoC3VR1kqoOw4rIb0WkZW0bqeoiYFNV7Qw8WJioZe6LL6xH8/nnQ4sWodO4YtG/P/zwg40A7Vyk0IXkGGCiqi5OWDYOKy6H1rWhqvrprEK66SYbpLFfv9BJXDHZbTc49lgYOtSmFHCOwheS3YEPEheo6izslNXuBc7iarNsmfVk7tYN2rULncYVmwED7NTW3XeHTuKKRKMC/742wKIali+MHssZEekN9AZo27YtU6ZMqdfzLF26tN7bhpCLvNtMmMCuCxfy+qGHsjiPr70c39tCyWvWhg3Zf8cd4a9/ZWpFRU5Ggvb3Nn8KkldVC3YDVgH9a1g+GxiU5nP0JTrTle6tffv2Wl+TJ0+u97YhZJ13zRrVXXdV/cUvVNeuzUmm2pTde1tAec86cqQqqD7zTE6ezt/b/MkmLzBV09jHFvrU1kKgdQ3LW1HzkYortCeftB7MPueIq8sZZ8AWW3gHRQcU/hrJByRdCxGR7YDmJF07cYFUVcE221hPZudq06SJjQT96KP2xcOVtUIXkieAziKyScKy7sAK4LkCZ3HJ3n0Xnn7aejBvtFHoNK7YXXKJTS3gHRTLXqELyTDgB2C8iBwRXRAfCPxbE5oEi8gnIjIycUMROUZETgb2ie6fHN28WVGuDB4MTZtaD2bnUmnb1k5xjRoFCxaETuMCKmghUdWFwOFAQ+ARrDNiFXBl0qqNonUS3QzcB5wX3b8vunXMV96yMm8e3HUX9OgBm20WOo2Li8pKm2LglltCJ3EBFbr5L6o6HeiUYp2KdJa5HBo2zHos9+8fOomLk5//HDp1sql4f/tbPyVapnwkPmcFZOhQOPpo2GOP0Glc3AwYAF9+CQ88EDqJC8QLiYN77oGvv7YdgnOZOvZY2GUXa/HnIxmVJS8k5U7VLrLvuScceWToNC6OGjSwU6KvvgovvRQ6jQvAC0m5+89/4I03vAOiy84550Dr1t5BsUx5ISl3gwdbK62zzgqdxMVZixbWbHz8eJgxI3QaV2BeSMrZZ5/BhAlw0UXWf8S5bPTta0e1N94YOokrMC8k5WzIEGjUyHooO5et7bazoXVuuQWWLAmdxhWQF5JytXgx3HYbdO9uY2s5lwuVlfbZuv320ElcAXkhKVcjR9q3xsrK0ElcKTnwQOjQwcbfWrMmdBpXIF5IytGaNXZa65BDoH370GlcqRkwwK6/PfJI6CSuQLyQlKMJE6xljR+NuHzo2tWmaPamwGXDC0k5GjwYKiqgS5fQSVwpatQI+vWzPkqvvx46jSsALyTlZto0+O9/4dJLoWHyAMvO5cj551vfksGDQydxBeCFpNwMHmx/4OeeGzqJK2WtWkGvXjBuHHz1Veg0Ls+8kJSTOXPsD/u88+wP3bl86t8fVq+Gm24KncTlmReScjJ0qLXY6tcvdBJXDnbaCU480ea6WbEidBqXR15IysWKFfYH3aWL/YE7VwgDBsD8+Tb7pitZXkjKxV132R+0N/l1hfTrX8O++9q1OZ+rpGR5ISkH1XOO7Luv/WE7VygidlQyfTo89VToNC5PvJCUg0mT7A/Z5xxxIXTvDltt5R0US5gXknJQVWV/yN27h07iylHjxtCnD0ycaF9oXMnxQlLq3n8fnnzShorfeOPQaVy5uugiaNLEOyiWKC8kpW7IECsgF10UOokrZ5tvDmefDXfeCd9+GzqNyzEvJKVs/ny44w6bRneLLUKnceWushK+/x6GDw+dxOWYF5JSdsst1n/Em/y6YrDnntC5s/V0X7kydBqXQ15IStWqVTZ39hFHwN57h07jnKmstLG37rkndBKXQ15IStX998Ps2daG37li0bkz7LGHtST0DoolwwtJKVK1P9TddoOjjw6dxrl1ROyo5I03bL4SVxK8kJSil16C116z0Vcb+H+xKzJnnw2bbeZNgUuI72VKUVUVtGkDPXqETuLchpo2teboEybAp5+GTuNyoOCFRET2FJFnRGS5iMwRkatFJOVUfSLSSkRuF5GFIvKdiIwRkc0KkTlONv76axg/Hnr3hubNQ8dxrmaXXGJT8g4ZEjqJy4GCFhIRaQM8DSjQBbga+B1wVRqb3wMcBpwP9AR+ATyUj5xxtu2DD9p56D59QkdxrnbbbGND9tx2G3z3Xeg0LkuFPiK5CGgKdFPVSao6DCsivxWRlrVtJCIdgM7AOar6gKo+CJwFHCwiR+Ql6ZgxUFHBoZ06QUWF3S9mY8bA9tuz7b33Wk92v5Dpit2AAbB0aXz+zuK4TyhQ3kIXkmOAiaq6OGHZOKy4HJpiu29U9ce9o6q+CnwePZZbY8bYqaGZMxFVmDnT7hfrB6c67xdfIADLlxd3XufAxoFr0AAWLSr+v7O47hMKlFe0gG25RWQuMFRVByYtXwYMVNXratnuXmBLVT0safljAKp6XF2/d//999epU6emH7Siwt74ZI0awa67pv88hfLRRzY3drJ27WDGjILHSdeUKVM47LDDQsdIW5zyxiJrnP7OavsbK8askLN9gohMU9X9U63XKJNsOdAGWFTD8oXRY/XZbseaNhCR3kBvgLZt2zJlypS0Qx46axY1zdqhq1czrwjHrNpi+vSa886axXMZvO5CW7p0aUb/L6HFKW8cssbp76zWv7EizAoB9gmqWrAbsAroX8Py2cCgOrabBDxYw/IxwAupfm/79u01I+3aqVq3vvVv7dpl9jyFEre8kcmTJ4eOkJE45Y1F1jh9buOUVTVneYGpmsa+vdDXSBYCrWtY3oqajzhSbdc6xXb1M2gQNGu2/rJmzWx5MYpbXucgXp/bOGWFguctdCH5ANg9cYGIbAc0jx5Le7vI7im2q58zz4QRI6BdO1TEziuOGGHLi1Hc8joH8frcxikrFD5vOoctuboBfwIWAJskLLsMWA60rGO7Dljfk4MTlu0fLTsi1e/N+NRWglicIkgQp7xxyqoar7xxyqoar7xxyqqaXV6K9NTWMOAHYLyIHBFdEB8I/FsTmgSLyCciMrL6vqq+BEwERotINxH5DXZ95HlVfbqgr8A559x6ClpIVHUhcDjQEHgE64xYBVyZtGqjaJ1EpwHPAbcBo4FpQNd85nXOOZdaoZv/oqrTgU4p1qmoYdkioFd0c845VyR89F/nnHNZ8ULinHMuKwUdIiUUEZkH1DAWQ1o2B77NYZx8i1PeOGWFeOWNU1aIV944ZYXs8rZT1ZRd98uikGRDRKZqGmPNFIs45Y1TVohX3jhlhXjljVNWKExeP7XlnHMuK15InHPOZcULSWojQgfIUJzyxikrxCtvnLJCvPLGKSsUIK9fI3HOOZcVPyJxzjmXFS8kzjnnsuKFxDnnXFa8kDjnnMuKFxLnnHNZKfjovy43opkljwUEuE9V54vItthEYTsBM4ARqvpOuJQgIn8AHg+dI10i0hRopKpLEpZtAfQF9gTWAm8CQ1X1uzApnSsu3vw3IiKCzW9yHLAHsCmwBvgGeBkYpaofhUu4jogcADwFtABWY7NOdgYexzK/B+wNbIXNIPnfQFERkbXYTJYfAGOBe1T1k1B5UhGRx4GPVbV/dL8D8ARWQKZhhbs9sBLopKrvBcy6L9BUVV9MWHY0NhNpddF7CxiYuE6xiP7mTgD2wz4jU7EvHUW9UxKRltjYVZ1U9fnQeeDHTJ2AxsBjqros+gLUB9gR+Az7YjknL7+/yP/PCiJ6wx/HdhDfYLM4/gT7cD+B/UfsBlyjqteEyllNRCZhR5NdgWXY5GC/wXZ0J6vqKhHZGHgIaKKqHQNmXQv8A/gpcCSW+3WsqNyrqrNDZauJiHwLnKeqE6L7L2Pv8W+qj1JEpBXwMPC9qnYOmPVl4BFVHRTdPxe4FZgMPIsVvcOBQ4CTql9ToKwvYu/r+9H9NtiXofbA0mi1FtiXts6JR4QhiMgldTzcFLgOuB74GEBVhxYiV01EZGfgGWC7aNHnwFHAJKA18Cm2/1oBtFfVL3MeIp35eEv9BtyNfSB+mrBsG+BJ4IHo/qHYB/7cIsg7Hzgm4f6W2LfPo5LWOw74NnDWtcAB0b/bAL2jD/3q6DYlWrZZ6Pc1yrgc+HXC/ZXJ72vCe7sscNbFidmAT4AbalhvGPBWsXwOovsjsSPpoxOWHQ0sBKqK4HOwFju6X1vLLfGxNYGz3osdee6MnUm5M9qfvQhsEq2zebTO8Hxk8Ivt5hjgj5pwHl/tEPAi4DcisrWqPgf8H9A/UMZEGt0S75O0rKb7QanqQlUdoaqHA9sCv8MOxYcBc0TksaABzbtA4hHcN9gfZ7LNsKIT0tqk++2A+2tY737sG2kxORG4WlWfrF4Q/XsQ0C1YqnUeBuYC5wENVbVB9Q37PAhwWLQseVrwQjsYGKSqn6jqAuB/sOuk/9ToyE5VvwUGs/5nO2e8kBjBvmEkWxM91iq6/wqwa6FC1WEacJmIbCIiDYA/A7OBi0WkIYCINAIuwXaMRUdVv1bV61X1l8AOwJXYUWBofwf+KCLnRu/hIOA6ETlSRBqLyMbRdYi/Yd8EQ/ovcGbC/feAmoYL/wX2+SgmrbFrIsmmYdf2glLV3wDnAL8HXhORXyU+HCZVrdoAXyfcr/6/Tp6D6TPsC1zOeast8zTwVxF5W1U/gx/P4Q7B/oOqL7K3AIqhpc4V2PnPBdjpoeXYhbb7gY9FpPpi+zbY6YKipqozsR3434sgy3gR6Yd9e6sCPsS+SFR/c1bsy8XD2E4mpD8DL0RfJm7ALrLfISKbYqcMwa6RVAJ/DJJwfSeJSHWhWwjUNGHS5tgpu+BU9SkR+Rn2/j0mIk9irSKDXr+pwVzsaLTaGmA4djSdaEvylN0vtgNRs9knscP/mdh58R2wi+6nq+oT0XrXYjOGdQ+VtVqU+Xjsy8ADqvqViGwFXM6613Grqr4eMCYiciVwi+aptUi+iMhmQHfgAOwbcgOscL8PPKqq0wLG+5GI7APcDBzIuiJHwr8XYqeQrg+T0ESNLpKNUtVzk9YbDuypqocUJll6or+ta7HTbsOx4tJRVf8TNBggIg8BC5LfyxrWuwHYQ1WPyHkGLyQmOiV0KvBzoAl24XJsdM7RuaImIntgxSS56L2oqqtCZsuEiFwAfKqqz4bOUpOoOXgV9mXtOC2CZtUi0hZopqqfp1jvt1iji2dynsELSekRkYaqWtM1n6IhIk2wC4JrgU+KcWcXXSPZkYQ+Rao6K2wq54qPX2xPIiJ7ichJInK+iJwX/Xuv0LmSiUg3EXlIRB4XkROiZd1FZAawUkRmRt/ughKRs6L+DdX3G4nI37FvzG9jjQEWiEgxnMMHQETai8jD2Pnk94EXsP4Nn4vIbBG5WkSaBQ1ZQiQSOkdNRKRp8v+1iOwT7Rfah8pVdEK2fy6mG3Audl2hprbja7AhR3qFzhllPTXK9TwwAbvYfgF2bWck1pv17ih358BZpwMXJ9z/V5T3f4FfYU0XB2Kdpf5cBO/tUdi1salYy6yBWKfUlVHm32Gto94E2hRB3uOxfjnvAPeQ0AcmYZ0DCd/X4SiiPg0Jy36DdU5dDayK3vPjQr+nUbZWwINRrtXALUBD4I6k/cILwOah86b5mk7K1+cg+IsrhhvQL/rA3IT1At48+tA0jP59MHBjtIPpUwR5XwOGJdw/M8r2r6T1bgeeDpx1OXBowv25QP8a1rsMmFkE7+004I5aPiMzsKP4JtEOcGjgrEcm7MxujLKviYq1JKxXDIVkDet3SOwa7YxfjP7vL4v+vZoaOoAGyDsEGwalH9Aj+vLwAPBFVBS3wPqfzQZuDp03zdeUt0Li10gAEfkM2zFfm2K9y4GLVHXHwiSrNcdioJuqPh3db4W1zjlCEy5SRqe8hqtqsP4ZIvIV0FdVH4ju/4AdJU1JWu9I4GFVbVr4lOvlWAGcqKqTkpa3wUYU2EtV3xeRHsA/VHXrEDmjTM9j44L1Slh2LrYTnIS1OPxeRA7ELroH6zgXtdo6SFVfje6/DsxW1ROS1nscaK6qhwaImZjjc+D/VPWW6P6+WKHupap3JKx3AXYkvUOYpCAit6W5ajusE2XOPwd+jcRsBbyaxnqvUgSdpbCmnYkfhuqxihYlrbcU6/gV0sNY58nG0f2ngdNrWO907FtfaHOxlnvJfo6979X9iGayrqNqKHsDdyUuUNXbsOF8DgKejfqUFKO9sWa0yUZggziGtiXr+o9BNKYWNm5Vok+ouT9MIZ2DHSX9NMWtXW1PkC3vkGjeBi4Qkf+oak3t3atHKr0gWje0mdjorhMBVHVN1Czx/aT1dmT9Hq8h/Anrgf2uiNwKPAL8Q0T2Zl2nuU7AvthIsKGNAK4RkebYtYeVWM/wK4DJuq4/zI5A6BZc3wPNkxeq6rSoJ/ZE7HTRwALnqk3i6Y/vWPcFKNEyiuML7udYQX4uun8Idirul9i1yWq/Ivzn4GPgVVXtUddKInIydh0t57yQmN9hHRKni8h4bMjzRdgHvzWwO3ZOd1uKo6f4eJKGOlDVV2pY7wzW/9AXnKouEJGDsB3xb7FvegAdottK7DTMIar6WpiU66jqoOg0zB+xYVvAPgd3Y53Qqq3Cxl4L6W3sPP3DyQ+o6mdRMXkcGFXgXLWZKCKro3+3AvZh3ZeJarsDXxUyVC2GAdeLyE+xoncq9qXoLyLSAhsAcT9gABB6RPCXsQKXSmKH1ZzyayQREdkJ6xV+NOuGY672BdZy5zpVTT60LVoisj2wSFWLYsgJABGpYP1Oc59qcfYh2Qjr59IE+KyY3sNqInIhNkzKvlpLx9noyOpB7PpZsG/60QgHyT5W1bFJ602JlhdD0/VLsVOuG2GjRAwTkdOxa1DVg3aOAP4Q8jMcNUP+laoOSbHe5tg1vufqWq9eGbyQbChqN159bWGRqoYe5dU5VySi09ybq+q80FmKhReSEhMddr8OnFkMp4okhlPXSkymMXauWHghSRDtQLYEPlTVDS4ERoeGx6rq6IKHWz/HsXU83By7oPZHoiHkVfXxQuSqicRo6lqI1zTG6YrG4TpFVa8OnCPodLDZio5EEqcGnoa9juA7UbFRlU/C/p5GqeoHIvJz4CrWffm5SRPmf8mp0J1kiuEGbAzch+0o1mAXUkcCrZLWC96xK8oRp9nbvgW6JNx/GWsNtUnCslZY65iJRfDeTsKmqm2NnRu/EfgSG0Fgo4TPyxNYK67gn980XlPeOqJlkGFnrLVh9efyU2wH9xlWrF/Dho//Bti2CN6zF7GRcqvvt4kyro1yLmZdh8pNQuWMsnXGvoh9Hb2vi7EJrBZinVVviv7u1mBTRuc+Q+j/sGK4AX/BWmldgE0M1D/6QH8M7JKwXrEUkmlYy5ZeWNvwxNvPog/4qdXLAmeNzdS1UY44TWO8fZq3i0J/bimC6WAzzBubqYGjYnEfNpMjWAOMhcDIpPXuBF7OS4bQ/2HFcMOa+/ZNWrYV8B9gHtAhWlYshUSwec7nYsM27JDwWKvoj2CDMZcCZX0VuDLh/hfAaTWs1wOYVwR5v03aWWwRvZ9HJq13bBEUkuqjz1S3YjgynQOcmnC/XZSrW9J6vYCPiuBzkFxI5gGVNawXfGgfrHnyEQn320T5OyWtdxTWeCjnGbwfidmOpI6Gqvq1iByOVfGnReRMiqN9O2qfihEici/wV+BtEbkx+nex+TswRkS+AEazbura+djpLMEOw4th6lpYN43xC1jnuMRpjJ9V6/xZLNMYLwGeBW5Nsd7BWNP2kIJPB5ulYp4aeAXrd0yt/nfycEPNsE6sOeeFxMwBdsGOQH6k1jb8NBEZjB06Br3InkxVFwF9RWQE1rb9Y+AfFNGc0hqvqWshXtMYv4pdx3usrpWiuV9CCz4dbD3EZWrgF7COkh9HWf6Jjbr9h2i0jiXReHyXY4Uv57zVFj8Oerajqh5Wxzp/wr5NqwYc/K4uInIaNh3ottjgbMGnAa0mMZm6FmI1jfH/Ar1VNbkDbfJ6vwauUtWOhUlWY4bg08FmQmI0NbCI7IyNYVf9OZiBHeXfj40UMBOowL4YdVTVN3OewQvJj03nugN/V9X5dax3BnauvFdt64QWnXZpDizVIp8l0ZUPKYLpYPNBimRq4Kj/2K+wlobPqOqKqGP1+az78jNWVb/My+/3QuKccy4bxTDKpssTEblFREaGzpGOOGWF+OV1Lp/8YnsGROQWoIGqnhc6S5o6Ep8vC3HKCjHKKyJPY2cfDg+dJZU4ZYV45c1nVi8kmYnNzgNAVXcOnSFdccoKscsrxOdzG6esEK+8ecvq10hKWNTsc0tVDT3xTkpxygrxy+tcPsWlkhYFEWkSzfERF8dhM73FQZyyQozyishGcfncxikrxCtvPrN6IclMbHYerjyISB8R+VRElojIKyJydg2r7UcRfG7jlBXilTd0Vr9GEkMikm6b9Zp64hZUnLJCvPJGHVBvwKYBfgPrRzBKRLoAZ6vqipD5EsUpK8QrbzFk9WskZLzz2DN0z3axea8/xIZBqMtPgAND5o1TVohXXhGZCjyrqpcnLDscGIP1bj5ObVKuA4EXPWv64pS3GLJ6ISFeOw8AEXkTm3yre4r1TgbuCfwhj03WKEds8orIEuAEVZ2StLwCmy+lIXAMNh5U6J1dbLJCvPIWQ1a/RmLeBd5V1VPqugH/Dh008gpwUBrrVQ+IGFKcskK88n6H7RzWo6ozgF9iQ+K/CPyisLFqFKesEK+8wbP6EQk/Drx2tKq2S7HeSdgc3kELsIjsBOylqg+nWK8p1kQ1eajugolT1ihHbPKKyARgiaqeVcvjTbGB+44h8GCjccoa5YlN3mLI6oWEeO08nKsmIqcAA4DjVXVBLes0BG7GBhvdoZD5knLEJmuUJTZ5iyGrFxLnnHNZ8WskzjnnsuKFxDnnXFa8kLiyIiI9RWRa1AN4oYi8ISJ5aY0nIruKyEARaZ3GugNFRBNuc0Tkgej6Xapte0bbtMhNcucy44XElQ2x6ZJvBSYC3YAewATgxDz9yl2BK4GUhSTyHdAhul0G7AM8IyLNU2z3WLTN8nrmdC4rPkSKKyd9geGq+ueEZY+IyFWhAiVZraovR/9+WURmAf8FjgXuS145aonTUFXnAfMKF9O59fkRiSsnrYGvkxdqQtNFEamIThOdISJ3RqfA5orIlcnbiUinaIC870XkGxEZWn16SUQOAx6JVv08es4ZGeadFv2siJ5zlIhMFZHfiMh7wPfAgTWd2hKRpiJyrYjMFJEfRORzEflbUv7zReS96PGZInI5ztWDH5G4cvI60C/6pv+oqs6vY93rgEeBk4FfA1eKyLeqehOAiOwJPAlMAk4CtgP+DuwIHB39rsuAf2Kn0b4Cfsgwb0X08+ukZdcCVwPfYKO5rncdRUQEO2XXAbgGK0g/AQ5JWOf3wP9FzzUFaA9cIyLLVfXGDHO6cqeqfvNbWdyAnwGfYcObrAXew3bILRPWqYgefypp21uA2dhUywDjgI+xU0vV65wabdshun98dL8ijWwDsaEsGkW3XYHJwGJg62idUdHz7ZO0bc9oeYvofufo/om1/K6WwFLgyqTlV2NFq2GqvH7zW+LNT225sqGqbwN7YBfXh2JjZf0vMLWGFk8PJt0fD2wDbBvdPwB4UFXXJKzzALAaOLieETcDVkW3D7Gjm+6q+lXCOrNV9c0Uz9MJWKC1j9TQAWgO3CcijapvwLNAW9a9RufS4qe2XFlR1R+waxePAIjIeVhLrvOA6xNWnZu0afX9rYFZ0c9vkp57jYjMBzatZ7zvgCOwo4mvgTmqmjz0xDcbbLWhzbBTabWpHuDvvVoe3w7wYYBc2ryQuLKmqiNF5Fpg96SHtqzl/lcJP9dbJ2pFtRlQ43hHaVitqlNTrJPOmEbzsUJXm+p8x1NzYfowjd/h3I/81JYrGyKSXBwQkS2AVmy4Q+2adL/6gvmX0f1XgK5R8UhcpxHwfHR/ZfSzSRax6+MZYFMROb6Wx18CVgDbqOrUGm5LChfVlQI/InHl5J1oyO2nsFNV7bCWVcuBO5LW3SuaXuABrNXWeUB/VV0bPf5XbFrTh0TkZuy6wj+Aiar6UrRO9Tf7C0VkHLBcVd/Jz0tbzySs0+VYEbkaa0G2NfBrVb1QVReJyEDgehFpB/wH+1K5K9BRVZOLqHN18kLiysnVQBdgCHYd42tswp/uqvp50rqXY6d+HsD6a1wD/NgsVlXfE5FjsCa047HWVXdH21WvM1NELgMuBfphRzMV+XhhiVRVRaRrlLkSmyJ6DjA2YZ1rRWQONvz477DX+BFwT77zudLjw8g7lyCanvRzbOrSR8OmcS4e/BqJc865rHghcc45lxU/teWccy4rfkTinHMuK15InHPOZcULiXPOuax4IXHOOZcVLyTOOeey8v/mwF8tDK9VzQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", + "x = uncertainty_model.values\n", + "def payoff(x):\n", + " if x <= strike_price_1:\n", + " return 0\n", + " elif x < strike_price_2:\n", + " return x - strike_price_1\n", + " elif x < strike_price_3:\n", + " return 2*strike_price_2 - strike_price_1 - x\n", + " else:\n", + " return 0\n", + "y = [payoff(x_) for x_ in x]\n", + "plt.plot(x, y, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.2598\n" + ] + } + ], + "source": [ + "# evaluate exact expected value (normalized to the [0, 1] interval)\n", + "exact_value = np.dot(uncertainty_model.probabilities, y)\n", + "print('exact expected value:\\t%.4f' % exact_value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 5\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, butterfly)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.2598\n", + "Estimated value:\t0.2290\n", + "Probability: \t0.7939\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHmdJREFUeJzt3Xu0HFWd9vHvw0UItwACgWEYIniJMLAciQgOIydyD+8rF9Fkoe+sOGjUV4WZFRkQEQI6LMHhootxAUsnvLxqwgwwvMMlhHA5gXBRgwRxkoBBA3IRxTkkxoRIyO/9Y1dIpU6f7urLqc7pPJ+1enXXrl27d+1U+neqau9digjMzMyG2xbdroCZmW0eHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNWh6Tpkvqzz/2Spje5fZ+kKJY1RN7bJT1ZZ/3VkgYkbVPyu98uKSQd30ydzYaLA47ZpmMm8JeSDiyukLQlcBpwS0SsqbxmZh3ggGO26fh/wCpgco11E4AxpKBkNiI54Ji1SNLhkv5T0ouS/ihpoaSPt1peRKwEbgcm1Vg9GXgZuD/77r0lzZD0K0mrJT0t6SJJW9ep71bZJbbPFtK/Luk3hbR9Jd2YXcJbJWm2pHe0um9mAFt1uwJmm7KImJ773FdYvS/wEHAN8Brw18AMSesiYma2TT+gYll1zAQ+JumQiHgMIAsipwA/iIg3sny7A68Afw+8CowDLgR2Az7f5G5uRNJu2X69DEzN9u08YK6kd/mSnrXKAcesRRExa/1nSQIeAP4c+DStX/qaTQogk4HHsrTjgF3zZUbEQmBh7vsfAlYD10g6KyLWtvj9ANOAbYCjIuLVrPyHgWXAFODaNsq2zZgvqZm1SNIukr4t6Vng9ew1FXhnq2VmZw//QTrLUZY8CXgWeDT33VtImiZpsaTV2Xf/H2AUKei142hgDrAyuwy3FbAc+Ckwvs2ybTPmgGPWuutJweCbwLHA+4B/BbZts9yZwF8Ah0vaFjgJmBkbT+0+DbgU+Hfgw8ChwJnZuna/fzfg42wIoutfHwT2abNs24z5kppZC7JAcCLwhYi4JpfeiT/i7iPdP5kM7AXsyOBLdB8FZkXEBbnvPrhBuW8Aa4G3FNJ3LSz/N/A4cEmNMlY0+A6zITngmLVmG2BL4M0b6JJ2JJ1ttPWQqYh4Q9K/k4LK3sDiiPhZIduo/Hdn6vaQi4iQ9ALw7lydtwQ+VMh6L+ms6kl3ELBOcsAxa0FELJf0E+ACSSuAdcC5pHsdO3XgK2YCXyD1Trugxvq5wOckLQB+CfwtMLZEuf8BTJX0BOm+0KeB7Qp5/hk4HbhP0tXAi8CewJFAf0T8W9N7Y4YDjlk7TgeuA24Afg9cTfrx/kIHyn6E1CtsLDCrxvoLgbeSLnsFcBPwD8CtDcq9gHSP5hLgT8C3gUXAp9ZniIjfSjoM+CfgKmBn4CXgQWDIqXfMGlHVj5iW9HbgbOAw4C+BB2uMb6i13WjSwX8yqbPD7cCZEfH7Qr6TgK8D7yD95XdRRNzYyX0wM7PmdaOX2oHARODp7FXWjUAf6S+xKaQeQRv9NSfpCOBm0mjsE4A7gJmSjm230mZm1p5unOFsERHrss83Abs1OsORdDjwMHBkRDyQpR0K/Ag4JiLuydLmAFtHxIdy294J7BQRRwzH/piZWTmVn+GsDzZNOgF4eX2wycr5MfCrbB3ZlO0TgOINzVmk8QyjW6uxmZl1wkgZ+DkOWFIjfXG2DmB/YOsa+RaT9rPl0d9mZta+kdJLbRfS/FJFA8B+uTzUyDdQWL8RSVNJ05EwatSoQ/bZpzMDqdetW8cWW4yUeN49bqdy3E7luJ3K6WQ7Pf30069ExO5l8o6UgAO1B9OpRnpxWUOkp8SI60hdWxk/fnwsWLCgnTq+qb+/n76+vo6U1cvcTuW4ncpxO5XTyXbK5hIsZaT8KTBAGgtQtDMbzmgGcmnFPFD7DMnMzCoyUgLOEjbcq8nL39t5hjTBYDHfONIo8Ga6YJuZWYeNlIAzG9gzG2cDgKTxpPs3s+HNad3vJ80/lTcJeCQilldUVzMzq6HyeziStiMN/IQ0MeFOkk7Llu+MiFWSlgLzIuIMgIh4JBtjc4OkL5HOWC4F5q8fg5P5GtAv6SrSoNCJ2ev4Yd8xMzOrqxudBvYgPcMjb/3y20jzR21Fmok3bzJwJel5I29ObZPPEBHzs+D1deBzpHE6p0fE3R2sv5mZtaDygBMRy9jQc2yoPGNrpL0KfDJ71dv2VhpPYGhmZhUbKfdwzMxshHPAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlaJrbpdATMbbOy5d2y0PO2gtUzJpS37xolVV8msbT7DMTOzSjjgmJlZJRxwzMysEg44ZmZWicoDjqQDJN0raZWkFyVdLGnLBttMlxRDvL6cy3f9EHnGDf+emZlZPZX2UpO0C3APsAg4CdgfuJwU+M6vs+l3gbsKaScD5wCzC+lLgE8W0pa1VmMzM+uUqrtFfxYYBZwaESuAuZJ2AqZLuixLGyQingeez6dJ+iqwJCIWFrL/MSIeHYa6m5lZG6q+pHYCMKcQWGaRgtCRZQuRtCtwDDCzs9UzM7PhUnXAGUe65PWmiHgOWJWtK+s0YGtSsCo6QNIKSWskzZdUOpCZmdnwUURU92XS68DZEXFVIf154IaIOK9kOfcBoyPikEL6WcCfSPeIdgemAYcAR0TEj4coayowFWDMmDGHzJpVK4Y1b+XKleywww4dKauXuZ1qe/KF5RstjxkFL6/esHzQ3qMrrtHI4OOpnE6204QJEx6LiPFl8nZjaptaEU5DpA/OKO1Fuvx2zqCCI75VyHsHKficR+pkMLgyEdcB1wGMHz8++vr6ylSjof7+fjpVVi9zO9U2pcbUNpc/ueG/67KP91Vco5HBx1M53Wqnqi+pDQA710gfDbxasoyPkQLUjY0yRsRq4E7gvWUraGZmw6PqgLOEwr0aSfsA21O4t1PHZGB+RPy6ie+t7rqhmZnVVHXAmQ0cJ2nHXNokYDUwr9HGksYCh1Gyd5qkUaSecY81W1EzM+usqgPONcAa4BZJR2c37KcDV+S7SktaKul7NbafDKwFbiqukDRa0oOSPiPpKEmTgPuBvYFLhmFfzMysCZV2GoiIAUlHAVcDt5Hu21xJCjrFetWa7mYycG9E/K7GujXA70gzFuwBvAY8AhwZEQs6sgNmZtayynupRcQi4EMN8owdIv09dbZ5DTi1rcqZmdmw8WzRZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlaJpgKOpFrTzZiZmTXU7BnOC5Iuk/TuYamNmZn1rGYDzrXAacDPJf1I0lRJOw1DvczMrMc0FXAi4sKI2A84BngKuAJ4SdIPJB09HBU0M7Pe0FKngYi4LyL+FtgT+CLwLmCOpGWSpkv6s05W0szMRr52e6mNBz5Iemz0APAg8ClgqaRPtFm2mZn1kKYDjqR9JV0o6RngXmAv4O+AP4uI/wXsS7rX882O1tTMzEa0ph7AJuk+0hnN88D1wIyIeDafJyLekPRD4KxOVdLMzEa+Zp/4+QowEZgbEVEn30LgbS3XyszMek6zl9SuBh6uFWwk7SDpgwAR8XrxzMfMzDZvzQac+4EDhlj3rmy9mZnZIM0GHNVZtwOwqo26mJlZD2t4Dye7TNaXS/qUpOML2bYFTgSe7FzVzMysl5TpNPB+0uBOgAA+Cqwt5PkTsAQ4u3NVMzOzXtIw4ETEN8nG1Ej6FXBKRCwc7oqZmVlvaapbdES4q7OZmbWkzD2cicD8iFiRfa4rIu7sSM3MzKynlDnDuR04DPhx9jkYurdaAH5Im5mZDVIm4LwNeCn32czMrGllOg08W+uzmZlZM8rcw9mumQIjwoM/zcxskDKX1FaS7s2U5Xs4ZmY2SJmA83c0F3DMzMwGKXMP5/oK6mFmZj2u3UdMm5mZlVKm08CPgSkRsUjST2hweS0iDu1U5czMrHeUuYfzX8Dq3GffzzEzs6aVuYfzydznKcNaGzMz61kt38NRsrukeg9lMzMzA1oIOJImSnoYeA34DfCapIclndjx2pmZWc9oKuBI+gxwG2kw6Fmkh7GdlS3/Z7bezMxskKaehwOcB1wXEZ8rpF8j6RrgK8C1HamZmZn1lGYvqb0VuGWIdTcDuzYqQNIBku6VtErSi5IullR3OhxJYyVFjdesGnlPkvSkpNckLZI0qdSemZnZsGr2DOd+4Ehgbo11RwIP1NtY0i7APcAi4CRgf+ByUuA7v8T3fwl4KLf8SqH8I0iB7zvAmcBEYKakgYi4u0T5ZmY2TMoM/Dwgt/ht4LuS3grcCvwW2AM4BTgB+FSD4j4LjAJOjYgVwFxJOwHTJV2WpdXzVEQ8Wmf9V4EHIuLMbPl+SQcCFwAOOGZmXVTmDOfnbDzYU8Bnslfx6Z93UX+26BOAOYXAMgu4lHSGdFuJ+tQkaRtgAunMJm8WMEPS6IhY3mr5ZmbWnjIBZ0IHv28ccF8+ISKek7QqW9co4MyQtCvpzGom8JWIWD8Lwv7A1sCSwjaLSZfs3gn8pL3qm5lZq8rMNDCvg9+3C/BqjfSBbN1Q1gD/QrostgLoA84hBZmTcmVTo/yBwvqNSJoKTAUYM2YM/f399epf2sqVKztWVi9zO9U27aC1Gy2PGbVxmtusNh9P5XSrnZrtNPAmSVsA2xbTSzzxs9ZcbBoifX2ZLwFfyCX1S3oZ+I6k90TEwjrla4j09WVfB1wHMH78+Ojr66tf+5L6+/vpVFm9zO1U25Rz79hoedpBa7n8yQ3/XZd9vK/iGo0MPp7K6VY7NTvwU5LOkbQUeB34Q41XPQPAzjXSR1P7zKeem7L39+bKpkb565ebLd/MzDqo2XE4ZwLnAt8jnTn8E3Ax8DSwjOzSVB1LSPdq3iRpH2B7Bt97aSQK78+QguC4Qr5xwLqsjmZm1iXNBpxPAxcCl2XLt0bERcCBpIDxjgbbzwaOk7RjLm0S6fEHzd4rOi17fwwgItaQxgl9tJBvEvCIe6iZmXVXs/dw3gYsjIg3JL1OdrkqItZJ+g7wXdIZ0FCuIZ0l3SLpUmA/YDpwRb6rdHbJbl5EnJEtTwd2JA36XAF8EDgbuCUifpYr/2uk+ztXkcYJTcxexze5n2Zm1mHNnuH8Htgh+/wc8Fe5dbuQBnUOKSIGgKNIY3VuAy4CriSdNeVtxcbjeZaQxunMAO4ETge+mb3ny59POvM5GpgDfBg43bMMmJl1X7NnOA8B7yP96P+QNEPArsCfgM8D9zYqICIWAR9qkGdsYXkWaQBnQxFxK+nsxszMNiHNBpzpwN7Z50tIl9SmkM5s5gJf7FTFzMystzQVcCLiKeCp7PMa0rNwzhqGepmZWY9pZ+DnnwN7AS9GxAudq5KZmfWiVh4x/TlJvwaeBX4EPCfpeUn/u+O1MzOzntHsTAMXAFeTxtOcCIzP3mcD387Wm5mZDdLsJbXPA5dExFcL6Xdlc5t9njTzgJmZ2UaavaQ2iqGf6jmPGpN5mpmZQfMB51bg1CHWfQS4vb3qmJlZryrziOmJucXZwGWSxjL4EdMHAv/Y+SqamVkvKHMP53YGP0p6b+C4Gnm/T3oSp5mZ2UbKBJy3DXstzMys55V5xPSzVVTEzMx6W9MzDUjaitRB4AhgV+C/gQdJjwpYW29bMzPbfDUVcCTtAdwNHEx6wufLwOGk8TdPSDo2In7X6UqamdnI12y36CuAtwLvj4j9IuLwiNgPeH+WfkWnK2hmZr2h2YAzETgnIn6ST8yWv0ya5sbMzGyQZgPONsAfhlj3B+At7VXHzMx6VbMB51HgHEnb5xOz5XOy9WZmZoM020ttGnA/8GtJd5M6DexBGgQqoK+jtTMzs57R1BlORCwE3gFcB+wOHEMKONcA74iIJzpeQzMz6wmlz3AkbQ0cCvwqIs4dviqZmVkvauYM5w3gPuDdw1QXMzPrYaUDTkSsA34BjBm+6piZWa9qtpfaV4ALJB00HJUxM7Pe1WwvtfNJMwoslPQCqZda5DNExKEdqpuZmfWQZgPOz7OXmZlZU0oFHEmjSNPa/Bz4DXBPRLw8nBUzM7PeUuYR0/sB9wBjc8krJH0sIu4eroqZmVlvKdNp4DJgHfA3wHbAgcDjwLXDWC8zM+sxZQLO4cD5EfFQRLwWEYuBzwB/IWmv4a2emZn1ijIBZy/gl4W0Z0hzp+3Z8RqZmVlPKjsOJxpnMTMzG1rZbtFzJK2tkX5vMT0i9mi/WmZm1mvKBJyLhr0WZmbW8xoGnIhwwDEzs7Y1O5eamZlZSxxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwqUXnAkXSApHslrZL0oqSLJW3ZYJv3SZohaWm23VOSLpS0bSHfdElR43X88O6VmZk10uwD2NoiaRfSow4WAScB+wOXkwLf+XU2nZTlvRT4BXAw8LXs/SOFvMuBYoBZ3G7dzcysPZUGHOCzwCjg1IhYAcyVtBMwXdJlWVotl0bE73LL/ZJeA66VtG9EPJtbtzYiHh2e6puZWauqvqR2AjCnEFhmkYLQkUNtVAg26z2evXvuNjOzEaDqgDMOWJJPiIjngFXZumZ8gPRguKcK6TtLekXS65Iel3Rqy7U1M7OOUUR1Tx6Q9DpwdkRcVUh/HrghIs4rWc6ewM+AOyNiSi79E6QznoXADqQHxU0EPhIRtwxR1lRgKsCYMWMOmTVrVrO7VdPKlSvZYYcdOlJWL3M71fbkC8s3Wh4zCl5evWH5oL1HV1yjkcHHUzmdbKcJEyY8FhHjy+TtRsD5UkR8q5D+AnB9RHylRBlvIXU8+HPgkIgYqJNXwMPAqIh4T6Oyx48fHwsWLGiUrZT+/n76+vo6UlYvczvVNvbcOzZannbQWi5/csMt12XfOLHqKo0IPp7K6WQ7SSodcKq+pDYA7FwjfTTwaqONswByA3AgMLFesAGIFE1vAQ5u1PXazMyGV9W91JZQuFcjaR9gewr3doZwJak79TERUSb/en5iqZlZl1V9hjMbOE7Sjrm0ScBqYF69DSV9Gfgi8ImImF/my7IzolOAJyLijdaqbGZmnVD1Gc41wJnALZIuBfYDpgNX5LtKS1oKzIuIM7Ll04FLgOuBFyQdlivzmfXdpiXNA24mnS1tD3waOAw4eXh3y8zMGqk04ETEgKSjgKuB20j3ba4kBZ1ivfL3XI7N3qdkr7xPkgIRwFLg74G9SF2mfwqcGBGzO1F/MzNrXdVnOETEIuBDDfKMLSxPYXCgqbXdGW1UzczMhpFnizYzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0ps1e0KmFn3jT33joZ5ln3jxApqYr3MZzhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlfBs0WYNNJpJ2bMom5XjMxwzM6uEA46ZmVWi8oAj6QBJ90paJelFSRdL2rLEdqMlzZA0IGm5pB9IemuNfCdJelLSa5IWSZo0PHtiZmbNqPQejqRdgHuARcBJwP7A5aTAd36DzW8E3gV8ClgHXArcCvxNrvwjgJuB7wBnAhOBmZIGIuLuju6MmbXMTxjdPFXdaeCzwCjg1IhYAcyVtBMwXdJlWdogkg4HjgOOjIgHsrQXgB9JOjoi7smyfhV4ICLOzJbvl3QgcAHggNMj/GNlNjJVHXBOAOYUAsss0tnKkcBtdbZ7eX2wAYiIH0v6VbbuHknbABNIZzZ5s4AZkkZHxPIO7YeZjQDuYbhpqTrgjAPuyydExHOSVmXrhgo444AlNdIXZ+sgXZ7buka+xaRLdu8EftJatZsz9tw7mHbQWqaU+Et8KLX+I3TqP89wnSH4zMM2F5081lv5f13m++uZdtBa+toqoTWKiOq+THodODsiriqkPw/cEBHnDbHdXOCPEXFyIf37wH4R8QFJfw3MB/4qIhbm8rwd+AVwXK37OJKmAlOzxXcBT7W8gxvbDXilQ2X1MrdTOW6nctxO5XSynfaNiN3LZOzGwM9aEU5DpLeyXXFZdbYnIq4Drmvw3U2TtCAixne63F7jdirH7VSO26mcbrVT1d2iB4Cda6SPBl5tYbudc9sN5NKKeWhQvpmZDbOqA84SNtxzAUDSPsD21L5HM+R2mfy9nWeA12vkG0fqRv10C/U1M7MOqTrgzAaOk7RjLm0SsBqY12C7PbNxNgBIGg/sl60jItYA9wMfLWw7CXikCz3UOn6Zrke5ncpxO5XjdiqnK+1UdaeBXUiDPn9O6gq9H3AFcFVEnJ/LtxSYFxFn5NLuIvU0+xIbBn7+NiKKAz/7gatJg0InZvmP98BPM7PuqvQMJyIGgKOALUldoC8CrgQuLGTdKsuTN5l0FvSvwA3AY8AphfLnA6cBRwNzgA8DpzvYmJl1X6VnOGZmtvnybNENeLLRxlppI0nvy9pnabbdU5IulLRtId90SVHjdfzw7lXntdhOY4fY/1k18o74YwlabqehjpOQ9OVcvuuHyFOrU9ImTdLbJV0r6QlJb0jqL7ld136b/AC2OjzZaGNttNGkLO+lpIG5BwNfy94/Usi7HCgGmMXt1r1KbR5LkO5FPpRb3mjQXi8cS9BWO30XuKuQdjJwDlnHopwlwCcLactaq3FXHUj6d34UeEsT23Xvtyki/BriBXyZNL5np1zaPwKr8mk1tjucNND0g7m0Q7O0o3Npc4D7CtveCczv9r5X0Ea710ibmrXRvrm06cAr3d7PLrbT2KxN/keD8kf8sdROOw1R1h3A4kLa9cCCbu9nh9pqi9znm4D+Ett09bfJl9TqG2qy0VGkyUbrbTdoslFg/WSj5CYb/bfCtrOAwyWNbr/6lWipjSLidzWSH8/e9+hc9TYZrR5LDfXQsQQdaidJuwLHADM7W71NR0Ssa2Gzrv42OeDUN2jS0Ih4jvTXVr1rvp2abHQkaLWNavkA6RS/OJ/dzpJekfS6pMclndpybbun3XaakV2nf0nSFZJG5db1yrEEnTueTiO1yaB7XcABklZIWiNpvqS2Av4I09XfJgec+nah9pQ4A9m6drZb/17MN1BYv6lrtY02ImlP4CvA/y38dbuUdEnlY6R7Oy8CN4/AoNNqO60B/gU4gzSk4Frgc2z8Q9orxxJ06HgiDaP4aUQUZxh5HJgG/E/g46ThF3MlHdpCXUeirv42udNAY5vUZKObqFbbKGWU3kI6fV8J/MNGBUd8v5D3NuBh0kP1bmmlsl3UdDtFxEvAF3JJ/ZJeBr4j6T2Rmxm9Rjkj8ViC9o+nvUiX384ZVHDEtwp57yB1UDiP1Mlgc9C13yaf4dTnyUYba7WNAJAk0kDeA4GJkQYHDynS3ctbgIPLdE/fhLTVTgU3Ze/vzZVNjfJH2rEEnWmnj5F+HG9slDEiVpNuhr+3Ud4e0dXfJgec+jzZaGOtttF6V5K6v54UEWXyrzfS/mpvt53yovDeK8cSdKadJpN6U/26ie8dacdTq7r62+SAU9/mNNloq1ptI7IBeV8EPhFpWqKGsjOiU4AnIuKN1qrcFS23Uw2nZe+PQU8dS9BmO0kaCxxGyd5pWeeLE8jacjPQ3d+mbvcl35RfpJtjLwFzSfOzTSXdZ/h6Id9S4HuFtLuAXwKnkq4NPwU8WMhzBLAWuAroAy4j/QVxbLf3fbjbCDid9FflDNIPRP61ey7fPNLAs2NJgebOrI0+3O19r6idppMGPp6abXcx6cf35l47ltppp1z6uaS/zmuN8xoNPAh8htQBYxJp0OQaYHy3972FttqO9MfHacAjwH/llrcbqp26+dvU9Ubb1F/AAcB92X/yl0ij4bcs5FkGXF9I2zn7MX0VWAH8ENitRvknk2bPXkM6pZ3c7X2uoo1IA/BiiNeUXL7vZf85VgN/zH4wTuj2PlfYTpOBBaTZFv6U/YBcDGzTi8dSq+2US18I3DVEuduS7v/9Omuj5dmP72Hd3ucW22lsnf9DY4dqp27+NnnyTjMzq4Tv4ZiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSvx/yX3D0Td3Kb0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm8HFWd9/HPN4AQWUJYElCRiCNkQH2URBaHkSAgsoxBBGHQ8UEhiQ4jzrxAkUUJ4PgMIKCD45CgggsDzACDo+zbDYKKJAEHhQSDhlWQ5UIICUvg9/xx6kJTt7tvdd/u6oXv+/WqV98+dar6d7rv7d+tU6dOKSIwMzNrtzGdDsDMzF4fnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGMtJWm2pKixfLLgPrbM9rN+rvyQbD/rtCf6YnGMcp8XSxooUG91Sf8o6TeSVkoalHSFpJ2afN1ueU8Pyf1O/FnS1ZK2LbDttGybd5YRq7WeE461w9PAjlWWqwpuvyVwApD/or8828+K1oTZdBxtJWk14DLg68D/AHsBhwAvAQOSDm5it93yng75YPa6s4CNgRslvWmEbRZm29zb5tisTVbvdADWl1ZFxK9avdOIeAx4rNX77UKfB/YG9oyIyiT9E0kXAnMlzYuIh0b7Qh18T2+LiOUAkuYD9wGfAE7LV5QkYM2IWAa0/PfKyuMjHOsIScdIWiLpOUmPSrpK0iaSpgE/zar9MetCWZpt85ruH0mTsucHSTpX0jJJDw513Un6kqSHJT0m6RRJYypef7KkCyU9IGmFpN9lXVhjsvU148jWvzXb/sls+6slbZVr42ZZN9hKSUslHVbw7fkCcGMu2Qw5DlgLOLTidZZK+oakr0h6RNJySedLGjdSW6p1qUnaSNIPJD2RtW1A0tRc24Ze85+y93wwez8aPhqMiAdISW9Stu/Zkh6XtJOk24DngAOqdalJWi37XbpH0vNZLOflYp0uaX72u/aIpFMlrdFonDZ6PsKxtpA07HcrIlZl6z4FHAscDfwO2JDUxbI2qdvkKOAbwH7An4DnR3i5U4DzgY8BnwF+IOm9wObZ8ynA14DbgQuzbd4MLM62ewZ4D3AiMBb4f/XikLQBcDPwBPBZUnfUl4HrJG0ZESuz/8p/AmxESg7PZfvfAPh9nfdtM9IX75nV1kfEvZLuBD6QW/W3wBJgBrApcCrwXeCAem2p4TLgL7JtHge+SOryem9ELKmo93Hgf4GZwFuAM0jdgH9fZ9/DSFqX9L48UlH8RuAHWTvuAR7O2pU3B/hUVm9etp/9K/b9ceCCrN6xwNtJn++YrH1Wpojw4qVlCzAbiBrLpKzOt4FL6uxjn8r6FeWHZOXrZM8nZc/PraizHvAi6Ut9tYryXwMX1Xg9kf75Ohb4Q4E4TiYlmw0qysaTzl0dnj3fK9t2+4o6mwOrgIE6bd8h2256nTqXAXdXPF8KPDn0vmRlnwBeBv6ywff0w9nznSvqrE06ApmTe817gdUryr4JPDLC78fQ643L3vPNgIuy9+U9ud+h6bltp2Xl78yeT86eH1Hnc72v8vcjK/8MsBLYsNN/L6+3xUc41g5PA7tVKX84e7wDOFTSiaST1gsi4qVRvN71Qz9ExDJJjwHzcvtcArx16ImktYBjSF/MbwXWqFi3emRHYzXsBlwLLKs4knsGWAAMdT1tBzwaEbdWxHafpAVNtK+IayM7J5K5FPgx8D7g7gb2sx3wWETMGyqIiGcl/QzIj5C7Mfc+3QVMkPSGiHhhhNd5quLnx4HPRMQdFWUBXDnCPnbJHs+rsX5L0mf7n7kj7htI3ZLvJB0VWUmccKwdVkXE/Drrvw+sS+qK+SrwhKR/B2Y3mXieyj1/oUbZWhXPTwEOI3VzLczqTweOz+otp7aNSEciB1ZZN5T8NgH+XGX9n0ltr2VoIMDmdepsXlGvcr+viNStt5zq3VD1bAo8WqX8UVJ3VaVq77GAN2Q/1/MBUlfk48ADEfFybv1ggaS1IfBspMEE1WyUPV5RY/1mI+zfWswJx0qXfbmcCZyZnbP4BPDPpC/Rs0sK4wDgrIg4dahA0t4Ft32SNFz55CrrnskeHwEmVFk/gdSdU1VEPJCd0P8I8K/59ZLeRvrPPP/aE3L1xgLrkM7XNOJP+X1lJpLa3Sq3547I8orcN+UJYG1J69VIOkPxziSdv8v7Y4HXsBbyKDXrqIh4ICL+hdTltXVWPPSf7VrVt2qJsVScOFe69uWgXJ1acVwPbAP8LiLm55bFWZ3bgImStq94jbcCI17gCHwL2FXSh6qs+1oW9/dy5bvrtRdv7kf60h460iz6nt5K6hZ7ZVCCpDeShmnfXCD2Mt2QPX6qxvrFpH9iJlX5nOZHxBPlhGlDfIRj7bC6pB2qlD8QEQ9JmkP67/NXpPM9uwDvII1ag/RFATBL6bqTFRFxZ4tjvBY4XNKSLJbDgTVzdWrFcQbwSeAGSWeRvtQmAjsDN0fEBaRunN8A/yXpaNIotZOo3s2WdxbpPNF/S/oGMEDqhjuUdPL/72L4NTgrgcslnUbqFjsN+O+IuGuEtrxGRFwt6RbgIklfJh1FHEVK0MOukemkiFgsaS5wuqQJwE2kC1v3j4iDIuJlSUcCP5K0Humc0AvAFsC+Wb2yL3h9fev0qAUv/bVQf5Ta8VmdQ4BbSF/0K0hDaw/N7edI0gijVcDSiu2qjVLbJ7ftUuAbubLzgPkVzycC/w0sI52fOJU0pPiV/deKIyt/E3Butu3z2Wv+GNimos5bSbMrrMz2MQu4mDqj1Cq2XR34p+y9WQkMkr4wd6pSdylwevbePwo8SxoKvH6j72lWtjHww+w1V5JOrL+vwHs8bF9VYi1SZzbweJXyaVSMUsvKViMbXUhKJg8yfFTansDPs/dlGWnQyteoGGHnpZxF2QdSGkl/QRrXvwOpL/rnETGtwHbjSMMu9yV1Bf6MNBzyiVy96aRfpneQfglPjIiLWtkGs26SnfO5OCJ8XYl1tU6cw9mGdI3CPdlS1EWk/3AOI/2X9D7S9QivUJrY8BLgRtJ/NZcDF9ToCzczsxJ14ghnTGRDICVdDGw00hGOpB2BX5AuRrspK9uOdIJz94i4Liu7GlgjIj5Yse0VwHoR0dQsu2bdzkc41itKP8KJ4ePti9iTdBHdTRX7+TVpWOOeAJLWJJ18/s/cthcCOw7NK2XWbyJikpON9YJeGRY9GVhUpfzubB2kOZLWqFLvblI7t2xbdGZmNqJeGRY9nuFXNUMaRbNFRR2q1BvMrX8NSTNJF4YxduzYKZttVuzi45dffpkxY3olX1fXD20At2Pde9Kp0Ge27Pz/VK/3z6LblNGOe+655/GI2LhI3V5JOFD9ymNVKc8/V53tiYi5wFyAqVOnxvz59WZkedXAwADTpk0rVLdb9UMbwO1A2a/44sX165Xgdf9ZdJky2iHpvqJ1eyWFD1L9rovr8+oRzWBFWb4OVD9CMjOzkvRKwlnEq+dqKlWe27mXNC19vt5k0jTtjQzBNjOzFuuVhHMlsEl2nQ0A2R0It8jWERHPk66/OSC37YHALyPi6ZJiNTOzKko/h5NNBLhX9vTNwHqShu7Qd0VErMjmt5oXEYcCRMQvs2tsfijpKNIRyymkeauuq9j9ycCApG+SLgrdK1s+3PaGmZlZXZ0YNDAB+K9c2dDzt5HmaFqdNEdSpYNIU9p/n4qpbSorRMTNWfL6GvA50nU6B0fENS2M36y7lHzxtlmzSk84EbGUV0eO1aozqUrZU8Cns6XetpeRm/LGzMw6r1fO4ZiZWY9zwjHrdVOmpMWsy/XShZ9mVs3ChZ2OwKwQH+GYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9TMet2MGZ2OwKwQJxyzXjd3bqcjMCvEXWpmZlYKJxyzXrdgQVrMupy71Mx63dSp6dGzRluX8xGOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUHhZt1uvmz+90BGaFOOGY9TrfXtp6hLvUzMysFE44Zr1u5sy0mHU5JxyzXnfOOWkx63JOOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfCFn2a9btttOx2BWSFOOGa9zreXth7hLjUzMyuFE46ZmZXCCces10lpMetyTjhmZlYKJxwzMyuFE46ZmZXCw6LNusSdDz3NIV++vOHtlrY+FLO28BGOmZmVwgnHzMxK4S41s143Z06nIzArxAnHrNf59tLWI0rvUpO0taTrJa2Q9LCkkyStNsI2syVFjeWYinrn1agzuf0tMzOzeko9wpE0HrgOuAuYDrwdOJ2U+I6vs+l3gatyZfsCRwNX5soXAZ/OlS1tLmKzHjB3bnr0kY51ubK71D4LjAX2i4hlwLWS1gNmSzo1KxsmIh4EHqwsk/QVYFFE3JGr/mxE/KoNsZt1p1mz0qMTjnW5srvU9gSuziWWC0lJaOeiO5G0AbA7cEFrwzMzs3YpO+FMJnV5vSIi7gdWZOuK2h9Yg5Ss8raWtEzS85JullQ4kZmZWfuU3aU2HniqSvlgtq6og4CFEXFPrvx24FbSOaKNgSNJ3XY7RcSvq+1I0kxgJsDEiRMZGBgoFMDy5csL1+1W/dAG6J92TBwLR75rVdPbd8N70C+fhdvRHp0YFh1VylSjfHhFaVNS99vRw3Yc8a1c3ctJyedY0iCD4cFEzAXmAkydOjWmTZtWJAwGBgYoWrdb9UMboH/acdb5P+H0Oxv/k/x89tgN70G/fBZuR3uU3aU2CKxfpXwc1Y98qvk4KUFdNFLFiFgJXAH4pu9mZh1WdsJZRO5cjaTNgLXJndup4yDg5oh4oIHXLXT0ZGZm7VN2wrkS2EPSuhVlBwIrgXkjbSxpErADBUenSRpLGhm3oNFAzXpGRFrMulzZCeds4HngUkm7ZSfsZwNnVA6VlrRE0veqbH8QsAq4OL9C0jhJP5c0S9Kukg4EbgTeDHy9DW0xM7MGlDpoICIGJe0KfBv4Kem8zZmkpJOPq9p0NwcB10fEY1XWPQ88RpqxYALwHPBLYOeImN+SBpiZWdNKH6UWEXcBHxyhzqQa5e+ps81zwH6jCs6sF02Zkh4XuOfYuptnizbrdQsXdjoCs0J8AzYzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJpZr5sxo9MRmBXihGPW64ZuMW3W5dylZmZmpWgo4UiqNt2MmXXSggWeZcB6QqNdag9J+iFwbkTc3Y6AzKxBU6emR88YbV2u0S61OcD+wG8l3SpppqT12hCXmZn1mYYSTkScEBFbALsDi4EzgD9JOl/Sbu0I0MzM+kNTgwYi4oaI+BSwCemW6lsBV0taKmm2pDe1MkgzM+t9ox2lNhX4AOm20YPAz4HDgCWSPjnKfZuZWR9pOOFI2lzSCZLuBa4HNgU+A7wpIv4O2Jx0rue0lkZqZmY9raFRapJuIB3RPAicRxqtdl9lnYh4SdJ/AF9oVZBmZtb7Gh0W/TiwF3BtRN0xmHcAb2s6KjMrbr7voG69odGE821gYbVkI2kdYNuIuCkiXgTuG7a1mbXe0C2mzbpco+dwbgS2rrFuq2y9mZnZMI0mHNVZtw6wYhSxmFkzZs5Mi1mXG7FLTdIHgGkVRYdJ+nCu2lrA3sCdrQvNzAo555z06FmjrcsVOYezPeniToAADgBW5eq8ACwCvti60MzMrJ+MmHAi4jSya2ok/RH4aETc0e7AzMysvzQ0Si0iPNTZzMyaUuQczl7AzRGxLPu5roi4oiWRmZlZXylyhPMzYAfg19nPQe3RagH4Jm1mZjZMkYTzNuBPFT+bWTfZdttOR2BWSJFBA/dV+9nMuoRvL209osg5nDc2ssOI8MWfZmY2TJEuteWkczNF+RyOmZkNUyThfIbGEo6ZlUnZGJ66E7ibdV6RczjnlRCHmZn1udHeYtrMzKyQIoMGfg0cEhF3SbqNEbrXImK7VgVnZmb9o8g5nN8BKyt+dkexmZk1rMg5nE9X/HxIW6MxM7O+1fQ5HCUbS6p3UzYzMzOgwdmi4ZXJPI8HpmTbr5K0APjniLi8xfGZ2UjmzOl0BGaFNJRwJM0CvgNcD3wB+DMwAdgP+B9Jfx8R/u03K5NvL209otEjnGOBuRHxuVz52ZLOBo4DnHDMzGyYRs/hbAhcWmPdJcAGI+1A0taSrpe0QtLDkk6SVHc6HEmTJEWV5cIqdadLulPSc5LuknRgoZaZ9aq5c9Ni1uUaPcK5EdgZuLbKup2Bm+ptLGk8cB1wFzAdeDtwOinxHV/g9Y8Cbql4/nhu/zuREt93gCOAvYALJA1GxDUF9m/We2bNSo/uWrMuV+TCz60rnv4r8F1JGwKX8eo5nI8CewKHjbC7zwJjgf0iYhlwraT1gNmSTs3K6lkcEb+qs/4rwE0RcUT2/EZJ2wBfBZxwzMw6qMgRzm957cWeAmZlS/7un1dRf7boPYGrc4nlQuAU0hHSTwvEU5WkNYFdSEc2lS4EzpU0LiKebnb/ZmY2OkUSzi4tfL3JwA2VBRFxv6QV2bqREs65kjYgHVldABwXEUOzILwdWANYlNvmblKX3ZbAbaML38zMmlVkpoF5LXy98cBTVcoHs3W1PA/8G6lbbBkwDTialGSmV+ybKvsfzK1/DUkzgZkAEydOZGBgoF78r1i+fHnhut2qH9oA/dOOiWPhyHetanr7bngP+uWzcDvao+ELP4dIGgOslS8vcMfPanOxqUb50D7/BPxDRdGApEeB70h6T0TcUWf/qlE+tO+5wFyAqVOnxrRp0+pHPxTAwABF63arfmgD9E87zjr/J5x+Z+N/kp/PHrvhPeiXz8LtaI+GhkVn09kcLWkJ8CLwTJWlnkFg/Srl46h+5FPPxdnjthX7psr+h543un8zM2uhRq/DOQL4MvA90pHDPwMnAfcAS8m6pupYRDpX8wpJmwFrM/zcy0gi93gvKQlOztWbDLycxWjWfyJ8t0/rCY0mnBnACcCp2fPLIuJEYBtSwnjHCNtfCewhad2KsgNJtz9o9FzR/tnjAoCIeJ50ndABuXoHAr/0CDUzs85qtMP4bcAdEfGSpBfJuqsi4mVJ3wG+SzoCquVs0lHSpZJOAbYAZgNnVA6Vzrrs5kXEodnz2cC6pIs+lwEfAL4IXBoR/1ux/5NJ53e+SbpOaK9s+XCD7TQzsxZr9AjnCWCd7Of7gfdWrBtPuqizpogYBHYlXavzU+BE4EzSUVOl1Xnt9TyLSNfpnAtcARwMnJY9Vu7/ZtKRz27A1cBHgIM9y4D1tSlT0mLW5Ro9wrkFeB/pS/8/SDMEbAC8ABxOmkW6roi4C/jgCHUm5Z5fSLqAc0QRcRnp6Mbs9WHhwk5HYFZIowlnNvDm7Oevk7rUDiEd2VzLqyM0zczMXqOhhBMRi4HF2c/Pk+6J84U2xGVmZn1mNBd+vgXYFHg4Ih5qXUhmZtaPGh00gKTPSXoAuA+4Fbhf0oOS/r7l0ZmZWd9odKaBrwLfJl1PszcwNXu8EvjXbL2ZmdkwjXapHQ58PSK+kiu/Kpvb7HDSzANmVpYZMzodgVkhjSacsdS+q+c8PErNrHy+vbT1iEbP4VwG7Fdj3ceAn40uHDMz61dFbjG9V8XTK4FTJU1i+C2mtwG+1PoQzayuBQvSo2cbsC5XpEvtZwy/lfSbgT2q1P0x6U6cZlaWqVPTo2eMti5XJOG8re1RmJlZ3ytyi+n7ygjEzMz6W8MzDUhanTRAYCdgA+BJ4OekWwU0f0N2MzPraw0lHEkTgGuAd5Pu8PkosCPp+pvfSPpQRDzW6iDNzKz3NTos+gxgQ2D7iNgiInaMiC2A7bPyM1odoJmZ9YdGE85ewNERcVtlYfb8GNI0N2ZmZsM0eg5nTeCZGuueAd4wunDMrGHz53c6ArNCGk04vwKOlnRDRDw7VChpbeDobL2ZlckXfFqPaDThHAncCDwg6RrSoIEJpItABUxraXRmZtY3GjqHExF3AO8A5gIbA7uTEs7ZwDsi4jctj9DM6ps5My1mXa7wEY6kNYDtgD9GxJfbF5KZNeScc9KjZ422LtfIEc5LwA3AX7YpFjMz62OFE05EvAz8HpjYvnDMzKxfNXodznHAVyW9qx3BmJlZ/2p0lNrxpBkF7pD0EGmU2mvmRI+I7VoUm5mZ9ZFGE85vs8XMzKwhhRKOpLGkaW1+CzwCXBcRj7YzMDMraNttOx2BWSFFbjG9BXAdMKmieJmkj0fENe0KzMwKGrrFtFmXKzJo4FTgZeCvgTcC2wC3A3PaGJeZmfWZIglnR+D4iLglIp6LiLuBWcBbJW3a3vDMzKxfFEk4mwJ/yJXdS5o7bZOWR2RmjZHSYtblil6HEyNXMTMzq63osOirJa2qUn59vjwiJow+LDMz6zdFEs6JbY/CzMz63ogJJyKccMzMbNQanUvNzMysKU44ZmZWikbnUjOzbjPH12Bbb3DCMet1vr209Qh3qZmZWSmccMx63dy5aTHrcqUnHElbS7pe0gpJD0s6SdJqI2zzPknnSlqSbbdY0gmS1srVmy0pqiwfbm+rzDpo1qy0mHW5Us/hSBpPutXBXcB04O3A6aTEd3ydTQ/M6p4C/B54N3By9vixXN2ngXyCuXu0sZuZ2eiUPWjgs8BYYL+IWAZcK2k9YLakU7Oyak6JiMcqng9Ieg6YI2nziLivYt2qiPhVe8I3M7Nmld2ltidwdS6xXEhKQjvX2iiXbIbcnj167jYzsx5QdsKZDCyqLIiI+4EV2bpGvJ90Y7jFufL1JT0u6UVJt0var+lozcysZcruUhsPPFWlfDBbV4ikTYDjgB/ljpaWAF8C7gDWId0o7hJJH4uIS2vsayYwE2DixIkMDAwUimH58uWF63arfmgD9E87Jo6FI99VbVL2YrrhPeiXz8LtaA9FlHerG0kvAkdFxLdy5Q8B50XEcQX28QbSwIO3AFMiYrBOXQG/AMZGxHtG2vfUqVNj/vz5I1UD0h/3tGnTCtXtVv3QBuifdpx1/k84/c7G/wdceso+6YcS/5Zr6ZfPwu0oTtKCiJhapG7ZXWqDwPpVysdR/cjnNbIE8kNgG2CveskGIFI2vRR490hDr816VkRXJBuzkZTdpbaI3LkaSZsBa5M7t1PDmaTh1LtHRJH6Q/zXaGbWYWUf4VwJ7CFp3YqyA4GVwLx6G0o6Bvg88MmIuLnIi2VHRB8FfhMRLzUXspmZtULZRzhnA0cAl0o6BdgCmA2cUXnyX9ISYF5EHJo9Pxj4OnAe8JCkHSr2ee/QsGlJ84BLSEdLawMzgB2AfdvbLLMOmjIlPS5Y0Nk4zEZQasKJiEFJuwLfBn5KOm9zJinp5OOqPOfyoezxkGyp9GlSIoI0Su0fgU1JQ6YXAntHxJWtiN+sKy1c2OkIzAop/fYEEXEX8MER6kzKPT+E4Ymm2naHjiI0MzNrI88WbWZmpXDCMTOzUjjhmJlZKZxwzMysFKUPGjCzFpsxo9MRmBXihGPW63x7aesR7lIzM7NSOOGY9boFCzzLgPUEd6mZ9bqp2czwnjHaupyPcMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfCwaLNeN39+pyMwK8QJx6zXDd1i2qzLuUvNzMxK4YRj1utmzkyLWZdzwjHrdeeckxazLueEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCl/4adbrtt22qc0mffnypl9y6b/s3fS29vrlhGPW63x7aesR7lIzM7NSOOGYmVkpnHDMep2UFrMu54RjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFZxow63Vz5nQ6ArNCnHDMep1vL209wl1qZmZWCh/hmFXRUzMpz52bHn2kY13OCces182alR6dcKzLuUvNzMxKUXrCkbS1pOslrZD0sKSTJK1WYLtxks6VNCjpaUnnS9qwSr3pku6U9JykuyQd2J6WmJlZI0rtUpM0HrgOuAuYDrwdOJ2U+I4fYfOLgK2Aw4CXgVOAy4C/rtj/TsAlwHeAI4C9gAskDUbENS1tjJkV1lPnxKxtyj6H81lgLLBfRCwDrpW0HjBb0qlZ2TCSdgT2AHaOiJuysoeAWyXtFhHXZVW/AtwUEUdkz2+UtA3wVcAJp8fV+tI68l2rOGSELzR/aZl1XtkJZ0/g6lxiuZB0tLIz8NM62z06lGwAIuLXkv6YrbtO0prALqQjm0oXAudKGhcRT7eoHWbWZXwU1f3KTjiTgRsqCyLifkkrsnW1Es5kYFGV8ruzdZC659aoUu9uUpfdlsBtzYXdmNH84rdD5R9TZWxFjgxq7SfPf+zWr1r1u92J74V6f+Od+LtTRJT3YtKLwBcj4pu58geBH0bEsTW2uxZ4NiL2zZX/GNgiIt4v6a+Am4H3RsQdFXX+Avg9sEe18ziSZgJD40m3AhYXbM5GwOMF63arfmgDuB3dpB/aAG5HIzaPiI2LVOzEdTjVMpxqlDezXf65apSnwoi5wNwRXnv4C0vzI2Jqo9t1k35oA7gd3aQf2gBuR7uUPSx6EFi/Svk44Kkmtlu/YrvBirJ8HUbYv5mZtVnZCWcRr55zAUDSZsDaVD9HU3O7TOW5nXuBF6vUm0waRn1PE/GamVmLlJ1wrgT2kLRuRdmBwEpg3gjbbZJdZwOApKnAFtk6IuJ54EbggNy2BwK/bMMItYa74bpQP7QB3I5u0g9tALejLcoeNDCedNHnb0lDobcAzgC+GRHHV9RbAsyLiEMryq4ijTQ7ilcv/PxzROQv/BwAvk26KHSvrP6HfeGnmVlnlXqEExGDwK7AaqQh0CcCZwIn5KquntWpdBDpKOj7wA+BBcBHc/u/Gdgf2A24GvgIcLCTjZlZ55V6hGNmZq9fni26IEkzJP0+mxR0gaRdG9z+vZJektTRsf3NtEPSLEnXSno0mzj1FkkfKiHWtk70WpZm2iHpfVkblmTbLZZ0gqS1yoq7SkxNfR4V24/JfudC0j7tjLVODE23QdJ+km6TtFLSE5KukrR2u2OuEUuzfxtTJV2Txf+kpOskbV9GzABEhJcRFlJ33kukudp2IXXprQTeWXA/y8hAAAAF20lEQVR7AbcAjwCP91o7gPtJJx/3BXYHfkA6j/aRNsY6HniYNNnr7qR5+J4FvlZg26uAPwIfI3W73gP8vEPveVPtAL4B3ATMAKaRpmx6Grikl9qR28fM7G8ggH16qQ2kSYOfA07KPo+PAmcB43qlHcBmpMtDbgD2zpaB7Pdq81JiL/vN6sWFNPvA9yuejwHuBH5ccPu/A5YAX+9wwmmqHcBGVcp+AdzYxliPIV1btV5F2ZeAFZVlVbbbMftC+0BF2XZZ2W4deM+bbcfGVcpmZu3YvFfaUVF3PPAYcGgHE06zn8VGwDPAjLJjbnE7Pkv6h3P93OfyEvC5MmJ3l9oIJG1BGh33n0NlEfEy8F+kiUNH2n5d0oi6o4AX2hTmiEbTjoio1g14OzChlTHm1JrodSxpotd62w2b6JV0xDPi59UGTbUjIh6rUnx79tjO972WZj+PISeTjvKvb0NsRTXbho9njz9oV2ANarYdawCrgOUVZcuzMlXdosWccEY2dCFptUlBN5A00hxCXwXujojLWh5ZY0bbjrwdSUPc22XYhK0RcT/pv7hqFwHX3C5TOdFrmZptRzXvJ3VlFp3vr5WaboekdwOfJv3T1UnNtmF70nt+qKQHJb0o6VZJ729fqHU1245LsjqnS5ogaQJplPAg6R/PtnPCGdn47DE/Nc5gbv0wkrYCDgf+sQ1xNarpduRJ+gzwXtKN7tplPNWnIxqkfqzNbtcuLYlH0ibAccCPosZ9o9psNO04C/i3iFjS8qga02wbNiFN7Hs8cDTwN6RzJldJmtjqIAtoqh0R8TDp3O3HgEezZT/SxMbVjqhbrhOTd3acpHHApiPVi4jK/yIamhQ08y3gvIi4s7EIiymxHZWvOYX0BfKtiLixyDaj0O6JXssyqngkvYHUFboc+KcWxtWohtsh6SDSl/XftCuoBjXzWYwB1gEOiIirACT9ArgP+AfSIJyyNfNZbApcTLqG8bCs+HDgcknvz46S2up1mXBI09+cU6CeeO2koJXT49SdFFTSnsBfAf8gaajuWmmV1gdWRpqOZzTa3o7X7CSdB7qc1A9/ZPEwmzKaiV6rdQ9WTvRapmbbAaRfFtJowm2Av4p08XQnNNwOSWsAp5HOYY7Jfu/Xy1avLWndiHimHcHW0Oxn8WT2ODBUEBHLJC0Atm5ZdMU1244vkr7z94+IFwEk3UC6fctRDL95Zcu9LrvUIuK7EaGRlqz60NFBtUlBn6xzKLoV6b+i35N+QQZJh+MbZD9/sUfaAUDW33s16b+6gyLipdHGP4J2TvRapmbbMeRMYDowPXekWrZm2rE28BbS9FVDfwO/ydZdyKuDIMrS7GdxN+nIIX9iXaRzamVrth2Tgd8NJRuAiHgB+B3pBpZt97pMOI2IiD+QruN4ZVJQSWOy51fW2fRiUn9p5fIDYFn284/aFHJVo2gHktYBrsie7hMRK9oVZ4W2TfRasmbbgaRjgM8Dn4w0bVMnNdOO5Qz/G/jbbN2xwCfaE2pNzX4WPyMll12GCrLu7Cm8mkDL1Gw77gPemXXRAiBpTeCdwNI2xDlcJ8eT98pC+iN5iXTScBfgPHIXTJKGI64Cdq6zn9l09jqcptoBXEMa0n0wsEPl0sZYxwN/Aq4lzY03k/QF9rVcvSXA93JlVwF/IJ0Q3Zc0wqiTF3423I7svQ7g3Px7TpVrdLq1HVX2M4nOXvjZ7O/UZdm2/5d0weQ80nVF43ulHaQE+SKpW3xvYB9S8noR+D+lxF72m9WrC+mK7yXA88BCYNfc+mnZH9K0OvuYTQcTTrPtyJ5XXdoc69akq6JXZn9gJwOr5eosJQ3MqCxbP/uifop0RPkfVLl4tcT3vOF2kP4ZqPW+H9Ir7aiyj44lnFH+Tq0D/DvwRLbtdcC7eul3KivblTSDxZPZMq/ed1arF0/eaWZmpfA5HDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWiv8POcOrZEXhl0QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/community/finance/simulation/short_butterfly.ipynb b/community/finance/simulation/short_butterfly.ipynb new file mode 100644 index 000000000..227ec7e2c --- /dev/null +++ b/community/finance/simulation/short_butterfly.ipynb @@ -0,0 +1,397 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Pricing Short Butterfly Options*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1]\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Introduction\n", + "
\n", + "Suppose a short butterfly option with strike prices $K_1 < K_2 < K_3$, with $K_2 - K_1 = K_3 - K_2$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", + "The corresponding payoff function is defined as:\n", + "
\n", + "
\n", + "$$ F(S_T) = \n", + "\\begin{cases}\n", + "0 ,& S_T < K_1 \\\\\n", + "K_1 - S_T ,& K_1 \\leq S_T < K_2 \\\\\n", + "S_T - 2K_2 + K_1 ,& K_2 \\leq S_T < K_3 \\\\\n", + "0 ,& S_T \\geq K_3. \n", + "\\end{cases}$$\n", + "
\n", + "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", + "
\n", + "
\n", + "$$\\mathbb{E}\\left[ F(S_T) \\right].$$\n", + "
\n", + "The approximation of the objective function is explained in detail in the following paper:
\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "import numpy as np\n", + "\n", + "from qiskit import BasicAer\n", + "from qiskit.aqua.algorithms import AmplitudeEstimation\n", + "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", + "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Uncertainty Model\n", + "\n", + "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", + "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", + "The unitary operator corresponding to the circuit factory implements the following: \n", + "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", + "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", + "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# number of qubits to represent the uncertainty\n", + "num_uncertainty_qubits = 3\n", + "\n", + "# parameters for considered random distribution\n", + "S = 2.0 # initial spot price\n", + "vol = 0.4 # volatility of 40%\n", + "r = 0.05 # annual interest rate of 4%\n", + "T = 40 / 365 # 40 days to maturity\n", + "\n", + "# resulting parameters for log-normal distribution\n", + "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", + "sigma = vol * np.sqrt(T)\n", + "mean = np.exp(mu + sigma**2/2)\n", + "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", + "stddev = np.sqrt(variance)\n", + "\n", + "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", + "low = np.maximum(0, mean - 3*stddev)\n", + "high = mean + 3*stddev\n", + "\n", + "# construct circuit factory for uncertainty model\n", + "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot probability distribution\n", + "x = uncertainty_model.values\n", + "y = uncertainty_model.probabilities\n", + "plt.bar(x, y, width=0.2)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.grid()\n", + "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", + "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Payoff Function\n", + "\n", + "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K_1$, then increases linearly, and is bounded by $K_2$.\n", + "The implementation uses two comparators, that flip an ancilla qubit each from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K_1$ and $S_T \\leq K_2, and these ancillas are used to control the linear part of the payoff function.\n", + "\n", + "The linear part itself is then approximated as follows.\n", + "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", + "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", + "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", + "\n", + "We can easily construct an operator that acts as \n", + "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", + "using controlled Y-rotations.\n", + "\n", + "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", + "$\\sin^2(a*x+b)$.\n", + "Together with the approximation above, this allows to approximate the values of interest.\n", + "The smaller we choose $c_{approx}$, the better the approximation.\n", + "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", + "\n", + "For more details on the approximation, we refer to:\n", + "Quantum Risk Analysis. Woerner, Egger. 2018." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price_1 = 1.438\n", + "strike_price_2 = 1.896\n", + "strike_price_3 = 2*strike_price_2 - strike_price_1\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# setup piecewise linear objective fcuntion\n", + "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2, strike_price_3]\n", + "slopes = [0, -1, 1, 0]\n", + "offsets = [1, 1, 1+strike_price_1 - strike_price_2, 1]\n", + "f_min = 0\n", + "f_max = strike_price_2 - strike_price_1\n", + "butterfly_objective = PwlObjective(\n", + " uncertainty_model.num_target_qubits, \n", + " uncertainty_model.low, \n", + " uncertainty_model.high,\n", + " breakpoints,\n", + " slopes,\n", + " offsets,\n", + " f_min,\n", + " f_max,\n", + " c_approx\n", + ")\n", + "\n", + "# construct circuit factory for payoff function\n", + "butterfly = UnivariateProblem(\n", + " uncertainty_model,\n", + " butterfly_objective\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecVPX1//HXAUQQFBEEQRFiiYqaaLBhiWIJtthQEbGCIBZk+cYkJv5iDUk0ZWkioCCoKBbsJSgIaqyBxKgoigVQUZQugpTl/P44d2QYtszulM/cmfN8POaxO3funX3PMMy55VNEVXHOOefqql7oAM455+LNC4lzzrmMeCFxzjmXES8kzjnnMuKFxDnnXEa8kDjnnMuIFxJXsETkBhHRpNsCEZkkIrsGzHSYiPxHRL4XEY2WNRGRiSKyOMp5URXbjkt5PYnbnXl9ERvz9BWR0ypZPldE/hYik4unBqEDOFeD5cDx0e+7ADcDU0Vkb1X9LkCeUcDXQFdgTbTsMuCXwAXAF8DH1Ww/G7g4ZdnXWc6Yrr7Au8BjKctPBxbnP46LKy8krtCtV9XXo99fF5H5wMvAicBDAfLsCYxW1RdTln2gqpPS2P67pNdTkFT1v6EzuHjxU1submZGPzsAiEhnEXkiOu31nYi8JSI9EyuLyHbRaagLk59EzKci8o+kZUeLyBvR+gtFZISINI0eOyo6lVUfGBKdkhonInOB3sD+iVNVdX1hib8hIvukLJ8uIg8n3R8nIjNE5DgReTt63f8Skb1TtqsvIr8TkQ9FZI2IfC4i4xLPCXQCLkw6xXZR9Nhmp7ZE5GwReSd6ns9EZJCINEh6/KLoOfYVkeejTLNF5Iy6vh8uPryQuLjpEP38KvrZHngFuAQ7vTQJuEtEegCo6hLgUTY/nXRU9Fx3AYhIR+CfwCKgG3A9cC6Q+AL/D9A5+v3v0e83Y6eBnsFOWXVOWqdKItIg+ZbWq97czsBfgUFAD6AV8KCISNI6o4AbgQeBk4FfAU2ixy6PMj+TlPvpKvL+AngAew9OBYYBVwPDK1n9PuAJ7H2ZA0wUkZ3q+BpdTPipLVfwkr5sdwFGAN8CUwBUdWLSegK8BOwE9AHujx4aAzwnIruo6ifRsouBmar6TnT/OmAecIqqVkTPtwR4QEQ6q+pr2Kk1gLnJp6dE5BugdZqnrDoB61Je3+6q+lEa2ybbDjhMVedEz1EPK5h7ALNFZE/sSGmAqg5N2u4BAFV9T0S+A75JI/dNwHRVTRzV/TN6H/4sIn9U1c+T1i1X1bFRppnAQqyIjazl63Mx4kckrtC1wL541wEfYMWku6p+CSAizUVkqIjMS1qvL/DjpOeYihWJC6NttgbOIDoaiRwEPJooIpFJwHrg8Cy+nveBA1Nun9XheeYmikjkvehnYu+/S/RzXB2e+wciUh/4GZtfj3oA+/5IPQJ7LvGLqi7GGhL4EUmR8yMSV+iWA8cCip3OWqCbDlk9DjgEO830HrACa0V1amIFVVURuQvoJSI3AGdjn/37kp6nDbb3TNJ2FSKyGNv7z5ZVqjojC8+zLOX+2uhno+hnC+zC/ooM/05LYAtS3puk+6nvTWW5GuGKmhcSV+jWV/XFKyKNgJOAK1V1ZNLyyo6078Kue3QBLgIeU9WlSY9/iV1nSH7++tgX8pJMXkAtfB/9bJiyfDvs2k1tLAaaiMg2GRaTRdhRXquU5a2jn/l6b1wB81NbLs62xFpRJfpzJE5bnZK6oqp+hp12uRE7VXVXyipvAKdHxSPhDGxn61/ZjV2lxLWGvRILRKQddt2jtl6Ifl5QzTo1Hi1Ep/pmAmelPHQ2sAF4rQ7ZXJHxIxIXW6q6XET+DVwnIiuwL7ZrsNNh21SyyRjsXP/nwPMpj/0R+C/wmIjcjp3XvwWYHF1ozzlV/Tx6PTeLyCpsR+/31GGvX1U/EJHRwN9FpBXWCGFb4ExVPSdabTbQVUS6Ykcwn0bXNVJdD0yOTg9OBPbFTiXekXKh3ZUoPyJxcXcu8ClwNzAEu0B+dxXrPoVdPB+vqhuSH1DVWcAJ2CmcR7DCcj9wZm5iV+lcYD5wL/AnrMXUB3V8rsuxI7DzsGa+g4HVSY//Ebv4/yDwb6z59GZU9TngHOAA4EmgDGsCfWUdc7kiIz7VrisVInIiVkx+XIfmts65KnghcUVPRNoCu2Md6ear6smBIzlXVPzUlisFfbG+JN8D/QNnca7o+BGJc865jPgRiXPOuYyURPPfli1baocOHeq07XfffUeTJk1qXrFAxClvnLJCvPLGKSvEK2+cskJmeWfOnLlIVbevcUVVLfpbp06dtK6mTZtW521DiFPeOGVVjVfeOGVVjVfeOGVVzSwvMEPT+I71U1vOOecy4oXEOedcRryQOOecy0jeC4mI7CYio0TkfyJSEU35mc52zUTkLhFZKiLLRWSCiLTIcVznnHM1CNFqa2/gROB1Nh8uuzoPYKOgXoINzncL8BhwRLYDOuecS1+IU1tPqmo7VT0LmJXOBiLSGegKXKiqk1T1UWwgusNF5NicpJwwATp04Mijj4YOHex+IYtbXucgXp/bOGWFvObN+xGJpoy6mqYTgIWq+lLS87wpIp9Gj03JVj7A3vC+fWHVKgRg3jy7D9CzZ1b/VFbELa9zEK/PbZyyQt7zxqVD4p7Y3Amp3o8ey65rr4VVqzZdtmoVXHEFfFDXEb1zaOjQyvNee21hfsidg3j9P6vq/1ghZoW8fycEHWtLRB4GWqrqUTWs9zw2//RpKcvvBXZR1UMr2aYvNlgfrVu37jRx4sS0cx159NFIJe+L2hOn/Tx5o0plqVSEF194oZJHCsPKlStp2rRp6Bhpi1PeOGSN1f+zqv6PQeFlhax9J3Tp0mWmqh5Q03pxOSKB6N8shVSxHFUdDYwGOOCAA/Soo45K/y/tvLMdCqb+sfbtYe7c9J8nXzp0qDzvzjtTq9edZ9OnTy/ofKnilDcWWdu1g/nzN1tckP/Pqvo/VohZIe/fCXHpR7IUmyY01bbAsqz/tUGDYKutNl221Va2vBDFLa9zAOefv/myQv3cxu3/WJ7zxqWQzKbyayFVXTvJTM+eMHo0tG+PikD79na/UK83JOcFqF8fbr+9cPM6B/Duu9C0KbRrV/j/z+L8nZCHvHEpJM8CO4jI4YkFInIAsEv0WPb17Alz59r5xLlzC/cDkxDlfXfQIKiogEaNQidyrmoffQRPPAFlZTB/fjz+n8X0OyEfeUP0bN9KRM4UkTOBHYHtE/dFZKtonY9EZExiG1V9DZgM3C0iZ4jIacAE4F+qmt2mvzG3+JBDYLfdoLw8dBTnqjZ0KDRoAJdfHjqJy4IQRyStgIei2yFAx6T7raJ1GgD1U7Y7B3gRGAvcDcwETs9D3nipVw8GDIDXX7ebc4Vm2TIYOxZ69IA2bUKncVmQ90KiqnNVVaq4zY3W6aCqF6Vst0xVL1bVbVV1G1U9V1UX5Tt/LFx0ETRrBoMHh07i3ObuvBO++85Oa7miEJdrJK42mjaFPn3g4Yfhs89Cp3Fuo/XrYdgwOPJI2H//0GlclnghKVZXXgmqMHx46CTObfToo9Z3ZODA0ElcFnkhKVbt20O3btbk77vvQqdxzpSXw667wsknh07issgLSTErK7MLm+PHh07iHLzxBrz2mjUGqZ/alsbFmReSYta5Mxx0EAwZAhvqMuiyc1lUXg7bbGONQVxR8UJSzETsqOTDD+HZ3PTbdC4t8+db448+fWDrrUOncVnmhaTYnXkm7LijNwV2YQ0fbo0/+vcPncTlgBeSYrfFFtaCa8oUeOed0GlcKVq5Eu64wxp/tG8fOo3LAS8kpaBvX2jc2K6VOJdv48dbow9v8lu0vJCUgu22gwsvhHvvha+/Dp3GlZING2wH5uCDrfGHK0peSErFgAGwZg2MGhU6iSslTz8Nc+b4cChFzgtJqdhzTzjhBLjtNisozuVDeTnstJNdH3FFywtJKSkrg4UL4YEHQidxpeCtt2DaNGuptcUWodO4HPJCUkqOOw46drS9RK10qnvnsmfIEJvetU+f0ElcjnkhKSWJDopvvQUvvRQ6jStmX30F990HF18MzZuHTuNyzAtJqTnvPGjRwjsouty6/XZYu9Yaebii54Wk1DRuDP36weOPw8cfh07jitH331shOflk2H330GlcHnghKUWXX27zZQ8bFjqJK0YTJsA333gHxBLihaQUtW0L3bvDmDGwfHnoNK6YqFpjjp/8BLp0CZ3G5YkXklJVVmZjII0dGzqJKyZTp8KsWXY0IhI6jcsTLySlqlMnOOIIGDoUKipCp3HForwcWreGHj1CJ3F55IWklA0cCHPn2oV35zI1ezY884xdg9tyy9BpXB55ISllp5wCHTrYXqRzmRoyxApIv36hk7g880JSyurXh6uugn/9C2bMCJ3GxdnixTZcfM+e0KpV6DQuz7yQlLrevW3qU++g6DIxejSsXu2j/JYoLySlbpttoFcvG8hxwYLQaVwcrV1rU+keeyzsu2/oNC4ALyTOTm9VVNgQ887V1sMP206Id0AsWV5IHOyyC5x6qk16tWpV6DQuThIdEPfYA44/PnQaF4gXEmcGDrQLpvfeGzqJi5NXXrGGGgMGQD3/OilV/i/vzBFHwP7720V3n6vEpau83IaJv+CC0ElcQHkvJCLSUUSmisgqEVkgIjeJSP00tttbRJ6LtlskIreLSNN8ZC4JInZU8v778NxzodO4OPj0U3jsMbj0UmjSJHQaF1BeC4mINAemAAqcCtwE/Aq4sYbtmgEvAI2B7sDVQDfAz8NkU/fusMMO3hTYpWfoUDuddeWVoZO4wBrk+e/1w4rBGaq6AnheRLYBbhCRW6Nllbk82u6XqroMQESWAI+LyAGq6r3psqFhQ7jiCvjDH+zIZK+9QidyhWrFChs9+uyzYccdQ6dxgeX71NYJwOSUgjERKxJHVrPdfsCMRBGJPIcd2ZyU9ZSl7NJLbZiLIUNCJ3GFbOxY+PZb74DogPwXkj2B2ckLVHU+sCp6rCqNgLUpy9YDGwDfbc6m7beH88+Hu++2VlzOpaqosNNahx0GBx4YOo0rAPk+tdUcWFbJ8qXRY1X5CDhXRLZQ1XXRsk5AfWC7yjYQkb5AX4DWrVszffr0OgVeuXJlnbcNIRt5mxx6KAfeeSefXHMN83v2zE6wSpTie5svucza8qWX2OfTT3n3wgtZlKW/4e9t7uQlr6rm7QasAwZUsvwLYFA12+2JHYGMBHYA9gZmRsuerenvdurUSetq2rRpdd42hKzlPe441bZtVdeuzc7zVaJk39s8yGnWww9X7dBBdf36rD2lv7e5k0le7JJCjd/t+T61tRTYtpLlzaj8SAUAVZ2NHV30AL4E3gbeBN4CFmY/pqOszIa9eOih0ElcIZkxw0aLvuoqGz3aOfJ/jWQ2KddCRKQd0ISUayepVHUs0Br4CdAWuBLYDXg9J0lL3fHH27AX5eXeQdFtNHiwjRbdu3foJK6A5LuQPAt0FZGtk5Z1B1YDL9a0sap+r6rvqOpC4Dws/4M5SVrq6tWzYS9mzIBXXw2dxhWCL76wUaJ79bJRo52L5LuQjATWAI+IyLHRBfEbgH9oUpNgEflIRMYk3d9GRG4RkZNEpKuI/AW4E7hKVZfk+TWUjgsusOEvvIOiAxsduqLCTms5lySvhURVlwLHYK2tnsR6tJcD16es2iBaJ6EC2B+4B3gseo6zVHVcjiOXtiZNoG9feOQRm9vdla5Vq2x06NNOs9GinUuS97G2VPU9VT1aVRurahtV/YOqVqSs00FVL0q6/52q/kJVt4u2O1BVH8t39pJ0xRU2Dtfw4aGTuJDuvhuWLPE5R1ylfPRfV7127eCss+COO6wnsys9GzbY6c1OneDww0OncQXIC4mrWVmZja00blzoJC6EyZPhgw/saEQkdBpXgLyQuJodfDB07mzjb1VU1Ly+Ky7l5dCmjR2ZOlcJLyQuPWVl8PHH8PTToZO4fHr3XXj+eRsqvmHD0GlcgfJC4tJzxhl2vaS8PHQSl0+DB0PjxjYqtHNV8ELi0tOgAfTvD9Onw1tvhU7j8uHrr+Hee60/UYsWodO4AuaFxKXvkkusb4l3UCwNI0fCmjU+54irkRcSl77mzeGii+D+++Grr0Kncbm0Zg2MGAEnnAB7VjdVkHNeSFxtDRgAa9fC7beHTuJyaeJEWLjQj0ZcWryQuNrZfXc4+WQrJN9/HzqNywVVa1Sx995w3HGh07gY8ELiam/gQPjmGzvF5YrP9Onwv//Z0Yh3QHRp8ELiaq9LF9h3X5+rpFiVl0PLlpDDaZZdcfFC4mpPxPZW33kHpk0LncZl05w58NRTcNll1n/EuTR4IXF1c+65sP323kGx2Awdan2GLr88dBIXI15IXN00amR7rU89ZXuxLv6WLYO77oIePWCHHUKncTHihcTV3WWX2fhLQ4aETuKy4Y474LvvfM4RV2teSFzd7bCD7b3edRcsXRo6jcvE+vUwbBgcdRTst1/oNC5mvJC4zJSV2TSsd94ZOonLxKRJ8NlnfjTi6sQLicvMfvvZXuywYbZX6+KpvBx23dU6mzpXS15IXOYGDrS92UceCZ3E1cXrr8Mbb9jwN/X8K8HVnn9qXOZOOsn2Zn1U4HgqL4dmzeDii0MncTHlhcRlrn5925t97TXbs3XxMX++XR/p0weaNg2dxsWUFxKXHRddBNts40clcTNsmP3s3z9sDhdrXkhcdmy9te3VPvSQXS9xhW/lSus70q0b7Lxz6DQuxryQuOy58kobxPG220Incem46y5Yvtyb/LqMeSFx2dOhA5xxBowebT2kXeHasMFGJDj4YDjkkNBpXMx5IXHZVVZmvdzvvjt0Eledp56Cjz/2oxGXFTUWEhG5QERa5COMKwKHHgoHHmgX3TdsCJ3GVaW8HNq1s+sjzmUonSOSu4BdAUSkQkQOym0kF2uJuUo+/BD++c/QaVxl3nrLZkHs39+GjHcuQ+kUkqVA2+h3AXxKPFe9M8+Etm19rpJCVV4OTZpYKzvnsiCdQjIFuEdEZmBFZJyIvFnVraYnE5GOIjJVRFaJyAIRuUlE6qex3QEi8pyILBaRJSIyRUQOTiO/y7eGDa0F15Qp8O67odO4ZF9+Cfffb73Yt902dBpXJNIpJL2AG4H/YkcknwKzqrlVSUSaY4VJgVOBm4BfRc9f3Xbtou0aABcA50e/Pyci7dN4DS7f+va1qVp9rpLCcvvtNrjmVVeFTuKKSI0nSFV1FfA3ABE5FrhWVf9Xx7/XD2gMnKGqK4DnRWQb4AYRuTVaVpmTgK2j7ZZFWV4FFgEnArfXMY/LlRYt4IILYNw4+NOfbFpeF9bq1VZITj4Zdt89dBpXRNJptVUhIgdGd6cDVX3Zp+MEYHJKwZiIFZcjq9luC2A9sDJp2cpomWSQx+XSgAGwZg2MGhU6iQOYMAEWLfImvy7r0jm1tRbYMvr9AiCTXcs9gdnJC1R1PrAqeqwqk6J1/i4irUSkFVCONQR4KIM8Lpf22guOP956uq9ZEzpNaVO1Jtk//anNH+NcFqXT9u897NTTY9je/5kickAV66qqVneaqTmwrJLlS6PHqnrSBSLSBXgKSJzc/RLoqqrf1PQCXEBlZVZMHnwQzj8/dJrS9fzzMGuWnWoUP4h32SWq1bfmFZFDgVHYEUM9qj+VpKpaZQssEVkHXK2qQ1KWfwGMU9Vrq9iuDfAydjE/UaiuAPYHDo2OalK36Qv0BWjdunWniRMnVhO7aitXrqRpjIbXLri8qhx48cVsaNiQmaNGbfIlVnBZaxCnvKlZ9/3tb9l6zhxemzgRbdgwYLLKxfm9LXSZ5O3SpctMVa3qwGEjVU37BmwADqrNNinbfw1cX8nylcCvq9nuH8BcYIukZQ2BecDQmv5up06dtK6mTZtW521DKMi8o0apguqLL26yuCCzViNOeTfJ+t579v7feGOwPDWJ7XsbA5nkBWZoGt/ttR1rqwt2qquuZpNyLSRq2tuElGsnKfYEZqnqusQCVV2LHaHsmkEelw/nn2+tuLyDYhhDhsCWW0K/fqGTuCJVq0Kiqi+q6koROVhEfiUig6Kf6XYMfBboKiJbJy3rDqwGXqxmu3nAPiLywzG5iGwJ7IMdqbhC1rgxXHopPP44fPJJ6DSlZfFiG0DzvPOgVavQaVyRqlUhEZEmIvIM8CrwZ6yz4p+BV0XkaRHZqoanGAmsAR4RkWOj6xg3AP/QpCbBIvKRiIxJ2u5ObJiWR0XkJBE5GXgMaAOMrs1rcIFccYVNyTt0aOgkpWXUKOs/UlYWOokrYrU9tXUr0Bk4B2ikqm2ARtH9zsAt1W2sqkuBY4D6wJNYj/Zy4PqUVRtE6yS2mwkcj3VKvAe4G9gKOE7r3jnS5VPbttC9O4wdCysy6Yrk0rZ2LQwfDscdB/vsEzqNK2K1HfqzG/BbVf2h74aqbgAeioY/uQmodvJnVX0POLqGdTpUsmwqMLWWeV0hGTjQOsWNGeOd4vLhwQdtbK077wydxBW52h6RNAOqmpD7M2CbzOK4otapExx+uJ3eqqgInaa4qVrjhj32sH48zuVQbQvJ/4DLRDbt0RTdvyx63LmqDRwIc+fahXeXM83eeQf+8x+7NlLPJ0J1uVXbU1u/x1pezRaRR4GFQCvgdKADNpaWc1U79VRo2RLOPZcj166FnXeGQYOgZ8/QyYrDhAlw7bXsN2+eFZAtt6x5G+cyVKtCoqoviMj+wHXAWVirqS+BN7CReTPpY+JKwcSJsHw5rFtnQyTMm2dDzoMXk0xNmGDv5apV9t5u2GDzwjRs6O+ty6laH/Oq6nuqeo6q7qqqW0U/z/Ui4tJy7bWwbt2my1atsuUuM9dea+9lMn9vXR7Uth/J30SkY67CuBIwf7Nh0apf7tLn760LpLZHJN2Ad6JpdfuJSLNchHJFbOeda7fcpc/fWxdIbYdI+RFwLDYu1l+BL0XkvmjmROdqNmgQbJUyAELjxrbcZebmmzcfIn6rrfy9dTlXl2sk01T1AuxCe39gJ2CyiMwTkRtFZJdsh3RFpGdPGD0a2rfnhwkMevTwi8HZ0LSp9R9p2RIVgfbt7b3299blWJ0bmKvqSlUdgw1v8grQDvgd8KGIPC4i7bOU0RWbnj1h7lxefOEF2H9/eO01+wJ0mSkvt+Lx5Zf23s6d60XE5UWdComIdBCR60XkE+A5bD6Rs7CxsE7B+pTUbSYpVzpErIPi++/D5Mmh08TbzJnw8stw1VXQoLbdw5zLTG1bbZ0vIi8AHwEXAncBP1LVE1V1kqquUdVnsOlwa55Vy7nu3aFNG5tP3NXdkCF2aqt379BJXAmq7RHJaOArbK70XVT1ZlX9vJL1PgT+mHE6V/waNrQh5idPhve8K1KdfPmldfS8+GJo5g0pXf7VtpC0jTofVjsKr6p+qao3ZpDLlZJLL4VGjfyopK5GjID16+20lnMB1Lb579JcBXElrGVLm473nntg0aLQaeJl9WoYORJ++UvYbbfQaVyJqvXFdhHpLiJTRGS+iHydestFSFcCysrg++9tRj+XvgkTrPj6/C4uoNpebD8XGI9dbN8JeAJ4KnqeFcDwbAd0JaJjR+jaFW67zWb2czVTtdOBP/0pHHlk6DSuhNX2iOTXwM3AFdH9EaraC/gRsAhYVdWGztWorMwuHD/wQOgk8TBlCsyaZe9bao925/KotoVkd+AVVa0AKohmRFTVb7H52q/MbjxXUrp2hb32so513kGxZoMHQ6tWNjKAcwHVtpAsBxIz5XwB7JX0mAAtshHKlSgR27v+73/hpZdCpylss2fDM8/A5Zf75FUuuNoWkhnAT6LfnwCuE5E+InIhNojjG9kM50rQ+edDixbeFLgmQ4daH5zLLgudxLlaF5I/A4nJDa4D3gRGYD3cFwF9sxfNlaTGja1fyeOPw8cfh05TmJYsgfHjbRytVq1Cp3EuvUIiIo1FpBtwGNBARFqr6jJVPRVoCmyrqger6ie5DOtKxBVX2HhRQ4eGTlKY7rjDZj4cMCB0EueANApJNCz8LOAh7PTVPcAHIvILgGh8rRU5TelKS9u2NgbX2LE2v7vbaN06GD4cjj7amv06VwDSOSK5FdgAHAFsBewN/BfwnmMudwYOhJUrYcyY0EkKy6RJ8Pnn1ijBuQKRTiHpDPw/VX1FVb9X1feBS4GdRaRNbuO5kvWzn8HPf26nt9avD52mcAwebEOhnHRS6CTO/SCdQtIGSL328THW3HeHrCdyLqGsDObNg8ceC52kMLz+Orzxhl0bqVfnOemcy7p0P43eO8zl3ymnwC67WAdFZ+9Ds2Zw0UWhkzi3iXQLyeSUgRm/jJZP9UEbXc7Ur29Do7/6Krz5Zug0Yc2fb9dH+vSxCaycKyDpzMnp84q4cHr1guuus2sD990XOk04w4fbsDFX+ihErvDUWEh8gioX1NZb2/Sxw4bBrbfCTjuFTpR/K1da35Fu3aB9+9BpnNtM3q/YiUhHEZkqIqtEZIGI3CQi9WvY5gYR0Spuv8tXdhfIVVfBhg22V16K7r4bli3zJr+uYOW1kIhIc2AKdvH+VOAm4FfUfPrsTqwZcvLtluixZ3MS1hWODh3g9NNh9Gj47rvQafJrwwY7rXfQQdC5c+g0zlUq30ck/YDGwBmq+ryqjsSKyP+JyDZVbaSqn6vq68k3YF9gtqq+lZ/oLqiBA2HpUts7LyXPPgtz5vicI66g5buQnABMThlSZSJWXNKe4k1EtgOOA+7PbjxXsA49FA44wPbON2wInSZ/ysthxx3hzDNDJ3GuSvkuJHsCs5MXqOp8bGbFPWvxPGcCW2BFyJUCETsq+fBD20svBe+8A1OnWkutLbYInca5KonmcSY6EVkH/FpVB6cs/xy4W1V/n+bzvAA0U9VO1azTl2hY+9atW3eaOLFuNWflypU0jVG7/TjlrW1WWb+eQ3r0YNXOO/O/v/89h8kql+/3do+//pVWU6fy2oMPsn6bKs/8VipOnwOIV944ZYXM8nbp0mWmqh5Q44qqmrcbsA4YUMnyL4BBaT5HG2ya36vT/budOnXSupo2bVqdtw0hTnl1gffGAAAfnklEQVTrlPXPf1YF1bffznqemuT1vV24UHXLLVX79avT5nH6HKjGK2+csqpmlheYoWl8x+b71NZSYNtKljcDlqX5HGdj43w9kK1QLkb69rXJr4p9BsVRo2DNGmv67FyBy3chmU3KtRARaQc0IeXaSTXOAf6lqp9lOZuLg+22gwsvhAkT4OsiHZFnzRq47TY4/njYa6/QaZyrUb4LybNAVxHZOmlZd2A18GJNG4tIB+AQvLVWaSsrsy/b228PnSQ3HngAFi60xgXOxUC+C8lIYA3wiIgcG10QvwH4hyY1CRaRj0SkshmNzgHWAw/nI6wrUHvsASeeCCNGWEEpJqp22q5jRzjuuNBpnEtLXguJqi4FjgHqA09inRHLgetTVm0QrZPqHGCqqn6Ty5wuBsrK7NTW/UV2cPrSS/Df/3oHRBcr6Yz+m1Wq+h5wdA3rdKhi+X65yORi6NhjYZ99rMPehRcWz5fu4MHQogWcd17oJM6lzadZc/EkYnvtb78N06aFTpMdH38Mjz8Ol15qLdOciwkvJC6+evaE7bcvnqbAw4bZZF5XXBE6iXO14oXExVejRnDZZfDUUzawYZytWAFjx0L37tC2beg0ztWKFxIXb5ddZuNQDRkSOklmxoyBb7/1Jr8ulryQuHjbYQfo0QPuusuGmY+jigoYOhQOPxw6VTl8nHMFywuJi7+BA2HVKpuONo4efxzmzvUZEF1seSFx8ffTn0KXLnaxet260Glqb/BgmwXytNNCJ3GuTryQuOJQVgaffw6PPBI6Se3MnAkvvwz9+1uLLediyAuJKw4nnwy77WYdFONk8GBo2hR69w6dxLk680LiikO9ejBgALzxBrz2Wug06VmwwAZo7NULmjULnca5OvNC4orHRRfZF3JcOiiOGAHr1/ucIy72vJC44tG0KfTpA5Mmwfz5odNUb/VqGDkSTjkFdt01dBrnMuKFxBWX/v3t57BhYXPUZMIEWLzYm/y6ouCFxBWXnXeGbt2sT8nKlaHTVC4x58h++8GRR4ZO41zGvJC44jNwICxfDuPGhU5SuSlTYNYsn3PEFQ0vJK74HHIIHHywjb+1YUPoNJsrL4fWreGcc0IncS4rvJC44jRwIHz0kY0MXEhmz4Znn4XLL4cttwydxrms8ELiilO3btCuXeF1UBw61ApIv36hkziXNV5IXHFq0MBacE2fDm+9FTqNWbIExo+3CblatQqdxrms8ULiitcll0CTJoXTQfGOO2yUYm/y64qMFxJXvJo3t97u998PX30VNsu6dda35ZhjYN99w2ZxLsu8kLjiNmCAfYmPGBE2x6RJ8MUXfjTiipIXElfcdt/dRga+/XYbliSUwYMty4knhsvgXI54IXHFb+BAWLQI7rsvzN9/7TUblXjAABul2Lki459qV/yOOgp+8hNrCqya/78/eDBsuy1ceGH+/7ZzeeCFxBU/ETsqmTXLhifJp/nz7fpInz42OrFzRcgLiSsNPXrYsCT57qA4fLj9vPLK/P5d5/LIC4krDVtuacOSPPusDVOSDytXWt+RM86wUYmdK1JeSFzp6NfPCsqQIfn5e+PHw7JldlrNuSLmhcSVjlatbHiS8eNtUqlc2rDBCtZBB9loxM4VsbwXEhHpKCJTRWSViCwQkZtEpH6a254hIv8WkdUislhE/ikiTXKd2RWRsjLrTzJ6dG7/zjPPwJw5djTic464IpfXQiIizYEpgAKnAjcBvwJuTGPbS4D7gGeBE4BLgDlAg1zldUVo333h2GPtIvi6dbn7O4MHw4472ijEzhW5fB+R9AMaA2eo6vOqOhIrIv8nIttUtZGItATKgf6qep2qTlfVR1W1v6ouz090VzTKymDBAnjoodw8/zvvwNSp1lJriy1y8zecKyD5LiQnAJNVdUXSsolYcalu8uqzo5/jcxXMlZATToA99shdB8XBg6FxY+jbN/vP7VwBynch2RPYpO2lqs4HVkWPVeVg4AOgt4h8LiLrROQNETk0d1Fd0apXz4YrmTEDXnklu8/99dcwYYL1Yt9uu+w+t3MFSjSPQ0aIyDrg16o6OGX558Ddqvr7KrabDBwKrAB+AyyOfh4A7K6qCyvZpi/QF6B169adJk6cWKfMK1eupGmMeiTHKW/IrPVWr6Zz9+4s239/Zt1Y4yU6IL287ceP50fjxvHm+PGsCth3JE6fA4hX3jhlhczydunSZaaqHlDjiqqatxuwDhhQyfIvgEHVbPc8doH++KRl2wBLgZtr+rudOnXSupo2bVqdtw0hTnmDZ73mGtV69VQ/+SSt1WvM+/33qq1bq55wQubZMhT8va2lOOWNU1bVzPICMzSN7/Z8n9paCmxbyfJmwLJqtlsS/ZyeWKB2nWUm0DFb4VyJueIKO801bFh2nu+BB2DhQu+A6EpOvgvJbFKuhYhIO6AJKddOUryPHZGkNsgXYEM2A7oSstNOcNZZcOedsGJFzetXR9Uu3nfsaM2LnSsh+S4kzwJdRWTrpGXdgdXAi9Vs9xRWNLokFohIM6AT8L8c5HSlYuBA+PZbGDs2s+d56SV46y1rWuwdEF2JyXchGQmsAR4RkWOjC+I3AP/QpCbBIvKRiIxJ3FfVGcDjwBgRuVBETgKewK653JbPF+CKzIEHwmGHwdChUFFR9+cpL4cWLeC887KXzbmYyGshUdWlwDFAfeBJrDNiOXB9yqoNonWSnQc8BvwDeBgrIkdHz+lc3ZWVwaefwhNP1G37jz+2bfv1s/4jzpWYvA8voqrvAUfXsE6HSpatBC6Lbs5lz2mnQfv2dlRx+um1337YMGjQwIapd64E+ei/zjVoAFddBS+/DDNn1m7b5cthzBjo3h3ats1NPucKnBcS5wB697apcAcPrnndZGPH2gRWZWW5yeVcDHghcQ6gWTPo1QsmTrQBHdNRUWEX6Y84Ajp1ym0+5wqYFxLnEq66yorDbWk2BHz8cZg7149GXMnzQuJcwq67wqmnwsiRsGpVzesPHgwdOtg2zpUwLyTOJRs4EJYsgXvvrX69mTPt4vxVV0H9tCb4dK5oeSFxLtkRR8D++9vRRnUjYw8ebBfne/XKXzbnCpQXEueSidhRyfvvw+TJla+zYIFdlO/d2y7SO1fivJA4l6p7d2jTxjooVmbECLso379/fnM5V6C8kDiXqmFDG2L+uedg1qxNH1u92i7Gn3qqXZx3znkhca5Sl14KjRrBkCGbLr/3Xli82Jv8OpfEC4lzlWnZEs4/H+65BxYtsmWqdpF9v/3g5z8Pm8+5AuKFxLmqlJXB99/bqSyg+YwZ8N57djHe5xxx7gdeSJyrSseO0LWr9XRfs4adJk2C1q3tYrxz7gdeSJyrzsCB8NVX0KoVLd54w45QHn44dCrnCooXEueqs2iRncZKzOm+fDn07QsTJoTN5VwB8ULiXHWuvXbzHu6rVtly5xzghcS56s2fX7vlzpUgLyTOVWfnnWu33LkS5IXEueoMGgRbbbXpsq22suXOOcALiXPV69kTRo+G9u1REWjf3u737Bk6mXMFwwuJczXp2RPmzuXFF16wGRG9iDi3CS8kzjnnMuKFxDnnXEa8kDjnnMuIFxLnnHMZ8ULinHMuI6Kpwz8UIRH5BphXx81bAouyGCfX4pQ3TlkhXnnjlBXilTdOWSGzvO1VdfuaViqJQpIJEZmhqgeEzpGuOOWNU1aIV944ZYV45Y1TVshPXj+15ZxzLiNeSJxzzmXEC0nNRocOUEtxyhunrBCvvHHKCvHKG6eskIe8fo3EOedcRvyIxDnnXEa8kDjnnMuIFxLnnHMZ8ULinHMuI15InHPOZaRB6ACubkSkHXAiIMBDqrpYRHYCrgZ2BeYCo1X1nXApQUR+CzwTOke6RKQx0EBVv01atj1wJdAR2AC8BYxQ1eVhUjpXWLz5b0REBDgdOAnYC9gOqAAWAq8D41T1w3AJNxKRg4DngKbAemAJ0BV4Bss8C9gH2AE4VlVfDhQVEdkAKDAbuA94QFU/CpWnJiLyDDBHVQdE9zsDz2IFZCZWuDsBa4GjVXVWwKz7A41V9dWkZccDv2Nj0fsfcEPyOoUi+j/3S+Bn2GdkBrbTUdBfSiKyDTZ21dGq+q/QeeCHTEcDDYGnVfW7aAfoCmAX4BNsx3JBTv5+gf+b5UX0hj+DfUEsBNYAO2If7mexf4g9gJtV9eZQORNE5HnsaPJ04DugHDgN+6I7U1XXiciWwGNAI1XtEjDrBuAWYF/gOCz3f7Ci8qCqfhEqW2VEZBHQW1Ufj+6/jr3HpyWOUkSkGfAE8L2qdg2Y9XXgSVUdFN3vBdwJTANewIreMcARQLfEawqU9VXsfX0/ut8c2xnqBKyMVmuK7bR1TT4iDEFELq/m4cbAX4EhwBwAVR2Rj1yVEZHdgKlAu2jRp8AvgOeBbYGPse+v1UAnVf086yFUteRvwP3YB2LfpGVtgX8Ck6L7R2If+F4FkHcxcELS/VbY3ucvUtY7CVgUOOsG4KDo9+ZA3+hDvz66TY+WtQj9vkYZVwE/T7q/NvV9TXpvvwucdUVyNuAjYFgl640E/lcon4Po/hjsSPr4pGXHA0uB8gL4HGzAju43VHFLfqwicNYHsSPP3bAzKfdE32evAltH67SM1hmViwx+sd2cAFyjSefx1Q4B+wGniUgbVX0R+BMwIFDGZBrdku+Tsqyy+0Gp6lJVHa2qxwA7Ab/CDsVHAgtE5OmgAc27QPIR3ELsP2eqFljRCWlDyv32wMOVrPcwtkdaSE4BblLVfyYWRL8PAs4IlmqjJ4Cvgd5AfVWtl7hhnwcBjoqW1Q8ZFDgcGKSqH6nqEuD/YddJ/6bRkZ2qLgIGs+lnO2u8kBjB9jBSVUSPNYvuvwH8OF+hqjETuFpEthaResDvgS+Ay0SkPoCINAAux74YC46qfqWqQ1T1UOBHwPXYUWBofwGuEZFe0Xs4CPiriBwnIg1FZMvoOsSfsT3BkF4GeibdnwVUNlz4gdjno5Bsi10TSTUTu7YXlKqeBlwI/Br4t4gclvxwmFRVag58lXQ/8W+dOgfTJ9gOXNZ5qy0zBfijiLytqp/AD+dwh2L/QImL7E2BQmipcy12/nMJdnpoFXah7WFgjogkLra3xU4XFDRVnYd9gf+lALI8IiL9sb23cuADbEcisees2M7FE9iXTEi/B16JdiaGYRfZx4vIdtgpQ7BrJGXANUESbqqbiCQK3VKgsgmTWmKn7IJT1edE5CfY+/e0iPwTaxUZ9PpNJb7GjkYTKoBR2NF0slbkKLtfbAeiZrP/xA7/52HnxX+EXXTvoarPRuvdis0Y1j1U1oQo88nYzsAkVf1SRHYAfsPG13Gnqv4nYExE5HrgDs1Ra5FcEZEWQHfgIGwPuR5WuN8HnlLVmQHj/UBE9gNuBw5mY5Ej6fel2CmkIWESmqjRRapxqtorZb1RQEdVPSI/ydIT/d+6FTvtNgorLl1U9aWgwQAReQxYkvpeVrLeMGAvVT026xm8kJjolNDZwE+BRtiFy/uic47OFTQR2QsrJqlF71VVXRcyW22ISB/gY1V9IXSWykTNwcuxnbWTtACaVYtIa2ArVf20hvX+D2t0MTXrGbyQFB8Rqa+qlV3zKRgi0gi7ILgB+KgQv+yiayS7kNSnSFXnh03lXOHxi+0pRGRvEekmIpeISO/o971D50olImeIyGMi8oyI/DJa1l1E5gJrRWRetHcXlIicF/VvSNxvICJ/wfaY38YaAywRkUI4hw+AiHQSkSew88nvA69g/Rs+FZEvROQmEdkqaMgiIpHQOSojIo1T/61FZL/oe6FTqFwFJ2T750K6Ab2w6wqVtR2vwIYcuTh0zijr2VGufwGPYxfb+2DXdsZgvVnvj3J3DZz1PeCypPt/j/L+ATgMa7p4A9ZZ6vcF8N7+Ars2NgNrmXUD1il1bZT5V1jrqLeA5gWQ92SsX847wAMk9YFJWudgwvd1+AVRn4akZadhnVPXA+ui9/yk0O9plK0Z8GiUaz1wB1AfGJ/yvfAK0DJ03jRfU7dcfQ6Cv7hCuAH9ow/MbVgv4JbRh6Z+9PvhwPDoC+aKAsj7b2Bk0v2eUba/p6x3FzAlcNZVwJFJ978GBlSy3tXAvAJ4b2cC46v4jMzFjuIbRV+AIwJnPS7py2x4lL0iKtaStF4hFJIKNu2QeHr0Zfxq9G9/dfT7eirpABog71BsGJT+wAXRzsMk4LOoKG6P9T/7Arg9dN40X1POColfIwFE5BPsi/nWGtb7DdBPVXfJT7Iqc6wAzlDVKdH9ZljrnGM16SJldMprlKoG658hIl8CV6rqpOj+GuwoaXrKescBT6hq4/yn3CTHauAUVX0+ZXlzbESBvVX1fRG5ALhFVduEyBll+hc2LtjFSct6YV+Cz2MtDr8XkYOxi+7BOs5FrbYOUdU3o/v/Ab5Q1V+mrPcM0ERVjwwQMznHp8CfVPWO6P7+WKG+WFXHJ63XBzuS/lGYpCAiY9NctT3WiTLrnwO/RmJ2AN5MY703KYDOUljTzuQPQ2KsomUp663EOn6F9ATWebJhdH8K0KOS9Xpge32hfY213Ev1U+x9T/QjmsfGjqqh7APcm7xAVcdiw/kcArwQ9SkpRPtgzWhTjcYGcQytFRv7j0E0phY2blWyj6i8P0w+XYgdJe1bw619VU+QKe+QaN4G+ojIS6paWXv3xEilfaJ1Q5uHje46GUBVK6Jmie+nrLcLm/Z4DeF3WA/sd0XkTuBJ4BYR2YeNneaOBvbHRoINbTRws4g0wa49rMV6hl8LTNON/WF2AUK34PoeaJK6UFVnRj2xJ2Oni27Ic66qJJ/+WM7GHaBk31EYO7ifYgX5xej+EdipuEOxa5MJhxH+czAHeFNVL6huJRE5E7uOlnVeSMyvsA6J74nII9iQ58uwD/62wJ7YOd2dKIye4o+QMtSBqr5RyXrnsumHPu9UdYmIHIJ9Ef8ftqcH0Dm6rcVOwxyhqv8Ok3IjVR0UnYa5Bhu2BexzcD/WCS1hHTb2WkhvY+fpn0h9QFU/iYrJM8C4POeqymQRWR/93gzYj407Ewl7Al/mM1QVRgJDRGRfrOidje0UXSciTbEBEH8GDARCjwj+OlbgapLcYTWr/BpJRER2xXqFH8/G4ZgTPsNa7vxVVVMPbQuWiOwMLFPVghhyAkBEOrBpp7mPtTD7kGyB9XNpBHxSSO9hgohcig2Tsr9W0XE2OrJ6FLt+FmxPPxrhINUcVb0vZb3p0fJCaLp+FXbKdQtslIiRItIDuwaVGLRzNPDbkJ/hqBnyYao6tIb1WmLX+F6sbr06ZfBCsrmo3Xji2sIyVQ09yqtzrkBEp7lbquo3obMUCi8kRSY67P4P0LMQThVJDKeulZhMY+xcofBCkiT6AmkFfKCqm10IjA4NT1TVu/MebtMcJ1bzcBPsgto1REPIq+oz+chVGYnR1LUQr2mM0xWNw3WWqt4UOEfQ6WAzFR2JJE8NPBN7HcG/RMVGVe6G/X8ap6qzReSnwI1s3Pm5TZPmf8mq0J1kCuEGbAk8hH1RVGAXUscAzVLWC96xK8oRp9nbFgGnJt1/HWsNtXXSsmZY65jJBfDePo9NVbstdm58OPA5NoLAFkmfl2exVlzBP79pvKacdUSrRYbdsNaGic/lx9gX3CdYsf43Nnz8QmCnAnjPXsVGyk3cbx5l3BDlXMHGDpVbh8oZZeuK7Yh9Fb2vK7AJrJZinVVvi/7fVWBTRmc/Q+h/sEK4AddhrbT6YBMDDYg+0HOA3ZPWK5RCMhNr2XIx1jY8+faT6AN+dmJZ4Kyxmbo2yhGnaYx3TvPWL/TnlgKYDraWeWMzNXBULB7CZnIEa4CxFBiTst49wOs5yRD6H6wQblhz3ytTlu0AvAR8A3SOlhVKIRFsnvOvsWEbfpT0WLPoP8FmYy4FyvomcH3S/c+AcypZ7wLgmwLIuyjly2L76P08LmW9EwugkCSOPmu6FcKR6QLg7KT77aNcZ6SsdzHwYQF8DlILyTdAWSXrBR/aB2uefGzS/eZR/qNT1vsF1ngo6xm8H4lpR0pHQ1X9SkSOwar4FBHpSWG0b0ftUzFaRB4E/gi8LSLDo98LzV+ACSLyGXA3G6euXYydzhLsMLwQpq6FjdMYv4J1jkuexvgFtc6fhTKN8bfAC8CdNax3ONa0PaTg08FmqJCnBl7Nph1TE7+nDje0FdaJNeu8kJgFwO7YEcgP1NqGnyMig7FDx6AX2VOp6jLgShEZjbVtnwPcQgHNKa3xmroW4jWN8ZvYdbynq1spmvsltODTwdZBXKYGfgXrKDknyvI3bNTt30ajdXwbjcf3G6zwZZ232uKHQc92UdWjqlnnd9jetGrAwe+qIyLnYNOB7oQNzhZ8GtAEicnUtRCraYz/APRV1dQOtKnr/Ry4UVW75CdZpRmCTwdbGxKjqYFFZDdsDLvE52AudpT/MDZSwDygA7Zj1EVV38p6Bi8kPzSd6w78RVUXV7Peudi58ourWie06LRLE2ClFvgsia50SAFMB5sLUiBTA0f9xw7DWhpOVdXVUcfqS9i483Ofqn6ek7/vhcQ551wmCmGUTZcjInKHiIwJnSMdccoK8cvrXC75xfZaEJE7gHqq2jt0ljR1IT47C3HKCjHKKyJTsLMPx4TOUpM4ZYV45c1lVi8ktRObLw8AVd0tdIZ0xSkrxC6vEJ/PbZyyQrzy5iyrXyMpYlGzz1aqGnrinRrFKSvEL69zuRSXSloQRKRRNMdHXJyEzfQWB3HKCjHKKyJbxOVzG6esEK+8uczqhaR2YvPl4UqDiFwhIh+LyLci8oaInF/Jaj+jAD63ccoK8cobOqtfI4khEUm3zXplPXHzKk5ZIV55ow6ow7BpgP+L9SMYJyKnAuer6uqQ+ZLFKSvEK28hZPVrJNT6y6Nj6J7tYvNef4ANg1CdHYGDQ+aNU1aIV14RmQG8oKq/SVp2DDAB6918ktqkXAcDr3rW9MUpbyFk9UJCvL48AETkLWzyre41rHcm8EDgD3lsskY5YpNXRL4Ffqmq01OWd8DmS6kPnICNBxX6yy42WSFeeQshq18jMe8C76rqWdXdgH+EDhp5AzgkjfUSAyKGFKesEK+8y7Evh02o6lzgUGxI/FeBA/Mbq1Jxygrxyhs8qx+R8MPAa8eravsa1uuGzeEdtACLyK7A3qr6RA3rNcaaqKYO1Z03ccoa5YhNXhF5HPhWVc+r4vHG2MB9JxB4sNE4ZY3yxCZvIWT1QkK8vjycSxCRs4CBwMmquqSKdeoDt2ODjf4on/lScsQma5QlNnkLIasXEueccxnxayTOOecy4oXEOedcRryQuJIiIheJyMyoB/BSEfmviOSkNZ6I/FhEbhCRbdNY9wYR0aTbAhGZFF2/q2nbi6JtmmYnuXO144XElQyx6ZLvBCYDZwAXAI8Dp+ToT/4YuB6osZBElgOdo9vVwH7AVBFpUsN2T0fbrKpjTucy4kOkuFJyJTBKVX+ftOxJEbkxVKAU61X19ej310VkPvAycCLwUOrKUUuc+qr6DfBN/mI6tyk/InGlZFvgq9SFmtR0UUQ6RKeJzhWRe6JTYF+LyPWp24nI0dEAed+LyEIRGZE4vSQiRwFPRqt+Gj3n3FrmnRn97BA95zgRmSEip4nILOB74ODKTm2JSGMRuVVE5onIGhH5VET+nJL/EhGZFT0+T0R+g3N14EckrpT8B+gf7ek/paqLq1n3r8BTwJnAz4HrRWSRqt4GICIdgX8CzwPdgHbAX4BdgOOjv3U18DfsNNqXwJpa5u0Q/fwqZdmtwE3AQmw0102uo4iIYKfsOgM3YwVpR+CIpHV+Dfwpeq7pQCfgZhFZparDa5nTlTpV9ZvfSuIG/AT4BBveZAMwC/tC3iZpnQ7R48+lbHsH8AU21TLARGAOdmopsc7Z0bado/snR/c7pJHtBmwoiwbR7cfANGAF0CZaZ1z0fPulbHtRtLxpdL9rdP+UKv7WNsBK4PqU5TdhRat+TXn95rfkm5/aciVDVd8G9sIuro/Axsr6AzCjkhZPj6bcfwRoC+wU3T8IeFRVK5LWmQSsBw6vY8QWwLro9gF2dNNdVb9MWucLVX2rhuc5GliiVY/U0BloAjwkIg0SN+AFoDUbX6NzafFTW66kqOoa7NrFkwAi0htrydUbGJK06tcpmybutwHmRz8Xpjx3hYgsBrarY7zlwLHY0cRXwAJVTR16YuFmW22uBXYqrSqJAf5mVfF4O8CHAXJp80LiSpqqjhGRW4E9Ux5qVcX9L5N+brJO1IqqBVDpeEdpWK+qM2pYJ50xjRZjha4qiXwnU3lh+iCNv+HcD/zUlisZIpJaHBCR7YFmbP6FenrK/cQF88+j+28Ap0fFI3mdBsC/ovtro5+NMohdF1OB7UTk5Coefw1YDbRV1RmV3L7NX1RXDPyIxJWSd6Iht5/DTlW1x1pWrQLGp6y7dzS9wCSs1VZvYICqboge/yM2reljInI7dl3hFmCyqr4WrZPYs79URCYCq1T1ndy8tE08j3W6vE9EbsJakLUBfq6ql6rqMhG5ARgiIu2Bl7Cdyh8DXVQ1tYg6Vy0vJK6U3AScCgzFrmN8hU34011VP01Z9zfYqZ9JWH+Nm4EfmsWq6iwROQFrQvsI1rrq/mi7xDrzRORq4CqgP3Y00yEXLyyZqqqInB5lLsOmiF4A3Je0zq0isgAbfvxX2Gv8EHgg1/lc8fFh5J1LEk1P+ik2delTYdM4Fw9+jcQ551xGvJA455zLiJ/acs45lxE/InHOOZcRLyTOOecy4oXEOedcRryQOOecy4gXEueccxn5/ynPUFMiyLbBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", + "x = uncertainty_model.values\n", + "def payoff(x):\n", + " if x <= strike_price_1:\n", + " return 1\n", + " elif x < strike_price_2:\n", + " return 1+strike_price_1 - x\n", + " elif x < strike_price_3:\n", + " return 1+x - 2*strike_price_2 + strike_price_1\n", + " else:\n", + " return 1\n", + "y = [payoff(x_) for x_ in x]\n", + "plt.plot(x, y, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "exact expected value:\t0.7402\n" + ] + } + ], + "source": [ + "# evaluate exact expected value (normalized to the [0, 1] interval)\n", + "exact_value = np.dot(uncertainty_model.probabilities, y)\n", + "print('exact expected value:\\t%.4f' % exact_value)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# set number of evaluation qubits (=log(samples))\n", + "m = 6\n", + "\n", + "# construct amplitude estimation \n", + "ae = AmplitudeEstimation(m, butterfly)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", + "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Exact value: \t0.7402\n", + "Estimated value:\t0.6413\n", + "Probability: \t0.4953\n" + ] + } + ], + "source": [ + "print('Exact value: \\t%.4f' % exact_value)\n", + "print('Estimated value:\\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdBJREFUeJzt3Xu0XVV99vHvw0UItxAEAkVKBC8RKsNqRLBUgtzDW7mIJgN9O7Bo1FeFdqAFESGgZQhWQAd1AEMbXqomtEB5yyWEcDmBcFGDBLFJwKDcEcUeiDEQgfzeP+YKrKyzzzlrX87cOfs8nzH22HvPNdfcc83s7N+Za805lyICMzOzkbZRtytgZmZjgwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGM2BEmzJPUVr/skzWpy/6mSolrWIHmvl/TgENsvltQvabOan/0WSSHp8GbqbDZSHHDMNhxzgL+QtFd1g6SNgeOAayJiTfaamXWAA47ZhuP/AauBGQ22HQhMJAUls1HJAcesRZL2k/Rfkp6W9EdJSyR9rNXyImIVcD0wvcHmGcCzwO3FZ+8iabakX0t6UdLDks6WtOkQ9d2kOMX2mUr61yX9ppK2m6Qri1N4qyXNk/TWVo/NDGCTblfAbEMWEbNKr6dWNu8G3AVcArwE/BUwW9LaiJhT7NMHqFrWEOYAH5X0noi4D6AIIscAP4yIV4t8OwDPAX8PPA9MBs4Ctgc+1+RhrkfS9sVxPQvMLI7tdGCBpLf7lJ61ygHHrEURMXfda0kC7gDeBHyK1k99zSMFkBnAfUXaYcB25TIjYgmwpPT5dwEvApdIOjkiXmnx8wFOATYDDoqI54vy7wYeBU4ALm2jbBvDfErNrEWSJkj6jqTHgJeLx0zgba2WWfQe/pPUy1GRPB14DLi39NkbSTpF0jJJLxaf/X+BcaSg146DgfnAquI03CbAC8DPgCltlm1jmAOOWesuJwWDbwKHAu8F/hXYvM1y5wB/DuwnaXPgKGBOrL+0+ynAecB/AB8C9gFOKra1+/nbAx/j9SC67vEBYNc2y7YxzKfUzFpQBIIjgc9HxCWl9E78EXcb6frJDGBnYGsGnqL7CDA3Is4sffbew5T7KvAK8IZK+naV9/8D3A+c26CMlcN8htmgHHDMWrMZsDHw2gV0SVuTehtt3WQqIl6V9B+koLILsCwifl7JNq782YUhR8hFREh6CnhHqc4bAx+sZL2V1Kt60AMErJMccMxaEBEvSPopcKaklcBa4DTStY5tOvARc4DPk0anndlg+wLgs5IWA78C/haYVKPc/wRmSnqAdF3oU8AWlTz/DBwP3CbpYuBpYCfgAKAvIv696aMxwwHHrB3HA5cBVwC/By4m/Xh/vgNl30MaFTYJmNtg+1nAG0mnvQK4CvgH4Nphyj2TdI3mXOBPwHeApcAn12WIiN9K2hf4J+AiYFvgGeBOYNCld8yGo9y3mJb0FuBLwL7AXwB3Npjf0Gi/8aQv/9GkwQ7XAydFxO8r+Y4Cvg68lfSX39kRcWUnj8HMzJrXjVFqewHTgIeLR11XAlNJf4mdQBoRtN5fc5L2B64mzcY+ArgBmCPp0HYrbWZm7elGD2ejiFhbvL4K2H64Ho6k/YC7gQMi4o4ibR/gx8AhEXFLkTYf2DQiPlja90Zgm4jYfySOx8zM6snew1kXbJp0BPDsumBTlPMT4NfFNool2w8Eqhc055LmM4xvrcZmZtYJo2Xi52RgeYP0ZcU2gD2ATRvkW0Y6zpZnf5uZWftGyyi1CaT1par6gd1LeWiQr7+yfT2SZpKWI2HcuHHv2XXX9iZSr127lo02Gi1xvLvcVvW5repzW9XXibZ6+OGHn4uIHerkHS0BBxpPplOD9Op7DZKeEiMuIw1tZcqUKbF48eJ26khfXx9Tp05tq4yxwm1Vn9uqPrdVfZ1oq2ItwVpGy58B/aS5AFXb8nqPpr+UVs0DjXtIZmaWyWgJOMt5/VpNWfnaziOkBQar+SaTZoE3MwTbzMw6bLQEnHnATsU8GwAkTSFdv5kHry3rfjtp/amy6cA9EfFCprqamVkD2a/hSNqCNPET0sKE20g6rnh/Y0SslrQCWBgRJwJExD3FHJsrJH2R1GM5D1i0bg5O4WtAn6SLSJNCpxWPw0f8wMzMbEjdGDSwI+keHmXr3r+ZtH7UJqSVeMtmABeS7jfy2tI25QwRsagIXl8HPkuap3N8RNzcwfqbmVkLsgeciHiU10eODZZnUoO054FPFI+h9r2W4RcwNDOzzEbLNRwzMxvlHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLIvsAUfSnpJulbRa0tOSzpG08TD7zJIUgzy+XMp3+SB5Jo/8kZmZ2VA2yflhkiYAtwBLgaOAPYBvkQLfGUPs+j3gpkra0cCpwLxK+nLgE5W0R1ursZmZdUrWgAN8BhgHHBsRK4EFkrYBZkk6v0gbICKeBJ4sp0n6KrA8IpZUsv8xIu4dgbqbmVkbcp9SOwKYXwksc0lB6IC6hUjaDjgEmNPZ6pmZ2UjJHXAmk055vSYiHgdWF9vqOg7YlBSsqvaUtFLSGkmLJNUOZGZmNnJyn1KbADzfIL2/2FbXDOBnEfFwJf1+4Meka0Q7AKeQTtvtHxE/aVSQpJnATICJEyfS19fXRDUGWrVqVdtljBVuq/rcVvW5rerL3Va5Aw5ANEjTIOkDM0o7k06/nTqg4IhvV/LeQAo+p5MGGQysTMRlwGUAU6ZMialTp9apxqD6+vpot4yxwm1Vn9uqPrdVfbnbKvcptX5g2wbp42nc82nko6QAdeVwGSPiReBG4N11K2hmZiMjd8BZTuVajaRdgS2pXNsZwgxgUUQ80cTn1uo9mZnZyMkdcOYBh0naupQ2HXgRWDjczpImAftSc3SapHGkkXH3NVtRMzPrrNwB5xJgDXCNpIOLC/azgAvKQ6UlrZD0/Qb7zwBeAa6qbpA0XtKdkj4t6SBJ04HbgV2Ac0fgWMzMrAlZBw1ERL+kg4CLgetI120uJAWdar0aLXczA7g1In7XYNsa4HekFQt2BF4C7gEOiIjFHTkAMzNrWfZRahGxFPjgMHkmDZL+riH2eQk4tq3KmZnZiPFq0WZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZFUwFHUqPlZszMzIbVbA/nKUnnS3rHiNTGzMx6VrMB51LgOOAXkn4saaakbUagXmZm1mOaCjgRcVZE7A4cAjwEXAA8I+mHkg4eiQqamVlvaGnQQETcFhF/C+wEfAF4OzBf0qOSZkn6s05W0szMRr92R6lNAT5Aum10P3An8ElghaSPt1m2mZn1kKYDjqTdJJ0l6RHgVmBn4O+AP4uI/w3sRrrW882O1tTMzEa1pm7AJuk2Uo/mSeByYHZEPFbOExGvSvoRcHKnKmlmZqNfs3f8fA6YBiyIiBgi3xLgzS3XyszMek6zp9QuBu5uFGwkbSXpAwAR8XK152NmZmNbswHndmDPQba9vdhuZmY2QLMBR0Ns2wpY3UZdzMyshw17Dac4TTa1lPRJSYdXsm0OHAk82LmqmZlZL6kzaOB9pMmdAAF8BHilkudPwHLgS52rmpmZ9ZJhA05EfJNiTo2kXwPHRMSSka6YmZn1lqaGRUeEhzqbmVlL6lzDmQYsioiVxeshRcSNHamZmZn1lDo9nOuBfYGfFK+DwUerBeCbtJmZ2QB1As6bgWdKr83MzJpWZ9DAY41em5mZNaPONZwtmikwIjz508zMBqhzSm0V6dpMXb6GY2ZmA9QJOH9HcwHHzMxsgDrXcC7PUA8zM+tx7d5i2szMrJY6gwZ+ApwQEUsl/ZRhTq9FxD6dqpyZmfWOOtdw/ht4sfTa13PMzKxpda7hfKL0+oQRrY2ZmfWslq/hKNlB0lA3ZTMzMwNaCDiSpkm6G3gJ+A3wkqS7JR3Z8dqZmVnPaCrgSPo0cB1pMujJpJuxnVy8/69iu5mZ2QBN3Q8HOB24LCI+W0m/RNIlwFeASztSMzMz6ynNnlJ7I3DNINuuBrYbrgBJe0q6VdJqSU9LOkfSkMvhSJokKRo85jbIe5SkByW9JGmppOm1jszMzEZUsz2c24EDgAUNth0A3DHUzpImALcAS4GjgD2Ab5EC3xk1Pv+LwF2l989Vyt+fFPi+C5wETAPmSOqPiJtrlG9mZiOkzsTPPUtvvwN8T9IbgWuB3wI7AscARwCfHKa4zwDjgGMjYiWwQNI2wCxJ5xdpQ3koIu4dYvtXgTsi4qTi/e2S9gLOBBxwzMy6qE4P5xesP9lTwKeLR/Xunzcx9GrRRwDzK4FlLnAeqYd0XY36NCRpM+BAUs+mbC4wW9L4iHih1fLNzKw9dQLOgR38vMnAbeWEiHhc0upi23ABZ7ak7Ug9qznAVyJi3SoIewCbAssr+ywjnbJ7G/DT9qpvZmatqrPSwMIOft4E4PkG6f3FtsGsAf6FdFpsJTAVOJUUZI4qlU2D8vsr29cjaSYwE2DixIn09fUNVf9hrVq1qu0yxgq3VX1uq/rcVvXlbqtmBw28RtJGwObV9Bp3/Gy0FpsGSV9X5jPA50tJfZKeBb4r6V0RsWSI8jVI+rqyLwMuA5gyZUpMnTp16NoPo6+vj3bLGCvcVvW5rerrRltNOu2G9d4/+o3RMQ8+d1s1O/FTkk6VtAJ4GfhDg8dQ+oFtG6SPp3HPZyhXFc/vLpVNg/LXvW+2fDMz66Bm5+GcBJwGfJ/Uc/gn4BzgYeBRilNTQ1hOulbzGkm7Alsy8NrLcKLy/AgpCE6u5JsMrC3qaGZmXdJswPkUcBZwfvH+2og4G9iLFDDeOsz+84DDJG1dSptOuv1Bs9eKjiue7wOIiDWkeUIfqeSbDtzjEWpmZt3V7DWcNwNLIuJVSS9TnK6KiLWSvgt8j9QDGswlpF7SNZLOA3YHZgEXlIdKF6fsFkbEicX7WcDWpEmfK4EPAF8CromIn5fK/xrp+s5FpHlC04rH4U0ep5mZdVizPZzfA1sVrx8H/rK0bQJpUuegIqIfOIg0V+c64GzgQlKvqWwT1p/Ps5w0T2c2cCNwPPDN4rlc/iJSz+dgYD7wIeB4rzJgZtZ9zfZw7gLeS/rR/xFphYDtgD8BnwNuHa6AiFgKfHCYPJMq7+eSJnAOKyKuJfVuzMxsA9JswJkF7FK8Ppd0Su0EUs9mAfCFTlXMzMx6S1MBJyIeAh4qXq8h3Qvn5BGol5mZ9Zh2Jn6+CdgZeDoinupclczMrBe1covpz0p6AngM+DHwuKQnJf2fjtfOzMx6RrMrDZwJXEyaT3MkMKV4ngd8p9huZmY2QLOn1D4HnBsRX62k31SsbfY50soDZmZm62n2lNo4Br+r50IaLOZpZmYGzQeca4FjB9n2YeD69qpjZma9qs4tpqeV3s4Dzpc0iYG3mN4L+MfOV9HMzHpBnWs41zPwVtK7AIc1yPsD0p04zczM1lMn4Lx5xGthZmY9r84tph/LUREzM+ttTa80IGkT0gCB/YHtgP8B7iTdKuCVzlbPzMx6RVMBR9KOwM3A3qQ7fD4L7Eeaf/OApEMj4nedrqSZmY1+zQ6LvgB4I/C+iNg9IvaLiN2B9xXpF3S6gmZm1huaDTjTgFMj4qflxOL9l0nL3JiZmQ3QbMDZDPjDINv+ALyhveqYmVmvajbg3AucKmnLcmLx/tRiu5mZ2QDNjlI7BbgdeELSzaRBAzuSJoEKmNrR2pmZWc9oqocTEUuAtwKXATsAh5ACziXAWyPigY7X0MzMekLtHo6kTYF9gF9HxGkjVyUzM+tFzfRwXgVuA94xQnUxM7MeVjvgRMRa4JfAxJGrjpmZ9apmR6l9BThT0jtHojJmZta7mh2ldgZpRYElkp4ijVKLcoaI2KdDdTMzsx7SbMD5RfEwMzNrSq2AI2kcaVmbXwC/AW6JiGdHsmJmZtZb6txienfgFmBSKXmlpI9GxM0jVTEzM+stdQYNnA+sBf4a2ALYC7gfuHQE62VmZj2mTsDZDzgjIu6KiJciYhnwaeDPJe08stUzM7NeUSfg7Az8qpL2CGnttJ06XiMzM+tJdUepxfBZzMxsKJNOu2G9949+Y2zdQqxuwJkv6ZUG6bdW0yNix/arZWZmvaZOwDl7xGthZmY9b9iAExEOOGZm1rZm11IzMzNriQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lPSrZJWS3pa0jmSNh5mn/dKmi1pRbHfQ5LOkrR5Jd8sSdHgcfjIHpWZmQ2n2RuwtUXSBNKtDpYCRwF7AN8iBb4zhth1epH3POCXwN7A14rnD1fyvgBUA8yydutuZmbtyRpwgM8A44BjI2IlsEDSNsAsSecXaY2cFxG/K73vk/QScKmk3SLisdK2VyLi3pGpvpmZtSr3KbUjgPmVwDKXFIQOGGynSrBZ5/7i2Wu3mZmNArkDzmRgeTkhIh4HVhfbmvF+0o3hHqqkbyvpOUkvS7pf0rEt19bMzDpGEfnuPCDpZeBLEXFRJf1J4IqIOL1mOTsBPwdujIgTSukfJ/V4lgBbkW4UNw34cERcM0hZM4GZABMnTnzP3Llzmz2s9axatYqtttqqrTLGCrdVfW6r+rrRVg8+9cJ679+5y/i28uXSibY68MAD74uIKXXydiPgfDEivl1Jfwq4PCK+UqOMN5AGHrwJeE9E9A+RV8DdwLiIeNdwZU+ZMiUWL148XLYh9fX1MXXq1LbKGCvcVvW5rerrRlvVvc/NhnY/nE60laTaASf3KbV+YNsG6eOB54fbuQggVwB7AdOGCjYAkaLpNcDeww29NjOzkZV7lNpyKtdqJO0KbEnl2s4gLiQNpz4kIurkX8d3LDUz67LcPZx5wGGSti6lTQdeBBYOtaOkLwNfAD4eEYvqfFjRIzoGeCAiXm2tymZm1gm5eziXACcB10g6D9gdmAVcUB4qLWkFsDAiTizeHw+cC1wOPCVp31KZj6wbNi1pIXA1qbe0JfApYF/g6JE9LDMzG07WgBMR/ZIOAi4GriNdt7mQFHSq9Spfczm0eD6heJR9ghSIAFYAfw/sTBoy/TPgyIiY14n6m5lZ63L3cIiIpcAHh8kzqfL+BAYGmkb7ndhG1czMbAR5tWgzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCyLTbpdATOzDdGk025Y7/2j3ziySzXpHe7hmJlZFu7hmJltIKq9KuitnpV7OGZmloUDjpmZZeGAY2ZmWWQPOJL2lHSrpNWSnpZ0jqSNa+w3XtJsSf2SXpD0Q0lvbJDvKEkPSnpJ0lJJ00fmSMzMrBlZBw1ImgDcAiwFjgL2AL5FCnxnDLP7lcDbgU8Ca4HzgGuBvy6Vvz9wNfBd4CRgGjBHUn9E3NzRgzGzUaUXLsiP9qHauUepfQYYBxwbESuBBZK2AWZJOr9IG0DSfsBhwAERcUeR9hTwY0kHR8QtRdavAndExEnF+9sl7QWcCTjgmJl1Ue6AcwQwvxJY5pJ6KwcA1w2x37Prgg1ARPxE0q+LbbdI2gw4kNSzKZsLzJY0PiJe6NBxmFkX9UJvpZNGS3vkDjiTgdvKCRHxuKTVxbbBAs5kYHmD9GXFNkin5zZtkG8Z6ZTd24CftlZts9a182Owbt9T3vkKJ5x2Q9P7tfOZ7e5Xd9/R8mM52jRq16pmv1ftUkRk+SAASS8DX4qIiyrpTwJXRMTpg+y3APhjRBxdSf8BsHtEvF/SXwGLgL+MiCWlPG8Bfgkc1ug6jqSZwMzi7duBh1o+wGR74Lk2yxgr3Fb1ua3qc1vV14m22i0idqiTsRsrDTSKcBokvZX9qu81xP5ExGXAZcN8dm2SFkfElE6V18vcVvW5repzW9WXu61yD4vuB7ZtkD4eeL6F/bYt7ddfSqvmYZjyzcxshOUOOMt5/ZoLAJJ2Bbak8TWaQfcrlK/tPAK83CDfZNIw6odbqK+ZmXVI7oAzDzhM0taltOnAi8DCYfbbqZhnA4CkKcDuxTYiYg1wO/CRyr7TgXsyjlDr2Om5McBtVZ/bqj63VX1Z2yr3oIEJpEmfvyANhd4duAC4KCLOKOVbASyMiBNLaTeRRpp9kdcnfv42IqoTP/uAi0mTQqcV+Q/3xE8zs+7K2sOJiH7gIGBj0hDos4ELgbMqWTcp8pTNIPWC/hW4ArgPOKZS/iLgOOBgYD7wIeB4Bxszs+7L2sMxM7Oxy6tFN+AFRutrpa0kvbdopxXFfg9JOkvS5pV8syRFg8fhI3tUI6PFtpo0SBvMbZB3rH+vBvu+hKQvl/JdPkieRgOTNniS3iLpUkkPSHpVUl/N/bL/XvmOnxVeYLS+NtpqepH3PNKk3L2BrxXPH67kfQGoBphl7dY9tza/V5CuRd5Ver/eZD1/rwD4HnBTJe1o4FSKwUUly4FPVNIeba3GXbcX6d/7XuANTeyX//cqIvwoPYAvk+b0bFNK+0dgdTmtwX77kSaXfqCUtk+RdnApbT5wW2XfG4FF3T72jG21Q4O0mUVb7VZKmwU81+3j7HJbTSra5X8NU/6Y/14NUtYNwLJK2uXA4m4fZwfba6PS66uAvhr7dOX3yqfUBhpsgdFxpAVGh9pvwAKjwLoFRiktMPrvlX3nAvtJGt9+9bNqqa0i4ncNku8vnnfsXPU2KK1+r4bl71VjkrYDDgHmdLZ6G5aIWNvCbl35vXLAGWjAQqER8Tjpr6uhzvF2aoHR0aTVtmrk/aRufXUtu20lPSfpZUn3Szq25dp2V7ttNbs4P/+MpAskjStt8/eqseNI7TLgehewp6SVktZIWiSpraA/CnXl98oBZ6AJNF4Gp7/Y1s5+656r+for20eLVttqPZJ2Ar4C/Fvlr9oVpFMpHyVd23kauHqUBp1W22oN8C/AiaQpBZcCn2X9H1F/rxqbAfwsIqqrjNwPnAL8DfAx0hSMBZL2aaGuo1VXfq88aKCxDWqB0Q1cq22VMkpvIHXZVwH/sF7BET+o5L0OuJt0Q71rWqlslzXdVhHxDPD5UlKfpGeB70p6V5RWRm9Qzlj+Xu1MOv126oCCI75dyXsDaYDC6aRBBmNF9t8r93AG8gKj9bXaVgBIEmkS717AtEgTgwcV6YrlNcDedYapb2DaaquKq4rnd5fKpkH5Y/J7Vfgo6YfxyuEyRsSLpAvh7x4ubw/pyu+VA85AXmC0vlbbap0LScNej4qIOvnXGY1/sbfbVmVRefb3aqAZpJFUTzTxuaPxe9WqrvxeOeAMNBYWGO2UVtuKYiLeF4CPR1qSaFhFj+gY4IGIeLW1KndNy23VwHHF833g71WVpEnAvtQcnVYMwDiCoj3HiO78XnV7DPmG9iBdCHsGWEBak20m6frC1yv5VgDfr6TdBPwKOJZ0Lvgh4M5Knv2BV4CLgKnA+aS/Fg7t9rHnaivgeNJfk7NJPwzlxw6lfAtJk80OJQWaG4u2+lC3jz1jW80iTXo8ttjvHNIP79X+Xg38P1ikn0b6y7zRfK/xwJ3Ap0mDMKaTJkyuAaZ0+9hbbK8tSH+EHAfcA/x36f0Wg7VVN36vut5YG+ID2BO4rfiP/QxpFvzGlTyPApdX0rYtfkSfB1YCPwK2b1D+0aQVs9eQuq8zun3MOduKNPEuBnmcUMr3/eI/xIvAH4sfiiO6fcyZ22oGsJi04sKfih+Oc4DN/L0a+H+wSF8C3DRIuZuTrgM+UbTTC8UP777dPuY22mrSEP+fJg3WVt34vfLinWZmloWv4ZiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZ/H/+7sS3NSEb2QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucHFWd9/HPl4sQCYRwSUBFIq6QBfVRErm4rCQCIsE1iCAsuj4oJNFlxd2XsFxECaA+AnLxsi4EFWRVggssu8r9kgTBGwngokAwSLgKchkIIQES+D1/nBooarp7unu6q6eG7/v1qldPnzpV/TvdM/2bOnXqlCICMzOzbluj1wGYmdlrgxOOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHCsoyTNlhR1lk80uY+ts/1sWCg/ONvP6O5E31wcQ9znRZLmN1FvLUn/LOl3klZK6pN0uaRd2nzd4fKeHlz4nfiLpKskbd/EtlOybd5eRqzWeU441g1PAzvXWK5scvutgeOB4hf9Zdl+VnQmzLbj6CpJawKXAl8D/geYBhwMvAjMl3RQG7sdLu9pv/dnrzsL2BSYJ+kNg2xzS7bNPV2OzbpkrV4HYCPS6oj4dad3GhGPAY91er/D0OeAvYG9IiKfpP9b0lxgjqQFEfHQUF+oh+/pzRGxHEDSQuA+4OPAqcWKkgSsExHLgI7/Xll5fIRjPSHpGElLJD0n6VFJV0raTNIU4GdZtXuzLpSl2Tav6v6RNCF7fqCkcyUtk/Rgf9edpH+V9LCkxySdLGmN3OtPlDRX0gOSVkj6Q9aFtUa2vm4c2fo3Z9s/mW1/laRtCm3cIusGWylpqaRDm3x7Pg/MKySbfl8E1gUOyb3OUknfkPQlSY9IWi7px5LGDNaWWl1qkjaR9ENJT2Rtmy9pcqFt/a/5L9l73pe9Hy0fDUbEA6SkNyHb92xJj0vaRdLNwHPA/rW61CStmf0u3S3p+SyW8wqxTpe0MPtde0TSKZLWbjVOGzof4VhXSBrwuxURq7N1nwSOBY4C/gBsTOpiWY/UbXIE8A1gX+DPwPODvNzJwI+BjwKfBn4o6d3AltnzScBXgFuBudk2bwQWZ9s9A7wLOAEYBfy/RnFI2gi4EXgC+AypO+po4FpJW0fEyuy/8v8GNiElh+ey/W8E/LHB+7YF6Yv3jFrrI+IeSbcD7yus+ntgCTAD2Bw4BfgesH+jttRxKfBX2TaPA0eSurzeHRFLcvU+BvwvMBN4E3A6qRvwHxvsewBJ65Pel0dyxa8Hfpi1427g4axdRWcDn8zqLcj2s19u3x8DLsjqHQu8lfT5rpG1z8oUEV68dGwBZgNRZ5mQ1fkOcHGDfXwoXz9XfnBWPjp7PiF7fm6uzgbAKtKX+pq58t8CF9Z5PZH++ToW+FMTcZxESjYb5crGks5dHZY9n5Ztu2OuzpbAamB+g7bvlG03vUGdS4E7c8+XAk/2vy9Z2ceBl4C/bvE9/WD2fNdcnfVIRyBnF17zHmCtXNmZwCOD/H70v96Y7D3fArgwe1/eVfgdml7YdkpW/vbs+cTs+eENPtf78r8fWfmngZXAxr3+e3mtLT7CsW54Gti9RvnD2eNtwCGSTiCdtF4UES8O4fWu6/8hIpZJegxYUNjnEuDN/U8krQscQ/pifjOwdm7dWpEdjdWxO3ANsCx3JPcMsAjo73raAXg0In6Ti+0+SYvaaF8zronsnEjmEuBHwHuAO1vYzw7AYxGxoL8gIp6V9HOgOEJuXuF9ugMYJ+l1EfHCIK/zVO7nx4FPR8RtubIArhhkH1Ozx/PqrN+a9Nn+tHDEfT2pW/LtpKMiK4kTjnXD6ohY2GD9D4D1SV0xXwaekPTvwOw2E89Thecv1ClbN/f8ZOBQUjfXLVn96cBxWb3l1LcJ6UjkgBrr+pPfZsBfaqz/C6nt9fQPBNiyQZ0tc/Xy+31ZpG695dTuhmpkc+DRGuWPkrqr8mq9xwJel/3cyPtIXZGPAw9ExEuF9X1NJK2NgWcjDSaoZZPs8fI667cYZP/WYU44Vrrsy+UM4IzsnMXHga+SvkTPKimM/YFvR8Qp/QWS9m5y2ydJw5VPqrHumezxEWBcjfXjSN05NUXEA9kJ/Q8D3yqul/QW0n/mxdceV6g3ChhNOl/Tij8X95UZT2p3p9xaOCIraua+KU8A60naoE7S6Y93Jun8XdG9TbyGdZBHqVlPRcQDEfF1UpfXtllx/3+269beqiNGkTtxrnTty4GFOvXiuA7YDvhDRCwsLIuzOjcD4yXtmHuNNwODXuAIfBPYTdIHaqz7Shb39wvle+jVF2/uS/rS7j/SbPY9/Q2pW+zlQQmSXk8apn1jE7GX6frs8ZN11i8m/RMzocbntDAinignTOvnIxzrhrUk7VSj/IGIeEjS2aT/Pn9NOt8zFXgbadQapC8KgFlK152siIjbOxzjNcBhkpZksRwGrFOoUy+O04FPANdL+jbpS208sCtwY0RcQOrG+R3wn5KOIo1SO5Ha3WxF3yadJ/ovSd8A5pO64Q4hnfz/hxh4Dc5K4DJJp5K6xU4F/isi7hikLa8SEVdJugm4UNLRpKOII0gJesA1Mr0UEYslzQFOkzQOuIF0Yet+EXFgRLwk6QvAf0jagHRO6AVgK2CfrF7ZF7y+tvV61IKXkbXQeJTacVmdg4GbSF/0K0hDaw8p7OcLpBFGq4Glue1qjVL7UGHbpcA3CmXnAQtzz8cD/wUsI52fOIU0pPjl/deLIyt/A3Butu3z2Wv+CNguV+fNpNkVVmb7mAVcRINRarlt1wL+JXtvVgJ9pC/MXWrUXQqclr33jwLPkoYCb9jqe5qVbQqcn73mStKJ9fc08R4P2FeNWJupMxt4vEb5FHKj1LKyNclGF5KSyYMMHJW2F/CL7H1ZRhq08hVyI+y8lLMo+0BKI+mvSOP6dyL1Rf8iIqY0sd0Y0rDLfUhdgT8nDYd8olBvOumX6W2kX8ITIuLCTrbBbDjJzvlcFBG+rsSGtV6cw9mOdI3C3dnSrAtJ/+EcSvov6T2k6xFepjSx4cXAPNJ/NZcBF9TpCzczsxL14ghnjciGQEq6CNhksCMcSTsDvyRdjHZDVrYD6QTnHhFxbVZ2FbB2RLw/t+3lwAYR0dYsu2bDnY9wrCpKP8KJgePtm7EX6SK6G3L7+S1pWONeAJLWIZ18/mlh27nAzv3zSpmNNBExwcnGqqAqw6InAnfVKL8zWwdpjqS1a9S7k9TOrbsWnZmZDaoqw6LHMvCqZkijaLbK1aFGvb7C+leRNJN0YRijRo2atMUWtS8+fumll1hjjark58bcluFppLRlpLQDhldb1r87nfJ+Zuv2/nfuVlvuvvvuxyNi02bqViXhQO0rj1WjvPhcDbYnIuYAcwAmT54cCxfWnpFl/vz5TJkypdlYhzW3ZXgaKW0ZKe2AYdYWZV9lixc3rldHt9oi6b5m6w6P1D24PmrfdXFDXjmi6cuVFetA7SMkMzMrSVUSzl28cq4mL39u5x7StPTFehNJ07S3MgTbzMw6rCoJ5wpgs+w6GwCyOxBula0jIp4nXX+zf2HbA4BfRcTTJcVqZmY1lH4OJ5sIcFr29I3ABpL679B3eUSsyOa3WhARhwBExK+ya2zOl3QE6YjlZNK8Vdfmdn8SMF/SmaSLQqdlywe73jAzM2uoF4MGxgH/WSjrf/4W0hxNa5HmSMo7kDSl/Q/ITW2TrxARN2bJ6yvAZ0nX6RwUEVd3MH4zs/KVfJF+N5SecCJiKa+MHKtXZ0KNsqeAT2VLo20vpTDljZmZ9V5VzuGYmVnFOeGYmVXBpElpqbAqXfhpZvbadcstvY5gyHyEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCo9SMzOrghkzeh3BkDnhmJlVwZw5vY5gyNylZmZmpXDCMTOrgkWL0lJh7lIzM6uCyZPTY4VnjfYRjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFB4WbWZWBQsX9jqCIXPCMTOrgorfXhrcpWZmZiVxwjEzq4KZM9NSYU44ZmZVcM45aakwJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1L4wk8zsyrYfvteRzBkTjhmZlVQ8dtLg7vUzMysJE44ZmZWCiccM7MqkNJSYU44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSeKYBM7MqOPvsXkcwZE44ZmZVUPHbS0MPutQkbSvpOkkrJD0s6URJaw6yzWxJUWc5JlfvvDp1Jna/ZWZm1kipRziSxgLXAncA04G3AqeREt9xDTb9HnBloWwf4CjgikL5XcCnCmVL24vYzGyYmDMnPVb4SKfsLrXPAKOAfSNiGXCNpA2A2ZJOycoGiIgHgQfzZZK+BNwVEbcVqj8bEb/uQuxmZr0za1Z6rHDCKbtLbS/gqkJimUtKQrs2uxNJGwF7ABd0NjwzM+uWshPORFKX18si4n5gRbauWfsBa5OSVdG2kpZJel7SjZKaTmRmZtY9iojyXkxaBRwZEWcWyh8Ezo+IY5vcz/XAmIiYVCj/PPAC6RzRpsAXgEnALhHx2zr7mgnMBBg/fvykuXNr5TBYvnw5o0ePbia8Yc9tGZ5GSltGSjtgeLVlytSpAMyfN6+t7bvVlqlTpy6KiMlNVY6I0hZgFfD5GuUPAV9tch+bAy8CRzRRdxRwL3BpM/ueNGlS1DNv3ry666rGbRmeRkpbRko7IoZZWyAtbepWW4CF0WQOKLtLrQ/YsEb5GOCpJvfxMUDAhYNVjIiVwOVA9W8GbmZWcWUnnLsonKuRtAWwHoVzOw0cCNwYEQ+08Lrl9RuamVlNZSecK4A9Ja2fKzsAWAksGGxjSROAnWhydJqkUaSRcYtaDdTMbFjp71SrsLITzlnA88AlknbPTtjPBk6P3FBpSUskfb/G9gcCq4GLiiskjZH0C0mzJO0m6QBgHvBG4GtdaIuZmbWg1As/I6JP0m7Ad4Cfkc7bnEFKOsW4ak13cyBwXUQ8VmPd88BjpBkLxgHPAb8Cdo2IhR1pgJmZta30yTsj4g7g/YPUmVCn/F0NtnkO2HdIwZmZDVeTsqtAFlX3DIFnizYzq4Jbbul1BEPmG7CZmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9TMzKpgxoxeRzBkTjhmZlXQf4vpCnOXmpmZlaKlhCOp1nQzZmbWbYsWVXqWAWi9S+0hSecD50bEnd0IyMzMapic3VSzwjNGt9qldjawH/B7Sb+RNFPSBl2Iy8zMRpiWEk5EHB8RWwF7AIuB04E/S/qxpN27EaCZmY0MbQ0aiIjrI+KTwGbA54BtgKskLZU0W9IbOhmkmZlV31BHqU0G3ke6bXQf8AvgUGCJpE8Mcd9mZjaCtJxwJG0p6XhJ9wDXAZsDnwbeEBH/AGxJOtdzakcjNTOzSmtplJqk60lHNA8C55FGq92XrxMRL0r6CfD5TgVpZmbV1+qw6MeBacA1EQ3H5t0GvKXtqMzM7NUWLux1BEPWasL5DnBLrWQjaTSwfUTcEBGrgPsGbG1mZu3pv8V0hbV6DmcesG2dddtk683MzAZoNeGowbrRwIohxGJmZvXMnJmWChu0S03S+4ApuaJDJX2wUG1dYG/g9s6FZmZmLzvnnPRY4VmjmzmHsyPp4k6AAPYHVhfqvADcBRzZudDMzGwkGTThRMSpZNfUSLoX+EhE3NbtwMzMbGRpaZRaRHios5mZtaWZczjTgBsjYln2c0MRcXlHIjMzsxGlmSOcnwM7Ab/Nfg7qj1YLwDdpMzOzAZpJOG8B/pz72czMyrb99r2OYMiaGTRwX62fzcysRBW/vTQ0dw7n9a3sMCJ88aeZmQ3QTJfactK5mWb5HI6ZmQ3QTML5NK0lHDMz6zRlY7UaTtQ/vDVzDue8EuIwM7MRbqi3mDYzM2tKM4MGfgscHBF3SLqZQbrXImKHTgVnZmYjRzPncP4ArMz9XN0ORDMz65lmzuF8KvfzwV2NxszMRqy2z+Eo2VRSo5uymZmZAS3OFg0vT+Z5HDAp2361pEXAVyPisg7HZ2ZmAGef3esIhqylhCNpFvBd4Drg88BfgHHAvsD/SPrHiKj+u2JmNtxU/PbS0PoRzrHAnIj4bKH8LElnAV8EnHDMzGyAVs/hbAxcUmfdxcBGg+1A0raSrpO0QtLDkk6U1HA6HEkTJEWNZW6NutMl3S7pOUl3SDqgqZaZmQ1nc+akpcJaPcKZB+wKXFNj3a7ADY02ljQWuBa4A5gOvBU4jZT4jmvi9Y8Abso9f7yw/11Iie+7wOHANOACSX0RcXUT+zczG55mzUqPFe5aa+bCz21zT78FfE/SxsClvHIO5yPAXsChg+zuM8AoYN+IWAZcI2kDYLakU7KyRhZHxK8brP8ScENEHJ49nydpO+DLgBOOmVkPNXOE83tefbGngFnZUrz755U0ni16L+CqQmKZC5xMOkL6WRPx1CRpHWAq6cgmby5wrqQxEfF0u/s3M7OhaSbhTO3g600Ers8XRMT9klZk6wZLOOdK2oh0ZHUB8MWI6J8F4a3A2sBdhW3uJHXZbQ3cPLTwzcysXc3MNLCgg683FniqRnlftq6e54F/I3WLLQOmAEeRksz03L6psf++wvpXkTQTmAkwfvx45s+fXzOA5cuX111XNW7L8DRS2jJS2gHDqy1Tssd24xkObWn5ws9+ktYA1i2WN3HHz1pzsalOef8+/wz8U65ovqRHge9KeldE3NZg/6pT3r/vOcAcgMmTJ8eUKVNqxjB//nzqrasat2V4GiltGSntgMZtmXB04+vcl3597y5ERNvv7XD4XFoaFp1NZ3OUpCXAKuCZGksjfcCGNcrHUPvIp5GLssftc/umxv77n7e6fzMz66BWr8M5HDga+D7pyOGrwInA3cBSsq6pBu4inat5maQtgPUYeO5lMFF4vIeUBCcW6k0EXspiNDOrpohK3+0TWk84M4DjgVOy55dGxAnAdqSE8bZBtr8C2FPS+rmyA0i3P2j1XNF+2eMigIh4nnSd0P6FegcAv/IINTOz3mr1HM5bgNsi4kVJq8i6qyLiJUnfBb5HOgKq5yzSUdIlkk4GtgJmA6fnh0pnXXYLIuKQ7PlsYH3SRZ/LgPcBRwKXRMT/5vZ/Eun8zpmk64SmZcsHW2ynmZl1WKtHOE8Ao7Of7wfenVs3lnRRZ10R0QfsRrpW52fACcAZpKOmvLV49fU8d5Gu0zkXuBw4CDg1e8zv/0bSkc/uwFXAh4GDPMuAmVXepElpqbBWj3BuAt5D+tL/CWmGgI2AF4DDSLNINxQRdwDvH6TOhMLzuaQLOAcVEZeSjm7MzEaOW27pdQRD1mrCmQ28Mfv5a6QutYNJRzbXAJ/rVGBmZjaytJRwImIxsDj7+XnSPXE+34W4zMxshBnKhZ9vAjYHHo6IhzoXkpmZjUStDhpA0mclPQDcB/wGuF/Sg5L+sePRmZnZiNHqTANfBr5Dup5mb2By9ngF8K1svZmZ2QCtdqkdBnwtIr5UKL8ym9vsMNLMA2Zm1kkzZvQ6giFrNeGMov5dPRfgUWpmZt1R8dtLQ+vncC4F9q2z7qPAz4cWjpmZjVTN3GJ6Wu7pFcApkiYw8BbT2wH/2vkQzcyMRYvSY4VnG2imS+3nDLyV9BuBPWvU/RHpTpxmZtZJkyenxwrPGN1MwnlL16MwM7MRr5lbTN9XRiBmZjaytTzTgKS1SAMEdgE2Ap4EfkG6VcDqzoZnZmYjRUsJR9I44GrgnaQ7fD4K7Ey6/uZ3kj4QEY91OkgzM6u+VodFnw5sDOwYEVtFxM4RsRWwY1Z+eqcDNDOzkaHVhDMNOCoibs4XZs+PIU1zY2ZmNkCr53DWAZ6ps+4Z4HVDC8fMzGpauLDXEQxZqwnn18BRkq6PiGf7CyWtBxyVrTczs06r8AWf/VpNOF8A5gEPSLqaNGhgHOkiUAFTOhqdmZmNGC2dw4mI24C3AXOATYE9SAnnLOBtEfG7jkdoZmYwc2ZaKqzpIxxJawM7APdGxNHdC8nMzAY455z0WOFZo1s5wnkRuB746y7FYmZmI1jTCSciXgL+CIzvXjhmZjZStXodzheBL0t6RzeCMTOzkavVUWrHkWYUuE3SQ6RRaq+aKzsiduhQbGZmNoK0mnB+ny1mZmYtaSrhSBpFmtbm98AjwLUR8Wg3AzMzs5ztt+91BEPWzC2mtwKuBSbkipdJ+lhEXN2twMzMLKf/FtMV1syggVOAl4C/BV4PbAfcCpzdxbjMzGyEaSbh7AwcFxE3RcRzEXEnMAt4s6TNuxuemZmNFM0knM2BPxXK7iHNnbZZxyMyM7OBpLRUWLOj1GLwKmZmVjTh6Mvqrlv69dfWLcSaTThXSVpdo/y6YnlEjBt6WGZmNtI0k3BO6HoUZmY24g2acCLCCcfMzIas1bnUzMzM2uKEY2ZmpWh1LjUzM+uFs6t/rb0TjplZFVT89tLgLjUzMyuJE46ZWRXMmZOWCis94UjaVtJ1klZIeljSiZLWHGSb90g6V9KSbLvFko6XtG6h3mxJUWP5YHdbZWbWZbNmpaXCSj2HI2ks6VYHdwDTgbcCp5ES33ENNj0gq3sy8EfgncBJ2eNHC3WfBooJ5s6hxm5mZkNT9qCBzwCjgH0jYhlwjaQNgNmSTsnKajk5Ih7LPZ8v6TngbElbRsR9uXWrI+LX3QnfzMzaVXaX2l7AVYXEMpeUhHatt1Eh2fS7NXv03G1mZhVQdsKZCNyVL4iI+4EV2bpWvJd0Y7jFhfINJT0uaZWkWyXt23a0ZmbWMYoo784DklYBR0bEmYXyB4HzI+LYJvezGfC/wOURcXCu/BOkI57bgNGkG8VNAz4aEZfU2ddMYCbA+PHjJ82dO7fmay5fvpzRo0c3E96w57YMTyOlLSOlHdC4Lbc/9HTDbd/xxjGD1uuv04wpU6cCMH/evKa3yevW5zJ16tRFETG5mbq9SDhHRMQ3C+UPAedFxBeb2MfrSAMP3gRMioi+BnUF/BIYFRHvGmzfkydPjoULF9ZcN3/+fKZMmTLYLirBbRmeRkpbRko7oHFbGt3nBl65103H7ofTf/O1Nr+zu/W5SGo64ZTdpdYHbFijfAzw1GAbZwnkfGA7YFqjZAMQKZteArxzsKHXZmbDWkTbyWa4KHuU2l0UztVI2gJYj8K5nTrOIA2n3iMimqnfr9qfkpnZCFD2Ec4VwJ6S1s+VHQCsBBY02lDSMcDngE9ExI3NvFh2RPQR4HcR8WJ7IZuZWSeUfYRzFnA4cImkk4GtgNnA6fmh0pKWAAsi4pDs+UHA14DzgIck7ZTb5z39w6YlLQAuJh0trQfMAHYC9ulus8zMumzSpPS4aFFv4xiCUhNORPRJ2g34DvAz0nmbM0hJpxhX/pzLB7LHg7Ml71OkRASwBPhnYHPSkOlbgL0j4opOxG9m1jO33NLrCIas9NsTRMQdwPsHqTOh8PxgBiaaWtsdMoTQzMysizxbtJmZlcIJx8zMSuGEY2ZmpXDCMTOzUpQ+aMDMzNowY0avIxgyJxwzsyqo+O2lwV1qZmZWEiccM7MqWLSo0rMMgLvUzMyqYXJ2B4AKzxjtIxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8LNrMrAoWLux1BEPmhGNmVgX9t5iuMHepmZlZKZxwzMyqYObMtFSYE46ZWRWcc05aKswJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFL7w08ysCrbfvtcRDJkTjplZFVT89tLgLjUzMyuJE46ZmZXCCcfMrAqktFSYE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBSeacDMLDPh6Mte9fwL71jNwbmypV/fu+yQXnH22b177Q5xwjEzq4KK314anHDMzHqqeFRV1NOjqg7zORwzsyqYMyctFeYjHDOzKpg1Kz1WuGvNRzhmZlaK0hOOpG0lXSdphaSHJZ0oac0mthsj6VxJfZKelvRjSRvXqDdd0u2SnpN0h6QDutMSMzNrRaldapLGAtcCdwDTgbcCp5ES33GDbH4hsA1wKPAScDJwKfC3uf3vAlwMfBc4HJgGXCCpLyKu7mhjzKwSGp2Ur8IJ+f74lxae96tCG/qVfQ7nM8AoYN+IWAZcI2kDYLakU7KyASTtDOwJ7BoRN2RlDwG/kbR7RFybVf0ScENEHJ49nydpO+DLgBOOmVkPlZ1w9gKuKiSWuaSjlV2BnzXY7tH+ZAMQEb+VdG+27lpJ6wBTSUc2eXOBcyWNiYinO9QOM+uB19IQ4mbVe0+G43tRdsKZCFyfL4iI+yWtyNbVSzgTgbtqlN+ZrYPUPbd2jXp3krrstgZubi9ss/a0250zlC/Wsl+z3avznTy6a7DPJa+s91oRUcoLAUhaBRwZEWcWyh8Ezo+IY+tsdw3wbETsUyj/EbBVRLxX0t8ANwLvjojbcnX+CvgjsGet8ziSZgL94wy3ARbXCX8T4PEmmlkFbsvwNFLaMlLaAW5LM7aMiE2bqdiL63BqZTjVKW9nu+Jz1SlPhRFzgEGvppK0MCImD1avCtyW4WmktGWktAPclk4re1h0H7BhjfIxwFNtbLdhbru+XFmxDoPs38zMuqzshHMXr5xzAUDSFsB61D5HU3e7TP7czj3Aqhr1JpKGUd/dRrxmZtYhZSecK4A9Ja2fKzsAWAksGGS7zbLrbACQNBnYKltHRDwPzAP2L2x7APCrDoxQq/YkRq/mtgxPI6UtI6Ud4LZ0VNmDBsaSLvr8PWko9FbA6cCZEXFcrt4SYEFEHJIru5I00uwIXrnw8y8RUbzwcz7wHdJFodOy+h/0hZ9mZr1V6hFORPQBuwFrkoZAnwCcARxfqLpWVifvQNJR0A+A84FFwEcK+78R2A/YHbgK+DBwkJONmVnvlXqEY2Zmr12eLboOSTMk/TGbBHSRpN1a3P7dkl6U1PMx/O20RdIsSddIejSbLPUmSR8oI97s9bs6yWuZ2mmLpPdk7ViSbbdY0vGS1i0r7jpxtfW55LZfI/sdDEkf6masg8TRdjsk7SvpZkmGQswpAAAGDUlEQVQrJT0h6UpJ63U75gbxtPu3MlnS1VkbnpR0raQduxpsRHgpLKTuuxdJc7NNJXXhrQTe3uT2Am4CHgEer2JbgPtJJxn3AfYAfkg6d/bhEmIeCzxMmuh1D9IcfM8CX2li2yuBe4GPkrpc7wZ+0cP3v622AN8AbgBmAFNIUzY9DVxctbYU9jEz+7sI4ENVawdp8uDngBOzz+UjwLeBMVVqC7AF6VKR64G9s2V+9ju2Zdfi7cWbNNwX0mwDP8g9XwO4HfhRk9v/A7AE+NowSDhttQXYpEbZL4F5JcR8DOm6qg1yZf8KrMiX1dhu5+yL7H25sh2yst179P6325ZNa5TNzNqyZZXakqs7FngMOKTHCafdz2QT4BlgRi/i7nBbPkP6R3TDwufzIvDZbsXrLrUCSVuRRsP9tL8sIl4C/pM0Uehg269PGkF3BPBCl8JsylDaEhG1ugJvBcZ1MsY66k3yOoo0yWuj7QZM8ko64hn0s+uSttoSEY/VKL41eyzjM6il3c+l30mkI//ruhBbK9ptx8eyxx92K7A2tNuWtYHVwPJc2fKsTDW36AAnnIH6LxytNQnoRpIGmzPoy8CdEXFpxyNr3VDbUrQzaVh7tw2YrDUi7if911brAuC622Xyk7yWrd221PJeUrdmvfn+uq3ttkh6J/Ap0j9ivdZuO3YkvfeHSHpQ0ipJv5H03u6FOqh223JxVuc0SeMkjSONGO4j/UPaFU44A43NHotT4fQV1g8gaRvgMOCfuxBXO9puS5GkTwPvJt3crtvGUnsqoj4ax9zudt3UkZgkbQZ8EfiPqHPfqBIMpS3fBv4tIpZ0PKrWtduOzUgT/B4HHAX8Hel8yZWSxnc6yCa11ZaIeJh0TvejwKPZsi9pkuNaR9cd0YvJO0snaQyw+WD1IiL/n0JLk4BmvgmcFxG3txZh80psS/41J5G+ML4ZEfOa2aYDuj3Ja5mGFJOk15G6RZcD/9LBuNrRclskHUj6ov67bgXVhnY+kzWA0cD+EXElgKRfAvcB/0QamNML7XwmmwMXka5nPDQrPgy4TNJ7s6OkjntNJBzSdDfnNFFPvHoS0Px0OA0nAZW0F/A3wD9J6q+7blqlDYGVkabfGaqut+VVO0nngS4j9bt/ofkwh2Qok7zW6ibMT/JatnbbAqRfHtLIwu2Av4l08XSvtNwWSWsDp5LOa66R/S1skK1eT9L6EfFMN4JtoN3P5MnscX5/QUQsk7QI2LZj0bWm3bYcSfr+3y8iVgFIup50K5cjGHgjy454TXSpRcT3IkKDLVn1/iODWpOAPtngcHMb0n8/fyT9EvSRDrs3yn4+skJtASDr172K9B/cgRHxYifa0IRuTvJatnbb0u8MYDowvXDU2gvttGU94E2kKaz6/y5+l62byysDIcrU7mdyJ+mooXhSXaRza73QblsmAn/oTzYAEfEC8AfSzSy74jWRcFoREX8iXbvx8iSgktbInl/RYNOLSH2i+eWHwLLs5//oUsh1DaEtSBoNXJ49/VBErOhWnDV0bZLXHmi3LUg6Bvgc8IlI0zb1WjttWc7Av4u/z9YdC3y8O6E21O5n8nNScpnaX5B1cU/ilSRatnbbch/w9qy7FgBJ6wBvB5Z2Ic6k1+PIh+NC+oN4kXRycCpwHoWLJUlDDlcDuzbYz2x6fx1OW20BriYN6z4I2Cm/lBDzWODPwDWkefFmkr64vlKotwT4fqHsSuBPpBOg+5BGFfX6ws+W25K97wGcW3z/qXGNznBuS439TKD3F362+/t1abbt/yVdLLmAdG3R2Cq1hZQkV5G6y/cGPkRKXquA/9O1eHvxJlVhIV3hvQR4HrgF2K2wfkr2RzOlwT5m0+OE025bsuc1l5Ji3pZ0FfTK7A/qJGDNQp2lpEEa+bINsy/pp0hHlz+hxkWsJb//LbeF9I9Bvc/g4Cq1pcY+eppwhvj7NRr4d+CJbNtrgXdU7fcrK9uNNJvFk9myoNH3WScWT95pZmal8DkcMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaK/w+Ok5xmyZdiQQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot estimated values for \"a\"\n", + "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", + "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('\"a\" Value', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()\n", + "\n", + "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", + "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", + "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", + "plt.xticks(size=15)\n", + "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", + "plt.title('Estimated Option Price', size=15)\n", + "plt.ylabel('Probability', size=15)\n", + "plt.ylim((0,1))\n", + "plt.grid()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/index.ipynb b/index.ipynb index 4b5d6bc62..a9b1860fe 100644 --- a/index.ipynb +++ b/index.ipynb @@ -84,6 +84,7 @@ "\n", "[Qiskit Finance](qiskit/finance/index.ipynb) provides a colleaction of applications of quantum algorithms to use cases relevant in finance.\n", "This includes use cases like portfolio management, derivative pricing, or credit risk analysis.\n", + "Additional use cases can also be found in the [Qiskit Finance Community](community/finance/index.ipynb) tutorials section.\n", "\n", "\n", "### 2. Community Notebooks\n", diff --git a/qiskit/finance/simulation/option_pricing.ipynb b/qiskit/finance/simulation/option_pricing.ipynb index ba63cbd2c..5d794b071 100644 --- a/qiskit/finance/simulation/option_pricing.ipynb +++ b/qiskit/finance/simulation/option_pricing.ipynb @@ -43,7 +43,6 @@ "- European Call Option (univariate, payoff with 2 segments)\n", "- European Put Option (univariate, payoff with 2 segments)\n", "- Bull Spread (univariate, payoff with 3 segments)\n", - "- Iron Condor (univariate, payoff with 5 segments)\n", "\n", "Note that the provided framework can cover all options of this type, i.e., options that are fully determined by a piecewise linear payoff with respect to the spot price at maturity of the underlying asset.\n", "However, the framework also allows to price more complex options, for instance, options that depend on multiple assets or are path-dependent:\n", @@ -51,6 +50,8 @@ "- Basket Option (multivariate, payoff with 2 segments)\n", "- Asian Barrier Spread (multivariate, path-dependent, payoff with 3 segments)\n", "\n", + "More examples on option pricing with a quantum computer can be found in the [Qiskit Finance Community](../../../community/finance/index.ipynb) section of the Qiskit Tutorials.\n", + "\n", "All examples illustrate how to use the genereric Qiskit Finance framework to construct QAE-operators (uncertainty problems). The same framework can be easily adjusted to estimate risk as well, for instance, the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also known as Expected Shortfall). How to use Qiskit Finance for risk analysis is illustrated in the following tutorial:\n", "Credit Risk Analysis." ] From 73bb274ea51d531b3e5f1508422f14715faf3f25 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Thu, 2 May 2019 14:35:52 +0200 Subject: [PATCH 110/116] update aqua community index --- community/aqua/index.ipynb | 15 ++++++++- community/finance/index.ipynb | 63 ----------------------------------- 2 files changed, 14 insertions(+), 64 deletions(-) delete mode 100644 community/finance/index.ipynb diff --git a/community/aqua/index.ipynb b/community/aqua/index.ipynb index f56fbfce2..fc4615342 100644 --- a/community/aqua/index.ipynb +++ b/community/aqua/index.ipynb @@ -77,6 +77,19 @@ "The repository here may be viewed for the\n", "[full listing](https://github.com/Qiskit/qiskit-tutorial/tree/master/community/optimization).\n", "\n", + "### 5. [Qiskit Finance](../finance/)\n", + "\n", + "Qiskit Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the financial domain.\n", + "Please also see the [Qiskit Finance Tutorials](../../qiskit/finance/index.ipynb) for more examples.\n", + "\n", + "Quantum computing for option pricing:\n", + "* Long Butterfly (univariate, payoff with 4 segments)\n", + "* Short Butterfly (univariate, payoff with 4 segments)\n", + "* Iron Condor (univariate, payoff with 5 segments)\n", + "\n", + "The repository here may be viewed for the\n", + "[full listing](../finance).\n", + "\n", "*** " ] }, @@ -106,7 +119,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/community/finance/index.ipynb b/community/finance/index.ipynb deleted file mode 100644 index c2e2ee53e..000000000 --- a/community/finance/index.ipynb +++ /dev/null @@ -1,63 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Qiskit Finance Community Tutorials" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Welcome Qiskitters to the Qiskit Finance community tutorials.\n", - "\n", - "Qiskit Finance is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve problems in the Financial domain.\n", - "\n", - "In the following, you'll find a list of currently available community tutorials.\n", - "Please also see the [Qiskit Finance Tutorials](../../qiskit/finance/index.ipynb) for more examples.\n", - "\n", - "Further contributions to simulation or other use cases in finance, such as optimization or machine learning, are very welcome!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Option pricing on a quantum computer:\n", - "- Long Butterfly (univariate, payoff with 4 segments)\n", - "- Short Butterfly (univariate, payoff with 4 segments)\n", - "- Iron Condor (univariate, payoff with 5 segments)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_master", - "language": "python", - "name": "qiskit_master" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From 1c115fcaea346acfb1d936c11ecee37b11c7f591 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Thu, 2 May 2019 14:59:13 +0200 Subject: [PATCH 111/116] add qgan tutorials and update corresponding indices --- qiskit/artificial_intelligence/index.ipynb | 3 +- ...ans_for_loading_random_distributions.ipynb | 11 +- qiskit/finance/index.ipynb | 3 + .../qgan_option_pricing.ipynb | 175 +++++++++++------- .../finance/simulation/option_pricing.ipynb | 5 +- 5 files changed, 129 insertions(+), 68 deletions(-) rename qiskit/{aqua => }/artificial_intelligence/qgans_for_loading_random_distributions.ipynb (99%) diff --git a/qiskit/artificial_intelligence/index.ipynb b/qiskit/artificial_intelligence/index.ipynb index 5537442db..30d03091c 100644 --- a/qiskit/artificial_intelligence/index.ipynb +++ b/qiskit/artificial_intelligence/index.ipynb @@ -13,6 +13,7 @@ "## Contents\n", "\n", "* [Quantum SVM for Classification](qsvm_classification.ipynb)\n", + "* [qGANs for Learning & Loading Random Distributions](qgans_for_loading_random_distributions.ipynb)\n", "* More examples can be found in [commuity/aqua/artificial_intelligence](../../../community/aqua/artificial_intelligence)" ] }, @@ -42,7 +43,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.2" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb b/qiskit/artificial_intelligence/qgans_for_loading_random_distributions.ipynb similarity index 99% rename from qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb rename to qiskit/artificial_intelligence/qgans_for_loading_random_distributions.ipynb index 3889f56a8..26745fc9d 100644 --- a/qiskit/aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb +++ b/qiskit/artificial_intelligence/qgans_for_loading_random_distributions.ipynb @@ -22,7 +22,10 @@ "\n", "The aim of the qGAN training is to generate a state $\\lvert g_{\\theta}\\rangle$ where $p_{\\theta}^{j}$, for $j\\in \\left\\{0, \\ldots, {2^n-1} \\right\\}$, describe a probability distribution that is close to the distribution underlying the training data $X=\\left\\{x^0, \\ldots, x^{k-1} \\right\\}$.\n", "\n", - "For further details please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." + "For further details please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019.\n", + "\n", + "How to use a trained qGAN in an application, i.e., procing of financial derivatives, is illustrated here:\n", + "qGAN Option Pricing." ] }, { @@ -287,9 +290,9 @@ ], "metadata": { "kernelspec": { - "display_name": "QiskitDevenv", + "display_name": "qiskit_master", "language": "python", - "name": "qiskitdevenv" + "name": "qiskit_master" }, "language_info": { "codemirror_mode": { @@ -301,7 +304,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/finance/index.ipynb b/qiskit/finance/index.ipynb index 3663281f5..5ee05e65e 100644 --- a/qiskit/finance/index.ipynb +++ b/qiskit/finance/index.ipynb @@ -29,6 +29,9 @@ "source": [ "In this notebook we provide an overview of Qiskit Finance tutorials and tutorials from other domains which might be relevant in finance.\n", "\n", + "#### Machine Learning:\n", + "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", + "\n", "#### Optimization:\n", "- Portfolio Optimization\n", "- Portfolio Diversification\n", diff --git a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb index 606ccde25..dbb71a815 100644 --- a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb +++ b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb @@ -1,12 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -23,35 +16,16 @@ "- [2]ETH Zurich\n", "\n", "### Introduction\n", - "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price distribution of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff, see [European Call Option Pricing](../../finance/simulation/european_call_option_pricing.ipynb).
\n", - "\n", - "For a general introduction on how to train a qGAN, see [qGANs for Loading Random Distributions](../../aqua/artificial_intelligence/qgans_for_loading_random_distributions.ipynb).
\n", - "\n", - "For further details on learning and loading random distributions by training a qGAN please refer to
Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." + "In this notebook, we discuss how a Quantum Machine Learning Algorithm, namely a quantum Generative Adversarial Network (qGAN), can facilitate the pricing of a European call option. More specifically, a qGAN can be trained such that a quantum circuit models the spot price of an asset underlying a European call option. The resulting model can then be integrated into a Quantum Amplitude Estimation based algorithm to evaluate the expected payoff - see [European Call Option Pricing](../../aqua/finance/european_call_option_pricing.ipynb).
\n", + "For further details on learning and loading random distributions by training a qGAN please refer to Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. Zoufal, Lucchi, Woerner. 2019." ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 33, "metadata": {}, - "outputs": [ - { - "ename": "ImportError", - "evalue": "cannot import name 'UnivariateVariationalDistribution'", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0malgorithms\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mAmplitudeEstimation\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muncertainty_problems\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mEuropeanCallExpectedValue\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 10\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0muncertainty_models\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mUnivariateVariationalDistribution\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mNormalDistribution\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 11\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mqiskit\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0maqua\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcomponents\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvariational_forms\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mRY\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 12\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mImportError\u001b[0m: cannot import name 'UnivariateVariationalDistribution'" - ] - } - ], + "outputs": [], "source": [ - "# #!/usr/bin/env python\n", - "# # coding: utf-8\n", - "# from __future__ import absolute_import, division, print_function\n", - "\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "import numpy as np\n", @@ -59,6 +33,8 @@ "from qiskit.aqua.components.uncertainty_problems import EuropeanCallExpectedValue\n", "from qiskit.aqua.components.uncertainty_models import UnivariateVariationalDistribution, NormalDistribution\n", "from qiskit.aqua.components.variational_forms import RY\n", + "from qiskit import QuantumRegister, QuantumCircuit\n", + "from qiskit.aqua.components.initial_states import Custom\n", "\n", "from qiskit.aqua import aqua_globals, QuantumInstance\n", "\n", @@ -77,13 +53,12 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 34, "metadata": {}, "outputs": [], "source": [ "# Set upper and lower data values\n", "bounds = np.array([0.,7.])\n", - "\n", "# Set number of qubits used in the uncertainty model\n", "num_qubits = [3]\n", "\n", @@ -92,31 +67,66 @@ "for i in range(sum(num_qubits)):\n", " entangler_map.append([i, int(np.mod(i+1, sum(num_qubits)))])\n", "\n", - "# Set variational form\n", - "var_form = RY(int(np.sum(num_qubits)), depth=1, entangler_map=entangler_map, entanglement_gate='cz')\n", - "\n", "# Load the trained circuit parameters\n", "g_params = [0.29399714, 0.38853322, 0.9557694, 0.07245791, 6.02626428, 0.13537225]\n", - "\n", "# Set an initial state for the generator circuit\n", "init_dist = NormalDistribution(int(sum(num_qubits)), mu=1., sigma=1., low=bounds[0], high=bounds[1])\n", - "\n", + "init_distribution = np.sqrt(init_dist.probabilities)\n", + "init_distribution = Custom(num_qubits=sum(num_qubits), state_vector=init_distribution)\n", + "# Set variational form\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state=init_distribution,\n", + " entangler_map=entangler_map, entanglement_gate='cz')\n", "# Set generator circuit\n", "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params,\n", - " initial_distribution=init_dist, low=bounds[0], high=bounds[1])\n", - "\n", + " low=bounds[0], high=bounds[1])\n", "# construct circuit factory for uncertainty model\n", - "uncertainty_model = g_circuit" + "uncertainty_model = g_circuit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate Expected Payoff\n", + "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function with Quantum Amplitude Estimation." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "# set the strike price (should be within the low and the high value of the uncertainty)\n", + "strike_price = 2\n", + "\n", + "# set the approximation scaling for the payoff function\n", + "c_approx = 0.25\n", + "\n", + "# construct circuit factory for payoff function\n", + "european_call = EuropeanCallExpectedValue(\n", + " uncertainty_model,\n", + " strike_price=strike_price,\n", + " c_approx=c_approx\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the probability distribution\n", + "Next, we plot the trained probability distribution and, for reasons of comparison, also the target probability distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW5x/HvTxAJBEJkCauE1QhGwQQxgiYRZb3XIALxgl6DaARF1It4EVHC4r0ssqiAiAoREYdFLsome4KRPYJEQpAgIZIgCGQhqwl57x+nRmsq3dPdMz1TM5nf53n6melTp6re6unpt6vOqXMUEZiZmXW3N5UdgJmZ9U1OQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKUpPQJJ2kXS3pCWS5ko6XdJaNdbZVdJvs/rLJc2W9BNJW1SoO0bSNEnLJE2XNLbrjsbMzOq1dpk7lzQQuAuYDowBdgDOIyXGU9pZdQDwHHAlMBfYDjgVGCZpj4hYmW1/b+BXwCXA8cCBwC8lzYuIO2rFt8kmm8TgwYM7dnAFixcvZv3112/KtrpSb4kTek+sjrO5ekuc0HtibWacU6dOfSUiNq2rckSU9gC+AcwDNsyVfR1Yki+rc1sfAQJ4T67sduCeQr1bgSn1bHPYsGHRLPfee2/TttWVekucEb0nVsfZXL0lzojeE2sz4wQejTo/t8u+BHcAcHtELMyVtQD9gJENbuvV7Oc6AJLeAowGri3UawFGSBrQeLhmZtYsZSegIcCMfEFEzCadAQ2ptbKkN0laR9LbgbOAR4CHs8U7AG8ubh94inTcO3cudDMz6wxFiaNhS1oBnBgRFxbKXwCujIiTa6z/W2C/7OlU4MCIeDlbthcwBdg9Ih7PrbMj8AywX1RoB5I0HhgPMGjQoGEtLS0dPbw2Fi1aRP/+/Zuyra7UW+KE3hOr42yu3hIn9J5Ymxnn6NGjp0bE8Loq13utrisewArgKxXKXwD+p471dwL2BD5JOtOZCqybLduL1Ca0W2GdHbPyfWtt321APVtvidVxNldviTOi98RaVhtQqb3gSB0QKrXFDMyWtSsinsl+fUjS70g9444ALs+tX9z+wNy+zcysJGW3Ac2g0NYjaRtgPVZvu2lXRDwPvAZsnxU9SzrDKrYlDQFWAX/uQLxmZtYkZSeg24D9JG2QKxsLLAUmN7KhrCPCxqSzICJiOXAvcFih6ljggYhY0NGgzcys88q+BHcp6QbRGySdTTp7mQCcH7mu2ZJmApMj4ujs+XeBlcBDwHzgHaT7h54ldbNudQYwSdKFwI2kG1EPBPbv2sMyM7NaSk1AETFP0j7ARcBNpGRyASkJ5a0N5IfneRT4Eqm32rrAbNKIB/8bEYtz258i6VDgTOBYsjaiqGMUhL5i8Em3tHl+wtCVjCuUzTrroO4Mycz6iLLPgIiI6cCHatQZXHjeQtsznfbWvZF09mNmZj1I2W1AZmbWRzkBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlaL0BCRpF0l3S1oiaa6k0yWtVWOdPSRdIWlmtt7Tkk6VtG6h3gRJUeGxf9celZmZ1bJ2mTuXNBC4C5gOjAF2AM4jJcZT2ll1bFb3bOAZ4F3AGdnPjxfqLgCKCeepzsZuZmadU2oCAo4B+gGHRMRC4E5JGwITJJ2TlVVyVkS8kns+SdIy4EeSto2I53PLVkbEg10TvpmZdVTZl+AOAG4vJJoWUlIaWW2lQvJp9Vj2c8vmhWdmZl2l7AQ0BJiRL4iI2cCSbFkjRgCrgGcL5RtJekXSCkmPSTqkw9GamVnTKCLK27m0AjgxIi4slL8AXBkRJ9e5nc2BJ4BbI2JcrvyTwGaks6MNgM8DBwIfj4gbqmxrPDAeYNCgQcNaWloaPayKFi1aRP/+/ZuyrWaaNmdBm+eD+sFLS9vWGbrVgG6MqH499TUtcpzN1VvihN4TazPjHD169NSIGF5P3V6fgCStQ+rIsDUwLCLmtVNXwP1Av4jYrda2hw8fHo8++mitanWZNGkSo0aNasq2mmnwSbe0eX7C0JWcN61t0+Cssw7qzpDq1lNf0yLH2Vy9JU7oPbE2M05JdSegsi/BzQMqfb0emC1rV5ZQrgR2BQ5sL/kARMq2NwDvqtXV28zMulbZveBmUGjrkbQNsB6FtqEqLiR13/5IRNRTHyCyh5mZlajsM6DbgP0kbZArGwssBSa3t6KkbwDHAZ+MiCn17Cw7Y/o48MeIeKNjIZuZWTOUfQZ0KXA8cIOks4HtgQnA+fmu2ZJmApMj4ujs+RHA/wATgTmS3pfb5rMR8fes3mTgV6SzqfWBzwF7Agd37WGZmVktpSagiJgnaR/gIuAmYD5wASkJ5a0N5Nts9s1+jsseeUeREhPATOArwBakLtp/AA6KiNuaEb+ZmXVc2WdARMR04EM16gwuPB/H6omn0npHdyI0MzPrQmW3AZmZWR/lBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMStHwSAiShgLvBTYH1gVeA/4M3F9rOgQzM7NWdSUgSdsDxwJHAoNI46rNB5YDG5GmT1iVDf75E+CaiFjVJRGbmdkaoeYlOEk/AZ4EdgNOB3YH1o2ITSNi64joT5r2+t+BacA5wFOS9u66sM3MrLer5wxoKTAkIp6vViEiXiHN7XObpP8CDgO2ak6IZma2JqqZgCLiS41sMLv0dk2HIzIzsz6hU9MxSHonMBIQacK4aU2Jyqxg8Em3rFZ2wtCVjMuVzzrroO4Mycw6qcPdsCUdC9wHjAIOBB6W9IUmxWVmZmu4mmdAktaLiCUVFv03MCIins7qHU3qpHBJc0M0M7M1UT1nQH+WdGSFcpG6Y7dyt2szM6tbPQnoCOAESQ9Kem+u/BzgQUnXSrqZdOZzVlcEaWZma56aCSgi7gOGkW4w/bWkKyVtEREXAx8CpgB3kC7H/aBLozUzszVGXb3gIiKAn0i6FvgW8CdJ5wPfjYg/dmWAZma2ZmqoF1xELIyIE4E9SePBzZB0aJdEZmZma7R6huJZT9KZkh6S9Jiky4BlETEGGA+cKmmypHd3ebRmZrbGqOcM6Kekcd7OI11+2xy4U5Ii4k7g3cB1WdlljQYgaRdJd0taImmupNMlrVVjnT0kXSFpZrbe05JOlbRuhbp7ZclzmaTnJB3faIxmZtZ89bQBHQAcliUbJP0eeBXYAZiZDb1zkaSrgVMb2bmkgcBdwHRgTLbN80iJ8ZR2Vh2b1T0beAZ4F3BG9vPjue3vCNwO3Ax8g3TZ8HxJSyLiJ43EamZmzVVPApoBfErSVGAZ8HlgMfBCvlJEvAZ8ucH9HwP0Aw6JiIWks6gNgQmSzsnKKjkrGwC11SRJy4AfSdo2N3DqicBc4JMRsRK4R9LbSJcNf5p1rjAzsxLUcwnu08BOwCvA68DnSGdEy5qw/wOA2wuJpoWUlEZWW6mQfFo9lv3csrD9G7Lkk9/+1sA7OxSxmZk1RT33AT0dESOADYBNImKHiPhtk/Y/hHSGld/fbGBJtqwRI0ijMTwLIGl9YJvi9oGncvs2M7OSqMyrUJJWACdGxIWF8heAKyPi5Dq3sznwBHBrRIzLyrYiXSb8WETcmKu7NrAC+HxErNZpQtJ4Uu8+Bg0aNKylpaUjh7aaRYsW0b9//6Zsq5mmzVnQ5vmgfvDS0rZ1hm41oBsjqqwYJ6wea0+Is5Ke+rcvcpzN11tibWaco0ePnhoRw+upW89gpJ8Cro6IN+oNIGv83yIiflfvOh0laR3gWmAR8NXObi9LSpcBDB8+PEaNGtXZTQIwadIkmrWtZhpXmObghKErOW9a27fFrCNHdWNElRXjhNVj7QlxVtJT//ZFjrP5ekusZcVZTxvQfwHPSjqjvXt9JG0s6UhJNwGPA1vUse15QKWvrQOzZe2SJOBKYFfgwIjIrzM/+1nc/sDcvs3MrCT1zIi6u6SxwJeAb0paRGpHeQVYDmwEbAe8jfShfhVwTETMqWP/Myi0xUjaBliP1dtuKrmQ1H37IxFRbEtaLOmvxe3nntezfTMz6yJ1DcUTEddExN6k3nAnks5wVgLrAy8BPwP2J112+0qdyQfgNmA/SRvkysYCS4HJ7a0o6RvAcaQu1lPa2f7HCje2jgX+CvypzhjNzKwLNDQld0Q8S9bLrEkuBY4HbpB0NrA9MAE4P981W9JM0pTfR2fPjwD+B5gIzJH0vtw2n42Iv2e/nwscCfxc0o+BPUj3MR3re4DMzMrVUAJqtoiYJ2kf4CLgJlK7zQWkJJS3NpA/i9k3+zkue+QdRUpMRMRMSfsD55POhv4GnOBREMzMyldqAgKIiOmkeYXaqzO48HwcqyeeautOIQ3BY2ZmPUhD0zGYmZk1S+lnQGZrmsEV7q3K38c066yDujsksx6poTMgSf8uyWdNZmbWaY0mkxuBFySdLekdXRGQmZn1DY0moB2AHwOHA3+S9ICkz2VTKJiZmdWtoQQUEbMi4tSI2A74CDCT1G36RUk/lzS6K4I0M7M1T4fbcyLinoj4FLAzMJV0w+ddkv4i6avZqNNmZmYVdTgBSRopaSLwNGlyt4tJN4heD5xGGiTUzMysoobOUiRtS5oh9dPAYGASae6cGyJieVbtbkkPkAYlNTMzq6jRy2R/AeaShrq5PCKeq1LvSeDhTsRlZmZruEYT0L8Bt0fEqvYqRcSfAXdIMDOzqhptA9oD2LzSAklbSPp250MyM7O+oNEEdCqwdZVlW2bLzczMamo0AQmoNo/O1niaazMzq1PNNiBJrb3eICWfH0paWKi2LjAUuKO54ZmZ2Zqqnk4IS4BXs98FLABeK9T5B2nCt0uaF5qZma3JaiagiLgOuA5A0hXA6e10vzYzM6tLQ92wI+KorgrEzMz6Fs/tY2ZmpainE8LDwLiImC7pEar3ggMgIt7brODMzGzNVc8luCeBpbnf201AZmZm9ainE8JRud/HdWk0ZmbWZ5TeBiRpF0l3S1oiaa6k0yWtVWOddSSdK+l3kpZKqnhWJmmipKjwGNI1R2NmZvWqpw2oZrtPXiNtQJIGAncB04ExpCm/zyMlxlPaWXU94LOkEbfvBz7UTt0ZQLH33qx6YzQzs65RbxtQV7X7HAP0Aw6JiIXAnZI2BCZIOicrW01EzJf01ogIScfRfgJaHBEPNj90MzPrjHragMZ14f4PIE3vkE80LcDZwEjgpnbicmcIM7NerOw2oCGkS2T/FBGzScP/NKudZhdJCyUtlzRF0sgmbdfMzDqh7PuABgLzK5TPy5Z11mPAQ6Q2pk2BE0iX+faOCM/YamZWItW6kpUf/03SRGonoLqH65G0AjgxIi4slL8AXBkRJ9exjeOAH0SE6qi7HqlN648RcXCVOuOB8QCDBg0a1tLSUvtA6rBo0SL69+/flG0107Q5C9o8H9QPXlrats7QrQZ0Y0SVFeOE1WPtCXFC7de0p8RZ1FPfo0W9JU7oPbE2M87Ro0dPjYjh9dQt+z6geUCl/8aBdMHcQhGxRNKtwL+3U+cy4DKA4cOHx6hRo5qy70mTJtGsbTXTuJNuafP8hKErOW9a27fFrCNHdWNElRXjhNVj7QlxQu3XtKfEWdRT36NFvSVO6D2xlhVnQ4ORQroHBxgHvBfYAniRdJnrZxHxjwY3N4NCW4+kbUjdrGdUXKPzAo/mYGZWuoY6IUh6B/AMcDHwTuCN7OfFwExJuzS4/9uA/SRtkCsbSxr6Z3KD26pJUj/gIGBqs7dtZmaNafQM6DLShHQfyHqrASDpbcDNwKXABxvY3qXA8cANks4GtgcmAOfnu2ZLmglMjoijc2UHAOsDu2XPD80WPRIRz0sakMV0FTAT2AT4KrAlcFgDMZqZWRdoNAENB/4jn3wgdZ2WdCpwdSMbi4h5kvYBLiLd8zMfuICUhIpxFofn+SGwbe75ddnPo4CJwHLg76QRFTYDlgEPACMj4tFG4jQzs+ZrNAHNAtatsmxdYHaVZVVFxHTaH8mAiBhcT1lh+TLgkEbjMTOz7tHojagnAWdK2jNfKOl9wBnAfzcrMDMzW7N1ZDDSDYH7Jb0MvEy6vLUZ8CpwMnBjF8RpZmZrmI4MRvpkF8ViZmZ9SNmDkZqZWR9V9mCkZmbWRzkBmZlZKToyFM9Y4HPAzlTokh0RmzUhLjMzW8M1OhTPEcDPSCMLbA38hjTawJuAhaQbSs3MzGpq9BLciaT7fb6YPb8kIj4DbAe8QppIzszMrKZGE9BOwO8j4g3SQKQbAkTE66RptI9rbnhmZramajQBLQTekv0+B3hHbpmAjZsRlJmZrfka7YTwCPAu4HZS+8+3Ja0E/gF8G3iwueGZmdmaqtEE9L/8awTqb2e//5B0JvUI8PnmhWZmZmuyhhJQRDxIdpYTEfOBMZLeArwlP3+PmZlZLU2bkltSR6bkNjOzPqrsKbnNzKyPKntKbjMz66Ma7YY9HPh2pSm5gVOBPZoVmJmZrdkaTUCzaPKU3GZm1jd5Sm4zMyuFp+Q2M7NSeEpuMzMrhafkNjOzUnRoRlRJW0r6uKTPSTpE0pYdDUDSLpLulrRE0lxJp0taq8Y660g6V9LvJC2VFO3UHSNpmqRlkqZnE+qZmVnJGr0RdS1JlwDPA9cBPwKuB56XdLGkRrc3ELiLdIlvDHA6cAJwWo1V1wM+S5p/6P52tr838CvgXuAA4Bbgl5L2bSROMzNrvkZvRD0N+Ayps8E1wEvAIGAsKXm8ShqktF7HAP2AQ7Kx5O6UtCEwQdI51caXi4j5kt4aESHpOOBDVbb/LeC+iDg+e36vpF2zGO9oIE4zM2uyRi/B/SdwSkScGxGzI2J59vNc0of9uAa3dwBweyHRtJCS0sj2VoyIqpfdALJBUkcD1xYWtQAjJA1oMFYzM2uiRhPQZsATVZY9kS1vxBBgRr4gG1VhSbasM3YA3lzcPvAU6bh37uT2zcysE1TjRKJtZekJ4NGI+EyFZZcDwyLi3Q1sbwVwYkRcWCh/AbgyIk6uYxvHAT+ICBXK9wKmALtHxOO58h1JA6ruFxGrXYaTNB4YDzBo0KBhLS0t9R5OuxYtWkT//v2bsq1mmjZnQZvng/rBS0vb1hm6Vfkni8U4YfVYe0KcUPs17SlxFvXU92hRb4kTek+szYxz9OjRUyNieD11G20DOhNoyQYfvZ7UBrQZcBjpctcnGtxejxMRl5EGXWX48OExatSopmx30qRJNGtbzTTupFvaPD9h6ErOm9b2bTHryFHdGFFlxThh9Vh7QpxQ+zXtKXEW9dT3aFFviRN6T6xlxdnohHTXSppP6ozwPdIlrhXAVGD/iLizwf3PAyp9HRyYLeuM1vWL2x9YWG5mZiWoOwFJejNpEro/RcSIrMv1JsArEbGqg/ufQaGtR9I2pG7WxbabRj1LSo5DgMm58iHAKuDPndy+mZl1QiOdEN4A7iFLGBGxKiJe7kTyAbgN2E/SBrmyscBS2iaNhkXEctL9P4cVFo0FHoiI1RsVzMys29R9BhQRqyQ9A2zexP1fChwP3CDpbGB7YAJwfr5rtqSZwOSIODpXdgCwPrBb9vzQbNEjEfF89vsZwCRJF5IGST0we+zfxGMwM7MOaLQTwjeBsyVNi4hpnd15RMyTtA9wEXATMB+4gJSEinEWh+f5IbBt7vl12c+jgInZ9qdkielM4FjgOeCISr3fzMysezWagE4BNgYelzSH1AuuTT/uiHhvIxuMiOlUH8mgtc7gesqqrHsjniLCzKzHaTQBPQn8qSsCMTOrZHCFbu3Fru6zzjqoO0OyJmm0G/a4LorDzMz6mLoSkKR+pMb7wcCLwN0R8VIXxmVmZmu4eqbk3p40ZcLgXPFCSYe7Md/MzDqqnvuAziHduPkB0g2iuwKPkeYCMjMz65B6EtAI0hQMv4+IZRHxFPB54G2Stuja8MzMbE1VTwLaAvhLoexZQDT3plQzM+tD6h2Kp/45G8zMzOpQbzfs2yWtrFB+d7E8IhqdlM7MzPqgehLQaV0ehZmZ9Tk1E1BEOAGZmVnTNToUj9Wp1vAhHjrEzPq6RuYDMjMzaxonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFL4R1cysCYo3n4NvQK/FZ0BmZlYKJyAzMytF6QlI0i6S7pa0RNJcSadLWquO9QZIukLSPEkLJP1C0saFOhMlRYXHkK47IjMzq0epbUCSBgJ3AdOBMcAOwHmkxHhKjdWvBXYGPgusAs4GbgQ+UKg3AziqUDarM3GbmVnnld0J4RigH3BIRCwE7pS0ITBB0jlZ2WokjQD2BUZGxH1Z2RzgIUkfjoi7ctUXR8SDXXsYZmbWqLIvwR0A3F5INC2kpDSyxnovtSYfgIh4GHguW2ZmZj1c2QloCOkS2T9FxGxgSbas7vUyT1VYbxdJCyUtlzRFUnuJzczMuokiorydSyuAEyPiwkL5C8CVEXFylfXuJF1aO7hQfhWwfUS8P3v+ZeAfpDamTYETgGHA3tkZU6VtjwfGAwwaNGhYS0tLh45t2pwFbZ4P6gcvLf3X86FbDejQdputVpzQM2Itxgm99zXtKXEWLVq0iP79+5cdxmr8Hu16zfzbjx49empEDK+nbtltQF0qIr6Xfy7pVuBJ4GTg4CrrXAZcBjB8+PAYNWpUh/Y9rsKMqOdN+9fLPevIjm232WrFCT0j1mKc0Htf054SZ9GkSZPo6Pu9K/k92vXK+tuXfQluHlDpK8HAbFlT14uIJcCtwHsaiNHMzLpA2QloBoU2G0nbAOtRuY2n6nqZam1DeZE9zMysRGUnoNuA/SRtkCsbCywFJtdYb3NJe7cWSBoObJ8tq0hSP+AgYGpngjYzs84ruw3oUuB44AZJZ5MSyATg/HzXbEkzgckRcTRARDwg6Q7gSklf4183ok5pvQdI0gDgZuAqYCawCfBVYEvgsO45PDOznqc4cGpZg6aWmoAiYp6kfYCLgJuA+cAFpCSUtzZQHJ5nbFb3ctKZ3M2kZNZqOfB30ogKmwHLgAdIN68+2tQDMTOzhpV9BkRETAc+VKPO4Apl80lD7BSH2Wldvgw4pAkhmplZFyg9AZlZOXrKZRjru8ruhGBmZn2UE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmalcAIyM7NSlJ6AJO0i6W5JSyTNlXS6pLXqWG+ApCskzZO0QNIvJG1cod4YSdMkLZM0XdLYrjkSMzNrRKkJSNJA4C4ggDHA6cAJwGl1rH4tMAr4LDAO2AO4sbD9vYFfAfcCBwC3AL+UtG9TDsDMzDps7ZL3fwzQDzgkIhYCd0raEJgg6ZysbDWSRgD7AiMj4r6sbA7wkKQPR8RdWdVvAfdFxPHZ83sl7Qp8G7ij6w7LzMxqKfsS3AHA7YVE00JKSiNrrPdSa/IBiIiHgeeyZUh6CzCadKaU1wKMkDSg8+GbmVlHlZ2AhgAz8gURMRtYki2re73MU7n1dgDeXKHeU6Tj3rkD8ZqZWZMoIsrbubQCODEiLiyUvwBcGREnV1nvTmBxRBxcKL8K2D4i3i9pL2AKsHtEPJ6rsyPwDLBfRKx2GU7SeGB89vTtwNMdPsC2NgFeadK2ulJviRN6T6yOs7l6S5zQe2JtZpzbRsSm9VQsuw2ox4mIy4DLmr1dSY9GxPBmb7fZekuc0HtidZzN1VvihN4Ta1lxln0Jbh5QqS1mYLasM+u1/izWG1hYbmZmJSg7Ac2g0NYjaRtgPSq38VRdL5NvG3oWWFGh3hBgFfDnDsRrZmZNUnYCug3YT9IGubKxwFJgco31Ns/u8wFA0nBg+2wZEbGcdP/PYYV1xwIPRMSCzoffkKZf1usivSVO6D2xOs7m6i1xQu+JtZQ4y+6EMBCYDvwJOJuUQM4HLoyIU3L1ZgKTI+LoXNntwE7A10hnNGcDL0fEB3J19gYmAReRblI9MKu/f6UOCGZm1n1KPQOKiHnAPsBawE2kERAuAE4tVF07q5M3lnSWdDlwJTAV+Fhh+1OAQ4EPA7cDHwWOcPIxMytfqWdAZmbWd5XdBmRmZn2UE5CZmZXCCcjMkLSupMsk7VR2LNZ3uA2oC0jqTxpMdQhtb3ydQerNt6is2BohaV1gs2x8vh5L0puBLXpinJK2A7YDnouI50qOZb12Fm8E/JU0mO8UgIhY0h1xNUrSYCAi4vmSQ6lK0mhgF1IP3T9GxP0lh4SkPYFHImJV2bH8U0T40aQHINKcRotIb7xFpH/qvxbKTiNL/j35AXwceKPkGL5Iuql4KfBH4FMV6uxZZpykQW+/D7yW/X3PycovBt7I/u5vAL8A1ioxzjdqPFbln5f8dx8PbFIo+zLw91yMLwFfKDnO84Azc8+3AB7IXstlwPIs1t8CA0qOdVX2ml0E7FVmLK0PjwXXXBOA/yIlmJaI+Gt+oaStgU+QuplHVt+qkPQJ4AfAL4HHgPcDEyWNAT4ZEcvKjC/n66SJEc8nJaEvSdoUOJg0WeIfgL2B7wKfBy4pJ0yWAguzOF4tLFuf9MF0Du2PQtJdfgg8TjZAZjZI8AWk6VWuJ/3/HAb8QNL8iLi6pDgPB/479/wiUhIaSXYmmf1+Jen9cTTlehz4D+DYbNDna0ifVX8oJZqyM+Ca9ADmAOPrqDcemFNinPfU+ZhGuWcWj5KdTeTK9gH+RvqWuXFWVvYZ0AzSqO6tz/cmfdv8SqHeacCjJca5JXA16UP9S+TOxkhjJq4CPlhWfIVYVwHvLbzGV1So93PSZaWy4lwGfCD3fDFwWIV6RwCv9oTXlHTG/tHsvfA66QztadIX47d3Z0zuhNBcG5EuF9XybFa3LB+UWGc2AAALs0lEQVQEBpG+Bbf3eL2sADNvB27NF0TE3cD7SK/fA5K2LyOwgm2Bh3PPp2Y/Hy7Um0Ia7aMUETE3Io4ADiF9E58mab+y4mnQDqTJJItaSG0tZZlNep+2Wkk6yyxaCKzTLRHVEBErIuI32XthM1JynA6cBEyX9AdJJ3ZHLL4E11wPAl+X9GBELK5UQdL6pFP2B7o1sraeBGZExNj2Kkk6lHSKXpYFpHlK2oiIWZLeD9xCeh3P6O7AChbT9gvF8uxRbMRfix7wPxcR90l6D3AscLWk+yn/Naxk3VzHiVdJ39SL3iBdjivL5cAESb+LiKdJl9q+KemhiJgPIOmtwMm0P75lKSJiKel//BpJG5K+nHwCOBM4t6v3X/o/wxrmOOAuYHY2Vt0MYH62bACpV9x+pA+nfUqJMHkQ2L+OekHqWFGWqaR2lOuLCyJinqR9smXfp9wPoaeBYcCvs9hWkaaVL9oVmNV9YVWXxXixpBbgO8DvKPc1rOTe3O8iXT66q1DnXaROPmU5F3gn8ISke0ij7O9G+gyYRop7KCmBfrK0KOsQEQuBiaR21o27Y5/uht1kkjYifbPcn8rdsG8DLm39dlQGSTsAu0bEb2rU60fqhl1Kd1dJhwFfBf4tIl6rUmctUoP1RyJiu+6MLxfDx0ntUe2OKCzpNuDhiCiOdVg6SbuQBvf9XbXXupvj+XSF4hejMI6jpOtJZ/OnVKjfbSTtDxxFao/cnJR45gFPATcDl0VEqZe0Jd0LHBsRPaGTCeAEZGZmJXEnBDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACsnZJGidpqqTXJc2T9Jik87toX4dLGldHvQmSIveYK+lXWe++evYzUdKjnQ64Ceo95qxu63E/U2X5M9nyCV0VQ4PbbfM6N3s/kt4k6bjsPblU0kJJT0r6vqQO3T6g5PEqvfBaj2lwlWUXSfppR/bbVzkBWVWSvgH8hDSd+SHAf5LudfloF+3ycNLYafVYAIzIHl8j3Xtxd3ajby1nNLCfrtbIMUMa+mU7ScPzhZL2AAZny7s6hnoVX+dm7+ca0g2TN5Dek58mjZzx/uh4997DgbeShqlp1HeBIyXt2MF99zm+EdXacxzwo4g4OVd2k6TTygooZ2VEPJj9/qCk2aSbKQ8EritWzu4XWisi/hER9QyX1FMtJg1u+gnSWHmtPkEav29YGUG16q7XWdIBwKHAgRFxW27R/3X07CdzPPDziFiR29fapGT6KdJ4ev8h6VngtIj450gh2QgdU0j3AZ7QiRj6DJ8BWXs2Ig382Ub+22XrZRZJB0uaIWmZpCnZjY1tZJdgpklaLumvkr6T/XMjaSJp+oeRuUtrExqItXX8tcEV4nqSdGawZ35ZIbYPSrpX0iJJCyRNkrR7bvkHJE2WtETSq5J+LGmD9gKSNELSbyS9KGlxdmnnyPxr18FjbgEOb/2gzX4eToWx0joTQ/YaXF/Y3qiszjvzr2Wt17nafiQdKGmV0rxJ+f1sl5WPqfIajMx+3lNc0NGzn+zM5f2sPvLGl0kjnn+fdIb1GdIQPJVGC/gV6SzIn6118BmQtecPpKkFZgM3R0RxCP9W25KGmv8Wacj/04DbJe0U2ZQJkvYlXTK5EjiRNITKGaR/4mOy399GSnpfyLb7QgOxDs5+/q1Qdg5pjqa/ARUnhJM0CriTNPTLp0lnGXsBWwGPSdqLNATMjaRv3RsDZ5FGuTi0nZi2BX4PXEr6YN4LuELSqoj4JR0/5htIoz/sTTrr+wCwaVZeHL+rq2LIG0zt17nafl4E5pJe9wm5+uOAl0nj/VXSOtbiuZLOa9JoHftk2/1joXwkcE9EnJN9sfp9RMyqso37SQP9Dq2wHSsqc3hwP3r2g5Qk/kIaI2wVaRDT04ENc3UmZsvfnyvbljQq8DG5sgeBewvb/zppMMmts+fXA5PqiGsCaUqBtbPHzqTksZA0M2o+rt0qrD+R3LQIpAFNH6XKJIGkD/li7B/Ktv/OOl9LZbH+iPRh1lpe1zHnjzv7/dfAxdnvlwA3Zr+/AkxoRgzAJOD6Qtmo/HE3+DpX28+ZpKSlXJyzgO+281psDjyR7TuAP5EG/Ozfiff7ZVSY2iF7vf6a7XMiMLidbaydvfc/19E4+tLDp4lWVUQ8AbyD1MB7CemD4VvAo0rTjrd6OXJTDkf6NjqVNHhka7vAe1i9beYa0mXgER0Ib2NgRfZ4mjTNwdiIeDFXZ05EPN7eRrJOC3sCP4vsE6SwfL0svmslrd36IE2tsIJ22lwkDVTqkfV8LtbxpITZWS3AoZLeQjoLqzRVQVfH0Krm61zD5aQvLaOy56Oz51dUWyEi/gbsThrc94ekM6vvAPdLWgfSeHLZJcfHs8u+M7LfpypN4160OdkEeAXfIZ0ZPUf6X/hadlZcKa6VpAGIN69xzIbbgKyGiFgeETdFxHERsQtp5s+daDuz48sVVn2ZNDMkpCkV3kyaDjiv9flbOxDaAmAPYDiwNelb6W2FOsX9VTKQlFhfbGf5WqQEvCL3WE46pm3a2fZEYCzpsti+WbyXA+vWEVctvwH6kz4c1wduKiGGVvW8zlVFxF9IZ1tHZUVHkQZtfbLGem9ExB0R8QXS5b0rSJe+RmTLfxYRu5G+/KwkTUO9W0QMi1wng5x1SX/X4n5mZ9v9GOmKwN7AFFW/HWE5zX1911huA7KGRMRPJZ1DGum71WYVqm5GumQH6Vvligr1BmU/OzL68sqIqHUvTz2N0fNIlxe3qLJ8Pv+aPv3WCsvnVlpJ0rrAvwFfjIhLc+VN+dIXEYsl3UwaLfy6qDD/VBNiWMbqk6gNrFCvGSMa/wT4sVLX/0NosBdZRKySdAcpeRU//HcC5kX1NsxWr1HlzCVLWL9VmiZ+AmmakAskXZglqLyN6Nh7us/xGZBVJWm1xCJpU9LcRvlvvZspTRDXWudtpG+dD0P6pkq6JHdYYXOHkz78Wyfn+wfd/M0x++B+CPjP1l5lFZY/SJqq+NEKj4oJCHgL6f/rn9+os15zxXuoOnPMPySd+VxaZXlnY3iBtl80IJ1FdVR7x3pDtryFFHPFS4oAkgZVWfRR0iSADxXK3019HQKeBlab0qPS+wJ4JPv51kLdTYH1SPMCWQ0+A7L2TJP0a+AO0iW1bUk3fS4Bfpar9wpwlaRT+FcvuJdJl39anUrqGXcF6cNlKKln1I8jorXX1QxgjKSDSR9+c9v5gG+mk0i93G6TdBnpev8IUgP6zaTOEndLWkVqSH+ddMnnIOCbEbHah01ELJD0CPBtSQtJifYk0qXDDXNVO3zMETGJdOmq2vLOxvB/wNGSLiD1RhtNfRMZVlP1WCNimaRfAF8Efhntz5d1raTXgWtJnRU2A44ExpAa/4vrvpvUYaGW35Neq00j4u+58qslPQbcR7rcOYx05jmHNN9P3nDSGeH9WG1l94Lwo+c+SB8Gd5AuMy0j/bNfDQzJ1ZlI6kF2COlb33LSP/JqvcNIbRHTSN90XyC1X6ydW74J6UPvNbLLXlXimkDWG6yd2CeS64FVaxmpq+19pOQ6n9Srbrfc8j2B35J62i0GppO6ng9oJ4Ydgbuz+rNJiaxN7PUecwPH3aYXXGdjAL5B6gH2OnAV6Syj2Auurte51rECH87KP1zjGD+T/S1eyN5Lr5ES5Kgq9W8CPlHH+30d0sylnyqUfyzb399ISXwhKfHvXmEb36PQY9KP6g9PSGedkt1g+M6IGF6rrll7srbFw4HtI00Z3qztzgb2i4ji2Uqlut8DdoyIg6osn0hKnLMqLFsLeB44KSKu6lTQfYQvwZlZqSS9HdiFNITNaU1OPgNJN+nW2yZzLvBnSTtHhUurNRxGugRdtf3K2nInBDMr249Il3ZvJQ130zQRMS8i+kXqCFNP/RdIl/iq9Yq8kXSJthIBR0e6F8jq4EtwZmZWCp8BmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxK4QRkZmal+H/C0E4RTJkX9wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAESCAYAAAC7NAEnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl8VOX1+PHPSQgkYQk7yr4oO8guCrKIRcUqoiL+0CJ111ptVVpLreJS61KX2mr52motrYpacataFSEgsskSlR2RHRUIBAhJIGHO749nEiY3k2QmmWRmyHm/XnnB3Ln3zpkQcubZziOqijHGGFPdEqIdgDHGmJrJEpAxxpiosARkjDEmKiwBGWOMiQpLQMYYY6LCEpAxxpiosARkjDEmKiwBGWOMiYqoJyAR6S4in4pIjojsEpEHRCSxnGt6iMj//OcfEZFtIvJ3ETk5yLljReRrEckTkTUiMqHq3o0xxphQ1Yrmi4tII2A2sAYYC3QCnsAlxnvKuDQN2AzMAHYBHYD7gP4iMlBVC/z3Hwq8CTwH3AaMAV4Vkf2q+nF58TVt2lTbt29fsTfncfjwYerWrRuRe1WleIkT4idWizOy4iVOiJ9YIxnn8uXL96pqs5BOVtWofQG/AfYDDQKO/QrICTwW4r1+BCjQL+DYR8Acz3kfAAtCuWf//v01UubOnRuxe1WleIlTNX5itTgjK17iVI2fWCMZJ7BMQ/y9He0uuPOBj1T1YMCxmUAKMDzMe2X6/6wNICJ1gJHA657zZgJniEha+OEaY4yJlGgnoK7AusADqroN1wLqWt7FIpIgIrVFpAvwCPAFsNT/dCcgyXt/YC3ufXeuXOjGGGMqQzSK1bBFJB+YoqpPe47vAGao6tRyrv8fcK7/4XJgjKru9j83BFgA9FXVjIBrTgE2AudqkHEgEbkBuAGgRYsW/WfOnFnRt1dMdnY29erVi8i9qlK8xAnxE6vFGVnxEifET6yRjHPkyJHLVXVAKOdGdRJCBPwcaAycipu08KGIDFHVvIreUFWfB54HGDBggI4YMSIScZKenk6k7lWV4iVOiJ9YT6Q48/Pz2bFjB3l5Ff4vVmlpaWkkJydH7fXDES+xViTO5ORkWrduTVJSUoVfN9oJaD9uRptXI/9zZVLVjf6/LhGRz3Az4yYCLwZc771/o4DXNsaEYceOHdSvX5/27dsjIlGJ4dChQ9SvXz8qrx2ueIk13DhVlczMTHbs2EGHDh0q/LrRHgNah2esR0TaAKmUHLspk6puBfYBHf2HNgH53vv7H/uADRWI15gaLS8vjyZNmpSbfFRhyUEYvxrqzoeEdPfn5ath6UH3vIlfIkKTJk0q3RKOdgL6EDhXRAJT7wQgF5gXzo38ExGa4FpBqOoRYC4w3nPqBGCRqh6oaNDG1GTlJZ98H0xcC2dnwKw9kONz6yNyfPDmHnd84lp3nolfkWgBR7sLbjpugegsEXkU13qZBjwZODVbRL4B5qnqtf7HfwQKgCVAFtANt35oE26adaEHgXQReRp4G7cQdQxwXtW+LWNqJlWYtA7e3esSjpcPOOyDd/a6817pBlHqyTMxIKotIFXdD4wCEoH3gPuBp3BVDQLV8p9TaBlwFvAC8D4uib0JDFbVwwH3XwBcBpyDW5R6ETAx2Oy3mursW7YV+9qw7WiJY8aEaukheK+U5BMo1+fO++JQePfPysrib3/7W8UDDEN6ejoLFy4M6dz27duzd+9eAM4888wyz3344YfLfH7MmDFkZWWxZcsWevbsGVqwft6Yp0+fzowZM8K6R3WKdgsIVV0DnF3OOe09j2dSvKVT1rVv41o/xpgIkfTK3+OwD05fEfw5HRH8eFZWFn//+9+54447Qn6dolX3CeF93k5PT6devXrlJhSv8pLWww8/zNSpJVeYFMb5wQcfAO69hssb80033RT2PapTtMeAjDEmZHfffTebN2+mT58+TJkyhezsbEaNGkW/fv3o1asX77zzDgBbtmyhS5cuTJo0iZ49e7J9+3ZeeOEFOnfuzKBBg7j++uu59dZbAdizZw+XXnopAwcOZODAgXz++eds2bKF6dOn89RTT9GnTx8+++yzYnFkZmYyevRoevTowXXXXUfgesrC9TTfffcd5513Hn369KFnz5589tln3H333eTm5tKnTx+uvPLKoHEGtqYKCgq48sor6datG5dddhk5OTlA8RbXsmXLGDFiRNCYp02bxh//+EcAMjIyGDx4ML1792bcuHHs3+8mAo8YMYJ7772XQYMG0blz5xLvtSpZAjLGxI1HHnmEDh06kJGRweOPP05ycjJvvfUWK1asYO7cudx5551FyWDjxo3ccsstrF69mqSkJB588EEWL17M559/zrp1xyfZ3n777fzyl7/kiy++4M033+S6666jffv23HTTTfzyl78kIyODs846q1gc999/P0OHDmX16tWMGzeObdtKdlW/8sorjBo1ioyMDL788kv69OnDI488QkpKChkZGbz88ssl4mzXrl2xe6xfv55bbrmFtWvX0qBBA5577rlSvzflxTxp0iQeffRRvvrqK3r16sX9999f9FxBQQFLly7l6aefLna8qkW9C84YYypKVZk6dSrz588nISGBnTt38sMPPwDQrl07Bg8eDMDSpUsZPnw4jRs3BmD8+PFs2OBWYsyePZs1a9YU3fPgwYNkZ2eX+brz589n1qxZAFxwwQU0atSoxDkDBw5k8uTJJCQkcPHFF9OnT5+g9wqM06tNmzYMGTIEgKuuuopnnnmGu+66q8zYgjlw4ABZWVkMH+5KbF599dWMH398gvBFF10EQP/+/dmyZUvY968oS0DGmLCVNkZz+Wo31TqUGdYJwGXN4LUeFY/j5ZdfZs+ePSxfvpykpCTat29ftDYl1O0FfD4fixcvjnjFgmHDhvG///2PefPmMXnyZO644w4mTZpU4ryy4vROdS58XKtWLXw+912ORFWK2rVrA5CYmEhBQUGl7xcq64Kr4RQ40Lg2q85oyrxLWnNjmx8x75LWrBrchIONa2PrBU047mwDKSH+VklOcOeHo379+sVaJwcOHKB58+YkJSUxd+5ctm7dGvS6gQMHMm/ePPbv309BQQFvvvlm0XOjR4/mz3/+c9HjjIyMotc6dCj4NL1hw4bxyiuvAPDhhx8WjacE2rp1K82bN+f666/nuuuuY8UKN+MiKSmJ/Pz8kN7vtm3bWLRoEeC69IYOHQq47rbly5cDFHsvpcWclpZGo0aNisZ3/vWvfxW1hqLJElANlu+DNac3IWNEc/a0SsFXKwFE8NVKYE/rVFaOaM6a05vYgkETskH14cKm5SehlAS4qCkMDLNKTZMmTTj99NPp2bMnU6ZM4corr2TZsmX06tWLGTNm0LVr8CL6rVq1YurUqQwaNIghQ4bQvn170tJcla5nnnmGZcuW0bt3b7p378706dMBuPDCC3nrrbeCTkK47777mD9/Pj169GDWrFm0bdu2xGump6dz5pln0rdvX1577TVuv/12AG644QZ69+7NlVdeWe777dKlC88++yzdunVj//793HzzzUWvf/vttzNgwAASE4+vUCkr5n/+859MmTKF3r17k5GRwb333lvu61e1qFbDjnUDBgzQZcuWReResVaQUtWtRn99l88lnlIkFPi4vGVCTC4YjLXvaWlOpDjXrl1Lt27dyjwn3+cWmb631633Cfz8koBr+VzUFGZ0haQKfASuaH21worPBQUFjBs3jmuuuYZx48aFH0AYTtRacIWC/TyISMjVsK0FVEMVLhgsK/mAe74iCwZNzZWU4CoczOkDlzaDugnuF03dBDfmk94HXu1eseRTGdOmTSuaEt2hQwcuvvji6g3AlGCTEGqoJ7a7T6ehyPW58yszWGxqFhEY1ABej6GfmcL1MCZ2WAuohno/M7SZSuDOez+z3NOMMSYsloBqqFBbPxU93xhjymMJqIYKdapsRc83xpjy2K+VGuqCJuH94w9rWGWhGGNqKJuEUEPd2QY+yHQViUMxP8uNA13QpGrjMvEl0tt1zHmu5HqaQFlZWbz44othVcMuNGbMGF555RUaNqz8p6l69eqVW65n2rRpJCUl8dvf/pZ7772XYcOGcc455wQ99+2336Zz585079496PPTp08nNTWVSZMmMWLECP74xz8yYEBIM53JysrilVde4ZZbbgFg165d3HbbbfznP/8J6fqqZC2gGqpwwWBCQWgZ6LAPLvwaHtoCPls6ZqKkcDuGYMorIfPBBx9EJPlUxAMPPFBq8gGXgALr0QUqKCjgpptuClrGJxRZWVnFipi2bNkyJpIPWAKqsUTcQsBGP5RSR8qnJTKNAr/bAuNXw6HqKxdlTBHvdgzp6emcddZZXHTRRUWth4svvpj+/fvTo0cPnn/++aJrC7cw2LJlC926deP666+nR48ejB49mtzcXAA2bdrEeeedR//+/TnrrLOKqmZv3ryZM844g169enHPPfeUGt/vf/97OnfuzNChQ1m/fn3R8cmTJxf90r/77rvp3r07vXv35q677mLhwoW8++67TJkyhT59+rBp0yZGjBjBL37xCwYMGMCf/vSnYtsqgCulU7imaenSpQAlzunZsydbtmzh7rvvZtOmTUXfs8CN7vLy8vjpT3/K4MGD6du3L3PnzgXgpZde4pJLLuG8887j1FNP5Ve/+lXF/9HKYF1wNVhSAjT+Po/MVqnHD6qScExpsiuXNusPcbBpHTb3bcSxgOtm7YX1K+DtnnBKaonbGlNlHnnkEb766quiem3p6emsWLGCVatW0aFDBwBefPFFGjduTG5uLgMHDuTSSy+lSZPifccbN27k1Vdf5W9/+xuXX345b775JldddRU33HAD06dP59RTT2XJkiXccsstzJkzh9tvv52bb76ZSZMm8eyzzwaNbfny5cycOZOMjAwKCgro169fiR1NMzMzeeutt1i3bh0iQlZWFg0bNuSiiy7ixz/+MZdddlnRuUePHqWwEsu0adOK3ScnJ4eMjAzmz5/PNddcw6pVq8r8nq1ataroexZY7frZZ59FRFi8eDE7d+5k9OjRRVXCMzIyWLlyJXXq1KFLly78/Oc/p02bMIv3lcNaQDVcVoviFYAvPvANw2ftoOfiTNL2H6XNxkN8dBo08XxUWZ0DA1fA/2x9kImyQYMGFSUfcLXdTjvtNAYPHsz27dvZuHFjiWs6dOhQtD1C4RYE2dnZLFy4kPHjx9OnTx9uvPFGvvvuOwA+//xz/t//+38A/OQnPwkax2effca4ceNITU2lQYMGRVscBEpLSyM5OZlrr72WWbNmkZpa+ie4CRMmlPpcYSzDhg3j4MGDFdo9FWDBggVcddVVAHTt2pV27doVJaBRo0YVxdu9e/dSC71WhiWgGuyYwv7mxRNQ99y9Jc4b1QiW9YfTPFXjswpgzNfwyFZXW86YaAjcziA9PZ3Zs2ezaNEivvzyS/r27Rt0u4I6deoU/b1wCwKfz0fDhg3JyMgo+lq7dm3Red6tESqiVq1aLF26lMsuu4z//ve/nHfeeSG9L69g2zQEbtEAld+mIdj3KNIsAdVgyw5BQe3jPwJJR47RJj940bf2KbCwH1zRvPhxBX6zGa5YA4ePBb3UmIjxbsfgdeDAARo1akRqairr1q1j8eLFId+7QYMGdOjQgTfeeANwm919+eWXAAwZMoSZM2cCFO1k6jVs2DDefvttcnNzOXToEO+9916Jc7Kzszlw4ABjxozhqaeeKrp/WVs/BPPaa68BrgWTlpZGWloa7du3L9ryYcWKFWzevLnce5911llF72fDhg1s27aNLl26hBxHZdkYUA32yb7ijxv9kFfmJ5LURFdksn89+PW3xUv5vL4H1uXAWz2hY0pVRGtiUXnTpiMtcDuG888/nwsuuKDY8+eddx7Tp0+nW7dudOnSpdSdRkvz8ssvc/PNN/PQQw+Rn5/PFVdcwWmnncaf/vQnJk6cyKOPPsrYsWODXtuvXz8mTJjAaaedRvPmzRk4cGCJcw4dOsTYsWPJy8tDVXnyyScBuOKKK7j++ut55plnQpqhlpycTN++fcnPz+fFF18E4NJLL2XGjBn06NGD008/nc6dOxd9z4YMGVL0PfvZz35WdJ9bbrmFm2++mcGDB1O7dm1eeumlYi2fqmbbMZThRN6OAWDYSvjswPHHXb7I5I4Wy5m5uPieKsF+yXy8z7V69nta5Y1rwWvd4ZzGVRFxcbH4PQ3mRIozlO0Yqlq8bHEA8RNrjd2OQUS6i8inIpIjIrtE5AERSSznmoEi8g8R+cZ/3XoRuU9Ekj3nTRMRDfJVesdrDXGoABYdLH6scWlTsoMY3Ri+6A+9PN3U+wrg3K/gj9tsXMgYU7aodsGJSCNgNrAGGAt0Ap7AJcbSJ9vDBP+5jwIbgd7Ag/4/L/WcewDwJpy11HDzsqAgIEGkHMonOSe8QZxOKbCwL/x0Pfxnz/HjPmDKt7AyG/7WxXXdGWOMV7THgG4CUoBLVPUg8ImINACmichj/mPBPKKqgdO10kUkD/g/EWmnqoHzBQtUNfSRyBriE88W9o2/r9iMmXq14PXu8Og2mLrZTUoo9MpuWJPj1gu1Sy71FibOqGpEZoSZ+BaJ4Ztod8GdD3zkSTQzcUlpeGkXeZJPoZX+P1tGLrwTlzcBlVoRIQQicHc7eL8XpHlaOxnZMGA5zN0f/FoTX5KTk8nMzIzILx8Tv1SVzMxMkpMr98ky2i2grsCcwAOquk1EcvzPlZzHWLozcL0/mzzHG4rIXiANWAU8qKqzKh5y/NuRB2tzjj8Wn9JoT+XWDACc38SNC128yrV8Cu3Nhx99CU+cAre1cgnLxKfWrVuzY8cO9uzZU/7JVSQvL6/Sv/iqS7zEWpE4k5OTad26daVeN6qz4EQkH5iiqk97ju8AZqjq1BDvcxLwFfCBqk4OOH4V0BzXOqoP3AiMAS4tLQmJyA3ADQAtWrToXzj3v7Kys7OpV69eRO5VWR9yEo9xfKZbpyP7+dUPXwDQuG4e+w4X/0Hs3LZ2WPfPIZFH6MpnNCvx3Gi+5w42UCfk/VhLF0vf07JYnJEVL3FC/MQayThHjhwZ8iy4uE9AIlIbN5GhNdBfVUvt7BHXcb0QSFHVPuXd+0Sdhj1xDby6+/jj9qsP0GG1m499xeB1IU3DLo9P4eGtrnipV/96br1Qm0p+MIyl72lZLM7Iipc4IX5ijWSc8TQNez+ua8yrkf+5MvkTygygBzCmrOQDoC7bzgJ6lzfV+0TlU5jtHf/5Pjfir5MgcE97eLcnNPB8p5dnQ//lbo8hY0zNFe0EtA4o9nFbRNoAqf7nyvM0bvr2WFUN5XxwE7Vq7AjqV9mwJ//448SjPhrsO1plr3dhU1jaH7p4qiPsyYdRX8KzO229kDE1VbQT0IfAuSISuAR3ApALzCvrQhH5DXArcJWqLgjlxfwtpkuBL1W1RlYuKzH7bU8eCVWcALqkwpL+cKFnN9UChVs3wnXrIa9G/msYU7NFOwFNB44As0TkHP8EgGnAk4FTs/0VD14IeDwReBjX/bZTRAYHfDULOG+eiNwmIqNFZBzwPnC6/zVqpI8jOP06HGm13Hqg+9qVfO7F72F4Buw8Ui2hGGNiRFQTkH/MZhSQiJtyfT/wFHCf59Ra/nMKjfb/ORlY5PkKrE74DfAL4B3g37iZcBeo6ruRfB/xIvcYfOYZd6noAtSKSBCY1gHe6gH1PONCSw9B/2Xw+YHg1xpjTjzRXgeEqq4Bzi7nnPaex5Nxyae8e19bidBOOAsOwJGA7ra2dSAlu/r31r64GSxJdeuFNgbMf/ghH0ZmwJ9PhRttObExJ7xod8GZauQd/xndGKK1JrR7XVjaD8Z4qmbnK9y0AW5cD0cqv1TIGBPDLAHVIN4E9KNG0YmjUMMkeLcX/DbIMqPnv4OzM+A7Gxcy5oRlCaiG2H3U1WUrJLittqMtUeChjvBGd6jr+WlceNDVkVts40LGnJAsAdUQ3sWn/epBk6ToxBLMZc1hcT/o6KmOsOuomyH3wnduvdCSgzB+NdSdD2cznLrz4fLVsPSgrScyJt5YAqohSnS/VcOOpeHqWc8VMx3taZkdVbdWqPMS1y03aw/k+EARcnzw5h53fOJayLdxI2PihiWgGkAVPtlX/Fi0x39K0zgJPugNv2pT8rlv8lzi8eYYH3DYB+/shUnrrCVkTLywBFQDrMuBnQHVdlISYEiwCnwxIlHg0U7wajcXa6hyffDeXvjiUNXFZoyJHEtANYC3+214Q6gTB//yV7SARf0gNcwk9MT2qovJGBM5cfBryFTWx3HS/RbMafXCqxzrA97PrKpojDGRFHYlBBHpBQwCTgKSgX3ABmBhedshmOp31AfpnvI78ZSAAPLCnFiQaxMRjIkLISUgEekI3AxcCbTAfdDMwhUSbYjbPsEnIvOAvwOvqar9GogBiw+6AfpCJ9WGnnWjF09FpCS4yQfhnG+MiX3l/lcVkb8Dq4E+wANAXyBZVZupamtVrYfb9vpC4GvgMWCtiAyturBNqLzjP+c0AolW/Z0KuqBJ6H3FCf7zjTGxL5QWUC7QVVW3lnaCqu7F7e3zoYjcAYwHWkUmRFMZ3unX3jU28eDONvBBZvGWXGnqJLjzjTGxr9wEpKo/D+eG/q631yockYmY/fklpySfE4cJaFB9t7PqO3vLH99JTYAeqdUTlzGmcirVWy4iPUXkZyJyq39ygokhc7KKL9rsWRdOrhO1cCpMBL57dhv1Nx8mocAHvtLnxWUWuIoIBTYCaUzMq3ACEpGbgfnACGAMsFREbolQXCYC4qX6QSgSFLovyaRv+m6a7cghocCHqJJQ4CMpr/ieRu9mwm3fWEUEY2JduV1wIpKqqjlBnvo1cIaqrvefdy1uksJzkQ3RVFSsbb9QWQI02HeUnovdQp8rBq9j5uKuFCQJK0a24HDD2kXn/nUXtKkDvwmyBbgxJjaE0gLaICJXBjkuFO/hsU6PGPJtLnwbsNt2bYFhDaMXT1Wqla+c9tke2ni6F6duhn99H52YjDHlCyUBTQTuFJHFIjIo4PhjwGIReV1E/otr+TxSFUGa8HlbP0PSoG5idGKpDnVyj/Fhb0jzvMdr1sPsfcGvMcZEV7kJSFXnA/1xC0zfEZEZInKyqj4LnA0sAD7Gdcf9uUqjNSE7kcZ/QtWjLrzTy7X2ChUoXLIavswu/TpjTHSENAlBnb8DXYAfgFUi8ltgnao+4//KqMpATeiOKXwa5+V3Kmp4Q5jRrfixQ8dgzFewLS/4NcaY6AhrFpyqHlTVKcDpuHpw60TksiqJzFTYskOQFTAxrHEt6Fs/evFUtwnN4Y+dih/bdRTO/8qtjTLGxIZQSvGkishDIrJERFaKyPNAnqqOBW4A7hOReSJyWpVHa0Li7X4b1cjtsVOT3NEabvfU4liTA+NWwRGbLmNMTAilBfQCrs7bE8DvcFWwPxERUdVPgNOAN/zHng83ABHpLiKfikiOiOwSkQdEpMzhchEZKCL/EJFv/NetF5H7RCQ5yLlD/MkzT0Q2i8ht4cYYb7wTEOKx/E5licATp8ClTYsfn3cArl5b5lpWY0w1CSUBnQ/cpaqvq+p/gatxY0GdwJXeUdW/AF1xdeNCJiKNgNm4LV/G4tYR3QncX86lE/yv/yhuEeyzwB3Ay577nwJ8BGz2n/d/wJMicl04ccaTQwWw6GDxYz9qHJ1Yoi1R4F/dYEiD4sdf2wO/2hSdmIwxx4VSjHQd8BMRWQ7kATcCh4EdgSep6j7g9jBf/yYgBbhEVQ/iWlENgGki8pj/WDCP+AugFkoXkTzg/0SkXUDh1CnALuAqVS0A5ohIW1y34QuqJ95a+XlZkB/wrk5NgXYl2oU1R0oivNsLhqx0W5MXemIHtEmG21tHLzZjarpQWkBXA6cCe4FDwPXAeFWNxJyi84GPPIlmJi4pDS/tIk/yKbTS/2dLz/1n+ZNP4P1bAz0rFHGMO9GqH0RC4yT4sJfbCynQL7+BN/dEJyZjTGjrgNar6hlAfaCpqnZS1f9F6PW74lpYga+3DcjxPxeOM3DVGDYBiEhdoI33/sDagNc+4VgCCq59CrzfC+oFjC4qcOUaWJBV6mXGmCok0eyFEpF8YIqqPu05vgOYoapTQ7zPScBXwAeqOtl/rBWum3Ccqr4dcG4tIB+4UVVLTJoQkRtws/to0aJF/5kzZ1bkrZWQnZ1NvXr1InKv0uyhDpdzRtHjBJR3WEA9jpV6zYZtR4s9blw3j32Hi/fZdW7raTpEgTdOKBlrKHEupRG/oTc+jk8LrE8+f2ElbQlW8rDyquPfPhIszsiLl1gjGefIkSOXq+qAUM4NpRjpT4BXVLX032IlrzkFOFlVPwv1mooSkdrA60A28MvK3s+flJ4HGDBggI4YMaKytwQgPT2dSN2rNC99B6w//nhwA+HH/c4q85oHbtlW7HFhgc9Acya1jVSIFeaNE0rGGkqcI4Bm37kSPYUOkcS9dQaxuB+cVAXbVVTHv30kWJyRFy+xRivOUMaA7gA2iciDZa31EZEmInKliLwHZAAnh3Dv/UBakOON/M+VSUQEmAH0AMaoauA1hR0r3vsXdkqVe/94Y91vofnpyXB/++LHth6BMV+7WYTGmOoRyhhQX9zWCyOBlSJy0L+u5n0RmSUic0RkM7Ab+BNuDKaLqr4ewuuvwzMWIyJtgFRKjt0E8zRu+vZYVfWOJR0GtnvvH/A4lPvHDZ8GSUA1dPp1KH7XDq7zfERamQ3jV0O+LVQ1plqEWgvuNVUdipsNNwXXwikA6uJqw/0TOA/X7fYLVd0Z4ut/CJwrIoGFYibg1hPNK+tCEfkNcCtuivWCMu4/zrOwdQIuMa0KMca48FU27AkoM1M/0W1lbYITgb+eCmM8Sfqj/XDDBtvMzpjqEMo6oCKqugn/LLMImQ7cBswSkUeBjsA04MnAqdki8g0wT1Wv9T+eCDwMvATsFJHBAffcpKqFk2sfB64E/iUifwMG4tYx3XyirQHytn5GNoSkSm24fuKrlQCvdYeRX7r6eYVe+h7a1oH7O0QvNmNqgqj+ivKP2YwCEoH3cBUQngJ1xlSyAAAgAElEQVTu85xay39OodH+PycDizxfFwTc/xtcy+wUXGvoFuBOf2XvE4qN/1RMvVrw317QwbNY94Gt8Pdd0YnJmJoirBZQVVDVNbh9hco6p73n8WRc8gnl/gtwlbtPWHnH4LMDxY+NtvGfkLWoDf/rDWeugMyASQg3bYCWdWBMk+jFZsyJzDppTgALDkBewMB52zquBI8JXedUeK8XJAf8jziGm5SwrLSCUMaYSol6C8hU3sdBut+khm2/EAlnpMGr3dwOqoUDhDk+uOBrWNQPOoaY1M8usbbqaLF1THOei/66KmNiQVgtIBG5UESs1RRjbPp15FzcDP58avFju/PhvK9gb8liDMaYSgg3mbwN7BCRR0WkW7lnmyq3+yhkZB9/LMCohlEL54Tws1bw6zbFj23MhQtXQU7I9UCMMeUJNwF1Av4GXA6sEpFFInK9fwsFEwWfelo/fetB0+iXbot7D3eEic2LH1t8EK5cC8dOqAn8xkRPWAlIVbeo6n2q2gH4EfANbtr0dyLyLxEZWRVBmtKV2P3Uut8iIkHgxa5uPVWgt/fCbRttoaoxkVDh8RxVnaOqPwE6A8txCz5ni8i3IvJLf9VpU4VU4eN9xY/Z+p/IqZMAb/WEXnWLH39uFzy+PToxGXMiqXACEpHhIvISrv5yT9y22KOB/+AWlM6IRICmdOtyYGfAwHhKAgwJVtrVVFhaLfigF7T2VMn+9bfwyg/RicmYE0VYrRQRaYfbIfVqoD2Qjts7Z5aqHvGf9qmILAL+HbkwTTDe7rdhae5Tu4ms1sluR9WhK+FAwCSEyevcLqtnW6vTmAoJ99fVt7gtuV8BTlHVUar6akDyKbQaWBqJAE3pbPp19elZz3XHJQWsr8pXGLfKFYI1xoQv3AT0Y6Cdqv5OVTeXdpKqblBVm5BQhfJ9kO7ZSnq0fRKvUiMbwT89m3scPAZjvoLtedGJyZh4Fm4CGgicFOwJETlZRO6tfEgmFIsPQnZAd9BJtaFn3dLPN5Hx/1rAYx2LH9t5FM7/CrLyg19jjAku3AR0H9C6lOdaUrKKtaki3vI751j5nWpzVxu4tVXxY6tzYNxqOGKb2RkTsnATkHC8TJZXa07Aba5j1Sc2/TpqRODpU2Bc0+LH07PcxARbImRMaMqdBScihbPewP3f+quIeOsDJwO9gI8jG54JZn8+fHGo+LFzLAFVq0SBl7vBqC9hUcD/hpm7oW3vhnT6Kqv0i40xQGjTsHOATP/fBTgAeD5/cxS34dtzkQvNlGZuFgT29PRIdfvWmOqVkgjv9oQhK2FD7vHj27o2QFHy6iaReXIycxPbkNBSabIrl7YbDqFq3aXGQAgJSFXfAN4AEJF/AA+UNQPOVD0rvxM7mtaGD3vDGStc1exC27s0cP0FCS7T+GoJe1qnktkyhYlrYUZX2zLdmHBrwf3Ukk/0Wfmd2NIxBd7vBamBrRqRouRTJEHw1Urgnb0waZ3VkzPGPoPFmW9z4duANSe1BYbZ9gtRN6ABPNSx/PMAcn3w3t6S43jG1DShTEJYCkxW1TUi8gXlTPJR1UGRCs6U5O1+OzMN6iZGJxZT3KKDZU8TDZTrgye2w2s9qjoqY2JXKJMQVgO5AX+3joMosunXsev9zND/c/j85xtTk4UyCeGnAX+fXKXRmDIdU5jjmd1rCSh25Ia5CDXc84050UR9DEhEuovIpyKSIyK7ROQBESmzU0lEaovI4yLymYjkikjQD54i8pKIaJCvrsHOj3XLD8H+guOPG9eCfvWjF48pLiXM/03hnm/MiSaUMaByx30ChTMGJCKNgNnAGmAsbsvvJ3CJ8Z4yLk0FrsNV3F4InF3GueuAn3qObQk1xljinf02qpFbEGliwwVN4M09xddolUb85xtTk4U6BlRV4z43ASnAJap6EPhERBoA00TkMf+xElQ1S0Qaq6qKyK2UnYAOq+riyIde/Upsv2DdbzHlzjbwQSYcDiEDKbAvH/KOQbJNIjE1VChjQJOr8PXPBz7yJJqZwKPAcOC9MuKqUZMhsguKl3wBS0CxZlB9uLApvL7Lh69W+f1rs7NcKZ+3e0Kz2tUQoDExJtq90F1xXWRFVHUbrvxPpMZpuovIQRE5IiILRGR4hO5breYdcBugFTolBdqnRC8eU5KIq3DQdGcuCQU+8Hk+I/m0xOrThQdh8ApYn1ONgRoTI6K9DqgREKxq437/c5W1EliCG2NqBtyJ6+YbqqpxtWOrd/q1bT4Xm5ISoPuSTA41rs22zvXJbJmCJgpyzNWCa7HtMMdGN2dtQML5Ns+V8pnVA0bYv6upQaS8nqzA+m8i8hLlJyDvgH9Z984Hpqjq057jO4AZqjo1hHvcCvxZVcsdjheRVNyY1peqenEp59wA3ADQokWL/jNnziz/jYQgOzubevXqVfj6yQxkK8d3nHuQVQxlb6Xj2rDtaLHHjevmse9wcrFjndtGv3/IGyeUjDUW4oTyv6cnt03lPnqw0vMZqxY+7mI95/JDtcTpVdmf0eoSL3FC/MQayThHjhy5XFUHhHJuuQmoKonIbuBZVb3fc/wwME1VHw/hHiEnIP/5zwIXqmrb8s4dMGCALlu2LJTblis9PZ0RI0ZU6NodedAmYBpFIpA5FNJCmUJSjrNv2Vbs8RWD1zFzcfHezznPlfutqnLeOKFkrLEQJ5T/PZ3zXFuO+uCmDfCP70tef287mNa++itmV+ZntDrFS5wQP7FGMk4RCTkBhf0rTERqA5OBQcDJwHe4bq5/qmrJj6llW4dnrEdE2uCmWa8LekXlKXFWzWG2Z/bboAaRST4memonwAtd3Fjebz3lfR/YCpty4YWuUCfao7TGVKGwfrxFpBuwEXgW6Akc8//5LPCNiHQP8/U/BM4VkcDllBNwpX/mhXmvcolICnABsDzS965KNv36xCQCU9vBzO5Qx9PaeXk3/OhLyMwPfq0xJ4JwP189j9uQrpOqDlbVi1R1MHAKbjLB9DDvNx04AswSkXP84y/TgCcDp2aLyDci8kLghSJyvohcBvTxP77M/9XO/zjNXynhRhEZJSITgLlAS+DhMOOMGp+WbAFZAjqxTGgOc/pA06Tixz874CYnbLQZcuYEFW4CGgDc658qXcT/+D5gYDg3U9X9wCjcsMZ7wP3AU/57BarlPyfQX3Eb5V3rf1y4cd5I/+MjwB5cRYUPcMkzCxiuqpEZ2KkGXx8uvtFZ/UQ4vUH04jFV48w0WNwPunim1m/MddO0P7Mdvs0JKNyRhC1AcinPJQMlR4rLoaprKLuSAaraPpRjnufzgEvCjSfWeMvvjGxoO2meqDqlwMJ+cMkqt+6r0L4COOdL+EdXmNgievEZE2nh/iq7G3hIRE4PPCgig4EHgV9HKjDj2PhPzdI4CT4+DX7iSTRHFa5cCw9usZ1UzYmjIsVIGwAL/VOodwPN/V+ZwFTg7SqIs0bKO+bGAQL9qHF0YjHVp3YC/LOrmyF335biz927xc2Qe76LO8+YeFaRYqSrqygW47HgAOQFFLZsUwc6W/mdGkEE7m0PHZPh2vWuBVTonz/A1iOuckKjpFJvYUzMi3YxUlOGYN1v1b040UTXVSdB22QYt8qNBRVKz3Iz5D7oDR3tQ4mJU9aIj2HeBDTaut9qpGENYVE/1yUXaH0unL4CFh4Ifp0xsc4SUIzafRRWZh9/LMCohlELx0RZ51RY1BeGphU/vjcfzs6A13ZHJy5jKiPsBCQiE0RktohsE5Hd3q+qCLIm+tTT+ulbD5rGRq1NEyVNa8Ps02Bi8+LHjyhcsQb+sNVmyJn4Em4pnonAP4FvgNbAu8B//fc5CPwl0gHWVDb92gRTJwH+3Q1+167kc1M3w/XrIT+UPcGNiQHhtoCm4Nb7/Mz/+DlVvQboAOzFbSRnKkk1SAKy8R/jJwIPdICXukKSZ1LKC9/D+V9BltWQM3Eg3AR0KvC5qh7DFSJtAKCqh3DbaN8a2fBqpvU5sOPI8cfJCTDEyu8Yj6tPgo96Q0PPXNZPs2DIStiSG524jAlVuAnoIFDH//edQLeA5wRoEomgajpv62d4GiR7K+EZA4xs5CYndPAUyFqT42bILT0Y/DpjYkG4CegLoLf/7+8C94rI9SJyNfA4sLjUK03IPrbuNxOGrnVhST84w9NK3p0PwzPgzT3RicuY8oSbgP7A8YKj9wJLcVWp/4EbA7oxcqHVTPk+t8gwkE1AMOVpVhs+PQ0ub1b8eJ4Pxq+Gx7fZDDkTe8Kqhq2qi/G3clQ1CxgrInWAOoH795iKW3wQso8df9wiCXrVjV48Jn6kJMKr3aHTZvhDQF16BX71LXyTC3851aqpm9gRsS25RaQiW3IbD+/4zzlWfseEIUHg4Y5ua4ebNkBBQKvn+e9gSx680QMa2JbuJgZEe0tu42Hld0wkXHsyfNgLGngmr3y8H4auhG150YnLmEDR3pLbBNifX3LW0jk2/mMq6JzGboO7dnWKH//6sJsht/xQdOIyplBUt+Q2xc3NgsBF7D1SoWWdUk83plw96sKS/jCofvHj3x+Fs1a4yQnjV0Pd+XA2w6k7Hy5f7T4I2aQFU9XCTUBbiPCW3OY4q35gqkKL2jC3D1zStPjxXHWTE97cAzk+UIQcn3t8dgZMXGtlfUzVsi25Y8gn+4o/tunXJlJSE93kgyltSj7nbej4gMM+eGcvTFpnLSFTdWxL7hixORc2BQwMJwkMt+0XTAQlCDzWyX3qfHR7+efn+uC9vfDFIRhkpaBMFbAtuWOEt/ttSBrUtfI7pgp8m+fqZoXSsMn1wRPb4bUeVR2VqYlsS+4Y8bF1v5lq8n5maMkHXHfc+5lVGY2pySq0JlpEWorIpf46cJeISMuKBiAi3UXkUxHJEZFdIvKAiJT52V9EaovI4yLymYjkikip/59EZKyIfC0ieSKyRkQmVDTWqnJMYY6V3zHVJDfMiQU5PjhQUDWxmJot3IWoiSLyHLAVeAP4P+A/wFYReVZEwr1fI2A27gPZWOAB4E7g/nIuTQWuw+0/tLCM+w8F3gTmAucD7wOvisjocOKsassPwf6A/+CNakG/+qWfb0xlpIT5sVOB9ovh/i22z5CJrHBbQPcD1+AmG7QHUvx/TvUfnxbm/W7y3+MSVf1EVaf7X+MOESl12NNfh66xqp4LvFXG/X8HzFfV21R1rqpOAf6HK6QaM7zjP6MaQaKV3zFV5IIm4f/HzyqAaVug3WK4dzPss0RkIiDcn8NJwD2q+riqblPVI/4/H8f9sp8c5v3OBz7yFDKdiUtKw8u6ULXsyaH+Iqkjgdc9T80EzhCRtDBjrTI2/dpUpzvbhN8KKnTwGDy41bWI7vkWMi0RmUoI98ewOfBVKc995X8+HF2BdYEH/FUVcvzPVUYnIMl7f2At7n13ruT9IyK7ABZ6yu9YAjJVaVB9uLBp+UkoJcFVYm8YZET20DH4/TaXiKZ+C3utDLGpACmnIVH8ZJGvgGWqek2Q514E+qvqaWHcLx+YoqpPe47vAGao6tQQ7nEr8GdVFc/xIcACoK+qZgQcPwVXUPVcVf04yP1uAG4AaNGiRf+ZM2eG+nbKlJ2dTb169UocX0Rjphbt8QetyOHfLI3Ia4Ziw7bivzka181j3+HixS46t61dbfGUxhsnlIw1FuKE8r+nsRBnAcIf6MpCmnIEQQM+iwo+aqMMYS+/YR1HSOAtWvEGbThIUtD7JXOMi9nJBLbTkKptFpX2fykWxUuskYxz5MiRy1V1QCjnhluU/SFgpoi0xU0++AHX6hmP6+66Isz7xRxVfR5XdJUBAwboiBEjInLf9PR0gt3r7Y24zc39LmqZyojOkXnNUDxwS/HqSVcMXsfMxcUbn3Mmta22eErjjRNKxhoLcUL539NYiXOUukWmf9wOH2RCjk9JTRAuaJLAXW1gYIMWQAsALgCeKoBnd7rzMz2z4vJIZCZteTehLbe0grvauBJAVaG0/0uxKF5ijVacYXXBqerrwHlAXeBPuBlmz+BmpZ2nqm+E+fr7gWBjMY38z1VG4fXe+zfyPB9VJeq/WfebqSYirsLB6z0gexjMYR7Zw9yi04FBpgDVrwV3t4Mtg+HRjtAsSGMox+cSVIfFcMc38P2Rqn8fJn6FnIBEJMnfrbVKVc/ATRQ4CUhR1TNV9ZMKvP46PGM9ItIGl9C8Yzfh2gTke+/vf+wDNlTy/pW28wisyTn+OAEYaeV3TIyrVwt+1RY2D4Y/doLmQRJRrg+e2gEdlsAvNsIuS0QmiHBaQMeAOfh/oauqT1V3q2pl6uV+CJwrIoGrXiYAucC8StwXVT2CW/8z3vPUBGCRqh6ozP0jYban9XN6A2gYvIvdmJhTN9HNqNs8GJ7sBCcF6XLL88GfdkLHxXDbRvehy5hCIScgf6LZiGv1RMp04AgwS0TO8U8AmAY8GTg1W0S+EZEXAi8UkfNF5DKgj//xZf6vdgGnPQiMEJGnRWSEiDwGjMEteI06K79jTgSpifDLNvDt6fCnU+DkIInoiMKf/YnoZxtgu+3Iagh/GvZvgXtFpFckXlxV9wOjgETgPdwi1Kdwm9sFquU/J9BfcdUYrvU/fsP/NTLg/guAy4BzgI+Ai4CJwWa/VTeflmwBWQIy8SwlEW5r7RLRn0+BVkES0VGF53ZBpyVw8wbYaomoRgt3Ftw9QBMgQ0R24mbBFZvHraqDwrmhqq4Bzi7nnPahHCvl2reJwS0ivj4MuwNmq9ZPdF1wxsS75ES4tTVc3xJe/A7+sA22e7re8hWm74IXvoPJJ8HUttA+JTrxmugJNwGtBlZVRSA1jbf6wYiGkFTB1enGxKI6CXBzK7jmZHjpe3h4K2wLkoj+9h3843u4ugVMbQcdPYno7BLT2o+WmOo+57nYmNpuwhNWArKtGSLHpl+bmqJOAtzYEn56Esz43lVQ2OLpeitQeOF7l6h+chL8ti2ckhqdeE31CSkBiUgKbvC+PfAd8Kmq/lCFcZ3Q8o7BfM8cvNGNoxOLMdWldgJc1xKuPgn+9QP8fqvbHC/QMVwS+tf3cGULuKed6+M/2Lg227s0IPPkZOYmtiGhpdJkVy5tNxyi/j6rAxSvQtmSuyNuy4T2AYcPisjlsTCYH48WHHDTUwu1qQOdrf/b1BBJCa5b7ict4JXd8NBW+Ca3+DnHgBk/uERVZ8zJHE1OxJcgbl9xwFdL2NM6lcyWKTTdmUu+z7qw41Eo/2SP4RZunoVbINoDWInbC8hUQLDuN7HtF0wNk5TgWkNrB8KMrsE/hCmQVy8JX62EouRTJEHw1Upgb6sUJq2DMMpamhgRSgI6A7cFw+eqmqeqa4EbgbYicnLVhndisvEfY46rleDGfdYMgpe7Qdcwx358tRJ4b6+ra2fiSygJ6GTgW8+xTYAQ2UWpNcKeo7Ayu/ixUZaAjCFRYGILWDUQXu0G9cPoUsv1wRPbqy42UzVC/Se2xm2EfOpp/fStB82iX53fmJiRKHBFCzcOFCof8NZeWHHIuuLiSajTsD8SkYIgxz/1HlfVcDelq1E+9iSg0db6MSao3DCrTOYr9F8OnZLh8uYwoTn0rmvjq7EslAR0f5VHUUOoBhn/senXxgSVkuC2dwjXpjxXfeEP29zEhsubw+XNoKclo5hTbgJSVUtAEbI+B3YErARPToAhVn7HmKAuaAJv7nHdaxW1IddN835oq5vccHkz1zLqXjdiYZpKCLcUjwlRsPIhN6zYB/2ON3mGpbm6WcaYku5s43ZqPRxCBqotcHp9WHLIFTwNZl0OPLDVffVIPd4y6mrJKGps6VY12tciudhjm35tTOkG1YcLm0JCQdkZKKHAxyXNYF5f2D3ErSn6cRNIKqO7bXUO3LcFun0Bp33hqjJszCn9fFM1LAFVk2MIWc09CcjGf4wplYhLJk135rok5PM0bXxKQoGPpjtzmdHVnZ9Wy60peq8X/HAm/KMLnN8YapWRjL46DPdshs5Loe8y+MNW2JRb+vkmcqwLrpp8WyeNYwG1QlokQS9r+htTpqQE6L4kk0ONa7Otc30yW6agiYIc89eCW3+IBvuPknR1yf9MjZJg8snua18+vL0XXtvtlkKUNsU7I9t9Td0M/eu5brrxzaCDlcqqEpaAqsna5CbFHp/TqGRlEWNMSQI02HeUnoszAbhi8DpmLu4a1j0aJ7n6c9ecDHuPujVDr++BOftLn+SwPNt9/fpb1x1YmIzaJpdygQmbdcFVkzWeBGTdb8ZER9PabrO8T06D786Ev54KIxuW/ctw6SG4axO0WwxnrICntgffVlwVlhyE8auh7nw4m+HUnQ+Xr4alB22RrJe1gKpBfpKwpXZasWPn2AQEY6KueW24qZX7+v4IzNoLr+9226WUlisWH3Rfd2xyyygubw6XNYNmSTBpHby711W7dy0rIcfnppN/kOkmVczoapW7C9m3oRpkNU9GA1bApR44Sqs6UQzIGFPCSXXgllaQ3hd2nAHPnAJD08q+5vODcPs30GoRtFroEk2Or2S3ng83nfydvVjl7gCWgKqIAgca12bVGU1ZfUbTYs/VO3DUfgCNiWEt68DPW8NnfWH7YHj6FDiznEXjewpcOaCy5Pqwyt0BLAFVgXwfrDm9CRkjmrOnVQrqmW2wp1UqE9e684wxsa11MtzeGj7vB1sHwxOd3KLXirLK3cdZAoowVdfE3tsqJfgmWoAmJlhT3Jg41DYZ7mgDi/vD5tPhsY4wIMxk5OP4WNPuGr6buCWgCFt6yDWxfbXK/tZaU9yY+NY+Baa0hS/6u6ni4ShQmLAGWiyEHkvh1g3wn91uv7CaJOoJSES6i8inIpIjIrtE5AERKbdCmoikicg/RGS/iBwQkZdFpInnnJdERIN8hbeIIAxPbA+9jLw1xY05MaRU4jfpmhx4dheMXwPNF0KvL+DnG2HWHrdm6UQW1WnYItIImA2sAcYCnYAncInxnnIufx3oDFyHa9U+CrwNnOU5bx3wU8+xLZWJuyzvZ4ZevdfnP98YE98uaAJv/KARWV2+6rD7+stO97hXXbdOaURDGN7QLao9UUR7HdBNQApwiaoeBD4RkQbANBF5zH+sBBE5AxgNDFfV+f5jO4ElInKOqs4OOP2wqi6u2rdxXLibaIV7vjEm9tzZBt78TvGFkIDqiKuosD4Xlh8q/wPr14fd1zM7XVdf77owspFLSMPSXMmheBXtLrjzgY88iWYmLikNL+e6HwqTD4CqLgU2+5+LmnCb4pVpuhtjYsOg+gFFU8uQkgDjmsGMbrC0P+wbCv/tBXe2drXnyvt1oMCXh+HpHXDxKmjyOfRbBnd848aUs/JDizdWKjZEuwXUFZgTeEBVt4lIjv+598q4bl2Q42v9zwXqLiIHgTrAF8BvVXVepaIuQzibaCX4zzfGxDcR6LY0k7WDmrgZsAlSvDvOpyT4lLEtE4oqd4Or3n1Bk+O/B7Ly4bMDkJ4Fc7NcYdSycoECK7Pd11M7XAupb73jXXZnNXSvESjfFzsVG0SjOA9YRPKBKar6tOf4DmCGqk4t5bpPcF1rF3uO/xvoqKpn+h/fDhzFjTE1A+4E+gND/S2mYPe+AbgBoEWLFv1nzpwZ1ntaQ33upA95lL/TXB2O8RQZdCN6U+E2bCs+ytm4bh77Dhevtti5be3qDCkob5xQMtZYiBPK/57GSpxe2dnZ1KtXL9phlBBPP6MKbKndgE/qt+frlKbkSyJJeozeuXv40aGtjD4pSAG5MhyiFl+Sxpc0JIOGbKIeGsacuwSUUzlEH7LoQxY9OcBTdOZzmnKkjN9RdTjGEPZyD2vDnuE3cuTI5ao6IJRzT+gEFOS6VGA18KX32mAGDBigy5YtC+3N+KnCxLXw+i5fmVOxUxJgbFN4pVt096kvuXNryUrDc55rW50hBeWNE0rGGgtxQvnf01iJ0ys9PZ0RI0ZEO4wS7Gf0uH35MN/fOkrPcnsZhaPwN1IoPTR1E2BOHxhUTgUILxEJOQFFewRiPxCs2lIj/3MRvU5Vc4APgH5hxBiWUDfRGutv4kYz+Rhj4kvjJLi4GfzpVPhyIOwdAm/2gJ+3gp4h7C/mI/RZutWxTCTaY0Dr8IzZiEgbIJXgYzyB13mnW+O/19vlvKZSdrdqpYWyidarvz+pKkMwxtQATZLgkmbuC9xC1nn+1lF6ltt6vKKqY5lItBPQh8AUEamvqoUDIROAXKCsiQIfAr8TkaGqugBARAYAHf3PBSUiKcAFwPJIBF+WSGyiZYwx4WhWGy5r7r7AlfqZF9BltzbMhFTVy0SinYCmA7cBs0TkUVwCmQY8GTg1W0S+Aeap6rUAqrpIRD4GZojIXRxfiLqgcA2QiKQB/wX+DXwDNAV+CbQExlfP2zPGmOhpXhvGN3dfAKnzw0sqVb1MJKpjQKq6HxgFJOKmXN8PPAXc5zm1lv+cQBNwraQXgRm4Vs24gOePAHtwFRU+AJ4HsnCLV8ObWWCMMSeAHzcJ/Zd+dSwTiXYLCFVdA5xdzjntgxzLwpXY8ZbZKXw+D7gkAiEaY8wJ4c42bp3P4RBaQckJ7vyqFPUEZIyJjpLTm4/yQMCxWJjabCJrUH23yDSUZSIXNYWBldj3KBTRnoZtjDGmmsTaMhFLQMYYU4MULhPpm76bZjtySCjwIeoST7MdOfSdu5tXu1d9GR6wLjhjjKlxYmWZiLWAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVFhCcgYY0xUWAIyxhgTFZaAjDHGRIUlIGOMMVER9QQkIt1F5FMRyRGRXSLygIgkhnBdmoj8Q0T2i8gBEXlZRJoEOW+siHwtInkiskZEJlTNOzHGGBOOqCYgEWkEzAYUGAs8ANwJ3B/C5a8DI4DrgMnAQLTT4w8AABBYSURBVOBtz/2HAm8Cc4HzgfeBV0VkdETegDHGmAqrFeXXvwlIAS5R1YPAJyLSAJgmIo/5j5UgImcAo4Hhqjrff2wnsEREzlHV2f5TfwfMV9Xb/I/nikgP4F7g46p7W8YYY8oT7S6484GPPIlmJi4pDS/nuh8Kkw+Aqi4FNvufQ0TqACNxLaVAM4EzRCSt8uEbY4ypqGgnoK7AusADqroNyPE/F/J1fmsDrusEJAU5by3ufXeuQLzGGGMiRFQ1ei8ukg9MUdWnPcd3ADNUdWop130CHFbViz3H/w10VNUzRWQIsADoq6oZAeecAmwEzlXVEt1wInIDcIP/YRdgfYXfYHFNgb0RuldVipc4IX5itTgjK17ihPiJNZJxtlPVZqGcGO0xoJijqs8Dz0f6viKyTFUHRPq+kRYvcUL8xGpxRla8xAnxE2u04ox2F9x+INhYTCP/c5W5rvBP73mNPM8bY4yJgmgnoHV4xnpEpA2QSvAxnlKv8wscG9oE5Ac5ryvgAzZUIF5jjDEREu0E9CFwrojUDzg2AcgF5pVz3Un+dT4AiMgAoKP/OVT1CG79z3jPtROARap6oPLhhyXi3XpVJF7ihPiJ1eKMrHiJE+In1qjEGe1JCI2ANcAq4FFcAnkSeFpV7wk47xtgnqpeG3DsI+BU4C5ci+ZRYLeqnhVwzlAgHfgLbpHqGP/55wWbgGCMMab6RLUFpKr7gVFAIvAergLCU8B9nlNr+c8JNAHXSnoRmAEsB8Z57r8AuAw4B/gIuAiYaMnHGGOiL6otIGOMMTVXtMeAjDHG1FCWgIwxxkSFJSBjDCKSLCLPi8ip0Y7F1Bw2BlQFRKQerphqV4ovfF2Hm82XHa3YwiEiyUBzf32+mCUiScDJsRiniHQAOgCbVXVzlGNJLePphsB2XDHfBcD/b+/Mg60orjj8/QJRXKIogpiYgHviEnELARcwGjVquQLivlWIa8yixjV5RK1K4RZxw5Xnhqi4GzHGLYqICIoSDcTSICIQVFZREHgnf5y+Om+Yufe+9y5vKOmvquve6e47fabvTK9nzsHMPm8NuZqKpK6AmdkHBYuSi6Q9ga1xDd03zWx0wSIhqTvwmpk1FC3LV5hZDDUKgHCfRp/hN95n+EP9YSpuIKHzX5kDcDiwrGAZTsdfKv4CeBM4NiNP9yLlxI3eDgZmh/93UIi/HlgW/vdlwD1AmwLlXFYhNCSPC/7fBwAbpOLOAj5OyPg/4LSC5bwSuDRxvBHwSqjLRcDiIOtTwLoFy9oQ6uw6YNciZSmFaAuuttQBv8M7mOFm9mEyUdLGQH9czdxC/kgOkvoD1wL3Am8APYF6SQcDx5jZoiLlS3Au7hjxKrwTOlNSR+AQ3Fni68BuwBXAr4AbihGTL4D5QY5PU2lr4Q3TIMpbIWktbgQmEAxkBiPBV+PuVUbgz09f4FpJc81sWEFy9gP+kDi+Du+EehFmkuH7nfj9cTLFMgE4Ejg1GH2+D2+rXi9EmqJ7wG9SAD4CBlSRbwDwUYFyPldlmEixM4txhNlEIm4vYCY+yuwQ4oqeAU3CrbqXjnfDR5u/SeUbCIwrUM7vAsPwRv1MErMx3GZiA7BHUfKlZG0AfpKq46EZ+e7Cl5WKknMRsHvieCHQNyPfUcCnK0Od4jP2g8K9sACfoU3GB8ZbtaZMUQmhtrTHl4sq8V7IWxR7ABvio+ByYUFRAga2Ap5MRpjZs8BP8fp7RdKmRQiWogswNnE8PnyOTeUbhVv7KAQzm25mRwGH4SPxiZL2LUqeJrIZ7kwyzXB8r6UopuL3aYml+CwzzXxgtVaRqAJmtsTMHgv3Qie8c3wHOA94R9Lrks5pDVniElxtGQOcK2mMmS3MyiBpLXzK/kqrStaYt4FJZnZEuUyS+uBT9KKYh/spaYSZTZHUE/gbXo+XtLZgKRbSeECxOIT0Jn4bVoJnzsxelLQjcCowTNJoiq/DLNolFCc+xUfqaZbhy3FFcTtQJ+klM5uML7VdKOlVM5sLIGl94ALK27csBDP7An/G75O0Dj446Q9cCly+ossv/GH4hnEG8AwwNdiqmwTMDWnr4lpx++KN016FSOiMAfarIp/hihVFMR7fRxmRTjCzOZL2CmmDKbYRmgzsBDwaZGvA3cqn2QaY0npi5RNkvF7ScOAy4CWKrcMsnk98F7589Ewqz49xJZ+iuBzYFnhL0nO4lf1ueBswEZd7O7wDPaYwKavAzOYD9fg+a4fWKDOqYdcYSe3xkeV+ZKthjwSGlEZHRSBpM2AbM3usQr41cDXsQtRdJfUFfgscaGazc/K0wTesf25mm7SmfAkZDsf3o8paFJY0EhhrZmlbh4UjaWvcuO9LeXXdyvIcnxE9w1J2HCWNwGfzF2XkbzUk7QeciO9HdsY7njnAv4EngJvNrNAlbUnPA6ea2cqgZALEDigSiUQiBRGVECKRSCRSCLEDikQikUghxA4oEolEIoUQO6BIJBKJFELsgCJlkXSCpPGSFkiaI+kNSVetoLL6STqhinx1kiwRpkt6MGj3VVNOvaRxLRa4BlR7zSFv6brfzUl/N6TXrSgZmnjeRvVc63IkfUvSGeGe/ELSfElvSxosqVmvD8iZkKOFV7qmrjlp10m6rTnlrqrEDiiSi6TzgVtxd+aHAcfh77octIKK7IfbTquGeUCPEM7G3714NrzoW4lLmlDOiqYp1wxu+mUTSTsnIyXtAnQN6StahmpJ13Oty7kPf2HyIfyePB63nNHTmq/e2w9YHzdT01SuAI6WtHkzy17liC+iRspxBnCTmV2QiHtc0sCiBEqw1MzGhO9jJE3FX6bcH3ggnTm8L9TGzL40s2rMJa2sLMSNm/bHbeWV6I/b79upCKFKtFY9S/oF0AfY38xGJpIebu7sJ/Br4C4zW5Ioqy3emR6L29M7UtJ7wEAz+8pSSLDQMQp/D/D3LZBhlSHOgCLlaI8b/mxEcnRZWmaRdIikSZIWSRoVXmxsRFiCmShpsaQPJV0WHm4k1ePuH3olltbqmiBryf5a1wy53sZnBt2TaSnZ9pD0vKTPJM2T9IKkHRLpu0v6p6TPJX0q6RZJ3yknkKQekh6TNEPSwrC0c3Sy7pp5zcOBfqWGNnz2I8NWWktkCHUwInW+3iHPtsm6rFTPeeVI2l9Sg9xvUrKcTUL8wTl10Ct8PpdOaO7sJ8xcerK85Y2zcIvng/EZ1km4CZ4sawEP4rOg2LZWQZwBRcrxOu5aYCrwhJmlTfiX6IKbmr8YN/k/EPi7pC0suEyQtA++ZHIncA5uQuUS/CE+JXz/Ad7pnRbOO60JsnYNnzNTcYNwH00zgUyHcJJ6A//ATb8cj88ydgW+B7whaVfcBMwj+Ki7A/AX3MpFnzIydQFeBobgDfOuwFBJDWZ2L82/5odw6w+74bO+3YGOIT5tv2tFyZCkK5XrOa+cGcB0vN7rEvlPAGbh9v6yKNlavFzSlTWy1rFXOO+bqfhewHNmNigMrF42syk55xiNG/rdLuM8kTRFmgePYeUOeCfxPm4jrAE3YvpnYJ1EnvqQ3jMR1wW3CnxKIm4M8Hzq/OfixiQ3DscjgBeqkKsOdynQNoQt8c5jPu4ZNSlXt4zf15Nwi4AbNB1HjpNAvJFPy/6zcP5tq6xLBVlvwhuzUnxV15y87vD9UeD68P0G4JHw/ROgrhYyAC8AI1JxvZPX3cR6zivnUrzTUkLOKcAVZeqiM/BWKNuAf+EGP9duwf1+MxmuHUJ9fRjKrAe6ljlH23Dv/7K5cqxKIU4TI7mY2VvAj/AN3hvwhuFiYJzc7XiJWZZwOWw+Gh2PG48s7QvsyPJ7M/fhy8A9miFeB2BJCJNxNwdHmNmMRJ6PzGxCuZMEpYXuwB0WWpBU+ppBvvsltS0F3LXCEsrsuUhaT66R9UFC1gF4h9lShgN9JK2Oz8KyXBWsaBlKVKznCtyOD1p6h+M9w/HQvB+Y2UxgB9y47434zOoyYLSk1cDtyYUlxwlh2XdS+D5e7sY9TWeCA7wUl+Ezo//iz8LZYVacJddS3ABx5wrXHCHuAUUqYGaLzexxMzvDzLbGPX9uQWPPjrMyfjoL9wwJ7lLh27g74CSl4/WbIdo8YBdgZ2BjfFQ6MpUnXV4W6+Ed64wy6W3wDnhJIizGr+n7Zc5dDxyBL4vtE+S9HWhXhVyVeAxYG28c1wIeL0CGEtXUcy5m9j4+2zoxRJ2IG219u8LvlpnZ02Z2Gr68NxRf+uoR0u8ws2744Gcp7oa6m5ntZAklgwTt8P81Xc7UcN5D8RWB3YBRyn8dYTG1rd9vLHEPKNIkzOw2SYNwS98lOmVk7YQv2YGPKpdk5NswfDbH+vJSM6v0Lk81m9Fz8OXFjXLS5/K1+/QnM9KnZ/1IUjvgQOB0MxuSiK/JoM/MFkp6ArcW/oBl+J+qgQyLWN6J2noZ+Wph0fhW4Ba56v9hNFGLzMwaJD2Nd17pxn8LYI7l72GWmE3OzCV0WE/J3cTX4W5Crpb019BBJWlP8+7pVY44A4rkImm5jkVSR9y3UXLU20nuIK6U5wf4qHMs+EgVX5LrmzpdP7zxLznn+5JWHjmGhvtV4LiSVllG+hjcVfG4jJDZAQGr48/XVyPqoDWXfoeqJdd8Iz7zGZKT3lIZptF4oAE+i2ou5a71oZA+HJc5c0kRQNKGOUkH4U4AX03Fb091CgGTgeVcemTdF8Br4XP9VN6OwJq4X6BIBeIMKFKOiZIeBZ7Gl9S64C99fg7ckcj3CXC3pIv4WgtuFr78U+JPuGbcULxx2Q7XjLrFzEpaV5OAgyUdgjd+08s08LXkPFzLbaSkm/H1/h74BvoTuLLEs5Ia8I30BfiSzwHAhWa2XGNjZvMkvQb8UdJ8vKM9D186XCeRtdnXbGYv4EtXeektleFh4GRJV+PaaHtSnSPDPHKv1cwWSboHOB2418r7y7pf0gLgflxZoRNwNHAwvvmf/u32uMJCJV7G66qjmX2ciB8m6Q3gRXy5cyd85vkR7u8nyc74jHA0kcoUrQURw8ob8MbgaXyZaRH+sA8DfpjIU49rkB2Gj/oW4w/yctph+F7ERHykOw3fv2ibSN8Ab/RmE5a9cuSqI2iDlZG9noQGVqU0XNX2RbxznYtr1XVLpHcHnsI17RYC7+Cq5+uWkWFz4NmQfyrekTWSvdprbsJ1N9KCa6kMwPm4BtgC4G58lpHWgquqnitdK7B3iN+7wjWeFP6LaeFemo13kL1z8j8O9K/ifl8N91x6bCr+0FDeTLwTn493/DtknOMaUhqTMeSH6JAu0iLCC4bbmtnOlfJGIuUIe4v9gE3NXYbX6rxTgX3NLD1bycp7DbC5mR2Qk16Pd5xTMtLaAB8A55nZ3S0SehUhLsFFIpFCkbQVsDVuwmZgjTuf9fCXdKvdk7kc+I+kLS1jabUCffEl6Nz9q0hjohJCJBIpmpvwpd0ncXM3NcPM5pjZGuaKMNXkn4Yv8eVpRT6CL9FmIeBk83eBIlUQl+AikUgkUghxBhSJRCKRQogdUCQSiUQKIXZAkUgkEimE2AFFIpFIpBBiBxSJRCKRQogdUCQSiUQKIXZAkUgkEimE/wMP6CcJJ2HImAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -128,15 +138,36 @@ } ], "source": [ - "# plot probability distribution\n", + "#trained probability distribution\n", + "init_distribution = np.sqrt(init_dist.probabilities)\n", + "init_distribution = Custom(num_qubits=sum(num_qubits), state_vector=init_distribution)\n", + "var_form = RY(int(np.sum(num_qubits)), depth=1, initial_state=init_distribution,\n", + " entangler_map=entangler_map, entanglement_gate='cz')\n", + "g_circuit = UnivariateVariationalDistribution(int(sum(num_qubits)), var_form, g_params, low=bounds[0], high=bounds[1])\n", + "uncertainty_model = g_circuit\n", + "uncertainty_model.set_probabilities(QuantumInstance(BasicAer.get_backend('statevector_simulator')))\n", "x = uncertainty_model.values\n", "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15)\n", + "#target probability distribution\n", + "N = 100000\n", + "log_normal = np.random.lognormal(mean=1, sigma=1, size=N)\n", + "log_normal = np.round(log_normal)\n", + "log_normal = log_normal[log_normal <= 7]\n", + "\n", + "log_normal_samples = []\n", + "for i in range(8):\n", + " log_normal_samples += [np.sum(log_normal==i)]\n", + "log_normal_samples = np.array(log_normal_samples / sum(log_normal_samples))\n", + "\n", + "\n", + "plt.bar(x, y, width=0.2, label='trained distribution', color='royalblue')\n", + "plt.xticks(x, size=15, rotation=90)\n", "plt.yticks(size=15)\n", "plt.grid()\n", "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", "plt.ylabel('Probability ($\\%$)', size=15)\n", + "plt.plot(log_normal_samples,'-o', color ='deepskyblue', label='target distribution', linewidth=4, markersize=12)\n", + "plt.legend(loc='best')\n", "plt.show()" ] }, @@ -145,36 +176,44 @@ "metadata": {}, "source": [ "### Evaluate Expected Payoff\n", - "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function with Quantum Amplitude Estimation." + "Now, the trained uncertainty model can be used to evaluate the expectation value of the option's payoff function analytically and with Quantum Amplitude Estimation." ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Estimated value:\t1.2580\n", - "Probability: \t0.8785\n" + "Analytically calculated expected payoff w.r.t. the target distribution: 1.0585480647564538\n", + "Analytically calculated expected payoff w.r.t. the trained distribution: 0.980530833264945\n", + "Expected payoff calculated with Quantum Amplitude Estimation: \t1.2580\n", + "Probability: \t0.8785\n" ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEdCAYAAAAM1BBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl8VNX9//HXR1xoxKWiRP1WE+2v9qu0/bbFLrhBohVqKdZ9iSJu6aa1da1Q64rWrdZqXagK6jcaqxZ3xYVFEDfQFpVK+60QRCkKaiGkApLP749zR4Yhy8xkZu7c5P18PO5jMnfuzP1kCPOZe875nGPujoiIyAZxByAiIuVBCUFERAAlBBERiSghiIgIoIQgIiIRJQQREQGUEKQEzOwCM/O07V0zu9/MPh9jTHua2Stm9rGZebRvUzNrNLOlUZwj23nu+IzfJ7XdUtJfYm089Wb2gzb2zzezq+KISZJpw7gDkB7j38DQ6OedgYuBZ8ysv7uviCGem4H3gCHAymjfj4HvAyOAd4B/dvD8N4HjM/a9V+AYs1UPvA48kLH/IGBp6cORpFJCkFL5xN1fiH5+wcwWANOAA4B7Y4jnv4Gx7j41Y99cd78/i+evSPt9ypK7vxp3DJIsajKSuMyKbqsBzGygmT1kZovMbIWZ/cXM6lIHm9lWUfPOyPQXseAtM7smbV+tmb0YHb/YzG4wsz7RY4OjJqJewLVRU894M5sPnAh8LdUElO8vljqHmX0pY/8UM7sv7f54M5tpZt8xs9nR7z3dzPpnPK+XmZ1rZn83s5VmttDMxqdeExgAHJfWdDUyemy9JiMzO9zMXote520zG2NmG6Y9PjJ6jS+b2VNRTG+a2cH5vh+SHEoIEpfq6PZf0W0V8BzhQ/n7wP3AODM7CsDdPwAmACMzXmcwsBNwG0D0YfoEsAQ4BDgfOBpIfRC/AgyMfr46+vliQvPKY4SmoIFpx7TLzDZM37L6rde3I3AlMAY4CugH3GNmlnbMzcCFwJ+AYcAZQEX02E+imB9Li/vRduLdH7iH8B4cCFwHnAlc38bhdwEPEd6XfwCNZva5PH9HSQg1GUnJpH1o7gzcACwHngZw98a04wx4FvgccDJwd/TQrcCTZrazu78V7TsemOXur0X3zwOagOHuviZ6vQ8IH7ID3f15QpMVwPz0Zh8zex+ozLIpaACwOuP3+4K7/18Wz023FbCnu/8jeo0NCInvi8CbZvbfhCR5mrv/Pu159wC4+xwzWwG8n0XcFwFT3P246P4T0ftwmZld4u4L0469xt1TSXYWsJiQjG7K8feTBNEVgpRKX8IH6GpgLiEpHOHuiwDM7LNm9nsza0o7rh7YJe01niF82B8XPWczwlXAuLRjvglMSCWDyP3AJ8BeBfx9/gZ8I2N7O4/XmZ9KBpE50W3q23hNdDs+j9f+lJn1Ar7O+v019xA+BzKviJ5M/eDuSwkd5rpC6OZ0hSCl8m9gP8AJzUTv+rpT7Y4Hvk1ovpkDLCOM+jkwdYC7u5mNA04wswuAwwl9AXelvc52hG+zpD1vjZktJXwbL5QWd59ZgNf5KOP+qui2d3Tbl9CBvayL59ka2IiM9ybtfuZ701ZcvZFuTQlBSuWT9j5Azaw3oTnip+5+U9r+tq5gxxH6BWoI/QkPuPuHaY8vIrTDp79+L8IH6wdd+QVy8HF0u3HG/s8S+jZysRTY1Mw272JSWEK46uqXsb8yui3VeyNlTE1GUg42IfwtpuoBUs1BwzMPdPe3Cc0ZFxKagMZlHPIicFCUBFIOJnz5mV7YsNuVaovfNbXDzHYgDGvN1aTodkQHx3T67T1qQpsFHJbx0OFAK/B8HrFJN6MrBImdu//bzF4Gfm1mywgfUL8kNDNt3sZTbiW0hS8Ensp47BLgVeABM7uR0O59OTAx6lAuOndfaGYzgYvNrIWQ7EaRx7dwd59rZmOBq82sH6GzfUvgUHc/MjrsTWCImQ0hXFHMi9r9M50PTIya3RqBLxOa6P6Y0aEsPZSuEKRcHA28BdwBXEvoCL6jnWMfIXQS3+7urekPuPsbwHcJTSN/JiSIu4FDixN2u44CFgD/C1xKGOEzN8/X+gnhiugYwvDS3wEtaY9fQujk/hPwMmHY7nrc/UngSGB34GHg54Sht6fkGZd0M6YlNCVpzOwAQlLYJY9hniLSDiUESQwz2x74AqGgaoG7D4s5JJFuRU1GkiT1hFqEj4FTY45FpNvRFYKIiAC6QhARkYgSgoiIAAmrQ9h66629uro6r+euWLGCTTfdtLABFVGS4lWsxZOkeJMUKyQr3q7GOmvWrCXuvk2nB7p7YrYBAwZ4viZPnpz3c+OQpHgVa/EkKd4kxeqerHi7Gisw07P4jFWTkYiIAOpDEBGRSMkTQtoSfZnbj0odi4iIrBVnp3It8J+0+2+1d6CIiBRfnAnhZXdvjvH8IiKSRn0IIiLlqqEBqqsZVFsL1dXhfhHFmRD+aWafmNlcM/thjHGIiJSfhgaor4emJswdmprC/SImhTgSwiLgPOBYwrztLwA3mdkvYohFRKQ8jR4NLS3r7mtpCfuLpCwmtzOzewgLsG/jGQuemFk9YZZLKisrBzQ2NuZ1jubmZvr06dPVUEsmSfEq1uJJUrxJihXKP95BtbXhyiCDmzF10qQ2ntG+mpqaWe6+e6cHZlO9VuyNsM6rAzt3dJwqlcuTYi2eJMWbpFjdyzzeZcvce/d2h/W3qqqcX46EVSp7xq2ISM/03ntQUwMrV8LGG6/7WEUFjBlTtFOXS0I4FFgCNMUdiIhIbObNgz33hDlz4JFH4LbboKoKN4OqKhg7Furqinb6ktchmNn9wEvAbKAXcES0/cwz+g9ERHqMv/4Vhg4NVwbPPAMDB4b9dXVMnTKFwYMHFz2EOArT5gInADsABswBRrj7nTHEIiISv6lTYfhw2HzzkAx22y2WMEqeENx9FDCq1OcVESlLEybAUUfBzjvDxImwww6xhVIufQgiIj3PH/8Ihx4KX/saTJsWazIAJQQRkdJzh0suCZXHQ4bA009D375xR5WsJTRFRBKvtRVOOw2uvx6OPRZuvRU22ijuqABdIYiIlM7KlXD00SEZnHEGjB9fNskAdIUgIlIay5fDwQeH5qErr4Qzz4w7ovUoIYiIFNt778EBB8Bf/gK33w4jRsQdUZuUEEREimnevNBxvHAhPPggfO97cUfULiUEEZFiaa/6uEypU1lEpBiefRb22Qc23BCmTy/7ZABKCCIihffAA7D//rD99jBjRmxTUeRKCUFEpJBuuQUOOQS++tVwZRBz9XEulBBERArBPaxVcPLJoRP5mWfKovo4F+pUFhHpqvTq42OOCesYlFHBWbZ0hSAi0hWZ1ce3357IZAC6QhARyV969fEVV8BZZ8UdUZcoIYiI5OO990KR2auvhjmJjjsu7oi6TAlBRCRXCao+zoUSgohILmbPDslg5crQVLTHHnFHVDDqVBYRyVaq+rhXr7DCWTdKBqCEICKSnVT18Xbbherj/v3jjqjglBBERDqTWX28445xR1QUSggiIu3pBtXHuVCnsohIW1pb4ec/h+uuS3T1cS50hSAikmnVKqirC8ng9NMTXX2cC10hiIik62bVx7lQQhARSXn//bD2cTeqPs6FEoKICMD8+WFY6cKFYYjpsGFxR1RysfYhmNl/mVmzmbmZ9YkzFhHpwWbPDkVmS5aEpqIemAwg/k7lK4HmmGMQkZ4sVX28wQbdsvo4F7ElBDPbBxgKXBVXDCLSAzU0QHU1g2proV8/qK3t1tXHuYilD8HMegHXARcBH8URg4j0QA0NUF8PLS0YhE7kDTYIq5110+rjXMR1hfAjYBPgDzGdX0R6otGjoaVl3X2trfCb38QTT5kxdy/tCc36Av8AjnH3x8xsJDAO2Mzd1+tPMLN6oB6gsrJyQGNjY17nbW5upk+f5PRbJylexVo8SYo3CbEOqq3F2vjMczOmTpoUQ0TZ6ep7W1NTM8vdd+/0QHcv6QbcBDyWdn8k4ECfzp47YMAAz9fkyZPzfm4ckhSvYi2eJMVb9rGuXOleUeEeZihad6uqiju6DnX1vQVmehafzyXtQzCz/sAJwD5mtmW0uyK63cLM1rj7f0oZk4j0AMuXh9lKW1rCFBSrV699rKIiTGAnJe9D+AKwEfA88GG0pfoRFhI6mkVECuf998NIokmTYNy4sFVV4WZQVQVjx4Z5i6Tko4ymAzUZ+4YC5wAHAG+VOB4R6c7aqz6uq2PqlCkMHjw4zujKTkkTgrsvAaak7zOz6ujHad5Gp7KISF5mz4ahQ+Hjj7vd2sfFEnelsohI4U2bpurjPMSeENx9vLubrg5EpCAefBC+8x3YdltVH+co9oQgIlIwt9wS1jLo5msfF4sSgogknztcemlY+3j//cPax1tvHXdUiaOEICLJllr7ePToMHz0oYdg003jjiqRlBBEJLlSax///vfwi1/AHXf0iLWPi0UrpolIMqWqj596Ci6/PKx9bBZ3VImmhCAiyZO+9vG4cTByZNwRdQtKCCKSLPPnw5Ah8PbbPXbt42JRQhCR5EhVH//nP6o+LgJ1KotIMqRXH0+frmRQBEoIIlL+Hnww1Beo+riolBBEpLzdemuoPv7KV1R9XGRKCCJSntzhssvgpJPC3ESTJqn6uMiUEESk/KSqj0eNUvVxCSkhiEh5WbUKjjlm3erjjTeOO6oeQcNORaR8NDeH6uMnn4Tf/AbOPlvVxyWkhCAi5eH99+F734NXXoHbboPjj487oh5HCUFE4peqPl6wACZMgO9/P+6IeiQlBBGJ12uvherjlpZQfbznnnFH1GOpU1lE4jNtGuy999qflQxipYQgIvF46KF1q4+/9KW4I+rxlBBEpPRuvRUOOmht9XFVVdwRCUoIIlJKmdXHWvu4rCghiEhptLaGQrNRo+Doo0OTUZ8+cUclaZQQRKT4UtXH114bpqS4805VH5chDTsVkeJS9XFiKCGISPGo+jhRStpkZGaHmtkMM1tqZh+b2Vwz+5WZ6dpRpLtpaoK99gqFZxMmKBkkQKmvEPoCk4ArgY+AbwIXANsCp5Q4FhEpFlUfJ1JJE4K735yxa7KZbQ781MxOdXcvZTwiUgTTp4e5iCoqQvWxCs4SoxxGGS0F1GQkklQNDVBdzaDaWujXD2pqoLJS1ccJ1GlCMLMRZta3kCc1s15mVmFmewE/A27U1YFIAjU0QH09NDVh7qETObXamaqPEyebK4RxwOcBzGyNmX2zAOddEW3TgKnAWQV4TREptdGjQz9ButbWMLxUEsc6+2JuZkuAk9z9ATNrBb7l7i936aRmXwcqCJ3KvwbucveftHNsPVAPUFlZOaCxsTGvczY3N9MnQVWRSYpXsRZPucc7qLY2XBlkcDOmTpoUQ0TZK/f3Nl1XY62pqZnl7rt3eqC7d7gBjcByYCawBngDeKm9rbPXa+P1RwAOfL6zYwcMGOD5mjx5ct7PjUOS4lWsxVPW8a5c6V5R4R5mKFp3q6qKO7pOlfV7m6GrsQIzPYvP42xGGZ0A/AT4IvB1YB7wfg7JqTOvRLc7Af8s4OuKSLGkqo9bWmCjjWD16rWPVVTAmDHxxSZ56zQhuHsLcBWAme0HjHb3vxYwhtQA5XkFfE0RKZbM6uONN4bRo/EFC7AddwzJoK4u7iglD50mBDNbA3zbQ7/BFGBZviczsyeApwnNTmsIyeAM4B5319WBSLlragqL2mSufVxXx9QpUxg8eHCs4UnXZNNktArYJPp5BHAj+X+bfxkYCVQDnwBvAecCN+X5eiJSKq+/DkOGhGaip54K01JIt5JNQpgDXGBmDwAGHGpm7fVWu7vf2N4Luft5wHm5hykisVL1cY+QTUI4FbgZuIYwGujMDo51whWEiHQXDz8Mhx8eCs0mTlTBWTfWaWGau89w9y+7+0aEK4Rvu/sG7Wy9ih+yiJTMbbeFtY+//GWtfdwD5DqXUQ2hCUlEujP3UG184omw774waZLWPu4Bcprt1N2nApjZt4C9gK2AD4Dp7v5i4cMTkZJrbYUzzoDf/Q6OOgrGj9dylz1ETgnBzDYF7gWGEIaNLiWscdArGlJ6WFS3ICJJtGpVWMjmrrvgtNPgt7+FDcphUmQphVz/pa8ABgJHAr3dfTugd3R/IHB5YcMTkZJpbobhw0MyuOwyuOYaJYMeJtcFcg4BznH3e1M73L0VuNfMPgtcRBiVJCJJsmRJqD6eORNuvRVOOCHuiCQGuSaELYC323nsbWDzroUjIiXX1BQKzpqaQvXx8OFxRyQxyfV68K/Aj83M0ndG938cPS4iSfH667DHHrB4cag+VjLo0XK9QhgFPA68aWYTgMVAP+AgwnQU3y1odCJSPOnVx88+G2oNpEfLddjppGhxm/OAw4DtgEXAi8DB7q4aBZEkSFUf77gjPPmkCs4EyP0KAXd/gzCqSESSaNw4OPlk+PrX4dFHYZtt4o5IykROfQhmdrWZ7VasYESkiFLVxyecsLb6WMlA0uTaqXwQ8JqZvWRmPzKzLYoRlIgUWGsrnH46nHtuqD5++GFIyHrCUjo5JQR33xnYD3iTsIraIjO7K1pJTUTK0apVcOyxYSqK006D//1fTUUhbcq5DNHdJ7v7CGBbQhHa54CJZtZkZhea2c6FDlJE8qTqY8lB3n8Z7t7s7rcC5wPPATsQVj/7u5k9aGYatiASpyVLQl/BU0/BLbfAL38J65YQiawjr4RgZtVmdr6ZvQU8CTQThqFuBgwn1CQ0FipIEclRU1NY4nL27FB9fOKJcUckCZDrbKcjCGsi7wMsAMYB49x9Ydphj5nZCuDpQgUpIjl4/XUYOhRWrAg1BnvvHXdEkhC51iHcDEwAhrj7Mx0c93fgkryjEpH8PPccDBum6mPJS64JYXt3/7Czg9x9EXBhfiGJSF7Sq48nToTq6rgjkoTJddhpp8lARGIwbty6ax8rGUgecu5UNrMjzOxpM1tgZu9lbsUIUkTa4Q6XX67qYymIXKeuOBq4Hfg/Qv3BQ8Aj0essA64vdIAi0o7U2se//KWqj6Ugcr1COAu4GPhpdP8Gdz8B2AlYAmg9ZZFSWLUKRowIhWY/+5mqj6Ugck0IXwCec/c1wBqiFdLcfTlhPeVTChueiKwnVX3c0ACXXhqmpFD1sRRArn9Fy4BNop/fAXZNe8yAvoUISkTakVl9fO65qj6Wgsl12OnLwFeAiYT+g1+b2SfAKuDXwAsdPdnMDgOOBQYQ1meeC1zl7nfnGIdIz5O+9vGf/wwHHhh3RNLN5JoQLgNScxT9Ovr5RsKVxsvADzt5/unAPOAXhD6HA4C7zGxrd78ux1hEeo433gjJoLlZ1cdSNFklBDP7DOHDuxr4l5lVuvti4EAz2wTYxN2XZfFS33f3JWn3J5nZ9oREoYQgktLQAKNHM2jBAujXD5Ytgy23hGnTVH0sRdNpQoims36akAxSlpnZ4e7+pLuvBFZmc7KMZJDyKnBINs8X6REaGqC+HlpaMIDFi0M/wdlnKxlIUWXTqXwF0ArsDVQA/Qkf4jcXKIaBhLmPRARg9GhoyRjB7R5GE4kUkbl7xweYvQOc4e6Naft2Af4GfC6atyi/k5vtCzwFnODu49s5ph6oB6isrBzQ2JjfrNrNzc30SVDRTpLiVayFNai2Fmvj/6WbMXXSpBgiyk4S3tt0SYq3q7HW1NTMcvfdOz3Q3TvcCFcH38zY1yva/7XOnt/B61YDi4EJ2T5nwIABnq/Jkyfn/dw4JClexVpAa9a4b7aZe7gmWHerqoo7ug6V/XubIUnxdjVWYKZn8RmbbR1Cx5cROTKzrYDHgSagrpCvLZJYqerj5cthw4zuvYoKGDMmnrikx8h22OnEqN4g0zOZ+929X0cvZGYVhPmPNgaGubumuxBZsQIOOSRMW33ppWEK69Gj8QULsB13DMmgTt+dpLiySQgFW9fAzDYE7iVMgbGHu2t2VJElS+B734OZM+GPf4STTgr76+qYOmUKgwcPjjU86Tk6TQjuXsiFbm4g1DOcBvQ1s/SpLl71MIRVpOdYsAD231/Vx1IWcq1U7qr9o9tr23hsJ2B+6UIRiZmqj6XMlDQhuHt1Kc8nUrZmzAhrH/fuHdY+/spX4o5IJPcV00Skix55BPbbL6xsNmOGkoGUDSUEkVIaPx5+8APo319rH0vZUUIQKQV3uOIKOP54qK3V2sdSlpQQRIqttRXOPBPOOQeOPDI0GW22WdxRiayn1KOMRHqW1avhhBPCmsennqrlLqWsKSGIFMuKFXDoofDEE6HSWMtdSplTQhAphqVLQ/Xxyy+vW30sUsaUEEQKbcGCUHA2bx7cf38YVSSSAEoIIoWUWX28zz5xRySSNfVuiRTKjBlh+onW1lB9rGQgCaOEIFIIjz4aqo+33hqee07Vx5JISggiXXX77WGW0v79QzLYaae4IxLJixKCSFdceSWMHAk1Nao+lsRTQhDJR6r6+OyzQ/Xxo4+q+lgST6OMRHKl6mPpppQQRHKh6mPpxpQQRLKl6mPp5pQQRLKh6mPpAZQQRDrzxhswdCgsX67qY+nW1BMm0pFU9fEnn6j6WLo9JQSR9qRXH2vtY+kBlBBE2pKqPt5tt7D2saqPpQdQQhDJlF59PHky9OsXd0QiJaGEIJKSXn18xBGqPpYeR6OMRCBUH594Itx5p6qPpcdSQhBZsQIOOwwefxwuuQRGjVL1sfRIJf8KZGb/z8xuNrPZZrbGzKaUOgaRTy1dCvvuCxMnwtixMHq0koH0WHFcIfQHDgBeADaK4fwigaqPRdYRR0J42N0fBDCz+4CtY4hBero5c0IyUPWxyKdK3mTk7q2lPqcIDQ1QXc2g2lrYdlv4xjdUfSySQZ3K0v01NEB9PbS0YACLF4d+gjFjVH0skkbj6qT7Gz0aWlrW3ecehpaKyKfM3eM7edSH4O6DOzimHqgHqKysHNDY2JjXuZqbm+nTp09ez41DkuIt91gH1dZibfyduxlTJ02KIaLslft7my5JsUKy4u1qrDU1NbPcffdOD3T32DbgPmBKtscPGDDA8zV58uS8nxuHJMVb1rGuWeO+2Wbu4Zpg3a2qKu7oOlXW722GJMXqnqx4uxorMNOz+IxVk5F0X6tXhzmJli+HDTO6yyoqQh+CiHxKCUG6pxUrQl3BnXeG6uPx46GqCjeDqqpQhFZXF3eUImWl5KOMzKyCUJgG8F/A5mZ2aHT/MXdvafuZIllauhSGDYOXXgof/CefHPbX1TF1yhQGDx4ca3gi5SqOYaf9gHsz9qXu7wTML2k00r28/XYoOHvrLbjvPjjooLgjEkmMkicEd58PaLIYKbxU9fGyZWFuokGD4o5IJFHUhyDdw/PPw157ra0+VjIQyZkSgiTfo4+GGUv79g1rH//P/8QdkUgiKSFIst1xx9q1j597Tmsfi3SBEoIk11VXwXHHweDBWvtYpACUECR5WlvhrLPCprWPRQpGs51KsqxeDSedFJqKTjkFrr1Wax+LFIgSgiTHihVw+OHw2GNw8cVa7lKkwJQQJBnaqz4WkYJRQpDyp+pjkZJQQpDypupjkZJRb5yUr+efh733VvWxSIkoIUh5euyxUH281Vah4EzVxyJFp4Qg5eeOO2D4cNh115AMdt457ohEegQlBCkvqj4WiY0SgpSH9Orjww8P1cebbx53VCI9ikYZSfxUfSxSFpQQJF6qPhYpG0oIEp/06uObb4b6+rgjEunRlBAkHunVx/feCwcfHHdEIj2eEoKU3t/+Bvvvr+pjkTKjnjspLa19LFK2lBCkdFR9LFLWlBCkNO68c2318fTpqj4WKUNKCFJ8V18NI0aE5qHJk6GyMu6IRKQNSghSPO5w9tlw5plw2GGhyUjVxyJlSwlBimP1ajj+eLjySvjpT+Huu2GTTeKOSkQ6oGGnUngtLWvnI7roIvjVr1R9LJIAJb9CMLPdzOwZM2sxs3fN7CIz61XqOKRIPvgA9tsPHn88VB+fd56SgUhClPQKwcw+CzwNzAEOBD4PXE1ITL8qZSxSBKo+Fkm0Ul8h/Aj4DHCwuz/l7jcBFwKnm1lxehsbGqC6mkG1tVBdHe6XsyTFmx7r9tuHuoJ33oEnnlAyEEmgUieE7wIT3X1Z2r5GQpIofMlqQ0OYMK2pCXOHpqZwv1w/ZJMUb2asixbBhx/COeeExW1EJHFK3an838Ck9B3uvsDMWqLHHi7o2UaPDh2c6Vpawpz7775b0FMVxKWXJifetmIFGDsWRo0qfTwi0mXm7qU7mdlq4Cx3/13G/oXAHe6+3ieJmdUD9QCVlZUDGhsbsz7foNra8O1VSsbNmDppUucHxqS5uZk+ffrEHUbWkhRvkmKFZMXb1VhrampmufvunR1X9sNO3X0sMBZg991398G5NEfsuGNodsm0ww5hxs1ys+uuoWM2UznG206stuOO5PRvVGJTpkwp6/gyJSneJMUKyYq3VLGWOiF8CGzRxv7PRo8V1pgxoZ07vWmjogIuuww23bTgp+uyyy5LTrztxTpmTHwxiUiXlLpT+U1CX8GnzGwHoCJ6rLDq6kKbdlUVbgZVVeF+XV3BT1UQSYo3SbGKSFZKnRAeB4aY2WZp+44A/gNMLcoZ6+pg/vzQrj1/fvl/YCUp3iTFKiKdKnVCuAlYCfzZzPaLOowvAH6bMRRVRERKrKR9CO7+oZntC1xPGGL6EXANISmIiEiMSj7KyN3nALWlPq+IiHRM01+LiAighCAiIpGSVip3lZm9D7RRaZaVrYElBQyn2JIUr2ItniTFm6RYIVnxdjXWKnffprODEpUQusLMZmZTul0ukhSvYi2eJMWbpFghWfGWKlY1GYmICKCEICIikZ6UEMbGHUCOkhSvYi2eJMWbpFghWfGWJNYe04cgIiId60lXCCIi0gElBBERAZQQREQkooQgUqbMrLeZjTWzL8Qdi/QM3bJT2cz6AIMIi/F8Ntr9IWERnqnu3hxXbPkws95AP3dfEHcsnTGzjYDtyjVWM9sJ2AmY5+7zyiCeig4e3hJ4G/guMB3A3Vs6OD5WZlYNuLvnO5tASZhZDbAb0Ar81d1nxBwSAGb2LeBld2+NMnybAAAIhElEQVSNLQh37zYbYMBFQDPhH7uZ8B/q7Yx9FxIlwyRswCHAmjKI46fAPwkLGv0VOLaNY74Vd6zARsDvgQ+if+8rov1/ANZEfwdrgAagV8yxrulka02/XwZ/A/XA1hn7TgPeT4tzMfCTMoj1auCStPvbAc9H7+nHhLVZ1gBPAFuUQbyt0Xt3PbBnHDGUfPrrIrsAOJ3wgd/o7uusAm9mnwOOBM4HHK3DkDUzOxK4DrgbeBXYAxhvZgcCx7j7x3HGl+Fs4CTgt4SkcKqZbQP8ABgJvALsBVwF/BC4IZ4wgZBcl0WxLM14bFPCh8MVFGOJ2fzcCPyFaF6daJGra4A/AfcR/l8dBlxnZh+5+11xBQocDpyTdv96QlIYRHTFFf18B+Fv5cSSRte2vwBHAT82s4XAPYTPsldKcva4s2KBM+w7QH0Wx9UD75RBvJOy3F4j/m/dM4m+aaft2xf4F+FbV99oXzlcIbwJnJV2fy/Ct6+fZxx3ITAz5li3B+4ifMCeStoVC7BFFPc+ccaYEW8r8M2M93pcG8fdSWj+iDPWj4G90+6vAA5r47ijgaXl8t4SrnCHR38XywlXMXMJX2S/WMwYulun8paEJo3O/DM6Nm77AJWEb4YdbcvjCjDNF4HH0ne4+zPAtwnv5fNmtnMcgbWhCngp7f6s6PaljOOmA7HG7O7vuvvRwMGEb6ivmdmQOGPK0eeBxjb2NxLa6eO0gPB3m/IJ4Wos0zJg45JElAV3X+3uD0V/F/0ICWsO8Etgjpm9YmZnFePc3a3J6AXgbDN7wd1XtHWAmW1KuIx8vqSRte0N4E13P6Kjg8zsUMKlY5z+TZiCdx3uPt/M9gAeJbynF5c6sDasYN2EvzLaMjtke1Em/wfc/Vkz+zrwY+AuM5tBebyXbemd1hm+lPANNtMaQvNRnG4DLjCzae4+l9A0NNrMXnT3jwDMbCtgFDA1xjjb5e7/Ifzfv8fMNid8cTgSuAS4stDnK4v/DAV0CvA0sMDMJhIuZz+KHtuCMOpoCOHDYd9YIlzXC8DQLI5zQod5nGYR2uDvy3zA166VfR+hMzfuD4K5wADgQQAPozY+08Zx/YH5pQurY1GcfzCzRmAMMI3438u2TE772QjNHE9nHPMVwmCOOF0JfAmYbWaTgL8DXyV8PrxGiP3LhKR2TGxRZsndlwHjCX13fYtxjm437NTMtiR8yxpK28NOHwduSn1DiJOZfR7o7+4PdXLcZwjDTmMbzmdmhwG/AIa5+wftHNOL0On4HXffqZTxZcRxCKFPo8MJwczsceAldz+/NJHlxsx2A74ATGvvPS81Mzuujd2L3P3JjOPuI1z9/qo0kbXPzIYCxxP6t7YlJIIPgb8BjwBj3T32Zlkzmwz82N1jG0DQ7RKCiIjkp7t1KouISJ6UEEREBFBCkIQys5FmNsvMlpvZh2b2qpn9tkjn2sXMLoj6pzo79gIz87TtXTO7P+ov6uy5I6Pn9ClM5CK5UUKQxDGzc4FbgImEYXgjCCOKhhfplLsQioKyrV35NzAw2s4kjGx5Jhry3JFHo+eU7XxF0r11t2Gn0jOcAtzs7qPS9j1sZhfGFVCGT9z9hejnF8xsAWEI6QHAvZkHR6Ozern7+4Q5gURioSsESaItCVNmrMPThsyZWXXU/HK0md0ZNS29Z2brDTE1s1oze9HMPjazxWZ2Q6rZxswGAw9Hh86LXnN+jvGmKqWro9ccb2YzzewHZvYGYYqFb7XVZGRmnzGzK8ysycxWmtk8M7ssI/6TzOyN6PEmMzs7x/hEAF0hSDK9QpiwbgHwiLtnTgqX7krCWPNDCVOFnG9mS9z9DwBm1p8w2+VThFlldwB+Q5jSYmh0rjMJk88dDCwiFDbmojq6/VfGvisIs/P+C5hHmAbiU2ZmhKawgYSq5VnAfwF7px1zFnBp9FpTCAV5F5tZi7tfn2Oc0tPFPaGTNm25boQq2LcIVbythClALgI2TzumOnr8yYzn/pEwCeIG0f1G4B+sO6nc4dFzB0b3h0X3q7OI7QLCRHUbRtsuhMreZYR1IiBUmzrw1Yznjoz294nuD4nuD2/nXJsTpvc+P2N/KsnEOrW3tuRtajKSxHH32cCuhE7kGwiVp+cBM9sYoTMh4/6fCTOMfi66/01ggrunz8dzP2EitL3yDLEvsDra5hKuNo5w90Vpx7zj7n/p5HVqgQ+8/Ur2gYQpsu81sw1TG2GG3ErW/o4iWVGTkSSSu68ktO0/DGBmJxJGHp0IXJt26HsZT03d344wG+Z2hEVJ0l97jZktBbbKM7x/A/sRvt3/C3jX3TOnBFi83rPW15fQRNWe1GSDb7Tz+A5AWa9eJuVFCUG6BXe/1cyuIMxfla5fO/cXpd2uc0w06qcvYXGdfHzi7jM7OSabOWOWEhJWe1LxDaPtBDM3i3OIfEpNRpI4Zpb5IU+0ItoWrP/BeFDG/VTH8MLo/ovAQVESSD9mQ9auqrUquu3dhbDz8QywlZkNa+fx5wkrrm3v7jPb2GKfsE2SRVcIkkSvmdmDwJOEJqAqwkigFuD2jGP7m9nNhH6BfQhNSqf52oXMLyEsCfqAmd1IaHe/HJjo7qk1M1LftH8YTU3d4u6vFedXW8dThOK7u8zsIsKIp+0IK6j90N0/MrMLgGvNrAp4lvAlbxegxt0zk6FIh5QQJIkuAg4krL2wFaGdfgah43ZexrFnE5pU7ieM97+YsLYuAO7+hpl9lzB088+E0UB3R89LHdNkZmcCPyMsc7mQtUNJi8bd3cwOimL+ObAN8C5hacXUMVeY2buEqcnPIPyOfyf+BZUkgTT9tXRLZlZNGNv/fXd/JN5oRJJBfQgiIgIoIYiISERNRiIiAugKQUREIkoIIiICKCGIiEhECUFERAAlBBERiSghiIgIAP8f+UDAfdfb52gAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" } ], "source": [ - "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price = 2\n", - "\n", - "# set the approximation scaling for the payoff function\n", - "c_approx = 0.25\n", + "payoff = np.array([0,0,0,1,2,3,4,5])\n", + "ep = np.dot(log_normal_samples, payoff)\n", + "print(\"Analytically calculated expected payoff w.r.t. the target distribution: \", ep)\n", + "ep_trained = np.dot(y, payoff)\n", + "print(\"Analytically calculated expected payoff w.r.t. the trained distribution: \", ep_trained)\n", "\n", - "# construct circuit factory for payoff function\n", - "european_call = EuropeanCallExpectedValue(\n", - " uncertainty_model,\n", - " strike_price=strike_price,\n", - " c_approx=c_approx\n", - ")\n", "# set number of evaluation qubits (samples)\n", "m = 5\n", "\n", @@ -182,8 +221,20 @@ "ae = AmplitudeEstimation(m, european_call)\n", "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" + "print('Expected payoff calculated with Quantum Amplitude Estimation: \\t%.4f' % result['estimation'])\n", + "print('Probability: \\t%.4f' % result['max_probability'])\n", + "\n", + "# plot exact payoff function (evaluated on the grid of the trained uncertainty model)\n", + "x = uncertainty_model.values\n", + "y_strike = np.maximum(0, x - strike_price)\n", + "plt.plot(x, y_strike, 'ro-')\n", + "plt.grid()\n", + "plt.title('Payoff Function', size=15)\n", + "plt.xlabel('Spot Price', size=15)\n", + "plt.ylabel('Payoff', size=15)\n", + "plt.xticks(x, size=15, rotation=90)\n", + "plt.yticks(size=15)\n", + "plt.show()" ] }, { diff --git a/qiskit/finance/simulation/option_pricing.ipynb b/qiskit/finance/simulation/option_pricing.ipynb index 5d794b071..a5078cd69 100644 --- a/qiskit/finance/simulation/option_pricing.ipynb +++ b/qiskit/finance/simulation/option_pricing.ipynb @@ -53,7 +53,10 @@ "More examples on option pricing with a quantum computer can be found in the [Qiskit Finance Community](../../../community/finance/index.ipynb) section of the Qiskit Tutorials.\n", "\n", "All examples illustrate how to use the genereric Qiskit Finance framework to construct QAE-operators (uncertainty problems). The same framework can be easily adjusted to estimate risk as well, for instance, the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also known as Expected Shortfall). How to use Qiskit Finance for risk analysis is illustrated in the following tutorial:\n", - "Credit Risk Analysis." + "Credit Risk Analysis.\n", + "\n", + "An example of how quantum Generative Adversarial Networks (qGANs) can be used to learn and efficiently load generic random distributions for option pricing can be found here:\n", + "QGANs to learn and load random distributions for option pricing" ] }, { From 8b87790898ae381ba1782f0d364e1fa7177fae04 Mon Sep 17 00:00:00 2001 From: Jakub Marecek Date: Fri, 3 May 2019 11:53:43 +0100 Subject: [PATCH 112/116] Edits --- .../portfolio_diversification.ipynb | 46 +++++++++++++------ qiskit/optimization/vehicle_routing.ipynb | 12 +++-- 2 files changed, 40 insertions(+), 18 deletions(-) diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index 5da6c4eff..c8139dd31 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -7,13 +7,20 @@ "" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "markdown", "metadata": {}, "source": [ "# _*Qiskit Finance: Portfolio diversification*_\n", "\n", - "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", + "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorials.\n", "\n", "***\n", "### Contributors\n", @@ -25,10 +32,10 @@ "\n", "## Introduction \n", "\n", - "In asset management, there are broadly two approaches: active and passive investment management. Within passive investment management, there are index-tracking funds and there are approaches based on portfolio diversification, which aim at representing a portfolio with large number of assets by a smaller number of representative stocks.\n", + "In asset management, there are broadly two approaches: active and passive investment management. Within passive investment management, there are index-tracking funds and there are approaches based on portfolio diversification, which aim at representing a portfolio with large number of assets by a smaller number of representative assets.\n", "This notebook illustrates a portfolio diversification problem, which has recently become popular for two reasons:\n", "1. it makes it possible to mimick the performance of an index (or a similarly large set of assets) with a limited budget, at limited transaction costs. That is: traditional index-tracking may purchase all assets in the index, ideally with the same weights as in the index. This may be impractical for a number of reasons: the total of even a single round lot per asset may amount to more than the assets under management, the large scale of the index-tracking problem with integrality constraints may render the optimisation problem difficult, and the transaction costs of the frequent rebalancing to adjust the positions to the weights in the index may render the approach expensive. Thus, a popular approach is to select a portfolio of $q$ assets that represent the market with $n$ assets, where $q$ is significantly smaller than $n$, but where the portfolio replicates the behaviour of the underlying market. To determine how to group assets into $q$ clusters and how to determine which $q$ assets should represent the $q$ clusters amounts to solving a large-scale optimization problem. In the following we describe the mathematical model for the portfolio diversification problem as introduced in [Cornuejols & Tutuncu, 2006] \n", - "2. it allows for similarity measures between time-series beyond the covariance matrix. Notice that traditionally, modern portfolio theory considers the covariance matrix as measure of similarity between the assets. As such, however, covariance matrix is imperfect. Consider, for instance, a company listed both in London and New York. Although both listings should be very similar, only parts of the time series of the prices of the two listings will overlap, because of the partial overlap of the times the markets open. Instead of covariance, one can consider, for example, dynamic time warping of [Berndt and Clifford, 1994] as a measure of similarity between two time series, which allows for the fact that for some time periods, the data are captured by only one of the time series, while for others, both time series exhibit the similarity due to the parallel evolution of the stock price.\n", + "2. it allows for similarity measures between time-series beyond the covariance matrix. Notice that traditionally, modern portfolio theory considers the covariance matrix as measure of similarity between the assets. As such, however, covariance matrix is imperfect. Consider, for instance, a company listed both in London and New York. Although both listings should be very similar, only parts of the time series of the prices of the two listings will overlap, because of the partial overlap of the times the markets open. Instead of covariance, one can consider, for example, dynamic time warping of [Berndt and Clifford, 1994] as a measure of similarity between two time series, which allows for the fact that for some time periods, the data are captured by only one of the time series, while for others, both time series exhibit the similarity due to the parallel evolution of the asset price.\n", "\n", "The overall workflow we demonstrate comprises:\n", "\n", @@ -50,10 +57,10 @@ "As discussed in [Cornuejols & Tutuncu, 2006], we describe a mathematical model that clusters assets into groups of similar ones and selects one representative asset from each group to be included in the index fund portfolio. The model is based on the following data, which we will discuss in more detail later:\n", "\n", "$$\n", - "\\rho_{ij} = \\textrm{similarity}\\, \\textrm{between}\\, \\textrm{stock}\\, i \\, \\textrm{and}\\, \\textrm{stock}\\, j.\n", + "\\rho_{ij} = \\textrm{similarity}\\, \\textrm{between}\\, \\textrm{asset}\\, i \\, \\textrm{and}\\, \\textrm{asset}\\, j.\n", "$$\n", "\n", - "For example, $\\rho_{ii} = 1$, $\\rho_{ij} \\leq 1$ for $i \\neq j$ and $\\rho_{ij}$ is larger for more similar stocks. An example of this is the correlation between the returns of stocks $i$ and $j$. But one could choose other similarity indices $\\rho_{ij}$.\n", + "For example, $\\rho_{ii} = 1$, $\\rho_{ij} \\leq 1$ for $i \\neq j$ and $\\rho_{ij}$ is larger for more similar assets. An example of this is the correlation between the returns of asset $i$ and $j$. But one could choose other similarity indices $\\rho_{ij}$.\n", "\n", "The problem that we are interested in solving is:\n", "\n", @@ -81,9 +88,9 @@ "\\quad x_{ij}, y_j \\in\\{0,1\\}, \\,\\textrm{ for }\\, i = 1,\\ldots, n; \\, j = 1,\\ldots, n.\n", "$$\n", "\n", - "The variables $y_j$ describe which stocks $j$ are in the index fund ($y_j = 1$ if $j$ is selected in the fund, $0$ otherwise). For each stock $i = 1,\\dots,n$, the variable $x_{ij}$ indicates which stock $j$ in the index fund is most similar to $i$ ($x_{ij} = 1$ if $j$ is the most similar stock in the index fund, $0$ otherwise).\n", + "The variables $y_j$ describe which assets $j$ are in the index fund ($y_j = 1$ if $j$ is selected in the fund, $0$ otherwise). For each asset $i = 1,\\dots,n$, the variable $x_{ij}$ indicates which asset $j$ in the index fund is most similar to $i$ ($x_{ij} = 1$ if $j$ is the most similar asset in the index fund, $0$ otherwise).\n", "\n", - "The first constraint selects $q$ stocks in the fund. The second constraint imposes that each stock $i$ has exactly one representative stock $j$ in the fund. The third and fourth constraints guarantee that stock $i$ can be represented by stock $j$ only if $j$ is in the fund. The objective of the model maximizes the similarity between the $n$ stocks and their representatives in the fund. Different cost functions can also be considered. \n", + "The first constraint selects $q$ assets in the fund. The second constraint imposes that each asset $i$ has exactly one representative asset $j$ in the fund. The third and fourth constraints guarantee that asset $i$ can be represented by asset $j$ only if $j$ is in the fund. The objective of the model maximizes the similarity between the $n$ asset and their representatives in the fund. Different cost functions can also be considered. \n", "\n", "Let us concatenate the decision variables in one vector \n", "\n", @@ -233,7 +240,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Next, we download price data for two stocks and compute their pair-wise similarity matrix (dynamic time warping distance normalised to (0,1] by taking the reciprocal). If this fails, e.g., due to your being offline or exeeding the daily limit for accesses to the stock-market data, we consider a constant matrix instead." + "Next, we download price data for two assets and compute their pair-wise similarity matrix (dynamic time warping distance normalised to (0,1] by taking the reciprocal). If this fails, e.g., due to your being offline or exeeding the daily limit for accesses to the stock-market data, we consider a constant matrix instead." ] }, { @@ -265,7 +272,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Now we decide on the number of clusters. This has to be smaller than the number of stocks we have loaded." + "Now we decide on the number of clusters. This has to be smaller than the number of assets we have loaded." ] }, { @@ -433,7 +440,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Solution shows the selected stocks via the stars and in green the links (via similarities) with other stocks that are represented in the fund by the linked stock. " + "Solution shows the selected assets via the stars and in green the links (via similarities) with other assets that are represented in the fund by the linked asset. " ] }, { @@ -677,15 +684,26 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Solution shows the selected stocks via the stars and in green the links (via similarities) with other stocks that are represented in the fund by the linked stock. Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian, though. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the ILP. While for some small instances, as above, we can find optimal solutions of the QP formulation which coincide with optima of the ILP, finding optimal solutions of the ILP is harder than finding local optima of the QP formulation, in general. Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). " + "The plot shows the selected assets with stars; in green, it shows the links with other assets that are represented in the portfolio by the starred asset.\n", + "\n", + "Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the integer programming problem. While for some small instances, as above, we can find optimal solutions of the QP formulation that coincide with optima of the integer programming problem, finding optimal solutions of the integer programming problem is harder than finding local optima of the quadratic programming formulation, in general. \n", + "\n", + "Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). Beyond VQE, one can show convergence to the global optiam using the phase estimation approach. One can, indeed, start by using VQE and moving to phase estimation subsequently, cf. https://github.com/Qiskit/qiskit-tutorials/blob/master/community/aqua/general/vqe2iqpe.ipynb" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -697,7 +715,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.2" } }, "nbformat": 4, diff --git a/qiskit/optimization/vehicle_routing.ipynb b/qiskit/optimization/vehicle_routing.ipynb index f602e8f68..fb1d64fd4 100644 --- a/qiskit/optimization/vehicle_routing.ipynb +++ b/qiskit/optimization/vehicle_routing.ipynb @@ -873,7 +873,11 @@ "source": [ "The plots present the depot with a star and the selected routes for the vehicles with arrows. Note that in this particular case, we can find the optimal solution of the QP formulation, which happens to coincide with the optimal solution of the ILP.\n", "\n", - "Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian, though. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the ILP. While for some small instances, as above, we can find optimal solutions of the QP formulation which coincide with optima of the ILP, finding optimal solutions of the ILP is harder than finding local optima of the QP formulation, in general, which in turn is harder than finding feasible solutions of the ILP. Even within the VQE, one may provide stronger guarantees, for specific variational forms (trial wave functions). \n", + "The plot shows the selected assets with stars; in green, it shows the links with other assets that are represented in the portfolio by the starred asset.\n", + "\n", + "Keep in mind that VQE is an heuristic working on the QP formulation of the Ising Hamiltonian. For suitable choices of A, local optima of the QP formulation will be feasible solutions to the integer programming problem. While for some small instances, as above, we can find optimal solutions of the QP formulation that coincide with optima of the integer programming problem, finding optimal solutions of the integer programming problem is harder than finding local optima of the quadratic programming formulation, in general. \n", + "\n", + "Even within the VQE, one may provide stronger guarantees, for specific variational forms. Beyond VQE, one can show convergence to the global optiam using the phase estimation approach. One can, indeed, start by using VQE and moving to phase estimation subsequently, cf. https://github.com/Qiskit/qiskit-tutorials/blob/master/community/aqua/general/vqe2iqpe.ipynb\n", "\n", "Last but not least, you may be pleased to learn that the above has been packaged in Qiskit Aqua." ] @@ -922,9 +926,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -936,7 +940,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.2" } }, "nbformat": 4, From 59dac5c9a3d32ae1dd2f603bbcd80f26a0ab9b46 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Wed, 8 May 2019 21:05:17 +0200 Subject: [PATCH 113/116] split into featured, community, and qiskit tutorials --- .../finance/data_providers/time_series.ipynb | 0 featured/finance/index.ipynb | 66 +++++++++++++ .../portfolio_diversification.ipynb | 9 +- .../asian_barrier_spread_pricing.ipynb | 0 .../simulation/basket_option_pricing.ipynb | 0 .../simulation/bull_spread_pricing.ipynb | 0 .../european_call_option_pricing.ipynb | 0 .../european_put_option_pricing.ipynb | 0 .../simulation/fixed_income_pricing.ipynb | 0 .../finance/simulation/option_pricing.ipynb | 0 qiskit/finance/index.ipynb | 17 ++-- .../qgan_option_pricing.ipynb | 7 ++ .../optimization/portfolio_optimization.ipynb | 96 +++++++++---------- 13 files changed, 128 insertions(+), 67 deletions(-) rename {qiskit => featured}/finance/data_providers/time_series.ipynb (100%) create mode 100644 featured/finance/index.ipynb rename {qiskit => featured}/finance/optimization/portfolio_diversification.ipynb (99%) rename {qiskit => featured}/finance/simulation/asian_barrier_spread_pricing.ipynb (100%) rename {qiskit => featured}/finance/simulation/basket_option_pricing.ipynb (100%) rename {qiskit => featured}/finance/simulation/bull_spread_pricing.ipynb (100%) rename {qiskit => featured}/finance/simulation/european_call_option_pricing.ipynb (100%) rename {qiskit => featured}/finance/simulation/european_put_option_pricing.ipynb (100%) rename {qiskit => featured}/finance/simulation/fixed_income_pricing.ipynb (100%) rename {qiskit => featured}/finance/simulation/option_pricing.ipynb (100%) diff --git a/qiskit/finance/data_providers/time_series.ipynb b/featured/finance/data_providers/time_series.ipynb similarity index 100% rename from qiskit/finance/data_providers/time_series.ipynb rename to featured/finance/data_providers/time_series.ipynb diff --git a/featured/finance/index.ipynb b/featured/finance/index.ipynb new file mode 100644 index 000000000..770e69f90 --- /dev/null +++ b/featured/finance/index.ipynb @@ -0,0 +1,66 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Overview*_ \n", + "\n", + "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", + "\n", + "***\n", + "### Contributors\n", + "Stefan Woerner[1], Daniel Egger[1], Christa Zoufal[1], Andrea Simonetto[1], Jakub Marecek[1], Martin Mevissen[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", + "\n", + "### Affliation\n", + "- [1]IBMQ" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the following, we provide an overview of *Qiskit Finance Community* tutorials.
\n", + "Please see the [Qiskit Finance Tutorials](../../qiskit/finance/index.ipynb) for an additional selection of notebooks.\n", + "\n", + "#### Optimization:\n", + "- Portfolio Diversification\n", + " \n", + "#### Simulation:\n", + "- Option Pricing\n", + "- Fixed Income Pricing\n", + "\n", + "#### Data Providers:\n", + "- Stock Market Time Series" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_master", + "language": "python", + "name": "qiskit_master" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/featured/finance/optimization/portfolio_diversification.ipynb similarity index 99% rename from qiskit/finance/optimization/portfolio_diversification.ipynb rename to featured/finance/optimization/portfolio_diversification.ipynb index 5da6c4eff..86b4ce45a 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/featured/finance/optimization/portfolio_diversification.ipynb @@ -4,14 +4,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Finance: Portfolio diversification*_\n", + "# _*Portfolio diversification*_\n", "\n", "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", "\n", diff --git a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb b/featured/finance/simulation/asian_barrier_spread_pricing.ipynb similarity index 100% rename from qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb rename to featured/finance/simulation/asian_barrier_spread_pricing.ipynb diff --git a/qiskit/finance/simulation/basket_option_pricing.ipynb b/featured/finance/simulation/basket_option_pricing.ipynb similarity index 100% rename from qiskit/finance/simulation/basket_option_pricing.ipynb rename to featured/finance/simulation/basket_option_pricing.ipynb diff --git a/qiskit/finance/simulation/bull_spread_pricing.ipynb b/featured/finance/simulation/bull_spread_pricing.ipynb similarity index 100% rename from qiskit/finance/simulation/bull_spread_pricing.ipynb rename to featured/finance/simulation/bull_spread_pricing.ipynb diff --git a/qiskit/finance/simulation/european_call_option_pricing.ipynb b/featured/finance/simulation/european_call_option_pricing.ipynb similarity index 100% rename from qiskit/finance/simulation/european_call_option_pricing.ipynb rename to featured/finance/simulation/european_call_option_pricing.ipynb diff --git a/qiskit/finance/simulation/european_put_option_pricing.ipynb b/featured/finance/simulation/european_put_option_pricing.ipynb similarity index 100% rename from qiskit/finance/simulation/european_put_option_pricing.ipynb rename to featured/finance/simulation/european_put_option_pricing.ipynb diff --git a/qiskit/finance/simulation/fixed_income_pricing.ipynb b/featured/finance/simulation/fixed_income_pricing.ipynb similarity index 100% rename from qiskit/finance/simulation/fixed_income_pricing.ipynb rename to featured/finance/simulation/fixed_income_pricing.ipynb diff --git a/qiskit/finance/simulation/option_pricing.ipynb b/featured/finance/simulation/option_pricing.ipynb similarity index 100% rename from qiskit/finance/simulation/option_pricing.ipynb rename to featured/finance/simulation/option_pricing.ipynb diff --git a/qiskit/finance/index.ipynb b/qiskit/finance/index.ipynb index 5ee05e65e..05f9e8f5c 100644 --- a/qiskit/finance/index.ipynb +++ b/qiskit/finance/index.ipynb @@ -27,22 +27,17 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this notebook we provide an overview of Qiskit Finance tutorials and tutorials from other domains which might be relevant in finance.\n", + "In the following we provide a selection of Qiskit Finance tutorials for the three domains *Machine Learning*, *Optimization*, and *Simulation*.
\n", + "Many other related tutorials, e.g. on *Option Pricing* can be found in the [Qiskit Finance Community](../../community/finance/index.ipynb) section.\n", "\n", - "#### Machine Learning:\n", + "#### Machine Learning\n", "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", "\n", - "#### Optimization:\n", + "#### Optimization\n", "- Portfolio Optimization\n", - "- Portfolio Diversification\n", " \n", - "#### Simulation:\n", - "- Option Pricing\n", - "- Credit Risk Analysis\n", - "- Fixed Income Pricing\n", - "\n", - "#### Data Providers:\n", - "- Stock Market Time Series" + "#### Simulation\n", + "- Credit Risk Analysis" ] }, { diff --git a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb index dbb71a815..b8dee1bc9 100644 --- a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb +++ b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb @@ -1,5 +1,12 @@ { "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" + ] + }, { "cell_type": "markdown", "metadata": {}, diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index 494016f51..c95b4f7d9 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -190,26 +190,26 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 0 1 1], value -0.0026\n", + "Optimal: selection [0 1 1 0], value -0.0410\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 0 1 1]\t-0.0026\t\t1.0000\n", - " [1 1 1 1]\t15.9996\t\t0.0000\n", - " [0 1 1 1]\t3.9984\t\t0.0000\n", - " [1 0 1 1]\t3.9985\t\t0.0000\n", - " [1 1 0 1]\t4.0000\t\t0.0000\n", - " [0 1 0 1]\t-0.0011\t\t0.0000\n", - " [1 0 0 1]\t-0.0011\t\t0.0000\n", - " [0 0 0 1]\t3.9978\t\t0.0000\n", - " [1 1 1 0]\t4.0017\t\t0.0000\n", - " [0 1 1 0]\t0.0006\t\t0.0000\n", - " [1 0 1 0]\t0.0006\t\t0.0000\n", - " [0 0 1 0]\t3.9995\t\t0.0000\n", - " [1 1 0 0]\t0.0021\t\t0.0000\n", - " [0 1 0 0]\t4.0010\t\t0.0000\n", - " [1 0 0 0]\t4.0011\t\t0.0000\n", + " [0 1 1 0]\t-0.0410\t\t1.0000\n", + " [1 1 1 1]\t15.9639\t\t0.0000\n", + " [0 1 1 1]\t3.9613\t\t0.0000\n", + " [1 0 1 1]\t3.9653\t\t0.0000\n", + " [0 0 1 1]\t-0.0373\t\t0.0000\n", + " [1 1 0 1]\t4.0031\t\t0.0000\n", + " [0 1 0 1]\t0.0002\t\t0.0000\n", + " [1 0 0 1]\t0.0048\t\t0.0000\n", + " [0 0 0 1]\t4.0020\t\t0.0000\n", + " [1 1 1 0]\t3.9617\t\t0.0000\n", + " [1 0 1 0]\t-0.0368\t\t0.0000\n", + " [0 0 1 0]\t3.9606\t\t0.0000\n", + " [1 1 0 0]\t0.0010\t\t0.0000\n", + " [0 1 0 0]\t3.9981\t\t0.0000\n", + " [1 0 0 0]\t4.0029\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } @@ -252,27 +252,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 1 1 0], value 0.0006\n", + "Optimal: selection [1 0 1 0], value -0.0368\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 1 1 0]\t0.0006\t\t0.7038\n", - " [1 0 0 1]\t-0.0011\t\t0.2120\n", - " [1 0 1 0]\t0.0006\t\t0.0272\n", - " [0 1 0 1]\t-0.0011\t\t0.0251\n", - " [1 1 0 0]\t0.0021\t\t0.0167\n", - " [0 0 1 1]\t-0.0026\t\t0.0151\n", - " [1 0 0 0]\t4.0011\t\t0.0000\n", - " [0 1 1 1]\t3.9984\t\t0.0000\n", - " [0 0 0 1]\t3.9978\t\t0.0000\n", - " [1 0 1 1]\t3.9985\t\t0.0000\n", - " [0 1 0 0]\t4.0010\t\t0.0000\n", - " [1 1 1 0]\t4.0017\t\t0.0000\n", - " [1 1 0 1]\t4.0000\t\t0.0000\n", + " [1 0 1 0]\t-0.0368\t\t0.5423\n", + " [0 1 1 0]\t-0.0410\t\t0.3289\n", + " [0 0 1 1]\t-0.0373\t\t0.0641\n", + " [1 1 0 0]\t0.0010\t\t0.0394\n", + " [1 0 0 1]\t0.0048\t\t0.0213\n", + " [0 1 0 1]\t0.0002\t\t0.0039\n", + " [0 0 0 1]\t4.0020\t\t0.0000\n", + " [1 1 0 1]\t4.0031\t\t0.0000\n", + " [0 1 1 1]\t3.9613\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n", - " [0 0 1 0]\t3.9995\t\t0.0000\n", - " [1 1 1 1]\t15.9996\t\t0.0000\n" + " [1 1 1 1]\t15.9639\t\t0.0000\n", + " [1 0 1 1]\t3.9653\t\t0.0000\n", + " [1 0 0 0]\t4.0029\t\t0.0000\n", + " [0 0 1 0]\t3.9606\t\t0.0000\n", + " [0 1 0 0]\t3.9981\t\t0.0000\n", + " [1 1 1 0]\t3.9617\t\t0.0000\n" ] } ], @@ -336,27 +336,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [1 1 0 0], value 0.0021\n", + "Optimal: selection [1 0 0 1], value 0.0048\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [1 1 0 0]\t0.0021\t\t0.1667\n", - " [1 0 1 0]\t0.0006\t\t0.1667\n", - " [0 1 1 0]\t0.0006\t\t0.1667\n", - " [1 0 0 1]\t-0.0011\t\t0.1666\n", - " [0 1 0 1]\t-0.0011\t\t0.1666\n", - " [0 0 1 1]\t-0.0026\t\t0.1666\n", + " [1 0 0 1]\t0.0048\t\t0.1674\n", + " [1 1 0 0]\t0.0010\t\t0.1673\n", + " [0 1 0 1]\t0.0002\t\t0.1672\n", + " [1 0 1 0]\t-0.0368\t\t0.1661\n", + " [0 0 1 1]\t-0.0373\t\t0.1661\n", + " [0 1 1 0]\t-0.0410\t\t0.1660\n", + " [1 1 1 1]\t15.9639\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n", - " [1 1 1 1]\t15.9996\t\t0.0000\n", - " [1 1 1 0]\t4.0017\t\t0.0000\n", - " [1 0 0 0]\t4.0011\t\t0.0000\n", - " [0 1 0 0]\t4.0010\t\t0.0000\n", - " [1 1 0 1]\t4.0000\t\t0.0000\n", - " [0 0 1 0]\t3.9995\t\t0.0000\n", - " [1 0 1 1]\t3.9985\t\t0.0000\n", - " [0 1 1 1]\t3.9984\t\t0.0000\n", - " [0 0 0 1]\t3.9978\t\t0.0000\n" + " [1 1 1 0]\t3.9617\t\t0.0000\n", + " [0 1 1 1]\t3.9613\t\t0.0000\n", + " [1 0 1 1]\t3.9653\t\t0.0000\n", + " [1 0 0 0]\t4.0029\t\t0.0000\n", + " [0 0 0 1]\t4.0020\t\t0.0000\n", + " [0 1 0 0]\t3.9981\t\t0.0000\n", + " [1 1 0 1]\t4.0031\t\t0.0000\n", + " [0 0 1 0]\t3.9606\t\t0.0000\n" ] } ], From a98db71a5a4ca06e78d2658de159ba72856fde09 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Wed, 7 Aug 2019 17:51:06 +0200 Subject: [PATCH 114/116] Revert "split into featured, community, and qiskit tutorials" This reverts commit 59dac5c9a3d32ae1dd2f603bbcd80f26a0ab9b46. --- featured/finance/index.ipynb | 66 ------------- .../finance/data_providers/time_series.ipynb | 0 qiskit/finance/index.ipynb | 17 ++-- .../qgan_option_pricing.ipynb | 7 -- .../portfolio_diversification.ipynb | 9 +- .../optimization/portfolio_optimization.ipynb | 96 +++++++++---------- .../asian_barrier_spread_pricing.ipynb | 0 .../simulation/basket_option_pricing.ipynb | 0 .../simulation/bull_spread_pricing.ipynb | 0 .../european_call_option_pricing.ipynb | 0 .../european_put_option_pricing.ipynb | 0 .../simulation/fixed_income_pricing.ipynb | 0 .../finance/simulation/option_pricing.ipynb | 0 13 files changed, 67 insertions(+), 128 deletions(-) delete mode 100644 featured/finance/index.ipynb rename {featured => qiskit}/finance/data_providers/time_series.ipynb (100%) rename {featured => qiskit}/finance/optimization/portfolio_diversification.ipynb (99%) rename {featured => qiskit}/finance/simulation/asian_barrier_spread_pricing.ipynb (100%) rename {featured => qiskit}/finance/simulation/basket_option_pricing.ipynb (100%) rename {featured => qiskit}/finance/simulation/bull_spread_pricing.ipynb (100%) rename {featured => qiskit}/finance/simulation/european_call_option_pricing.ipynb (100%) rename {featured => qiskit}/finance/simulation/european_put_option_pricing.ipynb (100%) rename {featured => qiskit}/finance/simulation/fixed_income_pricing.ipynb (100%) rename {featured => qiskit}/finance/simulation/option_pricing.ipynb (100%) diff --git a/featured/finance/index.ipynb b/featured/finance/index.ipynb deleted file mode 100644 index 770e69f90..000000000 --- a/featured/finance/index.ipynb +++ /dev/null @@ -1,66 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Finance: Overview*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Stefan Woerner[1], Daniel Egger[1], Christa Zoufal[1], Andrea Simonetto[1], Jakub Marecek[1], Martin Mevissen[1], Shaohan Hu[1], Stephen Wood[1], Marco Pistoia[1]\n", - "\n", - "### Affliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the following, we provide an overview of *Qiskit Finance Community* tutorials.
\n", - "Please see the [Qiskit Finance Tutorials](../../qiskit/finance/index.ipynb) for an additional selection of notebooks.\n", - "\n", - "#### Optimization:\n", - "- Portfolio Diversification\n", - " \n", - "#### Simulation:\n", - "- Option Pricing\n", - "- Fixed Income Pricing\n", - "\n", - "#### Data Providers:\n", - "- Stock Market Time Series" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_master", - "language": "python", - "name": "qiskit_master" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/featured/finance/data_providers/time_series.ipynb b/qiskit/finance/data_providers/time_series.ipynb similarity index 100% rename from featured/finance/data_providers/time_series.ipynb rename to qiskit/finance/data_providers/time_series.ipynb diff --git a/qiskit/finance/index.ipynb b/qiskit/finance/index.ipynb index 05f9e8f5c..5ee05e65e 100644 --- a/qiskit/finance/index.ipynb +++ b/qiskit/finance/index.ipynb @@ -27,17 +27,22 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In the following we provide a selection of Qiskit Finance tutorials for the three domains *Machine Learning*, *Optimization*, and *Simulation*.
\n", - "Many other related tutorials, e.g. on *Option Pricing* can be found in the [Qiskit Finance Community](../../community/finance/index.ipynb) section.\n", + "In this notebook we provide an overview of Qiskit Finance tutorials and tutorials from other domains which might be relevant in finance.\n", "\n", - "#### Machine Learning\n", + "#### Machine Learning:\n", "- Quantum Generative Adversarial Networks (qGANs) for data loading in option pricing\n", "\n", - "#### Optimization\n", + "#### Optimization:\n", "- Portfolio Optimization\n", + "- Portfolio Diversification\n", " \n", - "#### Simulation\n", - "- Credit Risk Analysis" + "#### Simulation:\n", + "- Option Pricing\n", + "- Credit Risk Analysis\n", + "- Fixed Income Pricing\n", + "\n", + "#### Data Providers:\n", + "- Stock Market Time Series" ] }, { diff --git a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb index b8dee1bc9..dbb71a815 100644 --- a/qiskit/finance/machine_learning/qgan_option_pricing.ipynb +++ b/qiskit/finance/machine_learning/qgan_option_pricing.ipynb @@ -1,12 +1,5 @@ { "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" - ] - }, { "cell_type": "markdown", "metadata": {}, diff --git a/featured/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb similarity index 99% rename from featured/finance/optimization/portfolio_diversification.ipynb rename to qiskit/finance/optimization/portfolio_diversification.ipynb index 86b4ce45a..5da6c4eff 100644 --- a/featured/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -4,7 +4,14 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# _*Portfolio diversification*_\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# _*Qiskit Finance: Portfolio diversification*_\n", "\n", "The latest version of this notebook is available on https://github.com/qiskit/qiskit-tutorial.\n", "\n", diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index c95b4f7d9..494016f51 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -190,26 +190,26 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 1 1 0], value -0.0410\n", + "Optimal: selection [0 0 1 1], value -0.0026\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 1 1 0]\t-0.0410\t\t1.0000\n", - " [1 1 1 1]\t15.9639\t\t0.0000\n", - " [0 1 1 1]\t3.9613\t\t0.0000\n", - " [1 0 1 1]\t3.9653\t\t0.0000\n", - " [0 0 1 1]\t-0.0373\t\t0.0000\n", - " [1 1 0 1]\t4.0031\t\t0.0000\n", - " [0 1 0 1]\t0.0002\t\t0.0000\n", - " [1 0 0 1]\t0.0048\t\t0.0000\n", - " [0 0 0 1]\t4.0020\t\t0.0000\n", - " [1 1 1 0]\t3.9617\t\t0.0000\n", - " [1 0 1 0]\t-0.0368\t\t0.0000\n", - " [0 0 1 0]\t3.9606\t\t0.0000\n", - " [1 1 0 0]\t0.0010\t\t0.0000\n", - " [0 1 0 0]\t3.9981\t\t0.0000\n", - " [1 0 0 0]\t4.0029\t\t0.0000\n", + " [0 0 1 1]\t-0.0026\t\t1.0000\n", + " [1 1 1 1]\t15.9996\t\t0.0000\n", + " [0 1 1 1]\t3.9984\t\t0.0000\n", + " [1 0 1 1]\t3.9985\t\t0.0000\n", + " [1 1 0 1]\t4.0000\t\t0.0000\n", + " [0 1 0 1]\t-0.0011\t\t0.0000\n", + " [1 0 0 1]\t-0.0011\t\t0.0000\n", + " [0 0 0 1]\t3.9978\t\t0.0000\n", + " [1 1 1 0]\t4.0017\t\t0.0000\n", + " [0 1 1 0]\t0.0006\t\t0.0000\n", + " [1 0 1 0]\t0.0006\t\t0.0000\n", + " [0 0 1 0]\t3.9995\t\t0.0000\n", + " [1 1 0 0]\t0.0021\t\t0.0000\n", + " [0 1 0 0]\t4.0010\t\t0.0000\n", + " [1 0 0 0]\t4.0011\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } @@ -252,27 +252,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [1 0 1 0], value -0.0368\n", + "Optimal: selection [0 1 1 0], value 0.0006\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [1 0 1 0]\t-0.0368\t\t0.5423\n", - " [0 1 1 0]\t-0.0410\t\t0.3289\n", - " [0 0 1 1]\t-0.0373\t\t0.0641\n", - " [1 1 0 0]\t0.0010\t\t0.0394\n", - " [1 0 0 1]\t0.0048\t\t0.0213\n", - " [0 1 0 1]\t0.0002\t\t0.0039\n", - " [0 0 0 1]\t4.0020\t\t0.0000\n", - " [1 1 0 1]\t4.0031\t\t0.0000\n", - " [0 1 1 1]\t3.9613\t\t0.0000\n", + " [0 1 1 0]\t0.0006\t\t0.7038\n", + " [1 0 0 1]\t-0.0011\t\t0.2120\n", + " [1 0 1 0]\t0.0006\t\t0.0272\n", + " [0 1 0 1]\t-0.0011\t\t0.0251\n", + " [1 1 0 0]\t0.0021\t\t0.0167\n", + " [0 0 1 1]\t-0.0026\t\t0.0151\n", + " [1 0 0 0]\t4.0011\t\t0.0000\n", + " [0 1 1 1]\t3.9984\t\t0.0000\n", + " [0 0 0 1]\t3.9978\t\t0.0000\n", + " [1 0 1 1]\t3.9985\t\t0.0000\n", + " [0 1 0 0]\t4.0010\t\t0.0000\n", + " [1 1 1 0]\t4.0017\t\t0.0000\n", + " [1 1 0 1]\t4.0000\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n", - " [1 1 1 1]\t15.9639\t\t0.0000\n", - " [1 0 1 1]\t3.9653\t\t0.0000\n", - " [1 0 0 0]\t4.0029\t\t0.0000\n", - " [0 0 1 0]\t3.9606\t\t0.0000\n", - " [0 1 0 0]\t3.9981\t\t0.0000\n", - " [1 1 1 0]\t3.9617\t\t0.0000\n" + " [0 0 1 0]\t3.9995\t\t0.0000\n", + " [1 1 1 1]\t15.9996\t\t0.0000\n" ] } ], @@ -336,27 +336,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [1 0 0 1], value 0.0048\n", + "Optimal: selection [1 1 0 0], value 0.0021\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [1 0 0 1]\t0.0048\t\t0.1674\n", - " [1 1 0 0]\t0.0010\t\t0.1673\n", - " [0 1 0 1]\t0.0002\t\t0.1672\n", - " [1 0 1 0]\t-0.0368\t\t0.1661\n", - " [0 0 1 1]\t-0.0373\t\t0.1661\n", - " [0 1 1 0]\t-0.0410\t\t0.1660\n", - " [1 1 1 1]\t15.9639\t\t0.0000\n", + " [1 1 0 0]\t0.0021\t\t0.1667\n", + " [1 0 1 0]\t0.0006\t\t0.1667\n", + " [0 1 1 0]\t0.0006\t\t0.1667\n", + " [1 0 0 1]\t-0.0011\t\t0.1666\n", + " [0 1 0 1]\t-0.0011\t\t0.1666\n", + " [0 0 1 1]\t-0.0026\t\t0.1666\n", " [0 0 0 0]\t16.0000\t\t0.0000\n", - " [1 1 1 0]\t3.9617\t\t0.0000\n", - " [0 1 1 1]\t3.9613\t\t0.0000\n", - " [1 0 1 1]\t3.9653\t\t0.0000\n", - " [1 0 0 0]\t4.0029\t\t0.0000\n", - " [0 0 0 1]\t4.0020\t\t0.0000\n", - " [0 1 0 0]\t3.9981\t\t0.0000\n", - " [1 1 0 1]\t4.0031\t\t0.0000\n", - " [0 0 1 0]\t3.9606\t\t0.0000\n" + " [1 1 1 1]\t15.9996\t\t0.0000\n", + " [1 1 1 0]\t4.0017\t\t0.0000\n", + " [1 0 0 0]\t4.0011\t\t0.0000\n", + " [0 1 0 0]\t4.0010\t\t0.0000\n", + " [1 1 0 1]\t4.0000\t\t0.0000\n", + " [0 0 1 0]\t3.9995\t\t0.0000\n", + " [1 0 1 1]\t3.9985\t\t0.0000\n", + " [0 1 1 1]\t3.9984\t\t0.0000\n", + " [0 0 0 1]\t3.9978\t\t0.0000\n" ] } ], diff --git a/featured/finance/simulation/asian_barrier_spread_pricing.ipynb b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb similarity index 100% rename from featured/finance/simulation/asian_barrier_spread_pricing.ipynb rename to qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb diff --git a/featured/finance/simulation/basket_option_pricing.ipynb b/qiskit/finance/simulation/basket_option_pricing.ipynb similarity index 100% rename from featured/finance/simulation/basket_option_pricing.ipynb rename to qiskit/finance/simulation/basket_option_pricing.ipynb diff --git a/featured/finance/simulation/bull_spread_pricing.ipynb b/qiskit/finance/simulation/bull_spread_pricing.ipynb similarity index 100% rename from featured/finance/simulation/bull_spread_pricing.ipynb rename to qiskit/finance/simulation/bull_spread_pricing.ipynb diff --git a/featured/finance/simulation/european_call_option_pricing.ipynb b/qiskit/finance/simulation/european_call_option_pricing.ipynb similarity index 100% rename from featured/finance/simulation/european_call_option_pricing.ipynb rename to qiskit/finance/simulation/european_call_option_pricing.ipynb diff --git a/featured/finance/simulation/european_put_option_pricing.ipynb b/qiskit/finance/simulation/european_put_option_pricing.ipynb similarity index 100% rename from featured/finance/simulation/european_put_option_pricing.ipynb rename to qiskit/finance/simulation/european_put_option_pricing.ipynb diff --git a/featured/finance/simulation/fixed_income_pricing.ipynb b/qiskit/finance/simulation/fixed_income_pricing.ipynb similarity index 100% rename from featured/finance/simulation/fixed_income_pricing.ipynb rename to qiskit/finance/simulation/fixed_income_pricing.ipynb diff --git a/featured/finance/simulation/option_pricing.ipynb b/qiskit/finance/simulation/option_pricing.ipynb similarity index 100% rename from featured/finance/simulation/option_pricing.ipynb rename to qiskit/finance/simulation/option_pricing.ipynb From 8c1170158200f071e6e3dfa3d11d71d4dd01d573 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Wed, 7 Aug 2019 22:27:58 +0200 Subject: [PATCH 115/116] sync with aqua 0.6 branch --- community/artificial_intelligence/README.md | 19 - community/artificial_intelligence/datasets.py | 555 ----------- .../input_files/qsvm.json | 18 - .../input_files/svm_classical.json | 17 - .../input_files/vqc.json | 15 - .../qsvm_directly.ipynb | 306 ------ .../qsvm_multiclass.ipynb | 136 --- .../svm_classical.ipynb | 281 ------ .../svm_classical_multiclass.ipynb | 154 --- community/artificial_intelligence/vqc.ipynb | 276 ----- .../vqc_feature_map_comparison.ipynb | 178 ---- community/chemistry/LiH.png | Bin 105729 -> 0 bytes .../LiH_with_qubit_tapering_and_uccsd.ipynb | 338 ------- .../ParticleHoleTransformation.ipynb | 202 ---- .../chemistry/PySCFChemistryDriver.ipynb | 168 ---- community/chemistry/QSE_pytket.ipynb | 942 ------------------ community/chemistry/QubitMappings.ipynb | 238 ----- community/chemistry/README.md | 18 - community/chemistry/beh2_reductions.ipynb | 397 -------- community/chemistry/dictinput.py | 40 - community/chemistry/energyplot.ipynb | 159 --- community/chemistry/h2_0.735_6-31g.hdf5 | Bin 17712 -> 0 bytes community/chemistry/h2_basis_sets.ipynb | 147 --- community/chemistry/h2_excited_states.ipynb | 210 ---- community/chemistry/h2_iqpe.ipynb | 173 ---- community/chemistry/h2_mappings.ipynb | 271 ----- community/chemistry/h2_particle_hole.ipynb | 233 ----- community/chemistry/h2_qpe.ipynb | 232 ----- community/chemistry/h2_swaprz.ipynb | 208 ---- community/chemistry/h2_uccsd.ipynb | 206 ---- community/chemistry/h2_var_forms.ipynb | 212 ---- .../chemistry/h2_vqe_initial_point.ipynb | 291 ------ community/chemistry/h2_vqe_spsa.ipynb | 181 ---- community/chemistry/h2o.ipynb | 512 ---------- .../input_files/gaussian_h2_0.735_sto-3g.txt | 43 - .../input_files/gaussian_lih_1.6_sto-3g.txt | 49 - .../chemistry/input_files/h2_on_device.txt | 47 - .../input_files/hdf5_h2_0.735_sto-3g.txt | 35 - .../input_files/hdf5_lih_1.6_sto-3g.txt | 41 - .../input_files/input_file_sample.txt | 100 -- community/chemistry/input_files/iqpe_h2.txt | 56 -- .../input_files/psi4_h2_0.735_sto-3g.txt | 44 - .../input_files/psi4_lih_1.6_sto-3g.txt | 50 - .../chemistry/input_files/psi4_save_hdf5.txt | 30 - .../input_files/pyquante_h2_0.735_sto-3g.txt | 39 - .../input_files/pyquante_lih_1.6_sto-3g.txt | 45 - .../input_files/pyscf_h2_0.735_sto-3g.txt | 39 - .../input_files/pyscf_lih_1.6_sto-3g.txt | 45 - .../chemistry/input_files/pyscf_minimal.txt | 18 - community/chemistry/input_files/qpe_h2.txt | 60 -- community/chemistry/lih_1.6_sto-3g.hdf5 | Bin 26032 -> 0 bytes community/chemistry/lih_dissoc.ipynb | 209 ---- community/chemistry/lih_uccsd.ipynb | 234 ----- community/chemistry/nah_1.9_sto-3g.hdf5 | Bin 98128 -> 0 bytes community/chemistry/nah_uccsd.ipynb | 246 ----- community/finance/README.md | 19 - community/finance/input_files/portfolio.json | 129 --- .../finance/simulation/iron_condor.ipynb | 401 -------- .../finance/simulation/long_butterfly.ipynb | 397 -------- .../finance/simulation/short_butterfly.ipynb | 397 -------- ...Coloring Oracle via Reduction to SAT.ipynb | 225 ----- community/optimization/3sat2-3.cnf | 5 - community/optimization/README.md | 19 - community/optimization/clique.ipynb | 319 ------ community/optimization/exact_cover.ipynb | 299 ------ community/optimization/graph_partition.ipynb | 282 ------ community/optimization/grover.ipynb | 332 ------ .../optimization/input_files/grover.json | 17 - .../optimization/input_files/maxcut.json | 179 ---- community/optimization/max_cut.ipynb | 294 ------ community/optimization/partition.ipynb | 301 ------ community/optimization/sample.exactcover | 1 - community/optimization/sample.maxcut | 21 - community/optimization/sample.partition | 8 - community/optimization/sample.setpacking | 1 - community/optimization/set_packing.ipynb | 277 ----- community/optimization/stable_set.ipynb | 293 ------ community/optimization/vertex_cover.ipynb | 277 ----- qiskit/algorithm_introduction_with_vqe.ipynb | 298 ------ qiskit/artificial_intelligence/index.ipynb | 10 +- .../artificial_intelligence/qsvm_datasets.py | 559 ----------- qiskit/bernstein_vazirani.ipynb | 213 ---- .../.ipynb_checkpoints/w8_02-checkpoint.ipynb | 338 ------- .../.ipynb_checkpoints/w8_03-checkpoint.ipynb | 504 ---------- .../.ipynb_checkpoints/w8_04-checkpoint.ipynb | 478 --------- .../chemistry/H2/0.7_sto-3g.hdf5 | Bin 15664 -> 15664 bytes .../dissociation_profile_of_molecule.ipynb | 80 +- qiskit/deutsch_jozsa.ipynb | 203 ---- qiskit/shors.ipynb | 118 --- qiskit/simon.ipynb | 222 ----- qiskit/simulations_with_noise.ipynb | 308 ------ qiskit/vqe_convergence.ipynb | 247 ----- 92 files changed, 48 insertions(+), 16786 deletions(-) delete mode 100644 community/artificial_intelligence/README.md delete mode 100644 community/artificial_intelligence/datasets.py delete mode 100644 community/artificial_intelligence/input_files/qsvm.json delete mode 100644 community/artificial_intelligence/input_files/svm_classical.json delete mode 100644 community/artificial_intelligence/input_files/vqc.json delete mode 100644 community/artificial_intelligence/qsvm_directly.ipynb delete mode 100644 community/artificial_intelligence/qsvm_multiclass.ipynb delete mode 100644 community/artificial_intelligence/svm_classical.ipynb delete mode 100644 community/artificial_intelligence/svm_classical_multiclass.ipynb delete mode 100644 community/artificial_intelligence/vqc.ipynb delete mode 100644 community/artificial_intelligence/vqc_feature_map_comparison.ipynb delete mode 100644 community/chemistry/LiH.png delete mode 100644 community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb delete mode 100644 community/chemistry/ParticleHoleTransformation.ipynb delete mode 100644 community/chemistry/PySCFChemistryDriver.ipynb delete mode 100644 community/chemistry/QSE_pytket.ipynb delete mode 100644 community/chemistry/QubitMappings.ipynb delete mode 100644 community/chemistry/README.md delete mode 100644 community/chemistry/beh2_reductions.ipynb delete mode 100644 community/chemistry/dictinput.py delete mode 100644 community/chemistry/energyplot.ipynb delete mode 100644 community/chemistry/h2_0.735_6-31g.hdf5 delete mode 100644 community/chemistry/h2_basis_sets.ipynb delete mode 100644 community/chemistry/h2_excited_states.ipynb delete mode 100644 community/chemistry/h2_iqpe.ipynb delete mode 100644 community/chemistry/h2_mappings.ipynb delete mode 100644 community/chemistry/h2_particle_hole.ipynb delete mode 100644 community/chemistry/h2_qpe.ipynb delete mode 100644 community/chemistry/h2_swaprz.ipynb delete mode 100644 community/chemistry/h2_uccsd.ipynb delete mode 100644 community/chemistry/h2_var_forms.ipynb delete mode 100644 community/chemistry/h2_vqe_initial_point.ipynb delete mode 100644 community/chemistry/h2_vqe_spsa.ipynb delete mode 100644 community/chemistry/h2o.ipynb delete mode 100644 community/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt delete mode 100644 community/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt delete mode 100644 community/chemistry/input_files/h2_on_device.txt delete mode 100644 community/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt delete mode 100644 community/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt delete mode 100644 community/chemistry/input_files/input_file_sample.txt delete mode 100644 community/chemistry/input_files/iqpe_h2.txt delete mode 100644 community/chemistry/input_files/psi4_h2_0.735_sto-3g.txt delete mode 100644 community/chemistry/input_files/psi4_lih_1.6_sto-3g.txt delete mode 100644 community/chemistry/input_files/psi4_save_hdf5.txt delete mode 100644 community/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt delete mode 100644 community/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt delete mode 100644 community/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt delete mode 100644 community/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt delete mode 100644 community/chemistry/input_files/pyscf_minimal.txt delete mode 100644 community/chemistry/input_files/qpe_h2.txt delete mode 100644 community/chemistry/lih_1.6_sto-3g.hdf5 delete mode 100644 community/chemistry/lih_dissoc.ipynb delete mode 100644 community/chemistry/lih_uccsd.ipynb delete mode 100644 community/chemistry/nah_1.9_sto-3g.hdf5 delete mode 100644 community/chemistry/nah_uccsd.ipynb delete mode 100644 community/finance/README.md delete mode 100644 community/finance/input_files/portfolio.json delete mode 100644 community/finance/simulation/iron_condor.ipynb delete mode 100644 community/finance/simulation/long_butterfly.ipynb delete mode 100644 community/finance/simulation/short_butterfly.ipynb delete mode 100644 community/optimization/3-Coloring Oracle via Reduction to SAT.ipynb delete mode 100644 community/optimization/3sat2-3.cnf delete mode 100644 community/optimization/README.md delete mode 100644 community/optimization/clique.ipynb delete mode 100644 community/optimization/exact_cover.ipynb delete mode 100644 community/optimization/graph_partition.ipynb delete mode 100644 community/optimization/grover.ipynb delete mode 100644 community/optimization/input_files/grover.json delete mode 100644 community/optimization/input_files/maxcut.json delete mode 100644 community/optimization/max_cut.ipynb delete mode 100644 community/optimization/partition.ipynb delete mode 100644 community/optimization/sample.exactcover delete mode 100644 community/optimization/sample.maxcut delete mode 100644 community/optimization/sample.partition delete mode 100644 community/optimization/sample.setpacking delete mode 100644 community/optimization/set_packing.ipynb delete mode 100644 community/optimization/stable_set.ipynb delete mode 100644 community/optimization/vertex_cover.ipynb delete mode 100644 qiskit/algorithm_introduction_with_vqe.ipynb delete mode 100644 qiskit/artificial_intelligence/qsvm_datasets.py delete mode 100644 qiskit/bernstein_vazirani.ipynb delete mode 100644 qiskit/chemistry/H2/.ipynb_checkpoints/w8_02-checkpoint.ipynb delete mode 100644 qiskit/chemistry/H2/.ipynb_checkpoints/w8_03-checkpoint.ipynb delete mode 100644 qiskit/chemistry/H2/.ipynb_checkpoints/w8_04-checkpoint.ipynb rename community/chemistry/h2_0.735_sto-3g.hdf5 => qiskit/chemistry/H2/0.7_sto-3g.hdf5 (57%) delete mode 100644 qiskit/deutsch_jozsa.ipynb delete mode 100644 qiskit/shors.ipynb delete mode 100644 qiskit/simon.ipynb delete mode 100644 qiskit/simulations_with_noise.ipynb delete mode 100644 qiskit/vqe_convergence.ipynb diff --git a/community/artificial_intelligence/README.md b/community/artificial_intelligence/README.md deleted file mode 100644 index 23b6c440f..000000000 --- a/community/artificial_intelligence/README.md +++ /dev/null @@ -1,19 +0,0 @@ -# Qiskit Aqua Artificial Intelligence Tutorials, Samples and Input Files - -Qiskit Aqua Artificial Intelligence is a set of tools, algorithms and software for use with quantum computers to -carry out research and investigate how to take advantage of quantum computing power to solve artificial intelligence -problems. - -Qiskit Aqua Artificial Intelligence translates artificial-intelligence-specific problems into inputs -for a quantum algorithm residing in Qiskit Aqua, which in turn uses [Qiskit](https://www.qiskit.org/) for the relevant -quantum computation. - -This folder contains some Jupyter Notebook examples. There are Python code files too. - -For more detail see the main [index](../aqua/index.ipynb#artificial_intelligence) - -## Input files - -The folder [input_files](input_files) contains a number of example JSON input files that can be loaded -and run by the Qiskit Aqua [GUI](https://github.com/Qiskit/aqua/README.md#gui) or by the Qiskit Aqua -[command line](https://github.com/Qiskit/aqua/README.md#command-line) tool. diff --git a/community/artificial_intelligence/datasets.py b/community/artificial_intelligence/datasets.py deleted file mode 100644 index 1eaac3741..000000000 --- a/community/artificial_intelligence/datasets.py +++ /dev/null @@ -1,555 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -import numpy as np -import scipy -from scipy.linalg import expm -import matplotlib.pyplot as plt -from mpl_toolkits.mplot3d import Axes3D -from sklearn import datasets -from sklearn.model_selection import train_test_split -from sklearn.preprocessing import StandardScaler, MinMaxScaler -from sklearn.decomposition import PCA - - -def ad_hoc_data(training_size, test_size, n, gap, PLOT_DATA): - class_labels = [r'A', r'B'] - if n == 2: - N = 100 - elif n == 3: - N = 20 # courseness of data seperation - - label_train = np.zeros(2*(training_size+test_size)) - sample_train = [] - sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] - - sample_Total = [[[0 for x in range(N)] for y in range(N)] for z in range(N)] - - interactions = np.transpose(np.array([[1, 0], [0, 1], [1, 1]])) - - steps = 2*np.pi/N - - sx = np.array([[0, 1], [1, 0]]) - X = np.asmatrix(sx) - sy = np.array([[0, -1j], [1j, 0]]) - Y = np.asmatrix(sy) - sz = np.array([[1, 0], [0, -1]]) - Z = np.asmatrix(sz) - J = np.array([[1, 0], [0, 1]]) - J = np.asmatrix(J) - H = np.array([[1, 1], [1, -1]])/np.sqrt(2) - H2 = np.kron(H, H) - H3 = np.kron(H, H2) - H = np.asmatrix(H) - H2 = np.asmatrix(H2) - H3 = np.asmatrix(H3) - - f = np.arange(2**n) - - my_array = [[0 for x in range(n)] for y in range(2**n)] - - for arindex in range(len(my_array)): - temp_f = bin(f[arindex])[2:].zfill(n) - for findex in range(n): - my_array[arindex][findex] = int(temp_f[findex]) - - my_array = np.asarray(my_array) - my_array = np.transpose(my_array) - - # Define decision functions - maj = (-1)**(2*my_array.sum(axis=0) > n) - parity = (-1)**(my_array.sum(axis=0)) - dict1 = (-1)**(my_array[0]) - if n == 2: - D = np.diag(parity) - elif n == 3: - D = np.diag(maj) - - Basis = np.random.random((2**n, 2**n)) + 1j*np.random.random((2**n, 2**n)) - Basis = np.asmatrix(Basis).getH()*np.asmatrix(Basis) - - [S, U] = np.linalg.eig(Basis) - - idx = S.argsort()[::-1] - S = S[idx] - U = U[:, idx] - - M = (np.asmatrix(U)).getH()*np.asmatrix(D)*np.asmatrix(U) - - psi_plus = np.transpose(np.ones(2))/np.sqrt(2) - psi_0 = 1 - for k in range(n): - psi_0 = np.kron(np.asmatrix(psi_0), np.asmatrix(psi_plus)) - - sample_total_A = [] - sample_total_B = [] - sample_total_void = [] - if n == 2: - for n1 in range(N): - for n2 in range(N): - x1 = steps*n1 - x2 = steps*n2 - phi = x1*np.kron(Z, J) + x2*np.kron(J, Z) + (np.pi-x1)*(np.pi-x2)*np.kron(Z, Z) - Uu = scipy.linalg.expm(1j*phi) - psi = np.asmatrix(Uu)*H2*np.asmatrix(Uu)*np.transpose(psi_0) - temp = np.asscalar(np.real(psi.getH()*M*psi)) - if temp > gap: - sample_Total[n1][n2] = +1 - elif temp < -gap: - sample_Total[n1][n2] = -1 - else: - sample_Total[n1][n2] = 0 - - # Now sample randomly from sample_Total a number of times training_size+testing_size - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == +1: - sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == -1: - sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - - sample_train = [sampleA, sampleB] - - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - img = plt.imshow(np.asmatrix(sample_Total).T, interpolation='nearest', - origin='lower', cmap='copper', extent=[0, 2*np.pi, 0, 2*np.pi]) - plt.show() - fig2 = plt.figure() - for k in range(0, 2): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Ad-hoc Data") - plt.show() - - elif n == 3: - for n1 in range(N): - for n2 in range(N): - for n3 in range(N): - x1 = steps*n1 - x2 = steps*n2 - x3 = steps*n3 - phi = x1*np.kron(np.kron(Z, J), J) + x2*np.kron(np.kron(J, Z), J) + x3*np.kron(np.kron(J, J), Z) + \ - (np.pi-x1)*(np.pi-x2)*np.kron(np.kron(Z, Z), J)+(np.pi-x2)*(np.pi-x3)*np.kron(np.kron(J, Z), Z) + \ - (np.pi-x1)*(np.pi-x3)*np.kron(np.kron(Z, J), Z) - Uu = scipy.linalg.expm(1j*phi) - psi = np.asmatrix(Uu)*H3*np.asmatrix(Uu)*np.transpose(psi_0) - temp = np.asscalar(np.real(psi.getH()*M*psi)) - if temp > gap: - sample_Total[n1][n2][n3] = +1 - sample_total_A.append([n1, n2, n3]) - elif temp < -gap: - sample_Total[n1][n2][n3] = -1 - sample_total_B.append([n1, n2, n3]) - else: - sample_Total[n1][n2][n3] = 0 - sample_total_void.append([n1, n2, n3]) - - # Now sample randomly from sample_Total a number of times training_size+testing_size - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - draw3 = np.random.choice(N) - if sample_Total[draw1][draw2][draw3] == +1: - sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N, 2*np.pi*draw3/N] - tr += 1 - - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - draw3 = np.random.choice(N) - if sample_Total[draw1][draw2][draw3] == -1: - sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N, 2*np.pi*draw3/N] - tr += 1 - - sample_train = [sampleA, sampleB] - - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - - sample_total_A = np.asarray(sample_total_A) - sample_total_B = np.asarray(sample_total_B) - x1 = sample_total_A[:, 0] - y1 = sample_total_A[:, 1] - z1 = sample_total_A[:, 2] - - x2 = sample_total_B[:, 0] - y2 = sample_total_B[:, 1] - z2 = sample_total_B[:, 2] - - fig1 = plt.figure() - ax1 = fig1.add_subplot(1, 1, 1, projection='3d') - ax1.scatter(x1, y1, z1, c='#8A360F') - plt.show() - # - fig2 = plt.figure() - ax2 = fig2.add_subplot(1, 1, 1, projection='3d') - ax2.scatter(x2, y2, z2, c='#683FC8') - plt.show() - - sample_training_A = training_input['A'] - sample_training_B = training_input['B'] - - x1 = sample_training_A[:, 0] - y1 = sample_training_A[:, 1] - z1 = sample_training_A[:, 2] - - x2 = sample_training_B[:, 0] - y2 = sample_training_B[:, 1] - z2 = sample_training_B[:, 2] - - fig1 = plt.figure() - ax1 = fig1.add_subplot(1, 1, 1, projection='3d') - ax1.scatter(x1, y1, z1, c='#8A360F') - ax1.scatter(x2, y2, z2, c='#683FC8') - plt.show() - - return sample_Total, training_input, test_input, class_labels - - -def sample_ad_hoc_data(sample_Total, test_size, n): - tr = 0 - - class_labels = [r'A', r'B'] # copied from ad_hoc_data() - if n == 2: - N = 100 - elif n == 3: - N = 20 - - label_train = np.zeros(2*test_size) - sampleA = [[0 for x in range(n)] for y in range(test_size)] - sampleB = [[0 for x in range(n)] for y in range(test_size)] - while tr < (test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == +1: - sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - - tr = 0 - while tr < (test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == -1: - sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - sample_train = [sampleA, sampleB] - for lindex in range(test_size): - label_train[lindex] = 0 - for lindex in range(test_size): - label_train[test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2 * test_size, n)) - test_input = {key: (sample_train[label_train == k, :])[:] for k, key in enumerate(class_labels)} - return test_input - - -def Breast_cancer(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B'] - data, target = datasets.load_breast_cancer(True) - sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=0.3, random_state=12) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Now reduce number of features to number of qubits - pca = PCA(n_components=n).fit(sample_train) - sample_train = pca.transform(sample_train) - sample_test = pca.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 2): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("PCA dim. reduced Breast cancer dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Digits(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B', r'C', r'D', r'E', r'F', r'G', r'H', r'I', r'J'] - data = datasets.load_digits() - sample_train, sample_test, label_train, label_test = train_test_split( - data.data, data.target, test_size=0.3, random_state=22) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Now reduce number of features to number of qubits - pca = PCA(n_components=n).fit(sample_train) - sample_train = pca.transform(sample_train) - sample_test = pca.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 9): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("PCA dim. reduced Digits dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Iris(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B', r'C'] - data, target = datasets.load_iris(True) - sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=1, random_state=42) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Now reduce number of features to number of qubits - pca = PCA(n_components=n).fit(sample_train) - sample_train = pca.transform(sample_train) - sample_test = pca.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 3): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Iris dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Wine(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B', r'C'] - - data, target = datasets.load_wine(True) - sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=test_size, random_state=7) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Now reduce number of features to number of qubits - pca = PCA(n_components=n).fit(sample_train) - sample_train = pca.transform(sample_train) - sample_test = pca.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 3): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("PCA dim. reduced Wine dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Gaussian(training_size, test_size, n, PLOT_DATA): - sigma = 1 - if n == 2: - class_labels = [r'A', r'B'] - label_train = np.zeros(2*(training_size+test_size)) - sample_train = [] - sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] - randomized_vector1 = np.random.randint(2, size=n) - randomized_vector2 = (randomized_vector1+1) % 2 - for tr in range(training_size+test_size): - for feat in range(n): - if randomized_vector1[feat] == 0: - sampleA[tr][feat] = np.random.normal(-1/2, sigma, None) - elif randomized_vector1[feat] == 1: - sampleA[tr][feat] = np.random.normal(1/2, sigma, None) - else: - print('Nope') - - if randomized_vector2[feat] == 0: - sampleB[tr][feat] = np.random.normal(-1/2, sigma, None) - elif randomized_vector2[feat] == 1: - sampleB[tr][feat] = np.random.normal(1/2, sigma, None) - else: - print('Nope') - - sample_train = [sampleA, sampleB] - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - fig1 = plt.figure() - for k in range(0, 2): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Gaussians") - plt.show() - - return sample_train, training_input, test_input, class_labels - elif n == 3: - class_labels = [r'A', r'B', r'C'] - label_train = np.zeros(3*(training_size+test_size)) - sample_train = [] - sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleC = [[0 for x in range(n)] for y in range(training_size+test_size)] - randomized_vector1 = np.random.randint(3, size=n) - randomized_vector2 = (randomized_vector1+1) % 3 - randomized_vector3 = (randomized_vector2+1) % 3 - for tr in range(training_size+test_size): - for feat in range(n): - if randomized_vector1[feat] == 0: - sampleA[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) - elif randomized_vector1[feat] == 1: - sampleA[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) - elif randomized_vector1[feat] == 2: - sampleA[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) - else: - print('Nope') - - if randomized_vector2[feat] == 0: - sampleB[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) - elif randomized_vector2[feat] == 1: - sampleB[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) - elif randomized_vector2[feat] == 2: - sampleB[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) - else: - print('Nope') - - if randomized_vector3[feat] == 0: - sampleC[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) - elif randomized_vector3[feat] == 1: - sampleC[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) - elif randomized_vector3[feat] == 2: - sampleC[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) - else: - print('Nope') - - sample_train = [sampleA, sampleB, sampleC] - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+training_size+test_size+lindex] = 2 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (3*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - fig1 = plt.figure() - for k in range(0, 3): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Gaussians") - plt.show() - - return sample_train, training_input, test_input, class_labels - else: - print("Gaussian presently only supports 2 or 3 qubits") diff --git a/community/artificial_intelligence/input_files/qsvm.json b/community/artificial_intelligence/input_files/qsvm.json deleted file mode 100644 index 5673fc17c..000000000 --- a/community/artificial_intelligence/input_files/qsvm.json +++ /dev/null @@ -1,18 +0,0 @@ -{ - "algorithm": { - "name": "QSVM"}, - "problem": {"name": "classification"}, - "backend": {"provider": "qiskit.BasicAer", "name": "qasm_simulator", "shots":1000}, - - "input": { - "name": "ClassificationInput", - - "training_dataset": {"A": [[6.220353454107791, 4.1469023027385274], [3.204424506661589, 4.335397861953915], [3.5185837720205684, 3.7699111843077513], [2.4504422698000385, 5.717698629533423], [4.39822971502571, 2.324778563656447], [2.9530970943744057, 1.8221237390820801], [2.8902652413026093, 4.838052686528282], [3.015928947446201, 4.1469023027385274], [1.4451326206513047, 2.827433388230814], [0.0, 4.335397861953915], [3.5185837720205684, 2.4504422698000385], [1.7592918860102842, 2.6389378290154264], [5.717698629533423, 1.9477874452256716], [3.330088212805181, 1.2566370614359172], [1.382300767579509, 0.6911503837897545], [3.015928947446201, 2.324778563656447], [5.780530482605219, 0.9424777960769378], [0.06283185307179587, 5.0893800988154645], [2.9530970943744057, 4.9637163926718735], [3.7699111843077513, 4.084070449666731]], "B": [[1.4451326206513047, 5.277875658030853], [1.5079644737231006, 5.0893800988154645], [0.8168140899333463, 5.277875658030853], [1.0053096491487339, 0.25132741228718347], [0.3141592653589793, 6.220353454107791], [4.335397861953915, 3.4557519189487724], [3.4557519189487724, 6.031857894892402], [5.592034923389832, 0.5026548245743669], [0.3141592653589793, 5.654866776461628], [0.5654866776461628, 1.5079644737231006], [5.277875658030853, 3.141592653589793], [4.272566008882119, 0.5026548245743669], [2.0106192982974678, 4.461061568097507], [4.0212385965949355, 4.71238898038469], [1.4451326206513047, 4.900884539600077], [1.8849555921538756, 3.204424506661589], [5.592034923389832, 1.4451326206513047], [2.3876104167282426, 4.335397861953915], [4.084070449666731, 2.3876104167282426], [4.084070449666731, 4.649557127312894]]}, - "test_dataset": -{"A": [[4.900884539600077, 5.780530482605219], [1.6336281798666925, 2.199114857512855], [6.094689747964199, 0.6283185307179586], [5.340707511102648, 3.8327430373795477], [3.015928947446201, 0.6911503837897545], [0.6911503837897545, 4.71238898038469], [3.267256359733385, 0.8796459430051421], [0.18849555921538758, 5.403539364174444], [0.18849555921538758, 0.8168140899333463], [3.4557519189487724, 1.4451326206513047]], "B": [[0.6911503837897545, 5.215043804959057], [1.9477874452256716, 1.3194689145077132], [2.6389378290154264, 3.204424506661589], [1.5079644737231006, 0.8168140899333463], [2.701769682087222, 3.3929200658769765], [4.523893421169302, 3.5185837720205684], [2.261946710584651, 4.39822971502571], [4.71238898038469, 2.827433388230814], [2.199114857512855, 1.1938052083641213], [2.764601535159018, 3.707079331235956]]}, - "datapoints": [[4.900884539600077, 5.780530482605219], [1.6336281798666925, 2.199114857512855], [6.094689747964199, 0.6283185307179586], [5.340707511102648, 3.8327430373795477], [3.015928947446201, 0.6911503837897545], [0.6911503837897545, 4.71238898038469], [3.267256359733385, 0.8796459430051421], [0.18849555921538758, 5.403539364174444], [0.18849555921538758, 0.8168140899333463], [3.4557519189487724, 1.4451326206513047], [0.6911503837897545, 5.215043804959057], [1.9477874452256716, 1.3194689145077132], [2.6389378290154264, 3.204424506661589], [1.5079644737231006, 0.8168140899333463], [2.701769682087222, 3.3929200658769765], [4.523893421169302, 3.5185837720205684], [2.261946710584651, 4.39822971502571], [4.71238898038469, 2.827433388230814], [2.199114857512855, 1.1938052083641213], [2.764601535159018, 3.707079331235956]] - - - - } -} diff --git a/community/artificial_intelligence/input_files/svm_classical.json b/community/artificial_intelligence/input_files/svm_classical.json deleted file mode 100644 index de6744777..000000000 --- a/community/artificial_intelligence/input_files/svm_classical.json +++ /dev/null @@ -1,17 +0,0 @@ -{ - "algorithm": { - "name": "SVM" - }, - "problem": {"name": "classification"}, - "input": { - "name": "ClassificationInput", - - "training_dataset": {"A": [[6.220353454107791, 4.1469023027385274], [3.204424506661589, 4.335397861953915], [3.5185837720205684, 3.7699111843077513], [2.4504422698000385, 5.717698629533423], [4.39822971502571, 2.324778563656447], [2.9530970943744057, 1.8221237390820801], [2.8902652413026093, 4.838052686528282], [3.015928947446201, 4.1469023027385274], [1.4451326206513047, 2.827433388230814], [0.0, 4.335397861953915], [3.5185837720205684, 2.4504422698000385], [1.7592918860102842, 2.6389378290154264], [5.717698629533423, 1.9477874452256716], [3.330088212805181, 1.2566370614359172], [1.382300767579509, 0.6911503837897545], [3.015928947446201, 2.324778563656447], [5.780530482605219, 0.9424777960769378], [0.06283185307179587, 5.0893800988154645], [2.9530970943744057, 4.9637163926718735], [3.7699111843077513, 4.084070449666731]], "B": [[1.4451326206513047, 5.277875658030853], [1.5079644737231006, 5.0893800988154645], [0.8168140899333463, 5.277875658030853], [1.0053096491487339, 0.25132741228718347], [0.3141592653589793, 6.220353454107791], [4.335397861953915, 3.4557519189487724], [3.4557519189487724, 6.031857894892402], [5.592034923389832, 0.5026548245743669], [0.3141592653589793, 5.654866776461628], [0.5654866776461628, 1.5079644737231006], [5.277875658030853, 3.141592653589793], [4.272566008882119, 0.5026548245743669], [2.0106192982974678, 4.461061568097507], [4.0212385965949355, 4.71238898038469], [1.4451326206513047, 4.900884539600077], [1.8849555921538756, 3.204424506661589], [5.592034923389832, 1.4451326206513047], [2.3876104167282426, 4.335397861953915], [4.084070449666731, 2.3876104167282426], [4.084070449666731, 4.649557127312894]]}, - "test_dataset": -{"A": [[4.900884539600077, 5.780530482605219], [1.6336281798666925, 2.199114857512855], [6.094689747964199, 0.6283185307179586], [5.340707511102648, 3.8327430373795477], [3.015928947446201, 0.6911503837897545], [0.6911503837897545, 4.71238898038469], [3.267256359733385, 0.8796459430051421], [0.18849555921538758, 5.403539364174444], [0.18849555921538758, 0.8168140899333463], [3.4557519189487724, 1.4451326206513047]], "B": [[0.6911503837897545, 5.215043804959057], [1.9477874452256716, 1.3194689145077132], [2.6389378290154264, 3.204424506661589], [1.5079644737231006, 0.8168140899333463], [2.701769682087222, 3.3929200658769765], [4.523893421169302, 3.5185837720205684], [2.261946710584651, 4.39822971502571], [4.71238898038469, 2.827433388230814], [2.199114857512855, 1.1938052083641213], [2.764601535159018, 3.707079331235956]]}, - "datapoints": [[4.900884539600077, 5.780530482605219], [1.6336281798666925, 2.199114857512855], [6.094689747964199, 0.6283185307179586], [5.340707511102648, 3.8327430373795477], [3.015928947446201, 0.6911503837897545], [0.6911503837897545, 4.71238898038469], [3.267256359733385, 0.8796459430051421], [0.18849555921538758, 5.403539364174444], [0.18849555921538758, 0.8168140899333463], [3.4557519189487724, 1.4451326206513047], [0.6911503837897545, 5.215043804959057], [1.9477874452256716, 1.3194689145077132], [2.6389378290154264, 3.204424506661589], [1.5079644737231006, 0.8168140899333463], [2.701769682087222, 3.3929200658769765], [4.523893421169302, 3.5185837720205684], [2.261946710584651, 4.39822971502571], [4.71238898038469, 2.827433388230814], [2.199114857512855, 1.1938052083641213], [2.764601535159018, 3.707079331235956]] - - - - } -} diff --git a/community/artificial_intelligence/input_files/vqc.json b/community/artificial_intelligence/input_files/vqc.json deleted file mode 100644 index e7eb30e9d..000000000 --- a/community/artificial_intelligence/input_files/vqc.json +++ /dev/null @@ -1,15 +0,0 @@ -{ - "algorithm": { - "name": "VQC" - }, - "problem": {"name": "classification"}, - "backend": {"provider": "qiskit.BasicAer", "name": "qasm_simulator", "shots": 1000}, - "optimizer": {"name": "SPSA", "max_trials": 100, "save_steps": 10}, - "input": { - "name": "ClassificationInput", - "training_dataset": {"A": [[6.220353454107791, 4.1469023027385274], [3.204424506661589, 4.335397861953915], [3.5185837720205684, 3.7699111843077513], [2.4504422698000385, 5.717698629533423], [4.39822971502571, 2.324778563656447], [2.9530970943744057, 1.8221237390820801], [2.8902652413026093, 4.838052686528282], [3.015928947446201, 4.1469023027385274], [1.4451326206513047, 2.827433388230814], [0.0, 4.335397861953915], [3.5185837720205684, 2.4504422698000385], [1.7592918860102842, 2.6389378290154264], [5.717698629533423, 1.9477874452256716], [3.330088212805181, 1.2566370614359172], [1.382300767579509, 0.6911503837897545], [3.015928947446201, 2.324778563656447], [5.780530482605219, 0.9424777960769378], [0.06283185307179587, 5.0893800988154645], [2.9530970943744057, 4.9637163926718735], [3.7699111843077513, 4.084070449666731]], "B": [[1.4451326206513047, 5.277875658030853], [1.5079644737231006, 5.0893800988154645], [0.8168140899333463, 5.277875658030853], [1.0053096491487339, 0.25132741228718347], [0.3141592653589793, 6.220353454107791], [4.335397861953915, 3.4557519189487724], [3.4557519189487724, 6.031857894892402], [5.592034923389832, 0.5026548245743669], [0.3141592653589793, 5.654866776461628], [0.5654866776461628, 1.5079644737231006], [5.277875658030853, 3.141592653589793], [4.272566008882119, 0.5026548245743669], [2.0106192982974678, 4.461061568097507], [4.0212385965949355, 4.71238898038469], [1.4451326206513047, 4.900884539600077], [1.8849555921538756, 3.204424506661589], [5.592034923389832, 1.4451326206513047], [2.3876104167282426, 4.335397861953915], [4.084070449666731, 2.3876104167282426], [4.084070449666731, 4.649557127312894]]}, - "test_dataset": -{"A": [[4.900884539600077, 5.780530482605219], [1.6336281798666925, 2.199114857512855], [6.094689747964199, 0.6283185307179586], [5.340707511102648, 3.8327430373795477], [3.015928947446201, 0.6911503837897545], [0.6911503837897545, 4.71238898038469], [3.267256359733385, 0.8796459430051421], [0.18849555921538758, 5.403539364174444], [0.18849555921538758, 0.8168140899333463], [3.4557519189487724, 1.4451326206513047]], "B": [[0.6911503837897545, 5.215043804959057], [1.9477874452256716, 1.3194689145077132], [2.6389378290154264, 3.204424506661589], [1.5079644737231006, 0.8168140899333463], [2.701769682087222, 3.3929200658769765], [4.523893421169302, 3.5185837720205684], [2.261946710584651, 4.39822971502571], [4.71238898038469, 2.827433388230814], [2.199114857512855, 1.1938052083641213], [2.764601535159018, 3.707079331235956]]}, - "datapoints": [[4.900884539600077, 5.780530482605219], [1.6336281798666925, 2.199114857512855], [6.094689747964199, 0.6283185307179586], [5.340707511102648, 3.8327430373795477], [3.015928947446201, 0.6911503837897545], [0.6911503837897545, 4.71238898038469], [3.267256359733385, 0.8796459430051421], [0.18849555921538758, 5.403539364174444], [0.18849555921538758, 0.8168140899333463], [3.4557519189487724, 1.4451326206513047], [0.6911503837897545, 5.215043804959057], [1.9477874452256716, 1.3194689145077132], [2.6389378290154264, 3.204424506661589], [1.5079644737231006, 0.8168140899333463], [2.701769682087222, 3.3929200658769765], [4.523893421169302, 3.5185837720205684], [2.261946710584651, 4.39822971502571], [4.71238898038469, 2.827433388230814], [2.199114857512855, 1.1938052083641213], [2.764601535159018, 3.707079331235956]] - } -} diff --git a/community/artificial_intelligence/qsvm_directly.ipynb b/community/artificial_intelligence/qsvm_directly.ipynb deleted file mode 100644 index adf51dcb2..000000000 --- a/community/artificial_intelligence/qsvm_directly.ipynb +++ /dev/null @@ -1,306 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Quantum SVM*_\n", - "\n", - "### Introduction\n", - "\n", - "Please refer to [this file](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/artificial_intelligence/qsvm_classification.ipynb) for introduction.\n", - "\n", - "In this file, we show two ways for using the quantum kernel method: (1) the declarative approach and (2) the programmatic approach. \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Part I: declarative approach.\n", - "In the declarative approach, we config a json-like configuration, which defines how the svm instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the svm instance) and the processed results. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import *\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import run_algorithm, QuantumInstance\n", - "from qiskit.aqua.input import ClassificationInput\n", - "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", - "from qiskit.aqua.algorithms import QSVM\n", - "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", - "\n", - "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1}\n" - ] - } - ], - "source": [ - "feature_dim = 2 # dimension of each data point\n", - "training_dataset_size = 20\n", - "testing_dataset_size = 10\n", - "random_seed = 10598\n", - "shots = 1024\n", - "\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", - " training_size=training_dataset_size, \n", - " test_size=testing_dataset_size, \n", - " n=feature_dim, gap=0.3, PLOT_DATA=False\n", - ")\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "print(class_to_label)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the svm in the declarative approach.\n", - "In the following json, we config:\n", - "- the algorithm name \n", - "- the feature map " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\n", - " 'problem': {'name': 'classification', 'random_seed': random_seed},\n", - " 'algorithm': {\n", - " 'name': 'QSVM'\n", - " },\n", - " 'backend': {'shots': shots},\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", - "}\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "algo_input = ClassificationInput(training_input, test_input, datapoints[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With everything setup, we can now run the algorithm.\n", - "\n", - "The run method includes training, testing and predict on unlabeled data.\n", - "\n", - "For the testing, the result includes the success ratio.\n", - "\n", - "For the prediction, the result includes the predicted class names for each data.\n", - "\n", - "After that the trained model is also stored in the svm instance, you can use it for future prediction." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "result = run_algorithm(params, algo_input, backend=backend)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYlWX6x78PKKaCgIKCouJu7uRGalampmZlM6YtlpaVVtY0NVPWNK3T/GzG9pzKsjQz9yXLzFzTSilxw8QVNxRFWQQFleX5/cFxLg739y1G6Ci+9+e6vOB8vd9z3rPc53Du536+t7HWQlEU9+F3oU9AUZQLgya/orgUTX5FcSma/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUzJb4zpZ4zZYYzZbYwZW14npSjK74853w4/Y4w/gJ0A+gBIBvAzgNuttdt+5RhxY7UjomhsRESY0JzOdffOJKFd3qo5jS0sLBRa2olsGhtUvarQ0tNPCC04JIgen3vmrND8/Pn7bebRTKFFN6pLYwvIfcg6lUNjw4JrCO1sfj6NDahUSWin8/KE5vQ8VA0IEFrOmTM09jISe4bcltPtnS0ooLHs+Q2tXl0GGkOPP31WPmcnc3JpbHAguV4H/MjtHc+QryWAv0Zqh4bQ2LwSj8PBAweQnpbG71wJ5LNderoA2G2tTQIAY8wMADcDcEx+xtDhf6b6M0+PFFq+wxN+43W3Cm1d3Lc09hR5MX62eAWN7dmlvdCmT/taaP0HXU2P3757v9Cq1qhGYxe8tUBok6a+TGMzT50S2tKfN9LYkf37CO1gWhqNbRgm33C3HTokNKfkb1lXvllt3LePxl5eT8buO3acxrI3oIPp6TSWJeqQK2OFZhySP/HwYaF9H59AYwd070x1RvUqVYQ2aZZ8LQFANfIaeXTITTT2yAnvN5Drr7mm1OdUlj/76wE4WOxyskdTFKUCUJZP/lJhjHkAwAO/9+0oivK/UZbkPwSgfrHLUR7NC2vtRAATAf6dX1GUC0NZkv9nAM2MMY1QlPS3Abjj1w6oHRElvuO/8+oTNPaRx+RVLf9pE40tqj16w767AUCDWrWENrj3VTT2nQ9mCS04LFhocybz724d+14htDVz1tDYwNBAoSUcPEgigaDLLhNaThYvSm05cEBo6xN30diYFk2Etv2QfBybRUbQ43/YuVNoBxy+x+84nCK0xHWJNPbpR4YJrUmdOjR2zuofhZaalSW01Ynb6fG3dbtSaCdyeDF15peyVlQ1UBaJAeDugb2FdmO/HjS2ZBEPADJInQcAdpR4nbP6iBPnnfzW2nxjzBgASwD4A/jYWvvL+V6foii+pUzf+a21XwPgH3uKolzUaIeforgUTX5FcSma/IriUs67vfd8aB8TY5esWuWlZefyKnXzyEihLdmyhcdGyOrzknUbaGz6EdkZVieaV45v6dZVaFMWLhVavcbyXAGgBel4q+TH329ZBT/L4bH56IO5Qrt/9GAa+/n0xUIbMvR6Gjt37jKh9e7fTWhdGjemxx/Llm3StWvI9mIn1u7iqxC7D8gVh8oBvFxVKaCy0G6Nlc8j6/QEgCqkxfnnJNk+DgBhQbKtu0ZVXu0/nJEhtAKH3Fu18mehPXGP7GIF5GrO3TffjG0JCaVq79VPfkVxKZr8iuJSNPkVxaVo8iuKS/Fpwa9dhw726xXeLZFfff8TjW3cSG4QvL5dOxr7ybKVQnvtsedpbECALKz9+9PXaeyfbntIaBPnTxLaV/Pk7QPA9jjZQpqQsJrGzvh2ttBef+EjGtukg2zD3b2BF8v2J+2Q2n6+67pGDdn6/Mqnbwnt6GHesjukl2xXffND2SINAPlnpadAdJuGNLZxQ/laYG3aALAsjm9tLknvrjFUj6pZU2grt/HHa2OcbGhNO8S3S7/y7GihfREfT2Mrk6Jj2lG+hfmWnt7tyH2uvhqbNm7Ugp+iKM5o8iuKS9HkVxSXosmvKC5Fk19RXMrvbuNVnN07k4TZJjPiAIB5S6YJjVX1AeCe3tcKbfV2btbQMTpaaHuPHaOxT074h9DiN8vrPZPLW0VvHiNNF6O/k7cPAA8OHSO0mV99QmN/2CFNMzr0aEtjmelFxsmTNJa1q25NThaanz8vJrPW1thrpaEJAIQQR10n04xjxIxj/+GjNHZXvFz1+PtT0gy2GnEPBoBk0oabnMxvq3M3ufqUmungyEsMQ39aLNt4AcD4ydjHHuE+OZklHjPm7OyEfvIrikvR5FcUl6LJryguRZNfUVxKmQp+xph9ALIBFADIt9Z2+rX4y1s1F5N0nFx22X78d5/5J41lxb2eLVvS2H797hfayxP4mMEdP8nW2J7Xy73hdaLC6fEz/iVbW1t25ec1YfrbQhv/7yk0Nu+MdGjtPkjuuweAv734qtBycnhRKi9PFi7f+1y2Pi/euY4ezwqnTgWonQdkITEwiI+/2rJaTsyp3aA2jW3dvbXQ3vhghtAeGsn9DyLIeLM2Lbh/QWKSdEauF8lfC8yJObROKI3NOyuf38kzuFXmI/f80etyJX9eQGeUR7X/Wmstb/ZWFOWiRf/sVxSXUtbktwC+NcbEe8ZyCYwxDxhj1htj1h93WE9XFMX3lDX5e1hrrwDQH8DDxpieJQOstROttZ2stZ3Cwvn3IUVRfE+Zkt9ae8jzMxXAfBSN7VYUpQJw3gU/Y0x1AH7W2mzP730BvPRrxxQWFgrXVCdThkXEZZcZcQC8ZZdV9QHgm28+FFr1J2VbKwDUbSpNJA4eThXakb1y7hwAhEXJeffZ6dLhFgDaN5RGFi06N6exgaHyfLMzeMtuUpKcb9i5m5wbBwA/frdIaGz2Wzi5XwAQSByIt2/ZTWMzjmYKrekVTWnso6OHCs2pPfeXQ2JWLArypHFIpsPsu+PZspU4wKGCnkFeo2wlBgDa94wV2rAh3EU5+7RcdVkdx+dUloWyVPvrAJhvinqWKwH43Fr7TbmclaIovztlGdSZBKB9OZ6Loig+RJf6FMWlaPIrikvx6X7+tBPZ+Gyxt3vv4N5X0Vg2QsvJZZe1lTq17LLi3ty5/HrXkfFRK1etF1pohHR8BXgLav9Y3gH9/jxZbLuuW0cay0Z7ObV1ZqdLn4DevfiiDGuNDa5WTWh9Yvi3vTQyrqtRq2ga27ytPN8uTaQrMQDUCgwUGtsfDwDt6kcJjfkXsEImAPz8i2zpvn9AXxobRPwL0h0KiWyU2eVknBsAnM2X53a4OXc2Llm41P38iqL8Jpr8iuJSNPkVxaVo8iuKS9HkVxSX4tNqf1D1qujZxbtS/M4HfJbbXx6WbqU9YwfQWOayy4w4AN6yy6r6ABDbrJnQEkn76Jff/kCPP7pfur5O+ecHNHby3P8IbfSdf6Wx4ya+ILTnxkjTDgC4enAvof3hmoE0dtAd9wltdt4KobWMkY8LwJ2CJz77Po0NqiGNLOLJagMAjLjzBqGFVpcrAADw+berhJZxVDry5l7BW6cHdpMrISUdcs/x3oSZQluzeDGNXbRCvs73H+c2GP7EvXfPbmkGAshVD6dVDHpsqSMVRbmk0ORXFJeiya8oLkWTX1FcirHW+uzGIqMa2hFjnvHSgsOCaexl1WULa9fObWgsG6HV3KEdku3HP3aQ24sNGiCMiXB5PVkwzC8ooMcP6C89BV6d+ByNXfadHN00aggvzLG97IfJmCkAyC+U55Zz5iyNZa28kSEhQluyZQs9/rrWsmA38/sfaWztWrLg9+2cVTT2lWdHCy2gEq9VF5LX89IE6f7LzhUA4vbsEdoO4tILAMcPpQntniG8KF27hnQF3rhvH43tQLwdvt/BC9hXlXCp7tK5M9avX897n0ugn/yK4lI0+RXFpWjyK4pL0eRXFJfymx1+xpiPAQwEkGqtbePRagKYCSAawD4AQ6y1vOJUjOCQIPQfdLWXNmcyH0N01S3dhfbVvJU09kyuNDx0GqHFzDad9uOzzj1W3HPaS5+SKU0qn3j0XzR24GhZ3Dt6go/VSkqVRUtW6AKAZfNXC63HwCtp7IbVm4WWcUQ+rVEt5J55gO9vDwvlBd2d2/cJbfh9g2hsGtmPzzQAGP+8NGgd+/Iooc1fL30ZAKBTYzmaK78hL+jWqyv9Gsa/OZXGPvvXe4VW0sz2HJO+Xiq02pHcNHXCnC+9LqdmyNecE6X55J8MoF8JbSyA5dbaZgCWey4rilKB+M3kt9auBlDSo/hmAOemSE4BwN+yFUW5aDnf7/x1rLXn/n4+giIbb0rxcV2ZDmvRiqL4njIX/GxRl5Bjp1DxcV0hoXwksaIovud8k/+oMSYSADw/ZQVKUZSLmvPdz78QwHAA4zw/vyjNQblnzmL77v1eWse+V9DYFsTZdEYc3/t/85ibZOy/eCwbocVcdgG+H5+17LKqPsBbY8f+H9/fXpAvK8qzF8q99ADQ57quQvs+jrfcdr5eugXPeWc+jb16iGxnHnJrH6Gt3ZJIj+9G/A+efGkCjW3QsoHQlq/hFfjGLWW7q5Pz7QNjhwlt0sR5Qhv/4iP0+FXbtgkt6/RpGrt7a5LQWnZtSSK54/K2nftobLcY2Xr8xcJVNPZP9w72uvzx/8k2Yid+85PfGDMdwFoALYwxycaYkShK+j7GmF0AensuK4pSgfjNT35r7e0O/3VdOZ+Loig+RDv8FMWlaPIrikvxqYGnn78fqtbw3jO+Zs4aGtv5KVk8SkiQraoAEP1dtNCcCi/Z6XJsktMILWa2+e40OdrLqWWXFffGPS33pgPAsq1bhXaiFm/v/TlB7u2e/e6nNLbp5W2FdvpkLo1dPVs+F7knZbGrenB1evz2w4eFFhEdQWNP58jrrRnBl4JbEw+F6lWq0Nip0+TYs4ceHio09ngDQJso2br88XR5nQBQpZo8h61rpHcAAJy+tofQ/Cvxz95fkpOFdvNN19DYzQe8vQZyz3KvBoZ+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ+694aGRtheve700gJD+dilf7z6qNCOZctKPQA8OHSM0CZMf5vGtifOqO/P49Xc/j1lG+2CJbIiXq+ZrEYDvGU3siavaPduI52J2WgwAPh8hhwJddvQkpYLRTDTC9ZqCgAFhYVCa1u/vtCcTEYyyFirUOIIDAARpPX5hMNYrJlL5SpP3QZ8I2mjcGniwm4r89QpevzabXIlJaaZNPgAgGhyWyXHZ51jfZJsBf45jq841KglW3SH95Nj1wCgcgkX49iuXRGv7r2KovwamvyK4lI0+RXFpWjyK4pL8Wl7b3Sjupg09WUvLeEgnzuelStbUF9/4SMaO/OrT4Q2/t9TSCTQorOcy35dt440dvSdfxXa/K8mCs2pAMb24zu17LLiHhsNBgATFy0R2ot/4QXOGx6Q46P+MvRuGjvy8WekOLSvkJycc9kIrPGTZ9PYmpHSMblrG96S3aBRpNCa1eFtwzmkvXX0cDkibebs8fT4kM6ydfmyypVp7DbynK1YGkdjnxolN8fGREfT2DP5+UJ7bpx0JQaA554c6XW5kBRtndBPfkVxKZr8iuJSNPkVxaVo8iuKSymNh9/HxphUY8zWYtoLxphDxphNnn98KLmiKBctv9nea4zpCeAkgE+Lzep7AcBJay0vmTrQrkMHu3Cp9xyyTIeWzikfLRAaa3sEgOadZAV/9Wxu/BF7Y6zQese0o7Gsis8qtMt/+YUeX7O6rBwzIw4ASNkjjTDqt5SttQDwwA3XC+2jb5bR2PnvzBFar9ulIy8ArPtyndDe/uBvQnMy0li0caPQ/tilC41lZJMVHgB48P6XhdaqWysa26OXNGaJbdpEaImH5OMN8FWmI5l8haZXG7m64bQy8PbH8nm4rDpvsz6QeEBob417nMbuPXbM6/ItffsiYfPm8mnvdRjXpShKBacs3/nHGGO2eL4W6CgeRalgnG/yvwegCYAOAFIAvOYUWHxWX1pa2nnenKIo5c15Jb+19qi1tsBaWwjgQwCOX+yKz+qrVavW+Z6noijlzHm19xpjIotN6b0FAN+YXIKsUzlY+rN3USgnixd57h89WGivPM1HP3XoIR1quw/qRmOzM2RraiV/fxr73JhXhfbB1H8KrdChaMpGaDm57H446x2hObXssuLeff1609jXPpsrtMWT+XS1jr2uFFpqVpbQnEZl9WjRQmirEvlor7pkj30Vh2LZ+x/J9txAB0+Cn/bsEdqe1GMkktO9uSwevz/3axqbHi1fS+t37qaxrL3XqbW9Wt/uQmNty4B8HPz8Sv95/pvJ7xnXdQ2AMGNMMoDnAVxjjOmAoum8+wCMKvUtKopyUXC+47om/Q7noiiKD9EOP0VxKZr8iuJSNPkVxaX41MwjLLgGRvb3bi3dckC2MgLA59OlQ+3+JN4a26SOdHL924uyUg8ASUmbhJadLt1/AeDqwdIxNb9QOvIum89biTtfL1tN2ew8gBtkMCMOAJj12gyhsao+ADwx7I9Ce/x5vorw9stPCu2pR+8S2o87d9LjDXGuZS3OABCXKK8jrJZcAQCAiOBgoTlV+0OIWzBrR96ZmUmPL9kuCwB1G3HjkB82y7buNs250+9SMhuwQVgYjWUmIU5t+E1LvPYr/Q/Vfv3kVxSXosmvKC5Fk19RXIomv6K4FJ8W/M7m5+Ngic096xN30dghQ+We9Slv8f1DGaRYlpPD92B37ibbYHv34lsT/nDNQKENJK2XPQbKtlgAmPPOfKGdPsnbmdkILSeX3bFvvCE0p5ZdVtx7/UU5Cg0AbrhhtNC2JicLzamduVvTpkJ7+S3uohwSLot44WG84JdORmvVrsG9HbanpAjtm5nLhTb2yXvp8Wy8WIhD0XJJvPQvmP0pbwV+9fmHhZZ4mHsKNI+UbsWLl6+lsaOG3uh1+X8Zvqef/IriUjT5FcWlaPIrikvR5FcUl6LJryguxafV/oBKldCwREtjTAvprAoAc+dKw4oaNbgTUFhQkNDy8s7Q2B+/WyS01t2lCysADLrjPqEFk2rwhtWb6fFXD+kptNWz19DYAjJjjc7OA3fZZUYcAG/ZZVV9AFi06H2hfTRtnNAOpXM/1x1Hjght0B9kizQA7D56VGi1AuXzCPDH5tQZ/vyGk9fCiAf+ILQ95PYBoAWptB84fpzGBgbJVYC+g6+hsRv27pXHO7Qo7ye31+farjS2WkCA12U/0mLthH7yK4pL0eRXFJeiya8oLqU047rqG2NWGmO2GWN+Mcb8yaPXNMYsNcbs8vxU735FqUCUpuCXD+AJa+0GY0wQgHhjzFIAIwAst9aOM8aMBTAWwFO/dkWn8/LEXuXtDmOTeveX7rsxV/GxWqwF9b3PX3c8h5KwIh4AzM5bIbRI4jqbcSSDHj/kVjkWK/fkaRrbtj4ZzTW0L42t92BNoTGXXYDvx2ePF8CLe+z+Tly0hB6/aaUsfJ7J4YW52g1qC8325F4HcYvihJaVxu/vqiXS12DSV9OFNuvDhfT4KmSE1kt/4/60Cbv3Ce25P0unYQAYNGKE0Bq2akBj08nrKaV+OI3t3dG73TwzkxcyGaUZ15Vird3g+T0bQCKAegBuBnCucXsKgEGlvlVFUS44/9N3fmNMNIAYAHEA6hTz7j8CQNrpKIpy0VLq5DfGBAKYC+Axa63X31y2yGOIbigqPq4rXcd1KcpFQ6mS3xhTGUWJP81aO88jHzXGRHr+PxJAKju2+LiumjquS1EuGoyTMeB/A4pcGacASLfWPlZM/zeAtGIFv5rWWtlOVozW7drZWV9773d26tRq30AWQyZ/IwtwAODnL7uaThznBaHwKGma2CemPY2NI6OfqlSSNdKEDdxYtGaEXADxcxgN1rdTB6E57fe+slkzoTnNhWdmm0778WtUrSq0DcRv4YEbpNcCAJwmI6XGvvQfGrtzgxzj1eHqjjT2j0Nk4fR4djaNXb82QWhrv/xeaHPmvUWPXxAfL7Tv5/9AY09lSh+J5p3lyDIAeHLkUKG9NmUOjY1sIrsMX77vcRr7+TczvS7fddNN2JaQUKo2v9JU+7sDuAtAgjHmnPXtMwDGAZhljBkJYD+AIaW5QUVRLg5KM67rewBO7yTXle/pKIriK7TDT1Fciia/orgUTX5FcSk+3c9fNSAALevW9dJ+cBj9dIxUc4f06kFjWZWajV0C+B7qNIfKMRsD1iJCjm4KIrcPAN1IVX67QwU/IydHaNe15j4Ds+Nku2uPFrzKzEZoMZddgO/HZy27rKoPAJeV2FsOAIs3c6+Dzv06Cy3jKG+TnvmZdMTNz5dj0wAgtr90Yv4rqbQHVePeAXfcO1Zor41/gsbOXilXEYwfL4+Fh9UT2vwf+OoVY1OCvC0A6NLReyVkL2k5dkI/+RXFpWjyK4pL0eRXFJeiya8oLsWnBb+cM2ewcd8+L+3AMW6OGEuKUq+8O5XHXnuF0JjpIwBs37JbaI1aRdPYic9KQ8s7x8oRWmGhcvQUADz50gShRUTzWe+33SiNLsdPnk1jHx8+WGirEmW7LADUJKOmnEZoMbNNth/fqWWXFff6t+et07VrNxRax468bfjpN2RrKxtvBgDL16wX2ogJcpTZ1NUr6fEJP2wVmlML+ievvCe0I0eSaOzU5bJoWSeYv26Yv8RddzxNY4f9+SGvy++8xE1fGfrJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSfFrtvywgAJfX827v3XE4xSFakn82n+ohpKK98wB3qM04mim05m25wUZQDWnGUbuW1HZu30ePb9BSGpKczuHuvRHEJbdmpHTpdaIuOR4A4hJl+3RIOK8ysxFazGV38+oN9HjWssuq+gCQmrpfaIcPS+MQgBu7+Du00W5rJI0wKgVIo5PMtBP0+Oi2jYS2ab88VwBIStoktHr1mtNYPz/5OetU7a9epYrQTp3iLegh4d7Pu39l/lqm51TqSEVRLik0+RXFpWjyK4pLKcu4rheMMYeMMZs8/wb8/qerKEp5UZZxXQDwhrV2fGlv7ExeHvaVaOdNXMfbUtfWksWu6Da8eHSC7IVns9MBoOkVsm24S5MmNDa+u9xP/+2cVUIbfh8fVsRaTZmjL8DvQ9c2LWlsdm6u0Ko4uPeG1ZKFwPAwXhysFSj3uLMRWswjAOD78Z1adllxb/Nm3nJblfgE5OXz4m+XpvK5PHFjrNSO8YJf314yNi6Bv0bZaKxhD/K9/ympcmZFlZb8+fUjj2/vO/njGBxWw+uyf6XSF/xKY+CZAiDF83u2MebcuC5FUSowZRnXBQBjjDFbjDEf65ReRalYlGVc13sAmgDogKK/DF5zOO6/47oy0tPL4ZQVRSkPzntcl7X2qLW2wFpbCOBDANI8Dd7jukJrlr5pRVGU35fSVPsNgEkAEq21rxfTi7dS3QJAboRWFOWipTSz+noAWAMgAcA5h4xnANyOoj/5LYB9AEYVG9lNadW2rZ26cKGX1rKubMcEgBmr5Hy06ChuhHEsS87l27JazmwDgEdHSyfXWoGBNDY5XVZoI4JlpTztpJzZBgDr9+4VWut6vFb67Y9yRlwD0qoKAJ/9a6bQ3v/oORq7izjypp86RWNZW+ncqYuFdrfD6gZz2R14Kx/qxFp2WVUfAALIfMRateqSSOC6PsOENuaFe4WWkCjnMALA9nXbhfbi30fRWOYaPXPtOho7fdxnQsvK4l+DT52SLehvTOOzBT99x3ve34JZ/8Gx1EPlM6vvV8Z1yWdaUZQKg3b4KYpL0eRXFJeiya8oLsWn+/nPFhTgYIm1fjYSCwAqB8hTa1CrFo3df7h0+9ABoBopKrF2SgAIrS4Lgaz45FTwu7yuLEqxohoA1G0gH4dmdXiBs1W3VkJjY8ic9No1apBI7lKblSaLqccdxpuxEVpOLrtsP75Tyy4r7qWl8bFnR1MOCI0V5rLT+X3w85fnVcmft8wWkmJ51Sq8aMkoKMijelaWLDQ7kXHEO5/y8/gYM4Z+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ9W+wsLC3Eyx9uIYs7qH2lstSA5r2xZ3EYauyteGkO0JkYcAPDLoUNCa1c/isZ+/u0qod1/ozRVGP/8h/T4B8bKVtOp0xbR2MG39hFaztmzNLZHr05C+2kPb1cNIXPftqfwLuzwIGnmsWrJXKE1jZGGKAAQ21/u7WKGJgB32WVGHABv2WVVfQD47rsZQsvKfUFojVtH0+MDQ+QKz/7jx2hsIemMnzZuOo2985m7hDbntTkkkrPrgHzdAkBurnerdmGhVvsVRfkNNPkVxaVo8iuKS9HkVxSX8pv7+cuTjh072rVxcV5aKtmLD/BRRh999S2Nva13T6G98YEs/ABAVHNZ3IuK4i3GG+N+EVpMV1lIbBgWRo+fNHGe0B56WPoJALwNd/Rwvkd/2sxXhbYnlRelapDrffNNubccAEY88AehZZC9/68/9S49ft6Cd+R13vN3GstGaMUSl10AaNOysdBYyy4AZBFn457EJdfpdT95+SqhXdu+DY2dvmCZ0IzDGLG/jLhVaNsP8xblUDJ+rnl9OUYMADbt2eF1+Za+fZGweXOp9vPrJ7+iuBRNfkVxKZr8iuJSSmPgeZkx5idjzGbPuK4XPXojY0ycMWa3MWamMab0exkVRbnglKbD7wyAXtbakx4L7++NMYsBPI6icV0zjDHvAxiJIi9/Z4wRo55WJ0rDRAAYENNBaL27xtBYtkf/oZGDaWwmKWCdzuP7qnOvkLPWr2stC37z1/MutvEvPiK0ZVu5yTHzKpg5m09CSzh4kOqMnZnSDHLsk9LQEgD2HJW+CLM+XCi0OfO4mWRQNdkhOHU1H8GVmSbHZTmN0GJmm0778VnnHivuOY0ce+zZN4V2aw9eiKxSTXozFORxT4Lmza4Q2twVX9DYY8QvIeME3+PfpVNfr8t7dknTWCd+85PfFnHOraKy558F0AvAuf7EKQC4pauiKBclpR3a4W+M2QQgFcBSAHsAZFprz73NJUPn9ylKhaJUye+ZzNMBQBSKJvPw8aKE4uO6jh/ja9GKovie/6nab63NBLASwJUAQowx52oGUQDotqPi47rCwsPLdLKKopQfpan2hxtjQjy/VwXQB0Aiit4nHT0iAAALcklEQVQEzlXVhgPg1QtFUS5KSjOuqx2KCnr+KHqzmGWtfckY0xjADAA1AWwEMMxaK+1fi9G6XTs7fZH3fvY2UXwv/RmHCjzjMKloRwRzh9q95KvH2i2JNHZgN7k/nY2/qhvKp5MfOH5caC2Joy8ALInfJLT+nWWFGAC2JScLrXtzuTIB8PvbyOEvsOzTp4X2j1cnCe3Kgbz6vWSKbL+OasZLQdFtZbtqp5bNaOxHE2YLjbnsAkCzjvJxqB4s22U3r9pMj3/zH48JLYW8vgC+OrJpq/SWAICV0+Wqxw2jbqCxTaKk10HCNu7X8OMC77F23yz6BGlpKeU2rmsLALHGZq1NgsNkXkVRLn60w09RXIomv6K4FE1+RXEpPt3P37BpM/vUeO/W0LaXc9NGdl4nSUEKAJKTZeGlTQu5BxwAAsjopU6NeWxmTo7QZq/6XmhNGvKiVhY5361xDsXFG64SWrRDYe7rjbI4eOwg76Go20iO/LqK7G8HSl+g/NsL/6HHv/TcaKGxEWAAsGn/fqGlpPD7MPjq7kJzGqHFzDaDLpN7/8OCpFEnAGSflucbGRJCY9+d+5XQ7h5wHY0tKCwU2gczvqSx7TtdLrSqlaX/AQDENvU2U+0WG4v4+Hjdz68oijOa/IriUjT5FcWlaPIrikvR5FcUl+LTcV3BgdUxoHtnL23mlyto7I3X9xDamu/iaWznbu2ElpjExzllHEkXWpCDE+x7E2YKrU5D6fRbr25tevzurUlCYwYQAK/sbyOjxQCgVxtpKJIefZJEAj9slg7ES+L52LPAINkGm7B7n9BOZfLbmr1SroR88gr3d0lKkisWmZly1QYA7s2VBiyFDqtUbIQWc9l1eh66dJKPLavqA8CYPw4UWvzoF2ls72G9hTbqthtpbBBxXH5m3Ac09kgvbwMUtkLlhH7yK4pL0eRXFJeiya8oLkWTX1Fcik8LfoyqgbzYxsYxpR3iDqapmdL1tV4kb43NOyN9AtKJoy8ArFm8WGiLVswS2vg3p9LjW3aVbbRb1yTQWD/iJrtiaRyJBFqNkGO11u/cTWPbNJety7M//ZrG9h18jdCe+7McGXbX49KVGOCjqo4ckUVPAKhXT+67H/bgEzR25tp1QqtahTvFTxs3XWidB8id504uu2w/vlPLLivuffL+8zR2wD39hJboMK4rL1+eW2Uy3gwA5r+9wOtyRir3HmDoJ7+iuBRNfkVxKZr8iuJSNPkVxaWUZVbfZGPMXmPMJs8/OV9LUZSLltK49xoA1YvP6gPwJwCjAXxlrZ3zq1dQjA4xMXbpd995aZUr8QWHnSkpQmtbvz6NZZVyp3l29WrWFBqbjQYAtWtIB2CmZeXm0uNZm+bpvLM0Nm63dGd1Mt34v/emCe2pUbfT2KVkNuD17WQ7NABs2CvnvC2cJ11nX/7rffT48DBpajJ1OV9Z8POTnzspqXw1Z95b0r3XiTufuUtot3btKjQ2Ow8AYq6QbbgfTXmJxjJTlYDK/PXMzuGDL7+hsSdPyNWnMUNvorG9e93hdXnjxmXIzk4vN/deC4DN6lMUpQJzXrP6rLXnFqBfMcZsMca8YYyhOyWKj+tKS+Pv7Iqi+J7zmtVnjGkD4GkUzezrjKLBHU85HPvfcV21yBhqRVEuDOc7q6+ftTbFM777DIBPoAM8FKVCUZqCXziAPGttpmdW37cAXgUQb61N8RQE3wBw2lo79teuKyq6sR3z7D+9tBv7yX37AHe+3e8w5fenxT8LLbQOH6E1bMj18rxq8r9I9hM32xNkv7STQ+22nfuE5l+Jv9+mH8kQ2gND5X5xAPhw1iKh9bq6E40NcHB9ZfiTwukPm6QfwInjWfT4rrFthVYnOJjGMr2KQ/G3X5+7hVZQwMe5RUREC+3FN/8stLyCAnr8xl2yHTn1QCqNZfvxnVp2E7bLgu6oG2XLLwBERclC7+fLFpBIIOmQd2H8hQdHYe+OHeVT8AMQCWCKMab4rL6vjDErPG8MBsAmFFX/FUWpIJRlVl+v3+WMFEXxCdrhpyguRZNfUVyKJr+iuBSfmnn4+fuhWo1qXppT1XXVSlnBb96hKYnkJhJ5Z3k1mM1iO5vPY/3J9XZo2FBok75eSo/vFiOdYH9JTqax+XnycThDTB0A4ECidCau1lfOswO4A3DzyEgay1Y32CpEVIsoejwjuFo1qlevInvCWJs2AJw6JQ0qsrJK3zAWWl26Eju1dDeJko9NZG2+GsTat5kRB8BbdllVHwCSk7cLzelxPJnpfb0FBXImoBP6ya8oLkWTX1Fciia/orgUTX5FcSm/2d5bnnTq1MmuX7/eS8twcM5lBaHJ3yynsf2vlK2tk2fwfeShdUKE1rS5LOIBwJ7d0hOgzeXSDTfDYURSwrptQrv5pmtobNPacuTXc+M+pLGv/v0hoeWc5T4BB0gRb/HytTS2z7Vyz/n6ROlm+69Hn6bHb0qQ47ruuoPHnjolC26975St1wDQpXMbqjN2HZAFzkdvkW7HGSd4wXDiF3KPPXvOAeDr+auE5uSy+9xjI4QWt0e2/AK8uNe+QQMa++Mu7+fn3ltuQWJCQqnae/WTX1Fciia/orgUTX5FcSma/IriUjT5FcWl+LTa3z4mxi5ZtcpL2+FgfsCq/Q3DwmhsJqm2hxOXXScyHVYcdh45IrTebWTlecKcL+nxwwf2EdrmA7I1FwBim8rW5VyHCn5qljTTCCStpgAQSirHZx1aqqsFyPl3EXXkSsg3P62mx4+4aYTQhv1ZrkwAQEi4XHUJDuPP2fJpK4SWcSSdxubmyufyrY/lTL1b+90hNABo1VaueHw8SR4PAAvi44VWcnbeOQ4nS5OQkS/wx6Zkyy4AXNGuBY3t1qyZ0Ky1Wu1XFMUZTX5FcSma/IriUjT5FcWl+LTgZ4w5BmC/52IYANl7WvHR+1XxuJTuW0NrbXhpAn2a/F43bMx6ay33m67A6P2qeFzK9+3X0D/7FcWlaPIriku5kMk/8QLe9u+J3q+Kx6V83xy5YN/5FUW5sOif/YriUnye/MaYfsaYHcaY3caYXx3sebFjjPnYGJNqjNlaTKtpjFlqjNnl+cknhl7EGGPqG2NWGmO2GWN+Mcb8yaNX6PtmjLnMGPOTMWaz53696NEbGWPiPK/JmcYYucnhEsSnye8Z9jkBQH8ArQDcboxp5ctzKGcmAyg5anUsgOXW2mYAlnsuVzTyATxhrW0FIBbAw57nqaLftzMAellr2wPoAKCfMSYWRVOn37DWNgWQAWDkBTxHn+HrT/4uAHZba5OstWcBzABws4/Podyw1q4GUHJ72c0Apnh+nwJgkE9Pqhyw1qZYazd4fs8GkAigHir4fbNFnPRcrOz5ZwH0AjDHo1e4+3W++Dr56wEo7oqZ7NEuJepYa88NTT8CoM6FPJmyYoyJRtGU5jhcAvfNGONvjNkEIBXAUgB7AGRaa8+N2rkUX5MULfj9jtiipZQKu5xijAkEMBfAY9ZaLxOBinrfrLUF1toOAKJQ9Jcon5nlAnyd/IcA1C92OcqjXUocNcZEAoDnZ+oFPp/zwhhTGUWJP81aO88jXxL3DQCstZkAVgK4EkCIMebc3MpL8TVJ8XXy/wygmae6GgDgNgALfXwOvzcLAQz3/D4cwBcX8FzOC2OMATAJQKK19vVi/1Wh75sxJtwYE+L5vSqAPiiqZ6wEMNgTVuHu1/ni8yYfY8wAAG8C8AfwsbX2FZ+eQDlijJkO4BoU7Qo7CuB5AAsAzALQAEU7GIdYa7nn1EWKMaYHgDUAEgCcG/v6DIq+91fY+2aMaYeigp4/ij74ZllrXzLGNEZR8bkmgI0Ahllr5TjnSwzt8FMUl6IFP0VxKZr8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4lP8Hv0Or98j6qc0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n", - "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()\n", - "\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "print(\"predicted classes:\", result['predicted_classes'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### part II: programmatic approach.\n", - "We construct the svm instance directly from the classes. The programmatic approach offers the users better accessibility, e.g., the users can access the internal state of svm instance or invoke the methods of the instance. We will demonstrate this advantage soon." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the svm in the programmatic approach.\n", - "- We build the svm instance by instantiating the class QSVM. \n", - "- We build the feature map instance (required by the svm instance) by instantiating the class SecondOrderExpansion." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "backend = BasicAer.get_backend('qasm_simulator')\n", - "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2, entangler_map=[[0, 1]])\n", - "svm = QSVM(feature_map, training_input, test_input, None)# the data for prediction can be fed later.\n", - "svm.random_seed = random_seed\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)\n", - "result = svm.run(quantum_instance)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us check the result." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXlYlWX6x78PKKaCgIKCouJu7uRGalampmZlM6YtlpaVVtY0NVPWNK3T/GzG9pzKsjQz9yXLzFzTSilxw8QVNxRFWQQFleX5/cFxLg739y1G6Ci+9+e6vOB8vd9z3rPc53Du536+t7HWQlEU9+F3oU9AUZQLgya/orgUTX5FcSma/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUzJb4zpZ4zZYYzZbYwZW14npSjK74853w4/Y4w/gJ0A+gBIBvAzgNuttdt+5RhxY7UjomhsRESY0JzOdffOJKFd3qo5jS0sLBRa2olsGhtUvarQ0tNPCC04JIgen3vmrND8/Pn7bebRTKFFN6pLYwvIfcg6lUNjw4JrCO1sfj6NDahUSWin8/KE5vQ8VA0IEFrOmTM09jISe4bcltPtnS0ooLHs+Q2tXl0GGkOPP31WPmcnc3JpbHAguV4H/MjtHc+QryWAv0Zqh4bQ2LwSj8PBAweQnpbG71wJ5LNderoA2G2tTQIAY8wMADcDcEx+xtDhf6b6M0+PFFq+wxN+43W3Cm1d3Lc09hR5MX62eAWN7dmlvdCmT/taaP0HXU2P3757v9Cq1qhGYxe8tUBok6a+TGMzT50S2tKfN9LYkf37CO1gWhqNbRgm33C3HTokNKfkb1lXvllt3LePxl5eT8buO3acxrI3oIPp6TSWJeqQK2OFZhySP/HwYaF9H59AYwd070x1RvUqVYQ2aZZ8LQFANfIaeXTITTT2yAnvN5Drr7mm1OdUlj/76wE4WOxyskdTFKUCUJZP/lJhjHkAwAO/9+0oivK/UZbkPwSgfrHLUR7NC2vtRAATAf6dX1GUC0NZkv9nAM2MMY1QlPS3Abjj1w6oHRElvuO/8+oTNPaRx+RVLf9pE40tqj16w767AUCDWrWENrj3VTT2nQ9mCS04LFhocybz724d+14htDVz1tDYwNBAoSUcPEgigaDLLhNaThYvSm05cEBo6xN30diYFk2Etv2QfBybRUbQ43/YuVNoBxy+x+84nCK0xHWJNPbpR4YJrUmdOjR2zuofhZaalSW01Ynb6fG3dbtSaCdyeDF15peyVlQ1UBaJAeDugb2FdmO/HjS2ZBEPADJInQcAdpR4nbP6iBPnnfzW2nxjzBgASwD4A/jYWvvL+V6foii+pUzf+a21XwPgH3uKolzUaIeforgUTX5FcSma/IriUs67vfd8aB8TY5esWuWlZefyKnXzyEihLdmyhcdGyOrzknUbaGz6EdkZVieaV45v6dZVaFMWLhVavcbyXAGgBel4q+TH329ZBT/L4bH56IO5Qrt/9GAa+/n0xUIbMvR6Gjt37jKh9e7fTWhdGjemxx/Llm3StWvI9mIn1u7iqxC7D8gVh8oBvFxVKaCy0G6Nlc8j6/QEgCqkxfnnJNk+DgBhQbKtu0ZVXu0/nJEhtAKH3Fu18mehPXGP7GIF5GrO3TffjG0JCaVq79VPfkVxKZr8iuJSNPkVxaVo8iuKS/Fpwa9dhw726xXeLZFfff8TjW3cSG4QvL5dOxr7ybKVQnvtsedpbECALKz9+9PXaeyfbntIaBPnTxLaV/Pk7QPA9jjZQpqQsJrGzvh2ttBef+EjGtukg2zD3b2BF8v2J+2Q2n6+67pGDdn6/Mqnbwnt6GHesjukl2xXffND2SINAPlnpadAdJuGNLZxQ/laYG3aALAsjm9tLknvrjFUj6pZU2grt/HHa2OcbGhNO8S3S7/y7GihfREfT2Mrk6Jj2lG+hfmWnt7tyH2uvhqbNm7Ugp+iKM5o8iuKS9HkVxSXosmvKC5Fk19RXMrvbuNVnN07k4TZJjPiAIB5S6YJjVX1AeCe3tcKbfV2btbQMTpaaHuPHaOxT074h9DiN8vrPZPLW0VvHiNNF6O/k7cPAA8OHSO0mV99QmN/2CFNMzr0aEtjmelFxsmTNJa1q25NThaanz8vJrPW1thrpaEJAIQQR10n04xjxIxj/+GjNHZXvFz1+PtT0gy2GnEPBoBk0oabnMxvq3M3ufqUmungyEsMQ39aLNt4AcD4ydjHHuE+OZklHjPm7OyEfvIrikvR5FcUl6LJryguRZNfUVxKmQp+xph9ALIBFADIt9Z2+rX4y1s1F5N0nFx22X78d5/5J41lxb2eLVvS2H797hfayxP4mMEdP8nW2J7Xy73hdaLC6fEz/iVbW1t25ec1YfrbQhv/7yk0Nu+MdGjtPkjuuweAv734qtBycnhRKi9PFi7f+1y2Pi/euY4ezwqnTgWonQdkITEwiI+/2rJaTsyp3aA2jW3dvbXQ3vhghtAeGsn9DyLIeLM2Lbh/QWKSdEauF8lfC8yJObROKI3NOyuf38kzuFXmI/f80etyJX9eQGeUR7X/Wmstb/ZWFOWiRf/sVxSXUtbktwC+NcbEe8ZyCYwxDxhj1htj1h93WE9XFMX3lDX5e1hrrwDQH8DDxpieJQOstROttZ2stZ3Cwvn3IUVRfE+Zkt9ae8jzMxXAfBSN7VYUpQJw3gU/Y0x1AH7W2mzP730BvPRrxxQWFgrXVCdThkXEZZcZcQC8ZZdV9QHgm28+FFr1J2VbKwDUbSpNJA4eThXakb1y7hwAhEXJeffZ6dLhFgDaN5RGFi06N6exgaHyfLMzeMtuUpKcb9i5m5wbBwA/frdIaGz2Wzi5XwAQSByIt2/ZTWMzjmYKrekVTWnso6OHCs2pPfeXQ2JWLArypHFIpsPsu+PZspU4wKGCnkFeo2wlBgDa94wV2rAh3EU5+7RcdVkdx+dUloWyVPvrAJhvinqWKwH43Fr7TbmclaIovztlGdSZBKB9OZ6Loig+RJf6FMWlaPIrikvx6X7+tBPZ+Gyxt3vv4N5X0Vg2QsvJZZe1lTq17LLi3ty5/HrXkfFRK1etF1pohHR8BXgLav9Y3gH9/jxZbLuuW0cay0Z7ObV1ZqdLn4DevfiiDGuNDa5WTWh9Yvi3vTQyrqtRq2ga27ytPN8uTaQrMQDUCgwUGtsfDwDt6kcJjfkXsEImAPz8i2zpvn9AXxobRPwL0h0KiWyU2eVknBsAnM2X53a4OXc2Llm41P38iqL8Jpr8iuJSNPkVxaVo8iuKS9HkVxSX4tNqf1D1qujZxbtS/M4HfJbbXx6WbqU9YwfQWOayy4w4AN6yy6r6ABDbrJnQEkn76Jff/kCPP7pfur5O+ecHNHby3P8IbfSdf6Wx4ya+ILTnxkjTDgC4enAvof3hmoE0dtAd9wltdt4KobWMkY8LwJ2CJz77Po0NqiGNLOLJagMAjLjzBqGFVpcrAADw+berhJZxVDry5l7BW6cHdpMrISUdcs/x3oSZQluzeDGNXbRCvs73H+c2GP7EvXfPbmkGAshVD6dVDHpsqSMVRbmk0ORXFJeiya8oLkWTX1FcirHW+uzGIqMa2hFjnvHSgsOCaexl1WULa9fObWgsG6HV3KEdku3HP3aQ24sNGiCMiXB5PVkwzC8ooMcP6C89BV6d+ByNXfadHN00aggvzLG97IfJmCkAyC+U55Zz5iyNZa28kSEhQluyZQs9/rrWsmA38/sfaWztWrLg9+2cVTT2lWdHCy2gEq9VF5LX89IE6f7LzhUA4vbsEdoO4tILAMcPpQntniG8KF27hnQF3rhvH43tQLwdvt/BC9hXlXCp7tK5M9avX897n0ugn/yK4lI0+RXFpWjyK4pL0eRXFJfymx1+xpiPAQwEkGqtbePRagKYCSAawD4AQ6y1vOJUjOCQIPQfdLWXNmcyH0N01S3dhfbVvJU09kyuNDx0GqHFzDad9uOzzj1W3HPaS5+SKU0qn3j0XzR24GhZ3Dt6go/VSkqVRUtW6AKAZfNXC63HwCtp7IbVm4WWcUQ+rVEt5J55gO9vDwvlBd2d2/cJbfh9g2hsGtmPzzQAGP+8NGgd+/Iooc1fL30ZAKBTYzmaK78hL+jWqyv9Gsa/OZXGPvvXe4VW0sz2HJO+Xiq02pHcNHXCnC+9LqdmyNecE6X55J8MoF8JbSyA5dbaZgCWey4rilKB+M3kt9auBlDSo/hmAOemSE4BwN+yFUW5aDnf7/x1rLXn/n4+giIbb0rxcV2ZDmvRiqL4njIX/GxRl5Bjp1DxcV0hoXwksaIovud8k/+oMSYSADw/ZQVKUZSLmvPdz78QwHAA4zw/vyjNQblnzmL77v1eWse+V9DYFsTZdEYc3/t/85ibZOy/eCwbocVcdgG+H5+17LKqPsBbY8f+H9/fXpAvK8qzF8q99ADQ57quQvs+jrfcdr5eugXPeWc+jb16iGxnHnJrH6Gt3ZJIj+9G/A+efGkCjW3QsoHQlq/hFfjGLWW7q5Pz7QNjhwlt0sR5Qhv/4iP0+FXbtgkt6/RpGrt7a5LQWnZtSSK54/K2nftobLcY2Xr8xcJVNPZP9w72uvzx/8k2Yid+85PfGDMdwFoALYwxycaYkShK+j7GmF0AensuK4pSgfjNT35r7e0O/3VdOZ+Loig+RDv8FMWlaPIrikvxqYGnn78fqtbw3jO+Zs4aGtv5KVk8SkiQraoAEP1dtNCcCi/Z6XJsktMILWa2+e40OdrLqWWXFffGPS33pgPAsq1bhXaiFm/v/TlB7u2e/e6nNLbp5W2FdvpkLo1dPVs+F7knZbGrenB1evz2w4eFFhEdQWNP58jrrRnBl4JbEw+F6lWq0Nip0+TYs4ceHio09ngDQJso2br88XR5nQBQpZo8h61rpHcAAJy+tofQ/Cvxz95fkpOFdvNN19DYzQe8vQZyz3KvBoZ+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ+694aGRtheve700gJD+dilf7z6qNCOZctKPQA8OHSM0CZMf5vGtifOqO/P49Xc/j1lG+2CJbIiXq+ZrEYDvGU3siavaPduI52J2WgwAPh8hhwJddvQkpYLRTDTC9ZqCgAFhYVCa1u/vtCcTEYyyFirUOIIDAARpPX5hMNYrJlL5SpP3QZ8I2mjcGniwm4r89QpevzabXIlJaaZNPgAgGhyWyXHZ51jfZJsBf45jq841KglW3SH95Nj1wCgcgkX49iuXRGv7r2KovwamvyK4lI0+RXFpWjyK4pL8Wl7b3Sjupg09WUvLeEgnzuelStbUF9/4SMaO/OrT4Q2/t9TSCTQorOcy35dt440dvSdfxXa/K8mCs2pAMb24zu17LLiHhsNBgATFy0R2ot/4QXOGx6Q46P+MvRuGjvy8WekOLSvkJycc9kIrPGTZ9PYmpHSMblrG96S3aBRpNCa1eFtwzmkvXX0cDkibebs8fT4kM6ydfmyypVp7DbynK1YGkdjnxolN8fGREfT2DP5+UJ7bpx0JQaA554c6XW5kBRtndBPfkVxKZr8iuJSNPkVxaVo8iuKSymNh9/HxphUY8zWYtoLxphDxphNnn98KLmiKBctv9nea4zpCeAkgE+Lzep7AcBJay0vmTrQrkMHu3Cp9xyyTIeWzikfLRAaa3sEgOadZAV/9Wxu/BF7Y6zQese0o7Gsis8qtMt/+YUeX7O6rBwzIw4ASNkjjTDqt5SttQDwwA3XC+2jb5bR2PnvzBFar9ulIy8ArPtyndDe/uBvQnMy0li0caPQ/tilC41lZJMVHgB48P6XhdaqWysa26OXNGaJbdpEaImH5OMN8FWmI5l8haZXG7m64bQy8PbH8nm4rDpvsz6QeEBob417nMbuPXbM6/ItffsiYfPm8mnvdRjXpShKBacs3/nHGGO2eL4W6CgeRalgnG/yvwegCYAOAFIAvOYUWHxWX1pa2nnenKIo5c15Jb+19qi1tsBaWwjgQwCOX+yKz+qrVavW+Z6noijlzHm19xpjIotN6b0FAN+YXIKsUzlY+rN3USgnixd57h89WGivPM1HP3XoIR1quw/qRmOzM2RraiV/fxr73JhXhfbB1H8KrdChaMpGaDm57H446x2hObXssuLeff1609jXPpsrtMWT+XS1jr2uFFpqVpbQnEZl9WjRQmirEvlor7pkj30Vh2LZ+x/J9txAB0+Cn/bsEdqe1GMkktO9uSwevz/3axqbHi1fS+t37qaxrL3XqbW9Wt/uQmNty4B8HPz8Sv95/pvJ7xnXdQ2AMGNMMoDnAVxjjOmAoum8+wCMKvUtKopyUXC+47om/Q7noiiKD9EOP0VxKZr8iuJSNPkVxaX41MwjLLgGRvb3bi3dckC2MgLA59OlQ+3+JN4a26SOdHL924uyUg8ASUmbhJadLt1/AeDqwdIxNb9QOvIum89biTtfL1tN2ew8gBtkMCMOAJj12gyhsao+ADwx7I9Ce/x5vorw9stPCu2pR+8S2o87d9LjDXGuZS3OABCXKK8jrJZcAQCAiOBgoTlV+0OIWzBrR96ZmUmPL9kuCwB1G3HjkB82y7buNs250+9SMhuwQVgYjWUmIU5t+E1LvPYr/Q/Vfv3kVxSXosmvKC5Fk19RXIomv6K4FJ8W/M7m5+Ngic096xN30dghQ+We9Slv8f1DGaRYlpPD92B37ibbYHv34lsT/nDNQKENJK2XPQbKtlgAmPPOfKGdPsnbmdkILSeX3bFvvCE0p5ZdVtx7/UU5Cg0AbrhhtNC2JicLzamduVvTpkJ7+S3uohwSLot44WG84JdORmvVrsG9HbanpAjtm5nLhTb2yXvp8Wy8WIhD0XJJvPQvmP0pbwV+9fmHhZZ4mHsKNI+UbsWLl6+lsaOG3uh1+X8Zvqef/IriUjT5FcWlaPIrikvR5FcUl6LJryguxafV/oBKldCwREtjTAvprAoAc+dKw4oaNbgTUFhQkNDy8s7Q2B+/WyS01t2lCysADLrjPqEFk2rwhtWb6fFXD+kptNWz19DYAjJjjc7OA3fZZUYcAG/ZZVV9AFi06H2hfTRtnNAOpXM/1x1Hjght0B9kizQA7D56VGi1AuXzCPDH5tQZ/vyGk9fCiAf+ILQ95PYBoAWptB84fpzGBgbJVYC+g6+hsRv27pXHO7Qo7ye31+farjS2WkCA12U/0mLthH7yK4pL0eRXFJeiya8oLqU047rqG2NWGmO2GWN+Mcb8yaPXNMYsNcbs8vxU735FqUCUpuCXD+AJa+0GY0wQgHhjzFIAIwAst9aOM8aMBTAWwFO/dkWn8/LEXuXtDmOTeveX7rsxV/GxWqwF9b3PX3c8h5KwIh4AzM5bIbRI4jqbcSSDHj/kVjkWK/fkaRrbtj4ZzTW0L42t92BNoTGXXYDvx2ePF8CLe+z+Tly0hB6/aaUsfJ7J4YW52g1qC8325F4HcYvihJaVxu/vqiXS12DSV9OFNuvDhfT4KmSE1kt/4/60Cbv3Ce25P0unYQAYNGKE0Bq2akBj08nrKaV+OI3t3dG73TwzkxcyGaUZ15Vird3g+T0bQCKAegBuBnCucXsKgEGlvlVFUS44/9N3fmNMNIAYAHEA6hTz7j8CQNrpKIpy0VLq5DfGBAKYC+Axa63X31y2yGOIbigqPq4rXcd1KcpFQ6mS3xhTGUWJP81aO88jHzXGRHr+PxJAKju2+LiumjquS1EuGoyTMeB/A4pcGacASLfWPlZM/zeAtGIFv5rWWtlOVozW7drZWV9773d26tRq30AWQyZ/IwtwAODnL7uaThznBaHwKGma2CemPY2NI6OfqlSSNdKEDdxYtGaEXADxcxgN1rdTB6E57fe+slkzoTnNhWdmm0778WtUrSq0DcRv4YEbpNcCAJwmI6XGvvQfGrtzgxzj1eHqjjT2j0Nk4fR4djaNXb82QWhrv/xeaHPmvUWPXxAfL7Tv5/9AY09lSh+J5p3lyDIAeHLkUKG9NmUOjY1sIrsMX77vcRr7+TczvS7fddNN2JaQUKo2v9JU+7sDuAtAgjHmnPXtMwDGAZhljBkJYD+AIaW5QUVRLg5KM67rewBO7yTXle/pKIriK7TDT1Fciia/orgUTX5FcSk+3c9fNSAALevW9dJ+cBj9dIxUc4f06kFjWZWajV0C+B7qNIfKMRsD1iJCjm4KIrcPAN1IVX67QwU/IydHaNe15j4Ds+Nku2uPFrzKzEZoMZddgO/HZy27rKoPAJeV2FsOAIs3c6+Dzv06Cy3jKG+TnvmZdMTNz5dj0wAgtr90Yv4rqbQHVePeAXfcO1Zor41/gsbOXilXEYwfL4+Fh9UT2vwf+OoVY1OCvC0A6NLReyVkL2k5dkI/+RXFpWjyK4pL0eRXFJeiya8oLsWnBb+cM2ewcd8+L+3AMW6OGEuKUq+8O5XHXnuF0JjpIwBs37JbaI1aRdPYic9KQ8s7x8oRWmGhcvQUADz50gShRUTzWe+33SiNLsdPnk1jHx8+WGirEmW7LADUJKOmnEZoMbNNth/fqWWXFff6t+et07VrNxRax468bfjpN2RrKxtvBgDL16wX2ogJcpTZ1NUr6fEJP2wVmlML+ievvCe0I0eSaOzU5bJoWSeYv26Yv8RddzxNY4f9+SGvy++8xE1fGfrJryguRZNfUVyKJr+iuBRNfkVxKZr8iuJSfFrtvywgAJfX827v3XE4xSFakn82n+ohpKK98wB3qM04mim05m25wUZQDWnGUbuW1HZu30ePb9BSGpKczuHuvRHEJbdmpHTpdaIuOR4A4hJl+3RIOK8ysxFazGV38+oN9HjWssuq+gCQmrpfaIcPS+MQgBu7+Du00W5rJI0wKgVIo5PMtBP0+Oi2jYS2ab88VwBIStoktHr1mtNYPz/5OetU7a9epYrQTp3iLegh4d7Pu39l/lqm51TqSEVRLik0+RXFpWjyK4pLKcu4rheMMYeMMZs8/wb8/qerKEp5UZZxXQDwhrV2fGlv7ExeHvaVaOdNXMfbUtfWksWu6Da8eHSC7IVns9MBoOkVsm24S5MmNDa+u9xP/+2cVUIbfh8fVsRaTZmjL8DvQ9c2LWlsdm6u0Ko4uPeG1ZKFwPAwXhysFSj3uLMRWswjAOD78Z1adllxb/Nm3nJblfgE5OXz4m+XpvK5PHFjrNSO8YJf314yNi6Bv0bZaKxhD/K9/ympcmZFlZb8+fUjj2/vO/njGBxWw+uyf6XSF/xKY+CZAiDF83u2MebcuC5FUSowZRnXBQBjjDFbjDEf65ReRalYlGVc13sAmgDogKK/DF5zOO6/47oy0tPL4ZQVRSkPzntcl7X2qLW2wFpbCOBDANI8Dd7jukJrlr5pRVGU35fSVPsNgEkAEq21rxfTi7dS3QJAboRWFOWipTSz+noAWAMgAcA5h4xnANyOoj/5LYB9AEYVG9lNadW2rZ26cKGX1rKubMcEgBmr5Hy06ChuhHEsS87l27JazmwDgEdHSyfXWoGBNDY5XVZoI4JlpTztpJzZBgDr9+4VWut6vFb67Y9yRlwD0qoKAJ/9a6bQ3v/oORq7izjypp86RWNZW+ncqYuFdrfD6gZz2R14Kx/qxFp2WVUfAALIfMRateqSSOC6PsOENuaFe4WWkCjnMALA9nXbhfbi30fRWOYaPXPtOho7fdxnQsvK4l+DT52SLehvTOOzBT99x3ve34JZ/8Gx1EPlM6vvV8Z1yWdaUZQKg3b4KYpL0eRXFJeiya8oLsWn+/nPFhTgYIm1fjYSCwAqB8hTa1CrFo3df7h0+9ABoBopKrF2SgAIrS4Lgaz45FTwu7yuLEqxohoA1G0gH4dmdXiBs1W3VkJjY8ic9No1apBI7lKblSaLqccdxpuxEVpOLrtsP75Tyy4r7qWl8bFnR1MOCI0V5rLT+X3w85fnVcmft8wWkmJ51Sq8aMkoKMijelaWLDQ7kXHEO5/y8/gYM4Z+8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4FJ9W+wsLC3Eyx9uIYs7qH2lstSA5r2xZ3EYauyteGkO0JkYcAPDLoUNCa1c/isZ+/u0qod1/ozRVGP/8h/T4B8bKVtOp0xbR2MG39hFaztmzNLZHr05C+2kPb1cNIXPftqfwLuzwIGnmsWrJXKE1jZGGKAAQ21/u7WKGJgB32WVGHABv2WVVfQD47rsZQsvKfUFojVtH0+MDQ+QKz/7jx2hsIemMnzZuOo2985m7hDbntTkkkrPrgHzdAkBurnerdmGhVvsVRfkNNPkVxaVo8iuKS9HkVxSX8pv7+cuTjh072rVxcV5aKtmLD/BRRh999S2Nva13T6G98YEs/ABAVHNZ3IuK4i3GG+N+EVpMV1lIbBgWRo+fNHGe0B56WPoJALwNd/Rwvkd/2sxXhbYnlRelapDrffNNubccAEY88AehZZC9/68/9S49ft6Cd+R13vN3GstGaMUSl10AaNOysdBYyy4AZBFn457EJdfpdT95+SqhXdu+DY2dvmCZ0IzDGLG/jLhVaNsP8xblUDJ+rnl9OUYMADbt2eF1+Za+fZGweXOp9vPrJ7+iuBRNfkVxKZr8iuJSSmPgeZkx5idjzGbPuK4XPXojY0ycMWa3MWamMab0exkVRbnglKbD7wyAXtbakx4L7++NMYsBPI6icV0zjDHvAxiJIi9/Z4wRo55WJ0rDRAAYENNBaL27xtBYtkf/oZGDaWwmKWCdzuP7qnOvkLPWr2stC37z1/MutvEvPiK0ZVu5yTHzKpg5m09CSzh4kOqMnZnSDHLsk9LQEgD2HJW+CLM+XCi0OfO4mWRQNdkhOHU1H8GVmSbHZTmN0GJmm0778VnnHivuOY0ce+zZN4V2aw9eiKxSTXozFORxT4Lmza4Q2twVX9DYY8QvIeME3+PfpVNfr8t7dknTWCd+85PfFnHOraKy558F0AvAuf7EKQC4pauiKBclpR3a4W+M2QQgFcBSAHsAZFprz73NJUPn9ylKhaJUye+ZzNMBQBSKJvPw8aKE4uO6jh/ja9GKovie/6nab63NBLASwJUAQowx52oGUQDotqPi47rCwsPLdLKKopQfpan2hxtjQjy/VwXQB0Aiit4nHT0iAAALcklEQVQEzlXVhgPg1QtFUS5KSjOuqx2KCnr+KHqzmGWtfckY0xjADAA1AWwEMMxaK+1fi9G6XTs7fZH3fvY2UXwv/RmHCjzjMKloRwRzh9q95KvH2i2JNHZgN7k/nY2/qhvKp5MfOH5caC2Joy8ALInfJLT+nWWFGAC2JScLrXtzuTIB8PvbyOEvsOzTp4X2j1cnCe3Kgbz6vWSKbL+OasZLQdFtZbtqp5bNaOxHE2YLjbnsAkCzjvJxqB4s22U3r9pMj3/zH48JLYW8vgC+OrJpq/SWAICV0+Wqxw2jbqCxTaKk10HCNu7X8OMC77F23yz6BGlpKeU2rmsLALHGZq1NgsNkXkVRLn60w09RXIomv6K4FE1+RXEpPt3P37BpM/vUeO/W0LaXc9NGdl4nSUEKAJKTZeGlTQu5BxwAAsjopU6NeWxmTo7QZq/6XmhNGvKiVhY5361xDsXFG64SWrRDYe7rjbI4eOwg76Go20iO/LqK7G8HSl+g/NsL/6HHv/TcaKGxEWAAsGn/fqGlpPD7MPjq7kJzGqHFzDaDLpN7/8OCpFEnAGSflucbGRJCY9+d+5XQ7h5wHY0tKCwU2gczvqSx7TtdLrSqlaX/AQDENvU2U+0WG4v4+Hjdz68oijOa/IriUjT5FcWlaPIrikvR5FcUl+LTcV3BgdUxoHtnL23mlyto7I3X9xDamu/iaWznbu2ElpjExzllHEkXWpCDE+x7E2YKrU5D6fRbr25tevzurUlCYwYQAK/sbyOjxQCgVxtpKJIefZJEAj9slg7ES+L52LPAINkGm7B7n9BOZfLbmr1SroR88gr3d0lKkisWmZly1QYA7s2VBiyFDqtUbIQWc9l1eh66dJKPLavqA8CYPw4UWvzoF2ls72G9hTbqthtpbBBxXH5m3Ac09kgvbwMUtkLlhH7yK4pL0eRXFJeiya8oLkWTX1Fcik8LfoyqgbzYxsYxpR3iDqapmdL1tV4kb43NOyN9AtKJoy8ArFm8WGiLVswS2vg3p9LjW3aVbbRb1yTQWD/iJrtiaRyJBFqNkGO11u/cTWPbNJety7M//ZrG9h18jdCe+7McGXbX49KVGOCjqo4ckUVPAKhXT+67H/bgEzR25tp1QqtahTvFTxs3XWidB8id504uu2w/vlPLLivuffL+8zR2wD39hJboMK4rL1+eW2Uy3gwA5r+9wOtyRir3HmDoJ7+iuBRNfkVxKZr8iuJSNPkVxaWUZVbfZGPMXmPMJs8/OV9LUZSLltK49xoA1YvP6gPwJwCjAXxlrZ3zq1dQjA4xMXbpd995aZUr8QWHnSkpQmtbvz6NZZVyp3l29WrWFBqbjQYAtWtIB2CmZeXm0uNZm+bpvLM0Nm63dGd1Mt34v/emCe2pUbfT2KVkNuD17WQ7NABs2CvnvC2cJ11nX/7rffT48DBpajJ1OV9Z8POTnzspqXw1Z95b0r3XiTufuUtot3btKjQ2Ow8AYq6QbbgfTXmJxjJTlYDK/PXMzuGDL7+hsSdPyNWnMUNvorG9e93hdXnjxmXIzk4vN/deC4DN6lMUpQJzXrP6rLXnFqBfMcZsMca8YYyhOyWKj+tKS+Pv7Iqi+J7zmtVnjGkD4GkUzezrjKLBHU85HPvfcV21yBhqRVEuDOc7q6+ftTbFM777DIBPoAM8FKVCUZqCXziAPGttpmdW37cAXgUQb61N8RQE3wBw2lo79teuKyq6sR3z7D+9tBv7yX37AHe+3e8w5fenxT8LLbQOH6E1bMj18rxq8r9I9hM32xNkv7STQ+22nfuE5l+Jv9+mH8kQ2gND5X5xAPhw1iKh9bq6E40NcHB9ZfiTwukPm6QfwInjWfT4rrFthVYnOJjGMr2KQ/G3X5+7hVZQwMe5RUREC+3FN/8stLyCAnr8xl2yHTn1QCqNZfvxnVp2E7bLgu6oG2XLLwBERclC7+fLFpBIIOmQd2H8hQdHYe+OHeVT8AMQCWCKMab4rL6vjDErPG8MBsAmFFX/FUWpIJRlVl+v3+WMFEXxCdrhpyguRZNfUVyKJr+iuBSfmnn4+fuhWo1qXppT1XXVSlnBb96hKYnkJhJ5Z3k1mM1iO5vPY/3J9XZo2FBok75eSo/vFiOdYH9JTqax+XnycThDTB0A4ECidCau1lfOswO4A3DzyEgay1Y32CpEVIsoejwjuFo1qlevInvCWJs2AJw6JQ0qsrJK3zAWWl26Eju1dDeJko9NZG2+GsTat5kRB8BbdllVHwCSk7cLzelxPJnpfb0FBXImoBP6ya8oLkWTX1Fciia/orgUTX5FcSm/2d5bnnTq1MmuX7/eS8twcM5lBaHJ3yynsf2vlK2tk2fwfeShdUKE1rS5LOIBwJ7d0hOgzeXSDTfDYURSwrptQrv5pmtobNPacuTXc+M+pLGv/v0hoeWc5T4BB0gRb/HytTS2z7Vyz/n6ROlm+69Hn6bHb0qQ47ruuoPHnjolC26975St1wDQpXMbqjN2HZAFzkdvkW7HGSd4wXDiF3KPPXvOAeDr+auE5uSy+9xjI4QWt0e2/AK8uNe+QQMa++Mu7+fn3ltuQWJCQqnae/WTX1Fciia/orgUTX5FcSma/IriUjT5FcWl+LTa3z4mxi5ZtcpL2+FgfsCq/Q3DwmhsJqm2hxOXXScyHVYcdh45IrTebWTlecKcL+nxwwf2EdrmA7I1FwBim8rW5VyHCn5qljTTCCStpgAQSirHZx1aqqsFyPl3EXXkSsg3P62mx4+4aYTQhv1ZrkwAQEi4XHUJDuPP2fJpK4SWcSSdxubmyufyrY/lTL1b+90hNABo1VaueHw8SR4PAAvi44VWcnbeOQ4nS5OQkS/wx6Zkyy4AXNGuBY3t1qyZ0Ky1Wu1XFMUZTX5FcSma/IriUjT5FcWl+LTgZ4w5BmC/52IYANl7WvHR+1XxuJTuW0NrbXhpAn2a/F43bMx6ay33m67A6P2qeFzK9+3X0D/7FcWlaPIriku5kMk/8QLe9u+J3q+Kx6V83xy5YN/5FUW5sOif/YriUnye/MaYfsaYHcaY3caYXx3sebFjjPnYGJNqjNlaTKtpjFlqjNnl+cknhl7EGGPqG2NWGmO2GWN+Mcb8yaNX6PtmjLnMGPOTMWaz53696NEbGWPiPK/JmcYYucnhEsSnye8Z9jkBQH8ArQDcboxp5ctzKGcmAyg5anUsgOXW2mYAlnsuVzTyATxhrW0FIBbAw57nqaLftzMAellr2wPoAKCfMSYWRVOn37DWNgWQAWDkBTxHn+HrT/4uAHZba5OstWcBzABws4/Podyw1q4GUHJ72c0Apnh+nwJgkE9Pqhyw1qZYazd4fs8GkAigHir4fbNFnPRcrOz5ZwH0AjDHo1e4+3W++Dr56wEo7oqZ7NEuJepYa88NTT8CoM6FPJmyYoyJRtGU5jhcAvfNGONvjNkEIBXAUgB7AGRaa8+N2rkUX5MULfj9jtiipZQKu5xijAkEMBfAY9ZaLxOBinrfrLUF1toOAKJQ9Jcon5nlAnyd/IcA1C92OcqjXUocNcZEAoDnZ+oFPp/zwhhTGUWJP81aO88jXxL3DQCstZkAVgK4EkCIMebc3MpL8TVJ8XXy/wygmae6GgDgNgALfXwOvzcLAQz3/D4cwBcX8FzOC2OMATAJQKK19vVi/1Wh75sxJtwYE+L5vSqAPiiqZ6wEMNgTVuHu1/ni8yYfY8wAAG8C8AfwsbX2FZ+eQDlijJkO4BoU7Qo7CuB5AAsAzALQAEU7GIdYa7nn1EWKMaYHgDUAEgCcG/v6DIq+91fY+2aMaYeigp4/ij74ZllrXzLGNEZR8bkmgI0Ahllr5TjnSwzt8FMUl6IFP0VxKZr8iuJSNPkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXIomv6K4lP8Hv0Or98j6qc0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n" - ] - } - ], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()\n", - "\n", - "print(\"testing success ratio: \", result['testing_accuracy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "Different from the declarative approach, the programmatic approach allows the users to invoke APIs upon the svm instance directly. In the following, we invoke the API \"predict\" upon the trained svm instance to predict the labels for the newly provided data input.\n", - "\n", - "Use the trained model to evaluate data directly, and we store a `label_to_class` and `class_to_label` for helping converting between label and class name" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "ground truth: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n", - "preduction: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n" - ] - } - ], - "source": [ - "predicted_labels = svm.predict(datapoints[0])\n", - "\n", - "predicted_classes = map_label_to_class_name(predicted_labels, svm.label_to_class)\n", - "print(\"ground truth: {}\".format(datapoints[1]))\n", - "print(\"preduction: {}\".format(predicted_labels))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/artificial_intelligence/qsvm_multiclass.ipynb b/community/artificial_intelligence/qsvm_multiclass.ipynb deleted file mode 100644 index b3161ea2e..000000000 --- a/community/artificial_intelligence/qsvm_multiclass.ipynb +++ /dev/null @@ -1,136 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Quantum SVM algorithm: multiclass classifier extension*_\n", - "\n", - "A multiclass extension works in conjunction with an underlying binary (two class) classifier to provide multiclass classification.\n", - "\n", - "Currently three different multiclass extensions are supported:\n", - "\n", - "* OneAgainstRest\n", - "* AllPairs\n", - "* ErrorCorrectingCode\n", - "\n", - "These use different techniques to group the data with binary classification to achieve the final multiclass classification." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from datasets import *\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.input import ClassificationInput\n", - "from qiskit.aqua import run_algorithm" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we choose the `Wine` dataset which has 3 classes." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xm4XXV97/H3JyEhMVwzQC4cMkDQCCJGoMfoFa9FwIBwJVEhBKpGhSJVK8VbanCMiDWWthBan6sUEdRWCFFDbOQJM4iKcpAwBBuIQUoOAVJCUoYQMnzvH+u3w9r7rLXHtdeevq/n2U/O/q1h//Y6J+u7frPMDOecc65gWKsz4Jxzrr14YHDOOVfEA4NzzrkiHhicc84V8cDgnHOuiAcG55xzRTwwuKaQZJJeH37+tqQvtTpPSSQdLWl9zp95YLg+e2R0vhckHZTFuSp8zkJJP2z257jW88DQpST9UdLWcNN4WtJVkvaKbT9e0p2Snpe0UdIdkk4uOcfR4Qb2uUbyYmbnmNnXGjlHr5B0gaQbStIeTUmbB2Bme5nZujzzWUn4e7uoWz6n13hg6G7vM7O9gCOBfuCLAJJOAa4Dvg9MBvYFvgy8r+T4+cAm4CN5ZbgRWT2Bt9idwDskDQeQ1AeMAI4oSXt92Ne5zHlg6AFmNgjcABwmScA/Al8zsyvMbIuZ7TKzO8zszwvHSBoDnAJ8Cpguqb/cZ0g6X9IGSU9K+njJtt1PdYWqG0l/I+mZcMwcSSdKekTSJkmfr/a7hZLR5yQ9ALwoaQ9J+0v6cSgJPSbpM7H9R4f8PCfpYeCtJefbXQVWmvfwfrakVZL+W9IfJJ0Q0sdK+m74PoOSLordyIdL+ntJ/yVpHXBSma90D1EgODy8/9/AbcCakrQ/mNmTpXkO+f2WpBWhNPgbSa+L5f8QSTeF67xG0twy13ZaKEk+L+kmYJ+S7ddJekrSllD6fFNIPxv4M+BvQon1ZyF9Qbhmz0t6WNL7Y+d6ffisLeE6XVspz2mf4zJgZv7qwhfwR+C48PMUYDXwNeAQwIBpFY7/MLABGA78DPinMvueADwNHAaMAf4tfMbrw/argIvCz0cDO4hKKCOAPwc2hmP+B/AmYGul/JV8z1XhO44meti5N5x/JHAQsA44Puy/CPgFMCEc8xCwPna+3flOyPtMYAvwnvA5k4BDwrafAt8J3/9/Ar8FPhG2nQP8R/i8CUQ3egP2SPlOtwHnhZ//Gfg48PWStCuT8hzy+2zI6x7AvwLXhG1jgCeAj4VtRwD/BRyako9fEz1E7Am8C3ge+GFs+8fD72xP4FJgVdJ1i6WdCuwfrt1pwItAX9j2I+ALYdso4J3V5Dnpc/zV+MtLDN1tmaTNwF3AHcDfAnuHbRsqHDsfuNbMdhLdtOdJGpGy71zge2b2kJm9CCyscO7twNfNbDtwDdGT6GIze97MVgMPA2+pcI64y8zsCTPbSlQCmGhmF5rZKxbVvf8LMC+W16+b2SYzewK4rIbPOZPohnyTRaWsQTP7D0n7AicCf2VmL5rZM8AlJZ95acjjJuAbFT7nDqIbMUSlg1+EVzztjjLH/9TMfmtmO4gCQ6Gk8X+AP5rZ98xsh5ndB/yY6IZdRNJUomv5JTPbZmZ3Ej0g7GZmV4bf2Tai3/lbJI1Ny5SZXWdmT4Zrdy3wKFEAg+hv4gBgfzN72czuqjXPLjseGLrbHDMbZ2YHmNknw43z2bCtL+0gSVOAdxPdVACuJ3qKS6sC2Z/oqa7g8Qr5ejYEHIhKBxCVOIil7UX14p99ALC/pM2FF/B5onaUevIaNwX4Q0L6AUSlnw2xz/wOUcmhns+8E3inpAlEQe5R4FdEbQ8TiEpm5doXnor9/BKvXssDgLeVXJs/A/ZLOMf+wHMh0A/Jd6geWxSqhv6bqOQGJdVNcZI+EqrhCp99WGz/vwEE/FbS6lh1ZC15dhnphsY6V5s1RDepDwJ/n7LPh4keGn4WNUkAUWCYDyxL2H8D0U2zYGomOa1efIrgJ4DHzGx6yr6FvK4O70vz+hLwmtj7/YBCd9YngNcx1BPANmCf8JSe9pkFla7Pr4GxRNVsvwQws/+W9GRIe9LMHqtwjiRPAHeY2Xuq2HcDMF7SmFhwmMqr1/oMYDZwHFFQGAs8R3Rzh+LfCZIOICq5HQv82sx2SlpV2N/MngrfDUnvBG6WdGcVefbpoZvASww9xswM+CzwJUkfk/RaScMkvVPS5WG3+cBXiaogCq8PAidK2jvhtEuAj0o6VNJrgK80/5uk+i3wfGiQHh2ebA+TVGhkXgJcIGm8pMnAX5Ycvwo4Ixx3AvCnsW3fBT4m6dhwzSZJOsTMNgA3Av8Qu56vk1Q4dgnwGUmTJY0HFpT7AqFkN0D0e/pFbNNdIa3e3kj/DrxB0ocljQivt0p6Y0IeHg95+KqkkeFmHe+19j+IguGzRIH0b0tO8TRR+07BGKKb+EYASR8jKjEQ3p8afh8QBRgDdlWR59LPcRnwwNCDzGwpUePfx4Enif5zXQRcL+ntRMX3b5nZU7HXcmAtcHrC+W4gany8Nexza1Z5lfRnklZX3nN3XnYS1UsfDjxG1FB5BdETLUQB7/Gw7UbgByWnOJfoBliosthdQjKz3xI1gl5C1Ah9B9G1gqhL70ii9pHngKW8Wl33L8BK4H7gd8BPqvgqdxBVRd0VS/tFSKsrMJjZ88AsoraPJ4mqnL5J1Hic5AzgbURdlr9C1L254PtE13GQ6DvfXXLsd4FDQ/XPMjN7GPgHotLQ08CbCaWh4K3AbyS9ACwHzjWzdVXkuehzargcrgxFD5DOOedcxEsMzjnninhgcM45V8QDg3POuSIeGJxzzhXpyHEM++yzjx144IGtzoZzznWUe++997/MbGKl/ToyMBx44IEMDAy0OhvOOddRJFU10t+rkpxzzhXxwOCcc66IBwbnnHNFPDA455wr4oHBOedcEQ8MzjnnimQSGCRdqWj93odStkvSZZLWSnpA0pGxbfMlPRpe87PIj3MNe2AJXHIYLBwX/fvAklbnyLncZFViuIpo3d807wWmh9fZwP8DCKtRfYVoat+ZwFfCfPXOtc4DS+Bnn4EtTwAW/fuzz3hwcD0jk8AQ1oPdVGaX2cD3LXI3ME5SH3A8cFNYf/c54CbKBxjnmu+WC2H71uK07VujdOd6QF5tDJMoXvN2fUhLSx9C0tmSBiQNbNy4sWkZdY4t62tLd67LdEzjs5ldbmb9ZtY/cWLFqT6cq9/YybWlO9dl8goMgxQvhj45pKWlO9c6x34ZRowuThsxOkp3rgfkFRiWAx8JvZPeDmwJC6ivBGaFhdnHE63tujKnPDmXbMZceN9lMHYKoOjf910WpTvXAzKZXVXSj4CjgX0krSfqaTQCwMy+DfwcOJFoofiXiBZUx8w2SfoacE841YVmVq4R27l8zJjrgcD1rEwCg5mdXmG7AZ9K2XYlcGUW+XDOOde4jml8ds45lw8PDM4554p4YHDOOVfEA4NzzrkiHhhc7/CJ8ZyrSia9kpxre4WJ8QpzIBUmxgPvlupcCS8xuN7gE+M5VzUPDK43+MR4zlXNA4PrDT4xnnNV88DgeoNPjOdc1TwwuN7gE+M5VzXvleR6h0+M51xVvMTgnHOuiAcG55xzRTwwOOecK+KBwTnnXJFMAoOkEyStkbRW0oKE7ZdIWhVej0jaHNu2M7ZteRb5cc45V7+GeyVJGg58C3gPsB64R9JyM3u4sI+ZnRfb/y+BI2Kn2GpmhzeaD+ecc9nIosQwE1hrZuvM7BXgGmB2mf1PB36Uwec655xrgiwCwyTgidj79SFtCEkHANOAW2PJoyQNSLpb0py0D5F0dthvYOPGjRlk2znnXJK8G5/nAUvNbGcs7QAz6wfOAC6V9LqkA83scjPrN7P+iRMn5pFX55rH14ZwbSyLwDAITIm9nxzSksyjpBrJzAbDv+uA2yluf3Cu+xTWhtjyBGCvrg3hwcG1iSwCwz3AdEnTJI0kuvkP6V0k6RBgPPDrWNp4SXuGn/cBjgIeLj3Wua7ia0O4NtdwryQz2yHp08BKYDhwpZmtlnQhMGBmhSAxD7jGzCx2+BuB70jaRRSkFsV7MznXlXxtCNfmMplEz8x+Dvy8JO3LJe8XJhz3K+DNWeTBuY4xdnKoRkpId64N+Mhn1/k6rSHX14Zwbc6n3XadrdCQW6izLzTkQvtOsV3I1y0XRtVHYydHQaFd8+t6jgcG19nKNeS2843W14Zwbcyrklxn84Zc5zLngcF1trQGW2/Ida5uHhhcZ+vmhtxOa1R3XcPbGFxn69aG3E5sVHddwwOD63zd2JDbqY3qrit4VZJzWci62scb1V0LeWBw3aNVdfLNmBSv1kZ1b49wGfLA4LpDK2csbcakeEmN6gimzxq6r8/W6jLmgcG1l3qffFs5Y2mj1T5J33nGXHjLGYBiOxrc/29Dr4nP1uoy5oHBtY9GnnybUSdfbZBqZCxFue/86I1RWlzSDT/r7+7VUj3PA4NrH408+Va6Odd6s6slSDUylqLcd672hp/lID+vlnJ4YHDtpJEn33I353pudrUEqRlz4X2XwdgpgKJ/33dZlF4pIJX7ztXe8LMc5OfVUo6MAoOkEyStkbRW0oKE7R+VtFHSqvA6K7ZtvqRHw2t+FvlxHaqRJ99yN+d6bna1BqkZc+G8h2Dh5ujfQlCoFJDKfedqb/jlvnutvJusI4MBbpKGA98C3gOsB+6RtDxhJbZrzezTJcdOAL4C9BNVpt4bjn2u0Xy5DnTsl4tH+0JtT75pA93qudllsZhONYPUyn3n0lHdo8dH739ydpQW3yerQX6+iJAjmxLDTGCtma0zs1eAa4DZVR57PHCTmW0KweAm4IQM8uQaUa76o5kNk1k++cbVUxLJonomNSDFbryVvnOhJPKBy2HHVti6iabW/Xfz3FOuallMiTEJiD9irAfelrDfByW9C3gEOM/Mnkg5dlLSh0g6GzgbYOrUqRlk2yUqN0cPNH/+nmZMb1FPSSSLOZjSnr4R/Ptno15Haed+YEnxZ7/yYj5TZHTr3FOuJjKzynuVO4F0CnCCmZ0V3n8YeFu82kjS3sALZrZN0ieA08zsGEl/DYwys4vCfl8CtprZ35f7zP7+fhsYGGgo3y7FJYelVCVMif5N23beQ83NV6NKb7R53OweWBJV+5R2OQWi8Qmx9BGjixusr/8U7Hylig9R1K7hXBUk3Wtm/ZX2y6LEMAhMib2fHNJ2M7NnY2+vAP4uduzRJcfenkGeXL3qqY/vhIbJVky0N2Mu/OTPUzamjE+YMRdu+FyVQYH86/5bEWBd7rJoY7gHmC5pmqSRwDxgeXwHSX2xtycDvw8/rwRmSRovaTwwK6S5VilXH++L4tRu7JTK+xQUAuzWTdXtX0/dfyNtRD7GoWc0HBjMbAfwaaIb+u+BJWa2WtKFkk4Ou31G0mpJ9wOfAT4ajt0EfI0ouNwDXBjSXKuUa3z0hsnapc15lKSaANtIw3yjN3Yf49AzMlmPwcx+Dvy8JO3LsZ8vAC5IOfZK4Mos8uEyUE3jo1clVC/pek6fFc15lNYYPnpCcqlh9ITG2nIaXePBxzj0DF+oxw1Vrj6+GxfFabakazb17ekB9r3fhGWfhF3bX91/2IgovRGN3th9jEPP8MDgXCtUCr6Qfcms0Rt7owMQXcfwwOBcO2qX8RyleQKvSuwBHhic6xVZ3Ni9KrEneGBwrpf4jd1Vwafddt3NF51xrmYeGNxQedxM8/oMH5CVLQ+0PcGrklyxcpPoZVUFkcdnQOP99l3xFBijx8O251/tRtus35trOS8xuGJ5jG5txmckPcnmPSCr256mS0tcWzcVj60AH/ncpbzE4IplcTOtNNFaMxavTyqBjB6fPIK4GQOy8ioF5SkpgCdJnFrcdTIvMbhijU6U1+hylvVIK4FAfnM7deM8QlUHanV+6cgV8cDgijU6UV41N8isJ+NLu4Ftfa45K8LVkodOnkeo6kBtnR0A3RBeleSKNToIqpobZNYjaMtN9ZBXv/1unEcoaaR0mk4OgG4IDwxuqEZuptXeILO8YbfDHD7tkIesJQXwV17Mr93GtYxXJblstWLNhhlz86syauc8NMOMudFU3ws3R/++95u+JkcPaHjNZwBJJwCLgeHAFWa2qGT7Z4GzgB3ARuDjZvZ42LYTeDDs+p9mdjIV+JrPbc6Xf+xu/vvtWNWu+dxwYJA0HHgEeA+wnmglttPN7OHYPu8GfmNmL0n6C+BoMzstbHvBzPaq5TM9MDjnXO2qDQxZVCXNBNaa2TozewW4Bpgd38HMbjOzl8LbuwGvkHSdodsGrTlXhSwCwyQg3tq4PqSlORO4IfZ+lKQBSXdLmpN2kKSzw34DGzdubCzHzlXD51pyPSrXxmdJHwL6gYtjyQeEos0ZwKWSXpd0rJldbmb9ZtY/ceLEHHLrel43DlpzrgpZBIZBYErs/eSQVkTSccAXgJPNbFsh3cwGw7/rgNuBIzLIk3ON68ZBa43yqrWekEVguAeYLmmapJHAPGB5fAdJRwDfIQoKz8TSx0vaM/y8D3AU8DDOlWrFDSnrqTs6nVet9YyGA4OZ7QA+DawEfg8sMbPVki6UVOh6ejGwF3CdpFWSCoHjjcCApPuB24BF8d5MzgG135CyCiKtGJPRzrxqrWdkMo4hb95dtcdccljKaOop0aCruNJZTiG6mdc72Mz77L9q4Tgg6X6haACca3vVdlf1KTFc+6ulrj/rxXl8jeRXdeN8UC6RT4nh2l8tdf3eYNw8XrXWMzwwuPZXyw3JG4ybp1vng3JDeFWSa3+1TNPdjbOcthOvWusJHhhcZ6j2hpT1Wg/dyhvVXRkeGFz38afa8rpxfWqXKW9jcK7X+HgEV4EHBud6jffcchV4YHCu13RIz60V61Ywa+ksZlw9g1lLZ7Fi3YpWZ6lneBuDa4pl9w1y8co1PLl5K/uPG835xx/MnCPKzcbuUmXdUNwBPbdWrFvBwl8t5OWdLwOw4cUNLPzVQgBOOuikFuasN3iJwWVu2X2DXPCTBxncvBUDBjdv5YKfPMiy+4ZMuusqacbEdR0wHmHx7xbvDgoFL+98mcW/W9yiHPUWLzG4zF28cg1bt+8sStu6fScXr1zjpYZaZT3FR0Gb99x66sWnakp32fISg8vck5u31pTuyujRhuL9xuxXU7rLlgcGl7n9x42uKd2V0SENxVk798hzGTV8VFHaqOGjOPfIc1uUo97igaGHLLtvkKMW3cq0BSs4atGtTavzP//4gxk9YnhR2ugRwzn/+INrPldeeW5bPTpx3UkHncTCdyykb0wfQvSN6WPhOxY2veHZe0JFMlmPQdIJwGJgOHCFmS0q2b4n8H3gT4BngdPM7I9h2wXAmcBO4DNmtrLS5/l6DLUrNAjH6/5HjxjONz7w5qbU+2fRKynvPLctn74iF6U9oSAqpeQRkPJS7XoMDQcGScOBR4D3AOuJlvo8Pb4Sm6RPAjPM7BxJ84D3m9lpkg4FfgTMBPYHbgbeYGY7Sz8nzgND7Y5adCuDCXX8k8aN5pcLjmlBjirrxDy7zjVr6Sw2vLhhSHrfmD5uPOXGFuQoe9UGhiyqkmYCa81snZm9AlwDzC7ZZzZwdfh5KXCsJIX0a8xsm5k9BqwN53MZ68QG4U7Ms+tc3hPqVVkEhklAfFmn9SEtcZ+wRvQWYO8qjwVA0tmSBiQNbNy4MYNs95ZObBDuxDy7zuU9oV7VMY3PZna5mfWbWf/EiRNbnZ2Ok2WDcF46Mc+uc3lPqFdlMcBtEJgSez85pCXts17SHsBYokboao51GSg01nbSNBVpeYao/aFTvofrDIUG5sW/W8xTLz7FfmP249wjz+2ahudaZNH4vAdR4/OxRDf1e4AzzGx1bJ9PAW+ONT5/wMzmSnoT8G+82vh8CzC9Fxuf22VuoXbJRxrvqeRc/aptfG64xGBmOyR9GlhJ1F31SjNbLelCYMDMlgPfBX4gaS2wCZgXjl0taQnwMLAD+FSloNCNSm92hbmFgObd7BK6QC7beVT++aiRT7fhXPNlMo4hb91WYsi9W2bpCl4AI0az0D7BVS8M7RTWTt1Dpy1YQdJfrIDHFpUv8rd7aajVVqxb4dUoXS7P7qquQbl3y0yZmO2sV36Ybz7qUG9PJZ/xtbzC4K4NL27AsN3TXPfqyN9e54GhDeTeLTNlArb9hz2bbz7qkNRTScC7DynfU61cFZTzaa7z1AnTbnhgaAO5d8tMmYDt5dH7tX330DlHTOKDfzIJxdIM+PG9g2Wf/n2wXHk+uCsfnVIy88DQBuYcMYlvfODNTBo3GhHV6Te1l03KxGyvee+F+eajTrf9x8Yh7QyVnv59sFx53TS4K+mJvF2e0julZOYL9bSJOUdMyu8GXJiALWFitjm0Tw+kNPU8/Z9//MGJ3VzjpaFebpw+98hzEyeQa+Xgrnoaw5OWBP3SL7+EmbHDduxOa9UyoZ1SMvPA0KvafAWvcvYfNzqxF1e5p/9KA/xa0mW4jbTD4K54IBi751i2bNuChbLhhhc38MW7vliU1yRJT+Tbd20fst/LO1/mq7/6Kp+/6/Pssl0M0zBOfcOpfPHtX8zwGw2135j9Eifqa7eSmXdXdR2nGYPcfCbX1kqa8jrJ2JFjuev0u1K3z7h6xu5gUo/TDj6tqcGh1VN7e3dV11LNXGCnGW0y3jjdWklP+km2vLIldduKdSuIJm2u33WPXNfQ8ZW0agGiWnlVkstcHtUyWbfJ1FM95bLTaB174Ul8l+0asm3EsBFFbQzlJB2ftZMOOqntAkEpLzG4imp9+u/EMQM+k2trVVvHPm7PcYnpaSWOYRrG1476Ghe986Kip3SRXLIYJr8lgpcYOl6ze9LU8/TfidUynTj7bDdJ6hVVasSwESyYuSBxW1qJw8x2P53Hn9Ivuvsirl1z7ZD9T33DqbVku2t5YOhgX1z2IP9693/ubmrLuspm2X2D/N8l97OzpINCpUnrxo4eweatQ3uCtHu1TK5dhl2RpF5R75r8Lu5cf2fZXlKFnkxpDc5j9xzLrKWzhpyj0MB83SPX5dorqVN4r6QOtey+Qc67dlXif4csetIk9fyJS5u0btl9g5y/9H627yzO2Yhh4uJT3+I3XpeZSj2ZktoW8uwB1I68V1KHq1Svf/HKNamd8gY3b224F1BSO0Fc2tP/xSvXDAkKAHuN2sODgstUuZ5MfWP6eM0erxnS4NyOo4zbkVcltaFq6vUr1dfH96+nHaLc+cs1yqYdt/mloVVLzjUiaaAYgBA3nnIjM66ekbi93UYZl9OqqdAbKjFImiDpJkmPhn/HJ+xzuKRfS1ot6QFJp8W2XSXpMUmrwuvwRvLTLarp1VOpvr6wf9J003917SqOuPDGsqWKtPMPl8qOGfA5iVweys11VOjh1M7zP1Uzd1MrJ9xrtCppAXCLmU0nWpYzqcvAS8BHzOxNwAnApZLifc7ON7PDw2tVg/npCtX06knqXpm0f1qV0HMvbS+7HkFa981/mFu+ncC7fbo8lKsOKszvdO6R5zJq+Kiiba2e/wmqv+G3csK9RgPDbODq8PPVwJzSHczsETN7NPz8JPAMUH7y/B5XzVN3fPRvufOUqxIqN7ag3tHFuc8U63pSueqgePfUakYZ5z3zarU3/FZOuNdoG8O+Zlao6HsK2LfczpJmAiOBP8SSvy7py4QSh5ltazBPHa+amUDh1e6VaXMHnX/8wVy8ck3iiN6CcoGj3u6b3u3TNVvaZHR9Y/qK3lcaZZw0G2uzZ16t9obfygn3KpYYJN0s6aGE1+z4fhb1e03t+yqpD/gB8DGz3ePOLwAOAd4KTAA+V+b4syUNSBrYuHFj5W/WwWp96i63f6Uqp2qWxGzWnEfO1SuraqJ6q2saKWVU2/bRyqqwiiUGMzsubZukpyX1mdmGcON/JmW/1wIrgC+Y2d2xcxfC4TZJ3wP+ukw+Lgcuh2gcQ6V8d7pan7rT9i+kLVy+esigsxHDVLbuv9enonbtK6tpwuuprmm0lFHt2hetnAq90aqk5cB8YFH49/rSHSSNBH4KfN/MlpZsKwQVEbVPPNRgftpWKxeBKXzOkIFnFSaiLNc7ygODa7UsJqOrp7qmXCmjmvzUcsNv1YR7jQaGRcASSWcCjwNzAST1A+eY2Vkh7V3A3pI+Go77aOiB9K+SJhLdolYB5zSYn7bUDk/eSQPPtu+0sjf5TpzzyLla1LNyXRaNwu0+w2pDgcHMngWOTUgfAM4KP/8Q+GHK8T2xAko7PHnXc5P3qahdt6unuqZTVmFrhI98zkFeT97lqqvqucm/+5CJRZP0gY9JcN2n1qf3dlwfO2s+V1IO8hgNnDTCOT6ArdaBZ8vuG+TH9w4WBQUBH/yTKNB4TyWXpbzHEjSiU1Zha4TPrpqDZqxRXKqaNYtraQBPO9/414zg5e27mvpdXO9YsW4Fi367iM3bNhel9/osqM1S7eyqXpWUgzwWgammuqqWLrBp53suYTI876nk6lFu2uxaevm47HlgyEmzRwNn3VCcdr403lPJ1arctNnQWbOgdhtvY+gSWU9el3a+caNHJO7vPZVcrSrd+Lupl0+n8RJDl4hXVw1u3spwqWiSvFpLK2nVX0BV8zg5V0lat0/ovl4+ncYDQxcp3MyzGkxXrvqrVaO4XfdI6vYJMHbkWC542wVt1b7QqgVzWsUDQ5fJYzCdz57qstDKuYBq0YoZWFvNA0OXaeZgulbO9+S6U7tPDQGNz43UiTwwNFneN9NmTWPRDvM9OdcKrVwwp1U8MDRRK26m1S7yk5TXcgGs0jrUXpJw3aoX5kYq5d1Vm6jSzbQZ6llas9J0GpBeFVXYt9yxrje067QWjearXdeObiYvMTRRq6atrrVxuJoG67QqqkK32HLHuu7Xrg20WeSrUxrJs+SBoYnqre+vt12i3uOqCWBpVVSlQaHSOV13apcG2tJupS9tfymTfHVCI3mWvCqpieoZjVxNtU6Wx0F1s7+mVVFNymHmWNf+2qGBtlA62PDiBgxjw4sb2PLKlpbnqxM1VGKQNAG4FjgQ+CMw18yeS9hvJ/C541bKAAAPD0lEQVRgePufZnZySJ8GXAPsDdwLfNjMXmkkT+2knsnz6h2HUOm4cqWJahus06qo8hoJ7d1l21c7NNBWmnsprpsbjrPQaIlhAXCLmU0Hbgnvk2w1s8PD6+RY+jeBS8zs9cBzwJkN5qftzDliEr9ccAyPLTqJXy44puKNrN52iXLHVSpNlJYGxo0ewagRwzjv2lUV11uop7G7Ho2UiFzztUMDbbWlgG5vOM5CQ+sxSFoDHG1mGyT1Abeb2ZBHRUkvmNleJWkCNgL7mdkOSf8LWGhmx1f63E5bj6EW1ayrUOtxQNXnzGPtiHrUe11cfvKcNiLpsxb/bnFiqWXcnuMYvcfonmk4Liev9Rj2NbPCb+IpYN+U/UZJGgB2AIvMbBlR9dFmM9sR9lkPpN55JJ0NnA0wderUBrPdvuodh1DuuPOuXZV4TFIpox3Wp07Sqh5ernp5NdCm9TSa/frZXL/2+iFLbi6YuaBnA0G9KlYlSbpZ0kMJr9nx/SwqeqQVPw4IUeoM4FJJr6s1o2Z2uZn1m1n/xIkTaz28Y9RbNVPuuFqWFm3XG3Aey6O6zpDWA+rO9Xe2ZMnNdh2/0YiKJQYzOy5tm6SnJfXFqpKeSTnHYPh3naTbgSOAHwPjJO0RSg2TgaZWGHdK42W9k9SlHVdLKaRZU2o0qt6SlOs+5XpA5d2ttF3HbzSq0cbn5cD88PN84PrSHSSNl7Rn+Hkf4Cjg4VDCuA04pdzxWenlxstaSiFZL/iTlbwauV37S+tR1IqeRuXGb3SyRhuf9waWAFOBx4m6q26S1A+cY2ZnSXoH8B1gF1EgutTMvhuOP4iou+oE4D7gQ2a2rdLn1tP43KmNl60o5XRKycr1pqS1okcNHzWk2iiPxvAZV8/AEmrQhXhg/gOZflYWcml8NrNngWMT0geAs8LPvwLenHL8OmBmI3moVrvWnZfTqhlNfb0F186qmaIiryqedhi/0Qw9M/K5ExsvWzEJn3Od4KSDTuLGU27kgfkPcOMpNw652edVxdMO4zeaoWcCQ7vWnZfTiaUc56rVzN48eU3RcdJBJ7WkJ1Sz9cwkevVMT9Fq7dpDyLlGNbuq57UjX5s4T9JrR7624XOX6sYJ9nomMEDn1Z17F03XrZoxG2u8sTlNNOGCq6SnAkOnaXUpx3snuWaptqqn2p5FST2VkmzZljzbqivmgaHNtaqU42s8u2aqpjdPLdVN1c6sWmtvoTznf2onPdP47GrjPaJcM1XqzbNi3Qo+f9fnq+5ZVE2jcq29hZLWd1j4q4VdMeVFJV5iaJJOr4bxHlGumcqNRSjckHfZrsRjk4JAWglkmIZhZnU97bfLqnSt4IGhCbqhGsZ7RLlmS+vNU6laKKk66Nwjz61qNHQt2mFVulbxqqQm6IZqmE4c9+E634p1KxKf/AvSqoOaMZ6gneZkypuXGJqgG6phWt0jyvWeQhVSmmEaVvZmn/V4grRSSKePaq6GB4Ym6JZqmE4b9+GaJ4/eOeWqkBqtFqpHNXMydSsPDE3gA9NcN8lrQrpydfetmmaiG0c1V8PbGJrA1w5w3SSvCenS6u77xvT15M25lbzE0CReDeO6RV69c5Lq9AG27tjKinUrPDjkqKESg6QJkm6S9Gj4d3zCPu+WtCr2elnSnLDtKkmPxbYd3kh+8rTsvkGOWnQr0xas4KhFt/bESnCuN+XVO6fQs2j08OK2uM3bNvfMwLJ20WhV0gLgFjObDtwS3hcxs9vM7HAzOxw4BngJuDG2y/mF7Wa2qsH85KKXlwl1vSfvNQe27hzacaMblsvsJI0GhtnA1eHnq4E5FfY/BbjBzF5q8HNbqhvGKThXrTzXHCh38++FgWXtotE2hn3NrDAa5Slg3wr7zwP+sSTt65K+TChxpK35LOls4GyAqVOn1p/jDHTDOAXnapFX75xyN/9eGFjWLiqWGCTdLOmhhNfs+H5mZpCwKvar5+kjWvt5ZSz5AuAQ4K3ABOBzaceb2eVm1m9m/RMnTqyU7abqxGVCnesE5W7+vTCwrF1UDAxmdpyZHZbwuh54OtzwCzf+Z8qcai7wUzPbHjv3BotsA74HzGzs6+TDp4twrjmS2jMATjv4tKaWWJq5zGgnarQqaTkwH1gU/r2+zL6nE5UQdpPUZ2YbFC2rNAd4qMH85MKni3CuOVox2jivAXydRFENUJ0HS3sDS4CpwOPAXDPbJKkfOMfMzgr7HQj8Ephi9upcupJuBSYCAlaFY16o9Ln9/f02MDBQd76dc65g1tJZiRP39Y3p48ZTbkw4onNJutfM+ivt11CJwcyeBY5NSB8Azoq9/yMw5HHazI5p5POdc65RvTy9dhqfEsM519N6eXrtNB4YnHM9Le8BfJ3A50pyzvW0Xp5eO40HBudcz+vV6bXTeFWSc865Ih4YnHPOFfHA4JxzrogHBuecc0U8MDjnnCvigcE551wRDwzOOeeKeGBwzjlXxAODc865Ih4YnHPOFfHA4JxzrkhDgUHSqZJWS9oVFudJ2+8ESWskrZW0IJY+TdJvQvq1kkY2kh/nXMSXqnSNaLTE8BDwAeDOtB0kDQe+BbwXOBQ4XdKhYfM3gUvM7PXAc8CZDebHuZ5XWKpyw4sbMGz3UpUeHFy1GgoMZvZ7M1tTYbeZwFozW2dmrwDXALPDOs/HAEvDflcTrfvsnGvA4t8t3r1+ccHLO19m8e8WtyhHrtPk0cYwCXgi9n59SNsb2GxmO0rSE0k6W9KApIGNGzc2LbPOdTpfqtI1qmJgkHSzpIcSXrPzyGCBmV1uZv1m1j9x4sQ8P9q5juJLVbpGVQwMZnacmR2W8Lq+ys8YBKbE3k8Oac8C4yTtUZLunGuAL1XpGpVHVdI9wPTQA2kkMA9YbmYG3AacEvabD1QbbJxzKU466CQWvmMhfWP6EKJvTB8L37HQVyhzVVN0f67zYOn9wD8BE4HNwCozO17S/sAVZnZi2O9E4FJgOHClmX09pB9E1Bg9AbgP+JCZbav0uf39/TYwMFB3vp1zrhdJutfMUocW7N6vkcDQKh4YnHOudtUGBh/57JxzrogHBuecc0U8MDjnnCvigcE551wRDwzOOeeKeGBwzjlXxAODc865Ih05jkHSRuDxBk6xD/BfGWUnS56v6rVjnqA989WOeQLPVy2yytMBZlZxsrmODAyNkjRQzSCPvHm+qteOeYL2zFc75gk8X7XIO09eleScc66IBwbnnHNFejUwXN7qDKTwfFWvHfME7ZmvdswTeL5qkWueerKNwTnnXLpeLTE455xL4YHBOedcka4NDJJOlbRa0i5Jqd28JJ0gaY2ktZIWxNKnSfpNSL82rD6XRb4mSLpJ0qPh3/EJ+7xb0qrY62VJc8K2qyQ9Ftt2eB55CvvtjH3u8lh6K6/V4ZJ+HX7XD0g6LbYts2uV9ncS275n+O5rw7U4MLbtgpC+RtLx9eahznx9VtLD4drcIumA2LbE32dO+fqopI2xzz8rtm1++J0/Kml+jnm6JJafRyRtjm1ryrWSdKWkZyQ9lLJdki4LeX5A0pGxbU25TgCYWVe+gDcCBwO3A/0p+wwH/gAcBIwE7gcODduWAPPCz98G/iKjfP0dsCD8vAD4ZoX9JwCbgNeE91cBp2R8rarKE/BCSnrLrhXwBmB6+Hl/YAMwLstrVe7vJLbPJ4Fvh5/nAdeGnw8N++8JTAvnGZ7R9akmX++O/e38RSFf5X6fOeXro8A/p/y9rwv/jg8/j88jTyX7/yXRapPNvlbvAo4EHkrZfiJwAyDg7cBvmnmdCq+uLTGY2e/NbE2F3WYCa81snZm9QrTM6GxJAo4Blob9rgbmZJS12eF81Z73FOAGM3spo8/PIk+7tfpamdkjZvZo+PlJ4BmipWazlPh3UiavS4Fjw7WZDVxjZtvM7DFgbThfLvkys9tifzt3A5Mz+uyG8lXG8cBNZrbJzJ4DbgJOaEGeTgd+lMHnlmVmdxI9+KWZDXzfIncD4yT10bzrBHRxVVKVJgFPxN6vD2l7A5vNbEdJehb2NbMN4eengH0r7D+PoX+gXw/Fyksk7ZljnkZJGpB0d6Fqiza6VpJmEj0N/iGWnMW1Svs7SdwnXIstRNemmmPrVeu5zyR6+ixI+n3mma8Pht/NUklTajy2WXkiVLdNA26NJTfrWlWSlu9m/l2xR1YnagVJNwP7JWz6gpldn3d+CsrlK/7GzExSan/h8GTwZmBlLPkCopvkSKK+zZ8DLswpTweY2aCkg4BbJT1IdAOsW8bX6gfAfDPbFZLrulbdSNKHgH7gT2PJQ36fZvaH5DNk7mfAj8xsm6RPEJW2jsnpsyuZByw1s52xtFZeq9x1dGAws+MaPMUgMCX2fnJIe5aoyLZHePorpDecL0lPS+ozsw3hZvZMmVPNBX5qZttj5y48QW+T9D3gr/PKk5kNhn/XSbodOAL4MS2+VpJeC6wgeiC4O3buuq5VgrS/k6R91kvaAxhL9HdUzbH1qurcko4jCrR/ambbCukpv88sbnYV82Vmz8beXkHUnlQ49uiSY2/PI08x84BPxROaeK0qSct3s64T4FVJ9wDTFfWqGUn0B7Hcotad24jq9wHmA1mVQJaH81Vz3iH1nOEGWajbnwMk9mbIOk+SxheqYiTtAxwFPNzqaxV+bz8lqoddWrItq2uV+HdSJq+nALeGa7McmKeo19I0YDrw2zrzUXO+JB0BfAc42cyeiaUn/j5zzFdf7O3JwO/DzyuBWSF/44FZFJeYm5ankK9DiBpzfx1La+a1qmQ58JHQO+ntwJbwwNOs6xTJqhW73V7A+4nq3bYBTwMrQ/r+wM9j+50IPEIU/b8QSz+I6D/wWuA6YM+M8rU3cAvwKHAzMCGk9wNXxPY7kOipYFjJ8bcCDxLd5H4I7JVHnoB3hM+9P/x7ZjtcK+BDwHZgVex1eNbXKunvhKha6uTw86jw3deGa3FQ7NgvhOPWAO/N+O+8Ur5uDn//hWuzvNLvM6d8fQNYHT7/NuCQ2LEfD9dxLfCxvPIU3i8EFpUc17RrRfTgtyH8Da8nagc6BzgnbBfwrZDnB4n1sGzWdTIznxLDOedcsV6vSnLOOVfCA4NzzrkiHhicc84V8cDgnHOuiAcG55xzRTwwOOecK+KBwTnnXJH/D8SbXHWwlhNTAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "n = 2 # dimension of each data point\n", - "sample_Total, training_input, test_input, class_labels = Wine(\n", - " training_size=40,\n", - " test_size=10, n=n, PLOT_DATA=True\n", - ")\n", - "temp = [test_input[k] for k in test_input]\n", - "total_array = np.concatenate(temp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we setup an Aqua configuration dictionary to use the quantum `QSVM` algorithm and add a multiclass extension to classify the Wine data set, since it has 3 classes.\n", - "\n", - "Although the `AllPairs` extension is used here in the example the following multiclass extensions would also work:\n", - "\n", - " 'multiclass_extension': {'name': 'OneAgainstRest'}\n", - " 'multiclass_extension': {'name': 'ErrorCorrectingCode', 'code_size': 5}" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "'testing_accuracy' : 0.8260869565217391\n", - "'test_success_ratio' : 0.8260869565217391\n", - "'predicted_labels' : [0 0 0 0 0 0 1 0 0 0 2 2 1 1 1 0 1 1 1 1 2 2 2]\n", - "'predicted_classes' : ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'A', 'C', 'C', 'B', 'B', 'B', 'A', 'B', 'B', 'B', 'B', 'C', 'C', 'C']\n" - ] - } - ], - "source": [ - "aqua_dict = {\n", - " 'problem': {'name': 'classification', 'random_seed': 10598},\n", - " 'algorithm': {\n", - " 'name': 'QSVM'\n", - " },\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': [[0, 1]]},\n", - " 'multiclass_extension': {'name': 'AllPairs'},\n", - " 'backend': {'shots': 1024}\n", - "}\n", - "\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "algo_input = ClassificationInput(training_input, test_input, total_array)\n", - "result = run_algorithm(aqua_dict, algo_input, backend=backend)\n", - "for k,v in result.items():\n", - " print(\"'{}' : {}\".format(k, v))\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/artificial_intelligence/svm_classical.ipynb b/community/artificial_intelligence/svm_classical.ipynb deleted file mode 100644 index 293a30ab9..000000000 --- a/community/artificial_intelligence/svm_classical.ipynb +++ /dev/null @@ -1,281 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*SVM with a classical RBF kernel*_\n", - "\n", - "We have shown here a QSVM notebook with the classification problem solved using a quantum algorithm. By comparison this shows the problem solved classically.\n", - "\n", - "**This notebook shows the SVM implementation based on the classical RBF kernel.**" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import *\n", - "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit.aqua.input import ClassificationInput\n", - "from qiskit.aqua import run_algorithm" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", - "\n", - "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFiFJREFUeJztnV/MZkV9x79fljUr7Cskvlu7uJTFtDGYTSrwhqbBgMVoqBLxwgtJ5GIF9qYajBemNmnoXjRpk8bIxabpun+CETUGJDTGUk1EqKSg7yJWYJEYAmFRs/vWbHi3xPrv14v3Oc3D8TnnzDkzc2bOPN9PsmGf5Tzn/M7MM/P9zW9+M0MzgxCiTM5LbYAQIh5q4EIUjBq4EAWjBi5EwaiBC1EwauBCFIwauBAFowYuRMGogQtRMOfHuOnKju325pUdvb7z0sa5132+bHVn53dWV1d6PQMANjY2O5/tg4vdFUPsr1j0HhUu79PHzhCEqCvfehryzj51VOHzm2uy+b83f4nNX/6aXd+P0sDfvLIDd918da/vfOzoI6/77PL9/bdf3+sZAHD8yCO/92/1Z/vQ572H2F+x6D0qXN6nb/34EqKufOtpyDv71FGFz2+uyeaDD55w+n6UBj6EY7f5F2QOVBWX+/uMbWf1Iw/RYIbS1KjayiCE3dV35xt6/ZlNti369z51pjG4EAWTjYLHJrS7J+JTV7555QpZfy4qGVLJ5+9Xf57Le/V5dym4EAWjBi5EwdBlwweSFwM4AmAfAAPwMTP7z6br9+5asfno3yK3pi0K7IqLu5TKNW8LhMSKnlcMecexg4J9yqDPbyVW/TaVj2/QsOndXN7DzIJNk90N4CEz+zDJNwC4wPF7QoiEdCo4yYsAPAXgbea4v9PaFZfY+vE7nAxwUdh67zlV5a4YYn8fSlPwiiFlErreY3lmFX1+ty4K7jIGvxzAGQDHSf6A5BGSF9YvInmA5DrJ9TNnX3O4rRAiNi4KvgbgcQDXmtkTJO8G8KqZ/W3Td1wUvE9P1UfBXe/b1hP79Pp9lHBRAkQIxrLfhboti+7vqny+5RRCzYfU7xBcst9CKfgpAKfM7InZ5/sAXOXwPSFEYjqDbGb2c5Ivk3y7mf0YwHsAPBvKgBC9ap9c31hjzSH3Da3cFX2SJnwY4oH4pMi2JYqMRR/76zb2UfS29NY+9eoaRf8EgHtnEfQXAOx3foIQIhlO8+B9aRuDVz1Sn16oq7d0uZdLj5vT2DUEsd6nSYl8PamQc+Nt3kVIz2ZovfvOIhx88ARePLMZZAwuhJgooyw2me95XHvPUIobW1lzVO5ULBojN40b5z+HLMO6MvaxaUyGLF4ZEvOQggtRMGrgQhRMFBd9Y2NzkFsOpHHNtTY8D2Lv+tK0vnyKrvqhx553ulYKLkTBRA2y5aDc9Z4xVIKEgmvt9AkIhdwfzkURc1byilBejBRciIKJouAvbZwbdTrMJWlimfZkm/q7jbUDa9uebxWpyjJUGUjBhSiYZLuqxko/7erxSktHnQou49z6WNxHxfp8ty1ekLrO520aUg5ScCEKZnQF91HuIRvfpVpWOE+fxRmpCa1YITa1CPXdLgXMYTlqG0M8Gim4EAWjBi5EwYziog9x+3x3rww5Lea7+0jXNaHcwSkEEHNIKnEhVoJUEy57183b0nZ89DxScCEKJsqOLiQNiBewcWHIzjEVLke7dr3bWPt+zzP2brBDyGH/vNgny7jgmwimHV2EEHHG4Jet7sT82WRDGNrLDulhY+4oMvS7Y53HlTqRY96GEONyl7GsTwJNyrH5kLqSggtRMMlSVevEGhf5KFTukd5UhFDAsdJC2xQwxIKOMZNjhiyrlYILUTDJFDzGSYwpCb20sWuOPAfvYqxlnVMh1llzdfrUvRRciIJxmgcn+SKATQC/BfAbM1tru37vrhWbj6KH7uGH9JA+52hVxD4behGxFTyHGYQYihd60dIQ+mxXNQSX00X7uOh/YWYbg60RQoyOXHQhCsZVwQ3AN2cpqP9iZofbLl5dXYkaeAkxrdHmPuUQwJoii8o0VQBuSPKM7+4pdVx+a7EX37g28HeZ2Ssk/wDAt0g+Z2aPzl9A8gCAAwDwR394UWAzhRBD6L3YhOTfAThnZv/UdE3b8cG50EfBXQJRYwVoYvX0Y6Ws5r77Tp2cg6cuQbbOMTjJC0muVH8H8D4ATztbIYRIhouL/hYAD5Csrv+SmT0U1aqI5KgSy0Rb+adYYut6/7ESmdo8qSHeW2cDN7MXAPxp7zsLIZITZcOHnMfgsc/KirVoJnZkP4dloxU5bMjQROxZAVf7teGDEGJ5FNwnbdBX3bp6/Zzm5EOPAV3u20TOSl4x5jz//DtJwYUQauBClEyxLvoQF23IMcWxKS1tdmxXfZ6pB+DmWdv/eayf/KlcdCGWmVEUPPfkkhx3JS1NuevEDly2UUIATgouhIij4PUdXXIktEJq99bh+JRdjumtLviquxRcCLE8Cj6WSvZRo2VX7joh4hlDTp7NCVdll4ILIfJRcKmZqMhp4UuuKFVVCDH+ySZS6nh0Kd9Uyn7IlllTJXadSMGFKBg1cCEKZpQg21Rcwynh67aWUieluO9D6iPIrqpCiOkSRcFnJ6CICIRSrFIUvA8xgpApFxtJwYVYcopQ8JLTQ0tdjqo660+9HKTgQiw5k1bw0pZoLsOWUKXVWRt93rVpkUnTwhilqgoh3FNVSW4DsA7gFTO7KZ5JzYRUuPl7uSpDDnOufTYKyGlZZA5lNzYhUm6b6vvQY887fb+Pgt8J4GSP64UQiXFScJJ7AHwAwN8D+FRUixYQu/fPWV1ib8VbvfvUxrdTZL6M67+5urcVqt5dFfxzAD4N4HdNF5A8QHKd5HoQy4QQ3nQ2cJI3AThtZifarjOzw2a2ZmZrwawTQnjh4qJfC+CDJN8PYAeAN5H8opl9NIZBObvLsYjlhjcdMj8mU6jPITb6Dmm6AnBVnfn+NjoV3Mw+Y2Z7zGwvgI8A+Hasxi2ECMvoO7o0MYWevo0xz6WKQYhg29Tq0Mdel+/2Kcvq2q7gG9Dvt9argZvZdwB8p893hBDpSJaqOrXeHpiuSueU8DKEWFN4MVNJu/BNrlKqqhBinDH4FNUamK5iV0xduXOg6zcw9CSVpjZRV/a25BgXpOBCFEzUMbiUOy1TV/CczpML/ZtwrZu2MtCGD0IsOWrgQhRMlCDbZas70ffwwRwOcpdrLsbCNY14yL4F80jBhSiY0VNVQ6qkz2Hvpaj1PFLueIRa/OHDkHRiKbgQBRNVwXNQyRxsiMGYau1ThvIq0iIFF6JgoiS6rF1xia0fvyP4fcV4ipgqsWMROSw2qQhVLr71qMUmQoh8NnwQ7Ux9LOuzfdQipR17L/vQHs1Y22lJwYUomCgKvrGxieNHHik2gr0MzCtLjvUYeyHTWO8cW8ml4EIUjBq4EAUTNcjmuyNkKlzcpSm8RyhCHquTw17tdUquSym4EAUz+jSZa8+dU6KFeD0hFvD4LBQaythKncNvTgouRMFESVXdu2vF+m74MAVyGKvloAp9yKHMfMi1vIOlqpLcQfJ7JH9I8hmSB8OYKISIjcsY/H8B3GBm50huB/Bdkv9mZo9Htk0sIMcodBs5bJTQRcqyjL1zbGcDty0f/tzs4/bZn/B+vRAiOE5RdJLbAJwA8McADpnZE23Xr66uvK7H7tNDxu7RprpXuwhHCMUea892X5yi6Gb2WzN7J4A9AK4hua9+DckDJNdJrp85+1poO4UQA+g1TWZmZwE8DODGBf/vsJmtmdnarosvCGWfEMKDThed5C4AvzazsyTfCOC9AP6xz0OGuusxaDpo3YXcV1iJ8EzFFW/CZQy+G8A9s3H4eQC+amZfj2uWECIELlH0/wJwZagHdk3zDNn7eQi+x7KmIrYH1Kfcp1RuQHfZTV2tF6FUVSEKJtmebPUxbL13bVOHED1tTuqTOi4BDCtTn3jGWLSVbYmKXUcKLkTBZLOrap8UzFSK4Rs5z0Gp65SmYi5lPPY7x/i9HnzwhNN1UnAhCibqrqqlUKJyl0ZTGaf0UHKITUjBhSiYbMbgOaEstfzJeU7bR7ldf3uHHnve6TopuBAFowYuRMFEcdFf2jgX1EUaK1ixTK75FJOFck9aGcM174sUXIiCmUSQrat3DqUkU9g/bJnIXbGBPKbC2pCCC1Ewk1DwLlx68z49bWgln9pOqF30Kcs+ZZjz1FdF7opdRwouRMFEOdmE5KS2VXbtlUMpek5KHnuDh6Yyy2mn3UXkvqBpbf/nsX7yp/4nmwghposUfAEuvXcINc9ByZvU0VfBusonh2WdUxtPzxPsbDIhxHRRAxeiYKK66ClcoLFTZEtx1UPgUhYpXfOu+gxl/xjIRRdCxFHwvbtW7K6brx703ZCJEcB4iyqWWcmnVmchU5FT1ZkUXAgx7VTVtp646lnrPXnO+3/ndIbb1BjLy2q7Z4511qngJC8l+TDJZ0k+Q/LOMQwTQvjTOQYnuRvAbjN7kuQKgBMAPmRmzzZ9x2cMXjFmWqirqqdQiRxVoWLIu4ZKUQ0REQ9NyLpy+U2amf8Y3Mx+ZmZPzv6+CeAkgLc62CiESEyvKDrJvQAeBbDPzF5tum7tikts/fgdwdUndqQ6xMYSYylHDsru866x7M9hs44h7zYkNhREwStI7gRwP4BPLmrcJA+QXCe5fubsa/0sFUJEwSmKTnI7thr3vWb2tUXXmNlhAIeBLQUHFvemPj13/buhe+spLT5wmUEQ45LjEliXKDoBHAVw0sw+G98kIUQoXFz0awHcCuAGkk/N/rw/sl1CiABESVWtgmxtxHYjQ6xHjvn8MZjKO4a0c+xyT7l4JmiQTQgxPbJNVfXdK0yBpuns5lpX3ZwDsTkG0tqQggtRMFGXi/osoPft/XKa8ko9Hp/KWLxO7p5HnbEU+9ht12u5qBAi8hjc54SQeQXOeYmnC7HHhSHJodympNy57/wqBReiYLKNoociB0Wqk+MppnUlmv+cU9k1MVY956DY+2+/Hocee97pflJwIQpGDVyIghllV9Wc9sv2WdNd4nRTyMMHfe2PcXxwaJc9tIveZF9XWerwQSHEOEG2+Z65qWdySausertUKYCh17cLN3JI+Yyt3LG8Nym4EAWT3TRZ7AUSLtMpfaax+thbV4G6DS6eTihyUMWK0r2gsU5ZWYQUXIiCGV3BXdWx7cSIEKeVhGaI59HmTYRIhslZGVNulDAWocfZ82W2sbHp9B0puBAFk/x88BxOpgw5vxt63/WQCh57Ce7U8h0qXLwvn3yB0F5YZYu2bBJiyYk6Bu8Tsa7wHacMmSvvsjNWVL3JjjZbciaHMb+P1xj6pNBYyt0HKbgQBaMGLkTBRA2ytTGWCxprgYJP4M3FphCBmlBBtrGHC8tYZ0OepyCbEEtOMgWvyFnJK0KlGla99JApl9hq4GLDWOSwhNW1rnynNn3qKoiCkzxG8jTJp52fLITIgk4FJ3kdgHMAvmBm+5xu2kPBK5ZBycca14VQ8ClO080TImYBNJfdEOX2nfqaf2awfdHN7FEAv3C2QgiRDcESXUgeAHBg6PfH2hXTZ9OIRd8JnRIp8iDkQpchyt3lLbruqhqsgZvZYQCHgWEuuhAiPNlt+DA16j1xn3TWpnss+n9jjYmHxBly8khCjb2bcImJ+MRAQi8x1Ty4EAXTqeAkvwzg3QBWSZ4CcJeZHW37zmWrO3HXzVdnfaaY79lnTcQ+taTP/UO9V04nsMSkrbxiKXfszRc7G7iZ3RL0iUKI0ZCLLkTBKMgWiCFDiz7BtrFZBrfcJbjWVZ9Dk1e0L7oQwpuoCp76JJKUhN7jPHbwcZlSU5uUu08ZhEpeGZLeCmhXVSEENAYHENbT8FHaPlN3Y56C0sUypOA2vaPv1Fqd0GUoBReiYEZR8FhJJaFJFTPwVcCuMWWf90ntDcRkSPkOqZuQyu27wEkKLkTBjD4GX8bIesj01bEXnyw7Xco9dBMQnwUpfa6VggtRMGrgQhRMFBd9dXUF+2+/vtW96XLVUx7js0zDiNJd/RRTd33Wzcf+jUnBhSiYqEE2lzWzdQVZ1KOlCiyVouQ5vUefxBAXcprW61LuUPu9K8gmhACQYJqsK3GgTW1CKHmfqYs2m4bY0Ge6LIbqphxvj+09xB57x5oCC11HUnAhCibZYhNXJQd+vwesfw7V6/WxKTUpZxlyINXYOwflPnbb9Tj44Amna6XgQhRM8uWiIZYahlazWMsf+6hODhFvV9rKKeR7pFhu2fXskOeNxUAKLkTBRFHwjY3N3hsStKlmn4jyFBdjxPYUpr4RQ6jxdoiNMStinDfWdf8hSMGFKBg1cCEKxslFJ3kjgLsBbANwxMz+oc9D+rjrObnqbbb0uX/qdEqXlOGuf09ByPXzoZ4d4niitvvX/79vfXQqOMltAA4B+EsA7wBwC8l3eD1VCDEKLgp+DYCfmNkLAEDyKwBuBvDskAc29Uh9emsfJQ99OOAUg3pA3juhhjgCeIhyx0picbl/LFzG4G8F8PLc51OzfxNCZA7NrP0C8sMAbjSz22efbwXwZ2b28dp1BwAcmH3cB+Dp8Ob2ZhXARmojZuRiSy52ALJlEa52XGZmu7oucnHRXwFw6dznPbN/ex1mdhjAYQAguW5maw73jkoudgD52JKLHYBsGcMOFxf9+wD+hOTlJN8A4CMA/jWUAUKIeHQquJn9huTHAfw7tqbJjpnZM9EtE0J44zQPbmbfAPCNHvc9PMyc4ORiB5CPLbnYAciWRQS1ozPIJoSYLkpVFaJggjZwkjeS/DHJn5D865D37mnHMZKnSSadqiN5KcmHST5L8hmSdya0ZQfJ75H84cyWg6lsmdmzjeQPSH49sR0vkvwRyadIrie25WKS95F8juRJkn/ufc9QLvospfV5AO/FVjLM9wHcYmaDMt48bbkOwDkAXzCzfWM/f86O3QB2m9mTJFcAnADwoURlQgAXmtk5ktsBfBfAnWb2+Ni2zOz5FIA1AG8ys5tS2DCz40UAa2aWfA6c5D0A/sPMjsxmrC4ws7M+9wyp4P+f0mpmvwJQpbSOjpk9CuAXKZ5ds+NnZvbk7O+bAE4iURagbXFu9nH77E+SAAzJPQA+AOBIiufnCMmLAFwH4CgAmNmvfBs3ELaBK6W1BZJ7AVwJ4ImENmwj+RSA0wC+ZWapbPkcgE8D+F2i589jAL5J8sQsGzMVlwM4A+D4bOhyhOSFvjdVkG0ESO4EcD+AT5rZq6nsMLPfmtk7sZWNeA3J0YcvJG8CcNrM3LYFjc+7zOwqbK2W/KvZ8C4F5wO4CsA/m9mVAP4HgHccK2QDd0ppXTZm4937AdxrZl9LbQ8AzFy/hwHcmODx1wL44Gzs+xUAN5D8YgI7AABm9srsv6cBPICtoWYKTgE4NedV3YetBu9FyAaulNYas8DWUQAnzeyziW3ZRfLi2d/fiK1g6HNj22FmnzGzPWa2F1u/kW+b2UfHtgMASF44C35i5g6/D4kWSZnZzwG8TPLts396DwYuyZ4n2KaLOaW0kvwygHcDWCV5CsBdZnY0gSnXArgVwI9mY18A+JtZZuDY7AZwz2y24zwAXzWzpFNUGfAWAA9s9cM4H8CXzOyhhPZ8AsC9M4F8AcB+3xsqk02IglGQTYiCUQMXomDUwIUoGDVwIQpGDVyIglEDF6Jg1MCFKBg1cCEK5v8A/OOsfIHX+8gAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF2VJREFUeJzt3X1sXXd9x/HPB9fApQUbqIdaJyXdxKxBGgjyKkFYxcggIFoI3ZQxxsMepGjaoLChoJY/Sldta7dodOvGmLKW8lQespJGlAIBtUBhgoLTdE7XNhuwbolDFwN12jIP3PDdH+fcxg6277n2ufc8vV9SZPv4+vp7Xffj3/me3/n9HBECAFTHE4ouAADQHYIbACqG4AaAiiG4AaBiCG4AqBiCGwAqhuBGqdj+HdtfW+bzH7T9Z/2sCSgbght9YfvLth+y/aSia+kk/eNxwvaj6b//tH2D7V/s4jn4A4OeIbjRc7bXSfoVSSHpNYUWk93XI+IMSUOSfk3SrKT9ttcXWxZAcKM/3izpG5I+KOkt8z9h+5m2P237YdvflPQLGZ7v6bZvtf2I7TttP/41tl9s+1u2j6dvXzzvc89IR85H09H/3k7fKCJORMR3IuIPJX1F0hXznu+fbT+Yfq87bD8vPb5d0m9Lelc6Yr8lPX6p7e+kdd9r+3UZXivwMwhu9MObJd2Y/tti+1nzPvc+Sf8n6SxJv5f+6+T1kv5U0tMlfVvSn0tJMEu6VdK1kp4p6b2SbrX9zPTrPiLpKZKeJ+nnJF3T5evYo+TMoe1zkp6TPtdd6etTROxK3/+riDgjIi5KH/+d9OuH0vo/avusLmsACG70lu2XSHq2pN0RsV9JeL0h/dyApF+XdHlE/Cgi7pH0oQxPe3NEfDMiHlMSkC9Ij79a0n9ExEci4rGI+Lik+yVdlAbkqyT9QUQ8FBFzEfGVLl/OUUnPaH8QER+IiEci4sdKRuLPtz201BdHxD9HxNGI+GlEfFLSf0g6v8saAIIbPfcWSV+IiO+nH39MJ9slI5JOk3R43uP/q/2O7XfPu0D4j/Me8+C89/9X0hnp+2fP//p5zzcqaa2kH0bEQ6t4LaOSfpjWNmD76rT18bCkB9LHnLnUF9t+s+27bc/YnpG0frnHA0s5regCUF+2W5K2SRqw3Q7bJ0katv18SfdIekxJqN6ffv6c9tdHxF9I+osuvuVRJaP7+c6R9HklfxyeYXs4Ima6fS2p10n6avr+GyS9VsmFyweUtD8ekuT08wuW3bT9bEn/JGmzkgufJ2zfPe/xQGaMuNFLWyWdkPRcJe2MF0j6JSXh9+aIOKGkb3yF7afYfq5OuXjZpc9K+kXbb7B9mu3fTL/3ZyLie0p60v9g++m2B21f0OkJ05H1ubb/TtJLlfSmJempkn4s6QdK+uan/oH5H0k/P+/j05WE+XT6vL+rZMQNdI3gRi+9RdINEfHfEfFg+5+kv5f027ZPk/RWJa2OB5XMOrlhpd8sIn4g6UJJ71QSqO+SdOG8Ns2bJM0pGd0fk/SOZZ7uRbYflfSwpC9LepqkX46Ig+nnP6ykDTMl6V4ls2bmu17Sc9O2yN6IuFfSX0v6upJQP0/Sv6z0taLZzEYKAFAtjLgBoGIIbgCoGIIbACqG4AaAiunJPO4zzzwz1q1b14unBoBa2r9///cjYiTLY3sS3OvWrdPExEQvnhoAasn2qXf9LolWCQBUDMENABVDcANAxRDcAFAxBDcAVEym4LY9bPsm2/fbvs/2i3pdGABgcVmnA/6tpM9HxG/YfqKSZSwBAAXoGNzpVkwXSPodSYqIn0j6SW/LAgAsJUur5Fwli7/fYPuA7etsn37qg2xvtz1he2J6ejr3QrsyuVu6Zr10xXDydnJ3sfWgPPjdQA1kCe7TJL1Q0vsjYqOkH0m69NQHRcSuiBiPiPGRkUx3bfbG5G7plkuk44clRfL2lkv4HxT8bqA2sgT3EUlHIuLO9OOblAR5Od12pTQ3u/DY3GxyHM3G7wZqomNwp1tNHbY9lh7arGSrpnI6fqS742gOfjdQE1nncb9N0o22J5Vs+NrNztv9NbSmu+NoDn43UBOZgjsi7k771xsiYmtEPNTrwlZs8+XSYGvhscFWchzNxu8GaqIny7oWasO25O1tVyanwENrkv8x28fRXPxu9Nfk7lr/rPcemNLOfYd0dGZWZw+3tGPLmLZuHO3L9+7JLu/j4+PBetxAg7Vn8My/GDzYki66thbhvffAlC7bc1CzcyceP9YaHNBVF5+34vC2vT8ixrM8lrVKAOSv5jN4du47tCC0JWl27oR27jvUl+9PcAPIX81n8Bydme3qeN4IbgD5q/kMnrOHW10dzxvBDSB/NZ/Bs2PLmFqDAwuOtQYHtGPL2BJfka/6zSoBULyaz+BpX4BkVgkANBizSgCgxgjuorHMKIAu0eMu0qk3KbSXGZVq0wsEkD+Cu0jL3aRAcFdSkbdBozkI7iLV/CaFpjn1NuipmVldtuegJBHeyBU97iLV/CaFpin6Nmg0B8FdpJrfpNA0Rd8GjeYguIu0YVuyWtrQWklO3tZk9bQmKvo2aDQHPe6ibdhGUNfEji1jiy712a/boNEcBDeQk6Jvg0ZzENxAjrZuHCWo0XP0uAGgYghuAKgYghsAKobgBoCKIbgBoGIyzSqx/YCkRySdkPRY1sW+AQD562Y64K9GxPd7VgkAIBNaJQBQMVmDOyR9wfZ+29sXe4Dt7bYnbE9MT0/nVyEAYIGswf2SiHihpFdJ+iPbF5z6gIjYFRHjETE+MjKSa5EAgJMy9bgjYip9e8z2zZLOl3RHLwsD0GzsJrS0jiNu26fbfmr7fUmvkHRPrwsD0Fzt3YSmZmYVOrmb0N4DU0WXVgpZRtzPknSz7fbjPxYRn+9pVSgdRj/op+V2E+L3LkNwR8R3JT2/D7WgpNhLEf3GbkLLYzogOmIvRfQbuwktj+BGR1NLjHKWOg6s1o4tY2oNDiw4xm5CJ7GRAjoasHUiYtHjQC+wm9DyCG50tFhoL3ccyAO7CS2NVgk6Gl2ir7jUcQC9RXCjI/qNQLnQKkFH9BuBciG4kQn9RqA8aJUAQMUQ3ABQMQQ3AFQMwQ0AFUNwA0DFENx1NLlbuma9dMVw8nZyd9EVFacfPwt+3ugzpgPWzeRu6ZZLpLl0Aajjh5OPJWnDtuLqKkI/fhb8vFEARtx1c9uVJ0OkbW42Od40/fhZ8PNGAQjuujl+pLvjddaPnwU/bxSA4K6Ldp9VS6zYN7Smr+WUwlKvOc+fRT++B3AKgrsO2n3W44cX//xgS9p8eX9rKoPNlyevfb68fxb9+B7AKQjuOlisz9o2tFa66NpmXijbsC157UNrJbk3P4t+fA/gFI4eLIY/Pj4eExMTuT8vlnDFsBZvkVi6Yqbf1QBYAdv7I2I8y2MZcdcBfVagUQjuOqDPCjQKwV0H9FmBRsl856TtAUkTkqYi4sLelYQV2bCNoAYaopsR99sl3derQgAA2WQKbttrJL1a0nW9LQcA0EnWEfffSHqXpJ8u9QDb221P2J6Ynp7OpTgAwM/qGNy2L5R0LCL2L/e4iNgVEeMRMT4yMpJbgQCAhbKMuDdJeo3tByR9QtLLbH+0p1UBAJbUMbgj4rKIWBMR6yS9XtLtEfHGnlcGAFgU87iBOmJXnlrrageciPiypC/3pBIA+WBXntpj6zKgbpbbladmwb33wJR27jukozOzOnu4pR1bxrR142jRZfUcwQ3UTUN25dl7YEqX7Tmo2bkTkqSpmVldtuegJNU+vOlxA3XTkNUid+479Hhot83OndDOfYcKqqh/CO6a23tgSpuuvl3nXnqrNl19u/YemCq6JPRaQ1aLPDqz+OYhSx2vE4K7xtqnklMzswqdPJUkvGuuIatFnj3c6up4ndDjrrHlTiXr3gNsvAasFrljy9iCHrcktQYHtGPLWIFV9QfBXWNNPpVE/bUHH8wqQa2cPdzS1CIh3YRTSTTD1o2jjwd1e2rgH3/y7tqHOD3uGtuxZUytwYEFx5pyKolmadr1HIK7xrZuHNVVF5+n0eGWLGl0uKWrLj6vtqMQNFfTpgbSKqm5+aeSQF017XoOwQ3kqKm3YBetaddzaJUAOWlan7VMmnY9hxF3DTHqKwbz5ovTtKmBBHfNNHnhnaI1rc9aNk26nkOrpGaadnW917pZ66XJt2CjvwjummHUl59ue9ZN67OiOAR3zTDqy0+3Zy/Mm0e/0OOumSYvvJO3lZy9NKnPiuIw4q4ZRn354ewFZcWIu4YY9eWDsxeUFcENLKFpc4NRHQQ3sAzOXlBGBHdDcXclUF0dg9v2kyXdIelJ6eNvioj39Low9A53VwLVlmXE/WNJL4uIR20PSvqa7c9FxDfyLIQRYP+wpgZQbR2DOyJC0qPph4Ppv8izCEaA/cXdlUC1ZZrHbXvA9t2Sjkn6YkTcuchjttuesD0xPT3dVRGsr9FfzE8Gqi1TcEfEiYh4gaQ1ks63vX6Rx+yKiPGIGB8ZGemqCEaA/cWaGkC1dXXnZETMSPqSpFfmWUTtR4CTu6Vr1ktXDCdvJ3cXWg53VwLVlmVWyYikuYiYsd2S9HJJf5lnEbW+Q21yt3TLJdJcevZw/HDysSRt2FZYWcxPBqory4j7LElfsj0p6VtKetyfybOIWo8Ab7vyZGi3zc0mxwFgBbLMKpmUtLHXhdR2BHj8SHfHAaADVgfstaE13R0HgA4I7l7bfLk0eMpF1sFWchwAVoDg7rUN26SLrpWG1kpy8vaiawu9MAmg2lhkqh82bCOoAeSGETcAVAzBDQAVQ3ADQMVUK7hLdus4ABShOhcnS3rrOAD0W3VG3Nw6DgCSqhTc3DoOAJKqFNzcOo6suBaCmqtOcHPrOLJoXws5flhSnLwWQnijRqpzcbJ9AfK2K5P2yNCaJLS5MIn5lrsWwu8KeqTfm51XJ7glbh1HZ1wLQZ8Vsdl5OVsl9CixUlwLQZ8Vsdl5+YKbHiVWg2sh6LMiNjsvX3AzXxurwTK66LMiNjsvX4+bHiVWi2sh6KMiNjsvX3APrUnbJIscB4CSaV+AbPasks2XL1yTRKJHCaDU+r3Zefl63PQoAWBZ5RtxS/QoAWAZHYPb9lpJH5b0LEkhaVdE/G2vCwOqqN930KGZsoy4H5P0zoi4y/ZTJe23/cWIuLfHtQGVUsQddGimjj3uiPheRNyVvv+IpPskNfq3cO+BKW26+nade+mt2nT17dp7YKroklACRdxBh2bqqsdte52kjZLu7EUxVcCoCksp4g46NFPmWSW2z5D0KUnviIiHF/n8dtsTtiemp6fzrLFUGFVhKUXcQYdmyhTctgeVhPaNEbFnscdExK6IGI+I8ZGRkTxrLBVGVVjKji1jag0OLDjW6zvo0Ewdg9u2JV0v6b6IeG/vSyo3RlVYytaNo7rq4vM0OtySJY0Ot3TVxefRQkPusvS4N0l6k6SDtu9Oj707Ij7bu7LKq4h1CVAd/b6DDs3UMbgj4muS3IdaKqGIdQkAYL5y3jlZcoyqABSpfGuVAACWRXADQMUQ3ABQMQQ3AFQMwQ0AFUNwA0DFENwAUDEENwBUDMENABVDcANAxRDcAFAxBDcAVAzBDQAVQ3ADQMUQ3ABQMQQ30FSTu6Vr1ktXDCdvJ3cXXREyYiMFoIkmd0u3XCLNpZtcHz+cfCxJG7YVVxcyYcQNNNFtV54M7ba52eQ4So/gBpro+JHujqNUCG6giYbWdHccpUJwA020+XJpsLXw2GArOY7S4+IkSmPvgSnt3HdIR2dmdfZwSzu2jGnrxtGiy6qn9gXI265M2iNDa5LQ5sJkJRDcKIW9B6Z02Z6Dmp07IUmampnVZXsOShLh3SsbthHUFdWxVWL7A7aP2b6nHwWhmXbuO/R4aLfNzp3Qzn2HCqoIKK8sPe4PSnplj+tAwx2dme3qONBkHYM7Iu6Q9MM+1IIGO3u41dVxoMmYVYJS2LFlTK3BgQXHWoMD2rFlrKCKgPLK7eKk7e2StkvSOeeck9fToiHaFyCZVQJ05ojo/CB7naTPRMT6LE86Pj4eExMTq6sMKze5m2leQMXY3h8R41key3TAumHxIKD2skwH/Likr0sas33E9u/3viysGIsHoaxYRjY3HUfcEfFb/SgEOWHxIJQRZ4K5qtasEv5id8biQSgjzgRzVZ3gbv/FPn5YUpz8i014L8TiQSgjzgRzVZ3g5i92Nhu2SRddKw2tleTk7UXXruh0dO+BKW26+nade+mt2nT17dp7YCr/etEMnAnmqjqzSviLnV0Oiwex6BNytfnyhT1uiTPBVajOiLubv9j0wleNRZ+QqxzPBFGlEXfWv9hcvc4Fiz4hdywjm5vqjLiz/sWmF54LFn0Cyqs6I24p219seuG52LFlbEGPW2LRJ6AsqhXcWQytSacMLnIcmbHoE1Be9Qturl7nZuvGUYIaKKHq9Liz4uo1gJqr34hb4uo1gFqr34i7SZivDjRSPUfcTcB8daCxGHFXFfPVgcYiuKuK+epAYxHcp6pK35jV1oDGIrjnq9Ka36y7DTQWwT1flfrGzFcHGotZJfNVrW/MfHWgkRhxz0ffGEAFENzz0TcGUAG1b5XsPTCVfYW7dtvhtiuT9sjQmiS0aUcAKJFaB/eK9k2kbwyg5DK1Smy/0vYh29+2fWmvi8oL+ybmhx3fgfLoOOK2PSDpfZJeLumIpG/Z/nRE3Nvr4laLfRPzwY7vQLlkGXGfL+nbEfHdiPiJpE9Iem1vy8oH+ybmgzMXoFyyBPeopPl7gR1Jjy1ge7vtCdsT09PTedW3Kju2jKk1OLDgGPsmdo8zF6BccpsOGBG7ImI8IsZHRkbyetpV2bpxVFddfJ5Gh1uypNHhlq66+DxO77vEmQtQLllmlUxJWjvv4zXpsUpg38TVY8d3oFyyBPe3JD3H9rlKAvv1kt7Q06pQKuz4DpRLx+COiMdsv1XSPkkDkj4QEf/W88pQKpy5AOWR6QaciPispM/2uBYAQAasVQIAFUNwA0DFENwAUDEENwBUDMENABXjiMj/Se1pSf+1wi8/U9L3cyynCLyGcqj6a6h6/RKvoRvPjohMt533JLhXw/ZERIwXXcdq8BrKoeqvoer1S7yGXqFVAgAVQ3ADQMWUMbh3FV1ADngN5VD111D1+iVeQ0+UrscNAFheGUfcAIBlENwAUDGlCu6q7ibfZvsDto/ZvqfoWlbC9lrbX7J9r+1/s/32omvqlu0n2/6m7X9NX8OfFl3TStkesH3A9meKrmUlbD9g+6Dtu21PFF3PStgetn2T7ftt32f7RUXXJJWox53uJv/vmrebvKTfqsJu8m22L5D0qKQPR8T6ouvplu2zJJ0VEXfZfqqk/ZK2Vuy/gSWdHhGP2h6U9DVJb4+IbxRcWtds/4mkcUlPi4gLi66nW7YfkDQeEZW9Acf2hyR9NSKus/1ESU+JiJmi6yrTiLuyu8m3RcQdkn5YdB0rFRHfi4i70vcfkXSfFtkYuswi8Wj64WD6rxyjky7YXiPp1ZKuK7qWprI9JOkCSddLUkT8pAyhLZUruDPtJo/+sL1O0kZJdxZbSffSFsPdko5J+mJEVO41SPobSe+S9NOiC1mFkPQF2/ttby+6mBU4V9K0pBvSltV1tk8vuiipXMGNkrB9hqRPSXpHRDxcdD3diogTEfECJRtbn2+7Um0r2xdKOhYR+4uuZZVeEhEvlPQqSX+UthKr5DRJL5T0/ojYKOlHkkpx7a1MwV3p3eTrIu0Lf0rSjRGxp+h6ViM9rf2SpFcWXUuXNkl6Tdoj/oSkl9n+aLEldS8iptK3xyTdrKQdWiVHJB2Zd8Z2k5IgL1yZgvvx3eTTiwCvl/TpgmtqlPTC3vWS7ouI9xZdz0rYHrE9nL7fUnKx+/5iq+pORFwWEWsiYp2S/w9uj4g3FlxWV2yfnl7gVtpeeIWkSs22iogHJR22PZYe2iypFBfqM20W3A912E3e9sclvVTSmbaPSHpPRFxfbFVd2STpTZIOpj1iSXp3ull0VZwl6UPpLKUnSNodEZWcTldxz5J0czIW0GmSPhYRny+2pBV5m6Qb08HkdyX9bsH1SCrRdEAAQDZlapUAADIguAGgYghuAKgYghsAKobgBoCKIbgBoGIIbgComP8HxGg/2CnGMNMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1}\n" - ] - } - ], - "source": [ - "feature_dim = 2 # dimension of each data point\n", - "training_dataset_size = 20\n", - "testing_dataset_size = 10\n", - "\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", - " training_size=training_dataset_size, \n", - " test_size=testing_dataset_size, \n", - " n=feature_dim, gap=0.3, PLOT_DATA=True\n", - ")\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "print(class_to_label)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the dataset ready we initialize the necessary inputs for the algorithm:\n", - "- the input dictionary (params) \n", - "- the input object containing the dataset info (algo_input)." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\n", - " 'problem': {'name': 'classification'},\n", - " 'algorithm': {\n", - " 'name': 'SVM'\n", - " }\n", - "}\n", - "\n", - "algo_input = ClassificationInput(training_input, test_input, datapoints[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With everything setup, we can now run the algorithm.\n", - "\n", - "For the testing, the result includes the details and the success ratio.\n", - "\n", - "For the prediction, the result includes the predicted labels. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4VFW2xdcGgsxDmCTMSBBpRIRSBocWWwXaBkSUFltF29eOiAoOPOehtbVF8Tk8bW1p7dc8FAWnfggOKAoqECDMAgEZwjzKJFM4748UfqnsdZJbqaSScPfv+/hIrexbdW5V7VSy7z5ri3MOhmGEjwqlvQDDMEoHS37DCCmW/IYRUiz5DSOkWPIbRkix5DeMkGLJbxghxZLfMEJKQskvIr1FZJmIZInIyOJalGEYJY8UtcNPRCoCWA7gQgDZAGYDGOycW1LAMerBunTpEvgxfSuVwPcALFmyXGnt27f1xC4jsScr7UhODj2+UsWKgdd1lLwOFST4mf20fz/Va1WrprTdntjKlSoprWrlykrzne+Bw4eVdtgTW5usK57zTZRFi/jb9JT27ZRWsQL/jNyyc5fSalSrSmOrkOdxwfyFNLZTp45UD8Lq1auxbdu2QE+kfrWDcyaALOfcKgAQkbcB9AfgTX5GRkZG4FjfGykljiTr1Ol8pc2c9TmNPZ3EZmR8pbQtu3+ix9evWUtpvjf4/oMHlVbthBNoLOPjeXOp3rvjaUqbsmABjW3VoIHS2qWlKW373j30+BWbNitt00/8ubno1FOVVrNKFRpbErRp05nq02bMUFqtqjyhXxj/kdJ6RDrQ2FOa6OexeVprGhtPTuQnEokEjk3k1/4mANbluZ0d1QzDKAck8skfCBG5AcANJf04hmHERyLJvx5Aszy3m0a1GJxzrwF4DeB/8xuGUTokUvCrhNyC32+Qm/SzAVzpnFvsOyYSibj8f8+I52/gW+9+Rml33T2ExrJaQPqJJ/qWkTS+y8pS2q+a8L+M2N+Vf5/MaxE3971YaYcP65pBvOz++WelsYJfPDWWeFicnU31ZvXqKc33d3iihVNWe3ngib/R2OceG6a0Q0eO0FhWTC0OftiwIeb2ZX36YNH8+SVb8HPOHRGRoQCmAKgIYExBiW8YRtkioR9HzrlJACYV01oMw0gi1uFnGCHFkt8wQoolv2GElBK/zl8YrKoPAC8/c7fS/vzILTT28b++obRnHh5KYxNtIY2nmty0bl2lfU+uAAC84+3KnufQ2M0vjSloiUWmBumwS2bL7WZPN2C9mjWV5qv2szbnutWrB14D66ps3bFV4ONLqqrv496bn4q5nb1mU+Bj7ZPfMEKKJb9hhBRLfsMIKZb8hhFSitzeWxS6RCLu+5kzY7T1O3bQ2DqkSOMr3LBzmPPjj3wNrYIXb9h21DVbtyptwfJV9PjbLh2gtMVr+boy16xRWr/OfNvphp07lda4Th0a++GcOUq7vGtXGvvQc7pw+uDt1ypt+9699PgTa9emelCuv+VxqqdUTlHazcOvpLHpjRop7YQUfbxvjz57ze+753kaO+ZvDytt4MARNPbd90YpLefoURrL2qfnr11LY9vnaxfv1rUr5mRkBKrS2ie/YYQUS37DCCmW/IYRUiz5DSOkWPIbRkhJarWfmXms2MTbEV999V2lPfvIbTSWGYIk87zigRlmAP52VQar9qeRVuLyRnEYtLIKuq+yHxRm8AHEZ7BaUtwy/OmY2++NfRFbNmdbtd8wDD+W/IYRUiz5DSOkWPIbRkhJaPOxiKwGsAdADoAjzrng40Ki+Fx22X58X8suK+75XIFZbDyOq+x+P5k/nx7fLDVVaZmrdRsvAOzdqVtmb+zbi8ay4p6vVfTuR15SGnOdBYJ7FawmLc4A0JJM/PHBHmvMJO5WPH3idKWtWJpJY6+7X79vMqfOU9oro4OPlmRjyABe8PMVdKuTWF8hctnGjUrr3/MSGrt4yXcxt2d9rQvlPorDeaCnc25bMdyPYRhJxH7tN4yQkmjyOwCfisic6FguhYjcICIZIpKx1fPromEYySfR5D/bOdcZQB8At4rIufkDnHOvOecizrlIgzj+JjQMo2RJKPmdc+uj/28B8D5yx3YbhlEOSGRWX3UAFZxze6JffwbgMefcZN8x1arVcm3bxl4QyMycWqTHLyrxtALf8YA2cXj+z3cozVdpT7StNB6YCQXADTYmzJ5NYy/soGfLsyq1j6zNm5W2ZfduGtsjPV1pyXy+OnY8j+ozMz5VGptXCAAvvfex0q65+AIay5yRrxh8L40d//ZfqR6ESCSCjIBmHolU+xsBeD+aTJUA/G9BiW8YRtkikUGdqwCcVoxrMQwjidilPsMIKZb8hhFSkr6ff+asWTFaSRV5Em3ZBXgh7zC53wxP2/FZbdsWtMQYPp43V2l9T+fuvYwnXv0X1Xv+Rjv1ntG6NY0Num/eN2LtnnuvU1o1T7HswnN1u2o8xd8l69dTPb+bLcDfC773XTzvx4Ok7beS5zlsknaS0lat+YHGppD3qM/lOn9LdTwFP/vkN4yQYslvGCHFkt8wQoolv2GEFEt+wwgpSa32V6tW07Vp0yVGW7Dgq8DHx9PC6oO17D73+O00llV+2fPFzBcAPj/P59K7c98+pflmEzLmrl5N9VPS0pT286FDNPb18f+ntBt+/zulHfRcSTmBVKl9sank3NiVGIAbf/hg5iOMB5/VcwkBoE8/tTcN3dq0obErSTvzxEnTaOyd1wxU2uDf8/beCROepXoQrNpvGEahWPIbRkix5DeMkGLJbxghpdTHdflgRZ7ZK1fS2K6kIBOPey9r0wSAE1JSAt3v+55zakWci5Z62lK3rNMWZ8MG9aOxDJ+nwG33jFLaf4+6J/B9sKIn27cPAG0aNSpoiTGw1/dvH/Ed4dMnfKO0pYv4cz70ae3Km/mFdvp94anhhS3xF7bt2UP1+jVrKm3X/v00lvki+Nqp2fPbqwd3cl6+IrYtvOuZZ1rBzzCMgrHkN4yQYslvGCHFkt8wQkqhNl4iMgbA7wBscc51iGqpAN4B0BLAagCDnHN6aHw+juTkYMvu2C69hrV4dx7r1FqwfBWNZQU/3wgtVtTy7cdnBR1W3BsQ4VPKPl24UGkDz+QGx/V76WLZsEHBByG9MlF35wHAV5M+UNrRZ+6msUs36GJkh6bNlHbNgJv4Y8UxKmpRdrbSLurehUQCrVrpPfpTP2xKY6+9oKfS9p7dXWn7Dx6kx1ch/gOs8Avw99Lo196hsd16am+Gto0b09jWDRsq7boRd9HYRPwwghz5JoDe+bSRAL5wzqUD+CJ62zCMckShye+c+xpAfhuR/gDein79FgA+RdAwjDJLUX9naOScO7abZRNybbwpecd1bd++vYgPZxhGcZNwwc/lds14O4XyjuuqV69eog9nGEYxUdTk3ywijQEg+v+W4luSYRjJoKhDOz4CMATAU9H/Pwz0YBUron7NWjHad1lZNLZp3bpKu+3SATT2Twf0Xvhmqak0llVHfS67u3/+WWkHSCswq+oDwEWnnqq0+WvX0tgvMmcpzdd2vHDdOqXdMlDvuweALp1OUZpvz/ukz75T2snXaD+AKVPH0eN9+/EZnVu2VNqAAXfS2AbNdJv0fz74HzR2H6nis1FZvueAeUZcdvEfaez06ROUtns7H0/W5zQ938bnU8DW9ofLL6Kx+b0Z4vI+KCxARMYB+A7AySKSLSLXIzfpLxSRFQAuiN42DKMcUeiPaufcYM+3flPMazEMI4lYh59hhBRLfsMIKYmM6C4S+YsZvyLjlQDge1IIXLyWt+Gywlzm6jU09ldNeVsog5ltsv34vpZdVtw7rXlzGsuKe74CGjsHXwGrQxzne891gwLFBR3rFS91G2rDUwCoVa+W0tj+eAD4dQ/tgfDpNF2YY63bADeDvf/lh2gsY9SjtwWO9b1mrGhXqQJ/zl95998xt7fu5Ca39PEDRxqGcVxhyW8YIcWS3zBCiiW/YYQUS37DCClJrfYfdU6ZKPjGV7HW2AmzZ9PYgWecobS9O/cGXtfH8+ZS/ey2JyuNuewyIw4gvpZdZhjhc1auSgwn/jntaxp782/7Km3fPl4Rzm+0AnCzlW7d9H0CwIxvA3V5AwDmkfFi9z3GTUJYO/M1g0bQ2JmzP1Ha+h35d6QDtatVo8ezKxm/bteOxrKq/LgZ39LYGtX0+9x3v6wd+Z5h2oUZAMaN/UvM7f8d/SSNY9gnv2GEFEt+wwgplvyGEVIs+Q0jpJT6uK6/T/6cxl7Z8xylpXjaXUuq3TRRWHHP5wTL8I0c+/Or/1La/Tf+IfjCPOw7eEBpmWt0i7LP/yBR4tnfXlKwluy0OrztuEEt3XZc2ucQiURsXJdhGAVjyW8YIcWS3zBCiiW/YYSUIB5+Y0Rki4gsyqM9IiLrRSQz+u+3JbtMwzCKmyDtvW8CeAnAP/Ppo51zvOcwDm7uezHVN780RmlXDexFY1m1P424/yYb1pbqMxNhLbusqg8AD9x0ldKKo9p/6EiO0iKtWiV8v0FZs023TgNAI9JiXM1j5pEoLerXV9pzr3K34seGX6+0Izn6OQTiczaOhw07Y0dkHvY8PqOo47oMwyjnJPI3/1ARWRD9s6D0P2YNw4iLoib/KwBOAtAJwEYAz/oC887q27qV/1pnGEbyKVLyO+c2O+dynHNHAbwOgDtYInZWX4MGevKKYRilQ5GqECLSOM+U3gEAFhUUf4yf9u9Xe+cPH9bjlXwcOnKE6qyYknP0KI3dumeP0t4Y9zGN7dP7bKUx991XJv4fPZ6N0PK1ebL9+L4iHtN9rcDfrlihtIqeWHZurB25b99b6PHnXHqefqwU3nr96f9MUtqUKW/QWNYyu428joDflTc/H8yZQ/VLunRRGivsAcD7+VrVAeD0Fi1o7C1DHlDaWf3PpbHs9WUO1YAubMfT6l5o8kfHdZ0HoL6IZAN4GMB5ItIJudN5VwO4MfAjGoZRJijquC7+I9owjHKDdfgZRkix5DeMkGLJbxghJalmHl0iEff9zJkxWjzVyXfzHXuMy7t2Vdrwh16gsc89NkxprCIO8MrtiPueV9pXkz6gx7/xUf6OaP/svBPraQdgn8su4zsy2xAAeqSnK833mu/av19pdYjL7VXX6so1APzzH48XtMQY1m7bpjRfBX/Wgh+U9uyI+2jswiX6PZJJDDq6tWlDj2dXY/Yc0CYnAFCTuOxOXrCAxqZWr64039xGdqWqR9c+NDYzc2rMbTPzMAyjUCz5DSOkWPIbRkix5DeMkJLUgl96+/Zu9NixMdrvTj89aY8P8JFf/Tp3prF7SEtlao0aSittx1YAmLVyJdXPPOkkpflagYO+F3xt1md176e07dvX09hps6cqrVm9eoEevzi44/7RVH/+iTsD30f16tpnwFek3blvn9Le/twzYq0/L+4FwQp+hmEUiiW/YYQUS37DCCmW/IYRUiz5DSOklIylqIfKlSqhVT43H59JQQ3SOvnIaO3oC3CzBV8F/sIOHZTmazF+fbw26bjr2suVtnQDr2hP+uw7pd1z3SAau2W3rhJX9zjUMpddX6soa9n1VfXZVYCvf9CttV1atqTHz56tDTriYdNPvFJeqYL+jKpN2o6B4O3iTz7EDUmGjXxOaVdc35fGssr+GWdwF3v23PQ9R7el+/CZ01Qkz01Q7JPfMEKKJb9hhBRLfsMIKUHGdTUTkS9FZImILBaR26N6qoh8JiIrov+bd79hlCMKbe8VkcYAGjvn5opITQBzAFwC4FoAO5xzT4nISAB1nXP3FnRfkUjEzZw1K0bzFeZY4cY3iigeTwBWOPEVTVhLZl2yL9sHW288a52xfDnV2Qgt5rIbL98sW6a0c9u1U1oyW8KTTefOFyltdsZkGsveN/sO8r3/1U/QBeySoFjbe51zG51zc6Nf7wGwFEATAP0BvBUNewu5PxAMwygnxPU3v4i0BHA6gJkAGuXx7t8EQFvRGIZRZgmc/CJSA8AEAHc453bn/Z7L/T2Q/i5o47oMo2wSKPlFJAW5iT/WOTcxKm+O1gOO1QW2sGNtXJdhlE2CTOwR5A7pWOqcy9v+9BGAIQCeiv7/YWH3dSQnB9v3xpo0NiSz131s37uX6ifW1vex2vNbBtszfuvdz9DYBx+4QWlZmzcr7ZoBN9Hjp0zVc919Bb9u3XQX2fff8zFiDN8Irdr1UpU25u+P0FjWuceKez4/gPU79CT3Cp5i6qjn/0dpT97Pn8d9B/VIt7GTv6SxQ8mItP3k+EOe4vHcuZ9Sna9LF/cWZ/Nuz2cfeE1pDz4zlMa2b6JNXsd+M53GXn3uOQUtsUCCtPeeBeBqAAtFJDOq3YfcpB8vItcDWAOA960ahlEmCTKuazoA36WD3xTvcgzDSBbW4WcYIcWS3zBCiiW/YYSUpLr3tuvQwb0xcWKMdlbbtkl7fABYtnGj0qp4WmNrVa2qNNbe63OzrVwpuF1CPG3HjL/+YzzVmf9A1zMvprFB9+Nv2LmT6k1S9ZWFlBTuSfDiBH1x6Ma+vQI9fnHw/Dg+Yu2OwcEbVVkrcMacKTR28vz5Slu3Tl85AhJ7Hsy91zCMQrHkN4yQYslvGCHFkt8wQkpSDTwP5+R4TRqTxZbdu5XWrnFjGnvQU8gri1RMCe4T4BuhFRRfyy4r7h0+rFtrAaB2/VoJrSFRNmRtSPg+Nm1aFTi2DikUz9uwLeE1JIJ98htGSLHkN4yQYslvGCHFkt8wQoolv2GElKS293bu0sVNmzEjRqtJxnIVBz5XYHa+XTpfQGNnZWhjh0rEjCNzzRp6fGfPWCtGxipdOY60bh34+F699MgyAPjbv55Smq9tmBmdMO569CWqp3dOV5qvqj+4Rw+lxfNeZGPIAKCOZ4xXfnZ4jGFSa9QIvIYVmzYpraXHrapmdf08LF77I409qWFDpTFDEgColm+km7X3GoZRKJb8hhFSLPkNI6QkMq7rERFZLyKZ0X98NrFhGGWSIO29RwCMyDuuS0Q+i35vtHNuVNAHqyCiCnyLs7Np7GbSBjz25YkkEnj1xfuUNmbS5zSW7ZXOzJxKYxmvfPiJ0i7q3oXGDhhwp9LqNqxDY+97TDvX+oqWa7ZpZ+IpU96gsfEUElnrNXNG9rnsxuNfcEUcrsBpaW2U9uE3fN/8sg3ar6FfRL8+vsIee84vHXAHjf3gg/9S2qLsdTT2wAE9+i0e5nmKyjXy5dPPhw4Fvs8gBp4bAWyMfr1HRI6N6zIMoxyTyLguABgqIgtEZIxN6TWM8kUi47peAXASgE7I/c3gWc9xNq7LMMogRR7X5Zzb7JzLcc4dBfA6gDPZsTauyzDKJkGq/XRc17E5fVEGAFhU/MszDKOkSGRc12AR6YTc6byrAdxYlAX4Wkrr1ayptJTK3GWXzb+bPpHPNovHGZVVfqdP+EZprVrx+meDZvo3nVr1eLvrwnW6StymEZ963ojMN/RdGZi14Ael+ar9lQK6BbPZeUB81X4Gq+oDwIYNWUr7NoN/1tRM1e8bZuDiayuvQK44dO+nW5F9HDh0OHCsD/ZazpiRSSKBP17WJ+Z2ShyvQSLjuoL5PBuGUSaxDj/DCCmW/IYRUiz5DSOkJHU/fyQScRkZGUU+fv7atVQ/rXlzpXXr1pfGfv/9x0pbsp672bZLS1NapIsuGF4wgI94uvmmy5RW/QQ+vuqaQSOUNnny32ksY9uePVTv2ukcpa1cyYtHh3NylMaKqS9N+Dc9fujA3xW0xBjYfvwssj8e4MW923/fn8au37FDaa//6yOlPXzbkMKW+Au+ltmqlSsrbeOuXTT2CHlufcVu5hNwchovKh89Gnu/tp/fMIxCseQ3jJBiyW8YIcWS3zBCiiW/YYSUpM7qY/jaUn8i1eB0T7trztGjSrvu/qGB19C+SXB7gqFPj1TatRf0pLGsDfbXPfrR2JmztUlIPNQn7dAAsHDJTKozWGWfEU9V3wdz2WVGHABv2WVVfQBokpqqtJlZuj04Hg4c5i27rNrfuA43a4mH5uQqwPKNfLbgtytWxNze62m9Ztgnv2GEFEt+wwgplvyGEVIs+Q0jpJR6wY/tnwaAutWrK40V9gA+fipz6jz+gGQ//6EjR2go25+e+YVujd17dnd6fH5nVQD4dNoEGssKWL7RT/GQSVqie6TrsVrxEHR0VLwwl12A78dnLbsAL+51baN9AuJpa2fvxXhhhW3fe//qq+9XWov2LWjsMw/dGnO7RhyvgX3yG0ZIseQ3jJBiyW8YISWIgWcVEZklIvOj47oejeqtRGSmiGSJyDsiojseDMMosxS6nz/q3lvdObc3auE9HcDtAIYDmOice1tEXgUw3zn3SkH3VaVKNde0absYLStrbiLrj5uOHc9T2jzPuK5HRv9DaY+PuF5pxVEAC7qX3scHc+ZQvV/nzkob/sDzNPbJh25RGjsHthcfAN788FOlbcjinWkj77xGab4RWiWBbzQY23fPCsoA0KfPDUobN4E/t6y41z69E43Nzl5G9SAU635+l8ve6M2U6D8H4HwA70X1twBwRwvDMMokQYd2VIzadm8B8BmAlQB2OeeOXSPLhs3vM4xyRaDkj07m6QSgKXIn87Qr5JBfyDuuKyeHX083DCP5xFXtd87tAvAlgO4A6ojIsS6YpgCoEV7ecV0VK5Z6T5FhGFGCVPsbiEid6NdVAVwIYClyfwgcc6gcAuDDklqkYRjFT5Bqf0fkFvQqIveHxXjn3GMi0hrA2wBSAcwDcJVzrsDNxKd37uymzZgRo/lGRLEq86affqKxJ9bW46t8MCdWti8b0HulAd4a6/MkYG2p8azV51bcon59pbH98fEybORzSpv+6WSlzZ2rq/rFge959LXBJoKvVbwSucLCvCUAoFbVqkqbsXw5jT2rbVulxdNWHpR4qv1BxnUtAHA60VfBM5nXMIyyj3X4GUZIseQ3jJBiyW8YISWp194qVqigiiTDH3qBxrbu2Eppcz/jrcAvvaBNNX2mi/G0kHYj+8DZWKwTUlLo8Zdd/Eel3f/yQzT21+1060SaxwzyuVfHKe2x4brtGAD2HDigNN9s+iuu1yPORj95B40tCS4dwB+re78eSht21QAay153th/f17LLinu1PcVUViyv4LlfRjyFPd/IsB+3bo257XvfM+yT3zBCiiW/YYQUS37DCCmW/IYRUiz5DSOkFNreW5w0P6mNu+svsS2kwwbx8VUlxUvvfay0P/XvTWPXbt+utPQTT1RaPK7CPuJxd2W8n5FB9QGRiNKqV+ctxvv28fZpFXdQX0EAgHO669dy06ZVNHba3OlKY89tScGMOADgk09eC3wfzBDE915grd5Pj3qTxo5+/PbAa8hPsZp5GIZxfGLJbxghxZLfMEKKJb9hhJSktvfWqFYVPSIdYrR49jQPHDiCxk6Y8KzSdv/8M4295uILlMb2cAPAxEnTlHbjFaQF9rV36PG7t+siz6hHb6Ox42Z8q7Qrzz6LxjKH2dNb8HFOkxcsUJqvsHfGGb9V2lfTJyptcTY1bULGnClUZ7DC2KLsdTT2wCHdstokNZXGNva0ROfH57LL9uP7WnbZOfiKvAdJ2+21f+Ityowtu/lr1rBWcH+I/Ngnv2GEFEt+wwgplvyGEVIs+Q0jpCQyq+9NEflRRDKj//jsIcMwyiRBqv0HAZyfd1afiHwS/d7dzrn3Cjg2hiqVK+OUJmkxWjyGBu++NypwbHXPnDzWkpnWuDWNXZut3XvZ8d166nl4ANDntNMKWmIMNappJ1hfey97zm4Z8gCNfeTFe5S2c98+Gjt79qSClvgLzz7AW2CH3DtYaXWIkQYAnH+q/qw4cICvi7GOtF77iKd1mrns+mBu0qyqD3DDl7XbtgV+LEHxOxgHce91ANisPsMwyjFFmtXnnJsZ/dYTIrJAREaLCP2ozTuua1s+yyHDMEqPIs3qE5EOAP4TuTP7zkDu4I57Pcf+Mq6rfoMGxbRswzASpaiz+no75zZGx3cfBPAP2AAPwyhXFPo3v4g0AHDYObcrz6y+p0WksXNuo+RWwC4BsKiw+1owfyGap8UW17Zv3xB4sb690hVIe66vzXLQFboAtmrNDzR28O/1LzOslbht48b0+HgKTcy9Nx7O6n8u1U9r3lxpYyZ9TmP7ntNVaU1JG+2Dzwylx8+Yt0Rp8zbwotbitT9SPSjN6tULHMue8/bp/OLUqtWLleYrSrP9+L6WXVbca07GrgHcFbhBrVo0NhGClNobA3hLRPLO6vu3iEyN/mAQAJkAbir21RmGUWIkMqvv/BJZkWEYScE6/AwjpFjyG0ZIseQ3jJCSVPfeSCTiMjwus8XNso0bqX4yqcwfJuYYAJBCriJkbd6stNYNG9LjWZWZXQEA+JUM9vjxsv/gQaVV87Q+B8V3DvG4DSf6eCvJ6wAAzclVgKuvvl9p49/+a+ILKyFYC/middzo5FdNm8bcNvdewzAKxZLfMEKKJb9hhBRLfsMIKUl1702U+WvXUp21sPbveQmN/eGHmUpbv2MHjW1JNiL16tFLadeNuIse/4fLL1JapQq8iHfPMO1VMG7sX2gsw+dWfG73i5WWmTmVxgZ1ox37jR61BQBXn3tOQUuMgRUi561ZQ2NnzMhU2sjrtXcAACzfqNvFW7TnzsZB+fnQIapXrVxZaT6XXbYf39eyy4p7HZo1o7GJFOztk98wQoolv2GEFEt+wwgplvyGEVIs+Q0jpJR6e+8PG7iZx703P6W09yaOprG3360r5S+OupvG+kw+ghLPfDZWJX7l3X/T2OF/uDTwGjbs3Km0tLp1Ax9fVvFdzWlCzq1+zZo09tsV2nG5R3p6Qutasp7PJmzfpElC91scsFZg55y19xqG4ceS3zBCiiW/YYQUS37DCClJLfiJyFYAx3o46wMIPq+o/GDnVf44ns6thXMu0ICMpCZ/zAOLZDjnIqXy4CWInVf543g+t4KwX/sNI6RY8htGSCnN5Odznss/dl7lj+P53LyU2t/8hmGULvZrv2GElKQnv4j0FpFlIpIlIiOT/fjFiYiMEZEtIrIoj5YqIp+JyIro/+Wu6V5EmonIlyKyRET6HIuhAAACVUlEQVQWi8jtUb1cn5uIVBGRWSIyP3pej0b1ViIyM/qefEdEtEXPcUhSkz867PNlAH0AtAcwWETaJ3MNxcybAHrn00YC+MI5lw7gi+jt8sYRACOcc+0BdANwa/R1Ku/ndhDA+c650wB0AtBbRLoBeBrAaOdcGwA7AVxfimtMGsn+5D8TQJZzbpVz7hCAtwH0T/Iaig3n3NcA8hsA9gfwVvTrt5A7vrxc4Zzb6JybG/16D4ClAJqgnJ+by2Vv9GZK9J8DcD6A96J6uTuvopLs5G8CIK87YXZUO55o5Jw7Ni5oE4BGpbmYRBGRlsid0jwTx8G5iUhFEckEsAXAZwBWAtjlnDsSDTke35MUK/iVIC73Ukq5vZwiIjUATABwh3Nud97vlddzc87lOOc6AWiK3N9E25XykkqNZCf/egB5PYibRrXjic0i0hgAov9vKeX1FAkRSUFu4o91zk2MysfFuQGAc24XgC8BdAdQR0SO2dgfj+9JSrKTfzaA9Gh1tTKAKwB8lOQ1lDQfARgS/XoIgA9LcS1FQnLtYd4AsNQ591yeb5XrcxORBiJSJ/p1VQAXIree8SWAy6Jh5e68ikrSm3xE5LcAngdQEcAY59wTSV1AMSIi4wCch9xdYZsBPAzgAwDjATRH7g7GQc45PhWkjCIiZwP4BsBCAMd8y+5D7t/95fbcRKQjcgt6FZH7wTfeOfeYiLRGbvE5FcA8AFc55/RUkeMM6/AzjJBiBT/DCCmW/IYRUiz5DSOkWPIbRkix5DeMkGLJbxghxZLfMEKKJb9hhJT/B9AREC/lM5RbAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 0.6\n", - "predicted classes: ['A', 'B', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'B', 'A', 'A', 'A', 'B', 'B', 'B', 'A', 'B', 'B', 'A']\n" - ] - } - ], - "source": [ - "result = run_algorithm(params, algo_input)\n", - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix), interpolation='nearest', origin='upper', cmap='bone_r')\n", - "plt.show()\n", - "\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "print(\"predicted classes:\", result['predicted_classes'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The breast cancer dataset\n", - "Now we run our algorithm with the real-world dataset: the breast cancer dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH65JREFUeJzt3X+cXHV97/HXO8kGVoFsAhiTTSCogCDhgqyoRQqaUKitJgWLv+pNrJZabmttFQm1pRa9D6Kp4rXaapRW9HG9JaVxiUUbIIhaLijhBhMBA4gKWZIQkKDR1YTwuX+c75DJZmZ2dufX2Tnv5+Oxjz1zznfmfGbmzOd85/v9zvkqIjAzs2KZ1OkAzMys/Zz8zcwKyMnfzKyAnPzNzArIyd/MrICc/M3MCsjJvwtJCkkvSsufkfQ3nY6pEklnS9rS5n3OS6/PlHbu1w7k96KznPxbQNKPJQ1L2iVpu6QvSDqkbPu5kr4l6eeSdkj6pqTXj3iMs9MH49JGYomId0XEhxp5jCIZ8d49KekGSXM7EMdSSf/V7v3mVbsqCp2okHSKk3/rvC4iDgFeCgwAfw0g6Q3AvwFfBOYAM4HLgdeNuP8S4KfAf29XwI3ostpb6b2bBWwH/qFaQUmT2xbVBNJlx0N3igj/NfkP+DGwsOz2CuA/AAEPA5eMcv/nAj8H3gTsBgZGKX8JsBV4FPhDIIAXpW1fAD6cls8GtgDvBx5L91kMvBa4n+xk81djfJ6XAhuBXwNTgNnAvwM7gB8B7y4r35vieRK4N8W9pWz7s3GPjD3dXgTcDfwM+CFwXlo/Dbg6PZ8h4MPA5LRtMvD3wOPAQ8D/SPuZUud791rg/hEx/RPwNeAXwELgoLSPh8lOFp8BelP56em935Ge938Ac8oeb2mK6+fp9XorcALwK2AvsAvYWSXWGcC/pPf9SWCwzn3eCnwIuC3t90bgiLLtrwL+L7ATeARYmtbXep5nkx1blwLbgC9ViLfmewG8HbgvxfQQ8Mdln4dh4Jn0euwiO85OB25PcW4FPgVMTfcRcBXZcf4zYBNwUq3nUW0/nc4nLctTnQ6gG//KEwgwF7gnfdhenA72Y0a5/9vSwTwZ+CrwDzXKnpcO4JPSwftlaif/p8m+afQAf5QSxJeBQ4GXpIO/Znwjnufd6Tn2kn2TvCs9/lTgBelDfG4qvxz4NlnSmgt8nzqTf/qgPwWck/bTD7w4bfsK8Nn0/J8HfLcscbwL+EHa3wzgG9SZ/IHnANcAXxwR01PAGSmOg1OSWZMe/9D0nl2Zyh8OXJAe61Cyb32lJP1cssR0fLo9C3hJWl4K/Ncor/8NwLVkyb4HOGu0fabtt5KdPI9L79utwPK07Wiy5Pvm9JiHA6ekbbWe59lkx9ZHyJJrb4V4a74XwO8ALyRL3GcBvwReWvb4W0Y83mnAK8gqHfPIThzvSdvOJTsW+9LjnQDMqvN5bKn1unfLX8cD6Ma/lEB2kdVIfgL8Y/qQnZEO9oNHuf/NwCfS8pvJEnRPlbL/XPrgptvHUTv5D7OvVnxoKvvysvvfBSwew/P8w7LbLwceHlHmMuBf0vJDpNp6un0R9Sf/zwJXVYhhJtm3jt6ydW8GvpGWbwHeVbbttxg9+Zfeuz1kter5I2IqPxmI7BvAC8vWvRL4UZXHPwV4Mi0/N+3nAkYkS0ZJ/mQnimeA6XW8T8/uM92+FfjrstsXA/9Z9n59pcJj1Hye6djaTY1jexzvxSDw52WPXzMpA+8pxQ68huzb7CuASWN8HoVI/m6Xa53FEXFz+QpJT6TFWWRf8Q+QOhdfTfYhBLgeWElWKxqscJfZZAm75CejxPVEROxNy8Pp//ay7cPAIdTvkbLlo4HZknaWrZtMVtsvxVpefrRYy80la2oZ6WiyGupWSaV1k8r2M559Lo6Im1N7/iLgm5JOjIhtaXv54x1JVsO+q2z/InveSHoOWU3zPLIaOsChkiZHxC8kvRF4H3C1pNuA90bED+qIcS7w04h4cuSGUfZZeu+3ld3ll+x7z+eSfSsYqebzTHZExK9qxFzzvZD028DfklVgJqX9bar2YJKOAz5O1qf2HLJvAHcBRMQtkj4FfBo4WtJqstf54DqeRyG4w7e9NpMd/BfUKPM2svflq5K2kdWWDybrAK5kK9kHtuSoJsQ5FlG2/AhZDaqv7O/QiHht2j5arL8k+2CWPH/EY7+wwv4fIav5H1G2z8Mi4iV17rOqiNgbEavJ2t5fVb6pbPlxshPmS8r2Py2yDmOA9wLHk327Ogz4zbReaR9rI+IcsgrBD4DPVdhHJY8AMyT1VdhWc591PG6l13m051lPzFXfC0kHkfUV/T0wMyL6yE72pZgrPfY/kb1mx6bn+Vdl5YmIT0bEacCJZCeUS+p4HqM9h67h5N9GkX2v/EvgbyS9XdJhkiZJepWklanYEuDvyL6ql/4uAF4r6fAKD7sKWCrpxFTj+9vWP5Oqvgv8XNKlknolTZZ0kqSXpe2rgMskTZc0B/izEfe/G3hLut95ZO2+JVcDb5e0IL1m/ZJeHBFbyTosP1b2er5QUum+q4B3S5ojaTqwrN4no8wistrzfZXKRMQzZAn7KknPS/frl3RuKnIoWbLZKWkGZe+PpJmSFkl6LtkJbBdZUw5k38bmSJpaZb9bga8D/5hezx5JpSRfdZ91+N/AQkkXSpoi6XBJp9TxPOtR672YStZXsAN4On0L+K2y7duBwyVNK1t3KFmfyS5JLwb+pLRB0sskvVxSD1kzz6+AZ+p4HpX205Wc/NssIq4D3kg2KudRsoPtw8D1kl5B1ozx6YjYVva3BniQrC175ON9HfgEWXvqg+l/U0h6q6R76i2fmhR+l+yE9SOyWtbnyUbjQHZS+0nadiPwpREP8edkQ153ko16ebaZKyK+SzYa5CqyDtdvkr1WkA2HnUo2guhJ4DqymjRkH/S1wPeA/wesruOpfFXSLrLE8j+BJRFR63W4lOy1v0PSz8j6bI5P2z5B1t/zOHAH8J9l95tEVhl4lGyk1VnsS2C3kA0U2Cbp8Sr7fRtZv8QPyEa1vKeOfdYUEQ+TjXB6b4rpbuC/1fE861H1vYiInwPvJjtBPAm8haxTtrT9B8D/AR6StFPSbLJmnLeQdVB/jqzzu+SwtO5JsmPuCbJRdzWfR5X9dCWlTg4zMysQ1/zNzArIyd/MrICc/M3MCsjJ38ysgHL7I68jjjgi5s2b1+kwzMwmlLvuuuvxiDhytHK5Tf7z5s1j/fr1nQ7DzGxCkVTXL+fd7GNmVkBO/mZmBeTkb2ZWQE7+ZmYF5ORvZlZATv5mZgXk5G9mVkBO/mZmBdSU5C/pPEmbJT0o6YDJMiQdJOnatP07kuY1Y79mE8XghiHOWH4Lxyy7gTOW38LghqFOh2QF13DyT/Ocfhr4bbLp0t4s6cQRxd5BNoH0i8gm4/hIo/s1mygGNwxx2epNDO0cJoChncNctnqTTwDWUc2o+Z8OPBgRD0XEbuBfySa9LrcIuCYtXwcsUNnsyWbdbMXazQzv2bvfuuE9e1mxdnOHIjJrTvLvJ5v0uWRLWlexTEQ8TTYN3wHz0Uq6SNJ6Set37NjRhNDMOu/RncNjWm/WDrnq8I2IlRExEBEDRx456kXpzCaE2X29Y1pv1g7NSP5DwNyy23PSuoplJE0hm9D7iSbs2yz3Ljn3eHp7Ju+3rrdnMpecO5a5z82aqxnJ/07gWEnHSJoKvAlYM6LMGmBJWn4DcEt45ngriMWn9nPl+fPp7+tFQH9fL1eeP5/Fp45sHTVrn4av5x8RT0v6U2AtMBn454i4R9IVwPqIWANcDXxJ0oPAT8lOEGaFsfjUfid7q2pwwxAr1m7m0Z3DzO7r5ZJzj2/58dKUyVwi4mvA10asu7xs+VfA7zdjX2Zm3aQ0FLg0Iqw0FBho6QkgVx2+ZmZF06mhwE7+ZmYd1KmhwE7+ZmYd1KmhwE7+ZmYd1KmhwE3p8DUzs/EpdepOyNE+ZmY2fp0YCuzkb9ZmnRjTbTaSk79ZG3VqTLfZSO7wNWsjX97Z8sLJ36yNfHlnywsnf7M28uWdLS+c/M3ayJd3trxwh69ZG3VqTLfZSE7+Zm3myztbHrjZx8ysgJz8zcwKyMnfzKyA3OZvZl3Nl9OozMnfqvKHxiY6X06jOjf7WEWlD83QzmGCfR+awQ1DnQ7NrG6+nEZ1Tv5WkT801g18OY3qnPytIn9orBv4chrVOflbRf7QWDfw5TSqc/K3ivyhsW6w+NR+rjx/Pv19vQjo7+vlyvPnF76zFzzax6rwNWisW/hyGpU5+VtV/tCYdS83+5iZFZCTfx5tXAVXnQQf7Mv+b1zV6YjMrMu42SdvNq6Cr74b9qQhlU89kt0GOPnCzsVlZl3FNf+8WXfFvsRfsmc4W29m1iRO/nnz1JaxrTczGwcn/7yZNmds683MxsHJfzxa2SG74HLoGfEr2p7ebH2BDG4Y4ozlt3DMshs4Y/ktvqCcWZO5w3esWt0hW3qMdVdkTT3T5mSJv5s7ezeu2u/53vnCP+OyO4/2ZXjNWkgR0ekYKhoYGIj169d3OowDXXVSlvBHmjYX/uL77Y9nROKccCeKkSdTYJiDuHT3O1jzzKv2K9rf18tty17T7gjNJhRJd0XEwGjl3OwzVnnqkC0lzqceAWLft5CJ9LuACqObevk1759y4HPwFUXNmsfJf6zy1CHbDcNCq5w0Z+uJA9f5iqJmTePkP1Z56pDN07eQ8apy0tzK4fvd7u2ZzKtffKQ7gc2apKHkL2mGpJskPZD+T69Q5hRJt0u6R9JGSW9sZJ8dd/KF8LpPZm38KPv/uk92pp09T99CxqvKyfTR096/32V4Lzitn3+/a8jTSpo1SUMdvpI+Cvw0IpZLWgZMj4hLR5Q5DoiIeEDSbOAu4ISI2FnrsXPb4ZsnFTpL6ent3MlovOrotD5j+S0MVWjzdyew2f7q7fBtdKjnIuDstHwNcCuwX/KPiPvLlh+V9BhwJFAz+VsdumVY6MkXjhqzp5U0a65Gk//MiNialrcBM2sVlnQ6MBX4YZXtFwEXARx11FENhlYQdSTObjC7r7dizd+dwGbjM2qbv6SbJX2/wt+i8nKRtR9VbUOSNAv4EvD2iHimUpmIWBkRAxExcOSRR47xqVg387SSZs01as0/IhZW2yZpu6RZEbE1JffHqpQ7DLgB+EBE3DHuaK2wPK2kWXM12uyzBlgCLE//rx9ZQNJU4CvAFyPiugb3ZwXmaSXNmqfR5L8cWCXpHcBPgAsBJA0A74qId6Z1vwkcLmlput/SiLi7wX1bzg1uGHJN3SynfG0fa4nBDUNctnrTsxdng6yN/srz5/sEYNZCvraPddSKtZv3S/wAw3v2smLt5g5FZGblnPytJTwu3yzfnPytJaqNv/e4fLN8cPK3lvC4fLN880xe1hIel2+Wb07+tUz0WbI6zOPyzfLLyb+aVs/Va2bWQW7zr6YbZskyM6vCyb+abpgly8ysCif/arphliwzsyqc/KvJ01y9ZmZN5uRfTZ7m6jUzazKP9qmlILNkmVnxuOZfy8ZVcNVJ8MG+7P/GVRPr8c3MqnDNv5pWj/P37wjMrINc86+m1eP8/TsCM+sg1/yrafU4/5z+jsCzb5kVg2v+1bR6nH8Of0dQmn1raOcwAQztHOay1ZsY3DDUsZjMrDWc/Ktp9Tj/HP6OwLNvmRWHk381rR7nn8PfEXj2LbPicJt/La0e55+z3xHM7utlqEKi9+xbZt3HNX97lmffMisO1/wb0WWTvXj2LbPicPIfry79kZZn3zIrBjf7jJd/pGVmE5iT/3jl9EdaZmb1cPIfrxz+SMvMrF5O/uO14HKY1LP/ukk9nuzFzCYEJ/9GSLVvm5nllJP/eK27Avbu3n/d3t1j7/D1Nf3NrAM81HO8mtHh26XDRc0s/1zzH696O3xr1ew9XNTMOsTJf7zquSpnqWb/1CNA7KvZl04AHi5qZh3i5D9e9VyVc7SavYeLmlmHuM2/EaNdlXO0mv2Cy/dv84eOX9PfzIrByb+Vps1JTT4V1sO+E0cOLw7n6RzNupuTfyvVU7PP2TX9Yd90jqVZvUrTOQI+AZh1Cbf5t9J4Z+vq8Nh/T+do1v0aqvlLmgFcC8wDfgxcGBFPVil7GHAvMBgRf9rIfieUsdbsczD239M5mnW/Rmv+y4B1EXEssC7druZDwLca3F/3y8HY/2rTNno6R7Pu0WjyXwRck5avARZXKiTpNGAmcGOD++t+ORj77+kczbpfo8l/ZkRsTcvbyBL8fiRNAj4GvG+0B5N0kaT1ktbv2LGjwdA6qJE2+xyM/V98aj9Xnj+f/r5eBPT39XLl+fPd2WvWRUZt85d0M/D8Cps+UH4jIkJSVCh3MfC1iNiiUa56GRErgZUAAwMDlR4rn8rn8u2dDrt37bvo21jb7HMy9t/TOZp1t1GTf0QsrLZN0nZJsyJiq6RZwGMVir0SOFPSxcAhwFRJuyKiVv/AxDGyg3b4pweWKbXZ15P8czz238y6R6Pj/NcAS4Dl6f/1IwtExFtLy5KWAgNdk/ihcgdtJWNps8/h2H8z6y6NtvkvB86R9ACwMN1G0oCkzzca3IRQb1L39XrMLEcaqvlHxBPAggrr1wPvrLD+C8AXGtln7lS7hEM5X6/HzHLGv/BtVKVLO0/qgd4ZjOlXvWZmbeRr+zTKHbRmNgE5+TeDO2jNbIJxs4+ZWQG55m/WAZ4vwTrNyd+szTxfguWBm33M2szzJVgeOPmbtZnnS7A8cPI3azPPl2B54ORv1maeL8HywB2+VnjtHnlTemyP9rFOcvK3QuvUyBvPl2Cd5mYfKzSPvLGicvK3QvPIGysqN/tYR3X6l66z+3oZqpDoPfLGup1r/tYxpfb2oZ3DBPva2wc3DLUtBo+8saJy8m+1javgqpPgg33Z/42rWnOfCSgP7e2LT+3nyvPn09/Xi4D+vl6uPH++O2Ot6ykiOh1DRQMDA7F+/fpOh9GYkZO7QzbxS63JXcZznwnqmGU3UO3o6/fwR7NxkXRXRAyMVs41/1aqNLn7nuFsfTPvM0HValfvRBOQWZE4+TdbeZNNtbl9a036Xm1bvRPFTyCV2tvLecilWet4tE8zVWqyqWTanNrbKp00at1ngir/pWulETfgIZdmreKafzNVarIZqac3m+O3mkoTwo92nwls8an93LbsNfT7YmdmbeXk30w1m2YE0+aO3nF78oVZmWlz679PF/CQS7P2crNPM1VtspkLf/H9+h+ngBPC+2JnZu3l5N9MCy6HwYvhmT371k3q2ddks3FV1jT01JbsRLHg8sIl+Vp8sTOz9nHybzap8u2RncFPPZLdBp8AzKztnPybad0VsHf3/uv27t43Rr/a+H0nfzNrMyf/ZhrPGP0uHL9vZvnn0T7NVG0s/rQ5tbeZmbWZk38z1RqjX7Dx+2aWb272aaZS232tET0e7WNmOeCrepqZdRFf1dPMzKrq3uRfkAlRzMzGozvb/P2DKjOzmrqz5l+gCVHMzMajO5N/gSZEMTMbj+5s9inQhCh5MLhhyFfjNJtgGqr5S5oh6SZJD6T/06uUO0rSjZLuk3SvpHmN7HdU/kFV2wxuGOKy1ZsY2jlM4Ll3zSaKRpt9lgHrIuJYYF26XckXgRURcQJwOvBYg/utraATonTCirWbGd6zd791nnvXLP8abfZZBJydlq8BbgUuLS8g6URgSkTcBBARuxrcZ30KOCFKJ1SbY9dz75rlW6M1/5kRsTUtbwNmVihzHLBT0mpJGyStkDS5QjmbgKrNseu5d83ybdTkL+lmSd+v8LeovFxk14modK2IKcCZwPuAlwEvAJZW2ddFktZLWr9jx46xPhfrAM+9azYxjdrsExELq22TtF3SrIjYKmkWldvytwB3R8RD6T6DwCuAqyvsayWwErJr+9T3FKyTPPeu2cTUaJv/GmAJsDz9v75CmTuBPklHRsQO4DWAr9jWRTz3rtnE02ib/3LgHEkPAAvTbSQNSPo8QETsJWvyWSdpEyDgcw3u18zMGtBQzT8ingAWVFi/Hnhn2e2bgJMb2ZeZmTVPd17ewczManLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAmr0ev5mNsLghiFPbmO55+Rv1kSDG4a4bPUmhvfsBWBo5zCXrd4E4BOA5YqbfcyaaMXazc8m/pLhPXtZsXZzhyIyq8zJ36yJHt05PKb1Zp3i5G/WRLP7ese03qxTnPzNmuiSc4+nt2fyfut6eyZzybnHdygis8rc4WvWRKVOXY/2sbxz8jdrssWn9jvZW+45+Vvuedy8WfM5+Vuuedy8WWu4w9dyzePmzVrDyd9yzePmzVrDyd9yzePmzVrDyd9yzePmzVrDHb6Wax43b9YaTv6Wex43b9Z8bvYxMysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswLyj7zMrCrPpdC9nPzNrCLPpdDdGmr2kTRD0k2SHkj/p1cp91FJ90i6T9InJamR/ZpZ63kuhe7WaJv/MmBdRBwLrEu39yPpN4AzgJOBk4CXAWc1uF8zazHPpdDdGk3+i4Br0vI1wOIKZQI4GJgKHAT0ANsb3K+Ztdi03p6K6z2XQndotM1/ZkRsTcvbgJkjC0TE7ZK+AWwFBHwqIu6r9GCSLgIuAjjqqKMaDM3MxmtwwxC/2P30Aet7Jqmjcym4A7p5Rk3+km4Gnl9h0wfKb0RESIoK938RcAIwJ626SdKZEfHtkWUjYiWwEmBgYOCAxzKz9lixdjN79h74ETzk4CkdS7bugG6uUZN/RCystk3SdkmzImKrpFnAYxWK/R5wR0TsSvf5OvBK4IDkb2b5UK1df+cv97Q5kn1qdUA7+Y9do23+a4AlaXkJcH2FMg8DZ0maIqmHrLO3YrOPmeVDHudOdgd0czWa/JcD50h6AFiYbiNpQNLnU5nrgB8Cm4DvAd+LiK82uF8za6E8zp2cxxPSRNZQh29EPAEsqLB+PfDOtLwX+ONG9mNm7ZXHuZMvOff4/dr8ofMnpInMv/A1s4ryNndyHk9IE5mTv5lNGHk7IU1kvqqnmVkBOfmbmRWQk7+ZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkBOfmbmRWQIvJ55WRJO4CfpJtHAI93MJxqHNfY5TU2xzU2jmts2hnX0RFx5GiFcpv8y0laHxEDnY5jJMc1dnmNzXGNjeMamzzG5WYfM7MCcvI3MyugiZL8V3Y6gCoc19jlNTbHNTaOa2xyF9eEaPM3M7Pmmig1fzMzayInfzOzAspl8pf0+5LukfSMpKrDoySdJ2mzpAclLWtDXDMk3STpgfR/epVyH03x3yfpk5KUk7iOknRjiuteSfNaGddYYktlD5O0RdKn8hCXpFMk3Z7ey42S3tjCeGoey5IOknRt2v6ddrx3dcb1l+lY2ihpnaSj8xBXWbkLJEWtPNLuuCRdmF6zeyR9uR1xVRQRufsDTgCOB24FBqqUmUw2MfwLgKlkk8Of2OK4PgosS8vLgI9UKPMbwG0pvsnA7cDZnY4rbbsVOCctHwI8pw3vZV2xpe3/C/gy8Kk8xAUcBxyblmcDW4G+FsQy6rEMXAx8Ji2/Cbi2Da9RPXG9unQcAX+Sl7hSuUOBbwF3VMsjHXi9jgU2ANPT7ee1Oq5qf7ms+UfEfRGxeZRipwMPRsRDEbEb+FdgUYtDWwRck5avARZXKBPAwWRv/kFAD7C903FJOhGYEhE3AUTEroj4ZYvjqiu2FN9pwEzgxjbEVFdcEXF/RDyQlh8FHgNG/eXkONRzLJfHex2woNXfKOuJKyK+UXYc3QHMaXFMdcWVfAj4CPCrNsRUb1x/BHw6Ip4EiIjH2hTbAXKZ/OvUDzxSdntLWtdKMyNia1reRpas9hMRtwPfIKslbgXWRsR9nY6LrBa7U9JqSRskrZA0ucVx1RWbpEnAx4D3tSGeuuMqJ+l0shP6D1sQSz3H8rNlIuJp4Cng8BbEMta4yr0D+HpLI8qMGpeklwJzI+KGNsRTd1xkn8PjJN0m6Q5J57UtuhE6NoG7pJuB51fY9IGIuL7d8ZTUiqv8RkSEpAPGyUp6EVmzVakGdJOkMyPi252Mi+y9PhM4FXgYuBZYClzdSFxNiu1i4GsRsaWZldkmxFV6nFnAl4AlEfFM0wLsIpL+ABgAzspBLJOAj5Md33kzhazp52yyHPEtSfMjYmcnAumIiFjY4EMMAXPLbs9J6xpSKy5J2yXNioitKSFU+sr2e8AdEbEr3efrwCuBhpJ/E+LaAtwdEQ+l+wwCr6AJyb8Jsb0SOFPSxWR9EVMl7YqIhjrxmxAXkg4DbiCrlNzRSDw11HMsl8pskTQFmAY80aJ4xhIXkhaSnVDPiohftzimeuI6FDgJuDVVJp4PrJH0+ohY38G4IPscfici9gA/knQ/2cngzhbGVdFEbva5EzhW0jGSppJ1gq1p8T7XAEvS8hKg0jeUh4GzJE2R1ENWE2p1s089cd0J9EkqtVm/Bri3xXHVFVtEvDUijoqIeWRNP19sNPE3I650XH0lxXNdC2Op51guj/cNwC2Regw7GZekU4HPAq9vY/t1zbgi4qmIOCIi5qVj6o4UXysT/6hxJYNktX4kHUHWDPRQi+OqrFM9zbX+yGrPW4Bfk3WWrk3rZ5M1D5TKvRa4n6wd9gNtiOtwYB3wAHAzMCOtHwA+H/t6/D9LlvDvBT6eh7jS7XOAjcAm4AvA1LzEVlZ+Ke0Z7VPPe/kHwB7g7rK/U1oUzwHHMnAFWdKCbBDBvwEPAt8FXtDq16jOuG5On9HS67MmD3GNKHsrbRjtU+frJbImqXvT5/BN7Yir0p8v72BmVkATudnHzMzGycnfzKyAnPzNzArIyd/MrICc/M3MCsjJ38ysgJz8zcwK6P8DWUu36a1Rk58AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1} {0: 'A', 1: 'B'}\n" - ] - } - ], - "source": [ - "sample_Total, training_input, test_input, class_labels = Breast_cancer(\n", - " training_size=20, test_size=10, n=2, PLOT_DATA=True\n", - ")\n", - "# n =2 is the dimension of each data point\n", - "\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "label_to_class = {label:class_name for class_name, label in class_to_label.items()}\n", - "print(class_to_label, label_to_class)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXtwnOWV5p+j1v0uWbIkdLFsYwN2AJtLYggLhICHZEhgIDCETSC7VJHsJrXJJMUMm6qtJLNJFclMkvljqWyFCYlTISFeGJIsRS4e4iwhIQYFML7LtpBl3WXJut+6W+/+0a2Uus/z2q2LW5a/86tySTo+X3+X7qNWP9/zniPOORiGETwylvsADMNYHqz4DSOgWPEbRkCx4jeMgGLFbxgBxYrfMAKKFb9hBBQrfsMIKIsqfhG5XUSOiMgxEXlsqQ7KMIxzjyzU4SciIQDNAG4D0A7gdQAfdc4dPMM2amci/PcPi4dCIZobDk+rWEaGzONxs2huqkSjYRrPzy9RsZmZCM0tKCpSsd7udpqbnZ1LjiFKc53T8ZmZGZqbkaGvb35+Mc1lRCLseeDPWSSir5nv+WXPme91y+M6xq4hAExPT6qY73qx4/XlsmuTm1tIc6NR/Rpxjj9uMuHwFKLRCH/xJ5GZ0iNy3g3gmHOuBQBE5BkAdwLwFj/D9yTk5OSrWFFRGc3t6TmR8uNmZeWoWFlZNc3NyEjtD6OBgW4av/baD6jYyMhpnnvTjSr2xD/9Pc2tqVmvYqOj/HEnJkZVbGpqnOayQt+69VYV8xXeqVP6l5Xvl0d/f6eKFRevormZmdkq5vslGono+MyM/gVYV3cJ3b795GEVm5jU1xAACgv163Fycozm9vWdVLHNm99Lc4eGTqlYOKx/KQH6l01bW+rlt5g/+2sBzD2j9njMMIwVwGLe+VNCRB4B8Mi53o9hGPNjMcXfAaB+zs918VgCzrnvAvguwD/zG4axPCym+F8HsEFE1iJW9PcDeOBMG4hkqM/ivs+f9fWXqVhZWRXNHR0dVLHMTC7iVVevU7HW1n009+qrb1exN974jYo1Nl5Ot8/L0yJec/PrNDc7T3+2ZvoEAKxbt0XF2GdKADhK9ldAhEgAuKh2g4qt3aifh0iYf95mAlZeHhe1mG7Q0LCJ5jIBbHp6guayz/eM8orVND4xMaJiTJwE/LoSIze3QMUa1nLdoaNNv3aZEAkARUXlCT93d7+T8jEtuPidcxER+QyAXwMIAXjKOXdgoY9nGEZ6WdRnfufciwBeXKJjMQwjjZjDzzACihW/YQQUK37DCCgLtvcuhFAoyxUWlibEVq9eQ3OPHfuzim3axB1RTEH3ufOY/fKOO/4rzW1peUvF1q/fqmK//vX36PaPfP4fVcx3vTdfr5Xu//mpz9Hc/n51RxXj41qlBoCKijoVGxrqpbns7gJT630W1vGxIf2YXhutVuuzs/NoLsNnd2XHxu4A+F537Nr6lHam4PvuXjELOdse4HZxdseDxaenJzEzE03J3mvv/IYRUKz4DSOgWPEbRkCx4jeMgHLOF/bMJRQKqWW5PssuE/cOHvwDzb300m0q5lume/z4myrms4q+/fbvVKyhYbOKZXr6AfzsR1oIvP7GD9Hcp7/xfRVjy3EBoLz8IhWrq9NWYgCor79UxTo6jtLc9vYjKrZt24dVLDdXL7cGgP5+vbS5pKSC5jJRq7e3jebW1m5UsYwQf9+KRrS4x57fy2/QFmkAaNnbomL9fV00t7q2XsV6OnkPhqamX6nYrds/TnNz8rTwGp7iFuPDB19L+Pno0Saax7B3fsMIKFb8hhFQrPgNI6BY8RtGQLHiN4yAklZ7r0iGS26yUVDAG0uMEavoxRdfRXMPH/4T2xfNZXbVyy67juaGw1MqxiyovgYd99z/GRUb7NPnBQDXfVgfw1c/y23HzBY6NNRHcxk+C2pyYwiAK+0+qyk7Bp9ld5jklpTyBhvMnutr2sHi7DVeWamVegDo6WlVsfnYe1mXXgCIkA7TlasbaO7IyEDKj5vc3HRgoAvh8JTZew3D8GPFbxgBxYrfMAKKFb9hBJRF2XtFpBXACIAogIhz7poz5WdkiOp46uuyy9bj+yy7fJwTX+/NRJqsLL7mvKhIT5BhYllyj4JZKuoqVWxilItHFXXaBusTQ9k0o/HxYZrLJsj4xNCCAn0eGSQ3nGKHXMA/WWeaiKlZWXoyD8B7Ffg66rLxZAwmKAPA9JS2Ajsy7gvgrwXftc0nz6VPtGTPmW8kXHKHaJGUtD4AS+Ptf59zTs8XMgzjvMb+7DeMgLLY4ncAfiMif46P5VKIyCMi0iQiTen0FBiGcWYW+2f/Dc65DhFZDWCXiBx2zr08N2HuuK5QKGTVbxjnCYt653fOdcS/9gJ4HrGx3YZhrAAW/M4vIgUAMpxzI/HvtwPQ7WoTtslQHWLZ7DyAzyhnjTgAbtn1dUYdGNCNGeoa9Iw6APjD759XsRtuvFvFXn3153T7zuN6Bn31On7HovOY7hrrU27ZDHbfR6p1665Use5u3bAC4NZWZuUNhfjLht1xYPP7AH6HxDdnjt2FCIVCNHdmRl8zppSXl9fQ7VnjD2a3BfjdIGZbBvg1r6lZT3NLic3Zp/b39SU2QPHZgBmL+bO/CsDz8RdoJoAfO+d0uxLDMM5LFjOoswWAflsxDGNFYLf6DCOgWPEbRkBJc/feLGXRbW3dR3PZCC1fl10mVPksu0zce3bnP9Pce//2URX7Pz/9JxW7++7P0+17O7WIt/PHfF8fe/iLKuazsH760W+o2KkObrLc88dfqtjGDdfS3No6fW22P3i7Pq4wt6X2tukxYPlFvNPviYMnVKzhMr6+nYmZvm62kTC3EydTcZEW6wCgvVl33w1P88fMLdCvMTfDhde2Q7oz8bYP6a7TANBxlIwMm+RCXmFJorC94ztfp3kMe+c3jIBixW8YAcWK3zACihW/YQQUK37DCChp7d6bk5Pv6uoSu8HW1elZcgAwONijYmx2HgBcccXNKsbm2QHAkSN7VIxZdgGu7N//wGMq9uIL/0q3Zx1i3//X99LcY/u1Zbe5OfW5a8kzEGdZv17PpGtrO0RzW9/Rd17+w436eHPzPNZpMquPWVUBruB3dvIZgvX1l6hYKIvfqIoStX9qSjcOufImPqvvnbe1Dbevm8/qq2nQdye62k7S3KYmfdfFN6uvoFhf3+kprvYf2Ptqws/NzU0YHx+27r2GYfix4jeMgGLFbxgBxYrfMALKsgt+vb3a9ggAt932CRULk5FHAF8rndw3YBZm72XCHsDFvWd+/LiK3fORL9DtR0cGVey3v/0RzX3okf+hYi889xTN/dv/rMeA9bVze++fXnlRxUpKdFdhAKir08La9ge3q9hS2HtbD7Sq2JpNa2gue4367K7RSGrde1fV6NFkANBOrLURj703J1+/xnz2XmYbfs8d7+G5R3Su195bltgvYccTj6O744QJfoZh+LHiN4yAYsVvGAHFit8wAspZBT8ReQrAHQB6nXPvisfKAfwUQCOAVgD3OedOn21nmZlZLrnpIROZAKCl5S29fYiP9gJpdOkbodXZeVzF7r7772juv//7D1Xstu0Pqdhzz36Tbn/HHZ9WscZNa2luXqGeY//DJ7gQeeqUFoR812b9+q0q1uFx0g2R5pMNDZv0vjL5WK3h4X4V8z0PbJwaa9oKAGVlVSrmG4vFHpcJxRs38sly7e1HVGxwUAuZAFCxqlbF+gd001aA95xgzw3Ax7H5GngmH+/ExCii0ciSCX4/AJDc0eExAC855zYAeCn+s2EYK4izFn98CEdy7+I7AeyIf78DwF1LfFyGYZxjFtrGq8o5N7vaoRuxNt6U+BivR2Lfm8RgGOcLi65GFxMNvMKBc+67zrlrnHPXsLHbhmEsDwutxh4RqQGA+FeuiBiGcd6y0D/7fwHgIQCPx7/yeVVJ5OeX4NprP5AQy8srorm33qXX2P/sR9+jue/bfo+KVdRxCysbocW67AJ8PT6z7DJVHwBeeOEJFXvf2H+kuX/8ox4Nduml3P559wOfUrHsPK7Aszshgz36HACgp11fm/sffYDsi1un+07quwUlFcU0d3RwTMXGhnQMAKobyafKDC5oR4n1ODKtlfKrN21UMQDY19KqYqc916uyXr/GBrr0HQ8A2P2T36nYvY/y3g7MIuyz976zL3HE2ZPf/ArNY5z1nV9EfgLgVQCXiEi7iDyMWNHfJiJHAdwa/9kwjBXEWd/5nXMf9fzX+5f4WAzDSCOmwBlGQLHiN4yAktZxXTMzEYyMJLqAm5tfp7lrL1+nYtff+CGaO9g3pGITo5M0t3pdtYr5Rmj9p//yJRX7/ne0oPLJv/sa3Z6Je7t3P01z77v/71Vs397f09zGy7VFeKCbz5B/9Ve/UzHfev6GjfpxK8u1PTdKLLQAMEyEQAnx95fBPi2i1V6s7bI+pie4ADZD1vMzB3tbPxfmhk4NqxgTDAHgdM9ZHe1/oeEyLR7nZnFLdkerbhg6Oa6bkAJadMzM9ljgCfbObxgBxYrfMAKKFb9hBBQrfsMIKFb8hhFQ0qr2FxQV4dqbbkyIZefdSnMvuVbbL5/+xvdp7l9/QluBK+oqaG7nMW3l/djDX6S5bIQW67LLGnEA3LLLVH0A2PnMN1Tsnns+T3NziKq+9l28SUjj5kYVG+7XijbArc9rKvR1zM3mVuKSPN2EoqKI27c31Opxav0jIzT34irWzIPbeyNRrfZPRXT33asaG+n2h2tqVKxrkNt7G8i16TzN7wB0tehRZlvW6HFfAHAFGQM2FeZ3HPa2JXa/zsxOvaTtnd8wAooVv2EEFCt+wwgoVvyGEVDSOq5LRFxGRigh5hurtXq1Ht00MTFKc6enJ1SsoKDEdwwqFolwMSU7Wwt5kYi2lbKOsQBQXa1FuOlpbjvetOk6FXvuuW/R3M2bb1CxiQkulg0Pa9vv9NQ4zc3K1s/FzTffrxM9Yltfr55NX1hYRnNZB+L8fP6c5eUVqlg0ykdozczoeJSIgI0b9Ng2AGg9qjsbj41xwY/ZpMfGtNUcAFpa9qrY9dfz1pcjI/o5m5rSr3EAmJxMrIn9+1/B2NigjesyDMOPFb9hBBQrfsMIKFb8hhFQUunh95SI9IrI/jmxL4tIh4i8Ff/3wXN7mIZhLDWpzOq7EcAogB/OmdX3ZQCjzjneBcNDTk6eq6lZnxBbt24Lzd2z5/+qWHm5toQCXO3Pz+ddY9vatGX3049qay0APP/0kyp2z4OPqNj/+jq37D7y376qYqwRB8Atu09+lV/eAwdeUTHfXZOtW7V9uq3tEM0dIHPmcnMK9L7IXQGA343JzdXbA3weXV+fvlsAAKWlq1UsFOI21pkZfeeF3aHxzcljM/WGh30zBHVjmIF+PqtvlNwxKC/XVmIAKC5epWLsvAD9ep6ZicI5tzRqv2dcl2EYK5zFfOb/jIi8Hf9YwG/mGoZx3rLQ4v8OgPUAtgDoAsBnVCM2q09EmkSkiZktDMNYHhZU/M65Hudc1MWsbU8CePcZcv8yqy8UCvnSDMNIMwtazy8iNXOm9P4NgP1nyp8lGo1idDRxvbNP5Bkf13bVujq+Nryvr03Fxsf5mnUmcJ7q4IJOUZH+NNPXrnMzQ7xjKhuh5euyy9bj+yy7TNwLh3l3166uFhUbGtJjtYDUpyiHw7xzru8YGOz5DWXwNwffdWCw55dZgfv7+Yi2wcEesn9uK2dMTPJcJlD6rN4DA3rt/4zHzuzra5AKZy3++LiumwFUiEg7gC8BuFlEtiA2nbcVwCcXfASGYSwLCx3XxSdmGoaxYjCHn2EEFCt+wwgoVvyGEVDS2r3XuahSTo96ZvVVVNSpWH39pTT3xIkDKjY5OUZz1627UsX2/PGXNJc12PjTKy+qmM8qyppesNl5gKfLLmnEAXDLLlP1AeDkSW3lzSFNSgCgce3lKtbQsFnFmJ0aAE6f1iq1z3bc2XlMxXzXcWxUW2OnPMfAGqsI9POQ72n2wu4W+BR1Fq+qaqS5TO1ftYrPJmxvP6JivjspGzZek/DzoUOv0jyGvfMbRkCx4jeMgGLFbxgBxYrfMAJKWgW/mZkZTCV1ji3wdGwdGupVsY4O3VkVgHpMwG9V7e7WwtjGDdfSXLbunXVsbWl5i24/2KOFKrY9wEdo+brssuPyWXaZuOcTy7o6j6tYiFiXZ2b4Aq3BQf2c5eRwcZF1uWVCl29/0SjvuMzWvTMRL5TJLdnsuHxiG+tVwHoH+B7D14GY2Zl9ucnC6Xws1vbObxgBxYrfMAKKFb9hBBQrfsMIKFb8hhFQ0qr2Z2SEVFfdi2r5zDTWZdenBhcVlatYQUEpzWXdWWvr+DG8/P92qthNN+sVzm++uYvvq113cm3YyLv3dh7Xub4uuazLru/uBrPsMlUfAIZH+lUseRYcAGRm6iYlALfWsrsFAO9cO0L2DwClpVUqxrr/AlwVZwp8VZWeBQlw6/LQEG/2ws6BWZwBPpuQzXIEgMrKBhXz3UXoTLoD5rsrwLB3fsMIKFb8hhFQrPgNI6CkMq6rXkR2i8hBETkgIp+Nx8tFZJeIHI1/td79hrGCSEXwiwD4gnPuDREpAvBnEdkF4BMAXnLOPS4ijwF4DMA/nOmB8vOL1Vr0tRsvo7l9z+uOvNu2fZjmHj+u7bUZHgGMCSLbH7yd5jJb6PYHt6vY3r2/pdvf/+gDKlZZzoXINRUVKtZ+mHc23vWbHTTOYOvxfSIcE/daWvaSTL6+PSNDX3MmdAFAcbE+X2YPBrjg5hvXxWD2YF/nXGatnZridmjWM2J8XNuDAaCWCNvNzU00t6xMC5y+ngLjScfrG+vFSGVcV5dz7o349yMADgGoBXAngNlX4Q4Ad6W8V8Mwlp15feYXkUYAWwHsAVA1p3d/NwD968owjPOWlItfRAoBPAfgc865hCVoLvb3MR33O3dc13xWHBmGcW5JqfhFJAuxwn/aOfdv8XCPiNTE/78GAP3ANndcl6+fm2EY6SeViT2C2JCOQ865b835r18AeAjA4/GvP09lh8kiWiTMHUlMuMjNTd3VFfasOWdCUSTMc3PzyHptkutzvGXn6V92UeKCA4DcbPIYHpGHOf98I7SYY823Hp+fBzsG+kceFUh9AhT7KzDTs8aenRtzE/pgx+UbAcaEwJkZ/hplfSR8Djt2bX3nwB43wzPKLHnEWVR4nwN6TCnkvBfAxwHsE5FZWf2LiBX9ThF5GMAJAPelvFfDMJadVMZ1vQLfvR3g/Ut7OIZhpAtz+BlGQLHiN4yAYsVvGAElrev5I5FpZffMzS2kueOki2p/P18r7etcSx93XHfJ7W3jttIBsj+WOzzM16H3ndTHNUzuAABASZ6+k9HXy+29ySPPAH/XVra+3GejZeozs+wy9dy3vU8uYnch5rMW3X8MOk6793rswawr8PQ0v7Y5Ofra+M5hZESPXvP1YIhGWbdifocmnLTO33ddGPbObxgBxYrfMAKKFb9hBBQrfsMIKMvewDMvjwt+Wdm5KlZSoteAA0A2GUnls2QygTG/iNuGS0tXp5RbWMjX6JdUFKuYhPjv24qiIvK4vD8KGxPlg62n8I3QYuv82Xp8/5rx1K3ADJ+9l1tuU7f3smNga/F9j+tbS8/FPZ6bT8bSDQx0kUz/a5eRlWQbng7zPgUMe+c3jIBixW8YAcWK3zACihW/YQQUK37DCChptveG0d+fOGrKZ0fk9k/eqGCY2HunPXZXpsyfOHiC5rJjaz3QSvK48jw6qBXlwb5Bmruh9iIV83W+ZaOqxsd5c4rOzmMqNkas0wAfP8W67PqsxOw588EU/LKyaprr3GkV89lo2XPGbLS+1x0bi+Wz4UYi+vXI7NA+8vL0HR6A27d9d02Sn58wOSYf9s5vGAHFit8wAooVv2EElMWM6/qyiHSIyFvxfx8894drGMZSsZhxXQDwbefcP6e6s1AohOLiVQmxhoZNNLe5+XUV6+3VI7wAoITYcLOyeEfd7u53VKzhMj0PHQD2Nf1Jxa669SoVG/oxn98+NqQFv9qLa2lu/4gW7JglFAD6+vQ6/+QurrOsX79Vxdrbj9DckRHdl4Ct/ffZcJkI58tl4p5vtj0TOLOJ/RvgQl6UiGDV1Wvp9qw3hE8gLSoqV7HhYf5aYKK0T8CurKyncUZfH6+JVEilgWcXgK749yMiMjuuyzCMFcxixnUBwGdE5G0Recqm9BrGymIx47q+A2A9gC2I/WXwTc92fxnXxe6LGoaxPCx4XJdzrsc5F3Uxh8uTAN7Ntp07rsv3+c8wjPSTitpPx3XNzumL8zcA9i/94RmGca5YzLiuj4rIFsR8h60APnm2BxLJUDPL5tOxtbZ2I413dBxVMZ/dtaBA23t9Vs/6+ktSyi0r49PJqxtTn1p+cZXO9TU6YU1GfLPnxka1ndg3q6+0VB/D0JBWr31zARnMxgtwyy5T9QE+u25qkQOf2V0fwDfbkNu32d0JX5fdqip9d2H45KGUH9fXUCT5mvmuN2Mx47peTHkvhmGcd5jDzzACihW/YQQUK37DCChpXc/vnFOdSX1rwOnoKE/nWyZg+TwFoZC2wYanPLlZ+vJMT6a+3hsZWiqZnuBiGRN0fGKob9QUY2oefRGY4Mb25etfwMRQn1jGzs1n2V2suMf3z6+BT7BbbC67jhkeSza7Nj7BL/ma+XotMOyd3zACihW/YQQUK37DCChW/IYRUKz4DSOgpF3tj0QSlUyf1ZSpxNGIL1fHnfPlatU0EuaqepTE2TH41O9oWOfOeM4hQpRj38w2dm18FmV2bPNR4OeD7xhSzZ3P9ovFe4dmXo+hX0u+c1jstfWh95f6NbR3fsMIKFb8hhFQrPgNI6BY8RtGQEmr4Ac4r8CXDMvzW4FTFzl8tk7GVIq+Ut/69si03pfvUKciRFz02EfZSCmfoCRkNfZ8RlVxMdUnLrI4z2WCG+uye67wWaTZuC3fa5aPAeNiKru2vus4n5FfyddsPrVg7/yGEVCs+A0joFjxG0ZASaWBZ66IvCYie+Pjur4Sj68VkT0ickxEfioifESOYRjnJakIflMAbnHOjcZbeL8iIr8E8HnExnU9IyL/G8DDiPXy95KdnYu6usSmmOUVuhklAKxevUbFLr9hC809ceKAis1nBn3FRatIJnDlTXp/pZV6hNbGjdfQ7a/epBuOtvXrkVgAcFVjo4o1bthAc0dGBlSsv7+D5uYX6OMNeVqoV1Xpa84aQvqahTIRbXJSjywDuDDlG6HFmm36hFsmwrHjGh8fpttnZeWoWAG5hr7HYCO8AGDDhqtVjD2PAL++vrX/tXWJr7H29maaxzjrO7+LMRr/MSv+zwG4BcCz8fgOAHelvFfDMJadVId2hOJtu3sB7AJwHMCgc272/lI7bH6fYawoUir++GSeLQDqEJvMc2mqO5g7rms+PcUNwzi3zEvtd84NAtgN4DoApSIy+2GqDgD90Dl3XJevR5thGOknFbW/UkRK49/nAbgNwCHEfgl8JJ72EICfn6uDNAxj6UlF7a8BsENEQoj9stjpnHtBRA4CeEZEvgrgTcTm+Z2R6elJtJ88nBDzKcdMvW7Z20Jze3pa9b6muBWYWYTbm9tpbt/JPhWrbNB3J9rbj9Dt97Xo4xo6xVXmwzX6LkTrUT2GDODnOzjYQ3OZqu67E8KuDXt+fB/fmALv6x3A7K5DQ/p6+45rPp1zmV2WqfoA737r6wTNrLy+a8tU+LD3OjKrN7dvDwx0J+WlbpFOZVzX2wC2kngLPJN5DcM4/zGHn2EEFCt+wwgoVvyGEVDSup5/ZmYGE5OjCTGfmMJEpf6+rpRznWcdObNUhqe5mNLXrfdXVq3tm4ODvXT70z2DKsbW+ANA16DOHRvTMQAYHj6lYhMToySTN5n0jXQaGtKPO0WEU19j0elp/bi+MVPMhusTy3yiYaqw9fg+yy57PfrW6DPbsE+YY89Z1NMnYD7j2MbHE69Zqv0yAHvnN4zAYsVvGAHFit8wAooVv2EEFCt+wwgoaVX7Q6EQCgvLEmK+xT65uQUqVl1bz3P369ypqXGaW1SkG3fkFvBjqGloULGcfG0LrVjFVzNX1leq2Ome0zS3oaJCxUpK9PYAUFZWTeMMprazawvwRiesGYfv2ubkkI68HvWbqeq+RhinT3ermM/ey86X3VnwNfNgyr5PfWfn5stl19bXzMN3fRmlpYl288FBbpFm2Du/YQQUK37DCChW/IYRUKz4DSOgpN3e6+vmmgwTPXo6+bp7tjbcN399mKwZdzPcCtzVdlLFVpFOv/0DnXT7gS7eqZfReVoLgT6760C/3l+ybXqWqqpGFWPXC+DCWrJ9FPCLeDzO7b1sjT2zwMYeN3XLKutfwEQ8n7jIrrnvfOdj701edw/4bdaZmal3wR8eTnyN+azXDHvnN4yAYsVvGAHFit8wAooVv2EElMXM6vuBiLwjIm/F//FZWoZhnJcsZlYfADzqnHv2DNsmEIlMo68vUUH3WU1DIT1PrqnpVzTXkWYPbEYdAHR36w7AbYfaaG5T0y9VrLRc23BZN10A2P2T36lYw2XcotzVotXglpa9NHeUNPnw2UpZ3Kcynzql76bU1up5gT41mtlV8/P588Bgd2IAoKpKz/Cbj+WW3d1gs/MA3mXXdxeCWXaZqg8Ap07pO0eNjZfTXFYTvqY3HR3NKeUxUune6wCwWX2GYaxgFjSrzzm3J/5fXxORt0Xk2yJCG6HPHde12HZMhmEsHQua1Sci7wLw3xGb2XctgHIA/+DZ9i/jupixwzCM5WGhs/pud851xcd3TwH4PmyAh2GsKM76mV9EKgGEnXODc2b1fV1EapxzXRJbQH0XgP1ne6zc3EJs3vzehFjD2kto7smksV4AcOv2j9PcN//8kor5upjW1KxXsW0f2kZzM0L6d+N77niPir3RpAYaAQDuffReFcvN0kImAGxZo3sHHHmNjwF7+eWdKuYbobWK9BrwWVCrq7Ww1tzcpGK+brbMUj0wwDsu5+UVkePiYtXwyUMqlpERorkMZvn1raVnI7R8XXZpJ2iPmMrEvdbWfTQ3N7dQxXztRB5BAAAFAUlEQVR/Nc+nW28yi5nV99v4LwYB8BaATy34KAzDSDuLmdV3yzk5IsMw0oIpcIYRUKz4DSOgWPEbRkBJazOPaDSi5sF1tHH1mym/OXnUR0RVV1/TkORupwDQcbSD5hYUa5tl+xFtgc3JyafbsyYhHa1c/b6CdAr2KdLFxbqhiM9W2t6u7xhMTIzQ3MpKfQxlZVUq5usuy5pu+JpLsNmClZXc+sy7986jaQVRyn3XYD4dedl18FmfmWWXqfoAMOlpzMKoqEi8ZoOD/HXAsHd+wwgoVvyGEVCs+A0joFjxG0ZASavg59wMwuFE+6TPlsqEl/AUt3+y9do+qyiLT0/ybrbTUzrOcn37YrmT49z+ORXWjzE1NUFz2erIGY8Axuym/hFarAuy7r7rs9bOp8vufFaF8xFcvCtwqvjPIXUhcT6wdfZLsdDNuWjSz6lva+/8hhFQrPgNI6BY8RtGQLHiN4yAYsVvGAElrWo/oJVq38w0proePvgazWWWStYsAgD6+nSn3sIS3kH4D7t0996/uk836GAWWgB4Z987KlZZX0lz97bp4/LZPNvaDqqYT/3esPEaFevsPEZzOzuOqtg4scGGPEp5mNwtyPLYXYuLdRdk9twA3D6dnZ1Lc1njjihR2mvrNtLtmU2azSsEuFU8eXbeLMlddgF/I45kyy6gVf1Z+sncxlSxd37DCChW/IYRUKz4DSOgWPEbRkARJpCcs52J9AE4Ef+xAgCfg7SysfNaeVxI57bGOcdV5STSWvwJOxZpcs5pKXqFY+e18riQz+1M2J/9hhFQrPgNI6AsZ/F/dxn3fS6x81p5XMjn5mXZPvMbhrG82J/9hhFQ0l78InK7iBwRkWMi8li697+UiMhTItIrIvvnxMpFZJeIHI1/LVvOY1wIIlIvIrtF5KCIHBCRz8bjK/rcRCRXRF4Tkb3x8/pKPL5WRPbEX5M/FRG+IOECI63FHx/2+QSADwDYBOCjIrIpncewxPwAwO1JsccAvOSc2wDgpfjPK40IgC845zYB2Abg0/HnaaWf2xSAW5xzVwLYAuB2EdkG4OsAvu2cuxjAaQAPL+Mxpo10v/O/G8Ax51yLc24awDMA7kzzMSwZzrmXASRP1rgTwI749zsQG1++onDOdTnn3oh/PwLgEIBarPBzczFml0pmxf85ALcAeDYeX3HntVDSXfy1AE7O+bk9HruQqHLOzY7l6QagR96sIESkEbEpzXtwAZybiIRE5C0AvQB2ATgOYNA5N7uG/EJ8TVJM8DuHuNitlBV7O0VECgE8B+Bzzrnhuf+3Us/NORd1zm0BUIfYX6KXLvMhLRvpLv4OAHM7FdTFYxcSPSJSAwDxr73LfDwLQkSyECv8p51z/xYPXxDnBgDOuUEAuwFcB6BURGYb21yIr0lKuov/dQAb4upqNoD7AfwizcdwrvkFgIfi3z8E4OfLeCwLQmJtgb4H4JBz7ltz/mtFn5uIVIpIafz7PAC3IaZn7AbwkXjaijuvhZJ2k4+IfBDAvwAIAXjKOfe1tB7AEiIiPwFwM2KrwnoAfAnAzwDsBNCA2ArG+5xzfNzueYqI3ADg9wD2AZjtu/ZFxD73r9hzE5ErEBP0Qoi98e10zv2jiKxDTHwuB/AmgI855/h0lQsIc/gZRkAxwc8wAooVv2EEFCt+wwgoVvyGEVCs+A0joFjxG0ZAseI3jIBixW8YAeX/A7WRabg2LoKMAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 0.85\n", - "ground truth: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n", - "predicted: ['A', 'A', 'A', 'A', 'B', 'A', 'B', 'B', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], - "source": [ - "algo_input = ClassificationInput(training_input, test_input, datapoints[0])\n", - "result = run_algorithm(params, algo_input)\n", - "# print(result)\n", - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()\n", - "\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "\n", - "print(\"ground truth: {}\".format(map_label_to_class_name(datapoints[1], label_to_class)))\n", - "print(\"predicted: {}\".format(result['predicted_classes']))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/artificial_intelligence/svm_classical_multiclass.ipynb b/community/artificial_intelligence/svm_classical_multiclass.ipynb deleted file mode 100644 index 1a5cb2b7a..000000000 --- a/community/artificial_intelligence/svm_classical_multiclass.ipynb +++ /dev/null @@ -1,154 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*SVM with a classical RBF kernel: multiclass classifier extension*_\n", - "\n", - "A multiclass extension works in conjunction with an underlying binary (two class) classifier to provide multiclass classification.\n", - "\n", - "Currently three different multiclass extensions are supported:\n", - "\n", - "* OneAgainstRest\n", - "* AllPairs\n", - "* ErrorCorrectingCode\n", - "\n", - "These use different techniques to group the data with binary classification to achieve the final multiclass classification." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import *\n", - "from qiskit.aqua.utils import split_dataset_to_data_and_labels\n", - "from qiskit.aqua.input import ClassificationInput\n", - "from qiskit.aqua import run_algorithm\n", - "import numpy as np" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we choose the `Wine` dataset which has 3 classes." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEICAYAAABbOlNNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3X24XGV57/Hvz5CQGNskQA6EhABRKiJS4GypBzwVeQnUVEIVMVprVGhqqyVHW2o4nOouisbaloZTrypFBGsrxFgxnOiJQABfUTYQgWADIehJwgYiENSQQAj3+WM9E9bszOyZvWftef19rmuumXnWWrPuWTtZ9zwv61mKCMzMzEpe0uoAzMysvTgxmJlZGScGMzMr48RgZmZlnBjMzKyME4OZmZVxYrAxISkkvSK9/pykv251TJVIOlnS5ibv87B0fPYp6PN+LWlOEZ9VYz/9kr481vux1nNi6FKSfiZpRzppPCbpakkvyy0/Q9J3JP1K0lZJt0k6a8hnnJxOYB9pJJaIeH9EfLyRz+gVki6S9K0hZQ9WKVsAEBEvi4iNzYyzlvTv7RPdsp9e48TQ3d4cES8Djgf6gP8FIOkc4KvAl4BZwIHAR4E3D9l+IfAk8O5mBdyIon6Bt9h3gBMljQOQNAMYDxw3pOwVaV2zwjkx9ICI2AJ8CzhakoB/AD4eEVdGxNMR8UJE3BYRf1zaRtJk4BzgA8ARkvqG24ekCyUNSnpE0vuGLNvzq67UdCPpryQ9nrY5W9KbJD0g6UlJ/7Pe75ZqRh+RdA+wXdI+kg6W9LVUE3pY0gW59SeleJ6SdD/w2iGft6cJbGjs6f18SWsl/VLSQ5LOTOVTJH0hfZ8tkj6RO5GPk/R3kn4haSMwb5ivdAdZIjg2vf/vwC3A+iFlD0XEI0NjTvF+VtKqVBv8kaSX5+I/UtKN6Tivl3TuMMf28FST/JWkG4EDhiz/qqRHJT2dap+vTuWLgD8E/irVWG9I5UvSMfuVpPsl/UHus16R9vV0Ok7X1Yq52n6sABHhRxc+gJ8Bp6XXhwDrgI8DRwIBHF5j+z8CBoFxwA3A/x5m3TOBx4CjgcnAv6d9vCItvxr4RHp9MvA8WQ1lPPDHwNa0zW8ArwZ21IpvyPdcm77jJLIfO3emz58AzAE2Amek9ZcC3wX2S9vcB2zOfd6euCvEfgLwNHB62s9M4Mi07OvA59P3/y/Aj4E/ScveD/xn2t9+ZCf6APap8p1uAT6UXv8T8D7g0iFlV1WKOcX7RIp1H+DfgGvTssnAJuC9adlxwC+Ao6rE8UOyHxH7Ar8L/Ar4cm75+9LfbF/gH4G1lY5bruxtwMHp2L0d2A7MSMu+Alyclk0EXl9PzJX240fjD9cYutv1krYB3wNuAz4J7J+WDdbYdiFwXUTsJjtpL5A0vsq65wJfjIj7ImI70F/js3cBl0bELuBasl+iyyLiVxGxDrgf+O0an5F3eURsiogdZDWA6RFxSUQ8F1nb+78AC3KxXhoRT0bEJuDyEeznPLIT8o2R1bK2RMR/SjoQeBPwPyJie0Q8Dlw2ZJ//mGJ8EvhUjf3cRnYihqx28N30yJfdNsz2X4+IH0fE82SJoVTT+H3gZxHxxYh4PiLuBr5GdsIuI2k22bH864h4NiK+Q/YDYY+IuCr9zZ4l+5v/tqQp1YKKiK9GxCPp2F0HPEiWwCD7N3EocHBE7IyI7400ZiuOE0N3OzsipkbEoRHxZ+nE+URaNqPaRpIOAd5IdlIB+AbZr7hqTSAHk/2qK/l5jbieSAkHstoBZDUOcmUvo375fR8KHCxpW+kB/E+yfpTRxJp3CPBQhfJDyWo/g7l9fp6s5jCafX4HeL2k/ciS3IPAD8j6HvYjq5kN17/waO71M7x4LA8FfmfIsflD4KAKn3Ew8FRK9HvFnZrHlqamoV+S1dxgSHNTnqR3p2a40r6Pzq3/V4CAH0tal2uOHEnMVpBu6KyzkVlPdpJ6K/B3Vdb5I7IfDTdkXRJAlhgWAtdXWH+Q7KRZMruQSOuXnyJ4E/BwRBxRZd1SrOvS+6GxPgO8NPf+IKA0nHUT8HL2tgl4Fjgg/Uqvts+SWsfnh8AUsma27wNExC8lPZLKHomIh2t8RiWbgNsi4vQ61h0EpkmanEsOs3nxWL8TmA+cRpYUpgBPkZ3cofxvgqRDyWpupwI/jIjdktaW1o+IR9N3Q9LrgZskfaeOmD099BhwjaHHREQAHwb+WtJ7Jf2mpJdIer2kK9JqC4G/IWuCKD3eCrxJ0v4VPnY58B5JR0l6KfCxsf8mVf0Y+FXqkJ6UftkeLanUybwcuEjSNEmzgD8fsv1a4J1puzOBN+SWfQF4r6RT0zGbKenIiBgEvg38fe54vlxSadvlwAWSZkmaBiwZ7gukmt0A2d/pu7lF30tlox2N9H+A35L0R5LGp8drJb2qQgw/TzH8jaQJ6WSdH7X2G2TJ8AmyRPrJIR/xGFn/TslkspP4VgBJ7yWrMZDevy39PSBLMAG8UEfMQ/djBXBi6EERsYKs8+99wCNk/7k+AXxD0uvIqu+fjYhHc4+VwAbgHRU+71tknY9r0jpriopV0h9KWld7zT2x7CZrlz4WeJiso/JKsl+0kCW8n6dl3wb+dchHLCY7AZaaLPbUkCLix2SdoJeRdULfRnasIBvSO4Gsf+QpYAUvNtf9C7Aa+AlwF/AfdXyV28iaor6XK/tuKhtVYoiIXwFzyfo+HiFrcvo0WedxJe8EfodsyPLHyIY3l3yJ7DhuIfvOtw/Z9gvAUan55/qIuB/4e7La0GPAa0i1oeS1wI8k/RpYCSyOiI11xFy2nxEcDhuGsh+QZmZmGdcYzMysjBODmZmVcWIwM7MyTgxmZlamI69jOOCAA+Kwww5rdRhmZh3lzjvv/EVETK+1XkcmhsMOO4yBgYFWh2Fm1lEk1XWlv5uSzMysjBODmZmVcWIwM7MyTgxmZlbGicHMzMo4MZiZWZlCEoOkq5Tdv/e+Kssl6XJJGyTdI+n43LKFkh5Mj4VFxGM97p7lcNnR0D81e75neasjMusoRdUYria77281vwcckR6LgH8GSHej+hjZ1L4nAB9L89Wbjc49y+GGC+DpTUBkzzdc4ORgNgKFJIZ0P9gnh1llPvClyNwOTJU0AzgDuDHdf/cp4EaGTzBmw7v5Eti1o7xs146s3Mzq0qw+hpmU3/N2cyqrVr4XSYskDUga2Lp165gFah3u6c0jKzezvXRM53NEXBERfRHRN316zak+rFdNmTWycjPbS7MSwxbKb4Y+K5VVKzcbnVM/CuMnlZeNn5SVm1ldmpUYVgLvTqOTXgc8nW6gvhqYm27MPo3s3q6rmxSTdaNjzoU3Xw5TDgGUPb/58qzczOpSyOyqkr4CnAwcIGkz2Uij8QAR8Tngm8CbyG4U/wzZDdWJiCclfRy4I33UJRExXCe2WW3HnOtEYNaAQhJDRLyjxvIAPlBl2VXAVUXEYWZmjeuYzmczM2sOJwYzMyvjxGBmZmWcGMzMrIwTg5mZlXFiMDOzMk4MZmZWxonBzMzKODGYmVkZJwYzMyvjxGBmZmWcGMzMrIwTg5mZlXFiMDOzMk4MZmZWppDEIOlMSeslbZC0pMLyyyStTY8HJG3LLdudW7ayiHjMzGz0Gr5Rj6RxwGeB04HNwB2SVkbE/aV1IuJDufX/HDgu9xE7IuLYRuMwM7NiFFFjOAHYEBEbI+I54Fpg/jDrvwP4SgH7NTOzMVBEYpgJbMq935zK9iLpUOBwYE2ueKKkAUm3Szq7gHjMzKwBhdzzeQQWACsiYneu7NCI2CJpDrBG0r0R8dDQDSUtAhYBzJ49uznRmpn1oCJqDFuAQ3LvZ6WyShYwpBkpIrak543ArZT3P+TXuyIi+iKib/r06Y3GbGZmVRSRGO4AjpB0uKQJZCf/vUYXSToSmAb8MFc2TdK+6fUBwEnA/UO3NTOz5mm4KSkinpf0QWA1MA64KiLWSboEGIiIUpJYAFwbEZHb/FXA5yW9QJakluZHM5mZWfOp/DzdGfr6+mJgYKDVYZiZdRRJd0ZEX631fOWztcY9y+Gyo6F/avZ8z/JWR2RmSbNHJZllSeCGC2DXjuz905uy9wDHnNu6uMwMcI3BWuHmS15MCiW7dmTlZtZyTgzWfE9vHlm5mTWVE4M135RZIys3s6ZyYrDmO/WjMH5Sedn4SVm5mbWcE4M13zHnwpsvhymHAMqe33x593Y8ewSWdRiPSrLWOObc7k0EeR6BZR3INQazseQRWNaBnBjMxpJHYFkHcmIwG0ujHYHlfglrIScGs7FUaQQWwHPbq5/sS/0ST28C4sV+CScHaxInBrOiVPqVXxqBNWm/8nV3PFn9ZO9+CWsxJwazIgz3K/+Yc2HC5L23qXayd7+EtZgTg7WvTmpnr/UrfyQne18Zbi3mxGDtqZ3a2etJULVO/CM52fvKcGuxQhKDpDMlrZe0QdKSCsvfI2mrpLXpcX5u2UJJD6bHwiLisS7QLu3s9SaoWif+kZzse+3KcGs7DV/5LGkc8FngdGAzcIeklRVu0XldRHxwyLb7AR8D+oAA7kzbPtVoXNbh2qWdfbgElT9Rn/rR8iucofzEX1r35kuy7zBlVras2sm+V64Mt7ZUxJQYJwAbImIjgKRrgflAPfduPgO4MSKeTNveCJwJfKWAuLrXPcuHP8HUWt4JpsxKv9IrlDdTvQmqnhO/T/bWIYpIDDOB/P/gzcDvVFjvrZJ+F3gA+FBEbKqy7cxKO5G0CFgEMHv27ALC7lC15t7plrl5av0Cb5ZaCaoXkrT1nGZ1Pt8AHBYRxwA3AteM9AMi4oqI6IuIvunTpxceYMeo1fbeLm3zjWqXdvbh+gZq9T+0Uwe62QgUUWPYAhySez8rle0REU/k3l4J/G1u25OHbHtrATF1r1pNG+3SNl+Edmh6Ga6J6LKjh+9/qLd/wqzNFJEY7gCOkHQ42Yl+AfDO/AqSZkTEYHp7FvDT9Ho18ElJ09L7ucBFBcTUvWo1bbRL23w3qZageilJW09puCkpIp4HPkh2kv8psDwi1km6RNJZabULJK2T9BPgAuA9adsngY+TJZc7gEtKHdFWRa1hjx4D3zy1hqj6QjXrUIqIVscwYn19fTEwMNDqMFrHHZ7tYWhHP2RJuNQXUmu5WZNJujMi+mqu58Rg1gAnaesgTgxmZlam3sTguZLMzKyME4OZmZVxYjAzszJODFZbJ90XwcwaVsQFbtbNumXuJTOrm2sMNrxumXvJzOrmxGDDG8tpHdxEZdaWnBh6WT0n5rGa1sEzj5q1LSeGXlXviXms5l5yE5VZ23Ji6FX1npjH6r4InnnUrG15VFKvGsmJeSzui+Dpwc3almsMvarVU0J7enCztuXE0KtafWJul1t3mtleCmlKknQmsAwYB1wZEUuHLP8wcD7wPLAVeF9E/Dwt2w3cm1b9fxFxFjb2hrtlZTNjcCIwazsNJwZJ44DPAqcDm4E7JK2MiPtzq90N9EXEM5L+lOyez29Py3ZExLGNxmGj4BOzmVVQRFPSCcCGiNgYEc8B1wLz8ytExC0R8Ux6ezvgHkYzszZVRGKYCeSHl2xOZdWcB3wr936ipAFJt0s6u9pGkhal9Qa2bt3aWMRmZlZVU4erSnoX0Ae8IVd8aERskTQHWCPp3oh4aOi2EXEFcAVkd3BrSsBmZj2oiBrDFuCQ3PtZqayMpNOAi4GzIuLZUnlEbEnPG4FbgeMKiMnMzEapiMRwB3CEpMMlTQAWACvzK0g6Dvg8WVJ4PFc+TdK+6fUBwElAvtPaOpUnyDPrWA03JUXE85I+CKwmG656VUSsk3QJMBARK4HPAC8DvioJXhyW+irg85JeIEtSS4eMZrJONNp7ONyzvLXDZ80MAEV0XnN9X19fDAwMtDoMq+ayo6tMd3EIfOi+ytsMTSaQXXDni97MCiPpzojoq7Wer3y24o1mgjzPtmrWNpwYrHijmYfJs62atQ0nBiveaOZhavWkfma2hxODFW80E+S1elI/M9vD92OwsTHSeZjaYVK/TudRXVYQJwZrH57Ub/RGO0TYrAI3JZl1A4/qsgI5MZh1A4/qsgI5MZh1gw4e1bVq4yrmrpjLMdccw9wVc1m1cVWrQ+p57mMwrr97C59ZvZ5Htu3g4KmTuPCMV3L2ccPNnG6jNlYdxKd+tPKV420+qmvVxlX0/6Cfnbt3AjC4fZD+H/QDMG/OvBZG1ttcY+hx19+9hYv+4162bNtBAFu27eCi/7iX6+/ea4Jca1Spg/jpTUC82EFcxASDHXoP7WV3LduTFEp27t7JsruWtSgiA9cYet5nVq9nx67dZWU7du3mM6vXu9ZQtOE6iIs4gXfgqK5Htz86onJrDtcYetwj23aMqNwa4A7ivRw0+aARlVtzODH0uIOnThpRuTWggzuIx8ri4xczcdzEsrKJ4yay+PjFLYrIwImhbVx/9xZOWrqGw5es4qSla5rWxn/hGa9k0vhxZWWTxo/jwjNeOarPa9X36Aie9mMv8+bMo//EfmZMnoEQMybPoP/Efnc8t1gh92OQdCawjOxGPVdGxNIhy/cFvgT8V+AJ4O0R8bO07CLgPGA3cEFErK61v267H0OpAzjf1j9p/Dg+9ZbXNKWdv6hRSa3+Hh3B01ZYC9V7P4aGE4OkccADwOnAZrJbfb4jfyc2SX8GHBMR75e0APiDiHi7pKOArwAnAAcDNwG/FRG7h+4nr9sSw0lL17ClQpv+zKmT+P6SU1oQ0eh0y/cw61bNvFHPCcCGiNgYEc8B1wLzh6wzH7gmvV4BnKrsHp/zgWsj4tmIeBjYkD6vp3RLB3C3fA+zXldEYpgJ5O/juDmVVVwnIp4Hngb2r3NbACQtkjQgaWDr1q0FhN0+uqUDuFu+h1mv65jO54i4IiL6IqJv+vTprQ6nUEV3ALdKt3wPs15XxAVuW4BDcu9npbJK62yWtA8whawTup5tu16pY7bTp6Wo9j0g63/o5O9m1kuK6Hzeh6zz+VSyk/odwDsjYl1unQ8Ar8l1Pr8lIs6V9Grg33mx8/lm4Ihe63weqU6a28gjlczaR9M6n1OfwQeB1cBPgeURsU7SJZLOSqt9Adhf0gbgw8CStO06YDlwP/B/gQ/USgo94Z7lcNnR0D81e87NpdNpcxsNN+WGmbWnQuZKiohvAt8cUvbR3OudwNuqbHspcGkRcXSFGnfi6rS5jYoaqdRJtSSzTtcxnc89o8aduDptSGgRI5U6rZZk1umcGNpNjYnWOm1IaBEjldwcZdZcTgztpsZEa502JPTs42byqbe8hplTJyGyq6BH2vHcabUks07n+zG0mxp34urEoa1nHzezofgOnjqp4lQb7VpLMut0TgztpjSh2jATrTV6ou00F57xyopDXtu1lmQjs2rjKpbdtYxHtz/KQZMPYvHxiz27aos5MbSjDrwT11jqxFqS1aeZ93x2AqpfIdNuN1uvX+Bm1i3mrpjL4PbBvcpnTJ7Bt8/5dmH7GZqAILshUK/d+6GZs6taB/ONdayVmnXP52V3LStLCgA7d+9k2V3LCt1Pt3Bi6GG+PsBarVn3fG5WAuoWTgw9zNcHWKs1657PzUpA3cKJoYf5+gBrtWbd87lZCahbeFTSGGjmvD6N7GvKpPFs27Frr3JfH2DNNG/OvEISwXCjjkrPHpVUHyeGgg2dZrrUbg8Unhwa2df1d29h+3PP71U+/iXy9QHWceoZ9lpUAuoFbkoqWDPb7RvZ12dWr2fX7r2HKr9s4j6+PsA6jkcdFcs1hoKNtN2+kaagRvoIqq2z7Zm9m5bMWqmeC9O6edRRKy7Mc42hYCOZ/bTR4aKNzLTaabO0Wm8qNRENbh8kiD1NRKs2ripbr1tHHdX7/YvWUGKQtJ+kGyU9mJ6nVVjnWEk/lLRO0j2S3p5bdrWkhyWtTY9jG4mnHYxk9tNqTUF/sfwndSWHRmZa7bRZWq031dtE1K2jjlrVRNZoU9IS4OaIWCppSXr/kSHrPAO8OyIelHQwcKek1RGxLS2/MCJWNBhH2xjJvD7VmnN2R9TVidzIHEKef8g6Qb1NRN066qhVTWSNJob5wMnp9TXArQxJDBHxQO71I5IeB6YD2+hS9c5+Wm06aaj/dp2NzLTaa7O0Wuc5aPJBFedSqtRE1I2jjkby/YvUaB/DgRFRivpR4MDhVpZ0AjABeChXfGlqYrpM0r7DbLtI0oCkga1btzYYdnuo1JyT5wvNrNd1axNRvVr1/WvWGCTdBFRKTxfn30RESKo6VaukGcC/Agsj4oVUfBFZQpkAXEFW27ik0vYRcUVah76+vs6bEraC0q/1v1j+E3ZXmOXWHcHW67q1iaherfr+DU27LWk9cHJEDKYT/60RsVfvpaTfJGtm+mS1/gRJJwN/GRG/X2u/RUy73cyrk+uJpdKNaEZ6C0wzs+E0a9rtlcDC9Hoh8I0KgUwAvg58aWhSSMkESQLOBu5rMJ66tNusokXcF9nMrCiN1hj2B5YDs4GfA+dGxJOS+oD3R8T5kt4FfBFYl9v0PRGxVtIaso5oAWvTNr+utd9GawwnLV1TsdN35tRJfH/JKaP+XDOzdlZvjaGhUUkR8QRwaoXyAeD89PrLwJerbN+Ss3ArZhVtp6YrM7Ph9OSVz82+6rfdmq7MWmHVxlXMXTGXY645hrkr5o751bs2ej2ZGJp91a9viGO9rlVTO9jo9GRiaHZnr2+IY73Os592lp6dXbWZV/1Wu8LZ1ylYr+jm2U+7UU/WGJrNE9ZZr+vW2U+7lRNDE/g6Bet1vT61Rafp2aakZvOEddbLen1qi07jxGBmTdGNs592KzclmZlZmZ6rMXT7Fcjd/v3MbOz1VGIYOotp6QpkGP5OaZ1iuO8HvlubmdWnpxLDcFcgd8NJstr3+5sb1rFz1wtdmxDNSlZtXOUO7gL0VB9Dt1+BXO17PPXMLk/JYV3P024Up6cSQ7Mnz8u7/u4tnLR0DYcvWcVJS9eMyQR6I/0e3ZIQzcDTbhSppxJDq65AbtbsqtW+39RJ4yuu7yk5rJt42o3iNJQYJO0n6UZJD6bnaVXW2y1pbXqszJUfLulHkjZIui7d7W3MtOoK5GbNrlrt+/Wf9eqWJcSxriWZlXjajeI02vm8BLg5IpZKWpLef6TCejsi4tgK5Z8GLouIayV9DjgP+OcGYxpWK65AbmbfxnDfr5mjkrp9BJi1n8XHL6b/B/1lzUmedmN0Gk0M84GT0+trgFupnBj2ku7zfArwztz2/YxxYmiFdphdtdkJsdtHgFlzjGSUkafdKE6jieHAiBhMrx8FDqyy3kRJA8DzwNKIuB7YH9gWEc+ndTYDVc8YkhYBiwBmz57dYNjNdeEZryz79QzdP7tqt48As7FXGmVUqgGURhkBwyYHJ4LG1exjkHSTpPsqPObn14uIAKLKxxyabkD9TuAfJb18pIFGxBUR0RcRfdOnTx/p5i3Vi7OrtnIEmHWHdh5l1O23Ka1ZY4iI06otk/SYpBkRMShpBvB4lc/Ykp43SroVOA74GjBV0j6p1jAL6NreyV6bXbUXa0lWrHYdZTSamkynaXS46kpgYXq9EPjG0BUkTZO0b3p9AHAScH+qYdwCnDPc9taZerGWZMVq11FG7VyTKUqjfQxLgeWSzgN+DpwLIKkPeH9EnA+8Cvi8pBfIEtHSiLg/bf8R4FpJnwDuBr7QYDxN4Ynq6tNrtSQr1khGGTVzKox2rckUqaHEEBFPAKdWKB8Azk+vfwC8psr2G4ETGomh2TwM06w56h1l1OymnYMmH8Tg9sGK5d1CWYtOZ+nr64uBgYGW7PukpWsqDj2dOXUS319ySgsiMuttc1fMrXiinjF5Bt8+59uF729oIoKsJtN/Yn/b9zFIujMNBBpWT82uWgQPwzSrT7Oad6o14VRKFkXoheslnBhGqB0uVjNrd81s3qnWtFOKYyxO2N1+vURPTaJXhFZNxGfWSZo5cme4KS+6aaRQM7nGMEKlDmaPSjKrbixH7lRqohppHDY8J4ZR8DBMs+GN1cidak1UU/edyrZntxWyP98Fzk1JZjYGFh+/mInjJpaVFTHTabUmqogoZH++C1zGicHMCjdvzjz6T+xnxuQZCDFj8oyKwzlHOudQtaahXz73y7r2V0svXNVcDzclmdmYqDVyZzQjl4ZroipipFAvXNVcD9cYzKypSrWEJd9dMuJf52PVRFXSrvMzNZsTg5k1Tb4Nv5rhfp3X20Q1WmOdeDqFm5LMelizR+BUasMfqtav87G8uKwXrmquhxODWY9qxX0FarXVt8Ov826/qrkebkoy61GtGIEzXG2g6GYhGz0nBrMe1YoROJXa8AGm7ju1J5ts2lVDiUHSfpJulPRgep5WYZ03Slqbe+yUdHZadrWkh3PLjm0kHjOrXytG4JQ6j6dMmFJWvu3ZbT15IVm7arTGsAS4OSKOAG5O78tExC0RcWxEHAucAjwD5CdJv7C0PCLWNhiPmdWpVSNw5s2Zx0vHv3Sv8l68kKxdNdr5PB84Ob2+BriV7Had1ZwDfCsinmlwv2bWoFaOwPGFZO2t0cRwYESUBiQ/ChxYY/0FwD8MKbtU0kdJNY6IeLbShpIWAYsAZs+ePfqIzWyPVo3A6YXbY3aymk1Jkm6SdF+Fx/z8epHdI7TqfUIlzSC79/PqXPFFwJHAa4H9GKa2ERFXRERfRPRNnz69Vthm1sZ8IVl7q1ljiIjTqi2T9JikGRExmE78jw/zUecCX4+IXbnPLv1keFbSF4G/rDNuM+tgvpCsvTXalLQSWAgsTc/fGGbdd5DVEPbIJRUBZwP3NRiPmXUIX0jWvhodlbQUOF3Sg8Bp6T2S+iRdWVpJ0mHAIcBtQ7b/N0n3AvcCBwCfaDAeMzNrUEM1hoh4Aji1QvkAcH7u/c+AvW55FhGnNLJ/MzMrnq98NjOzMk4MZmZWxonBzMzKODGYmVkZJwYzMyvjxGBmZmWcGMzMrIwTg5mZlXFiMDOzMk4MZmZWxonBzMzKODGYmVkZJwYzMyvjxGBmZmWcGMzMrExDiUHS2yStk/SCpL5h1jtT0npJGyQtyZUfLulHqfw6SRMaicfMzBoZ9NI0AAAHbElEQVTXaI3hPuAtwHeqrSBpHPBZ4PeAo4B3SDoqLf40cFlEvAJ4CjivwXjMutKqjauYu2Iux1xzDHNXzGXVxlWtDsm6WEOJISJ+GhHra6x2ArAhIjZGxHPAtcD8dJ/nU4AVab1ryO77bGY5qzauov8H/QxuHyQIBrcP0v+DficHGzPN6GOYCWzKvd+cyvYHtkXE80PKzSxn2V3L2Ll7Z1nZzt07WXbXshZFZN2u5j2fJd0EHFRh0cUR8Y3iQ6oaxyJgEcDs2bObtVuzlnt0+6MjKjdrVM3EEBGnNbiPLcAhufezUtkTwFRJ+6RaQ6m8WhxXAFcA9PX1RYMxmXWMgyYfxOD2wYrlZmOhGU1JdwBHpBFIE4AFwMqICOAW4Jy03kKgaTUQs06x+PjFTBw3saxs4riJLD5+cYsism7X6HDVP5C0GfhvwCpJq1P5wZK+CZBqAx8EVgM/BZZHxLr0ER8BPixpA1mfwxcaicesG82bM4/+E/uZMXkGQsyYPIP+E/uZN2deq0OzLqXsh3tn6evri4GBgVaHYWbWUSTdGRFVrzkr8ZXPZmZWxonBzMzKODGYmVkZJwYzMyvjxGBmZmWcGMzMrIwTg5mZlenI6xgkbQV+3qTdHQD8okn7Gq1OiBE6I85OiBE6I85OiBF6K85DI2J6rZU6MjE0k6SBei4IaaVOiBE6I85OiBE6I85OiBEcZyVuSjIzszJODGZmVsaJobYrWh1AHTohRuiMODshRuiMODshRnCce3Efg5mZlXGNwczMyjgxmJlZmZ5PDJL2k3SjpAfT87QK67xR0trcY6eks9OyqyU9nFt2bKviTOvtzsWyMld+uKQfSdog6bp0N72WxCnpWEk/lLRO0j2S3p5bNmbHU9KZktanY7CkwvJ907HZkI7VYbllF6Xy9ZLOKCqmUcT4YUn3p+N2s6RDc8sq/u1bFOd7JG3NxXN+btnC9O/jQUkLWxznZbkYH5C0LbesKcdT0lWSHpd0X5XlknR5+g73SDo+t2xsjmVE9PQD+FtgSXq9BPh0jfX3A54EXpreXw2c0y5xAr+uUr4cWJBefw7401bFCfwWcER6fTAwCEwdy+MJjAMeAuYAE4CfAEcNWefPgM+l1wuA69Lro9L6+wKHp88Z16IY35j7t/enpRiH+9u3KM73AP9UYdv9gI3peVp6Pa1VcQ5Z/8+Bq1pwPH8XOB64r8ryNwHfAgS8DvjRWB/Lnq8xAPOBa9Lra4Cza6x/DvCtiHhmTKPa20jj3EOSgFOAFaPZfoRqxhkRD0TEg+n1I8DjQM2rMRt0ArAhIjZGxHPAtSnWvHzsK4BT07GbD1wbEc9GxMPAhvR5TY8xIm7J/du7HZg1BnHUUs+xrOYM4MaIeDIingJuBM5skzjfAXxljGKpKiK+Q/Zjs5r5wJciczswVdIMxvBYOjHAgRExmF4/ChxYY/0F7P2P59JUxbtM0r6FR5ipN86JkgYk3V5q7iK7n/a2yO6/DbAZmNniOAGQdALZr7mHcsVjcTxnApty7ysdgz3rpGP1NNmxq2fbZsWYdx7ZL8mSSn/7sVBvnG9Nf8cVkg4Z4bZFqHtfqUnucGBNrrhZx7OWat9jzI7lPkV8SLuTdBNwUIVFF+ffRERIqjp+N2Xp1wCrc8UXkZ0AJ5CNM/4IcEkL4zw0IrZImgOskXQv2QmuMAUfz38FFkbEC6m4sOPZzSS9C+gD3pAr3utvHxEPVf6EMXcD8JWIeFbSn5DVxE5pUSz1WACsiIjdubJ2Op5N1ROJISJOq7ZM0mOSZkTEYDpRPT7MR50LfD0iduU+u/Tr+FlJXwT+spVxRsSW9LxR0q3AccDXyKqf+6RfwrOALa2MU9JvAquAi1P1uPTZhR3PIbYAh+TeVzoGpXU2S9oHmAI8Uee2zYoRSaeRJeE3RMSzpfIqf/uxOJHVjDMinsi9vZKs76m07clDtr218Ahf3Fe9f7cFwAfyBU08nrVU+x5jdizdlAQrgVJv/kLgG8Osu1cbZDr5ldrxzwYqjiwoQM04JU0rNb1IOgA4Cbg/sp6qW8j6R6pu38Q4JwBfJ2s3XTFk2VgdzzuAI5SNzppAdiIYOtIkH/s5wJp07FYCC5SNWjocOAL4cUFxjShGSccBnwfOiojHc+UV//ZjEGO9cc7IvT0L+Gl6vRqYm+KdBsylvAbe1DhTrEeSdd7+MFfWzONZy0rg3Wl00uuAp9MPqLE7ls3odW/nB1kb8s3Ag8BNwH6pvA+4MrfeYWQZ+iVDtl8D3Et2Avsy8LJWxQmcmGL5SXo+L7f9HLKT2Qbgq8C+LYzzXcAuYG3ucexYH0+y0R0PkP3quziVXUJ2kgWYmI7NhnSs5uS2vThttx74vTH891grxpuAx3LHbWWtv32L4vwUsC7FcwtwZG7b96VjvAF4byvjTO/7gaVDtmva8ST7sTmY/k9sJus7ej/w/rRcwGfTd7gX6BvrY+kpMczMrIybkszMrIwTg5mZlXFiMDOzMk4MZmZWxonBzMzKODGYmVkZJwYzMyvz/wHmBkF0tonGcwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "feature_dim = 2 # dimension of each data point\n", - "sample_Total, training_input, test_input, class_labels = Wine(training_size=20,\n", - " test_size=10, n=feature_dim, PLOT_DATA=True)\n", - "\n", - "temp = [test_input[k] for k in test_input]\n", - "total_array = np.concatenate(temp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we setup an Aqua configuration dictionary to use the classical `SVM` algorithm and add a multiclass extension to classify the Wine data set, since it has 3 classes. We loop over the three extensions (modifying the params dictionary) to show the result with each." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "----- Using multiclass extension: 'OneAgainstRest' -----\n", - "\n", - "'testing_accuracy' : 1.0\n", - "'test_success_ratio' : 1.0\n", - "'predicted_labels' : [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2]\n", - "'predicted_classes' : ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C']\n", - "\n", - "----- Using multiclass extension: 'AllPairs' -----\n", - "\n", - "'testing_accuracy' : 1.0\n", - "'test_success_ratio' : 1.0\n", - "'predicted_labels' : [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2]\n", - "'predicted_classes' : ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C']\n", - "\n", - "----- Using multiclass extension: 'ErrorCorrectingCode' -----\n", - "\n", - "'testing_accuracy' : 1.0\n", - "'test_success_ratio' : 1.0\n", - "'predicted_labels' : [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2]\n", - "'predicted_classes' : ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C']\n" - ] - } - ], - "source": [ - "aqua_dict = {\n", - " 'problem': {'name': 'classification'},\n", - " 'algorithm': {\n", - " 'name': 'SVM'\n", - " },\n", - " 'multiclass_extension': {'name': 'OneAgainstRest'}\n", - "}\n", - "\n", - "algo_input = ClassificationInput(training_input, test_input, total_array)\n", - "\n", - "extensions = [\n", - " {'name': 'OneAgainstRest'},\n", - " {'name': 'AllPairs'}, \n", - " {'name': 'ErrorCorrectingCode', 'code_size': 5}\n", - "]\n", - "\n", - "for extension in extensions:\n", - " aqua_dict['multiclass_extension'] = extension\n", - " result = run_algorithm(aqua_dict, algo_input)\n", - " print(\"\\n----- Using multiclass extension: '{}' -----\\n\".format(extension['name']))\n", - " for k,v in result.items():\n", - " print(\"'{}' : {}\".format(k, v))\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/artificial_intelligence/vqc.ipynb b/community/artificial_intelligence/vqc.ipynb deleted file mode 100644 index aa8929e6e..000000000 --- a/community/artificial_intelligence/vqc.ipynb +++ /dev/null @@ -1,276 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Variational Quantum Classifier*_\n", - "\n", - "The QSVM notebook demonstrates a kernel based approach. This notebook shows a variational method.\n", - "\n", - "For further information please see: [https://arxiv.org/pdf/1804.11326.pdf](https://arxiv.org/pdf/1804.11326.pdf)\n", - "\n", - "\n", - "**This notebook shows the variational quantum classifier method.**\n", - "\n", - "In this file, we show two ways for using the variational quantum classifier: (1) the declarative approach and (2) the programmatic approach. \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Part I: declarative approach.\n", - "In the declarative approach, we config a json-like configuration, which defines how the vqc instance is internally constructed. After the execution, it returns the json-like output, which carries the important information (e.g., the details of the vqc instance) and the processed results. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from datasets import *\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import run_algorithm, QuantumInstance\n", - "from qiskit.aqua.algorithms import VQC\n", - "from qiskit.aqua.components.optimizers import SPSA\n", - "from qiskit.aqua.components.feature_maps import SecondOrderExpansion\n", - "from qiskit.aqua.components.variational_forms import RYRZfrom qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit.aqua.input import ClassificationInput" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", - "\n", - "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFhJJREFUeJztnV+sZlV5xp+HAYMwo1ycqQGHMCRtDIakiic0DQYsRkOVSC+8kESSDuC5qQRjE6tNGjIXTdobI0lJ0+P8KUbUGCihIRZrIg5iKnoGMQKDxFAIg5rh1BLP1FgE316cb9uPzfftvfZef/c6zy85mfOd2d9e715rr/W8613/aGYQQtTJGbkNEELEQxVciIpRBReiYlTBhagYVXAhKkYVXIiKUQUXomJUwYWoGFVwISrmzBg3JWkAcNHK7tf938rKns7vbm5uBbGhLx1fG57bPO18vyYfhti0zIZF91h27Rgbu9JxTXcoY8rKNW2XPBjznnbZsey7XTYPtfO/tn6NrV//hn3fiVLBG2677l2v+9uBm6/q/M7RQ8eCpN2Xjq8NNx52t7PJhyE2LbNh0T2WXTvGxq50XNMdypiyck3bJQ/GvKdddiz7bpfNQ+08eN9xB+siVfCLVna/xpiUL4sPIW04ctP4Bman0eS7T6PsQ1O5QpVZ+z1qnmv++drXNGl3VfQhDXaD+uBCVExUFz0WXS1ubnfPx6bQXoyLKvjQPFcO7yt22q5eRZcqd91rmf2hy0wKLkTFqIILUTFOLjrJ8wAcAnApAANwo5n9R9/3QgVNQrqYY1y6WC5uSfgEmoa4y13pjAm29aU9n07uchzy7oVy1V374LcDeMDMPkzyDQDO8UpVCJGE3gpO8s0ArgTw5wBgZi8DeLnrOysre7wDS0NarljDcENsaCtSrCGfVENK8/nlmpZLwKlhPm9LHlIckt8xAn++HohLH/xiAC8COEryByQPkTy3fRHJNZIbJDdefOlXgw0RQoTHxUU/E8BlAG4xs0dI3g7g0wD+Zv4iM1sHsA4Aq5dc0LuTo49yD2nxUyt3DnIOVy3Dp18eoy++U3FR8JMATprZI7PPd2O7wgshCqdXwc3s5ySfJ/k2M/sxgPcCeDK0IWP6F10tfK5oea7pll34RmRzTyUNReyJPw2xvIkx9rtG0W8BcNcsgv4MgANDjRNCpMepgpvZYwBWQyTYbtXG9HeHKHes1jpV1Dw1oRde+KStvvhijtx0lfNqMs1kE6Jikiw2WdSahlRu3/tPiZyewpQUtSvdVH3xEpCCC1ExquBCVExUF32MW+YS3PHZ+sbHPYsdeBoy1TMnsYfNQgTbGlx2UXGhhKHC+bTv+M7TTt+RggtRMVEUfHNza7ACdbWmywImoae1jiFWi5572C3WYhAfD6prAcyyfdAW/a1k7yg0UnAhKoZmvetCBrN/7x5btBVtKEIod6gFJbmVFgi7p1wXy/JhzHbQqRb0hJ7OHGLr63na+eDyrAduvgqrBz6PjRM/7d0XXQouRMVMYlfVkK19qMkNJSh3anJOYx1LV7+9xD65i6IfPXTM+WQXKbgQFVOsgpew6cKUlConY8aIS9oM0eU4qNynrswz5L2UggtRMargQlRMMcNkoaaO+kyKcbn/svRS4xsYCuEW+6yJn7ff1ZZQXaZUZTakjMaUh5lpmEyInUy2IFsIRY3VEvvs2jqV4bMQa6KnOGwGlLFwpE2sNepScCEqJkkfPPQUySEnmeQabkt58kgIfMrI9xhnldVyuvJEfXAhdjhR+uDPbZ4OqtqhJ/h3pRWKMWd7TZWp9sUbFr0zIcvMZ0rssjzVrqpCiPKmqrrsfe6C69ZNKSgxatumhJ1GS7ChIUaZ5diSSwouRMU4KTjJZwFsAXgVwCtmFuSUEyDM2LZLaxhCsbuUZar9z1j4nKtdu5LP3y+2kg9x0f/EzDajWSKECI5cdCEqxmmiC8n/BPDfAAzAP5nZes/1S28aYl+vhlSBitATMHzcvdjPHMotHhMsXfZsvmuiQ1JKoNR1TzZXF/3dZvYCyd8D8A2ST5nZQ/MXkFwDsDbCViFEJFyPD35h9u8pkvcCuBzAQ61r1gGsA27LRXOp2JDgxhg1m/qkj5wsK5uS8nIKQ57z9PbBSZ5Lck/zO4D3A3g8tmFCCH9cFPwtAO4l2Vz/JTN7YGyCqVu+MemVMDxTC1M6cngIU1Hy3gpuZs8A+MMEtgghApNkqmrKVq6UFjXW2V6iLGIvVPFF4+BCVEwUBV9Z2RO1FYsVgS+5711yf7REXPY6j0VJ/XMpuBAVowouRMUUtx48FnJxp0fo4bK2yxz7nei6fyr3XQouRMXsGAVPTaihsRIX1CxjasOBqRU9VFpD1F8KLkTFVK/gJfW9Sxg2mRI+ZeczRXZI2l33j/XuHT10DJubW07XSsGFqJjiFHxIq5ej9UyF+t556eufT8Ubk4ILUTHZFDyEQpU0JbDBR81Seh07RblDnTDTHpPPuXXWkHyXggtRMVEUfHNzK3sfeAqbBjSMsXHMctQci2libaY55uQan350STGRIeUoBReiYlTBhaiY4obJhjDmWJxYuLjJsQ6CX7aTayyXfArBNZfdbbtc9il07VyQggtRMVEU/LnN04PVY4gqhA6OlLyTyxDbSn6OXAw5FSWnascqOym4EBWTvQ8e+yyvqTJ1NS65zGKdPhP6DLsQSMGFqJhsCt7XgvkqQF9/qkSFHGtTk5clPlPJhFDysXmeqqyk4EJUjLOCk9wFYAPAC2Z27dgEQ54PPoYSVS5U301KXh/Lyvvgfcedvj9EwW8FcGLA9UKIzDgpOMl9AD4I4G8BfHJoIl2qE1q5c41ljunPhVoSmIrYNg0puxDeSojnWXSPkjwoVwX/HIBPAfjtsgtIrpHcILkRxDIhhDe9FZzktQBOmVmn029m62a2amarwawTQnjh4qJfAeBDJD8A4GwAbyL5RTP76LIvXLSyG7dd967Om5Y8EcKHIW53LJd3JwXbhiywSdXtSbXox4VeBTezz5jZPjPbD+AjAL7ZVbmFEOWQfKJLbuXOoW4lBsyGUFJwrY9QtoY8orrLpmXvYajnGFTBzexbAL4VJGUhRHSSKHhu1V5ErOGNqau1DyWWswuh7V52v0WeSuz3RVNVhagYmlnwm+7fu8eWRdFTt/K1bL3jwxjPZIyyjC3b1GVUkqcx9tkP3nccz764xb7rpOBCVExyBW+TqjUtWclj7R3exkXJUyp3Q4yyKUmlXRiaB1JwIYQquBA1k91Fb8jpUk09yBPCXc/hmrcJUQ5Tcc19n1UuuhAijoKTNKAMVRhCLCWP/Uy5AoixnmvM8+R6b3LlvRRcCBFXwRt2kpJP1e4hTKWfG5Pcw65ScCFEmsUmYw6rn28hUyvGmBNJpWpiGTlPPJGCC1ExyTd8iHUuVAykymIZQ7w8lw0fYtUHKbgQFZNcwaeg3EK40uXl+ap7CKTgQlSMKrgQFRPFRXfZF70PBbjKpXE9VUbdtPMnx+QYKbgQFZM8yLYMqYGonUXveGxVl4ILUTHZFFyKPX3UF0/LmN1xXU4XPZvk90j+kOQTJA+Osk4IkRwXBf9fAFeb2WmSZwF4mOS/mdl3+76olj0NuZcuSsmH41pmvqft9FZw214wfnr28azZT/hF5EKI4Dht+EByF4DjAH4fwB1m9ldd169ecoFtHP1YGAvFQnKrdh+lqPmifJrC9k4uym1mYTZ8MLNXzewdAPYBuJzkpe1rSK6R3CC58eJLv3K5rRAiMoOGyczsJQAPArhmwf+tm9mqma3uPe+cUPYJITzo7YOT3AvgN2b2Esk3AngfgL+PbVhsF7QUF3IoofMl1gH0qQNvQ/LF5dqQdufsTrlE0c8HcOesH34GgK+a2f1xzRJChCDKrqohgmw5Wr0pqLpPvowdcgmxZjlE3pYQWEx1UGRDV5kFC7IJIaZJsQo+z9TPDgtBDuVuo914Xs+QdyXUe9yUpxRciB1O1NNFSzh90idKXIKSl6DcbaTk/4/vOzK2fHWyiRAi7nLR0NMEx2yB06hNW81cTltp378ERXchlnKL6SEFF6Jikm/4EFIVh2yBs0zJ5//W17fMeV7aTqTmGILvCbZ3fOdpp2ul4EJUjCq4EBWTfVfV1IEsF1e9fe0iStzFJHZwLbZrmyo4mOsATN+JLmPeNSm4EBWTXcHblLCgoMGlpS9RyadGrmG9VEqe852WggtRMVGnqpaIj1rknN4aej+vIdTS917GmOdLvWy0jaaqCiHK64MvIncL3zBkeutO7JPPP3OfWpVSpkOZWrlKwYWomEn1wUtq9fv6bVPvi4eKNyyzt4SynEpMpaGdZ9rwQYgdjiq4EBUTJcj23OZp3Hj4WKcL1Of6LHJh2vcrwc1LTZNvOSdPTC3Q1GYKu/mEerel4EJUTJQgG8nX3NRHyRfRVq+cSl6CGsQYkgpVZiUF2YZMaJlCmSnIJsQOJ8lEl64JImMmhrT7oYta5qkvnRxCyH55aG8rNyWpdiiO3HQVDt533OnaXgUneSHJB0k+SfIJkrd6WyiESIKLgr8C4C/N7FGSewAcJ/kNM3tyTILLNlXwUfJ52qq+EyPtbXZiXpTkYTUM8bBC2d+r4Gb2MzN7dPb7FoATAN4aJHUhRFQGRdFJ7gfwEIBLzeyXHdeNDs0varlCLs0LHVF2IXXfzkUphmxPFftkUNcyyaHKpZ4T7rpc1DnIRnI3gHsAfGJR5Sa5BmBtkJVCiKg4KTjJswDcD+DrZvbZvuubxSahFzv4tKY7aeZXSQpe0hZcPpRwvvm8DasHPo+NEz/1HwcnSQCHAZxwqdxCiHJwmehyBYAbAFxN8rHZzwci2yWECEBvH9zMHgbQ6woswmd4xuU7PpNjYpNz0oTLs5Y4jBSDrvdoSB747NSjXVWFEFHItqNLrN1GXFvY0K1qidMcQz3jlIJssXexaejKk5DPvCydYEE2IcR0iaLgq5dcYBtHP/a7z2OGbYYwZkgtxzlRqSlBwRuG2NJOL8ee8LljFH15LgUXQqRZLtq1KKQh9HZMMfp+U1DtKdKXry6jArUspAn9jknBhaiYbCebLGupujZxaGi31i4njojxhDitJVYkfurKHdsrlIILUTGq4EJUTHGHD44JyO10almxlZuU75Vvl2Vzc8vpWim4EBVTnIIvoi8gl4r59HIPmYV69iHrwmsl1TP7vjNjylwKLkTFTELBl+HSX6+NWMpdIrHLMrZyl7BIRwouRMVEUfDNzS0cPXQsSz+1hNM3p0yj7IvULcSElxIYc56cz2KZIYR+b6XgQlRM1D54zhY/tpJPSc2m0N8eS98ipZSnv8bezmlMOUrBhaiYKAr+3OZp3Hj42OvOHZtnCsoXmmWtdei8mLpi+3hdqU8THXuPVOemS8GFqBhVcCEqJmqQbZG74XNccK0MyYuu4OHUXfNUDHnnQgRpc65nl4ILUTHJp6q2J1LEUvIpTnQpaTFLjYRUbpd7te+Rw8NyOXzwCMlTJB9PYZAQIhwuCv7PAP4BwBdiGhJKyaeo3IvYiTGK3Dvhhkq/BOVu6FVwM3sIwC8S2CKECEywPjjJNQBrrtcvW9QwRrmmotpTXwgzJW+iZuU+ctNVOHjfcadrg1VwM1sHsA4AJMOfhySEGEyUKPpFK7sxf7po13j4MmJFlEOdF90Qoq88Zr7A/OepegQxiK3cLstIYyr3UDQOLkTF9Co4yS8DeA+AFZInAdxmZoeHJJJyaxwfNeva7GAKNHZPbUZbzs0zAX8Ps+s+vvi+i70V3Myu90pBCJENuehCVMykd1VdxNSHohpSTemthdhTR0Pn+zLXW+vBhRDORFXwnPuWL1Nyl0BU7GDbEC9j6oG/ZaR6D4YEwxblcd+wmIviupRdrMCoFFyIikm+q2rqPmQtffIuQj7jVDyFvvfIdxjL5z0dkofa8EEIMZokUfQSNzKYb2XHtKK5nsMlml7yhBcfL2NMpNwFH6+l67s+p6OEQgouRMUkHwfPNZ7b1U/NpXjtPMgZ2Xchd9mNIeVY95Bz7FO9a1JwISpGFVyIisk2VbXttrgEJEIeNVOSq14CsV3/EGuvQ9+/eWaf4N0QG4e8V6HKQwouRMUUs9jEpQUOGeTpWkM+hckei4Ye296Ji0fis4tNO/2SCP3MPkcD51DuBim4EBWT5Gyy0K2Slk76E7JMusojdt/bh1jpDFHu2N6iFFyIiknSBx+z55ULoZQ894KURfaHjOSniinkyL8haZYUW0llixRciIqJquBdUdyQ/fMci1l2UhygXX6xN8IIicsmDqHo63t32RLL+5GCC1ExSfrgXUszQ0faa1HW3LPqSl/40keOuIPPVlCxkIILUTGq4EJUjJOLTvIaALcD2AXgkJn9XWhDSnbVxxwOOIapHSgYqsym2J1yKZ92vuTYZbhXwUnuAnAHgD8F8HYA15N8e1SrhBBBcFHwywH8xMyeAQCSXwFwHYAnxyTYFzyaQgAnJS7BttjeSomUMgXWZRJXaOUeUkYuffC3Anh+7vPJ2d+EEIVDM+u+gPwwgGvM7ObZ5xsA/JGZfbx13RqAtdnHSwE8Ht7cwawA2MxtxIxSbCnFDkC2LMLVjovMbG/fRS4u+gsALpz7vG/2t9dgZusA1gGA5IaZrTrcOyql2AGUY0spdgCyJYUdLi769wH8AcmLSb4BwEcA/GsoA4QQ8ehVcDN7heTHAXwd28NkR8zsieiWCSG8cRoHN7OvAfjagPuujzMnOKXYAZRjSyl2ALJlEUHt6A2yCSGmi6aqClExQSs4yWtI/pjkT0h+OuS9B9pxhOQpklmH6kheSPJBkk+SfILkrRltOZvk90j+cGbLwVy2zOzZRfIHJO/PbMezJH9E8jGSG5ltOY/k3SSfInmC5B973zOUiz6b0vo0gPdhezLM9wFcb2ajZrx52nIlgNMAvmBml6ZOf86O8wGcb2aPktwD4DiAP8uUJwRwrpmdJnkWgIcB3Gpm301ty8yeTwJYBfAmM7s2hw0zO54FsGpm2cfASd4J4Ntmdmg2YnWOmb3kc8+QCv67Ka1m9jKAZkprcszsIQC/yJF2y46fmdmjs9+3AJxAplmAts3p2cezZj9ZAjAk9wH4IIBDOdIvEZJvBnAlgMMAYGYv+1ZuIGwF15TWDkjuB/BOAI9ktGEXyccAnALwDTPLZcvnAHwKwG8zpT+PAfh3ksdnszFzcTGAFwEcnXVdDpE81/emCrIlgORuAPcA+ISZ/TKXHWb2qpm9A9uzES8nmbz7QvJaAKfM7HjqtJfwbjO7DNurJf9i1r3LwZkALgPwj2b2TgD/A8A7jhWygjtNad1pzPq79wC4y8z+Jbc9ADBz/R4EcE2G5K8A8KFZ3/crAK4m+cUMdgAAzOyF2b+nANyL7a5mDk4CODnnVd2N7QrvRcgKrimtLWaBrcMATpjZZzPbspfkebPf34jtYOhTqe0ws8+Y2T4z24/td+SbZvbR1HYAAMlzZ8FPzNzh9yPTIikz+zmA50m+bfan92Lkkux5gm26WNKUVpJfBvAeACskTwK4zcwOZzDlCgA3APjRrO8LAH89mxmYmvMB3Dkb7TgDwFfNLOsQVQG8BcC92+0wzgTwJTN7IKM9twC4ayaQzwA44HtDzWQTomIUZBOiYlTBhagYVXAhKkYVXIiKUQUXomJUwYWoGFVwISpGFVyIivk/YvwfZIiSgxgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFjBJREFUeJzt3X2QXXV9x/HPp8mqK9BdlejABgzt1Ew1CcTZMtVYx5pqcCQ2pp3U+oDaPzKdtoBTJwz4R0SmGlqmYtMHOxREVNSuCJkCFmR4EO0odENwgzyM1WKTjTSLkgB2qyF++8c5azZpdvfcvefsOb9z36+Znbt77tm738sNn/u7v6fjiBAAIB2/VHcBAIDOENwAkBiCGwASQ3ADQGIIbgBIDMENAIkhuNEott9n+xuz3P9p23+xkDUBTUNwY0HYvsf2U7afX3ctc8nfPA7bfjb/+k/b19p+RQePwRsMKkNwo3K2l0n6LUkh6W21FlPcNyPiREkDkn5H0qSknbZX1FsWQHBjYZwn6VuSPi3pvdPvsP0S2/9i+2nb90v61QKP9yLbt9p+xvZ9tn/xO7Zfa/vfbR/Mb1877b4X5y3nfXnrf8dcfygiDkfE9yLiTyR9TdKl0x7vS7afyP/WvbZflR/fLOldki7KW+w358cvtv29vO6Hbb+9wHMF/h+CGwvhPEnX51/rbL9s2n1/L+l/JZ0i6Y/yr7m8Q9JHJL1I0n9I+qiUBbOkWyVtl/QSSR+XdKvtl+S/91lJL5T0KkkvlXRlh8/jRmWfHKb8q6Rfyx/rgfz5KSKuyr//q4g4MSLW5+d/L//9gbz+z9k+pcMaAIIb1bL9OkkvlzQSETuVhdc78/sWSfo9SVsj4icR8ZCk6wo87E0RcX9EPKcsIM/Kj79V0ncj4rMR8VxEfEHSo5LW5wH5Fkl/HBFPRcShiPhah09nn6QXT/0QEZ+KiGci4qfKWuJn2h6Y6Zcj4ksRsS8ifh4R/yzpu5LO7rAGgOBG5d4r6asR8WT+8+d1pLtkiaTFkvZMO/8HU9/Y/tC0AcJ/nHbOE9O+/x9JJ+bfnzr996c93pCk0yT9OCKe6uK5DEn6cV7bItuX510fT0t6PD/n5Jl+2fZ5th+0fcD2AUkrZjsfmMniugtAe9nul7RJ0iLbU2H7fEmDts+U9JCk55SF6qP5/adP/X5EfEzSxzr4k/uUte6nO13SbcreHF5sezAiDnT6XHJvl/T1/Pt3SvpdZQOXjyvr/nhKkvP7j9p20/bLJf2TpLXKBj4P235w2vlAYbS4UaUNkg5LeqWy7oyzJP26svA7LyIOK+s3vtT2C22/UscMXnboK5JeYfudthfb/oP8b98SET9U1if9D7ZfZLvP9uvnesC8ZX2G7b+V9AZlfdOSdJKkn0r6kbJ+82PfYP5b0q9M+/kEZWE+kT/u+5W1uIGOEdyo0nslXRsR/xURT0x9Sfo7Se+yvVjSnynr6nhC2ayTa+f7xyLiR5LOlfRBZYF6kaRzp3XTvEfSIWWt+/2SPjDLw73G9rOSnpZ0j6RflvQbEbE7v/8zyrphxiU9rGzWzHTXSHpl3i2yIyIelvTXkr6pLNRXSvq3+T5X9DZzIQUASAstbgBIDMENAIkhuAEgMQQ3ACSmknncJ598cixbtqyKhwaAVtq5c+eTEbGkyLmVBPeyZcs0OjpaxUMDQCvZPnbV74zoKgGAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJIbgBIDGFgtv2oO0bbD9q+xHbr6m6MADA8RVdgPM3km6LiN+3/TxlG8c329iIdOdl0sG90sBSae1WadWmuqsCgK7NGdz5xU9fL+l9khQRP5P0s2rL6tLYiHTzBdKhyezng3uynyXCG0DyinSVnKHsckvX2t5l+2rbJxx7ku3Ntkdtj05MTJReaEfuvOxIaE85NJkdB4DEFQnuxZJeLemTEbFa0k8kXXzsSRFxVUQMR8TwkiWF9kmpzsG9nR0HgIQUCe69kvZGxH35zzcoC/LmGlja2XEASMicwZ1f3HWP7eX5obXKLo7aXGu3Sn39Rx/r68+OA0Diis4qOV/S9fmMku9Len91JZVgagCSWSUAWqhQcEfEg5KGK66lXKs2EdQAWomVkwCQGIIbABJDcANAYghuAEgMwQ0AiankKu+YAxtgtdKOXeO64vbHtO/ApE4d7NeWdcu1YfVQ3WWhhQjuhcYGWK20Y9e4LrlxtyYPHZYkjR+Y1CU37pYkwhulo6tkobEBVitdcftjvwjtKZOHDuuK2x+rqSK0GcG90NgAq5X2HZjs6DjQDYJ7obEBViudOtjf0XEkZGxEunKFdOlgdjs2UndFBPeCYwOsVtqybrn6+xYdday/b5G2rFs+w28gCVNjUgf3SIojY1I1hzfBvdBWbZLWb5cGTpPk7Hb9dgYmE7dh9ZC2bVypocF+WdLQYL+2bVzJwGTqGjomxaySOrABVittWD1EULdNQ8ekaHEDwEwaOiZFcAPATBo6JkVwA8BMGjomRR83AMymgWNStLgBIDEENwDMR40Lc+gqAYBO1bxZHC1uYC4NXPKMmtW8MIcWNzAbtuHF8dS8MIcWd1G0unpTQ5c8o2Y1L8whuIto6EYzWAANXfKMmtW8MIfgLoJWV+9q6JJn1KzmhTmF+rhtPy7pGUmHJT0XEcNVFtU4tLp619qtR/dxS41Y8owGqHFhTieDk78dEU9WVkmTDSzNu0mOcxztNvU/Jhd3RoMwq6QIWl29rYFLntHbivZxh6Sv2t5pe/PxTrC92fao7dGJiYnyKmyChm40A6A3OSLmPskeiohx2y+VdIek8yPi3pnOHx4ejtHR0RLLBICZ7dg1rituf0z7Dkzq1MF+bVm3PLmLWtjeWXT8sFCLOyLG89v9km6SdPb8ywOA8uzYNa5Lbtyt8QOTCknjByZ1yY27tWPXeN2lVWbO4LZ9gu2Tpr6X9GZJD1VdGI7BAqBm4nWp3RW3P6bJQ4ePOjZ56LCuuP2xmiqqXpHByZdJusn21Pmfj4jbKq0KR2PZdTPxujTCvgOTHR1vgzlb3BHx/Yg4M/96VUR8dCEKwzQsAGomXpdGOHWwv6PjbcDKyRSwAKiZeF0aYcu65ervW3TUsf6+RdqybnlNFVWP4E4By66bidelETasHtK2jSs1NNgvSxoa7Ne2jSuTm1XSCRbgpIAFQM3E69IYG1YPtTqoj0Vwp6DiZddtmANbC5bDoyaFFuB0igU46ZiaAzt9OlV/36LWf9QEmqb0BThor16cAwukjuDucb04BxZIHcHd43pxDiyQulYF945d41pz+V064+Jbtebyu1q9V0FZenEOLJC61swqOXaQbWqjGUkMss1i6r8Ns0qAdLQmuGcbZCOEZtdrc2BRDNNEm6s1wc0gG1AePsE2W2v6uBlkA8rDNNFma01wM8gGlIdPsM3WmuDuxY1mgKrwCbbZWtPHLTHIBpRly7rlx90KgU+wzdCq4AZQDqaJNhvBDeC4+ATbXK3p4waAXkFwA0BiCG4ASEzP9XGzjBdA6noquFnGC6ANeqqrhGW8ANqgp4KbZbwA2qBwcNteZHuX7VuqLKhKLOOt0NiIdOUK6dLB7HZspO6KgNbqpMV9oaRHqipkIbARVUXGRqSbL5AO7pEU2e3NFxDeQEUKBbftpZLeKunqasupFhtRVeTOy6RDx3Q3HZrMjgMoXdFZJZ+QdJGkkyqsZUGwjLcCB/d2dhxAV+Zscds+V9L+iNg5x3mbbY/aHp2YmCitQCRgYGlnxwF0pUhXyRpJb7P9uKQvSnqj7c8de1JEXBURwxExvGTJkpLLRKOt3Sr1HTPA29efHQdQujmDOyIuiYilEbFM0jsk3RUR7668MqRj1SZp/XZp4DRJzm7Xb8+OAyhdT62cRIVWbSKogQXSUXBHxD2S7qmkEgBAIT21chIA2oDgBoDENLaPm+1XAeD4GhncbL8KADNrZFcJ268CwMwaGdxsvwoAM2tkcLP9KgDMrJHBzfarADCzRg5OTg1ALvSsEmayAEhBI4NbWvjtV5nJAiAVjewqqQMzWQCkguDOMZMFQCoI7hwzWQCkguDOMZMFQCoaOzi50OqayQIAnSK4p+FCwgBSQFcJACSG4AaAxBDcAJAYghsAEkNwA0BiCG4ASAzBDQCJacw8brZUBYBiGhHcbKkKAMU1oquELVUBoLg5g9v2C2zfb/vbtr9j+yNlF8GWqgBQXJEW908lvTEizpR0lqRzbP9mmUWwpSoAFDdncEfm2fzHvvwryiyCLVUBoLhCfdy2F9l+UNJ+SXdExH3HOWez7VHboxMTEx0VsWH1kLZtXKmhwX5Z0tBgv7ZtXMnAJAAchyOKN55tD0q6SdL5EfHQTOcNDw/H6OhoCeUBQG+wvTMihouc29Gskog4IOluSefMpzAAQPfmnMdte4mkQxFxwHa/pDdJ+svKKwOAWfTyor0iC3BOkXSd7UXKWugjEXFLtWUBwMx6fdHenMEdEWOSVi9ALQBQyGyL9nohuBuxchIAOtHri/YIbgDJ6fVFewQ3gOT0+qK9RuwOiObq5ZF7NNfUv8Fe/bdJcGNGvT5yj2bbsHqoZ/8d0lWCGbHdLtBMBDdm1Osj90BTEdyYUa+P3ANNRXBjRr0+cg80FYOTmFGvj9wDTUVwY1a9PHIPNBVdJQCQGIIbaKuxEenKFdKlg9nt2Eix+9B4dJUAbTQ2It18gXQon7p5cE/285SZ7lu1aWHrxLwQ3EAb3XnZkWCecmgyOz71/fHuI7iTQHADbXRwb2fH57oPjUIfN9BGA0tnPj7bfUgCwQ200dqtUt8xK1z7+rPjs92HJNBVArTRVF/1nZdlXSADS7Ngnt6HPdt9aDRHROkPOjw8HKOjo6U/LoDjGBshhFvA9s6IGC5yLi1uIGWzTfsjvFuL4AZKUsvVgmab9kdwtxbBDZSgtqsFzWfaH5LHrJK6sfS4FWq7WhBT+3oSwV2nqf7Jg3skxZH+ScI7ObVdLYipfT1pzuC2fZrtu20/bPs7ti9ciMJ6wlzLkpGM2q4WtGqTtH67NHCaJGe367fTv91yRfq4n5P0wYh4wPZJknbaviMiHq64tvajf7I1tqxbflQft7SAVwtatYmg7jFztrgj4ocR8UD+/TOSHpHEzvploH+yNTasHtK2jSs1NNgvSxoa7Ne2jSu5CAUq0dGsEtvLJK2WdN9x7tssabMknX766SWU1gPWbj16Dq5E/2TCuFoQFkrhwUnbJ0r6sqQPRMTTx94fEVdFxHBEDC9ZsqTMGtuL/kkA81CoxW27T1loXx8RN1ZbUo+hfxJAh4rMKrGkayQ9EhEfr74kAMBsirS410h6j6Tdth/Mj30oIr5SXVnlqmUpMgBUZM7gjohvSPIC1FKJ2pYiA0BFWr9ysralyABQkdYHd21LkQGgIq0P7tqWIgNARVof3FvWLVd/36Kjji3YUmQAqEDr9+OeGoBkVgmAtmh9cEssRQbQLq3vKgGAtiG4ASAxBDcAJIbgBoDEENwAkBiCGwASQ3ADQGJ6Yh43ysH2uEAzENwohO1xgeagqwSFsD1uDxobka5cIV06mN2OjZT20Dt2jWvN5XfpjItv1ZrL79KOXeOlPXYvoMWNQtget8eMjUg3XyAdyl/fg3uyn6Wur5HKp7futarFzbt4ddget8fcedmR0J5yaDI73iU+vXWvNcE99S4+fmBSoSPv4oR3Odget8cc3NvZ8Q7w6a17rQlu3sWrtWH1kLZtXKmhwX5Z0tBgv7ZtXFn9R9sK+1kxi4GlnR3vAJ/euteaPm7exau34NvjVtjPijms3Xr0f3tJ6uvPjndpy7rlR/VxS3x661RrgvvUwX6NHyekeRfvTq1zt2frZyW4qzX13/fOy7LukYGlWWiX8N+di5t0rzXBzbt4+Wof/a+wnxUFrNpU2RskFzfpTmv6uGvrg22x2scNKuxnBVLWmha3xLt42WofN6iwnxVIWWta3Chf7aP/qzZJ67dLA6dJcna7fjv92+h5c7a4bX9K0rmS9kfEiupLQlM0Ytygwn5WzB8bjtWrSIv705LOqbgONBDjBjgeFrvVb84Wd0Tca3tZ9aWgiRg3wLFmG7Tm38rCKK2P2/Zm26O2RycmJsp6WAANU/ugNcoL7oi4KiKGI2J4yZIlZT0sgIapfdAazCoB0Bk2HKtfq+ZxA3XqlZkWLFmvX5HpgF+Q9AZJJ9veK+nDEXFN1YUBKal9e4AFxqB1vYrMKvnDhSgESFlqMy1K/XQwNlLJZlSlaXp980BXCVCClGZalPrpoOlb7za9vnlicBIoQUozLUrdPKzCS5yVoun1zRPBDZQgpZkWpX46aPrWu02vb54IbqAEKW0PUOqng6Zvvdv0+uaJPm6gJKnMtCh187Cmb73b9PrmieAGekyp87ArvMRZKZpe3zw5Ikp/0OHh4RgdHS39cbEAWjh1CkiB7Z0RMVzkXFrcOKKlU6eAtmFwEke0dOoU0DYEN45o6dQpoG0IbhzR0qlTQNsQ3Dhi7dZsqtR0LZg6BbQNwY0j5rqq+tiIdOUK6dLB7HZspNZyUQFe4yQwqwRHm+mq6sw4aT9e42TQ4kYxzDhpP17jZBDcKIYZJ+3Ha5wMghvFMOOk/XiNk0FwoxhmnLQfr3EyCG4UM9eME6SP1zgZbDIFAA3QySZTtLgBIDEENwAkhuAGgMQQ3ACQGIIbABJDcANAYghuAEgMwQ0AialkAY7tCUk/KP2B63GypCfrLqJEPJ9m4/k0X1XP6eURsaTIiZUEd5vYHi26mikFPJ9m4/k0XxOeE10lAJAYghsAEkNwz+2qugsoGc+n2Xg+zVf7c6KPGwASQ4sbABJDcANAYgjuGdj+lO39th+qu5Yy2D7N9t22H7b9HdsX1l1TN2y/wPb9tr+dP5+P1F1TGWwvsr3L9i1119It24/b3m37QdvJX1nF9qDtG2w/avsR26+prRb6uI/P9uslPSvpMxGxou56umX7FEmnRMQDtk+StFPShoh4uObS5sW2JZ0QEc/a7pP0DUkXRsS3ai6tK7b/XNKwpF+OiHPrrqcbth+XNBwRrViAY/s6SV+PiKttP0/SCyPiQB210OKeQUTcK+nHdddRloj4YUQ8kH//jKRHJA3VW9X8RebZ/Me+/CvpVojtpZLeKunqumvB0WwPSHq9pGskKSJ+VldoSwR3T7K9TNJqSffVW0l38m6FByXtl3RHRCT9fCR9QtJFkn5edyElCUlftb3T9ua6i+nSGZImJF2bd2VdbfuEuoohuHuM7RMlfVnSByLi6brr6UZEHI6IsyQtlXS27WS7tGyfK2l/ROysu5YSvS4iXi3pLZL+NO9+TNViSa+W9MmIWC3pJ5IurqsYgruH5H3BX5Z0fUTcWHc9Zck/st4t6Zy6a+nCGklvy/uFvyjpjbY/V29J3YmI8fx2v6SbJJ1db0Vd2Stp77RPdTcoC/JaENw9Ih/Mu0bSIxHx8brr6ZbtJbYH8+/7Jb1J0qP1VjV/EXFJRCyNiGWS3iHproh4d81lzZvtE/JBcOVdCm+WlOwMrYh4QtIe28vzQ2sl1Tawv7iuP9x0tr8g6Q2STra9V9KHI+KaeqvqyhpJ75G0O+8XlqQPRcRXaqypG6dIus72ImUNkJGISH4KXYu8TNJNWXtBiyV9PiJuq7ekrp0v6fp8Rsn3Jb2/rkKYDggAiaGrBAASQ3ADQGIIbgBIDMENAIkhuAEgMQQ3ACSG4AaAxPwf7Fn+ks2DEBcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1}\n" - ] - } - ], - "source": [ - "feature_dim = 2 # dimension of each data point\n", - "training_dataset_size = 20\n", - "testing_dataset_size = 10\n", - "random_seed = 10598\n", - "shots = 1024\n", - "\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", - " training_size=training_dataset_size, \n", - " test_size=testing_dataset_size, \n", - " n=feature_dim, gap=0.3, PLOT_DATA=True\n", - ")\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "print(class_to_label)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the vqc in the declarative approach.\n", - "In the following json, we config:\n", - "- the algorithm name \n", - "- the variational form\n", - "- the feature map \n", - "- the optimizer" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\n", - " 'problem': {'name': 'classification', 'random_seed': 10598},\n", - " 'algorithm': {'name': 'VQC', 'override_SPSA_params': True},\n", - " 'backend': {'shots': 1024},\n", - " 'optimizer': {'name': 'SPSA', 'max_trials': 200, 'save_steps': 1},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 3},\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2}\n", - "}\n", - "\n", - "classification_input = ClassificationInput(training_input, test_input, datapoints[0])\n", - "backend = BasicAer.get_backend('qasm_simulator')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With everything setup, we can now run the algorithm.\n", - "\n", - "For the testing, the result includes the details and the success ratio.\n", - "\n", - "For the prediction, the result includes the predicted labels. " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n", - "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], - "source": [ - "result = run_algorithm(params, classification_input, backend=backend)\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "print(\"predicted classes:\", result['predicted_classes'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Part II: programmatic approach.\n", - "We construct the vqc instance directly from the classes. The programmatic approach offers the users better accessibility, e.g., the users can access the internal state of vqc instance or invoke the methods of the instance. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we create the vqc in the programmatic approach.\n", - "- we build the optimizer instance (required by the vqc instance) by instantiating the class SPSA.\n", - "- We build the feature map instance (required by the vqc instance) by instantiating the class SecondOrderExpansion.\n", - "- We build the varitional form instance (required by the vqc instance) by instantiating the class RYRZ.\n", - "- We build the vqc instance by instantiating the class VQC. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "backend = BasicAer.get_backend('qasm_simulator')\n", - "optimizer = SPSA(max_trials=100, c0=4.0, skip_calibration=True)\n", - "optimizer.set_options(save_steps=1)\n", - "feature_map = SecondOrderExpansion(feature_dimension=feature_dim, depth=2)\n", - "var_form = RYRZ(num_qubits=feature_dim, depth=3)\n", - "vqc = VQC(optimizer, feature_map, var_form, training_input, test_input)\n", - "quantum_instance = QuantumInstance(backend, shots=shots, seed=random_seed, seed_transpiler=random_seed)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we run it." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n" - ] - } - ], - "source": [ - "result = vqc.run(quantum_instance)\n", - "print(\"testing success ratio: \", result['testing_accuracy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Different from the declarative approach, the programmatic approach allows the users to invoke APIs upon the vqc instance directly. In the following, we invoke the API \"predict\" upon the trained vqc instance to predict the labels for the newly provided data input.\n", - "\n", - "Use the trained model to evaluate data directly, and we store a label_to_class and class_to_label for helping converting between label and class name" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "prediction: [0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1]\n" - ] - } - ], - "source": [ - "predicted_probs, predicted_labels = vqc.predict(datapoints[0])\n", - "predicted_classes = map_label_to_class_name(predicted_labels, vqc.label_to_class)\n", - "print(\"prediction: {}\".format(predicted_labels))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/artificial_intelligence/vqc_feature_map_comparison.ipynb b/community/artificial_intelligence/vqc_feature_map_comparison.ipynb deleted file mode 100644 index 9d8ba3baa..000000000 --- a/community/artificial_intelligence/vqc_feature_map_comparison.ipynb +++ /dev/null @@ -1,178 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Variational Quantum Classifier Feature Map Comparison\n", - "\n", - "Both the first-order and second-order expansion feature maps provided by Aqua use $n$ qubits to encode $n$-dim datapoints. However, raw feature vectors can also be directly used in `VQC` circuit constructions, requiring only $log_2(n)$ qubits to encode $n$-dim datapoints. \n", - "\n", - "### Experiment\n", - "Below we compare the classification performance of `VQC` on the [Wine dataset](https://scikit-learn.org/stable/datasets/index.html#wine-dataset) using `RawFeatureVector` and `SecondOrderExpansion` feature maps. As you'll see, the former leads to about $90\\%$ accuracy using only $2$ qubits, whereas the latter achieves only around $50\\%$ accuracy, using $4$ qubits and taking $3\\times$ as long. \n", - "\n", - "We first prepare the Wine dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from sklearn import datasets\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", - "from sklearn.decomposition import PCA\n", - "\n", - "\n", - "def Wine(training_size, test_size, n):\n", - " class_labels = [r'A', r'B', r'C']\n", - "\n", - " data, target = datasets.load_wine(True)\n", - " sample_train, sample_test, label_train, label_test = train_test_split(\n", - " data, target, test_size=test_size, random_state=7\n", - " )\n", - "\n", - " # Now we standarize for gaussian around 0 with unit variance\n", - " std_scale = StandardScaler().fit(sample_train)\n", - " sample_train = std_scale.transform(sample_train)\n", - " sample_test = std_scale.transform(sample_test)\n", - "\n", - " # Now reduce number of features to number of qubits\n", - " pca = PCA(n_components=n).fit(sample_train)\n", - " sample_train = pca.transform(sample_train)\n", - " sample_test = pca.transform(sample_test)\n", - "\n", - " # Scale to the range (-1,+1)\n", - " samples = np.append(sample_train, sample_test, axis=0)\n", - " minmax_scale = MinMaxScaler((-1, 1)).fit(samples)\n", - " sample_train = minmax_scale.transform(sample_train)\n", - " sample_test = minmax_scale.transform(sample_test)\n", - " # Pick training size number of samples from each distro\n", - " training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)}\n", - " test_input = {key: (sample_train[label_train == k, :])[training_size:(\n", - " training_size+test_size)] for k, key in enumerate(class_labels)}\n", - " return sample_train, training_input, test_input, class_labels" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can then set up the experiment as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import scipy\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.input import ClassificationInput\n", - "from qiskit.aqua import run_algorithm, QuantumInstance, aqua_globals\n", - "from qiskit.aqua.components.optimizers import SPSA, COBYLA\n", - "\n", - "feature_dim = 4 # dimension of each data point\n", - "training_dataset_size = 20\n", - "testing_dataset_size = 10\n", - "random_seed = 10598\n", - "np.random.seed(random_seed)\n", - "\n", - "sample_Total, training_input, test_input, class_labels = Wine(\n", - " training_size=training_dataset_size,\n", - " test_size=testing_dataset_size,\n", - " n=feature_dim\n", - ")\n", - "\n", - "classification_input = ClassificationInput(training_input, test_input)\n", - "params = {\n", - " 'problem': {'name': 'classification', 'random_seed': random_seed},\n", - " 'algorithm': {'name': 'VQC'},\n", - " 'backend': {'provider': 'qiskit.BasicAer', 'name': 'statevector_simulator'},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter':200},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 3},\n", - " 'feature_map': {'name': None},\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's try `RawFeatureVector` first:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VQC accuracy with RawFeatureVector: 0.8666666666666667\n" - ] - } - ], - "source": [ - "params['feature_map']['name'] = 'RawFeatureVector'\n", - "result = run_algorithm(params, classification_input)\n", - "print(\"VQC accuracy with RawFeatureVector: \", result['testing_accuracy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now let's try `SecondOrderExpansion`:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Test accuracy with SecondOrderExpansion: 0.5333333333333333\n" - ] - } - ], - "source": [ - "params['feature_map']['name'] = 'SecondOrderExpansion'\n", - "result = run_algorithm(params, classification_input)\n", - "print(\"Test accuracy with SecondOrderExpansion: \", result['testing_accuracy'])" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/chemistry/LiH.png b/community/chemistry/LiH.png deleted file mode 100644 index dde425ee718b928729f600ecb6c7407623b1be20..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 105729 zcmeFYg<8IhckI7l@8!Y4aC?_L!1&<653k&NCO8lt;78dp@@^b+P zJ_*wa#fM+#Y=lut7vSZ3LH`5%|DvV1nhh4#rEAE~nXVD{L->%#R^*wjqQy&F2VH9e zEHhnOOH&J5Q==C*?G3DLj4aG=va`ZJ=9{lchmYsOh242wZ3|; z^z}^ATnDcYa_a@5Zq%zz)ER8|y6p=^OmlSOmzM*Vs4z-&g+MzWm?l z3_k{tFgflmcd!r<6O#-IW7EmWGiWAGKS_~}+U!x3MFn|XCQa}-!su`*i#>h%j)sAs zU(@4wZ`N$Z!R#ceGgn7wYh`Tg@PKQ~HSxP%y+qK>&xbh| zuq^Kkzrn@&`o%zB|J7pucjwigxOQt3A{yZk&lKkz#?N5c({pn_BczkMs}T3~>(?Qr z)@&}_U+3I5TDgi?C;ht;#R#?*(3#?H!otGlikw(j!&K)Su}VB2825}D*i>t~+Kok0-8 z5)00QyeP2XlW~0O%$M4t5c!rfP$>xUeejKXLE*x zXlX@!iCMaGtB*7E>iy?`y}z`+v7wl)Ubxw>7m%)1Za-6WzBO{R$V>wj#<4To`gLV; zGO;y^%cLs_75UICa$<6l=*EpSQ9rWzZdswi{KZc7vW0 zD?Nd=--H=T=?ZVQ2&e@$H)dKDVJ|p6j$JAF?4=Y_q&f!+O^8TH=m`i2lrvSN;nL_D z0wLza`zH=3?<3wHw?uG63b+)h`QxDjT!)MkBqTSZ?#2^=BiV7YvyY^cn2FYjf`mw2J$-6vxH z6!H=hK6@((;2;bA-}T(;zH3HM zqsX+gCtb174x^$~;VAF!?rz-wEq;G{DHB$b`NSKa*LgFI%6(VY?QpGr#{GTF`{OuQ z(TRzP2WEp0vbD-p!~&?4U%pH^JUqO9^=kY>v%$GeG3wCr@&mheTC8ykFzKU@Az@)D zecCS4)hEa0wdjT)4`gpCXs=?MAuV$WMySBZ{+>{{S=%^B2y(>A)Hlf zvynco;rYEOOu5ah%oe6k7F>n6Irq5y3$I;9)$u+CBa>8YjAnG(LaWa35VEtg+wN}~ z`3i!IwsPHiAuRlsm`yv&pgGKFcl8gK-C>u|$tTnPZ;y}mw-hBLB&znWUAtCbzoaf5 z%`HzzFH^98o)GKDwKG&$auZ*q=qfk6BnL~Z5^2)yFue=IrTI-^ESWt$N@l|)^4%%Y ziq_V7`&*dQkA(CYR+DwaL)@;r-<)@rvo|+wN&Q6amWS1rhKf}mJ$j8#EtqwYkZx|S zGjV^Zcnre$ZskTBpE2Ny``$DOvY#A=Z6P#AvqC5G;^H4PH8t1K5s{G@a8Q~tI%A

1k|USLKOinE>$iK(SlC_u%^1Y zxuH{KsYOIY80hKiDY!W}IFP6?*IH+(*Q3Wl>$|1QFksKb6{*&XM zBmT*ytQviGqn0oCjRy{k^dXd&C2$b$yfqB)IkS!TjLc-JfqgdEmNhSzA}P0OsWK zE`;+M4HcOMB|&gKd$+?6)PU^4tIyi*dj=6wblE!9+9Tx-Y@7F|8_P3wJ_963G`TH} zez~v5{L3YFb=4BV_Jxu1Vu-;9RufO%_NK$no9BWnoUii9HXkYT`S79R_~^iHs^Kco zhU>;Rj)G_WfJPQXdd!~WJKY*DwRbz2NP<-_vrSJ(Oytz7yL^R$ z``eH5DS&S-?;Vq)!;N+cNy%WEN=Sd_@oQH);ytO{HsxDm1%?)^h^JIsMZwQomKasC zo;^Py(Q%bOK0ant&54Ha_f@)s6{6H4On`M)9-o5yx%Nw~KIB%AiQ=Ts+iVJKCWs34x2BfuL z9*)Sh0Ib;r0z>(dwamT0diAPq@DXwCXr)W5PyiWc6aVi6 zQJGkNqvJi`1v7CgRR`voZqYF@mnssquJ^v(1J7&`(qWs^8kqrqFSDHwdZDLBL`4;w zEB&~6UGpf~-rj!u$`1XJTP$p+>qtZ$_Sv)M+(RdRo0z`#g^eSw#Cx+7gBzAx{~V{K zr3tTKz!ivVCO6)_e^1meNKY>Y%VJYLq*afWp;{?WgrYQ>iozvf!^Zb;W64uW4+b{E^+q^n8S8?m?snC=H_;Zg4LD2 z%<|7K>8)mRJXX|fdt5jTsbAfY;AZhx-L;@;t8+Lwqn3QC-pNTxNoTP$3LAT9)ZYD$ zj*cc@mfb(#S99qd)&|6eB(i^UdpgF~q`fA4cc?6~&?GJ-L?3?&{HJfEC_g_RJSg{I zuevvz8{g2-Q2NWg$AF<7fULBrwY4<}{#bx5de5I<5f}lZFZ5;)NmnPI!IB_@!Z-v= z=x8&z&Y#l6?x=9ZyDC`At#32NVYE|VXIL@K-Q3)KCN9^#uz$%u^W{v{e#s^0liek` z=-Ec9DazdH>T37hKiUyxm8ixU)U6V_PK1C1n(#;TOqfDOF-2FMMi=3 zw8YX#xhh>Siid~C=i^6tDXC9L_0Skhe=;e51557OKfv*6o6rs|ZmzE8#vfcpDGh=f zVSi|%q<+|K32rRg>a?THd@{9lbaVh#zZl-B?w&rE&`7^|L>ZN24+eO~$>`)r`$;!Tuv7EAss*v-Rv7#MIZX>*KEh?UmEij7ArcbD8(R8fd4hs>@5fI%Z>1fjt9AwHTKJBF!J} zZ47?b^LBN0^+_%o`m+#$NtKN=FVq5yjJm7{xUDzRlihp%niVq9lv|E6nY-Uc z-yO+gld|Vunwy)u*BqLFM?j!j?SAyYdGi$|kM&ce&PB+3LxZ?hskI2gxS=f7z5ho` zUex`tyS*X5T`<#WV}=0`0J#j9D+RJ*hExQ*gp5pYj#l~RWPs2DWI1*+Kj-=6aPtLz ztVgIPuW_;XfWu`87n%$eEm4w;6JER4Q)tq6d#BljYum4+wA5(g_eX^5JTxCp1Ku$Q zpxW5i*4T)`#<|>~C@TUFE^+uGWYtH!!4mkL`PsLXdJ zdgo}CCddjMDFNl{0cy2gXyxG0hfD4H{QkMhGz5VoI1Gu?+m{>E_KxP>1yq z%JRp9M@?Z!u3bxj`!WGmJXq;cjFi?C6j}ZK&y>^T;>GL#%*>>;3!P{J&F#rj%P#CC*tP z=lAyZP8ay+Jqg&^2!B;uTU%ss8wmOX^WkS;?@sUtMu#WGu^jIG&Fojbze5A{9n3zi$R=+!?ir4Jr&s#SgtY zK!oG|Qc}WgH`nnP3KVMx2i0Qpk)8r0#q&5g3m|MEB`6YF?$|&3bUd`4H{fD%6C=|5 zYivloq1sNqc& z6zDGCLH0ymxQ~#{f=xYxFcoT85Nb3YlM^F7m2T5%K>3(e15OL zj5*56{vjiiFO~&?d3|9+W1~Fe(;Q8d@{1SIXU|FyPEcMyl`Q2Zl2WvTQd0veD&3|R z7c~=V_?BJ4!~hQ9M4|8p1x2=jGMZtU(+!n~hP$(N*vYdaee~VNVMoDv-#{b$P1I9l zxsN{Tu^Ti4Vdyo$ss;Q?|J}Yf-f(KSyMZ?z1_XVmcBvQrKX1$mkbf+!ub#L&CZiPt zgQYg!6BBJs-QAL)FLfX7I4F7J6EuyC21VU0Jx-9YWx*%8nxiU0uw&KS%+KEkI%lJ*&bdeM^CpGx#?*D$$ zSbW@-Omno45e8sc@$nPL1{Lc4yATzq`?hu`-L8|78QYzJM1y{Nextx)#hjMrH)wg% z=nRp$c<-{gssrBZyA@7wQcwewJ3Gmb`|6e9u2nZ?SU{9u3uT-(>pcEm&pW?3@XXgh zMn-0RbyaC^ov0^6nOtE16+vlf>By?<&ozXuV74~O+c9L( zhYI4$s51$h>3QFgLr9ZqL$I%(8)fxa~!BJ6}_!RxQ zr8XYDUCF*%wIq5#)RIK1fw%dQZln{l9*V@qY8wxie1xD&^d(_?HByFlJ~=8bFdrcU z;msQ|pz4xEx!2`+HlXEn(vg`4&Ak$mGC`*s9wOvk7IUD;hG~yeSv7x#HoG2<~A#)zA)Qg^8~juspTgiY{5me?{)c zPVt&rS}eU>7NboIlp7P)6Thvlkao!iZLZbpq^ac-6JtOEtn90X79#^Y1&OP(C9=)d<4N6&SRJ$vWC;E-m&vmAgKFw~J#Pzb8~w8!@>N2gj8 z+1vTiit6k0xw;pRh?$uafVq(e{ub)_4 z%&Mot#KRsv@;Ll1wY9)`SHXjuc=@y^T>RL1lQ&uVL_6iTO%RRZ1P}6lz7u1rIWPuf zkOgHt_~3+cF0-_xB+Y6vrKzp0cYn)-1_kP07trv{UzghFfE#xW z;c+sgcqsJEN^hC-RsT2nH-xRz7cXB%IxE>9J}jtiX|bW8DYa&|(^++d4b@|1MTIqe za;9df&sl8G0*f*2t(B9vVQeSTfWpLX3uu$C5PXqOJap0NHUTt7eK}ulZ+TAs!AJVs zmVQ(Bsb@516mkQHHAYjTKiMX`MxBrv^tnVeXIn`|C;^F}4 zZiR#zl$jr_Pcw-JL6?sO1^Qtc;?U5h=m8Zor)V%x9SiI4EI@A6zNSIbJ4~$0LMAHs zC18wNmEqV1@Gph$-wm^tGquXMi3w*$j6tyoO0u4AB1zYA-Y3#33!!0S%RMVbsTlxD z$EY*Lt@3zZuJ*U7s#J?TGz)-aNrM69HfFMwQe{SNn{mimT7IBGs!uL7wZG?Sk9Qbf zC04HuRd)0JGY?KRE0lzU0%*DX0s@!Nf-7n(6^3P=o=-Mw2)dDYDKH&)K`G=eW!M(o z8^Mvfg~`37RA!szMc|S7Lv5}vOD&nxL`7{x6`gUlnDa+!($wf))uI@V7EH%eze)`pR9Q*l%-&#?oygFgevk4r8>9eSNBs z&W(&fhmGrFwGc0%adLE=OHYmMgvuhZzn^2Uj8i>|%c2Ve?CT^Bz?~}-R;r?qu84*y z#(Bkz&Br9}4x6clj*bvY!FoOU_ELLa-%iTD7R!SNQn?lEQl7ZgDb>fkUjc4jb*F3r zyUPTHFW&t~yC*=XEu_5MCB8T!EQ}7dzIt~!{Jtfkfni~dKeSvK)-vj@4rgaS)}C8n z+-VyzQ|(cP*39+m*R$TebBq!4kg2LV(`V*!xO*R^;OOZ122=B^2}!sM$PZ*}KZ?Da z-fWFTwfvW_et+08�T4(g$WBFt(0MHJ9}58~gftQzfB$rP@$;cQ81|CcMe@gV>W+3#k9NA)BM&b2u(^$8&;bxHvOmqUW%>)p=(UJ%?sE3`pp)Kc#9QMUi6NeQaj7f-=g@E<+@W^HkJS8B1DC~)Q5+~~Ctm8|3 zlu*8sLu+VA62on!NzRoM{PTH_%Zgt}TwI(;b@_5e0_dum7S#fpHQv<;WSq+?t&xQW z>;@+7u_L^e&*PxA`M`S05bqL`UgyqM-xv%GWI)2rhT2aK_EZ((xGmNXUFU}h4GYU4 zW>E)fj2n3n!lEH_N3zBObfuU}JT)0~D_U-5Op41A~Ri9l@Y#5PdGt$xv7v z^MGrA{5V@^AXxx4NQQdhh047dJ}!P$OINRGjKJm_zQMf>2B^&(_HwVRI2{{(Ai&?2 z7ZzR@Vz^R#q3@TwCCegq-%sS1CrfV4Kz=wS6j?|#P?vF z0qJ{#*xuOOtO4XV8N`ZAjbdmvB_D%ysPWKcTM8OrDxixh!E}T~=sJ4Dp--tVCt!Zm zCFfH%8#5&IagbjktWIZ%~4){K0?1>)Zh`l3`KXT%|&Y) z8&$}oAa$q~nz?wqIf9Iy9OrS2(kK>Xx^+u?etsVB@?`~29QlQT4U}@ab$DLhF;(Yk zzh2C`0GGuBvgxIzM40o*RL(3~=$gI?e&MaTFN$A7liM+)jFJsl{{900JQ0^u`wOCs{VGURcXnB`+ugePbCS| z-88debbJMKj=)Dq&QLwn`;?ZBmCW=zB<08p%Xb?2982A6)wIH!_}&yw5ik zi!LKgIe4l3Gp?&xg+10GAVA$~;OQ%~A5LF^T<7BkFx%H!l)zPUWJwd~3n-n|bc=p=q zj1-*88%`x(u3qAQ!!@)**DqW0RHZ1NG{u~K&2Jaki#{CjnERR@B5bO487ljW-vF`P zHalJ38<*QJ5&Mqif>MaohYM&XTS(6aFJGqF&dZ^5+ybavvb>keG9{|aq@uaCg%0mM z4%!^HVOxNbHNUJHG<&Ih!*&?OINUh<{(UIJqAmlt%_ZWN?!m&$>(F_HA~TeMFbBrW zFl+TL&3%2jKinY`s~4O5xgXiRfkuCt&FnRV+mmq`F9eE}rCUwDJipCnJI4kMe`)9; z%fFa#0+N&QqE-SXKw`>los^)RNxT%rY4X{E98or4^kTZn0j8?(p+TMbNp!jR7qW?o zqRCy>_Uv=wp7@NrLVmF2C6vphsZ}6-tIlnE;~ypK*5EL)E@w4`=YBm{Heqvca6l*^ zRKOhxBGqXYW3y-|X4!9CK5wqKwLqkT?FyM$C0pG}u|CfjjRzZ8E+H+gJW{sR6JLWJ zba}9lNfZWMI=hmq7lth8(;$x!9|Z*mZ~gJMFc~T1T;Cy(Q&PGEx)~B%AgOnGUBSR$ zN9ERfGd9aUi_UTRsE5Zp$bIMnqf6&;z2~6o3UyFs)#17gi`sf7jPQ)XYK!J(mzJOl z?i}F(f}<+zkJ)GiD$Z>?P$g^kNu2wBGL*s=3;g44PhWeFSUT9q7y8^9EL};;TfP`( zGk{mbdJ%HP(==6}=i5iB@q@9TaY9Z@V^U?s6!wh*rPg8*-bZL~9eJ*CSJKH{n3e(Y zRH4cY+LsICKe0hnQ5=ui0?isG1hk-BAydfe$OUdhdZklDSev4vmZ3EWPa! z9Ey5%t|^Z_wR;PU@~3BJU=Zh$CsK;DXe6MMo9`@)oe-6lmq#5yW!U%iF`LQ$W;zJ2 zeUK;VP_V_Fsd4UU9Ub?eA)@B)?lCsd4)qt5TUqZf&4S#%1|6jjA}ph$g3j9mB@KRIeaQtS@baYqKd@;mAS_^9>RpQ{=xU+4+sAR*#fmOKr_*JoY#rc=vo8Bj1X zqdeP2Fk4=uog!6oy4M>UeI6%#YTzrO7UZC{1ckVeRNaJaf?B8;oK0h{Oo}d8)ZbMW zx|`H)n`%f29UwUPWNEOlZy^7>dY*o~)80hwB_#DEBrHR&%GG%1fWo_Qp$CNc+dy}K zgvj-tj7Apd)!Qehq%0gC@TtQ$kl~}(XL1_`21>;fFG7~w+8&~2ymwE$`nc>7lv>QT zI>UPaEKGLGIbSI}A0L3MhX9=>29Ohpu3x{J(iBs3RE7{+(8nz%LNyNB5!={4u&<_} zp?c$QTBYl%J;=POF(MO))1J&NtGe!RYwp}Mj%+d;w-X`yXs z*5CmG6{q8>3E6`=WoQkd*m3vnh~X3U*VoiMNfdR<0RgzYqy833P*4yFMI_<8sHGNJ z@Z}?ifJ`=if3vhH$qmQDfQru)V-2@!8JexZ#RT1WD5T5&oHKz&VjxYnT0Y|#FEq8G z(IN~Iwi0-_ubs=zvWn)g8tCFV;)O6%rX6&h$Zo}MNExbaXlx}zMJmxmiBs*eBLi^3 z$e!0`cObYf&IQ6q)1jtw4DU_@XnZg!*8xqqLTJ-!Rk;o%$WGR^_I!P;6zEUuFjT4| zyf{dtI8{|*vv!$((Z@GG`1WCRfzbU&s$qw>!^6FXO9RLSQc!$^LYiJNcg|EXE3loKRRxP!;c`W|K&A&7x^cDK9Ms=S~j9Vi^B~Xo(iHJE6 znGCw+>9CTfoll2;QI>57_k4ul6{#}WK9So8=0|p_A&i4%HxR{ie8BKTIZbWO z&DGi>Hz`$zp~oIl6tm~gn>spUu9)HBVW7jvIIS=P0|O}Ay>GA&>}FbwuH0Ca=)`|i z+CCy#n(N8r@2-l7DWk3%T0jboPL3-F^Jvwh9%lFDXz>-kY-NOLfrauFIyJYds+&$f zM`~&&Q!u|`kZh`0YWkXgL~B!3j&{Tl^8%5>yUTP#HJlv|WUf(Zs|4AuPkkgW5`d{L z1qB7DaZT;m%feWOjQ7^Z3f+&$Mm#*kvNcOJL0R?jG1h#309`f4hufcO^D>n0Ko!9R zS&$YE)UqlT_hlo)rga$O~Fwi?DCSHVwh61O?Tx9^Z2eVTkp)p!k!k?gyhgBP6 zApOE5E+41s?mtTd`I4Yz7k=Sh5rr8U+D2E+*S~4(zdex=O*9@=R=+<)Ft`3I&P)q= z7UVb;q);f45l@2X%pI~{8Vn6Ob~n&`3@u+qE-tQY^{v#T;n}gMhi2w>yN7^XTQvlP z%*WYk!R0{tBgKP22GlOjaXZ+a`$$jK4H_*y3h4^P@NU`etxuE7+}If~q)vxS01Z1& zn)$6h?=;Eq?WUF%=5KCr^XSC-$soL)XBc$7-*?nZW=6a}` z&9smwT8`-f??8t@1Cm1hm4dbhYe(|h<$V%OrIl+elm?waln%<0$-#Cu(u6>pwM2403F`T#duJmLm&#E*2pYY? zS=)Thn;#xpjM6|ue1mT$CPvHl_|OSprp;K0!J*$(PHxq1@EMYe@(g^Zr>2q~n)y5= z7g{z2BADD@tQ(Z%HXzun&^H(qjtbH!QN-TiofdnosT#i%J9@GMKnWjhOp;8>`( zHU>>7yIJ~&c@egw6Oj)=?r*NCQS>7t;&(k3g<+rvmg91$t`Aph3S4$reYcHWq0fRNZ&^Uj^AMnX`o^y-ey{mVt!C!PU}JNoJ`^OK0s-vq52?Z-e=U;V_rP#>G_}CFt+6VwM0&S}{?~Ba1|5 zG1Fx^Jr_J3vp)R*G{3&J$@=RzZX`h~TVZt6qdm#u-VH?6e+AWkq>x7rFtT{iMUm>2 zUN*J|O2rVU=*6g)a-f2}w^KeFyT8z9@flG8*eW_yp;@o|^r;;WU-{hck9sh$TnQo- zr}Jjt-pmLhuQ zr`MN{W+AXMbgJVYnrr4lxp>_DL>}k|B&fkiK8G*}4(O}sz*3T79#UYdhXX0WLK&4A zb%Z=TJp9OaDvx*dBEndYlr@T;GTmRRfDu#-CA7y^{U;bJyNJGykow}`0FM+v^CLqgJ94lP^Yvh5<=NCu z*JPVvL#chsCDR3vR-I=e3|p!}_y9Q#Y5TgoSyEI`fawQSKMEcNm;hw_=C|dR+@PN~ z)?96RbjEFG1IO=y2xd9Aj;Kt>@>{^QYv#wCH%sjP_hzlB6J=YhKu$*o-ot@n0c)hu z*{qLY|2k1h{C@9%i|h*C<;^N{^6Ns&KZYWH{CLzFC!`ak&mPeOy?B_Q?KeIk5ZrwP zbIXi5>psd$8Kvz%sm;129fnGXAr`T|angOy*MkY2KtKzC4W;pYz~biSW=R-ItkqOo zyKrS){&QUTwr0b>6`RdDM?OTS@;EsdBV*SWe}id<;b#WLl)1t_ZKjzfA4EjdN6Rhw z@FZQLzMOBzgIwsj;^p|_cx0p+@-=ZYj3s6v^9Uedo<5)9&?ik745>&O2(ktMX7&6L z-!BdpX^d*GPph}xZB`WetsCA5Tge48D;F!4Mclq$f|iu0zxo$=f7g>wFSb->Wm*X? z)-P2NizWu1;PBo(TXDs1v0omB%$O}ls67tj0nxtxu!AQrIs@;BZO%klNCZI~#zW(M z4mv*_l{>`CM?pbHvM=aSL=p$6pl$L)yB#kU>vZeM`tx7DG$0zs|Ge@#FHH8+nU&)O z_YVY2ln~Pe&wIrQz>dno9u?}<<0BK|=X0RT z5!c!qZ~Q|8lJGP!x~D?0pd(+BbQ{c-27K0q-tuopN`9{ciG65k)(lD zR8Q&1M?^>%Y@r5|<9Mcgb_+d2T5V=la3?S;Y!aaHxrjTo_h^7V>Cs+4sg4AP)*HIK&Ekq6xa6JCh%uGC!s)Csoj@%;j_d}ziy#GDHFrP!Xrj~L| zNLn)vNzA=n@tmB}=G?1lv{DBIG4d00J7#jAH%m=k1gk$pLrF2zH!Xd&ICbH<-1ONR=wxOosEba&io5^F&Rv71U1r3mQ~}C> zR4aS?z+8*3+0EZB{roA&<;uqGgWGquujU`;{^-s=*+6CC!jl(8?D=@d+e6(W$_}C1 zy@GnL*&pVz&EO$o$B%79WwFx`VYt(rRP7&^KbT^#Z$QZzqM$zU{zVq39x%^=4J_l& z^7M%|`|H|$EJS|^zPe&ZZ`8&I(m^&B^ivBN1{drv6w2QKis*4GGje9?=@e2nkLSNM%)DQY>`+ zJRF^LREMRdUG$B+>GW>OAHDW&of>hfR=?7Hp0agKeqs94S!Z$9Hkk}7)i2wmXG7c; zJC<0lB4=L2LDaI#7n+K*ycpzpa6GrEKIRYR+CMF6yHRO(f5eur8Ii%T%7x*aB@WB1 zq%0@rR=Q|QZ&+W?zg1^kJ*fPI79}>g2_3gKv+Td;JP+p#cG~@_pI70#92A_*m~v^* zj%L)j+UL)i^>s`1F*6(KWv?MEI^@j#=g;z+(%Fo}ooCGrbknA1B@Yd8E&Z{DkXq%7 z$}M4)WxJv$Lu$8AzkCJ0T(7jsv51x?p+S`wQGXlc%#-+XEl=yZ$9?Gmqx9nB(`SLd z(ZeSDccw9u7IfXnVLlSLUX>6u9TuD%!*`rF$hq#({&R&3=dRoQ;gB}t>6yvkrYE}! z{H|T5+V7k;H+vZNkj=qjP#rzOQ9yrd#CXg)-hF+`wi9v2A`3=;>r-b;0Use<(RNcV zG9q-E);9)s57NJIIk0`QeJ*yJ#g>j%a+ZylpMUiEy)^r+yg|dupBe6d=Wa%x+Qy2y z32q}HFsfQ;9Mb2m_xkc^a!7DwR`epXh{}~^YSi9jtG$gQB%Du8mU2URB@?pH9kOBe}F_c<;t_HBPB=2TJ)a?;4+cedKC) z?cvC1BzuO+EmhLMJk~ntrWZ}ReGFqz(w8guRSrZ|t|(?i+bN7T^;af7TR7E3HDE_r zd;Bl-(RxP7=#(&f`exFk3)hsbx1##m+~~8BbsY%qx`Ds%xygU;`I`s8-?h??s%OV{ z8fDWt=;omanx2}@R{xV+z%>A~;?ZXh&hI;=OIb23aqTi4>;_ISlOp%%Lj)jji{^*e zEx{bHj9hP(mW0lcx3v@<+Du!Aq?_H2QLxc?Y!Lm+_Qzaq)~Cx6d3iqHjZc>+2+Q+p zAe**>znFRkTPrArxE+2&%CMm8`Ae_S?uD6N3?t)NlkU@@Hq+Ktp_h=uYJL9dx1`CW znzqLu-vs^q+9JTGTozJ()+XoGZ10iE0s3&vW>rjM=W}qe?EiKY#^bT;PC5;ba#li1 z<$djrxqcJi7|o%Nf_HzJ4*o4dr!vVHE}_w|cTTV&tmn;I^{X&XaF6 zRvc)sbY~z)OrnC;pE9Z+HTdqGf`l6RwuX9`0&C@TQ9(GddWmLOn0W{#*-g_o@6Mf7 zqu?8LXfCps46A4eGeGqUVt97mTvH@$4)f%U46I%eYvVaSYIo2M=4a=Q_x^VlVE1Jk zkH^)(FY<4~O9F!|=xU-0=nR~s%Ec^uB(NI}&s7+^hE;(0h3U0wF!0-cs9U5(JO zd)5RzAOx@9pYSSv6T#^kEIWuSU-$*+$x1886~DVp$J2`znuK(ED@C`%c;;S}gTrM) z-@nIr!7-ux8MiNgZEev#WIFlXFy?mdwO5_-V9M~*gkGXqg`i=j@EK`~CtMG1)cpP* zcSkFLe)68nSA~Pz#PJ^&(~!AzDl&`oTmSfU*e(3}l}3{6JnO_R^0(X1Ip2nQJd}JF4di?sKr~1wqjQFB%o4aoXiw zH<73JxC@sHxh0q`aB&3&M%2B~3rbu{HH^+=X|A7sFyC;uc9o{~-uKfbH4H1lrso&r z{o`$9In`iA;VbbmmfK%|6Xli@<$p2w`90TKo`4~gnbR4UA}ak|wo&rQ|LnSr7JkTCyZMDwN|WNJ-GTF`B$`7L^V)A_{uB#eoZ4n<>tKWFRu|b`e0g@dHhuH- zACj8Jj^95N2aC-8Fn`Ne^jSqo{5?~{_cuR2*`Sl1Xk4NTB6*(5?)+x`_IG6z$jX#7 zVgs7Nj{1ayhmv&F2g(VCGS zv8DRi-uBpKrJzlI7Zvp^j~f^Fp?93SZe1yn9W7S0Yj@nF_CkQN=IL$(@+5=vHm_`) z?fBDBqueK+l!+anE5C%-G0X+7o68(maGk4uzwVnCt{#!<-_4ML%^1#LY^0@ato^BD ze#_bFM%LZHQS$}g?)i(Qq~uhU6VXOw%$eI=1=a5Z1CB^L1OMEhCpo=d=^A*6IS&Qh zma+&1ChoTD6jnss9)YH0SZBZ7N3$CgBX+MK%yK_mk|)8Yxw^Y2`{IlGe{7HjHrP1u z;kHP+cjMd7Siz#HZ4JvIdH)AH+6LzP+XpHf;j5hyzE!9DFPoT)i{1R^gZ#-%y}cO$~Ub> z74*^4@!)4>+nH$BrMU5obl?A43xS%Igo5Arywd;rlsPkz<3|@*aqe~(nanNg8JcvDZPk(mi+HQ)O|vyId+G?Q zUg$*W@^Kp^5jq}+fA?YjyB#&K9m22D*4X`hyOXXN@w}zHAUDHA>vyl-KQ6|~T+Qw( zR`yH$-iQc~^uM0*(SdO_=$}J0+Y)ZvlhyZzrMuxPw0REX#|yXBvoD(tRZVEhyu_n@ zA5p-)ag&0MtY>KM^d4#MBUfr@mZ^=3dkjX~)aQCBBlu^Aj?8?`N>|^lXL3L;0;4LJQEWoiGOw&s@KQ(g@g^G4$`HPb4{pK zK2)*#&vx8J4!I)8c4kO_e9Pl)X3m*kx_F}d4G)DWcm@R~HQkhNd7X(NV!D@a{V#S* z)j?i)_kFSUXgo??_U+IWR+7N5J3X`9Mx-3yZU-{886?rk%SS)y9)0O`G7<0*|4JQu z(O(F;0@l8GhlAzg`h+R|kumwC&OU!SK_y9hncuDn$$hV=*eCU{wm!%C8+g|uqhBmE zQrF)r{Clh)a%`>6(lj^eJM72NXi3ZK;T_*nuD(veHsfgDt9WYaIVnmU7?$#^mgsL} z>Oy43@49LK`eF-D*Ho@vj(>8{5JPc$>}ty1Vb3QUJEHg8Ql2Ve_}g=@{!K~4H^69e z3z?VhOM9wtcsF!DkviIRITz>RQx_^}6k|D}If7Y=enBW~>Dg zBxQ->@UMzS+gU$5t&wUx{{~^cHtoiqZ>FIR%cXIzWPVleyd13gca@ zuyZ1LEqPHGBZEMWmhZte9Bt^Z*-7ij2Lxi@uoa(i44bo^I`Fjs*p5HU>34t3-{UzP zmPw&H5NunZecB$KG#Vu=*74-|?gY{7Fe|+zBc9P<->(Lp!~1^(hV-H}|6Vi{;Q!sE z6`z`d{EtpTk_%O<%nU2XH;t$d#~v_e-h9Q)Q(>_3cY*Y}mr35RRQu=}|Api+f4mAB zn(Fpu6jOxN(Bp!9qMCcFxkkT#ygYf+MmkI8s*N?+YMPaA_~Ji^JXJgsy@GW+_Z=_| zv3sw$Y#K%@{a(qE_%~i`>WY4V%g@oK%+_{iU@{@}tO`y$;T5Sr;u8M4)_*UjDq0Nz zl)>71r*SC>9VnSpPH1BNw&OVFLC!Pbq4zg`%1!y$;CrKhl9=VVV!f^2S7X-ui!2o{ z!2F*zWpE{#QhiGV?)&E#QJp=rpuqC$s&8*%y&)2J(O39L?NeSPCDs1xnoOzSnwjx+ zk~%$}Ta6y|T76h4o=v{=md|bG<`L)g!Q$TQ5JOeXqQCnvomyjE0|}z(+*tQpBi{+J zZ!|J+XBt~NP$e^>Q=D#oFdI^hX4;tf95(SsT#_wV_VB~ps@#8X@;2P$waYC%FcB>^d>LkcyOxS}mnW^8OFNJ%7S}rejX|f{0)h&f2Pcvu!!7Zv{kJaQ z+!(12R$r+s5b-0O_1WNPXq1XK>uUB|>wc#m@JG9hS>^j*WXg$hhYeCu_>8i5X3t(0 z&N|NLc9Z;0N4FaOvYX>x-Q3f0$Xxf2C|olG{jQvgbGlvh^FK!hgSR~Z4?CzR;IY2X zZetaq>S>fm!~WW=CUDlFog1^`M0#alQ#JR;hKt9If1|KZ_PqABSV(H(zn?E+Q`ZLu zO9thJ)uu+SJ?|_i-ea`sE*^8pKGYgE_+Li!f%N*zCH(`J-R4yu8=oGHaJ}e-m#CD- z8+ZHTJBViSth?^ENT<%r;gX!pJUO?s{K3HVua9C9z-4m(COG_)L!LUpE!CtED|#d9 z-MfGU`J#;2Vuqu1Z7WO((=B&9<1d|ybz=Y55IF&O70eglYrU_?!psPHJN+Qh)(w$k zaa(`2t1HEc3vc`;k{kF2Jw}pQa_Vlk`=rln6Q2X4>i3K%1-3Qxwmxm&`eQbN%D6iH zY;5>4X)~k){!ZgCR*6jZ>upD3HLTp59Dq>V`{OuD`W&YW(l}%@APHYY2o7A)y z#q;&ednL(=b91#vRxju;otkn^|Iz&RGg5cx(wU(|o=xg~nO1&&qoMxy$dSayXna%bYS>>4H`3H@7P<2=_<-Ql%jPMf zZ+}3QBs18@|8>omD6qnHAcJk64a+{P^ndze+f|Z5_4zNII zO`Q*}b*ZVVNtgmZxL2R8ch9{giy|vOHLZQ8gV+3p+BVT_kN~Tz!Crw=1=hLPh`sEs zzXxtShPw;V5AZF^5FXS#|6Js|sFxKptD(`?fbSn~3TUOij5b?!;<-;|(DmnMOVh`H z;oSr>!+Apyt&0MW>DvNMINEBbOBTr1wu;YKj@JvtS+%Wfycl?BIC|iaREatI*Kq7i zVDIs)G@VZd{~u9T8C6x+tw9t-N+b@AA|cWt9SQ;lA>G~G-6CBQ(jg%rAl=8=CZb-?$#jKLWA!@XC`eCFKq5uSdHfS~C9oO=vcq@TGDnq9=O8Dv|&dS0cD8Rl?= zJyYy!wHv6^aTjD(zXZo(^*1lrs+NQVwu;Yqy_%{;&)8Y-!f^bct8AL^i@}RE#%!M- zcn?U-H}nr`HT4e~8*rCb?smxrUv1}h0^?GjF!t6y3x&kxJNM2@BQ;k##MbxFhWJzG z)62ReOi7j?v`tv`e_2*F4|wZW5ZY#Ep^I8$Pn9BhT||l_gq0;X{3UsXo z6#io4HA#Or5zvA^qR1>oa9=LJmSx!}SbTE2mtXVzzkspe1CWvY*r2nae%rSwC{_w% zUze<9cF>1eAD#SJ!GnGXF6nxAY?WEijcYdeq=8-_>6((FPYWCUqi*s3-nB_+m6rkYHWFCFnEL zi#x^EgZPl|G?*asF2uY&L8G}kJDXA&qmRn>V?;9R2^H0!f6VG1c6SK~{JDS!MPF{8 z-W4;WZz8IDJiTxygN<-agS#k2S7QvSWu*pWHX1CT03V-2ip&y)=RM7CQ^ujdr>&Nk z4+%Z5e*Sl7&fH*6dqgI6ArC0fXK(P6d^M6r%jIgathB8&e?X=y3b{^)ffsJ3>rK={%e=!uy zX2}m`$$%f$ShNdBZ{0R5Nq*L*w7A4*Ag}RGxJf)<I+~9v+ zkqPXK)3>*bvOBoc*dB84@l2(z3vc!MgA2wGmO(+T<*g}II$&nDtYURC4clIp+$py{ ze0_@`gXA_@K2Ig5aUQt>v5B%y$UUnC;`w-M##fVl+t;io)Ugq;*wm2!a$WcxNVM)A zJ_&leVQ>-S+`64MqxgYHJM36WTa1FOf3CbHVgKjj+LTF=stl_Cd@v&j6ca^n;WI0v z9s$Pd(aXT39V+Kpb^1Pbqvugpj-9trx3e-W-)Rqji065#?tchF0yq+OnW$NSp$*Rn z2J+iPEL8MWS*rIjY$~!CQI0sSPlS|Wj;zS%<#HRWvGUF5^Eu z$%u({ot)x?{Tb(5@(T;Y6&o)`!8EvgUt?oC#~ZJY;|wI&uT7Z31ze;1kDkCFk~+%x z+`K6iBbY-e^3J2mmLACE)npFnPR_?`nv2TyjH3UNc)5jT84C+W@O>E0C zQk1I`NlYC7zI!D)7Oc6&AB^@>pii}l`C{gp5L}P;w5c1Q|#65OR zLGTw>YU(m0Y0`6OT+Y_K+CfItCNJA5!^p~tmu5Hsz>)dtx<{4TrFnXzN&0thtbT%b z#)Tg$dOjT6&?Y8u5J8u6>cm%fQeL=9BY2Lw>v3A^3<~E`FK~mbyA>JtO37O+*D!pu z!Uxj)5_DXUX{UBjb ztMhVlZhu2*MD+7VDRi14BBK-(ysA{WG&yuE$X$uZ#Z~RzoeWc!o;*Pa1JTKxlc=}in z{1eL^!is};=Ik)aETr;Bv5d93$(EIB4P2pb~v${EHfw0wms3@SXkhS z(bv>mApYIkUvGB_vm_%YAaHHpT!Ut7+6yr8`%+d${R+2izq}!%S(Vsr8LfKcdCcV+ zUdvVMj`hB>4@Ppm1f#dvrcE(U)oZnkI5e>OwJW3}_Ww)zw?bGz>~0HtsPj#;l!jy_ zXwPl+$11g1?JfKO8pg;4ulK_dC%_o47=3AF=VQ*Fol%+Nb%--NJyr@#pd_=>CxoJ5nMz#*Z)&G~?CLg3*y7llHqRfgT>can%rzq_fy zpYbD=gN<#whc*UQpM!VoC}>;}az0`rS>?MfBpec(*cM~>Ks}D~szboU0`OxKXpt7K zDS#c&tKl?i=EMvYc6W{cNVkGPuhgpw$RGC3MQO z^Iz<(<9Y|VG)$9DKAScQf8VnAe7#LWZm?O6JLeYq3wj&JytVk!c3!Q3Pv5y@6RCOg zIILu1_FA*yMIu0K&5eH`+^^sdHhs_kaXYvyg^=n=c>&Mv?;gWs`-v#a-P*C zk*DY#qzSf`>k%UK5al8mP0jn6_rd63;QxyZ$K&LeT}&F{KWS?-u~Z1WwW<-^z~da| zzTiv_k;B^lRWI&#r5Si+*SVEZl2x<-4-gr1h;miXa9_-P$*8f*(a5qnP3w{C66fle8!%S_v;{-X1JFnRI5ET-Vwfq6n;y9+Qpi>`T5Z{ zl;$8ez|K+Qc=C|AZ;C*-jYm-4bVJ06jTa4D zRsSHqOmH{_06ohx9^CHsZNeR!9AT-gxcPClVC$we{Wgq@(tKa%a5or#QCe&Cnm)f0(fypA3!EHyzpTRcKpnDGlV0z4KT&&M)sDCVQV& z=;?$xa$7z8-S-X@h(yhm1q_)&SgI!=Bbp1^7u;vBUkF)xV|_*hK2&a%dbuK_jOVb( z{4&9mz^}PxSPp%9E#C5m68SDHSTO*JuXV;rJ9I&6Mb1lKTP%a6*1=sK+YfP@dlYUx z{AqZDYcdf~I@FX(U+f|L@PuXmne;K^wbWKFO}tep?05{Y8DjZhTkAMvAjw^46WJ^z zVR7obpx)S?uBIZ~wP2+qC5}+k9NSa0y0TzfYfv8coGsW@!;#ZR8q!(Q->0v4`>5(J z01nOURVB+suME%eGBb^zUIrNna=+__HcI|goqNz^zG+D{ig`H0WT?1+XrWme5={vi z5U6%9NWVK23HYIW0Ef~kg~57pWyyA3?isjI4y-DLbZ`X@w3r@^4wvF*cc*z0REs@v zXv7e#rE^=)eh=5xMU0SFQ1FIL=+?60lYw2)frR?LFt((G5~!l-T#&%v5JA?P5pM-i zfisRQk39zTk(C{kaU2d3GuP{;{PC$zQDVQXidK8D2DEkV_7o4VCn?LYTv60AN+I4y zdV47eY*!ZyUs>xq~Aus>&)e?{P9}o=q3RPmQ5y=!@$9v1#JPg&pNw= z5+%Dev)&Ma7q^9oJb2^y3Ir+ct#9WKvH3PR5f}20hK$f7O#CP73{NVL3soxOhE+rz32b+0)VG>ZrjKxM}Bl2a26Ffd2>(DlRXQ_VjTj>_WJWG zQ@X`|1$6(Ym0Ti=%Kj4Q`g`gu1I3P6Mw-fO6mBhitHngkl%9#(n=5I8mjrVe2C_Gg zo;tkejwm>Z)2Pj*j0J+*sUpRCzNZ-H0z*N_1fNtZnI=<_luvr(7>;eu9>$=c5@R}W zoc2lo6C^^oAmuVJJ;e>P;b{z7kC&a0jRLm5Ra-_=zHKO~^=tIoqoel-y=8VUgKb|} z`@zj<{&?O#gH8l@J7#G>Qy3Kb@~*5z4=)GCg18!S-C^~!ISx0=WsBQ$P`FPbC0Nyw z#{2U5EmKme05-an*a|vnJyOz6>TC*da8~0chtdm^deP*Mke60d0A^{m|0Y3 z!NThkKZT=ltFju{KxI{d%A%u7F*n#zg)OxM!Md$N+mv1Mb?rKlZ;)RTAb@Xdt+G94lad5%90OPg zT_Z^^rzJc-2GMKLMtco^kae&+FY0RKH1fdTKjF59q|C*KT8Vj z=_G2BQ6~kZ;%=*{sGOwWS@1LZS?xbGaKjH!pJxau7>>&=2Ij_(T*FRS1-NVZ7u6+E z91C)mzA88Eg_+yN++kPv)bMQrv@W;Z*)EB=wYQ6Em~3lfc)%PLo=jFYj9Z8|u z?2na(SF;Q6b&_oZtlD%g({M^P4tI_{DEzwSj4;!5{n!4vY5Lbd7RG@rZ1B7aP?!Fg znMXQZq3dAY%3L+8+0i^UBEE{Ntx3`n^p=@KGD-g%{a?P<@tld!)4pqtiy#s1XoKp> zofifN5tjYhF1I#M*$8fGMq?n4167i`X*~XM;9o3U)_2%clmig&$^7{kch{Y}MFZuHwsK%P4@zY> zNW#AE?++}gIE#rFS`r{T{>shToFOpeZetnvM>NxO0 z$^am>s#r-{uvo#wp0hi}_JaE=kQKic+eHX#(LrwwI6vmh&u`Ht+HxHg)^l6ALC~t2 z(R%H4BdI{{5t$b8{>1Hkx>Un<*@PU@iL~W;z@6oB+@>aS7v(;H8$}IsWkjFnQAwu8 zx=V|NS`w0NM;GzN@ALCDd(lv80^c&^zx%Q;)_}Umj1W48VC)d^>(|vtr=d1j9$^<_ zMPmE?6c0DX6x{00H>U1pVC}hA5k@F) zHGQ#Nvv(wNLfa`Yg&VbTzwVMJFFasTi|GM;tLCF`StiZ#Sq+vSw zw(cym%XiBD1Qc{Azf6_5NhT4tZE9on2<}OJMacE*HOhLvw4*(kk1;d z<)41>H15-2^YP|vxIxaoi!6OXhs_fq&{Y(X)85tF9yiIY1o78RNz3O-%oX9@Vh(0W z$5wNk!&oc4!BKHEZMWY=^@JWgO2UlV7RKDNvSQTv|8quN`~jJ?uRiz0t>uKe8C(t~F5=7f2}^Bfgnc;Hy=G-Z#FsbSG$vmYP%2F8E?bUW#vP(?O@ zBYvj$gGM$kQPOp{scuc_bct!LmerJz)HX&@ThBl@c}HJZo*Gy#5{uo$;{;+wMK&V8 z3$U_gCgU zak!HIIBq}VAGKAl9AeTe2>^j@1usN9JoGUsQBv^wt*l2bfMscel!=*-qusX%DQ}m3 z?Db9EN|mWRp04-9+J@7SkDYvZG$=)G?@^USuU^M4o4`|VcSK1Xm2DZ>d= zF%z`Y88e+L&rQfNFPdJYa!JQAjTsocJO4gmuv<}JkpM7pviMNcrn_zn1#6@+uJEvi zOJ|L>XxsP3p#z~OonG)8up1njo#sdSb7r{^XbD^SBQfI#4wNU;E4THdcW&^C{i4;a zY!101iv6&h^YBKQu$w2MZ`IqZ&~5Bj{Pe}Pi4l|8Xe z_MY~f!tVPU@4*@-Zyq)7jBRkv2wrY^h+Yr)qdJ!Li`;48`%myr3t*`ORXDQi$}{VB z7zoy2S9ETMDeZ(Z+(+K0EHH0>0?(DiDp;kE3-V7I-YTl`W&jnv%_zN0MF;gai^JHG z`tsC4Uqn#B`^J5J|L%g{feTLi6C=_1y8s?Zk#rEHq%w?mke^fMU0^PjWPsGyM<09c zgdRr_#uTYx&qSGBWKa~pI7Ex-*y|y6R;!@MhF@Z2gR7;Ee%Jns zYs|P@bMmF}M^@Zch@OK1!vn2@Y0ZQv*xh=az#(8{6^wUJV^3}7Z``+dQ*xa5L z1p;^7rj!ri55*j5Q%n#8ac$(yLioFyQ*Y<4h?6zP$SX@M*~6a$OS)f@hmv|uzi8HD z&R8f^ST=k2t<@)&YPin+S_P%Wl*@C>EV6TC9L>wv>a&M;m+=~Iv_=(h2d6p3%f`Y> zTR01qd-Kh9+()jCLdA@CNvrH;-bpsQPbcfWrQQ=mnJB4sA9HQVrj`PVb9jWS-Rf;$ z1EG5opBMi0_KB!)`z2%UED&QpGRgb;Z2cKU{p?|ap}8(MS*(wt$4QHRXVi}S*Q3S@ zu`#M}YwMRSizl~QDF13%_E{J%Cj#@akLB#|yW~Go>vnCBr1(xqxBR-cQ6XK3t9KCXkoDB|O((rrKJoq=tG zH&)Ryw6~^z7UyvRCB3t?RS}2AjRHTNEOeUb#>0`GFxBUfVqR6HDE5wqoo5}?2Gulm z#s|6IM%nE#tXKg2flZO^3Z=M1N+=P)-6(;`wd@pgA?HZ@IJKRKIC-3}vToyeWm4A6 zn7nGMDkAd3QJXafE_a~PiTyUJ=XmZ*`e}ok1C;kJ%e+>&`19*`DM#c}uw8A2pD(n` zD1N`zAZ)6;d9*8jU}fm=MS(Y}Vb+z2lv9n7&s0;y8Y<9@Htb}v8KGQQo%1vbXo1-_ z8I|$X?1Y~;-lIN|JHZaLg*VS=xL{s8aiJzjf(C@cq=y{!i;e*8>>D5jOLLtSMc8?m zlDXMJ$=_ExFJrO%*Q7s*Jk9=8TU6i(lluA)jg!6fPPUQZTcz?<&ZMk15`6WxWByt& zk_^^*9@durL*OsOuy~fS%1p{h%tD|*zp})o4$a?ue=Dlg^V#f_Y8J>IhItVyBr>lE zVqVp5uivV$-XgrYOFsem6)4c3qA&brYGYnr)`ZsX9*qccbrhe-#*&_z)r5amoNZ@N zF1j*{+Z$ZSAN%;;rZg)pgjAybZBS2B1uEb1gxcG?V2lf&JXCB252S6-m1^ydfn?n! zS4|oln-ivhM7m1O=tw;!zN^&v`mI?&USNdj?3SMEAiQkyoO>K z?9>n5IVzcLCs%E8T;?e&Y*PvHe*2{kdB%sZ)HCc~43r9Q+tE}O0R4tg8fLWm zw>4{?f=*tp9-cUFTD!uaCmIejDG8Kk+cyhgYFq^GwB2kRETcIkd=x>{`!gfF%hiMY zISoW6@;^arqXoBP^s~$2!=qB8UGDJG62EtjC=Mib3%?2qLWINuwwuK%>Ki?H8{%Wa zT-&$vxjp0F{n42&z~9o+Qhk?2ntFx`7ezE3 zsK?3iyYB!brB3(KnA3Lsy!n)g7q~*sAI)#Nhb2;+ZHSw<6AjC=IGKDvYX!$HucVz> z$k2dCQXsj9E926w=YK~6QnW9Msv1pgash|RRB_ekZ<#O$94Qevu6Bsf%}%0cJSMHh zobkfiS7)%dGdh1SoQ)(Fw=Pcps;)^WMan2UR;P4X;!1<0B>szZp7_HZ3j^%{%6D55 zR>AXuOnTEe=-ZKl5?SMX^|rBPVWqJ`O$9>&R?E>bJb*7*v!^qmHG zQmWK5bh^Kg(jN7ewh^iRzmr#>ujEyz{ub9CpXJcq`%m}Iu%MK+w_4N&`dr>SWf^~x z%ZMP?`a)_uj|Bv&3%xYuXur~lSl%Ls$g|BL|0%;l!RBk0WR6}(-snMll_F0jAEFSe7ehdMsjRc zrXR8NYZ?uC?N-t&?l;G$0%CqWTH!a2)(WHjCVe&CLXT{Roji7}XB;g6wC=FwXLzSi zXYl?SA@fOq_^1!zqQ}x%ocN$jl+8&2tnBn2fEs|a7JuJfS`|ILZM(HgqGd`!B4*>y@a?9TB#L4kLF?0s9+CPF67_J5aqfW2Xoy8ABn z?8Bi_^rAs+M%+(wPiTp4%CVzuryeJW^VbSJQ};d3|Dflo?fl?htR&;}j{hcHbxhFQ zdI_bt>l$xE1^oh#!DkfFEz?ChiO=NVz-g&r_v z(~pS!%5`IV0@ z$vPj_2H|5&Y!i!w;Ja+}_9&Wj7?`wJA7=^H2Sjt$VX!f{H#}F5jEZmh^$~v`Hn%L! zch#m3<=f;a-l+Hd(#k%eUJ~@q7AHcMe_ZXbUzJWt?rU?a)K2GB0_Q#E^WWqDI}k*0 zAj~mxxCmBTXUbbf(d*~7he_);#ESB4>^$wwovF`eCS5kF;v?Sgl<32g)iAWj$CTJ^ zCy;TqfkkHLb?jdzSHFNT4dp^F=&tf_9hCAJPPev^7@FovOQTqHYwgmZeOoTN+~REN;(lOwlwzxrFvkk>*S=?X4b4R< zEid0}XC_{F;}7?}P#q9q9$_;m&(bESyLv@ONQkv(H)QSvqKy@lYppN=?_2%rr2$6* zB5}0!ZDNCNRm{hVm(56KYTM60cWIOc{7k*RP;_c#em84{Rp~ETx;ydSk2jp{#8*lS z153lUFQLS3Y*wWoXL=fS=9sAW4}1R4u4)*;ZS2E}1sCd{3Y|7+LaGDX7&IB48X4>W>x}^`A#Om*d(FjT-6ulof9@? zSf|~*4=p^&O!1k1&~<-=Hk5yysH+TS%hZty!4a6`SN!h=y}>EJ0C2W^@F84VHg*)F z4#rNkrcc~DYkDv6zJY#mhRfQb&)z-#&SUef7sGNj7k(R>9*{4e?^nW16gC^K=a3`$ zB+2>`J>q9qDjVHeOYagpn6&o|Lr7Sd&EG$?$jHb`1(b8Wf89mwl1Q3f6t;j0qMvpz z*aS$IOVbO!Fia;B!uD>S+MFEyuTwun~;9~L1v!-f>dis*a)vVQk9JuZ} zMHEvr0DM`cmCPRs;+$2n+WME}n-Su>$i-fZEE!=KqtN-)*uQ zfS5f!rIRI^N0A?Z`>t*P>0 zCeQPpt;tf9=?XB&)u1bqO3%m#X~XfUp$ z-w~GB&zcJHI!QTP*}kH6U=GN;j&YW>hkyE`mq}HuTNkZ5g{A8&6lZaI)MXU?s=jst z@@sWHGf|#+C;qs`A~vdWrZI`h!;#okrhD>Fk z3&d$fX(fJ5Y*Jb%NCYXF=V1^ckn7TZMTnm=$v&-(ZVG%Z7My_)jaQdKmxI6g*@>9849_Nj}L4C zMQ{OdEUuF7I(3Guk~VGF4G#`B0iF{NIEP5XeyHW({QLlDhyY&~=nx?Pi^B7B5ql_x zM_$brYZ!oNHl1V3!3ouT9$aTMhGS_5PftTdX@~?e>dsX6AKm%RFww&50%M|ElR=QO zkga*flaYFPS$*-(Re=CVaX)^*&Ck+(QHFvG30CU2{ z%iR4|o0dRyW*Y_TlSY!T{(DB=(wInCmZO?Oe?;PdUl4jahZ*mn#BhCKGZD#CH>=b9 zF^fHCI(LUV0R*=bf>v#!vK!Bn9p2nrx~rSB%OusRBTW3qnL!xDFLmA& z>jq2eh_jp21kzH+N3tIFSw@OqWD>Jcvjh@_QguwY?$!qfeV)kqT;^K6eTssL)9Hd& zmos3>Fcw*R%70nPy|A>HRO)De2`WzyPCHW^9Ws0VPUJpQ3GFTsNqpgQC1U0a&6_H- z?%QDbj@DTk%F6K!FOP*DKKt^x z(u-aP`W=k*WdRI_fC#mC(o9}ac-w&&KiD@togyeWnA>jsYgE+StlE(Z(b(y8hUbu1 z7K-reU<_=*|(aAzBnq2u)R z{8;|9OLS^^1Rv)q&CCv=f~+j|?E-}UFw-uOGP|CbU0Q+t<8L=zgwdL_10oO6}u9z z@lPj{Zj`9BjkS*Vd<$)`)+*LgDbLK67&2N{8}OxI+nRB`hoJhNC9BW0@bXL;*{*3? zeL&p&$X-y8>Fy44+%vr#U%R;Q01CJ7V6bXV?gzl%H&N%z7L@*&kgy9((+dj^#{wj~ zRt|E_o{*A{J-s5t*s^qr=_rFna*@+-OR|+dV!Mdb;j8_btFUBEIeDZ&UkF2b+uku6 zeYJ-d6Gc<7c~*c-dU|Ty-h5=n0XzF>-wCo?btl;)#K%iA9mzo_@@o`p8&oRf8>O6 z9|a`}%yl|;_Cdxdn%;)6Po{+}{>Yb)aqyd5 zVww3gUF!c5I^`sZRc3PKzsOgwz-u4Hi0$WR-kl3Oo{8V&X;8>uWpC?H9`zAf_RRTd z43~MZag(pOdzkOU#q|ISvix*gdwYA@kWrkVrvQRN-ZyXui%=-EH*N__rxmHIpDAmC z_u;D?Mh9Ep(&y^Zl@&vJ$#g45qL`~6q1tRjc~j}NG&nnkTF3ho2x>LQ_kQ6omzNe&R$?H*_If4{zb>0;P)5!P+LBZgYZ_q+YW1KvO{*rq9z+Eht}3 z%ZMyf!wx;$xX0R$``yK5Ir0xiZ87?#{myQIy)D!uoR9H^i-9}cKnvRK8Ccgw+?zuL zLx%w?j}IWD#D4PRUK3qmoe&u8IoaUO3rJBj05=^U7$PGn`O*VI_%~c3BQj=xzLUsg z^TXCo0b`lzn3qH~M{h3XNKCL|!tNgmlF)lS(ER&N$5O5PPFv2n#}}Rt)WKLoPK$>@ceYrbXq>Thtpxg2V6$~Qh;{I`# ztdUJc(H347qL!a6C37@Ysx*wr#XE*)Z%Qoj-uZzmaT#(3_Q*-7y!o7lMVTFg;cW3? zTwhFX%WQ%zrt15Bds0ovYye8lTV2^#;;MCdqH9n8DITFrlOhh7*aQa8CzA@RiJB=r z?kqVda=z5&)%2p`@0*M$$WgWOog2A`cbXG4xmiKlJ9ivuFw2pqPQiTuSkw1gu_1rA zeHa_?vR?HtAFcZ@{dG`ZK2p2kr!!+XU)wHpo~wYU%W(4fg%))EM7@)9i%4AHdKdl4 z(_eH`4T#eP-BUYPHW87|^ePn5Y4t&P*Yo>_##{6(hRtHtUoVJ4qoQhN6bAq61yI)* z|MJ3sVY=sJ42f{2R$qP}^ZUr=#za#nRXlaSp}`_Ceo)%@>mWz-)-sC+ekoUl&ag=1 zsJ$0V>8We?*~(c+N?dR%Ex4(kiu^l{@;LZ<0Jp5>$?<5OVkw}+q^k&?qG}o^^|a)~ zG+Y^c&WJxUwF*2}8U}`=Ls?HQWL-q9^{E0mSI^h$?P7U?H>2q$be?Lm7u3a8Ehb~T zf)Y1HpUNRAvYFxB$SxKjBBQw z=C3^W#~V%&9%BJ%x|m#|ocX1)5z zWU?FcxP4#tJkxR-&5MHvbGK5U-eLb*aB8}LxXHmgwOl%GwGru`L3?!`s($-a#CJWt z?G~ll{86hbZxx{?gAo&aA)%KgMPE8~m>Rs!*VA%O!WdeIv~(wDy7?FJMBW@9AvY-~ zxE%Xzs^?z+ymzV`7Fk$TA~at#1-*OtmmC3^rr=s3uw#|b4^x38;+rwHi+zpSbiZvK z^7HC^RLIMBnCg0h0m?v5v%AvD8z8cbLF#6f~E&k6GiIqH^wDiaX!1-Qkz7?J&l=HM7}5y9xt&}Kk-|!{P}yefG8)QrYeN%8lLi_ z?9`nAc?JbpSl)FLKjLlebo@8tANfTO5!^RVa<07zVqq@r=9pbHu;Nq$khv&Eh8DLR0(@UZg znr42~vp=QYghWa6R;RKRIfJvH9!0^N3gz2CefZXV5JkIh^&zKXL)MVi`Vf|>C{N6D zltNdMQ)wyd@C4ru3+QFxn%pJdKcC7eRS{7e1PBeH1^MV;Vh***fU&cuf;On7*=Jmn zFHrS42j4@lvJeuX=eo>{Nj~*;=O;MQ%$uan%`M zOe7yA`(KRp?$KEu`0(W%56#K?a{tib`QUhRD~-*@G$*RL6Qz-Tf0(_*?3C#KM))ST zTSeU0C>mx)Saq%!3IR(I!}Q#hFJZ9b!CC$L7d-rAx*BhBwk8yuFLIPFI$cWFlpaK_ znJsEcP^@0w`PcxJx8QYvSI@8Xd4LH%G1>1l9B!k}kwf=KtsRm!BY{E$mR1&BXmMbT zqP06vqxDS68g2R^d=mVfs5f8}W5FlXxMJ`J?MR3iA5m_OcIh29*;!lZ46iHIyajhp z1(I@^`P6sOHOjm5wo2kdV%m9Gy!d7X5)+}Q6hw8%1uSY3=|%!NBTuBtmr`p-VS!)<=D`fSa@4h^U$wz0bJ6Fs%lu|!c3X&8{b#?tTFz>V5p!u0wu+oM4 zpZ--D!|fHEN3>jPHuUAomrJvb^S`p*E*V^%a-XTaX-Km--)dCa;8^f5Mbo{8X4IFxFD;o7C#H`f|;r$V3;)_h*Y)a8{EgQ8elLtWK0sJ zV|b_thAKM0Zwv~01RtdbNDJPYn7rH^FLZn{Kl`#Sg~=t^4~Se@1dA4{HoyJwWN`s) zf%ap2BtB&zZWoOFpRQoVc*%t(M-MiDBwnF_e^M03hHzHAm=?MGIh7PWrLpNJM%zwfcE zTjt#iIo_9$)c$@>fFiY0wEY?%!7sYuyO;5~kbj3PMnQG(XiIsbWW zlW2M!M-0FH97l|gD>FR6ia7+PxKfq zX9lZ5)zYxDCab_aJ+8tCl2<{htCSiO=U^tZycy1set?BNMZJGSq|g>LdM=*Q=rd;h z%*gF(sB$~Nc=;u|J93(fv*xLjgezrK(E%EMtpCt&7GWyOSh4)At40n$w-7f{vu3>P0jY&TS- zEeyu{GF@uqjdoYtLgV;dIRITE-^F?cy-L|bDXD=?vibS>{m(lN*aS|ig~I-0*n8VA zC0Fqx&e{mrEi7KtOf{18H8n*Wz#8{Ia_QPOGrf4&vk`S>@^bLvT=95APq0tTlb3YH>dkB-i{a`UG7kC2WLtr`BfM_t(!9T`b4XYC{*c))nxJrF zmHQ_JPYL(?Rz0CzNY0T;6#xvD&=PY%eUS|)b`{+$U%y5GOqMT#ga8L0m`jdHBboFa z(65g3dw6)D0^s#@#!c%xO?7p<;x^6}w7LH(dp+eb2A*h>lWEIrW>wMa8FZdC`stoH zva4e8E5H037)rQUhr%)KYv{ zvBihf$AmEuml#`8<1z4fNrpQQaF}sSdtTb@yeXsg|Kd^rtFs~ZZC`y6^!a>3I|R+6 zLqof!`(fCyb-UN} zk*WTzq$DOdSibX>sJipDM9f(M&&ptPg5T$8t1Br??U4~-#yvbhSS@I`(|i4ZldM`5s`x{u>fk z`D>!+saNjyikYF5E*+h{P3|Vn>{G9=T9zP*@!L%GTfQ1ITwh91D5neh{1LiyUq3r) zm@9yac!Vp;6;WO8IeP?4T+BeHML8FHRToC$7j;OCLpY9-`OV&KTQxX>=0EczC!csx|O;l)uv zcv^w_CVQ0GzF87M%@w0f;j2`8g#>1J;tX}9U$aKyDV=tmslS$v5q@93J<_8McpTMOj)m9R?ABe^<|lh?e+Q~g zE~84Hb7#6<8XW|8D^)JvXH<9jJR4@cBLz98y|Un|pw(n4Q{+P#DV_9Kz(wfz7EJ55 z&(be={8Xfn-`{xCZ%jBMoM+b9pyzc_mJJ>sqxp!X>?n`8x? z^})?r3webN>6(om=!C3afMb>Y^l4!$paqd-(fjqPkV9kXjW%z^RDt;j^4l+Ghs){7 zFVrtTi~1P%Oa)(5QQEi1q<$?M8*MNrxyU#r zS%|3kG^fJxP6|FBnkSQ@k49?662-f6L(P?lq&$gZLmS)3L3p1*E*zZtGEQ(DCm#q9>NZ5lbyH5))LN(xhtg*C`ef z`@oX2eJ6EjN=S5P8@W>*X8Ma?vG09ngE;B zS*#I0k__q4UGx0p4zu#ylSYsu7p%KECd|#|w0kkpR|*A;W?r3!S-71c4p!$=UjpTHVqiSusXuY2f)yD z=i^aDrk8Vw3GBu~;^OGe&f}h@B~|4_e~z0M((kZSbcC4Y%5n1}gws6#!-I{s(7~LS zLm2no_xu*A&t_mut_1`pSN)1!;k;M1?Aj*>^+#q?fiAo;+A2I)0Oyc9rcHcBXu5_f zqya;jo$f5s32s@qIi<2ksxM07^Ily+1;7grdjSAh(=|=!lFNdA9F7ky%2Dgf(xeAl zx_AA8{aah&bHxSHBE7CBSyHL}McSt@vBH1NNuOEdpcc9E|A3jw$s#zzHY_~}XJX?K54p7^Ekff|-r5-&J2 zczCm&@ansC>r(?##ttJZl)P_|Oml_*(?O5t59*LwS{T*OKF(b0wB9S8+#>1eZiRy- zu0*w6>sv~gwvMB0Wr}DgH*|$9qEII#osElac+% zYMcMD=>;~u{|Pr=LAsoUp`wzGo_^jl1f_8D<}&l;S97%gGQ=-4Lc3mTeTf+_y5%o( za)a{n=)mmjG{DpV4-dxO%Qd*f#GRfZ0K}th3XS%BU1FxQE}%gf@UPgag|`u`74rWU zuO*h43DaewEijRtof)FB`>r!BsRshdaqn`cDpR;jA8k#-kx+4J9F<=&fK$B2 zZbN8u>=z3GIv6r;$3yDv?F|Cpz3s|*R!|oS3JOXhRaf(kt@XZmqwx)G(pSVw)OLCs z<%Ty|p>^-inBHn^@!=d~sM5?;x)#I^pS06;dU(_@cy@MYKl^M8|3{jHfV9Nc9KnV z6#%ky_+x_tLYYYI3;swy&VDqI>#@C zo+|6*fbei=M!3K|t--vJ*D60RrY5M2|g*Q1mLof z5X0f5{Raq@VHaz$=<++abp5nYTMp2gdS%)qWG>7Yw;jj%t2$@4&Jwa3yoNB?po|3E zO?-nBCv_=a?QGcj-ZimG#9U8n(?Ya?nV?gUI|^HI5)(pj{4mpvI>X@|_PJz14HOV| zbv0QE{X2lNJKuPdo_7fUAYJVjq+IG9spSlM4XAbK5-(q`pc(!31u(w^Vaim{quOph z^ZOm`woE2;nzba$b;?Pef8Q{|uAKcusy}^_>!>S7VcDIN?8>&(ovS?b>)0NzWZYz8I$5aVg%)kk+K!)E`H~{-CR95q41w^bRi16AX1<$01Ya@0K5jrB+Lo zRk2>N;(HCh*VM|($w}$D3l^*)k)SjK5@ISw#<0T1Yrsrdv$x=bbueQ)u>bpc_}A#@ zHhB0TCx^S-5!!0R9tl7i;5MDl7X6cfUit%HEt$fQIb+n3;Euc;pJnOJm$SJM({q zi{ zVR>0tLxT(z71a&4-$_aRe{8*VR99WsH7qC~ozfwKfYL23-QCh5NO!kLr*x-;bax{q z-QC^Y^=;Jqd*1tfpD}d&u79rKIcM*^)?9PWwHFyXM_mn4>9W_3R}ik`q^U*E_l1^-mYUlI1I|r|bb7(|b`U@0f6~pP|~YOm~f#m;pUr*Z}wF2X#~w zE2MaR+O1!K8|`3t_|-*tdBlP4W~0#DnEPKb)c>TkfkE8wsHr~#j)Y3J>>C)T^n_Gd z%;&lR5#b2NW?0(ULA@p={RY^P;e2IU@*K=bN)}F(v=g=~f9z*e+eQPy3e?cHW?zeQ zC>I~=2uxJpI%UQp=5eQFp7mFAU4ec&k6<8kw6dmC){YIBYs1ISe|&msqx)V~V@^ZkCE^9~ zlg?g46Ic%uGwaB6wOCuXRnzPMkCfc4)4#abLbt>{v`c&NV^R;>k_glm2omOPzVkTx z(1NSy9z+?($PLS-YRpJFXDu(P4hD5M%DAH3SW^PeDJhb#jwJ`g{sad9`Y@n^(&2^x z$JhrB-&|g>DxhA{73Rf5wGqZRdiGS9=9km8qXmw4ysCyFEUZH-zPiaY`R=*00@(u6 z&hZ7^QTrW1+PE&OvUX#DFsvL$$1pQ-#CDKFxwsbAvtBPQg}p_$Q}n+y@CwZvaQ>kY zu%ATr?(S|&P%H6+IP&ftqZL{8OEZ0hs;}yM>z~2N8fC(bM!o+OSy)#N#Cml==ihIT zUxlUyUh?p?*^>p8;qYj);#e_nVbA14!Hj^~~`h#RoEYZSH`O&k$jH9*200Ezy z)Ad%k0chXnGB^D>Q&cg=Nm+kErvpo2`SUp`FmW(w-1sfPxw*L%e0+R>T#Mbm1@z#; zifslv(CMCR2a|_UU&XCyqaGXQ?^wp01 zloi2;D8c~xJ~fx{o>TiH^Gp5UMR#APF0wONQC6lZ&7Ae(%=+Vz=FQ{UY_?)+IM&F3 zk$}`CwvCRRr0jpsMpX-W=n1Z?iEC)!EKs5ZWKw}jDfniX>L;a^%Y25yuUK>4!&wiC zoJSa}W!2{o;#LUW7k}f4!tVie;`HL3wQM2_1E$-p6m~3a3y1-QLZ1bUDa*>>RV^+A zu3%y_&C@s5)i-fdu;UXXw9L$x1n# z@(2l74QmdNt!@Jmkx6&eiL=&Uso0d$n|%tIcQrJ1$z0(nfuVeUs`**L)6)Y}mc0)`!)mnhCq$~z zf2$#XlkboZ(E0`jCjeA181!Kix*qX91M{xCz%-rG*?lP~a&sk9M-+Pw{C;4)zE{cg3|snZy+`OW9F;~P{O1%O>fKpiW=Z)U8DywzAt0yivSHo5KcBoT3Z1u|^j z3@D*KmuJgxTVOr|^=hYrj?P8rD&V#N=U~6vUr1OyYJ9c3Ra8^Ab1ktLh*l9Lai^m6 zpCI-ADR>6Hq6A{J0~niw3j8P9zx+`Z&G>y0h>3~4z%(5?w;NmXYz)@k{42GtF_l<7Th_z4Uv+w4RnWYR4?^1A`La1iZjo!2iEqD()U?B@#ZAq>jrsHG(ZE1M zNnlHiXZQ>U+;xsFF3OdHLP95Cuowy^W+#|qpA;vj@RSL`5dlDdE1^oj$_6;6jP({u z&^!qzBClpb0E4Fe*uML$=n~<1a!MJ_BA_U7KtRC_`CUPsGxTDzt7Z#pZ``u7LDmsP zdM>dWg4uIAfufJ2TDxAxcC_o&zl9?OVGW6hTOy2*tElF(UMhzK5XOCdeQHS(3f15d zeg_*!ZDK65tntnXhgjMF*wHJ8NbBn4iqT7wX`If6R&GR!hM%ductnrkzkTwqq*miS zk4P-hae&U5y=(=PNXJIyI9iVIEw*!2i1zm?VvZF#nZ}0V`+o}20UsbfJ}N2#6kI%$ zQ&WSj7)`soPxFN80K2AGJpCxMv@r2-bU)o{AA_PsUtTGzqR=lmug-q?QN9^s-6lt` zdb%dZM81I&L1JF(8!l#mmDM@kvtyY5cmdRXU>wgDNO66j=;+0}0!E?YMh}yOG5_MJ zTpBqe_B4<|3)E`?7K!Ms0upD5@%VdC2wMk52J9%&4#6X{Vu7WApm?~%i;|4rT2mP3 zj~y%AS$uCtPWHTBD~x5rc8BG^Z7-;SQQ6GRT^7pRawM( zX%`MP@o+=Qa*>{01j0F!b;_|01^sk6vGUmGvXxxPr;aU-#q)5Y3*gK5g{?DC$9^QP z;#e<&`O6sOd4UwWHTDy|xbXt_>9(;R@>G4G=uGX~gMnAS)QO zo`ZbI7Of#58V~!F59jtc47`}bbTW_cT^X8Ib5<^|^?jW;nE%xWY3eCW%~mA*zs&)c8+cYqGS0U82Br@Eiy zjGdo3V45vFC|t4uC?eV^2gV+`knZbVaN8hYs$JQFQ0qyHhd_-(KKi0UeMyzIUaZL_(vX_zXp*5 z=(&#jm6KnVcEC*KnicJ^{J5-QBmelM@GVPM9t&KRNqfSXM4QwWiO z1A!F_QNB8*_J<@Efgd+9?C3`26yV*h;SfE|a?_|I{{{UQ(C(EPlNt@CftyW0!g z30Z1k!^|0MUip}-Bb8WzpWHmKf)UO)hq0+wk$0{P?o2xy9+k(8Ih+1IO*Q(H5fs=^ z0St>{Ho*jwY6n6|%)O4Bo5o;|^iLNM>bfR3+jePn0p?`)GN%i`F;kP5y@3kGcEJrIEO@uCwG3{lCK?hM6bD@v3p-6qm3FcJ9`7;x6NHB6U}O1*hCYe5z%lIwW+t9F-@m=b5Y(Bg zv62#@F#ekNzQO{tv#ej3?s5mt^X>i11m|=qDW&oiz1>lUKEG=mMA7NS#I#%?z%C;Z z3UxFQMD^c!5lT07-!a3)>)4YN*>ZG_i|4x~KjS~-WeN>m$B85-dMNQdrfulwkKs?t z+lr`LrZ=^%3?=`w+5%=zRG_BgvQM4|FuvXdKGET)fEOy&o+q~7Ofb5=It3vQSbJlz z*(%^^8+c-&>O>x@Ih7jStR(Nzvk@tWv3s#oW)d!&wfZ-PE=Z}hJk!OITgqq3DA)<= zI{S_2&CuMaaHvLDet7Le_Ee3=O;YE)_~HMz1ax3}S`Vug0YhOFsgYbAlm$X)mc#xZ ztKIsBUA3Rvc5X&0&6waP3Eo`aar4R7WgwcVj2}eIp~nKBM8zkxRW5&6_@zx(uEO5m z^aW}V$lNmf@qN2WbT2qm^T_2ZLtfIyqI{-pYjB4Wf%xk)KF|gbAx%CL8EiNX}jC zc9g_bxQa9f2&mWRmc$(!3H|G#KBXJ;*uzIYMQjF92?R2K2`=(T$cOhUtE<;wCLxWJ z+vCIi-Px#gtlQvRt&P)OX_qm3g5}rjVY_3?(em?PR9k1NZDHWfiNQ%4!Ju`(GT73k zFZvYx_I6Kj-*>_LV}6$DhQ9Bmna{BPat=;@_uVY~)NiqT*5HM#omAorIl@Z(rJ9{~ zeK+|%dzbUjzXYHF^&6-=ML?GJZHUv76akVF0Mz>l7&NJ@@mx|S*w3@A@+g>2%CC<8 z$P1NAB`dw$9jPOOi;cM&=f@q)b}wU|*Z+)kNs6)`reX`{SGq9*j&4PZ7#Ko`^=9Q+ zwOQ*eL$(3uETo_b!rY0{f5=M`_~qIlK=hFPq}htPC{mEaP?8ut5Ng|dCK8-(?n%x# zpO|R`_Ktn*T1u`RKSe5AeEPePVPj?q_%G7azXhkn#Pg{A#Aiw8ghF}G;h%jxhhOqq z<}%tgTb*T7o36L>s0{h{ie{jEM?w06s)p70GT$V`_ z8`1iV;T0BJ3}bD&CUy>FWC?BQ(wN$bo46R-f(a@hWE}mEVQxscJ zntpQQ1@FIb-2b$3pP#W)o8kJE?AyLeIrQ*h;T)O%ZvOMv6`gJyWIQmdIHfjq`FJ#1 z%huD7Aq^U837ubL3F{*K)WBtwMsLj?pDl^Tm{g$|r+t=sLEzX~2E+K?!h3qP+cj<~e~_@M8a`xp;^=Uqa4^SG^> zMquK2#YBT~Am)<^Q|#=J>^Jg?HTqt6hCM>p;~S5XPbTIP|BwaqyCok>nf#iYEj!$a z`-Z5~!H|_Zd1PQ>wu!4Ux3sTN%dirl1Db`lR~8bM0#JnFL-f|16}7FQf|IfmNb>tJUBk>$3jU{=Db~Vk6Tm8rWQ9ikvt7dC$$N^Yu z*s26mPM;kCmz0)V@ZAF0fhn~Oa)|~k&>aPT+*juhzIui2k?aNbSdKyct0&HMnA>+f zF>HwXby8a2s)|&~$JsREqeZBFF>ZJG)e$GAL)LHUcKs4O@HSW$hBB$&aC@`AR61rO zZ8&Ad^E5L?0?$%MVj&CK#ZWgcp8Q`nON|%q%4Dj>iUg0ZpQuP;O2JZKGZx;kGL57Ynip@}~E z^mdDz5B6SW#GD+R5*O8YCMUc;s3cs!&J; zfP!MGCn~ahI&&Jf`mm$pi9Wo=LupPFatPQ~zJ&{=j* zxjb#R#G3nOXg!elXK6ls`llHXYQiRX1~y&ZdQx?GLtmf`?b0LE3{DT5{{-@tN*Qs; zp~w6HC3g;;g{JrI>R_gYtW!|Kz#>s~dS>3u?FHViDT2o(MEN&|?$v?SofksI`L&O} z3ak$7_v=n&3s*_g8_s?44W2yL*O@`a3VM2Qe|EgAygn)ivAHK$=?Lgcq1FK;W^8cw z0Cm_%nd0$C0w6UI?plExa}QDa8HQN%EgHa3vOK*#=zx2`9-oc%Z@oN{C{_tg?pxhW zt)6fc8XpbPq2&?9%kqp*_)-7Q>J2Yb>S5hE>~H8q#M8QUxnF0yFvCw~PL^ zZg6Oh@@e%x)%O9g$(JeXl#cs2rOVlG&JCLlhvChXUjponCklIe_pw&HK74 z$wq~7B$=S+9l&b91A-Bat!i2D;t=`4dp0cy%S!=B>iZnnr%lOIWrG=q;laIC;|)wT zP#sxh+;=*NO8NV6Bnqk77mx?#ggSm?anhC46p!uEj(?-0F(ZhMHKGB>I!P1-ua!4N zJ0=hZLRXmpVMto}ax+#DhN9qEV!zOZvKBZa1$klOlM6LS1U|qCKdJegS2nlW5K(#| zvHL-9Gp<2fxZih7nfrF3*Ezzk4`#af=Cq2&ixVN1s^NbS-<=|`eas#C)wlq-3Egr~ zN1Z!Wi&I~?QT%372|2r}&A9S-G-7^A>a$#hE9_fz?q3(PlLEuW^tRhx8Kdb}S1S=? z(Sac*TXRD}+yr>^4&x9kd+f4$*K>r9FEF4y^=FMb;~l;iV>|XXl5|O>b{R0}(9-6Y z9{*EXamtYI6qzg*@Yk!gE(p>o;9!sm3%mp}Sn|-9MB8uN_kMMzKG@R+I$u6$6qtKr zHM0LI`*N>yV`n5`$;Tm9ZI*tQb7)1xQkRzsFmhI8bK8D8c}ZeF#V6`a7&6Nh1&CDX z#g8HcL;yc3xil?SUo$?i1KxzN-&Jv83%}=94esi8GssDRO-$`A^5CYHpnSD^W!T?L z_^Ur0peXYSV82fVh2LGx7c8GVO7{VzRsGBJU_)S~d@_F`Yuzz+2_fg`&ReTTxTF>0 zL3-|Nh81pcW@nuqIi7U!~L%eWECr2EbKLaKRFdInLcP3CBohkH8($|CSatj z4>w%A_7RRC5#?@#0;FnsP2KzmLS@h1x=VbSHhF3@OI*vS@Vn$A3k)J2SAbjG*i$plML8L{Mt*HLe!=(l<&)MX`UrAPHWArkoj2IcM&=C7G zo4@d&dks>}VQ5W$8x9ZFirhaRqIZ%XFjETd%c>3d>fGm||IfVfR z?kv{}i~_dJFZif^TV7_M4h)*^y<8~kb8Za9(scKC$<&zs@w4l;Zeoo_%eS#)DdzLP z8s2yf(-|f!CkI@ujs^z@SMsS)@z#BI-<}E+-p9wsbiOXyY_^Jx?Ptw6+G_ii(>1r) z^PSB3GQwD-o`KLcCK_jI+Tg7|&;h@^`fk_p`nw@bZA8(R${IuhQ6Q&gLcj153bI

5=E6n9FDD?zj)8Rh0 zs73s>ll%8R^_p?m?`ebi>nc>3fS3ksco#W}`y=O@H*Ep$e9A##pf^$0xQA#axl*K6 z`f4rx2I>Px%;+z{7pHqiQm$wBxCS({?L(T>6c2YArkn6b54ZKtws4s{PJKMm0)ktW z90^AQeXws31klyP=r8SFpYAzvCp5%dYHbP6KPy&?;ksVne$j=$Jg>@eJ=+EEm@S1` z+Eu;6y#jk?hGwCP^fxL!h&*+Jf}Xs9X;Xu}sZxm)&UoNu4^K$=z19VQ;^IVm3fg^*Q+`6fCKJhznDW=Bk8QgkN{VA;@7ALNsJ3$R$E zq@;AFQ*_x9@q9)`?^e6Q9PAaAUjWY~H+Qfb&UGAmU7F+V2abqQ&=?YVNrt957#5aO zlu;J}ek~#>}q7*JXz4j=A`Zv6o!-D6O`SeK)xQz3-!vX_Wz$gUJ z==%&vpW73KcxqLqR!RcP`umSOE|&zFg3;WTcN{jijoXcWL&P6*Aznlo@ONmI6xP^l z^cLk8nStx8=PI>T@!s#ezp@cD^*qC6Cq6?%dkwqYv;TSHQkV`GO^k0zD&o|MkZ?)L zh1|j*!eJoZ<|b6&1>r@tdFDsxABOV`@S|;Nqd-Aefnu`WD!Fj+R=rzmb3Wcv+#6 z(NUwc0mpk8XkptHgq@qi+x5}X#g6$~pugpT7$8~u2 z>0!UVehK~%gi$Od5>rwJ0dKv}&W`c3I)}s1ygbBDa}Ik`Uel&XO8$J|J!QX2nv4n- z?LAM74s}y+;C7Y?aS1dYQ+m`{bzTQe?(0}xyi$3zgt-~e*p0<=zG$U;jW;;BxN>zx ztzK?8K^yrw;I@cBP~DcI*tNkk(AZGk??V=8xlieD_k&BbGzo^&U@HojtWnmIls`}P z^|e1_6OMV^HW?BD`!63X&F-?#y&~Z52Vk3#h-dJ5vPS}Mbp-Hr4mW!|YWux^F?>{D z+tBn(ZN)irLScC^1q*z<)iNtLoEg@Tu+6nn#yY%bP4lz6v1+u)f59e39B0cOzXw)#+8N~r zxuaeOF>jV&uY{@HnB}CqU+?(pu0fX2TROr@$^*GW?UFfyzx{h5OR%@!>TFH+@CQhe z8;6w@`uMvFQ@m3f`{bCo=$-d_#avz{t7Fo=-ZV`(tnz13Mi)1WEXf=j z1&IDR6}(%H0uYM`hmDtnz+m?LW6rG^#!g8I-P3~uvy@7;Il&<3sYD4M29vI1v#mNI z(JUHc>uzf`GwT$wk(e>xi%Tioo`L6zuF>`^R}CK)?j7z=J|6Qnh;Nek_+(B@FwH#p z!b1<|m_Qy5sJ9-poyg;wEG@YkYh80Z+|8@_CI{$@Ifn0=Cqs*_v)JKb_4-hazNPPo z2$@H77hC<$deeaQZjX8=uTrYpK|iTl@dcI9pznhuD(t86YPB~?1B^F0 zB%HkM2+joj4DzbU$}g3{<=@4%M~S;+2>OE$*4c+KqQlW6Hk(SpZadIk6`Jl`<4$;1 z?&q-Cj00_P<443Ij{fm}WMRw0lO9Xs(wL{e_E(2{3NIx_noT$^e$r-&i;%4q!FRr5|J#IFl=J2q_u#@zf5=Ws!Z6spGVbqle+!ko90TgttG(A1 z@2ROnSQlL*K`$A&Z{j;CZ2i0xa9u@uh>42_fJAZJMU(@!aVydzICZqmc(M8OCDRfg zk{7i7yhvN`lIG8(!idjuXk|_EhH^|EZ!?$)XtBzu=u4F0p2AdR7W%41&5QEVgW3%J z(l?@L3mvCNg&G0G6;{Er>Psy5C z6iq3geoE)1Fbefi7YZTaz(|(3EC!UKV$bj2D+3&dYv8Y`wOgZR*jymBC*SNuvoM1} zW=gcv?Y3)Lc*}!ZoKOh7y-ET)rtZdakKWbnE)U&$qz@-{6;W@=ckH^0UrgqZDdWAe zzmb=39!&TS-E)U843T#S2HZZoa?!>X{iH|Oja^t#Q7DF)WYyBB{8g1GT}% z5p%G;Sx-FZLZ^O}R^A7GJ@ zyH=0s3 zI0{Cy*=o0v&?FTLgHn-Rh+HUztH}D(o1jFH5|d{wt8&J+wDL)`4;oh#O2yy|F~&Qw zai})dhST%c=??8Cd=MLjgt^r7*k_A6VKDW$L+|8mmvWq4jMT?jJz_lGpdu+D30t1j zkjfqZHF!-kVaCzjLPM`&7Lyhnke0QZL4xiyg!CQW4CT+y{*V}r0G6|vF~@ke5S2z< zlpm3M9O$YXTU2b0AVq!kssl6^{p$Ws;*Fi2_SV}aM|Y@qZSVc&Z%w!30?kmT6-AMZ zYN5ynM;Oqam@?!pv7a%{Rq?t>2zgK!C?t%sV zz$xxW(e~Zxst@Pcio^l)UPfd&HU^YFPP>2UH;DvSxh{-PND;r%`n^Z z?}$PO8ZK`t(^GKCGiz&ydKjL&yk+Du#M*^KMbKnT94a3aW{8)C@K_K!n|DqR3bC-h zz1ouL6XGhzvgr6SG@5U-dd|t#YuUgBHQBfAs7xgkDlQQ5dTqjG_$_JmnF3z81ld{R z&B|;8p~V2&2zgT1(n1fFMrFvgmm^yArw9e|-1lOwgpkb4*tbYuqVpB4kWIX77eCl8XrNvVp!IORRyt(}XsYL+=a}~&oq1024_f$>&yWRvb8yb!Vv;+84 z@q->Jy(i=k5T5jm@EWlP6zf?E3vOJ|4jRJiT&&uUDUYDI46p!PjbGVN0_j+?)1lPs|B5WH zXsyBhi@m>El0G3xF)=tcHa6k=w`#H&N`;>U<>W?;LM4XkmQ}YgqQ|Z2m{8wwq8;XC zwIYe0l8UYj5?hU$rF1s-fv~)%h2&E6D_ld}kC&6_Xs(o)%#GG&h#Td!E%v)^ z-?&aK+O*vLzO!odM{nxWgTrf69j#M)WlTp%j~z7Z4}w_E8K-_@N{Mia&rk_;YHB*h zahe6SRC0h}2!9V{LB<9V^2%NFpe&c}g5$q(i}(q$nN`mVf!6fvl^|MdHfvIVD;S?H zVVhL9K?DwX1JJ?^e16uuh1Jj;3cPx6_^8i*`x|y-yJ43Le?@DlmkN%yd=nwJay8nm z50{0qkaPmIL%)Dkt?tU)2{FBup|_h8UVk%31+w0Tw}tf--X!8~W%XEfO|LAyN^v8U z{Dr@~J7GlYOM92h!TNkf&J9go0aFZl32&7*Z&%_kxkAGh+1CG4h?xaFZQCzQC%_eC z3EGPFN>x;V<=keY4_sS@2&!ZA=6ie4F%#OO4`-kI6&i6jR*F~l)!R->+a9AU>kgMA za^tC2=ryE2zOFC4+}M>%)D$(pvCoeDe9(L#kwIeGz+gsPr1>1yq zhYMHbwjZ)pU}P*|jVJef#8r2APjI+9_5eGK=f`PcNWaBYtbY-kMf6oBS*41gAQY0{ zbHK#{{#F1n~cDIc%?;Y1F54RIA+j$N+u^JD~c$y0u zHhnWgKNO3L3KKGXm8K+#FV}_PVqB@Yjv)T!cJ)Tg>D|ULmM*u&n}rY)tHB$%tPBLU z_t2-m@};(jzbO?5g$n)OkvRNwz}8l{wjVJ*@Ba@vjX{bLi4agyQi|-Q#)My9URI%s z8O2xKwXAKZ=;~r+NrcUjcNwivr52hnn;(3Lct1eEin2{X-MKGnvcbm^kHc9)*~@yM zS4;j?$ICko7GE=$WUp9y+#%6IOh3+NsvE_CcINBszTU^;wag-yycc=-vTzqnH|hgh zzCT8Zo#v9P?$>__`Iayl!j#AEr;SlYE*H0yP$FMOXdM*}^4g8rbtr2{xvH_e5$?#4 zmg3kbt#sC~WqN}=Lu{Rn`1gn4Q;!d+s7hhyYB5EU(th*T53ry~4n@8Vw$NAwbicfc zvB_->XoZ&W0|LvX%L5!oXmbi$Au}Cd>b8cyQSJj)SQ}vYHvX#_5pReck2K8d` zdtz@6&Qot=`h~g5YRuXsv5?apHXXCwYlFv~d~z7Z$b2LcB-RpB(dg~iQ7v30w$|!* zV@25so>>c!!qPSk5EXF;VU51u%8xqcaZ@H_OlcKk^CBU-PWtV%2lY2F?4v+6yiO7d zDAlnQ3)JuEbi=+yhVVwU2#rH;QdNjH&H83@e|?uBt{0!Aa#@=pbGtLzg`Y+Eu{iR2 zS29yHBy6bzdE@l-WIu;^tCLieZ)96`-rRMTh4mASpRXP+TMP{{XLly;Tz{lq#7kMX zyRM-uA=tL+-VxKtDHou=Dh{e?};Rw90haI`9qJOr6gC$n~K#o=UV@OU>T*tBC>-)FJdHmbCpQ$gqWi zJF4{w*%c0s%vOjxbtIVekHfsk+V)=681%Pw8=NcRS%(>Mk^?f>RZzFAVZt5tAq8!6lMS(p-ag_aR4DrtvrsqQNGK%*Oe=dvNO zpD;8>0Sk%#i2mMK<0)bGRSji$uefh(gQ4`&a6b8p%YjZ(s>jFfR6@3m+_Puw$$iPn zh~zB4J2!a>a>_b8_#?Zt%afW=mDh8z`}79exi&c@^ah1fW30yPJlq_0h+EdZ=96B1 zXpwMZHQ25%5s=&vlYeK}HPI-SR;MAdQN_mZ`xlf9G0CT8&F+JDzSR(Jnx-cqfE-`IwaOwzaArU_Y2@!{yg(6yxe8?F0H%Xq9r+x59^RL1kI z2)WRDTG5D_lRYZkH>MKzhYW-+tHOlMW}Nh>Rq}4Q=Y5+}zsg;Si;8(j)*iY-Z_=7=)ko+MvQNE_xh%uFZXHhbp z@ypAbT8#g?yF2)mKq>KubZ<)>SH!NXT2ERGYm;hkt1)t3-pb;51M0@@rN~MxPjVO> z=S?TF>5SD4^be*GTK6>!oXt zCCw)Povy>olcL>R_d9M-DuBkif3$_XD2Qn&FF*_|&|(Kz``0?SeudD>W0D1O9e}k$ z$uf0&YN1Roo{ktjndc2x6UYj*T73KY(yJQHb*i_&MM77yZfRZvNYD5f-_^!kFD*NU zC|VXwDoXKcT~dnDA)}A%`J@I%%1>#{j&Oa-^7G{DM5`C47gJWQ5AOG0F2w|K2Ba5I z1sncsGCsTv7vSGbfwM>X!~)E9_8k7nz3W+A7kQQc7!oUWz$w&HI*hz~7aqAGU(RfcggaFX#e@%?Kwe9=`KwMwArc%ZS8ewEj_!DG zhN&2>-wr`l+C#knFmW8DITp4)wBk8p4s;5R`Hm%C8%_W%zULcoI4CEHyXy~B|98;yt8_yq0s+~)@ZQ6Mw8%_r8h zeIkblr(P+2#)SR?Z>-=R2hmvwu`lh%+yF>yGK#wf9|!gIug5louu>IRV;f2Jw&I;e zZi52g*7q21(YRgMckQhDMssXF!lg&bg&^|0xWo1f<*Q0*;=N@r`+uJsBo>wcnzOGc zq=0U!uwdVBF^!hL zg^OnSrP0uC&0(FaI!h5P5AEVW5Ya%_{&A)IQFEsBVX##?+4=Wf{}@3j0@)ULJ`|93eYct{0Yxyw8wtnJpuqE~Bz)_wfd-jSje})suYTCO&UQ zFAT$@tPi~y@)cn8D|Xx^DI^f~)}am=%A$4MhYXKcS6{}wHC)Zl6F9Fa^|&HC&~g{B zV*hkL^*3I(^`L8PanKF>a9@GQbys7G=jGXU%4|%kJ*)un0LW)vcCAQLhv!I zM!K+eDza|nUC93nMQ!mFOJ;Z;wg^BFxq?rzB!kFS3nhV{3>&>Zwde}V_6AKuov);w z!>F~}N1y49&$kr~rdaWMn<&0m#mZNqrf`(CbTT!Dew8-N%s`ldx40XnwRgF^Yccchz)}Qi!P0Ic+??bUv z2|^V?9QfrW@4bsC4{hipy zka9yLIcj3YofZ>ESa{(Kpoe5jH|+ZTe&76pI6#Y*4YY!oK=l3Ct*` zSFnzgg>Bc{9x}=H&lFT6*4Mn*Hxp|Z$NOQ+7*|c`lS*LKxnZOID>7evdKs{T2{pMaJ_MA**VJV<^?>i z0YG2@`=1ALeEf;LnRwtYBoji~lQP32(Co%=tR0H3|AjIZfU@kW1cfp@dKS?$p4 z*1J*t<&i8i^X+is>!dQaD2q3Wj7x; zJ|=v*B>%P6f1(MLCJIxF{um?BA@Z#+(<$C(FB|IMvaw9*R3bY+7gK~PvS@}BHK>v6 zbM$~XJ==Eux!YN6)*+@S7=#SegV@mh_Ed`xkp$OSPbdaIucTV)&XYTnvJ+MBs}cep zqVs?&$kR&QvOoB3UsZ<&hA-Ey~0xHs{OpeXey^9dTjtYI$MIyd6$t!aPZM+uj z@*L&O{uIj3K&PB4RjN-SPTgK@${hi!4(iMf`RXikp^`ZlP!MV&Gwkq=@xnUFB0D~6Hy?YbIpy_pQ4DID#vs6|CF@RPhx zQe5zH@bLNR6bJXC=f~ECIwdFZU02DOH`MCrd<6eZk;8-B`!^(1{SumvtE58?nr`t- z>2Zvq{&hWl3yM5mBzRg z3$%(WDx!je5sGRz5)25$!T%CANu<4;Fptn9@s^z>;^PA-(5>l1*oq~q6pY_tMM#A; z*|3tDyc_^)z-+_5@G59~j4PR&1cu&W6(WYi>@0v0mDPYMLNjdF;}J?#2y6b1ZGqb0 zxgpYCUr`%FlUfCoOwV3~rJR%P-R5F0jbS_Ta|lQ%7kV)1L47ZW9ZQGU0C0lKUu7Hp z!;n5Z=&+qC?dzKdd?RteKW?l;*Dd~7nCIz9#KuC{3l*Cgh5xJCf%V|g4T6l(TH;Q$ z-=WyYzL+jRk-<6c2Lu%C3K8it z4;QK{T@$g01!Xgy55flVlw2FZ!(} zzdNVC>T-e6hyB_^x67tC62Tv~Mtk!S=dK(;_; z9dI%{drkFA;vn?RM&UyLohwI*zlxl*Ll-Wdr1s*$V%?Mr=aqwb2O!8tRSii*(em=D zdI%{bhyT}Ck5H)Oim^0n2Uh@egXW{5rSgGf4o0&XCQKUjZg8>2?Td4pt8MPpqiqFsUU=jCgc61Zmjo%Ktbyhzc z`!L6Oa#C$Nk!OkzfE!SDGl)>CWMQeq<50MzGz1kn)qWqWlRt#-uZu0m^6HhcU%R~*ZFsor;hyiq{mh{Vuh|^9!!mT1`axg8|D`xtpF0?=#3t ztwHu^T`<@upIXV}uU&5AZFn40`@wAh&3Pja5Foc z^<&avbFm7i%j3bP`8AQEtcut&l&h5HSVJz;>G%Pb^ZtM{ z#n}bvQiC<{`*Vg*wo*3(^WUjh@DCe>wnzpEtKVvx0B?*pqdZPh{BHtf=&6cw|8=~R zo@w=#j7pc1I0S?q&M=)#^3hvunv(}Ek+R^O68ZD3)Nlo;cU1VN*Ri^NxMO5$>wn2+ zsi-Z!MK8b!%-H3&4eSs0t#!h~SZ&udy+Fd0JKZBuDQZAHjkED4Sb#MNs+GxmZ~1sa zl9F}Wx+;`9ojSg(;p8Iu)~d`81`;pe;{G5>9|r>p$dcdg*AM&Il?vP20YhNen}P=N zdR#yzquN=*Hy#hx%3|&iP+Af@a8Io|Hixj!fhiXq4DVC$HMGk} z?eO{k_Nd3Mj^VKUg4=u}5fvtJ^FwKPM4^y! z1pv#Ih9ATWI6N9G5S)J}l@d!2j?r)JhR~Sm(qz6D@})33SZkT$1^&Zo`WRdc3FjDN$%z~RPZe#i>Dy*gx)O$~8_$%d)BQfN;N=OnEZ3?Pa z!wq%(wdQ0vOC*=sM8G2_;d6-cL7nt92PSkRerCcrK(8xn9FkB?2eG(Am%lxwe;N{Y zypZlfu2_w;Ce<46zyvT$HrJ#d~X!E4FwK%u8R?k%=2$<>dPJRx=~>`Zp)mSGTU_ zSlbkSc~6)=-pTFV(gnpelqByGTxmCb1<5Y#o3KhSyKaDRQ?X^ThBJ}@dGy6#Vm?xv zMEXEwy6Q6<-hOF?QvLoMSo17K`rb48!^P-d>T;874)Ety3q%k1yx|D_4)_)FzXO0S zFie6HZO9ov2AmyM0b?IP2m+UJ{~X;j40aJ&5@n>wXm8hTxhT2AL#HvzBkbYV!?!OE z$DE6*76Od~j6h6MQsk&5ZtHQwfSc6;jv{(FLpPQJcz3E^OVisehHp#Cy+Hbn{xZRN zlRWF0v{i~L15XM%ymMl>f@8@60Na->?G#hzP{~9}z!}roz2g6@m0!L66T>|E-GQF7 zh~-H3FL>}}VBs#(0F%;)?8Vtql-pwA47RuXkf=M!Kj$vA&mGv{4xETA)edSMVAO7f z0`{THMjg04=}j_ZuJ`+0I_N}6CtqL}G8=JV=1YcBD_!M9^gmj>rU1ho9XajUzq?aOty$*#BAmxx437ba%Sw=YIB0#HIx_ zq;%)s(6+lJ^-kPqe((WYp!)R?0?6NTlT?HW8Ka&p@q?ne9s9Kp zT5kDwRXOVK_-iTuHxW-saU`+3x-7ahu-^0AsC9sN*bymFJ3HK<0Q3aR$i;2grg%J5 z$R=;3_s%wbS0m9hlrYiF6NBVl1KfJOe1P4gc@n`d2Utyeefpmrz- zrBz0Lf`yF-8?(5)4bfFZ=pmHPgDnOXJ7r8sY__`!XN?ZHctcavgujlQw)K^6}_RY@@Hi60Tic z76J~aaEs+Hj@G>ojKOxa}s(oCLvH*!8c)(BrNyPMK_#UN| zHJq=UaJNX3FCNDzt{nGZu0n7X41$oGY<{+C8ul3~OYf9K91Bah|q8PZan za?Od(ej?R=);hn^POXJVt>DbOlHwgYDatF+KpIm{b9!XG^1E$46xGN14t$*T*mp@h znBE=VEIIeL9G{L7LHc{~k&UM0jN)W=>FafroyM~!x3k8|F9BQIyl?d%-nUx#;&>^t z)4}=$0rWsDF2?Y%{1f+GM6=6!q_+P>nQq{Z-N*qV5_tfeS@QPY@};QS&H!X&llzCzv@rMA-^~QgTUWVi>e(9VIf|!Z*(a!LW5*ZZMZcrUyk?Y+ zBjBR8mR-S>b?-=9cVh07$Xl$-Bx=9_-h8;NbT^!a0mTTz4L3kbU?=n8GZg`&6?gk? z;H*S+r}A+x)`ne7c~2m+`6sgTE?(x0x$Dq-VI6~jzW5N1;gB)oUQ13?6Bc7Of+`(E ztud#pIfjy_hMSOG?6`N@iK!>T5Kac(!uJAz_0AU{ed;&k!1K&jM#M9jO+lz7a0Y7< zC#nYh&Ok4ILVD6Y9IsJp0J2%?yCRyrb>**nDh3bsRS}*hsbmRt0>jzgF7PWu z{A5K_=94nZ!IvM7VR^bbhHS`DDatEv-44;~i(0@Bt=gdqgk% z$T9cFN;VAu*KUHAFUqw-Y>&-mmyRT!>Q)~}qEOZ$qJK}ZiYLZ^y&^7|g!<0xwy!_f z4O6A_lH17Qp8b^KKU}R!ir=#PQOLkpM7LPboV&_E)RLhR+i6@(m+Q^Y9!+1aSbJ~7 zpyL|+b|?1#$S9BH%9`wm;8%_`A$k0v#gpNr7dTG|E)g4VlEqCTRris;i&9Tp z{EEE?=Irx^k*67x*~t$hC7=$Jg51(6X9qRJ&53sBl@}Pyz^o+O{TlGX=FR&?$Ik|g zpoP0+)p1&NEUC?y-o8Mm!q4f5Ny`HOv-xdFTWqb|_!dij3xx(EKug|HKJu5WC1OV2 zXnx`;*|!0S*wgK+B2;>tHIj<^T%787SRsN|tb@%BPfRXUx0wB3&Xz ztiYtMu1ts=Uu`_Qq~ln1fqK5Z+JrS<*4t(!S#xXNe(vCL>;Owh|E*Ro#%WMpa4=J)zcyv|}S8%uE%ZkyH@ zQq&3?o`+8-SXvCC^D4cEl@6ia+Zs7uc&a0@J>6>I_`2KtFYe!CIlK5{gMdI>#10K{ z+ZRHJ@szBsk!7*PZ6>lqN8zaRgC$)?h2HT$Lg!npkc6?B9SSEs*(^OrNp22_o6pal z=dU)YnR$SvnLdF-K`^r}NZjfU6@=AYmV{!W1dcbc!N}pJ(XPUu37HxbC_tXrM*%Ju z9V+j30E{$Mzbn%{#S?D896^D}$6=507R~t*GjM$K9O1CvmLrY|--{QmYc9oeao?}C z&_wB+|Cn+CM;d+N47whd!nUeZs1iL2xua&VtZ?H_U?>V35Cy7)B~Xr~Xkz=q01%(q zcXiZ~y?sT77lHc$Nwj+Dyi_YfM`y*tAjns=3*6K2RWEMfl614zM|FCeIcQ@x&F*m2 zNpG^p#D1V)%g(KmZ-slsE4?_P=l7P~lU;MPklsZF!wP3OT1lVOAUNz~`=u&5A`;%N ztj@3@UZWgAxzj3+W`mDexwC-?|z`=_lU(q?l z)3kmN(-;+J^&zNs`0bafz`kVuPi8fD`8e_o1nTkQt2pn<*wqf~o2L<4n)2d~-x2|- zhq3sg3$qry1HrN7^XQwUWM>gMnC;JyzJ3Ccx3qsmV4t3Zl&wmX)h4yefL$P^vh6~? ze8g0sGp!6()R`f^vMY5-=>fZAQlb{R!?flSUjJ}Zp1Mc4+tg-y8F} zsA+)hm>PBh$SQ!+0&oTVeZ2{Q5{ccfBwro2wE>Pz`K{^4JrP@(Wpop_avhd>>+{-Y zP8`0*k3F60E(ZSPp=;=tBtF~zT<6wWk-JAihJwfGW<&$~D1QsN!PuV=3hB?DHr|Z9 zC0sxBdcX*xXCIN~%u3>mZsEwU+?$mi<>5UYTb~RA%=d(K zGznN6H@UJh!n8}#?p+hm!?Mb^9A2MX*i|fW_pTVbIJV=cu!j$(`N*SjC3ma)X0a1C zfWmM%#(iV9q8!?ohhd*0Qn|2ryoMne%?9DzfD$|sJhNNY0mI?;+_O3YHKXIxadDI;bVZ$;Bn|CJw^dB|#A>+MS_7E60NjPed=T`B;)8Jw?xJYU)@3M_N`c zR#YYoNSXln$lMKwC8YV}v;;WNC^8VK5bD#;x^Kqz0cV}?Mo942YUJh9yKPr@nHiY8 zO^XAC?^1g2Y$`XRLVAesqWJ*h&=(Hp7L4D;6~{qmNE>!;_KmGbXE^dx$EG5s65p_A zHn*0fLi*GeC|4g_u+MwM?`*|gdu$Fm_HxPBacV{A?x_E*XfW7%*QEnTBAHK9teEj` zfE*}t+wvL(Y(=}zvi?N+aZ6UfT7yxTPyaMLwDShMi~p|q3vM+?-3cr{!Wx8T0++(x zR373D=J04buGDuy_=RSodqg4^3KFr9-B-A!|4 z6~vRK;XEyQ9YoM$%P%@zC7s`J^v=_mI632EWATTJ2?_bt#(YIN2x-dpHgfQh6E#$I z4lOFZ7|U&4)~n9 zCcR<%1z+ANt=d?wdEO+idgz90blCR3NE4(E_gpk*mlVSjqsUkz$;eYS@37B?IkX;Y zZmu^W^&Nh4;yKo5n>nspbrw3a?dWdsWNTcFymc=v8f4amZ2~KQ6wH#ac6&eW6QOF} z4^$WU@Gc^>aIPk{x`Ho@RvFytL>v!KNBhtfPfv@g?ZdHZT+ME(t7BzIEg8XDa*@rs zAS;rYJ=BE&XA4T4T%QFhB)2~yrZ4s*>y8Gx}hB;uL~1951`-Co%f;1BpzYmp{!nsIR^X8XIt{N+hlRHu z&O{ucPemTz8pr0vBafDjs^&`4yxoQp$NQ26Rr){pa-pVbP`yP8=)9B|fx!o;9W4iLL7y5`aNVnFw+=xTQz?nasy3jwUUK1W;rjFPM$qZ7#ZvaIxs6kL%oO%Az z|M!>!HJBZD5JkKH$2O7hTl*m_&|+)zi^Cv`!}4d)>=xlL_wqC}b7nRC2mHs(x)-bv}VYc|F1SiaF3t+B`C zyuhhPUngj0v%6r>DX;;QuKxz-BpMv#UzIW(Ud3BdwKb6Yc+{M?-IIu_INCdMtlQ^J z5HXe=nzc!^nQB2-8~g9wmf_W>dx!dMWMi#p#buQSf`0^i1oQ*n^Eab#RAtp| zYItI*%LLT3T-8l z2n&QdGSs$xwsg5j?VN(E_j+G$ol9{xb1%pX6j9(SV&Zwk{*~ z^<7LD!VH@DYt>)%4)gtbx%EAlEkqmfkRfz^9b$u>;6LXh0>L)Oq54!v9KX}H|!XI_;MRGflW94 ze0H8s2D3-SAF^P6+9@xDohCXqG7}QNUk#8o?=?a0vkvb}o5ynh%A=5klVs3WH0wnp5mNU89wf+vZ z$+x2%xYxXxzx|IS&-wv3+rydALnia6FB6Z!_F~-BZ zInw-%^+b>0&6m=J)v&JzgV-Qdb@jy3<&lB)vYhJvAuT=HBwkJobS!%jy%elqqPMeC z?lrfY!ec_b7CT3VHmWF1#72I>kHs1BnmjZmk2kh3yTL+q70xQh7SDoh@;7Kj&7mr* zVjHAtH|T!RlZ8^>1o=3#!j))06-rax&bz;6wLKw5Z#RPlUIk|Aajr!${UF>iN)~CA z^{OeC9d^*EZ9-2M6}BjD+oEQ68dtUKjr%y9jR%}}6r>Z?rNh)uF#8lBPe{7pb5D$q zPexa85d5ISwZtGrH#{=Uv)-Gzm`_|z)GV%NrhJ!r*>PVSh}N%;>=Jt856$ub{id6D z?|u3BUg$}Yo9NWE!G@y2gw8_eRTi=*{QL>d;~>sZ*A$S;mKI=xsJ$J1CZe~lHd9=< zx{rH!-4LIyX}RA<-t~L}3{*5SUSe9XGO|6IrG0Y&8&>^vLg6{ zRMIuPNzq*1EdQ8)_`qadZ_~VU+CS>Hcxt_KdvZ`G5ZtN89{;o^-TZ($)Dt{JrJ5{4 zUSeU&0Y!%yI8-B*B`E(midS95t*t(w<|Ma@5Chp9K@#d3YsxFjY87JvZY{=}eCH_N zwa)>Yj?@X!Fyh6MR-ILE2rvk%`BL`;SrZcqxGuOH8qv@-7)-d&$b;R$} z+!jkGB#R!2pU;PPXkmUV*7HsR1*m>*szLVP6=jcOb2>M-x{aGHnEOfcnPe`v#e_6M zSYx?lk>X0+C-h*w@K2~MHAIvuc6z6A<>Lw6xf6M8`Rv_4rw6})qt~?aojyWa>?~Ne}_KCmw-S0U-wlBjXr6^1)!4@G4_mLF}(`-;K{o2Ok z0lgKG-}5PKb78o~vhZtJeBK-}j>e(HrMj&!Xg#2U`7~o6E4}r0d6%>rxWpV*?)^61 z7Z>4#;Q2a2k@d(_Y9iS+JjFI&QVd%WyeH+T zy9wA@mCs>dA~5C6@OLfuyK8-pPq1ROsO!t?@(!C5r1lrV4$4XaF0TUl!09QZ($l*aK>pn}0Cze{J@BV;S6oAHqhVOsg5v;rx^CX@hF`l@IkDm5-P3Hm~m&m=-SA zW~PVT0Ytq%tG#o4z56!aE-iWcFWyq+Zot&+R<|#&f$pw&SPf=SJmwE-S@1rzE|=xkGF>7#f6pO#vlj5+cP}1 zB=L&-`_Z5|3h!5gwh7;bNDnPmM-N+fuFQwK+Xth`2KMkqDB^`! zkZbkRV{29m@I3(a1vN?Ba)38-1DpPa}mj?kmCVNyw2QHngjBO8A4qPgx_%<(ZU=UV>q551`J|0DVtMKLIJ2^?ij~}(gsc{%P89!2MYKc6~ex3fUkcqG+ z(s%t~@K9eaCsz8);4d~)qCuUXbwqL_q(Dfu7rbVBv{Q=>4?Ys>iGq>mgUX$3`R=|? zILr4jGp?OAZB#WUuK%_VJ;fRK@XFD>K)u$@SYFHez}7G;64lufhj{LvjCkJg%l6sv z{c>v5MV_}8isc=va?_r_7Q>jU**JKA{)Th%pAnst?W&iih zyDzu62O3gm{5s|{pmwoi%9-%SD=WTj&b)ip(W)QYs*`^PBcu(Pe&=`C*LvN^4Ao2@ zx>uA{b7VOZyI^VP|Wz=psD=m$_>mE!q;NpD%ZlWgNLSl9n~sEtRE9k zTBaGiZZ=QvCAH`%zw8qm^O=6f)}A4=+FP5pQo^zqW)>8p$y)aEVm>2^=Rg#tygNcT z7)YC{VkRUYLLefrU1bgvd_4RfJvW!xLHS~oeH*G9QyS>rSb)v?Z>z_li+s_mn0Qs7 zxH`}n1P>A0@ywD^M;G$i0VV@{^ER72P;J;;eknEgXR35s?FA`r&Inoe8*Q#Zb9rJ2 z?q}Qis-|3}{mJe)e5 zJuGJd9U{bIS4fGmYORf(`>FTAKqsTaacfsAah2$3>`W;O<^E54;Fn#=)bEL_S2bU< zfVANJy?=KFPOACl(DXb(9IZfQqF;@a%U5Pj;PR>TYHPU%?OJ(zyhZ3>KhRRI#ZK+9 z^^=X`Td5xRbVf(J9cyjFmIiJgafD}gnJL3c4@2G0cWW7@KA>JxpAL=!Rw~eAuz|zf zY0txqYHRszHYHx-@dZbSYQ;Es5$ePD}Kt=Jg+uNXbvZ$}HQtw;WRl>C^`_G{+Z2Fuqc z*z|IXGT{Tfp6Va(9mM5Z;{DUBev)QtsbQPXk*m%hCL)?%R(py6MlB50503m}NKk8Q z?KUP~DC=HilCranL>4DT&K`=jq6e4&XM)~ZTWbvFg3)zDK5Ki-QdtLgCo_fo+|4o3 zW^o|A;#3&TZ4JS*#;MDoajc{Wyhtnj+K#mzK%n zHwXEa%H@gc@5lMaPH!j5&siu;8-@6L;IaP2K z_8!MqV8hFUkFR%uW6yIK6IIsWi{s_>5Ef{`XWEk}&MkvCN%W3;v|A2(D@wp?1pMg9 zMRlSWJ3znAtE-@HH0`#WyE)kq@IXUQ>PR`ie5?(MDJhRcv45DP_`VYJMh&Tj<#7TRW#585nnCBH~Oa+U{I&gztrCy zc>F~yk{heiAMS+yZ{Xzs< z?SM*a>o&!)j`hb#;UUyucRssic8QPAMm5X&t35)Vz@53*Cx0rmStlm|&U$bRUhH9;o;N`FtW>~}H!@KRZ@tJkj0Eg`=&`^oQ8 z8rQMlUb=!^?jnjm39^HwdZFl{xoR3HVWP)h{@b#p{)**bz%H{k-s{!LB?XBnGrL&# zt<(`s09P0ZpduyeTnAR?qRwPJVZ$TS&3@D5jd0OB)9?+F*+H_v>OyVNnK z14~+1M6>aCySh7Zp7IZmSmFPv+=dm59{*Vl8|L8jwjN+)7?Bkq=uFn+8EL9P-yJ$I zIiT2lcDwrVzeU!w4(oku?GKbHv7i);<_TX7wQ4KPY>tQ{?dg&Z#9zP*p2$ux58Id& zd&c(2Bx}~;JJX8KqWwNXFzB_hqO7_8Qt4npK5z?v!Bvdi{EO903lC+SNdBwQ&x|L< zY71)&;Pfw4_ODzBy_V(~u6PU5{!%`rZsqH#ZDsgyyJ^}%ZCH8t5o;&%{}$w|fyo0I zQ>|(nrmNqx7}xGfVY1Rp2GC7}{nn~ab)No3*q&WSC%ra;pJ3y(Z|!B$F^}gQ5-m7P zzayKRrAMZY?1{D(XQO~tuNDdP5Y&}%HPm}wY9yzW^yIECoUtpGN9e5ZrGYQM9wFD{ zuxdkvEOW+{F+zhV3RH}F9#aI~RB4#*>4heiK>il)?q{7Hj5f^Q2MPdBKDfHXzVkwj zd*@~NH$s8xEkmi;sskG2YFJO#($%)51Md5tFTAlli97gQ@wSQ=Q4JS-&H5dX=5osgs7EXJbtko#3Go%wsZMXW= zTXg_=;6Sz?md3l)Fc?;2EWraUxQig2nyEMYv|7H=m%VpF3Kp7SCOAowR z+p%DOWXX2qs-#;%-*IDvudK zeXY7Qe+FwzNhnO5&u)7^3Mz3;ZZkqY{XBV8H%(-cV4xK(D{U{b2Gjkc4e|~0{(Cq4 z2i}8{RM!r`(KwTU?dpw5c%W?g_{7!Pvr#H;Fl~7}Wb@g-$sC3wT5#ACfr?Z|v9gwO zBzFNN54eGVS{5OGK*@{yms~Hv%FO&qz zO)dd;eHwTjJ*Z5)D?8&1+!^z{dnoQdrF4ms9(4a@>%c@Qb@oif5tS}^{CqNx?w#Z~ zaiu=|QjwjgLBg-;4SN;Ij%ziQ6i}Rtne*L9m!2cF_6=lLLAU7|5IQGvcnKabJ-fzayOo`Ms2YG#+ zF)R}|P?4bqOuQgyX!>q9AzQ!DAyj;d*hx8c8Ya3d?2^8rY6 zs8kD4Bztat-GTh_zr|fvcyVHFZ>DtFIT>a@LLyp%rNO$N*BNsn{r$`IuP&YNc8Y*c zC03oGPTA3!KIcE&>lct{cgmN8XQpbi`t(TWcXQ*H;fB*GxRIT&-j!;VDvI#?!AdM7*l)?D16>0s@rUX(?>LOQW-XDMuF%RbM z-g1&}ZT4cS5=+gs*oduJK*$1_3?tU&AZbY=8;$DuOd=5uG*Kp|$9Z-O0FYOBzU%Mf zKaelTRR-Swn>BAgfx8ZnU>3DoDy*^wBKIB#K=pQW|L~pR(ckHrrfB^I-t(k4oQfHd z{|)o%6r25e{w17aQDh0wKyP#rFiovQt67q<^4xH{TW?(}^C{&zE)v#IAK z?&-?OU>IPt@)B&-#lG-O3B=Vf z2z9!Lpn>ndAM#vF?9vZ!PvmP%x@PP6bPr|G6LiaE zF636|S&FpOAhJoDy$M42?IeE%{a%r-R%X~wa7G~tH!u?`0_C+y& zgVTkx3gdTGG%@6WFb%v@jqSd#(32=HL7LVymhtYqS*~qqHfv#?2I64{&a^zNurhmR zZPi?>^%}0_$J}%q#Y)F*!AyguG@$R3Knnyfmh2`xz!4A)5-kOruj!TZrR)Fyy(xMW z8!CCaBgc69VRt=@{)4QHNV*^q7;JV;H&XpDyO2qWd47H~!7uihus_)PNETD!g^+W% zN>EiQ{w5{xraR3fD0%meh_OA*UFCcY1Fx3?3+L2*=m7(-SZF zEoE3h>jL*gZ>9*gC@wPsSpGlodk&3XZmyv>muRyOp)aU+2llzMfCf@e^=}Pi=^3U$ za35-~$E^Edkrh=staFWGZ2^T#9I^b1toGUMRI^xI+9pm*EJ&i(M1|$sy_XjBz*l z;Nl&np{sa~;k{~Z{j=`C+dN6LB~d5cBJ%1btHSWOOCxA0!(;NR@wNLK#MSw`(YcY% zdST^Bb0(7ec9iuUO*^M)ytuk$Uu!%HkH;c)|3&Gn5xz4OPf*hUVp@agOy9u_w9V=d}# zXx@v%s<(C5v^xEt!sP({Pi6shAEbeKewivU?nsf$XG;dm2}S6qp?gspGOy$aOb_;s=vGL!9hNIKrP7&{jE7c~TxRbG_OMioBK$>OpmmOCdpNiBC+bCvRi z;V}sv*6&LUaE^LCxhlEK&uT3=$4ZV!SN;X;-Dy+slTwEvSS;CrS~#Ab8#$8?44xT6 zs{ro&R!a;>!E|c;{`6grSrNTAUpqiMPor9^%t-c7%XkVtqDTIIz9S4hEPIY)!*u## zj=*LE?LVNP_}lO|E&0p+x4@YMA;e2v&OS8bI(jKu}$;JtvkT-o)>G3cu|Vv#8Fi~^PJRc1Sl!Xj@X{l zHL}!_aufzq2Bh6F^Zw~xonm)c;qt#!?%^RCseH5u+jXWb$;;z8r4yTR>V9g7d)`YL z1gAWSv$6qOh_=Yb0LgL%wJ02VzV zz1IdcE^ZNt`0eKUhrWJWF!<#qFMwbjLi{jpw+3k3q%GELp&+jplC$)1mKAa9*pd-AlHhi?hmIEnJ zrJ3l?*mIs(?A@$NYA2OK=fxJ1;wG>+Szj6TbHrnKp1#M_lkBj@w^T1XQ3OaKsCbiQ z?oh^)ap&}LXF%-YZ|=-lVKMj+uhV6SWWM^Je6=7-bn#H^9AxW* zhZc)vK2WOslY#30x&0=5!SyuK-{Z+w zrgr@~WOBbfL}S5DHA@wsEo5Xw2t7BysB}DGDLmoDcN@2&2sw*J^)i3QF5v`i9BMYq zIDC|7GT8JT6*Qwl$%gY4{EFW{t8IZnmG^m{^!cUFo-isSs_OeX96&h^-FgmujowYl z3oqm(ulbGpwSkQnk|VAkXj3p{zs{oIu*jufzTdi1t+_SF2w9bHA;=NifMGy=xi5fE>TfjSX^fB7-e#^QZQjSX^ z`xnX8wRV>6ch}$Vb?JD|bG6cM^=xQYfFhA- zUE`(8hLH4a`;#nzI4KHBLh>koBYt#(FfC&b-y8Au*BYg@t)`v-S)YdfKUH98zPk*= zfi;ubz8Q#s3`7$dPq}oVj4CI}_&OqC5J&k!#O=T8_&}L{cuibqi~yM5tEcns++9gz zGtaWLgQ}aZ#HNW}-AqD-rE3>*oqPs(cyy2c`L+)u2pJ0hs0$qk`Xo$*y zuEKQ^etS#_h?YYTLLtEC{&^%isjBP{cO8~%lc!mz!*m{rFtqI_Koj@AU9j!wC>qr2 ziRFrQ+!7Hk_uB~hpFg1KuZzd6>Ye#d6|_Ux5e9PsL!;f0Gk{5@xi>a_Wx9w?`7UY+ zA)t?bTDF2+nfez)xwdz2@doUx$_kFcQhX;Q$nE5=#O&Q>NTOE{6dq%Jb#e~kW5rH&XmbGirv(Z!s%j~uQ;m* zc$9ZV`x@VNSIvpP5DEu4ZhGYkxZk2)7C(9uf0Qyk*Lz;Rpl|Og8s4R%p^N z9X*(FJ3cAJcT>AnmQXt!efzEwhzf$?>_6cQ>VLLKFc0?CcMhq}$cUz=~8 zSzGxk+=mnjyn%5FIoJshK&tCGbU5q2hQAvajh2Gd13Nt>KeG1EuJ`!nnQJwg@=e(A z^&%{ZouxiNpxiIPTI)++c60>7N}jLSgZfJ!3O5gs+*dtMKWBq_+P?SiK)n_ zXTdW!G*e+?KK1K`9^3Chm3Z3=j5nO>5(5y=^oRjOTaVxKG=Cct7G4F!Xzx$>!>8Gu!8Zdy`3lLwR?taXNnsT zJ#wkK~gDz+VK_fc%YVgB12Dc*`+z;_M|RoIso zhbTc)5()?80R{;OnS7tlV4+Y9Sd0Y^$K071)q|7a$%`XrUSry&xhltWsi`V1ami;I zy&?L_Q@?plbS1fNg&ZD#ZxVMVEKCCN=pq-fJE;QZzUTOvq1`)k>M^fom7J%4qkxXE=d113)2!>Fy zIyxWifbpC@ZJ15HwB36a+~h_ERE}z0&gmvMHp$#MLISq%7s>I;j-r%pxbPbAuk&sW0TrbD%1kS@6wCjOOp3-$ZGJMcp^ay3>pE$8@!e(O>*vhZhkf zBL%%D1x;0gSv%aTxGD%xC9#?c3{8SpbpI(H9xB7tbi8-tY>rKK0a&7?c)FAF{# zxuXU&sz#R5c~t<;aEF#Z|Jc>D56InUyE}!T@P05E72vZ+zwmH%A)F=U2zWcQg6M63 zjn)dj?Ku2?zy78S8zAN8=lE5B>!6pF6JXS|G*idRpPgRs5Q+3?dAGkhBzjJ@k7w!< zpCWHeZ8VX1d67g1dEE0qQtGf({#|(pumUTfE&?C@qMM3~KL*y4RSq6gOFrmP=)hFV z6Nap$&FXzv6aU2 zjX=jKoPGMb@}WKwHt+&S;E6VrJd1`kZ9`367{2*XV6+D^ICk0TjCqRv;}}`55oIqa z+FmlOgUJ2WzN_=qS3d`8>A-~?vO-phqr75nsWGU#ZMgd?KEBTC5YO#!?o)HdA2w)V z8}0{sz``w_npZCApy>vClqM??Ba@G=K!i#l0x5%jJo+ zf$G0_`qQhd%J-Qi{U^-#;$j__Ac%Z@tq`Zy_mrq2(4rxqPzx$yow_l%LJ^6m706qO zQ`=vNfIsYwP;q$en=90XLJdi)#2#~fr6y&$lTp?mWMB7deA`G)dcYhu z532b#R1MevrVDmiKlH!wKU}FlXYrNb-dsjsbb!fS_tu<5v;IdzR6{r({R)WDpOnv6 z1aStc5AIh6Q1wBNAuJS@k{3GN6R~9sgtovYAQ%M+1vLGxS6XUBBZN`bintqpnlv93 zMOxtnF_!;EKFxaW8ClzV+g2nIF3o^~jXn~xHk@C@{s?nYHF zK>H}$6Hlp2yHpu+`HkAB8n&_6E`zTT<#-kjVBsEquFr?*s6@R9JfJ;BF?rzs&U=wJ zh=YZ`@ZL~V_IqH?3CM%ZdP{xPTl>g$6WaAHd#n$;>X?r}`9i{G}1MIM-UKFS!` zdttWHfx4lx?yWGreP+LRP`zA&8J7&M*Ix-XZ(@JEHkfji3q$*be1fG!6@wPNCw>tP zK;4NV?3Sh)bbEG$%K#1@jA-pk^kbMy4zRV=J5jQIW`qNj$)9nQG!9}VA88AVDOQNa z$=@+;8VZ&ML+X8l$CisvLh$->xLE3;<=K$+_=eZLk_&>IX zChWgLxeb=t3?oqG?V61tT#4OKo`U2}rj7(2l--t%)T~)t9!=z;PDKSKVTn=tUogGFW(=c_l`Q#xqBz;xY*Nh{&yU1n#c*sCF$A zFN;}+@q<)8qh?d!j~d`W!`_#B)zZ6M+qqNFxX(?nBJifmd87DWpI0R?_@8qJy8I?Ialg=>=%T)MhFU zgLRDdf$@VDeEb?O^=_|S0N9D-eqGPayX_>jtFpr&${5Z=8M6bKFINk|4f{oi7iY}G zvgrtWNjiCimo?=uP??zNk29HQ{{^aS9w(}VC#iLWjTUzz+vb=R`~YWWZ9 zDHKR5sm13}@3-$ayKmUNpL-$*)aTaaV?WU55CFR)(ELpAA#^ng)c0*AaGp69ZVoG= zewn*|le#oA!nhAE82knLovpx?O;*`@NQCan1YeL3ZI%MIbH?}-c@ z1$RBtA34Eq1RuhLeBz`{&enY6q=l*CP&QH=Cv>*vi!dm>U*eusQc^I10H(0N-g)5y zYKsHR-So{^#pl_?&Ve_0a$c;b(XXs@*rfb|0Sjqa@iWI`4eym?MlMFRea`QtI_}va zkRN9BV-F|-Bp`_{sIyLyw^ogw6ILmH_%+FEUb5>IVaFbxe39&bhp0z+aCc2ut*?Pe zwjzM;^-AMLlZ)zj1yX)J7%`7HjGO?bokXY*opf zyIwFhf&fiTfQ`PT?`A%SNi^S@&(XPn8xWZ51iB8RpvzA6+PtEj3fu)GU}<2VXrnR_ z?)#=7eB;JkH9ABF@TlCg&!5DFp zvq944_8TVd&}UW+^Y?;}`+%1cXfFB3e2OG~!VyxKBgc}^qOM?f=(6GuKw&P0a&M7* z6WzHzBfV)c@I7q*eqSNs?eVa&$hjkz{*4pV$$>;k_^$KYQed34|JN;3wx44v+|`+4 z+C)*-aX%jSAIKf%J3jo8jW9)c7X-t)|N7^japFap^P1Oh-+@W6YHUvKt16)A% zdgr9=Gww>+vx{-Iy)45H>_6vzrg!w8t0Uh$jo1{Q`#dqd_p>ICB+;L1I+{qI5&>B3 ztAa2vY(yj|WdpXEW;-+P+w*U&w!j#e*}%cBfs!^mI-Sk@CIYb(!r}_{h6aWZZaNxrB^yhokW& z{PY2^8FN*yHhdXQ;`pL?L6(*K zjslkfyzaPbdO?a0fjF{@Vdcs1FFGV>>B(BYGNf>f2+yIWCU)qlUv%8{{C{k{bySq! z_XY}rAc7#>T}pRIskD@$2uPPmcf)|vARr(eBZ7p|Al(BD-O}A15(5lz&-nR$@4A0n z7A_X9;eF59XXmq@bIv^|boZ=()%^fXO*Wsy)u;i{M4M&3dM0d2D>GeTkWZCQ)tO_3 zro$d>;?Yq@KhsE{rpWyZtwo*9yJ@$pp)7W+cYumwq$-e!gJavD|Hu}vpOG3BN2xY|v!j)~JLdtFa>htGM zTRcPpHcI@qDCS{mn1y%{)jQG3PXpWP_kS4w{hDdKFD#_3wkq-x&|UBRAD<+2NM(e< z1MuS{ueaSZb%(p43rKg(!5bnMggao)AnUE-TnV$RK@T(=oPk8{xjNt^DK^%7HeqPl zz5h0`1A~ioRC!F6281*#-xzW8&|Y*u=eWD%%qxuko@7Ypmyvt2FPM`W z=A39i$_29jC-s`H?iPP1j$BmK+}wYN`!+-kG+NcgO{wfFYRQ$jxLq4IB28CI{IDPz zH`5z`aMI`Yg%6Rg4ILJMPq%TV{WknI;{b!_8hxt9j^kbbL|MHef>`E!{l_gjD6s0t zxNx0oeHYno@5TeWwOG<2Q|H013O1X$*YdhZ!?ji1%+%^h+E#~ zTkXspU6aLK7aN%3DW+$A_5*f0SqcTn%||74kRlDvNx6_MCbPBiJr#Wz@=?=ye?jJC z1Bxx*%`5YP;@;f1oS#ACIvz@pD;XsVRdxTBUpb~uBhQ(mUQk6Wl^rv1zkf1HpRss6_B&59e{yLEL`r++=CqS8hhUJU;1@1oKgK0 zR1{b$+{=6X<3*kszkM_+uFWCWOH3oGy&1-Un)QUeGnoE2ZWHni^tVIl*wVW-u6p({ z=!0viW{=PtPXSqh4Auk@<(%>yf%UXZX1t5xS5QT`2V@gLh3Wfb=?lS(GoLG|!Rw<< zj=EygO^%RU(@m;%ha2poUl?;`{H4QXLuE&DOeEKPNq-T4gva*LEG6)(=KN|mEvaYR zO9y7&>xxt*z!Vn6jDL(?sPKf^=}wB{&Xhk4X4Q$7E&ff)NeCa%)kzGto0`NA+kRpT zZn(BHh!O%r>d_o_5FqR9H;{f(K#fz=s~zX+Fyb9TRde%Eif zWgw<`n&z5*`V-7JDdqP6x{(AUo!>9@6Y)e`?f>x!c7h_>X8u+~=hja@XiM_?^2Hu# z>@Ow0>mvLgNz3rbFThwvh0bF(f)x!#Di+AOn(x8ILx3_h{J8FUR|7XLl-Cx3UGDW4 zLhPt#qFqgKf|=Mmgm%nJ_(~R}v459hf;#vW({S2!ZmUjcT1OQv=&*!WWHlk5r1Zq~ zt(Fj5#lHbNSnSq$3%I&nA@vqhIRb3CRLElW^>rKuq1Ayu^)}ok2VRy&Groi*9f&0NQ-5F&Ai3{za131880*^h+q| z3k;v zgen8gq3Qm7w5HCiAgqjK?kAJ~#oZ^+D-QP+^*gJ{cJ!9}htDfx8lk5%F{ST!7!B=C z{zeFYHO0tH`l*U&FPJaGDf5!DLX($=KEWOQEdJq?`C;Ag0y@3A@G3Z^kk6V!(N_VqO3WMU0GDCWn+tUU36Eh4P_EG&N{i# zio=)>2!oHjKOHsU30p?T`GABA8~3B8W(dOWK!IM0j+KG^Iu^yl-s+4;H;l_Mq-(U1 zgf2J*p*UCP(a5es?}Sx{+oZ$%vU^%h7D|D#EgMUq8$T;v^fBFH)N_->VOP8}QHon~ z&a`aki0J-Tfm~BOvuOlBk6-$y*X&9+n=@!(--#pvS1*b#2JA;O^}M|JZ(>3ZyEInf zSWX3;KRjNc>hZF_PzThs`wQ9rO3TPwh4*Vj4Ic9g3;ppq(s>2<&31Yz^^69v=~7iK zwNs0t;GSk0xO&tvW%HEynM-dJT|0+c&z~lSv^%A1X9gx^_8+viNlyrt*JEk1J~?csQFOo zO~w_YWq(=@7|_v(C_94TA@tppPahyEdqxv75X%*7Nhm{yR%;+(fpZg(~Um&Q)YrL6w-^8O=&m zrN0ezA9N_QDM=mUj!m0j-d-KwW4x>nk6ZQr z5zM%sAspvp8P#5HJ56jg-sJRU4qKxP`K_PIjU|8ab(W#)D~D>qE4lQ#JV+1$t}BLP zi;&OWg#9dN+ZrV>8lq;4g=(EB*Rg25^4u_3xftNpKJLsUV~Z(nLk?xq6sI9b7fh!AklqAdipbL=WP#IksmCAygW<4xPB|{5VkHD%Iq~FZI z|C!E1wBX0oENFygcmAmIa%qx1Ci^XcJU5T*9yi>k8L0@ud=n71d<~ z$(rCgk!DIdefo#(_1MLmqGl#q7q;h-$_U^aW8^9k_>Lt>2m)` zL^Rrw2EKKmpme>`m%?M~vzXAF!_vMrdURvo89=0AemcR?OUzN^qMq}B}gg%JH=QPtaWo3~H* z8+1<|VB8{aa~5P90B4e6XOXU)43&F5iujiQXmX+d3lD=L%FMn4*0i6XA}WS^E?~qz z;>BOm5ikFh1nS$ThrBm$2Lia2d6{ZJO>rEj0 zu+8>Utul2e189P5eEPD$oW^<)dE2>Vs|f6an>#6Q73IrEv^44c!3C7adP2=xr61*Z z?JK-@&7`CjF7o`veB2R zdRDZRDWW`@QS|bKuHLu8^4{F#2+pwiNG2xogAS-?NfwWp;}+UeokkoVbuo8~TMk^PHfMDE4j_=%zKW&^2?(Fh(@ZY; z+yb(7Gp#FCj~;jBdcWb1pBZ=ld+F7uY`;iRAA291!o`jm%xW8{%k`7s*uFZZnLWa@ zo1*pV3Wtj~O=)kP%w1>7b;h{E%#%4|XhhB#MimC{zMhX!vYij0z5h(8eB)`HGSRO@ zLZcIrBT|*a40jQ9mwM*Ws#dr# zzI&KhH`m(upS>65&6`P9vBdnQb#AIkqd5mspF`Bq4*CQ&dwZm$$Pq!0Ib2x_lY&wkv%(TVeD~2LLTM6%QCnh?AhAcTH2UlACncal7wThKE;{m zB3}!h`ihMgLWWIwbK`x#NdGT0e*^M9gD3%Pt@EDw@bxB!4l_rohtQYFQnHP`i^kAe z4x4+B)N4=cG80x*s9c??G?F^{7kbS&N6?gJ_SVP{VSaD{4$nAt~PsXb3~-4 zx>!n~h93^xDNOQ~<^8i))*m2Fj};67^?8RD-_A+wrGz>DZ~67EuT?`d=Y2VJo`h2l zvJuW=PTP-e8jOXL`cmZ*7b1PG%zZZuKKZnbxrVYcg$9^Vtlqr_->NivCxFUEBnV5zp5Xmd){fCCg5Xc zOpkVt+p}Yt7+-GQzsFwaGUHy>wjhT{-UmTZAOmWIzTOzv@osTHvJ&&(X8&1|ac+#ZqqTPy<=ZSL= zc4HdGM7~DB9$Wk;@`*{A>L zZ@J$RY(=N|%7l#d?$p=SyN~{+k<_?6njBF+dkkf$aTnK}D|)!!X=TGae1rbcra5To zZ0NdWP!pY%I0%}la^8{0r_xheZMz%w8^*`?NgTDx2SmMvNhd3WgMu^1$4?zgs} zWUsHd+L71d(SrMH223u|2+q-Ps*m(1?vB{T?{GwJ$88W1pney$?aBzKgf^kmN zuA_u_D_4YNf1A!<{G;miJr8|_S2*w8@fG;O8r=j>NREXh4L=v6>?2rLgv96A8(fHM zc78>1^K>wYzM|5%T6)eTqRXUxul&)#V6K?|0zDgSSgeTFd(0=E|}Hhp@P z(W7}$cUxSR3*>HZIF|D0VNzT9LW+-=6q%YQqM9ewyqpFMW5Ax}r&URA)Ttj1qKAe_ zvl@RLAfos0_0KfgihOciW;59}Np84HS1qreDC#yRBHFY}=;uHpYRRa)+AB}&)skq^5z*IjF$Pj@G}QrDpg`;PU^gh z71@bu$EdV0-IsFC$5?S`<7S?Ii$}|@m8S*c&?i}Hn@dKf)j}qo4as-qJ#%y4k|^8i zq`f$kGQ^9)hV675Uh?}QwRau9{a$ckKighwY)<<_+|{_0SlRwRHvxBc?SH9|uyK5{ zkm$T!X2z$60V_W=a_2Tc%qpLpHn;rI{vn}C7z@FJF-R<0C^_NFp2co@NL3}AUrjg$ z+#}2I+!T@wVxv*qO^&~0xr)^RmkX=2kmb#t5veE3edl4~Cn)nInvO4pI1Q%2Pj4|3 z(Qa_)CWL&a@C{*|ibT9Pz9E4!>}k8T({zpxIKnS~{N>3)=oR4yLph?S6Ld z5Ao-Ou^1ITgwo9!?G6f*Ps}>$A`kae1gwa|J8%?<<-XT9DSpRk8}_u;v)yPKJCl}y zFIR&9A3tEA>1SL%i&vWV;~lx{`|xh=r@RB6lK2)CB51rS>or@!f%+XIq3{yQJFKMU zYINa8`)TKo&IsR^``p`qAs`d<%> z@-cV|(y$<~R`NsQM?7uxc#H39DLnL;4JD!nOONVR^{1vhosS)B4Oq0fgS(_hZ$4U3 zEFxruuo7{O{!Mg9FQ!=7-Ut)%Qj1M!b7K+!o zdFJqUKD0OZpb*!I$f;DnMj>iSSe`K@$dg8b>Mjg@v`yGoC$JhogkTr~QVH8j-Z0GNR}Q5sV&wkiA7 za_iHH^0e&kw?u@LrL*viwpawr9KcBLExzc?GU0q%L!Fe-vQ}Q|=xAxVGSJ;hiql%9 zrc-v0Or%&$ho4$-K14!>KKmDSg;Wr_jvT+lPN^d}N{^eEGo^(g0eSF>DfV4ksp4&1 zh>uAvL&_u)(oEmxQ?q4~Y@9;zkt@A;U@R(p4!Ji=hgU73WyDCA$4%5Z)!R?(bLu>8 zex^oCK9)T|FAMzJ1@UWS?>Bod}HoaRKm?$wFkFmP2-m zt*8un-$NMR+tW>oD7b%FO;nrQD>9~_xIugWjPN}Kz1@tWRXXslT&2$RmT_+qw;zb8%?hgDcEN55f>y-Zm%F7KuVOzmXdE>6u6!@z zmSeKYYa&vvyR8k7Q^Cc7F?>`eipRw2Hl|aMCk<~eHjA%PV=^IL*gFc(QFGonP)_q? znkva$Xf=N#@_w)%yJEv;V=!?dY1%lQ1Aj)3_Zweb6th=byyR}iVpkd;T1?0&9LLCs3v+MT zQ=Y?AW_z72;%lf{LZ6*a0dqE~nPs7>dL|S{l@V(M60%kf9yQWLA?~;br(&@WLuTTs z8e`KUQ?$QKJLtN~+&mnp>c565nGu!Hfz%)K=3XwQAy$uI3Ga%>U}JBLgJjar*p9{- zDV6!}OE*5ww_m^ke54Y{Ovuw6#5Zz- zXPHpD88#~k7SQl;SDMCm7x>-3Kb3juHG$YChq8r#Y&`De^Y-^plX06^iIduJquE_8 zcG+u4yv{OX_PF@3I%=lXgvqm!-USfDaZ^lU>{*HnVOO6>)rXM;>|;iW^(1 zm8=&`Bp&89^Q=igr5Zha1_~^PPTG!xpk8>0RWm-xOuuw_IXM=KZ$32KqwRl_Z!cTW zhyGl)O6T&XyDFJZ&J~-_vk50Gw7P4G-qCE%v!_^Hvn;z|mtm_d#-CA|b97|TDtBC^ zxC6big;HZl4DL)`SMN2=Ii+XXoHh@aa%LL9&*(-EJiVc^&@@u1m`E-NL4D(Ic6$tJ z&BspaJmX#E1{yC_?id%)8nl@|0Z_!UU^fd6R!RiFGQmh5hbiSb?`Zsm+x!tVBVPJbn%aPZ-;Z zS|7X`mG^2)B;m(!ZF0nveKOm}-r`m(8-Sb0jF4o2v4(Xm=Ah&{o4h1XBV&cx?6XcQ zGG2W)wL$e-?NCpqMR29^e=iq9y*zOFvNtz=4RKhZxK60Sg4}h9Drn=wOLqh}V}+w0 zh$oFILcew4US1544;aI$-qQJPHA0XpZk$&2Ydb9C#p<%IsL3z|#t?ZDihp=dBb+Lj zr+qX_-K+afd%+TFbN&Gj3LT1%`JgNQZz|W{z!33&?(j%Pmw%_(PmzEYzpV5C5?Z=# zCuI>WVy-&u7gBhHdZvKbBh(;!Hr$T;ZPasrGxwEbde;w14>}2!Dnv0}?b16ky?d)J z2foaWP?i5PZSn768kxcg7Y9X_^WWVXXI}UA7(|W^tNV5=`=viaeNqnfL2%j}WjuxG z&mg0lBX0Lf_fvb1sA86lv)fjelOwCo{~pP5j1rM-Te+%zjW=7>isNARvGV@gngI@; zy9`qe%mz#UL}V@rsw(HMucUV`uH@krzIGUcjb+~lnBlB?K^LC9|Khei`WPJ zsvLd+sJYgHx|vguBR+)-)3fz+QucQg4AGZltp86!Qm^jtGKGFMq42#Z-@>eDn7uyq z{az+#T@P1TB!;rodSR4Rum2E#@!vzUQ4g&J+HchSmqkRh^5_sZ(!07oCL>zwmGXJ5 z3@GBQKEFgwoaGoL&Pp-s*_Q(uy0FM&?Z2%*i=O`UkapbqEjIip{DI9VO%`g|mENO< zVCAys1?OuJih;_UvC+;EqUmRMe(~A3T`o@fy1t2eqMSe^SaoIU5_pGbNrtke$5&*g zCobFxjSoXtELzso&mfhV1U1ZV8lXokMG6Gmt3SmRkIv$v8g2$s=l9BjaW}8J_u932 zHO&6gqZC-eK3Y!6`uclmU8Y&`88xf=JpDLw4Gt2!H-vE z!wH3*`!)&5JrZz?IIg%D`7x^dJ1bV^+U_wLD4~|9^wiET*vn++tfK#0sm8A@migua z-F}EUcy-fhk<@-Yd54M4dj^KmLz0bd zFDHC_cQyPkUjq?~F8B&ki`Xs-LND-KHU=yPV4-2)G)WD+McJLu z=u$ef0RF%=SrN052f##(D3tpDekkTv23t{)kiE~7z`J<(AZzd?z3(A9oX%(05D`Ny z8a-j?^B^EGkt~s0PeDzsKkL56>bKN4;z79T87)RPWvL#C4p?x`qp8u32G=05=zEvp55Wfn;E;8!0=xRm- zYH5A?vI$u`8qNzz+Bdq!yCsFTdi3m~e?B?Pn~;D1A3FPgKmLKV4=?+2#1EO`$`tUs zH>QuH*F*=oR{vC6r$}Av=xeRu$XrvzHcN(%j(-AW*}HztD-8kq%~MgWh6q#UzAy_8pfzM_lutiwRT#!N*)^ROtLN zLC~>Y6>_%e+je}5MW1;=97*W4AAW-Q&$67uQ2yn!c5+fj60bz8a9XNo6|+YSe3Dx& zRE*=_qhwK!!n@C|PTOGxk6OAr@nM|eI^MJ5+oK1s{&`cHC#c{#bbi$VfBkiB9UZ~a zrc>{pOxA?UqhVzHp8x}Z&!H5$BTXO*aTig`g~BUxb40uwjoJAnGf%Mo#a8DpDBu0e z0^oN5y6(G@WBgUz9N$n62^Y4;TgsyYUEh)atfT8$wj1h=wabMCzNOZjw}?>xm)8g6 zafl9TaPTRfih~vEtCb7||AGrS}&V~zaZFatD!M-EH`L1C|l^1Q)*A7V}is+z@~ol=E2L)SyM zv9nFwbBw5zB@B-Ogd~CdwY%58rxC=u&A)@;h7fw#9wRbR)U-y@Rp#8KKa?CSNGvSm zg-B%AH&MIgdjsi)9jKgtGt~sZ`3mFY4ruUJJ~yc5Kb;}CH0NXr4Ib3@q_GHo29frV zo?D{WFI#cc9!L9PJDd4`Gr~_tWdU60jrR5p>*lF5vXX~mGmSH5^bN9bf8Vsp5yS|^ zf0@e1*Qg*D1u6@D$U4bQ(+Aq)1wHHlpDU6=6J{JKSE%j=Wf-U&t-^O$}RN+=&$ZWHoZy3tg6L`)@gNV!)pS ztxJc^jbKIx&W*@@*bjWM{DU49v~|k3;;Bnglm)C@24^oOs{*xjRL3`(KQ{VN&k@`b z!JS5EbAdSTp}A|bFUd&bmFXUIQf2>r1u2R`DalBd>KC0GM&IX1m;2i1Rpk9odl6@s*=Y$;ibC`%eF};B($u zD#^?y_G8aO1ILRj$o;q_;KJna^~9&7o7~s%Am_g(JXbpqH6M6kLqd{jKxw4$*;80* z-H5~Mv{=RqnabRSZ*WUmBvyp_J~8Q=!I$VH@Fymnk}cLK)-#bB9_kyBk_b$98^QOG ztlW!kI+PK?riX=LVjDS5lD7!b&%Ly2YRF3noTB!^Doho;0gIYFwq-%couGiC4*Z2N#xiCyga8k z6I}RM|`Db+nzChlj~~i@blCcek9n&~wx4)Hes-a~wp}PnEwx&>zogH`0rn>e5D~VZ4xeI`>ElLaO7aU>(dhYNOr6fU*~gF zGNu^B55ui>9(W~r)y5RvyiJ|%J(~=HPZsq9^d@8w8gdVq%j(Mt&{!HPQavp#(FMuL z`%U zXKB@2@fJtC@ZB){WV0*A$Bi~ioQtR9TeVmEBg;;^ zt*Q9qdevBE6IXL+>M(0xreOy^ameT}9bM^8&yqZ(^m{P*vu*q$9lD-FsBq*nCx6IM!l zLNScVNKDB{@Rjg}bv{i;N$8Xne@xh+(rGloj@7YNM}GOv0N0=zPOD5J#p1^^ds@t? zNQP44_7pGIyWu(gjWN87XULnjBBNwAzFyn_#Hy~?@IBDeVb+wU@gJNO1%9VnGTM$< z@0`tDWi%5}T^)NI2sKW`qdW|%Rw z6m0tbH8p~${AwP(Hn%JEpH7aWJmNL)!1{pEZGs-;hN#;Af~zM&GkC8-P#vQsyd#Vk zf(;h+%ng-ih${h8B{C`xJO63HB3g_AZv{9%$i+Y-=e+-bSg-N(p;_~m#OL{yR^Tz| zcT%HQN*fC*swZcA+)x&AXYsfupH8cfeNZ~$h?MnB^rP_xH*xb588x}+5AhtKj&SXP z^=PA}9`0Ktkqo#%6eM8>bM)89U!dn3IX4`A@Y!XAq5ueC37jbl`i-$VjWh>VmL@tp zrUy;(CsEDDQ8a-EyBdo>Q^IV zf4}3_nb!TFk`kFw3MW<`x3_w4p;6xC?8iK}^ya|N#4sS-te3**RnK{ZW=O*R&xgEm z_8?)C3s|!7y4s|6IdAnVaYXu+9A*q=4t(8q#_MI;sVf;FjU@8k6$Js2sqExB#?8YB zIPaGIZI)N{cYfJEdV9eacdCcee=V$FFTEfB+DS{J#XyQskXM*#0B@b{PkBu>jv98InUWj7cI+vmqW#ANhHms!myqbowK37q9V*zdPh5j3y! z{&V@3b+Ct6mU@-$K{YE$CFMV|GSZ~o?vJv^U~0N7&G?^4rH9!0(Jvl7tl2)MgtilO zR*BIR&zGG>V>q2QxoG#u&z%Fd(S>5lgh z=iO+iOfFrAL|dM;30(RlWzPhFBQ(4u++Vvb933-Nun;@$f*`+s_qT<13^Y*~e5Oit z03$Qiw4hw!?D0;DCZ+rg(2y`+CHI!zy$NV{j6d=TLb@qn-|;gjjsixf%i$}CsRMqAg$KhVwF zX0-<`OuH*@6$WZy7Qfvy5h5Gy6=`sDtI0#JEsb_Eo)%!vekVe+e~5vqY)Z`w`;MU- z3_8(lr#*S?GC7eG(oya4L!mQ)#N6d7Cl+M0ojGL|BUzBbO7k%`K7>6e_z_biqmp)1Hbgav@0T}0Oz@oa^4xM2G z`!-7J3Fbn&#v+J7pbdhK^qHI-`4eC2U}kbnPKq6nAzdpBTdg zF(n>K)VqNeslICw#NGEjJIg*nt+V`W`5nFF4|Yn2uL%`LuXyo^)%^ zz^E!WvnYxd%^X`&mEv{hMV_j$sRbo-&)=`5k^g*DIXxb1F-|wW`>)UWpVtn@Fr&sE zZm3LPz+j;N0K0cgB)1m)k$mATO#v^U? z#>q7_n@ewWNP-Ju=EsR9T@r~yYSAa16%lS0%4hvSI?;*_EHb_}$|*^Is<8ab+&cyU|8OKc>r?VAL8#oF=UV~_o=<^9T8^|kx}i} z)%6EJz=RE3BC7sq%o1UvfBdhHV)P1y!IlhDKaDoS>I^r%G$)$F8g6TaB!T12VU(f) z1LKtUa>7UJ&Q+*`IFY-%5bI9( z-5q>2IzqFxv_KXZ{67H3WO2$M1Na2y`O)6}%IY}e3X-oPuw9!Q7B26kJ#KuC;YU|p z!F~2N7!os4jzXhL!BAO$&*(H&ebkW*x1s{k)pU81QMH&W+xrcUVa(+Ngm!KNkLu{R zQa*_}ldjN5fJ5~7V^ZLr(uc_3X=$}9+9jrFGBps9>`<~h1q3e*5Vr*TJxAxfv(1^2 zfm`5Htxx~!NkHORw!BI}>>l z$Lv*D_uNihPYOGv0p{7QC7Z0NH4s$x1Jf7d_2$0P*T*HetcNMe)olPmX-QrR{x9Y( zpkgkx_7t}Q9Mas;hfmb7MCMqFt|W5M(#PBW@)aFeQnct5V~2(D8CYh%p7LV+#FCT= z+xTW#fyt3@e5t})ysm}x;+J2+`ZYH0o~jkJ3&_9+hgU+**!J$$BAcEuFk$@DCUmNI zalIJ}N~}lK3%B=0jXbCnC-8O*-oy8Iza1CPID)XLB^bUL=|5eP6%Kp{8mMKG+0@14 zkOU5Zp@!bV^%y2`ZC=PIi(Yy^@(AiOjBdb5rcr7Qi=H<;1EO`LIrN!BX|cGV4QleG zBl_HXY;jm9W5Rms1QEGCJr%z?Oe*=CZFCz&U7XpitQdvW(uKb)u|fkH7V5skGed$d z-S$>5NOA9=NNgj$;c(=eNYTg_T{mqHK&1jeJktaMxRxN!uhR2?5{nu9o$9K?9vPbp zxDT~Xt+a5=oWO&h3c2?O)e3klckgLMkauJLd%u$5&>*dmRGI|+6{n2f`9Tnq6M!s& zO(@O>B%xiuco$tgPW@hTDXiAAqdeR_v@CXdwz@^PF!|O>N3G8t!nr>^{1^Xf&>sp@ zrAqjOw(}PJ%BzsL-x9{?l`hk#4L^d|v7xOWEv-Y5I-Y}}s3TEk{ z^&n)>zhz>3GrF|UULw*bq(f9FZ@r8hFjw8L_}H`)T&8gn#Bh)SC9F)?NvPO_zJ6L$ zb5W6ZbX@E37fDVwOc~(}fOt?J?D6Z0{>2@A_yZ&YT*!A3+)dV$s0<%;1ke-!1*j%m zEX)4$tfX(=p!neqoT%{KLf7)NT^3QbHPp;^y`eWu^2R2t!=3g6g|RM68dX`u zixKit5GBF@#8Pm{CUtO%3Q-Glisca8kD%5+^yF`l_T4Z_{7EKbdV;PUsWB}=T~&41 zy8WgN9NPajW|qMvayhK)+pdlbW)qB?$64-dut{H2*pZam$-q*}mX36il3 z@pmx>tB$Dl(CWkUb}M2KCu?rQt81=rv};arEx)WG?i9HB1d94W50Cv>%1m)S=o%2l zekQv>a<-El-%{m^0ydJG;|B zBL!@)6(=-|+mC+GiG4dTB}^$*EIJUNWJg-PD01lH=!6*sR(C(Olc|$$#XzgDJyS8i z7RCNp*JBW*5Gfc00q{ToLf@|a7O`_MJKDBGt-{~m59G{nfS#xnbgs_}{f@zPY68(yL>8^AdKQbi`*LxLW`Ip7Du4i#jbx!)WE=ef=|p4~*pTpEZ&VON38h z*u8)yvFP}H1{SH*wEEILSjk0XWZ*lvkZeBpnH{W(>}KUgyVNdprb#G`ABG%^Q7zO} zn{e>|I6AB_?q<}X%yRZidjke28vn=CU^Lh>4y_Asy0HWd{CJ&a8#*75Y__}1hKqHx zP;>@x9aKS7a3gK1k6O3wfCEutvRZLZ8T-s*@xo2~_0Jx_M@Ab}J#c;8$R_Z=#>@75 z&D>W29#={Q%<9E~5-5ydABnqg+hJ6*c5KP#WUC7`(>MFoUAv~<26`d&MG1#4{+snx zhqKt|XPn_c2Z{EiW9ItsbFCw5^yLh_&_V9!TQR8CZ&s4Oo6%{mGY)SuG*hwsc{mGn zr{LFt!MxoYFKIv|hK>Dnw&r+&EK~sY*L*U-$P}j_8{u+3EIP1shBR6VZT3!Z@V|T$ zoyONN$p8MWh%U4#^GwfSv$@Lg|BV&CO1q8zL`G*2YdRl2>-;)ozEuI{{0i#<9AR?q zi|w1S?+Bvvj8BrsFNYVW>14on+qad1n3*B3A}@y@gz{EGoPE8^%}pYq^wNh^w+EvB zE7aN)Mu6IrJx+zDfuI|fcC<4^StGrXkH%BnYFb(-0PWBg|2^jFxf;HrQ6Ng@wZXee;dx8?J|FLRb5=5K~1-3jJX zEJ1RHDeWeuz_1grQ6>=$8}D={LlnZBZ2R5YhQ)GC_}t|flhXOafik{{;_BSHJeNI? zmpcoU-U|;izX!M?h-R@!B-A%D&rq+8`k-*>^#*-!U$&wdMQ7#&nTRS4o)XJb6o`if zP{I?hk_x@lds3GS?s|fNPPvh9g<__T7qk5x8P$O)9yrm}r_f$a@&oQSU=9po|Eey_ zsmjc)vPXM?8`vl5E%f?VZwlzz?FJxPprs(U{-)u>#6;P?;(iqM>%9Onhy!wc@*LF` z;cc#s7&MZM;`ha;h{UEj&m__ez263yh#dv^!mQ4cc^RKxxa(YFmM zN14v+=vta&gyLVpsj)=AIT5-O%p1}5J{x7!H)!-8Azn;YudAJ~RjgmbmTg4$8LT84 zd+QBc_J>uAIr2<((8tm7TgeG2l~9S1z*j4(z9&s_#Ce}ryR{P!+Zsr(RstXByRVZB zNYv&o=&N{GJP@zGk$J9h6@5rg&v-U23CKlw0DHFb#$sYZj-L+5;Bfnfo^O**p6Y2* z&(Vd!FKKPaNKPL=N4ye?hUH$0B#zmcIoY8qdUhf;V+y|aI*efdO6+40v+1FkYj<}^`(;rhXtabTnDIb*8$W&Nqga4zZ<#w$|Mf#@{M@ai=M8V?PlWJMT6%W zH1q7qPa@KiDVAYI9dEjrSUy0^Kj+= zgWGL+OT4Ss(bpRsnf3+)%q|kV^Ar>z*g0v?1TB z#B}EMYJ(RfkMZ@WXT+`b#V7nssbDI{m$VylOp^w*I`XU}p0pxT=V;+ty^inF5byrz z;`0FK7dpK>q-3k3vK#23G*-+|>qIMt59+#o1B96lnU~xLwVKPK?`1Mtn=*wJ5%_%zA-S_43xK>qdI>E`2LiVV$`aICn%4{lW9^RgsKHTypz9=^!$ zj#faCZn#?Kpu0Ur%9-K}h+ENUrwhB4kjAdW%xg@1y6_YAmIN`bA?{pOsU*BFtBS%? zT~fi+fEEC-=kGH>&GQg)LCM5>gJW|-F{`!Wq!o4W`ti-vX+|oQQfoivNSoIQ%M*5X zolY$WZh`=?;;<^AY6~luEP^-DpQLutq>O;wD1z}JLy=*4&p{6qz_c!Z`AH?u{vsQM z{7J#isg<8D(eKA`60Re7L&0wUDNd=1>G1t#Q0C~Y`8Nz}-8ZbdOKS}AbrpTr=zV?dlkv*ciD=*E zJ8hcge374V4FKH^rT{wq_D>*kcPo=c&FKLJCG*!rHf068EM=s9KKWO$ya5aKfo5{< zJ24hM?{LZRw!aghY4`gF*wV9Vt~GLm!pxXzSTu=O{#6sf?h?42lreFQ{Mdz;x)Fe-}eGjJN1$?A<2t_dL$1P*u>QpTE zPEiG17M?1ZrudmO3(4!tBIdk9rvW!-Iymov;uu(^3CoF_6vCWz^$Lc`oNZb&@oGt$ z7cb7HjNz1CQHHG2R#*^+K@tDTy+D|au%@x|j+dyzzQYWbW3=nBFLo%j>sw+&*3?y( zoOMBPU7N;>Ht!p}UM!uk=&pTZzX_nr5(x?)MYsll0VLO+vG%PIay0*<<6zAJ%WyVE znCs8da=U&_9pfIHgfqC!ots9+Jx@z~DnswSHTv9*CK){LGAQc&`}TX%W4g~F(um-@ z<0S-^caM?!M$&np^z6^2JL7f^7OM@nG~teBVRh8ub8=Uxrt`6r`oMIuiC%KF^)!Qh;HT@{&Jq2pY85}MwRGgB8?Y@2MGdupOXnS zeLPU4R#K3>vn-YHDc)}p)e`YhCICwY(Jxoq1$=k#syrQ6N&FA`gl11stuCW=E~V!` zxkHlH&_dv){PaP}UWoX4zhMW@*Slc3u#=MLEm+>>ec>CibP;p&QYLNWV2xbDv!C4k?DJ1Kk(S$%oABGW$+V2+A6zRu5|qdDmo|Z zehtU^{1g7OaIXA4F&6)&?-~>oUYi!BkmlckQ_f5g+ryutZOn z*85xl^La1L_svaLL+=>U^)fTCuu~5@Fw`fQ{ZB8q&wBk1{BASmLLO|J`^WH%x^$?B zXC|$mb4^EyT+c3*JbNy@6{dZ(#>f)SmK1tjczW>_h;r;KqHMGLtmSO&q zNR2I}*AXN=N#m+9B;MMiBr5WFR(r3+#U&r&h<|gE<$v`U_l|&UW#`4!q!|zWyI{)A zZ>UqxmG9eqo12#V&S_2Su93|PFQ?A+>3zytDseKW-s&#utxs1-mTu{;49v19jf;1q zVi~@si+u}SaA_RN(8LVYe`CD3)5}1+p*gmS%VU^o>1Ur=XF7zmN zyzsVD?-hPU02%b{dlf)!O5$D3i==hp&S!s4NHemKV?PspwwV z7!b?~PrxMDc4`(a1)C8jHhYMDP^!}(|15kN; z%Xc|_-Yl2{jo910im1#I_Chr+0nEBTnM3WY&-0Zti+DXDkFKTNOD^Sle|Th^$rP?0 zz3wYjTPgyl@ki9P^bxGQsl_exg+z|cPaL;Z7UUu%Ykn#|505Yli&mLL*FM`Us6}*r zitk~rJ)-Q>l0u)L_0L^341UMax4#Z4QnCr^F!XxoT|keu8ZSkg9^@PA?OjNqAS+2k zh{2bVh%>igU0Zjnjbg{@jTu&bvC1-sGZn)RA>1t=2L5?S@3Z4ydAzMGDIMHk4lK#fYB+bpTnRfF9&nyc|DTfub^k*f~g}BRn%4#1QYRvHVBB1fJ zjW5i0e6rJyuk_+prV$e2OmpUU2n6~K`rf+&2-UDN^Oe9nD82e$Ou!$gR5C#0&W*mx z`5)x%NVqrJ>8n2cJge|TqUBlf{x3B{x z-lRmzvfI)|nPO=~@7_1urhKPL>XuFT2Iu79(KTv#6!;071}WLO%i&t*3<4O{t0|=Z#$hn*I;d7Vj9|6y`LuTMTP@40OGLKEx2)MbRK*KEcRsmC5fQ)5X)P{!|mPmW{7Ba(|;$xcwO2LYMk~giE;g-uz>VRzesWT*v=@y4$r3h z2ZI-i;@vIXYbDW%=QnCMU+249tesv5-zj)R-KUk%OD8L5N0U8YbmxlXD0)xjs}QbY z2XNoQh;I*`LB#_J-$cH{g>Y-Tz5as5bVt;mTtDrbXI5?0ew6}hnSRZNTRA_VtDhXm z1@amNJ2JH+>f1^FGSo4WWtmZJMZj0N)RC9z*%+T_3$iLkeQ(I8@|c4DJTT(n=jr(M z{#=!NwYu{cdI{Sc>g^eCfRFy@n0+kEeA=exMX-5bZ&e|Kk8rNjyGwDtyq46?`C03& z&RoMb-ezbtb&|0RFHEv1ecF0-kQ;M?{`0YXWalBoNs;c`4amTkb`zD_fvr)vtI(YP z<$e2Ee;FG4S=cJ9)^?-V9+^N{7E9_eQU0#`E}=-3gntT*Nxv3q$u)VqSuf;u(_VwD<6akrWJylGwu`y5-9|qFV_k% z*smvH$EYS9?G$4%-ZDpIj^HhuDf=5E@IO1}%<`pPjw|ew5TCW3hj}D*lasOew2EJ? zTk&y|k@fZRtFS9=t4s+(W7|pcdeF8Sr+ac<`_Xa<30GS|xCX59R$n&fM$Dj6UE~Ym zTf+@7ety+)r_SRUG>y6~CVM$R$K#%_Q~9e-Ots3Ykjlnz#tkn3A$?pI4V8^VdPD?) zR;I(9E3Qrbe{xer4sjq(+t^vr(X&&pb7(5gbU0Bl+!FXwh6R2>>hVUr!udne<-r7r z29&f!15Dz)LrkkhG_l<2CSk+t@9)|7I9@avXxQs055_V7p~7yQ&Qw}Q|AZg|gSj7#ri60C3Yx>s`u zD@l>9Nn|PItiGS>@)!$)fiqVm%S{M3Rs3Xn=a-)Ze_80AGHHT_gZ-qxGL8Kt4Bl8} z{zw%Vf?SkS@`m@*B8l^lB&nZzIq!K@5f&j+67+N#_IfHP1iMGDRpFwH+L4eHh+Ir7vRj1j`n3jfatLo{}hZgqjv1@bW zna_N5GM|b`H`hZ|R5gn(r*2MX>SqCG?dj^%7~opC3fkgDZ|a;oJ4Bbipm^m{Dn#=u z?4{(ty!5mJ?|-GzcbcT9oxRl-%N}P|%LbSiCCjGi$b}awq(^U5TQkDK-GXZ-kBR5` zHmYa%x4mD2>4~*ncTc#o&R`w5txZR39`^C`7+Ln9ZAWk7s4QSx7t5_gAXbN=`O`Zxcy3kLhoH(X(Nw}rj~?GB)oUq+ssg(=-W7T zHap}@Q9n>TZuG5h&#UkdVvR48L;bQZC-+=1yj%~Ak;#+Usaj_a=< z=dxdy&KkXWO_X!!12trDZCYB$?O^N@y?p2|7-yIRZ>&T>J!(W3Dh**RlXMZ1avPJ1 zV2Y4Gs_D^kVOr&veH_~3lSgPpDT^@cf-Y%`9$g(;+eZF{8Wpa)WCC(h)?txxv|jS^ zD+2?JvMOys_*Y#a}551+5`T<3lwN$)c@jn#%2lxRr*mg*QIj6OmVjH2?X??U@r z;;6PttG{^SpGj{5U)pgG%Q7b}-XxX#fk89d_wV2DW_oJHzb~(CdNbcdNygB=pZKu*8Cz^^-rH;~ zLq^-zdCU`K8tp>8D{M@OdJ6%Dqq8^V{>*FR8hS|*(=@T!z7A#`c&1J3%XayjX!|n* z|J&{N$1&w~P9=jjR6qJFkwrfAI_`*!HvE|kobHhv40R{lel&rm7V$?Umn9+ww) z+M2*8rX-~u7Pq-a_~CMm%6*x zAlF0sEi`m09s72b%E+>a64A_ zk!EHECios*(>#dZI}LWhmckb3oinA3wE|J<;tPi1TGzQK`yI zVwimrF;|+yNMpClWoQ3jevY~>F^SjeJD0h9C^Vi;!x+GV&|2OCa92u;i&T zTpyJ-ca}N{xyGNS`sY~xCzZ$Sgwd4W0`XSB+-zq#kEXR(ex*x<+a%4fpP2N4{K~1g zQkA>PZ@KW8;azd2hAiovY3UFcAod@xyygWV-zb4nhm3rTx;xSJWRAy0#)B**`@M7w zDs^sZx&ifZ+-??jJhAneUZCy$7z3A-e!%Vs1DDS4>~~^Bbv(>c{KRhQ-NmC$QadvlV=R=(&NRLmm4{EAurYLFJ6OuHLG}g@!NOyBi@ROPxZP{%MlIx z;5)jO?#^+$3q?j|{i|O;+xd|==Xobxff-y)2%U1OjS-ZO4jVJ$q3V^DW1Pa=k35 z%}$e8TB_`pK+Jn58mb3hC&7TUI3l9%X<5lE8oKB^#K`q9Yk=6DQ+YSx^Emz*PnkUU zfu81*q#50vmLNM#!$&dBHp-cbR}*_<;?4Ti65?)9Tu7GebxheE2xMBu)2iG%|0hgK z&Nm&(UMt-xuUJ@Kw^q<}bRI_}=y_NdO`2IaLaZ0}D(L+~;s?yB?KxSGQ#ZwVr{0&0 zVaENb-1c2`=gh^$dC5Y+Jz0`^bD3+UOH(paj@cK^b;|Uq>xJhVX6l3yYk2(0bgXY< z2b2S9j~voxScV_u+?FoPNoxt9qk1wn6U;0;N_}7AJ_N#_goUjYj?X7}L&R}WroaxG zoSCgm-56RYWC$HGGg)YvkRt4jAsGXpxV=10>IloaifpP4wJaf3s{nMu6*`$M- z@+XDw?uLtmrS%V#FGX2Lw_C|}+w9Y#?;GCs2xcDECK`}fy+@dhpo9cMUIK>7x~UB( zF=VNJp{`G4Y6BM(|rzZ4%ffi|@0~ z0N_v5DG)-y5qJkXdT?-F17aL|JjGrd9N%!TJOPd`kZaU`Plz4^B!I){I`(?tcoPV4 z3y%M!i{PYhUC*j9?Tp?S5ZXCxG&oM8T@q>F6X(J0fH0q1&_CLqkJQ zosGXYS|_;f8@TT&e0GqDDUqi3%9}^~ogEGd?KIKJPB;719&OLTE-o%=SZT4>&BE8d z*Ty;E{$xOFr};QzZ6ICOR@=s=*uZO*7_MC<6+yx_{Nn>2>e5bJ{GG+G40yB8vCX%@ zYdyWaBT;F=lwRO>tHF_dYh#(sL z_pLO`#z*{j^#9x#1v@;sJ$DyxO|+gNVcyG8eDt!Jen-iA>`C5e$3gD+z?0yC0UJnQ=v$@oC+frS30 z2)1^{sZ9890Y#bgo${?wbFO=B{4*c0_kchOq)5I0p8TglS53RZlv#r^99ApIRUO8A=g^7Wee@OgBuf=c$1&?bCp{U7{y! zFHZIvc0gZwb#?kM*BnGzF*~q#SuCCOS-?6EhS2tp@AqWeLh3rjYWV5Fy6xs<1-X!W zNru;2vLLEnvpRib?B+yxjdO$dqTo9zE=WAT_hBKI%Zf~HdHLWo7M2$sQ52S&Q&k1? z_PxEmQ5B}0

}k+yK!Q{VC=pZ!2=xB778QD$OID=b#g0qPt>YZv@y!1))kfR??!7r(0Yvwx`+6i39x{j5y&(tV5ww!+Lh@mNyrtupMuq3mz=#FFXMiv!3 zq@gjiocrAts-dEijmOcX9OpKoz_)REypYtpIt)z4V>4Q)(>o+wP>h$J zSI89A2RTXQ%ocJSo?2N|b@{)~+NV0jEa%(1oKds0dhPA)rwg5(oh*!u1q1HjlTM{s znEz2#=4lf6uz`I>UB~A9pFdysr|`fOdVEV$URXwBV&>!1^^}~QoqM{wu~eI;SP&Ex zWWy$X0KjBoV)8j7gI%_`uyAnU>WB~HGZ2>OQQQEap|&&MjGi=&u|C~jWoBm|$8O`k z^@}vEUTsVQzmy1GCLKe4^{pZRrDdRds5 zhUPpL;0Dd!8yysmpMMGrjRUSR@ZFPyZcS^5i;FiL3FMd8iHR*>MEUq?=h@?6n($%7 zgaInRP*pWY%fPE0GtYSslkQjD6pv!!;85Dz+Y671(y+EJ5~fyyuUhHX*Vm`;JLdqR z%olK7lUYjRrvQ_N&cs}FVp`Tb<_AxM#@nGe_IA_NvcL@*sl8Sn1UxSJj>xf3FJ`AN zCAMEx|Bu0dehTWSi83t^7!=d^vk65{UTWz%OTz8%wGBp732{3uzQk1S?mAt9Z~LAY zhwC!PmbIJ}m$sZCdD+fS^FR!}d*{y3SA|siQ;YIu(B#&vc814u*9bcwh{Rm9r!e)L z&rUP>3ya7M&!syUDloYak&zi}BNQtEuGqEevay!xsEN6{gdWd% zpx)t9E4TVzsw*o$Zk#Lq^yxlk-HtakBjCzQ1hkLj;jvOh70Zk8RWw8#(?RVyOdHO3r)5Ihv!|!OSN)PF(rl3zL;;p{me-0O>j?paD zW0FPA)Ruu(4{ZWNQvRL>eJMQhY6Xf3z(upf-@A2EdB~`~U&qrSmb^85ELsJvU z*LoTiFco}<=x|7y#u;v9S^&cXPngTKjx%wGJEXnP(dg#i&~f{jTlW9GLfWMSn#pPY z6g0*FC}+oi#QF05EquY5_G^$V6|B-)Y}yBmX!ZNYhpXck7JY;EwR7$y@;H!}%Y&f0 z14-k%i-(6Emgm?YZ9Vw_+A5TQsZ;{pHcIr^C#KlRL2Se3t&sJoprGp@qYEQq?D_3v zwZGDhHLQWb{Qvx&G`_2oPBCUSHu%6VtU227`Tn$%8VaM>DnRIxlb0Vk+!#@6wC~?z z)vYPPmm7cHa=JzVY;B21#IlmLwRKNdm(|f#rtiKi7Do7`N(u@ZzcNG+o_nARa>531 z95p??w58=`Tl-`1#Hd7Fhu8^}y?ZhQV#S0lxTkrPHXxbN+jF{cD|?>mAQ}Py%N?xs zj{pr)ZS*~;O7Dm32%tu8C{i8kx#YZdZzFav5gaXp`>Va^1&J?j7yi7`DZJj#6SF$YabWYx~mGW63>`})Ruukt#?=_xkfJ5coYZg6PW_^Q(j zU_M%;h5&*JZrEy&r0+hZ%{*5R%gV|c)2W_wsI?eKE5e59xdy1MlTaJy1)mkTCnbS& zGjz*M5c*5x_)qvY7t7B7_9`8kasDb)2o+V@tRlS7Mbo6-Opl#G=bip_zTq*L!=p1w0v z?^^IxF})a=4Q$i7Hw5Bw>2haG?etzkVxrA_lb4*5lGZ|tA9gUB zd^N1Y1M!G#KAyK7t-!WTkpuVuw^8!C047TVLFVveIfjLeO(Bk)(q{))ay3B<2{f;= zmzP&=&o#(P+Z;R*2xK1$H)!##2P`o>GIH5VNG)6l;+V$i=_$FOTVY2eS+0Jg`vwT! zNup!qA{2jYD7uQK4BRfU4DiUA$*P<02s_0)>3RgCnV%E$S3{*zc5DO*rZ}fTiZd| z3DOU4;~zLwV*Yv?8ym>cqIl7(6H|pWeiefu?0?y z)d1c{n@qB2M>CE*COMpQP4{{05Jm?S&)k+5W)+8fA#l5j*Wxy680o{bnwaTCKzJN}@#p7t1t= zBgd+#LvTA5VPU;Ew<+_a4Zw_J!};=;-#tK^8muq?>C2^QIkvfwLWXd?2DSAO7>v#F z_FRg9>({3WDJzC8-e?;D9Y3t#F!22S;VDfgm?8~j|4yvHQCX3KFylCeu&?s%ontS^-J|+2O8OIv)FJ?#p#CjDUF{2B<}bjnD9%qV@T6Zy^?iW4%z)^TEoa{IO0R%yBDsvg3x|TEGZ?088%kDHB-xX#t$f!4J72>yezk8>k$^&92^`I zEq>>Rp<)-}*!Xa?vrty=x_+i>flElOx8r{cpF9spTj>u6|c$eXHAQBk45YzdT0d`+2(no@RlHgvpRj~#3M zI4n_}GcuP9Raq+8PnL^gle?8TdE{Kc+qZAi7w{nv%Nqb?fi}Q_$@!hK<^wQ(z(Bn; z<*qI+$hnrMkEErg`8IrPbiC!|oTbrZCn_CWSbrrm$SHNv^7~F5n_CzJ8avu-^0QT zFaocgpElwF&z@He_Zn!szdD z+gt9OIKK=fq!~X$qbMkG4Yjq40LNm2J%C72z*dHe?dKXaKm#mg;BL1FsY?b2mGxb^ z8P0&uq50Oqr~ z9e*v$^AxT<_9PgYw3=27wFtee&(Y>k;I$hUy`Zq64T2!Dv~hcw!+$TrTddK3hIh{Q zpdWwWbt~Y1S=BOwW}WIj@K|?1ZEUgWpslk@Hm-AdXujD8VbM9273BGAQ~r* z+1T&5TpiW6Vv{L!DVA}hVyNMu`_>!7fJ=lw=u>6`YA?XST7fz~1XUKmBr+I~5PL{1 zT>d0d`UAAp5D+n!ofQsqg2WFW%BaHqp3>9H#9=El#KgqbAbebz_j8&2ybUVM_8|QL z4a%zM4V6O7dlQ+Mm}CKs+3r?}cprZ1w-^DAqOPK%VoB+zz!BEV(b_b%iUY~2|Erq@ zx?^IiX0|}y1DYq$@p$c<>HF@rUqQROyLB4eiU2^ecx=b501(4tVkTC)<9UF11Ma>Z z*)v%0YIzBQ&9Lh)kpf_sqRL8DAQeX56N(ms(gLrwAz<<==Xpk$m%q22T?tmXwO*mi zupEj2F`yk(i=@TQVz(Q2T3$F9D=H|Ap~_lIfebvx&ibl*BXlD_35gYBCwt4pBqVDK z?p>drU}t6C8^y+E(DYU!l)yd~LPJAS=6`u+eR+lkyj7_K#|EY*gEEW0FDfV%Pewd^ zd=0=-2*(9c;KndbycT*;v{Hysj8~RZMyrw zq1bb*wroagVpAHpL88aJm$Vq>^cPmSBi`D2DJn)wMN<~}Y}ZQ@iX19OY!X2N*Q~q^ z1wd+X`ZT}scL)Wy!z@3h>bEVcUY&9rdD>KSeiYdYDXfhv&156CT&F6{vB@3C55`T- z!Q2R71t(nKkoDYypH|< kNAh3vg5bZ#u)CORym(1%k5>gKvH88Mq~hz+S4Khq4e|j9_W%F@ diff --git a/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb b/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb deleted file mode 100644 index 4bc113cd5..000000000 --- a/community/chemistry/LiH_with_qubit_tapering_and_uccsd.ipynb +++ /dev/null @@ -1,338 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Tapering an Operator*_\n", - "\n", - "This notebook demonstrates how symmetries can be taken advantage of to reduce the size (number of qubits needed) for an Operator when using Qiskit Chemistry.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# import common packages\n", - "import itertools\n", - "import logging\n", - "\n", - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "\n", - "from qiskit.aqua import Operator, set_qiskit_aqua_logging, QuantumInstance\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import COBYLA\n", - "\n", - "from qiskit.chemistry.drivers import PySCFDriver, UnitsType\n", - "from qiskit.chemistry.core import Hamiltonian, TransformationType, QubitMappingType \n", - "from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD\n", - "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock\n", - "\n", - "# set_qiskit_aqua_logging(logging.INFO)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# using driver to get fermionic Hamiltonian\n", - "driver = PySCFDriver(atom='Li .0 .0 .0; H .0 .0 1.6', unit=UnitsType.ANGSTROM,\n", - " charge=0, spin=0, basis='sto3g')\n", - "molecule = driver.run()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Originally requires 8 qubits\n", - "Representation: paulis, qubits: 8, size: 276\n" - ] - } - ], - "source": [ - "core = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, \n", - " two_qubit_reduction=True, freeze_core=True)\n", - "qubit_op, _ = core.run(molecule)\n", - "\n", - "print(\"Originally requires {} qubits\".format(qubit_op.num_qubits))\n", - "print(qubit_op)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Find the symmetries of the qubit operator" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Z2 symmetries found:\n", - "ZIZIZIZI\n", - "ZZIIZZII\n", - "single qubit operators found:\n", - "IIIIIIXI\n", - "IIIIIXII\n", - "cliffords found:\n", - "ZIZIZIZI\t0.7071067811865475\n", - "IIIIIIXI\t0.7071067811865475\n", - "\n", - "ZZIIZZII\t0.7071067811865475\n", - "IIIIIXII\t0.7071067811865475\n", - "\n", - "single-qubit list: [1, 2]\n" - ] - } - ], - "source": [ - "[symmetries, sq_paulis, cliffords, sq_list] = qubit_op.find_Z2_symmetries()\n", - "print('Z2 symmetries found:')\n", - "for symm in symmetries:\n", - " print(symm.to_label())\n", - "print('single qubit operators found:')\n", - "for sq in sq_paulis:\n", - " print(sq.to_label())\n", - "print('cliffords found:')\n", - "for clifford in cliffords:\n", - " print(clifford.print_operators())\n", - "print('single-qubit list: {}'.format(sq_list))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Use the found symmetries, single qubit operators, and cliffords to taper qubits from the original qubit operator. For each Z2 symmetry one can taper one qubit. However, different tapered operators can be built, corresponding to different symmetry sectors. " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of qubits of tapered qubit operator: 6\n", - "Number of qubits of tapered qubit operator: 6\n", - "Number of qubits of tapered qubit operator: 6\n", - "Number of qubits of tapered qubit operator: 6\n" - ] - } - ], - "source": [ - "tapered_ops = []\n", - "for coeff in itertools.product([1, -1], repeat=len(sq_list)):\n", - " tapered_op = Operator.qubit_tapering(qubit_op, cliffords, sq_list, list(coeff))\n", - " tapered_ops.append((list(coeff), tapered_op))\n", - " print(\"Number of qubits of tapered qubit operator: {}\".format(tapered_op.num_qubits))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The user has to specify the symmetry sector he is interested in. Since we are interested in finding the ground state here, let us get the original ground state energy as a reference." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== GROUND STATE ENERGY ===\n", - " \n", - "* Electronic ground state energy (Hartree): -8.874303870396\n", - " - computed part: -1.078084301625\n", - " - frozen energy part: -7.796219568771\n", - " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy (Hartree): 0.992207270475\n", - "> Total ground state energy (Hartree): -7.882096599921\n" - ] - } - ], - "source": [ - "ee = ExactEigensolver(qubit_op, k=1)\n", - "result = core.process_algorithm_result(ee.run())\n", - "for line in result[0]:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, let us iterate through all tapered qubit operators to find out the one whose ground state energy matches the original (un-tapered) one." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Lowest eigenvalue of the 0-th tapered operator (computed part) is -1.078084301625\n", - "Lowest eigenvalue of the 1-th tapered operator (computed part) is -0.509523578167\n", - "Lowest eigenvalue of the 2-th tapered operator (computed part) is -0.912078232998\n", - "Lowest eigenvalue of the 3-th tapered operator (computed part) is -0.912078232998\n", - "The 0-th tapered operator matches original ground state energy, with corresponding symmetry sector of [1, 1]\n" - ] - } - ], - "source": [ - "smallest_eig_value = 99999999999999\n", - "smallest_idx = -1\n", - "for idx in range(len(tapered_ops)):\n", - " ee = ExactEigensolver(tapered_ops[idx][1], k=1)\n", - " curr_value = ee.run()['energy']\n", - " if curr_value < smallest_eig_value:\n", - " smallest_eig_value = curr_value\n", - " smallest_idx = idx\n", - " print(\"Lowest eigenvalue of the {}-th tapered operator (computed part) is {:.12f}\".format(idx, curr_value))\n", - " \n", - "the_tapered_op = tapered_ops[smallest_idx][1]\n", - "the_coeff = tapered_ops[smallest_idx][0]\n", - "print(\"The {}-th tapered operator matches original ground state energy, with corresponding symmetry sector of {}\".format(smallest_idx, the_coeff))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Alternatively, one can run multiple VQE instances to find the lowest eigenvalue sector. \n", - "Here we just validate that `the_tapered_op` reach the smallest eigenvalue in one VQE execution with the UCCSD variational form, modified to take into account of the tapered symmetries." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# setup initial state\n", - "init_state = HartreeFock(num_qubits=the_tapered_op.num_qubits, num_orbitals=core._molecule_info['num_orbitals'],\n", - " qubit_mapping=core._qubit_mapping, two_qubit_reduction=core._two_qubit_reduction,\n", - " num_particles=core._molecule_info['num_particles'], sq_list=sq_list)\n", - "\n", - "# setup variationl form\n", - "var_form = UCCSD(num_qubits=the_tapered_op.num_qubits, depth=1,\n", - " num_orbitals=core._molecule_info['num_orbitals'], \n", - " num_particles=core._molecule_info['num_particles'],\n", - " active_occupied=None, active_unoccupied=None, initial_state=init_state,\n", - " qubit_mapping=core._qubit_mapping, two_qubit_reduction=core._two_qubit_reduction, \n", - " num_time_slices=1,\n", - " cliffords=cliffords, sq_list=sq_list, tapering_values=the_coeff, symmetries=symmetries)\n", - "\n", - "# setup optimizer\n", - "optimizer = COBYLA(maxiter=1000)\n", - "\n", - "# set vqe\n", - "algo = VQE(the_tapered_op, var_form, optimizer, 'matrix')\n", - "\n", - "# setup backend\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "algo_result = algo.run(quantum_instance)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== GROUND STATE ENERGY ===\n", - " \n", - "* Electronic ground state energy (Hartree): -8.874303856889\n", - " - computed part: -1.078084288118\n", - " - frozen energy part: -7.796219568771\n", - " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy (Hartree): 0.992207270475\n", - "> Total ground state energy (Hartree): -7.882096586414\n", - "The parameters for UCCSD are:\n", - "[ 0.03815735 0.00366554 0.03827111 0.00369737 -0.03604811 0.0594364\n", - " -0.02741369 -0.02735108 0.05956488 -0.11497243]\n" - ] - } - ], - "source": [ - "result = core.process_algorithm_result(algo_result)\n", - "for line in result[0]:\n", - " print(line)\n", - "\n", - "print(\"The parameters for UCCSD are:\\n{}\".format(algo_result['opt_params']))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/ParticleHoleTransformation.ipynb b/community/chemistry/ParticleHoleTransformation.ipynb deleted file mode 100644 index e58512f7f..000000000 --- a/community/chemistry/ParticleHoleTransformation.ipynb +++ /dev/null @@ -1,202 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Particle hole transformation of FermionicOperator*_\n", - "\n", - "This notebook demonstrates carrying out a ParticleHole transformation on the FermionicOperator in Qiskit Chemistry. Here we use the FermionicOperator directly to demonstrate.\n", - "\n", - "Note: The Hamiltonian class that wraps this provides a means to use either full, or particle hole transformation. Under the covers it does what is shown here though.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.transpiler import PassManager\n", - "\n", - "from qiskit.aqua import Operator, QuantumInstance\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import L_BFGS_B\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "from qiskit.chemistry import FermionicOperator\n", - "from qiskit.chemistry.drivers import PySCFDriver, UnitsType" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll do this with H2 molecule and use the PySCF driver to create the integrals we need for the FermionicOperator." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 0.735', unit=UnitsType.ANGSTROM,\n", - " charge=0, spin=0, basis='sto3g')\n", - "molecule = driver.run()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We first create the FermionicOperator and use ExactEigensolver with qubit operator we get from it via a jordan wigner mapping to compute the ground state energy. Here this is the electronic component of the total ground state energy (the total ground state energy would include the nuclear repulsion energy we can get from the molecule that comes from the driver)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The exact ground state energy is: -1.8572750302023795\n", - "The Hartree Fock Electron Energy is: -1.8369679912029842\n" - ] - } - ], - "source": [ - "ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals)\n", - "qubitOp_jw = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", - "qubitOp_jw.chop(10**-10)\n", - "\n", - "# Using exact eigensolver to get the smallest eigenvalue\n", - "exact_eigensolver = ExactEigensolver(qubitOp_jw, k=1)\n", - "ret = exact_eigensolver.run()\n", - "\n", - "# print(qubitOp_jw.print_operators())\n", - "\n", - "print('The exact ground state energy is: {}'.format(ret['energy']))\n", - "print('The Hartree Fock Electron Energy is: {}'.format(molecule.hf_energy - molecule.nuclear_repulsion_energy))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now the same as above but with ParticleHole transformation. This removes out energy from the FermionicOperator that is equivalent to the electronic part of the Hartree Fock Energy that we also computed above. The Hartree Fock energy also comes from the driver. To get the total electronic ground state energy we need to add the part we now compute with the part that was removed by the transformation." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Energy shift is: 1.8369679912029846\n", - "The exact ground state energy in PH basis is -0.020307038999396183\n", - "The exact ground state energy in PH basis is -1.8572750302023808 (with energy_shift)\n" - ] - } - ], - "source": [ - "# particle hole transformation\n", - "newferOp, energy_shift = ferOp.particle_hole_transformation(num_particles=2)\n", - "print('Energy shift is: {}'.format(energy_shift))\n", - "newqubitOp_jw = newferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", - "newqubitOp_jw.chop(10**-10)\n", - "\n", - "exact_eigensolver = ExactEigensolver(newqubitOp_jw, k=1)\n", - "ret = exact_eigensolver.run()\n", - "\n", - "# print(newqubitOp_jw.print_operators())\n", - "print('The exact ground state energy in PH basis is {}'.format(ret['energy']))\n", - "print('The exact ground state energy in PH basis is {} (with energy_shift)'.format(ret['energy'] - energy_shift))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We run here using the quantum VQE algorithm to show the same result. The parameters printed are the optimal parameters of the variational form at the minimum energy, the ground state." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Minimum value: -0.020307038771711697\n", - "Minimum value: -1.8572750299746963\n", - "Parameters: [-0.62024568 -0.94461634 -0.12822854 -1.33174693 -3.12835752 -2.41119768\n", - " 0.67926104 2.44344768 0.72721421 -2.76518798 -1.08251803 -1.75962366\n", - " 0.54861203 1.8995056 3.04269648 -1.75046119 0.16409288 0.68204022\n", - " -0.07661803 -0.76359574 -1.56412942 -2.02324628 1.50961019 1.31452025]\n" - ] - } - ], - "source": [ - "# setup VQE \n", - "# setup optimizer, use L_BFGS_B optimizer for example\n", - "lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", - "\n", - "# setup variational form generator (generate trial circuits for VQE)\n", - "var_form = RY(newqubitOp_jw.num_qubits, 5, entangler_map = [[0, 1], [1, 2], [2, 3]])\n", - "\n", - "# setup VQE with operator, variational form, and optimizer\n", - "vqe_algorithm = VQE(newqubitOp_jw, var_form, lbfgs, 'matrix')\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", - "\n", - "results = vqe_algorithm.run(quantum_instance)\n", - "print(\"Minimum value: {}\".format(results['eigvals'][0].real))\n", - "print(\"Minimum value: {}\".format(results['eigvals'][0].real - energy_shift))\n", - "print(\"Parameters: {}\".format(results['opt_params']))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/chemistry/PySCFChemistryDriver.ipynb b/community/chemistry/PySCFChemistryDriver.ipynb deleted file mode 100644 index 991697bf8..000000000 --- a/community/chemistry/PySCFChemistryDriver.ipynb +++ /dev/null @@ -1,168 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Using PySCF driver*_\n", - "\n", - "Qiskit Chemistry supports a number of different chemistry drivers, i.e chemistry programs and software libraries, which are used to compute integrals that are then used to build the second quantized Hamiltonian in the FermionicOperator.\n", - "\n", - "Drivers include Gaussian 16, PyQuante, PySCF, PSI4 and HDF5. The main Qiskit documentation has more information on [drivers](https://qiskit.org/documentation/aqua/chemistry/qiskit_chemistry_drivers.html).\n", - "\n", - "For non-Windows platforms (where PySCF has no pre-built packages), the PySCF driver is installed as a dependent when you `pip install qiskit-chemistry`. HDF5 support is built into Qiskit Chemistry. If you would like/prefer to use one of the other drivers then refer to the above link for installation and usage guidance.\n", - "\n", - "Note: drivers were written to allow existing users of them to leverage creating the molecular input in a native way for the driver. While Multiplicity (2S+1) is commonly used to specify the overall spin of the molecule, PySCF uses Spin (2S) if you are programming directly with its API and that is what is exposed here. For a singlet system, as in the example below i.e. equal numbers of alpha and beta electrons, the overall spin here is 0 and 2S is 0 (Multiplicity would have been 1).\n", - "\n", - "This notebook has been written to use the PySCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.transpiler import PassManager\n", - "\n", - "from qiskit.aqua import Operator, QuantumInstance\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import L_BFGS_B\n", - "from qiskit.aqua.components.variational_forms import RYRZ\n", - "\n", - "from qiskit.chemistry import FermionicOperator\n", - "from qiskit.chemistry.drivers import PySCFDriver, UnitsType" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# using driver to get fermionic Hamiltonian\n", - "# PySCF example\n", - "driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 0.735', unit=UnitsType.ANGSTROM,\n", - " charge=0, spin=0, basis='sto3g')\n", - "molecule = driver.run()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# get fermionic operator and mapping to qubit operator\n", - "ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals)\n", - "qubitOp = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", - "qubitOp.to_matrix()\n", - "qubitOp.chop(10**-10)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# If you do have the driver installed or would like to start with a random Hamiltonian\n", - "# SIZE=4\n", - "# matrix = np.random.random((SIZE,SIZE))\n", - "# qubitOp = Operator(matrix=matrix)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The exact ground state energy is: -1.8572750302023784\n" - ] - } - ], - "source": [ - "# Using exact eigensolver to get the smallest eigenvalue\n", - "exact_eigensolver = ExactEigensolver(qubitOp, k=1)\n", - "ret = exact_eigensolver.run()\n", - "print('The exact ground state energy is: {}'.format(ret['eigvals'][0].real))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Minimum value: -1.8532124263217393\n", - "Parameters: [-2.13953054 0.70800218 -0.17157494 -2.67458466 2.43244041 0.04126769\n", - " 0.34740155 -0.04775077 -1.151147 2.76097941 -1.48948796 -0.30086504\n", - " 0.7290411 2.40033569 -2.30581555 1.06377607 -2.97789243 1.43082718\n", - " -0.91377262 -2.29316671 -0.04083006 -0.54650779 -2.43032826 -0.79940815\n", - " -1.88176584 0.05495389 2.47406188 -0.82144629 -2.44818703 -3.11585379\n", - " -2.54844951 -2.58470426 -0.99008597 -2.88926043 1.20856368 2.67069418\n", - " 2.4613227 1.22966774 -0.03176877 0.93517933 0.06694405 1.33700758\n", - " 1.49080935 -1.39533027 0.47972164 1.7949311 -3.01432916 -2.43192278]\n" - ] - } - ], - "source": [ - "# setup VQE \n", - "# setup optimizer, use L_BFGS_B optimizer for example\n", - "lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", - "\n", - "# setup variational form generator (generate trial circuits for VQE)\n", - "var_form = RYRZ(qubitOp.num_qubits, 5, entangler_map = [[0, 1], [1, 2], [2, 3]])\n", - "\n", - "# setup VQE with operator, variational form, and optimizer\n", - "vqe_algorithm = VQE(qubitOp, var_form, lbfgs, 'matrix')\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", - "\n", - "results = vqe_algorithm.run(quantum_instance)\n", - "print(\"Minimum value: {}\".format(results['eigvals'][0].real))\n", - "print(\"Parameters: {}\".format(results['opt_params']))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/QSE_pytket.ipynb b/community/chemistry/QSE_pytket.ipynb deleted file mode 100644 index e93e915f4..000000000 --- a/community/chemistry/QSE_pytket.ipynb +++ /dev/null @@ -1,942 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Quantum chemistry with Qiskit `Terra`, `Aqua` and CQC's `t|ket〉` compiler*_ \n", - "\n", - "In this tutorial, we discuss how to use IBM's Qiskit `Terra` and `Aqua` packages, and the `t|ket〉` compiler by Cambridge Quantum Computing (CQC), to calculate the excited state energies of simple molecules using the quantum subspace expansion (QSE) technique. By the end of this tutorial, you will\n", - "\n", - "* Understand why optimizing circuits for quantum chemistry is necessary\n", - "* Learn about the quantum subspace expansion technique for computing excited state energies\n", - "* See how Qiskit `Terra` enables 3rd-party passes in its transpiler architecture\n", - "* Use `pytket` to perform native circuit optimization and circuit routing\n", - "\n", - "NOTE: Throughout this tutorial, we assume the reader has some familiarity with quantum chemistry methods, though an extensive knowledge is not necessary.\n", - "\n", - "**Code setup**\n", - "\n", - "This tutorial makes use of Qiskit `Terra` and `Aqua`, as well as `pytket` (the Python interface to `t|ket〉`). To install `Terra` and `Aqua`, follow instructions available [here](https://qiskit.org/). To install `pytket`, follow the instructions at [this Github repository](https://github.com/CQCL/pytket)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quantum chemistry in the NISQ era, and the need for circuit optimization techniques\n", - "\n", - "One of the expected applications of noisy, intemediate-scale quantum (NISQ) devices is simulating quantum chemistry. A simple quantum chemistry question is \"Given how the electrons and nuclei of a particular molecule are arranged, what is the _energy_ of that configuration?\". By examining how the energy of the configuration changes as the nuclei and electrons are moved relative to one another, we can map out an _energy surface_. The configuration that minimizes the energy is a stable, equilibrium point for the molecule. Knowing this configuration (and its associated energy), we can deduce a variety of molecular properties, such as reaction rates.\n", - "\n", - "Most techniques for computing molecular energies on near term quantum devices rely on the [variational quantum eigensolver (VQE) algorithm](https://doi.org/10.1038/ncomms5213). This algorithm uses a parameterized _ansatz_ $|{\\psi}(\\boldsymbol{\\theta})\\rangle$ to describe the ground state energy of the Hamiltonian $H$ for a given configuration. By examining how the expected energy $\\langle \\psi(\\boldsymbol{\\theta})|H| \\psi(\\boldsymbol{\\theta})\\rangle/\\langle \\psi(\\boldsymbol{\\theta})|\\psi(\\boldsymbol{\\theta})\\rangle$ changes as $\\boldsymbol{\\theta}$ is varied, we can optimize the parameters to find an estimate for the ground state and its corresponding energy.\n", - "\n", - "Running the VQE algorithm on actual hardware has two complications:\n", - "\n", - "* Efficiently preparing the trial state $|\\psi(\\boldsymbol{\\theta})\\rangle$.\n", - "\n", - "* Efficiently measuring the terms in the Hamiltonian $H$ that describe the configuration.\n", - "\n", - "In this tutorial, we'll focus on the problem of efficiently preparing the trial state. We do so for two reasons:\n", - "\n", - "* An accurate estimate of the ground state is all that's necessary to do the quantum subspace expansion technique to estimate excited state energies\n", - "\n", - "* To demonstrate the capabilies of Qiskit `Terra` and CQC's `t|ket〉` compiler to reduce the circuit _resources_ (number of gates, depth, etc.) for the state preparation. In principle, these capabilities can be deployed for other problems.\n", - "\n", - "Reducing the resources is crucial in the NISQ era, because the noise present in NISQ devices dominates more for larger circuits (with more operations) and reduces the accuracy of the results. Therefore techniques which reduce circuit requirements can significantly improve the results on real hardware. Note that there are techniques, such as [qubit tapering](https://arxiv.org/abs/1701.08213), or ['gate-efficient' circuits](https://arxiv.org/abs/1809.05057), which are useful for constructing a lower-resource circuit that could be run on _ideal_ hardware. In practice, even these \"resource-efficient\" circuits can be further optimized, especially when the imperfections and constraints of a real piece of hardware are taken into account.\n", - "\n", - "At a high level, our approach utilizes Qiskit `Aqua` to generate a parameterized ansatz based on the [_Unitary Coupled Cluster, Single-Double_ (UCCSD) ansatz](https://en.wikipedia.org/wiki/Coupled_cluster). We then use Qiskit `Terra` and the `t|ket〉` compiler (as implemented in `pytket`) to optimize the circuit for that ansatz. We will show that the optimized ansatz requires substantially fewer circuit resources than the naive UCCSD ansatz. An application of our approach, we show how to use the quantum subspace expansion (QSE) technique to compute excited state energies for gaseous hydrogen (H$_{2}$) and lithium hydride (LiH)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Computing excited state energies using the Quantum Subspace Expansion (QSE) technique\n", - "\n", - "The VQE algorithm is often used to compute the _ground state_ energy of a given molecular configuration. However, knowing the energies of _excited states_ of the system is also useful. The energies of electronic excited states prove, in general, challenging to compute. Excited states are usually more _entangled_ than ground states and so require more computational resources to compute. While there exists techniques for efficiently representing certain classes of entangled states, in general, the complexity of the simulation will be non-trivial. This is a problem as it makes classical computation of the energy, to an appropriate accuracy, of many molecules impossible. \n", - "\n", - "This notebook demonstrates calculation of excited states of molecules using the [quantum subspace expanansion (QSE) technique](https://doi.org/10.1103/PhysRevA.95.042308). The QSE technique uses an accurate estimate of the ground state energy of a given molecular configuration to estimate the energies of excited states. Consider a fixed molecule (represented by a given Hamiltonian $H$), and suppose $\\left|\\Psi_{0}\\right\\rangle$ is the output of the VQE algorithm for estimating the ground state energy of $H$.\n", - "\n", - "The QSE technique constructs a subspace of state vectors $\\left|\\Psi_j^k\\right\\rangle$ formed by one-electron excitations of the ground state wavefunction:\n", - "\n", - "\\begin{equation}\n", - "\\left|\\Psi_{j}^{k}\\right\\rangle = c_k^{\\dagger}c_{j}\\left|\\Psi_0\\right\\rangle.\n", - "\\end{equation}\n", - "\n", - "where $c_k^{\\dagger}, c_{j}$ are the fermionic creation and annihilation operators over spin orbitals $k$ and $j$, respectively. That is, these vectors are formed by reducing the occupation of spin orbital $j$ by one, and increasing the occupation of spin orbital $k$ by one. The vectors are not in general orthogonal to $\\Psi_{0}$ hence we will need to calculate an overlap matrix.\n", - "\n", - "\n", - "Within this subspace, we solve a generalized eigenvalue problem. Consider the operator $H'$ with matrix elements given by\n", - "$$(H')_{jk}^{lm} = \\langle\\Psi_j^l \\left| H \\right| \\Psi_k^m\\rangle,$$\n", - "\n", - "and define an overlap matrix $S$ whose matrix elements are given by\n", - "\n", - "$$S_{jk}^{lm} = \\langle \\Psi_j^l \\left|\\Psi_k^m\\right\\rangle.$$\n", - "\n", - "The generalized eigenvalue equation to be solved is \n", - "\n", - "\\begin{equation}\n", - "H'C=SCE,\n", - "\\end{equation}\n", - "\n", - "where $C$ is the matrix of eigenvectors, and $E$ is the vector of eigenvalues. Crucially, _the energy eigenvalues $E$ provide an estimate of the excited state energies of $H$_ as well as a refined value of the ground state energy.\n", - "\n", - "Notice that the solution to the generalized eigenvalue equation can be done on a classical computer, provided $H'$ and $S$ have been calculated. The matrix elements of both of these matrices can be constructed using a quantum computer, in the following way. First, re-write the matrix elements in terms of $\\left | \\Psi_{0}\\right \\rangle$:\n", - "\n", - "\\begin{align}\n", - "(H')_{jk}^{lm} =& \\langle\\Psi_j^l \\left| H \\right| \\Psi_k^m\\rangle = \\langle \\Psi_{0} | c_{j}^\\dagger c_{l} Hc_{m}^{\\dagger}c_{k}|\\Psi_{0}\\rangle\\\\\n", - "S_{jk}^{lm} &= \\langle \\Psi_j^l \\left|\\Psi_k^m\\right\\rangle = \\langle \\Psi_{0} | c_{j}^\\dagger c_{l} c_{m}^{\\dagger}c_{k}|\\Psi_{0}\\rangle.\n", - "\\end{align}\n", - "\n", - "The matrix elements can be calculated using a quantum computer or simluator. How? By transforming the operators \n", - "$c_{j}^\\dagger c_{l} c_{k}^{\\dagger}c_{m}$ and $c_{l}^\\dagger c_{j} H c_{m}^{\\dagger}c_{k}$ to a set of Pauli quantum gates according to an appropriate scheme such as Jordan-Wigner or Bravyi-Kitaev, apply this gate set to the ground state wavefunction (constructed with the coefficients obtained from the VQE calculation) and perform a measurement to obtain the expected value. By measuring these expectation values, we obtain estimates of $S_{jk}^{lm}$ and $(H')_{jk}^{lm}$, respectively.\n", - "\n", - "Therefore, to use the QSE technique, we need to use the quantum computer to calculate 2 quantities:\n", - "\n", - "* An estimate of the ground state $\\left |\\Psi_{0}\\right\\rangle$ (by running the VQE algorithm)\n", - "* The matrix elements of $H'$ and $S$.\n", - "\n", - "For the first quantity, we want to have an efficient representation of the trial state $|\\psi(\\boldsymbol{\\theta})\\rangle$. And for the second, we need to be able to take the estimate of the ground state and efficiently compute matrix elements. In both of these cases, being able to optimize the circuit for preparing would be useful. Thankfully, Qiskit `Terra`, in conjunction with `t|ket〉`, provides us tools for doing so. We discuss the problem of _circuit compilation/optimization_ in the next section." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Circuit compilation with Qiskit `Terra` and `t|ket〉`\n", - "\n", - "In the remainder of this tutorial, we show how to use Qiskit `Terra` and `t|ket〉` to optimize the circuits for preparing VQE trial states, and simulate the QSE technique." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Application I: Reducing circuit resources for trial state preparation\n", - "\n", - "In this tutorial, we'll focus on two simple molecules: hydrogen (H$_{2}$) and lithium hydride (LiH). NOTE: the code is much slower for LiH, which is why here, we'll demonstrate H$_{2}$.\n", - "\n", - "\n", - "As a first application of the pipelines provided by `Terra`, `Aqua`, and `t|ket〉`, we first show how to configure a VQE experiment using `Aqua`, and then use `Terra` and `t|ket〉` to compile the trial state preparation circuit.\n", - "\n", - "Let's start by importing the necessary packages." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# numpy, for random number generation\n", - "import numpy as np\n", - "\n", - "# Qiskit, for transpiler-related functions, the IBMQ provider, and the Aer simulator\n", - "from qiskit import IBMQ, Aer, QuantumRegister\n", - "from qiskit.transpiler import transpile, transpile_dag, PassManager\n", - "from qiskit.converters import circuit_to_dag, dag_to_circuit\n", - "\n", - "# pytket, for optimization\n", - "import pytket\n", - "from pytket.qiskit import TketPass\n", - "\n", - "# Qiskit Aqua, for chemistry\n", - "from qiskit_chemistry.drivers import PySCFDriver, UnitsType\n", - "from qiskit_chemistry import FermionicOperator\n", - "from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock\n", - "from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 0: Enable IBMQ account" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "ExecuteTime": { - "end_time": "2018-09-29T00:04:16.313210Z", - "start_time": "2018-09-29T00:04:14.460647Z" - } - }, - "outputs": [], - "source": [ - "IBMQ.load_accounts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 1: setting up the molecule\n", - "\n", - "We choose the basis set spanning the molecular wavefunction, the molecular geometry, the chemical identity of each atom, the charge and spin quantum number.\n", - "\n", - "To calculate results for LiH (slower), just comment out the H$_{2}$ string and replace it with the LiH one.\n", - "\n", - "NOTE: Here, we focus only on one particular value for the `bond_length`. If you wanted to replicate the final plot for the excited state energies of LiH as a function of bond length, you'd need to sweep `bond_length` over several values." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "ExecuteTime": { - "end_time": "2018-09-29T00:04:20.069592Z", - "start_time": "2018-09-29T00:04:20.065489Z" - } - }, - "outputs": [], - "source": [ - "# Choose a particular bond length\n", - "# NOTE: Units are in Angstroms\n", - "\n", - "bond_length = 0.7\n", - "\n", - "# Set up molecule\n", - "\n", - "# base_molecule_str = 'Li .0 .0 .0; H .0 .0 {}'\n", - "base_molecule_str = 'H .0 .0 .0; H .0 .0 {}'\n", - "\n", - "# Specify other molecular properties\n", - "charge = 0\n", - "spin = 0\n", - "basis = 'sto3g'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Having set up the molecule, we now execute our classical chemistry driver to obtain the integrals that define the terms in the molecule's Hamiltonian. In this case, we choose `PYSCF` as our driver, so make sure you have that installed.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Molecular repulsion energy: 0.7559674441714287\n" - ] - } - ], - "source": [ - "# Using driver to get fermionic Hamiltonian\n", - "# PySCF example\n", - "\n", - "driver = PySCFDriver(atom=base_molecule_str.format(bond_length),\n", - " unit=UnitsType.ANGSTROM,\n", - " charge=charge,\n", - " spin=spin,\n", - " basis=basis)\n", - "\n", - "molecule = driver.run()\n", - "\n", - "print(\"Molecular repulsion energy: \", molecule.nuclear_repulsion_energy)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The molecular repulsion energy calculated by the driver corresponds to the coulombic repulsion between the nuclei in the molecule, and we can add it to our electron structure calculation at the end to get the total energy." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 2: Set up a variational form for VQE\n", - "\n", - "To run the VQE algorithm, we need to specify a mapping from the molecular Hamiltonian to qubits, an initial state, and the ansatz we use for the trial state. Here, we use the Jordan-Wigner transform to map the molecular Hamiltonian onto qubits (Pauli operators). We choose the initial state to be a Hartree-Fock state, and we take the variational ansatz to be the unitary coupled cluster with single and double excitations (UCCSD)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of qubits: 4\n" - ] - } - ], - "source": [ - "n_qubits = molecule.one_body_integrals.shape[0]\n", - "n_electrons = molecule.num_alpha + molecule.num_beta - molecule.molecular_charge\n", - "\n", - "# get fermionic operator and mapping to qubit operator\n", - "ferOp = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals)\n", - "\n", - "qubitOp = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", - "qubitOp.chop(10**-10)\n", - "\n", - "# Instantiate the initial state as a Hartree-Fock state\n", - "initial_hf = HartreeFock(num_qubits=n_qubits, num_orbitals=n_qubits, \n", - " qubit_mapping='jordan_wigner', two_qubit_reduction=False, num_particles= n_electrons)\n", - "\n", - "# Create the variational form\n", - "var_form = UCCSD(num_qubits=n_qubits, num_orbitals=n_qubits, \n", - " num_particles=n_electrons, depth=1, initial_state=initial_hf, qubit_mapping='jordan_wigner')\n", - "\n", - "# How many qubits do we need?\n", - "print('Number of qubits: {0}'.format(n_qubits))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 3: Transpile circuit and examine circuit properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "At this point, we have instantiated a variational form for the molecule according to the UCCSD formulation. Aqua's `UCCSD` method has returned back to us an abstraction of the VQE variational form. Let's query some of its properties." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(3, (-3.141592653589793, 3.141592653589793))" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Query the variational form for the number of parameters, and the parameter bounds.\n", - "var_form.num_parameters, var_form.parameter_bounds[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As a VQE circuit, `var_form` has some number of parameters, and each parameter can take values in $[-\\pi, \\pi]$.\n", - "These parameters control the angles of rotation in the quantum circuit that represents the variational anatz.\n", - "\n", - "For a particular set of parameters, there is an assocated quantum circuit. Let's input some fiducial parameter values and query properties of the resulting circuit to introduce some nomenclature for describing circuits." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'size': 150,\n", - " 'depth': 83,\n", - " 'width': 4,\n", - " 'bits': 0,\n", - " 'factors': 1,\n", - " 'operations': {'u3': 42, 'u2': 40, 'cx': 56, 'u1': 12}}" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Instantiate a concrete instance of the VQE ansatz by setting all the parameters to the\n", - "# arbitrarily-chosen value of 0.\n", - "var_circ = var_form.construct_circuit(np.zeros(var_form.num_parameters))\n", - "\n", - "# Use Terra to convert the circuit to its directed, acyclic graph (DAG) representation.\n", - "var_circ_dag = circuit_to_dag(var_circ)\n", - "\n", - "# The .properties() method of the DAG to get circuit properties.\n", - "var_circ_dag.properties()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "These circuit properties are:\n", - "\n", - "\n", - "* `size`: The total number of gates in the circuit\n", - "* `depth`: The total number of _layers_ in the circuit\n", - "* `width`: The number of qubits in the circuit\n", - "* `bits`: The number of classical bits in the circuit. (NOTE: Because the circuit prepares a VQE trial state, and does not have any measurements, `bits` will be 0.)\n", - "* `factors`: The number of tensor factors the circuit could be decomposed into (by looking at the number of weakly connected components of the DAG)\n", - "\n", - "The `.properties()` method of the DAG representation also breaks down the total number of gates (`size`) by the individual gates themselves. These are the $u1,u2,u3$ and CNOT gates described [here](https://qiskit.org/documentation/terra/summary_of_quantum_operations.html). You can verify that the total number of gates is in fact equal to `size`." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 4: Transpile the circuit using Terra and `t|ket〉`\n", - "\n", - "Having instantiated a VQE variational form and examined some of its properties, we'd like to optimize those properties so that the circuit could be run on a near-term device. Terra provides a framework (the [_transpiler_](https://qiskit.org/documentation/terra/overview.html#transpiler)) for manipulating circuits according to certain _passes_, and where the execution of the passes is orchestrated by a _PassManager_, which we can use to do this optimization. Importantly, _the transpiler manipulates the circuit to change circuit properties, without actually changing the input-output relationship the circuit defines_. That is, the transpiler takes a circuit and re-writes it, but doesn't change what the circuit actually does.\n", - "\n", - "CQC has written several passes for manipulating quantum circuits which are available via `pytket`. For an extensive discussion of the framework `t|ket〉` uses to manipulate circuits, see **[TODO: include link]**. Here, we'll demonstrate using Terra and `pytket` to optimize a randomly-chosen realization of the VQE variational form. Currently, passes in the transpiler require a backend in order to run. For simplicity, we start by using a simulator backend." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# Grab an Aer backend\n", - "aer_backend = Aer.get_backend('qasm_simulator')" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [], - "source": [ - "# Choose a random set of parameters\n", - "seed = 0\n", - "np.random.seed(seed)\n", - "params = np.random.uniform(low=-3.1, high=3.1, size=var_form.num_parameters)\n", - "\n", - "# Construct a random instance of the variational circuit\n", - "var_circuit = var_form.construct_circuit(params)\n", - "\n", - "# Turn the circuit into a DAG\n", - "var_dag = circuit_to_dag(var_circuit)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This randomly-chosen realization of the variational form has the same circuit properties as the circuit we instantiated in Step 3." - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'size': 150,\n", - " 'depth': 83,\n", - " 'width': 4,\n", - " 'bits': 0,\n", - " 'factors': 1,\n", - " 'operations': {'u3': 42, 'u2': 40, 'cx': 56, 'u1': 12}}" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "var_dag.properties()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we set up a transpiler using Terra and the `TketPass` from `pytket`." - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a Terra PassManager object\n", - "tk_pass_manager = PassManager()\n", - "\n", - "# Set up the TketPass\n", - "tk_pass = TketPass(aer_backend)\n", - "\n", - "# Add the TketPass to the PassManager\n", - "tk_pass_manager.append(tk_pass)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the transpiler set up and the realization of the variational form put into a DAG, we can now use the `transpile_dag` function to run the PassManger." - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [], - "source": [ - "var_dag_transpiled = transpile_dag(var_dag, pass_manager=tk_pass_manager)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's check the properties of this circuit to see how the transpiled circuit differs from the original one." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'size': 95,\n", - " 'depth': 57,\n", - " 'width': 4,\n", - " 'bits': 0,\n", - " 'factors': 1,\n", - " 'operations': {'u3': 30, 'cx': 52, 'u1': 12, 'u2': 1}}" - ] - }, - "execution_count": 40, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "var_dag_transpiled.properties()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `t|ket〉` compiler has optimized the circuit, and as we might hope for, _the transpiled circuit has a lower `size` and `depth` than the original circuit._\n", - "\n", - "\n", - "The table below gives properties of the transpiled circuit for H$_{2}$ and LiH (with `seed=0`, corresponding to the worst-case and also most common performance of the transpiler).\n", - "\n", - "\n", - "| Molecule: H$_2$ | Total Gates | Depth | CNOT Count |\n", - "|--------------------------------------|-------------|---------------|--------------------|\n", - "| Input circuit | 150 | 83 | 56 |\n", - "| `tket` circuit optimization (Aer backend) | 95 | 57 | 52 |\n", - "\n", - "\n", - "| Molecule: LiH | Total Gates | Depth | CNOT Count |\n", - "|--------------------------------------|-------------|---------------|--------------------|\n", - "| Input circuit | 13700 | 9342 | 8064 |\n", - "| `tket` circuit optimization (Aer backend) | 7411 | 4416 | 5096 |\n", - "\n", - "For both H$_2$ and LiH, circuit optimization using `t|ket〉` reduces the number of gates necessary to prepare the trial state. The depth also decreases, which makes running the circuit more feasible on near-term devices." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 5: Route the circuit onto real hardware" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Even though we've optimized the circuit, there's no guarantee that it can run, as written, on a real backend. This is because the directionaly of the CNOT gates on the backend may not be respected by the circuit. For this reason, we need to re-write the circuit in such as way that the CNOT gates respect the _coupling map_ of the backend. `t|ket〉` knows how to do this, and handles this problem (called circuit \"routing\") when a real backend is put into the `TketPass` object. Routing refers to the process of making quantum circuits hardware compliant by the addition of SWAP gates such that all multi-qubit interactions occur on adjacent physical qubits.\n", - "\n", - "Because we know _a priori_ that the H$_{2}$ and LiH molecules requires at most 12 qubits, we make sure to use an IBMQ backend with no less than 12 qubits." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[,\n", - " ]" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Grab only backends that have at least 12 qubits\n", - "IBMQ.backends(filters=lambda x: x.configuration().n_qubits >= 12)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We'll use the `ibmq_16_melbourne` backend." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "real_backend = IBMQ.get_backend('ibmq_16_melbourne')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To route the variational circuit onto real hardware, we simply need to change the backend." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "# Create a Terra PassManager object\n", - "tk_pass_manager = PassManager()\n", - "\n", - "# Set up the TketPass\n", - "tk_pass = TketPass(real_backend)\n", - "\n", - "# Add the TketPass to the PassManager\n", - "tk_pass_manager.append(tk_pass)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Again, we can transpile the DAG representation of the variational circuit to a backend-compliant circuit using the `tranpsile_dag` function. Here, because the backend has a non-trivial coupling map, the `TketPass` will perform both circuit optimization and optimal routing calculations. We need to add a register containing the ancilla qubits on the architecture that `TketPass` can use in routing." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "blank_qubits = QuantumRegister(len(real_backend.properties().qubits) - var_dag.width())\n", - "var_dag.add_qreg(blank_qubits)\n", - "var_dag_transpiled = transpile_dag(var_dag, pass_manager=tk_pass_manager)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'size': 108,\n", - " 'depth': 69,\n", - " 'width': 4,\n", - " 'bits': 0,\n", - " 'factors': 1,\n", - " 'operations': {'u3': 30, 'cx': 52, 'u1': 12, 'u2': 14}}" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "var_dag_transpiled.properties()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can compare these results to Qiskit's own default transpilation by passing in the backend's `coupling_map` to the `transpile_dag` function." - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'size': 119,\n", - " 'depth': 89,\n", - " 'width': 14,\n", - " 'bits': 0,\n", - " 'factors': 11,\n", - " 'operations': {'u3': 15, 'cx': 56, 'u1': 14, 'u2': 34}}" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "transpile_dag(var_dag, coupling_map=real_backend.configuration().coupling_map).properties()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The table below shows circuit properties for H$_{2}$ (with `seed=0`).\n", - "\n", - "| Molecule: H$_2$ | Total Gates | Overall Depth | Overall CNOT Count |\n", - "|--------------------------------------|-------------|---------------|--------------------|\n", - "| Input circuit | 150 | 83 | 56 |\n", - "| `tket` circuit optimization (Aer backend) | 95 | 57 | 52 |\n", - "| `Qiskit ` default routing (real backend) | 119 | 89 | 56 |\n", - "| `tket` circuit optimzation + routing (real backend) | 108 | 69 | 52 |\n", - "\n", - "The table below shows circuit properties for LiH (with `seed=0`).\n", - "\n", - "| Molecule: LiH | Total Gates | Overall Depth | Overall CNOT Count |\n", - "|--------------------------------------|-------------|---------------|--------------------|\n", - "| Input circuit | 13700 | 9342 | 8064 |\n", - "| `tket` circuit optimization (Aer backend) | 7411 | 4416 | 5096 |\n", - "| `Qiskit ` default routing (real backend) | 42178 | 23367 | 17977 |\n", - "| `tket` circuit optimzation + routing (real backend) | 19256 | 10022 | 8711 |" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Application II: using QSE to compute excited state energies" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The previous application showed us how to use `t|ket〉` and Terra to optimally route circuits onto real hardware. In the introduction, we observed that in order to use the quantum subspace expansion to compute excited state energies, we need to first come up with an estimate of the ground state. For this, we use VQE.\n", - "\n", - "In this application, we'll instantiate a VQE circuit, run it, and use the estimated ground state as input to `pytket`'s quantum subspace expansion function(s). NOTE: We'll use a simulator backend, and will not run the VQE algorithm on real hardware." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [], - "source": [ - "# Code imports\n", - "\n", - "# From Aqua, we need \n", - "from qiskit_aqua import QuantumInstance\n", - "\n", - "from qiskit_aqua.algorithms.adaptive import VQE\n", - "from qiskit_aqua.components.optimizers import L_BFGS_B\n", - "\n", - "# From pytket, we need QSE functions\n", - "\n", - "from pytket.chemistry import QseMatrices, QSE" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "backend = Aer.get_backend('statevector_simulator')" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "pass_manager = PassManager()\n", - "tk_pass = TketPass(backend)\n", - "pass_manager.append(tk_pass)\n", - "\n", - "quantum_instance = QuantumInstance(backend, pass_manager=pass_manager)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 1: Use VQE to estimate ground state\n", - "\n", - "First, we'll use VQE to estimate the ground state and its energy." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [], - "source": [ - "# Temporary code for Aer on Macbook\n", - "import os\n", - "os.environ['KMP_DUPLICATE_LIB_OK']='True'" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "GS Minimum value: -1.1361894540653963\n", - "GS Parameters: [ 5.06008657e-07 5.12457730e-07 -1.04867316e-01]\n" - ] - } - ], - "source": [ - "# Set initial values of parameters\n", - "number_amplitudes = len(var_form._single_excitations)+ len(var_form._double_excitations)\n", - "\n", - "amplitudes_0 = []\n", - "for i in range(number_amplitudes):\n", - " amplitudes_0.append(0.00001)\n", - "\n", - "optimizer = L_BFGS_B()\n", - "optimizer.set_options(maxfun=1000, factr=10, iprint=10)\n", - "\n", - "# setup VQE with operator, variation form, and optimzer\n", - "vqe_algorithm = VQE(operator=qubitOp, operator_mode='matrix', \n", - " var_form=var_form, optimizer=optimizer, initial_point=amplitudes_0)\n", - "\n", - "results = vqe_algorithm.run(quantum_instance)\n", - "\n", - "eigval = results['eigvals'][0]\n", - "gs_energy = eigval.real + molecule.nuclear_repulsion_energy\n", - "\n", - "print(\"GS Minimum value: {}\".format(gs_energy))\n", - "print(\"GS Parameters: {}\".format(results['opt_params']))\n", - "\n", - "# store ground state amplitudes for subsequent steps\n", - "opti_amplitudes = results['opt_params']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Step 2: Use QSE to find excited states from ground state \n", - "\n", - "We now have the main ingredients to perform a QSE calculation: the molecular Hamiltonian and the optimized parameters to reconstruct the ground state wavefunction. We build our excitation hamiltonian and overlap operators, and measure the elements that compose $H$ and $S$. After we have obtained these arrays, we perform a diagonalization to obtain the excited state energies and vectors.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Excited State Energies: [-1.13618945 -0.47845306 -0.47845306 -0.47845306 -0.1204519 0.5833141\n", - " 0.75596744 0.75596744 0.75596744 0.75596744 0.75596744 0.75596744\n", - " 0.75596744 0.75596744 0.75596744 0.75596744]\n" - ] - } - ], - "source": [ - "qubitOp = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", - "n_qubits = qubitOp.num_qubits\n", - "qubitOp.chop(10**-10)\n", - "\n", - "# Use matrix term helper class\n", - "matrix_terms = QseMatrices(qubitOp, n_qubits)\n", - "\n", - "# Instantiate an instance of the QSE algorithm\n", - "qse_algorithm = QSE(matrix_terms, 'matrix', var_form, opt_init_point=opti_amplitudes)\n", - "\n", - "# Run the algorithm\n", - "energies = qse_algorithm.run(quantum_instance)['eigvals']\n", - "\n", - "# The excited state energies are the energies from above,\n", - "# plus the nuclear repulsion energy.\n", - "print(\"Excited State Energies: \", energies+molecule.nuclear_repulsion_energy)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The calculation provides a refined value of the ground state and a series of excited state energies, whose number depends on the size of the basis set chosen for the molecule, as well as its nature and symmetry. Some of the energies obtained are repeated several times, signaling that some of the states obtained are degenerate. This result can be improved by either increasing the basis set or considering higher-order excitations in the subspace expansion.\n", - "\n", - "The following graph shows us the excited states of LiH at a range of bond distances calculated via our method, compared to values computed using the classical [EOM-CCSD method](https://aip.scitation.org/doi/10.1063/1.464746). To generate this data yourself, you can scan the bond length parameter we set at the start of the calculation.\n", - "\n", - "![alt text](LiH.png \"Title\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using the QSE technique, and our simulated VQE ground state, we find the ground state curve has a minimum at a separation of about 1.5 Å, which is in reasonable agreement with experimental data. The calculation also finds a number of excited states. Looking at the first three of these, we find that at the equilibrium distance, these states are 0.11, 0.12 and 0.17 Ha higher in energy than the ground state, which is again in reasonable agreement with experimental data. Note the small kink in one of the excited states energy curve at a distance of approximately 1.2 Å. This indicates that our restriction to single electron excitations is not enough to provide an accurate description at this distance. Overall, the comparison with classically computed EOM-CCSD curves shows that this method reproduces excited state energies with good accuracy at most distances." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/QubitMappings.ipynb b/community/chemistry/QubitMappings.ipynb deleted file mode 100644 index 70b1d7878..000000000 --- a/community/chemistry/QubitMappings.ipynb +++ /dev/null @@ -1,238 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*FermionicOperator and qubit mapping*_\n", - "\n", - "When we compute a FermionicOperator in Qiskit Chemistry it needs to be converted to a qubit operator to run on the simulator or real device. The FermionicOperator is built from electronn integrals where electrons behave anti-symmetrically under swap. qubits however do not exhibit this behavior and hence a mapping is needed to ensure that this is accounted for.\n", - "\n", - "Here we have the jordan wigner mapping, the bravyi-kitaev mapping and a parity.\n", - "\n", - "This notebook has been written to use the PYQUANTE chemistry driver. See the PYQUANTE chemistry driver readme if you need to install the external PyQuante2 library that this driver requires." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.transpiler import PassManager\n", - "\n", - "from qiskit.aqua import Operator, QuantumInstance, aqua_globals\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import L_BFGS_B\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "from qiskit.chemistry import FermionicOperator\n", - "from qiskit.chemistry.drivers import PyQuanteDriver, UnitsType, BasisType\n", - "\n", - "aqua_globals.random_seed = 50" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "# using driver to get fermionic Hamiltonian\n", - "# PyQuante example\n", - "driver = PyQuanteDriver(atoms='H .0 .0 .0; H .0 .0 0.735', units=UnitsType.ANGSTROM,\n", - " charge=0, multiplicity=1, basis=BasisType.BSTO3G)\n", - "molecule = driver.run()\n", - "h1 = molecule.one_body_integrals\n", - "h2 = molecule.two_body_integrals" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "# convert from fermionic hamiltonian to qubit hamiltonian\n", - "ferOp = FermionicOperator(h1=h1, h2=h2)\n", - "qubitOp_jw = ferOp.mapping(map_type='JORDAN_WIGNER', threshold=0.00000001)\n", - "qubitOp_pa = ferOp.mapping(map_type='PARITY', threshold=0.00000001)\n", - "qubitOp_bk = ferOp.mapping(map_type='BRAVYI_KITAEV', threshold=0.00000001)" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - " --- jordan wigner ---\n", - "IIII\t(-0.8105479862760991+0j)\n", - "IIIZ\t(0.17218394273085635+0j)\n", - "IIZI\t(-0.22575350251540605+0j)\n", - "IIZZ\t(0.12091263358559995+0j)\n", - "IZII\t(0.17218394273085635+0j)\n", - "IZIZ\t(0.16892754048859007+0j)\n", - "IZZI\t(0.16614543338049342+0j)\n", - "IZZZ\t(-8.326672684688674e-17+0j)\n", - "XXXX\t(0.045232799794893426+0j)\n", - "XXYY\t(0.045232799794893426+0j)\n", - "YYXX\t(0.045232799794893426+0j)\n", - "YYYY\t(0.045232799794893426+0j)\n", - "ZIII\t(-0.2257535025154061+0j)\n", - "ZIIZ\t(0.16614543338049342+0j)\n", - "ZIZI\t(0.17464343142442207+0j)\n", - "ZZII\t(0.12091263358559991+0j)\n", - "ZZIZ\t(-2.42861286636753e-17+0j)\n", - "ZZZI\t(-6.938893903907228e-17+0j)\n", - "ZZZZ\t(-3.122502256758253e-17+0j)\n", - "\n", - "The exact ground state energy using jordan wigner mapping is: -1.8572750766378716\n", - "\n", - " --- parity ---\n", - "IIII\t(-0.8105479862760991+0j)\n", - "IIIZ\t(0.17218394273085635+0j)\n", - "IIZI\t(0.1209126335855999+0j)\n", - "IIZZ\t(-0.2257535025154061+0j)\n", - "IXIX\t(0.045232799794893426+0j)\n", - "IXZX\t(-0.045232799794893426+0j)\n", - "IZII\t(-6.938893903907228e-17+0j)\n", - "IZIZ\t(0.16614543338049345+0j)\n", - "IZZI\t(0.17218394273085635+0j)\n", - "IZZZ\t(0.16892754048859007+0j)\n", - "ZIII\t(-3.469446951953614e-17+0j)\n", - "ZIIZ\t(-6.245004513516506e-17+0j)\n", - "ZIZI\t(0.1209126335855999+0j)\n", - "ZIZZ\t(-2.0816681711721685e-17+0j)\n", - "ZXIX\t(0.045232799794893426+0j)\n", - "ZXZX\t(-0.045232799794893426+0j)\n", - "ZZII\t(-0.2257535025154061+0j)\n", - "ZZIZ\t(0.16614543338049342+0j)\n", - "ZZZZ\t(0.17464343142442207+0j)\n", - "\n", - "The exact ground state energy using parity mapping is: -1.8572750766378738\n", - "\n", - " --- bravyi-kitaev ---\n", - "IIII\t(-0.8105479862760991+0j)\n", - "IIIZ\t(0.17218394273085635+0j)\n", - "IIZI\t(0.1209126335855999+0j)\n", - "IIZZ\t(-0.2257535025154061+0j)\n", - "IXIX\t(0.045232799794893426+0j)\n", - "IXZX\t(-0.045232799794893426+0j)\n", - "IZII\t(0.17218394273085635+0j)\n", - "IZIZ\t(0.16892754048859007+0j)\n", - "IZZI\t(-6.938893903907228e-17+0j)\n", - "IZZZ\t(0.16614543338049345+0j)\n", - "ZIII\t(-3.469446951953614e-17+0j)\n", - "ZIIZ\t(-6.245004513516506e-17+0j)\n", - "ZIZI\t(0.1209126335855999+0j)\n", - "ZIZZ\t(-2.0816681711721685e-17+0j)\n", - "ZXIX\t(0.045232799794893426+0j)\n", - "ZXZX\t(-0.045232799794893426+0j)\n", - "ZZIZ\t(0.17464343142442207+0j)\n", - "ZZZI\t(-0.2257535025154061+0j)\n", - "ZZZZ\t(0.16614543338049342+0j)\n", - "\n", - "The exact ground state energy using bravyi-kitaev mapping is: -1.8572750766378796\n" - ] - } - ], - "source": [ - "# print out qubit hamiltonian in Pauli terms and exact solution\n", - "qubit_ops = [(qubitOp_jw, 'jordan wigner'),\n", - " (qubitOp_pa, 'parity'),\n", - " (qubitOp_bk, 'bravyi-kitaev')]\n", - "\n", - "for qubit_op, name in qubit_ops:\n", - " qubit_op.to_matrix()\n", - " qubit_op.chop(10**-10)\n", - "\n", - " print(\"\\n --- {} ---\".format(name))\n", - " print(qubit_op.print_operators())\n", - "\n", - " # Using exact eigensolver to get the smallest eigenvalue\n", - " exact_eigensolver = ExactEigensolver(qubit_op, k=1)\n", - " ret = exact_eigensolver.run()\n", - " print('The exact ground state energy using {} mapping is: {}'.format(name, ret['energy'])) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we run on quantum backend, in this case a simulator" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ground state energy using jordan wigner: -1.8570893208672647\n", - "Ground state energy using parity: -1.8572686760592785\n", - "Ground state energy using bravyi-kitaev: -1.85727507635405\n" - ] - } - ], - "source": [ - "for qubit_op, name in qubit_ops:\n", - " # setup VQE \n", - " # setup optimizer, use L_BFGS_B optimizer for example\n", - " lbfgs = L_BFGS_B(maxfun=1000, factr=10, iprint=10)\n", - "\n", - " # setup variational form generator (generate trial circuits for VQE)\n", - " var_form = RY(qubit_op.num_qubits, 5, entanglement='full')\n", - "\n", - " # setup VQE with operator, variational form, and optimizer\n", - " vqe_algorithm = VQE(qubit_op, var_form, lbfgs, 'matrix')\n", - "\n", - " backend = BasicAer.get_backend('statevector_simulator')\n", - " quantum_instance = QuantumInstance(backend, pass_manager=PassManager())\n", - "\n", - " results = vqe_algorithm.run(quantum_instance)\n", - "\n", - " print(\"Ground state energy using {}: {}\".format(name, results['eigvals'][0]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/README.md b/community/chemistry/README.md deleted file mode 100644 index 7b5c4d6b6..000000000 --- a/community/chemistry/README.md +++ /dev/null @@ -1,18 +0,0 @@ -# Qiskit Chemistry Tutorials, Samples and Input Files - -This folder contains some Jupyter Notebook examples showing how to run chemistry experiments using in -Qiskit Chemistry. There are also Python code files too as well as some hdf5 files containing saved -molecular data that may be used in experiments. - -These example programs and notebooks show how to use the dictionary equivalent form of -the [input file](#input-files) that can be used more effectively programmatically when your goal is to -run the content with a range of different values. For example the [energyplot](energyplot.ipynb) notebook -alters the interatomic distance of a molecule, over a range of values, and uses the results to plot graphs. - -For more detail see the main [index](../index.ipynb#chemistry) - -## Input files - -The folder [input_files](input_files) contains a number of example input files that can be loaded -and run by the Qiskit Chemistry [GUI](https://github.com/Qiskit/qiskit-chemistry/blob/master/README.md#gui) or by the -[command line](https://github.com/Qiskit/qiskit-chemistry/blob/master/README.md#command-line) tool. diff --git a/community/chemistry/beh2_reductions.ipynb b/community/chemistry/beh2_reductions.ipynb deleted file mode 100644 index 9d383850a..000000000 --- a/community/chemistry/beh2_reductions.ipynb +++ /dev/null @@ -1,397 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*BeH2 plots of various orbital reduction results*_\n", - "\n", - "We have notebooks showing LiH, where we often remove (discard) two unoccupied orbitals, in addition to freezing the core. While freezing of the core electrons can always be done, discarding unoccupied orbitals should be done with great care.\n", - "\n", - "This notebook demonstrates this for Beryllium Dihydride (BeH2) where we show the effect of removing different unoccupied orbitals. We use Qiskit Chemistry to plot graphs of the ground state energy of the Beryllium Dihydride (BeH2) molecule over a range of inter-atomic distances using ExactEigensolver. Freeze core reduction is true and different virtual orbital removals are tried as a comparison.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop as well as the orbital reductions.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 22 --- complete\n", - "Distances: [0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9\n", - " 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. ]\n", - "Energies: [[-14.40506494 -14.87097555 -15.17246656 -15.36382343 -15.48142306\n", - " -15.54931874 -15.58348421 -15.59471016 -15.59040023 -15.57570561\n", - " -15.55427855 -15.52877867 -15.50120585 -15.47311573 -15.44576103\n", - " -15.38711226 -15.35149108 -15.33892161 -15.33645938 -15.33627749\n", - " -15.3363915 -15.33646725 -15.33649467]\n", - " [-14.38537971 -14.8529641 -15.15532997 -15.34648965 -15.46287098\n", - " -15.52863269 -15.5598192 -15.56723345 -15.55823699 -15.53789746\n", - " -15.50975433 -15.476334 -15.43948849 -15.40061366 -15.38534487\n", - " -15.30406975 -15.24876708 -15.23982192 -15.25303723 -15.27323362\n", - " -15.29048022 -15.29973676 -15.30358774]\n", - " [-14.38085785 -14.8496625 -15.152928 -15.34484824 -15.46196656\n", - " -15.52847583 -15.56042602 -15.5686254 -15.5604457 -15.54096661\n", - " -15.51373779 -15.48129162 -15.44548034 -15.4076929 -15.43902234\n", - " -15.3765858 -15.33291996 -15.31217227 -15.30666589 -15.30583829\n", - " -15.30584735 -15.3059168 -15.30595 ]\n", - " [-14.38996835 -14.8596731 -15.16341905 -15.35613956 -15.47463297\n", - " -15.54315397 -15.57776757 -15.5893081 -15.58520037 -15.57060331\n", - " -15.54916622 -15.52353471 -15.49568133 -15.46711643 -15.36899435\n", - " -15.27329325 -15.18543733 -15.10983622 -15.04887848 -15.00693603\n", - " -14.98538738 -14.97555545 -14.97045281]\n", - " [-14.39432437 -14.86110116 -15.16286759 -15.3537537 -15.47017403\n", - " -15.53627247 -15.56808784 -15.57642757 -15.5686708 -15.54991949\n", - " -15.52376812 -15.49282421 -15.45905583 -15.42402529 -15.38905694\n", - " -15.31000383 -15.2593924 -15.25594154 -15.26939038 -15.28973515\n", - " -15.30706596 -15.31636055 -15.32022639]\n", - " [-14.38815095 -14.85518765 -15.15741167 -15.34871007 -15.46542593\n", - " -15.53165667 -15.56340888 -15.57146946 -15.5631985 -15.54366894\n", - " -15.51642669 -15.48400243 -15.44824819 -15.41055403 -15.44242866\n", - " -15.38184785 -15.34232036 -15.32636956 -15.32282134 -15.32241852\n", - " -15.32249786 -15.32257244 -15.32260238]\n", - " [-14.39782704 -14.8655071 -15.16806701 -15.36007661 -15.47810675\n", - " -15.54630491 -15.58068771 -15.59206637 -15.58785438 -15.57320634\n", - " -15.55177264 -15.52620548 -15.49849044 -15.47015952 -15.44242866\n", - " -15.38184785 -15.34232036 -15.32636956 -15.32282134 -15.32241852\n", - " -15.32249786 -15.32257244 -15.32260238]\n", - " [-14.39782704 -14.8655071 -15.16806701 -15.36007661 -15.47810675\n", - " -15.54630491 -15.58068771 -15.59206637 -15.58785438 -15.57320634\n", - " -15.55177264 -15.52620548 -15.49849044 -15.47015952 -15.37198719\n", - " -15.27680792 -15.18982171 -15.11557267 -15.0565821 -15.01697352\n", - " -14.99729008 -14.98854807 -14.98398255]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'parity',\n", - " 'two_qubit_reduction': True, 'freeze_core': True, 'orbital_reduction': []},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "molecule = 'H .0 .0 -{0}; Be .0 .0 .0; H .0 .0 {0}'\n", - "reductions = [[], [-2, -1], [-3, -2], [-4, -3], [-1], [-2], [-3], [-4]]\n", - "\n", - "pts = [x * 0.1 for x in range(6, 20)]\n", - "pts += [x * 0.25 for x in range(8, 16)]\n", - "pts += [4.0]\n", - "energies = np.empty([len(reductions), len(pts)])\n", - "distances = np.empty(len(pts))\n", - "\n", - "print('Processing step __', end='')\n", - "for i, d in enumerate(pts):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d) \n", - " for j in range(len(reductions)):\n", - " qiskit_chemistry_dict['operator']['orbital_reduction'] = reductions[j] \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[j][i] = result['energy']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we plot the ground state energy against interatomic distance for the set of reductions" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAHwCAYAAAAM12EMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xt8nHWd9//XZ86TQ3Ns0zZJ2/SALQUasVCpghyUs2hBWR6rrLjLct9S3VV33bq3ei/L3rs3uv7UVXDVBUWQ3XUpVnSBW8WWkwq0QFtaWpo2Dc2hhTZp0pwzmfn+/phpSNskTZNMrpn0/Xw88sgcruua92Qehfd85zvfy5xziIiIiIjI5PN5HUBERERE5HSlMi4iIiIi4hGVcRERERERj6iMi4iIiIh4RGVcRERERMQjKuMiIiIiIh5RGRcRkROY2VNmdqvXOUREpjqVcRGZ8syszsy6zazDzA6b2WNmVjnKfS82s4Yhbh8oq2b2bjP7jZm1mNlBM3vYzGad5LgfMLMNZtZuZs1mttnM1phZZGzPcvKYWaGZ/dDMDqTy7zKzLw6635nZwlM43riKf2r/ntTre/Tnl2M9nojIZFIZF5HTxQedc3nALOBN4DsTeOwi4AfAPGAu0A78aLiNzeyjwFrg34G5zrkS4I+ACmDINwlmFpjAvOP1TSAPWAIUANcBuz1NBJ92zuUN+vngRD9Ahr0GIjJFqIyLyGnFOddDsgifefQ2Mwub2dfNbJ+ZvWlm3zOz6Ckc8wnn3MPOuSPOuS7gbuA9Q21rZgZ8A7jTOfdvzrmW1DFed859xjlXk9ruDjNba2Y/MbMjwC2pnN8ys6bUz7fMLJza/hYze+64xxoYoTaz+83sntSnAu1m9oKZLRi07QfMbKeZtZnZ3YCN8JTPA/7dOXfYOZdwzu10zq1NHeeZ1DZbUiPUf2RmRWb236lPDQ6nLlektv9H4ELg7tT2d6duXzzo04bXzezG0b4ex/0NLjazBjP7KzN7y8z2m9knB90/7Gs/aN81ZnaA1BssM/ub1HGazOzWo39nMzsvdQz/oONfb2ZbxpJdRE4PKuMicloxsxySo9DPD7r5LuAMoBpYCJQD/3scD3MRsH2Y+95BcgT8kVEc50Mk3zgUAg8BXwLencq5DDgf+PIp5LoJ+HuSI/m7gX8EMLNS4GepY5UCexjmzUTK88A/mtknzWzR4DuccxelLi5LjVD/lOT/a35E8lODOUA3yTcsOOe+BDzL2yPbnzazXOA3JD85mJHK/V0zO5OxmUlyBL8c+DPgHjMrSt13std+JlCcyn6bmV0JfB54f2r7iwc9941AM3D5oP1vBh4YY24ROQ2ojIvI6eLnZtYKtAEfAP4ZBkaqbwM+55xrcc61A/9EsgAeNdvMWgf/AO8d6kHM7BySZe4Lw+QoTf0+MGif/0wdt8vMbh607R+ccz9PjT53Ax8jOaL+lnPuIMliPXj7k1nnnHvROddPstxXp26/GtjunFvrnIsB3xqcbwifSe3/aeA1M9ttZlcNt7Fzrtk594hzriv19/1H4H0jHP9aoM459yPnXL9z7hWSb14+OsI+3z7uNfqHQffFSP7dYs65x4EO4B2jfO0TwN8553pTr8GNwI+cc9tTn4LccVyOHwMfBzCzYuAKkm8qRESGpPlvInK6+LBz7snUFIIPAU+nRloTQA7wUrKbAckpGv5B+zY55yoGH8zMnjr+AVJTQp4A/tI59+wwOZpTv2cBewGcczel9n/uuMetP27f2cAbg66/kbpttAYX7C6S876PHnfgsZxzzsyOf2wG3d9NsrT+k5lNA74IPGxmc45Ouxks9WnEN4ErSY7KA+Sbmd85Fx/iIeYCK1Jveo4KAA+O8Nz+wjl37zD3NafegBx19LlP5+Sv/cHU1KajZgObBl0//u/0E2BHanT/RuBZ59z+EXKLyGlOI+MiclpxzsWdcz8D4iRHtw+RnDax1DlXmPopSH3Zc9TMbC7wJPAPzrmRSuPrQCNw/WjiHne9iWRRPWpO6jaATpLF8miemaM4/lH7GfTF0dSI8ahWm3HOHSFZzHOBqmE2+yuS03NWOOemkZzGA2/PSz/+edYDTw96PQpTU1g+NapnM3qjee2Pz7af5DSjo475OznnGoE/kHx9b2bkNxAiIirjInJ6saQPkRyh3eGcSwD/BnzTzGaktik3sytO4ZjlwHrgbufc90baNvV4fwX8nZn9eerLjZaae112kof6D+DLZjY9Nc/7f5MciQXYAiw1s2pLLo94x2jzA4+l9r3ekiuG/AXJudJDMrOvpL6sGEo91l8CrSTfaEBytZr5g3bJJ1l6W1NTN/7uuEMev/1/A2eY2c1mFkz9nGdmS07hOZ3UGF/7/wI+aWZLUiP+XxlimweAvwHOJjkXX0RkWCrjInK6+KWZdQBHSM5Z/oRz7uiXLNeQ/ELj85ZcueRJkiO5o3UryTJ5hw1a63q4jVNfaryR5NziepIjtP9FcnnEh0d4nP9DcorEVuBV4OXUbTjndgF3prLXAM8Nc4yh8hwiOR/7LpLTaBYBvxtpF5JfyDxEcmT+A8A1zrmjz/kO4Mepuds3kpyDHk1t/zzw/4473r8AH7HkSivfTs3dvpzk3O0mktNrvgqER8h0tx27zvhLo3v2p/baO+eeAL4NbDi6X+qu3kGbrSP5Cca61LxyEZFhmXPHfwInIiIio5Eard8GhAfPSzezPcD/cM496Vk4EckKGhkXERE5BWa2KrU+eRHJEftfHlfEbyD56cF6rzKKSPZQGRcRETk1/wN4i+R67HFg4IulqVV2/hVYnZqTLiIyIk1TERERERHxiEbGRUREREQ8ojIuIiIiIuKR0+oMnKWlpW7evHlexxARERGRKe6ll1465JybfrLtTqsyPm/ePDZt2nTyDUVERERExsHM3hjNdpqmIiIiIiLiEZVxERERERGPqIyLiIiIiHjktJozLiIiIiJjE4vFaGhooKenx+soGSUSiVBRUUEwGBzT/irjIiIiInJSDQ0N5OfnM2/ePMzM6zgZwTlHc3MzDQ0NVFVVjekYmqYiIiIiIifV09NDSUmJivggZkZJScm4Pi1QGRcRERGRUVERP9F4/yYq4yIiIiIiHlEZFxEREZGsUFdXRzQapbq6mu7ubqqrqwmFQhw6dMjraGOmL3CKiIiISNZYsGABmzdvBmDz5s3MmzfP20DjpDIuIiIiIqfk73+5ndeajkzoMc+cPY2/++DSCT1mNtA0FRERERERj2hkXEREREROyek4gp0uGhkXEREREfGIyriIiIiIiEdUxkVEREREPKIynmbOOVp6Wki4hNdRRERERCTDqIyn2brd63jfT9/Hm51veh1FREREJKv5/X7a2tqOOelPLBbD58veSqvVVNJsZmcrAPsP1zArb5bHaURERESyV2VlJfX19QPXj578J5tl79uILOGraeKqP0ynoe4Vr6OIiIiISIbxrIyb2UfNbLuZJcxs+RD3zzGzDjP765Mc59tm1pG+pOPj39lG2eEcDu3Y5nUUEREREckwXo6MbwOuB54Z5v5vAE+MdIBUiS+a4FwTq+QsADr3NXscREREREQyjWdl3Dm3wzn3+lD3mdmHgb3A9uH2NzM/8M/A36Qn4cToCc1g2pyVuOag11FEREREJMNk3JxxM8sD1gB/f5JNPw38wjm3P/2pxs5FQjTm9hFMFHsdRURERCRr1dXVEY1Gqa6uHvL+hx56iHPOOYezzz6blStXsmXLllN+jCuvvJLCwkKuvfbaY27/2Mc+RnFxMWvXrh1T9pGkdTUVM3sSmDnEXV9yzj06zG53AN90znWY2XDHnQ18FLh4FBluA24DmDNnzslDT7CCiumwGwK+aZP+2CIiIiJTyYIFC4ZdQaWqqoqnn36aoqIinnjiCW677TZeeOGFUzr+F77wBbq6uvj+979/zO0PPfQQt9xyy1hjjyitZdw59/4x7LYC+IiZfQ0oBBJm1uOcu3vQNu8EFgK7U4U9x8x2O+cWDpHhB8APAJYvX+7GkGdcXo8lP3zwhXJo72snP5Q/2RFEREREJtYTX4QDr07sMWeeDVfdNebdV65cOXD53e9+Nw0NDad8jMsuu4ynnnpqzBnGIuPWGXfOXXj0spndAXQcV8Rxzj3GoBF3M+sYqohngtlzZ7DzOcMFgxxobyS/ZLHXkURERESmtPvuu4+rrrrK6xij4lkZN7NVwHeA6cBjZrbZOXfFSfZ5HLjVOdc0GRknQnlxLlEXoj9gNB7YyiKVcREREcl24xjBTrcNGzZw33338dxzz3kdZVS8XE1lnXOuwjkXds6VDVXEnXN3OOe+Puj61UMVcedcXrrzjtWsggiRRIC+gLH/dZ34R0RERGQi3HPPPVRXV1NdXU1TU7Iebt26lVtvvZVHH32UkpKSEfd/4YUXBvb/xS9+MRmRh5Rx01SmmkjQTzAe5Eiwi7Y9b3gdR0RERGRKWL16NatXrx64vm/fPq6//noefPBBzjjjjGO2veyyy3jggQcoLy8fuG3FihXDfhl0MqmMT4oQ3dZGaH+310FEREREpqQ777yT5uZmbr/9dgACgQCbNm0ikUiwe/duiotPvsz0hRdeyM6dO+no6KCiooL77ruPK64YcRb1uKmMT4JEeBqOtwh0FXgdRURERGRKuvfee7n33ntPuP21117jhhtuIBqNnvQYzz77bDqijSjjTvozFVnqnViIIo+TiIiIiGQnv99PW1vbsCf9Gc5ZZ53FN77xjXE99sc+9jGefvppIpHIuI4zFI2MT4Kc2SXQAv5gLvFEHL/P73UkERERkaxSWVlJfX29J4/90EMPpe3YGhmfBDPmJpdEd8EwB7sPepxGRERERDKFyvgkqJhVSMgFSAQC7G+p8TqOiIiIiGQIlfFJMLswQk4iSCzgo2Gf90voiIiIiEhmUBmfBMW5IULxAH1+x8Ed27yOIyIiIiIZQmV8EpgZfhekyxejs+6Q13FEREREsk5dXR3RaHTY1VQeffRRzjnnHKqrq1m+fDnPPffcKR3/N7/5De9617s4++yzede73sX69esH7rvkkkvIy8tj06ZN43oOQ9FqKpMk4cshZi0kWoJeRxERERHJSgsWLBj2rJmXXXYZ1113HWbG1q1bufHGG9m5c+eoj11aWsovf/lLZs+ezbZt27jiiitobGwEYMOGDVx88cUT8RROoDI+SVxeIfQ2EEporXERERHJbl998avsbBl90R2NxcWLWXP+mjHvn5eXN3C5s7MTMzul/d/5zncOXF66dCnd3d309vYSDofHnGk0NE1lkgTLSgEI2DSPk4iIiIhMTevWrWPx4sVcc801/PCHPxzzcR555BHOPffctBdx0Mj4pCmsLKVxH/hCOXTGOskN5nodSURERGRMxjOCnU6rVq1i1apVPPPMM3zlK1/hySefPOVjbN++nTVr1vDrX/86DQlPpJHxSTJ73gx8znDBIAeONHgdR0RERCSr3XPPPVRXV1NdXU1TU9Mx91100UXU1tZy6NDwC2esW7duYP+jX8xsaGhg1apVPPDAAyxYsCCt+Y9SGZ8kFcW5RF2I/oCPxgOveh1HREREJKutXr2azZs3s3nzZmbPns3u3btxzgHw8ssv09vbS0lJCQCLFy8+Yf9Vq1YN7L98+XJaW1u55ppruOuuu3jPe94zac9DZXySzCyIEEkE6AsYTTU68Y+IiIjIRHrkkUc466yzqK6uZvXq1fz0pz/FzDh06NBASR/J3Xffze7du7nzzjsHRszfeuuttOfWnPFJEg74CcaDtAe7aN1d63UcERERkSllzZo1rFlz4lz2559/ntWrV590/y9/+ct8+ctfTke0EamMTyIjRJe1EWzq8TqKiIiISFbx+/20tbVRXV097FrjQ7n22mvH/diXXHIJtbW1BIMTf74YlfFJFA/n43iLYKeWNxQRERE5FZWVldTX13vy2Bs2bEjbsTVnfBJZUfJLBAHTiX9ERERERGV8UuWWJ8u4P5hLPBH3OI2IiIiIeE1lfBJNn1uWvBAM09zT7G0YEREREfGcyvgkqpxdRMgFSAQCNDXv8jqOiIiIiHhMZXwSlRdGiSaCxAI+GvZt8TqOiIiISNaoq6sjGo1SXV094nYbN24kEAiwdu3aUzr+iy++OLC++LJly1i3bh0A3d3dVFdXEwqFRjyj51hpNZVJVJgTJBwP0OuP8dbr22DyTu4kIiIikvUWLFgw4rKG8XicNWvWcPnll5/ysc866yw2bdpEIBBg//79LFu2jA9+8INEo1E2b97MvHnzxpF8eCrjk8jM8Lsg3b4uAnUHvY4jIiIiMiYH/umf6N2xc0KPGV6ymJn/63+N6xjf+c53uOGGG9i4ceMp75uTkzNwuaenBzMbV5bR0jSVSZbw5dBncRLNE79ovIiIiMjpqrGxkXXr1vGpT31qzMd44YUXWLp0KWeffTbf+973CATSP26tkfHJll8IPQ2E+gu9TiIiIiIyJuMdwU6Hz372s3z1q1/F5xv7WPOKFSvYvn07O3bs4BOf+ARXXXUVkUhkAlOeSCPjkyxYVgpAwF/gcRIRERGR7HXPPfcMfOGyqamJTZs2cdNNNzFv3jzWrl3L7bffzs9//vNh91+3bt3A/ps2bTrmviVLlpCXl8e2bdvS/TQ0Mj7ZCipKaXgDfMEIXbEucoI5J99JRERERI6xevVqVq9ePXB97969A5dvueUWrr32Wj784Q8DsHjxYnbuPHaO+6pVq1i1atUx+1dWVhIIBHjjjTfYuXNn2r60OZhGxidZ+ZwZmDMSwSAH2hu8jiMiIiIypR06dAjn3Em3e+6551i2bBnV1dWsWrWK7373u5SWlqY9n0bGJ1lFaR45LkQ8YDQeeJX5xWd4HUlERERkSrn//vsHLj///PPHjKAP5+abb+bmm29OY6qhqYxPspkFESKJAH2BBI27t8CZN3gdSURERCTj+f1+2traqK6uHnGt8eNde+2143rc7u5uLrjgAmKx2Li+HDoclfFJFgr4CMYDtAe7ad1V63UcERERkaxQWVlJfX39pD/u0ZP+pIvmjHvACNNlMbr3d3kdRUREREQ8pDLugUQ4H2eOYMc0r6OIiIiIiIdUxr1QXAJA0Io8DiIiIiIiXlIZ90Be+XQA/IFcEi7hcRoRERER8YrKuAdmzJ0BgIXCNHc3e5xGREREJDvU1dURjUaprq4+4b6dO3dywQUXEA6H+frXvz5we3d3N9XV1YRCIQ4dOjSZcUdFq6l4oGJ2ISEXIB7w09Syi+k5072OJCIiIpIVFixYMOTqJsXFxXz729/m5z//+TG3H10NZTLOpjkWKuMeKC+MEk0E6Q9Aw74tLKt4j9eRREREREbt2f/axaH6jgk9ZmllHhfeOPaTIc6YMYMZM2bw2GOPTWCq9NM0FQ8URIOE4wF6/Y63Xn/V6zgiIiIi4hGNjHvAzPC7IN2+LgJ1mTd3SURERGQk4xnBlmNpZNwjzhelz+IkDun9kIiIiMipuueee6iurqa6upqmpiav44yZmqBHXF4h9DYS6i/0OoqIiIhI1lm9ejWrV6/2Osa4qYx7JFRWCvsg4C/wOoqIiIhI1jtw4ADLly/nyJEj+Hw+vvWtb/Haa68xbVpmn/FcZdwjhZXTqd8HvmCE7v5uooGo15FEREREstbMmTNpaGjwOsYp05xxj5TPnYE5IxEMcuBIo9dxRERERDKe3++nra1tyJP+DOfoSX9isRg+X+ZVX42Me6S8NI8cFyIeMBrffJWq4oVeRxIRERHJaJWVldTX15/SPkdP+pOpMu/twWliZkGESCJAzG807X7F6zgiIiIi4gGVcY8E/T6C8QA9/jgtNXu9jiMiIiIiHlAZ95ARpstidDd2eR1FRERERDygMu6hRDgPZ45gZ77XUURERETEAyrjHrLiEgCCFHmcRERERCTz1dXVEY1Gh1xN5aGHHuKcc87h7LPPZuXKlWzZsgV4ezWVUCjEoUOHJjvySWk1FQ/llU+HFvAHckm4BD7TeyMRERGRkSxYsGDI1VGqqqp4+umnKSoq4oknnuC2227jhRdeGFhNZd68eZMfdhQ8KeNm9lHgDmAJcL5zbtNx988BXgPucM59fYj9Dfg/wEeBOPCvzrlvpzv3RJsxZwa7XwULhWnpaaE0Wup1JBEREZGT2nD/D3jrjdoJPeaMufO55Jbbxrz/ypUrBy6/+93vzpoTAHk1FLsNuB54Zpj7vwE8McL+twCVwGLn3BLgPyc03SSpKC8m5ALEAwH2N9d4HUdERERkSrjvvvu46qqrvI4xKp6MjDvndgAkB7iPZWYfBvYCnSMc4lPAHzvnEqnjvZWGmGlXXhQlmgjSH4CGfZs5u+ICryOJiIiInNR4RrDTbcOGDdx3330899xzXkcZlYyapGxmecAa4O9PsukC4I/MbJOZPWFmi9KfbuJNiwQIxwP0+h1v7trudRwRERGRrHHPPfdQXV1NdXU1TU1NAGzdupVbb72VRx99lJKSEo8Tjk7aRsbN7Elg5hB3fck59+gwu90BfNM51zHUqPkgYaDHObfczK4HfghcOEyO24DbAObMmTPK9JPDzPC7IN2+bgJ1b3odR0RERCRrrF69mtWrVw9c37dvH9dffz0PPvggZ5xxhofJTk3ayrhz7v1j2G0F8BEz+xpQCCTMrMc5d/dx2zUAP0tdXgf8aIQcPwB+ALB8+XI3hkxp5XwR+qyFxCG/11FEREREstadd95Jc3Mzt99+OwCBQIBNmzadZC/vZdTShs65gdFtM7sD6BiiiAP8HLiE5Nzy9wG7JiVgOuQVQW8ToZjWGhcREREZq3vvvZd7773X6xinzJM542a2yswagAuAx8zsV6PY53Ezm526ehdwg5m9Cvxf4Nb0pU2vYNl0AAL+aR4nEREREclsfr+ftra2IU/6M5yjJ/2JxWL4fBn1dUnAu9VU1pGcXjLSNnccd/3qQZdbgWvSEm6SFc2ZTv0+sGCUnv4eIoGI15FEREREMlJlZSX19fWntM/Rk/5kqsx7e3CaKZ87A3OGCwZ5s73R6zgiIiIiMolUxj1WXppLjgsRD/hpfPNVr+OIiIiIyCRSGfdY2bQIkUSAmN9o3LPF6zgiIiIiMolUxj0W9PsIxgP0+OO01OzxOo6IiIiITCKV8QzgI0SXxehu6PQ6ioiIiEjGqqurIxqNDrmayqOPPso555xDdXU1y5cv57nnngNgz549VFdXk5eXN9lxRyWj1hk/XSXC+TgOEujM9zqKiIiISEZbsGDBkKujXHbZZVx33XWYGVu3buXGG29k586dA9urjMuwrKgYDtcSdDrxj4iIiGS+1l/uoa9pYj/RD83OpfCDC8a8/+Cy3dnZiZlNRKy00zSVDJBXMQMAfyAX55zHaURERESy07p161i8eDHXXHMNP/zhD72OMyoaGc8AZfNmUPMqEAxzuPcwxZFiryOJiIiIDGs8I9jptGrVKlatWsUzzzzDV77yFZ588kmvI52URsYzQEV5MSEXIBEM0NS8y+s4IiIiIhnvnnvuobq6murqapqamo6576KLLqK2tpZDhw55lG70VMYzwOzCKNFEkP6Aj8Z9mXu6VhEREZFMsXr1ajZv3szmzZuZPXs2u3fvHpju+/LLL9Pb20tJSYnHKU9O01QywLRIkHA8QK8/xoGa7XCB14lEREREsssjjzzCAw88QDAYJBqN8tOf/jQrvsSpMp4h/C5At6+bI7VveR1FREREJOusWbOGNWvWeB3jlGmaSqbw5dBn/SSa9ZKIiIiIDMXv99PW1jbkSX+Gc/SkP2VlZWlMNnYaGc8UeQXQ20ior9DrJCIiIiIZqbKykvr6+lPaZ7iTBGUKDcNmiEDZ9ORv/zSPk4iIiIjIZFEZzxBFc5Mn/rFglL54n8dpRERERGQyqIxniPK5MzBnEAxyoL3B6zgiIiIiMglUxjNEZWkeOS5Ef8BP44FXvY4jIiIiIpNAZTxDzMgPE0kEiPmNhj1bvI4jIiIiknHq6uqIRqMjrqayceNGAoEAa9euBd5eTSUvL2+yYp4SlfEMEfD7CMYD9PjjNO/e43UcERERkYw00uoo8XicNWvWcPnll49q+0ygpQ0ziI8Q3XaEYEOn11FEREREhvXEE09w4MCBCT3mzJkzueqqq8Z1jO985zvccMMNbNy4cYJSpZ9GxjNIIpxPwhz+9sz8GEVEREQkUzU2NrJu3To+9alPeR3llGhkPIP4iouhpZaQFXkdRURERGRY4x3BTofPfvazfPWrX8Xny66xZpXxDJJXPgNawO/PxTmHmXkdSURERCQj3XPPPfzbv/0bAI8//jibNm3ipptuAuDQoUM8/vjjBAIBPvzhD3sZ86RUxjNI2bwydr0KBMO09rZSFNEIuYiIiMhQVq9ezerVqweu7927d+DyLbfcwrXXXpvxRRw0ZzyjVJQXE3R+EsEATc01XscRERERkTTTyHgGmV0YIScRoj8ADfWbWVp+vteRRERERLLO/fff73WEUdPIeAbJjwQJJwL0+h0Hdm/3Oo6IiIhIRvH7/bS1tY140p/jHT3pT1lZWRqTjZ1GxjOMPxGgO9BN+56JXbtTREREJNtVVlZSX19/Svtk+kl/NDKeaXxR+qyf+EGtpCIiIiKZxTnndYSMM96/icp4hrHcQgACMa2kIiIiIpkjEonQ3NysQj6Ic47m5mYikciYj6FpKhkmMHM67IOgf5rXUUREREQGVFRU0NDQwMGDB72OklEikQgVFRVj3l9lPMMUzZ3Bvn3gD0bpi/cR8oe8jiQiIiJCMBikqqrK6xhTjqapZJiKeTMwZ7hgkDc79nsdR0RERETSSGU8w1SU5hF1QfoDfpr2b/U6joiIiIikkcp4hpmRHyGaCBLzG/V1W7yOIyIiIiJppDKeYfw+IxgP0OOP0/z6bq/jiIiIiEgaqYxnIB8hui1GV2On11FEREREJI1UxjOQC+eRMEegPc/rKCIiIiKSRirjGciKigEIukKPk4iIiIhIOqmMZ6C8yjIA/IFcneVKREREZApTGc9AZfOSZdyCYY70HfE4jYiIiIiki8p4BppTXkzQ+UkE/TQ17/I07vSsAAAgAElEQVQ6joiIiIikicp4BppVGCUnEaI/4KehXmuNi4iIiExVKuMZKC8cIJwI0Ot3NO3e5nUcEREREUkTlfEMFUgE6Pb107HngNdRRERERCRNVMYzlPNF6bN++g+a11FEREREJE1UxjOUL3caAIGY1hoXERERmapUxjNUYGZyecOgf5rHSUREREQkXVTGM1TRnBkA+ANRYomYx2lEREREJB1UxjNUeVUZ5gwXCPJWx36v44iIiIhIGqiMZ6jK0jyiLkh/0E/j/le9jiMiIiIiaaAynqFm5IeJJoLE/Eb93le8jiMiIiIiaaAynqF8PiMYD9Djj9NSU+t1HBERERFJA5XxDOYjRLfF6Gxo9zqKiIiIiKSBZ2XczD5qZtvNLGFmy4e4f46ZdZjZXw+z/2Vm9rKZbTaz58xsYfpTT7JQLglz+I/keZ1ERERERNLAy5HxbcD1wDPD3P8N4IkR9v9X4GPOuWrg34EvT2w87/mKigEIohP/iIiIiExFAa8e2Dm3A8DsxNO9m9mHgb1A50iHAI6eEacAaJrgiJ7LnTMTWsHvz8U5N+TfSkRERESyV8bNGTezPGAN8Pcn2fRW4HEzawBuBu5Kd7bJNrMqeRZOC4Zpj2neuIiIiMhUk9YybmZPmtm2IX4+NMJudwDfdM51nOTwnwOuds5VAD8iOa1lqAy3mdkmM9t08ODBMT0Pr1SWFxN0fhJBP03NNV7HEREREZEJltZpKs65949htxXAR8zsa0AhkDCzHufc3Uc3MLPpwDLn3Aupm34K/L9hMvwA+AHA8uXL3RjyeGZWQZRoIkR/ABr2vcLiWe/yOpKIiIiITCDP5owPxzl34dHLZnYH0DG4iKccBgrM7Azn3C7gA8COyUs5OXLDASKJAH3+GE17Xku+TRERERGRKcPLpQ1XpeZ7XwA8Zma/GsU+j5vZbOdcP/DnwCNmtoXknPEvpDexNwKJAN2+ftpr93sdRUREREQmmJerqawD1p1kmzuOu371qew/Jfgi9Nph+t/Mqhk2IiIiIjIKGbeaihzLcgsACMSKPE4iIiIiIhNNZTzDBWfOSP725XucREREREQmmsp4hiuam1xr3B/MoT/R73EaEREREZlIKuMZrqKqDHPgAkEOdh7wOo6IiIiITCCV8QxXWZpH1IXoD/ppaNridRwRERERmUAq4xmuNC9MJBEk5jca9m71Oo6IiIiITCCV8Qzn8xmhRIAef5xDu2u8jiMiIiIiE0hlPAv4XIhui9FZ3+51FBERERGZQCrj2SCUS8Ic/vY8r5OIiIiIyARSGc8CgaLkCX+CrsDjJCIiIiIykVTGs0DOnFkABPy5HicRERERkYmkMp4FyqqSJ/4hGOZwz2Fvw4iIiIjIhFEZzwKV5SUEnZ9EMMCuAy95HUdEREREJojKeBYoL4wSTYToD/jZuWOD13FEREREZIKojGeBaMhPOBGkz+/Y9/prXscRERERkQmiMp4l/C5Et6+f+N5ur6OIiIiIyARRGc8SLphLr/WT21ZAf6Lf6zgiIiIiMgFUxrNEvHQGAPmhmexr2+txGhERERGZCCrjWSKvqhyAQHQaO2uf9jiNiIiIiEwElfEssfCM2YRcgEQ4h107/uB1HBERERGZACrjWeLM8kLy4lF6Qkbrrkav44iIiIjIBFAZzxLFuSF8iShH/DF8+wNexxERERGRCaAynkVi0UL6LU5RfBZtvW1exxERERGRcVIZzyKhitkARCLFvL7/JY/TiIiIiMh4qYxnkfIz54IDi+axc+d6r+OIiIiIyDipjGeRM+eVku8ixEJB9r3+mtdxRERERGScVMazyPzSXCL9UTqDjv7abq/jiIiIiMg4qYxnkYDfR8KXS4evl5y2acQTca8jiYiIiMg4qIxnmXhpGQDTQjN5o22vx2lEREREZDxUxrNM4fwKAALRaeysfdrjNCIiIiIyHirjWWbRknKCzk8inMOunb/3Oo6IiIiIjIPKeJY5c3Yh+fEoPSHj8K4mr+OIiIiIyDiojGeZotwQvkQO7f4Y/ia/13FEREREZBxUxrNQf04hMYtTFJ9FW2+b13FEREREZIxUxrNQqGI2AJFIMbsOvOxxGhEREREZK5XxLFS+ZC44sGgeO3es9zqOiIiIiIyRyngWWlpVSr6LEAsF2bdru9dxRERERGSMVMaz0LySXML9UTqDjlhtt9dxRERERGSMVMazUMDvw/ly6fD1ktM2jXgi7nUkERERERkDlfEsFS+ZAcC04Ezqj7zhcRoRERERGQuV8SxVvLASgEB0Gjtrn/I2jIiIiIiMyajKuJn9zMyuMTOV9wyxcHEFQecnEc7h9R2/9zqOiIiIiIzBaMv1d4E/BmrM7C4ze0caM8koLC0vJD8epSdktOxq8jqOiIiIiIzBqMq4c+5J59zHgHOBOuBJM/u9mX3SzILpDChDK8gJ4k9EaffH8Df5vY4jIiIiImMw6mknZlYC3ALcCrwC/AvJcv6btCSTk+rPKSJmcQrjM2nva/c6joiIiIicotHOGV8HPAvkAB90zl3nnPupc+4zQF46A8rwgpWzAYhGitm1/2WP04iIiIjIqRrtyPi3nXNnOuf+r3Nu/+A7nHPL05BLRqFyyVxwYNE8duz4rddxREREROQUBUa5XZGZXX/cbW3Aq865tyY4k4zSknnT2eUi9IWMN2s2w5VeJxIRERGRUzHaMv5nwAXAhtT1i4GXgCozu9M592AasslJVJXmEumP0BXsJrany+s4IiIiInKKRlvGg8AS59ybAGZWBjwArACeAVTGPeD3Gc6XR4evlWjbNBIugU9LwYuIiIjg+vtxfX34cnK8jjKi0ZbxiqNFPOUtoNI512JmsTTkklGKl5RBWwMFwZnUt9Uxt3C+15FEREREhuT6+0n09OJ6e0h094z/d08PiZ63ryd63r6N/n6Cc+ew8Fe/8vppj2i0ZfwpM/tv4OHU9RtSt+UCrWlJJqNSvLCCwy+9RCA6jZ21TzH3XJVxERERGZ9Eby/x1jbiba0k2trob20lcaSdRE/32wW4pydZrHu6j/3d3U2i9+3ryX16kwU5NrYxXAuFsEgEXyRywm9/cRG+SBSLhE/4HSgumeC/zMQbbRlfDVwPvDd1/QHgEeecAy5JRzAZnUVLKti3yU8iHGbXjue54tw/9TqSiIiIZIhEXx/xw63Hluq2NuJtbcmy3dqavNx27GXX3X3SY1swiEWj+MLhE377iwrxhWdi0Qi+cGTY377oieX6hN/hMOafuic4PGkZNzM/8KRz7hLgkfRHklOxZHYhL8aj9ITitNQ0eB1HRERE0iDR15csy8eU6dahS/Wg+0Ys1cEg/sIC/AUF+AsKCVZUEFm6NHm9sDD1++3Lvvxp+HJSpTsSmdIFeTKdtIw75+JmljCzAudc22SEktEryAniT0RpDbbga9I/ChERkUyX6OsjVl9PvKXl2PLceuII9dHrJy3VR4tzQSHB2bOJnHlmqmSnynRhwbElu6AAy8nBzCbviY9SIpEgFovR398/8DPW69FolMsvv9zrpzSi0U5T6QBeNbPfAJ1Hb3TO/UVaUskpiecUEes/SHF/GR19HeSFdFJUERERr8VbW+mt3Uvf3lp699TSV1tL795aYvUNkEicuEMgMGhEOlWqlyw5dpT6uELtLyxMe6nu7++np6eHnp6ecZfj0VxPDPW3OQWBQIBgMEggEKC4uHiC/grpM9oy/rPUj2SgUEU51O0iGilh14GXOHfO+7yOJCIiclpw8Tix/fuTRXtQ4e6r3Uu8pWVgOwuFCM2bR2TJmRRccw2hefMIlJa+PQWkoBBfbnpKdTwep7e3d6BQd3d3D1w+/meo+/r7+8f0uEcL8eByfPQnEokcc/34+8d63e/3Z+Ro/0hGVcadcz82sygwxzn3+ngf1Mw+CtwBLAHOd85tSt0+D9gBHH2M551z/3OI/YuBnwLzgDrgRufc4fHmylYVZ87lwF4gmseOHetVxkVERCZYorubvr17kyPdgwp3X10drrd3YDt/URGh+fPJv+xSQlXzCc2vIjx/PsHy8jHPsXbOHVOmT1aej7+vr69vxOObGZFI5JifadOmnXBbOBweKL0nK8fZWIq9MqoybmYfBL4OhEiedbMauNM5d90YH3cbydVZvj/EfXucc9Un2f+LwG+dc3eZ2RdT19eMMUvWO7OqlJ0uQixk1O3aAld4nUhERCT7OOeINzcnR7j31tJbmyrctbXEmpre3tDnI1hRQbiqityVKwcKd2j+fAJFRSM+Rjwep7W1lcOHD9PV1TWqUt3T00NyAbvhhcPhY4pzYWEhs2bNOqFQH/2JRqMDl0OhkIqzh0Y7TeUO4HzgKQDn3GYzG/OC1s65HcB4XvgPARenLv84leu0LeNzS3KJ9kfoCnYT29PldRwREZGM5mIx+uobTijcvXv3kjhyZGA7i0YJV1URPfdcCj5yQ7JwV80nNG8uvnB42OMfLdzNzc20tLTQ0tIycLm1tXXIYh0MBo8py3l5eZSWlp5QnIcq1eFwGJ9PZ+DOVqMt4zHnXNtx5Xl8s+uHV2VmrwBHgC87554dYpsy59z+1OUDQNlwBzOz24DbAObMmTPRWTOC32c4Xx4d1kq0LZ+ES+Az/aMUEZHTW7y9PTW1JFW499Ymp5ns23fMyWcC06cTmj+faddcTbgqOcIdXjCfQFkZNkzJPVq4Bxfto5ePL9yhUIiSkhJmz57N2WefTXFxMUVFReTm5g6U6kBgtJVMpprRvvLbzeyPAb+ZLQL+Avj9SDuY2ZPAzCHu+pJz7tFhdttPcl56s5m9C/i5mS11zh0ZZnucc87Mhv3sxjn3A+AHAMuXLx/5M54slpg+Aw43UBAso/HIPioL5nkdSUREZFL0NzfTs3PnsYV7zx76Dx58e6NAgNCcOYTmV5F/6aUDhTtUVYU/P3/I48bjcVqHGN0+OsI9eNWPwYX7rLPOoqSkhOLiYoqLi8nNzdU0EBnWaMv4Z4AvAb3AfwC/Av5hpB2cc+8/1TDOud7UY+Cce8nM9gBnAJuO2/RNM5vlnNtvZrOAt071saaa4oVzaNn4MoFoATtrN1D5zk96HUlERCQtnHP01tTQsX4D7RvW07Nl68B9vrw8Qgvmk/ue9yQL9/wqQvMXEKqswILBE44Vj8eHHN0ernAXFxcza9Ysli5dSnFx8UDpVuGWsRrtaipdJMv4l9IZxsymAy2pEw3NBxYBtUNs+gvgE8Bdqd/DjbSfNhYtruCNF/0kwmFef+0PfEBlXEREphAXi9H10ku0r19Px/oNxBqSZ52OnH020//yL4i+81zCC+bjLy09oRTH43EOt7UNO6VkqMI9c+bMgcJ9tHSrcEs6jHY1lTOAvya5lODAPs65S8fyoGa2CvgOMB14zMw2O+euAC4C7jSzGMk56f/TOdeS2ude4HupZRDvAv7LzP4MeAO4cSw5ppIl5QW8EI/SE4rTUtPodRwREZFxi7e30/HMM3Ss30DHM8+QaG/HQiFyL7iAkj//c/Iuvphg2QwgedbG1tZWWvbsOaF0Hz58+JjCHQwGKSkpYebMmZx55pnHTCnJy8tT4ZZJNdppKg8D3wPuBeLjfVDn3Dpg3RC3PwI8Msw+tw663AxcNt4cU8m0SBB/IkprsAVfk768KSIi2amvoZGODRvo2LCezhc3Qn8//qIi8t//fvIvu5TclSvx5eQQj8epr6+n5je/Yffu3Rw8ePCEwl1cXExZWRlLliw5ZkqJCrdkktGW8X7n3L+mNYmMWzxaSCx+kOL+MjpjneQGc72OJCIiMiKXSNCzffvA9JPe15Pn/QvNn0/JLZ8g79JLiS5bhvn9tLe3s+X116mpqWHPnj309vbi8/mYM2cOK1euPGZKiQq3ZIvRlvFfmtntJEezB04zdXQKiWSGcGUF1NUQjZSwa//LvHPOhV5HEhEROUGit5eu55+nff0GOjZsoP+tt8DnI+fcc5nxN39D3iUXE66qIpFI0NDQQM1TT1FTU8OBAwcAyM/PZ+nSpSxatIiqqioikYjHz0hk7EZbxj+R+v2FQbc5YMwn/pGJV7F0Lvv3AtE8duz4rcq4iIhkjP6WFjqeepqODevp+N3vcV1dWE4Oee99L3mXXkLe+95HoKiIzs5Odu7eTc3atezZs4fu7m7MjMrKSi677DIWLVpEWVmZRr1lyhjtaipV6Q4i43dm1XR2uAixkPHGrk1whdeJRETkdNZbu5eODetp/+16ul95BZwjUFZGwYeuI//SS8k5/3wIBmlqamLzli3U1NTQ2JhchCA3N5czzjiDRYsWsWDBAqLRqMfPRiQ9RizjZvY3zrmvpS5/1Dn38KD7/sk597/SHVBGb25xDtH+CF3Bbnpru7yOIyIipxnX30/35s3J6Sfr19NXVwdA+MwllN5+O3mXXkLkzDPp7u5mz5491Dz2GLt376arK/n/rIqKCi655BIWLVrEzJkzdYp3OS2cbGT8JuBrqct/S3JVlaOuBFTGM4jPZzhfHh3WSrQ1j4RL4DP9h0xERNIn3tFJ5+9+R8f69XQ8/TTx1lYIBsk9/3yKbv44+ZdcQmDWLA4cOMDGmhpqfvhDGhoacM4RjUZZuHDhwOh3bq4WHpDTz8nKuA1zeajrkgESpTOgtYGCYBlNRxqoKJjjdSQREZliYm++SceGDbSvX0/XH57HxWL4CgrIe99F5F96KbnvfS+xQIA9e/bw7MaN1NTU0NHRAcDs2bO58MILWbRoEeXl5Rr9ltPeycq4G+byUNclA5QsmkPLxpcJRAvYUbueinfe4nUkERHJcs45enfuHFh+sGf7dgCClZUU/fEfJ5cffGc1Bw8fZmtNDTUPP0x9fT2JRIJwODww+r1w4ULy8vI8fjYimeVkZXyZmR0hOQoeTV0mdV3rCGWgM5ZUUPein0Q4zOs7fs8HVMZFRGQMXF8fnRs30rF+A+0b1tPftB/MiC5bxvTPf578Sy+Bykr27t3LizU11Nx9N0eOJGtCWVkZK1euZNGiRVRUVOD3+z1+NiKZa8Qy7pzTv54ss3h2AX+IR+kJxWmpafI6joiIZBEXj9Px9NO0/fKXdD7zLInOTiwSIXflSvJXryb3ootoBXbV1FDzu9+xb98+4vE4oVCIBQsW8L73vY9FixYxbdo0r5+KSNYY7TrjkiXyI0H8iSitwRZ8jZqHJyIiJ5fo7KR13c9pefABYm/sw19ayrSrryLvkksJLX8Xbxw4kJx+8tBDtLa2AjB9+nRWrFjBokWLqKysJBBQpRAZC/3LmYIS0UJi8YMU98+gK9ZFTjDH60giIpKBYgcOcPgnP+Hwfz1M4sgRotXVzPjc54idey679+6lpqaGvf/yHPF4nGAwSFVVFe95z3tYtGgRhYWFXscXmRJUxqegUGUF1NUQiRSz68DLVFe+1+tIIiKSQbpf3UbL/fdz5Fe/gkSC/MsvZ9rHP8Yev59fvfgi+59/HoCSkhLOO+88Fi5cyNy5cwkGgx4nF5l6VManoMqz5rJ/L1g0nx3bn1QZFxERXDxO+/r1tNz/Y7pfeglfXh7FH/84gVWr2NxQz0vr19PV1cX06dO58sorWbRoESUlJV7HFpnyVManoKVV03nNRegPGXt3b/I6joiIeCje0Unbz35Gy4MPEquvJ1hezowvrqH9ggt4ZutWXvvP/8A5xzve8Q5WrFhBVVUVZjqViMhkURmfgiqLcoj2R+gMdhPb0+11HBER8UCsqYmWnzxE68MPk2hvJ3ruuRR//vO8UTaD327cyP7/+A/C4TDvfve7Oe+88yguLvY6sshpSWV8CvL5DHy5dFgr0bZcnHMa5RAROU10b92amg/+awCmXXEFwT+6kW2dnWzatImuF5JTUa699lrOOeccQqGQx4lFTm8q41NUorQMWhspCJTR1F5P+bQ5XkcSEZE0cfE47U/+lpb776f7lVfw5edT9Cd/QvcH3s8famt57Ve/IpFIaCqKSAZSGZ+iShbNpXnjywSi09hZu4Hy6k94HUlERCZYvKODtkceoeWBB4k1NhKsrKTkb/+WhsXv4KnNm9n/i18QDodZsWKFpqKIZCiV8SnqjDPL2fuin0Q4zM7Xfs9lKuMiIlNGX0Mjh3/yE1rXriXR0UF0+bvI+dxn2RmN8tLLL9O5t5bS0lKuueYazjnnHMLhsNeRRWQYKuNT1OLZhfw+HqUnFKelptHrOCIiMgG6XnmFlh8/QPuvfw1m5F95JT0fvJZNhw7x2ssvk0gkOOOMM1ixYgXz58/XVBSRLKAyPkXlhQMEElEOB1vwNfm8jiMiImPk+vtpf/JJWn50P91btuCbNo3CT97C/vPP59nXX6fpqacIh8Ocf/75nH/++ZqKIpJlVMansHi0gFj8IMWxGXTFusgJ5ngdSURERine3k7r2kc4/OCDxJqaCM6dQ94Xv0jNrJn8YutWOjdsoKSkhKuvvpply5ZpKopIllIZn8LCcypg724ikWJ2H3iFcyrf43UkERE5ib6GBg4/+CCtax8h0dlJznnnkfjMp9kSj7P9tddI1O1l0aJFA1NRfD59+imSzVTGp7A5S6toqn0KXzSf1177jcq4iEiGcs7R/cortNz/Y9qffBJ8PnKvvoq3Lr6YZxsaaNqyZWAqynnnnafT1ItMISrjU9iZVdPZ5iLEQkZdzUtwhdeJRERkMBeLceTXv6blxw/Qs3UrvoICIp/8JLVLFvPyjh10vviipqKITHEq41NYRVGUaH+EzmA3PXu6vI4jIiIp8SNHaH34YVp+8hD9+/cTmjsX94W/Zlt+Ptt37iSxaZOmooicJlTGpzCfz8CXS4e1Em3LwTmnZa5ERDzUt28fLQ88SOvPfobr6iK8YgWHb7uNLR3tNNbXEwqFOO+88zj//PM1FUXkNKEyPsW56WVwuJGCwEwOdDQyK7/C60giIqcV5xzdL71E8/330/Hb9RAIELz6KuqWL2fzG2/Q8fpOSkpKuOqqq1i2bBmRSMTryCIyiVTGp7iShXM4tPFlAtFp7NiznlnVf+J1JBGR04Jzjo4NT3Hou9+lZ9s2/AUF9P/pn/J6+Wxe272bxPbtLFy4kBUrVrBgwQJNRRE5TamMT3FnLK2k9kU/iXCY11/7PZeqjIuIpF33q9t462tfo2vjRnzz5tL2+c/xKtDY1ESoro7ly5dz/vnnU1pa6nVUEfGYyvgUt3hWAb+LR+kJxWnZ3eh1HBGRKa2voYGD3/gmRx5/HEpK2P+ZT/NydzcdTU0UFxdrKoqInEBlfIrLDQcIJKIcDrbga9RHoCIi6RBvbeXQ977P4Ycewvn9NP/pJ9kUCNB68CDz5s3jQx/6kKaiiMiQVMZPA4loAbH4QYpj0+nu7yYaiHodSURkSkj09XH4Jw9x6PvfJ3HkCO03XM9LZWW82dzMzJkz+fh117FgwQKtZCUiw1IZPw2E51ZC7W4ikWJ2H3iFsytWeh1JRCSruUSCI48/wcFvfpNYYyPdl17K1rPPpu7NAxTG41x//fWcddZZGgkXkZNSGT8NVJ45j8Y94Ivms2P7kyrjIiLj0PnCi7z1z/9Mz7Zt9C1bxo6PfoSdBw4QPdLGlVdeyfLlywkE9L9XERkd/dfiNLB0/nS2uQixkFFb8xJc4XUiEZHs07t7N299/f+j46mn6J8zhz2fXs3Wlhb8zc1cdNFFrFy5Ul/MFJFTpjJ+GqgoihLtj9AZ7KZnb5fXcUREskr/wYMc/M7dtK5dSzw/n31/fiube3uJNTdz7rnncvHFF5Ofn+91TBHJUirjpwEzw3w5dFgr0cM5OOf0ZSIRkZNIdHbS/MMf0fyjHxGPxThw0028HAnT2d7OkiVLuOyyy7ROuIiMm8r4acJNnwmHm5gWmMmbHU3MzC/3OpKISEZy/f20PvIzDt79HfoPHqL52mt5ZfYsWo4cYU5pKTd94AP8/+zdd3wU953/8dfM9q5eABWQ6GB6E8aYZoNpNm5pduJc2iX+JblLzr4kTuLUS86J0y/NcUkcO04cO8U1NsYGDKb3LqHe+0rbd2d+f6wkJJDosAI+zzw2OzttPxJ4eeur73wmJycn0WUKIa4SEsavEakjc2ncuhOTzc2hkrfImnxPoksSQohBRdd1Ot9+m4Yf/pBwcQltRUXsvf12atvaSLdYeP/738+oUaPkN4tCiItKwvg1YtS4HEq2GNAsZo4cepcFEsaFEKJHYN9+Gh55BP/WrfjGjmX/v3+KstZW3JrG6tWrmTRpkrQpFEJcEhLGrxFjhnjYGLMRNMdoPVaT6HKEEGJQCFdV0/ijH+F9+WWCQ4Zw5OMf43BHB9ZAgCVLljBz5kxMJlOiyxRCXMUkjF8j7GYjRs1Kq6kVpTrR1QghRGLF2tvjt69/+mlCVgvH772X/bEo+P3MnTuX66+/HptN7lYshLj0JIxfQ3Sbh0isiZRIBs2BZlJtqYkuSQghListHKb1j8/Q9KtfEfb5qLz1VvbYbYQjYSZNmsSCBQvweDyJLlMIcQ2RMH4NseTlwvESbNYU3j38V1ZN+USiSxJCiMui9+3rQzU11C5Zwp6hQ+gIBBiVn8+iRYvIzMxMdJlCiGuQhPFrSO744VSVrEOxudiy7RUJ40KIa4Jv61YaHvkBgX37aJw5k71Lb6bZ52NYaiq3L15Mfn5+oksUQlzDJIxfQ8aNSGOvbiVihuaSNmJaDINqSHRZQghxSYRKSuK3r1+3jpZRozjwbx+lxucj1WrlruXLGTt2rLQpFEIknITxa8jQJBvWmA2fyU9OqZv9dduZNGRWossSQoiLKtrYSOPPf0Hb88/TkZ7OoY98mNJgEKeisGLFCqZMmYLBIAMRQojBQcL4NURRFMKWJDq1VlJws377H5m0SsK4EOLqoPn9ND/xBM2/exyfqnLsrjs5Apg0jYULFzJ79mzMZnOiyxRCiD4kjF9rcoZDeWsYLvIAACAASURBVCn25Dx2798EqxJdkBBCXBg9GqXthRdo/NnPCLS1c/yWWzjgdKDpOrNmzmTevHk4HI5ElymEEP2SMH6NmTBjJLtKNxJx2HFUWGnyN5FmT0t0WUIIcc50XafznXdo+MEPCBwvpfzG+ewbOpRgJMLEceNYuHAhycnJiS5TCCFOS8L4NWbuyHQORN20mFtJbzPz7qHnWT3tU4kuSwghzklg/wEaHnmEzq1bqZk6lX33fAhvKERBbi6LFy8mOzs70SUKIcRZkTB+jXFYjPiThhLxN5HmzmXrtlcljAshrhjhqmoaf/xj2l96iYaRhey/50M0hcNkp6Rw65IljBgxItElCiHEOZEwfg3Knjyaynf3orqzaCndLy0OhRCDnh4O0/z44zT93y9pTk7m4Ac/SHUsSrLDwR2rVjFu3DhUVU10mUIIcc4kjF+Dbpicy8vrnXTaouSUudhXu5XJQ+ckuiwhhOhXYM8eah/6Kq1VVexfsZxSsxm7xcyy+UuYNm0aRqP8UyaEuHIlZBhBUZQ7FUU5oCiKpijK9F7r8xVFCSiKsrvr8asBjn9EUZTDiqLsVRTlRUVRki5f9Ve+gnQHASWZdkMAlxJvcSiEEION5vNR993vcvz9H+Cg28Vra26j0m5n/vz5fO5zn2PWrFkSxIUQV7xEfYrtB9YAv+5nW4mu65PPcPwbwJd0XY8qivJ94EvAgxe5xquWoigYhxdARQW2pHx2738XVie6KiGEOKFz/XpqH36YJn+AXXfdSQNQkJ/PihUrpEOKEOKqkpAwruv6IeC8b0Os6/q/er18D7jjIpR1TZk8axQ7yt4l4rDjrLTS5G8kzZ6e6LKEENe4aHMz9f/zPVpefZXD18/l0JAhWG02bl+2jAkTJsjt64UQV53BeLXLcEVRdimK8o6iKPPOYv+PAq8OtFFRlE8oirJdUZTtjY2NF6/KK1zRyHQsUTct5hBpbWY2HvhLoksSQlzDdF2n7W9/4/gtyzm6aydv3H0XB7KzmTR5Mvfffz8TJ06UIC6EuCpdspFxRVHeBLL62fQVXdf/PsBhtUCuruvNiqJMA/6mKMp4Xde9A7zHV4AoMOCkZ13XfwP8BmD69On6uXwNVzO72Yg/eRgRXxNpnly2bX+NW2d8OtFlCSGuQeHKSuq+/jAt27ezb9FCSjweUpKS+PDKlQwfPjzR5QkhxCV1ycK4ruuLz+OYEBDqWt6hKEoJMArYfvK+iqJ8BFgBLNJ1XUL2eciePJqKjXtQXVm0lu4nqkUxqnIxlBDi8tCjUVp+/wcafvpTynNz2X3nHYR1nRuuv5558+ZhMpkSXaIQQlxygyp5KYqSDrTouh5TFGUEMBI43s9+S4EHgPm6rvsvc5lXjRun5PKPd+ItDoeVuthXs4Upw+YmuiwhxDUgeOgQtQ99labyMnYtW0aNxcyw7GxWrlxJZmZmossTQojLJlGtDW9TFKUKmAO8rCjK612bbgD2KoqyG3ge+JSu6y1dxzzWqw3izwEX8MbpWiCK0xue5iCgpsRbHKpu1m+TFodCiEtLCwZp+OEPKbnzLvZYLby+ahVNLifLly/nox/9qARxIcQ1J1HdVF4EXuxn/V+Bvw5wzMd6LRdeuuquLeYRBQTLyuMtDg9shNsSXZEQ4mrle+89ar/2deo6O9l1+xqaFYWxo0ezbNky3G53ossTQoiEGFTTVMTlN3nWKLYd30jYYcdVaZcWh0KIiy7W1kb9I4/Q9Pd/cHBuEYezs3G5XNx9yy2MHTs20eUJIURCSRi/xhUVprMn6qbV3Epqu4kN+57ltlmfTXRZQoirgK7rdLz2GnXf/g4VNhu777yDTl1nxowZLFq0CKvVmugShRAi4SSMX+OsJgOBnhaHeWzd/i8J40KICxapraXum9+icfNm9tx4I+VJHjLS07l75UpycnISXZ4QQgwaEsYFw6aOoXR9vMWht0xaHAohzp+uabQ++ywNP3yU4txc9t52KzFVZeH8+RQVFWE0ymeLEEL0Jp+KgvmTc2hd193i0Mne6k1Mzbkh0WUJIa4woeJiar/6NepLitl5803UWywMz89nxYoVpKamJro8IYQYlCSMC/JSHQTVFAJqOamqhw1bnpYwLoQ4a1o4TPOvf0P9Y49xeOIEDi5fjsVqZfVNNzF58mS5jb0QQpyGhHEBgKmgkEBpObbkPHYf2pjocoQQVwj/zl3UfvWrVHm97Fy9inZVZeKECdx88804nc5El3f5aRqEOyDQBsF2CLZBNAyONHBmgiMdDPJPrxDiBPlEEABMmzWK90o2EHHYcVc6aPQ1kO7ISHRZQohBKtbZSeOjj1L//F/ZN2c2xdnTSUpK4kMrVlBYeIXfCiIWiQfpnkDd2jdcn2455AVdO83JlXggd2aCKzP+7MwEVxY4M8CZdWK92XHZvmQhROJIGBcAzCpIY1fUTYsp3uJw/b5nuH325xNdlhBiEOp46y1qv/FNSi1mdq+5jaCiUDRnDjfeeCNmsznR5YGuQyRw5uA80HLEd/rzGyxgSwJrElg98RCdNiq+3Ht997LBDL5G6KyDjnro7PWoPwi+BtCip76P2RU/tyurV2jPjAf2nvVZYEsGNSE31BZCXAQSxgXQ1eIwZRiRzibSknLZvu1NCeNCiD6ijY3Ufee71K1fz675N1Dt8ZCdnc2qVavIzs6+9AUEWuHo69DZcOZArUVOfy6zq29wThl+aogeaNl0kfujaxoEWqCj7kRI76iLf53dAb52T3x9uPPU41VjV1g/aWS9Z8Q988R2o+Xi1i6EuGASxkWPnGnjOP72HlRXJh1lB6TFoRACiN+8p/2FF6j9/v9ydOhQ9q9eBUYjNy9cyMyZMzEYDJfyzaFqG2x/Ag68ANFgfL1iODUsJ+WcRaBOBot7cM3bVtX4nHJHGjDh9PuGOvuOrHfUxwN7Z0M8wLdXQfV28DUB+qnH25JPGlkfYJqMxQ1y4a0Ql8Ug+jQSiTZ/0jCa1zrpsEUYWupgT9VGpuXemOiyhBAJFC4vp/ZrX6f6yBF2LlxAk9XKyMJCli9fTlJS0qV742A77P1zPIQ3HACzEya9H6beE58SYnYO+rCoazqxaHz+uNF8kX5gsTjjj9SC0+8Xi8QDee+g3mfUvR4qNsfDfCx06vFmF6SOgNTC+COloGt5RDzQCyEuGgnjokdOip2gIZWAUkaq6mH9lqcljAtxjdIjEZqfeJK6X/2K/ePHcWTpzdgdDu5Ytozx48dfmnaFug7VO2HH47D/BYj4IXsSrPgxTLwDLK6+u2s6sZhGLKqjRePPsaiGFtOIRXuv14jFdGIRDS2md23rWo5oxGJaz/FaTCMW6T6vhhbtWu7v2N7v2c96XTsxMm2yGnB4LNjdZhweM3aPBbvHHF/nMeNwx58tduPF+d4aTODOjj/O9D0Ptp86NaatEpqLoXoHHHix70Wp9tReAb07pBdAygi56FSI8yBhXPRhKSgkcLws3uLw4LuJLkcIkQCBffup/epXKWtrY9fyW+gwGJg6dSpLlizBZrNd/DcMdcRHwXc8AXX7wGSPh+9p98HQqei6Tn2pl8ObD1O6t4lwIIoW1dG0fqZhXCCDUUU1KhiMKgaDgsGkohpUDF3rVIOKwaRgMhtQjfH18XVd+xvV+PqeYxV0HQLeML72MH5viPoyL/72MNHIqV1XDCa1K7BbTgrt8WWHx4zdbcHmNKGoFyG0K0p8Go8tCdJH979PNAStZdBcEg/ozcXQchyOr4M9z/Td1z00Hsq7A3r3yHpSHhgHwcW9QgxCEsZFH9Nnj2JT8QbCDjueKgf1nbVkOi/DhVlCiITT/H4af/ozap57jj0zZ1I2eRKpqal8ZOVK8vPzL/4b1uyKT0PZ93y8g0nmRFj+Q5h4F1jdeJsCHHm5lCPv1dHeGMBoVsm/Lg1nkuVE6O0OzsZ48O1Z7gnUvZa715+0rnu9qiqX7QZFuq4TDsbwt4fiIf3kZ2+IlloflYdbCQdO7bSiqgq2k0fZ3b0Cu8fSNRJvQjVcYKcVoyUe1PsL66HOeDBvLoaWkhOB/eDf4xeldlPUeCDvHdC7Q7tnGKiX8LoDIQY5CeOijxkjUtkeddFiaiXFa2TDnj9yx9wvJrosIcQl1rnxXWq//nWOmU3sWb2KiKoyf9485s2bh9F4Ef+pCHXC/ufjIbx2NxhtMOF2mH4fDJ1GOBijeEcDR94rpuZYGwBDRycxbVk+BVPTMVuvjn+2FEXBYjNisRlJzjr91I5IOIb/pKDua+t67Q3T0Ryg7ng7wc5+OsgoYHOa+ob0U0K7GbvHjNF0HoHY4oTs6+KPk/lb4uG8pXtEveu5fHPf9pEG84lgntJrnnpqQfzi0kF+bYAQF+rq+FQTF43FaCCYmkO0owlXUh47dqyTMC7EVSza2krD975H1dq32DFvHvUeN7m5uaxYsYKMjIt446/avfFpKHv/Er9DZcY4WPYIXHcXmsVD1aEWDr9+kNLdjUQjGkmZdmatGsGoWZm4Uy/B1JgriMlswJNuw5N++u9DLKrh94bxt4fxtYfwe7ueewX55qpO/B2RPvPZu1nsRuxdQd2VYiEp005Shp2kTDuedNu5X4RqT4k/cmb0Xa/r8Tnq3VNemnuNqB/7F8TCJ/Y1O08N6N2h3Z5ybvUIMUhJGBenyJk2lpJ1u1HcmXSWHSCiRTCppkSXJYS4iHRdx/vyK9R897scHJLNwRXLMVosrFiyhKlTp6JejJvIhH3xCzF3PBG/ENBohfG3xeeC58ykucbHkVfqOLJ1P/72MBa7kTFzshk9J4vMfPdlmzJytTAYVVwpVlwpp++Drmk6wc4IvrZQT2g/MU0mHuArDrZweHNdn+OcKZaecJ6UYceTYSMp04471XpuU2EUJd5K0ZUF+defVFwM2iv7BvSWEqjZCQf/1vdCUltKr4BeAMnD41NhknLjbRrl74+4QkgYF6e4cXIOTW+66LCGGXrczq7yd5g5fHGiyxJCXCSxtjZqH/4Gpdu2seOGebRZrYwbN45ly5bhcrnOfIIzqT8YD+B7noNQe7wV4dLvwXV34486ObatnsN/2EZTZSeqqpA3MZXRs7PIn5CGwSR3krzUVFWJj4C7zaQz8J93OBilvSFAW72ftgZ/13OAo1vr+8xjV1UFd7qtK6Tb+oyo2z3mc/uhSjVAcn78Ubio77ZoCFrLe81P7xpVP/4O7Hm2775GK3hy4sG8+5GcdyKsO9IlrItBQ8K4OMXQJBtBQ0q8xaHBw8Ytz0gYF+Iq0bnxXaq+/GX2DBnC4SWLcbndvH/5ckaPHqCTxtmKBOIt8HY8CZVb4vOAx62GafcRHTKLsn0tHHmikvIDLeiaTkaei3l3j2Tk9ExsLumyMRiZrUbSc12k557UUlKPj6yfCOmBnrBeeaiFWK8uMUaLIR7Qe0bUbXi6wrrVcY6/cTVaIH1U/HGysA/aKk48WstOLNfs6nsxKcTDeu+gnpTbFdS7w3qahHVx2UgYF/2yFY4kUBJvcXjkiLQ4FOJKpwUCNPzgh5S+9BJb599Aq93OlClTWLp0KRbLBdwiveFw1yj4s/F+1amFcNO30a97P3X1Jo68W0vxjk2E/FEcSRamLMlh1KwsUoc4L94XJy4rRVGwuczYXGayC/ve+EnXdDrbQvGg3iusN1R0ULKzAb3XVHWr09QV0m14MnrNT8+wYTrX+elmB2SMjT/6E+qI907vCezlXY+K+BSqQGvf/Y22U8N6ct6J0G5PlbAuLhoJ46Jf02aP5N1j6wk77CRVOajrqCHLNSTRZQkhzkNg336qH3yQ/SYje5ctxWa3875VqxgzZsz5nTASjLeu2/FE/C6OqgnGroTp9+F1TufI1noOf/8Y3q52hCOmpDNmVjZDxySjXoze2GLQUlSlZ956zti+F1jGohrepgBtvaa+tNf7qexvfnrySReQnu/89G4WF2SOiz/6E/TG56r3jKz3CutV2yDY1nd/k32AkfXusJ4iYV2cNQnjol8zhqexravFYbLXyIY9T3Pn9Q8kuiwhxDnQo1Gaf/tbyp54km1z5lCfnMTo0aNZuXIlTud5jEw3HYtPQ9n9x/hIYvJwWPwNwmPeR/ERjSMv1FFz7D0g3o5wxi35jJhy9bQjFBfGYFRJznL028qxZ356g5/2XlNfjm2vJ+TvZ356r+ku3aHdkXSO89N7s7rBOh4yx/e/Pdjea2S9vO8Ie+WW+PbeTI7Tj6zbkiWsix7yCSn6ZTaqhNJyiXqbcCblsXPHOgnjQlxBwuXlVD/43xxqa2PXsqUoFgurly1j8uTJ5xZYoiE49M94CC/bAKoRxixHm/IRKoMTObK1gePPHSbW3Y5w9QhGzZR2hOLcnHZ+ui8SD+f1XUG9K6xXHW7tcxdTgyneTcadasWVasWdZsPVvZxqw+YyXUBY90CWB7Im9L890BYfWW8t7zt3va0i/tujkPekL9gZv8DUnnriDqjWrmdb8olla3KvdR65OdJVSsK4GFDe9LEcXbsL1Z2Jr+ygtDgU4gqg6zptf/kLFY/+iG2TJ1E1ZjS5ubncdtttJCcnn/2JmktOjIL7m+OjeYu+RnPmHRzeF+HoY3X42/dhsRsZW5TN6NnSjlBcfIqiYHOasTnNZBd4+mzrmZ/eNd3F2xTE2xygozlIQ0XHKTdBMprUrnBuw512IqR3L1sdFxDWuwN11sT+twfaTpqvXhEfaQ903Rgp2BbfJxo4/ftY3H2Du7UrqA8Y5rueLR64GO1KxSUhYVwM6MZJOdS/7qTDGmHIcTu7ytYxc8RNiS5LCDGAaFMTtQ99laNHjrB9yWLCJhNLFi1izpw5Z9c3PBqGIy/H745Z+g4oBhi9DP/Y+zjWOJLD6+tpqiyRdoRiUOgzP33MqTcACgejdDQH6WgO4m0+EdQ7moPUl7b3mf4C8c4v7tTukXVb1+h6PLC7Uq1Y7MYLD+v93am0t0jwRDAPtsWng/Usd73uvb3xyIl1vW+WdAolPrJ+1gG+13aLS6bUXGISxsWAsjxWQqY0/JSSZnCzYcuzEsaFGKQ61q6l4uFvsGPEcI7Pv4HMzExuu+02srKyznxwSynsfAp2PQ2+RvDkEL3hq5SZV3J4T5CKX7egayXSjlBcUcxWI6lDnaQO7f/6iFCgO6wH8DZ1h/YA3uYgNcfaCAdjffY3WQ09wdx9yjQYKxb7RfjNsckKpq4bIp0LXY+3Fz2bAN+9vb3yxDotOvC5FcOJYG51x9tCGszxVpNGCxi6n09eZz6xrb91BnP8XGdadw38ICBhXJyWbeRI/MdKsSbnc/jwxkSXI4Q4SazTR/33/oeSdW+z5YZ5dFoszJ07lwULFmA0nuYjXtfh6Ouw9ddQ8hYoKvrIpdQNuY/DVTkU/7ORcKC6px3h6FnZpAw59cI7Ia5UFpsRyzAnacMGCOv+CN7mIB29pr94u8J79ZFWIqG+Yd1iN8bDeUrXaHraiVF2d5r10l7IrChgtscf7nPsfKbrEO48uwAf8savI+kO/tEwxEK9nrsesdDF+9pU00kBvdez0TrAOvOJHwCcGXD95y9ePZeAhHFxWjNmjWTDkXcIO4wkVzup81aR5R6W6LKEEIB/504qH/xvdqckc3jJYjweD/etWUNeXt7pD2w4DK8+EJ+K4h6Kd/rXORJaxOHdfrzrAxjN9RRMyWD07CyGjpZ2hFcyXdcJa2GC0SCBaIBANEAwGiQYO+n1SesiWgRd19F1HQ0tvoyOpp9YPnmbrndtP3lb72Pp//Xptp38vn229XqfS87e9cgBdDBGLFgDLqx+V9ezO/5c4sK634Uh1nekPGIKErR1ELR3ELR5Cdo6iVqCRE0hoqYQEXOoazkMyomvR+HM//2d1T5nMcI84HkUur5+KyjWM54Hvev/dC0e9nUN0FF0vdfrXttOu7772L6v0cOgh+KvozpE+j82Q7XyQwnj4ko2bXgq70VdtJhaSOo0sn73H7jrhi8luiwhrml6OEzjL/6P4889x5br59LqdDJlyhRuvvlmrNbT/EMZbIe3vw9bf41mcnJs5K84WDuKmpfaQWlm6KhkaUd4GZ0clHueYye9Povw3L3u5OODsSCarp25mF4UFEyqCVVRURQl/oyCoigonOG1oqCi9t3WtdxnWz/Hnm6bgoJBNZzY96Rt3c+XXRKAjzA+wtTR0zNFB0PYjMnnwOSzY/LZMfvjy25fGqmNuaixgf8bixkjxMzh+MN0Ylnrtdy9LWoO9Sxrpgj9fRt0zuKHlbPa5fx/6LmQH5gu5H0ttvTzPvZykU9bcVomg0ooPZdoexNOTx47d6yXMC5EAoWKi6l64AH2xWLsu/kmLHYH71t9hhv4aBrsfQ7e+Br4GqnJ/w82VCyhaUOQpMwIs1aPYPSsLFwpZzHiJU4rFAtR7i2n3FtOWXsZZd4yan21BCKBU8PzeQZlq9GKzWjDZrRhNVh7XidZk8g2ZmM1xF9bjdZ+9x3o+O5jzOoF9OsWZ0XXdQIdEYK+CCF/lJA/QsgXIeiPxl/3Wh/0dW1vjhL0R9CiAwfT+GwVIxa7CavdiMVhwmI3YrXHny12ExZHr9eOrnV2IyaLQf7cE0TCuDij4TPGcfiNeIvDQPkBIrEIJoO0OBTictI1jdann6b0F//HllkzaUhJObsb+NTshlf+C6q24k1bxCbzf1DyXgRnss5NHxtP4bQM+Qf4HGm6Rr2vnlJvKWXtZfHg7Y0/13TW9BnFy7BnMMw5jCRrUk/4PWNQNtiwmSQoX80URcHuNmN3n9uF0LquE41ohLoDeu+w3hXkgycFeW9ToGebrg0c5FVV6RPOrY5eAb7rtdlmwGBSMRi7Hr2XjSpGk4pqVE7ZLlPdTk/CuDijG68bRu2rLjqsYYZU29lZ9iazCpYluiwhrhmRujpqvvxlDtTUsuvmm1AsFlYtW8aUKVMGDmb+Flj7TdjxJGHbUHZm/57d+9woSoyZK4czeUkuJrPcQOR0vGEv5e3xoF3aXtoTuiu8FQRjwZ797EY7+Z58JqVPYnXBavI9+eS788lz52E32RP4FYirjaIomMwGTGYDzmTLOR2r6zqRYIxgd3D3DRzgQ/4Ifm+Y1jpffH0gelbTWAaiqgqqScXQFdSN3SG9V4g39Arxaq994qFeOXWdsesYk6HPsYaTjjOaDTg85/a9utwkjIszynBbCZtS8VFKmsnDxvf+JGFciMuk/eWXKf/u/7B1/HiqZs868w18tBjseALWfgs92MnRId9kc8kUfKURRs3MYM5tBTiTZTpKt0gsQmVnZU/oLvOW9UwvaQm29OxnUAwMcw0jz53H7OzZPYE7351Pmi3tihit1jSNWChCLBQmGgyjhSLEwpH4ciSKFooSC0fRIlH0aCx+jVz3wV0XS6LHl3ut7nl9YnvP1q7jehXRfaFe9269z9e1Qu99jt7nPnn/nrc4c0oc8M/nfP7YzuNc5/3343THnfb9znjiniVT18MFoALurkcvuq4Si2po0a6LZrWuC2g1HV0j/rpruXs7uo4W09H0+A2auvfXtK7Xmo4eAi2gxY/rWhfTIapphPqc96S/R+fAYDOz+tE7z+/gy0TCuDgrtlEj8R0txZqUx5Ej0uJQiEst1t5O3Te/xeGdO9m24EbCZjOLFy6kqKho4Bv4lG+GV/8L6vZRl3oXGyL30rAzQkaelaWfvI6sEZ7+j7vK6bpOU6DplLBd7i2nqqOKmH6iRV2KNYV8dz435tzYE7bzPHnkOHPOa3pexBfEV99MNBBGC0fQwjGioQh6JIoWjqJFY/HnSAw9qvU89zxi8U4RekyHmA6aDhoQA7R40w1FU0BXULoeqq4QvxxS7Xo2oCoqBuXs/sm/tLdwUji/BCwS7xL/Jk25NG/hi3nPvFOCSRgXZ2XW7FG8ffgdwg5DV4vDSrLcOYkuS4irkm/zZsofeogdQ4ZSMv8GMjIyWLNmzcA38Omoi1+cufc5Om3j2ex+jqMHzNg9Cos+MpbRM7NQroE5m/6Iv2cqSXfg7g7dvoivZz+rwUquO5fRyaO5Ke8mhnuG94Rut9l9mnfoS4vG6KxtorOiEX9tK+HmTmJtYfBpGMMGzJoFi9r/NJXu3HEie3S/6hv44637Ymh6DK3rfzoamhJ/1hW966GhG0BXiafp7odBQTEoYFDAoKIYFRSjimJUUY2G+LLZgGo0oppUVLMR1WREMaigKChqd7Vdo7tK93PfdT1DsUr8/5TuRK909Tjp3l/tCuPdu3e97hk5Vru6oii9zoES30/p/7WCAqf7+z3APOnTdugYYNPAc64v5rnOfM7TXvd7hiHk037dZ6jpwlpIXkA3lTN+rwZmN52h1esgIGFcnJUpeSm829Xi0OMz8M6Op7h7wUOJLkuIq4oWDNL4ox9x9KWX2TrvejqsVoqKili4cGH/N/CJhmHLL+Gd/yUa1dmV+mN2HhuOrsG0pTlMXZp31bUojGkxajpr+oxyl3vLKfWW0uBv6NlPQWGIcwh57jwmF0wm3xOfwz3cPZxMRyaqcubx30BrBx1ltfhrWwnWe4m2BdE7oqhBBVPUjFWxoyrxOG0FrDiJaGFCSoCoKYLfFiDojmL0WFEtRlRjV9g1GuLPFiMGkwnVbEA1mzBazRgsJlSLCZPFjGoxoZqMA/8mRAhxVbi6PqXFJWM0qIQz8oi2NeHy5LNz1wbuXpDoqoS4egQPHqTiwQfZZbVxeMli3G43H1mzhvz8/P4PKF4Lrz6I3nSM4uTPsKnuZjprYhRMTaVoTSHuNNtlrf9Sag+1807VO6wtX8ummk19Lp50m93ke/Lj87jd+T2hO9eVi9U48Nz4aChMR0UDvqpGAnXthJt9aN4Iil/HEDFi1W2Y1PhFX0bAiRVNNxPUfUQMYUKOEGFnFGOyDUu6E/vQFFx5mViT3RKehRDnRMK4OGsjZozj4L92orgzCZUfRQ10rQAAIABJREFUkhaHQlwEeixG8+8ep/jJJ9kyezatbheTJ09m6dKl/d/Ap7UcXv8yHH6JRts8Nhi/R+1hldRhNhZ/dCRDRw1wYecVpsHfwFsVb7G2Yi3b6rYR02Nk2jO5tfBWxqWO6wndyZbkUy6O0zQNf30rdZWl+GpaCDd2Em0Lgk/DEFTj00cUe89xNgzYcBPSAoSVIFFzlE5HJwZPBHOaA1t2Es5h6TiHpWPo7zcUp6HrOqGoRlTTicY0IjGdmKYTiWnENJ2o1r3txLqefTSNWCy+z8nHRTSdWCx+bHyb1ue46Mn7d+/TVUef9+l1zu5tsV7TAvSTvp7+1ne/OJt9+15/qfe/fqCpHQO9/wD6m7xythdT9rdbv+v6eZf+9zv7Wk5b4Xlci3qu73P660Yv3ZS3S3EddLbHyhP3zbz4J76IJIyLszb/umFUv+LCaw2TXW1lR+m/mF24PNFlCXHFCldVUf3Ag+zp7GTfksVY7HbuXrWKsWPHnrpzJADv/gQ2/giflswWx2McOp6KzWnixg+OYOzcIVd8L99ybzlrK9aytmItexv3ApDvzue+CfexKHcR41PHoygK4Q4f3op6OnaV0NjgJdoSiI9qB+iZPtJ9saIFsGAnppsJ6n4ixjABR4CgK4opxYY1041jWCrunEzMbsdZ1+oPR2nsCNHUGaKxI0RjZ7jndVNHiMbOE9uCkXO7sc+FMKgKBlXB1P1sUDEaFIxq/Dm+Te3apmA0xJctJhW7qmJSFYwGBVVR+gSjPgGs/8U+gU/pWXf2+5567l77DHiefr4JXfoL9P0F+P73O7uD+z/fqWvP9n0H2vd05z7TMQPOWR9gw+mmhV/QlPEzuJC7bJ5OmnNwtzUECePiHKS7LITNqfj0rhaHm/4kYVyI86DrOu0vvMjxRx/lvSmTaRg1klGjRrFq1apTb+Cj63D4JXj9y8Raa9jj/BLbq6YTi+pMXjSM6cuHY7FdmR/luq5zpPUIb5a/ydqKtRS3FQMwPnU8n53yWRblLmJE0gg6a5upfWMf+4/+DZvPjrXrokgD4MCMrpsI6X7CaoiwLRyfPpJkxZzmxDEkBWduBvbM5DNOHwmEYzR1hmjoDtVdYfrE84nA7Q/HTjleUSDZbibdaSHNZWZabjJpTgvJDnM8+KoqJoOCQe0OyPEw3Ds4G7rCcHd47h2ce4frnlDdax+jqlzxP5AJcS26Mj/BRcI4Ro3GdyTe4vDg0Q3EtBgGVW4cIsTZira0UPO1r3GguJidixaiWCysXLqUqVOnnvqr5Maj8NqD6MVvUWq9nXdDH8JbD/nXpTD39kKSMq+8G8rEtBi7G3eztmItb1W8RXVnNaqiMjVjKv89879ZmLOQTGsGdVsP0frUQQ7W7sOlJ2NTDKiaHb/TTyglijnVgTXTgzMnDVdOBkZr/6NfwUiMxo4Qx6ra+4Tpk5+bOsN0hqL9niPZbiLNaSHdZWFyThLpLgtpTgtpTnPPcobLQorDjNEg88WFEOdGwrg4J7PmjOStQ+sIO4yk17hZd+QFFo8d3M30hRgsOt5+m7KHv8HWwgIqZ88mJyeH2267jZSUlL47hjrgne/De7+kWR/NBvWPVJfbSc52sPLeQnLHpSbmCzhP4ViYLbVbWFuxlnWV62gJtmBSTcwZModPXvdJ5ufMx9IONe/so+kv7+HvdGBRbbh1Nx1KK96hXlJmjmD49CJUo4FQNEZTZ5imjhBHOkI07a0/Ea47QzR1hHuCdscAAdtjM3UFaTMThyWR5jT3BO70ruc0p4VUpxmTBGwhxCUkYVyck8m5KWyIumkxNeMJqDz71i9YNOaOK+Luc0IkiubzUf+/j3Bo/Ttsm1tEyGLp/wY+ug57/wxvfI2A18dW6/c4UFmA2WZk3t0jmHDDENQrJBj6I342Vm/kzYo32VC1gc5IJ3ajnRuG3cCivEXMzSzCt6+a5teOU1uzAZeWhE1RUTUHfocPbbSZ7BsnMiwzhWMNnbxW3MSmZ3axo7yVFl+43/d0W42kdYXpsUPc3NATqs29RrPjAdtilN/oCSEGBwnj4pwYVIVoRh7Rtkac7kIcR3aytXwts/IXJ7o0IQalwO7dlH3pS2xPTaNk/nwy0tO5d80asrOz++5YuxdefYBY+Vb2mz7ONu/NhJsUJswfyswVw7E6B3/norZgG29Xvd3TgjCshUm2JHNT/k0syl3EZPM4GtYfIrC+ifqOzVhVOx7ceGnBm91Byox88mfNobo9zKaSJjatq2BTyS6aOkMA5KbYWTQmg9wUe0+4TndZSHNZSHWYsZokYAshrjwSxsU5K5g9jv2v7kBJGkZu2WH+8Ob/MutjEsaF6E2PRGj65S85/Oe/sHVuER02G0VFRSxYsACTqVew9rfAuu/A9scp1+exMfgsbfUmcsalMPeOQlKHOAd+k0GgzlfXM/97R/0OYnqMbEc2d42+i4XDFjCsxkXLe8fhny20aQewKiqq5sRn70QbZSZ7/gTMLhebSprjAfyH66lqDQDxi8avL0ylqCCNOQWp5KRceXPkhRDiTCSMi3N2w4ShlL3kps0SQMVI5FAnB+p2MD5rWqJLE2JQCB0vpfLBB9mJzqFFC3F7PKfewEeLwc6nYO23aO10sFH5FRUN6XgybCz/9EjyJqYO2ulfpe2l8RaE5WvZ37wfgAJPAR+d8FFuTJqLY3cA/78asXlbiKkhPLjp0FvxZnlJmpqLZ/I0jla2xwP4cwcpbugE4tNM5hSk8vF5I5hbmEpBunPQfg+EEOJikTAuzlmq00KrIw81tJeczOsprH6bJ974Jj+45++JLk2IhNJ1ndZnnuHYr37Ne9On0erx9H8Dn8qt8MoXCVYXs039D/Y3T8NoNjD3juFMvHEYBuPgmheu6zoHWw6ytjzeA/x4+3EAJqZN5LOTP8vszrEY9nagbw3hinWgKgZUzUWnrQNtpBnPnDHUR41sLmnm3b1NHHhtHboONpOBmcNTuHPaMIoK0hg3xI1BWvMJIa4xEsbFeRkxbxKN/zpKh0dHqVdo2ddCWcsx8lNGJro0IRIi0tBAzZe/wq6GBvYtXIDFZuPu1av73sCnox7efBht9584qN3Jlo6vEQypjLt+CLNWjsDuNifuCzhJTIuxs2Fnz10wa321GBQD0zOn876htzO+PAtljw/rO1Zsqg446dCjeDO8OCYNozZnJO9VeNlc0sSu3+0mqumYDApTcpP5/KJRFBWmMmlYEuZB9oOHEEJcbspAd3O6Gk2fPl3fvn17osu4KgTCMb717T9hVo8xtNFMa8sm/Le7ePiOZxNdmhCXnR6Lsf8DH2BDWhoN6emMGjWKlStX4nK54jvEIrDl1/D296j0FbIx8gVavA6Gjkri+rtGkjbMldgvoEs4Fua92vfiLQgr1tEaasWsminKnsNN2hxyS1wYqmK4okkYFCMRLUyn1YupwEXHmFy2BVQ2lzSzrayFYERDVWDiUA9zCtKYW5jK9LwUbGa5yFIIcW1QFGWHruvTz7SfjIyL82IzG8ieOxXfu+WEkm0YmqB0VyX1S2vIdA5JdHlCXFatf/s7b2Zl409NYeXy5X1v4HP8bXjlAdrq2tmkPUxpywhcqVaWfqKQEVPSEz4n2hfxsaFqA2sr1rK+aj3+qB+nycnCtPksaJhIeoUN2z4rdjX+A0On3oY3zUuoMJ19yTm8W+5lS2kzHYeOATAq08n7ZuRSVJDKrBGpeGyDvwuMEEIkkoRxcd7umVfAjzdkEzSWk5U0jTFl23n67W/whRW/TnRpQlw2mt/Plj//mfaxY7hjzRomTJgQ39BWAa9/hfCBN9ge+zf2tC1ENRqZfWsekxblYExgGz5d19lev52nDz7NhuoNRLQIKdYU3m9dwfTqESTV23tGv6NahA5LO51DFYqHZrCh08nmkiaatrQCreSm2Fk+MZuiwjTmjEgl3dX/nTCFEEL0T8K4OG9JdjPWKZOJ7a2CVA/mNoXd2/bRvrgdj9WT6PKEuCxqH/sde/LzGJKczPjx4yEShE0/Q1v/KIf983kv8BSBoIkxs7OYfWsBjqTEhdWoFuXNijd5av9T7G/eT7Yhg/8IfpDR9UPweN04VDcAPq2dluQ2arPdrDd72FAB1WUBKKvrajeYJu0GhRDiIpEwLi7IhxeP4fFd26k3VZPhHMfo4wd4duO3+dTiRxJdmhCXXKS+gXc3byI4ejTL1qxBOfIqvP4lauptbIz8hMaONLJGuFl+1ygy890Jq9Mf8fNi8Yv84eAfqO6sZlZsIr+o/gLDOoZhVi1EtQheUxs1qa3sSPbwaouTkkYftAdxW6PMKUjlk/NHUFQg7QaFEOJikzAuLki2x0Z41AQMJTUY0nOxlR5k4+Z3+fCNAWxGW6LLE+KSKv3xjzhSUMBYd5ScVz6Et6qazeH7KW6/DmeyhSUfLWDkjMyEhddGfyPPHn6W5448hzfs5S7/IpZVf5iMSPy6jgZzIwfTrPxdt7OzwYLeALbWADOHp3DX9BzmFqYxNlvaDQohxKUkYVxcsHuWTuCFn+ym3tJAkjWfwuMxXtjyYz4490uJLk2Ii6+tAorXEtzwDzbVuCEvh8XeZ9ja+WF2tsxFUY3MWJ7LlJvyMFkSMy+8pK2Epw48xUvHX4KIxv9ru4MZ9eNJUtIIa0FK7A38zmhlY6cNU6PClFwbn1+UI+0GhRAiARISxhVFuRN4GBgLzNR1fXvX+nzgEHCka9f3dF3/1GnO8wXgB0C6rutNl7BkcRqFGS5acsZgq63HljkWV3kZr234J3fN+SImVTopiCtc2Adl70LJWiheC83H0HU4sGs8ZVMncV1mGq/XPU1rTZDCaRkU3V6IK8V65vNeZN0XZT554EnWV60nK5zCw433MaatALvqolP38p6zjh+GrNQG7Uwa5uHRW/JZOiELu1nGZYQQIlES9Qm8H1gD9Nd2o0TX9clnOoGiKDnATUDFRa5NnIe7bpnMul/vo97WgtOUQW5xhFd3P86qqZ9MdGlCnBtdh/oDJ8J3xWaIhcFog/y5MP2jdNS52Ny4BSNGqveOwpMMK+6fRN6E1MteblSL8mb5mzx54EkONB9gmn8kP6/7PHmBfIyqmSa1kVccAX7SacEYdLB8YjYfLspnSm7yZa9VCCHEqRISxnVdPwRc6DzKHwEPAHIP9kFgam4yz6aNwtH+Hs6sqUQrG3jh7T+wYsrHURX5lbcY5PwtUPJWPHyXvAWddfH1GeNg5iegcBHkFoHJih6JsPbjX6IpPw2nN58pC4czc+VwzNbL+3Ha56JMbzVr2ubxxYYvk6kNRSNGlamRp01GXg1aSFctfG5JLh+YlUuG6/KP2gshhBjYYPzd5HBFUXYBXuAhXdc3nLyDoiirgWpd1/fIVf2Dx/JbprLzD4dosnsxq27Sj4VYf+Sv3DjmzkSXJkT/Aq3wyn/BvucBHaxJULAAChZBwULwDO2ze2driDd+8Ab7h6Vj1uCD968ge0TSZS250d/IM4ef4bkjzxHyBfhU0yqKWqbgUVMJaQH2WGr5cdRMcczBlKFJ/KQon2UTsmUeuBBCDFKXLIwrivImkNXPpq/ouj7QaHYtkKvrerOiKNOAvymKMl7XdW+v89qBLxOfonI2dXwC+ARAbm7uuXwJ4hzNH5XOy44ROEK7SMueg1b9Os+8+Qvmj75DWqGJwad0Pbz4Keish6L/B+NWw5ApoJ560aWu6RzYUM3mF0vwKk3EPAHuuPvuyxrEe1+Umdpp54HGu5jQORarasdLK6+aa3g0aCWmuVkxJZtHi/K5btjl/UFBCCHEubtkYVzX9cXncUwICHUt71AUpQQYBWzvtVsBMBzoHhUfBuxUFGWmrut1/ZzzN8BvAKZPn66fa03i7CmKwtybp1Ly4lHaHD5QrNiOBthZ/hbT8hclujwh4qJhWPdtePen6KkjeH35tyk1wj0ZY3D2E8Rbany8/cfD1Ja0k2procF2jLyMoYwZM+aSl9p9UeYT+59gQ/UGpraO4NHGTzM8WoBBMVKr1POC2sazuoNMayqfnp/H+2flkuaUu2AKIcSVYlBNU1EUJR1o0XU9pijKCGAkcLz3Prqu7wMyeh1TBkyXbiqDw4pJQ3non7lY9UPkZM6FurX8/o3vM+3jEsbFINB4BP76MajbS+uUD/Atp4mKl3+P22fihXHP8ck593Nb4W0YVAOxiMaO18rY8Vo5JquB+Ssz2fvH3xEZWRi/wc8l/G1PVIvyRvkbPHngSQ41HuLWhjk82fIVMpWhRLUIxYZ6fqEZ2KnYmZGbzM+L8rl5fBYmg0xFEUKIK02iWhveBvwMSAdeVhRlt67rNwM3AN9UFCUCaMCndF1v6TrmMeBX3W0QxeBkNKiMWzKD+tdK6XRF0esMhA9FOFK7g9HZ0xJdnrhW6Tpsewz+9RCYHbxz81f5n8MvM+FfBuY0xTugjKlW+Evpo/xp0jN8asgXaXhVpbXOz8gZmVx/50jKv/EligsLmDR2LFlZ/c3Au3D+iJ8Xjr3AHw7+gfbWJu6rW8bD3g/iMiTj1zrZYKzkh7oVr8HD6qlD+GZRPhOGei5JLUIIIS4PRdevnZkb06dP17dvlyx/qQUjMb7zrWcxqMUMbbTT1rye5ltUvnfvPxJdmrgWdTbA3++HY6/jK1jIIzmF7H53A3MOpWFRzSy89xMMHTOet3//W8r27CRqtmMz34zmyWTu+0YwY+Y4/Lt28czPfk5dbg6f/c//xO2+uLe2731RpqfFxCfrVjMxNAGLaqMl1syrqo/HcJGe5OBDc/J434xcUhzmi1qDEEKIi0tRlB26rk8/036DapqKuDpYTQayr5+Od2M5kSQTapNC0/42KluLyUkuTHR54lpy5DX4+2cg1MH2+Z/jGzVbGPHCDubVp5E9eiy3fOYLJGXGR7knLf0MTbWv4mt6k0j4RWrtEb6wo4VV3EXRL/ZTNXw484uKLmoQL24t5qmD8Ysyp9bn8z/N/8ZwrQBQqKSeJ6ONvGHwMGvECH5alM+ScZkYZSqKEEJcVWRkXFwS7YEIP/nO02jGcrJrDbR7txC+zclDd/0p0aWJa0HYH5+Ssv13hDLH8/PxN/LW5rVcfyANS8zIvPd9mGnLV6OqBjpbQ6z/0xFK9zSRluPkhvcVUnXwbTY//wzhcIhWZxsZ1sn40lP4/AMPYrfaL6g0XdfZVreNJw88yabKjdxaPYdV3oVkqEOIaCH20cDPYkYq7S5umzKUe+fkMzb74o7ECyGEuPRkZFwklMdmwjp1MpE9VZDiwdAGxburaLqlnjRnZqLLE1ezmt3wwseh6SiHpt/DV/0VpP9tEwur00nLG87y+79AWm4+uqaz/50qNr9YQiymM+e2AiYtzsFgUMkuWMO4eQvY8Mcn2L1rF62pqVTq+/jgax/gv2Y+QNGQonMuq/uizCf2P0F1bRkfrrqJzwa+i9PgoVP38lK0jF+qLpwpWdw7J4+7Z+SQZJepKEIIcbWTkXFxydR7gzz+/d8TNtaQXhXGG9yL9X1D+PzK3yS6NHE10mKw6afw1neIOtL53bTVvLhzHdfvTcUWMjD71ruYffv7MBhNfdoVDhuTzI0fHI0n/dQR7/rf/pYnjh1DM5swH9tDR7LOxtH1jLtuDl+Y/gXyPflnLMsX8fHCsRd4+uDTWGui3Fe3nEnR6zCpFuqjjTyv+fizKYlZhel8uCifxWMzMajSl18IIa50MjIuEi7TbSUyZiJKcS2m9CGYSveyc/t+Om7y4rLIr93FRdRWGb+BT/lGysbczEMWsLy6iSVl6Xiysll+/xfJHjmaWERj6z+P97QrXHjvWMbMyeq3TWG0pYVNb64lOHYM9957L6GaCt754+Pc8p5CedUhPlh8O6un3s0nr/skHsupHU0a/A08c+gZ/nz4z1xXNZSHWu4mjwJA55hWy2NRnd2OFNZMHcmrRfmMynRdhm+UEEKIwUZGxsUldbyxk7/++CmCxmaSy1tpix0l695xfGzJI4kuTVwt9j0PL/0nmh7jTzPu5qnDm5mzOwlXp4Epy1Yy7/0fxmSxUlvcxrqnD/dpV2h3DzwNpPQb3+SP4RD5w4fzoY99DIBwMMC2vz/P1n/8lRgau4e3UDlW4VPTPs2do+7EqBopbi3myQNP8kbxa6wsn8mKzgWkGbIIaQG2Ruv5pWqFjDTunZPHndNy8NhNl+s7JYQQ4jKSkXExKIxId9KWMw5T7TvYMkYSKj/G+vfe5Z4FQSxGa6LLE1eyYDu88l+w9znqhk3jqxnZBN/eypKSVBzJKdzy0H+SN3EyoUCUt585woH11ThTLKy4fxJ5E1JPe+pQSQkbi4+hFRSw9NZbe9abrTbm3n0PExYs4Z2nH0fZsonxtSp/rPwxz43+E1mubA4X7+GeyiX8Ifwt7AYn7XobzwaP86TZw9Txo/h6UT43js6QqShCCCEAGRkXl8GeyjbW/vr3BA1eHCWVtBorGfux67n7+i8nujRxpSpeC//4f+gddbw07U5+XnWAGTsdJLebGHfDQhbe90ksdgfHdzWy/k9H8HvDXLcgh5mrhmO2nnkMYu9n7ufFtFSmTZrEijVrBtyvYv9e1j31G5oqytAykxljm8ZE/TqMqonKSB3PxgK85UxnzYwc7p2TT2GG82J+F4QQQgxiMjIuBo1JOUk8mzISq3cLWVmTiFZW88rGl7i96AGMqvwVFOcg6I23LNz5FC3pI/n2qFXUbNvP4qPJ2BxObv7i5xg5Yw6+thBv/WEfx3c1kjrUybJ/v47M/LO7TsG3eTObI2FMqsqCm28+7b65E67j/V/8HhXPbsVSa0BDY1+khsdUlbasLD5clM+3pw3DbZWpKEIIIfonSUhcFstXTmfbU4dosrdhUlPIKY7yxu7HWDb1U4kuTVwpStbFR8O91bw29XZ+0ljMpJermdGSTMGM2dz08fuxuTzsX18db1cY1Zh96wgmL8nFcJY3ytFjMXb94v+oLSxg8YIFOByOAfeNNgfwvlWJf2c9RsXE80qQZzUf464byeeK8pk/Mh1VpqIIIYQ4Awnj4rK4vjCNlx0jsIZ2k5M1C63mVZ5f9zRLp3yy304WQvQIdcAbX4Ptj1OfVsC3py6nYcdhFh5NwWKysvjT/864GxbSVu/ntd/upLa4naGjk7jxA2NIyjy3G/S0vvg3tqWl4rZYmF3Ufy/xaEsQ71sV+HfUE1Xgb4T5ox7mhqlDeHZBAQXpMhVFCCHE2ZMwLi4LRVGYu2w6R/96lHZnJygOUo+Feffw81w/9s5ElycGq9L18PfPoLdV8sKklfymvoypLzWQ35bC8KkzWPKxz2D3pLD9lTK2v1qGyWxgwT1jGFuUfc4/5Gk+H1v+/Gfax43ljpUrMRr7fjxGW4J0rKvEt6OeqK7zd8I8rYeZP3UIf1lQSH7awKPoQgghxEAkjIvL5pbrhrL573mY9UPkZFwP9a/zzJu/kDAuThXqhDcfhm2/pSp1OA9PWkJgRxmLS5Kw2p0s/uy/M6boBupLvbz0i2201PgonJ7BvLtGnbZd4enU/u5x9gzPZ0hyMuPHj+9ZH20L0vFWJb7t9cT+f3v3HR9Xded9/PObqtGoV6tYktUsy5arbOOCsQFTUoAESLJJCEnIQggpJNkku89mk02e7IYkuwkQeiAFQkkAUw2hhGJwr7jKRZYlS1bvmpGmnucPDcT4kUEu0ljy7/16zUujuWfu/d2j6/FXV+eeawzP4ufPDJ4Jf+L8YvJTNYQrpZQ6eRrG1aixWoSpF86j4aWDeBN8mBYnjn39bKv5OzMnXRDt8tSZ4tBqeOZrhDpreXT6JTx0pI55L/SS1JPE5IVLOP9LN2C1xbLq0X3sfKuBuCQnH/3adAqmp530JgPNzaxZs4aBsslc+slPIiIEu32DZ8I3NBEyhufeDeFzsnl8WQl5qSc2BEYppZQaioZxNaqunJfHf7+Ui9dWTU7qIqTlNe596Wf89vrzdGaVs53fA3//Kay/h4OpBfx46hKsG4+wvCaV2MQkLv7+NyicPY99G5pZ/cR2BvoCTF+ay/zLC4c1XeEHqbn1NqqKi5hSWEh2QgadzxwYDOFhw0oCPISP8ypzeHxZMRNTNIQrpZQ6fTT9qFEVY7eSvbiSztW1BBMF2mzYdwu/fukmvn/pvdEuT0VL7Vp45msEOg7yh6kXsKLhCAteDBDnSaTi/Is575ov4+2BZ27dRsPeTjIKEvj4N2aSnnfqt5Dv37WLNUeOwKQCznHNoPGXGwmFDS9GQviSuTn8damGcKWUUiNDw7gadZ9dUsztq7JodhwmK/lc8ptfZ+O6nTyVdhufmPutaJenRpPfC6/9DNbdxZ7Uifxk8kLiN7SzvC6N+PR0LvnOzWSXTmPTi4fY+nIdNoeV8z47mfLF2ac8bWCou5v2B37PgRf/zqFFlUwP5SObe1gpAf4sPhZX5vLY0iIN4UoppUaUhnE16hJi7Lhmz6b/nQYk2YF9oJTKqr084P4z+anlzC5cHu0S1WioWw9P34ivs5p7ys/jpboWFr4kuAYSmPPRy1n0qc/TsL+PR3+6np62AUrnZ7LoypKTvkDzXaE+D50PPciRR1dQVbGAvQvnEWOstAZz+Lylj8Vzc3l0aRG5yRrClVJKjTwN4yoqrrlwCn/YvJ5GRzPZ7nPBdHHuNsOPXP/KfZ8vJDu5KNolqpES6IfX/wvW3MG21In8tHAumet6uKAhjaScHD5y43eIT8vn73/aT/XWVpIyY7n85pnklqWc0mbDAwN0PvoYjX96mL1l86hatoQAIWLDabwWymLOvCweXVZMTpLrNO2oUkop9eE0jKuoyEiIIVg2Aw68jNO5F1/gMpzBR5i3OcS3XZ/lD194jViHThk37ux7CV74Ht7uOm4vW8jqQx0s3OjEGYhl/pWfZu5lV7H77Waeu2M94bBh/mWFzFqeh9U+vDuRQFByAAAgAElEQVRoDsX4/XStWEHj7/7IvsKZ7D5vCX4JERdKZl0om2mVJTxwvoZwpZRS0SHGmGjXMGoqKyvNpk2bol2GijjU5uHRW/+Mz9bI9HoHDeTj7/sLTUle/Evt/ObTK7HIyYcwdQbpqoO//RtUPc+qzGL+x5XApC1CXnMs6ZOKuPTGmwmFUnjjkb201/eRPy2Vcz9dSmL6yQdkEwrR/dxzNN19H/typrJ7YiIDEiQ+lMrqUDZFs4r55gUlOiZcKaXUiBCRzcaYyg9rp2fGVdQUpLnpLK8ko+oNdud4mHK4nYbYi5nQ+SL7NvVyR9LX+eYld0W7THUqgn5Yewe8+UvqbFZ+Ub6I5qpOFu1z48DG4s9/gannfYT1zx1i91ubcSc5ueSGaRTOTD/hO2i+y4TD9L78Ck133sX+lEJ2zV+E1xIgPhzPFn822TOK+d8LS5mkd8xUSil1BtAz4yqqPL4g19/+OhV9G7GFIacpj9ZgDQHvetZP6eBLH/8cl865KdplqpNRswpWfhdv+35+VzSbF9o9zN2ZRHKPndzyaSz/52/QUmthzYoDDHiCTD8/l3kfm3TSc4YbY/CsWkXTbbdzIDaHnYUT6LP4iQ8nsiWQQ9K0Ym6+sISSzFOfDlEppZT6MHpmXI0JbqeNW65bxA9v66XIsoOe1MO4u2biMR3M27OPO91/IC+1nKkFy6Jdqhqu3iZ4+YeYHY/zt/Q8fjuxgoLNYS46kk5scjLn33w9aXmzePPRfRzZ38WEwgQu+9Zk0nJPPiR7Nmyg+dbbOWAS2Dm1kh6rj/iwk0P+Qhylhfzw4jKmZCWcxp1USimlTg8N4yrqJqbEcv01S3jqDx7CMdVMtr9DQJZjwl0s3mb4N9d3uf/zK8hIKoh2qeqDhIKw8X54/b/YJ0FuKa2kv2qApdWJ2LAy7xNXMeOiK9j+WhOvPbQRe4yVpZ+bTPmibOQk5wzv376dlltv40CvlR2Tp9Jl8xEXtnHEX0CwuJDvXlRGRW7iad5RpZRS6vTRYSrqjPHA2zW0/O1lfLZGZteFqbPOJuB9mG5HDwcWdXP/F14jxqEX252RDm+Eld+mu2Und+VP463WAPP2pBDfZ6Vw9lyWXPMVGvaG2fB8DT5vkCkLs1hwRRGu+JObM3xg925a7riT6kYvO8tLabf7cIdd1AZz6ZlUyM0XlzE7L/k076RSSik1fMMdpqJhXJ0xjDF8/y9bmbDrDbyWPmbVWKhxFODv+ytHUjzYzovhlk89f9IX9qkR4O2AV39MeMuDPJWWw+8ciZTtjGVis4vECVmcf+31WGyTWP3kAbqaveRMTmbx1cUnPSRlYO9eWu+4g+rDPewqL6PV4SPWxHAkkEvzxAK+fUk58yad2nzkSiml1OmgYXwIGsbPfAOBENff+SZTO9ZjIUxRQzL14RAB70vsyevlnOUz+cpFt0W7TBUOw9aH4NX/ZHvYyy3Zpdj2GSoOJmG3O1l45T+RP+MC1j19iPqqTpIyY1l4ZTEFFakn9cuUb/9+Wu68i4M17eyaOoUWhw+XcdIWzOFQ9iS+ffEUFhSd3LqVUkqpkaBhfAgaxseGpu4BfnDr3ygObyfNbyexu4S2/l0EvBtZV97OjR//EufPvj7aZZ69GrfDyu/QdmQzt+aWsq0FzqlKxdVvoWzxUuZe9jl2rupiz5pGnLE25n1sElOX5GC1nvic8b7qalruvIuaA63smjaF5qNCeM2EAr5+URnnlZ78NIhKKaXUSNHZVNSYNSExhm9+cQl/vs9DyLmfRPse4qzz6TMdzN9t+LX7PnJSy5icvyTapZ5dvB3w5i8JbLiXR1MzeDhtMtM3xbOs3UlqfgHLrrmB1sNxPPXrfYSDYWZcMJHKSwuIcdtPeFO+mhra7rqbg1VH2DltKs2z44kx0B+YxM4JkzSEK6WUGjf0zLg6Y/1lYx37n36JoL2BObU+GlxL8PU9hjfUwoYFzTxwzTOkJE6Mdpnj30A3rL0L1t3FOvHzq8xCkqrsTKlNwBkby7mfvpaYhFmsf7aGvk4fhbPSWfCJIpIyTvxiW39t7WAI31XHzooKmpw+YoyDzmAO1Zn53HRxOUs1hCullBoDdJjKEDSMjz0/fuodEra8jsfSzfz9A+xzzyXofZguZx91i7q57wtvYrc7o13m+OTrg/X3wJrfss14uTu7mNbDMHdfCg6/MP2CSymefxmbVjbRUttLel48i68uJrvkxGcx8dfX03b33Rx8p4Zd0ypojBkM4d3BHPZl5vP1i8pZOllDuFJKqbFDw/gQNIyPPYFQmBvufouylrUYQkyvs3HAmoXf8zgNqV4Slrj48aee05B2Ovm9g/OFr76VzaE+7s6eREsDzD6YQnyvlazSMuZ/4svs3xSieksr7iQnC64opHTehBOeLzzQ0EDbPfdSvfXAeyHcaRz0BHPYn5nP1y6awrLJGfrzVUopNeZoGB+ChvGxqb3Px3dufZmSwFaSA3ZyunOo9XYS9L7CroIeLriwks8t/3W0yxz7AgOw+Y/w9q/ZGOzinsx82hqtzKpOJr7PSkruROZd9mk6W3PY8UY9Fosw++J8Zl6Yh91pPbFNNTXRdu+9HNywh13TpnPE5cdp7PQFc6hKL+BrF0/h/DIN4UoppcYuvYBTjRupcU6+96Ul3Ht3L0HHPhLttaSnzKaNDqYe2syKdWuYlP4AC2deF+1Sx6agH7b9GbPqf9jgb+PujDy6GlOY9XYK5X0WUvPymXftp+n3TmTdc/UMeA5TtiCLcy4rxJ10YkOE/LW1tP/+D9Rs3MOuihk0zC3DaQzBQD470idx40VT+NkUDeFKKaXOHhrG1ZgwLSeRi65eyta/ejmQVM+culUMJC2nz3Rwzi7DLbF3cWtKKYV550a71LEjFITtj2He/AXrBpq5Jz2XnsZCZr2dgttjIS2/gMovfIqezixWP9WIv7+GvPIUzrmiiPS8E7tpT//OXbTdfz81Ne1UlZVxZN4UHMYQCuSzJb2AGy4q5/9qCFdKKXUW0mEqaky5ZeUu7Otepc/SxeJ9XexLvhh/3yN4w628vKCRz+TP4ovLb8fpPLk7PJ4VwiHY+STmjZ+zpv8I96Rl42mMYdbBZGI9FtILCpl1yVV0tmSy5+1GgsEwRTPTmX1JPhn5CcPejDEG77p1tP7ufqr7bOwpKaDNPnhhpieYxZ60Am64uJwLNYQrpZQah3TM+BA0jI99obDhpvtXU1S/mhAB5tcMsDNmFkHvowTxsrm4i+6JvXx3yue4YMH3EcuJ32hm3AqHYc8zmDd+ztt9tdybmoW30cWsgynEeoWMwiJmXHgVrfWp7NvQDAZK52cy++J8kie4h70ZEwrR+8ortDzwR/bHTGBPQQY9Vj+xYRctoWzqs/O5btlkDeFKKaXGNQ3jQ9AwPj509wf45m9eptS3hYSgjbKuRKr8mbhi19PdtJv+2ACryzvJSTN8f9GPKS39WLRLjq5wCPa+iHnjv3mrp5p7UjPxH3EzsyYFl1fILCph6tJP0HwomeqtrVhtFsoXZTNz+UQSUl3D34zPR/fTz9D40CPsn1BGVXY8/ZYAceF4DgazCJQUccOyEioLUkZwZ5VSSqkzg4bxIWgYHz8OtPTym9++QLp1D4U9VjJip1LdloTNfhgTWIWns5mmNC/rp3RycWoGX7/otySmlka77NHVug/eeYTQ9r/yZrCD+5LTCTbGMfNgCq5+YUJxKZMXXU5jdSJ1uzpwxFiZtjSXGedPJDbBMezNhHp76XzsMRpWPM++whnsS7MTkBBxoWR2hrJIm1HC9UuLKc3UoUNKKaXOHhrGh6BhfHx5dXczbz+8Eux1zKnzUH7hcrbUpdBc00lsXBW9rW8S8A+wJ7+bg4Vd3JAzn6uW/wbbeB5P7u0YHA++7WF2t+1iZVwcr8Ymk9gQw8yaZGL6hazSyRTN/Tj1e+Noqu4hJs7OjAsmUnFeDs7Y4d+6PtDSQueDD1L36hqqymZyMNFgMMSG0tlEFhXnlHHduZPIShz+2XWllFJqvNAwPgQN4+PP7a/sxf/my3is7Zy78zClBSn0XHo9619uxtPVRVzCVtrrNxC0hdhY2kk4u5d/Lb+WeQv+BcbLeOVQAPa/DNseoe7gq6yMdfBifAqhNifFR+KZ2BqLhAzZk8spmPkRane7aK/3EJfsZObyPMoXZ2N3DH+ecP+hQ7Q/8HtqtuyjqryCutgAVizYQplssOVwwZLJXHNOAYknEOyVUkqp8UbD+BA0jI8/xhi+/af15Bx8C4/FQ1GPlRlb3yLrqzdwwDGDbX8/jAm34bCtprv5AL3xflaXd1CRDN9d/DNySi6J9i6cHGOg8R1451Hadj3OSxYfK+OTaO11UXgkjqLmeKx+Q0xCApPPWUJsUgUH37HQ3dJPUmYssy/Oo3TeBKy24V3gaozBu2EjHY88QnVdN1VlpTQ5fTiMjUAoi21xuVy5tIyr5uQSYz+xGwAppZRS45GG8SFoGB+fPL4g19z9NjPbDmCsDTiwMnt/M5Ot3bi//UM2rh/g4LZWnDG1BLxv0N/TweFMD1snd3B1chZfvvgOYlOLo70bw9PbBNv/gmfbI/y9/zAr3XHsDcYxqcFNSVMizn6wOZ0UVy4gOWc2PW2p1O7sJBgIkzYxjjmXFFA4Kx3LMG9bH2hpofvpZ2h59nlqkyexPz+TDtvg9IQ9wWz2p+dz7fmTuXRaFtZhrlMppZQ6G2gYH4KG8fFrIBDirjeqWfXGLs611tBr6WGCz8mc9asp+OSl9J93NaufqqG9oQt3/G66m1YRDPnZPqmH5vwOvpW9iEuX/y8ScwaOJw/0Q9VKAtse4e3Gtax0u9goCeQ0upnclEhcjwWxWCiYMYf0/Dl4PTnU7ugh4AvhirdTNCuDkrkZZBUnDWsqQRMM0rfqLTqfeILDtR3UlJZzKMEQlDBxYTcNoSw6Cwr552WlLCxK1ekJlVJKqSFoGB+ChvHx70BLH/+x4h1yD1eTZKsjRIiKpgGmNuwm+0c/pMabxfpnD+LzdOKO20J7/Wb8zhDryjpJSu/lB1Ovo3z+N8EapZvTGgN9zdBaBa17CTdsZUvN33jBAW84EkhpdlPamEhqx2B92aVTmFA8l0CgkLrdXnzeIM5YG4Wz0impzCSnNAmLdXhDUfx1dXQ9uYLmF1+lZmI51dnJdFt92IwVWyidbaSRNbWQ65YUMS0ncSR7QSmllBrzNIwPQcP42cEYw4otDdz33DtcGDqEx9pKYshJ5dadFM8qJOHGm9m8qp2dqxqwSBNWeZue1lo6En2sLW8nI9ZDvjgocCRT4M4mP7mE/IwK3GllkFwAMcO/C+UHFAnd9dC6F1qrCLXsobF9D7XdhziEj1qbnVq7jWpbDLFtboqPxJPdFoOEISVnIjll52AspdRXBRnoC2CPsVI4I53iygwmTkkZ9ljwsM9H7yuv0vHEk9R2hakpLuGwO0hYDPHhBBpC6dSm5nL5gklcPiNHL8pUSimlhknD+BA0jJ9dOj1+fv7iHtq27KHMfgivDFDcbWXG9rXkfecmAjOW8PbjB6iv6sDlrqa/6w18nh58CWG6Yn20xPrpdgfocQfpcQeIt/jJDwYpMFYKHEnku7PJTyoiN2Ma9pQiSJ4E8Vlw9F0/wyHoqoXWvZiWPXS07KK2Yy+1ngYOSYhau51DdhtNxkms106Cx06ix06K10mK14WrDyRkcCenkDdtARZ7GUeqbfT3BLA5LBRMT6OkMpO8qSnYTuDCyYG9e+l6/AkaV62nprCC6gw3Hosfp7ETDqWzRTKYMqeIz8zN07PgSiml1EnQMD4EDeNnpw01Hfz0yW3M7zpI2NqAEyuz9jdR5vYz4Uf/QUN7DKuf2E93aw8JSVVYba3097TS295MOBR6bz3GLvS7Q3TEDtAW66fHHaTbHcATGyBT/OQHguQHwxQ4Esl1ZdDt6+RQfyu1VqHWbuOwxY4MOEnw2Ej02EnyOEjrdxHXZ8PqC7+3HbFaScqcQFJGNjHxGWAtoKU2Hk+XH6vNQv60VIorMyioSMPuHH4AD/X10bPyBdqfXEEtiVRPKuBIjA+AuHAyNaF0OnPzuHJ+AR+pyMJ1AtMdKqWUUur9NIwPQcP42csfDPO7tw7y6qvbWWw9RK+lh6wBJ7M3raXwny4n4bPXsP3NI2x6sZagbzCAi8UQl+QjJtaD1dpDONyJ39uGp6uF3vbWwaEmESGn4HEHaXMN0On20xsbxBmwkOixk+51keh1YPcY5Kh/bu6kZJIm5BCbmIHDlYZYkgkFE+jvc9Hd5qO/NwCAxSpMLE+hpDKTSdPTcLiGP5491NWFZ/0G+l5/nfqtezlUMo2DqQ4GJIjLOOkPZbDVnsE584r5VOVEitLjTk+HK6WUUmc5DeND0DCuats9/OipHWTU7HvfBZ7TWg+Q+5MfYS2eQkejh84mL13Ng4/OZi/drV7CwX/8W3G4wJ04gNPVh8XSQ8jfwYCnlb72Jjxdne+1s8fEkJSZTWxSJg5XGhZbCqFgAr7+OHrbwwx4Au+rLy7ZSWK6a/CREUtihouc0mRi3MMbqx32+ejfsgXPmrX0rl1Hc5+hZWIRDemJtDp8WIzgCqeyJ5QGRQV8an4BF0zJwD7MizyVUkopNTwaxoegYVzB4AWez29v5J5ntrE0UPPeBZ5zt+6g+JyppH7lOmyZme+bsi8cNvS299PV3P9eQO9q9tDV5MXT7f/HygXikoXYuAGCQSd9nVb8/aH3LY9PjiExIxK40wcDd2KGi8Q0F7YTHBpiQiEGdu/Bs3YtfWvX0FbXRktuMU0ZaTTFhvHL4LbjwnF0htLY4Z7A8vlFXFWZq7epV0oppUaQhvEhaBhXR+sZCPA/L+2lYf1OJr97gWeXhdJt60kK9eGaXoGrYhoxFRW4pk3Dmjj0hYz+geDgWfQWL12RM+rdrf043fb3znInRc5yJ6S6sNpP/iy0MYZAXR2etWvxrFlL+469tGROonlCFo0JNjyWwV8MXMaJCSVRH07goCuF8rJsrpiZw8Ki1GHf8EcppZRSJ0/D+BA0jKuhbDvcxU+e2Mbs9gOErQ0YMdiNldSAg9RuD8mtzSQ1VJMUb8dVUTH4mF6Bc8oULE7niNcXbG/Hs24dnrVr6dmwhabYDFpy8mhKdtFhG7wA025sOMJJtIQTqLImkjkpi8Wl6SwuSaco3a035lFKKaVGmYbxIWgYV8cTDIX545pDrHh5B5PDvWSIB4e1Dw99hCNXXcYYG6k+GyldvSS3NpHceJCkCSnETK/AVTGdmIppOIuKEOsHDzUx4TDh3l5CXV3vewQ7O4/6vptQVxf+1jZaQjG05hXTlJpAi8NPWAwWI7hNIl2hRPaaeMidwMLSDM4tSWN6bpKOAVdKKaWiTMP4EDSMqw/T7Q2w9XAnO+q72d7QTVVdJ+meLoot/aSKB6u1Dw8eTOREszvsIHUAUjp7SGk+QlJbHYlFecRMnQoWy/sDd2cn/l4v/WELflcc/tgE/C43flcsPmcMfqcDn8OOz27FZxN8ljD9EiQog9MexoXjGAgnciAcT3tKBpWTM1lcnMb8wlTinFG6Y6hSSimlhnRGh3ERuRr4T2AKMM8YsynyegGwB9gbabrOGPPV46zjG8BNQAhYaYz5/odtV8O4OhnNPQPvhfPt9V1U13WQO9BDocVLksWDsfThlf732ieEnKR4wwgGn8OGzwo+SxifhAhI6LjbsRsrduxYjR1j7ISxETA2GsNuDsSkUD45i0XFaSwuSSMzIWY0dl0ppZRSJ2m4YTxap9N2Ap8E7h1iWbUxZuYHvVlElgGXAzOMMT4RyRiBGpUCIDMhhszyGC4szwQGL6I80j3A9sNdbG/oZkd9N3WHWykM9JEnXsIWD81xHiwIFmMHbISNDcKDX/ux0Wds9GKl09jwORyY2Fji42JIdTtIdjtIcTtIjnWQ6nZwdV4SJRlxOu5bKaWUGoeiEsaNMXuAUwkXNwK3GGN8kfW1nKbSlPpQIkJOkoucJBeXVmQBgwG9tt0bCedd7DrSg9Ui74XqFLeD7KNCdorbQbLbTpLLgcOm47uVUkqps9WZONB0kohsBXqAHxpj3hqiTSlwroj8FzAA/IsxZuNoFqnU0USEgjQ3BWluLpuRHe1ylFJKKTVGjFgYF5FXgQlDLPp3Y8wzx3lbI5BnjGkXkTnA0yIy1RjTc0w7G5ACnAPMBf4qIoVmiAHwInI9cD1AXl7eSe6NUkoppZRSp9+IhXFjzIUn8R4f8O7Qk80iUs3gWfBjr7qsB1ZEwvcGEQkDaUDrEOu8D7gPBi/gPNGalFJKKaWUGiln1GBVEUkXEWvkeSFQAhwcounTwLJIu1LAAbSNVp1KKaWUUkqdDlEJ4yLyCRGpBxYAK0XkpciiJcB2EdkGPAF81RjTEXnP/SLy7vQwvwcKRWQn8Bhw7VBDVJRSSimllDqT6U1/lFJKKaWUOs2GO8/4GTVMRSmllFJKqbOJhnGllFJKKaWiRMO4UkoppZRSUaJhXCmllFJKqSjRMK6UUkoppVSUaBhXSimllFIqSjSMK6WUUkopFSUaxpVSSimllIoSDeNKKaWUUkpFiYZxpZRSSimlokTDuFJKKaWUUlGiYVwppZRSSqko0TCulFJKKaVUlIgxJto1jBoRaQVqT+AtaUDbCJWj/kH7eXRoP4887ePRof088rSPR4f288iLZh/nG2PSP6zRWRXGT5SIbDLGVEa7jvFO+3l0aD+PPO3j0aH9PPK0j0eH9vPIGwt9rMNUlFJKKaWUihIN40oppZRSSkWJhvEPdl+0CzhLaD+PDu3nkad9PDq0n0ee9vHo0H4eeWd8H+uYcaWUUkoppaJEz4wrpZRSSikVJRrGARG5RET2isgBEfnXIZZ/UURaRWRb5PGVaNQ5lonI70WkRUR2Hme5iMjtkZ/BdhGZPdo1jgfD6OelItJ91LH8o9GucawTkYki8rqI7BaRXSLyrSHa6PF8CobZx3osnyIRiRGRDSLyTqSffzJEG6eI/CVyLK8XkYLRr3TsGmYfa8Y4TUTEKiJbReT5IZadsceyLdoFRJuIWIE7geVAPbBRRJ41xuw+pulfjDFfH/UCx48/AncADx5n+aVASeQxH7g78lWdmD/ywf0M8JYx5mOjU864FAS+a4zZIiLxwGYReeWYzww9nk/NcPoY9Fg+VT7gfGNMn4jYgbdF5EVjzLqj2lwHdBpjikXkM8AvgE9Ho9gxajh9DJoxTpdvAXuAhCGWnbHHsp4Zh3nAAWPMQWOMH3gMuDzKNY07xphVQMcHNLkceNAMWgckiUjW6FQ3fgyjn9UpMsY0GmO2RJ73MvjBn3NMMz2eT8Ew+1idosjx2Rf51h55HHsh2eXAnyLPnwAuEBEZpRLHvGH2sToNRCQX+Chw/3GanLHHsobxwQ/4w0d9X8/QH/pXRv7c/ISITByd0s4qw/05qFO3IPIn0xdFZGq0ixnLIn/mnAWsP2aRHs+nyQf0MeixfMoif9bfBrQArxhjjnssG2OCQDeQOrpVjm3D6GPQjHE63Ap8HwgfZ/kZeyxrGB+e54ACY8x04BX+8ZuVUmPNFgZvzzsD+C3wdJTrGbNEJA54ErjZGNMT7XrGow/pYz2WTwNjTMgYMxPIBeaJyLRo1zTeDKOPNWOcIhH5GNBijNkc7VpOhoZxaACO/i00N/Lae4wx7cYYX+Tb+4E5o1Tb2eRDfw7q1Bljet79k6kx5gXALiJpUS5rzImM/XwSeNgYs2KIJno8n6IP62M9lk8vY0wX8DpwyTGL3juWRcQGJALto1vd+HC8PtaMcVosAi4TkUMMDjc+X0T+fEybM/ZY1jAOG4ESEZkkIg7gM8CzRzc4ZqznZQyOX1Sn17PAFyKzUJwDdBtjGqNd1HgjIhPeHSMnIvMY/Aw4Iz6MxopI/z0A7DHG/Po4zfR4PgXD6WM9lk+diKSLSFLkuYvBiQyqjmn2LHBt5PlVwGtGb1AybMPpY80Yp84Y82/GmFxjTAGDOe41Y8znj2l2xh7LZ/1sKsaYoIh8HXgJsAK/N8bsEpGfApuMMc8C3xSRyxi8wr8D+GLUCh6jRORRYCmQJiL1wI8ZvJAFY8w9wAvAR4ADgBf4UnQqHduG0c9XATeKSBDoBz5zpnwYjSGLgGuAHZFxoAD/B8gDPZ5Pk+H0sR7Lpy4L+FNkVjEL8FdjzPPH/P/3APCQiBxg8P+/z0Sv3DFpOH2sGWOEjJVjWe/AqZRSSimlVJToMBWllFJKKaWiRMO4UkoppZRSUaJhXCmllFJKqSjRMK6UUkoppVSUaBhXSimllFIqSjSMK6XUCBCRvmG0uVlEYk/jNq8QkfLTuL41p/DevsjXbBF54gPaJYnI1052O0opNdZpGFdKqei5GTihMB6Zr/h4rgBOWxg3xiw8Des4Yoy56gOaJAEaxpVSZy0N40opNYJEZKmIvCEiT4hIlYg8HLkz5zeBbOB1EXk90vYiEVkrIltE5HERiYu8fkhEfiEiW4CrReSfRWSjiLwjIk+KSKyILGTw7n2/EpFtIlIkIjNFZJ2IbBeRp0QkObK+N0TkNyKySUT2iMhcEVkhIvtF5GdH1d531PMfiMiOyDZvGWI/J0Vq33HMOgpEZGfk+VQR2RCpb7uIlAC3AEWR134lInEi8vdIH+wQkcuPWs8eEfmdiOwSkZcjdzRERIpF5NVIbVtEpCjy+vci/bRdRH5yWn+wSil1mmgYV0qpkTeLwbPg5UAhsMgYcztwBFhmjFkmImnAD4ELjTGzgU3Ad45aR7sxZrYx5jFghTFmrjFmBoO3zr7OGLOGwds9f88YM9MYUw08CPzAGDMd2MHgHVnf5TfGVAL3AM8ANwHTgC+KSOrRxYvIpcDlwPzINn85xD7eBtxtjKkAGo/TD18FbjPGzAQqgXrgX4HqSM3fAwaAT0nVvL4AAAK5SURBVET6YBnwv+/e9h4oAe40xkwFuoArI68/HHl9BrAQaBSRiyLt5wEzgTkisuQ4dSmlVNTYol2AUkqdBTYYY+oBIrd3LwDePqbNOQyG9dWR7OkA1h61/C9HPZ8WOfucBMQBLx27QRFJBJKMMW9GXvoT8PhRTZ6NfN0B7DLGNEbedxCYCLQf1fZC4A/GGC+AMaZjiH1cxD/C8UPAL4Zosxb4dxHJZfAXiv3/yNn/KB3470hwDgM5QGZkWY0xZlvk+WagQETigRxjzFOR2gYi+3ERcBGwNdI+jsFwvmqIupRSKmo0jCul1MjzHfU8xNCfvQK8Yoz5p+Osw3PU8z8CVxhj3hGRLwJLT6Gm8DH1hY9T33CYD1xozCMish74KPCCiNwAHDym2eeAdGCOMSYgIoeAmGNqhsF+dH3A5gT4uTHm3hOoXymlRp0OU1FKqejpBeIjz9cBi0SkGEBE3CJSepz3xTM4FMPOYHj9/9ZnjOkGOkXk3Miya4A3OTmvAF96d+YXEUkZos1q4DOR558bYjkiUggcjAzReQaYzvv7ACARaIkE8WVA/gcVZozpBepF5IrINpyROl8CvnzUuPscEckY1t4qpdQo0jCulFLRcx/wNxF53RjTCnwReFREtjM4pKPsOO/7D2A9gwG46qjXHwO+JyJbIxcxXsvgBZ3bGRw3/dOTKdIY8zcGh7Vsigyz+Zchmn0LuElEdjA4tGQonwJ2RtYxDXjQGNPO4NCcnSLyKwbHf1dG1vOFY/bveK4BvhnZzzXABGPMy8AjwNrIup7g/aFfKaXOCGLMB/5VUSmllFJKKTVC9My4UkoppZRSUaJhXCmllFJKqSjRMK6UUkoppVSUaBhXSimllFIqSjSMK6WUUkopFSUaxpVSSimllIoSDeNKKaWUUkpFiYZxpZRSSimlouT/Aex11HwnpM1BAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 8)\n", - "for j in range(len(reductions)):\n", - " pylab.plot(distances, energies[j], label=reductions[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('BeH2 Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now the difference in energy, compared to no reduction, is plotted so it is easier to see the effect. First in one larger plot so its easier to compare, and then in individual plots." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtoAAAHwCAYAAACYMcj+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFXex/HPSU8IoSRAKkUemgWiZEEQUURsKN0uRUUswXXXXcWCDV2FtTw21lVwRVysICJtER9RUKQEBBSp0lIIkBAS0tt5/pghOwkJUjKZlO/79ZqXM/eee+d370zMN4dzzzXWWkREREREpHp5eboAEREREZH6SEFbRERERMQNFLRFRERERNxAQVtERERExA0UtEVERERE3EBBW0RERETEDRS0RaTWMsY8bYz5t/N5a2NMtjHG2/m6lTFmuTHmqDHmZePwnjEmwxizxrOVy4kYY/YYYy73dB3uZowZY4z53g37LfezUI37bWuMsc59j3Mu6+h8XWKMGVud7yfSEPh4ugARqX7GmD1AK6DEZfEMa+14z1R05qy1+4Bgl0XjgDQgxFprjTEXAwOAaGttjidqlDNnjJkBJFlrJ3q6ltrC+fM81lr7NVT6s1Ddmlpri53vtR0INsZ868b3E6m3FLRF6q/rjv1idhdjjM+xX8ge0Ab41f73rlttgD2nE7I9fBx1WkM5dw3lOEWkemnoiEgDc+yfs40xLzmHWew2xlztsr6JMeZdY8x+Y0yyMeY5l+EaY4wxPxhj/tcYkw48bYzxdg7dSHPua7zzn599jDHXG2PWVXj/B40x86qorZ0x5jvncJClQJjLurYu+50BjAYedv6z9t3AdKCX8/Uzzm2uNcZsMMYcMcasNMZ0ddnfHmPMBGPMJiDHud9IY8wcY8wh57H80aX908aYT40xM531bTbGxLmsjzHGfO7cNt0Y86bLujuMMVuc53uJMabNCT6fPs5ajxhjEo0xY1w+l5nO/e81xkw0xnhV8rkcMcbsMsb0di5PNMYcNMaMdnmPGcaYfxpjljqP5TvXmowxrzm3yzLGrHP+a4HreZhtjPm3MSYLGGOM8TLGPGKM+c157J8aY5q7bDPSWXO6MebxExz7OOBWl891vnN5F2PMt85j22yMGXSCfXxrjHnWeT6OGmO+Msa4fo8GOfdxxNm2ywn2ZY0x8caYHcAO57LOzvN22BizzRhzg0v7UGPMl87ztgZo77Ku7PtbodaxLq/vcn5PjhpjfjXGXGCM+QBoDcx3npOHK+7L+b390lnTTmPMXRU+ryq/tyLiZtZaPfTQo549gD3A5VWsGwMUAXcB3sC9QApgnOvnAm8DjYCWwBrgbpdti4H7cfyLWCBwD/ArEA00A74GrHO9P3AY6OLy/j8Bw6uo7UfgFed2fYGjwL+d69oe26/z9QzguQrH9b3L6/OBg0BP53GOdp4Xf5dztAGIcR6HF7AOeBLwA84CdgFXOts/DeQD1zj39wKwyrnOG9gI/K/zvAUAfZzrBgM7gS7OczIRWFnF8bdxHvPNgC8QCsQ6180E5gGNnediO3Bnhc/ldmctzwH7gKnOc3mFc7/BLufuqPMc+wOvVTh3tznf2wf4C5AKBLichyJgiPOcBQIPAKuc3wF/HN+fj5ztzwayXd7rFWetVX0/K36uvs7z95jzc7nMWXunKrb/FvgN6Ois7VtgsnNdRyAHxxAjX+Bh5779qtiXBZYCzZ37agQkOs+zD47vWBpwtrP9x8CnznbnAsnHzisVvr8utY51Pr/e2f4PgAH+B2hT2c9zxX0By4F/4PjexQKHgMt+73tbyfEeV2Nlteqhhx4n//B4AXrooUf1P5y/mLOBIy6Pu5zrxgA7XdoGOX+5huMY110ABLqsvxlY5rLtvgrv9Q3OIO58fXmFEPAW8Dfn83OADJxht8J+WuMIYI1cln3I6Qftt4BnK7zHNuASl3N0h8u6npUc26PAe87nTwNfu6w7G8hzPu/lDDeVBZTFOAOx87UXkHssRFXyfnMrWe4NFOIMdM5ldwPfuhz7Dpd15znPVSuXZen8N7TPAD52WReMYzx/TBXfpwygm8t5WF5h/Ragv8vrCBxh3AfHHy6u79XIeSwnG7QvxhH0vVyWfQQ8XcX23wITXV7fB/zH+fwJ4NMKn0UycGkV+7I4A6vz9Y3Aigpt3gaecn5GRUBnl3XPc/JBewnwwAl+nisN2jj+UCwBGrusfwHHNRnHPq9Kv7eVvM9xNVZWqx566HHyD43RFqm/htiqx2inHntirc01xoAjbDXH0dO337kMHGEk0WVb1+cAkb+z/n3gI2PMRGAkjqBTUElNkUCGLT/Gei+OIHE62gCjjTH3uyzzc75PZbW2ASKNMUdclnkDK1xep7o8zwUCnP98HwPstZWP4W0DvGaMedllmQGicByfqxgcvbEVheH4XFzb73Xu45gDLs/zAKy1FZe5XkBXduzW2mxjzGGcn6Ux5q/Anc7XFgjBZRgPx3/GbYC5xphSl2UlOP5wK/f9sNbmGMewo5MVCSRaa133XfHYK6r4OR077khczqG1ttQYk/g7+6r4HelZ4TviA3wAtHA+d21f8fM9kao++98TCRy21h6t8L6uw0Mq/d5W8X0VkWqkoC0irhJx9GiHneCXsK3wej+OIQPHlAvG1tpVxphCHD2TtzgfldkPNDPGNHIJ260reb+TlYijJ/1vJ2jjuu9EYLe1tsNpvlfrKsLLsTpmneR+elSyPA1Hb2kbHMN0wHFukk+j1mPKPidjzLE/slKc47EfBvoDm51hNAPHHwfHVPxMEnH868APFd/EGLMfx7CZY6+DcAxLqUrFfacAMcYYL5ew3RrH0JlTlYKjt/9YLQbHeTjReaz4HfnOWjugYiPjuI6h2Lm/rS51HnPsOx0EZDmfh1fYd3sqd6KfgRSguTGmsUvYPtPvhohUE10MKSJlrLX7ga+Al40xIc6L3NobYy45wWafAg8YY6KMMU2BCZW0mQm8CRRZayudV9hauxdIAJ4xxvgZY/oA153B4UwD7jHG9DQOjYwxA40xjatovwY4ahwXSAYax0We5xpj/nAS77UGxx8Kk53vE2CMuci57p/Ao8aYc6Dsosbrq9jPLOByY8wNxnFxZqgxJtZaW4LjPP/NGNPYOC5cfBD498mdikpdYxwXXvoBz+IYt5uIYwx4Mc6hMMaYJ3H0aJ/IP521tXEeYwtjzGDnutnAtS7vNYkT/+45gGN8/DGrcfTCPmyM8TXGXIrje/HxKRzrMZ8CA40x/Y0xvjjGnxcAK09y+wVAR+O4uNPX+fiDMaaL8zP6HMcFwkHGmLNxXBcAgLX2EI7we5vzu3UH5YP1dOCvxpjuzu/r/5j/XqBa8ZyUcX5mK4EXnN+7rjj+NeJMvhsiUk0UtEXqr2OzFBx7zD3J7UbhGGLxK46xubNxjLmtyjQc4XwTjgsdF+EIaq5zeH+A4+Kw3/vlfwuOsdKHcYx7nXmSNR/HWpuA44LPN3Ecx04cY5mral8CXIvjYrLdOHqRpwNNTuK9SnCEv//BcRFiEo7xvFhr5wJTgI+NY5aOX4Crq9jPPhwXrf0FxznYAHRzrr4fR6/oLuB7HOPX//V7tZ3AhzjO8WGgO44LIMExVvg/OHqM9+K4kK7iUJGKXgO+BL4yxhzFcWFkT+cxbQbine+3H8dnkXSCfb0LnG0cs4J8Ya0txHFur8bxmfwDGGWt3XqCfVTKWrvNeZxvOPd1HY5pMAtPcvujOC4svQlHT3Iqjs/W39lkPI5hKqk4xpq/V2EXdwEP4Rgvfw4uAd9a+xnwNxzn6SjwBY5/ZQDHmOuJznPy10pKuxnH+OoUHBczP3WCYWMiUoOOzTIgIlItjGOqwH9aa9u4LAvEMQPIBdbaHR4rTgDdFEYq5+xB34bjj6uHrLXTjDEdgLU4/vi+z1o7w4MlitQ5GqMtImfEGaL74ejVboWjl7Ri7/m9wFqFbJHayzl8K6DCsh1AU89UJFL3KWiLyJkywDPAJzhmtliIY0o3x0rH7aMNjnmXRUREGgwNHRERERERcQNdDCkiIiIi4gYK2iIiIiIiblBvxmiHhYXZtm3beroMEREREann1q1bl2atbfF77epN0G7bti0JCQmeLkNERERE6jljzN6TaaehIyIiIiIibqCgLSIiIiLiBgraIiIiIiJuUG/GaFemqKiIpKQk8vPzPV1KrRIQEEB0dDS+vr6eLkVERESk3qrXQTspKYnGjRvTtm1bjDGeLqdWsNaSnp5OUlIS7dq183Q5IiIiIvVWvR46kp+fT2hoqEK2C2MMoaGh6uUXERERcbN6HbQBhexK6JyIiIiIuF+9D9oiIiIiIp6goO1me/bsITAwkNjYWPLy8oiNjcXPz4+0tDRPlyYiIiIiblSvL4asLdq3b8+GDRsA2LBhA7pVvIiIiEj912CC9jPzN/NrSla17vPsyBCeuu6cat2niIiIiNQPGjoiIiIiIuIGDaZHWz3PIiIiIlKT1KMtIiIiIuIGCtoiIiIiIm6goC0iIiIi4gYK2iIiIiJS55QcPUppXp6nyzihBnMxpKd4e3uTmZlJbGwsP/74I7169aKoqAgvL/2NIyIiIlIZay2lWVkUJSdTlJJCUXIyhWXPHa9Ls7KIfPklmgwc6Olyq6Sg7WYxMTEkJiaWvT524xoRERGRhspaS8mRI2Wh2TVQH3temp1dbhsTFIRfVCS+kVEEnX8+vlGRBHTu7KEjODkK2iIiIiJSray1lBw+fHyATk6hKCWZwuQUbG5uuW28GjXCNzoa36gognr0wDcqCt/ISMd/oyLxbtoUY4yHjuj0KGiLiIiIyCmx1lKSllZhSEfyf3uoU1Kw+fnltvEKCXGE5jZtCOrVC7+oKGeIdgRqr5CQOhekf4+CtoiIiIiUY0tLKT50qHx4dg3UKSnYwsJy23g3bYpvZCT+7dsT3LdvWU/0sSDt3bixh47GcxS0RURERBooW1hI3ubN5K1fT8Hu3WUhujhlP7aoqFxb7+bN8Y2Kwr9zZ4Ivu6xciPaNjMI7uJGHjqL2UtB2oz179tClSxc6depU6UWQs2bNYsqUKVhrady4MW+99RbdunU7pfe46qqrWLVqFX369GHBggVly2+99VYWL17MO++8w4gRI874WERERKTuK83JIW/jRnIT1pG7bh15GzeWDfHwbhGGb2Qkgeecg+8VV7iMj47CNyICr6AgD1df9yhou1n79u2rnGmkXbt2fPfddzRr1ozFixczbtw4Vq9efUr7f+ihh8jNzeXtt98ut3zWrFmMGTPmdMsWERGReqA4I4O89esdwTohgfxff4WSEvDyIqBzZ5recD1B3eMI6n4BPmFhni633mk4QXvxI5D6c/XuM/w8uHryaW/eu3fvsucXXnghSUlJp7yP/v378+233552DSIiIlJ/FO3fT25CgrPHOoHCnb8BYPz8COh6HqFjxxIU153A88/HOzjYw9XWfw0naNdy7777LldffbWnyxAREZE6wlpL4a5dZaE6L2EdRSkpgGOqvMALLqDJtdcR9Ic4As49Fy9/fw9X3PA0nKB9Bj3P7rZs2TLeffddvv/+e0+XIiIiIrWULS4mf8tWR6het47cdespOXwYAO/QUIK6d6f5mDEExXXHv1MnjLe3hyuWhhO0a4GpU6cybdo0ABYtWkRkZCSbNm1i7NixLF68mNDQ0BNuv3r1au6++24AJk2axKBBg9xes4iIiHhGaX4+eZs2OUJ1wjryfvqJUudNXnxjYgju29cxDKR7d/zatq13c1DXBwraNSg+Pp74+Piy1/v27WPYsGF88MEHdOzYsVzb/v37M3PmTKKiosqW9ezZU7dwFxERqadKjh7974WL69aR//PPZVPs+XfsSJMhgwns3p2guDh8W7XycLVyMhS0PWjSpEmkp6dz3333AeDj40NCQgKlpaXs3LmT5s2b/+4+Lr74YrZu3Up2djbR0dG8++67XHnlle4uXURERM5Q8aFD5Dp7q3MTEijYtg2sBR8fAs85h2ajRjpmBLngfLybNvV0uXIa3Bq0jTFXAa8B3sB0a+3kCuvvAeKBEiAbGGet/dUY0xbYAmxzNl1lrb3HnbV6wvTp05k+ffpxy3/99VeGDx9OYGDg7+5jxYoV7ihNREREqpG1lqLERHLXJjjC9boEivbuA8AEBhIY242w+HiC4uII7NYVr5PIAA1NSUkJ2dnZZGVlkZWVRWZmJh06dKBFixaeLq1KbgvaxhhvYCowAEgC1hpjvrTW/urS7ENr7T+d7QcBrwBXOdf9Zq2NdVd9NcHb25vMzExiY2NPacjHueeeyyuvvHJG733rrbeycuVK3axGRETEA2xpKQXbt5ebEaT40CEAvJs0IbB7d5rdeBNBcd0J6NIF4+vr4Yo961iIzszMLAvSroE6KyuL7OxsrLXltgsICGiYQRvoAey01u4CMMZ8DAwGyoK2tTbLpX0joPzZq+NiYmJITEz0yHvPmjXLI+8rIiLSkBWlpJD21ltkLfmK0ixHzPEJDyeoZ0+C4roT1L07fu3bY7y8PFxpzSkpKeHo0aNVBuiqQrSvry8hISGEhITQvn37sufHHk2aNCEgIMBDR3Vy3Bm0owDXlJkE9KzYyBgTDzwI+AGXuaxqZ4z5CcgCJlprNUZCREREaqXitDTS3nmHIx99DEDItdfS6MKeBHaPwzcqst7OCFIxRFfWI11ViG7SpMlxIfrYspCQEAICAur8efP4xZDW2qnAVGPMLcBEYDSwH2htrU03xnQHvjDGnFOhBxxjzDhgHEDr1q1ruHIRERFp6EoyM0n/13scnjkTW1hI02FDCbv3XnwjIz1d2hk7FqIrC8/HQnV2dvZx21UM0a7huT6F6JPhzqCdDMS4vI52LqvKx8BbANbaAqDA+XydMeY3oCOQ4LqBtfYd4B2AuLi4ejXsRERERGqv0txcDn/wb9LffZfSrCxCrrmGsPvH49+unadLOyVFRUWkpqaSnJxMRkbGccM5KvLz8ysLyx06dKh0OIe/v3+DCNEnw51Bey3QwRjTDkfAvgm4xbWBMaaDtXaH8+VAYIdzeQvgsLW2xBhzFtAB2OXGWkVERER+V2lhIUc++ZS0t9+mJC2N4H79aPHAHwno3NnTpf2u0tJS0tPTSU5OJjk5maSkJA4cOEBpaSngCNHHep9btWpV5XAOOXluC9rW2mJjzHhgCY7p/f5lrd1sjJkEJFhrvwTGG2MuB4qADBzDRgD6ApOMMUVAKXCPtfawu2p1lz179tClSxc6depU6awj8+bN44knnsDLywsfHx9effVV+vTpc9L7X7p0KY888giFhYX4+fnx4osvctlljmHu/fr1Y+3atXz77bfExcVV2zGJiIg0RLa4mMx58zg0dSrFKfsJ6tGDFm+8TtD553u6tCodPXq0LFQfexQUFACOUB0ZGUnv3r2JiooiKiqKkJAQD1dc/7h1jLa1dhGwqMKyJ12eP1DFdnOAOe6sraa0b9++yqn9+vfvz6BBgzDGsGnTJm644Qa2bt160vsOCwtj/vz5REZG8ssvv3DllVeSnOwYnbNs2TIuvfTS6jgEERGRBsuWlnJ0yRIOvfY6hXv2EHDeeUQ+9xxBvXrVquERhYWFpKSklAvVmZmZABhjaNWqFeeeey7R0dFERUURFhaGVwOa+cRTPH4xZE2ZsmYKWw+ffIg9GZ2bd2ZCjwmnvX1wcHDZ85ycnFP+gT3f5a/oc845h7y8PAoKCvD39z/tmkRERMRxg5ns777j0KuvUbB1K/4d/ofoN98guH9/jwfs0tJSDh48WC5UHzx4sGxmj6ZNmxIdHU3Pnj2Jjo4mPDwcPz8/j9bcUDWYoF1bzZ07l0cffZSDBw+ycOHC097PnDlzuOCCCxSyRUREzlDOmjUc+t9XyfvpJ3xjYoh88e+EXHMNxtu7xmux1pKVlUVSUlJZqE5JSaGoqAhw3LAlKiqKTp06ER0dTWRkZLmOPPGsBhO0z6Tn2Z2GDh3K0KFDWb58OU888QRff/31Ke9j8+bNTJgwga+++soNFYqIiDQMeT//wqFXXyXnhx/wadmS8KefpunwYTV618b8/HxSUlLKBetjs394e3sTHh7O+eefT1RUFNHR0TRv3tzjPexStQYTtGuDqVOnMm3aNAAWLVpEpMscm3379mXXrl2kpaURFhZW6fZz587lmWeeAWD69OnExcWRlJTE0KFDmTlzJu3bt3f/QYiIiNQzBTt2cOj11zm69Gu8mzal5cMP0+yWm/Fy8wwbxcXFHDx4sFyoTktLK1sfGhrKWWedVXaxYnh4OD4+im51iT6tGhQfH098fHzZ6507d9K+fXuMMaxfv56CggJCQ0MB6Ny583EXRh7r/T7myJEjDBw4kMmTJ3PRRRfVzEGIiIjUE4WJiaS9+SaZX87HKyiIsPvH03z0aLzdMPTCWktGRkbZtHrJycns37+fkpISAIKCgoiOjua8884rC9aBgYHVXofULAVtD5ozZw4zZ87E19eXwMBAPvnkE4wxpKWlHXer0sq8+eab7Ny5k0mTJjFp0iQAvvrqK1q2bOnu0kVEROqsogMHSfvnWxz5bDbG25vmd9xO6Nix+DRrVm3vkZubW26+6uTkZPLy8gDw8fEhMjKSHj16lIXqpk2baghIPaSg7UETJkxgwoTjx46vWrWqXM93VSZOnMjEiRPdUZqIiEi9U5yRQfq06WTMmoUtKaHp9SMIu+defFtVTweVtZadO3eyYsUK9u3bV7a8ZcuWdO7cuSxUt2zZEm8PXFgpNU9B2428vb3JzMwkNja2yrm0K3Pttdee8Xv369ePXbt24VuDF3CIiIjURiXZ2Rye8T6H33uP0txcmgwaRNj4ePxiYqpl/6WlpWzZsoUVK1aQmppKSEgI/fr1o3Xr1kRGRmpGsAZMQduNYmJiSExM9Mh7L1u2zCPvKyIiUluU5ueTMetD0qdNo+TIERoPGECLP96Pf4cO1bL/kpISNm3axPfff096ejqhoaEMHjyY8847TxctCqCgLSIiIvWMLSzkyOefk/aPtyg+eJBGffrQ4oEHCDzv3GrZf1FREevXr2flypVkZmYSHh7O9ddfT5cuXXS3RSlHQVtERETqBVtSQtbChRx6402KEhMJvOACIl96kUY9elTL/vPz80lISODHH38kJyeHmJgYBg4cSIcOHXQho1RKQVtERETqNGstR7/+mrTXX6dgx078u3Qh5u1/0qhv32oJwDk5OaxevZo1a9aQn59P+/btufjii2nTpo0CtpyQgraIiIjUSdZaclau5NCrr5H/88/4tWtH1Kv/S+MrrsBUwxCOrKwsVq5cybp16ygqKqJLly706dOHqKioaqheGgINJHKjPXv2EBgYSGxs7AnbrV27Fh8fH2bPnn1K+1+zZg2xsbHExsbSrVs35s6dC0BeXh6xsbH4+fmVu8OUiIhIfZG7/if2jR5D4p1jKU5PI+Jvf+Os+V8SctVVZxyyDx8+zPz583nttddYvXo1Xbp04b777uPGG29UyJZToh5tN2vfvv0Jp/YrKSlhwoQJXHHFFae873PPPZeEhAR8fHzYv38/3bp147rrriMwMJANGzbQtm3bM6hcRESk9snfsoVDr75G9nff4R0aSqvHH6fpjTfg5ed3xvs+cOAA33//Pb/88gteXl6cf/75XHTRRTSrxhvZSMPSYIJ26vPPU7Bl6+83PAX+XToT/thjZ7SPN954g+HDh7N27dpT3jYoKKjseX5+vsaJiYhIvVWwezdpb7xB1qLFeIWE0OLBB2l+2614ufwuPF1JSUmsWLGCbdu24evrS69evejVqxeNGzeuhsqlIWswQbs2Sk5OZu7cuSxbtuy0gjbA6tWrueOOO9i7dy8ffPCB5u0UEZF6pTgjg4Mvv0zm3C8w/v6E3nM3oXfcgXdIyBnt11rL7t27WbFiBbt37yYgIIBLL72UHj16lOvIEjkTDSaVnWnPszv86U9/YsqUKWc052bPnj3ZvHkzW7ZsYfTo0Vx99dUEBARUY5UiIiKeUZyRwb7RYyjcvZtmt95C2Lhx+ISFndE+rbVs376dFStWkJSURHBwMAMGDCAuLk53cJRq12CCdm0wdepUpk2bBsCiRYtISEjgpptuAiAtLY1Fixbh4+PDkCFDKt1+7ty5PPPMMwBMnz6duLi4snVdunQhODiYX375pdxyERGRuqg4I4N9Y26ncO9ex1R9vXuf0f5KS0vZvHkzK1as4ODBgzRt2pSBAwcSGxuLr69vNVUtUp6Cdg2Kj48nPj6+7PXu3bvLno8ZM4Zrr722LGR37tyZrVvLjykfOnQoQ4cOLbd9TEwMPj4+7N27l61bt+oCSBERqfOKMzLYd8edFO7eTfRb/zijkF1cXMzGjRv54YcfOHz4MGFhYQwdOpRzzz0Xb2/vaqxa5HgK2rVQWloa1trfbff9998zefJkfH198fLy4h//+AdhZ/hPaiIiIp5UcuQI++68k8LffiP6H/8g+KKLTms/hYWFrF+/nh9++IGjR48SERHBDTfcQOfOnXWbdKkxCtq1xIwZM8qer1q1qlzPd1VGjhzJyJEj3ViViIhIzSnJzHT0ZO/8jeipUwnuc+ohOy8vj7Vr17Jq1Spyc3Np06YNgwcPpn379pqdS2qcgrYbeXt7k5mZSWxs7Ann0q7o2muvPaP3zcvLo1evXhQVFemvdhERqRNKsrLYd8edFOzYQfTUNwm+uM8pbZ+dnc2qVatYu3YtBQUFdOjQgT59+tCmTRs3VSzy+xS03SgmJobExMQaf99jN6wRERGpC0qysth351gKtm8n+s03CO7b96S3PXLkCCtXrmT9+vUUFxdz9tlnc/HFFxMREeHGikVOjoK2iIiIeEzJ0aPsG3sX+Vu3Ev36awRfcslJbZeWlsYPP/zAxo0bAejatSt9+vTRtUpSqyhoi4iIiEc4QvZY8rdsIfq112jcr9/vbpOamsqKFSvYvHkzPj4+xMXF0bt3b5o2bVoDFYucGgVtERERqXEl2dkkjr2L/M2/Ev3aqzS+7MQhe9++faxYsYIdO3bg5+dHnz59uPDCCwkODq6hikXBSq8XAAAgAElEQVROnYK2iIiI1KiS7BwSx95F3ubNRP3vKzTu37/KtocOHWLBggXs3buXwMBA+vXrR48ePQgMDKzBikVOj6akcLM9e/YQGBhIbGzsceu2bt1Kr1698Pf356WXXipbnpeXR2xsLH5+fqSlpdVkuSIiIm5Vkp1D4rhx5P38M1GvvEzIgAFVtt2/fz/vvfcehw4d4sorr+TPf/4zl1xyiUK21Bnq0a4B7du3r3QWkObNm/P666/zxRdflFt+bNYQ3eVRRETqk9KcHBLvvpu8jRuJevllQq64osq2iYmJ/Pvf/8bf35/Ro0cTGhpag5WKVI8GE7RXfLqdtMTsat1nWEwwF9/Q8bS3b9myJS1btmThwoXVWJWIiEjtU5qTw7677yZvwwaiXn6JkKuurLLtrl27+Oijj2jcuDGjRo3ShY5SZzWYoC0iIiKeUZqbS+I995K3/ieiXnqRkKuuqrLt9u3b+eSTTwgNDWXkyJE0bty4BisVqV4NJmifSc+ziIiInJ7SvDwS77mX3HXriPz73wm55poq227evJk5c+YQHh7ObbfdRlBQUA1WKlL9dDFkDZo6dSqxsbHExsaSkpLi6XJERETcqjQvj8R77yM3IYHIKVNocu3AKtv+9NNPzJ49m+joaEaNGqWQLfVCg+nRrg3i4+OJj4/3dBkiIiJuV5qfT+J995G7ejWRUybT5Lprq2y7Zs0aFi1axFlnncVNN92En59fDVYq4j4K2h6UmppKXFwcWVlZeHl58eqrr/Lrr78SEhLi6dJEREROW2l+Pkn3xZO7ajURLzxPk0GDqmz7/fff8/XXX9OpUyeuv/56fHwUTaT+0LfZg8LDw0lKSvJ0GSIiItWmtKCApPjx5Pz4IxHPP0/TIUMqbWetZdmyZSxfvpzzzjuPIUOG4O3tXcPViriXxmi7mbe3N5mZmZXesKYqx25YU1RUhJeXPiIREakbSgsKSBp/PzkrVxLx3HM0HVp1yF6yZAnLly/nggsuYOjQoQrZUi+pR9vNYmJiSExMPKVtjt2wRkREpK4oLSwk6f77yVmxgojnnqXp8GGVtystZcGCBaxfv54LL7yQK6+8EmNMDVcrUjMUtEVEROSMlBYWknz/H8lZvoLwSc/QdMSIStuVlJQwd+5cfvnlF/r27Uu/fv0UsqVeU9AWERGR01ZaWEjyHx8g+7vvCH/mGZrdcEOl7YqKipg9ezbbtm3j8ssvp0+fPjVcqUjNU9AWERGR02ILC0n+05/J/vZbwp9+imY3Vh6yCwsL+fjjj9m1axfXXHMNPXr0qOFKRTxDQVtEREROmS0sJOnPD5L9zTe0evIJmt10U6Xt8vPzmTVrFklJSQwZMuSUJgcQqes0pYWb7dmzh8DAwEr/xzJr1iy6du3KeeedR+/evdm4cSPw31lH/Pz8SEtLq+mSRURETsgWFZH8l7+Q/X//R6snJtL8llsqbZeTk8P7779PcnIyI0aMUMiWBkc92jWgffv2lc4i0q5dO7777juaNWvG4sWLGTduHKtXry6bdaRt27Y1X6yIiMgJOEL2Xzm69GtaPf44zW+9tdJ2R48eZebMmWRkZHDTTTfRsWPHGq5UxPPcGrSNMVcBrwHewHRr7eQK6+8B4oESIBsYZ6391bnuUeBO57o/WmuXnEkty2a8w8G9u85kF8dp2eYs+o0Zd9rb9+7du+z5hRdeqJvXiIhIrWaLikj+60Mc/eorWj32KM1H3lZpuyNHjjBz5kyOHj3KrbfeSrt27Wq4UpHawW1B2xjjDUwFBgBJwFpjzJfHgrTTh9bafzrbDwJeAa4yxpwN3AScA0QCXxtjOlprS9xVr6e9++67XH311Z4uQ0REpFK2uJjkhx7m6JIltHxkAs1Hjaq0XXp6Ou+//z6FhYWMGjWKmJiYGq5UpPZwZ492D2CntXYXgDHmY2AwUBa0rbVZLu0bAdb5fDDwsbW2ANhtjNnp3N+Pp1vMmfQ8u9uyZct49913+f777z1dioiIyHFscTEpDz/M0f/8h5YTJhA6Zkyl7Q4cOMDMmTOx1jJ69GgiIiJqtlCRWsadF0NGAa63RExyLivHGBNvjPkN+Dvwx1PZtq6ZOnUqsbGxxMbGkpKSAsCmTZsYO3Ys8+bNIzQ01MMVioiIlOcI2RPIWrSYlg89ROjtYyptl5yczIwZM/Dy8uL2229XyBahFsw6Yq2daq1tD0wAJp7KtsaYccaYBGNMwqFDh9xTYDWKj49nw4YNbNiwgcjISPbt28ewYcP44IMPdJGIiIjUOrakhJRHHiVr0SJa/vUvhN55R6Xt9u7dy/vvv4+/vz+33347LVq0qOFKRWondw4dSQZcB2ZFO5dV5WPgrVPZ1lr7DvAOQFxcnK24vrabNGkS6enp3HfffQD4+PiQkJDg4apEREScIfvRR8lasIAWDz5I6NixlbbbuXMnH3/8MU2aNGHUqFE0adKkhisVqb3cGbTXAh2MMe1whOSbgHITbRpjOlhrdzhfDgSOPf8S+NAY8wqOiyE7AGvcWKtHTJ8+nenTp3u6DBERkXJsSQn7H3uMrC/n0+JPfyJs3F2VttuyZQuzZ88mLCyMkSNHEhwcXMOVitRubgva1tpiY8x4YAmO6f3+Za3dbIyZBCRYa78ExhtjLgeKgAxgtHPbzcaYT3FcOFkMxNfVGUe8vb3JzMwkNja20rm0K5OXl0evXr0oKirCy8vjo3tERKQBsSUl7H98IpnzvqTFA38k7J67K223adMm5s6dS2RkJLfddhuBgYE1XKlI7WesrXMjLioVFxdnKw672LJlC126dPFQRbWbzo2IiFRkS0vZP/EJMj//nLD7x9MiPr7SduvWrWP+/Pm0bduWm2++GX9//xquVMSzjDHrrLVxv9dOd4YUERERR8h+8klHyI6PrzJk//jjjyxZsoQOHTpwww034OvrW8OVitQdCtoiIiINnC0tJfWpp8icPYew++4lbPzxIdtay/Lly1m2bBlnn302w4YNw8dHMULkRPQTIiIi0oDZ0lJSn36GI5/NJvSeuwm7/36MMeXbWMvXX3/NDz/8QLdu3Rg0aBDe3t4eqlik7lDQFhERaaCstaROmsSRTz8ldNw4WjzwwHEhu7S0lMWLF7N27Vr+8Ic/cPXVV+tCfZGTpJ8UN9uzZw+BgYHExsYet27evHl07dqV2NhY4uLiym7B/ttvvxEbG6tpkkRExG2stRx49lmOfPwJoXeNpcWf/3RcyC4pKWHevHmsXbuWiy66iGuuuUYhW+QUqEe7BrRv377Sqf369+/PoEGDMMawadMmbrjhBrZu3VrWXkFbRETcwVrLgef+RsaHH9H8zjto8eCDx4Xs4uJi5syZw5YtW+jXrx99+/Y9ro2InFiDCdpH5v9GYUpOte7TL7IRTa9rf9rbuwbpnJwc/Q9MRETczlrLgedfIGPWLJrffjst//rX437/FBUV8cknn7Bz506uvPJKevXq5aFqReq2BhO0a6u5c+fy6KOPcvDgQRYuXOjpckREpB6z1nJw8mQyPviA5qNH0/Lhh44L2QUFBXz00Ufs2bOH6667ju7du3uoWpG6r8EE7TPpeXanoUOHMnToUJYvX84TTzzB119/7emSRESknjry2Wccfn8mzUaNpOUjE44L2Xl5efz73/8mJSWFYcOG0bVrVw9VKlI/6IqGGjR16lRiY2OJjY0lJSWl3Lq+ffuya9cu0tLSPFSdiIjUZwW7d3Pghck06t2LVo88clzIzs7OZsaMGaSmpnLjjTcqZItUAwXtGhQfH8+GDRvYsGEDkZGR7Ny5E2stAOvXr6egoIDQ0FAPVykiIvWNLSoi5aGH8fLzI+KFFzAVZg7JyspixowZpKenc8stt9C5c2cPVSpSvzSYoSO10Zw5c5g5cya+vr4EBgbyySef6IJIERGpdofenEr+L78Q9fpr+LZqVW5dRkYG77//Prm5uYwcOZI2bdp4qEqR+kdB24MmTJjAhAkTPF2GiIjUY7lr15L+zjs0GTGckCuuKLfu0KFDzJw5k+LiYkaPHk1UVJSHqhSpnzR0xM28vb3JzMys9IY1VTl2w5pWFXodRERETkVJVhbJEybg2zqG8EcfLbdu//79vPfee5SWljJmzBiFbBE3UI+2m8XExJCYmHhK21R1gxsREZFTkTrpWYoPHKTth7PwatSobHliYiKzZs3Cz8+P0aNH6/ogETdR0BYREamHMufPJ2vBAlo88EcCu3UrW757924+/PBDGjduzKhRo2jatKkHqxSp3xS0RURE6pnCpGRSn5lE4AUXEDpuXNnylJQUZs2aRbNmzRg1ahSNGzf2YJUi9Z+CtoiISD1iS0pImTABrCXy71Mw3t4A5Ofn89lnnxEUFMSYMWNo5DKURETcQxdDioiI1CPp06aRt24d4U89iV90NOC49frChQs5cuQIw4cPV8gWqSEK2m62Z88eAgMDTzjryNq1a/Hx8WH27NnAf2cdCQ4OrqkyRUSkHsjbtIlDb04l5JprCLnuurLlGzdu5Oeff+bSSy/VPNkiNUhBuwacaBaRkpISJkyYwBUuc5tq1hERETlVpTk5JD/0ED4tWhD+9FNlN0BLS0tj4cKFtG3blosvvtjDVYo0LA1mjPbixYtJTU2t1n2Gh4dz9dVXn9E+3njjDYYPH87atWurqSoREWmIDkyeTNG+RFq/PwPvkBAAioqK+Oyzz/D19WXYsGF4eal/TaQm6SfOg5KTk5k7dy733nuvp0sREZE6LGvpUo58NpvQsWNp1KNH2fKlS5dy4MABhgwZQogzfItIzWkwPdpn2vPsDn/605+YMmWKehhEROS0FR04SOrEJwg45xxa3D++bPnWrVtZs2YNF154IR07dvRghSINV4MJ2rXB1KlTmTZtGgCLFi0iISGBm266CXCMoVu0aBE+Pj4MGTLEk2WKiEgdYUtL2f/oo5QWFhL54osYPz8AMjMz+eKLL4iIiODyyy/3cJUiDZeCdg2Kj48nPj6+7PXu3bvLno8ZM4Zrr71WIVtERE5axgcfkLNyJeFPP43/We0Ax0X2c+bMobS0lBEjRuDjo1/1Ip6iMQsiIiJ1UP62bRx86WWCL7uMpjfeULZ8+fLl7Nu3j2uvvZbQ0FAPVigi+jO3lpgxY4anSxARkTqiND+flL8+hFfTJkQ892zZVH67d+/mu+++IzY2lq5du3q4ShFRj7abeXt7k5mZecIb1lR07IY1rVq1cmNlIiJSVx18+RUKduwg8vnn8WneHICcnBw+//xzQkNDa+UEACINkXq03SwmJobExMRT2kY3rBERkapkr/iejA8+oNnIkQQ7b0BjreWLL74gNzeXW265BX9/fw9XKSLQAHq0rbWeLqHW0TkREambig8fJuWxR/Hv8D+0/MuDZctXrVrFjh07uOKKK4iIiPBghSLiql4H7YCAANLT0xUsXVhrSU9PJyAgwNOliIjIKbDWsn/iE5QeySTypZfwcv5/PCUlhaVLl9KpUyd6uNysRkQ8r14PHYmOjiYpKYlDhw55upRaJSAggOjoaE+XISIip+DIp5+R/c03tHxkAgGdOgFQUFDA7NmzCQ4OZvDgwWUXRYpI7VCvg7avry/t2rXzdBkiIiJnpGDXbg5Mnkyj3r1oPmoU4OjhXrBgARkZGYwZM4agoCAPVykiFdXroSMiIiJ1nS0sJOWhh/Dy8yPihckYL8ev7o0bN/Lzzz9zySWX0KZNGw9XKSKVqdc92iIiInXdoTenkr95M1FvvI5vq5YApKWlsXDhQtq0aUPfvn09XKGIVEU92iIiIrVU7tq1pE+bRpMRwwkZMACAoqIiZs+ejY+PD8OHD8fLS7/KRWor/XSKiIjUQiVZWSQ/PAHf1jGEP/po2fKlS5eSmprKkCFDCAkJ8WCFIvJ7NHRERESklrHWkvr0MxQfPEjbjz7Eq1EjALZu3cqaNWu48MIL6eSceUREai/1aIuIiNQyWfPnk7VoES3GxxPYtSsAmZmZzJs3j4iICC6//HIPVygiJ0NBW0REpBYpTEomddKzBHbvTui4cQCUlJQwZ84cSkpKGDFiBD4++gdpkbpAQVtERKSWsMXFpDz8MACRU6ZgvL0BWL58Ofv27WPgwIGEhoZ6skQROQX6k1hERKSWSJ82jbz164n8+xT8oqMA2L17N8uXL6dbt25069bNwxWKyKlQj7aIiEgtkLdpE4fenErIwIGEXHcdADk5OXz++ec0b96ca665xsMVisipUtAWERHxsNKcHJIfegifVi0Jf+pJjDFYa5k3bx65ubmMGDECf39/T5cpIqfIrUHbGHOVMWabMWanMeaRStY/aIz51RizyRjzf8aYNi7rSowxG5yPL91Zp4iIiCelvvACRfsSiZw8GW/n3NirV69m+/btXHHFFURERHi4QhE5HW4bo22M8QamAgOAJGCtMeZLa+2vLs1+AuKstbnGmHuBvwM3OtflWWtj3VWfiIhIbZC1dCmZs+cQOm4cjXr0ACAlJYWvvvqKTp060cO5TETqHnf2aPcAdlprd1lrC4GPgcGuDay1y6y1uc6Xq4BoN9YjIiJSqxQdOEjqxCcIOOccWoyPB6CgoIDZs2cTHBzM4MGDMcZ4uEoROV3uDNpRQKLL6yTnsqrcCSx2eR1gjEkwxqwyxgxxR4EiIiKeYktL2f/oI5QWFhL54osYPz8AFi5cSEZGBsOGDSMoKMjDVYrImagV0/sZY24D4oBLXBa3sdYmG2POAr4xxvxsrf2twnbjgHEArVu3rrF6RUREztThmTPJWfkj4c88g/9Z7QDYsGEDmzZt4tJLL6Vt27aeLVBEzpg7e7STgRiX19HOZeUYYy4HHgcGWWsLji231iY7/7sL+BY4v+K21tp3rLVx1tq4Fi1aVG/1IiIibpK/dSuHXn6F4P79aXrD9QCkpaWxcOFC2rRpQ9++fT1coYhUB3cG7bVAB2NMO2OMH3ATUG72EGPM+cDbOEL2QZflzYwx/s7nYcBFgOtFlCIiInVSaX4+KQ89hFfTJkQ8OwljDMXFxcyePRsfHx+GDRuGl5dm3xWpD9w2dMRaW2yMGQ8sAbyBf1lrNxtjJgEJ1tovgReBYOAz58Ue+6y1g4AuwNvGmFIcfwxMrjBbiYiISJ108OVXKNixk5hp0/Bp3hyApUuXkpqays0330yTJk08XKGIVBe3jtG21i4CFlVY9qTL88ur2G4lcJ47axMREalp2StWkPHBBzQbOZLgi/sAsHXrVlavXk3Pnj3p1KmThysUkeqkf5sSERGpAcWHD5Py6GP4d+hAy7/+BYDMzEzmzZtHeHg4AwYM8HCFIlLdasWsIyIiIvWZtZb9E5+gNDOTyHen4+XvT0lJCXPmzKGkpITrr78eHx/9Shapb9SjLSIi4mZHPvmU7G++ocVfHiTAOTxk+fLl7Nu3j4EDBxIaGurhCkXEHRS0RURE3Khg124OTJ5Mo969aT5qFAB79uxh+fLldOvWjW7dunm4QhFxFwVtERERN7GFhY6p/AICiHjhBYyXFzk5OcyZM4dmzZpxzTXXeLpEEXEjBW0RERE3OfTGm+Rv3kz4s5PwbdUSay3z5s0jNzeX66+/Hn9/f0+XKCJupKAtIiLiBjlr1pA+fTpNrx9BiHNGkdWrV7N9+3YGDBhARESEhysUEXdT0BYREalmJZmZpEx4BN/WMbR65BEAUlJSWLp0KR07dqRnz54erlBEaoLmEhIREalG1lpSn5lE8aFDtP3oQ7waNaKgoIDZs2cTFBTEkCFDcN4NWUTqOfVoi4iIVKOs+fPJWrSIFuPjCTzPcZPjRYsWkZGRwfDhwwkKCvJwhSJSUxS0RUREqklhUhKpz0wisHt3Qu+6C4ANGzawceNGLrnkEtq2bevZAkWkRiloi4iIVANbXEzKwxPAGCKnTMF4e5OWlsbChQtp06YNffv29XSJIlLDNEZbRESkGqRPm0be+vVEvvh3/KKjKC4uZvbs2fj4+DBs2DC8vNS3JdLQ6KdeRETkDOVt3MihN6cSMnAgTa67DoClS5eSmprKkCFDaNKkiYcrFBFPUNAWERE5A6U5OSQ//DA+rVoS/tSTAGzbto3Vq1fTs2dPOnXq5OEKRcRTNHRERETkDKS+8AJF+xJpM/N9vENCyMzM5IsvviA8PJwBzhvViEjDpB5tERGR05T11Vdkzp5D6F13EfSHP1BaWsrnn39OcXExI0aMwMdH/VkiDZmCtoiIyGkoTksj9cmnCDj3XFqMjwdg+fLl7N27l4EDBxIWFubhCkXE0xS0RURETkPqs89RmptL5JTJGD8/9uzZw3fffUfXrl2JjY31dHkiUgsoaIuIiJyirP8s4eiSJYSNH49/+/bk5uYyZ84cmjVrxsCBAz1dnojUEgraIiIip6A4I4PUZ58l4JxzCL3jdqy1fPHFF+Tk5DBixAj8/f09XaKI1BK6SkNEROQUHHj+BUqysmj9r3cxPj6sXr2a7du3c9VVVxEZGenp8kSkFlGPtoiIyEk6+s0ysubPJ+zuuwno1In9+/fz1Vdf0bFjR3r27Onp8kSkllHQFhEROQklWVmkPv00/h07EjbuLgoLC5k9ezZBQUEMHjwYY4ynSxSRWkZBW0RE5CQcmDKF4vR0Ip5/HuPnxzfffEN6ejpDhw6lUaNGni5PRGohBW0REZHfkf39D2TO+ZzQO+4g8Nxz2LNnD6tWreIPf/gDZ511lqfLE5FaSkFbRETkBEqyc9j/5BP4nXUWYePjKSwsZN68eTRr1ozLL7/c0+WJSC2moC0iInICB19+ieL9qUT87Tm8/P35+uuvycjIYPDgwZrKT0ROSEFbRESkCjmr13Dko49pPmoUQeefz+7du1mzZg09e/akbdu2ni5PRGo5BW0REZFKlObmsn/iRHxbt6bFnx6goKCAefPm0bx5c/r37+/p8kSkDlDQFhERqcSh116jKDGRiOeexSswkKVLl3LkyBGGDBmCn5+fp8sTkTpAQVtERKSC3PU/cXjmBzS75WYa9ejBb7/9RkJCAr169aJ169aeLk9E6ggFbRERERel+fnsf/xxfCMiaPHgX8jPz2fevHmEhoZy2WWXebo8EalDFLRFRERcpE2dSuHu3YQ/Ownv4EZ89dVXHD16lCFDhuDr6+vp8kSkDlHQFhERccr7+WfS3/0XTUYMJ/iii9ixYwfr16+nd+/exMTEeLo8EaljFLRFRESA0sJC9j/2OD4tWtBqwgTy8vL48ssvadGiBZdeeqmnyxOROkhBW0REBEj/59sU7NhB+NNP4d24MUuWLCE7O1tDRkTktCloi4hIg5e/dStp77xDyKDraNyvH9u2bWPDhg306dOHqKgoT5cnInWUgraIiDRotqiIlMcew7tpU8Ife4zc3Fzmz59Py5YtueSSSzxdnojUYQraIiLSoKW/+y8Kft1C+JNP4N20Kf/5z3/Izc1lyJAh+Pj4eLo8EanDFLRFRKTBKti5k7SpU2l81VWEXHEFW7ZsYdOmTVx88cVERkZ6ujwRqeMUtEVEpEGyJSWkPP44Xo0aEf7ERHJycliwYAHh4eFcfPHFni5PROoBBW0REWmQDr8/k/yNm2g1cSI+oaEsXryYvLw8DRkRkWqjoC0iIg1O4Z49HHrtNYIvu4yQgdewefNmfvnlFy655BLCw8M9XZ6I1BMK2iIi0qDY0lJSJk7E+PsT/tRT5OTksHDhQiIiIujTp4+nyxOResStQdsYc5UxZpsxZqcx5pFK1j9ojPnVGLPJGPN/xpg2LutGG2N2OB+j3VmniIg0HBkffkRewjpaPfIIPi1bsHDhQgoKChgyZAje3t6eLk9E6hG3BW1jjDcwFbgaOBu42RhzdoVmPwFx1tquwGzg785tmwNPAT2BHsBTxphm7qpVREQahsKkJA6+8gqN+vShydAhbN68mS1btnDppZfSqlUrT5cnIvWMO3u0ewA7rbW7rLWFwMfAYNcG1tpl1tpc58tVQLTz+ZXAUmvtYWttBrAUuMqNtYqISD1nrWX/E09gjCFi0jNkZ2ezcOFCoqKi6N27t6fLE5F6yJ1BOwpIdHmd5FxWlTuBxae5rYiIyAkd+ewzcn9cRcuHHsInIoIFCxZQWFioISMi4ja1Yv4iY8xtQBxwSve6NcaMA8YBtG7d2g2ViYhIfVC0fz8Hp/ydoJ49aXrD9fz8889s27aNAQMG0KJFC0+XJyL1lDt7tJOBGJfX0c5l5RhjLgceBwZZawtOZVtr7TvW2jhrbZz+RykiIpWx1rL/6aexpaVEPPcsR7OzWbRoEdHR0fTq1cvT5YlIPebOoL0W6GCMaWeM8QNuAr50bWCMOR94G0fIPuiyaglwhTGmmfMiyCucy0RERE5J5rx55Hy3nJZ//jO+0dEsWLCA4uJihgwZgpeXZrkVEfc5qf/DGGM+N8YMNMac9P+RrLXFwHgcAXkL8Km1drMxZpIxZpCz2YtAMPCZMWaDMeZL57aHgWdxhPW1wCTnMhERkZNWdPAgB55/gcALLqDZbbeyceNGtm/fTv/+/QkLC/N0eSJSz53sGO1/ALcDrxtjPgPes9Zu+72NrLWLgEUVlj3p8vzyE2z7L+BfJ1mfiIhIOfb/2bvv8CjLrI/j3ye9kN57gZCEEBJI6E0p0kREkSK6rmsXC7rWVde1r7v2squIqKuIoChdqiAdEnqHQEJ67z2Zud8/nrwKiBohk5nA+VzXXCYzz0wOyJX8cs+5z60U+c8/j2poIODFF6msquL7778nNDSUvn37mrs8IcRloFUr1EqptUqp6UAvIANYq2naVk3TbtU0zdaUBQohhBAXour776leuw6fB+7HLiKcpUuXYjQamTBhgrSMCCHaRau/02ia5gX8Gbgd/aCZt9GD9xqTVCaEEEJcoObSUvJfeBGH+Hg8b7mFPXv2kJaWxogRI/Dy8jJ3ea64sqAAACAASURBVEKIy0SrWkc0TfsOiAY+B8YrpfJaHpqvaVqqqYoTQgghLkTBiy9hqK4m9KUXqaiuZuXKlYSHh9O7d29zlyaEuIy0tkf7HaXU+vM9oJRKbsN6hBBCiItStXYtlStW4PPgA9hHRbHg889RSknLiBCi3bU2aHtomnbdOfdVAAfOGcsnhBBCmI2hvJy8557DPjYWr9tvZ9euXZw6dYpx48bh4eFh7vKEEJeZ1gbt24D+wP+val8B7AIiNE17Xin1uQlqE0IIIf6Qgn++iqGsnNAPP6S8uppVq1YRGRlJcrK8+SqEaH+tfQ/NFohVSl2vlLoe6AYooC/wuKmKE0IIIVqreuNGKhYtwuuO27GLiWHx4sVomsY111yDpmnmLk8IcRlqbdAOVkoVnPF5IRDScohMU9uXJYQQQrSeoaqKvL8/i12Xznjfcw+pqalkZGQwatQo3N3dzV2eEOIy1drWkQ2api0Dvm75/PqW+5yBcpNUJoQQQrRS4b9fo7mwkPB35lFeXc2aNWvo3LkzvXr1MndpQojLWGuD9gzgOmBQy+f/AxYqpRRwpSkKE0IIIVqjZts2yhcswPO2v2DfvTvzPv0UKysraRkRQpjd7wZtTdOsgbVKqSuBhaYvSQghhGgdY00NeU8/g11YGD7338/OnTvJzMxkwoQJuLm5mbs8IcRl7neDtlLKoGmaUdM0N6VURXsUJYQQQrRG4Ztv0ZSbS9gXn1NaXc3atWuJiooiMTHR3KUJIUSrW0eqgQOapq0Bav7/TqXUAyapSgghhPgdtamplH3xBR4334xDz57M++QTbGxsGD9+vLSMCCEsQmuD9rctNyGEEMLsjHV15D31NLbBwfg+NJPt27eTlZXFxIkTcXV1NXd5QggBtDJoK6U+0zTNEQhVSh0zcU1CCCHEbyp69z0aT58m9NNPKKmpYd26dURHR9OjRw9zlyaEED9p1RxtTdPGA3uBlS2fJ2qatsSUhQkhhBDnU7dvH6Wffor7lCk49O7NokWLsLOz4+qrr5aWESGERWntgTX/APrQMjNbKbUXiDRRTUIIIcR5GRsbyX3qKWx8ffF99BG2bdtGTk4OY8eOxcXFxdzlCSHEWVrbo92klKo4Z6XAaIJ6hBBCiF9V/J//0Jh2kpCPZlFSW8v69euJjY2le/fu5i5NCCF+obUr2oc0TbsRsNY0LUrTtHeBrSasSwghhDhL/eHDlHw0G7eJE3EcMIDvvvsOe3t7xo0bJy0jQgiL1NqgfT8QBzQA84BKYKapihJCCCHOpBobyf3bU1h7euD3xONs2bKFvLw8xo0bR6dOncxdnhBCnFdrp47UAk+13IQQQoh2VTx7Ng1HjxL8/nsU1dWxYcMG4uLiiIuLM3dpQgjxq1oVtDVN6wo8AoSf+Ryl1DDTlCWEEELo6o8fp/i/H+A6bhxOV1zB3I8+wtHRkbFjx5q7NCGE+E2t3Qz5NfABMBswmK4cIYQQ4mequZm8vz2FtYsLfk8/xaZNm8jPz2fKlCk4OzubuzwhhPhNrQ3azUqp/5q0EiGEEOIcpZ9+Sv3BgwS9+QZF9fVs3LiR+Ph4YmNjzV2aEEL8rtZuhlyqadq9mqYFaJrm+f83k1YmhBDistZwKp2id97FZeQInEaO5LvvvsPJyYkxY8aYuzQhhGiV1q5o39Ly30fPuE8hh9YIIYQwAWUwkPfUU2iOjvj//e9s3LiRwsJCpk2bhpOTk7nLE0KIVmnt1JEIUxcihBBC/L+yuXOp27OHwFf/SUFjI5s2bSIhIYHo6GhzlyaEEK32m60jmqY9dsbHN5zz2MumKkoIIcTlqzEzk8I33sR56BCcxo5l0aJFdOrUidGjR5u7NCGE+EN+r0d76hkfP3nOY/IdTwghRJtSRiN5z/wdzcaGgOee48cff6SoqIhrrrkGR0dHc5cnhBB/yO8Fbe1XPj7f50IIIcRFKV+wgNodO/B9/DEKmpvZsmULPXv2JCoqytylCSHEH/Z7QVv9ysfn+1wIIYS4YE25uRT+6984D+iP84QJLFq0CBcXF0aNGmXu0oQQ4oL83mbIBE3TKtFXrx1bPqblcweTViaEEOKyoZqbyX3iSRTg//wLbNiwgeLiYm6++WYcHOTHjRCiY/rNoK2Usm6vQoQQQly+Cl97ndqdOwn45yvkGw1s3bqVpKQkOnfubO7ShBDigrX2wBohhBDCJCqWLaf000/xmD79pykjbm5uXHXVVeYuTQghLooEbSGEEGZTf+wYeU8/jWNSEn5PPM4PP/xAaWkpEyZMwN7e3tzlCSHERZGgLYQQwiwM5eVk33c/1q6uBL/1Jpm5uWzfvp3evXsTGSkHDwshOr7WHsEuhBBCtBllMJDz6GM05ecT9r/PqHd0ZOHnn+Ph4cGIESPMXZ4QQrQJWdEWQgjR7orefZeaTZvwf+op7OLjWbBgAbW1tUyePFlaRoQQlwwJ2kIIIdpV1dq1lHzwIW6Trsd9ymRWrlxJZmYmEyZMICAgwNzlCSFEm5GgLYQQot00nDpF7uNP4BAfj/8zz7B7925SU1MZOHAg8fHx5i5PCCHalARtIYQQ7cJQXU32jPvQHBwIfudtsgsKWL58OZ07d2b48OHmLk8IIdqcBG0hhBAmp4xGch9/gsbMTILefIM6Z2cWLFiAu7s7kyZNwspKfhwJIS498p1NCCGEyZV8+CHV69bh9/hj2PXsyfz582lsbGTq1Kk4OjqauzwhhDAJCdpCCCFMqnrjRoreeRfX8eNxv+kmli9fTk5ODhMnTsTX19fc5QkhhMlI0BZCCGEyjadPk/PIo9jHxBDw/HOkpKSwd+9ehg4dSmxsrLnLE0IIkzJp0NY0bbSmacc0TUvTNO2J8zw+RNO03ZqmNWuaNumcxwyapu1tuS0xZZ1CCCHanrG2luz7H0DTNILffYfT+fmsXLmS6Ohohg4dau7yhBDC5Ex2MqSmadbA+8BIIBtI0TRtiVLq8BmXZQJ/Bh45z0vUKaUSTVWfEEII01FKkff00zSkpREyaxY1zs4smDULLy8vJk6cKJsfhRCXBVN+p+sDpCmlTimlGoGvgAlnXqCUylBK7QeMJqxDCCFEOyv95FMqV3yPz8yZ2PXpzfz58zEajUydOhUHBwdzlyeEEO3ClEE7CMg64/Pslvtay0HTtFRN07ZrmnZt25YmhBDCVGq2b6fwtddwueoqPG+/jSVLlpCfn8+kSZPw9vY2d3lCCNFuTNY60gbClFI5mqZFAj9omnZAKXXyzAs0TbsTuBMgNDTUHDUKIYQ4Q1NODjkPPYxdZAQBL7/M1q1bOXjwIMOHDycqKsrc5QkhRLsy5Yp2DhByxufBLfe1ilIqp+W/p4ANQM/zXDNLKZWslEr28fG5uGqFEEJcFGN9Pdn3P4BqaiL43Xc5lZfL2rVriYuLY9CgQeYuTwgh2p0pg3YKEKVpWoSmaXbAVKBV00M0TfPQNM2+5WNvYCBw+LefJYQQwlyUUuT/4znqDx8m8N//otrVlYULF+Ln58eECRPQNM3cJQohRLszWdBWSjUD9wGrgCPAAqXUIU3Tntc07RoATdN6a5qWDdwAfKhp2qGWp8cCqZqm7QPWA/88Z1qJEEIIC1L25ZdULFqE94wZ2A0YwFdffYWmaUydOhU7OztzlyeEEGZh0h5tpdQKYMU59/39jI9T0FtKzn3eViDelLUJIYRoG7W7dlHwyj/pdMUVeN17Dwu+/pri4mJuvvlmPDw8zF2eEEKYjQwyFUIIccGaCgrJnjkTu6AgAv/1Khs3beLo0aOMGjWKyMhIc5cnhBBmZclTR4QQQlgw1dhIzoMPYqypJWzOHE7k5rJhwwYSEhLo27evucsTQgizkxVtIYQQFyT/5Zep27uXwJdfosLNjW+//ZbAwECuvvpq2fwohBBI0BZCCHEByhcupPyr+Xjdfhu2Q4fy1VdfYWtry5QpU7C1tTV3eUIIYREkaAshhPhD6vbvJ/8fz+E8oD9eDzzAwoULKS8vZ8qUKbi5uZm7PCGEsBgStIUQQrRac0kJ2Q88iI2vL4Gvv876jRtJS0tj7NixckKvEEKcQzZDCiGEaBXV1ETOzIcwlJURPu9LjubksHnzZpKSkkhOTjZ3eUIIYXFkRVsIIUSrFL72GrUpKQS88Dzlnp4sWrSIkJAQxowZY+7ShBDCIknQFkII8bsqli6j9LP/4XHzzdgMH868efNwdHRk8uTJ2NjIm6NCCHE+ErSFEEL8pvojR8h75hmckpPx/uvDfP3111RXVzN16lRcXFzMXZ4QQlgsCdpCCCF+laG8nOz7H8DazY2gt95kzfr1ZGRkMH78eIKCgsxdnhBCWDR5v08IIcR5KYOBnL8+QnNBAWFffM7B7Gx27NhBv379SExMNHd5Qghh8WRFWwghxHkVvf0ONVu24PfM05R4ebF06VIiIiIYOXKkuUsTQogOQYK2EEKIX6hcvZqSWbNwv+EGbMaMYf78+bi4uDBp0iSsra3NXZ4QQnQIErSFEEKcpSEtjbwnnsQhoQfef3uSBQsWUF9fz9SpU3F2djZ3eUII0WFI0BZCCPETQ1UV2TPuQ3NyIvidd1i5di1ZWVlMmDABf39/c5cnhBAdimyGFEIIAYAyGsl97HEac3II+/QT9mVlsWvXLgYNGkT37t3NXZ4QQnQ4sqIthBACgOL//pfq9evxe/xxinx8WLFiBV26dGHYsGHmLk0IITokCdpCCCGo2rCB4vfex23CNVhfM54FCxbg7u7O9ddfj5WV/KgQQogLId89hRDiMteYkUHuo49hHxuD19NPM3/+fJqampg2bRqOjo7mLk8IITosCdpCCHEZM9bUkH3//WjW1gS9/Q7L16whNzeX6667Dh8fH3OXJ4QQHZpshhRCiMuUUorcp5+m4eQpQmd/xO7sLPbv388VV1xBTEyMucsTQogOT1a0hRDiMlU6Zw5V36/E9+GHKPD3Z/Xq1cTExDBkyBBzlyaEEJcECdpCCHEZqtm6lcLX38Bl9Gi0667j66+/xtvbm4kTJ8rmRyGEaCPy3VQIIS4zjdk55Dz0MPadI/F+9u/Mnz8fpRRTp07F3t7e3OUJIcQlQ4K2EEJcRoz19WQ/cD/KaCTo3XdZsmYNhYWFTJo0CS8vL3OXJ4QQlxTZDCmEEJcJpRT5zz5Lw5GjBP/3P+zMyuLw4cOMHDmSLl26mLs8IYS45MiKthBCXCbKvphLxeIleN83g7zAQNatW0f37t0ZMGCAuUsTQohLkgRtIYS4DNSmplLw6qt0GjYMbfJkFi5ciL+/P9dccw2appm7PCGEuCRJ0BZCiEtcU0EB2Q/OxC44GK/nn+Or+fOxtrZm6tSp2NnZmbs8IYS4ZEnQFkKIS5ixsZHsBx5A1dUR9O47LFq9mpKSEm644Qbc3d3NXZ4QQlzSZDOkEEJcwgpefIn6ffsJevtttmZlcfz4ccaMGUNERIS5SxNCiEuerGgLIcQlquzrrylfsACvO+4gOySYjRs3kpiYSJ8+fcxdmhBCXBYkaAshxCWoNiWFgudfwHngQNSN0/juu+8ICgpi3LhxsvlRCCHaiQRtIYS4xFStXUvm7XdgGxyMx4sv8NWCBdjb2zNlyhRsbW3NXZ4QQlw2JGgLIcQlpOyrr8h+4EHsY6IJ+eJzFq1dS2VlJVOmTMHV1dXc5QkhxGVFgrYQQlwClFIUvvUW+f94jk5DhhD2ySds2LWLkydPMnbsWEJCQsxdohBCXHYkaAshRAenmprIe/ppSj74EPcbJhH83rukHjzI1q1b6d27N0lJSeYuUQghLksy3k8IITowY20t2Q89RM2PG/GeMQOvGffyw/r1bNq0ia5duzJ69GhzlyiEEJctCdpCCNFBNZeWknXX3dQfOoT/c8/hcv11LFq0iP3799OrVy/GjRuHtbW1ucsUQojLlgRtIYTogBqzssi8/XaaCwoJfu9dbAcMYO7cuaSnpzNs2DAGDx4sY/yEEMLMJGgLIUQHU3fwEFl33QXNzYR+MoemyEjmzJlDcXEx1157LYmJieYuUQghBBK0hRCiQ6netJnsBx/Ext2dkM//R7mzM1/Mnk1DQwPTp0+nc+fO5i5RCCFEC5k6IoQQHUTF4sVk3XMPdqGhhM2bRw4wZ84cAP7yl79IyBZCCAsjK9pCCGHhlFKUzJ5N0etv4NS/H8HvvsuhU6dYtGgRXl5e3HTTTbi5uZm7TCGEEOcwadDWNG008DZgDcxWSv3znMeHAG8BPYCpSqlvznjsFuDplk9fVEp9ZspahRDCEimDgYKXX6Fs7lxcx40j4OWX2LJzJ+vWrSM8PJwpU6bg6Oho7jIvXl0ZpM6B4hPg7A3OvuDso986tfzXyRts7MxdqRBCtJrJgramadbA+8BIIBtI0TRtiVLq8BmXZQJ/Bh4557mewLNAMqCAXS3PLTNVvUIIYWmMDQ3kPvY4VatW4XnrrXj/9WFWrFxJamoq3bt359prr8XGpoO/MVlVANvfh5SPobEaXAKhtgQMDee/3sG9JXz7tgRyn5ZQ7t1yn8/PN3sXkMkrQggzMuV36D5AmlLqFICmaV8BE4CfgrZSKqPlMeM5zx0FrFFKlbY8vgYYDcwzYb1CCGExDBUVZM+4j9rUVHwffxyX6Tcyf8ECjh8/zsCBAxk+fDhWVh14m01ZBmx5B/Z8AcYmiJsIgx4C/3hQSg/d1YVQUww1RVDT8nF1YcvnxVB4BGo26qvh52Ntf/5AflZQbwnnTl5g3cF/aRFCWBxTflcJArLO+Dwb6HsRzw1qo7qEEMKiNeXnk3XHHTRknCbw9dewHjqUzz77jNzcXMaOHUufPn3MXeKFKzwCm9+EA9+AZgWJ02DgTPA6YyOnpumr0fYuZ9//a5ob9VXwMwN5TdEZQb0Qqgug4JB+n7HpPC+igZPn2SviZ7atnLtybufcZn8lQohLV4f+9V3TtDuBOwFCQ0PNXI0QQly8hhMnyLzjToxVVYR+NIv6qCg+/fhjqqqqmDJlCjExMeYu8cJkp8KmN+DYcrB1gr53Q/8Z4NYGayg2duAaoN9+j1JQX9ESyovOCeRnBPW8ffp/GyrO/zq2Tj+viIf2g543gW/sxf9ZhBCXFFMG7Rwg5IzPg1vua+1zrzjnuRvOvUgpNQuYBZCcnKwupEghhLAUtampZN07Ayt7e8LmfkGRszPzPv4YgFtuuYWQkJDfeQULoxSk/wibXof0jXp/9dDHoc9d4Oxlnpo0DRzd9Zt31O9f39xwRig/s3Wl5VaZCzs+gG3vQWAvSLwR4ieBo4fp/yxCCItnyqCdAkRpmhaBHpynAje28rmrgJc1Tfv/71RXAU+2fYlCCGEZKletJvfRR7ENCiJ09kecrKrim88+w8XFhZtuugkvLzMF0wthNMKxFXrAzt0Nnfxg5AuQfKveDtKR2NiDW7B++zXVRXDga9g7F1Y8Aquegphx0HM6RF4JVtbtV68QwqJoSpluIVjTtLHo4/usgTlKqZc0TXseSFVKLdE0rTfwHeAB1AP5Sqm4luf+Bfhby0u9pJT65Le+VnJyskpNTTXVH0UIIUym9Iu5FLz0Eo4JCQT/9z/sPnGC77//nsDAQKZNm0anTp3MXWLrGJrg4EK9B7voKLiHwaCZkHAj2DqYuzrTU0pvOdk7Vw/edWX6FJWEqXprSWv6zYUQHYKmabuUUsm/e50pg3Z7kqAthOholFIUvfkWJbNm0WnYMAJf+zc/bNnCli1b6Nq1K5MmTcLOrgPMjW6q06eHbH0HyjPBtxsMelifJHK5TvJobtBX9fd+CWlrQRkhpJ++yh03seOt7AshziJBWwghLJhqaiLv6WeoWLwY9ylT8H7yCRYvW8bBgwdJTk5m7Nixlj++r75SP2Rm2/v6JsKgZBj8V+g6Giy99vZUmQf7v4I9c6HkhL6RstsESJwOYQPl70qIDkiCthBCWChjTQ3ZD86kZvNmvB+4n0633sr8+fPJyMhgxIgRDBw4EM2SD1qpKdY3AO6cpU/wiLwSBj8M4YPlgJjfohRkp+ir/we/hcYqvb0mcbreXuIRZu4KhRCtJEFbCCEsUHNxMVl33U390aP4/+NZtJEjmTt3LiUlJVx77bX06NHD3CX+uops2Poe7PoUmusg5mo9YAcltcnLN9Q20dRgpJOHfZu8nkVrrIWjy/TQnf6jfl/EEEi8CWLHg52TeesTQvwmCdpCCGFhGk+fJvOOO2kuLCTozTeojonhyy+/pLGxkSlTphAZGWnuEs+vOA22vAn75uu9xj0m64fM+F78TG9Dk5HTB0s4tiOfjIPFGJsVzu72+Ee44hfhhn+kKz6hLtjYXcKTO8ozYe88fRNl+Wmwd9X7uHveBMG95V0CISyQBG0hhLAgdQcOkHXX3WA0EvLhB+R26sT8+fNxcHBg+vTp+Pn5mbvEX8rbpx8yc3ixPuau580w4P6LbnFQSpF/soJjO/JJ21VIQ20zjq52dE32w8XbgYL0SgrSK6gsrgfAykrDO6QTfpFuPwVwV28Hy26vuRBGI5zeogfuw4uhqRa8ovTZ3AnTWncgjxCiXUjQFkIIC1G9cSPZD87ExtOTkNkfcaSigiVLluDj48ONN96Im5ubuUs82+mt+gzstLVg5wJ9bod+9+pHj1+E8oJaju3I5/jOfCqL67GxtSIi0Yfofv6ExHhgZX32psDaykYK0ivIT6+k4FQFBaeraG4wAODoYvvTirdfhBu+YS7YOVxCE04aquDQIj10Z27Tj6vvPFyfWhI9Vv/FRwhhNhK0hRDCApR/+x15zzyDfXRXQj74gK1HjrB+/XoiIiKYMmUKDg4WMl9aKTixBja/oQc7Jy89XPe+XT9F8QLVVTVyIrWQYzvyKcyoBA2Coz2I7udPZKLPHwrHRoOR0rwa8k/pwTs/vZLyglpA767wDOqEf4Qr/pFu+EW44u7ndGmsepec1AP3vq+gMkc/YTP+Bj10ByRKa4kQZiBBWwghzEgpRcmHH1L01ts4DxhAwFtv8f2G9ezevZsePXpwzTXXYGNjASuwRgMcXgSb3oSCA+AaDAMf0NtELnBDXnOjgfT9xRzfkU/moVKMRoVXcCei+/gT1duvTTc71lc3UZBRSX56hb7qnV5JY72+6m3vZHPGqre+8m3vaAF/5xfKaIBTG/TQfWQZGBrAN04P3D2mgLO3uSsU4rIhQVsIIcxEGQwUvPQSZV/Ow3X8eLyf/TvfLF7MiRMnGDx4MMOGDTP/Smtzoz7befNbUHpS7wUeNBPiJ4PNHz8kRxkVuSfKObYjn5O7C2msN+DsZkfXPv5E9/PHK6h9TrdURkVZfu1PwTs/vZLSvBpQgAYe/s5nrXp7BDhjZdUBV4TryvRTOPfM1Y+5t7LR55cnToeokWBta+4KhbikSdAWQggzMNbXk/voo1StWYvX7bfheOedfDlvHvn5+YwbN47k5N/9vmxajTWw6zPY+i5U5UJAgn6KY+x4sPrjkz1Kc2t+6ruuLmvA1t6azr186NrXn6CuHhYRYhvqminM0DdY5p/SV78bapoBsHWwxi/85+DtH+GGQ6cOFlILj7S0lszXDw5y9tFXuBOng183c1cnxCVJgrYQQrQzQ3k5WffOoG7PHvyefBLj2DF88cUX1NTUMGnSJKKjo81XXF0Z7PwItv8X6kr1EwkHP6xvsPuDq+s1FQ2cSCng2I58irOq0aw0Qrt50rWvHxEJPtha+Cg+pRQVhXUtq9568C7JqUEZ9Z+Hbr6O+J+x0dIryPkXGzUtkqFJ38C65ws4vhKMzRDYUw/c8ZPA0cPcFQpxyZCgLYQQ7agpN5fMO+6kKTOTwH+9SnlcHPPmzUPTNKZPn05QUJB5CqvK149IT50DjdUQNUoP2KH9/tDLNDUYOLW3iOM78sk6UopS4BvmQte+/kQl++Hk+sfbTSxJU4OBwtOVFKRXkn+qgvxTFdRVNQFgY2eFb5jrT8HbL8IVZzcLn/pRUwz7F+gr3QUHwdoeYsbpobvzlRf07oUQ4mcStIUQop3UHztO1p13YqytJfi99zjt0omFCxfi5ubGTTfdhKenZ/sXVZ6lTxDZMxeMTfoBKIMeAv/4Vr+E0ajIPlrK8R0FnNxbRHODARdPB7r29SO6rz8e/s4m/AOYl1KKqpL6M1a9KynOqsJo0H9mung56DO9I90Ij/fCzcdCT3JUCvL36/8ODizQ39lwCYR+90Dv28Du0v1/KIQpSdAWQoh2ULNjJ9kzZmDl5ETIRx+xt6yUlStXEhwczLRp03B2bucgU1euB+ztH+inOCbeCAMfBK/OrXq6Uori7GqO78jneEoBtRWN2Dna0CXJl+i+/gR0dkOzgL5rc2huMlCUWf1Tr3dBegXVZQ0ABHV1J3ZAAJG9fC23daa5AY59D6kfQ/pGfYRj//ugzx1g72Lu6oToUCRoCyGEiVWuXEnuo49hGxpKyKwPWX/wINu2bSMmJobrr78eW9t23FTX3KD3YG96TQ/bPabAsKfAPbRVT68uq+f4Tr3vujS3BitrjbDuXkT39Scs3gsbWwsNj2ZWWVLHiZQCjmzJo6KoDjsHa7r09qPbgEB8w13MP13m12TugI3/0nu6HT2g3wzoeyc4WNjhSUJYKAnaQghhQqX/+5yCV17BsWdPAt55m8U//MDhw4fp06cPo0ePxsqqnTbPGY36mLcfnofyTOg8DEY8BwE9fvepjXXNnNxTyLEdBeQcLwMF/pGuRPf1p0uSX8ebvmFGSiny0so5siWPtN2FNDca8Qx0JnZAAF37+FtuD3v2Ltj4bzj+Pdi76S0l/e6WjZNC/A4J2kIIYQLKaKTojTcomf0xLiNH4PH888z/7jsyMzO56qqr6N+/f/utYp7aAGv+Dnn7wC8eRj4HXYb/5lMMBiNZh0s5viOfU/uKMTQZcfNxpGtff6L7+llur3EH0ljXzInUAo5se4VPQwAAIABJREFUzaMgvRIrK43wBG9iBwQQ2s3TMieY5O7VA/fRZWDnAn3vgv4zwMkM+wuE6AAkaAshRBtTjY3kPvU0lUuX4nHjNOxnzGDuvHmUlZVx7bXXEh/f+o2GFyX/IKx9Vn/b3y0Ehj2jH8n9K6voSikKT1dxbEc+aakF1FU14eBsS1SyL137+uMX4Wq5LQ4dXGluDUe25nJsRz51VU04u9kR3T+A2P4BuPtZ4C81+Qf1wH14Mdg6QZ/bof/90MnH3JUJYVEkaAshRBsyVNeQ88AD1Gzdis/MB2m85hq+/PJLmpubmTp1KuHh4aYvoiIb1r8Me78EB1cY/Aj0uRNsHc57eWVxHcd35nNsRwHlBbVY21gR3sOb6L5+hMZ5YW1jgSurlyiDwcjpAyUc2ZrH6YMlKKMioIsb3QYG0rmXL7b2FtYDX3gENr4Gh77VRwP2vg0GPAAufuauTAiLIEFbCCHaiLG2ltM33Uz9sWMEvPACRfHdWbBgAU5OTkyfPh1fX1/TFlBXDlve0g+bUUb9bf1BD//q2/oFGZWkrsggY38xAIFR7kT39adzLx/snaTv2txqyhs4tiOfI1vzKC+oxdbemqhkX2IHBlreuwvFJ2DT6/pMbmtbSPqzPsXGNdDclQlhVhK0hRCijVSuWk3Ogw8S+PprnAwIYOnSpfj5+XHjjTfi6upqui/c3AApH+vTIerK9EkiVz4FHmHnvTz/VAUpyzPIPFSCvZMNPa4MJmZAAK5ejqarUVwwpRR5Jys4sjWPtF2FNDcY8PB3InZAINH9LGwDZclJfWzkvq9As4Jef4KBM8E9xNyVCWEWErSFEKKNFLzyCqVfzSf/9df4cfNmOnfuzOTJk7G3N9HpgEaj/pb9uueh/DREDIWrXoCAhPNenptWTurydLKOlOHgbEviyBDihwZj52hjmvpEm2usbyZtVyFHtuSRf6oCKyuNsHgvYgcGEhZnQRsoyzJg85v6ATigz2kf/DB4hJuzKiHanQRtIYRoI6dumMy2kGBOuLqSmJjI+PHjsbY2UU9t+kZY/Qzk7QW/7vokkc7D4TztBDnHykhZkU7OsXIcXWzpOTKMuCGB2DlIwO7IyvJrOLI1j6Pb86mrbMTJ1Y6Y/v7E9A+wnNM4y7P0dqbd/wOjARKm6YG7lQcjCdHRSdAWQgjQj6C+iJ5XY20tG8ddzYahQxg4cCAjRowwTQ9twWF9ksiJ1eAaDMOehh6TwersQK+UIvtYGanLM8g9UY6Tqx29RoXRbXCg5Z5IKC6IwWAk86C+gTLjQMsGys5uxAwIoEuSr2X8QlWZC1vehl2fgqER4ifDkEfAO8rclQlhUhK0hRCXN6MBds6CDa9Aj6kw8vlfnc7xW2q2b2fFa69xuHt3Hn/iCRwc/vhr/KaKHNjQMknEzkVfFex7F9ie3VetlCLrcCkpyzPIP1WBs7u9HrAHBmAjAfuSV1Ohb6A8ujWPsvxabOytiUryJXZAAP6d3cy/gbKqALa+A6lzoKkOul+vB27fWPPWJYSJSNAWQly+io7B4vsge6d+kEvBAf2/k+aAT9c/9lLvv883Bw6i9Yjn7nvvbbsa6ytg81uw/T/6JJE+d8Lgv/5ikohSitMHS0hZnkFhRiWdPO1JGh1ObP8ArG0tpG9XtBulFAXplRzekktaaiFNDQbc/ZyIHRBAdD9/nN1MtG+gtaqLYNt7sPMjaKqFbtfAkMfAv7t56xKijUnQFkJcfgxNet/oj/8Cu04w5lX9IJcTq2HRPfpK25hXoefNrW4nyfjLbXwRFEiv/v0ZO3bsxdfY3Kiv+v34KtSV6m+1D3v6F5NElFKk7ysmdUUGRZlVuHg5kDwmnOh+/jL/WgD6BsqTu4s4sjWXvLQKNCuNsO5exA4IICzeC2tzbqCsKdF/idzxITRWQczVMORRCEw0X01CtCEJ2kKIy0vuXn0Vu+AAxE2EMf8++zS7yjz47k59s2HcdTD+LXBw+82XVM3NbBt5FauHDmHSpEl0734Rq3JK/TxJpCwDIobo7SyBPc++zKg4tbeIlBUZlGRX4+rjSPKYMLr29TdvcBIWrbygtmUDZR61FY04utgS3S+A2AEBeAaYcQNlXZketrf/R38Xp+tofYU7OMl8NQnRBiRoCyEuD011sOGfsPVdcPaBca9D7NXnv9Zo0EeTrX8Z3ILg+jkQ0vtXX7ru0CFWPfk39vbqycMPP3zhM7MzNuuTRHJ3g2+cHrC7nD1JxGhUnNxdSOqKDEpza3D3cyJ5TBhRvf0sZ7SbsHhGg5HMQ6X6Bsr9xRiNCv9IV2IHBOobKM018rG+Qt8zse19PXx3GQFDH4eQPuapR4iLJEFbCHHpO70VltwPJWl6O8hVL4Kj++8/L2snfHMbVObobRsDZ4LVL8Ns6f8+59sfN1DdrRsz//rXP15f4RFY+w84vhJcg1omiUw5a5KI0WDkRGohu77PoCy/Fg9/J5LHhdMlyQ8rKws6IVB0OLWVjfoJlFty9Q2UdlZ06aWfQBnQxUwbKBuqIGW2/otxbQlEXqGvcIcPbP9ahLgIErSFEJeuhipY+xykfATuoTD+Heh85R97jbpyWDYTDn2nHwhz3Sxw8T/rkqyZDzHXyZGuyclcd911rX/tylx91Xzv3JZJIg9B37vPmiRiNBg5vrOA1O8zqCiswyvImeSxEXTu6YMmAVu0IaUUBRmVHNmSx4nUAprqDfiGu9J7XDhh3b3ME7gba/S9ClvegZpCCBsEQx/TW6rMPUFFiFaQoC2EuDSlrYWlM6EiWw+vw58Bu/P3oDYbm9mZt5Pe/r2xtbb95QVK6QdufP+4/hoTP4CokS0PKfaMGs2SAf25+uqrSU7+3e+nUF+pzxTe9j4Ym/VJIkMeOWuSiMFg5Nj2fHZ9n0FlcT3eIZ3oPTaCiARvCdjC5JoaDBzfmc+ulaepKqnHN8yF5HERhMebKXA31cGuz/RNzFV5ENJPD9ydh0ngFhZNgrYQ4tJSWwqr/gb75oF3NEx47zf7O1PyU3hl5yucKDvBo8mP8qe4P/36axcdg2/+AgUHod8MGPEsjXmFrL3zTnb27cu9996Lr6/vrz+/uRF2faJPEqktge6T9F8AzjiW2tBk5Oj2PHZ9f5qqUgsIOOKydt5f+Ma1/MJnlsBdD3s+1/dQVOZAULLewx01UgK3sEgStIUQl45Di2DFI/omqkEP6WPCbM4/LzivOo/XUl9j9enVBHUKosnYRKRbJB9d9dFvf42melj9tN6OEpBAufNNLF61mbzYGB574gmsztPDjVJweJHexlKWDuGD4aoXzpok0txk4MiWPHavOk11WQN+Ea70HhdBaJynBGxhdgaDkeM79BamyqI6vII70XtcOJEJZmpham7QD2/a9AZUZEJAoh64o8dI4BYWRYK2EKLjq8rXA/aRpRCQANe8BwE9zntpfXM9nxz6hDkH5gBwe/zt/Knbn3h/9avMK1nCpmmbcbJ1+v2veWQZLJ5B3hYbvoy+loCevbhx+vRfXpexBdb8HXJSwbdbyySRET+FgeZGA4c257Jn1WlqKhoJ6OxG73ERBMd6SMAWFsdoMHI8pYDUFRayZ8DQBPu+gk2v6eMw/brrrVjxk361VUyI9iRBWwjRcRmNsO9LvVWkqR6ufBL63w/WvxxNppRibeZaXkt5jdyaXEaHj+bhpIexLq5j/WezyD58kK3dS3jgz/9kaMjQ1n39imwOTbiWr6+4mhH+lQy69Tmwd9EfKzqmTxI5tgJcAvVJIglTf5ok0tRg4NCmHHavzqSuspGgru4kj4sgqKu7BGxh8f5/Ck7qigzKC2rxDHQmeWw4nXv5mmcKjqEZDn6jb5osPAT2bpB4I/S+Dbyj2r8eIVq0NmibaaCmEEL8iowtesDO2wuh/eGad3/1B+qJshO8uvNVduTvoKtHV+YMmkOcU1e2zPucA+tWY9+pEw4uroQVNbA5Z3Org3az0Zk8a/0wm9D8lfDhev0AnCNL9D5Su04w/Fl9M6advkreWN/MwR9z2Ls2k7qqJoJjPOh9RxyBUR5t8/ciRDuwsrYiuq8/Ub39SNtVQOryDFbPPoSHf7p5xk5a2+i/yPaYApnbIfVjfTzgjv/qE0p63w7RY+F8m52FsACyoi2EsAwlJ/VWjKPL9JnTw/+uH09+nt7oioYK/rP3P8w/Nh9nW2fu73k/EyOv5dDaVWz95ksa6+roOepq+k+6kS0LPmf3uhVsuNbA8htWtKqUqh9+YNmHs0iL68aTNw3DZtFdUJkNVrb6D/Yhj4KzFwCNdc3s35DNvrVZ1Nc0ERrnSfLYCAI6//apk0J0BOcepOTh70TSmHCikn3Nd5BSdaH+C2/qJ1CRBS4BkPRn6HULuAaYpyZx2ZHWESFEx1BbCj/+S9+EaOMAg2bqkz/sftlPbTAa+DbtW97Z/Q6VjZXc0PUG7ku8j/Jjp1j/2UeU5mQR1qMnV95yB17BoQCc3LWTRf96nlV9Cvjojm8Icw373ZIK/v1vFmRm4pSQwG23367XuOcLiB0PnhEANNQ2sX99NvvWZdFQ20x4vBfJYyPwi7jA0yOFsGDKqDi5p4jUFemU5NTg5utI8thwuprz5FKjAU6s1le409aCZq2fCtv7dn1jsrRqCROS1hEhhGVrboCdH8HGf+kH0PT6E1zxN3DxO+/lewr38MqOVzhSeoQkvySe7PMkvg2dWP/OO5zatRN3vwCufewZInv1OasXOiQuHitrawKLHdics7lVQbtq9x7KukYRGx6u3+HkCQMfAKC+pol967LY/0MWjfUGIhK8SR4bjm+YBGxx6dKsNLok+dK5pw+n9hWRsjyDdZ8eIXV5Bkljwuna1w/r9g7cVtb6NJLoMVB6Sj8AZ88XcHgxeHeF5Nv0tpPWnBYrhIlI0BZCtC+l9B+Ea5/Vpwl0Hq4fne7X7byXF9QU8MauN1iRvgI/Jz/+PeTfXOE7mJ2LFrBi+WKsbW0ZfOOf6TV2Aja2v+zTtHNwJDg2jsqs/WzJ2cL02PNMEDmDsb6enPx8jNFdCQ0N/en+uupG9q7N4sD6bJoaDHTu5UPy2HC8g10u6q9DiI5Es9Lo3NOXyAQf0vcXk7I8nR/+d4TUFekkjQknup9/+wduAM9I/fvIlU/p40BTZsPKx2HdcxB/g755MiCh/esSlz0J2kKI9pO9S9/omLVdH4l300J9JN55NBga+Pzw58zaPwuD0cBdPe7i1m5/Jn3rNj555S5qK8qJu2IEg6fdgrP7b284DE9IIvPgftal76LB0IC99flncAPUHzhAsYe+AhYSEkJlSR371mVxeEsezY0GopJ8SRoTjldQpwv/exCig9OsNCITfYhI8CbjQAkpy9JZ//lRUldkkDQ6jJj+AVjbmCFw2zpC4jT9lrsHUj6G/Qtg92cQ3FtvK+l2Ldg6tH9t4rIkPdpCCNMrz9QPdTn4DTj7wrCnIPGm847razI2sezkMj7c/yE51TkMDx3OI8mPYJVXxQ+fzKLg1AkCoqIZ9ue78O/StVVfvuh0Ov977H42xxfz6K1vMCBowK9eW/zBh3yzezcNMd2IdRtB2q5CNCCqjx+9RoXhGSAzfIU4l1KK0wf1wF14uopOnvYkjQ4ntn8A1rZm6uH+f3Vl+kzulNlQkgaOntDrZki69ac9F0L8UbIZUghhfvWVsPkN2PYffWPSgPth4IM/z6Q+Q5OxiaUnlzJr/yxyqnOI9YxlZtJM4h26sunLzziyaT2dPDwZMv1WYgZd8YdmUiul+ODuP3HEMZfg6aN4rPdjv3rdrrv+zgp/G+zq/fFsiCFucCA9hoXg4ikrYEL8HqUUmYdLSVmWTkF6JZ087Ok1KoxuAwPNH7iVgvQf9cB9dAUoo37Ee+/b9XfWWmbhC9EaErSFEOZjaIbdn8L6V6C2GHpMheHPgFvwLy5tMjSx+ORiZh+YTU51DnFecdyTcA8DfPuxa/kidixagDIaSb76OvpcOwk7B8cLKmnlf99i/7Z1bLlWY/F1S856zGgwkra7kD2rMsnPz6fMezc9uwxh9HWDsXeS+bxC/FFKKbKOlJKyLIP8UxU4u7cE7kEB2NhaQKCtyNHbSXZ9BtX54BYKybdCz5uhk4+5qxMdgEUEbU3TRgNvA9bAbKXUP8953B74H5AElABTlFIZmqaFA0eAYy2XbldK3f1bX0uCthAWQCk4vkqfh118DMIGwagXIbDnLy5tMjTxXdp3fHzgY3Jrcon3jufuhLsZ4NePwxt/YMd3C6gsKiSqzwCG3PQX3P38L6q0o1s3svztf7G8fx5f3L6UwE6BNDUYOLwll31rs6gqrcfN0waV8Q0nu3ry4IMP4uEhh80IcTGUUmQfLSNleTp5aRU4udnR66ow4gYHYmNnAYHb0ARHl+ur3BmbwNpO7+HufTuE9JERgeJXmX28n6Zp1sD7wEggG0jRNG2JUurwGZfdBpQppbpomjYVeBWY0vLYSaVUoqnqE0K0IaNBPzVx0+uQfwA8O8PUL/UT2875QdVoaGRR2iI+OvAR+TX59PDuwTP9n6GvTx8ObVjLnJfvoqqkCP8uXRl194OEdm+bSQFh8YmgaQQVObLxxBYispI4sCGbhtpmArq4MXhKFK4H17A4rwoXp2Dc3WUkmBAXS9M0QmI9CY7xIOd4OSnL0tn89Ql2rzpNz6tCiRsShK05A7e1LcRdq98Kj+ojAvfNgwMLwK+7Pq0kfjLYy+ZncWFMtqKtaVp/4B9KqVEtnz8JoJR65YxrVrVcs03TNBsgH/ABwoBlSqnurf16sqIthBkYmmD/fNj8pr7JyCsKBj0EPSb/4kjkRkMj3574ltkHZlNQW0CCTwL3JNxDH+9kDq5fzc7F31BdWkJA1xgGXD+NsIRef6gPuzX+9/hD5BQU0MnpVqyUNRE9vOl5VdhPpzhm//UR5traEJmUxA033NCmX1sIocs5rq9w5xwrx9HVjp4jQ+k+JAhbewtY4QZoqIYDX+sTSwoOgJ2LPsUk+TbwjTF3dcJCmH1FGwgCss74PBvo+2vXKKWaNU2rALxaHovQNG0PUAk8rZTaZMJahRB/RFMd7P4ctr6jH4Hs3wNu+Ew/OfGcDUUNhoafAnZhbSGJPok8P/B5kj17cmDdaj5eegc1ZaUExcQx+t6HCO2e0OYBOz+9gj2rMynN98KuPo1Twdv5270P4BN49jHpRYcOUdev71nzs4UQbSuoqwdBXT3IPVFOyvJ0ti5MY8/q0ySOCKX70CDsHMw8edi+k96vnfRnyE7R20p2fQo7Z+ntcL1vg5irwcbOvHWKDsFS52jnAaFKqRJN05KARZqmxSmlKs+8SNO0O4E7AfnBKER7qK+E1I9h2/tQUwQh/eDqN/Ud++eE4wZDA98c/4Y5B+ZQWFdIL99evDjwRZI8Etm/9ns+XnoHtRXlhHSLZ9z9jxDcLb5NA7bBYCR9bzH712eRl1aBvZMNcYP7s3/NdtKcl5FhNRofev90fVNuLgXKCMj3EyHaQ2CUOxNm9iQvrZyUFRls++4ke9ZkkjgihPgrgs0fuDVN79MO6QOjXoY9n+utJd/cCp38oNctehh3CzJvncKimfJfcQ4QcsbnwS33ne+a7JbWETegROn9LA0ASqldmqadBLoCZ/WGKKVmAbNAbx0xxR9CCAHUlMCO/+orOvUV+mmOQx6BsF/Oo65vrmfhiYU/BewkvyReHvwyie7x7Fu9gtnL3qOusoLQ7gn0n/kEwd1a3SHWulIrGji0KZfDm3KoqWjExdOBQTdEETswABs7jWNbZxFSXMPmnM309v85aNfu2k2Rtw92Njb4+Z3/GHghRNsL6OLONQ8kkn+qgpTl6WxfdEoP3MND6XFlMHaOFrAm6Oytt8UNeADS1umr3Bv/re9LiR6jb56MGApWZh5hKCyOKf/1pgBRmqZFoAfqqcCN51yzBLgF2AZMAn5QSilN03yAUqWUQdO0SCAKOGXCWoUQ51OZC1vfg12fQFOt3hoy+K/nnSKSX5PPgmMLWHhiIaX1pST7JfPPIf+kh2sce1ctY/byt6mvqiQ8oRf9rptKUMz5j1y/EEop8tIqOPBjNqd2F2E0KkK7eTJ0ejBh3b2wsvp5pTysRy+q925hc/YmHkp66Kf7a3fvotjPl5DQUKzkh6UQ7c4/0o3x9ydSkF5Jyop0diw5xd61mSQMD6HHsBDsLSFwW1lD16v0W1kGpH6ir3QfXaZvAu99GyTeCI4ysUjoTPavtqXn+j5gFfp4vzlKqUOapj0PpCqllgAfA59rmpYGlKKHcYAhwPOapjUBRuBupVSpqWoVQpyj9BRseRv2fqlPFOkxGQbO/MVGIKUUO/N38tXRr1iftR6jMjI0eCh/ivsT8S6x7Fm5lNnLX6e+ppqInsn0v34aAVHRbVZmU4OB4zvzObAhh5KcauwcbYi/MpjuQ4Jw93M673MiEnpxfNsmijIzKKwtxNfJF4Dyvfuo6BFPr7CwNqtPCPHH+UW4cvWMBApPV5KyPIOdS9PZuyaTmP4BdB8ahIe/hZzO6hEOI5+DK56Ew4v1Ve5Vf4N1L0D89ZAwDYKS9GPhxWVLDqwRQvys4LB+kuPBhWBlCz1v0k9y9Dg7fFY3VrPk5BLmH5vPqYpTuNu7c13UdUyOnowXbuz+fjG7VyyhobaGyKQ+9L9+Gv6do9qszPKCWg78mM3Rbfk01jXjFdyJ+KFBdO3j/7uTC6pKi5l1z59JjS5j8s2PMDFqIoaKCjZMnMimIUO45ZZbiIiQY5mFsBRFmVXsWZPJyd2FGA2K4BgP4ocGE97DCytrC3v3KW+/vo9l/wL9XUArG/CPh+A+ENwbQnqDe5jM574EWMLUESFER2A0/NxzeGIV2HWC/vdB/xngcvYhMSfLTzLv6DyWnlxKbXMt3b2689KglxgVPorKnDz2zvuOI5s20NRQT5fe/el3/VT8Ijq3TZlGxekDxRz4MYesw6VYWWt07uVL/NAg/Du7tXojpYunN96h4YSXGtics5mJUROp27uXYm9vrDSNoCDZ2CSEJfEJdeGq2+KovSGKw1tyObQxh+8/PICzuz1xgwPpNigQZzd7c5epC+gB49+Gkc9DxhbI3gnZqXp7yc4P9WucfX8O3cF99FY8u/O/Ayc6PgnaQlyuqvL1b/67PtNH9Dn76m+B9rkTnDx/uqzZ2Mz6rPXMOzqPlPwU7KzsGB0xmmkx04h1j+HEzq0s+vxZso8cxMbWjugBQ+g19hp8wyPbpMy6qsaWH665VJXW4+xuT5/xERf1wzU8oRdFy0+zOGsbzcZmanftptjHB39/f+zsZGSXEJbIydWO5DHh9LoqlIwDJRzcmMPOpemkLs8gspcP8UODCOji3ubjQS+IgxvEjNVvAIZmKDwEWS3BO3snHFuuP6ZZg393PXSHtKx8e4TLqvclQoK2EJcToxHSf9RHVB1bAcZmiLwCrnoRYsaddchMcV0x3xz/hq+Pf01hbSGBzoE8lPQQE7tMxKbWwP61q/ho3avUlJfh5uvHkOm30v3KkTi6uF50mUopCjIqOfhjDmmphRiajQRFuzNwUhfCE7yxvsi3i8MTepG69Fs65TVzsPggrrt3UxIZQd/w8IuuXQhhWlbWVkQm+hCZ6EN5QS0HN+ZwdFseaamFeAY6621kff3NPx7wTNY2EJCg3/rcod9XU/xz6M7aqe+JSflIf8zZRw/cwb318B3YE+wspDdd/CEW9K9QCGEyNSWwd64+PaT0FDh6Qr97IOlW8Pq5tUMpxd6ivcw7Oo81p9fQbGxmYOBAnun3DIMCB5F39DCb//MBJ1K2oZQiIqEXiaOuJjyxF1ZWF3+qW015A8d25HN0Wx5l+bXY2lsTO1DfAOUV2HZHIAfFxGFjZ09wsSObMzaQmJODsUtnmZ8tRAfj7ufEoBui6DshkhMpBRzYkM2P846z9buTxPT1J66Nv3e0KWdviB6t30Bf9S460rLqnaLfjq3QH9OswS+uZcW7DwQng2ekrHp3ALIZUohLlVKQ+X/t3Xl8HOd95/nPU9X3gW407oMkwJsgKR6idcuSLVu2ZMfylbU9Mz4Sz85mE4+T16y9mdkjs8nsziSb18xuspNJJqdjTxwndpxEieVDtg5LtCRLJHXxvg+AIMDuRgN9d1U9+0cVGgcBEiSIi/y99SrV2dUPCk30t59+6nlecmuvD/092FVYfR/s+Xm3mz5/qH7oSHmEH5z9Ad889k2OZI4Q98d5Yv0TfGLTJ+gMtHLox8/y+g++Q/rCOULRGNve/Sg73vMYyfaOeRfTqtmcfuMyR166yPlDGbR2u/nafG87G/a0LVgfun/7W7/O4eP7yOzU3PdDH2/u3MGXvvQlYrFl+qYshLimmb4N69yQZPvD3fTunP+3YYuumHED93j47t8H1by7L9I8qa33O6BztzuqpVgUc70ZUoK2ELea0gi88Q03YF8+CsEE7PikO6Rw65b6YcVakWfPP8tTp5/iJ/0/wdIWGxs38qnNn+Lx3scpXbrM6z/4Dod+/AzVUom2tevZ+egH2HT/O/EH5nfjkdaaS6dH3a979w1RKVrEGoNsuqedzfd0zNo138104Hv/wDN/9l/JJs6zWt9FeetWvvgrv7LgzyuEWBylfJXDey/y9o/7GUuXiSQC9D3QydYHuog1LpObJ6+XY8PQ4Yka7/M/hfRxd58y3Frv7ndMtPeWWu8FI0FbiNuJ1m5Nx2t/5nbNZ5Xc/lv3/Dxs/Wj9jvaaXWPvwF6eOvUUz114jpJVoj3azmO9j/F47+NsaFjPyX2v8Pr3v8P5g29i+nxsuvdBdr7vg7Sv3zjvm4zy2bLXNGSQkUtFfH6Dtbtb2HxvB90bG1HG4r0hZAcH+NNf/hdEq5dJ9z3Ctrvu4oknnli05xdCLA7H0Zw7mObt5/s5ezCNUoq1O5rZ9lAXXZsal8fNk/NRzLizf7GjAAAgAElEQVR//8//1OvlZB9Ux9x94dTUHk66dkMwvrTlvUVI935C3A7yQ3Dw7+DAV2HwLfBHJ2qvO3YAYDs2+y7+lKdOP8XTZ59mtDpKMpjkQ+s+xOO9j7OzdScjFy9y+IfP8fyz/4F8Jk1DSysPfOqzbH/3o0QaEvMqYq1qc/r1YY68PMj5wxnQ0LE+wa5HN7N+d+uSDa/c2N5Joq0du19T8/ulfbYQtyjDUPRsb6ZnezO54SIHfzzAoZ8McPLAMI3tEbY91MWmezqWx8iTNyKSgg3vdSdwa72Hj3qh+1U4/6rbdSu4td6tfRM3WXa/A5rWS633ApIabSFWmkIaDj8JB78NZ14E7UDbdjdcb/9ZCDWgteZQ+hDfOf0dvn/6+wyVhgj7wjyy+hEe732cezrvoTyS4+hPXuDI3ue5dOoEKMWa7TvZ+b4Psnb3nnnd3Ki1ZvBkjiMvD3LitUtUyzbxVIhN97az+Z52Ei3Lo8/YH/yn3+TA4cOUunr5pS/8Ei3NLUtdJCHEIrCqNif2D/HWc/0MnRnFFzTZdFcb2x7qprn7FmznXMp6td6vTtR6V3LuvnDjRHOT5vVuV6+xNoi1urXfEsJnJDXaQtxKSiNw5B/h7W/DqedA224txINfgm0frbe9PpU7xXePfI2nTj3FubFz+A0/D3Q9wJfXfpmHuh+CssXxV/byt3/ya5w//DZoTdvaDTz8mX/OxnsfIJ5qnlcxs4MFTuwb4ugrg+SGSviCJut3uU1DOjckF7VpyFy0GX5q0TiWrnBJX6IFCdpC3A58AZPN93Sw+Z4Ohs6O8tbz/Rx5eZCDLwzQsS7Btoe7WLerFdO3wm6enE24Eda/x53A7er18rGJrgUvvAbHnwamVb76Qm7gnhy+61Obt92bpPvBGUmNthDLVWUMjn7XDdcnf+T2GpJcDds+5ra7bt8OStGf7+fpM0/z1OmnOJw5jEJxV/tdPL72cR5Z/QgRgpzc91OO7H2e0wf24dgWjR1dbL7/ITbf/xCpzhsfCVFrTWagwMn9Q5w8MExmoABA54YkW+7rYO2uluXVl+00Z7/8Zb7iN8mbo6z7+B38wo5fWOoiCSGWSLlQ48hLF3n7+X5ywyXCcb978+SDXcRToWufYKUr5yB3wW2SmB+CwhDkL02s5731YporAjm4owrXQ/mkMD4lqLe4y/6Vfz3lZkghVqJqEY59z20WcvxpsMrQ0AVbP+KG667d1ByLA0MHeKH/BV648AIncycB2N68ncd6H+N9Pe+jKZDi7FsHOPLi85x49WVqlTKxxhSb7n+ILfc/RGvvuhu+AUhrzeULeTdc7x9m5FIRFHSuT7JudyvrdrUQTa6MO/rf/MAH+PY73oEavcCJ91T42uNfW+oiCSGWmHY05w9neOv5fs6+dRmAnjua2f5QN92bF/em7WXJtqB4eWr4LkxanhzUS9mZzxFKTA3fMwXyWJs7cM+kgdSWE2k6IsRKUSvDiR+64frod6FWdP/Y7P6MG65X3c2l0jAv9r/IC899jZcGXqJoFfEZPva07eGjGz7Kw6seZlWsm/5jh3nz69/i6MsvUh4bJRSNsfkBN1x3bdl6w+2utdYMnxvj5P5hTu4fIjdcQino2tTIjkdW0buj+YaHQ18qtUtDDFarAITTYxy/cIxcJUciOL+bP4UQK5syFKu3NrF6axOj6RIHXxjg8N4BTr9xmURrmG3v7GLzvR2EosszAC440wfxdne6FqsCheFZQrk3XXzTPaYyOvM5wqlpgdwL4OPb2u9wQ/oyJUFbiKVQHoXTP4bD/+CO/FUZhUgT3PEJ2PZRrFV382b6oFtr/cZ/5Gj2KABtkTYeX/s4D3Y9yD0d9xA2Q1w6fZJj//gM39v7PGOXh/EFgqzbczdbHniInh27MX039mYwPvDDeLgeS5dRhqJ7cyO737eG3h3NhOOBm3lVFlXpwH6Gm1swDQOjXKRjKMhLF1/i/T3vX+qiCSGWiYamMPd+eB13faCXkwfcmyf3fusEr/z9KTbc1cb2h7ppWS3d5c3KF4REtztdS7XohfDh2WvJz//UnVulicd9+A9g56cW7meYJ2k6IsRi0Bouve3WXB//IZx/GRzL/fps88/Ato9yuX0rewdf4YX+F/jJwE8Yq45hKpNdrbt4sPtBHux6kPXJ9VRLJc6+dYBT+1/lzOv7KIxkMUyTnh272Xz/Q6zbczeBUPjGiuloBk/l3HB9YIh8toJhKlZtSbFudwu9d7QQit0atTiD/9e/56+Gh0js2EH55Wc4Gr1E7GN38+/u/3dLXTQhxDI2fH6Mt3/cz7FXBrGqDm29DWx/qIt1d7bi8994b01ijrR2R8ccD9+ptRBvW/RiSNMRIZZaKQsnn4UTP3IDdn7Q3d62He79Avb6RzgYjvLC4Mu8cOSPOLj3IADN4WYeWf2IW2vdeQ9xf5xM/wVOv/gq3zzwZ/QfOYhj2wSjUXp23MnaXXvo2XnnDfd3XavY9B/NcvZgmtOvD1PIVTF9Bqv6UtzzxFp67mgmGLk1wvVkowcOMLK1j+1r1lAt3cnYy8/w3Qt70Vqv/AEshLhBjnawtY3t2NjaxnKsWdctbV1z+5yPm8O5J1cMau9mvPFtGj1luX6c1hPHTj9GTzvXXM4xvtwB6nEfiTOrqJxcy6WvjPK9r7/OSO8ZMmtPUosWp5zjZlqo8y40xcL8Xf3c1s9x9xIE7bmSoC3EzeI4cPF1N1Sf+KE7UIB23Frrde+mtPYh3k52sD9/lgPDB3jjpV8lX8tjKIM7mu/gX+76lzzY9SCbUpuwazUuHHyLV5/5OqcPvEpu6BIAzat72PPBj9C7aw+dG7dgmNdfe6K1JjtY5NzBNOcOpuk/PoJjaXwBg9V9Tay7s4Webc1LNpDMYrDzBfrTl9FKsXr1aqyQj4PP/xAu5jiWPcam1KalLqIQc2Y5FrlKjlwlx0hlhJHKyMzrVXd9tDJKzanNGKAd7Sz1j4NP+TANE1OZmIaJT/kwlIFSqh7WFIrx3FbfNm3/5A/MMx4zabl+3NXOoSZt944Z6DqP6nyJZLqLzrNbaT62gaajG8m0nmOo+xhjqSGqoeJNvT6Ty7JSLGTriYpdWbBz3wy37jupEIuhcBlOPuOF6x+5d2IDdO4ifd8XeD3VyX57lNeH3+TQwd/F0hYA65Preaz3Mfa07eG+zvtIhpKMXh7i1L7X+PsDf825t9/EqlbwBYOs3raDd3zo4/TuupOG5hu74aNatrxa6wznDqYZS5cBaGyPsP3hbtZsbaJzfRLTf4v0GXsNpTde53JTEwro7u5Gt7WCUnQNh3mx/0UJ2mJJaK3J1/KzBuXZtudr+VnP6VM+EsEEyWCSRDBBd6ybRFOCgBGoh1mf4ZsSamfaPq/jZnjMbOcYD9QrVT5b5uALAxx8MUjT/jUAxFJB2tcmaO9N0L42QfOq2K3TP7e4JgnaQlyPasEdXev0C264HjgAaHSkibO993GgeTX7VY3Xs0c4M/B3MAABI8C25m18dutn2d22mx0tO0gEE9iWxcVjR3jzb/6W0wde4/L5swAk2trZ/u5H6d21h1V92/EFrv+GQ6012YtFznq11gMnvFrroMkq72bG1VtTNDTdWFvula60bz/DLS20tbYSCoUgFKJj3UbGRo6xd2Avn9/++aUuoljhKnaFkfIIueq1a5rH56OV0fqH8ZnEA3E3MAcSJENJehI99QCdCLhhOhlMkggl6sdF/dEVHVxXmlhjiLs/tJY9H+hh+NwYl06NMngqx+DJHCdeGwLA9Bu0ro7TtjZB+9oG2tcmVlyvTWLuJGgLcTWjA3DuZfdO5/Mvu90QaZuaMjjcvYMDuz/MAR8cGD1FpvgGnHuDRDDBrtZdfGTDR9jdupu+pj4CZoBapczF48c4+NJ36D9ykIHjR7AqFQzTpHvLVh56+PP07tpDqrP7ht4Yq2WLC0eynDuY5uzBNPmM+3VaqjPKHe9axZqtKTrWJ6UmBcjv309m9Sp29/TUt/Xs3M3FvznKwfNvkK/miQVuwWGYxU1hORZncmc4lDnE4fRhhopDU5pm5Co5SpN7RZgmZIZoCDbUg/H65Pp6YJ48TwaT9eMaAg34DHnLXilM03BrsHsT7HhkFQD5bMUN3adzXDqV481nz/P6026TingqRPvaBi98J2jullrvW4X8qxVinGPD0CEvWL8C516B3DkKSnEsHONYy1qObn2Qo8rmWGmQsp2GbJpV8VU80P0gu1p3sbt1Nz2JHgxlUMqPMXD0EC/94L/Rf+Qgl06dxLEtUIqWNb1sf9ejrOrbzurtOwlGItddXNt2GD47xsDxEc4dynDxxAiOrfEHTbo3N7LnsR5Wb226PUY0uw66VmPg7FmsnjWsXr26vr1nx25e+tZf0jrs45XBV3hk9SNLWEqxXNScGqdGTnEofYhD6UMczhzmaOYoZdttfhUyQ7RH20kGk7RH2tnYuHGiZnlacB6fh3zyb/J2FGsMsv7OVtbf6TYBtGsOw+fH3PB9apSLJ3Mcn1zrvSZeb27StrZBar1XKAna4vZVGYMLr7mh+vwrOBdeo98ucCwQ4GgsxdHmFMfatnGhNt6JfpZ4zWJT4yY+vsoN1rtad9ESaQFgLHOZ/oMHeebI9+k//Ha9KYjp89G2biN7PvhhurZspXPjFkLR668ttWo2Q2dG6T82wsDxEQZP5bCq7o1Lqc4oO969itXbmuhYl5CakKsoHznCcNzt93Zy0G5ft5FgNMaaTJm9/XslaN+GanaN4yPHOZw+PCVUVx13YKOIL8Lm1GY+vvHj9DX10dfUR09DD+YNDgQlbm+m33Dbbq+d6DEqny0zON7c5FSON549z4GnzwEz1HqvimGa8rd+uZOgPU8/972fw3IsNjRuYH1yPRsaN7CxcaOMLrfcODZkz7htqs+/QvHcSxwbOc4xv88N1tEEx7uaKOgk4N5VvibWSF/jRj6S2sTGxo1satxEe7QdpZTXBnqACy/t57UjB+k/crDeM4g/FKZz42Y23fdOujdvpW39BvyB66+JqFVsBk/lGDjuButLp0exLQcUNHXF2HJ/J10bknSsTxJpWLkDxyy24r59XG5pJhmP09DQUN9umCZrtu+k8OZL/OjCi9LN3y2uYlc4nj1er6k+lD7E8ZHjWI7bRjruj7OlaQuf2vwp+pr62NK0hTUNazCUBBuxcGKNIdbfGZJa71uIBO156mvq42D6IN8/832+Wf1mfXtLuIUNjRvYkNzA+kY3gK9LrJOvDBdDMQNDh7AH3+LSxf2cTx/mwtgFLhgOZ/1+jgaCnA+b6LD7hyzmj7KxcRM/07iRTalNbGrcxLrkOiJ+tzmH1prR4SGGDp3kJ2d+xNDpkwyePE4xNwJAuCFB9+at7Hr/h+jespWWNb031O1etWRx8WSOgeNZBo6PMHRmDMfRKAUtq+Nsf7iLTi9Y37ZD/94ExX37udzWxsbe3iv29ezczbGXX6Q8eJnTudOsTa5dghKKm61klTiaOcrhjFdTnT7MyZGT9RsPGwIN9DX18em+T9PX1MfW1Fa64l0SqsWSu+5a76aQd7x7k2VTt9R6LzUJ2vP05Xd8GXDD2FBxiBMjJziePc7xkeMczx7nL4/8Zf1rR0MZrIqvYkNygxvCvVrw1fHV8tXjjbBr5Aff5MKFl7gw9AYXRk5yvniJC06FC34fAz4fllLgB1JxfBh0hlvY2LyVDzZtZlPjJjalNtEZ7azXXDq2Tab/PGcOv8zQmZMMnT7F0NlTVAoFAJQySHV103PHLrq2bKVr89YbvnmxlK8yeDJH//ERBo6NcPn8GFqDYShae+LsfO9qN1ivS9zSfVovJq01Q4cPU37g/inNRsb17NgNQOdlt5s/CdorT7FW5EjmSL3px6H0IU7lTtX7h24MNtLX1Mc7u9/JlqYt9DX1TfkbIMRyd/Vab/db0OOvut+w+vwGLWvi9bDevjYh34AuMnn3vkmUUrRF22iLtnF/1/317bZjc27sHMezx6eE8B+d+1F9dKegGWRtYi3d8W7aIm20RdpojbTSGmmlLeouB83b7+sgRzvkKjmypQzDmeP0D+7jQvqIWztdzXJe1xiZ9kk9EQrQHWxlS6yb9zZtpju1kVUNq+vXdvJd+7VKmeGzZ3jjzHcZOnOS4TOnuHzuLFbN/WDk8wdoXtPDpnsfpLVnHa29a2le3XNDzUCqZYvhc2MMnRnj0plRhs6O1vuyNn0Gbb0N3PlYD50bk7T3JvAH5YPXQqidPcslv/samClox1PNNK9aw/os7B3Yy2e2fmaxiyiuw1h1rB6qx4P1mdyZ+t/W5nAzfU19PLL6kXqb6rZIm4RqcUuZqdZ7LFNm8FTO7V7wdI43fnSeAz9wa70bmkO09Uqt92KRoD1ftgXm7JfRNEx6E730Jnp5lEfr20tWiVO5U27wnhTCX+x/ccZuoRqDjVeE7/ZI+5RtcX98Wb+BONphrDpGupwmW86SKWfIlrPuemGIzNgFssUhMuURMrU8OV3FnnYOn9Z0ONBtRnlvZBXdyXV0t26nu2MP3cleGgINVzyvbVnkhi5x7tgB0v3nGTp9kqEzp8gO9KO9Wq5QNEZr71p2vO8DtPaspbVnLanO7htqAmLXHC735xnyAvWlM2NkBwv14X7jqRCtPXG2PdRFe28DrT0N+PwSrBdDcd9+hptbCAUCNDc3z3hMz847Gf7OOZ6+sI+SVSLsuz37Gl9ucpXclKYfh9KHODd2rr6/LdLGlqYtPNb7GH0pN1SP36gsxO0mngoRT4XYsMcdmtyq2Qyfy7vh+/Tstd6N7REiDUEiDQEiDQHCcT+GhPB5kaA9X79/rzs6YLwD4m3evP3KeawNzIl2tWFfmK1NW9natHXK6cZHBhsqDnGpcIlLRXcaKg6524qXOJg+SKacuaIoYV+Y1kgrUX+UoBkkaAYJmSGCvmB9PWgGCflCBMyAu2+Wdb/hx9Y2FbtCza5RsStUnSpV250qdoWa4223J7ZXneqUx1TsCtlKlkwpw0gliz3L8L5x2yHl2KRsm9W2w04MGv0NNIWbaIy20dSwhq6O3bSvuh9fvO2KxzuOzdjlYc4MHCc7OEB2cICRiwNkLw6QG76EdiaeN9bUTGvPWjbe8wCtvWtp61lHvLnlhj6kOI4mO1hg6MwYQ2dHGTozyuX+PI7lpupw3E/rmgbW39lK65o4rWsa5Gu7JVTcv490Wyur16zBMGZ+8+jZsZvX/uHbpIYNXh18lXd2v3ORSymy5awbpjMTNyr25/vr+zujnfQ19fHE+ifoa+pjc2ozzeGZPzgJIcDnN+lYl6Bj3dVrvR172lDpCkJRfz14RxIBIvGAG8bHlxPuvlDUjzKWb2XfUpGgPV+7PwOZ0zA2CPlBGD7qLuvpdbFApHlSAJ8extsg3IgKNhAPxIgn1rIuuW7Wp63a1Snhe6g4xGBhkOHSMMVakYpdoWgVGamMULbK9dBbsStUrMpVRx+7Xn7lI6BMgsrAj0EQCGiNX2tCjk13tcwd1SIp26bRdtw5Bk3hVhobumlM9uJP9UJyDTSugWQPRFIwLfhqx2Esk2bk7BtkL7phOnuxn5GLA+SGBrGtiZ/JHwyR7OiktXcdm+57J40dnSTbO0l1dhGOX1nrPRe25ZAdLJIZyDN83q2xHj43Rq3i/q79IZPW1XF2vHsVrWsaaO2JE0+FlvW3DLeb7BtvMrrnTu5as2bWY7o2b8UXDLImHWNv/14J2gtIa81waZjD6cMczhyuzy8WLtaP6Y51s7Vpa71LvS2pLTSGGpew1ELcGqbXets1h0KuQnG0euXkbR88maOQq2LXrqw0U4YiHB8P5UEiDf6J2vFpoTwQ9t02740StOfJuecXMabfyOjYUEzD2EU3dNfngxPrg29BYQhmqeHF8EMwBsE4BOLuPBiDgLstEIzTHYzT7a0TjENyJ7TG3IDq2G7Yd2z3ORwbHKu+zXIsqlaFsuMG74pToWJXKTtVql5ttK9WIlAtECzn8VfGCJZzBMqj+EsjBCt5Amj8Gq6oFzSDblAOpyDSCi2rvAC9ZmIe74BJNYqObVPIZSlkMuQHjlMYyZDPZshnMhSyaTdgD17EqlYmnsbvJ9nWQaqrm3V77ibZ3kljRyeNHV1Ek403/I9YO5rRdJl0f57MQJ70QIF0f4HcpSKO437aN3yK5u44m+/toLXHralubIvIp/llzEqnGSi5zbJmap89zuf3s3rrHZROHOCF/hcXq3i3PK01/fn+eqA+lDnEkfQR0uU04HWp2bCGnS07+Seb/wlbmrawObVZukoVYpGYfoOG5jANzVdvLqe1pla2p4XxqQG9NFolM5CnmKvW3zenPJfPIDw5iM80JdzAvtLvWZKgPU9f+Ve/SD6bIRSNEYrFvHmc4JT1VoLRtYTWxOv7Q9EYwWAAVZoUyMs5dxCV6pg7r+S9dW9ezMDIuYl91bEbLrfPm64+HqGCcNILzCmIdUOrF6DDjRBpnNhXnzeCP1KvjXZsm2JuhHw244bnYxny2ecoZNMURrLkMxny2TTF0Rzo6V9ZKaKJJNHGFA3NLazZvoNkexeN7Z00dnYSTzWjZvn6f66Ko1XSA3ky/QXS/W6ozlwsYFUmvpFoaA6R6oyxdkczTV0xUp1Rkm0RGRRmhSnu38/llmZMw6Czs/Oqx/bs2M2p/a+SHRzg3Og5VjfMHszFlWzH5uzo2XqYPpxxa6rHvL9ZpjJZl1zHA10PsKVpC1tSW9iU2kTUH13ikgshrkUpRSDsIxD2kWy7eorQjqZStGYM4+PTWKbMpTOjlMeqV8QAAF/QJNIQINoQIDxDIG9d00A0uXw7jJCgPU/bH3iYfCFPpZCnXMhTzo+RGbhAuZCnks/Xe7CYkVKEIlGCXiAPhCP4g0H8wRD+UAp/qINAKOyuNwTxh8Lu/lAIfzCMPxDAbzoEDBsfNfxU8TklFIBhgjLdueEDZaCVARhow5w0V2CYaIyJuXdszfFRrZSplkpUS0Uq3rxaKlEdKVK9WKRaGqZaOku1VKJSKk7sH18ul2cM0JGGBLHGJmKpFG1r1xFtbCLWmCLamCLmTZFE8oZuRpxOa01xtEpuqOg1/Si44XqgQGmsVj8uHPeT6ozRd38HTZ0xUl1RUh1RAiH5Z3IrKO3bz+XWVjo7O/H5rv47He/mr2s4xN6BvRK0r6Jm1ziZOzllNMVj2WP1m7oDRoBNqU28v+f9bnd6qT7WN66/LXtSEuJ2owxFKOYnFPOT6rz6B2nH0ZTzNTeQ56oUx6rufFIozw4W6T+WpVKYaCr6ns9tYdM9HQv9o9wwSRDzlPrKX5AYyRHZtYvwrl1E3ruLUF8fKuDe8FarVqjkJ0J4uVBwQ3l+bGJb3g3q1XKJsUweq1KmVi5TLZepVcpTbuS7FqUMUNR7uNDoK4PuTaIMg0A4TCAcIRiO4A+HCUVjNDS31rcHwhFijY1Ek254jqZSRBqSmNcIOtdLO5pCrkpuuEhuqFSfj3jL40OVg/vpuKkzSs8dzTR1xmjqipLqjMlNire40QMHyGzexJaenmsem2zvJNHWzroRzYv9L/KpzZ9a+AKuACWrxLHsMQ6nD9e71TsxcoKa435gjfqjbGrcxMc2fKze9KM30YvfkAGWhBBXZxiqXktN99WPtS2H0pgbvuOp5T0QoATtedBak/pnn6a4fx+l/QcYe/ppAFQgQGj7diK73fAd3rWL2KrZb7661nPYlkWtXKJWKVMrVyaWKxWqk7d7Ad1N2WriXkKlJq0rt+2ycttEjh9Ub8+s3P1KKfzBEIGIG5YDoTDBSGRSgA7jCwQX9WYG7WjyIxVywyVyQ+OBusTIUJHR4RLWpJszDFPR0Bwm2Rqme1MjidYwidYwydaIe4OitKW+rTjFIgNDl9BbNl+1ffY4pRQ9O+5k5Nnv8lz/q1Tsym1XAzveR/XkGxVPj56uD/ySDCbZktrCp/s+zZbUFrY0bWFVfJWMprjAHMfBrtSwylXschW7WsUuW9iVKnbVwqnWcKo17KqNU7Nwqja6ZuFYDrpm49RstO24bxMa0Nqti9H12plJ27wN43U1Wtcfp5lYVvWHT2yrnwsNWk09P0xdnut8Dub8l30+9U8LU3clblDpoVWseXTPUhdjVhK050EpReMnP0HjJz8BQG1oiNKB1ynt30/x9QOkv/Ln8Ed/DECgp4fw7t318B1Yu3ZOIVUphc/vx+f333BvGSuB1m47rsJIhfxIhUK2Qj5brq+PZSqMDpewrUlh2qdINIdJtEZY1Zci2eIuJ1rCxFIhDAnTwlN68y0uN7o9VaxatWpOj+nZsZs3fvAd4sOa/Zf2c2/nvQtZxCWVLqXdUD2p54/zY+fr+1sjrWxJbeG9Pe91Q3VqC+3R9tum14Dp7KpFcThLaShLOZ3HLlVwag6OZaGrNtpycCx37k4abAdtaxifHNzJBqVBOQq0QnmToRUKAwPDm5uYysRQc2tOZ3qTy/CmG3vLd+o37ev6YEBa60nbpu6bvHXqfnc+df/0NW9ZXbl9zub4spz5jJKiVxptzdDL2zIiQfsm8re24n/fozS8zx2YximXKb/9NsX9BygdOED+mWfIffvbAJiJRL22O7J7F6Ft2zDCt+bAGNrRlPI18tky+Wxlapge8daz5SnNOwBQEIkHiDUGSbaGWbOtiUTLRM10NBmUMC3mpHTAHaimpamJ8Bz/na3euh3DNFl9OcqL/S/eEkFba82l4qUptdSHMocYKg7Vj+mOdbOlaQsf3fBRNqc23xZ9VNcKZQqXMpQv56ikx6iOFLHGytiFGrpoQQWMmoHP9uEnQMCY+Kp6PMLOtDaZrS0c7eBgo3FwcNy50mjloBWgHBwTtDHpVAZgKpSp3LnPqM+Vz8DwmSi/ieE3UD4fRsDECPgwAyaG348R9GEG/O4U8mMGA5hBt79jw6A8legAABmvSURBVHCbGirDBMP91tNddpsGztbXvBBi7iRoz9PZg2m0owmEfATCJv6gj0DIJBDyYYZCRPbsIbLH/UpDa0319GlKBw5Q3L+f0oHXyT/3nHsin4/A6tUEVq3CX5+vcufd3RjB5fG1tW05VIoW5UKNSqFGuWhRzteoFGveNoty0dtXsCjl3ZsZpneCbxiKaDJINBmkuTvGmu1NxLz1WGOIWKPbGb4MCytuhvy+/aQ72tnR2zvnxwTCEbo2b6V48RB7+/fy5Xd8eQFLePPV7BoDhQEOZw5P9PyRPky2kgXAUAa9Db3c1X4Xm1Ob6WvqY1Nq04yjq64kjuNQHS1QvDTiBufMGLVcCWu0jFO00CUbVQHDMvA5fvwE8RsT92eYQBgTiOJoh6ouY6kqtmlTDVephmqUIhWMWAB/IkwgGcEXCWIE/JhBH75QwA26wQC+UKAebCW0CnF7kqA9T89//Shj6fKM+wxT4fdCdyDkhfCwiT+4icDmPgI7PodJDZUeRF88j04PYV++jHPyBJTfQmkHpW0UDr5kgkBLM/62ZgLtbQQ72vB3tBPs7MCXbMAwFIapUIbCsTW25bhTzcG2pq9PW65dud+yHCoF64oAXSvP/hWNUhCM+glF/YSiPiKJAKmOqBeeg1PmkXhA2kmLRaFtm8GTJ6h1d8252ci4nh27OX/wTQYuXeBi/iIdsaW9s73m1MiUMqTLaS6XLpMupUmX0+68lOZyeWJbrpKrP85n+NiQ3MC7Vr+LLSn3JsWNjRuJ+K/eNddy4Fg2pXSO4lCWSnqUSqaINVrCyldwChaUHVQVTMvEpwMEVBBTTby1+QG/939bW15wrmH7bCrhCpVwDSPiwxcL4kuECaaihJobCLc2Em5swPCt7D58hRBLS4L2PH3oizvrAbRWtqmWLare3N02sV4t25TzNcbSZaoli2rFdkcV1ACr3KkRd5rNqDcdA8h6081j+g1Mn4HpUwQjbmCOJYM0dcUIRfwEoz4vSE8sByNu1z2BoCnhWSw7lWPHGIrGgKsPVDOTnh27eeHrX6HrcogXB17kZzf+7E0vn+VYZMoZNyiXLteD8/hyppSpL49URmY8R9QfpSnURHO4mXXJddwVuoumcBNtkTY2pzazPrkev7l8ev6wKlUKg2lKgyOUhnNUMwWsXBknX4OyxqgpTNvErwP4VWjKDZZBIOj9v+ZUqVHBMmrYARsrUKIcrmBGA/jiQfzJCMFUjFBTgkhbkkBDVGqWhRCLSoL2PF2rs/Zr0Y6mVnVDum05OLbGcTTa0e5yfd3BtjXa1tilMtWhy9SGhqkOp6ldTmNlRqhmR7BGRjHsGsqxMBwLw6m5c21hhoMEYmF8DTH8iTj+ZJxAYwP+VIJAUyP+VCO+phS+VAozlVo2zVWEmI/iPnegmng0SjKZvK7HtqzpJZpsZF3WZm//3jkHbcuxyJazV4TmmWqhRyoj024Mc0V8EZrCTTSFmuhN9LKnfU99vSnshurx5bBv6e/vcBzHrXm+mKY0lKOSzlMbKWKPVaHooCrgs3z4dZCgMVFet645AASoOmU3OJsWtaBFLWijIlXMqB9fQ4hAMkKwqYFwS4JISyP+6PLu1ksIISRoz9MPv/qPaEfTkGwg0ZQk0Zoi2ZEi3DC3Ec6UobymJdf7q+iacau2bexcDjuTwcpksDNZ7Oz05Sz2hX6stzLksyNgWTOeS/n9GLHYxBSNYEYnrceiGNEoZiyGEZ3YZkajkx4TxQiHUTe532wh5qq4fx/D7e2s7em57l4y3G7+dpN/+Tm+NfAylwqXGKmMTG2mMa3JRrqUJlvOzhiew75wPRyvaVjD7tbdV4Tm8TC9XJp1VAslCgNpipeylC+PUssUsUYr6IIFZY1ZM/A7AQIqVG+yYQBhDMLEsLVFRZewjBq1gEUtbFOKVvE1BAl4zTQi7Y1E25skOAshbjmSfubp4JkjZJ38Fdv92kfMDBH1R4iHY8SjMRoSDSRSSRItjSTaGom3JDFu8s1+yjTxpdxa6bnUR2utcUZH3SCezU4J6E4hj53P4xQKOPkCTj6PNTyMfea0u14ooMszt0+/gs+HEQqhwiGMYAgjHEKFwhjBICocdveFQlOOUeEQRiiMCgXd9UDAm/yoQACjvj7D5A9gBPzg99+2XZDdTrTWUKvhVKvo8alSQVerDL/9NqX77rvuZiPjenbs5uDzPyJ8ucZ7vvWeK/aHzFA9IHfHutnZsrMelpvDzW6QDrnz5RKebcuieClL4WKGynCOSqaAlSth52tQdDCqCp/lI0AIvzHxl8RtsBFC6yBVXaKqqtg+i3KkTCVSw2wI4E+GCTbFCbUmiHY2EWpskOYaQojblgTtefrlX/sSlUKZ3MUM2UtpRtM5RkdyjI2NMlbMk68UOTfSTzFbQfdPfayhFREVIuYPEwtGiYTChIIhQuEQ4XCYUDRMOBom0hAjHI8QSUYJNUQxb+LNOUopzEQCM5GA6+iRYZyu1XAKBex8AaeQx8l7U6HghvR8AadcQpcr7rxUxqmU3Xm5jC6XsUdGsMolnCnHVKBWu3YB5vIz+v1TQ7jP59aw+30o0zd13eefWPeZU9aV3wc+7xjTBNNwu8Ian/vMqeuT56YJpjl13fDmKDDcwYOUYbh3larp6+PdcM22PsOHidlGBL3Kdq01OBq0445Ieq1l2555u2WjbQssG23baKsGtu1un7JsgW1duew9xg3NtSnBWVerMwbq2QyucQeLutGgveaOXaAUn/C/h8TdO6fUPjeHm4n4IkvyYc5xHKx8icpYkdpYiWq+hFUoYxcrWKUqdqmGXaxij1XQBbenDbPmtnsOqHC93bMJRPABcWpOlSplLLNGNVyjGrYwYhV8iRCBVJRwa9KtfW5rwgzI24cQQlyL/KW8CYLREK3rO2ld3znrMbZlMzaUZWQwQ244Sy6bYzQ3ylghT75cYLiQoZyvUtU1tz/V2WgIKB8B/IRMP0EzQNAfJOQPuiE9FCIQCOAP+PEH/ARCQQIBP/5QkEAogD8UIBAOulMkRCASnFetuvL7MZNJzOts+zoXulbDqVTQZS+UTw5XtdoMoas27Zjq1GO8x2BZ6JqFtqyJEDi+Xq3iFIvuNi/8udOkY7zHYdtuuLRtcJxr/0DCZRjeBxkfyjTdDxvjH3pMc+q+SR+QjHjM/RbDH0AFg1O+4TDG1+v7vG89gkGOnD9P4PJl2trabqi44XgD7es2oAasGx6K3apUqea9QDxWxCpUsAplrGIF2wvFTsXCqdjugCdVBywNFijLHczEcAwMbWLiw8SHT838bc3EQCU+wIejg1R0GcuoujcMBkuUozXMhiCBxgjBpjiRtkYiHSlCidgN/XxCCCFmJkF7kZg+k2RnM8nOqw/84DgOlbESxVyeYq5AeaxIMV+kXChRKpYolctUyiXK1QrlaoWKVSVbGqVaqFLRNSx1/YHP1AY+5b19KxO/YeIzfJjKxDQMTMP0Jm/Z9GGaBqbpwzc+9/kwTRPT58Pnc+emz8Tn92H4TEzTwDBNd5/fh2GamD7T22di+E18ftPd7jcx/X53fyiML7b83/y11lOCt7YdcGyvxteZCOYzbR8fpthx3FplR3tDHY+vjw+XfI31GT6gzVrTOut2wx24wjDAqy2fWDbcXmWmLxvG1GMUXs2/G5brodnn82r1F7cZwcX/8l9YtWpVvfmC+7vS3ih97mh9U5Ytt2a+vmxrtvTcz/GXfsLRv/gRuuJMCcXUdD0UGzao8UA8HoqVb0p3c/VLzfiNgAbjjTLAHdjE1hY2FraycZSNNhysgA0+G3w18CtUwMQImu6AJGEfRiiAL+zHjITwx4L4oxECiQiR5qR0USeEEEtE6dm+Rr4ZJ1fq/cDv4Faw/LHW+jen7Q8CXwXuBNLAJ7TWZ7x9/wb4PGADX9Raf/9qz7Vnzx792muv3fSfYaWxKjWqxQrVUplqsUq1XPGmGrVKhVqlSq1So1qtUqvVqFWrVGsWVq1GzapRsy0s26JmW9iOja0dHO3O65M3qtn48lyHu71hGgwU7oDECqUmLU/fVt9nuNvUxH5DKZTyHqXAwAuS3rLbAsOboyaWlVF/vNvKY+IcKIU7c0Oc8ppxuL0ceuVSuAHU21/f5u13H+g+58Q56pu955h23LT9N+c663rm1+7/vPmk7VrX97kP0YB2PxdMXga3CYl2Pzxqr1mKxmueojXO+LbpExPL7jEOjtbuqHraqW+vLzPpGO+xDhP7ilS4k/XstnvdDzH2zfubZzlVLCyc8VBsaLThoN3KZPApVMCYFor9mOEAvkgQXzSELxrEHw0TiEcIxMP4QtLbjxBCLHdKqX1a6z3XOm7BarSVUibwe8B7gQvAq0qpJ7XWhyYd9nkgq7Ver5T6JPBbwCeUUn3AJ4GtQCfwQ6XURq318h7QfhnwBf34gn4ijYtTC+w4bi1grVLFrtSwaha1Sg2rWsOuWVhVC9uycGwH27JxLBvbdry5heN4220H27bdddtdry877mPGw5R2JoUuZ1oYmxTqJoKYUw91tuO+hMYDnTMpHDp4y/XtTIQ+rw8JPeU/6ueqHzu+bdrygn8YWYaUhvGPD6r+n/dhwz0Co76XafvdIwxlYEz+AFX/0ON+u2J4y5O3G8odWlp5yz7Tx672bUTDUZQ5Pny1V1M/vjy+3Zy8PHVbfjQDpsIfDxOIh/FHwlJTLIQQ4qoWsunIXcAJrfUpAKXUN4AngMlB+wng//CWvwX8Z+VW8T0BfENrXQFOK6VOeOd7aQHLK26AYRhggOkPQ2zp+/JdzhyviYd23A8GbhMR3OXJNcT1Zadei+xumNgGuB8GJh2r1E1okqGo19yr8RsuZ1hXM+03jPryrdjLRIr4UhdBCCHECrOQQbsLOD9p/QJw92zHaK0tpVQOaPK2vzztsTN3HL3Efv0fDnJoYHSpiyGEEEIIcdvp62zg3/7M1qUuxqxWdLWTUupfKKVeU0q9Njw8vNTFEUIIIYQQom4ha7T7gVWT1ru9bTMdc0Ep5QMSuDdFzuWxaK3/EPhDcG+GvGklvw7L+VOUEEIIIYRYOgtZo/0qsEEp1auUCuDe3PjktGOeBD7rLX8ceEa7DVKfBD6plAoqpXqBDcBPF7CsQgghhBBC3FQLVqPttbn+AvB93O79/lRrfVAp9RvAa1rrJ4E/Ab7m3eyYwQ3jeMf9Ne6NkxbwS9LjiBBCCCGEWEkWtB/txST9aAshhBBCiMUw1360V/TNkEIIIYQQQixXErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWABKa73UZbgplFLDwNnrfFgzcHkBiiOmkuu88OQaLw65zgtPrvHikOu88OQaL46lus5rtNYt1zrolgnaN0Ip9ZrWes9Sl+NWJ9d54ck1XhxynReeXOPFIdd54ck1XhzL/TpL0xEhhBBCCCEWgARtIYQQQgghFsDtHrT/cKkLcJuQ67zw5BovDrnOC0+u8eKQ67zw5BovjmV9nW/rNtpCCCGEEEIslNu9RlsIIYQQQogFcVsEbaXU+5VSR5VSJ5RS/3qG/Z9TSg0rpV73pn++FOVcyZRSf6qUGlJKvT3LfqWU+l3vd/CmUmr3YpdxpZvDNX5YKZWb9Dr+tcUu40qnlFqllHpWKXVIKXVQKfXLMxwjr+V5muN1ltfzPCilQkqpnyql3vCu8a/PcExQKfVX3mv5FaVUz+KXdGWb43WWjHETKKVMpdQBpdQ/zrBv2b6WfUtdgIWmlDKB3wPeC1wAXlVKPam1PjTt0L/SWn9h0Qt46/gK8J+Br86y/zFggzfdDfy+Nxdz9xWufo0BXtBaf3BxinNLsoD/SWu9XykVB/YppZ6e9vdCXsvzN5frDPJ6no8K8G6tdV4p5QdeVEp9V2v98qRjPg9ktdbrlVKfBH4L+MRSFHYFm8t1BskYN8MvA4eBhhn2LdvX8u1Qo30XcEJrfUprXQW+ATyxxGW65WitfwxkrnLIE8BXtetlIKmU6lic0t0a5nCNxTxprS9qrfd7y2O4f9S7ph0mr+V5muN1FvPgvT7z3qrfm6bflPUE8Ofe8reAR5RSapGKeEuY43UW86SU6gY+APzxLIcs29fy7RC0u4Dzk9YvMPMf9I95XwN/Sym1anGKdluZ6+9BzM+93leY31VKbV3qwqxk3lePu4BXpu2S1/JNdJXrDPJ6nhfvq/bXgSHgaa31rK9lrbUF5ICmxS3lyjeH6wySMebr/wX+Z8CZZf+yfS3fDkF7Lv4B6NFa3wE8zcSnIiFWkv24Q8LuAP4/4O+WuDwrllIqBvwN8Cta69GlLs+t6hrXWV7P86S1trXWO4Fu4C6l1LalLtOtaA7XWTLGPCilPggMaa33LXVZbsTtELT7gcmfHru9bXVa67TWuuKt/jFw5yKV7XZyzd+DmB+t9ej4V5ha66cAv1KqeYmLteJ47Sz/BvgLrfW3ZzhEXss3wbWus7yebx6t9QjwLPD+abvqr2WllA9IAOnFLd2tY7brLBlj3u4HPqSUOoPb/PfdSqn/Nu2YZftavh2C9qvABqVUr1IqAHwSeHLyAdPaV34It72guLmeBD7j9dhwD5DTWl9c6kLdSpRS7eNt0pRSd+H++14Wf2hWCu/6/QlwWGv9n2Y5TF7L8zSX6yyv5/lRSrUopZLechi3Q4Aj0w57Evist/xx4Bktg2tcl7lcZ8kY86O1/jda626tdQ9uhntGa/3Pph22bF/Lt3yvI1prSyn1BeD7gAn8qdb6oFLqN4DXtNZPAl9USn0I9074DPC5JSvwCqWU+kvgYaBZKXUB+Le4N4Wgtf4D4CngceAEUAR+bmlKunLN4Rp/HPgflVIWUAI+uVz+0Kwg9wOfBt7y2lwC/C/AapDX8k00l+ssr+f56QD+3Ot5ywD+Wmv9j9Pe+/4E+JpS6gTue98nl664K9ZcrrNkjAWwUl7LMjKkEEIIIYQQC+B2aDoihBBCCCHEopOgLYQQQgghxAKQoC2EEEIIIcQCkKAthBBCCCHEApCgLYQQQgghxAKQoC2EEDdAKZWfwzG/opSK3MTn/LBSqu8mnu8n83hs3pt3KqW+dZXjkkqpX7zR5xFCiJVMgrYQQiycXwGuK2h7/fHO5sPATQvaWuv7bsI5BrTWH7/KIUlAgrYQ4rYkQVsIIeZBKfWwUuo5pdS3lFJHlFJ/4Y0a+UWgE3hWKfWsd+yjSqmXlFL7lVLfVErFvO1nlFK/pZTaD/ysUuq/V0q9qpR6Qyn1N0qpiFLqPtxR5X5bKfW6UmqdUmqnUuplpdSbSqm/VUo1eud7Tin1/yilXlNKHVZKvUMp9W2l1HGl1P85qez5Scu/qpR6y3vO35zh5+z1yv7WtHP0KKXe9pa3KqV+6pXvTaXUBuA3gXXett9WSsWUUj/yrsFbSqknJp3nsFLqj5RSB5VSP/BG2kMptV4p9UOvbPuVUuu87V/2rtObSqlfv6m/WCGEuAkkaAshxPztwq297gPWAvdrrX8XGADepbV+l1KqGfjfgPdorXcDrwH/atI50lrr3VrrbwDf1lq/Q2u9A3e45s9rrX+CO8zwl7XWO7XWJ4GvAr+qtb4DeAt3tNBxVa31HuAPgL8HfgnYBnxOKdU0ufBKqceAJ4C7vef8v2f4GX8H+H2t9XZgtiHnfwH4Ha31TmAPcAH418BJr8xfBsrAR7xr8C7gP44PtQ5sAH5Pa70VGAE+5m3/C2/7DuA+4KJS6lHv+LuAncCdSql3zlIuIYRYErf8EOxCCLEIfqq1vgDgDSneA7w47Zh7cIP4Xi9XBoCXJu3/q0nL27xa4yQQA74//QmVUgkgqbV+3tv058A3Jx3ypDd/Cziotb7oPe4UsApITzr2PcCfaa2LAFrrzAw/4/1MBN+vAb81wzEvAf+rUqob98PC8YkMPVF04N97odgBuoA2b99prfX4kOz7gB6lVBzo0lr/rVe2svdzPAo8Chzwjo/hBu8fz1AuIYRYEhK0hRBi/iqTlm1m/tuqgKe11p+a5RyFSctfAT6stX5DKfU54OF5lMmZVj5nlvLNhb7qTq2/rpR6BfgA8JRS6n8ATk077J8CLcCdWuuaUuoMEJpWZnCvY/gqT6eA/6C1/q/XUX4hhFhU0nRECCEWzhgQ95ZfBu5XSq0HUEpFlVIbZ3lcHLd5hB83mF5xPq11DsgqpR709n0aeJ4b8zTwc+M9pCilUjMcsxf4pLf8T2fYj1JqLXDKazbz98AdTL0GAAlgyAvZ7wLWXK1gWusx4IJS6sPecwS9cn4f+PlJ7dy7lFKtc/pphRBikUjQFkKIhfOHwPeUUs9qrYeBzwF/qZR6E7eZxeZZHve/A6/ghtsjk7Z/A/iyUuqAd0PgZ3FvjnwTt53yb9xIIbXW38NtavKa1/TlSzMc9svALyml3sJt7jGT/w542zvHNuCrWus0bnOZt5VSv43b3nqPd57PTPv5ZvNp4Ivez/kToF1r/QPg68BL3rm+xdRAL4QQS05pfdVvAoUQQgghhBA3QGq0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgAErSFEEIIIYRYABK0hRBCCCGEWAAStIUQQgghhFgA/z82hUeMa0m4sAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 8)\n", - "for j in range(len(reductions)):\n", - " pylab.plot(distances, np.subtract(energies[j], energies[0]), label=reductions[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference compared to no reduction []')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYXFW59v/vTWckCUNCAMlMCEOYAjSDoDgwBQdAQQVRQcWowBF/vuLwilPUox5/Dqh4FAERBCOgaBwRFVCGAB0ICQkEQgikQ4CQMCRAhk6e94+1GnaK6q4KSXVVd+7PddXVe1h711O7quuptdfaaysiMDMz68wW9Q7AzMwan5OFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFI+oqkX+XpkZJWSGrK8ztI+rek5ZK+q+QXkp6WdEd9I7fOSFog6ch6x1Frkk6XdHMN9rve/8Im3O9oSZH3PSkv2zXPr5V0xqZ8vk2lV70D6M4kLQB2ANYWFl8aEWfXJ6KNFxGPAgMLiyYBTwFbRURIej1wFDA8Ip6vR4y28SRdCrRGxHn1jqVR5P/nMyLiH1D2f2FT2yYi2vJzPQAMlHRjDZ9vozhZbLy3t3+4akVSr/YPVR2MAubEy1dvjgIWvJpEUefX0a1tLsduc3md3ZFPQ9VIe9VY0v+fT9k8LOnYwvqtJV0sabGkRZK+Xjj1c7qkWyR9X9JS4CuSmvJpoKfyvs7OVdlekt4laXrJ839K0h86iG2MpJvyqaXrge0K60YX9nspcBrwmVxF/ihwEfDaPP/VvM3bJM2Q9IykWyXtU9jfAkmflTQTeD7vdydJv5W0JL+WTxTKf0XSVZIuy/HNltRcWD9C0u/ytksl/biw7kOS7svH+zpJozp5f16XY31G0kJJpxfel8vy/h+RdJ6kLcq8L89Imi/p0Lx8oaQnJZ1WeI5LJf1U0vX5tdxUjEnS+Xm75yRNz7W24nG4RtKvJD0HnC5pC0mfk/RQfu1XSRpc2Ob9Oealkr7QyWufBJxaeF//mJfvIenG/NpmSzquk33cKOlr+Xgsl/R3ScXP0XF5H8/ksnt0sq+QdJakB4EH87Ld83FbJmmupHcXyg+RNDUftzuAsYV1L31+S2I9ozD/kfw5WS5pjqT9JV0OjAT+mI/JZ0r3lT+3U3NM8yR9pOT96vBz2yNEhB+v8gEsAI7sYN3pwBrgI0AT8HHgMUB5/bXAz4ABwPbAHcBHC9u2Af9Fqv31Bz4GzAGGA9sC/wAir+8LLAP2KDz/3cCJHcR2G/C9vN3hwHLgV3nd6Pb95vlLga+XvK6bC/P7AU8CB+fXeVo+Ln0Lx2gGMCK/ji2A6cCXgD7AzsB84Jhc/ivASuAteX/fBKbldU3APcD383HrB7wurzsemAfskY/JecCtHbz+Ufk1nwL0BoYAE/K6y4A/AIPysXgA+HDJ+/LBHMvXgUeBC/KxPDrvd2Dh2C3Px7gvcH7JsXtffu5ewP8BHgf6FY7DGuCEfMz6A+cA0/JnoC/p8/PrXH48sKLwXN/LsXb0+Sx9X3vn4/d/8/vy5hz7bh1sfyPwELBrju1G4Ft53a7A86TTlb2Bz+R99+lgXwFcDwzO+xoALMzHuRfpM/YUMD6XnwJclcvtBSxqP66UfH4LsZ6Rp9+Vyx8ICNgFGFXu/7l0X8C/gZ+QPncTgCXAmyt9bsu83lfEWC7WRnvUPYDu/MgfrhXAM4XHR/K604F5hbJb5g/IjqR2jlVA/8L6U4AbCts+WvJc/yInkzx/ZMkH+X+Bb+TpPYGnyV/YJfsZSfoSGVBYdiWvPln8L/C1kueYC7yhcIw+VFh3cJnX9nngF3n6K8A/CuvGAy/m6dfmf9By/2R/JX+p5/ktgBfavwjKPN+1ZZY3AavJX0p52UeBGwuv/cHCur3zsdqhsGwpLyeeS4EphXUDSe1bIzr4PD0N7Fs4Dv8uWX8fcERh/jWkhNKLlHyLzzUgv5Zqk8XrSclqi8KyXwNf6WD7G4HzCvNnAn/L018Erip5LxYBb+xgX0H+0s3z7wH+U1LmZ8CX83u0Bti9sO6/qT5ZXAec08n/c9lkQfqxsxYYVFj/TVIbZfv7VfZzW+Z5XhFjuVgb7eE2i413QnTcZvF4+0REvCAJ0hfGYNIvrsV5GaR/qIWFbYvTADtVWP9L4NeSzgPeT/pnXVUmpp2Ap2P9NodHSP8Mr8Yo4DRJ/1VY1ic/T7lYRwE7SXqmsKwJ+E9h/vHC9AtAv3wqYATwSJQ/pz0KOF/SdwvLBAwjvb6iEaRfxaW2I70vxfKP5H20e6Iw/SJARJQuKzaKvvTaI2KFpGXk91LSp4EP5/kAtqJwSpBXvsejgGslrSssW0v68bHe5yMinlc6hVmtnYCFEVHcd+lrL1X6PrW/7p0oHMOIWCdpYYV9lX5GDi75jPQCLgeG5uli+dL3tzMdvfeV7AQsi4jlJc9bPNVU9nPbwee123GyqI+FpJrFdp18kEqHA15MOv3Qbr0v94iYJmk16Rfie/OjnMXAtpIGFBLGyDLPV62FpBrNNzopU9z3QuDhiBj3Kp9rZAf/gO1xXFHlfg4qs/wp0q/WUaRTfpCOzaJXEWu7l94nSe0/FB7L7ROfAY4AZucv1KdJCa5d6XuykFRLu6X0SSQtJp2Ca5/fknSKqyOl+34MGCFpi0LCGEk6DbehHiPVutpjEek4dHYcSz8jN0XEUaWFlNr12vL+7i/E2a79M70l8Fye3rFk32Mpr7P/gceAwZIGFRLGxn42uhU3cNdBRCwG/g58V9JWueFyrKQ3dLLZVcA5koZJ2gb4bJkylwE/BtZERNl+5xHxCNACfFVSH0mvA96+ES/n58DHJB2sZICkt0oa1EH5O4DlSo3e/ZUa7veSdGAVz3UHKdl9Kz9PP0mH5XU/BT4vaU94qaH6XR3s5wrgSEnvVmpwHyJpQkSsJR3nb0gapNQY/SngV9UdirLeotSY3gf4Guk89kJSm0gb+bSapC+Rahad+WmObVR+jUMlHZ/XXQO8rfBck+n8//sJUntRu9tJv4Y/I6m3pDeSPhdTNuC1trsKeKukIyT1JrXHrAJurXL7PwG7KjXY986PAyXtkd+j35E6fWwpaTypnQyAiFhC+gJ/X/5sfYj1k8NFwKclHZA/r7vo5U4HpcfkJfk9uxX4Zv7c7UOqFW7MZ6NbcbLYeO29J9of11a53QdIp2vmkM5VX0M6B92Rn5MSzExS4/VfSF82xWs8Lic1+FX6AL+X1HawjHQe+LIqY36FiGghNeL/mPQ65pHO7XdUfi3wNlID4cOkX/MXAVtX8VxrSV9gu5AalltJ57eJiGuBbwNTlHoP3Qsc28F+HiU1RP4f0jGYAeybV/8X6dfpfOBmUnvOJZVi68SVpGO8DDiA1KgN6dz530i/3B8hNY6WnnYqdT4wFfi7pOWkxu6D82uaDZyVn28x6b1o7WRfFwPjlXor/T4iVpOO7bGk9+QnwAci4v5O9lFWRMzNr/NHeV9vJ3UxX13l9stJnQVOJv2if5z03vbNRc4mnfJ6nNT28ouSXXwEOJfUfrQnhSQVEVcD3yAdp+XA70m1PUhtEOflY/LpMqGdQmpveIzUQeXLnZyC7nHae+ZYN6PUDfenETGqsKw/qWfS/hHxYN2CM8AXvll5uSYzl/QD4dyI+LmkccCdpB+QZ0bEpXUMsSy3WXQTORG8iVS72IH0a7W0FvNx4E4nCrPGlU8F9ytZ9iCwTX0iqk5NT0NJmqh0Qc08SZ/rpNyJ+eKX4sVXn8/bzZV0TC3j7CYEfJV0euFuUjfKL720Mg1VcA7p1IqZ2SZVs9NQudfCA6QLc1pJVaxTImJOSblBwJ9J1a+zI6IlN1r9mtRjZSfSBWi75nPWZmbWxWpZsziIdFHa/NywNYV0lW2pr5Ear1YWlh1PusBoVUQ8TGo0LdfV0czMukAt2yyGsX7vjlZyz412kvYnXc36Z0nnlmw7rWTbV1zQozTGzSSAAQMGHLD77rtvotDNzDYP06dPfyoihlYqV7cGbqXB2b5HJ90sK4mIC4ELAZqbm6OlpWXTBGdmtpmQVNUV8LVMFotY/yrj4ax/teMg0jUBN+YhL3YEpiqNdFlpWzMz60K1bLO4ExinNBx2H9IFNlPbV0bEsxGxXUSMjojRpNNOx+WLvKYCJ0vqK2kMMI509a6ZmdVBzWoWEdEm6WzSlapNwCURMVvSZKAlIqZ2su1sSVeRrm5uA85yTygzs/rpMVdwl2uzWLNmDa2traxcubKDrTZP/fr1Y/jw4fTu3bveoZhZnUmaHhEVb9TUo6/gbm1tZdCgQYwePRpJlTfYDEQES5cupbW1lTFjxtQ7HDPrJnr0QIIrV65kyJAhThQFkhgyZIhrW2a2QXp0sgCcKMrwMTGzDdXjk4WZmW08JwszM6vIyaKGFixYQP/+/ZkwYULZ9VdccQX77LMPe++9N4ceeij33HPPBj/HxIkT2WabbXjb29623vJTTz2VwYMHc80117yq2M3Mipwsamzs2LHMmDGj7LoxY8Zw0003MWvWLL74xS8yadKkDd7/ueeey+WXX/6K5VdccQXHHXfcBu/PzKycHt11dj23fheWzt20+xyyGxz66m8fceihh740fcghh9Da2tldMMs74ogjuPHGG191DGZm1XDNokFcfPHFHHts2VtGm5nV3eZTs9iIGkCt3XDDDVx88cXcfPPN9Q7FzKws1yy60AUXXMCECROYMGECjz32GAAzZ87kjDPO4A9/+ANDhgzpdPvbb7/9pe2nTu1waC0zs01u86lZNICzzjqLs84666X5Rx99lHe+851cfvnl7LrrruuVPeKII7jssssYNuzlez4dfPDBHTaWm5nVkpNFHU2ePJmlS5dy5plnAtCrVy9aWlpYt24d8+bNY/DgwRX38frXv57777+fFStWMHz4cC6++GKOOeaYWoduZpsZJ4s6uuiii7joootesXzOnDmceOKJ9O/fv+I+/vOf/9QiNDOz9bjNooaampp49tlnO7woryN77bUX3/ve9zbquU899VRuuukm+vXrt1H7MTODzaBmERF1GzhvxIgRLFy4sC7PfcUVV3S4rqfcw8TMuk6Prln069ePpUuX+suxoP1+Fq5xmNmG6NE1i+HDh9Pa2sqSJUvqHUpDab9TnplZtWqaLCRNBM4n3YP7ooj4Vsn6jwFnAWuBFcCkiJgjaTRwH9A+Pse0iPjYhj5/7969fTc4M7NNoGbJQlITcAFwFNAK3ClpakTMKRS7MiJ+mssfB3wPmJjXPRQRG9YybGZmNVHLNouDgHkRMT8iVgNTgOOLBSLiucLsAMCNC2ZmDaiWyWIYUOwK1JqXrUfSWZIeAv4H+ERh1RhJd0u6SdLraxinmZlVUPfeUBFxQUSMBT4LnJcXLwZGRsR+wKeAKyVtVbqtpEmSWiS1uBHbzKx2apksFgEjCvPD87KOTAFOAIiIVRGxNE9PBx4Cdi3dICIujIjmiGgeOnToJgvczMzWV8tkcScwTtIYSX2Ak4H1hkqVNK4w+1bgwbx8aG4gR9LOwDhgfg1jNTOzTtSsN1REtEk6G7iO1HX2koiYLWky0BIRU4GzJR0JrAGeBk7Lmx8OTJa0BlgHfCwiltUqVjMz65x6ytXNzc3N0dLSUu8wzMy6FUnTI6K5Urm6N3CbmVnjc7IwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrKKaJgtJEyXNlTRP0ufKrP+YpFmSZki6WdL4wrrP5+3mSjqmlnGamVnnapYsJDUBFwDHAuOBU4rJILsyIvaOiAnA/wDfy9uOB04G9gQmAj/J+zMzszqoZc3iIGBeRMyPiNXAFOD4YoGIeK4wOwCIPH08MCUiVkXEw8C8vD8zM6uDXjXc9zBgYWG+FTi4tJCks4BPAX2ANxe2nVay7bAy204CJgGMHDlykwRtZmavVPcG7oi4ICLGAp8FztvAbS+MiOaIaB46dGhtAjQzs5omi0XAiML88LysI1OAE17ltmZmVkO1TBZ3AuMkjZHUh9RgPbVYQNK4wuxbgQfz9FTgZEl9JY0BxgF31DBWMzPrRM3aLCKiTdLZwHVAE3BJRMyWNBloiYipwNmSjgTWAE8Dp+VtZ0u6CpgDtAFnRcTaWsVqZmadU0RULtUNNDc3R0tLS73DMDPrViRNj4jmSuXq3sBtZmaNz8nCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCqqabKQNFHSXEnzJH2uzPpPSZojaaakf0oaVVi3VtKM/JhayzjNzKxzvWq1Y0lNwAXAUUArcKekqRExp1DsbqA5Il6Q9HHgf4D35HUvRsSEWsVnZmbVq2XN4iBgXkTMj4jVwBTg+GKBiLghIl7Is9OA4TWMx8zMXqVaJothwMLCfGte1pEPA38tzPeT1CJpmqQTym0gaVIu07JkyZKNj9jMzMqq2WmoDSHpfUAz8IbC4lERsUjSzsC/JM2KiIeK20XEhcCFAM3NzdFlAZuZbWZqWbNYBIwozA/Py9Yj6UjgC8BxEbGqfXlELMp/5wM3AvvVMFYzM+tELZPFncA4SWMk9QFOBtbr1SRpP+BnpETxZGH5tpL65untgMOAYsO4mZl1oZqdhoqINklnA9cBTcAlETFb0mSgJSKmAt8BBgJXSwJ4NCKOA/YAfiZpHSmhfaukF5WZmXUhRfSMU/3Nzc3R0tJS7zDMzLoVSdMjorlSOV/BbWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFVSULSb+T9FZJTi5mZpuhar/8fwK8F3hQ0rck7VbDmMzMrMFUlSwi4h8RcSqwP7AA+IekWyV9UFLvWgZoZmb1V/VpJUlDgNOBM0g3LTqflDyur0lkZmbWMKoaG0rStcBuwOXA2yNicV71G0keY8PMrIerdiDBH0bEDeVWVDOmiJmZdW/VJottJb2zZNmzwKzi0OJmZtYzVZssPgy8FmivXbwRmA6MkTQ5Ii6vQWxmZtYgqk0WvYE9IuIJAEk7AJcBBwP/JrVlmJlZD1Vtb6jh7YkiexIYERHLgDWbPiwzM2sk1dYsbpT0J+DqPH9iXjYAeKYmkZmZWcOoNlmcBbwTeF2evwz4baTb7L2pFoGZmVnjqHgaSlIT8K+I+G1E/H/5cU1UcT9WSRMlzZU0T9Lnyqz/lKQ5kmZK+qekUYV1p0l6MD9O2+BXZmZmm0zFZBERa4F1krbekB3nJHMBcCwwHjhF0viSYncDzRGxD3AN8D9528HAl0kN6AcBX5a07YY8v5mZbTrVnoZaAcySdD3wfPvCiPhEJ9scBMyLiPkAkqYAxwNzCtsXL/SbBrwvTx8DXJ8b0MnPOxH4dZXxmpnZJlRtsvhdfmyIYcDCwnwrqabQkQ8Df+1k22GlG0iaBEwCGDly5AaGZ2Zm1aoqWUTELyX1B0ZGxNxNHYSk9wHNwBs2ZLuIuBC4EKC5ubliG4qZmb061d786O3ADOBveX6CpKkVNlsEjCjMD8/LSvd9JPAF4LiIWLUh25qZWdeo9qK8r5DaIJ4BiIgZwM4VtrkTGCdpjKQ+wMnAeglG0n7Az0iJojjG1HXA0ZK2zQ3bR+dlZmZWB9W2WayJiGclFZet62yDiGiTdDbpS74JuCQiZkuaDLRExFTgO8BA4Oq870cj4riIWCbpa6SEAzC5vbHbzMy6XrXJYrak9wJNksYBnwBurbRRRPwF+EvJsi8Vpo/sZNtLgEuqjM/MzGqo2tNQ/wXsCawidV99DvhkrYIyM7PGUm1vqBdIjdBfqG04ZmbWiKq9requwKeB0cVtIuLNtQnLzMwaSbVtFlcDPwUuAtbWLhwzM2tE1SaLtoj435pGYmZmDavaBu4/SjpT0mskDW5/1DQyMzNrGNXWLNqHCD+3sCyofGGemZn1ANX2hhpT60DMzKxxdXoaStJnCtPvKln337UKyszMGkulNouTC9OfL1k3cRPHYmZmDapSslAH0+Xmzcysh6qULKKD6XLzZmbWQ1Vq4N5X0nOkWkT/PE2e71fTyMzMrGF0miwioqmrAjEzs8ZV7UV5Zma2GXOyMDOzipwszMysIicLMzOrqKbJQtJESXMlzZP0uTLrD5d0l6Q2SSeVrFsraUZ+TK1lnGZm1rlqBxLcYJKagAuAo4BW4E5JUyNiTqHYo8DppBsrlXoxIibUKj4zM6tezZIFcBAwLyLmA0iaAhwPvJQsImJBXreuhnGYmdlGquVpqGHAwsJ8a15WrX6SWiRNk3RCuQKSJuUyLUuWLNmYWM3MrBON3MA9KiKagfcCP5A0trRARFwYEc0R0Tx06NCuj9DMbDNRy2SxCBhRmB+el1UlIhblv/OBG4H9NmVwZmZWvVomizuBcZLGSOpDGu68ql5NkraV1DdPbwccRqGtw8zMulbNkkVEtAFnA9cB9wFXRcRsSZMlHQcg6UBJrcC7gJ9Jmp033wNokXQPcAPwrZJeVGZm1oUU0TNGGm9ubo6WlpZ6h2Fm1q1Imp7bhzvVyA3cZmbWIJwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKyimiYLSRMlzZU0T9Lnyqw/XNJdktoknVSy7jRJD+bHabWM08zMOterVjuW1ARcABwFtAJ3SpoaEXMKxR4FTgc+XbLtYODLQDMQwPS87dO1itesYUVA6zSY/RtYuxr6D+780dSn3hFbD1SzZAEcBMyLiPkAkqYAxwMvJYuIWJDXrSvZ9hjg+ohYltdfD0wEfl3DeM0aS6yDBTfC3b+Ap+6DAdvDgB3guVnw4jJoe7H8dn0Gvpw4+m0LWw7pOLH0HgBSl74s655qmSyGAQsL863AwRux7bDSQpImAZMARo4c+eqiNGs069pg3t9gxi/hmYdhqxFw+Hkw7q3Q1PvlcmteTElj5dPwwtI0Xfp49hFYfBeserb8czX1SQll2zFp/2PeBL36dc3rtG6llsmi5iLiQuBCgObm5qhzOGYbp20VPPBHuOcyWP4YDB4HR/w3jDkCtmh6Zfne/aH3MNjqFb+jXmldG6x8JiWV9uRSTDKPz4Abvgg3D4BdjoHdjoOhe7rWYS+pZbJYBIwozA/Py6rd9o0l2964SaIyazRrXoA5v4WZv4IXl8L2e8Oh58LI1226L+stesGW26VHObEu1UDmToUH/gz3/Q623Rl2fTuMe0s6lWWbNUXU5ge5pF7AA8ARpC//O4H3RsTsMmUvBf4UEdfk+cHAdGD/XOQu4ID2Noxympubo6WlZZO+BrOaWvlsarS+dwqseg6GHQT7fQhec0B9f9GvXgEPXZ8Sx5OzQE0w8rBU2xj5upR4rMeQND0imiuVq9m7HhFtks4GrgOagEsiYrakyUBLREyVdCBwLbAt8HZJX42IPSNimaSvkRIMwOTOEoVZt/LCUzDzCrjvt6lWMeoNsN8HYfu96h1Z0mcg7PGO9Hj64ZQ0HvwLPPLv1Cg+7i2pxjF4bL0jtS5Us5pFV3PNwhre8sfgnsth7h9SG8LYo2HC6TB4l3pHVtm6Nlh4K8z9Y0oasTa1aez2dhh7DPQdVO8I7VWqtmbhZGFWa88sSN1f5/0tnV7a9e0w4TTYani9I3t1XlwGD/411Tiefgia+qZeVLsdBzs1gzwwRHdS99NQZpu9p+6Huy+Bh2+AXn1hr/fA3qfCwB3qHdnG6T8Y9jkV9n5vuv5j7lSYd11KhgNfA7u+LdU4Bu1U70htE3LNwmxTe3xGShILb03n//d8D+x1MvTftt6R1U7bynQB4dw/wqI7gEi1jN2Og52PWv/6EGsoPg1l1tWWPgi3/xBab0sXuu1zKow/KSWMzcmKx+GBP6XEsXwRDNwRJnww1TY8FEnDcbIw6yornoCWn6YvyL6DUvfX8Sf5SuhYl2pXd10ET96bhiqZcDrsfryTRgNxm4VZra1ekYbkmHUlELDP+1IX2L5b1TuyxqAt0nUZIw6DRbfD9Avhlm/DjF/AvqfB7iekthzrFpwszDbU2jXpCue7fp6G0NjlWDjwTBj0mnpH1pgkGH4IDDsYHrsTpv8cbv3Oy0ljj3e4FtYNOFmYVSsCHv4X3PFjeG4h7HQgHHIObLd7vSPrHqR0lfpOB8Li6ammcdt3YcalsO8HYPyJThoNzMnCep5nFqSLyDblxW6P3wO3nw9PzExjJk38QTq94oH2NpyUekrt1AyPTU9tGtO+D/f8EvZ5f2rv6d2/3lFaCScL6znWrkldVu++JM0f+PH0i3VjLhJ79lG4/Uew4IY0CN/h56XrCDw+0qax0wHp8fiMdHrq9vNz0ngf7Plu6L1lvSO0zL2hrGd4cjbcNDldUbzLsalmMf/6dNrjTZM7Hm21Iy8+ndok5vw2NcLu+4F0QZ1/8dbWEzNT0mi9Dfpu/XLS6DOg3pH1WO46a5uHtpXQ8jOYdUVKCK/7PIx6fWpfmPsHuOU76YvmjV+FEa+tbn+zrky9nNpWpsbX/T/iIbq72pP3pqSx8JaUNPY+JV3YuLlds9IFnCys53t8RqpNPPso7P6O1Nhc+mXy9Hz4x+dTjWPfD6ReS+VOIa1bCw/+OV0v8fyTMPqNcNDZsM3orngl1pEnZ6c2jUf/A30GpSFG9jrZAxduQk4W1nOteSH1SJp9dequevh56XRTR9pWwm3fT0OCb78XvPkbL99dLiKd8rj9h7BsXlp/8Dnwmv265rVYdZ66P9U0Hrkp/SDYK9c0+m1d78i6PScL65kevSVd2LV8cRqY78Azq28Enf9P+PfXUoI4/DzYemRqUF10BwwalmoSOx/pHk6N7Km5qaax4IY02u0ux8A7z81oAAAQRElEQVT4d8HQPeodWbflZGE9y7J5MO38VAvYehS84Yuw44QN38/yx+CfX0h3gIN0Pnz/M1J3TQ92130smwezr0pDpbe9mGqE409Kgxb6qvAN4mRhPcOLy1I7wv2/h94D0hf7nu/euC/2dW3pQrC1q1O/fp//7r5Wr0hjcs25Jl1f03frNPbUHie+fKrROuVkYd1b2yq499fppkFtK2HPd6VE0W+bekdmjSgCHmtJtY1H/p0GMRx5WDpFNeK1viFTJxpiIEFJE4HzSffgvigivlWyvi9wGXAAsBR4T0QskDQauA+Ym4tOi4iP1TJWaxAR6fqI238EKxbDqMPh4E+4V5J1ToJhB6bHiifg/mvhvmvhb+ek9qjxJ6Uh0v1j41WrWc1CUhPwAHAU0ArcCZwSEXMKZc4E9omIj0k6GXhHRLwnJ4s/RUTVd7B3zaIHWHw33PGjdGHWkF3hkE923svJrDNr16SG8DnXwOK7UoP42KNT4th+z3pH1zAaoWZxEDAvIubngKYAxwNzCmWOB76Sp68Bfiy5K8pmJQJap6UhOh6/G/oPgcO/mIfUaKp3dNadNfVOyWHs0alBfM418MCf4YE/wtDx6RTV2KM8eGGVapkshgELC/OtwMEdlYmINknPAu2Xyo6RdDfwHHBeRPynhrFaV4t1sOCmNEz1kjnpxjiHfjrf48D/vLaJDd4FXve51D36gT+nxHHTV2HaD9KtX8efCFsNr3eUDa1RR0NbDIyMiKWSDgB+L2nPiHiuWEjSJGASwMiRI+sQpm2wdW0w/x+pJvH0/PQPevh5MO6t7rpqtddnYLo+Z893p2HSZ1+dhneZ+SsYcWjqSDH8ta7VllHLZLEIGFGYH56XlSvTKqkXsDWwNFJDyiqAiJgu6SFgV2C9RomIuBC4EFKbRS1ehG0ia1fDg39JXVafa03DfL/56+kiOI/gal2tOEz680+mxvD7r4W/fRK2HJqu4dlhH9hhbxiym3/IUNtkcScwTtIYUlI4GXhvSZmpwGnAbcBJwL8iIiQNBZZFxFpJOwPjgPk1jNVq5blF6Z/w/j/Ayqdhuz3gqO/A6De4O6M1hgHbQ/NHYf8Pw8M3pBtcPTEz9cqD1DA+dA/Yfu+XE8iGjmLcA9QsWeQ2iLOB60hdZy+JiNmSJgMtETEVuBi4XNI8YBkpoQAcDkyWtAZYB3wsIpbVKlbbxNathUdvTmMxLbwt/YobdXjqhTLsYA+nYY1pi16pwXvsUWl+xRPpSv8nZsITs+DeKTDz8rRu0E45eeQEMmTXHl9D9kV5tum88FS60vq+a+H5J1J1fvcT0mPgDvWOzmzjrF2dBjRsTx5PzIQXlqR1TX1TD6v25LH93t1mWPtG6Dprm4O1a2DR7TB3aurdFGth+CGpZ9Oo1/f4X1u2GWnqk09D7ZPmI9KPomLymHUl3HNZWj9o2MunrXbYJ/XI6sb/D903cqufdW3p3skP/T1d9LTquXyDmvfCHu+ErUdU3odZdyfBwB3TY+zRaVnbylz7yMlj0R0w769pXVPfVHbLIel6oo7+9t+2IZNK40VkjSnWweP3pATx8D/TAH+9B6SG6rFHp7YI9xixzV2vfqknVfuIyBFp2JonZqbriZ5/El5YCkvnwsKlsOb5MjtRGpak/+BCItkuTw9+ObFsuR303arLOoo4WVjH1rWlD/mCm1LPkOefTL+ORh2eGgFHHOoL6Mw6I6XG8EE7wS4TX7m+bWVKHi8u7eDvMnjunjS9dlWZ/TelBLLjBDjymzV9KU4Wtr4VT6R7Rjx6S6pCr3ketuidEsPBn0iJotqbDZlZ53r1S0OpVxpOPSL9L3aUWPrXvjHdyWJzt3YNPHEPLLw1PZbNS8sH7JBOL404NI3kWXpvazPrOlL6H+wzELYZVZcQnCw2N2tehCWz4fEZqQ3iiZm59tArVWUP/kRKENuO9fUQZvYSJ4ue7vklqebw+D3p71NzU/dWlIbc2GViujnMTgdCnwH1jtbMGpSTRU8Rke4vvexBWPpg+vvUXFieh+Nq6pvG8N/3A7Djvqnfd9+t6huzmXUbThbdTUQaY+nZhSkhLJuXk8O89bvhbTUCttstjaK54wQPhmZmG8XJom0V3PDFNDTFgKG5P3P79NDUoNSV5+4jYM0LqW/2c62ptrD8sTQg3/JFsHwxtL34cvneA2DIOBj3lvR38DgYPNY9lsxsk3KyWL0Cnn44dRNdveKV65v6vpxE+gxK5/V7D0hfxu3TxWVEuoBt3dr0N9r/5mXr2mD1clj5LKx8BlY9m6aLf9euXj+G3lumftpbDU8Xv201LA0lMHiXdEWoG6LNrMacLLYcAu++Ok2veTENhvfCktQw/MKSNP98+98n4ZnnYfXz6dd/uYtkqqUm6Ld1Giaj39bpy3/o+Dy/zcsX8mw1LC1zQjCzOnKyKOrdP41rVO3YRuvacuLIyWP18+lLXVukZKAt0h23tMXLy7ZoSg3LvQc4AZhZt+FksTG26JVqBf22rnckZmY15VuVmZlZRU4WZmZWkZOFmZlV5GRhZmYV1TRZSJooaa6keZI+V2Z9X0m/yetvlzS6sO7zeflcScfUMk4zM+tczZKFpCbgAuBYYDxwiqTxJcU+DDwdEbsA3we+nbcdD5wM7AlMBH6S92dmZnVQy5rFQcC8iJgfEauBKcDxJWWOB36Zp68BjpCkvHxKRKyKiIeBeXl/ZmZWB7W8zmIYsLAw3woc3FGZiGiT9CwwJC+fVrLtK24lJWkSMCnPrpA0t4NYtgOe2tAXUEfdLV5wzF3FMdded4sXNi7mqu6m1K0vyouIC4ELK5WT1BIRzV0Q0ibR3eIFx9xVHHPtdbd4oWtiruVpqEVAcdyM4XlZ2TKSegFbA0ur3NbMzLpILZPFncA4SWMk9SE1WE8tKTMVOC1PnwT8KyIiLz8595YaA4wD7qhhrGZm1omanYbKbRBnA9cBTcAlETFb0mSgJSKmAhcDl0uaBywjJRRyuauAOUAbcFZErN2IcCqeqmow3S1ecMxdxTHXXneLF7ogZqUf8mZmZh3zFdxmZlaRk4WZmVXUY5JFFUOLnC5piaQZ+XFGPeIsiekSSU9KureD9ZL0w/yaZkrav6tjLImnUrxvlPRs4Rh/qatjLBPTCEk3SJojabakc8qUabTjXE3MDXOsJfWTdIeke3K8Xy1TpsOhfeqhypgb7jsD0ugYku6W9Kcy62p3nCOi2z9IDegPATsDfYB7gPElZU4HflzvWEtiOhzYH7i3g/VvAf4KCDgEuL3B430j8Kd6H9eSmF4D7J+nBwEPlPlsNNpxribmhjnW+bgNzNO9gduBQ0rKnAn8NE+fDPymG8TccN8ZOa5PAVeWe/9reZx7Ss2imqFFGk5E/JvUC6wjxwOXRTIN2EbSa7omuleqIt6GExGLI+KuPL0cuI9XjgbQaMe5mpgbRj5uK/Js7/wo7TnT0dA+dVFlzA1H0nDgrcBFHRSp2XHuKcmi3NAi5f65TsynGa6RVOWNtuuq2tfVSF6bq/Z/lbRnvYMpylXy/Ui/Iosa9jh3EjM00LHOp0ZmAE8C10dEh8c4ItqA9qF96qaKmKHxvjN+AHwGWNfB+pod556SLKrxR2B0ROwDXM/L2dc2nbuAURGxL/Aj4Pd1juclkgYCvwU+GRHP1TuealSIuaGOdUSsjYgJpNEWDpK0Vz3jqUYVMTfUd4aktwFPRsT0ejx/T0kWFYcHiYilEbEqz14EHNBFsW2MbjXsSUQ81161j4i/AL0lbVfnsJDUm/Sle0VE/K5MkYY7zpVibtRjHRHPADeQbi1Q1NHQPnXXUcwN+J1xGHCcpAWkU+1vlvSrkjI1O849JVlUHFqk5Bz0caTzwI1uKvCB3FvnEODZiFhc76A6ImnH9vOjkg4ifb7q+oWQ47kYuC8ivtdBsYY6ztXE3EjHWtJQSdvk6f7AUcD9JcU6GtqnLqqJudG+MyLi8xExPCJGk77j/hUR7yspVrPj3K1HnW0X1Q0t8glJx5GGD1lG6ulQV5J+TerVsp2kVuDLpIY2IuKnwF9IPXXmAS8AH6xPpEkV8Z4EfFxSG/AicHI9vxCyw4D3A7Py+WmA/wuMhMY8zlQXcyMd69cAv1S6QdkWwFUR8SdVMbRPHVUTc8N9Z5TTVcfZw32YmVlFPeU0lJmZ1ZCThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFNSxJK6oo80lJW27C5zxB0vhNuL9bN2LbFfnvTpKu6aTcNpLOfLXPY1YNJwvr7j4JbFCyyH3rO3ICsMmSRUQcugn28VhEnNRJkW1Io42a1YyThTU8pXs33JgHc7tf0hX5autPADsBN0i6IZc9WtJtku6SdHUeXwlJCyR9W9JdwLskfUTSnXkgvt9K2lLSoaQrdb+jdP+CsZImSJqWB5O7VtK2eX83Svq+pBZJ90k6UNLvJD0o6euF2FcUpj8raVZ+zm+VeZ1jcuyzSvYxWvkeIpL2VLoPw4wc0zjgW8DYvOw7kgZK+mc+BrMkHV/Yz32Sfq50D4e/56uXkbSLpH/k2O6SNDYvPzcfp5kqc88H24xsqrHO/fBjUz+AFfnvG0mjZw4n/cC5DXhdXrcA2C5Pbwf8GxiQ5z8LfKlQ7jOFfQ8pTH8d+K88fSlwUmHdTOANeXoy8IM8fSPw7Tx9DvAY6argvqRRa4eUvIZjgVuBLfP84DKvdyrwgTx9VmHb0eR7iJAGDTw1T/cB+hfX5+W9gK0Kx2Qe6f4No0lXI0/I664C3penbwfekaf7kWprRwMX5m23AP4EHF7vz4Uf9Xn0iOE+bLNwR0S0AuQhMEYDN5eUOYR0CumWPGxSH1JiafebwvRe+df7NsBA0lAx65G0NbBNRNyUF/0SuLpQpH38sVnA7MjjSUmaTxrMrThW05HALyLiBYCIKHdfkMOAE/P05cC3y5S5DfiC0n0NfhcRD+qVtysQ8N+SDicNZT0M2CGvezgi2ocQmQ6MljQIGBYR1+bYVubXcTQpYdydyw8ExpESsm1mnCysu1hVmF5L+c+uSPclOKWDfTxfmL4UOCEi7pF0Oqn28mpjWlcS37oO4qtGp+PvRMSVkm4n3QDnL5I+CswvKXYqMBQ4ICLWKI1S2q8kZkjHsX8nTyfgmxHxsw2I33oot1lYd7ecdOtRgGnAYZJ2AZA0QNKuHWw3CFisNBT4qeX2FxHPAk9Len1e937gJl6d64EPtvfckjS4TJlbeHngt1PLrEfSzsD8iPgh8AdgH9Y/BpCGpX4yJ4o3AaM6CyzS3fhaJZ2Qn6NvjvM64EOFdp9hkrav6tVaj+NkYd3dhcDfJN0QEUtII4P+WtJM0imb3TvY7ouk8/S3sP7Q1FOAcyXdnRt5TyM1eM8EJpDaLTZYRPyNdNqqJZ9G+3SZYucAZ0maRcd36ns3cG/ex16k28EuJZ16u1fSd4ArgOa8nw/wyuHCy3k/aZTVmaS2lR0j4u+kez3flvd1DesnJduMeNRZMzOryDULMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4r+H60x/+SA29n/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xu4XGV59/Hvj53zAQhJBHIOIRjCwQBbEFAERQmiHKooiAotitag9vVV0VdUGm2LtdXaggWqFMFDOEmNFgUsIEUIsAMRSCAQApIdwJwhQBJyuN8/nmcnK8PsPZNkz57ZO7/Pdc0167zuWbNm3bOeZ61nKSIwMzPryC71DsDMzBqfk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThZmZVeRkYUi6SNJPcvcYSS9Lasr9e0q6S9JqSf+s5D8lrZR0f30jt45IekbS8fWOo9YknSPp7hosd6vfQicud5ykyMs+Lw/bL/dvlPTxzlxfZ+lV7wC6M0nPAHsCGwuDr4qI8+sT0Y6LiGeBQYVB5wHLgF0jIiS9DXgXMCoiXqlHjLbjJF0FtEbEhfWOpVHk3/PHI+J3UPa30Nl2j4gNeV1PAIMk3VnD9e0QJ4sd9762natWJPVq26nqYCwwL7bcvTkWeGZ7EkWdP0e3trNsu53lc3ZHLoaqkbZTY0n/lItsnpZ0YmH8bpJ+JOl5SYslfatQ9HOOpD9I+p6k5cBFkppyMdCyvKzz86lsL0mnS5pdsv7PS/plO7GNl/T7XLR0GzCsMG5cYblXAWcDX8qnyJ8Efggcmfv/Ns/zXklzJK2SdI+kgwvLe0bSBZIeBl7Jyx0h6UZJS/Nn+Wxh+oskXSfp6hzfXEnNhfGjJf0iz7tc0iWFcX8l6bG8vW+RNLaD7+etOdZVkhZJOqfwvVydl/8nSRdK2qXM97JK0kJJR+XhiyQtkXR2YR1XSbpM0m35s/y+GJOk7+f5XpI0O5+1FbfDDZJ+Iukl4BxJu0j6sqSn8me/TtIehXk+mmNeLumrHXz284CzCt/rr/Lw/SXdmT/bXEknd7CMOyV9M2+P1ZJulVTcj07Oy1iVp92/g2WFpGmSngSezMMm5e22QtJ8SR8sTD9U0sy83e4HJhTGbd5/S2L9eKH/E3k/WS1pnqRDJV0DjAF+lbfJl0qXlffbmTmmBZI+UfJ9tbvf9ggR4dd2voBngOPbGXcOsB74BNAE/DXwHKA8/ibgcmAg8AbgfuCThXk3AJ8hnf31Bz4FzANGAUOA3wGRx/cFVgD7F9b/EPD+dmK7F/hunu8YYDXwkzxuXNtyc/9VwLdKPtfdhf5DgCXAEflznp23S9/CNpoDjM6fYxdgNvB1oA+wD7AQOCFPfxGwFnhPXt4/ALPyuCbgj8D38nbrB7w1jzsFWADsn7fJhcA97Xz+sfkznwn0BoYCU/K4q4FfAoPztngCOLfke/nLHMu3gGeBS/O2fHde7qDCtludt3Ff4Psl2+4jed29gP8LvAD0K2yH9cCpeZv1Bz4HzMr7QF/S/vPzPP1k4OXCur6bY21v/yz9Xnvn7ff/8vfyjhz7G9uZ/07gKWC/HNudwMV53H7AK6Tiyt7Al/Ky+7SzrABuA/bIyxoILMrbuRdpH1sGTM7TzwCuy9MdCCxu266U7L+FWD+eu0/P078ZELAvMLbc77l0WcBdwA9I+90UYCnwjkr7bZnP+7oYy8XaaK+6B9CdX3nnehlYVXh9Io87B1hQmHZA3kH2ItVzrAP6F8afCdxRmPfZknXdTk4muf/4kh3534G/y90HACvJB+yS5YwhHUQGFob9jO1PFv8OfLNkHfOBtxe20V8Vxh1R5rN9BfjP3H0R8LvCuMnAmtx9ZP6BlvuR/YZ8UM/9uwCvth0IyqzvpjLDm4DXyAelPOyTwJ2Fz/5kYdxBeVvtWRi2nC2J5ypgRmHcIFL91uh29qeVwJsK2+GukvGPAe8s9O9NSii9SMm3uK6B+bNUmyzeRkpWuxSG/Ry4qJ357wQuLPR/Gvht7v4acF3Jd7EYOLadZQX5oJv7PwT8b8k0lwPfyN/RemBSYdzfU32yuAX4XAe/57LJgvRnZyMwuDD+H0h1lG3fV9n9tsx6XhdjuVgb7eU6ix13arRfZ/FCW0dEvCoJ0gFjD9I/rufzMEg/qEWFeYvdACMqjP8x8HNJFwIfJf1Y15WJaQSwMrauc/gT6cewPcYCZ0v6TGFYn7yecrGOBUZIWlUY1gT8b6H/hUL3q0C/XBQwGvhTlC/THgt8X9I/F4YJGEn6fEWjSf+KSw0jfS/F6f+Ul9Hmz4XuNQARUTqsWCm6+bNHxMuSVpC/S0lfAM7N/QHsSqFIkNd/x2OBmyRtKgzbSPrzsdX+ERGvKBVhVmsEsCgiissu/eylSr+nts89gsI2jIhNkhZVWFbpPnJEyT7SC7gGGJ67i9OXfr8dae+7r2QEsCIiVpest1jUVHa/bWd/7XacLOpjEenMYlgHO1Jpc8DPk4of2mx1cI+IWZJeI/1D/HB+lfM8METSwELCGFNmfdVaRDqj+bsOpikuexHwdERM3M51jWnnB9gWx0+rXM7hZYYvI/1rHUsq8oO0bRZvR6xtNn9Pktr+KDyX6ye+BLwTmJsPqCtJCa5N6XeyiHSW9ofSlUh6nlQE19Y/gFTE1Z7SZT8HjJa0SyFhjCEVw22r50hnXW2xiLQdOtqOpfvI7yPiXaUTKdXrbcjLe7wQZ5u2fXoA8FLu3qtk2RMor6PfwHPAHpIGFxLGju4b3YoruOsgIp4HbgX+WdKuueJygqS3dzDbdcDnJI2UtDtwQZlprgYuAdZHRNnrziPiT0AL8LeS+kh6K/C+Hfg4/wF8StIRSgZKOknS4Hamvx9YrVTp3V+p4v5ASW+uYl33k5LdxXk9/SQdncddBnxF0gGwuaL69HaW81PgeEkfVKpwHyppSkRsJG3nv5M0WKky+vPAT6rbFGW9R6kyvQ/wTVI59iJSncgGcrGapK+Tziw6clmObWz+jMMlnZLH3QC8t7Cu6XT8+/4zqb6ozX2kf8NfktRb0rGk/WLGNnzWNtcBJ0l6p6TepPqYdcA9Vc7/a2A/pQr73vn1Zkn75+/oF6SLPgZImkyqJwMgIpaSDuAfyfvWX7F1cvgh8AVJh+X9dV9tueigdJtslr+ze4B/yPvdwaSzwh3ZN7oVJ4sd13b1RNvrpirn+xipuGYeqaz6BlIZdHv+g5RgHiZVXt9MOtgU7/G4hlThV2kH/jCp7mAFqRz46ipjfp2IaCFV4l9C+hwLSGX77U2/EXgvqYLwadK/+R8Cu1Wxro2kA9i+pIrlVlL5NhFxE/BtYIbS1UOPAie2s5xnSRWR/5e0DeYAb8qjP0P6d7oQuJtUn3Nlpdg68DPSNl4BHEaq1IZUdv5b0j/3P5EqR0uLnUp9H5gJ3CppNamy+4j8meYC0/L6nid9F60dLOtHwGSlq5X+KyJeI23bE0nfyQ+Aj0XE4x0so6yImJ8/57/lZb2PdIn5a1XOv5p0scAZpH/0L5C+2755kvNJRV4vkOpe/rNkEZ8AvkiqPzqAQpKKiOuBvyNtp9XAf5HO9iDVQVyYt8kXyoR2Jqm+4TnSBSrf6KAIusdpuzLHuhmly3Avi4ixhWH9SVcmHRoRT9YtOAN845uVl89k5pP+IHwxIv5D0kTgAdIfyE9HxFV1DLEs11l0EzkRHEc6u9iT9G+19Czmr4EHnCjMGlcuCu5XMuxJYPf6RFSdmhZDSZqqdEPNAklf7mC69+ebX4o3X30lzzdf0gm1jLObEPC3pOKFh0iXUX5988jUVMHnSEUrZmadqmbFUPmqhSdIN+a0kk6xzoyIeSXTDQb+m3T6dX5EtORKq5+TrlgZQboBbb9cZm1mZl2slmcWh5NuSluYK7ZmkO6yLfVNUuXV2sKwU0g3GK2LiKdJlablLnU0M7MuUMs6i5FsfXVHK/nKjTaSDiXdzfrfkr5YMu+sknlfd0OPUhs35wEMHDjwsEmTJnVS6GZmO4fZs2cvi4jhlaarWwW3UuNs36WDyywriYgrgCsAmpubo6WlpXOCMzPbSUiq6g74WiaLxWx9l/Eotr7bcTDpnoA7c5MXewEzlVq6rDSvmZl1oVrWWTwATFRqDrsP6QabmW0jI+LFiBgWEeMiYhyp2OnkfJPXTOAMSX0ljQcmku7eNTOzOqjZmUVEbJB0PulO1SbgyoiYK2k60BIRMzuYd66k60h3N28ApvlKKDOz+ukxd3CXq7NYv349ra2trF27tp25dj79+vVj1KhR9O7du96hmFkDkDQ7Iio+qKlH38Hd2trK4MGDGTduHJIqz9DDRQTLly+ntbWV8ePH1zscM+tGenRDgmvXrmXo0KFOFJkkhg4d6jMtM9tmPTpZAE4UJbw9zGx79PhkYWZmO87JwszMKnKyqKFnnnmG/v37M2XKlLLjf/nLX3LwwQczZcoUmpubufvusg+3a9dtt93GYYcdxkEHHcRhhx3G7bffvnnccccdx6BBg/Bd7WbWGXr01VCNYMKECcyZM6fsuHe+852cfPLJSOLhhx/mgx/8II8/Xv2DyYYNG8avfvUrRowYwaOPPsoJJ5zA4sXpRvc77riDY489tjM+gpnZTpQs7vlnWD6/c5c59I1w1PY/PmLQoEGbu1955ZVtrnw+5JBDNncfcMABrFmzhnXr1tG3b98O5jIz23Yuhqqzm266iUmTJnHSSSdx5ZXb/6jnG2+8kUMPPdSJwsxqYuc5s9iBM4BaOu200zjttNO46667+NrXvsbvfrftz3+fO3cuF1xwAbfeemsNIjQz85lFl7r00kuZMmUKU6ZM4bnnnttq3DHHHMPChQtZtmxZu/PfdNNNm+dvq7hubW3ltNNO4+qrr2bChAk1jd/Mdl47z5lFA5g2bRrTpk3b3L9gwQImTJiAJB588EHWrVvH0KFDAZg0adLrKrvbzkLarFq1ipNOOomLL76Yo48+ums+hJntlHxmUUc33ngjBx54IFOmTGHatGlce+21SGLZsmVU08DjJZdcwoIFC5g+ffrmM44lS5Z0QeRmtrPxmUUdXXDBBVxwwQWvGz5r1qytzkDac+GFF3LhhRfWIjQzs604WdRQU1MTL774IlOmTGn3Xoty3vve9+7wuo877jgWLlzopsjNrFP0+GQREXVrPG/06NEsWrSoLuu+4447yg7vKc8vMbOu1aPrLPr168fy5ct9gMzanmfRr1+/eodiZt1Mjz6zGDVqFK2trSxdurTeoTSMtiflmZlti5omC0lTge+TnsH9w4i4uGT8p4BpwEbgZeC8iJgnaRzwGNDWPsesiPjUtq6/d+/efiKcmVknqFmykNQEXAq8C2gFHpA0MyLmFSb7WURclqc/GfguMDWPeyoiyjfXamZmXaqWdRaHAwsiYmFEvAbMAE4pThARLxV6BwKuXDAza0C1TBYjgeKlQK152FYkTZP0FPCPwGcLo8ZLekjS7yW9rYZxmplZBXW/GioiLo2ICcAFQNsdZs8DYyLiEODzwM8k7Vo6r6TzJLVIanEltplZ7dQyWSwGRhf6R+Vh7ZkBnAoQEesiYnnung08BexXOkNEXBERzRHRPHz48E4L3MzMtlbLZPEAMFHSeEl9gDOAmcUJJE0s9J4EPJmHD88V5EjaB5gILKxhrGZm1oGaXQ0VERsknQ/cQrp09sqImCtpOtASETOB8yUdD6wHVgJn59mPAaZLWg9sAj4VEStqFauZmXVMPeXu5ubm5mh7xoOZmVVH0uyIaK40Xd0ruM3MrPE5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWUU2ThaSpkuZLWiDpy2XGf0rSI5LmSLpb0uTCuK/k+eZLOqGWcZqZWcdqliwkNQGXAicCk4Ezi8kg+1lEHBQRU4B/BL6b550MnAEcAEwFfpCXZ2ZmdVDLM4vDgQURsTAiXgNmAKcUJ4iIlwq9A4HI3acAMyJiXUQ8DSzIyzMzszroVcNljwQWFfpbgSNKJ5I0Dfg80Ad4R2HeWSXzjiwz73nAeQBjxozplKDNzOz16l7BHRGXRsQE4ALgwm2c94qIaI6I5uHDh9cmQDMzq2myWAyMLvSPysPaMwM4dTvnNTOzGqplsngAmChpvKQ+pArrmcUJJE0s9J4EPJm7ZwJnSOoraTwwEbi/hrGamVkHalZnEREbJJ0P3AI0AVdGxFxJ04GWiJgJnC/peGA9sBI4O887V9J1wDxgAzAtIjbWKlYzM+uYIqLyVN1Ac3NztLS01DsMM7NuRdLsiGiuNF3dK7jNzKzxOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUU1TRaSpkqaL2mBpC+XGf95SfMkPSzpfySNLYzbKGlOfs2sZZxmZtaxXrVasKQm4FLgXUAr8ICkmRExrzDZQ0BzRLwq6a+BfwQ+lMetiYgptYrPzMyqV8szi8OBBRGxMCJeA2YApxQniIg7IuLV3DsLGFXDeMzMbDvVMlmMBBYV+lvzsPacC/ym0N9PUoukWZJOLTeDpPPyNC1Lly7d8YjNzKysmhVDbQtJHwGagbcXBo+NiMWS9gFul/RIRDxVnC8irgCuAGhubo4uC9jMbCdTyzOLxcDoQv+oPGwrko4HvgqcHBHr2oZHxOL8vhC4EzikhrGamVkHapksHgAmShovqQ9wBrDVVU2SDgEuJyWKJYXhQyT1zd3DgKOBYsW4mZl1oZoVQ0XEBknnA7cATcCVETFX0nSgJSJmAt8BBgHXSwJ4NiJOBvYHLpe0iZTQLi65isrMzLqQInpGUX9zc3O0tLTUOwwzs25F0uyIaK40ne/gNjOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKyiqpKFpF9IOkmSk4uZ2U6o2oP/D4APA09KuljSG2sYk5mZNZiqkkVE/C4izgIOBZ4BfifpHkl/Kal3LQM0M7P6q7pYSdJQ4Bzg46SHFn2flDxuq0lkZmbWMKpqG0rSTcAbgWuA90XE83nUtZLcxoaZWQ9XbUOC/xoRd5QbUU2bImZm1r1VmyyGSPqLkmEvAo8UmxY3M7OeqdpkcS5wJNB2dnEsMBsYL2l6RFxTg9jMzKxBVJssegP7R8SfASTtCVwNHAHcRarLMDOzHqraq6FGtSWKbAkwOiJWAOs7PywzM2sk1Z5Z3Cnp18D1uf/9edhAYFVNIjMzs4ZRbbKYBvwF8NbcfzVwY6TH7B1Xi8DMzKxxVCyGktQE3B4RN0bE/8mvG6KK57FKmippvqQFkr5cZvznJc2T9LCk/5E0tjDubElP5tfZ2/zJzMys01RMFhGxEdgkabdtWXBOMpcCJwKTgTMlTS6Z7CGgOSIOBm4A/jHPuwfwDVIF+uHANyQN2Zb1m5lZ56m2GOpl4BFJtwGvtA2MiM92MM/hwIKIWAggaQZwCjCvMH/xRr9ZwEdy9wnAbbkCnbzeqcDPq4zXzMw6UbXJ4hf5tS1GAosK/a2kM4X2nAv8poN5R5bOIOk84DyAMWPGbGN4ZmZWraqSRUT8WFJ/YExEzO/sICR9BGgG3r4t80XEFcAVAM3NzRXrUMzMbPtU+/Cj9wFzgN/m/imSZlaYbTEwutA/Kg8rXfbxwFeBkyNi3bbMa2ZmXaPam/IuItVBrAKIiDnAPhXmeQCYKGm8pD7AGcBWCUbSIcDlpERRbGPqFuDdkobkiu1352FmZlYH1dZZrI+IFyUVh23qaIaI2CDpfNJBvgm4MiLmSpoOtETETOA7wCDg+rzsZyPi5IhYIembpIQDML2tstvMzLpetclirqQPA02SJgKfBe6pNFNE3AzcXDLs64Xu4zuY90rgyirjMzOzGqq2GOozwAHAOtLlqy8Bf1OroMzMrLFUezXUq6RK6K/WNhwzM2tE1T5WdT/gC8C44jwR8Y7ahGVmZo2k2jqL64HLgB8CG2sXjpmZNaJqk8WGiPj3mkZiZmYNq9oK7l9J+rSkvSXt0faqaWRmZtYwqj2zaGsi/IuFYUHlG/PMzKwHqPZqqPG1DsTMzBpXh8VQkr5U6D69ZNzf1yooMzNrLJXqLM4odH+lZNzUTo7FzMwaVKVkoXa6y/WbmVkPVSlZRDvd5frNzKyHqlTB/SZJL5HOIvrnbnJ/v5pGZmZmDaPDZBERTV0ViJmZNa5qb8ozM7OdmJOFmZlV5GRhZmYVOVmYmVlFNU0WkqZKmi9pgaQvlxl/jKQHJW2Q9IGScRslzcmvmbWM08zMOlZtQ4LbTFITcCnwLqAVeEDSzIiYV5jsWeAc0oOVSq2JiCm1is/MzKpXs2QBHA4siIiFAJJmAKcAm5NFRDyTx22qYRxmZraDalkMNRJYVOhvzcOq1U9Si6RZkk4tN4Gk8/I0LUuXLt2RWM3MrAONXME9NiKagQ8D/yJpQukEEXFFRDRHRPPw4cO7PkIzs51ELZPFYmB0oX9UHlaViFic3xcCdwKHdGZwZmZWvVomiweAiZLGS+pDau68qquaJA2R1Dd3DwOOplDXYWZmXatmySIiNgDnA7cAjwHXRcRcSdMlnQwg6c2SWoHTgcslzc2z7w+0SPojcAdwcclVVGZm1oUU0TNaGm9ubo6WlpZ6h2Fm1q1Imp3rhzvUyBXcZmbWIJwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKyimiYLSVMlzZe0QNKXy4w/RtKDkjZI+kDJuLMlPZlfZ9cyTjMz61jNkoWkJuBS4ERgMnCmpMklkz0LnAP8rGTePYBvAEcAhwPfkDSkVrGamVnHanlmcTiwICIWRsRrwAzglOIEEfFMRDwMbCqZ9wTgtohYERErgduAqTWM1czMOlDLZDESWFTob83DOm1eSedJapHUsnTp0u0O1MzMOtatK7gj4oqIaI6I5uHDh9c7HDOzHquWyWIxMLrQPyoPq/W8ZmbWyWqZLB4AJkoaL6kPcAYws8p5bwHeLWlIrth+dx5mZmZ1ULNkEREbgPNJB/nHgOsiYq6k6ZJOBpD0ZkmtwOnA5ZLm5nlXAN8kJZwHgOl5mJmZ1YEiot4xdIrm5uZoaWmpdxhmZt2KpNkR0Vxpum5dwW1mZl3DycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwvrWSLg2bvh+QfrHYlZj9Kr3gGYdZqVC+Gef4LF98OA4XDWzSDVOyqzHsFnFtb9vfYy3PtduOFMWPoYjDsWXl0KK5+qd2RmPYbPLKz7ik3wxH/D/ZfAmhUw6VR486dh42vwzJ2w6B7YY996R2nWIzhZWPe0ZC7c8x1Y8ii84SCY+j0YPnnL+CEToHUWvOlj9YvRrAdxsrDuZc0KuP9SmD8T+u8Bx14EE98DKilRHX0UPDoD1r8KvQfUJVSznqSmdRaSpkqaL2mBpC+XGd9X0rV5/H2SxuXh4yStkTQnvy6rZZzWDaxZAbO+Dz8/GZ74NRx8FnzoRtjvva9PFACjj4RN6+G52V0fq1kPVLMzC0lNwKXAu4BW4AFJMyNiXmGyc4GVEbGvpDOAbwMfyuOeiogptYrPuok1K+CP18C861NdxIQT4NBzYfdxHc+31xTo1S/VW4x9W5eEataT1bIY6nBgQUQsBJA0AzgFKCaLU4CLcvcNwCWSr3U0tj9JtGnqAyPeDK331jRMs51FLZPFSGBRob8VOKK9aSJig6QXgaF53HhJDwEvARdGxP/WMFZrFGtWwsPXwNzrti9JFI16Czz7v/DiIthtdKeHarYzadQK7ueBMRGxXNJhwH9JOiAiXipOJOk84DyAMWPG1CFM6zQvPgtzr4fHb9rxJNFm9FHpvfVeJwuzHVTLZLEYKP5CR+Vh5aZpldQL2A1YHhEBrAOIiNmSngL2A1qKM0fEFcAVAM3NzVGLD2E1tGljqlOYe106oO/SC/Z5144niTa7jYZdR8Gie+GAD+748sx2YrVMFg8AEyWNJyWFM4APl0wzEzgbuBf4AHB7RISk4cCKiNgoaR9gIrCwhrFaV1r7Yrr0dd4NsHpxapqj+VPpproBwzp3XaOOhCd+lc5Wmvp07rLNdiI1Sxa5DuJ84BagCbgyIuZKmg60RMRM4EfANZIWACtICQXgGGC6pPXAJuBTEbGiVrFaF1k2P51FLPgtbFwHex8KR3wmNc+xS412xdFHpUryF+bAyMNrsw6znUBN6ywi4mbg5pJhXy90rwVOLzPfjcCNtYzNusgrS+GpW+GpW2DpvHQ568T3pGKhoRNrv/4Rh8EuvVNRlJOF2XZr1Apu687WrYanb09nEM+1AAHD9ocjP59uouu7a9fF0nsA7H1Iqht5y+e6br1mPYyThXWODWvTcyQW3JLeN62HXUfDoR+HfU/onArr7TXqLXDfv8IrS2DgG+oXh1k35mRh22/NyvSPfdEf4Nk/wPpXoP9QmPwBmHhiOptohHssRx+VksWie2HSKfWOxqxbcrKw6sWmVEn97N0pQSyZC0RKEPscn84g9j4Mdmmqd6RbGzIhXXHV6mRhtr2cLKxja1eleodn/5DOItYsBwRvOACaPwmjj4ZhbyzfmF+jkFLDgk/fAZs21O7KK9ti00Z4bXWqv9q0PvXHxrT9N3fv6LBNeWX5FquIkm62jN/cH68f1+G83cTgveGg0jsTOpd/NbZFRLrv4YU58MIf0/uqp9O4vrumsv8xb033LvQfUt9Yt9Xoo9K9HUvmwl5vqnc03UdEusx57ap0f8y6Fwvv5Ybl93Wr2Xzw7RK5uFPa0r25P48vdm81vp15u5Phk50srIY2bYAVC7YEZmksAAANLElEQVRODq8uTeP6DE4H1f1OSi24vuHA7v2PfOTh6eyn9V4nizabNqTnli99DF5qTQf/cgf+ja+1v4zeA6DvbtBvt/Q+eMTW/X0Hp5sh1ZSKJ3fptaVbub/s8ArDtEvjFXf2cN3419+JXnwWBo/s2Tvf2lWw/ElY/gSsyO8rn05FBACD9kr3JOw1Jb2G7NPYRUvbqu+uKeEtujfdLb6z2bg+PZN82eMpOSx7LP1RaEsEatpygO+3W/o9DJ+89YG/+N5v97RNfVf8TsPJYu0quPYvoKkvDBmfntlcfPUf2hhX9FQjNqWb4FYvhpcWpyTYlhxeWbJluv5DYeh+qVhp6H4pOQzaq35xd5VRR8LsK9J33m/3ekdTOxtfgxVPpYSw7PH0Wv7klj8GvQfCsEnpxshhk9JVa7uN7ll/DqzTOVns0js9mnPFgvRadG96ElubvrvlxDEhnWIPfMOW14Dh0NS762LdsDY952HNSnh1Gax+LhUfrF6c35/bushATen+hr0PS0lh6MT03n+Prou5kYw+EmZfnp7Nve/UekfTOTa+lhJBW1JoO2PYtCGN7zM4JYQDz4Dh+6fEsOtIJwbbZk4WfQamu4qL1q7akjxWPJXen/jvdB9Bqf57bEkcA4enf229+qbT86a+qbtXvy39TX3SD3njulQ08Lr311JSWLsK1q5MyWHtqvS+Ye3r1997QGpZdffxMOZt6UCw66hUjDBor65NZo1u2P4p+S+6t3smiw3r0lniVkVJT6WrgyAVCw2bBAedld6H75/2g+5yZmwNzcminH67w4jm9GoTAa+9nIpzyr1efgGWPJIO6BvWsUNXgjT1STH0G5KS0W5j03v/IVuG9R+SDgT9dvfBoFq7NKWit9ZZqciukf9dr381FSEuezzd27Ls8VQZvTkx7JYSwps+uqUoafAI7wtWM04W1ZLSlR19B6ciqY5EpPLhDevSGcNW76+lKzp69U1FYKXvTb0b+yDW3Y0+MjVquPyJdJBtBOtWw/L5haKkx2HVn9j8h6P/HinWMW/dUpQ0aC8nButSTha1IOVipz7A4HpHY0Wj3pLeW2fVJ1msWbl1Ulj2eKpzajNwzxTXhBPyGcOk9IwPJwarMycL27kMGAZD35juRp9yTu3WE5EuQihWPC+bD6/8ecs0u45KZwr7n5aSwtA3dr+bHW2n4WRhO5/RR8Ifr0l1UH0Gbd8y1r+aLjp4dVl+X76l/5U/p8SwZnmeWPmqtENT0yhtiaGvzzqt+3CysJ3PqCNhzlWpzatxx24Z3nZp8qvL04G+LQFs7i4M27CmzIKVzgwGDE/Ni7QVIw2dmK5aM+vGnCxs57PnwekS5/v+DR7+6ZYkUO7SaEhXHg0Ymm5m3POgfDXa0C3DBgxNw/rt3r2bRDHrgPds2/k09YYDTk+t0EqpSGh0PvD33+P1ScAJwKy2yULSVOD7QBPww4i4uGR8X+Bq4DBgOfChiHgmj/sKcC6wEfhsRNxSy1htJ3P4+ellZlWp2QX9kpqAS4ETgcnAmZIml0x2LrAyIvYFvgd8O887GTgDOACYCvwgL8/MzOqglnd/HQ4siIiFEfEaMAMofUzZKcCPc/cNwDslKQ+fERHrIuJpYEFenpmZ1UEti6FGAosK/a3AEe1NExEbJL0IDM3DZ5XMO7J0BZLOA87LvS9Lmt9OLMOAZdv6Aeqou8ULjrmrOOba627xwo7FPLaaibp1zV1EXAFcUWk6SS0R0VxpukbR3eIFx9xVHHPtdbd4oWtirmUx1GJgdKF/VB5WdhpJvYDdSBXd1cxrZmZdpJbJ4gFgoqTxkvqQKqxnlkwzEzg7d38AuD0iIg8/Q1JfSeOBicD9NYzVzMw6ULNiqFwHcT5wC+nS2SsjYq6k6UBLRMwEfgRcI2kBsIKUUMjTXQfMAzYA0yLa2mbeLhWLqhpMd4sXHHNXccy1193ihS6IWemPvJmZWfv84AQzM6vIycLMzCrqMclC0lRJ8yUtkPTlMuPPkbRU0pz8+ng94iyJ6UpJSyQ92s54SfrX/JkelnRoV8dYEk+leI+V9GJhG3+9q2MsE9NoSXdImidprqTPlZmm0bZzNTE3zLaW1E/S/ZL+mOP92zLT9JV0bd7G90ka1/WRbhVPNTE33DEDUusYkh6S9Osy42q3nSOi279IFehPAfsAfYA/ApNLpjkHuKTesZbEdAxwKPBoO+PfA/wGEPAW4L4Gj/dY4Nf13q4lMe0NHJq7BwNPlNk3Gm07VxNzw2zrvN0G5e7ewH3AW0qm+TRwWe4+A7i2G8TccMeMHNfngZ+V+/5ruZ17yplFNU2LNJyIuIt0FVh7TgGujmQWsLukvbsmuterIt6GExHPR8SDuXs18Bivbw2g0bZzNTE3jLzdXs69vfOr9MqZ9pr2qYsqY244kkYBJwE/bGeSmm3nnpIsyjUtUu7H9f5czHCDpNFlxjeaaj9XIzkyn9r/RtIB9Q6mKJ+SH0L6F1nUsNu5g5ihgbZ1LhqZAywBbouIdrdxRGwA2pr2qZsqYobGO2b8C/AlYFM742u2nXtKsqjGr4BxEXEwcBtbsq91ngeBsRHxJuDfgP+qczybSRoE3Aj8TUS8VO94qlEh5oba1hGxMSKmkFpbOFzSgfWMpxpVxNxQxwxJ7wWWRMTseqy/pySLis2DRMTyiFiXe39IeoZGo+tWzZ5ExEttp/YRcTPQW9KwOoeFpN6kg+5PI+IXZSZpuO1cKeZG3dYRsQq4g/RogaL2mvapu/ZibsBjxtHAyZKeIRW1v0PST0qmqdl27inJomLTIiVl0CeTyoEb3UzgY/lqnbcAL0bE8/UOqj2S9morH5V0OGn/qusBIcfzI+CxiPhuO5M11HauJuZG2taShkvaPXf3B94FPF4yWXtN+9RFNTE32jEjIr4SEaMiYhzpGHd7RHykZLKabedu3epsm6iuaZHPSjqZ1HzICtKVDnUl6eekq1qGSWoFvkGqaCMiLgNuJl2pswB4FfjL+kSaVBHvB4C/lrQBWAOcUc8DQnY08FHgkVw+DfD/gDHQmNuZ6mJupG29N/BjpQeU7QJcFxG/VhVN+9RRNTE33DGjnK7azm7uw8zMKuopxVBmZlZDThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFtawJL1cxTR/I2lAJ67zVEmTO3F59+zAvC/n9xGSbuhgut0lfXp712NWDScL6+7+BtimZJGvrW/PqUCnJYuIOKoTlvFcRHygg0l2J7U2alYzThbW8JSe3XBnbsztcUk/zXdbfxYYAdwh6Y487bsl3SvpQUnX5/aVkPSMpG9LehA4XdInJD2QG+K7UdIASUeR7tT9jtLzCyZImiJpVm5M7iZJQ/Ly7pT0PUktkh6T9GZJv5D0pKRvFWJ/udB9gaRH8jovLvM5x+fYHylZxjjlZ4hIOkDpOQxzckwTgYuBCXnYdyQNkvQ/eRs8IumUwnIek/QfSs9wuDXfvYykfSX9Lsf2oKQJefgX83Z6WGWe+WA7kc5q69wvvzr7Bbyc348ltZ45ivQH517grXncM8Cw3D0MuAsYmPsvAL5emO5LhWUPLXR/C/hM7r4K+EBh3MPA23P3dOBfcvedwLdz9+eA50h3BfcltVo7tOQznAjcAwzI/XuU+bwzgY/l7mmFeceRnyFCajTwrNzdB+hfHJ+H9wJ2LWyTBaTnN4wj3Y08JY+7DvhI7r4POC139yOdrb0buCLPuwvwa+CYeu8XftXn1SOa+7Cdwv0R0QqQm8AYB9xdMs1bSEVIf8jNJvUhJZY21xa6D8z/3ncHBpGaitmKpN2A3SPi93nQj4HrC5O0tT/2CDA3cntSkhaSGnMrttV0PPCfEfEqQESUey7I0cD7c/c1wLfLTHMv8FWl5xr8IiKe1OsfVyDg7yUdQ2rKeiSwZx73dES0NSEyGxgnaTAwMiJuyrGtzZ/j3aSE8VCefhAwkZSQbSfjZGHdxbpC90bK77siPZfgzHaW8Uqh+yrg1Ij4o6RzSGcv2xvTppL4NrUTXzU6bH8nIn4m6T7SA3BulvRJYGHJZGcBw4HDImK9Uiul/UpihrQd+3ewOgH/EBGXb0P81kO5zsK6u9WkR48CzAKOlrQvgKSBkvZrZ77BwPNKTYGfVW55EfEisFLS2/K4jwK/Z/vcBvxl25VbkvYoM80f2NLw21llxiNpH2BhRPwr8EvgYLbeBpCapV6SE8VxwNiOAov0NL5WSafmdfTNcd4C/FWh3mekpDdU9Wmtx3GysO7uCuC3ku6IiKWklkF/LulhUpHNpHbm+xqpnP4PbN009Qzgi5IeypW8Z5MqvB8GppDqLbZZRPyWVGzVkovRvlBmss8B0yQ9QvtP6vsg8GhexoGkx8EuJxW9PSrpO8BPgea8nI/x+ubCy/koqZXVh0l1K3tFxK2kZz3fm5d1A1snJduJuNVZMzOryGcWZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhX9f1ZRq7m+TjZEAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XucVVX9//HXm2G4oyIgyh0V8y7qiHctxfsF+9qFStOyqITK/OUtTQ0rtb7ZtwumpmbZxdTSqCzTFM0UZVBAQVFElEGQOwhym5nP74+1BjfHMzNnmNmzz5z5PB+P85h9WXufz9nnzPmcvdbea8nMcM455xrSIesAnHPOFT9PFs455xrlycI551yjPFk455xrlCcL55xzjfJk4ZxzrlGeLBySrpX02zg9WNJaSWVxvp+kJyW9K+lHCn4laaWk57KN3DVE0nxJo7KOI22Szpf0VAr73ep/oQX3O1SSxX2Pjcv2iPM1kr7Qks/XUjpmHUBbJmk+0A+oSSy+y8zGZxNR85nZW0CPxKKxwDJgOzMzSUcDJwADzWxdFjG65pN0F1BlZldlHUuxiP/PXzCzRyHv/0JL28HMquNzvQr0kDQ5xedrFk8WzXdG3YcrLZI61n2oMjAEmG3v3705BJi/LYki49fRprWXY9deXmdb5NVQKak7NZb0v7HK5g1JpyTWby/pDkmLJC2U9N1E1c/5kv4r6ceSlgPXSiqL1UDL4r7Gx1PZjpI+LmlazvNfLOkv9cQ2TNITsWrpEaBPYt3QxH7vAs4DLo2nyF8CbgcOj/PfiducLmm6pFWSnpa0f2J/8yVdJmkmsC7ut7+kP0laGl/L1xLlr5V0r6TfxPhmSapIrB8k6c9x2+WSfp5Y93lJL8fj/bCkIQ28P0fFWFdJWiDp/MT78pu4/zclXSWpQ573ZZWkeZKOiMsXSFoi6bzEc9wl6RZJj8TX8kQyJkk/idutkTQtnrUlj8P9kn4raQ1wvqQOki6X9Hp87fdK2jGxzbkx5uWSrmzgtY8FPpN4X/8al+8laXJ8bbMkndnAPiZLui4ej3cl/UtS8nN0ZtzHqlh2rwb2ZZLGSXoNeC0u2zMetxWS5kj6RKJ8b0mT4nF7DtgtsW7L5zcn1i8k5r8YPyfvSpot6SBJdwODgb/GY3Jp7r7i53ZSjGmupC/mvF/1fm5Lgpn5YxsfwHxgVD3rzgc2A18EyoCvAG8DiusfAG4FugM7Ac8BX0psWw18lXD21xX4MjAbGAj0Ah4FLK7vDKwA9ko8/wvA2fXE9gxwU9zuGOBd4Ldx3dC6/cb5u4Dv5ryupxLzBwJLgEPj6zwvHpfOiWM0HRgUX0cHYBpwNdAJ2BWYB5wUy18LbABOjfu7HpgS15UBM4Afx+PWBTgqrhsNzAX2isfkKuDpel7/kPiaPwWUA72BEXHdb4C/AD3jsXgVuCDnfflcjOW7wFvAxHgsT4z77ZE4du/GY9wZ+EnOsTsnPndH4P8Bi4EuieOwGTgrHrOuwNeBKfEz0Jnw+flDLL83sDbxXDfFWOv7fOa+r+Xx+H0rvi/Hxdg/VM/2k4HXgT1ibJOBG+K6PYB1hOrKcuDSuO9O9ezLgEeAHeO+ugML4nHuSPiMLQP2juXvAe6N5fYFFtYdV3I+v4lYvxCnPx7LHwII2B0Yku//OXdfwJPAzYTP3QhgKXBcY5/bPK/3AzHmi7XYHpkH0JYf8cO1FliVeHwxrjsfmJso2y1+QHYmtHNsBLom1n8KeDyx7Vs5z/UYMZnE+VE5H+RfAN+L0/sAK4lf2Dn7GUz4EumeWPZ7tj1Z/AK4Luc55gDHJo7R5xPrDs3z2q4AfhWnrwUeTazbG1gfpw+P/6D5/sn+QfxSj/MdgPfqvgjyPN8DeZaXAZuIX0px2ZeAyYnX/lpi3X7xWPVLLFvO+4nnLuCexLoehPatQfV8nlYCBySOw5M5618Gjk/M70JIKB0JyTf5XN3jayk0WRxNSFYdEsv+AFxbz/aTgasS8xcC/4zT3wbuzXkvFgIfrmdfRvzSjfOfBP6TU+ZW4Jr4Hm0G9kys+z6FJ4uHga838P+cN1kQfuzUAD0T668ntFHWvV95P7d5nucDMeaLtdge3mbRfGdZ/W0Wi+smzOw9SRC+MHYk/OJaFJdB+IdakNg2OQ3Qv5H1vwb+IOkq4FzCP+vGPDH1B1ba1m0ObxL+GbbFEOA8SV9NLOsUnydfrEOA/pJWJZaVAf9JzC9OTL8HdIlVAYOANy1/nfYQ4CeSfpRYJmAA4fUlDSL8Ks7Vh/C+JMu/GfdR553E9HoAM8tdlmwU3fLazWytpBXE91LSN4EL4rwB25GoEuSD7/EQ4AFJtYllNYQfH1t9PsxsnUIVZqH6AwvMLLnv3NeeK/d9qnvd/UkcQzOrlbSgkX3lfkYOzfmMdATuBvrG6WT53Pe3IfW9943pD6wws3dznjdZ1ZT3c1vP57XN8WSRjQWEM4s+DXyQcrsDXkSofqiz1Ze7mU2RtInwC/HT8ZHPIqCXpO6JhDE4z/MVagHhjOZ7DZRJ7nsB8IaZDd/G5xpczz9gXRy/K3A/I/MsX0b41TqEUOUH4dgs3IZY62x5nyTV/VB4O7ZPXAocD8yKX6grCQmuTu57soBwlvbf3CeRtIhQBVc3341QxVWf3H2/DQyS1CGRMAYTquGa6m3CWVddLCIch4aOY+5n5AkzOyG3kEK7XnXc3yuJOOvUfaa7AWvi9M45+96N/Br6H3gb2FFSz0TCaO5no03xBu4MmNki4F/AjyRtFxsud5N0bAOb3Qt8XdIASTsAl+Up8xvg58BmM8t73bmZvQlUAt+R1EnSUcAZzXg5vwS+LOlQBd0lnSapZz3lnwPeVWj07qrQcL+vpEMKeK7nCMnuhvg8XSQdGdfdAlwhaR/Y0lD98Xr28ztglKRPKDS495Y0wsxqCMf5e5J6KjRGXwz8trBDkdepCo3pnYDrCPXYCwhtItXEajVJVxPOLBpyS4xtSHyNfSWNjuvuB05PPNcEGv7/fofQXlTnWcKv4UsllUv6MOFzcU8TXmude4HTJB0vqZzQHrMReLrA7f8G7KHQYF8eH4dI2iu+R38mXPTRTdLehHYyAMxsKeEL/Jz42fo8WyeH24FvSjo4fl531/sXHeQeky3ie/Y0cH383O1POCtszmejTfFk0Xx1V0/UPR4ocLvPEqprZhPqqu8n1EHX55eEBDOT0Hj9EOHLJnmPx92EBr/GPsCfJrQdrCDUA/+mwJg/wMwqCY34Pye8jrmEuv36ytcApxMaCN8g/Jq/Hdi+gOeqIXyB7U5oWK4i1G9jZg8ANwL3KFw99BJwSj37eYvQEPn/CMdgOnBAXP1Vwq/TecBThPacOxuLrQG/JxzjFcDBhEZtCHXn/yT8cn+T0DiaW+2U6yfAJOBfkt4lNHYfGl/TLGBcfL5FhPeiqoF93QHsrXC10oNmtolwbE8hvCc3A581s1ca2EdeZjYnvs6fxX2dQbjEfFOB279LuFhgDOEX/WLCe9s5FhlPqPJaTGh7+VXOLr4IXEJoP9qHRJIys/uA7xGO07vAg4SzPQhtEFfFY/LNPKF9itDe8DbhApVrGqiCLjl1V+a4NkbhMtxbzGxIYllXwpVJB5nZa5kF5wC/8c3lF89k5hB+IFxiZr+UNByYSvgBeaGZ3ZVhiHl5m0UbERPBRwhnF/0Iv1Zzz2K+Akz1ROFc8YpVwV1ylr0G7JBNRIVJtRpK0skKN9TMlXR5A+XOjje/JG++uiJuN0fSSWnG2UYI+A6heuEFwmWUV29ZGboq+DqhasU551pUatVQ8aqFVwk35lQRTrE+ZWazc8r1BP5OOP0ab2aVsdHqD4QrVvoTbkDbI9ZZO+eca2VpnlmMJNyUNi82bN1DuMs213WExqsNiWWjCTcYbTSzNwiNpvkudXTOOdcK0myzGMDWV3dUEa/cqCPpIMLdrH+XdEnOtlNytv3ADT0KfdyMBejevfvBe+65ZwuF7pxz7cO0adOWmVnfxspl1sCt0DnbTTRwmWVjzOw24DaAiooKq6ysbJngnHOunZBU0B3waSaLhWx9l/FAtr7bsSfhnoDJscuLnYFJCj1dNratc865VpRmm8VUYLhCd9idCDfYTKpbaWarzayPmQ01s6GEaqcz401ek4AxkjpLGgYMJ9y965xzLgOpnVmYWbWk8YQ7VcuAO81slqQJQKWZTWpg21mS7iXc3VwNjPMroZxzLjslcwd3vjaLzZs3U1VVxYYNG+rZqv3p0qULAwcOpLy8POtQnHNFQNI0M2t0oKaSvoO7qqqKnj17MnToUCQ1vkGJMzOWL19OVVUVw4YNyzoc51wbUtIdCW7YsIHevXt7oogk0bt3bz/Tcs41WUknC8ATRQ4/Hs65bVHyycI551zzebJwzjnXKE8WKZo/fz5du3ZlxIgRDZabOnUqHTt25P7772/S/p977jlGjBjBiBEjOOCAA3jggdBj+fr16xkxYgSdOnVi2bJl2xy/c87VKemroYrBbrvtxvTp0+tdX1NTw2WXXcaJJ57Y5H3vu+++VFZW0rFjRxYtWsQBBxzAGWecQdeuXZk+fTpDhw5tRuTOOfe+9pMsnv4RLJ/Tsvvs/SE4onnDR/zsZz/j7LPPZurUqU3etlu3blumN2zY4I3XzrnUeDVUhhYuXMgDDzzAV77ylW3ex7PPPss+++zDfvvtxy233ELHju0n/zvnWk/7+WZp5hlAGi666CJuvPFGOnTY9px96KGHMmvWLF5++WXOO+88TjnlFLp06dL4hs451wR+ZtGKJk6cuKVB+u2336ayspIxY8YwdOhQ7r//fi688EIefPDBerd/4IEHtmyf27XJXnvtRY8ePXjppZfSfhnOuXao/ZxZFIFx48Yxbty4LfNvvPHGlunzzz+f008/nbPOOguAPffck1deeWWr7T/60Y/y0Y9+dKvtBw0aRMeOHXnzzTd55ZVXvFHbufbIDFJus/RkUYSWLVtGIR08PvXUU9xwww2Ul5fToUMHbr75Zvr06dMKETrnWlVtNaxbAu++DWsXh7/vLorzi2C7gXDazamG4MmiSNx1111bpqdMmbLVGUh9zj33XM4999wUo3LOtYraalj7TvjiTyaBuqSwbglsNUqDoHtf6LEL9DsA+nwo9RA9WaSorKyM1atXM2LEiAbvtch1+umnN+t5169fz+GHH87mzZub1XjunGshZrDuHVi9IH9CWLcErDaxgaD7TtBzF9h5BPTsH6Z77BKme/SDsk6t+hJKPlmYWWb3HwwaNIgFCxa0+vPW3ZSXT6mMX+JcUbNaWPkGLH4BFr0Q/q5bkihQlwz6wy4HxQSwS0gIPftD935QVlxjzpR0sujSpQvLly/3bsqjuvEs/NJa51pYbTUsfxUWPR+Tw3TYuDqs69YHdj4wnCH02jUkhCJMBo0p6WQxcOBAqqqqWLp0adahFI26kfKcc81QvRGWznr/rOGdmbD5vbBuu4Ew5BjY5cB41jAg9SuVWkOqyULSycBPCGNw325mN+Ss/zIwDqgB1gJjzWy2pKHAy0Bd/xxTzOzLTX3+8vJyHxHOOdd8m9aFhLDo+ZAclsyC2s1h3Y67w/DTQnLY+cDQ8FyCUksWksqAicAJQBUwVdIkM5udKPZ7M7sllj8TuAk4Oa573cwa7q7VOefSsH5lqEqqa3NYPie0Q6gM+uwJ+44J1Uo7j4Au22cdbatI88xiJDDXzOYBSLoHGA1sSRZmtiZRvjvgra/OuWxUb4DZ98OcSbByXlhW1hl22hcO/Hw4a+i3H5R3a3g/JSrNZDEASF4KVAUcmltI0jjgYqATcFxi1TBJLwBrgKvM7D8pxuqca69qq0OCeP72cMXSLgfByPHhrKHv3q1+iWqxyryB28wmAhMlfRq4CjgPWAQMNrPlkg4GHpS0T86ZCJLGAmMBBg8e3MqRO+faNKuF1/8FlbfCmgXQb3/4yAToX5F1ZEUpzWSxEBiUmB8Yl9XnHuAXAGa2EdgYp6dJeh3YA9iq9zwzuw24DaCiosKrsJxzjTODBf+FqTeHy1133B1OugkGH10SVy2lJc1kMRUYLmkYIUmMAT6dLCBpuJm9FmdPA16Ly/sCK8ysRtKuwHBgXoqxOufag0XPw3MT4Z0Z4RLX474Lu50I8p4OGpNasjCzaknjgYcJl87eaWazJE0AKs1sEjBe0ihgM7CSUAUFcAwwQdJmoBb4spmtSCtW51yJW/ZKOJNY8DR06wtHXQF7joYOmdfEtxkqle4fKioqLHeMB+dcO7dqPlTeAvMehc7bw4jzYJ9PQEfvxaCOpGlm1mhDjadV51zpWbsYpv0SXv1buJrpoC/A/udApx5ZR9ZmebJwzpWO9SvhhTvD/RIQziIO/Bx03THbuEqAJwvnXNu3aS3M/C28+Ptwc90ep8PBY6HHzllHVjI8WTjn2q7qDTDrPph+V+jldddRUPFl2GFo1pGVHE8Wzrm2p7YaXvlLuOv6vaUw8HA45ELou1fWkZUsTxbOubZlwyr4+4Xhhrp++4d7JfofnHVUJc+ThXOu7ahLFKvehFE3wLDj/a7rVuLJwjnXNmxcA38fF+6dOOkmGHhY1hG1K36Pu3Ou+G18NySKlfPgxP/1RJEBP7NwzhW3TWvhofGw4rWQKAYdkXVE7ZKfWTjnitemtfDQV8NIdaNuhMFHZR1Ru+XJwjlXnDatg398HZbOhuOvh6HHZh1Ru+bJwjlXfDavh39eBEteguO/B8M+knVE7Z63WTjnikv1hpAo3pkR7qHYdVTWETn8zMI5V0yqN8DDF8PiF8IQp7udmHVELvJk4ZwrDtUb4eH/Bwunwoevhd1Pzjoil+DJwjmXveqN8MglsPA5+PA1MPzUrCNyOTxZOOeyVbMJHr0sDHl6zJWhe3FXdDxZOOeyU7MZHr0c3noKjv4W7HlW1hG5eqSaLCSdLGmOpLmSLs+z/suSXpQ0XdJTkvZOrLsibjdH0klpxumcy0BtNfz7W/Dmk3DU5bDX/2QdkWtAaslCUhkwETgF2Bv4VDIZRL83s/3MbATwA+CmuO3ewBhgH+Bk4Oa4P+dcKahLFPMfhyO+CXt/LOuIXCPSPLMYCcw1s3lmtgm4BxidLGBmaxKz3QGL06OBe8xso5m9AcyN+3POtXW11fDYt+GNx+Dwi2HfMVlH5AqQ5k15A4AFifkq4NDcQpLGARcDnYDjEttOydl2QJ5txwJjAQYPHtwiQTvnUlRbA5OvhXmPwGEXwX6fzjoiV6DMG7jNbKKZ7QZcBlzVxG1vM7MKM6vo27dvOgE651pGbQ088R2Y+08YOR72PyfriFwTpJksFgKDEvMD47L63APUXQrR1G2dc8XMauHJ78JrD0HFV2DE+VlH5JoozWQxFRguaZikToQG60nJApKGJ2ZPA16L05OAMZI6SxoGDAeeSzFW51xarBae/B68+lc4+Etw0AVZR+S2QWptFmZWLWk88DBQBtxpZrMkTQAqzWwSMF7SKGAzsBI4L247S9K9wGygGhhnZjVpxeqcS4nVwn+uhzl/gYO+AAd/MeuI3DaSmTVeqg2oqKiwysrKrMNwztUxg//+AGbfByM+B4dcCFLWUbkckqaZWUVj5TJv4HbOlahZfwyJYv9zPVGUAE8WzrmWt+J1ePanYRjUQ7/miaIEeLJwzrWsmk3w+LehvDsc821PFCXCR8pzzrWsqb+A5a/CSTdBt95ZR+NaiJ9ZOOdaztuVMPO3oVPAIcdkHY1rQZ4snHMtY+MaePwa2H4QHPaNrKNxLcyroZxzzWcGT90A7y2Ds34F5V2zjsi1MD+zcM4139x/wuv/goPHQt/ckQhcKfBk4ZxrnncXhbOKfgd4n08lzJOFc27b1dbA5GvC9EcmQAcfo6xUebJwzm27mXfDoufhyEtguw8MOeNKiCcL59y2WfYKVN4Cu46C4adlHY1LmScL51zTVW+Ax66CLr3gqCv8Lu12wC+ddc413ZSfwKr5cOpE6LJ91tG4VuBnFs65pnnrqdCb7H6fhoGHZh2NayWeLJxzhVu/Ep64DnrtBoeMyzoa14q8Gso5VxizMI72xjVw6s+hY+esI3KtyM8snHOFeeVBePMJGDkeeg/POhrXylJNFpJOljRH0lxJl+dZf7Gk2ZJmSvq3pCGJdTWSpsfHpDTjdM41YvVb8MyPYMBI2O9TWUfjMpBaNZSkMmAicAJQBUyVNMnMZieKvQBUmNl7kr4C/AD4ZFy33sxGpBWfc65AtdXw2LehrBMcew3IKyTaozTf9ZHAXDObZ2abgHuA0ckCZva4mb0XZ6cAA1OMxzm3LZ6/A5bOgqO/BT36ZR2Ny0iayWIAsCAxXxWX1ecC4B+J+S6SKiVNkXRWvg0kjY1lKpcuXdr8iJ1zW3tnJrxwR7hDe9dRWUfjMlQUV0NJOgeoAI5NLB5iZgsl7Qo8JulFM3s9uZ2Z3QbcBlBRUWGtFrBz7cGmdaH6qcfOoe8n166leWaxEBiUmB8Yl21F0ijgSuBMM9tYt9zMFsa/84DJwIEpxuqcy/X0/8LaRaE32U49so7GZSzNZDEVGC5pmKROwBhgq6uaJB0I3EpIFEsSy3tJ6hyn+wBHAsmGcedcmub9G179axifYme/zsSlWA1lZtWSxgMPA2XAnWY2S9IEoNLMJgE/BHoA9yl0RPaWmZ0J7AXcKqmWkNBuyLmKyjmXlnVL4T/fDyPeHTw262hckUi1zcLMHgIeyll2dWI6b4uZmT0N7JdmbM65PKwWJl8bepX9yAToUBTNmq4I+AXTzrn3zboXFj4Lh38DdhiadTSuiHiycM4FK16HZ38Kg4+Cvc7OOhpXZDxZOOegZlMYzKi8OxzzbR/MyH2AV0g652DqL2DFa3DSj6Fb76yjcUXIzyyca+/eroSZvw1VT0OOzjoaV6Q8WTjXnm1+DyZ/B7YfBIddlHU0rogVlCwk/VnSaZJ3N+lcSXluIqxdDMdeDeVds47GFbFCv/xvBj4NvCbpBkkfSjEm51xrWDw9XCq7zyf8Lm3XqIKShZk9amafAQ4C5gOPSnpa0ucklacZoHMuBdUb4IkJ0HMXGOljabvGFVytJKk3cD7wBcKgRT8hJI9HUonMOZeeab8Mo98d/S0o75Z1NK4NKOjSWUkPAB8C7gbOMLNFcdUfJVWmFZxzLgVLXw5XP33oTBh4WNbRuDai0Pssfmpmj+dbYWYVLRiPcy5NNZtD9VPXXnDYN7KOxrUhhSaLXpL+J2fZauDFZNfizrkiN+PX4ea7E38EnXtmHY1rQwpNFhcAhwN1ZxcfBqYBwyRNMLO7U4jNOdeSVsyF52+H3U6Eocc2Xt65hEKTRTmwl5m9AyCpH/Ab4FDgSUJbhnOuWNXWwBPXhRHvjvAhUl3TFXo11MC6RBEtAQaZ2Qpgc8uH5ZxrUS/9AZbOgiO+GdornGuiQs8sJkv6G3BfnD87LusOrEolMudcy1i9IHQUOPho2O2krKNxbVShyWIc8D/AUXH+N8CfzMyAj6QRmHOuBVgtPHkdlJXD0Vd41+NumzVaDSWpDHjMzP5kZt+Ij/tjomhs25MlzZE0V9LledZfLGm2pJmS/i1pSGLdeZJei4/zmvzKnHPw8p9h0fOhk8DuO2UdjWvDGk0WZlYD1Eravik7jklmInAKsDfwKUl75xR7Aagws/2B+4EfxG13BK4hNKCPBK6R5BWtzjXF2sVh5LsBI+FDo7OOxrVxhVZDrQVelPQIsK5uoZl9rYFtRgJzzWwegKR7gNHA7MT2yRv9pgDnxOmTgEdiAzrxeU8G/lBgvM61b2bwn++Haqijr/TqJ9dshSaLP8dHUwwAFiTmqwhnCvW5APhHA9sOyN1A0lhgLMDgwYObGJ5zJey1v8OCp8PVT9t94F/HuSYrKFmY2a8ldQUGm9mclg5C0jlABdCkO4XM7DbgNoCKiopG21CcaxfeWwbP3AT9DgjdjzvXAgod/OgMYDrwzzg/QtKkRjZbCAxKzA+My3L3PQq4EjjTzDY2ZVvnXB5P3Ri6ID/22+DjlbkWUugn6VpCG8QqADObDuzayDZTgeGShknqBIwBtkowkg4EbiUkimQfUw8DJ0rqFRu2T4zLnHMNmfcozH8cDh4LOwzNOhpXQgpts9hsZqu1dSNZbUMbmFm1pPGEL/ky4E4zmyVpAlBpZpOAHwI9gPvivt8yszPNbIWk6wgJB2BCXWO3c64eG1bBf38AffaE/c9pvLxzTVBospgl6dNAmaThwNeApxvbyMweAh7KWXZ1YnpUA9veCdxZYHzOuWdugg2r4dSfQ4dC/7WdK0yh1VBfBfYBNhIuX10DXJRWUM65JnrrKXjtITjwc9B7j6yjcSWo0Kuh3iM0Ql+ZbjjOuSbbtBb+cz302hUO/HzW0bgSVeiwqnsA3wSGJrcxs+PSCcs5V7BnfwrvLYUTboSyTllH40pUoRWb9wG3ALcDNemF45xrkrcrQ/9P+30Gdto362hcCSs0WVSb2S9SjcQ51zTVG+DJ78J2A+GQr2QdjStxhTZw/1XShZJ2kbRj3SPVyJxzDZv6C1hTBcd8Gzp2yToaV+IKPbOo6yI8OR6j0fiNec65NLzzIrz4e9jrbOh/cNbRuHag0KuhhqUdiHOuQDWb4IkJYXyKQ7+adTSunWiwGkrSpYnpj+es+35aQTnnGvD8HbDqDTj6W9CpR9bRuHaisTaLMYnpK3LWndzCsTjnGrP8VZh+Fww/DQYfmXU0rh1pLFmonul88865NNVWw+TvQJcd4PCLs47GtTONJQurZzrfvHMuTTPuhuVz4MhLoUuTRjl2rtkaa+A+QNIawllE1zhNnPdr9ZxrLUtegmm3wbDjYNfjs47GtUMNJgszK2utQJxz9Vi/Ah65DLr1CY3azmXA+zF2rpjVVsO/vxXGqhh9R2ivcC4DPuaic8XsuYmh/6ejrwiDGjmXEU8WzhWr1x+BmXfD3h+HPU7POhrXznmycK4YrXg93KXdb3+/TNYVhVSThaSTJc2RNFfS5XnWHyPpeUnVkj6Ws65G0vT4mJRmnM4VlU1r4ZFLoLwbjLoRysqzjsi59Bq4JZUBE4ETgCpgqqRJZjY7Uewt4HzAIeFSAAAToUlEQVTCwEq51pvZiLTic64oWS08fjWsWQin3wLd+2YdkXNAuldDjQTmmtk8AEn3AKOBLcnCzObHdbUpxuFc2/HCnfDmk3DEN2GXA7OOxrkt0qyGGgAsSMxXxWWF6iKpUtIUSWflKyBpbCxTuXTp0ubE6lz2FjwNlbfC7qfAPp/MOhrntlLMDdxDzKwC+DTwf5J2yy1gZreZWYWZVfTt66frrg1bUwWPXQW9h8MxV4K86zVXXNJMFguBQYn5gXFZQcxsYfw7D5gM+Dm5K03VG+CRS8EMTviBj3rnilKayWIqMFzSMEmdCN2dF3RVk6RekjrH6T7AkSTaOpwrGWbw5Pdg+WtwXBxP27kilFqyMLNqYDzwMPAycK+ZzZI0QdKZAJIOkVQFfBy4VdKsuPleQKWkGcDjwA05V1E5Vxpm/RHm/gMqvuTjU7iilmrfUGb2EPBQzrKrE9NTCdVTuds9DeyXZmzOZW7xdHjmxzD4aDjw81lH41yDirmB27nStW5p6El2uwFw3HUg/1d0xc17nXWutdVshkcvg83vwWkTfRxt1yZ4snCutT1zE7wzE46/HnbcPetonCuIn/s615pe/RvMvg/2Pwd2OyHraJwrmCcL51rLslfgP9fDLgfDyPFZR+Nck3iycK41bFgVbrzrsgOMuh46eA2wa1v8E+tc2mprQlce65bCmb+ErjtmHZFzTeZnFs6lbdqtUDUFjrwUdto362ic2yaeLJxL0/zJodvxPc+CvT6adTTObTNPFs6lZdV8ePwa6Ls3HHFJ1tE41yyeLJxLw6Z18K9LwpCoJ/wAOnbOOiLnmsUbuJ1raWbwxARY/SacOhF67Jx1RM41m59ZONfSZt4Nb/wbRn4VBhySdTTOtQhPFs61pDceh+d+DruOCndpO1civBrKuZYy+0/w3xtDg/axV/vQqK6keLJwrrnMYNpt8PwvYdCRMOoGKO+adVTOtShPFs41R201PHUjvPIA7HEGHHOld+XhSpJ/qp3bVtUb4N9XwptPwIjPwSEXetWTK1mpNnBLOlnSHElzJV2eZ/0xkp6XVC3pYznrzpP0Wnycl2aczjXZhtXw93Hw5pPhhruR4zxRuJKW2pmFpDJgInACUAVMlTTJzGYnir0FnA98M2fbHYFrgArAgGlx25VpxetcwdYuhn98DVYvCD3I7joq64icS12aZxYjgblmNs/MNgH3AKOTBcxsvpnNBGpztj0JeMTMVsQE8QhwcoqxOleYFa/DXy6Ate/AqT/zROHajTSTxQBgQWK+Ki5rsW0ljZVUKaly6dKl2xyocwVZPB0mfQGsJnQ13r8i64icazVt+qY8M7vNzCrMrKJv375Zh+NK2fzJoY2i644w+k7ovUfWETnXqtJMFguBQYn5gXFZ2ts617Jm/ymMctd7OIy+A3r2zzoi51pdmsliKjBc0jBJnYAxwKQCt30YOFFSL0m9gBPjMudajxlU3gpPXQ8DD4fTfhGGRXWuHUotWZhZNTCe8CX/MnCvmc2SNEHSmQCSDpFUBXwcuFXSrLjtCuA6QsKZCkyIy5xrHbXV8J/vh7uy9zgDTvqR35Xt2jWZWdYxtIiKigqrrKzMOgxXCvxmO9eOSJpmZo1ereF3cDuXtGE1PHwxvDMz3Gy37yezjsi5ouDJwrk6frOdc/XyZOEchJvt/vHVMBzqqT/zeyicy+HJwrnF0+Gf3wjjZJ/5S7+Hwrk82vRNec4125ab7Xr5zXbONcDPLFz7lRzZ7uT/83sonGuAJwvXPr34B3jmRz6ynXMF8mTh2qcXfwe7HBxutvOR7ZxrlLdZuPZn7eLwGPYRTxTOFciThWt/Fs8If/sdkG0czrUhnixc+/PODOjYNfQi65wriCcL1/4sng799vMqKOeawJOFa182rYUVc70Kyrkm8mTh2pclL4HVws4jso7EuTbFk4VrXxZPB3WAnfbNOhLn2hRPFq59WTwjdOnRqXvWkTjXpniycO1HbTUsedHbK5zbBp4sXPux/NUwCp63VzjXZKkmC0knS5ojaa6ky/Os7yzpj3H9s5KGxuVDJa2XND0+bkkzTtdOLJ4e/u7sZxbONVVqF5pLKgMmAicAVcBUSZPMbHai2AXASjPbXdIY4EagbhzL183MfwK6lrN4OvTsD913yjoS59qcNM8sRgJzzWyemW0C7gFG55QZDfw6Tt8PHC9JKcbk2iuz0Ljt7RXObZM0k8UAYEFiviouy1vGzKqB1UDvuG6YpBckPSHp6BTjdO3Buwth/XKvgnJuGxVrfweLgMFmtlzSwcCDkvYxszXJQpLGAmMBBg8enEGYrs3Y0l7hNZvObYs0zywWAoMS8wPjsrxlJHUEtgeWm9lGM1sOYGbTgNeBD4x3aWa3mVmFmVX07ds3hZfgSsbiGdCpJ/TaNetInGuT0kwWU4HhkoZJ6gSMASbllJkEnBenPwY8ZmYmqW9sIEfSrsBwYF6KsbpSt3g69Ns/3L3tnGuy1KqhzKxa0njgYaAMuNPMZkmaAFSa2STgDuBuSXOBFYSEAnAMMEHSZqAW+LKZrUgrVlfiNqyCVW/A8FOyjsS5NivVNgszewh4KGfZ1YnpDcDH82z3J+BPacbm2pF3Zoa/3l7h3Dbzc3JX+hbPCGNX9N0760ica7M8WbjSt3g69NkLOnbJOhLn2ixPFq60VW+EpbO9Csq5ZvJk4UrbspehdrPfjOdcM3mycKWt7mY87+bDuWbxZOFK2+IZsP1g6Nor60ica9M8WbjSZbXhsllvr3Cu2TxZuNK1aj5sXO3JwrkW4MnCla7FM8Jfb69wrtk8WbjStXg6dOkV2iycc83iycKVrndmhEtmfTwt55rNk4UrTe8tgzVV3l7hXAvxZAGw7BWo2Zx1FK4l+WBHzrWoYh0pr/WsXwF/PgfKOoeO5nY+IDSI9tsfumyfdXRuWy2eEd7T3h/KOhLnSoIni45dYdSNoX578QyYcTfYXWHdDsPeTx47HwA9B0CHskzDdQV6ZwbstA+UlWcdiXMlwZNFeVfY9fjwAKjeAEtmvZ885v0bXnkwrOtQDj13ge0GJh6Dwt+e/aFj5+xeh3vf5vWwbA4c8NmsI3GuZHiyyNWxC/Q/ODwg3AW88g1Y8iKsXgBrFoSG08UzYPO6xIaC7n2ha+/QtUSXHaDrjuFvl15xWfzbqQeUd/dfvWlZ8hJYjbdXONeCPFk0Rh1gx93CI8ksDNe5pur9x7sLQxvIhlWwch6sXwk1G+vfd1mnkDQ6dd/6b3m3cMbTsUuod+/YJfHo/P7ysk4h4ZR1Co8O5R9cprIw8E+HjqV1CalZ6E22ZlPisTkc7/mTAYV2J+dci/Bksa2kcJbQtRf026/+cpvXw4aVIXFsWBkSyaa1sGldODPJ/btuSfhbvSE+NoYvxRaJOZE4kg91CI8OZe9PqyyxrCwmGoW/ihfR1ZUNMzlPZvljsNr4sPAXy1lWA7XVUFtT/3RdkmhI7w9B557bfqycc1tJNVlIOhn4CVAG3G5mN+Ss7wz8BjgYWA580szmx3VXABcANcDXzOzhNGNNTXnX8OjZf9v3UVsdkkbNxkQS2RC+MGurc35Zb9r6F/eWL9jq+h9bvqxrwt/amq2X1daw5cu/7ksdi+U2h2mzws5c6hJPhzJQOSEBdUgkIeUks5jgVPb+dIeO7585JR8dysOZV4dy6ONXQTnXklJLFpLKgInACUAVMFXSJDObnSh2AbDSzHaXNAa4EfikpL2BMcA+QH/gUUl7mFlNWvEWtQ4doVNHoHvWkTjn2qk0b8obCcw1s3lmtgm4BxidU2Y08Os4fT9wvCTF5feY2UYzewOYG/fnnHMuA2lWQw0AFiTmq4BD6ytjZtWSVgO94/IpOdsOyH0CSWOBsXF2raQ59cTSB1jW1BeQobYWL3jMrcVjTl9bixeaF/OQQgq16QZuM7sNuK2xcpIqzayiFUJqEW0tXvCYW4vHnL62Fi+0TsxpVkMtBAYl5gfGZXnLSOoIbE9o6C5kW+ecc60kzWQxFRguaZikToQG60k5ZSYB58XpjwGPmZnF5WMkdZY0DBgOPJdirM455xqQWjVUbIMYDzxMuHT2TjObJWkCUGlmk4A7gLslzQVWEBIKsdy9wGygGhjXzCuhGq2qKjJtLV7wmFuLx5y+thYvtELMCj/knXPOufr5eBbOOeca5cnCOedco0omWUg6WdIcSXMlXZ5n/fmSlkqaHh9fyCLOnJjulLRE0kv1rJekn8bXNFPSQa0dY048jcX7YUmrE8f46taOMU9MgyQ9Lmm2pFmSvp6nTLEd50JiLppjLamLpOckzYjxfidPmc6S/hiP8bOShrZ+pFvFU0jMRfedAaF3DEkvSPpbnnXpHWcza/MPQgP668CuQCdgBrB3TpnzgZ9nHWtOTMcABwEv1bP+VOAfhF76DgOeLfJ4Pwz8LevjmhPTLsBBcbon8Gqez0axHedCYi6aYx2PW484XQ48CxyWU+ZC4JY4PQb4YxuIuei+M2JcFwO/z/f+p3mcS+XMopCuRYqOmT1JuAqsPqOB31gwBdhB0i6tE90HFRBv0TGzRWb2fJx+F3iZD/YGUGzHuZCYi0Y8bmvjbHl85F45U1/XPpkoMOaiI2kgcBpwez1FUjvOpZIs8nUtku+f6+xYzXC/pEF51hebQl9XMTk8ntr/Q9I+WQeTFE/JDyT8ikwq2uPcQMxQRMc6Vo1MB5YAj5hZvcfYzKqBuq59MlNAzFB83xn/B1wK1NazPrXjXCrJohB/BYaa2f7AI7yffV3LeR4YYmYHAD8DHsw4ni0k9QD+BFxkZmuyjqcQjcRcVMfazGrMbASht4WRkvbNMp5CFBBzUX1nSDodWGJm07J4/lJJFo12D2Jmy82sbti62wljaBS7NtXtiZmtqTu1N7OHgHJJfTIOC0nlhC/d35nZn/MUKbrj3FjMxXqszWwV8Dhwcs6q+rr2yVx9MRfhd8aRwJmS5hOq2o+T9NucMqkd51JJFo12LZJTB30moR642E0CPhuv1jkMWG1mi7IOqj6Sdq6rH5U0kvD5yvQLIcZzB/Cymd1UT7GiOs6FxFxMx1pSX0k7xOmuhDFsXskpVl/XPpkoJOZi+84wsyvMbKCZDSV8xz1mZufkFEvtOLfpXmfrWGFdi3xN0pmE7kNWEK50yJSkPxCuaukjqQq4htDQhpndAjxEuFJnLvAe8LlsIg0KiPdjwFckVQPrgTFZfiFERwLnAi/G+mmAbwGDoTiPM4XFXEzHehfg1woDnnUA7jWzv6mArn0yVEjMRfedkU9rHWfv7sM551yjSqUayjnnXIo8WTjnnGuUJwvnnHON8mThnHOuUZ4snHPONcqThStaktYWUOYiSd1a8DnPkrR3C+7v6WZsuzb+7S/p/gbK7SDpwm19HucK4cnCtXUXAU1KFvHa+vqcBbRYsjCzI1pgH2+b2ccaKLIDobdR51LjycIVPYWxGybHztxekfS7eLf114D+wOOSHo9lT5T0jKTnJd0X+1dC0nxJN0p6Hvi4pC9Kmho74vuTpG6SjiDcqftDhfELdpM0QtKU2JncA5J6xf1NlvRjSZWSXpZ0iKQ/S3pN0ncTsa9NTF8m6cX4nDfkeZ3DYuwv5uxjqOIYIpL2URiHYXqMaThwA7BbXPZDST0k/TsegxcljU7s52VJv1QYw+Ff8e5lJO0u6dEY2/OSdovLL4nHaabyjPng2pGW6uvcH/5o6QewNv79MKH3zIGEHzjPAEfFdfOBPnG6D/Ak0D3OXwZcnSh3aWLfvRPT3wW+GqfvAj6WWDcTODZOTwD+L05PBm6M018H3ibcFdyZ0Gtt75zXcArwNNAtzu+Y5/VOAj4bp8clth1KHEOE0GngZ+J0J6Brcn1c3hHYLnFM5hLGbxhKuBt5RFx3L3BOnH4W+Gic7kI4WzsRuC1u2wH4G3BM1p8Lf2TzKInuPly78JyZVQHELjCGAk/llDmMUIX039htUidCYqnzx8T0vvHX+w5AD0JXMVuRtD2wg5k9ERf9GrgvUaSu/7EXgVkW+5OSNI/QmVuyr6ZRwK/M7D0AM8s3LsiRwNlx+m7gxjxlngGuVBjX4M9m9po+OFyBgO9LOobQlfUAoF9c94aZ1XUhMg0YKqknMMDMHoixbYiv40RCwnghlu8BDCckZNfOeLJwbcXGxHQN+T+7IoxL8Kl69rEuMX0XcJaZzZB0PuHsZVtjqs2Jr7ae+ArRYP87ZvZ7Sc8SBsB5SNKXgHk5xT4D9AUONrPNCr2UdsmJGcJx7NrA0wm43sxubUL8rkR5m4Vr694lDD0KMAU4UtLuAJK6S9qjnu16AosUugL/TL79mdlqYKWko+O6c4En2DaPAJ+ru3JL0o55yvyX9zt++0ye9UjaFZhnZj8F/gLsz9bHAEK31EtiovgIMKShwCyMxlcl6az4HJ1jnA8Dn0+0+wyQtFNBr9aVHE8Wrq27DfinpMfNbCmhZ9A/SJpJqLLZs57tvk2op/8vW3dNfQ9wiaQXYiPveYQG75nACEK7RZOZ2T8J1VaVsRrtm3mKfR0YJ+lF6h+p7xPAS3Ef+xKGg11OqHp7SdIPgd8BFXE/n+WD3YXncy6hl9WZhLaVnc3sX4Sxnp+J+7qfrZOSa0e811nnnHON8jML55xzjfJk4ZxzrlGeLJxzzjXKk4VzzrlGebJwzjnXKE8WzjnnGuXJwjnnXKP+PxpkjJGRLvhCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYXFW57/HvL53OQAiEhCRAZiAMYQrYgIoDImpwIJyjKCAKiiJHcLhex6tXFPWIx3M86hWPIiKCQwQEjSgiKjghQgciIYGQEAJpCCRkIANkfu8fazXZKaq7KklXV3Xn93me/fSe661du+uttdbeaysiMDMz60yfegdgZmaNz8nCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAkfU7Sj/L4WElrJDXl6ZGS/ixptaT/UvIDSSsk3VXfyK0zkhZKOrnecdSapHMl/bUG+93mf6EL9zteUuR9n5/nHZSnN0t6T1e+XlfpW+8AejJJC4GRwObC7Ksi4qL6RLTzIuIxYPfCrPOBp4E9IiIkvRx4DTA6ItbWI0bbeZKuAtoi4jP1jqVR5P/n90TE76Hs/0JXGxIRm/JrPQTsLun2Gr7eTnGy2Hlvaj+5akVS3/aTqg7GAXNi692b44CFO5Io6vw+erRd5djtKu+zJ3I1VI20F40l/WeusnlE0imF5XtK+r6kxZIel/TFQtXPuZL+Jum/JS0DPiepKVcDPZ33dVEuyvaVdLqkGSWv/xFJv+wgtgmS/pSrlm4F9i4sG1/Y71XAOcDHcxH5fcAVwEvy9OfzNm+UNFPSSkl3SDqysL+Fkj4h6T5gbd7vfpJ+Lmlpfi8fLKz/OUnXSro6xzdbUkth+RhJN+Rtl0n6VmHZuyU9kI/3LZLGdfL5vCzHulLSIknnFj6Xq/P+H5X0GUl9ynwuKyUtkPTSPH+RpCWSzim8xlWSviPp1vxe/lSMSdI38narJM3Ipbbicbhe0o8krQLOldRH0iclPZzf+7WShha2eUeOeZmkT3fy3s8H3l74XH+V5x8q6fb83mZLOrWTfdwu6Qv5eKyW9DtJxfPo1LyPlXndQzvZV0i6UNI8YF6ed0g+bsslzZX01sL6wyRNz8ftLuCAwrLnz9+SWN9TmH5vPk9WS5oj6RhJ1wBjgV/lY/Lx0n3l83Z6jmm+pPeWfF4dnre9QkR42MEBWAic3MGyc4GNwHuBJuDfgCcA5eU3At8FBgEjgLuA9xW23QR8gFT6GwhcAMwBRgN7Ab8HIi/vDywHDi28/r3AmzuI7e/A1/J2rwBWAz/Ky8a37zdPXwV8seR9/bUwfTSwBDg+v89z8nHpXzhGM4Ex+X30AWYAnwX6AfsDC4DX5fU/B6wDXp/392XgzrysCfgn8N/5uA0AXpaXTQXmA4fmY/IZ4I4O3v+4/J7PBJqBYcDkvOxq4JfA4HwsHgLOK/lc3pVj+SLwGHBZPpavzfvdvXDsVudj3B/4RsmxOzu/dl/gfwNPAgMKx2EjcFo+ZgOBDwF35nOgP+n8+WlefxKwpvBaX8uxdnR+ln6uzfn4/Z/8uZyUYz+4g+1vBx4GDsqx3Q5cmpcdBKwlVVc2Ax/P++7Xwb4CuBUYmvc1CFiUj3Nf0jn2NDAprz8NuDavdzjwePtxpeT8LcT6njx+el7/WEDAgcC4cv/PpfsC/gx8m3TeTQaWAidVOm/LvN8XxFgu1kYb6h5ATx7yybUGWFkY3puXnQvML6y7Wz5B9iG1c6wHBhaWnwncVtj2sZLX+iM5meTpk0tO5P8BvpTHDwNWkL+wS/YzlvQlMqgw7yfseLL4H+ALJa8xF3hl4Ri9u7Ds+DLv7VPAD/L454DfF5ZNAp7L4y/J/6Dl/sluJn+p5+k+wLPtXwRlXu/GMvObgA3kL6U8733A7YX3Pq+w7Ih8rEYW5i1ja+K5CphWWLY7qX1rTAfn0wrgqMJx+HPJ8geAVxem9yUllL6k5Ft8rUH5vVSbLF5OSlZ9CvN+Cnyug+1vBz5TmH4/8Ns8/n+Ba0s+i8eBEzvYV5C/dPP024C/lKzzXeDi/BltBA4pLPt3qk8WtwAf6uT/uWyyIP3Y2QwMLiz/MqmNsv3zKnvelnmdF8RYLtZGG9xmsfNOi47bLJ5sH4mIZyVB+sIYSvrFtTjPg/QPtaiwbXEcYL8Ky38I/FTSZ4B3kP5Z15eJaT9gRWzb5vAo6Z9hR4wDzpH0gcK8fvl1ysU6DthP0srCvCbgL4XpJwvjzwIDclXAGODRKF+nPQ74hqT/KswTMIr0/orGkH4Vl9qb9LkU138076PdU4Xx5wAionResVH0+fceEWskLSd/lpI+CpyXpwPYg0KVIC/8jMcBN0raUpi3mfTjY5vzIyLWKlVhVms/YFFEFPdd+t5LlX5O7e97PwrHMCK2SFpUYV+l58jxJedIX+AaYHgeL65f+vl2pqPPvpL9gOURsbrkdYtVTWXP2w7O1x7HyaI+FpFKFnt3ciKVdge8mFT90G6bL/eIuFPSBtIvxLPyUM5iYC9JgwoJY2yZ16vWIlKJ5kudrFPc9yLgkYiYuIOvNbaDf8D2OH5c5X6OKzP/adKv1nGkKj9Ix+bxHYi13fOfk6T2HwpP5PaJjwOvBmbnL9QVpATXrvQzWUQqpf2t9EUkLSZVwbVP70aq4upI6b6fAMZI6lNIGGNJ1XDb6wlSqas9FpGOQ2fHsfQc+VNEvKZ0JaV2vU15fw8W4mzXfk7vBqzK4/uU7PsAyuvsf+AJYKikwYWEsbPnRo/iBu46iIjFwO+A/5K0R264PEDSKzvZ7FrgQ5JGSRoCfKLMOlcD3wI2RkTZ684j4lGgFfi8pH6SXga8aSfezveACyQdr2SQpDdIGtzB+ncBq5UavQcqNdwfLunYKl7rLlKyuzS/zgBJJ+Rl3wE+JekweL6h+vQO9vNj4GRJb1VqcB8maXJEbCYd5y9JGqzUGP0R4EfVHYqyXq/UmN4P+AKpHnsRqU1kE7laTdJnSSWLznwnxzYuv8fhkqbmZdcDbyy81iV0/v/9FKm9qN0/SL+GPy6pWdKJpPNi2na813bXAm+Q9GpJzaT2mPXAHVVufxNwkFKDfXMejpV0aP6MbiBd9LGbpEmkdjIAImIp6Qv87HxuvZttk8MVwEclvSifrwdq60UHpcfkefkzuwP4cj7vjiSVCnfm3OhRnCx2XvvVE+3DjVVu905Sdc0cUl319aQ66I58j5Rg7iM1Xv+G9GVTvMfjGlKDX6UT+CxS28FyUj3w1VXG/AIR0UpqxP8W6X3MJ9Xtd7T+ZuCNpAbCR0i/5q8A9qzitTaTvsAOJDUst5Hqt4mIG4GvANOUrh66Hzilg/08RmqI/N+kYzATOCov/gDp1+kC4K+k9pwrK8XWiZ+QjvFy4EWkRm1Idee/Jf1yf5TUOFpa7VTqG8B04HeSVpMau4/P72k2cGF+vcWkz6Ktk319H5ikdLXSLyJiA+nYnkL6TL4NvDMiHuxkH2VFxNz8Pv9f3tebSJeYb6hy+9WkiwXOIP2if5L02fbPq1xEqvJ6ktT28oOSXbwX+Bip/egwCkkqIq4DvkQ6TquBX5BKe5DaID6Tj8lHy4R2Jqm94QnSBSoXd1IF3eu0X5ljPYzSZbjfiYhxhXkDSVcmHRMR8+oWnAG+8c3KyyWZuaQfCB+LiO9JmgjcTfoB+f6IuKqOIZblNoseIieCV5FKFyNJv1ZLSzH/BtztRGHWuHJV8ICSefOAIfWJqDo1rYaSNEXphpr5kj7ZyXpvzje/FG+++lTebq6k19Uyzh5CwOdJ1Qv3ki6j/OzzC1NXBR8iVa2YmXWpmlVD5asWHiLdmNNGKmKdGRFzStYbDPyaVPy6KCJac6PVT0lXrOxHugHtoFxnbWZm3ayWJYvjSDelLcgNW9NId9mW+gKp8WpdYd5U0g1G6yPiEVKjablLHc3MrBvUss1iFNte3dFGvnKjnaRjSHez/lrSx0q2vbNk2xfc0KPUx835AIMGDXrRIYcc0kWhm5ntGmbMmPF0RAyvtF7dGriVOmf7Gp1cZllJRFwOXA7Q0tISra2tXROcmdkuQlJVd8DXMlk8zrZ3GY9m27sdB5PuCbg9d3mxDzBdqafLStuamVk3qmWbxd3ARKXusPuRbrCZ3r4wIp6JiL0jYnxEjCdVO52ab/KaDpwhqb+kCcBE0t27ZmZWBzUrWUTEJkkXke5UbQKujIjZki4BWiNieifbzpZ0Lenu5k3Ahb4SysysfnrNHdzl2iw2btxIW1sb69at62CrnmfAgAGMHj2a5ubmeodiZr2ApBkRUfFBTb36Du62tjYGDx7M+PHjkVR5gwYXESxbtoy2tjYmTJhQ73DMbBfSqzsSXLduHcOGDesViQJAEsOGDetVJSUz6xl6dbIAek2iaNfb3o+Z9Qy9PlmYmdnOc7IwM7OKnCxqbOHChQwcOJDJkye/YNmDDz7IS17yEvr3789//ud/Pj//ueeeY/LkyfTr14+nn366O8M1MyurV18N1SgOOOAAZs6c+YL5Q4cO5Zvf/Ca/+MUvtpk/cOBAZs6cyfjx47spQjOzzu06yeKO/4Jlc7t2n8MOhpfu+OMjRowYwYgRI/j1r3/dhUGZmXU9V0OZmVlFu07JYidKAGZmuzqXLLrRZZddxuTJk5k8eTJPPPFEvcMxM6varlOyaAAXXnghF154Yb3DMDPbbk4WdfTkk0/S0tLCqlWr6NOnD1//+teZM2cOe+yxR71DMzPbhpNFHe2zzz60tbXVOwwzs4rcZlFjTU1NPPPMM2VvyutI+015GzdupE8ff0RmVn+9vmQREXXtfG/MmDEsWrRou7ZpvymvnN7y/BEz61l69c/WAQMGsGzZsl7zBdv+PIsBAwbUOxQz28X06pLF6NGjaWtrY+nSpfUOpcu0PynPzKw71TRZSJoCfIP0DO4rIuLSkuUXABcCm4E1wPkRMUfSeOABoL1/jjsj4oLtff3m5mY/Uc7MrAvULFlIagIuA14DtAF3S5oeEXMKq/0kIr6T1z8V+BowJS97OCKqbxU2M7OaqWWbxXHA/IhYEBEbgGnA1OIKEbGqMDkI6B2NC2ZmvUwtk8UooHgZUFuetw1JF0p6GPgP4IOFRRMk3SvpT5JeXsM4zcysgrpfDRURl0XEAcAngM/k2YuBsRFxNPAR4CeSXnBbs6TzJbVKau1NjdhmZo2mlsnicWBMYXp0nteRacBpABGxPiKW5fEZwMPAQaUbRMTlEdESES3Dhw/vssDNzGxbtUwWdwMTJU2Q1A84A5heXEHSxMLkG4B5ef7w3ECOpP2BicCCGsZqZmadqNnVUBGxSdJFwC2kS2evjIjZki4BWiNiOnCRpJOBjcAK4Jy8+SuASyRtBLYAF0TE8lrFamZmnVNvubu5paUlWltb6x2GmVmPImlGRLRUWq/uDdxmZtb4nCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq6imyULSFElzJc2X9Mkyyy+QNEvSTEl/lTSpsOxTebu5kl5XyzjNzKxzNUsWkpqAy4BTgEnAmcVkkP0kIo6IiMnAfwBfy9tOAs4ADgOmAN/O+zMzszqoZcniOGB+RCyIiA3ANGBqcYWIWFWYHAREHp8KTIuI9RHxCDA/78/MzOqgbw33PQpYVJhuA44vXUnShcBHgH7ASYVt7yzZdlSZbc8HzgcYO3ZslwRtZmYvVPcG7oi4LCIOAD4BfGY7t708IloiomX48OG1CdDMzGqaLB4HxhSmR+d5HZkGnLaD25qZWQ3VMlncDUyUNEFSP1KD9fTiCpImFibfAMzL49OBMyT1lzQBmAjcVcNYzcysEzVrs4iITZIuAm4BmoArI2K2pEuA1oiYDlwk6WRgI7ACOCdvO1vStcAcYBNwYURsrlWsZmbWOUVE5bV6gJaWlmhtba13GGZmPYqkGRHRUmm9ujdwm5lZ43OyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKaposJE2RNFfSfEmfLLP8I5LmSLpP0h8kjSss2yxpZh6m1zJOMzPrXN9a7VhSE3AZ8BqgDbhb0vSImFNY7V6gJSKelfRvwH8Ab8vLnouIybWKz8zMqlfLksVxwPyIWBARG4BpwNTiChFxW0Q8myfvBEbXMB4zM9tBtUwWo4BFhem2PK8j5wE3F6YHSGqVdKek08ptIOn8vE7r0qVLdz5iMzMrq2bVUNtD0tlAC/DKwuxxEfG4pP2BP0qaFREPF7eLiMuBywFaWlqi2wI2M9vF1LJk8TgwpjA9Os/bhqSTgU8Dp0bE+vb5EfF4/rsAuB04uoaxmplZJ2qZLO4GJkqaIKkfcAawzVVNko4GvktKFEsK8/eS1D+P7w2cABQbxs3MrBvVrBoqIjZJugi4BWgCroyI2ZIuAVojYjrwVWB34DpJAI9FxKnAocB3JW0hJbRLS66iMjOzbqSI3lHV39LSEq2trfUOw8ysR5E0IyJaKq3nO7jNzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq6iqZCHpBklvkOTkYma2C6r2y//bwFnAPEmXSjq4hjGZmVmDqSpZRMTvI+LtwDHAQuD3ku6Q9C5JzbUM0MzM6q/qaiVJw4BzgfeQHlr0DVLyuLUmkZmZWcOoqm8oSTcCBwPXAG+KiMV50c8kuY8NM7NertqOBL8ZEbeVW1BNnyJmZtazVZss9pL0ryXzngFmFbsWNzOz3qnaZHEe8BKgvXRxIjADmCDpkoi4pgaxmZlZg6g2WTQDh0bEUwCSRgJXA8cDfya1ZZiZWS9V7dVQo9sTRbYEGBMRy4GNXR+WmZk1kmpLFrdLugm4Lk+/Oc8bBKysSWRmZtYwqk0WFwL/CrwsT18N/DzSY/ZeVYvAzMyscVSshpLUBPwxIn4eEf8rD9dHFc9jlTRF0lxJ8yV9sszyj0iaI+k+SX+QNK6w7BxJ8/Jwzna/MzMz6zIVk0VEbAa2SNpze3ack8xlwCnAJOBMSZNKVrsXaImII4Hrgf/I2w4FLiY1oB8HXCxpr+15fTMz6zrVVkOtAWZJuhVY2z4zIj7YyTbHAfMjYgGApGnAVGBOYfvijX53Amfn8dcBt+YGdPLrTgF+WmW8ZmbWhapNFjfkYXuMAhYVpttIJYWOnAfc3Mm2o0o3kHQ+cD7A2LFjtzM8MzOrVlXJIiJ+KGkgMDYi5nZ1EJLOBlqAV27PdhFxOXA5QEtLS8U2FDMz2zHVPvzoTcBM4Ld5erKk6RU2exwYU5geneeV7vtk4NPAqRGxfnu2NTOz7lHtTXmfI7VBrASIiJnA/hW2uRuYKGmCpH7AGcA2CUbS0cB3SYmi2MfULcBrJe2VG7Zfm+eZmVkdVNtmsTEinpFUnLelsw0iYpOki0hf8k3AlRExW9IlQGtETAe+CuwOXJf3/VhEnBoRyyV9gZRwAC5pb+w2M7PuV22ymC3pLKBJ0kTgg8AdlTaKiN8AvymZ99nC+MmdbHslcGWV8ZmZWQ1VWw31AeAwYD3p8tVVwIdrFZSZmTWWaq+GepbUCP3p2oZjZmaNqNrHqh4EfBQYX9wmIk6qTVhmZtZIqm2zuA74DnAFsLl24ZiZWSOqNllsioj/qWkkZmbWsKpt4P6VpPdL2lfS0PahppGZmVnDqLZk0d5F+McK84LKN+aZmVkvUO3VUBNqHYiZmTWuTquhJH28MH56ybJ/r1VQZmbWWCq1WZxRGP9UybIpXRyLmZk1qErJQh2Ml5s2M7NeqlKyiA7Gy02bmVkvVamB+yhJq0iliIF5nDw9oKaRmZlZw+g0WUREU3cFYmZmjavam/LMzGwX5mRhZmYVOVmYmVlFThZmZlZRTZOFpCmS5kqaL+mTZZa/QtI9kjZJekvJss2SZuZhei3jNDOzzlXbkeB2k9QEXAa8BmgD7pY0PSLmFFZ7DDiX9GClUs9FxORaxWdmZtWrWbIAjgPmR8QCAEnTgKnA88kiIhbmZVtqGIeZme2kWlZDjQIWFabb8rxqDZDUKulOSaeVW0HS+Xmd1qVLl+5MrGZm1olGbuAeFxEtwFnA1yUdULpCRFweES0R0TJ8+PDuj9DMbBdRy2TxODCmMD06z6tKRDye/y4AbgeO7srgzMyserVMFncDEyVNkNSP1N15VVc1SdpLUv88vjdwAoW2DjMz6141SxYRsQm4CLgFeAC4NiJmS7pE0qkAko6V1AacDnxX0uy8+aFAq6R/ArcBl5ZcRWVmZt1IEb2jp/GWlpZobW2tdxhmZj2KpBm5fbhTjdzAbWZmDcLJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqqmmykDRF0lxJ8yV9sszyV0i6R9ImSW8pWXaOpHl5OKeWcZqZWedqliwkNQGXAacAk4AzJU0qWe0x4FzgJyXbDgUuBo4HjgMulrRXrWI1M7PO1bJkcRwwPyIWRMQGYBowtbhCRCyMiPuALSXbvg64NSKWR8QK4FZgSg1jNTOzTtQyWYwCFhWm2/K8LttW0vmSWiW1Ll26dIcDNTOzzvXoBu6IuDwiWiKiZfjw4fUOx8ys16plsngcGFOYHp3n1XpbMzPrYrVMFncDEyVNkNQPOAOYXuW2twCvlbRXbth+bZ5nZmZ10LdWO46ITZIuIn3JNwFXRsRsSZcArRExXdKxwI3AXsCbJH0+Ig6LiOWSvkBKOACXRMTyWsVq1rBiCyy+F+b9Bh75I/QfDCOOgJFHwMgjYdhB0Kdm/8Zmz1NE1DuGLtHS0hKtra31DsOsa6xcCA/9Gub/FtYshubdYNwrYfMGWDIL1i5J6zX1h+GHbptAdtu7rqFbzyJpRkS0VFrPP0nMGsVzK+DhW1IpYukcUB8YdTwc+34YfyI0D9y67ponYcn98NR98NQsuH8a3HdNWrb7vjDi8JQ4Rh4Bww6Gpua6vCXrPZwszOpp03p47C+pFLHoDojNqWrpxR+GA6d0XErYfZ807H9ymt68AZ6em5JHexJZcGta1tQP9j4kJY/2EsigEd3z/qzXcLIw626xBZ6cmUoQC34PG9bAbsPhiLPgoDfA0AO3f59N/XI11BFb561dkkodS2al5DH7WrjvR2nZoJE5eeQSyN4Hp32YdcDJwqy7rHw0JYj5N8PqJ6DvQJhwEkx8PezXAn2auvb1Bo2A/V+dBoDNG2HZ3EICmbW19NFv91SSOXhqKoVIXRuL9XhOFma1tG4lzG9vh5id2yGOg5YLYPyrtm2HqLWm5lSSGHE4cGaa9+zTqdTxyG0w91cw5/pUDXbwqXDgKTBgz+6Lzxqar4Yy62rt7RDzfgOP/S21QwydmKqYDngdDGrQ3gbWr04N7A/+Ep5+APo0p4b1Q6amBKce3eGDdcBXQ5l1t3UrU5vAnJ/DhtWpcfqIs1I107CJ9Y6usv6DYdJb0rDsoZQ05t+cqqp23xcOflMqcey+T70jtTpwycJsZz23Il22Ovs62LQutREcchrsd2zXt0N0t03rYeHtMPeX8PhdgGD08altY/wr3SjeC7hkYVZrzy7LJYnr0pfqAa+FY86Dvfavd2Rdp29/OPB1aVj9RGrXmDsd/vAp6L9nKjUdMnXHruCyHsUlC7Pt9ezT8M9rUmPwlo2pHeKY82DI+HpH1j22bIYn7k7VVAtvT8dg+KTcKD4lXVllPUa1JQsnC7NqPfs0zPwhPHBD+oI88BQ4+t0wZFy9I6ufdSth3s2pmmr5/NT9yP6vTtVU+x7jS3B7AFdDmXWVtUvgn1fDAzfClk2p6uXod8OeYypv29sNGAJHnAmHn5G6KJn7y62XCu8xJlVRHfqv0H+PekdqO8klC7OOrHkKZl6VvgC3bE6Xvh79bthjdL0ja2yb1qU70+dOh8X3QPOglFCOOMtJowG5ZGG2o9Y8mZLEg79MXXMcfCpMPhf2qPapwLu4vgPgoDemYdk8uOeKNMz6aS6FnOmb/XogJwuzdqsXw8wfpF/EkJPEu2DwvvWNqycbNhFe85XUnjHje1uTxuFnpJKGk0aP4WRhtvoJuPcH8NCvAKV7JCaf65vPutLQA7cmjXuugHu/n7pVP/xtcMTbnTR6ACcL23WtastJ4qbUlcUh/5KTxMh6R9Z7DT0QTr60kDR+APf/DA57Kxz59tRgbg3JycJ2PcsfTndcz7s53WF92Olw1Dv9jIfutE3S+H5qI5r9MzjsbU4aDaqmV0NJmgJ8g/QM7isi4tKS5f2Bq4EXAcuAt0XEQknjgQeAuXnVOyPigs5ey1dDWaci0jMk/nl16uSv74BUkjjqnY3bsd+uZPnDqaSx4PepJ14njW5T96uhJDUBlwGvAdqAuyVNj4g5hdXOA1ZExIGSzgC+ArwtL3s4IibXKj7bRcQWePTPKUk8dV/68mm5IHWW5y+ixjH0ADj5y7DivSlpzLxqa5vGkWf7s2oAtayGOg6YHxELACRNA6YCxWQxFfhcHr8e+JbkWz6tC2zekG4M++c18MyjMHgUnPCJ1HNq3wH1js46stf+8Op/h2Pek5PGDwttGmfDwL3qHeEuq5bJYhSwqDDdBhzf0ToRsUnSM8CwvGyCpHuBVcBnIuIvNYzVeovnVsCDv0j1388+DcMOTl8+E06CPm6i6zG2SRrfTyXD2dem9qUj3+GkUQeN+t+zGBgbEcskvQj4haTDImJVcSVJ5wPnA4wdO7YOYVrDWDI7fZk8/LvUb9Oo4+HEz+eH9riw2mPttT+8+kspadz7/VRSnH0tTDo9lTR2G1Z5H9YlapksHgeKneeMzvPKrdMmqS+wJ7AsUqv7eoCImCHpYeAgYJsW7Ii4HLgcUgN3Ld6ENbBN69ODeWblBLRdAAAO40lEQVRflx5Z2rwbHPov6Ytkrwn1js660l4T4KQvwtHnpaRx34/g/p/C/ienz3vkkf5RUGO1TBZ3AxMlTSAlhTOAs0rWmQ6cA/wdeAvwx4gIScOB5RGxWdL+wERgQQ1jtZ5kzZPpaXQP3ph6PR0yHk74eOrgz91j927tSeOY96bniMz9Fcz/bXpu+GFvTV2ku02qJmp96ezrga+TLp29MiK+JOkSoDUipksaAFwDHA0sB86IiAWS3gxcAmwEtgAXR8SvOnstXzrby23eCI/9NXXFsehvad64V6QviP2O9a/KXdXGZ9OFDLOvgxUPQ7/B6SKGSae7V+Aq+XkW1js8/WC6w3rezbD+mfRc64PeCIe+2X022Vbt99HMvhYe+SPEZhj9ktQgPuaEnv942xqq+30WZjvsuRUw/+aUJJY9BH2aYfyJKUmMPt5XNdkLSbDv0Wl49un0gKoHboBbPgKD90s/Lg6Z6vs1doJLFtYYNq1L1UzzfwuP/iX9Mhw+CQ56U3q2tTuas+21ZVN67Ovsa9NzNZr6pXNp0ukw4rB6R9cwXLKwxrfxuZQgFvw+tUNsWgcDh6Wuqw96Y7qr12xH9embrpba/+TUB9Wc61P7xkM3pR8ih70V9n8N9O1f70h7BJcsrHttWFtIEHfA5vUpQUw4KT27eZ+jXb9stbNhDTz063Ql1cqF0H/PVD016S2pumoX5AZuaxzPPg2L/g6P/in93bw+NVRPOAkmvBr2mewEYd0rAp5oTVVUj/459SE29mWpQXz0i1OX9bsIV0NZ/WzZDEvuTyWHRX9LVzRB6gL80H9J1QIjj9yl/iGtwUgw6tg0rHkqNYY/eCPc/Jf00Kt9jk7n6MgjUnfqvqjCJQvrIs8tT6WGRX+Dtn+ky1zVJ/3DjXlpunxx2EG+H8Ia1+aN8MgfYMEfUg/Fzy1L8/sOTA3iI46AfY6CEYf3qquqXLKw2lq3Ml1h0j4smwdEan8Y9/KUHEYfD/33qHekZtVpak53gB84JVVTrVmcksZT98FTs1JnhjM3p3X3HAsjj0olj5FHwpAJvb4q1cnCqvPsMnjyXnhiBiyeASty7ytN/dM/S8v7UoLY+2BXL1nPJ6UG78H7peQB6eq9pXNgyayUQB77S35uO9A8KJU4Rh6ZhhGHQ//B9Yu/Bpws7IU2b0yXGi6dnXpzXTIrXTkCqUi+z1HpH2jfY2D4YekXmVlv1zwQ9ntRGiCVPla1bS19LJmVOjmMLYBSP1Yjj9xafbXn2B79Q8rJYlcXW+CZx1JSWDonJYhlD6WHB0Gqmx1xeLo5br8Xwd6HuLHPDFLpY88xaTjoDWnehrXpf6i96uqRP6bnq0Dqt2rwfqlb9YHD0hWBA4cWpvO85kEN2bbn//pdyYY1qcSwfH565vHy+bB8XpoPqdQw/ND0/OPhk1Kj3u77NuSJa9aQ+g1Kz1AZdVyabv8x9tR96QfZ2iWp4Xz5w+mS8tj8wn009d+aQMolk/bxgUO7tYddJ4veaMOadIKufDQlhBU5Max5cus6zYPSHdIHvG5rYtgFGunMupX6pC70h4yHg0/ddllsgfWrUnvgc8vK/139eEo061YCZa5cbR6UEsfIo+DEi2v6Vpwseqr1q2HVopQUVrVt+3fdyq3r9embTtR9JqfrxduHQSNdYjCrJ/VJ1bwDhgAVurbZsil1sNlRUumGqw6dLBrNls2wYXUqrq5dkm4Yah9f+xSsXZrGN67ddrtBI1Pd6fhX5XrUsbDHGBgyzm0MZj1dn74waHga6sTfIhvWwE0XpEdyNg9KdY7Ng9J0+3i/PN2nOVXT9OmbBjVtnW4f37wxNQ5v2Zge+7klTxeH9atg3TPp7/pnth1fv5oXFDfVJ9VVDhqRrrAY/eI0vueYlBD2GOWng5lZTTlZbNmUvog3rE2/3FesTU/f2rh26xVBtdBvcCo6DtgzdWa2x+htpwcNT6WFQSNSnaRLB2ZWR/4GGjAEpny9/LLNG1PS2PhsGrZsKgyb05UMpeN9mlO/+c8PzenqhqbC/H67+8vfzHoUf2N1pqkZmob0qn5gzMx2RE1vJ5Q0RdJcSfMlfbLM8v6SfpaX/0PS+MKyT+X5cyW9rpZxmplZ52qWLCQ1AZcBpwCTgDMlTSpZ7TxgRUQcCPw38JW87STgDOAwYArw7bw/MzOrg1qWLI4D5kfEgojYAEwDppasMxX4YR6/Hni1JOX50yJifUQ8AszP+zMzszqoZZvFKGBRYboNOL6jdSJik6RngGF5/p0l244qfQFJ5wPn58k1kuZ2EMvewNPb+wbqqKfFC465uzjm2utp8cLOxTyumpV6dAN3RFwOXF5pPUmt1Tzco1H0tHjBMXcXx1x7PS1e6J6Ya1kN9TgwpjA9Os8ru46kvsCewLIqtzUzs25Sy2RxNzBR0gRJ/UgN1tNL1pkOnJPH3wL8MdJzXqcDZ+SrpSYAE4G7ahirmZl1ombVULkN4iLgFqAJuDIiZku6BGiNiOnA94FrJM0HlpMSCnm9a4E5wCbgwohyfflWrWJVVYPpafGCY+4ujrn2elq80A0xK/2QNzMz61jPfcafmZl1GycLMzOrqNckiyq6FjlX0lJJM/PwnnrEWRLTlZKWSLq/g+WS9M38nu6TdEx3x1gST6V4T5T0TOEYf7a7YywT0xhJt0maI2m2pA+VWafRjnM1MTfMsZY0QNJdkv6Z4/18mXU67NqnHqqMueG+MyD1jiHpXkk3lVlWu+McET1+IDWgPwzsD/QD/glMKlnnXOBb9Y61JKZXAMcA93ew/PXAzYCAFwP/aPB4TwRuqvdxLYlpX+CYPD4YeKjMudFox7mamBvmWOfjtnsebwb+Aby4ZJ33A9/J42cAP+sBMTfcd0aO6yPAT8p9/rU8zr2lZFFN1yINJyL+TLoKrCNTgasjuRMYImnf7onuhaqIt+FExOKIuCePrwYe4IW9ATTaca4m5oaRj9uaPNmch9IrZzrq2qcuqoy54UgaDbwBuKKDVWp2nHtLsijXtUi5f64352qG6yWNKbO80VT7vhrJS3LR/mZJh9U7mKJcJD+a9CuyqGGPcycxQwMd61w1MhNYAtwaER0e44jYBLR37VM3VcQMjfed8XXg48CWDpbX7Dj3lmRRjV8B4yPiSOBWtmZf6zr3AOMi4ijg/wG/qHM8z5O0O/Bz4MMRsare8VSjQswNdawjYnNETCb1tnCcpMPrGU81qoi5ob4zJL0RWBIRM+rx+r0lWVTsHiQilkXE+jx5BfCiboptZ/Sobk8iYlV70T4ifgM0S9q7zmEhqZn0pfvjiLihzCoNd5wrxdyoxzoiVgK3kR4tUNRR1z5111HMDfidcQJwqqSFpKr2kyT9qGSdmh3n3pIsKnYtUlIHfSqpHrjRTQfema/WeTHwTEQsrndQHZG0T3v9qKTjSOdXXb8QcjzfBx6IiK91sFpDHedqYm6kYy1puKQheXwg8BrgwZLVOurapy6qibnRvjMi4lMRMToixpO+4/4YEWeXrFaz49yje51tF9V1LfJBSaeSug9ZTrrSoa4k/ZR0VcvektqAi0kNbUTEd4DfkK7UmQ88C7yrPpEmVcT7FuDfJG0CngPOqOcXQnYC8A5gVq6fBvg/wFhozONMdTE30rHeF/ih0gPK+gDXRsRNqqJrnzqqJuaG+84op7uOs7v7MDOzinpLNZSZmdWQk4WZmVXkZGFmZhU5WZiZWUVOFmZmVpGThTUsSWuqWOfDknbrwtc8TdKkLtzfHTux7Zr8dz9J13ey3hBJ79/R1zGrhpOF9XQfBrYrWeRr6ztyGtBlySIiXtoF+3giIt7SySpDSL2NmtWMk4U1PKVnN9yeO3N7UNKP893WHwT2A26TdFte97WS/i7pHknX5f6VkLRQ0lck3QOcLum9ku7OHfH9XNJukl5KulP3q0rPLzhA0mRJd+bO5G6UtFfe3+2S/ltSq6QHJB0r6QZJ8yR9sRD7msL4JyTNyq95aZn3OSHHPqtkH+OVnyEi6TCl5zDMzDFNBC4FDsjzvippd0l/yMdglqSphf08IOl7Ss9w+F2+exlJB0r6fY7tHkkH5Pkfy8fpPpV55oPtQrqqr3MPHrp6ANbkvyeSes8cTfqB83fgZXnZQmDvPL438GdgUJ7+BPDZwnofL+x7WGH8i8AH8vhVwFsKy+4DXpnHLwG+nsdvB76Sxz8EPEG6K7g/qdfaYSXv4RTgDmC3PD20zPudDrwzj19Y2HY8+RkipE4D357H+wEDi8vz/L7AHoVjMp/0/IbxpLuRJ+dl1wJn5/F/AP+SxweQSmuvBS7P2/YBbgJeUe/zwkN9hl7R3YftEu6KiDaA3AXGeOCvJeu8mFSF9LfcbVI/UmJp97PC+OH51/sQYHdSVzHbkLQnMCQi/pRn/RC4rrBKe/9js4DZkfuTkrSA1Jlbsa+mk4EfRMSzABFR7rkgJwBvzuPXAF8ps87fgU8rPdfghoiYpxc+rkDAv0t6Bakr61HAyLzskYho70JkBjBe0mBgVETcmGNbl9/Ha0kJ4968/u7ARFJCtl2Mk4X1FOsL45spf+6K9FyCMzvYx9rC+FXAaRHxT0nnkkovOxrTlpL4tnQQXzU67X8nIn4i6R+kB+D8RtL7gAUlq70dGA68KCI2KvVSOqAkZkjHcWAnLyfgyxHx3e2I33opt1lYT7ea9OhRgDuBEyQdCCBpkKSDOthuMLBYqSvwt5fbX0Q8A6yQ9PK87B3An9gxtwLvar9yS9LQMuv8ja0dv729zHIk7Q8siIhvAr8EjmTbYwCpW+olOVG8ChjXWWCRnsbXJum0/Br9c5y3AO8utPuMkjSiqndrvY6ThfV0lwO/lXRbRCwl9Qz6U0n3kapsDulgu/9Lqqf/G9t2TT0N+Jike3Mj7zmkBu/7gMmkdovtFhG/JVVbteZqtI+WWe1DwIWSZtHxk/reCtyf93E46XGwy0hVb/dL+irwY6Al7+edvLC78HLeQepl9T5S28o+EfE70rOe/573dT3bJiXbhbjXWTMzq8glCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OK/j8Kf3MsUWKFQQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XucHXV9//HXO5vLJuEWksgldyBcgmKANVxUtBYxaCVUocYrVDAqQe3PesFKlUZtsVZbW7FIAREUIxcv0YKIFbAIgWwkgAmmhBDJBpTcSIDck8/vj+93w+Tk7J6TZM+es5v38/E4j52Z73fmfM6c2fmcme/MdxQRmJmZdaZPvQMwM7PG52RhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WRiSLpP03Tw8WtILkpry+EGSfi3peUlfVfJtSaslPVjfyK0zkpZIOr3ecdSapPMl3VuD5e7wv9CFyx0rKfKyp+VpR+bxrZIu7Mr36yp96x1ATyZpCXAQsLUw+bqIuLg+Ee25iHgK2KcwaRqwAtgvIkLSa4E3AiMj4sV6xGh7TtJ1QFtEXFrvWBpF/n++MCJ+CWX/F7raARGxJb/X/wH7SLq7hu+3R5ws9txb2zeuWpHUt32jqoMxwIJ46e7NMcCS3UkUdf4cPdresu72ls/ZE/k0VI20HxpL+pd8yuZJSWcWyveXdI2kZyQtk/TFwqmf8yX9RtK/SloJXCapKZ8GWpGXdXE+lO0r6VxJc0ve/+OSftJBbOMk3ZNPLd0JDCuUjS0s9zrgPOBT+RD5g8DVwCl5/B/yPH8haZ6k5yTdJ+m4wvKWSPq0pEeAF/NyD5V0q6Tl+bN8tFD/Mkk3Sbo+xzdfUkuhfJSkH+Z5V0r6RqHs/ZIey+v7DkljOvl+XpNjfU7SUknnF76X6/Py/yDpUkl9ynwvz0laLOnUPH2ppGclnVd4j+skXSnpzvxZ7inGJOnreb61kubmo7bierhF0nclrQXOl9RH0iWSnsif/SZJBxbmeW+OeaWkz3by2acB7y58rz/N04+RdHf+bPMlndXJMu6W9IW8Pp6X9AtJxe3orLyM53LdYzpZVkiaLulx4PE87ei83lZJWijprwr1h0qaldfbg8DhhbLt229JrBcWxj+Qt5PnJS2QdIKkG4DRwE/zOvlU6bLydjsrx7RI0gdKvq8Ot9teISL82s0XsAQ4vYOy84HNwAeAJuDDwNOAcvmPgG8Bg4GXAQ8CHyzMuwX4COnobyDwIWABMBIYAvwSiFw+AFgFHFN4/4eAt3cQ2/3A1/J8pwHPA9/NZWPbl5vHrwO+WPK57i2MHw88C5yUP+d5eb0MKKyjecCo/Dn6AHOBzwH9gcOAxcCbcv3LgA3Am/Py/gmYncuagIeBf83rrRl4TS6bAiwCjsnr5FLgvg4+/5j8md8J9AOGAhNz2fXAT4B987r4P+CCku/lr3MsXwSeAq7I6/KMvNx9Cuvu+byOBwBfL1l378nv3Rf4W+CPQHNhPWwGzs7rbCDwMWB23gYGkLaf7+f6E4AXCu/1tRxrR9tn6ffaL6+/v8vfyxty7Ed1MP/dwBPAkTm2u4HLc9mRwIuk05X9gE/lZffvYFkB3AkcmJc1GFia13Nf0ja2ApiQ688Ebsr1Xg4sa1+vlGy/hVgvzMPn5vqvAgQcAYwp9/9cuizg18A3SdvdRGA58IZK222Zz7tTjOVibbRX3QPoya+8cb0APFd4fSCXnQ8sKtQdlDeQg0ntHBuBgYXydwJ3FeZ9quS9fkVOJnn89JIN+T+BL+XhY4HV5B12yXJGk3YigwvTbmT3k8V/Al8oeY+FwOsK6+j9hbKTyny2zwDfzsOXAb8slE0A1ufhU/I/aLl/stvJO/U83gdY174jKPN+PyozvQnYRN4p5WkfBO4ufPbHC2WvyOvqoMK0lbyUeK4DZhbK9iG1b43qYHtaDbyysB5+XVL+GPDnhfFDSAmlLyn5Ft9rcP4s1SaL15KSVZ/CtO8Dl3Uw/93ApYXxi4Cf5+G/B24q+S6WAa/vYFlB3unm8XcA/1tS51vA5/N3tBk4ulD2j1SfLO4APtbJ/3PZZEH6sbMV2LdQ/k+kNsr276vsdlvmfXaKsVysjfZym8WeOzs6brP4Y/tARKyTBGmHcSDpF9czeRqkf6ilhXmLwwCHVij/DvB9SZcC7yX9s24sE9OhwOrYsc3hD6R/ht0xBjhP0kcK0/rn9ykX6xjgUEnPFaY1Af9bGP9jYXgd0JxPBYwC/hDlz2mPAb4u6auFaQJGkD5f0SjSr+JSw0jfS7H+H/Iy2v2pMLweICJKpxUbRbd/9oh4QdIq8ncp6RPABXk8gP0onBJk5+94DPAjSdsK07aSfnzssH1ExItKpzCrdSiwNCKKyy797KVKv6f2z30ohXUYEdskLa2wrNJt5KSSbaQvcAMwPA8X65d+v53p6Luv5FBgVUQ8X/K+xVNNZbfbDrbXHsfJoj6Wko4shnWyIZV2B/wM6fRDux127hExW9Im0i/Ed+VXOc8AQyQNLiSM0WXer1pLSUc0X+qkTnHZS4EnI2L8br7X6A7+Advj+F6Vy5lUZvoK0q/WMaRTfpDWzbLdiLXd9u9JUvsPhadz+8SngD8H5ucd6mpSgmtX+p0sJR2l/ab0TSQ9QzoF1z4+iHSKqyOly34aGCWpTyFhjCadhttVT5OOutpjEWk9dLYeS7eReyLijaWVlNr1tuTl/b4QZ7v2bXoQsDYPH1yy7MMpr7P/gaeBAyXtW0gYe7pt9Chu4K6DiHgG+AXwVUn75YbLwyW9rpPZbgI+JmmEpAOAT5epcz3wDWBzRJS97jwi/gC0Av8gqb+k1wBv3YOP81/AhySdpGSwpLdI2reD+g8Czys1eg9Uarh/uaRXVfFeD5KS3eX5fZolvTqXXQl8RtKxsL2h+twOlvM94HRJf6XU4D5U0sSI2Epaz1+StK9SY/THge9WtyrKerNSY3p/4Auk89hLSW0iW8in1SR9jnRk0Zkrc2xj8mccLmlKLrsF+IvCe82g8//vP5Hai9o9QPo1/ClJ/SS9nrRdzNyFz9ruJuAtkv5cUj9Se8xG4L4q5/8ZcKRSg32//HqVpGPyd/RD0kUfgyRNILWTARARy0k78Pfkbev97JgcrgY+IenEvL0eoZcuOihdJ9vl7+w+4J/ydncc6ahwT7aNHsXJYs+1Xz3R/vpRlfO9j3S6ZgHpXPUtpHPQHfkvUoJ5hNR4fRtpZ1O8x+MGUoNfpQ34XaS2g1Wk88DXVxnzTiKildSI/w3S51hEOrffUf2twF+QGgifJP2avxrYv4r32kragR1BalhuI53fJiJ+BHwZmKl09dDvgDM7WM5TpIbIvyWtg3nAK3PxR0i/ThcD95Lac66tFFsnbiSt41XAiaRGbUjnzn9O+uX+B1LjaOlpp1JfB2YBv5D0PKmx+6T8meYD0/P7PUP6Lto6WdY1wASlq5V+HBGbSOv2TNJ38k3gfRHx+06WUVZELMyf8z/yst5KusR8U5XzP0+6WGAq6Rf9H0nf7YBc5WLSKa8/ktpevl2yiA8AnyS1Hx1LIUlFxM3Al0jr6Xngx6SjPUhtEJfmdfKJMqG9k9Te8DTpApXPd3IKutdpvzLHehily3CvjIgxhWkDSVcmnRARj9ctOAN845uVl49kFpJ+IHwyIv5L0nhgDukH5EURcV0dQyzLbRY9RE4Ef0Y6ujiI9Gu19Cjmw8AcJwqzxpVPBTeXTHscOKA+EVWnpqehJE1WuqFmkaRLOqn39nzzS/Hmq8/k+RZKelMt4+whBPwD6fTCQ6TLKD+3vTB1VfAx0qkVM7MuVbPTUPmqhf8j3ZjTRjrEemdELCipty/w36TDr4sjojU3Wn2fdMXKoaQb0I7M56zNzKyb1fLIYhLpprTFuWFrJuku21JfIDVebShMm0K6wWhjRDxJajQtd6mjmZl1g1q2WYxgx6s72shXbrSTdALpbtb/lvTJknlnl8y70w09Sn3cTAMYPHjwiUcffXQXhW5mtneYO3fuiogYXqle3Rq4lTpn+xqdXGZZSURcBVwF0NLSEq2trV0TnJnZXkJSVXfA1zJZLGPHu4xHsuPdjvuS7gm4O3d5cTAwS6mny0rzmplZN6plm8UcYLxSd9j9STfYzGovjIg1ETEsIsZGxFjSaaez8k1es4CpkgZIGgeMJ929a2ZmdVCzI4uI2CLpYtKdqk3AtRExX9IMoDUiZnUy73xJN5Hubt4CTPeVUGZm9dNr7uAu12axefNm2tra2LBhQwdz9TzNzc2MHDmSfv361TsUM+sFJM2NiIoPaurVd3C3tbWx7777MnbsWCRVnqHBRQQrV66kra2NcePG1TscM9uL9OqOBDds2MDQoUN7RaIAkMTQoUN71ZGSmfUMvTpZAL0mUbTrbZ/HzHqGXp8szMxszzlZmJlZRU4WNbZkyRIGDhzIxIkTdyr73ve+x3HHHccrXvEKTj31VB5++GEA1q9fz8SJE+nfvz8rVqzo7pDNzHbSq6+GahSHH3448+bN22n6uHHjuOeeexgyZAi3334706ZN44EHHmDgwIHMmzePsWPHdn+wZmZl7D3J4r6vwsqFXbvMoUfBqbv/+IhTTz11+/DJJ59MW1tnT8E0M6sfn4ZqENdccw1nnln2kdFmZnW39xxZ7MERQK3dddddXHPNNdx77731DsXMrCwfWXSjK664gokTJzJx4kSefvppAB555BEuvPBCfvKTnzB06NA6R2hmVt7ec2TRAKZPn8706dO3jz/11FO87W1v44YbbuDII4+sY2RmZp1zsqijGTNmsHLlSi666CIA+vbtix/gZGaNyMmijq6++mquvvrqeodhZlaR2yxqrKmpiTVr1pS9Ka8j7Tflbd68mT59/BWZWf31+iOLiKhr53ujRo1i6dKluzRP+0155fSW54+YWc/Sq3+2Njc3s3Llyl6zg21/nkVzc3O9QzGzvUyvPrIYOXIkbW1tLF++vN6hdJn2J+WZmXWnmiYLSZOBr5OewX11RFxeUv4hYDqwFXgBmBYRCySNBR4D2vvnmB0RH9rV9+/Xr5+fKGdm1gVqliwkNQFXAG8E2oA5kmZFxIJCtRsj4spc/yzga8DkXPZERFTfKmxmZjVTyzaLScCiiFgcEZuAmcCUYoWIWFsYHQz0jsYFM7NeppbJYgRQvAyoLU/bgaTpkp4A/hn4aKFonKSHJN0j6bU1jNPMzCqo+9VQEXFFRBwOfBq4NE9+BhgdEccDHwdulLRf6bySpklqldTamxqxzcwaTS2TxTJgVGF8ZJ7WkZnA2QARsTEiVubhucATwE6dJ0XEVRHREhEtw4cP77LAzcxsR7VMFnOA8ZLGSeoPTAVmFStIGl8YfQvweJ4+PDeQI+kwYDywuIaxmplZJ2p2NVREbJF0MXAH6dLZayNivqQZQGtEzAIulnQ6sBlYDZyXZz8NmCFpM7AN+FBErKpVrGZm1jn1lrubW1pawj22mpntGklzI6KlUr26N3CbmVnjc7IwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrKKaJgtJkyUtlLRI0iVlyj8k6VFJ8yTdK2lCoewzeb6Fkt5UyzjNzKxzNUsWkpqAK4AzgQnAO4vJILsxIl4REROBfwa+luedAEwFjgUmA9/MyzMzszqo5ZHFJGBRRCyOiE3ATGBKsUJErC2MDgYiD08BZkbExoh4EliUl2dmZnXQt4bLHgEsLYy3ASeVVpI0Hfg40B94Q2He2SXzjigz7zRgGsDo0aO7JGgzM9tZ3Ru4I+KKiDgc+DRw6S7Oe1VEtEREy/Dhw2sToJmZ1TRZLANGFcZH5mkdmQmcvZvzmplZDdUyWcwBxksaJ6k/qcF6VrGCpPGF0bcAj+fhWcBUSQMkjQPGAw/WMFYzM+tEzdosImKLpIuBO4Am4NqImC9pBtAaEbOAiyWdDmwGVgPn5XnnS7oJWABsAaZHxNZaxWpmZp1TRFSu1QO0tLREa2trvcMwM+tRJM2NiJZK9erewG1mZo3PycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKqppspA0WdJCSYskXVKm/OOSFkh6RNL/SBpTKNsqaV5+zaplnGZm1rm+tVqwpCbgCuCNQBswR9KsiFhQqPYQ0BIR6yR9GPhn4B25bH1ETKxVfGZmVr1aHllMAhZFxOKI2ATMBKYUK0TEXRGxLo/OBkbWMB4zM9tNtUwWI4ClhfG2PK0jFwC3F8abJbVKmi3p7HIzSJqW67QuX758zyM2M7OyanYaaldIeg/QAryuMHlMRCyTdBjwK0mPRsQTxfki4irgKoCWlpbotoDNzPYytTyyWAaMKoyPzNN2IOl04LPAWRGxsX16RCzLfxcDdwPH1zBWMzPrRC2TxRxgvKRxkvoDU4EdrmqSdDzwLVKieLYwfYikAXl4GPBqoNgwbmZm3ahmp6EiYouki4E7gCbg2oiYL2kG0BoRs4CvAPsAN0sCeCoizgKOAb4laRspoV1echWVmZl1I0X0jlP9LS0t0draWu8wzMx6FElzI6KlUj3fwW1mZhU5WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRVUlC0k/lPQWSU4uZmZ7oWp3/t8E3gU8LulySUfVMCYzM2swVSWLiPhlRLwbOAFYAvxS0n2S/lpSv1oGaGZm9Vf1aSVJQ4HzgQtJDy36Oil53FmTyMzMrGFU1TeUpB8BRwE3AG+NiGdy0Q8kuY8NM7NertqOBP89Iu4qV1BNnyJmZtazVZsshkh6W8m0NcCjxa7Fzcysd6o2WVwAnAK0H128HpgLjJM0IyJuqEFsZmbWIKpNFv2AYyLiTwCSDgKuB04Cfk1qyzAzs16q2quhRrYniuxZYFRErAI2d31YZmbWSKo9srhb0s+Am/P42/O0wcBzNYnMzMwaRrXJYjrwNuA1efx64NZIj9n7s1oEZmZmjaPiaShJTcCvIuLWiPh/+XVLVPE8VkmTJS2UtEjSJWXKPy5pgaRHJP2PpDGFsvMkPZ5f5+3yJzMzsy5TMVlExFZgm6T9d2XBOclcAZwJTADeKWlCSbWHgJaIOA64BfjnPO+BwOdJDeiTgM9LGrIr729mZl2n2tNQLwCPSroTeLF9YkR8tJN5JgGLImIxgKSZwBRgQWH+4o1+s4H35OE3AXfmBnTy+04Gvl9lvGZm1oWqTRY/zK9dMQJYWhhvIx0pdOQC4PZO5h1ROoOkacA0gNGjR+9ieGZmVq2qkkVEfEfSQGB0RCzs6iAkvQdoAV63K/NFxFXAVQAtLS0V21DMzGz3VPvwo7cC84Cf5/GJkmZVmG0ZMKowPjJPK1326cBngbMiYuOuzGtmZt2j2pvyLiO1QTwHEBHzgMMqzDMHGC9pnKT+wFRghwQj6XjgW6REUexj6g7gDElDcsP2GXmamZnVQbVtFpsjYo2k4rRtnc0QEVskXUzayTcB10bEfEkzgNaImAV8BdgHuDkv+6mIOCsiVkn6AinhAMxob+w2M7PuV22ymC/pXUCTpPHAR4H7Ks0UEbcBt5VM+1xh+PRO5r0WuLbK+MzMrIaqPQ31EeBYYCPp8tW1wN/UKigzM2ss1V4NtY7UCP3Z2oZjZmaNqNrHqh4JfAIYW5wnIt5Qm7DMzKyRVNtmcTNwJXA1sLV24ZiZWSOqNllsiYj/rGkkZmbWsKpt4P6ppIskHSLpwPZXTSMzM7OGUe2RRXsX4Z8sTAsq35hnZma9QLVXQ42rdSBmZta4Oj0NJelTheFzS8r+sVZBmZlZY6nUZjG1MPyZkrLJXRyLmZk1qErJQh0Mlxs3M7NeqlKyiA6Gy42bmVkvVamB+5WS1pKOIgbmYfJ4c00jMzOzhtFpsoiIpu4KxMzMGle1N+WZmdlezMnCzMwqcrIwM7OKnCzMzKyimiYLSZMlLZS0SNIlZcpPk/RbSVsknVNStlXSvPyaVcs4zcysc9V2JLjLJDUBVwBvBNqAOZJmRcSCQrWngPNJD1YqtT4iJtYqPjMzq17NkgUwCVgUEYsBJM0EpgDbk0VELMll22oYh5mZ7aFanoYaASwtjLfladVqltQqabaks8tVkDQt12ldvnz5nsRqZmadaOQG7jER0QK8C/g3SYeXVoiIqyKiJSJahg8f3v0RmpntJWqZLJYBowrjI/O0qkTEsvx3MXA3cHxXBmdmZtWrZbKYA4yXNE5Sf1J351Vd1SRpiKQBeXgY8GoKbR1mZta9apYsImILcDFwB/AYcFNEzJc0Q9JZAJJeJakNOBf4lqT5efZjgFZJDwN3AZeXXEVlZmbdSBG9o6fxlpaWaG1trXcYZmY9iqS5uX24U43cwG1mZg3CycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKnKyMDOzipwszMysIicLMzOryMnCzMwqcrIwM7OKnCzMzKwiJwszM6vIycLMzCpysjAzs4qcLMzMrCInCzMzq8jJwszMKqppspA0WdJCSYskXVKm/DRJv5W0RdI5JWXnSXo8v86rZZxmZta5miULSU3AFcCZwATgnZImlFR7CjgfuLFk3gOBzwMnAZOAz0saUqtYzcysc7U8spgELIqIxRGxCZgJTClWiIglEfEIsK1k3jcBd0bEqohYDdwJTK5hrGZm1olaJosRwNLCeFue1mXzSpomqVVS6/Lly3c7UDMz61yPbuCOiKsioiUiWoYPH17vcMzMeq1aJotlwKjC+Mg8rdbzmplZF6tlspgDjJc0TlJ/YCowq8p57wDOkDQkN2yfkaeZmVkd1CxZRMQW4GLSTv4x4KaImC9phqSzACS9SlIbcC7wLUnz87yrgC+QEs4cYEaeZmZmdaCIqHcMXaKlpSVaW1vrHYaZWY8iaW5EtFSq16MbuM3MrHs4WZiZWUVOFmZmVpGThZmZVeRkYWZmFTlZmJlZRU4WZmZWkZOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUVOFta7rPg9/PdF8Osv1jsSs16lb70DMOsS61fDnG/C738MBPTpC6d8HPoNqndkZr2CjyysZ9u2BX43E37wNlg4C14+FU7/cpr+9Nx6R2fWa/jIwnqutgfg/q/C6sUw8mQ45W9hyDjYugn6NkPb/TDmtfWO0qxXqOmRhaTJkhZKWiTpkjLlAyT9IJc/IGlsnj5W0npJ8/LrylrGaT3M2jb4xSfgtumwZSOc8S9w5n+kRAHQ1B8OORHaZtc3TrNepGZHFpKagCuANwJtwBxJsyJiQaHaBcDqiDhC0lTgy8A7ctkTETGxVvFZD7R+NTx8Pcz/AagJXjUdXvEu6Dtg57qjToH7fpMSy34juz9Ws16mlqehJgGLImIxgKSZwBSgmCymAJfl4VuAb0hSDWOynmj9Knj4BlhwczrFdMRkmHQxDH5Zx/OMPDn9bZsNE87pnjjNerFaJosRwNLCeBtwUkd1ImKLpDXA0Fw2TtJDwFrg0oj43xrGao1o3YqcJG6BbZvh8DfBCRfAAWMrz7v/GNj3UFh6v5OFWRdo1AbuZ4DREbFS0onAjyUdGxFri5UkTQOmAYwePboOYVpNrFuRTjctuDUliSPOhOPfDweMqX4ZUjq6WHRHujKqT6Nu6mY9Qy3/g5YBowrjI/O0cnXaJPUF9gdWRkQAGwEiYq6kJ4AjgdbizBFxFXAVQEtLS9TiQ1g3evHZdCTx2A/TDn58ThL77+YPgZGnpGX96RE45ISujdVsL1PLZDEHGC9pHCkpTAXeVVJnFnAecD9wDvCriAhJw4FVEbFV0mHAeGBxDWO1eomAZ34L82+CJXenaePfnJPEqE5nrWjEq1JD+NL7nSzM9lDNkkVug7gYuANoAq6NiPmSZgCtETELuAa4QdIiYBUpoQCcBsyQtBnYBnwoIlbVKlarg83r4PHbUpJYvRgG7J+ubJpwDuw3omveo/8+cNAr0v0Wk6Z3zTLN9lI1PZEbEbcBt5VM+1xheANwbpn5bgVurWVsVifPLUkN1gt/CptfhGFHw+s+B4efkW6k62ojT4HW/0xXVA08sOuXb7aXcKuf1d6WDfDUvanfprbZqbH5sDfCsX8FL3t5aoyulVE5WbQ9kNpAzGy3OFlYbWzbAk+3wqKfw5N3paOIwQdBy4fh6LNh0NDKy+gKw46G5gPSqSgnC7Pd5mRhXScCls9PCeKJO2H9ytRucNjp6Ua6Q06APk3dG5P6wIiT0pFFbEvjZrbLnCxsz0TAqsfhyV+lJLG2LfXNNPo16f6IUaeW746jO406BZ64A1Y+DsOOqm8sZj2Uk4Xtus3rYdmDqR1i6X3w4p/SL/ZDW+D4C2Dcn6UjikaxveuP+50szHaTk4VVZ+2ynBx+k9oitm6CfoNhxCRo+SCMenX3tUPsqkHDYOiR6X6LiefXOxqzHsnJwspbtwL+OA+eeSgdRTz3ZJq+/+h0L8To18DBx0NTv/rGWa2RJ8OjN6b7O/z0PLNd5mRhqd3h+afhjw+l5PDHh2DNU6msbzMc9Eo45i9TgtjdrjfqbeQpqb+pp1thzGn1jsasx3Gy2BttfB5WLoQVC2H5gpQcXnw2lQ3YDw6eCEf/JRxyfLr0tDd0wnfwK1PiW3q/k4XZbugFewHr1LoVsOL3KTG0J4jnC/05Dn5ZSg4HH5+Sw5DDeuflpU39UwN82/31jsSsR3Ky6A22bkoN0Gue2vH13JJ0r0O7/UbB8GPSTXHDjoKhRzVuo3QtjDwlNdL76Xlmu8zJIrbBc3+AAfumUzBN/esd0Y4i0t3PLy6HdcsLf5+FNUtTUnjhmfQ52jUfkNoWRp2argIadlT620iXs9bDqFPS36X3w7E7dUlmZp1wsti4Fm4u7Dj6NqceUNuTR/HVbxD0HQj9Bua/g/Jwcy5rBgTAIkQkAAALsklEQVRE2slDGoY8Hmmnvnl9SgCbXoBNL6bhzevS8KYX0mvdivxanvpWKtVvcOrC+2XHpm4s9h/90mvAfrVdZz3VfqNg3xHpVJSThdkucbLo2wxv+BJseh42rNnx78a16ZTFxrXpVW6n3ZWaBqRf//0Hp3sDhh8Dg06DwcPT+KBhMCgP9x9c21h6o+1Pz7sdtm7uOZf9NoKI1N/X1k3p6YVbNxeGN6Xx7cObXqq7dTPbfyRt/8FU5m9s46UfVuXqbnspjmLd0hh3nFBFnV5i8MvSFYs15GTRtxmOeFN1dbdtTQljy/p0dLBlfToi2LLhpb8RuRdVlfSmmsfVJx+RDEqJod/gtOPvN6h3XHXU6EadAo/dCn96ODV493axLV39tmE1bHgO1q9Ow+vz+IbVqfv2TS/suIMvlxSscb3s5U4WDaVPU9qx+1d9z3VoS3p6Xtvsnpkstm2FjWte2ul3mADah5+D2Fp+Wf0Gp/atgUPSqdemfqnNrk+/kuH+abyj4dJ5mvqnHz7t09Wn5AdU4YcT5L8dlKHC/GXqltqpu/tq6lg1nCxs79J/n3TPxdL7YdLF9Y4miXipnWr9ykJ71co8vvKlsg1rKHt6BVJbVfMB0DwktWcddNxLyaB5SP6by5sPqH8Hj9ajOFnY3mfkyTDnm2knXMtLh7du3nln39Hw1k07z9+nX26nGpou9T34lelpf+07/NIk4NOYVkPeumzvM/KUlCyWPQDj37xj2dbNuf0pt0dtXpevXqs0rTC+6YWUCDauKf/+zQfAwKEpCRw88aWE0H4RQ3tZ/319ysQaRk2ThaTJwNeBJuDqiLi8pHwAcD1wIrASeEdELMllnwEuALYCH42IO2oZq+1Fhh2VfpHP/jo89O0dd/rbtlS/nKYB6dLp7ZdU50upBw5ND3oq7vjbhwce6KuwrEeqWbKQ1ARcAbwRaAPmSJoVEQsK1S4AVkfEEZKmAl8G3iFpAjAVOBY4FPilpCMjOmqpM9sF6gMnToM//PqlK9PK7fTby8pOa/ZpH9ur1HJrnwQsiojFAJJmAlOAYrKYAlyWh28BviFJefrMiNgIPClpUV6eO/axrnHsub4xz2wX1DJZjACWFsbbgJM6qhMRWyStAYbm6bNL5h1R+gaSpgHT8ugLkhZ2EMswYMWufoA66mnxgmPuLo659npavLBnMY+pplKPPo6OiKuAqyrVk9QaET3movqeFi845u7imGuvp8UL3RNzLfuiXgaMKoyPzNPK1pHUF9if1NBdzbxmZtZNapks5gDjJY2T1J/UYD2rpM4s4Lw8fA7wq4iIPH2qpAGSxgHjgQdrGKuZmXWiZqehchvExcAdpEtnr42I+ZJmAK0RMQu4BrghN2CvIiUUcr2bSI3hW4Dpe3glVMVTVQ2mp8ULjrm7OOba62nxQjfErOitvTCamVmX6YXPzzQzs67mZGFmZhX1mmQhabKkhZIWSbqkTPn5kpZLmpdfF9YjzpKYrpX0rKTfdVAuSf+eP9Mjkk7o7hhL4qkU7+slrSms4891d4xlYhol6S5JCyTNl/SxMnUabT1XE3PDrGtJzZIelPRwjvcfytQZIOkHeR0/IGls90e6QzzVxNxw+wxIvWNIekjSz8qU1W49R0SPf5Ea0J8ADgP6Aw8DE0rqnA98o96xlsR0GnAC8LsOyt8M3E7qlP9k4IEGj/f1wM/qvV5LYjoEOCEP7wv8X5lto9HWczUxN8y6zuttnzzcD3gAOLmkzkXAlXl4KvCDHhBzw+0zclwfB24s9/3Xcj33liOL7V2LRMQmoL1rkYYWEb8mXQXWkSnA9ZHMBg6QdEj3RLezKuJtOBHxTET8Ng8/DzzGzr0BNNp6ribmhpHX2wt5tF9+lV45MwX4Th6+Bfjz3LVPXVQZc8ORNBJ4C3B1B1Vqtp57S7Io17VIuX+ut+fTDLdIGlWmvNFU+7kaySn50P52ScfWO5iifEh+POlXZFHDrudOYoYGWtf51Mg84FngzojocB1HxBagvWufuqkiZmi8fca/AZ8CtnVQXrP13FuSRTV+CoyNiOOAO3kp+1rX+S0wJiJeCfwH8OM6x7OdpH2AW4G/iYi19Y6nGhVibqh1HRFbI2IiqbeFSZJeXs94qlFFzA21z5D0F8CzETG3Hu/fW5JFxe5BImJlpF5sIR3CndhNse2JHtXtSUSsbT+0j4jbgH6ShtU5LCT1I+10vxcRPyxTpeHWc6WYG3VdR8RzwF3A5JKijrr2qbuOYm7AfcargbMkLSGdan+DpO+W1KnZeu4tyaJi1yIl56DPIp0HbnSzgPflq3VOBtZExDP1Dqojkg5uPz8qaRJp+6rrDiHHcw3wWER8rYNqDbWeq4m5kda1pOGSDsjDA0nPsPl9SbWOuvapi2pibrR9RkR8JiJGRsRY0j7uVxHxnpJqNVvPPbrX2XZRXdciH5V0Fqn7kFWkKx3qStL3SVe1DJPUBnye1NBGRFwJ3Ea6UmcRsA746/pEmlQR7znAhyVtAdYDU+u5Q8heDbwXeDSfnwb4O2A0NOZ6prqYG2ldHwJ8R+mBZ32AmyLiZ6qia586qibmhttnlNNd69ndfZiZWUW95TSUmZnVkJOFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4U1LEkvVFHnbyQN6sL3PFvShC5c3n17MO8L+e+hkm7ppN4Bki7a3fcxq4aThfV0fwPsUrLI19Z35Gygy5JFRJzaBct4OiLO6aTKAaTeRs1qxsnCGp7Ssxvuzp25/V7S9/Ld1h8FDgXuknRXrnuGpPsl/VbSzbl/JSQtkfRlSb8FzpX0AUlzckd8t0oaJOlU0p26X1F6fsHhkiZKmp07k/uRpCF5eXdL+ldJrZIek/QqST+U9LikLxZif6Ew/GlJj+b3vLzM5xyXY3+0ZBljlZ8hIulYpecwzMsxjQcuBw7P074iaR9J/5PXwaOSphSW85ik/1J6hsMv8t3LSDpC0i9zbL+VdHie/sm8nh5RmWc+2F6kq/o698uvrn4BL+S/ryf1njmS9APnfuA1uWwJMCwPDwN+DQzO458GPleo96nCsocWhr8IfCQPXwecUyh7BHhdHp4B/Fsevhv4ch7+GPA06a7gAaRea4eWfIYzgfuAQXn8wDKfdxbwvjw8vTDvWPIzREidBr47D/cHBhbL8/S+wH6FdbKI9PyGsaS7kSfmspuA9+ThB4C/zMPNpKO1M4Cr8rx9gJ8Bp9V7u/CrPq9e0d2H7RUejIg2gNwFxljg3pI6J5NOIf0md5vUn5RY2v2gMPzy/Ov9AGAfUlcxO5C0P3BARNyTJ30HuLlQpb3/sUeB+ZH7k5K0mNSZW7GvptOBb0fEOoCIKPdckFcDb8/DNwBfLlPnfuCzSs81+GFEPK6dH1cg4B8lnUbqynoEcFAuezIi2rsQmQuMlbQvMCIifpRj25A/xxmkhPFQrr8PMJ6UkG0v42RhPcXGwvBWym+7Ij2X4J0dLOPFwvB1wNkR8bCk80lHL7sb07aS+LZ1EF81Ou1/JyJulPQA6QE4t0n6ILC4pNq7geHAiRGxWamX0uaSmCGtx4GdvJ2Af4qIb+1C/NZLuc3CerrnSY8eBZgNvFrSEQCSBks6soP59gWeUeoK/N3llhcRa4DVkl6by94L3MPuuRP46/YrtyQdWKbOb3ip47d3lylH0mHA4oj4d+AnwHHsuA4gdUv9bE4UfwaM6SywSE/ja5N0dn6PATnOO4D3F9p9Rkh6WVWf1nodJwvr6a4Cfi7prohYTuoZ9PuSHiGdsjm6g/n+nnSe/jfs2DX1TOCTkh7KjbznkRq8HwEmktotdllE/Jx02qo1n0b7RJlqHwOmS3qUjp/U91fA7/IyXk56HOxK0qm330n6CvA9oCUv533s3F14Oe8l9bL6CKlt5eCI+AXpWc/352Xdwo5JyfYi7nXWzMwq8pGFmZlV5GRhZmYVOVmYmVlFThZmZlaRk4WZmVXkZGFmZhU5WZiZWUX/H6gdH8S36uCSAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmcHVWd9/HPN52VJGwhomQXgywORmzBFR1BjIMmMG7BDRSNC7g8jgI+omLUEfXRGWfEAVREUAwIotFREUaQUUTSgQgmGAkRSQeUkLCFJUknv+ePczqpvrnddUO6cm93vu/X6766qs6pur+qW12/W+dU1VVEYGZm1pchzQ7AzMxan5OFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknC0PSWZK+m4cnS1onqS2P7yvpekmPSPqykm9LekDSTc2N3Poi6S5JRzc7jqpJOknSbypYbo//hX5c7lRJkZc9N087II9vkvTO/ny//jK02QEMZJLuAvYFNhUmXxgRpzYnoh0XEXcDYwqT5gL3A7tHREh6CfAKYGJEPNqMGG3HSboQ6IyIM5sdS6vI/8/vjIhroO7/Qn/bMyK68nv9GRgj6boK32+HOFnsuNd071xVkTS0e6dqginA0th69+YU4K4nkyiavB4D2q6y7XaV9RyI3AxVke5TY0n/LzfZ/EXSqwrle0j6lqR7Ja2S9NlC089Jkn4r6d8krQHOktSWm4Huz8s6NZ/KDpX0ekmLat7/w5J+3Ets0yT9OjctXQ3sUyibWljuhcCJwGn5FPndwDeBF+TxT+d5Xi1psaQHJd0g6dDC8u6SdLqkW4FH83L3k3SFpNV5XT5QqH+WpMskXZTjWyKpvVA+SdIP87xrJH2tUPYOSbfn7X2VpCl9fD4vzrE+KGmlpJMKn8tFefl/lXSmpCF1PpcHJa2Q9MI8faWk+ySdWHiPCyWdK+nqvC6/LsYk6at5voclLcpnbcXtcLmk70p6GDhJ0hBJZ0i6M6/7ZZL2Lszz1hzzGkkf72Pd5wJvLnyuP8nTD5J0XV63JZJm9bGM6yR9Jm+PRyT9UlJxP5qVl/FgrntQH8sKSadIugO4I087MG+3tZKWSXpDof44SQvydrsJ2L9QtmX/rYn1nYXxd+X95BFJSyUdJuliYDLwk7xNTqtdVt5vF+SYlkt6V83n1et+OyhEhF9P8gXcBRzdS9lJwEbgXUAb8F7gHkC5/ErgPGA08BTgJuDdhXm7gPeTzv5GAe8BlgITgb2Aa4DI5SOAtcBBhfe/BXhtL7H9DvhKnu9I4BHgu7lsavdy8/iFwGdr1us3hfHnAPcBR+T1PDFvlxGFbbQYmJTXYwiwCPgkMBx4OrACeGWufxbwBPBPeXmfB27MZW3AH4B/y9ttJPDiXDYbWA4clLfJmcANvaz/lLzOJwDDgHHAjFx2EfBjYGzeFn8GTq75XN6eY/kscDdwTt6Wx+Tljilsu0fyNh4BfLVm270lv/dQ4F+AvwEjC9thI3Bc3majgA8CN+Z9YARp//l+rn8wsK7wXl/Jsfa2f9Z+rsPy9vu/+XN5eY79mb3Mfx1wJ3BAju064OxcdgDwKKm5chhwWl728F6WFcDVwN55WaOBlXk7DyXtY/cDB+f684HLcr1nAau6tys1+28h1nfm4dfn+s8DBDwDmFLv/7l2WcD1wNdJ+90MYDXw8rL9ts76bhNjvVhb7dX0AAbyK+9c64AHC6935bKTgOWFurvlHeSppH6O9cCoQvkJwLWFee+uea9fkZNJHj+6Zkf+L+BzefgQ4AHyAbtmOZNJB5HRhWmX8OSTxX8Bn6l5j2XASwvb6B2FsiPqrNvHgG/n4bOAawplBwOP5+EX5H/Qev9kPycf1PP4EOCx7gNBnfe7ss70NmAD+aCUp70buK6w7ncUyv4hb6t9C9PWsDXxXAjML5SNIfVvTeplf3oAeHZhO1xfU347cFRh/GmkhDKUlHyL7zU6r0ujyeIlpGQ1pDDt+8BZvcx/HXBmYfx9wC/y8CeAy2o+i1XAy3pZVpAPunn8jcD/1tQ5D/hU/ow2AgcWyv6VxpPFVcAH+/h/rpssSF92NgFjC+WfJ/VRdn9edffbOu+zTYz1Ym21l/ssdtxx0Xufxd+6ByLiMUmQDhh7k75x3ZunQfqHWlmYtzgMsF9J+XeA70s6E3gr6Z91fZ2Y9gMeiJ59Dn8l/TM8GVOAEyW9vzBteH6ferFOAfaT9GBhWhvwv4XxvxWGHwNG5qaAScBfo36b9hTgq5K+XJgmYAJp/Yomkb4V19qH9LkU6/81L6Pb3wvDjwNERO20YqfolnWPiHWS1pI/S0kfAU7O4wHsTqFJkG0/4ynAlZI2F6ZtIn356LF/RMSjSk2YjdoPWBkRxWXXrnut2s+pe733o7ANI2KzpJUly6rdR46o2UeGAhcD4/NwsX7t59uX3j77MvsBayPikZr3LTY11d1ve9lfBxwni+ZYSTqz2KePHan2ccD3kpofuvU4uEfEjZI2kL4hvim/6rkX2EvS6ELCmFzn/Rq1knRG87k+6hSXvRL4S0RMf5LvNbmXf8DuOL7X4HIOrzP9ftK31imkJj9I22bVk4i125bPSVL3F4V7cv/EacBRwJJ8QH2AlOC61X4mK0lnab+tfRNJ95Ka4LrHdyM1cfWmdtn3AJMkDSkkjMmkZrjtdQ/prKs7FpG2Q1/bsXYf+XVEvKK2klK/Xlde3p8KcXbr3qd3Ax7Ow0+tWfb+1NfX/8A9wN6SxhYSxo7uGwOKO7ibICLuBX4JfFnS7rnjcn9JL+1jtsuAD0qaIGlP4PQ6dS4CvgZsjIi6151HxF+BDuDTkoZLejHwmh1YnW8A75F0hJLRko6VNLaX+jcBjyh1eo9S6rh/lqTnNfBeN5GS3dn5fUZKelEuOxf4mKRDYEtH9et7Wc73gKMlvUGpw32cpBkRsYm0nT8naaxSZ/SHge82tinq+ielzvThwGdI7dgrSX0iXeRmNUmfJJ1Z9OXcHNuUvI7jJc3OZZcDry681zz6/v/+O6m/qNvvSd+GT5M0TNLLSPvF/O1Y126XAcdKOkrSMFJ/zHrghgbn/ylwgFKH/bD8ep6kg/Jn9EPSRR+7STqY1E8GQESsJh3A35L3rXfQMzl8E/iIpOfm/fUZ2nrRQe022SJ/ZjcAn8/73aGks8Id2TcGFCeLHdd99UT368oG53sbqblmKamt+nJSG3RvvkFKMLeSOq9/RjrYFO/xuJjU4Ve2A7+J1HewltQOfFGDMW8jIjpInfhfI63HclLbfm/1NwGvJnUQ/oX0bf6bwB4NvNcm0gHsGaSO5U5S+zYRcSXwBWC+0tVDfwRe1cty7iZ1RP4LaRssBp6di99P+na6AvgNqT/ngrLY+nAJaRuvBZ5L6tSG1Hb+C9I397+SOkdrm51qfRVYAPxS0iOkzu4j8jotAU7J73cv6bPo7GNZ3wIOVrpa6UcRsYG0bV9F+ky+DrwtIv7UxzLqiohleT3/My/rNaRLzDc0OP8jpIsF5pC+0f+N9NmOyFVOJTV5/Y3U9/LtmkW8C/goqf/oEApJKiJ+AHyOtJ0eAX5EOtuD1AdxZt4mH6kT2gmk/oZ7SBeofKqPJuhBp/vKHBtglC7DPTciphSmjSJdmXRYRNzRtOAM8I1vVl8+k1lG+oLw0Yj4hqTpwELSF8j3RcSFTQyxLvdZDBA5Efwj6exiX9K31dqzmPcCC50ozFpXbgoeWTPtDmDP5kTUmEqboSTNVLqhZrmkM/qo99p880vx5quP5fmWSXpllXEOEAI+TWpeuIV0GeUntxSmRxV8kNS0YmbWryprhspXLfyZdGNOJ+kU64SIWFpTbyzw36TTr1MjoiN3Wn2fdMXKfqQb0A7IbdZmZraTVXlmcTjpprQVuWNrPuku21qfIXVePVGYNpt0g9H6iPgLqdO03qWOZma2E1TZZzGBnld3dJKv3Ogm6TDS3az/LemjNfPeWDPvNjf0KD3jZi7A6NGjn3vggQf2U+hmZruGRYsW3R8R48vqNa2DW+nhbF+hj8ssy0TE+cD5AO3t7dHR0dE/wZmZ7SIkNXQHfJXJYhU97zKeSM+7HceS7gm4Lj/y4qnAAqUnXZbNa2ZmO1GVfRYLgelKj8MeTrrBZkF3YUQ8FBH7RMTUiJhKanaalW/yWgDMkTRC0jRgOunuXTMza4LKziwiokvSqaQ7VduACyJiiaR5QEdELOhj3iWSLiPd3dwFnOIroczMmmfQ3MFdr89i48aNdHZ28sQTT/Qy18AzcuRIJk6cyLBhw5odipkNApIWRUTpDzUN6ju4Ozs7GTt2LFOnTkVS+QwtLiJYs2YNnZ2dTJs2rdnhmNkuZFA/SPCJJ55g3LhxgyJRAEhi3Lhxg+pMycwGhkGdLIBBkyi6Dbb1MbOBYdAnCzMz23FOFmZmVsrJomJ33XUXo0aNYsaMGduU/fjHP+bQQw9lxowZtLe385vfpB+3u/POO5kxYwZjxozZZh4zs2YY1FdDtYr999+fxYsXbzP9qKOOYtasWUji1ltv5Q1veAN/+tOfttR3sjCzVrHrJIsbvgxrlvXvMsc9E1745H8+opgMHn30UXdem1nLcjNUk1155ZUceOCBHHvssVxwwY781LOZWXV2nTOLHTgDqNLxxx/P8ccfz/XXX88nPvEJrrlml/n9dzMbQHxmsROdc845zJgxgxkzZnDPPff0KDvyyCNZsWIF999/f5OiMzPrnZPFTnTKKaewePFiFi9ezH777cfy5cvpfjbXzTffzPr16xk3blyTozQz29au0wzVgq644gouuugihg0bxqhRo7j00kvdyW1mLcnJoolOP/10Tj/99GaHYWZWys1QFWtra+Ohhx6qe1Neb7pvytt3330rjMzMrHGD/swiIpratDNp0iRWrly5XfP0dhMfwGD5/REzG1gG9ZnFyJEjWbNmzaA5wHb/nsXIkSObHYqZ7WIG9ZnFxIkT6ezsZPXq1c0Opd90/1KemdnOVGmykDQT+CrpN7i/GRFn15S/BzgF2ASsA+ZGxFJJU4Hbge7nc9wYEe/Z3vcfNmyYf1HOzKwfVJYsJLUB5wCvADqBhZIWRMTSQrVLIuLcXH8W8BVgZi67MyIa7xU2M7PKVNlncTiwPCJWRMQGYD4wu1ghIh4ujI4GBkfngpnZIFNlspgAFC8D6szTepB0iqQ7gS8CHygUTZN0i6RfS3pJhXGamVmJpl8NFRHnRMT+wOnAmXnyvcDkiHgO8GHgEkm7184raa6kDkkdg6kT28ys1VSZLFYBkwrjE/O03swHjgOIiPURsSYPLwLuBA6onSEizo+I9ohoHz9+fL8FbmZmPVWZLBYC0yVNkzQcmAMsKFaQNL0weixwR54+PneQI+npwHRgRYWxmplZHyq7GioiuiSdClxFunT2gohYImke0BERC4BTJR0NbAQeAE7Msx8JzJO0EdgMvCci1lYVq5mZ9U2D5e7m9vb26OjoaHYYZmYDiqRFEdFeVq/pHdxmZtb6nCzMzKyUk4WZmZVysjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZVysjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZWqNFlImilpmaTlks6oU/4eSbdJWizpN5IOLpR9LM+3TNIrq4zTzMz6VlmykNQGnAO8CjgYOKGYDLJLIuIfImIG8EXgK3neg4E5wCHATODreXlmZtYEVZ5ZHA4sj4gVEbEBmA/MLlaIiIcLo6OByMOzgfkRsT4i/gIsz8szM7MmGFrhsicAKwvjncARtZUknQJ8GBgOvLww7401806oM+9cYC7A5MmT+yVoMzPbVtM7uCPinIjYHzgdOHM75z0/Itojon38+PHVBGhmZpUmi1XApML4xDytN/OB457kvGZmVqEqk8VCYLqkaZKGkzqsFxQrSJpeGD0WuCMPLwDmSBohaRowHbipwljNzKwPlfVZRESXpFOBq4A24IKIWCJpHtAREQuAUyUdDWwEHgBOzPMukXQZsBToAk6JiE1VxWpmZn1TRJTXGgDa29ujo6Oj2WGYmQ0okhZFRHtZvaZ3cJuZWetzsjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZVysjAzs1JOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4WZmZVysjAzs1KVJgtJMyUtk7Rc0hl1yj8saamkWyX9j6QphbJNkhbn14Iq4zQzs74NrWrBktqAc4BXAJ3AQkkLImJpodotQHtEPCbpvcAXgTfmsscjYkZV8ZmZWeOqPLM4HFgeESsiYgMwH5hdrBAR10bEY3n0RmBihfGYmdmTVGWymACsLIx35mm9ORn4eWF8pKQOSTdKOq7eDJLm5jodq1ev3vGIzcysrsqaobaHpLcA7cBLC5OnRMQqSU8HfiXptoi4szhfRJwPnA/Q3t4eOy1gM7NdTJVnFquASYXxiXlaD5KOBj4OzIqI9d3TI2JV/rsCuA54ToWxmplZH6pMFguB6ZKmSRoOzAF6XNUk6TnAeaREcV9h+l6SRuThfYAXAcWOcTMz24kqa4aKiC5JpwJXAW3ABRGxRNI8oCMiFgBfAsYAP5AEcHdEzAIOAs6TtJmU0M6uuYrKzMx2IkUMjqb+9vb26OjoaHYYZmYDiqRFEdFeVs93cJuZWSknCzMzK+VkYWZmpZwszMyslJOFmZmVcrIwM7NSDSULST+UdKwkJxczs11Qowf/rwNvAu6QdLakZ1YYk5mZtZiGkkVEXBMRbwYOA+4CrpF0g6S3SxpWZYBmZtZ8DTcrSRoHnAS8k/SjRV8lJY+rK4nMzMxaRkPPhpJ0JfBM4GLgNRFxby66VJKfsWFmNsg1+iDB/4iIa+sVNPJMETMzG9gaTRZ7SfrnmmkPAbcVHy1uZmaDU6PJ4mTgBUD32cXLgEXANEnzIuLiCmIzM7MW0WiyGAYcFBF/B5C0L3ARcARwPakvw8zMBqlGr4aa2J0osvuASRGxFtjY/2GZmVkrafTM4jpJPwV+kMdfm6eNBh6sJDIzM2sZjSaLU4B/Bl6cxy8Croj0M3v/WEVgZmbWOkqboSS1Ab+KiCsi4v/k1+XRwO+xSpopaZmk5ZLOqFP+YUlLJd0q6X8kTSmUnSjpjvw6cbvXzMzM+k1psoiITcBmSXtsz4JzkjkHeBVwMHCCpINrqt0CtEfEocDlwBfzvHsDnyJ1oB8OfErSXtvz/mZm1n8abYZaB9wm6Wrg0e6JEfGBPuY5HFgeESsAJM0HZgNLC/MXb/S7EXhLHn4lcHXuQCe/70zg+w3Ga2Zm/ajRZPHD/NoeE4CVhfFO0plCb04Gft7HvBNqZ5A0F5gLMHny5O0Mz8zMGtVQsoiI70gaBUyOiGX9HYSktwDtwEu3Z76IOB84H6C9vb20D8XMzJ6cRn/86DXAYuAXeXyGpAUls60CJhXGJ+Zptcs+Gvg4MCsi1m/PvGZmtnM0elPeWaQ+iAcBImIx8PSSeRYC0yVNkzQcmAP0SDCSngOcR0oUxWdMXQUcI2mv3LF9TJ5mZmZN0GifxcaIeEhScdrmvmaIiC5Jp5IO8m3ABRGxRNI8oCMiFgBfAsYAP8jLvjsiZkXEWkmfISUcgHndnd1mZrbzNZoslkh6E9AmaTrwAeCGspki4mfAz2qmfbIwfHQf814AXNBgfGZmVqFGm6HeDxwCrCddvvow8KGqgjIzs9bS6NVQj5E6oT9ebThmZtaKGv1Z1QOAjwBTi/NExMurCcvMzFpJo30WPwDOBb4JbKouHDMza0WNJouuiPivSiMxM7OW1WgH908kvU/S0yTt3f2qNDIzM2sZjZ5ZdD8i/KOFaUH5jXlmZjYINHo11LSqAzEzs9bVZzOUpNMKw6+vKfvXqoIyM7PWUtZnMacw/LGaspn9HIuZmbWosmShXobrjZuZ2SBVliyil+F642ZmNkiVdXA/W9LDpLOIUXmYPD6y0sjMzKxl9JksIqJtZwViZmatq9Gb8szMbBfmZGFmZqWcLMzMrJSThZmZlao0WUiaKWmZpOWSzqhTfqSkmyV1SXpdTdkmSYvza0GVcZqZWd8afZDgdpPUBpwDvALoBBZKWhARSwvV7gZOIv2wUq3HI2JGVfGZmVnjKksWwOHA8ohYASBpPjAb2JIsIuKuXLa5wjjMzGwHVdkMNQFYWRjvzNMaNVJSh6QbJR1Xr4KkublOx+rVq3ckVjMz60Mrd3BPiYh24E3Av0vav7ZCRJwfEe0R0T5+/PidH6GZ2S6iymSxCphUGJ+YpzUkIlblvyuA64Dn9GdwZmbWuCqTxUJguqRpkoaTHnfe0FVNkvaSNCIP7wO8iEJfh5mZ7VyVJYuI6AJOBa4Cbgcui4glkuZJmgUg6XmSOoHXA+dJWpJnPwjokPQH4Frg7JqrqMzMbCdSxOB40nh7e3t0dHQ0OwwzswFF0qLcP9ynVu7gNjOzFuFkYWZmpZwszMyslJOFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknCzMzK+VkYWZmpZwszMyslJOFmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknCzMzK+VkYWZmpSpNFpJmSlomabmkM+qUHynpZkldkl5XU3aipDvy68Qq4zQzs75VliwktQHnAK8CDgZOkHRwTbW7gZOAS2rm3Rv4FHAEcDjwKUl7VRWrmZn1rcozi8OB5RGxIiI2APOB2cUKEXFXRNwKbK6Z95XA1RGxNiIeAK4GZlYYq5mZ9aHKZDEBWFkY78zT+m1eSXMldUjqWL169ZMO1MzM+jagO7gj4vyIaI+I9vHjxzc7HDOzQavKZLEKmFQYn5inVT2vmZn1syqTxUJguqRpkoYDc4AFDc57FXCMpL1yx/YxeZqZmTVBZckiIrqAU0kH+duByyJiiaR5kmYBSHqepE7g9cB5kpbkedcCnyElnIXAvDzNzMyaQBHR7Bj6RXt7e3R0dDQ7DDOzAUXSoohoL6s3oDu4zcxs53CyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUpUmC0kzJS2TtFzSGXXKR0i6NJf/XtLUPH2qpMclLc6vc6uM08zM+ja0qgVLagPOAV4BdAILJS2IiKWFaicDD0TEMyTNAb4AvDGX3RkRM6qKz8zMGlflmcXhwPKIWBERG4D5wOyaOrOB7+Thy4GjJKnCmMzM7EmoMllMAFYWxjvztLp1IqILeAgYl8umSbpF0q8lvaTCOM3MrERlzVA76F5gckSskfRc4EeSDomIh4uVJM0F5gJMnjy5CWGame0aqjyzWAVMKoxPzNPq1pE0FNgDWBMR6yNiDUBELALuBA6ofYOIOD8i2iOiffz48RWsgpmZQbXJYiEwXdI0ScOBOcCCmjoLgBPz8OuAX0VESBqfO8iR9HRgOrCiwljNzKwPlTVDRUSXpFOBq4A24IKIWCJpHtAREQuAbwEXS1oOrCUlFIAjgXmSNgKbgfdExNqqYjUzs74pIpodQ79ob2+Pjo6OZodhZjagSFoUEe1l9XwHt5mZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrJSThZmZlXKyMDOzUk4WZmZWysnCzMxKOVmYmVmpVv2lPDNrJRGwuQs2bYDNG2HTxsLwhjS+ZXjD1rqbNgIBsTktg6j/NzanYeil7uatcRTr1sbYc0IDdQaJ0U+Bg46v9C2cLMwGs9gM6x+BJx6AJx6Exx9Iw4/n8ScegMfXwoZ1PQ/w9ZKCta6nPMvJwswKNm+C9Q9tPej3mgC6hx+E2FR/WcNGw8g9YdReMGIPaBsGbcNhyLCa4eFpvLfh2nnahsOQoVunawhIgHr+VW4F15Dey1Bh/jp1a6l2WiN1rBFOFmbNFpG+2T92Pzy+Jv197H54bE0eX7O17ImHqNu8AjBi93TwH7kX7DEJ9j10azIYuVf+m8tH7glDR+zU1bSBzcliw6Nw6fGw2/jU7tfba/joZkdqA82mjdse7Hsb3rRh2/mHDIPd9oHdxsHuE+Gpz4ZRe2894NcmgSH+d7bqeO/a3AVTXgqP3gfr/gZ/vzWd5tcaNhpG7gHDx6RvcMPHpr8jxvYcHjoSho7Kf+u82ob7NLiVbdoIGx+DrsfT342PwcbHG5hWGN+wLiWCevsR5G/741ISeOqMrQlht33Sq7ts+FjvK9YyKk0WkmYCXwXagG9GxNk15SOAi4DnAmuAN0bEXbnsY8DJwCbgAxFxVSVBjtwDjvx4z2ldT6RvfOv+Do+t3vp3/cOps3D9w/DQX9PwhkdS/YapZ5tuj+FCW/CQofnVtnVYbT2nq23rXw3JdYbkaUO2Tu/xUp6urdN6tAv31Z5cWIct47Vlfai9wqW3aZs3sfUKmuKrOG1TSvSbNxXG87Qtw7mDdnNXGt7ctfWqnc1d6XOrPehv7mr8o2wbAcNGwbDd0heEYbul8VHj4GmH9Tzwdw+P2jt9zmYDTGXJQlIbcA7wCqATWChpQUQsLVQ7GXggIp4haQ7wBeCNkg4G5gCHAPsB10g6IKK3nrp+NnRkOu3ffWJj9Tdt6Jk4+nptfLzm0sI+hrsezwe6rq0HwuKr+yAZm/NBc9PWA+2uaEtCzQm0mHS3JOJhW6eN2APGPG3rQb72oD9stz6mjXSzj+1SqtzbDweWR8QKAEnzgdlAMVnMBs7Kw5cDX5OkPH1+RKwH/iJpeV7e7yqM98lrG56/PY5rdiRJ97fv7sTR6zf1wjf2Htey11znXntd+5Zr1aPncL0rT2r1uCqGwnBhWo8zosIZUPFMaJuzK99falalKpPFBGBlYbwTOKK3OhHRJekhYFyefmPNvBNq30DSXGBuHl0naVkvsewD3L+9K9BEAy1ecMw7i2Ou3kCLF3Ys5imNVBrQ59ERcT5wflk9SR0R0b4TQuoXAy1ecMwGYJ7EAAAIJUlEQVQ7i2Ou3kCLF3ZOzFWeu68CJhXGJ+ZpdetIGgrsQerobmReMzPbSapMFguB6ZKmSRpO6rBeUFNnAXBiHn4d8KuIiDx9jqQRkqYB04GbKozVzMz6UFkzVO6DOBW4inTp7AURsUTSPKAjIhYA3wIuzh3Ya0kJhVzvMlJneBdwyg5eCVXaVNViBlq84Jh3FsdcvYEWL+yEmBWD9SmMZmbWb3y9oZmZlXKyMDOzUoMmWUiaKWmZpOWSzqhTfpKk1ZIW59c7mxFnTUwXSLpP0h97KZek/8jrdKukw3Z2jDXxlMX7MkkPFbbxJ3d2jHVimiTpWklLJS2R9ME6dVptOzcSc8tsa0kjJd0k6Q853k/XqTNC0qV5G/9e0tSdH2mPeBqJueWOGZCejiHpFkk/rVNW3XaOiAH/InWg3wk8HRgO/AE4uKbOScDXmh1rTUxHAocBf+yl/J+An5NujX4+8PsWj/dlwE+bvV1rYnoacFgeHgv8uc6+0WrbuZGYW2Zb5+02Jg8PA34PPL+mzvuAc/PwHODSARBzyx0zclwfBi6p9/lXuZ0Hy5nFlkeLRMQGoPvRIi0tIq4nXQXWm9nARZHcCOwp6Wk7J7ptNRBvy4mIeyPi5jz8CHA72z4NoNW2cyMxt4y83dbl0WH5VXvlzGzgO3n4cuCo/Gifpmgw5pYjaSJwLPDNXqpUtp0HS7Ko92iRev9cr83NDJdLmlSnvNU0ul6t5AX51P7nkg5pdjBF+ZT8OaRvkUUtu537iBlaaFvnppHFwH3A1RHR6zaOiC6g+9E+TdNAzNB6x4x/B04DNvdSXtl2HizJohE/AaZGxKHA1WzNvtZ/bgamRMSzgf8EftTkeLaQNAa4AvhQRDzc7HgaURJzS23riNgUETNIT1s4XNKzmhlPIxqIuaWOGZJeDdwXEYua8f6DJVmUPh4kItZEeootpFO45+6k2HbEgHrsSUQ83H1qHxE/A4ZJ2qfJYSFpGOmg+72I+GGdKi23nctibtVtHREPAtcCM2uKenu0T9P1FnMLHjNeBMySdBepqf3lkr5bU6ey7TxYkkXpo0Vq2qBnkdqBW90C4G35ap3nAw9FxL3NDqo3kp7a3T4q6XDS/tXUA0KO51vA7RHxlV6qtdR2biTmVtrWksZL2jMPjyL9hs2faqr19mifpmgk5lY7ZkTExyJiYkRMJR3jfhURb6mpVtl2HtBPne0WjT1a5AOSZpEeH7KWdKVDU0n6Pumqln0kdQKfInW0ERHnAj8jXamzHHgMeHtzIk0aiPd1wHsldQGPA3OaeUDIXgS8Fbgtt08D/F9gMrTmdqaxmFtpWz8N+I7SD54NAS6LiJ+qgUf7NFEjMbfcMaOenbWd/bgPMzMrNViaoczMrEJOFmZmVsrJwszMSjlZmJlZKScLMzMr5WRhLUvSugbqfEjSbv34nsdJOrgfl3fDDsy7Lv/dT9LlfdTbU9L7nuz7mDXCycIGug8B25Us8rX1vTkO6LdkEREv7Idl3BMRr+ujyp6kp42aVcbJwlqe0m83XJcf5vYnSd/Ld1t/ANgPuFbStbnuMZJ+J+lmST/Iz1dC0l2SviDpZuD1kt4laWF+EN8VknaT9ELSnbpfUvr9gv0lzZB0Y36Y3JWS9srLu07Sv0nqkHS7pOdJ+qGkOyR9thD7usLw6ZJuy+95dp31nJZjv61mGVOVf0NE0iFKv8OwOMc0HTgb2D9P+5KkMZL+J2+D2yTNLizndknfUPoNh1/mu5eR9AxJ1+TYbpa0f57+0bydblWd33ywXUh/PevcL7/6+wWsy39fRnp65kTSF5zfAS/OZXcB++ThfYDrgdF5/HTgk4V6pxWWPa4w/Fng/Xn4QuB1hbJbgZfm4XnAv+fh64Av5OEPAveQ7goeQXpq7biadXgVcAOwWx7fu876LgDelodPKcw7lfwbIqSHBr45Dw8HRhXL8/ShwO6FbbKc9PsNU0l3I8/IZZcBb8nDvweOz8MjSWdrxwDn53mHAD8Fjmz2fuFXc16D4nEftku4KSI6AfIjMKYCv6mp83xSE9Jv82OThpMSS7dLC8PPyt/e9wTGkB4V04OkPYA9I+LXedJ3gB8UqnQ/f+w2YEnk50lJWkF6mFvxWU1HA9+OiMcAIqLe74K8CHhtHr4Y+EKdOr8DPq70uwY/jIg7tO3PFQj4V0lHkh5lPQHYN5f9JSK6HyGyCJgqaSwwISKuzLE9kdfjGFLCuCXXHwNMJyVk28U4WdhAsb4wvIn6+65Iv0twQi/LeLQwfCFwXET8QdJJpLOXJxvT5pr4NvcSXyP6fP5ORFwi6fekH8D5maR3Aytqqr0ZGA88NyI2Kj2ldGRNzJC246g+3k7A5yPivO2I3wYp91nYQPcI6adHAW4EXiTpGQCSRks6oJf5xgL3Kj0K/M31lhcRDwEPSHpJLnsr8GuenKuBt3dfuSVp7zp1fsvWB7+9uU45kp4OrIiI/wB+DBxKz20A6bHU9+VE8Y/AlL4Ci/RrfJ2SjsvvMSLHeRXwjkK/zwRJT2lobW3QcbKwge584BeSro2I1aQng35f0q2kJpsDe5nvE6R2+t/S89HU84GPSrold/KeSOrwvhWYQeq32G4R8QtSs1VHbkb7SJ1qHwROkXQbvf9S3xuAP+ZlPIv0c7BrSE1vf5T0JeB7QHteztvY9nHh9byV9JTVW0l9K0+NiF+Sfuv5d3lZl9MzKdkuxE+dNTOzUj6zMDOzUk4WZmZWysnCzMxKOVmYmVkpJwszMyvlZGFmZqWcLMzMrNT/ByfsUcHpAJkIAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYHFW5x/HvL5N9YUtCkOxAWAJi0GHfFAGDLMGLXCOioGgumIiIrIIIUa5wvahcjULAyOISEcUbuREEIaAikMkGJBAISSATEhKyB8gyM+/945xJajo9Mz2TqamenvfzPP1MLaeq36qu6bfrnKpTMjOcc865hnTIOgDnnHPFz5OFc865RnmycM451yhPFs455xrlycI551yjPFk455xrlCcLh6QbJf0qDg+StFFSWRzvJ+lpSRsk3abgl5LWSHo+28hdQyQtlnRy1nGkTdKFkv6Rwnrr/C+04HqHSLK47jFx2v5xvFrSl1vy/VpKx6wDaMskLQb6AdWJyfeY2bhsItp5ZvYm0DMxaQzwDrCLmZmk44FTgAFm9m4WMbqdJ+keoNLMrs86lmIR/5+/bGaPQ97/hZa2m5lVxfd6FegpaVqK77dTPFnsvDNrD660SOpYe1BlYDAwz7bfvTkYWNycRJHxdrRp7WXftZftbIu8GioltafGkv47VtksknRaYv6ukn4haZmkpZK+l6j6uVDSPyX9SNIq4EZJZbEa6J24rnHxVLajpHMlzch5/8sl/W89sQ2V9FSsWnoM6JOYNySx3nuAC4Cr4inyfwB3A0fH8ZviMmdImi1praRnJB2aWN9iSVdLegF4N653b0l/kLQybsulifI3SnpA0n0xvrmSyhPzB0r6Y1x2laSfJuZ9SdLLcX8/KmlwA5/PcTHWtZKWSLow8bncF9f/hqTrJXXI87mslbRQ0jFx+hJJKyRdkHiPeyTdIemxuC1PJWOSdHtcbr2kGfGsLbkfHpT0K0nrgQsldZB0jaTX47Y/IGmPxDKfjzGvknRdA9s+Bvhc4nP9c5x+kKRpcdvmSjqrgXVMk/TduD82SPqrpORxdFZcx9pY9qAG1mWSxkp6DXgtTjsw7rfVkuZL+vdE+d6SpsT99jywb2LetuM3J9YvJ8a/Eo+TDZLmSfqwpPuBQcCf4z65Kndd8bidEmNaIOkrOZ9XvcdtSTAzfzXzBSwGTq5n3oXAVuArQBlwCfAWoDj/IeBOoAewJ/A88B+JZauArxHO/roBFwPzgAHA7sDjgMX5XYDVwEGJ958FnFNPbP8CfhiXOwHYAPwqzhtSu944fg/wvZzt+kdi/DBgBXBk3M4L4n7pkthHs4GBcTs6ADOAG4DOwD7AQuATsfyNwCbgk3F93weejfPKgDnAj+J+6wocF+eNAhYAB8V9cj3wTD3bPzhu82eBTkBvYEScdx/wv0CvuC9eBS7K+Vy+GGP5HvAmMCHuy1Pjensm9t2GuI+7ALfn7Lvz43t3BL4JLAe6JvbDVuDsuM+6AV8Hno3HQBfC8fPbWH44sDHxXj+MsdZ3fOZ+rp3i/vtW/FxOirEfUM/y04DXgf1jbNOAW+K8/YF3CdWVnYCr4ro717MuAx4D9ojr6gEsifu5I+EYewcYHstPBh6I5Q4BltbuV3KO30SsX47D58byhwMC9gMG5/t/zl0X8DTwM8JxNwJYCZzU2HGbZ3t3iDFfrMX2yjyAtvyKB9dGYG3i9ZU470JgQaJs93iA7EVo59gMdEvM/yzwZGLZN3Pe6wliMonjJ+ccyD8Hbo7DBwNriF/YOesZRPgS6ZGY9huanyx+Dnw35z3mAycm9tGXEvOOzLNt1wK/jMM3Ao8n5g0H3o/DR8d/0Hz/ZH8hfqnH8Q7Ae7VfBHne76E808uALcQvpTjtP4BpiW1/LTHvg3Ff9UtMW8X2xHMPMDkxryehfWtgPcfTGuBDif3wdM78l4GPJ8Y/QEgoHQnJN/lePeK2FJosjickqw6Jab8Fbqxn+WnA9YnxrwKPxOFvAw/kfBZLgY/Wsy4jfunG8c8Af88pcyfwnfgZbQUOTMz7TwpPFo8CX2/g/zlvsiD82KkGeiXmf5/QRln7eeU9bvO8zw4x5ou12F7eZrHzzrb62yyW1w6Y2XuSIHxh7EH4xbUsToPwD7UksWxyGGDvRubfC/xW0vXA5wn/rJvzxLQ3sMbqtjm8QfhnaI7BwAWSvpaY1jm+T75YBwN7S1qbmFYG/D0xvjwx/B7QNVYFDATesPx12oOB2yXdlpgmoD9h+5IGEn4V5+pD+FyS5d+I66j1dmL4fQAzy52WbBTdtu1mtlHSauJnKekK4KI4bsAuJKoE2fEzHgw8JKkmMa2a8OOjzvFhZu8qVGEWam9giZkl15277blyP6fa7d6bxD40sxpJSxpZV+4xcmTOMdIRuB/oG4eT5XM/34bU99k3Zm9gtZltyHnfZFVT3uO2nuO1zfFkkY0lhDOLPg0cSLndAS8jVD/UqvPlbmbPStpC+IV4XnzlswzYXVKPRMIYlOf9CrWEcEZzcwNlkuteAiwys2HNfK9B9fwD1sbx6wLXc0Se6e8QfrUOJlT5Qdg3S5sRa61tn5Ok2h8Kb8X2iauAjwNz4xfqGkKCq5X7mSwhnKX9M/dNJC0jVMHVjncnVHHVJ3fdbwEDJXVIJIxBhGq4pnqLcNZVG4sI+6Gh/Zh7jDxlZqfkFlJo16uK63slEWet2mO6O7A+Du+Vs+59ya+h/4G3gD0k9UokjJ09NtoUb+DOgJktA/4K3CZpl9hwua+kExtY7AHg65L6S9oNuDpPmfuAnwJbzSzvdedm9gZQAdwkqbOk44Azd2Jz7gIulnSkgh6STpfUq57yzwMbFBq9uyk03B8i6fAC3ut5QrK7Jb5PV0nHxnl3ANdKOhi2NVSfW896fg2cLOnfFRrce0saYWbVhP18s6ReCo3RlwO/KmxX5PVJhcb0zsB3CfXYSwhtIlXEajVJNxDOLBpyR4xtcNzGvpJGxXkPAmck3ms8Df9/v01oL6r1HOHX8FWSOkn6KOG4mNyEba31AHC6pI9L6kRoj9kMPFPg8g8D+ys02HeKr8MlHRQ/oz8SLvroLmk4oZ0MADNbSfgCPz8eW1+ibnK4G7hC0kfi8bqftl90kLtPtomf2TPA9+NxdyjhrHBnjo02xZPFzqu9eqL29VCBy32BUF0zj1BX/SChDro+dxESzAuExuuphC+b5D0e9xMa/Bo7gM8jtB2sJtQD31dgzDswswpCI/5PCduxgFC3X1/5auAMQgPhIsKv+buBXQt4r2rCF9h+hIblSkL9Nmb2EHArMFnh6qGXgNPqWc+bhIbIbxL2wWzgQ3H21wi/ThcC/yC050xqLLYG/Iawj1cDHyE0akOoO3+E8Mv9DULjaG61U67bgSnAXyVtIDR2Hxm3aS4wNr7fMsJnUdnAun4BDFe4WulPZraFsG9PI3wmPwO+YGavNLCOvMxsftzOn8R1nUm4xHxLgctvIFwsMJrwi3454bPtEouMI1R5LSe0vfwyZxVfAa4ktB8dTCJJmdnvgZsJ+2kD8CfC2R6ENojr4z65Ik9onyW0N7xFuEDlOw1UQZec2itzXBujcBnuHWY2ODGtG+HKpA+b2WuZBecAv/HN5RfPZOYTfiBcaWZ3SRoGTCf8gPyqmd2TYYh5eZtFGxETwccIZxf9CL9Wc89iLgGme6JwrnjFquCuOdNeA3bLJqLCpFoNJWmkwg01CyRd00C5c+LNL8mbr66Ny82X9Ik042wjBNxEqF6YRbiM8oZtM0NXBV8nVK0451yLSq0aKl618CrhxpxKwinWZ81sXk65XsD/EU6/xplZRWy0+i3hipW9CTeg7R/rrJ1zzrWyNM8sjiDclLYwNmxNJtxlm+u7hMarTYlpowg3GG02s0WERtN8lzo655xrBWm2WfSn7tUdlcQrN2pJ+jDhbtb/k3RlzrLP5iy7ww09Cn3cjAHo0aPHRw488MAWCt0559qHGTNmvGNmfRsrl1kDt0LnbD+kgcssG2NmE4GJAOXl5VZRUdEywTnnXDshqaA74NNMFkupe5fxAOre7diLcE/AtNjlxV7AFIWeLhtb1jnnXCtKs81iOjBMoTvszoQbbKbUzjSzdWbWx8yGmNkQQrXTWfEmrynAaEldJA0FhhHu3nXOOZeB1M4szKxK0jjCnaplwCQzmytpPFBhZlMaWHaupAcIdzdXAWP9SijnnMtOydzBna/NYuvWrVRWVrJp06Z6lmp7unbtyoABA+jUqVPWoTjnSoCkGWbW6IOaSvoO7srKSnr16sWQIUOQ1PgCRc7MWLVqFZWVlQwdOjTrcJxz7UhJdyS4adMmevfuXRKJAkASvXv3LqkzJedc21DSyQIomURRq9S2xznXNpR8snDOObfzPFk455xrlCeLlC1evJhu3boxYsSIestMnz6djh078uCDDwLw+uuvM2LECHr27FnvMs4515o8WbSCfffdl9mzZ+edV11dzdVXX82pp55aUHnnnMtCSV86W8czt8Gq+S27zt4HwDE79/iIn/zkJ5xzzjlMnz69hYJyzrmW52cWGVq6dCkPPfQQl1xySdahOOdcg9rPmcVOngGk4bLLLuPWW2+lQwfP2c654tZ+kkURmDBhAnfddRcAU6dOpaKigtGjRwPwzjvvMHXqVDp27MjZZ5+dZZjOObcDTxataOzYsYwdO3bb+KJFi7YNX3jhhZxxxhmeKJxzRcnrP5xzzjXKzyyKxD333JN1CM45Vy8/s0hZWVkZ69ata/CmvFy1N+X169cvxcicc65wJX9mYWaZdr43cOBAlixZ0qRlGropr1SeP+Kca1tK+syia9eurFq1qmS+YGufZ9G1a9esQ3HOtTMlfWYxYMAAKisrWblyZdahtJjaJ+U551xrSjVZSBoJ3E54BvfdZnZLzvyLgbFANbARGGNm8yQNAV4GavvneNbMLm7q+3fq1MmfKOeccy0gtWQhqQyYAJwCVALTJU0xs3mJYr8xszti+bOAHwIj47zXzazwVmHnnCt1ZrB5HWx8G959G95dEYa77AIf+nyqb53mmcURwAIzWwggaTIwCtiWLMxsfaJ8D6A0Ghecc66pahNBbQJ49+34d0XdxFC9ue5yKoP+h7fpZNEfSF4GVAkcmVtI0ljgcqAzcFJi1lBJs4D1wPVm9vcUY3XOuXRt2QgbliWSQE4yqC8R9OgLPfYMvVwPPgF69IOe/cK0nntB192hQ1nq4WfewG1mE4AJks4DrgcuAJYBg8xslaSPAH+SdHDOmQiSxgBjAAYNGtTKkTvnXD2qt8CqV2HFS7BiLqycC+verFtGHaB73/DF3/sAGHR83STQox9026NVEkEh0kwWS4GBifEBcVp9JgM/BzCzzcDmODxD0uvA/kBFcgEzmwhMBCgvL/cqLOdc6zOD9ZUhMaycG/6+Mx9qtob53XrDnofA/mfAroNCEuixJ3TvDR0y/71esDQjnQ4MkzSUkCRGA+clC0gaZmavxdHTgdfi9L7AajOrlrQPMAxYmGKszjlXmE1rYeW8eNYQzxw2rwvzOnaFPgfBIaNhz4NDkujRDzK8MbilpJYszKxK0jjgUcKls5PMbK6k8UCFmU0Bxkk6GdgKrCFUQQGcAIyXtBWoAS42s9Vpxeqcc3nlVieteAnW1zbFCnYfCkNODElhz0Ng933a1NlCU6hU7m4uLy+3ioqKxgs651x9tmyEN/6+/axh1avbq5O699meFPY8BPocCJ17ZhtvC5A0w8zKGytXminQOeea4v018OJvYO4DsPXdUJ3Ud3isTjokVCmVSHVSc3mycM61X++ugDn3wysPQdVmGHoSHHo+9D2oZKuTmsv3hnOu/Vm/FObcC/P/DFYD+42EEReGNgiXlycL51z7sWYRzP4lLHg03OdwwFnwoS/ALv2zjqzoebJwzpW+d16BWZNg0ZPQsUtoizj0/HB3tCuIJwvnXOlaPjskiSXPhCuXDvsifPA86Lpb1pG1OZ4snHOlxQyWPheSxLKZITEc/lU4+N9L4lLXrHiycM6VBqsJ90jMmhS63ejeF46+HA78FHTqlnV0bZ4nC+dc21ZTDQsfDw3XqxdAr/5w/LdCX0xlnbOOrmR4snDOtU3VW+G1qeES2HVvwm5D4WPjYd9T/R6JFPgedc61Pa8+DNN/Hp4D0fsAOPlWGPqxcDmsS4UnC+dc2zLzF1Dxc9jzg6G6aeAx7bobjtbiycI51zaYwfSfhbaJYZ+EE2/w6qZW5HvaOVf8rAb+9UN4aTIc9G9w3DVe5dTKPFk454pbTTX84/vwyp/CDXVHfcOrnTLgycI5V7xqqmDajbDgETjsIii/2BNFRjxZOOeKU/UW+Nt1sPhJOGJc6BXWZcaThXOu+FRtgseuCn06HXNF6PjPZcqThXOuuGx9Dx69HN6aASdcDweenXVEDkj1cgJJIyXNl7RA0jV55l8s6UVJsyX9Q9LwxLxr43LzJX0izTidc0Vi8waYOg6WzYKTvuuJooikliwklQETgNOA4cBnk8kg+o2ZfdDMRgD/BfwwLjscGA0cDIwEfhbX55wrVZvWwsMXw8p5cPIt4el1rmikeWZxBLDAzBaa2RZgMjAqWcDM1idGewAWh0cBk81ss5ktAhbE9TnnStF778Cfx8DaxXDqbaHrDldU0myz6A8sSYxXAkfmFpI0Frgc6AyclFj22Zxld3juoaQxwBiAQYMGtUjQzrlWtnE5PHxJSBin3Q57l2cdkcsj81sgzWyCme0LXA1c38RlJ5pZuZmV9+3rj0d0rs1ZXwlTvgyb1sDpEzxRFLE0k8VSYGBifECcVp/JQG1rVlOXdc61NWsWhUSx9X044w7od2jWEbkGpJkspgPDJA2V1JnQYD0lWUDSsMTo6cBrcXgKMFpSF0lDgWHA8ynG6pxrTateDW0UZnDmROhzYNYRuUak1mZhZlWSxgGPAmXAJDObK2k8UGFmU4Bxkk4GtgJrgAvisnMlPQDMA6qAsWZWnVaszrlWtOIlmPo16NQdzvg57OrtjW2BzKzxUm1AeXm5VVRUZB2Gc64hy2bCI5dBtz3g9J9Drw9kHVG7J2mGmTXaWJR5A7dzrp2ofDacUfToB2fe5YmijfFk4ZxL3+Kn4JFvwG6DQxtFD796sa3xZOGcS9frfw2dAvY5IFz11G33rCNyzeAdCTrn0jP/z/D0d2GvEfCJH0HnHllH5JrJzyycc+lY/BQ8dRP0PwJO+x9PFG2cn1k451rexrfhqfHh/olTb4OOXbKOyO0kP7NwzrWsmmp48tvhSXcf/09PFCXCk4VzrmXN/mW4n+K4q/2GuxLiycI513KWz4YZd8F+p8Gw07OOxrUgTxbOuZaxeT08cX242e64q0HKOiLXgryB2zm388zg6e/Buyth1CTo3DPriFwL8zML59zOe+UhWPQEHDEO9jw462hcCjxZOOd2zurX4ZnbYMBRcOjnso7GpcSThXOu+ao2wd++FW64++iNIP9KKVXeZuGca75nfwxrXofTfgLd+2QdjUuR/wxwzjXPoidh3oNw6Odh4NFZR+NS5snCOdd0G5eHDgL7DofDv5p1NK4VeLJwzjVNTRU88e3w96SboaxT1hG5VpBqspA0UtJ8SQskXZNn/uWS5kl6QdLfJA1OzKuWNDu+pqQZp3OuCWZNguWz4LhrYNeBWUfjWklqDdySyoAJwClAJTBd0hQzm5coNgsoN7P3JF0C/BfwmTjvfTMbkVZ8zrlmWDYTZt4duvIY9smso3GtKM0ziyOABWa20My2AJOBUckCZvakmb0XR58FBqQYj3NuZ2xaF6qfevWHY6/KOhrXytJMFv2BJYnxyjitPhcBf0mMd5VUIelZSWfnW0DSmFimYuXKlTsfsXMuP7PQoP3+qtDtuD/IqN0pivssJJ0PlAMnJiYPNrOlkvYBnpD0opm9nlzOzCYCEwHKy8ut1QJ2rr15+Q+weBocdRn0PSjraFwG0jyzWAokW78GxGl1SDoZuA44y8w21043s6Xx70JgGnBYirE65+qzegH864cw8Bj44HlZR+MykmaymA4MkzRUUmdgNFDnqiZJhwF3EhLFisT03SV1icN9gGOBZMO4c641bOvOo5d359HOpVYNZWZVksYBjwJlwCQzmytpPFBhZlOAHwA9gd8r9H3/ppmdBRwE3CmphpDQbsm5iso51xqeuQ3WLIRP/hS67ZF1NC5DqbZZmNlUYGrOtBsSwyfXs9wzwAfTjM0514iFj4euxz90QehR1rVrfk7pnNvRhmXw9M3Q92A4/JKso3FFwJOFc66umqrweFSrgY/fDB2K4qJJlzFPFs65umbeDW/PgeOvhV38PlkXeLJwzm33VgXM/AXsfybsNzLraFwR8WThnAs2rQ3deew6EI69MutoXJHxykjnXOjOY9pNIWGM/BF06p51RK7IFHRmIemPkk6X/I4c50rS3Afgzb/DkZdCnwOzjsYVoUK//H8GnAe8JukWSQekGJNzrjWtehWeux0GHQeHjM46GlekCkoWZva4mX0O+DCwGHhc0jOSvijJH5PlXFtVvSW0U3TuBSd+B0JPCs7toOBqJUm9gQuBLxMeWnQ7IXk8lkpkzrn0zbwb1rwOJ34buu2edTSuiBXUwC3pIeAA4H7gTDNbFmf9TlJFWsE551K08mWYfS/sf0aognKuAYVeDfU/ZvZkvhlmVt6C8TjnWkP1Fph2Y+gc8OhvZh2NawMKTRa7S/q3nGnrgBeTXYs759qI2uqnkT+GLr2yjsa1AYUmi4uAo4Has4uPAjOAoZLGm9n9KcTmnEvDynle/eSarNBk0Qk4yMzeBpDUD7gPOBJ4mtCW4Zwrdl795Jqp0KuhBtQmimgFMNDMVgNbWz4s51wqZtwVHmZ0wnVe/eSapNAzi2mSHgZ+H8fPidN6AGtTicw517JWzoM594VOAr36yTVRocliLPBvQO0Rdh/wBzMz4GNpBOaca0G11U/de8PRl2cdjWuDGq2GklQGPGFmfzCzb8TXgzFRNLbsSEnzJS2QdE2e+ZdLmifpBUl/kzQ4Me8CSa/F1wVN3jLn3Ha11U/He/WTa55Gk4WZVQM1knZtyopjkpkAnAYMBz4raXhOsVlAuZkdCjwI/Fdcdg/gO4QG9COA70jy20uda4461U/HZh2Na6MKrYbaCLwo6THg3dqJZnZpA8scASwws4UAkiYDo4B5ieWTN/o9C5wfhz8BPBYb0InvOxL4bYHxOufAq59ciyk0WfwxvpqiP7AkMV5JOFOoz0XAXxpYtn/uApLGAGMABg0a1MTwnGsHaqufRt7u1U9upxSULMzsXkndgEFmNr+lg5B0PlAOnNiU5cxsIjARoLy8vNE2FOfalRVzYc69Xv3kWkShDz86E5gNPBLHR0ia0shiS4GBifEBcVruuk8GrgPOMrPNTVnWOVePqs3w1E3QvY9XP7kWUehNeTcS2iDWApjZbGCfRpaZDgyTNFRSZ2A0UCfBSDoMuJOQKJJ9TD0KnCpp99iwfWqc5pwrxEy/+sm1rELbLLaa2TrVfTBKTUMLmFmVpHGEL/kyYJKZzZU0HqgwsynAD4CewO/jut80s7PMbLWk7xISDsD42sZu51wjVrwUrn464CyvfnItptBkMVfSeUCZpGHApcAzjS1kZlOBqTnTbkgMn9zAspOASQXG55yDWP00Hrr39eon16IKrYb6GnAwsJlw+ep64LK0gnLONVNt9dMJ10PnnllH40pIoVdDvUdohL4u3XCcc822rfppFAw8OutoXIkp9LGq+wNXAEOSy5jZSemE5ZxrkqrNMO2mWP30jayjcSWo0DaL3wN3AHcD1emF45xrlhkTYe0iOO0nXv3kUlFosqgys5+nGolzrnlWvAQv3O/VTy5VhTZw/1nSVyV9QNIeta9UI3PONa5qc+z7yaufXLoKPbOo7SL8ysQ0o/Eb85xzaZpxJ6xd7NVPLnWFXg01NO1AnHNNtOIleOFXcODZXv3kUtdgNZSkqxLD5+bM+8+0gnLONSJZ/XSU3/Lk0tdYm8XoxPC1OfNGtnAszrlC1VY/nfhtr35yraKxZKF6hvONO+daw9svxuqnT8GAo7KOxrUTjSULq2c437hzLm3buh7vC0d9PetoXDvSWAP3hyStJ5xFdIvDxPGuqUbmnNtRxR2h+umTP/XqJ9eqGkwWZlbWWoE45xrx9ovw4q+9+sllotCb8pxzWdrybrj6qceeXv3kMlHoTXnOuayYhUSxfgmc/jOvfnKZ8DML54rdrEmw+Ek48lLYuzzraFw75cnCuWL25j9Co/Z+p8EHP5d1NK4dSzVZSBopab6kBZKuyTP/BEkzJVVJ+nTOvGpJs+NrSppxOleU1r0JT1wPvYfBCdeB/NYml53U2iwklQETgFOASmC6pClmNi9R7E3gQsKDlXK9b2Yj0orPuaK25V149JvQoSOceht09CvVXbbSbOA+AlhgZgsBJE0GRgHbkoWZLY7zalKMw7m2xWpg2nfCmcXpE6DXB7KOyLlUq6H6A0sS45VxWqG6SqqQ9Kyks/MVkDQmlqlYuXLlzsTqXPGYNQkWTwuXyHqDtisSxdzAPdjMyoHzgB9L2je3gJlNNLNyMyvv27dv60foXEt74+9QcWdo0D7ks1lH49w2aSaLpcDAxPiAOK0gZrY0/l0ITAMOa8ngnCs6axeHBu0+B3iDtis6aSaL6cAwSUMldSZ0d17QVU2SdpfUJQ73AY4l0dbhXMnZshH+egWUdYJT/9sbtF3RSS1ZmFkVMA54FHgZeMDM5koaL+ksAEmHS6oEzgXulDQ3Ln4QUCFpDvAkcEvOVVTOlQ6rgSdvgHVL4ORboOdeWUfk3A5S7e7DzKYCU3Om3ZAYnk6onspd7hngg2nG5lzRmHk3vPE0HHOFN2i7olXMDdzOlb7FT8GMiTDsdDj4M1lH41y9PFk4l5W1i0P1U5+D4PhrvUHbFTVPFs5lYcvGcId2WWc49QfeoO2KnndR7lxrsxp44tuwvjJ0Oe4N2q4N8DML51rbjLvgzb/D0d+AvT+SdTTOFcSThXOtafE0mHkX7H+mN2i7NsWThXOtZc2i0KDddzgcd43W8lAzAAARSklEQVQ3aLs2xZOFc61hy0b46zdDQ/YpP4COXbKOyLkm8QZu59JmNaHPp/VL4Yw7oGe/rCNyrsn8zMK5tFXcGR6Pesw34QPeH6ZrmzxZOJemRU/ArF+EBu3h52YdjXPN5snCubSsWQjTboS+B3uDtmvzPFk4l4bNG0KX4x27xTu0vUHbtW3ewO1cS6uphieuCw3aZ94JPfbMOiLndpqfWTjX0irugCXPwLFXwl4jso7GuRbhycK5lvTyH2H2L+GAUXDQOVlH41yL8Woo51qCGcy4MzzIaOAxcNzV3qDtSoonC+d2Vk0VPH0zvPpnOOAsOP5b0MH/tVxpSbUaStJISfMlLZB0TZ75J0iaKalK0qdz5l0g6bX4uiDNOJ1rtq3vwaOXh0Tx4a/ACd/2ROFKUmpHtaQyYAJwClAJTJc0xczmJYq9CVwIXJGz7B7Ad4BywIAZcdk1acXrXJO9twoeuQxWvQonXA8Hnp11RM6lJs0ziyOABWa20My2AJOBUckCZrbYzF4AanKW/QTwmJmtjgniMWBkirE61zRr34D//RKsXQSfuM0ThSt5aSaL/sCSxHhlnNZiy0oaI6lCUsXKlSubHahzTfL2CyFRbH0PzrgTBh2XdUTOpa5NXzprZhPNrNzMyvv27Zt1OK49WDwNHr4EuuwCoybBngdnHZFzrSLNZLEUGJgYHxCnpb2sc+mY9yA8dhXssV9IFLsObHwZ50pEmsliOjBM0lBJnYHRwJQCl30UOFXS7pJ2B06N05xrfWbw/AT4xy0w8NjwTIpuu2cdlXOtKrVkYWZVwDjCl/zLwANmNlfSeElnAUg6XFIlcC5wp6S5cdnVwHcJCWc6MD5Oc651VW8NPcfO/iUc+KnQKWCnbllH5Vyrk5llHUOLKC8vt4qKiqzDcKVky7uh2mnpc1B+MRx2kd+V7UqOpBlmVt5YOb97yLl83nsH/nIprH4dTrwh3JntXDvmycK5XGsXw9Svwaa1MPJHoa8n59o5TxbOJS2fDY9+EzqUwZkToe9BWUfkXFFo0/dZONeiFj0J/zcWuu4aLo31ROHcNn5m4RzAS7+DZ/4b9jwkVD113S3riJwrKp4sXPtmNfD8T2HOfTD4RPj4zdCxa9ZROVd0PFm49qt6Kzw1Hhb8BYZ/Go65MrRVOOd24MnCtU9bNsZ7KJ6Hw8fCiAv9HgrnGuDJwrVP026Ct2bAR2+E/c/IOhrnip5fDeXan5oqqHwWDvqUJwrnCuTJwrU/qxdA1fuw12FZR+Jcm+HJwrU/y2eHv3t9KNs4nGtDPFm49mf5HOi5V3g55wriycK1L2bhzKKfn1U41xSeLFz7snEZvLcS9hqRdSTOtSmeLFz74u0VzjWLJwvXviyfA516wO77Zh2Jc22KJwvXviyfDf0O9W49nGuiVJOFpJGS5ktaIOmaPPO7SPpdnP+cpCFx+hBJ70uaHV93pBmnayc2r4c1C70KyrlmSK27D0llwATgFKASmC5pipnNSxS7CFhjZvtJGg3cCnwmznvdzLwV0rWct18AzBu3nWuGNM8sjgAWmNlCM9sCTAZG5ZQZBdwbhx8EPi55b24uJcvngMrCMyucc02SZrLoDyxJjFfGaXnLmFkVsA7oHecNlTRL0lOSjk8xTtdevD0H+hzoz6twrhmKtYF7GTDIzA4DLgd+I2mX3EKSxkiqkFSxcuXKVg/StSHVW2HFXG+vcK6Z0kwWS4GBifEBcVreMpI6ArsCq8xss5mtAjCzGcDrwP65b2BmE82s3MzK+/btm8ImuJLxzitQvdnbK5xrpjSTxXRgmKShkjoDo4EpOWWmABfE4U8DT5iZSeobG8iRtA8wDFiYYqyu1NXejOfdfDjXLKldDWVmVZLGAY8CZcAkM5sraTxQYWZTgF8A90taAKwmJBSAE4DxkrYCNcDFZrY6rVhdO/D2HNhlIHTv3XhZ59wOUn1SnplNBabmTLshMbwJODfPcn8A/pBmbK4dMQtXQg06NutInGuzirWB27mWs+5N2LTG2yuc2wmeLFzp8/YK53aaJwtX+t6eA112hd2GZB2Jc22WJwtX+mo7D/TOAZxrNk8WrrS9vya0WXh7hXM7xZOFK21vzwl//c5t53aKJwtX2pbPhrLO0Hd41pE416Z5snClbfkc6HNQSBjOuWbzZOFKV9UmeOdlb69wrgV4snCla+U8qKnyZOFcC/Bk4UrXtpvxDs02DudKgCcLV7qWz4Hd94Guu2YdiXNtnicLV5qsJjxz27v4cK5FeLJwpWnNQtiywe+vcK6FeLJwpam2vcIbt51rEZ4sXGlaPge69YZe/bOOxLmS4MnClaa354QqKO880LkWkeqT8tqELe/C7z4F3ftCjz3rf3XukXWkrlDvroANb8Ehoxsv65wriCeLmioYfGL4gtm4PFxBs3ndjuU69QiXYHbuCV12gc69wt8uveoOd+wKHbvFv3leZZ39127alsfOA/1KKOdaTKrJQtJI4HagDLjbzG7Jmd8FuA/4CLAK+IyZLY7zrgUuAqqBS83s0VSC7LornHBd3WlVm+C9d2Dj2/Deyu1/N6+HzRvC33VvhOEtG0L5gikkjA4dw986w52gQ6ft0zp0hA5l24dVVne6yrb/VYdYpkOc1mH79DovxenaPg1tn4e2z4PEfNXdhm3jufMaYAbY9r/1TaupjtNqcl7JadUh0VtNKG/V2/8umxUSc58DmvC5OOcaklqykFQGTABOASqB6ZKmmNm8RLGLgDVmtp+k0cCtwGckDQdGAwcDewOPS9rfzKrTireOjl1hlwHhVYjqLXUTR0Ovre+H8jVV4W9Dw1Xvh/GaqvBFuG24avsXpVXv+IVZ+6Xb3mxLqGWw7yfCuHOuRaT533QEsMDMFgJImgyMApLJYhRwYxx+EPipJMXpk81sM7BI0oK4vn+lGG/zlXWG7r3DqxjU/vquTRz1/lJP/GKvnb9t+cQvfquhTgKy2mGrO0wBZxjJs5cwYcdpdc6IEmdAyTOhHc6u/FoN59KUZrLoDyxJjFcCR9ZXxsyqJK0Desfpz+Ysu8M1kJLGAGPi6EZJ8+uJpQ/wTlM3IENtLV7wmFuLx5y+thYv7FzMgwsp1KbP081sIjCxsXKSKsysvBVCahFtLV7wmFuLx5y+thYvtE7MaZ67LwUGJsYHxGl5y0jqCOxKaOguZFnnnHOtJM1kMR0YJmmopM6EBuspOWWmABfE4U8DT5iZxemjJXWRNBQYBjyfYqzOOecakFo1VGyDGAc8Srh0dpKZzZU0HqgwsynAL4D7YwP2akJCIZZ7gNAYXgWM3ckroRqtqioybS1e8Jhbi8ecvrYWL7RCzDJrp5dZOuecK5hfb+icc65Rniycc841qmSShaSRkuZLWiDpmjzzL5S0UtLs+PpyFnHmxDRJ0gpJL9UzX5L+J27TC5I+3Nox5sTTWLwflbQusY9vaO0Y88Q0UNKTkuZJmivp63nKFNt+LiTmotnXkrpKel7SnBjvTXnKdJH0u7iPn5M0pPUjrRNPITEX3XcGhN4xJM2S9HCeeentZzNr8y9CA/rrwD5AZ2AOMDynzIXAT7OONSemE4APAy/VM/+TwF8It0YfBTxX5PF+FHg46/2aE9MHgA/H4V7Aq3mOjWLbz4XEXDT7Ou63nnG4E/AccFROma8Cd8Th0cDv2kDMRfedEeO6HPhNvs8/zf1cKmcW27oWMbMtQG3XIkXNzJ4mXAVWn1HAfRY8C+wm6QOtE92OCoi36JjZMjObGYc3AC+zY28AxbafC4m5aMT9tjGOdoqv3CtnRgH3xuEHgY/Hrn0yUWDMRUfSAOB04O56iqS2n0slWeTrWiTfP9c5sZrhQUkD88wvNoVuVzE5Op7a/0XSwVkHkxRPyQ8j/IpMKtr93EDMUET7OlaNzAZWAI+ZWb372MyqgNqufTJTQMxQfN8ZPwauAmrqmZ/afi6VZFGIPwNDzOxQ4DG2Z1/XcmYCg83sQ8BPgD9lHM82knoCfwAuM7P1WcdTiEZiLqp9bWbVZjaC0NvCEZIOyTKeQhQQc1F9Z0g6A1hhZjOyeP9SSRaNdg9iZqss9GIL4RTuI60U285oU92emNn62lN7M5sKdJLUJ+OwkNSJ8KX7azP7Y54iRbefG4u5WPe1ma0FngRG5syqr2ufzNUXcxF+ZxwLnCVpMaGq/SRJv8opk9p+LpVk0WjXIjl10GcR6oGL3RTgC/FqnaOAdWa2LOug6iNpr9r6UUlHEI6vTL8QYjy/AF42sx/WU6yo9nMhMRfTvpbUV9Jucbgb4Rk2r+QUq69rn0wUEnOxfWeY2bVmNsDMhhC+454ws/NziqW2n9t0r7O1rLCuRS6VdBah+5DVhCsdMiXpt4SrWvpIqgS+Q2how8zuAKYSrtRZALwHfDGbSIMC4v00cImkKuB9YHSWXwjRscDngRdj/TTAt4BBUJz7mcJiLqZ9/QHgXoUHnnUAHjCzh1VA1z4ZKiTmovvOyKe19rN39+Gcc65RpVIN5ZxzLkWeLJxzzjXKk4VzzrlGebJwzjnXKE8WzjnnGuXJwhUtSRsLKHOZpO4t+J5nSxregut7ZieW3Rj/7i3pwQbK7Sbpq819H+cK4cnCtXWXAU1KFvHa+vqcDbRYsjCzY1pgHW+Z2acbKLIbobdR51LjycIVPYVnN0yLnbm9IunX8W7rS4G9gSclPRnLnirpX5JmSvp97F8JSYsl3SppJnCupK9Imh474vuDpO6SjiHcqfsDhecX7CtphKRnY2dyD0naPa5vmqQfSaqQ9LKkwyX9UdJrkr6XiH1jYvhqSS/G97wlz3YOjbG/mLOOIYrPEJF0sMJzGGbHmIYBtwD7xmk/kNRT0t/iPnhR0qjEel6WdJfCMxz+Gu9eRtJ+kh6Psc2UtG+cfmXcTy8ozzMfXDvSUn2d+8tfLf0CNsa/HyX0njmA8APnX8Bxcd5ioE8c7gM8DfSI41cDNyTKXZVYd+/E8PeAr8Xhe4BPJ+a9AJwYh8cDP47D04Bb4/DXgbcIdwV3IfRa2ztnG04DngG6x/E98mzvFOALcXhsYtkhxGeIEDoN/Fwc7gx0S86P0zsCuyT2yQLC8xuGEO5GHhHnPQCcH4efAz4Vh7sSztZOBSbGZTsADwMnZH1c+CubV0l09+HahefNrBIgdoExBPhHTpmjCFVI/4zdJnUmJJZav0sMHxJ/ve8G9CR0FVOHpF2B3czsqTjpXuD3iSK1/Y+9CMy12J+UpIWEztySfTWdDPzSzN4DMLN8zwU5FjgnDt8P3JqnzL+A6xSea/BHM3tNOz6uQMB/SjqB0JV1f6BfnLfIzGq7EJkBDJHUC+hvZg/F2DbF7TiVkDBmxfI9gWGEhOzaGU8Wrq3YnBiuJv+xK8JzCT5bzzreTQzfA5xtZnMkXUg4e2luTDU58dXUE18hGux/x8x+I+k5wgNwpkr6D2BhTrHPAX2Bj5jZVoVeSrvmxAxhP3Zr4O0EfN/M7mxC/K5EeZuFa+s2EB49CvAscKyk/QAk9ZC0fz3L9QKWKXQF/rl86zOzdcAaScfHeZ8HnqJ5HgO+WHvllqQ98pT5J9s7fvtcnvlI2gdYaGb/A/wvcCh19wGEbqlXxETxMWBwQ4FZeBpfpaSz43t0iXE+Cnwp0e7TX9KeBW2tKzmeLFxbNxF4RNKTZraS0DPobyW9QKiyObCe5b5NqKf/J3W7pp4MXClpVmzkvYDQ4P0CMILQbtFkZvYIodqqIlajXZGn2NeBsZJepP4n9f078FJcxyGEx8GuIlS9vSTpB8CvgfK4ni+wY3fh+Xye0MvqC4S2lb3M7K+EZz3/K67rQeomJdeOeK+zzjnnGuVnFs455xrlycI551yjPFk455xrlCcL55xzjfJk4ZxzrlGeLJxzzjXKk4VzzrlG/T9kdfS0juYsrAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (6, 4)\n", - "for j in range(1, len(reductions)):\n", - " pylab.plot(distances, np.subtract(energies[j], energies[0]), color=[1.0, 0.6, 0.2],\n", - " label=reductions[j])\n", - " pylab.ylim(0, 0.4)\n", - " pylab.xlabel('Interatomic distance')\n", - " pylab.ylabel('Energy')\n", - " pylab.title('Energy difference compared to no reduction []')\n", - " pylab.legend(loc='upper left')\n", - " pylab.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Frozen core\n", - "\n", - "At the start it was stated that freeze core could always be done. Here we do the computation without freezing the core, with no virtual orbitals removed, so we can compare to the same above where frozen core was used." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "22[-14.40564902 -14.87132975 -15.17280541 -15.36415094 -15.48174107\n", - " -15.54963817 -15.58381205 -15.59504708 -15.59074335 -15.57605125\n", - " -15.55462369 -15.52912134 -15.50154509 -15.47345142 -15.44609374\n", - " -15.38744402 -15.35183431 -15.33927179 -15.33680424 -15.33661362\n", - " -15.33672146 -15.33679474 -15.33682151]\n" - ] - } - ], - "source": [ - "e_nofreeze = np.empty(len(pts))\n", - "qiskit_chemistry_dict['operator']['orbital_reduction'] = [] \n", - "qiskit_chemistry_dict['operator']['freeze_core'] = False \n", - "for i, d in enumerate(pts):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d) \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " e_nofreeze[i] = result['energy']\n", - "\n", - "print(e_nofreeze)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We plot the energy with and without frozen core; the one line covers the other as they are almost identical. Plotting the energy difference we can see how small the delta is between freezing the core or not." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGDCAYAAABUXwhrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl4VOXd//H3N3sIkI0kECAsgsoqagCxbuBad22tj/o81VqrVqu1e9X+WnweW21ra6u2tda6oK11aVFbtSq1ikuRgrIEEdkhkI2EJGTf7t8fM9AhZJkkMzmZzOd1XbkyM2f7njMnk8+cc5/7mHMOERERiW4xXhcgIiIi3lMgEBEREQUCERERUSAQERERFAhEREQEBQIRERFBgUAGEDNbaGZP+h/nmVmNmcX6n+eY2VIz22dmPzOfR81sr5kt97bywcnMnJlNCsN8XzGzK8Mw3zfNrMHMlga89ob/tXeCnIf2qwHGzL5sZiX+z4PMbsY98BkiPRfndQHSd2a2DcgBWgNefsw59xVvKuo759wOYGjAS9cCe4DhzjlnZicCpwNjnHO1XtQo3TOzhcAk59x/73/NOffpMC7yK865hwOWtcDMrgKuCXL6E9B+1Skzc8Bk59ymMC/nVmAY8APg58BxzrnV4Vym6AjBYHKec25owE/Iw4CZeRkgxwEfuf/0pDUO2NabD22P18MT+4+0SLe63K8G074TjnUJ4TzPAV7G90UnCVgXovlKFxQIBjkzu8rM3jGze/yHQbea2acDhqea2e/NrMjMdpnZnQGH6a8ys3fN7F4zKwcWmlms/5D9Hv+8vuI/tBxnZpeY2cp2y/+6mb3QSW0TzOwt/2mA14ERAcPGB8z3MeBK4Nv+w4bXAQ8D8/zP7/BPc66ZrTKzSjN7z8xmBsxvm5l9x8zWALX++eaa2Z/NrMy/LjcHjL/QzJ4xs0X++taZWX7A8LFm9hf/tOVm9kDAsKvNbL1/e79qZuNC9F7lmtmLZlZhZpvM7EtdzOsxM/uNmb1sZrXAfDNL9M97h/8Q7INmlhwwzbf8+8FuM7u63fzeNLNrAp5fFXgY3symmdnr/tpKzOw2MzsLuA241P8+rW4/LzOLMbPvmdl2Myv1b+9U/7D9+8CV/pr3mNntwWzL3jCzL9JuvzKzU8ys0L/vFAOP+sftal/rar+q9M+7xsxq/es3vrt5dlDrIdvb/3qimf3C/x7u9j9O9A/r8bq0W+b+UzGr/fVf2tE82+8b/mkPnH4KYj9MBw4HyoAN/pcrzewN//BfmtlOM6s2s5XmO1rYUb1JZvak+f4+K83s32aW4x/W6edeVHPO6SfCf4BtwGmdDLsKaAa+BMQCXwZ2A+Yfvhj4LZACZAPLgesCpm0BbsJ3eikZuB74CBgDpANLAOcfnghUAFMClv8h8JlOavsXvsOBicBJwD7gSf+w8fvn63/+GHBnu/V6J+D50UApMNe/nlf6t0tiwDZaBYz1r0cMsBL4PpAATAS2AGf6x18INABn++d3F7DMPywWWA3c699uScAJ/mEXAJuAKf5t8j3gvSDfx+7eq6XAr/3Lm4XvA3NBJ/N6DKgCPuVf1yR/vS8CGfgOx/4VuMs//llACTDdv05/9G//Sf7hbwLXdLT9/fMqAr7hX84wYG7AdnyyXW0H5gVc7d9eE/GdIvoL8ES7feB3/vfsKKCRgP2rs/l2sF3f6Wy7dzUucAq+v4Ef49tPk+liX6Ob/ardsn7kf0/ju5pnB9N1tb3/F1iG7285C3gP+L/erEsn2+fAPtHFPA/Z3hy8L3W6H/qH/xfwVEefA/7X/hvIxPf39Q2gGEhqv78B1/nnPcS/bsfiO+UIXXzuRfOP5wXoJwRvou8PuAaoDPj5kn/YVcCmgHGH+P/ARuI7HNcIJAcMvwz4Z8C0O9ot643APxzgNA7+x/0b4If+x9OAvZ18qOX5P0hSAl77I70PBL/B/8EX8NoG4OSAbXR1wLC5HazbrcCj/scLgSUBw6YC9f7H8/D9M47rYL1eAb4Y8DwGqAPGBfE+dvVejcXXRmRYwPC78LUV6WhejwGLAp4bUAscFvDaPGCr//EjwN0Bww4n+EBwGfBhJ3UspOtA8A/ghoBhR+ALRXEB+8CYgOHLgf/qZFkH1djZvhLEe9A+EDTh/4fT3b7W3X4V8Nql/n0yK5j9t93rXW3vzcDZAc/PxHcKpMfr0sn8OwoE7ed5yPbeP113+6H/+RPA//gf798HDvlbCxh/L3BU+/0NX9h8D5jZbvwuP/ei+WfQnA8TLnTOLelkWPH+B865OjMD37exDHzfTor8r4HvH9jOgGkDHwPkdjP8ceApM/se8D/AM865xg5qygX2uoPP1W7H94+vN8YBV5rZTQGvJfiX01Gt44BcM6sMeC0WeDvgeXHA4zogyXznSMcC251zLZ3U8Usz+1nAawaMxrd+3ensvcoEKpxz+wLG3Q7k07nA9c3CFzBWBrzXhm+dwbedAk/3BFPrfmPx/SPqjdx2y9qOLwzkBLzW/n0IbGzaH8qccw0Bz7va11rpZr8ys6OBB4AznHNlQcyzva62d0fbM3AePVmXYLWfZ1e63A/NLAZfo86vdzYDM/sm8EV/jQ4YTsDpxgBP4NtWfzKzNOBJ4HZ869zd515UUiCIbjvxJeURnfxzA98fXKAifKcL9jvoH7hzbpmZNQEnApf7fzpSBKSbWUpAKMjrYHnB2onvyMQPuxgncN478X0rmdzLZeWZWVwH221/HX/oxXy7shvIMLNhAaEgD9jVxTSB67sHqAemOec6mqaIg9/LvHbDa/F9kO83MuDxTnyHeburoSO78X1ABy63Bd/pizEdTtH/2q9Dp/uame3/ttvhfmVm2cDzwI3OuQ+DmWcHutre+7fn/kZ4ef7X9gt6XXqg/TwP2lfMLHBf6W4/nI0vbJd1MAx/e4FvA6cC65xzbWa2F1+oOLgo55qBO4A7/O00XsZ39ONluv/ci0pqVBjFnHNFwGvAz8xsuPkaeB1mZid3MdkzwFfNbLQ/dX+ng3EW4fsG1Oyc6/D6b+fcdmAFvj/WBDM7ATivD6vzO+B6M5trPilmdo6ZDetk/OXAPn9jqGTzNZacbmazg1jWcnz/QO/2LyfJzD7lH/YgcKuZTYMDjZcu2T+h+RrULezpyjnnduI7/HmXf3kz8X1LCuqaa+dcG75tdK//nxL+9/BM/yjPAFeZ2VQzG4Lvcq9Aq4CLzWyIv3HYFwOG/Q0YZWa3+BuMDTOzuf5hJcB4/ze/jjwFfM18DUyH4juv/nQ4P6jN18D0qj7Moqt9rdP9yn906Tl8h7Sf6cE82+tqez8FfM/MssxsBL62DF3tIz39uynB1y6iK6uBaWY2y8yS8B3GB4LaD88GXupi3sPwBcYyIM7Mvo/vCMEhzGy+mc3wNxasxncqqq2Xn3tRQYFg8Pir/af1co2ZLQ5yus/jO0T4Eb5zcc8Bo7oY/3f4/pjW4Gsw+DK+P9DAPhCewNc4rbt/VpfjO+dage8f0KIgaz6Ec24FvsZ4D+Bbj034zmV2Nn4rcC6+xnlb8X1zeRhIDWJZrfjCyyRgB1CI75wwzrnF+BpY/cnMqoECIPC6+7HAuz1auf+4DN851d34GkX9oIvTRB35Dr7tssxf2xJ85+xxzr0C/AJfG5FN/t+B7sV3rrgE32mhA0dA/EcsTse3TYqBjcB8/+Bn/b/LzeyDDmp6BN/+shTf+9CArxFrWJhZAr7TL8t6O4+u9rVu9qsx+I6c3dLubzWvJ/tvN9v7TnxBew2wFvjA/1qP16UTC4HHzddq/3OdzPMTfI0bl/hra/+loNP9kP9cbtiZV4G/A5/gOx3SQOeH+kfi+zyrBtYDb+Hb16Dnn3tRYX/rZZFeMd9lcQ8658YFvJaMr+XyMc65jZ4VN8CY2Rh8bSqO97qWwcjMXsPXQG2Fc26+/7XXgeOA5c65U/1Hom50zl3mYanSAfNdEvghMNrpH5MnFAikR/z/7OfjO0qQA/wZ3+V4twSM83XgXOfcAm+qFJFIY2aHA8c6557yupZopUAgPeI/v/wWcCS+xkEvAV91zlX7h2/D18DnwnaNpkREZABTIBARERE1KhQREREFAhERESHKOiYaMWKEGz9+vNdliIiI9IuVK1fucc5lBTNuVAWC8ePHs2LFCq/LEBER6RdmFnQ35DplICIiIgoEIiIiokAgIiIiRFkbAhGRway5uZnCwkIaGoK9G7EMFklJSYwZM4b4+Phez0OBQERkkCgsLGTYsGGMHz8es0PuCCyDlHOO8vJyCgsLmTBhQq/no1MGIiKDRENDA5mZmQoDUcbMyMzM7PORIQUCEZFBRGEgOoXifdcpAxERCZnY2FhmzJhx4Pnzzz+P1x3CLVq0iJ/85CeYGXFxcVxxxRV885vfDMuyysvLOfXUUwEoLi4mNjaWrCxfv0DLly8nISEhLMsNBc8CgZldAiwEpgBznHMr2g3PAz4CFjrn7uliPvcBVzvnhoaxXBERCUJycjKrVq3qdHhLSwtxcf33r+eVV17hF7/4Ba+99hq5ubk0NjayaNGioKfvab2ZmZkH1n/hwoUMHTq0w/DhnMM5R0zMwDlQ72UlBcDFwNJOhv8ceKWrGZhZPpAe4rpERCSEHnvsMc4//3wWLFhw4NvzT3/6U2bPns3MmTP5wQ9+cGDcJ598kjlz5jBr1iyuu+46WltbefHFF5k1axazZs3iiCOOONBwbuXKlZx88skce+yxnHnmmRQVFR2y7Lvuuot77rmH3NxcABITE/nSl74EwKpVqzjuuOOYOXMmF110EXv37gXglFNO4ZZbbiE/P59f/vKXlJWV8ZnPfIbZs2cze/Zs3n333V5th02bNjF16lSuuOIKpk2bxs6dO0lLSzsw/E9/+hPXXHMNACUlJVx88cXk5+czZ84cli1b1qtl9oRnRwicc+uh4/MeZnYhsBWo7Wx6M4sFfgpcDlwUnipFRCLTHX9dx0e7q0M6z6m5w/nBedO6HKe+vp5Zs2YBMGHCBBYvXgzABx98wJo1a8jIyOC1115j48aNLF++HOcc559/PkuXLiUrK4unn36ad999l/j4eG644Qb+8Ic/8PnPf57zzz8fgM997nOcfPLJNDc3c9NNN/HCCy8cmO7222/nkUceOaiegoICjj322A5r/fznP8/999/PySefzPe//33uuOMOfvGLXwDQ1NR0oKv7yy+/nK997WuccMIJ7NixgzPPPJP169ezYsUKHnzwQR5++OGgt+HHH3/MokWLyM/Pp6WlpdPxbr75Zr797W9z3HHHsW3bNs4991wKCgqCXk5vDLg2BGY2FPgOcDrQ1UmerwAvOueKumpMYWbXAtcC5OXlhazOHUXFFO3cytw580I2TxGRSNfZKYPTTz+djIwMAF577TVee+01jj76aABqamrYuHEja9asYeXKlcyePRvwhYvs7OwD8/jJT35CcnIyN954IwUFBRQUFHD66acD0NrayqhRo4Kus6qqisrKSk4++WQArrzySi655JIDwy+99NIDj5csWcJHH3104Hl1dTU1NTXk5+f3KAwAHHbYYeTn53c73pIlS9iwYcOB53v37qW+vp7k5OQeLa8nwhoIzGwJMLKDQbc7517oZLKFwL3OuZrO/tGbWS5wCXBKdzU45x4CHgLIz8933VcdnKK//YijC5+k9dgyYmNjQzVbEZGQ6O6bfH9LSUk58Ng5x6233sp111130Dj3338/V155JXfdddch0y9ZsoRnn32WpUuXHpjHtGnT+Ne//tXlcqdNm8bKlStZsGBBr+tta2tj2bJlJCUl9Wge3c03JiYG5/7zbynwskHnXL83QgxrGwLn3GnOuekd/HQWBgDmAj8xs23ALcBtZvaVduMcDUwCNvnHG2Jmm8KxDp2x4aNIsFbKy3b352JFRCLemWeeySOPPEJNTQ0Au3btorS0lFNPPZXnnnuO0tJSACoqKti+fTvbt2/nxhtv5Nlnnz3wDfmII46grKzsQCBobm5m3bp1hyzr1ltv5Vvf+hbFxcWA71TAww8/TGpqKunp6bz99tsAPPHEEweOFrR3xhlncP/99x943lWjyZ6IiYkhPT2djRs30tbWduD0CsBpp53Gr371q5AvsysD7pSBc+7E/Y/NbCFQ45x7oN04LxFw5MHMapxzk/qtSCAhbTQAlSU7yB45tj8XLSIS0c444wzWr1/PvHm+U65Dhw7lySefZOrUqdx5552cccYZtLW1ER8fz69+9SteffVVysvLufDCCwHIzc3l5Zdf5rnnnuPmm2+mqqqKlpYWbrnlFqZNO/jIyNlnn01JSQmnnXYazjnMjKuvvhqAxx9/nOuvv566ujomTpzIo48+2mG99913HzfeeCMzZ86kpaWFk046iQcffLBXbQja+/GPf8yZZ55JdnY2xx57LI2NjQD86le/4stf/jKPPvooLS0tzJ8//6CAEA4WeLiiP5nZRcD9QBZQCaxyzp3ZbpyF+ALBPf7nLwPXOOd2txuvJpjLDvPz893+RiJ9temDN5j04kV8eOJDHH3qpd1PICISZuvXr2fKlClelyEe6ej9N7OVzrnuGy3g7VUGi4HF3YyzsN3zszsZr9/7IEjN9jVQbKwo7O9Fi4iIhNzA6REhwqRn+04TtFUfet2riIhIpFEg6KW4hEQqSCWmptjrUkRERPpMgaAPKmMzSaov9boMERGRPlMg6IN9CVkMbS7zugwREZE+UyDog6Yh2aS1lntdhoiISJ8pEPRBW8pIMlw1jY0N3Y8sIhIFYmNjD9yIaNasWWzbts3rkli0aBHTp09nxowZHH300dxzT6c30A2ZnmyHbdu2MX369LDX1J0B1zFRJIlNHU2MOcqLd5I7brLX5YiIeC7ab3+8X3fbYSDSEYI+SMzw9VZYVbrD40pERAYu3f7YZ9u2bZx44okcc8wxHHPMMbz33nuHjLNu3boD6z9z5kw2btzY6XYJNR0h6IOhWWMAqNujzolEZIB55btQvDa08xw5Az59d5ej6PbHnW+H7OxsXn/9dZKSkti4cSOXXXYZ7XvPffDBB/nqV7/KFVdcQVNTE62traxfv77T7RJKCgR9kJ49DoDGSt3gSEQEdPvjrrZDc3MzX/nKV1i1ahWxsbF88sknh0w3b948fvjDH1JYWMjFF1/M5MmT+cc//tHldgkVBYI+SB0xkmYXC+qtUEQGmm6+yfc33f4Y7r33XnJycli9ejVtbW0dzu/yyy9n7ty5vPTSS5x99tn89re/xTnX6XYJJbUh6AOLiaUiJp24WvVWKCISrGi9/XFVVRWjRo0iJiaGJ554osN2AFu2bGHixIncfPPNXHDBBaxZs6bT7RJqOkLQR5VxI0hqUG+FIiLBitbbH99www185jOfYdGiRZx11lkHHYXY75lnnuGJJ54gPj6ekSNHctttt5GRkdHhdhk3blzQ2zwYnt3+2AuhvP3xfh/ecy7pddsY//2CkM5XRKSndPvj6NbX2x/rlEEfNSfnkKHeCkVEJMIpEPSRGzaK4VbHvupKr0sRERHpNQWCPopP83V2UVGy0+NKREREek+BoI+S/L0V7lNvhSIyAERTuzD5j1C87woEfTQsKw+AunL1Vigi3kpKSqK8vFyhIMo45ygvL+9zPwm67LCPMkb6LvtoqVLnRCLirTFjxlBYWEhZWZnXpUg/S0pKYsyYMX2ahwJBH6UMT6fOJWL71H2xiHgrPj7+wI1/RHpKpwz6yoyKmEzi69Q5kYiIRC4FghCojh9BcqMCgYiIRC4FghBoSMoirWWP12WIiIj0mgJBCDSnjCSzrYK21javSxEREekVBYIQsGEjSbJmKveqZa+IiEQmBYIQiE/zdU60tzj0t6MUERHpDwoEIZA8YiwA+8rUfbGIiEQmBYIQSMvx9VbYuHeXx5WIiIj0jgJBCGRk+44QtFapcyIREYlMCgQhkJCcQiVDiakp9roUERGRXlEgCJG9MZkk1pV4XYaIiEivKBCESG3CCFKadNmhiIhEJgWCEGlIziG1tdzrMkRERHpFgSBEWlJGkukqaW5u9roUERGRHlMgCJHY4aOIszYqSnXpoYiIRB4FghBJyPD1VlhZqs6JREQk8igQhMhQf2+FNWU7PK5ERESk5xQIQiQt29dbYXOlThmIiEjkUSAIkfTs0bQ6o62qyOtSREREekyBIERi4uKpsDRia9VboYiIRB5PAoGZXWJm68yszczyOxieZ2Y1ZvbNTqY3M/uhmX1iZuvN7ObwV929qrhMkhpKvS5DRESkx+I8Wm4BcDHw206G/xx4pYvprwLGAkc659rMLDu05fVOTUI2wxp0gyMREYk8ngQC59x6ADM7ZJiZXQhsBWq7mMWXgcudc23++Q2Ir+VNQ7LJqFvrdRkiIiI9NqDaEJjZUOA7wB3djHoYcKmZrTCzV8xschfzvNY/3oqysvDea8ANHUk6+6ivqwvrckREREItbIHAzJaYWUEHPxd0MdlC4F7nXE03s08EGpxz+cDvgEc6G9E595BzLt85l5+VldXj9eiJ2FRf50TlJeqLQEREIkvYThk4507rxWRzgc+a2U+ANKDNzBqccw+0G68Q+Iv/8WLg0d5XGjpJGbkAVJVsZ8yEIz2uRkREJHheNSrskHPuxP2PzWwhUNNBGAB4HpiPr63BycAn/VJgN4Zl+XorrKtQ50QiIhJZvLrs8CIzKwTmAS+Z2atBTPOymeX6n94NfMbM1gJ3AdeEr9rgpY8cD0DLXl1pICIikcWrqwwW4zvU39U4C9s9PzvgcSVwTliK64NhaVk0uThctQKBiIhElgF1lUGks5gYymMyiK8r8boUERGRHlEgCLGquBEkN4b38kYREZFQUyAIsbqkbIY3KxCIiEhkUSAIsZYh2WS2VeCc87oUERGRoCkQhJgblkuKNVBdtdfrUkRERIKmQBBicWm+KyMrird7XImIiEjwFAhCbEimr3OifWU7Pa5EREQkeAoEITY8awwADeqtUEREIogCQYhljhoHQEulAoGIiEQOBYIQS0pJZR/JWE2x16WIiIgETYEgDPbGZJKg3gpFRCSCKBCEwb74EaSot0IREYkgCgRhUJ+UQ2rLHq/LEBERCZoCQRi0puSQ6Spoa23zuhQREZGgKBCEgQ0fSYK1UrGnyOtSREREgqJAEAbxab6+CCpLdnhciYiISHAUCMIgZYQvENTsUW+FIiISGRQIwiAtx9d9caN6KxQRkQihQBAG6Tl5ALRW7fa4EhERkeAoEIRBfEISFQwnpladE4mISGRQIAiTythMkuoVCEREJDIoEIRJTUIWKU3qrVBERCKDAkGYNCbnkN5a7nUZIiIiQVEgCJO2lJFkuCqaGhu9LkVERKRbCgRhEpM6ihhzlJeoLwIRERn4FAjCJDFjNACVpQoEIiIy8CkQhMnQEb7OierVW6GIiEQABYIwSfN3TtRYqd4KRURk4FMgCJP0rFxaXAyuutjrUkRERLqlQBAmFhNLuaUTV6tAICIiA58CQRhVxY0gqaHU6zJERES6pUAQRnWJWQxr3uN1GSIiIt1SIAijpiE5ZKq3QhERiQAKBGHUNnQUw62W2ppqr0sRERHpkgJBGMWnjQKgvHiHx5WIiIh0TYEgjJIyxgBQrd4KRURkgFMgCKOhWb7OierLCz2uREREpGsKBGGUOWocAM2Vuz2uREREpGsKBGE0dHgG9S4B21fkdSkiIiJdUiAIJzPKYzKJryvxuhIREZEueRYIzOwSM1tnZm1mlt/B8DwzqzGzb3Yy/alm9oGZrTKzd8xsUvir7rl98SNIblRvhSIiMrB5eYSgALgYWNrJ8J8Dr3Qx/W+AK5xzs4A/At8LbXmhUZ+YRWqLeisUEZGBLc6rBTvn1gOY2SHDzOxCYCtQ29UsgOH+x6nAgGy515wykszqd3BtbViMztCIiMjA5Fkg6IyZDQW+A5wOdHi6wO8a4GUzqweqgeP6obyeGzaK5OImKveWk5aZ5XU1IiIiHQrrV1YzW2JmBR38XNDFZAuBe51zNd3M/mvA2c65McCj+E4xdFTDtWa2wsxWlJWV9Wo9+iI+LReAipJt/b5sERGRYIX1CIFz7rReTDYX+KyZ/QRIA9rMrME598D+EcwsCzjKOfe+/6Wngb93UsNDwEMA+fn5rhf19MmQEb7eCveV7oSps/t78SIiIkEZcKcMnHMn7n9sZguBmsAw4LcXSDWzw51zn+A7vbC+/6oM3nB/b4UNewdkEwcRERHA28sOLzKzQmAe8JKZvRrENC+bWa5zrgX4EvBnM1sN/A/wrfBW3DuZo3yBoK1yl8eViIiIdM7LqwwWA4u7GWdhu+dn92T6gSAxeShVpGC1xV6XIiIi0ildB9cP9sZkklCnzolERGTgUiDoBzUJI0hpUiAQEZGBS4GgH9Qn5ZDWUu51GSIiIp1SIOgHrSk5ZLq9tLS0eF2KiIhIhxQI+kHM8FzirI29Zbr0UEREBiYFgn6QkDEagMqS7R5XIiIi0jEFgn6QkunvrbCs0ONKREREOqZA0A/Sc3ydEzXtVedEIiIyMCkQ9IP0nLG0OcNVF3ldioiISIcUCPpBbFw8FZZKTI16KxQRkYFJgaCfVMZmktRQ4nUZIiIiHVIg6Cc1idkMbdrjdRkiIiIdUiDoJ03J2WS07cE553UpIiIih1Ag6C8Zh5HOPir2qB2BiIgMPAoE/SQ5dyoARZvXeFyJiIjIoRQI+knWxBkA1BSu87gSERGRQykQ9JPs0ZNocPG40g1elyIiInIIBYJ+EhMXx+64MSRXb/G6FBERkUMoEPSjyiHjyWrUDY5ERGTgUSDoR80ZkxnVVkptzT6vSxERETmIAkE/Shg5hRhz7N5c4HUpIiIiB1Eg6EcZ46YBULlDgUBERAYWBYJ+NGriDFqd0VzysdeliIiIHESBoB8lJA2hOCaHhL2bvC5FRETkIAoE/aw8eRwZ9Vu9LkNEROQgCgT9rD51EqNbd9PS3Ox1KSIiIgcoEPSz2OwjSbRmdm1Xj4UiIjJwKBD0s+FjfVcalG9d63ElIiIi/6FA0M9GTZoJQEPReo8rERER+Q8Fgn42LC2LctK69lGIAAAgAElEQVSIrdjodSkiIiIHBBUIzOwvZnaOmSlAhEBJYh6pNbrSQEREBo5g/8H/Grgc2Ghmd5vZEWGsadCrHTaRUc07cG1tXpciIiICBBkInHNLnHNXAMcA24AlZvaemX3BzOLDWeCgNOJwUq2WsuJCrysREREBetCGwMwygauAa4APgV/iCwivh6WyQWzIaN+VBiVb1nhciYiIiE+wbQgWA28DQ4DznHPnO+eeds7dBAwNZ4GDUc7EGQDU7vrI40pERER84oIc7z7n3D87GuCcyw9hPVEhc9QEaknClX3idSkiIiJA8IEg3cwubvdaFbDWOVca4poGPYuJYXfcWFL2bfa6FBERESD4QPBFYB6w/yjBKcBKYIKZ/a9z7okw1DaoVadMYEzVSq/LEBERAYJvVBgPTHHOfcY59xlgKuCAucB3wlXcYNaSMZkcyqmuqvC6FBERkaADwRjnXEnA81JgrHOuAtBt+3ohcdQUAHZv1j0NRETEe8EGgjfN7G9mdqWZXQm84H8tBagMX3mD14jxvisNqnYUeFyJiIhI8IHgRuBRYJb/ZxFwo3Ou1jk3v6cLNbNLzGydmbWZWX7A6+PNrN7MVvl/Huxk+gwze93MNvp/p/e0Bq+NHD+FZhdLS6lugywiIt7rtlGhmcUCS/z/+P8couUWABcDv+1g2Gbn3Kxupv8u8A/n3N1m9l3/84hqyxCXkMiO2FEkV+pKAxER8V63Rwicc61Am5mlhmqhzrn1zrm+fDW+AHjc//hx4MK+V9X/KpLHkVm/zesyREREgr7ssAZYa2avA7X7X3TO3RyGmiaY2YdANfA959zbHYyT45wr8j8uBnLCUEfYNaZNJrdmGY2NDSQmJnldjoiIRLFgA8Ff/D9BM7MlwMgOBt3unHuhk8mKgDznXLmZHQs8b2bTnHPVnS3HOefMzHVRx7XAtQB5eXnBr0A/iMs5kvhdrWzdup4JRx7tdTkiIhLFggoEzrnHzSwZ3z/roA71O+dO62kxzrlGoNH/eKWZbQYOB1a0G7XEzEY554rMbBS+yyA7m+dDwEMA+fn5nQYHL6TlTYMPoGLbWgUCERHxVLA3NzoPWAX83f98lpm9GOpizCzL34gRM5sITAa2dDDqi8CV/sf7L4OMOLmHzQSgsfhjjysREZFoF+xlhwuBOfj7HHDOrQIm9nahZnaRmRXi6w75JTN71T/oJGCNma0CngOu93d+hJk9HHCJ4t3A6Wa2ETjN/zziJA9Lo4RM4io2el2KiIhEuWDbEDQ756rMLPC1tt4u1Dm3GFjcwet/ppNLG51z1wQ8LgdO7e3yB5KypHGk1W71ugwREYlywR4hWGdmlwOxZjbZzO4H3gtjXVGjbvhhjG7ZSVtrr/OViIhInwUbCG4CpuFr8PcUvksCbwlXUVFlxBGkWAMluzpqKiEiItI/ggoEzrk659ztzrnZzrl8/+OGcBcXDYaNnQZA6ZY1HlciIiLRLKg2BGZ2OPBNYHzgNM65BeEpK3qMnOi7yVHt7vUeVyIiItEs2EaFzwIPAg8DreErJ/qkZ4+hmhRiyj/xuhQREYliwQaCFufcb8JaSbQyoyg+j6H71IZARES8E2yjwr+a2Q1mNsp/6+EMM8sIa2VRZN/QCeQ07fC6DBERiWLBHiHY3yvgtwJec/ShcyL5j9bMw8na+zJ7y8tIz8zyuhwREYlCwd7LYEK4C4lmyblTYBMUbV5NemaPbwEhIiLSZ12eMjCzbwc8vqTdsB+Fq6hokzXed6VB9c51HlciIiLRqrs2BP8V8PjWdsPOCnEtUSsn7wgaXTxtpUHdSFJERCTkugsE1snjjp5LL8XExbE7bjRDqjd7XYqIiESp7gKB6+RxR8+lDyqHjCezYbvXZYiISJTqrlHhUWZWje9oQLL/Mf7nSWGtLMo0pU8mt/ot6utqSR6S4nU5IiISZbo8QuCci3XODXfODXPOxfkf738e319FRoP4nCOJNceuLQVelyIiIlEo2I6JJMwyxk0HYO92BQIREel/CgQDxKjDptPmjObij70uRUREopACwQCRmDyU4phsEvZu8roUERGJQgoEA0h50jjS6rZ5XYaIiEQhBYIBpC71MEa3FtLS0uJ1KSIiEmUUCAaQmOwjSLYminds9LoUERGJMgoEA8jwMdMAKNu61uNKREQk2igQDCCjJh0FQP3u9R5XIiIi0UaBYAAZnpFDBcOJLf/E61JERCTKKBAMMCUJeQyv3eJ1GSIiEmUUCAaYmmGHMbJ5J87p3lEiItJ/FAgGGJc5mXT2sad0l9eliIhIFFEgGGCGjPZdaVCyeY3HlYiISDRRIBhgsifOAKCm8COPKxERkWiiQDDAZI2eSJ1LxO3RlQYiItJ/FAgGGIuJZXfcGFKqNntdioiIRBEFggGoKmUCWY3bvS5DRESiiALBANScMZlRlFGzr8rrUkREJEooEAxASaOmALB7k640EBGR/qFAMABljJsOQOWOdR5XIiIi0UKBYAAaNXEaLS6GltKPvS5FRESihALBABSfkERR7CgSKzd5XYqIiEQJBYIBqiJpHJl1W70uQ0REooQCwQDVOPJoxrtCykp3e12KiIhEAQWCASpj2gIAtq183eNKREQkGigQDFDjZ5xAnUukefNSr0sREZEo4EkgMLNLzGydmbWZWX7A6+PNrN7MVvl/Huxk+p+a2cdmtsbMFptZWv9V3z/iEpLYkjydkRX/9roUERGJAl4dISgALgY6+vq72Tk3y/9zfSfTvw5Md87NBD4Bbg1TnZ6qyz2OiW3bKSvZ5XUpIiIyyHkSCJxz651zG/ow/WvOuRb/02XAmNBUNrCoHYGIiPSXgdiGYIKZfWhmb5nZiUGMfzXwSriL8sKBdgRb3va6FBERGeTiwjVjM1sCjOxg0O3OuRc6mawIyHPOlZvZscDzZjbNOVfdyTJuB1qAP3RRx7XAtQB5eXk9WQXPxSUk8bHaEYiISD8IWyBwzp3Wi2kagUb/45Vmthk4HFjRflwzuwo4FzjVOee6mOdDwEMA+fn5nY43UNXlzmP6lgcoK9lFVs5or8sREZFBakCdMjCzLDOL9T+eCEwGtnQw3lnAt4HznXN1/Vtl/1I7AhER6Q9eXXZ4kZkVAvOAl8zsVf+gk4A1ZrYKeA643jlX4Z/m4YBLFB8AhgGvd3V54mCgdgQiItIfwnbKoCvOucXA4g5e/zPw506muSbg8aTwVTewxCUk8nHydHLUjkBERMJoQJ0ykI7V5c7jMPVHICIiYaRAEAHUjkBERMJNgSAC7G9H0KL7GoiISJgoEESAuIREtiRPJ2fvIVdfioiIhIQCQYSoy53nu69BcaHXpYiIyCCkQBAhMqedCsC2D5Z4XImIiAxGCgQRYvxMtSMQEZHwUSCIELHxCWpHICIiYaNAEEHUjkBERMJFgSCCZEz33S9K7QhERCTUFAgiyIQZn1I7AhERCQsFgggSG5/A5uQZakcgIiIhp0AQYer97QhK1Y5ARERCSIEgwmRM9/dHoPsaiIhICCkQRJj97Qhat6gdgYiIhI4CQYTZ345gpNoRiIhICCkQRKD63HlMaNtBafFOr0sREZFBQoEgAqkdgYiIhJoCQQSaMONT1JFI65a3vS5FREQGCQWCCOS7r4HaEYiISOgoEESoOrUjEBGREFIgiFCZ09SOQEREQkeBIEKNn/EpaklSOwIREQkJBYIIpXYEIiISSgoEEexAfwRFakcgIiJ9o0AQwTL390fwgdoRiIhI3ygQRLDx04/3tyPQfQ1ERKRv4rwuQHpvfzuCUWpHIBLxnHM0tzpa2tp8v1taaW5upqW5kZaWZlqbm2hpbqC1uRlwB6YJ/B342Gg75LXA8ehiWgJfC5hPe4YBdvBrBi7gNQscAJgdOn4g55/rweO0f2X/gE6+03Yy/qFz3j+bTubfyfjB6LTmbiQmJjFx4qReL7cvFAgiXH3uPGZsvo/Sop1kjxrrdTkig1J9Ywsle8qoLN5O7Z6dNO0tpK26CGuqxdqasbYWrK2ZmLZmzLUc+B3b1kKM8/3EuhZiXTOxrtX3mBbiXAtxtBBLK3G0kkALcbSSTAsJ1ur1aosHNsdOhP/3oSfLViCIcJnTT4XN97H9g9fIPueLXpcjElHa2hx7qmuoKC6kumwH9eU7aancTcy+3cTXlzK0sZS01j1kuQrGW+Mh07cQSzNxtBJHi8X6f8fRZnG0+n/aLI7WmDhcTBxtlkJbTDwtFk9TTBwuJh4XEw8xcbjYeIiJ9/+Ow2LjITYBi43HYuMgNoGYOP/zwG/G+7+JBn4j3f9tnI5eC5y23Tw6He/Qb7sOsMAjDoDDsf/oxYGRDn4QMMwd8qq5/fM4eLyOHDp178Zvvw7/mU0n8w9GH6aNS8no/XL7SIEgwo2ffjy1LyTRsuVtQIFAZL+6xmZKy0rZW7Kduj07aazYBdW7ia0tJrmhlGHNe8hsK2cEVWTbwR/gzcRREZPBvvgsaoZNoTJlJDGpuSSmjyYlayxpOXkMzRxLXMIQfYjKoKF9OcKpHYFEs6qaWtYte5X6wjXE7Csmoa6YoU1lpLaWk+3/Vj++/TQ2jKq4EdQOyaJ4yDSKho8iLm00yRljSM0ZR2p2HvFDR5ATE0OOFysl4hEFgkFA7QgkmmzdsZ3t/3qexK2vM71+BcdbPQBNxFERM4J9CVnUDJtK5dCRxAzPJTFjNEOz8kjPGceQzDGkxieR6vE6iAxECgSDgNoRyGDW1NzKR6uWUbHqRbKL3mRq6wYmmKPC0tmScwYp089h/Kz5JAzLYqQZI70uWCRCKRAMAmpHIINNeWUV6997mdYNrzC58l1m2R4AtiZMZu2E6xg5+wJyDj+OjBh1pSISKgoEg0BsfAJbhhzFuPJ3aG5uJj4+3uuSRHrEOcfmLRvZ8f4LDN22hOmNH3KCNVJPIltSZ1N5+FlMmHchEzJ1SkwkXBQIBotZl5P73ldZ8eZfyD/9Uq+rEelWQ1MzBSuWUr36b+SWvsWRbjOTgNKYLD7JPZ/Umecx7tgzmJaQ7HWpIlFBgWCQmDr/Msrf+wExKx8BBQIZoErKy/nkvb/iNrzKkfv+Rb7tpc0ZW5Kmsmb8Vxk99yKyJ8wiu5e9vIlI7ykQDBKx8YlsGXsxx+x4lB1bN5A34QivSxKhrc2xYcM6iv79PKk732B60xpOtGZqGMLW9OMoP/LTTJh3IZNSs70uVSTqKRAMIhPOvAH73aPseP1B8q691+tyJErVNTRS8P4SagteYmzZ20xhB1OA3bGjWT/2c2QcfT5jj1rAjLgEr0sVkQAKBIPIiDGTWZsylyN2L6ah4S6SkpK8LkmiRGtrG+//8wXcB08ytfZ95tg+ml0sW4bMZO3ESxl73GfIHTuFXK8LFZFOeRIIzOwSYCEwBZjjnFvhf308sB7Y4B91mXPu+i7m8w3gHiDLObcnjCVHjNg5XyTrzS+x/B9PMeecL3hdjgxyLS2tLFvyLGnL7+X4to+pYhjbR3yK0qlnM/G48zkiJd3rEkUkSF4dISgALgZ+28Gwzc65Wd3NwMzGAmcAO0JcW0Q78oSLKX7rNhJXPw4KBBImzS2tLPv7HxnxwS85oW0jpTaCgqO+z9RzbmCmrgoQiUieBALn3Hro/f2i/e4Fvg28EIqaBouYuDh2Tvgcs7f8is0fr+awI4/yuiQZRBqbm1n20iJGrn6AE90WimNyWHfsnUw561qy4xO9Lk9E+mAgdvM1wcw+NLO3zOzEjkYwswuAXc651d3NzMyuNbMVZrairKws5MUORJPP/DLNLpbiN37jdSkySDQ0NvHmnx9k54+O4eRVX2doTAPr5/6YnNsKmHbeTcQoDIhEvLAdITCzJdBht+K3O+c6+1ZfBOQ558rN7FjgeTOb5pyrDpjvEOA2fKcLuuWcewh4CCA/P78PN7iOHGk5Y1k1/ESmlfyV2tp7SEkZ6nVJEqHqGhpY/uLvGPfRbziFXRTGjuXjuT/niFOvZHSs2iSLDCZh+4t2zp3Wi2kagUb/45Vmthk4HAi8t+9hwARgtf+UwxjgAzOb45wr7nPhg8SQ479E2qtv8q/XHmfeRTd6XY5EmJq6ev79wq+ZtOEhTqGY7XET2HD8Axx+yuVYTKzX5YlIGAyoiG9mWUCFc67VzCYCk4EtgeM459YC2QHTbAPydZXBwSbPPZvC10eTuu4J3IU39LW9hkSJqn01rHzhAY7Y9DDzKWNr/GQ2nXAHk078HOhGQiKDmid/4WZ2kZkVAvOAl8zsVf+gk4A1ZrYKeA643jlX4Z/mYTPL96LeSGQxMRRPvoypLev5ZM0yr8uRAa6yqoo3Hv9f6n82kwWb7qIhIZPNZzzKhNv+zaST/0thQCQKmHNRcVod8LUhWLFiRfcjDhL79paS8IuprMw8h+NvftzrcmQAKq+oYPULv2DGtsfJsko2Jk0nbv53mTDnXNBRJZGIZ2YrnXNBfZkeUKcMJLSGpWfzQcapzCx/larKvaSmqZMY8Skr38PaxT/jqJ1PssCq2TDkaOpPu5XJx5yhICASpXQccJBLPfE6hlo9Ba8+7HUpMgCUlJbyxm+/Sdx9R7Gg8NeUDj2SwosWc8R33iTv2DMVBkSimI4QDHKHHT2frS9NIHvDH3Ft38B0Ljgq7SraxYbnf0J+8TMssDo+GnY8dZ++nSnTTvC6NBEZIBQIBjszKqb+N8eu/T8KVrzJ9DkLvK5I+tHOwh1sev5uZpf9mQXWQEHqSYw4+3amHnmc16WJyACjQBAFpp5xDbVrf8q+dx4CBYKosG3bFra+eDdzy59nNE2sS19AzrnfY/qkY7wuTUQGKAWCKJA8LI0VI85iVtnLlO8pIXNEjtclSZiUle+h4KnvM6/sGcbSwrrMM8k973ZmTJjpdWkiMsDphHKUyF5wA8nWxPq/P+R1KRIGDY1N/POpn2H3HcP8PX/gk8wFVF3zL2be/DQjFAZEJAg6QhAl8qbO5ZP4Ixmz+SnaWm8nJlZZcDBwzrH8ny+S/vZC5rstbEqaSuN5f2Dm9A7vCyYi0in9V4gitTOuZLzbxZp3X/K6FAmBDevX8P6Pz2Xu0s+TRjUff+oXTPrue4xWGBCRXlAgiCLTTr+SKobS9L76JIhkZXvK+OcDNzD+T/M5quHfrJr8FTK+s5ojT/+C+hEQkV7TKYMokpCcwuqR5zGr6BlKdu8gJzfP65KkBxoam/jXX+5jxsf3Md+qWDPi04y/9CfMytb7KCJ9pyMEUWbM6TeQYK188uqDXpciQXLO8f4bL7Dj7rnM3/B/VCaNYdclLzPzpj8xXGFAREJERwiizKjDZvJR4iwO2/4szc13EB8f73VJ0oVNG9dT9udvMa/hbUosiw0n/JIjTr1SpwZEJOR0hCAKtRzzBXIpZfWbf/G6FOlEZVUVbzz4dUY/eRKzGt5n1aQbGPHdNRxx2lUKAyISFgoEUWjagssoJ43E5ffT0tLidTkSoLW1jaUv/J66e49lQfHv2ZR+Ak3Xv8+s/76L2MQhXpcnIoOYAkEUio1PpHDWLcxoXsu7f/iR1+WIX8Gq91lz13xO+vDrNMelsP28Z5hxy2JSR070ujQRiQJqQxCljrrgFgo2vcZxW+5j/arTmTJrntclRa2SkhLW/+k2Tqj4C3U2hLVHfY/p59+Cxap9h4j0Hx0hiFZmjPvC76m1ISS8cB21tTVeVxR1Gpub+edT9xD363xOqvgz60ZeQNwtHzDjom8pDIhIv1MgiGLDMnMpXfBzDnPbWfnI170uJ2o45/j3239n613HMX/D/7E3KY+Sy17lqC8/xpA03XhKRLyhUwZR7siTPssH617mpJKn+fc/zmL2qRd7XdKgtnXLJ+x67lZOqFvCHstg/fE/Z8rpV+vKARHxnI4QCNOvuo+dsWMY9/bXKS3Z7XU5g1JlVRVv/Pab5Dx+ArPr3mLVuKtJ/fZqppzxRYUBERkQFAiEhOShcPHDpLlqtj32Jdpa27wuadBoaWnlrcUP+S4jLPodW9LmUXfNe8z6wr3EJw/3ujwRkQMUCASAsdPmUXDETcypf4d3/3Kf1+UMCh++/xYf3XUiJ6/+Fs1xQ9l+3jNM/9oLpI853OvSREQOoUAgBxx96f/j48SZHF1wF1s+KfC6nIi1Y8c2lt5zGUe9fAF5rTtZd8wd5N26gnHHnul1aSIinVIgkAMsNo7sKx/DWQwNT3+RxqZGr0uKKPtqa/nH779Hxu+PY96+V1kz9nKSvrGaaeffgsWq/a6IDGwKBHKQjNzD2DHvTqa2fsyyx27zupyI0Nraxtt/W8Tenx7DqTvvZ8ewWVR/YSmzrvk1ScMyvC5PRCQo+toih5h25hdZ/fHf+dSuR1i97NMcddxpXpc0IDnnWL70FZKX3smJresojB3LltMeZ+q8C70uTUSkxxQIpEOHf+G3lN87h4y/f4XKI98jLU3fdAOtWfkeDa/ewdymZVRYGgVHfZ9p592ExSV4XZqISK/olIF0KHl4BrXn/JrRrph1j9yIc87rkgaETzas452ffpbpL57N1KY1rD78JoZ/u4DpF31DYUBEIpoCgXRqYv4ZfDjuKj5V/TL/eulxr8vx1M7CHbz5y6sZ98eTmF37Jmvz/pu4r63hqMvvJC55mNfliYj0mUXTN7/8/Hy3YsUKr8uIKK3NjWz/8fGkN5dQd/VSRo+LrlvxlpXvYe2zP2JO0R9IppF12ecx/rP/x/Cc8V6XJiLSLTNb6ZzLD2ZcHSGQLsXGJ5Jy+aMkWSMNj11AwYf/8rqkflFdU8M/HltI7H2zWFD8e7alzaXyqqXMvPEJhQERGZQUCKRbORNnsuvM35Puqpj0/Hm8sehOWlpavS4rLMr27OEfjy2k5p6jOHXbvexJmcSuS15i+tdeJHPCTK/LExEJG50ykKDVlO9mx6NfYGrNMlYkzGbk/zzCmLF5XpcVEhs3bqDw7/dy7J4XGG51bEqcRtyCWxk/51zdfEhEIlZPThkoEEjPOMeaxfdwxJofU+OG8PFxP+b4s/4Li8B/ms45Vi57k8alv2RO3VJiaOOj9PmMOO1rjJp+ktfliYj0mQJBJxQIQqd44wc0Pv0FxrVs4620i5n1xftIHRYZre0bmpr592tPMezDh5jVupZaktg4+mImnvsNho+a5HV5IiIho0DQCQWC0Gptqmft419j1q6n2Gx51J//ENOPnud1WZ0q37uX1X97kMM2L2Icuym1LIqnXMWRZ99IwtB0r8sTEQk5BYJOKBCEx6b3FpP++i0Mbavl3Yk3c+IVtxMfF+t1WQA0Nbey9oN3qFrxLEeXPk+67WNrwuE0zbmBw0+5Qp0JicigpkDQCQWC8KmtKGL7I1czteY9Vibkk/0/v2fs2PGe1FK1r5aC916mef1LHL73bXJtD23OWJ/6KVIXfI0xR52qhoIiEhUUCDqhQBBmzrH2+Z8xefXd1LpkVo27kuFHnMThM08gddiQsC66sKiITe8uJmHT35lRv5xhVk8DCWwePoeYI89hwvEXk5Q2Mqw1iIgMNAoEnVAg6B8lmz+k9unrmNi0AYA6l8gncUdQMeIYEid+ivFHnUxuTnafrkxoa3N8/HEBRcsXk1G4hOnNBcRbK3stlZ0jTiblqPOZMPtsYhJTQrVaIiIRZ8AHAjO7BFgITAHmOOdW+F8fD6wHNvhHXeacu76TedwE3Ai0Ai85577d3XIVCPpXfXkhO1b/k/pN75C6ZyV5jZuINUerMzbFjKco9Whs3HGMmj6fww6bTGyM0dTSRnlVNVVlu6kp3019ZREt1SW07Ssjtr6MhIZyhjSVk9a6h/EUAVAYl8ee0aeSM/siRk09EWLU35aICERGIJgCtAG/Bb7ZLhD8zTk3vZvp5wO3A+c45xrNLNs5V9rdchUIvNVaX83OtUup2vA2SUXLyatbRzKNABS6LFosjgxXxXCr63D6WpKpjk2nNj6DhsRM2kbPZtzxnyV1zJT+XA0RkYjRk0AQF+5iOuKcWw/05ZDxl4G7nXON/vl1GwbEe7HJw309/805FwDX0kTJphWUFryFFS4HoCp5BAzNJm54DknpIxmakUvqiNEkpY8kJT4ZnQAQEQkPTwJBNyaY2YdANfA959zbHYxzOHCimf0QaMB3lOHfHc3MzK4FrgXIyxsc3ewOFhaXQM6Rx5Nz5PFelyIiEvXCFgjMbAnQUbPu251zL3QyWRGQ55wrN7NjgefNbJpzrrrdeHFABnAcMBt4xswmug7OfzjnHgIeAt8pg16ujoiIyKAWtkDgnDutF9M0AvtPA6w0s834jga0P/FfCPzFHwCWm1kbMAIo61vVIiIi0WlANcc2sywzi/U/nghMBrZ0MOrzwHz/eIcDCcCe/qpTRERksPEkEJjZRWZWCMwDXjKzV/2DTgLWmNkq4DngeudchX+ah81sf0vJR4CJZlYA/Am4sqPTBSIiIhIcdUwkIiIySPXkssMBdcpAREREvKFAICIiIgoEIiIiokAgIiIiKBCIiIgICgQiIiKCAoGIiIigQCAiIiJEWcdEZlYGbO9ilBFEVxfIWt/BK5rWFbS+g1k0rSuEfn3HOeeyghkxqgJBd8xsRbA9Og0GWt/BK5rWFbS+g1k0rSt4u746ZSAiIiIKBCIiIqJA0N5DXhfQz7S+g1c0rStofQezaFpX8HB91YZAREREdIRAREREojQQmNlZZrbBzDaZ2Xc7GH6VmZWZ2Sr/zzVe1BkKZvaImZWaWUEnw83M7vNvizVmdkx/1xhKQazvKWZWFfDefr+/awwVMxtrZv80s4/MbJ2ZfbWDcQbN+xvk+g6m9zfJzJab2Wr/+t7RwTiJZva0//1938zG93+lfRfkug6az+X9zCzWzD40s791MKz/31vnXFT9wP9v7/xjtarrOP56J6Ag5E2wRKiuIq0pM9JiJEX0i1U2oEmNhiC2tZaWspa6atVyrg3/W4gAAAd0SURBVGRs5bI/zLREA38hFjH8QQm6EFC85r0wXBKxRbLRsBCyLOTTH9/v1cPj81weLs+9D8+579d2dj/nnM/5ns/nfJ77vZ/7Pd/n++EE4M/AWcAQ4FngnAqdBcBPm21rg/ydCpwPbKlx/tPAg4CAycCmZtvcx/5OA1Y1284G+ToaOD/LI4A/Vfkslya+dfpbpvgKGJ7lwcAmYHKFzuXAzVmeA9zTbLv70NfS9MsFn74OLKv2mW1GbAfiCMEkYHtE7IiI/wJ3AzObbFOfERGPAy/2oDITuCMSG4E2SaP7x7rGU4e/pSEidkdER5b3A9uAMRVqpYlvnf6WhhyzA3l3cN4qJ33NBJZkeTnwMUnqJxMbRp2+lgpJY4GLgFtrqPR7bAdiQjAG+GthfxfVO5WL8xDrcklv7x/TmkK9z6NMfCAPTT4o6dxmG9MI8nDie0n/WRUpZXx78BdKFN88pPxHYA+wJiJqxjciDgL7gJH9a2VjqMNXKFe/fCNwDXCoxvl+j+1ATAjq4bdAe0ScB6zh9SzNtD4dpKU83wPcBPy6yfYcM5KGA/cDCyPipWbb09ccwd9SxTciXo2IicBYYJKkCc22qa+ow9fS9MuSPgPsiYinm21LkYGYEPwNKGaWY/Ox14iIvRHxSt69Fbign2xrBkd8HmUiIl7qHpqMiNXAYEmjmmxWr5E0mPTHcWlErKiiUqr4HsnfssW3m4j4J7AW+GTFqdfiK2kQcAqwt3+tayy1fC1ZvzwFmCFpJ+m19Ucl/apCp99jOxATgqeA8ZLOlDSENFljZVGh4h3rDNK7yrKyEpifZ6NPBvZFxO5mG9VXSDq9+z2cpEmk34GW7ECzH7cB2yLiRzXUShPfevwtWXxPk9SW5aHAJ4DnKtRWApdmeTbwaORZaK1EPb6WqV+OiG9GxNiIaCf9DXo0Ii6pUOv32A7qy8aPRyLioKSvAg+TvnHwi4jYKuk6YHNErASulDQDOEiaoLagaQYfI5LuIs28HiVpF/A90oQdIuJmYDVpJvp24GXgsuZY2hjq8Hc28BVJB4F/A3NasQPNTAHmAV353SvAt4B3QCnjW4+/ZYrvaGCJpBNIic29EbGqoq+6DbhT0nZSXzWneeYeE/X4Wpp+uRbNjq1XKjTGGGPMgHxlYIwxxpgKnBAYY4wxxgmBMcYYY5wQGGOMMQYnBMYYY4zBCYExxzWSDtShs1DSsAbec5akcxrY3hPHcO2B/PMMSct70GuTdHlv72OMcUJgTBlYCBxVQpC/712LWUDDEoKIuLABbbwQEbN7UGkjVYczxvQSJwTGtACSpklal4u6PCdpaV598ErgDGCtpLVZd7qkDZI6JN2X1/5H0k5JiyR1AJ+T9CVJT+VCQPdLGibpQtIqcIuVas6PkzRR0sZcVOYBSW/J7a2T9GNJmyVtk/R+SSskPS/p+oLtBwrytZK68j1vqOLnmdn2roo22iVtyfK5kp7M9nVKGg/cAIzLxxZLGi7p9/kZdEmaWWhnm6SfS9oq6ZG8Mh6Szpb0u2xbh6Rx+fjV+Tl1Svp+QwNrzPFEX9dX9ubNW+834ED+OY1U7WwsKZHfAHwwn9sJjMryKOBx4OS8fy3w3YLeNYW2Rxbk64GvZfl2YHbhXCfw4SxfB9yY5XXAoixfBbxAWnHuRFJVxZEVPnwKeAIYlvdPreLvSmB+lq8oXNsObMnyTcDcLA8BhhbP5+ODgDcXnsl2QFnvIDAxn7sXuCTLm4DPZvkk0qjLdOCWfO2bgFXA1GZ/Lrx564ttwC1dbEwL82RE7ALIS/e2A3+o0JlMGu5fn5f0H0JKHrq5pyBPyP+FtwHDSct5H4akU4C2iHgsH1oC3FdQ6a4D0gVsjVwnQdIOUmGWYh2BjwO/jIiXASLixSo+TgEuzvKdwKIqOhuAbyvVk18REc/rjWXiBfxA0lRSedkxwNvyub9ERPfSx08D7ZJGAGMi4oFs23+yH9NJScEzWX84MJ6UdBlTKpwQGNM6vFKQX6X6769IteS/UKONfxXk24FZEfGspAWkUYje2nSowr5DNeyrhx7XU4+IZZI2ARcBqyV9GdhRoTYXOA24ICL+p1RV7qQKmyE9x6E93E7ADyPiZ0dhvzEtiecQGNP67AdGZHkjMEXS2QCSTpb0rhrXjQB2K5UUnlutvYjYB/xD0ofyuXnAY/SONcBl3d+IkHRqFZ31vF7EZW6V80g6C9gRET8BfgOcx+HPAFKp2D05GfgI8M6eDIuI/cAuSbPyPU7Mdj4MfLEwD2OMpLfW5a0xLYYTAmNan1uAhyStjYi/k6rA3SWpkzS8/u4a132H9N58PYeXmr0buFrSM3li3aWkSYadwETSPIKjJiIeIr1i2JxfeXyjitpVwBWSukjD/NX4PLAltzEBuCMi9pJek2yRtBhYCrwvtzOfN5YNrsY8UkW9TtJch9Mj4hFgGbAht7WcwxMPY0qDqx0aY4wxxiMExhhjjHFCYIwxxhicEBhjjDEGJwTGGGOMwQmBMcYYY3BCYIwxxhicEBhjjDEGJwTGGGOMAf4Pv5bCTsnsJIkAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAF1CAYAAACef1IVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmcHHWd//HXZ7qnO+nOnQzkzkASjiTc4VZEUAm3/gRldQUUF2Fl1d/Pk9VFdGVddFd2PUE5BZfDeGzUBDxQUM4kcuSAhAlJSEJCJjPJ5JhkZnrm8/ujaobOOJPpmemZ7up+Px+PfqS7qrr6++2adL/7U9+qMndHREREyktFoRsgIiIig08BQEREpAwpAIiIiJQhBQAREZEypAAgIiJShhQAREREypACgJQsM7vRzO4L7081s91mFgsfH2xmj5vZLjP7TwvcZWbbzezZwrZ8YJjZ4Wb2fNjnT3Qxf7/3pBBtlK6Z2VvNrCb8G76g0O3JlZk9YGZfKnQ7pGvxQjdAio+ZrQMOBlqzJt/t7tcVpkX95+6vAcOyJl0NbANGuLub2VuBdwKT3X1PIdo4CD4H/NHdj+1m/n7vyeA1q7iZ2QeB28KHMSAJNLbPd/dhXT0vz74G3OLu3xuE1/obZrYRGMv+nwmHuvvWQrRH8kMVAOnOhe4+LOuW9y9/MytkAJ0GrMz6opsGrOvLl3+B+9Eb04AVPcxf2d2Xf4T62aPe9MXdf9L+/wA4F3g9+/9Gf9bdC91uOzOrMLPB+Cw/t9Nngr78I04BQHrFzK40s7+Y2X+E5fK1ZnZu1vyRZnaHmW02s01m9rWssvuVZvaEmd1iZnXAjWYWC0vw28J1XWdmbmZxM7vUzJZ2ev3/Z2b/203bDjGzx8IS9u+AcVnzqrPWezdwBfC5sKT6MeB24NTw8VfC51wQlsx3mNmTZnZ01vrWmdnnzexFYE+43olm9jMzqw378oms5W80s4fM7Mdh+1aY2dys+VPM7Ofhc+vM7LtZ8z5iZi+F7/cjZjbtANvnonDdO8zsT2Z2ZDj9UeDtwHfDPh7W6Xmd35N3hG2eb2b3mdlO4Mrwy+YLZrYmbOdDZjYmaz2nhO/VDjN7wczODKe3v7ftt31hpYme1tlFHy8Ot8vO8DnzwukTzWyBmdVbUC7/h07vf6/60htmttHMPmtmy3jz78HNrDprmfvM7MZO2+qF8L36i5nN6Wbd64CpwKLwvYuFy/+rmT0F7AGmmtlkM/t12P9XzOwjWev4mgXl+PvDdbxgZtPN7Evh39xrZvaOPvQ7Hv7NvxH2449mdng3y443s4fD5erCv8n2eVPM7H8t+Bx41cyu6W1bpA/cXTfd9rsB64B3dDPvSqAF+AeCcui1wOuAhfN/QVAuTQMHAc8CH8t6bgb4J4LdT0OBa4CVwGRgNPB7wMP5SaAeODLr9Z8D3ttN254CvhU+7wxgF3BfOK+6fb3h47uBr3Xq11+yHh8HbAVODvt5Rfi+JLPeo+eBKWE/KoClwA1AAjgUeBU4J1z+RmAfcF64vq8DT4fzYsALwC3h+zYEeEs472KgBjgyfE++BDzZTf8PI/gyeCdQSVDyrwES4fw/AR89wHbv/J7cGG7rd4f9Gwp8Eng63F7JcFvfHy4/CagL+1gRtqMOqOr0OpXAY8DXw8fdrrOLNp4ENITrrghf84hw3uPA98P371igFjirL305wHt0JrCxi+kbw+0/OVx3nODvrTprmfuAG8P7JwJvhP/GgI8Aa9q3VTfrPzPr8V8I/gaPDN/POPAE8J2w/8cT7M55W7j814C9wDvCZf8HWAt8IXx8LfDKAfq93+tnTY8DlxPsXhsC/IDw7zqc/wDwpfD+LcB/h89JAGdk/f0vAz4fTj8MeK297boN3K3gDdCt+G7hB8tuYEfW7R/CeVcCNVnLpsIPuvEE4waagKFZ8/+OYL9z+3Nf6/RajxIGhPDxO9j/i/oHwE3h/dnAdsIv4U7rmUoQLtJZ0/6HvgeAHwD/2uk1VmV9oK4DPpI17+Qu+nY9cFd4/0bg91nzZgF7w/unEnxZxbvo1yLgqqzHFQT7n6d1sey/AA91WnZT+wc3fQsAj3da5iXg7KzHEwi+WOPhB/i9nZZ/BLii07QfAL8GKnpaZxdtvI1gX3jn6VMI9k8Pz5r2dYKxK73uywHeozPpPgBcnvW4pwDwI+DLndaxBji9m9ftKgDckPX4kLDt2X//3wRuD+9/DViUNe89BEGqfRuMDts77ACvn/2ZML+b5cYDbcCQ8HF2APgG8FOCsQPZz3kbncIH8BXgB91tB93ycyuZfXqSd+929993M29L+x13bzQzCH4BjCH4NbI5nAbBl9CGrOdm3weY2MP8e4D7LRhJ/CGCL7imLto0Edju++/DX0/wxdAX04ArzOyfsqYlwtfpqq3TgIlmtiNrWgz4c9bjLVn3G4EhFuwvngKsd/dMN+34b9t/VL4R/PJd32nZidnT3L3NzDaEy/ZV5+0xDfiFmbVlTWslCH/TgEvN7MKseZXAHzsaHuxuORM42d3b13GgdW7q9PpTgIVdtHMiUO/uu7KmrQfmZj3uTV86v24uOq//QKYBHzSz/5s1LUHvtlX2600EtnXx95+9W+GNrPt7gdqsbbA3/HcYwRd9Vy5w9z9lTwj/fm8mCBTjCL78jWDAYOf38Cbgq8AfzawF+L67f4vgvaju4v9Od58/kicKAJJPGwgqAOO6+TKD4FdGts0EZdN2+31hu/vTZtYMvBX4QHjrymZgtJmlsz4Ep3bxernaQFB5uOkAy2SvewOw1t1n9vG1pppZvIv3rb0dP8lhPa8DR7U/sCCFTaFvX2btOr9/GwgqH090XjAMG/e6+z90nhfOfyvwrwS7N3bmss4ubACmdzH9dWCMmQ3PCgFT2b/vOfeljzrW7+4ZM2siqJC1G0+wS6b9tb/i7jfn4/UI+j+ui7///mz7XHyYYHfM2wnK9gcT/F+0zgu6ewPBbpdPmtkxBEHgGYL34mV3P6rzc2RgaRCg5I27bwZ+C/ynmY0IB1lNN7O3HeBpDxF8IEwys1EEZeTOfgx8F2hx979089rrgSXAV8wsYWZvAS7satkc/Qi4xsxOtkDazM43s+HdLP8ssMuCgYFDw4Fac8zsxBxe61mCD81/D19niJmdHs67FbjezGZDxyDLS7tZz0PA+WZ2tplVAp8mCGRP5tjnXNwK3GThQEQzqzKzi8N59wEXmtk5Yf+HmNmZ4eC0KWH7Lnf31b1YZ2d3AB8O+1gR/t0c4e4bwn5+PXzdo4Grwjb1pS/58ALBr/yYmZ0PvCVr3o+Aj5vZieHf1zAzu9DM0n15IXdfS/D3/29mljSzYwm+nA/U/3wYTjC2pY5g/MrXulvQgkGPh4bBtIGg2tJGsDsDM/tUuO3iZna0mR0/wG0vewoA0p1f2f6jtn+R4/MuJyhlriTYXz+fYN9qd35EEBpeJBjgt5BgX3728cb3EpQye/ow+wDBvvh64MsEwaFP3H0JwUDH7xL0o4ZgnEB3y7cCFxAMPltLMADrdmBkDq/VShBWZhD8itoIvD+c9wuCEusDFoxeX05wKFpX61kF/D3BQLBt4TovdPfmntrQC/8NLAB+a2a7CAbRnRy+/gaCQYv/TDCmYQPwWYLPmbMJfh3Oz/qbWtHTOrvo47MEX2y3EHyJPEZQQoZgvEk1wa/hXxDsYz9QGTnn1+2jTxCUxncAl4av1d6PpwkG3v2A4O9rNcG264/3AzMJdjXNB/65c8l+ANxBsK23EAzk6zKgh44k2B20i2DA5n+4+1Pu3kIwcPQ0gt0WtQTvy2CcX6GstY/cFikKFhxSeKu7T8uaNpRgRP7x7v5KwRonIlJCVAGQggrL5eeFZb9JBL/cO1cbrgUW68tfRCR/VAGQgjKzFEEZ9wiCkci/AT7ZPkjMgpOgGMFRCc8Vqp0iIqVGAUBERKQMaReAiIhIGVIAEBERKUMlfSKgcePGeXV1daGbISIiMmiWLl26zd2relqupANAdXU1S5YsKXQzREREBo2ZdT5NeJe0C0BERKQMKQCIiIiUIQUAERGRMqQAICIiUoYUAERERMqQAoCIiEgZUgAQEREpQwoAIiIiZUgBQEREpAwpAIiIiJQhBQAREZEypACQo/o9zfzx5a3saGwudFNERET6TQEgRy9t3smH717Mqi27Ct0UERGRflMAyFEqEQOgsbm1wC0RERHpPwWAHKWTwZWT9zRnCtwSERGR/lMAyFFHBaBJFQAREYk+BYAcpROqAIiISOlQAMhRKqkxACIiUjoUAHKUiFUQrzD2NKkCICIi0acAkCMzI5WIqQIgIiIlQQGgF9LJuCoAIiJSEhQAekEVABERKRUKAL2QTsZ1FICIiJQEBYBeUAVARERKhQJAL6QTcRpVARARkRKgANALQxMxnQlQRERKggJAL6QTGgMgIiKlQQGgF1JJVQBERKQ0KAD0QnsFwN0L3RQREZF+UQDohVQyRptDU6at0E0RERHpFwWAXui4IqDOBigiIhGnANALqYSuCCgiIqVBAaAX0smwAqAjAUREJOIUAHqhvQKwR0cCiIhIxCkA9EJ7BUBnAxQRkahTAOgFVQBERKRUKAD0QvtRAHtbVAEQEZFoUwDohVRSFQARESkNCgC9kEpoDICIiJQGBYBeGFqpCoCIiJQGBYBeiFUYQytjqgCIiEjkKQD0UjoZY4/OBCgiIhGnANBLqUScRl0LQEREIk4BoJdSCVUAREQk+hQAeimdjGsMgIiIRJ4CQC+lEjEdBSAiIpGnANBL6YQqACIiEn05BQAzm2dmq8ysxsy+0MX8pJk9GM5/xsyqs+ZdH05fZWbn9LROM7vbzNaa2fPh7dhw+plm1pA1/Yb+dLyvUklVAEREJPriPS1gZjHge8A7gY3AYjNb4O4rsxa7Ctju7jPM7DLgZuD9ZjYLuAyYDUwEfm9mh4XPOdA6P+vu87tozp/d/YLedzN/VAEQEZFSkEsF4CSgxt1fdfdm4AHg4k7LXAzcE96fD5xtZhZOf8Ddm9x9LVATri+XdRalVDJGo44CEBGRiMslAEwCNmQ93hhO63IZd88ADcDYAzy3p3XeZGYvmtktZpbMmn6qmb1gZovMbHZXjTWzq81siZktqa2tzaF7vZNOxGnKtJFpbcv7ukVERAZLMQ4CvB44AjgRGAN8Ppz+V2Caux8DfAf4ZVdPdvcfuvtcd59bVVWV98alEsH1ABpbVAUQEZHoyiUAbAKmZD2eHE7rchkziwMjgboDPLfbdbr7Zg80AXcR7C7A3Xe6++7w/kKg0szG5dD+vOq4IqAGAoqISITlEgAWAzPN7BAzSxAM6lvQaZkFwBXh/UuAR93dw+mXhUcJHALMBJ490DrNbEL4rwHvBpaHj8eH0zCzk8K21/Wt232XToZXBNRAQBERibAejwJw94yZXQc8AsSAO919hZl9FVji7guAO4B7zawGqCf4Qidc7iFgJZABPu7urQBdrTN8yZ+YWRVgwPPANeH0S4BrzSwD7AUuC0PGoFIFQERESkGPAQA6Su4LO027Iev+PuDSbp57E3BTLusMp5/VzXq+C3w3l/YOpHRCFQAREYm+YhwEWNRSybACoAAgIiIRpgDQSx0VAO0CEBGRCFMA6CVVAEREpBQoAPSSKgAiIlIKFAB6qeMoAFUAREQkwhQAeikRr6AyZuzR9QBERCTCFAD6IJWI09ikCoCIiESXAkAfpBO6IqCIiESbAkAfpJJxBQAREYk0BYA+SCViOhOgiIhEmgJAH6QSMV0LQEREIk0BoA/SibgqACIiEmkKAH2gMQAiIhJ1CgB9kE7E2KPDAEVEJMIUAPoglVAFQEREok0BoA/SyeAoAHcvdFNERET6RAGgD1KJOO6wr6Wt0E0RERHpEwWAPkgnwysC6kgAERGJKAWAPui4IqDOBSAiIhGlANAH6YQqACIiEm0KAH2QSoYVAB0JICIiEaUA0AftFYBGVQBERCSiFAD6YGj7LgCNARARkYhSAOiDdPsgQFUAREQkohQA+iDVcRigKgAiIhJNCgB90FEB0PUAREQkohQA+mBopSoAIiISbQoAfVBRYaQSMVUAREQkshQA+iiViKsCICIikaUA0EfpZExHAYiISGQpAPRRKhHXeQBERCSyFAD6KJ1QBUBERKJLAaCPUkmNARARkehSAOijdCLGXlUAREQkohQA+khjAEREJMoUAPpIRwGIiEiUKQD00dBETGMAREQkshQA+iidiNOcaaOlta3QTREREek1BYA+SiWC6wE0qgogIiIRpADQR+lkeEVAjQMQEZEIUgDoo/YKgI4EEBGRKFIA6KN0QhUAERGJLgWAPkolVQEQEZHoUgDoI1UAREQkyhQA+ijdXgHQUQAiIhJBCgB9lGqvADSpAiAiItGjANBHb+4CUAVARESiJ6cAYGbzzGyVmdWY2Re6mJ80swfD+c+YWXXWvOvD6avM7Jye1mlmd5vZWjN7PrwdG043M/t2uPyLZnZ8fzreX0M7TgSkCoCIiERPjwHAzGLA94BzgVnA35nZrE6LXQVsd/cZwC3AzeFzZwGXAbOBecD3zSyWwzo/6+7Hhrfnw2nnAjPD29XAD/rS4XxJxCtIxCo0BkBERCIplwrASUCNu7/q7s3AA8DFnZa5GLgnvD8fONvMLJz+gLs3uftaoCZcXy7r7Oxi4MceeBoYZWYTcmj/gBmaiGkMgIiIRFIuAWASsCHr8cZwWpfLuHsGaADGHuC5Pa3zprDMf4uZJXvRDszsajNbYmZLamtrc+he36V1RUAREYmoYhwEeD1wBHAiMAb4fG+e7O4/dPe57j63qqpqINrXIZWMawyAiIhEUi4BYBMwJevx5HBal8uYWRwYCdQd4LndrtPdN4dl/ibgLoLdBbm2Y1ClEzGdCVBERCIplwCwGJhpZoeYWYJgUN+CTsssAK4I718CPOruHk6/LDxK4BCCAXzPHmid7fv1wzEE7waWZ73G5eHRAKcADe6+uU+9zpNUQhUAERGJpnhPC7h7xsyuAx4BYsCd7r7CzL4KLHH3BcAdwL1mVgPUE3yhEy73ELASyAAfd/dWgK7WGb7kT8ysCjDgeeCacPpC4DyCgYSNwIf73ft+SidjvL6jpdDNEBER6bUeAwCAuy8k+ALOnnZD1v19wKXdPPcm4KZc1hlOP6ub9Tjw8VzaO1hUARARkagqxkGAkZFO6igAERGJJgWAfkgl4joPgIiIRJICQD+kEzEaW1oJ9k6IiIhEhwJAP6SScdxhX0tboZsiIiLSKwoA/ZAOLwi0RwMBRUQkYhQA+iHVfklgnQxIREQiRgGgH9JJVQBERCSaFAD6YWh7BUABQEREIkYBoB86xgBoF4CIiESMAkA/pFQBEBGRiFIA6IeOMQCqAIiISMQoAPSDKgAiIhJVCgD98OZRAKoAiIhItCgA9MOQeAwzdD0AERGJHAWAfqioMFKVuiKgiIhEjwJAP6WScY0BEBGRyFEA6Kd0IkajKgAiIhIxCgD9lErEdRigiIhEjgJAP6WTMe0CEBGRyFEA6KdUIq5BgCIiEjkKAP2USsR0GKCIiESOAkA/pRJxDQIUEZHIUQDop3Qyxh6NARARkYhRAOinVCJOo44CEBGRiFEA6Kd0IkZzaxvNmbZCN0VERCRnCgD9lEoGVwTcq3EAIiISIQoA/ZROtF8RUOMAREQkOhQA+qm9AqCTAYmISJQoAPRTRwVAAwFFRCRCFAD6KZVorwAoAIiISHQoAPRTOhlUALQLQEREokQBoJ/aKwC6HoCIiESJAkA/dVQAdD0AERGJEAWAfkpVqgIgIiLRowDQT0MTqgCIiEj0KAD0UyJeQSJWoQqAiIhEigJAHqSSMR0FICIikaIAkAfpRFwnAhIRkUhRAMiDVEIVABERiRYFgDxIJeMaAyAiIpGiAJAH6URMRwGIiEikKADkQSqhCoCIiESLAkAepJMx9moMgIiIRIgCQB6oAiAiIlGjAJAHGgMgIiJRowCQB6lknMaWVtravNBNERERyUlOAcDM5pnZKjOrMbMvdDE/aWYPhvOfMbPqrHnXh9NXmdk5vVjnt81sd9bjK82s1syeD28f7W1nB0o6EcMd9mW0G0BERKIh3tMCZhYDvge8E9gILDazBe6+Mmuxq4Dt7j7DzC4Dbgbeb2azgMuA2cBE4Pdmdlj4nG7XaWZzgdFdNOdBd7+uLx0dSKnwgkB7mlpJJXp8S0VERAoulwrASUCNu7/q7s3AA8DFnZa5GLgnvD8fONvMLJz+gLs3uftaoCZcX7frDAPHN4HP9a9rg6f9S19nAxQRkajIJQBMAjZkPd4YTutyGXfPAA3A2AM890DrvA5Y4O6bu2jLe83sRTObb2ZTcmj7oEgn36wAiIiIREFRDQI0s4nApcB3upj9K6Da3Y8GfsebFYfO67jazJaY2ZLa2tqBa2wWVQBERCRqcgkAm4DsX9uTw2ldLmNmcWAkUHeA53Y3/ThgBlBjZuuAlJnVALh7nbs3hcvfDpzQVWPd/YfuPtfd51ZVVeXQvf7rqADoXAAiIhIRuQSAxcBMMzvEzBIEg/oWdFpmAXBFeP8S4FF393D6ZeFRAocAM4Fnu1unu//G3ce7e7W7VwON7j4DwMwmZL3eRcBLfenwQOioAOhcACIiEhE9Dll394yZXQc8AsSAO919hZl9FVji7guAO4B7w1/r9QRf6ITLPQSsBDLAx929FaCrdfbQlE+Y2UXheuqBK3vd2wGSDgOAKgAiIhIVOR2z5u4LgYWdpt2QdX8fwb77rp57E3BTLuvsYplhWfevB67Ppb2DLRXuAtAYABERiYqiGgQYVemOQYCqAIiISDQoAOTBkMoKzDQGQEREokMBIA/MjLSuCCgiIhGiAJAnqURMYwBERCQyFADyJJ2M60yAIiISGQoAeTK0UhUAERGJDgWAPEknY6oAiIhIZCgA5EkqEVcFQEREIkMBIE/SyZiOAhARkchQAMiTVCKu8wCIiEhkKADkSTqhCoCIiESHAkCepJIaAyAiItGhAJAn6USMllanOdNW6KaIiIj0SAEgT1IdFwRSFUBERIqfAkCepDsuCaxxACIiUvwUAPJEFQAREYkSBYA8aa8A6GyAIiISBQoAedJeAdijCoCIiESAAkCepNt3AagCICIiEaAAkCdDE+EuAFUAREQkAhQA8kRHAYiISJQoAORJxxgAXQ9AREQiQAEgT1IJVQBERCQ6FADypDJWQSJeoTEAIiISCQoAeZROxHQUgIiIRIICQB6lEnFVAEREJBIUAPIonVQFQEREokEBII9SiTiNLQoAIiJS/BQA8iioAGgXgIiIFD8FgDwKxgCoAiAiIsVPASCP0omYLgcsIiKRoACQR6lkXJcDFhGRSFAAyKNUpSoAIiISDQoAeZRKxmlsbqWtzQvdFBERkQNSAMijdHg9gL06FFBERIqcAkAepZLhFQG1G0BERIqcAkAetVcAdDZAEREpdgoAeZRKqAIgIiLRoACQR+lkWAHQyYBERKTIKQDkUUcFQKcDFhGRIqcAkEftFYC9qgCIiEiRUwDIo3THGAAFABERKW4KAHmUaj8KQIMARUSkyCkA5FG6/TwAOgxQRESKnAJAHiXjFVSYKgAiIlL8FADyyMxIJXRFQBERKX4KAHmWSuiKgCIiUvxyCgBmNs/MVplZjZl9oYv5STN7MJz/jJlVZ827Ppy+yszO6cU6v21mu3N5jWKSTsZ1FICIiBS9HgOAmcWA7wHnArOAvzOzWZ0WuwrY7u4zgFuAm8PnzgIuA2YD84Dvm1msp3Wa2VxgdC6vUWxSiRiNOhGQiIgUuVwqACcBNe7+qrs3Aw8AF3da5mLgnvD+fOBsM7Nw+gPu3uTua4GacH3drjMMB98EPpfjaxSVdCKuawGIiEjRyyUATAI2ZD3eGE7rchl3zwANwNgDPPdA67wOWODum3N8jaKSSsZ0LQARESl6RTUI0MwmApcC3+nHOq42syVmtqS2tjZ/jctROhHXtQBERKTo5RIANgFTsh5PDqd1uYyZxYGRQN0Bntvd9OOAGUCNma0DUmZW08Nr7Mfdf+juc919blVVVQ7dy6/gKABVAEREpLjlEgAWAzPN7BAzSxAM6lvQaZkFwBXh/UuAR93dw+mXhSP4DwFmAs92t053/427j3f3anevBhrDQX8Heo2ikk7GFQBERKToxXtawN0zZnYd8AgQA+509xVm9lVgibsvAO4A7g1/rdcTfKETLvcQsBLIAB9391aArtbZQ1O6fI1io/MAiIhIFPQYAADcfSGwsNO0G7Lu7yPYd9/Vc28CbsplnV0sMyyX1ygm6WScllanOdNGIl5UQyxEREQ66Bsqz3RFQBERiQIFgDxLJ8IrAmocgIiIFDEFgDxLJcMKgA4FFBGRIqYAkGftuwBUARARkWKmAJBnqXAXgCoAIiJSzBQA8kxjAEREJAoUAPKsYwyAjgIQEZEipgCQZx0VgCZVAEREpHgpAOSZKgAiIhIFCgB5lqoMjwJQBUBERIqYAkCexWMVJOMVNLaoAiAiIsVLAWAApJNxGlUBEBGRIqYAMABSiRh7NAZARESKmALAAEgnVAEQEZHipgAwAFJJVQBERKS4KQAMgHQiTqPOBCgiIkVMAWAADE3E2KNrAYiISBFTABgA6URMFQARESlqCgADIJWM60yAIiJS1BQABkA6EdOZAEVEpKgpAAyAVCLO3pZWWtu80E0RERHpkgLAAEiHFwTa26IqgIiIFCcFgAGQCi8J3KgjAUREpEgpAAyAdMclgVUBEBGR4qQAMADaKwA6G6CIiBQrBYABkG7fBaAKgIiIFCkFgAGQCncB6GyAIiJSrBQABoAqACIiUuwUAAZAKqEKgIiIFDcFgAGQTqoCICIixU0BYAB0VAB0FICIiBQpBYABkIxXUGHQqOsBiIhIkVIAGABmRjoRVwVARESKlgLAAEklY6oAiIhI0VIAGCCqAIiISDFTABggqWRMRwGIiEjRUgAYIKlEnEZVAEREpEgpAAyQdEIVABERKV4KAAMklYzrTIAiIlK0FAAGiCoAIiJSzBQABkgqoQqAiIgULwWyZHQbAAAYB0lEQVSAAZIOjwJw90I3RURE5G8oAAyQVCJOps1pbm0rdFNERET+hgLAAGm/IJDOBigiIsVIAWCApBPBJYF1NkARESlGCgADZMTQIAC88sbuArdERETkbykADJAzDqvikHFpvvTL5ezc11Lo5oiIiOwnpwBgZvPMbJWZ1ZjZF7qYnzSzB8P5z5hZdda868Ppq8zsnJ7WaWZ3mNkLZvaimc03s2Hh9CvNrNbMng9vH+1PxwdaKhHnW+87hi0793Hj/64odHNERET202MAMLMY8D3gXGAW8HdmNqvTYlcB2919BnALcHP43FnAZcBsYB7wfTOL9bDO/+vux7j70cBrwHVZr/Ogux8b3m7vW5cHz3FTR3Pd22fw8+c28ZsXNxe6OSIiIh3iOSxzElDj7q8CmNkDwMXAyqxlLgZuDO/PB75rZhZOf8Ddm4C1ZlYTro/u1unuO8NpBgwFIn0g/XVnzeBPq2v54i+XMbd6NAePGFLoJolIL7S0tvHixh08WVPHjr0tzJ44gqMmjeTQqmHEKqzQzRPps1wCwCRgQ9bjjcDJ3S3j7hkzawDGhtOf7vTcSeH9btdpZncB5xGEjE9nLfdeMzsDWE1QKcheR/tzrwauBpg6dWoO3RtYlbEKbnnfMZz/7b/wmZ++wD0fPokKfWiIFK22Nmfl5p08taaOJ9Zs49m19TQ2t2IW/H9uzgTn9kglYsyaMII5k0Zy1KSRHDV5JNMVCiRCcgkAg87dPxzuJvgO8H7gLuBXwP3u3mRmHwPuAc7q4rk/BH4IMHfu3KKoHhxaNYwvnn8kX/rlcu59ej1XnFZd6CaJSMjdWVO7h6fWbOOJmjqeXlvHjsZg4O6hVWnee/xkTps+llMOHcvwIXFqanezbGMDK17fybJNDTy4eAN3P7kOgKGVMWaFFYLZE0dw1OSRzKgaRjym8dZSfHIJAJuAKVmPJ4fTulpmo5nFgZFAXQ/PPeA63b013DXwOeAud6/Lmn078I0c2l40PnjyVP7w0hv828KXOH3GWGYcNLzQTRIpWxu3N/LkmjqeWlPHk2u28cbOJgAmjhzCO448mNNnjOXUQ8cxfuTf7rI7YvwIjhg/gkvDx61tzpowFCzb1MDyMBTsbQlOAjaksoIjJwShoL1aMPMghQIpPOvpXPXhF/pq4GyCL+nFwAfcfUXWMh8HjnL3a8zsMuD/uPv7zGw28D8E+/0nAn8AZgLW1ToJSv7T3b0mHAPwTQB3/4yZTXD3zeHrvQf4vLufcqC2z50715csWdKrN2Qgbd21j3n/9WcmjhrCz689nURcHwAig2Hb7qbwC38bT66pY31dIwBj0wlOnT6W06aP4/QZY5k6JkXw0dM/rW3Oq7W7Wf56A8s27mT5pgZWvN7AnvAKocl4digIdiMcdvBwKhUKJA/MbKm7z+1xuVwuVmNm5wH/BcSAO939JjP7KrDE3ReY2RDgXuA4oB64LGuA3xeBjwAZ4FPuvugA66wA/gyMIAgJLwDXuvtOM/s6cFG4nvpw+ssHanexBQCAh5dv4Zr7lnLd22fwmXMOL3RzSs7e5lae27Cdpeu2s7spQyoRJ52M/c2/6ezHiTipZEwfviWkYW8Lz66t54mabTy1po5Vb+wCYHgyzsmHjuW06WM5bcZYDj94eF6+8HPR2uas3baH5ZuCSsGyTQ2sfH0nu8OrhibiFRw5fnhHlaA9FOiHgvRWXgNAVBVjAAD47E9f4Gd/3chPrzmVE6aNKXRzIq1+TzOL19WzZF09i9dtZ/mmBjJtjhkkYhU0ZXK/GNOkUUM5sXo0J1SPYe600Rx28HAN6IqIvc2tLFlfz5Nr6niyZhvLNjXQ5sEv7ROrx3DajOBX/pyJI4qq9N7W5qytC0JBezBYsWknu9pDQayCIyYM5+RDxjBvzgSOmzJKg4ilRwoAFG8A2N2U4dz/fhzDWPjJtzIsWZRjMYuOu7Ohfi+L19V33NbU7gGCD8pjpozkxOoxnFg9huOnjmZkqpJMaxuNLa00NrWypznz5r/NGfY0tXb8u2tfhpe37GTJ+u3U7gr2Bw9Pxjlu2mjmhrdjp44ildC2KgbNmTZeCA/Ne3LNNp57bQfNrW3EK4xjp4wKf+GP47ipo0jGY4Vubq+0tTnr6xs7xhO8uHEHS9dvp6XVGT9iCPPmjOfcOeOZWz1GAVW6pABA8QYAgMXr6nn/bU9x6QlTuPmSowvdnKJWt7uJb//hFRYt38LW8Mt5xJA4c6vHMLd6NCdVj2HOpJEMqez/B317yFiyvp4l64NdCau37sIdYhXGrAkjOGHaaOZWj+b06eMYnU70+zUld8s3NXDXE+tYtHxzx6F5syaM4PQZ4zh1+lhOqh5DugQDdcPeFh59+Q0WLdvCY6tracq0MW5YgnfNHs95cyZw8qFjtAtLOigAUNwBAOAbD7/M9/+0hh9+6ATeNXt8oZtTdFpa2/jxU+v5r9+vprG5lXlzxnPKocGH/MyDhg1aKbRhbwt/fS0IA0vW1/P8hh3sa2kjVmGccugY5s0ez7tmj9dJngZIS2sbj6zYwt1PrGPJ+u2kEjEuOmYiZx5excmHjC27ELanKcMfV21l0bItPPryVva2tDIqVcm7Zh3MuXMmcPqMcRo3UOYUACj+ANCcaeM933+CLQ37ePhTZ1A1PFnoJhWNP63ayr/+eiVravdwxmFV3HDBkUVz6GRLaxvLNzXwh5e2smj55o7dEMdNHcW82eOZN2c808amC9zK6Kvb3cT9z77GfU+/xpad+5g6JsUVp1VzyQmTGTm0stDNKwp7m1t5bHUtDy/fzB9e2squpgzDh8R5x5EHM2/OeN52WFVeKmMSLQoAFH8AAHjljV1c8J2/cPqMcdxxxdxBG5FcrF6t3c3XfvMSj768leqxKf7lglmcdcRBRf2+1GzdxSMr3uDh5VtYtqkBgCPGD2fenCAMDOZI81LQXub/1Yuv05xp460zx3HladWcefhB2ud9AE2ZVp6o2caiZVv47co3aNjbQioR4+1HHMR5cyZw5uFVJbl7RP6WAgDRCAAAdz2xlq/8aiX/9p6j+MDJhT99cSHs3NfCdx+t4a4n1pKMx/jE2TO48rRDIlfK3FDfyG9XvsEjy7eweH097lA9NsU5s8dz7lETOGbySIWBLnRV5n/v8ZO54rRpRVP5iZKW1jaefrWOhcu28NsVW6jb00wyXsGZh1dx7pwJnHXkQYwYoipKqVIAIDoBoK3NufzOZ1m6fjsPXH0Kx0wZVegmDZrWNmf+0g1885FV1O1p5n0nTOEz5xxeErtDanc18buVb/Dwii08WbONTJszadRQzp0znvOODg7pKvcwoDL/wGttcxavq2fRss08vGILb+xsIhGr4C0zxzFvznjeNetgRqXKaxxFqVMAIDoBAGDrzn2899Yn2bUvw4NXn8rh40v/V8/idfV85VcrWL5pJydWj+bLF85mzqSRhW7WgGhobOF3L73BwmWb+fMrtbS0OhNHDuHcoyZw3lHjOW7K6LI6vltl/sJoa3Oe27CdRcu2sGj5Fjbt2Eu8wjh1+ljOnTOBd80+mHHDoh++y50CANEKAACv1TVy6W1P0ubw04+dSvW40hxI1pxp48sLlnP/sxuYMHII1593JBcePaFsfg037G3hD2EYeHz1Nppb25gwMji++/yjJnD81NIMAyrzFxd3Z9mmBhYt38KiZZtZV9dIhcGJ1WM476gJzJujI1uiSgGA6AUACAYFvu+2p0gl4sy/9lQmjBxa6Cbl1fY9zXzsvqU8u7aea942nU+ePZOhifIdpbxzXxAGfvPiFh5fXUtzaxsHj0hy7pwJnH3kQZxYPSbyo7hV5i9+7s7LW3axaNlmFi3fwitbdwPBYNb2817MnTaGyaOHlk1QjzIFAKIZAACWbWzgAz96mqoRSR762KklU5JbU7ubq+5ezOsN+/iPS4/homMmFrpJRWXXvhb+8NJWFi7bzJ9W19KcaWNIZQWnHDqWM2ZWccZhVUyvSkfmA1hl/uiq2bqLh5dv4Zm19Tz32o6O6xUcNDzJ3OrRnDAtOF32rIkjdAKiIqQAQHQDAAT7xz90xzMcOm4Y9199SuR/KT25ZhvX3LuUylgFP7x8LidMG13oJhW1xuYMT79ax+Ort/H46lpe3Raca2DSqKGccVgVbztsHKfNGFd0I7lV5i89rW3Oy1t2snT9dpas287S9dvZtGMvAEMrYxwzZSRzp43hhOrRwSm4I/5ZVQoUAIh2AAB4bHUtH71nMUdNGsm9V50c2WN4H1z8Gl/8xXIOGZfmzitPZMqYVKGbFDkb6ht5bHUtj6+u5ck1dexuyhCrMI6fOoozZlbxlpnjqBqeZEhlLLjFKwb1ojcq85eXzQ17O8LAkvX1vLR5F63hRbgOO2g4J1S3X0NjDFPGaLfBYFMAIPoBAODh5Zv5x5/8ldOmj+P2K+ZGan9wW5tz88Mvc9vjr/LWmeP43gePL7pfrFHU0trGX9dv5/FXanl89baOkw91Fq+wMBBUkIwH/3YEhMoKhsRjDEnEgn875oXT25+XFSj2e25l8Ly6PU3c9/RrKvOXuT1NGZ7fsIMl4emys3cbVA1PMnfa6HAswRhma7fBgFMAoDQCAMDPlm7k0z99gXfOOpjvf/D4SPznaWzO8KkHnue3K9/gQ6dM48sXziqqy7CWkm27m1iyrp6dezPsy7Syr6WVfS1tb/6baWVfc2s4r336m/Oasqdl2mht691ngsr80llrm7Nqyy6WhhfVWrLuzd0GQyorOGbyqI6Bhe1X7pT8UQCgdAIAwI+fWscN/7uCdx87kW+979iiPkxsS8M+Pvrjxax8fSf/csEsrjytWiXACGlpbdsvRDRlOgWKljfDRKwCzjriYJX5pUdbGvZ17DJYun47K17f2bHbYOZBwzoGFp4wbTSTRw/VD4Z+yDUARHOnchm6/NRqdu3L8M1HVpFOxvnau+cU5Zfq8k0NfPSeJeza18LtV8zlrCMOLnSTpJcqYxVUxioYrkPAJY/GjxzC+UdP4PyjJwBBlfD5DTvCq2xu59cvvs79z74GgBmMSSUYNyxJ1fDgNm5YIvw3e1qSMalEUf8gKmYKABHy8bfPYHdThh/8aQ3DhsT5wrwjiioE/G7lG3zi/ucYnapk/rWnceSEEYVukogUqVQizmnTx3Ha9HFAsNvgla27eP61HWxu2Me23U3U7mqidncT69fvYevOJpoybX+znliFMTb9ZljoKjQcFE4fObSyqD4zC00BIGI+d87h7N6X4bbHXmV4Ms51Z80sdJNwd257/FVufvhljp48ih9dfgIH6eejiPRCrMI4YvwIjhjf9Q8Hd2d3U4Ztu5uDYLCr6c2Q0H5/dxOvvLGL2t1NtLT+7e7typi9GRCGJbNCQ4Kxw4KjaCpjRiJWQWW8IqyGBY8THY8rwvlGZayCeIVFNlQoAESMmfGVi2azpynDf/x2NbuaMnz+nCMKVgLb3ZThc/NfYOGyLZx/9AT+89JjInWkgohEg5kxfEglw4dUckgPp0l3dxr2trBtdxNbOwLC/sFhc8M+XtzUQN3uJno57rVTu3gzFMTszZAQ3z8odF6mY36sgi9fNItUYvC/jhUAIqiiwvjmpceQTsa57bFX2dKwj29ccjTJ+OB+8dZs3c019y1l7bY9fPG8I/noWw+JbBIWkdJhZoxKJRiVSvR4ZEprm7O9sZn6Pc00Z9pobm2jpf3f1jaaM05LeL+ltY3mVqc5Ez7OvDmtY37Hcz1rfvBvY3MmmJ41rSXjFGosvgJARMUqjK9ePJuJo4Zy88Mvs3VnE7ddfsKgHWf/8PLNfOanL5KMV3DvVSd17McTEYmSWEWwW6BUTrneGzrOIsLMjGvPnM4t7z+GJevred+tT7G5Ye+AvmamtY1/X/Qy19z3V6YfNIxff+It+vIXEYkgBYAS8J7jJnP3h09i4/a9/J/vP8mqLbsG5HXq9zRzxV3Pcutja/jAyVN56GOnlNzVCkVEyoUCQIk4fcY4HvrYqbS5c8mtT/LUmrq8rv/FjTu48Dt/YfG67XzjkqP5t/ccNehjDkREJH8UAErIrIkj+Pk/ns74EUO44s5nWfDC63lZ74OLX+OSW58C4GfXnMb75k7Jy3pFRKRwFABKzKRRQ5l/zWkcO3UUn7j/OX70+Kv09XTPTZlWrv/5i3z+Z8s4+ZAx/Oqf3sJRk0fmucUiIlIIOgqgBI1MVfLjj5zEp3/6AjctfInXG/bypfNn5XR1tpbWNl7fsZf1dY385+9W88KGHfzjmdP59LsO19XdRERKiAJAiRpSGeM7lx3H+BFDuOMva9nSsI9b3n8syXgF9Xuaea2+kQ3b97KhvpHX6hrZsL2R1+obeX3H3o6TYgxLxrn1709g3pzxhe2MiIjknQJACauoMP7lgllMGDmEmxa+xJJv/JHGpgx7mlv3W65qeJIpo4cyd9poph43iSljUkwZk+KI8cMZlUoUqPUiIjKQFADKwEffeihTxqT45XObGD9yCFPHpJgyOsXUsSkmjx5akFNQiohIYemTv0ycM3s858xWKV9ERAI6CkBERKQMKQCIiIiUIQUAERGRMqQAICIiUoYUAERERMqQAoCIiEgZUgAQEREpQwoAIiIiZUgBQEREpAwpAIiIiJQhBQAREZEypAAgIiJShhQAREREypC5e6HbMGDMrBZY38Ni44Btg9CcYlBOfQX1t5SVU19B/S1lA9HXae5e1dNCJR0AcmFmS9x9bqHbMRjKqa+g/paycuorqL+lrJB91S4AERGRMqQAICIiUoYUAOCHhW7AICqnvoL6W8rKqa+g/paygvW17McAiIiIlCNVAERERMpQWQQAM5tnZqvMrMbMvtDF/CvNrNbMng9vHy1EO/PBzO40s61mtryb+WZm3w7fixfN7PjBbmM+5dDfM82sIWvb3jDYbcwXM5tiZn80s5VmtsLMPtnFMiWzfXPsbylt3yFm9qyZvRD29ytdLJM0swfD7fuMmVUPfkv7L8e+lszncjszi5nZc2b26y7mDf62dfeSvgExYA1wKJAAXgBmdVrmSuC7hW5rnvp7BnA8sLyb+ecBiwADTgGeKXSbB7i/ZwK/LnQ789TXCcDx4f3hwOou/pZLZvvm2N9S2r4GDAvvVwLPAKd0WuYfgVvD+5cBDxa63QPY15L5XM7q0/8D/qerv9lCbNtyqACcBNS4+6vu3gw8AFxc4DYNGHd/HKg/wCIXAz/2wNPAKDObMDity78c+lsy3H2zu/81vL8LeAmY1Gmxktm+Ofa3ZITbbHf4sDK8dR6kdTFwT3h/PnC2mdkgNTFvcuxrSTGzycD5wO3dLDLo27YcAsAkYEPW4410/SHy3rBkOt/MpgxO0woi1/ejlJwalhoXmdnsQjcmH8Ly4HEEv5yyleT2PUB/oYS2b1gifh7YCvzO3bvdvu6eARqAsYPbyvzIoa9QWp/L/wV8DmjrZv6gb9tyCAC5+BVQ7e5HA7/jzRQm0fdXgtNiHgN8B/hlgdvTb2Y2DPgZ8Cl331no9gy0HvpbUtvX3Vvd/VhgMnCSmc0pdJsGSg59LZnPZTO7ANjq7ksL3ZZs5RAANgHZyXFyOK2Du9e5e1P48HbghEFqWyH0+H6UEnff2V5qdPeFQKWZjStws/rMzCoJvgx/4u4/72KRktq+PfW31LZvO3ffAfwRmNdpVsf2NbM4MBKoG9zW5Vd3fS2xz+XTgYvMbB3BbuizzOy+TssM+rYthwCwGJhpZoeYWYJgcMWC7AU67SO9iGBfY6laAFwejhY/BWhw982FbtRAMbPx7fvRzOwkgr/5SH5ghv24A3jJ3b/VzWIls31z6W+Jbd8qMxsV3h8KvBN4udNiC4ArwvuXAI96OGosSnLpayl9Lrv79e4+2d2rCb6DHnX3v++02KBv2/hArrwYuHvGzK4DHiE4IuBOd19hZl8Flrj7AuATZnYRkCEYUHZlwRrcT2Z2P8HI6HFmthH4MsEAG9z9VmAhwUjxGqAR+HBhWpofOfT3EuBaM8sAe4HLoviBGTod+BCwLNx3CvDPwFQoye2bS39LaftOAO4xsxhBkHnI3X/d6bPqDuBeM6sh+Ky6rHDN7Zdc+loyn8vdKfS21ZkARUREylA57AIQERGRThQAREREypACgIiISBlSABARESlDCgAiIiJlSAFARESkDCkAiIiIlCEFABERkTL0/wEqRxPwEfxJ4gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (8, 6)\n", - "pylab.plot(distances, energies[0], label='Freeze Core: True')\n", - "pylab.plot(distances, e_nofreeze, label='Freeze Core: False')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference, no reduction [], freeze core true/false')\n", - "pylab.legend(loc='upper right')\n", - "pylab.show()\n", - "pylab.title('Energy difference of freeze core True from False')\n", - "pylab.plot(distances, np.subtract(energies[0], e_nofreeze), label='Freeze Core: False')\n", - "pylab.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true, - "scrolled": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/dictinput.py b/community/chemistry/dictinput.py deleted file mode 100644 index f3f84bc5e..000000000 --- a/community/chemistry/dictinput.py +++ /dev/null @@ -1,40 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -import qiskit.chemistry - -# An example of using a loop to vary inter-atomic distance. A dictionary is -# created outside the loop, but inside the loop the 'atom' value is updated -# with a new molecular configuration. The molecule is H2 and its inter-atomic distance -# i.e the distance between the two atoms, is altered from 0.5 to 1.0. Each atom is -# specified by x, y, z coords and the atoms are set on the z-axis, equidistant from -# the origin, and updated by d inside the loop where the molecule string has this value -# substituted by format(). Note the negative sign preceding the first format -# substitution point i.e. the {} brackets -# -input_dict = { - 'driver': {'name': 'PYSCF'}, - 'PYSCF': {'atom': None, 'unit': 'Angstrom', 'charge': 0, 'spin': 0, 'basis': 'sto3g'}, - 'algorithm': {'name': 'ExactEigensolver'}, -} -molecule = 'H .0 .0 -{0}; H .0 .0 {0}' -for i in range(21): - d = (0.5 + i * 0.5 / 20) / 2 - input_dict['PYSCF']['atom'] = molecule.format(d) - solver = qiskit.chemistry.QiskitChemistry() - result = solver.run(input_dict) - print('{:.4f} : {}'.format(d * 2, result['energy'])) diff --git a/community/chemistry/energyplot.ipynb b/community/chemistry/energyplot.ipynb deleted file mode 100644 index 60a1eaa56..000000000 --- a/community/chemistry/energyplot.ipynb +++ /dev/null @@ -1,159 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*LiH plot using ExactEigensolver*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy and dipole moments of a Lithium Hydride (LiH) molecule over a range of inter-atomic distances.\n", - "\n", - "This notebook populates a dictionary, which is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop. The main goal of this notebook is to show this technique and to keep things simpler and quicker a classical algorithm, the ExactEigensolver, is used here.\n", - " \n", - "This notebook has been written to use the PYSCF chemistry driver. " - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [1.25 1.275 1.3 1.325 1.35 1.375 1.4 1.425 1.45 1.475 1.5 1.525\n", - " 1.55 1.575 1.6 1.625 1.65 1.675 1.7 1.725 1.75 ]\n", - "Energies: [-7.86021175 -7.86413664 -7.86756329 -7.87052961 -7.87307044 -7.87521786\n", - " -7.87700149 -7.87844868 -7.87958474 -7.88043316 -7.88101572 -7.88135266\n", - " -7.88146285 -7.88136385 -7.88107204 -7.88060273 -7.8799702 -7.87918784\n", - " -7.87826817 -7.87722291 -7.87606307]\n", - "Dipole moments: [1.85348096 1.85204573 1.85067375 1.84935828 1.84809268 1.84687002\n", - " 1.84568265 1.84452191 1.84337791 1.84223932 1.84109328 1.83992524\n", - " 1.83871893 1.8374563 1.83611747 1.83468076 1.83312267 1.83141785\n", - " 1.82953923 1.82745794 1.82514338]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "# Note: In order to allow this to run reasonably quickly it takes advantage\n", - "# of the ability to freeze core orbitals and remove unoccupied virtual\n", - "# orbitals to reduce the size of the problem. Freeze core can always\n", - "# be used, but be very cautious when removing unoccupied orbitals.\n", - "# \n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", - " 'algorithm': {'name': 'ExactEigensolver'},\n", - " 'operator': {'name': 'hamiltonian', 'freeze_core': True, 'orbital_reduction': [-3, -2]},\n", - "}\n", - "molecule = 'Li .0 .0 -{0}; H .0 .0 {0}'\n", - "\n", - "start = 1.25 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)\n", - "dipoles = np.empty(steps+1)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " distances[i] = d\n", - " energies[i] = result['energy']\n", - " dipoles[i] = result['total_dipole_moment']\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Dipole moments:', dipoles)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8VvX5//HXlUUIhLCC7D2VpUYEJyh1VQUXglWrtqWK1Wpba8e3y7aOX7W12mqrtc5WQUW0FesEF6IChiV7hxlWwkgg4/r9cR/a20hCArlzct95Px+P8/Dc53zOua+TG/POGffnY+6OiIhIrCSFXYCIiCQ2BY2IiMSUgkZERGJKQSMiIjGloBERkZhS0IiISEwpaKTeMbNTzWxJ2HXEmpm5mfUMuw6RWFPQSGjMbLWZjay43N3fd/c+VbUzs2vM7IMq9m1m9h0zm2dme81sk5lNN7OxtXsUsWFmx5jZG2a23cx2mtlsMzsvWDfczPJquL8jCrVg+z1mtjtq+uHh7k8alpSwCxCJkQeAc4EbgA+A/cAw4JvAcxUbm5kB5u7ldVlkFf4FPAycH7w+AbDwygFgkLsvj+UbmFmKu5fG8j2k7umMRuqdw/mLvcL2vYEJwFh3f9Pdi9y9zN0/cPdrotpNN7PfmtmHwF6gu5m1N7NXgjOJ5Wb2raj2T5jZbyqrMzjz+kFwFlVgZhPNLD1q/W1mttHMNpjZdVXU3xroBjzq7vuD6UN3/8DMmgCvAe2jzizam9kQM/soOPvZaGZ/MrO0YH/vBbueG7S/PFh+vpnlBtvMMLOBh/nz/qWZTTKzp8xsl5ktNLOcqPXtzexFM8s3s1VmdnOFbV8ws2fMrBC4xswam9mTZrbDzBaZ2Q8P/JyDn+GLFd7/ATP74+HULnVDQSOJ6AxgnbvPqkbbq4DxQCawhsjZTh7QHrgUuNPMzqjBe48BziESFAOBawDM7BzgB8BXgF7Aly4ZRtkGLAeeMbPRZnbUgRXuvofImdoGd28aTBuAMuBWoDWRM7cziYQt7n5asPmgoP1EMzsW+DvwbaAV8FfgFTNrVINjjXYhkZ9dc+AV4E/BcScROTubC3QI6rrFzM6O2nYU8EKw7T+AXwBdge5Efl5XRrV9BjjHzJoH+08BxgJPHWbdUgcUNBIvpgR/ee80s53AQ1W0bQ1sil5gZnnBtsVm1iVq1RPuvjC4XNMWOBm43d2L3T0X+BtwdQ3qfMDdN7j7diK/YAcHy8cAj7v7giAsflnZDjzSAeEIYDVwH7DRzN4zs15VbDPb3We6e6m7ryYSHKdXUed44K/u/nFwtvcksA8YWsU2c6I/gwph8YG7T3X3MuBpYFCw/AQg293vCM7MVgKPEgmHAz5y9ynuXu7uRUR+Vne6+w53zyNyGfTAcW4E3gMuCxadA2x199lV1C0hU9BIvBjt7s0PTAR/rVdiG9AueoG7dyQSQI344r2OdVHz7YHt7r4ratkaIn+JV1d0wO0FmkbtO/q91lS1E3fPc/fvuHsPoAuwhyr+ajez3mb27+Chh0LgTiLHW5kuwPcrhHenoM7KHBf9Gbj761HrKh53enC20YXIZb7o9/kJcFRU++ifC3z5Z1Vx/ZP87yznSiLBJvWYgkYS0TtAx+j7BFWI7r58A9DSzDKjlnUG1gfze4CMqHVta1DTRiK/yKP3Wy3uvg74M9D/wKKDNHsYWAz0cvdmRH6ZV/XwwDrgtxWCI8Pdn61uXdW0DlhV4X0y3f28qDYVj2cj0DHqdacK66cAA82sP5GHJf5RyzVLLVPQSNhSzSw9ajriJyHdfQmRS0fPmdlXgpvLycBJh9huHTADuCuoZSDwDSL3BQBygfPMrKWZtQVuqUFZk4jc6D7azDKI3Ic4KDNrYWa/MrOeZpYUPBxwHTAzaLIZaGVmWVGbZQKFwG4z60vkabtom4nc8zjgUeB6MzvRIpqY2VcrhGxt+ATYZWa3H/gczKy/mZ1QxTaTgB8HP4cOwHeiV7p7MZF7Ov8EPnH3tbVcs9QyBY2EbSpQFDX9spb2eyORa/u/B7YTucH/a+ByoKpfTOOI3IjeALwE/MLd3wrWPU3kpvZq4A1gYnWLcffXgPuJnG0tD/5bmf1BDW8RCY8FRO6fXBPsazHwLLAyuBzVnsiDBlcAu4iESMXafgk8GbQfEzwo8S0iN+13BDVdc4jDOPDU2oHp/mocdxmRs47BwCpgK5H7XllVbHYHkc9rVfAzeCE4/mhPAgPQZbO4YBr4TETqMzO7gcij6qdHLetM5FJhW3cvDK04qRad0YhIvWJm7czs5OCyYR/g+0TOLg+sTwK+BzynkIkP6hlAROqbNCL32LoBO4l8P+chAIt8YXUzkaf2zgmrQKkZXToTEZGY0qUzERGJKV06A1q3bu1du3YNuwwRkbgye/bsre6efah2Chqga9euzJpVnW6xRETkADOrsoeLA3TpTEREYkpBIyIiMaWgERGRmAolaCwyIFRuMK02s9xK2t0aDKK0wMyetWAQqaBvpt+a2dJgYKSbo5Y/YJEBq+aZ2XF1eVwiIvJloTwM4O6XH5g3s/uAgoptgs70bgaOdvciM5tEZAyLJ4j0ydQJ6Ovu5WbWJtjsXCKDSvUCTiTSo+2JsTsSERE5lFCfOjMzIzLIUWUjGKYAjc2shEj37BuC5TcAVxwY393dtwTLRwFPBQNHzTSz5mbWLhgsSUREQhD2PZpTgc3uvqziCndfD9xLpKfdjUCBu78RrO4BXG5ms8zstaiRBzvwxUGS8qhk0CozGx9sPys/P7+WDkdERCqKWdCY2VvBvZWK06ioZuOIdHd+sO1bEDlD6UZkxL0mZnZgVL1GQLG75xDpEv3vNa3P3R9x9xx3z8nOPuT3jQ5qRf5ufvWvhZSUlR/W9iIiDUHMLp25+8iq1gcDXF0MHF9Jk5FERubLD9pPJjJw1TNEzlQmB+1eAh4P5tfzxdH4OvK/0RFr3dpte3n8w9Uc36UF5w+sagRcEZGGK8xLZyOBxe6eV8n6tcBQM8sI7uWcCSwK1k0BRgTzpwNLg/lXgKuDp8+GErncFrP7M6f1zqZTy8Y89VG1vhwrItIghRk0Y6lw2czM2pvZVAB3/5jIyHpzgPlEan0kaHo3cImZzQfuAr4ZLJ8KrCQyWuCjwIRYHkByknHliV34ZNV2lmzaFcu3EhGJWxomAMjJyfHD7etsx579nHjX24zJ6chvRg+o5cpEROovM5sd3CuvUthPncW9Fk3SuGBge16as55dxSVhlyMiUu8oaGrB1cO6sGd/GZPnxOy5AxGRuKWgqQWDOjVnUMcsnp65Bl2KFBH5IgVNLblqWFeWb9nNRyu3hV2KiEi9oqCpJecPbEfzjFSe1qPOIiJfoKCpJempyVye04k3Pt/MpoLisMsREak3FDS16MqhXSh355+frA27FBGRekNBU4s6tcxgRJ82PPvJWvaXqv8zERFQ0NS6q4Z2IX/XPl5fuCnsUkRE6gUFTS07vXc2nVtm8PRMPRQgIgIKmlqXlGRcObQzn6zazuJNhWGXIyISOgVNDFx2fCcapSTpUWcRERQ0MdGiSRoXDGrPS5+p/zMREQVNjFw9rAt71f+ZiIiCJlYGdmzOoE7N1f+ZiDR4CpoYumpol0j/ZyvU/5mINFwKmhg6f2A7WmSk6lFnEWnQFDQxlJ6azJgTIv2fbSwoCrscEZFQKGhi7MoTI/2fPfux+j8TkYZJQRNj/+3/7NN16v9MRBokBU0duGqY+j8TkYZLQVMHTu8V9H+mngJEpAFS0NSB//Z/tlr9n4lIw6OgqSNjctT/mYg0TAqaOtI8I40Lg/7PCtX/mYg0IAqaOnTVgf7PZueFXYqISJ1R0NQh9X8mIg2RgqaOXT20Cyvy96j/MxFpMBQ0deyrQf9nT+mhABFpIBQ0dexA/2dvLlL/ZyLSMChoQqD+z0SkIVHQhKBTywzO6NOGf36i/s9EJPEpaEJy1bAubN29j9cWbAy7FBGRmFLQhOS0Xtn0atOUh6evoLxcjzqLSOJS0IQkKcmYMKIHizft4p3FW8IuR0QkZhQ0IbpgYHs6tmjMn6Yt1xc4RSRhKWhClJKcxPWn9yB33U4+WqkvcIpIYlLQhOzS4zuSndmIP09bHnYpIiIxEUrQmNlEM8sNptVmlltJu1vNbKGZLTCzZ80sPVhuZvZbM1tqZovM7OZg+XAzK4ja98/r8rgOR3pqMt86tRsfLt/GZ2t3hF2OiEitCyVo3P1ydx/s7oOBF4HJFduYWQfgZiDH3fsDycDYYPU1QCegr7v3A56L2vT9A/t29ztieRy15WsndiGrcSoPTV8RdikiIrUu1EtnZmbAGODZSpqkAI3NLAXIADYEy28A7nD3cgB3j+vHtpo0SuHak7vy5uebWbJpV9jliIjUqrDv0ZwKbHb3ZRVXuPt64F5gLbARKHD3N4LVPYDLzWyWmb1mZr2iNh1mZnOD5cdU9sZmNj7YflZ+fn7tHdFhuuakrmSkJfPQdN2rEZHEErOgMbO3gnsrFadRUc3GUcnZjJm1AEYB3YD2QBMzuzJY3Qgodvcc4FHg78HyOUAXdx8EPAhMqaw+d3/E3XPcPSc7O/tIDrVWNM9I48qhXfjX3A2s2bYn7HJERGpNzILG3Ue6e/+DTC8DBJfDLgYmVrKLkcAqd8939xIi93FOCtbl8b/7Oi8BA4P3LHT33cH8VCDVzFrH5ABj4JundCMlOYm/vLsy7FJERGpNmJfORgKL3b2ycY3XAkPNLCO4l3MmsChYNwUYEcyfDiwFMLO2QVvMbAiR44ubL6i0aZbOmJyOvDg7j00FxWGXIyJSK8IMmrFUuGxmZu3NbCqAu38MvEDkcth8IrU+EjS9G7jEzOYDdwHfDJZfCiwws7nAA8BYj7Ov3H/7tB6UufPo+zqrEZHEYHH2ezgmcnJyfNasWWGX8V/fm5jLaws28eGPzqBlk7SwyxEROSgzmx3cK69S2E+dyUHcMLwHRSVlPPHhqrBLERE5YgqaeqjXUZmcc0xbnpixml3FJWGXIyJyRBQ09dSEET0oLC7lmZka7llE4puCpp4a2LE5p/ZqzWMfrKS4pCzsckREDpuCph67cURPtu7ez6RZ68IuRUTksClo6rETu7Xk+C4t+Ou7KykpKw+7HBGRw6KgqcfMjO+M6Mn6nUVM+Wx92OWIiBwWBU09N7xPNv3aNePhd1dQVq7vPIlI/FHQ1HNmxo0jerAyfw+vL9wUdjkiIjWmoIkD5/ZvR/fWTfjztOWoJwcRiTcKmjiQnGRcP7wHCzcUMn1p+GPniIjUhIImTowe3IH2Wek8NE0Do4lIfFHQxIm0lCTGn9adT1fv4JNV28MuR0Sk2hQ0ceTyEzrTqkkaf9ZZjYjEEQVNHGmclsx1p3Tj3aX5zM8rCLscEZFqUdDEmauGdSEzPYWHpuusRkTig4ImzjRLT+Xrw7ryn4WbWL5lV9jliIgckoImDl17clfSU5J54G2d1YhI/aegiUOtmjbi2pO78srcDczL2xl2OSIiVVLQxKnrh/egZZM07py6SL0FiEi9pqCJU83SU7llZC9mrtzOO4u3hF2OiEilFDRxbNyQznRv3YQ7py6iVOPViEg9paCJY6nJSfzwnL6syN/DRI3CKSL1lIImzp19zFHkdGnBH95cxu59pWGXIyLyJQqaOGdm/OSr/di6ex+PvLcy7HJERL5EQZMAjuvcgq8ObMej761kc2Fx2OWIiHyBgiZB3H52X0rLy/n9G0vDLkVE5AsUNAmic6sMrhralednr2PJJnVNIyL1h4Imgdx0Rk+aNErhrtcWhV2KiMh/KWgSSIsmaXxnRE+mL8nnw+Vbwy5HRARQ0CScr5/UlQ7NG/PbVxdRXq6uaUQkfAqaBJOemswPz+nD5xsLeemz9WGXIyKioElEFwxsz4AOWdz3xhKKS8rCLkdEGrhqBY2ZTTazr5qZgikOJCUZPzmvHxsKivn7h6vCLkdEGrjqBsdDwBXAMjO728z6xLAmqQXDerTizL5teHjaCrbt3hd2OSLSgFUraNz9LXf/GnAcsBp4y8xmmNm1ZpYaywLl8P34vL7sLSnjwXc0EqeIhKfal8LMrBVwDfBN4DPgj0SC582YVCZHrGebTC4/oRPPzFzDqq17wi5HRBqo6t6jeQl4H8gALnD3C919orvfBDSt6Zua2UQzyw2m1WaWW0m7W81soZktMLNnzSw9WP5+1PYbzGxKsNzM7AEzW25m88zsuJrWlmhuGdmLtJQk7nltcdiliEgDlVLNdg+4+7SDrXD3nJq+qbtffmDezO4DCiq2MbMOwM3A0e5eZGaTgLHAE+5+alS7F4GXg5fnAr2C6UTg4eC/DVabzHS+fVoP/vDWUmat3k5O15ZhlyQiDUx1L521MLOLK0xnmlmbI3lzMzNgDPBsJU1SgMZmlkLkbGpDhe2bAWcAU4JFo4CnPGIm0NzM2h1JjYngW6d1o01mI+6cugh3fYlTROpWdYPmG8DfgK8F06PA7cCHZnbVEbz/qcBmd19WcYW7rwfuBdYCG4ECd3+jQrPRwNvuXhi87gBEDzWZFyz7EjMbb2azzGxWfn7+ERxC/ZeRlsL3z+rNnLU7eW3BprDLEZEGprpBkwr0c/dL3P0S4GjAiVyWuv1gG5jZW8G9lYrTqKhm46jkbMbMWhA5Q+kGtAeamNmVFZpVuv2huPsj7p7j7jnZ2dmHs4u4cunxnehzVCb3/Gcx+0vLwy5HRBqQ6gZNR3ffHPV6C9DJ3bcDJQfbwN1Hunv/g0wvAwSXwy4GJlbyniOBVe6e7+4lwGTgpAMrzaw1MAR4NWqb9UCn6LqDZQ1ecpLxo/P6smbbXp6ZuSbsckSkAalu0Ew3s3+b2dfN7OtEbr5PN7MmwM7DfO+RwGJ3z6tk/VpgqJllBPdyzgSi+7+/FPi3u0cPKfkKcHXw9NlQIpfbNh5mfQlneO9sTu7ZigfeWUZB0UH/PhARqXXVDZobgceBwcH0FHCju+9x9xGH+d5jqXDZy8zam9lUAHf/GHgBmAPMD2p9pKrtganASmA5kftIEw6ztoRkFumapqCohIem6UucIlI37FBPIZlZMvDWEQRKvZeTk+OzZs0Ku4w684Pn5/Jy7nr+fdOp9GmbGXY5IhKnzGx2db7icsgzGncvA8rNLKtWKpPQ/eS8fmSmp3L7i/Mo05g1IhJj1b10thuYb2aPBd+8f8DMHohlYRI7LZuk8YsLjiZ33U6emLE67HJEJMFVt2eAycEkCeLCQe2Z8tl67n19CWcdfRSdWmaEXZKIJKjq9t78JDAJmOnuTx6YYluaxJKZ8ZuLBpBk8JOX5qvHABGJmep2qnkBkAv8J3g92MxeiWVhEnsdmjfmh+f05f1lW5k8R183EpHYqO49ml8S+XLkTgB3zwW6x6gmqUNXDe3C8V1a8OtXP2erBkgTkRiobtCUuHvFHpbVj0kCSEoy7rlkAHv3lfHLVxaGXY6IJKDqBs1CM7sCSDazXmb2IDAjhnVJHerZJpPvnNGTf8/byFufbz70BiIiNVDdoLkJOAbYR+Tb+IXALbEqSure9af3oM9RmfzflAXsKlb3NCJSe6r71Nled/+pu58Q9Hj80wp9jEmcS0tJ4p5LB7J5VzH3/EejcYpI7anuU2e9zewRM3vDzN45MMW6OKlbgzs159qTuvHMzLV8smp72OWISIKo7qWz54HPgP8DbouaJMH84OzedGzRmB+9OI/ikrKwyxGRBFDdoCl194fd/RN3n31gimllEoqMtBTuvGgAK7fu4cF3vjTwqYhIjVU3aP5lZhPMrJ2ZtTwwxbQyCc1pvbO55LiO/PXdlXy+ofDQG4iIVKG6QfN1IpfKZgCzg6nh9KvfAP3s/H40z0jlR5PnUVqmr0yJyOGr7lNn3Q4yqWeABNY8I41fXngM8/IKePzD1WGXIyJxrMqgMbMfRs1fVmHdnbEqSuqHrw5ox8h+bbjvzSWs2bYn7HJEJE4d6oxmbNT8jyusO6eWa5F6xsz49ej+pCQl8ePJ6uFZRA7PoYLGKpk/2GtJQO2yGvOjc/syY8U2np+VF3Y5IhKHDhU0Xsn8wV5LgrpiSGeGdGvJb179nC271CGEiNTMoYJmkJkVmtkuYGAwf+D1gDqoT+qBpCTjrosHUFxarh6eRaTGqgwad09292bununuKcH8gdepdVWkhK9HdlO+e2Yvps7fxOsLN4VdjojEkep+j0aE8ad1p1+7ZvxsygK2aZA0EakmBY1UW2pyEvdeNpCdRSXcOmku5eW6TScih6agkRo5pn0Wv7zgGN5bms+fpi0PuxwRiQMKGqmxcUM6cdGxHfjDW0v5cPnWsMsRkXpOQSM1Zmb89qL+9Mxuynef+4xNBXrkWUQqp6CRw5KRlsLDVx7H3v1l3PTsHErU8aaIVEJBI4etZ5tM7rp4AJ+u3sG9ry8JuxwRqacUNHJERg3uwNdO7Mxf31vJm59vDrscEamHFDRyxH52/tH079CM70/KZd32vWGXIyL1jIJGjlh6ajIPXXE8Dkz4xxyKS8rCLklE6hEFjdSKzq0yuO+yQcxfX8BvXv087HJEpB5R0EitOeuYtow/rTvPzFzLy7nrwy5HROoJBY3UqtvO7sMJXVvw48nzWb5lV9jliEg9oKCRWpWanMSD446jcWoyNzwzh737S8MuSURCpqCRWtc2K50/jj2W5fm7+b+XFmgIaJEGTkEjMXFKr9Z898xeTP5sPc99ui7sckQkRKEEjZlNNLPcYFptZrmVtLvVzBaa2QIze9bM0oPl70dtv8HMpgTLh5tZQdS6n9flcckX3XRGL07t1ZpfvLKQBesLwi5HREISStC4++XuPtjdBwMvApMrtjGzDsDNQI679weSgbHB9qdGbf9Rhe3fP7DO3e+I+cFIpZKTjPsvH0zLjDRu/OccCotLwi5JREIQ6qUzMzNgDPBsJU1SgMZmlgJkABsqbN8MOAOYEss65fC1atqIP11xLOt3FHHb83N1v0akAQr7Hs2pwGZ3X1ZxhbuvB+4F1gIbgQJ3f6NCs9HA2+5eGLVsmJnNNbPXzOyYyt7YzMab2Swzm5Wfn3/kRyKVyunakh+d25fXF27msQ9WhV2OiNSxmAWNmb0V3FupOI2KajaOSs5mzKwFMAroBrQHmpjZlRWaVdx+DtDF3QcBD1LFmY67P+LuOe6ek52dXfMDlBr5xindOPuYo7j7tcUaLE2kgYlZ0Lj7SHfvf5DpZYDgctjFwMRKdjESWOXu+e5eQuQ+zEkHVppZa2AI8GrUexa6++5gfiqQGrSTkJkZ/+/SQfTIbsr4p2YxP08PB4g0FGFeOhsJLHb3vErWrwWGmllGcC/nTGBR1PpLgX+7+3+HdzSztkFbzGwIkePbFpPqpcayGqfy5HVDaJ6RxjWPf8LK/N1hlyQidSDMoBlLhctmZtbezKYCuPvHwAtELofNJ1LrI1VtTyR8FpjZXOABYKzr7nO90jYrnWe+eSIAVz32iYaBFmkATL+HIScnx2fNmhV2GQ3KgvUFjH1kJu2y0nn++mE0z0gLuyQRqSEzm+3uOYdqF/ZTZ9JA9e+QxSNXH8+abXu57olP1SeaSAJT0EhoTurRmgfGDSZ33U4m/GMOJWXlYZckIjGgoJFQndO/Hb+9aADTl+Tzg+fnUl6uS7kidWVTQXGdjIiroJHQjRvSmdvO7sPLuRu449+fq/cAkTrw2vyNnH3/e9z7+pKYv1dKzN9BpBomDO/B9j37eeyDVbRqksZNZ/YKuySRhLRnXym/+tdCJs3KY2DHLK44sXPM31NBI/WCmfHT8/qxY89+7ntzKS2bpvG1E7uEXZZIQvls7Q5umZjLuu17+c6Innx3ZC9Sk2N/YUtBI/VGUpJxz6UD2VlUwv9NWUCLjDTOG9Au7LJE4l5pWTkPTV/BH99eRttm6Tw3fhhDurWss/dX0Ei9kpqcxJ+vOI6rHvuYW57LJatxKif3VC9CIodr3fa93DIxl9lrdjB6cHvuGN2fZumpdVqDHgaQeqdxWjKPff0Eumc3YfxTs5iXtzPskkTijrszeU4e5/7xfZZu2sUfxw7m/rHH1nnIgIJG6qmsjEi/aC2apHHN45+yQv2iiVRbQVEJNz+Xy/cmzaVfu0ymfvdURg3uEFo9Chqpt45qls7T3ziRJIOrH/uEjQVFYZckUu/NXLmNc+9/j9fmb+S2s/vw3PhhdGqZEWpNChqp17q1bsIT1w6hoKiEqx/7hB179oddkki9tL+0nHv+s5hxj86kUWoyL95wEjeO6ElykoVdmoJG6r/+HbJ49Ooc1mzfy2V//Yi8HXvDLkmkXlmRv5tLHp7Bw9NXcHlOJ/590ykM6tQ87LL+S0EjcWFYj1Y8ee0QNhcWc/FDM1i4QQOnibg7//h4DV994H3W7djLX648nrsvGUiTRvXrgWIFjcSNYT1a8eINJ5GcZFz+15m8vyw/7JJEQrNm2x6ufOxjfvrSAnK6tOT1W07jnP5twy7roBQ0Eld6H5XJSxNOpmOLxlz7+Ke8OLuyAVpFElNpWTl/eXcFZ9//HnPXFfDr0f156rohHNUsPezSKlW/zq9EqqFtVjqTrh/G9U/P5vvPz2VTYTEThvcgGMVbJGEtWF/A7S/OY+GGQr5y9FH8elR/2mbV34A5QEEjcalZeipPXDuEH74wl9+9voT1O4u448JjSKmDfptE6lrR/jL+8NZSHvtgFS2bpPHw147jnP5t4+aPKwWNxK20lCR+P2Yw7Zo35uHpK9hSWMwD444lI03/rCVxfLBsKz95aT5rt+9l3JBO/OicfmRl1P23+4+E/o+UuJaUZNx+Tl/aZ6Xzi1cWMu7Rj3ns6zm0btoo7NJEjsiOPfv5zauLeHFOHt1aN+G58UMZ2r1V2GUdFgWNJISrhnXlqGbp3PzcZ1zy8AyevHYIXVs3CbsskRpzd16Zu4E7/vU5BUUl3DiiBzed0Yv01OSwSztsuqAtCeOsY9ryz28NpbCohIsfnsFna3eEXZJIjazfWcR1T3zKd5/LpWPLDP510yncdnbfuA4ZUNBIgjmucwtevOEkmjRKZtyjM3nr881hlySQOskrAAASMklEQVRySGXlzuMfruIrv3+Xj1dt5+fnH83kG06iX7tmYZdWKxQ0knC6Zzdl8g0n0/uoTMY/PYt/fLwm7JJEKrVgfQGXPDyDX/3rc4Z0a8kbt57Gdad0qxd9lNUW3aORhJSd2Yjnxg/lxn/M4acvLWDjzmK+f1bvuHkcVBLfpoJifvf6EiZ/lkfLjDT+OHYwFw5qn5D/RhU0krAy0lJ49OocfvbyAv40bTmrtu7hzosGxN2joZJY9u4v5a/vruSR91ZSVu58+7QeTBjRI5QByeqKgkYSWkpyEndeNIAurZpw7+tLmL1mB/deNohTeml4aKlb5eXOi3Py+N3rS9iyax/nD2zH7ef0DX2smLqgoJGEZ2Zcf3oPTu7RmlsmfsaVj33MNSd15Ufnxv/TPBIfZqzYym9fXcTCDYUM7tSch688juO7tAy7rDqjoJEGY0DHLF69+VTufm0xT8xYzfvL8rn/8mMZ0DEr7NIkQa3M382dUxfz1qLNdGjemAfGHcsFA9sl5H2Yqpi7h11D6HJycnzWrFlhlyF16P1l+dz2/Dy27t7HLSN7cf3pPdRPmtSaHXv288e3l/HMzDWkpyYzYUQPrju5W8KdQZvZbHfPOWQ7BY2CpqEq2FvCz15ewCtzN3Bs5+b8Ycxg9SYgR2R/aTlPfbSaB95exu59pYwd0plbR/YmOzMxu0RS0NSAgqZhezl3PT+bsoCSMudn5x/NuCGdGtylDTky7s7rCzdz92uLWL1tL6f1zuan5/WjT9vMsEuLqeoGje7RSIM3anAHhnRryW3Pz+MnL83nrUWbufuSAbTJrP/jfEi43J23F23hT9OWk7tuJ73aNOWJa09geJ82YZdWr+iMBp3RSER5ufPUR6u567XFZKQlc9fFA+vt0LgSrrJy59X5G3lo2nIWb9pFxxaNmTC8J2NyOjaoe326dFYDChqJtnzLLm6ZmMuC9YVcenxHfnHB0WQm8JfppPr2l5bz0md5PDx9Bau37aVnm6ZMGN6DCwa1J7UBBcwBunQmcph6tslk8g0n8+A7y/jztOV8tGIb9142iGE94nMsEDlyRfvLeO7TtTzy3ko2FhQzoEMWf7nyOM46ui1JCdQnWazojAad0UjlZq/Zwfcm5bJm215G9Mnm+2f1oX8Hfe+moSgsLuHpj9bw2Aer2L5nP0O6teTGET05rVdrPTBCHFw6M7OJQJ/gZXNgp7sPPki7W4FvAg7MB65192IzOxP4HZEeqHcD17j7cjNrBDwFHA9sAy5399VV1aKgkaoU7S/jiRmr+cu7KygoKuG8AW353ld607NNYj9R1JBt272Pv3+4iqdmrGHXvlKG98nmxhE9OaFrw/k2f3XU+6D5QhFm9wEF7n5HheUdgA+Ao929yMwmAVPd/QkzWwqMcvdFZjYBGOLu1wTzA939ejMbC1zk7pdX9f4KGqmOwuIS/vb+Kh57fyVFJWWMPrYDt5zZm86tEr+vqoZiY0ERj7y3kmc/Wcu+0nLO7d+WCcN76iy2EnFzj8Yi559jgDMqaZICNDazEiAD2BAsd+DAqEBZUctHAb8M5l8A/mRm5vUhUSWuNUtP5Xtf6c01J3XlL++u4MkZq3kldwNjTujETWf0pF1W47BLlMPg7sxes4PnPl3Hy7nrKXcYPbgDNwzvQc82TcMuLyGEfkZjZqcBv68sFc3su8BvgSLgDXf/WrD8VGBKsLwQGOruhWa2ADjH3fOCdiuAE919a4X9jgfGA3Tu3Pn4NWs0OJbUzJbCYv40bTnPfrIWM+PKE7swYUQPWjdNzG+BJ5r8XfuYPCePSbPWsSJ/D03Skrn4uI6MP617g+hRuTbUi0tnZvYWcLAvIvzU3V8O2jwMLHf3+w6yfQvgReByYCfwPPCCuz9jZpOBe9z9YzO7Dejj7t+sbtBE06UzORLrtu/lwXeW8cLsPNJTk7n25K6MP7WHxr2ph0rLynl3aT4TP13HO4u3UFru5HRpwZicTnx1YDuaNAr9Ik9cqReXztx9ZFXrzSwFuJjIjfuDGQmscvf8oP1k4CQzex0Y5O4fB+0mAv8J5tcDnYC8YP9ZRB4KEImJTi0z+H+XDuL603vwh7eW8edpK3jqozWMP7U7157Sjab65RW61Vv3MGnWOl6YnceWXfto3TSNb5zSjctyOunyWB0I+/+AkcDiA2cfB7EWGGpmGUQukZ0JzAJ2AFlm1tvdlwJfARYF27wCfB34CLgUeEf3Z6QudM9uyoPjjmXC8B7c98ZS7ntzKY/PWM31p3fnkuM60kqX1OpU0f4yps7fyKRZ6/h41XaSDEb0acOYEzpxRt82DfILlmEJ9R6NmT0BzHT3v0Qtaw/8zd3PC17/isils1LgM+Cb7r7PzC4C7gDKiQTPde6+0szSgaeBY4HtwFh3X1lVHbp0JrGQu24n972xhPeXbSUlyTi1V2tGH9uBrxx9FBlpYf+Nl5jcnXl5BUyctY5/5W5g175SurbK4LKcTlx6fEeOaqb+62pTvbhHEy8UNBJLizYWMiV3Pa/kbmBjQTEZacmcfUxbRg1uzyk9WzeovrFiobSsnDlrdzJtyRbeXrSZpZt3k56axHn92zHmhE6c2K2lvlwZIwqaGlDQSF0oL3c+Wb2dl3PX8+q8jRQWl9K6aRrnD2zPqMHtGdypuX4hVtOWwmKmL83n3SX5vLcsn13FpaQkGcd3acEFg9pz4eD2NFP/dDGnoKkBBY3UtX2lZUxbnM/Luet5e/EW9peW07VVBhcO7sDowe3pnq0b1NFKy8rJXbeT6UvymbZkCws3FALQJrMRI/q0YXifbE7u1VrhUscUNDWgoJEwFRSV8PqCTUzJXc9HK7fhDoM6ZjFqcAfOH9SuwY6Lk79rH+8uzWf6ki28v2wrBUUlJCcZx3duwel9shnRpw392mXqLDBECpoaUNBIfbGpoJhX5q5nymcb+HxjIWbQq01TBnZszqCOWQzo2Jx+7TJplJJYY8+XlzvrdxaxaGMh8/IKeHdpPvPXFwCQndmI4b2zGd6nDaf0ak1WY5211BcKmhpQ0Eh9tGzzLqbO30Tuuh3Myytg2579AKQmG33bNmNgxywGdWzOgI5Z9GrTNG4eKigoKmHJpl0s3lTIoo27WLKpkCWbdrFnfxkASQbHdW7B8D6RcDm6XTN1xV9PKWhqQEEj9Z175C/++XkFzM0rYF7eTubnFbBrXykAjVOTOaZ9s8iZT6csBnTIomurJqH+gi4pK2fV1j0s2ljI4k27IuGysZANBcX/bZPVOJW+bTPp164Zfdpm0rdtJr2PytQ39OOEgqYGFDQSj8rLndXb9jAvr4C5QfAs2FBAcUk5AJnpKXRo3pisxqk0z0glq/EXp2aNU2mekfbFZekpXzozcnf27i+jsLiEXcWlFBYF/y0uobDC613FpewqLmFTQTEr8/ewvyxSS0qS0bNNU/q2zaRP22b0bZdJv7bNOKpZI91jiWP1ogsaEYmdpCSje3ZTumc3ZfSxHYDI01nLtuxmfl4B89bvZHPhPgr2lrB6614KikooKCqhqKSsyv1mNkqhWeNUkpIIgqOUsvKq/yBNS06iWeMUMtMjYdUuK53T+2TTLwiV7q2bkpYSH5f2pPYpaEQSSEpyEv3aNaNfu2aMOaHTQdvsKy2joKiEwiB4CopK2Ln3f/MFRSUU7C2h3J1mjVNplp5KZnokfDLTUw76Oj01sR5OkNqloBFpYBqlJNMmM7nBPjYtdU/nsiIiElMKGhERiSkFjYiIxJSCRkREYkpBIyIiMaWgERGRmFLQiIhITCloREQkptTXGWBm+cCasOs4DK2BrWEXUcd0zImvoR0vxO8xd3H37EM1UtDEMTObVZ0O7RKJjjnxNbTjhcQ/Zl06ExGRmFLQiIhITClo4tsjYRcQAh1z4mtoxwsJfsy6RyMiIjGlMxoREYkpBY2IiMSUgqaeM7O/m9kWM1tQyfpRZjbPzHLNbJaZnVLXNda2Qx1zVLsTzKzUzC6tq9pipRqf83AzKwg+51wz+3ld11jbqvM5B8eda2YLzezduqyvtlXjM74t6vNdYGZlZtayruuMBd2jqefM7DRgN/CUu/c/yPqmwB53dzMbCExy9751XWdtOtQxB22SgTeBYuDv7v5CHZZY66rxOQ8HfuDu59d1bbFSjWNuDswAznH3tWbWxt231HWdtaU6/66j2l4A3OruZ9RJcTGmM5p6zt3fA7ZXsX63/++vhSZA3P/lcKhjDtwEvAjE7S+eaNU85oRSjWO+Apjs7muD9nH9WdfwMx4HPBvDcuqUgiYBmNlFZrYYeBW4Lux6Ys3MOgAXAQ+HXUsdG2Zmc83sNTM7Juxi6kBvoIWZTTez2WZ2ddgF1QUzywDOIfKHVEJICbsAOXLu/hLwUnBq/mtgZMglxdr9wO3uXm5mYddSV+YQ6Vdqt5mdB0wBeoVcU6ylAMcDZwKNgY/MbKa7Lw23rJi7APjQ3RPmDFdBk0Dc/T0z625mrd09Hjvoq64c4LkgZFoD55lZqbtPCbes2HH3wqj5qWb2UAP4nPOAbe6+B9hjZu8Bg4BED5qxJNBlM9Cls7hnZj0t+I1rZscBjYBt4VYVW+7ezd27untX4AVgQiKHDICZtY36nIcQ+X83oT9n4GXgFDNLCS4nnQgsCrmmmDKzLOB0IseeMHRGU8+Z2bPAcKC1meUBvwBSAdz9L8AlwNVmVgIUAZdHPRwQl6pxzAmnGsd8KXCDmZUS+ZzHJvrn7O6LzOw/wDygHPibu1f5yHt9Vs1/1xcBbwRncQlDjzeLiEhM6dKZiIjElIJGRERiSkEjIiIxpaAREZGYUtCIiEhMKWgkIZnZ7mq0uSX4fkZtvedoMzu6Fvc34wi23R38t72ZVdrhqJk1N7MJh/s+ItWhoJGG7BagRkET9BpdmdFArQWNu59UC/vY4O5VDaPQHFDQSEwpaCShBeOZTDezF8xssZn9wyJuBtoD08xsWtD2LDP7yMzmmNnzwRAMmNlqM7vHzOYAl5nZt8zs06CDyxfNLMPMTgIuBH4XjCfSw8wGm9lMi4wX9JKZtQj2N93M/mCR8YMWWWRcnclmtszMfhNV++6o+dvNbH7wnncf5Di7BbXPr7CPrgfGPzGzY8zsk6C+eWbWC7gb6BEs+52ZNTWzt4OfwXwzGxW1n0Vm9qhFxoZ5w8waB+t6mtlbQW1zzKxHsPy24Oc0z8x+VasfrMQXd9ekKeEmYHfw3+FAAdCRyB9WHwGnBOtWA62D+dbAe0CT4PXtwM+j2v0wat+touZ/A9wUzD8BXBq1bh5wejB/B3B/MD8duCeY/y6wAWhHpPugvAP7jzqGc4mMy5IRvG55kON9Bbg6mL8xatuuwIJg/kHga8F8GpGOKv+7PlieAjSL+pksByxoVwoMDtZNAq4M5j8GLgrm04mcJZ4FPBJsmwT8Gzgt7H8XmsKZ1AWNNASfuHsegJnlEvml+UGFNkOJXPb6MOhSLI1IKB0wMWq+f3DW0BxoCrxe8Q2DPquau/uBUSGfBJ6PavJK8N/5wEJ33xhstxLoxBf7MRsJPO7uewH84L36nkykOyKAp4F7DtLmI+CnZtaRyDgvy+zLvV8bcKdFegIvBzoARwXrVrl7bjA/G+hqZplAB4/0II67FwfHcRaRsPksaN+USG/T7x2kLklwChppCPZFzZdx8H/3Brzp7uMq2Ud031NPAKPdfa6ZXUPkrOlwayqvUF95JfVVR5X9Sbn7P83sY+CrwFQz+zawskKzrwHZwPHuXmJmq4mcpUTXDJGfY+Mq3s6Au9z9rzWoXxKU7tFIQ7YLyAzmZwInm1lPADNrYma9K9kuE9hoZqlEfjF/aX/uXgDsMLNTg3VXAYc75v2bwLUHnpCzg48j/yGR7uWpUNN/mVl3YKW7P0Ckd+CBfPFnAJAFbAlCZgTQparC3H0XkGdmo4P3aBTU+TpwXdR9rg5m1qZaRysJR0EjDdkjwH/MbJq75wPXAM+a2Twil5n6VrLdz4jcl/gQWBy1/DngNjP7LLgh/nUiDwfMAwYTuU9TY+7+HyKX2mYFl/5+cJBm3wVuNLP5RC53HcwYYEGwj/5Exq7fRuRy4QIz+x3wDyAn2M/VFY6vMlcBNwfHOQNo6+5vAP8kMljZfCLDOWRWsQ9JYOq9WUREYkpnNCIiElMKGhERiSkFjYiIxJSCRkREYkpBIyIiMaWgERGRmFLQiIhITP1/AI/OIczCUVQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, energies)\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('LiH Ground State Energy');" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4VVX69vHvk0pL6EVAOkgRQQlNqhXGio6KiAUUKzas4/wsM6Pj6NhQURQVEVRGx4IyFlSkKSAGpYr0jjRRegs87x9nM++RIeFgcrJT7s91nYuT3c6zCeTO2mvvtczdERER+b0Swi5AREQKNwWJiIjkioJERERyRUEiIiK5oiAREZFcUZCIiEiuKEikUDKzTmY2Px8+5xMzuyIPjvMXM3s9L2oSKWgUJFKgmdkyMzv14OXuPsndj8lpOzPrY2Zf5XBsN7PtZrbNzH42s7Fm1vOgz/mDu7+WF+fyewXntsfMKh20/PvgHOqEU9mhmdkwM3so7Dok/yhIpLhr4e5lgGOAYcAgM3sg3JIOaSnQ68AXZtYcKBVeOSL/n4JECiUz62pmq/LqeO6+0d1HANcD95hZxeBzxptZv+B9HzP72swGmdlmM/vRzE6Jqqm6mX1oZpvMbJGZXZ1D/e3MbLKZ/WpmM82s62FKHAFcHvX1FcDwg45Z1syGm9kGM1tuZveaWcJBtT8VfOYSMzsxWL7SzNZHX8Izs1Qze9zMVpjZOjN7wcxKBuu6mtkqM7s92O8nM+sbrLsG6A3cFbT0Rh/mvKQIUJCI/NYHQBLQJpv1bYHFQCXgAeA9M6sQrPsXsAqoDlwAPGxmJx98ADOrAXwEPARUAO4A3jWzyjnUNRVIN7MmZpYIXAwc3OfyLFAWqAd0IRI8fQ+qfRZQEXgzqLc10AC4lEhrrEyw7SNAI6BlsL4GcH/UsaoFn1UDuAp4zszKu/sQ4A3gn+5ext3PzuGcpIhQkEhRMir4bftXM/sVeP5ID+Due4GNRH7AH8p6YKC773X3t4D5wJlmdjTQAbjb3Xe5+wzgZX7bijjgUuBjd//Y3fe7++dAJnDGYco70Co5DZgHrD6wIipc7nH3re6+DHgCuCxq/6Xu/qq77wPeAo4G/ubuu939M2AP0MDMDLgGGODum9x9K/BwcPwD9gb77nX3j4FtRC4PSjGUFHYBInmoh7t/ceALM+sD9DuSA5hZMlAZ2JTNJqv9tyOdLifSAqkOHPihG70u4xDHqA1caGbRv60nA+MOU94IYCJQl4MuaxFpISUHnxn9+TWivl4X9X4ngLsfvKwMkfMvBUyPZAoABiRGbfuzu2dFfb0j2FeKIbVIRH7rXCALmJbN+hoW9dMVqAWsCV4VzCztoHWr+V8rgRHuXi7qVdrdH8mpMHdfTqTT/QzgvYNWbyTSSqgdw+cfzkYiodIsqr6ywU0JsdCQ4sWMgkQKg2QzKxH1yvOWtJlVMLPewHPAo+7+czabVgFuNrNkM7sQaELkMtVKYDLwj6DG44j0HRzq2ZHXgbPNrJuZJQbbdzWzmjGUehVwsrtvj14YXK56G/i7maWZWW3gtmw+P0fuvh94CXjKzKpApF/HzLrFeIh1RPpppJhQkEhh8DGR35APvP6Sh8eeaWbbgEVELoMNcPf7c9j+G6Ahkd/a/w5cEBU6vYA6RFon7wMPRF9qOyAInXOBPwMbiLRQ7iSG/4/uvtjdM7NZfROwHVgCfEWkQ33o4Y6ZjbuJ/J1MNbMtwBfE3gfyCtA06Ksa9Ts/XwoR08RWIrE50Ofi7h3DrkWkIFGLREREckVBIiIiuaJLWyIikitqkYiISK4UiwcSK1Wq5HXq1Am7DBGRQmX69Okb3T2noXuAYhIkderUITMzuzsmRUTkUMxs+eG30qUtERHJJQWJiIjkioJERERyRUEiIiK5oiAREZFcUZCIiEiuKEhERCRXFCQ5GD1zDe9/vwoNIyMikj0FSQ7e+24VA96aSb/XMlm7eVfY5YiIFEgKkhy8fEVr7j2zCV8v3shpT03g7W9XqnUiInIQBUkOEhOMfp3q8ektnWlyVDp3vTuLy4dOY9UvO8IuTUSkwFCQxKBOpdL86+p2PHhuM6Yv/4VuT01kxNTl7N+v1omIiIIkRgkJxmXt6zDm1s4cX6s8942awyUvT2X5z9vDLk1EJFQKkiN0dIVSjLiqDY+c35y5q7fQfeAkhn61lH1qnYhIMaUg+R3MjIvb1OKz2zrTrl4F/vafH7joxSks3rAt7NJERPKdgiQXjipbkqF9WvPkRS1YtH4bf3h6Ei9MWEzWvv1hlyYikm8UJLlkZpx/Qk0+H9CZro0q88gnP/LHwZOZv3Zr2KWJiOQLBUkeqZJeghcva8WzvY5n5S87OevZSTwzdiF7stQ6EZGiTUGSh8yMs1tU5/MBnenWrBpPfr6AM5+ZROayTWGXJiISNwqSOKhYJpVBl5zA0D4Z7NizjwtemMI9781m8869YZcmIpLnFCRxdHLjqnw2oDP9OtblrW9XcMoTExg9c42GWRGRIkVBEmelU5O496ymfHhjR44qW4KbRn7PlcO+ZeUmDbMiIkWDgiSfHFujLO/fcCL3ndWUb5Zu4vSnJvLSxCW6VVhECj0FST5KSkzgqo51+fy2LnRoUJG/fzyPc5/7mlmrfg27NBGR301BEoIa5Ury0uUZDO59Ahu27qbHc1/z19Fz2bY7K+zSRESOmIIkJGbGH5ofxRe3d6F329oMm7yM056cwOc/rAu7NBGRI6IgCVl6iWQe7HEs71x3Iuklkrl6eCbXjZiuGRlFpNBQkBQQrWqX5z83d+Su7scwbv56Tn1yAq98tVSd8SJS4ClICpDkxARu6NqAzwZ0plXt8jz4nx8469mv+FZPxotIARa3IDGzoWa23szmZLO+rJmNNrOZZjbXzPpGrdtnZjOC14dRy+ua2TdmtsjM3jKzlHjVH6baFUszrG9rXri0FVt27uXCF6Zw+9sz2bB1d9iliYj8j3i2SIYB3XNY3x/4wd1bAF2BJ6KCYae7twxe50Tt8yjwlLs3AH4Brsr7sgsGM6P7sdX44vYu3NC1Ph/OXM3JT4zntcnLNImWiBQocQsSd58I5HRNxoE0MzOgTLBttve/BtudDLwTLHoN6JE31RZcpVKSuKt7Yz69tTMtapbjgQ/ncs6gr5i+/JewSxMRAcLtIxkENAHWALOBW9z9QM9yCTPLNLOpZnYgLCoCv7r7gbBZBdTI14pDVL9yGUZc1YbnLjmBn7ft4Y+DJ3PXOzP5eZsud4lIuMIMkm7ADKA60BIYZGbpwbra7p4BXAIMNLP6R3pwM7smCKPMDRs25FnRYTIzzjzuKMbe3oVrO9fjve9Wc/ITE3h96nJd7hKR0IQZJH2B9zxiEbAUaAzg7quDP5cA44HjgZ+BcmaWFOxfE1id3cHdfYi7Z7h7RuXKleN3FiEonZrEPWc04ZNbOtHkqDTuHTWH857/mpkrNdSKiOS/MINkBXAKgJlVBY4BlphZeTNLDZZXAjoQ6ZR3YBxwQbD/FcAH+V51AdKwahojr27H0xe3ZO3mXfR4/mvueW82v2zfE3ZpIlKMWLzmxjCzkUTuxqoErAMeAJIB3P0FM6tO5M6uowADHnH3183sROBFYD+RoBvo7q8Ex6wH/AuoAHwPXOruh+0kyMjI8MzMzDw9v4Jm6669DPxiIcMmLyOtRBJ3djuGi1vXIjHBwi5NRAopM5sedDPkvF1xmGSpOATJAT+u3cL9H8xl2tJNNDkqnb+c3ZS29SqGXZaIFEKxBomebC9iGldL561r2jHokuPZvGMPPYdMpf+b37HqF02kJSLxoSApgsyMs46rztjbu3LrqQ0ZO28dpzwxgac+X8DOPfvCLk9EihgFSRFWMiWRW09txNjbu3Ja06o8PXYhpzwxXvPGi0ieUpAUAzXKlWTQJSfw9rXtKVcqhZtGfk/PF6cyZ/XmsEsTkSJAQVKMtKlbgdE3deQf5zdn0YZtnD3oK+55b5aejheRXFGQFDOJCUavNrUYd0dXruxQl39nrqLr4+N5edIS9mruExH5HRQkxVTZksncd1ZTPr21E8fXKs9DH82j+8CJjJ+/PuzSRKSQUZAUcw2qpPFa39a8ckUG+/Y7fV79liuHfcui9VvDLk1ECgkFiWBmnNKkKmMGdObPZzTm26Wb6DZwEveNmqP+ExE5LAWJ/FdqUiLXdK7P+Du70rttLd6ctoKuj43nhQmL2bVXz5+IyKEpSOR/VCyTyt/OPZYxt3aiTd0KPPLJj5zyxAQ9fyIih6QgkWw1qJLGK31a80a/tqSXTOamkd9z/uDJmp1RRH5DQSKH1aFBJf5zU0f+ecFxrP5lJ38cPJn+b37Hyk0av0tENPqvHKHtu7MYMnEJL05czP790LdDHW44qQFlSyaHXZqI5DGN/itxUTo1iQGnNWL8HSdxTsvqDJm0hJMeH8/wKcv0QKNIMaUgkd+lWtkSPH5hC0bf2JFjqqZx/wdz6T5wImPnrVOHvEgxoyCRXDm2RlnevLotL12egTtc9VomPYdM5fsV6pAXKS4UJJJrZsZpTSMPND54bjOWbNjGec9Ppv8b37Fs4/awyxOROFNnu+S5bbuzeGniEl6atIQ9Wfvp3bYWN53SkEplUsMuTUSOgOZsj6IgCcf6rbt4+ouF/OvblZRISuDaLvXp16kupVKSwi5NRGKgIImiIAnX4g3b+OenPzJm7joqp6Uy4NRGXJRRk6REXVkVKch0+68UGPUrl+HFyzJ49/r21K5Qij+/P5tuAycyZu5a3eElUgQoSCTftKpdgX9f154hl7XCgWtHTOfCF6ZoyBWRQk5BIvnKzDi9WTU+u7UzD5/XnOWbdvDHwZO5dkQmizdsC7s8Efkd1EciodqxJ4uXJy3lxQmL2ZW1n4syjuaWUxpSrWyJsEsTKfbU2R5FQVLwbdy2m0FfLuKNb5aTYEafDnW4vkt9ypVKCbs0kWIr9M52MxtqZuvNbE4268ua2Wgzm2lmc82s70Hr081slZkNilo23szmm9mM4FUlXvVL/qpUJpW/nNOML2/vypnNj2LIxCV0+uc4nhu3iB17ssIuT0RyEM8+kmFA9xzW9wd+cPcWQFfgCTOL/vXzQWDiIfbr7e4tg9f6vCpWCoajK5TiyZ4t+eSWTrStW4HHxsyny2PjeX3qcg0KKVJAxS1I3H0isCmnTYA0MzOgTLBtFoCZtQKqAp/Fqz4p2BpXS+flK1rz7+sitwzfO2oOpz45gQ9nrmH//qJ/OVakMAnzrq1BQBNgDTAbuMXd95tZAvAEcEc2+70aXNa6LwihQzKza8ws08wyN2zYkOfFS/5oXSdyy/DQPhmUTE7k5pHfc/agr5iwYIOeQREpIMIMkm7ADKA60BIYZGbpwA3Ax+6+6hD79Hb35kCn4HVZdgd39yHunuHuGZUrV8776iXfmBknN67KRzd34qmeLdi8cy9XDJ1Gr5em8p1GGRYJXZhB0hd4zyMWAUuBxkB74EYzWwY8DlxuZo8AuPvq4M+twJtAmzAKl3AkJhjnHV+TL2/vyl/Pacai9ds4//nJXDM8k4XrtoZdnkixFWaQrABOATCzqsAxwBJ37+3utdy9DpHLW8Pd/U9mlmRmlYLtk4GzgEPeESZFW0pSAlecWIcJd57Ebac1YvLin+k2cCK3vz1T88iLhCBuw7Ca2Ugid2NVMrNVwANAMoC7v0DkrqxhZjYbMOBud9+YwyFTgTFBiCQCXwAvxat+KfhKpyZx8ykNubRdbZ4ft4jhU5fz4czVXNKmFv1PbkCVND3UKJIf9ECiFBk/bd7JM2MX8XbmSlISE+jboQ7Xdq5P2VLJYZcmUijpyfYoCpLiZdnG7Tz1xQI+nLmGMqlJXNelPn1OrEPpVM2DInIkFCRRFCTF07yftvDEZ/P5Yt56KpVJof9JDbikbS1SkxLDLk2kUFCQRFGQFG/Tl//CY2N+ZOqSTdQoV5JbTm3I+cfX0MRaIocR+lhbIgVFq9rlGXl1O16/qi2VyqRw1zuzOH3gRD6a9ZOekhfJAwoSKRbMjI4NKzGqfwdeuLQViWb0f/M7znnuK8bPX6+n5EVyQUEixYqZ0f3Yanx6a2eevCjylHyfV7+l54tTmbY0p6HhRCQ76iORYm1P1n7e+nYFz365iPVbd9OlUWXuOP0YmtcsG3ZpIqHLs852M3uVyEi9v+HuV/7+8vKXgkQOZ+eefQyfsozBExbz6469nNG8Gred1ogGVdLCLk0kNLEGSSw31v8n6n0J4DwiI/aKFBklUxK5tkt9erWtxSuTlvLypCV8Omct5x1fk1tPbcjRFUqFXaJIgXXEl7aCYd6/cvcT41NS3lOLRI7Upu17eGHCYl6bvIz97lzcuhY3ntyAqukadkWKj3je/tsQ0BS3UqRVKJ3Cn89owoQ7T6Jn66MZOW0Fnf85jn98PI9ftu8JuzyRAiWWPpKt/LaPZC1wj7u/G8/C8pJaJJJbK37ewcAvFvD+jNWUTkmiX6e6XNWxLmklNI6XFF16sj2KgkTyyoJ1W3nyswV8Onct5Uslc33X+lzevg4lkjXsihQ9CpIoChLJa7NW/crjny1g4oINVE1P5eZTGnJRxtEka9gVKULiOkSKmX33e/YTKSqOq1mO4Ve24a1r2nF0+VL83/tzOOWJCYz6frWGXZFiRy0SkVxyd8bP38A/x8xn3k9baFwtjdtPP4ZTm1TBzMIuT+R306CNIvnEzDipcRU+uqkjz/Y6nt1Z+7l6eCbnD57M5MU5TfopUjQcNkjMrJ2ZfWtm28xsj5ntM7Mt+VGcSGGSkGCc3aI6nw3ozCPnN2ft5l1c8tI3XPbKN8xc+WvY5YnETSwtkkFAL2AhUBLoBzwXz6JECrPkxAQublOLcXd05d4zmzB3zRbOfe5rrhsxnYXrtoZdnkiei+nSlrsvAhLdfZ+7vwp0j29ZIoVfieRE+nWqx4Q7uzLg1EZ8tWgj3QZO5La3Z7By046wyxPJM7GMtbXDzFKAGWb2T+An1LciErO0EsnccmpDLmtf+7/DroyeuYZebSLDrlRJ07ArUrjF8mR7bWAdkAIMAMoCzwetlEJBd21JQbJ28y6e+XIhb327kpTEBK7qWJdrutQjXU/JSwGjBxKjKEikIFq2cTtPfL6A0TPXUL5UMv1PasCl7WrrKXkpMBQkURQkUpDNWb2ZRz/9kUkLN1KjXEluPbUh559Qk8QEPYMi4dJzJCKFxLE1yjLiqra82a8tlcqkcOc7s/jD0xP5/Id1mkteCoVYniO5MJZlIpI7JzaoxKj+HXi+9wlk7XOuHp7JhS9MIXOZ5pKXgi2WFsk9MS77H2Y21MzWm9mcbNaXNbPRZjbTzOaaWd+D1qeb2SozGxS1rJWZzTazRWb2jGkMCilCzIwzmh/FmAGdefi85qzYtIMLXphCv9e+Zf5aPYMiBVO2fSRm9gfgDOAi4K2oVelAU3dvc9iDm3UGtgHD3f3YQ6z/M1DW3e82s8rAfKCau+8J1j8NVAY2ufuNwbJpwM3AN8DHwDPu/klOdaiPRAqrnXv28erkpQwev5htu7M4//iaDDitITXLa+pfib+86CNZA2QCu4DpUa8PgW6xFOHuE4Gc2uUOpAWtijLBtlnBCbQCqgKfHdjYzI4C0t19qkcScDjQI5ZaRAqjkimJ3NC1AZPuOomrO9Vj9Kw1nPz4BB78zw9s0kyNUkBk+0Ciu88EZprZm+6+N06fP4hIMK0B0oCe7r4/mBf+CeBS4NSo7WsAq6K+XhUs+x9mdg1wDUCtWrXyvnKRfFSuVGTq3z4n1mHgFwt49eulvP3tSq7rWp+rOtbVLcMSqlj6SNqY2edmtsDMlpjZUjNbkkef3w2YAVQHWgKDzCwduAH42N1X5bRzTtx9iLtnuHtG5cqV86ZakZBVL1eSf17QgjG3dqZtvYo8NmY+Jz8+nnenr9I8KBKaWIZIeYXIE+3TgX15/Pl9gUeCy1SLzGwp0BhoD3QysxuIXPJKMbNtwNNAzaj9awKr87gmkQKvYdU0Xr4ig6lLfubhj+dx+79nMvTrpfzfGU04sUGlsMuTYiaWFslmd//E3de7+88HXnn0+SuAUwDMrCpwDLDE3Xu7ey13rwPcQaSz/k/u/hOwJRja3oDLgQ/yqBaRQqddvYqMuqEDT1/ckl937OWSl7/hymHfapRhyVextEjGmdljwHvA7gML3f2w0+2a2UigK1DJzFYBDwDJwf4vAA8Cw8xsNmDA3e5+uJmAbgCGERnS/pPgJVJsJSQY57asQbdm1Rg+ZRnPfrmIbgMn0rN1LQac1lCDQkrcxTJo47hDLHZ3Pzk+JeU93f4rxckv2/fw7JeLGDF1GcmJCVzbuT5Xd65LqZRYfm8U+f801lYUBYkUR8s2buefY37k49lrqZKWyu2nN+KCVkdrDC+JWZ6NtWVmVc3sFTP7JPi6qZldlRdFikj81KlUmud7t+Ld69tTs3xJ7n53Nmc8PYnx89drDC/JU7F0tg8DxhC5RRdgAXBrvAoSkbzVqnYF3r3+RJ7vfQK7svbR59VvueyVafy4dkvYpUkREUuQVHL3t4H9AO6eRd7fBiwicXRgDK/PB3Th/rOaMmfNZs54ehL3jZrDL3pCXnIpliDZbmYViQxngpm1AzbHtSoRiYuUpASu7FiX8Xd05fL2dXhz2gq6Pj6eYV8vZe++/WGXJ4VULHdtnQA8CxwLzCEyiOIF7j4r/uXlDXW2ixzagnVb+dvoH/hq0UYaVinD/Wc3pVNDjQQhEXl615aZJRF5WNCA+XEceysuFCQi2XN3vpi3noc++oHlP+/g1CZVuffMJtSpVDrs0iRkeRYkZpYInAnUIeoBRnd/Mpc15hsFicjh7c7ax9CvljHoy4Xs3edc2bEuN57cgDKpev6kuMrLqXZHA32AikRG6D3wEpEiJDUpkeu71mfcHV05p2V1XpiwmJMeH8+/M1dqQEjJUSwtklnuflw+1RMXapGIHLmZK3/lL6Pn8v2KXzmuZlkeOLsZrWqXD7ssyUd52SL5xMxOz4OaRKQQaXF0Od697kSe6tmCdVt28cfBkxnw1gzWbt4VdmlSwMRy8XMq8H4w2dReIh3u7u7pca1MREKXkGCcd3xNTm9ajcHjFzNk0hI+nbOWG09uwNWd6pGSFMvvolLUxfKv4Eki84OUcvd0d09TiIgUL6VTk7ij2zGMva0LnRtV4rEx8znjmUlMWZxXM0pIYRZLkKwE5rgG5xEp9o6uUIoXL8vg1T6t2Z21j14vTeW2t2awcdvuw+8sRVYsl7aWAOODQRuj5yMpNLf/ikjeOqlxFT6r14Xnxi3ixYmL+WLeOu7q3phL2tQiQaMLFzuxtEiWAmOBFHT7r4gESqYkcke3Y/jkls40q16We0fN4bzBk5mzWiMoFTcxz0diZmUA3H1bXCuKA93+KxJf7s4HM9bw0Ec/sGn7Hi5vX4fbT29EWonksEuTXMjL+UiONbPvgbnAXDObbmbN8qJIESkazIwex9dg7O1d6d22Nq9NWcYpT0xg9Mw1mvukGIjl0tYQ4DZ3r+3utYHbgZfiW5aIFEZlSybzYI9jGXVDB6qkp3LTyO+5fOg0lm7cHnZpEkexBElpd//vvO3uPh7QaG4ikq0WR5fjg/4d+es5zZix4le6DZzIU58vYNdeTWVUFMUSJEvM7D4zqxO87iVyJ5eISLYSE4wrTqzD2Nu70L1ZNZ4eu5DuAycyaeGGsEuTPBZLkFxJZA6S94JX5WCZiMhhVUkvwTO9juf1q9piZlz2yjTuemcmm3cWqtkoJAcx37VVmOmuLZGCYdfefTw9diFDJi6hUpkUHj6vOac0qRp2WZKNXM9HYmYf5rSju5/zO2vLdwoSkYJl1qpfufPfs5i/bivnHV+DB85uSrlSKWGXJQeJNUhyerK9PZHhUUYC3xAZrFFEJNeOq1mO0Td1ZNC4RTw/bhGTFm7koR7N6H7sUWGXJr9DTn0k1YA/E5mr/WngNGCju09w9wn5UZyIFF0pSQncdlojPryxI1XTU7nu9e/o/+Z3GrerEMo2SNx9n7t/6u5XAO2ARUTG3LoxlgOb2VAzW29mc7JZX9bMRpvZTDOba2Z9g+W1zew7M5sRLL8uap/xZjY/WDfDzKoc0dmKSIHTtHo6o/p34M5ux/D53HWc/tREPtSDjIVKjp3tZpZKZL72XkTmbP8QGOruqw97YLPOwDZguLsfe4j1fwbKuvvdZlYZmE+kFXSgrt3BsCxzgBPdfY2ZjQfucPcj6vBQH4lI4bBg3VbufGcWM1f+yulNq/JQj2Opkl4i7LKKrVwPkWJmw4EpwAnAX929tbs/GEuIALj7RGBTTpsAaWZmQJlg2yx33+PuB9q2qTnVKCJFS6Oqabx7XXv+fEZjJizYwGlPTeTd6avUOingcrpraz9wYFyD6I1iniHRzOoA/8mmRZJGpIXTmMhowj3d/aNg3dHAR0AD4E53fy5YPh6oCOwD3gUeym6eFDO7BrgGoFatWq2WL19+uHJFpABZsmEbd70zi8zlv3DSMZV5+PzmHFW2ZNhlFSu5bpG4e0IwG2JaMDPigVdezZDYDZgBVAdaAoPMLD347JXufhyRILnCzA7caN7b3ZsDnYLXZTnUP8TdM9w9o3LlynlQrojkp3qVy/D2te154OymTF2yidOfnMi/pq1Q66QACvOyUV/gPY9YRGTek8bRG7j7GiJ9JJ2Cr1cHf24F3gTa5GvFIpKvEhKMvh3q8umtnWhWI50/vTeba0ZMZ9P2PWGXJlHCDJIVwCkAQYvjGCLjetU0s5LB8vJAR2C+mSWZWaVgeTJwFpGQEZEirnbF0rzZrx33ndWUCfM30E1jdhUocQsSMxtJpLP+GDNbZWZXmdl1UbfzPgicaGaziczAeLe7bwSaAN+Y2UxgAvC4u88m0vE+xsxmEbkkthoNZy9SbCQkGFd1rMuo/h0oVzKZy16Zxt8/+oHdWRpROGwaa0tECp2de/bx8MfzGDF1OU2PSueZXi1pUEUzgOe1PJshUUSkoCmZksiDPY7l5cszWLtlF2c9+xWvT12ujviQKEhEpNA6tWlVPr2lE61MiZGTAAAQu0lEQVTrVODeUXPUER8SBYmIFGpV0kvwWt826ogPkYJERAo9dcSHS0EiIkVG0+rpfHhjRy5rV5uXJi3lvOcms2j91rDLKvIUJCJSpKgjPv8pSESkSDpUR/yvO9QRHw8KEhEpsg7uiD/r2a+Ys3pz2GUVOQoSESnSDnTEv31de/bvd84fPJm3M1eGXVaRoiARkWKh5dGReeJb1ynPXe/M4p73ZuuurjyiIBGRYqNimVSGX9mWG7rWZ+S0FVz0whRW/7oz7LIKPQWJiBQriQnGXd0b8+JlrViyYTtnPTOJrxZuDLusQk1BIiLFUrdm1fjgxg5UTkvl8qHf8Ny4Rezfr1uEfw8FiYgUW/Uql2FU/w6ceVx1Hhszn2tfn86WXXvDLqvQUZCISLFWKiWJZy5uyQNnN2Xcj+s5d9DXzF+rp+GPhIJERIo9s8iUviOvace23Vn0eO5rPpixOuyyCg0FiYhIoHWdCnx0U0ea1yjLLf+awV8+nMveffvDLqvAU5CIiESpkl6CN65uy1Ud6zJs8jJ6DZnK+i27wi6rQFOQiIgcJDkxgfvOasozvY5n7potnPHMV2Qu2xR2WQWWgkREJBvntKjOBzd2IK1EEpe8/A0fzlwTdkkFkoJERCQHjaqm8d71J9KyZjluHvk9z41bpCHpD6IgERE5jPKlUxjRrw09WkaeN7n73VnqhI+SFHYBIiKFQWpSIk/1bEmtiqV5ZuxCVv+6k+d7t6JsyeSwSwudWiQiIjEyM247rRFPXNiCaUs38cfBk1m5aUfYZYVOQSIicoT+2Komw69sy/otuzjv+a+ZsfLXsEsKlYJEROR3aF+/Iu/d0IGSKYlcPGQKn85ZG3ZJoYlrkJjZUDNbb2Zzsllf1sxGm9lMM5trZn2D5bXN7DszmxEsvy5qn1ZmNtvMFpnZM2Zm8TwHEZHsNKhShvdv6ECTo9K5/o3pvDRxSbG8oyveLZJhQPcc1vcHfnD3FkBX4AkzSwF+Atq7e0ugLfAnM6se7DMYuBpoGLxyOr6ISFxVKpPKyKvb8Ydjq/H3j+dx76g5ZBWzO7riGiTuPhHI6XFQB9KCVkWZYNssd9/j7ruDbVIP1GlmRwHp7j7VI7E/HOgRtxMQEYlBieREBvU6geu61OeNb1bQb3gm23ZnhV1Wvgm7j2QQ0ARYA8wGbnH3/QBmdrSZzQJWAo+6+xqgBrAqav9VwbL/YWbXmFmmmWVu2LAhnucgIkJCgvGnPzTmH+c3Z9LCjVwweDI/bS4e0/iGHSTdgBlAdaAlMMjM0gHcfaW7Hwc0AK4ws6pHcmB3H+LuGe6eUbly5byuW0TkkHq1qcWrfVqz6ped9Hjua+as3hx2SXEXdpD0Bd7ziEXAUqBx9AZBS2QO0AlYDdSMWl0zWCYiUmB0blSZd65vT6IZF704hS9/XBd2SXEVdpCsAE4BCFocxwBLzKymmZUMlpcHOgLz3f0nYIuZtQv6VS4HPgindBGR7DWuls6o/h2oV7k01wyfzugiPOBjvG//HQlMAY4xs1VmdpWZXRd1O++DwIlmNhsYC9zt7huJ9Jt8Y2YzgQnA4+4+O9jnBuBlYBGwGPgknucgIvJ7VUkvwcir23F8rXLc8q/veTtzZdglxYUVh3ueMzIyPDMzM+wyRKSY2rEni2tHTGfSwo387dxmXN6+TtglxcTMprt7xuG2C/vSlohIkVcqJYmXr8jgtKZVuf+DuQwevzjskvKUgkREJB+kJiXyfO8TOLtFdR799Eee+Gx+kXkKXsPIi4jkk+TEBAb2bEmp5ESe/XIRO/bs494zm1DYR3pSkIiI5KPEBOMf5zenZEoir3y1lB17snioR3MSEwpvmChIRETyWUKC8cDZTSmVksjz4xezc88+Hr+wBUmJhbO3QUEiIhICM+Ou7o0pnZrEY2Pms3PvPp7pdTypSYlhl3bECmf8iYgUEf1PasD9ZzVlzNx1XDN8Ojv37Au7pCOmIBERCdmVHevyyPnNmbhwA31enVboRg5WkIiIFAAXt6nFwJ4tyVz+C5e+/A2bd+wNu6SYKUhERAqIc1vWYHDvE/hhzRYufmkqG7ftPvxOBYCCRESkADm9WTVeuiKDpRu30fPFKazdvCvskg5LQSIiUsB0aVSZ1/q2Yd2W3Vz04hTWbSnYYaIgEREpgNrWq8iIq9rw87bdXPryN2zavifskrKlIBERKaCOr1Wel69ozYpNO7hi6DS27CqYHfAKEhGRAqx9/YoMvvQE5v20hX7DMgvkcyYKEhGRAu7kxlV5qmdLvl2+ieten86erP1hl/QbChIRkULg7BbVefi85kxYsIFb3/qerH0FJ0w01paISCHRq00ttu/O4qGP5lE6ZTaP/vE4EgrAqMEKEhGRQqRfp3ps2ZXFM2MXUqZEEvef1TT0+UwUJCIihcyAUxuydddeXv16GWklkrnttEah1qMgEREpZMyM+85syvbdkZZJWmoSV3euF1o9ChIRkUIoIcH4x/nHsX33Pv7+8TzKlEiiV5taodSiIBERKaQSE4ynerZk+54s/vz+bEqnJnFOi+r5Xodu/xURKcRSkhIY3LsVretU4La3ZjB23rp8r0FBIiJSyJVMSeSVKzJoWj2d69/4jsmLN+br5ytIRESKgLQSybzWtw21K5Ti6tcy+X7FL/n22XELEjMbambrzWxONuvLmtloM5tpZnPNrG+wvKWZTQmWzTKznlH7DDOzpWY2I3i1jFf9IiKFTfnSKbzery0Vy6TS59Vv+XHtlnz53Hi2SIYB3XNY3x/4wd1bAF2BJ8wsBdgBXO7uzYL9B5pZuaj97nT3lsFrRnxKFxEpnKqml+CNfm0pmZzIpS9PY9nG7XH/zLgFibtPBDbltAmQZpFHMssE22a5+wJ3XxgcYw2wHqgcrzpFRIqaoyuU4vV+bWhaPZ20EvG/OTfMPpJBQBNgDTAbuMXdfzMKmZm1AVKAxVGL/x5c8nrKzFKzO7iZXWNmmWaWuWHDhjiULyJScDWoksbwK9tQsUy2PybzTJhB0g2YAVQHWgKDzCz9wEozOwoYAfSNCph7gMZAa6ACcHd2B3f3Ie6e4e4ZlSurQSMiEi9hBklf4D2PWAQsJRISBIHyEfB/7j71wA7u/lOw/W7gVaBNCHWLiEiUMINkBXAKgJlVBY4BlgQd7u8Dw939negdglYKQb9KD+CQd4SJiEj+iVsvjJmNJHI3ViUzWwU8ACQDuPsLwIPAMDObDRhwt7tvNLNLgc5ARTPrExyuT3CH1htmVjnYfgZwXbzqFxGR2Ji7h11D3GVkZHhmZmbYZYiIFCpmNt3dMw63nZ5sFxGRXFGQiIhIrihIREQkV4pFH4mZbQCWh13HEaoE5O8QnuHTORcPOufCo7a7H/ZBvGIRJIWRmWXG0slVlOiciwedc9GjS1siIpIrChIREckVBUnBNSTsAkKgcy4edM5FjPpIREQkV9QiERGRXFGQiIhIrihIQhbD3PbnBhN5zQgm6uqY3zXmtcOdc9R2rc0sy8wuyK/a4iGG73FXM9scfI9nmNn9+V1jXovlexyc9wwzm2tmE/KzvniI4ft8Z9T3eI6Z7TOzCvldZzyojyRkZtYZ2EZk2PxjD7G+DLDd3d3MjgPedvfG+V1nXjrcOQfbJAKfA7uAoQdPKVCYxPA97grc4e5n5Xdt8RLDOZcDJgPd3X2FmVVx9/X5XWdeiuXfddS2ZwMD3P3kfCkuztQiCdnh5rZ3923+/9O+NJG57gu1w51z4CbgXaBQ/3CBmM+3SInhnC8hMrHdimD74vZ97gWMjGM5+UpBUgiY2Xlm9iORWSOvDLueeDOzGsB5wOCwa8lH7c1sppl9YmbNwi4mHzQCypvZeDObbmaXh11QfjGzUkB3Ir8oFQlxm9hK8o67vw+8HzSdHwRODbmkeBtIZKKz/ZHJMIu874iMabTNzM4ARgENQ64p3pKAVkRmSS0JTDGzqe6+INyy8sXZwNfuXmRaqQqSQsTdJ5pZPTOr5O6FcQC4WGUA/wpCpBJwhpllufuocMuKD3ffEvX+YzN7vhh8j1cBP7v7dmC7mU0EWgDFIUgupghd1gJd2irwzKxBMEc9ZnYCkAr8HG5V8eXudd29jrvXAd4BbiiqIQJgZtWivsdtiPy/LNLfY+ADoKOZJQWXetoC80KuKe7MrCzQhcj5FxlqkYQshrnt/whcbmZ7gZ1Az6jO90IphnMuUmI43wuA680si8j3+OKi/j1293lm9ikwC9gPvOzuOd4OXtDF+O/6POCzoCVWZOj2XxERyRVd2hIRkVxRkIiISK4oSEREJFcUJCIikisKEhERyRUFiRRKZrYthm1uDZ5RyKvP7GFmTfPweJNzse+24M/qZpbtgJZmVs7Mbvi9nyMSCwWJFGW3AkcUJMGow9npAeRZkLj7iXlwjDXuntMw++UABYnElYJECrVgTovxZvaOmf1oZm9YxM1AdWCcmY0Ltj3dzKaY2Xdm9u9giH7MbJmZPWpm3wEXmtnVZvZtMIjiu2ZWysxOBM4BHgvmk6hvZi3NbKpF5ot538zKB8cbb2ZPWWT+mHkWmVflPTNbaGYPRdW+Ler93WY2O/jMRw5xnnWD2mcfdIw6B+a/MLNmZjYtqG+WmTUEHgHqB8seM7MyZjY2+DuYbWbnRh1nnpm9ZJH5QT4zs5LBugZm9kVQ23dmVj9Yfmfw9zTLzP6ap99YKVzcXS+9Ct0L2Bb82RXYDNQk8ovRFKBjsG4ZUCl4XwmYCJQOvr4buD9qu7uijl0x6v1DwE3B+2HABVHrZgFdgvd/AwYG78cDjwbvbwHWAEcRGd5m1YHjR53DH4jMzVEq+LrCIc73Q+Dy4H3/qH3rAHOC988CvYP3KUQGQ/zv+mB5EpAe9XeyCLBguyygZbDubeDS4P03wHnB+xJEWnmnA0OCfROA/wCdw/53oVc4Lw2RIkXBNHdfBWBmM4j8UPzqoG3aEbks9XUwrFUKkdA54K2o98cGv/WXA8oAYw7+wGDMpHLufmBmv9eAf0dt8mHw52xgrrv/FOy3BDia346ldSrwqrvvAPBDjwrbgchwOQAjgEcPsc0U4P/MrCaRuT4W2v+OnmzAwxYZSXo/UAOoGqxb6u4zgvfTgTpmlgbU8MgI1Lj7ruA8TicSJt8H25chMmLxxEPUJUWcgkSKgt1R7/dx6H/XBnzu7r2yOUb02EfDgB7uPtPM+hBp9fzemvYfVN/+bOqLRY7jGbn7m2b2DXAm8LGZXQssOWiz3kBloJW77zWzZURaGdE1Q+TvsWQOH2fAP9z9xSOoX4oo9ZFIUbYVSAveTwU6mFkDADMrbWaNstkvDfjJzJKJ/OD9n+O5+2bgFzPrFKy7DPi9845/DvQ9cIeZHXoe76+JDD/OQTX9l5nVA5a4+zNERpc9jt/+HQCUBdYHIXISUDunwtx9K7DKzHoEn5Ea1DkGuDKqn6mGmVWJ6WylyFGQSFE2BPjUzMa5+wagDzDSzGYRuQzUOJv97iPSL/A18GPU8n8Bd5rZ90GH8xVEOt9nAS2J9JMcMXf/lMilsMzg0twdh9jsFqC/mc0mcjnqUC4C5gTHOJbI3OE/E7mcN8fMHgPeADKC41x+0Pll5zLg5uA8JwPV3P0z4E0iE1LNJjLcf1oOx5AiTKP/iohIrqhFIiIiuaIgERGRXFGQiIhIrihIREQkVxQkIiKSKwoSERHJFQWJiIjkyv8D3HNgeaLooVQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, dipoles)\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Moment a.u')\n", - "pylab.title('LiH Dipole Moment');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_0.735_6-31g.hdf5 b/community/chemistry/h2_0.735_6-31g.hdf5 deleted file mode 100644 index e2c0a9120fcee892a46aeac5080da41fe9d18957..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 17712 zcmeHO4RjRM6@HuW6GFj&wNivSP|#>02Kg06XVD-Fq76SHl|nXzNp?%Jn{E_Q2m?Y0&AZ&a_QH|7gg{v^e=%gJA0n?<3v5Lbb==B_=;~s(w zUvU;Y0s2!PMTKS(U*noWVIT{}WuW*qV_J2_Z!>SeZ6eO%m&GlshdCHO%uQQ-il|&C z*lmf{B&8z4&xo|SWacwJjWLjJL`@!9`EX-hhLJq;gV{9>1C`BR-WTMLe;;Tx5W?L9 z7fjAQ7}~W%fEs}ilZTvh7<9O!fO05Tjs~#tYMDW(&+>=E{9|&S`G~`{8c{G*=fVjM z1T10mhstf``cC;z7nyd&c1TEwDiS6?0hNnTgBe{=q?&$xHRDZR*KaN%1x=l8@XA+R z^o*0(nNvok*ptPCjAW6sJj^W#=Qu8!8=(-Bd=(X~{y#iAYUG%)qdmBCm&$!1JUmTI zS9KS}r&-guF~diWNRoxq5)$Lmvr}hoZ`Dozux!o@dj?^(pH1>$Fv~89H~FmwS8vq61o|!m>URZwmlO31LErT%>W74?`ofeymi^W;@T_Zi&x>Pw zl~xP$U(Db9!Jazd&4inS%GZ1)u)EFd#f&8;6YF7g>D1km2S4(;i?ta=zHryNZ-@Qi z#ue;8z;Al*#M~|~R${x12l>N%m*T^DWh>4gpVEl^+kd_2ckjD4>f{Uf*#}n6yJ0(o za{ExfglF<>yyDd(_Ea@g3Cx}jP2Hy{e`mG(?(y}AMr#K?(-YP-Qchi4aPVYZI zx*qX8hWH-jztr)Ic=O-hpLr?aOCcM_0eov3`OrR2J2dW{&UYfvi9oOsfc0lcj%idE4M;{kae!R-~GK?QQ)TaKHTn@QrOBnmp~i>IevU?zhLG z(^ql-$}q4b#)&r3k(7lDTSh{%81IO4h^ZOLX;!;U-`%*0;Mf2jG;p56KCllb;EvBo zM)f44ZsLB{_r9?T^OjXenAkgSb37~xZj;r2W_9dc{_SD;T6DL6xsKL*>*DHYyNoMe z=MSFeMS-3ZIRhY)OdTztI{j4BO=kz7#dCtjT51h{t>a!+7 z&Q3^BqpIrr`EcSp=5a1Fp-oYEPIM*gIbDCRfAiRLqGq6fxk&7;{gHn;1dn9mIkPWm z6YChnF4`7t{kS^YuH&lp@%Z94!y{4+U<16SP~TlB40d?#Nkj2HM)TLNR}eQzosa$T zUcXvc*Z+lj#|Kmvg8`1;ThITr9^eqC^UK@+OkIDl8n%p-IJ;wkH9bB#O|d~~$0w&+ z;?W?by+BN7O_E}dOR$THiOgQqh24`?RL4;I09DfXK9b3|lm=SgS?+_8+55_t&eN&a zJ`wP>zN>xk*81aJSD^f{_z#s&M3w9BzP?+7^#jW&n(tjd+V=X+h<4XJfEPYUEb?=I z;zI!042?NM{mXIKU2?yFIaVj!k^bd^)!X`UwV_?dRqNxiJhNI&PlhY zumwxJd>xmTm9oH|td6g?GqbYUWUQXEdd2uHrQY!jg@~=s8Txo!Og!5yU!T8?_m@>b z@WA{2T3YH_i}V7m@2;Y`VJ#ZHQ>ncpz}9zj&=JTMLTd55Lgt^mKe5|HG0tjBS5sSV ziwQJMO^V*1CP`7MiMVoH~b}`nhTL z57kdD8{6tU?n-)b!BgELTqlrE$ef6GCtUd1pM*@Eyp!+y$pd0+_!*Fs4#FpW?maXS z<<;?=2kAXMqQ*o&bsps^Xx@&P0efff#_?nMkPm-7q~ilZ6>B z;dLAb{M|>hkPmho0srbM=yn~>uhW0vyxVmA3c6f}ef{UQ#{Z@{^c;f zJBJc2zjh~`He}z_`SoTYN_$_3L}v{GKHQIY>3nTo$o*@zaY8Wu>Wk@rwDwDRv}*Sj z^PeBuB{+5RMSS9@@#{bAwHI;91N)3CXfetI?)m)p5?7u3cyXnWrHg-wzO0L9C+fdS zw`*~ha_AbISD!D0Jg1BQji4|4k*l>+%BPpK@gJSbPu1cq<1hnpi_!9>ee`iH&g38u zI4+^%wR~wMEg1|rKc>asT)}gk27h-I)zvHFq(9f$kN!)0DY>SNt73W|;{3c$ek)xa zey!?>ZKoRJRJD&=OZ(~W%W_)tQt|XvJF!k)t)Q2*c_I718uOIp5%}rm&D!{p{sQ>& zPC7^Hm(xZ6J>c!vwnw>z_1b)ws%Qi9VZ2hnFSm?d(dFq5nvZou&zJaIEuLf-%s=EU z`l6O^TtZjiyszo%PZ3?FwTI-Qis39570gbNjW{I%?nb3{#Vjf+ImIy(B7E8pK0Z#Qu={5uB5}DU%!jq(E4jE zr@7DA;&TpN5CZO39|Mmffpq@uU42i zUR<4OlW`S1Jm&R;7?5rI`P?y0RHWte!?-kSl1+7qy_Yckj}Cg@ zKd5kQ{7@39o}KoSUqmQ8<$X5vg^?#GPMbMN=FOV%tU}Zd-|v?i@cyxpRSnYC?%#g_ D%N;$z diff --git a/community/chemistry/h2_basis_sets.ipynb b/community/chemistry/h2_basis_sets.ipynb deleted file mode 100644 index 110b79e08..000000000 --- a/community/chemistry/h2_basis_sets.ipynb +++ /dev/null @@ -1,147 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*H2 plot with different basis sets used*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances in different basis sets.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PSI4 chemistry driver. See the PSI4 chemistry driver readme if you need to install the external Psi4 program that this driver requires." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.0551598 -1.07591366 -1.09262991 -1.10591805 -1.11628601 -1.12416092\n", - " -1.12990478 -1.13382622 -1.13618945 -1.13722138 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]\n", - " [-1.07121344 -1.09011427 -1.10532121 -1.11742954 -1.12693056 -1.13423167\n", - " -1.13967222 -1.14353615 -1.14606218 -1.14745209 -1.14787738 -1.14748463\n", - " -1.14639978 -1.14473155 -1.14257409 -1.14000911 -1.13710763 -1.13393134\n", - " -1.13053374 -1.12696114 -1.1232535 ]\n", - " [-1.0778639 -1.0962705 -1.11104601 -1.12277894 -1.13195346 -1.13897049\n", - " -1.14416409 -1.14781424 -1.15015683 -1.15139164 -1.15168855 -1.15119257\n", - " -1.15002788 -1.14830105 -1.14610373 -1.14351485 -1.14060245 -1.13742526\n", - " -1.13403397 -1.13047238 -1.12677835]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PSI4'},\n", - " 'PSI4': '',\n", - " 'algorithm': {'name': 'ExactEigensolver'},\n", - "}\n", - "# PSI4 config here is a multi-line string that we update using format()\n", - "# To do so all other curly brackets that are required in the PSI4 config must be doubled\n", - "psi4_cfg = \"\"\"\n", - "molecule h2 {{\n", - " 0 1\n", - " H 0.0 0.0 -{0}\n", - " H 0.0 0.0 {0}\n", - "}}\n", - "\n", - "set {{\n", - " basis {1}\n", - " scf_type pk\n", - "}}\n", - "\"\"\"\n", - "basis_sets = ['sto-3g', '3-21g', '6-31g']\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(basis_sets), steps+1])\n", - "distances = np.empty(steps+1)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " for j in range(len(basis_sets)):\n", - " qiskit_chemistry_dict['PSI4'] = psi4_cfg.format(d/2, basis_sets[j]) \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[j][i] = result['energy']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4FcX6wPHvpBBIQicQkgABQiCUJHQBaSIC0psXBcECiIroVZFr+Vmueu0F9IoXUewogiBKb0qHUBIgEHpLaGmE9Dq/P/ZETkLKSXJO6vt5nvNAdmdn31Pf3dmZWaW1RgghhCgpu7IOQAghROUgCUUIIYRVSEIRQghhFZJQhBBCWIUkFCGEEFYhCUUIIYRVSEIRVqWUekAptb2s46jMlFK9lVLHrVSXt1JKK6UcTH+vUUpNMVv/hlIqSil1xfT3aKXURaVUglKqozVisCal1Dml1J1WrnOiUmq9NeusrCSh2FBeH27zH1yllJNS6kul1HmlVLxSKlgpNaSQOhsrpb5QSl0yfanPKKW+Vkq1seVzsRal1MNKqTDT872qlFqtlKppWve1UuqNItRVouRl2j7T9DqaPzyKW2dp0Fpv01q3tlHdQ7TW3wAopZoCzwBttdbupiLvAzO11q5a64O2iCE/SqlXlVLfl+Y+AbTWP2it7yqt/ZkSvE9p7c+aJKGULQfgItAXqA28BCxRSnnnVVgpVR/YCTgDvYGaQCfgL2BgPts4WDvo4lJK9QX+A9yrta4J+AE/l21U7DL9OJo/LllzB+XpPSiipkC01vqa2bJmQGhxKqvAr4OwlNZaHjZ6AOeAO3MtewDYXsA2h4Cx+ax7AwgB7ArY3hvQwMPABWCrafkIjB+C68CfgJ/ZNhrwMfv7a+AN0//7AeEYR6rXgMvAg2Zl6wMrgRvAXuD1/J4f8CywIp9104F0IA1IAH43Lf8XcBqIB44Co03L/YAUINNU/rppuRPGUfQF4CrwOVAjn30W9l6cM8V8CIjDSH7VzdYPA4JNr+lOwD/XtnNM26ZiHDx0Ag6anssvpvqyX+cjwHCz7R2BKKBjHnH1A8ItjTPXtvam1ycKOAM8bnr/HUzr/wSmAncCyUCW6fVdbPpXA4nAaVN5D2AZEAmcBWaZ7etVYCnwvenzMRXjIDb7PY0GlgD1cn12p5jevyjgRdO6wabPRropjpAC3rPnTZ+VWGBR9msB1AX+MMUaa/q/V67PwxnT+3MWmJj7cwIo4COM78IN4DDQvoDP1y31mdY9BBwzxbEOaGZavtXsNU4A/gE0MMV6HYgBtlHAb0BZPso8gMr8oIgJBWiE8SPZJp/1u4FXC9ln9pfyW8AFqAH4mj6gAzF+qJ4DTgHVTNsUllAygH+btr0bSALqmtb/ZPpRcAHaAxEFPL/eGD9SrwG9AKdc6//er9my8Rg/WnamL1ci0Di/19L0ZV8J1MM4g/sdeCufePJ9L8zev72m/dcz/QDMMK3raPpR6Y7xIz3FVN7JbNtgoInpPagGnAeeNL2OYzB+ILNf5+eAn832PRI4nE9c/bg1oeQZZx7bzgDCTHHVA7aQR0LJaz+5Pyum92Q/8LLp+bXA+AEdZFr/KkYCGGUqW8P0/HcDXhjJ/3/A4lyf3S9MZQMwkrGfWX3fW/CdO2L2/HaYvcb1gbEYZ/g1MZL6CtM6F4wE0dr0d2OgXe7PCTDI9JzrYCQXP0yfx1xxFFTfSIzvnx/GgcZLwM68XmPT329hHBg5mh69AVUWv2mFPco8gMr8MH24EzCOLLIfSeTxI2b6oGwE/ldAfafMfygwzjquYxwBrTcty/5StjAr93/AErO/7TB++PuZ/i4soSRj+sExLbsG3IbxQ5qOWQLEaNIq6Ed6CMaP/HXTa/MhYJ97vwVsHwyMNP3/AfN9mb7giUBLs2U9gLP51PUARrI0f39O53r/Jpn9/S7wuen/84HXc9V3HOhrtu1DZuv6mF5zZbZsu9nr7GF6H2uZ/l4KPJdP3P24NaHkGWce227O9Rm6i+InlO7AhVzrnwcWmf7/KqYzZLP1x4ABZn83Nn2GHLj52TU/a9gLTDCrz5KEYv787jZ/T3OVDQRiTf93Mb3/Y8l1RkvOhHIHcALj819QS0FB9a0BHs71fUzi5llK7u/jv4HfzJeV14dcQ7G9UVrrOtkP4LHcBZRSdsB3GEesMwuoKxrjCwiA1nqlqc5/Yhwhmrto9n8PjKPj7O2yTOs9LXwO0VrrDLO/kwBXwI2b14GynacAWus1WuvhGEePIzG+rFPzK6+UmmzqrHBdKXUd4yyoQT7F3TCOPveblV9rWp6f3ebvj9a6Za71V8z+n/28wbiW8Ez2fkz7aoLxWmfL/R5EaNMvRO712rhuswMYq5Sqg5F4fygg7tzyizM3D4rwfhWiGeCR6zV4AeNMO9vFPLZZblb+GEazpfk2lj6X/OR+fh4ASilnpdT/TJ1gbmA0L9VRStlrrRMxzoBnAJeVUqvy6uiitd4MfAr8F7imlFqglKqVR7mC6msGzDV7DWIwDoby+z6+h3Ewud7UCedfRXw9So0klDKmlFLAlxhfqLFa6/QCim8CRpkSUGHMf7guYXyIzffZBOOIGYwvrbNZeXcsE4lxhN/EbFlTSzbUWmdprTdhHDG3zyNmlFLNMJo/ZgL1TcnzCMaX75byGG3uyRhNC9kJorbWuqg/SJa4CLyZKxk5a60Xm5Uxj+8y4Gl67bOZv24A3wCTMJr5dmmtI7C+yxTj/crHRYyzP/PXoKbW+m6zMrnfo4vAkFzbVLfwueauKz+5n192J4tngNZAd611LYyzRjB9nrTW67TWAzEO2sIwPnu3BqH1PK11Z6AtRnPy7HzK5VffReCRXK9BDa31znzqiddaP6O1boHRKvG0UmpA4S9D6ZOEUvbmY7SlDtdaJxdS9kOMC4vfKaVaKkNNjFP3giwBhiqlBiilHDG+WKkYF5LBaEa6Tyllr5QajNHrrFBa60zgV+BV09FfW4xrCXlSSo1USk1QStU1xd7NtK/dpiJXMdrhs7lg/IhEmrZ/kJvJJ7u8l1KqmimeLIwv7UdKqYambTyVUoMseT5F9AUwQynV3fRcXJRSQ7O7QOdhF8aR+EyllINSaiTQLVeZFRgX7p/EuAZmC0uAWUopL6VUXYwL5MW1F4hXSs1RStUwfX7aK6W6FrDN58CbpoMFlFJuptfCElcBbwsOqB43Pb96wIvc7ElYE+OA47pp3SvZGyilGpk+ny4Y340EjA4JOSiluprec0eM5tWUfMoVVN/nwPNKqXamsrWVUuNzPc8WZnUNU0r5mA5G4jA+R7fsszyQhFKGTF+qRzASwhWzcRAT8yqvtY7CaLtNwWh/j8dIBjWBR/Pbj9b6OMaR7ycYR/HDMRJYmqnIk6Zl14GJGD9slpqJ0SRxBeMayKICysYC04CTGBcsvwfe01pnN+18CbQ1NQWs0FofBT7A+DG+CnTAaBbKthmj59oVpVSUadkcjOaB3aZmjY0YR6X56aFuHYdS0A8iAFrrfabn8qnpeZ3CaL7Lr3waxoX4hzFe50kYPXdSzcokY/SYao6RqG3hC4xeRSHAgZLsx3RAMQzj83sW47O1EKMLfH7mYnSaWK+Uisc4mOhu4S5/Mf0brZQ6UEC5H4H1GB0ETmP0jgT4GONif5Rpv2vNtrEDnsY4m4nBONDJ6ztVC+M1jMVoTovGaJLKLd/6tNbLgXeAn0yf0SMYTZzZXgW+MX0P7gFaYXyOEzC+C59prbcU8PzLjMrZpCuEKC1KqT0YF88XmS17GfDVWk8qu8iEKB45QxGilCil+iql3E1NXlMAf8yOkk3NMA8DC8oqRiFKQhKKEKWnNUZT03WM61jjtNaXAZRS0zAu1q7RWm8tuxCFKD5p8hJCCGEVcoYihBDCKqrUZG0NGjTQ3t7eZR2GEEJUKPv374/SWhc0QBioYgnF29ubffv2lXUYQghRoSilLJpRQZq8hBBCWIUkFCGEEFYhCUUIIYRVVKlrKEIIkVt6ejrh4eGkpKSUdShlrnr16nh5eeHo6Fis7SWhCCGqtPDwcGrWrIm3tzc5J4OuWrTWREdHEx4eTvPmzYtVhzR5CSGqtJSUFOrXr1+lkwmAUor69euX6ExNEooQosqr6skkW0lfB0koFth6IpLP/jxV1mEIIUS5JgnFAjtORfHh+hPEJKYVXlgIIazg448/JikpqUjb7N27l8DAQAIDAwkICGD58uU2ii5vklAsMKqjJxlZmlWHLhVeWAghrKA4CaV9+/bs27eP4OBg1q5dyyOPPEJGRoaNIryVJBQL+DWuRRv3mqwIloQihLC+xMREhg4dSkBAAO3bt+e1117j0qVL9O/fn/79+wOwePFiOnToQPv27ZkzZ06e9Tg7O+PgYHTeTUlJyXFN5PXXX6d169bcfvvt3Hvvvbz//vtWfx7SbdhCIwM9eWdtGBeik2ha37mswxFC2MBrv4dy9NINq9bZ1qMWrwxvV2CZtWvX4uHhwapVqwCIi4tj0aJFbNmyhQYNGnDp0iXmzJnD/v37qVu3LnfddRcrVqxg1KhRt9S1Z88eHnroIc6fP893332Hg4MDQUFBLFu2jJCQENLT0+nUqROdO3e26vMEOUOx2MhADwBWBEeUcSRCiMqmQ4cObNiwgTlz5rBt2zZq166dY31QUBD9+vXDzc0NBwcHJk6cyNated+HrXv37oSGhhIUFMRbb71FSkoKO3bsYOTIkVSvXp2aNWsyfPhwmzwPOUOxkEedGtzWoh4rgiN44g4f6WYoRCVU2JmErfj6+nLgwAFWr17NSy+9xIABAyzabvny5bz22msALFy4kC5duvy9zs/PD1dXV44cOWKTmPMiZyhFMCrQkzORiRyOiCvrUIQQlcilS5dwdnZm0qRJzJ49mwMHDlCzZk3i4+MB6NatG3/99RdRUVFkZmayePFi+vbty+jRowkODiY4OJguXbpw9uzZvy/Cnz9/nrCwMLy9venVqxe///47KSkpJCQk8Mcff9jkeZTJGYpSajzwKuAHdNNa53mTEqXUYGAuYA8s1Fq/bVqugDeA8UAmMF9rPc/WcQ/p0JiXfwtl+cEI/L3q2Hp3Qogq4vDhw8yePRs7OzscHR2ZP38+u3btYvDgwXh4eLBlyxbefvtt+vfvj9aaoUOHMnLkyFvq2b59O2+//TaOjo7Y2dnx2Wef0aBBAxo0aMCIESPw9/enUaNGdOjQ4ZZmNWsok3vKK6X8gCzgf8CzeSUUpZQ9cAIYCIQDQcC9WuujSqkHgf7AA1rrLKVUQ631tcL226VLF13SG2w9+v1+gs7Fsvv5O3CwlxM8ISq6Y8eO4efnV9Zh2FxCQgKurq4kJSXRp08fFixYQKdOnW4pl9froZTar7XuckvhXMrkF1FrfUxrfbyQYt2AU1rrM1rrNOAnIDslPwr8W2udZaqv0GRiLSMDPYlKSGXH6ejS2qUQQpTY9OnTCQwMpFOnTowdOzbPZFJS5fmivCdw0ezvcKC76f8tgX8opUYDkcAsrfXJvCpRSk0HpgM0bdq0xEH1b+NGreoOrDgYQV/fQm+xLIQQ5cKPP/5o833Y7AxFKbVRKXUkj8etDX9F5wSkmE7BvgC+yq+g1nqB1rqL1rqLm1vJE4CTgz1D/T1YF3qFpLTSG4EqhBDlnc0Sitb6Tq11+zwev1lYRQTQxOxvL9MyMM5WfjX9fzngb52oLTMq0IOktEw2HL1amrsVQohyrTxfVQ4CWimlmiulqgETgJWmdSswLsoD9MW4eF9qunrXw7NODZYflEGOQgiRrUwSilJqtFIqHOgBrFJKrTMt91BKrQbQWmcAM4F1wDFgidY61FTF28BYpdRh4C1gamnGb2enGBnowbaTUUQlpJbmroUQotwqq15ey7XWXlprJ611I631INPyS1rru83KrdZa+2qtW2qt3zRbfl1rPVRr3UFr3UNrHVLaz2FUR08yszR/hMiEkUKIkklJSaFbt24EBATQrl07XnnllVvKBAcH06NHD9q1a4e/vz8///zz3+s+/fRTfHyMGTyioqJKM/QcynOTV7nm26gmbRvXYrnMQCyEKCEnJyc2b95MSEjI31PP7969O0cZZ2dnvv32W0JDQ1m7di1PPfUU169fB6BXr15s3LiRZs2alUX4f5OEUgKjO3oScvE6Z6MSyzoUIUQFppTC1dUVgPT0dNLT02+ZL9DX15dWrVoB4OHhQcOGDYmMjASgY8eOeHt731JvZGQkAwcOpF27dkydOpVmzZrZ9AymPI9DKfeGB3jwnzXHWHEwgn8O9C3rcIQQJbXmX3DlsHXrdO8AQ94utFhmZiadO3fm1KlTPP7443Tv3j3fsnv37iUtLY2WLVsWWOdrr73GHXfcwfPPP8/atWv58ssvixx+UcgZSgm4165Oz5b1WREcQVlMYSOEqDzs7e0JDg4mPDycvXv35jtL8OXLl7n//vtZtGgRdnYF/4Rv376dCRMmADB48GDq1q1r9bjNyRlKCY0K9GT20kMEX7xOx6a2fbOEEDZmwZmErdWpU4f+/fuzatUqJk2aBMC///1vRowYwY0bNxg6dChvvvkmt912WxlHeis5Qymhwe3dcXKwY4WMSRFCFFNkZOTfF9iTk5PZsGED7dq1+3tq+hEjRpCWlsbo0aOZPHky48aNs6jeXr16sWTJEgDWr19PbGyszZ4DSEIpsZrVHbmzbSN+P3SZ9Myssg5HCFEBXb58mf79++Pv70/Xrl0ZOHAgw4YNy1FmyZIlbN26la+//prAwEACAwMJDg4GYN68eXh5eREeHo6/vz9TpxpD81555RXWr19P+/bt+eWXX3B3d6dmzZo2ex5lMn19WbHG9PV52Xj0KlO/3ceiB7rSv01Dq9cvhLCdyjx9fWpqKvb29jg4OLBr1y4effTRv5NQfkoyfb1cQ7GCPr5u1HF2ZPnBCEkoQohy48KFC9xzzz1kZWVRrVo1vvjiC5vuTxKKFVRzsGOYf2OW7g8nITUDVyd5WYUQZa9Vq1YcPHiw1PYn11CsZHRHT1LSs1gfeqWsQxFCiDIhCcVKOjWtS5N6MgOxEKLqkoRiJUopRgV6suNUFNfiU8o6HCGEKHWSUKxoZKAnWRp+D7lc1qEIIUSpk4RiRT4NXengWVsGOQohiuz69euMGzeONm3a4Ofnx65du3KsL2iKe5m+vpIa1dGTwxFxnLqWUNahCCEqkCeffJLBgwcTFhZGSEjILWNBCpriXqavr0hCfoZVz1hUdHhAY+wU/BYsZylCCMvExcWxdetWHn74YQCqVatGnTp1cpQpaIp7mb6+Iok9B0ELoecTUNe7wKINa1anl08Dlh+M4OmBvrfc00AIUX69s/cdwmLCrFpnm3ptmNNtToFlzp49i5ubGw8++CAhISF07tyZuXPn4uLikqNcUaa4B5m+vnzqOBGUHRz4zqLiozt6Eh6bzP7ztp2ITQhROWRkZHDgwAEeffRRDh48iIuLC2+/fevMx5ZOcZ9Npq8vj2p7gc+dEPwD9Hse7At+2Qa1c6eG4xFWBEfQxbteKQUphCipws4kbMXLywsvL6+/zzjGjRvHq6++SmBgIAAzZsxgxowZf5fPnuJ+7dq1tG/fvkxizoucoViq0xSIvwynNhRa1MXJgYFtG/HHocukZcgMxEKIgrm7u9OkSROOHz8OwKZNm+jUqdPf09fPmDEjzynu27RpU2C9Mn19eeU7CFwbwf5vLCo+uqMn15PS+etEpI0DE0JUBp988gkTJ07E39+f4OBgXnjhhRzrC5rivrxMXy9NXpayd4TA+2DHXLhxCWp5FFj89lYNqO9SjRXBEQxs26iUghRCVFSBgYEUdHsNf3//fCd6nDVrFrNmzbplee3atVm3bt3f09cHBQXh5ORktZhzkzOUoug0GXSWcS2lEI72xgzEG49e5UZKeikEJ4QQOV24cIGuXbsSEBDArFmzbD59vSSUoqjXApr3MXp7ZRV+bWRUR09SM7JYe0RmIBZClL7s6etDQkIICgqia9euNt2fJJSi6jQFrp+Hs38WWjSwSR286zvLIEchyrmqdOfagpT0dZCEUlRthkGNunDg20KLKqUYGejJztPRRFxPLoXghBBFVb16daKjo6t8UtFaEx0dTfXq1Ytdh1yULyrH6hBwL+z9AhKjwKVBgcXv6dqET7ec4tud53j+7sp532ohKrLs3lGRkdIjs3r16nh5eRV7e0koxdFpMuz+DEIWG9OxFMCzTg2GtHfnx70XeGJAK7k9sBDljKOjI82bNy/rMCoFafKygNaamJSYmwsa+oFXN6PZy4LT5Km9WxCfksEv+y7aMEohhChbklAs8MbuN7hv1X1kabOeXZ2nQNQJuLC70O0Dm9ShS7O6fLXjLJlZVbudVghReUlCsUDXxl2JSIhg56WdNxe2Gw3VasIBy0bOT+3dnIsxyWw4Kl2IhRCVU5klFKXUeKVUqFIqSynVpYByg5VSx5VSp5RS/zJbPkApdUApFayU2q6U8rFVrAOaDKBe9XosOb7k5sJqLtBhHISugOTrhdYxsK07TerVYOG2s7YKUwghylRZnqEcAcYAW/MroJSyB/4LDAHaAvcqpdqaVs8HJmqtA4EfgZdsFaijvSOjfEaxNXwrVxLNzjA6T4GMZDj8S6F12NspHuzZnH3nYwm+WHgCEkKIiqbMEorW+pjW+nghxboBp7TWZ7TWacBPwMjsKoBapv/XBi7ZJlLDON9xZOpMlp9cfnNh40Bw72A0e1lwcf6erk2o6eTAl9vlLEUIUfmU92sonoB516hw0zKAqcBqpVQ4cD9w691oAKXUdKXUPqXUvpL0M29Sswk9PXqy7OQyMrIysis3Rs5fOQyXgwutw9XJgXu7N2X14csy0FEIUenYNKEopTYqpY7k8RhZ+NaF+idwt9baC1gEfJhXIa31Aq11F611Fzc3txLt8B7fe7iadJXtEdtvLuwwHhxqWDyt/ZSe3gB8s/NciWIRQojyxqYJRWt9p9a6fR6P3yysIgJoYva3FxChlHIDArTWe0zLfwZ6WjH0PPVp0ge3Gm45L87XqAPtRsHhpZCaUGgd2QMdF++5QEJqhg2jFUKI0lXem7yCgFZKqeZKqWrABGAlEAvUVkr5msoNBI7ZOhhHO0dGtxrN9ojtXEowu2TTaQqkxcPRFRbVM7V3C+JTZaCjEKJyKctuw6NN1z96AKuUUutMyz2UUqsBtNYZwExgHUbCWKK1DjUtnwYsU0qFYFxDmV0acY9rNQ6lFMtOLru5sOlt0MDX4mYvGegohKiMyrKX13KttZfW2klr3UhrPci0/JLW+m6zcqu11r5a65Za6zdzbd9Bax2gte6ntT5TGnE3dm3M7Z638+vJX0nPMt04Syljfq/wvXDNshMlGegohKhsynuTV7k03nc8UclR/HXxr5sLA+4FO0eLprUHGegohKh8JKEUQ2/P3ri7uOe8OO/SAPyGGTMQp6cUWof5QMeDF2JtGK0QQpQOSSjFYG9nz5hWY9h1eRcXb5hdWO80GZJjIewPi+qRgY5CiMpEEkoxjfEZg72yZ+nJpTcXNu8HdZpZPGFk9kDHNUeuyEBHIUSFJwmlmBq5NKKvV19WnFpBeqbp4rydHXS6H85uhRjL+gjIQEchRGUhCaUExrceT0xKDJsubLq5MHAiKDuLL8571qnB3R0ay0BHIUSFJwmlBHp69MTT1ZNfTpjNNlzLA1oNguAfIfvMpRAP396c+NQMlgTJQEchRMUlCaUE7JQd43zHsffKXs7GmV1Y7zwFEq7CiXUW1SMDHYUQlYEklBIa5TMKB+XA0hNmF+d9BkLNxhZfnAdjoGN4bDLrQ2WgoxCiYpKEUkINajTgjqZ38Nvp30jNTDUW2jsY11JObYS4cIvqyR7oKF2IhRAVlSQUKxjfejxxqXGsP7f+5sJO94POgoM/WFSHDHQUQlR0klCsoJt7N5rVapaz2auuN7ToBwe/g6xMi+qRgY5CiIpMEooV2Ck7xrUax4FrBzgVe+rmik5TIO4inN5iUT3mAx3DY5NsFK0QQtiGJBQrGekzEkc7x5xdiNsMBef6Rbo4LwMdhRAVlSQUK6lbvS4Dmw3k99O/k5xhmkbFwcmYhfj4arhx2aJ6sgc6/rT3ogx0FEJUKJJQrGi873ji0+NZe3btzYVdHwatYecnFtcjAx2FEBWRJBQr6tyoMy1qt8h5cb5eC+gwHvZ9BQmRFtUjAx2FEBWRJBQrUkox3nc8h6IOERYTdnNF72cgIwV2fWpxXTLQUQhR0UhCsbLhLYfjZO/EL8fNLs67+UK70RC0EJJiLKrn7zs6ShdiIUQFIQnFymo71WaQ9yBWnV1FUrpZ198+z0JaAuyeb1E92QMd95+PZf95GegohCj/JKHYwHjf8SSmJ7L67OqbCxu1gzbDYM//ICXOonru6dqEBq7VeGdNGFrLtRQhRPkmCcUGAtwCaFW3Vc57zgP0fQ5S42DPAovqcXVy4Kk7fdl7LoZ1oVdtEKkQQliPJBQbUEpxj+89HIs5RmhU6M0VjQPAdzDs/i+kxltU14SuTWjV0JW31xwjLSPLRhELIUTJSUKxkaEthlLDoQZLTuQ6S+nzHCTHQtCXFtXjYG/HC3f7cS46ie93n7dBpEIIYR2SUGykZrWaDGk+hDVn1xCfZnY24tUZWt5hdCFOs2y+rn6t3ejdqgFzN53kelKajSIWQoiSkYRiQ/f43kNyRjKrzqzKuaLPc5AYCfu/tqgepRQv3O3HjZR0Ptl8qvANhBCiDEhCsaF2DdrhV8+PJSeW5Oyl1awHePeGHXMhPcWiuvwa1+Kezk34dtc5zkUl2iZgIYQoAYsSilLqV6XUUKWUJKAiuqf1PZyMPcmeK3tyrugzGxKuGPdLsdAzd/niaG/HO2vDCi8shBClzNIE8RlwH3BSKfW2Uqq1DWOqVIa3HE5D54bMD56f8yyleR9o0h22fwwZll0XaVirOo/0acmaI1cIOmfZiHshhCgtFiUUrfVGrfVEoBNwDtiolNqplHpQKeVoywArOid7J6Z1mMaBawfYfXn3zRVKGddSboRDyI8W1zetT3Ma1XLijVVs0HcAAAAgAElEQVTHyJKJI4UQ5YjFTVhKqfrAA8BU4CAwFyPBbLBJZJXImFZjaOTciM+CP8t5luIzADw6wrYPITPdorqcqzkwe1AbQi5e5/dDl2wUsRBCFJ2l11CWA9sAZ2C41nqE1vpnrfUTgKstA6wMqtlXY1qHaQRHBrPr0q6bK5SCvnPg+nk4/Ev+FeQypqMn7Txq8e7a46SkW3a/eiGEsDVLz1Dmaa3baq3f0lrnuPWg1rpLUXeqlBqvlApVSmUppfLdXin1lVLqmlLqSK7l9ZRSG5RSJ03/1i1qDKVtdKvRuLu481lIrrMU38Hg3gG2fQBZliUHOzvFi0P9iLiezFc7ZDZiIUT5YGlCqauUGpPrMUAp1bCY+z0CjAG2FlLua2BwHsv/BWzSWrcCNpn+Lteyz1JCIkPYeWnnzRVKGT2+ok9B6HKL6+vZsgF3+jXksy2niUpItUHEQghRNJYmlIeBhcBE0+MLYA6wQyl1f1F3qrU+prU+bkG5rUBe3ZlGAt+Y/v8NMKqoMZSF0T6jaezS+NZrKW2Gg5sfbH0fsiyfr+tfQ/xITs/k440nbBCtEEIUjaUJxRHw01qP1VqPBdoCGuiOkVhKWyOzprcrQKP8Ciqlpiul9iml9kVGWnYLXltxtHdkmv80DkUdYnvE9psr7OyM+6VEHoOw3y2uz6ehKxO7N2Xx3oucvGrZZJNCCGErliYUL621+fzp14AmWusYIM/uSUqpjUqpI3k8RpY0aHPaONTPt/+s1nqB1rqL1rqLm5ubNXddLKNajsLDxePWs5R2o6G+D/z1HhTh3idPDmiFczV7/rP6mA2iFUJUdJlZmp+DLpCeafvZyi1NKH8qpf5QSk1RSk0BfjMtcwGu57WB1vpOrXX7PB6/WSHuq0qpxgCmf69Zoc5S4WjvyHT/6RyJPsK2iG03V9jZG/eev3oYjq+xuL76rk7M7O/DluORbD8ZZYOIhRAV1cWYJCYs2MWcZYdZF3rF5vuzNKE8DiwCAk2Pb4HHtdaJWuv+tgquACuBKab/Zye4CmOEzwg8XT1vPUvpMB7qNIOt7xbpLGVKT2+86tbgjVVHyZTBjkJUeVprftl3kSFztxF2OZ6P/hHA0A6Nbb7fQhOKUsoe2Ky1Xqa1/qfpsVSX4J60SqnRSqlwoAewSim1zrTcQym12qzcYmAX0FopFa6Ueti06m1goFLqJHCn6e8Kw9HOOEsJjQ5la7hZRzd7R+j9NFw6CKc2WVxfdUd75gxuQ9iVeJbtD7dBxEKIiiImMY0Z3+9n9tJDtPOoxZqnejO6oxdKKZvvW1mSF5RSm4AxWmvLboZeTnXp0kXv27evrMMAID0rnRHLR1DLqRY/Df3p5pudkQbzOkJtT3hondGt2AJaa8bM30lEbDJbnu2Hi5ODDaMXQpRHW45f47mlh4hLSufZQb48fHsL7O1KnkiUUvstGXNoaZNXAnBYKfWlUmpe9qNkIVZt2WcpR6OP8lf4XzdXOFSD25+Ci3vgbGHDdG5SSvHSUD+uxaeyYOsZG0QshCivktMy+b8VR3hwURD1nKvx28xeTO/T0irJpCgsTSi/Av+HMRBxv9lDlMDwlsNpUrPJrddSOt4Pru6w9b0i1de5WT2GdmjMgq1nuBJn2X1WhBAVW8jF6wydt43vdp9n6u3N+W1mL/wa1yqTWCydbfgbYAmwW2v9TfbDtqFVfg52Dkz3n86xmGNsubjl5grH6tDrSTi3Dc7vyr+CPMwZ3IbMLM376wsdNyqEqMAyMrOYt+kkY+fvJDk9kx+nduelYW2p7mhfZjFZOjnkcCAYWGv6O1AptdKWgVUVw1oMo2nNpswPyXW/lM4PgIub0eOrCJrWd+aBXt4sOxBO6KUKfclLCJGP89GJ3PO/XXy44QR3d2jM2if70NOnQVmHZXGT16tAN0xjTrTWwUALG8VUpTjYOfBIwCOExYSx+eLmmyuqOUOPmXB6M1zcW6Q6H+/vQ50ajry56hgl6IwnhChntNb8tPcCQ+Zu4+S1BOZOCGTevR2p7Vw+bktlaUJJz6OHl+2HXVYRdze/m2a1mjE/eD5Z2uxl7ToVajaG1c9aPBMxQO0ajjw5oBU7T0ez6ViFGfMphChAVEIq077dz79+PUxgkzqse6oPIwM9yzqsHCxNKKFKqfsAe6VUK6XUJ8DOwjYSlnGwc+AR/0c4HnuczRfMzlKcXGHQf+ByCAQtLFKdE29rRquGrry44jCxiZbdYlgIUT5tOHqVwR9vZevJSF4a6sf3D3fHo06Nsg7rFpYmlCeAdkAqsBi4ATxlq6CqoiHNh+Bdy5vPQj7LeZbSbjS0vAM2vQ43LudfQS6O9nZ89I9AYhPTmbPskDR9CVEBxSWl8/TPwUz7dh8NXJ1YObMXU3u3wK6UuwNbytJeXkla6xe11l1NEy2+qLWWfqlWlH0t5WTsSTZdMBslrxTc/T5kpsG6F4pUZ3vP2jw3uDXrj17lx70XrByxEMKWtoRd466P/+K3kEvMGtCKlTNvp4172XQHtpSlvbx8lVILlFLrlVKbsx+2Dq6qGeJtOksJznWWUr+lMSVL6K/GRfoieKhXc3q3asDrfxzl1DWZ4l6I8u5GSjrPLQ3hwa+DqF3DkRWP9eLpgb5Uc7C0QansWBrhL8BB4CVgttlDWJG9nT0zAmZw6vopNpzfkHNlr6egXgtY9QykW35yaGen+GB8AM7VHHhicTCpGXIPeiHKq60nIhn00VaW7g/nsX4t+f2J2+ngVbusw7KYpQklQ2s9X2u9V2u9P/th08iqqMHeg2lRuwWfh3ye8yzFsToM/QBizsCOj4tUZ8Na1XlvnD/HLt/gvbUy4FGI8iYhNYPnfz3M5K/24lzNnl8f68Vzg9vg5FB2gxSLw9KE8rtS6jGlVGOlVL3sh00jq6LMz1LWn1+fc2XLO6D9WNj2IUSfLlK9A/waMblHMxZuP8vWE2V750ohxE07TkUx6KOt/BR0gel9WrBqVm8Cm9Qp67CKxdLZhs/msVhrrSvU4MbyNNtwQTKzMhm7ciwAy0Ysw97O7Cgl/gp82hW8usCkXy2ejRggJT2TEZ9uJyYxnbVP9aaBq5O1QxdCWCgxNYO314Tx3e7zNG/gwvvj/encrHwep1t1tmGtdfM8HhUqmVQk2Wcpp+NO33qWUtMd7njJuDgfurxI9VZ3tGfevR25kZLOnKXSlViIsrLnTDRD5m7j+z3neahXc1bP6l1uk0lRFJhQlFLPmf1/fK51/7FVUALu8r4Lnzo+zA+ZT2buUfJdp0LjAFj7PKTcKFK9bdxr8fyQNmwKu8Z3u89bMWIhRGGS0zJ57fdQ/rFgNwA/TbuNl4e3pUa1inWtJD+FnaFMMPv/87nWDbZyLMKMnbJjRsAMzsadZeXpXPNw2tnDsI8g4SpsebPIdT/Q05t+rd14Y9Uxjl+RrsRClIagczEMmbuVRTvOMaVHM9Y+1ZvuLeqXdVhWVVhCUfn8P6+/hZUNbDaQjg078sH+D4hJicm50rMzdHkI9i6AS8FFqlcpxfvjA6hV3YFZiw+Ski5diYWwlfiUdF5acZjxn+8iPVPz49TuvDayPc7VKt9dVQtLKDqf/+f1t7AyO2XHKz1eITE9kXeD8pjGfsDL4FwfVj1dpMkjARq4OvH++ACOX43n7TVhVopYCGFuw9GrDPxwKz/sucCDvbxZ/8/yMc28rRSWUAKUUjeUUvGAv+n/2X93KIX4qryWdVoytcNUVp1ZxY6IHTlX1qgDd70JEfth/9dFrrtf64Y82Mubr3eeY3PYVesELITgWnwKj/9wgGnf7qN2DUd+fbQnrwxvh4tT5TsrMWdRt+HKoqJ0G84tNTOVcSvHkZ6Vzq8jfsXZ0fnmSq3hm+Fw5RDM3AeuDYtUd0p6JqP+u4PI+FTWPNWbhjWrWzl6IaoOrTW/7AvnjVVHSUnPYtYAH6b3aVkhpk0piFW7DYuy5WTvxMs9XiYiIYLPQz7PuVIpGPohpCXB+v8rct3VHe355N6OJKRmMPuXQ2RlVZ0DDCGs6VxUIvd9sYfnlh2ijXstVj/Zm5l3tKrwyaQoqs4zreC6undlbKuxfHv0W45FH8u50s3XuAf9oZ/g7NYi192qUU1eGtaWv05EsmjnOesELEQVkZ6Zxfw/TzPo460ciYjjzdHt+Wn6bfg0dC3r0EqdJJQK5J+d/0kdpzq8uuvVW8em9HkW6jQzJo/MKPoNtSZ1b8qdfo14Z00YRy8VbWyLEFXV4fA4Rn66g3fWhtHX140NT/dlYvdm5fZ+JbYmCaUCqe1Um391/xdHo4/yY9iPOVc61jDumxJ1AnbOK3LdSineHedPHWdHZv10kOQ06UosRH6S0zL5z+pjjPzvdiITUvl8UicWTO6Ce+2qfQ1SEkoFM6jZIPp49eGTg59wKeFSzpW+d4HfcNj6HsSeK3Ld9Vyq8cE9AZy6lsCbq49aJ2AhKpltJyO56+O/WLD1DP/o2oSNT/dlcPvGZR1WuSAJpYJRSvFi9xcBeH3367fOxzX4bVD2sPo5owdYEfVu5cb0Pi34fvcF1odesUbIQlQKkfGpPL0kmPu/3IuDnR2Lp93GW2P8qV3DsaxDKzckoVRAHq4ePNHxCbZHbGfduXU5V9b2gv7Pw8l1EPZHsep/9q7WtPesxdNLQjgUft0KEQtRcWVkZvHNznPc8cGf/B5yicf6tWTNk73p0bJyTZtiDZJQKqj72txHu/rteGvvW8SlxuVc2X0GNGwHa+ZAakKR667mYMfCyV2p6+LI5K/2ynxfosrafz6GEZ/u4JWVoQR41WHNk314bnAbqjtWjskcrU0SSgVlb2fPKz1eIS41jo/2f5RrpaMxeeSNCNj4SrHqd69dnR8evo1q9nZM+nIP56MTrRC1EBVDVEIqz/4Swtj5u4hJTOO/93Xiu4e7VcmuwEUhCaUC86vvx+S2k1l2chlBV4JyrmzaHXrMhKCFcGhJsepvWt+ZH6Z2JyMzi4kL93A5LtkKUQtRfmVmab7ddY473v+TFQcjmNG3JZue6ctQ/8aoItzMrqqSqVcquOSMZEb/NhpHO0eWjliKk73ZXRgz0+GbEXDpIEzdCO7ti7WPw+Fx3PvFbhrVcuLnR3rInR5FpbT/fCwv/3aE0Es36OVTn9dGtMOnYc2yDqtcKNdTryilxiulQpVSWUqpfINUSn2llLqmlDqSa/l7SqkwpdQhpdRypVTFvAGzFdRwqMHLt73MuRvn+OLQFzlX2jvC+K+hem34eRIkF+8Cewev2nz1QFciricz+cu9xCWnlzxwIcqJ6IRUnlsawtj5O4lOSOPT+zry/cPdJZkUQ1k1eR0BxgCFzRPyNXnfyGsD0F5r7Q+c4Nabf1UpPT17MqzFML488iWnYk/lXFmzEdzzDcRdhOUzICurWPvo1rwe/7u/CyevxfPQ10EkpWVYIXIhyk5mlua7Xefo//6f/Hoggkf6tmDTM30Z5u8hzVvFVCYJRWt9TGt93IJyW4GYPJav11pn/6LtBrysHGKFM7vrbFwcXXht12tk6VxJo+ltMOg/cGINbP+g2Pvo6+vGvAkdOXghlke+209qhoymFxXTgQuxjPzvdv7vt1Dae9Zm7VO9eX6IX6WfXt7WKsNF+YeANfmtVEpNV0rtU0rti4yMLMWwSle96vWY3WU2wZHBLD2x9NYC3aZDh/Gw+U04tbHY+xnSoTHvjgtg28konvjxIBmZxTvjEaIsXItPYc7SQ4z5bCeR8al8el9HfpgqzVvWYrOEopTaqJQ6ksdjpBX38SKQAfyQXxmt9QKtdRetdRc3Nzdr7bpcGtFyBN3du/PR/o+4lnQt50qlYPhcaNgWlk2F2PPF3s+4zl68Orwt649eZfZSmfJelH9JaRnM3XiSfu/9ya8Hw5nepwWbnuknzVtWZrPzO631nbaqG0Ap9QAwDBigq1JXtQIopXi5x8uMWTmGt/e+zYf9PsxZoJoL/OM7WNAfltwPD60Hx+JNZvdAr+YkpmXy3rrjuDjZ8/rI9vLFFOVOZpZm6f6LfLD+BNfiU7m7gzvPDWqDdwOXsg6tUqqQTV5KqcHAc8AIrXVSWcdTnjSt1ZQZATPYcH4Dmy9svrVA/ZYw+nO4HAKrny3Rvh7r15JH+hrzfr27rtBLYkKUGq01fx6/xt1ztzFn2WG86tZg2aM9+GxiZ0kmNlRW3YZHK6XCgR7AKqXUOtNyD6XUarNyi4FdQGulVLhS6mHTqk+BmsAGpVSwUirXbQyrtintpuBTx4c397xJQloeU6+0uRt6PwsHvyvWveizKaX41+A2TOzelPl/nua/W04VvpEQNnb00g0mf7WXBxYFkZKRyWcTO7Hs0Z50blavrEOr9GRgYyV1KPIQk1ZPYkTLEbze6/Vbm6OyMuGHcXBuOzy0Fjw7F3tfWVmaZ34JYfnBCF4b0Y4pPb1LFrwQxXA5LpkP1p9g2YFwatdwZNYdrZh0W7MqdQvefMWeM27AV8xm6XI9sFHYnr+bP9P9p/Pb6d9YHLb41gJ29jD2S3B1h58nQ2J0sfdlZ6d4b5w/A9s24pWVoSzdH16CyIUomoTUDN5fd5z+7//JyuBLTO/dgr9m9+eh25tLMok8AcumwbyOcHqTzXcnna4rsccCH+N4zHHeDXoXnzo+dGvcLWcB53rGoMevBsOyh2DSr0aiKQYHezs+ubcjU7/Zx3NLQ3B1spebDgmbysjMYnHQReZuPEFUQhojAz149q7WNKnnXNahlb3IE7D1XTi81Liba4+Z4B5g891Kk1cll5CWwMTVE4lJieGnYT/h6ep5a6ED38LKJ6D3MzDg5RLtLyktg0kL9xASHsfzQ9rw8O3NpfeXsCqtNZuOXeOtNcc4HZlIt+b1ePFuPwKaVNkZmG7KnUi6TYMeT4BryYZMWNrkJQmlCjgXd477Vt2Hh6sH3w75FmfHPI7gVj5hJJYJP0KboSXaX3xKOrN/OcTa0CsMae/Ou+P8qVld7monSkZrzZ8nIpm78STBF6/Tws2F54f4cadfQzloiTwOf70LR5bdTCQ9Z4FLA6tULwklD1U1oQBsj9jOYxsfY2Czgbzf9/1bv4DpKbBoMESfhmlboIFPifanteaLbWd4Z+1xmtVzZv6kzrR2l9HIoui01mw5fo25G08SEh6HZ50aPN7fh/FdvHC0r+rXSMwTibMpkTxhtUSSTRJKHqpyQgH46shXfLT/I57s9CRTO0y9tcD1C/C/vuDaCKZtMgZCltCeM9HMXHyQhJQM3hrTgVEd82hyEyIP2U1b8zaf5FB4HF51azCzvw9jOnnJxfZrYUbT1pFfbZpIsklCyUNVTyhaa+Zsm8Pas2v5dMCn9PHqc2uh05vhuzHQfiyMXVjsbobmrt1IYeaPB9l7LobJPZrx4lA/nBzkFqoib1prNhy9yrzNJzkScYOm9ZyZ2d+H0Z085YwkdyLpPt24RuJS8P3tM7IycLArfh8sSSh5qOoJBYwbck1ZM4WL8Rf5YegPtKjd4tZCW9+Hza/DXW9Cz5lW2W96ZhbvrTvOgq1nCGxSh88mdsKjTg2r1C0qh6wszfqjV5m36SRHL9+gWX0jkYzqKImEq0dh2/tFTiSpmaksPbGURUcW8dmdn+Fb17dYu5eEkgdJKIbLCZeZsGoCtarV4oehP1CrWq2cBbKyjLm+wv6AoR9C14fzrqgY1h65zLO/HMLRXjHv3o70blW5J+wUhcvK0qwLvcLcTScJuxKPd31nZt7RilGBHjhU9UQSsR+2fgDHV0E1V2PW8B4zC00kKRkpLDu5jK8Of8W15Gt0atiJ57s/T5t6bYoVhiSUPEhCuWnflX1MWz+NHh49+OSOT7DPPf4kIxWWTIYTa2HIe8YRkZWciUzg0e8PcOJaPE/f6cvj/X2ws6vivXSqoKwszZojV/hks5FIWjRwYeYdPowIkETCuR3GGcnpzcYdV7vPMB7OBU8fk5KRwi8nfuGrI18RlRxFl0ZdeDTgUbq6dy1RTzhJKHmQhJLTz2E/88aeN5jaYSpPdnry1gIZabD0QeNMZdB/oMfjVtt3UloGLy4/wvKDEfRv7cZH/wikjnM1q9Uvyq/UjExWHbrM53+d5sTVBFq4uTDrjlYMD/DAviofWGgNpzYZieTCLnBxM75zXR6G6rUK3DQ5I5lfjv/CotBFRCVH0dW969+JxBosTSgyUr4Ku6f1PRyLOcbCwwtpXbc1g5vnutuyQzXjnvRLH4J1L0BWBvTKI/EUg3M1Bz68J4BOzery799DGfbJduZP7EwHr9pWqV+UP9dupPD9ngv8uOc8UQlp+DR0Ze6EQIb5V/FEkpVlHLRt+wAuB0MtTxjyLnSabIwpKUByRjJLji9h0ZFFRKdE0829G+/2eddqiaSo5AylikvPTOehdQ8RFhPGd3d/l3cba2Y6/DodQn+FO/4P+pRs2vvcgi9e5/EfDhAZn8prI9sxoWsTGahWiRy8EMvXO8+x6tBlMrXmjtYNmdLTm9t9GlTtps7MDOM7te0DiAyDei3g9n+C/wTjYK4ASelJRiIJXURMSgzdG3fn0YBH6dyo+JO8FkSavPIgCSVvUclR/OOPf+CgHFg8bDH1qufRTpuZASsehcNLoN8L0G+OVWOISUzjyZ8Osu1kFGM7efHysLbUdpbR9RVVakYmqw9f5usd5wgJj6OmkwPjuzRhco9mcj+SjFQIWQzbPzJmAW7Y1pj2qO0osC+40SgpPYmfj//M16FfE5MSw22Nb+PRgEfp1KiTTUOWhJIHSSj5C40KZfKayfi7+bPgrgU42uXxY56VCb/NhJAfoc9z0P8Fq4xTyZaZpZm36STzNp+kppMDj/RtyYO9vHGuJi2zFcW1+BR+2H2BH/ZcICohlRZuLjzQ05sxnbxwdari72NaEhz4BnbMg/hL4NHJONv3HQJ2BXdCSEpP4qfjP/H1ka+JTY2lp0dPHg14lMCGgaUSuiSUPEhCKdjvp3/nhe0vcG+be3mh+wt5F8rKgt9nGTfnuv1pYzJJKzdPhV25wfvrTrDx2FUauDoxa4APE7o2ldHR5Vjwxet8veMsqw5fJj1T07+1Gw/0ak7vqt6sBZAYBXsXwN4vIDkGmt0OfZ6BFv0L/e7Epcbx47Ef+f7Y99xIu0Evj17MCJhRaokkm1yUF0U2vOVwwmLC+Pbot7Sp14YxrcbcWsjODobPAzsH2P4hZKXDwNetmlTauNdi4ZQu7D8fy7trw3j5t1C+2HaGf97py8hAz6p9AbccScvIYs2RyyzacY7gi9dxdXJg0m3NmNzDm+ZVvVkLjHnxdn0KwT9CRgq0vtvo1NL0tkI3jUqO4tvQb/n5+M8kZSTRr0k/pnWYhr+bfykEXnxyhiJyyMjK4LGNjxF0NYhFgxblfySkNayeDUFfQPdHYfBbVj9TMXaj2XoyivfWhXEk4ga+jVx59q7WDGzbSC7cl4GsLE3QuRh+C7nEmsOXiU1Kp0UDF6b09GZsZ2nWAuBiEOycC8f+AHtHCJhgjGp3K3yU+qWES3x15CuWn1xOhs5gkPcgpnaYWuwR7tYiTV55kIRimbjUOCb8MYH49Hg+v/Nz2jdon3dBrWHt87BnPnSdBne/Z5OkAjcHwX2w/jhnohLp2LQOswe1pmdL20yGJ27SWhN66QYrQy7xe8glLselUMPRnoFtGzGmkyd9WrlJs1ZWljEIeOc8YwxJ9drQdSp0ewRqNip087NxZ/ny8JesOrMKFIxoOYKH2j9Es1rNSiH4wklCyYMkFMuFx4czdf1UYlNi+XTAp/n3a9caNvwf7PwEOj9oTNVSyAXGksjIzGLZgXA+3niSy3Ep9G7VgNmDWuPvJTdXsrYzkQmsDLnEyuBLnIlKxMFO0a+1G8MDPBjYtpF0lgDjtg+HfjaatqJOQO2m0OMx6Hg/OLkWunlYTBhfHPqCDec34GTvxFjfsTzQ7gHcXdxLIXjLSULJgySUormaeJXpG6YTkRDBh/0+zHt2YjCSyqbXjG6QHe83XWOx7QX0lPRMvt99nv9uOUVsUjpD2rvzzF2t8WlY+JdY5O9yXDJ/hFxmZcglDkfEoRR0b16PkYGeDGnvLrMZZEuOhaAvYc//IPEauPsb10cs6PoLEHwtmAWHFrAtYhuujq5MaDOBSX6TqF+j4Dm6yooklDxIQim62JRYHtnwCCdjT/J2n7cZ5D0o74Jaw5b/GFNrB9wHIz8t9v3piyI+JZ2F286ycNsZktMzGdvJiyk9vWnnUUuusVgoNjGNNUeu8FtwBHvPxaA1+HvVZkSAB8P8PXCvXb2sQyw/rl+A3fNh/zeQnggtB0CvWdC8b6HNvVprdl3excLDCwm6EkQdpzpM8pvEvX733jpBazkjCSUPklCKJz4tnpmbZhIcGcyrPV5ldKvR+Rf+8x348z/QfpyRVAqZOsJaohNS+ezP03y3+zxpGVl41qnBoHbuDGrXiC7e9aRnmJnMLM3RSzfYdSaKHaei2XEqiowsTQs3F0YGeDIi0EN6aZnTGs5th73/g7BVoOyMz3fPJ8A9n+uLZjKyMth4fiNfh35NaHQoDWs0ZEq7KYzzHZf37bjLIUkoeZCEUnzJGck8teUpdl7ayZyuc5jUdlL+hbd9aDSBNWwL4xZBw+JNmV0cMYlpbDx2lfWhV9h6Moq0jCzqu1RjYNtGDGrnTk+f+lXu5l5ZWZoT1+LZeSqaXWei2XMmmhspGQC0cHPhTr9GjAjwkLO63NKSjJkh9iyAa6FQox50nmJcbK/tVejmSelJLD+1nO+OfkdEQgTNajVjSrspjGw5kmr2FavpUBJKHiShlExaZhpzts5h44WNzAycyXT/6fn/AJ3cCMsfgbREGPKOMdFdKf9YJaRm8NfxSNaFXmFz2DUSUjNwdXKgf5uGDGrXiH6tG1bKbq5aa05HJrLrTDS7Tkex+0wMMYlpADSt50yPFpgEjP4AABoBSURBVPXp6VOf21rUp1Etac66Rex5CFoIB76FlOvg3sHordVhnEVn3FHJUSwOW8zPx38mLjWOQLdAHmj/AP2b9MdOVczBuZJQ8iAJpeQysjJ4ZecrrDy9kgfaPcDTnZ/OP6nEXzEmlTz7F7QbDcPnGt0py0BqRiY7T0ez7sgVNhy9SnRiGtUc7Ojt04BB7d25068R9Vwq1lFjNq01F2KS2HU62pREorkWnwqAR+3q3NayPj1bNqBHy/p4yl0y86Y1nN1qXGQ/sQZQ4DfcuAdJ09ssOhg6G3eWb0K/4ffTv5OelU7/Jv15sP2DpT6q3RYkoeRBEop1ZOks3trzFj8d/4nxvuN5sfuLt96g6+/CWbDjI9j8ptFMMO4r8Cr0c2lTmVma/edjWXvkCutCrxBxPRk7Bd2a16Nb8/p413emWX1nmtV3ob5LtXLTDJSemcXFmCTORSdyNiqJc1GJnItO5NS1BC7HpQDgVtOJHi3q06NlfXq2rE/Tes7lJv5yKS3R6Pa7ZwFEHgPn+tD5AeMeJLU9Lari4LWDLDqyiD8v/omjnSMjfUYyue1kvGt72zT00iQJJQ+SUKxHa80nBz/hi8NfMKT5EN68/c28J5TMdnEvLH3YmBTvjpeg55M271psiexBe+tCjeRy8loC5l8JVycHmtZzxruBM03rufD/7Z15fFXVtce/KxOZE0iIDAlkIAgyiKDiKwgYkBa1Sklb61BrHTq8vta+tra+Z322tdVOn0/7se+1aqu2+LTWGvpES1SMDEoFwQBhhpCJMAUSMo/33v3+2CckpJfkBm5yM6zv53M+Z99z9j1nrTv97l5777VTEyKZkBBJakIUY2LD/T6hz+X2UH6mieLKBkpPN1BS2UixIxzlZ5pwezqMiw0PIS0xirTEKOZMHMm/ZCSQMTpaBcQXqoptWGv7C9BcA2Mvt2Gt6dkQ2nMY0O1xs/7Iep7f8zw7T+0kbkQcn7v0c9w25bYBO/T3YlBB8YIKiv95dtez/Dr/1yxKXsQvF/2SEcEjzl+5qdomltz7mk2Mt+IZiE7qP2N9oMXl5khVE2VVDZScbqTMaRGUVTZy5Ewjbe6O70tYSJAVmwQrNokxYXg8BpfH4O6yuTwGj3HOuQ1uc+75hlYXpZWNHKlqxNVJNKJHhJCaaAUsLTGK1IQoUh0RGRkZquLRG9wuKHwHPvqjndUeFAxTb7ZhrZSrfQprNbuaWX14NSv3rqS0tpTx0eO567K7WD5p+aAZsXUhqKB4QQWlb3h5/8v8ZMtPmDtmLk9mPdn9F8sY+4V+8yEYEQufegomLe43Wy8Gt8dwrLqJ0spGSqsa7L6yfd9IU5v7bF0RCAkSgkTsPsjug50tJCiIoCDsXiA8NJiJTsunXTBSE6JIjB44IbdBS1UxbP9f2PEi1B2HqCQ7WuvKeyB2nE+XONFwglcOvMKrB1/lTMsZpiVM4+7pd7NkwhJCgobewI6uqKB4QQWl73j98Os8sukRpiVO47eLf0vciB4630/utUsLn9oH875pw2DBg3dBLWMMLS6PFQwRzW0VaNqa7bK6+SvtoBAJgsylNpPD5I/79FkzxpBfkc9L+14irywPg2FR8iLuvOxOrrzkymEl9CooXlBB6VvySvN4cOODpMel8/T1T/ccS25ttGvVf/Q8jL8SPv0sjEztF1uVIcrJPZD/AhS8bNOjxE+E2Z+HWXf43BppdjWTW5zLi/te5MCZA8SGxZKdmc2tU25lfLRvHfVDjQEtKCLyGeAHwFTgamOM1195EXkOuAmoMMb805RUEfk28EtgtDHmdE/3VUHpe/5x9B88sO4BkiKT+PnCnzMtYVrPT9rzN1j9AGDgk7+2HaOK4istdbB7lW2NHN0GwWF2yO/suyB1gc+DP47XH+cvB/5CzqEcqluqyRyZye1TbufG9BuJCBnew60HuqBMBTzA08B3uhGUBUA9sLKroIhICvAHYAowRwVl4LCjYgff3vBtqpqq+Oqsr3Lv9HvPP6y4nTOlkHMflH9ofwiW/BAivaxtryhg++LKt9kldXevsnm1Rk+1fSMzb/X5s2OMYdvJbby07yXePfIuAFkpWdw+9fZhF9bqjgEtKGdvLrKebgTFqZMKvOFFUF4FHgNeA65UQRlY1LTU8Njmx3ir5C1mjZ7F49c+TkpMSvdPcrfZBJPv/8p22H/s63DNV2BETP8YrQx8zpRYASl4xfa/hUbBjGyY/QUYP8fnbAxNribWFK3hxf0vcujMIeJGxNmw1qW3Mi7at9DYcGJIC4qI3AJkGWMeEJESuhEUEfkS8CWACRMmzCktLfWb/Ur3GGP4e/HfeXzz47iNm4eufojlk5b3/K/v5B47EfLA3+1Es/nfgqvu7bdEk8oAo/a4DYvuzrEhLYCUuXDFnTYDQy/+cJTWlpJzMIecQznUttYyeeRk7ph6B8vSlg37sFZ3BFxQROQdwNsqMQ8bY15z6qynl4IiIpHAOmCpMaamJ0HpjLZQAsPx+uM8vOlhtp7YSlZKFo9+7FFGhfsQkij/CN59DIrWQcxYWPCgHaUTMjhTpCi9oKES9r1mWyMl7wPGrjkyPRumr4D4CT5fqtnVzDtl75BzMIdtJ7cRLMFkTcji9im3M+eSORrW8oGAC4ovXKCgzADygEanSjJwDNu5f6K7+6mgBA6P8bByz0qe3P4ksWGx/Gjej86/YFdXit+zwnJkix21s+g/YOZn+2W9FaUfaa616eF359g/ER4XJGTapIzTsyExs1eXO1B1gJxDObxR9AZ1rXUkRyeTPTmbmzNuJilyYE2oHegMWUHxcr4EbaEMGg5UHeCh9x6isLqQWy+9lW/N+ZZvM4yNgUNrrbCcKIDES+G6/7QznQdAChflAmlthENvWRE5+Da4W+wyutNXWCG5ZHqvslQ3tDWQW5xLzsEcdlfuJjQolCUTl5Cdmc1VY64atNl+A82AFhQR+RTwG2A0UA3sMMZ8XETGAX8wxtzg1PszsAhIBE4Cjxpjnu1yrRJUUAYVLe4Wnsx/kpV7V5Iam8oT1z7B9MSeFyoCbLLJfatt5/3pAzYMkvUIZF7f7+nxlQukuda2QPa9AQfWQGs9RF9i+0Omf9omD+3Fe2mMoeB0ATkHc3iz5E2aXE1Mip9EdmY2N6XfRHx4fB86MzwY0IISKFRQBhZbjm/h+5u+z6nGU3zl8q9w34z7fE9j4XHbkT7rn4DqUki5BhY/Aqnz+9ZopfcYA6cOwKG37Vb2gQ1nhcfDZbfYlsjEeb0OYVY3V/N60eusOrSKwupCIkIiWJa2jBWZK5iZOFP7RvyICooXVFAGHrWttfxk809YU7yGmaNn8sT8J5gQ63uHK65WmzF24y9snqb062DulyEjC0K6SVSp9C2tjVDyXoeIVJfZ40nTYPJSmwYl+WoI7l0erDZPGx8c+4A3Dr/BO2Xv0OZpY0biDFZkrmBZ2jKiQnXp4r5ABcULKigDl9ziXB7b/Bguj4vvXvVdVmSu6F28u60Jtj5r57A0noYRcTD1Jpi2AtIXDuo8YYOGMyW2H+TQ21ZMXM0QGgnpi6yAZF7v09K5XfEYDx+d/Ijc4lzWlq6luqWa2LBYbkq/iRWZK7h01KX+9kTpggqKF1RQBjYnGk7w/fe/z5YTW5gUP4kvX/5lrp9wfc+z7DvjaoWi9bBnlR0x1FJr1wKf+knb0Zt6rY4O8xeuFijb3NEKOX3QHh+VYQVk8lIbyrqAlqIxhr1Ve1lTtIY3S96korGCiJAIFqUs4oa0G5g3bh6h+ieh31BB8YIKysDHYzzkFufyTMEzFNUUkR6Xzv0z7+cTqZ/ofZrwtmY4nGfnMhzItek5okbbuP30bNvvoiPEfKfupE2Nc2QLHNkKx7bbUVnBYbbvKtMJZSVkXPAtimqKyC3OJbc4l9LaUkKCQpg/bj7L0paxKGXRkF5zZCCjguIFFZTBg9vjZm3ZWp7e+TSF1YVMjJ3I/TPu58b0Gy9s/YnWRvsves8qOPiWDcfEjINpy21YrJcji4Y8bhec3A3lWx0B+dAOfgArIGNn2UWpJs6zIcWwC++7OF5/nNwSKyL7q/YjCFePuZplactYMnFJz0shKH2OCooXVFAGHx7jYV3ZOp4qeIr9VftJjk7m/pn388n0T154yKOl3q7Yt3sVFK4FdyvEpVhxmbTEDkUebokpG6usaJR/aPdHP4I2Z+5w9BgrHilz7X7s5Rc94OFU4ynyyvLILc4lvyIfgBmJM1iWtoyPp35cJx4OMFRQvKCCMngxxrChfANP7XyKPZV7GBs1lvtm3MfyScsJC76IVCzNNbB/jW25HH7XDmcFiB0PY2acu8WnDv4QWUsdVB6GykKoKrL7ox/ZPYAEw9iZdgRWirPFpVx0681jPOyr3MeG8g1sKN/A3sq9AGTEZXBD+g0sS11GSmwPyUOVgKGC4gUVlMGPMYZNxzbxu52/o+BUAUmRSdwz/R6yM7MJDwm/uIs3nYFjO+DEro7t9EEwztK+YTEwZrqdvd0uMkmXQehF3tfftDU5YtEuHIeh0hGPhopz68aOty2O5KtsC2TcFRDmn36KhrYGNh/bzIbyDWws30hlcyWCcPnoy1mQvICFKQvJjM/U+SKDABUUL6igDB2MMWw+vpmndj5FfkU+iRGJfHHaF/nMpZ/xb9bYtiao2Gf7E84KzW5orbPnJRgSJ1txSZgE4bE2++2I2E7luI5ySHjv/+27Wu1s8pZaG65rqTv3cXO1HbJbWWiFo7b83OdHJdmO8oQMOwIrIcPaOjLNb+LRzpHaI2w8upENRzaw9eRWXB4XMaExzBs/jwXJC5g/fj4jw0f69Z5K36OC4gUVlKHJ1hNbeXrn02w5sYVR4aO4Mf1GFk9YzKzRs3o35NhXPB6oLukQlxO7bH6x2qM9Pzco1ApLeKwVnXbhCQmH1gZHLOrsvl083C09Xzc8vkMozoqGIyDhsRft8vlo87Sxo2IHG8s3sqF8A8U1xQCkxaWxMHkhC5IXMCtpFqFBOsR3MKOC4gUVlKFN/sl8nt/9PJuObaLN08ao8FFcl3IdWROymDt2LiOC+3jmvNvltBrqOvbNtU65tlO57p/LriY7UmpELIRFOy0bZx8W4zz2diy6Q5T6gTZPG/sr95Nfkc+Oih1sOb6FurY6QoNCufKSK1mYspAF4xdof8gQQwXFCyoow4P61nreP/o+eWV5vHf0PRraGogMiWT++PksnrCYa5OvJSZMV4H0hdrWWnZW7GR7xXZ2nNrBrlO7aHY3A5AcncxVY65iYfJCrhl3jaY9GcKooHhBBWX40epuZcvxLeSV5bHuyDqqmqsICQph7ti5ZKVkkTUhi8SIxECbOSAwxnC84fjZ1kd+RT6FZwoxGIIlmCmjpnBF0hVnt9GRowNtstJPqKB4QQVleOP2uCk4XUBeaR55ZXmU15cjCDNHz2TxhMUsnrC4d4kpBzkNbQ0U1xSz89TOswJS0WhHgUWGRDIraRazkmYxO2k2MxJn6Cz1YYwKihdUUJR2jDEcqj5kWy5l69hXtQ+ApMgkJsVPIiM+g4y4DLuPzxi0ITJjDBWNFRTXFlNc07EV1RSdFQ+wfs9Omn229ZE5MvPCMhIoQxIVFC+ooCjn42j9UdaVrWNP5R4OVx+mqKaIlk6jqwa60LS52yirKztHNIpriimuLaahreFsvajQKNJi00iLs1tqXCrTEqYxNmqszgdRzosKihdUUBRfcXvcHKs/xuGawxRWF1JUXURhdSHFNcVnO6WhQ2jS49JJjkkmIiSC8OBwwkPs1v44IiSi43FIOGFBYV5/wI0xNLoaqW2ppbbV2TqVa1pqOo631lLXUseZljMcqz+Gu30CJjAmasw5wtG+jY4YrcKh9BoVFC+ooCgXi8d4OFp/9KzAFNV0CE2Tq8nn6wRJ0FnhiQiJIFiCqWuto661Dpdxdfu82LDYjm1ELHFhcaTEpnQIR2ya9ncofsVXQdEgqaL0giAJIiUmhZSYFBamLDx73GM81LbU0uxupsnVRLOr2ZbbmmhyO4/bj7maOuo4x9rcbcSExRA74lyx6CocUaFR2sJQBiwqKIriB4IkiPjw+ECboSgBZZCnTlUURVEGCiooiqIoil9QQVEURVH8ggqKoiiK4hdUUBRFURS/oIKiKIqi+AUVFEVRFMUvqKAoiqIofmFYpV4RkVNA6QU+PRE47UdzBgPq8/BAfR4eXIzPE40xPS6AM6wE5WIQkW2+5LIZSqjPwwP1eXjQHz5ryEtRFEXxCyooiqIoil9QQfGdZwJtQABQn4cH6vPwoM991j4URVEUxS9oC0VRFEXxCyooiqIoil9QQemCiHxCRA6ISKGIPOTl/N0ickpEdjjbfYGw05/05LNT57MisldE9ojIS/1to7/x4X3+Vaf3+KCIVAfCTn/ig88TRGSdiGwXkQIRuSEQdvoLH/ydKCJ5jq/rRSQ5EHb6ExF5TkQqRGT3ec6LiDzpvCYFIjLbrwYYY3RzNiAYOAykA2HATuCyLnXuBv470Lb2s8+ZwHZgpPM4KdB297XPXep/HXgu0Hb3w/v8DPBVp3wZUBJou/vY378CX3DKWcALgbbbD34vAGYDu89z/gYgFxDgGmCLP++vLZRzuRooNMYUGWNagZeBWwJsU1/ji8/3A/9jjDkDYIyp6Gcb/U1v3+fbgD/3i2V9hy8+GyDWKccBx/rRPn/ji7+XAe865XVezg86jDEbgapuqtwCrDSWzUC8iIz11/1VUM5lPHCk0+Ny51hXsp3m4qsiktI/pvUZvvg8GZgsIptEZLOIfKLfrOsbfH2fEZGJQBodPzyDFV98/gFwp4iUA2uwLbPBii/+7gRWOOVPATEiktAPtgUSnz/7F4IKSu95HUg1xswE1gJ/CrA9/UEINuy1CPtv/fciEh9Qi/qPzwGvGmPcgTakH7gN+KMxJhkbGnlBRIbyb8R3gIUish1YCBwFhsP73GcM5Q/LhXAU6NziSHaOncUYU2mMaXEe/gGY00+29RU9+oz9F7PaGNNmjCkGDmIFZrDii8/tfI7BH+4C33y+F3gFwBjzARCOTSg4GPHlu3zMGLPCGHMF8LBzbNAPvuiB3nz2e40KyrlsBTJFJE1EwrA/Jqs7V+gSb7wZ2NeP9vUFPfoM/B+2dYKIJGJDYEX9aaSf8cVnRGQKMBL4oJ/t6wt88bkMWAwgIlOxgnKqX630H758lxM7tcD+A3iun20MBKuBu5zRXtcANcaY4/66eIi/LjQUMMa4ROTfgLewo0SeM8bsEZEfAduMMauBb4jIzYAL2/l1d8AM9gM++vwWsFRE9mJDAg8aYyoDZ/XF4aPPYH+EXjbO8JjBjI8+fxsbzvx3bAf93YPVdx/9XQQ8ISIG2Ah8LWAG+wkR+TPWr0SnL+xRIBTAGPMUtm/sBqAQaAS+6Nf7D9LPi6IoijLA0JCXoiiK4hdUUBRFURS/oIKiKIqi+AUVFEVRFMUvqKAoiqIofkEFRRnUiEi9D3W+KSKRfrznchG5zI/X+8dFPLfe2Y8TkVe7qRcvIv96ofdRFF9QQVGGA98EeiUoIhLczenl2MSCfsEY8zE/XOOYMebT3VSJB1RQlD5FBUUZEojIImdNi1dFZL+IvOjMBv4GMA5YJyLrnLpLReQDEckXkb+KSLRzvEREfiYi+cBnROR+EdkqIjtFJEdEIkXkY9gMCb9w1krJEJFZTtLMAhH5m4iMdK63Xuy6KttEZJ+IXCUiq0TkkIj8uJPt9Z3K3xORXc49f+rFzzTH9l1drpHavgaGiEwTkQ8d+wpEJBP4KZDhHPuFiESLXQsk37nWLZ2us09Efi927Zu3RSTCOTdJRN5xbMsXkQzn+IPO61QgIj/06xurDC4Cnb9fN90uZgPqnf0ioAabmygImy5lvnOuBEh0yonYWdFRzuPvAf/Vqd53O107oVP5x8DXnfIfgU93OlcALHTKPwJ+7ZTXAz9zyg9g08GPBUZg86MldPFhGfAPINJ5PMqLv6uBu5zy1zo9NxVnDQzgN8AdTjkMiOh83jkeAsR2ek0KsWtkpGKzQMxyzr0C3OmUtwCfcsrh2FbfUuw6KuK87m8ACwL9udAtMJumXlGGEh8aY8oBRGQH9sfx/S51rsGGqzaJCNgf3M65uv7SqTzdaQXEA9HYNB7nICJxQLwxZoNz6E/YhZvaaU/jsgvYY5y8SSJShE3S1zmFzRLgeWNMI4Axxtu6FvOAbKf8AvAzL3U+AB4WuwLhKmPMIcfXc0wHHheRBYAHm8L8EudcsTFmh1P+CEgVkRhgvDHmb45tzY4fS7Gist2pH41NHLrRi13KEEcFRRlKtHQqu/H++RZgrTHmtvNco6FT+Y/AcmPMThG5GydB5gXa5Olin+c89vlCt/mSjDEvicgW4EZgjYh8mX9O5nkHMBqYY4xpE5ESbKujs81gX8eIbm4nwBPGmKd7Yb8yRNE+FGU4UAfEOOXNwDwRmQQgIlEiMvk8z4sBjotIKPYH+J+uZ4ypAc6IyLXOuc8DG7gw1gJfbB+RJiKjvNTZhE1aSRebziIi6UCRMeZJ4DVgJue+BmBXZKxwxOQ6YGJ3hhlj6oByEVnu3GOEY+dbwD2d+qHGi0iST94qQw4VFGU48AzwpoisM8acwmaI/rOIFGDDQ1PO87xHsP0Gm4D9nY6/DDwoItudjukvYDvpC4BZ2H6UXmOMeRMbItvmhOy+46XaA8DXRGQX519p77PAbuca07FLvlZiw3y7ReQXwIvAlc517uri3/n4PDbbdgG2r2eMMeZt4CXgA+dar3KucCnDCM02rCiKovgFbaEoiqIofkEFRVEURfELKiiKoiiKX1BBURRFUfyCCoqiKIriF1RQFEVRFL+ggqIoiqL4hf8HC7CQkDxW9fYAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for j in range(len(basis_sets)):\n", - " pylab.plot(distances, energies[j], label=basis_sets[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground State Energy in different basis sets')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_excited_states.ipynb b/community/chemistry/h2_excited_states.ipynb deleted file mode 100644 index eee73d724..000000000 --- a/community/chemistry/h2_excited_states.ipynb +++ /dev/null @@ -1,210 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*H2 excited states from ExactEigensolver*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state and excited state energies of the Hydrogen (H2) molecule over a range of inter-atomic distances. This notebook utilizes the fact that when two_qubit_reduction is used with the parity mapping on H2 the resultant hamiltionian solely contains the 4 states we are looking for.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601 -1.12416092\n", - " -1.12990478 -1.13382622 -1.13618945 -1.13722138 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]\n", - " [-0.07074011 -0.13940618 -0.20191839 -0.25891828 -0.31096009 -0.35852853\n", - " -0.402052 -0.44191252 -0.47845306 -0.51198296 -0.5427821 -0.57110389\n", - " -0.5971778 -0.62121128 -0.64339155 -0.66388713 -0.68284939 -0.70041397\n", - " -0.71670221 -0.73182253 -0.74587179]\n", - " [ 0.26700034 0.20067908 0.14057064 0.08603034 0.0365012 -0.00850382\n", - " -0.0494151 -0.08661632 -0.1204519 -0.15123247 -0.17923903 -0.2047261\n", - " -0.22792423 -0.24904202 -0.26826785 -0.28577159 -0.301706 -0.31620832\n", - " -0.32940157 -0.34139606 -0.35229063]\n", - " [ 1.30148575 1.18682836 1.08048357 0.98177125 0.89008467 0.80487598\n", - " 0.72564537 0.65193316 0.5833141 0.51939348 0.45980452 0.40420669\n", - " 0.35228457 0.30374708 0.25832675 0.21577901 0.17588132 0.13843209\n", - " 0.10324952 0.0701702 0.03904763]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'parity', 'two_qubit_reduction': True},\n", - " 'algorithm': {'name': 'ExactEigensolver', 'k': 4},\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([4, steps+1])\n", - "distances = np.empty(steps+1)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[:, i] = result['energies']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAHwCAYAAACVL7i5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd41eX9//Hnnb0TAhFkB1SgIRNQNkKIsgRFqAJqoRYrLuyvX75oax0ttmoVR6H1q6ioBQeggDJkS2UJhiUgCgQEgszsnZz798c5pIwAAZOcjNfjunJdJOc+9+d9Tjpe5877c9/GWouIiIiIiFQOD3cXICIiIiJSmylwi4iIiIhUIgVuEREREZFKpMAtIiIiIlKJFLhFRERERCqRAreIiIiISCVS4BYRqWaMMaONMV9V0bVWGWN+UxXXcl1vlDFmSQXON90YM6mi5hMRqQwK3CJSrRlj9htj+p7zs9JAaozxNca8ZYw5YIzJMsZsMcb0v8ScVxtj3jTGpBpjso0x+1zBrW1lvpaaxhjztDGmyPUenf5K/zlzWmtnWGtvOuMa1hhzzc+v9nzGGB9jzEvGmEOu2vcbY1454/Hz/rN1ifkU7kXkiihwi0hN5wUcBHoBocATwMfGmJZlDTbG1AfWAgFADyAYSAC+BJIu8Byvii66BvnIWht0xleYuwu6DI8DHYHrcf6ebwSS3VmQiNRNCtwiUqNZa3OstU9ba/dbax3W2s+BFKDDBZ7yOyATuNtau9c6pVtr37HW/gPAGNPStfJ6rzHmR2CF6+eDjTE7jDHprlaMdqcnPXel9szVUGPMja5V1t8bY44ZY44YY8acMba+MWa+MSbTGPM10Ppir9kYM8sY85MxJsMYs9oYE3XOdacaYxa4Vvw3GGNan/F4kjHmO9dzpwCmvO/1OTV0NcacMMY0c30fa4xJO/1XAmNMM2PMJ8aY48aYk65rnfvXidWu6ba6VqDvcP18kOsvFenGmLXGmJgzrhtvjEl2vbaPAL+LlNkJ+NRam+r6Pe+31r7nmud9oDnwmeva/3ux99YYcx8wCvhf1/jPXD9vbIyZ43qdKcaYR86o9XpjzCbX7/WoMWbylbzXIlLzKXCLSK1ijGkIXAfsuMCQvjhDmKMc0/UC2gE3G2OuAz4AHgUigIU4w5pPOUtrhHMFvglwLzDVGFPP9dhUIB+4Gvi16+tiFgHXAlfhXLGdcc7jdwLPAPWAPcCzAMaYBsAnOP8K0ADYC3QrZ/1nsdauBf4PeNcY4w/8G/iTtfY7Y4wn8DlwAGjpes0fljFHT9c/Y12r5x8ZY+KBt4HfAvVd15jvah3yAeYC7wPhwCzg9ouUuR74f8aYB4wx0caY0g8X1tq7gR+BW1zXfsH1UJnvrbX2Dde/X3CNv8UY4wF8Bmx1vcZE4FFjzM2uuV4FXrXWhuD8EPXxJd5WEamlFLhFpCaY61rtTHf1EP+zrEHGGG+coehda+13F5irAfDTGc8Z7Jo3y5x/M9/TrhX0POAOYIG1dqm1tgh4EfAHupbzNRQBf7bWFllrFwLZQBtXOL0deNJ1rW+Bdy82kbX2bWttlrW2AHgaiDXGhJ4x5FNr7dfW2mKc70ec6+cDgB3W2tmu1/DKme/FBfzyzPfeGLPyjMeexvkh4mvgMM4PDuBs4WgMTHC9pnxrbXlvAr0P+D9r7QZrbYm19l2gAOjs+vIGXnG9j7OBjReZ62/A8zhXpjcBh40xv7rYxcvx3p6pExBhrf2ztbbQWrsPeBPnBx5w/s6vMcY0sNZmW2vXl+P1i0gtpMAtIjXBrdbasNNfwAPnDnCtNr4PFAIPXWSukzhXkgGw1s53zfk74NzV6oNn/LsxzhXb089zuB5vUs7XcNIVgE/LBYJwrpaf7kM/7QAXYIzxNMY8Z4zZa4zJBPa7HmpwxrAzQ/Tp65x+DaXXsdbac65blo/PfO+ttb3PeH4RMB1oD7zkmg+gGXDgnNdbXi2A35/zAauZq/bGwOEzrgMXea9cgX2qtbYbEIZzpf/tM1uBzlTO9/bcWhufU+sfgIaux+/F+deW74wxG40xg8rx+kWkFlLgFpEaz9Uq8BbOoHO7KwheyHLgVldAv5Qzg10qzoB15jWb4VzZBWewDThjfKNyzA9wHCh2zXVa84uMHwkMwdkaE4qzZQPK14t95MzrnPEarogxpgnwFPAO8JIxxtf10EGgubmym00PAs+eE/IDrLUfuOpvcmZrCBd/r0pZa/OstVOBNOAXp398zrBLvbfnjj8IpJxTa7C1doDrmj9Ya0fgbE95HphtjAksT70iUrsocItIbfAvnL3Wt7jaPy5mMs7e5veNMa2NUzD/bbu4kI+BgcaYRFfryu9xtjqsdT2+BRjpWiXth7P/+5KstSU4+6qfNsYEGGN+AVys7SHYdd2TOAP+X8tzHZcFQJQxZqgrDD9C+T8YnMUVeqfj/KBzL84w/BfXw1+7vn/OGBNojPEzxlyoV/wo0OqM798E7jfG3OD63QQaYwa6fkfrcH44ecQY422MGYqzfeVCNT5qnDes+htjvFztJMHA5gtc+1Lv7bnjvwayjDETXdfwNMa0N8Z0cl3/LmNMhOuvIae3UyzPvQMiUssocItIjWaMaYHzBrs44Cfz3/2iR5U13lp7AmcvcD7wFZCFMywHA+MudB1r7W7gLuAfwAngFpwBv9A1ZLzrZ+k4e4bnXsbLeAhn28dPOEPsOxcZ+x7ONorDwE6cNwaWi+u1DweewxkqrwXWXOJpd5iz9+HONsZchTOsX4XzRkkLjAHGGGN6uD5E3AJcg/PGxEM4e+DL8jTOGy/TjTG/tNZuAsYCU3CuRu8BRrvqLwSGur4/5Zrzk4vUngu8hPN9PQE8iPMvIPtcj/8NeMJ17f/h0u/tW8AvXOPnul7nIJz/2UtxXWMaztVxgH7ADmNMNs4bKO8sxwdCEamFzNmtcCIiIiIiUpG0wi0iIiIiUokUuEVEREREKpECt4iIiIhIJVLgFhERERGpRArcIiIiIiKV6EoOJajWGjRoYFu2bOnuMkRERESklvvmm29OWGsjLjWu1gXuli1bsmnTJneXISIiIiK1nDHmQHnGqaVERERERKQSKXCLiIiIiFQiBW4RERERkUpU63q4RURERKqroqIiDh06RH5+vrtLkcvg5+dH06ZN8fb2vqLnK3CLiIiIVJFDhw4RHBxMy5YtMca4uxwpB2stJ0+e5NChQ0RGRl7RHGopEREREaki+fn51K9fX2G7BjHGUL9+/Z/1VwkFbhEREZEqpLBd8/zc35kCt4iIiEgdcvToUUaOHEmrVq3o0KEDXbp04dNPP63yOlq2bMmJEyfKNXb69OmkpqZW2LiqpsAtIiIiUkdYa7n11lvp2bMn+/bt45tvvuHDDz/k0KFD540tLi52Q4VlU+AWERERkRphxYoV+Pj4cP/995f+rEWLFjz88MOAM7AOHjyYPn36kJiYiLWWCRMm0L59e6Kjo/noo48AWLVqFYMGDSqd46GHHmL69OmAc+X6qaeeIiEhgejoaL777jsATp48yU033URUVBS/+c1vsNaeV19JSQmjR48uvd7LL7/M7Nmz2bRpE6NGjSIuLo68vDz+/Oc/06lTJ9q3b899992HtbbMcd988w29evWiQ4cO3HzzzRw5cqSy3tqL0i4lIiIiIm7wzGc72JmaWaFz/qJxCE/dEnXBx3fs2EFCQsJF50hOTmbbtm2Eh4czZ84ctmzZwtatWzlx4gSdOnWiZ8+el6yjQYMGJCcn889//pMXX3yRadOm8cwzz9C9e3eefPJJFixYwFtvvXXe87Zs2cLhw4f59ttvAUhPTycsLIwpU6bw4osv0rFjR8AZ8J988kkA7r77bj7//HOGDRt21riioiIefvhh5s2bR0REBB999BF//OMfefvtty9Zf0XTCreIiIhIHfXggw8SGxtLp06dSn+WlJREeHg4AF999RUjRozA09OThg0b0qtXLzZu3HjJeYcOHQpAhw4d2L9/PwCrV6/mrrvuAmDgwIHUq1fvvOe1atWKffv28fDDD7N48WJCQkLKnH/lypXccMMNREdHs2LFCnbs2HHemN27d/Ptt9+SlJREXFwckyZNKrN1pipohVtERETEDS62El1ZoqKimDNnTun3U6dO5cSJE6UrxwCBgYGXnMfLywuHw1H6/blb5vn6+gLg6el5Wb3g9erVY+vWrXzxxRe8/vrrfPzxx+etSOfn5/PAAw+wadMmmjVrxtNPP13mln3WWqKioli3bl25r19ZtMItIiIiUkf06dOH/Px8/vWvf5X+LDc394Lje/TowUcffURJSQnHjx9n9erVXH/99bRo0YKdO3dSUFBAeno6y5cvv+S1e/bsycyZMwFYtGgRaWlp5405ceIEDoeD22+/nUmTJpGcnAxAcHAwWVlZwH/DfYMGDcjOzmb27Nmlzz9zXJs2bTh+/Hhp4C4qKipzJbwqaIVbREREpI4wxjB37lx+97vf8cILLxAREUFgYCDPP/98meNvu+021q1bR2xsLMYYXnjhBRo1agTAL3/5S9q3b09kZCTx8fGXvPZTTz3FiBEjiIqKomvXrjRv3vy8MYcPH2bMmDGlq+d/+9vfABg9ejT3338//v7+rFu3jrFjx9K+fXsaNWp0VjvMueNmz57NI488QkZGBsXFxTz66KNERVX9XxZMWXeI1mQdO3a0mzZtcncZIiIiIufZtWsX7dq1c3cZcgXK+t0ZY76x1na8wFNKqaWkghQeOoytRvtVioiIiEj1oMBdAWxhIQfvvZeUX/6SvK1b3V2OiIiIiFQjCtwVwdubiN89SsmJk+y/cwRHnnyKkvR0d1clIiIiItWAAncFMMYQ0q8frRYuJPxXvyJ9zhz29h9A+ieflnmKkoiIiIjUHQrcFcgzKJCGj00kcs5sfFq04Mgf/sCBu+4m//vv3V2aiIiIiLiJAncl8GvblhYzZ3D1pL9QuGcPKbcN5egLf8eRk+Pu0kRERESkiilwVxLj4UHYsGG0WryIsKG3certt9k7cBCZXyxRm4mIiIi4jaenJ3FxcaVfzz333GXPMX/+/NLnzZ07l507d172HEFBQeUe+8orr1z0gJ7LHXemWbNmERUVhYeHB5W1tbQCdyXzqlePq//yF1p8MBPPsDAOjx/Pwd/+lsIff3R3aSIiIlIH+fv7s2XLltKvxx577LLnGDx4cOnzrjRwX47KDNzt27fnk08+oWfPnlda3iUpcFeRgPh4ImfPouHjj5G36Rv23TKY4//8J47CQneXJiIiInVcRkYGbdq0Yffu3QCMGDGCN998E4DFixeTkJBAbGwsiYmJAEyfPp2HHnqItWvXMn/+fCZMmEBcXBx79+5l79699OvXjw4dOtCjRw++++47AFJSUujSpQvR0dE88cQTZdaRk5PDwIEDiY2NpX379nz00Ue89tprpKam0rt3b3r37g3AuHHj6NixI1FRUTz11FMAZY5bsmQJXbp0ISEhgeHDh5OdnX3eNdu1a0ebNm0q8N08n452r0LGy4vwX/2K4H79OPrcc5x47R9kzptPwyf/RFC3bu4uT0RERKrSosfgp+0VO2ejaOh/8RaRvLw84uLiSr9//PHHueOOO5gyZQqjR49m/PjxpKWlMXbsWI4fP87YsWNZvXo1kZGRnDp16qy5unbtyuDBgxk0aBDDhg0DIDExkddff51rr72WDRs28MADD7BixQrGjx/PuHHjuOeee5g6dWqZtS1evJjGjRuzYMECwPlBIDQ0lMmTJ7Ny5UoaNGgAwLPPPkt4eDglJSUkJiaybds2HnnkkbPGnThxgkmTJrFs2bLS4+snT57Mk08+ecVv75VS4HYD74YNafryy2TfPoyf/vJnDt77G0IG9OeqiY/h3fAqd5cnIiIitdjplpJzJSUlMWvWLB588EG2ug7yW79+PT179iQyMhKA8PDwi86dnZ3N2rVrGT58eOnPCgoKAFizZg1z5swB4O6772bixInnPT86Oprf//73TJw4kUGDBtGjR48yr/Pxxx/zxhtvUFxczJEjR9i5cycxMTFnjVm/fj07d+6km2tRs7CwkC5duly0/sqiwO1GQd270Wr+fE5Om8bJ/3uD7C9XEzH+EeqNHInx0q9GRESkVrvESnRVczgc7Nq1i4CAANLS0mjatOkVzREWFlZmoAfn2SUXc91115GcnMzChQt54oknSExMPG9FOiUlhRdffJGNGzdSr149Ro8eTX5+/nlzWWtJSkrigw8+uOzXUdHUw+1mHr6+RDz4IK0+/wz/hASO/vVvpAwbTu7mze4uTUREROqQl19+mXbt2jFz5kzGjBlDUVERnTt3ZvXq1aSkpACc11ICEBwcTFZWFgAhISFERkYya9YswBl6T6+Wd+vWjQ8//BCAGTNmlFlDamoqAQEB3HXXXUyYMIHk5OTzrpGZmUlgYCChoaEcPXqURYsWlVlL586dWbNmDXv27AGc/eHfu+lsFAXuasKneXOavfF/NHn1VUrS0jgwYiRH/vQnitPS3F2aiIiI1CKne7hPfz322GPs3r2badOm8dJLL9GjRw969uzJpEmTiIiI4I033mDo0KHExsZyxx13nDffnXfeyd///nfi4+PZu3cvM2bM4K233iI2NpaoqCjmzZsHwKuvvsrUqVOJjo7m8OHDZda2fft2rr/+euLi4njmmWdKb66877776NevH7179yY2Npb4+Hjatm3LyJEjS1tGzh0XERHB9OnTGTFiBDExMXTp0qX0Bs4zffrppzRt2pR169YxcOBAbr755op4m89iatue0B07drSVtYdiVSnJzuHE1Kmceu89PIODuWrC/xB6220YD30+EhERqcl27dpFu3bt3F2GXIGyfnfGmG+stR0v9VwluGrIMyiQhhP/l8hPPsGnVSuO/PEJ5xHxrq16RERERKTmUOCuxvzaXEeLf7/P1X/9K4UpKaQMvZ2jzz1PSbaOiBcRERGpKRS4qznj4UHY0NtotXABYbffzqnp09k3cCCZi7/QEfEiIiIiNYACdw3hVa8eV//5GVp++AGe4eEcfvRRDo69j8IDB9xdmoiIiIhchAJ3DeMfF0fkrI9p+Ic/kLd5s/OI+H9MwZGX5+7SRERERKQMCtw1kPHyIvyeu2m1cCHBfRM5MXUqe/sPIOOzz7AOh7vLExEREZEzKHDXYN4Nr6LJ5Mm0eP89vMLDSZ3wv+y/cwS5yTo0R0RERMrm6el51j7czz13+Sdezp8/v/R5c+fOZefOnZc9R1BQULnHvvLKK+Tm5lbYuDNNmDCBtm3bEhMTw2233UZ6evplPb88tA93LWEdDjLmzef4yy9TfOwYIQP6c9Xvf493kybuLk1ERERcqsM+3EFBQWRnZ1fYfKNHj2bQoEEMGzas0upo2bIlmzZtokGDBhUy7kxLliyhT58+eHl5MXHiRACef/7588ZpH25x7mZy2620XryIBg88QNaKleztP4Bjk1/WNoIiIiJyURkZGbRp04bdrjM/RowYwZtvvgnA4sWLSUhIIDY2lsTERACmT5/OQw89xNq1a5k/fz4TJkwgLi6OvXv3snfvXvr160eHDh3o0aNH6emOKSkpdOnShejo6NITJM+Vk5PDwIEDiY2NpX379nz00Ue89tprpKam0rt3b3r37g3AuHHj6NixI1FRUTz11FMAZY5bsmQJXbp0ISEhgeHDh5cZ8G+66Sa8vLwA53Hwhw4dqqi3tZRXhc8obuUREEDEIw8TNnwYx15+mZNvvEH6J58QMf4RwoYOxXh6urtEERERAZ7/+nm+O3X+UeM/R9vwtky8fuJFx5w+2v20xx9/nDvuuIMpU6YwevRoxo8fT1paGmPHjuX48eOMHTuW1atXExkZyalTp86aq2vXrgwePPisFe7ExERef/11rr32WjZs2MADDzzAihUrGD9+POPGjeOee+5h6tSpZda2ePFiGjduzIIFCwDnB4HQ0FAmT57MypUrS1eun332WcLDwykpKSExMZFt27bxyCOPnDXuxIkTTJo0iWXLlhEYGMjzzz/P5MmTefLJJy/43rz99ttlHl//cylw11LeV19NkxdeIPyuuzj6t+f46U9PkjZjJg0fm0hg587uLk9ERETcxN/fny1btpz386SkJGbNmsWDDz7I1q1bAVi/fj09e/YkMjISgPDw8IvOnZ2dzdq1axk+fHjpzwoKCgBYs2YNc+bMAeDuu+8ubd84U3R0NL///e+ZOHEigwYNokePHmVe5+OPP+aNN96guLiYI0eOsHPnTmJiYs4as379enbu3Em3bt0AKCwspEuXLhes/dlnn8XLy4tRo0Zd9DVeCQXuWs4/JoYWM2eQtXgxx/7+Ij+OHkNQnz5cNeF/8HX9l0dERESq3qVWoquaw+Fg165dBAQEkJaWRtOmTa9ojrCwsDIDPYAx5qLPv+6660hOTmbhwoU88cQTJCYmnrcinZKSwosvvsjGjRupV68eo0ePJj8//7y5rLUkJSXxwQcfXLLu6dOn8/nnn7N8+fJL1ngl1MNdBxhjCOnfn1aLFhLx//4fuRs2sO+WwRz9298oychwd3kiIiJSDbz88su0a9eOmTNnMmbMGIqKiujcuTOrV68mJSUF4LyWEoDg4GCysrIACAkJITIyklmzZgHO0Ht6tbxbt258+OGHAMyYMaPMGlJTUwkICOCuu+5iwoQJJCcnn3eNzMxMAgMDCQ0N5ejRoyxatKjMWjp37syaNWvYs2cP4OwP//7778+75uLFi3nhhReYP38+AQEBl/mulY8Cdx3i4etLg/vG0vqLxYTddhun3v83e2+6mVPv/xtbVOTu8kRERKQKnO7hPv312GOPsXv3bqZNm8ZLL71Ejx496NmzJ5MmTSIiIoI33niDoUOHEhsbW2Z/85133snf//534uPj2bt3LzNmzOCtt94iNjaWqKgo5s2bB8Crr77K1KlTiY6O5vDhw2XWtn37dq6//nri4uJ45plnSm+uvO++++jXrx+9e/cmNjaW+Ph42rZty8iRI0tbRs4dFxERwfTp0xkxYgQxMTF06dKl9AbOMz300ENkZWWRlJREXFwc999/f0W8zWfRtoB1WP7u3Rx97jly163Hp1UrrvrfCQT16lUpf0oRERGR6rEtoFwZbQsoV8SvTRuav/02Tf/5T3A4OHT/OA7e+xvyy/hzi4iIiIhcGQXuOs4YQ3Cf3rSaP4+Gf3icvB07SLn1No489TTFJ0+6uzwRERGRGk+BWwAwPj6E33MP13yxmHqjRpE+Zw57b+7HyWnTcBQWurs8ERERkRpLgVvO4hkWRqM//oFW8+cT0LEjx158iX0DBpK5+AtqW7+/iIiISFVQ4JYy+baKpNnr/6L522/hERDA4Ucf5cDdd5O3/Vt3lyYiIiJSoyhwy0UFdu1K5Kef0OiZZyhM2c/+4cNJnfgYRUePurs0ERERkRpBgVsuyXh6Uu+OX9L6i8XUH/sbMhcuZG+//hyfMhVHbq67yxMREZHL4OnpedY+3M8999xlzzF//vzS582dO5edO3de9hxBQUHlHvvKK6+QW47MUd5xZ/rTn/5ETEwMcXFx3HTTTaSmpl7W88tD+3DLZSs8dIhjL75E1uLFeDZoQINx91Nv+HCMj4+7SxMREanWqsM+3EFBQWRnZ1fYfKNHj2bQoEEMGzas0upo2bIlmzZtokGDBhUy7kyZmZmEhIQA8Nprr7Fz505ef/3188ZpH26pUj5Nm9L0lZdpMXMmvi1bcvQvk9jbfwDpc+diS0rcXZ6IiIhcpoyMDNq0acPu3bsBGDFiBG+++SbgPPo8ISGB2NhYEhMTAZg+fToPPfQQa9euZf78+UyYMIG4uDj27t3L3r176devHx06dKBHjx6lpzumpKTQpUsXoqOjS0+QPFdOTg4DBw4kNjaW9u3b89FHH/Haa6+RmppK79696d27NwDjxo2jY8eOREVF8dRTTwGUOW7JkiV06dKFhIQEhg8fXmbAPx22T1+/Mg4A9KrwGaXOCEiIp/n775Hz1RqOv/wyRx57nJPTphExfjzBffvqxEoREZGL+Omvf6Vg1/lHjf8cvu3a0ugPf7jomNNHu5/2+OOPc8cddzBlyhRGjx7N+PHjSUtLY+zYsRw/fpyxY8eyevVqIiMjOXXq1Flzde3alcGDB5+1wp2YmMjrr7/Otddey4YNG3jggQdYsWIF48ePZ9y4cdxzzz1MnTq1zNoWL15M48aNWbBgAeD8IBAaGsrkyZNZuXJl6cr1s88+S3h4OCUlJSQmJrJt2zYeeeSRs8adOHGCSZMmsWzZMgIDA3n++eeZPHkyTz755HnX/eMf/8h7771HaGgoK1euLP8bXk5a4ZafxRhDUI/utJw9iyavvAIlDg4//Aj7f3kHOWvXurs8EREROYe/vz9btmwp/brjjjsASEpKIjo6mgcffJBp06YBsH79enr27ElkZCQA4eHhF507OzubtWvXMnz4cOLi4vjtb3/LkSNHAFizZg0jRowA4O677y7z+dHR0SxdupSJEyfyn//8h9DQ0DLHffzxxyQkJBAfH8+OHTvK7CFfv349O3fupFu3bsTFxfHuu+9y4MCBMud79tlnOXjwIKNGjWLKlCkXfY1XQivcUiGMhwch/W4muG8iGfPmcXzKVH789b0EdO7MVY+Ox/+MT9IiIiLCJVeiq5rD4WDXrl0EBASQlpZG06ZNr2iOsLAwtmzZUubjl/rr93XXXUdycjILFy7kiSeeIDEx8bwV6ZSUFF588UU2btxIvXr1GD16NPn5+efNZa0lKSmJDz74oNz1jxo1igEDBvDMM8+U+znloRVuqVDGy4uw22+n9ReLafiHxyn4/nv23zmCgw8+RP7337u7PBEREbmAl19+mXbt2jFz5kzGjBlDUVERnTt3ZvXq1aSkpACc11ICEBwcTFZWFuDsh46MjGTWrFmAM/Ru3boVgG7duvHhhx8CMGPGjDJrSE1NJSAggLvuuosJEyaQnJx83jUyMzMJDAwkNDSUo0ePsmjRojJr6dy5M2vWrGHPnj2Asz/7+zKyyA8//FD673nz5tG2bdvyvmXlphVuqRR4ZDbTAAAgAElEQVQerqPiw26/nVPvvcfJt94mZcithNwyiIiHH8anWTN3lygiIlInndvD3a9fP8aMGcO0adP4+uuvCQ4OpmfPnkyaNIlnnnmGN954g6FDh+JwOLjqqqtYunTpWfPdeeedjB07ltdee43Zs2czY8YMxo0bx6RJkygqKuLOO+8kNjaWV199lZEjR/L8888zZMiQMmvbvn07EyZMwMPDA29vb/71r38BcN9999GvXz8aN27MypUriY+Pp23btjRr1oxu3bqVPv/ccdOnT2fEiBEUFBQAMGnSJK677rqzrvnYY4+xe/duPDw8aNGiRZk7lPxc2hZQqkRJejonp03j1Pv/xpaUEDZ8GA3GjcP7qqvcXZqIiEiVqQ7bAsqV0baAUu15hoVx1f/8D62XLCFs+DDSZ81m7003c+yllyhJT3d3eSIiIiKVRoFbqpR3w6u4+qmnaL1wAcFJSZyc9hZ7km7ixOuv48jJcXd5IiIiIhXOrYHbGPO2MeaYMebbCzxujDGvGWP2GGO2GWMSqrpGqRw+zZvT5O8vEDl3LgGdOnH8lVfZc9PNnHrvfRyFhe4uT0RERKTCuHuFezrQ7yKP9weudX3dB/yrCmqSKuTX5jqa/XMqLT6YiW/r1hz961/Z268f6XM+wRYXu7s8ERGRClfb7p+rC37u78ytgdtauxo4f3+Z/xoCvGed1gNhxpirq6Y6qUoB8fE0f3c6zd6ahld4fY788Y/sGzyEzMVf6H+YRESk1vDz8+PkyZP6/7YaxFrLyZMn8fPzu+I5qvu2gE2Ag2d8f8j1syPuKUcqkzGGoG7dCOzalaylSzn+6mscfvRR/KKiiHj0UQK7d9Nx8SIiUqM1bdqUQ4cOcfz4cXeXIpfBz8/vig4COq26B+5yMcbch7PlhObNm7u5Gvm5jDGE3HQTwYmJZMz/jBP/+AcHx44loFMnIn73OwIS4t1dooiIyBXx9vYuPSZd6g5393BfymHgzBNSmrp+dhZr7RvW2o7W2o4RERFVVpxULuPpSdhtt9Jq8SIaPvEEBSkpHBg5koP3jyP/u+/cXZ6IiIhIuVT3wD0fuMe1W0lnIMNaq3aSOsbDx4fwu0ZxzZIviHj0UXK/+YaUW2/j4EMPkfftDneXJyIiInJRbj1p0hjzAXAj0AA4CjwFeANYa183zobdKTh3MskFxlhrL3qMpE6arP1KMjI49e57nHr/fRxZWQT26knEuHH4n3FMrYiIiEhlK+9JkzraXWqskqws0mbM4NT0dylJTyewaxcajBtHQKdO7i5NRERE6gAd7S61nmdwMA3uv59rli/jqgn/Q/7u7zlw9z0cuOtuctau1ZZLIiIiUi0ocEuN5xEYSP177+WaZUtp+IfHKfzxR3789b0cuHME2V9+qeAtIiIibqXALbWGh78/4ffcQ+ulS2j01JMUHT/Gwd/ez/5hw8latgzrcLi7RBEREamDFLil1vHw9aXeiBFcs3gxV0/6CyWZmRx66GFSbhtK5qJF2JISd5coIiIidYgCt9RaxseHsGHDaL1oIY2ffw5bWMjh3/0/9t0ymIz587HFxe4uUUREROoABW6p9YyXF6FDhtDq889oMvkljKcnqf87kb0DB5I+Zw62qMjdJYqIiEgtpsAtdYbx9CRkwAAi582lyT9ewyMwkCN/fIK9N/cj7cMPcRQWurtEERERqYUUuKXOMR4ehCQlETlnDk1f/xeeEQ346eln2Jt0E6fe/zeO/Hx3lygiIiK1iAK31FnGGIJvvJGWH35Is7em4d2sKUeffZY9fZM4+dbbOHJy3F2iiIiI1AIK3FLnGWMI6taNlv/+N83fexffa6/h2N//zp7Evpx4/f8oyc52d4kiIiJSgylwi5wh8PrrafHOO7T4YCZ+MdEcf+UV9vRJ5PiUqZRkZLi7PBEREamBFLhFyhAQH0/zN96g5axZBHTqxIkpU9jTJ5Fjk1+m+ORJd5cnIiIiNYipbcded+zY0W7atMndZUgtk797Nyf+9TpZX3yB8fYm9NZbCR89Gt9Wke4uTURERNzEGPONtbbjJccpcIuUX8G+FE5Nn07G3LnYoiKC+vSh/q/H4J+QgDHG3eWJiIhIFVLgFqlExSdPkjZjJmkzZ1KSno5fbAz1x/ya4KS+GE9Pd5cnIiIiVUCBW6QKOPLySP/0U05Nf5eiH3/Eu1kzwkf/irDbbsMjIMDd5YmIiEglUuAWqUK2pISs5cs59dbb5G3dimdoKGEjRxA+ahReDRq4uzwRERGpBArcIm6Sm5zMybffJnv5CucNlkOGED5mNL6tWrm7NBEREalA5Q3cXlVRjEhdEpCQQEBCAgUpKZx6910yPp1L+qxZBPXu7bzBsmNH3WApIiJSh2iFW6SSFZ869d8bLNPS8IuOpv69vya4b1+Mlz7zioiI1FRqKRGpZhx5eWTMm8fJd96h6MCPeDdtSvivfkXY0NvwCAx0d3kiIiJymRS4RaopW1JC9sqVnHzrbfI2b8YjNJR6d95J+F2j8IqIcHd5IiIiUk4K3CI1QG7yZk698w5Zy5ZhvLwIGTKY+qNH43vNNe4uTURERC5BN02K1AABCfEEJMRTeOAAp959l/RPPiVj9hyCevUi/Ne/JuD6TrrBUkREpIbTCrdINVKclkbazJmkzZhJyalT+LVvT/1fjyH4ppt0g6WIiEg1o5YSkRrMkZ9Pxrz5nHrnHQr378e7cWPq3XM3YUOH4hkS4u7yREREBAVud5chUiGsw+G8wfLtd8j75huMvz+hgwdTb+RI/Npc5+7yRERE6jQFbpFaJm/HDtJmziTz8wXYggICOnWi3qhRBCf2wXh7u7s8ERGROkeBW6SWKk5LI+OTT0ib+QFFhw/j1bAh9e68g7Dhw/Fq0MDd5YmIiNQZCtwitZwtKSH7y9WkzZhBzpo14O1NSL9+hI8aiV9srHY3ERERqWQK3CJ1SMG+FNI++ICMTz7BkZODX1QU9UaNImRAfzz8/NxdnoiISK2kwC1SB5Vk55D52XxOzZhB4Z69eIaFETZ8GPXuvBPvJk3cXZ6IiEitosAtUodZa8nd8DVpM2aQtXw5AEG9exM+aiQBXbqo3URERKQC6KRJkTrMGENg5xsI7HwDRamppH30Mekff8yPy5fj06oV9UaOJPTWIXgGBbm7VBERkVpPK9widYSjoIDMRYtImzGT/O3b8QgIIPTWW6k3aiS+rVu7uzwREZEaRy0lInJBedu2kTZjJpkLF2KLigjo0pnwUaMI6t0b4+np7vJERERqBAVuEbmk4pMnSZ89h7QPP6T4yBG8Gl9NvREjCBs2DK969dxdnoiISLWmwC0i5WaLi8lasYK0GTPJ3bAB4+NDyIAB1Bs1Cv/o9u4uT0REpFpS4BaRK1Lwww+cmjmTjHnzsbm5+MXGUO+XdxDSvx8eAQHuLk9ERKTaUOAWkZ+lJCuLjE/nkvbBBxSmpOARGEjIoEGEDRuGX/sobS0oIiJ1ngK3iFQIay15ycmkfzyLzC++wObn49uuHWHDbif0llvwDAlxd4kiIiJuocAtIhWuJDOTjM8/J33WbAp27cL4+hLS72bChg/Hv0MHrXqLiEidosAtIpUq79sdpM+eReZnn+PIycEnMpKwYcMIvXUIXvXru7s8ERGRSqfALSJVwpGbS+biL0ifPZu85GTw9ia4Tx/Chg0jsFtXjIeHu0sUERGpFArcIlLlCvbsIX3WbDLmzaMkPR3vxo0JvX0oYbffjnejRu4uT0REpEIpcIuI2zgKC8letoz02bPJWbsOPDwI7NGdesOHE9SrF8bb290lioiI/GwK3CJSLRQePEj6nDlkfPIpxceO4RnRgLBbbyNs2O34tGjh7vJERESumAK3iFQrtriY7NX/IX3WLLK//BIcDgJuuIGw4cMJTuqLh6+vu0sUERG5LArcIlJtFR09Ssanc0mfPZuiQ4fwDA0lZMhg56E6113n7vJERETKRYFbRKo963CQu2ED6bNmkbV0GbaoCP/YWMKGDyOkf388AgPdXaKIiMgFKXCLSI1SnJZGxrx5pM+aTeHevXgEBBA8oD+hgwcT0LGjthcUEZFqR4FbRGokay15m7eQPns2WYsX48jNxbtxY0KGDCZ08GB8IyPdXaKIiAigwO3uMkSkAjhyc8lavpyMefPJWbsWHA78YmMIHTKEkP798apXz90liohIHabALSK1StGxY2R+voCMefMo2L0bvL0J6tWT0MGDCbrxRjx8fNxdooiI1DEK3CJSa+V/9x0Z8+aT8flnlBw/gUdoKCH9+xE6ZAj+cXEYY9xdooiI1AEK3CJS69niYnLWrSdj3jyyli3D5ufj3aI5oYOd/d4+zZq5u0QREanFFLhFpE4pyc4ma8lSMubNI/frr8Fa/Dt0IHTIYEL69cMzJMTdJYqISC2jwC0idVZRaioZn31Oxrx5FO7bh/HxIahPH0KHDCaoe3eMt7e7SxQRkVpAgVtE6jxrLfnf7iBj3jwyFyygJC0Nz/BwQgYOJHTwYPzaR6nfW0RErpgCt4jIGWxREdn/+YqM+fPJXrECW1iIT+vWhA4ZQugtg/C++mp3lygiIjWMAreIyAWUZGaSuXgxGfPmk/fNN2AMATfcQOiQIQQnJeEZpCPlRUTk0hS4RUTKofDgQTLmzydj3nyKfvwR4+dHcN++hAwYQGD3btrfW0RELkiBW0TkMlhryduyxdnvvWgxjowMPEJCnOG7f38CO9+gmy1FROQsCtwiIlfIFhWRs24dmQsWkrV8OY7sbDzDwgi+6SZCBvQnoFMnjKenu8sUERE3U+AWEakAjoICcr76isyFi8hauRKbm4tnRANCbrqZkAH98Y+Px3h4uLtMERFxAwVuEZEK5sjLI/vLL8lcuIjsL7/EFhTg1agRITc7w7dfTIy2GRQRqUMUuEVEKlFJdg7ZK1eSuWgROf/5D7aoCO8mTQgZ0J+Q/v3xbddO4VtEpJZT4BYRqSIlmZlkLVvuDN/r1kFxMT4tWhDsCt9+113n7hJFRKQSKHCLiLhBcVoaWUuXkrloEbkbvgaHA59rWhPSvz8h/Qfg2yrS3SWKiEgFUeAWEXGz4hMnyFyyhMyFC8n7JhmsxbdtW0IGDCCkfz98mjVzd4kiIvIzKHCLiFQjRUePkrV4MZkLF5G3dSsAftHRrpXvfjpaXkSkBlLgFhGppooOHyZz8WIyFywkf+dOAPzj4wnp35/gm2/Gu+FVbq5QRETKo0YEbmNMP+BVwBOYZq197pzHRwN/Bw67fjTFWjvtYnMqcItITVJ44ACZixaRuXARBd9/D4BfbAwhSUkE9+2LT8uW7i1QREQuqNoHbmOMJ/A9kAQcAjYCI6y1O88YMxroaK19qLzzKnCLSE1VsHcvWUuXkrV0Gfk7dgDge+01BPXtS0hSkrYaFBGpZsobuL2qopgLuB7YY63dB2CM+RAYAuy86LNERGop39at8W3dmgb330/R4cNkLV9O1tJlnPy/Nzj5r9fxbtyY4KS+BPfti39Cgo6XFxGpIdwZuJsAB8/4/hBwQxnjbjfG9MS5Gv47a+3BMsaIiNQq3k2aEH7PPYTfcw/Fp06RvXIlWUuWkjbzA069+x6e4eEEJ/YhuG9fArp0wcPHx90li4jIBbgzcJfHZ8AH1toCY8xvgXeBPucOMsbcB9wH0Lx586qtUESkknmFhxN2++2E3X47Jdk55PxnNVlLl5G5cBHps2bjERhIUK9eBCf1JbBHTzyDAt1dsoiInMGdPdxdgKettTe7vn8cwFr7twuM9wROWWtDLzaverhFpK5wFBaSu24dWcuWkbV8BSWnTmF8fAjs2pXgpL4E9emDV7167i5TRKTWqgk3TXrhbBNJxLkLyUZgpLV2xxljrrbWHnH9+zZgorW288XmVeAWkbrIlpSQt3lz6U2XRamp4OFBQIcOBCclEdw3Ee/Gjd1dpohIrVLtAzeAMWYA8ArObQHfttY+a4z5M7DJWjvfGPM3YDBQDJwCxllrv7vYnArcIlLXWWsp2LWLzKVLyV62jIIf9gDgFxXlvOkyKQnf1q3dXKWISM1XIwJ3ZVDgFhE5W+H+/c62k6XLSk+59ImMJLhvX4KT+uIXHa3tBkVEroACt4iInKfo6FGyli8ne9kycr7eCMXFeDVqRHCfPgT17k3A9Z3w8PV1d5kiIjWCAreIiFxUSUYG2atWkbl0KTlfrcHm52P8/Qns2pWgG3sR1LOXjpkXEbkIBW4RESk3R34+uV9/TfaqVWStWkVx6hHA2fcddOONBN3YC7+oKIyHh5srFRGpPhS4RUTkilhrKfj+B7K//JLsVavI27IFHA48GzQgqFdPgm68kcAuXbXft4jUeQrcIiJSIYrT0sj5z3/IXvUl2f/5D46sLPD2JrBTp9LVbx8dOiYidZACt4iIVDhbVETu5s3O8L1qFYX79gHg07o1Qb16EXRjLwLi4zHe3m6uVESk8ilwi4hIpSv88cfS8J2zcSMUFeEREkJQ9+4E9b6RwO7dddqliNRaCtwiIlKlSrJzyFm7xtn7/eVqSk6cAA8P/OPiSltPfK+9Vnt+i0itocAtIiJuYx0O8nfsIHvlKrJXrSJ/504AvBpfTfCNNxJ0440E3HCD9vwWkRpNgVtERKqNoqPHyF79JdmrviRn7VpsXp5zz+/OnQnq2YPA7t3xadbM3WWKiFwWBW4REamWHAUFrj2/nb3fRYcPA+DdojlB3boR2L07AdffoG0HRaTaU+AWEZFqz1pL4f795Hy1hpyvviLn66+xeXng7U1AXByB3bsT2L0bfu3a6dAdEal2FLhFRKTGcRQWkpe8mZw1X5H91RoKdu0CwDM8nMCuXQns3o2gbt3wiohwc6UiIgrc7i5DREQqQPHx4+SsXUv2mjXkrFlLycmTAPi2bUtgt64Ede+Of4cOePj4uLlSEamLFLhFRKRWsQ4HBd99R7ar/SR382YoKsL4+xNwfSeCujnbT3wiI7X1oIhUCQVuERGp1Rw5OeR8/XVp/3fhgQOAc+tBZ/juTmCXzniGhLi5UhGprRS4RUSkTik8dMh54+WaNeSsW48jO9t58E5MDIHduxPUvRt+0dEYT093lyoitYQCt4iI1Fm2qIi8bdvI/uorcr5aQ/6334K1eISGEtili7P/u1s3vBs3dnepIlKDKXCLiIi4FKelkbtuXWn/d/GxY4Bz7+/AGzoT2PkGAm64Aa/69d1cqYjUJArcIiIiZbDWUvDDD+SuX0/OuvXkbtzobD8BfK+7joDONxDYuTMBHTuq/1tELkqBW0REpBxscTH5O3eSs34DuevXk5ucjM3PBw8P/KKinOG78w0EJCTg4e/v7nJFpBpR4BYREbkCjsJC8rZsIXf9BnI2bCBv61YoLnaefhkbS0DnzgR26Yx/dDRG+3+L1GkK3CIiIhXAkZNDbvJmctavI3f9BvJ37gRrnft/d+jg6v/ujN8v2mkHFJE6RoFbRESkEpRkZJC7caOzBWXDegp+2AOAR0gIAdd3Kr0J0+eaa3QAj0gtV97A7VUVxYiIiNQWnqGhBPftS3DfvoDr+PkNX5O7YT056zeQvWy5c1yDBgTecEPpTZjeTZsqgIvUUVrhFhERqUCFhw6Tu2EDOevXk7t+PcXHjwPg3bixs/+78w0EdOqE99VXu7lSEfm51FIiIiLiZtZaClNSXOF7A7kbNlCSkQGAd5MmBHTsSECnjgR07Ih3ixZaARepYRS4RUREqhnrcFCweze5GzeRu8n5VXLqFACeEQ2cAbxjRwI6dsL32mswHh5urlhELkaBW0REpJo7vQJeGsA3bqT4p58A8AgNJaBDh9JVcL927TBeuvVKpDrRTZMiIiLVnDEG31at8G3Vinp3/BJrLUWHU8ndtJHcTZvI27iJ7BUrnGMDAgiIiyttQfGLicHD19fNr0BEykMr3CIiItVY8fHj5H7zTekqeMHu3QAYb2/8YmNKW1D84+LwDAp0c7UidYtaSqrY0gNLaRrUlLbhbXXTi4iIVJqS9HRykzeX9oDn79gBJSXg6YnfL37x3xsxExLwDAtzd7kitZoCdxUqcZSQOCuRk/knaRXaigGRAxgQOYBmIc2qtA4REal7HDk55G7ZUtqCkrdtG7awEADfa68tbUHx79gR76uucnO1IrWLAncVS89PZ8mBJSxMWcg3R78BICYihgGRA+jXsh/1/etXeU0iIlL3OAoKyN++3XUT5iZyN2/G5uYC4N28OQHxcfjHx+MfH4/vNdfoOHqRn0GB242OZB9h0f5FLNi3gO/TvsfTeNL56s4MbDWQPs37EOitHjsREakatriY/F27yN24ibzNyeRu3kLJiRMAeAQG4h8bWxrA/WNj8AwOdnPFIjWHAnc18UPaDyxMWcjCfQtJzUnFz9OPG5vdyIDIAXRv0h1vT293lygiInWItZaiQ4fI27yZ3M2bydu8hYLvvweHA4zB99prXQE8joD4eLybN9e9SSIXoMBdzVhr2Xp8K5/v+5wl+5eQVpBGiE8IN7W8iQGRA+jQsAMeRgcciIhI1SvJziZ/27bSAJ63ZQuO7GwAPMPD8Y+PL21F8YuKwsPPz80Vi1QPCtzVWJGjiPWp61mQsoAVP64grziPhgENnTdbthpAm3pttJogIiJuYx0OCvbscYbvzZvJ27yZwgMHnA96e+P3i3YExMWXtqJ4N9TNmFI3KXDXELlFuaw6uIqFKQtZc3gNxbaY1qGtGdDKudNJ0+Cm7i5RRESE4lOnyNuypbQVJX/7t9iCAgC8Gzf+bx94fBx+bdroVEypExS4a6C0/DSWHljKgn0LSD6WDEBsRCwDIgdwc8ubtdOJiIhUG7awkPzvvnMF8C3kJSdTfOwYAMbfH/+YmNI+cP/YWO0JLrWSAncNl5qdyqKURSxIWcAPaT84dzpp3JmBkdrpREREqh9rLcVHjvy3D3zzZvK/+855KA/g07IlfjHR+EfH4B8bg2/btnj4+Li5apGfR4G7Fvk+7XsW7lvIwpSFHMk5gp+nH72b9WZAqwF0a9xNO52IiEi15MjNJW/7t84+8O3bydu2lZLjzi0Jjbc3vu3a4R8djX9sDH7R0fi0aIHx0AYCUnMocNdCDutgy7EtLExZyBf7vyC9IJ1Q31CSWiSR1DyJTld3wttD4VtERKonay3FP/1E3rbt5G/fRt7WbeTt2FF6MI9HSAj+0dFnrYR71Vc7pVRfCty1XJGjiHWp61iwbwErD64krziPYJ9gejfrTZ/mfejauCv+Xv7uLlNEROSibEkJBXv2/jeAb9/+333Bcd6Q6Rcb4wzgMdHObQn99f9vUj0ocNch+cX5rEtdx7Ifl7Hq4CoyCzPx9/Kne5PuJDZPpGfTngT76OQwERGpGRy5ueTv3Enetu3kbdtG/rZtFKWmOh/09HQezhPjCuDRMfhe01pH1ItbKHDXUUWOIjb9tInlPy5n+Y/LOZF3Ai8PLzpf3Zm+zfvSu3lvwv3C3V2miIjIZSk+ccIZwLdvI9+1Eu7IygLABATgHxXlbEWJicU/JhqvRo10poVUOgVuwWEdbDu+jWUHlrHsx2Uczj6Mh/Eg4aoE+rboS2LzRBoFNnJ3mSIiIpfNOhwU7j/gbEU5vRL+3XdQVASAV0QEfjEx+Ee3xy8qCr+oKLzCteAkFatCA7cx5hPgLWCRtdZRAfVVGgXusllr2Z22m2UHlrH8x+XsSd8DQPv67UlskUjf5n1pGdrSvUWKiIj8DI7CQgp27TprJbz0hEzA6+qr8Yv6hXM1/HQI102Z8jNUdODuC4wBOgOzgHestbt/dpWVQIG7fFIyUpxtJweW8+3JbwG4JuwaEpsn0rdFXx0vLyIitUJJZib5O3eRv2NH6ddZIbxRI1f4/m8Q92rQwI0VS01SKS0lxphQYATwR+Ag8Cbwb2tt0ZUWWtEUuC/fkewjrDi4gmUHlpF8LBmHddAkqAl9m/elb4u+xETE4GG0L6qIiNQOJVlZ54fw/ftLH1cIl/Kq8MBtjKkP3AXcDaQCM4DuQLS19sYrL7ViKXD/PCfzTrLq4CqW/biM9UfWU+wopoF/AxKbJ5LYPJGOjTpqr28REal1SrKzyd+5k/wdO50h/Ntvzw7hDf9/e3ceJdd12Hf+e2uv3vcFjb2xAwRJgBJJSaSoJdpsrbZlKYkj2U40OomtycxYY2U8c8bR5MSK7TkZ54xjx3ZsS0ps2pKjJbJGlESRIikSEAkuAImlsa/dQO977Xf+uK+27mqgAVR19fL7nPNOvXffrVe3WET3r2/dd29nLoRH9u4luncvgfb26jVYloVyDyn5BrAT+Crwl9ba/oJzLy3mhZaKAnf5TCYmeebKMzx56Umeu/ocs6lZGkINPLbhMd698d08vO5hIoFItZspIiJSEfNCeLYn3MtOgY4OF8L37VUIX6PKHbjfYa19qiwtqzAF7sqYTc3y/LXn+dGlH/HU5aeYTEwSDUR5uPthHl3/KG/reRudtZ3VbqaIiEhFpaemiZ84zuwbb+SCeOL8+fkhfO9eIrt3Edm1i8C6dbovapUqd+D+WIniceCYtfbGHbSvYhS4Ky+ZSfLiwIs8efFJfnzlx1yfuQ7AzuadPLr+UR5Z/wj72/bj92kRAhERWf3SU9PET7ox4dkgnjh3LhfCfQ0NRHbtIrJ7F+Fdu93j1q2YUKjKLZe7Ve7A/ffAw0C2l/sx4AiwBfiitfard97U8lLgXlrWWk6PnebZK8/y7NVnefXGq6RtmsZwI29Z9xYe6XmEt/W8jeZIc7WbKiIismQyMzPE+/qInTxJ7MRJYidPED/Vh43FXIVgkPC2bQVB3PWG+xsaqttwuS3lDtzfB37JWnvdO+4EvoKbseQZa+2+u2xv2ShwV9d4fJwX+l/g2SvP8tzV5xiJjWAw3NN+D4/0PMKj6x9lV8suzXoiIiJrjk2nSQZXoNsAACAASURBVFy8SOzECeLZIH7iBOnh4VydYE8P4d27iHg94RqSsryVO3Aft9buKTg2wBvW2j3GmFestfffXXPLR4F7+cjYDMeHj/PslWd55sozufm+26JtvK3nbTy6/lEe6n6I+lB9lVsqIiJSPanBwVxPePzkCWInThbdnKkhKctXuQP3fwQ24ha9Afg54ArweeA71tp33EVby0qBe/kamh3i+WvP88yVZ3j+6vNMJicJmAAHOg/wSM8jPLL+EbY2btVf8SIisuZpSMrKUO7AbYCP4ebdBvgJ8Hf2dlbNWSIK3CtDKpPitcHXXO/31Wc4PXoagJ66nlzv95u63kQ0EK1yS0VERJaHkkNSTp4kPTSUqxNct47wzp2Ed+wgsnMH4R07CG3ejAkEqtjy1atsgdsY4wd+uJx6sW9GgXtlGpge4Jkrz/Ds1Wc53H+Y2dQsYX+YN3W9yc180vMI6+vXV7uZIiIiy44bknLK9YKfOEGsr4/E+QuQTgNggkFCvb2Ed2wnssOF8PCOHQQ6O/Wt8l0qdw/3k8DHrLXj5WhcJSlwr3zxdJwjA0d49qqb+eTixEUAtjRu4dEeN+3ggY4DBP1a8VJERKSUTCJB4uxZNyylr49432nifX2krl/P1fE1NhLevq0ohId37MBfV1fFlq8s5Q7c3wLuB34ATGfLrbWfu5tGVoIC9+pzceJibtrBFwdeJJlJEg1EeaDzAR7qfogHux9ke/N2zXwiIiJyC+mxMeKnTxeF8HhfH5npXLxzw1KKQvh2wlu2YILq6Jqr3IH7U6XKrbVfvoO2VZQC9+o2k5zhUP8hnr/2PIf7D3Nh4gIALZEWHux6kIfWuQDeU9dT3YaKiIisENZaklev5cJ3vK+P+Ok+4ucvQCrlKgWDhLdsKQrhkZ07CXR1relhKWUN3N4Fo8BGa+2pu21cJSlwry0D0wMc6j/E4f7DHOo/xNCsu3FkQ/2GXO/3m7verIV3REREblMmkSBx/nwuhMf6+oif6iM1MJCr46uvz/eCb99OeNs2wtu3E2heG793y93D/UHg94GQtXaLMeY+3AqTH7r7ppaXAvfaZa3l3Pg5DvUf4lD/IV4ceJHp5DQGw66WXbkAfqDzgGY/ERERuUPp8fGCYSn5oSmZqalcHX9LC+HeXsLbt7kbNrdtJ7ytl0BraxVbXn7lDtxHgHcCT2cXuTHGvL6cVpjMUuCWrFQmxRvDb3Do2iEODxzm1RuvkswkCfqC3Nt+by6A72vbR8Cn6ZJERETulLWW1MAA8TNniZ85Q/zsGRKnzxA/e7Y4iDc3E+7tJbR9G+HebYS39RLetg1/a+uKHJpS7sB9yFr7UOGqksaYo9ba/WVoa1kpcMtCZlOzvHL9lVwP+MmRk1gsdcE6dwPmuod4qPshLb4jIiJSJtZaUjduED99hsTZMy6Me6E8MzmZq+dvbCwI4QVBvK1tWf9OLnfg/s/Ak8AXcKtMfg4IWms/e7cNLTcFblms0dgoPx34aW789+XJywC0R9t5sPtBHux+kIe6H6KrtqvKLRUREVldXBAfnBfC42fOkJmYyNXzNTa6oSkFITzUu41AR/uyCOLlDtw1wG8B7wEM8ATwf1lrY3fb0HJT4JY7dXXqqgvf3hCUkdgIAJsbNvNg94M83P0wD3Q9QGO4scotFRERWZ2staQGB90c4nOGp6TH88vB+BoavCDuQnjd299OaPPmJW9v2WcpWSkUuKUcMjbD6dHTud7vl66/xGxqFoNhZ8tODnYe5EDHAQ50HqAt2lbt5oqIiKxq1lrSw8P53vDsGPEzZ0iPjbHu93+fxp/9mSVvV7l7uHcAvwFsBnJ3l1lr33kXbawIBW6phGQ6ybGhYxzuP8yRG0c4OniU2dQs4HrAD3Qe4EDHAQ52HqSnrmdZfM0lIiKyFqSGh/FFIvhqa5f8tcsduF8D/hg4AqSz5dbaI3fTyEpQ4JalkMwkOTF8giPXj/Dy9Zd5+cbLTCTcmLOOmg4Odhx0veCdB+ht6tUqmCIiIqtQ2acFtNYeLEvLiq/7PuAPAD/wZ9baL805Hwa+AhwEhoFftNZeuNk1FbilGjI2w5mxMy58X3+ZI9ePcGP2BgCN4Ubu77ifgx0ugO9u3U3Qp+VxRUREVrpyB+7fBm4A3wDi2XJr7chdNNAP9AH/ALgCvAh80lp7vKDOPwf2W2s/a4z5BPBRa+0v3uy6CtyyHFhruTJ1JRe+X77xMhcnLgIQDUTZ374/1wt+T/s9WohHRERkBSp34D5fothaa7feSeO8az4M/La19r3e8b/yLvo7BXWe8Oq8YIwJAANAu71JoxW4Zbkamh3KDUE5cv0IfaN9WCwBX4A9rXs42HmQgx0Hua/jPs2EIiIisgIsNnAvank9a+2Wu2/SPD3A5YLjK8CDC9Wx1qaMMeNAKzBUgfaIVFRbtI33bn4v7938XgAmEhO8euPVXAj/6vGv8hev/wUGw/bm7e4mzC4Xwttr2qvcehEREblTNw3cxpj/1Vr7u97+L1hrv1Zw7t9aa/+3SjdwMYwxnwE+A7Bx48Yqt0ZkcRpCDTy6/lEeXf8o4FbCfH3odY5cP8KR60f41tlv8fipxwHYUL+B+zvu5972e9nfvp9tTdu0HL2IiMgKcdMhJcaYl621B+bulzq+7RfWkBKRm0pmkpwaOZUL4K8NvpZbjCcaiLK3dS/3tN/DvW0uhKsXXEREZGmVa0iJWWC/1PHtehHYbozZAlwFPgH8wzl1vg18CngB+HngRzcL2yKrSdAXZF/bPva17eNTez+VuxHz6OBRjg0d4+jgUTcMJfMXAHTXdrO/fT/3tN3Dve33srt1N2F/uMrvQkRERG4VuO0C+6WOb4s3JvvXcMvE+4E/t9a+YYz5IvCStfbbwH8GvmqMOQOM4EK5yJpkjGFD/QY21G/gZ7a61bTi6Tgnhk/kAvjRwaM8ceEJAAK+ALuad7G/fb/b2vazvn69FuURERFZYrcaUpIGpnG92VFgJnsKiFhrl91kwhpSImvd4MwgR4eOcmzwGEeHjvL60Ou5VTGbw835AN6+n32t+6gL1VW5xSIiIitTWacFXEkUuEWKpTIpzo6d5ejQ0Vwv+LnxcwAYDL1Nvbke8P3t+9nauBW/z1/lVouIiCx/CtwisqCJxASvD72eC+BHh44yHh8HoDZYy77Wfble8Hva7qE12lrlFouIiCw/CtwismjWWi5PXua1wddyAbxvpI+UTQHQVdvFnpY97G7dzZ7WPexp3UNbtK3KrRYREamusi58IyKrmzGGjQ0b2diwkQ/2fhCAWCrGiZETHB08yvHh4xwfPs5Tl5/CevdLd9R0sKdlTy6A727dTUdNRzXfhoiIyLKkwC0iJUUCEe7vuJ/7O+7PlU0npzk5cjIXwI8PH+fHV36cC+Ft0bZ8AG9xveGdNZ2aGUVERNY0Be5y+eFvQ20H3PPzUKdePlmdaoO1HOw8yMHOg7mymeQMp0ZPFYXw564+R8ZmAGiJtLihKC172Nu6lz2te+iq7VIIFxGRNUNjuMshk4Y/fx9c+SkYP2x7N9z7Cdj5fghGl7YtIsvAbGqWUyMuhJ8YOcHx4eOcHTtL2qYBNz1h4Xjw3S276anrUQgXEZEVRTdNVsONE/Da43D0b2HyGoQbYO9H4N5PwoaHwOerTrtEloFYKkbfaB8nhk9wfMT1hJ8ZPZO7MbMx3Mjult25IL63Za8W6hERkWVNgbuaMmm48KwL38e/DclpaNoI+z/her5be6vbPpFlIpFOcHr0NG8Mv5EbjnJ67DSpjAvhdcE6tjdvZ0fzjty2vXk7tcHaKrdcREREgbvazchLTMOJ78DRx+Hc02AzsP5NLnjv/RjUtFS7hSLLSjKd5PTYaY4PH+fUyCn6Rvs4PXqayeRkrs76uvUugLfkg/j6uvVasEdERJaUAvdyNHENjn3N9XzfOA6+IOx4rxtysv09EAhVu4Uiy5K1loHpAfpG+zg16kJ432gfFycu5m7OjAaibGvaNq83vDHcWOXWi4jIaqXAvZxZCwPHXPA+9jWYvgHRZtj3c27YyfoHQONWRW4plopxdvwsfSN9uRB+avRUbtVMcIv2FIbwHc072NSwiYBPkzSJiMjdUeBeKdIpOPeUC98nvwOpGLT0ul7v/R+H5k3VbqHIimKtZXB2MBfA+0b7ODVyigvjF3I3aIZ8IXqbevMh3Bua0hLREC8REVk8Be6VKDYBx78FR//G3XQJsOmtbrz3ng9DRF+Ni9ypRDrB+fHzRUG8b7SPodmhXJ22aJsbitK0nd6mXnqbetnauJW6UF0VWy4iIsuVAvdKN3bJBe/X/gaGT0MgAjs/4Hq+e98Jfn0dLlIOw7PDRQH89OhpzoydIZlJ5up01nTmwndhENf4cBGRtU2Be7WwFq6+7GY5OfZ1mB2B2na45xdcz3fXfo33FimzVCbF1amrnB07y7nxc5wdO8vZsbOcHz9PLB3L1WuLttHb2MvWpq35x6ZeDU0REVkjFLhXo1QCzvzAjffu+x6kE9C+G+79Rdj7UWjeXO0WiqxqGZvh2tS1ohCe3Z9JzeTqNYeb54Xw3sZe2qJtWshHRGQVUeBe7WZG4Pg3Xfi+fNiVrbsf9nzErW6p8C2yZKy1XJ+5Pi+Enx0/y2QiP394faie3sbeecNTOms6FcRFRFYgBe61ZPSCu9nyjW/CtZddmcK3SNVZaxmaHeLseH5ISjaQj8RGcvVqAjX0NvWypXELWxq3sLlhM5sbNrOhYQNhf7iK70BERG5GgXutGr3ohe9v5MN3931uyInCt8iyMRIb4dzYuaLe8LNjZ4tmTTEY1tWtY1PDJjY1bMoF8U2Nm+iq6dLKmiIiVabALfnwffybcPWIK+u+zwXvPR+Bli3VbZ+IzDOVmOLi5EUujl/kwsQFLkxc4OLERS5OXGQ6OZ2rF/KF2Niw0QXwbCBvdPvN4WYNURERWQIK3FJM4VtkRbPWMhwb5vz4+VwAz4bxy5OXSWVSubr1oXq2NGzJBfFNja53fGP9RmqCNVV8FyIiq4sCtyxs7FJ+2EkufN/rhp0ofIusOKlMimtT14p6w7P7A9MDRXU7azrn9YpvbtjMurp1Wu5eROQ2KXDL4uTC9zfhqvffTeFbZNWYSc5wefLyvDB+YfwCE4mJXL2ACdBd182G+g1sqN/A+rr17rHePapnXERkPgVuuX0Lhe/sbCctW6vbPhEpG2stY/GxXAC/NHGJy5OXc1thGAdoibTkwnhhEN9Qv4HWSKvGjIvImqTALXdn7HLBsBOFb5G1Zjw+zpWpK1yevMyVyStcmbySC+MD0wNY8r87ooEo6+vX53rFC0P5utp1BP3BKr4TEZHKUeCW8smG7+PfhCsvurKu/S547/4QtG2vbvtEZEkl0gmuTV0r6hG/MnUlF8xj6Viurs/46K7tzvWIzw3ldaG6Kr4TEZG7o8AtlVEqfLdug53vhx3vhw0Pgl83XomsVdZaBmcHi3rECwN54YI/AE3hJnrqelhXt451tetYV7eOnroeuuu66anroTZYW6V3IiJyawrcUnnjV+DU/+e2C89COgHRZtj+XhfAe98JkYZqt1JElpGpxFQufGfD+LXpa1ybcls8HS+q3xBqyAXy7truojC+rm4dDSH9jBGR6lHglqUVn4SzP3Lhu+8JmB0BXxC2PAI7PwA73gdNG6rdShFZxqy1jMRGuDZ1javTV+mf6ufq1FWuTV2jf9rtz6Zmi55TF6wr6h0v3Hpqe2gMN+qGThGpGAVuqZ5MGi7/FE591wXw4dOuvPMe1/O98/1u0R2fr7rtFJEVxVrLeHycq9NXcz3iuc3rJZ9KThU9JxqIul7x2u7i4Sq17rEl0oLP6GeRiNwZBW5ZPobOQJ839OTSC2AzUNcFO9/ner+3PArBaLVbKSKrwERiwvWQT5XuIZ873WHQF6SjpoOu2i66arvorOl0+zVdubKmcJN6yUWkJAVuWZ5mRuD09134PvMkJCYhWANb3+HdePleqOuoditFZJWaSkzlesP7p/sZmB7IbddnrnN95jqpTKroOWF/OB/EC0N5wX5DqEGhXGQNUuCW5S8VhwvPeeO+vwfjlwED6x/whp58ANp3gX6JicgSydgMI7GReUE8dzwzwODMIGmbLnpeNBAtCuKless1BaLI6qPALSuLtXD99fysJ9deduXNm910gzvfD5veAlpAQ0SqLJ1JMzQ7xMDMwPwe8mkXzgdnB4sWBwJ3g2c2hHfUdNBe005HtIOOmo7ccUukhYBPU6uKrBQK3LKyTfS7Xu++78G5pyEVg3AjbH+36/ne9i43BaGIyDKUzCQZnBmc30Pu9ZIPzQwxFBsiYzNFz/MZH22RNtpr2nOBvL2mnc6aTlcWbaejpkPjykWWCQVuWT0S0y50n/qum3JwehCM3w096X2XC9/r7gefv9otFRFZtFQmxUhshMGZQW7M3GBwdpDrM9fd8eyNXPlYfGzec7M3e7ZHvWCe7SX3Ank2pGvhIJHKUuCW1SmTgasvuRsvzzwJ114BrOvt3vqYC+C974TGnio3VESkPBLpBIOzg7kAfmPmRi6QZ8P5jZkbTCen5z23JlCTC+DZMN4WbaMl0kJbtC23NYYbNT2iyB1Q4Ja1YXoYzj0FZ5+Cs0/CZL8rb9/l9X6/Eza9VdMOisiqN52cdiG8sKfc6zkfnHFlQ7ND81bzBAiYAC1RF8JbI625IN4abS0K5q2RVmqDtRrOIuJR4Ja1x1q4ccIF7zNPwsXnIR2HQMTdcJkdfqKZT0RkjbLWMp2cZmh2yG2xIYZnh3PH2f3h2WGGY8PzZmMBiPgj84N4tLUoqGfLwv5wFd6lyNJR4BZJzLjQnQ3gQ6dceUMP9L7DBfCtj0FNSzVbKSKyLGVshrH4WFEYz4XzWHFALzXOHKA+VJ/rGW+JtLgt2kJL2HuMtNAcaaY10kp9qF7DWmTFUeAWmWvsMpz9kQvg556G2DgYH6w74Hq+e98FPQfBrym5RERuRzKdZDg2nOsZz/WgF4T1kdgII7GReat9ZgVMgOZIM82R5nw4n7Nlw3lLtIWaQI2GtkjVKXCL3Ew65eb6PvOkC+BXj7gl58ONsPXt7sbLbe+Cpo3VbqmIyKqSzCQZi40xEhthOOaC+GhsNBfIc9use5xJzZS8TtgfXlQ4b4400xRuIhqIKqBL2Slwi9yOmRE4/2MvgP8IJq668tbt+d7vzW+FkKbYEhFZSrFUrHQgn7ONxkYZnh0mkUmUvE7IF6Ip0kRzuJmmSBNNYbdlA3lz2D0W1okGdMO93JwCt8idshYGT+WHn1x4zi284w/BxoddD/jmR2HdfVr5UkRkGbHWMpOacb3j8RGGZ4cZj48zGh9lLDbmHuNjjMXGGIu744n4xLxVQbPC/vC8UN4Ybswfe4+F+5FAZInftVSTArdIuSRjcOl5r/f7KbjxhisP1bkAvvltsOUR6L5Pi++IiKww6UyaicREUSgfj48zGnPhPPuY3UZjowuOQweIBqIulIebaQg30BhqpDHsbd7+vPJwo2Z0WaEUuEUqZXoILjzrer7PP5uf/STc4KYf3PyIC+Cd94BPd9yLiKw2qUyKicREvte8oMe8sCd9Ij7BeGKc8fg4E/EJUja14DUj/ogL4gXBPLu/UHljuFFj06tMgVtkqUxe9wL4sy6Aj5x15ZEmt+jOlkdcCO/YowAuIrJGZYe7jMddAM8G8fH4OBOJiXx5wbmJ+ARj8bEFx6UDBHyBkgG9PlRPQ8g9Fu43hBpy+1rE6O4pcItUy8Q1F7wvPOMexy668ppWL4A/6gJ4+04twCMiIrcUS8XmBfHCwD43oE8mJt2WnLzpdX3G5wJ50Avl4YaiYH6zsF4fqtd4dRS4q90MkbyxS14Af871go9fduW17W789+ZHXAhv3aYALiIiZZPOpJlKTjGZmGQiMZEL4tn98fh4LphPxOefj6VjN71+yBfKh/JwA/XBeupCddQF66gP1VMXrMsd14Xqcudz9UJ1BH0re/IBBW6R5chaGL2QH35y4VmY7Hfn6rryw082vw1atiqAi4hI1STSiZJBfSI+4UJ6YmJeUJ9OTjOZmGQqOUU8Hb/la0T8kXwozwbzgrBeGOJLhfn6UH1VbzhV4BZZCayF4bNu+En2JszpG+5cQ0/+BszNj0Dzpuq2VURE5DYk00kmk5NMJ6aZTE4ylZjKPWZ73gsD+tzzU4mpBRc+KhT0BfniW7/Iz2792SV4V8UWG7i1hrVINRkDbdvc9sCvuAA+1Afnn3G932d+AEcfd3UbN8DGh2DDg+6xY4+mIRQRkWUr6A/S4ncrf96p7LCYXCDPhvQ5wb23sbeMLS8/9XCLLGeZDAyecD3fl56HS4dhasCdCzfA+je5ucA3Pgg9B7USpoiIyBJSD7fIauDzQedetz302fwY8MuH4dIhtz31b7y6AejaX9wLXt9V1eaLiIiIerhFVr7ZUbj8Ilx6wQXxq0fcUvQAzZthw0MufG98CNp2ai5wERGRMlEPt8haEW2GHe9xG0AqAf2vwWWvB/zMD/PjwCNNXu/3g24oyrr7IRitXttFRETWAAVukdUmEIINb3LbW37dDUMZOed6wC8dcr3gp59wdX1BWHefNwzF6wWvbatu+0VERFYZDSkRWYumh13wzvaCX3sF0t7Swa3bioehaEEeERGRkjSkREQWVtsKuz7gNoBkDPpf9XrBD8Opv4dX/4s7V9MKPQ+4WVB6DkLPAai58ymeRERE1hoFbhGBYCTfow1uOsLh094QlJ/C1Zfg9PcB7xuxlq1e+PaCeNc97hoiIiIyjwK3iMzn80H7Trcd/JQri024XvArL7mZUC78BI59zasfhK59Bb3gD7ihKJoRRURERIFbRBYp0gBbHnVb1sQ1F76vHnFB/LXH4cU/c+fCDW4WlPUFw1E0L7iIiKxBCtwicuca1rlt9wfdcSbtlqYvDOHP/T9g01799W4MeM9BF8S774NwXfXaLyIisgQUuEWkfHx+6Njttvv/sStLzkL/UTcOPBvET3zbnTM+aN9VMBTlIHTsAb9+NImIyOqh32oiUlnBqLfQzoP5sukhuPqyF8BfgpPfgVe+6s4Fom5u8J6DbkhK933uJk2NBxcRkRVKgVtEll5tW/HqmNbC6Hm4ciQfwn/6p5COu/OhOjcTSve9+a1tp3rCRURkRdBvKxGpPmNcL3bLVtj/C64slYDBk26Z+v7XYOAovPwVSM6484EIdO6Frv35EN6xR9MTiojIsqOVJkVk5cikYfhMPoT3v+bGh8fH3XlfANp3ewHcC+Kd+3RjpoiIVIRWmhSR1cfnz88Pvv/jrsxaGL1QHML7vpdfKRMDbdtd+M71hu+HaHO13oWIiKwxCtwisrIZAy1b3Lb3I67MWpjsLw7hF5/PL9QD0LSpeEx4971Q11Gd9yAiIquaAreIrD7G5OcI3/n+fPn00JzhKK/lpygEqO/O94R37nXDUVq2uJ51ERGRO1SVwG2MaQH+BtgMXAA+bq0dLVEvDRzzDi9Zaz+0VG0UkVWotg22vcttWbFxGDhWHMJPfx9sxp0PRN284p17XADv3Asde6G2tTrvQUREVpyq3DRpjPldYMRa+yVjzBeAZmvtb5aoN2Wtva27nXTTpIjcteSsmyHl+hve9rp7nBnO16nr8nrBC7a2HRAIV6/dIiKypJb7TZMfBh7z9r8MPA3MC9wiIlURjLpFd9bdny+zFqZuuPB943g+iB9+FtIJV8cXcKG7Y09+SErnHmjoccNcRERkTapW4O601vZ7+wNA5wL1IsaYl4AU8CVr7TeXpHUiInMZA/WdbisckpJOwvDZfC/4jeNw+TC8/vV8nUhjwXAUb2hKx25NVygiskZULHAbY34IdJU49VuFB9Zaa4xZaFzLJmvtVWPMVuBHxphj1tqzJV7rM8BnADZu3HiXLRcRuQ3+IHTscts9P58vnx0r6An3tlf/ChJT+TrNm+cHcd2kKSKy6lRrDPcp4DFrbb8xpht42lq78xbP+UvgO9bar9+snsZwi8iylcnA+KXiEH79DRg5m79J0x92w1Lad0L7rvxjyxYX7kVEZNlY7mO4vw18CviS9/ituRWMMc3AjLU2boxpA94K/O6StlJEpJx8Pter3bwZdv1Mvjx7k+bA6+5x8BRc/mnxsBRfEFq3zQ/irb26UVNEZJmrVuD+EvC3xphfBS4CHwcwxjwAfNZa+0+B3cB/MsZkAB9uDPfxKrVXRKRySt2kCRCfgqE+F8CzQXzgKBz/FuB9O2n80LK1IIh7Ybxtu7uuiIhUXVWGlFSShpSIyKqXnIXhMwVB3Avjw2fBpr1KxvWkF/aGt+90w1V0s6aISFks9yElIiJyp4JR6LrHbYVSCTcePBvAs49nfgiZZL5e40YvhBf2iu9ws6mIiEjZKXCLiKwWgZCbbrBjd3F5OgmjF4p7wwdPwoVnIRXL16vtcENRWnuhdbu3v831lOuGTRGRO6bALSKy2vmDLjy3bYfdH8yXZ9IwdtEL4Kdg+LQblnLyuzAzlK9n/C50ZwN46zZvfzvUdWhRHxGRW1DgFhFZq3zeDZctW2Hn+4vPzY668D102o0XHz4NQ2fg3NPFveLhBq9HfJvXK74tH8pDtUv6dkRElisFbhERmS/aDOsfcFuhTAYmrnhB/KzXK34GLh2GY18nN3sKQP06L4BvL+gV3wZNG7W4j4isKQrcIiKyeD6fC8xNG4uXuAc3e8rIOS+Mn873kL/+dYiN5+v5Q65XPdsTnu1lb9kK9d3uNUREVhEFbhERKY9g1C1T37m3uNxamBmePzxl6DT0PVE8g0og4i0OtMUL4Vu8bSs0btDNmyKyIilwi4hIZRkDtW1u2/Rw8blMGsavuJ7xkXMweh5GvO3c05CaLbiO3/WsZwN4YShv3qyFfkRk2VLgFhGRXdVQwwAAGlhJREFU6vH5oXmT23rfUXzOWpi67oXx8wWB/Bwc+1rxMBWAhh4vhG+ZE8q3aI5xEakqBW4REVmejIH6Lrdtesv88zMjLohnQ3g2lJ/+vgvqhWpa5/SKb/WGrmyCuk5NbSgiFaXALSIiK1NNi9vWH5x/Lj7lFvsp7BUfOQeXDrne8cLZVAKR/I2gTV5ve9Mmd9y82c3YokAuIndBgVtERFafcB107XPbXKk4jF1yPeJjF9026j1ePeLmIC8UqvdCeKlAvgnC9UvznkRkxVLgFhGRtSUQzq+8WUps3AXybAjP7o9egHM/huR0cf1oy/wQ3rTZPTZugGCk0u9IRJY5BW4REZFCkUbousdtc2WnOCzsFR/1Qvn11+HUdyGdKH5OXdf8QN64wdvWK5CLrAEK3CIiIotVOMVhT4mx45kMTA3kQ3hhML98CF7/O7Dp4ufUtrvg3bi+OIhnj2vbNIZcZIVT4BYRESkXnw8a1rlt7pzjAOkkTFx1c4+PX4HxyzB22e0P9sGZJyE5U/ycQKQggK+Hxo1zjte7YTIismwpcIuIiCwVf9CbjnBz6fPWups2xy/nQ/nYpfz+6R+6HvS56jpv3kte06JecpEqUuAWERFZLozJT3fYfW/pOql4cS/52OV8QL/+BvQ9AalY8XOCNS58N/R4m9cLX7iv6Q9FKkaBW0REZCUJhPOL95SSvbEzG8KzQ1bGL8HENTh7EiYHKJqLHCAQLR3Ec/s9bgEhn6/ib1FktVHgFhERWU0Kb+xcd3/pOumkW41z4prrLZ+4Vrx/8Scw2Q+ZVPHz/CGo7y4RyAvK6jrB56/8+xRZQRS4RURE1hp/MD/GeyGZNEwPFoTxOeH86hE48d8hHS9+nvFDfdf8HvL6blde3+1Cebiusu9RZBlR4BYREZH5fF5wru+CngOl61gLMyMFQXxOb/n143D6B/NnXgG3gmf2+rkwPue4rgtCNZV9nyJLQIFbRERE7owxUNvqtu79petY61bvnLruhqlMDsx5vA6XD7vjub3l4BYiqpsbzOcE9LouLSAky5oCt4iIiFSOMRBtclv7zoXrZadELAzkUwPFxxd/4h4zyfnPjzYX94zngnmnG8JS1+EeQ7WVe68iC1DgFhERkeornBKxc8/C9TIZL5iX6i33QvrgKbc/d1VPgFBdPnwXPtbOKatth0Cocu9X1hQFbhEREVk5fL78MJaufQvXy6Rhegimb7jhLFMlHm+cgHNPuyEvpURb5gfzus75+9FmTZcoN6XALSIiIquPz++Gk9R3AvfcvG4y5gXzbBgvEdAvH3aPcxcVAvAFvB7ywmDe4XrJ5241LZo2cQ1S4BYREZG1LRiBpo1uuxlrIT5582A+2Q/9r7kpFUsNaTE+t4BQbbs3X3q7C+u5fW+r8x415nxVUOAWERERWQxjINLgtrZtN6+bHWs+PViweUNccvuDcPVlt5+YLH2dYI0XxjvmhPR2rxe94LimVb3ny5QCt4iIiEi5FY41Z9et6ydn8yF8XkgfdD3o41fg2isL955jvN7zNveY3WrboMYrq20t2G+DQLjc71xKUOAWERERqbZgFJo2uO1WMhmIjS0czGeG3IJEg6fy+9jS1wrVu3Hl80K5F8wLw3ttG4QbXE+/3BYFbhEREZGVxOfLT6F4s7nNszJpmB2DmWEXwKeH8vszI97xkJtS8fobbr/UzaEAvmBBAJ/TW17T6mZsqWnx9r02BmvWfEhX4BYRERFZzXz+guEtOxb3nMS0C+W5cD5cHNSnvbKBo+5xdnTha/nDLnhnA3jhftFjq7ffDJGmVTXVogK3iIiIiBQL1brtVjO3ZKVTLnTPjnihfMTbL3jM7t84mS8rORYdN5tLpKl0GC8V2Js2Qri+fO+/zBS4RUREROTu+ANuKsO69sU/x1qIT3gBfXROQJ8T2ieuwMAxV56anX+tj/wR3PcPy/d+ykyBW0RERESWnjEQaXRby208Lzk7vwd93YGKNbMcFLhFREREZOUIRqGxx20rxOoZjS4iIiIisgwpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFVSVwG2N+wRjzhjEmY4x54Cb13meMOWWMOWOM+cJStlFEREREpByq1cP9OvAx4JmFKhhj/MAfAu8H9gCfNMbsWZrmiYiIiIiUR6AaL2qtPQFgjLlZtTcDZ6y157y6jwMfBo5XvIEiIiIiImWynMdw9wCXC46veGUiIiIiIitGxXq4jTE/BLpKnPota+23yvxanwE+A7Bx48ZyXlpERERE5K5ULHBba999l5e4CmwoOF7vlZV6rT8B/gTggQcesHf5uiIiIiIiZbOch5S8CGw3xmwxxoSATwDfrnKbRERERERuS7WmBfyoMeYK8DDw98aYJ7zydcaY7wJYa1PArwFPACeAv7XWvlGN9oqIiIiI3KlqzVLyDeAbJcqvAR8oOP4u8N0lbJqIiIiISFkt5yElIiIiIiIrngK3iIiIiEgFKXCXyXQ8hbWaIEVEREREilVlDPdq9MH/9zn6x2J0N0bo8rZ1jVG6GiN0N0bobozS3RihqSZ4qxU2RURERGQVUeAuk19+6xYuDU9zbTzGwHiMw+dGGJiIkc4U93qHA76iAN7VGKG7KUp3QyQXzltqQwrlIiIiIquEAneZ/NJDm+aVpTOWoak4/eMx+sdm6R+PMTAR49rYrAvl50e4PhEjNSeUh7xQ3tUQYV3T/F7yrsYIrQrlIiIiIiuCAncF+X2GzoYInQ0R7tvQVLJOOmMZzoby8Rj94y6MZ/dfvOBCeTI9J5T7fbmhK10NEdrqwrTVh2irC9NeF6a1zu231oUIB/xL8XZFREREpAQF7irz+wwdDRE6GiLcu6F0nUzGMjQdzwfxsVn6J2K541cvjzE8FWc6kS75/IZIgLb6MG21+VDeVhDKsyG9rT5ETUj/S4iIiIiUk9LVCuDzGTrqI3TUR9i/fuF6M4kUw1MJBqfiDE3GGZ5OMDQZZ2gqzpBXfmpgkp9MDTM+myx5jWjQXxTK2+oK991xqxfQG6IBDWsRERERuQUF7lWkJhSgpiXAhpaaW9ZNpDIMT8cZmkwwNB33gnmCoak4w15AvzwywyuXRhmZTpApMeNhyO+jqSbotmiIxpogTVHvuCaUK2+qCdLolTfXhKgJ+RXURUREZM1Q4F6j3I2ZUbobo7esm85YRmdcGB+a9B6n4gxOxRmfSTI2k2Rs1gX0Y95+LJlZ8HpBv6Exmg3kQS+Qh2j2wntjTSgf3LP1aoLUhdWjLiIistKlM5ZEKkMilSGeShNPZUikM7mywv255+Kp9Lx68VSGj97fw70L3C+3HChwyy35fSY3pISuxT0nlkwzPuuF8ZkEY7Pe40zS208yPuuOr43FONE/yehMgpkFxqFn29EUDdLo9ZjXhQPURwLeY/FxXa48f64uEqA2FMDvU2gXEZHVz1pLKmNJlgiwhWWJVIZ4OkNyoeA7p24y7criJcpyr7FAYE6kM/OmTL5Txrhv20MBHwc3NStwy9oTCfqJBP10NkRu63nxlAvq4wXBfGwmwfhsktGCwD4xm2QylqJ/PMZULMVU3G2LURvy5wJ5XSRIQ3bfC+X1ucAedAG+qCzghu6E/IQDPvW4i4iscZmMJZnJhs58uM0G0GTKkkinSaSsd5wPvPFUprh+KkMibYuOk3NCb+F143Oulz0fLwi35VwEO+AzhAI+gl7IDfl9hAO+eWU1NQFCgfy5sFceCmTr+PP7AR9hv6+ofmhO/XCp5wR8BHxmxfweVuCWZSUc8NNR76ej/vaCOrgfetMJF7wnY26biqe8QJ4sOs7uT8ZTTMWSXJ9wwX3SC+6L+QFljLvJtCbkJxryEw36iYYC1HhlkZB/zn6gqG7xfoBoyCsLunIFehFZi7K9sqm0C6ipdD7IJkvsp7IBtGA/NadONui6sFp4LkMiNec4bUmk0vPCc+HrFobruWtplEPI7yPonxNuC0Jo0O/2G0NBr8x4z/ERnBOEQwVlhWE1e41QqZBbUB705+vrG+I7p8Atq4bPZ6iPBKmPBOluvPPrZDKWmWR6waA+k0gxm8wwm0gxk0gzk0wTS6Rz+7OJFNcnk8wk0swm0swm3blEauFx7SXfjxfoo16PejToz/2gDAd9hAMulLvtJueCfvfDt0R5Ye9DOOD36rgftgr7IiuHtZaMhVTGhc1UxpLOuACa3c+Gw2Q6WycbUl0PbcoLrMns8wrKs8/Nht9UrrzwOgtcP1MQTrMhtigU54NsNmRXUi6E+o0LqLkQW3Ds9xEJ+qiPBIp6bm/1nKDfEJwTZgvrhouOiwNusOA19PN39VHgFpnD5zO5ISZw+z3tC0mlM8wmXQCfzQb0RJpYMrufKgro2TqzXoifTaZz4+FiyQzjs8nccTyZv/EklkyXnFXmduXDuD/3SyXgNwR9PoIBQ8DnfjkE/IaA30fI78oCfjOn3H3tl6uT7YXxGwI+75eT97x8ufvlE/AZfMbg9xVsxuDzuTH9hed9xhDwZ8/nHwO+/Hn3iH6ZrTDWWqyFtLVkrCWTKdx3QTOd8Y6tC5fWK0tbi7WWdIbcuYzNP6dos5Z0JkM6Q+4xlcmUqFO8pUpeZ36dTK5uPgRnQ2w+IHth1ttPe8MVCs/ln5c/nrs4WqVl//1lfy4EfN6/Xe9nRHGZ+7dcF3bhNfvvPrTAftC7bvZnQCjgy12rcD/7syNY8LOm8GfT3P3sa+vfv1SDArfIEgn4fdT7fdRHghV/rezXqi6I58N4Npjngvqc8niu3Dv2np/Kft1a0MNV2Fs1nUjne8TSmaJesWzPV9LrLSvneMI7VRTc5wT6wgAPbuiQz5j8I0DBfvYcBfuFdU22rPA8c+oVlN2Nm/23tdz8P7y1LpBaC5Z8yM1Y98yMKyRj3bXcuXw9i51zXHg9F5IpKMte19o5gTkboHP7tix/QC4Vn4GAz4fP5z0a92/fZwr++PORC6V+X/YP0vz52mAgF2gDPh9+f34/4DP4/Yagz3tu7lzxsd8LrbnreGEzW54NqcHsuYKgHCz44zlY8Adzrtzn/pgVkcVT4BZZhdwvUB81oWq3ZL7sV9vJooBu86E+nR+7me0dzMztMbT53sLsuWwPYuG5/HPzPZalnjv3uumMzQVGisJhfh9bKjx6gZN8kCwMr9ngmQusGUiTyQXVjOWWoftWMedmvXe3eq7P+8vAfQvgQmP+jwPv2wHy+5D9xqDwjw1TVMcUXbf4j5TsHyM+4/7wMQV//BivzFf4jYVx30C5P4rcdQq/ucjXM149cn88ZZ9jjMn9kWW8cFz0DUrBNycuEJuiP8qyYbPosSBMq/dUREpR4BaRJeWCi5vFRkREZC3wVbsBIiIiIiKrmQK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBSlwi4iIiIhUkAK3iIiIiEgFKXCLiIiIiFSQAreIiIiISAUpcIuIiIiIVJACt4iIiIhIBRlrbbXbUFbGmEHgYpVevg0YqtJry9LR57z66TNeG/Q5rw36nNeGan3Om6y17beqtOoCdzUZY16y1j5Q7XZIZelzXv30Ga8N+pzXBn3Oa8Ny/5w1pEREREREpIIUuEVEREREKkiBu7z+pNoNkCWhz3n102e8NuhzXhv0Oa8Ny/pz1hhuEREREZEKUg+3iIiIiEgFKXDfAWPM+4wxp4wxZ4wxXyhx/tPGmEFjzKve9k+r0U65c7f6jL06HzfGHDfGvGGM+aulbqPcvUX8W/73Bf+O+4wxY9Vop9ydRXzOG40xTxljXjHGHDXGfKAa7ZS7s4jPeZMx5knvM37aGLO+Gu2UO2eM+XNjzA1jzOsLnDfGmP/g/T9w1BhzYKnbuBANKblNxhg/0Af8A+AK8CLwSWvt8YI6nwYesNb+WlUaKXdlkZ/xduBvgXdaa0eNMR3W2htVabDckcV8znPq/zpwv7X2V5aulXK3Fvnv+U+AV6y1f2SM2QN811q7uRrtlTuzyM/5a8B3rLVfNsa8E/hla+0vVaXBckeMMY8CU8BXrLX7Spz/APDrwAeAB4E/sNY+uLStLE093LfvzcAZa+05a20CeBz4cJXbJOW1mM/4nwF/aK0dBVDYXpFu99/yJ4G/XpKWSTkt5nO2QIO33whcW8L2SXks5nPeA/zI23+qxHlZ5qy1zwAjN6nyYVwYt9baQ0CTMaZ7aVp3cwrct68HuFxwfMUrm+vnvK8zvm6M2bA0TZMyWcxnvAPYYYz5iTHmkDHmfUvWOimXxf5bxhizCdhC/pe1rByL+Zx/G/jHxpgrwHdxPWSysizmc34N+Ji3/1Gg3hjTugRtk6Wz6J/rS02BuzL+O7DZWrsf+AHw5Sq3R8ovAGwHHsP1fP6pMaapqi2SSvoE8HVrbbraDZGK+CTwl9ba9bivor9qjNHvx9XnN4C3G2NeAd4OXAX0b1qWhH6g3L6rQGGP9XqvLMdaO2ytjXuHfwYcXKK2SXnc8jPG/dX8bWtt0lp7Hjd2cPsStU/KYzGfc9Yn0HCSlWoxn/Ov4u7JwFr7AhAB2pakdVIui/ndfM1a+zFr7f3Ab3lluhF6dbmdn+tLSoH79r0IbDfGbDHGhHC/iL9dWGHOeKEPASeWsH1y9275GQPfxPVuY4xpww0xObeUjZS7tpjPGWPMLqAZeGGJ2yflsZjP+RLwLgBjzG5c4B5c0lbK3VrM7+a2gm8u/hXw50vcRqm8bwP/xJut5CFg3FrbX+1GgftaXG6DtTZljPk14AnAD/y5tfYNY8wXgZestd8GPmeM+RCQwg3u/3TVGiy3bZGf8RPAe4wxx3FfSX7eWjtcvVbL7Vrk5wzuF/fjVlM6rUiL/Jz/F9ywsP8JdwPlp/V5ryyL/JwfA37HGGOBZ4B/UbUGyx0xxvw17nNs8+65+D+BIIC19o9x92B8ADgDzAC/XJ2WzqdpAUVEREREKkhDSkREREREKkiBW0RERESkghS4RUREREQqSIFbRERERKSCFLhFRERERCpIgVtE5C4YY6YWUedfGmNqyviaHzHG7Cnj9Z6/i+dOeY/rjDFfv0m9JmPMP7/T1xERWckUuEVEKu9fArcVuI0x/puc/ghQtsBtrX1LGa5xzVr78zep0gQocIvImqTALSJSBsaYx4wxTxtjvm6MOWmM+a/eamefA9YBTxljnvLqvscY84Ix5mVjzNeMMXVe+QVjzL8zxrwM/IIx5p8ZY140xrxmjPk7Y0yNMeYtuBVsf88Y86oxptcYc58x5pAx5qgx5hvGmGbvek8bY/69MeYlY8wJY8ybjDH/zRhz2hjzbwraPlWw/5vGmGPea36pxPvc4rX92JxrbDbGvO7t7zXG/NRr31FjzHbgS0CvV/Z7xpg6Y8yT3n+DY8aYDxdc54Qx5k+NMW8YY75vjIl657YZY37ote1lY0yvV/5577/TUWPMvy7rBysiUgYK3CIi5XM/rjd7D7AVeKu19j8A14B3WGvfYYxpA/534N3W2gPAS8D/XHCNYWvtAWvt48B/s9a+yVp7L3AC+FVr7fO45Ys/b629z1p7FvgK8JvW2v3AMdzqa1kJa+0DwB8D38KtrrcP+LQxprWw8caY9wMfBh70XvN3S7zHPwD+yFp7D7DQksmfBf7AWnsf8ABwBfgCcNZr8+eBGPBR77/BO4D/2xhjvOdvB/7QWrsXGAN+ziv/r175vcBbgH5jzHu8+m8G7gMOGmMeXaBdIiJVoaXdRUTK56fW2isAxphXgc3Ac3PqPIQL5D/x8mUIeKHg/N8U7O/zepGbgDrcstVFjDGNQJO19sde0ZeBrxVUyS5Rfwx4w1rb7z3vHLABGC6o+27gL6y1MwDW2pES7/Gt5APwV4F/V6LOC8BvGWPW4/5oOJ3P0vmmA//WC8cZoAfo9M6dt9a+6u0fATYbY+qBHmvtN7y2xbz38R7gPcArXv06XAB/pkS7RESqQoFbRKR84gX7aUr/jDXAD6y1n1zgGtMF+38JfMRa+5ox5tPAY3fRpsyc9mUWaN9i2JuetPavjDGHgZ8BvmuM+R+Ac3Oq/SOgHThorU0aYy4AkTltBvffMXqTlzPA71hr/9NttF9EZElpSImISOVNAvXe/iHgrcaYbQDGmFpjzI4FnlePGzYRxAXUedez1o4Do8aYR7xzvwT8mDvzA+CXszOqGGNaStT5CfAJb/8flTiPMWYrcM4bTvMtYD/F/w0AGoEbXth+B7DpZg2z1k4CV4wxH/FeI+y18wngVwrGwfcYYzoW9W5FRJaIAreISOX9CfA9Y8xT1tpB4NPAXxtjjuKGX+xa4Hn/B3AYF3JPFpQ/DnzeGPOKd+Pgp3A3UR7FjWP+4p000lr7PdwQlJe8ITG/UaLa/wj8C2PMMdwwkFI+DrzuXWMf8BVr7TBuGM3rxpjfw43HfsC7zj+Z8/4W8kvA57z3+TzQZa39PvBXwAvetb5OcbAXEak6Y+1NvxkUEREREZG7oB5uEREREZEKUuAWEREREakgBW4RERERkQpS4BYRERERqSAFbhERERGRClLgFhERERGpIAVuEREREZEKUuAWEREREamg/x8+AxazZiX4NwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 8)\n", - "for j in range(energies.shape[0]):\n", - " label = 'Ground state' if j ==0 else 'Excited state {}'.format(j)\n", - " pylab.plot(distances, energies[j], label=label)\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground and Excited States')\n", - "pylab.legend(loc='upper right')\n", - "pylab.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above plot has all the states. Below we plot them individually. With each plot having its own y-axis scale the energy change over distance change is more evident, particularly the ground state curve which is very flattened above by the scale." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4FWX6//H3nQ5JaGmU0AkQAoIQEFBEJKhrAwRdWRs2LGDbXbe51nXXXdfV7ypi766KghS7VFmKLh0CoYuQACkIhACBJOf+/XEGfhETOJBzMknO/bquczFn5jkz9yQhn8wzM8+IqmKMMcZUVYjbBRhjjKkbLFCMMcb4hQWKMcYYv7BAMcYY4xcWKMYYY/zCAsUYY4xfWKAYU0uJyGgRme92HcYcZYFi6gQR2SoiGcfNO/YLV0QiReQ1EflBRPaLyAoR+cVJ1tlMRF4RkR0iUiQiW0TkTRHpHMh9CTQRmSsit5xC+0dE5N1A1mTqBgsUEyzCgO3AQKAh8GfgQxFpU1FjEYkDFgL1gQFALNAT+AYYUslnwvxdtDG1iQWKCQqqekBVH1HVrarqUdVPge+BXpV85D6gELhOVTer115VfUNVnwMQkTYioiJys4hsA2Y78y8XkTUistc5Gkg9ulKnfYdy798Ukced6fNEJFtEfiMieSKyU0RuLNc2TkSmi0ihiPwPaF/Z/opIlIi8KyK7nToWi0iSiPwVb0COd466xjvt/y0i2511LxWRAc78i4A/Ab902q905jd0jvh2ikiOiDwuIqGn+G0xdYwFiglKIpIEdATWVNIkA5iiqh4fVjcQSAUuFJGOwPvAvUAC8DnwiYhE+FhaU7xHUC2Am4HnRaSxs+x5oBhoBtzkvCpzg7OelkAccDtwSFUfAP4LjFPVGFUd57RfDPQAmgDvAR+JSJSqfgn8DZjotO/utH8TKAU6AGcCFwA+d6OZuskCxdQlU52/xveKyF5gQkWNRCQc+A/wlqquq2Rd8cCucp+53FnvfhH5+ri2jzhHQIeAXwKfqeoMVS0BngLqAf193IcS4DFVLVHVz4EioJPz1/8I4CFnW5nAWydZTxzQQVXLVHWpqhZW1lhV31XV3apaqqr/AiKBThW1dcL4YuBep5Y84Bngah/30dRRFiimLhmmqo2OvoA7j28gIiHAO8ARYNzxy8vZjfdIAABVne6s8z7g+KON7eWmmwM/lPucx1newsd92K2qpeXeHwRi8B7tHD0PdNQPVO4d4CvgA+eigiedIK2QiPxWRLJEZJ8Txg3xhmpFWgPhwM5y4f0SkHiynTN1mwWKCRoiIsBrQBIwwjmCqMwsYJgTQCdTfsjuHXh/4ZbfZksgx5l1EO+J/qOa+rB+gHy8XUwty81rVWlB3iOcR1W1C96jo0uB6yuoF+d8ye+Aq4DGTnDuA6Si9nhD7TAQXy7AG6hqmo/7YuooCxQTTF7Ae67jMqd76kSeBhoD74hIe/GKxXue4UQ+BC4RkcHOEcFv8P7yXegsXwH8SkRCnRPeA30pXFXLgI+BR0Skvoh0wXuepEIiMkhEujldZYV4u8COng/KBdqVax6LN6zygTAReQhoUG55LtDmaLiq6k7ga+BfItJAREKcr5FP+2LqLgsUExREpDVwG95A2OVcsVQkItdU1F5VC4C+eE+Czwf24w2DWOCOyrajquuBa4HngALgMrwBdsRpco8zby9wDTD1FHZjHN7ur114T4q/cYK2TYFJeMMkC+/lzu84y/4NjBSRPSLyLN6usS+BDXi70Yr5adfaR86/u0VkmTN9Pd6uv7XAHmdbzTBBTewBW8YYY/zBjlCMMcb4hQWKMcYYv7BAMcYY4xcWKMYYY/wiqAazi4+P1zZt2rhdhjHG1CpLly4tUNWEk7ULqkBp06YNS5YscbsMY4ypVUTkRKMyHGNdXsYYY/zCAsUYY4xfWKAYY4zxi6A6h2KMqTlKSkrIzs6muLjY7VKMIyoqiuTkZMLDKx2Y+oQsUIwxrsjOziY2NpY2bdrgHZTZuElV2b17N9nZ2bRt2/a01mFdXsYYVxQXFxMXF2dhUkOICHFxcVU6YrRAMca4xsKkZqnq98MCxQffbMhnwtxNbpdhjDE1mgWKDxZsKuCZGRvYX3yiB/wZY2qb3NxcfvWrX9GuXTt69epFv379mDJlSrXX0aZNGwoKCnxq++abb7Jjxw6/tfMnCxQfZKQmUVKmzNvg2zfcGFPzqSrDhg3j3HPPZcuWLSxdupQPPviA7Ozsn7UtLS11ocKKWaDUcj1bNaJx/XBmZuW6XYoxxk9mz55NREQEt99++7F5rVu35q677gK8v5Avv/xyzj//fAYPHoyqcv/999O1a1e6devGxIkTAZg7dy6XXnrpsXWMGzeON998E/AeeTz88MP07NmTbt26sW7dOgB2797NBRdcQFpaGrfccgsVPeiwrKyM0aNHH9veM888w6RJk1iyZAnXXHMNPXr04NChQzz22GP07t2brl27MmbMGFS1wnZLly5l4MCB9OrViwsvvJCdO3f6/Wtqlw37ICw0hEGdE5mVlUdpmYewUMthY/zp0U/WsHZHoV/X2aV5Ax6+LK3S5WvWrKFnz54nXMeyZctYtWoVTZo0YfLkyaxYsYKVK1dSUFBA7969Offcc09aR3x8PMuWLWPChAk89dRTvPrqqzz66KOcc845PPTQQ3z22We89tprP/vcihUryMnJITMzE4C9e/fSqFEjxo8fz1NPPUV6ejrgDbCHHnoIgOuuu45PP/2UkSNH/qRdSUkJd911F9OmTSMhIYGJEyfywAMP8Prrr5+0/lNhvxl9NCQ1iX2HSljywx63SzHGBMDYsWPp3r07vXv3PjZvyJAhNGnSBID58+czatQoQkNDSUpKYuDAgSxevPik673iiisA6NWrF1u3bgVg3rx5XHvttQBccsklNG7c+Gefa9euHVu2bOGuu+7iyy+/pEGDBhWuf86cOZx11ll069aN2bNns2bNmp+1Wb9+PZmZmQwZMoQePXrw+OOPV9i1V1V2hOKjAR0TiAgNYebaXPq2i3O7HGPqlBMdSQRKWloakydPPvb++eefp6Cg4Nhf/gDR0dEnXU9YWBgej+fY++Pv44iMjAQgNDT0lM7FNG7cmJUrV/LVV1/x4osv8uGHH/7siKK4uJg777yTJUuW0LJlSx555JEK7yNRVdLS0li0aJHP2z8ddoTio5jIMPq1j2NGVm6F/Z3GmNrl/PPPp7i4mBdeeOHYvIMHD1bafsCAAUycOJGysjLy8/OZN28effr0oXXr1qxdu5bDhw+zd+9eZs2addJtn3vuubz33nsAfPHFF+zZ8/Oej4KCAjweDyNGjODxxx9n2bJlAMTGxrJ//37g/4dXfHw8RUVFTJo06djny7fr1KkT+fn5xwKlpKSkwiOZqrIjlFOQ0SWJB6dmsjm/iA6JsW6XY4ypAhFh6tSp3HfffTz55JMkJCQQHR3NP/7xjwrbDx8+nEWLFtG9e3dEhCeffJKmTZsCcNVVV9G1a1fatm3LmWeeedJtP/zww4waNYq0tDT69+9Pq1atftYmJyeHG2+88djRzxNPPAHA6NGjuf3226lXrx6LFi3i1ltvpWvXrjRt2vQn3XXHt5s0aRJ33303+/bto7S0lHvvvZe0NP8eGUow/bWdnp6uVXnA1s59h+j3xGx+f1Fn7jivvR8rMyb4ZGVlkZqa6nYZ5jgVfV9EZKmqplfykWNc6fISkStFZI2IeESk0iJF5CIRWS8im0TkD+Xmi4j8VUQ2iEiWiNxdHXU3a1iPri0a2OXDxhhTAbfOoWQCVwDzKmsgIqHA88AvgC7AKBHp4iweDbQEOqtqKvBBQKstJyM1iWXb9lBQdLi6NmmMMbWCK4Giqlmquv4kzfoAm1R1i6oewRsaQ51ldwCPqarHWV9e4Kr9qYzUJFRh9rpq26QxdVYwdbnXBlX9ftTkq7xaANvLvc925gG0B34pIktE5AsRSalsJSIyxmm3JD8/v8pFpTVvQLOGUcxca91exlRFVFQUu3fvtlCpIY4+DyUqKuq01xGwq7xEZCbQtIJFD6jqtCquPhIoVtV0EbkCeB0YUFFDVX0ZeBm8J+WruF1EhMGpiUxemkNxSRlR4aFVXaUxQSk5OZns7Gz88Yee8Y+jT2w8XQELFFXNqOIqcvCeJzkq2ZkH3qOVj53pKcAbVdzWKclITeLdb7exaPNuBnVOrM5NG1NnhIeHn/aTAU3NVJO7vBYDKSLSVkQigKuB6c6yqcAgZ3ogsKE6C+vXPo7oiFBm2NVexhhzjFuXDQ8XkWygH/CZiHzlzG8uIp8DqGopMA74CsgCPlTVo7d2/h0YISKrgSeAW6qz/siwUM7tmMCsrFw8Huv/NcYYcOlOeVWdgrer6vj5O4CLy73/HPi8gnZ7gUsCWePJZKQm8UXmLjJ37OOM5EZulmKMMTVCTe7yqtEGdU4kRLCrvYwxxmGBcpqaREeQ3roJM7LsfhRjjAELlCrJ6JJI1s5CsvdUPkKpMcYECwuUKshITQJglh2lGGOMBUpVtEuIoV1CtA0WaYwxWKBU2ZDUJL7dspvC4hK3SzHGGFdZoFRRRpckSsqUeRts+AhjTHCzQKminq0a07h+uF0+bIwJehYoVRQaIpzfOYk56/MpLfO4XY4xxrjGAsUPhnRJZN+hEpb8sMftUowxxjUWKH4wICWBiNAQ6/YyxgQ1CxQ/iI4Mo3+HOGZk5drDgowxQcsCxU8Gpybxw+6DbM4vcrsUY4xxhQWKn2Skeh+0NWOt3TVvjAlOFih+0qxhPbq2aGB3zRtjgpYFih9lpCaxbNseCooOu12KMcZUOwsUP8pITUIVZq+zbi9jTPCxQPGjtOYNaNYwyi4fNsYEJQsUPxIRMlKT+O/GAopLytwuxxhjqpUFip9ldEniUEkZCzcXuF2KMcZUKwsUP+vbrgnREaF2+bAxJuhYoPhZZFgoAzslMCsrF4/H7po3xgQPC5QAyEhNIm//YVbn7HO7FGOMqTYWKAEwqFMiIQKz7CZHY0wQsUAJgMbREaS3acKMLDuPYowJHhYoATIkNYmsnYVk7znodinGGFMtLFACJKNLEgCz7CjFGBMkLFACpG18NO0Tom2wSGNM0LBACaCMLkl8u2U3hcUlbpdijDEBZ4ESQBmpSZSUKfM25LtdijHGBJwFSgD1bNWYxvXDbbBIY0xQsEAJoNAQ4fzOScxel0dJmcftcowxJqAsUALswrQkCotLmb/RBos0xtRtFigBdl6nRJpERzBpabbbpRhjTEBZoARYRFgIQ3s0Z8baXPYePOJ2OcYYEzAWKNXgyl4tOVLmYdqKHW6XYowxAWOBUg26NG9Al2YN+GjpdrdLMcaYgLFAqSZXpieTmVNI1s5Ct0sxxpiAsECpJkN7tCA8VOzkvDGmznItUETkShFZIyIeEUk/QbuLRGS9iGwSkT+Umz9YRJaJyAoRmS8iHaqn8tPTJDqCjNQkpi7PsXtSjDF1kptHKJnAFcC8yhqISCjwPPALoAswSkS6OItfAK5R1R7Ae8CfA1tu1Y3slczuA0eYvc5GIDbG1D2uBYqqZqnq+pM06wNsUtUtqnoE+AAYenQVQANnuiFQ4y+hGtgxgYTYSD5aYt1expi6J8ztAk6iBVD+0qhs4Cxn+hbgcxE5BBQCfStagYiMAcYAtGrVKnCV+iAsNIQrzmzBq/O/J3//YRJiI12txxhj/CmgRygiMlNEMit4DT35p0/qPuBiVU0G3gCerqiRqr6squmqmp6QkOCHzVbNyF7JlHmUaSty3C7FGGP8KqBHKKqaUcVV5AAty71PBnJEJAHorqrfOfMnAl9WcVvVIiUplu4tG/HRkmxuPqctIuJ2ScYY4xc1/bLhxUCKiLQVkQjgamA6sAdoKCIdnXZDgCyXajxlV/ZKZn3uflbn7HO7FGOM8Rs3LxseLiLZQD/gMxH5ypnfXEQ+B1DVUmAc8BXewPhQVdc4828FJovISuA64H439uN0XNa9OZFhIXZPijGmThFVdbuGapOenq5LlixxuwwA7n5/Od9syOe7Pw0mKjzU7XKMMaZSIrJUVSu9X/Comt7lVWeN7JXMvkMlzMyypzkaY+oGCxSXnN0hnmYNo+yeFGNMnWGB4pLQEGFEz2T+uzGfXfuK3S7HGGOqzALFRSN7JeNR+Hi5HaUYY2o/CxQXtYmPpnebxkxakk0wXRxhjKmbLFBcdmWvlmwpOMCybXvcLsUYY6rEAsVlF5/RjHrhoXZPijGm1rNAcVlMZBgXd2vGJyt3cuhImdvlGGPMabNAqQFG9kqm6HApX67Z6XYpxhhz2ixQaoCz2jahZZN6dk+KMaZWs0CpAUJChJE9W7Jw8262/3jQ7XKMMea0WKDUECN6tQDg42X2nBRjTO1kgVJDJDeuT//2cUxath2Px+5JMcbUPhYoNciV6cls//EQ333/o9ulGGPMKbNAqUEuSmtGbGQYHy3d7nYpxhhzyixQapB6EaFc2r0ZX6zeRdHhUrfLMcaYU2KBUsOM7JXMoZIyPl9l96QYY2oXC5QapmerxrRLiLZuL2NMreNToIjIxyJyiYhYAAWYiDCyVzKLt+7h+4IDbpdjjDE+8zUgJgC/AjaKyN9FpFMAawp6V5yZTIjAZBsw0hhTi/gUKKo6U1WvAXoCW4GZIrJQRG4UkfBAFhiMmjaMYkBKApOXZVNm96QYY2oJn7uwRCQOGA3cAiwH/o03YGYEpLIgd2V6Mjv3FbNgU4HbpRhjjE98PYcyBfgvUB+4TFUvV9WJqnoXEBPIAoNVRmoSDeuF85F1exljaokwH9s9q6pzKlqgqul+rMc4osJDGdqjOR8s3s6+QyU0rGc9i8aYms3XLq/GInLFca/BIpIY0OqC3JW9WnKk1GNPczTG1Aq+BsrNwKvANc7rFeD3wAIRuS5AtQW9bskN6dO2Ca/M28KRUo/b5RhjzAn5GijhQKqqjlDVEUAXQIGz8AaLCZCxgzqwq7CYKcvtKMUYU7P5GijJqppb7n0e0FJVfwRK/F+WOerclHjSmjfgxW+22CXExpgazddAmSsin4rIDSJyAzDNmRcN7A1ceUZEGDuoA98XHOCLTBvfyxhTc/kaKGOBN4AezuttYKyqHlDVQYEqznhdmNaUdgnRPD9nM6p2lGKMqZlOGigiEgrMVtXJqnqf85qk9put2oSGCLcPbE/WzkLmbsh3uxxjjKnQSQNFVcsAj4g0rIZ6TCWG9WhB84ZRTJizye1SjDGmQr52eRUBq0XkNRF59ugrkIWZn4oIC2HMue1YvHUP/7NHBBtjaiBfA+Vj4EFgHrC03MtUo1/2bkVcdATP21GKMaYG8mnoFVV9S0TqAa1UdX2AazKVqBcRyk3ntOWfX60nM2cfXVtYL6QxpubwdXDIy4AVwJfO+x4iMj2QhZmKXdu3NbGRYbwwd7PbpRhjzE/42uX1CNAH554TVV0BtAtQTeYEGtYL57p+rfk8cyeb84vcLscYY47xNVBKVHXfcfNscCmX3HROWyJCQ3jpGztKMcbUHL4GyhoR+RUQKiIpIvIcsDCAdZkTiI+J5OreLfl4WQ45ew+5XY4xxgC+B8pdQBpwGHgfKATuPd2NisiVIrJGRDwiUunzVETkdRHJE5HM4+Y3EZEZIrLR+bfx6dZSW916rrfH8ZV5W1yuxBhjvHx9pvxBVX1AVXurarozXVyF7WYCV+C9DPlE3gQuqmD+H4BZqpoCzHLeB5XkxvUZdmYLPli8jd1Fh90uxxhjfL7Kq6OIvCwiX4vI7KOv092oqmb5cvmxqs4DKrqLbyjwljP9FjDsdGupzW4f2J7DpR7eWLDV7VKMMcbnRwB/BLyI9yFbZYErx2dJqnp06N1dQFJlDUVkDDAGoFWrVtVQWvXpkBjDRWlNeWvRVm4b2I7YKHtMsDHGPb6eQylV1RdU9X+quvTo60QfEJGZIpJZwWuoH+o+xhmkstKBKlX1ZaebLj0hIcGfm64R7jyvA/uLS3n3221ul2KMqaGqayxfXwPlExG5U0SaOSfEm4hIkxN9QFUzVLVrBa9pfqg7V0SaATj/5vlhnbVSt+SGDEiJ57X5WyguqQkHj8aYmmRT3n6GT1jI1oIDAd+Wr4FyA3A/3kuFj47jtSRQRflgulMTzr/+CKlaa+ygDhQUHeHDJdvdLsUYU4PMWZfH8OcXkr3nEHsPBf7hur5e5dW2gtdp3ykvIsNFJBvoB3wmIl8585uLyOfl2r0PLAI6iUi2iNzsLPo7MERENgIZzvugdVbbJvRq3ZiXvtlCSZndb2pMsFNVXp63mZveWkyruPpMH3c2PVo2Cvh2TxgoIvK7ctNXHrfsb6e7UVWdoqrJqhqpqkmqeqEzf4eqXlyu3ShVbaaq4U7715z5u1V1sKqmOF1rQT2eu/cxwe3J2XuI6St2uF2OMcZFxSVl/ObDlfzt83Vc3K0Zk27vT/NG9apl2yc7Qrm63PQfj1tW0f0hxiWDOiXSuWksE+ZuwuOxh2kaE4zyCou5+uVv+Xh5Dr8Z0pHxo86kXkRotW3/ZIEilUxX9N64SES4c1AHNucf4Ou1u9wuxxhTzVZl7+Wy8fPZkLufF6/txV2DUxCp3l/TJwsUrWS6ovfGZZd0a0abuPpMmLu52i4TNMa4b9qKHK58cRFhISFMvqM/F3Vt6kodJwuU7iJSKCL7gTOc6aPvu1VDfeYUhIYItw1sz6rsfczfVOB2OcaYAPN4lCe/XMc9H6yge8tGTB93NqnNGrhWzwkDRVVDVbWBqsaqapgzffS93ZZdA13RswVJDSLtMcHG1HH7i0sY884SJszdzKg+rXj35rOIi4l0tSZf70MxtURkWCi3DmjHt1t+ZOkPe9wuxxgTAD/sPsCIFxYyZ30+jw1N42/DuxIR5v6vc/crMH43qk8rGtcP54W5dpRiTF2zcFMBQ59fQN7+w7xzUx+u79em2k++V8YCpQ6KjgxjdP+2zMzKY92uQrfLMcb4garyzqKtXPf6/0iIiWTa2LPp3yHe7bJ+wgKljrqhf2uiI0J56quTPiXAGFPDHSn18MDUTB6ctobzOibw8Z39aR0X7XZZP2OBUkc1qh/BPRkpzMzKY8baXLfLMcacprzCYq559Vve+24bd5zXnpevT6+xj6qwQKnDbjy7LR2TYnhk+hoOHbGRiI2pbZb+8COXPjefzJxCnh11Jr+/qDOhITXjfElFLFDqsPDQEB4f1o2cvYcYP2ej2+UYY3ykqrzz7Q9c/fK31IsI5eM7+3N59+Zul3VSFih1XJ+2TRjRM5mX521hU16R2+UYY06iuKSM+yet4sGpmZzTIZ7pY89x9WbFU2GBEgT+eHFn6oWH8tC0TBuSxZgaLHvPQa58cRGTlmZz9+AUXruhNw3r18zzJRWxQAkC8TGR/O6izizcvJvpK214e2NqogWbCrh8/AK2Fhzg1evT+fWQjoTU4PMlFbFACRKj+rSie3JDHv8si8LiwD+5zRjjG1XlpW82c91r3xEXHcG0cWeT0SXJ7bJOiwVKkAgNER4f1o2CosM8/fUGt8sxxgAHDpcy7r3lPPHFOi7q2pQpY8+mXUKM22WdNguUINItuSHX9W3N24u2kpmzz+1yjAlq3xccYPiEBXyRuZM//qIzz/+qJzGRYW6XVSUWKEHmNxd0okl0BH+emmlPdjTGJTPX5nL5c/PJ33+Yt286i9sGtq8x43FVhQVKkGlYL5wHLkllxfa9TFyy3e1yjAkqHo/y9IwN3PL2ElrH12f6uHM4J6VmjcdVFRYoQWhYjxac1bYJf/9iHbuLDrtdjjFBYd+hEm55ewnPztrIiJ7JTLq9Py2b1He7LL+yQAlCIsLjw7py4HAp//hyndvlGFPnrc7ex2XPzWfehnz+MjSNp648g6jwULfL8jsLlCCVkhTLLQPa8eGSbJZs/dHtcoypk1SVtxZuZcQLCykt8zDxtr5cV4OeX+JvFihB7O7BHWjeMIo/T82ktMzjdjnG1CmFxSWMe285D09fw9kd4vjs7gH0at3E7bICygIliNWPCOPhy9NYt2s/by7c6nY5xtQZmTneLq4v1+ziD7/ozGs39KZxdITbZQWcBUqQu6BLEud3TuSZGRvYta/Y7XKMqdWOjhJ8xYSFHC7x8MGYvtw+sH2tG0LldFmgBDkR4ZHL0ij1KH/5bK3b5RhTa+0vLuGu95fz4NRM+raP47O7z6F3m7rdxXU8CxRDq7j6jBvUgc9W7WTehny3yzGm1lm7o5DLxy/g89U7uf/CTrw5ujdxMZFul1XtLFAMAGMGtqNtfDQPTcukuMSe7miML1SV977bxrAJCzhwuJT3bu3L2EEdgqaL63gWKAaAyLBQHhuaxtbdB3l53ha3yzGmxjtwuJR7J67gT1NWc1bbJnx+zwD6totzuyxX1e6RyIxfDUhJ4NIzmjF+ziaG9mhO67hot0sypkZat6uQO/+zjK0FB/j1kI6MHdShRj/rvbrYEYr5iQcv7UJEaAiPTF9jT3c05jiqysTF2xg6fgGFh0p595azuHtwioWJwwLF/ERSgyjuG9KROevz+WpNrtvlGFNj7C8u4dcfruT3k1fTq3VjPr/nHPq3rzsDO/qDBYr5mRv6tSa1WQP+PHU1O/cdcrscY1y3ZOuPXPzsf5m2Iod7Bqfwzs1nkRgb5XZZNY4FivmZsNAQnr26B4eOlHH7O0vtqi8TtErKPDz99XquemkRqvDhbf24b0hH6+KqhAWKqVBKUixP/7IHK7P38eDUTDufYoLO9wUHGPniIp6dvYlhZ7bgi3sGkB5kNyqeKrvKy1TqwrSm3H1+B56dvYluyQ25vl8bt0syJuC8J96389inawkLEcb/6kwuPaO522XVChYo5oTuzejImh2FPPbJWjolxXJWkF9nb+q2Hw8c4Q+TV/H12lz6t4/jX1d1p1nDem6XVWtYl5c5oZAQ4Zmre9Aqrj53/mcZO/baSXpTN83bkM9F/zePOevz+NPFnXn35rMsTE6RK4EiIleKyBoR8YhI+gnavS4ieSKSedz8f4rIOhFZJSJTRKRR4KsOXg2iwnn5unQOl3q4zU7Smzq4XrS+AAAUkklEQVSmuKSMRz9Zw/Wv/48G9cKZOvZsxpwbPCME+5NbRyiZwBXAvJO0exO4qIL5M4CuqnoGsAH4o1+rMz/TITGGZ37Zg9U5+/jTlNV2kt7UCVk7Cxk6fgFvLNjK6P5t+PSuc0hr3tDtsmotVwJFVbNUdb0P7eYBP3s+rap+raqlzttvgWQ/l2gqMKRLEvdmpPDxshx7IJep1Twe5dX/bmHo+AXsPnCEN27szSOXp9XJ57xXp7pwUv4mYGJlC0VkDDAGoFWrVtVVU5119/kprNlRyOOfZdGpaazdKWxqndzCYn7z4UrmbyogIzWJf4zoFpRDzQdCwI5QRGSmiGRW8Brqx208AJQC/6msjaq+rKrpqpqekJDgr00HrZAQ4emrutMmrj7j3ltO9p6DbpdkjE9UlY+XZXPh/81j6Q97+NvwbrxyfS8LEz8K2BGKqmYEat0AIjIauBQYrNahX61io8J55fp0ho5fwG3vLGXS7f2pF2FdBabmytl7iAemrGbu+nx6tmrEP6/sTvuEGLfLqnNq5WXDInIR8DvgclW1P5Fd0C4hhn+P6sHanYX88eNVdpLe1Egej/cZ7xc8/Q3fbfmRhy/rwke397cwCRC3LhseLiLZQD/gMxH5ypnfXEQ+L9fufWAR0ElEskXkZmfReCAWmCEiK0TkxWreBQOc3zmJX2d0ZOqKHbw2/3u3yzHmJ74vOMDVr3zLg1MzObNVY76+71xuPLutjcMVQK6clFfVKcCUCubvAC4u935UJZ/vELjqzKkYO6gDa3YU8rfPs0ht1oCzO9hJeuOu0jIPr83/nqdnbCAiLIQnR5zBlenJiFiQBFqt7PIyNUdIiPDUVd7+6HHvLWP7j9YDadyTtbOQK15YyBNfrGNgxwRm/nogV/VuaWFSTSxQTJXFRIbxyvXplHmUMe8s5dARu5PeVK/DpWU8/fV6LntuPjl7DjH+V2fy0nW9SGpgzyypThYoxi/axEfz7KgzWberkN9NtpP0pvos37aHS5+dz7OzN3FZ9+bM/PVALj2juR2VuKAu3NhoaojzOiXy2ws68c+v1tO1eQNuG9je7ZJMHXbwSCn/+noDry/4nqYNonhjdG8GdU50u6ygZoFi/OrO89qzdkchT3yxjvDQEG46p63bJZk6aOGmAv7w8Wq2/XiQa/u24vcXdSY2KtztsoKeBYrxKxHhX1d1p9Tj4bFP11JQdJj7L+xk3Q/GL3ILi/n7F+uYsjyHNnH1+WBMX/raM3pqDAsU43dR4aFMuKYXf566mglzN7O76Ah/Hd6VsFA7ZWdOz+HSMl6b/z3jZ2+itEwZO6g94wal2AgNNYwFigmI0BDhb8O7kRATybOzN7H7wBHG/+pMG83VnBJVZVZWHn/5bC0/7D7IkC5J/PmSVFrHRbtdmqmABYoJGBHh1xd0Ii4mkkc+WcN1r33Hq9f3pmF96+s2J7cpr4i/fLqWbzbk0z4hmrdv6sO5HW2A15rMAsUE3A392xAXE8F9E1dw1UuLePvmPnZ/gKlUYXEJz83ayBsLtlIvPJQHL+3C9f1aE25dpjWeBYqpFpee0ZxG9SK47Z0lXDFhIe/c3Id2NkCfKcfjUSYty+bJL9ex+8ARrurVkvsv6kS8DS9fa1jkm2pzTko8H4zpR3FJGSNfXMTK7XvdLsnUEMu37WH4hAX8btIqWjWpz/Sx5/CPkWdYmNQyFiimWnVLbsikO/pTPyKUUa98y3835rtdknFRnvP0xOETFrJzXzHP/LI7k+/oT7dke657bWSBYqpd2/hoPr6jP62a1OemNxczbUWO2yWZana4tIyXvtnMoKfm8snKHdxxXntm//Y8hp9powLXZnYOxbgisUEUE2/rx61vL+GeD1bw44Ej3Hi23VVf1x0p9TBpaTbPz9lEzt5DZKQm8udLutAm3i4DrgssUIxrGtYL5+2b+nDPB8t59BPvXfW/vcDuqq+LSso8TF6azfg5m8jec4geLRvx9xHdGJBilwHXJRYoxlXl76p/fs5mCvbbXfV1SWmZh4+X5/Dc7I1s//EQ3ZMb8pdhXTmvY4L94VAHWaAY1x1/V/2PB4/wr6u608AG+6u1Sss8TF2xg+dmb+SH3Qfp1qIhj45OY1CnRAuSOswCxdQI5e+qf/STNWT86xseuqwLl3RrZr+AapEyjzJtRQ7Pzd7E9wUHSGvegFeuTycj1YIkGFigmBrlhv5tOLNVI/40ZTXj3lvORx2z+cvQrrSKq+92aeYEyjzKp6t28O+ZG9lScIDUZg146bpeXNAlyYIkiEgwPVkvPT1dlyxZ4nYZxgelZR7eXvQD//p6PaUe5e7BKdw6oB0RYXZupSbxeJRPV+/k2Vkb2ZRXRKekWO7NSOHCtKaEhFiQ1BUislRV00/azgLF1GS79hXz6Cdr+CJzFymJMfx1eDf6tG3idllB73BpGV+s3sWEuZvYkFtESmIM92Z05BddLUjqIguUClig1F6z1+Xy4NQ15Ow9xFXpyfzxF6k0jo5wu6ygs/3Hg7z3v218uHg7uw8coX1CNPdkdOSSbs0ItSCps3wNFDuHYmqF8zsn0ffXcfx71kZe++/3zMzK408XpzKiZwvrow+wMo8yd30e7377A3M35CPA4NQkru3bmgEd4u2IxBxjRyim1lm3q5A/fbyaZdv20rddEx4f1o0OiTZysb8VFB1m4uLtvPfdNnL2HiIhNpJRvVtydZ9WNG9Uz+3yTDWyLq8KWKDUHR6PMnHJdp74PItDJWXcMbA9dw7qYE+ErCJV5X/f/8i7323jy8ydlJQp/drFcW3f1lyQlmTPJAlSFigVsECpewqKDvPXz7KYsjyHNnH1+cuwrjacx2nYX1zClOU5vPvtD2zILSI2KoyRvZK55qzWdvRnLFAqYoFSdy3YVMCfp2byfcEBerdpzMheyVzcrRmxdrd9pVSVzJxC3l+8janLczh4pIxuLRpybd9WXNa9OfUj7BSr8bJAqYAFSt1WXFLGO4t+4IPF29icf4Co8BAuSmvKyF4t6dc+zq5Cwvs1WrR5NzOzcpm9Lo+d+4qJDAvh8u7NubZva7q3bOR2iaYGskCpgAVKcFBVVmzfy+Rl2UxfsYPC4lKaN4xieM8WjOiZHHSPHs7bX8ycdXnMzMpj/sYCDpWUUT8ilHM6xJORmsQFaUk0qm+XYJvKWaBUwAIl+BSXlDEzK5dJS7OZtyEfj0Kv1t4usUvOaFYnB6BUVdbuLGRWVh6zsnJZmb0PgOYNoxicmsTg1ET6touzCxiMzyxQKmCBEtxyC4uZujyHSUuz2ZhXRGRYCBemNWVkr2TO7hBfq7vEjnZlzVqXy+ysPHbsKwage8tGZHROZHBqEqnNYu2eHXNaLFAqYIFiwPsX/OqcfUxams20FTvYd6iEpg28XWKDOiXSMSmmRncBlZR52FpwgA25RazP3c/aHftYsGk3h0rKqBceyoAUb1fWeZ0TSIyNcrtcUwdYoFTAAsUc73BpGbOy8pi8NJu5G/Ip83j/P8THRNIhMZqUxFhSkmLokOh9JcREVttf+WUeZfuPB1mfu58Nu/azIa+IDbv2s6WgiJIyb50i0CYumrM7xDE4NYl+1pVlAsACpQIWKOZECooOszpnH5tyi9iYt5+NeUVsyi1i/+HSY20a1gsnJTGGlKQY2ifEkJIUS0piDM0aRvkcNB6PUupRyjxKqcdDmUfZX1zKxrz9bMgtcsJjPxtzizhc6jn2ueTG9eiYFOu8YuiYFEuHxBgLEBNwFigVsEAxp0pVydt/mI3lQyaviI25+9lzsORYu+iIUJIaRFGmSmnZ/w+LUo9SVvbTAPGc5L9c0wZRpCTF0OloeDT1hlZ0pN0XYtxhg0Ma4wciQlKDKJIaRHFOSvxPlu0uOszGvCI25hWxOa+I/P2HCQsVQkOE8JAQQkOFsBAhLCTk2PyK3wtR4aF0SIwhJTGWhvXr3pVnJjhYoBhzmuJiIomLiaRvuzi3SzGmRrCR3owxxviFK4EiIleKyBoR8YhIpf1yIvK6iOSJSGYly38jIioi8RUtN8YYU33cOkLJBK4A5p2k3ZvARRUtEJGWwAXANr9WZowx5rS4EiiqmqWq631oNw/4sZLFzwC/A4LnMjVjjKnBauU5FBEZCuSo6kq3azHGGOMVsKu8RGQm0LSCRQ+o6rQqrLc+8Ce83V2+tB8DjAFo1arV6W7WGGPMSQQsUFQ1I0Crbg+0BVY6dyYnA8tEpI+q7qqgjpeBl8F7Y2OAajLGmKBX6+5DUdXVQOLR9yKyFUhX1QLXijLGGOPO0CsiMhx4DkgA9gIrVPVCEWkOvKqqFzvt3gfOA+KBXOBhVX3tuHVtxcdAEZF84IfTLDseCLbQsn0ODrbPwaEq+9xaVRNO1iioxvKqChFZ4stYNnWJ7XNwsH0ODtWxz7XyKi9jjDE1jwWKMcYYv7BA8d3LbhfgAtvn4GD7HBwCvs92DsUYY4xf2BGKMcYYv7BAMcYY4xcWKMcRkYtEZL2IbBKRP1SwfLSI5IvICud1ixt1+tPJ9tlpc5WIrHUeO/Beddfobz58n58p9z3eICJ73ajTn3zY51YiMkdElovIKhG52I06/cWH/W0tIrOcfZ0rIslu1OlPPjzyQ0TkWedrskpEevq1AFW1l/MCQoHNQDsgAlgJdDmuzWhgvNu1VvM+pwDLgcbO+0S36w70Ph/X/i7gdbfrrobv88vAHc50F2Cr23UHeH8/Am5wps8H3nG7bj/s97lATyCzkuUXA18AAvQFvvPn9u0I5af6AJtUdYuqHgE+AIa6XFOg+bLPtwLPq+oeAFXNq+Ya/e1Uv8+jgPerpbLA8WWfFWjgTDcEdlRjff7my/52AWY703MqWF7r6Ikf+QHefXxbvb4FGolIM39t3wLlp1oA28u9z3bmHW+Ec7g4yXnQV23myz53BDqKyAIR+VZEKnzoWS3i6/cZEWmNdzDS2RUtr0V82edHgGtFJBv4HO+RWW3ly/6uxPugP4DhQKyIxFVDbW7y+Wf/dFignLpPgDaqegYwA3jL5XqqQxjebq/z8P61/oqINHK1oupzNTBJVcvcLqQajALeVNVkvF0j74hIXf4d8VtgoIgsBwYCOUAwfJ8Dpi7/sJyOHKD8EUeyM+8YVd2tqoedt68CvaqptkA56T7j/StmuqqWqOr3wAa8AVNb+bLPR11N7e/uAt/2+WbgQwBVXQRE4R1QsDby5f/yDlW9QlXPBB5w5tX6iy9O4lR+9k+ZBcpPLQZSRKStiETg/WUyvXyD4/obLweyqrG+QDjpPgNT8R6dICLxeLvAtlRnkX7myz4jIp2BxsCiaq4vEHzZ523AYAARScUbKPnVWqX/+PJ/Ob7cEdgfgderuUY3TAeud6726gvsU9Wd/lp5rXseSiCpaqmIjAO+wnuVyOuqukZEHgOWqOp04G4RuRwoxXvya7RrBfuBj/v8FXCBiKzF2yVwv6rudq/qqvFxn8H7S+gDdS6Pqc183Off4O3OvA/vCfrRtXXffdzf84AnRESBecBY1wr2k/KP/HDOhT0MhAOo6ot4z41dDGwCDgI3+nX7tfTnxRhjTA1jXV7GGGP8wgLFGGOMX1igGGOM8QsLFGOMMX5hgWKMMcYvLFBMrSYiRT60uVdE6vtxm8NEpIsf17ewCp8tcv5tLiKTTtCukYjcebrbMcYXFigmGNwLnFKgiEjoCRYPwzuwoF+oan8/rGOHqo48QZNGgAWKCSgLFFMniMh5zjMtJonIOhH5j3M38N1Ac2COiMxx2l4gIotEZJmIfCQiMc78rSLyDxFZBlwpIreKyGIRWSkik0Wkvoj0xztCwj+dZ6W0F5EezqCZq0Rkiog0dtY3V7zPVVkiIlki0ltEPhaRjSLyeLnai8pN/15EVjvb/HsF+9nWqX31cetoc/QZGCKSJiL/c+pbJSIpwN+B9s68f4pIjHifBbLMWdfQcuvJEpFXxPvsm69FpJ6zrIOIzHRqWyYi7Z359ztfp1Ui8qhfv7GmdnF7/H572asqL6DI+fc8YB/esYlC8A6Xco6zbCsQ70zH470rOtp5/3vgoXLtfldu3XHlph8H7nKm3wRGllu2ChjoTD8G/J8zPRf4hzN9D97h4JsBkXjHR4s7bh9+ASwE6jvvm1Swv9OB653pseU+2wbnGRjAc8A1znQEUK/8cmd+GNCg3NdkE95nZLTBOwpED2fZh8C1zvR3wHBnOgrvUd8FeJ+jIs7X/VPgXLd/LuzlzsuGXjF1yf9UNRtARFbg/eU4/7g2ffF2Vy0QEfD+wi0/VtfEctNdnaOARkAM3mE8fkJEGgKNVPUbZ9ZbeB/cdNTRYVxWA2vUGTdJRLbgHaSv/BA2GcAbqnoQQFUreq7F2cAIZ/od4B8VtFkEPCDeJxB+rKobnX39SenA30TkXMCDdwjzJGfZ96q6wpleCrQRkVighapOcWordvbjAryhstxpH4N34NB5FdRl6jgLFFOXHC43XUbFP98CzFDVUZWs40C56TeBYaq6UkRG4wyQeZo1eY6rz1NJfb444XhJqvqeiHwHXAJ8LiK38fPBPK8BEoBeqloiIlvxHnWUrxm8X8d6J9icAE+o6kunUL+po+wcigkG+4FYZ/pb4GwR6QAgItEi0rGSz8UCO0UkHO8v4J+tT1X3AXtEZICz7DrgG07PDODGo1ekiUiTCtoswDtoJcfVdIyItAO2qOqzwDTgDH76NQDvExnznDAZBLQ+UWGquh/IFpFhzjYinTq/Am4qdx6qhYgk+rS3ps6xQDHB4GXgSxGZo6r5eEeIfl9EVuHtHupcyecexHveYAGwrtz8D4D7RWS5c2L6Brwn6VcBPfCeRzllqvol3i6yJU6X3W8raHYPMFZEVlP5k/auAjKddXTF+8jX3Xi7+TJF5J/Af4B0Zz3XH7d/lbkO72jbq/Ce62mqql8D7wGLnHVN4qfBZYKIjTZsjDHGL+wIxRhjjF9YoBhjjPELCxRjjDF+YYFijDHGLyxQjDHG+IUFijHGGL+wQDHGGOMX/w+dvHcmkRy1CQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEWCAYAAACaBstRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4FeX5xvHvE3aQHUQQFVQ2QQkSFaQgCCpugFYQ3MCquEtbtWi11bb+Wqytu1ZxxR0RWdxZFQVRg7KJCyIuCCICoojK9vz+eAeNIQmH5JwzOcn9ua65MnPOe2aeSSB3Zt6Zd8zdERERSURW3AWIiEjmUGiIiEjCFBoiIpIwhYaIiCRMoSEiIglTaIiISMIUGiLFYGZdzeyDJK7vWjN7JFnrE0kVhYaUOmb2iZn1yvfaEDN7LZqvYmb3mdmnZvadmc01s6OLWN8QM9tiZuvzTU2KW6O7v+rurYqqOR12drtm9qCZXVeC7fUws+lmts7MPinueiRzKTQkE1UEPgcOA2oDVwNPmlmzIj7zurvvkm9anvpSy5zvgfuBy+MuROKh0JCM4+7fu/u17v6Ju29192eBpUDHnV2Xme1jZmvM7MBouYmZrTKz7tFyPTN7wMyWm9laMxsfvd7dzJZF8w8DewLPREcwf4pe72Rms8zsGzObt22d0XvNzeyV6EhpMtCgiBobmNmz0XrWmNmrZpZVxHbHmNmX0dHADDNrG70+FDgV+FPU/pk8+zw22u+lZnZJEd/7N939YeDjnf1eS9mg0JCMZ2aNgJbAuzv7WXdfAgwHHjGz6sADwCh3fzlq8jBQHWgL7ArcVMA6Tgc+A46PjmD+bWa7A88B1wH1gMuAsWbWMPrYY8AcQlj8AxhcRJmXAsuAhkAj4M9hs9tvN2r/AtAiqvdt4NGozpHR/L+j9sebWRbwDDAP2B3oCfzezI5K5Psn5U/FuAsQKcR4M9ucZ7ky4Rfgr5hZJcIvwlHu/n4R6+tkZt/kWV7t7vsAuPs9ZnY88AbgQJ9o3Y2Bo4H67r42+twrCdZ/GvC8uz8fLU82s1zgGDObDhwE9HL3n4AZ2/7qL8QmoDGwl7t/BLxa1Ibd/f5t82Z2LbDWzGq7+7oCmh8ENHT3v0fLH5vZPcBA4KUd7qWUOzrSkNKqn7vX2TYBF+RvEP2V/DCwEbhoB+ubnXd92wIjj3uAdsBt0S9ygD2ANXkCY2fsBfSPTil9EwXWbwi//JsAa939+zztPy1iXTcAHwGTzOxjM7uisIZmVsHMRpjZEjP7Fvgkequw0197AU3y1flnwhGNyHZ0pCEZycwMuI/wy+0Yd99UgnXtAtwcre9aMxvr7msIne31zKyOu39T5ErCEUpenwMPu/s5BWxvL6CumdXIExx7FrCOsGL37winqC41s3bANDN7y92nFvCZU4C+QC9CYNQG1gJWRJ1L3b3FDvZPBNCRhmSu/wFtCOfzfyjhum4Bct39bEI/xF0A7r6C0D9wp5nVNbNKZtatkHWsBPbOs/wIcLyZHRX99V816jxv6u6fArnA38ysspn9Bji+sOLM7Dgz2zcKynXAFmBrIdutCfwErCb0xfxzB3W+CXxnZsPNrFpUazszO6iQWrLMrCpQKSxaVTOrXFjtUvYoNCTjRH+pnwtkA1/aL/ddnFrExzrb9vdpHGRmfYHewPlRuz8CB+ZZ1+mEPoX3ga+A3xey/n8BV0eneC5z988Jf/H/GVhF+Iv+cn75P3cKcAiwBrgGeKiI2lsAU4D1wOvAne4+vaDtRuv5FPgCWATMzreu+4D9ovbj3X0LcBzhe7kU+Bq4l3CEUpBuwA/A84Sjox+ASUXULmWM6SFMIiKSKB1piIhIwhQaIiKSMIWGiIgkTKEhIiIJK3P3aTRo0MCbNWsWdxkiIhllzpw5X7t7wx21K3Oh0axZM3Jzc+MuQ0Qko5hZUaMS/Eynp0REJGEKDRERSZhCQ0REElbm+jREJH02bdrEsmXL+PHHH+MuRRJUtWpVmjZtSqVKlYr1eYWGiBTbsmXLqFmzJs2aNSOMpyilmbuzevVqli1bRvPmzYu1Dp2eEpFi+/HHH6lfv74CI0OYGfXr1y/RkaFCQ0RKRIGRWUr681JobLP5J5j0F/jms7grEREptRQa23y3AnIfgDFnwuaNcVcjIgmqUKEC2dnZP08jRozY6XVMnDjx58+NHz+eRYsW7fQ6dtlll4Tb3nzzzWzYsCFp7fIaM2YMbdu2JSsrKyU3Ois0tqnbDPreDl/kwpRr4q5GRBJUrVo15s6d+/N0xRWFPkK9UH369Pn5c8UNjZ2RytBo164dTz/9NN26FfaQyZJRaOTVth8cch7MvhMWTYy7GhEppnXr1tGqVSs++OADAAYNGsQ999wDwIsvvsiBBx5I+/bt6dmzJwAPPvggF110EbNmzWLixIlcfvnlZGdns2TJEpYsWULv3r3p2LEjXbt25f333wdg6dKldO7cmf3335+rr766wDq+//57jj32WNq3b0+7du0YPXo0t956K8uXL6dHjx706NEDgPPPP5+cnBzatm3LNdeEP1oLajdp0iQ6d+7MgQceSP/+/Vm/fv1222zTpg2tWrVK4nfz13TJbX5H/AOWvQUTLoLd2kG9vXf8GRGBF66ALxckd5277Q9HF3266YcffiA7O/vn5SuvvJKTTz6Z22+/nSFDhjBs2DDWrl3LOeecw6pVqzjnnHOYMWMGzZs3Z82aNb9a16GHHkqfPn047rjjOOmkkwDo2bMnd911Fy1atOCNN97gggsuYNq0aQwbNozzzz+fM844gzvuuKPA2l588UWaNGnCc889B4Qwq127NjfeeCPTp0+nQYMGAPzf//0f9erVY8uWLfTs2ZP58+dzySWX/Krd119/zXXXXceUKVOoUaMG119/PTfeeCN//etfi/3tLQ6FRn4VK8NJD8DdXWHMEPjdJKhUNe6qRKQQ205P5XfEEUcwZswYLrzwQubNmwfA7Nmz6dat28/3KNSrV6/Ida9fv55Zs2bRv3//n1/76aefAJg5cyZjx44F4PTTT2f48OHbfX7//ffn0ksvZfjw4Rx33HF07dq1wO08+eSTjBw5ks2bN7NixQoWLVrEAQcc8Ks2s2fPZtGiRXTp0gWAjRs30rlz5yLrTwWFRkHq7gX97oInBsFLf4bjboy7IpHSbwdHBOm2detW3nvvPapXr87atWtp2rRpsdZRp06dAkMJdnz5asuWLXn77bd5/vnnufrqq+nZs+d2RwZLly7lP//5D2+99RZ169ZlyJAhBd5H4e4cccQRPP744zu9H8kUS5+GmdUzs8lmtjj6WreQdi+a2Tdm9my6a6T1MXDoJZB7Hyx4Ku2bF5GSuemmm2jTpg2PPfYYZ555Jps2baJTp07MmDGDpUuXAmx3egqgZs2afPfddwDUqlWL5s2bM2bMGCD84t521NKlSxeeeOIJAB599NECa1i+fDnVq1fntNNO4/LLL+ftt9/ebhvffvstNWrUoHbt2qxcuZIXXnihwFo6derEzJkz+eijj4DQX/Lhhx+W7JtUDHF1hF8BTHX3FsDUaLkgNwCnp62q/Hr+FfY4BJ4ZBl8vjq0MESnctj6NbdMVV1zBBx98wL333st///tfunbtSrdu3bjuuuto2LAhI0eO5MQTT6R9+/acfPLJ261v4MCB3HDDDXTo0IElS5bw6KOPct9999G+fXvatm3LhAkTALjlllu444472H///fniiy8KrG3BggUcfPDBZGdn87e//e3nDvOhQ4fSu3dvevToQfv27enQoQOtW7fmlFNO+fn0U/52DRs25MEHH2TQoEEccMABdO7c+edO+bzGjRtH06ZNef311zn22GM56qijkvFt/pm5e1JXmNBGzT4Aurv7CjNrDLzs7gV295tZd+Aydz8ukXXn5OR4Uq9NXvcF3PUbqNkYzp4Clasnb90iGe69996jTZs2cZchO6mgn5uZzXH3nB19Nq4jjUbuviKa/xJoVJKVmdlQM8s1s9xVq1aVvLq8au8OJ94DXy2CFy5P7rpFRDJMykLDzKaY2cICpr5523k41CnR4Y67j3T3HHfPadhwh4+43XktekG3y+CdR2DuY8lfv4hIhkjZ1VPu3quw98xspZk1znN66qtU1ZE03a+Ez2bDs3+ExtnQaL+4KxIpFdxdgxZmkJJ2ScR1emoiMDiaHwxMiKmOxGVVgN/eC1VqwpjB8NP2d2KKlDdVq1Zl9erVJf5FJOmx7XkaVasW/96zuDrC6wNPAnsCnwID3H2NmeUA57n72VG7V4HWwC7AauAsd3+pqHUnvSM8v6Uz4KG+0O63oa9Df2FJOaYn92Wewp7cl2hHeCyhkUopDw2AV26A6dfBcTdDzpmp3ZaISBqU9qunMlvXS2Gfw+GF4bBiftzViIikjUKjOLKywqmp6vVD/8aP6+KuSEQkLRQaxVWjAZx0P6z9FCZeDGXsNJ+ISEEUGiWxV2fodQ0smgBvjoy7GhGRlFNolFTni6Flb3jpKlg2J+5qRERSSqFRUllZ0O9/YWyq0afBd1/GXZGISMooNJKhej0Y9Bj8+A08cQps+iHuikREUkKhkSy77Q8njoQv5oRHxapjXETKIIVGMrU5Hg7/Cyx8Cl79T9zViIgknR73mmxdL4VVH8C066BBK9ivT9wViYgkjY40ks0M+twGu+fAuHNhxby4KxIRSRqFRipUqgoDH4NqdeHxQfDdyrgrEhFJCoVGqtRsBIMehx/WRldUaRRQEcl8Co1UatweTrgbvsiFZy7RFVUikvEUGqm2Xx/ocTXMHw2v3RR3NSIiJaKrp9Kh22Ww6n2Y+ndo2ApaHxt3RSIixaIjjXQwg763Q5MOMPYc+HJB3BWJiBSLQiNdKlULV1RVrR2uqFr/VdwViYjsNIVGOtVqHMao+v7rMLjh5p/irkhEZKcoNNKtSQc44X/w+RvwzDBdUSUiGSWW0DCzemY22cwWR1/rFtAm28xeN7N3zWy+mZ0cR60p0fYE6H4lzHscZt4SdzUiIgmL60jjCmCqu7cApkbL+W0AznD3tkBv4GYzq5PGGlPrsOEhPKZcC+8/H3c1IiIJiSs0+gKjovlRQL/8Ddz9Q3dfHM0vB74CGqatwlQzg753QpNsePocWPlu3BWJiOxQXKHRyN1XRPNfAo2KamxmBwOVgSWFvD/UzHLNLHfVqlXJrTSVKlcPV1RV3gUeOxm+XR53RSIiRUpZaJjZFDNbWMDUN287d3eg0N5gM2sMPAyc6e5bC2rj7iPdPcfdcxo2zLCDkVpN4JTR8MM38PCJsGFN3BWJiBQqZaHh7r3cvV0B0wRgZRQG20KhwJsWzKwW8BxwlbvPTlWtsWuSDQMfhTVL4PGBsHFD3BWJiBQortNTE4HB0fxgYEL+BmZWGRgHPOTuT6WxtnjsfRiceA98/iaMGQJbNsVdkYjIduIKjRHAEWa2GOgVLWNmOWZ2b9RmANANGGJmc6MpO55y06RtPzj2v7D4JZioUXFFpPSJZcBCd18N9Czg9Vzg7Gj+EeCRNJcWv4POCneMv/xPqNEAjvxH3BWJiPxMo9yWRof9Cb5fBbNuhRoNocslcVckIgIoNEonMzj6etjwNUz+SzjiyD4l7qpERBQapVZWhfDUvw1rYMJFUK0etOodd1UiUs5pwMLSrGKVcCnubvuHK6o+eyPuikSknFNolHZVasJpY8NNgI/1h5WL4q5IRMoxhUYmqNEATh8HFavBIyfCN5/FXZGIlFMKjUxRdy84/WnYtAEePiFclisikmYKjUzSqC0MGg3rlsGj/eGn9XFXJCLljEIj0+zVGfo/CCvmRY+M3Rh3RSJSjig0MlGro6HPrfDxdBh/HmwtcPBfEZGk030amarDaaFfY8o1UL0+HP3vcFOgiEgKKTQyWZdhYbiR12+HilXhiL8rOEQkpRQamcwMjrwONv8YxqkCBYeIpJRCI9OZwTH/CfMKDhFJMYVGWZA/OMyg198UHCKSdAqNsmJbcLjDzFvCawoOEUkyhUZZYhae/AcKDhFJCYVGWbNdcBj0ulbBISJJodAoi/L2ccy8OXztda2CQ0RKTKFRVmVlKThEJOliCQ0zqweMBpoBnwAD3H1tvjZ7AeMIQ51UAm5z97vSW2mGyx8cZtDzGgWHiBRbXGNPXQFMdfcWwNRoOb8VQGd3zwYOAa4wsyZprLFs2BYcOb+D126CqX8LV1iJiBRDXKen+gLdo/lRwMvA8LwN3D3v8K1V0OCKxZeVBcdEneOv3RS+6ohDRIohrtBo5O4rovkvgUYFNTKzPYDngH2By919eSHthgJDAfbcc8/kV1sWbBccBj3/quAQkZ2SstAwsynAbgW8dVXeBXd3MyvwfIm7fw4cEJ2WGm9mT7n7ygLajQRGAuTk5OjcS2G2BYc7vHZjeE3BISI7IWWh4e69CnvPzFaaWWN3X2FmjYGvdrCu5Wa2EOgKPJXkUsuXrCw4NgoMBYeI7KS4+gkmAoOj+cHAhPwNzKypmVWL5usCvwE+SFuFZdm24Oh4ZgiOF6/Ug5xEJCFx9WmMAJ40s7OAT4EBAGaWA5zn7mcDbYD/RqeuDPiPuy+Iqd6yZ1twVKoGs++EDauh351QoVLclYlIKRZLaLj7aqBnAa/nAmdH85OBA9JcWvmSlQVH/RNqNICpf4cf1sKAUVC5RtyViUgppctYyzsz6HopHH8rLJkKD/WFDWvirkpESimFhgQdB8OAh2DFfHjgaFj3RdwViUgppNCQX7Q5Hk4bGwLj/qPg68VxVyQipYxCQ36teVc487nw3PH7j4Iv5sRdkYiUIgoN2V7j9vC7l6DyLvDg8bBkWtwViUgpodCQgtXfB86aBHWbwaMDYOHTcVckIqWAQkMKV3M3OPN5aJoDT/0O3ro37opEJGYKDSlatTpw+jho2RueuxReHqGh1UXKMYWG7FilanDyI5B9Krz8L3j+cg07IlJO6XGvkpgKFaHvHVC9Hsy6LQw7csLdULFy3JWJSBopNCRxZnDkdVCjIUz+axh25ORHoMoucVcmImmS0OkpM3vazI41M53OEugyLBx1LJ0BD/SGdcvirkhE0iTRELgTOAVYbGYjzKxVCmuSTNDhNDjlSVj7KYzsActy465IRNIgodBw9ynufipwIPAJMMXMZpnZmWamsbTLqxa94KzJoaP8gWNggZ6PJVLWJXy6yczqA0MIQ5e/A9xCCJHJKalMMsOureGc6bB7Rxh7Fkz/p66sEinDEu3TGAe8ClQHjnf3Pu4+2t0vBtQLWt7VqA9njIfs0+CV62Hs72DjhrirEpEUSPTqqVvdfXpBb7h7ThLrkUxVsQr0vR0atoTJ18DaT2Dg41CrcdyViUgSJRoadc3sxHyvrQMWuPtXSa5JMpVZuLKqfgsYezbcczgMehyaZMddmYgkSaJ9GmcB9wKnRtM9wHBgppmdnqLaJFO1PiYMdphVAe7vDYsmxF2RiCRJoqFRCWjj7r91998C+wEOHEIID5Ff260dnDMtfH3yDJhxg8asEikDEg2Npu6+Ms/yV8Ae7r4G2LSzGzWzemY22cwWR1/rFtG2lpktM7Pbd3Y7ErNddoXBz8L+A2DadfD0UNj0Y9xViUgJJBoaL5vZs2Y22MwGAxOi12oA3xRju1cAU929BTA1Wi7MP4AZxdiGlAaVqsKJI+Hwq2HBkzDqeFivbjCRTJVoaFwIPABkR9NDwIXu/r279yjGdvsCo6L5UUC/ghqZWUegETCpGNuQ0sIMul0OAx6CLxeEDvIvF8ZdlYgUww5Dw8wqANPcfay7/yGannIv0QnqRu6+Ipr/khAM+bebBfwXuKwE25HSZL++8LsXYOtmuO9IeP+5uCsSkZ20w9Bw9y3AVjOrvTMrNrMpZrawgKlvvvU7oVM9vwuA5919h6PhmdlQM8s1s9xVq1btTJmSbk06hDvIG7aEJ06BKdfCls1xVyUiCUr0Po31wAIzmwx8v+1Fd7+ksA+4e6/C3jOzlWbW2N1XmFljQsd6fp2BrmZ2AeGu88pmtt7dt+v/cPeRwEiAnJwcXaJT2tVqDGe+CC8Oh9duCoMd/vY+qLndAaeIlDKJhsbT0ZQsE4HBwIjo63YX8kcDJAJgZkOAnIICQzJUpapw/C2wRyd49g9wd1c46QFo1iXuykSkCImOcjsKeBKY7e6jtk0l2O4I4AgzWwz0ipYxsxwzu7cE65VMkz0IzpkKVWqGK6teu1n3c4iUYpZIf7aZHQ/8B6js7s3NLBv4u7v3SXWBOysnJ8dzc/Vsh4zz47cw8WJYNB5aHQP9/gfV6sRdlUi5YWZzEhlLMNFLbq8FDia6J8Pd5wJ7F7s6kfyq1oL+D0Lv62HxJLi7GyyfG3dVIpJPoqGxyd3X5XtND02Q5DKDTufBmXkuy53zoE5XiZQiiYbGu2Z2ClDBzFqY2W3ArBTWJeXZHgfDuTNgr0PhmWEw/nw9n0OklEg0NC4G2gI/AY8D3wK/T1VRItRoAKeNhcOugHlPwL294OuP4q5KpNxLqCM8k6gjvAz6aAqMPQe2bAoPempb4KgzIlICSe0IN7OWZjbSzCaZ2bRtU8nLFEnAvr3gvFfD88jHDIYXr4TNG+OuSqRcSvTmvjHAXYQHMW1JXTkihajdFIY8D5P/CrPvhGVvwYn3QL3mcVcmUq4k2qex2d3/5+5vuvucbVNKKxPJr2JlOHpEuDR31Ydw12/gnUd0dZVIGiUaGs+Y2QVm1jh6gFI9M6uX0spECtP2BDh/JjTOhgkXwpOnw4Y1cVclUi4kekf40gJedncvdTf4qSO8HNm6BV6/Hab+A6rXh353wr49465KJCMltSPc3ZsXMJW6wJByJqsCdBkWnkVerQ48ciK8MBw2/RB3ZSJlVpGhYWZ/yjPfP997/0xVUSI7pfEBMPRlOOQ8eOMuGNkdVsyPuSiRsmlHRxoD88xfme+93kmuRaT4KlWDo6+H056GH74Jj5SdeQts1Wg3Ism0o9CwQuYLWhaJ37494YLXoVXvcHnuQ31g3Q4f/igiCdpRaHgh8wUti5QO1evBgIeh7x2w/B2481BY8FTcVYmUCTsKjfZm9q2ZfQccEM1vW94/DfWJFI8ZdDgt3EnesBWMPQvGnh1OXYlIsRUZGu5ewd1ruXtNd68YzW9brpSuIkWKrd7eYaj1HlfBwqfhf11g6atxVyWSsRK9uU8kc1WoCIf9Cc6aHO4qH3U8PH85/PRd3JWJZByFhpQfTTvCua/CIefCm/fAHZ1g8eS4qxLJKAoNKV+q7BIuzT1rElSuAY+eFIZd/3513JWJZASFhpRPexwcOskPGw7vjoM7DoL5YzT4ocgOxBIa0YCHk81scfS1biHttpjZ3GiamO46pYyrWAV6/Dk8WrZuM3j6bHhsgO7rEClCXEcaVwBT3b0FMDVaLsgP7p4dTX3SV56UK432C53kR/0LPnkN7jgk9HnobnKR7cQVGn2BUdH8KEDP75R4ZVWAzheEu8mbHgTPXwYPHhOe2yEiP4srNBq5+4po/kugUSHtqppZrpnNNrNCg8XMhkbtcletWpX0YqUcqdsMTh8H/f4HX70Hd3WBGTeE55OLSGLP0yjWis2mALsV8NZVwCh3r5On7Vp3365fw8x2d/cvzGxvYBrQ092XFLVdPU9Dkua7lfDCn2DReGjUDvrcBrsfGHdVIimR1OdpFIe793L3dgVME4CVZtY4KrQx8FUh6/gi+vox8DLQIVX1imynZiMYMAoGPgYbVsO9PeGlq2Dj93FXJhKbuE5PTQQGR/ODgQn5G5hZXTOrEs03ALoAi9JWocg2rY+FC2bDgWeEJwXefnC4TFeX50o5FFdojACOMLPFQK9oGTPLMbN7ozZtgFwzmwdMB0a4u0JD4lGtDhx/C5z5IlSrC2OGhGHXv3o/7spE0iplfRpxUZ+GpNyWzTDnAZh2HWxcDwefC92HQ9XacVcmUmyx92mIlFkVKsLB58DFb4fh12ffCbflwNzHdW+HlHkKDZHiqlE/nLI6ZxrU2RPGnwf3HwXL58ZdmUjKKDRESmr3A8Md5X3vhLVLYWR3ePYPsGFN3JWJJJ1CQyQZsrKgw6lwUS4cch7MGQW3HQhv3Qdbt8RdnUjSKDREkqlaHTh6BJz3Wrgh8Lk/hiOPz96IuzKRpFBoiKRCo/1g8DNw0v3w/ddw/5Ew7jz47su4KxMpEYWGSKqYQbvfwkVvwW/+CAuegls7wPR/6lGzkrEUGiKpVmUX6HUNXPgGtDwKXrk+hMeb92ggRMk4Cg2RdKm/D/R/EM6eBg1ahuHX7zgEFk3QkCSSMRQaIunWtCMMeQ4GjYYKleDJM+C+I+DTWXFXJrJDCg2ROJhBq95w3sww5Pq6ZfDA0fD4KbDqg7irEymUQkMkThUqhtFzL34bDv8LLJ0Bd3aCZ4bpSisplRQaIqVB5erQ7TIYNhcOHgrvPBo6y6f9n660klJFoSFSmtRoAEdfDxe9CS17w4x/wy3ZutJKSg2FhkhpVG9v6P9AGAxx1zbhSqvbc8IRyJbNcVcn5ZhCQ6Q0271juLP8lDHheR0TLgjhMfcxhYfEQqEhUtqZQcsjYegrMPBxqFITxp+v8JBYKDREMoUZtD4Gzp0BAx8Ld5qPPx/uOCg8AErhIWmg0BDJNGbQ+lg499UQHpVrhAdA3XEwzHtC4SEppdAQyVR5w+PkR6FSdRh3Ltx5CMwbrfCQlIglNMysnplNNrPF0de6hbTb08wmmdl7ZrbIzJqlt1KRDGAGbY4Lp61OfgQqVoVxQ38JDz0ESpIoriONK4Cp7t4CmBotF+Qh4AZ3bwMcDHyVpvpEMk9WFrQ5Phx5DHj4l/C442AdeUjSxBUafYFR0fwooF/+Bma2H1DR3ScDuPt6d9+QvhJFMlRWFuzX55fwqFAlhMetHeCNu2Hj93FXKBksrtBo5O4rovkvgUYFtGkJfGNmT5vZO2Z2g5lVKGhlZjbUzHLNLHfVqlWpqlkks2wLj/NeC5fq1moCL/wJbmoH0/8F36+Ou0LJQOYpGsffzKYAuxXw1lXAKHevk6ftWnf/Vb+GmZ0E3Ad0AD4DRgPPu/t9RW03JyfHc3NzS1rKL+qLAAAPEUlEQVS+SNn02WyYeQt88DxUrAYdToNDL4K6zeKuTGJmZnPcPWdH7SqmqgB371XYe2a20swau/sKM2tMwX0Vy4C57v5x9JnxQCdCkIhIcezZKUyrPoCZt8KcByH3Pmh7AnQZBo3bx12hlHJxnZ6aCAyO5gcDEwpo8xZQx8waRsuHA4vSUJtI2dewFfS7A34/HzpfBB9Ogru7wUP9YMl0PUlQChVXaIwAjjCzxUCvaBkzyzGzewHcfQtwGTDVzBYABtwTU70iZVOtJnDkP+APC6HXtfDVIni4H4w8DBaO1RVXsp2U9WnERX0aIiWw6UeYPxpm3QqrPwp9HZ0vguxTwp3nUmYl2qehO8JF5BeVqkLHwXDhW+FGweoNwrDsN7aBl66CNUvjrlBipiMNESmcO3z+Rri/Y9EE8K3h4VCHDIW9e4S70aVMiP3qKREpA8x+ueLq2+WQez/kPgAfvgANWoZH07YfFEbclXJBRxoisnM2/wTvjoM37oLl70CVWpB9Khx8DtTfJ+7qpJgSPdJQaIhI8bjDslx48254dzxs3QQtjoSDz4V9Dg93pEvGUGiISPp892V0o+D9sH4l1NsHDjk3nLqqWivu6iQBCg0RSb/NG0OH+Zt3w7K3oPIucMAAOHAwNMmOuzopgjrCRST9KlaGA/qH6Ys58OY94TnmufeHIUoOHAz799fRRwbTkYaIpNYP38CCMTBnFKxcEJ4w2PbEcD9I04N02W4podNTIlK6uMPyt0N4LBwLG9dDwzZw4BnQfiBUrxd3heWaQkNESq+fvoOFT8Pbo8JprApVwlMHOw6GZl119BED9WmISOlVpWYIiI6D4cuFITzmj4aFT0G9vcPRR/apsMuucVcq+ehIQ0RKh00/hCuv5oyCz2ZBVsUwZMkBJ0PLo6BilbgrLNN0pCEimaVStdC30X4gfL04Ovp4Et5/FqrWgXYnhvs+1HkeKx1piEjptWUzLH0Z5j0B7z0Lm38Ip68OODlM9ZrHXWGZoY5wESlbfvoOFk2E+U/A0lcBhz06hSOTtv2gWt24K8xoCg0RKbvWLQunruaPhlXvQ4XK0OpoOGAg7Nsr3GQoO0WhISJlnzusmAvzRocbCDd8DdXqwf4nhdNXu3dU/0eCFBoiUr5s2QRLpoX+j/efgy0/Qe09w6mrdidC42wFSBEUGiJSfv24LgTHu+NCkGzdDHWbQ9sTQoA0aqcAyadUh4aZ1QNGA82AT4AB7r42X5sewE15XmoNDHT38UWtW6EhIr+yYU24bPfdcfDxK+BboP6+YfyrtidAo/3irrBUKO2h8W9gjbuPMLMrgLruPryI9vWAj4Cm7r6hqHUrNESkUN9/De89A+8+DZ+8Fp553rB1CI+2J0DDVnFXGJvSHhofAN3dfYWZNQZedvdCf1pmNhQ4zN1P3dG6FRoikpD1X4U70N8dD5/OBBx2bftLgDTYN+4K06q0h8Y37l4nmjdg7bblQtpPA25092cLeX8oMBRgzz337Pjpp5+moGoRKbO+XQHvTQyDKH4+O7zWsA20PjZMTTqU+T6Q2EPDzKYAuxXw1lXAqLwhYWZr3b3AO3OiI5H5QBN337Sj7epIQ0RKZN0XIUDefw4+nRX6QGrt/kuA7NUFKlSKu8qki33sKXfvVdh7ZrbSzBrnOT31VRGrGgCMSyQwRERKrPbu0On8MG1YAx++GALk7YfhzZFQtXYYSLH1seFGwso14q44reIasHAiMBgYEX2dUETbQcCV6ShKRORXqteD7FPCtHFDuHz3/efgwxfC3egVq8LePUKAtDoaajSIu+KUi6tPoz7wJLAn8Cnhkts1ZpYDnOfuZ0ftmgEzgT3cfWsi69bpKRFJuS2b4bPXQ4C8/yys+xwsK4yF1frYcCSSYR3psfdpxEWhISJp5Q5fzo8C5DlYuTC8Xm9vaHEUtDgCmv2m1D8PRKEhIhKHtZ/A4snw4Uvwyauw+UeoVAP2PgxaHBlCpHbTuKvcjkJDRCRuGzeE4Fg8CT6cBOs+C683ahfCo8VR4aFSFeJ/Hp5CQ0SkNHGHVR/A4pfCkchnr4cxsarWgX17hqOQfXvF1pke+yW3IiKShxns2jpMXYaFQRWXTA8BsngSLBwLWLiRcJ8e4aqsPQ4udX0hOtIQEYnb1q3w5bxwCmvJNFj2VripsFL1cDPhPj1gn8PDOFkpujNdRxoiIpkiKyscYTTpAN2Hw4/fhgEVP54eQuSlyaFdzcawd/dwFLJ3d6jZKO2lKjREREqbqrWg9TFhAvjm8yhApoersuY9Hl7ftW10FNID9jwUKldPeWk6PSUikkm2ncpaMj0EyWezYcvG8Jz01sdB/weKtVqdnhIRKYvynsrq+sdwWe+ns0KApKHTXKEhIpLJKleHFr3ClAZZadmKiIiUCQoNERFJmEJDREQSptAQEZGEKTRERCRhCg0REUmYQkNERBKm0BARkYSVuWFEzGwV4bnjxdUA+DpJ5WSK8rbP5W1/QftcXpRkn/dy94Y7alTmQqOkzCw3kfFXypLyts/lbX9B+1xepGOfdXpKREQSptAQEZGEKTS2NzLuAmJQ3va5vO0vaJ/Li5Tvs/o0REQkYTrSEBGRhCk0REQkYeUyNMyst5l9YGYfmdkVBbw/xMxWmdncaDo7jjqTaUf7HLUZYGaLzOxdM3ss3TUmWwI/55vy/Iw/NLNv4qgzmRLY5z3NbLqZvWNm883smDjqTKYE9nkvM5sa7e/LZtY0jjqTxczuN7OvzGxhIe+bmd0afT/mm9mBSS3A3cvVBFQAlgB7A5WBecB++doMAW6Pu9Y073ML4B2gbrS8a9x1p3qf87W/GLg/7rrT8HMeCZwfze8HfBJ33WnY5zHA4Gj+cODhuOsu4T53Aw4EFhby/jHAC4ABnYA3krn98nikcTDwkbt/7O4bgSeAvjHXlGqJ7PM5wB3uvhbA3b9Kc43JtrM/50HA42mpLHUS2WcHakXztYHlaawvFRLZ5/2AadH89ALezyjuPgNYU0STvsBDHswG6phZ42RtvzyGxu7A53mWl0Wv5ffb6NDuKTPbIz2lpUwi+9wSaGlmM81stpn1Tlt1qZHozxkz2wtozi+/WDJVIvt8LXCamS0DniccYWWyRPZ5HnBiNH8CUNPM6qehtrgk/G+/OMpjaCTiGaCZux8ATAZGxVxPOlQknKLqTvir+x4zqxNrRekzEHjK3bfEXUgaDAIedPemhNMYD5tZWf89cBlwmJm9AxwGfAGUh591SpT1fywF+QLIe+TQNHrtZ+6+2t1/ihbvBTqmqbZU2eE+E/4amejum9x9KfAhIUQyVSL7vM1AMv/UFCS2z2cBTwK4++tAVcIgd5kqkf/Py939RHfvAFwVvZbxFz0UYWf+7e+08hgabwEtzKy5mVUm/MKYmLdBvvN/fYD30lhfKuxwn4HxhKMMzKwB4XTVx+ksMskS2WfMrDVQF3g9zfWlQiL7/BnQE8DM2hBCY1Vaq0yuRP4/N8hzNHUlcH+aa0y3icAZ0VVUnYB17r4iWSuvmKwVZQp332xmFwEvEa68uN/d3zWzvwO57j4RuMTM+gCbCR1OQ2IrOAkS3OeXgCPNbBHh0P1yd18dX9Ulk+A+Q/gl84RHl51ksgT3+VLCqcc/EDrFh2Tyvie4z92Bf5mZAzOAC2MrOAnM7HHCPjWI+qauASoBuPtdhL6qY4CPgA3AmUndfgb/exERkTQrj6enRESkmBQaIiKSMIWGiIgkTKEhIiIJU2iIiEjCFBpS6pnZ+gTa/N7Mqidxm/3MbL8krm9WCT67PvraxMyeKqJdHTO7oLjbEUmEQkPKit8DOxUaZlahiLf7EQa6Swp3PzQJ61ju7icV0aQOoNCQlFJoSMYws+7R8xCeMrP3zezR6K7XS4AmwHQzmx61PdLMXjezt81sjJntEr3+iZldb2ZvA/3N7Bwze8vM5pnZWDOrbmaHEkYCuCF61sY+ZpYdDeQ438zGmVndaH0vW3guR66ZvWdmB5nZ02a22Myuy1P7+jzzw81sQbTNEQXsZ/Oo9gX51tFs2zMUzKytmb0Z1TffzFoAI4B9otduMLNdLDxH4u1oXX3zrOc9M7vHwrNTJplZtei9fc1sSlTb22a2T/T65dH3ab6Z/S2pP1jJLHGPDa9J044mYH30tTuwjjCWThZh6I/fRO99AjSI5hsQ7vytES0PB/6ap92f8qy7fp7564CLo/kHgZPyvDcfOCya/ztwczT/MnB9ND+MMNR4Y6AKYTyv+vn24WhgFlA9Wq5XwP5OBM6I5i/M89lmRM9QAG4DTo3mKwPV8r4fvV4RqJXne/IR4RkLzQijHWRH7z0JnBbNvwGcEM1XJRy9HUl4DodF3/dngW5x/7vQFM9U7oYRkYz3prsvAzCzuYRfgK/la9OJcGpppplB+KWad2yp0Xnm20V/zdcBdiEMR/ErZlYbqOPur0QvjSI82GebbUOSLADe9WicHzP7mDBwXN7hWHoBD7j7BgB3L+i5CF2A30bzDwPXF9DmdeAqC0+he9rdF0f7+qvSgX+aWTdgK2F47EbRe0vdfW40PwdoZmY1gd3dfVxU24/RfhxJCI53ova7EAaznFFAXVLGKTQk0/yUZ34LBf8bNmCyuw8qZB3f55l/EOjn7vPMbAjRoI3FrGlrvvq2FlJfIooc38fdHzOzN4BjgefN7Fy2H2DyVKAh0NHdN5nZJ4Sjh7w1Q/g+Viticwb8y93v3on6pYxSn4aUFd8BNaP52UAXM9sXwMxqmFnLQj5XE1hhZpUIv2S3W5+7rwPWmlnX6L3TgVconsnAmduu9DKzegW0mUkYSJF8Nf3MzPYGPnb3W4EJwAH8+nsA4cl8X0WB0QPYq6jC3P07YJmZ9Yu2USWq8yXgd3n6hXY3s10T2lspcxQaUlaMBF40s+nuvoowMvHjZjafcCqndSGf+wvhPP5M4P08rz8BXG5m70SdwYMJHePzgWxCv8ZOc/cXCaezcqPTa5cV0GwYcKGZLaDwJ64NABZG62hHeLznasIpuYVmdgPwKJATreeMfPtXmNMJozzPJ/S97Obuk4DHgNejdT3Fr8NJyhGNcisiIgnTkYaIiCRMoSEiIglTaIiISMIUGiIikjCFhoiIJEyhISIiCVNoiIhIwv4fiKs2oLzt8sUAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEWCAYAAACaBstRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4FOXax/HvnQIhJJQAAqH3KgSISJF2AI0KwQIqKIINFbCLouLRgw1BRVQUQREOB48CHqQoKEUE6T10BAEJAanSS8r9/rEDb4wpS0gy2eT+XNdezOw++8w9G5LfTntGVBVjjDHGG35uF2CMMcZ3WGgYY4zxmoWGMcYYr1loGGOM8ZqFhjHGGK9ZaBhjjPGahYYxmSAirURkWxb296qI/Cer+jMmu1homFxHRHaLSIcUz/UWkV+c6YIi8rmI7BGRkyKyTkRuTKe/3iKSKCKnUjzCM1ujqi5S1Vrp1ZwTLne5IjJORF6/guUNEJGNzue+S0QGZLYv45sC3C7AmEwIAPYCbYDfgZuASSJytaruTuM9S1X1uhyqLy8T4F4gBqgG/Cgie1X1K3fLMjnFtjSMz1HV06r6qqruVtUkVZ0J7AKaXG5fIlJNRI6KSGNnPlxEDolIW2c+TES+EJE4ETkmIt86z7cVkVhnegJQEZjhbME85zzfTESWiMifIrL+Yp/Oa1VE5GfnG/scoGQ6NZYUkZlOP0dFZJGI+KWz3MkickBEjovIQhGp5zzfB7gbeM5pPyPZOn/jrPcuEXk8nc9+qKquUdUEVd0GTANaXu7nbnyXhYbxeSJSGqgJbLrc96rqTuB54D8iEgx8AYxX1QVOkwlAMFAPuAoYnkofPfFs8XRW1RBVHSoi5YDvgNeBMOBZ4BsRKeW87UtgNZ6weA3olU6ZzwCxQCmgNPCiZ7F/X67TfhZQw6l3DTDRqXO0Mz3Uad9ZRPyAGcB6oBzQHnhSRG7I6LMTEQFakYnP3fgu2z1lcqtvRSQh2XwBPH8A/0JEAvH8IRyvqlvT6a+ZiPyZbP6IqlYDUNUxItIZWA4oEO30XRa4ESihqsec9/3sZf33AN+r6vfO/BwRWQXcJCI/AdcAHVT1PLDw4rf+NMQDZYFKqroDWJTeglV17MVpEXkVOCYiRVX1eCrNrwFKqepgZ/43ERkD3AX8kME6vorni+cXGbQzeYhtaZjc6hZVLXbxAfRN2cD5ljwBuAD0z6C/Zcn7uxgYyYwB6gMfOn/IASoAR5MFxuWoBHRzdin96QTWdXj++IcDx1T1dLL2e9LpaxiwA8/xg99EZGBaDUXEX0SGiMhOETkB7HZeSmv3VyUgPEWdL+LZokmTiPTHc2zj5mSfl8kHbEvD+CRn18jneP643aSq8VfQVwjwvtPfqyLyjaoexXOwPUxEiqnqn+l24tlCSW4vMEFVH0pleZWA4iJSOFlwVEylD0/Hqifx7KJ6RkTqA/NFZKWqzkvlPT2ALkAHPIFRFDiG5wB2WnXuUtUaGaxf8vrvBwYCrVU11tv3mbzBtjSMr/oEqINnf/7ZK+xrBLBKVR/EcxxiFICq7sdzfOBjESkuIoEi0jqNPv4Aqiab/w/QWURucL79BzkHz8ur6h5gFfAvESkgItcBndMqTkQ6iUh1JyiPA4lAUhrLDQXOA0fwHIt5M4M6VwAnReR5ESnk1FpfRK5Jo5a7nT47qupvadVs8i4LDeNznG/qDwMRwAH5/+su7k7nbc3l79dpXCMiXYAo4FGn3dNA42R99cRzTGErcBB4Mo3+3wIGObt4nlXVvXi+8b8IHMLzjX4A//871wO4FjgKvAL8O53aawBzgVPAUuBjVf0pteU6/ewB9gGbgWUp+vocqOu0/1ZVE4FOeD7LXcBh4DM8WyipeR0oAaxM9jmOSqd2k8eI3YTJGGOMt2xLwxhjjNcsNIwxxnjNQsMYY4zXLDSMMcZ4Lc9dp1GyZEmtXLmy22UYY4xPWb169WFVLZVRuzwXGpUrV2bVqlVul2GMMT5FRNIbleAS2z1ljDHGaxYaxhhjvGahYYwxxmt57piGMSbnxMfHExsby7lz59wuxXgpKCiI8uXLExgYmKn3W2gYYzItNjaW0NBQKleujGc8RZObqSpHjhwhNjaWKlWqZKoP2z1ljMm0c+fOUaJECQsMHyEilChR4oq2DC00jDFXxALDt1zpz8tCw3E+8TzvrX6Pfaf2uV2KMcbkWhYajsNnDzNp2yReWPQCCUkJGb/BGJMr+Pv7ExERcekxZMiQy+5j+vTpl9737bffsnnz5svuIyQkxOu277//PmfOnMmydskNGDCA2rVr06BBA2699Vb+/DOjm05eHgsNR7mQcgxqNoi1B9cyJmaM2+UYY7xUqFAh1q1bd+kxcGCat1BPU3R09KX3ZTY0Lkd2hkbHjh3ZuHEjMTEx1KxZk7feeiuzZabKQiOZTlU70alqJ0bFjGLtwbVul2OMyaTjx49Tq1Yttm3bBkD37t0ZM8bzZXD27Nk0btyYhg0b0r59ewDGjRtH//79WbJkCdOnT2fAgAFERESwc+dOdu7cSVRUFE2aNKFVq1Zs3boVgF27dtG8eXOuvvpqBg0alGodp0+f5uabb6Zhw4bUr1+fr7/+mg8++IC4uDjatWtHu3btAHj00UeJjIykXr16vPLKKwCptvvxxx9p3rw5jRs3plu3bpw6depvy7z++usJCPCcGNusWTNiY7P2Nu52ym0KL137EmsPrmXgwoFMjp5MkQJF3C7JGJ/w9oq32Xp0a5b2WTusNs83fT7dNmfPniUiIuLS/AsvvMCdd97JRx99RO/evXniiSc4duwYDz30EIcOHeKhhx5i4cKFVKlShaNHj/6lrxYtWhAdHU2nTp3o2rUrAO3bt2fUqFHUqFGD5cuX07dvX+bPn88TTzzBo48+yr333svIkSNTrW327NmEh4fz3XffAZ4wK1q0KO+99x4//fQTJUuWBOCNN94gLCyMxMRE2rdvT0xMDI8//vhf2h0+fJjXX3+duXPnUrhwYd5++23ee+89/vnPf6b52YwdO5Y777wz4w/6MlhopBBSIIS3W79Nr1m9eG3pawxtPdTODjEmF7u4eyqljh07MnnyZPr168f69esBWLZsGa1bt750jUJYWFi6fZ86dYolS5bQrVu3S8+dP38egMWLF/PNN98A0LNnT55//u/hdvXVV/PMM8/w/PPP06lTJ1q1apXqciZNmsTo0aNJSEhg//79bN68mQYNGvylzbJly9i8eTMtW7YE4MKFCzRv3jzN2t944w0CAgK4++6702yTGRYaqWhYqiF9I/ry4doPua7cdXSp3sXtkozJ9TLaIshpSUlJbNmyheDgYI4dO0b58uUz1UexYsVSDSXI+PTVmjVrsmbNGr7//nsGDRpE+/bt/7ZlsGvXLt555x1WrlxJ8eLF6d27d6rXUagqHTt25L///W+GdY8bN46ZM2cyb968LP/Sa8c00vBA/QdoUroJbyx/g99P/O52OcaYyzR8+HDq1KnDl19+yX333Ud8fDzNmjVj4cKF7Nq1C+Bvu6cAQkNDOXnyJABFihShSpUqTJ48GfD84b641dKyZUu++uorACZOnJhqDXFxcQQHB3PPPfcwYMAA1qxZ87dlnDhxgsKFC1O0aFH++OMPZs2alWotzZo1Y/HixezYsQPwHC/Zvn3735Y5e/Zshg4dyvTp0wkODr7MTy1jFhpp8PfzZ0irIQT6BfLcwueIT4x3uyRjTCouHtO4+Bg4cCDbtm3js88+491336VVq1a0bt2a119/nVKlSjF69Ghuu+02GjZsmOr+/rvuuothw4bRqFEjdu7cycSJE/n8889p2LAh9erVY9q0aQCMGDGCkSNHcvXVV7NvX+rXd23YsIGmTZsSERHBv/71r0sHzPv06UNUVBTt2rWjYcOGNGrUiNq1a9OjR49Lu59StitVqhTjxo2je/fuNGjQgObNm186KJ9c//79OXnyJB07diQiIoJHHnkkKz7mS0RVs7RDt0VGRmpW3oRpzp45PL3gaR6o/wBPNnkyy/o1Ji/YsmULderUcbsMc5lS+7mJyGpVjczovbalkYGOlTpye43bGbtxLMv3L3e7HGOMcZWFhheeu+Y5KhWpxIuLXuTPc1l7daUxxvgSCw0vBAcGM7T1UI6eP8orS14hr+3SM+ZK2O+Db7nSn5eFhpfqlKjDk42fZP7e+UzePtntcozJFYKCgjhy5IgFh4+4eD+NoKCgTPdh12lchp51e7IkbgnDVg6jSekmVCtWze2SjHFV+fLliY2N5dChQ26XYrx08c59mWVnT12mw2cPc/v02ylVqBQTb55IQf+C2bYsY4zJKXb2VDYpWagkr7V8jW3HtvH+6vfdLscYY3KUhUYmtC7fmh61e/CfLf9hUewit8sxxpgcY6GRSU9HPk31YtUZtHgQh88edrscY4zJEa6GhohEicg2EdkhIn+7c4qIPC0im0UkRkTmiUglN+pMTUH/ggxtPZTT8acZtHgQSZrkdknGGJPtXAsNEfEHRgI3AnWB7iJSN0WztUCkqjYApgBDc7bK9NUoXoNnI59l8b7FfLnlS7fLMcaYbOfmlkZTYIeq/qaqF4CvgL+MQa6qP6nqxXsdLgMyf55YNrmz1p20rdCW91a/x7aj29wuxxhjspWboVEO2JtsPtZ5Li0PALPSed0VIsLgFoMpVrAYz/z8DCcunHC7JGOMyTY+cSBcRO4BIoFhabzeR0RWicgqNy4yKh5UnHfavMO+k/t4cdGLdnzDGJNnuRka+4AKyebLO8/9hYh0AF4ColX1fGodqepoVY1U1chSpUplS7EZaVy6Mc81fY6fY39m1PpRrtRgjDHZzc3QWAnUEJEqIlIAuAuYnryBiDQCPsUTGAddqPGy3FXrLqKrRfPJ+k9YsHeB2+UYY0yWcy00VDUB6A/8AGwBJqnqJhEZLCLRTrNhQAgwWUTWicj0NLrLFUSEl5u9TJ2wOryw6AV2H9/tdknGGJOlbOypbBB3Ko67Zt5FWFAYE2+eSOHAwq7WY4wxGbGxp1wUHhLOsDbD2HViFy8vftmGjTbG5BkWGtnk2rLX8lTjp5izZw5jN451uxxjjMkSFhrZqFe9XkRVjuKDtR+wJG6J2+UYY8wVs9DIRiLCv1r8i6pFq/LcwueIPRnrdknGGHNFLDSyWXBgMCPajSBJk3hqwVOcTTjrdknGGJNpFho5oGKRigxpNYRtR7cxeOlgOzBujPFZFho5pHX51vSN6MvM32by5VYbEdcY45ssNHJQnwZ9aFehHcNWDmPVAXevJTHGmMyw0MhBfuLHm9e9SYXQCjzz8zMcOH3A7ZKMMeayWGjksJACIYxoN4JzCed4esHTXEi84HZJxhjjNQsNF1QtVpU3r3uTDYc38ObyN90uxxhjvGah4ZL2ldrz0NUP8c2v3zB5+2S3yzHGGK9YaLioX0Q/Woa35M3lb7L+0Hq3yzHGmAxZaLjI38+ft1u/TZngMjz101PsP7Xf7ZKMMSZdFhouK1qwKB/+40POJZyj77y+do9xY0yuZqGRC1QvXp3h7Yaz+8RunvrpKeIT490uyRhjUmWhkUtcW/ZaBrcYzIoDK3hlySs21IgxJlcKcLsA8/86V+tM3Kk4Plr3EeEh4fRv1N/tkowx5i8sNHKZPg36EHc6jk9jPiU8JJzbatzmdknGGHOJhUYuIyIMajaIP07/weClgykdXJqW5Vq6XZYxxgB2TCNXCvQL5N2271K9WHWeXvA0W49udbskY4wBLDRyrcKBhRnZfiShBULpN7efDW5ojMkVLDRysdKFS/Nxh485k3CGR+c+yskLJ90uyRiTz7kaGiISJSLbRGSHiAxM5fXWIrJGRBJEpKsbNbqtZvGanms4ju/mqQV2DYcxxl2uhYaI+AMjgRuBukB3EambotnvQG8gX9/qrlnZZrza4lWW71/Oq0tftWs4jDGucfPsqabADlX9DUBEvgK6AJsvNlDV3c5rSW4UmJt0qd6FuNNxfLzuY8JDwukX0c/tkowx+ZCboVEO2JtsPha41qVafMIjDR4h7lQco9aPIrxwOLfWuNXtkowx+UyeuE5DRPoAfQAqVqzocjXZR0T4Z/N//uUajhblWrhdljEmH3HzQPg+oEKy+fLOc5dNVUeraqSqRpYqVSpLisutAv0Cea/te1QtVpWnf36abUe3uV2SMSYfcTM0VgI1RKSKiBQA7gKmu1iPzwgpEMLI9iMpHFiYvvP62jUcxpgc41poqGoC0B/4AdgCTFLVTSIyWESiAUTkGhGJBboBn4rIJrfqzW3KFC7Dx+0/5nT8afrO68vx88fdLskYkw9IXjt9MzIyUletWuV2GTlmadxS+s3rR+2w2ozuOJqQAiFul2SM8UEislpVIzNqZ1eE+7jm4c15t827bDmyhX7z+nEm/ozbJRlj8jALjTygXcV2vNX6LdYdWsfjPz3O+cTzbpdkjMmjLDTyiKjKUbzW8jWW71/O0wuetuFGjDHZwkIjD4muFs3LzV5mYexCnl/0PAlJCW6XZIzJYyw08pg7at3Bc9c8x5w9c3jpl5dITEp0uyRjTB6SJ64IN3/Vs25PzieeZ8SaEQQFBPFK81fwE/t+YIy5chYaedSDVz/I2YSzjI4ZTUH/grzQ9AVExO2yjDE+zkIjD+sf0Z/zCecZv3k8Qf5BPNXkKQsOY8wVsdDIw0SEZyKf4VziOb7Y9AVBAUH0jejrdlnGGB9moZHHiQgvXvsi5xPP88n6TyjoX5AHrn7A7bKMMT7KQiMf8BM/Xm3+KucTzvP+mvcJCgji7jp3u12WMcYHWWjkE/5+/rzR6g0uJF1gyIohFPQvSNea+fK268aYK2DnYeYjgX6BDG09lOvKXcfgpYOZsXOG2yUZY3yMhUY+U8C/AMPbDueaMtcwaPEgftj9g9slGWN8iIVGPhQUEMSH//iQhqUaMnDhQObsmeN2ScYYH2GhkU8FBwYzsv1I6pWsx7M/P8u0HdPcLskY4wMsNPKx0AKhjO44mqZlmjJo8SAmbpnodknGmFzOQiOfCw4M5qP2H9GuQjuGrBjCmJgx5LW7ORpjso6FhqGgf0HebfsuN1e9mQ/WfsDwNcMtOIwxqbLrNAzgOR33zevepHBAYb7Y+AWnL5zmpWYv2ei4xpi/sNAwl/iJH4OaDSKkQAhjN47ldMJpXmv5GoF+gW6XZozJJSw0zF+ICE81eYrQAqGMWDOCM/FnGNZmGAX9C7pdmjEmF7B9DyZVD179IC80fYGf9v5E/3n9ORN/xu2SjDG5gKuhISJRIrJNRHaIyMBUXi8oIl87ry8Xkco5X2X+1aNOD15v+TorDqzg4TkPc+LCCbdLMsa4zLXQEBF/YCRwI1AX6C4idVM0ewA4pqrVgeHA2zlbpelSvQvvtHmHjUc28sAPD3Dk7BG3SzLGuMir0BCR/4nIzSJZeipNU2CHqv6mqheAr4AuKdp0AcY701OA9mK3nstxHSt15KN/fMTu47vpPbs3B04fcLskY4xLvA2Bj4EewK8iMkREamXBsssBe5PNxzrPpdpGVROA40CJlB2JSB8RWSUiqw4dOpQFpZmUWpZryaiOozh89jC9ZvXi9xO/u12SMcYFXoWGqs5V1buBxsBuYK6ILBGR+0TE9fMxVXW0qkaqamSpUqXcLifPalK6CZ/f8DlnEs7Qa3Yvfj32q9slGWNymNe7m0SkBNAbeBBYC4zAEyKZHSJ1H1Ah2Xx557lU24hIAFAUsJ3qLqpboi7josbhhx/3/XAfMYdi3C7JGJODvD2mMRVYBAQDnVU1WlW/VtXHgJBMLnslUENEqohIAeAuYHqKNtOBXs50V2C+2vgWrqtWrBrjbhxHaGAoD/zwgA2tbkw+4u2WxgeqWldV31LV/clfUNXIzCzYOUbRH/gB2AJMUtVNIjJYRKKdZp8DJURkB/A08LfTco07KoRWYOLNE6kVVotnFjzDFxu/sPGqjMkHxJtfdBG5LZWnjwMbVPVglld1BSIjI3XVqlVul5FvnEs4d+kOgF1rduXFa1+0YUeM8UEistqbjQBvhxF5AGgO/OTMtwVWA1VEZLCqTshUlcbnBQUEMbT1UCqGVmTMhjHEnYrjnTbvEFog1O3SjDHZwNvdU4FAHVW9XVVvx3MxngLXAs9nV3HGN/iJH483fpzBLQazYv8K7p11L3Gn4twuyxiTDbwNjfKq+key+YNABVU9CsRnfVnGF91a41Y+6fgJf5z+gx7f9WDj4Y1ul2SMyWLehsYCEZkpIr1EpBcwzXmuMPBn9pVnfE2zss2YcNMEggKCuG/2fczbM8/tkowxWcjb0OgHfAFEOI9/A/1U9bSqtsuu4oxvqlasGhNvmkjNsJo8teApxm8ab2dWGZNHZHgg3BlYcK4TDt9kf0kmLyhRqASfX/85L/3yEu+seoc9J/bw4rUvEuBnt3Axxpdl+BusqokikiQiRVX1eE4UZfKGoIAghrUZRoU1Ffh84+eXzqwKKZDZ60GNMW7z9mvfKWCDiMwBTl98UlUfz5aqTJ7hJ3482eRJKhapyGtLX+Pe2fcy8h8jKRtS1u3SjDGZ4O0xjf8BLwML8VyfcfFhjFduq3EbH3f4mP2n9tPj+x5sOrzJ7ZKMMZng7Si344FJwDJVHX/xkb2lmbymeXhzJtw4gQJ+Beg9u7edWWWMD/J2wMLOwDpgtjMfISIpBxc0JkPVi1dn4s0TqVm8Jk8ueJIRa0aQmJTodlnGGC95u3vqVTx32vsTQFXXAVWzqSaTx5UsVJKxUWPpWrMrn234jEfmPsLRc0fdLssY4wVvQyM+lTOnkrK6GJN/FPQvyCvNX2Fwi8Gs+WMNd868kw2HNrhdljEmA96GxiYR6QH4i0gNEfkQWJKNdZl84tYatzLhpgn4iz+9Zvdi0rZJdiGgMbmYt6HxGFAPOA/8FzgBPJldRZn8pW6Junx181c0LduU15a9xqDFgziXcM7tsowxqfDqfhq+xO6n4bsSkxL5NOZTPln/CbXDavNe2/eoEFoh4zcaY66Yt/fT8PbsqZoiMlpEfhSR+RcfV16mMf/P38+fvhF9Gdl+JPtO7ePOmXeyMHah22UZY5LxdvfUZGAtMAgYkOxhTJZrXb41X3f6mvDC4fSb14+R60baabnG5BLehkaCqn6iqitUdfXFR7ZWZvK1CqEVmHDTBKKrRTNq/Sj6ze/H8fM29JkxbvM2NGaISF8RKSsiYRcf2VqZyfcKBRTi9Zav83Kzl1m+fzl3zryTzUc2u12WMfmat6HRC8/uqCX8/7hTdrTZZDsR4Y5adzA+ajwJSQn0/L4nU3+d6nZZxuRb3o49VSWVh10RbnJMg1INmNR5Eo2uasQ/l/yTV5a8wpn4M26XZUy+k25oiMhzyaa7pXjtzewqypjUhAWFMarjKB6o/wD/+/V/trvKGBdktKVxV7LpF1K8FpXZhTrHROaIyK/Ov8XTaDdbRP4UkZmZXZbJWwL8AniyyZOM7jiaM/FnuPv7uxm7caydXWVMDskoNCSN6dTmL8dAYJ6q1gDmOfOpGQb0vILlmDyqeXhzvon+hnYV2jF89XAemvMQB04fcLssY/K8jEJD05hObf5ydAEu3o9jPHBLqgtXnQecvILlmDysWFAx3m3zLoNbDGbj4Y3cNv02Zu+e7XZZxuRpGYVGQxE5ISIngQbO9MX5q69guaVVdb8zfQAofQV9ISJ9RGSViKw6dOjQlXRlfIyIcGuNW5nSeQqVi1RmwM8DeOmXlzgdfzrjNxtjLlu6oaGq/qpaRFVDVTXAmb44H5jee0VkrohsTOXRJcUylCvbakFVR6tqpKpGlipV6kq6Mj6qYpGKjL9xPH0a9GHmbzPpOr0r6w6uc7ssY/Icb6/TuGyq2kFV66fymAb8ISJlAZx/D2ZXHSb/CPQL5LFGj/HFDV+QpEn0nt2bT9Z9QkJSgtulGZNnZFtoZGA6ngsGcf6d5lIdJg9qXLoxU6KnEFUlio/Xf0zv2b3Ze3Kv22UZkye4FRpDgI4i8ivQwZlHRCJF5LOLjURkEZ7BEtuLSKyI3OBKtcbnhBYIZUirIQxpNYSdf+6k24xuTN853W7wZMwVsvtpmDwv7lQcLyx6gTUH1xBVOYpBzQZRtGBRt8syJlfJ0vtpGOPLwkPCGXvDWB5v9Dhz98yl64yu/LLvF7fLMsYnWWiYfMHfz5+HGjzEhJsmUCigEI/OfZQXF73In+f+dLs0Y3yKhYbJV+qXrM+UzlN4uMHDzNo1iy7TujBr1yw71mGMlyw0TL5TwL8A/Rv156tOXxFeOJznFj7HY/Mfs2FIjPGChYbJt2qF1eI/N/2HZyOfZfn+5dwy7RYmbZtEkia5XZoxuZaFhsnX/P386VWvF/+L/h/1S9TntWWvcf8P97P7+G63SzMmV7LQMAaoUKQCY64fw+AWg9l+dDu3T7+dzzZ8RnxSvNulGZOrWGgY47g4+OG0W6bRunxrRqwZwd3f3c2WI1vcLs2YXMNCw5gUSgWXYni74QxvO5xDZw/R/bvuDF89nHMJ59wuzRjXWWgYk4YOlTrwbZdvia4WzdiNY+k6oyurDthoAyZ/s9AwJh1FCxZlcMvBjLl+DIlJidz3w30M+mUQh88edrs0Y1xhoWGMF5qVbcY30d9wf/37+W7Xd3Se2pnxm8bbgXKT71hoGOOl4MBgnmryFFOjpxJxVQTvrHqH26ffzpK4JW6XZkyOsdAw5jJVLlqZTzp8wsj2I0lMSuThOQ/zxPwn7J4dJl+w0DAmk1qXb83ULlN5ovETLN2/lFu+vYWP1n7E2YSzbpdmTLax0DDmChTwL8CDVz/I9Fum06FSBz6N+ZTob6OZvXu2DYJo8iQLDWOyQJnCZXi79duMixpH0QJFGfDzAB748QG2H9vudmnGZCkLDWOyUJPSTfi609e83Oxlth/bTrcZ3Xhz+ZscP3/c7dKMyRIWGsZkMX8/f+6odQczb5lJt5rd+Hrb13Sa2onJ2yeTmJTodnnGXBELDWOySbGgYgxqNoivO31N1aJVGbx0MN1mdmNh7EI73mF8loWGMdmsdlhtxkWNY1jrYZxLOEe/ef0zOIFaAAASuklEQVToPbs36w6uc7s0Yy6bhYYxOUBEiKoSxbQu03jp2pfYc2IPPWf15LH5j7Hj2A63yzPGa5LXNpMjIyN11SobVM7kbmfizzBh8wS+2PQFZxPO0rlqZ/pF9KNsSFm3SzP5lIisVtXIjNq5sqUhImEiMkdEfnX+LZ5KmwgRWSoim0QkRkTudKNWY7JDcGAwDzd8mFm3zeLuOnfz/a7v6TS1E8NWDuPPc3+6XZ4xaXJlS0NEhgJHVXWIiAwEiqvq8yna1ARUVX8VkXBgNVBHVdP9jbItDeOL9p/az8h1I5nx2wyCA4K5r/593FPnHoIDg90uzeQT3m5puBUa24C2qrpfRMoCC1S1VgbvWQ90VdVf02tnoWF82Y5jOxixdgQL9i6gZKGSPNLgEW6reRuBfoFul2byuNweGn+qajFnWoBjF+fTaN8UGA/UU9WkVF7vA/QBqFixYpM9e/ZkT+HG5JC1B9fy/ur3WXNwDRVDK/JYo8e4vvL1+Imdu2Kyh+uhISJzgTKpvPQSMD55SIjIMVX923EN57WywAKgl6ouy2i5tqVh8gpVZdG+Rby/5n1+PfYrtcNq06dBH9pXbG/hYbKc66GR7kK93D0lIkXwBMabqjrFm74tNExek5iUyPe7vufTmE/Zc2IP1YpW46EGDxFVOQp/P3+3yzN5RK4+ewqYDvRypnsB01I2EJECwFTg394GhjF5kb+fP52rdWZal2m83eptRISBiwbSZVoXpv461e4eaHKUW1saJYBJQEVgD3CHqh4VkUjgEVV9UETuAb4ANiV7a29VTfcyWtvSMHldkiYx//f5jI4ZzZajWygXUo7769/PLdVvoYB/AbfLMz4qV++eyk4WGia/uHjM49P1nxJzOIargq/i/vr3c1uN2ygUUMjt8oyPsdAwJp9QVZbtX8anMZ+y+o/VhAWF0bteb+6odQeFAwu7XZ7xERYaxuRDqw6sYnTMaJbuX0rRgkXpWacn3et0p0iBIm6XZnI5Cw1j8rGYQzGMiRnDgtgFhASG0L12d3rU6UHJQiXdLs3kUhYaxhi2Ht3K6JjRzN0zlwC/AG6qchM96/akVli6AzCYfMhCwxhzyZ4Te/jP5v8wbec0ziac5doy13JvvXu5rtx1dqGgASw03C7DmFzp+PnjTNk+hS+3fsnBMwepXKQyPev2pHO1znbGVT5noWGMSVN8Ujxzds/h35v/zaYjmyhasCjdanaje+3uXBV8ldvlGRdYaBhjMqSqrD24ln9v/jfzf5+Pv58/UZWj6Fm3J3VL1HW7PJODvA2NgJwoxhiTO4kIjUs3pnHpxuw9sZeJWycy9depzPxtJpGlI+lZtydtyrexMa7MJbalYYz5ixMXTjD116lM3DKR/af3UzG0InfUuoPoatEUD0p1MGqTB9juKWPMFUlISmDu73OZuHki6w6tI9AvkI6VOnJHrTtofFVjPLfCMXmFhYYxJstsP7adKdunMGPnDE7Fn6Jq0ap0q9mNztU6U7RgUbfLM1nAQsMYk+XOxJ/hh90/MHn7ZDYc3kBB/4LcUPkGutXsRsNSDW3rw4dZaBhjstXWo1uZvG0yM3+byZmEM9QoXoNuNbvRqWonQguEul2euUwWGsaYHHE6/jTf7/qeydsms+XoFgoFFOLGKjfSrWY36pWoZ1sfPsJCwxiT4zYd3sSk7ZOYtWsWZxPOUiesDrfWuJUbK99IsaBibpdn0mGhYYxxzckLJ/nut++Ysn0K245tI8AvgNblWhNdLZrW5VsT6B/odokmBQsNY0yusO3oNmbsnMF3u77j8NnDFC1YlKjKUURXi+bqklfb7qtcwkLDGJOrJCQlsGz/MqbvnM783+dzPvE8lYtUpnO1znSq2onwkHC3S8zXLDSMMbnWqQunmLNnDtN3TmfVH57f12vKXEPnqp3pWKkjIQVCXK4w/7HQMMb4hH2n9jFz50xm/DaDPSf2EOQfxD8q/oPoatFcW/ZaAvxsiLycYKFhjPEpqkrM4Rhm7JzBrF2zOHHhBGFBYXSs1JHrK11Pk9JNbODEbGShYYzxWRcSL7AwdiGzd89mYexCziacpURQCTpU6sANlW+g8VWNLUCyWK4ODREJA74GKgO7gTtU9ViKNpWAqYAfEAh8qKqjMurbQsOYvOVM/Bl+2fcLP+z+gUX7FlmAZJPcHhpDgaOqOkREBgLFVfX5FG0KOPWdF5EQYCPQQlXj0uvbQsOYvOtM/BkW7VvkCZDYRZxLPEeJoBKeXViVr7cAuQK5PTS2AW1Vdb+IlAUWqGqtdNqXANYCzSw0jDHgCZCF+xby4+4fLwVIyUIl6VCxgwVIJuT20PhTVYs50wIcuzifol0F4DugOjBAVUem0V8foA9AxYoVm+zZsyfbajfG5D6pBUiJoBK0qdCGtuXb0iy8GYUCCrldZq7memiIyFygTCovvQSMTx4SInJMVdO8JZiIhAPfAp1V9Y/0lmtbGsbkb2fiz7AwdiHzfp/HL/t+4VT8KQr6F6R52ea0rdCWNhXaULJQSbfLzHVcv0e4qnZI6zUR+UNEyibbPXUwg77iRGQj0AqYksWlGmPykODAYKKqRBFVJYr4xHhW/bGKBXsXeB6xC2ApNCjZgLYV2tK2QluqF6tuQ5lcBrd2Tw0DjiQ7EB6mqs+laFPeaXNWRIoDy4HbVXVDen3bloYxJjWqyvZj2/k59mcW7F3AhsOePyXlQspdCpAmpZsQ6Jc/B1N0ffdUugv1HNieBFQE9uA55faoiEQCj6jqgyLSEXgXUECAj1R1dEZ9W2gYY7xx6MyhSwGybP8yzieeJzQwlOvKXUebCm1oEd6C4kFp7jXPc3J1aGQnCw1jzOU6E3+GZfuXsWDvAn6O/Zmj544iCHVL1KVFeAtahLeg4VUN8/RWiIWGMcZkQpImsenwJhbHLWZJ3BJiDsWQqIkUDixM0zJNaRnekhblWlAhtILbpWYpCw1jjMkCJy6cYMX+FZ4Q2beEuNOeS8UqhlakRXgLWpZryTVlrqFwYGGXK70yFhrGGJPFVJU9J/Zc2gpZeWAlZxPOEuAXQESpCFqWa0mL8BbUDquNn/i5Xe5lsdAwxphsdiHxAmsPrmVJ3BKWxC1h69GtABQpUITI0pFcU+YarilzDTWK18j1IWKhYYwxOezw2cMsjVvKygMrWXlgJbGnYgEoWrDoX0KkerHquS5ELDSMMcZl+0/tZ+UfKy+FyL5T+wAoXrA4kWUiiSwdSdMyTalWrJrrFxhaaBhjTC6z79Q+Vh1YxYoDK1h5YCX7T+8HICwo7NKWSOPSjV3ZErHQMMaYXG7fqX2s2L+CVX94guTA6QMAhAaG0qBUAyKuiiDiqggalGxAcGBwttZioWGMMT5EVYk9Fcu6g+tYe3At6w6tY8exHSiKn/hRq3gtT4iUiqDRVY0oU7hMlu7SstAwxhgfd+LCCWIOxbDu4DrWHVxHzOEYziacBeCq4KtodFUjIkp5tkZqhdW6oivWLTSMMSaPSUhKYPux7ZdCZN2hdZeOiwT5B9G2QluGtRmWqb5dHxrdGGNM1grwC6BuibrULVGXHnV6AHDg9AHWHfKESE7caMpCwxhjfFiZwmWIKhxFVOWoHFle7rq6xBhjTK5moWGMMcZrFhrGGGO8ZqFhjDHGaxYaxhhjvGahYYwxxmsWGsYYY7xmoWGMMcZreW4YERE5BOy5gi5KAoezqBxfkd/WOb+tL9g65xdXss6VVLVURo3yXGhcKRFZ5c34K3lJflvn/La+YOucX+TEOtvuKWOMMV6z0DDGGOM1C42/G+12AS7Ib+uc39YXbJ3zi2xfZzumYYwxxmu2pWGMMcZrFhrGGGO8li9DQ0SiRGSbiOwQkYGpvN5bRA6JyDrn8aAbdWaljNbZaXOHiGwWkU0i8mVO15jVvPg5D0/2M94uIn+6UWdW8mKdK4rITyKyVkRiROQmN+rMSl6scyURmees7wIRKe9GnVlFRMaKyEER2ZjG6yIiHzifR4yINM7SAlQ1Xz0Af2AnUBUoAKwH6qZo0xv4yO1ac3idawBrgeLO/FVu153d65yi/WPAWLfrzoGf82jgUWe6LrDb7bpzYJ0nA72c6X8AE9yu+wrXuTXQGNiYxus3AbMAAZoBy7Ny+flxS6MpsENVf1PVC8BXQBeXa8pu3qzzQ8BIVT0GoKoHc7jGrHa5P+fuwH9zpLLs4806K1DEmS4KxOVgfdnBm3WuC8x3pn9K5XWfoqoLgaPpNOkC/Fs9lgHFRKRsVi0/P4ZGOWBvsvlY57mUbnc27aaISIWcKS3beLPONYGaIrJYRJaJSM7ccDj7ePtzRkQqAVX4/z8svsqbdX4VuEdEYoHv8Wxh+TJv1nk9cJszfSsQKiIlcqA2t3j9fz8z8mNoeGMGUFlVGwBzgPEu15MTAvDsomqL51v3GBEp5mpFOecuYIqqJrpdSA7oDoxT1fJ4dmNMEJG8/nfgWaCNiKwF2gD7gPzws84Wef0/S2r2Acm3HMo7z12iqkdU9bwz+xnQJIdqyy4ZrjOebyPTVTVeVXcB2/GEiK/yZp0vugvf3zUF3q3zA8AkAFVdCgThGeTOV3nz+xynqrepaiPgJec5nz/pIR2X83//suXH0FgJ1BCRKiJSAM8fjOnJG6TY/xcNbMnB+rJDhusMfItnKwMRKYlnd9VvOVlkFvNmnRGR2kBxYGkO15cdvFnn34H2ACJSB09oHMrRKrOWN7/PJZNtTb0AjM3hGnPadOBe5yyqZsBxVd2fVZ0HZFVHvkJVE0SkP/ADnjMvxqrqJhEZDKxS1enA4yISDSTgOeDU27WCs4CX6/wDcL2IbMaz6T5AVY+4V/WV8XKdwfNH5it1TjvxZV6u8zN4dj0+heegeG9fXncv17kt8JaIKLAQ6OdawVlARP6LZ51KOsemXgECAVR1FJ5jVTcBO4AzwH1Zunwf/v9ijDEmh+XH3VPGGGMyyULDGGOM1yw0jDHGeM1CwxhjjNcsNIwxxnjNQsPkeiJyyos2T4pIcBYu8xYRqZuF/S25gveecv4NF5Ep6bQrJiJ9M7scY7xhoWHyiieBywoNEfFP5+Vb8Ax0lyVUtUUW9BGnql3TaVIMsNAw2cpCw/gMEWnr3A9hiohsFZGJzlWvjwPhwE8i8pPT9noRWSoia0RksoiEOM/vFpG3RWQN0E1EHhKRlSKyXkS+EZFgEWmBZySAYc69NqqJSIQzkGOMiEwVkeJOfwvEc1+OVSKyRUSuEZH/icivIvJ6stpPJZt+XkQ2OMscksp6VnFq35Cij8oX76EgIvVEZIVTX4yI1ACGANWc54aJSIh47iOxxumrS7J+tojIGPHcO+VHESnkvFZdROY6ta0RkWrO8wOczylGRP6VpT9Y41vcHhveHvbI6AGccv5tCxzHM5aOH56hP65zXtsNlHSmS+K58rewM/888M9k7Z5L1neJZNOvA4850+OArsleiwHaONODgfed6QXA2870E3iGGi8LFMQznleJFOtwI7AECHbmw1JZ3+nAvc50v2TvrYxzDwXgQ+BuZ7oAUCj5687zAUCRZJ/JDjz3WKiMZ7SDCOe1ScA9zvRy4FZnOgjP1tv1eO7DIc7nPhNo7fb/C3u488h3w4gYn7dCVWMBRGQdnj+Av6Ro0wzPrqXFIgKeP6rJx5b6Otl0fefbfDEgBM9wFH8hIkWBYqr6s/PUeDw39rno4pAkG4BN6ozzIyK/4Rk4LvlwLB2AL1T1DICqpnZfhJbA7c70BODtVNosBV4Sz13o/qeqvzrr+pfSgTdFpDWQhGd47NLOa7tUdZ0zvRqoLCKhQDlVnerUds5Zj+vxBMdap30InsEsF6ZSl8njLDSMrzmfbDqR1P8PCzBHVbun0cfpZNPjgFtUdb2I9MYZtDGTNSWlqC8pjfq8ke74Pqr6pYgsB24GvheRh/n7AJN3A6WAJqoaLyK78Ww9JK8ZPJ9joXQWJ8BbqvrpZdRv8ig7pmHyipNAqDO9DGgpItUBRKSwiNRM432hwH4RCcTzR/Zv/anqceCYiLRyXusJ/EzmzAHuu3iml4iEpdJmMZ6BFElR0yUiUhX4TVU/AKYBDfjrZwCeO/MddAKjHVApvcJU9SQQKyK3OMso6NT5A3B/suNC5UTkKq/W1uQ5FhomrxgNzBaRn1T1EJ6Rif8rIjF4duXUTuN9L+PZj78Y2Jrs+a+AASKy1jkY3AvPgfEYIALPcY3Lpqqz8ezOWuXsXns2lWZPAP1EZANp33HtDmCj00d9PLf3PIJnl9xGERkGTAQinX7uTbF+aemJZ5TnGDzHXsqo6o/Al8BSp68p/DWcTD5io9waY4zxmm1pGGOM8ZqFhjHGGK9ZaBhjjPGahYYxxhivWWgYY4zxmoWGMcYYr1loGGOM8dr/AcZ3Ac6i6HQzAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8FHX+x/HXJ42QQiAQWgIkIFaQqodn5bAAJ+UUlQ72E7Hcz1MQUUDFrgiCSlMERURFiEpV8VQQT1QsgJ50Qg2QBEgoKZ/fHzvEGEJYIJvJ7n6ej8c+mNmZ/c57krCfnfnufEdUFWOMMQYgxO0AxhhjKg4rCsYYYwpZUTDGGFPIioIxxphCVhSMMcYUsqJgjDGmkBUFY0ogIheLyG9l2N5wEXmzrNozxlesKJhyJyIbROTyYs/1F5GvnOlKIjJZRDaKyD4RWSEiHUppr7+I5IvI/mKPuiebUVW/VNUzSstcHk50uyIyRUQeP4Xt/UtE1onIXhHZKiKjRCTsZNsz/seKgqmIwoDNwKVAHDAUmCkiyaW85mtVjSn22Or7qAEnFWipqlWAJkAz4G53I5nyZEXBVDiqmq2qw1V1g6oWqOpHwHqg1Ym2JSKNRGSPiLR05uuKSLqIXObMx4vI686n4gwRme08f5mIpDnT04D6wIfOEcgDzvNtRGSpiGSKyI9H2nSWpYjIf5wjnUVAjVIy1hCRj5x29ojIlyISUsp23xWR7SKSJSJfiMg5zvO3Ab2AB5z1Pyyyz+87+71eRI75Jq+qa1U180g0oAA47UR/7sZ/WVEwFZ6I1AJOB1ae6GtVdS0wCHhTRKKA14E3VPVzZ5VpQBRwDlATGFVCG32ATUAn5wjkGRFJBD4GHgfigX8D74tIgvOy6cB3eIrBY0C/UmLeB6QBCUAtYIhns0dv11l/HtDYyfs98JaTc4Iz/YyzficRCQE+BH4EEoF2wL0ictWxwohITxHZC+zCc6QwvpTsJsDYuULjltkikldkPgLPG9yfiEg4nje6N1T111LaayMimUXmd6tqIwBVnSginYBvAAU6O23XAToA1VU1w3ndf7zM3xuYq6pznflFIrIc6Cgii4HzgMtV9RDwxZFP7ceQC9QBGqjqGuDL0jasqq8dmRaR4UCGiMSpalYJq58HJKjqo878OhGZCHQHFhyj/enAdBFpDPQFdpSWxwQWO1IwbumqqlWPPIABxVdwPuVOAw4DA4/T3rKi7R0pCEVMxHOO/CXnjRqgHrCnSEE4EQ2A65xTPplOQboIz5t7XSBDVbOLrL+xlLaeBdYAC51O3sHHWlFEQkXkKRFZ63ya3+AsOtbpqQZA3WI5h+A5IimVqv6O5+js5eOtawKHHSmYCklEBJiM582ro6rmnkJbMcCLTnvDReR9Vd2DpzM7XkSqFjmPfizFhxPeDExT1VtL2F4DoJqIRBcpDPVLaMPTsOo+PKeQ7hORJsBnIvKtqn5awmt6Al2Ay/EUhDggA8/5/2PlXK+qjY+zf8cSBhQvsCaA2ZGCqaheAc7Ccz79wCm2NRpYrqq34OkHeBVAVbfhOT//sohUE5FwEbnkGG3sABoWmX8T6CQiVzmf3iOdzukkVd0ILAdGiEiEiFwEdDpWOBG5WkROcwphFpCPp4O3pO3GAoeA3Xj6Qp44Ts7/AvtEZJCIVHayNhGR846R5RYRqelMnw08CHx6rOwm8FhRMBWO80n7dqA5sF3+uO6gVykvu0COvk7hPBHpArQH7nDW+z+gZZG2+uA5p/8rsBO49xjtPwkMdU7B/FtVN+P5xD4ESMfzifx+/vg/1RP4C7AHGAZMLSV7Y+ATYD/wNfCyqi4uabtOOxuBLcAqYFmxtiYDZzvrz1bVfOBqPD/L9Xg6jyfhOcIoyYXAzyKSDcx1HkNKyW4CjNhNdowxxhxhRwrGGGMKWVEwxhhTyIqCMcaYQlYUjDHGFPK76xRq1KihycnJbscwxhi/8t133+1S1YTjred3RSE5OZnly5e7HcMYY/yKiJR2VX0hO31kjDGmkBUFY4wxhawoGGOMKeR3fQrGmPKRm5tLWloaBw8edDuKOQGRkZEkJSURHh5+Uq+3omCMKVFaWhqxsbEkJyfjGavPVHSqyu7du0lLSyMlJeWk2rDTR8aYEh08eJDq1atbQfAjIkL16tVP6ejOioIx5pisIPifU/2dBU1RyNu1i+1PPIEePux2FGOMqbCCpijkLP+OjKnT2DZ8BDZcuDH+ITQ0lObNmxc+nnrqqRNuIzU1tfB1s2fPZtWqVSfcRkxMjNfrvvjii+Tk5JTZekU9/PDDnHvuuTRv3pwrr7ySrVu3ntDrvaKqfvVo1aqVnqydo8foqjPO1PQJE066DWOCxapVq9yOoNHR0WXaXr9+/fTdd9/1aY4GDRpoenp6ma1XVFZWVuH06NGj9fbbby9xvZJ+d3juPnjc99igOVIAqHHXQKp07Ej68y+wd+FCt+MYY05CVlYWZ5xxBr/99hsAPXr0YOLEiQDMnz+fli1b0qxZM9q1awfAlClTGDhwIEuXLiU1NZX777+f5s2bs3btWtauXUv79u1p1aoVF198Mb/++isA69ev54ILLqBp06YMHTq0xBzZ2dn8/e9/p1mzZjRp0oR33nmHMWPGsHXrVtq2bUvbtm0BuOOOO2jdujXnnHMOw4YNAyhxvYULF3LBBRfQsmVLrrvuOvbv33/UNqtUqfKn7fuizyeovpIqItR58glyt2xh6wODCK9Tl8pNm7gdy5gKb/sTT3Bo9a9l2mals86k9pDS7/R54MABmjdvXjj/4IMPcsMNNzB27Fj69+/PPffcQ0ZGBrfeeivp6enceuutfPHFF6SkpLBnz54/tfXXv/6Vzp07c/XVV9OtWzcA2rVrx6uvvkrjxo355ptvGDBgAJ999hn33HMPd9xxB3379mXcuHElZps/fz5169bl448/BjzFKi4ujhdeeIHFixdTo0YNAEaOHEl8fDz5+fm0a9eOn376ibvvvvtP6+3atYvHH3+cTz75hOjoaJ5++mleeOEFHnnkkaO2+9BDDzF16lTi4uJYvHjxUctPVVAdKQCEVKpE0rixhMXHkzZgALnbt7sdyRhzDJUrV2bFihWFjxtuuAGAK664gqZNm3LnnXcyadIkAJYtW8Yll1xS+P38+Pj4Utvev38/S5cu5brrrqN58+bcfvvtbNu2DYAlS5bQo0cPAPr06VPi65s2bcqiRYsYNGgQX375JXFxJd/2eubMmbRs2ZIWLVqwcuXKEvs0li1bxqpVq7jwwgtp3rw5b7zxBhs3ljx+3ciRI9m8eTO9evVi7Nixpe7jyQiqI4UjwmrUIOnVV9jYoyeb7xhA8pvTCImOdjuWMRXW8T7Rl7eCggJWr15NVFQUGRkZJCUlnVQbVatWZcWKFSUuP96pmdNPP53vv/+euXPnMnToUNq1a3fUJ/v169fz3HPP8e2331KtWjX69+9f4jUEqsoVV1zB22+/7XX+Xr160bFjR0aMGOH1a7wRdEcKR0SefjqJL47i0G+/seXf96P5+W5HMsZ4adSoUZx11llMnz6dG2+8kdzcXNq0acMXX3zB+vXrAY46fQQQGxvLvn37AM/5+ZSUFN59913A88b8448/AnDhhRcyY8YMAN56660SM2zdupWoqCh69+7N/fffz/fff3/UNvbu3Ut0dDRxcXHs2LGDefPmlZilTZs2LFmyhDVr1gCe/oL//e9/R23z999/L5yeM2cOZ555prc/Mq8FbVEAiLn4Ymo9NIT9ixez89nn3I5jjCnmSJ/CkcfgwYP57bffmDRpEs8//zwXX3wxl1xyCY8//jgJCQlMmDCBa665hmbNmhWeaiqqe/fuPPvss7Ro0YK1a9fy1ltvMXnyZJo1a8Y555zDnDlzABg9ejTjxo2jadOmbNmypcRsP//8M+effz7NmzdnxIgRhR3St912G+3bt6dt27Y0a9aMFi1acOaZZ9KzZ08uvPDCwtcXXS8hIYEpU6bQo0cPzj33XC644ILCTu+iBg8eTJMmTTj33HNZuHAho0ePLosf85+I+tl39lu3bq1lfZOd7Y+PJOPNN6k9YgTVbri+TNs2xl+tXr2as846y+0Y5iSU9LsTke9UtfXxXhuUfQrF1Ro8iMObNrL90UeJqJdE9F//6nYkY4xxRVCfPjpCwsJIfOEFKjVsSNo993Jo7Vq3IxljjCusKDhCY2Ko9+orSKVKbP7nHeRlZLgdyRjX+dvpZXPqvzMrCkWEJyZSb9xY8nbuJO3OgRTY4HkmiEVGRrJ7924rDH5EnfspREZGnnQbPutTEJHXgKuBnap61GXDItILGAQIsA+4Q1V/9FUeb1Vu1oy6Tz3Jln/9H9uGDqXu00/b8MEmKCUlJZGWlkZ6errbUcwJOHLntZPly47mKcBYYOoxlq8HLlXVDBHpAEwA/uLDPF6r0qEDhzdsIH30GCKSk0kYMMDtSMaUu/Dw8JO+e5fxXz4rCqr6hYgkl7J8aZHZZcDJlzYfqP7Pf3J4wwZ2jXmJSsnJVOnY0e1IxhjjcxWlT+FmYN6xForIbSKyXESWl9ehrIhQ+7HHqNyqFVsHP8iBY1wKb4wxgcT1oiAibfEUhUHHWkdVJ6hqa1VtnZCQUG7ZQiIiSBr7EmG1arH5zoEcTiv5ykZjjAkUrhYFETkXmAR0UdXdbmY5lrBq1ag3/lU0N5fNN99M3u4KGdMYY8qEa0VBROoDs4A+qnr0yE8VSKWGDan36ivk7tjB5ttuJ39/ttuRjDHGJ3xWFETkbeBr4AwRSRORm0XknyLyT2eVR4DqwMsiskJEynZAozIW1bIliS+O4uCvv5J2l13DYIwJTDYg3gnKnD2bbYMfJPaqq0h84XkkNNS1LMYY4y1vB8RzvaPZ31Tt2pWaDzzAvgUL2P7YY3a1pzEmoNgoqSeh+k03kr9nN7snTSaseg0S7hrodiRjjCkTVhROUsJ995G3J4Nd48YRWj2e+J493Y5kjDGnzIrCSRIR6jw6gvzMTHY89jhh1apRpUMHt2MZY8wpsT6FU+C5D8PzVG7Zki0PDCJ76dLjv8gYYyowKwqnKCQyknqvvEyllBQ2D7yLAz//7HYkY4w5aVYUykBolSrUmzSRsGrV2Hzb7Rxat97tSMYYc1KsKJSR8Jo1qT95EoSEsOmWm8ndscPtSMYYc8KsKJShiORk6k0YT0HWXjbfcgv5mZluRzLGmBNiRaGMVT7nHJLGjePwho1s/ucdFBw44HYkY4zxmhUFH4hu8xfqPv8cB376ibR770Vzc92OZIwxXrGi4CNVrryS2sOGkf2fL9j60ENoQYHbkYwx5rjs4jUfqnbD9eRn7CH9xdGExlWl1pAHERG3YxljzDFZUfCx6rffTn5GJnveeAMJDaXmoAesMBhjKiwrCj4mItQcPAjNy2PPlClIWCgJ991nhcEYUyFZUSgHIkKtoQ+hBfnsnjQZQsNIuPceKwzGmArHikI5ERFqP/ww5OWze/x4JCzMhtw2xlQ4VhTKkYSEUHvEcDQ/n13jxkFoCAkDBrgdyxhjCllRKGcSEkKdxx6F/Hx2jXkJCQ2jxu23uR3LGGMAKwqukNBQ6jwxEs3PJ33UKCQslOo33+x2LGOMsaLgFgkNpe5TT0JBPjuffQ5CQ6nev7/bsYwxQc6KgoskLIy6zzyD5hew86mnkdAw4vv0djuWMSaI+WyYCxF5TUR2isgvx1guIjJGRNaIyE8i0tJXWSoyCQsj8blnib3icnaMHMme6dPdjmSMCWK+HPtoCtC+lOUdgMbO4zbgFR9mqdAkPJzE558n5m9/Y8ejj5Hxzky3IxljgpTPioKqfgHsKWWVLsBU9VgGVBWROr7KU9FJRASJL44i5tJL2T5sGJnvv+92JGNMEHJzlNREYHOR+TTnuaOIyG0islxElqenp5dLODeERESQOGY00RdfzLahD5P5wWy3IxljgoxfDJ2tqhNUtbWqtk5ISHA7jk+FVKpE0ktjiL7gArYNGUJWaqrbkYwxQcTNorAFqFdkPsl5LuiFREaSNG4sUX/5C1sHP0jWhx+5HckYEyTcLAqpQF/nW0htgCxV3eZingolpHJl6r08jqhWrdg6aJD1MRhjyoXPrlMQkbeBy4AaIpIGDAPCAVT1VWAu0BFYA+QAN/oqi78KiYqi3oTxpN11N9seGkrB/v3E9+vndixjTADzWVFQ1R7HWa7Anb7afqAIqVyZpJfHsfXf97PjyafI37+fGgMG2LDbxhif8IuO5mAXEhFB4gvPE/ePf7DrpbHsfPoZPDXVGGPKlg1z4SckLIw6Ix8nJDqaPVOmUJC9n9rDhyOhoW5HM8YEECsKfkRCQqj10BBCYqLZ/ep4CrKzqfv000h4uNvRjDEBwoqCnxERat57L6ExMex87nkKsnNIHP0iIZGRbkczxgQA61PwU9VvuYXaw4ex/4sv2Hzb7eTvz3Y7kjEmAFhR8GPVunen7jPPkPPdd2y66SbyMzPdjmSM8XNWFPxcXKerSRozmkOrV7OxT1/yAnhsKGOM71lRCACx7dpRb8J4Dm/ZwobevcndYqOFGGNOjhWFABF9wQXUnzyJ/IxMNvTqzaF1692OZIzxQ1YUAkhUixY0eGMKevgwG3v35uCvv7odyRjjZ6woBJjIs86iwZtvIhERbOzbj5wffnA7kjHGj1hRCECVGqaQ/NabhFaryqabbmbf4sVuRzLG+AkrCgEqPDGR5DffpFJKCml3DiRjxjtuRzLG+AErCgEsLCGBBtOmEn3xRWwfPpydz7+AFhS4HcsYU4FZUQhwIdHR1Bs3jqrXX8/uiRPZ+sAgCg4fdjuWMaaCsrGPgoCEhVF7xHDCExNJHzWKvJ07SRr7EqFVqrgdzRhTwdiRQpAQEWrcfht1n32GnB9+YEPPnuRu3ep2LGNMBWNFIcjEdepE/YkTyduxkw03dOfgqlVuRzLGVCBWFIJQdJu/kDz9LQgLY2PvPuz/8ku3IxljKggrCkGqUuPGJM+YQXiDBmz+5x1kvvee25GMMRWAFYUgFl6rJg2mTSP6ggvYNvRh0seMsXs/GxPkrCgEudCYaOq98jJx3a5l18uvsG3wYNS+smpM0LKvpBokPJw6jz1GRGIi6aPHkLtzJ0ljxhAaG+t2NGNMOfPpkYKItBeR30RkjYgMLmF5fRFZLCI/iMhPItLRl3nMsYkINe64gzpPPUnOt8vZ2LMXudu2uR3LGFPOfFYURCQUGAd0AM4GeojI2cVWGwrMVNUWQHfgZV/lMd6p2rUr9SdOIHfbNjbc0J0Dv6x0O5Ixphz58kjhfGCNqq5T1cPADKBLsXUUOHJZbRxgV1NVANEXXECDt96C0FA29upF1kcfux3JGFNOfFkUEoHNRebTnOeKGg70FpE0YC5wV0kNichtIrJcRJan2z2Iy0XkGaeT8t67RDZpwtZ//9szmF5+vtuxjDE+5va3j3oAU1Q1CegITBORozKp6gRVba2qrRMSEso9ZLAKq16dBq+/VjiYXtqAO8nft8/tWMYYH/JlUdgC1Csyn+Q8V9TNwEwAVf0aiARq+DCTOUESEUGdR0dQe9gj7F+yhA03dOfQerv/szGBypdF4VugsYikiEgEno7k1GLrbALaAYjIWXiKgp0fqoCq9ehB/dcmk5+RwYbrb7ChMYwJUD4rCqqaBwwEFgCr8XzLaKWIPCoinZ3V7gNuFZEfgbeB/mqX1FZY0eefT/K77xJety6bb/8nuye/ZldAGxNgxJv/1CIyC5gMzFNVV2/d1bp1a12+fLmbEYJeQU4OWx8cwr4FC6jSuRN1Hn2UkMhIt2MZY0ohIt+pauvjreftkcLLQE/gdxF5SkTOOKV0xq+FREWR+OIoatx9F3tTP2Rjn77k7tjhdixjTBnwqiio6ieq2gtoCWwAPhGRpSJyo4iE+zKgqZhEhIQBA0gaN5bDa9eyvls3DqxY4XYsY8wp8rpPQUSqA/2BW4AfgNF4isQinyQzfiG2XTsazHibkMjKbOzTl8xZH7gdyRhzCrwqCiLyAfAlEAV0UtXOqvqOqt4FxPgyoKn4Ik8/neSZ71C5dSu2DRnC9ieeQPPy3I5ljDkJ3h4pjFHVs1X1SVX90yhp3nRcmMAXVq0a9SdOpFrfPmRMncbm224jLyPD7VjGmBPk7dDZ1UTkmmLPZQE/q+rOMs5k/JSEhVF7yBAizziT7cOHs/7aa0kaNYrKzZq5Hc0Y4yVvjxRuBiYBvZzHRGAQsERE+vgom/FTVa+9hgbT30IQNvTuw56p0+x6BmP8hLdFIRw4S1WvVdVr8QyFrcBf8BQHY/6kctOmpMx6n5iLLmLHE0+w5Z57bdwkY/yAt0UhSVWLfhF9J1BPVfcAuWUfywSC0KpVSXp5HDXvv599n37K+m7dOLh6tduxjDGl8LYofC4iH4lIPxHpB8xxnosGMn0Xz/g7EaH6zTfRYNpU9OAhNtzQnYyZM+10kjEVlLdF4U7gdaC585gK3Kmq2ara1lfhTOCIatmSlA9mEXXeeWx/ZBhbBw2iIDvb7VjGmGKO++0j57aanzhv/u/7PpIJVGHx8dSbMJ5d48eza+w4Dq5cRdLoF6l02mluRzPGOI57pKCq+UCBiMSVQx4T4CQ0lIQBAzzDcGdmsv6668maM8ftWMYYh7enj/YDP4vIZBEZc+Thy2AmsEW3aUPKB7Oo3KQJWwcNZtvDD1Nw8KDbsYwJet5evDbLeRhTZsJr1qT+66+R/tJYdo8fz4GffyHpxVFEJCe7Hc2YoOXV/RQARKQyUF9Vf/NtpNLZ/RQC0/4vvmDr/Q+geXnUGfk4Vdq3dzuSMQGlTO+nICKdgBXAfGe+uYgUv7WmMSct5pJLSPlgFpVOO40t9/6L7Y8+aqeTjHGBt30Kw4Hzca5JUNUVQEMfZTJBKrxuXRpMm0r8jTeSMf1t1l/bjYOrVrkdy5ig4m1RyFXVrGLPuXpbThOYJCKCWoMeoP5rkynYt4/1N3Rn96RJaH6+29GMCQreFoWVItITCBWRxiLyErDUh7lMkIv+619JmTOb2LZt2fnc82y68SZyt207/guNMafE26JwF3AOcAh4G9gL3OurUMaA5x4NiaNfpM7IkRz85RfWdelK1scfux3LmIDm9bePKgr79lFwOrxpE1vvf4ADP/5Ilc6dqP3ww4TGxrodyxi/UdbfPjpdRCaIyEIR+ezIw4vXtReR30RkjYgMPsY614vIKhFZKSLTvcljgk9E/fo0eOtNagwcyN6P57K+S1dy7MOBMWXOqyMFEfkReBX4Dijs8VPV70p5TSjwP+AKIA34FuihqquKrNMYmAn8TVUzRKTm8e7kZkcKJueHH9j6wCByt2yh+q23kjDwTiQ83O1YxlRoZXqkAOSp6iuq+l9V/e7I4zivOR9Yo6rrVPUwMAPoUmydW4FxqpoBYLf2NN6IatGClA8+IK5rV3aPH8+GHj05tH6927GMCQjeFoUPRWSAiNQRkfgjj+O8JhHYXGQ+zXmuqNOB00VkiYgsE5ESL2MVkdtEZLmILE9PT/cysglkoTHR1H1iJImjR5O7eTPrr7mWjHfsPg3GnCpvi0I/4H48X0P9znmUxTmcMKAxcBnQA5goIlWLr6SqE1S1taq2TkhIKIPNmkBR5aorSUmdQ1SL5mwfNoy0OweSt2eP27GM8VteFQVVTSnhcbwrmrcA9YrMJznPFZUGpKpqrqqux9MH0djb8MYAhNeqRb1Jk6g5eBDZX37Juk6d2Tt/gduxjPFLpRYFEXmgyPR1xZY9cZy2vwUai0iKiEQA3YHi4yXNxnOUgIjUwHM6aZ1XyY0pQkJCqN6/P8nvvUd4rVpsufde0u65l7xdu9yOZoxfOd6RQvci0w8WW1bqMJaqmgcMBBYAq4GZqrpSRB4Vkc7OaguA3SKyClgM3K+qu71Ob0wxkWecTvLMd0j417/Y/9lnrLu6E1kffmR9DcZ4qdSvpIrID6raovh0SfPlxb6Sarx1aO1atg15iAM//khM27bUHj6M8Fq13I5ljCvK6iupeozpkuaNqVAqNWpEg+lvUXPQILKXLmXd1Z3IfH+WHTUYU4rjFYVmIrJXRPYB5zrTR+ablkM+Y06JhIZS/cb+NJwzm8gzzmDbQw+x+ZZbyd261e1oxlRIpRYFVQ1V1SqqGquqYc70kXm7hNT4jYjkZOpPfYNaDw8l54cfWHd1JzJmzEALbAR4Y4ry9joFY/yehIQQ36sXDVNTqdy8GduHj2DTjTdxeNMmt6MZU2FYUTBBJyIpkXqTJ1P7sUc5uHIl67p0Zc/UqXYjH2OwomCClIhQ7brraPjRh0Sdfx47nniSjb37cGidjaFkgpsVBRPUwmvXpt6rr1L36ac4tG4d67t2JX3sOAoOHXI7mjGusKJggp6IENelC40++pDYy9uxa+xY1nfuwv4lS9yOZky5s6JgjCMsIYHEF16g3uRJKMrmm29hy//dR+5OG9HdBA8rCsYUE3PhhTRMTaXGwIHs++QT1nX8O3umvWkd0SYoWFEwpgQhlSqRMPBOGn6YSuVmzdgxciQbrrueAz//7HY0Y3zKioIxpYho0IB6kyaSOOoF8tLT2XD9DWwbMYL8vXvdjmaMT1hRMOY4RIQqHTrQcN5cqvXpTeY7M1nboSNZqak2jpIJOFYUjPFSaEwMtYcMIeW9dwlPSmTrA4PY1P9GDq2zW4CYwGFFwZgTFHn22SS//Ta1R4zg4OrVrOvSlZ2jXqTgwAG3oxlzyqwoGHMSJCSEajdcT6N5c4n7+9/ZPX685zagixbZKSXj16woGHMKwqpXp+5TT9Jg2lRCKkey5a672dT/Rg7+9pvb0Yw5KVYUjCkDUeedR8oHH1B72CMc+u031v/jGrY9Moy83XZ3WeNfrCgYU0YkLIxqPXrQaMF84vv0IXPWLNZe1Z7dk1+j4PBht+MZ4xUrCsaUsdC4OGo9OJiGqalEtW7NzmefZd3Vndj36afW32AqPCsKxvhIpYYp1Hv1FepNmoREhJN250A23XiT9TeYCs2KgjE+FnPRhTScPZtaDw/l0OrV1t9gKjSfFgURaS8iv4nIGhEZXMp614qIikiaJUCZAAATKklEQVRrX+Yxxi0SFkZ8r140WriA+D69/+hveO111PobTAXis6IgIqHAOKADcDbQQ0TOLmG9WOAe4BtfZTGmovD0NzxIw9Q5RLVqxc5nnmFtJ+tvMBWHL48UzgfWqOo6VT0MzAC6lLDeY8DTwEEfZjGmQqnUsCH1xr9KvYkTkTCnv6FvPw6sWOF2NBPkfFkUEoHNRebTnOcKiUhLoJ6qflxaQyJym4gsF5Hl6enpZZ/UGJfEXHwRDefMptYjD3No3To2dO9B2l13cWjtWrejmSDlWkeziIQALwD3HW9dVZ2gqq1VtXVCQoLvwxlTjiQsjPiePTlt4QIS7rmb7KVfs65TZ7YOHUrutm1uxzNBxpdFYQtQr8h8kvPcEbFAE+BzEdkAtAFSrbPZBKuQ6Ghq3HEHjT5ZRHyfPuydk8raq9qz45lnycvIcDueCRK+LArfAo1FJEVEIoDuQOqRhaqapao1VDVZVZOBZUBnVV3uw0zGVHhh1apR68HBNJo/jyodO7Ln9ddZe+VV7Hp1PAU5OW7HMwHOZ0VBVfOAgcACYDUwU1VXisijItLZV9s1JlCEJyZS96knSZkzm6jzziP9xRdZc9VVZMyYgebmuh3PBCjxt6/BtW7dWpcvt4MJE3xyvv+enc+/wIHvviOiQQMS7r2H2KuuQkLsGlRzfCLynaoe9/S8/TUZ4yeiWrakwZvTSHrlZSQigi3/+j82XHc9+5cscTuaCSBWFIzxIyJCbNu2pMz+gLpPP0V+Rgabb76Fjf36k2NH0KYMWFEwxg9JaChxXbrQcP48ag15kENr17Kxdx829r+RnG+/dTue8WNWFIzxYyEREcT37ctpixZS68HBHFqzho19+nqOHKw4mJNgRcGYABBSuTLx/fr9URzWrS0sDtn//a/b8YwfsaJgTAD5ozgs8pxWWreWTX37WXEwXrOiYEwAComMdE4rFSsOfftZcTClsqJgTAA7qjisX/dHcfjGioM5mhUFY4LAn4vDEA6vX8+mfv3Y2Kcv2cu+sXs5mEJWFIwJIp7i0IdGixZ6isOGDWzq35+N3Xuw75NP0IICtyMal1lRMCYIFS0OtYc9Qt7u3aQNvIt1V3cic9YHdovQIGZFwZggFhIZSbUePWg0fx51n38OiYhg25AhrLnyKnZPmUJBdrbbEU05swHxjDGFVJXsr75i98RJ5Pz3v4TExRHfqyfVevcmLD7e7XjmFHg7IJ4VBWNMiQ6sWMGuSZPY/8mnSGQkVbt1o/qN/QlPTDz+i02FY0XBGFMmDq1dy+7Jr5H14YdQUECVv3ek+s23EHnG6W5HMyfAioIxpkzlbt/OnilvkDFzJpqTQ8yll1L91luo3KoVIuJ2PHMcVhSMMT6Rn5nJnunTyZj2JvkZGUQ2bUp8375UuepKJCLC7XjmGKwoGGN8quDAATI/+ICMqdM4vGEDYTVrUq1nT6recD1h1aq5Hc8UY0XBGFMutKCA7K++Ys8bU8lesgSpVIm4Ll2I79uHSqed5nY847CiYIwpd4d+/509U6eRlZqKHjpE9IUXEt+vL9EXXWT3knaZFQVjjGvyMjLIfGcmGdOnk7dzJxEpKcT37UNcly6EREW5HS8oWVEwxrhODx9m74KF7HnjDQ7+8gshVapQ7frrqNarF+F16rgdL6hYUTDGVBiqyoEfVrBn6lT2LVwIIsReeQXxvXtTuWVL+0prOfC2KIT5OER7YDQQCkxS1aeKLf8/4BYgD0gHblLVjb7MZIwpfyJCVMsWRLVsQe6WLeyZPp3Md99j37z5VGrcmKo9uhPXuTOhMTFuRw16PjtSEJFQ4H/AFUAa8C3QQ1VXFVmnLfCNquaIyB3AZap6Q2nt2pGCMYGhICeHvXPnkvH2DA6uXIlERRHXqRPVenQn8swz3Y4XcLw9UvDl1wHOB9ao6jpVPQzMALoUXUFVF6tqjjO7DEjyYR5jTAUSEhVF1W7dSHn/PZLfnUmV9u3Jmj2b9V3/wYbuPciaM4eCQ4fcjhl0fFkUEoHNRebTnOeO5WZgXkkLROQ2EVkuIsvT09PLMKIxpiKo3LQpdZ8YSeMv/kOtBweTn5nJ1kGDWXPpZex45lkOb7SzyuWlQnxxWER6A62BZ0tarqoTVLW1qrZOSEgo33DGmHITGhdHfL9+NJw3l/pTXifq/PPZ88YbrL2qPZtuvsVzd7i8PLdjBjRfdjRvAeoVmU9ynvsTEbkceAi4VFXtWNEYg4gQ3aYN0W3akLtjJ5nvvUvmzHdJG3gXYbVrU/W6blTtdh3htWq6HTXg+LKjOQxPR3M7PMXgW6Cnqq4ssk4L4D2gvar+7k271tFsTHDSvDz2f/45GW/PIHvJEggJIebii4nrdi2xl15qg/EdR4W4TkFEOgIv4vlK6muqOlJEHgWWq2qqiHwCNAW2OS/ZpKqdS2vTioIx5vDGjWS+P4usDz4gLz2d0Ph44rp0oWq3a6nUqJHb8SqkClEUfMGKgjHmCM3LY/9XX5H1/vvsW/w55OVRuVkz4rpdS5UOHQmNiXY7YoVhRcEYE1Tydu8ma04qme+/z+G1a5HKlanSvj1Vu11rV01jRcEYE6RUlQMrVpA1axZ7P55LQU4OEcnJxF17DVW7diUsSL/BaEXBGBP0CrKz2Tt/AZmzZnHgu+8gNJSYSy+l6jX/IOaSS4Kqc9qKgjHGFHFo3XqyPphF5uzZ5KfvIjQujtiOHYjr3JnKzZsH/OklKwrGGFMCzc0le+lSslI/ZN+nn6IHDxJevz5xnToR17kTEQ0auB3RJ6woGGPMceTv38++hYvI+jCVnGXfgCqVmzWjSpfOVOnQIaDuNW1FwRhjTkDu9u3s/egjsuakcuj33yEsjJhLLiGuc2di2l5GSKVKbkc8JVYUjDHmJB389Vey5qSy96OPyEtPJyQ2lirtr/L0P7Rq5Zf3m7aiYIwxp0jz88letoy9qR+yd9EiNCeH8Lp1ie3QniodOhJ5ztl+00FtRcEYY8pQQU4O+z79jKyPPiR7yVLIyyO8QX2qdOhAlQ4dqXR64wpdIKwoGGOMj+RnZrLvk0/YO3ce2cuWQUEBEY0aeQpExw5UatjQ7YhHsaJgjDHlIG/3bvYtXMjeufPIWb4cVKl0xhmFBSKifn23IwJWFIwxptzl7tjJvgUL2DtvHgd++AGAyCZNnFNM7QmvW9e1bFYUjDHGRblbt7J33nz2zpvHwV9+AaBy8+bEXnUVsVdcTkRS+d6S3oqCMcZUEIc3bfIUiPnzObR6NQCVzj6LKldcQewVVxDRqJHPO6mtKBhjTAV0ePNm9i36hH2LFhWeYopISSHWKRCRTc7xSYGwomCMMRVc7o6d7P/sU/YtWkT2N/+F/HzC6tQh9vLLib3icqJatUJCQ8tkW1YUjDHGj+RnZrJv8eeeAvHVV+jhw4TGxxPb7m/EXnEFUW3aEHIKQ31bUTDGGD9VkJ3N/i+/ZN/CRez//HMKcnIIiYmhxoABVL/pxpNq09uiEHZSrRtjjPGZkOhoqrRvT5X27Sk4dIjsr79m36JFhNep7fNtW1EwxpgKLKRSJWIvu4zYyy4rn+2Vy1aMMcb4BZ8WBRFpLyK/icgaERlcwvJKIvKOs/wbEUn2ZR5jjDGl81lREJFQYBzQATgb6CEiZxdb7WYgQ1VPA0YBT/sqjzHGmOPz5ZHC+cAaVV2nqoeBGUCXYut0Ad5wpt8D2klFHnvWGGMCnC+LQiKwuch8mvNcieuoah6QBVQv3pCI3CYiy0VkeXp6uo/iGmOM8YuOZlWdoKqtVbV1QkKC23GMMSZg+bIobAHqFZlPcp4rcR0RCQPigN0+zGSMMaYUviwK3wKNRSRFRCKA7kBqsXVSgX7OdDfgM/W3S6yNMSaA+HSYCxHpCLwIhAKvqepIEXkUWK6qqSISCUwDWgB7gO6quu44baYDG08yUg1g10m+1l/ZPgcH2+fgcCr73EBVj3v+3e/GPjoVIrLcm7E/Aontc3CwfQ4O5bHPftHRbIwxpnxYUTDGGFMo2IrCBLcDuMD2OTjYPgcHn+9zUPUpGGOMKV2wHSkYY4wphRUFY4wxhQKyKHgxZHd/EUkXkRXO4xY3cpal4+2zs871IrJKRFaKyPTyzljWvPg9jyryO/6fiGS6kbMsebHP9UVksYj8ICI/OdcK+TUv9rmBiHzq7O/nIpLkRs6yIiKvichOEfnlGMtFRMY4P4+fRKRlmQZQ1YB64LlQbi3QEIgAfgTOLrZOf2Cs21nLeZ8bAz8A1Zz5mm7n9vU+F1v/LjwXULqe3ce/5wnAHc702cAGt3OXwz6/C/Rzpv8GTHM79ynu8yVAS+CXYyzvCMwDBGgDfFOW2w/EIwVvhuwONN7s863AOFXNAFDVneWcsayd6O+5B/B2uSTzHW/2WYEqznQcsLUc8/mCN/t8NvCZM724hOV+RVW/wDPCw7F0AaaqxzKgqojUKavtB2JR8GbIboBrnUOv90SkXgnL/Yk3+3w6cLqILBGRZSLSvtzS+Ya3v2dEpAGQwh9vHP7Km30eDvQWkTRgLp4jJH/mzT7/CFzjTP8DiBWRo4bgDyBe/+2fjEAsCt74EEhW1XOBRfxxo59AFobnFNJleD41TxSRqq4mKj/dgfdUNd/tIOWgBzBFVZPwnGaYJiKB/v/838ClIvIDcCme0ZeD4XftE4H4x3LcIbtVdbeqHnJmJwGtyimbr3gzTHkakKqquaq6HvgfniLhr7zZ5yO64/+njsC7fb4ZmAmgql8DkXgGUfNX3vx/3qqq16hqC+Ah5zm//1JBKU7kb/+EBWJROO6Q3cXOv3UGVpdjPl/wZpjy2XiOEhCRGnhOJ5U6Im0F580+IyJnAtWAr8s5ny94s8+bgHYAInIWnqLgz7cr9Ob/c40iR0MPAq+Vc8bylgr0db6F1AbIUtVtZdV4WFk1VFGoap6IDAQW8MeQ3SuLDtkN3C0inYE8PB06/V0LXAa83OcFwJUisgrPofX9quq3NzTycp/B8yYyQ52vbfgzL/f5PjynBv+Fp9O5vz/vu5f7fBnwpIgo8AVwp2uBy4CIvI1nn2o4fUPDgHAAVX0VT19RR2ANkAPcWKbb9+O/F2OMMWUsEE8fGWOMOUlWFIwxxhSyomCMMaaQFQVjjDGFrCgYY4wpZEXBuE5E9nuxzr0iElWG2+wqImeXYXtLT+G1+51/64rIe6WsV1VEBpzsdozxhhUF4y/uBU6oKIhIaCmLu+IZSK1MqOpfy6CNrararZRVqgJWFIxPWVEwFYaIXOaMh/+eiPwqIm85V23eDdQFFovIYmfdK0XkaxH5XkTeFZEY5/kNIvK0iHwPXCcit4rItyLyo4i8LyJRIvJXPFeyP+vca6GRiDR3Bgr8SUQ+EJFqTnufi+e+DMtFZLWInCcis0TkdxF5vEj2/UWmB4nIz842nyphP1Oc7D8XayP5yBj6InKOiPzXyfeTiDQGngIaOc89KyIx4rmPwPdOW12KtLNaRCaK594ZC0WksrPsNBH5xMn2vYg0cp6/3/k5/SQiI8r0F2v8i9tjh9vDHsB+59/LgCw8Y7mE4Bma4iJn2QaghjNdA8+Vq9HO/CDgkSLrPVCk7epFph8H7nKmpwDdiiz7CbjUmX4UeNGZ/hx42pm+B89Q1HWASnjGk6pebB86AEuBKGc+voT9TQX6OtN3FnltMs4Y+sBLQC9nOgKoXHS583wYUKXIz2QNnjH2k/Fcrd/cWTYT6O1MfwP8w5mOxHP0dSWe+zCI83P/CLjE7b8Le7jzCLhhLozf+6+qpgGIyAo8b3BfFVunDZ5TP0tEBDxvmkXHNnqnyHQT59N4VSAGz3AJfyIicUBVVf2P89QbeG7ccsSRITN+BlaqM86MiKzDMzBZ0eFCLgdeV9UcAFUtaVz8C4FrnelpwNMlrPM18JB47iI2S1V/d/b1T9GBJ0TkEqAAz/DJtZxl61V1hTP9HZAsIrFAoqp+4GQ76OzHlXgKww/O+jF4Bkv8ooRcJsBZUTAVzaEi0/mU/DcqwCJV7XGMNrKLTE8BuqrqjyLSH2dQwJPMVFAsX8Ex8nmj1PFlVHW6iHwD/B2YKyK3c/QAhr2ABKCVquaKyAY8n/6LZgbPz7FyKZsT4ElVHX8C+U2Asj4F4y/2AbHO9DLgQhE5DUBEokXk9GO8LhbYJiLheN5Ej2pPVbOADBG52FnWB/gPJ2cRcOORb0qJSHwJ6yzBM1AfxTIVEpGGwDpVHQPMAc7lzz8D8NxZbadTENoCDUoLpqr7gDQR6epso5KTcwFwU5F+mUQRqenV3pqAY0XB+IsJwHwRWayq6XhGtn1bRH7Cc6rlzGO87mE859GXAL8WeX4GcL94bnDfCOiHp+P5J6A5nn6FE6aq8/GcblrunP76dwmr3QPcKSI/c+w7Zl0P/OK00QTP7Rd34zll9ouIPAu8BbR22ulbbP+OpQ+eUYJ/wtP3UVtVFwLTga+dtt7jz8XHBBEbJdUYY0whO1IwxhhTyIqCMcaYQlYUjDHGFLKiYIwxppAVBWOMMYWsKBhjjClkRcEYY0yh/wequhKmOlEsogAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (6, 4)\n", - "prop_cycle = pylab.rcParams['axes.prop_cycle']\n", - "colors = prop_cycle.by_key()['color']\n", - "for j in range(energies.shape[0]):\n", - " label = 'Ground state' if j ==0 else 'Excited state {}'.format(j)\n", - " pylab.plot(distances, energies[j], color=colors[j], label=label)\n", - " pylab.xlabel('Interatomic distance')\n", - " pylab.ylabel('Energy')\n", - " pylab.title('H2 {}'.format(label))\n", - " pylab.legend(loc='upper right')\n", - " pylab.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_iqpe.ipynb b/community/chemistry/h2_iqpe.ipynb deleted file mode 100644 index 75151fbee..000000000 --- a/community/chemistry/h2_iqpe.ipynb +++ /dev/null @@ -1,173 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*H2 ground state energy computation using Iterative QPE*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using IQPE (Iterative Quantum Phase Estimation) algorithm. It is compared to the same energies as computed by the ExactEigensolver\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the qiskit_chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver. See the PYSCF chemistry driver readme if you need to install the external PySCF library that this driver requires." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit import Aer\n", - "from qiskit.chemistry import QiskitChemistry\n", - "import time\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'transformation': 'full', 'qubit_mapping': 'parity'},\n", - " 'algorithm': {'name': ''},\n", - " 'initial_state': {'name': 'HartreeFock'},\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "algorithms = [\n", - " {\n", - " 'name': 'IQPE',\n", - " 'num_iterations': 16,\n", - " 'num_time_slices': 3000,\n", - " 'expansion_mode': 'trotter',\n", - " 'expansion_order': 1,\n", - " },\n", - " {\n", - " 'name': 'ExactEigensolver'\n", - " }\n", - "]\n", - "\n", - "backends = [\n", - " Aer.get_backend('qasm_simulator'),\n", - " None\n", - "]\n", - "\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(algorithms), steps+1])\n", - "hf_energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import concurrent.futures\n", - "import multiprocessing as mp\n", - "import copy\n", - "\n", - "def subrountine(i, qiskit_chemistry_dict, d, backend, algorithm):\n", - " solver = QiskitChemistry()\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", - " qiskit_chemistry_dict['algorithm'] = algorithm\n", - " result = solver.run(qiskit_chemistry_dict, backend=backend)\n", - " return i, d, result['energy'], result['hf_energy']" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "start_time = time.time()\n", - "max_workers = max(4, mp.cpu_count())\n", - "with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:\n", - " futures = []\n", - " for j in range(len(algorithms)):\n", - " algorithm = algorithms[j]\n", - " backend = backends[j]\n", - " for i in range(steps+1):\n", - " d = start + i*by/steps\n", - " future = executor.submit(\n", - " subrountine, \n", - " i, \n", - " copy.deepcopy(qiskit_chemistry_dict), \n", - " d, \n", - " backend, \n", - " algorithm\n", - " )\n", - " futures.append(future)\n", - " for future in concurrent.futures.as_completed(futures):\n", - " i, d, energy, hf_energy = future.result()\n", - " energies[j][i] = energy\n", - " hf_energies[i] = hf_energy\n", - " distances[i] = d\n", - " \n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)\n", - "\n", - "print(\"--- %s seconds ---\" % (time.time() - start_time))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[j], label=algorithms[j]['name'])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right')\n", - "pylab.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", - "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='IQPE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper right')\n", - "pylab.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_mappings.ipynb b/community/chemistry/h2_mappings.ipynb deleted file mode 100644 index 2c21b217e..000000000 --- a/community/chemistry/h2_mappings.ipynb +++ /dev/null @@ -1,271 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*H2 ground state energy plot using different qubit mappings*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances with different fermionic mappings to quantum qubits.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[[-1.0550072 -1.07448988 -1.0924703 -1.10560872 -1.11617561\n", - " -1.12411068 -1.12989951 -1.13377934 -1.13618819 -1.13718219\n", - " -1.13693919 -1.11393966 -1.13361768 -1.10702409 -1.10251126\n", - " -1.09745433 -1.11822278 -1.08595587 -1.09165606 -1.10587795\n", - " -1.1011269 ]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]]\n", - "\n", - " [[-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13720975\n", - " -1.1370938 -1.13602101 -1.13411334 -1.13150719 -1.12831842\n", - " -1.1246409 -1.12051863 -1.11605095 -1.11129941 -1.10631446\n", - " -1.10113394]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]]\n", - "\n", - " [[-1.05455947 -1.07579394 -1.09245568 -1.1057838 -1.11595615\n", - " -1.12392843 -1.12915081 -1.13217365 -1.13590692 -1.1371984\n", - " -1.13674928 -1.13514718 -1.13336169 -1.13069373 -1.12796665\n", - " -1.1244492 -1.12029028 -1.11595806 -1.11131729 -1.10626288\n", - " -1.10100739]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601\n", - " -1.12416092 -1.12990478 -1.13382622 -1.13618945 -1.13722138\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]]]\n", - "Hartree-Fock energies: [-1.04299627 -1.06306214 -1.07905074 -1.0915705 -1.10112824 -1.10814999\n", - " -1.11299655 -1.11597526 -1.11734903 -1.11734327 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251055 -1.09745432 -1.09191404 -1.08595587\n", - " -1.07963693 -1.07300676 -1.06610865]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'problem': {'random_seed': 50},\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': '', 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': ''}\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "\n", - "algorithms = ['VQE', 'ExactEigensolver']\n", - "mappings = ['jordan_wigner', 'parity', 'bravyi_kitaev']\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(mappings), len(algorithms), steps+1])\n", - "hf_energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", - " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", - " if algorithms[j] == 'ExactEigensolver':\n", - " if 'optimizer' in qiskit_chemistry_dict:\n", - " del qiskit_chemistry_dict['optimizer']\n", - " if 'variational_form' in qiskit_chemistry_dict:\n", - " del qiskit_chemistry_dict['variational_form']\n", - " else:\n", - " qiskit_chemistry_dict['optimizer'] = {'name': 'L_BFGS_B', 'maxfun': 2500}\n", - " qiskit_chemistry_dict['variational_form'] = {'name': 'RYRZ', 'depth': 5}\n", - " \n", - " for k in range(len(mappings)):\n", - " qiskit_chemistry_dict['operator']['qubit_mapping'] = mappings[k] \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[k][j][i] = result['energy']\n", - " hf_energies[i] = result['hf_energy'] # Independent of algorithm & mapping\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuMAAAHwCAYAAAAM12EMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XtcVVX6+PHPEhUUDBXwgpaakxdA7kKIeE8mUxBTCZ0ma7TGUksnG5ufKWjNNGqlaU1lKn1LA7MyNB3NvKIpoB5U8H7JDDQxRRCQ2/r9cQ5nQAERuanP+/Xiley99lrP3ufw6jnrPHttpbVGCCGEEEIIUfPq1XYAQgghhBBC3K8kGRdCCCGEEKKWSDIuhBBCCCFELZFkXAghhBBCiFoiybgQQgghhBC1RJJxIYQQQgghaokk40KI+4ZSaoxSKra247iXKaUClFJHq6iv9koprZSqb/p9vVLqmWL731RKpSmlzpt+D1FK/aKUylRKeVRFDPcipdRopdTG2o5DCGEkybgQ9yml1Bml1IAbtpmTVaWUpVJqiVLqZ6VUhlLKoJR6/BZ9tlZKLVZKpZgSolNKqUilVJfqPJeqopT6i1LqiOl8Lyil1imlmpj2RSql3ryNvu4o8TcdX2C6jsV/HCvbZ03QWu/QWneupr4f11p/BqCUegj4G+CktW5lajIPmKC1ttFa76+OGMqilApXSn1Rk2NWltZ6udZ6YG3HIYQwkmRcCFGW+sAvQG/AFpgOrFRKtS+tsVLKDtgFNAYCgCaAJ7ANeKyMY+pXddCVpZTqDfwTCNNaNwG6AtG1GxU/mRLL4j8pVTlAXXoNbtNDwCWt9W/FtrUDkirT2V18HYQQdzlJxoUQpdJaX9Nah2utz2itC7XWa4HTgFcZh0wGrgJPa61PaqMrWutlWuuFUKLs4C9KqbPAZtP2IKVUklLqilJqq1Kqa1GnpvZ/KPa7eYZaKdVHKXVOKfU3pdRvSqlUpdSzxdraKaVilFJXlVJxQMdyTrk7xuR3v+n8f9daf6a1zlBKPQ+MBl4zzU6vMfU/TSl10jSTnqyUCjFt7wp8BPiZ2l8xbbdUSs1TSp01zbx/pJRqVOEXpRjTNxuvKqUOKKXSlVLRSimrYvsHm77NuKKU2qWUcr3h2L8rpQ4A15RS9ZVSnkqp/aZz+crUX9F1PqSUGlLs+Aam8pCbSkGKXpOKxnnDsRam65OmlDoFPHHD/q1KqbGmb3R+ABxN1/dLpVQmYAEkKqVOmto7KqW+VkpdVEqdVkpNKtZXuFJqlVLqC6XUVWCMUqpesdf0klJqpVKqual90Xv3GdPrl6aU+n+mfX8E/gGEmuJJLOc1m2q6FteU8ZunlspYfpOhlNqklGpWrP1XSqnzpuu2XSnlXGxfpOn984Pp2G1KqXbF9mul1CRl/HYqTSk1VylVz7SvxLc2prZ/VUodN71fPlBKqWKvyTumPk4rpSaokqVDY0xjZJj2jy7t3IUQZZNkXAhRIUqplkAnyp55HAB8q7UurEB3vTHOPAcqpToBXwKvAA7AOmCNUqphBUNrhXHmvg3wF+CDYgnNB0AO0Bp4zvRTlj2meCKUUv5KKcuiHVrrT4DlwBzT7HRRYnoS47cAtkAE8IVSqrXW+jDwV/43s93U1P5tjNfQHfiDKeYZFTzP0owE/gh0AFyBMQCmJHkp8AJgB3wMxBQ/JyAMY7LbFOP/C74FIoHmGF+PkGJt/w/4U7HfBwGpt1EKUmqcpRgHDAY8AG9geGmNtNabgMeBFNP1DdNa25h2u2mtO5oSzzVAIsbr3B94RSkVWKyrYGAVxmuwHJgIDMX4/nQELmN8DxXXE+hs6m+GUqqr1vq/GL9ViTbF41bOtXgS4zdFnYAhwHqMibwDxtdhUrG264FHgBbAPlOMxY0GZgP2gKGU/SEYr6On6VzLe/8PxviB1BXj61V0ncZhvNbupn6GFh2glLIG3gceN32b1MMUhxDiNkgyLsT9bbVpJuyKMs7eflhaI6VUA4z/o/9Ma32kjL7sgfPFjgky9Zuhbr5ZLNw0854NhALfa61/0FrnYaz7bYTxf+wVkQfM0lrnaa3XAZlAZ6WUBcbEZ4ZprEPAZ2V1orXeAQzDmHB8D1xSSr1r6qesY77SWqeYvjmIBo4DPqW1Nc00Pg9MNs26Z2BM4J4q59weLf76FM34FvO+afzfMSae7qbtzwMfa633aK0LTHXW14FHbzj2F9Nr8CjGsqT3TdfxGyCuWNsvgEFKqQdMvz8NfF5O3DcqK84bjQTmm+L6HfjXbYxxo+6Ag9Z6ltY6V2t9ClhMyev9k9Z6ten1y8b4Aer/aa3Paa2vA+HAcFWyhCVCa52ttU7EmOiXl3iXZqHW+oLW+ldgB7BHa71fa52D8QOR+dsGrfVSrXVGsVjclFK2xfr6Xmu93bT//2H8JubBYvv/bXqvnQXmY/wAVpa3Td9knQW28L/XaCSwwHRNLmP8QFlcIeCilGqktU7VWleqTEiI+5kk40Lc34ZqrZsW/QAv3tjANMP4OZALTCinr0sYZ6AB0FrHmPqcDNw4y/1LsX87Aj8XO67QtL9NBc/hktY6v9jvWYANxpnGorr3Ij9TDq31etOsd3OMM4ljgLFltVdK/Vn9rxTkCuCC8UNJaRww1tPvLdb+v6btZdld/PXRWt9YZnO+2L+LzhuMtdN/u+GD1oMYr3WRG1+DX7XWurT9pjr1ncCTSqmmGGdKb5yFLU9Zcd7Ikdt4vW6hHcYyluLX4B9Ay2JtfinlmG+LtT8MFNxwTEXPpSwXiv07u5TfbcBcHvK2qWTmKnDG1Kb4+6v4a5QJ/E7Zr/HPN+y7UVnndeNrUnzMaxg/TP8VSFVKfa/ukpu1hahLJBkXQpTJNJu7BGMy8qRp5rosPwJDi+pSb6F40peCMQkqPuaDwK+mTVkYk9giraiYi0C+qa8iD1XkQNNM6Y8Ya9pdSokZU33uYowfUOxMHzwOAaq09kAaxmTLuVhybVusvKIq/QK8dUMi31hr/WWxNsXjSwXaFNUJmxS/bmD8VuFPwAiMM8q/UvVSqcTrVYZfgNM3XIMmWutBxdrc+Br9grHkovgxVhU81xv7ulOjMH4gHICxDKq9aXupr5FSygbjh8iU0vZjvJaVufk3FWhbRp9orTdorR/D+EH8CMa/CSHEbZBkXAhRnv9grO0eYvoavzzvAs2Az5VSHZVRE8ouSSiyEnhCKdXfVA7zN4wlFbtM+w3AKNNM4R8x1vPekta6APgGCFdKNVZKOQHPlNVeKRWslHpKKdXMFLuPaazdpiYXgIeLHWKNMQG7aDr+Wf6XuBe1b1tU+26a8V8MvKeUamE6ps0NNcxVZTHwV6WUr+lcrJVST5hej9L8hHEGeIIy3swZzM3lNqsxlvC8jLGGvDqsBCYppdqa6v6n3UFfcUCGMt6o2sj0/nFRSnUv55iPgLdMH7RQSjmYrkVFXADaV/DDaEU0wfh3cAnjh9F/ltJmkFKqp+k9NhvjNynFZ7Gnmt7PD2J83SqzOtBK4GXTe7Up8PeiHcp482mwqXb8OsYSsYrcMyKEKEaScSFEqUwJyQsYk+nz6n/rXJe6WoLWOg1j7XEOEAtkYEykmwDjyxpHa30U44zrQoyzx0MwJv+5piYvm7ZdwXjD2urbOI0JGL9uP4/x5sRl5bS9jPFmteMYV4X5ApirtS4qx1gCOJlKGFZrrZOBdzAmsheAbhhLOYpsxniz63mlVJpp29+BE8BuU+nBJow3A5bFT928znh5ySQAWusE07ksMp3XCcq+aRLTtR6G8QbYKxhfj7UYE6yiNtnA1xhvwvzmVjFU0mJgA8Za7H13Mo7pw9hgjO/f0xjfW59inGUuywIgBtiolMrA+EHMt4JDfmX67yWl1L5KBV3S/2EsLfkVSOZ/HwqLWwHMxFie4kXJm2wBvgP2Yvw7/B7je/h2LQY2AgeA/RhvsM7H+OGtHjAF44z77xg/vJb5ty6EKJ0qWSIohBBCgFJqD/CR1npZsW0zgE5a6xuTPlHDlFKRwDmt9fQy9mvgEa31iSoe93GM74t2t2wshKgQmRkXQgiBUqq3UqqVqUzlGYxL3P232P7mGGfOP6mtGEXNM5X4DDK9L9pgnIn/trbjEuJeUmvJuFJqhDI+5KNQKeVdTrs/KqWOKqVOKKVuqh9USr2vjA97EEIIUXmdMZaHXMFYtz9ca50KoJQah/HmxvVa6+21F6KoBQrjGvqXMZapHObO1sYXQtyg1spUlPEJdYUYH0bxqqnG8cY2FsAxjA9IOAfEY3xUdbJpvzfGetKQalqRQAghhBBCiGpTazPjWuvDphu3yuMDnNBanzLdYBSFcamnokR9LvBa9UYqhBBCCCFE9ajrNeNtKPmwgXP870EgE4CYoq9RhRBCCCGEuNvUv3WTylNKbaL0B3T8P631d3fQryPGB0/0qUDb5zE+Ghpra2uvLl3k4WBCCCGEEKJ67d27N01rXd5TloFqTsa11gPusItfKfm0r7ambR7AH4ATpgfGNVZKndBa/6GUGD7BdPe/t7e3Tki4qTRdCCGEEEKIKqWU+rki7ao1Ga8C8cAjSqkOGJPwp4BRWuskis24K6UyS0vEhRBCCCGEqMtqc2nDEKXUOcAP+F4ptcG03VEptQ5Aa52PsTZ8A8bllFaaEnEhhBBCCCHuevfVEzilTEUIIYQQQtQEpdRerXWZz9IpUtfLVIQQQghRR+Tl5XHu3DlycnJqOxQh6gwrKyvatm1LgwYNKnW8JONCCCGEqJBz587RpEkT2rdvj2kBBSHua1prLl26xLlz5+jQoUOl+qjr64wLIYQQoo7IycnBzs5OEnEhTJRS2NnZ3dG3RZKMCyGEEKLCJBEXoqQ7/ZuQZFwIIYQQdw0bG5sSv0dGRjJhwoTb6sNgMLBu3bqqDKuEyMhIHBwccHd3x93dnT//+c+33cfWrVsZPHhwNUQn6hqpGRdCCCHEfSM/Px+DwUBCQgKDBg0qdX/9+neeHoWGhrJo0aI77kfc+2RmvAbcT8tHCiGEELVlzZo1+Pr64uHhwYABA7hw4QIA4eHhPP300/j7+/P0008zY8YMoqOjcXd3Jzo6+qb9BQUFTJ06le7du+Pq6srHH39sHmPu3Lnm7TNnzryt+AwGA48++iiurq6EhIRw+fJlAE6cOMGAAQNwc3PD09OTkydPljguPj4eDw+Pm7aLe4PMjFezH5Iv8K91h1k9wZ8HrCq35I0QQghR10SsSSI55WqV9unk+AAzhziX2yY7Oxt3d3fz77///jtBQUEA9OzZk927d6OU4tNPP2XOnDm88847ACQnJxMbG0ujRo2IjIwkISHBPHMdHh5eYv8nn3yCra0t8fHxXL9+HX9/fwYOHMjx48c5fvw4cXFxaK0JCgpi+/bt9OrV66Y4o6OjiY2NBeDll1/m2Wef5c9//jMLFy6kd+/ezJgxg4iICObPn8/o0aOZNm0aISEh5OTkUFhYyC+//ALArl27mDhxIt999x0PPfTQnV9kUedIMl7Nmls35FTaNTYmXWC4V9vaDkcIIYS4qzVq1AiDwWD+vSixBuPSi6GhoaSmppKbm1tiqbmgoCAaNWpUZr/F92/cuJEDBw6watUqANLT0zl+/DgbN25k48aNeHh4AJCZmcnx48dLTcZvLFNJT0/nypUr9O7dG4BnnnmGESNGkJGRwa+//kpISAhgXLO6yOHDh3n++efZuHEjjo6Ot3ehxF1DkvFq5vlQU9o2a0RMYook40IIIe4Zt5rBrg0TJ05kypQpBAUFsXXrVsLDw837rK2tyz22+H6tNQsXLiQwMLBEmw0bNvD666/zwgsvlNj+wQcfsHjxYoAqvTG0devW5OTksH//fknG72FSM17NlFIEuTmy80QaaZnXazscIYQQ4p6Vnp5OmzZtAPjss8/KbNekSRMyMjLK3B8YGMh//vMf8vLyADh27BjXrl0jMDCQpUuXkpmZCcCvv/7Kb7/9xksvvYTBYMBgMJSZNNva2tKsWTN27NgBwOeff07v3r1p0qQJbdu2ZfXq1QBcv36drKwsAJo2bcr333/P66+/ztatW2/vYoi7hiTjNSDI3ZGCQs26g6m1HYoQQghxzwoPD2fEiBF4eXlhb29fZru+ffuSnJxsvoHzRmPHjsXJyQlPT09cXFx44YUXyM/PZ+DAgYwaNQo/Pz+6devG8OHDy03qb/TZZ58xdepUXF1dMRgMzJgxAzAm5u+//z6urq706NGD8+fPm49p2bIla9eu5aWXXmLPnj23cTXE3ULdTyt9eHt766K6spoW+N52mljVZ9X4HrUyvhBCCHGnDh8+TNeuXWs7DCHqnNL+NpRSe7XW3rc6VmbGa0iQuyMJP1/m3OWs2g5FCCGEEELUEZKM15AhrsYasjWJUqoihBBCCCGMJBmvIQ/ZNcbjoabEJKbUdihCCCGEEKKOkGS8BgW5OXI49SrHL1T8Zg8hhBBCCHHvkmS8Bj3h2pp6CpkdF0IIIYQQgCTjNapFEyv8OtoRk5jC/bSKjRBCCCGEKJ0k4zUs2K0NP1/K4sC59NoORQghhBBC1DJJxmtYoEsrGlrU4zuDlKoIIYQQt6Nv375s2LChxLb58+czfvx4AJKSkujXrx+dO3emY8eOzJw5k8LCQgAiIyNxcHDA3d3d/JOcnFzueIMGDeLKlSuVjjcyMpIJEyZU+vjKuNOYRc2TZLyG2TZqQO/ODqw9kEJBoZSqCCGEEBUVFhZGVFRUiW1RUVGEhYWRnZ1NUFAQ06ZN4+jRoxw8eJC4uDgWLFhgbhsaGmp+bL3BYMDJyanc8datW0fTpk0rFJvW2pz416bbibky8vPzq63v+1X92g7gfhTs7sgPyRfYc/oSPTqW/bheIYQQos5aPw3OH6zaPlt1g8ffLnP38OHDmT59Orm5uTRs2JAzZ86QkpJCQEAAS5cuxd/fn4EDBwLQuHFjFi1aREBAAJMnT65UOO3btychIQF7e3veffddli5dCsDYsWN55ZVXOHPmDIGBgfj6+rJ3717WrVvH5s2b+de//kXTpk1xc3PD0tISgDVr1vDmm2+Sm5uLnZ0dy5cvp2XLloSHh3P27FlOnTrF2bNneeWVV5g0aVKp8cydOxdLS0smTZrE5MmTSUxMZPPmzWzevJklS5awfPnyEjHPnj2bL774AgcHBx588EG8vLx49dVX6dOnD76+vmzZsoUrV66wZMkSAgICKCgoYNq0aWzdupXr16/z0ksv8cILL7B161beeOMNmjVrxpEjRzh27FilrqconcyM14L+XVpi3dCCNbKqihBCCFFhzZs3x8fHh/Xr1wPGWfGRI0eilCIpKQkvL68S7Tt27Eh2dra5bCM6OrpEmUp2dnaFxt27dy/Lli1jz5497N69m8WLF7N//34Ajh8/zosvvkhSUhINGzZk5syZ7Ny5k9jY2BJlMD179mT37t3s37+fp556ijlz5pj3HTlyhA0bNhAXF0dERAR5eXmlxhEQEMCOHTsASEhIIDMzk7y8PHbs2EGvXr1KtI2Pj+frr78mMTGR9evXk5CQUGJ/fn4+cXFxzJ8/n4iICACWLFmCra0t8fHxxMfHs3jxYk6fPg3Avn37WLBggSTi1UBmxmtBo4YWPObUknUHzxMR5ELD+vKZSAghxF2mnBns6lRUqhIcHExUVBRLliyp8LGhoaEsWrTotseMjY0lJCQEa2trAIYNG8aOHTsICgqiXbt2PProowDs2bOHPn364ODgYB6vKHk9d+4coaGhpKamkpubS4cOHcz9P/HEE1haWmJpaUmLFi24cOECbdu2vSkOLy8v9u7dy9WrV7G0tMTT05OEhAR27NjB+++/X6Ltzp07CQ4OxsrKCisrK4YMGVJi/7Bhw8x9njlzBoCNGzdy4MABVq1aBUB6ejrHjx+nYcOG+Pj4lIhZVB3JAmtJsHsb0rPz2H7sYm2HIoQQQtw1goOD+fHHH9m3bx9ZWVnm2XAnJyf27t1bou2pU6ews7Or1hrqogT9ViZOnMiECRM4ePAgH3/8MTk5OeZ9RaUsABYWFmXWZTdo0IAOHToQGRlJjx49CAgIYMuWLZw4cYKuXbveVtxFYxYfT2vNwoULzTX1p0+fNpf9VPQ8xe2TZLyW9HzEnmaNG8gDgIQQQojbYGNjQ9++fXnuuecICwszbx89ejSxsbFs2rQJgOzsbCZNmmQuwShPly5dyt0fEBDA6tWrycrK4tq1a3z77bcEBATc1M7X15dt27Zx6dIl8vLy+Oqrr8z70tPTadOmDQCfffZZhc61rFjmzZtHr169CAgI4KOPPsLDwwOlVIl2/v7+rFmzhpycHDIzM1m7du0t+w4MDOQ///mPuUzm2LFjXLt2rdKxioqRZLyWNLCox+PdWvND8gWycuXOZCGEEKKiwsLCSExMLJGMN2rUiJiYGN566y06deqEvb09/v7+jB492tzmxprxXbt2kZaWVu6D+JRSeHp6MmbMGHx8fPD19WXs2LF4eHjc1LZ169aEh4fj5+eHv79/idnq8PBwRowYgZeXF/b2lV+8ISAggNTUVPz8/GjZsiVWVlalfjDo3r07QUFBuLq68vjjj9OtWzdsbW3L7Xvs2LE4OTnh6emJi4sLL7zwgqyeUgPU/fQkSG9vb33jDQy1afepSzz1yW4WPOVOsHub2g5HCCGEKNfhw4dvuxyitqxevZopU6awZcsW2rVrV2a7tWvXcurUqZtWMCkoKKBFixacP3+eBg0aVHe41SIzMxMbGxuysrLo1asXn3zyCZ6enrUd1j2ptL8NpdRerbX3rY6VGzhrkU/75rR6wIo1iSmSjAshhBBVaOjQoQwdOvSW7QYPHlzqdmdnZ8aOHXvXJuIAzz//PMnJyeTk5PDMM89IIl5HSTJei+rVUwxxa03krjNcycqlaeOGtR2SEEIIITAuN1hbLl26RP/+/W/a/uOPP2JnZ1fhflasWFGVYYlqIsl4LQtya8PiHadZf+g8YT4P1XY4QgghhKhldnZ2GAyG2g5D1BC5gbOWubR5gIftrYkxyKoqQgghhBD3G0nGa5lSiiFujuw+fYkLV3NufYAQQgghhLhnSDJeBwS5O6I1rJE1x4UQQggh7iuSjNcBHR1scHZ8QJJxIYQQohx9+/Zlw4YNJbbNnz+f8ePHA5CUlES/fv3o3LkzHTt2ZObMmRQWFgIQGRmJg4NDiXXGk5OTqzXemJgY3n77bcC41GJ1jyfuTpKM1xHB7o4knkvnTJo86UoIIYQoTVhYGFFRUSW2RUVFERYWRnZ2NkFBQUybNo2jR49y8OBB4uLiWLBggbltaGio+VHvBoMBJyenaos1Pz/fHA9IMi7KJsl4HTHY1RGQUhUhhBCiLMOHD+f7778nNzcXgDNnzpCSkkJAQAArVqzA39+fgQMHAtC4cWMWLVrE3LlzKz2ejY0NkydPxtnZmf79+3Px4kUAFi9eTPfu3XFzc+PJJ58kKysLgDFjxvDXv/4VX19fXnvtNSIjI5kwYQK7du0iJiaGqVOn4u7uzsmTJ0us+X38+HFZA/w+Jksb1hGOTRvh07453yWmMKHfH1BK1XZIQgghRJn+HfdvjvxetWtxd2nehb/7/L3M/c2bN8fHx4f169cTHBxMVFQUI0eORClFUlISXl5eJdp37NiR7Oxsrly5AkB0dDSxsbHm/T/99BONGjUqc7xr167h7e3Ne++9x6xZs4iIiGDRokUMGzaMcePGATB9+nSWLFnCxIkTATh37hy7du3CwsKCyMhIAHr06EFQUBCDBw9m+PDhANja2mIwGHB3d2fZsmU8++yzt3/BxD1BZsbrkCB3R078lsnh1IzaDkUIIYSok4qXqhSVqFTUjWUq5SXiAPXq1SM0NBSAP/3pT+ZE/tChQwQEBNCtWzeWL19OUlKS+ZgRI0ZgYWFxy1jGjh3LsmXLKCgoIDo6mlGjRlX4PMS9RWbG65BB3VoTHpNETGIKTo4P1HY4QgghRJnKm8GuTsHBwUyePJl9+/aRlZVlng13cnJi+/btJdqeOnUKOzs7mjZtWiVjF31rPWbMGFavXo2bmxuRkZFs3brV3Mba2rpCfT355JNERETQr18/vLy8buvJmuLeIjPjdUhz64b0fMSeNYkpFBbq2g5HCCGEqHNsbGzo27cvzz33XIlZ8dGjRxMbG8umTZsAyM7OZtKkSURERNyyzy5dupS6vbCwkFWrVgHGR8v37NkTgIyMDFq3bk1eXh7Lly+vUNxNmjQhI+N/33xbWVkRGBjI+PHjpUTlPifJeB0T7O7Ir1ey2Xf2cm2HIoQQQtRJYWFhJCYmlkjGGzVqRExMDG+99RadOnXC3t4ef39/Ro8ebW4THR1dYmnDXbt2kZaWhtalT4BZW1sTFxeHi4sLmzdvZsaMGQDMnj0bX19f/P39y0zkb/TUU08xd+5cPDw8OHnyJGD8AFGvXj3zTafi/qTKegPei7y9vXVCQkJth1GuzOv5eM3+gdDuDzIr2KW2wxFCCCHMDh8+TNeuXWs7jApZvXo1U6ZMYcuWLbRr167MdmvXruXUqVNMmjTppn02NjZkZmZWW4zz5s0jPT2d2bNnV9sYomaU9rehlNqrtfa+1bFSM17H2FjWZ0DXlnx/IJUZg52obyFfXgghhBC3a+jQoQwdOvSW7QYPHlwD0dwsJCSEkydPsnnz5loZX9QdkunVQUPcHLl0LZedJy/VdihCCCHEfas6Z8W//fZbDhw4gL29fbWNIe4OkozXQX06O9DEqj4xBnkAkBBCCCHEvUyS8TrIqoEFf3RuxYak8+TkFdR2OEIIIYQQoppIMl5HBbk7knk9ny1HfqvtUIQQQgghRDWRZLyO8nvYDnsbS2ISpVRFCCGEEOJeJcl4HVXfoh6DXVvz45HfyMjJq+1whBBCCCFENZBkvA4b4uZIbn4hG5Mu1HYoQgghRK3r27cvGzZsKLFt/vz5jB8/HoCkpCT69etH586d6dixIzNnzqSwsBCAyMhIHBwcSjz0Jzk5udzxbGxsqudEyjBjxgzzE0RL0759e9LS0m7a3qNHDwDOnDnDihUrqi0+UT0kGa/DPB9qSttmjfj3xn6FAAAgAElEQVROSlWEEEIIwsLCiIqKKrEtKiqKsLAwsrOzCQoKYtq0aRw9epSDBw8SFxfHggULzG1DQ0MxGAzmHycnpzuOKT8//477KDJr1iwGDBhw28ft2rULkGT8biUP/anDlFIEuTny8fZTXMq8jp2NZW2HJIQQQgBw/p//5PrhI1Xap2XXLrT6xz/K3D98+HCmT59Obm4uDRs25MyZM6SkpBAQEMDSpUvx9/c3P1q+cePGLFq0iICAACZPnlzpmCZPnszGjRtp1aoVUVFRODg40KdPH9zd3YmNjSUsLIxOnTrx5ptvkpubi52dHcuXL8fBwYGHH34Yg8FA06ZNAXjkkUfYtGkTffr04dixYzRo0ICrV6/i5ubGsWPHGDduHIMHD2b48OHlxpSdnc2wYcMYNmwY48aNMz8pdNq0aRw+fBh3d3eeeeYZQkJCePrpp7l27RoAixYtMs+iz507l5UrV3L9+nVCQkKIiIhg2rRpPPjgg7z00ksAhIeHY2Njw6uvvlrp6yduTWbG67ggd0cKCjXrDqbWdihCCCFErWrevDk+Pj6sX78eMM6Kjxw5EqUUSUlJeHl5lWjfsWNHsrOzuXLlCgDR0dElylSys7PLHe/atWt4e3uTlJRE7969iYiIMO/Lzc0lISGBv/3tb/Ts2ZPdu3ezf/9+nnrqKebMmUO9evUIDg7m22+/BWDPnj20a9eOdu3a0adPH77//nvzOQwbNowGDRpU6BpkZmYyZMgQwsLCGDduXIl9b7/9NgEBARgMBiZPnkyLFi344Ycf2LdvH9HR0UyaNAmAjRs3cvz4ceLi4jAYDOzdu5ft27cTGhrKypUrzf2tXLmS0NDQCsUlKk9mxuu4Lq0eoFNLG74zpPC0X/vaDkcIIYQAKHcGuzoVlaoEBwcTFRXFkiVLKnxsaGgoixYtqnD7evXqmZPRP/3pTwwbNqxEX0XOnTtHaGgoqamp5Obm0qFDB3ObWbNm8eyzzxIVFWU+ZuzYscyZM4ehQ4eybNkyFi9eXOGYgoODee211xg9evQt2+bl5TFhwgQMBgMWFhYcO3YMMCbjGzduxMPDAzAm+MePH+cvf/kLv/32GykpKVy8eJFmzZrx4IMPVjg2UTkyM34XCHZvQ8LPl/n1Svmf4IUQQoh7XXBwMD/++CP79u0jKyvLPBvu5OTE3r17S7Q9deoUdnZ25jKRO6WUMv/b2tra/O+JEycyYcIEDh48yMcff0xOTg4Afn5+nDhxgosXL7J69WpzMu/v78+ZM2fYunUrBQUFuLi4VDgGf39//vvf/6K1vmXb9957j5YtW5KYmEhCQgK5ubkAaK15/fXXzbXzJ06c4C9/+QsAI0aMYNWqVURHR8useA2RZLya5Rw9yvl//hN9Bzd4DHF1BGCN3MgphBDiPmdjY0Pfvn157rnnCAsLM28fPXo0sbGx5tVIsrOzmTRpUonSkrJ06dKl1O2FhYWsWrUKgBUrVtCzZ89S26Wnp9OmTRsAPvvsM/N2pRQhISFMmTKFrl27YmdnZ9735z//mVGjRvHss8/eMr7iZs2aRbNmzcx13cU1adKEjIyMEnG1bt2aevXq8fnnn1NQYHyqd2BgIEuXLiUzMxOAX3/9ld9+Mz5kMDQ0lKioKFatWsWIESNuKzZROZKMV7Pcn3/m8v99TlZ8fKX7eMiuMe4PNiXGIMm4EEIIERYWRmJiYolkvFGjRsTExPDWW2/RqVMn7O3t8ff3L1HOcWPN+K5du0hLSytzltna2pq4uDhcXFzYvHkzM2bMKLVdeHg4I0aMwMvLC3t7+xL7QkND+eKLL26aZR49ejSXL18ucQ4VtWDBArKzs3nttddKbHd1dcXCwgI3Nzfee+89XnzxRT777DPc3Nw4cuSIeTZ/4MCBjBo1Cj8/P7p168bw4cPNSbyzszMZGRm0adOG1q1b33Zs4vapinzNca/w9vbWCQkJNTpm4cmfSB72V+yGBtM6Ylal+1m28zQRa5LZNKUXf2jRpAojFEIIISrm8OHDdO3atbbDqJDVq1czZcoUtmzZQrt27cpst3btWk6dOmW+ubGmrFq1iu+++47PP/+8RscV1aO0vw2l1F6ttfetjpWZ8Wq2YcU+Gg+cR+q2eLTp66HKeMK1NfUUMjsuhBBCVMDQoUM5depUuYk4wODBg2s8EZ84cSLTpk3jjTfeqNFxRd0kyXg1e8CpIw0trLjaxo+shL23PqAMLZpY4dfRjpjElArdtCGEEEKIumnhwoWcOHGCTp06lbo/JCSkRDmNu7v7TU8eFfcOWdqwmvkGD+DYrvU8YN+JjHVrsPb1qXRfQW6O/P3rgxw4l47bg1VzZ7gQQggh6paitcnF/UFmxqtZ/fr1+dXiPPZWrUnZsfeOSlX+6Nyahhb1iJFVVYQQQggh7gmSjNcAm54PU0/V46pjD7L37690P7aNG9C7swNrD6RQUCilKkIIIYQQdztJxmtA90G9Sc/7nQfsHuFqzDd31FeQmyMXrl4n7vTvVRSdEEIIIYSoLZKM14D69evza/2L2Fu14tedB9CFhZXua0DXljRuaEFM4q9VGKEQQgghhKgNkozXkKa9/0A9VY8Mxx5kGxIr3U+jhhYMdGrJuoPnyc2vfFIvhBBC3I0sLCxKrDLy9ttvV1nfBoOBdevWmX+PjIzEwcGhxHjJycmkpKQwfPjwKhu3Ms6cOYOLi0u1jzNo0CCuXLlS6eMjIyOZMGFCFUZ0a3cac02T1VRqiM+gPhzatBrb5n8g49vlNPb0qHRfQe6OrDaksOP4Rfp3bVmFUQohhBB1W6NGjTAYDNXSt8FgICEhgUGDBpm3hYaGsmjRopvarlq1qlpiqGn5+fnUr192Olj8w8mtaK3RWlOvXu3O9d5OzJVxq2t2uyQZr0G/NryEk36EX3YdpUVhIaqSb9aARxxo1rgB3xlSJBkXQghRK3asPEbaL5lV2qf9gzYEjCx97e3ypKen4+PjQ0xMDJ07dyYsLIx+/foxbtw4xo8fT3x8PNnZ2QwfPpyIiAgA4uPjefnll7l27RqWlpb88MMPzJgxg+zsbGJjY3n99dfLHO/MmTMMHjyYQ4cOkZWVxZgxYzh06BCdO3cmJSWFDz74AG9vbzZu3MjMmTO5fv06HTt2ZNmyZdjY2NC+fXueeeYZ1qxZQ15eHl999RVdunRh27ZtvPzyywAopdi+fTs2Nja89tprrF+/HqUU06dPJzQ0tEQ8jz76KEuWLMHZ2RmAPn36MG/ePLp27crEiRM5dOgQeXl5hIeHExwcTGRkJN988w2ZmZkUFBSwbdu2Ms+1ffv2JCQkYG9vz7vvvsvSpUsBGDt2LK+88gpnzpwhMDAQX19f9u7dy7p169i8eTP/+te/aNq0KW5ublhaWgKwZs0a3nzzTXJzc7Gzs2P58uW0bNmS8PBwzp49y6lTpzh79iyvvPJKmQ9imjt3LpaWlkyaNInJkyeTmJjI5s2b2bx5M0uWLGH58uUlYp49ezZffPEFDg4OPPjgg3h5efHqq6/Sp08ffH192bJlC1euXGHJkiUEBARQUFDAtGnT2Lp1K9evX+ell17ihRdeYOvWrbzxxhs0a9aMI0eOcOzYsQq+O29NylRqkF2/TiilyGzjT07igUr308CiHo93a80PyRfIys2vwgiFEEKIui07O7tE2Uh0dDS2trYsWrSIMWPGEBUVxeXLlxk3bhwAb731FgkJCRw4cIBt27Zx4MABcnNzCQ0NZcGCBSQmJrJp0yasra2ZNWsWoaGhGAwGc8IbHR1dYrzs7OwS8Xz44Yc0a9aM5ORkZs+ezd69xgf8paWl8eabb7Jp0yb27duHt7c37777rvk4e3t79u3bx/jx45k3bx4A8+bN44MPPsBgMLBjxw4aNWrEN998g8FgMMc5depUUlNTS8QQGhrKypUrAUhNTSU1NRVvb2/eeust+vXrR1xcHFu2bGHq1Klcu3YNgH379rFq1apyE/Hi9u7dy7Jly9izZw+7d+9m8eLF7DetEHf8+HFefPFFkpKSaNiwITNnzmTnzp3ExsaSnJxs7qNnz57s3r2b/fv389RTTzFnzhzzviNHjrBhwwbi4uKIiIggLy+v1DgCAgLYsWMHAAkJCWRmZpKXl8eOHTvo1atXibbx8fF8/fXXJCYmsn79ehISEkrsz8/PJy4ujvnz55s/pC1ZsgRbW1vi4+OJj49n8eLFnD592nzNFixYUKWJOMjMeI3yHhjAwf9+S9PmHbm6ahmNPBZUuq8gN0dW7DnLpsO/EeTmWIVRCiGEELdWmRnsqlBWmcpjjz3GV199xUsvvURi4v/uzVq5ciWffPIJ+fn5pKamkpycjFKK1q1b0717dwAeeOCBMscrq0ylSGxsrHk228XFBVdXVwB2795NcnIy/v7+AOTm5uLn52c+btiwYQB4eXnxzTfGldb8/f2ZMmUKo0ePZtiwYbRt25bY2FjCwsKwsLCgZcuW9O7dm/j4ePM4ACNHjmTgwIFERESwcuVKcz37xo0biYmJMSf7OTk5nD171ny9mjdvXuZ5lXaeISEhWFtbm+PfsWMHQUFBtGvXjkcffRSAPXv20KdPHxwcHMzXryh5PXfuHKGhoaSmppKbm0uHDh3M/T/xxBNYWlpiaWlJixYtuHDhAm3btr0pDi8vL/bu3cvVq1extLTE09OThIQEduzYwfvvv1+i7c6dOwkODsbKygorKyuGDBlSYn/x1+DMmTPma3bgwAFzGVJ6ejrHjx+nYcOG+Pj4lIi5qkgyXsNSLH/HWXfil7gztNAapVSl+vFp35xWD1gRY0iRZFwIIcR9r7CwkMOHD9O4cWMuX75M27ZtOX36NPPmzSM+Pp5mzZoxZswYcnJyaiQerTWPPfYYX375Zan7i0o3LCwsyM83fss9bdo0nnjiCdatW4e/vz8bNmyo0Fht2rTBzs6OAwcOEB0dzUcffWSO4euvv6Zz584l2u/Zs8ecVFeFivY1ceJEpkyZQlBQEFu3biU8PNy8r+h6QMlrcqMGDRrQoUMHIiMj6dGjB66urmzZsoUTJ07QtWvX24q7tNdAa83ChQsJDAws0Xbr1q1Ves2KkzKVGtbiMeMbJdOxBzmGfZXup149xRC31mw79htXsnKrKjwhhBDirvTee+/RtWtXVqxYwbPPPkteXh5Xr17F2toaW1tbLly4wPr16wHo3LkzqampxMfHA5CRkUF+fj5NmjQhIyPjtsb19/c3l4gkJydz8OBBwFjHvXPnTk6cOAHAtWvXblnecPLkSbp168bf//53unfvzpEjRwgICCA6OpqCggIuXrzI9u3b8fHxuenY0NBQ5syZQ3p6unnWPDAwkIULF6K18UGB+8t58GCXLl3KjS0gIIDVq1eTlZXFtWvX+PbbbwkICLipna+vL9u2bePSpUvmevgi6enptGnTBoDPPvus3PFuFcu8efPo1asXAQEBfPTRR3h4eNw0wenv78+aNWvIyckhMzOTtWvX3rLvwMBA/vOf/5jLZI4dO2Yu7akukozXMI9+Pfg99yLNmnUkI3rxHfUV5NaGvALNfw+dr6LohBBCiLrtxprxadOmcfToUT799FPeeecdAgIC6NWrF2+++SZubm54eHjQpUsXRo0aZS4ZadiwIdHR0UycOBE3Nzcee+wxcnJy6Nu3L8nJyeZadLi5ZnzXrl0l4nnxxRe5ePEiTk5OTJ8+HWdnZ2xtbXFwcCAyMpKwsDBcXV3x8/PjyJEj5Z7b/PnzzaUuDRo04PHHHyckJARXV1fc3Nzo168fc+bMoVWrVjcdO3z4cKKiohg5cqR52xtvvEFeXh6urq44OzvzxhtvlDpuWlqaOWEvjVIKT09PxowZg4+PD76+vowdOxYPj5tXhmvdujXh4eH4+fnh7+9fYrY6PDycESNG4OXlhb29fbnXojwBAQGkpqbi5+dHy5YtsbKyKvWDQffu3QkKCsLV1ZXHH3+cbt26YWtrW27fY8eOxcnJCU9PT1xcXHjhhRfKnKWvKqq8i3+v8fb21jcW79eG//5jKS6Fj5Cyfx7d/7u60qUqWmv6vbON1rZWrBj3aBVHKYQQQpR0+PDh2y4FuNcVFBSQl5eHlZUVJ0+eZMCAARw9epSGDRvWdmgVtnbtWk6dOnXTCiYFBQW0aNGC8+fP06BBg1qK7s5kZmZiY2NDVlYWvXr14pNPPsHT07PKxyntb0MptVdr7X2rY6VmvBa0CnSG9blkt+5Jzr7dNPLyu/VBpVBKEeTmyPubj3Phag4tH7Cq4kiFEEIIUZ6srCz69u1LXl4eWms+/PDDuyoRBxg8eHCp252dnRk7duxdm4gDPP/88yQnJ5OTk8MzzzxTLYn4nZJkvBa49/Yl8buvadbsYTKiPq50Mg7GBwAt+PE4aw+k8peeVX+HrxBCCCHK1qRJk5uWzLtX3KqspjpdunSJ/v3737T9xx9/xM7OrsL9rFixoirDqha1UjOulBqhlEpSShUqpcqcvldK/VEpdVQpdUIpNa3YdqWUekspdUwpdVgpVfrK8HVYaqN0mlu24PTB9HLrtG6lo4MNzo4PEJOYUoXRCSGEEELUHjs7OwwGw00/t5OI3y1q6wbOQ8AwYHtZDZRSFsAHwOOAExCmlHIy7R4DPAh00Vp3BaKqNdpq0PYJ453OOa17cj1+yx31FeTmSOIvV/j5UvXe7SuEEEIIIapWrSTjWuvDWuujt2jmA5zQWp/SWudiTLiDTfvGA7O01oWm/n6rvmirh0sPb9JyL9C8aQeuRn9yR30NMa0zHmOQ2XEhhBBCiLtJXV7asA3wS7Hfz5m2AXQEQpVSCUqp9UqpR2o8uiqQan2VZpYOnEq6ji4srHQ/jk0b4dO+OTGJKXdU8iKEEEIIIWpWtSXjSqlNSqlDpfwE3/roW7IEckzLxSwGlpYTx/OmpD3h4sWLVTB01XnoCeP6nNcdA7j+060Xoi/PEHdHjv+WyZHzt/ewAiGEEOJuYmFhUWLd77fffrvK+jYYDKxbt878e2RkJA4ODiXGS05OJiUlxfzI+dpy5swZXFxcajWGioiJiTG/RqtXryY5ObmWI6p7qm01Fa31gDvs4leMdeFF2pq2gXGW/BvTv78FlpUTxyfAJ2BcZ/wOY6pSzo96sD/6K+xsO5CxcilW/kGV7uuJbq2JiEniO0MKXVs/UIVRCiGEEHVHo0aNMBgM1dK3wWAgISGBQYMGmbeFhoayaNGim9quWrWqWmKoafn5+dSvXz3pYH5+PkFBQQQFGfOb1atXM3jwYJycnG5x5P2lLpepxAOPKKU6KKUaAk8BMaZ9q4G+pn/3Bsp/vmwddr5JJk0t7Tl5oj4UVP4JT82tG9LzEXvWSKmKEEKI+0x6ejqdO3fm6FHj7WhhYWEsXmx8yvX48ePx9vbG2dmZmTNnmo+Jj4+nR48euLm54ePjQ3p6OjNmzDA/cbPoCZylKT4rnZWVxciRI3FyciIkJARfX1/zUocbN27Ez88PT09PRowYQWZmJgDt27dn5syZeHp60q1bN/MSgtu2bTPPwHt4eJCRkYHWmqlTp+Li4kK3bt1KjevRRx8lKSnJ/HufPn1ISEjg2rVrPPfcc/j4+ODh4cF3330HGGf8g4KC6NevX6nLBxZnY2PD5MmTcXZ2pn///hRVGSxevJju3bvj5ubGk08+SVZWFgBjxozhr3/9K76+vrz22mtERkYyYcIEdu3aRUxMDFOnTsXd3Z2TJ0+WWPP7+PHjdXIN8JpQK+uMK6VCgIWAA/C9UsqgtQ5USjkCn2qtB2mt85VSE4ANgAWwVGtd9E57G1iulJoMZAJja+E0qsTDQ73R0Ze53tKf69u+xLLf05XuK8jNkSkrE9l39jJe7ZpXYZRCCCFESVsiP+G3n09VaZ8t2j1M3zHPl9smOzsbd3d38++vv/66efZ6zJgxvPzyy1y+fJlx48YB8NZbb9G8eXMKCgro378/Bw4coEuXLoSGhhIdHU337t25evUqjRs3ZtasWSQkJJhnwiMjI4mOjiY2NtY83k8//VQing8//JBmzZqRnJzMoUOHzLGlpaXx5ptvsmnTJqytrfn3v//Nu+++y4wZMwCwt7dn3759fPjhh8ybN49PP/2UefPm8cEHH+Dv709mZiZWVlZ88803GAwGEhMTSUtLo3v37vTq1atEDKGhoaxcuZKIiAhSU1NJTU3F29ubf/zjH/Tr14+lS5dy5coVfHx8GDDAWLiwb98+Dhw4QPPm5ecL165dw9vbm/fee49Zs2YRERHBokWLGDZsmPkaT58+nSVLljBx4kQAzp07x65du7CwsCAyMhKAHj16EBQUxODBg80lPra2thgMBtzd3Vm2bBnPPvtsubHcq2olGddaf4uxvOTG7SnAoGK/rwPWldLuCvBEdcZYUzp7dmPf5yuxb9qBq1//B4c7SMYHOrfCsv5BYgwpkowLIYS4J5VVpvLYY4/x1Vdf8dJLL5GYmGjevnLlSj755BPy8/NJTU0lOTkZpRStW7eme/fuADzwQNnlnWWVqRSJjY3l5ZdfBsDFxQVXV+PSxbt37yY5ORl/f38AcnNz8fP730P+hg0bBoCXlxfffGOsvPX392fKlCmMHj2aYcOG0bZtW2JjYwkLC8PCwoKWLVvSu3dv4uPjzeMAjBw5koEDBxIREcHKlSvNye7GjRuJiYlh3rx5AOTk5HD27Fnz9bpVIg5Qr149QkNDAfjTn/5kjvvQoUNMnz6dK1eukJmZSWBgoPmYESNGYGFhccu+x44dy7Jly3j33XeJjo4mLi7ulsfci+QJnHXABdtrdMtpzfGjtjhczwRLm0r1Y2NZnwFdW/L9wVTeGOxEfYu6XIUkhBDibnarGeyaVlhYyOHDh2ncuDGXL1+mbdu2nD59mnnz5hEfH0+zZs0YM2YMOTk5NRKP1prHHnuML7/8stT9lpaWgPGG1Px8Y5nqtGnTeOKJJ1i3bh3+/v5s2LChQmO1adMGOzs7Dhw4QHR0NB999JE5hq+//prOnTuXaL9nzx6sra0rdV5KKcBYjrJ69Wrc3NyIjIxk69at5jYV7fvJJ58kIiKCfv364eXldU8+0KciJFurAzqG+FKoC8lv5c/1Lf93R30NcXMkLTOXXScvVVF0QgghRN333nvv0bVrV1asWMGzzz5LXl4eV69exdraGltbWy5cuMD69esB6Ny5M6mpqcTHxwOQkZFBfn4+TZo0ISPj9lYl8/f3Z+XKlQAkJydz8OBBwFjHvXPnTk6cOAEYyz2OHSv/FreTJ0/SrVs3/v73v9O9e3eOHDlCQEAA0dHRFBQUcPHiRbZv346Pj89Nx4aGhjJnzhzS09PNs+aBgYEsXLjQfC/Z/v37yxy7S5cupW4vLCw036y6YsUKevbsCRivWevWrcnLy2P58uXlnleRG6+vlZUVgYGBjB8//r4tUQFJxuuETm5OXMy9gL1tey5/c2cPE+3T2YEmlvWJSZQHAAkhhLj3FNWMF/1MmzaNo0eP8umnn/LOO+8QEBBAr169ePPNN3Fzc8PDw4MuXbowatQoc8lIw4YNiY6OZuLEibi5ufHYY4+Rk5ND3759SU5OLnEDZ9ENnUU/u3btKhHPiy++yMWLF3FycmL69Ok4Oztja2uLg4MDkZGRhIWF4erqip+fn/lGzbLMnz/fXOrSoEEDHn/8cUJCQnB1dcXNzY1+/foxZ84cWrVqddOxw4cPJyoqipEjR5q3vfHGG+Tl5eHq6oqzszNvvPFGqeOmpaWVufiDtbU1cXFxuLi4sHnzZnPN++zZs/H19cXf37/MRP5GTz31FHPnzsXDw4OTJ08CMHr0aOrVq8fAgQMr1Me9SN1PK294e3vrojuc65p1EZG4ZnfkbNIieny5EGxaVLqvqV8l8t9D54mfPgCrBreu2RJCCCEq4vDhw3Tt2rW2w6hTCgoKyMvLw8rKipMnTzJgwACOHj1Kw4YNazu0Clu7di2nTp1i0qRJN+2zsbExrwJTHebNm0d6ejqzZ8+utjFqQml/G0qpvaZn4pRLasbriM5PPkrh5xfIb+lP7o9LaRg8rdJ9Bbk78tXec2w9+ht/dGldhVEKIYQQorisrCz69u1LXl4eWms+/PDDuyoRBxg8eHCtjBsSEsLJkyfZvHlzrYxfV0gyXkd0dOlCQm4iDrbtuRwzm5Z3kIz7PWyHvU1DYhJTJBkXQgghqlGTJk2oq9+6V4XqnBX/9tubFta7L0nNeB3yW7NsmjRoxom0RyDteKX7qW9Rj8Gujmw6/BsZOXlVGKEQQgghhKhKkozXIV1H+FOoCyl08CN385I76muImyO5+YVsTLpQRdEJIYQQQoiqJsl4HdKh6yNcyE3FwbYDl79fA3dwc63nQ01pZ9eYL+POVmGEQgghhBCiKkkyXsek2V3HpoEtx9M94JfKP4lKKcUzfu1J+Pkyib9cqcIIhRBCCCFEVZFkvI5xCQ2gUBegHfzI2xp5R32N8G6LjWV9lu08XTXBCSGEEEKIKiXJeB3z4CMPcz43lRYPtOfyxh8gP7fSfTWxasBI7wdZeyCVC1dr5vG/QgghRHWysLAo8RCet99+u8r6NhgMrFu3zvx7ZGQkDg4OJcZLTk4mJSWF4cOHV9m4lXHmzBlcXFyqfRwbG5tqH6O4GTNmsGnTpjL3t2/fnrS0tJu29+jRAzBelxUrVlRbfNVBljasg9Lsc3HMeICjWf60OLEJugyqdF9jerRn2a7TfP7Tz7wa2LkKoxRCCCFqXqNGjTAYDNXSt8FgICEhgUGD/vf/3dDQUBYtWnRT26JHxN/t8vPzqV//ztLBquijyKxZsyp1XNGTUYuS8VGjRlVJPDVBZsbrILdRvSnQBWDvS96O/7ujvh6ya8xjXVuyfM/P5OQVVFGEQggh7ndX1pzkt48PVOnPlTUnKxVLeno6nTt35ujRowCEhYWxePJUmzsAACAASURBVPFiAMaPH4+3tzfOzs7MnDnTfEx8fDw9evTAzc0NHx8f0tPTmTFjBtHR0bi7uxMdHV3meMVnpbOyshg5ciROTk6EhITg6+trXnd848aN+Pn54enpyYgRI8xrdrdv356ZM2fi6elJt27dOHLkCADbtm0zz8B7eHiQkZGB1pqpU6fi4uJCt27dSo3r0UcfJSkpyfx7nz59SEhI4Nq1azz33HP4+Pjg4eHBd999Bxhn/IOCgujXrx/9+/e/5fWdPHkyzs7O9O/fn4sXL5rHeOWVV/D2/v/s3Xd4VGX6//H3mUx6I500IHQInQQSEkCqCgsIgjRBimLFXXUtu6v7VVd/a0fsIiKI0sSCimJHOiGEQCAQCISEFJIAqaRNOb8/AllQkAgzc2aS+3VdcyWZzDz3Z0Pc6+Zwn+eJYeHChXz11Vf079+f3r17M3z4cAoLCzGbzbRp04bS0v/du9ahQweys7OJiorCYKjffrm8vLzh61mzZjXqLzrV1dXceOONDX/O56/gP/bYY2zevJlevXqxYMECjh8/zsCBA+nTpw99+vRpaNoBXnzxRWJjY+nRo0fD78Zjjz3Gm2++2fCaJ598kpdeeumKea6FNON2KDyqDSfr8utHVX7ZBjVl17TenMQoSqoMfLEnzzIBhRBCCI1UV1dfNDayevVqfH19eeONN5g1axarVq2ipKSEO+64A4Bnn32W5ORk9u3bx6+//sq+ffuoq6tj8uTJLFy4kL179/Ljjz/i6enJ008/zeTJk0lNTWXy5MkADc35+Ud1dfVFed566y38/PxIT0/nP//5D7t37wbg1KlTPPPMM/z444+kpKQQExPDK6+80vC+wMBAUlJSuPvuuxuavZdeeok333yT1NRUNm/ejLu7O5999hmpqakNOR9++GEKCgouyjB58mTWrFkDQEFBAQUFBcTExPDss88ydOhQkpKS+OWXX3j44Yc5e/YsACkpKaxdu5Zff/31D3/eZ8+eJSYmhgMHDjB48GCeeuqphu/V1dWRnJzMQw89RGJiIjt27GDPnj1MmTKFF154AZ1Ox7hx4xoO99m5cyetW7emdevWXHfddaxfvx6AVatWMWHCBJydnRv1O1BZWcmYMWOYOnVqw5/zec899xwDBw4kNTWVBx54gODgYH744QdSUlJYvXo1999/P1D/F6UjR46QlJREamoqu3fvZtOmTRf9LAHWrFnT8LtgLTKmYqfOBBsIL/PmUN1wgtO/hD4zrnqt/lH+dA31YcnWLCbHRqIoigWTCiGEaI5ajGmnSd3LjamMGDGCTz75hHvvvZe9e/c2PL9mzRoWLVqE0WikoKCA9PR0FEUhNDSU2NhYAHx8fC5b73JjKudt2bKFv/71rwB069aNHj16ALBjxw7S09NJSEgA6hvX+Pj4hvdNmDABgL59+/LZZ58BkJCQwIMPPsj06dOZMGECERERbNmyhalTp+Lk5ERISAiDBw9m165dDXUAbrnlFkaOHMlTTz3FmjVrGubZv//+e7788suGZr+mpoacnJyGn5e/v/9l/3edp9PpGprRW2+9tSH3+Z/Nebm5uUyePJmCggLq6uqIiopqeM3TTz/N7NmzWbVqVcN7br/9dl544QVuuukmPvjgg4Yr3I0xbtw4HnnkEaZPn37F1xoMBu677z5SU1NxcnLi8OHDQP3P5vvvv6d3795AfYN/5MgR5s6dS1FREfn5+RQXF+Pn50dkZGSjs10NuTJup3pNG47JbETnH4th68fXtJaiKMxJjOJwYSVbM09bKKEQQghhP8xmMwcPHsTDw4OSkhIAsrKyeOmll/jpp5/Yt28fo0ePpqbGNhsaqKrKiBEjSE1NJTU1lfT0dN5//38H+rm6ugL1N6QajUagfkRi8eLFVFdXk5CQ0DC+ciXh4eEEBASwb98+Vq9e3dDwqqrKp59+2pAhJyeHLl26AODp6XlV/7suvKB34Rrz58/nvvvuIy0tjXfffbfh5xwfH09mZibFxcV88cUXDc18QkICx48fZ+PGjZhMpj91M2pCQgIbNmxAbcR5LAsWLCAkJIS9e/eSnJxMXV39xhiqqvKPf/yj4WeTmZnJ3LlzAZg0aRJr16696GdpTdKM26nQ1uEUGM7tqrJtP5TlXtN6Y3qGEujlwhLZ5lAIIUQTtGDBArp06cKKFSuYPXs2BoOB8vJyPD098fX1pbCwkG+//RaATp06UVBQwK5duwCoqKjAaDTi7e1NRUXFn6qbkJDQMNaQnp5OWloaUD/HvXXrVjIzM4H6cY/zV2Uv5+jRo3Tv3p1HH32U2NhYDh06xMCBA1m9ejUmk4ni4mI2bdpEv379fvfeyZMn88ILL1BWVtZw1fz666/n9ddfb2ha9+zZc9nanTt3vuTzZrO5YYZ7xYoVJCYmXvJ1ZWVlhIeHA7Bs2bKG5xVFYfz48Tz44IN06dKFgICAhu/NnDmTadOmMXv27D/6sfzO008/jZ+fH/fee+/vvvfbP8OysjJCQ0PR6XQsX74ck6n+/rnrr7+eJUuWNMzx5+XlUVRUBNT/LFetWsXatWuZNGnSn8p2NaQZt2MlLU146L04aLwB0q7trm1XvRO3xrXm50NFHCuutFBCIYQQwrZ+OzP+2GOPkZGRweLFi3n55ZcZOHAggwYN4plnnqFnz5707t2bzp07M23atIaRERcXF1avXs38+fPp2bMnI0aMoKamhiFDhpCenn7RDZy/nRm/8AZAgHvuuYfi4mK6du3K448/TnR0NL6+vgQFBbF06VKmTp1Kjx49iI+Pv+KV7ldffbVh1MXZ2Zkbb7yR8ePH06NHD3r27MnQoUN54YUXaNmy5e/eO3HiRFatWsUtt9zS8NwTTzyBwWCgR48eREdH88QTT1yy7qlTpy57ldnT05OkpCS6devGzz//zL///e9Lvu7JJ59k0qRJ9O3bl8DAwIu+N3nyZD766KPfXWWePn06JSUlTJ069Q9/LpeycOFCqqureeSRRy56vkePHjg5OdGzZ08WLFjAPffcw7Jly+jZsyeHDh1quJo/cuRIpk2bRnx8PN27d2fixIkNTXx0dDQVFRWEh4cTGhr6p7P9WUpjLvE3FTExMer5O5wdQWFeAdULD5JXdpj+7Zeif3jHNa1XXFFLwnM/M6VfJE+Ps/7epEIIIZqWgwcPNow5iHomkwmDwYCbmxtHjx5l+PDhZGRk4OLionW0Rvv66685duxYw82NtrJ27VrWrVvH8uXLbVrXGi7134aiKLtVVY250nvlBk47FhIeyva6nwn2bs2pPSdoeXI/tLz6JjrI25WxvcL4JDmXh0Z0wtejcXctCyGEEOLSqqqqGDJkCAaDAVVVeeuttxyqEQf4y1/+YvOa8+fP59tvv73okCVLqzOaqDOpeLnad7tr3+kEpeFmIk97ccj4F1ruW31NzTjAnIQo1u7OZXVyDvMGaXMnvBBCCNFUeHt740j/6m4vXn/99T/8/vjx48nKuvg+t+eff57rr7++UevXGU0cKz6LCnQK8Uans9+d5KQZt3Mxt47k7IIDOPv3xZi0AP3wJ0HndNXrdQ3zIb5tAMu2ZTMnIQq9k9w2IIQQQgj7cn5v8qtRazSRVXwWk6oSFehp1404yA2cdi8oNIT8unxCvFtz6mA5HN9yzWvOSYwir7Sa79MLLZBQCCFEc9Kc7jUTjqfWUH9F3KSqtA30xMPF+tedr/W/CWnGHUB5JLg5eXDINA7S1lz5DVcwtHMwrQM8WLJFtjkUQgjReG5ubpw+fVoacmGXag0mjp06i6pC20Av3G3UiJ8+fRo3N7erXkPGVBxAvxnXU/bSPlz8emNMeRr9qJfA2f2q13PSKcwa0Ianvkpn74lSeka2sGBaIYQQTVVERAS5ubkUFxdrHUWIixhMZk5V1oGqEujtyvEy211vdnNzIyIi4qrfL824A/APDuJQXT7BXq04dRRaHt4A0eOvac1JMZG88v1hlmzNYuGU3hZKKoQQoilzdnZuOOZcCHtxpLCCGe/tBGDlHf3pEOKtcaI/R8ZUHER5Gx1uTh4cNI+Hfdc+quLlqueW2EjW7yvgZJltjgYWQgghhLCkjJMVTFm0A50Cq+bFOVwjDtKMO4y4maMwmOtw9e2Baf8PcPb0Na85a0AbzKrK8h3Hrz2gEEIIIYQNpeeXM/W9HeidFFbNi6N9sJfWka6KNOMOooW/H/l1eYR4taI4xwPSr37Ln/Mi/T0Y0TWEFTtzqK4zWSClEEIIIYT17c8rY9riHbjqdayeF0/bIMdsxEGacYdS2dYZVyd3Dqo3W2RUBeoPASqpMvBFap5F1hNCCCGEsKa03DKmL96Jp4ue1fPiaRPoqXWkayLNuAMZMGMUdeZa3Hy6YTqaBGeufWvCflH+RIf5sGRLlmxVJYQQQgi7lnqilGmLd+DtpmfVvDhaBXhoHemaSTPuQLz9fOsPAPJsRWGuL6R9cs1rKorCnIQojhRVsiXzlAVSCiGEEEJYXkpOCTMW78TPw4VV8+KI9Hf8RhykGXc4Z9u74OLkxiFugX2rwQJXs//SM5RAL1c5BEgIIYQQdml39hlmvp+Ev1d9Ix7h1zQacZBm3OEkzBxFnakGd68umAqOQn7KNa/pqndiRlxrfsko5mhxpQVSCiGEEEJYRlJWfSMe5O3K6nnxhLW4+oMP7ZE04w7Gy8eHPEM+IV6tKCwIstiNnNPjWuHipGPp1uMWWU8IIYQQ4lptP3qa25Yk0dLXjdXz4mjpe/XHztsracYdUHVHN1x0rhxSb4a0tWAyXPOagV6ujOsVxtrduZRVXft6QgghhBDXYlvmKWYvTSLCz52V8+II9ml6jThIM+6QEmaOptZUjYdnJ0xlp+HYRousOzshimqDiVW7ciyynhBCCCHE1dh8pJjZS3fR2t+zvhH3bpqNOEgz7pA8vbzqR1U8W1FQ3Kr+Rk4L6BrmQ3zbAJZtO47RZLbImkIIIYQQf8bGjCLmLksmKtCTFXf0J9DLVetIViXNuIOq7eKJs86FDOMYOPg11FZYZN25iVHkl9Xw3YFCi6wnhBBCCNFYvxwqYt6Hu2kf5MXKO+IIaOKNOEgz7rASb/0LNaYqvNw7Yq6ugUPrLbLu0M7BtA7wYMlW2eZQCCGEELbzY3oh85Yn06mlNyvu6I+fp4vWkWxCmnEH5e7pTp4hn2DPCPJLOlpsVEWnU5g9oA27s0tIPVFqkTWFEEIIIf7IdwdOcvfHu+ka6sNHc/vTwqN5NOIgzbhDM0b71I+q1N5YfxNnxUmLrDsxJhJvV70cAiSEEEIIq/s2rYB7P06hW7gvy2/vj6+Hs9aRbEqacQeWMGP0uVGVdpgNKuz/1CLrernqmRwbyTdpBRSUVVtkTSGEEEKI3/p6Xz73rdxDz8gWfDinHz5uzasRB2nGHZqbmxu5hjxCPCLIO9vbYqMqALcNaINZVVm+PdtiawohhBBCnLcuNY/7V+6hT6sWLJvTD+9m2IiDNOMOz9y9BXqdM4crhkDBXijOsMi6kf4ejOzakhVJOVTXmSyyphBCCCEEwOd7cnlgdSqxbfxZOrsfXq56rSNpRppxBzdg+iiqjZV4u0dhNjnBvjUWW3tOYhSlVQY+35NnsTWFEEII0byt3Z3Lg2v2Etc2gA9mx+LZjBtxkGbc4bm5uZFnLCDYPZwThkGQtgbMljmwJ7aNH93CfViyNQtVVS2yphBCCCGar9W7cnh47V4S2wfy/m2xeLg070YcpBlvEtRefuh1zmSeiYHSHDix0yLrKorCnIQoMosq2XzklEXWFEIIIUTztGJnDo9+msbADkG8NzMGdxcnrSPZBWnGm4DEqaOpMlbi49oGs87Tojdyju4RSpC3qxwCJIQQQoirtnxHNv/8PI0hnYJYNKMvbs7SiJ8nzXgT4OzqQp4xn2CPcE4Yh8CBz8FYa5G1XfVOzIhrzcaMYjKLKi2yphBCCCGaj6Vbs3jii/0M7xLMO9KI/440402EEhOIk6Ins7Ab1JTCkR8stva0/q1w0etYuk2ujgshhBCi8d759ShPfpXOyK4hvDW9L656acR/S5rxJiJxymjOGsvxdW2F2S3YoqMqgV6u3NQrjE9351FaVWexdYUQQgjRNKmqykvfZfDct4cY0zOMN6f3wUUvbeelyE+lidDr9eSZCghyD+e4cRgc3gDVpRZbf3ZCFNUGE6t2nbDYmkIIIYRoesxmlae+SueNXzKZEhvJq5N74ewkLeflyE+mCdHHhOCkOHEsry2Y6iB9ncXW7hLqw4B2ASzbdhyDyTJbJwohhBCiaTGZVR77bB9Ltx1nbmIU/53QHSedonUsuybNeBMyYPKNVBrKaeEcgerXwaIHAAHMSYiioKyG7w6ctOi6QgghhHB8dUYz96/cw5rkXO4f1oHHR3dBUaQRvxJpxpsQvV5PvrmAYPcwjtYOguwtUGq5sZKhnYNpE+DBki1yI6cQQggh/qfGYOKuj3azPq2Af47qzIMjOkoj3kjSjDcxLnGh6BQnjmeF1T+RZrmr4zqdwuyEKFJyStmTU2KxdYUQQgjhuCprjcz+YBe/ZBTx/8Z3Z96gdlpHcijSjDcxcTdfT4WhDD/ncNSIAbDnY7DgUfYT+0bg7abng63HLbamEEIIIRxTaVUdty7eSdLxMyy4pRfT+rfSOpLDkWa8iTk/qhLkHsaRqgFw5ihkb7PY+p6ueqbERvJNWgEFZdUWW1cIIYQQjqW4opYpi3aQnl/OW9P7cFPvcK0jOSRpxpsgtwHh6BQdORme4OoDKR9adP2Z8W0wqyofbs+26LpCCCGEcAz5pdVMfnc72aereH9WDNdHt9Q6ksOSZrwJ6j9+JOWGUvz1Yahdb67f4tCCe45H+ntwfXRLVuzMobrOZLF1hRBCCGH/jp86y6R3tlNcUcvyuf0Y2CFI60gOTZrxJkiv11NgLiDQLZSMU53BWA3711q0xpzEKMqqDXy2J9ei6wohhBDCfmWcrGDSu9upqjOycl4cMW38tY7k8KQZb6I8BrZGp+jIS6mGlt0tPqoS09qP7uG+LNmShdlsuRtEhRBCCGGf9uWWMnnRdhRgzZ3xdAv31TpSkyDNeBMVO3YYpXWnCXZpTW27SVCwt/5hIYqiMCexDUeLz7I585TF1hVCCCGE/UnKOsO093bi5apn7V0D6BDirXWkJkOa8SZKr9eT51qEn2sQOzYawMkVUpZbtMbo7mEEebvKIUBCCCFEE7Yxo4iZS3YS4uPK2rsG0CrAQ+tITYo0401Yn/njqDPX4lIWgNp5LOxbAwbLbUfootcxM641vx4uJrOowmLrCiGEEMI+fJtWwB0fJtM20IvVd8bT0tdN60hNjjTjTVhQWAg5tdmEebYhozgaasvg4FcWrTGtfytc9Do5BEgIIYRoYj7dncu9K1LoHu7LynlxBHq5ah2pSZJmvInzuD4KJ0VPwT4n8Iuy+I2cAV6ujO8VzqcpuZRW1Vl0bSGEEEJoY/n24zz0yV7i2wWwfG5/fN2dtY7UZEkz3sT1GzWUwpp8wrzaUx4yFo5vhtNHLVpjdmIbagxmViadsOi6QgghhLC9tzce5Yl1BxjeJZj3b4vF01WvdaQmTZrxZqA4tBpPvTdJWz1BcYI9H1l0/c4tfUhoH8CH249jMJkturYQQgghbENVVV787hDPbzjEmJ5hvH1rX9ycnbSO1eRJM94MDL5vMmeNFfjrWmNuMxxSPwaT0aI15iREUVBWw4b9Jy26rhBCCCGsz2xWeeqrdN785ShTYiN5dXIvnJ2kTbQF+Sk3A+6e7uSQS7B7OLuORkNlIRz53qI1hnQKpk2AB0u2yjaHQgghhCMxmVUe/XQfS7cdZ25iFP+d0B0nnaJ1rGZDmvFmIuq2QZhUI3XFoaieLWGPZfcc1+kUZidEsSenlJScEouuLYQQQgjrqDOauX/lHj7Znctfh3Xg8dFdUBRpxG1JmvFmon33zuTWnCDcuy15LtfD4e+gvMCiNSb2jcDbTS/bHAohhBAOoMZg4s7lyaxPK+Bfo7rwwIiO0ohrQJrxZsTQ2wsXnSuHDrYG1QR7V1h0fU9XPVP7teKbtAIKyix3uJAQQgghLKuy1sisD5LYeLiY/ze+O3cMaqt1pGZLmvFmJPHWsZTUnSLUox01fnGQshxU1aI1Zsa3RlVVlm3Ltui6QgghhLCM0qo6pi/eya7jJbw6uRfT+rfSOlKzJs14M6LX68nzOo2vSwA7jvaHkiw4vsWiNSL8PLihW0tW7MymrNpg0bWFEEIIcW2KK2qZsmgHB/PLeXt6H8b1Ctc6UrOnWTOuKMokRVEOKIpiVhQl5g9ed4OiKBmKomQqivLYBc8PUxQlRVGUVEVRtiiK0t42yR1bv/vGUWuqwd3cHtXZ1+IncgLcO6Q9FbVG3vol0+JrCyGEEOLq5JVWc8u728k+XcX7s2IYGd1S60gCba+M7wcmAJsu9wJFUZyAN4Ebga7AVEVRup779tvAdFVVewErgMetG7dp8A8OItuQTahnKw5U3wgHv4Rqy+5+Eh3my819Ivhg63FOnKmy6NpCCCGE+POyTp3llne2c6qiluVz+zGwQ5DWkcQ5mjXjqqoeVFU14wov6wdkqqp6TFXVOmAVMO78EoDPuc99gXzrJG16/MZ0RUHHqVPdwFgDaWstXuPvIzvhpFN4fsMhi68thBBCiMbbl1vKxLe3UW0wsXJeHDFt/LWOJC5g7zPj4cCJC77OPfccwO3AN4qi5AIzgOdsnM1h9R42gJO1eYR7tadE1wNSllm8RktfN+4Y1Jav9xXIvuNCCCGERjYdLmbKoh24OTux9q54uoX7ah1J/IZVm3FFUX5UFGX/JR7jrvzuK3oAGKWqagTwAfDKZTLMUxQlWVGU5OLiYguUbRpKWplw13uxO38knEyD/FSL17hzUFuCvF155ut0VAvv2iKEEEKIP7YuNY85S3fRyt+Dz+4ZQNsgL60jiUuwajOuqupwVVW7XeKxrpFL5AGRF3wdAeQpihIE9FRVdee551cDAy6TYZGqqjGqqsYEBcl81HmD7plIpaGMQLdOmMxuVrmR09NVz99HdiQlp5T1aZY9YEgIIYQQl7d48zH+uiqVvq39WHNXPCE+blpHEpdh72Mqu4AOiqJEKYriAkwBvgRKAF9FUTqee90I4KBGGR2Sm5sb2U75BLqFsrP0Zkj7BOosf7PlxL6RdG7pzfMbDlFrNFl8fSGEEEL8j9ms8t9vDvLM+oPc2K0ly+b0w8fNWetY4g9oubXh+HPz3vHAekVRvjv3fJiiKN8AqKpqBO4DvqO+2V6jquqBc8/fAXyqKMpe6mfGH9bif4cj63rHcIxmA6qxD2pNef3OKhbmpFN4fHRXTpypZtm24xZfXwghhBD1DCYzf/9kL+9uOsaMuNa8Ma0Pbs5OWscSV6A0p1nemJgYNTk5WesYdmXLX5cS7hoJxqeJ6u4Js7+xSp3ZHySRnF3Crw8Pwd/TxSo1hBBCiObqbK2Ruz9OYdPhYh4a0ZH7hrZHURStYzVriqLsVlX1smfpnGfvYyrCytT4QJx1Lhyr/Atkb4VT1jmo55+julBVZ+K1n45YZX0hhBCiuTpdWcu093aw5Ugxz03ozvxhHaQRdyDSjDdzA6f8hVO1hYR5d6Kq0hX2LLdKnQ4h3kyJjeSjHdkcK660Sg0hhBCiuTlxpoqJ72zn0MkK3p0Rw5R+rbSOJP4kacYFBX5leDv7saN8JqSuAJPBKnUeGNERN2cn/vutHAQkhBBCXKv0/HImvL2NM2fr+Pj2/ozoGqJ1JHEVpBkXJM6fSI2pCm/XXpjLi+DI91apE+jlyt3XteOH9EJ2HDttlRpCCCFEc7D96Gkmv7sdvU7hk7vi5VRNBybNuMDbz5ds4wlCPCJJK06wyp7j581NjCK8hTvPrE/HbG4+Nw8LIYQQlvJNWgG3LUkixNeNT+8eQMcQb60jiWsgzbgAIGRSbwBK1VH1V8bL861Sx83ZiYev78T+vHI+35NnlRpCCCFEU7V8+3HuXZFC9whf1t4VT1gLd60jiWskzbgAoNuAvhTU5BLu04HCYp/62XErGdszjB4Rvrz4XQbVdXIQkBBCCHElqqry8vcZPLHuAMM6B/PR3P608JCtgpsCacZFg/JOTrg5ebC/Znb9ripms1Xq6M4dBHSyvIbFm49ZpYYQQgjRVBhNZv7xWRqv/5zJ5JhI3rm1L+4ucphPUyHNuGgwZN5Eyg0lBHp1w3gyB45vtlqtflH+3BDdkrd/PUpRRY3V6gghhBCOrLrOxF0fpbBq1wnmD23Pczd3R+8k7VtTIn+aooFeryfHpZAAtxC2F4622p7j5z12Y2cMJjMLfjhs1TpCCCGEIyqtquPW93fy06FCnh4XzUMjO8lhPk2QNOPiIj3uvAGDuQ4n9yGo+7+EqjNWq9Um0JMZcW1YvesEGScrrFZHCCGEcDT5pdVMemc7abllvDG1DzPj22gdSViJNOPiImFtIjlRm0OYZxRHcsMh7ROr1rt/WHu83Zx59puDVq0jhBBCOIrDhRXc/PY2TpbVsHROLKN7hGodSViRNOPid5yHRKDXOZPL9Po9x1Xr7QfewsOF+UPbs+lwMb8eLrZaHSGEEMIRJB8/w6R3tmM0q6y6M44B7QK1jiSsTJpx8TvxN42gqKaAMJ/OlGccgfw9Vq03M74NrQM8eHZ9OkaTdXZwEUIIIezdD+mFTF+8E39PFz67ewDRYb5aRxI2IM24uKSikLN4Ofuyq2y6VU/kBHDR63jshs4cLqxkTXKuVWsJIYQQ9mhVUg53Lk+mc0tv1t4VT6S/h9aRhI1IMy4uaeD8SVQbK/H1jsW851OoO2vVejd0a0lsGz9e+SGDylqjVWsJIYQQ9kJVVV7/6QiPfZZGYocgVtwRR4CXq9axhA1JMy4uydPLi2w1lxD3CFKOdYX0dVat0V2TjgAAIABJREFUpygK/xrdlVOVdbyz8ahVawkhhBD2wGRW+fe6A7z8w2HG9w7n/dti8HTVax1L2Jg04+KyIqb1R8VMlds41N3LrF6vV2QLxvYM473Nx8gvrbZ6PSGEEEIrNQYT81emsHxHNvMGteXlST1xlsN8miX5UxeX1blvD/JqThDh3YGC5Ew4dcTqNR+5oRMq8NJ3GVavJYQQQmihvMbAbUuS+CbtJI+P7sI/R3VBp5PDfJoracbFH6ru7oGLkxvptTOsfiMnQISfB3MTo/hsTx5puWVWryeEEELYUmF5Dbe8s53d2SW8OrkXtw9sq3UkoTFpxsUfGjRrHKV1pwnx7UH15pVgMli95j3XtSPA04Vn1qejWnGPcyGEEMKWDp8sJ+fVEcwtWcAHM3pwU+9wrSMJOyDNuPhDer2eXI9i/FyDSMpJhMMbrF7T282Zv43oyM6sM/yQXmj1ekIIIYS1/Xq4mPlvryPWvI9Jys8M3DITygu0jiXsgDTj4or63jOWOnMtrl6DUXcttUnNqbGRtA/24r/fHqLOKAcBCSGEcFwf7chmztJdDPbMqX/iun9AcQYsug5ykzXNJrTXqGZcUZTPFEUZrSiKNO/NUFBYCDl1OYR6RZH+ax6U5Vm9pt5Jxz9HdSbr1Fk+3plt9XpCCCGEpZnMKv/5Op3Hv9jPoA6B/D26HPTuMPAhmPsD6F3hgxshdYXWUYWGGttcvwVMA44oivKcoiidrJhJ2CGPG9rhpDhRpLvFZv+nMaRTMAntA1j40xHKqqw/qy6EEEJYytlaI3cuT+b9LVnMGtCG92bG4FKwG8J6gZMzhHSFeRuhVRx8cTds+AeY5NC75qhRzbiqqj+qqjod6AMcB35UFGWboiizFUVxtmZAYR/63TCYwpo8wn07U7rhYzBbf3REURT+NaorZdUG3vjF+tsqCiGEEJZQUFbNpHe28/OhIp4aG82TY6PRqwYo2AcRMf97oYc/3Po59L8bdrwFH0+EqjPaBReaaPTYiaIoAcAs4HZgD7CQ+ub8B6skE3anOLwOD703uwuGw/FNNqnZNcyHiX0iWLYtm5zTVTapKYQQQlyt/Xll3PTmVrJPn+X922K5bUCb+m+c3A+mWgiPufgNTnq48TkY9yZkb4X3hkLRQZvnFtpp7Mz458BmwAMYo6rqWFVVV6uqOh/wsmZAYT8G3zOJs8YK/HxjMG1dYrO6f7++E046hec3HLJZTSGEEOLP+v7ASSa9sx0nRWHt3QMY0jn4f9/MO3ejZkTspd/c+1aYtR7qzsLi4XBovfUDC7vQ2Cvjr6mq2lVV1f+qqnrRPjyqqsZc7k2iaXH3dCdbySPYPZxdP5Xb7J/SQnzcuHNwW9anFbA7W/75TgghhH1RVZXFm49x50e76RjixRf3JdAl1OfiF+XuAu9Q8P2DvcUj+9XPkQd2gFXT4NcXQc7baPIa24z7KYoy4TePYYqiBF/5raIpaXfbQEyqEaPbDaipq21Wd96gtoT4uPLM+oNyEJAQQgi7YTCZ+dcX+3lm/UFuiG7JqnnxBHu7/f6FuckXz4tfjm84zP4WekyGX56BT2bVXy0XTVZjm/G5wGJg+rnHe8CjwFZFUWZYKZuwQ+26dSa35gThPu058elqm/2N3cNFz0MjO7Enp5Sv98khCUIIIbRXVm1gztJdrNiZw93XtePNaX1wd3H6/QvPnoKSrN/Pi1+OszuMfxdG/AcOfgnvj4QS2ea3qWpsM+4MdFFV9WZVVW8GugIq0J/6plw0I4YYX5x1rhwpGQ55KTare3OfCLqE+vDct4eoMZhsVlcIIYT4rRNnqpj49ja2Hz3NCxN78OgNndHplEu/OG93/cfLzYtfiqJAwv0w7RMoPQHvDYHjW649uLA7jW3GI1RVvfBc8iIgUlXVM4BsAN3MJE4dzZm6Ylq26E7VhrdsVtdJp/D46C7klVazdNtxm9UVQgghLrQ7u4Sb3txKYXkNH87txy0xkX/8htxdoDjV7zH+Z3UYDnf8DB4B8OE42LVY5sibmMY24xsVRflaUZTbFEW5DVh37jlPoNR68YQ90uv15PuU4uviz87NeqittFnthPaBDO0czJs/Z3K6stZmdYUQQgiAL/fmM/W9HXi56fn83gQGtAu88ptyk+sP+XHxvLqige3h9h+h3TBY/xB8/Tcw1l3dWsLuNLYZvxf4AOh17vEhcK+qqmdVVR1irXDCfvW7Zwy1pho8vBMw7/nEprX/OaozVQYTC3+Sg4CEEELYhqqqvP7TEe5fuYdeES34/J4E2gU1Yndns7l+TKWx8+KX4+YLU1dC4oOweyl8OBYqi69tTWEXrtiMK4riBPysquqnqqo+cO6xVpUtLZo1/+Agso05hHq2Zv/Htt0LtX2wN1P7RfLxzhwyi2x3VV4IIUTzVGs08dCavbz8w2Em9A5n+e398Pd0adybTx+B2vI/Ny9+OTonGP5/MHEJ5KfCouvqPwqHdsVmXFVVE2BWFMXXBnmEA/EbG42CwpnaRNQi2x7I87fhHXF3duK5b+WUMiGEENZz5mwdMxYn8dmePB4a0ZGXb+mJq/4SO6ZcTu6u+o+N2dawsbrdDHM21H++5AZIW2u5tYXNNXZMpRJIUxTlfUVRXjv/sGYwYf96D4njZG0u4T6dObXKtr8OgV6u3DOkHT8eLGLb0VM2rS2EEKJ5OFpcyfi3tpKaW8prU3szf1gHFOUyO6ZcTm4yuPpCQAfLhgvrVX9AUFgv+HQu/PgkmGWnMUfU2Gb8M+AJYBOw+4KHaObORKm46z3Zt6eFzW8mmZMQRXgLd575+iAms0xNCSGEsJztR08z4a1tVNYYWXlHHGN7hl3dQrnJEN4HdI1tuf4EryCY+SX0nQVbFsDKqVBTZvk6wqoa9ZuhquoyYA2wQ1XVZecf1o0mHMHQuyZRaSgjwLc3xqQ1Nq3t5uzEIzd0Ir2gnM9Scm1aWwghRNO1JvkEM97fSbC3K1/cm0Df1n5Xt1DdWSg6YJl58cvRu8CYhTD6ZTj6EyweDqcyrVdPWFyjmnFFUcYAqcCGc1/3UhTlS2sGE47B2dWFbOcCAt1asnPZRpvXH9szjJ6RLXjp+wyq6ow2ry+EEKLpMJtVnt9wiEfW7iO+XQBr7x5ApL/H1S+YvwdUs3Wb8fNib4eZ66DqNLw3FI78aP2awiIa+28mTwL9OLenuKqqqUBbK2USDqbr3GEYzQbQ9Uc9bdvjehVF4YnRXSgsr+W9TVk2rS2EEKLpqK4zcd/KFN7eeJRp/VuxZFYsvu7O17ZobnL9x/C+1x6wMdokwh2/QItWsGISbH1NDghyAI1txg2qqv52CMls6TDCMUV2aMuJ2mzCvdtx7J2XbF4/po0/N3ZrybubjlJUXmPz+kIIIRxbUUUNUxZt59v9J3l8dBeevakbzk4WmPHO3QX+bcEz4NrXaiy/1jD3O+gyFn54Aj6/EwzVtqsv/rTG/qYdUBRlGuCkKEoHRVFeB7ZZMZdwMEpiCHqdM9nHwusPOLCxx27sjMFk5uXvD9u8thBCCMd16GQ549/cxuHCShbNiOH2gW3//I4pl6Kq527etOCWho3l4gmTlsLQx2HfavjgRijPt30O0SiNbcbnA9FALbASKAf+Zq1QwvEkThrFqdpCQlt0pfLHj2xev3WAJzPj27Bm9wnS88ttXl8IIYTj2ZhRxMS3t2M0m/nkrnhGdA2x3OLleVB50jbz4peiKDDoYZiyEk4dqT8g6ESSNlnEH2rsbipVqqr+S1XVWFVVY859LvMA4iIF/uV4O/uRtDpNk/r3D+2Av4cLD65JpcYge60KIYS4vA+3H2fO0l20DvBg3b2JdAu38NmGDYf92Ghe/HI6j4LbfwRnD/jwJqgs1jaP+J3G7qbSUVGURYqifK8oys/nH9YOJxxL4n03U2OqwtujJ6aTtr2RE8DXw5mXbunJoZMVPLteTuYUQgjxe3VGM//6PI1/rzvA0M4hrLkznpa+bpYvlJsMTq4Q0t3ya/9ZwV1g+lowVsP217VOI36jsWMqnwB7gMeBhy94CNHA28+XbFM2IR6R7Ht1oSYZhnQK5o6BUSzfkc2G/QWaZBBCCGGfCstrmLxoOx/vzOGuwe14d0ZfPF311imWmwyhPev3AbcHge2h20RIWgxnT2udRlygsc24UVXVt1VVTVJVdff5h1WTCYcUMqn+RpWKkraoJm1GRR6+vjM9Inx5ZO0+ckuqNMkghBDCviRlnWH0a1vIOFnBW9P78NiNnXHSWeBGzUsxGaAgVbt58csZ9HcwVMGON7VOIi7Q2Gb8K0VR7lEUJVRRFP/zD6smEw6pW3wfCmpOEO7TkdzX/qNJBhe9jten9saswt9WpWI0yS6cQgjRXKmqytKtWUx7bwfebnrW3ZvAqO6h1i1auB+MNdrPi/9WUCeIvgl2LoKqM1qnEec0thm/jfqxlG3A7nOPZGuFEo6tuq83rk7uHD3gg1qjzd6mrQM8eXZ8N5KzS1j40xFNMgghhNBWjcHEQ2v28uRX6VzXKYh19yXQIcTb+oXPH/Zjb1fGoX6HlboK2PmO1knEOY3dTSXqEg85gVNc0nUzx5FXk0Mrv+4cef5xzXKM6xXOpL4RvPFLJtsyT2mWQwghhO2dOFPFzW9v4/PUPB4c0ZFFM2LwcbvGEzUbKzcZPIPBN9I29f6MkGjoMgZ2vAPVpVqnEVyhGVcU5ZELPp/0m+/9P2uFEo7POCQYZ50rJ/OiMFeUaJbjqXHRRAV68rfVqZyurNUshxBCCNvZfKSYMW9sIedMFUtui+X+YR3QWWs+/FLykuuvilvi8CBrGPQI1JZB0iKtkwiufGV8ygWf/+M337vBwllEE5IwbgQ5Ncdp1aIrB/7zb81yeLjoeWNqH0qrDfz9k72oqqpZFiGEENalqipvbzzKbUuSCPF246v7EhnSOdi2IarOwOlM+5sXv1BoD+g0Cra/CTVyUJ7WrtSMK5f5/FJfC3ERz/Ed0Sk6ysu7Yzql3TG8XcN8+NeoLvySUcz7W7I0yyGEEMJ6KmuN3PNxCs9vOMSo7qF8fu8A2gR62j5IXkr9R3ucF7/QoIehphR2vad1kmbvSs24epnPL/W1EBfpdV0cWbXHiPTtyJ7/e1rTLDPjWzOiawjPbzhEWm6ZplmEEEJY1rHiSsa/uZXvDpzkX6O68PrU3ni4WGn/8CvJ3QUoENZbm/qNFd4HOoyEbW9AbaXWaZq1KzXjPRVFKVcUpQLoce7z81/bwZFSwt61nBmLWTVjpD/GExma5VAUhRcn9iDQy5X5K1OorDVqlkUIIYTl/JBeyLg3tnL6bB0fze3PHYPaomg5q52XDMFdwdUGu7Zcq0GPQPUZSH5f6yTN2h8246qqOqmq6qOqqreqqvpzn5//2ka3JAtH1qlPd44ajxHu1Y6kp1/VNEsLDxcWTulNzpkqHv88TebHhRDCgZnNKq98n8EdHyYTFeTJV/MTGdA+UNtQqlq/k4o9z4tfKDIW2g2Fra9BnRySp5XG7jMuxFXrcOcQDGodzm4JGA4laZqlX5Q/fx3WkS9S8/k0JU/TLEIIIa5OWZWBuct28drPmUzqG8GaO+MJb+GudSw4fbR+Dtve58UvNPhRqDoFuz/QOkmzJc24sLpWndqRqWYR6tma7S98qHUc7hvanv5R/vx73X6OFsucnBBCOJJDJ8sZ++YWtmSe4pmbuvHCxB64OTtpHate7q76j+Ex2ub4M1rFQdQg2LoQDNoc1NfcSTMubKL3A2OpMVXh7T2Qqu3faprFSaewcEpvXPU65q/YQ63RpGkeIYQQjfPl3nzGv7mN6joTq+bFc2tca23nw38rLxlcvOuPnXckgx+FykJI0f6CWXMkzbiwiaCwEDKdcwhyD2PnOz9oHYeWvm68NKkn6QXl/PebQ1rHEUII8QeMJjPPrk/n/pV76Bbuw9f3J9K3tZ/WsX4vd1f9LiU6O7lS31htEqF1AmxZAIYardM0O9KMC5tJePgWzhrLCfBPoPL7j7WOw7AuIcxOaMPSbcf5Ib1Q6zhCCCEu4XRlLTPeT+K9zVncFt+aj2+PI9jbTetYv1dXBYUHIMKBRlQuNPgRqCiA1I+0TtLsSDMubMbbz5dj3ifxdw0m6eP99Xeda+yxGzsTHebDw2v3UlAms3JCCGFP9p4oZczrW0jJKeHlST15alw3XPR22roU7AWz0bFu3rxQ1GCI7A+bF4CxTus0zYqd/kaLpuq6v0+j3FBCy4B4znyyUOs4uOqdeH1qb+qMZv66KhWTWfu/IAghhIA1u04w6d3tKIrCp3cP4Oa+EVpH+mOOePPmhRSl/up4eS7sXaF1mmZFmnFhU+6e7uSElODj4seeb0pRTdofvtM2yItnbupGUtYZXv/5iNZxhBCiWas1mvjn52k88uk++rXx5+v5iXQL99U61pXlJUOL1uAVpHWSq9duGIT3hc0vg8mgdZpmQ5pxYXPDH5zOmdoiIgJjKXr/Ga3jADChTwQTeofz2k9H2HnstNZxhBCiWSosr2HKoh2s2JnDXYPbsWxOP/w8XbSO1Ti5yY47L36eotTvrFKaA/tWa52m2ZBmXNicXq+nsIMRT70PB3a4odbZx6z20zd1o5W/B39dlUrJWZmXE0IIW0rKOsPo17aQcbKCt6f34bEbO+Oks6NtC/9IeT6U5znuvPiFOoyE0J6w6SWwg3+9bg6kGReaGDLvZgpr8mkV0Juchf/SOg4AXq563pjWh9Nna3l47T5UO7jBVAghmjpVVVm6NYtp7+3A203PunsTuLF7qNax/pzc5PqPjjovfqHzV8dLsmD/Wq3TNAvSjAtN6PV6KmI8cHPyICsjEvVsidaRAOgW7stjN3bhx4OFLNt2XOs4QgjRpNUYTDy0Zi9PfpXOdZ2CWXdfAh1CvLWO9eflJYOTC4T20DqJZXQaBSHdYdOLYJaD8axNmnGhmetuHUNeTQ6t/LuT8V/7uDoOMCehDcM6B/P/vjnEgfwyreMIIUSTlH0ohaPPJdAu7RUeHNGRRTP64uPmrHWsq5ObDC27g95V6ySWoSgw+GE4nQkHPtc6TZMnzbjQlHlYKM6KC0VF0ZjP5GodBwBFUXhxUk/8PJ2Zv2IPZ2tlZk4IISxFNZtJWvsywSuvJ9p0kHnuP3P/4FboHGU+/LdMRsjf0zTmxS/UeQwEdYFfXwCzWes0TZo040JT8WOGklObRasWXdj/n//TOk4Df08XXp3cm6zTZ/m/Lw9oHUcIIZqE8tNFpL48ln77nybTLZryka/ibKiAoz9rHe3qFaWDoappzItfSKervzp+KgMOrtM6TZMmzbjQnOdNndApOipq+mPOP6R1nAbx7QKYP6Q9a3fn8sWePK3jCCGEQzu4/VuqX4+jW+U2drT7K9GP/IRP/1vB3c+xRyHyzt286ejbGl5K15sgsCP8+qJcHbciacaF5npdF8ex2mNE+nQk5ZnntY5zkfuHdSC2jR//+jyN46fOah1HCCEcjtFQx47FD9Jxw1QMigvHb/qCuBlPo3NyAidn6DIGDn0Dhhqto16d3GTwCAC/NlonsTydEwx6GIoOQMZ6rdM0WdKMC7sQdls/zKoZozIY05EdWsdpoHfSsXBKb/ROOuav3EOdUa4MCCFEY+UfzyDzhcHE5b5PSovrafHAdjr0HnTxi6LHQ10FZP6oTchrlZtcPy+uOOjM+5VETwD/dvDr8yBb/lqFNOPCLnTs3Y2jxmOEe7Vlx/OLtY5zkbAW7rwwsQdpeWW8sMF+xmiEEMKe7V6/GK+l1xFel0VyzIvEPrAaLx+/37+wzSBw93fMUZXq0vqZ6qY2L34hJz0M+jucTIPDG7RO0yRJMy7sRsd7hmEw1+Lifh3GPd9qHeci10e3ZGZ8axZvyeKXQ0VaxxFCCLt1tqKUpFen0nfXQxToW1ExayMxf5l3+Tc46aHrWMj4Fgz2cSJzo+Wn1H9sivPiF+o+qX4MR66OW4UmzbiiKJMURTmgKIpZUZTL/gYrirJEUZQiRVH2/+Z5f0VRflAU5ci5j5f4q7ZwNJHto8hUjhPq2ZqtC7+yu//g/zmqC51bevPQJ3spLHfQ2UYhhLCizL1bOPNKPDEl37I9fDZtH9lEWFTnK78xegIYzsKRH6wf0pJykwEFwvtoncS6nJxh4EP1Wzg66jiRHdPqyvh+YAKw6QqvWwrccInnHwN+UlW1A/DTua9FE9D7gbFUm87i4zuYql+Wax3nIm7OTrwxrTfVdSYeWJ2KyWxff1kQQgitmE0mdnz0JK0+G4urWsPBkR8Tf8erOLs08hCc1gngGQQHPrNqTovLTYagTuDmq3US6+sxBXxbwcbn7O5imaPTpBlXVfWgqqoZjXjdJuDMJb41Dlh27vNlwE0WjCc0FBQawlGXEwS5h7Hzwz12dwxv+2Bvnhobzbajp3l7Y6bWcYQQQnOnTuaw/8URxGUu4IBnHC73bSc6YfSfW8RJD13GwuHvoM5Bdq5SVcjd1bTnxS+kd4GBD9Rv5XjsF63TNCmOOjMeoqpqwbnPTwIhWoYRlpX46GQqjeUE+g2k8qs3tI7zO5NiIhjbM4wFPx4h+fil/q4ohBDNw95fPkF5J5GO1ftIin6cXn//mhaBLa9usW4T6g/POfK9ZUNaS0kWVJ9p+vPiF+o1HXzCYaPMjluS1ZpxRVF+VBRl/yUe4yxZR1VVFbjsb4SiKPMURUlWFCW5uLjYkqWFlXj5+JDlU4ifaxA7PysEY63WkS6iKArPju9GeAt3/roqlbIqg9aRhBDCpmprqtjx1jx6/no75To/Tk7ZQL9JD6PorqGtaBUPXiGw30FGVXLPH/YTq20OW9K7QuIDcGIHHN+sdZomw2rNuKqqw1VV7XaJhyXOVC1UFCUU4NzHy25voarqIlVVY1RVjQkKCrJAaWELQx6ZRlndGUID4yj5+P9pHed3vN2ceX1qbwrLa3j0032ocoVACNFMZGekkvtiAnFFq9kZNJHQh7fRposFrg7rnKDruPor47WV176eteXuAmdPCO6idRLb6j0DvFrCry9onaTJcNQxlS+B2859fhtgiQZf2BE3NzdOhJbj4+xHykYd1FZoHel3eka24JEbOrHhwEk+2pmjdRwhhLAq1Wwm6dMFBK0Yib+pmL2J79D/3vdxc/e0XJHo8WCscYz9rHOT63dR0TlpncS2nN0g8W/1V8aPb9U6TZOg1daG4xVFyQXigfWKonx37vkwRVG+ueB1K4HtQCdFUXIVRZl77lvPASMURTkCDD/3tWhihj8wldO1RUQExHJy0eNax7mk2xPbMrhjEP/5Op2DBeVaxxFCCKsoO1PMnlfG0S/tSY65dcE4bws9h0+1fKHIOPAOtf8DgAw19YfghPfVOok2+twGnsGwyb6vjldu3UrmKy9pHeOKtNpN5XNVVSNUVXVVVTVEVdXrzz2fr6rqqAteN1VV1VBVVZ3Pvf79c8+fVlV1mKqqHc6Nw8hddE2QXq+nuLMJT7036alhqJX2N/Ov0ym8fEtPfN2duefjFIpk/3EhRBNzcOd3VL8WR/eKrexoez9dH/mZoLA21imm00HXm+r3G6+x4wscJ/eB2dC85sUv5OIBCffDsY2Qs1PrNL+jmkwcfvpJ9n98mMqc1pQX5msd6Q856piKaCaG33kLhTX5tPLvRc6r/9A6ziUFernyzq19KCyvYep7OyiqkIZcCOH4jIY6tr//dzp+Mxmjoidr3OfEzfwPOicrj2VEjwdTrX2PquTuqv/YnHZS+a2YOeARYHdXx41FRWy99V6MZX0I927HKf0Z3HwDtI71h6QZF3bvbD9P3Jw8yMqORj2dpXWcS+rb2p+ls/tRUFbD1EXSkAshHFtBdgZHXhhM/In3SGkxkhYP7KBjn8G2KR4RW799nj2PquQmg28keF/lNo5NgYsnxN9XfyJn7m6t0wBQ+t06Nj/8HpGRk3FWnDnWNp/hL92Ji1sjD5/SiDTjwu4NmvYX8mpyaO3XncMv/p/WcS6rX5Q/H8yKpaCshmnv7aS4wr62ZBRCiMbY/c0SPD+4jsi6LJL7vkDsA2vw8vGzXQCdrv7qeOaPUF1qu7p/Rm5y850Xv1C/O8DdDza9qGkM1Wjk4CP3kfFVGR1CB1FUdxLX2R0YfOcUTXM1ljTjwiGow0LRKy4UlfRHzdundZzL6t82gA9mxZJXUs3U93ZIQy6EcBhVlWUkLZxG36QHKNBHUnbbL8SMuVObMNHjwVQHGd9qU/+PVBRCWU7znRe/kKs3xN0Lh7+Fgr2aRDBmZ7Bp+j0ophsI9WzNQeUwvZ+fSKvo9prkuRrSjAuHEDdmKNk1WUT6diHtBfvePKd/2wA+mF3fkE+ThlwI4QAy927l1MvxxJz5hu3hs2j7yGbC22q4f3Z43/oxEHscVck7f9hPM54Xv1D/eeDqq8m+4yUrXmLzk1/Qps00FEXhRPezjPjvXPSuzjbPci2kGRcOw2dSFxRFR0XdEMxH7Pvkr7i2ASyZFUuuNORCCDtWV1vD9g8epdVnY3FTq0kfuZz4Oxbi7KLxjK2iQPRNcPRnqC7RNstv5SaDTg+hPbVOYh/cfCHubjj0NZzcb5OSauUp9t81kcztLekQMoCTtfn43tODhFtHXfnNdkiaceEweiT2I6v2GJE+Hdn90jtg56dexre7uCE/VSkNuRDCfhza/Qu5z/cjPvsd0nwG4nLfdroljNE61v9ET6jfPvDQeq2TXCx3F4R0A2d3rZPYj7i7wMXbJrPjxqTP2Dj3n7h4zSHYI4KDzkeJeXkyLdtGWr22tUgzLhxKxJx4zKoJk34kpr1faR3nis435CdKqqQhF0LYhbMVZWx/ax4dvhyPl7mCvYnv0PehL2gRaGc7g4T1hhat7WtUxWyC/D0yL/5b7n7Q/05IXwdFB61To7aCMy9OY8s7WbRrMx2zaqagn4lmqfiwAAAgAElEQVQR/5mFk7W327QyacaFQ2nfowuZpmNEeLdl+2ufgdmsdaQrOt+Q55ypYvp7OzktDbkQQiN7f/2c0ldiiS9aze6gcbj/Ldk6J2lagqLU38h5bCNU2cnZfsWHoK5S5sUvJf5ecPaATZY/8VLN/JXUeRPIOjGG9sH9yKs7QeDfYom7eZjFa2lBmnHhcDrdPYw6Uw1uniMwblumdZxGGdAukCW3xZJ95izTpCEXQthYyekidi6YQs9fZmHGiUM3rKLffcvwbmHfh6EQPR7Mxvp5ZHuQe/7mTbky/jse/vVbHe7/FIoPW2bNuiqMa/7GL0+swTPoIQLcQjjokUW/l6YSGBlimRr/n737jo6q3Po4/p1Mei+k956QQi+hhCYdRaqCgO3a+7X312sXUa/Xe+1drBQrqFgIUqSItATSC0lIAul9JjPn/WMAFVFKZnIyyf6sxRqdnJzzy1Jg58l+9tMNSDEurE5oTCR5miICXMLY9NrP0KFTO9JpGRHTh9cvHkJRdTMXvSYFuRDC8hSjkW1fvYHhP0MYVPcNW4Mvwe/OHSQMn6p2tNMT2A+8o2DfKrWTmJRuN7VkeEepnaR7Srve1Ev/07LO3+vgdqruG82mdZHEhl2AXtFRnW7HxAeWWH1byomkGBdWafBt59Pa0YyH5wRa1/xb7TinbWRMH964ZAiFR0wFeU2zdXwjIYSwPodKC9m5dAZDt99CvW0fDs5bw7Ar/o2Do4va0U7fsVaVwg3QfETtNFD2CwQPNuUSf+bqC4Mvg70fQ3X+2d2jox3l2wfYcdftlLXfSbTPQIp1RQTdOYpBM0abN283IcW4sErefr7kO5bSxzGQLavKoL1J7Uin7fcF+cJXf5aCXAhhVgaDkU0fPY3LqyNIatnGtpibibjrZyKT09SOdnaSZoFigP0qb9pvazBtTpR+8b834kbQ2sNPz5z55x7ajf650fzwVj2eQXfj6eDDAfdiRj27BE8/b/Nn7SakGBdWa9Qd82nS1+PrNYbmlY+pHeeMjDzasiIFuRDCnApz9pD1xBhG7n+YUsdYai/OYOiih9DaWtchKH/gnww+sZCpcqtK+a+AIsX4qbj5w6BLYfcHUFt0ep9j0MP6J6l4+Dy25FxMfNhc2gytNE505Zx7Flk0bncgxbiwWq7u7hR6VuHl0Iefv1WguVrtSGdkVGwfXrt48PGWlVopyIUQZ6ld185Pb95H4PLxROjz+LXf/5F453oCo5LUjtZ5x1pVijZCU5V6OUq3m16DB6mXwVqMvMl0MNLprI5XHUB5dQI/v/Y9lfbLiPJOpUBXQMS940idOMzyWbsBKcaFVRt3+0LqdTUE+aRR9+79asc5Y6NjfXl1yWDyDzexUApyIcRZyNq5keIn0hhd/B9y3Iahv/pnBsy6BY1ND/orPmkWKEbY/7l6Gcp+Ma3QO3mpl8FauAfCwCWw632oKzn5NUYDbHoe/b/H8P3mNPwCb8fN3pNsn1LSn7kYVx+Prs2soh70O1X0Ro6OjpQGNeBm58Uv2/yh7qDakc5Yepwvrx0tyGWFXAhxupqam/jpxRuI++xcfIzV7Bv5PKm3fol3QLja0czPLxH6xEPmp+o8X1FMK+My0vD0jbrZ9LrxuT9/rDof3pxG6fJn2Vr9LxKCZtBkaKT9XB8m3N5N595bkBTjwupNuHkBR9orCfUeQuUr96kd56ykx5lWyPMON7Ho9a3UtUhBLoT4azs3fEn100MYXfkOe/tMxeHmHSRPvLjnTvnQaCB5tqlVpbGi659fVwzNhyFEWlROm0cIDFgEv74L9WWm94xG2PYqyouj2PyTI7UOy4jw7EuePp+YByeTOHqAuplVIsW4sHq2trZUxys427qRmd0XpTJL7UhnZUycL68sHkRulWmFXApyIcSJaqqPsPG5xQz84SLsMZAz+V0G3PA+rp6+akezvL7nAwpkqdCqIof9nJ1Rt5jaizb92/ST63fPR7fqDr7P+weBfjfibOtGbuAhxi67BGcPKxq5aWZSjIseYcLV86hoKyPcewAlz9xm+u7bCo2N95OCXAjxJ4qisGXtu+j/M4S02i/YGbQQ79t3EJd2ntrRuo5fAvj1hczVXf/s0h1g6wR+PWBDbFfyCod+C+CXt+B/aRT9UsCOhqUkBEyiXl+LMi+IcTfNVzul6qQYFz1G6zBXHLROFNfNwPDj82rHOWvHC/JKaVkRQkB5WQlbl55P2tbradO6UTbncwZe+SIOzu5qR+t6SbOgZAs0lHftc8t2QNAA0Np27XN7gtG3omDDhqIJNNs+Sph7PDkduSQ8Mp2YofLNDUgxLnqQ0QtmkN+eR6RnMpte3wc1BWpHOmtj4/14eckgcipMBXl9i17tSEKILmYwGNnw8fM4v5LGwOaN7Iy+lpC7thOWmq52NPUkzcLUqvJZ1z2zox0O7ZZ+8bPUonPku5KbCfO8GAetIwVhhxn/9GU4ujipHa3bkGJc9CgJt02h2dCIb+BMDj52rdW2qwCMi/fj5cVSkAvRG+XnZLH7iXNIz7qfw45h1C75noGLH0dr56B2NHX1iQX/lK5tVanYBwad9IufhcyPP2bvI+tI9BlJjf4IdoujSb92ttqxuh0pxkWP4h8cSFl8C252nhQ3nk/Hd9bbrgIwLsGPlxYPJLuikcVvbKW+VQpyIXqydp2OH996iIDlY4nXZ7In9V5i7tyIf3R/taN1H0nnw8GtUF/aNc87ftiPnLx5uow6HetufATbba4EuoSRbcwl5clZhKfGqB2tW5JiXPQ4E66YR64ulwivJDa+mY1SU6h2pE4Zn+DPi4sGsv9QA4tfl4JciJ5q164d5D8xinFFz1Ds2h/9VVtInX0HGhut2tG6l6RZpteumjletgPcgsAjuGueZ+Uqd//KhhtfIcEpHaNioGKAnglPXYadvZ3a0botKcZFj5R8+3Qa9XUEBs2g6KFrTQc2WLEJif68tGiQFORC9EB5VU384+0dNK+8kRBjKVnDn6bvbd/gGRildrTuyScaAvt1XatK6XbpFz8NiqKw6annqXyzgBjPfpS0FxJ0+wiGXjhR7WjdnhTjokfyDfSnop8RZ1s3ynWz0a19Vu1Infb7gnyJFORCWL2qxjbuXb2Xyc9tYHdBGcNtc3Aadil9p1zRcw/vMZekWaYV69piyz6n+QjUFkm/+Cm0VB9m3dVPEnQkCVc7d3K9DzLyuYvxCPBRO5pVkGJc9FjjlswkpyOPcI8ENr1ThFJt3e0qYCrIX7xoEFmHGljyxjYa2qQgF8LatOg6+Pd3uYxdup6Pth9k0bAwvp9rj1bRYxczTu141qHv+aZXS09VOXbYj/SL/6XMzz5j74Nr6es1klp9NcwPZtwdC9WOZVWkGBc92sC7ZtKgryU4ZAr591xn9e0qAOf09ed/Fw0iq7yexa9LQS6EtegwGPlgWwljlq7n2e9yGBPny7e3pPPQzGTcD20GGzsIT1M7pnXwjjTN/c5cZdnnlO0AjRaCZAPtiYx6Pd/e9hi2P9kR6BJGztFNmlFD+qodzepIMS56NC9fH44MtsFR68Jh7RzaPlumdiSzmNjXn/8uHEhWeT1LXt9GTbMcDCREd6UoCt/vr2Tqv3/i7lV7CfVyYuU1aby4aBBRvq6miwozIHQo2PfeI8HPWNJsKP8VLLlJv3Q7+PeV/y4nqMzOZMMNr5CoHYVRMVDVX8d42aR51qQYFz1e+oIZZBvzCXWPY8tH5ShHrL9dBWBSUsDRgryByc9t4MfsKrUjCSFOsKe0jgWv/szlb++gw6jw0qKBrLxmBIPCvX+7qKUGDu2ByDHqBbVGScdaVSw0VcVohLKd0i9+gg3P/o/Klw4Q45lKcXshQbePZPCCSWrHsmpSjIteYfg9c6jTVRMSPIkDd97QI9pVwFSQf3rdSHxc7Ln0ze3cu3ovLboOtWMJ0esdrGnhxg9+5bwXNpFT2cS/Zibx7S3pTEkORHPi5szCDYACUWNVSGrFPMNMvdyWmqpyJAfaG6Rf/KiW+hq+ueYpQg/F42rrTq5nMaOeuxiPAO9Tf7L4W1KMi17BzcuD+tHOOGgdqXecS+snT6kdyWz6Brnz2fUjuSo9ive3lTDt3z+xs6RW7VhC9Ep1LToe+TKLCcsy+CazguvGRZNx+1iWpEVgp/2Lv3ILM8DeFYIHdm3YniB5tumo+up889+77OjmTVkZJ3PtGvbc+yVJHmnU6arRzA1i3F2L1I7VY0gxLnqNkbMmcYB8Qtyi+Xl1NcZKC/zhrRIHWy13T0vkwyuGozcozH1xM09/k42uw6h2NCF6hTa9gVc25JP+1I+8vqmQmf2DWH/7WG6fnICb4yn6aAvWQ/hI0Eq/7RnrO9P0aonV8dLt4OABPr331EijwcDXdz6J7fcQ5BJGjiGH5KdmETksSe1oPYoU46JXGXn/BdToDhMaMoHM227pMe0qxwyL8uHrm0czZ2AIL/yYx+wXN5Fb2ah2LCF6LKNR4bNdZUxYlsFjaw4wIMyLNTeOZum8fgR6OJ36BnUlUFMgLSpnyyMEQodZ5jTO0l9Mh/3Y9M5SqTI/m4zrXyKJNNMmzdQ2xi+9XDZpWkDv/D9M9Fourq40j/PEzsaeVo+51L35sNqRzM7N0Y6l8/rx8uJBlNe1Mf0/G3l9YyFGY8/6xkMItW3OP8LM/27ipg934eFkx3uXD+Pty4aSGOh++jcpyDC9RsnmzbOWNAsq98KRXPPds70JqjJ7bb/4hv++SuUL+4j1SKWkrZCg20Yw+KIpasfqsaQYF71O2rnjOaAtIMg1kl/XtWEoM+Mf4N3I5KQAvrk5nfTYPjz8ZRaLXt9KWV2r2rGEsHo5lY1c9tZ2Fr66leqmdp6Z348vbxjFqNg+Z36zwgxw8QU/mc181vrOBDTmbVUp/xUUY6/rF29tauDr65YSWhxl2qTpXszIf1+MR6CcpGlJUoyLXin93oVUt1cRFjKWfbfe1uPaVY7xdXPg1SWDeWJ2CrsP1jHluQ2s/rUUpYd+vUJYUmVDG3et3MOU5zawvaiGu6Ym8MNtY5k9MAQbm7M4vl5RTCvjkWPgxAkr4vS5B0FYmnmL8eObN3vPyvi+779lz92fkuw2nFpdNcwJYNw9skmzK0gxLnolJxcn9FP90Gps0fnOo+Z/D6gdyWI0Gg0XDg1j7U3pxPu7cctHu7nu/Z3UykFBQpyWpvYOnvk2m7FL17NyZykXj4gg4/ZxXD0mGkc77dnfuGo/NFdJi4o5JM2CqiyoOmCe+5XuAO8ocO75Y/uMRiNr7n0au7UdBDqHkdORTcpTs4ganqJ2tF5DinHRaw2eNJr99kUEuoSze7MN+sIstSNZVJiPMx9dlcadUxJYl1UpBwUJcQp6g5F3fy5m7NIfef6HPMYn+vHdP8fw4LlJeLvYd/4Bhcf6xcd2/l69Xd/zMFuriqKYJqn0ghaViuJ8Mq5/kZSOoaZNmsmtjH/6H7JJs4tJMS56tXH3LeRwewXhQaPYc9u9KMaePQpQa6PhmrHRfHrdSLyc5aAgIU5GURS+zaxg8nMbuP/TfUT2cWH1tSP478KBhPuY8Vj0ggzwijQdXiM6xy0AIkaZivHOtuHVl0JTZY/fvPnjq29Q9dwuYt1/t0lz8VS1Y/VKUoyLXs3R0RHNzFBsNFoInk/1srvUjtQlkoI8+Oz6kVwpBwUJcZzRqPD9/krmv7yFK9/9BYBXFg/i46vSGBDmZd6HGTqgaKO0qJhT0vlwJNvU/tMZPbxfvKWlkbU3PE1Ebjgutu7kuRbKJk2VSTEuer3+Y4ez37EIf+cQ9u52RXdgl9qRuoSjnZZ7piXywe8OClr2bTZ6Q8/+6YAQJ2rRdfDuliLOeSaDy9/ewcGaVh45P5lvbk5nUlLAn4+vN4fynaBrlBYVc0o8DzQ2kLmqc/cp3QFaB/BPNk+ubmRfxg/suXM1KS7DqNVVYzPLn7H3LVE7Vq8nxbgQwDn3LqKyvZyIoJHsvvMRFINB7UhdZvjRg4JmDwzhPz/kMet/clCQ6B0O1bfyxNoDpD3+A/d/lomroy3/vrA/P905jkXDw//6+HpzODZfPCLdcs/obVz9zNOqUroDgvqDrRn2BXQTBqOBL+9fht0XbQQ5h5GrP0DKU7OIHJGqdjSBFONCAGDnYI/dnCgAbCPmUfnIP1VO1LXcHO14el4/XlokBwWJnm/3wTpu/OBXRj/5I69syCctyodPrk7js+tGMrN/sGWL8GMK1kNAKrhIa4BZJc2G6jyo3Hd2n2/Qw6FdPapfPG/3Djbe8Br99aZNmof7NjNu2RWySbMbsVU7gBDdReqoIaz54U1SbWI4kOeP566tOPYfpnasLjUlOYBB4V7ctXIPD3+Zxff7K3l6Xj+CPE/jWG8hujGD0bQp8/WNheworsXVwZYlaRFcOjKCUG/nrg2ja4bSbTDsqq59bm+QeC58datpdTzgLEbzVe6DjrYe0S9uNBr55qFniWiKI9qtL4WtufS/exZuAWbe/yA6TVbGhfidSfcspry9lIjA4ey+fxlGXe+bxe3r5sBrF5sOCtp1sI7JclCQsGKNbXpe+6mAMUt/5JrlO6loaOO+6YlsuXs8D5zbt+sLcYCSLWDQQeTYrn92T+fSByLTYd+qs2tVKe0ZmzdLsnaRcd1LJLUNxkZjw8GQSkb/+zIpxLspWRkX4ndsbW1xXZCIccVhHKLnceiBmwh+4kW1Y3W5YwcFpUX7cOvHu7nlo918l1XFI+cn42WO+cpCWNjBmhbe3FTExzsO0tTeweBwL+6dlsikpAC0Z3NapjkVZICNHYSnqZujp0qaBV/cCId2m3q/z0TpDnD1B49Qy2SzMKPRyLpHniG4LoZYjxSKW/NJum0a8aF+akcTf0OKcSFO0Hdof9Z+9xYpDdHkVkTgtSUD57TeOX4s3MeFj65K4+UN+Ty7LoftRTU8NTeVsfHyB7vofhRFYUdxLa//VMi3WRXYaDRMSwnk8lGR9Av1VDvebwozIHQo2JtxZrn4TeK58NU/Ta0qZ1yMbzf1i1tigo6FlWfv48CzP5DoMZh2m1YKfcsZfeslascSp0HaVIQ4iYl3LKK0/SCRfkPZ/ehLGJub1Y6kGq2NhmvHxvDpdSPxdLbjkje3c9+nclCQ6D70BiOf7Spj5n83Me+lLWwpqObK9Gh+unMczy8Y0L0K8ZYaOLQHInvnN/hdwtnbNDLyTKeqtNRATb7VtagoisJ3jz7NkZeyifMcQFnbQTyv7c/oWy9QO5o4TVKMC3EStra2eF/Snw5Fj0vMXErvvkHtSKpLCvLg8+tHccXoSJZvLWH68xvZnHdEesmFaupadPxvfR6jn/yRmz7cRVNbBw+fn8yWu8dz19QEAj264cbjwg2AIvPFLS1pFtQVm+a5n64y00FP1lSMV+bt5/urniW2fhAutm7kex0k7d+L8Y0KVDuaOAPSpiLEX4jr15e1X+8gpTaS/MokvNetwXXiNLVjqcrRTsu90/syIdGfWz/ezcLXtpIY6M4lI8KZ2T8YRzut2hFFL1BwuIk3NhWy8pcyWvUGRsb48NjsZMbG+WGjdj/4qRRmgL0rBA9UO0nPljAdvrjZtDoePOj0Pqd0h+nQoKABls1mBoqisOGJZXhUhpPgPYTytoOEXDGCMUmT1I4mzoKmN61qDR48WNmxY4faMYQV6ejoYNvtHxJsH0zZ3tcZ9v4LaD270Y+8VdSqM/DprjLe3lzEgYpGPJ3tuGBIKIuGhaszoUL0aIqisDm/mtc3FvLDgSrstTbM7B/EZaMiSQx0Vzve6Xt+APSJg4UfqZ2k51s+H6qy4Oa9p9cD/u5saKyAazdbPlsn1BTm8Mtjq4n1GoJRMVDsUUX63Rei1cpiSHej0Wh+URTllD9qkZVxIf6Gra0tAVcMQf9mEW7xsym57ToiX1uudqxuwcley4KhYVw4JJSthTW8vbmI134q5NUNBUxI9OeSERGMiPaxzFHiotdo7zDw2a5y3thYyIGKRnxc7LlpQiyLhofj6+agdrwzU1cCNQUw5Aq1k/QOSbMg9xvTinfokL+/1mg0tan0ndk12c6CoihsWvoMTmVBJPqMoKKtDL8lAxk3cKLa0UQnSTEuxClE9Y3n68DtJFeFU1A/BO/Vn+Axa57asboNjUbD8Cgfhkf5UF7Xyns/F/Ph9oOsy6ok1s+VJSMimD0gGBcH+eNGnL6Kw4dZuzWT/+7Sc6RJR7y/G0/NSeW8/kHW2w5VkGF6jZLNm10iYRpo7U2tKqcqxmvyoa2u2/aL1xXksv3RT4j2GYrGQUOuYxHpjy6U1fAeQtpUhDhNG295lzD7UEr2vsWwN5/Ezt9f7UjdVpvewBe7y3l7SxH7yhpwc7Rl3qBQlqSFE9FHxrmJk8urauKbzAq+zaxgfsUznKvdzO1hH7E4PYmRMT3gpywr/wEF6+G2XKscnWeVPlhgmjd+8z6w+ZuZFbs+gE+vhmt/Br/Erst3CorRyLZnnsWm2J9Al3AOt1fgNi+RmBHJakcTp0HaVIQws/BrR9L2cjaeCedTeNP1xH7wsfUXBxbiaKdl3uBQ5g4KYWdJLW9tLuadLUW8ubmQsXG+XDwigvRY3+6/2U5YlKIo7C6t55vMCr7JrKDgsGmEaP9gN2Y5/YqzvpWXh1RBbA9YSVYU08p45BgpxLtS0izIXmOaHx427K+vK90O9m6mfv5uormogM3/eoconxHYOtmRY1vImH8tRGsvpVtPI/9FhThNobFRfBP2M0nloRS4puP73lt4Lb5U7VjdmkajYVC4N4PCvamansjyrSUs31rCJW9uJ7KPC0vSwpk7KAQ3Rzu1o4ouojcY2VZYc3QFvJKKhja0NhqGR3lzyYgIJvb1J7BhH7xeY/qEvR9Dag9oC6vaD81V0qLS1eKmgNYBMleduhgPHgg26rd9KEYjO597Dn2+D4l+E6hpr8JuegTjz1midjRhIVKMC3EGJt+4kA23vE2ETyr7PnyHYenjsQ8PVzuWVfBzd+SWiXFcNy6GtfsO8dbmIh76Iounv8lmzqAQlqRFEOPnqnZMYQGtOgMbcg/zTWYF3++vor5Vj6OdDemxvtyeFM+ERD88ne1/+4Tta0CjhQGL4Nf3oPkIuPRR7wswh8Jj/eJj1UzR+zi6Q+xEyPwUJj9+8lYVXQtUZsKoW7o+3wlaCgvY9NAbRPQZhb2rI7maAkY9tgA7J/tTf7KwWlKMC3GGYm4aT9MLe/GJn0nBzTcRv2IlGtlEc9rsbW2Y2T+Ymf2D2VNax1ubi/hw20He2VLM6Ng+XJwWwbgEP7TSwmLV6lp0fL+/im+zKsjIOUyb3oiHkx0TEvyYlBTAmDhfnOz/4vdN9loIHwFDr4Sdb5s24A218gkkBRngFQmeYWon6X2SZsGBL+Hgz6b/r050aBcoBlU3bypGI3uf/zdNOe4kBkymTldN61gPxs24WLVMoutIMS7EGQqKCGVd9CYSi4Mp9J1En5dfpM+116sdyyqlhnjyzPz+3DMtkQ+3lfDezyX8450dhHo7sWR4BPMHh+LhLC0s1qKivo1vs0z93z8X1GAwKgS4OzJ/cCiTkwIYGumNnfYUBz/XFMLh/TDwcQhIBr++sOdj6y7GDR1QtBFS5qqdpHeKmwK2jqZv6k5WjJceHewQrE4x3lqQz6b/e4VQv3Q83VzJMxYw/P/m4+jeDU+QFRYhxbgQZ2HiNRey/p9vEu2VTNba5QwdfwDHhAS1Y1mtPq4OXD8+lqvGRPNtZiVvby7i0TX7WbYum1kDQrh4RDgJAVZ0sEsvkn+46egGzEp2H6wDIMrXhSvTo5icFEBqsMeZbdTN+dr0Gj/F9JoyD75/yFSke0eaOX0XKd8JukbpF1eLgyvEToKsz2DKE3/uCy/dDp7h4OrbpbEUg4Gs5/9DbbYTCUEzaNDXcXiIwti5shre20gxLsRZSrx1CrXP7sQ3bgZ5t95G39WrsLGXvr7OsNPaMD01kOmpgWSVN/D25iJW7Szlg20lDI/y5uI00wY/21OtrgqLURSFvWX1xwvwvKomAFJDPLh9cjyTk/yJ8XM7+wdkrwHfRPCOMv17ylxTMb53BYy53QxfgQqOzRePSFc3R2+WNAv2fw7FmyFy9B8/VvYLhKV1aZzW/Dy2PPg/Av3HEeHpSX5HAYPumY2rTyd+7wirJcW4EGfJPziQffEtxOcHUBwyg8PLluJ/971qx+ox+ga58+TcVO6amsBHOw7y7pZirlm+kyAPRxYMDWNYlA99g9xxlcOELK7j9xNQsio5VG+agDIs0pvFw8OZ2NefIE8z/Ei9tRaKNsHIm357zzMMwkaYpqqk32adYwEL1kNAKrj4qJ2k94qbDHbOplaV3xfjDeXQUNZl/eKKXk/Of/9DVaYDMcEzaTE0Uda3lTFLZDW8N5O/xYTohAlXzOOHW98gziuJ7M0f4vDpp3ief77asXoULxd7rh4TzRWjo/huv6mFZdm6HMBUl0X2cSE5yIOUYA+Sgt1JCvLAw0n6zM+W0ahQVtdKblUj2RVN7D/UwIbcw9S16HGwtSE9zpdbJ8UzIcEPLxcz/yQo73vTRrr4qX98P3UefHmL6fCWoP7mfaal6ZqhdBsMu0rtJL2bvYupIM/6DKY+Bdqj5c+xfvGQU5zQaQbNO3ey7am38QsaT6SPN4X6IvrdNoOEQC+LP1t0b1KMC9FJKbdN58jT2wiIn07O0/8hyd8fl7Su/ZFnb6C10TA5KYDJSQFUNbSxr7yefWUN7C2rZ0dRDZ/vLj9+bZi38/HiPDnIg+RgD7zNXThaOUVRqGpsJ7uikZxK06/syibyKhtp1hmOX+fv7sC4eD8mJ/mTHueLsyUPHMleAy6+EDzoj+/3PR/W3AF7P7G+YrxkCxh0EDlW7SQiaZZpZbx4428jJku3g9YeAlIs9lhDfT2ZjzxKY2M0MavYTMYAACAASURBVOFzaDE0URxVz+grF1vsmcK6SDEuRCf5BvqTk2ZL0DZ7nIdeSe4/7yHhrZdxjO8+J7n1NH7ujox3d2R8gv/x96qb2sksNxXnmeX17C2r56u9h45/PNjTiaQgd5KDPUgONr36uTmqEb/LVTe1k1PZdLzozqlsJLuikYa2juPX9HG1J9bPjXmDQ4n1dyXe341Yf7eu+ylDhw5yv4O+5/55g52zt2lW9N4VMPFf3eJgltNWkAE2dhAu36CrLmYi2LmYCvKosab3yn4xtRDZOpj9cYqiUPPZanZ/sJWQ0LF4ebhSYChiwK3nEi+r4eJ3pBgXwgxGzp3KuqoPiS8O4MjQqyi44kpiP/4Qu4AAtaP1Gj6uDqTH+ZIe99tEhPoWPZnl9cdX0feV17NufyWKYvq4n5uDqTg/XqR7EOjhiMYa+5KB+lY9uZWNfyq8jzTpjl/j7mhLfIAbM/oFHS24XYnzd6OPq/mLkTNSshna6yF+2sk/njLPtHJe9JN1HZxTmAGhQ01tEkJd9s6mFqisz2HaMtN75b/CQPOfbNleWMiu+x9F45lOXOQM6nQ1NKUpjJkjp2iKP5NiXAgzmXjthax95A1SNLGUplxC8eWXEvnRJ2hd5VRJtXg42zEipg8jYn47vbGpvYOs8gb2lZmK9MyyBtZnV2E8WqB7u9iTFOROytHiPDnIg1Bvp25VoLfoOsitbCK7spHco+0luZWNHKpvO36Ns72WWH83xif4EefvRpy/G/EBbvi5OXSrr+W47LWmWdBRY0/+8fipYO8Gez6xnmK8pQYO7YFx96idRByTNAv2rTB9k+TiC/oWs/aLG9vbKXvhBfJ2NhMedAFajS252iJG/GsuDq4yN1ycnBTjQpjR1Psu4+u7XyPZLZ7C4BnYX3cNoa++jkZGHnYbrg62DI30Zmik9/H3WnUG9lc0kFn2Wx/6KxsK6Dhaobs72h5fOfc5ofdcOeH+yglvKH+64s/X/Pnjf76gqd1AXlUj2ZWNHKxpPf6+va0NsX6uDI/yOVpwuxLr50awp9OZzfdWk6KYVr2jxv71CrKdE/Q9zzSebvoysLOCFqPCDYACkTJfvNuIOQfsXU2tKkEDTO+duEfhLDVv3szup17BKXwqsaFBVOkqcDkvlnFjx5nl/qLnkmJcCDM75+FL2Hjnu8R4p5JX3ojtffcS+ORT3XM1UgDgZK9lYJgXA8N+6+Ns7zCQU9F0tMXF9OutzUXoOoyqZLS10RDt60q/EE/mDwol9uhKd5i3M1prKbr/SlUW1JXA6Fv//rqUebBruelgoCQrmFpUmGEq/IIHqp1EHGPnaGqF2v8FdLSDcx/wiujULTuOHKHg4Yc51BBGRNzFGOgg16Oc9FvnoLXkhmfRY8j/JUKYma2tLcMfXcCvd68kOnAEOflrsHv+eXxvuunUnyy6DQdbLSkhHqSEeBx/r8NgRGf4czGu4Y/F8Ol833XiNae6h41GY/1F91/JXmt6jZvy99dFpoNrgGmqijUU4wXrIWIUaGXUZreSPNs0tz5zlWml/CwXShSjkdqPPmLfBz/gHT2NaP8+lOoOEnb5CMYlRZg3s+jRpBgXwgIcHR1JuGcKRY//SGTUZA58+xF2QSvwnDdX7WiiE2y1NnL6pyVkrzW1CridYsOzjRaS58D2V00HBDl144kUdSVQUwBDrlA7iThR9HhwcIf2hrM+7KftwAGy7/8XjV6jiUhcRJuhhcLQGkZft9DMYUVvIH+rCGEhXr4++Fw1gGZDI8F955D10gqafvpJ7VhCdC+NlVC2488H/fyV1Hmmud1Zn1k2V2cVZJheo8aqmUKcjK0DJEw3/XPwmRXjxuZmDj3xOFvveRnH8IuI8E6myFiC/z+HMvq6mRYIK3oDKcaFsKCw+Gj0M/0xYMBnwBKy7n2StqwstWMJ0X3kfG16jTvNYjywP/jEwp6PLZfJHAozwMUP/BLVTiJOZthVED3BNHbyNDV+/z07Zy2i+GAg0XGz6VAMVPTXk750MR5BPhYMK3o6KcaFsLB+6cOoHGrE3sYB58GXk33tTejLy0/9iUL0BtlrwSMM/JNO73qNBlLnQ/EmqDto2WxnS1FMK+OR6WfdjywsLGgALF51WvPf9eXlFFx1Fb+8tgGvftcQ6BpBrraI6AcnMvjC8V0QVvR0UowL0QVGzZtGXngF7nZeGPpdTsFll2Oor1c7lhDq0rVAwY+mFpUzKVpTju692LfCMrk6q2o/NFdJi4qVU/R6ql9/g18W30id4zhiws+h0dBA80Q3xj26GEd3mRsuzEOKcSG6yMTrLiLTLR8/p2Bqoy+g+OorMep0p/5EIXqqgvXQ0Xb6/eLHeEeZDmrZ84lFYnVa4bF+cZkvbq1afv2VA3PmsO+nagIGXYuXQx9yXEtJeeJ8+p5jnrnkQhyjSjGu0WjmaTSaTI1GY9RoNH+5e0Kj0byh0WiqNBrNvhPeX6rRaA5oNJo9Go1mtUaj8bR8aiE6b+p9l5PJAULcoilzTefQnXegGNWZWy2E6rLXmKZahI88889NmQ9VmVCZaf5cnVWQAV6R4BmmdhJxhgz19Rx68EF23vkcHdGXEB0wnMqOSuwWRTL+vgUyN1xYhFor4/uA2cCGU1z3FnCywbPrgGRFUVKBHOBus6YTwoImPHIpebo8In1Sya325/CyZWpHEqLrGY2mzZsx54DtWZxQmzQLNNrut5HT0AFFG6VFxcooikL9F1+Qee5s8g75ETbgMhy1zhQEHWHw0vmEpEarHVH0YKoU44qi7FcUJfs0rtsA1Jzk/W8VRek4+q8/AyFmjiiExdja2jL8sQWUtpcQHTiSrK3V1H7wgdqxhOhaZb9A82HTaYhnw9XXNC967wpTYd9dlO8EXaO0qFiR9sJCii+9lF2vrcN+yC1EeqdSbDhIn5sGkX7jLLRardoRRQ/XE3rGLwPWqh1CiDPh6OhI3N2TOKKrIjJqMnuXZ9D4449qxxKi62SvMa1sx55z9vdInQ8NpVCyxXy5OqsgA9BARLraScQpGNvbOfyfF9i74B8cckknOnEeRhTKUtoY/fQivEJ91Y4oegmLFeMajeY7jUaz7yS/zDYVX6PR3At0AMv/5porNRrNDo1Gs+Pw4cPmerQQnebt54vPVf1pNjQRnDiHvY+9QuvevWrHEqJr5HwN4SM6d4pm/DSwczYdbd5dFKyHgBRwkbnT3VnTxk3knncemRsr8Rx9B8GuUeRqioi4fxzDLpqodjzRy1isGFcU5RxFUZJP8sssx6ZpNJpLgBnARYqiKH+T4xVFUQYrijLY11e+yxXdS1hCDPqZvhgx4NNvEZk334/uYDednSyEudQUQlXW2beoHOPgajpJMfNT6OgGk4l0zVC6TVpUujF9WRmlN9xI5t1P0Rh/MTGRk2g2NNEw3plxjy/G2dNV7YiiF7LKNhWNRjMFuAM4T1GUFrXzCNEZ/dKHUzm4A3sbRxz7XcyBK66jo7ZW7VhCWM6xUzfjT7Y//wylzIe2Oshb1/l7dVbJFjDoZPNmN2Rsb+fw//5H5vnzKWiLJSDtZnwc/clxLqHvE+eRPPn0T+IUwtzUGm04S6PRlAJpwFcajeabo+8HaTSaNb+77gNgCxCv0WhKNRrN5Uc/9ALgBqzTaDS7NBrNS138JQhhVqMumHH8UKCO+IUUXnklxvZ2tWMJYRnZa8A3wTQvvLOix4GzT/eYqlKQATZ2EJamdhJxlKIoNP7wI7nTp5O5vhTnMfcS5dOfUkOZaVzhAxdhZ2+ndkzRy6kyMFNRlNXA6pO8Xw5M+92/L/iLz4+xXDoh1DHxuotY+/CrpGgSKPWbhsMtNxP6wn/R2FjlD7CEOLnWWijaBCNvNM/9tHaQPAd2vgNtDeDobp77no3CDAgdelpHrAvL0xUVUfHY4xwsaMQ5+UpiHAOp1R2hob8jIy9cpHY8IY6Tv+WF6Eam3n8FmewnxC2GYn0yVU88rnYkIcwr73tQDJ3vF/+9lPmmkzz3f2G+e56plho4tEdaVLoBY0sLVc8+x74LLqXEZiChg67C3c6THPdSEp6YweALx6sdUYg/kGJciG5mwiOXkafLJdInlf0HbKh5+221IwlhPtlrwMUXgs14pHjIYNOJl2pOVSncACgQKZs31aIoCg1ff0321Olk7WjCI/1uwjwSKDSW4HFtKuPvWSAtKaJbkmJciG7GdCjQwuOHAu35cj8N33aDzWlCdFaHDnK/g7jJYGPGg1Q0GkiZZyqIGyvMd98zUZgB9m4QPFCd5/dy7Xl5lFx6Gbv/s5qOgTcSEzqGekM9DWMdGbN0MX0iA9SOKMRfkmJciG7o2KFA1boqIiMns+uFVbT8+qvasYTonJLN0F5v3haVY1Lng2KEfSvNf+/TUbAeIkaaethFlzE0NVH55FPsvuRGDrmkE5myCAetA/n+VfRbOpvkqcPUjijEKUkxLkQ35e3ni/dV/Wg2NBIcP5td9yxDV1Skdiwhzl72WrB1tExfdZ9YCOyvzlSVuhKoKZAWlS6kKAr1n3/O/mnncuCAFt8RtxLoEkGOppCgO0cy5pY5coy9sBpSjAvRjYUlxKI/19t0KFDSAvZcezsdNTVqxxLizCmKqRiPGmu5aSOp8+HQLjiSa5n7/5WCDNNr1NiufW4v1bZ/P0UXXcSuN9ejHfJPov2HUtVRRcf5fox/fAmuvh5qRxTijEgxLkQ312/sKCoH60yHAiUsZP+V12BsbVU7lhBnpmo/1BVD/FTLPSN5Dmhsun51vDADXPzAL7Frn9vLGOrrqfjXw+y85l6q+0wnOn4WCgpFMQ0Me2YB0SOS1I4oxFmRYlwIKzDqgvPICy3D3c4LffAsim66CcVgUDuWEKcv++h5bnFmOHXzr7gFQGS6aaqKoljuOb+nKKaV8ch000ZSYXaK0UjdihXsnTGH3INeBA+7ER9Hf7Idiol+aCKj/jFd7YhCdIoU40JYiYk3LGGfSw5+TsFU2aVR9n//h9JVBYcQnZW9FoIGmgpmS0qZD7VFULrdss85pmo/NFdJi4qFtO7dS978eez6ZDfOw24l0qcfBztKsV8SzYSHFuHg6qR2RCE6TYpxIazItAeuJFPJIsQthsKKAGreeF3tSEKcWmMllO2wzBSVEyWea9ok2lWtKoXH+sVl86Y5ddTUUH7f/fxy61KaQy4kJnISbcZWDg3SM2rZIoKTI9WOKITZSDEuhJWZ8Ojl5LWbDgXam3GYhjVr1I4kxN/L+dr0asl+8WMc3U2tMJmrwKC3/PMKMsA7CjzDLP+sXkDp6KBm+XJ2nX8RRdVhhA/4B6527uR4lJL0xHkMmSenZ4qeR4pxIayMra0twx//7VCgnW9toGHtWrVjCfHXsteCRxj4d9EGu9T50FIN+T9a9jmGDijaKCMNzaTll1/InjOHPV8X4zXsn4S4x5FvLMLrhgGMv3sBWntbtSMKYRFSjAthhRwdHYm7ayLV+ioiIybz66vfc+j//g9je7va0YT4I10LFPxoWhXvqg2OMRPB0dO0kdOSyneCrlFaVDpJX1VF2e13sOPB1+iIvoSY4NHUddTSMMGJsUuX4BPmp3ZEISxKinEhrJS3vx8elydR31FLVOx55BS7UTB/nhwMJLqXgvXQ0dY1LSrH2NpD0vlw4Ctob7LccwrWAxqISLfcM3owY0sL1a+9xs4LrqS0JYmo5IXY2TiQF1hF/6fnkDxpqNoRhegSUowLYcUikxIJuXMUJbpiov2HciRkNgfmL6T+y6/UjiaESfYacHCH8JFd+9yU+aBv+W2koiUUZEBACrj4WO4ZPZCxtZXqN95kz9SZ7NvciP+QG/F3CSVbU0jw3aMZe5Ocnil6FynGhbBy3v5+DFu64OiUlWgYeSvZj/6HQ/c/gLGtTe14ojczGiHnG4g5x7Ra3ZXC0sA9xHJTVXTNULpNWlTOgLG1leo33yJz4lT2rq/EdehtRPsNpqKjAsOcACY8vgRXHze1YwrR5aQYF6IHsLW1ZfKTV7GvTw5udp54jbyZvO1lFM2/gPaCArXjid6qfKdpBndXjDQ8kY0NpMyF/B+g6bD571+yBQw6mS9+GoxtbdS8/TbZEyezd10R9sNvJyZoJPWGeg4N0jP8mYVED+urdkwhVCPFuBA9yJTbLqcirQ0DHYSlLqLYfQCFc+ZS/9lnakcTvVH2GtBoIfYcdZ6fegEoBshcbf57F2SAjZ1pBV6clLGtjZp33iHnnIns+SIL49BbiQmbQLuxneLYBvovnSOjCoUAZE6QED1M2qzplCRkc/iVXcSGTKDA1Q/DnffQvHUbAffdi42zs9oRRW+RvRbCR4CTlzrP9+8L/smmqSrDrjTvvQszIHQY2LuY9749gLG9nbqPP+HIK69Q4dUPzyE3E+PgR4O+lrygw4y+bqb0hAvxO7IyLkQPFJYYT8LD08nV5RDlmULr5Hup+DqDwvnzac/NVTue6A1qCqEqq2unqJxMyjwo3Q41ZmzXaqmBQ3ukX/wExvZ2at5bTt7ESWQu/5GmgdcS1Xc+DloncjzLiH1kCmNvnC2FuBAnkGJciB7KxdWVcc9czh67TPwcg3AcdwdVRg8K582nbuUqFEVRO6Loybry1M2/kzIX0MDeFea7Z+EGQJHDfo4y6nTUvP8++ZMmc+CNL6jrfwWR/S/B3d6LbKcSwu4fy/i7LsTOqYs38QphJaRNRYgebtrDV/PDK+8RluuLf/IlFPf5DuXee2nZtpWABx7AxkV+zC4sIHsN+CaYjopXk0eIaazino8h/XbzHDxUmAH2bhA8sPP3smJGnY76lSs58vIrVHe4Yux/MaEu0egVHTnaQgbdNIOYQG+1YwrR7cnKuBC9wPgrF9Ey3YnmjmaiA6dRNuEf1H7xJYXz5tOWnaN2PNHTtNZC0Sb1V8WPSZ0H1blwaJd57lewHiJGgtbOPPezMopOR+2HH5I/eQp5z71BRd8FBI68lSDncPIowu2qJMY/ugQPKcSFOC1SjAvRS6SOTSfgn0Mpaz9IgttQas65lbbGFormz6f244+lbUWYT973pikmaow0PJm+M0FrD3s+6fy96kpM/ee9sEVF0emo/ehj8qZMofCpFyiLn43vmLsJd4unxHAQ20XhjHtyCb7RgWpHFcKqSDEuRC/iGxLE4Cfnk2XIItI5Fv3g62hLHUzFAw9SftvtGJqa1Y4oeoLsNeDiC8GD1E5i4uQFsZNg30owGjp3r4IM02vU2M6mshqKTkftxx+TP2UqJY8+xcGYc/GY8CAxnv0o7zhE2wwvRj+9mJDUaLWjCmGVpBgXopexc7Bn0tKr2OuRhaedN87+s6mePo+GtWspmjOHtv371Y4orJlBD7nfQdxksOlGUzNS5kFTxdHNl51QmAEufuCXaJ5c3Zii11P7ySfkT51G6UOPUhw5CedJjxDnPZhqQzU1o2wZ8cxFxI1OVTuqEFZNinEheqmpd19F2cBaFBRCtGMpmXExxtZWii64kNoPPpC2FXF2ijdDe333aVE5Jm4KOLjD3k60qiiKaWU8aox5NoJ2U4peT93KleRPnUb5/f9HYdgY7KY8SrzvCJqMTRzqp2PoMxeSOkMOPBLCHGSaihC92MgL55CfsIvat3NJckhj/yBXYut3UPHQv2jeuo3Ah/+F1s1N7ZjCmmSvBa1D92vjsHOExPMg6zOYvgzsnM78HlX7obmqx/aLK3o99Z9/wZGXXqL94EEODZ1DQOpgEu19qNVVUxxZz/B/zJI54UKYmRTjQvRy0f370xQRwS8PrSbRIYVSd3d8L0uk8e23acvMJPjZZ3FKTlI7prAGimLqF48a2z1PpkydB7veM33DkDz7zD+/8Fi/eM8qxo06HQ1ffsWRl15CX1JC+eDp+CRfSYKDP436OvL9DjPq+vPQ2kvJIIQlSJuKEAJXT09GLl3MXpu9BDmE0loZR9sNN6Do9RQvWEDNu+9J24o4tar9UFfcfUYanihiNLgGnH2rSkGGaW66Z5h5c6mkLSeHyscfJy99DIfuuYdS7ziapjxAfMhMnLUu5LqXEfXwRMb8c7YU4kJYkPzuEkIAYGtry9THrmXd868TdTAMp/xIiqbPJi4/i8pHH6Vl2zYCH30Erbu72lFFd5W9xvQaN0XdHH/FRms6kXPry6Yj7Z3PYA62oQOKNh490dN6GZqaaVi7hroVK2jbvQdsbSkfMQUnp1RinCJoN7SS41BM2p3nE+flqnZcIXoFKcaFEH8w8cbL+WXNWhy/1xF7JJV9XkaG3jGEqmeepW3WbIKffQanVJmeIE4iey0EDQT3bjxnOmUebHkBsj6FwZed/ueV7wRdo1W2qCiKQuuuXdStXEnDmrUoLS3YREeSP2MJ/oZI4h2C0Rt15GqKGHDzNKKDfdSOLESvIm0qQog/GTRtKl7XJHFIV0aKMpC9e434v/RfUBSKLlpE9VtvSduK+KPGSijb0f2mqJwosB/0iTvzA4AK1gMaiEi3RCqL6Kitpfqttyg491yKFyykYc1aNBPGkT3ranTxV9LfdhSeWg9y7UrwuqEf4x5fjKcU4kJ0OVkZF0KcVFBMDN6PBbPxvndIcOhL4cpDeD90Pw4frqDqiSdp2badoMceRevpqXZU0R3kfG167a794sdoNJAyH358xHSa5un2fxdkQEAKuHTvYlUxGmnevIW6FSto/P570Otx6teP9huvoaTEjoSOcAYrbtRrasjzrmD41TOIdT+LyTJCCLPR9KbVrcGDBys7duxQO4YQVmfNQ/8lqbkvrcYWqvvXkmg0Urn0aWwcHPCcMwevRRdhHxqqdkyhpvcvhMpMuHlP95/BXVMIz/eHCQ/C6H+e+npdMzwZAcOuhkkPWzze2dCXl1O3ajX1q1ahLy9H6+mJ+8yZHIgMoW17K3HaSOxtHKjUHaI9wZVhl0+WEYVCWJhGo/lFUZTBp7pOVsaFEKc07cHr2PDWcgL2eRO0J5BtnlmM/eRjql95lZrly6l55x1cx43De8linIcNQ9PdizFhXroWKPgRBl7c/QtxAO9ICBlqmqpyOsV4yRYw6Lpdv7ii09H4w4/UrVxJ88aNALiMGIH3rbfwU10dnjs6iKoLAVsNpfpSXMdEMmjmfJVTCyFOJMW4EOK0pF9yEdlbNlP/ySGSG/qT8dr3THjicfzuvIPaDz6g7qOPKfnhBxxiY/FavAiPc8/Fxkl+/N0rFGZAR1v3b1H5vdT5sOY2qNgHAcl/f21BBtjYQVj3OHGyPT+fuhUrqf/sMww1NdgGBNDnmmuwmXYOP6zdRPh3jQxyCEdvp6PQeJCI+cMYMaR7fSMhhPiNtKkIIc5I3eFK9j62lkiHaMraDmI7zolBM2dhbG+n4cuvqHn3XdoPHEDr4YHn/Hl4LVyIXWA3nq4hOu/zGyDzU7g9H2zt1U5zepqrYVkcpF0HE//199e+nA72bnDpV12T7SSMLS00rP2auhUraP31V7C1xW38eDznzaU2LpStr35NXI0/3vZ9aDU0c9DhCP3/MQnvCD/VMgvR251um4oU40KIM9ah17PugZdJMCSi1WjJ0+USs6Q/YQOGmMao7dhBzTvvmjaQaTS4nXMO3ksW4zRwoLSw9DRGIyyLh4iRMO8ttdOcmeXzj/a57wWbvxgu1lIDT0XBuHtgzB1dGk9RFNr27qVuxUoavvoKY3Mz9lFReM6Zg8f5M8k8Ukzh21tJ1IXhYutOg76WSt9Whl8zAyePbngCqhC9jPSMCyEsxtbOjqmPX0/e9u0Uv7+HGPs4Ot6vY+0H/2HUbXNwGzIE5yFD0JeVUfP++9R9soLGb77BsW9fvBYvxn36NGzsrWQFVfy98p3QXNX9RxqeTOp8WHk5lGyGiFEnv6ZwA6BAZNe1eRjq6qj//AvqVqygPScHjZMT7lOm4DlvLo79+5Ox8TvaHl9JvCaSwdpkqowVHIlUGH7pNPrKSZlCWB1ZGRdCdNqWT1ah3dxOkEMITfp6ijzzOefOq7G1dwBMP2Kv//wLat57F11ePlofH7wumI/nhRdi5yc/Rrdq3/8LNj4Ht+ed2YmW3YGuGZbGmk7VPO/5k1/z5S2mmeR3FoLWzmJRFKORlp9/pm7FShq/+w5Fp8MxJQXPuXNxnz4No7MDa1etwn1TC5H2kWjQUKYvw3l0GP1m/cU3EkIIVUmbyklIMS6EZX377KsElfrhaedNVXsFTYl1pF95xfGPK4pCy5Yt1Lz7Hk3r14NWi/uUKaYWFjnV0zr9Lw2cfeCSL9VOcnZWXWmakX5bLtg6/Pnjzw8wHRK08COLPF5XWkb96tXUr16NvrwcGw8PPM49F8+5c3BMSKChrYFvXv+EsDwngh1C6TDqKVHKCJk9kKi0JItkEkKYhxTjJyHFuBCW19rcwo+Pv0lcewyOWmeK2vLxnOpD8uRz/3CdrriYmuXLqV+5CmNzM079+plaWCZPQmNnuRVIYUbH5nVPfsy0EdIa5X4Hy+fABcshccYfP1ZXAs+lwJQnYPg1ZnuksbWVxnXrqFu1mpaffwaNBpcRI/CcMxvXCROwcXCgrKaMzS9+QVy1Lz72frQZWjhoX0Xq5RPxiQowWxYhhOVIMX4SUowL0XUqi4vY8/w3xGpjAcjtyCb5ihEEJvb7w3WGpmbqV6+m9r330BUXY+vnh9eCC/G84AJsva2s7aG3+flF+PouuPFX8I5SO83ZMXTAMwkQPgLmv/PHj+18Fz6/Hq7ZAv59O/UYRVFo27OHupWraFizBmNTE3ahoXjOnoXHzJnYBQUBsC9/D3lvbCKhPQxXW3ca9HVU+jSbNmV6uXYqgxCia0kxfhJSjAvR9fZt+Ina1flEOkTTZmghx3Y/4+64CCcv3z9cpxiNNP/0EzXvvEvzpk1o7O1xnzED78WLcExMVCm9+FtvnwtNVXDdVrWTdM6aO+CXt+D2XHD0+O39lf8wzRi/Leesr/51lQAAGfRJREFUDzPqOHKE+s8+p271KnR5+WgcHXGfPBmPObNxHjwYjY0NrR2tfLvqUxy2NhFrE4GD1pHDukqao+1Ju2IaWtmUKYRVkmL8JKQYF0I9G975CNdfNfg5BFKnr6Hcr5BJt10P2j8XGu35+dS89x71n36G0tqK8+DBeC1ejNuE8WhspTDpFlrrYGk0jLgBzvk/tdN0TukOeG0CzPwvDFhkek9R4Ok406mbc147o9spej1NGzZQt3IVTRkZYDDg1L8/HnNm4z51KlpXVxRFYdP2DA5/foCoFj987H0xKgbK9eU4pIUwYF66Bb5QIURXkmL8JKQYF0JdHR0dfPf0G4QfDsLNzoND7aV0DGghbfFlJ115NNTXU7dyFbXLl6MvK8M2KBDvhQvxnDsXraenCl+BOG7vCtNYwMvXQehQtdN0jqKYNmp6hsHFn5veq8yCF9PgvBdg4OLTuk17bi51q1ZT//nnGKqr0fr2wXPmTDxmz8YhytTGU1RRwI531hF0yJVg+2C0Gi21uiMc9mgl+cIx+MUHW+qrFEJ0MSnGT0KKcSG6h6b6en564n3iOmKws7GnsD2PwPMDiRt78lnVisFA048/UvPOu7Rs24bGyQnvJUvwufwytO7uXZxeALDicihYb2rhsNGqnabzfnwMMp6Cf+4H98Df+uFv3msq0v+CobGRhq/WULdqFW179phOxhw3Fo/Zs3EdPRqNrS0NbQ3/396dR8dVnnke/z61aF9sy4u8CO/YBu82FoSELeDQTgPGNGloQjdkYboHAmk6dNKTzJmezEx3kwwh5CQdGrpJoBPIBIIDCQ6bMRCILdtYXjEyxmyyZUvyoq201PLMH1XYslMysi2pLOn3Ocenqu5969Zz63Wpfrp673tZ+fhTFFR2MClYRnYwl9Z4C7sDdYy8ZAZnfeZjv6tFpB9SGE9DYVzk9PLhWzvY8cArTA1PJe5xdsTfZNFtlzB0YtdTtrVVVbH/gQdpfOYZgsXFlNxyC0Nv+AsCOTl9WPkgF4/CdybDjCtg6Y8yXU3PqN8JP1wAi/8PfOI2ePQ6qK9Knpx6DE8kiKxdy6FfPUnT88/j7e1kT51K8TXLKL7iCkIlJSQ8wauvvUjjil1M6hjNkPAw4okYe2I1+PQhnHPjpYRzdeErkYFMYTwNhXGR09Mbz66k49kaynLGE4k18U7Odi79+k2EC0u6fE7b9u3Ufu9eWn7/e0KlpYy47VaKly7VmPK+sOsVeOTK9NMB9mcPXASJOHx5Fdw9IXkxoCu+f3h1R/VuGn796+Sc4Lt3EygspOhPP8uQZdeQM/NszIy3P3yLzY+8Qll9EaVZYwhYgPqOWg6WdDDn85cybPyILl9eRAYWhfE0FMZFTm8r/+1nDK/KoyRrBPs7atk/9n0u+ertaU/y/EhLxVpqv3cPbZs2kzVpEiO+egeFl12GneTsF9INv/sGrH8oeVXKrPxMV9NzVv8rPPcPyXHiT98G1z5MYvLlqTnBnySyOjUn+HnnUrzsGgov/TSBnBwOth7k5Z89zZDtCcaHysgKZNMSa2JPaD9lS+Yy5YJZmd4zEckAhfE0FMZFTn/R9g5evPsnTG4sIy9UyIdt75FVHmXBdTd3Ob2cu9O8ciW1936fjnfeIWf2bEbeeSf555b3cfWDgDvcNwdGTIcbfpnpanpW0z743nQ8u5i23S0cKv4Sjc+tJNHURHjsWIqXXc2QpUsJjx1LPBFn1cpnaX9hN5PiyROSo4kO9sRrCM8ZyYLrLtGUhCKDnMJ4GgrjIv3HgX21rLtnOWcyhYAF2dlRxZmfm0jZeYu7fI7HYjQ89TR1P/whsZoa8j/5SUbe+bfknHVqF2yRTj6aZeRPvw8Lb850NT0m3thIZP16Ij/5Fs1VtXQ0hrGcHAoXX8aQZdeQt+gcLBBg645N7HhsDeMPDWVU9mgA9nXU0FQKC/7qMgpHDc3wnojI6UJhPA2FcZH+Z8eGzdT87A0mhicRTXSwg6186o4lFIyb1uVzEu3tHHz0Mfbffz/xhgaKlixhxB23kzV+fB9WPkC9+n/hpf8Fd76VnHWkn4o3t9C64Q1aKiqIVKyl7c03IZHAwiFyh7VQdNF5FH3tfoKFhdQ11vP7h3/D8F0BzgiXEQqEaYoeoibnEJOvXsT4hV3/XxSRwUthPA2FcZH+a/XyFYRebWR09liaow28z7sMnx9mwbU3djluOd7UxP7/+A8OPPwIHo0y5No/Y/jf/A3hkSP7uPoB5MFPgyfgllWZruSEJNraaK2spGVNBZGKClq3boVYDMJh8ubMIa+8nLzyReTOmEJgxR1EL/w6KyvehtfqmeRjyQsV0pFoozqxl4LyMuYs+xTB4ACY0lFEeo3CeBoK4yL9WywWY+WPfs6I9/IYmV0KwMGOenbbh5SWFzB32Q0Qyv7j59XVUf/jH3Pwl49j4XByjvIvfZFgYWFf70L/1rQP7jkTLv4WXHhXpqs5rkRHB22bNtFSsZbImjW0btqER6MQDJI7axZ55eXkly8id948Arm5ALTF2nh95UqaX6tmfEsJw7NGkfAEe6M1tJaFWfSFy8ktHkAnrIpIr1IYT0NhXGTgeLNiA+8/tZbS1uGMyB4FwP6OOmoC1Yw5fyizr7z+j2Zh6fjgA+ru+4HmKD9ZbzwMv7kd/vp1KJ2Z6WqO4tEorVu3EqlYS0vFGlorN+JtbWBGzllnkXduOfnl5eTOX0CwIBmoE55g85uV7FpRSXFNgDE2gsJw8squhzr2s6+wmRl//inGnKXhTSJy4hTG01AYFxmYtr5WQfUzlZS2j2B4VnIISn1HLTXBas64aAxn/8k1EAgcbq85yk/SY9fD3i3Jq1JmeOpIj8dpe3M7kbUVtFRU0Lr+DRKRCADZ06aRV76I/HPPJW/hwqOu0rqnfjfrf72K0I5WRseGUhIeQcACRBMd1MXqaCqOMe6CmUy5YJaGoYjIKVEYT0NhXGTg2/Tya9Q8u4UxHaMYlpW8wEpd+z72hncz8bKJTL/0isNBUnOUn4COCHxnEsy/EZZ8t89f3hMJ2t9+m8iaNcmhJ+vWkWhqAiBr8mTyyxeRt6icvEXnEBo27PDzmtubWf3CKlor9jCiuYDS8CjCgWwSnuBgtJ79WS0UzhrD7KvOJ7sgt8/3S0QGLoXxNBTGRQaXyudXUftiFWNioxiaNRx3p65jL3uza5iyZDpnfmoxDpqjvDuqfgePXQc3LofJl/T6y7k7Hbt2JWc7WVNBZO1a4ocOARA+44xk+C4/l7xF5xx1Qm7CE2zauoH3VmxkyL4gYwIjyQ8lj4w3xxqp5QCJsjxmXfVJSiaM6vX9EJHBS2E8DYVxkcFr/TMvsP/ldxgbL2VIVgnuTm1HDfty9jLtyjlMOueTmqP8eJ7+CmxdDn+/C0JZPb75RHs7bdu20bphA5HKjbRWVhI/cACA0JjR5C8qP3zSZXjMmKOeW11XzYZfvUzWO22Mjg9lWHgEZkZHop3aWC0tQ50Jl8xhwrkzNPRERPqMwngaCuMiAlCx/Lc0/KGasYkxFIeHkvAEtR011ObVMuOzcyiqeldzlHeWSMA902DC+XDtT3tkk7H6eiKVlbRWbqR1wwbatm1LznYCZI0fT+78+eTOn0d+eTnhsrKjhg41tzez5ncv0bpuLyMjBYwMjyIcyCLhCfZH6ziQ00Lx3DOYc8X5hHN7/hcHEZHuUBhPQ2FcRDqLxWKsW/5bmir2UuZjKQwPIeEJ9rXvoT6vlglZTdhTT2qO8ur18O+fhmUPwuzPnfDTPZGgfedOWjdU0lpZSaSykugHHwBg4TA5s2aRO28uefPnkztv3lFjviE59GTjhrV88NxWhtaFGR0cSV6oAIDG6CHqAgdhQgGzl17A0LHDT31/RUR6gMJ4GgrjItKVWCxGxS+XE3njAGWMpSBcTNzj7GvfQ2Pb+5SsX0FuvIXCiy8me8Z0cqYn/4VGjMh06b1v5bfhte/DXTshb9jHNk9EIrRu3pwM3hsqad248fDJlsGSkmTwnpc88p1z9tkEso4+eh2NR6l6ezvvvrSZ7F3tjE4MY2hWMmS3x1vZF68jUgKTP7OAiQun9/z+ioj0AIXxNBTGRaQ7YrEYq3/+OO2bGikLjCM/VETcY+xr3U1L8x4CB/eSdeA9CureJntoMTnTppE9fTo505O32RMnYuFwpnej5/zreZBXAjf9Nu3qaE3NkeC9YQNtVVUQjwOQPXUKuangnTdvHuEzzsDMcHf2HdpHVcUmDr21l2BdB/mtYYo8j6JQEbnB5FzgcY9TH63lYF4rQxdMZPZnzyOcNYDeWxEZsBTG01AYF5ETFYtGef2Rx4hta2NcYBz5oSNX7Ux4nJZYE83RRtrbG4m1HCDQWEPOofcZNixA3oyzyZkxnexpyaAeLC7O4J6cpAPvwg/mwmf+Cc67FY/FaKuqSg05SZ5sGaupAcByc8mdPftw8M6dM4d4QS5Vb23jw3U7iH3YRHYjFMZyKQ4UUBAqImhH5nZvj7fSGG+k2Vppy3WyxhUz/5oLKRwxJFN7LyJy0hTG01AYF5FT4e58sHkj71ZsIlLdTKglREE8j8JAIYWhYkKBI0dsY4kozbFGIh2NtLc1EI/sJ9BeT1FRO6NmTCV/9hxypk9LHinudEGi04nHYsRfuo+2X91NZOKttL71Hq2bN+Opi+uESkvJmz+PnLlziUwZzzv7m2jYWU+wLkpBW5giz6coVEROMO/wNhMepznWSKM3EwlHiReHKZo0kimLZlIyqTRTuyoi0uMUxtNQGBeR3hJrj7LzjXXsrqyioyZCViSLAk8G9YJQEQE7MqVeR7yN5mgjkWgyqMfiBwlnt1A6dRjjLriInLPnEMjPP+Wa3B2PRIg3NhJvbCLR2EC8qYl4QyOJpuSyeGMDiYYG4g2HkusbGok3NZFoaibR2nZkY4EAWdOn0TB1OvV5o2iP5ZDdFqIwlkNxmn1si0doijfSZG205zvh0gJGz5zMhIXTyM7LOeV9ExE53SmMp6EwLiKZ0B5p463XK6jb8g6x+jZyWrMp8HwKQ4XkBQuPmravNdZCc7SR1mgjrfEG4qFm8kqhdGYZHokQPdRMtLmFREsb8Ug78dYY8fYYifYEHgViDjHD4wFwAwuCBfBAECx4+JZAIPk4GMCDAQgkbz2Qum8BCBhmIbLCRRQGiygKFpEdPHKVyrjHaY410OQtRMJREkPDFE8qZXL5TIaNH4SzzoiIdKIwnobCuIicbpr2H6Lq9XUc2P4+VhclJ5pDgRVQGD56eEcmtcZbaIo30WyttOdD1uhCxs6ayvgFZ2oebxGRLnQ3jIc+roGIiPSewpIhLLzyMrjyj9fVf7iPt19ZQ/P2aqzF8YBB0PBQAIJBPByEUBALBrDULcEAgWCQQCiABYMEggEC4RDBUJBAOEQoHCQYChEMhwhlhwmHsghnhwllZRHKChPOChHIDhPKChHMChMMBxW4RUR6kcK4iMhpanjZKIZ//qpMlyEiIr3o9DyFX0RERERkEFAYFxERERHJEIVxEREREZEMURgXEREREckQhXERERERkQxRGBcRERERyZCMhHEzu9bMtplZwsy6nAzdzB4ys1oz29rF+r8zMzez4b1XrYiIiIhI78jUkfGtwDLg1Y9p91Pg8nQrzKwMWAx80KOViYiIiIj0kYyEcXff7u5V3Wj3KnCgi9X3An8PeE/WJiIiIiLSV/rlmHEzuwrY7e6bMl2LiIiIiMjJCvXWhs3sRaA0zapvuvtTp7DdPOC/kRyi0p32twC3pB42m9nHHpHvBcOB+gy8rvQt9fPgoH4eHNTPA5/6eHDIZD+P706jXgvj7n5pL216MjAR2GRmAOOADWa2yN33pqnjAeCBXqqlW8xsvbt3eaKqDAzq58FB/Tw4qJ8HPvXx4NAf+rnXwnhvcfctwMiPHpvZe8BCd9dvtyIiIiLSr2RqasOrzawaOA94xsyeSy0fY2YrOrV7DFgNTDOzajP7YibqFRERERHpDRk5Mu7uy4HlaZbvAZZ0enx9N7Y1oUeL6x0ZHSYjfUb9PDionwcH9fPApz4eHE77fjZ3zQwoIiIiIpIJ/XJqQxERERGRgUBhvAeZ2eVmVmVmO83sG2nW32RmdWa2MfXvS5moU07Nx/Vzqs3nzOxNM9tmZo/2dY1y6rrxeb6302d5h5kdykSdcvK60cdnmNkqM6s0s81mtiTdduT01o1+Hm9mK1N9/LKZjctEnXLyzOwhM6s1s61drDcz+0Hq/8BmM5vf1zUej4ap9BAzCwI7gMuAamAdcL27v9mpzU0kZ365LSNFyinrZj9PBX4JXOLuB81spLvXZqRgOSnd6edj2n8FmOfuX+i7KuVUdPOz/ABQ6e4/NrOzgBX95DwlSelmPz8O/NbdHzazS4Cb3f3GjBQsJ8XMLgCagUfcfWaa9UuAr5A8L7EcuM/dy/u2yq7pyHjPWQTsdPdd7t4B/AK4KsM1Sc/rTj9/GfiRux8EUBDvl07083w98FifVCY9pTt97EBR6n4xsKcP65Oe0Z1+Pgt4KXV/VZr1cppz91eBA8dpchXJoO7uvgYYYmaj+6a6j6cw3nPGAh92elydWnasa1J/InnCzMr6pjTpQd3p5zOBM83sdTNbY2aX91l10lO6+3nGzMaTvBDZS+nWy2mrO338j8DnU1PxriB5ZE36l+708yZgWer+1UChmZX0QW3Sd7r9Mz0TFMb71m+ACe4+G3gBeDjD9UjvCAFTgYtIHjF90MyGZLQi6U3XAU+4ezzThUiPux74qbuPI/nn7f80M31vDjxfAy40s0rgQmA3oM+z9Bn9UOk5u4HOR7rHpZYd5u773b099fDfgQV9VJv0nI/tZ5K/cT/t7lF3f5fkeMWpfVSf9Izu9PNHrkNDVPqj7vTxF0me/4G7rwZygOF9Up30lO58N+9x92XuPg/4ZmqZTsgeWE7kZ3qfUxjvOeuAqWY20cyySH5BP925wTHjk64EtvdhfdIzPrafgV+TPCqOmQ0nOWxlV18WKaesO/2MmU0HhpK8UrD0L93p4w+ATwOY2QySYbyuT6uUU9Wd7+bhnf7i8Q/AQ31co/S+p4G/TM2qci7Q4O41mS7qIxm5AudA5O4xM7sNeA4IAg+5+zYz+zaw3t2fBm43syuBGMkTDW7KWMFyUrrZz88Bi83sTZJ/6rzL3fdnrmo5Ud3sZ0h+sf/CNS1Vv9PNPv47ksPM/pbkyZw3qa/7l27280XAP5uZA68Ct2asYDkpZvYYyX4cnjrH438AYQB3v5/kOR9LgJ1ABLg5M5Wmp6kNRUREREQyRMNUREREREQyRGFcRERERCRDFMZFRERERDJEYVxEREREJEMUxkVEREREMkRhXESkF5hZczfafNXM8nrwNZea2Vk9uL0/nMJzm1O3Y8zsieO0G2Jm//VkX0dEpL9TGBcRyZyvAicUxs0seJzVS4EeC+Pu/oke2MYed/+z4zQZAiiMi8igpTAuItKLzOwiM3vZzJ4ws7fM7Oepq8DdDowBVpnZqlTbxWa22sw2mNnjZlaQWv6emd1tZhuAa83sy2a2zsw2mdmvzCzPzD5B8sq+3zWzjWY22czmmtkaM9tsZsvNbGhqey+b2b1mtt7MtpvZOWb2pJm9bWb/u1PtzZ3uf93MtqRe81/S7OfEVO1bjtnGBDPbmrp/tpmtTdW32cymAv8CTE4t+66ZFZjZytR7sMXMruq0ne1m9qCZbTOz580sN7Vuipm9mKptg5lNTi2/K/U+bTaz/9mjHSsi0kMUxkVEet88kkfBzwImAee7+w+APcDF7n6xmQ0HvgVc6u7zgfXAnZ22sd/d57v7L4An3f0cd58DbAe+6O5/IHnJ57vcfa67vwM8Anzd3WcDW0hele4jHe6+ELgfeIrkVQdnAjeZWUnn4s3sT4CrgPLUa34nzT7eB/zY3WcBXV1m+q+B+9x9LrAQqAa+AbyTqvkuoA24OvUeXAzcY2aWev5U4EfufjZwCLgmtfznqeVzgE8ANWa2ONV+ETAXWGBmF3RRl4hIxoQyXYCIyCCw1t2rAcxsIzABeO2YNueSDOuvp7JnFrC60/r/1+n+zNTR5yFAAclLfR/FzIqBIe7+SmrRw8DjnZo8nbrdAmxz95rU83YBZcD+Tm0vBX7i7hEAdz+QZh/P50g4/k/g7jRtVgPfNLNxJH+hePtIzj5SOvBPqeCcAMYCo1Lr3nX3jan7bwATzKwQGOvuy1O1taX2YzGwGKhMtS8gGc5fTVOXiEjGKIyLiPS+9k7346T/2WvAC+5+fRfbaOl0/6fAUnffZGY3ARedQk2JY+pLdFFfd/hxV7o/amYVwGeBFWb2X4BdxzS7ARgBLHD3qJm9B+QcUzMk38fc47ycAf/s7v92AvWLiPQ5DVMREcmcJqAwdX8NcL6ZTQEws3wzO7OL5xWSHIoRJhle/2h77t4AHDSzT6XW3Qi8wsl5Abj5o5lfzGxYmjavA9el7t+QZj1mNgnYlRqi8xQwm6PfA4BioDYVxC8Gxh+vMHdvAqrNbGnqNbJTdT4HfKHTuPuxZjayW3srItKHFMZFRDLnAeBZM1vl7nXATcBjZraZ5JCO6V08778DFSQD8Fudlv8CuMvMKlMnMf4VyRM6N5McN/3tkynS3Z8lOaxlfWqYzdfSNLsDuNXMtpAcWpLO54CtqW3MBB5x9/0kh+ZsNbPvkhz/vTC1nb88Zv+6ciNwe2o//wCUuvvzwKPA6tS2nuDo0C8iclow9+P+VVFERERERHqJjoyLiIiIiGSIwriIiIiISIYojIuIiIiIZIjCuIiIiIhIhiiMi4iIiIhkiMK4iIiIiEiGKIyLiIiIiGSIwriIiIiISIb8f0eSyTyE3Tm5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 8)\n", - "pylab.ylim(-1.14, -1.04)\n", - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " for k in range(len(mappings)):\n", - " pylab.plot(distances, energies[k][j], label=algorithms[j] + \", \" + mappings[k])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground State Energy in different mappings')\n", - "pylab.legend(loc='upper right')\n", - "pylab.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVFX/wPHPYV9EENxAVNwVFXBDEXPJhWxB0dyz3Fo1fapfT/ZUZk/LU2Y9PZVWaqZZKWaWe6KWmjuouOGGO4uKCwgCsp3fH3egERkYYIZBOO/Xa14wM+fe+507y/eec+49R0gpURRFUZTysrJ0AIqiKErVoBKKoiiKYhIqoSiKoigmoRKKoiiKYhIqoSiKoigmoRKKoiiKYhIqoVRjQohxQogdlo5DASHEGCFERDHP9xZCxJVifRuEEE+ZJjoQQpwXQvQz1frKEce/hBALLB1HZSKEaCSESBNCWFs6FpVQdIr6wuj/4Aoh7IUQ3wohLgghUoUQ0UKIgSWs01MIMV8IkaB7w88KIRYJIVqb87WYihBiohDihO71XhFCrBdCuOieWySEeK8U6ypX8tItn6vbj/o3r7KuszKRUv4opRyQf18IIYUQzcuxvoFSysWmia7ykFJ+IKWcZOk4KhMp5UUpZQ0pZa6lY1EJxXg2wCWgF+AKvAksF0L4FFVYCOEB7AKcgAcAF6AjsA3ob2AZG1MHXVZCiF7AB8AoKaUL0AYIt2xU7NZ9cfRvCabcQGV6Dyyhur9+Q9R+MZKUUt200QLOA/0KPTYO2FHMMoeBoQaeew84BFgVs7wPIIGJwEVgu+7xUOAYkAxsBdroLSOB5nr3FwHv6f7vDcQBrwBXgURgvF5ZD2A1cAvYB7xr6PUB/wf8ZuC5Z4BsIAtIA9boHp8OnAFSgRggTPd4GyATyNWVT9Y9bg/M1r32K8DXgKOBbZb0XpzXxXwYSEFLfg56zz8KROv26S7Ar9Cyr+mWvYN28NAROKh7LT/r1pe/n48Cj+ktbwtcAzoUEde2/M8IEKx7/x7R3e8LRBd+fcB2Xbnbuv01oqT3tojtbgUm6f63QjsAuqBb9nvAtYTP4Fhd+evAG+h9P4BAYLduXyYCXwJ2hT6jzwGndWXmAKKE798FoJPu/zG6dbTV3Z+I7rMIzAR+0FvuSb043yoU50xgue71pqJ9pzrrLesF/AIkAeeAqXrPzQRWAD+gfV8mFRHzImAusEH3Pu0E6gOfATeBE/qfCQx8P/Te/526fZmiW7ZvoffzP2jf21vAKsC90Htoo1f2Xd36UoEIoLYx+6y8N1VDKSMhRD2gJdqHtCj9gF+llHlGrK4X2o9uiBCiJbAU+AdQB1gPrBFC2BkZWn20GlQDtC/iHCFELd1zc9B+2D2BCbqbIXt18bwjhAgWQtjnPyGlnAf8CMySWi3hMd1TZ9BqY67AO8APQghPKeVxtB+Y/BqGm678h2j7MABorot5hpGvsyjDgYeAJoAf2pcUIUQHYCHwLFpS/QZYrf+agFHAI4Ab2g/wr2g/GO5o70eYXtnvgSf07j8MJEopDxYR0za0ZADa+3wW6Kl3f1vhBaSU+c/76/ZXfs2wuPe2OON0tz5AU6AG2g+XPv3PoC/wFVpS8ULbZ956ZXOBl4DaQBBaYnyh0PoeBbqgvQ/DgZASYiz1ftLFORctAXny977RFwosQ3tfV6N73UIIK2AN2kFfA91r+IcQQj/OQWhJxQ3t816U4WjJujbawchu4IDu/grgU72yRX4/9J7vqitTG3gbWCmEcNd7/km076wnkAN8biAmgNHAeKAuYId2sGXsPis7U2SlqnBDy9JpaEdU+bd0ijgqRjsi3Qx8U8z6YoHn9O6H6taZCkQUOrJoqlfuLWC53n0rIB7orbtfUg0lA92Riu6xq0A3wBqtVtFa77kPinp9es8PRPvSJev2zaeAdeHtFrN8NDBI9/84/W0BAu0IvJneY0HAOQPrGof2JdJ/f84Uev+e0Ls/C/ha9/9XwLuF1ncS6KW37AS953rq9rnQe2yH3n720r2PNXX3VwD/NBB3X+Cw7v/fgUnAHt39bcAQA/un8Pts8L01sN2t/F1D2QK8oPdcK91nwYaiP4MzgGV6953RaqNFHsWiHfz8Wij2Hnr3lwPTS/isTARW6/4/rttPy3T3LwAddf/PRFdD0cW5VG8dTvpx6spu1nveF8jQ/d8VuFgohteB7/SW3V5CzIuA+Xr3XwSO691vj642buT3I6HQZ24fMFbv/fyw0GvJQvte57+H+jWUN/XKvgD8bsw+K+9N1VDuNlhK6ZZ/496jrvwjmyVob8KUYtZ1He0IAAAp5WrdOl9CO2LQd0nvfy+0L1D+cnm65409irgupczRu5+OdkRah7/7gfJdoBhSyg1Sq324ox2tjUP7ohdJCPGk7mSFZCFEMtAO7WirKHXQPsz79cr/rnvckD3674+Uslmh5y/r/Z//ugEaA6/kb0e3rYZo+zpf4fcgXuq+cYWfl1q/zU5gqBDCDS3xGjqC3Q201NVoA9BqNw2FELXRmo62F/N6CzP03pbkrs+U7n8boJ7eY4Vfv/7rvY32eQZACNFSCLFWCHFZCHEL7cCk8Pts6L0wZBvwgO6I3RotCQXr+ihd0X58i3pd+nGm68dpIA4HXX9IY8Cr0GfiXxjeJ4Zc0fs/o4j7Ba/biO9H4c/cBQx/Ri+gHdga+n4Z2v/G7LMyUwmlFIQQAvgW7UM3VEqZXUzxLcBgXQIqif6HKAHtw66/zYZoR8ygfTic9MrXN2L9oLUT5+jWla+RMQtKKfOklFuAP9C+BIVjRgjRGJiPlmQ9dMnzKFpN5J7yaH0OGWjt5PkJwlVKacwPZGldAt4vlIycpJRL9crox5cINNDt+3z6+w1gMVqz1zC0prx4iqD7wu4HpgFHpZRZaH04L6PVsK6V65UZ567PFNr7nsPdP36FX3/B6xVCOKE1e+X7Cq2Nv4WUsibaD7H+vio1KWUs2mf7RbSawS20H8Vn0GpuRTUdJ6LXFCeEcCwUZ3EuodWG9T8TLlLKh/XDKstrKYoR3w+49zPXCO29y1f4u5uN9j0qjfLssxKphFI6X6G1Mz8mpcwooeynQC1giRCimdC4oB2lFmc58IgQoq8QwhatE/YO2o8QaEdqo4UQ1kKIh9Dal0sktVMKVwIzhRBOurbUpwyVF0IMEkKMFELU0sUeqNvWHl2RK2jt8fmc0b6ASbrlx/N38skv753fF6T7gZgP/FcIUVe3TINCbdimMh94TgjRVfdanIUQj+SfAl2E3Wj9BFOEEDZCiEFotQl9v6F13E9Dq3UUZxvaD0l+P8DWQveLUnj/lsdS4CUhRBMhRA20GkV4odqOvhXAo0KIHrr369/c/VvhgtYxnKY7Bf55E8VZ2v20AnhMCNFdF+dMjE9s+4BUIcRrQghH3fepnRCiS5mjL15J3w/Q+jumCiFshRDD0H5r1us9/4QQwleX4P8NrJClP1W4PPusRCqhGEl3hPEsWkK4rHcdxJiiyuuOPLuhdYLvQGtzj0b7Mhr8AkopT6Id+X6BdvTxGFoCy9IVmaZ7LBmtY+23UryMKWhV38to7b/fFVP2JvA02pk6t9DOdvlYSpnftPMt4Kurvv8mpYwBPkH7Mb6C1n68U299f6CdwHBZCJF/VPUaWl/THl3TyWa09n1DgsS916GU+AMgpYzSvZYvda8rFl2HvYHyWcAQtHb9ZLT3Yy1aYs8vk4F2hlATtERdnG1o7/t2A/eLMhNYrNu/w0tYf0kWojXTbkc7mykTrSZQJCnlMWAy8BPaEe1NtDPM8v0fWqdvKlqyNtXp5KXaT7o4X0TrdE9E6+e7it77ZIjuh/hRtO/zObTv2gK05jWTM+L7AdqJMC10sbwPPC6l1G+OWoL2vb0MOABTyxBHmfeZMcTdTXaKohRFCLEXrZP/O73HZgAtpZRPGF7SMoQQ24EFUsqSak9Vhq72lYzWFHfO0vGUhhBiHNpJFD0MPL8V7WQEk44SYOp9pmooilIEIUQvIUR9XZPXU2inv/6u97w7Wg1mnqViNETXJNIU7ci7ShNCPKZrwnVGu6bpCNpZe4oB5txnFksoQohhQohjQog8IUTnYso9JIQ4KYSIFUJML+L5z4UQaeaNVqmGWqFdo5CM1o/1uJQyEUAI8TRap+4GKWVpztIyO11/1GW05qJKNU6bEOLrIpos04QQX5djtYPQOq4T0JqLRkrV7FISs+0zizV5CSHaAHloF5n9n66du3AZa+AU2lAlcUAk2lAgMbrnO6P1KYSZ6ewgRVEUxUgWq6FIKY/rOqCLEwjESinP6jpKl6Fl1/xk8zHwT/NGqiiKohijsg941oC7L+aJQ7vCFbQzllZLKRPvPnX7bkKIZ9DOZcfZ2blT69b3xUC/iqIolcb+/fuvSSmLu+gYMHNCEUJspugL796QUq4qx3q90C4o611SWamNOzUPoHPnzjIq6p6WNUVRFKUYQohiR9XIZ9aEIqUs74Q88dx9dai37rEOaIMJxupqJ05CiFgpZZnnj1AURVHKp7I3eUUCLYQQTdASyUhgtO7inIKajxAiTSUTRVEUy7LkacNhQpvSNAhYJ4TYqHvcSwixHkA3NMQUYCPaCKTLdclEURRFqWSq1ZXy5elDyc2TWFuZbMgbRbnvZGdnExcXR2ZmpqVDUczEwcEBb29vbG1t73pcCLFfSmnwesF8lb3Jq1L4JOIkf568ypopPSjujDJFqcri4uJwcXHBx8dHfQ+qICkl169fJy4ujiZNmpRpHWroFSPUrenA0fhbnLicaulQFMViMjMz8fDwUMmkihJC4OHhUa4aqEooRni4XX2srQSrDyWUXFhRqjCVTKq28r6/KqEYwaOGPQ+0qM3q6ASqU5+ToihKaaiEYqRQfy/ikzM4cPGmpUNRlGqrRo27h+xbtGgRU6YUNxP3vaKjo1m/fn3JBcto0aJF1KlTh4CAAAICAnjyySdLvY6tW7fy6KOPmiE681IJxUgD2tbH3saK1dGq2UtR7lc5OTnFJpScHEOTWJbOiBEjiI6OJjo6mu+/rzZT0qiEYqwa9jb0bVOXdUcSycktanprRVEsac2aNXTt2pUOHTrQr18/rly5AsDMmTMZO3YswcHBjB07lhkzZhAeHk5AQADh4eH3PJ+bm8urr75Kly5d8PPz45tvvinYxscff1zw+Ntvv12q+KKjo+nWrRt+fn6EhYVx86bW2hEbG0u/fv3w9/enY8eOnDlz5q7lIiMj6dChwz2PV0bqtOFSCPVvwPojl9l15jo9W5Y4TpqiVFnvrDlGTMItk67T16smbz/WttgyGRkZBAQEFNy/ceMGoaGhAPTo0YM9e/YghGDBggXMmjWLTz75BICYmBh27NiBo6MjixYtIioqii+//BLQEo7+8/PmzcPV1ZXIyEju3LlDcHAwAwYM4PTp05w+fZp9+/YhpSQ0NJTt27fTs2fPe+IMDw9nxw5tOppp06Yxfvx4nnzySb744gt69erFjBkzeOedd/jss88YM2YM06dPJywsjMzMTPLy8rh0SRsTd9euXbz44ousWrWKRo0alX8nm5lKKKXQu1UdXOxtWH0oQSUURbEAR0dHoqOjC+7nJwfQrpMZMWIEiYmJZGVl3XUtRWhoKI6OjgbXq/98REQEhw8fZsWKFQCkpKRw+vRpIiIiiIiIoEOHDgCkpaVx+vTpIhPKiBEjChJW/jqSk5Pp1asXAE899RTDhg0jNTWV+Ph4wsLCAO3CwnzHjx/nmWeeISIiAi8vr9LtKAtRCaUUHGytCWlXn41HL/Pe4HY42FpbOiRFsYiSahKW8OKLL/Lyyy8TGhrK1q1bmTlzZsFzzs7OxS6r/7yUki+++IKQkJC7ymzcuJHXX3+dZ5999q7H58yZw/z58wFM2tnv6elJZmYmBw8evG8SiupDKaVBAV6k3slh68mrlg5FURQ9KSkpNGjQAIDFixcbLOfi4kJqquGLlENCQvjqq6/Izs4G4NSpU9y+fZuQkBAWLlxIWpo243h8fDxXr15l8uTJBR3whn74XV1dqVWrFn/99RcAS5YsoVevXri4uODt7c1vv/0GwJ07d0hPTwfAzc2NdevW8frrr7N169bS7QwLUQmllIKaelC7hp26yFFRKpmZM2cybNgwOnXqRO3atQ2W69OnDzExMQWd8oVNmjQJX19fOnbsSLt27Xj22WfJyclhwIABjB49mqCgINq3b8/jjz9ebGIqbPHixbz66qv4+fkRHR3NjBkzAC25fP755/j5+dG9e3cuX75csEy9evVYu3YtkydPZu/evaXYG5ahBocsg7dXHWVZ5CWi3uyHi4NtyQsoShVw/Phx2rRpY+kwFDMr6n02dnBIVUMpg9AAL+7k5LEp5oqlQ1EURak0VEIpg46NauFdy5FV6iJHRVGUAiqhlIEQgsf8vdgRe43raXcsHY6iKEqloBJKGYX6e5GbJ1l/9HLJhRVFUaoBlVDKqHV9F1rWq8Hq6HhLh6IoilIpqIRSRkIIQv29iDx/k/jkDEuHoyiKYnEqoZTDY/7aRUxr1TUpimJ2ffr0YePGjXc99tlnn/H8889z7NgxHnzwQVq1akWzZs14++23ycvTBnEtPJx8QEAAMTExlngJVZ5KKOXQ2MMZ/4Zu6mwvRakAo0aNYtmyZXc9tmzZMkaOHEloaCjTp0/n5MmTHDlyhH379vG///2voJz+cPLR0dH4+vpWdPjVgkoo5TTI34uYxFvEXk2zdCiKUqU9/vjjrFu3jqysLADOnz9PQkICsbGxBSMCAzg5OfHll1/y8ccfWzLcakkNDllOj/p58t66GFYfSuDl/i0tHY6iVIwN0+HyEdOus357GPihwafd3d0JDAxkw4YNDBo0iGXLljF8+HCOHTtGp06d7irbrFkzMjIySE5OBu4eTh5g9+7dxY4+rJSNqqGUU92aDnRr6sHq6Hg137yimJl+s9eyZcsYNWqUUcsVbvJSycQ8VA3FBEL9vZi+8ghH4lPw83azdDiKYn7F1CTMadCgQbz00kscOHCA9PR0OnXqxMGDB9m+fftd5c6ePYuHhwdubur7WJFUDcUEBrbzxNZaqPnmFcXMatSoQZ8+fZgwYUJB7WTMmDHs2LGDzZs3A9qsjlOnTuWdd96xZKjVkkooRjj0xwx+XtLf4POuTrb0almXNYcTyM1TzV6KYk6jRo3i0KFDBQnF0dGR1atX8/7779OyZUtq165NcHAwY8aMKVgmfw75/NuuXbssFX6Vppq8jLAh9TQ/5yQyMPEQNTz9iywTGuDF5uNX2HfuBkHNPCo4QkWpPgYPHnxPf2W7du34888/Afjtt994+eWXGT16NI0bN2bcuHGMGzfOApFWP6qGYoSH/CaSZSXYGvWlwTL92tTFyc5aTbylKBY2ePBgzp49S+PGjS0dSrWjEooR/HwepB7WbLyyBwycyeVkZ0N/33psOJpIVk5eBUeoKIpieSqhGMFKWDGgdkd22khundtmsFyovxfJ6dn8dTqpAqNTFEWpHFRCMdJDAU+TLQRbD35jsMwDLerg6mirmr0URamWVEIxUnuvbngKOzZei4acrCLL2NlY8XB7TzbFXCE9K6eCI1QURbEslVCMJIQgpH4Qu+ytSTm5xmC5UH8v0rNy2Xz8agVGpyiKYnkqoZTCQwFPkyMEfxz+zmCZwCbu1Ktpry5yVBQzsLa2vut6kg8/NN0V+9HR0axfv77gvqFh7xMSEnj88cdNtt2yOH/+PO3atbNoDEWxyHUoQohhwEygDRAopYwyUO4h4H+ANbBASvmh7nEBvAcMA3KBr6SUn5s7bt86fjSwcmRjyinCMlPAwfWeMtZWgsf8vFi8+zwp6dm4OtmaOyxFqTYcHR2Jjo42y7qjo6OJiori4YcfLnhsxIgRfPnlvZcLrFixwiwxVLScnBxsbEyXBixVQzkKDAG2GyoghLAG5gADAV9glBAifxKDcUBDoLWUsg2wrMiVmJgQgpCGfdjrYEfykeUGy4UGeJGdK/n9WGJFhKUo1VpKSgqtWrXi5MmTgHYl/fz58wF4/vnn6dy5M23btuXtt98uWCYyMpLu3bvj7+9PYGAgKSkpzJgxo+CK+vDwcIPb068dpKenM3z4cHx9fQkLC6Nr165ERWnHxxEREQQFBdGxY0eGDRtGWpo2xYWPjw9vv/02HTt2pH379pw4cQKAbdu2FdSEOnToQGpqKlJKXn31Vdq1a0f79u2LjKtbt24cO3as4H7v3r2Jiori9u3bTJgwgcDAQDp06MCqVasAreYVGhrKgw8+SN++fcu834tikRqKlPI4aD/QxQgEYqWUZ3VllwGDgBjgeWC0lDJPt74K67B4qN1TLLywni0xPzK0y9NFlmnfwBUfDydWRScwokujigpNUSrMR/s+4sSNEyZdZ2v31rwW+FqxZTIyMggICCi4//rrrxfUIsaNG8e0adO4efMmTz+tfTfff/993N3dyc3NpW/fvhw+fJjWrVszYsQIwsPD6dKlC7du3cLJyYl///vfREVFFdRIFi1aVOSw9/rmzp1LrVq1iImJ4ejRowWxXbt2jffee4/Nmzfj7OzMRx99xKeffsqMGTMAqF27NgcOHGDu3LnMnj2bBQsWMHv2bObMmUNwcDBpaWk4ODiwcuVKoqOjOXToENeuXaNLly707NnzrhhGjBjB8uXLeeedd0hMTCQxMZHOnTvzr3/9iwcffJCFCxeSnJxMYGAg/fr1A+DAgQMcPnwYd3f3srxVBlXmoVcaAJf07scBXXX/NwNGCCHCgCRgqpTydFErEUI8AzwD0KhR+X/cW3u0oZGNCxtT4xmaEg+uDYraJqH+XnzxZyxXb2VSt6ZDuberKIrhJq/+/fvz888/M3nyZA4dOlTw+PLly5k3bx45OTkkJiYSExODEAJPT0+6dOkCQM2aNQ1uz1CTV74dO3Ywbdo0QBv+xc/PD4A9e/YQExNDcHAwAFlZWQQFBRUsN2TIEAA6derEypUrAQgODubll19mzJgxDBkyBG9vb3bs2MGoUaOwtramXr169OrVi8jIyILtAAwfPpwBAwbwzjvvsHz58oL+nYiICFavXs3s2bMByMzM5OLFiwX7y9TJBMyYUIQQm4H6RTz1hpRyVTlXbw9kSik7CyGGAAuBB4oqKKWcB8wD6Ny5c7lHbhRCEOITwsLTP3Pj0BLce04vslxogBef/xHL2sOJTOjRpLybVZRKpaSaREXLy8vj+PHjODk5cfPmTby9vTl37hyzZ88mMjKSWrVqMW7cODIzMyskHikl/fv3Z+nSpUU+b29vD2gnGeTkaJcYTJ8+nUceeYT169cTHBzMxo0bjdpWgwYN8PDw4PDhw4SHh/P1118XxPDLL7/QqlWru8rv3bsXZ2fnsr60YpmtD0VK2U9K2a6Im7HJJB6tnySft+4x0GorK3X//wr4UYFC2owkVwg2n/zFYJnmdV3w9azJKnWRo6KY3X//+1/atGnDTz/9xPjx48nOzubWrVs4Ozvj6urKlStX2LBhAwCtWrUiMTGRyMhIAFJTU8nJycHFxYXU1NRSbTc4OJjly7X+1JiYGI4c0Wax7NatGzt37iQ2NhaA27dvc+rUqWLXdebMGdq3b89rr71Gly5dOHHiBA888ADh4eHk5uaSlJTE9u3bCQwMvGfZESNGMGvWLFJSUgpqLyEhIXzxxRcFA2kePHiwVK+tLCrzacORQAshRBMhhB0wElite+43oI/u/15A8e+UibWs1RIfOzcicpPh8lGD5UIDvDh0KZkL129XYHSKUnXl96Hk36ZPn87JkydZsGABn3zyCQ888AA9e/bkvffew9/fnw4dOtC6dWtGjx5d0PxkZ2dHeHg4L774Iv7+/vTv35/MzEz69OlDTEzMXZ3yJQ17/8ILL5CUlISvry9vvvkmbdu2xdXVlTp16rBo0SJGjRqFn58fQUFBBZ3vhnz22WcFzWa2trYMHDiQsLAw/Pz88Pf358EHH2TWrFnUr39vw8/jjz9eMCVyvrfeeovs7Gz8/Pxo27Ytb731Vnl3f8mklBV+A8LQahl3gCvARt3jXsB6vXIPoyWLM2hNZfmPuwHrgCPAbsDfmO126tRJmsoXez+Sft+1lUkbXjVYJu5mumz82lr5xZZTJtuuolhKTEyMpUOodHJycmRGRoaUUsrY2Fjp4+Mj79y5Y+Goyqeo9xmIkkb8xlrqLK9f0ZqqCj+egJZE8u+vB9YXUS4ZeMScMZYkpEUY3xxfwuYzaxmZ9yFY3VvZa+DmSBefWqyKTmByn+YlndWmKMp9Jj09nT59+pCdnY2Ukrlz52JnZ2fpsCymMp/lVam1qNWCZg512JhxiZEXdkCTnkWWCw1owFu/HeVwXAr+DdX81opSlbi4uBRcd6JU7j6USi+k+WD2O9hzNfp7g2UGB3hRw96G73aeq8DIFMU8pIH5gJSqobzvr0oo5RDS7FGkEGy69CdkZxRZxsXBlmGdvVl7OJErtyrmlEVFMQcHBweuX7+ukkoVJaXk+vXrODiU/bo51eRVDk3dmtLCyYuIzLOMOfU7tA0rsty47j4s2nWeJbsv8H8hrYosoyiVnbe3N3FxcSQlqQnkqioHBwe8vb3LvLxKKOUU0iKMLw/N4fKhH6lvIKE09nCmX5t6/Lj3AlMebI6DrXUFR6ko5Wdra0uTJuoiXcUw1eRVTiFNHgJg05V9cPu6wXITgptwMz2b3w7GGyyjKIpyP1MJpZx8XH1o7dKYjU4OEHPPmdAFujV1p41nTRbuPKfaoBVFqTDX0+7wzPdRJKYU3c9rSiqhmEBI80EccrAn8XDR4/aANgbYhGAfTl1JY2es4ZqMoiiKqSSl3mHU/D1sP53EhevpZt+eSigmEOKjNXtFpJyEG4ZPD37M34vaNexYqE4hVhTFzK6mZjJq/h4u3chg4bgudGvqYfZtqoRiAg1rNsTXtTkbnZ3gyM8GyznYWvNEt8b8ceIqZ5PSKjBCRVGqkyu3Mhk5bw8JyRl8N74L3ZvVrpDtqoRiIiHNH+OIgz1xR8KhmD6SMV0bY2dtxaJd5ysuOEVRqo3ElAxGzturpsCWAAAgAElEQVTDlZRMFk8IrJCaST6VUExkQOMBAERkX4EEw8NE13GxJzTAi5+j4khJz66o8BRFqQbikzMY8c0eklLv8P3ErnTxMf0kWsVRCcVEvF28ae/eho3ONeCw4fnmAcYH+5CRnUt41MUKik5RlKou7mY6I+ft5ubtLJZMDKRT41oVHoNKKCYU0vQRYuxtuXj8F8jNMViurZcr3Zq6s3jXBXJy8yowQkVRqqJLN9IZ8c0eUtKz+WFSVzo0qvhkAiqhmFRBs5fIhLNbiy07IbgJ8ckZRMRcqYDIFEWpqi5cv82Ib3aTdieHn57uZtFRzVVCMSHPGp741/Zjo4sLHA4vtmzfNvVo5O7EtzvUKcSKopTNuWu3GfHNHjKyc/np6a60a+Bq0XhUQjGxkCYPccLWmvOx6+GO4VODra0E47r7sP/CTaIvJVdghIqiVAVnktIY8c1usnLz+OnpbrT1smwyAZVQTK5/4/4AbLS3ghPrii07rLO3mitFUZRSi72aysh5e8iTkqVPd6ONZ01LhwSohGJy9Z3r07FuBza6uJXY7OXiYMvwzg1ZdziRyylqrhRFUUp26oqWTACWPdONVvVdLBzR31RCMYMBPiGctoGzl/6C1OI73cd19yFXSpbsOV8xwSmKct86nniLkfP2YCUEy57pRvO6lSeZgEooZtG/cX8EQhuB+OgvxZZt5OFE/zb1+GnvRTKycisoQkVR7jfHElIYPX8PdtZWhD8bRLM6NSwd0j1UQjGDuk516VSvExtdPUps9gKY0EM3V0q0mitFUZR7HY1PYcyCvTjaWhP+bDea1Ha2dEhFUgnFTEJ8Qjhjlcvpa8cg6WSxZbs2ccfXsyYLd6i5UhRFuVvk+RuMmrcHZzsblj0TRGOPyplMQCUUs+nXuB9WWLGxhnOJQ7EIIZjQowmnr6axI/ZaBUWoKEpl99fpJMZ+u5c6Lvb8/FwQjTycLB1SsVRCMZPajrXpUr8LG908kEeWQ17xQ6w85u9J7Rr2LFQXOiqKAmw8dpmJi6JoUrsG4c8G4eXmaOmQSqQSihkN8BnAebI5lZ4IF3YWW9bexpqx3Rrz58kkzqi5UhSlWvvtYDwv/HgAX6+aLHu6G3Vc7C0dklFUQjGjfo37YSWs2FizFhxcUmL5Md0aaXOl7Dxv/uAURamUftx7gZeWRxPo484Pk7ri6mRr6ZCMphKKGbk7uBNYP5CNrrWQMasgo/ghVmrXsGdQgBcr9qu5UhSlOpq3/Qxv/HqUPq3q8t34LtSwt7F0SKWiEoqZDWwykIt5GRyyzit2euB844ObkJGdy7JINVeKolQXUko+jTjJB+tP8IifJ18/0QkHW2tLh1VqKqGYWYhPCM62ziyr2xAOfF9ieV+vmgQ19WDxrvNqrhRFqQaklLy79jif/xHL8M7efD6yA3Y29+dP8/0Z9X3E2daZ0GahRNjmcv3qUUiILnGZCT2akJCSycZjaq4URanKcvMkr688wsKd5xgf7MOHQ/ywthKWDqvMVEKpACNbjyRb5rHS1c2ozvkHW9elsYcTC9UoxIpSZWXn5jFt2UGWRV7ixQebM+NRX6zu42QCKqFUiKauTenq2ZXltdzJOfwzZGcUW17NlaIoVVtmdi7PLdnP2sOJTB/YmlcGtEKI+zuZgEooFWZUq1Fclllss86CmNUllh/WuSEuaq4URalybt/JYcKiSLacuMq7g9vxXK9mlg7JZCyWUIQQw4QQx4QQeUKIzsWUe0gIcVIIESuEmK73eF8hxAEhRLQQYocQonnFRF42vRr2or5TfZZ61DWqc76GvQ3Du2hzpSSmFF+jURTl/pCSns0T3+5l77kbfDrcn7HdGls6JJOyZA3lKDAE2G6ogBDCGpgDDAR8gVFCCF/d018BY6SUAcBPwJvmDbd8bKxsGNZqGHttJGcT9sD1MyUuM667DwBf/hFr5ugURTG3a2l3GDV/D0fjU5gzuiNDOnpbOiSTs1hCkVIel1IWPwwvBAKxUsqzUsosYBkwKH8VQP68l65AgnkiNZ2hLYZia2VLeM2aRnXON3R34olujVm67yKnrqRWQISKopjDpRvpDPt6N2evpbHgqS481K6+pUMyi8reh9IAuKR3P073GMAkYL0QIg4YC3xY1AqEEM8IIaKEEFFJSUlmDbYkHo4eDPAZwOqaNUmP/glyS74afmrfFjjb2/DB+uMVEKGiKKYWk3CLIV/t4sbtLH6Y2JVeLetYOiSzMWtCEUJsFkIcLeI2qOSlS/QS8LCU0hv4Dvi0qEJSynlSys5Sys516lj+jRzZaiRp5LFW3IbTESWWd3e248UHm7P1ZBJ/nbZsQlQUpXR2n7nOiG92Y2Ml+Pm5IDr7uFs6JLMya0KRUvaTUrYr4rbKyFXEAw317nsD8UKIOoC/lHKv7vFwoLsJQzcb/zr+tKnVmqVubsj9JXfOAzzV3YeG7o68v+44uXlqAi5FuR+sP5LIUwv3Ud/VgV+e707LepVr/ndzqOxNXpFACyFEEyGEHTASWA3cBFyFEC115foD90WbkBCCkW1GEWtjRdSlrXCr5K4fextrXnuoNScup7Ji/6USyyuKYlnf7z7P5J8O0N7blZ+fuz/mMjEFS542HKbr/wgC1gkhNuoe9xJCrAeQUuYAU4CNaAljuZTymO7xp4FfhBCH0PpQXrXE6yiLgU0GUtO2BstcnCH6J6OWeaS9Jx0buTE74hS37+SYOUJFUcpCSsnsjSeZseoYfVvX48dJXXFzsrN0WBXGkmd5/Sql9JZS2ksp60kpQ3SPJ0gpH9Yrt15K2VJK2UxK+X6h5dtLKf2llL2llGct8TrKwtHGkbAWQ/nD2Zmr0UtKnM0RtJrNG4/4kpR6h2+23zcvVVGqjZzcPKb/coQv/4xlZJeGfP1Ex/tyxODyqOxNXlXWiFYjyBWwIu8mXNhh1DKdGtfiET9P5m0/w+WUTDNHqCiKsTKycnnuhwOER2njcv1nSHtsrKvfz6tRr1gIsVII8YgQovrtITNpWLMhwZ7d+bmmC9n7Fxm93PSHWpOXB7MjSrqER1GUipCcnsUT3+5ly4krvDuobZUZl6ssjE0Qc4HRwGkhxIdCiFZmjKnaGOU7hmvWVmy5sAkybhq1TEN3J8YH+/DLgTiOJaSYOUJFUYqTkJzBsK93cyROu/p9bJCPpUOyKKMSipRys5RyDNAROA9sFkLsEkKMF0LcPxMeVzLBXsF4O9ZlaQ0HOFzybI75XujTHDdHW95fdxwp1WnEimIJp66kMvSrXVxOyWTxhEAebu9p6ZAszugmLCGEBzAO7Qr1g8D/0BLMJrNEVg1YW1kzwncsBxwcOHXwOzAyObg62vKPfi3ZdeY6f5y4auYoFUUpLOr8DR7/ahc5eZLwZ4MIauZh6ZAqBWP7UH4F/gKcgMeklKFSynAp5YtADXMGWNWFtQjDXlizLDsREkuezTHf6K6NaFrHmffXHydbTRWsKBVmU8wVxizYi0cNe1Y+3x1fr5olL1RNGFtD+VxK6Sul/I+UMlH/CSmlwaHnlZK52rsysHEIa2vU4FbUt0YvZ2ttxesD23A26TZL9100Y4SKouTbtHE1n/zwK63ru7DiuSAaujtZOqRKxdiEUksIMaTQra8Qoq5Zo6smRrZ7kgwrwerzGyAr3ejl+rWpS7em7ny2+TS3MkseaFJRlLLJy5N8uD6GLrueY7XdmyzvdgGPGvaWDqvSMTahTAQWAGN0t/nAa8BOIcRYM8VWbbT1aIufSxPCHW3JO/ab0csJIXjzEV9upmcx5081Z4qimENGVi6TfzrApr924CZuY+vshv3aF2DjG5CrRq3QZ2xCsQXaSCmHSimHok12JYGuaIlFKaeR/k9z3s6WPQfnl2q5dg1cCevQgO92nOfSDeNrN4qilOzqrUxGztvN78cuM6OD9v0SY3+FwGdg95fw0zCjT/mvDoxNKN5Syit6968CDaWUNwDV1mICIT4huFs5sCzzIlw7XaplXw1phZUVzNqoLnZUFFM5nniLwXN2cupKGvPGdqaX0wWwrwl128LDH8Nj/4Nzf8H8ByFJfffA+ISyVQixVgjxlBDiKWCV7jFnINl84VUfdtZ2DGkexjYnRxIivynVsp6ujjzzQFPWHErg4EV1tKQo5fXnias8/tUucqXk5+eC6O9bD+KioEFHsNL9bHYaB0+tgTupML8vnPzdojFXBsYmlMlok1gF6G7fA5OllLellH3MFVx1M7z9eBCC5efWGjWbo75nezWjjos976mLHRWlXBbvOs/ExZH41HZm1eQetGvgqp0sc+UYeHe5u3DjIHhmK3g0haUjYftso68nq4pKTChCCGvgDynlL1LKl3S3FVL9apmcZw1PetVqy0oHK+6cWFOqZZ3tbXilf0v2X7jJhqOXzRSholRdObl5zFx9jLdXH+PB1vVY/mwQ9V0dtCcTo0HmQoMirpJw9Ybxv0O7ofDHu7BiPGTdrtjgK4kSE4qUMhfIE0K4VkA81d6ojlO4aW1NxIHSNXsBDOvckNb1Xfhwwwnu5OSaITpFqZrS7uTw9PdRLNp1nkk9mvDN2E4429v8XSAuUvvrbeCyOzsnGLoA+s2EY7/BwhBIrn6T4Rnb5JUGHBFCfCuE+Dz/Zs7AqqtuDYLxsXFhWcY5SIkv1bLWVoJ/PdyGizfSWbL7gpkiVJSqJT45g8e/2sX209d4P6wdbz7qi7VVodGC4yKhlg841za8IiGgx0swejncvADzesP5neYMvdIxNqGsBN4CtgP79W6KiQkhGNlqBIft7Tm2t/Q5u2fLOvRqWYfPt5zm5u0sM0SoKFXHoUvJDJ6zk/ibGSwa34UxXRsXXTBu/739J4a0HACTtoCjG3wfCpHGj4BxvzN2tOHFwHJgj5Rycf7NvKFVX6F+E3BEsPT8eqNmcyzsjUfakHYnh8//KN3px4pSnfx+NJER83Zjb2PFyhe680CLOkUXTImH1ISi+08MqdNSSypNe8O6l2HtS5BT9Q/wjB0c8jEgGvhddz9ACLHanIFVZy52Ljzq0ZHfbfNIPr2h1Mu3rOfCyMBGLNl9gbNJaWaIUFHuX1JKvt52hud+OEAbz5r8NjmYFvVcDC8QH6X9NbaGks/RTWv+Cp4GUQthyWBISyp74PcBY5u8ZgKB6K45kVJGA03NFJMCjOz6f9yxsuLX/V+WafmX+rXEwdaaf/16hNw8dUKeogBk5Wjzvn+44QSP+nmy9Olu1C5pTK64SLC2g/rtSr9BK2vo/28YMh/i92tJpQytDvcLYxNKtpSy8PSAVXevVAIt67Sjk20twjPOk3u79Ec1dVzsmRnalj1nbzBXjfOlKFxOyWTEvN0F875/PrIDDrbWJS8Ytx88/cGmHINB+g2HQXPgylE4vqrs66nkjE0ox4QQowFrIUQLIcQXwC4zxqUAI33HEm9jw7bt/y7T8kM7NmBwgBf/3XyKyPM3TBydotw/9p27waNf7ODk5VS+GtORVwa0wqrwmVxFyc2GhIOl6z8xpG0Y1G4J2z6usrUUYxPKi0Bb4A6wFLgF/MNcQSmavn7jaIQdc+K3kHf7WqmXF0LwXlh7Grk7MW3pQZLTq36noKLok1KyaOc5Rs/fg4uDDasmBzOwNFP1Xo2BnAzD15+UhpU19HwVrh6Dk+vKv75KyNizvNKllG9IKbtIKTvr/s80d3DVna2VLZP9n+OUrTUbNr1SpnXUsLfhi1EdSUq7wz9XHFbDsijVRkZWLq8sP8TMNTH0blWXVVNK6HwvSkkXNJZW2yHg3gy2fVQlh2gx9iyvlkKIeUKICCHEH/k3cwenwEP+E2lp5cSca/vIvnm+TOto7+3Kaw+1JiLmCj/sURc8KlXfpRvpDP1qF79Gx/Ny/5bMG9uJmg62pV9R3H5wrgNuBq5PKS1rG+j5f3D5CJyqeoNJGtvk9TNwEHgTeFXvppiZlbBiapdXuWRrw6+bXirzeib2aEKfVnV4d91xYhJumTBCRalc/jqdxGNf7uDSzXQWPtWFqX1bGNdfUpS4SO10YVHG5YvSfph21X0VrKUYm1BypJRfSSn3SSn359/MGplSoGeroQTY1uKb1JNkXj5cpnUIIZg9zB83R1teXHqA9Cw105xStUgpmbs1lqcW7qOeiwNrpvSgT+tyzFKecROun4YGnUwXJIC1LTzwitbZH7vZtOu2MGMTyhohxAtCCE8hhHv+zayRKQWEEEzr/jZXbaxZuuX/yrwejxr2fDYygLPXbjNz9TETRqgolpV2J4cXfjzArN9P8nB7T36d3B2f2s7lW2m87pi5tBc0GsNvJLg2gq0fVqlairEJ5Sm0Jq5d/D2OV5S5glLu1dmnL8EOnnx7J47U89vLvJ7uzWozpU9zlkfFsSq6dINPKkpldCYpjcFzdhIRc4U3H2nDF6M64GRnU/KCJYnbDwjw6lD+dRVmYwcPvKRdhX/2T9Ov30KMPcurSRE3daV8BZva8wNSrK1ZtPVf5Tqqmda3BZ0b1+KNX49y4Xr1nLdBqRo2xVxh8Jc7uXE7iyUTA5n0QFOEqfo74iKhbhtwqGma9RUWMAZqNoCtVacvpdiEIoT4p97/wwo994G5glKK5uvZmQEuzVgib3KtHFfb2lhb8dnIAKwETF16kKycqnmRlVJ15eZJPo04ydPfR9GkjjNrXuxB92bFDC1fWlJqtQdT95/os7HXhru/tAfO/2W+7VSgkmooI/X+f73Qcw+ZOBbFCFN6f0SWsOLb3e+W62pb71pOzHrcj0NxKcyOOGnCCBXFvFKuX+abuR/zxR+nGNbJm+XPBtHAzdG0G7lxVuuUN0f/ib4OY6FGfdg2y7zbqSAlJRRh4P+i7isVoIl7KwZ5+BNufYeEg9+Va10PtfPkiW6NmLf9LFtPXjVRhIpiPsd2ruPOF0G8cO19vut+nVmP+xk3HldpxeWPMGyiCxoNsXWAHv/QaihVYDKukhKKNPB/UfeVCvJ8748QCL468D9trKFyePMRX1rXd+GV5Ye4eksNfqBUTtlZd9gzfxptIsZwRziQa1eT3tk7TddfUlhcJNjVgDqtzbN+fR2fAue6sP3+r6WUlFD8hRC3hBCpgJ/u//z77SsgPqUI9V0aMMLzAVbb5nF292flWpeDrTVfju7A7awcXloeTZ4a6l6pZBLOHefsrJ50i19EVK2BuL+8G+u2g+DkesjOMM9G46O0s7uszFD7KczOCYKnwtmtcHGv+bdnRsUmFCmltZSyppTSRUppo/s//34ZxjHQCCGGCSGOCSHyhBAG65RCiIVCiKtCiKOFHncXQmwSQpzW/a1V1ljuV5N6vosDVnwZ8x1kpZdrXc3ruvBOaFt2xl7nq21nTBShopRf1JpvqLmoD545F4nq8imB/1iKs4sbtBsCWWkQu8X0G83O0IZGMXf/ib7OE8DJ476vpRh7HYqpHQWGoM1RX5xFFN35Px3YIqVsAWzR3a9W3B09eNLnETbZW3Ns+3vlXt/wzg151M+TTzedYv+FmyaIUFHKLu3WTSL/O5zO+/9JnF0T0sZtpfMjE/8u4NMTHN3h2ErTbzzxEOTlmL//RJ+dM3R/UbtyPu7+HYTEIglFSnlcSlniqUVSyu1AURN5DALy57RfDAw2YXj3jae6v4Eb1nx+ZiWkl2++EyEEHwxpj5ebA1OXHiQlo3x9M4pSVqcPbif5v0F0TI5gd8NJNP/nNrx8Wt1dyNoGfEPh5O/lrqHfI79D3hRzoJRGl0ngWOu+rqVYqoZSXvWklIm6/y8D9QwVFEI8I4SIEkJEJSVVrfmca9jVYFKrUexysCXyjzfKvb6aDrZ8MaojV25lMv0XNdS9UrHycnPZ8/1b+Pw2GBuZzcmBywia+Ak2tnZFL9A2DLJvQ+wm0wYSFwlujcDF4M+Kedi7QNBkbRTihOiK3baJmC2hCCE2CyGOFnEbZMrtSO1Xz+Avn5Rynm4Ol8516tQx5aYrhRGdp1FX2PFZwp/I5Lhyry+goRuvhrRiw9HL/LD3ogkiVJSSXUu4wLFZfel29nOO1AjGceoefLuVcKlb4x7a0PLHfjVtMPH7K752ki/wGXBwhe0fm2yVd24n8c3K4WSWYZK+0jJbQpFS9pNStiviZooJla8IITwBdH+r7UUUDjYOPO/3DIftbdm6+Z8lL2CEpx9oSq+WdZi5+hhrDyeYZJ2KYkj0lmVYz+tB88xj7G0/kw6vrMLV3YiDP2sbaBMKpzZClomGEEq9DCmXKrZDXp+DK3R7AU6s1U4MKKdzR8MZvawPX6YeZ8ehb00QYPHu1yav1WgDVqL7a4okdd8a5DeBRtZOfH7zALlJJ8q9PisrwdwxHenYyI1py6JVUlHMIjPjNnvnTCTgr2e5Ye3B1VEb6Tr0JYRVKX6W2oZBdrqWVEyhoi5oLE7XZ8G+ZvlqKVm3WfPLaEZE/pskK8Fc/5fo1/0108VogEUSihAiTAgRBwQB64QQG3WPewkh1uuVWwrsBloJIeKEEPmneXwI9BdCnAb66e5XW7ZWtkzp9DKxdras31T24e31OdvbsGh8YEFSWXc4seSFFMVI52IiSfi4O12TVrCn7gga/N9OGrfuWPoVNe4ONeqZrtkrLhKsbKG+n2nWVxaOtbSkErMKrsSUevH0c9t4c1EQ/0o7gq99bX4OW8MDARPMEOi9LHWW169SSm8ppb2Usp6UMkT3eIKU8mG9cqOklJ5SSltd+W91j1+XUvaVUrbQNa2V7xSnKiCk9TBa27oxNz2W7EumuTjK2d6G78YH0qGhG1OXHVRJRSm3O5np7P72FRqEh+CWd4NDPefT7YV5ODiWce4SK2vwHQSnI+BOWvkDjN8P9dtrQ6JYUrcXtCv1/5pt/DLZmZxaN5VRm59ltZ3kucYPs2DkFuq5+ZgtzMLu1yYvpRArYcWL3d4gztaWlX+Y7rKcGvY2LJrwd1JZf0QlFaVsTkRuJnFWIEGXFnDY9UHE5H34Pzi8/CtuGwY5meWfoz0vF+IPWK7/RJ+TOwQ+DUdXQtKpEovLuP2sWBjM6KtbuGXvzLw+nzO590fYWJlgXphSUAmlCnmgSQgdHevzTc5lMkzVpszfSSWgoRsvLj3IBpVUlFJIS01m95xJtFz7OA55GRzutYDOL6+gVh1P02ygYTdw8Sx/s9fV49ppyJbsP9EXNAVsHYuvpeRkkbblHV5bNZx3HLLo6N6an4dtpFvjPhUXpx6VUKoQIQRTg/9Nko0NP21/y6ST9tSwt2HR+C4FSeX3oyqpKCWL/nMFqZ90puvVFUTVHYrLy1H49RlW8oKlYWUFvoPh9CbIvFX29cRFan8rS0Jxrq0NyXLkZ7hexJBIV45x7NteDD+3lIgaTkxr/yxfh/5MbUcTzgtTSiqhVDGdGgTRw6UpC63SuHV4mUnX7eJgy6LxXfDzdmXKTwf5/ehlk65fqTquJyWy79NhBGybSLaVPbGPriBw8rc41zTTsHttwyD3DpzcUPZ1xEdp42nVamK6uMqr+1SwtoO/Pvn7sdwc5PZP+PGngTxhn0qWc22+G/g9kzpOwUpY9iddJZQqaGrPD7hlbc2ivR9Cbo5J1+3iYMviCYG6pHJAJRXlLjIvj72r5yHmBNIhZQt7G06i/j+jaNmln3k37N1Fm063PM1ecVHaBY3mGhK/LFzqQafxcGgZ3DgH12JJ+W4A/zg6lw/dXenhFcyKsLV0qGuGee/LQCWUKqhN7bY85O7HD7Y5XNs31+Trz08q7VVSUfQkXIgletZDdD3wKtdt6pMw4ne6TvwEOwcTz6ZYlPxmrzNbICO59MtnpkDSycrT3KUveBpY2cDP44he2Jth4grba9Tgn51f5fP+X+Pm4GbpCAuohFJFTen5PlnCii8OzoFbpr8wMT+ptGugJZWNx1RSqa5yc3PZuWwWNRf2oHXGQSJbvUKz6btp7BtYsYG0GwK5WWVr9oo/AMjKmVBqepLXYSzfpp9hXL1aWLs24IeHf2Js2yfNN8FYGamEUkU1dvVhbLPBrHS2Y+eqSSbtoM9X08GW7ydqSWXyjweIUEml2jlzIprjH/Yk+MT7XHRsza0Jf9Fl1AysbCr2dFUAGnQC14ZlG9I+XneFvFcZLq40s6T0JJ63TeEz91r0bTyA5aG/0LZ2W0uHVSSVUKqwKd3fpKldLWZknePWgcUlL1AGdyWVnw6wKeaKWbajVC63MrNZt+QTvJf2o1H2OQ52fJ82//yDeo0rYMpcQ4SAtoPhzB+QUco5feKioHYrcKw8zUcAf178kyGrh3Ag6RAzgmYwu9dsXOxcLB2WQSqhVGH21va83/dLrlvb8NG+/2gD35lBflLx9XLlhR/3s1kllSorKyePRTvP0XvWnwTEzuGKYzPynt9Lh9AppRuDy1zaDtEmxzqxzvhlpNQSSmW4oFEnIyeDd3e/y9Q/p+Lp7En4Y+EMazms0jVxFVYJPgGKObWr68eE5kNZ7WTHn6snmqXpC3RJZUIgvp41eV4llSpHSsn6I4kM+O82Zq6JoXedVBqI6zTq+zRu9RpaOry/eXUAt8baFebGunke0q+BdyezhVUaJ26cYOTakSw/tZxxbcfxw8M/0NS1qaXDMopKKNXAc0H/ooWdO//OPEfywe/Nth1XR1u+n9gVX8+aPPvDfj6NOEl2bp7ZtqdUjKjzNxj61S5e+PEA9jbWfDe+C5900jUpNelt0djuIYR2TcrZrcbPYhqvm3LXwjWUPJnH4mOLGbVuFGlZaczrP49XOr+CnbWBCcYqIZVQqgE7azs+6D+XZGtrPtj3H0gz3/Qxro62/DCpK2EdGvD5H7EMmbuL2KupZtueYj5nktJ4dkkUj3+9m7ibGXw0tD3rpz1An1Z1Eee2QU1v8Ghm6TDv1TYMZC4cX2Nc+bhIsHWCOm3MG1cxrqZf5blNzzE7ajY9G/Tkl9BfCPIKslg8ZaUSSjXRunZbnl3KNe8AACAASURBVGk5gg2OtmxaPcFsTV+gnVI8e5g/Xz/RifjkDB75fAff7TxHXp6aUvh+cC3tDm/9dpQB/93OjtPXeKV/S7a+2psRXRphbSW0QRTP/wVNe1WuiwDzefqDe1PjL3KMi9LO7rK2wJlpaB3vQ1cP5eDVg8wImsFnfT6rVNeWlIZKKNXIpG6v4Wtfm3czz3I9eonZt/dQu/r8/o8H6NG8Nu+siWHswr0kJGeYfbtK2WRk5fLFltP0mvUnP+27yOjARmx9tQ8v9m2Bk53ej+3lw9pZVE16WS7Y4uQ3e53bDiVNe5tzR3s9Fug/uV873oujEko1Ymtly3v9vyLNypr39v0HmWr+mZPrujiw4KnO/GdIew5eTCbks+38djAeacYaklI6uXmS8MiL9J79J59sOkVw89pEvNSTdwe3o46L/b0LnN2m/W1aSRMK6DV7rS6+XOJh7WLICu4/OX79OCPWjrgvO96LoxJKNdPCozUvtBrNZgcbNqyZWPICJiCEYFRgIzZMe4CW9Vz4R3g0U346yM3bWRWyfaVoUkq2HL/Cw//7i9d+OYKXmyM/PxfEvCc706xODcMLntsGdVqDS/2KC7a06rUDj+YlN3vlX9DYoGKukM/veB+9fjS3s27flx3vxVEJpRoa1/VV/Oxr837mGZIOmr/pK19jD2eWPxvEPx9qRUTMZUI+287Wk+avJSl3y8zO5ae9F+n/3+1MXBxFZk4uc8d0ZOXz3eni4178wjl34MLuytvclU8I7ZqU8zuKPwklLlI7uaCmieZmKUZV6Xgvjkoo1ZCNlQ3vDZjPHStr3on8DzKthHZmE7K2ErzQuzm/TQ7GzcmWcd9F8uZvR0jPMu2oyMq9rt7KZPbGkwT9Zwv/+vUI9jZWfDrcn00v9eLh9p7Gtd1f2gc5GdC0t7nDLb+2YSDztLnZDYmLMnv/iZSS9WfXE7YqrEp0vBfHMqc1KBbXxL05U9uM5eMTS1i1ZgKDR5XQ1mxibb1cWT2lB59EnGTBjnPsjL3Op8P96dDITPNlVGNH41NYuOMcaw4nkJMn6demHhN7NKFrE/fSdwCf2wbCCnz+v707j6uqzB84/vly2RdxQURQARE3REupUNNMyy1TtDStMa3MbKzRaaym/DUtVjNlOVOTZdNomqMtlqbmQq5ZSi5pKmigAm6AuSKCKMvz++NcDAkE5FwuF57363Vf93DO4Zzvw/blPM85z7e7bYI1k387YzqVhK+NcrolXTgJ5w6Xvs0kZ3LP8OqPr7Lm8Bo6+nXk1VtfJdS3BtVbMZlOKHXYH26ewrqUWN64eIjo3QsI6PRAtZ7f3cXC1Lva07ttE6Ys2s29s+KY2CuMJ/uE42LRF89VUVBojI/M/iGFrSln8HS18MAtwYztFkKIn9f1Hzh5ozEJo7uvabHajIgxA/HGfxjTDpUc87Hx+Mn6I+t5Oe5lzl8+z6TOkxgbMbbaa7xXN/1bW4c5iROv9v+IAnHixa2vobJP2yWOrmGNWDW5BzE3GA9DDn1/M2v3naBAP7dSadmX8pm7OYXeb29k/PyfOHb2Is8PbEvcc314aXBE1ZJJbqYxzXtNHz8prn0MoErv9jq23agz0rSTqac8f/k8U3+YyqQNk/D39Oezuz5jXOS4Wp9MQF+h1HnN67fkz+3G8Pov8/hy+cMMH3mN/mYbqufuwtsjOnFne39eWraPcZ/soEVDT0ZHBzMiqjm+ni52ictRpJ27yLwtqSzcdoSs3HxubFGfp/u1oX9EAM5mXe2lbjZuxa3JtwuX5N8W/Nsbd3vd8tjV247tMO4Gc/U07XRbjm/hhS0vcPriaR7r+BiPdXwMF0vd+dnVCUXjvpufYl3Kat66eJBuuxcQVM1dX8X179CUPu2aEJuQwbwtqby2cj8z1iQRc2MQY7uF0Cag5k7dXd0uXi5g0/7jFHw3nRcybuUcPvTvEMAjt4bS2RZjUSnfgbMHNKvmwllVFTEUNrxmFJqrF2isKywwrrY63WfKKXLycnh7x9t8kfQFob6hvHP7O3Tw62DKsR2JTigaTuLEK/1nM+zrQbyw7XX+G94fJ89GdovHxeLEoI6BDOoYSEJaJp9sOczincf4dNsRols2ZGy3EO5o18S8/7wdyLmcy6zb/yuxCRlsOnCS2wvi+MD1E7xD3QgbPo2g+jYst5v8HbSIBhd3253DFooSyr6lEP24se5UElzOMuWBxh0ZO3hh8wscv3CcMe3H8MSNT+Du7GBfI5PohKIBEFg/mKfbP8JL+2fz2fJHuP++r+0dEmDcDfbGvR3564C2fL7jKPPjDjPhfzsJ9HXnD12DGXlTCxp61Y6HwsqSnnmRbxNOEJuQwdaUMxQUKpr6unNfVHMmZn4GydAzdwP42vCPWFYGnNxv2n/01covHJpEGlPaFyWUY9uN9yoMyOfm5/LvXf9m/r75BHkH8XH/j+nSpGZMgW8vOqFoVwy7aRJrklfwr5wD3Lp7IS063W/vkK5o4OXKhNvCeLRHS9buP8G8Lam8uTqRf609wJBOgYzpFkKHIAe486iCDv56gdiEDL5NyGD3sUwAWvl7M+G2lvSLCCAyyBcpLIC3vgP3+nD6IKTtgiAblbBN2WS8t+xlm+PbWkQMrJ8G545C/ebG+Il7/eueLTn+VDzP//A8KZkp3NfmPp7q8hSeLuaNxTgqnVC0K0SElwbOZtjiu/i/7a/zcXh/LJ7lPDldzSxOQr+IAPpFBJB0Iot5W1JZvPM4i346RlRwA8Z0C6FXm8b4uDvWQKhSij3HMolNyCA2IYNDJ7MB6NS8Ps/0b0O/iIDfT4dydKsxSePd78LKKbB3ke0SSrI1cQV0tM3xbS1iqJFQ9i2Fbk9YH2iMqvRsyXkFeczaM4vZe2fj5+HHh3d8SLegbjYK2vHohKJdJaBeC/4a8ShT933E/GUPMva+5TVzinKgdRMfXhsayTP927Jox1Hm/3iYJz/dBUConxcRgfXoEORLZJAvEYH1qO9ZM7rG8goKST2VTdKJCySeyOLAiSx2HTlHxvlcLE5CdMuGjOkWwp3tm9DU9xpjIokrweJqPGtxcA3EfwV9XwUni7kBK2U8fxLa0/xjV5dGYcbtwQmLocsYo/uu/eBKHSL+VDwvbnmRpLNJDA4bzLM3P0s913o2Ctgx6YSi/c7dUU+yPmU1/8pJJXT1ZG4b8I69Q7omXw8XxvVoycPdQ4lLPs2uI2fZezyTXUfO8c2e9Cv7NWvgQYdAXyKb+V5JNn7epcyma5KCQsXRMzkknsgiKSOLpF8vkJSRRfKpC+QVGM/YOAmENPKiS3ADerf1p087/4onvqTVENID3HwgcoRRUCrlOwjrbW5DziTD+WPQ48/mHre6RQyFtS8ZVymqsMLjJzl5Obz383ss2L+ARu6NePf2d7m9xe22jdVB6YSi/Y6I8HrMIh76vA9PZ6xl9pa3iOw2xd5hlcvJSejeyo/urfyurDubfZn4tEzij58nPi2ThOOZrE7IuLI9oJ47HYJ86RBUjw6BvqVO117a45WlTb9/NucySScuWJNHFgdOXOBS/m8lkJs18KBNEx96t/OndRNvWjfxIayxN+4u1/Ff/6kDxrjJLROMj8P7gpsv7PnC/ISSvNF4r2nlfiurfYyRUNa/Znxcge7BH47/wLS4aaRlpzGi9Qgmd5mMj6u+db0sOqFopfJ09WJmzBL+sHggE3+Zw//qNadFB8e7w6eBlys9whvTI7zxlXWZF/PYl3aehLRM4o9nsvd4Jut+OWFaEcuAeu60DvBhdHQjWgf40LqJD+H+3ni5mfjrlrjSeG8zwHh3cTe6cBKWwF0zTH1Yj+SNNbfcb2U0DDUqM6btNKa2v8b44JncM7y5/U1WJK8g1DeUef3n0bmJjcanahGdULQy+fk0ZdbATxi94gEmbH2Z+d6BNArpYe+wqszXw4WuYY3oGvbbszbZl/LZn36e87l5v9tfKGMMqcRqHzdnwpv44OtRDTcEJK4yBsh9m/22ruMI2DUfklZBh3vMOU9hoVHut83AGjuWVikRQ42EUsbzJ0oplicvZ/r26VzIu8CEThN4NPLRWlOvxNZ0QtGuKaRxJO/1+ifjNk5i4toJzIlZgqdfa3uHZTovN2eiyqsFUlNknzLu8Or5zNXrg28Fn0DYs8i8hFLTy/1WVsRQWP+qcYNBCUezjjItbhpx6XF0atyJl7q+RKsGrewQpOOyy6PGIjJcRBJEpFBEyhwZE5E5IvKriMSXWD9dRH4RkT0iskREal9hgRqkU0gfpnd5lv3OwpSlw8nPPmnvkOq2A98ag8pF3V1FnJwg8h7jjq+cM+acq2j8xJHm77qW+s3hz/HQceSVVfmF+cyNn8uwpcPYc2oPz9/yPJ8M+EQnk+tgr7kr4oFhwKZy9psL9C9l/Rqgg1KqI5AEPGdqdNrv9IoczdTwUXzvXMi0RXej8nLtHVLdlbjSuBIpbZbcyBFQmF9+6duKcoRyv5Xl7W8kX2Df6X3cv+J+3v7pbaKbRvP1kK8Z1XYUTlL3pvUxg12+akqp/UqpxArstwn43b9aSqlvlVJFJf5+BJqV3Ecz34juUxnfpAeLJZsPFg0x+te16pWXCwfXQ5v+pY9pBEQaCWDvoqqfq6jcb8teVT9WDXMx/yIzdszg/hX382vOr7x121u82/tdArxqUeK0g9qQhh8GVpW1UUTGi8gOEdlx8qTuqqmqJ/rNZIhPOB/kpfHVsjH2DqfuSf0e8rKNQfLSiEDkcDgSB+eOVO1cReV+a8v4iVVcWhzDlg7j44SPGdJqCEtjltIvpF/lq1dqv2OzhCIia0UkvpTXEBPPMRXIBxaUtY9S6j9KqSilVFTjxo3L2k2rIBHhxSGf0d2lEdPO7WLTOt3bWK0SV4KLl/FAY1kihxvvVb1KcaRyvxWQfiGdv2z8C+PXjMfiZGFOvzm83O1lfN1qzxxw9mazu7yUUnfY6tgAIjIWGAT0UaU9ZabZjIvFlRn3LOehz/sw5cgyZm9vTuRNf7R3WLWfUpC4Glr1vvYU8g2CoXm0cbfXrU9d/+2+jlTu9xpy83OZmzCX2Xtno1D88YY/8lDEQ3V2inlbcsguLxHpDzwDDFZK5dg7nrrI082HmUO+oqE4M3HvTI4kLrd3SLVf+m7ISiu7u6u4jsON+apOxJe/b2lyzzteud8SlFKsO7KOmKUxzPx5Jj2a9WBZzDIe7/S4TiY2Yq/bhoeKyDGgK7BCRGKt6wNFZGWx/T4F4oA2InJMRB6xbnoP8AHWiMjPIjKrmpugAX6+zZnVfy5KnJjww185fXyHvUOq3RJXGV1Q4X3L37f9UKNe+p4vru9chx2w3G8xyeeSmbB2ApM3TMbD2YP/9v0vM3rNINA70N6h1WpSl3qLoqKi1I4d+o+e2XYfWsW4758mrECYc88KPOu3sHdItdOsHuDqBQ+vrtj+C++DjL0wOf7KbbIVtupZ+GkePJvqUBUasy5nMWv3LBbuX4iHswcTb5zIiDYjcHFyrHIGNY2I/KSUKnc2TYfs8tJqlk5hA3iz02T2WxRTFseQn5tp75Bqn8xjxlPrJR9mvJbI4XD+uHG1UVkOVu63UBXy9cGvuXvJ3czfN58hrYbwzbBveKDdAzqZVCOdUDRT3H7jOKaGDuN7Sx7TvhiEyv/9nFhaFSRa74yvyPhJkTYDwdUb9lay2yvrhDH+0rJX5T7PTuJPxTN65Whe2PwCQT5BfHrXp7zU7SUaujvIVDq1iE4ommlG3PYK4/1uZrE6x8yvhqIKCuwdUu2RuMqYIdcvvOKf4+oJbQdBwlLjgciKSvnOeK/h4yenLp7ib5v/xqgVo0jLTuO1W19j/oD5RPhF2Du0OksnFM1UTwz8LzGeIXyYe5hpC3uTZ9acUnVZ7nmjpntluruKdBwOlzKN+b8qqoaX+80ryGP+vvncveRulicv56GIh1ges5zBYYP1lCl2pr/6mqlEhJeGLWFcoy4sKjzDo5/15kzGHnuH5dgOrYfCPGh9HQkltBd4Na54t1cNLvdbUFjA8kPLGfz1YN7c/iadGndi8eDFPBX1FN6u3vYOT0MnFM0GLBZnJg2ayxttHiTeKZ9RK0eRGP+5vcNyXImrwKMBNL+l8p9rcTamsk+KhYvnyt+/qNxvDeruUkqx4cgG7l1+L8//8Dzert683+d9PrjjA0J9Q+0dnlaMTiiazQyMfpq5t04nX5wYvf0V1m34P3uH5HgK8uFALIT3M5LD9YgcAQWXYf+y8vetYeV+t2dsZ/Sq0fxpw5/IK8xjes/pfD7oc3o066Hn3qqBdELRbKpDqwF8NmQJ4U6eTD6ylFlf3qPvAKuMY9uMAlfXM35SJKgzNGxZsYcca0i534TTCTy25jEejn2Y9Ox0Xuz6IkuGLKF/aH89TlKD6e+MZnONG7ZizqiN3O0exMzsJKYs6ElOVrq9w3IMiSvB4gqt+lz/MUSMq5TUH+B8Wtn7FZX7bXmb3cr9Jmcm89TGpxj5zUj2nd7HlKgprBi6gntb36ufJ3EAOqFo1cLN1YvXRqxiSkAv1qosxizqR/rROHuHVfMlrjJmFnbzqdpxOo4AFOz9sux9isr9tuxVtXNdh/QL6fxt898YunQom49vZkKnCawatooxEWP0vFsORCcUrdqICGP6/Zv3Ov6JY1LIyDXj2LnzI3uHVXOdOgCnD1atu6tIozAI7Hztu72ujJ/8vt66rZzJPcMb297griV38U3yN9zf9n5W3bOKiTdM1HduOSCdULRq16PzeBb0mYWPWHhkzzssjp1k3K6qXS3ROk+qGQkFjKuUjL3w6y+lb6/Gcr9Zl7OY+fNMBnw1gIW/LGRQy0GsGLqCZ29+Vj/h7sB0QtHsomWLW1lw7ypucvLhxYz1/OPzgeRf1pUIrpK4yni40NekCtcRw4zZiku7Sqmmcr8Z2RlM3z6dO7+8k1m7Z9E9qDtLhizhle6v0NS7qU3PrdmeTiia3fj6BPH+/d8x2jucBZeO8fjCnmSeTbF3WDVD9ik4urVyc3eVx6cJtLzdqORY8orQxuV+E88k8tz3zzHgqwEs2L+Ans168sWgL5jRawYtfVva5Jxa9dMJRbMrZ2dXnrlnMa+0GMxP5DJqyWAOHarENCG11YFvQRWa191VpOMIo9b80a1Xr7dBuV+lFFuOb2H8t+O5d/m9rDuyjpFtR7Jy2Ere7Pkm7Rq1M+1cWs1gsxLAmlYZQ29/jdD4SCZvf5UHNj3FH3+JZlSff+LiXsW7mxxV4krwCYSmncw9btu7wNnDeCalRfRv600s95tXmMfqlNXMS5hH4tlE/Dz8mNR5EsNbD9f122s5fYWi1Rg3dBjJZwP+R0eLF9NPbSVmYTfWbppW92YtzsuFg+uhTX/znwdx84G2AyFhCRRYHzA1qdzvhcsXmJcwjwFfDeD5H54nvzCfV7q9Quw9sYyLHKeTSR2gE4pWowQE3MCHo3/k/YgJuIgTf075grGfRJGwd6G9Q6s+qT9AXra54yfFRY6Ai2fg4Drj4yvlfntd1+FOZJ9gxk8zuPPLO3lrx1u0qNeCmX1msnjIYoaGD8XV4mpa6FrNpru8tBpHROgRNZGuNzzK4u+mMvPIKkbu/DuDfv6ASb2mE9A8uvyDOLLEleDiZTzQaAut+oBHQ+Nurzb9je4uZw9ofnOlDrP/9H7+t/9/rExZSaEqpG9wX8ZGjNX1SOownVC0GsvZ2ZURfaYzMPtpZq+ZxCfn9rJm7Tge9A7jkTv/jVdtrF2vlHG7cKvetiu/a3GBiKHw80K4lPVbuV9nt3I/9dTFU6xIXsGyQ8tIOpuEh7MHI1qPYHT70TTzMen2Zs1h6YSi1XjeXv5MivmU4Sf28s76p/goJ5nFiwcwMeBWhvZ5C+eqTktSk6Tvhqw0aPOCbc/TcQTsmA3bZxvlfjuNLHPXSwWX2HB0A8sOLmNL2hYKVAGRfpFMvWUqA0IH6LER7QpRdegJ5aioKLVjxw57h6FV0d4D3zA9bhq7VA6t8hVT2jxA927PglMtGBLc8HfY9CZMOQBefrY7j1LwTkfjeZe8HBi/EQJvLLZZsfvkbpYdWsbq1NVkXc7C39Ofu1vezeBWg/WzI3WMiPyklIoqbz99haI5nMjwQcxrdRdrt7/LjIQ5TDi0kO5Ji5hy87O06nCfvcOrmsSVRiEtWyYTsM5APBy+f/uqcr/pF9JZnryc5YeWk3o+FXeLO32C+zA4bDC3BNyCpYZVcdRqFn2Fojm0y3m5fLrxOT48toZsgXssDRnTZTLBbWMc74ol8xj8MwLufAW6T7L9+X79Bd6/hZy2d7H2ppEsO7iMbRnbUCi6NOnCkLAh3Bl8p56kUavwFYpOKFqtcO5COrPWTOLzzH3ki9A2X9Gvfjv6RT5M83AbPM9hC9s+gpVT4Ikd4Bdu01OduniKH9N/ZPPOj1iXe5yLBZdo5t2MwWGDGRQ2iOY+zW16fs2x6IRSCp1Qar8TZ5P5duf7rD6+iT3qIgDt86F/w0j63vAoQSG9am5ymT8Mzh2GJ38y/dC5+bnsPLGTuPQ4tqRtIelsEgD13erTu0VvBocNprN/Z11WVyuVTiil0Amlbkk79Qvf7nyf2PQtxHMJgI4FQl+/G+l34+M163mW3PPwZkuIngB9X63y4QpVIUlnk9iStoW4tDh2ntjJ5cLLuDi50Nm/M9GB0XQN7Eq7hu10SV2tXDqhlEInlLrraMZuvt31AbEntrFfjClHbiiw0M8/ir5dJuLf9MZyjmBjCV/DojEwduV1T9B4IvvElSuQrelbOZN7BoBW9VvRNbAr3QK70dm/M54unmZGrtUBOqGUQicUDeDw8W3E7ppF7MmdJDkVIEpxI270C4gmunUMzQJvwdW9XvUGtWQCJK2GKQfBcu2bL5VSnM49TUpmCqnnUzl49iBb07dyKPMQAI3cG9E1sCtdA7sS3TQaf0//6miBVovphFIKnVC0kpIPbyL254+IPbOHQ06FADgpRWAhBFs8CHbzI9inOSGN2tKiSWeaBkZhcTP5rqeCfHgrHML7wrAPr6y+VHCJw+cPk5qZSur51Kves/KyruznbnGnc5POdAvsRnTTaFo3aK3HQjRT6YRSCp1QtGs5lLyWfUe+4/C5QxzJTiM1L5PDKo8cp9/+OLsoRYsCCLZ4EuzuR3C9YIIbtSWkaRSN6odRkJdN4eUc8vOzKcjLoeByDvl5OcZy/kUK8i5eec/Pz6WgIJeCnNPkHFrH4VvGkeLlS8r5FFIzU0m7kIbit9/PJp5NCPENIaReCKG+oVfeA7wC9DiIZlM6oZRCJxStspRSnDp7iMNp2zh8Mp7D5w5xOCeDw3nnOUIeeSZfCXg4exBcL5jQeqFXkkfRux770OxFPymvaSYQERo3bEXjhq0o+dtUUFhAxtkDHE7bTurJvZy9eBpnixsWiysWixsWZ+Pd2dkNJ4s7zs5uWJw9sDi7Y3HxwNnihpOTBWcnZ9wsbgTXC8bf019fbWgOSycUTbtOFicLQY3aEtSoLd3sHYym1QD6XyFN0zTNFHZJKCIyXEQSRKRQRMrslxOROSLyq4jEl7H9LyKiRMTGM+lpmqZp5bHXFUo8MAzYVM5+c4H+pW0QkeZAX+CIqZFpmqZp18UuCUUptV8plViB/TYBZ8rY/E/gGaDu3KamaZpWgznkoLyIDAGOK6V2l/cAl4iMB8ZbP7wgIuUmsjL4Aaeu83MdlW5z3aDbXDdUpc3BFdnJZglFRNYCAaVsmqqUWlqF43oCz2N0d5VLKfUf4D/Xe75i591RkfuwaxPd5rpBt7luqI422yyhKKXusNGhw4BQoOjqpBmwU0RuVkpl2OicmqZpWjkcrstLKbUXuDLbnYikAlFKqbp2+appmlaj2Ou24aEicgzoCqwQkVjr+kARWVlsv0+BOKCNiBwTkUfsEa9VlbvNHJBuc92g21w32LzNdWouL03TNM129JPymqZpmil0QtE0TdNMoRNKCSLSX0QSReSgiPy1lO1jReSkiPxsfY2zR5xmKq/N1n1GiMg+65Q5C6s7RrNV4Pv8z2Lf4yQROWePOM1UgTa3EJENIrJLRPaIyEB7xGmWCrQ3WETWWdu6UUSa2SNOM1VguioRkXetX5M9ItLZ1ACUUvplfQEW4BDQEnAFdgPtS+wzFnjP3rFWc5vDgV1AA+vH/vaO29ZtLrH/k8Ace8ddDd/n/wCPW5fbA6n2jtvG7V0EjLEu9wbm2ztuE9rdE+gMxJexfSCwChAgGthq5vn1FcrVbgYOKqWSlVKXgc+AIXaOydYq0uZHgZlKqbMASqlfqzlGs1X2+zwK+LRaIrOdirRZAfWsy75AWjXGZ7aKtLc9sN66vKGU7Q5HXXu6KjDa+Iky/AjUF5GmZp1fJ5SrBQFHi318zLqupHusl4tfWiepdGQVaXNroLWIbBaRH0Wk1Ak7HUhFv8+ISDDGg7TrS9vuQCrS5peAP1hv6V+JcWXmqCrS3t0Yk9QCDAV8RKRRNcRmTxX+2b8eOqFU3nIgRCnVEVgDzLNzPNXBGaPbqxfGf+sfiUh9u0ZUfUYCXyqlCuwdSDUYBcxVSjXD6BqZL1Kry0dOAW4TkV3AbcBxoC58n22mNv+wXI/jQPErjmbWdVcopU4rpS5ZP/wv0KWaYrOVctuM8V/MMqVUnlIqBUjCSDCOqiJtLjISx+/ugoq1+RHgCwClVBzgjjGhoCOqyO9ymlJqmFLqRmCqdZ3D33xRjsr87FeaTihX2w6Ei0ioiLhi/DFZVnyHEv2Ng4H91RifLZTbZuBrjKsTrMXMWgPJ1RmkySrSZkSkLdAAY7YGR1eRNh8B+gCISDuMhHKyWqM0T0V+l/2KXYE9B8yp5hjtYRnwoPVur2ggUymVbtbBHW4uL1tSSuWLyBNALMZdInOUUgki8gqwQym1DPiTiAwG8jEGv8baLWAT8OGGYAAABLFJREFUVLDNsUBfEdmH0SXwtFLqtP2irpoKthmMP0KfKevtMY6sgm3+C0Z35p8xBujHOmrbK9jeXsDfRURhFPubaLeATWKdrqoX4GcdC3sRcAFQSs3CGBsbCBwEcoCHTD2/g/68aJqmaTWM7vLSNE3TTKETiqZpmmYKnVA0TdM0U+iEommapplCJxRN0zTNFDqhaA5NRC5UYJ/JIuJp4jljRKS9icfbUoXPvWB9DxSRL6+xX30R+eP1nkfTKkInFK0umAxUKqGIiOUam2MwJhY0hVKqmwnHSFNK3XuNXeoDOqFoNqUTilYriEgva02LL0XkFxFZYH0a+E9AILBBRDZY9+0rInEislNEFomIt3V9qoi8ISI7geEi8qiIbBeR3SLylYh4ikg3jBkSpltrpYSJyA3WSTP3iMgSEWlgPd5GMeqq7BCR/SJyk4gsFpEDIvJqsdgvFFt+VkT2Ws/5j1LaGWqNfW+JY4QU1cAQkQgR2WaNb4+IhAP/AMKs66aLiLcYtUB2Wo81pNhx9ovIR2LUvvlWRDys21qJyFprbDtFJMy6/mnr12mPiLxs6jdWcyz2nr9fv/SrKi/ggvW9F5CJMTeRE8Z0Kbdat6UCftZlP4ynor2sHz8L/K3Yfs8UO3ajYsuvAk9al+cC9xbbtge4zbr8CvAv6/JG4A3r8iSM6eCbAm4Y86M1KtGGAcAWwNP6ccNS2rsMeNC6PLHY54ZgrYEB/Bt4wLrsCngU325d7wzUK/Y1OYhRIyMEYxaIG6zbvgD+YF3eCgy1LrtjXPX1xaijItav+zdAT3v/XOiXfV566hWtNtmmlDoGICI/Y/xx/KHEPtEY3VWbRQSMP7jF5+r6vNhyB+tVQH3AG2Maj6uIiC9QXyn1nXXVPIzCTUWKpnHZCyQo67xJIpKMMUlf8Sls7gA+VkrlACilSqtr0R24x7o8H3ijlH3igKliVCBcrJQ6YG3rVaEDr4tIT6AQYwrzJtZtKUqpn63LPwEhIuIDBCmlllhjy7W2oy9GUtll3d8bY+LQTaXEpdVyOqFotcmlYssFlP7zLcAapdSoMo6RXWx5LhCjlNotImOxTpB5nTEVloivsIz4KuKa8yUppRaKyFbgLmCliDzG7yfzfABoDHRRSuWJSCrGVUfxmMH4Onpc43QC/F0p9WEl4tdqKT2GotUFWYCPdflHoLuItAIQES8RaV3G5/kA6SLigvEH+HfHU0plAmdFpId122jgO67PGuChojvSRKRhKftsxpi0khIxXSEiLYFkpdS7wFKgI1d/DcCoyPirNZncDgRfKzClVBZwTERirOdws8YZCzxcbBwqSET8K9RardbRCUWrC/4DrBaRDUqpkxgzRH8qInswuofalvF5L2CMG2wGfim2/jPgaRHZZR2YHoMxSL8HuAFjHKXSlFKrMbrIdli77KaUstskYKKI7KXsSnsjgHjrMTpglHw9jdHNFy8i04EFQJT1OA+WaF9ZRmPMtr0HY6wnQCn1LbAQiLMe60uuTlxaHaJnG9Y0TdNMoa9QNE3TNFPohKJpmqaZQicUTdM0zRQ6oWiapmmm0AlF0zRNM4VOKJqmaZopdELRNE3TTPH/ugbjiJpd16cAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbYAAAEWCAYAAAAKFbKeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8XNWZ8PHfM11l5CLLVbZsS7KxcbcxRXYCbEhwApiQTcBhN2FDQpJd0nY3CXmXXVKWZd99N500EhKSTQGSBQMJPQRsY8CWARsbkC25Su5Vdfp5/7h35LGsMpKm+/l+PvrYc9t55s6d+8w959xzxRiDUkopVSgc2Q5AKaWUSiVNbEoppQqKJjallFIFRRObUkqpgqKJTSmlVEHRxKaUUqqgnHOJTUS+KiK/tv8/RUTaRcRpvx4nImtEpE1EvimWX4jICRHZkN3Ih05E3i8i++z3ujDb8eSansdBrkk8ZnOFiGwTkUv7mf+8iHw8yW0tF5GGFMZ2k4isS9X2hsM+rqZnO45cIiI/FpF/TWcZrkEEsxsYB0QTJt9njLk11UFlijFmL1CaMOkW4ChQZowxIrIcuAKoNMZ0ZCPGFPlv4FZjzCPZKFxEDNAJJN40+XVjzH+lqbybgI8bY5YlTLsP+DAQSli0yRgzv5fjQA3AGHN+/P8i8lWgxhjzN0Pc1lpgZopCyynGGD2uejDGfCrdZSSd2GxXG2OeTUskNhFxGWMi6SyjH1XAm+b0XetVwO6hJLUsv4+eqoBtvc3IYJzzjTGNGSinP/9ljLk9yzHkDBFxGmOiAy+ZuwrhPaRajp17ssMYk9QfsBt4Vx/zbgLWYV0ZnAB2ASsS5o8A7gUOAC3AvwPOhHVfBL4NHIvPA76JdfW0C7gV69e+C/ggsKlH+f8IPNJHbNOAF4A24BngbuDX9rypCdu9Dwhj/aJvBz4JBLCuUNuBr9nrXAW8DpwE1gPzeuyjLwNbgKC93YnA/wJH7Pfy2YTlvwo8CPzKjm8bsCRh/mTgIXvdY8DdCfM+Brxl7++ngKpe3rvXjt0AHVhXKH3FOQt43n5f24BrErZzH/BD4Al7ey8C44Hv2OW/DSzs59gxWL/oe5v3OPDNhNf3Az+3/18NPGe/96PAb4CR/e0f+30kfm4nE97Dv/cRQ/dxkHDMrLE/k2eBH8SPGXv+RfZnfxLYDFyaMO954Bv2PmoDngbG2PN8wK/tWE8CG4Fx9ryJwKPAcaAR+ESP4yR+zD6BdfWdGP9m4Dr7/+dhHefHgQbgQz0+xx/Z+7yDHt9n4DLgjYTXzwAbE16vBa5NPB8AV2J9Z8L2/t480H7oZf9fCjQnvB7oWDzjPQDl9r5rBTbY5a5LWOe7wD57/iZgebLfwT7i/TvgsYTXO4DfJ7zeByzoeezbcT5mx7ER61yXGKcBPmVv7yTWcSfJfOftdf/BXndXP8f439nxnbDLugDrPHCSM88vA333dgNfAd60t/ULwJf4eQL/x153N3Bjj8/w33ss+0/AYawc8XcJy/a7z/r8jAZaoMcb6S+xhYFPYCWlTwP74x8K8DDwE6AEGGsffJ9MWDcCfAbrBFtk7/A3gUpgFNbJJZ6AvFhf2lkJ5b8GfKCP2F4CvmWv9w6sg/esxNbbyc+OLfHAW2jv/Avt9/lRe794E/bR61gn3CKsNsxNwL8BHmA6sBN4T8KXKgC8197eXcDL9jwn1gnr2/Z+8wHL7HkrsU5+s+x9cjuwvp/P7ozE0kucbnt7/8eO83J7P81M2C9HgcV2HM9hJemP2HH+O/CXZMvvMW+8vU8vB26094/fnleDVRXsBSqwks13ktg/Z3xuvX22fXzp48fBS1g/0jzAMqwvVfyYmYT1ZX+v/fleYb+uSDihNwEz7H37PPCf9rxPYn1Ji+34F2NVe2O/tx/a72MBVrK+POE4iZf/EeDFhNhnY52UvPZ+2Id18nJhHa9HgdkJ++AUUGfH7uuxH4qwjscx9jFxCOuHqN+e1wWU9zwfJMaXsK0+90Mv+/9S7MRGcsfiGe8B68fQg/b7n2PHnPi9/RusE6QL6wR6kNMn4a/Sx3ewn+N5ur3PHVg/SPYkxD8d60Tv6Hns23Heb3/+s+3Pqmdi+yMwEphiHwNXJvOdt9d9BhgNFPVzjP/Y3mfvtt/3aqxz8iSs7+E7B/ruJXz+W7HOIaOxfsAkJqsIp8+778T6EZL4GfZc9uv2Z/9erGaLUcnssz4/o2SSWsIbabc/0PjfJxJOJI0JyxbbO3E8VrtcMHFnA6uwT4T2unt7lPUcduKzX7+LM088PwLutP9/vn0geXuJeYq900oSpv2WoSe2HwHf6FFGQ8LBsBv4WMK8C3t5b18BfpHwpXq2x0mqy/7/xVgHtquX9/UEcHPCa4d9MFT18dn1ltgS41yO9WV3JEz7HfDVhP3y04R5nwHeSng9F/vKqJ/yW3scO+9JmP8BrAP2KHZy6mM71wKvJbF/zvjcEt5DoEcMv+x5HCQcM8UJ6/464Zj5MvA/Pbb9FPBR+//PA7cnzPt74En7/x+jx1W+PX0y1hWmP2HaXVht2PHjJF6+H+skUWW/vpPTV7jXA2t7bPsnwB0J++BXA3zP1wLXYV2VPo2VMK7Euprb0uMYGiix9bofeinzUk4nhmSOxV8lzHNi/ag+L2Haf/T8/HuUdwKrajwee6/fwQH20z5gEXADcA/Wj/XzsH5UPNrzu5cQ58yEeb1dsS1LeP0gcFsy33l73cv7iXeqvcykhGnHgOsTXv8v8PmBvnsJn/+nEl6/l9M1Qpdy9nn3QeBfEz7DxMTWRcL3GCvBXpTMPuvrb7BtbNeavtvYDsb/Y4zpFBGwGuRHY2XiA/Y0sD6UfQnrJv4frF9B/c3/JfA7Ebkd+FvgQWNMsJeYJgInzJltZHuwTiRDUQV8VEQ+kzDNY5fTW6xVwEQROZkwzYl18og7mPD/TsAnIi47xj2m97ryKuC7IvLNhGmC9atrT5LvJTHOicA+Y0wsYdoee3txhxL+39XL64EayReZvtvYHgO+DzQYY7p7s4nIOKxqpOVYJ3QH1kkJ+t8/fflvM3Ab20TguDGmM2HaPk4fM1XAB0Xk6oT5buAvCa97fqbxffM/9nbuF5GRWAnzXxLKbEtYbw+wpGdwxpg2EfkT1gn1/2L9SPxEQmwX9jjeXHa5ie+lPy9wunroBaz9/U6sH6cvDLBuT33th/4kcywmvocKrPe4r8fy3UTkn4Gb7W0boAzrqrSvOH1JtFPF91ON/f+TWPvpYnrfT73F2dtn0dc+S+Y7P9BnC0l+jwf47vUW/x7OPA/2dt5NnJ/oWI99HX/fye6zs2Siu/8+rC/FGGPMSPuvzCT0quLM3nJg1bNWJrw+IxEZY17GqtdfjtXTLfGL23M7o0SkJGHalCG8h7h9WFeKIxP+io0xv0sMr8fyu3os7zfGvDfJsqbYSa63eZ/ssd0iY8z6QbyXxDj3A5NFJPF4mIJVpZMJd2K1HUwQkVUJ0/8DK865xpgyrCql+K+j/vZPz+NpMA4Ao0WkOGFa4vG3D+uKLXHflxhj/nOgDRtjwsaYrxljZgOXYLXXfgRr/48WEX/C4v3t/98Bq0TkYqxqpXhS3Qe80CO2UmPMpxPDGCDM+An7Hfb/X8A6Yb+TvhPbcPZ3T8kci4nlHcG6OpjcY3nAupUA+BLwIazqrZFYVZnC8MT303KS20/xOPs8rw0gme98Kj+H/r57cT33+f6E172ddxPnJ2PI+yztic0YcwCrSuObIlImIg4RqRaRd/az2oPA50Rkkv3L9su9LPMrrM4C4cRf+T3K3gPUA18TEY+ILAOu7m3ZJP0U+JSIXGjf41YiIu/rcUJKtAFoE5Evi0iRiDhFZI6IXJBEWRuwTrL/aZfjE5E6e96Pga+IyPkAIjJCRD44jPf1CtavpC+JiNu+P+lqrLrttBKRd2BV33wEq83y+yIS/3Xux6r+PmVP+2LCqv3tn0NApYh4BhtPwjHzVfuYuZgzj5lfA1eLyHvsz9MnIpeKSGWvGzzzvV4mInPt++VasapZYsaYfVhVlHfZ25uHdYXR171rj2P9gv868EDC1c0fgRki8rf25+gWkQtEZNYgdsF6rK73S4ENxphtdlkXYrWz9OYQMLVHMhqqQR2LxuoR+RDW51UsIrOxjqM4P9bJ8QjgEpF/w7piG64XsKpni4wxzVi1MFditeW9lkSc52Ed88lK9Xd+IP199+L+QUQqRWQ0Vs3DAz3mx8+7y7F+xP1+MAEMZ58N9kB8zL7hMP73cJLrfQSryi7eg+YPwIR+lv8pVjLcgnWQPI51cCZ26/0frIbigW5c/TDWl/I4cAdWQhwSY0w9VrXP3VjvoxGrPaev5aNYH+gCrM4WR4GfYfUSHaisKNYXugbYi1U1dL0972Gsaqj7RaQVqxF3xRDfFsaYkF3WCjvGHwIfMca8PdRt9mJzj2PnOyJShvV53GqMaTHW/Uz3Ar8Qq976a1jtGKeAP2Ed5PGY+9w/WG2024CDInI0IYYv9YghcV6iG7GqlOK9dB/AqnXATkIrsTo3HMH6Jf1Fkvsujcc69luxrlBf4HRtwyqsdpD9WJ2t7uir2t+udn8Iq+35twnT27A6Bdxgb+cg1nHiTSK2+DY6gFeBbfZxAVZnmj3GmMN9rBY/YR0TkVeTLauP8odyLN6KVXV1EKv95hcJ854CngS2Y1WHBUiyOmuAOLdjnfjX2q9bsTo+vWj6vv3gVqzv/kGsz/132MdVEuWl9DufhD6/ewl+i3We3onVUejfE+YdxDpH7sfqUfmpIZ5PhrTP4r0Wc5qIrAB+bIypSphWhNXIuMgYsyNrwamCJyIPAG8bY+7IdiyFSEQuB35mjDmnRugQkf8LjDfGfHTAhXOMWAN2fLy3H1/2VfavjTED1mIModyk9llODqllV9u9V0Rc9mXwHVi/YhN9GuseG01qKqXs6rtqu9r8SqwrtNXZjquAzcGq0ShoInKeiMyzmzGWYlU3J1vrdU4a6j4bbK/ITIlXQz2A1VPnT1j3glkzrV8LgtUFValUG49V9VKOVcX5aWPMWe0mavhE5LvANZzZLpZ1IjIFq+mkN7ONNQzbYPmxqtImYrVLfhPIyjB3eWRI+ywvqiKVUkqpZOVkVaRSSik1VLlaFTkkYt00e7Xf7//EjBkzsh2OUkrllU2bNh01xlRkO47hKsiqyCVLlpj6+vpsh6GUUnlFRDYZY84a8SbfaFWkUkqpgqKJTSmlVEHRxKaUUqqgFGTnkZqammyHopTKY+FwmObmZgKBQLZDSQufz0dlZSVutzvboaSFdh5RSqkedu3ahd/vp7y8HJHhPgggtxhjOHbsGG1tbUybNu2Medp5RCmlClQgECjIpAYgIpSXlxfs1ShoYlNKqV4VYlKLK+T3BprYlFLqLLFQgGhXe7bDUENUUIlNRK4WkXtOnTqV7VCUUnkq2tlG9NRRwvubCB3YRSyU+Sq7yy67jKeeeuqMad/5znf49Kc/zbZt27j88suZOXMm1dXV3HHHHcRi1rNm77vvPioqKliwYEH335tv9jWWc+EqqMRmjHnMGHPLiBEDPsdTKZUDjDFEO9sIH2kmsGsrnVtfpO3lxzn1599y/JEfceJPP8PEYgNvKIU6N78AgNM/mligg9C+BsKH92Ei4YzFsGrVKu6//8yHht9///3ccMMNXHPNNdx22200NDTwxhtvsGHDBr773e92L3f99dfz+uuvd//Nnj07Y3HnioLq7q+UyjxjDCbQQbT9JLGOU0TbTxJtP0Ws/QTRjlPE2k/Z/54k2nEqYdpJYh2tEOvrgdMWT2UtJfPfmaF3A+0bn4aFK3FVVOIqn0DkxCGip44RbT+Jc2QFrpEViMOZ1hj++q//mttvv51QKITH42H37t3s37+fxsZG6urqePe73w1AcXExd999N8uXL+cLX/hCWmPKJ5rYlFL96np7Ax2vP28lrTYrOVkJ7ER30iIa6XsDDifO0hE4SkbiLBmBs3QknnFVOEqt146SEafnl8Zfj0Q8Pnb9/YW0b3gyY4nNRCN0vPpnHBdeb3WwcLo48dhPCOx8AxMOQSwCCOL2IE4X1mMhB8877XzG/t3X+5w/evRoli5dyhNPPMHKlSu5//77+dCHPsS2bdtYvHjxGctWV1fT1dXFyZMnAXjggQdYt25d9/yXXnqJoqKiIcWZrzSxKaX6dfCH/0T4wE4cxWVWIiq1EpCrfCLO0pE4Skd0J6zuZFU60npdMgJHUemQe+GVLLiM9g1PMvbmOxFH+ltOuho2EWs/gXjPTAQiDsTjw8SimEgIEw5iImErwTnScxqNV0fGE9u9997Lb37zmwHXu/7667n77rvTElO+0MSmVB4wxtCx8UlKFr8bcaa3GixRtLON8P4myld9mfIPfC5j5caVXriC9lceJ9D4GkUzFg+8wjB11D+FuDyIx9s9reeVlTGGWGcrkWMHMOEgDl8JrvIJOHwlKY1l5cqVfOELX+DVV1+ls7OTxYsX89prr7FmzZozltu5cyfl5eWMHDkypeXns4LqPKJUoera9hL7/+tm2jc+mdFygzvfAMA3fV5Gy40rWfRX4HTR/soTGSmvvf5piuZcgkjfp0YRwVkyAs/kmbjGTCIWDhJqaSR0cA+xcDBlsZSWlnLZZZfxsY99jFWrVgFw4403sm7dOp599lkAurq6+OxnP8vXvva1lJVbCDSxKZUHgvveBiCw49WMlhto2gyAN0uJzVk6kuLzL6F9w5Oke/i/UEsj4f07KV18RVLLiwiuEWPwTjkP56hxxDpbCe1tIHy0BdNfm+MgrFq1is2bN3cntqKiIh599FHuvPNOZsyYwZgxY6irq+PGG2/sXueBBx44o7v/+vXrUxJLPimoqkgdBFkVqlDzDgACjZszWm6wabPVO3BEeUbLTVR64QoO//QrhJp34J08I23ltNc/A0DJkivgaFvS64nDiXv0eFxl5USOHyR66igm2IVn0vDPQ9dee+1ZCX3OnDn85S9/AWD16tX84z/+Ix/+8Iepqqripptu4qabbhp2ufmuoK7Y9D42VajiiS24c0tG7+sK7HwDX/X8jJXXm9IL3gNA+4b0Vkd21D+Nd+r5uCsqh7S+uNy4x07GObKCWKAzI5/Ttddey86dO6mqqkp7WfmkoBKbUoUq1LID8ZUQ62ontL8pI2VG208SPrgLX3V2qiHjXKPH45uxOK3tbNG243Q1bKTkgncPe1sObwlgMKGu4QemhkQTm1I5Ltp+kujJI/gvvgqAQONrGSk33nEkW+1riUqXXklw5xbCR5rTsv2OV5+DWIzSxacT21Db9OK3CsSCuZvYCvFxZYk0sSmV4+LVkKUXrkB8JQQaX89IufGOI9nqEZmo9MIVALRvSE+v0PaNT+McPR7v9LmA9SDOY8eODSkBiMsNThcm0JnqMFMi/jw2n8+X7VDSpqA6jyhViELN2wHwTJ6Jb/o8ghnqQBJo2oJ7XBVO/6iMlNcfz4TpeCbPpH3Dk4x638dTuu1YOEjH63+hbPl13TeBV1ZW0tzczJEjR4a0zcip4xA9jOt4RypDTZn4E7QLlSY2pXJcqKUR8fhwj6nEVzOfk4//HBMOIW5PWssN7NyMr2ZBWssYjNKlV3L84e8TbT2Gsyx1vTS7tr2ECXRYvSFtbrf7rKdLD8ax33+LYw9+k5pfNeAoKk1FmGoQtCpSqRwXbN6BZ2I14nTiq1mIiYQI7nkrrWVG244TObwv6z0iE5UuXQGxWHe3/FRpr38a8RZRPKcuZdv0VS8AYwg0bUnZNlXyNLEpleNCLTvwVNYCdF9BBZrS284WPyHnQvtanHf6XFxjJqW0278xho76pyme/04c3tQNFOyrsX4QpPtzUr3TxKZUDosFOokcacYzyUpsropKnGWj096BJJ7Y4p0pcoGIULr0Sjo3ryHWlZq2q+DubUSO7qd0yfC7+SdylpXjGjs54zfUK4smNqVyWGh/IxjTfcUmInirF6Q9sQWbNuOeMB1nSW4NdlC6dAXG7uyRCh31z4AIJYvflZLtJfJVL9ArtizJi8QmIteKyE9F5AERSe1PK6VyWKi5EQBP5emhpHw1Cwi17EjZVUtvAjs3Z/3G7N4UzVqKwz8qZTdrt9c/ja92Ea4RY1KyvUS+mvlEDu8jcupYyret+pf2xCYiPxeRwyKytcf0K0WkQUQaReS2/rZhjFltjPkE8Cng+nTGq1QuCbXsAIcTz/ip3dN8NQsgFiOw6420lBk5dZTI0f051XEkTpwuSpe8m45X/2w9+HMYIscPEmzaTGkKRhvpja/aag8NNml1ZKZl4ortPuDKxAki4gR+AKwAZgOrRGS2iMwVkT/2+BubsOrt9npKnRNCzTtwj596Rtf+7g4kaaqODMbb13IwsYF1s3ass5XObcMbtb59k/Xol5IUt6/F+arngYhWR2ZB2u9jM8asEZGpPSYvBRqNMTsBROR+YKUx5i7gqp7bEOvxu/8JPGGM6fW5HSJyC3ALwJQpU1IWv1LZlNgjMs41Ygyuisq0Da0VaNoMIvimzUnL9oereN47EF8x7a88QcmCS4e8nY6NT+MeV3VGNW8qOYpK8UyqydhIMeq0bLWxTQL2Jbxutqf15TPAu4C/FpFP9baAMeYeY8wSY8ySioqK1EWqVJaYSJjQgV14J9WeNc9XvSBtI5AEmjbjmVidszcWOzw+ShZcTvvGp4Y8gn4s0EnnG2spWfJurN/N6WF1INlc8GMz5pq86DxijPmeMWaxMeZTxpgf97WciFwtIvecOnUqk+EplRahg7shGsHTyzPIfDXzCR/eS7Q19R0TAju35Gw1ZFzphVcSPXmYwPZNQ1q/c8sLmHAwbe1rcd6a+URPHiFybH9ay1FnylZiawEmJ7yutKcNiz6PTRWS+ODHnt6u2Lpv1E7tyBaRE4eIHj+Ykx1HEpUsehe43LRvHNqgyO31z+AoLqPovKUpjuxM8Q4kej9bZmUrsW0EakVkmoh4gBuAR4e7Ub1iU4Uk1BJPbGc/idk73e6YkOJ2tu4RR3Kwq38iZ0kZxXPqaH/lyUFX85lolI76ZyhZdLk1En8aeafOBqdLO5BkWCa6+/8OeAmYKSLNInKzMSYC3Ao8BbwFPGiM2TbcsvSKTRWSUPMOXGMm4fAVnzXPWexPS8eEQNNmcDjwTs3NjiOJSpeuIHxwF6F9DYNaL9D4GtHWY2nrDZnI4fHhrZpFUDuQZFTaE5sxZpUxZoIxxm2MqTTG3GtPf9wYM8MYU22MuTPdcSiVb0LN28/qEZkoHR0Tgk1b8Eyq7TWZ5prSC94DIoO+Wbuj/hlwuihZeFmaIjuT9TltGXJHFzV4edF5JFlaFakKhYnFCLU09tsVPdUdE4wx9ogjud2+FucaNRbfjMWDHhS5vf5pimZdlLHhwnw184l1thI+uCsj5akCS2xaFakKReRoCyYU6LXjSJyvZiGQuhu1I8cPEj15BG+Ot68lKl26guCurYQP7xt4YayepqF9DWnvDZlIO5BkXkElNqUKRbxHpLfy7I4jcd6ps8HlTlliiw/9lC9XbGCNQgLQviG53pEd9rPcEh8qmm6eyTMQj087kGRQQSU2rYpUhaK7R2Q/bWwOtxfvlFkpuxIING0BhxNv1eyUbC8TPOOn4pkyK+nqyPb6Z/BMnolnXFWaIztNnC680+fqCCQZVFCJTasiVaEINm/HWVaO0z+63+V8NQsI7tycko4JgabNeCbPTOkDNzOh9MIr6Xp7w4Cj6EfbT9L15kspf/ZaMnzVCwju2oqJRjJe9rmooBKbUoUi1LwjqTEMfTULiHW2ET7QNKzyjDEEc/RRNQMpXboCYjE66p/qd7mO1/8CsSglGWxfi/PVzMeEAoO+NUENTUElNq2KVIXAGGP3iOy7GjLu9Ej/w6uOjBxtIdp6PK/a1+K8U8/HVVFJ+yv9t7N11D+Dc8SY7k43mZTuJzKoMxVUYtOqSFUIoqeOEms/2euIIz15JtUivuJhnzBPjziSf4lNRChduoLOLWuIdbX3uoyJhOl49TlKFr8LcWT+tOcePw1HyQjrBniVdgWV2JQqBN1jRCZxxSZOJ75pw++YEGzaDC43nqpZw9pOtpReuAITCdHx2nO9zu966xVina1ZaV8DK/n6qucR2JGeRw2pM2liUyrHhJq3A8klNrA7kOzeNqwnSgeaNuOdPBOH2zvkbWRT0cwLcJaV9zkKSXv904jHR/G8d2Q4stN81QsI7n2bWLArazGcKzSxKZVjQi07cBSV4ho9IanlfTULMOEgwX1vD6k8a8SRLXlZDRknTiclF7ybjlf/TCwcPGOeMYaOjU9TPGdZVocK89YsgFiU4O5hD4urBlBQiU07j6hCEGreYbWdJfkATO8wO5CED+8l1n4y55/BNpDSpSuIdbXT9caLZ0wPNW8nfHhvVnpDJvLVWPtXO5CkX0ElNu08ogpBMMkekXHusVNw+EcN+RE2wTx5VM1AiucuQ3wlZ92s3bHxaQBKF78rG2F1c42egHPUOO1AkgEFldiUynfRjlaixw8m1SMyzuqYsGDIV2yBps2Iy4N38nlDWj9XODw+ShZdTvvGpzDRaPf09vqn8VbPxzV6fBaji39O8/WKLQM0sSmVQ5IZSqs3vpr5hJobiAU6B11moGkLnqmzEbdn0OvmmtKlK4ieOkpgxyYAIiePENjxatZ6Q/bkq1lAeH8T0Y7WbIdS0DSxKZVDBtPVP5GvZgHEYgR3vTGo9UwsRnDnFnzT87saMq5k0V8hLk9378iOTc+CMRkdzb8/8Ru1gzu3ZDmSwlZQiU07j6h8F2rZgbi9uMdOGdR6px+NMrhqrvCh3cQ6W/O+fS3OWeynaO4y2jc8iTGG9vqncY2ZhCdHBnaO72etjkyvgkps2nlE5btQ8w7cE6YjTteg1nONGotrzMRBnzDzecSRvpQuXUH40B4Cja/TuWUNJUuuSLqHabo5/aNxj6vSDiRpVlCJTal8Z40RmXzHkUS+6gWDPmEGmzYjHl9SAy7ni9IL3g0iHPn5v2KCXTnTvhanHUjSTxObUjkiFuwifGhPv0/N7o+vZj7hg7uJth1qiMLAAAAgAElEQVRPep1A0xa8U89HXO4hlZmLXCMrKJp5AYEdr+IoKqXo/IuzHdIZvDULiBxtIXLqaLZDKVia2JTKEeEDO8EYvIPsOBIXH7U+Xr04EBOLEdi5Be/0uUMqL5fFn6xdPP/SnBsmTEf6Tz9NbErliGB3j8ihVQt6pw+uY0L4QBMm0FFQ7WtxpRe9D/H48C+7NtuhnMU3bS44HJrY0mhwLdRKqbQJtewAhwP3xOlDWt9ZUoZ7YnXSJ8xAk3VrQCEmNndFJdU/35rVsSH74igqwTOp1nqigkoLvWJTKkeEmhtxj60aVtWZr2YBgcbXMcYMuGygaTPiLRrUKCf5JBeTWpyvZn7Sn5MavIJKbHofm8pnoebtQ+4RGeerWUD05GEixw8MuGywaTPeaXMGfWuBGj5f9QKirceIHG3JdigFqaASm97HpvKViUYIHdg55B6Rcb4kR/o30SiBXW8UZDVkPtAOJOlVUIlNqXwVPrQHImE8k4d3P5l36vngdBEc4IQZ2t+ICXYVzFBa+cZTNQtcbk1saaKJTakc0D1G5DCv2BweH94p5w34CJv4o2ry/Rls+crh9uKtmq0jkKSJJjalckD3qP4p6Mjhq1lIoGkLJhbrc5lA02bEV4JnwtB6YKrh89UsILiz/89JDY0mNqVyQHDfDutBlMX+YW/LVzOfWGcr4YO7+lwm0LQZ3/S5iNM57PLU0Piq5xPrbCN8oCnboRQcTWwpEjq0h6O/uQsTjWQ7FJWHQi07ht0jMu70SP+9V3OZaITg7m3acSTLku3oowZPE1uKnFj9Q44//H06N6/Jdigqzxhj7MGPUzMQsWfyDMTj67OdLbRvOyYUKMihtPKJZ1It4ivWDiRpoIktBUwkTNvLfwSgde1DWY5G5ZvIsf2YQMewO47EidOFb/q8Pk+Y8Q4LesWWXeJ04ps2VzuQpIEmthTo2LKGWNsJ3OOn0r7xSWKBzmyHpPLIUJ+a3R9vzQKCu7dhIuGz5gV2bsFR7Mc9flrKylND4+vnc1JDp4ktBdrWPYKjZARjP3EXJtBJe/1T2Q5J5ZF0JDZfzXxMKEBw79tnzQs2bcE7fR7i0K9/tnmr+/6c1NDl/JEtIrNE5Mci8gcR+XS24+kpFuyifcMTlF64guK5y3GNmUjbmoezHZbKI6GWHThKR+EsK0/ZNrs7kPSo5jLhEME9b+Kr1huzc0F3BxKtjkyptCY2Efm5iBwWka09pl8pIg0i0igit/W3DWPMW8aYTwEfAurSGe9QdLz6Z0ygA/+yaxGHA3/dtXRsfp5o67Fsh6byRKh5B97KWkQkZdt0j5+Ko3TkWe1swX0NmHBQ29dyhHtcFY7SUdqBJMXSfcV2H3Bl4gQRcQI/AFYAs4FVIjJbROaKyB97/I2117kG+BPweJrjHbS2datxjqyg+Hwr55Ytvw6iEdrWP5blyFS+sLr6p64aEkBE8FXPJ9h05gkz/hBSrw6llROsz2neWZ+TGp60JjZjzBqg53PqlwKNxpidxpgQcD+w0hjzhjHmqh5/h+3tPGqMWQHc2FdZInKLiNSLSP2RI0fS9ZbOEO1opePVP+O/+OruG109VbPwTJ6pvSNVUiKnjhFtPZ6yHpGJfDULCO5tIBY83ZkpuHMLjpIRuMdVpbw8NTS9fU5qeLLRxjYJ2Jfwutme1isRuVREviciP6GfKzZjzD3GmCXGmCUVFRWpi7Yf7RufxISDZzylV0QoW34dgYZ6wof2ZiQOlb+6h9JK8RUb2N35Y1GCu063BASaNuOrnpfSak81PKc/p23ZDqVg5HznEWPM88aYzxpjPmmM+UF/y2b6eWxt61bjGjsZ34zFZ0z3L38/AK3rVmckDpW/0tEjMs5XuxA4PbJFLBwkuPctHfg4x2gHktTLRmJrASYnvK60pw1bJp/HFjl1jM4ta/HXrTzr16+7opKi85bStvYhfUKu6leoZQfiK8ZVPjHl23aNGodr9ITujgmhPW9DJKwdR3KMa/R4nKPHaweSFMpGYtsI1IrINBHxADcAj6Ziw5m8Ymt/6TGIRSmru7bX+f7l1xFq3k5wt1YvqL6FmnfgmViTtnvKvDXzu0+Y3SOOaMeRnOOrnk9AO5CkTLq7+/8OeAmYKSLNInKzMSYC3Ao8BbwFPGiMScnZP5NXbG3rVuOpnGE9MLAX/ovfB04Xbev0njbVt3T0iEzkq15A+OAuou0nrRFH/KNwVVSmrTw1NL6aBYT37yTakZlmlEKX7l6Rq4wxE4wxbmNMpTHmXnv648aYGcaYamPMnemMIR3CR5rpenuDde9aH43wzrJyShZcStu61fq8JdWrWFc7kaP709IjMs5Xe7r9Jti0GV/1fO04koPi1cPxB8Cq4cn5ziODkamqyLb1Vs2pv25lv8v5l19H5NgBut58Oa3xqPwUamkE0tNxJC5+wux68xWC+xq0fS1HxT8XrY5MjYJKbJmqimxbtxpvzQI8E/ofRLb0gncjvhK9p031Kt4j0pui57D1xlkyAveE6bQ+/wBEIzqUVo5y+kfhHj9Vn82WIgWV2DIh1NJIcNfWPjuNJHJ4iylduoL2l/9ELBzMQHQqnwRbdoDLjXvc1LSW46ueT+TYAUBHHMll2oEkdQoqsWWiKrJ13WoQwV93TVLLly1/P7GOU3S+9lzaYlL5KdS8A8/4aYjLndZy4vezOUeMScttBSo1fDULiBzdT+RkZkZOKmQFldjSXRVpjKHtxdUUzb4Y1+jxSa1TPG85zhFjaNUR/1UPoeb09oiMi7ffaMeR3OaNP5FB72cbtoJKbOkW3PUG4f07zxhCayDidOG/5Bo6Nj1DtKM1jdGpfBILBwkf2p3WHpFx3mlzcBSVUjRradrLUkPnmz4XHA6tjkwBTWyD0LZuNThd+C9676DW8y+/DhMO0v5Kzj2cQGVJ+MAuiMXwpLHjSJzDW8TU761l1FWfTHtZaugcvmI8lTO0A0kKFFRiS2cbm4nFaFv/KCXzL8XpHz2odX21C3GPn6o3a6tup8eInJGR8lyjxiFuT0bKUkMXf9SQDsU3PAWV2NLZxhZo2Ejk6P5BVUPGiQj+ZdfSufVFIicOpTw2lX9CLTtABM/E6myHonJI0cwlRFuPE97fmO1Q8lpBJbZ0al23GvH4KL3gPUNav2z5dRCL0bbukRRHpvJRaN923BWTcXiLsh2KyiFFc5cB0LllXZYjyW9JJTYReUhE3ici52QiNNEI7S/9kZIlV+AoKhnSNjyTavBOn6c3aysAgi2NGekRqfKLe+wUXBWVdG59Mduh5LVkE9UPgQ8DO0TkP0VkZhpjGrJ0tbF1vrGOaOsxyoZQDZmobPl1BHdu6R5KSZ2bTDRKeH8Tnknp7zii8ouIUDx3GZ3b1mOi0WyHk7eSSmzGmGeNMTcCi4DdwLMisl5E/k5E0nt36SCkq42tbd1qHMVlFC+8fFjb8S9bCSK0aieSc1r4yD5MOJixjiMqvxTPWUas/STBPfrIq6FKumpRRMqBm4CPA68B38VKdM+kJbIcEQsFaN/wBKUXrsDh9g5rW65R4yieU0fb2oe119M5LJ1PzVb5r3huHWDVFKmhSbaN7WFgLVAMXG2MucYY84Ax5jNAaToDzLaOV58j1tk2pN6QvfEvv47wwd0EdryWku2p/BNq3g5oYlO9c40ah6eyls43tJ1tqJK9YvueMWa2MeYuY8yBxBnGmCVpiCtntK1bjXPEGIrn1KVke6UXvhdxe2lLUSeSWFc7h++9nY7NL6Rkeyr9Qi07cI4ci7Mk/Q/EVfmpeO4yut56GRMOZTuUvJRsYhslItf1+PsrERmb1uiyLNrZRserz+K/5GrE6UrJNp0lZZQsvoK29Y9iopFhbSt8tIW9t1/LySd+zoFv3kLo4O6UxKjSK9SsPSJV/4rmLMMEu+jSmp0hSTax3Qz8DLjR/vsp8GXgRRH52zTFNmip7hXZsfEpTCiAP4lH1AxG2TveT/TU0WHVoQcaN7P3tvcRObyXcZ/+JoiDA9/6JLFQIIWRqlQzxhBqyczgxyp/FZ9/MYjQtVXb2YYi2cTmBmYZYz5gjPkAMBswwIVYCS4npLpXZOu61bgqKvHNTG1ta/HCy3GUjKB1zdCqI9s3PMG+f3s/4vYw+c5HGfFXqxh/63cI7nyDI7/8WkpjVakVPXGIWGcb3gwMfqzyl7N0JN5pc7UDyRAlm9gqjTGJY0EdBiYbY44D4dSHlX3R1mN0blmDv25lyh/14XB7Kb3ofbRveIJYsDPp9YwxHH/kR+z/fx/HWzWbKXf9Ce+U8wAoveA9jLr6k5x66pe0rX80pfGq1AlqxxGVpOK5y+ja8SqxQPLnCGVJNrE9LyJ/FJGPishHgUfsaSXAyfSFlz1tL/0JopFh35Tdl7Ll12ECHbRvfDqp5U0kzOGffImj//MNSi+6isqv/h7XyIozlhlz4//BN2Mxh370z4QO7ExH2GqYtKu/Slbx3GUQCdP19oZsh5J3kk1s/wD8Alhg//0K+AdjTIcx5rJ0BZdNbS+uxlNZi6dqdlq2XzT7IlzlE5Ia8T/acYqW//gbTj37G0Zf91kmfOFHvY4xKC43E77wI3C6OfBNbW/LRaGWRhzFZThHFnS/K5UCRectBZdbqyOHYMDEJiJO4DljzP8aY75g//3BFPAdxuFj++l66xX8ddem7YnD4nDgX3YtHa/9hWjb8b5jObSXff9yDZ1vvsy4f/g2Yz58G+Lo+2NzV1Qy/jPfJbh7G0d+cUc6QlfDEH9qtj7JWg3E4SumaMZiTWxDMGBiM8ZEgZiInDM33bS9+CgYk7KbsvviX/Z+iEZoW//HXud3NdSz9yvvI3LyCJW3/44Rl12f1HZLF7+LUSv/nlPP/I8O35VjtEekGoziOXUEd71BtL0gW3zSJtmqyHbgDRG5V0S+F/9LZ2DZ1LZuNd7q+XgmTEtrOd6p5+OpnNHrzdqt61bT/NUP4ij2M+XORymec8mgtj1m1ZfxnXcBh378JR10OUdE204QPXkEj/aIVEkqnrsMjKFz20vZDiWvJJvYHgL+FVgDbEr4yympuI8tdGAnwZ1b0tZpJJGI4F9+HV1vbyB8pBmwej4e+8N3OPidv8dXs4Ap//HYkEaBj7e3OTxe9n/rU8SCXakOXw1SqEU7jqjB8dUsRLxFej/bICU7uv8vgQeBl40xv4z/pTe0wUvFfWxt6x4BEUovuTqFkfWtbPn77XIfJhYOcvD7n+PY/f+F/x0fYNK/3Y+zrHzI23aXT2T8Z75PaM+bHP75v6YqZDVEwT1vAZrYVPLE7aFo1kXazjZIyQ6CfDXwOvCk/XqBiBTczVLGGNpeXE3RrAtxl0/MSJnusZPxnXcBrc//npZvrKJtzR8ov/6LjP/M94b9NAGAkoWXMfr9n6H1z7+ldc3/piBiNRQmGuHEn36GZ/JM3BWTsx2OyiPFc+sINe8gcuLQwAsrIPmqyK8CS7HvWTPGvA5MT1NMWRPa8yah5h0pH0JrIGXL3k+opZHAjtcY//kfUP7BL6S011z5DV+kaPZFHPrJlwja91GpzGpb+zDh/U2UX//P/fZqVaqn4rnLAHS0/0FI9hsWNsb0bLiKpTqYbGtdtxqcLvwXvy+j5fqXX0fZpR+i8o4HKVv2/pRvX5wuJnz+hzi8xRz45i06kkGGmUiYY7//Ft5pcyhduiLb4ag84606H0fpSDrfWJvtUPJGsoltm4h8GHCKSK2IfB9Yn8a4ssIzYRojr7xpWO1aQ+EsKWP8rd+h6LwL0laGa/R4xn/ubkLN2zl877+krRx1ttbnHyR8aA/l139Rr9bUoInTSfH5l9D5xjp9QHGSkv2WfQY4HwgCvwNagc+nK6hsGfFXH2bs330922GkTcn8dzL6A5+j9S8PcOr5B7MdzjkhFg5y7A/fxle7iJLF78p2OCpPFc+pI3K0hfChPdkOJS8k2yuy0xjzL8aYC4wxS+z/63hNeaj8g/9E0fmXcPie2wjua8h2OAWv9dnfEjm6n/IbvqijjaghK56n7WyDkWyvyBkico+IPC0iz8X/0h2cSj1xOpnw+R/gKPZb7W1dHdkOqWDFgl0ce+h7FM26kOJ578h2OCqPuSfW4Bw1ji5tZ0tKslWRvwdeA24Hvpjwp/KQa9Q4Jnz2bkItjRz66Ve03j5NTj39K6InDlF+w5f0ak0Ni4hQPHcZnVtf1O9rEpJNbBFjzI+MMRuMMZvif2mNLIGIlIhIvYhclakyC13xvOWUf/AfaVvzB049+9tsh1NwYl0dHH/4bornLbeehqzUMBXPqSPaeozQ3rezHUrOSzaxPSYify8iE0RkdPxvoJVE5OciclhEtvaYfqWINIhIo4jclkT5X8Ya+USl0OgPfJ7i+e/k8E9vo239Y9kOp6CcfPLnRFuPUX7Dl7IdiioQ3fezbdV2toEkm9g+ilX1uJ7T40TWJ7HefcCViRPsx+D8AFgBzAZWichsEZlrP8w08W+siFwBvIn11G6VQuJ0MvGff0bRjMUc+M7f0/by49kOqSBEO1o5/siPKFn0VxTNWJztcFSBcFdU4h4/Ve9nS4IrmYWMMUMa5t4Ys0ZEpvaYvBRoNMbsBBCR+4GVxpi7gLOqGkXkUqAEKwl2icjjxpizbg4XkVuAWwCmTJkylHDPSY6iEib9y69p/sYqDnz7U8g/3UPp0isHXlH16eSffkqs/STl12sztEqt4rnLaHvxEUw0gjiTOn2fk/q9YhORLyX8/4M95v3HEMucBOxLeN1sT+uVfWvB54HfAj/tLanZy91j34qwpKKiYoihnZscRaVMuv23+KbPY/+3Pkl7/TPZDilvRdtOcOKP91C6dAW+6nnZDkcVmOK5y4h1thFo2pLtUHLaQFWRNyT8/ys95mX0Z70x5j5jTO9P5LSl4rE15ypnsZ9Jt/8W79TzOfDfn6DjVb2bYyhOPPpjYl3tlF//z9kORRWgovPrAOjSdrZ+DZTYpI//9/Y6WS1A4vDmlfa0YUvFY2vOZc6SMipv/y2eKTPZ//9upuP157MdUl6JnDrGiSfuxX/JNXirZmU7HFWAXCPK8VTN1na2AQyU2Ewf/+/tdbI2ArUiMk1EPFhXhQX3CJx85SwdSeW/3o9nUg37/+tjdGxZk+2Q8saJ1XdjQgHKP/RP2Q5FFbDiOXV0NdQTC+ngT30ZKLHNF5FWEWkD5tn/j7+eO9DGReR3wEvATBFpFpGbjTER4FbgKeAt4EFjzLZhvo94eVoVmQJO/ygq73gA94Tp7P/Pm7R7cRIixw9y8qlfUrb8A0N64rlSySqeuwwTChDYnrFbifNOv4nNGOM0xpQZY/zGGJf9//hr90AbN8asMsZMMMa4jTGVxph77emPG2NmGGOqjTF3purNaFVk6jj9o6n8twdwj6ui5a6P0LntpWyHlNOOP/x9TDTC6A9+IduhqAJXNPsicDj1qdr9KKhnaOgVW2q5RpRTeceDuCsqabnrb+l665Vsh5STwkeaOfXMbxhx2fV4xk/NdjiqwDmL/fhqFmhi60dBJTa9Yks918gKKu/4Pa7RE2i+82/oentjtkPKOccf+h4Aoz/wuSxHos4VxXPqCDS+TrSzLduh5KSCSmwqPVyjxjL5q7/HNWocLXfeSNf2V7MdUs4IHdrDqefuZ8QVN+KuqMx2OOocUTx3GcSiWovSh4JKbFoVmT6u0eOp/OrvcY4YQ8u/ryLQ+Hq2Q8oJx3//bcTpYvR1n812KOoc4puxGHF7tTqyDwWV2LQqMr3c5ROs5FY6iuZvrCKw89we/SDU0kjrmj8w8j0fxTVqXLbDUecQh7cI38wL6Nqqia03BZXYVPq5x0yi8mt/wFHsp/nrNxDYtXXglQrUsQe/iXh8jLr2H7IdijoHFc+tI7j7TSKnjmU7lJyjiU0Nmruikslf/QMOXwktd/4NJhzKdkgZF9z7Nm3rH2XUiptxjRiT7XDUOSj+GJuubeuzHEnuKajEpm1smeMeN4Wxn7iL6MnDdGx+IaNlm3CIQz/9CqGWxoyWm+jYA/+No6iUUdd8KmsxqHObr3o+jqJSbWfrRUElNm1jy6ySee/AUTqKthcfyWi5Ha89x6mnfknr87/PaLlxgZ1baH/lcUZddQtO/6isxKCUOF0Uzb5IRwbqRUElNpVZ4vbgv+i9tG98iliwM2Pltq59GICuHa9lrMxEx+7/bxylIxn5vk9kpXyl4ornLCN8YCfhoykZR75gaGJTw+KvW4kJdGTsMTfRzjY6Nj0DDgfBptcx0WhGyo3r2r6JjlefZfQ1n8ZZUpbRspXqKd7OpldtZyqoxKZtbJlXNPtinCMrMlYd2f7K45hQgBFX/C2xrnZC+zPbznbyjz/F4R/FyBUfy2i5SvXGM+U8nGXldG7RdrZEBZXYtI0t88TpxH/x1XRsejYjw/u0rX0I9/ip3YklkMFRUIwxdL69gZL5l+IoKslYuUr1RRwOiuZcQufWdRgz1CeJFZ6CSmwqO/x1KzHhIB0bn0prOZETh+jc+iL+ZdfimViNo7iMQGPm2tkiR1uIHj9I0cwlGStTqYEUz11O9PhBwvubsh1KztDEpobNN3MJrorKtFdHtq17BGIxypZfhzgc+GoWENiRuSu2rgZrAGifJjaVQ4rn1AFot/8EmtjUsIkI/kuuoWPzC0TbjqetnNa1D+GdPq/7QZ6+2kUE975NLJCZHpmBhnrEV4y3alZGylMqGe7xU3GNmaQdSBJoYlMp4a9bCdEIbS8/kZbth1oaCe7cQtny67qn+WoXQiyWsTEruxrq8dUsRJyujJSnVDJEhOK5dXRuXY+JxbIdTk4oqMSmvSKzxzttDu6J09NWHdm69iFwOPAvW9k9zVe7CCAj1ZGxQCfB3W9q+5rKScVzlxNrP0Fw97Zsh5ITCiqxaa/I7BER/HUr6dr2IpETh1K6bWMMbWsfpnhO3Rmj6LtGlOMeO4VABm7UDjS+DrGotq+pnKTtbGcqqMSmsst/yUowhraX/pjS7QZ2vEr40B78y95/1jxf7cKMXLF1NdQDUGRfJSqVS1yjx+OZVKPtbDZNbCplvJNn4KmaTdu61SndbtvahxG3l9IL33vWPF/tIiLHDhA5fjClZfYUaKjHU1mrY0OqnFU0p46ut14+J5+20ZMmNpVSZctWEti+ifDhfSnZnolGaFv/KCWLr+h1CCtf7UIgveNGmliMru2b8M1YnLYylBqu4rnLMYFOAk36dHtNbCql/JdYnTva1j+aku11bllL9NRRyt5xdjUkWJ1WcLnTWh0ZPtBErP2EdhxROa14ziWM/eR/4Z4wPduhZJ0mNpVS7nFT8NUuSlnvyNa1D+EoGUHxwst7ne/w+PBWzU5rB5Kuhk0A+GZekLYylBouZ+lIRl7xN/rgWzSxqTTw160kuGvrsB8EGgt00r7hCfwXX4XD7e1zOV/NAgJNm9M20n9XQz2O0pF4JlanZftKqdQqqMSm97HlhtKLrwKRYVdHttc/hQl04k+4Kbs3RbWLMIEOQs3bh1VeXwIN9RTNWIw4CurrolTBKqhvqt7Hlhvc5RMomnURbetWD2vE8bY1D+MaM5GiWRf2u1y8A0k62tmi7ScJNW/XjiNK5ZGCSmwqd/jrVhJqaSS0580hrR9tPUbH5ufx11074JWSe8J0HCUj0tIzMv5YHO04olT+0MSm0sJ/8fvA4aR1iJ1I2tY/BtHIGWND9uX0SP+pT2xd2+vB4cBXszDl21ZKpYcmNpUWzrJyiue9g7YXHxlSdWTr2ofwTDkP79TZSS3vq11IqLmBWFfHoMvqT6ChHm/VbH2wqFJ5RBObShv/spVEDu8b9JVU+NBeAg31lC3v/d613vhqF1kj/TdtHmyYfTLRCF07XtPxIZXKM5rYVNqUXnAl4vIM+p621nUPA/Q6NmRf4lWFqXyidnDv25hAh7avKZVnNLGptHGWlFG86HLa1j+a9D1m1kj+D1F03lLcFZVJl+UaUY57XFVK29kC8YGPZ2hiUyqfaGJTaVVWt5LoiUN0vb0hqeWDu7cRat4x4L1rvbFG+k9dYuvavgnnyLG4xk5O2TaVUumniU2lVcniKxBvUdLVkW1rHwKnC/8lVw26LF/tIiLHDxA+dmDQ6/Ym0FBP0cwliEhKtqeUyoycT2wicqmIrBWRH4vIpdmORw2Ow1dM6QXvoe2lxzCRcL/LmmiUtnWPULLwMpz+0YMu6/SN2sO/aoucOEz40B7tOKJUHkprYhORn4vIYRHZ2mP6lSLSICKNInLbAJsxQDvgA5rTFatKH3/dSmJtJwZ8um/XWy8TOX4gqXvXeuOden7KRvrv2m4NfKwdR5TKP+m+YrsPuDJxgog4gR8AK4DZwCoRmS0ic0Xkjz3+xgJrjTErgC8DX0tzvCoNihdciqO4bMDqyNa1DyG+EkqWXDGkchweH96p56fkii3QsBFxefBOnzvsbSmlMiutic0YswY43mPyUqDRGLPTGBMC7gdWGmPeMMZc1ePvsDEmZq93AuhziHcRuUVE6kWk/siRI2l5P2poHG4vpReuoH3DE8RCgV6XiYUCtL/0J/wXvheHt3jIZRXVLiSwc/gj/Xc11OOdPrffpwoopXJTNtrYJgGJj1dutqf1SkSuE5GfAP8D3N3XcsaYe4wxS4wxSyoqKlIWrEoNf91KYp1tdL7+l17nd7z6HLHOVvyDuCm7N77aRZhAJ6F9DUPeRiwcJLjzDa2GVCpP5XznEWPMQ8aYTxpjrjfGPN/fsvrYmtxVPHcZzrLRtK3rvTqybe1DOEdWUDx32bDKiXcgGc6AyMFdWzHhoD5YVKk8lY3E1gIk3hhUaU8bNn1sTe4Sp4vSi6+mfdMzxAKdZ8yLdpyiY9Oz+OtWIk7XsMpxj5+Go3QUgcahdyDpvjF7pj6qRql8lI3EthGoFZFpIuIBbgCG90RKlRf8dddigl201z99xr86KyAAAA4ZSURBVPT2l/+EiYSG3BsykYgMe6T/roZ63GOn4Bo1btjxKKUyL93d/X8HvATMFJFmEbnZGBMBbgWeAt4CHjTGbEtReVoVmcOKzrsA1+gJtK1bfcb01rUP4x4/DW/1/JSU46tdSGhfA7Gu9kGva4yhq6Fe719TKo+lu1fkKmPMBGOM2xhTaYy5157+uDFmhjGm2hhzZwrL06rIHCYOB/66a+h4/S9E208CED52gK5t6/Evf3/KRvgoql0ExgxppP/I0RaiJw5RpE/MVipv5XznkcHQK7bc569bCZEw7RueBLCu3oyh7B3Dr4aM89UuABjSjdpdDRutbegVm1J5q6ASm16x5T5v9Xzc46q6b9ZuW/sQ3poFeCZMT1kZTv9o3OOnDalnZKChHvEV462albJ4lFKZVVCJTeU+EcFft5LON9bRue0lgru3paTTSE/xkf4H+/TuroZ6fDWLht07UymVPQWV2LQqMj/461ZCLMrBuz8HDgf+S65JeRm+2oVETxwicmx/0uvEujoI7n5Tb8xWKs8VVGLTqsj84K2ahWfyTCJHmimeuxzXqLEpL8NXuwgY3Ej/gabXIRbVxKZUniuoxKbyh79uJUBaqiEBvFNnIy7PoDqQdDVYI/r7ZixKS0xKqczQhgSVFSPf/beYUIDSiwf/QNFkONzeQY/0H2iox1NZi7N0ZFpiUkplRkFdsWkbW/5wlpUz5sO34fAWpa0MX+1CAju3YKKRAZc1sRhd2zdpN3+lCkBBJTZtY1OJfLWLMMEugnvfHnDZ8IEmYu0nKJqhiU2pfFdQiU2pRPGR/pOpjux62x74+DxNbErlO01sqmC5x0/F4R+VVAeSru2bcJSOwj2hOgORKaXSqaASm7axqUTWSP8Lk7piCzTUUzRjEeIoqK+EUuekgvoWaxub6qmodiGhlh1EO9v6XCbafpJQ83btOKJUgSioxKZUTz57pP9gPyP9B7ZbVZV6Y7ZShUETmypovpr4SP99V0d2NdSDw4mvekGmwlJKpZEmNlXQnP5RuCdMp6ufDiSB7fV4p87GUVSSwciUUumiiU0VvP5G+jfRCF07XtNqSKUKSEElNu0VqXrjq11I9ORhIkdbzpoX3Ps2JtCBT5+YrVTBKKjEpr0iVW+K+hnpP9Bg35g984KMxqSUSp+CSmxK9cZbNRtxe3u9UburoR7nqHG4KiqzEJlSKh00samCJ24P3mlz+rxiK5q5BBHJQmRKqXTQxKbOCd0j/UfC3dMiJw4TPrxXO44oVWA0salzgq92ISYUOGOk/67t9oNFNbEpVVA0salzgq+XDiSBho2Iy6qmVEoVDk1s6pzgHjsFZ9loAo2nO5B0NdTjrZ6Hw+3NYmRKqVQrqMSm97Gpvlgj/S/qvmKLhYMEm7Zo+5pSBaigEpvex6b646tdSKilkWhHK8FdWzGRED69f02pguPKdgBKZYqvdiEYQ6DpdUJ73gKgSEccUargaGJT5wxf7ULA6kAS3LUV97gqXKPGZjkqpVSqFVRVpFL9cZaMwD2xmsCOV+l6e6OOD6lUgdLEps4pRbWL6NyylujJw9pxRKkCpYlNnVPiN2qD3pitVKHSxKbOKb4aq51NfCV4p5yX5WiUUumgiU2dU7xVsxC3l6LahYhT+04pVYj0m63OKeL2UHHT1/BMnJ7tUJRSaZLziU1EHMA3gDKg3hjzyyyHpPLcyPd8JNshKKXSKK1VkSLycxE5LCJbe0y/UkQaRKRRRG4bYDMrgUogDDSnK1allFKFId1XbPcBdwO/ik8QESfwA+AKrES1UUQeBZzAXT3W/xgwE1hvjPmJiPwB+HOaY1ZKKZXH0prYjDFrRGRqj8lLgUZjzE4AEbkfWGmMuQu4quc2RKQZCNkvo32VJSK3ALcATJkyZdixK6WUyk/Z6BU5CdiX8LrZntaXh4D3iMj3gTV9LWSMuccYs8QYs6SioiI1kSqllMo7Od95xBjTCdyc7TiUUkrlh2xcsbUAkxNeV9rThk2fx6aUUiobiW0jUCsi00TEA9wAPJqKDevz2JRSSqW7u//vgJeAmSLSLCI3G2MiwK3AU8BbwIPGmG0pKk+v2JRS6hwnxphsx5ByInIE2DPE1ccAR1MYTj7Q93xu0Pdc+Ib7fquMMXnf+64gE9twiEi9MeacGvZd3/O5Qd9z4TvX3m9fdBBkpZRSBUUTm1JKqYKiie1s92Q7gCzQ93xu0Pdc+M6199srbWNTSilVUPSKTSmlVEHRxKaUUqqgnLOJbaBnwonITSJyRERet/8+no04UymZ5+CJyIdE5E0R2SYiv810jKmWxOf87YTPeLuInMxGnKmSxPudIiJ/EZHXROT/t3fusVZUVxz+fhUfIOhFrrY+Gq6ixFJjqLYJ0RZuHyEtTRQfbSQqosY0SnylUtOYvoypEv5pbJu02ihKVKq3WrGxKm1B0itgKcgBq1GLxBBMNNYQqanVsvrHXtcOx3Ouc/Hcmc6c9SWTs87sffb81pxzZmXvmazVkDSnDJ2dJIfPkyX90f1dLemYMnR2kna1LjPtknSrn5OGpFOK1lgqZtZ1G6n229+B44ADgM3AtKY+C4Cfla21YJ9PADYBE/39EWXrHm2fm/pfCdxRtu5R/o5vAy53exqwvWzdBfj8AHCR218ClpWtuwN+zwROAba2aZ8D/B4QMANYX7bmIrdunbG9XxPOzP4NLCdV6q4zeXy+DPi5mb0JYGavFayx04z0e54H3FeIstEhj78GHOL2ocDOAvWNBnl8ngb8ye1VLdorh5mtAf4xTJczgbstsQ7okXRkMerKp1sDW96acOf4NH5A0idbtFeJPD5PBaZKGpS0TtJXC1M3OuSu/SdpMnAs/7sAVpE8/v4QuMAL+D5KmqVWmTw+bwbOdvssYIKkSQVoK5OR1r2sFd0a2PLwCNBnZicDK4G7StZTBGNIy5H9pNnL7ZJ6SlVUHOcBA2bWtkp7TZgHLDWzY0jLVcsk1f06cB0wS9ImYBapTFbdv+eupu4/6HZ8aE04M3vDzN7xt78CTi1I22iRpw7eDmCFmb1rZi8DL5ACXVUZSe2/86j2MiTk8/dS4H4AM1sLHERKnFtV8vyXd5rZ2Wb2GeAG31fph4RyMGp1L6tAtwa2D60J17QefQapxE6VyVMH77ek2RqSeklLk9uKFNlhctX+k3QiMJFUYqnK5PH3FeDLAJI+RQpsrxeqsrPk+S/3Zmal3wXuKFhjGawA5vvTkTOAXWb2atmiimJM2QLKwMzekzRUE24/0pNwz0q6EdhgZiuAqySdAbxHukm7oDTBHSCnz48DsyX9jbRUs8jM3ihP9Ucjp8+QLobLzR8nqyo5/f02aYn5WtKDJAuq7HdOn/uBmyUZsAZYWJrgDuG1LvuBXr9f+gNgfwAz+wXp/ukc4CXgbeDicpSWQ6TUCoIgCGpFty5FBkEQBDUlAlsQBEFQKyKwBUEQBLUiAlsQBEFQKyKwBUEQBLUiAltQCSTtztHnGknjOnjMuZKmdXC8pz7CZ3f761GSBobp1yPpin09ThDUgQhsQZ24BhhRYJO03zDNc0kJdDuCmZ3WgTF2mtm5w3TpASKwBV1NBLagUkjq95paA5Kel3SPZ1e4CjgKWCVplfedLWmtpI2SHpA03vdvl7RY0kbgG5Iuk/QXSZsl/UbSOEmnkTLOLPFabVMkTffk0A1JD0ma6OOtVqrrtkHSc5I+J+lBSS9KuimjfXfGvl7SFj/mLS38PNa1b2kao2+oBpekT0t62vU1JJ0A3AJM8X1LJI1XqkW20cc6MzPOc5JuV6q994Sksd52vKQ/uLaNkqb4/kV+nhqSftTRLzYIOknZdXNiiy3PBuz2135gFyn33cdIabA+723bgV63e0lZJg7299cD38/0+05m7EkZ+ybgSreXAudm2hrALLdvBH7i9mpgsdtXk0rBHAkcSMq/OanJh68BTwHj/P1hLfxdAcx3e2Hms314DS7gp8D5bh8AjM22+/4xwCGZc/ISqUZXHymrznRvux+4wO31wFluH0SaBc8m1XKTn/ffATPL/l3EFlurrStTagWV52kz2wEg6RnSRfrPTX1mkJYRByVBuvBnc0H+OmOf5LOiHmA8KT3TXkg6FOgxsyd9112kApZDDKXn2gI8a56XT9I2UjLabGqyrwB3mtnbAGbWqq7W6cA5bi8DFrfosxa4Qaki9INm9qL7upd04MeSZgJ7SKVLPu5tL5vZM27/FeiTNAE42swecm3/cj9mk4LbJu8/npQge00LXUFQKhHYgiryTsb+D61/xwJWmtm8NmP8M2MvBeaa2WZJC/BE0PuoaU+Tvj1t9OVh2Hx3ZnavpPXA14FHJX2LDyatPh84HDjVzN6VtJ00C8tqhnQexw5zOAE3m9kvR6A/CEoh7rEFdeItYILb64DTJR0PIOlgSVPbfG4C8Kqk/UmB4APjmdku4E1JX/C2C4En2TdWAhcPPcEp6bAWfQZJyZlp0vQ+ko4DtpnZrcDDwMnsfQ4gVcl+zYPaF4HJwwkzs7eAHZLm+jEOdJ2PA5dk7lMeLemIXN4GQcFEYAvqxG3AY5JWmdnrpIoM90lqkJbtTmzzue+R7isNAs9n9i8HFkna5A9QXER6mKQBTCfdZxsxZvYYaelygy+lXtei29XAQklbaF/5+JvAVh/jJOBuS9UYBiVtlbQEuAf4rI8zv8m/dlxIqm7RIN0L/ISZPQHcC6z1sQbYO4AGwf8Nkd0/CIIgqBUxYwuCIAhqRQS2IAiCoFZEYAuCIAhqRQS2IAiCoFZEYAuCIAhqRQS2IAiCoFZEYAuCIAhqxX8BXq+BHIl+szUAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcFVX/wPHPYRFEEQU3EBVzRwRUVBDNfS9cUnFNsz2znurpyXpK7cl6emy3zDIzzcqlxdTUICs1d1FRATdUXNhc2WTnnt8fc+F3JZYL3MtlOe/X6768d+bMzPfO4P3OOTNzjpBSoiiKoigVZWXpABRFUZSaQSUURVEUxSRUQlEURVFMQiUURVEUxSRUQlEURVFMQiUURVEUxSRUQlHMSggxSwixx9JxKCCEmCaECC1h/gAhxNXKjKnQ9j8TQrxmqe2bixAiTQhxj6XjqAwqoVQiIUSMEGJIoWkFP7hCCDshxJdCiEtCiFQhRLgQYmQp63QVQnwhhIjT/+FeEEKsEkJ0Mud3MRUhxMNCiNP675sohNgmhHDUz1slhFhUhnVVKHnpl8/T70fDl1t511mVSCm/lVIOy/8shJBCiHaWjMmQlPIJKeUbYPnkZkpSyvpSyguWjqMyqIRStdgAV4D+gBPwKrBBCOFRVGEhhAuwD3AA+gGOQHdgFzC0mGVsTB10eQkh+gNvAVOklI5AZ2C9ZaNiv/4HwPAVZ8oNVKVjUFUIIawtHYNiAlJK9aqkFxADDCk0bRawp4RlTgAPFDNvEXAcsCpheQ9AAg8Dl4Hd+ulBQCSQBOwEOhssI4F2Bp9XAYv07wcAV4EXgGtAPPCQQVkXYDOQAhwC3iju+wH/BH4uZt5jQA6QDaQBW/TT5wHngVQgChinn94ZyATy9OWT9NPtgHf13z0R+AyoW8w2SzsWMfqYTwDJaMnP3mD+fUC4fp/uA7wLLfuSftkstJOH7sAx/Xf5Xr++/P0cAdxvsLwtcAPoVkRcu/L/RoBA/fEbrf88GAgv/P2A3fpyd/T7K7i0Y1vEdncC/9Uf5xRgE+BsMP97IEG/r3YDXQr9TS0DtuljGKKftgioB2QAOn1saYAbkA64GKyjO3AdsC0itoX67X+j378ngQ7Ay/rvdgUYZlD+IeCUvuwF4HGDefn75RX9MYgBphX6Lp8Bv+mX3wW0Lur/k77sUmCrvuxBoK1B2WHAGf0++1S/rkcs/dtl7EvVUKowIUQztP8EkcUUGQJslFLqjFhdf7Qf3eFCiA7AWuAfQBO0/9RbhBB1jAytOVoNqgVaoloqhGikn7cU7YfdFZitfxXnoD6e14UQgUIIu/wZUsrlwLfAYqnVEu7XzzqPVhtzAl4HvhFCuEopTwFP8P81jIb68m+j7UNfoJ0+5vlGfs+iTAJGAG0Ab7QfaYQQ3YCVwONoSfVzYLPhdwKmAKOBhmitAxvRfmCc0Y7HOIOyXwPTDT6PAuKllMeKiGkX2o8eaMf5AnCvweddhReQUubP99Hvr/yaYUnHtigPoh1jVyAXWGIwbzvQHmgKHEU7noamAm+i1awLmiqllHeAkUCcvLuWuBNt/+ebAayTUuYUE9v9wBqgEVriDkHb7y2A/6Ado3zX0E4IGqAllw+EEN0N5jcHGuuXnQksF0J0NJg/De3kqTHaSUXh72poMtrfbiMgWr8PEEI0Bn5AS3ouaImlTwnrqXosndFq0wvtzCYN7Qw2/5VOEWfFaGekO4DPS1hfNPCEwecg/TpTgVD9NA+0M6R7DMq9Bmww+GwFxAID9J9Lq6FkADYG868B/oA1Wq2ik8G8t4r6fgbzRwJb9HGnAe8D1oW3W8Ly4cAY/ftZhtsCBNrZr+EZYABwsZh1zUL7UTQ8PucLHb/pBp8XA5/p3y8D3ii0vjNAf4NlZxvMu1e/z4XBtD0G+9lNfxwb6D//APyrmLgHAyf0738FHgEO6D/vAsYXs38KH+dij20x290JvG3w2ROtRmldRNmG+u05GRzbrwuVKfx3drXQ/GBgr/69NVrtp1cxsS0EfjP4fL/+7yv/b8tRH0/DYpb/GXjWIJZcoJ7B/A3AawZxrzOYVx+tptyy8H7Wl11hUHYUcFr//kG0EyLDv98rqBqKUoKxUsqG+S/gqcIFhBBWaGdW2cDTJazrJtqZIQBSys36dT4HFK5tXDF47wZcMlhOp5/fwsjvcFNKmWvwOR3tP1ET/v86UL5LlEBKuV1qtQ9nYAzaj94jxZUXQjyov1khSQiRBHihnRUWpQna9aUjBuV/1U8vzgHD4yOlbFtofoLB+/zvDdAaeCF/O/pttUTb1/kKH4NYqf/lKDxfamfke4EHhBAN0RJvcWe9+4EO+hqtL1rtpqX+jLcXWnOTsYo7tsUpfKxtgcZCCGshxNtCiPNCiBS0hAp3HyvDZY2xCfAUQrRBu0aYLKU8VEL5RIP3GcANKWWewWfQfzchxEghxAEhxC39sRtVKNbbUqs55btEMcdWSpkG3Co031Bxf0NuhdYj0Zraqg2VUKoYIYQAvgSaobWLF1edB/gdGKtPQKUx/OGKQ/sBNNxmS7QzZtD+yB0Myjc3Yv2gtWfn6teVr5UxC0opdVLK34E/0JJE4ZgRQrQGvkBLsi765BmBdib3t/Jo7d0ZaG33+QnCSUpZ0g9keV0B3iyUjByklGsNyhjGFw+00O/7fIb7DWA1WrPXRLQz11iKIKVMB44AzwIRUspstGs4z6PVsG5U6JuVrPCxzkHb71PRThCGoDWheejLGH7fkro6/9s8KWUmWs1gOlpz15ryBm1I3yz5I9q1tmb6v6tthWJtJISoZ/C5Fdr/o3wF+0EIUR/tBKmsN3PEA+4G6xGGn6sDlVCqnmVo1zrul1JmlFL2fbR22DVCiLZC44h2llqSDcBoIcRgIYQt2kXYLLQfIdCakabqzzJHoLXDl0p/9vcTsFAI4SCE8ERrby6SEGKMEGKyEKKRPvZe+m0d0BdJBAzv36+H9kNzXb/8Q/x/8skv755/LUhf8/oCrT28qX6ZFkKI4cZ8nzL6AnhCCNFb/13qCSFG598CXYT9aM0iTwshbIQQY9BqE4Z+Rrvw/CxaraMku9ASbf71kp2FPhel8P4tj+lCCE8hhAPadYkf9H8Hjmh/UzfRTk7eKuN6EwEXIYRToelfo9VigzBRQkGrzduhPyHS36o/rIhyrwsh6ggh+qFdb/neYN4oIURf/d/eG2g13bLWwLYCXYUQY/V3As7B+JO5KkEllCpEfwb+OFpCSDB4DmJaUeX1Z57+aBfB96C1uYej/Wd+srjtSCnPoJ3lfYx2Nnk/WgLL1hd5Vj8tCe1i489l+BpPo1XhE9Dai78qoext4FHgHNpdQt8A70gp85t2vkRr4kgSQvwspYwC3kP7MU4EuqI1C+X7A+0GhgQhRP5Z+Uto15oO6JtedgCGF1MLCyjiOZSepX1pKWWY/rt8ov9e0egv2BdTPhsYj3bhOwntePyC9iOcXyYD7cy5DVqiLskutOO+u5jPRVkIrNbv30kllCvJGrTjnADYA8/op3+N1iwUi3Y33oGiFi6OlPI02o0KF/Txuemn70W7++uolLLE5tQybCtVH/cGtGM3Fe1ORUMJ+nlxaE2PT+hjzPcdsACtqasHd99QYWwcN9Bqo4vRErEnEIbB30RVJ+5uwlUUxVKEEAfRLvJ/ZTBtPtBBSlnmHyhzE0LsBL6RUq6o5O3+AXxXWdsVQgxA+55FNj8JIVah3UDwqom3a4V2DWWalPJPU67bXFQNRVEsRAjRXwjRXN/kNRPtNuRfDeY7o9VgllsqxqpGX1vsjuUfgDULIcRwIURD/XWdV9Cu45SpdmdJFksoQoiJQohIIYROCOFXQrkRQogzQohoIcS8IuYvEUKkmTdaRTGLjmgPpiahXceaIKWMBxBCPIp2oX+7lLIsd2nVWEKI1WhNlv/QN1PVRAFoz1rlN0WPNeJaapVhsSYvIURntLbQz4F/6tugC5exBs6i3SJ4FTiM1k1HlH6+H1p7/zgz3bmjKIqiGMliNRQp5Sn9xeGS9AKipZQX9Bcx16HdipifbN4B/mXeSBVFURRjVPVO6lpw98NPV4He+vdPA5ullPF338p/NyHEY2j9QlGvXr0enTpVi054FUVRqowjR47ckFKW9EAwYOaEIoTYQdH3Uf9bSrmpAut1Q7u9bkBpZaXWJ9RyAD8/PxkW9reWNUVRFKUEQgijbtE2a0KRUg4pvVSJYrn7SVx3/bRuaB39RetrJw5CiGgpZZUZ20FRFKW2qepNXoeB9vq+e2LReumcKqWMxKDmI4RIU8lEURTFsix52/A4oY3IFgBsFUKE6Ke7CSG2Aeg7qXsardvpU2g95BbXlbuiKIpiQbXqSfmKXEPJ00msrYq/+K8oNV1OTg5Xr14lMzPT0qEoZmJvb4+7uzu2trZ3TRdCHJFSFvu8YL6q3uRVJbwXeoY/z1xjy9N9KemOMkWpya5evYqjoyMeHh7q/0ENJKXk5s2bXL16lTZt2pRrHarrFSM0bWBPRGwKpxNq6sO5ilK6zMxMXFxcVDKpoYQQuLi4VKgGqhKKEUZ5NcfaSrD5eFmHN1CUmkUlk5qtosdXJRQjuNS3o1/7xmwOj6M2XXNSFEUpC5VQjBTk40ZsUgZHL9+2dCiKUmvVr393l32rVq3i6adLGiX778LDw9m2bZspw7rLqlWraNKkCb6+vvj6+vLggw+WeR07d+7kvvvuM0N05qUSipGGdWmOnY0Vm8NVs5eiVFe5ubklJpTc3FyTbCc4OJjw8HDCw8P5+uvSBtusOVRCMVJ9OxsGd27K1pPx5ObpLB2OoiiFbNmyhd69e9OtWzeGDBlCYmIiAAsXLmTGjBkEBgYyY8YM5s+fz/r16/H19WX9+vV/m5+Xl8eLL75Iz5498fb25vPPPy/YxjvvvFMwfcGCBWWKLzw8HH9/f7y9vRk3bhy3b2utHdHR0QwZMgQfHx+6d+/O+fPn71ru8OHDdOvW7W/TqyJ123AZBPm0YNvJBPadv8m9HUrtJ01RaqzXt0QSFZdi0nV6ujVgwf1dSiyTkZGBr69vwedbt24RFBQEQN++fTlw4ABCCFasWMHixYt57733AIiKimLPnj3UrVuXVatWERYWxieffAJoCcdw/vLly3FycuLw4cNkZWURGBjIsGHDOHfuHOfOnePQoUNIKQkKCmL37t3ce++9f4tz/fr17NmzB4Bnn32Whx56iAcffJCPP/6Y/v37M3/+fF5//XU+/PBDpk2bxrx58xg3bhyZmZnodDquXNH6xN23bx9z585l06ZNtGrVquI72cxUQimDAR2b4Ghnw+bjcSqhKIoF1K1bl/Dw8ILP+ckBtOdkgoODiY+PJzs7+65nKYKCgqhbt26x6zWcHxoayokTJ/jhhx8ASE5O5ty5c4SGhhIaGkq3bt0ASEtL49y5c0UmlODg4IKElb+OpKQk+vfvD8DMmTOZOHEiqampxMbGMm7cOEB7sDDfqVOneOyxxwgNDcXNza1sO8pCVEIpA3tba4Z7NSckIoFFY72wt7W2dEiKYhGl1SQsYe7cuTz//PMEBQWxc+dOFi5cWDCvXr16JS5rOF9Kyccff8zw4cPvKhMSEsLLL7/M448/ftf0pUuX8sUXXwCY9GK/q6srmZmZHDt2rNokFHUNpYzG+LqRmpXLzjPXLB2KoigGkpOTadGiBQCrV68utpyjoyOpqcU/pDx8+HCWLVtGTk4OAGfPnuXOnTsMHz6clStXkpamjTgeGxvLtWvXmDNnTsEF+OJ++J2cnGjUqBF//fUXAGvWrKF///44Ojri7u7Ozz//DEBWVhbp6ekANGzYkK1bt/Lyyy+zc+fOsu0MC1EJpYwC7nGhcf066iFHRaliFi5cyMSJE+nRoweNGzcuttzAgQOJiooquChf2COPPIKnpyfdu3fHy8uLxx9/nNzcXIYNG8bUqVMJCAiga9euTJgwocTEVNjq1at58cUX8fb2Jjw8nPnz5wNaclmyZAne3t706dOHhISEgmWaNWvGL7/8wpw5czh48GAZ9oZlqM4hy2HBpgjWHb5C2KtDcLS3LX0BRakBTp06RefOnS0dhmJmRR1nYzuHVDWUcgjydSMrV8dvUYmWDkVRFKXKUAmlHLq3aoR7o7psUg85KoqiFFAJpRyEENzv48ae6BvcTMuydDiKoihVgkoo5RTk40aeTrItIqH0woqiKLWASijl1Km5Ix2a1WdzeKylQ1EURakSVEIpJyEEQT5uHI65TWxShqXDURRFsTiVUCrgfh/tIaZf1DMpimJ2AwcOJCQk5K5pH374IU8++SSRkZEMGjSIjh070rZtWxYsWIBOp3XiWrg7eV9fX6KioizxFWo8lVAqoLVLPXxaNlR3eylKJZgyZQrr1q27a9q6deuYPHkyQUFBzJs3jzNnznDy5EkOHTrERx99VFDOsDv58PBwPD09Kzv8WkEllAoa4+NGVHwK0dfSLB2KotRoEyZMYOvWrWRnZwMQExNDXFwc0dHRBT0CAzg4OPDJJ5/wzjvvWDLcWkl1DllB93m7smhrFJuPx/H80A6WDkdRKsf2eZBw0rTrbN4VRr5d7GxnZ2d69erF9u3bGTNmDOvWrWPSpElERkbSo0ePu8q2bduWjIwMkpKSgLu7kwfYv39/ib0PK+WjaigV1LSBPf73uLA5PFaNN68oZmbY7LVu3TqmTJli1HKFm7xUMjEPVUMxgSAfN+b9dJKTscl4uze0dDiKYn4l1CTMacyYMTz33HMcPXqU9PR0evTowbFjx9i9e/dd5S5cuICLiwsNG6r/j5VJ1VBMYKSXK7bWQo03ryhmVr9+fQYOHMjs2bMLaifTpk1jz5497NixA9BGdXzmmWd4/fXXLRlqraQSihGOR6zj+9Dnip3v5GBL/w5N2XIijjydavZSFHOaMmUKx48fL0godevWZfPmzbz55pt06NCBxo0bExgYyLRp0wqWyR9DPv+1b98+S4Vfo6kmLyNsj/qW79MvMjI1nvqOrkWWCfJ1Y8epRA5dvEVAW5dKjlBRao+xY8f+7Xqll5cXf/75JwA///wzzz//PFOnTqV169bMmjWLWbNmWSDS2kfVUIwwovNksoVg55FPiy0zpHNTHOpYq4G3FMXCxo4dy4ULF2jdurWlQ6l1VEIxgrdnMM3yJCGXfy+2jEMdG4Z6NmN7RDzZubpKjE5RFKVqUAnFCFbWNgxzbMteXQopyVeKLRfk40ZSeg5/nbteidEpiqJUDSqhGGmE51RyhGDnkWXFlunXvglOdW1Vs5eiKLWSSihG6tp5Iq55kpCrfxZbpo6NFaO6uvJbVCLp2bmVGJ2iKIrlqYRiJGFlxfAG7dmnSyU5+XKx5YJ83EjPzmPHqWuVGJ2iKIrlqYRSBiO6TCdXCP4I+6TYMr3aONOsgZ16yFFRzMDa2vqu50neftt0T+yHh4ezbdu2gs/FdXsfFxfHhAkTTLbd8oiJicHLy8uiMRTFIs+hCCEmAguBzkAvKWVYMeVGAB8B1sAKKeXb+ukCWARMBPKAZVLKJeaO27PjOFrsX0jI1V2MK6aMtZXgfm83Vu+PITk9BycHW3OHpSi1Rt26dQkPDzfLusPDwwkLC2PUqFEF04KDg/nkk7+fQP7www9miaGy5ebmYmNjujRgqRpKBDAe2F1cASGENbAUGAl4AlOEEPmDGMwCWgKdpJSdgXVFrsTEhJUVw506cFDeIen2xWLLBfm6kZMn+TUyvjLCUpRaLTk5mY4dO3LmzBlAe5L+iy++AODJJ5/Ez8+PLl26sGDBgoJlDh8+TJ8+ffDx8aFXr14kJyczf/78gifq169fX+z2DGsH6enpTJo0CU9PT8aNG0fv3r0JC9POj0NDQwkICKB79+5MnDiRtDRtiAsPDw8WLFhA9+7d6dq1K6dPnwZg165dBTWhbt26kZqaipSSF198ES8vL7p27VpkXP7+/kRGRhZ8HjBgAGFhYdy5c4fZs2fTq1cvunXrxqZNmwCt5hUUFMSgQYMYPHhwufd7USxSQ5FSngJtGN0S9AKipZQX9GXXAWOAKOBJYKqUUqdfX6VdsBjh9SArD7zK72Gf8MDQ94os07WFEx4uDmwKjyO4Z6vKCk1RKs3/Dv2P07dOm3SdnZw78VKvl0osk5GRga+vb8Hnl19+uaAWMWvWLJ599llu377No48+CsCbb76Js7MzeXl5DB48mBMnTtCpUyeCg4NZv349PXv2JCUlBQcHB/7zn/8QFhZWUCNZtWpVkd3eG/r0009p1KgRUVFRREREFMR248YNFi1axI4dO6hXrx7/+9//eP/995k/fz4AjRs35ujRo3z66ae8++67rFixgnfffZelS5cSGBhIWloa9vb2/PTTT4SHh3P8+HFu3LhBz549uffee++KITg4mA0bNvD6668THx9PfHw8fn5+vPLKKwwaNIiVK1eSlJREr169GDJkCABHjx7lxIkTODs7l+dQFasqX0NpARg+9HFVPw2gLRAshAgTQmwXQrQvbiVCiMf05cKuX6/48yGd2t9PqzwIifur2DL5483vv3CTaymZFd6moiia/Cav/FdwcDAAQ4cOpWvXrsyZM4cVK1YUlN+wYQPdu3enW7duREZGEhUVxZkzZ3B1daVnz54ANGjQoNhmn9K6vd+zZw+TJ08GtO5fvL29AThw4ABRUVEEBgbi6+vL6tWruXTpUsFy48ePB6BHjx7ExMQAEBgYyPPPP8+SJUtISkrCxsaGPXv2MGXKFKytrWnWrBn9+/fn8OHDd8UwadKkgia4DRs2FFzfCQ0N5e2338bX15cBAwaQmZnJ5cuXC/aXqZMJmLGGIoTYATQvYta/pZSbKrh6OyBTSuknhBgPrAT6FVVQSrkcWA7g5+dX4Z4bhZUVwxt2YmXKKW7disbZuV2R5YJ83VjyRzS/nIhndt82Fd2solQppdUkKptOp+PUqVM4ODhw+/Zt3N3duXjxIu+++y6HDx+mUaNGzJo1i8zMyjnBk1IydOhQ1q5dW+R8Ozs7QLvJIDdXe8Rg3rx5jB49mm3bthEYGEhISIhR22rRogUuLi6cOHGC9evX89lnnxXE8OOPP9KxY8e7yh88eJB69eqV96uVyGw1FCnlECmlVxEvY5NJLNp1knzu+mmg1VZ+0r/fCHibJmrjDPeaSZ4Q7Cjhbq92TR3xdG3AJvWQo6KY3QcffEDnzp357rvveOihh8jJySElJYV69erh5OREYmIi27dvB6Bjx47Ex8cXnOmnpqaSm5uLo6MjqampZdpuYGAgGzZsACAqKoqTJ7VRLP39/dm7dy/R0dEA3Llzh7Nnz5a4rvPnz9O1a1deeuklevbsyenTp+nXrx/r168nLy+P69evs3v3bnr16vW3ZYODg1m8eDHJyckFtaThw4fz8ccfF3SkeezYsTJ9t/Koyk1eh4H2Qog2Qog6wGRgs37ez8BA/fv+QMlHysQ6tBuFR54gNH5vieWCfN04fiWJSzfvVFJkilKz5V9DyX/NmzePM2fOsGLFCt577z369evHvffey6JFi/Dx8aFbt2506tSJqVOnEhgYCECdOnVYv349c+fOxcfHh6FDh5KZmcnAgQOJioq666J8ad3eP/XUU1y/fh1PT09effVVunTpgpOTE02aNGHVqlVMmTIFb29vAgICCi6+F+fDDz8saDaztbVl5MiRjBs3Dm9vb3x8fBg0aBCLFy+mefO/N/xMmDChYEjkfK+99ho5OTl4e3vTpUsXXnvttYru/tJJKSv9BYxDq2VkAYlAiH66G7DNoNwotGRxHq2pLH96Q2ArcBLYD/gYs90ePXpIU/n4p2Dp/VUXef36qWLLXL2dLlu/9Iv8+PezJtuuolhKVFSUpUOocnJzc2VGRoaUUsro6Gjp4eEhs7KyLBxVxRR1nIEwacRvrEVqKFLKjVJKdymlnZSymZRyuH56nJRylEG5bVLKDlLKtlLKNw2mJ0kpR0spu0opA6SUxyv7OwzvOgudEOwIW1psmRYN69LToxGbwuPUePOKUgOlp6fTt29ffHx8GDduHJ9++il16tSxdFgWU5WbvKq09u1G0DZPEJKwv8RyQb4tOHctjRNXkyspMkVRKoujoyNhYWEcP36cEydOMHLkSEuHZFEqoVTAcGcvjpDJtcSIYsuM9XWjvp0NX+0t/kFIRakuVE27Zqvo8VUJpQKG+zyMFILfjhY/kqOjvS0T/dz55UQ8ieqZFKUas7e35+bNmyqp1FBSSm7evIm9vX2516HGlK+Ae9oMpv1OK0ITDzKthHKz+niwal8Ma/Zf4p/DO5ZQUlGqLnd3d65evYopHhBWqiZ7e3vc3d3LvbxKKBU03NmbT5LCSUgIp3lz3yLLtHapx5DOzfj24CWeHtQOe1vrSo5SUSrO1taWNm3UQ7pK8VSTVwUN93kEgN+OFj+SI8DswDbcTs/h52OxJZZTFEWprlRCqSAPj/500lkRkni4xHL+9zjT2bUBK/deVG3QiqJUmptpWTz2dRjxyRlm35ZKKCYw3MWX41Y5xMcdKbaMEILZgR6cTUxjb/TNSoxOUZTa6npqFlO+OMDuc9e5dDPd7NtTCcUEhnd7DIDQY5+VWO5+Hzca16/DSnULsaIoZnYtNZMpXxzgyq0MVs7qif89LmbfpkooJtCyZSCeOmtCrhU58GQBe1trpvu35o/T17hwPa2SolMUpbZJTMlk8vIDxCVl8NVDPenTtnGlbFclFBMZ3rg7J61yuXr1QInlpvVuTR1rK1bti6mcwBRFqVXikzOYvPwAicmZrJ7dq1JqJvlUQjGRYQXNXstLLNfE0Y4gXze+D7tKcnpOZYSmKEotEZuUQfDnB7iemsXXD/emp4fpB9EqiUooJuLu7k9XnQ0hN46WWvahQA8ycvJYH3a5EiJTFKU2uHo7ncnL93P7TjZrHu5Fj9aNKj0GlVBMaHhTP6Ks8rh8eU+J5bq4OeF/jzOr910iN09XSdEpilJTXbmVTvDnB0hOz+GbR3rTrVXlJxNQCcWkhnV7AoDQ8C9KLTs7sA2xSRmERiWaOyxFUWqwSzfvEPz5ftKycvnuUX98Wja0WCyylwN5AAAgAElEQVQqoZiQq1sPfHS2hNwML7Xs4M7NaOXswJd71C3EiqKUz8Ubdwj+/AAZOXl892hvvFo4WTQelVBMbHiznpy20hETs6vEctZWgll9PDhy6TbhV5IqKTpFUWqK89fTCP58P9l5Or571J8ubpZNJqASiskN7f4kACHHV5RadqKfuxorRVGUMou+lsrk5QfQScnaR/3p7NrA0iEBKqGYXPPmvnSXdQi5daLUso72tkzya8nWE/EkJKuxUhRFKd3ZRC2ZAKx7zJ+OzR0tHNH/UwnFDIY16805Kx0XLv5eatlZfTzIk5I1B2LMH5iiKNXaqfgUJi8/gJUQrHvMn3ZNq04yAZVQzGJo96cQUhJy/MtSy7ZycWBo52Z8d/AyGdl5lRCdoijVUWRcMlO/OEAdayvWPx5A2yb1LR3S36iEYgZNm3nRA3tCbhU/1ryh2X31Y6WEq7FSFEX5u4jYZKatOEhdW2vWP+5Pm8b1LB1SkVRCMZPhzQM4by05F/1rqWV7t3HG07UBK/eosVIURbnb4ZhbTFl+gHp1bFj3WACtXapmMgGVUMxmiN8crKQk5OSqUssKIZjdtw3nrqWxJ/qG+YNTFKVa+OvcdWZ8eZAmjnZ8/0QArVwcLB1SiVRCMZPGjTvRU9Ql5HYUUld69yr3+7jSuL4dK9WDjoqiACGRCTy8Kow2jeuz/vEA3BrWtXRIpVIJxYyGuQYSYy05G72t1LJ2NtbM8G/Nn2euc16NlaIotdrPx2J56tujeLo1YN2j/jRxtLN0SEZRCcWMhvg9rTV7Raw2qvw0/1baWCl7Y8wbmKIoVda3By/x3IZwenk4880jvXFysLV0SEZTCcWMnJ3b0Us4EJJ02qhmr8b17Rjj68YPR9RYKYpSGy3ffZ5/b4xgYMemfPVQT+rb2Vg6pDJRCcXMRra4l8vWcDxqnVHlHwpsQ0ZOHusOq7FSFKW2kFLyfugZ3tp2mtHernw2vQf2ttaWDqvMVEIxs+H+/6SeTrLueOld2gN4ujUg4B4XVu+LUWOlKEotIKXkjV9OseSPaCb5ubNkcjfq2FTPn+bqGXU1Uq9+c4IcWhOac52bN84atczsvm2IS84kJFKNlaIoNVmeTvLyTydZufciDwV68PZ4b6ythKXDKjeVUCrB5F4vkCMEP+1bZFT5QZ2a0trFgZWqF2JFqbFy8nQ8u+4Y6w5fYe6gdsy/zxOrapxMQCWUSnFPm0H0xp4NN46Sm1N6r8JqrBRFqdkyc/J4Ys0RfjkRz7yRnXhhWEeEqN7JBFRCqTRT2j1AgrVg1+GPjCo/0a8ljmqsFEWpce5k5TJ71WF+P32NN8Z68UT/tpYOyWQsllCEEBOFEJFCCJ0Qwq+EciOEEGeEENFCiHkG0wcLIY4KIcKFEHuEEO0qJ/Ly6d/rHzTPk6w994NR5evb2TCppzZWSnxyhpmjUxSlMiSn5zD9y4McvHiL9yf5MMO/taVDMilL1lAigPHA7uIKCCGsgaXASMATmCKE8NTPXgZMk1L6At8Br5o33IqxsbVnYuNuHCSTCxf/MGqZWX08APjkj2gzRqYoSmW4kZbFlC8OEBGbzNKp3Rnf3d3SIZmcxRKKlPKUlPJMKcV6AdFSygtSymxgHTAmfxVA/riXTkCceSI1nQf6vIatlKw//L5R5Vs6OzDdvzVrD13mbGKqmaNTFMVcrtxKZ+Jn+7lwI40VM3sywqu5pUMyi6p+DaUFcMXg81X9NIBHgG1CiKvADODtolYghHhMCBEmhAi7fv26WYMtjUvjDgyzbcLmOzGkp10zaplnBrennp0Nb207ZeboFEUxh6i4FMYv28etO9l883Bv+ndoYumQzMasCUUIsUMIEVHEa0zpS5fqOWCUlNId+Aoo8rRfSrlcSuknpfRr0sTyB3Kyz6OkWQl+2fumUeWd69Vh7qB27Dxznb/OWTYhKopSNvvP3yT48/3YWAm+fyIAPw9nS4dkVmZNKFLKIVJKryJem4xcRSzQ0uCzOxArhGgC+EgpD+qnrwf6mDB0s/HxnExnnTVrY/80qn8vgJl9PGjpXJc3t54iT6cG4FKU6mDbyXhmrjxEcyd7fnyyDx2aVa3x382hqjd5HQbaCyHaCCHqAJOBzcBtwEkI0UFfbihQLdqEhJUVk1sOIdpaEnZilVHL2NlY89KITpxOSOWHI1dKX0BRFIv6en8Mc747Sld3J75/onqMZWIKlrxteJz++kcAsFUIEaKf7iaE2AYgpcwFngZC0BLGBillpH76o8CPQojjaNdQXrTE9yiPkX1eoYFOsi7iK6OXGd3Vle6tGvJu6FnuZOWaMTpFUcpLSsm7IWeYvymSwZ2a8e0jvWnoUMfSYVUaS97ltVFK6S6ltJNSNpNSDtdPj5NSjjIot01K2UFK2VZK+Wah5btKKX2klAOklBcs8T3Ko66DM+Pqt+OP3NtcS4wwahkhBP8e7cn11Cw+311tvqqi1Bq5eTrm/XiST/6MZnLPlnw2vXu17DG4Iqp6k1eNFez/InnAD/uMuzgP0KN1I0Z7u7J893kSkkvvwkVRlMqRkZ3HE98cZX2Y1i/Xf8d3xca69v28GvWNhRA/CSFGCyFq3x4yk5YtAwkU9fn+9klysu4Yvdy8EZ3Q6eDd0NIe4VEUpTIkpWcz/cuD/H46kTfGdKkx/XKVh7EJ4lNgKnBOCPG2EKKjGWOqNaZ0CuaGteD3g+8avUxLZwceCvTgx6NXiYxLNmN0iqKUJi4pg4mf7efkVe3p9xkBHpYOyaKMSihSyh1SymlAdyAG2CGE2CeEeEgIUX0GPK5iAnvMwT0P1l7YXKblnhrYjoZ1bXlz6ymkVLcRK4olnE1M5YFl+0hIzmT17F6M6upq6ZAszugmLCGECzAL7Qn1Y8BHaAnmN7NEVgtY29QhuGlvjopszkZvN3o5p7q2/GNIB/adv8kfp4174l5RFNMJi7nFhGX7yNVJ1j8eQEBbF0uHVCUYew1lI/AX4ADcL6UMklKul1LOBeqbM8CablzfV7HTSdaFGdetfb6pvVtxT5N6vLntFDlqqGBFqTS/RSUybcVBXOrb8dOTffB0a1D6QrWEsTWUJVJKTynlf6WU8YYzpJTFdj2vlM6poQcj7ZrzS8ZVUpKNf2jR1tqKl0d25sL1O6w9dNmMESqKkm/docs8viaMTs0d+eGJAFo6O1g6pCrF2ITSSAgxvtBrsBCiqVmjqyUmd3+KDCvB5jLcQgwwpHNT/O9x5sMd50jJzDFTdIqi6HSSt7efZt5PJ+nXvgnfPeqPS307S4dV5RibUB4GVgDT9K8vgJeAvUKIGWaKrdbo0mk83job1sfvRZdn/FPwQgheHe3J7fRslv6pxkxRFHPIyM5jzndH+WzXeab2bsWKmX7Us7OxdFhVkrEJxRboLKV8QEr5ANpgVxLojZZYlAqa7DGaGGs4cGx5mZbzauHEuG4t+GpPDFdupZspOkWpna6lZDJ5+X5+jUzg1dGdeXOsF7a18IFFYxm7Z9yllIkGn68BLaWUtwDV1mICw/u8hLNOsi7q2zIv++LwjlhZweIQ9bCjopjKqfgUxi7dy9nENJbP8OORfvfU2gcWjWVsQtkphPhFCDFTCDET2KSfVg9IMl94tUcdO0fGN+jELl0ycXFhZVrW1akuj/W7hy3H4zh2+baZIlSU2uPP09eYsGwfeVLy/RMBDPVsZumQqgVjE8octEGsfPWvr4E5Uso7UsqB5gqutpkU8DIAG/YXOfhkiR7v35YmjnYsUg87KkqFrN4Xw8OrD+PRuB6b5vTFq4WTpUOqNkpNKEIIa+APKeWPUsrn9K8fpPrVMjlXtx70t3Lip5TTZGWWrVuVenY2vDC0A0cu3WZ7RIKZIlSUmis3T8fCzZEs2BzJoE7N2PB4AM2d7C0dVrVSakKRUuYBOiGEStOVYEqXGdy2EoTuX1zmZSf6taRTc0fe3n6arNw8M0SnKDVTWlYuj34dxqp9MTzStw2fz+ih7uQqB2ObvNKAk0KIL4UQS/Jf5gystvLv9hgeeYJ1MdvKvKy1leCVUZ25fCudNfsvmSE6Ral5YpMymLBsH7vP3eDNcV68ep8n1lbq4nt5GJtQfgJeA3YDRwxeiokJKysmuwZywiqXyFM/lnn5ezs0oX+HJiz5/Ry372SbIUJFqTmOX0li7NK9xN7OYNVDPZnWu7WlQ6rWjO1teDWwATggpVyd/zJvaLVXUOCr1NVJ1h5bVq7l/z26M2lZuSz545yJI1OUmuPXiHiCl+/HzsaKn57qQ7/2TSwdUrVnbOeQ9wPhwK/6z75CiLL1ua4YzbFBC+6r686vWQkk3b5Y5uU7NHNkcq9WrNl/iQvX08wQoaJUX1JKPtt1nie+OUpn1wb8PCeQ9s0cLR1WjWBsk9dCoBf6Z06klOHAPWaKSQEm+z1LlpVg495F5Vr+uSEdsLe15pWNJ8nTqRvyFAUgO1cb9/3t7ae5z9uVtY/601j1yWUyxiaUHCll4ftYVZ/pZtSh3Uh6SDvWXztEXm7Zr4U0cbRjYVAXDly4xaeqny9FISE5k+Dl+wvGfV8yuRv2ttaWDqtGMTahRAohpgLWQoj2QoiPgX1mjEsBJt8TRKw17Dr0YbmWf6B7C8b6uvHBjrMcjrll4ugUpfo4dPEW9328hzMJqSyb1p0XhnXESt3JZXLGJpS5QBcgC1gLpAD/MFdQimZwwD9plQdLz3xbpl6I8wkhWDSuK62cHXh27TGS0tVdX0rtIqVk1d6LTP3iAI72NmyaE8hINVSv2Rh7l1e6lPLfUsqeUko//ftMcwdX29naOjCn7XjOWunY/td/yrWO+nY2fDylO9fTsvjXDydUtyxKrZGRnccLG46zcEsUAzo2ZdPT6uK7uRl7l1cHIcRyIUSoEOKP/Je5g1NgRN/X6KCzYumFjeTklK97+q7uTrw0ohOhUYl8c0A98KjUfFdupfPAsn1sDI/l+aEdWD6jBw3sbS0dVo1nbJPX98Ax4FXgRYOXYmZW1jY803kmV6xh45+vlHs9D/dtw8COTXhj6ymi4lJMGKGiVC1/nbvO/Z/s4crtdFbO7Mkzg9ur6yWVxNiEkiulXCalPCSlPJL/MmtkSoF7e/0DX2nL51d3kJlRvu7phRC8O9GHhnVtmbv2KOnZZb8moyhVmZSST3dGM3PlIZo52rPl6b4M7KRGKa9MxiaULUKIp4QQrkII5/yXWSNTCggrK571fYZr1oK1v/+z3OtxqW/Hh5N9uXDjDgs3R5owQkWxrLSsXJ769iiLfz3DqK6ubJzTB4/G9SwdVq1jbEKZidbEtY//78erbKNAKRXi5zuLQBz48vpBUlNiy72ePm0b8/TAdmwIu8qm8PKvR1GqivPX0xi7dC+hUYm8OrozH0/phkMd1VOwJRh7l1ebIl7qSflK9kzvl0m2Eqz6/fkKrefZwe3xa92If2+M4NLNOyaKTlEq329RiYz9ZC+37mSz5uFeapheCysxoQgh/mXwfmKheW+ZKyilaJ6dxjLMuiFrkiK5ceN0uddjY23Fh5N9sRLwzNpjZOeqTg+U6iVPJ3k/9AyPfh1Gmyb12DK3L33aNrZ0WLVeaTWUyQbvXy40b4SJY1GM8HTfN8gW8OUfFbvJzr2RA4sneHP8ajLvhp4xUXSKYn5J6dk8vPowS/6IZmIPdzY8HkCLhnUtHZZC6QlFFPO+qM9KJWjjMYAxdq6sT79IXFzFLmON8HJlun8rlu++wM4z10wUoaKYz/7zNxnx4V/sjb7BorFeLJ7grfrjqkJKSyiymPdFfVYqyZMDFiOAZTvnVXhdr472pFNzR17YcJxrKarzA6VqysnT8W7IGaauOIBDHWs2PhXIdP/W6npJFVNaQvERQqQIIVIBb/37/M9dKyE+pQjNXbsRXK8tm7MTuHDx9wqty97Wmk+mduNOdi7PbQhHp7q6V6qYK7fSmfT5fj75M5oJ3d3ZMrcvXi2cLB2WUoQSE4qU0lpK2UBK6SiltNG/z/9c7n4MhBAThRCRQgidEMKvhHIrhRDXhBARhaY7CyF+E0Kc0//bqLyxVFePDH4Pewmf7FlQ4XW1a+rI60Fd2Bt9k2W7zpsgOkUxjU3hsYz66C+ir6Xx8ZRuvDPRh3p26pbgqsrY51BMLQIYjzZGfUlWUfTF/3nA71LK9sDv+s+1irNzOx5s2JXfdMnlGnu+sEl+LbnP25X3fzvLkUvlexpfUUwlLSuXFzYc59l14XRo7si2Z/pxv4+bpcNSSmGRhCKlPCWlLPXWIinlbqCogTzGAPlj2q8GxpowvGpj5pD3aaiTLDn0vwqvSwjBW+O74tbQnmfWHiM5I8cEESpK2Z24msR9S/5i47GrPDO4Pesf86els4Olw1KMYKkaSkU1k1LG698nAM2KKyiEeEwIESaECLt+/XrlRFdJ6ju68kjTAPaRweFjX1Z4fQ3sbfl4SncSUzKZ96Pq6l6pXDqd5PNd5xn/6T6yc3WseyyA54d2wMa6uv5M1T5mO1JCiB1CiIgiXmNMuR2p/eoV+8snpVyuH8PFr0mTJqbcdJUQPGgxTfMkH4YvReoq/oCib8uGvDi8I9sjEvjm4GUTRKgopbuWksmDKw/x3+2nGerZjO3P3kuvNqq7QFPISr/J5xsnk5l+0+zbMltCkVIOkVJ6FfHaZILVJwohXAH0/9bahyjs6zbiyZbDOGGVw86D75tknY/2u4f+HZqwcHMkv5yIM8k6FaU4v59KZMRHfxF26Rb/Hd+VT6d1x8lBjV1iChfPhzJ13UA+SYlkz7EvzL696lqX3IzWYSX6f02RpKqtMQMW0SoPlpxeQ15uxYf5tbISfDqtO91bNeTZdeEqqShmkZmTx8LNkTy8OoxmDez5ZW5fpvRqpZ4tMQUp2fLbPwne/RzXhY5PuzzJkEDz37tkkYQihBgnhLgKBABbhRAh+uluQohtBuXWAvuBjkKIq0KIh/Wz3gaGCiHOAUP0n2stW1sHnm77ANFWOraVc6jgwurZ2bDqoV4FSWXrifjSF1IUI51JSGXs0r2s2hfD7MA2bHyqD+2aquF5TSE9LYFXvx3AK3EheFo58P19G+jn91SlbFvUpguvfn5+MiysZva6r8vLJfjrHqRJHZunHcDWzjRjQaRl5TJr5SGOXUliyeRujPZ2Ncl6ldopKzePpX+eZ9nOaBrY2/LuRB81CJYJnT3zMy/ufY2LVpLHnbvx+KgvsbGpU+H1CiGOSCmLfWYwX3Vt8lIKsbK2Ya7nbK5aw087C/fjWX717WxYNbsX3Vo25Jl1x9h2UtVUlPI5cukWo5fsYcnv57jP243fnu+vkomJSJ2OH7bPYeq+V0kRkuW+/2RO0BqTJJOyUAmlBunXcy7dZR0+j/2DjPSiHt8pn/yk4tuyIXPXHmO7SipKGaRl5TJ/UwQTPttPRnYeqx7qyQfBvjjXq9wfu5oqLekyL33Tj9ev7aa7tSPfj/kZf99ZFolFJZQaRFhZ8Uy3Z7huLfju9xdMuu76djaseqhnQVL5NUIlFaV0f5xOZOj7u1hz4BKz+ngQ+ty9DOioaiWmEhmxlkk/jSJUl8yzTQL4bPoeGju3s1g8KqHUMD18ZtKXeqy8cZiU5CsmXbejvS2rHuqJt7sTT393jF8jEky6fqXmuJGWxdy1x5i9KowG9rb89GQfFtzfRfXDZSIyL5dvt8xmetibZAvBV73m88io5VhZWbYrf5VQaqBn/F8mxQRDBRfF0d6W1bN76ZPKUZVUlLtIKfnxyFWGvL+LkIgEnh/agS1z+9KtVa3rv9Vskm+e4x/fBPL2rcP0tWnEDw9sp5vnJEuHBaiEUiN17jiGEdaN+Cb5VIWGCi5OflLpqpKKYuDKrXQeXHmIF74/Ttsm9dn6TF+eGdyeOjbqZ8ZUwo99ycRNY9kt7/Av14EsmbqLhg3cLR1WAXWka6in+71JtoCPf5trlvXnJxWvFlpSCYlUSaW2ytNJvtxzkWEf7Obopdv8Z0wXvn88gPbN1HMlpqLLzebLjVOYdfwDrIU13wS+zYxhSxBWVesnvGpFo5hM69b9mFG/PT9lJ7D38Cdm2UYDe1u+flhLKnO+PUqoSiq1zumEFMYv28cbv0QR0NaF357vz4MBHlhZqafdTeV6XBhPrgngw5QIBtdpyoaJO+jS/j5Lh1Uk9WBjDZaVmcyk7/qRho6ND2yngVNLs2wnJTOHB788RGRcMp9O68FQz2I7f1ZqiJTMHJbtPM8Xuy/gVNeWBUFduN/bVXWbYkpS8ufu/zD//AYyheBfHvczYcBbFtnH6sFGBTt7J970f42bVvC/rbPMtp38moqnmxNPfXuEHVGJZtuWYlnZuTpW7b3IgHd2smznecb4tmDH8/0J8nFTycSEMlLjeeO7wTwT8wOuVnasH7KciQP/W+X3sUooNZyX50RmN+jM5pxr/Ln/XbNtp4G9LV/P7oWnawOeVEmlxpFSsu1kPMM+2MXCLVF0au7IL3P78t4kHxqpBxRN6nTEOiZvGMqG3OvMcurCN9P2ck/LPpYOyyiqyasWyM5KZfJ3fbkt89g4bgsNG7Ux27aSM3J48MuDRMSlMGdAW+YObo+tGiCpWguLucVb205x9HISHZs5Mm9UJwZ0aFLlz5arG11uFmt+mc2HScdxloJFPV4kwPtBS4cFGN/kpRJKLXH6zGam7H+FoTYuLJ6+y6zbSs3M4fUtUfxw5CpdWzjxQbCP6km2Gjp/PY3Fv54mJDKRpo52vDCsAxN6tMRaXXA3uWuxh3k19HH2W+UwyNaF1+/7loYNWlg6rAIqoRShNicUgGU/T+PT5BO833YKQ/u+Yvbt/RqRwCsbT3InK5d5IzsxU939Uy3cSMviox3n+O7QZextrHiif1se7tcGhzrqKXeTk5I/dy1g/oUfybQS/MtjDBP6L6pytT+VUIpQ2xNKTk4607/pQzy5bLz/J1wadzD7Nq+lZvLyjyf5/fQ1Atu58M4EH9wa1jX7dpWyy8jOY8VfF/hs13kyc3VM7dWKZwa3p4mjnaVDq5EyUuJ4d/M0NuTdoLOsw9tDlnKPu7+lwyqSSihFqO0JBeBc9K8E7/kn/a0b8v603ZXyYJSUknWHr/DGL1FYWwneGOPFGF91V1BVkaeT/HDkCu//dpbElCyGeTbjpZGdaNukvqVDq7FOnfyWlw79l4s2gllOXZk7+kvq2FbdEy2VUIqgEopmxZZZfHTrCP/zGM+o/q9X2nYv3bzD8xuOc+TSbUZ3dWXRWC91h5AFSSn54/Q1Fv96hjOJqXRr1ZBXRnWmp4ezpUOrsXQ5mdqF9+QT2oV3v38R0HWGpcMqlUooRVAJRZObk8nMbwKIIYefR6+nSdMulbbtPJ3k893n+eC3szRyqMPiCd6qO/NKlpmTx09HY1m59yLR19Jo7eLASyM6MdKruao1mtG1qwd5NfQJ9lvnMsi2Ma/f/y0NHd0sHZZRVEIpgkoo/+9izE4m/vk0/taOfDx9b6X3CRQZl8xz68M5m5jGdP9WvDKqs7roa2bXUjL5ev8lvj14idvpOXRxa8DDfdtwn7eb6sDRjGReHtt/f5E3r4aQbSX4V5vxTLj39WqVvFVCKYJKKHf7ettjvHN9P2+4j2Ls4P9V+vYzc/J4L/QMK/ZcxMOlHu9P8lHdnJtBRGwyK/dcZMuJOHJ1kiGdm/Fw3zb0buNcrX7UqqNbCcdZ9Ouj/CYy8BZ1WTRkKW3celo6rDJTCaUIKqHcTZeXy0NrenNWZrFx5Dc0b+5rkTj2n7/JP78/TkJKpnoY0kTydJLfTyXy5Z6LHLx4C4c61kzya8msPh54NK5n6fBqPin5489XeT3mZ1KsBHNcBzBryAfYWNtaOrJyUQmlCCqh/N2VK3t5YMfjdLNy4LMZByzWHXZKZg6vb47ix6NX8WrRgH8M7sDATk3VQ3RldCcrl+/DrvDVvhgu3UynRcO6zOzTmuCerXCqWz1/zKqblBtn+d/WWWwmlU7UYdGAD+jY+l5Lh1UhKqEUQSWUoq399WneStzFfNchTBz2gUVj+TUinoWbo0hIyaSVswMz/Fszya8lTg7qx7AkcUkZrN4Xw3eHLpOamUu3Vg15uG8bRnRpjo2q7VUOKdm357+8du5bbloJHmnSm8eHfYqtbfV/jkcllCKohFI0XV4uj30TwEldBj8NW0mLFr0sGk9Ono6QyARW74vhcMxt6tpaM7ZbC2b18aBjc9WFS76M7Dx2nb3OlhNxBaNmjvBqzsN929BdXYuqVOlJl3lvyww26G7RRtrwVr//4tV2hKXDMhmVUIqgEkrx4uLCGB8yC09hz4oZB7Cyrhp3XEXGJfP1vkv8HB5LVq4O/3ucmdXHgyGdm9XKM++k9Gx+P3WNkMgEdp+7TmaOjoYOtkzya8nMPh60UL0QVLqwgx/yWsQXxFoLHmzkzdMjv8C+Ts26TqUSShFUQinZj7+9wMK4UF5udi9TRyy1dDh3uX0nm/VhV1iz/xKxSRm4OdkzPaA1k3u2wrmGPxwZn5xBaGQiIZEJHLx4izydxNXJnmGezRju1ZxeHs61MrlaWmZqPB9veZA12fG0kNYsClhIj07jLB2WWaiEUgSVUEomdTqeXBPAUd0dfhj8Ga1a9bV0SH+Tp5PsOJXI6n0x7Dt/kzo2VozxcWNmHw+8WjhZOjyTib6WRkhkAqGRCRy/mgxAu6b1Gd6lGcO7NKdrCyd1y68FRRxdwSvHPuSijSDYsQPPj1qJg33N+fsrTCWUIqiEUrqEhHDGb59OO2HHV9P3Y21Tdc/+zyamsnpfDD8djSUjJw+/1o2Y2ceDAR2b4GhfvS7iSyk5cTWZkMgEQiITOH/9DgA+LRsWJBHVt5bl5dy5yWdbHuTLzEs0llb8x+9f9Ok63dJhmZ1KKEVQCcU4m/94hX9f2cILLr2Zdd8KS4dTquSMHL4Pu8KaA39MYIEAABcMSURBVJe4dDMdgDaN69HFrQFeLZzo2sKJLm4NaOhQNZJjTp6OmBt3OJuYxpnEVM4lpnLschIJKZlYWwn873FmeJfmDPVshquTuiZSVUQc/YIFxz7irI0gyKE1L41eRQOHxpYOq1KohFIElVCMI3U6nvu2Hzvzkvmo02z6+z9v6ZCMotNJ9l+4ybHLtzkZm0xEbAqxSRkF890b1cXLzYmu7k4FyaZxffPd0pmnk1y5lc6ZxFTOJqRy9loaZxNSuXAjjZw87f+dlQAPl3p0dm3AoE5NGdy5aZVJfIomPekyn2ydzbc5CbhIK17zeZqB3R+zdFiVSiWUIqiEYrz0tGs89P0wLpLLl70W0LXLREuHVC6372QTEacll4i4ZCJjk4nR12IAmjewx6uFE14tGuDl5lTk2B9F/Q8p6v/N7fRsziam6ZNHKucS08jK1RXMd29Ul47NHOnQ3JEOzerToZkjbZvUx97W2iTfVTExKdnz1yLeiF5HnLUVk+q35x8jv8DRwcXSkVU6lVCKoBJK2dy4cZrpmyeSLiTfVNGL9OWRnJFDVFwKkXHJRMQmczI2mQs37mCq/wrNG9hrSaNpfX3ycKR90/rUs6sat2IrpbsVf4zFoU+ylTu0kTYsDFhA945jLR2WxaiEUgSVUMouJmYXM/6cg6MUrAn6sVJGebSEO1m5nIpPISUz52/zBMXcTVVosqOdDe2bOaouTqoxmZvDlt/+wTvxO0mzEjzSxJ9Hh31CHVt7S4dmUSqhFEEllPI5HrGORw4voi02rJwYikN9NX6JUvNciQ7ljd0vsd86Fx/hwMJBH9DOvY+lw6oSjE0oFnkaSggxUQgRKYTQCSGKDVIIsVIIcU0IEfF/7d15dBR1tsDx7+1OAmGRCAlCiCQsKiLjAoIBVFAwqKMgoCg6KI6jjqKCT8SF4zaO20PRYdwGl0F4Cooi4IiyCIpKQBAk7CgQtrDvGEOWvvNHFfMC04EGKql0cj/n9El11S9V99fd6Zva7u+w+UNEZLmIZInIpyKSUPpRV17ntLiBIWfeyjIpZOC4rhQW5PkdkjGeKczby4hxN9Dj2/vJkgIebXg1I/tkWjI5Dn7dXrsY6AHMPEq7EUC4gjhTgRaqejawEnjE0+jMf+mY/gCDkzvzrf7K0x9fjYZCR/8lY8q5pQvf48b32/PSviWkV6nL+K7j6H3JswTEKg8cD19eNVVdpqorImg3E9gZZv4UVS10n84GUjwO0YTRK+MV7jipOePyN/PGhJv8DseY4/bb3hyGjr6cGxcMYWsAXmx+O8N6T6denYp5jrCsVIQ0/Efgi5IWisgdIjJPROZt27atDMOqmO7pNppusafwxt7FfDL1Ab/DMebYqJL53fP0GHsZ/8zfSLcajZnQ6yu6tL7PStl4oNSuYxSRaUC9MIsGq+oEj7YxGCgE3i+pjaoOB4aDc1Lei+1WZhII8MR1E9n+wSU8vXEySXNSuPiC+/0Oy5ij2rTma1785iGmSC6pwVjebf0orZv38jusCqXUEoqqdi6tdQOISF/gKqCTVqZL1cqB2NhqDO35GbeOzWDg0nd4p0ZK1N74aCq+vH2bGPHl3byzfyUqwt1J7bi188sVrsR8eRCVh7xE5HJgENBVVXOP1t54r1qNurx29Rhqq9Dvh6dYt+47v0My5hBaVMhX0wdzzUedeS33Fy6qWp+Jv/+Iu64cbsmklPh12XB3EdkAtAU+F5HJ7vxkEZlUrN1oIBM4Q0Q2iMht7qJXgZrAVBH5SUTeLOMuGCAxsRlvXvoqCvx52l3s2L7S75CMAWD18vH8+b3WDFg/kfhgHG+fP5ihvaeRnNTc79AqNLux0Zwwu/HRlBf7dq7izcl388GBjcQr9Gt4Bb06PkNs0ApunohyfWOjqVjOaXED/9usr934aHwTKshj/Bf3cPX4row6sJFu1Rvzrx5fcFOnIZZMypAlFOOJS9oOtBsfjS8WL3iXPiPb8NjWb2gQrM7oi17iyesmUrvWqX6HVulY+VPjmV4Zr7Dl0+sZvncpSRNupF+3D5CA/c9iSsf2TfMZNm0An4Z2kRiAZ5rewFXtHrG73H1kCcV46p5uo9k6JoN/7F3Czo+u5JHunxBbxa6oMd4pyN3FmKn9eX3nj+SJcGvC77ijy6vUiK9845SUN5ZQjKckEODJXpNInHAjb+9fwerRHRjadQy1azf1OzQT5Yryc5k0YzCvb5zChmCA9rEn81DHF2mUku53aMZl+4bGc8GYOPr3/JgX0nqwWPPoPb47K37+3O+wTJTSwgJmfP0E145qw6Obp1EjUIXXzxnAGzd9a8mknLE9FFNqruzwFA2TWtB/9lP0+e4hntu6iE7tH/Y7LBMtVJk7+xX+tuyfLAwqqYEgQ87oQ0ab+wkEbNjk8sjuQzGlbtvWJQz4/A9kBQrpl3AOd1490k7Wm5KpsmThCIbNH8asYCF1Q3BX42voduFjdgmwT2zExjAsofjnQN4envqkO58VbiMjmMDTPT6lWrVEv8My5czqZeN5dc6zTJXfSAjBnxpcyvUdn7VSKT6LNKHYIS9TJqpUrcUzvadxxhd3MnRbJus+7MSwLu9SP7mV36GZcmDTmhm88e3jTAjtoqrCnxPbcEunIXblVpSxPRRT5r79YRiDlgwnDni55SBannOz3yEZn+zMmc9bMwbxYcFmAK6vdRa3d3qJ2ifZmHnliR3yCsMSSvmxes107pvRn40B5bGUy+nR+UW/QzJlaN+25Yyc/iAjc1eTJ0K36o2465Ih1E9s5ndoJgxLKGFYQilf9uxZx4PjryWT37gpPo2B3ccSE1vV77BMKdq8ZjqjMp/jkwM5/BoIcFncKdzT4TkaJ7f2OzRzBJZQwrCEUv4UFuQxdPz1jMpdTTrxvNjtI2olpPkdlvGSKiuyRjLipzf4UvejQEZ8Crde8DBnpnX0OzoTAUsoYVhCKb8+/WoQT6+fRL2Q8PcOQ2nS5DK/QzInSAsOkDn7RUb8PJbMYBHxqvRMaEGfC58k2Q5tRRVLKGFYQinfflr0PgPmPkeewN2ntKN3p5etDlgUKsjdyZczn+C9jTNYESMkhoSbki/mugufpFZ1u1Q8GllCCcMSSvm3edMCHp9yJ5n8RsMiuP/0G+nU7iG7ETIK7N++kk9mPs6o3YvYEgzQRGO5pWlPfp8+kLiYKn6HZ06AJZQwLKFEBw2F+G7eq7y0+G1WBZWWGsegCx7lrDN7+h2aCWNL9kzez3yGsXkb2B8I0DpQk75n/4kLz+5rpeQrCEsoYVhCiS6FBXmMm/Ewr22cxs6AcFVMIv0vHUq9+uf5HZoJFbFs4Uj+L+stJuleQkBG1WT6XjCIsxp19js64zFLKGFYQolO+/dt4p0p9zJy33JE4eZazbktYxjVa9TzO7RKZ/v6TD6f+zcm7lrEypgA8ap0r3UmfS58kpSks/wOz5QSSyhhWEKJbjk58/jbjIFMKtxBnSKlX8pldL/kObt3pZQd2LeJGbOHMnH9V8wK5FMkwu8knq4NO3NF6/upVT3J7xBNKbOEEoYllIph0ZKxDJn7PAskn6ahAANb3E771vf4HVaFooX5LFzwDhNXfMiX+dvYFwxQNyRcXedcup7fn8ZWg61SsYQShiWUikNDIabNep6hK0ezIQjtqcbAC5+maZMMv0OLaptWT+ez+a/z2Z5lZMcEqKpKp/gUup51Mxc0v56gjUNSKVlCCcMSSsWTf2Afo6f9D//YmsmvAj2rpnBL28Gkpl7kd2hRI3f3WqbNeYmJG2fyQ6AQFaGVVKdboyu57Px7qRF/st8hGp9ZQgnDEkrFtXvXGt6ceh8f5q6hUIRmoQBdEs+jy7m3c+qp7f0Or3xRZfvGucxeOprvN8/hq6I9/BYIkKIBuia15qrWAzi1bgu/ozTliCWUMCyhVHxbtmQx5cfX+HLLXLICBQA0DwW5PKkVGefdSYMGbXyO0B95e3OYv3gUmeu+Ztav61kZIwAkhODSGql0/d1ttDzjGkTE50hNeWQJJQxLKJVLTs48psx/k8nbfmRxoBCAs0MxZNRtTZeWd1Xo+1lCBXmsXD6OWav+Reau5cwnn/yAEKtKy2BN0hPPpW2znpyZdqndfGiOyhJKGJZQKq/16zOZ8tNwJm9fwLJAEQDnaixdTmlDRst7qHtKlB/iUWXLhtlkLh3DrC3zmFO4m51BJ1E01Rja1jqNdo2voGWz66hWpYbPwZpoYwklDEsoBmDt2m+ZvHA4k3dksTIQQlQ5jyp0qZdO+undSWlwAXFVavodZom0sIAdWxayJmcO2duX8MvuVczJ3cgq9zBWnRC0ja9P2wYXkd7iRuqe3MTniE20s4QShiUUc7jVa6YzeeE7TN65iFVB528hoEpySEgNxpNaNYnUk1JJq3MmDeu3on69VgRjy6bQ4YF9m1i7fhbZWxaQvetnsn/NIbtgD9lSxL5ixTKrqtIyeBLtks4jvdm1nJ7a0c6FGE9ZQgnDEoo5klWrprJ03Tes3f0L637dRHbBHtZSSG7g/7+cY1VpGBJSY2qQGl+X1JPSSE1qQVpya+rUPoOiUD6honwKCw9QVHSAov9M51MUynd+FuVTVJhPYSifoqICikL55ObtZu32pazZu5Y1edvJDv1GTlDQYonhlJCQFqxOWnxdGiU0Ii3pbBo1SKdeYjM7D2JKlSWUMCyhmGOloRDbd6xkbc4c1m5bzNo9q1mbu4W1hftYJ0UUeLwnEK9KKnE0ijuZtJoppNVuRlr9VqQlp1Ot6kmebsuYSEWaUGLKIhhjopUEAiQlNSMpqRmH/zUVFRaweWsWazfNI3v7Enbl7SAmEENQYggGYggGggQDMcQEYglIjLMsEEMwGOfMD8YSCMQQE4ijSlx1UpPbULf2aba3YaKWJRRjjlMwJpYGya1okNyKdn4HY0w5YP8KGWOM8YQvCUVErhORJSISEpESj8uJyLsislVEFpew/AERURGxgaqNMcZnfu2hLAZ6ADOP0m4EcHm4BSJyKpABrPM0MmOMMcfFl4SiqstUdUUE7WYCO0tY/DIwCKg8l6kZY0w5FpUn5UWkG7BRVRce7QYuEbkDuMN9ul9EjprISpAIbD/O341W1ufKwfpcOZxIn1MjaVRqCUVEpgHhBv0erKoTTmC91YBHcQ53HZWqDgeGH+/2im13XiTXYVck1ufKwfpcOZRFn0stoahq51JadROgEXBw7yQFmC8ibVR1cylt0xhjzFFE3SEvVV0E1D34XESygfNVtbLtvhpjTLni12XD3UVkA9AW+FxEJrvzk0VkUrF2o4FM4AwR2SAit/kRr+uED5tFIetz5WB9rhxKvc+VqpaXMcaY0mN3yhtjjPGEJRRjjDGesIRyGBG5XERWiMgvIvJwmOV9RWSbiPzkPv7kR5xeOlqf3Ta9RGSpWzLng7KO0WsRvM8vF3uPV4rIbj/i9FIEfW4oIjNEZIGIZInIlX7E6ZUI+psqIl+5ff1aRFL8iNNLEZSrEhEZ5r4mWSLS0tMAVNUe7gMIAquAxkAcsBBoflibvsCrfsdaxn0+DVgAnOw+r+t33KXd58Pa3wu863fcZfA+DwfucqebA9l+x13K/R0L3OJOXwqM8jtuD/p9MdASWFzC8iuBLwAB0oE5Xm7f9lAO1Qb4RVVXq2o+MAbo5nNMpS2SPt8OvKaquwBUdWsZx+i1Y32fewOjyySy0hNJnxU4OIpXLSCnDOPzWiT9bQ5Md6dnhFkedfTI5arA6eNIdcwGEkSkvlfbt4RyqAbA+mLPN7jzDtfT3V382C1SGc0i6fPpwOki8r2IzBaRsAU7o0ik7zMikopzI+30cMujSCR9fhL4g3tJ/yScPbNoFUl/F+IUqQXoDtQUkTplEJufIv7sHw9LKMfuMyBNVc8GpgLv+RxPWYjBOezVEee/9bdEJMHXiMrODcDHqlrkdyBloDcwQlVTcA6NjBKp0MNHDgQ6iMgCoAOwEagM73OpqcgfluOxESi+x5HizvsPVd2hqgfcp28DrcoottJy1D7j/BczUVULVHUNsBInwUSrSPp80A1E/+EuiKzPtwEfAahqJlAVp6BgNIrkbzlHVXuo6nnAYHde1F98cRTH8tk/ZpZQDjUXOE1EGolIHM6XycTiDQ473tgVWFaG8ZWGo/YZGI+zd4I7mNnpwOqyDNJjkfQZEWkGnIxTrSHaRdLndUAnABE5EyehbCvTKL0Tyd9yYrE9sEeAd8s4Rj9MBG52r/ZKB/ao6iavVh51tbxKk6oWisg9wGScq0TeVdUlIvIXYJ6qTgTuE5GuQCHOya++vgXsgQj7PBnIEJGlOIcEHlTVHf5FfWIi7DM4X0Jj1L08JppF2OcHcA5n3o9zgr5vtPY9wv52BJ4TEcUZ7K+fbwF7xC1X1RFIdM+FPQHEAqjqmzjnxq4EfgFygVs93X6Ufl6MMcaUM3bIyxhjjCcsoRhjjPGEJRRjjDGesIRijDHGE5ZQjDHGeMISiolqIrI/gjYDRKSah9u8RkSae7i+WSfwu/vdn8ki8vER2iWIyN3Hux1jImEJxVQGA4BjSigiEjzC4mtwCgt6QlXbebCOHFW99ghNEgBLKKZUWUIxFYKIdHTHtPhYRJaLyPvu3cD3AcnADBGZ4bbNEJFMEZkvImNFpIY7P1tEXhCR+cB1InK7iMwVkYUi8omIVBORdjgVEoa4Y6U0EZFz3aKZWSLyqYic7K7va3HGVZknIstEpLWIjBORn0Xkr8Vi319s+iERWeRu8/kw/Wzkxr7osHWkHRwDQ0TOEpEf3PiyROQ04HmgiTtviIjUEGcskPnuuroVW88yEXlLnLFvpohIvLusqYhMc2ObLyJN3PkPuq9Tlog85ekba6KL3/X77WGPE3kA+92fHYE9OLWJAjjlUi50l2UDie50Is5d0dXd5w8BjxdrN6jYuusUm/4rcK87PQK4ttiyLKCDO/0X4BV3+mvgBXe6P045+PpAFZz6aHUO68MVwCygmvu8dpj+TgRudqf7FfvdNNwxMIC/Aze503FAfPHl7vwY4KRir8kvOGNkpOFUgTjXXfYR8Ad3eg7Q3Z2uirPXl4Ezjoq4r/u/gIv9/lzYw5+HlV4xFckPqroBQER+wvly/O6wNuk4h6u+FxFwvnCL1+r6sNh0C3cvIAGogVPG4xAiUgtIUNVv3Fnv4QzcdNDBMi6LgCXq1k0SkdU4RfqKl7DpDPxTVXMBVDXcuBbtgZ7u9CjghTBtMoHB4oxAOE5Vf3b7ekjowLMicjEQwilhfoq7bI2q/uRO/wikiUhNoIGqfurGluf2IwMnqSxw29fAKRw6M0xcpoKzhGIqkgPFposI//kWYKqq9i5hHb8Wmx4BXKOqC0WkL26BzOOMKXRYfKES4ovEEeslqeoHIjIH+D0wSUTu5L+Led4EJAGtVLVARLJx9jqKxwzO6xh/hM0J8Jyq/uMY4jcVlJ1DMZXBPqCmOz0baC8iTQFEpLqInF7C79UENolILM4X8H+tT1X3ALtE5CJ3WR/gG47PVODWg1ekiUjtMG2+xylayWEx/YeINAZWq+owYAJwNoe+BuCMyLjVTSaXAKlHCkxV9wEbROQadxtV3DgnA38sdh6qgYjUjai3psKxhGIqg+HAlyIyQ1W34VSIHi0iWTiHh5qV8HuP4Zw3+B5YXmz+GOBBEVngnpi+BeckfRZwLs55lGOmql/iHCKb5x6yGximWX+gn4gsouSR9noBi911tMAZ8nUHzmG+xSIyBHgfON9dz82H9a8kfXCqbWfhnOupp6pTgA+ATHddH3No4jKViFUbNsYY4wnbQzHGGOMJSyjGGGM8YQnFGGOMJyyhGGOM8YQlFGOMMZ6whGKMMcYTllCMMcZ44t81reJYY3miQwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8FPX9+PHXeze7uSHhvgkCoqj1IKL11l89UBFvoVrrSatFW7UetfZrta1HT+vVqvW2gtSqBUu9Wo96IeCNkYoQJEDCFUjIudl9//6YCS5Ljk2yu5Ns3s/HIzA7MzvzntnZee/nmBlRVYwxxhgv+LwOwBhjTO9lScgYY4xnLAkZY4zxjCUhY4wxnrEkZIwxxjOWhIwxxnjGklCKiMjPReQJd3iUiGwTEb/7erCIvCEi1SLyO3E8LCKVIvKet5F3noicIiKr3W3d1+t4upvY46C7iT5muwsRWSoiR7Qx/TURuSiFIUWvu1t/np0lIteLyF+Stfxun4REpFRE6twPt/nvbq/j6gpV/UpV81Q17I6aCWwE+qjqVcAhwNHACFWd7FWcCfBbYJa7rR+keuUioiJSE3PsXJPE9Z0nIm/GjHtERBpjYvgIWjwOTDtUdQ9VfQ26X5KM/Ty9TIiJpKq3qGrStiMjWQtOsKmq+koyVyAiGaralMx1tGE08Jl+feXwaKBUVWs6uiCPtyPWaGBpSxNSGOfeqro8Betpy69V9QaPY+g2RMSfbom3m33vehZV7dZ/QCnwrVamnQe8ifOLuxJYCUyJmt4XeBBYB6wBfgn4o977FvAHYFPzNOB3OKWSlcAsQHGS9RnAkpj1Xwn8o5XYxgCvA9XAy8DdwBPutKKo5T4ChIBGYBvwPaAeCLuvb3LfcyLwIbAFeBv4Rsw+uhb4GGhwlzsM+Duwwd2Wy6Pm/zkwF3jMjW8pUBw1fSTwjPveTcDdUdMuAErc/f0iMLqFbc90Y1egBviyjTh3B15zt2spcFLUch4B7gX+5S7vLWAIcIe7/s+Bfds4dhQY18q0BcDvol7PAR5yh8cC/3G3fSPwV6Cgrf3jbkf057Ylaht+2UoM24+DqGPmDfczeQW4p/mYcacf6H72W4CPgCOipr0G/MLdR9XAS8AAd1oW8IQb6xZgETDYnTYMmAdsBpYDF8ccJ83H7L9wSrXR8X8EnOoO74ZznG8GlgFnxnyOf3L3eQ0x32fgSOCTqNcvA4uiXv8XODn6fAAch/OdCbn7+6P29kML+/8IoAy43v2cS4Gzo6afAHwAVAGrgZ+38NldCHzlfm7bP0/gV+6xUO/Gd7f7ef4uJoZ5wBVtHL+XAl+42/ILnGPzbTemuUDQnbcQeB7nmKx0h0fEHB+3Au+57/0H0C9mW2YCa3HOlz9u5Thonve77nZvBH4aNW828KgbQwlwDVDW5jm+s8khVX+0n4RCwMU4CeQSdyeKO/1Z4D4gFxjkfgDfi3pvE3CZe9BkA98HPgNGuB/qK1EHVSbOF2z3qPV/AJzWSmzvAL9333eYexDtlIRaOlG5sb0Z9XpfYD1wgLud33X3S2bUPvoQ5+SYjVPNugT4PyAI7AKsAI6NOqjqgePd5d0KvOtO8+OcXP7g7rcs4BB32jScE9Xu7j65AXi7jc9uhyTQQpwBd3nXu3Ee5e6nCVH7ZSMwyY3jPzgJ9Vw3zl8Cr8a7/phpQ9x9ehRwtrt/8t1p43CqQzOBgTgnmDvi2D87fG4tfbYx02KPg3dwflAFcapkq/j6mBmOk0SOdz/fo93XA6NOMl8Cu7r79jXgNnfa94D5QI4b/yScql/cbbvX3Y59cE5iR7Vw8jkXeCsq9ok4CS3T3Q+rgfPd42Jf93ObGLUPtgIHu7FnxeyHbJzjcYB7TFTg/GjMd6fVAf1jzwfR8cWcbFvcDy3s/yNwzgHN39PDcZLkhKjpe7kxf8ON6+SYz+4xd/uzW/g8XwMuilrfZJzzk899PQCoxf1B0Mrx+w+gD7AHzg+3f+N8n/vinKu+687bHzjN/Yzzgb8Bz8XslzXAnm68f2fn89Fsd9pe7nGw036OmvcBd5v3duPa3Z1+G86P70Kc8+jHpEkS2oZzwDf/XRz1pV8eNW+Ou4OGAIPdnZMdNX0G7knLfe9XMev6D26Scl9/K+ag+hPwK3d4D5xsn9lCzKNwDu7cqHFPtvBBxpuE/gT8ImYdy4DDo/bRBVHTDmhh234CPBx1UL0Sc0Kpc4e/6R6AGS1s17+AC6Ne+3C+RKPb+BLFJqHoOA8FynG/lO642bi/ON398kDUtMuAkqjXe+GWONpYf1XMsXNs1PTTcE6eG3ETSSvLORn4II79s8PnFrUN9TExPBp7HEQdMzlR730i6pi5Fng8Ztkv8vVJ6DXghqhplwIvuMMXEFN6dsePxPm1nh817lbgkajjpHn9+Tgn6NHu61/xdcnxLOC/Mcu+D7gxah881s73/L/AqTilvZdwfuUfh1NK+jjmGGovCbW4H1pY5xHs/D2dC/yslfnvAP4Q89ntEjV9++cZFctFMcsoAY52h2cBC9o5fg+Oer0EuDbq9e9wfxy18N59gMqY/XJb1OuJOCVJf1Tcu0VN/zXwYAvHQfO80aWs94Dp7vD2H7vu64toJwl1+44JrpNVtSDq74GoaeXNA6pa6w7m4bRHBIB1IrJFRLbgfDEGRb13dcx6hsWMi53+KPBtERHgO8BcVW1oId5hOAdAdJvOqrY3sU2jgauat8PdlpHuelqKdTQwLGb+63ESc7PyqOFaIEtEMtzlrtKW67dHA3+MWuZmQHB+pccrOs5hwGpVjUSNWxWzvIqo4boWXue1s779Yo6dF6Omzcf5Ei5T1e0dCtzeinNEZI2IVOEkgwHu5Lb2T2t+GxPDd1uYZxiwOeoYhp0/0zNiPtNDgKFR88R+ps375nGchDVHRNaKyK9FJBC1zuqo98XufwDcef4JTHdHzcCppmyO7YCY2M7G+THY0ra05HWcpHCYO/waTsnkcPd1R7S2H1rS0vd0GICIHCAir4rIBhHZilNTMiDm/e1tV6xHgXPc4XNwPpu2xHX8i0iOiNwnIqvcY/YNoCCmp150rKtwzo8D2pgefX6J1do+bu8cupOekoQ6YzVOSWhA1Je/j6ruETWPxrxnHU4RstnI6Imq+i7Or4dDgW/T+gG0DigUkdyocaM6sQ3NVuOUwKJPZDmqOjs6vJj5V8bMn6+qx8e5rlFuQmpp2vdilputqm93YFui41wLjBSR6ONwFE61QSr8CueX6VARmRE1/hacOPdS1T44Jwtxp7W1f2KPp45YB/QTkZyocdHH32qcklD0vs9V1dvaW7CqhlT1JlWdCByE0754Ls7+7yci+VGzt7X/ZwMzROSbONV3r0bF9npMbHmqekl0GO2EGZuEXqf9JNSV/d2spe/pWnf4SZw2m5Gq2hf4M18fB/HE0NK0J4BpIrI3TrX2c52KemdXAROAA9xj9jB3fHS80cfTKJymjI1tTF9Lx7V5Dm1J2iYhVV2HU6z/nYj0ERGfiIwVkcPbeNtc4IciMlxECnCqQGI9htPIGIr+9Ryz7lXAYuAmEQmKyCHA1C5szgPA991fZiIiuSJyQszJI9p7QLWIXCsi2SLiF5E9RWT/ONb1Hs6BdJu7niwROdid9mfgJyKyB4CI9BWRM7qwXQtxfkVdIyIB9/qPqTidBJJKRA7DacM4F6eN7S4RaS4B5ONUAW91x10d9da29k8FMEJEgh2NJ+qY+bl7zHyTHY+ZJ4CpInKs+3lmicgRIjKixQXuuK1Hishe7q/iKpyTT0RVV+NU093qLu8bOA3trXV7XoBT6rkZeCqqBPs8sKuIfMf9HAMisr+I7N6BXfA2zkl0MvCeqi5113UAzq/6llQARTE/Yjqj+Xt6KE6C/ps7Ph+npFgvIpNxfnh2RAVO+812qlqG0zHkceDvqlrXtdC3y8cpGW0RkX7AjS3Mc46ITHR/6NwMPK079lL8mVui2gPnu/FUJ+KYi3OOKHS/O7Pae0NPSULzY66zeDbO952L08j7GU77zdPsWH0R6wGcxPUxTqeDBTh1xtEf1OM4jXvtXZ/wbZwv0GacA+KxOGPeiaouxul8cTfOdizHaX9obf4wzpdpH5yG/I3AX3AaM9tbVxjn5DcOp/dLGU6dP6r6LHA7TrVOFfApMKWTm4WqNrrrmuLGeC9wrqp+3tlltuCjmGPnDhHpg/N5zFLVNar6X5xelA+7Va03AfvhNKb/E6cnXHPMre4fnDbFpUC5iET/wrwmJoboadHOxmlzau6t+RROaR43YUzDqVbdgFP6uJr4vsNDcI79KpyS3+t8XYqfgVPPvxanI8+N2srlEG7V8zM4baVPRo2vBo7Bqapbi1NVcztOY39c3Cqx94Gl7nEBTkeNVaq6vpW3NSeLTSLyfrzrilGO851ai1O9+P2o4+9S4GYRqcbp5DO3g8v+I3C6OBed3xk1/lGc9sz2quI64g6cjgIbgXeBF1qY53Gc9rlynJLs5THTX8c5t/wbpwr5pU7EcTPOd2IlTseup3GP4dY09yIzLRCRKcCfVXV01LhsnF5V+6nqF54FZ9KeiDwFfK6qLf2qNV3klryfUNV2S5MJXu9hOD9iR2uKTsAi8hrOtu505wMRKcJJGoEOtnXGs95LcDottFoD1VNKQinhVl0dLyIZblHyRpxfh9EuwbmGwRKQSSi3CmusW3V8HE7JJ1FtBqYbcDuE/BD4S6oSUCqJyFAROdg9hifgtFW1WXPVU+6YkCrNVTFP4dSv/hOnGO5MFCl15znZi+BM2huCU93VH6dK4xL14HZHJjncNrLFONeZne9xOMkSxOmFPAbncoQ5ONXsrbLqOGOMMZ6x6jhjjDGe6RXVcQMGDNCioiKvwzDGmB5lyZIlG1V1YDLXkdZJSESmAlPHjRvH4sWLvQ7HGGN6FBHpyp1e4mLVccYYYzyT1klIVeer6sy+fdu9RtMYY4wH0joJichUEbl/69atXodijDGmBWndJqSq84H5xcXFF3sdizGm5wqFQpSVlVFfX+91KEmRlZXFiBEjCAQCKV93Wieh6I4JxhjTWWVlZeTn51NUVIRze8H0oaps2rSJsrIyxowZk/L1p3V1nLUJGWMSob6+nv79+6ddAgIQEfr37+9ZKS+tk5AxxiRKOiagZl5um1XHGWM6RFUJV1agqojPDz4/4vO5//vB59s+Hp+vR528NRIhUrOFcHWl+7eZcHUlkT5jaKqsAH8AyYj68/nbX6hpU1onIeuYYEzXReprqV/+AXXLllC/bDF1/1tCZFtl/AuITVAZQbInFJO3/7HkFh9DRkFSL8gHQMNN1H/xAY1rviBctZnwtkrn/6hEE67eTKRmK0QiO70/fPmjNG0u33nBPr+bkII7JCeaX/sDToLuoiOPPJLrrruOY489dvu4O+64g2XLljFr1iwuu+wy1qxZQ1NTE+eccw433ngjPp+PRx55hKuvvprhw79+YvuTTz7JxIkTuxxToqR1EjLGdIyq0rShjLr/LXYSzrLFNJR+BhHnuY7BEbuSd8AUssbsCf4MiITRSNg5cW8fDqM7vI5sH08kQqRuGzUfv0HNkldAriFrQjF5+x9H3uRjCQ7dpZ0I49dYXkrtR29Q+9Hr1H76FpHaqu3TJJCJP78fvvxC/Pn9yBw9EX+ffvjzCp3/3fHN/3+xsZrMMbuj4RDaFIKmENrUiDaFtv9F6mu276cd+DOQjCC+nHz8eQX4glkd3pYZM2YwZ86cHZLQnDlzuP322znppJP405/+xDHHHENtbS2nnXYaf/zjH7niiisAOOuss7j77rs7vgNTJK2TkFXHGdO2SKiBhpWfbk84dcsWE66sAECycsgevx/9TrmM7AnFZO26H/68goSsV1VpXPUZ2957gW2LXmTj479g4+O/cJLc5OPI3f9Yssbu3aFSRLhmK7Wfvu0knY9eJ1Th3HEmY8Bw8g+aSs43DiNr3D74+/RHMrM7VE0om0sQnw/xZUKg9QfGaiT8dWIKhyDk/K+N9YQrKwhXViDBLPy5ffF1ICGdfvrp3HDDDTQ2NhIMBiktLWXt2rUsX76cgw8+mGOOOQaAnJwc7r77bg499NDtSai7S+skZNVxxuyssbyU6jefo+bDV2n48mM05Dx9OTBoFDl7HuwknAnFZI7aDfEn5xQhImQW7UFm0R70P/MqQhvKtiekzc/dw+Zn7sTfbwh5+x9L3v7HkrPHQUgguMMymqvYatykU7/8A4hEkKxccvY8iIITLyZ378MJDN0loe1S6x/+PxpWLu34G1XRSBMabvq6xCQ+xJ9B5i57MfiiW1p9a79+/Zg8eTL/+te/mDZtGnPmzOHMM89k6dKlTJo0aYd5x44dS11dHVu2bAHgqaee4s0339w+/Z133iE7O7vj8SdJWichY4yjqbKC6rfnU/3mc9R/8T4AWeP3o2DK+WRN2J/sXSeRUTjIs/gCA0dQeMJFFJ5wEeHqSmre/zfb3nuBqtfmsvXFR/Hl5JO771Hk7n8MkZoqaj56nbpP3yJSWw0iZI3dh36nXE7O3oeTvet+TrtMdyPitBH5AzskJG1qJFJdScPqZU51XW4BvuDOpa3mKrnmJPTggw/y17/+td3VWnWcMcYT4ZqtbHt3AdVvPkvt0rchEiGzaA8GfOcG8g86icDAEV6H2CJ/fiF9Dj+dPoefTqShjtpP3mTboheoWfQS1W/9A2iuYjuJnL0PJ2fPg/HnF6YsvkHn35zQ5UWaGols20q4ZovT+WFzORLMxp/nVtm51X/Tpk3jiiuu4P3336e2tpZJkybxwQcf8MYbb+ywvBUrVtC/f38KChJTdZpsaZ2ErE3I9DaRhjpqlrxC1ZvPUvv+f9CmRgJDxtDv1MvJP+QUMkeM9zrEDvFlZpNXfDR5xUejM8PUr/gYf04+gWFje1TX77b4MoL4CgaSUTCQSKiRSM1WwtuiElJmNv4+/cnNK+TII4/kggsuYMaMGQCcffbZ3HLLLbzyyit861vfoq6ujssvv5ybbrrJ462KX1onIWsTMr2BNoWo/eRNqv77LNve+xdaX4O/cDB9j/0ufQ49hcyxe6fFCVv8frLH7+t1GEnlC8QmpC2Eq7fQtKGM8OYKzjzpeE4/Zy5z5swBIDs7m3nz5nHZZZdx6aWXsmbNGm644QbOPvvs7cuMbRO69957Oeigg1K+ba0RVfU6hqQrLi5We6id6Y7qv/yYps3rnBeqgLr/OcM0fz+jXmvzcESpW7aIbe88T7hqE77cvuQdeDx9DjmF7InfRPx2IWWilJSUsPvuu3uyblUlUreNcOV6IvXbwOcno+8A/H0H7NRx5LnnnuPKK6/k1VdfZfTo0R1aT0vbKCJLVLW4yxvRhrQuCRnTXTVt2cCGh/9vextHZ0kwi7ziY8g/5GRy9j1ye/uBSR8igj8nH39OPpH6Gpoq19NUWUHTlg34+/Yno+/A7R0xTj75ZE4++WSPI+4YS0LGpJBGIlT9ZzYbHv8l2lBH/zOvInfS0c5Ecf8RcavPnGFnWvNw83Rn3ox+Q/Fl53qxKcYDvqxcgkPHEGmoo2nLesJbNhDeutG5sLZgYI/8EWJJyJgUaSj7gvX3XUNdyUKyJx7I4O/dTnB4z+oo0JupardpW/NlZhMcPJpIvyFOIqraTLhqM768AjIKBuLL7Nh1QF42y6R1ErLecaY7iIQa2PzMXWx+9i58WbkMvuS39DlyekLuKWZSIysri02bNnW7xzn4Apn4Bo4go3AwTVs2EK7aROO2Snw5fcgoHIQvq/1ScvPzhLKyOn47oUSwjgnGJFHt0neouO8aQmu/JP+Qkxl43k0puWGnSaye8mRVde/NF6nbBhpBApn4cvLbvT1Qa09WtY4JxvRQ4epKNjzxS6r+PZuMQSMZ/tO/krvvkV6HZTopEAh48tTRzorUbWPLy09QOf8+snebzLCr7vM6pFZZEjImgVSV6reeY8PDNxKurqRw2iX0P+MqfFk5XodmehFfdh79Tvo+BVPOJ1JT1f4bPGRJyJgECVV8RcUDP6H2w1fJHLs3w2940nnkgTEe8QUy8XXz6l9LQsZ0kYabqHz+ATY99Rvw+Rl4/s0UHHe+XSxqTBx6ZBISkSOAXwBLgTmq+pqnAZleK1JXw+obT6VhxSfkFh/DoIt+RWDA8PbfaIwBIOV9REXkIRFZLyKfxow/TkSWichyEbmuncUosA3IAsqSFasx7akteZeGFZ8waObtDLv2YUtAxnSQFyWhR4C7gceaR4iIH7gHOBonqSwSkXmAH7g15v0XAP9V1ddFZDDwe+BsjPFAaN1KAPIOmNKtrh8xpqdIeRJS1TdEpChm9GRguaquABCROcA0Vb0VOLGNxVUCLd6nQkRmAjMBRo0a1cWojWlZqGIVkpWLv09/r0MxpkfqLpdsDwdWR70uc8e1SEROFZH7gMdxSlU7UdX7VbVYVYsHDuzevUNMzxUqLyU4ZLSVgozppB7ZMUFVnwGeaW8+u22PSbbG8lIyR+3mdRjG9FjdpSS0BhgZ9XqEO86YbkvDYZrWryYwuGPPbTHGfK27JKFFwHgRGSMiQWA6MK+rC1XV+ao6s2/fvl0O0JhYTZvXbX98tjGmc7zooj0beAeYICJlInKhqjYBs4AXgRJgrqouTcC6porI/Vu3bu3qoozZSai8FIDgECsJGdNZXvSOm9HK+AXAggSvaz4wv7i4+OJELtcYgMbyVQAEhhR5G4gxPVh3qY5LCisJmWQKla9EMoJk9BvqdSjG9FhpnYSsTcgkU6hiFRmDRto94ozpgrROQsYkU6h8JUGrijOmS9I6CVl1nEkWVaWxfJW1BxnTRWmdhKw6ziRLuGoTWl9j1wgZ00VpnYSMSZbmG5cGhto1QsZ0RVonIauOM8kSqnC6ZwetJGRMl6R1ErLqOJMsjeWlIELGoJHtzmuMaV1aJyFjkiVUXkrGgOH4Ai0+ScQYEydLQsZ0QqhiFYHBRV6HYUyPl9ZJyNqETLI41whZe5AxXZXWScjahEwyhGurCVdttmuEjEmAtE5CxiRD892zLQkZ03WWhIzpoK8f4VDkaRzGpANLQsZ0UKiiFMDulmBMAqR1ErKOCSYZGstX4e87AF92ntehGNPjpXUSso4JJhlC5aXWHmRMgqR1EjImGUIVpXaNkDEJYknImA6INNbTtGmdXSNkTIJYEjKmA0LrV4MqgSF292xjEsGSkDEd8PU1QlYSMiYRLAkZ0wF2jZAxiZXhdQCdISI+4BdAH2Cxqj7qcUimlwhVlOLLyceX38/rUIxJCykvCYnIQyKyXkQ+jRl/nIgsE5HlInJdO4uZBowAQkBZsmI1JlZj+SoCg0cjIl6HYkxa8KI67hHguOgRIuIH7gGmABOBGSIyUUT2EpHnY/4GAROAt1X1SuCSFMdvejHnGiHrlGBMoqS8Ok5V3xCRopjRk4HlqroCQETmANNU9VbgxNhliEgZ0Oi+DLe0HhGZCcwEGDVqVEJiN72bhpsIbVhN3oHHex2KMWmju7QJDQdWR70uAw5oY/5ngLtE5FDgjZZmUNX7RWQdMDUYDE5KWKSm12rauBaaQgTtnnHGJEx3SUIdoqq1wIVxzDcfmF9cXHxx8qMy6a6x+calVh1nTMJ0ly7aa4CRUa9HuOO6xG5gahIpVL4KsGuEjEmk7pKEFgHjRWSMiASB6cC8ri7UbmBqEilUvhIJZJLRb6jXoRiTNrzooj0beAeYICJlInKhqjYBs4AXgRJgrqouTcC6rCRkEiZUvorA4FGIr7v8djOm5/Oid9yMVsYvABYkeF3WJmQSprFilT3IzpgES+ufdFYSMomiqs4jHKxTgjEJldZJyNqETKKEt2xA62utU4IxCZbWSciYRAmVrwQgaA+zMyah0joJWXWcSZTGCrd79tAibwMxJs2kdRKy6jiTKKHyUvD5CAwY4XUoxqSVtE5CxiRKqLyUwIARSCDodSjGpJW0TkJWHWcSJVS+yjolGJMEaZ2ErDrOJEpjRSkB65RgTMKldRIyJhHCNVuJVFcSsEd6G5NwloSMacfXNy4t8jYQY9JQWichaxMyifD1NULWJmRMoqV1ErI2IZMIjVYSMiZp0joJGZMIoYpS/AWD8GXleB2KMWnHkpAx7QiVlxK0UpAxSWFJyJh2ONcIFXkdhjFpKa2TkHVMMF0VaaijafM6e46QMUmS1knIOiaYrgqt/wqwG5cakyxpnYSM6apQeSmA3S3BmCSxJGRMG5qTUNDuG2dMUlgSMqYNjeWl+HL74ssr9DoUY9KSJSFj2hCqWEVg8GhExOtQjElLloSMaYNdI2RMcvXIJCQih4rIn0XkLyLyttfxmPSk4SZCG8rsGiFjkijlSUhEHhKR9SLyacz440RkmYgsF5Hr2lqGqv5XVb8PPA88msx4Te8V2rgGwk12jZAxSRRXEhKRZ0TkBBFJRNJ6BDguZvl+4B5gCjARmCEiE0VkLxF5PuZvUNRbvw08mYCYjNlJaJ1z9+zA0DEeR2JM+sqIc757gfOBO0Xkb8DDqrqsMytU1TdEpChm9GRguaquABCROcA0Vb0VOLGl5YjIKGCrqla3Mn0mMBNg1KhRnQnV9HKhCvfu2VYSMiZp4irZqOorqno2sB9QCrwiIm+LyPkiEkhAHMOB1VGvy9xxbbkQeLi1iap6P3AT8H4wGOxygKb3CZWXIsEsMgoHex2KMWkr7uo1EekPnAdcBHwA/BEnKb2clMjaoao3qmqbnRLstj2mKxrLS53u2b4e2X/HmB4hruo4EXkWmAA8DkxV1XXupKdEZHEC4lgDjIx6PcId1yUiMhWYOm7cuK4uyvRCzdcIGWOSJ96feHeq6kRVvTUqAQGgqsUJiGMRMF5ExohIEJgOzOvqQq0kZDpLVZ1rhKxTgjFJFW/HhEIROTVm3FbgE1Vd35EVishs4AhggIiUATeq6oMiMgt4EfADD6nq0o4st5V1WUnIdEq4sgJtrLeSkDFJFm8SuhD4JvCq+/oIYAkwRkRuVtXH412hqs5oZfwCYEG8y4lzXfOB+cXFxRcncrkm/TWWuz3j7EJVY5Iq3uq4ALC7qp6mqqfhXMujwAHbOdQwAAAdEElEQVTAtckKrqvsoXams0Ll7jVCloSMSap4k9AIVa2Ier0eGKmqm4FQ4sNKDGsTMp0VqlgFPj+BAe1dKWCM6Yp4q+NeE5Hngb+5r09zx+UCW5ISWQJYm5DprNC6lQQGjkAyEnEZnDGmNfGWhH6Ac2HoPu7fY8APVLVGVY9MVnBdZSUh01mNFausKs6YFGi3JOTe1+0VN9n8PfkhGeO9UMUqssbt43UYxqS9dktCqhoGIiLS44oT1jHBdEa4upLIti32HCFjUiDeNqFtwCci8jJQ0zxSVS9PSlQJYl20TWfYjUuNSZ14k9Az7p8xaa+xvBSw7tnGpEJcSUhVHxWRbGBUZx/hYExPEWpOQoPtESDGJFu8D7WbCnwIvOC+3kdEunxvt2SzNiHTGaGKUvz9huDLzPE6FGPSXrxdtH+O8+C5LQCq+iGwS5JiShjrom06I7SulKC1BxmTEvEmoZCqxhYnIokOxpjuwK4RMiZ14u2YsFREvg34RWQ8cDnQ5gPljOmJIvW1hCsrLAkZkyLxloQuA/YAGoDZQBXwo2QFZYxXmrtn2zVCxqRGvL3jaoGfun/GpK1QRSkAgcFFnsZhTG8R7+O9dwV+DBRFv0dVj0pOWIlhNzA1HfX1c4SsY4IxqRBvm9DfgD8DfwHCyQsnseyOCaajQuWl+PIK8ecVeB2KMb1CvEmoSVX/lNRIjOkGQuWlVgoyJoXi7ZgwX0QuFZGhItKv+S+pkRnjgVC5XSNkTCrFWxL6rvv/1VHjlB5wwaox8dKmEKGNa8g/9FSvQzGm14i3d9yYZAdijNdCG8ogErbqOGNSqM3qOBG5Jmr4jJhptyQrqPaIyCgReU5EHhKR67yKw6SX5huX2jVCxqROe21C06OGfxIz7bjOrNBNHOtF5NOY8ceJyDIRWR5HYtkLeFpVLwD27UwcxsQK2SMcjEm59qrjpJXhll7H6xHgbuCx7QtyHiF+D3A0UAYscu/S7QdujXn/BcC7wNMicgHweCfjMGYHjRWrkMxs/AWDvA7FmF6jvSSkrQy39DouqvqGiBTFjJ4MLFfVFQAiMgeYpqq3AifGLkNEfgzc6C7raeDhzsRiTLRQ+UoCg4sQ6ezvK2NMR7WXhPYWkSqcUk+2O4z7OiuBcQwHVke9LgMOaGP+F4CfuzdVLW1pBhGZCcwEGDXKHk5m2hcqX0VgmHX4NCaV2kxCqupPVSAdoaqfAqe3M8/9IrIOmBoMBielJjLTU2kkQqhiFbn7Hul1KMb0KvFerJpsa4CRUa9HuOO6xB5qZ+LVVFmOhhoIDLGrEYxJpe6ShBYB40VkjIgEcXrldfnx4fZ4bxOvkN241BhPpDwJichs4B1ggoiUiciFqtoEzAJeBEqAuaq6tKvrspKQiVeofCUAQSsJGZNS8d62J2FUdUYr4xcACxK5LnuUg4lXqHwV+DPIGDDM61CM6VW6S3VcUlhJyMSrsaKUwMCRiD/lv8uM6dXSOglZm5CJl/MIhyKvwzCm10nrJGQlIRMPVXWuEbJOCcakXFonISsJmXhEqjcTqa0iOLjI61CM6XXSOglZScjEo7G5e/bQIm8DMaYXSuskZEw8QhWlAASsJGRMyqV1ErLqOBOPhtLPICNAYLDdY9CYVEvrJGTVcSYedSULydrlG/iCibwnrzEmHmmdhIxpT6ShjvoVH5O9e1s3bTfGJIslIdOr1S//EJpCloSM8UhaJyFrEzLtqStZCED2bvt7HIkxvVNaJyFrEzLtqStZSHDUbvjzCrwOxZheKa2TkDFt0XATdcsWW1WcMR6yJGR6rYbSz9D6GrJ3n+x1KMb0WpaETK9V9/l7AFYSMsZDloRMr1VXspCMgSMI9LdnCBnjlbROQtY7zrRGVakrWWilIGM8ltZJyHrHmdaE1q0gvHWjJSFjPJbWSciY1tSVWHuQMd2BJSHTK9V9vhBffiHB4eO8DsWYXs2SkOmV6kreI3u3yYiI16EY06tZEjK9TlNlBaHyUquKM6Yb6JFJSEQmishcEfmTiJzudTymZ7H2IGO6j5QnIRF5SETWi8inMeOPE5FlIrJcRK5rZzFTgLtU9RLg3KQFa9JSXclCJDObrDF7eh2KMb1ehgfrfAS4G3iseYSI+IF7gKOBMmCRiMwD/MCtMe+/AHgcuFFETgL6pyBmk0bqShaSNX4SkhHwOhRjer2UJyFVfUNEimJGTwaWq+oKABGZA0xT1VuBE1tZ1A/c5PVMsmI16SdcU0XDqs/od/oVXodijMGbklBLhgOro16XAa1W2LtJ7HogF/hNK/PMBGYCjBo1KkFhmp6u/n9LQJUcaw8yplvoLkmoQ1S1FDfBtDHP/SKyDpgaDAYnpSQw0+3VlSwEn5+sXe2QMKY76C6949YAI6Nej3DHdYndtsfEqitZSOYue+HLyvE6FGMM3ScJLQLGi8gYEQkC04F5XV2o3cDURIuEGqhf/qFVxRnTjXjRRXs28A4wQUTKRORCVW0CZgEvAiXAXFVdmurYTHpr+PIjNNRgD7EzphvxonfcjFbGLwAWJHhd84H5xcXFFydyuaZnqitZCEDWBEtCxnQX3aU6zpikqyt5j+DwcWT0tUvLjOku0joJWZuQaabhMHWfL7Jb9RjTzaR1ErLecaZZ4+rPidRWWRIypptJ6yRkJSHTzG5aakz3lNZJyEpCplldyUIy+g8lY+AIr0MxxkRJ6yRkDICqUvu5PcTOmO4orZOQVccZgND6rwhvLreqOGO6obROQj25Oi5cW02krsbrMNJCvbUHGdNtpXUS6qlUlbKbz6L0iiNoqqzwOpwer7ZkIb7cvgRHTvA6FGNMDEtC3VDd0rdpWP4hTRvXsObWc61E1EV1JQvJnrA/4rPD3Zjupkc+yiFeIjIVmDpu3DivQ+mQyufvx9+nH4Muvo11f/g+6/54KcOufgjx+70ObQfhmipC61bSuO5LGtd+SWjtCkIbysieUEyfI88ic9RuXodI09aNhNZ+Sd8jz/I6FGNMC9I6CfXEe8c1rv2SmsUv0+/0H5H/zRMJb/kF6x/8KRseuZFBF/4y5fFEQg2EylcRWvcljWtX0LhuBSH3//CWDV/P6PMRGDgSf+EgKhc8SOX8+8gcuzd9jziT/ENOxp9fmPLYAeo+XwRYe5Ax3VVaJ6FEiNTV4MvOTdn6Kv/5FyQjSMGx5wFQMOV8Quu/onL+fQSGFFF4wkVJXX9TZQWV8/5Mw+r/EVq3gtCG1RCJbJ/uLxhIcOgu5E76FsGhuxActguBoWMJDBmNL5DpLGPrJqrffJaqV+c4CfTRm8idfCx9j5xOzjcOS2mJrq5kIRLMInPsN1K2TmNM/CwJtaHuiw9Y88tvM+zqB8nZ86Ckry9cXUnVa3PJP/RkMgoHbR8/4Ds/I1TxFRseuZHAwOHkTZ6SlPXXr/yUtbd9l/DWTQRHTSBr3D7kH3YqwaFj3WQzBn9u+z0NM/r2p/CEiyg84SLqV3xC1WtzqfrvM2x7ez7+fkPoc/jp9D3iTILDk19NWleykKxx+2xPkMaY7kVU1esYkq64uFgXL17c4fdFGupYednBBAaOYOQv/5H0Cx03P3s3G/96C6N/+zKZRXvExFJL2Y1n0PBVCSNvfoascfskdN3bFr/EujsuxZ/bl2HXPUrWmD0TuvxIqIGaJa9Q9Z+nqPnwVYiEydp1En2OnE7+wSfhz8lP6PrAKcUu/+5u9DtlFgNmXJvw5RuT7kRkiaoWJ3Md1l2oDb7MbPqffgX1yxZT88F/kroubQqx5V8Pk7PXITslICeWHIZd9wj+goGsufVcQutXJ2a9qlTOv4+1t59PcPh4Rt22IOEJCMAXyCT/wBMYfv1j7HLfYgZ85wYitVWsv+9qVly0N+v+OIvaj/+LRlX9dVXdF0sgErb2IGO6sbROQom4Y0Lfo6YTGDyaTU/eltATZKzqd+bTtHkdBSfObHWejIKBDL/+CbQpxJpbziFc07U7QWhTiPX3X8uGR28ib/IURt78dzIKB3dpmfHIKBxMv2mXMvoPrzHy1n/S54gzqVnyCmU3n0X5nZeRqNJ5XclC8PnI2nVSQpZnjEm8tE5CibhjgmQE6H/W1TSULmXbu88nMLqvqSqVzz9AYNhYcvc9qs15M0eMZ9jVD9JYXsra31yEhho7tc5wzVbW3HIOW19+gsJTZjH0qvvxZeZ0almdJSJkj9+XwTNvY5cHPqDwlFlUv/ks1W/8PSHLryt5j8yiPZJS1WeMSYy0TkKJkn/wNIKjdmPjnF+j4aaEL7/+8/do+PIjCk+4KK4LKnP2PIghl/yOuk/fouK+azpccmgsL2X19VOp/exdBl/6ewaefb3nF3L6MrMZMP1asnc/gPV/uZ5QxVddWp6GGqn/3xKyd7NHeRvTnVkSioP4/QyYfg2htSuoeu1vCV9+5fz78eUV0ufwM+J+T5/DT6f/mVdR9dpcNj/9h7jfV/f5e6y+/kSatm5kxA2z6XvU9M6EnBTi9zPksjtBhHV3XYaGw51eVv3KT9HGemsPMqabsyQUp9z9jyVr3L5s+tvviIQaErbcxopVbFv0AgVHn4Mvq2PVYf3OuJI+h5/Bpqd+S1UcVVhVbzxD2c/PxJdbwKhb5qek23lHBQaNZNBFt1D/+SI2P3dPp5dTV7IQsItUjenuLAnFSUTo/+1radq4lq0vPZ6w5W5Z8CD4/PQ97rxOxTT4+78he8+DKb/3Smo/fbvF+VSVjXN+Tfmds8jadRKjbplPcNjYLkaePPmHnkr+wdPYNPe31C//qFPLqCtZSGDoLmQUDExwdMaYROr2SUhEdhGRB0Xk6ahxuSLyqIg8ICJnpyqWnL0OJXvPg9n8zJ1E6mu7vLxwTRVb/z2b/IOnEeg/tFPLkECQYT9+gOCQItb+5kIayr7YYXqkoY7yP1zC5qfvoM+RZzHiZ7M9u4VOvESEQRffSkbBQNbd+YMO72uNRKj7fBHZu+2fpAiNMYmS1CQkIg+JyHoR+TRm/HEiskxElovIdW0tQ1VXqOqFMaNPBZ5W1YuBkxIcdqtEhAEzriW8daNTgumirf9+Eq2vofDErt3azp9XwPDrn0AyAqy95Ts0bd0IQNOWDZTddCbVb89jwNnXM/jS3yOBYJfjTgV/XgFDLruT0LqVbHjs5g69t3HNF0S2VVpVnDE9QLJLQo8Ax0WPEBE/cA8wBZgIzBCRiSKyl4g8H/M3aOdFAjACaL5as/Ot152QPaGY3OKj2fyPewlv29Lp5Wi4iS0LHiR74oFk7dL1+5oFBo1k2HWP0rRlPWtvO4/65R/y1U9OoKF0KUN//Bf6nTKrxz3aOmfPgymc+j22vvQY2xa/HPf76uwhdsb0GElNQqr6BrA5ZvRkYLlbwmkE5gDTVPUTVT0x5m99K4suw0lE0Mo2iMhMEVksIos3bNjQ0iydNmD6tURqtlI578+dXsa2hf+iaeMaCtu4OLWjssfvy9Af3UP98g/46rrj0VAjI29+lvwDj0/YOlKt/4xrySyaSMW9V9K0Jb7Psa5kIf6CQQSGFCU3OGNMl3nRJjScr0sx4CSU4a3NLCL9ReTPwL4i8hN39DPAaSLyJ2B+S+9T1ftVtVhViwcOTGzjdGbRRPIPOZnKfz4Q94kxVuXz9xMYUkTupKMTGlve5CkMmnk7Ofscwajb/knWuL0TuvxU8wUyGfLDe4jUbaPi3qviuiaqrmQh2bsf0ONKfsb0Rt2+Y4KqblLV76vqWFW91R1Xo6rnq+olqvrX1t6biNv2tKb/WT9GQ41sfubODr+37n9LqP/fEgqOvzApjzUoOPocRtzwJIEBreb2HiVz5AQGnPNTat5/pd2eiaENZTRtXGOdEozpIbxIQmuAkVGvR7jjepTg0F3oe9R0tr70OKENZR16b+Xz9+PL6UPfI7vPhaLdXcGUC8jZ+3A2PPpzGtcsb3W+us+tPciYnsSLJLQIGC8iY0QkCEwH5iVjRYm4d1xb+p3+IxBhUwfuWBDaUMa2d/9J36PPTunD8no68fkY8oM/IJnZrPvjLLQp1OJ8dSXv4cvJJ3P0xBRHaIzpjGR30Z4NvANMEJEyEblQVZuAWcCLQAkwV1WXJmn9SauOAwgMGE7fY86l6tW5bf46j+Z07RYKplyQlJjSWUa/IQz+3m9oWPExm+b+rsV56koWkrVrcUqf3mqM6bxk946boapDVTWgqiNU9UF3/AJV3dVt5/lVEtef1JIQQL9TL0OCmWx66rftzhup28bWfz9J/oEnpE17TarlH3g8fY6azuZn76L2s4U7TAtXb6Zx9TKyd7eblhrTU3T7jgldkeySEEBG3wEUnjCT6rfnUb/y0zbn3fqfOURqqymY+r2kxdMbDDr/ZgKDR1N+12WEa6q2j69b5jw919qDjOk50joJpaIkBFB40vfw5RWwafavW48lHGbLP/9C1oRissfvm9R40p0vO48hl99F06Z1bHjoZ9vH15UsRDKCCX/0uTEmedI6CaWKP7cv/aZdSs37r2zvnRVr2+KXCK3/KqEXp/Zm2btOot9pP6Tq9b9R/bbTr6Wu5D0yx+2NL5jlcXTGmHildRJKRXVcs4IpF+AvGMTGJ29r8YLKLc/fT8agkeRNPq6Fd5vO6H/aD8kavx8V911L49ovqf/yI3uInTE9TFonoVRVxwH4snLof9oPqfvsXWo/en2HafXLP6KuZCGFUy5E/BlJj6W3kIwAQy6/Cw2HKLv5LAg3WXuQMT1MWiehVOv7rbPJGDSSjbNv36E0VPn8/fiy8+jz/2Z4GF16Cg4dw6Dzb6Zp41oQsTslGNPDpHUSSmV1HDjP9ul/xpU0fPkR2957AYDQpnVUvzOfPkfNwJ+Tn5I4eps+R80g/+BpZO9xEP7c5Jd6jTGJI/HcELKnKy4u1sWLF6dkXRpuYtWVR4H4GP27f7Nxzu1U/uNextz1NoHBo1ISQ2/UfBzbTUuNSRwRWaKqxclcR1qXhLwg/gz6T7+GxrL/sfWVv7L15SfImzzFElCSiYglIGN6IGslT4K8A44nc5e9WP/gTyES7vKTU40xJl2ldUko1W1C29fr8zFgxnUQCZM1bl+yJlhjuTHGtCStk1Aqu2jHytnnCPqf9WMGnn+TVRMZY0wrrDouSUSE/mdc6XUYxhjTraV1ScgYY0z3ZknIGGOMZywJGWOM8UxaJyGvescZY4yJT1onIS97xxljjGlfWichY4wx3ZslIWOMMZ6xJGSMMcYzveIu2iKyAVjVhUUMADYmKJyeoLdtL9g29xa2zR0zWlUHJjKYWL0iCXWViCxO9u3Mu5Petr1g29xb2DZ3P1YdZ4wxxjOWhIwxxnjGklB87vc6gBTrbdsLts29hW1zN2NtQsYYYzxjJSFjjDGesSRkjDHGM5aEXCJynIgsE5HlInJdC9PPE5ENIvKh+3eRF3EmUnvb7M5zpoh8JiJLReTJVMeYaHF8zn+I+oz/JyJbvIgzkeLY5lEi8qqIfCAiH4vI8V7EmUhxbPNoEfm3u72vicgIL+JMFBF5SETWi8inrUwXEbnT3R8fi8h+qY6xVara6/8AP/AlsAsQBD4CJsbMcx5wt9expnibxwMfAIXu60Fex53sbY6Z/zLgIa/jTsHnfD9wiTs8ESj1Ou4UbPPfgO+6w0cBj3sddxe3+TBgP+DTVqYfD/wLEOBAYKHXMTf/WUnIMRlYrqorVLURmANM8zimZItnmy8G7lHVSgBVXZ/iGBOto5/zDGB2SiJLnni2WYE+7nBfYG0K40uGeLZ5IvAfd/jVFqb3KKr6BrC5jVmmAY+p412gQESGpia6tlkScgwHVke9LnPHxTrNLco+LSIjUxNa0sSzzbsCu4rIWyLyrogcl7LokiPezxkRGQ2M4esTVU8Vzzb/HDhHRMqABTglwJ4snm3+CDjVHT4FyBeR/imIzStxH/upZkkofvOBIlX9BvAy8KjH8aRCBk6V3BE4pYIHRKTA04hSZzrwtKqGvQ4kBWYAj6jqCJxqm8dFJN3PDT8GDheRD4DDgTVAb/isu510P9DitQaILtmMcMdtp6qbVLXBffkXYFKKYkuWdrcZ59fSPFUNqepK4H84Samnimebm02n51fFQXzbfCEwF0BV3wGycG562VPF831eq6qnquq+wE/dcT2+E0obOnLsp5QlIcciYLyIjBGRIM4JaF70DDH1pycBJSmMLxna3WbgOZxSECIyAKd6bkUqg0yweLYZEdkNKATeSXF8yRDPNn8F/D8AEdkdJwltSGmUiRXP93lAVGnvJ8BDKY4x1eYB57q95A4EtqrqOq+DAqe6pddT1SYRmQW8iNOz5iFVXSoiNwOLVXUecLmInAQ04TQAnudZwAkQ5za/CBwjIp/hVFVcraqbvIu6a+LcZnBOWnPU7VbUk8W5zVfhVLVegdNJ4byevO1xbvMRwK0iosAbwA88CzgBRGQ2zjYNcNv2bgQCAKr6Z5y2vuOB5UAtcL43ke7MbttjjDHGM1YdZ4wxxjOWhIwxxnjGkpAxxhjPWBIyxhjjGUtCxhhjPGNJyPRIIrItjnl+JCI5CVznySIyMYHLe7sL793m/j9MRJ5uY74CEbm0s+sxJtksCZl09iOgQ0lIRPxtTD4Z58aXCaGqByVgGWtV9fQ2ZikALAmZbsuSkOnRROQI93kwT4vI5yLyV/eq8MuBYcCrIvKqO+8xIvKOiLwvIn8TkTx3fKmI3C4i7wNniMjFIrJIRD4Skb+LSI6IHIRzp4zfuM8aGisi+7g3dv1YRJ4VkUJ3ea+J81yixSJSIiL7i8gzIvKFiPwyKvZtUcPXisgn7jpva2E7x7ixfxKzjKLmZ8iIyB4i8p4b38ciMh64DRjrjvuNiOSJ8xyd991lTYtaTomIPCDOs6NeEpFsd9o4EXnFje19ERnrjr/a3U8fi8hNCf1gTe/h9bMk7M/+OvMHbHP/PwLYinMvLB/OrXYOcaeVAgPc4QE4V8bnuq+vBf4var5ropbdP2r4l8Bl7vAjwOlR0z4GDneHbwbucIdfA253h3+I82iEoUAmzv34+sdswxTgbSDHfd2vhe2dB5zrDv8g6r1FuM+QAe4CznaHg0B29HR3fAbQJ2qfLMd5xkwRzt1A9nGnzQXOcYcXAqe4w1k4pctjcJ5DJO5+fx44zOvjwv563p/dtsekg/dUtQxARD7EOaG+GTPPgThVaW+JCDgn6eh7wz0VNbynW9ooAPJwbv+yAxHpCxSo6uvuqEdxHpTWrPkWQJ8AS9W9T5eIrMC5kWT07Y++BTysqrUAqtrSc2EOBk5zhx8Hbm9hnneAn4rzlNBnVPULd1t3CB24RUQOAyI4t/Mf7E5bqaofusNLgCIRyQeGq+qzbmz17nYcg5OIPnDnz8O5ue0bLcRlTKssCZl00BA1HKbl41qAl1V1RivLqIkafgQ4WVU/EpHzcG/i2smYIjHxRVqJLx5t3mNLVZ8UkYXACcACEfkeO99w9mxgIDBJVUMiUopTuomOGZz9mN3G6gS4VVXv60D8xuzE2oRMOqsG8t3hd4GDRWQcgIjkisiurbwvH1gnIgGck/ZOy1PVrUCliBzqTvsO8Dqd8zJwfnNPPhHp18I8b+HcWJWYmLYTkV2AFap6J/AP4BvsuA/AeXLqejcBHQmMbiswVa0GykTkZHcdmW6cLwIXRLWrDReRQXFtrTFRLAmZdHY/8IKIvKqqG3DufD5bRD7GqbrarZX3/QynHeQt4POo8XOAq0XkA7dx/rs4HRU+BvbBaRfqMFV9Aaf6brFbnfjjFmb7IfADEfmE1p+IeSbwqbuMPXEe57wJpwryUxH5DfBXoNhdzrkx29ea7+DcRf5jnLarIar6EvAk8I67rKfZMdkZExe7i7YxxhjPWEnIGGOMZywJGWOM8YwlIWOMMZ6xJGSMMcYzloSMMcZ4xpKQMcYYz1gSMsYY45n/D2h/JnFH9kMNAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcFVX/wPHPYRdEEFwRETU3RHBFFNfcKsstFZfMrbIy86meynrK7Ml6ymzTyrQyzXLLNDU1yMzMXVRUwA0VldWVTXY4vz/mwg/tAhe4l8ty3q/XfcHMnJn53pl753vnzMw5QkqJoiiKopSXhbkDUBRFUaoHlVAURVEUo1AJRVEURTEKlVAURVEUo1AJRVEURTEKlVAURVEUo1AJRUEIMUUIsdfccSgghJgohAguZno/IUR0KZa3WwjxhHGiK7uS3lehclIIcV8R01KFEC2MH13VJIR4XQjxjbnjKEwllHsIIaKEEAPvGVdwwBVC2AohvhVCXBZCpAghQoUQD5awzMZCiK+FELG6L8VFIcQKIURbU74XYxFCTBdCnNG93wQhxHYhhKNu2gohxPxSLKtcyUs3f65uOxZ+uZV1mZWJlPJHKeXg/OHiDrBVyb3vq4zLqC2lvAil/9xVR1LK96SUZv+xUJhKKKVnBVwF+gJOwBvAeiGEp77CQghXYD9gD/QGHIHOwF/AoCLmsTJ20GUlhOgLvAeMl1I6Au2AdeaNigO6g0vhV6wxV1CZ9kFFqYnvWTEyKaV6FXoBUcDAe8ZNAfYWM89J4NEips0HTgAWxczvCUhgOnAF2KMbPwwIBxKB3UC7QvNI4L5CwyuA+br/+wHRwEvANSAOmFqorCuwBUgGDgPvFPX+gH8DvxQx7SkgG8gCUoGtuvFzgAtAChABjNSNbwdkALm68om68bbAQt17TwC+AmoVsc6S9kWULuaTQBJa8rMrNP1hIFS3TfcDPvfM+6pu3ky0Hw+dgeO69/KTbnn52zkMeKTQ/NbADaCTnrj+yv+MAAG6/TdUNzwACL33/QF7dOXu6LZXYEn7Vs96dwP/0+3nZGAz4FLC5+4nIF63/fYA7XXju+vGWxZa/kjd9moEpAGuhaZ1Bq7rtkux+03f5xrohfbjrV/haZTyc1do2dOA08BtIAhophu/BFh4T9nNwIvFxPgscF63rneAlrrPUzKwHrDRla0L/KrbDrd1/7uXcv88BcTq9vW/C807D/jhnrKTdfvyBvCfQmVrASt1MZwGXgGiy3Os1LttjL3Aqv6ilAkFaIh2kGxbxPSDwLwS1pn/YfgecNDt/NZoB5JBui/kK0BkoQ9qSQklB/ivbt6H0L7sdXXT1+o+9A6ANxBTzPvrDaQDb6MdCG3vmV6w3kLjxgBuaGfAgbr30biobQl8gpbgXNDO4LYC/ysiniL3RaH9d1i3fhfdl+dp3bROaAfh7oCl7ssXlf+edP+HAk11+8AGuAzM1m3HUWgHsfzt/AqwrtC6hwOniojrv8Bi3f+vox34Pig07TN970/Pfi523+pZ727d/vXW7e+f+edBqOBzpxs/TbcfbIFP0SU73bQLwKBCwz8Bc3T/bweeuWe/Ltb3vorZf/lJ4wG0ZOKnb1tQ+s/dcLTvTzu0HwpvAPt10/ro1iV0w3XRPvNuxcS4GagDtEf78fEH0AKt1iICmKwr6wo8ilZD4ajbXr8UWpYh+2eNbloHtMQ0UDd9np6yX6N9dn11cbXTTX8f7UdNXcAd7UeASiimfqEdVFLRfsHmv9L0fRnQvtA7gaXFLC8S3QFNNzxMt8wUIPieD0OLQuXeBNYXGrbQffD63fvluvcLhnbQSQesCk2/BvijHUizKZQA0aq0ijtIP4h2kE/UbZuP0f1KRc8XW8/8ocBw3f9TuPuAKdC++C0LjesBXCpiWVPQDqiF98+Fe/bfY4WGFwBf6f5fArxzz/LOAn0LzTut0LQ+um0uCo3bW2g7u+n2Yx3d8AbglSLiHgCc1P3/G/AEcFA3/Bcwqojtoy+h6N23Rax3N/B+oWEvtKRoiZ7PnZ75nXVlnHTD84Hluv8ddfuumW44ENin+98S7WzGT9/7KmZ9EngNLZF765lWZEIp4XO3A5h+z/cpDWim+wxeAfropj0J7CohxoBCw0eBVwsNfwR8WsS8HYHbpdw/hb+rC4Bvdf/P458JpfDZz2FgnO7/i8CQQtOewAQJRV1D0W+ElNI5/4V2ensXIYQFsApt5z9XzLJuAo3zB6SUW3TLfAHtF3BhVwv974b2pcqfL083vYmB7+GmlDKn0HAaUBuoz/9fB8p3mWJIKXdIKR9B+8U/HO3gUOTFQCHE47qbFRKFEIlov77qFVG8Ptqvt6OFyv+mG1+Ug4X3j5Sy5T3T4wv9n/++QTt4vJS/Ht26mqJt63z37oMYqfsG3jtdatdt9gGPCiGc0RLvj0XEfABoLYRoiHZQ+R5oKoSoB/ihVS0Zqqh9W5R797U1d++PgulCCEshxPtCiAtCiGS0JEuh8quBUUIIW7QztmNSyvzPz2bASwjRHO3MOklKebgU7yvfv9B+TIWVZqYSPnfNgM8KTbuFlkia6PbvWmC8ruwEit6P+RIK/Z+uZ7i2LiZ7IcRS3U08yWj72VkIYVmovMH7Rze9uBtQivrsu92znML/G41KKGUghBDAt2jVXY9KKbOLKf4HMEKXgEpS+MAVi/YlKLzOpmi/mEH7sNgXKt/IgOWDdsqco1tWPg9DZpRS5kkp/wB2oX1Z740ZIUQztNPu59Dq053RrjUIfeXR6nrT0erp8xOEk5SyuANkWV0F3r0nGdlLKdcUKlM4vjigiW7b5yu83UCrl34MrbrlgJQyBj2klGlov2RnA2FSyiy0OvcX0c6wbpTrnRXv3n2djbbdC8Ir9P8EtB8NA9Gqbzx14wWAlDIC7aD2oK7s6oKFSJmBVpX6GDAJ7QdXWYxB+87MLqZMaT93V4EZ9+z7WlLK/brpa4DRuuV0R6t6MoaXgDZAdyllHbSzXgrFBSXvn3unl+UGlDi0qi59yzQalVDKZglaXewjUsr0Esp+jFZvuUoI0VJoHNF+pRZnPTBUCDFACGGN9sHMRDsIgXY6P0H3i/IBtLvOSiSlzAU2AvN0v5680K4l6CWEGC6EGCeEqKuL3U+3roO6Iglodcf5HNC+7Nd180/l/5NPfnl3IYSNLp48tAPBJ0KIBrp5mgghhhjyfkrpa+BpIUR33XtxEEIMzb8FWo8DaDcQPCeEsBJCDEc7myjsF7SLz7PRzjqK8xfaAe8v3fDue4b1uXf7lsVjQggvIYQ92rWXDbrPgT6OaJ+zm2g/WN7TU2Y12vvtg3ZNoLDv0c5gh1H2hBKLVkU4WwjxTBFlSvu5+wp4TQjRXjfdSQgxJn+ilPI42kH8GyBISplYxtjv5Yj2gylRCOECvKWnTEn7503dd7U9MJWy3WW5Hu391xVCNKH4WpUyUwmllHS/YGagJYT4Qs9BTNRXXvfL0x/twv1etDr3ULQPWlFfFqSUZ9F+6S1G+6A/gpbAsnRFZuvGJQIT0Q5shnoO7VQ4Hq0u+rtiyt5Gq1M+j3YXyg/Ah1LK/CqBb9GqORKFEL/ofsF+hHYwTkC7kLiv0PJ2od25Fi+EyP8V9irataaDumqBnWi/6orSQ89zKN1KetNSyhDde/lc974i0Q5+RZXPQqvWmY62nR9Du0sns1CZdLRfs83REnVx/kLb73uKGNZnHrBSt33HlrD8oqxC28/xgB3wfDFlv0c7A4lBu7h8UE+ZNWg/Knbde2YlpdwH5HF3VVipSSmvoCWVOUL/g5ml+txJKTcBHwBrdZ+xMLSzrMJWo52ZrcZ4PkW7SH4DbVv+pqdMSfvnL7TP6h9od6OV+ICoHv9FuzvwEtr3awOFPsfGkn9Xg6IoBhBCHEK7yP9doXFzgdZSysfMF1nlIYTYBayWUlaqp7grIyHEbrQL6//YVrpn2y4B1vdcMzPGep9Bu2BvUM2GodQZiqIUQwjRVwjRSFflNRnwodCvTF01xnRgmblirEx0Z4qdMf/Dr0ohQmutI0AIYSGEaINWhb7J2OsxW0IRQowRQoQLIfKEEF2LKfeAEOKsECJSCDFHz/RFQohU00ar1GBt0B5MTUT7Eo6WUsYBCCGeRLvYu0NKWZq7tKolIcRKtOqUf0kpU4oo01tPdWWq+g6bnA2wFK3KfRfaHXlfGnslZqvyEkK0Q6trXYr29GeInjKWwDm0WxCjgSNoTYBE6KZ3RbuWMNJEdwUpiqIoBjLbGYqU8rTuwnNx/IBIKeVF3QXStWi3NOYnmw/RnlZWFEVRzKyyNwbXhLsfwIlGu0cctDuVtkgp4+5+TOBuQoin0NrCwcHBoUvbtlWigV9FUZRK4+jRozeklMU9bAyYOKEIIXai/4G7/0gpN5djuW5oDz/1K6mslHIZugumXbt2lSEh/6hZUxRFUYohhDDoFnCTJhQp5cCSSxUrhruf6HTXjeuE1oBcpO7sxF4IESmlrPL9RiiKolRVlb3K6wjQSmhtA8UA44AJUspwCp35CCFSVTJRFEUxL3PeNjxSaF2Z9gC2CSGCdOPdhBDbAXQP8zyH1nfBabQG48LNFbOiKIpStBr1pHx5rqHk5kksLYq++K8o1V12djbR0dFkZGSYOxTFROzs7HB3d8fa2vqu8UKIo1LKIp8XzFfZq7wqhY+Cz/Ln2Wtsfa4Xxd1RpijVWXR0NI6Ojnh6eqrvQTUkpeTmzZtER0fTvHnzMi1DNb1igAZ17AiLSeZMvN6HfxWlRsjIyMDV1VUlk2pKCIGrq2u5zkBVQjHAQ96NsLQQbDlRlm4IFKX6UMmkeivv/lUJxQCutW3p3aoeW0JjqUnXnBRFUUpDJRQDDfN1IyYxnWNXbps7FEWpsWrXvrvJvhUrVvDcc6XrKyo0NJTt27cbM6y7rFixgvr169OxY0c6duzI448/Xupl7N69m4cfftgE0ZmWSigGGty+EbZWFmwJVdVeilJV5eTkFJtQcnKM0+1IYGAgoaGhhIaG8v33JXXkWX2ohGKg2rZWDGjXgG2n4sjJzTN3OIqi3GPr1q10796dTp06MXDgQBISEgCYN28ekyZNIiAggEmTJjF37lzWrVtHx44dWbdu3T+m5+bm8vLLL9OtWzd8fHxYunRpwTo+/PDDgvFvvaWvN9+ihYaG4u/vj4+PDyNHjuT2ba22IzIykoEDB+Lr60vnzp25cOHCXfMdOXKETp06/WN8ZaRuGy6FYb5N2H4qnv0XbtKndYntpClKtfX21nAiYpONukwvtzq89Uj7Ysukp6fTsWPHguFbt24xbNgwAHr16sXBgwcRQvDNN9+wYMECPvroIwAiIiLYu3cvtWrVYsWKFYSEhPD5558DWsIpPH3ZsmU4OTlx5MgRMjMzCQgIYPDgwZw/f57z589z+PBhpJQMGzaMPXv20KdPn3/EuW7dOvbu3QvA7NmzmTp1Ko8//jiLFy+mb9++zJ07l7fffptPP/2UiRMnMmfOHEaOHElGRgZ5eXlcvaq1ibt//35mzZrF5s2b8fDwKP9GNjGVUEqhX5v6ONpaseVErEooimIGtWrVIjQ0tGA4PzmA9pxMYGAgcXFxZGVl3fUsxbBhw6hVq1aRyy08PTg4mJMnT7JhwwYAkpKSOH/+PMHBwQQHB9OpUycAUlNTOX/+vN6EEhgYWJCw8peRmJhI375aj7uTJ09mzJgxpKSkEBMTw8iRIwHtwcJ8p0+f5qmnniI4OBg3N7fSbSgzUQmlFOysLRni3YigsHjmj/DGztrS3CEpilmUdCZhDrNmzeLFF19k2LBh7N69m3nz5hVMc3BwKHbewtOllCxevJghQ4bcVSYoKIjXXnuNGTNm3DX+iy++4OuvvwYw6sX+xo0bk5GRwfHjx6tMQlHXUEppeEc3UjJz2H32mrlDURSlkKSkJJo0aQLAypUriyzn6OhISkrRDykPGTKEJUuWkJ2dDcC5c+e4c+cOQ4YMYfny5aSmar0Vx8TEcO3aNWbOnFlwAb6oA7+TkxN169bl77//BmDVqlX07dsXR0dH3N3d+eWXXwDIzMwkLS0NAGdnZ7Zt28Zrr73G7t27S7cxzEQllFLq0cKVerVt1EOOilLJzJs3jzFjxtClSxfq1atXZLn+/fsTERFRcFH+Xk888QReXl507twZb29vZsyYQU5ODoMHD2bChAn06NGDDh06MHr06GIT071WrlzJyy+/jI+PD6GhocydOxfQksuiRYvw8fGhZ8+exMfHF8zTsGFDfv31V2bOnMmhQ4dKsTXMQzUOWQZvbQ5j7ZGrhLwxEEc765JnUJRq4PTp07Rr187cYSgmpm8/G9o4pDpDKYNhHd3IzMnj94gEc4eiKIpSaaiEUgadPeriXrcWm9VDjoqiKAVUQikDIQSP+LqxN/IGN1MzzR2OoihKpaASShkN83UjN0+yPSy+5MKKoig1gEooZdS2kSOtG9ZmS2iMuUNRFEWpFFRCKSMhBMN83TgSdZuYxHRzh6MoimJ2KqGUwyO+2kNMv6pnUhTF5Pr3709QUNBd4z799FOeeeYZwsPDuf/++2nTpg0tW7bkrbfeIi9Pa8T13ubkO3bsSEREhDneQrWnEko5NHN1wLeps7rbS1EqwPjx41m7du1d49auXcu4ceMYNmwYc+bM4ezZs5w6dYrDhw/z2WefFZQr3Jx8aGgoXl5eFR1+jaASSjkN93UjIi6ZyGup5g5FUaq10aNHs23bNrKysgCIiooiNjaWyMjIghaBAezt7fn888/58MMPzRlujaQahyynh30aM39bBFtOxPLioNbmDkdRKsaOORB/yrjLbNQBHny/yMkuLi74+fmxY8cOhg8fztq1axk7dizh4eF06dLlrrItW7YkPT2dxMRE4O7m5AEOHDhQbOvDStmoM5RyalDHDv8WrmwJjVH9zSuKiRWu9lq7di3jx483aL57q7xUMjENdYZiBMN83Ziz8RSnYpLwcXc2dziKYnrFnEmY0vDhw3nhhRc4duwYaWlpdOnShePHj7Nnz567yl28eBFXV1ecndX3sSKpMxRDHFoK6x4rcvKD3o2xthSqv3lFMbHatWvTv39/pk2bVnB2MnHiRPbu3cvOnTsBrVfH559/nrffftucodZIKqEY4ERKFD9F74LEK3qnO9lb07d1A7aejCU3T1V7KYopjR8/nhMnThQklFq1arFlyxbeffddWrduTb169QgICGDixIkF8+T3IZ//2r9/v7nCr9ZUQjHADht438WF1FMbiiwzrKMbCcmZHL50qwIjU5SaZ8SIEUgpadu2bcE4b29v/vzzT86dO8ePP/7I119/zeXLlwGYMmUK169fv+saSs+ePc0VfrWmEooBHmgbSJaFYPe5jUWWGdiuAfY2lqrjLUUxsxEjRnDx4kWaNWtm7lBqHJVQDOBT34eGlvYEZcZBUrTeMvY2VgzyasiOsDiycvIqOEJFURTzUwnFABbCgsEeA9hnX4vksGKqvXzdSEzL5u/z1yswOkVRlMpBJRQDPdBuHNmi+Gqv3q3q41TLWlV7KYpSI6mEYqAO9TrQ2NKBoIxYSI7TW8bGyoKHOjTm94gE0rJyKjhCRVEU81IJxUBCCIZ4DGB/LTuSwn4qstwwXzfSsnLZefpaBUanKIpifiqhlMIDXhPIEYJdZ38usoxfcxca1rFVDzkqiglYWlre9TzJ++8b74n90NBQtm/fXjBcVLP3sbGxjB492mjrLYuoqCi8vb3NGoM+Zml6RQgxBpgHtAP8pJQhRZR7APgMsAS+kVK+rxsvgPnAGCAXWCKlXGTquL1cvWhiVZug5BhGpiSAY8N/lLG0EDzi48bKA1EkpWXjZG9t6rAUpcaoVasWoaGhJll2aGgoISEhPPTQQwXjAgMD+fzzz/9RdsOGom/OqUpycnKwsjJeGjDXGUoYMArYU1QBIYQl8AXwIOAFjBdC5HdiMAVoCrSVUrYD1updiJHlV3sdqmVHYtj6IssN6+hGdq7kt3D911oURTGepKQk2rRpw9mzZwHtSfqvv/4agGeeeYauXbvSvn173nrrrYJ5jhw5Qs+ePfH19cXPz4+kpCTmzp1b8ET9unXrilxf4bODtLQ0xo4di5eXFyNHjqR79+6EhGi/j4ODg+nRowedO3dmzJgxpKZqXVx4enry1ltv0blzZzp06MCZM2cA+OuvvwrOhDp16kRKSgpSSl5++WW8vb3p0KGD3rj8/f0JDw8vGO7Xrx8hISHcuXOHadOm4efnR6dOndi8eTOgnXkNGzaM+++/nwEDBpR5u+tjljMUKeVp0A7QxfADIqWUF3Vl1wLDgQjgGWCClDJPt7wKu2DxQLsJLL+4mT/ObuDRHrP0lunQxAlPV3s2h8YS2M2jokJTlArzweEPOHPrjFGX2dalLa/6vVpsmfT0dDp27Fgw/NprrxWcRUyZMoXZs2dz+/ZtnnzySQDeffddXFxcyM3NZcCAAZw8eZK2bdsSGBjIunXr6NatG8nJydjb2/Pf//6XkJCQgjOSFStW6G32vrAvv/ySunXrEhERQVhYWEFsN27cYP78+ezcuRMHBwc++OADPv74Y+bOnQtAvXr1OHbsGF9++SULFy7km2++YeHChXzxxRcEBASQmpqKnZ0dGzduJDQ0lBMnTnDjxg26detGnz597oohMDCQ9evX8/bbbxMXF0dcXBxdu3bl9ddf5/7772f58uUkJibi5+fHwIEDATh27BgnT57ExcWlLLuqSJW5teEmwNVCw9FAd93/LYFAIcRI4DrwvJTyvL6FCCGeAp4C8PAo/8G9rWs7PKxqE5QSy6Op16F2fX3rZJivG4v/jORacgYN6tiVe72KohRd5TVo0CB++uknZs6cyYkTJwrGr1+/nmXLlpGTk0NcXBwREREIIWjcuDHdunUDoE6dOkWur6gqr3x79+5l9uzZgNb8i4+PDwAHDx4kIiKCgIAAALKysujRo0fBfKNGjQKgS5cubNyoPYoQEBDAiy++yMSJExk1ahTu7u7s3buX8ePHY2lpScOGDenbty9HjhwpWA/A2LFjGTx4MG+//Tbr168vuL4THBzMli1bWLhwIQAZGRlcuXKlYHsZO5mACROKEGIn0EjPpP9IKTeXc/G2QIaUsqsQYhSwHOitr6CUchmwDKBr167lbrlRq/YayPILm7gVth4X/5l6yw3r6MaiXZH8ejKOab2al3e1ilKplHQmUdHy8vI4ffo09vb23L59G3d3dy5dusTChQs5cuQIdevWZcqUKWRkZFRIPFJKBg0axJo1a/ROt7W1BbSbDHJytEcM5syZw9ChQ9m+fTsBAQEEBQUZtK4mTZrg6urKyZMnWbduHV999VVBDD///DNt2rS5q/yhQ4dwcHAo61srlsmuoUgpB0opvfW8DE0mMWjXSfK568aBdraS/4ThJsCHCjTEayK5QrDzbNEX5u5r4IhX4zpsVg85KorJffLJJ7Rr147Vq1czdepUsrOzSU5OxsHBAScnJxISEtixYwcAbdq0IS4ujiNHjgCQkpJCTk4Ojo6OpKSklGq9AQEBrF+vXU+NiIjg1CmtF0t/f3/27dtHZGQkAHfu3OHcuXPFLuvChQt06NCBV199lW7dunHmzBl69+7NunXryM3N5fr16+zZswc/P79/zBsYGMiCBQtISkoqOHsZMmQIixcvLuj47/jx46V6b2VRmW8bPgK0EkI0F0LYAOOALbppvwD9df/3BYrfU0bW2qUNnlaOBKdHw52bRZYb1tGNE1cTuXzzTgVGpyjVV/41lPzXnDlzOHv2LN988w0fffQRvXv3pk+fPsyfPx9fX186depE27ZtmTBhQkH1k42NDevWrWPWrFn4+voyaNAgMjIy6N+/PxEREXddlC+p2ftnn32W69ev4+XlxRtvvEH79u1xcnKifv36rFixgvHjx+Pj40OPHj0KLr4X5dNPPy2oNrO2tubBBx9k5MiR+Pj44Ovry/3338+CBQto1OifFT+jR48u6BI535tvvkl2djY+Pj60b9+eN998s7ybv2RSygp/ASPRzjIygQQgSDfeDdheqNxDaMniAlpVWf54Z2AbcAo4APgast4uXbpIY1m85w3p8117ef3gF0WWib6dJpu9+qtc/Mc5o61XUcwlIiLC3CFUOjk5OTI9PV1KKWVkZKT09PSUmZmZZo6qfPTtZyBEGnCMNdddXpvQqqruHR+LlkTyh7cD2/WUSwSGmjLGkgxpP4mlF39h59kNjOv+rN4yTZxr0c2zLptDY5nZ/76S7mpTFKWKSUtLo3///mRnZyOl5Msvv8TGxsbcYZlNZb7Lq1Jr5dKallaOBKVGMy7tFtjrv2NiWMcmvPlLGCejk/Btqvq3VpTqxNHRseC5E6VyX0Op9IZ4DOCorQ3Xwop+CGpERzdq21rx3b5LFRiZopiGlKqL6+qsvPtXJZRyGOI9BSkEvxdzt5ejnTVjurrz68k4EpIr5pZFRTEFOzs7bt68qZJKNSWl5ObNm9jZlf25OVXlVQ4t6raklVUdglOjmZieCLX0V2lN6enJiv1RrDpwmX8PaaO3jKJUdu7u7kRHR3P9uupArrqys7PD3d29zPOrhFJOQzwG8PnFTcSfWkcjvxl6yzRzdWBgu4b8eOgyz91/H3bWlhUcpaKUn7W1Nc2bq4d0laKpKq9yGuIzFaDYai+AaQHNuZ2WzS/HY4otpyiKUlWphFJOnk7NaWtVh6D0K5CRVGQ5/xYutGtch+X7Lqk6aEVRKszN1Eye+j6EuKR0k69LJRQjGOIxkBO2NsQV06S9EIJpAZ6cS0hlX2TRT9criqIYy/WUTMZ/fZA9569z+WaaydenEooRDPGZBkDwmaK7BgZ4xNeNerVtWK5uIVYUxcSupWQw/uuDXL2VzvIp3fBv4WrydaqEYgRNnZrhZVWHoLQrkFl043J21pY85t+MXWeucfF6agVGqChKTZKQnMG4ZQeJTUznu6nd6NmyXoWsVyUUIxniMZBTttZEnyq+88iJ3ZthY2nBiv1RFROYoig1SlxSOuOWHSQhKYOV0/wq5Mwkn0ooRjLYZzoAwWeLr/aq72jLsI5u/BSTSvX1AAAgAElEQVQSTVJadkWEpihKDRGTmE7g0oNcT8nk++nd6eZp/E60iqMSipG4O3nQwcpJV+1VfHXW1ABP0rNzWRdypYKiUxSluou+nca4ZQe4fSeLVdP96NKsboXHoBKKEQ3xGEiEjTVXwoqv9mrv5oR/CxdW7r9MTm5eBUWnKEp1dfVWGoFLD5KUls0PT3Snk0fFJxNQCcWoBnd8Aij5bi/QHnSMSUwnOCLB1GEpilKNXb55h8ClB0jNzGH1k/5mbdVcJRQjauzojm9+tVdW8fd8D2jXEA8Xe77dq24hVhSlbC7duEPg0oOkZ+ey+snueDdxMms8KqEY2RCPgZyxsSIqbE2x5SwtBFN6enL08m1CryZWUHSKolQXF66nErj0AFm5eax+0p/2buZNJqASitEN8n0SgCADqr3GdHVXfaUoilJqkddSGLfsIHlSsuZJf9o1rmPukACVUIyuUZ0mdLZyIijtMmQX33aOo501Y7s2ZdvJOOKTVF8piqKU7FyClkwA1j7lT5tGjmaO6P+phGICgz0Gct7aiouniq/2Aq2vlFwpWXUwyvSBKYpSpZ2OS2bcsoNYCMHap/y5r0HlSSagEopJDOr4FEJKgkp4yBHAw9WeQe0asvrQFdKzcisgOkVRqqLw2CQmfH0QG0sL1s3oQcv6tc0d0j+ohGICDRzd6GLlTNCdy5CTWWL5ab10faWEqr5SFEX5p7CYJCZ+c4ha1pasm+FP83oO5g5JL5VQTGSIx0AuWFty/tTqEst2b+6CV+M6LN+r+kpRFOVuR6JuMX7ZQRxsrFj7VA+auVbOZAIqoZjMwE4zsJCSoDNF95GSTwjBtF7NOX8tlb2RNyogOkVRqoK/z19n0reHqO9oy09P98DD1d7cIRVLJRQTqefYmG66ai+ZXfIdXI/4NqZebVuWqwcdFUUBgsLjmb4ihOb1arNuRg/cnGuZO6QSqYRiQoObDSTK2pJzJbTtBWBrZckk/2b8efY6F1RfKYpSo/1yPIZnfzyGl1sd1j7pT31HW3OHZBCVUExoYKentWqvsyVXewFM9PfQ+krZF2XawBRFqbR+PHSZF9aH4ufpwg9PdMfJ3trcIRlMJRQTcqndCD8rZ4LuRCGzS77bq15tW4Z3dGPDUdVXiqLURMv2XOA/m8Lo36YB303tRm1bK3OHVCoqoZjYg82GcMXKkhPHlhpUfmpAc9Kzc1l7RPWVoig1hZSSj4PP8t72Mwz1acxXj3XBztrS3GGVmkooJjbEbzYOEtae/tGg8l5udejRwpWV+6NUXymKUgNIKXnn19Ms2hXJ2K7uLBrXCRurqnlorppRVyEOtnUY5uRFMHe4eWW/QfNM69Wc2KQMgsJVXymKUp3l5kle23iK5fsuMTXAk/dH+WBpIcwdVpmphFIBxvWYQ7YQbDy4wKDy97dtQDNXe5arVogVpdrKzs1j9trjrD1ylVn338fch72wqMLJBFRCqRAtGnWiu6Uz61POkZN2s8Tyqq8URaneMrJzeXrVUX49GcecB9vy0uA2CFG1kwmohFJhxns/TryVJX/t+8Cg8mO6NsVR9ZWiKNXOncwcpq04wh9nrvHOCG+e7tvS3CEZjdkSihBijBAiXAiRJ4ToWky5B4QQZ4UQkUKIOYXGDxBCHBNChAoh9goh7quYyMumr89UGkkL1lz5DfJKvthe29aKsd20vlLikorvV0VRlKohKS2bx749xKFLt/h4rC+T/JuZOySjMucZShgwCthTVAEhhCXwBfAg4AWMF0J46SYvASZKKTsCq4E3TBtu+VhZWDGmcR8OWUkuhq8zaJ4pPT0B+HxXpAkjUxSlItxIzWT81wcJi0niiwmdGdXZ3dwhGZ3ZEoqU8rSU8mwJxfyASCnlRSllFrAWGJ6/CCC/30snINY0kRrPowGvYy0l60K/Mqh8Uxd7HvNvxprDVziXkGLi6BRFMZWrt9IY89UBLt5I5ZvJ3XjAu5G5QzKJyn4NpQlwtdBwtG4cwBPAdiFENDAJeF/fAoQQTwkhQoQQIdevXzdpsCVxrd2YwQ7N2JJzg7TrZwya5/kBrXCwteK97adNHJ2iKKYQEZvMqCX7uXUnix+md6dv6/rmDslkTJpQhBA7hRBhel7DS567RC8AD0kp3YHvgI/1FZJSLpNSdpVSdq1f3/w7clzXf5FqYcGv+941qLyLgw2z7r+P3Wev8/d58yZERVFK58CFmwQuPYCVheCnp3vQ1dPF3CGZlEkTipRyoJTSW89rs4GLiAGaFhp2B2KEEPUBXynlId34dUBPI4ZuMr6eA2kn7Fhz4ygyy7CL7ZN7etLUpRbvbjtNbp7qgEtRqoLtp+KYvPwwjZzs+PmZnrRuWLn6fzeFyl7ldQRoJYRoLoSwAcYBW4DbgJMQorWu3CCgStQJCSEYd98oIq0tCTn8mUHz2FpZ8uoDbTkTn8KGo1dLnkFRFLP6/kAUM1cfo4O7Ez89XTX6MjEGc942PFJ3/aMHsE0IEaQb7yaE2A4gpcwBngOC0BLGeilluG78k8DPQogTaNdQXjbH+yiLB7vNpo6Eted+MnieoR0a09nDmYXB57iTmWPC6BRFKSspJQuDzjJ3czgD2jbkxye642xvY+6wKow57/LaJKV0l1LaSikbSimH6MbHSikfKlRuu5SytZSypZTy3Xvm7yCl9JVS9pNSXjTH+yiLWtb2jHTtxC6LTK5d2GnQPEII/jPUi+spmSzdU2XeqqLUGDm5ecz5+RSf/xnJuG5N+eqxzlWyxeDyqOxVXtVWYI855AIbDn9k8DxdmtVlqE9jlu25QHxSyd0KK4pSMdKzcnn6h2OsC9Ha5frfqA5YWda8w6tB71gIsVEIMVQIUfO2kIk0redFgE19fkq/THZKnMHzzXmgLXl5sDC4pEd4FEWpCIlpWTz27SH+OJPAO8PbV5t2ucrC0ATxJTABOC+EeF8I0caEMdUY432e4IalJX/sNewWYtAedpwa4MnPx6IJj00yYXSKopQkNjGdMV8d4FS09vT7pB6e5g7JrAxKKFLKnVLKiUBnIArYKYTYL4SYKoSoOh0eVzIBXuNwx4o1Mbsh1/AL7c/2vw/nWta8u+00UqrbiBXFHM4lpPDokv3EJ2WwcpofD3VobO6QzM7gKiwhhCswBe0J9ePAZ2gJ5neTRFYDWFpYEth0EMesBedCVxg8n1Mta/41sDX7L9xk15lrpgtQURS9QqJuMXrJfnLyJOtm9KBHS1dzh1QpGHoNZRPwN2APPCKlHCalXCelnAXUNmWA1d1I/1exlZK1YctLNd+E7h60qO/Au9tPk626ClaUCvN7RAITvzmEa21bNj7TEy+3OiXPVEMYeoaySErpJaX8n5TyrivIUsoim55XSuZk78qDjq34NS+J5NjjBs9nbWnBaw+24+L1O6w5fMWEESqKkm/t4SvMWBVC20aObHi6B01d7M0dUqViaEKpK4QYdc9rgBCigUmjqyHG+f2bdAsLtuz/X6nmG9iuAf4tXPh053mSM7JNFJ2iKHl5kvd3nGHOxlP0blWf1U/641rb1txhVTqGJpTpwDfARN3ra+BVYJ8QYpKJYqsx2jcNwMeiNusSw8jLMPzOLSEEbwz14nZaFl/8qfpMURRTSM/KZebqY3z11wUmdPfgm8ldcbC1MndYlZKhCcUaaCelfFRK+ShaZ1cS6I6WWJRyGtd2PFHWlhw8sLBU83k3cWJkpyZ8tzeKq7fSTBSdotRM15IzGLfsAL+Fx/PG0Ha8O8Ib6xr4wKKhDN0y7lLKhELD14CmUspbgKprMYIhnWbgIgVrL26FUt4K/PKQNlhYwIIg9bCjohjL6bhkRnyxj3MJqSyb1JUnereosQ8sGsrQhLJbCPGrEGKyEGIysFk3zgFINF14NYeNlS2jGnTnL8scYs/8Uqp5GzvV4qneLdh6IpbjV26bKEJFqTn+PHON0Uv2kyslPz3dg0FeDc0dUpVgaEKZidaJVUfd63tgppTyjpSyv6mCq2nG9nwdgPVHPy/1vDP6tqS+oy3z1cOOilIuK/dHMX3lETzrObB5Zi+8mziZO6Qqo8SEIoSwBHZJKX+WUr6ge22Q6qhldI2dm9PXrjEbs+LIvHWpVPM62Frx0qDWHL18mx1h8SaKUFGqr5zcPOZtCeetLeHc37Yh62f0oJGTnbnDqlJKTChSylwgTwih0nQFGN95JrctLQk2sIvgwsZ0bUrbRo68v+MMmTm5JohOUaqn1Mwcnvw+hBX7o3iiV3OWTuqi7uQqA0OrvFKBU0KIb4UQi/JfpgyspvJvNRxPbFibcAByMks1r6WF4PWH2nHlVhqrDlw2UYSKUr3EJKYzesl+9py/wbsjvXnjYS8sLdTF97IwNKFsBN4E9gBHC70UIxNCMK75UE5aWxAe8lWp5+/Tuj59W9dn0R/nuX0nywQRKkr1ceJqIiO+2EfM7XRWTO3GxO7NzB1SlWZoa8MrgfXAQSnlyvyXaUOruYb5vUQtCWtO/1im+f8ztB2pmTks2nXeyJEpSvXxW1gcgcsOYGtlwcZne9K7VX1zh1TlGdo45CNAKPCbbrijEGKLKQOryRztnHjY2YvfuENi1N+lnr91Q0fG+Xmw6sBlLl5PNUGEilJ1SSn56q8LPP3DMdo1rsMvMwNo1dDR3GFVC4ZWec0D/NA9cyKlDAVamCgmBRjX/RUyLSzYdOjDMs3/wsDW2Flb8vqmU+TmqRvyFAUgK0fr9/39HWd42Kcxa570p55qk8toDE0o2VLKexuZUm2mm1Drxl3oYuXMutRIcu9cL/X89R1tmTesPQcv3uJL1c6XohCflEHgsgMF/b4vGtcJO2tLc4dVrRiaUMKFEBMASyFEKyHEYmC/CeNSgHHtJxNjZclfu+eVaf5HOzdhREc3Ptl5jiNRt4wbnKJUIYcv3eLhxXs5G5/CkomdeWlwGyzUnVxGZ2hCmQW0BzKBNUAy8C9TBaVoBvhMxkPY8EXcLvJSS3+WIoRg/sgOeLjYM3vNcRLT1F1fSs0ipWTFvktM+PogjnZWbJ4ZwIOqq16TMfQurzQp5X+klN2klF11/2eYOriaztrCmpk+z3DO2oodO/9dpmXUtrVi8fjOXE/N5JUNJ1WzLEqNkZ6Vy0vrTzBvawT92jRg83Pq4rupGXqXV2shxDIhRLAQYlf+y9TBKfCA7zRaW9jzxY3DZN8u28OKHdydePWBtgRHJPDDQfXAo1L9Xb2VxqNL9rMpNIYXB7Vm2aQu1LGzNndY1Z6hVV4/AceBN4CXC70UE7MQFjzf9SWuWluxaedLZV7O9F7N6d+mPu9sO01EbLIRI1SUyuXv89d55PO9XL2dxvLJ3Xh+QCt1vaSCGJpQcqSUS6SUh6WUR/NfJo1MKdCn7Rg6WjmzNDmCjGsRZVqGEIKFY3xxrmXNrDXHSMvKMXKUimJeUkq+3B3J5OWHaehox9bnetG/reqlvCIZmlC2CiGeFUI0FkK45L9MGplSQAjB7J5zuWZlyZo/ynYtBcC1ti2fjuvIxRt3mLcl3IgRKop5pWbm8OyPx1jw21ke6tCYTTN74lnPwdxh1TiGJpTJaFVc+/n/drxCTBWU8k9dmw8iwLYh36ZHkXL1cJmX07NlPZ7rfx/rQ6LZHBpjxAgVxTwuXE9lxBf7CI5I4I2h7Vg8vhP2NqqlYHMw9C6v5npe6kn5CvZ8n/kkWVqyYver5VrO7AGt6NqsLv/ZFMblm3eMFJ2iVLzfIxIY8fk+bt3JYtV0P9VNr5kVm1CEEK8U+n/MPdPeM1VQin5ebv4MdmjGqpxr3Ljwe5mXY2VpwafjOmIh4Pk1x8nKUY0eKFVLbp7k4+CzPPl9CM3rO7B1Vi96tqxn7rBqvJLOUMYV+v+1e6Y9YORYFAM8128BWULw7d9vQTmeKXGva8+C0T6ciE5iYfBZI0aoKKaVmJbF9JVHWLQrkjFd3Fk/owdNnGuZOyyFkhOKKOJ/fcNKBWhez4vhzu1ZRzKxET+Xa1kPeDfmMX8Plu25yO6z14wUoaKYzoELN3ng07/ZF3mD+SO8WTDaR7XHVYmUlFBkEf/rG1YqyDP9FyAQLDn0frnOUgDeGOpF20aOvLT+BNeSVeMHSuWUnZvHwqCzTPjmIPY2lmx6NoDH/Jup6yWVTEkJxVcIkSyESAF8dP/nD3eogPgUPRo5NSOwfje2WGRw8di35VqWnbUln0/oxJ2sHF5YH0qeaupeqWSu3kpj7NIDfP5nJKM7u7N1Vi+8mziZOyxFj2ITipTSUkpZR0rpKKW00v2fP1zmdgyEEGOEEOFCiDwhRNdiyi0XQlwTQoTdM95FCPG7EOK87m/dssZSVT3R733sEHx+fDHk5ZZrWfc1cOTtYe3ZF3mTJX9dMFKEilJ+m0NjeOizv4m8lsri8Z34cIwvDrbqluDKytDnUIwtDBiF1kd9cVag/+L/HOAPKWUr4A/dcI3i4tCAx5v053frPMIPflru5Y3t2pSHfRrz8e/nOHr5thEiVJSyS83M4aX1J5i9NpTWjRzZ/nxvHvF1M3dYSgnMklCklKellCXeWiSl3APo68hjOJDfp/1KYIQRw6syJvd5F2cpWBSxAnIyy7UsIQTvjeqAm7Mdz685TlJ6tnGCVJRSOhmdyMOL/mbT8WieH9CKdU/509TF3txhKQYw1xlKeTWUUsbp/o8HGhZVUAjxlBAiRAgRcv166fsUqcxq2zryRPNh7LeGI3veLffy6thZs3h8ZxKSM5jzs2rqXqlYeXmSpX9dYNSX+8nKyWPtUz14cVBrrCyr6mGqEqmg77LJ9pQQYqcQIkzPa7gx1yO1o16RW0tKuUzXh0vX+vXrG3PVlUJgz//QQFry6cWfkZmp5V5ex6bOvDykDTvC4vnh0BUjRKgoJbuWnMHjyw/zvx1nGOTVkB2z++DXXDUXaAyZ0SEsXd69zA3LlobJEoqUcqCU0lvPa7MRFp8ghGgMoPtbYx+isLOuxTNtJ3LS2oLdf75hlGU+2bsFfVvXZ96WcH49GWuUZSpKUf44ncADn/1NyOVb/G9UB76c2Bkne9V3SblJyaV9C5mw4zE+t0pnb3RJl6zLr6qeS25Ba7AS3V9jJKkqa7jfv/DAhkXRweTeuVHu5VlYCL6c2JnOHs7MXhuqkopiEhnZuczbEs70lSE0rGPHr7N6Md7PQz1bYgyZKWxdO4LAc99x3caWLwP+x8DOT5t8tWZJKEKIkUKIaKAHsE0IEaQb7yaE2F6o3BrgANBGCBEthJium/Q+MEgIcR4YqBuusawtrHnO5ykirS3Z/kf5Go7M52BrxYqpfgVJZdvJuJJnUhQDnY1PYcQX+1ixP4ppAc3Z9GxP7muguuc1hrToI7zxfQCvZ13Ey74xPz36G73ve7hC1i1q0oXXrl27ypCQ6tnqfp7MI/CHHqRmpbBldDDWTu5GWW5qZg5Tlh/m+NVEFo3rxFCfxkZZrlIzZebk8sWfF1iyO5I6dtYsHOOrOsEyFik5t+9DXj7zHZesLJnh+TAz+szHyqL8z+0IIY5KKYt8ZjBfVa3yUu5hISyY1eVFoq0s2ViOroLvVdvWihXT/OjU1Jnn1x5n+yl1pqKUzdHLtxi6aC+L/jjPwz5u/P5iX5VMjERmJLNh7TAmnF9JsrUty/p8xMx+7xslmZSGSijVSO92Y+ls5cTSxFOk3zhntOXmJ5WOTZ2ZteY4O1RSUUohNTOHuZvDGP3VAdKzclkxtRufBHbExcHG3KFVC6nRh3n1h968nRVFZ/sm/DT6d/xbDDFLLCqhVCNCCJ73f5PrVpas/sN4ZymgSypTuxUkld/CVFJRSrbrTAKDPv6LVQcvM6WnJ8Ev9KFfG3VWYhRSEr73A8b+Nplgq1xmNx/BV2N/o56D+R6PUAmlmunScgi9bBqw/M5FkmOPGXXZjnbWrJjaDR93J55bfZzfwuKNunyl+riRmsmsNceZtiKEOnbWbHymJ2890l61w2UkMiOFH9c+wmORq8iytuW7fot5os87WAjzHtJVQqmGnu/9LsmWFqzY9UrJhUvJ0c6aldP8dEnlmEoqyl2klPx8NJqBH/9FUFg8Lw5qzdZZvejkUePabzWZpCsH+dcPvXg/6zK9HJqyYewuOnn2N3dYgEoo1VI7d38esPfgh+w4blz80+jLz08qHVRSUQq5eiuNx5cf5qWfTtCyfm22Pd+L5we0wsZKHWaMQkpC//4fY36fxh6rXF5pMZpFo7fjXKvytCig9nQ1ld9V8OLdL0NujtGXn59UvJtoSSUoXCWVmio3T/Lt3ksM/mQPxy7f5r/D2/PTjB60aqieKzGWvIxkvl37MFMu/IillS0/DFjCpN5vVbqHQFVCqaaa1W/PpEYBbLTMZN/v/zbJOurYWfP9dC2pzPzxGMEqqdQ4Z+KTGbVkP+/8GkGPlq78/mJfHu/hiYVF5TrQVWXXL+7imR968WnWFQY4eLI+8E/aN+1t7rD0UgmlGntu0CJaCDvmxgSTfHmvSdZxV1JZfYzfIxJMsh6lcknOyOaD387w8KK9RN9KY9H4Tnw7uStuzrXMHVr1kZfHn8EvMmr3LI5Z5TG31QQWjt6Ko52zuSMrknpSvpoLi9nPY78/xdAcK96dfACsTfOFT87IZtK3h4mITWLJxC4M9CqyRwGlCsvKyWP1ocss2hXJrTtZPNrZnTeGtqOueqbEqNJvR7Fwy0TWk0w7UYv3By+lRaNOZotHPSmvAODdpCfTmg5mi3Uuf25/zmTrqWNnzffT/PBqXIdnfjzKTnWmUq1IKdl+Ko7Bn/zFvK0RtG3kyK+zevHRWF+VTIzszPHljNs4lPUkM8W1Cz9M+NusyaQ01BlKDZCVm8W4NX25nZnEpt4f4dz6QZOtKyk9m8e/PURYbDIz+7Vk1oBWWKsOkqq0kKhbvLf9NMeuJNKmoSNzHmpLv9b1K90F4aouLyuNVVsn82nKaVykBfO7v0EPr7HmDgsw/AxFJZQa4kzCccbveJxBWbDg8X1gV8dk60rJyObtrRFsOBpNhyZOfBLoq1qSrYIuXE9lwW9nCApPoIGjLS8Nbs3oLk2xVBfcje7a1QO88fszHLDM5X6bhrz9yA84125k7rAKqISiR01OKABL9rzBl5c287F9OwaNWW/y9f0WFs/rm05xJzOHOQ+2ZbK6+6dKuJGayWc7z7P68BXsrCx4um9Lpvdujr2Nesrd6KTkzz/fZG7UJjIsBK+0HMPoXnMr3dmfSih61PSEkp2XzWNrBxCXcYNN3d7CtUOgydd5LSWD134+xR9nrhFwnysfjvZVdwJVUulZuXzz90W++usCGTl5TPDz4PkBrajvaGvu0Kql9ORYFm6ZwPrcm7TDhvcHLaGFm5+5w9JLJRQ9anpCATh/I4LAXwPpm5nDxxP+QjiavqE+KSVrj1zlnV8jsLQQvDPcm+Ed3Srdr7CaKjdPsuHoVT7+/RwJyZkM9mrIqw+2pWX92uYOrdo6fWoNrx5+l0tWginOPsx66FtsrO3MHVaRVELRQyUUzTcH3uOzc2v4wKopD03YBhV0YL988w4vrj/B0cu3GdqhMfNHeKs7hMxISsmuM9dY8NtZziak0MnDmdcfakc3z8rTlEd1k5eTxapfp/FpYiguUjC/yyv08Jlk7rBKpBKKHiqhaHLycpi8fghRaXH80uEF6nd7ssLWnZsnWbrnAp/8fo669jYsGO2jmjOvYBnZuWw8FsPyfZeIvJZKM1d7Xn2gLQ96N1JnjSZ0Le4ob/z2FAcssrjfypW3H/kR5zpNzB2WQVRC0UMllP936fYFxmwegX9mNovHBiPqelTo+sNjk3hhXSjnElJ5zN+D1x9qpy76mti15Ay+P3CZHw9d5nZaNu3d6jC9V3Me9nFTDTiakMzNZceuV3k3egdZCF7xfITR/d6rUslbJRQ9VEK52/dHPuXDiG95B1dGTNoFFhV7UMnIzuWj4LN8s/cSnq4OfDzWVzVzbgJhMUks33uJrSdjycmTDGzXkOm9mtO9uUuVOqhVRbfiQpkfNIPfRRo+2DL//kU0b9rT3GGVmkooeqiEcrc8mcfUDUM5l3qFTfdNpVFv0zQiWZIDF27y759OEJ+coR6GNJLcPMkfpxP4du8lDl26hb2NJWO7NmVKT0886zmYO7zqLy+PXbte4+0rv5JsIZjZqA9TBn2GlaW1uSMrE5VQ9FAJ5Z+uJl/h0U0P0yk9g69GbUU0aGOWOJIzsnl7SwQ/H4vGu0kd/jWgNf3bNlAP0ZXSncwcfgq5ynf7o7h8M40mzrWY3LMZgd08cKpVNQ9mVU1y/Ak++O0ptog02mLL/P6f0MajcrYObCiVUPRQCUW/NaHLeO/EYuZmOzBm6t9gxl9Rv4XFMW9LBPHJGXi42DPJvxljuzbFyV4dDIsTm5jOyv1RrD58hZSMHDp5ODO9V3MeaN8IK3W2VzHy8tj/5394M2ozNy0teKJhADMGLcbaqurfyagSih4qoeiXJ/N4atNITiVFsrHpSJoMnG/WeLJz8wgKj2fl/iiORN2mlrUlIzo1YUpPT9o0Uk245EvPyuWvc9fZejK2oNfMB7wbMb1Xczqra1EVKi3+FB/teIL1Fmk0x4b3+i3Eu1nl6JbXGFRC0UMllKLFpsYy6ueH8EpP45uHV2PhXuJnp0KExybx/f7L/BIaQ2ZOHv4tXJjS05OB7RrWyF/eiWlZ/HH6GkHh8ew5f52M7Dyc7a0Z27Upk3t60kS1QlCx8nIJ+fNN3oz6hRhLCx5v4M9zgxZjZ6JuIsxFJRQ9VEIp3s/hq5gXsoDXMqyYMG2/yfpOKYvbd7JYF3KVVQcuE5OYjpuTHY/1aMa4bh64VPOHI+OS0gkOTyAoPJ5Dl26Rmydp7GTHYK+GDPFuhJ+nS41MruaWkRDG4m3TWWVxhybChvm936dLi8HmDsskVELRQyWU4kkpeWZrIMduhjSRDUoAABpcSURBVLOh/gA8Hl5k7pD+ITdPsvN0Aiv3R7H/wk1srCwY7uvG5J6eeDdxMnd4RhN5LZWg8HiCw+M5EZ0EwH0NajOkfUOGtG9EhyZO6pZfc8nLJezPt3j90s9csrYisF4XXhz0BfY21ffuOZVQ9FAJpWTxd+IZ9fOD3JeeyneDvsayRT9zh1SkcwkprNwfxcZjMaRn59K1WV0m9/SkX5v6ONpVrYv4UkpORicRFB5PUHg8F67fAcC3qXNBElFta5lfdvwpvtr+BN9a3KGesOG/Ae/Q876h5g7L5FRC0UMlFMNsObuB/xx8m5dSc5gyMQicK/Yp+tJKSs/mp5CrrDp4mcs30wBoXs+B9m518G7iRIcmTrR3q4OzfeWoGsvOzSPqxh3OJaRyNiGF8wkpHL+SSHxyBpYWAv8WLgxp34hBXg1p7FR5qh1rtOx0wna+zlvROzhnY80wF19eHfwFdWyrz1lxcVRC0UMlFMNIKXkh6Al2xx/is3Rb+k7ZCbUq/11DeXmSAxdvcvzKbU7FJBEWk0xMYnrBdPe6tfB2c6KDu1NBsqlX23RNs+fmSa7eSuNsQgrn4lM4dy2Vc/EpXLyRSnau9r2zEODp6kC7xnW4v20DBrRrUGkSn6JJO7udz3fP4UfbPFwtbHjTfy79W48wd1gVSiUUPVRCMVxadhpTt4zhUnIU39KYDpO2gVXV6xfj9p0swmK15BIWm0R4TBJRurMYgEZ17PBu4oR3kzp4uznp7ftD3zdE3/fmdloW5xJSdckjhfMJqWTm5BVMd69bizYNHWndyJHWDWvTuqEjLevXxs7a0ijvVTGylHj2bnuWd1JPE2ttxdhGvfhX/wU42tS8W9dVQtFDJZTSuZF+g8d+GUla+k1+qN0Rj9E/VHh7X6aQlJ5NRGwy4bFJhMUkcSomiYs37mCsr0KjOnZa0mhQW5c8HGnVoDYOtqrxyyohL5dbBz9nwYkv2WZvQ3OrOszr9xGdm/ibOzKzUQlFD5VQSi8qKYpJW0bjmJnKKvfhuD7wgblDMok7mTmcjksmOeP/2rvz+KjKq4Hjv5PJOgkJSwiQAAkk7CAQQTYXFA24gUCxWkWgLq3igi1iLW+t1i5alL6ltS5ViiCCKxYrgqIoCAHFACEQZAkJhJ0AMQGyTPK8f9wrb6QTGGCSm0nO9/OZT+7ce+fe82Qmc/Lc5Tzl/7VMqOZqqtNmNwoLpkOLRlriJICZPev44KP7mBZUSLHLxV0dfszd/aYQ6mrYhyE1oXihCeX8bDi4nrs+Gkdy6Ulm9pyEu999ToeklH+VFrH7k6k8lf8R6RHh9IxszRNDZpDSpIPTkdUJviYUR45fiMgYEdkkIpUiUm2QIjJTRA6KSNZp86eJyBYRyRSRBSLSuOajbrh6xvVi2uDpZIeFMTljOp7sD5wOSSn/MAbPpgXMerUfow59SqY7kl/3nsTs0R9qMjkPTh0QzwJGAcvPst4sYJiX+Z8A3Y0xFwFbgcf8Gp36L4MThzC176OscEfw1GcPY/K1p6cC3NE8Ns8dzk9W/ornIl30j0vl/dGLufWiOwmSwD9X6ARHzhIaY7KBs97pa4xZLiJJXuZ/XOXpauBHfgxPVePmrrdzoGgPL295nRYLb+e+Wz6Cpu2cDkupc1NRzsmV/8sLG15kdqMIGrtjeHbgk6S1G6bVBy5Qfbjs5KfAm9UtFJF7gHsA2rat2zfoBYL7L5nCgeI9vJC/jBZvjWT0HZ+Bu6nTYSnlm50rSF/yC34XXER+tJtRbdP4xcDHiWkgNyjWtBrr14nIUhHJ8vIY4cd9TAU8wNzq1jHGvGyM6WOM6dO8eXN/7brBEhF+e+VzDGranafCPSyffxOUnzz7C5Vy0nd72ffWbfxy0TjuiSjB1agVM4fO5Mkrn9Nk4kc11kMxxlxdU9sGEJHxwA3AENOQLlWrA0KCQpg+7FUmvD+SycX5vPru7fS4+e16cY+Kqmc8ZZSsmsGs9S/waqMITKNo7uv+UyZcdA/hweFOR1fvBOQ3gIgMA6YAw40xJ862vvI/d4ib52+YS9OwGCaeyGbXooedDkmpHzDblvLpP/tx09ZXeT7GzWUJg1g4ahH3pj6oyaSGOHXZ8EgRyQcGAB+KyBJ7fryILKqy3jwgHegkIvkicqe96O9AI+ATEVkvIi/WchMUEBsRy4vXz8UEh/Pz/Uso+PI5p0NSCo7mkfPGaH6+9OdMcnuIiG7NK2mvMD3tJeKj4p2Orl7TGxvVBdtwYB13LR5HcmkpMwf8HnePMU6HpBqi8hKKvnyWFzf9izeiIohwhTKx90Pc3PUnhARp9YILUadvbFT1S88Wvfnz5dPIDg1l8sqpeHJXOR2SakiMoXLLh7z/yiXcmPMGcxq5GZF0Lf8Zs5Tbuo/TZFKLNKEov7iy3VCmXvwLVkSE8dRHP8Uc2uZ0SKohKNhB1twbGfvFw/zGbUhoksy86+fzxOBpNA3Xy9lrW324D0XVETf3mMCBonxe3vYWzd8dxcThryPxPZ0OS9VHZcc5/PkfmbFtPgui3MRGNuEP/X7FDSkj9C53B2lCUX51/4D/4eDxfby0dwVH3hvFY5dMIaTvPaB3ICt/qCinfN1c5n81jX9EQElUJBM6jOGePg8TFapDJDtNE4ryKxHhiSF/I/arabzy7VxyMp5l+s4vaDriBQjXG8jUearwULHhDRatfpZ/hJaRHxnCoCbdePSKP9EuRsv/1BV6lZeqMYt2fMjjK6fSrLyUGSdC6DT6NYjv7XRYKpBUeDCZb/L5qj8zI7SE7aGhdHbH8+CAqVyacJnW3qolvl7lpT0UVWOuS76etjGJPPTJvYx1HeVPb9zIkMt+A5foITB1FhUe2Pg2X698mr8Gn2RDVBiJ4fFM6zuFtHZD9TxJHaU9FFXjDp04xKRP7yfzyGYmHj3Gz1pejox4HiJ0GBt1mgoPZL3DphXPMMNVxCp3BHEh0dx78SRGdLhJLwF2iI7Y6IUmFOeUVpTy5Kon+CDnP6QdP8lTZRG4fzQLWl/sdGiqLqisgI3vkPPlM/xdCvkk0k3jYDd39byXH3e+RUulOEwPeak6JcwVxh8u/SOdmnZm+trn2BVmmPHatbS66rfQ/z49BNZQVVZA1nvsW/40L3CEf0dFEe5qzM+7T2Bct/F65VaA0R6KqnUr8lcwZfkjhJaX8Je9e0lNvApu+oeOq9KQVFbApgUcWf40/6w4xJvR0RDk4sedbuXunnfrTYl1jB7y8kITSt2RU5jDg58+yJ6i3fym4AijiIYx/4I2lzgdmqpJx3bBurkUrX+d2VLE7MYxlIgwInkE9/a6j1ZRrZyOUHmhCcULTSh1S2FpIY988Qjp+9K5rQQmH9hL8JDHYcADOrZKfeIphW8XQcZs9ucuZ05MI96NieE4lVzT9hruT72f9jHtnY5SnYEmFC80odQ9nkoP07+ZzpzNc+gfFMWzO7cQ034IXPM7aNHV6fDUhTiYDRlzYMM8vq0oYlZsSxaHBWFESEsayoRuE+jSrIvTUSofaELxQhNK3bVg2wKeWv0ULV1u/rZrJ8klxdDucuh3L3QcCkEup0NUvigthk3vQcZsTP7XpLsjmdUqifTKIiKCIxjdYTRju47VcUkCjCYULzSh1G3rD65n0rJJlHhOcl90d27dlk7Id3ugSZJ1M2Tv27V8S11kDOSvhXWzIes9ysuKWdwymddiovm2rIDYiFhu63IbYzqO0fHbA5QmFC80odR9+4/v5/GVj5O+L522jdrwcNwghmxdjuxaDSGR0Osn0O9nENvB6VDV8QLIfBMyZsOhbIpDI3k3uS9zzFEOlB4lOSaZcd3GcX376wl1hTodrboAmlC80IQSGIwxfLnnS55b+xw7CneQGpfKlKThdNuyFLLegYoySLnaOhyWfJWewK9NFR7Y8Rmsfx22LILKcg4k9GJufDJvF26muPw4fVv2ZXy38VyacKmWSKknNKF4oQklsHgqPby37T2eX/88R0qOcEP7G3io0220zF4EX78CxQegWQerx9LzVgjTm+BqzOHtVhLZMB+K9oG7GdldhvF6uLBo/yoqTSVpiWmM7zaebrHdnI5W+ZkmFC80oQSm4rJiXs16ldmbZiMi3NH1Du7sMpbIbUthzQuw5xsIi4HUsdD3Lmiq5cz9orQINr0P6+fCrnSQIA4nX8mH8SksLNrO1mPbiAiOYGTKSMZ2HUvrRq2djljVEE0oXmhCCWx7i/fy14y/smjnIpqFN2Ni74mMTBlJ8J51sOZF2Py+dQd2jzFw5a81sZwPY6zkse51K5mUH6e0WTLLOgxiISdYdfAbKkwFPWJ7MDx5ONe2u1ZPtDcAmlC80IRSP2w8tJFpa6ex7uA6UhqnMLnPZAYlDILv9lqJZc3LUOmBPhPg8kcgKs7pkOu+wj2wYZ7VGzmSgwmNYkOnq1gYHcPiwxkUlRUR547jxvY3MjxluN6I2MBoQvFCE0r9YYxh6a6lTF87nfzifAYlDGLyxZNJaZIC3+2DL56xrj4KDocBE2HgAxAe7XTYdUvxQcj5AjLnWyfaTSX7EvvzQXwKHxzPJbdoF+GucIYkDmF48nD6teyHS+8HapA0oXihCaX+KasoY96Weby04SWOe44zusNoxnUbR2J0IhTsgM+egk0LIKIpXD4Z+twJIQ20FPqJI5D7JeSugJ0r4FC2NTs6gaUpA1gYdJKvCrIwGC5ucTEjkkdwTeI1WvFXaULxRhNK/XWs5BgvZr7Im1vexGM8dG7amaFJQxmaOJQ2xYdh6ZOQswxi2sDgx6DnLfX/7vuSQshLh53LIXc57M8CDIS4OdymD6tj27LSVc6nh9dz0nOS1lGtGZ48nBuSb6BNozZOR6/qEE0oXmhCqf8OHD/Ax3kfszh3MZmHMgHo2qwrw5KGkRYUTcKXf4O966B5ZxjyOHS6rv6MxVJ23DqhvnOFlUT2rQdTCa4wStr0IaNlR9JDXawq2snWY9sAaBzWmKvaXsXw5OGkxqXqGO3KK00oXmhCaVj2Fu/l49yPWZK7hKyCLAAuiu1BWngCQ7M/peXhHdCmH1z9BCQOdDTW81JSCLu/ht2rrSSyZ611MUJQMJWt+7A1vger3BGkn9xLxsH1lFWWERIUQmpcKv3j+zMgfgBdmnbRmw/VWWlC8UITSsO1u2j3qeSSfcQ6d9DLHc/Qg7tJO7KfuPZXWz2Wlt0djrQaxsDRnbD7K9i1Gnavsar5YkCCIL43B9r2JT0qhlXlBaw5sJYjJUcASGmcwoD4AQyMH0hqXCruELezbVEBRxOKF5pQFEDed3ksyV3CktwlbD26FQF6l3oYWlRE/yadaN2iF6GtekKL7hDXBUIiaj9ITynsy7R6H7vXwK41cPwgACYsmoKE3uxs0YHcqKZslwrWHMxgR+EOAJqFN2NA/AAGxA+gf6v+xLn1sml1YTSheKEJRZ0upzDHSi45i9jxXS4AQcYQ7/GQWO4h0eMhMbQpSTHtaNuiJ60S+uNqdRFEtfDvuZfjBVbi+P6xJ4PSylLygkPIbRJPbpM25EZEkksZuScOUFRefOql4a5wUlukMjB+IP1b9adjk456LkT5lSYULzShqDPZcWwHmws2k1eYy66CbHKP7SDv5EFOGM+pdUKMoW15OYmVQSSGx5IYk0Ri8x4ktRlEs2adqTh5lMqSI3hOHqXixFEqSo7hKTlGRWkhFSX2o7SIitIiPGXfUVFWTEVpESeMh7yQEHaGhrEzqgm5IcHsrTiJ4f//Plu4W5AUk0RSdBLtYtqd+tkysqWeB1E1ShOKF5pQ1LkyxnD45GHyvssjryCbvP3ryDu2nbwTB9hVcYJyP3cEIlzhJMYk0S663ank8f1PPfehnOJrQgmujWCUClQiQnN3c5q7m9OnZR/oNvbUsorKCvYX7SEvfxW5+7/h6MnDBIe4cQVH4AqNxBUSiSs0kuDQKIJC3AQHBeMKcuESF64gF8ESTJAEERwUTJgrjMToROLccdrbUAFLE4pS58kV5CIhpi0JMW0Z2O0Wp8NRynH6r5BSSim/cCShiMgYEdkkIpUiUu1xORGZKSIHRSSrmuW/FBEjIrE1F61SSilfONVDyQJGAcvPst4sYJi3BSLSBkgDdvk1MqWUUufFkYRijMk2xnzrw3rLgSPVLP4LMAVoOJepKaVUHRaQJ+VFZASwxxiz4Ww3cInIPcA99tNiETlrIqtGLHD4PF8bqLTNDYO2uWG4kDYn+rJSjSUUEVkKtPSyaKox5t8XsF038Gusw11nZYx5GXj5fPdXZb9rfbkOuz7RNjcM2uaGoTbaXGMJxRhzdQ1tOhloB3zfO2kNZIjIJcaY/TW0T6WUUmcRcIe8jDEbgVPV7kQkF+hjjGlo3VellKpTnLpseKSI5AMDgA9FZIk9P15EFlVZbx6QDnQSkXwRudOJeG0XfNgsAGmbGwZtc8NQ421uULW8lFJK1Ry9U14ppZRfaEJRSinlF5pQTiMiw0TkWxHZLiK/8rJ8vIgcEpH19uMuJ+L0p7O12V7nZhHZbJfMeaO2Y/Q3H97nv1R5j7eKyDEn4vQnH9rcVkSWicg6EckUkeuciNNffGhvooh8arf1cxFp7USc/uRDuSoRkRn27yRTRFL9GoAxRh/2A3ABO4D2QCiwAeh62jrjgb87HWstt7kDsA5oYj+Pczrumm7zaes/AMx0Ou5aeJ9fBu61p7sCuU7HXcPtfRsYZ09fBcxxOm4/tPtyIBXIqmb5dcBHgAD9gTX+3L/2UH7oEmC7MSbHGFMGzAdGOBxTTfOlzXcDzxtjjgIYYw7Wcoz+dq7v863AvFqJrOb40mYDRNvTMcDeWozP33xpb1fgM3t6mZflAcecuVwVWG2cbSyrgcYi0spf+9eE8kMJwO4qz/PteacbbXcX37GLVAYyX9rcEegoIitFZLWIeC3YGUB8fZ8RkUSsG2k/87Y8gPjS5ieA2+1L+hdh9cwClS/t3YBVpBZgJNBIRJrVQmxO8vmzfz40oZy7D4AkY8xFwCfAaw7HUxuCsQ57Dcb6b/2fItLY0Yhqzy3AO8aYCqcDqQW3ArOMMa2xDo3MEanXw0dOBq4QkXXAFcAeoCG8zzWmPn9YzsceoGqPo7U97xRjTIExptR++gpwcS3FVlPO2mas/2IWGmPKjTE7ga1YCSZQ+dLm791C4B/uAt/afCfwFoAxJh0IxyooGIh8+Vvea4wZZYzpDUy15wX8xRdncS6f/XOmCeWHvgY6iEg7EQnF+jJZWHWF0443DgeyazG+mnDWNgPvY/VOsAcz6wjk1GaQfuZLmxGRzkATrGoNgc6XNu8ChgCISBeshHKoVqP0H1/+lmOr9MAeA2bWcoxOWAjcYV/t1R8oNMbs89fGA66WV00yxnhE5H5gCdZVIjONMZtE5HfAWmPMQuBBERkOeLBOfo13LGA/8LHNS4A0EdmMdUjgEWNMgXNRXxgf2wzWl9B8Y18eE8h8bPMvsQ5nPox1gn58oLbdx/YOBv4kIgZrsL+JjgXsJ3a5qsFArH0u7LdACIAx5kWsc2PXAduBE8AEv+4/QD8vSiml6hg95KWUUsovNKEopZTyC00oSiml/EITilJKKb/QhKKUUsovNKGogCYixT6sM0lE3H7c500i0tWP21t1Aa8ttn/Gi8g7Z1ivsYjcd777UcoXmlBUQzAJOKeEIiKuMyy+CauwoF8YYwb6YRt7jTE/OsMqjQFNKKpGaUJR9YKIDLbHtHhHRLaIyFz7buAHgXhgmYgss9dNE5F0EckQkbdFJMqenysiz4hIBjBGRO4Wka9FZIOIvCsibhEZiFUhYZo9VkqyiPSyi2ZmisgCEWlib+9zscZVWSsi2SLSV0TeE5FtIvL7KrEXV5l+VEQ22vt82ks729mxbzxtG0nfj4EhIt1E5Cs7vkwR6QA8DSTb86aJSJRYY4Fk2NsaUWU72SLyT7HGvvlYRCLsZSkistSOLUNEku35j9i/p0wRedKvb6wKLE7X79eHPi7kARTbPwcDhVi1iYKwyqVcai/LBWLt6Visu6Ij7eePAo9XWW9KlW03qzL9e+ABe3oW8KMqyzKBK+zp3wH/a09/DjxjTz+EVQ6+FRCGVR+t2WltuBZYBbjt5029tHchcIc9PbHKa5Owx8AA/gbcZk+HAhFVl9vzg4HoKr+T7VhjZCRhVYHoZS97C7jdnl4DjLSnw7F6fWlY46iI/Xv/D3C5058LfTjz0NIrqj75yhiTDyAi67G+HL88bZ3+WIerVooIWF+4VWt1vVllurvdC2gMRGGV8fgBEYkBGhtjvrBnvYY1cNP3vi/jshHYZOy6SSKSg1Wkr2oJm6uBfxljTgAYY7yNazEIGG1PzwGe8bJOOjBVrBEI3zPGbLPb+oPQgT+KyOVAJVYJ8xb2sp3GmPX29DdAkog0AhKMMQvs2ErsdqRhJZV19vpRWIVDl3uJS9VzmlBUfVJaZboC759vAT4xxtxazTaOV5meBdxkjNkgIuOxC2SeZ0yVp8VXWU18vjhjvSRjzBsisga4HlgkIj/jv4t53gY0By42xpSLSC5Wr6NqzGD9HiPOsDsB/mSMeekc4lf1lJ5DUQ1BEdDInl4NDBKRFAARiRSRjtW8rhGwT0RCsL6A/2t7xphC4KiIXGYvGwt8wfn5BJjw/RVpItLUyzorsYpWclpMp4hIeyDHGDMD+DdwET/8HYA1IuNBO5lcCSSeKTBjTBGQLyI32fsIs+NcAvy0ynmoBBGJ86m1qt7RhKIagpeBxSKyzBhzCKtC9DwRycQ6PNS5mtf9Buu8wUpgS5X584FHRGSdfWJ6HNZJ+kygF9Z5lHNmjFmMdYhsrX3IbrKX1R4CJorIRqofae9mIMveRnesIV8LsA7zZYnINGAu0Mfezh2nta86Y7GqbWdinetpaYz5GHgDSLe39Q4/TFyqAdFqw0oppfxCeyhKKaX8QhOKUkopv9CEopRSyi80oSillPILTShKKaX8QhOKUkopv9CEopRSyi/+D8trtCGcVQw+AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEWCAYAAAAO4GKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8HHX9+PHXe+/cadI2PZP04GhaSrlBQAoiAgpFBKSiUkBRFBX8flU8AQXF6+fxRUWU0wKFIiBXuaQtlBtsobSAlNIj6ZGkbc7Nscfn98dMwjbk2CS7O3u8n49HH93szM68Z3Z23zufec/nI8YYlFJKqUzncjoApZRSKhE0oSmllMoKmtCUUkplBU1oSimlsoImNKWUUllBE5pSSqmskNMJTUSuEpHF9uNKEWkTEbf9d4WIPCMirSLyW7HcIiJ7RORlZyMfORH5tIhstbf1IKfjSTd9j4N0E3vMpgsRWSci8weZvkJEvhTnsuaLSG3CghuFobbLnmfA90NEfiAif09KcBnK/mxNT9byPSN5kYhsAiqASMzTtxpjLk1EUE4wxmwBCmOeuhhoBIqNMUZEjgU+DkwxxrQ7EWOC/Aa41BjzLydWLiIGCAKxN0D+1BjzqyStbxHwJWPMMTHP3Qp8DuiOmfU9Y8yB/RwHagjGmNk9j0XkKmCmMebzzkWUGLHbNcLX/7znsYhUA+8DXmNMeHSRZS5jTFI/WyNKaLbTjDFPJSySfoiIx8E3vwpYbz6487wK2DSSZObwdvRVBazrb0IK4zzQGLMhBesZzK+MMT9yOIa0ISJuY0xk6DnTS6bGrZIj4U2OIrJIRFaJyG/s5rn3ReSUmOklInKTiGwXkToRuSammW+RiDwnIr8TkV3AVSLitpv8Gu1lXSoiRkQ8InK2iLzWZ/3fFpF+zz5EZJqIrLSbEZ8ExsZMq45Z7q3A+cB37VPkrwB/B46y/77afs2nRGSNiDSJyPMiMjdmeZtE5Hsi8gbQbi93koj8U0Qa7G35Zsz8V4nIPSJyux3fOhE5NGb6VBG5z37tLhG5PmbahSLylr2/HxeRqn623S8ibYAbeF1E3hskzll2M1GTHcfpMcu5VUT+LCLL7H3xnIhMEJHf2+t/e6RNmSLyqIj8NubvJSJys/14hog8bW97o4jcISKlg+0fEZkF3BDzvjXFEUPvcWD/PU0+aHp+SkT+JDFNTCJypP3eN4nI6xLTRGXvw5/Z+6hVRJ4QkbH2tICILLZjbRKRV0Skwp42SUQeFJHdIrJBRL48QKzLROTSPs+9LiJn2o/3F5En7eW8IyLnxMx3q4j8xd7n7cDxfZZzvIisjfn7SRF5JebvZ0XkDPvxJhE5UUROBn4AfNbe36/HLLKqv/0wyPvwA/t93iQi5w0Wt4h8UkRWi0iLWM3pV8Wzj+z38rd9pj0oIpfHbtdgcfZ5rVdE7hLrM+6TvZsjn7H/b7L3zVFxHNP9fl/Yz3eISFnMvAfZy/D2E9dVIrLUPt5aRWStiOwrIt8XkXp7n50UM/8FYn2ftIrIRrG+/3qmzReR2iHenxvs46VVrO/bqpjpRkRmxsz7JxF5xJ73JRGZETPvSfZx2yzWd85KGarp2hgz7H/AJuDEAaYtAkLAl7G+PC8BtgFiT78f+CtQAIwHXga+EvPaMPANrLPHPOCrwHpgCjAGeAqrucoD+IHdwKyY9a8GPjNAbC8A/89+3UeBVmCxPa26Z7n237cC1/TZrlUxfx8E1ANH2Nt5vr1f/DH7aA0w1d4OF/Aa8BPAB0wHNgKfsOe/CugETrWX9wvgRXuaG3gd+J293wLAMfa0BcAGYJa9T34EPD/Ie2ewmoQYIE6vvbwf2HGeYO+n/WL2SyNwiB3H01hNKV+047wGWB7v+vtMm2Dv0xOA8+z9U2RPm4nV5OsHxmF9Qfw+jv2z1/vW33vbZ1rf4+AFrGZaH3AM0MIHx8xkYJf9nrns+HYB4+zpK4D3gH3tfbsCuM6e9hXgISDfjv8QrOZt7G37s70d84AG4ISY46Rn/V8EnouJvQZosvdRAbAVuMA+Lg6y37eamH3QDBxtxx7osx/ysI7HsfYxsROoA4rsaR1Aed/vg9j4YpY14H7oZ//Px/oO6PmcHge0s/fxt1fc9msOsP+ea8d6Rhz76HCs7yaXPW0sVnN4xVDfczHLuwpYbG/XI3Z87n7eq2pijqs4jumhvi+eBr4cs6xfAzcMEmMn8An7WLgd6zP7Q/u9/TLwfsz8nwRmAGLv/yBw8DDen1as71c/8Af2/t7s/fzb8+6y3wcPcAewJOa9aAHOtKd9CyuvfGnQ92OwiYO8iZuANvvA6Pn35ZgvkA0x8+bbGzEB67pbF5AXM30h9heg/dotfdb1NHbCs/8+kb2/cP4CXGs/ng3swU4qfZZTab8RBTHP3TnQAcfQCe0vwM/6rOMd4LiYfXRhzLQj+tm27wO3xBx0T/X54HXYj4/C+lLz9LNdy4CLYv52YR2AVQO8d/0ltNg4jwV2YH/I7efuAq6K2S9/i5n2DeCtmL8PAJoGOXaMfaDGHjufiJn+Gawv4kbspDTAcs4AVsexf/Z632K2obNPDLf1PQ5ijpn8mNcujjlmvgf8o8+yHwfOtx+vAH4UM+1rwGP24wuB54G5fV4/FevadFHMc7/Aukbdc5z0rL8I68ukyv77WuBm+/FngWf7LPuvwJUx++D2IT7nz2J9oRwJPAHcA5yMdTb3Rp9jaKiE1u9+6Ged8/nw5/Qe4MfDiPv3wO+G2kf2328BH7cfXwo82t92DbKuq4AHgZXAH7F/uPfzXvUeV3Ee00N9X3wJeNp+LFifmY8OEuOTMX+fhvX93ZN4i+zYSgd4/QPAt4bx/iyJmVaIdTxPjfn8xya0v8fMeyrwtv34i8ALMdN6tnHQhDaaJsczjDGlMf/+FjNtR88DY0zQfliIdf3GC2wXq5mlCetDNj7mtVv7rGdSn+f6Tr8N+JyICPAF4B5jTFc/8U4C9pi9r4FtHnwTB1UF/E/PdtjbMtVeT3+xVgGT+sz/A6wk32NHzOMgEBCr6WsqsNn0f32rCvhDzDJ3Y735k4exLbFxTgK2GmOiMc9t7rO8nTGPO/r5e6gLvwf3OXYej5n2ENYZyzvGmFU9T4pVdbpErGbqFqzE0tNsNdj+Gchv+sRwfj/zTAJ2xxzD8OH39Ow+7+kxwMSYefq+pz375h9YyW+JiGwTkV/ZzUU962yNeV3f/Q+APc8jwLn2UwuxfuX2xHZEn9jOw/ph2d+29Gcl1hfYR+3HK7B+kR9n/z0cA+2H/vT3OR3oc4WIHCEiy+2muWasVp2xMOQ+Auv7o6eA5fNY78twHYl1Znidsb994zHEMT3U98U/sZrSJ2K9P1GsHyAD6fsZbTQfXHvssP8vtOM6RUReFKupugkr0cQ2Ecf9/hhj2rC+k2KnxxrouNjre9/er0NWv6a6bH8r1hna2JgvkmKzdzVR3wNiO1ZzY4+psRONMS9iVasdi1W5NtABuR0YIyIFMc9VjmAbemzFOjOM/VLMN8bcFRten/nf7zN/kTHm1DjXVWknt/6mfaXPcvOMMc8PY1ti49wGTBWR2GOjEqu5KRWuxfrVPFFEFsY8/3OsOA8wxhRjffmIPW2w/RP3F0w/tgNlIpIf81zs8bcV6wwtdt8XGGOuG2rBxpiQMeZqY0wN8BHgU1i/SrfZ6yyKmX2w/X8XsFBEjsJqflseE9vKPrEVGmMuiQ1jiDD7JrSVDJ3QRrO/e/T3Od02yDruxDpLmmqMKcG6biox0wfaR2AlkQUiciBWs/0DI4j3Cayz6H+LfR20H/3tl6GO6QG/L4wxe+z1fhbre2/JcJLpQETEj5Usf4PV9FoKPMre+3Oo96f3MyIihUBZn+nx2Ot73z5hmTLw7JaUJjRjzHasN+G3IlIsIi77wuhxg7zsHuBbIjLZvmD6vX7muR24HgjF/qrvs+7NwKvA1WJdsD0G69R7pP4GfNX+dSgiUiDWxemiAeZ/GWgVqwAjT6xilzkiclgc63oZ6w2+zl5PQESOtqfdAHxfRGZDb9HN2aPYrpewfil9V6yL3POx9tOSUSwzLiLyUaxrPl/Euib5fyLSc2ZShNVM0mw/952Ylw62f3YCU0TEN9x4Yo6Zq+xj5ij2PmYWA6eJyCfs9zMg1kXzIT94YhVdHCBWQVQL1vWBqDFmK1ZT5C/s5c0FLrLX1Z9HsX7N/xS4O+bM+mFgXxH5gv0+ekXkMLEKZeL1PLAf1jWOl40x6+x1HcEHRQ597QSq+/wgGomez+mxWMl+6SDzFmGd1XaKyOFYX/CxBtpHGGNqgVewfgj/0xjTwQgY67aTO7GSWn8FLw1YZ1Gx92ANdUwP9X1xJ9Zn5Sz7cSL4sK59NQBhsQr6TupnvsHen1NF5Bj7M/czrFqAoVoD+noEOEBEzrB/qH6dvVsX+jWag+4hsap1ev7dH+frvoi109ZjXe+6l72baPr6G1YSfAOr4ONRrDbc2FLdfwBzGPhD3+NzWB/G3cCVWIlwRIwxr2JdTL0eazs2YF2vGWj+CNYbPw/rgmwjVuVkSRzrimB9kc4EtmCden/WnnY/8EuspqsW4E3glAEWNSRjTLe9rlPsGP8MfNEY8/ZIl9mP1/scO78XkWKs9+NSY0ydMeZZ4CbgFvvX2dXAwVgFAY8A98XEPOD+wboGuw7YISKNMTF8t08MsdNinYd1jW4XVsHL3VitDNgf0gVYTUENWL+qv0N8n6sJWMd+C9YZ6Uo+aF1YiHXNZRtWEdWVZoBbZOzm9fuwri3fGfN8K9YX0bn2cnZgHSf+OGLrWUY78B9gnX1cgFUks9kYUz/Ay3q+2HaJyH/iXVcfO7A+U9uwmge/OsTx9zXgpyLSilVEcU/sxIH2UYzbsK79jqS5MXY9P8M6w3tKYioQ7WlBrNaH5+wmxCMZ+pge6vviQWAfYIcxJraidDTb0Ap8E2sf7sH6znywz2xDvT93Yn2/7sYqdhr2PYnGmEbgbOBXWJ+9Gqwfl/1dTurVU3mYMexfDDcYY6pinsvDqo472BjzrmPBqawnIndjXbi+0ulYVGLYLQOLsQpHMusLMcXsFpvFxph+WyHEuuWp1iT4Hk/7jL8WOM8Ys3yg+dK+6yv7dPtUse6PmoyV+fueDV4CvKLJTCWa3Uw3w24ePxnrjGwk11lUGhKrEOdbWNV2mszSiN2UX2pf1/sB1nW8Fwd7TdonNKyNuBrrFHc1VvPMT3onWt1wfQv4HyeCU1lvAlZ1XxtWWfYlxpjVjkakEsK+ntiEdcnj94PMt6xP83TPvx+kLNjcdBTW/YuNWJcUzhjqGmfGNTkqpZRS/cmEMzSllFJqSKPpnDhtjR071lRXVzsdhlJKZZTXXnut0Rgzzuk4RiqrEpqInAacNnPmTF599VWnw1FKqYwiIqPpPclxWdXkaIx5yBhzcUnJkLd2KaWUyjJZldCUUkrlLk1oSimlskJWXUNTSqlECIVC1NbW0tnZ6XQoSREIBJgyZQpe74fGA81omtCUUqqP2tpaioqKqK6uxupKNHsYY9i1axe1tbVMmzbN6XASSpsclVKqj87OTsrLy7MumQGICOXl5Vl59qkJTSml+pGNyaxHtm6bJjSVcYwxNK+4h0jrbqdDUUqlEU1oKuME33iGnddfRvNTdzgdilJJcfzxx/P444/v9dzvf/97LrnkEtatW8cJJ5zAfvvtx4wZM7jyyiuJRq0xS2+99VbGjRvHvHnzev+tX7/eiU1whCY0lXGalt0CQNf76xyORKnkWLhwIUuW7D1I/JIlSzj33HM5/fTTueKKK3jnnXdYu3YtL7/8Mn/4wx965/vsZz/LmjVrev/V1NSkOnzHaEJTGSW0cwvtrz0JInRu0oSmstNZZ53FI488Qne3NVD4pk2b2LZtGxs2bODoo4/mpJNOAiA/P5/rr7+eX//6106Gmza0bF9llKYnbgNxUXz8Z2l5+i6inUFcgXynw1JZrP6WnyS8NcA/bTbjL/jpgNPLyso4/PDDWbZsGQsWLGDJkiWcc845rFu3jkMOOWSveWfMmEFHRwdNTU0A3H333axatap3+gsvvEBeXl5C409XeoamMka0K0jzv++i8PBTKDzkRDCGri1vOR2WUkkR2+y4ZMkSFi5cGNfr+jY55koyAz1DUxmkddUDRNuaKD3lArzjpwLWdbS8fQ8Z4pVKjdxgZ1LJtGDBAi6//HL+85//EAwGOeSQQ1i9ejXPPPPMXvNt3LiR8vJySktLHYkznegZmsoIxhialt2Cr3J/8mqOxDN2Mq6CErr0OprKUoWFhRx//PFceOGFvWdn5513HqtWreKpp54CoKOjg29+85tcffXVToaaNjShqYzQ+c4rdG1aR+kpFyIiiAj+6tma0FRWW7hwIa+//npvQsvLy+PBBx/k2muvZd9992Xs2LEcffTRnHfeeb2vufvuu/cq23/++eedCj/ltMlRZYSmR2/GlV9M8bFn9j7nnzaH5idux0QiiNvtYHRKJccZZ5yBMWav5+bMmcPy5csBeOCBB/j2t7/N5z73Oaqqqli0aBGLFi1yINL0oGdoKu2Fd++g9aVHKT7h3L0qGgPVszHdnXRv3+hgdEo554wzzmDjxo1UVVU5HUpa0ISm0l7Tk4shGqH0E+fv9by/ejYAXZvedCIspVSa0YSm0poJddP85GIKDjoB38S9h7rwTZ6JeHzaY4hKir5NfdkkW7dNE5pKa60vPUKkqZ7Sky/40DTx+vBN3VcLQ1TCBQIBdu3alZVf/D3joQUCAadDSTgtClFprWnZLXgnTCN/3vx+p/urZ9P+2lMYY7J2SAyVelOmTKG2tpaGhganQ0mKnhGrs40mNJW2Oje+Qec7rzJu0dWIq//GBH/1bFqW302kqR7PmIoUR6iyldfrzbrRnHOBNjmqtNW07BbEn0fx8ecMOI9/2hxAe95XSmlCU2kq0rqb1lUPUHzc2bgLSgacz19lDY2h19GUUprQVFpqfupOTKiL0pMXDTqfu6AYb0UVne9r6b5SuU4Tmko7JhKh6fHbyJv9EfyV+w85v3aBpZQCTWgqDbW/9iThxjpKT7kwrvn91bMJ7XifaEdbkiNTSqWztE9oIjJLRG4QkXtF5BKn41HJ17TsZjzlEyk87KS45vdPm22NjbZZx0ZTKpclNaGJyM0iUi8ib/Z5/mQReUdENojIFYMtwxjzljHmq8A5wNHJjFc5r6v2XYJrV1Fy0vmIO767Sj7oAkubHZXKZck+Q7sVODn2CRFxA38CTgFqgIUiUiMiB4jIw33+jbdfczrwCPBokuNVDmt67BbE46PkxPOGntnmKZ+Eq3CMJjSlclxSb6w2xjwjItV9nj4c2GCM2QggIkuABcaYXwCfGmA5DwIPisgjwJ39zSMiFwMXA1RWViYkfpVakWArLSuWUnT0Ajwl5XG/rmdstE5NaErlNCeuoU0Gtsb8XWs/1y8RmS8ifxSRvzLIGZox5kZjzKHGmEPHjRuXuGhVyrSsuAfT2U7pKR/ut3EogWmz6d7yNiYSTkJkSqlMkPZdXxljVgArHA5DJZmJRml67BYC+xxMYOa8Yb/eP22ONTbatvfwT90vCREqpdKdE2dodcDUmL+n2M+pHBZ84xlC2zaO6OwMYgpDtAsspXKWEwntFWAfEZkmIj7gXOBBB+JQaaTpsVtwF5dTeFS/l1GH5Js0A/H6s3awTxPqZs+ym7VHFKUGkdQmRxG5C5gPjBWRWuBKY8xNInIp8DjgBm42xiTkZ7WInAacNnPmzEQsTqVIaOcW2l97irIzv4nL6x/RMsTjxTd1v6ytdGxZdT8NN/0IAP/MeZR+/PMUfWQBrrwChyNTKn0k9QzNGLPQGDPRGOM1xkwxxtxkP/+oMWZfY8wMY8y1CVzfQ8aYi0tKBu7MVqWfpsdvBXFRctIXRrUc/zSrC6xsHJSxZcVSvBOqGXfBTzGdQXb+5X/ZePFB7LzxCjo3vpG09YabGmh9/kG9aV1lhLQvClHZLdoVpPnpJRQefgre8kmjWpa/ejYt/76L8O4deMsnJihC54Xqt9Kx7nnKP/sdxnzyS5SeehGd77xK81N30LLiHpqfuB3/9LmUfPwLFB+zAFde4YjXFQm20rH+RYJrnyW4dhXdW94GwDuhmuo/rhpwXDql0oEmNOWo1lUPEG1rGnExSKxATI8h2ZTQWlYuBaB4/tmAdd9d3v6Hkbf/YYxbdBUtz95H85OLqf/rd2i47SqKj/00JSd+nsCMuUMuOxrqovOd1wiuXUVw7bN0blgD0QjiC5C3/2EUH/tpTNSw667raF/9NIWHnJjUbVVqNDShKccYY2hadjO+ylnk1Rw56uXFdoGVLV+8xhhaVt5L3pyj8Y6b8qHp7sJSxpxyIaUnX0Dnf1+j+anFtKy8l+YnF+OfNoeSEz9P0bGfxp1fZC0vEqHr/Td7z8A63n4Z090JLheBGfMoO+Pr5B9wDIH9DsXlC1ivCYdoevxWmpbdnDX7VWWnrEpoWhSSWTrffpmuTesZ/5VfISKjXp4rrxDvhGlZVbrf+fbLhHZsouysywadT0TI2+9Q8vY7lHGLrqb1mftoenIx9X+7gobbr6boqNOIdrQRXPc80bYmAHxT96PkxPPIP+AY8mqOwl1Q3P+yPV5KT/oiu5b8iu66d/FN3ifh26lUImRVQjPGPAQ8dOihh37Z6VjU0JqW3YKroITiY89M2DKtsdGyp7S9ecU9SCCfoiM+Gfdr3AUllJ5yASUnL6Lz3dU0P7WY1uf+hbuojMLDPkH+AceSf8DReMZUxL3Mko9/nt33/p49y26h4ks/H8mmKJV0WZXQVOYI795B60uPMubUi3AF8hO2XP+02bS9+DCRYGtvM1uminYFaXv+IYqO/NSIyvNFhLx9DyZv34Op+OpvQGTEZ8KekrEUHb2AlhX3MHbhFQOezSnlJC1ZUo5offERiISH1at+PHquo3VvXp/Q5Tqh7eXHiHa09RaDjIa4XKNu1i099SJMZ5CWFfeMOh6lkkETmnJE++rleCdOxzc5sdc7exJaNvS837L8HjzjppBXc5TToQAQmDGXwH6H0rTsZkw06nQ4Sn2IJjSVctGuDjrWPU/BvPkJX7anbALu4rKM7zEktGsbwbXPUnzcWWl179eYUy8itGMT7aufdjoUpT4kfT4pKmd0vPUSpruT/IOOT/iye8ZGy/RKx9Zn/gnGUDz/HKdD2UvhEafiLptA06M3OR2KUh+SVQlNRE4TkRubm5udDkUNon3NCsTrJ392cprS/NPm0L31HUw4lJTlJ5sxhpYVS8nb/3B8E6qdDmcvPSX8wddX0l33rtPhKLWXrEpo2pdjZgiufpq8miNx+RNX3RjLXz0bE+qie9t7SVl+snW+u5ruug0JKQZJhpKPfx7x+Niz7BanQ1FqL1mV0FT6C9VvpbtuAwXzEt/c2MNfPQeArgwdaqVl5VLEF6DwqNOcDqVfsSX8kfYWp8NRqpcmNJVS7WtWACTl+lkP36TpiC+QkYUh0e5OWp/7F4WHn5LW93r1lvAvv9vpUJTqpQlNpVT7muV4xk1JeLl+LHF78FXuT2cGFoa0v/ok0bamtG1u7NFbwv/YLVrCr9KGJrQYJhwi1FDrdBhZy4S6Cb7xLAXzjk9I342DCVRn5thoLSuW4imbSP4BxzodypC0hF+lG01oMbb/8VJqr0rvX8aZrOOdVzGd7RQcND/p6/JXzybatofwrm1JX1eihPfU075mOUXHfQZxu50OZ0hawq/STVYltNGW7QemHUBo52YirXsSHJkCq7kRt4e8OcckfV2xQ8lkipZn74NohJI0b27soSX8Kt1kVUIbbdl+YMaBAHS+93oiw1K29tXLydv/8JR0GuyvqgGRjLnBuufes8A+B2fU8Cxawq/SSVYltNHy2yP8akJLvPDuHXRvXp+U7q7648orwDtxWsacoXW9/ybdW95K+2KQvjwlYyk65gwt4VdpQRNaDHdBCd5J0zWhJUFPuX5BEsv1+7K6wMqMe9FaVtyDeHwUfeR0p0MZttJTLtQSfpUWNKH1EZgxj64NmtASrX3NctxjKvBV1aRsnYHqOYTqtxBpT++u0Eyom9ZV91Nw2CdwF41xOpxh0xJ+lS40ofURmHEg4d3bCe/Z6XQoWcNEwgRff4aCefOTXq4fq7cwZPNbKVvnSLSvfppIy+6Ma26MpSX8Kh1oQusjMNMuDNmwxuFIskfnu6uJtjentLkRrNGrIf27wGpZsRR36biUXV9MBi3hV+lAE1of/mlzwOXW62gJ1L5mObhcKb9Z2F06HnfJ2LQuDIm07KLtP09RfOyZiNvjdDgjFlvC31WrJfzKGVmV0BIxfIzLn49v6n506nW0hGlfs4LAPgen/PpQ79hoaZzQWlY9AOFQ2o17NhI9JfxNy252OhSVo7IqoSVq+JjAjLl0vrcm47pNSkfh5l10vfd6UnvXH4w1Ntp/MaFuR9Y/lJYVS/FPm4O/apbToYxabwn/yqVawq8ckVUJLVECM+YRbd1DuH6r06FkvODrK8GYlF8/6+Gvno0Jd9Ndt8GR9Q+ma8vbdG18IyvOznpoCb9ykia0fgRmzgP0ButEaF+zHHdxGf7pcx1Zf2Ba+naB1bLiHnB7KDrm006HkjC9JfzLbsZEIk6Ho3KMJrR++Cv3Rzw+Ot/TSsfRMNEowTUryD9wPuJy5lDzTrDGRutMs0pHEwnT8sx9FBxyIp6ScqfDSagxp15EaOdmLeFXKacJrR/i9eGrrtHCkFHq2riWSMsux5obAcTtxl9Vk3ZnaO2vryTSVJ8xHREPR28JvxaHqBTThDaAwIwD6dr4hvZ8MArta5YDkH/gcY7G4U/DsdFaVtyDq2gMBQd9zOlQEk5L+JVTNKENIDBzHtGONkLb33M6lIzVvmY5/ulz8ZSMdTQOf/Vsou3NhBvrHI2jR6StifZXnrDuPfP6nA4nKbSEXzlBE9oAeoeS0WbHEYm0NdH539coOOgEp0NJux5DWp97EBPqyuiuroaiJfzKCZrQBuCbvA8SyNcusEYo+MazEI2mZHTqofirZoHLlTbX0VpWLsVXuT/5Z/sZAAAgAElEQVT+aQc4HUpSaQm/SrWsSmiJ6Cmkd1luN4FpB2jp/gi1r1mOK7+YwD4HOx2K1fvLxOl0pkFC667bQOd/X6N4/jkp7ajZCb0l/I/elLY3tqvsklUJLVE9hfQIzJxnFROEQwlZXq4wxtC+ZgX5cz+aNv0TpksXWC0r7wWXm+Jjz3Q6lJQo/8xlhOq3sEevpakUyKqElmj+GXMx3Z10bX3H6VAySveWt4ns3uFouX5f/urZhOu3EmlrciwGE4nQsnIpBfPm4xkz3rE4Uqng4BMoOPhj7L73d4SbGpwOR2U5TWiDCMywegzp0mbHYem5oTY/jYZD8U+bA0DXpvWOxRBc9xzhXduzqqureIw7/0qiXR003vVLp0NRWU4T2iC8E6pxFZbqdbRhal+zAl/lLLzlE50OpVfvYJ8ONjt2vv0KiFBwyImOxeAE3+SZjDn1IlqevovOjW84HY7KYprQBiEiBKbP1UrHYYh2tNHx9stpUd0Yy1M6DnfpeEcTWqixDveYClz+PMdicErZWZfhLiqj4eafpNUN7iq7aEIbQmDGgXRteZtod6fToWSE4JvPQTiUFvef9WUVhjh3L1q4oRbv2MmOrd9J7oISxn7uCjrefpm25x90OhyVpTShDcE/cx5Ewo5ee8kk7auXI4F88vY7zOlQPiQwbQ5dte86VkIeaqjL2YQGUHz8ufinzaHhHz8j2hV0OhyVhTShDSEw0+4xJEt73m998RFaVixNyLKscv3l5M85Ji27dPJPmw3hEF21/035uk00SnjXNjzjcjehidvNuAt+RrhxG3v+9Renw1FZSBPaEDxlE3GXjqMrC7vAioa62HnDd9hx/bfY88jfR7280Lb3CNdvTcvmRnC2MCTS3IgJdeEdOyXl604n+TVHUPSR09n9wJ8INdQ6HY7KMprQhiAiBGYcmJVnaO2v/ZtoWxO+qfvRcMtPaP73XaNb3poVABSkUbl+LG9FNRLId6RPx54vb8+43E5oAGO/8CMAGv9xjcORqGyjCS0OgZnz6K7bQLSjzelQEqplxT24S8dTed0j5B94HDv/+h1aR3HBvn3103gnzcBbUZnAKBNH3G78lbMcOUPr6ek/l6+h9fCOm8KYBV+j9fkHCa5/yelwVBbRhBaHwIx5YAydG9c6HUrChJt30b76aYo/eiYufz6TvnsTefseyvY/XErbq08Oe3nRrg461r+YVr2D9Mc/bY4jY6PpGdreys74Gp7yiTTc8mNMJOJ0OCpLZFVCS2TnxLH8vUPJZE+zY+uq+yESpvg4awgTlz+fSd+/HX9VDdt/ezHBtauGtbyO9S9iujvT9vpZD3/1bKLBVsL1W1O63nBjLa78YtwFxSldb7py+fMZ+4Uf0/X+m7QsX+J0OCpLZFVCS3TnxD08JeV4xk3Jqi6wWlYuxT9tjjW0is1dUMyUH9+Jd0I1db9cRMc7r8a9vPY1yxFfgLxZRyQj3ITpKQxJdc/7oYY6PNrcuJeioxcQ2P8wGu+8TsdMUwmRVQktmQIz5mVNF1hdW96ma+PafvsUdBeVMeUnS/CUVlD38y/QGWcBRfvqp8mrOSrte8HwV+5vj42W2sKQcGMt3hwu2e+PiDD+gp8Rad3N7nt/53Q4KgtoQotTYOaBhHZuJtK62+lQRq1l5VJweyg65ox+p3vGVDDlyrtx5RVQ97OFdNe9O+jyunduJrRtY9pfPwNw+fPwTqime2tq70ULNdTp9bN+BGbMpfiEc9nz6E10121wOhyV4TShxSnQcx3tvczuXNVEIrQ8cx8FBx2Pp2TsgPN5x01hyk/uBpeL2qvPJbRzy4DzBnvK9TMgoYFVvh+qH3h7Ei0SbCXa3qwVjgMYu/AKXL4ADbf9NGHLjHa00fzvO7UpM8doQouTf/pcgIxvdgyufZbInp29xSCD8U2awZQfLyHa3UHtTz9LePeOfudrX70c7/hKvBOnJzrcpPBWVA6aoBOtt2Rfz9D65SkdR9lZl9P+n6do/8/To1qWiUZpXnEP73/jGHb+5X/ZteRXCYpSZYK4EpqI3CcinxSRnE2A7oJivJNmZHylY8uKpbgKSig49ONxze+vmsXkH95BuLnRSmrNu/aaHg11EXxzFfkHHY+IJCPkhPNVVBFtb07ZYJ9asj+0MadehHfidOpvvXLEI8R3vLuarT88nZ3XX4Z37GQKDv4YzU/dMeAPMZV94k1QfwY+B7wrIteJyH5JjCltWT2GZO4ZWiTYStvLyyg6egEurz/u1+XtcxCTv387ofqt1F2zkEj7B7dFdL79CqYzmLa9g/THM9668TtVZ2l6U/XQxOtj3PlXEtr2Hk2P3Tqs14b37GTH9Zex9fufJNRQy4RL/8DUnz/EuIuuwUTC7P7Xn5MTtEo7cSU0Y8xTxpjzgIOBTcBTIvK8iFwgIt5kBphOAjPnEdm9I2N/8bW98DCmu5Pi+UM3N/aVP/soJn3nJrq2vkPdz79AtNPqLb19zXLweMmfc0yiw00aX0VPQtuckvWFGmoRjw936fiUrC9TFRxyIvnz5rPrnt9+qCWgP9FQF7sf+BPvf+MYWlbdz5gFX2Pa/62ieP7ZiMuFr6KK4uPOovnJxYT37EzBFiinxd2EKCLlwCLgS8Bq4A9YCW743UpkqA8KQzLzLK1l5VK8k6YT2OfgEb2+4KDjmXjZn+l89z9s++Uiot2dtK9eQd7+R+DKK0hwtMnTe4aWosKQcEMtnrGTEFfOttjHRUQYt+hqop3tg177MsbQ9uqTbL78BBoXX0v+7KOo/t1yxn3hR7jyCveat+zMb2LCIXZr7/45Id5raPcDzwL5wGnGmNONMXcbY74BFA7+6uzhnzYbXG46M7Dn/dDOLXSsf5Hi484e1bWuoiM/yYSv/Y7g2lXU/fwLdG95K+1Gpx6KO78Id3FZypocQ416U3W8/FP2ofSUC2h+anG/90B2171L3bWfZ9t154PLxeQf3sHk79+Ob4CCJN/EaRQfeybNT9xOuKkh2eErh8X7k/GPxpgaY8wvjDHbYycYYw5NQlxpyeXPxzd1v4zseb/lmXsBKP7oZ0a9rOL5ZzP+Sz+n483nANK+u6v+eMdXpazJMdxQpzdVD0P52d/GVVhKwy1X9va5GWlvoeG2q9n07Y/R+d9XGXf+VVT/v6fjulWk7KxvYcLd7NFraVnPE+d8Y0TkzD7PNQNrjTH1CY4prQVmHkjby49hjMmYqj5jDC0r7yVvztEJKx0vPXkRxkTpfPsVfFMzr0bIW1GZkqZjEw4R3rMDT46PgzYc7sJSxp77Per/dgVtLzxEtKPN6h6rZRfFJyxk7OeuGPQeyr58E6dTdMynaXridsac8fVhvVZllnjP0C4C/g6cZ//7G/A94DkR+UKSYktLgRnziLbuSXnntqPR+c4rhHZsGlExyGDGnHIhEy//S8Yk9ljeiipCDbWYSDip6wnv2g7GaIXjMJWceB6+qhq2/+4Sdv7lf/FOqKbyumVMuOQ3I0pI5Z/5FibUxZ4Hb0hCtCpdxJvQvMAsY8xnjDGfAWoAAxyBldhyRmBmT2FI5jQ7tqxYivjzKDriVKdDSRveikqIhK2Ek0Q996DpTdXDI243FRdfR2DmQUz41vVMveZfBGbMHfHyfJNnUvSRBTQ9fiuRlqErKFVmijehTTHGxNa91gNTjTG7gZHdBZmh/FP3Rzy+jLnBOtrVQevzD1F4xCc/VAGWy7zjU1O633MPmt5UPXx5+x1K5S8epvjYMxPSClB21mWYrg52P/TXBESn0lG8CW2FiDwsIueLyPnAv+znCoDUdLeQJsTrw189O2P6dGx/9QmiwRaK55/ldChpxVtRBSQ/ofX2ElI+ManrUUPzT9mHoo+cTtOyW7Kik3H1YfEmtK8DtwDz7H+3A183xrQbYzKjR9oE8s88kK6Nb2CiUadDGVLLynvxlE8kf/bRToeSVjzlE8HtIZTka6GhxlrcpeNx+QJJXY+Kj3WWFmTPQzc6HYpKgiETmoi4gaeNMf80xlxu/7vXpHoM+zQSmDmPaEcb3dveczqUQYX31NO+ZgXFHz0LcbudDietiNuDd9yU5Dc5NtTp9bM04p+6H4VHfoqmZTcTad3jdDgqwYZMaMaYCBAVkcQOA50EInKaiNzY3Nw89Myj0NNjSLqPYN266n6IRrS5cQDe8cnvdT/UWKs3VaeZ8rMuI9rRxp6H/+Z0KCrB4m1ybAPWishNIvLHnn/JDGwkjDEPGWMuLilJbu71TZqJBPLTvjCkecVSAjMPwjd5H6dDSUveiipC9ck7QzPGEG7cpjdVpxl/1SwKj/wkTctuStmICyo14k1o9wE/Bp4BXov5l5PE7SYwfW5a9+nY+f6bdG9eT/FxenY2EG9FJZGW3USCrUlZfqRlF6a7U8/Q0lD5WZcTDbay55G/Ox2KSqB4e9u/DbgHeNEYc1vPv+SGlt4CMw6ka9O6EY/dlGwtK+8Fj5eiYxY4HUra6ql0DCepk+Kw3oOWtvzVNRQefgpNj/x9r+GQVGaLt3Pi04A1wGP23/NE5MFkBpbu/DMOxHR30rX1HadD+RATDtH67H0UHnwi7qIyp8NJWz33onUn6Tqa3lSd3srOvpxosIWmR29yOhSVIPE2OV4FHI59z5kxZg3Qf/fWOSIwcx5AQnreN5EIba88TrSjfdTLAmh/fSWR5saEd3WVbbxJHhet96ZqbXJMS4Fpcyg47BPsefhvRNpbnA5HJUC8CS1kjOl7Xp7+N2ElkbeiCldhKV2j7ALLGEP9LT9m2y8vYMv3P0l33YZRx9ayYinu4rKM7AU/ldyFpbgKSpI2LlqooRZXXiGugrQvEM5Z5WdfTrS9maZlNzsdikqAeBPaOhH5HOAWkX1E5P+A55MYV9oTEaswZJSVjnv+9WeaH7uVoo+cTqSlkS1XnErby8tGvLxIWxPtrz5B0dFnIF7fqGLLBd6K5JXuhxpq8YybkpGdN+eKwPS5FBxyInsevjFpxUEqdeJNaN8AZgNdwF1AC3BZsoLKFIGZ8+ja+g7Rro4Rvb7l2ftoXHwtRUcvYMJlf6byl4/hnTSDbb+6iMY7foGJRIa9zNbnH8KEuiief86IYso1yRwXLdxYp73sZ4Dys/+HaFsTTctucToUNUrxVjkGjTE/NMYcZow51H7cmezg0l1g5oEQCdO1ef2wXxtcu4odf7qcvNkfoeLS3yMuF95xU5j6s/sp/tjn2H3//1F37XnD7hm8ZeVSfFP2xT/9gGHHlIu8FZWE67cmpRuzUEOddkqcAQIzD6Tg4I+x56G/Eu1oczocNQrxVjnuKyI3isgTIvJ0z79kB5fu/DN6CkOG1+zYtWk92359Eb6J05n03Ztwef2901y+ABMu+Q0VX/01HetfZPP3Tom7I+Tu7RvpfOdViuefrc1ccfJWVGHC3YT37EjocqMd7UTb9ugZWoYoO/vbRNv20PTYrU6HokYh3ibHpcBq4EfAd2L+5TRP2QTcpePpGkbP+6HGOup+/gVcgUIm/3Ax7gEKBkpOPI+p1zwAxrD1Rwto/vddQy67ZeW94HJRdGzfwcXVQD6odEzsdbRQ77AxmtAyQd4+B5E/73j2PHRDwqqNVerFm9DCxpi/GGNeNsa81vMvqZFlABEhMPPAuAf7jLQ3U3ft54l2tjH5h4uH/PUemDmPql89Rt6sw9n5l/9h51+/SzTU1e+8JhqlZeW95B9wLF4dqiRuyRoXrfem6rHa5Jgpys/5NpGW3TQ9kdN9RmS0eBPaQyLyNRGZKCJlPf+SGlmGCMyYR3fdhiHb3qOhLrb98kK6t29k0nduwl81K67lu4vLmfzDOxnz6UtpfnIxtT8+s/fXf6yO9S8SbqjVe8+GyTt2MrhcCU9oveOg6TW0jJG37yHkH3gce/71F6KdQafDUSMQb0I7H6uJ8Xk+6Mfx1WQFlUkCMw4EYwa9zmWiUXZefxkd619gwtd/R/4BxwxrHeJ2M+68HzDxOzfRXfcuW757MsG1q/aap2XlUlx5hRQefvKItiNXideHp3xSwsdFCzfWgduDp3R8Qperkqv87G8TadlF0xO3Ox3KsJlwiKYn78CEup0OxTHxVjlO6+dfTvcU0iMw0xpKZrCOihsXX0Prc/9i7Hk/oHgU17eKjjiFyusewV1cRu3PzmX3v/6MMYZoZ5DWFx6m8KhP4fLnj3j5ucpbkfjS/VBDLd7ySToOXYbJ2/8w8g84hj3/+jPRrsw6S2t+cjH1f/0O7WufdToUxwya0ETkuzGPz+4z7efJCiqTuIvL8YyfOuB1tD2P/J09D95AycmLGHPG10e9Pt/kfaj8xSMUHvFJGv9xDdt/+xVaVt6L6Wyn+DhtbhyJZNxcHWqs1ebGDFV29v8QaW6k+ak7nQ4lbpH2Zhrv+Q15c47O6R6ChjpDOzfm8ff7TNO2LVtgxjy6+unTsfXFR2i49UoKDj+Z8Rf8LGGl9K68QiZ++wbGfvEntL28jPq/XYFn/FTyZh2RkOXnGu/4KiJN9Qn9Ra43VWeu/Joj8E2eSTCDznR2//MPRNuaGPfFn+T0LTtDJTQZ4HF/f+eswIy5hOq3EGnd3ftcx9svs+MPlxLY52AmfutPCW96EhHKTv8qU36yBE/5RMac+iXEFe8lURWrt3Q/QdfRTDhEePcOLdnPYP7q2XRtfsvpMOLSvWMTTY/eTPH8cwjkeIcKQ30DmgEe9/d3zurted8uDOmue5e66xbhGTuZyVfcisufl7R15885mmk3vMqYT305aevIdj3joiXqOlp49w6IRnXYmAzmr64h3FCbEb3wNy7+ObjdjF34PadDcdxQCe1AEWkRkVZgrv245+/c/ikQwz99LojQuWEN4T07qb3mPMTtYfKP7sBdXJ709edyE0MifHAvWmKuo4V02JiM56uqAUj7s7SOt16i7cWHKTvj63jKJjgdjuM8g000xmiJVhzc+UX4Js0g+ObztL30KJHW3Uy96p/47F/+Kr25i8uQQEHiztB0YM+M57cTWvfm9eTXpOe1aRONUn/b1XjKJjLmtK86HU5aGDShqfj5ZxxI6zP/BJebSVfc2lvOr9KfiCS0dL/3purySQlZnko9T9kEXIVjRtTxeKq0rnqArg1rmHDpH3AF9HYdiP/GajWEvP0OBaDiK7+k8OCPORyNGi5vRWXCikLCjXW4S8Ym9dqpSi4RwV81K22bHKNdQRrvuBb/9LkUffQzToeTNvQMLUFKTlhI3n6H4a+ucToUNQK+iiqCa1ZgjBn1NcmegT1VZvNX19D81B2YaDTtKoj3PPw3wru2M+Fbf0q72JykeyJBxOvTZJbBvOMrMd2dRJoaRr0s6x40TWiZzl85C9PVQWjnJqdD2Ut4Tz277/8/Co84lfyaI50OJ61oQlOKxJXuG2Osbq/0HrSM56+eDaRfpWPjkl9iwiHGfv6HToeSdjShKUXszdWjK92PtOzGdHdqyX4W8E3ZB1wuujatczqUXl2b1tHy9BLGnHIhvonTnA4n7WhCU4oPhnkZ7Rla2L4HTc/QMp/Ln4dv4vS0OUMzxlB/69W4Ckop+8y3nA4nLWVEQhORAhF5VUQ+5XQsKju5fAE8ZRNHfXN1b8m+XkPLCv6qmrQp3W9/7Sk63lxF+Tnfxl1Y6nQ4aSmpCU1EbhaRehF5s8/zJ4vIOyKyQUSuiGNR3wPuSU6USlmsXvdHeYamN1VnFV9VDeH6rY53gWXCIRpu/yneSdMpPemLjsaSzpJ9hnYrfXrlFxE38CfgFKAGWCgiNSJygIg83OffeBH5OLAeqE9yrCrHeSuqRn0NLdRYhwTycekv6KzQU7ncvfVtR+NoevIfhLa9Z/Wm7/E6Gks6S+p9aMaYZ0Skus/ThwMbjDEbAURkCbDAGPML4ENNiiIyHyjASn4dIvKoMSbaz3wXAxcDVFZWJnArVK7wVlQSXrmDaHcnLl9gRMsIN9TiHTtF+9fMEv6qWQB0bVpP3v6HOxJDpK2JXff8lrw5x1BwyMcdiSFTOHFj9WQgtkuGWmDAztKMMT8EEJFFQGN/ycye70bgRoBDDz1URwJQw+atqAJjCDfU4ps8c0TL0IE9s4unfBKughJHC0N6xzo7P7fHOotHRhSFABhjbjXGPOx0HCp7JaLXfR3YM7tYXWA5VxjSvWMTe5bdTPHxnyUwbY4jMWQSJxJaHTA15u8p9nNKOWq0N1dHO4NEWnZrQUiW8VfNomvLW5hov41DSdW4+FrE49WxzuLkREJ7BdhHRKaJiA84F3jQgTiU2ou7dBziC4y4MKR3HDS9By2r+KtrMJ3BURcMDVdw/Uu0vfgIZWdcimdMRUrXnamSXbZ/F/ACsJ+I1IrIRcaYMHAp8DjwFnCPMSYht+KLyGkicmNzc3MiFqdyjIjgHV9J9wjP0HpvqtYmx6zSMzZa16bUNTuaaJSG267CUz6RMaddnLL1ZrqkJjRjzEJjzERjjNcYM8UYc5P9/KPGmH2NMTOMMdcmcH0PGWMuLikpSdQiVY6x7kUb4Rlaz03V2uSYVXxT97W6wErhdbTWVffT9d7rjD3vB7j8OtZZvDKmKESpVPBWVBGu34Ixwy+UDTfUgsuNZ8yEJESmnOLy5+OdMC1lCc0a6+zn+GccSNExn07JOrOFJjSlYngrqoh2tBFt3T3s14Ya6/CUT0Tc7iREppzkr6qhO0Wl+3seupHwru2MO/8qHetsmHRvKRWjp9f97hE0O4YbarXCMUv5q2sI7dxMJNia1PWEd+9g9wPXU3jkJ8mvGfD2XDWArEpoWhSiRms0pfuhhlrtlDhL9fQY0r0luV1gNT1+O6a7S8c6G6GsSmhaFKJGyzveukVyuIUhJhImvHuHDhuTpXorHZPc7Bhc+yyBmfPwTahO6nqyVVYlNKVGy+XPx106jlD98M7Qwrt3QDSiZ2hZyjN2Mq784qQWhkSCrXRuWEP+AcckbR3ZThOaUn14xw+/dD/UoAN7ZjOrC6xZSU1oHetfhGiE/DlHJ20d2U4TmlJ9eCuqhn0NTUeqzn7+6hq6NievC6zg2lWIL0Bgv0OTsvxcoAlNqT68FZWEd23DhENxv+aDkao1oWUrX2UNprOdUMPWoWcegeDaVeTtd+iIhy5SWZbQtMpRJYK3ogqi0d6+GeMRbqzFXVyuvTpksd7BPpPQ7BhubqR7y1vkzdHrZ6ORVQlNqxxVIoykdD/UUKdnZ1nOP3U/EElKn44dbz4HoAUho5RVCU2pROi5uXo4hSHhRr2pOtu5Aj1dYCW+dD/45nO48osIzJib8GXnEk1oSvXhGTMB8fjiPkMzxlg3VWtCy3rJGuwzuHYVeTVHIm5PwpedSzShKdWHuFx4xk+J+wwt2rYH09Whw8bkAH/VLEI7NhHtaE/YMkMNtYR2bCL/gGMTtsxcpQlNqX54x1fFfXO1DhuTO3oKQ7q2Jq4LrODaVQB6/1kCaEJTqh/DGRet96ZqPUPLeskY7DO4dhXukrH4KvdP2DJzVVYlNC3bV4niragi2t5MpK1pyHn1purc4Rk3BVd+UcKuoxljCK5dRf6coxGRhCwzl2VVQtOyfZUovaX79UOfpYUaahF/Hq6ismSHpRwmIvgrE9cFVnfdBiJN9Xr/WYJkVUJTKlF8wyjdDzfU4h07WX9h5whf1Sy6N781olHN+wqufRaA/Lma0BJBE5pS/fCM70loQxeGhBrrtCAkh/irZxPtaCNcP/ousIJrV+EZPxWf3SKgRkcTmlL9cOcX4S4ui/8MTRNazugZ7HO0zY4mEqFj3Qta3ZhAmtCUGoBnfOWQZ2jRrg4iLbu026sc4p+6v9UF1ih7DOl6/02i7c3a3VUCaUJTagC+8ZVDFoV8UOGoZ2i5wpVXgLeietRnaME3e+4/04SWKJrQlBqAt6KKUEMtJhIecJ4Pho3RhJZLrME+R3eGFly7Ct+UffGMGZ+gqJQmNKUG4K2ohEiY8K7tA86j96DlJn91DaEd7xPtDI7o9dFQFx1vvaTNjQmWVQlNb6xWiRTPvWihhjpwufGUTUhVWCoN+KtmgTF0bRlZF1id767GdHdqQkuwrEpoemO1SqR4xkULNdTiKZugvaTnGF9PF1gjbHYMrn0WXC7yZh+VyLByXlYlNKUSyVM+EdyeQUv3w4112odjDvKOm4orr5CuzetG9Prg2lX4p8/FXaA/vhNJE5pSAxC3B++4KYOfoTXqOGi5SFwufJX70z2CM7RoRzud767W+8+SQBOaUoPwjp864BmaiUQI79quJfs5yl89m64RdIHV8dZLEAnr9bMk0ISm1CC8FQOPixZu2gmRsN5UnaP8lbOIBlt6K13jFVz7LOLxkbf/YUmKLHdpQlNqEN7xlURadhMJtn5oWti+B03P0HJT72Cfm4Z3HS345nME9j0Elz8/GWHlNE1oSg2ip9Ix3E/pvo5Undv89oCcw6l0jLTupmvTOm1uTBJNaEoNYrB70XpvqtYmx5zkyivEW1E1rIQWXPcCGKMJLUk0oSk1CO8g46KFGupwFY3BFdCmo1zlr6oZVul+cO0qJFBAYOa8JEaVu7IqoWlPISrR3IWluApK6O6ndD+kw8bkPF/VLELb3yfaFV8XWMG1z5JfcyTi8SY5styUVQlNewpRyeCtqOz3DC3cWKcVjjnOXz3b7gLrnSHnDe3aRmjbRm1uTKKsSmhKJYO3n3HRjDF6hqZ6B/vsjmMomY61zwGQpzdUJ40mNKWG4K2oJFy/FRON9j4XbWvCdLbj1WFjcpp3fCUSKIirMCS4dhXu4jL8dj+QKvE0oSk1BO/4Kky4m/CeHb3PhewKR48OG5PTxOXCX7n/kIN9GmMIvrmKvNlHIy792k0W3bNKDaG/Ssfem6r1DC3nWZWOg3eBFdq+kfCu7dp/Y5JpQlNqCP3di/bBTdV6hpbr/NU1RNubB+0CK2hfP8ufqwUhyaQJTakheMdOBm77dUgAAAuVSURBVJdrr8KQcGMd4gvgLi53MDKVDnoKQwa7jhZcuwrP2El4J0xLVVg5SROaUkMQrw9P+aS9mhxDDVbJvog4GJlKB77KnoTW/3U0E40SXPcc+XOO0eMlyTShKRUHb0XVXmdoocZa7fJKAeDOL8I7vnLAhNa1eT3R1j16/1kKaEJTKg59x0ULN9Zpp8Sql69q1oCDfQbXrgL0/rNU0ISmVBy8FVVEmuqJdgWJdncSaWrQm6pVL391Dd3bNxLt6vjQtODaVXgnzcBbPtGByHKLJjSl4tBbul+/VXvZVx/ir6qBaJTurf/d63kTDtHx1ova3JgiWZXQtHNilSze8Xbp/s7NMTdV6xmasnxQ6bh3z/udG1ZjOoOa0FIkqxKadk6skqX3XrSdW3SkavUh3opqxJ/3odL94NpVIEL+7I84FFlu8TgdgFKZwF1chgQKCNVvwZVXCC4XnrIJToel0oTVBdasfhLac/inzcFdNMahyHJLVp2hKZUsItJbuh9u3IZnTIWOaaX24q+uoWvz+t4usKJdQTr/+5p2d5VCmtCUilPPuGihhlq9fqY+xF85i2hbE+Hd2wHoePsVTLib/AOOdTiy3KEJTak49YyLFmrYqhWO6kN89rAwXZusG6yDa1eB20PerCOcDCunaEJTKk7eikpMdyfh+q16hqY+5IPBPq3raMG1q8jb52BcgXwnw8opmtCUilNPpSPosDHqw9wFxXjGTaFr0zoibU10vb+WPC3XTylNaErFyWffXA06bIzqn7+qhq4tb9Gx/gWIRvX6WYppQlMqTp5xU3sf6z1oqj/+qhq6t71H22v/Rvx55O1zkNMh5RRNaErFyeUL4Cmz+uPTohDVH3+11QVW67P3kTfrCMTrczqknKI3Vis1DN6KSqLdHdbN1Ur10VMYYro7tbsrB2hCU2oYCg49Ce+k6U6HodKUt6Ia8QWshDZHE1qqaUJTahjKFlzidAgqjYnbjb9yFt073sdfPdvpcHKOJjSllEqgsrMuI9rejLjdToeSczShKaVUAhUe+nGnQ8hZWuWolFIqK2hCU0oplRU0oSmllMoKWZXQROQ0EbmxubnZ6VCUUkqlWFYlNGPMQ8aYi0tKSpwORSmlVIplVUJTSimVuzShKaWUygqa0JRSSmUFMcY4HUPCiUgDsHmELx8LNCYwnEyg25wbdJuz32i3t8oYMy5RwaRaVia00RCRV40xhzodRyrpNucG3ebsl2vb25c2OSqllMoKmtCUUkplBU1oH3aj0wE4QLc5N+g2Z79c29696DU0pZRSWUHP0JRSSmUFTWhKKaWyQs4mNBE5WUTeEZENInJFP9MXiUiDiKyx/33JiTgTaahttuc5R0TWi8g6Ebkz1TEmWhzv8+9i3uP/ikiTE3EmShzbWykiy0VktYi8ISKnOhFnIsWxzVUi8m97e1eIyBQn4kwkEblZROpF5M0BpouI/NHeJ2+IyMGpjtERxpic+we4gfeA6YAPeB2o6TPPIuB6p2NN8TbvA6wGxth/j3c67mRvc5/5vwHc7HTcSX6PbwQusR/XAJucjjsF27wUON9+fALwD6fjTsB2fxQ4GHhzgOmnAssAAY4EXnI65lT8y9UztMOBDcaYjcaYbmAJsMDhmJItnm3+MvAnY8weAGNMfYpjTLThvs8LgbtSEllyxLO9Bii2H5cA21IYXzLEs801wNP24+X9TM84xphngN2DzLIAuN1YXgRKRWRiaqJzTq4mtMnA1pi/a+3n+vqMfbp+r4hMTU1oSRPPNu8L7Csiz4nIiyJycsqiS45432dEpAqYxgdffJkonu29Cvi8iNQCj2KdlWayeLb5deBM+/GngSIRKU9BbE6K+9jPJrma0OLxEFBtjJkLPAnc5nA8qeDBanacj3W28jcRKXU0otQ5F7jXGBNxOpAkWwjcaoyZgtUs9Q8Ryfbvgf8FjhOR1cBxQB2Q7e9zTsr2A3kgdUDsGdcU+7lexphdxpgu+8+/A4ekKLZkGXKbsX7FPWiMCRlj3gf+i5XgMlU829zjXDK7uRHi296LgHsAjDEvAAGsDm0zVTyf5W3GmDONMQcBP7Sfy+jinzgM59jPGrma0F4B9hGRaSLiw/oyezB2hj7tzacDb6UwvmQYcpuBB7DOzhCRsVhNkBtTGWSCxbPNiMj+wBjghRTHl2jxbO8W4GMAIjILK6E1pDTKxIrnszw25iz0+8DNKY7RCQ8CX7SrHY8Emo0x250OKtk8TgfgBGNMWEQuBR7HqpK62RizTkR+CrxqjHkQ+KaInA6EsS6+LnIs4ASIc5sfB04SkfVYTTLfMcbsci7q0Ylzm8H6Elxi7PKwTBXn9v4PVlPy5VgFIosyebvj3Ob5wC9ExADPAF93LOAEEZG7sLZrrH099ErAC2CMuQHr+uipwAYgCFzgTKSppV1fKaWUygq52uSolFIqy2hCU0oplRU0oSmllMoKmtCUUkplBU1oSimlsoImNJURRKQtjnkuE5H8BK7zDBGpSeDynh/Fa9vs/yeJyL2DzFcqIl8b6XqUymSa0FQ2uQwYVkITEfcgk8/A6tg2IYwxH0nAMrYZY84aZJZSQBOaykma0FRGEZH59phW94rI2yJyh90bwjeBScByEVluz3uSiLwgIv8RkaUiUmg/v0lEfiki/wHOFpEvi8grIvK6iPxTRPJF5CNYPcT82h4rbYaIzLM7bX5DRO4XkTH28laINa7aqyLylogcJiL3ici7InJNTOxtMY+/J/L/2zubUKuqKI7//lHZy/dK1L5w0CstgiSEGgSWFYQQDTKKIExLJw0knGQNoqCIUpxEjapBVmQfRFFEmAZl9DIlP7rPKCjMgRDUIMSKInqrwVovzrve+3iK+PD0/8Hmrrv3Pvusve/hLs7Zh//SaJ1zfY95XlK+j3aNMTyeA0vSlZJ2lX8dSZcB64H5VbdR0qAyF9ieGuu2xjjfSnpRmftuq6SBalsg6ePybY+k+VW/rtapI+nxE/rDGnMimO78NS4uUynAb/V5I3CY1KY7jZSruq7aDgJzy55LqkLMrO8PA481+j3UGHtOw34SeKDsTcCdjbYOcEPZTwDPlP0psKHstWRKlouAGaQ+5pyuOdwCfAGcXd9n95jv+8DKstc0jh2mcmABzwHLyz4TGGi2V/3pwDmNNfmBzJE1TKrgLKq2t4B7yt4J3F72WeRd71Iyl5pq3T8Alkz3deHi0iz/S+krc8qzKyIOAUjaR/45f97V51ryceGIJMg//KZW45sNe2HdBc0CBkkZpQlIOheYFRHbq+plMnHkOOMyWqPAN1G6eZIOkCKxTQmxm4GXIuIPgIjolddqMXBH2a8CG3r02QE8oszA/E5EfF9zneA68JSkJcAYmULkgmr7MSL2lb0bGJY0BMyLiHfLtz9rHkvJoLa3+g+SwtWf9fDLmGnBAc2civzVsP+h93UsYFtE3N1njN8b9iZgWUR8Lek+SqD5OH0a6/JvrI9/U2FSXbqI2CxpJ3Ar8KGk+zlaTHo5cB5wdUT8LekgedfV9BlyHQcmOZ2ApyPi+WPw35iTivfQTJs4AgyV/SWwWNICAEkzJV3e57gh4CdJZ5AB4KjxIuIw8Kuk66ttBbCd42MbsGr8jUxJs3v0GSFFk+ny6T8kXQociIhngfeAq5i4BpBZqX+uYHYTcPFkjkXEEeCQpGV1jhnl50fA6sY+5DxJ509ptsacJBzQTJt4Adgi6ZOI+IXMkPC6pA75eO6KPsc9Su4bjQDfNerfANZJ2lsvRtxLviTSARaR+2jHTERsIR9RflWPTB/s0W0tsEbSKP0zDd8F7K8xFgKvRGZHGJG0X9JG4DXgmhpnZdf8+rGCzDbRIff6LoyIrcBmYEeN9TYTA6cx047V9o0xxrQC36EZY4xpBQ5oxhhjWoEDmjHGmFbggGaMMaYVOKAZY4xpBQ5oxhhjWoEDmjHGmFbwL8KKJxTYp1mYAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (6, 4)\n", - "for k in range(len(mappings)):\n", - " pylab.ylim(-1.14, -1.04)\n", - " pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - " for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[k][j], label=algorithms[j])\n", - " pylab.xlabel('Interatomic distance')\n", - " pylab.ylabel('Energy')\n", - " pylab.title('H2 Ground State Energy with {} mapping'.format(mappings[k]))\n", - " pylab.legend(loc='upper right')\n", - " pylab.show()\n", - " \n", - " #pylab.plot(distances, np.subtract(hf_energies, energies[k][1]), label='Hartree-Fock')\n", - " pylab.plot(distances, np.subtract(energies[k][0], energies[k][1]), color=[0.8500, 0.3250, 0.0980], label='VQE')\n", - " pylab.xlabel('Interatomic distance')\n", - " pylab.ylabel('Energy')\n", - " pylab.yscale('log')\n", - " pylab.title('Energy difference from ExactEigensolver with {} mapping'.format(mappings[k]))\n", - " pylab.legend(loc='upper right')\n", - " pylab.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_particle_hole.ipynb b/community/chemistry/h2_particle_hole.ipynb deleted file mode 100644 index 942387945..000000000 --- a/community/chemistry/h2_particle_hole.ipynb +++ /dev/null @@ -1,233 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*H2 energy plot comparing full to particle hole transformations*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and UCCSD with full and particle hole transformations. It is compared to the same energies as computed by the ExactEigensolver\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYQUANTE chemistry driver. See the PYQUANTE chemistry driver readme if you need to install the external PyQuante2 library that this driver requires." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[[-1.05515973 -1.07591359 -1.09262986 -1.105918 -1.11628597\n", - " -1.12416088 -1.12990475 -1.1338262 -1.13618942 -1.13722134\n", - " -1.13711707 -1.13604434 -1.13414766 -1.1315512 -1.12836187\n", - " -1.12467173 -1.12056027 -1.11609624 -1.11133942 -1.10634211\n", - " -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599\n", - " -1.12416089 -1.12990476 -1.1338262 -1.13618944 -1.13722136\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133943 -1.10634212\n", - " -1.10115034]]\n", - "\n", - " [[-1.05515973 -1.07591359 -1.09262987 -1.105918 -1.11628598\n", - " -1.12416087 -1.12990474 -1.13382619 -1.13618943 -1.13722134\n", - " -1.13711704 -1.13604435 -1.13414766 -1.13155119 -1.12836186\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133942 -1.1063421\n", - " -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599\n", - " -1.12416089 -1.12990476 -1.1338262 -1.13618944 -1.13722136\n", - " -1.13711707 -1.13604436 -1.13414767 -1.13155121 -1.12836188\n", - " -1.12467175 -1.12056028 -1.11609624 -1.11133943 -1.10634212\n", - " -1.10115034]]]\n", - "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", - " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", - " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [[45. 51. 51. 51. 43. 54. 50. 47. 51. 46. 42. 57. 49. 53. 49. 55. 50. 46.\n", - " 51. 56. 55.]\n", - " [49. 49. 50. 51. 47. 52. 47. 48. 52. 46. 52. 56. 45. 49. 48. 52. 47. 49.\n", - " 54. 58. 60.]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'problem': {'random_seed': 50},\n", - " 'driver': {'name': 'PYQUANTE'},\n", - " 'PYQUANTE': {'atoms': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'jordan_wigner',\n", - " 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': ''}\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "algorithms = ['VQE', 'ExactEigensolver']\n", - "transformations = ['full', 'particle_hole']\n", - "\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(transformations), len(algorithms), steps+1])\n", - "hf_energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)\n", - "eval_counts = np.empty([len(transformations), steps+1])\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", - " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algorithms[j] \n", - " if algorithms[j] == 'ExactEigensolver':\n", - " if 'optimizer' in qiskit_chemistry_dict:\n", - " del qiskit_chemistry_dict['optimizer']\n", - " if 'variational_form' in qiskit_chemistry_dict:\n", - " del qiskit_chemistry_dict['variational_form']\n", - " if 'initial_state' in qiskit_chemistry_dict:\n", - " del qiskit_chemistry_dict['initial_state']\n", - " else:\n", - " qiskit_chemistry_dict['optimizer'] = {'name': 'COBYLA', 'maxiter': 10000 }\n", - " qiskit_chemistry_dict['variational_form'] = {'name': 'UCCSD'}\n", - " qiskit_chemistry_dict['initial_state'] = {'name': 'HartreeFock'}\n", - " \n", - " for k in range(len(transformations)):\n", - " qiskit_chemistry_dict['operator']['transformation'] = transformations[k] \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[k][j][i] = result['energy']\n", - " hf_energies[i] = result['hf_energy']\n", - " if algorithms[j] == 'VQE':\n", - " eval_counts[k][i] = result['algorithm_retvals']['eval_count']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)\n", - "print('VQE num evaluations:', eval_counts)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlcVFX/wPHPYQdFRXBBEUFTXFlccEE0TbPFNMol8zGX1MwlH3uezPrl1lM9VlbmUmmm2GK55b5bmXuKioqAIkpuqIiy7zPn98cMPKAsg8wwIOf9es0r5t5z7/3O9dV859x7z/cIKSWKoiiKUlYW5g5AURRFeTSohKIoiqIYhUooiqIoilGohKIoiqIYhUooiqIoilGohKIoiqIYhUooimIiQoiRQoiD5o5DUcqLSihKuRBCxAghet+3LO8LVwhhK4T4TgjxtxAiWQgRKoR4uoR9ugohvhVC3BBCpAghLgkhgoUQLUz5WYxFCPGqECJS/3lvCSG2CyEc9euChRAflGJfZUpe+u01+vOY/9XgYfepVD0qoSgVhRVwFegB1ATeA9YIITwKayyEcAYOAw5AIOAItAP+BPoUsY2VsYN+WEKIHsBHwFAppSPQElht3qg4IqWsft/rhjEPUJH+DRTjUwlFqRCklKlSytlSyhgppVZKuRW4DLQvYpOpQBIwXEoZLXUSpJQrpJQLAYQQHkIIqe8JXAF+1y/vL4Q4J4RIEELsE0K0zN2pvv1j+d7n9RSEEI8LIa4JIf4lhLgthIgVQozK19ZZCLFZCJEkhDgGNC3mI3dE9wV+Sv/570opV0opk4UQ44BhwDR9L2GLfv/ThRDR+h5NuBAiSL+8JfAN0EXfPkG/3FYIMU8IcUXfA/pGCGFv8D9KPvoe5r+FEGeEEIlCiNVCCLt86/vpe5UJQojDQgjv+7Z9WwhxBkgVQlgJIdoJIU7pP8ta/f5yz3OYEOK5fNtbCyHuCCH8HiZ2pfyohKJUSEKIekBz4FwRTXoDG6SUWgN21wNdD6CvEKI58DPwT6AOsB3YIoSwMTC0+uh6UA2BV4HFQggn/brFQAbgCozWv4rylz6eOUKIACGEbe4KKeVS4CfgE30vIffLNRpdb6wmMAf4UQjhKqWMAMbzvx5GLX37uejOoS/wmD7mmQZ+zsIMBp4CPAFvYCSA/ot+OfAa4AwsATbn/0zAUOBZoBa6750NQDBQG92/R1C+tt8D/8j3/hkgNjf5KhWXSihKedqo/wWboP8V/VVhjYQQ1ui+UFdKKSOL2JcLcDPfNv31+00WQuy+r+1sfQ8oHRgCbJNS7pFSZgPzAHugq4GfIRt4X0qZLaXcDqQAXkIIS+BFYKb+WGHAyqJ2IqU8ALyA7jLdNiBeCPG5fj9FbbNWSnlD34NbDUQB/oW1FUIIYBwwVd/7SUZ3ie2lYj5b5/z/PkKI6PvWL9Af/y6wBV2iQn+cJVLKv6SUGinlSiAT6Hzftlf1/wad0V3iXKA/j78Cx/K1/RF4RghRQ/9+OPBDMXErFYRKKEp5el5KWSv3BUy4v4EQwgLdl0cWMKmYfcWj6wkAIKXcrN/nVOD+3sbVfH83AP7Ot51Wv76hgZ8hXkqZk+99GlAdXW8n9z5Qrr8phpRyh773URsYgO4X/5ii2gshXsl3WSkBaIMusRamDrr7Syfytd+pX16Uo/n/faSU91+yu5nv79zPDdAY+Nd9PxYaoTvXue7/N7guC1amzVuvv29zCHhRCFELeBrdDwylglMJRakw9L+qvwPqAS/qexBF+Q14Xp+ASpL/i+sGui/A/MdsBFzXL0pD90Wcq74B+weIA3L0+8rlbsiG+h7Hb+ju8bQpJGaEEI2Bb9ElWWd98gwDRGHtgTtAOtA6X4KoKaWsjvFdBT68Lxk5SCl/ztcmf3yxQEP9uc+V/7yBrnf3D2AQukt511EqPJVQlIrka3T3Op7TXxopzueAE/CDEKKp0HHkf5dhirIGeFYI8YT+0tq/0F2eOaxfHwq8LISwFEI8he7+S4mklBrgV2C2EMJBCNEKGFFUeyHEACHES0IIJ33s/vpjHdU3uQU0ybdJNXRfynH67Ufxv+ST294t916Qvuf1LfCFEKKufpuGQoi+hnyeUvoWGC+E6KT/LNWEEM/q/z0KcwTQAJP0N+gH8OClu43oLgdOQXdPRakEVEJRKgT9L/DX0CWEm+J/4yCGFdZeSnkH3bX4DOAgkIwuGTgCrxd1HCnleXS/fBei+xX/HLoElqVvMkW/LAHdk1YbS/ExJqG7DHQT3Q3nFcW0vQeMRXcfJAndfYNPpZS5l3a+A1rpLyFtlFKGA5+h+zK+BbRFd1ko1+/oHmC4KYS4o1/2NnAROCqESAL2Al7FxNRFPDgOpWNJH1pKGaL/LIv0n+si+hv2RbTPQnf/6FV05/kfwFZ0iT23TTqwHt0DAL+WFINSMQg1wZaiKOYmhPgL+EZKuSLfsplAcynlP4reUqlIVA9FUZRyJ4ToIYSor7/kNQLdY8g7862vja4Hs9RcMSqlpxKKoijm4AWcRnfJ61/AQCllLIAQYiy6G/07pJT7zReiUlrqkpeiKIpiFKqHoiiKohhFlSrU5uLiIj08PMwdhqIoSqVy4sSJO1LK4gbFAmZMKEKIQcBsdOMO/PWPHhbW7ingS8ASWCalnHvf+gXAaEMGbHl4eBASUuhhFEVRlCIIIYqt+pDLnJe8wtA9i17kTTd9XaPF6EovtAKG6geM5a7vgG5wm6IoimJmZksoUsoI/SCz4vgDF6WUl/SDoX5BV/MoN9l8CkwzbaSKoiiKISr6TfmGFCwqd43/FfGbBGzOfdSwKEKIcUKIECFESFxcnInCVBRFUUx6D0UIsZfCi+v9n5RyUxn22wBd0bjHS2qrn1tiKUCHDh3UM9JVXHZ2NteuXSMjI8PcoShKhWNnZ4ebmxvW1tYPtb1JE4qUsnfJrYp1nYJVSN30y/zQTRh0UV+w1EEIcVFK+diDu1CU/7l27RqOjo54eHhQsNitolRtUkri4+O5du0anp6eD7WPin7J6zjQTAjhqa+i+hK6y1zbpJT1pZQeUkoPIE0lE8UQGRkZODs7q2SiKPcRQuDs7Fym3rvZEooQIkgIcQ3oAmwTQuzSL28ghNgOoJ/IaBKwC4gA1kgpi5oSVlEMopKJohSurP9vmG0cipRyA7p5pe9ffgPdHNK577ejm/e7uH2ZYtKgPPsvxBF2I5EJj6tOkKIoSlEq+iWvCuHQxTt8vvsCd1OzSm6sKCWoXr3g75/g4GAmTSputuMHhYaGsn17sb+zyiQ4OJg6derg6+uLr68vr7zySqn3sW/fPvr162eC6JSKSiUUAzzv15AcrWTrmRvmDkVRyMnJKTah5OTkFLq8tIYMGUJoaCihoaF8/72aNFEpmUooBmjpWoMW9R3ZcEpNa62Y1pYtW+jUqRN+fn707t2bW7duATB79myGDx9OQEAAw4cPZ+bMmaxevRpfX19Wr179wHqNRsNbb71Fx44d8fb2ZsmSJXnH+PTTT/OWz5o1q1TxhYaG0rlzZ7y9vQkKCuLevXsAXLx4kd69e+Pj40O7du2Ijo4usN3x48fx8/N7YLnyaKlSxSHLIsivIf/dEcnlO6l4ulQzdziKEczZco7wG0lG3WerBjWY9VzrYtukp6fj6+ub9/7u3bv0798fgG7dunH06FGEECxbtoxPPvmEzz77DIDw8HAOHjyIvb09wcHBhISEsGjRIkCXcPKvX7p0KTVr1uT48eNkZmYSEBDAk08+SVRUFFFRURw7dgwpJf3792f//v107979gThXr17NwYMHAZgyZQqjRo3ilVdeYeHChfTo0YOZM2cyZ84c5s+fz7Bhw5g+fTpBQUFkZGSg1Wq5elU3Jvnw4cNMnjyZTZs24e7uXvaTrFRYKqEYaIBvQ+bujGTjqetM7dPc3OEolZi9vT2hoaF573OTA+jGyQwZMoTY2FiysrIKjAfo378/9vb2Re43//rdu3dz5swZ1q1bB0BiYiJRUVHs3r2b3bt34+fnB0BKSgpRUVGFJpQhQ4bkJazcfSQkJNCjRw8ARowYwaBBg0hOTub69esEBQUBusFxuSIiIhg3bhy7d++mQYMGpTtRSqWjEoqB6te0o2tTZzaGXuefvZupR08fASX1JMxh8uTJvPnmm/Tv3599+/Yxe/bsvHXVqhXfM86/XkrJwoUL6du3b4E2u3bt4p133uG1114rsHzx4sV8++23AEa92e/q6kpGRganTp1SCaUKUPdQSiHIz42/49M4eeWeuUNRHlGJiYk0bKgrV7dy5coi2zk6OpKcnFzk+r59+/L111+TnZ0NwIULF0hNTaVv374sX76clJQUAK5fv87t27eZOHFi3g34or74a9asiZOTEwcOHADghx9+oEePHjg6OuLm5sbGjRsByMzMJC0tDYBatWqxbds23nnnHfbt21e6k6FUOiqhlMJTbepjZ22hbs4rJjN79mwGDRpE+/btcXFxKbJdz549CQ8Pz7spf78xY8bQqlUr2rVrR5s2bXjttdfIycnhySef5OWXX6ZLly60bduWgQMHFpuY7rdy5UreeustvL29CQ0NZebMmYAuuSxYsABvb2+6du3KzZs387apV68eW7duZeLEifz111+lOBtKZVOl5pTv0KGDLOsEW2/8fIr9UXEce7c3NlYqH1c2ERERtGzZ0txhKEqFVdj/I0KIE1LKDiVtq74RSymoXUMS0rLZd/62uUNRFEWpUFRCKaXAx1xwqW6jLnspiqLcRyWUUrKytOA5nwb8FnGbxPRsc4ejKIpSYaiE8hCC/BqSpdGy/Wyxk0UqiqJUKSqhPIS2DWvStE41NpxUl70URVFyqYTyEIQQBPk15FjMXa7eTTN3OIqiKBWCSigPaYCvbvDZplDVS1EM17NnT3bt2lVg2fz583n99dcBOHfuHL169cLLy4umTZsya9YstFot8GBJeV9fX8LDw8sUT1xcXF4xytwBi4WZPXs28+bNA2DkyJF5JV0UJT+VUB5So9oO+HvWZsOp61SlsTxK2QwdOpRffvmlwLJffvmFoUOHkp6eTv/+/Zk+fTrnz5/n7NmzHDt2jC+//DKvbf6S8qGhobRq1arIY+3bt4+RI0cWG89vv/1G27ZtOXXqFIGBgWX6bIqiEkoZBPk1JDoulbPXE80dilJJDBw4kG3btpGVpZusLSYmhhs3bhAYGMiqVavyqgIDODg4sGjRIj799FOTxBIaGsq0adPYtGkTvr6+pKenF5j8a926dSUmJEXJTxWHLINn2roya9M5Npy6jrdbLXOHo5TWjulw86xx91m/LTw9t8jVtWvXxt/fnx07djBgwAB++eUXBg8ejBCCc+fO0b59+wLtmzZtSnp6OgkJCUDBkvIAR44cKbYCcXF8fX15//33C5TBV5SyUD2UMqhpb80TLeuy5fQNcjRac4ejVBL5L3vlXu4y1P2XvApLJp06dcLX15cxY8awefPmvPst99+7URRjUz2UMgrya8iOsJsciLpDzxZ1zR2OUhrF9CRMacCAAUydOpWTJ0+SlpaW1ytp1aoV+/fvL9D20qVLODs7U6uW4T3g3AKM+/btIzg4mODgYIO3zT8tQ0ZGhsHbKQqoHkqZPe5Vl1oO1qoUi2Kw6tWr07NnT0aPHl2gdzJs2DAOHjzI3r17Ad3Mjm+88QZz5swpt9jq1atHREQEWq2WDRs2lNtxlUeDSihlZGNlQT9vV3aH3yQlM8fc4SiVxNChQzl9+nSBhGJvb8/mzZv58MMPad68OS4uLgQEBDBs2LC8NrnzyOe+Dh8+bNS45s6dS79+/ejatSuurq5G3bfy6FPl643gxN93efHrI8wb5MPA9m5G379iPJWpfP3GjRt58803+eOPP2jcuLG5w1GqCFW+vhzcvniuyHXt3J1o7OzAhlPXyjEi5VH3/PPPc+nSJZVMlEpDJRQDfP/qB2z68ByanMIvaQkheN63IYej47mZqG5kKopSNamEYgDHetlk2bpw5PulRbZ53q8hUqpSLIqiVF0qoRggcNwwhDabS4fvFtnG06Uafu611NNeiqJUWSqhGMDFozn2WeGkyzZkpiQX2S7IryGRN5OJiE0qx+gURVEqBpVQDFSnaQo51jXYv+zrItv0826AlYVQvRRFUaoklVAM1P21V7HMSef66aJLrNSuZsPjXnXYFHodjbbqPI6tKIoCKqEYrEbdBthpwsiwbEvynZtFtgvyc+NWUiZHouPLMTqlsqho86GUVUJCAl999VXe+xs3bjBw4MBit3n88cd5mPFgHh4e3Llzx+D2wcHBTJo0qdTHUR6eSiil0LCtQGNlz/4l3xbZ5omWdXG0tVKXvZRCVbT5UMoiJyfngYTSoEEDNflWFWaW4pBCiEHAbKAl4C+lLPTnihDiKeBLwBJYJqWcq18ugA+AQYAG+FpKucDUcXcf9zqXpvzO7ahqRbaxs7bkmbaubD1zgw+eb4O9jaWpw1Ie0sfHPibybqRR99midgve9n+7yPUDBw7kvffeIysrCxsbmwLzoSxfvrzQ+VACAwOZOnWqUePMNXLkSOzs7AgJCSEpKYnPP/+cfv36ERMTw/Dhw0lNTQVg0aJFdO3alX379jFjxgycnJyIjIykXbt2REdH4+vrS58+fZg4cSL9+vUjLCwMjUbD22+/zc6dO7GwsGDs2LFMnjy5wPF3797NrFmzyMzMpGnTpqxYsaLAnCz3W7hwIVu2bCE7O5u1a9fSokUL7t69y+jRo7l06RIODg4sXboUb2/vAtvFxcUxfvx4rly5Auh6hQEBAUY+m4q5qg2HAS8AS4pqIISwBBYDfYBrwHEhxGYpZTgwEmgEtJBSaoUQ5VLm17a6I/acJdW6A3diLuDi0bzQdkHtGrI65Cq7w2/mTRWsKFCx5kPJFRMTw7Fjx4iOjqZnz55cvHiRunXrsmfPHuzs7IiKimLo0KF5l6lOnjxJWFgYnp6exMTEEBYWRmhoaN6+ci1dupSYmBhCQ0OxsrLi7t2Cj93fuXOHDz74gL1791KtWjU+/vhjPv/8c2bOnFlkrC4uLpw8eZKvvvqKefPmsWzZMmbNmoWfnx8bN27k999/55VXXsmLJ9eUKVOYOnUq3bp148qVK/Tt25eIiIgynTflQWZJKFLKCChYKrsQ/sBFKeUlfdtfgAFAOPA68LKUUqvf322TBpyPZ5danAmx4cDSVQR9NLvQNv4etWlYy54Np66rhFKBFdeTMKXcy165CeW7774zeNshQ4aUOBlWp06dyMzMJCUlhbt37+Lr6wvAxx9/TN++fR9oP3jwYCwsLGjWrBlNmjQhMjIST09PJk2aRGhoKJaWlly4cCGvvb+/P56eniXGunfvXsaPH4+Vle5rpnbt2gXWHz16lPDw8LyeQlZWFl26dCl2ny+88AIA7du359dffwXg4MGDrF+/HoBevXoRHx9PUlLBR/f37t1b4H5TUlISKSkpxfaGlNKryPOhNASu5nt/Deik/7spMEQIEQTEAW9IKaMK24kQYhwwDsDd3b3MQXUdOZ6IQxu4d92lyDYWFoIBvg1Ysv8SccmZ1HG0LfNxlUdHRZsP5f4fdkIIvvjiC+rVq8fp06fRarXY2dnlra9WrehLvqUhpaRPnz78/PPPBm9ja6v7f8nS0pKcIkohFUar1XL06NECn0MxPpPdlBdC7BVChBXyGmCE3dsCGfrql98Cy4tqKKVcKqXsIKXsUKdOnTIf2NLKCgebcNLtvLh29niR7YL8GqLRSracvlHmYyqPloo2H8ratWvRarVER0dz6dIlvLy8SExMxNXVFQsLC3744Qc0Gk2h2zo6OpKcXPhg3z59+rBkyZK8L/77L3l17tyZQ4cOcfHiRQBSU1ML9IQMFRgYyE8//QTokqiLiws1atQo0ObJJ59k4cKFee/vvySmGIfJEoqUsreUsk0hr00G7uI6uvskudz0y0DXW/lV//cGoOAdOBPz6u0BwpIjwZuLbNOsniNtGtZQT3sphapI86G4u7vj7+/P008/zTfffIOdnR0TJkxg5cqV+Pj4EBkZWWSvxNnZmYCAANq0acNbb71VYN2YMWNwd3fH29sbHx8fVq1aVWB9nTp1CA4OZujQoXh7e9OlSxciI0v/kMTs2bM5ceIE3t7eTJ8+nZUrVz7QZsGCBYSEhODt7U2rVq345ptvSn0cxQBSSrO9gH1AhyLWWQGXAE/ABjgNtNavmwuM1v/9OHDckOO1b99eGkNOdrb8dsQPctkrS4tt9+3+aNn47a0y6laSUY6rlF14eLi5QzDYhg0bpKenp4yJiTHZMUaMGCHXrl1rsv0rlU9h/48AIdKA71izjEMRQgQJIa4BXYBtQohd+uUNhBDbAaSUOcAkYBcQAayRUuZOSjIXeFEIcRb4LzCmPOO3tLLCodoFMuybcuHPnUW26+/bAAuB6qUoD0XNh6JUNuZ6ymsDuktV9y+/ATyT7/12YHsh7RKAZ00ZY0l8gzrwxzo4se4QzXs8VWibuo52dGtWh42nbvCvPl5YWBT7VJuilLuSbtibQ1BQEJcvXy6wrKgn1JSKpSI/5VWhterdnyM/fEdqRrNi273YriFTfgnlz6g4enqVy3AZRanUNmx44LemUkmo0itl4Fg7hkw7N0I3riqyzdNtXKlfw45lBy6VY2SKoijlTyWUMuj8j6dAagnbWfSjjjZWFowK8ODQxXjCrieWY3SKoijlSyWUMnBvH4B9xgXSM1sWOd88wNBO7lS3teJb1UtRFOURphJKGdVyvUmWbR2O/risyDY17Kx5qWMjtp6J5XpCejlGp1RElpaWBcaSzJ0712j7Dg0NZfv2/z3HUlTJe0PKzJtaTEwMbdq0MWsMoCsc2alTJ/z8/Dhw4ECR7WbPns28efMAXVFNVVX5QSqhlFG3MUMQ2myiD8YV225UN13toxUHLxfbTnn02dvbFyhBP336dKPt+/6EAoWXvH+UyswXV4LFkBL+v/32G23btuXUqVMEBgYaObqKISun6IkBjUkllDKq+1hr7DMjSNe2ISs9rch2DWvZ08/blZ+PXSExPbscI1Qqg8TERLy8vDh//jygG0n/7be6eXdef/11OnToQOvWrZk1a1beNsePH6dr1674+Pjg7+9PYmIiM2fOzBtNv3r16iKPl793kJaWxuDBg2nVqhVBQUF06tQpr7Lw7t276dKlC+3atWPQoEGkpKQAusmuZs2aRbt27Wjbtm3eCPc///wzryfk5+dHcnIyUkreeust2rRpQ9u2bQuNq3Pnzpw7dy7vfe4kXKmpqYwePRp/f3/8/PzYtElXaCM4OJj+/fvTq1cvnnjiiYc+76GhoUybNo1Nmzbh6+tLenp6gYKR69atM+mcMuUhIS2L87eSSSqH7x312LARuDRN4sqNmhxY9jVPTP5Xke3GBjZhU+gNfjl2hdd6NC3HCJXC3PzoIzIjjDsfim3LFtR/991i26Snp+dVAAZ455138qoIjxw5kilTpnDv3j3Gjh0LwIcffkjt2rXRaDQ88cQTnDlzhhYtWjBkyBBWr15Nx44dSUpKwsHBgffff5+QkJC8isTBwcGFlrzP76uvvsLJyYnw8HDCwsLyYiupvHxhpeTnzZvH4sWLCQgIICUlBTs7O3799VdCQ0M5ffo0d+7coWPHjnTv3r1ADEOGDGHNmjXMmTOH2NhYYmNj6dChA++++y69evVi+fLlJCQk4O/vT+/evQFdGf0zZ848UMW4NHx9fR84Z4+Su6lZXL+XhoONFdVsTT83k0ooRtBj/Bh++r9Qrp3KKrZdm4Y1CXjMmRWHYhgV4ImNleogVkW5l7zu16dPH9auXcvEiRM5ffp03vI1a9awdOlScnJyiI2NJTw8HCEErq6udOzYEeCBYoj5lVTy/uDBg0yZMgWANm3a5E1OVVJ5+cJKyQcEBPDmm28ybNgwXnjhBdzc3Dh48CBDhw7F0tKSevXq0aNHD44fP15gEqzBgwfz5JNPMmfOHNasWZN3f2f37t1s3rw5795FRkZG3iRZffr0KTKZlLaE/6PoTkomNxLSqW5rhYdztXIZWK0SihHUqNsA+5wfSbdsS9q9OByciq5qPDawCSNXHGfL6Ru82N6tHKNU7ldST6K8abVaIiIicHBw4N69e7i5uXH58mXmzZvH8ePHcXJyYuTIkWRkZJRLPLKE8vKFlZKfPn06zz77LNu3bycgIIBdu3YZdKyGDRvi7OzMmTNnWL16dV7xRikl69evx8vLq0D7v/76q9gy+qUt4Z9f/nL+5XWuje12UgY3kzKoaW9No9oOWBQ/95TRqJ/IRuLaWovGyoF93xQ5CSUAPZrXwaueI98euJRbBFNRAPjiiy9o2bIlq1atYtSoUWRnZ5OUlES1atWoWbMmt27dYseOHQB4eXkRGxvL8eO6KRSSk5PJyckptpx8UQICAlizZg0A4eHhnD17Fni48vLR0dG0bduWt99+m44dOxIZGUlgYCCrV69Go9EQFxfH/v378ff3f2DbIUOG8Mknn5CYmJjXe+nbty8LFy7M+3/l1KlTpfpsD6NevXpERESg1Wor3ah9KSU3E9O5mZRBLQcb3MsxmYBKKEbT47XxWGUnc+t88dOxCiEYE+hJ5M1kDkTdKafolIok9x5K7mv69OmcP3+eZcuW8dlnnxEYGEj37t354IMP8PHxwc/PjxYtWvDyyy/nXX6ysbFh9erVTJ48GR8fH/r06UNGRgY9e/YkPDy8wE35kkreT5gwgbi4OFq1asV7771H69atqVmz5kOVl58/f37eZTNra2uefvppgoKC8krY9+rVi08++YT69es/sO3AgQPzpkTONWPGDLKzs/H29qZ169bMmDGjrKe/RHPnzqVfv3507doVV1dXkx/PWKSUxCZmcDs5k9rVbGjkZF/SrLhGJ6rSr+QOHTrI3KdXTGHlqx+SZtGel2Y2x6lRkyLbZeZoCPz4D7zqO/LDq52KbKcYX0REBC1btjR3GBWKRqMhOzsbOzs7oqOj6d27N+fPn8fGxsbcoSkGklJy7V4699KycKlui2tNu4dOJoX9PyKEOCF1ExoWS/X+4bhBAAAgAElEQVRQjMjT3xGtpQ1/Lv2+2Ha2VpaMDPDgQNQdwm8kFdtWUUwtLS2Nbt264ePjQ1BQEF999ZVKJpWIVkqu3E3jXloW9WrYlSmZlJVKKEbUdeRrWGfd5e4V5xLbDvNvjIONpSoaqZido6MjISEhnD59mjNnzvD000+bOyTFQFqt5Ep8Gonp2bjWtKdeDfMlE1AJxaisbG2xtzpHhm0LboQVf2mtpoM1L3V0Z/PpG8QmqnIsiqKUjkYriYlPJSkjm4a17KnjaGvukFRCMTavXu5IC0sOB28qse2oAA8ksOJQjMnjUhTl0ZGj1XL5TiqpmTk0cnLAubr5kwmohGJ07QcOxzYjlsS4kseYNKrtwDNtXVn11xWSMlQ5FkVRSpaj0XI5LpX0bA3uzg44Vas497tUQjEySysr7B0ukGHfjIuH9pbYfmygJymZOaw+drUcolMUpTLLztESHZdKZo4WD2cHatpXnGQCKqGYhO8APwBCVu8vsa23Wy06N6nN8kOXydaUT0VQRVEqn6wcDdF3UsjWaPFwqYajnbW5Q3qASigm0Lrv89ilx5CSZFgByHHdmxCbmMG2M7EmjkypCNR8KDoVZT6UskpISOCrr77Ke2/Iuc2tpmyojGwN0XGpPNGxDTWErj6XIYKDg5k0aZLBxykrlVBMpLrTZTLtGhG6pegS4rkeb16Xx+pWZ+l+VY6lKlDzoRhXWedDKeux708oxj63aVk5XIpLQUqwsrTAwabilmCsuJFVcv5De7N9eTbntoXj+1zxbS0sBOMCmzBt/RkOR8cT8JhL+QRZxR1Yc4E7V1OMuk+XRtUJHNy81NslJibi7+/P5s2b8fLyYujQofTq1YuxY8fy+uuvc/z4cdLT0xk4cCBz5swBdPOhTJkyhdTUVGxtbdmzZw8zZ84kPT2dgwcP8s477xR5vJiYGPr160dYWBhpaWmMHDmSsLAwvLy8uHHjBosXL6ZDhw7s3r2bWbNmkZmZSdOmTVmxYgXVq1fHw8ODESNGsGXLFrKzs1m7di0tWrTgzz//zKtcLIRg//79VK9enWnTprFjxw6EELz33nsMGTKkQDydO3fmu+++o3Xr1oDuF/y8efNo2bIlkydPJiwsjOzsbGbPns2AAQMIDg7m119/JSUlBY1Gw59//lnqc55r5MiR2NnZERISQlJSEp9//jn9+vUjJiaG4cOHk5qaCsCiRYvo2rUr+/btY8aMGTg5OREZGUm7du2Ijo7G19eXPn36MHHixLxzq9FoePvtt9m5cycWFhaMHTuWyZMnFzh+UecYIDkjm7/j07CyFHi6VEMACxcufOC83717l9GjR3Pp0iUcHBxYunRpgWrOoJuZcvz48XnVmufPn59XysdYVEIxEc9OPbD/6mvSLFqgycnB0qr4Uz3ArwGf7DrPkv2XVEJ5xKn5UCrOfCi5YmJiOHbsGNHR0fTs2ZOLFy9St25d9uzZg52dHVFRUQwdOjTvMtXJkycJCwvD09OTmJgYwsLC8qYkiImJydvv0qVLiYmJITQ0FCsrK+7evVvguMWd44S0LK7eS8fWygJPl2pYW1oUed5nzZqFn58fGzdu5Pfff+eVV155YIqEKVOmMHXqVLp168aVK1fo27cvERERZT53+amEYkI168dyM9GLYz8vp8vwccW2tbWyZFSAB5/uOk9EbBItXYue30IxjofpSRiDmg+l4s2HMnjwYCwsLGjWrBlNmjQhMjIST09PJk2aRGhoKJaWlgUqLfv7++Pp6VnkOc21d+9exo8fj5X+B+X98RZ1jnPnMqlma0VjZwesLP53d6Kw837w4EHWr18PQK9evYiPjycpqWBZp7179xIeHp73PikpiZSUlAIzVJaVSigm1O3VQayfF0vU/pt0GV5y+2Gd3Fn0+0WWHbjMZ4N9TB+gUqGo+VDMNx/K/eVKhBB88cUX1KtXj9OnT6PVarGzs8tbX9yxS+P+cyyl5FayLpnUsLPWlZ+/b2Ksws67IbRaLUePHi3wOYxN3ZQ3oXrN22KfGUGGpvj55nPVcrBhSMdGbD59nZuJlXNiH+XhqflQzDcfytq1a9FqtURHR3Pp0iW8vLxITEzE1dUVCwsLfvjhBzQaTaHbFnfO+/Tpw5IlS/K++O+/5JX/HEspuXj9DsdCw6jtYENj5weTSVECAwP56aefAF0SdXFxeaDX+uSTT7Jw4cK894X1kstKJRQTc2maSLZNLf5Y+KVB7UcHeKLRSoIPx5g2MMVs1HwoFW8+FHd3d/z9/Xn66af55ptvsLOzY8KECaxcuRIfHx8iIyOL7JU4OzsTEBBAmzZteOuttwqsGzNmDO7u7nmff9WqVQXW5z/Hrdq05dk+j3P3+mUalnIuk9mzZ3PixAm8vb2ZPn06K1eufKDNggULCAkJwdvbm1atWuX1Ao1JzYdiYhnJCXw/5XesNDcZvXKCQdtM/Okk+6PiOPLOEwY/b64YRs2H8qCqPh/KyJEj6devn9nG5Wi0kr/jU0nJzMG1pvmLPKr5UCowO8daVLcPJd2+BaEbV5W8AbqBjskZOaw+rsqxKKan5kMxn2yNlktxKaRmamjk5GD2ZFJW6udvOeg+/jk2L7zL6c0x+D5fcnufRrXw96zN8oOXeaVL47zHBRXFFHLnQ6mqSrphbypZORou30kjW6OlsbMDNez/V0olKCiIy5cvF2hf1BNqFYlKKOXArW1HHLLnkmbVjpuRp6nfouQnuMYFNmHM9yFsPxvLAN+G5RBl1SGlNOskRIqSnq0h5k4qWinxdKlGtfsubW/YsMEscZX1Foj66VtOWj/jitbShj8WG1aSoVeLujSpU41vD6hyLMZkZ2dHfHy8OqeK2aRm6kqpADStU/2BZGIuUkri4+PL9Fix2T6JEGIQMBtoCfhLKQvtcwshngK+BCyBZVLKufrlTwCfokuKKcBIKeXFcgj9oXQcNIKzW78hOcuHzJRkbKs7FtvewkIwNrAJ7/x6loMX7xDYrE45Rfpoc3Nz49q1a8TFxZk7FKUKysjWEJ+ahZWFwLm6DZcTKtZvejs7O9zcSp7LqSjmTI1hwAvAkqIaCCEsgcVAH+AacFwIsVlKGQ58DQyQUkYIISYA7wEjTR51GdRvcYfLfzdn9+df8Jy+fEVxgvwasviPi3y4LYKtk52xUvdSysza2tqgEc6KYmxrQ64y/deztG5QgxUjO1aYWRaNyWzfUFLKCCnl+RKa+QMXpZSXpJRZwC/AgNxdALkjd2oCN0wTqfH0/ueb2GTe4Xa0q0Ht7awt+b9nWhJ5M5mf1RNfilIpSSmZv/cCb607Q5cmzqwa2/mRTCZQ8e+hNATyf5Ne0y8DGANsF0JcA4YDhU4qIYQYJ4QIEUKEmPsyh429AzVqniXDvil//fSdQds81aY+nZvU5vPd50lIyzJxhIqiGFNWjpa31p1h/t4oBrZ3Y/nIjo/02DKTJhQhxF4hRFghrwElb12iqcAzUko3YAXweWGNpJRLpZQdpJQd6tQx/32IXm+8jIUmg4i98Qa1F0Iws19rEtOzmb83ysTRKYpiLEkZ2YwKPsa6E9eY2rs5nw70xsaqov+GLxuTpkopZe8y7uI60CjfezfguhCiDuAjpfxLv3w1sLOMxyoXdZq0pJp2PSnWHbly6gjufl1K3KZVgxoM9Xfnh6N/83Ind5rXK/6GvqIo5nU9IZ1RK45xKS6VeYN8GNj+4W90VyYVPV0eB5oJITyFEDbAS8Bm4B5QUwiRW3+8D2Dcwv4m5PdiC6SFNQe+NTwH/utJL6rZWPKfreHqkVdFqcDCricStPgQsQkZrBztX2WSCZgxoQghgvT3P7oA24QQu/TLGwghtgNIKXOAScAudAljjZTynH75WGC9EOI0unsobxV2nIqo7TMDsU8/R0qmH2n3DLuvU7uaDVP7NOdA1B32Rtw2cYSKojyMP87fZvCSI1hZCNa93rXKTZanikOayZ4vPuHC+Q40qL2foI9mG7RNtkbLM18eIEujZffU7thaWZo2SEVRDLbqryvM2BRGi/qOLB/ZkXo1TDfvSHkzanFIIcSvQohnhRAV/RJZpdFr8pvYZsQSf90DjYGT5FhbWjDzuVb8HZ/G8oMxpg1QURSDaLWSj3dG8u6Gs3Rv5sKa17o8UsmkNAxNEF8BLwNRQoi5QgivkjZQimdpZUUtl0gy7d059N1XBm8X2KwOvVvWY9HvUdxOUpNwKYo5ZeZomLI6lK/3RfNyJ3e+faVDhSmlYg4GJRQp5V4p5TCgHRAD7BVCHBZCjBJCWBe/tVKUJ/41BsucVKKPGD6NJ8B7z7YkS6Pl450ljQtVFMVUEtKyGL7sGFtO32D60y348Pk2Vb6ahcGfXgjhjK60yRjgFLr6Wu2APSaJrApwcm1MNYuTpNm2JWq/YXNvA3i4VGN0N0/Wn7xG6NUEE0aoKEphrsSn8cLXhwm9msCCoX6M79FUVbDG8HsoG4ADgAPwnJSyv5RytZRyMlDdlAE+6jr/ozMAR388WqrtJvdqRh1HW2ZvPodWW3UerFAUcwu9mkDQV4eIT8nixzGd6O/TwNwhVRiG9lAWSClbSSn/K6WMzb/CkDv/StGade+LQ+ZZUrXtuBf7t8HbVbe1YlpfL0KvJrAx9LoJI1QUJdeuczd5aekRHGwt+XVCV/w9a5s7pArF0ITiJIR44b7XE0KIuiaNropo2sUKjVU1fvvcsPpeuV5s54aPW03m7ogkNbN092EURTGclJLFf1xk/I8n8Kpfgw0TAmhaR12cuZ+hCeVVYBkwTP/6FngbOCSEGG6i2KqMgFcnYJt+hYQ4L4MfIQbdnCkzn2vN7eRMvtpXYaeCUZRKLT1Lwxu/hPLprvM8592A1eM64/KIVgsuK0MTijXQUkr5opTyRaAVuvLxndAlFqUMLK2scG4YQ6adK78vKrTGZZHaN3YiyK8h3x64zJX4NBNFqChVU2xiOoOXHGHrmRtMe8qLL1/yxc5aDSguiqEJxU1KeSvf+9tAIynlXSDb+GFVPX3fmohVdhLXTtmXetu3n2qBlYXgw+3hJohMUaqmk1fu0X/RIS7FpfDt8A5MePwx9SRXCQxNKPuEEFuFECOEECOATfpl1QD13KoRODjVobrNKdLsWxO289dSbVu/ph0Tez7GrnO3OHTxjokiVJSqY92Ja7y05Cj21pZsmBhA71b1zB1SpWBoQpmIbs4RX/3re2CilDJVStnTVMFVNYFjnkRoczi5rvQ9jVe7eeLmZM/7W8LJ0WhNEJ2iPPo0WsmH28L599rTtG/sxKaJAWq6iFIoMaHo53X/XUq5Xko5Vf9aJ6tSVcly4t4+AIfsUFJFO+Iula4av521Je8925Lzt5JZdeyKiSJUlEdXYno2o4OP8+2By4zo0pjvX/XHqZqNucOqVEpMKFJKDaAVQtQsh3iqvJa9ndFa2vH7glWl3rZv6/p0aeLMZ7svcC9VTResKIaKjkshaPEhDl28w0dBbZkzoA3WVbyMysMw9IylAGeFEN8JIRbkvkwZWFXVadir2KVHk5TYlqz00j21JYRgVv9WJGdkM3/vBRNFqCiPlj8vxPH84kMkpGfz05hOvNzJ3dwhVVqGJpRfgRnAfuBEvpdiAnWbxpJl68Le+aV7hBigRf0aDOvUmB//usL5m8kmiE5RHg1SSpYduMSoFcdoWMueTRMD6NTE2dxhVWqGVhteCawBjkopV+a+TBta1fXkm1OxzrzLzciHm+3tzT7NqW5rxZwt59R0wYpSiMwcDW+tO8MH2yLo06oe61/vSqPaDuYOq9IztDjkc0AosFP/3lcIsdmUgVVlttUdcax+mnT75hxfW/q87VTNhjf7NOdwdDw7w26aIEJFqbxuJ2cwdOlR1p24xhtPNOPrYe2r9BwmxmToJa/ZgD/6MSdSylCgiYliUoCeEwdiockifMeNh9p+WCd3WrrW4N0NZ7mRkG7k6BSlcjrx9z0GLDpEeGwSi19ux5t9mmNhoQYrGouhCSVbSpl43zI12MGE6rfwwUFzkjRLP26EhZR6eytLCxa/7EdWjpZJq06SrcamKFWYlJLlBy8zZMkRLC0E68Z35VlvV3OH9cgxNKGcE0K8DFgKIZoJIRYCh00YlwL4PN8UrYUVvy3c9lDbN6lTnY8HenPySgIf74g0cnSKUjkkZ2Qz4aeTvL81nMe96rJtciBtGqpREKZgaEKZDLQGMoGfgSTgn6YKStHx7T+EalknSdF24uKhvQ+1j37eDRjRpTHLDl5W91OUKiciNon+iw6xO/wW7zzdgm9faU9NBzVruakY+pRXmpTy/6SUHaWUHfR/Z5g6OAW6jvRGCsHBZQ//lPa7z7bE260mb607rSoSK1XGmpCrPL/4EKmZOawa04nX1DS9JmfoU17NhRBLhRC7hRC/575MHZwCzXs8hSN/kWrTnhPrv3+ofdhaWbL45XYIYMKqE2Rka4wbpKJUIBnZGqatO820dWdo5+7EtjcC1fiScmLoJa+1wCngPeCtfC+lHDz57yAsNemc3pz00PtoVNuBzwb7EnY9iQ+2qTL3yqPp8p1Unl98iDUh15jU8zF+HNOJOo5qMqzyYmhCyZFSfi2lPCalPJH7MmlkSp56zdtSy+E46fat2Ltg3kPvp0+rerzWvQk/Hr3CJjUPvfKI2XE2lucWHuRmUgYrRnXk3329sFSPBJcrQxPKFiHEBCGEqxCidu7LpJEpBTw7cwLWmXeJOeFCTmbmQ+/n33296NDYiXd+PcvF2ylGjFBRzCMrR8v7W8J5/aeTNK1bnW1vBNLTq665w6qSDE0oI9Bd4jrM/+p4lX5whPLQHF3qU6dhGJn27mz7cO5D78fa0oKFL/thZ23JhJ9OkJ6l7qcoldeNhHReWnqE5YcuM7KrB2tf60LDWqWf9VQxDkOf8vIs5KVGypez52a8g236VW5fbUnavbiH3o9rTXvmD/El6nYKMzaFGTFCRSk/f16I49kFBzh/M5lFL/sxu39rbKxUyXlzKvbsCyGm5ft70H3rPjJVUErhrGxtaex3iyxbF7bMKdvsAd2b12Fyr2asO3GNNcevGilCRTE9jVby+Z4LjFxxjLqOdmye3I1+3g3MHZZCyT2Ul/L9/c59654yciyKAfr8cxr26RHcS+7I7YvnyrSvKU80I+AxZ2ZsCiMi9uGfIFOU8nL1bhpDlhxhwW9RvODnxsaJATStU93cYSl6JSUUUcTfhb1Xykmbpx3QWDmw69N1ZdqPpYVg/hA/atpbM+GnkyRnZBspQkUxLikla0Ku8tT8/Zy/mczng32YN8gbextLc4em5FNSQpFF/F3Ye6Wc+L80impZJ0mWnYnav6tM+6rjaMvCoX78HZ/KO7+eVfOnKBVOfEom4388wbR1Z2jTsCY7/hnIC+3c1Kj3CqikhOIjhEgSQiQD3vq/c9+3fdiDCiEGCSHOCSG0QogOxbRbLoS4LYQIu295bSHEHiFElP6/Tg8bS2UVMMoHgEMrQsu8r05NnPl3Xy+2nonlh6N/l3l/imIsv0feou/8A/wRGce7z7Rg1djOuDmpibAqqmITipTSUkpZQ0rpKKW00v+d+74sFdbCgBfQTSlcnGAKv1czHfhNStkM+E3/vkpp1r0vjhwl1aY9x9cEl3l/47s3pVeLuvxnazinryaUPUBFKYO0rBz+b8NZRgeH4FLdhk2TAhjXvakaqFjBmeUZOyllhJTyvAHt9gN3C1k1AMidynAl8LwRw6s0nvz3C1hq0jm7rewDFC0sBJ8N8qGuox0TV50kMU3dT1HM49SVezy74CCrjl1hXPcmbJwYQEvXGuYOSzFAZX1ou56UMlb/902gXlENhRDjhBAhQoiQuLiHH7tREdVr3pZa1Y7pSrJ8+fAlWXI5VbNh0ct+3ErK4F9rT6v7KUq5ytZo+WLPBQZ+c4SsHC2rxnTm3WdaYmetbrxXFiZLKEKIvUKIsEJeA4x5HKn71ivym09KuVRfcr9DnTp1jHnoCqH/7Dewzown5lSdMpVkyeXn7sQ7T7dkb8Qtvv4z2ggRKkrJouNSGPj1Yb78LYoBPg3Y8c9AujRVFYKN4fbFc3w/5gPuxFww+bFMllCklL2llG0KeW0ywu5vCSFcAfT/vW2EfVZKDk51qOt2jky7Rmz94L9G2eeoAA/6ebvyyc7zfHfwslH2qSiFkVLyw9G/eXbBAWLi01j8cjs+H+JLDTs1CZYx/PnNl2z8MIIUi04c/6VswwwMYWXyI5jGZnT1xebq/2uMJFVp9XvvHYJf+4Xb11qTdi8OB6ey9cSEEHw+2BeNVvKfreFk5miY8PhjRopWUXRuJ2Uwbf0Z9p2PI7CZC58O9KF+TTtzh/VIyEhOYN1b80mU3bDhDr4Bl+g64l2TH9cs91CEEEFCiGtAF2CbEGKXfnkDIcT2fO1+Bo4AXkKIa0KIV/Wr5gJ9hBBRQG/9+yrLytYWj3ZxZNs6s3l22Uqy5LKxsmDhUD8G+Dbgk53n+WLPBXVPRTEKKSWbQq/Td/5+jkTHM6d/a74f7a+SiZGE793MT5PWk0h3qmWd4MU5Heg64rVyObaoSl8SHTp0kCEhj26R5OUjFpNl7U7QNA/qNX/oYUIFaLSS6evPsPbENcb3aMrbT3mpAWXKQ4u5k8qMTWEciLqDt1tNPh/sw2N1Hc0d1iNBk5PDltkfcPNmR0DSoNFJ+s+aaZR9CyFOSCmLHDOYq7Je8lIK0fbZahz7zZ7d835l+FLjJBRLC8HHL3pjY2XBN39Gk5mjYWa/ViqpKKWSmaNh6Z+XWPjHRWwsLZj9XCuGd/FQ40qMJO5SBFvf30aaXXfssi/S/dXGNOtunGRSGiqhPEI6Dh7JuR0fk2ytK8nSrHtfo+zXwkLwwfNtsLWyZPmhy2TlaPnPgDZYqC8DxQBHL8XzfxvOEh2XyrNtXZnRr5W6vGVE+5cuJPJIfbJtfXCy3MfAb6ZjY2+eagIqoTxiuo1pz+6VGg6tOG20hAK6G/Uz+rXE1tqCr/dFk5mj5eMXvdUvTKVId1Oz+HBbBOtPXsPNyZ4VIzvSs4WaSdFYMlOSWffWPBK0gdgQj0+nKLqNft+sMamE8oh5LKA3R1bOIckmgGO/rMD/pVFG27cQgml9vbCzsuSLvRfIytHy+WAfrCwr6/hYxRS0Wsm6E9f4aEcEKRk5THi8KZN7NVOVgY0o8vetHFp5kwz7HlTLCqHfrOdx8Whu7rBUQnkU9Z02kF//G03YjjT8Xyq5fWkIIZjSuxk2VhZ8vDOSrBwtC4b6qZnyFAAu3ErmvQ1hHIu5S0cPJz4MakvzeuqmuzFtnDGbm7EdwdoVt7oHGPD+LHOHlEd9CzyC6j7WGifH46Tbt2TP/E9McozXH2/KzH6t2HnuJuN/PEFGtpqbvipLz9Lwyc5InvnyABduJ/PJi96sHtdFJRMjuhNzgeBRn3A9rjvW2Tfo+Q9RoZIJqB7KI+u5WW/w05u/E3O6MXevXKS2u/EHJo7u5omNlQXvbQxj7PchLB3eQV3WqIL+OH+bmZvCuHo3nRfbufHuMy1wrm5r7rAeKQeWLSLyUF2ybPyoZfEnAxf/G9vqFS9Zqx7KI8rBqQ5eXW6TZePM5lmmK7nwj86N+XSgNwcv3mFU8DFSM3NMdiylYrmVlMHEn04yasVxbCwt+HlsZz4b7KOSiRGl3Yvjx9fmcOZ4CwC8O55n2FdzKmQyATWw8ZH34/jZJNIdD/fDPPvueyY7zqbQ67y55jS+jWqxYlRHVYvpEZaYns2SP6NZfugyWgmTez7GuB5NsLVSvVNjOr52Jae3CTLt3Kie9RfPzR5kkisNhjB0YKNKKI+49IS7/DRlMxqr2vQd74RHx0CTHWtnWCyTfz5FS9cafD/an1oONiY7llL+0rM0BB+O4et9F0nOzKG/TwP+1ccLd2c1g6IxZaWnsX7af7mX2Q1LTTqNm4fz1Numr8NVHJVQClEVEwpA6ObVHNlSE9usi4z4bjyWVqa7dfZbxC1e//Ekni7VWDDUD6/6FbNrrhguW6Nl9fGrLPgtitvJmfRqUZd/P+lFqwZq0itjC9+ziSM/3ibDvikO6afp8+9uuLXtaO6wVEIpTFVNKABr3pxBXFpP6lb7g0Gf/cekxzp08Q5v/HyK5IwcpvRuxmvdm6ixKpWQVivZcuYGn++5wN/xaXRo7MTbT7ego0dtc4f2yNHk5LDhnfeJS+iCkBrq1Q+h/+z3TPrjrzRUQilEVU4ompwcVr66hEybpnR9PhmfZweZ9Hh3U7OYuSmMrWdi8XarybxBPuoR0kpCSsm+C3F8svM8EbFJtKjvyLSnvOjpVVfVcDOBmOMH+H1RKOn2rbFPP0/3cc14LKC3ucMqQCWUQlTlhAJw+a8/2bU0EeuceIYtCsLOsZbJj7n9bCwzNoap3kolERJzl092nudYzF3cazvwryeb85x3A1W3zUS2vP8+1//2RVrY4Fz9EC/MfQ8r24r3lJxKKIWo6gkFYOt//sPf1wOoyX7+8c3scjlmfEomMzedY9vZWHz0vZVmqrdSoUTEJjFv13l+i7xNHUdb3niiGUM6NFIVEEzk1oWz7PhoJ6l27bFL/5v2Ax3wfW6IucMqkkoohVAJRSd41Mek2rTHu2MkgWMmldtxt52JZcamMFIycvhnn2aMC1S9FXO7Ep/GF3svsDH0OtVtrRjfoymjAjxwsKkY1+4fRXvmf8LlM03Jtq5BLcuDvPjx1HK5WlAWKqEUQiUUnTsxF9gwJxSQvDinfbk+234nJZOZm8LYfvam6q2YiZSSI5fiWXk4hj3ht7C2tGBUgCfjezRRj3qbUGLsNTa9F0yydVdsM27S+okUugwfZ+6wDKISSiFUQvmf/UsWcPZkK6pnH2fE8nfK/fhbz9xg5qZzpGTkMLVPc8YGeqreiomlZeWw4dR1vj/8N+dvJePkYM1L/u6M7IuRt/0AABqgSURBVOpBvRpqfhJT2vf1l0Qdq0eWbV0ccw7x/EevUqNuA3OHZTCVUAqhEkpBP742m0Rh+lH0RbmTksmMjWHsCLuJT6NafDbIW00HawJX4tP4/kgMa0KukpSRQyvXGozs6kF/3wbYWavR7aZ098pFtsxZTYp1F2wy79C0/TV6TXrT3GGVmkoohVAJpaD/jaJ34ukJLri3Dyj3GKSUbD0Ty8xNYaRmaXizT3PGBjZRE3eVkZSSA1F3WHk4ht/P38ZCCJ5qU5+RXT3o0NhJPf5bDvZ88QmXzzQh26YWjpojPPefV3BybWzusB6KSiiFUAnlQeU5ir44ccm63srOc7reyuSej9GzRV2VWEopJTOH9SeusfJIDJfiUnGpbsNQf3eGdWqspt0tJ7cvnmP7h1tItfXHJuMmLbrdLdeHX0xBJZRCqIRSuDVTZxCX3pO61f9g0DzTjqIvjpSSLWdi+WBrOLeTM2lYy56XO7kzuEMj6jhWvGfzK5JLcSl8f+Rv1p24RkpmDj5uNRnR1YNnvV1V0cZytOO/H3I1qiXZ1o7U5DADPnwNR5f65g6rzFRCKYRKKIXLyczk+3HLym0UfUmyNVr2hN/ix6N/czg6HmtLQd/W9flH58Z08qytLtfoxSVn8nvkLbaeieVA1B2sLQXPtnVlRFcP/NydzB1elXIjLIRd8/aRZtcO24zrtH4ivdI8wWUIlVAKoRJK0cwxit4Q0XEp/HT0CutO6G4oN6tbnWGd3HmhvVuVK5EvpSTqdgp7wm+xN+IWoVcTkBIa1rJnUAc3Xu7kTl1HdVmrPGlyctj+0Ufc+NsHjaU9Na0O8cJHU7Cv9WjVO/v/9u48Pqry3uP455fJMhMSSAJJIAKyBSEgICiLXkUUvaAUwa0qqHh7SxdrtaVuWLRFX1VLW7G2LvRetMV9QcVqpaIsgqwGCEvYF8EACQayMJPJzOS5f5wDN+IEBpjkZJLf+/WaF2fOOTnzeybDfHO259FACUMD5cSO3kWfxiLGNdBd9JHyVYf4oKCIV5btZu3eMjwJLsacl8O4QWfT+6xWTpdXbwKhGlbuKmXexmLmFR7gq1IvAH3at2J4z2yG98ymZ7tU3WtzwFdfLuHTZ1bgdffF7dtNv9EuBlx3m9Nl1QsNlDA0UE7u2F30Azdz8Q/udLqcsAr2HublZbuZs7aIqkAN/TqkMX7w2Yzq065JXAZbXhVg4eYS5hUeYP6mYsqrgiTGx3FR19YMz8vm8h7ZeoLdQaFgkDkPP8aB4gHUxCWSnrSYax+/r9GOohgNGihhaKCcnJN30Z+qMm+Ad/L38vLy3ewoOUJacgLX92/P0HMyyWvXMqaGot1T6uXTwgPMKyxm2Y5vCNYYMlokclmPLIb3zObi3Da0SNLuUJy2bck8Fs3YhM+Th9u3g/NvbOX4OceGoIEShgZKZBY+/zTrV/eiRXU+t/7tl41mTIa6HO1K5JVlXzF3w36CNdZnum1LN3k5LemV05K8di3pldOKDhkexw4PGWM4WFnN1uIKthVXsvVA5bHpg5XVAHTJbMEVPbMZnpdN/47petl0I+GvrOC9X/+e0iNDAKF1yheM+d2DJHqax2iVGihhaKBE7pWfPsLhmqG0MosY/8JvnC4nYmXeAOuLythYVM6GojI27itnW3EldsaQmhRPz2MB05K8nJbkZqVGtVddYwzFFf5jgbG1uJJt9vQhb+DYeqlJ8eRmp5Cblco5bVMZek4mXTNTolaHio4lLz5H4YJk/J4OeHwbGXxrR/KGj3a6rAalgRKGBkrkQsEgL0+cRmXiIFonzeemp527P+VMVQVCbN5fwYaicjbuK2NDUTmb9lXgC4QASHAJuVmp9MppSZsw97uE+y9i+O7Mw0cCxwKkoip4bH4rTwLds1PolpVKblYKudkpdM9OJSs1SU+mN2IHtqzj4yfnUBk/iIRAGTmdNzLywQcb/R57fdBACUMD5dRU+7y88pPn8br7kZOxkLG/+63TJUVNqMaw8+ARNu6z92SKyincV065L/jdlev4zj9+dqo7nm5Z1h5HbnbKsek2KYkaHDEkFAwy5zePUbyvH8H4FqTWLGXUlFsa9fnE+qaBEoYGyqnzHirh9XvewufOpUunFYx88CGnS1Kq3qz54A3y3z6Ez9Mdt28n546MY+BNdzhdluMiDRTtL1ydUHJ6JmMfG4G7ag87d57P/GenO12SUlFXXlzEyz/+DV98kE51QnuyUxdw+4zxGianyJFAEZEbRGSDiNSISJ2pJyIzRaRYRNYfN3+aiGwSkQIReVdEGsdt3U1UeocujLy3D4nVB9mcn8uK1/7X6ZKUipq5057gjfsXU8YlJAfWcPVdbbh+2tRGObZ7Y+fUHsp64Fpg0UnWewkYEWb+J0BvY0wfYAvQ8CNENTM5vc9n2MS2xIV8rJ7XmvUfz3a6JKXOyPYvPuXFCU+xbftAxATp2XsNE168jw59BztdWsxy5HIFY0whcNITlcaYRSLSKcz8f9d6ugy4PorlqTp0vfByKg+9xbLZwtI3grRIX0jnQUOdLkupU/Kte0oSepIev4Cx0+9pcv1vOaEpnEP5L+BfdS0UkYkiskpEVpWUlDRgWU1T36tvoM+lBwjGp/Dpc3vYv2mt0yUpFbH5z05n1s/e5WDVMJKqdzD0+9Xc8pepGiZRUm97KCIyDwg3EMBDxpj3o/QaDwFB4JW61jHGzABmgHWVVzRet7kbcutEvIf/yOZ1vfnw8ZVc+0RazI5Ep5qHDXPfY8VrO/G6+5IQV0rHnMVcNXlys7ynpD7V27tpjBleX9sGEJEJwCjgctOcrn1uJC6/axK+Rx9l994hvPvAB9z89C36V55qdIq3bWDuk+9QIYORhB6kuxYw6okf0zJLj5LXh5g85CUiI4D7gNHGGK/T9TRXo6ZMoW3aInyePN64ZyZBv9/pkpQCrPMkb02awruPb6M87kKSA/mMnJjCLX+dSsusHKfLa7Kcumx4rIjsBYYAH4rIXHt+joh8VGu914ClwDkisldEfmAv+guQCnwiImtE5PkGboKyXffkVDIS5nPE3Z9XfzqNUDDMneZKNaBP/vR7Zv1sDsVHhpEQ3McFl+5mwosP0OmCi50urcnTO+VVVMyaOJXyuP8gLW4h455tOl20qNixZs4b5L9Tgs+TR6K/hJzcrYy47wE9TxIFeqe8alC3PDuZFv4VHK4Zypu/nOJ0OaoZKVq/in/84DGWfJhBdUInWifNZ9yfLuPqyb/WMGlgGigqKlzx8dz8zJ0k+9ZR4h3Gew/rXoqqX77Dpbx+9xTmTN9PRfwgUoIrGHV3Njc9/SjJ6ZlOl9cs6SEvFVUVB/fz5qT3qXJ3JSNxETc+9bD+laiiKhQMMnfaE3y9pRvVSVl4fIWcNyaN88aOc7q0Jkt7Gw5DA6VhHNqzg/emvIfX3Y/kqjWMeXQM6R26OF2WinGhYJD5f53O7vw0qjxdSKraR8dz93LlpPudLq3J00AJQwOl4YSCQd78xVRKqy8hyX+AwTd56D3iWqfLUjFq/l//xI4VKVR5upFQXUpG6wK+98i9JKWkOl1as6CBEoYGSsOb9/Qf2F7QHSMuOuWuZcT9k50uScWQRS/8mW1fJOLzdCeh+jDp6au5+tc/13MkDUwDJQwNFGdsXvARn79YjN/TkTRZyPenT9auwdUJLZ75LFsWGnyensQHyklr+SUjH/yJ3pToEA2UMDRQnFNeXMTs+2dxJOkCPL71jJpyOVndejldlmpkls6aQeE8Pz5PL+IDFbRKWcXIB35Eq3btnS6tWdNACUMDxVmhYJDZ9/+WkopLSAh8w4BRQfpfN97pslQjsOL1F9nwr3K8nnNxBSpp5VnFiPsn6MUcjYQGShgaKI3Dohf+TOHyDtS43JzVfiWjH3nY6ZKUQ/LfeZm1H5TgdffFFfTSMmkFV947njadujtdmqpFAyUMDZTGY+fyhXz27FaqPF1oWfM5N/7pl3rFTjPy5Tv/oOCDErxJfXGF/KQmrOCKSTfqYdBGSgMlDA2UxsV3uJQ3Jz1HZcIQPL7NjLj3AnJ6n/Qzq2JU0O9n3vQ/UrQxHZ/nHOJCflJdyxl+z1ja9ujrdHnqBDRQwtBAaZxmP/gw+7+5iPhABX0uP8Tg8T90uiQVRYf27GDe9Bc5XJpHdVI2CdWHSG2xhmF3Xq9BEiM0UMLQQGm8ls6awbr5GQTjU2nbegnXPKpdtsS6bUvmsfTvSzhSM4BQfDJu3y4yO+3hyl/djTs1zeny1CnQQAlDA6Vx27tuJf/+wyp8nnPw+DaTd0W87q3EoMUzn2XrIh/epD6AkOwvoNvFSVx4+4/0j4QYpYEShgZK4+evrOD9Kb/nUPn5BBNSaVGVz8BxueRdcY3TpakT8FdWMPcPT1Gy8yyqPJ1xBb20iMtn0LiBdB86wuny1BnSQAlDAyV2HNy1hY+feJWK0CCMuEipWcGwu4bToe9gp0tTtRzYso7PnnmTiiN9CSRmkOgvplX6Bq74xR16D0kTooEShgZK7Nm18nMWPvc5lQkXEFcToGXCcq568Hb9snJQ0O9n8czn2b3Si9fVjxpXEh7fFtr1LOWKX0zSbnWaIA2UMDRQYtfaD98i/629eN19iQ+Uk5H+Jd97ZJKe3G1Aq999hQ0fb8Vb3ZtAUgZxIT+eYAF5/5nFwJvucLo8VY80UMLQQIl9i2c+y+aF8VR5upHoP0Dbzlu5avJkPdlbT3YuX8jyV+dRebgbfk8HMCE8VZvJ6HiQoRNv0z3FZkIDJQwNlKYhFAzyyR9/z97CjvjdObh9u+gyqJxhP73H6dKahIO7trDohZc5XNQOnzsXJA63bxepGTsZfNtVdDxviNMlqgamgRKGBkrTUu3z8s+pT3DwQF8Ciel4fBvoO7oVA667zenSYo7vcCkLnnuO/ZvdVCX0osaVSKK/hGT3Rvpe01cHR2vmNFDC0EBpmsqLi/jw0ecp8w0k5HLjqdpKamYRg24eQccBFzldXqPlO1zKslf/wVdfHsHHuYQSUogPVOBhHV0uymDIbRP1UKICNFDC0kBp2vZvWsun02fjrepBtTsbTA3uqh2kZOxhwPVD6XbRcKdLdFTQ7yd/9svsWLobb1kW/sSu1LiSiAtV4w6sJ6dXkKE//rFe6KC+QwMlDA2U5iEUDLL2/dcp/HQrPm8ufrc1yp/bt5MWrXbTb8xAelw2yuEq618oGKRw3hw2zVtNxcF0ql3dCCakAJBUtZ9E1w5adzEMufVmMjp2c7ha1ZhpoIShgdI8rfvobdZ9VIC3ogt+T0cAknxfkZy6g14jz6Xv1Tc4XGH07Fy+kDUfzKfsaw/V0pVAYgYACdWlJJrtpJ3lo8+ooXQZPMzhSlUs0UAJQwNFbfrsn6x5bwVHys6mytMZgKSqIjyerfQcnkvfa26KmfMGvsOlbP78E/au2ULpLqE61Bm/ux0ArkAlSaFtpLY5RI/h59Fz+OiYaZdqfDRQwtBAUbVt/+JTvnxrARWl7alydwWJwxWoJCFYgktKSUiupEVrIbNLNl2HXOhIV+tBv58dy+aze3UBh/dU4CtLJBhIJxSXSXVia5A4AOJCfpKqt5PcqpguQ86m/7Xj9Y51FTUaKGFooKi6fPXlEla8PpcjpUmEgukE4zIJJKYf+8IGcAWPkBAoIU5KSXRXkNxGyOySRZeBA8nu0e+U9gBCwSDBKh+hQBX+Ki8V+4vYtXIVB3eW4C11EahqSUgyCSS0ocaVeOzn4kJ+EgLFuDho1wBZ3drSf8yNeNIyovqeKHWUBkoYGijqVHgPlbDl88/Yt3E7Zft8+CvdhILphOLaUJ2YcVzYeHEFy+15cRhxAYIRF+bYvP9/IK46X1dqgiRWH8RlSohPKiO5VZCMTml0umAAHftfpIeuVIOLNFD0k6lUHZLTM+k3+vv0G/3dZd5DJWxZ/Bn7NmynfL+Pqgo3NXjA1CBSY/9rgBrEGBCDYP97dDoOJM567kqAtJwWtO/bk65DLiMpJbXB26vUmdJAUeo0JKdn0u9736ff95yuRKnGI+7kqyillFIn50igiMgNIrJBRGpEpM7jciIyU0SKRWR9HcsniYgRkTb1V61SSqlIOLWHsh64Flh0kvVeAsKOHyoiHYArga+iWplSSqnT4kigGGMKjTGbI1hvEVBax+KngPuA5nOZmlJKNWIxeQ5FRK4BvjbGrI1g3YkiskpEVpWUlDRAdUop1TzV21VeIjIPaBtm0UPGmPfPYLvJwGSsw10nZYyZAcwA6z6U031dpZRSJ1ZvgWKMqa++wrsCnYG1IgLQHsgXkYHGmP319JpKKaVOIubuQzHGrAOyjj4XkV3A+caYg44VpZRSypmuV0RkLPAMkAkcBtYYY/5TRHKA/zHGXGWv9xpwKdAGOAA8Yoz53+O2tYsIA0VESoDdp1l2G6C5hZa2uXnQNjcPZ9Lms40xmSdbqVn15XUmRGRVJH3ZNCXa5uZB29w8NESbY/IqL6WUUo2PBopSSqmo0ECJ3AynC3CAtrl50DY3D/XeZj2HopRSKip0D0UppVRUaKAopZSKCg2U44jICBHZLCLbROSBMMsniEiJiKyxH//tRJ3RdLI22+vcKCIb7WEHXm3oGqMtgt/zU7V+x1tE5LATdUZTBG3uKCLzRWS1iBSIyFVO1BktEbT3bBH51G7rAhFp70Sd0RTBkB8iIn+235MCEekf1QKMMfqwH4AL2A50ARKBtUDecetMAP7idK0N3OZcYDWQbj/Pcrru+m7zcevfBcx0uu4G+D3PAH5iT+cBu5yuu57b+xZwuz19GTDL6bqj0O5LgP7A+jqWXwX8CxBgMLA8mq+veyjfNhDYZozZYYypBl4HrnG4pvoWSZt/CPzVGHMIwBhT3MA1Rtup/p5vBl5rkMrqTyRtNkBLe7oVUNSA9UVbJO3NAz6zp+eHWR5zzImH/ACrjf8wlmVAmoi0i9bra6B821nAnlrP99rzjnedvbv4tj3QVyyLpM3dge4iskRElolI2EHPYkikv2dE5Gyszkg/C7c8hkTS5t8A40VkL/AR1p5ZrIqkvWuxBvoDGAukikjrBqjNSRF/9k+HBsqp+wDoZIzpA3wC/N3hehpCPNZhr0ux/lr/m4ikOVpRw7kJeNsYE3K6kAZwM/CSMaY91qGRWSLSlL8jfgUMFZHVwFDga6A5/J7rTVP+sJyOr4Haexzt7XnHGGO+Mcb47af/AwxooNrqy0nbjPVXzBxjTMAYsxPYghUwsSqSNh91E7F/uAsia/MPgDcBjDFLATdWh4KxKJL/y0XGmGuNMecBD9nzYv7ii5M4lc/+KdNA+baVQK6IdBaRRKwvkzm1VzjueONooLAB66sPJ20z8B7W3gki0gbrENiOhiwyyiJpMyLSA0gHljZwffUhkjZ/BVwOICI9sQIlVoc5jeT/cptae2APAjMbuEYnzAFus6/2GgyUGWP2RWvjMTceSn0yxgRF5GfAXKyrRGYaYzaIyFRglTFmDvBzERkNBLFOfk1wrOAoiLDNc4ErRWQj1iGBe40x3zhX9ZmJsM1gfQm9buzLY2JZhG2ehHU48xdYJ+gnxGrbI2zvpcDjImKARcCdjhUcJbWH/LDPhT0CJAAYY57HOjd2FbAN8AJ3RPX1Y/TzopRSqpHRQ15KKaWiQgNFKaVUVGigKKWUigoNFKWUUlGhgaKUUioqNFBUTBORygjWuUdEkqP4mmNEJC+K2/viDH620v43R0TePsF6aSLy09N9HaUioYGimoN7gFMKFBFxnWDxGKyOBaPCGHNhFLZRZIy5/gSrpAEaKKpeaaCoJkFELrXHtHhbRDaJyCv23cA/B3KA+SIy3173ShFZKiL5IvKWiKTY83eJyJMikg/cICI/FJGVIrJWRN4RkWQRuRCrh4Rp9lgpXUWkn91pZoGIvCsi6fb2Fog1rsoqESkUkQtEZLaIbBWRx2rVXllr+n4RWWe/5hNh2tnZrn3dcdvodHQMDBHpJSIr7PoKRCQXeALoas+bJiIpYo0Fkm9v65pa2ykUkb+JNfbNv0XEYy/rJiLz7NryRaSrPf9e+30qEJHfRvUXq2KL0/3360MfZ/IAKu1/LwXKsPomisPqLuU/7GW7gDb2dBusu6Jb2M/vBx6utd59tbbdutb0Y8Bd9vRLwPW1lhUAQ+3pqcB0e3oB8KQ9fTdWd/DtgCSs/tFaH9eGkcAXQLL9PCNMe+cAt9nTd9b62U7YY2AAzwDj7OlEwFN7uT0/HmhZ6z3ZhjVGRiesXiD62cveBMbb08uBsfa0G2uv70qscVTEft//CVzi9OdCH848tOsV1ZSsMMbsBRCRNVhfjouPW2cw1uGqJSIC1hdu7b663qg13dveC0gDUrC68fgWEWkFpBljFtqz/o41cNNRR7txWQdsMHa/SSKyA6uTvtpd2AwHXjTGeAGMMeHGtbgIuM6engU8GWadpcBDYo1AONsYs9Vu67dKB34nIpcANVhdmGfby3YaY9bY018CnUQkFTjLGPOuXVuV3Y4rsUJltb1+ClbHoYvC1KWaOA0U1ZT4a02HCP/5FuATY8zNdWzjSK3pl4Axxpi1IjIBu4PM06yp5rj6auqoLxIn7C/JGPOqiCwHrgY+EpEf8d3OPMcBmcAAY0xARHZh7XXUrhms99FzgpcT4HFjzAunUL9qovQcimoOKoBUe3oZcJGIdAMQkRYi0r2On0sF9olIAtYX8He2Z4wpAw6JyMX2sluBhZyeT4A7jl6RJiIZYdZZgtVpJcfVdIyIdAF2GGP+DLwP9OHb7wFYIzIW22EyDDj7RIUZYyqAvSIyxn6NJLvOucB/1ToPdZaIZEXUWtXkaKCo5mAG8LGIzDfGlGD1EP2aiBRgHR7qUcfPTcE6b7AE2FRr/uvAvSKy2j4xfTvWSfoCoB/WeZRTZoz5GOsQ2Sr7kN2vwqx2N3CniKyj7pH2bgTW29vojTXk6zdYh/nWi8g04BXgfHs7tx3XvrrcitXbdgHWuZ62xph/A68CS+1tvc23g0s1I9rbsFJKqajQPRSllFJRoYGilFIqKjRQlFJKRYUGilJKqajQQFFKKRUVGihKKaWiQgNFKaVUVPwfpbLYJha/18YAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " for k in range(len(transformations)):\n", - " pylab.plot(distances, energies[k][j], label=algorithms[j]+' + '+transformations[k])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFX6+PHPQygBpCb0EDrSpEYQASlKcUVARQFZERu6ivrVXSy/dRFdd1fU3XVtq9hAVgVlRbEgiIAI0gKG3gIEktBSJNSElOf3x71hJzFlYDKZlOf9es2LO/eee+9zZoZ5cs+5c46oKsYYY8zFqhDoAIwxxpRulkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYvxKRaSLyH3c5XEROiUiQ+7yBiKwQkZMi8ndxvC8iv4jIusBGfvFE5AYRiXXr2i3Q8ZQ0uT8HJY3nZ9Z4xxJJCSUiMSJy1v0Pl/14LdBx+UJVD6rqJaqa6a6aBCQCNVX190BfYDAQpqo9AxVnEXgJmOzW9efiPrmIqIiczvXZecyP55soIitzrZspIudyxbAJ8vwcmFKuYqADMAW6XlWX+PMEIlJRVTP8eY4CNAO26/9+FdsMiFHV0xd6oADXI7dmwLa8NhRjnF1UNboYzlOQF1T1qQDHUGKISFBZTZ52RVIKZf8FKCIvuc1A+0XkWo/ttUTkXRE5LCLxIvKcR3PSRBFZJSL/FJEkYJqIBLlNS4nusSa7f9VWFJGbRWRDrvM/KiJf5BNbCxH5wW2u+g4I9djW3OO4M4Hbgcfcv1bvBd4BervPn3H3GS4iUSJyXER+EpHOHseLEZHHRWQzcNo9bmMR+a+IJLh1ecij/DQR+UREPnDj2yYiER7bm4rIZ+6+SZ5XgCJyp4jscF/vRSLSLI+6VxGRU0AQsElE9hYQZ3sRWe7Wa5uIjPA4zkwReUNEFrqvxSoRaSgiL7vn33mxTWYi8o2I/N3j+RwRec9dbiUiS926J4rIhyJSu6DXR0TaA296vG/HvYjh/OfAfd5C/tfEuUREXhePpiURucJ974+LyCYRGeCxbbmI/Nl9jU6KyGIRCXW3BYvIf9xYj4vIehFp4G5rLCILRCRZRKJF5J58Yl0oIpNzrdskIje6y+1E5Dv3OLtE5BaPcjNF5N/ua34aGFjYa1Nqqao9SuADiAGuyWfbRCAduAfnS+t3wCFA3O3zgbeA6kB9YB1wr8e+GcCDOFekVYH7gO1AGFAHWAKou70KkAy09zj/z8BN+cS2GviHu99VwEngP+625tnHdZ/PBJ7LVa+VHs+7AceAXm49b3dflyoer1EU0NStRwVgAzAVqAy0BPYBQ93y04BU4Dfu8f4GrHG3BQGbgH+6r1sw0NfdNhKIBtq7r8lTwE8FvHcKtM71XnrGWck93v9z4xzkvk6XerwuiUAPN46lwH5gghvnc8Ayb8+fa1tD9zUdBIx3X58a7rbWOE2LVYB6wArgZS9enxzvW17vba5tuT8Hq3GaAyvjNG+e4H+fmSZAkvueVXDjSwLquduXA3uBtu5ruxx43t12L/AlUM2NvwdOMypu3d5w69EVSAAGeXxOss8/AVjlEXsH4Lj7GlUHYoE73M9FN/d96+DxGqQAfdzYgwP9veK376tAB2CPfN4Y58vnlPuhzX7c426bCER7lK3m/sdsCDQA0oCqHtvHZX/xuPsezHWupbiJxn1+Ta7/6P8G/uIudwR+wf0yz3WccJwkVd1j3UdcfCL5N/DnXOfYBfT3eI3u9NjWK4+6PQm87y5PA5Z4bOsAnHWXe7tfJhXzqNdC4C6P5xWAM0CzfN67vBKJZ5z9gCNABY91HwPTPF6Xtz22PQjs8Hh+GXC8gM+O4nwZe352hnpsvwnnCzARNxnkc5xRwM9evD453jePOqTmimFW7s+Bx2emmse+//H4zDwOzM517EXA7e7ycuApj233A9+6y3cCPwGdc+3fFMjETaDuur8BMz0+J9nnrwGczn6vgb8A77nLY4Afcx37LeBpj9fgA1++B0rLw5q2SrZRqlrb4/G2x7Yj2QuqesZdvASnfb4ScNi9nD+O8+Gu77FvbK7zNM61Lvf2WcCtIiLAbcAnqpqWR7yNgV80Zx/HgYKrWKBmwO+z6+HWpal7nrxibQY0zlX+/+Ek12xHPJbPAMFuE0tT4IDm3X/RDPiXxzGTAcH5a9lbnnE2BmJVNctj3YFcxzvqsXw2j+eXFHK+7rk+O4s8tn2J8xf6LlU930kuzl10c8RpDj2B84We3TRZ0OuTn5dyxXB7HmUaA8ken2H49Xt6c673tC/QyKNM7vc0+7WZjZN05ojIIRF5QUQqeZzzpMd+uV9/ANwyXwNj3VXjgA89YuuVK7bxOH/Q5VWXMss628ueWJwrktAC/tPnHvL5ME6zVramOQqrrhGRczh/Sd/qPvJyGKgjItU9kkl4HufzVizOldBfCijjeexYYL+qtrnIc4VL3p3h2XF8mMd+3vKM8xDQVEQqeCSTcGC3D8e/EH8BdgAtRGScqn7srv+rG+dlqposIqOA7H6igl4fX4YQPwzUFZFqHsnE8/MXi3NFkmcfRkFUNR14BnhGRJoD3+Bc0S52z1nDI5mEA/H5HOpj4GkRWYHTFLbMI7YfVHVwQWFcaNylkV2RlDGqehjnP8rfRaSmiFRwO1H7F7DbJ8DDItLE7Vx9PI8yH+B8qaR7/hWb69wHgEic/7iVRaQvcL0P1XkbuE9EeomjuohcJyI18im/DjgpTsd2VXFuIugkIpd7ca51OF9qz7vnCRaRPu62N4EnRaQjnL+Z4WYf6rUW5y/nx0Skktt5fD0wx4djekVErsJp05+A0+f0qohk/yVeA6c5NcVdN8Vj14Jen6NAmIhUvtB4PD4z09zPTG9yfmb+A1wvIkPd9zNYRAaISFieB8xZ14Eicpk4N5qcwOlXzFLVWJwmr7+5x+sM3OWeKy/f4Fx9PAvM9Uj+XwFtReQ2932sJCKXi3MDQrliiaRk+1Jy3oc/38v9JuB0XG7H6c+YR86mgNzexkk+m3E60r/Babf2vFVxNtCJ/P+zZbsVp68iGXgaJwFdFFWNxLmh4DWcekTjtMfnVz4TGI7Tebofpw/gHaCWF+fKxPkCaw0cBOJw2sBR1fnAdJwmkhPAVuDafA5VKFU9557rWjfGN4AJqrrzYo+Zh025Pjsvi0hNnPdjsqrGq+qPwLvA+26z5TNAd5wO4q+Bzzxizvf1welj2wYcEZFEjxgeyxWD5zZP43H6YJJwbiSYi3NVjfulPxKniTIB5ypgCt59dzXE+eyfwLkC+wHncwxOE1VznKvD+Tj9Gnneau82436G03f4kcf6k8AQnGavQzhNbNNxOuLLley7fIw5T5xbid9U1WYe66ri3O3TXVX3BCw4U+aJyFxgp6o+HehYjHfsisTgNgP9RpzfNzTBuZLIffXzO2C9JRFT1NzmoFZuM+wwnCuQzwMdl/GedbYbcO5AeganSeEsTrPG1PMbRWLcMqMCEZwp8xriNB2F4DSZ/U4DMLSMuXjWtGWMMcYn1rRljDHGJ+WiaSs0NFSbN28e6DCMMabUCA0NZdGiRYtUdVhhZctFImnevDmRkZGBDsMYY0oVcQfALIw1bRljjPGJJRJjjDE+sURijDHGJ+WijyQv6enpxMXFkZqaGuhQTAkSHBxMWFgYlSpVCnQoxpQa5TaRxMXFUaNGDZo3b44zzJAp71SVpKQk4uLiaNGiRaDDMabU8GvTlogME2f6yWgReSKP7VVEZK67fa071DMi0lOc6VWjxJnW8gaPfWJEZIu77aJvxUpNTSUkJMSSiDlPRAgJCbGrVGMukN+uSNyhm1/HmRozDlgvIgtUdbtHsbtwJkJqLSJjcUbOHIMzumqEqmaISCOckUy/9JgHYaCq5jeS6IXE6OshTBljnwljLpw/r0h64kwHu88dNnsOzmBsnkbizL4HznDPV4uIqOoZj6QRTDmZHMYYY4rKziMnmP7tTopjGCx/JpIm5JxmMo5fT2V5voybOFJwBm7DncxoG7AFuM8jsSiwWEQ2iMik/E4uIpNEJFJEIhMSEoqkQkXtkktyzpY6c+ZMJk+efEHHiIqK4ptvvinKsHKYOXMm9erVo2vXrnTt2pUJEyZc8DGWL1/O8OHD/RCdMSa31PRMXly0k+GvrGTu+lgOp/i/qbbEdrar6lqgozvb2CwRWaiqqUBfVY0XkfrAdyKyU1VX5LH/DGAGQERERJm8osnIyCAqKorIyEh+85vf5Lm9YkXf3+IxY8bw2muvFV7QGBNQq6IT+eP8LcQkneGm7mH88br21K1+wRNXXjB/XpHEk3Pu5TB+PSfy+TIiUhFnJrskzwKqugNn+s9O7vN4999jOHNm9PRD7AH35Zdf0qtXL7p168Y111zD0aNHAZg2bRq33XYbffr04bbbbmPq1KnMnTuXrl27Mnfu3F9tz8zMZMqUKVx++eV07tyZt9566/w5XnzxxfPrn376wuYQioqK4oorrqBz587ccMMN/PLLLwBER0dzzTXX0KVLF7p3787evXtz7Ld+/Xq6dev2q/XGmIuXfPocv/9kE+PfWQvAh3f34u+3dCmWJAL+vSJZD7QRkRY4CWMszjSsnhbgzBu9GhgNLFVVdfeJdTvbmwHtgBgRqQ5UUNWT7vIQnHmUffLMl9vYfuiEr4fJoUPjmjx9fccCy5w9e5auXbuef56cnMyIESMA6Nu3L2vWrEFEeOedd3jhhRf4+9//DsD27dtZuXIlVatWZebMmURGRp6/Ypg2bVqO7TNmzKBWrVqsX7+etLQ0+vTpw5AhQ9izZw979uxh3bp1qCojRoxgxYoVXHXVVb+Kc+7cuaxc6UzT/vDDD3PHHXcwYcIEXn31Vfr378/UqVN55plnePnllxk/fjxPPPEEN9xwA6mpqWRlZREb67Rw/vTTTzz44IN88cUXhIeH+/4iG1POqSqfR8Xz5692cOJsOg8MbMWDg9oQXCmoWOPwWyJxk8BkYBEQBLynqttE5FkgUlUX4MwXPVtEonHm+B7r7t4XeEJE0oEs4H5VTRSRlsB8986aisBHqvqtv+rgb1WrViUqKur88+ykAM7vXMaMGcPhw4c5d+5cjt81jBgxgqpVq+Z7XM/tixcvZvPmzcybNw+AlJQU9uzZw+LFi1m8eDHdunUD4NSpU+zZsyfPRJK7aSslJYXjx4/Tv39/AG6//XZuvvlmTp48SXx8PDfc4NytHRwcfH6fHTt2MGnSJBYvXkzjxo0v7IUyxvzKwaQz/PHzLfy4J5GuTWvz/E2X0a5hzYDE4tc+ElX9Bvgm17qpHsupwM157DcbmJ3H+n1Al6KOs7Arh0B48MEHefTRRxkxYgTLly9n2rRp57dVr169wH09t6sqr776KkOHDs1RZtGiRTz55JPce++9Oda//vrrvP322wBF2onfqFEjUlNT+fnnny2RGOOD9Mws3l25n5eX7KZihQo8O7Ij43s1I6hC4G5dt7G2SqiUlBSaNHFucps1a1a+5WrUqMHJkyfz3T506FD+/e9/k56eDsDu3bs5ffo0Q4cO5b333uPUqVMAxMfHc+zYMR544AGioqKIiorK9wu/Vq1a1KlThx9//BGA2bNn079/f2rUqEFYWBiff+5Mt52WlsaZM2cAqF27Nl9//TVPPvkky5cvv7AXwxgDwKbY44x4bRXPL9zJVW3q8d2jVzGhd/OAJhGwRFJiTZs2jZtvvpkePXoQGpr/lAADBw5k+/bt5zvbc7v77rvp0KED3bt3p1OnTtx7771kZGQwZMgQbr31Vnr37s1ll13G6NGjC0xIuc2aNYspU6bQuXNnoqKimDrVudCcPXs2r7zyCp07d+bKK6/kyJEj5/dp0KABX331FQ888ABr1669gFfDmPLtVFoGz3y5jVFvrCL5dBpv/rYHMyZE0KhW/k3cxalczNkeERGhuSe22rFjB+3btw9QRKYks8+GKUmWbD/K1C+2cvhEKr/t1Ywpwy6lZnDxDCoqIhtUNaKwciX2dyTGGFOeHTp+lj9/tZ2FW4/QtsElzLv1Sno0qxPosPJkicQYY0qQcxlZvLdqP698v4csVaYMvZR7+rWkcsWS2xNhicQYY0qIn/YmMvWLbUQfO8U17Rvw9PUdaFq3WqDDKpQlEmOMCbBjJ1J57usdLNh0iKZ1q/Lu7RFc3b5BoMPymiUSY4wJkIzMLGatPsA/v9vNuYwsHhrUmvsHti72X6b7yhKJMcYEQGRMMk99vpWdR05yVdt6PDOiIy1CC/6xcUlVcntvyriBAweyaNGiHOtefvllfve73wGwbds2Bg0axKWXXkqrVq14+umnycrKAn49tHvXrl3Zvn37r85xIRISEs4PEpn9Q8O8TJs2jZdeegmAiRMnnh96xRjjnaRTaUz5dBOj31xNytl0/j2+O7PuuLzUJhGwRBIw48aNY86cOTnWzZkzh3HjxnH27FlGjBjBE088wa5du9iyZQvr1q3jX//61/myY8aMOf8L9KioKDp06JDvuZYvX87EiRMLjOf777/nsssu4+eff6Zfv34+1c0Y82uZWcp/1hxg0N9/YP7P8dzbvyVLHu3PtZc1KvUzc1oiCZDRo0fz9ddfc+7cOQBiYmI4dOgQ/fr146OPPjo/Si9AtWrVeO2113jxxRf9EktUVBSPPfYYX3zxBV27duXs2bM5Jt2aN29eoYnIGJO/TbHHueGNVTz1+VbaN6rBwof78eS17alepWz0LpSNWvhq4RNwZEvRHrPhZXDt8/lurlu3Lj179mThwoWMHDmSOXPmcMsttyAibNu2jR49euQo36pVK86ePcvx48eBnEO7A6xevbrAEYEL0rVrV5599tkcw9EbY3yXfPocLy3excfrDhJ6SRX+NbYrI7o0LvVXILlZIgmg7Oat7ETy7rvver2vN7MW9urVi7S0NE6dOkVycvL5uU+mT5/+q9GAjTFFJz0zi9mrD/Dykt2cPpfJxCub88jgtsU2tElxs0QCBV45+NPIkSN55JFH2LhxI2fOnDl/FdKhQwdWrMg5e/C+ffsICQmhdu3aXh8/e2DE5cuXM3PmTGbOnOn1vp5/MaWm+n/OZ2PKihW7E3j2q+1EHztFvzahTB3egTYNagQ6LL+yPpIAuuSSSxg4cCB33nkn48aNO79+/PjxrFy5kiVLlgDOTIoPPfQQzzzzTLHF1qBBA3bs2EFWVhbz588vtvMaU1rtTzzN3bPWM+G9daRnZvH2hAg+uLNnmU8iYIkk4MaNG8emTZtyJJKqVauyYMEC/vKXv9C2bVtCQ0Pp06cP48ePP18me5727MdPP/1UpHE9//zzDB8+nCuvvJJGjRoV6bGNKUtOpqbzt4U7GPLPH1i9N4knrm3H4keuYnCHBmWuLyQ/Nox8KfD555/z6KOPsmzZMpo1axbocMq80vTZMIGTlaXM2xjHC9/uIvFUGjf3CGPKsEupXyO48J1LCRtGvgwZNWoUo0aNCnQYxhjXhgPJTFuwnS3xKXQLr827t0fQpan3/ZdljSUSY4zx0uGUszy/cCdfRB2iQc0qvDymKyO7lr3beS+UX/tIRGSYiOwSkWgReSKP7VVEZK67fa2INHfX9xSRKPexSURu8PaYxhhT1FLTM3n1+z0MeukHFm49wuSBrVn6+wGM6tak3CcR8OMViYgEAa8Dg4E4YL2ILFBVz0Gh7gJ+UdXWIjIWmA6MAbYCEaqaISKNgE0i8iWgXhzTGGOKRFaW8uXmQ7zw7S7ij5/l2k4N+X+/aV8q5ggpTv5s2uoJRKvqPgARmQOMBDy/9EcC09zlecBrIiKqesajTDBOAvH2mMYY47O1+5L46zc72BSXQvtGNXlxdGeubB0a6LBKJH8mkiZArMfzOKBXfmXcq48UIARIFJFewHtAM+A2d7s3xwRARCYBkwDCw8N9r40xplzYl3CK5xfuZPH2ozSsGcxLN3fhhm5NCKpgTVj5KbGd7aq6FugoIu2BWSKy8AL3nwHMAOf2Xz+EaIwpQ5JOpfHK93v4cO1BqlSswB+GtOWuvi2pWrl0TTIVCP7sbI8Hmno8D3PX5VlGRCoCtYAkzwKqugM4BXTy8pilQkmbj8RXx48f54033jj//NChQ4wePbrAfQYMGEDu3/d4o3nz5iQmJnpdfubMmUyePPmCz2PKh9T0TN5YHs2AF5fzn7UHGduzKcunDGTyoDaWRLzkz0SyHmgjIi1EpDIwFliQq8wC4HZ3eTSwVFXV3acigIg0A9oBMV4es1QoafOR+CIjI+NXiaRx48Y26ZUp0bKylM82xjHopeW88O0uerWsy6L/68dzoy6jXo0qgQ6vVPFb05bbpzEZWAQEAe+p6jYReRaIVNUFwLvAbBGJBpJxEgNAX+AJEUkHsoD7VTURIK9j+hrr9HXT2Zm809fD5NCubjse7/l4vttHjx7NU089xblz56hcuXKO+Ujee++9POcj6devH4888kiRxplt4sSJBAcHExkZyYkTJ/jHP/7B8OHDiYmJ4bbbbuP06dMAvPbaa1x55ZUsX76cP/3pT9SpU4edO3fSvXt39u7dS9euXRk8eDAPPPAAw4cPZ+vWrWRmZvL444/z7bffUqFCBe655x4efPDBHOdfvHgxTz/9NGlpabRq1Yr3338/x5woub366qt8+eWXpKen8+mnn9KuXTuSk5O588472bdvH9WqVWPGjBl07tw5x34JCQncd999HDx4EHCuAvv06VPEr6Yp6X7am8hfv9nB1vgTXNakFn+/pSu9W4UEOqxSy699JKr6DfBNrnVTPZZTgZvz2G82MNvbY5ZGJWk+kmwxMTGsW7eOvXv3MnDgQKKjo6lfvz7fffcdwcHB7Nmzh3Hjxp1vjtq4cSNbt26lRYsWxMTEsHXrVqKios4fK9uMGTOIiYkhKiqKihUrkpycnOO8iYmJPPfccyxZsoTq1aszffp0/vGPfzB16lTyExoaysaNG3njjTd46aWXeOedd3j66afp1q0bn3/+OUuXLmXChAnn48n28MMP88gjj9C3b18OHjzI0KFD2bFjh0+vmyk9oo+d5G/f7OT7ncdoUrsqL49x5gepYB3pPimxne3FqaArB38qafOR3HLLLVSoUIE2bdrQsmVLdu7cSYsWLZg8eTJRUVEEBQWxe/fu8+V79uxJixYtCo11yZIl3HfffVSs6Hzc6tatm2P7mjVr2L59+/krg3PnztG7d+8Cj3njjTcC0KNHDz777DMAVq5cyX//+18ABg0aRFJSEidOnPhVLJ79SSdOnODUqVMFXv2Y0u/YiVT+9f0e5qyPpVqlIB4f1o47+jQnuJL1gRQFSyQBVNLmI8n9C10R4Z///CcNGjRg06ZNZGVlERz8vwHpqlev7nUsBVFVBg8ezMcff+z1PlWqOG3YQUFBZGRkeL1fVlYWa9asyVEPU3alnE3nrR/28v6qGNIzs7jtimY8OKg1IZdYH0hRsmHkA6ikzUfy6aefkpWVxd69e9m3bx+XXnopKSkpNGrUiAoVKjB79mwyMzPz3LdGjRqcPHkyz22DBw/mrbfeOv+Fn7tp64orrmDVqlVER0cDcPr06RxXPt7q168fH374IeAkz9DQUGrWrJmjzJAhQ3j11VfPP8/d9GXKhrPnMnnzh71c9cIy3li+l8EdGrDk0f5MG9HRkogfWCIJsJI0H0l4eDg9e/bk2muv5c033yQ4OJj777+fWbNm0aVLF3bu3JnvVUhISAh9+vShU6dOTJkyJce2u+++m/DwcDp37kyXLl346KOPcmyvV68eM2fOZNy4cXTu3JnevXuzc+eF3/wwbdo0NmzYQOfOnXniiSeYNWvWr8q88sorREZG0rlzZzp06MCbb755wecxJVd6ZhYfrj1A/xeX8fzCnXQPr83XD/XllXHdaB5aNFfQ5tdsPpJSoDjmI5k4cSLDhw8v9Lcf5UFp+mwYR1aW8tWWw/xj8S5iks4Q0awOjw1rR88WdQvf2eTL5iMpQ2w+EmPypqos353Ai9/uYvvhE7RrWIN3b49gULv6NipvMbJEYgAK7YgPhBtuuIH9+/fnWJffHWem/NlwIJnp3+5i3f5kmtZ1buW9vktjGxMrAMp1IlFV+6ulBJs/f36xn7M8NPWWdjuPnOClRbtYsuMYoZdU4c8jOzLm8nAqV7Qu30Apt4kkODiYpKQkQkJCLJkYwEkiSUlJdmtwCXUw6QwvL9nN/Kh4LqlSkSlDL+WOPs2pVrncfo2VGOX2HQgLCyMuLo6EhIRAh2JKkODgYMLCwgIdhvEQm3yG15dFM29DHEEVhElXteR3/VtRu1rlQIdmXOU2kVSqVMmrX2UbYwIj/vhZXl8WzaeRsQjCb69oxu8GtKJBTbtiLGnKbSIxxpRMh1PO8sayvcxdH4uijL08nPsHtqJRLd/GkjP+Y4nEGFMiHDuRyhvL9/LRuoNkZSm3XN6UBwa2pkltSyAlnSUSY0xAJZxM480f9vKfNQfIyFJu7hHGAwNb07RutUCHZrxkicQYExBJp9J4a8U+PlgdQ3qmckO3Jjw4qDXNQmwok9LGEokxplglnz7HDDeBpKZnMqprEx68ug0tbCysUssSiTGmWCSdSuPdlfuZ9VMMZ9IzGdGlMQ9d3YZW9WwumNLOEokxxq+Onkjl7RX7+HDtQVIzMrnuskY8fHUb2jSoEejQTBGxRGKM8Yu4X87w5g97+SQyjswsZWTXxtw/oDWt69sVSFnj10QiIsOAfwFBwDuq+nyu7VWAD4AeQBIwRlVjRGQw8DxQGTgHTFHVpe4+y4FGwFn3MENU9Zg/62GM8d7+xNO8sSya+T/HIwKjezTld/1bER5id2GVVX5LJCISBLwODAbigPUiskBVt3sUuwv4RVVbi8hYYDowBkgErlfVQyLSCVgENPHYb7yq5pxgxBgTULuOnOT1ZdF8tfkQlYIq8NsrmnFv/5b2Q8JywJ9XJD2BaFXdByAic4CRgGciGQlMc5fnAa+JiKjqzx5ltgFVRaSKqqb5MV5jzEXYEpfCa8v2sGjbUapXDuKeq1pyd9+W1KthU9qWF/5MJE2AWI/ncUDo7NsXAAAesElEQVSv/MqoaoaIpAAhOFck2W4CNuZKIu+LSCbwX+A5zWPsbxGZBEwCZwpZY0zR2nAgmVeXRrN8VwI1gyvy0NVtuOPK5tSpboMpljclurNdRDriNHcN8Vg9XlXjRaQGTiK5DaefJQdVnQHMAGeq3WII15gyT1X5aW8Sry2NZvW+JOpWr8yUoZdyW+9m1AyuFOjwTID4M5HEA009noe56/IqEyciFYFaOJ3uiEgYMB+YoKp7s3dQ1Xj335Mi8hFOE9qvEokxpuhkZinfbj3CWyv2sjkuhfo1qvDUde25tVe4zQdi/JpI1gNtRKQFTsIYC9yaq8wC4HZgNTAaWKqqKiK1ga+BJ1R1VXZhN9nUVtVEEakEDAeW+LEOxpRrqemZzNsQx9s/7uNA0hlahFbnrzdcxo3dmxBcKSjQ4ZkSwm+JxO3zmIxzx1UQ8J6qbhORZ4FIVV0AvAvMFpFoIBkn2QBMBloDU0VkqrtuCHAaWOQmkSCcJPK2v+pgTHl1/Mw5/rPmADN/iiHx1Dm6NK3Nk9e2Y3CHhjYnuvkVKQ9zVEdERGhkpN0tbExhDh0/y7sr9/PxuoOcOZfJgEvrcV//VvRqUdempC6HRGSDqkYUVs4aN40x7DpykrdW7GVB1CEUGNGlMZOuakn7RjUDHZopBSyRGFNOqSrr9ifz5g97WbYrgaqVgritdzPu6tuCsDr2K3TjPUskxpQzmVnKd9uP8uYPe4mKPU5I9cr8fnBbfntFM/sNiLkolkiMKSdOpWXwaWQsM3+K4UDSGcLrVuPPozpxc48wuwPL+MQSiTFlXPzxs8z6KYaP1x3kZGoG3cNr89jQdgzt2ICKQRUCHZ4pAyyRGFNGbTz4C++u3M+3W48AcG2nhtzVtwXdwusEODJT1lgiMaYMycjMYtG2o7yzch8/HzxOjeCK3N23BROubE6T2jYKr/EPSyTGlAEnUtOZu87p/4g/fpZmIdWYdn0Hbo5oSvUq9t/c+Jd9wowpxQ4kneb9VTF8GhnL6XOZ9GpRl6ev78DV7RvYL9BNsbFEYkwpo6qs3Z/M+6v2s3j7UYJEuL5LY+7q24JOTWoFOjxTDlkiMaaUOJ2WwedR8Xzw0wF2HT1J7WqVuH9AKyb0bk6DmsGBDs+UY5ZIjCnh9ieeZvbqA3y6IZaTqRl0bFyTF0Z3ZkSXxvb7D1MiWCIxpgTKzFJ+2H2MWT8d4IfdCVQKEn5zWSMm9G5O9/DaNoCiKVEskRhTghw/c45PI+OYveYAB5PP0KBmFR4d3JaxPZtSv4Y1X5mSyRKJMSXA9kMn+GB1DJ9HxZOankXP5nV5bNilDO3YkEr263NTwlkiMSZA0jOz+HbrET5YHcP6mF8IrlSBG7o14bYrmtOhsQ3fbkoPSyTGFLPY5DN8vO4gn0TGkXgqjfC61Xjquvbc3KMptapVCnR4xlwwSyTGFIOMzCy+33mMj9YeZMWeBAQY1K4+43s1o3/belSwHw+aUswSiTF+FH/8LHPXHWRuZCxHT6TRoGYVHhzUhrGXN6WxjX1lygi/JhIRGQb8CwgC3lHV53NtrwJ8APQAkoAxqhojIoOB54HKwDlgiqoudffpAcwEqgLfAA9reZh43pQamVnK8l3O1ceyXcdQoH/bevx5ZDiD2tW3odtNmeO3RCIiQcDrwGAgDlgvIgtUdbtHsbuAX1S1tYiMBaYDY4BE4HpVPSQinYBFQBN3n38D9wBrcRLJMGChv+phjLeOnkhl7vpY5q6PJf74WerVqMLvBrRi7OXhNK1rU9eassurRCIinwHvAgtVNcvLY/cEolV1n3uMOcBIwDORjASmucvzgNdERFT1Z48y24Cq7tVLXaCmqq5xj/kBMApLJCZAsrKUH6MT+XDNAb7feYzMLKVfm1Ceuq4913RoYLfumnLB2yuSN4A7gFdE5FPgfVXdVcg+TYBYj+dxQK/8yqhqhoikACE4VyTZbgI2qmqaiDRxj+N5zCbkQUQmAZMAwsPDCwnVmAsTf/ws8yLj+HRDLHG/nCWkemXu7teCcZeH0zy0eqDDM6ZYeZVIVHUJsEREagHj3OVY4G3gP6qa7o/gRKQjTnPXkAvdV1VnADMAIiIirA/F+CwtI5PF247ySWQsK6MTUYW+rUN5bJgzbW2VijbulSmfvO4jEZEQ4LfAbcDPwIdAX+B2YEAeu8QDTT2eh7nr8ioTJyIVgVo4ne6ISBgwH5igqns9yocVckxjitT2Qyf4JDKWz6PiOX4mnSa1q/LQoDaM7hFmfR/G4H0fyXzgUmA2Tif4YXfTXBGJzGe39UAbEWmB82U/Frg1V5kFOIloNTAaWKqqKiK1ga+BJ1R1VXZhVT0sIidE5AqczvYJwKve1MGYC5FyJp0Fm+KZGxnL1vgTVA6qwJCODRhzeVOubBVqk0YZ48HbK5JXVHVZXhtUNSKf9RkiMhnnjqsg4D1V3SYizwKRqroApwN/tohEA8k4yQZgMtAamCoiU911Q1T1GHA//7v9dyHW0W6KSFaWsnpfEnPXx/LttiOcy8iifaOaTLu+A6O6NaF2tcqBDtGYEkm8+QmGiNyYx+oUYIv75V6iRUREaGRkfhdOprzL3XFeM7gio7o14ZaIpjbjoCnXRGRDfhcLnry9IrkL6A1kX5UMADYALUTkWVWdfVFRGhMgp9IyWLjlMPN/jmf1viRUoU/rEKYMdUbctQmjjPGet4mkEtBeVY8CiEgDnF+k9wJW4PSdGFOiZWYpq6IT+WxjHN9uO0JqehbNQqrx8NVtuKm7dZwbc7G8TSRh2UnEdQxoqqrJIuKXW3+NKSq7jpzks41xfB4Vz9ETadQMrsiN3cO4qXsTuofXsdkGjfGRt4lkuYh8BXzqPr/JXVcdOO6XyIzxQcLJNBZsOsRnG+PYdugEFSsIAy6tx9PXhzGoXX1rujKmCHmbSB4AbsT53Qg4zVr/dQdLHOiPwIy5UKnpmSzZcZTPNsbzw+4EMrOUzmG1ePr6DlzfpTGhl1QJdIjGlEmFJhJ38MUlqjoQ+K//QzLGe1lZytr9yXwRFc/XWw5zMjWDhjWDmXRVS27s1oQ2DWoEOkRjyrxCE4mqZopIlojUUtWU4gjKmIKoKlviU1gQdYgvNx/i6Ik0qlUOYlinhtzUPYwrWobYDwaNKUbeNm2dAraIyHfA6eyVqvqQX6IyJg/Rx06xYNMhvtx0iP2Jp6kUJPRvW58/XteYa9rXp1plm6fNmEDw9n/eZ+7DmGJ16PhZvtx0iAWbDrHt0AlEoHfLEO69qiXDOjW0X5sbUwJ4O/rvLBGpCoR7MXy8MT5JPn2Or7cc5suoQ6yLSQagS1gt/jS8A8M7N6JBzeAAR2iM8eTtoI3XAy/hTH3bQkS6As+q6gh/BmfKj1NpGXy3/QgLog7x455EMrKUVvWq8+jgtozo0tjm+DCmBPO2aWsazoyHywFUNUpEWvopJlNOnErL4PsdR/lq82F+2J3AuYwsmtSuyl39WjCiS2M6NKppPxY0phTwNpGkq2pKrv/U3k65a8x5J1PT+X7HMb7e8r/k0aBmFW7tGc51nRvRI7wOFeyOK2NKFW8TyTYRuRUIEpE2wEPAT/4Ly5QlJ1PTWbLjKF9vPsKKPTmTx/DOjehuycOYUs3bRPIg8EcgDfgYZ46RP/srKFP65UgeuxM4l+kkj/G9wrnuMksexpQl3t61dQYnkfzRv+GY0uxEajrf7zjK15sPs2J3Iucys2hYM5jxV1jyMKYs8/aurbbAH4Dmnvuo6iD/hGVKi2MnU/lu+1EWbTvK6r2JpGcqDWsG89srmnFd54Z0a2rJw5iyztumrU+BN4F3gEz/hWNKgwNJp1m07QiLth1l48FfUIXwutWYeGVzhnWy5GFMeeNtIslQ1X/7NRJTYqkq2w+fYNG2oyzedoSdR04C0L5RTR6+ug1DOzakXcMadquuMeWUt4nkSxG5H5iP0+EOgKomF7STiAwD/gUEAe+o6vO5tlfBGZK+B5AEjFHVGBEJAeYBlwMzVXWyxz7LgUbAWXfVkNIwb3xpk5mlbDz4C4u2HmHR9iPEJp9FBCKa1eGp69oztGNDm1HQGAN4n0hud/+d4rFOgXx/lOgOP/86MBiIA9aLyAJV3e5R7C7gF1VtLSJjgenAGCAV+BPQyX3kNl5VI72M3XgpNT2T1XuTWLz9CN9tP0riqXNUDqpAn9YhPDCgNVe3b0C9GjanhzEmJ2/v2mpxEcfuCUSr6j4AEZkDjAQ8E8lInF/Ng3MF8pqIiKqeBlaKSOuLOK+5AMdOprJs5zGW7DjGyj2JnE3PpHrlIAa2q8/Qjg0ZcGk9agRXCnSYxpgSrMBEIiKPqeoL7vLNqvqpx7a/qur/K2D3JkCsx/M4oFd+ZVQ1Q0RSgBAgsZC43xeRTJyJtp5zZ2rMHfskYBJAeHh4IYcrP7L7O5buOMaSncfYFOvMlNy4VjCje4Rxdfv6XNEyxKaiNcZ4rbArkrHAC+7yk/xvznaAYUBBicRfxqtqvIjUwEkkt+H0s+SgqjOAGQARERG/SjTlSWp6Jqv3JfH9jqMs3XGMQympiECXsNr8fnBbrm7fgPaNrLPcGHNxCkskks9yXs9ziweaejwPc9flVSZORCoCtXA63fOlqvHuvydF5COcJrRfJZLyLuFkmttkdZSV0YmcOZdJ1UpB9GsTyv9d05aB7epbf4cxpkgUlkg0n+W8nue2HmgjIi1wEsZY4NZcZRbgdOSvBkYDS/NqpsrmJpvaqpooIpWA4cCSQuIoF7KylM3xKSzfdYzluxLYFHccVafJ6qbuYQxqX5/e1mRljPGDwhJJFxE5gXP1UdVdxn1e4OxCbp/HZJxxuYKA91R1m4g8C0Sq6gLgXWC2iEQDyTjJxjmBSAxQE6gsIqOAIcABYJGbRIJwksjbF1LhsiTpVBor9iTww64EVuxJJPn0ufNNVo9eY01WxpjiIQVcAJQZERERGhlZ+u8WzsxSNsUdZ/muBH7YdYzN8SmoQkj1yvRvW4/+l9ajX5t61K1u088aY3wnIhtUNaKwct7+jsQESOKpNFbsTmD5rgR+3JPAL2fSqSDQtWltHrmmLQMurUenxrVsSBJjTMBYIilh0jOziIo9zo+7E1i+O4HNcSkAhF5SmYHt6jPg0vr0ax1KHbvqMMaUEJZIAkxV2ZtwmpV7ElgZnciafcmcSsuggkC38Dr8fnBbBlxan46Na9pVhzGmRLJEEgBJp9JYGZ3Iyj2JrIpO5FBKKuCMoDuia2P6tQ7lylah1Kpmvyg3xpR8lkiKQWp6Jutjklm5J5Ef9ySy/bBz81vN4Ir0aR3KA4NC6de6HuEhNgiiMab0sUTiB5lZyo7DJ1gVncjK6ETW7U8mLSOLSkFC9/A6/GFIW/q2qcdlTWoRZM1VxphSzhJJEcjKUnYfO8nqvUms3pvE2v3JpJxNB6Btg0sY36sZ/dqE0rNFXapXsZfcGFO22LfaRcjuIF+9L4k1e5NYvS+J5NPnAKefY1jHhvRuFULvViE0qFng7zaNMabUs0TiBVXlYPIZ54pjn3PVceykM79Xo1rBDLi0Hr1bOokjrI71cxhjyhdLJAWY/3McK/cksXrv/+6sCr2kCr1bhXBlqxB6twyhWUg1G4LEGFOuWSIpwNsr9nM45SxXtAzhvgFO8mhV7xJLHMYY48ESSQFm3nk5odWr2A8BjTGmAJZIClC/hnWUG2NMYSoEOgBjjDGlmyUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE78mEhEZJiK7RCRaRJ7IY3sVEZnrbl8rIs3d9SEiskxETonIa7n26SEiW9x9XhH7daAxxgSU3xKJiAQBrwPXAh2AcSLSIVexu4BfVLU18E9gurs+FfgT8Ic8Dv1v4B6gjfsYVvTRG2OM8ZY/r0h6AtGquk9VzwFzgJG5yowEZrnL84CrRURU9bSqrsRJKOeJSCOgpqquUVUFPgBG+bEOxhhjCuHPRNIEiPV4Hueuy7OMqmYAKUBIIceMK+SYxhhjilGZ7WwXkUkiEikikQkJCYEOxxhjyix/JpJ4oKnH8zB3XZ5lRKQiUAtIKuSYYYUcEwBVnaGqEaoaUa9evQsM3RhjjLf8mUjWA21EpIWIVAbGAgtylVkA3O4ujwaWun0feVLVw8AJEbnCvVtrAvBF0YdujDHGW34b/VdVM0RkMrAICALeU9VtIvIsEKmqC4B3gdkiEg0k4yQbAEQkBqgJVBaRUcAQVd0O3A/MBKoCC92HMcaYAJECLgDKjIiICI2MjAx0GMYYU6qIyAZVjSisXJntbDfGGFM8LJEYY4zxiSUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnfk0kIjJMRHaJSLSIPJHH9ioiMtfdvlZEmntse9Jdv0tEhnqsjxGRLSISJSKR/ozfGGNM4Sr668AiEgS8DgwG4oD1IrJAVbd7FLsL+EVVW4vIWGA6MEZEOgBjgY5AY2CJiLRV1Ux3v4Gqmuiv2I0xxnjPn1ckPYFoVd2nqueAOcDIXGVGArPc5XnA1SIi7vo5qpqmqvuBaPd4xhhjShh/JpImQKzH8zh3XZ5lVDUDSAFCCtlXgcUiskFEJuV3chGZJCKRIhKZkJDgU0WMMcbkrzR2tvdV1e7AtcADInJVXoVUdYaqRqhqRL169Yo3QmOMKUf8mUjigaYez8PcdXmWEZGKQC0gqaB9VTX732PAfKzJyxhjAsqfiWQ90EZEWohIZZzO8wW5yiwAbneXRwNLVVXd9WPdu7paAG2AdSJSXURqAIhIdWAIsNWPdTDGGFMIv921paoZIjIZWAQEAe+p6jYReRaIVNUFwLvAbBGJBpJxkg1uuU+A7UAG8ICqZopIA2C+0x9PReAjVf3WX3UwxhhTOHEuAMq2iIgIjYy0n5wYY8yFEJENqhpRWLnS2NlujDGmBLFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xK+JRESGicguEYkWkSfy2F5FROa629eKSHOPbU+663eJyFBvj2mMMaZ4+S2RiEgQ8DpwLdABGCciHXIVuwv4RVVbA/8Eprv7dgDGAh2BYcAbIhLk5TGNMcYUo4p+PHZPIFpV9wGIyBxgJLDdo8xIYJq7PA94TUTEXT9HVdOA/SIS7R4PL45ZZB784EpiM07549DGGFMsPhm/ispVavj1HP5MJE2AWI/ncUCv/MqoaoaIpAAh7vo1ufZt4i4XdkwARGQSMAkgPDz8oioQVjWUSqlBF7WvMcaUBFIMXeH+TCQBpaozgBkAERERejHHePzmBUUakzHGlEX+TFXxQFOP52HuujzLiEhFoBaQVMC+3hzTGGNMMfJnIlkPtBGRFiJSGafzPPef+AuA293l0cBSVVV3/Vj3rq4WQBtgnZfHNMYYU4z81rTl9nlMBhYBQcB7qrpNRJ4FIlV1AfAuMNvtTE/GSQy45T7B6UTPAB5Q1UyAvI7przoYY4wpnDgXAGVbRESERkZGBjoMY4wpVURkg6pGFFbOftlujDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOOTctHZLiIJwIGL3D0USCzCcEoDq3P5UN7qXN7qC77VORFAVYcVVrBcJBJfiEikN3ctlCVW5/KhvNW5vNUXiq/O1rRljDHGJ5ZIjDHG+MQSSeFmBDqAALA6lw/lrc7lrb5QTHW2PhJjjDE+sSsSY4wxPrFEYowxxieWSFwiMkxEdolItIg8kcf2iSKSICJR7uPuQMRZVAqrr1vmFhHZLiLbROSj4o6xqHnxHv/T4/3dLSLHAxFnUfKizuEiskxEfhaRzSLym0DEWZS8qHMzEfnere9yEQkLRJxFRUTeE5FjIrI1n+0iIq+4r8dmEele5EGoarl/4AxJvxdoCVQGNgEdcpWZCLwW6FiLsb5tgJ+BOu7z+oGO2991zlX+QZxpCgIeu5/f5xnA79zlDkBMoOMuhjp/CtzuLg8CZgc6bh/rfBXQHdiaz/bfAAsBAa4A1hZ1DHZF4ugJRKvqPlU9B8wBRgY4Jn/ypr73AK+r6i8AqnqsmGMsahf6Ho8DPi6WyPzHmzorUNNdrgUcKsb4/MGbOncAlrrLy/LYXqqo6gqc+ZzyMxL4QB1rgNoi0qgoY7BE4mgCxHo8j3PX5XaTe2k4T0Sa5rG9tPCmvm2BtiKySkTWiEihwySUcN6+x4hIM6AF//uyKa28qfM04LciEgd8g3MlVpp5U+dNwI3u8g1ADREJKYbYAsXrz/7FskTivS+B5qraGfgOmBXgePytIk7z1gCcv87fFpHaAY2o+IwF5qk7K2cZNw6YqaphOE0gs0WkrH8v/AHoLyI/A/2BeKA8vNd+U9Y/MN6KBzyvMMLcdeepapKqprlP3wF6FFNs/lBofXH+almgqumquh/YjZNYSitv6pxtLKW/WQu8q/NdwCcAqroaCMYZ6K+08ub/8iFVvVFVuwF/dNeV+hsrCnAhn/2LYonEsR5oIyItRKQyzhfJAs8CudoURwA7ijG+olZofYHPca5GEJFQnKaufcUZZBHzps6ISDugDrC6mOPzB2/qfBC4GkBE2uMkkoRijbJoefN/OdTjqutJ4L1ijrG4LQAmuHdvXQGkqOrhojxBxaI8WGmlqhkiMhlYhHPXx3uquk1EngUiVXUB8JCIjAAycDq2JgYsYB95Wd9FwBAR2Y5z2T9FVZMCF7VvvKwzOF88c9S93aU087LOv8dptnwEp+N9Ymmuu5d1HgD8TUQUWAE8ELCAi4CIfIxTp1C3r+tpoBKAqr6J0/f1GyAaOAPcUeQxlOLPjDHGmBLAmraMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJGYUklETnlR5v9EpFoRnnOUiHQowuP95MO+p9x/G4vIvALK1RaR+y/2PMZ4wxKJKcv+D7igRCIiQQVsHoUz4F+RUNUri+AYh1R1dAFFagOWSIxfWSIxpZqIDHDnlJgnIjtF5EP3F7wPAY2BZSKyzC07RERWi8hGEflURC5x18eIyHQR2QjcLCL3iMh6EdkkIv8VkWoiciXOiAYvuvOVtBKRru6AlptFZL6I1HGPt1ycuU0iRWSHiFwuIp+JyB4Rec4j9lMey4+LyBb3nM/nUc8Wbuxbch2jefY8FCLSUUTWufFtFpE2wPNAK3fdiyJyiThzcWx0jzXS4zg7RORtceafWSwiVd1trUVkiRvbRhFp5a6f4r5Om0XkmSJ9Y03pEuix9O1hj4t5AKfcfwcAKTjjB1XAGdqkr7stBgh1l0NxfsVc3X3+ODDVo9xjHscO8Vh+DnjQXZ4JjPbYthno7y4/C7zsLi8HprvLD+MMzd4IqIIzhllIrjpcC/wEVHOf182jvguACe7yAx77NsedhwJ4FRjvLlcGqnpud9dXBGp6vCbROPNUNMcZtaGru+0T4Lfu8lrgBnc5GOcqbwjOXCbivu5fAVcF+nNhj8A8bIgUUxasU9U4ABGJwvlSXJmrzBU4zVKrRAScL1rP8bTmeix3cv/qrw1cgjPcRg4iUguorao/uKtm4UyYlC17yJUtwDZ1xzYSkX04A+h5DjdzDfC+qp4BUNW85pboA9zkLs8GpudRZjXwR3Fm/PtMVfe4dc0ROvBXEbkKyMIZTryBu22/qka5yxuA5iJSA2iiqvPd2FLdegzBSSY/u+UvwRnUc0UecZkyzhKJKQvSPJYzyftzLcB3qjoun2Oc9lieCYxS1U0iMhF38MqLjCkrV3xZ+cTnjQLHM1LVj0RkLXAd8I2I3MuvB9ocD9QDeqhquojE4FxleMYMzutYtYDTCfA3VX3rAuI3ZZT1kZiy7CRQw11eA/QRkdYAIlJdRNrms18N4LCIVML54v3V8VQ1BfhFRPq5224DfuDifAfckX2HmYjUzaPMKpwBJckV03ki0hLYp6qvAF8Ancn5GoAzC+IxN4kMBJoVFJiqngTiRGSUe44qbpyLgDs9+pmaiEh9r2pryhxLJKYsmwF8KyLLVDUBZ8Tmj0VkM04zULt89vsTTr/AKmCnx/o5wBQR+dntcL4dp/N9M9AVp5/kgqnqtzhNYZFu09wf8ij2MPCAiGwh/9ntbgG2usfohDO9ahJOc95WEXkR+BCIcI8zIVf98nMbzujXm3H6chqq6mLgI2C1e6x55ExYphyx0X+NMcb4xK5IjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGPP/26tjAQAAAIBB/taD2FsSsYgEgEUkACwiAWAJUNxQ5cZBKfYAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, np.subtract(hf_energies, energies[0][1]), label='Hartree-Fock')\n", - "for k in range(len(transformations)):\n", - " pylab.plot(distances, np.subtract(energies[k][0], energies[k][1]), label='VQE + '+transformations[k])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXl8VOW9+P/+zGRfIJCEhIQ9JEF2BFFZoohKVUCqXvu1q22t1a4/22trX7dV67W39mrt5m2rt3WpV2sVFMENBRRERQ1bCAiBYEIWAtkXMlnn+f1xzoRJMjM5k8wkk/i8X695zcxzznPOc86cOZ/zfFZRSqHRaDQaTV/YhnoAGo1GoxkeaIGh0Wg0GktogaHRaDQaS2iBodFoNBpLaIGh0Wg0GktogaHRaDQaS2iBodFoNBpLaIGh+UwjIkUicvkQ7TtFRHaKSKOI/HYQ9/ukiNwfpG1/SUTeDMa2NUOPFhgar4jIGyJyn4f2a0WkQkTCzO9LRGS7eeOrF5FNIjLDbf1LRcQpIk09XhcP5vGEILcCVcAopdSPh3ow/iIiU0REua4DAKXUM0qpK4dyXJrgoQWGxhdPAV8WEenR/hXgGaVUh3nTfxN4GUgDpgJ5wHsiMsWtT7lSKq7H64PgH8Lg4H7T9IPJwGGl0y1ohglaYGh8sRFIBJa7GkRkDLAa+IfZ9N/AP5RSf1BKNSqlapRSPwc+Au7pz05NNdG/i0ieOWP5l4hEmctuFpFdPdZXIjLd/PykiPxZRF43ZzHviUiqiPxeRGpF5IiILOixywtE5LC5/AnXvsztrRaR/SJSJyLvi8jcHuP8qYjkAWc9CQ1z9vWxeRwfi8gS1ziBrwE/McfZSy0mIpEi8pCInBSR0yLyVxGJNpd9IiKr3dYNE5FKETnf/P6COQusN9Ves7yc677O5zUisk9EGkSkRETudVt1p/le55ox9tyet+M3l70jIv9p/kaNIvKmiCSZy6JE5P9EpNo89x+LSIqnY9AMHlpgaLyilHIAzwNfdWu+ETiilDogIjHAEuAFD92fBwaimrgR+BzGjGUucLOffX8OJAGtwAfAXvP7euDhHut/CVgFZABZZl9MwfI48G0MwfkosElEIt363gRcAyQopTrcNyoiY4FXgT+a/R8GXhWRRKXUzcAzwH+bs62tHo7jAXM884HpQDpwt7nsn+a+XawCqpRSe83vrwOZwDjz2J/xfKr65CzG759gHuftIrLOXJZjvid4mjH6On631b4IfN0cZwTw72b714DRwESz722Ao5/HoAkQWmBo+uIp4Aa3p+6vmm0AYzGuoVMe+p0Ckt2+p5lPiu6vWB/7/aNSqlwpVQNsxrhpWuUlpdQepVQL8BLQopT6h1KqE/gX0HOG8YhSqsTc1684dyO+FXhUKfWhUqpTKfUUhgC6qMc4S0zh2pNrgGNKqaeVUh1KqX8CR4A1fR2AqQa8FbjDnLU1Av8F/D9zlWeBtabQBuPG+09Xf6XU4+aMrxW4F5gnIqP72m9PlFLvKKUOKqWcSqk8cx+XWOxu5fifUEoVuD2cuH7ndgxBMd0893uUUg3+jl8TWLTA0PhEKbULwzC7TkQygMUYNyuAWsAJjPfQdbzZz0W5Uiqhx+usj11XuH1uBuL8GPZpt88OD997bqvE7XMxhi0GDBvDj92FHMYTb5qXvj1JM7fnTjHGTKEvkoEYYI/bvt8w21FKHQc+AdaYQmMt5u8iInYReUBECkWkASgyt5lkYb/dEJELReRtU91Vj/Gkb3U7Vo7f2+/8NLAFeE5EykXkv0Uk3N/xawKLFhgaK/wDY2bxZWCLUuo0gHnD/wD4Nw99bgTeCcJYzmLcSAEQkdQAbHOi2+dJQLn5uQT4VQ8hF2M+KbvwZbAuxxA67kwCyiyMqQpDuM1y2/dopZS7sHOppa7FMJ4fN9u/aLZdjqHWmWK293RegL7P57PAJmCiUmo08Fe37fRlrO/38Sul2pVSv1RKzcRQe66mu2pUMwRogaGxwj8wbj7f4pw6ysVdwNdE5AciEi8iY8Tw8V+OoUIJNAeAWSIy31ST3RuAbX5XRCaYOvf/wFBbAfwvcJv5lC0iEmsageMtbvc1IEtEvmgapb8AzARe6aujUspp7v93IjIOQETSRWSV22rPYdiJbufcrA8gHkN1Vo0hDHz9Dn2dz3igRinVIiKLMYSRi0qMGeY0L9vu9/GLyAoRmSMidqABQ0Xl7KufJrhogaHpE6VUEfA+EIvxtOm+bBeGwfU6DLtFDYbBcqVSKt9t1TTpHYdxfT/GUgDcB2wFjgG7fPewxLMYrsEngELgfnNfuRhC8hEM9dtx/DC+K6WqMZ6Mf4xx8/4JsFopVeWz4zl+au5zt6la2gpku23/FMYMbwnnhBwYAr4Y40n+MLDbxxj7Op/fAe4TkUYMg/vzbn2bMWw+75lqM3fbzkCPPxXDQaEBQ/W2A0NNpRlCRLuAawKJGG6nbwNfVEptGerxaDSawKFnGJqAYnrSrAPmSP+C2TQaTYiiZxgajUajsYSeYWg0Go3GEiNKZZCUlKSmTJky1MPQaDSaYcOePXuqlFLJfa85wgTGlClTyM3NHephaDQazbBBRHoGV3pFq6Q0Go1GYwktMDQajUZjCS0wNBqNRmOJEWXD8ER7ezulpaW0tLQM9VA0IURUVBQTJkwgPFzns9NorDLiBUZpaSnx8fFMmTIF6VU4TvNZRClFdXU1paWlTJ06daiHo9EMG4KqkhKRBBFZL0aVs0/MilxjReQtETlmvo/x0vdr5jrHRORr/R1DS0sLiYmJWlhouhAREhMT9axTM/zJex5+NxvuTTDe857vu88ACLYN4w/AG0qpGcA8jCRidwHblFKZwDbzezfMrKH3ABdi1F+4x5tgsYIWFpqe6GtCM+zJex42/wDqSwBlvG/+QVCFRtAEhlndKwf4O4BSqk0pVYeRp9+VIvspjLxDPVkFvGVWGqsF3sIo16nRaDQagG33QXuPQo/tDqM9SARzhjEVI1/+E2IUkf+bWZIzxUzLDEa1LU+F3dPpXsmsFC9VykTkVhHJFZHcysrKAA4/MKxYsYItW7onbf3973/P7bffDsChQ4e47LLLyM7OJiMjg3vuuQen00j7/+STT5KcnMz8+fO7XocPHx7QeCorK7nwwgtZsGAB7777rtf17r33Xh566CEAbr75ZtavXz+g/Wo0mgBTX+pfewAIpsAIA84H/qKUWoBR2aub+kkZmQ8HlP1QKfWYUmqRUmpRcrKl6HafbNxXxtIHtjP1rldZ+sB2Nu6zUhzNOzfddBPPPfdct7bnnnuOm266CYfDwdq1a7nrrrs4evQoBw8e5KOPPuIPf/hD17pf+MIX2L9/f9dr5syZXvf1zjvvcPPNN/scz7Zt25gzZw779u1j+fLlAzo2jUYzhIye4F97AAimwCgFSpVSH5rf12MIkNMiMh7AfD/joW8Z3ctmTsBaWcsBsXFfGT978SBldQ4UUFbn4GcvHhyQ0Ljhhht49dVXaWtrA6CoqIjy8nKWL1/Os88+y9KlS7nyyisBiImJ4ZFHHuHBBx8MxOH0Yv/+/fzkJz/h5ZdfZv78+TgcDuLizlX8XL9+fZ8CR6PRhAgzrundFh4NK+8O2i6D5larlKoQkRIRyVZKHQVWYlT/OoxRke0B8/1lD923AP/lZui+EvjZQMf0y82HOFze4HX5vpN1tHV2rwLpaO/kJ+vz+OdHJz32mZk2invWzPK6zbFjx7J48WJef/11rr32Wp577jluvPFGRIRDhw6xcOHCbutnZGTgcDioq6sD4F//+he7dp0rgvbBBx8QHR3d57F6Yv78+dx3333k5ubyyCOP9GsbGo0mBGisMIzbCZNBdUJ9mTGzWHk3zL0xaLsNdhzG94FnRCQCo/zl1zFmNc+LyDcxykjeCCAii4DblFK3KKVqROQ/gY/N7dynlKoJ8lh7CYu+2q3iUku5BMbf//53y32/8IUv9Hlzv/DCC2ltbaWpqYmamhrmz58PwG9+8xtWrVrls69GoxlmKAWbvg/tzfCNLZCcNWi7DqrAUErtBxZ5WLTSw7q5wC1u3x8HHg/keHzNBACWPrCdsjpHr/b0hGj+9e2L+73fa6+9ljvuuIO9e/fS3NzcNauYOXMmO3fu7LbuiRMnSExMJCEhwfL2P/zQ0Pq98847PPnkkzz55JOW+7q7l+q4BI1mGLDnCTj2Jlz134MqLEDnkurGnauyiQ63d2uLDrdz56rsAW03Li6OFStW8I1vfIObbrqpq/1LX/oSu3btYuvWrQA4HA5+8IMf8Mtf/nJA+/OHlJQUPvnkE5xOJy+99NKg7Vej0fSD6kLY8h8w7VK44FuDvnstMNxYtyCdX183h/SEaARjZvHr6+awboFHj16/uOmmmzhw4EA3gREdHc2mTZv41a9+RVZWFklJSSxdupQvfelLXev861//6uZW+/777w94LO488MADrF69miVLljB+/PiAbluj0QSQzg546Tawh8O1fwbb4N++R1RN70WLFqmeBZQ++eQTzjvvvCEakX9s3LiRH/3oR7z99ttMnjx5qIcz4hlO14ZGw84HYfv9cP3fYc4NAdusiOxRSnkyHfRCzzBCiHXr1nHixAktLDQaTXfK98M7D8Cs6wIqLPxFCwyNRqMJZdod8OKtEJsM1/x2SIcy4tObazQazbBm231QdRS+/CLEjB3SoegZhkaj0YQqJ96B3X+GxbfC9F7RCIOOFhgajUYTijjqYON3IDETLh88V3tfaJWURqPRhCKv/8RIAXLLWxARM9SjAfQMQ6PRaEKPQy9B3r/gkp9A+sK+1x8ktMDoSYBLHoZaPYyBUldXx5///Oeu7+Xl5dxwg283v0svvZSe8TFWmDJlClVVVZbXf/LJJ/ne977n9340mpCisQJeuQPSzoflPx7q0XRDCwx3glDyMNTqYQyEjo6OXgIjLS1NF1fSaAKFUvDyd6G9Ba57zIjqDiE+WzaM1++CioPel5d+DJ2t3dvaHfDy92DPU577pM6Bqx7wuskbbriBn//857S1tREREdGtHsbjjz/usR7G8uXLueOOO/w9OkvcfPPNREVFkZubS0NDAw8//DCrV6+mqKiIr3zlK5w9exaARx55hCVLlvDOO+/wi1/8gjFjxnDkyBHOP/98CgsLmT9/PldccQXf/e53Wb16Nfn5+XR2dvLTn/6UN954A5vNxre+9S2+//3vd9v/m2++yT333ENraysZGRk88cQT3Wpy9ORPf/oTmzdvpr29nRdeeIEZM2ZQU1PDN77xDU6cOEFMTAyPPfYYc+fO7davsrKS2267jZMnjbT0v//971m6dGmAz6ZGE2By/w7Ht8LVD0FS5lCPphefLYHRFz2FRV/tFgilehguioqK+OijjygsLGTFihUcP36ccePG8dZbbxEVFcWxY8e46aabutRIe/fuJT8/n6lTp1JUVER+fj779+/v2paLxx57jKKiIvbv309YWBg1Nd0z0ldVVXH//fezdetWYmNj+c1vfsPDDz/M3Xd7L/iSlJTE3r17+fOf/8xDDz3E3/72N+655x4WLFjAxo0b2b59O1/96le7xuPihz/8IXfccQfLli3j5MmTrFq1ik8++WRA502jCQp5zxuxFq7SquNmwgW3+O4zRHy2BIaPmQBg2CzqS3q3j54IX3+137sNtXoYN954IzabjczMTKZNm8aRI0eYOnUq3/ve99i/fz92u52CgoKu9RcvXszUqVP7HOvWrVu57bbbCAszLquxY7sHGe3evZvDhw93Pem3tbVx8cW+08Zfd911ACxcuJAXX3wRgF27drFhwwYALrvsMqqrq2lo6F4Ya+vWrd3sPQ0NDTQ1NfmczWg0g45LDd7uVlah5gQcfCGohZD6y2dLYPTFyrt7/3gBKHkYavUw3GtguL7/7ne/IyUlhQMHDuB0OomKiupaHhsba3ksvlBKccUVV/DPf/7Tcp/IyEgA7HY7HR0dlvs5nU52797d7Tg0mpBj233d7zcAHS1GewgKDG30dmfujbDmj8aMAjHe1/xxwD9cqNXDeOGFF3A6nRQWFnLixAmys7Opr69n/Pjx2Gw2nn76aTo7Oz32jY+Pp7Gx0eOyK664gkcffbTrxt5TJXXRRRfx3nvvcfz4cQDOnj3bbSZjleXLl/PMM88AhpBMSkpi1KhR3da58sor+dOf/tT1vafKSqMJCVxqKKvtQ4wWGD2ZeyPckQ/31hnvAZLyoVQPY9KkSSxevJirrrqKv/71r0RFRfGd73yHp556innz5nHkyBGvs4rExESWLl3K7NmzufPOO7stu+WWW5g0aRJz585l3rx5PPvss92WJycn8+STT3LTTTcxd+5cLr74Yo4cOeL3+O+991727NnD3Llzueuuu3jqqd4OCX/84x/Jzc1l7ty5zJw5k7/+9a9+70ejCTqjJ/jXPsToehghxGDUw7j55ptZvXp1n7ETnwWG07WhGaHkPW8URVJuM/rw6IBoNqziTz2MoNowRKQIaAQ6gQ6l1CIR+RfgqnmaANQppeZb6RvMsYYC69atY926dUM9DI1GM1jMuAbEBuFR0NZszCxW3h2S9gsYHKP3CqVUV7iuUuoLrs8i8lug3mpfzcDpyyA+FHz+85/n008/7dbmzcNLoxlRHH0dnO3wxY0wZdlQj6ZPhsxLSgxXnRuBy4K9L6VUL88gTejw0ksvDfo+R5IqVjOMyd8A8WkwaclQj8QSwTZ6K+BNEdkjIrf2WLYcOK2UOtaPvl2IyK0ikisiuZWVlb2WR0VFUV1drW8Qmi6UUlRXV2uXW83Q4qiFY2/B7OvANjz8j4I9w1imlCoTkXHAWyJyRCnlCjy4CfDlkO+rbxdKqceAx8AwevdcPmHCBEpLS/EkTDSfXaKiopgwITQ9UTSfET7ZbKijZl831COxTFAFhlKqzHw/IyIvAYuBnSISBlwHeM3b662vv2MIDw+3FKWs0YQaG/eV8eCWo5TXOUhLiObOVdmsW5A+1MPSBIr8DTBmqpGVdpgQtHmQiMSKSLzrM3AlkG8uvhw4opTyGJ3SR1+NZsSzcV8ZP3vxIGV1DhRQVufgZy8eZOO+sqEemiYQNJ6GT3fCnBtgGNlXg6k4SwF2icgB4CPgVaXUG+ay/0cPdZSIpInIaxb6ajQjnge3HMXR3j3a3tHeyYNbjg7RiDQB5fBGUE6Yff1Qj8QvgqaSUkqdAOZ5WXazh7Zy4Oq++mo0nwXK6xx+tWuGGfkbYNwsGDe8AkeHh2leo/mMkZbgOYW9t3bNMKLuJJR8CHOG1+wCtMDQaEKSO1dlEx1u79YWHW7nzlXZXnpohg35Rmr+4aaOAp3eXKMJSVzeUD9+4QCdTkVcZBj3r5utvaRGAvkbIH0RjJky1CPxGz3D0GhClGvnpxFuNzxoLpw6VguLkUBlgVEmes7wTP6pBYZGE6I0tXbQ0u4E4EiF5xokmmFG/npAYNbnh3ok/UILDI0mRKlsNGrJZyTHUlbnoLGlfYhHpBkQShnqqCnLID51qEfTL7TA0GhClKqmNgCWTU8C4NiZpqEcjmagnDoA1ceHrToKtNFbowlZwg+tZ1fEb0jfV823IhI5ueffYdLtQz0sTX/JXw+2MDhvbbfm4ZQCRgsMjSYUyXueOXt/QZitBYAJtirG5d0DGYkhW1xH4wOnE/JfhIyVEDO2q9mVAsYV1e9KAQOEpNDQKimNJhTZdh9hzpZuTRGqFbbdN0QD0gyIkg+hoayXOmq4pYDRAkOjCUXqPebl9N6uCW3y10NYNGRf3a15uKWA0QJDowlFRnuu1dE5KvTUFJo+6OyAQxshaxVExnVb5C3VS1Jc5GCMzG+0wNBoQpGVd9Pew8TYrCIonPOjIRqQpt98ugOaqzx6R925KpswW/f05gJUNbXyl3cKcTpDq1KoFhgaTSgy90bKGIcT42bijBrDXe23sCv6siEemMZv8jdA5CiYfkWvResWpDNhTDThdkGA9IRofvX52Vw1J5XfvHGErzz+IacbWnpvc4jQAkOjCUFUXQlTKGd3+s0AyEW38W7UCgpO64jvYUV7i1GKdcZqCO9dQ77e0U5JrYNbc6bx6QPX8N5dl/HFCyfzP188n99cP4e9xXV87vc72Xr49BAMvjdaYGg0IUjLfiOjadnkdRA/HqkrITs1nqNaYAwvjm+F1gavqcw/KKyi06nIyUzu1i4ifOGCSWz+/jLGj47mln/kcvfL+bT08KgabLTA0GhCEDm0gTznVCJTsiBhMtQVk50ST0FFY8jptTU+yF8PMYkw9VKPi3cUVBEXGcb5k8d4XD59XBwvfXcJ31w2lX98UMy1j7w3pLNMLTA0mlCjupCoyjw2dS4hKS4CEiYZAiN1FGfbOikLUZdLTQ9am+DoGzBzHdh7x0grpdhZUMnFGYmE273fiiPD7Pxi9Uye/PoFVJ9tZc2fdvH07mKUGvwHh6AKDBEpEpGDIrJfRHLNtntFpMxs2y8iV3vp+zkROSoix0XkrmCOU6MJKfI3oBBe6byIcfGRhsCoLyN7nKEDH8l2jI37ylj6wHam3vUqSx/YzsZ9ZUM9pP5z9HXocHjNHXWi6ixldQ5yspI9Lu/JpdnjeP2HOVw0LZFfbMzn1qf38H+7iwf1fA1GapAVSqmqHm2/U0o95K2DiNiB/wGuAEqBj0Vkk1LqcBDHqdEMPUrBwfVUJCygoiKR5LgoQ2CoTrJijOSDRyoaWXleyhAPNPAMtzQZfZK/Hkalw8SLPC7eWVAJwCWZ1gQGQHJ8JE/cfAGPv/cp//XaJ7zlZgwfjPMVqiqpxcBxpdQJpVQb8Bxw7RCPSaMJPqfzoeooeQmXE2G3MSo6DMZMBiC+uYz0hOgRO8MYbmkyfNJcA8e3GXUvbJ5vszsLKpmSGMOkxBi/Nm2zCbcsn0aih+C+YJ+vYAsMBbwpIntE5Fa39u+JSJ6IPC4inqw96UCJ2/dSs60XInKriOSKSG5lZWXgRq7RDAX5G0DsvBexjKS4CETEmGEA1J0kKyWOoyO0mNJwS5Phk082gbPdqzqqtaOT3SdqLKujPFFl1kvpSTDPV7AFxjKl1PnAVcB3RSQH+AuQAcwHTgG/HcgOlFKPKaUWKaUWJSf3/+RrNEOOq8BOxgqKWqJJjjefIEdNAMQQGKnxFFY20d7pHNKhBgNvaTK8tYc0+RtgbAaMn+9xcW5RLY72zl7utP4wFOcrqAJDKVVmvp8BXgIWK6VOK6U6lVJO4H8x1E89KQMmun2fYLZpNCOX0o+h7iTMvp6qxtZz+YTCImBUGtSdZEZqPO2diqKqs0M71iBw56psIsK635Kiw+3cuSp7iEbUTxor4NN3Yfb1IOJxlZ0FlYTbhYszEvu9mztXZRMdbu/WFuzzFTSBISKxIhLv+gxcCeSLyHi31T4P5Hvo/jGQKSJTRSQC+H/ApmCNVaMJCQ6uB3skzFhNZVPruRkGdMViZKXEA4zIAL51C9K5fMa4ru/hduHX180ZfgbvQy8BymdlvR0FlSycPIbYyP77Ha1bkM6vr5tDekJ0V1qRYJ+vYHpJpQAviSFhw4BnlVJviMjTIjIfw75RBHwbQETSgL8ppa5WSnWIyPeALYAdeFwpdSiIY9VohhZnp3GjybqSzoh4qnsJjElQ/B4ZyXHYbcLRikZWzx264QaL5vZOMsfF8bnZqfzP28dZkT2u706hRv4GSJkDyZ6f9M80tHCkopGffG7gM4F1C9IHVaAGTWAopU4A8zy0f8XL+uXA1W7fXwNeC9b4NJqQouhdOHsGZt9AbXMbTtUjxXXCJDj4PFE2J1MSY0ak4dvpVOwtruWauePJyUrmT9uP815hFVfPGd9351ChtshQLV5+r9dVdh4zogwGYr8YKkLVrVaj+WxxcD1ExEHWKipN75deMwzlhIYyslPjR6Rr7bEzTTS0dLBw8ljmT0wgPjKMd48NM8/HfCMHGLOu87rKzoJKkuIimDl+1CANKnBogaHRDDUdbYYb5oxrIDyaqiYPAsOMxaDWsGMU1zTT3NYxBIMNHrnFNQAsmjyGcLuNJdMT2VlQNSQpMPpN/oswYfG536sHTqdi1/EqlmcmY7N5NoiHMlpgaPxiRKVuCBUKt0FLPcw2jKSuGUYvlRR0eUopBcfPNA32SIPKnqJakuIimWwGsuVkJVNW56Cwchh4hOU9Dw9lm4GXBcZ3D+SX11Nzto2crKRBHmBg0AJDYxlX6oayOgeKc6kItNAYIAfXQ/QYmHYpgGeV1Kh0EJsZvGd6So0wO8bHxTUsmjwG01GmS8fvSqERsuQ9D5t/AE0VxveWOuO7B6HhOpblw9B+AVpgaPxgRKVuCBXazsLR12DmtUa8BUZ5zuhwO7ERbj729nBDaNSdZHJiLJFhthElMM40tFBS42DRlHOJHyaOjWFaUiw7Q92Ose0+aO8RXd3uMNp7sLOgillpo0K2ZndfaIGhscyISt0QKhS8Ae3NXeooMGYYSfERXU/aXZixGHabkJkSN6JiMXKLawFY2KMuRE5WMrtPVA954SCf1Jdaam9saWfvydoBpQMZarTA0FhmRKVuCBUOboD48TB5SVdTZVMryZ6eQBMmGZHgQFbKyPKUyi2qJTLMxqy00d3ac7KSaGl3kltUO0Qjs8DoCZba3y+spsNDdb3hhBYYGsvcuSqbyJGQuiFUcNTB8bfMjKbn1E9VjW2eVRYJk6ChHDrayE6J53RDK3XNbYM44OCxp7iGeRMTeqUGuWhaIhF2W2irpVbebdiX3AmPNtrd2FlQSWyEvdcsajihBYbGMusWpPOVi8+5C4bZhP/6/Ozhl7ohVDjyCnS2dVNHAb3TgrhImAQoaCglO3XkGL4dbZ0cKm9gkYcbaUxEGIumjAltw/d5awCbEUeDwOiJsOaPMPfGbqu9e6yKizMSewnF4cTwHblmSJhgqp9+dEUWHU5Fpumxo+kHB9fDmCmQfn5XU3unk5qzbZ4FhlsshktgjAS11P6SOjqcqpvB252crGSOVDRyuqFlkEdmkeL3QXXADU/AvXVwR34vYVFUdZaTNc3D2n4BWmBo/KS01kFUuI0vXzSZMJuwOa98qIdSkPynAAAgAElEQVQ0PGk6A5/u6JXRtOasoWLyqpICqDtJ6qgo4qPCODICZhi5RUbA3sJJYz0uD3n32sLtYI+AKUu9ruJSqQ1n+wVogaHxk9JaBxPGxDA2NoLlmUm8cuAUTucwisQNFQ6/bKT66KmO8hSD4SI+DcQOdScREWaMkBQhucW1ZKXEMTom3OPy88bHkxQX2ZWDKeQ4vg0mXQwRsV5X2VlQycSx0V1BicMVSwJDRDJEJNL8fKmI/EBEEoI7NE0oUlrXzIQxhlpq7fw0yuoc7D0Zwh4socrB9TBuJqTM7NbsU2DYw2B0ejdPqaMVjcMrdUYPnE7F3pO1LJzseXYBICLkZCax61glnaH2cNJQDpWfwPSVXldp63DyQWE1OZnJvV2lhxlWZxgbgE4RmQ48hlHc6NmgjUoTspTUOLoExhUzU4kMs7H5gFZL+UVdCZTsNtRRPah05ZHyFthlxmIAzEiNp6Glg4og6PYHKwVMwZlGGls6PBq83cnJSqa2uZ38svqgjKPfFG433jO8C4w9xbWcbesc9vYLsC4wnEqpDoyCR39SSt0JDKOcw5pA0NDSTr2jnYljjGl1XGQYK88bx6sHT9ExAkuGBo1DLxrvs3tnNPWYR8qdhMndZhgQeE+pwUwB44qv8GbwdrEs08i9FHJ2jOPbIC4VUmZ5XWXnsUrCbMKSAVTXCxWsCox2EbkJ+BrwitnmWeGoGbGU1RoR3RPGnNPDrp2XRlVTGx+cqB6qYQ0/Dq6H9IUwdlqvRZWNrcRHhhEdYffQEcPw3XgKOlqD5ik1mClg9hQbCQcnjfWt20+Ki2R2+qjQisdwdsKJtyHjMq+lWMEQcudPGkN81PC/ZVoVGF8HLgZ+pZT6VESmAk8Hb1iaUKS0S2Cci+y+NHsccZFhWi1llapjUJHXy9jdtbiplSRP9gsXLk+p+lISYiJIGRUZcE+pwUwBk9sj4aAvcjKT2XuyjoaW9oCPo1+U7wdHrSEwvFDZ2Mqh8oZhm522J5YEhlLqsFLqB0qpf5rfP1VK/Sa4Q9OEGiU1zUB3gREVbufKWSm8nl9Ba0cI5/sJFfI3AGJEd3ugstFLWhAXXbEYRUBwUoQMVgqY0x4SDvoiJyuZTqfi/eMhMpst3AYIZKzwusqu46Y77QiwX4B1L6mlIvKWiBSIyAkR+VRETljoVyQiB0Vkv4jkmm0PisgREckTkZe8eVt56qsZWkprHcRE2BkbG9Gtfe28NBpbOthxNITUBaGIUoY6asoyGOXZBOg1ytuFWywGQHZKPMdONwXUe+iHKzN7tQUjBcw5+4V3Dyl3zp80htgIe+hU4Tu+DcbPg1jvs4edBVWMjY1gdo8cWcMVqyqpvwMPA8uAC4BF5rsVViil5iulFpnf3wJmK6XmAgXAz/zoqxlCSmsNl9qe6oOl05MYExPO5rxTQzSyYUJFHlQf8+gd5aKqsZWkuAivy4kfD7awcwIjNZ7WDifF1YErMuSynySaDwYxEXZ+fd2cgKeAyS2uISrcxqw0a6VKI8JsXJyRxM5jlUPvStxSb9Tu9uFO63Qq3j1WybLpScOyup4nrAqMeqXU60qpM0qpaterPztUSr1pelwB7Aa8pHrUhBquoL2ehNttXD1nPFsPnx5xZUMDSv4G42Y/81qPi1vaO2lo6fA9w7DZjSyobgIDAmv43nygnJRRkXz0H5ezdl4aEWE2rpkbeKfIPcW1zJuQQLjdevzwJVlJlNQ4KKpuDvh4/OLEDlCdPt1pD59qoKqpbcSoo8C6wHjbVCVdLCLnu14W+ingTRHZIyK3elj+DeD1fvbVDDIltc3d7BfurJ2XhqO9k7cOnx7kUQ0TnE6j3nPGZRDjWQVTbaYF8SkwoFssRua4eEQImOG73tHOO0crWT03DbtNWDsvjbrmdnYFOMq6ua3DSDho0X7hwnXzHXL32sJtEBEPExd7XeVcOpCRYfAG6wLjQgw11H8BvzVfD1not0wpdT5wFfBdEclxLRCR/wA6gGf87euOiNwqIrkikltZGSK6zRFIvaOdxpaOrhiMnlwwZSypo6LYfECrpTxS+hHUl3j1jgILMRgu3OpiREfYmTw2JmAzjC2HKmjrdLJmXhoAy7OSGBUVxqYAe8HtL6mj06lY5CPC2xOTE2OZnBgztAJDKTi+HabmGJUQvbCzoJIZqfGMGxU1iIMLLla9pFZ4eHn3JTvXr8x8PwO8BCwGEJGbgdXAl5QXZaS3vh7We0wptUgptSg5eeRM/UKN0treHlLu2GzC6rnj2VFwhvrmEHF7DCUOroewKJhxtddVfKYFcSdhMjSd7ioL6koREgg2HyhncmIM8yYYRtrIMDtXzR7Pm4cqAlr1bo9p8D5/kv+1IXIyk/ngRDVtHUMULFp9HOpPwnTvt8CzrR3sKa7lkhGkjgLrXlKjReRh15O8iPxWRHya/UUkVkTiXZ+BK4F8Efkc8BNgrVLKoyLSW1/rh6UJNK4YjFnVW+B3s+HeBOPdrdD92vlptHcq3jgUgrOMvOe9jjv4+50FH/8vIHDUmwbWiMEAizMM6CoBmp0aT1F184Bv6FVNrbx3vIo1c9O6OTasnZ/G2bZOth85M6Dtu+M14aCF3yknK5nmtk5yi2sCNh6/OL7NePdhv/igsJr2TjWi7BdgXSX1ONAI3Gi+GoAn+uiTAuwSkQPAR8CrSqk3gEeAeOAt02X2rwAikiYir/XRVzNElNQ0s9a2i4m77jJUKyjjffMPuv7Uc9JHMyUxJvTUUnnPG+P0Mu7g79es7dzh8Llf1wwj0ZeXFHSriwGGwOh0KgormwY03NcOnsKp6FJHubhoWiJJcZFs2h8YtVSnmXCwlzutxd/p4oxEwmzCzoIhyl5buM2I0h871esqO49VEh1u99tGE+pYFRgZSql7lFInzNcvgd55Ddww15tnvmYppX5ltk9XSk003WXnK6VuM9vLlVJX++qrGTpKax3cFf480tEj2rfdAdvuA4ysomvmpfF+YRVnGkOo2M22+7rUN124jTtU9lvZ2EpCTDiRYV7SgrjoisUwBUZKYDylNu0vJzslvsvzyoXdVDduP3qGxgBEWRec9pJw0OL5iosMY+HkIarC19EKRbt8zi7AsF9cNG1s37/lMMOqwHCIyDLXFxFZCgQ+T4AmZCmtdZAqXjypXU/QGN5STgWvhVJMhtv4LLUP0X6rmlr7VkeBkezOFt5l+J6SFEu4XQbkKVVW5yC3uJa189M8Ll8zL422DidvHhq4F1xusRmw19Pg7cf5yslK5vCphq5Z2aBx8gNob/YZf3Gyupmi6uFfXc8TVgXG7cD/mNHXxRhqpduCNyxNqFFa20yN3csfYPS5UJrMlHhmpMaHVhDfaC+hPt7ah2i/faYFcWGzQcLELoERbreRkRxHwQAExiumF9RqL/EW509KID0hOiDeUnuKakiOj2Ti2B4OFH6cL5cxedCjvo9vM4T1lOVeV9lxbGSlA3HHqpfUfqXUPGAuMEcptUApdSC4Q9OECkopSmsd7JhwuxF45k54NKy8u1vTmnlp7Cmu7fKsGnKWfL93m4dxB5yVdxulOy3ut8+0IO64xWKAYccoON1/G8amA+XMm5jA5ETPVeNc6sZdx6u6ysj2l9ziWs8JB1feben6Apg5fhSJsRGDr5Yq3A6TLoLIOK+rvFtQSXpCNNOSvFfgG674FBgi8mXz/Uci8iPgFuAWt++azwD1jnaaWjuonb4OYpLAbt7UwmNhzR97FbxfaxpNQ8b47TS9h8LNP3B8msdxB5y5N8KkJYAYr9ETfe7XSAtiVWCci8UAw7W2rM7Rr0yuhZVNHCpv6PrdvLF2XhqdTsVrB/v/u55uaKG01sFCTwWTZl8P4TEQZs487BFez5fNJizLTOLdY1WDVyK4sQJO5/vMTtve6eT9wmpysoZ/dT1P9DXDcInIeA8v7yJWM6JwudROj6yDpgq4/B6YsRqix8Ccf+u1/sSxMSyYlBA6Kc/z10PqXPjqy8b3qx4IvrBw0VwN0y6Fe+vgjnyv+z3b2sHZtk4/ZhiT4GwltBmzuBmmofpYPwzfmw+UI+JdHeXivPHxTB8XNyC1lM+Eg0W7oLUBPv8XuPRn0NkO0y/3uq2czGSqz7Zx+FRDv8fjF67qej7sF/tO1tHU2sElIySdeU98Cgyl1KPmx61KqV+6v4BtwR+eJhRwqZYyGz80GjJWGn+ahlKoKvDYZ83cNA6fauD4mYG5eg6YmhNQtsd4eh0/zwieO/nh4Oy7pQHOHDJUGH3gisHwSyUFpguqe/U9/863UopNB8q5cOpYUvqISBYR1sxN4+OiGk7V98/nxWfCwfz1EBEHWZ8zvZCUUaDIC8vNm/KOwVJLHd8GscmQMsfrKjsLKrHbhCXTP4MCw40/WWzTjEBKaoybw7jT78GodEjOPudW6Hrq6sHqueOxCQFPKeE3+a5yqNdDWIRR6a5k9+Dsu/RjUE6YeGGfq54L2usjBsNFj1iM9IRoYiPsHK3w72n7UHkDJyrPsnaetUy0a+enoRS82k+nhtyiWuZP9JBwsKMNDm+CGdcYdov08yEqwUjB4YVx8VGcN37U4NgxnM5z1fVs3m+bO49VsmBiAqNGQHU9T/Rlw7hYRH4MJLvsFubrXmBkORhrvFJa20xClBBevPNcOcoxkyFx+rmo1x6MGxXFRdMSeeVA+dCmos7fABMvMryKwLh5nzrQpcoJKid3g9hgQt/Z+S2nBXHRIxbDZhOyUuM56qdKanNeOWE24arZqZbWn5oUy5z00f16EDjb2sHhUw2e80cVboeWunOp3212Q5VXuM3I3eSFnKwk9hTX0tQa5CzJFQcM9aKP+Iuas20cLKsfkd5RLvqaYURg2CrC6G6/aAC8Z1H7jLBxXxlLH9jO1LteZekD29m4r2xQ+n686VEq7p2O857RVNw7nY83Pdp3pwFQWuvgsvhSaK3vrr/NWGnonds9B+mtmZfGiaqzHCofJB1zT04fhjOHYfb1Xef7G9vt4Oxg144twd9/yW5InQOR8X2u6rfAiB1nOB+4Gb6zzZxSVgW006l45cAplmcmMSbW4swGWDNvPHml9RRV+VeD44CZcHChp+jn/PWGTWyaW/W6jMuM+uVnPvG6zUsyk+lwKj4oDHIVvq50IJ6r623cV8bK376DUvD0B8V+/Z+HE33ZMHaY9oqLetgwHlZKHRukMYYkG/eV8bMXD1JW50BhBD797MWDli6UgfT9eNOjzN7zc1KpxCaQSiWz9/w8qEKjtNbBCnue8bQ87dJzC6avNNJdnPzAY7+rZqcSbpehU0vlrwex8brzwq7zvcdpVJPLfff14P6pOzugdI8xu7FAZVMbIjA2xuKNu0csBhiutbXN7VQ2WQtm23uylrI6h9dgPW+snuvygvPvd80trkXEQ8LBtmY48ppRJyTM7fhdDyeF3s2lC6eMITrcHny1VOF2Q/jHjeu1yPV/rjWTblY2tVr+Pw83wvpeBYBmEXkQmAV0WcasZKwdqTy45SiOHsneHO2d3PViHlsOVfjs+/bRM7S0d8+0abXvz4/9N9HS3Q8+WtqYuPdBWPttP47AGkopSmqbWRC/19D/R7v92acsM1wfC7d5fPJKiIkgJzOZVw6Uc9fnZgxu1TGlDHXU1Eu4f0d1129VTxwFznTmqSP8fMvRgFeR6+L0QWg/C5P6tl+AMcNIjI0gzI9iQr1iMVwpQiqaGBffd0rtTQfKiQyzccVMa+ooF2kJ0SyeMpZNB8r53mXTLbuP5hbXkjUuntHRPfT7BW8Y56pnJcLREyAp23i69xRLg5FN9+KMxOAG8LU0QMmHcPH3PC72di94MJjX1xBh9ep8BjgCTAV+CRQBHwdpTMOC8jrPXiIt7U4KK5t8vnoKC3/6jsdzwrVxKjiJ2Gqb2wlvqyft7Ce99bcRsYYHkA/D5Nr5aZTXt7DnZG1QxueVsr1QWwSzr+/1W+U6szjfdoxTdYEra9oLlyeW1RmGPzEYLnrGYpiutVbsGB2dTl47eIqV540jLtLqc+M51swbz7EzTZbTkXQ6FfuKa72oozYY6U4mL+29bPpKKH7fp80pJzOJoupmTgarCl/Ru+Ds8OpO6+1e4K19OGP1SklUSv1dRH6olNoB7BCRz7TASEuIpszDBZGeEM2bd1zis+/SB7b3r2/TGVoeCieK3sFZZyQJ/54TrVFa28wyWz42nJ7/MBkrYes90HAKRvX247/8vBSiwm1s2l/OBZ5874NF/npj9nPeGtIS9nY733uc2Xwx7G2WjApittOS3Uag3mhrT5hV/kR5u0iYZBhiW5sgMo6kuEiS4iIseUp9cKKaqqa2PoP1vHH1nPHcu/kwmw+Uc974vmtyF5xupLHVQ8LBlno49iZccIth6O5JxkrY/WdDaGR6jslwGZl3HKvkK4mT/T6WPjm+zQj69CL8vd0L0hI8144ZzlidYbjuUKdE5BoRWQAM4r8/9LhzVTYR9u5T8ehwO3euyrbUNzq8+5+jz77HtsJflhCBkzbVva9DRVBy/p3WB+8HpbUOcmx5dEaMhjQPVXmn+3avjY0MY+V5Kbx28BQdnYNU8MbZabjTTr8CohP4Vk73NNS5KguAfz8vSLMepYwZhgV3WheW80i501UXo6SrKSslnqMWUoRs2l9OXGQYl2b31slbITEukqXTk9icZ80LzpVwsNdDwyevQGdbb3WUi8lLDOO+DzvG1KRYJoyJDp4do3AbTF3e3b7ixp2rsumpbbV6LxhuWBUY95sFk34M/DvwN+COoI1qGLBuQTpLMhIBI/FDekI0v75ujiWd5boF6fz6ujmkJ0T33bejFd74GTxzPcSOw/ad9ziw8NdUkIwrI0LlxM9xQRDsFwAl1WfJsefhnHoJ2D1MSFNmQ1yKzz/02nlpVJ9t4/1ge7K4KH7fiEifY9yEOjqNEzU62hh/U/REWiITma+OBmf/9SXQWG4pYA8MO1FVUytJ/s4wxkwx3mvP2TGyUuI5drrRZ7qM1o5O3jhUwZWzUogK7793/Np5aZTUONhXUtfnurlFNYyLj+xdsTF/vXEc6Qs9d4yIMYSGF/dtMAIKc7KSzaJFAX4oqS40VJs+3GmvnJWCAHGRdr/vBcMNSyoppdQr5sd6wLNf2WeQOkcHF0wZwwu3LfG777oF6X1fUJVHYf03DQPq4lvhivsgPJoL1p4Ha7/N/a8c5oaPv0A2A0857Y22U4cZLzWQ5SVFg4jh/liwxXiy96BWuCQrmfhIoy70oPio5683chJlfQ4wvHlmp4/i+W9fzPxfvsX1iyYS1bjEq3fXgDlpBgZanGE0tnbQ2uHs/wzDzY4xIzWe5rZOSmsdTEr0XH99x9FKGls6+q2OcnHlrBQiXrKx+UB5n6VWc4tqWTSlR8LBpko4sQOW/X/GdeSN6SvhzZ8bac69ZLTNyUzm2Q9Psre4lgunJfbncDxjIR3Ihydq6FTw5y8tHNExGGC9ROsTIvJ4z1ewBxfKONo6OVRez0I/i9hbQinY8yQ8egk0lMFNz8HVDxoRsG5kpcbzcscSpPTDbjeNQJJ0ZpfxwccfhoyV4KiBU/s9Lo4Kt7Nqdipb8gNbF9ojne1w+GXIvhoiYimqOsuB0nrWzE0jJiKMRVPMwjsTLzI8jBp9e6X1i5O7ISIeUmZZWt3vGAwXsclGqhM3Tykrhu9NB8oZExPO0gGmrxgVFc6K7GReyTtFp48ZTUV9C2V1jt7/lcMbQXV6V0e5cD3d+5hlLJmeiN0m7Ay0t9TxbYY32ljv9eJ2FFQSGWZj8dSRr6W3qpJ6BXjVfG0DRgFDnCRoaDlQWkd7p+ptxBsojlp44Wuw+YcwcTHc/j5kX+Vx1Rmp8Wx2mmqP/A2BHYdJZsNHlIdP8l07wuVS68tbal4aja0dwc/7U/i2cQ7nGHGlrliB1ebTdE5WMkcqGqlOXGCsfzIIaUJKPoSJF3g24nqgqtFiLe+eiHjMWgveq+81t3Ww7ZMzXD1nfO/0HP1g7bx0Khtb+fCEd3Wjq/Z2r/9K/gZIPq9vwTruPCPDsA+156iocM6flBDYsq0dbYaH1PSVPmdAO49VcuG0xAGp94YLVuthbHB7PYNR17vvfAcjmD2mEc9jmub+Uvw+/GUZHHkVLv8lfGWjR88jF5nj4iljHKfi58DBwAsM1dbM7I58Ssb0oYuPTTIS+/n4Qy/JSCQxNiL4QXz56yFqdFcK6s155VwwZQzppsdKTqahMni7frzxdF4S4ESELfVw+pBld1qgK9DO7xkG9IrFiIsMY8KYaK/urm8dPo2jvXPA6igXl80YR2yEnc153n/X3KJaosPtzHRPOFhXYqgE5/Qxu4Bzas8T7xgBkV7IyUwmv7yeaouBi31S8iG0Nfm0X5TWNnOi8iw5mSMz2WBP+vuIkQn06V5hVug7KCL7RSTXbBsrIm+JyDHz3eMdV0S+Zq5zTES+1s9xBo3cohqmj4vzK6VCN/Keh9/NhnsT4Hez4J9fgievMTwxvvmmodf1keQMIDrCzuSxMbwbdYlh56gMrBG34egOoqSdhvScvlfOWAklHxk3TA+E2W3MSI3n1bxT/UqHYol2hyFsz1sLYZEcqWig4HQTa9xujjNS40mKi2RHYb1haA30DKP0Y0BZDtiDAaikoNcMA4wAPm/V9zYfKCd1VFTAXJyjI+xcMTOF1w5W0Nbh2eC8p7iWeRNHd5/RHHrJeJ91nbUdTb/MuLbK93pdxYlCKVh4/9bAXF+F24yCTlO9X/+uGc0lI9x24cKqDaNRRBpc78Bm4KcW97FCKTVfKeWakdwFbFNKZWKot+7ysL+xwD3AhcBi4B5vgmUocDoVe8yqYf0i73nY/APTHVIZxryjr8CEC+HbO717jHggKyWeF5oXGmk7AqyWaj3yFq0qHPtU7+Uou5i+0tBHf7rT4+KN+8r42JyV+ZsOxTIFW4wnQlMdtWl/OXabcPWcc7M0m03IyUxi17FKnBMuhIq8wCYiPPkhiB3SrU/Aq5pasduEhJ4R0FZImGSo4FrOxV5kpcZTWNnU6wZe19zGjoJKI5NwAKPu185Po97R7jHa2mvCwfz1hpt2Yoa1nUxbAYhX9+2N+8r46zuFXd8Dcn0d3wYTFkOU9ziTnQWVjB8dxfRxn43yQFZVUvFKqVFu71lKqf7ena4FnjI/PwWs87DOKuAtpVSNUqoWeAv4XD/3F3COVzbR0NLRf3XUtvuMp+GeNJRaSlTnTnZqPHtro+icvAwOrveZ2dNfok++w0fObNLGWXganbDYqGXgxTD54JajvW5grvQJASN/vZGUb8pylFJszitnSUZiL9tATlYytc3tFMfNMSJ4y/YEbgwluyF1ts8Snj0xorwj+ncT9xCLMSM1ng6n4tMeyQG3HKqgvVP5nTuqL5ZNT2Z0dLjH3FKuhIOL3CO8q44bGYPn+JG/NGaskfLcx/Xl8JBup9/XV9MZ42FiuvfsRx2dTt4rrCInc2RW1/NEX+nNz/f1srB9BbwpIntE5FazLUUp5UqmXwGkeOiXDpS4fS812zyN8VYRyRWR3MrKwSmk4rNqmBXqS/1r90F2ajydTkXFpGugptD4IwaC+jLiGwvZ6ZzLhDGe3TO7ERZhTN29pKMOevqElnooeBNmfR5sdvaX1FFS4/Coq19m6pu3NphRwYFSS3W2Q2muX/YLMIP2+qOOgl51McCtmFIPw/emA+VMToxhTvro/u3LCxFhNq6ek8qbh0/jaOvuBfdxkZlw0P3hKn8DIMZv5Q8ZK6Es15hR9SDg11fh2+f26YUDpXU0tnSMeFdad/qaYfzWx+shC9tfppQ6H7gK+K6IdFMGKiNEdECPxEqpx5RSi5RSi5KTB+eHyy2uITE2gile/Nx9UrbXu/eML08kL7gSzu2LXQa2cOMpOxCYU//9EedbzzWUcZmhT68u7LXIW5qEgKVPOPIadLaeU0cdKCfCbuPKWb0TpiTFRTI7fRRvfdpmeOkEqqBSxUFob/bLfgFQ1dTmv4eUC1flPTc7xrTkWOw26WbHONPYwgeF1aydlxaUp+E189Jobutk25HuMUG5xTVkp8SfKyiklHGNTl4Ko/yc6UxfaRSkOrGj16KAX1+F2yAmEcbP97rKjoIqbALLRmh1PU/0ld58hY9Xn5lqlVJl5vsZ4CUMe8RpERkPYL6f8dC1DJjo9n2C2RYS7CmuZeHkMf798ZxOeO8P8PcrDdWNvccNIjwaVt7t91imJMUSbhfya8KMP1T+i8a+BkrhNmrtibSMmWG9j4901J7SoUSF2QKXPiF/PYyeBBMuoNOpeDXvFJdmJ/fOjGqSk5nM3pO1tKVfACUfB+aclfiXcNBFv9KCuIhJNIIU3QRGZJidaUmx3TylXss7hVMRMO+onlw4NZFx8ZHd1FKdTsW+k3XdVbcVB42yvla8o3qSvggiR1u/vsL7eX05ncYD07QVvqvrFVQyb2ICo2NGZnU9T1j2khKR2SJyo4h81fXqY/1YEYl3fQauBPKBTYDL6+lrwMseum8BrhSRMaax+0qzbcg509hCcXVzd51sXzRWwP9dB2/dDdmfgx/sg2sfMZLTIcb7mj/C3Bv9Hk+43UZGcpyRcG72DUag30BdRZ2dUPg2H8o8Joz1YxY1dhqMmepRz9wzHQoY1dICkj7hbJWhQph9HYjw4afVnGls9amrz8kyCu8cDZ9lFIaq9F6kxzIndxtCy2LCQTAcKPqVeNBFVyxGcbfmrNT4brEYmw6UMyM1nswU/2xkVrHbhGvmjufto5U0tBip545WNNLU2tH9v5K/wfA8Ou/afuwkDKblGPE+PdSe7teXi68vmdq/6+v0QThb6TNYta65jbzSui437c8KlnQNInIPcCkwE3gNQ8W0C/iHj24pwEvmU3gY8KxS6g0zy+3zIvJNoBgjpgMRWQTcppS6RSlVIyL/ybkU6vcppVq3m1cAACAASURBVGr8PbhgsMdf+0XBFth4u+GJs/r3sPBm408+98Z+CQhPZKfGG3aV7KsgLNqc8l/c/w2W74OWOrZ0zu6d+6cvpq+E/c8aObDCut8E3dOh3Pb0Hj44Uc3Z1g5i+5FeuxuHXzY8tNyC9WIi7Kyc4ck8ZnD+pDHERth5s3EKc8C42VuMzPaIUoagnrLMr271jnY6nKr/KinoFYsBhqry1bxTNLd1UN3Uxt6TdUFPhrd2XhpPvFfElvwK/m3RRPZ0BeyZ/xWljBnwtBUQ28/0HRkr4ZPNxiwlufvxuK6vlvZOFt2/leqz/YzHcHliZXhXouw6XoVT8ZmyX4D1GcYNwEqgQin1dWAe4NNyppQ6oZSaZ75mKaV+ZbZXK6VWKqUylVKXuwSBUipXKXWLW//HlVLTzdcT/Tq6IJBbXEtkmI3ZaX0YDttb4LWfwLM3Qvx4uPUdWPR13zlz+klWSjxldQ4aVaQxgzm00WeAU58c34ZCeLt9FhP9mWGA8Ydub+7TkPztS6ZR72jnuY9LfK5nifwNRqGdlNm0dTh5Pb+CK2amEB3hPfI2IszGxRlJbCwOR8WOG/isrO6kUU7Ujwy1MMCgPReeYjFSXRHfTV1BdcFSR7mYPzGBiWOj2Zxn+LTkFtd2TzhY8hHUn/TPO6on0/tOExIVbufKWSm8nl9Ba0c/UtEc32Yk1Yz3XjBgZ0Elo6LCmDchsA4EoY5VgeFQSjmBDhEZhWF3mNhHnxFJbnEt8yYkEBHm49SdOQJ/WwkfPQoX3g63bINxftgC/GRGqls6iNk3QHMVfNrbMGiZwm00J82ljnj/ZxhTlxsqBx9R3wALJo3hwqlj+fu7JwaWYbS+zIiQn309iLDreCV1ze2Wbo6XZCVRUttCc8qigXtKuQSOxQy1LgYUtOciYZLhJeY4lzX2XPW9RjYfOGXezPvhpOEHIsKauWm8d7yK6qbW3gkH8zcY0fXZV/d/JwmTIDGzz+trzbw0Gls62HHUT8/J1ibjWvAxu1BKsbOgimWZSf5VSBwBWD3aXBFJAP4X2APsBYKU6jN0cbR1cqis3nPVMDCm3LmPw2OXGnaLL74AVz0A4X2XyxwIXW6UFU0w/XKIHNX/ID5HHZTmUjrWUGlZcql1JzLeMPr6yCvl4rZLMiivb/G7NnQ3Dr0EqG7BeqOjw1luQbfsUiccDp9pqHQaTvXRwwcndxvnfdxMv7pVNfUzj5Q7HmIxJo6NISrcxqsHT/HJqYagzy5crJ2fRqdT8fddn1JW5zinjursMH6rzCt9BsJZYvpKKHrPmMV7Ydn0JMbEhHfNdixTtAuc7T7tF8fONFHR0GLpGhtpWA3c+45Sqk4p9VfgCuBrpmpq+NMtRcds47sXDpTW0eF0Szjo3vfhmYageOUO4ynz9vch68pBOYT0hGhiI+zGDCM8Cs5bY+h5ffyhvPLpDlCdHIpZ1LVtv5l+mWE4bPSddv3S7GSyU+J5dMcJS0V4PJK/3nB9TMzA0dbJW4dPc9XsVN8zQJPJibFMToxhS8MUo2Eg7rUnd8OERZYTDroIyAzDQyzG5gPldDpVV7JHC6ejO378L9yZkTqK1FGR/NmMuv7LjkIj2rroXTh7ZmDqKBcZK6HDASff97pKuN3G1XPGs/XwaZrbLKpn856HDd80Pm/8rtdjdhVq+qzZL8B6apBNIvJFEYlVShUppfKCPbBBoVeKjhLju5cLpVvCwZ59G8qM9N6zb4Avvwjx3g2ugcZmE7JS4zniKs05+3pobYDjW/3f2PFtEDmKPZ3TSYyN6J9B2hXs5CWNgwsR4dacaRw93cg7/cliW11oGOjN9Njbj5zhbJt/ifVyMpN5vmwMKiz6XB1uf3HUwZnDfrvTgiEwIuw2RkUNwPDfIxZj474yfvbiQdo7zwnhX79+1HqaDD//F+5s3FdGVVNb1/fKxlZ+9uJBinY8baR8zwzAQ9SUpUb5XR92DDDUUo524yGiT1zH3GYm4W4o9XrMOwoqyUiO7d/D1DDH6nPHb4FlwGERWS8iN4hIcPUsg4GnFB3tDtj0fXjm33q9ln10O/+Ke5iEl75krOMpvUfJh30mDQwG2SnxHK1oNJ7Up14CMUn+B/EpZdzkp+Zwsq7Nf/uFi9S5xv770DODocJIGx3Fozt6B/v1Sf6LxvtsI4HdpgNlJMdH+lVAJycrmYY2oSFxbv9nGKW5+Jtw0EWl6VI7oGC66DFGbI8pMIw0Gd2NvX6lyfD2v9h2X59dH9xylI4etTE621sYe/INmHFNr5ou/SIiFiZd3OcDyeIpY0kdFcXmAxbUUhaPuaW9k48+rflMzi7Aukpqh1LqO8A04FEMV1hPAXfDC2+pODpaDD9st5c6W4ndUU1aeJPR1uFF3dOP9B6BICslntrmduPpzh4Gs9bB0TcMI55Vqo4ZT5PTV1Ja6/DffuHCZjOMhoXb+wyIC7fb+Mayqew+UcN+C6U+u3BFDE9aAqMn0NDSzttHK7lmznjsfuRkujgjkTCbcMh+HpzKg7azfXfqScluvxMOuqhs7Edp1p70qIsx4DQZA0hd42kfObY8RnE2MOooF9NXGrO6Bu/2L5tNWD13PDsK/v/2zj0+ruq699+ltyzJkvW2ZOG3ZMC2DBhCcTAubiCArThAKEmThvaGQJu2JDchKbc3pJeSQuI+uEl6k9AUkpIHJYY4NnExYOMYjHnIT8kYvx962NbTlmS9Nfv+sc9Io9GMdGZ0juSZ2d/PZz46rzlnb83MWWfvtdZvNXChs2/089ns87snWujp9xiDMRYikgrcBTwIXMuQgGDkEkyKI7NEh8H6vA5XbGRV9z/w7h+9qLdlBgkSC0Pewwm8kVKHvNm9C+/W87yHNtk/iTUi8My5mbrWrvBHGKB/0J3NcHZsbat7r7uMqSkJoY0yzh2Axg8HM4ZfPXCO3n5PyMJ66ckJXDNzGq+0zdS5HOEIEZ5+BwoXhSQ46KWpo5e89DAl8n3xycUYt0xGsO/wKGGmo11jdfxOzpMBc1bYu74dbE57Viwpom9A8cqBMUYZKUHCY/3+F9sPN5KUEMf1sx0sAxtB2PVhvAAcBG4GfgDMVUr9tZsNmxBWPjpyiBxEomNE1bAQ3jsRjCjNWfIRmFocWrTU0S2QM4/GhEJ6BzyhZXn74w1LHOMHDfqm/bk/mMkrB86OUFgNSvWL+qn+Ci12vGFfPTOmpXJVSVbITV1emsf6JisjOFQ/xkCfNjIhhtN6GZfwoC/eEYZSAWUyUhPj7SfuLX848PaLzTopc5QABf9rp9LNx+J20TrrNoh3UEKj4EpILxjTj7GoOJOZOVNGn5ZqPAw9F3WJAF8C/J63H27kulnZo+b4RDN2Rxj/gTYSDyql3rByMiKfxfdoSQ4bEh27TraSm57ETK/gYAjvnQhy05PJSUsaEpyLi9Nz+0e3QKeNJPm+bh1SOHclta26PsS4Rhjp+fqp20Z4LcB9N8wmMT6Op7cfH/tgpbTBmLMC0nJp7uhhx9EmVocprLd8fh5tpHMhY17ofgyv4GCICXugtZZaLo5DR8qXrMt0oEP3+REyLMVZqTxx5yL7MhneDP20fAa/2x//ji47u/4v4MUvBC2U5X/tT2VUM0V6mL3C4Rpog1X43tBSNkEPEyrKi3j7WBMN7QGmkQf64DdfhJQMuO27o/6e6893caShg+WlsSM26M+ooRki8nWl1HeVUptF5FPAr332/aNS6n+53kK3sSnRURlIcNBBeQ8nKCvM4ENfSeuFd8Pb34eDG7QkyWic3qmnsOatpKZFz0OXjMdggJ422PkD6Gkfs85HXkYyd18zg3W7avnKx+aTnzFKTEVtpZ5+WaFrb22qPsuAR4Wda3Bl0VRy0pKojr+cZTXb9Q3IbnhsmAl7AC0Xe/Eoxu/DgKFcjPOnIXXaMBmWkKmyhBy/vH+4MsF198Ob/wLbnoDa9+CuZ7QR8WPYtX/1C6ifrn1NTjN3Jez7FdTvhRnBi45VlBfx/a1H2bT/DPctmz185/Z/0pF2n/qZ9vtdd3/Q83gLRMWq/wLGHmHc67P8iN++S6agkds0tHdzuqVzZNWwS4zSggyOnGvH441SmV4O2XPtTUsd26JDFWd9dHCEUZw1zszgeSt1gaITb9o6/P4b59A34OFnb58c/cDqdVrtd8EdAGzcW8/8/PRBP06oxMUJH52fyysXZmkhwoYQhAhP79Q311CluvHJwXBihBEgFyMsLjbrp3ZLyHEYcfFw08Pw56/o9Wduhe1rgz/hd52Ho6/pMqxuRA7OHb0Kn5f5BRksKMwYmcRXu0u3f/G92liMwfbDTRRMTR7Moo9FxvoUJchyoPWoxSs4GDTD+xKhrDCDzt4B6ryRKiI6MuXEmzrzfDSObtVPyUlp1LZ2kZuePP552pKPQGKarfBagNm5ady2sJDndp6ioydIspVnwMoY/hikZHLmQhfvnWwZd52H5fPz2NY9R6/YnZZSSvs8wginBYd0pLz4jjDGw8HfaiO/cBT58ZLr4MG3dAGkrY/DzyoCRxkd3AgDveFJmdshLVc/FNn4fq0uL2LXqdbBhyF6O/VUVMZ0uP27Y75/wKN462gTN8ZQdb1AjGUwVJDlQOtRi23BwUnGKzjnWweBhXcDypLQCEL7WWg4MOiorh1vhJSXhGSt3jqGY9KXB5bPpa27n+ffC3LjO/kWdJwbDNF82XJmrh6n9MWNpbnUqHwuJuXYd3yfPwUdZ8PyXwA0tTsgC+IlJUtLk4zXYFS9CLml2v806vUy4a6fwJof6imdHy7TBsKX6he13H2RneKcYTJvpRY1DOJT8eKdrhx0fr/2KDQfhU/+MHiElA/7a89zoasvpqejYGyDUS4ibSLSDiy2lr3rY3yjoofKky2Ul4whOHgJMN8qRO9bB4E868c/2rTUoJyzDlWsae10xmCA/kG3noAWG85soLwki+vnZPMfb50YXgPcK1XxnxWA6KgWdHTU4hmZzMpNG1cz8zNSuHx6JtVxIVTgOx2+/wIcHmH45WKERVs9nNqhHzLsPEWLwJLPwINvQvZs+K/PwsYvw+6fw79crqe2Opuh6tdjnytc5q7U4dAnto96WEn2FJaUZGndsqOvw/v/Dtd/SZcVtsH2w02IwI0xVF0vEGNV3ItXSk1VSmUopRKsZe96TJSZ6uod4EB921A47SVMRkoixVmpQ7kYXhbeBbXvQ+vJwG88ukVHxBQsZMCjqD8/jqQ9f7zx8qGMMm6ayxlfUcJhUhUACv77azTseI6quguOCestL83l9Yuz9U3XjhBhTXiCg14a23uYkhQ//nogXgLUxQgJr5DjaNNRgciZC3/+Kix7CHY9Cxv+aiihrqfNtqxIWJRcpyVHbHy/KsqLqD9TR/9Lfwl5C0IKgd9+pJHFxZlMS3MgZyaCubQfmS8B9tZYgoOXuP/Cy4LCjMAGAwKPMjwe/SQ492aIi6OhvZu+AUVJtkMjjJy5+snXRj6GlxWleSwozODH249pB34Q2YaU7Y8jAncsnu5IU2+an8d7/fP1ip1Rxul3Yca1IQsOemnq6HFmOsqLTy5GWFSt0z6B3HmhvzchCT72GKTlMWK22qasSFjEJ+pRwrEtY/Z71aJCHk98Fulqhjuftq0ifaGrj70152N+OgqMwRgTb9Wwqy+LDINRWpjBscaO4dM5WZfpeXav9pIvZ/bqaQNLzrm2Vd+YHRthiOhRxont0N879vHo2PkHbprD4XMdbDvcEFS2Ib3nHNfOymZ6pjPG7ZpZ0zieMJdeSR7bj+EVHAxzOgocTNrzknWZFs/rag39vc3HoH635fMaBxebAm93UzJn3s3aUDaPrhSQf+plVsW/w7OJ96IKF9s+/dtHmxjwKGMwMAZjTCpPtTI/P52sKZExFC0ryKDfozjZ7JcxvfAuOFetizv54o0wmfOHANS0OJC058+8lfpGVvue7besWqxFCTe9/nrQJ/h6T46jdR6SE+K5dm4BB2T+2CMMr+BgmA5vsHSknJAF8TIYKRXGtJSfkGPYBJXbcVEyZ1AmZJRpqQu1sOmrNGaV80TbrRyob7N9+u1HGklPTmBJGCoC0YbrBkNE4kVkj4i8bK2/KSJ7rVe9iKwP8r4Bn+M2uN3OQHg8it2nWiNmOgqCREqBDoGUuJEKtke36mmIdP305B1hOCrdPHu5lvEIwY+RGCf888x3+XbjQ/THp+q8Cx/64lL4J88fc/siZ6ajvCyfn8tbvfNQZ/aPLtx4eqfu04zQBQe9NHU4PMIYTy5G9YtaAXa8N/bJkMzJng3Zc4J/vzweWP+XMNBP8qeeJi4+gQ02i3Z5q+vdMDeHxBirrheIifgPPITWoQJAKXWjUmqJUmoJumpfgHkSQJeFXWK9KiagnSM40tBBW3c/11ziCXu+zMlLIz5OhiRCvKTn6xt39YtDc73dbfqp3/uEBtS2dpKfkUxKooNaOSmZ2jlpMx+Di03wyz/mDw5/h3dlEd8o/il84geDsg0qs4Rvxz9I65w1ZDvshFxemscuTykylhBhzbs6+iwpvOis3n4PrZ195KU7WCXAK4gZaqTUuQPQeDB0Z3cgJksyZ+5KXaSpv2fkvvee1oXBbv02U4sXsHx+Hhv31Q8luI7CscaL1J3vMtNRFq4aDBGZAdwB/CTAvqloMcOAI4xLgRGCgxFAckI8s3PThkQIfVl4lw5vrd+j109s10la83wNhkM5GP7MXQln9kHHGIWSjm2FH94Ax7fBbd/l/T/4IS8d6uHY9NvhK9Xw9+fZc9eb/LT9OlfKjs7OTePs1MV4kCHZD38G+vSU1Dj8F80XrRyMDAcNXmqWNs6hGoyqdcOEHMfN4nsGPyu+Uj0x8jnzVmpNL//a7I2H4PVvwfxbB+VxVpcXceZCN7tOj+3r8VbXu8kYDMD9EcZTwNeBQGKFa4AtSqlgk4kpIlIpIu+IiEPf5NCoPNlKbnrykOBghFAWKFIKdOnWuMShaKljW3ThnRnXDR6iczBc6O88S732+BuB9/f3wqvfhOc+qZPQ7t8KH3mAzy/TooQ/eXMoj2PD3nqSEuK45UrnqxqKCFeXzeKomoHH/+bj5ex+rbs1Dv9FU7sOAHBEFsSXUHMxBoUcbxqcloxIZt2ov9u+o9iBPnjpi5A4BSq+P5hb8rErCkhJjGPD3rGnpbYfaWR2bhol41FujiJcMxgisgpoUEoFG9d/GvjVKKeYqZRaCnwGeEpE5ga5zhctw1LZ2BhGmc9RqDzVwlJ/wcEIoKwgg9MtnSNrGadO05Ia1S/ped2jW/Q0VYJ+yu0f8HDmfLc7I4zpSyA1O/A8c/MxeOYWePt7cM2f6XojhQsBnQX9qWtm8OKuOhrauxnwKH5XdYaby/LJSHEnFWj5/DzeHyjFc/rdwDpJ40zYA2js0MqpjvowIPRcjLpd+vjxRkdNNsnp+vPwVUf+/Xd1FODq/zusZHJacgIrLy9gU9UZ+geCC2939w3wzvFmls+P7WQ9X9wcYSwDKkTkJPA8cLOI/BxARHKB64DfBXuzUqrO+nsc2AZcFeS4p5VSS5VSS/PynHtCamjrpqalK6Ic3l5KLXG0I+cCOG0X3gXt9bD35/pG4a1bAZxr76Hfo9x5moqL12JxvlX4lNL1FX50I7ScgHueg9VPQdLw699/4xz6PR6e3XGSd48309jeE3KhpFC4YV4Ouykjoa8jsBBhzTv6ST4MwUEvjU7KgviSNTO0XIyqdVp08vJVzrZjMph7M5yrgvZzUPM+vPlPUP4ZuGKkC3T14iKaL/by9rHmoKerPNlKd1/sVtcLhEMppiNRSj2CpXArIiuArymlPmvtvht4WSkVsM6piEwDOpVSPZZxWQaMrRDmIJWnLMHBCPJfePGtvlfuHwpYdpseum98SK+/+c963nvxPdS6EVLrS1IGXGyAx7L1zXZqkc5An/lRnUiVGViOe1ZuGouLM/nRtmP8cNsxBLgYTJzQAaamJNJVeC00oY2DNdoBhgQHbUpKBKOpw5qScnyEcZmey+9s1uJ8ozEo5HiLLT2lSx5vmZ5/LoW4BD21eduTAQ9dUZZHRrKOlgpmELYfaSQxXrg+hBrx0c5kxYndi990lIgsFRGvc/xyoFJE9gFvAE8qpT6YyAZWntSCg1de4oKDgSjJnkJKYlxgx/eHv9M/LO+Pq/3MoHRDjdNJe77sfwH2P2+tKGir08biijXw+Q1BjQXA+j11HDzbPpg/rIBHf3uA9XvqnG+nxYIFCzmnsug5vmP4jtaTWnAwTIVaL43tPWSkJDgbjQah5WKc2qH74kR01GSz/wU9ovDi6df12Q9vDnh4SmI8ty4sZHP1Wbr7Asuzbz/cyNKZ2c5Jt0QBE2IwlFLblFKrfNZXKKVe8TumUin1BWv5baXUIqVUufX3Pyainb7sOhUZgoOBiI8T5udnDBch9LLlMS3W5osl3VDb2okIFGU5GOrpe93+AAPKul1jSmus3XyInv7hc81dfQOs3XzIyRYOY3lZPpWeUgZO+jm+vZFTJeH7L0ALDzru8IbQcjGq1mn5+dIoKG0TSD5moGdUSZLV5UW09/Tz+8MjfZ/n2rr58Gy7mY7yI/LuhhNAJAkOBqOsMGNk8h4El2i4UEttaxcFGSkkJ7hQr3iU645F/fmukLY7waLiTD5IuIIpXfVDQnqgwzaTp0L+5eM6f2N7jzOV9vyxm4vR36srMS64fYTPKCIJ4/u1bG4OOWlJAZP4vOG0sVyONRDGYAQg0gQHA1FWkEFjew8tF/30m0aRbqh1UtY8wPlD2u5DUZCs82DbnSA+TlBW2KzyDa+tGZ/goJcmp3WkvKRM1dFwYxmM429ozalIj47yEsb3KyE+jtsXTWfLwXMjfGLbjzSRm57M5YVTnWxlxGMMRgAqT+qEvWsui5wMb39KLcf3iGmpUaQbalpcStob47pj8fCtZaT6zfWnJsbz8K1lTrZwBLMXXk+nSqblQ6vEbNd5HTU1jnBaL65NSYG9XIyqddop7BMlF9GE+f1aXV5Ed5+H1w+eG9w24FG8daSR5fNziYuLrJB6tzEGIwCVp1opLUgnc0rklvzwjZQaRhDphv4r7+ZsW7c7Du9RrmsnC3jNVcU8ceciirNSEbTO1RN3LmLNVcEd5U5wY1kR+zxzGTi1U2+ofZ/xCg6Cju9v7+53Z4QBY+di9HbCoU063DQhMkQ1xyTM79fSmdOYnpkyLInvQP0FWjtNdb1AGPe/Hx6PYvfpVlYtdi/OfyLIz0gmMzUxcKTU4ntG/JDOtHQy4HGwDkYgAlzXLmuuKnbdQPhTmJnC1ikLua59nRYiPP3OuAUHYSgHw9URxpFXdQhwoKTTI5u1enC0TEd5CeP7FRcnrC4v4tkdJzjf2UvWlKRB/8VHTcLeCMwIw4/DDe20d/dHtMMbtMRFWUHGSBHCIDheByNKkJnXE4+H7lPvaf/F9MVhCw56aepwQUfKl6yZOiLtYhDlg6p1kF6g660bqCgvom9A8d/VZwFdjnVh8VTnkyqjAGMw/Kg8qRP2Itnh7aWsMIND59pRNrJ+a1pdTtqLUGaW/yEeJZzd+5oWHBxnOC34jjBcCF8Gn1yMAH6M7gtw5DUtdz9Ox320cGXRVGbnprFxXz3t3X3sPt3K8vlmOioQxmD4seuUFhy8LArExkoLM2jv7ufMhYAJ9cOobe1CBMeq10ULV5fO5Agl5Bz+Ly04OM6EPdAOb3BxhDGYi3Fy5L4Pf6fzE6JtOmociOhpqZ3Hm/nt3nr6PYobjcEIiDEYfkSq4GAgyixNqYB+DD9qWzuZPjUlIhMV3SQlMZ6LCVlk9GvNoYZff5X3N/x4XOf0KtXmpLk05TFaLkbVOj1lNU4/TLRRUT4dpeCb66sB+OoLe11VEohUzN3Bh3MRLDgYiEGDYcOPoetgRP6oymne3/BjFvYPqdLk08zCXf97XEajsaObaVMS3TPOyekwJWekwbjYpOuMLLwrsDM8hqmua0NgUH6m/kI3j7xUZYyGH8Zg+DDkv4jc/AtfMqckUjg1xZbju7bFxaS9CKZk91qSZHhSV6r0UrJ7bdjn1LW8XXaoBsrF+GC9loWJBu0oh1m7+RD+nj635WciEWMwfKg81UJKYhxXFkVPdmep5fgejd5+j5WDYQyGP/kqcKRRvmoK+5xNHb3u5WB4CZSLUfUi5C2AgivdvXYEMhnyM5GIMRg+7DrVSvmMrKgq9r6gMIMjDR2jFoo5e6Ebj4IZUeDod5oGCez8bJDwY/Qb3ZIF8SXrMjhfM1R75EItnH5bO7vNdNQIJkN+JhKJnjvjOOns7deCg1Hiv/BSWpBBb7+HU1ati0CYkNrg1Fz9MF1qeDRTl0qi5uqHwz7nhE1JDfTo+iOg614ALLzT3etGKJMlPxNpGINhsbfmPAMexdKZ0eG/8OKVCBnNj1FrGYwS4/QewbUVD1B9zeOcJQ+PEupULtXXPM61FQ+Edb6LPf109Q1MzJQUDPkxqtZB0VWQE7DSccwzWfIzkYaRBrHYZTm8r74sukYY8/LTEYEPz7Zz26LpAY+pbe0iTrQUhmEk11Y8ABUP8G9vHGXt5kPsWB6+YJ/rsiBefOtiTMnRta1v+ba714xwJkN+JtIwIwyLaBAcDERKYjyzctICF1OyqG3tYnpmalT5btxg1WJtcF8OUD/BLkNJey4bjMFcjFNQ/SIgOrvbYBgH5g6BljPefbqVa6JsOspLWcHokVI1JqTWFjNz0igvyQpYcMcuTRM1wkiaAml52mBUrYOZN4xaBtdgsIMxGOiaEe3d/VwbZQ5vL6WFGZxsuhi0drFJ2rNPRXkRB+rbONbYEdb7vSMM130YoB3fR7dA0yGTe2FwBNcNhojEi8geEXnZWv+piJwQkb3Wa0mQ931eRI5Yr8+71b71e+q492ldUe07r3wYlZmdZQUZeBQcbRh5k+vpH+Bcu8nB2GZLaAAAEH1JREFUsMuqxdMRgY1hjjKa2nuIE8hOc7kOxf4XoOEDaIu+77Nh8piIEcZDwEG/bQ8rpZZYr73+bxCRbOBbwEeA64BviYjjj//r99TxyEtVXOjqA+BcW09UygGUBau+B5w5341SUGJyMGxRMDWFj8zOZsO+elsqwP40dvSQnZZMvJuV3Pa/ABv/Bvp8ks5e/Tu93WAYB64aDBGZAdwB/CTEt94KvKaUalFKtQKvAR93un1rNx+iy2+aJhrlAGblTCEpPi6gppTJwQidivJijjde5EB9W8jvnZCkvS2PDTcWoNe3PObudQ1Rj9sjjKeArwP+acbfFpH9IvKvIhLo11MM1Pis11rbRiAiXxSRShGpbGwMUjAmCLEiB5AQH8fc/PSAju+hwknGYNjltoWFJMRJWNNSjR295Ka7PB11oTa07QaDTVwzGCKyCmhQSu3y2/UIsAC4FsgGvjGe6yilnlZKLVVKLc3LC03DPpbkABYUZgQcYdS2dhIfJxRONTkYdpmWlsSN83N5ef8ZPJ7QpqWaJmKEkTkjtO0Gg03cHGEsAypE5CTwPHCziPxcKXVGaXqAZ9E+Cn/qgBKf9RnWNkeJJTmA0oIMzlzoHvTXeKlt7aIoK4UEk4MREhVLiqg738Xu062236OU0lNSbofUrnwUEv0eehJT9XaDYRy4dpdQSj2ilJqhlJoF3AtsVUp9VkSmA4iuULQGqA7w9s3ALSIyzXJ232Jtc5RYkgMoK0wH4IjftFRNSyczsozDO1Q+dkUhyQlxIeVktHX30zvgcX+EsfgeWP09K3lP9N/V39PbDYZxMBnSIL8QkTxAgL3AgwAishR4UCn1BaVUi4j8A/C+9Z7HlFItbjQmVuQAygq1ZPuHZ9uH1fuobe3iplJTjjJU0pMTWHl5PpuqzvDoqitsjdAGZUEmIgdj8T3GQBgcZ0IMhlJqG7DNWg4oxKOUqgS+4LP+DPDMBDQvJijKTCE9OWFYaG133wAN7T0maS9MKsqL2FR1lp3Hm23VgPYaDNeVag0GlzAT1zGCiFBakD7M8e2NBivJjj4n/0Swoiyf9OQENuy1Ny3VNJFZ3gaDCxiDEUOUFU7l0Ln2wYSzmsGQWjPCCIeUxHhuubKAVw6cpac/sOyKLxOmVGswuIQxGDFEWUE65zv7Bm9ctSZpb9xUlBfR3t3P7w+NnQPU2NFDQpyQmRpdisiG2MEYjBii1JII8Sbw1bZ2kRgvFJgcjLBZNi+X7LQkW9FSTValvTg3ZUEMBhcxBiOGKCuwDMbZIYNRlJXqrq5RlJMYH8dtCwvZcrCBzt7+UY9t7JiApD2DwUWMwYghctKTyU1PHjQYpg6GM1SUF9HVN8BrH5wb9Thdy9tlWRCDwUWMwYgxygrTB0Nra1u7TNKeA1w7K5vCqSljaks1mRGGIcIxBiPGKCuYyuFzHXT29tPU0WNGGA4QFyesWjyd3x9u5Hxnb8BjPB5FU0evMRiGiMYYjBijrDCdrr4B3jneDJg6GE5RsaSIvgHF5gNnA+5v7exlwKNM0p4hojEGI8YotRzfrx9sAExIrVMsKs5kVs6UoNFSTR165GFGGIZIxhiMGMNrMLYOGgwzwnACEaGivIidx5ppaO8esd8k7RmiAWMwYoy05ARKslM529ZNUnwc+eaJ1zFWlxfhUbBp/5kR+7yyILnm/22IYIzBiEG8+RjF01JNEpmDzC/IYEFhRsBpqQlVqjUYXMIYjBjEayJONF1k2ZNbWb/H8dpUMUvFkiJ2nz5PTUvnsO2NHT0kJcSRkTwZFQUMBmcwBiPGWL+njm2Hh3SP6s538chLVcZoOMTqxUUAvOw3LdVkVdrTdcMMhsjEGIwYY+3mQ/QNDK9D3dU3wNrNhyapRdFFSfYUrrosa8S0lJEFMUQDxmDEGN4aGHa3G0KnoryIg2faONowVHuk0RIeNBgiGWMwYoyirMB5F8G2G0LnjkXTiRPYsG9oWsrIghiiAdcNhojEi8geEXnZWv+FiBwSkWoReUZEAhYHEJEBEdlrvTa43c5Y4eFby0hNjB+2LTUxnodvLZukFkUf+VNTuH5ODhv31aOUon/AQ/NFIwtiiHwmYoTxEHDQZ/0XwAJgEZCKTx1vP7qUUkusV4XLbYwZ1lxVzBN3LqI4KxUBirNSeeLORay5qniymxZVVJQXcaLpItV1bbRc7EUpyDNKtYYIx9UYPxGZAdwBfBv4nwBKqU0++98DZrjZBsNI1lxVbAyEy3x8YSHf/G01G/fX84klOnLKjDAMkY7bI4yngK8DHv8d1lTU54BXgrw3RUQqReQdEVkT7AIi8kXruMrGxrHLZBoME0HWlCSWz89j4756GtpM0p4hOnDNYIjIKqBBKbUryCH/D9iulHozyP6ZSqmlwGeAp0RkbqCDlFJPK6WWKqWW5uXljb/hBoNDVCwp4syFbl6p1gq2JkrKEOm4OcJYBlSIyEngeeBmEfk5gIh8C8jDmqYKhFKqzvp7HNgGXOViWw0Gx/mjywtISYzjN3t1UqQxGIZIxzWDoZR6RCk1Qyk1C7gX2KqU+qyIfAG4Ffi0UmrEVBWAiEwTkWRrORdtfD5wq60GgxukJSewoDCD3n79Nb/lX7ebjHpDRDMZeRg/AgqAnVbI7KMAIrJURH5iHXM5UCki+4A3gCeVUsZgGCKK9Xvq+KC+bXDdyLAYIh1RSo19VISwdOlSVVlZOdnNMBgAWPbkVuoCZNAXZ6Wy429vnoQWGQwjEZFdlr94TEymt8HgEkaGxRBtGINhMLiEkWExRBvGYBgMLmFkWAzRhqnmYjC4hDebfu3mQ9Sf76IoK5WHby0zWfaGiMUYDIPBRYwMiyGaMFNSBoPBYLCFMRgGg8FgsIUxGAaDwWCwhTEYBoPBYLCFMRgGg8FgsEVUSYOISCNwKsy35wJNDjYnEjB9jn5irb9g+hwqM5VStmpDRJXBGA8iUmlXTyVaMH2OfmKtv2D67CZmSspgMBgMtjAGw2AwGAy2MAZjiKcnuwGTgOlz9BNr/QXTZ9cwPgyDwWAw2MKMMAwGg8FgC2MwDAaDwWCLmDIYIvJxETkkIkdF5G8D7L9PRBqtWuN7ReQLk9FOJxmrz9Yx94jIByJyQER+OdFtdBobn/O/+nzGh0Xk/GS000ls9PkyEXlDRPaIyH4RuX0y2ukkNvo8U0S2WP3dJiIzJqOdTiEiz4hIg4hUB9kvIvI96/+xX0SudrwRSqmYeAHxwDFgDpAE7AOu8DvmPuAHk93WCe7zfGAPMM1az5/sdrvdZ7/j/xp4ZrLbPQGf89PAX1jLVwAnJ7vdE9DnXwOft5ZvBp6b7HaPs8/LgauB6iD7bwf+GxDgeuBdp9sQSyOM64CjSqnjSqle4HngE5PcJrex0+f7gX9TSrUCKKUaJriNThPq5/xp4FcT0jL3sNNnBUy1ljOB+glsnxvY6fMVwFZr+Y0A+yMKpdR2oGWUQz4B/KfSvANkich0J9sQSwajGKjxWa+1tvlzlzWcWyciJRPTNNew0+dSoFREdojIOyLy8QlrnTvY/ZwRkZnAbIZuKpGKnT7/PfBZEakFNqFHVpGMnT7vA+60lj8JZIhIzgS0bbKw/d0Pl1gyGHbYCMxSSi0GXgN+NsntmQgS0NNSK9BP2/8uIlmT2qKJ415gnVJqYLIbMgF8GvipUmoGeuriORGJ9t//14CbRGQPcBNQB8TCZ+0a0f6F8aUO8B0xzLC2DaKUalZK9VirPwGumaC2ucWYfUY/hWxQSvUppU4Ah9EGJFKx02cv9xL501Fgr8//A3gBQCm1E0hBC9ZFKnZ+z/VKqTuVUlcBf2dti/gAh1EI5bsfFrFkMN4H5ovIbBFJQt8sNvge4DffVwEcnMD2ucGYfQbWo0cXiEgueorq+EQ20mHs9BkRWQBMA3ZOcPvcwE6fTwMrAUTkcrTBaJzQVjqLnd9zrs8o6hHgmQlu40SzAfhTK1rqeuCCUuqMkxdIcPJklzJKqX4R+StgMzrC4hml1AEReQyoVEptAP5GRCqAfrRz6b5Ja7AD2OzzZuAWEfkAPVx/WCnVPHmtHh82+wz6BvO8ssJLIhmbff4qerrxK2gH+H2R3HebfV4BPCEiCtgOfGnSGuwAIvIrdJ9yLV/Ut4BEAKXUj9C+qduBo0An8GeOtyGCvzMGg8FgmEBiaUrKYDAYDOPAGAyDwWAw2MIYDIPBYDDYwhgMg8FgMNjCGAyDwWAw2MIYDMMli4h02DjmyyIyxcFrrhGRKxw839vjeG+H9bdIRNaNclyWiPxluNcxGOxiDIYh0vkyEJLBEJH4UXavQYvWOYJS6gYHzlGvlLp7lEOyAGMwDK5jDIbhkkdEVlj1DNaJyIci8gsrm/VvgCLgDRF5wzr2FhHZKSK7ReTXIpJubT8pIt8Rkd3Ap0TkfhF5X0T2iciLIjJFRG5AZ/ivtWplzBWRJZYo434R+Y2ITLPOt010XY1KETkoIteKyEsickREHvdpe4fP8jdEpMq65pMB+jnbanuV3zlmeWsgiMiVIvKe1b79IjIfeBKYa21bKyLpoutA7LbO9Qmf8xwUkX8XXfvkVRFJtfbNE5HXrbbtFpG51vaHrf/TfhH5P45+sIbIY7I13s3LvIK9gA7r7wrgAlobJw4t5/FRa99JINdazkVn9KZZ698AHvU57us+587xWX4c+Gtr+afA3T779gM3WcuPAU9Zy9uA71jLD6HlwqcDyWh9rhy/PtwGvA1MsdazA/R3A/Cn1vKXfN47C6sGAvB94E+s5SQg1Xe/tT0BmOrzPzmKrpEwC61isMTa9wLwWWv5XeCT1nIKetR2C7qOhlj/95eB5ZP9vTCvyXvFjDSIIeJ5TylVCyAie9E3v7f8jrkePZ20Q0RA31B9taL+y2d5ofUUnwWkoyUmhiEimUCWUur31qafoYvyePHKjFQBB5Sl2yMix9EicL4SK38EPKuU6gRQSgWqa7AMuMtafg74ToBjdgJ/J7p63EtKqSNWX4c1HfhHEVkOeNAS1wXWvhNKqb3W8i5glohkAMVKqd9Ybeu2+nEL2mjssY5PRwtTbg/QLkMMYAyGIVLo8VkeIPB3V4DXlFKfDnKOiz7LPwXWKKX2ich9WAKMYbbJ49c+T5D22WFUrR6l1C9F5F3gDmCTiDzASLHIPwHygGuUUn0ichI9avBtM+j/Y+oolxPgCaXUj0NovyGKMT4MQ6TTDmRYy+8Ay0RkHoCIpIlIaZD3ZQBnRCQRfYMdcT6l1AWgVURutPZ9Dvg94fEa8GfeiC4RyQ5wzA60KCJ+bRpEROYAx5VS3wN+Cyxm+P8AdEW9BstY/CEwc7SGKaXagVoRWWNdI9lq52bgz338QMUikm+rt4aoxBgMQ6TzNPCKiLyhlGpEKwz/SkT2o6dvFgR53zfR8/Y7gA99tj8PPCwieyzH7+fRTvD9wBK0HyNklFKvoKewKq0pta8FOOwh4EsiUkXwSmn3ANXWORaiS3I2o6fhqkVkLfALYKl1nj/1618wPodWa96P9rUUKqVeBX4J7LTOtY7hhskQYxi1WoPBYDDYwowwDAaDwWALYzAMBoPBYAtjMAwGg8FgC2MwDAaDwWALYzAMBoPBYAtjMAwGg8FgC2MwDAaDwWCL/w/0NYjD1AH1LAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for k in range(len(transformations)):\n", - " pylab.plot(distances, eval_counts[k], '-o', label='VQE + ' + transformations[k])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Evaluations')\n", - "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_qpe.ipynb b/community/chemistry/h2_qpe.ipynb deleted file mode 100644 index fc7e2b1e0..000000000 --- a/community/chemistry/h2_qpe.ipynb +++ /dev/null @@ -1,232 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*H2 ground state energy computation using Quantum Phase Estimation*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to compute ground state energy of the Hydrogen (H2) molecule using QPE (Quantum Phase Estimation) algorithm. Let's first look at how to carry out such computation programmatically. Afterwards, we will illustrate how the computation can also be carried out using json configuration dictionaries.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We first set up the H2 molecule, create the fermionic and in turn the qubit operator using PySCF." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import OrderedDict\n", - "import time\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.transpiler import PassManager\n", - "from qiskit.aqua import AquaError\n", - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.aqua.algorithms import ExactEigensolver\n", - "from qiskit.aqua.algorithms import QPE\n", - "from qiskit.aqua.components.iqfts import Standard\n", - "from qiskit.chemistry import FermionicOperator\n", - "from qiskit.chemistry import QiskitChemistry\n", - "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock\n", - "from qiskit.chemistry.drivers import PySCFDriver, UnitsType\n", - "\n", - "distance = 0.735\n", - "driver = PySCFDriver(atom='H .0 .0 .0; H .0 .0 {}'.format(distance),\n", - " unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g')\n", - "molecule = driver.run()\n", - "\n", - "qubit_mapping = 'parity'\n", - "fer_op = FermionicOperator(h1=molecule.one_body_integrals, h2=molecule.two_body_integrals)\n", - "qubit_op = fer_op.mapping(map_type=qubit_mapping,threshold=1e-10).two_qubit_reduced_operator(2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Using a classical exact eigenvalue solver, we can establish the reference groundtruth value of the ground state energy:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The exact ground state energy is: -1.8572750302023817\n" - ] - } - ], - "source": [ - "exact_eigensolver = ExactEigensolver(qubit_op, k=1)\n", - "result_ee = exact_eigensolver.run()\n", - "reference_energy = result_ee['energy']\n", - "print('The exact ground state energy is: {}'.format(result_ee['energy']))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next we set up the QPE algorithm instance using the HartreeFock initial state and a standard inverse quantum fourier transform, and execute:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The ground state energy as computed by QPE is: -1.8571368753258866\n" - ] - } - ], - "source": [ - "num_particles = molecule.num_alpha + molecule.num_beta\n", - "two_qubit_reduction = True\n", - "num_orbitals = qubit_op.num_qubits + (2 if two_qubit_reduction else 0)\n", - "\n", - "num_time_slices = 50\n", - "n_ancillae = 9\n", - "\n", - "state_in = HartreeFock(qubit_op.num_qubits, num_orbitals,\n", - " num_particles, qubit_mapping, two_qubit_reduction)\n", - "iqft = Standard(n_ancillae)\n", - "\n", - "qpe = QPE(qubit_op, state_in, iqft, num_time_slices, n_ancillae,\n", - " expansion_mode='suzuki',\n", - " expansion_order=2, shallow_circuit_concat=True)\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=100, pass_manager=PassManager())\n", - "result_qpe = qpe.run(quantum_instance)\n", - "print('The ground state energy as computed by QPE is: {}'.format(result_qpe['energy']))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As can be easily seen, the QPE computed energy is quite close to the groundtruth value we computed earlier.\n", - "\n", - "Next we demonstrate how the same computation can be carried out using json dictionaries to drive the qiskit.chemistry stack. Such a dictionary can of course also be manipulated programmatically. An sibling notebook `h2_iqpe` is also provided, which showcases how the ground state energies over a range of inter-atomic distances can be computed and then plotted as well." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "molecule = 'H .0 .0 0; H .0 .0 {}'.format(distance)\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_qpe_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {\n", - " 'atom': molecule, \n", - " 'basis': 'sto3g'\n", - " },\n", - " 'operator': {'name': 'hamiltonian', 'transformation': 'full', 'qubit_mapping': 'parity'},\n", - " 'algorithm': {\n", - " 'name': 'QPE',\n", - " 'num_ancillae': 9,\n", - " 'num_time_slices': 50,\n", - " 'expansion_mode': 'suzuki',\n", - " 'expansion_order': 2,\n", - " },\n", - " 'initial_state': {'name': 'HartreeFock'},\n", - " 'backend': {'shots': 100}\n", - "}\n", - "\n", - "qiskit_chemistry_ees_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': molecule, 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'transformation': 'full', 'qubit_mapping': 'parity'},\n", - " 'algorithm': {\n", - " 'name': 'ExactEigensolver',\n", - " }\n", - "}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the two algorithms configured, we can then run them and check the results, as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The groundtruth total ground state energy is -1.857275030202381.\n", - "The total ground state energy as computed by QPE is -1.857136875325887.\n", - "In comparison, the Hartree-Fock ground state energy is -1.8369679912029842.\n" - ] - } - ], - "source": [ - "result_qpe = QiskitChemistry().run(qiskit_chemistry_qpe_dict, backend=backend)\n", - "result_ees = QiskitChemistry().run(qiskit_chemistry_ees_dict)\n", - "\n", - "print('The groundtruth total ground state energy is {}.'.format(\n", - " result_ees['energy'] - result_ees['nuclear_repulsion_energy']\n", - "))\n", - "print('The total ground state energy as computed by QPE is {}.'.format(\n", - " result_qpe['energy'] - result_qpe['nuclear_repulsion_energy']\n", - "))\n", - "print('In comparison, the Hartree-Fock ground state energy is {}.'.format(\n", - " result_ees['hf_energy'] - result_ees['nuclear_repulsion_energy']\n", - "))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_swaprz.ipynb b/community/chemistry/h2_swaprz.ipynb deleted file mode 100644 index 3bb2e2fc6..000000000 --- a/community/chemistry/h2_swaprz.ipynb +++ /dev/null @@ -1,208 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*H2 energy plot computed using SWAPRZ variational form*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and SWAPRZ. It is compared to the same energies as computed by the ExactEigensolver. `SWAPRZ` is a particle preserving variational form and should be used in conjunction with operator `jordan_wigner mapping` and `HarteeFock` initial state.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYQUANTE chemistry driver. See the PYQUANTE chemistry driver readme if you need to install the external PyQuante2 library that this driver requires." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515972 -1.07591361 -1.09262986 -1.10591801 -1.11628597 -1.12416089\n", - " -1.12990475 -1.1338262 -1.13618944 -1.13722135 -1.13711706 -1.13604435\n", - " -1.13414767 -1.1315512 -1.12836187 -1.12467172 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133943 -1.10634212 -1.10115034]]\n", - "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", - " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", - " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [ 737. 710. 734. 793. 919. 804. 695. 731. 619. 727. 637. 743.\n", - " 708. 782. 701. 1032. 1051. 1119. 1141. 995. 884.]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "import copy\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure qiskit chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'problem': {'random_seed': 50},\n", - " 'driver': {'name': 'PYQUANTE'},\n", - " 'PYQUANTE': {'atoms': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'jordan_wigner',\n", - " 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", - " 'variational_form': {'name': 'SWAPRZ'},\n", - " 'initial_state': {'name': 'HartreeFock'}\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "algorithms = ['VQE', 'ExactEigensolver']\n", - "\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(algorithms), steps+1])\n", - "hf_energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)\n", - "eval_counts = np.empty(steps+1)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", - " for j in range(len(algorithms)):\n", - " dict = copy.deepcopy(qiskit_chemistry_dict)\n", - " dict['algorithm']['name'] = algorithms[j]\n", - " if algorithms[j] == 'ExactEigensolver':\n", - " del dict['optimizer']\n", - " del dict['variational_form']\n", - " del dict['initial_state']\n", - " solver = QiskitChemistry()\n", - " result = solver.run(dict)\n", - " energies[j][i] = result['energy']\n", - " hf_energies[i] = result['hf_energy']\n", - " if algorithms[j] == 'VQE':\n", - " eval_counts[i] = result['algorithm_retvals']['eval_count']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)\n", - "print('VQE num evaluations:', eval_counts)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[j], label=algorithms[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3XmYFOW1x/Hvj4GRVUAwGnYiaiRKUHDfvSpqBDRxQ+KuqHHJvd6YaJKrmA0T470maoyoBFwiKHEBl4AmIi4ooOICqODK4AKyyT7buX+8NVDTzNI90zU903M+z9PPVFdVV53q7nlPvUtVy8xwzjnn0tUi1wE455xrWjxxOOecy4gnDueccxnxxOGccy4jnjicc85lxBOHc865jHjicFklabSk+6PpXpLWSSqInu8kaaaktZJuVvA3Saskzc5t5HUn6WRJS6Jj3TvX8TQ2qd+Dxib+nXXp8cTRSEj6WNLG6B+s4nFbruOqDzP71Mzam1lZNGsU8BWwvZn9N3AIcAzQw8z2y1WcWfBH4PLoWN9o6J1LMknrU747P01wf+dKejFl3nhJxSkxvAlVfg9cE9cy1wG4Soaa2bNJ7kBSSzMrTXIfNegNLLCtV532Bj42s/WZbijHx5GqNzC/qgUNGOd3zWxxA+ynJn8ws1/mOIZGQ1JBviZLr3E0ARVneJL+GDXrfCTp+NjyjpLukfS5pKWSfhNrHjpX0kuS/k/SCmC0pIKoqeiraFuXR2etLSWdKum1lP1fJenxamLrK+n5qPnpGaBrbFmf2HbHA+cAP43ORi8G7gYOjJ7fEL3mREnzJK2W9LKkAbHtfSzpZ5LeAtZH2+0m6R+SlkfHcmVs/dGSHpJ0bxTffEmDY8t7Snokeu2KeA1P0vmSFkbv9zRJvas49u0krQMKgDclfVBDnHtImhEd13xJw2LbGS/pL5Kejt6LlyTtLOmWaP/v1rUJTNJTkm6OPZ8oaVw0vYukf0fH/pWkByR1qun9kbQH8NfY57Y6jRi2fA+i5321tcnyWUm3K9ZUJOmA6LNfLelNSUfEls2Q9OvoPVorabqkrtGy1pLuj2JdLWmOpJ2iZd0kTZG0UtJiSRdVE+vTki5PmfempO9H09+W9Ey0nfcknRZbb7ykO6L3fD1wZG3vTZNlZv5oBA/gY+DoapadC5QAFxEKqUuBzwBFyx8F7gTaAd8AZgMXx15bClxBqGG2AS4BFgA9gM7As4BFy7cDVgJ7xPb/BvCDamKbBfxv9LrDgLXA/dGyPhXbjZ6PB36Tclwvxp7vDSwD9o+O85zofdku9h7NA3pGx9ECeA24DigEvgV8CAyJ1h8NbAJOiLY3BnglWlYAvAn8X/S+tQYOiZYNBxYDe0TvyS+Bl2v47Azol/JZxuNsFW3v51GcR0Xv0+6x9+UrYFAUx7+Bj4Czozh/AzyX7v5Tlu0cvadHASOj96dDtKwfoalwO2BHYCZwSxrvT6XPrarPNmVZ6vdgFqF5r5DQXPk1W78z3YEV0WfWIopvBbBjtHwG8AGwW/TezgBujJZdDEwF2kbxDyI0ixId21+i4xgILAeOin1PKvZ/NvBSLPb+wOroPWoHLAHOi74Xe0efW//Ye7AGODiKvXWuy5XEyqtcB+CP6IMIhc266Eta8bgoWnYusDi2btvoH3FnYCdgM9AmtnxERUETvfbTlH39myixRM+PTvnHvgP4bTT9HWAVUeGdsp1ehKTULjbv79Q9cdwB/DplH+8Bh8feo/Njy/av4tiuBf4WTY8Gno0t6w9sjKYPjAqPllUc19PABbHnLYANQO9qPruqEkc8zkOBL4AWsXkPAqNj78tdsWVXAAtjz/cCVtfw3TFC4Rv/7gyJLf8BocD7iqjwr2Y7JwFvpPH+VPrcYsewKSWGCanfg9h3pm3stffHvjM/A+5L2fY04Jxoegbwy9iyHwH/jKbPB14GBqS8vidQRpQwo3ljgPGx70nF/jsA6ys+a+C3wLho+nTghZRt3wlcH3sP7q1POdBUHt5U1bicZGadYo+7Ysu+qJgwsw3RZHtC+3or4POoer6a8GX+Ruy1S1L20y1lXuryCcCZkgScBTxkZpuriLcbsMoq91F8UvMh1qg38N8VxxEdS89oP1XF2hvolrL+zwnJtMIXsekNQOuoyaQn8IlV3f/QG/hTbJsrARHOhtMVj7MbsMTMymPzPknZ3pex6Y1VPG9fy/72SfnuTIstm0o4A3/PzLZ0aiuMcpuo0Lz5NaEAr2hqrOn9qc4fU2I4p4p1ugErY99h2PYzPTXlMz0E+GZsndTPtOK9uY+QZCZK+kzSHyS1iu1zbex1qe8/ANE6TwJnRLNGAA/EYts/JbaRhBO4qo4lb3nneNO3hFDj6FrDP3nqLZA/JzRTVehZaWWzVyQVE86Uz4weVfkc6CypXSx59Kpif+laQqjp/LaGdeLbXgJ8ZGa71nFfvVR153VFHA9U8bp0xeP8DOgpqUUsefQC3q/H9jPxW2Ah0FfSCDN7MJr/uyjOvcxspaSTgIp+npren/rcUvtzYAdJbWPJI/79W0KocVTZB1ETMysBbgBukNQHeIpQY50e7bNDLHn0ApZWs6kHgeslzSQ0bT0Xi+15MzumpjAyjbsp8hpHE2dmnxP+MW6WtL2kFlGn5+E1vOwh4MeSukedoT+rYp17CYVISfwsNWXfnwBzCf+ohZIOAYbW43DuAi6RtL+CdpK+J6lDNevPBtYqdES3Uej031PSvmnsazahELsx2k9rSQdHy/4KXCvpO7Bl8MGp9TiuVwlnxj+V1Crq7B0KTKzHNtMi6TBCm/zZhD6jWyVVnGl3IDSPronmXR17aU3vz5dAD0mFmcYT+86Mjr4zB1L5O3M/MFTSkOjzbC3pCEk9qtxg5WM9UtJeCgNDvib0C5ab2RJCE9aYaHsDgAuifVXlKULt4lfApFiyfwLYTdJZ0efYStK+CgMGmhVPHI3LVFUeB/9omq87m9DRuIDQHzGZylX7VHcRks1bhI7vpwjtzvGhg/cBe1L9P1eFMwl9DSuB6wkJp07MbC5hAMBthONYTGhPr279MuBEQmfnR4Q2/LuBjmnsq4xQYPUDPgWKCG3YmNmjwO8JTR5fA+8Ax1ezqVqZWXG0r+OjGP8CnG1m79Z1m1V4M+W7c4uk7Qmfx+VmttTMXgDuAf4WNUPeAOxD6NB9EngkFnO17w+hj2w+8IWkr2Ix/DQlhviyuJGEPpQVhI7/SYRaM1EhP5zQ5LiccJZ/NemVVTsTvvtfE2pYzxO+xxCanPoQan+PEvolqhz6HjXLPkLo+/t7bP5a4FhCM9ZnhCaz3xM6zpuVilE5rhlTGNr7VzPrHZvXhjAaZx8zW5Sz4FzekzQJeNfMrs91LC49XuNohqJmnRMUri/oTqgppNZuLgXmeNJw2RY17+wSNaseR6hhPJbruFz6vHO8eapopphEGLHzJOFaiLBQ+jha56RcBOfy3s6EpqAuhCawSy0Ht2pxdedNVc455zLiTVXOOecykldNVZKGAkM7dOhw0W677ZbrcJxzrkl57bXXvjKzHWtbLy+bqgYPHmxz587NdRjOOdekSHrNzAbXtl5eNVVJGipp7Jo1a3IdinPO5a28ShxmNtXMRnXsWOv1X8455+oorxKH1ziccy55eZU4vMbhnHPJy6vE4TUO55xLXl4lDq9xOOdc8vIqcTjnnEteXl4A2K9fv1yH4pxz9WJmbC4tZ2NxGRtLokdxGZui6Q0V07Hlm4rLOG3fnvTo3DbR2PIqcZjZVGDq4MGDM/71MOecS1dFob6heGuBnlrAbywpZWNxeSjQo3kV66cW+BuLt00MG0vKyPT6bAkO6tfVE4dzzmXCzCguK69UGG+o5kw9XpBvmS7eul6lZcWV18tUC0Hbwpa0blVAm8IWtGlVEB6FBXRtX0ibwoKwrFUBbQvD39bR34r1WseXRfPiy7dr2YLwG13JyqvE4U1VzjV+ZeUWFcylbCouZ0NJaaUz9kpn8Sl/KyeAUjaWlLOpuCzaRjkbi0vZWFJGeYZn6i1EVPi23FqoF7akTasWdGlXSM/OKQV+YcuowG4RCu8tz8M6oYDfOq91YQsKCxqmUG8Ifq8q51wlxaXlsYK6tFLhvaG48hn4xpQz94qCe0PK2Xn89cWl5bUHkaJ1qxbRmXjLMF1YQNtWLaMz8hZbzuQrzsbjZ+dtU87kK87U4+vmU6FeH+neqyqvahzO5Tszo6TMQmEdnalviJ+pR23rW6aLy9hQUsV0ymvjZ/ylGZ6uVzTBVDSbtI0V2t/s2CqlQG+55ay8YjpegKe+vqLAb9HCC/XGxBOHc1lWVm7hTD0qmDfEOko3xM7It56Vl1Y6g6+YrpgfP8PfUFJGWYYFe8sWSjnDbhmdibekS/vttimst05XNNuE9dvECng/W2/ePHG4ZsfM2FRSvrXArtTcUrq1sK9UkJfGCvRQgFe0rcfnbywuo7gss6aYghaibaxA3lqAt2SHdtulFOZRoR0/W08pyLe0rUfzWxX45Vouu/IqcXjneP6Id6DGz9w3pBbgFcu3aY6pnABSm3Uy7drbppAubEnbVgXs1KF1pSaWrWfzBVXOr7SdVqF5p1WB/IzdNSneOe7qrKJJZkNqIZ5y9l4xb31sebwppqrmmc0ZdqDGm2PaVnE2XtEG37ZV/Iy9xdb5hVvP1uMFfEVnrBfsrjnwznEHQGlZ+Zaz8W0L95Sz8tQz86iwjxfqFWf0dRkdU1jQIqWQDmfdndsW0r3T1kK7qjP7bQr22OvbFBZQ2NKbY5xrKJ44GoHycosK49qbZbYW9KWsr+LMff3mehbuLVtEBXKsvbywgC7tC+lZ2GZLR2nb7UKhXfmsvnKTTLvtYstbFdDS29qdywueONJUXm5sKi1j/eatbeZbzso3Vx4pU2WhXlXhX3ERVEkWztwLW7JDu0J6dK69cK981u6Fu3MuM00icUg6CfgesD1wj5lNT2I/d838kOfeW1apQ3XD5rrdYqCizb1dStNKp7aFdOu09Xm7Sm3soVmm3Xbbdqa2LWxJ2+3Ccx8l45zLpcQTh6RxwInAMjPbMzb/OOBPQAFwt5ndWN02zOwx4DFJnYE/Aokkjo0loWmnQ+uW7Lx9623b2qs6Y2+1tTknngi8zd05l68SH1Ul6TBgHXBvReKQVAC8DxwDFAFzgBGEJDImZRPnm9my6HU3Aw+Y2es17dNHVTnnXOYazagqM5spqU/K7P2AxWb2IYCkicBwMxtDqJ1UojAW8kbg6eqShqRRwCiAXr16ZS1+55xzleWqPaU7sCT2vCiaV50rgKOBUyRdUtUKZjbWzAab2eAdd9wxe5E655yrpEl0jpvZn4E/17aeXznunHPJy1WNYynQM/a8RzTPOedcI5erxDEH2FVSX0mFwBnAlPpu1Mymmtmojh071jtA55xzVUs8cUh6EJgF7C6pSNIFZlYKXA5MAxYCD5nZ/Czsa6iksWvWrKnvppxzzlXDb3LonHMOSH84bl5dpeY1DuecS15eJQ7v43DOueTlVeLwGodzziUvrxKH1ziccy55eZU4vMbhnHPJy6vE4TUO55xLXl4lDuecc8nzxOGccy4jeZU4vI/DOeeSl1eJw/s4nHMueXmVOJxzziXPE4dzzrmMeOJwzjmXkbxKHN457pxzycurxOGd4845l7y8ShzOOeeS54nDOedcRjxxOOecy0ijTxyS9pD0V0mTJV2a63icc665SzRxSBonaZmkd1LmHyfpPUmLJV1T0zbMbKGZXQKcBhycZLzOOedql3SNYzxwXHyGpALgduB4oD8wQlJ/SXtJeiLl8Y3oNcOAJ4GnEo7XOedcLVomuXEzmympT8rs/YDFZvYhgKSJwHAzGwOcWM12pgBTJD0J/L2qdSSNAkYB9OrVKyvxO+ec21aiiaMa3YElsedFwP7VrSzpCOD7wHbUUOMws7HAWIDBgwdbNgJ1zjm3rVwkjoyY2QxgRjrrShoKDO3Xr1+SITnnXLOWi1FVS4Gesec9onnOOeeagFwkjjnArpL6SioEzgCmZGPDfssR55xLXtLDcR8EZgG7SyqSdIGZlQKXA9OAhcBDZjY/S/vzmxw651zCkh5VNaKa+U/hQ2udc65JavRXjmfCm6qccy55eZU4nHPOJS+vEof3cTjnXPLyKnF4U5VzziUvrxKH1ziccy55eZU4vMbhnHPJy6vE4ZxzLnmeOJxzzmUkrxKH93E451zy8ipxeB+Hc84lL68Sh3POueR54nDOOZcRTxzOOecykleJwzvHnXMueXmVOLxz3DnnkpdXicM551zyPHE455zLiCcO55xzGWkSiUNSO0lzJZ2Y61icc665SzRxSBonaZmkd1LmHyfpPUmLJV2TxqZ+BjyUTJTOOecy0TLh7Y8HbgPurZghqQC4HTgGKALmSJoCFABjUl5/PvBdYAHQOuFYnXPOpSHRxGFmMyX1SZm9H7DYzD4EkDQRGG5mY4BtmqIkHQG0A/oDGyU9ZWblVaw3ChgF0KtXrywehXPOubikaxxV6Q4siT0vAvavbmUz+wWApHOBr6pKGtF6YyV9DgwtLCwclL1wnXPOxTWJznEAMxtvZk/Uso5fAOiccwnLReJYCvSMPe8Rzas3v+WIc84lLxeJYw6wq6S+kgqBM4ApOYjDOedcHSQ9HPdBYBawu6QiSReYWSlwOTANWAg8ZGbzs7E/b6pyzrnkJT2qakQ1858Cnsr2/iQNBYb269cv25t2zjkXaTKd4+nwGodzziUvrxKHd44751zy8ipxeI3DOeeSl1eJwznnXPLyKnF4U5VzziUvF7ccSYyZTQWmDh48+KJcx+Kc26qkpISioiI2bdqU61Ac0Lp1a3r06EGrVq3q9Pq0EoekR4B7gKeru1eUc85Vp6ioiA4dOtCnTx8k5TqcZs3MWLFiBUVFRfTt27dO20i3qeovwJnAIkk3Stq9TntzzjVLmzZtokuXLp40GgFJdOnSpV61v7QSh5k9a2YjgX2Aj4FnJb0s6TxJdavrJMD7OJxrvDxpNB71/SzS7hyX1AU4F7gQeAP4EyGRPFOvCLLIh+M656rTvn37Ss/Hjx/P5ZdfntE25s2bx1NPZf2mF1uMHz+eHXfckYEDBzJw4EDOPvvsjLcxY8YMTjwx2V/ZTreP41Fgd+A+YKiZfR4tmiRpblLBOedcY1FaWsq8efOYO3cuJ5xwQpXLW7as/3ij008/ndtuu63e20lSujWOP5tZfzMbE0saAJjZ4ATics65BjN16lT2339/9t57b44++mi+/PJLAEaPHs1ZZ53FwQcfzFlnncV1113HpEmTGDhwIJMmTdpmeVlZGVdffTX77rsvAwYM4M4779yyj5tuumnL/Ouvvz6j+ObNm8cBBxzAgAEDOPnkk1m1ahUAixcv5uijj+a73/0u++yzDx988EGl182ZM4e99957m/n1lW567Czp+ynz1gBvm9myrEbknMtrN0ydz4LPvs7qNvt3257rh36nxnU2btzIwIEDtzxfuXIlw4YNA+CQQw7hlVdeQRJ33303f/jDH7j55psBWLBgAS+++CJt2rRh/PjxzJ07d0uNYPTo0ZWWjx07lo4dOzJnzhw2b97MwQcfzLHHHsuiRYtYtGgRs2fPxswYNmwYM2fO5LDDDtsmzkmTJvHiiy8C8OMf/5jzzjuPs88+m1tvvZXDDz+c6667jhtuuIFbbrmFkSNHcs0113DyySezadMmysvLWbIk/MDqyy+/zBVXXMHjjz+e9Z/TTjdxXAAcCDwXPT8CeA3oK+lXZnZfVqOqI787rnOuOm3atGHevHlbnlckAQjDhU8//XQ+//xziouLKw1THTZsGG3atKl2u/Hl06dP56233mLy5MkArFmzhkWLFjF9+nSmT5/O3nvvDcC6detYtGhRlYkjtalqzZo1rF69msMPPxyAc845h1NPPZW1a9eydOlSTj75ZCBcm1Fh4cKFjBo1iunTp9OtW7fM3qg0pJs4WgF7mNmXAJJ2Au4l/Fb4TELfR875BYDONX611Qxy4YorruCqq65i2LBhzJgxg9GjR29Z1q5duxpfG19uZtx6660MGTKk0jrTpk3j2muv5eKLL640//bbb+euu+4CyGqn+ze/+U02bdrEG2+8kUjiSLePo0dF0ogsA3qa2UqgJOtROedcA1qzZg3du3cHYMKECdWu16FDB9auXVvt8iFDhnDHHXdQUhKKxffff5/169czZMgQxo0bx7p16wBYunQpy5Yt47LLLmPevHnMmzev2gK+Y8eOdO7cmRdeeAGA++67j8MPP5wOHTrQo0cPHnvsMQA2b97Mhg0bAOjUqRNPPvkk1157LTNmzMjszUhDuoljhqQnJJ0j6Rzg8WheO2B11qNyzrkGNHr0aE499VQGDRpE165dq13vyCOPZMGCBVs6x1NdeOGF9O/fn3322Yc999yTiy++mNLSUo499ljOPPNMDjzwQPbaay9OOeWUGhNQqgkTJnD11VczYMAA5s2bx3XXXQeEJPLnP/+ZAQMGcNBBB/HFF19sec1OO+3EE088wWWXXcarr76awbtRO5lZ7SuFq0W+DxwSzXoJ+Iel8+IcGDx4sFW0XTrncm/hwoXsscceuQ7DxVT1mUh6LZ2RsrX2cUgqAJ41syOBf9Q5yjqSdATwa2A+MNHMZjR0DM4557aqtanKzMqAckkZX44taZykZZLeSZl/nKT3JC2WdE1tIQDrgNZAUaYxOOecy650R1WtA96W9AywvmKmmV1Zy+vGA7cRRmABW2owtwPHEBLBHElTgAJgTMrrzwdeMLPno5Fc/wuMTDNm55xzCUg3cTwSPTJiZjMl9UmZvR+w2Mw+BJA0ERhuZmOAmm6wsgrYrrqFkkYBo4CsX+zinHNuq7QSh5lNkNQG6GVm79Vzn92BJbHnRYTrQaoUXbE+BOhEqL1UF+NYSZ8DQwsLCwfVM0bnnHPVSGs4bnRF9jzgn9HzgVHzUuLM7BEzu9jMTq+tY9zvjuucc8lL9zqO0YQmptUAZjYP+FYd97kU6Bl73iOaV2/+exzOuaoceeSRTJs2rdK8W265hUsvvZT58+dz1FFHsfvuu7PLLrtw/fXXU14efug09TbnAwcOZMGCBbk4hEYl3cRRYmappXFdf0J2DrCrpL6SCoEzgAapvTjnmqcRI0YwceLESvMmTpzIGWecwbBhw7jmmmt47733ePvtt5k9ezZ/+tOftqx3+umnb7m6e968efTv37+hw2900k0c8yWdCRRI2lXSrcDLtb1I0oPALGB3SUWSLjCzUuByYBqwEHjIzObXMf5KvKnKOVeVU045hSeffJLi4mIAPv74Yz777DMWL1685Q62AG3btuW2227jpptuymW4jV66o6quAH4BbAYeJBT6v67tRWY2opr5TwFZ/xktvzuuc03A09fAF29nd5s77wXH31jt4h122IH99tuPp59+muHDhzNx4kROO+005s+fz6BBlcfS7LLLLmzcuJHVq8PdlOK3OQeYNWtWjXfLbQ7S/c3xDWb2CzPb18wGR9N1/6XzhHiNwzlXnXhz1cSJExkxosrz2m2kNlU196QB6f907G7AT4A+8deY2VHJhFU3XuNwrgmooWaQpOHDh/Nf//VfvP7662zYsIFBgwbxxhtvMHPmzErrffjhh3Tp0oVOnTrlJM6mIN0+joeBN4BfAlfHHo2K1zicc9Vp3749Rx55JOeff/6W2sbIkSN58cUXefbZZ4HwK4FXXnklN9xwQy5DbfTSTRylZnaHmc02s9cqHolG5pxzWTZixAjefPPNLYmjTZs2TJkyhd/+9rfstttudO3alYMPPpiRI7fe2ajiN8YrHi+/XOu4oLyX7m3VRxN+vOlRQgc5ANEPOTUasaaqixYtWpTrcJxzkaZyW/XHHnuMq666iueee47evXvnOpxE1ee26ukmjo+qmG1mVteLABPlv8fhXOPSVBJHc5Lo73EAmFnf2tdyzjnXHNTYxyHpp7HpU1OW/S6poOrKbzninHPJq61z/IzY9LUpy47Lciz15qOqnGu8GukvTTdL9f0sakscqma6qufOOVel1q1bs2LFCk8ejYCZsWLFClq3bl3nbdTWx2HVTFf13DnnqtSjRw+KiopYvnx5rkNxhETeo0ePOr++tsTxXUlfE2oXbaJpoud1T1fOuWalVatW9O3rY2zyRY2Jw8wKGiqQbPBbjjjnXPLSvXK8SfDOceecS15eJQ7nnHPJ88ThnHMuI544nHPOZSTdXwDMGUktCL82uD0w18wm5Dgk55xr1hKtcUgaJ2mZpHdS5h8n6T1JiyVdU8tmhgM9gBKgKKlYnXPOpSfpGsd44Dbg3ooZkgqA24FjCIlgjqQpQAEwJuX15wO7Ay+b2Z2SJgP/Sjhm55xzNUg0cZjZTEl9UmbvByw2sw8BJE0EhpvZGODE1G1IKgKKo6dlyUXrnHMuHbnoHO8OLIk9L4rmVecRYIikW4GZ1a0kaZSkuZLm+m0NnHMuOY2+c9zMNgAXpLHeWEmfA0MLCwsHJR+Zc841T7mocSwFesae94jmOeecawJykTjmALtK6iupkPCbH1OysWG/5YhzziUv6eG4DwKzgN0lFUm6wMxKgcuBacBC4CEzm5+l/fkvADrnXMKUjz+sMnjwYJs7d26uw3DOuSZF0mtmNri29fLqliNe43DOueTlVeLwPg7nnEteXiUOr3E451zy8ipxeI3DOeeSl1eJwznnXPLyKnF4U5VzziUvrxKHN1U551zy8ipxOOecS15eJQ5vqnLOueTlVeLwpirnnEteXiUO55xzyfPE4ZxzLiOeOJxzzmUkrxKHd44751zy8ipxeOe4c84lL68Sh3POueR54nDOOZcRTxzOOecy0jLXAdRG0qHASEKs/c3soByH5JxzzVqiNQ5J4yQtk/ROyvzjJL0nabGka2rahpm9YGaXAE8AE5KM1znnXO2SrnGMB24D7q2YIakAuB04BigC5kiaAhQAY1Jef76ZLYumzwQuSDhe55xztUg0cZjZTEl9UmbvByw2sw8BJE0EhpvZGODEqrYjqRewxszWJhiuc865NOSic7w7sCT2vCiaV5M5yl6cAAAYMElEQVQLgL/VtIKkUZLmSpq7fPnyeobonHOuOo2+cxzAzK5PY52xkj4HhhYWFg5qgLCcc65ZykWNYynQM/a8RzTPOedcE5CLxDEH2FVSX0mFwBnAlGxs2G854pxzyUt6OO6DwCxgd0lFki4ws1LgcmAasBB4yMzmZ2l/fpND55xLmMws1zFk3eDBg23u3Lm5DsM555oUSa+Z2eDa1surW454jcM555KXV4nD+ziccy55eZU4vMbhnHPJy6vE4TUO55xLXl4lDuecc8nLq8ThTVXOOZe8vEoc3lTlXJ4pL8t1BK4KeZU4nHN5ZNZf4A99ocivyWps8ipxeFOVc3ni7ckw7VrY9DX84wLY7L+o0JjkVeLwpirn8sCHz8Ojl0Cvg+CsR2D1p/DUT3MdlYvJq8ThnGvivngHJv0QuvSDEX+HXY6CQ38Cb/491EJco+CJwznXOKxeAg+cAoXt4YeToU3nMP/wn0GPfeGJq2DVJ7mN0QGeONyqj+GrRbmOwjV3G1bC/T+A4g0haXTssXVZQUv4/l1g5fDIKCgrzV2cDsizxOGd4xnauBrGHQe37wdPXQ0bV+U6ItcclWyCiWfCqo/gjAdgp+9su84OfeF7N8OSV+CFmxs+RldJXiWOeneOfzIL5tyT3aAas2eug3Vfwp4/gDl3w62D4fX7oLw815G55qK8DB65CD6dBSffCX0PrX7d754Oe50Gz/8ePn214WJ028irxFFvr0+AJ6+CZ0fnf+H50cxwvAdeBj+4G0bNgC67wJTL4Z6jYenruY7Q5Tsz+Oc1sHAKDBkDe36/9td874/QsTs8ciFs8paFXPHEETfsNhh8Prz4f/DoKCjdnOuIklG8AaZcCZ37whE/D/O++V04fxqc9NfQSXnXUTD1x7B+RW5jdfnrpVtg9lg48HI48EfpvaZ1R/jBPbBmKTz5k2Tjc9XyxBFX0BK+97/wH9fD2w+HzrqNqxtm3yUbG2Y/ADN+F9qTh/0ZCttunS/BwBFwxVw44Eeh2eq2QaH5zm/94LLpzYmhZr/nKXDMrzN7bc/9wkirtx+CNyclEp6rWaNPHJJ6SXpM0jhJ1zTADuHQq+DksfDpK6HzePWS5PZXvB6evgZ+1w1eHZvcfiosfQ1m3Q6DzoW+h1W9TuuOcNzv4NKXYKc9Q/Pd2CNgyezk48tna7+ERc/C8vehtDjX0eTOB/+Gxy8L37+T/gIt6lAMHfrf0OtAePK/YeVH2Y/R1SjR3xyXNA44EVhmZnvG5h8H/AkoAO42sxtr2Mb3gM5mdr+kSWZ2em37zdpvjn/4fLgYqbAdjHwYdt6r/tuM++iF0Kew6mPYYZdQCxg5Gfr9R3b3U6G0OCSAjSvhsldDgqiNGcx/BKb9EtZ+Bt89E465Adp/I5kY882mr2Hh1HB2/NHMMKQUQC2gU+9woVuXfqF/qWJ6++51K0ybgs/fhL+dAJ37wHlPpfcdrM7qT+GOQ2DH3eC8p6GgVdbCbK7S/c3xpBPHYcA64N6KxCGpAHgfOAYoAuYAIwhJZEzKJs4HyoDJgAH3mdnfattv1hIHwJfz4YFTQwFw+r3hStb62rwWnrke5t4T+hmG3x76GMYNCbWbC58N/wzZ9vxN8Nxv4IwH4dsnZBjzOph5U6ittGoDR/4c9r0oNO+5yko3w6JnQnPn+/+E0k2hoNzr1HCW/fVnsGIxrPhg69+S9Vtf37J1OJHYkkyiv113g7Y75Oyw6m3Vx3DPsVBQCBc8A9t/s/7bfHtyuJfVYT+Fo35R/+3lSlkpfDwT3nkE1n8Fx/4auu7a4GE0isQRBdIHeCKWOA4ERpvZkOj5tQBmlpo0Kl7/E2C2mc2UNNnMTqlmvVHAKIBevXoN+uSTLF5humYp/P00WP4uDLsVBp5Z920t/lfodF5TFEY0HfmLrf0Mqz8NndLbdYAL/5XdQmLZu3DnofDtE+HUWnNv9b5aBE//NDQ3fKN/iP8be4Sz5FatsxdvU1NeDp++DG89BAseh02roW3XMFJor1PDlc9S1a81g7VfREkkeqz8MPr7EZSXhPXUAo77Pew/quGOK1vWr4Bxx4ZC8YLpsOPu2dv2o5fCWxPh3Ceh90HZ227SysvCMOR3/gELpsCGr6CwQ6htlpfB0D/BXlUWd4lpzInjFOA4M7swen4WsL+ZXV7N6/cERgNfAevMrNahFFmtcVTYtAYmnQUfPR8Ky8Ourr4gqMrG1TD9F/DG/eHMcfjtoZMv1aevwoQTodcB8MNHslP9Li8LfTUrFsFlc6D9jvXbnhm8+wT88+ew5tOt89vtGBJIxx7QsWf0t/vW6XbfyK8mGDP48p2QLN75B3y9FFq1g29/DwacBt86ov6fX1lpeI9XfBAGKbz/NBz7GzjoimwcQcMo3gD3Dg/NVGc/Dr0PzO72N6+Fvx4K5aVwyYvQplN2t59NZlA0J3xf5j8G676AVm1ht+PCSUa/Y2DDCph8frjYcfD5YahyA52U5U3iyHBfQ4Gh/fr1u2jRogRuo1FaDFOvhDcfhH3ODiOw0ikY3p8GU/8zfEkO/jEcfk3NX4R5D8Jjl4Qvzff+N7MEVZVX7wy1hJPvhO+eUb9txZVsDP8Ea5aGGtSaJaHwXFMUHsXrKq/fohVs321rIuncB3Y9FrrvU/9jbEirPgnNUG8/HGqhLVrCLv8RksXux4c+sSSUlYSL5eY/Ckf9Mpy8NHZlpfDQWfDe03DavdB/WDL7KXot1Gj2GAqn/K1xfZ/M4PN5oRlq/qPh/6RgO9j1mJAsdjtu2+9MWQn8+9fw0p9C3+qpE0KTZcLSTRy5aKBeCvSMPe8RzWv8WhbCSXeEQm/mTaGt+tQJsF37qtffsDJc4PTWpNCsc8YDoZCszcARoUB66RbYcY/6NU2s+gSevQH6HQ0Dah1XkJlWbaofmWUWmmuqSyqfvBQ6jJ+/MSSS/sPDo/vgxlsrWb0kfJ7vPhGe9zwg3Aaj/8nQrkvy+y9oBd+/OxQ6//5NOJE58ueNq5CMW/lRGPX0wb/ghD8mlzQAegwK78W/fhXO2vceWfdtlZeF/7+STeE73qpNqBVU/E2nX88Mli2IksUjoemxRcvQR3rUL2H3E6D19tW/vqAVHPOrcGv5xy6BOw+H4bfCd06u+3FlUS5qHC0JneP/QUgYc4AzzWx+tvaZSFNVqrl/C/8UO+8JZz4MHXaqvHzh1HA3z40rw9DBQ38SEk+6ysth0shQW/nh5Lp1ypvB/d8Pw2h/NAs69cp8G0nauCqciS54PPSZlBVDh26hgOk/HHruDy0Kch1lOGt+9a/w3O8Ag4OuDP1cnXvnJp7ystBP9sZ9oQZ79A2NK3mUbApnyi/cHArAo0fDfhclv9/yMpgwDD57Ay55If0z9A0rw68MFs0O/ytLX9u2thzXolVIIIVtU5JKbHrZwpB81CKcXO35g9C/WJd+y9VLQtNV0ewwIGXIb6HldplvJw2NoqlK0oPAEUBX4EvgejO7R9IJwC2EkVTjzOy3Wdpfsk1Vqd6fDg+fEzpBfzg5dPit/wqe+kmoku48IBoxNaBu29+8Fu4ZEs7QL/pX5qMs5v0dHrsUjr+p8XeobloTkuSCx8OIpLLN0H4n2CNKIr0Pyk0SWfpaKKS/eBt2HRJuedEYEnB5OTx9dbjH2P6XwnFjGkfyWPRs+P6v+iicHQ/5XWiebChriuCOg2GHb4VO+NSm5PJy+Oq9kCAqEsVX74dlKgg3WOy5fxjM0KYzlGwITbJb/san11cxL/rbfqettehsDF0vKwkXTM66LYzAPHV8OMYsaxSJI1capMZRYenrYcRVWQkcfGUYrrrpazjiZ3Dwf9a/c3T1pzD2yDDe/cJn0z9jWbcMbtsXdvx2GOPeWJt/qrJ5beUkUroxdLx/+8Twj9jn0OSHAW/6OrQxz74LOuwMx/8+JLHGUDhXMINpv4BXbg/9YSfcnLvPeU0R/PPacN+pHXYJCTYbQ9frYsHj8NDZcMhVcMh/wdK5IUEsmR1qFpuje1y16bw1SfTcD7rtU32zc2Px7lOh6cosnJRmufmvWSaOBq9xVFj1Mdx/Shi11G2fcDXsN/bI3vY/fQUmDM1spNVD58B7T8ElLyVzTUhDKV4fkseCx0MyKVkPbXaAPaIk0vfw7F74ZRYKv6d/FobI7jcqtEnX1B6dS2bwrxvC/dUG/jDcRqYha2ZlJfDKX2DG78HK4LCfhKa8hJpS0jblCnj9XkCES8AU+hl77gs99gsJo8sujetEIF2rPoHJ54Xa8P6XhFu2ZNIMXoNmmTgqNGiNo8LGVfDxi7Db8cmcDVc0Ow2+AE7835rXXTg1XPF+1P+Ef+R8UbwhdLQueBze+ycUrw1njXsMhf4nhbbk+iSRVZ+E3yVZNC2MZDnxT6HTtbEzC7canzEmXDNy0l8b5sLMj18M/XzL3w3f++NvDCPlGoPi9TD9f0IzUc/9oPug+l2l3tiUFsOz14ek3W2f0HSVhT63Zpk4clbjaCjT/wde/nMYoVJdZ+PG1XD7/qFpZ9Rz+XsbhpJNIYnMfzR0sBevi9VEMkwiZSXwyh2h4EVhdM7+lzS9q+JfuDmMKuo/PNxBNqnPfu2X8Mz/hNGCHXuFZrxM70TgsmPhVHjsslCxOumOcA1RPTTLxFEhJzWOhlBeBhNHwqLp1Y+0mnJFuMjwon9Dt70bPsZcKNkYrshf8FhKEhkK3zkJ+hxWfRIomhuusfny7XDWfMJN0Kln1es2BbNuh2k/D8M9Tx2f3Saj8rJwEeK/fx3e84N/HEYMxu+w7Breyo/g4XPDtSIHXBZGsdWx6apZJo68r3HA1pFWXxfBhf+Grv22LvtwRrhC9+AfhzHgzVFFEpn/aLhPVPE6aNsldKx/5+StHeub1oSz8zn3QIdvwgl/COs0xTbvVLPvCiOb+h0Np98fhofW15I54S7JX7wVrog/4Y85uZeSq0bpZpj+y/D7Jmc+DLsdW6fNNMvEUSFvaxwVVn0S7mnVplMYadWmc2jTveOgMG780pezU1g0dSUbYfGz4dYO7z0dOtbbdgnDaj/4F6xfDvtdHG6Ot12HXEebXa9NCMOI+x4GIx7M7Gr2zevCENXl74Whq1+8E97HDjuH4bXfOTk/Emw++mwedBtY55d74sjnxAHh99EnDIU+B4dbsVeM8T73SehzSK6ja3y2JJFHQ8d6113hxP9L70r+purNiWFARc8DYORD2ybHDSu3Jofl0eOr98NV/hVatAzDa3cbAof/NP8SrKvEE0e+Jw6ANx6Ax38U7nWzaDrscw4MvSXXUTV+5eVN67qW+njnH/CPi0KC3Cu6w/NX74e/65dvXa9lm5BMd9w9PLpGf3f4Vv4OsHDbaMz3qkpMrI8j16E0jL1HwvKF8PKt4VYdx9yQ64iahuaSNCDc6qKgEB4+L9yQsnXHkBR2GxIuDu26e7jOp2Ov5vW+uHrxGkdTV14GM6OrdHvum+toXGO1bln49cH2O3n/hKtWs6xxNEstCsLtTZyrif/Ur8sir5s655zLiCcO55xzGcmrxCFpqKSxa9asyXUozjmXt/IqcZjZVDMb1bFjHt3MzDnnGpm8ShzOOeeS54nDOedcRjxxOOecy4gnDueccxnJyyvHJS0HPqnjy7sCX2UxnKbAj7l58GPOf/U93t5mtmNtK+Vl4qgPSXPTueQ+n/gxNw9+zPmvoY7Xm6qcc85lxBOHc865jHji2NbYXAeQA37MzYMfc/5rkOP1Pg7nnHMZ8RqHc865jHjicM45l5FmmzgkHSfpPUmLJV1TxfJzJS2XNC96XJiLOLOptmOO1jlN0gJJ8yX9vaFjzLY0Puf/i33G70tanYs4syWN4+0l6TlJb0h6S9IJuYgzm9I45t6S/hUd7wxJPXIRZzZJGidpmaR3qlkuSX+O3pO3JO2T1QDMrNk9gALgA+BbQCHwJtA/ZZ1zgdtyHWsDH/OuwBtA5+j5N3Idd9LHnLL+FcC4XMed8Gc8Frg0mu4PfJzruBvgmB8GzommjwLuy3XcWTjuw4B9gHeqWX4C8DQg4ADg1Wzuv7nWOPYDFpvZh2ZWDEwEhuc4pqSlc8wXAbeb2SoAM1vWwDFmW6af8wjgwQaJLBnpHK8B20fTHYHPGjC+JKRzzP2Bf0fTz1WxvMkxs5nAyhpWGQ7ca8ErQCdJ38zW/ptr4ugOLIk9L4rmpfpBVM2bLKlnw4SWmHSOeTdgN0kvSXpF0nENFl0y0v2ckdQb6MvWAqYpSud4RwM/lFQEPEWoZTVl6Rzzm8D3o+mTgQ6SujRAbLmU9ne/Lppr4kjHVKCPmQ0AngEm5DiehtCS0Fx1BOHs+y5JnXIaUcM5A5hsZmW5DiRhI4DxZtaD0Jxxn6R8Lwd+Ahwu6Q3gcGApkO+fc6Ly/QtTnaVAvAbRI5q3hZmtMLPN0dO7gUENFFtSaj1mwlnJFDMrMbOPgPcJiaSpSueYK5xB026mgvSO9wLgIQAzmwW0JtwYr6lK53/5MzP7vpntDfwimtekB0GkIZPvfsaaa+KYA+wqqa+kQkKhMSW+Qkp74DBgYQPGl4Rajxl4jFDbQFJXQtPVhw0ZZJalc8xI+jbQGZjVwPFlWzrH+ynwHwCS9iAkjuUNGmV2pfO/3DVWq7oWGNfAMebCFODsaHTVAcAaM/s8Wxtvma0NNSVmVirpcmAaYVTGODObL+lXwFwzmwJcKWkYUErohDo3ZwFnQZrHPA04VtICQlX+ajNbkbuo6yfNY4ZQ2Ey0aDhKU5Xm8f43oQnyvwgd5ec25eNO85iPAMZIMmAmcFnOAs4SSQ8Sjqtr1F91PdAKwMz+Sui/OgFYDGwAzsvq/pvwd8Y551wONNemKuecc3XkicM551xGPHE455zLiCcO55xzGfHE4ZxzLiOeOFyTIGldGuv8p6S2WdznSZL6Z3F7L9fjteuiv90kTa5hvU6SflTX/TiXDk8cLp/8J5BR4pBUUMPikwg3yMsKMzsoC9v4zMxOqWGVToAnDpcoTxyuSZF0RPSbCpMlvSvpgejq2CuBbsBzkp6L1j1W0ixJr0t6WFL7aP7Hkn4v6XXgVEkXSZoj6U1J/5DUVtJBhDsG3BT9VscukgZGN398S9KjkjpH25uh8LsecyUtlLSvpEckLZL0m1js62LTP5P0drTPG6s4zr5R7G+nbKNPxW8wSPqOpNlRfG9J2hW4EdglmneTpPYKv0XxerSt4bHtLJR0l8Jvr0yX1CZa1k/Ss1Fsr0vaJZp/dfQ+vSXphqx+sK5pyfV95f3hj3QewLro7xHAGsK9d1oQbhNySLTsY6BrNN2VcJVwu+j5z4DrYuv9NLbtLrHp3wBXRNPjgVNiy94CDo+mfwXcEk3PAH4fTf+YcKvybwLbEe7/1SXlGI4HXgbaRs93qOJ4pwBnR9OXxV7bh+g3GIBbgZHRdCHQJr48mt8S2D72niwm/EZDH8JdEQZGyx4CfhhNvwqcHE23JtTijiX8loei9/0J4LBcfy/8kZtHs7zliGvyZptZEYCkeYRC8MWUdQ4gNDO9JAlCwRq/F9Wk2PSe0Vl9J6A94fYVlUjqCHQys+ejWRMIPxBUoeL2JW8D8y26L5CkDwk3m4vfuuVo4G9mtgHAzKr6XYWDgR9E0/cBv69inVnALxR+0e4RM1sUHWul0IHfSToMKCfcWnunaNlHZjYvmn4N6COpA9DdzB6NYtsUHcexhOTxRrR+e8INMGdWEZfLc544XFO0OTZdRtXfYwHPmNmIaraxPjY9HjjJzN6UdC7RjR7rGFN5Snzl1cSXjhrvB2Rmf5f0KvA94ClJF7PtTSlHAjsCg8ysRNLHhFpEPGYI72ObGnYnYIyZ3ZlB/C5PeR+HyydrgQ7R9CvAwZL6AUhqJ2m3al7XAfhcUitCQbvN9sxsDbBK0qHRsrOA56mbZ4DzKkaASdqhinVeItx8kZSYtpD0LeBDM/sz8DgwgMrvAYRf+VsWJY0jgd41BWZma4EiSSdF+9guinMacH6sn6i7pG+kdbQu73jicPlkLPBPSc+Z2XLCHY0flPQWoVnn29W87n8I7fovAe/G5k8Erpb0RtRBfA6hs/wtYCChnyNjZvZPQtPW3Kip7SdVrPZj4DJJb1P9L7edBrwTbWNPwk+FriA0z70j6SbgAWBwtJ2zU46vOmcR7g79FqEvZmczmw78HZgVbWsylROUa0b87rjOOecy4jUO55xzGfHE4ZxzLiOeOJxzzmXEE4dzzrmMeOJwzjmXEU8czjnnMuKJwznnXEb+H5CaQYI0rpTPAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", - "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.yscale('log')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='center right');" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl4VOXZ+PHvnUz2TEhIAGVRFnHBBVTABQy474CAe1uXtha7+Lb2tdVf39Zq9UXr283aFrVatRVxQ8UK7kBEBUREVNwoooQ1CSGTPTOZ+/fHOcEkZJkks2Qy9+e65srMmXPOc58E5p5nOc8jqooxxhgTqqRYB2CMMSa+WOIwxhjTJZY4jDHGdIklDmOMMV1iicMYY0yXWOIwxhjTJZY4jDHGdIklDmNcIrJZRE6LUdmDRKRIRCpF5HdRLPchEbktQue+XERejsS5TWxZ4jAhEZEXReTWNrZPF5EdIuJxX58oIq+7H4AVIrJIRA5ttv9UEQmKSFWrxwnRvJ5e6BqgFMhR1Z/GOpiuEpHhIqJN/w4AVPVRVT0jlnGZyLDEYUL1MPANEZFW278JPKqqAffD/2XgOWAwMAJYD7wpIsObHbNNVbNbPd6O/CVER/MPzy44ENigNpWDiQOWOEyongXygZOaNohIHnAe8Ii76bfAI6r6J1WtVNXdqvo/wGrg5u4U6jYf/beIrHdrMI+LSLr73pUisqLV/ioiB7nPHxKRv4rIErdW86aI7CcifxSRchH5RESOblXkBBHZ4L7/j6ay3POdJyLrRGSPiLwlIke1ivPnIrIeqG4rebi1sXfc63hHRE5sihO4AviZG+c+zWUikiYi/yciX4nIThGZJyIZ7nsfi8h5zfb1iEiJiBzjvn7SrRVWuM1hh7fzu+7s93muiLwnIj4R2SIiv262a5H7c09TDbL1+dq7fve9ZSLyG/dvVCkiL4tIgfteuoj8S0TK3N/9OyIyqK1rMNFhicOERFVrgSeAbzXbfBHwiaq+LyKZwInAk20c/gTQkyaLi4CzcGowRwFXdvHY/wEKgHrgbWCt+/op4Pet9r8cOBMYBRzsHoubYB4EvoeTQO8FFolIWrNjLwXOBXJVNdD8pCLSH3gBuNs9/vfACyKSr6pXAo8Cv3VrX6+2cR13uPGMAw4ChgC/ct97zC27yZlAqaqudV8vAUYDA91rf7TtX1WnqnH+/rnudV4rIjPc9wrdn7lt1SA7uv5mu10GXOXGmQr8t7v9CqAfMMw9dg5Q281rMGFgicN0xcPA7Gbfwr/lbgPoj/PvaXsbx20HBjR7Pdj95tj8kdVBuXer6jZV3Q08j/PhGapnVPVdVa0DngHqVPURVW0EHgda1zjuUdUtblm38/UH8jXAvaq6SlUbVfVhnER0fKs4t7hJtrVzgc9V9Z+qGlDVx4BPgPM7uwC3efAa4CduLa4S+F/gEneX+cA0N3mD8wH8WNPxqvqgWwOsB34NjBWRfp2V25qqLlPVD1Q1qKrr3TKmhHh4KNf/D1X9rNmXlKa/sx8nYRzk/u7fVVVfV+M34WOJw4RMVVfgdODOEJFRwEScDy2AciAI7N/Gofu7xzXZpqq5rR7VHRS9o9nzGiC7C2HvbPa8to3Xrc+1pdnzL3H6asDpg/hp82SH8w14cDvHtjbYPV9zX+LUHDozAMgE3m1W9ovudlR1I/AxcL6bPKbh/l1EJFlE7hCR/4iID9jsnrMghHJbEJHjRGSp2wxWgfPNP9TzhHL97f2d/wm8BCwQkW0i8lsRSelq/CZ8LHGYrnoEp6bxDeAlVd0J4H7wvw1c2MYxFwHLIhBLNc4HKgAisl8Yzjms2fMDgG3u8y3A7a2SXab7zblJRx3b23CST3MHAFtDiKkUJ8kd3qzsfqraPOk1NVdNx+lk3+huv8zddhpOc89wd3vrQQ7Q+e9zPrAIGKaq/YB5zc7TWad+t69fVf2qeouqjsFpDj2Plk2mJsoscZiuegTnQ+i7fN1M1eRG4AoRuU5EvCKSJ849AifhNK2E2/vA4SIyzm0++3UYzvkDERnqtsn/Aqc5C+B+YI77rVtEJMvtLPaGeN7FwMEicpnbeX0xMAb4d2cHqmrQLf8PIjIQQESGiMiZzXZbgNOPdC1f1wIBvDhNamU4SaGjv0Nnv08vsFtV60RkIk5SalKCU+Mc2c65u339InKyiBwpIsmAD6fpKtjZcSZyLHGYLlHVzcBbQBbOt8/m763A6ZididOvsRunY/NUVf2w2a6DZd/7OGZ1I5bPgFuBV4HPgRUdHxGS+ThDijcB/wFuc8tag5Ms78FplttIFzrpVbUM55vyT3E+xH8GnKeqpR0e+LWfu2WudJucXgUOaXb+7Tg1vhP5OtmBk+i/xPlmvwFY2UGMnf0+vw/cKiKVOB3zTzQ7tganT+hNtzmted9PT69/P5yBDD6cJrnlOM1XJkbEho2bSBFnuOpS4DJVfSnW8RhjwsNqHCZi3JE3M4AjpXs3xRljeiGrcRhjjOkSq3EYY4zpkj7ZfFBQUKDDhw+PdRjGGBNX3n333VJVHdDZfn0ycQwfPpw1a9bEOgxjjIkrItL6Js02WVOVMcaYLrHEYYwxpksscRhjjOmSPtnH0Ra/309xcTF1dXWxDiUi0tPTGTp0KCkpNvebMSayEiZxFBcX4/V6GT58OLLPInbxTVUpKyujuLiYESNGxDocY0wflzBNVXV1deTn5/e5pAEgIuTn5/fZ2pQx8cRXtJBNcybw2YVD2DRnAr6ihbEOKewSpsYB9Mmk0aQvX5sx8cJXtJCd825AG5y1vAKlW9k57wYAcgpnxjK0sEqYGocxxkRa6fy5e5NGE22opXT+3BhFFBmWOKLo5JNP5qWXWk4S+8c//pFrr72Wjz76iFNOOYVDDjmEUaNGcfPNNxMMOksOPPTQQwwYMIBx48btfWzYsCEWl2CMaUewvpZAadvrUgXKtrW5PV5Z4mhHJNopL730UhYsWNBi24IFC7jkkkuYNm0aN954I59++ikffPABq1ev5k9/+tPe/S6++GLWrVu39zFmzJgex2OM6TltbKRi6eNsvm5yu/t48ge3+148ssTRhqZ2ykDpVlDd207Z0+Qxe/ZsXnjhBRoaGgDYvHkz27ZtY+PGjUyaNIkzzjgDgMzMTO655x7uuuuuHl+LMSYyVJXqdcv48mdnsvMvPyE5bxB5M/8LSc1osZ+kZlBw2U0xijIyEqpzvMmuf/yK+i8+avf9us/eRQMNLbZpQy07/3o9Fa8+2uYxaSMOZ+BVt3ZYbv/+/Zk4cSJLlixh+vTpLFiwgIsuuoiPPvqIY489tsW+o0aNora2lj179gDw+OOPs2LF1wuyvf3222RktPwHaoyJjrpNH1D6r9uoWf8GKYMOZP/r55F9wvmICGlDR1Py0M00+spI7lfAgCt+3ac6xsFqHG1qnTQ6294VzZurFixYwKWXXhrSca2bqixpGBN9/pJitt99HV/9/CzqvviQAVfdyoF/XIb3xGl7RzbmFM5kxF9XIZ5Ucgpn9bmkAQla4+isZrBpzoQ2O7k8BUMYduvTPSp7+vTp/OQnP2Ht2rXU1NRw7LHH8t5771FUVNQyhk2byM/PJzc3t0flGWN6rrFqD7uf+TN7Fj8IIuTN+AH9Z/yA5Kx+be6flJ5J+qETqX6/iE7nKI9DVuNoQ8FlN0WsnTI7O5uTTz6Zq6++em9t4/LLL2fFihW8+uqrANTW1nLddddxyy239Lg8Y0zXtB4Ys/1PP+SLH55I+aJ5eCdPZ/jdbzDg8v/XbtJokjVuCg1ffUxg944oRR49ljjakFM4k0Fz7sJTMARE8BQMYdCcu8JW5bz00kt5//339yaOjIwMFi1axO23387BBx9MQUEBkyZN4vLLL997zOOPP95iOO5bb70VlliMMV9ra2BM5RsLSe6/Pwfe9Qr7/eCPpBQMCelcmWOnAFC9vqiTPeNPn1xzfPz48dp6IaePP/6Yww47LEYRdc2zzz7L9ddfz9KlSznwwANDPi6ertGY3qijZuqR897p0rk0GGTTNUeTecRk9v/xX8IVYkSJyLuqOr6z/azG0QvNmDGDTZs2dSlpGGN6rr0b9bpzA58kJZF5VCE165ej7s28fYUlDmOMcbV3o153b+DLGjeVRt9u6jd/2JOwep2EShx9sVmuSV++NmOiJWfqhfts68nAmMwjTwKgZt3yHsXV2yRM4khPT6esrKxPfsA2rceRnp4e61CMiVva2Ej1mleQrH5ODSMMA2M8eQNJGz6G6vf7VuKI2H0cIvIgcB6wS1WPcLddCPwaOAyYqKprmu1/E/BtoBG4TlVfcrefBfwJSAb+rqp3dCeeoUOHUlxcTElJSfcvqhdrWgHQGNM9Fa/+i/rNH7H/9fPwnjgtbOfNHDuV8hfuJ1hbTVJGVtjOG0uRvAHwIeAe4JFm2z4EZgL3Nt9RRMYAlwCHA4OBV0XkYPftvwCnA8XAOyKySFW7PDVsSkqKrY5njGlTY+VuSh/7LRlHTCL7hPPDeu6ssVMof+6v1Hz0FtnjTw/ruWMlYk1VqloE7G617WNV/bSN3acDC1S1XlW/ADYCE93HRlXdpKoNwAJ3X2OMCZvS+XcSrPEx8OrfhH1RtPTDJiKp6dS8vyys542l3tLHMQTY0ux1sbutve37EJFrRGSNiKzpq81Rxpjwq9u0nopX/0Xu2VeRdsChYT9/UkoaGYef2Kf6OXpL4ugxVb1PVcer6vgBA/ri7DDGmHBTVXY98D8ke/uTf9FPI1ZO1rip+Ldtwr9rS+c7x4Hekji2AsOavR7qbmtvuzHG9Fhl0dPUfbqGghDmnuqJvdOP9JFaR29JHIuAS0QkTURGAKOB1cA7wGgRGSEiqTgd6ItiGKcxpo9orKmk5J+/If2go8k5+eKIlpU65CA8BYOp6SOJI5LDcR8DpgIFIlIM3IzTWf5nYADwgoisU9UzVfUjEXkC2AAEgB+oaqN7nh8CL+EMx31QVdtfgckYY0K0+8nf01hRypAbH0aSIvsdWkTIHDuFqrdfQBsDSHJ8r2gRsehVtb0Vip5pZ//bgdvb2L4YWBzG0IwxCa6++HPKFz9AzimXkH7QuKiUmTV2Kr7XHqNu4zoyDul0HsFerbc0VRljTFSoKiUP/g9JaZlRXQs888jJIEL1umVRKzNSLHEYYxJK1aol1Kx/g/xLbsDTryBq5SZ780gfNa5P9HNY4jDGJIxgfQ0lD/+a1AMOI/fMK6Jefua4KdRtfI/Gqj1RLzucLHEYYxLG7mf/SqCkmIHfvi0mHdRZY6dAMEjNh29GvexwssRhjEkI/p1fUf7sX/BOmk7m4SfEJIb00ceQlOmlJs77OSxxGGMSwq6Hfw1JSRR865cxi0E8KWQcMYnq95fH9RIPljiMMX1e9bplVK9+kfxZPyalm6v5hUvW2KkESorxb98U0zh6whKHMaZPU38Dux78JSn7jSD3/GtiHQ6Z49zpR+K4ucoShzGmTytf/Hf82/7DgKtvJSklLdbhkDroQFL2GxHXw3Lj+753Y4xpg69oIaXz5xIo3QZA6vDDyT7m1BhH9bXMsYX4lj+J+huQlNRYh9NlVuMwxvQpvqKF7Jx3A4HSrYACin/rRnxFC2Md2l5Z46aidTXUfrqm8517IUscxpg+pXT+XLShtsU29ddTOn9ujCLaV8bhJ0Kyh+o4XRXQEocxps9Q1b3NU60FytreHgvJmV4yDhkft/0cljiMMXFPg0Gq3nmJLb+YhtM8tS9PjIfhtpY5dgr1mz4gUFEa61C6zBKHMSZuaWMAX9HTfPnTU9l251UE9uzCe/JFSGpGi/0kNSOqM+GGIstdFbBmfVGMI+k6G1VljIk7wfpafEsfZ/eivxHYtYXUAw5lv+vuwTtpGpLswXdkoTOqqmwbnvzBFFx2EzmFM2MddgtpI44kyZtHzftF5JzUu2LrjCUOY0zcaKz2UfHyw5S/8Hca95SQfvCxDLz6N2Qdc1qLVfxyCmf2ukTRmiQnk3XkSXunHxGRWIcUMkscxpheae+9GGXb8PTfj7QRR1K7YSXBGh+Z46bS/4IfkTHm+Lj6wG0tc9xUKt9aRMNXn5B24GGxDidkljiMMb1O070YTcNqA2XbCZRtJ+2goxl0zVzSRx4V4wjDI3NsIeBMPxJPicM6x40xvU5b92IANO7Z1WeSBkBK/mBShx0Sd8NyLXEYY3qd9u656E33YoRL5tgp1H68imB9TaxDCZklDmNMr9PePRe97V6McMgaNxX111P78epYhxIySxzGmF6n4LKbkFYz2fbGezHCIeOwiUhKWlxNs26JwxjT6+QUzqTfWVe4rwRPwRAGzbmr1w+x7Y6ktEwyDjsurvo5bFSVMaZXShkwDICR97+HJ29gjKOJrMyxUyj952/wl20nJX//WIfTKatxGGN6pUBJMZKSRnK/gliHEnF7px+Jk1qHJQ5jTK/kL9mKp2BIizvC+6rUAw8jOXegJQ5jjOkJf2kxKQOGxjqMqBARssZOoXp9EdrYGOtwOhWxxCEiD4rILhH5sNm2/iLyioh87v7Mc7eLiNwtIhtFZL2IHNPsmCvc/T8XkSvaKssY0/cESorxJEjiAMgcN4VgZTn1X3zY+c4xFskax0PAWa223Qi8pqqjgdfc1wBnA6PdxzXA38BJNMDNwHHARODmpmRjjOm7gvW1NFaUJkyNAyDzKHf6kThYFTBiiUNVi4DdrTZPBx52nz8MzGi2/RF1rARyRWR/4EzgFVXdrarlwCvsm4yMMX2Ms144CZU4PP0KSBt5ZFz0c0S7j2OQqm53n+8ABrnPhwBbmu1X7G5rb7sxpg/zlxQDJFRTFUBy//2o3bCSz2YPYdOcCfiKFsY6pDbFrHNcVZX21njsBhG5RkTWiMiakpKScJ3WGBMD/pLEq3H4ihZSu7e2oQRKt7Jz3g29MnlEO3HsdJugcH/ucrdvBYY122+ou6297ftQ1ftUdbyqjh8wYEDYAzfGRE+gtBiSkvH03y/WoURN6fy5qL+hxTZtqKV0/twYRdS+aCeORUDTyKgrgOeabf+WO7rqeKDCbdJ6CThDRPLcTvEz3G3GmD7MX1KMp/9+SHLiTG4RTzMCR+yvIiKPAVOBAhEpxhkddQfwhIh8G/gSuMjdfTFwDrARqAGuAlDV3SLyG+Add79bVbV1h7sxpo8JlCTOPRxNPPmD9w4KaL29t4lY4lDVS9t569Q29lXgB+2c50HgwTCGZozp5fwlxWSMOT7WYURVwWU3tVj1EHrvjMCJUw80xsQFDfgJ7N6ecDWOppl/S+fP3VvzGHDlzb1yRmCbcsQY06sEdu+AYBBPQWIlDnCSx8h573DAXS87G8I27jS8LHEYY3qVpns4UgYmXuJokjb8cFKHHYKv6KlYh9ImSxzGmF4l0JQ4EqypqjkRIadwFnWfrqFhx+ZYh7MPSxzGmF5l713jBYk9SYT3pAtAhMo37AZAY4zpkL+0mOTcASSlpsc6lJhKKRhCxuEn4lv+NM7A097DEocxplcJlBSTkoAd423JKZyFf8cX1H2+NtahtGCJwxjTq/hLtibc5IbtyT7+XCQ1Hd/y3tVJbonDGNNraDBIoHQrKQMSu3+jSXKml+zxZ1D51qJ95rGKJUscxpheo7GiFPXXW42jGe+U2QQry6letzTWoexlicMY02v4bSjuPrLGTiE5Jx/f8qdjHcpeljiMMb1GoNRNHNY5vpd4UvBOnkH1u6/QWF0R63AASxzGmF4kUVf+60xO4SzUX0/V2/+OdSiAJQ5jTC/i37WFpMwckrNyYh1Kr5I2aiwpg0fhK+odzVUhJQ4RGSUiae7zqSJynYjkRjY0Y0yiCdhQ3DaJCDlTZlO7YeXeWlkshVrjeBpoFJGDgPtwlnOdH7GojDEJyV+aeAs4hSrnJGd69d6wBnmoiSOoqgHgAuDPqnoDsH/kwjLGJBpVTciV/0KVMnAYGYcdR2XRUzGfgiTUxOEXkUtx1glv6p1JiUxIxphEFKyuIFhbZU1VHfAWzqZh60bq/7M+pnGEmjiuAk4AblfVL0RkBPDPyIVljEk0dg9H57wnnIt4UvG9EdtO8pASh6puUNXrVPUx9/UXqnpnZEMzxiQSW4ejc8nZuWSNP53KFc+ijYGYxRHqqKpJIvKKiHwmIptE5AsR2RTp4IwxicPu4QhNTuEsGitKqX5/ecxi8IS43wPAT4B3gcbIhWOMSVSB0q1IajrJOfmxDqVXyzr6FJKy86gseprsY06NSQyhJo4KVV0S0UhMTPiKFlI6fy6Bsm148gdTcNlN5BTOjHVYJgH5S4rxFAxBRGIdSq8mKal4J03Dt/RxgrVVJGVkRz2GUDvHl4rIXSJygogc0/SIaGQm4nxFC9k57wYCpVtBlUDpVnbOu6FXjBM3icdvQ3FDllM4C22oo3LlCzEpP9Qax3Huz/HNtilwSnjDMdFUOn8u2lDbYps21FI6f67VOkzUBUqKSR9xRKzDiAvpBx9Lyn7DqSx6mn4nXxz18kNKHKp6cqQDMdEXKNvWpe3GREqwvoZGX5l1jIdIRPCeNJPdT/0Bf9k2UvIHR7X8UEdV9ROR34vIGvfxOxHpF+ngTGR52vnH1t52YyLFX7IVsKG4XZFTOAtUqXzjmaiXHWofx4NAJXCR+/AB/4hUUCY68i/52T7bJDWDgstuikE0JpHZPRxdl7r/CNIPPjYmfZKhJo5Rqnqzqm5yH7cAIyMZmIk8T/9BACRl9dv7c9Ccu6x/w0Sd3cPRPTmFs2j46mPqN38U1XJDTRy1IjK56YWITAJqO9i/QyLyXyLyoYh8JCI/drf1d28y/Nz9meduFxG5W0Q2ish6G80VPlWrliBpGYy8711nvv9BB1jSMDERKCmGZA+evP1iHUpc8U6aBskefMufimq5oSaOa4G/iMhmEfkSuAeY050CReQI4LvARGAscJ47XfuNwGuqOhp4zX0NcDYw2n1cA/ytO+WaljQYpGr1i87NRGmZ5Ey+gPpNH9CwdWOsQzMJyF9SjCd/fyQ5OdahxJVkb3+yjj4F34pn0cbo3Zsd6lxV61R1LHAUcKSqHq2q73ezzMOAVapa407VvhyYCUwHHnb3eRiY4T6fDjyijpVArojYlO49VPf5WhrLd5I98WzA/eYigm/FszGOzCQif2mxrTPeTTlTZtNYvpOaD1dErcwOE4eIfMP9eb2IXA98B/hOs9fd8SFwkojki0gmcA7OwlCDVHW7u88OYJD7fAiwpdnxxe420wNVq5eAJ4WsY50pCzz99yPj8BOpfPPZmM/1bxKPrcPRfVnHnkZSZg6+5dGbMbezGkeW+9PbxqNb97mr6sfAncDLwIvAOlrNf6XOJ1eXPr1E5Jqm4cIlJSXdCS1hqCpVq5aQecRkkrO+HlXtnTQD/7ZN1G/6IIbRmUSjAT+B8p14Btj3we5ISk3He+L5VK1eTLCuJjpldvSmqt7rPn1VVW9p/sDph+gWVX1AVY9V1UKgHPgM2NnUBOX+3OXuvhWnRtJkqLut9TnvU9Xxqjp+wIAB3Q0tITR8+TH+HZvJPu7sFtu9x58DnhQqV0R/XLhJXIGy7RAMWo2jB7yFs9C6GqpWvxiV8kLtHP9ziNtCIiID3Z8H4PRvzAcW4awwiPvzOff5IuBb7uiq43EmXNyO6baq1UtAhOwJZ7bYnuzNI2vcVCrfXIQGgzGKziQaG4rbcxmHTsQzYCi+ouiMrupwyhEROQE4ERjQqk8jB+jJ8IenRSQf8AM/UNU9InIH8ISIfBv4EudGQ4DFOP0gG4EanNUITQ9UrlpCxiET8OTuWzPzTp5B9ZpXqP14FZmHnxCD6Eyi8ZfazX89JUlJpA0/nOp3XuKz2UPwFER2puvO5qpKxenL8OD0azTxAbO7W6iqntTGtjJgn8nl3f6OH3S3LNNSw47NNHy5gQFX/LrN97PHn4mkZVC54llLHCYqmu4at6luus9XtJCadcvcV1/PdA1EJHl0mDhUdTmwXEQeUtUvw166ibqqVc6yKq37N5okpWeSPeFMKt/+NwOv/g2SkhrN8EwC8pcUk5w7kKTU9FiHErdK589F/fUttkVyputQ+zhq3PU4FovI602PsEdjIq5q1WLSRhxBysBh7e7jnXwBwapyqtcXRTEyk6j8u2wobk9Fe6brUBPHo8AnwAjgFmAz8E5EIjIRE9i9g7rP3iX7uHM63C9r7BSSsnNjMuumSTyBUkscPRXtma5DTRz5qvoA4FfV5ap6NbaIU9ypeuclgE4Th6Sk4j3hPKrWvBS1ceEmMWkwSKB0m42o6qGCy25CUjNabIvkTNehJg6/+3O7iJwrIkcD/SMSkYmYqlWLSRk8ktShozvd1ztphjMufM3LUYjMJKrGPbvQQIPVOHoop3Amg+bchadgCIjgKRgS0ZmuQ1069jZ34aaf4ty/kQP8JCIRmYhorCyn5sO3yJt+LSLS6f4Zhx2Hp//+VK54lpzJMzrd35jusHs4wiencGbUZrcOdenYf7tPKwBbRjYOVb/7KgQb8XbSTNVEkpPxTppG+ZIHaazaQ3J2boQjNInIbws4xaWQEoeI/IM25o5y+zpMHKhctRhP/v6kjRob8jHeyRdQ/vy9VK18gX6nXR7B6EyispX/4lOofRz/Bl5wH6/hNFVVRSooE17Buhpq3l9O9sSzQ2qmapI28khS9h+Jb8Vzne9sTDf4S7eSlJ1LUka35kw1MRJqU1WL+XpF5DEgepO/mx6pXrcUbajrdDRVayKCd/IMdj/1BwK7d+Dpb6uzmfAKlBSTUmCz4sabUGscrY0GBoYzEBM5VSsXk+TNI+OwiV0+NmfyDFCl8q3nIxCZSXT+kmLrGI9DISUOEakUEV/TT+B54OeRDc2Eg/obqF77KtkTzkSSQx1E97XUIQeRNuIIfDbVugkzVcVvCzjFpVCXjvWqak6znwe3br4yvVPNh28SrKnscjNVc97JF1C/cR0N278IY2Qm0QWr9qB11ZY44lBnS8ce09EjWkGa7qtatRhJzyLzyMndPod30jQAKm09chNGdg9H/Oqs7eJ3Hbyn2LQjvZo2NlK1+kWyjzm1RzOPphQMIWPM8VSueIb+s3+EuwQNAAAgAElEQVTcpZFZxrTn63s42p9w0/ROnU2rbjf7xbHaT9fQ6Ctrdwr1rvBOmsGu+2+kfvNHpI84IgzRmUT39T0cNqoq3oQ8qkpEjhCRi0TkW02PSAZmeq5q1WLEk0rWMfusj9Vl3hPOhWSPNVeZsPGXFCNpGSR5bdq7eBPqqKqbceao+jPOlCO/BaZFMC7TQ6pK1arFZI4tDMvNVck5+WSNnULlm8/ZeuQmLALuiCpr+ow/odY4ZuMs67pDVa8CxgL9IhaV6bH6Lz4gULqV7Ik9b6Zq4p18AYHSrdR9akuxmJ7zlxbjKbCO8XgUauKoVdUgEBCRHGAXYD1avVjVqiWQlET2hDPCds7sCWciqen4rLnKhIHdwxG/Qk0ca0QkF7gfeBdYC7wdsahMj1WtWkzGmBNIzskP2zmTMrLIHn8GVW8/jwb8nR9gTDuCdTUEK8stccSpUG8A/L6q7lHVecDpwBVuk5XphRq2fk5D8edkTzwr7Of2Tp5Bo283NR/YVGWm+76+h8NGVMWjUDvHF4nIZSKSpaqbVXV9pAMz3Ve16kWAiCSOzKNPJimrHz5bj9z0gE2nHt9Cbar6HTAZ2CAiT4nIbBHp/h1lJqIqVy8h/aCjIzLraFJKGtnHn0PV6iUE62vDfn6TGOyu8fgWalPVclX9PjASuBe4CKeD3PQy/pJi6jeuI/u48Nc2muRMvgCtq3ZWFTSmG/ylxZDswZM7KNahmG7oyg2AGcAsYA4wAXg4UkGZ7qta7TZT9WBSw85kjDmB5LxBdjOg6bZASTEp+YOR5ORYh2K6IdQ+jieAj3HmproHGKWqP4pkYKZ7qla/SOqwQ0gdPCpiZUhyMt4Tz6d67Ws0VldErBzTd9k6HPEt1BrHAzjJYo6qLnXv6TC9TKCijNqPV4b1pr/2eCdfgAYanPtFjOkif0kxKQMtccSrzqZV/xmAqr4EzGz13v9GMC7TDdVrXoJgMCyTGnYm/aBxJOUUsOv+m/jswiFsmjMBX9HCiJdr4p/6G2gs32l3jcexzmoclzR7flOr97rd+yoiPxGRj0TkQxF5TETSRWSEiKwSkY0i8riIpLr7prmvN7rvD+9uuX1d1aoX8QwcRloUZq+tfOMZgtV7UH89qBIo3crOeTdY8jCd8pdtA1UbihvHOksc0s7ztl6HRESGANcB41X1CCAZJ0HdCfxBVQ8CyoFvu4d8Gyh3t//B3c+00lhTSc36IrInnh2VSeNK58+FxkCLbdpQ62w3pgN2D0f86yxxaDvP23rdFR4gQ0Q8QCawHafj/Sn3/YeBGe7z6Xw9gusp4FSx6TT3Ub32NTTQgDcKzVQAgbJtXdpuTBO7hyP+dbYC4FgR8eHULjLc57ivu3UDoKpuFZH/A74CaoGXcea/2qOqTV9hi4Gmu9eGAFvcYwMiUgHkA6XNzysi1wDXABxwwAHdCS0u+YoWUjp/LoHSrSBJNOzcQsZhx0W8XE/+YKfMNrYb0xF/STGIkGL/VuJWhzUOVU1W1RxV9aqqx33e9DqlOwWKSB5OLWIEMBjIogf9Jc1ivU9Vx6vq+AEDBvT0dHHBV7SQnfNu+PoDXIPsuu/nUelnKLjsJiQ1o8U2Sc2g4LLWXWHGtBQoLSY5bxCSkhrrUEw3hXwDYBidBnyhqiWq6gcWApOAXLfpCmAo0PR1divuFO7u+/2AsuiG3DuVzp+LNrSc9iNa/Qw5hTMZNOcuPE3TmiQlMfCaO8kpnNnxgSbh+Uu2RmQ6HBM9sUgcXwHHi0im21dxKrABWIqzYBTAFcBz7vNF7mvc919X1Z70r/QZse5nyCmcych577D/9fdCMIgnLzFqeqZnArYOR9yLeuJQ1VU4ndxrgQ/cGO4Dfg5cLyIbcfowHnAPeQDId7dfD9wY7Zh7q/b6E6Ldz5A1/nRnxtzlT3W+s4k7vqKFbJozISz362gwiL9sm3WMx7nOOscjQlVvBm5utXkTMLGNfeuAC6MRV7zJnjydPc/+tcW2WPQzJKWm4z1xGr6ipwjWzg3LGuemd2jqR2tqEm26XwfoVrNkoHwnBPxW44hzsWiqMmHQWLWHqqJnSM7bD0/BYBDBUzCEQXPuikk/Q86U2Wh9LZUrX4h62SZywt2PFrChuH1CTGocpud2PfhLAnt2ccDcF0gfdVSswyH9kPGk7DcC3/Kn6HfyxbEOx4RJuPvR/KVNN/8N63ZMJvasxhGHKlcuprLoafrP+q9ekTQARIScKbOp/fDNvTd4mfiXnNf2ehnd7UcL7LK7xvsCSxxxJlBRyq77fk7ayCPJn/VfsQ6nhZwpzqA4X9HTMY7EhEvKfiP22daTfjR/STFJ3jyS0jN7GpqJIUsccURV2XXvzwnWVLLfj+5GPN26BzNiUgYOI2PMCfiWPYmNmI5/9Vs+o+6TVWSMO/nr+3VEGHD1b7rdj+a3obh9giWOOFL5xkKqVi8h/9KfkTbskFiH06acKbPxb99E3edrYx2K6aHSR28nKT2Lwdfdzch573DAnS+CKo0VpZ0f3I5AaTEpNp163LPEESf8ZdvY9fdfkH7oBPLO+16sw2lX9gnnIanpdk9HnKvZsIrqNa/Qf8YPSc7JByB91FFkHXMa5c/fS7C2qsvnVFVb+a+PsMQRB1SVnX/7b7TRz34/+GOvXqc5OdNL9sSzqXzzOYL++liHY7pBVSn91214+u9P7rnfbvFe/kXXE6wqZ8+Sf3T5vMHK3Wh9rTVV9QGWOOJAxSv/ombdMgZ861ek7r9vZ2VvkzP1QoJVe6h+99VYh2K6oWrVYuo+e5f8i39KUlrLTuz0g8aRefQp7H5+HsHa6i6d11/iTD9nNY74Z4mjl2vYsZmSR24h86hC+p3xrViHE5LMI08iOW8QvmVPxjoU00Ua8FP66FxShx5MztSL2twn/8LrCVaWs+fFrtU6/HsXcLIJDuOdJY5eTBsb2fmXnyBJHgZ9/3dRWdkvHCQ5mZzCmVS/9zqBCpvIOJ5UvDYf//ZNFHzj/yHJbd8fnHHwMWSOm0p5F2sdtvJf32GJoxfbs/jv1H68ioFX/ybupqHOmXIhNAaoXPFMrEMxIQrWVlP25O/JOOw4so49vcN98y+8nkbfbva8/HCH+zXnLy1G0jNJys7raagmxixx9FL1Wz6jdP4dZE04E++U2Z0f0MukHXAoaSOPxLfcmqviRfnz82jcU0LBN/+n09ptxiHjyTyqkPLn/kawriak8/tLnKG48VJzNu2zxNELacDPjnv+i6SMLAZ977dx+x8tZ8qF1G/6gPqvPol1KHEvnFObtyWwp4Tdi/5G9vHnknHwsSEdk3/R9TT6ytjz8iOhlVFSTMpAm6OqL7DE0QvtfuYe6v/zPgO/ewee3PhdHMk7eQYke+yejh5qsUSw6t6pzcOZPMqe/D3aUE/BZaEvd5Nx6EQyj5xM+XN/JVjfea3DX7LVRlT1EZY4mon0t7pQ1G1aT9lTf8A7+QK8J5wX9fLDydOvgKyjT8b3xkK0sTHW4cStSC8R3LB9ExWvPkq/079B6uBRXTq2/4U/pbGilIqX/9XhfsHaKoJV5XHXV2faZonDFY1vdR2VvWnOBD6bPYSvbjoPSc9k4Hduj3i50ZAz5UIad++g5oM3Yh1K3Ir0EsGlj96BpKSSf+H1XT42c8xxZBwxid3P/ZVgfW27+/ltHY4+xRKHK9Lf6trTImGh0BiA+jqq174e0XKjZe+ysnZPR7e1N4V5cm7bU553Re1na6la+W/yzp/T7WbR/Auvp3HPLipefbTdffw2FLdPscThivS3uva0mbACDRFPWNGSlJKGd9J0qlYvobGmMizn7A1NitFUcNlNIPv+Vw3WVlL7Wfcnk2yaWiS5XwH9p83p9nkyDz+BjDEnsPvZvxBsqGtzH7uHo2+xxOFq/1vdwIiWGyiNTcKKppypF6INdVSFYVnZWDYpNpUf7aSVeeRkUCUpw7t3ieCCb/4ST78Cin89m8pVS7p13up3X6V2w0ryL7y+x+vE5190PY3lO9utdfhLihFPasT/P5nosMThKrjsJiQ1Y5/tjb4yyhc/gAaDYS1PVZ0Fj9oZatvdFdZ6o/TRx5Cy/8iwNFfFqkkRYpe0fEVPAcoBdy7m4Ce3MnLeO/Sffi3D/vd50g4cw/b/+w7l/76/S+fUxkZKH/1fUvYfSb/TLu9xjBmHn0jGYce1W+sIlBTjKRiMJNlHTl9gf0VXTuFMBs25y1mwpulb3dW3kXlUISUP/pLiX19Iw84vw1JW/eYNFP9qJjvu/hHJA4YiKWkt3u/JCmu90d5lZTe8jX/Xlh6dK5Y1tFgkLVXFt/Rx0g8Zv8+IJ0+/Aob++gmyJ5xFyUM3s+vBX4Y8es237AkatnxKwWU3hmVBMBFx+jp278D32mP7vO8v3YrH1uHoMyxxNJNTOJOR8975+lvdOVcz5P/9k0HX/o76zR/y5U9PZc9LD3e79tFYXcGuB3/Jlz87k/rizxg05y5G3vMWg679XYuENWjOXd1eYa232rusbA/u6aj9ZDW0cy9kNGposegHq/v8PRqKP6ffyRe3+X5SWib7//Q+cs/9LnsWP8C2332303sqgvU1lD3+f6SPPobs488NW6wZR04m/dAJ7H72nn2m1HdW/rOhuH2FJY5OiAj9Tr2UA3/3GhkHj2fX/Tex9TeX7B0lEgoNBqlY9gSbrzuJPUsepN/p32DE3Svod9rlSFLSPgmrryUNcDpFMw4/Ed/yp7q1rGzV6iUU33oJSf0KkJT0Fu9JanpUamjtJadIJi3f0gVIajrZJ05rdx9JTmbgVbcw4KpbqX7nJYpvvpBAB6v07Vn8AIHd20OaWqQrmmodgbLt+F5fsHd70F9PY/lO6xjvQyxxhChlwFCG/PIxBn7vt9R+/h5fXn8Ke155tNMPwbovPmTLL2ew854fkzLoQA64cwmDvjuXZG/iTfSWM2U2/h1fUPfZu106bs9Lj7Dt/75L2oFjGPH71xl07f+5a2A7H3rZJ5wXlWSbO+3afbZFslkxWF9D5ZvPkX38eSRnejvdP+/c7zD4hr9T/9XHbLnpPBq2btxnn8bK3ex+5i9kHXsamWOOD3vMmUcVkn7wsex+5s97ax1NzYt2D0ffYYmjC0SE3NO/wfDfv07aqHHsuvcGtt5+Of7SrfuMttnz8r/Y+ff/x1c/Pwv/9i8Y9P3fM+y250gfeVSsLyNmvE3LyobYSa6qlD72W3bdfyNZ405h6M1PkJyT/3UN7amtpA0/HP/W/0Q4cpfbBJSc13T/hDDgqlsilrSqVr1IsKaSfqe03UzVluyJZzP0lqcJ1tfw1S+mU7NhVYv3y56+m2BdFQXf+EW4wwXcWsdFPyVQug3f0icAG4rbF7U94b7pUMrAYQz91QIqXn6Ekn/dxhc/mgwahIAfgEDpVnbd9zMAcs++ivyLbyA5OzeWIfcKSRnZZB93DpVvLWLAVbeQlJre7r7aGGDnvT/D9/oCck65xJnssY31IbyFsyh95FYatm8idf+REYtdVfEte4L0QydwwG3PUbdpPV/97CyCYbo3pS2+pQvwDBxGxpgTunRcxuijGfa/z7P19m+w9daLyTntcqrXvOx+81fSxxxP2rBDIhM0kDl2Cumjj2H3wrvpd/LFzW7+swkO+wqrcXSTJCWRe9aVHPi71xDVvUmjueTcgQz89u2WNJrJmXohweoKqte80u4+wboatt15Nb7XF9B/9o8ZdO3v2l1UKGfyDBCJ+JDYuo3raNi6kX7uqnjpI48i4/AT2bPkAbSNv31P+UuKqfnwTfpNvahbQ1hTBx3IAbcvwjNwGBUv/uPrmQmA+o3rIvr72tvXUbqVimVP4i8thqQkPPn7R6xME12WOHooddCBaGPbHxyNFSVRjqb3yzxiMsn992t3nY5GXxnFt1xE9brXGXjNnRRc8rMOO3A9/fcj84hJVL6xsFud7qHyLXvC6aQ+4fy92/LO/x6B0m1Urvx3RMpDtd3lW0OR7M1D27inQhvqIn7fS+bRJ5N20Dh2P3M3/u1f4MkbFJZhv6Z3iHriEJFDRGRds4dPRH4sIv1F5BUR+dz9mefuLyJyt4hsFJH1InJMtGPuTCxG28QrSU4m56SZVL+3dJ+RP/6dX/HV/0yn/ssNDP7v+8k945shndNbOAv/js3Ufd796Tc6EvTXO53UE88iOStn7/asY04lZfBIyp+/L6xJS4NBfEufIOOIyT1evyJWU+nsrXXs2kLlimcJlG1PiOlhEkXUE4eqfqqq41R1HHAsUAM8A9wIvKaqo4HX3NcAZwOj3cc1wN+iHXNn2rrrvK/dxBdOOVMvhGAjlW98vaxs3aYP+OoX02j07WborxaQPfHskM+Xfdw5Tqd70dORCJfqNa8QrNqzz7d/SUoi79xrqP/P+9R+vDps5dVuWIl/11f0O+WSHp8rll9qGqsrWsyMEO3pYUzkxLqp6lTgP6r6JTAdaFrA+GFghvt8OvCIOlYCuSLSqxpL27rrvC/exBcuacMOIXnAMEr+eRufXTiE/3z7KL76xTTE42HYb54l49CJXTpfcqaX7PFnUPnmcxHpb/Ate4Lk/vuReeRJ+7yXM3U2Sd48yp+fF77ylj5OUqaX7OPO6vG5Yvmlpmz+HdCqJhat6WFMZMV6VNUlQNP8BINUdbv7fAfQNOZxCNB8nopid9v2ZtsQkWtwaiQccMABkYq3XTmFMy1RhMhXtJDG3TvA7RtqrCgFEXKnfZ+0YQd365zewllUvrWI6nXLyB5/ethiDewpofq9peRNm4MkJ+/zflJaJrlnXMHuhX8Ky8iuYG0VlSv/TU7hLJLSMnt0LmDvv8nS+XMJlG3Dkz+Ygstuisq/1Vg1k5nIi1mNQ0RSgWnAPr2k6jQYd6nRWFXvU9Xxqjp+wID4XW41EZTOn7s3aeylyp5F3W+FzBo3lSRvHpVhbq6qfGMhBBs77KTOPetKJDmF8hf+3vPy3lqE1teS084UI90Rq5kJrO+v74plU9XZwFpV3em+3tnUBOX+3OVu3wo07yEc6m4zcSoS30TFk4L3xGlUrXk5bOt+AFQse5K0g8aRNnR0u/t48gbiPWkGvqWP01hZ3rPylj5O6pCDSB/d68aAdJn1/fVdsUwcl/J1MxXAIuAK9/kVwHPNtn/LHV11PFDRrEnLxKFIfRPNKZzlrPuxunvrU7RW98WHNHy5Ye+9Gx3JO+97aH0tFa90vPZ2Rxq2/Ye6T94h5+SLwzqHVKxY31/fFZPEISJZwOlA8+EVdwCni8jnwGnua4DFwCZgI3A/8P0ohmoiIFLfRNMPPpaUQQeGrbnKt+xJxJOKd9L0TvdNO/AwMo8qpHzJg6i/oXvlLX0CkpL3ziTcFyTCBJ6JKCaJQ1WrVTVfVSuabStT1VNVdbSqnqaqu93tqqo/UNVRqnqkqq6JRcwmfCL1TVRE8BbOpOaDFQR27+jRuTTgp/KNhWSNPz3kCSnzzv8ejeU7qXxrUdfLa2ykYvmTZI07GU9ez9cSNyaSYj0c1ySoSH0TzTlpJqjiW/Fsj85T/d7rNPrKnHtOQpQ5biqpQw+m/Pl5Xb4hsOb95TTu3kFOFyY0NCZWLHGYPiV18CjSDzq6x81VvmVPktyvgKxxJ4d8jIiQd/411G/eQO2Hb3apvIqlj5PkzSP72PANJTYmUixxmD7He9IF1G/+iPotn3br+MbK3VS9+wrek2Z2eX4l70kzSe5XQPnz93WhvHKq33mJnJNmIimpXQ3XmKizxGH6HO+k6ZCUTGU3p7bwrXgWAn76daGZqklSajq5Z11J9dpXqS/+PMTynkEDDWG9d8OYSLLEYfocT+4AMsdOwffGwm6tD+9b9iRpw8eQNvzwbpXf74wrkJQ09rxwf2jlLX2ctOGHkz7iiG6VZ0y0WeIwfVJO4UwCpVup/aRrkw/Wb/mU+v+8T87U7n/79/TLJ2fKbHzLnyJQUdZxeZs3UL/pA6ttmLhiicP0SdkTzkLSM7vcSe5b9gQke/CedEGPys897xq0oY6Klx/ucL+KpY+DJ4WcHpZnTDRZ4jB9UlJ6JtkTz6HyrecJtrGYUVu0MYCvaCFZR5+Mp19Bj8pPGzqarGNOZc+LD7VbvvobqHzjabLHn0FyTn6PyjMmmixxmD4rp3AmwRof1WtfD2n/mvVv0Fi+s0er7jWXd941NFaUtlh3pLmqta/R6NttzVQm7ljiMH1W5pGTSc4d4MxwGwLfsidIys4j69jTwlJ+xpGTST1wDOX/bnuFQN/SBSTnDSJr3NSwlGdMtFjiMH2WJHvwTppB9buv0li1p8N9G6srqFr9It7J00lKSQtP+SL0P/97NGz5lJr3l7d4L1C+i+q1r5NTOAtJjvWyOMZ0jSUO06flFM5CAw1Uvv1Ch/tVvvU86q8PaSbcrvBOmk5y3iDKn7+3xXZf0dMQbKSfTTFi4pAlDtOnpY08ktQhB1H5Rsejq3zLniB16GjSRo0Na/mSkkruWVdR8/5y6r/6BABVxbf0cdIPPpbUIe2v82FMb2WJw/Rpzoy5s6jdsBJ/SXGb+zRs30Tdp2vImXpRRNbByD3jm0haxt5aR93GdTQUf0bOyZeEvSxjosESh+nzciY790i0N7rJt+xJSEoip3BWRMpP9uaRM/UiKt94hkD5LnxLH0dS0/FOmhaR8oyJNEscps9LGXQA6YdOwFf09D6jmzQYxLf8KTKPKsTTf7+IxZB37nfQQAObr5tMxcuPgAjVa16JWHnGRJIlDpMQck6aRUPxZ9Rv/qjF9tqP3iJQurVL6250R93G9yEpiWBtFQBaX8vOeTfg6+ZEjMbEkiUOkxC8J54HnpR9piCpWPoESZlesiecFdHyS+fPhVYTLmpDrbPdmDhjicMkhGRvf7KOPgXfimfRxkYAgrVVVK16Ae+J00hKy+jkDD0TKNvWpe3G9GaWOEzCyCmcRWP5Tmo+clbnq1z5AlpfG/FmKgBP/uAubTemN7PEYRJG1rGnkZTp3bvAk2/Zk6TsN4L0QyZEvOyCy25CUlvWaiQ1g4LLbop42caEmyUOkzCSUtPJPuE8Kle+QP2Wz6j96C1ypl4YkXs3WsspnMmgOXfhKRgCIngKhjBozl3kFM6MeNnGhJtNkmMSSnK/AWhdNV/+ZCoAkpEdtbJzCmdaojB9gtU4TMLwFS1kz79bLuda9uhcGxJrTBdZ4jAJo3T+XLShtsU2GxJrTNdZ4jAJw4bEGhMeljhMwrAhscaEhyUOkzBsSKwx4WGjqkzCaBrRVDp/LoGybXjyB1Nw2U020smYLopJ4hCRXODvwBGAAlcDnwKPA8OBzcBFqlouziD7PwHnADXAlaq6NgZhmz7AhsQa03Oxaqr6E/Ciqh4KjAU+Bm4EXlPV0cBr7muAs4HR7uMa4G/RD9cYY0yTqCcOEekHFAIPAKhqg6ruAaYDD7u7PQzMcJ9PBx5Rx0ogV0T2j3LYxhhjXLGocYwASoB/iMh7IvJ3EckCBqnqdnefHcAg9/kQYEuz44vdbS2IyDUiskZE1pSUlEQwfGOMSWyxSBwe4Bjgb6p6NFDN181SAKizTJu2cWy7VPU+VR2vquMHDBgQtmCNMca0FIvEUQwUq+oq9/VTOIlkZ1MTlPtzl/v+VmBYs+OHutuMMcbEQNRHVanqDhHZIiKHqOqnwKnABvdxBXCH+/M595BFwA9FZAFwHFDRrEmrTe+++26piHzZgzALgNIeHB+PEu2aE+16wa45UfTkmg8MZSdxWoWiS0TG4QzHTQU2AVfh1H6eAA4AvsQZjrvbHY57D3AWznDcq1R1TYTjW6Oq4yNZRm+TaNecaNcLds2JIhrXHJP7OFR1HdDWhZ3axr4K/CDiQRljjAmJTTlijDGmSyxxtO2+WAcQA4l2zYl2vWDXnCgifs0x6eMwxhgTv6zGYYwxpksscRhjjOmShE0cInKWiHwqIhtF5MY23r9SREpEZJ37+E4s4gynzq7Z3eciEdkgIh+JyPxoxxhuIfyd/9Dsb/yZiOyJRZzhFMI1HyAiS90pf9aLyDmxiDOcQrjmA0XkNfd6l4nI0FjEGS4i8qCI7BKRD9t5X0Tkbvf3sV5EjglrAKqacA8gGfgPMBLnXpL3gTGt9rkSuCfWsUb5mkcD7wF57uuBsY470tfcav8fAQ/GOu4o/J3vA651n48BNsc67ihc85PAFe7zU4B/xjruHl5zIc6MGx+28/45wBJAgOOBVeEsP1FrHBOBjaq6SVUbgAU4s/D2ZaFc83eBv6hqOYCq7iK+dfXvfCnwWFQii5xQrlmBHPd5PyDeF10P5ZrHAK+7z5e28X5cUdUiYHcHu0R0VvFETRwhzbgLzHKreU+JyLA23o8noVzzwcDBIvKmiKwUkbOiFl1khPp3RkQOxJm5+fW23o8joVzzr4FviEgxsBinphXPQrnm94GmFbwuALwikh+F2GIl5H/73ZGoiSMUzwPDVfUo4BW+XiukL/PgNFdNxfn2fb+7WmMiuAR4SlUbYx1IFFwKPKSqQ3GaNP4pIn39s+C/gSki8h4wBWei1ET4W0dEX//H0p5OZ9xV1TJVrXdf/h04NkqxRUooswwXA4tU1a+qXwCf4SSSeNWVmZUvIf6bqSC0a/42zrxwqOrbQDrOxHjxKpT/z9tUdaY6Szn8wt0W9wMhOhDRWcUTNXG8A4wWkREikorzobGo+Q6t2gOn4SxvG886vWbgWZzaBiJSgNN0tSmaQYZZKNeMiBwK5AFvRzm+SAjlmr/CnRdORA7DSRzxvPpZKP+fC5rVqm4CHoxyjNG2CPiWO7rqeEKYVbwrYjLJYaypakBEfgi8hDMi40FV/UhEbgXWqOoi4DoRmQYEcDqhroxZwGEQ4jW/BJwhIhtwqvE3qGpZ7KLumRCvGZwPmgXqDkeJZyFe809xmiF/gtNRfmU8X3uI1zwVmCsiChQR5xOnishjONdU4Nagr38AAARySURBVPZV3QykAKjqPJy+q3OAjbizioe1/Dj+92KMMSYGErWpyhhjTDdZ4jDGGNMlljiMMcZ0iSUOY4wxXWKJwxhjTJdY4jBxQUSqQtjnxyKSGcYyZ4jImDCe760eHFvl/hwsIk91sF+uiHy/u+UYEwpLHKYv+THQpcQhIskdvD0DZ3K8sFDVE8Nwjm2qOruDXXIBSxwmoixxmLgiIlPd9RSeEpFPRORR9+7Y64DBwFIRWerue4aIvC0ia0XkSRHJdrdvFpE7RWQtcKGIfFdE3hGR90XkaRHJFJETcWYMuMtdq2OUiIxzJ39cLyLPiEiee75l4qzrsUZEPhaRCSKyUEQ+F5HbmsVe1ez5z0XkA7fMO9q4zhFu7B+0OsfwpjUYRORwEVntxrdeREYDdwCj3G13iUi2OOtQrHXPNb3ZeT4WkfvFWXvlZRHJcN87SERedWNbKyKj3O03uL+n9SJyS1j/sCa+xHpeeXvYI5QHUOX+nApU4My9k4QzTchk973NQIH7vADnDuEs9/XPgV812+9nzc6d3+z5bcCP3OcPAbObvbcemOI+vxX4o/t8GXCn+/y/cKYp3x9Iw5n/K7/VNZwNvAVkuq/7t3G9i4Bvuc9/0OzY4bhrMAB/Bi53n6cCGc3fd7d7gJxmv5ONOGs0DMeZFWGc+94TwDfc56uAC9zn6Ti1uDNw1vEQ9/f+b6Aw1v8u7BGbR0JOOWLi3mpVLQYQkXU4H4IrWu1zPE4z05siAs4Ha/O5qB5v9vwI91t9LpCNM3VFCyLSD8hV1eXupodxFgdq0jR9yQfAR+rOCyQim3Amm2s+dctpwD9UtQZAVdtaV2ESMMt9/k/gzjb2eRv4hTir2S1U1c/da20ROvC/IlIIBHGm1h7kvveFqq5zn78LDBcRLzBEVZ9xY6tzr+MMnOTxnrt/Ns4EmEVtxGX6OEscJh7VN3veSNv/jgV4RVUvbecc1c2ePwTMUNX3ReRK3IkeuxlTsFV8wXbiC0WH8wGp6nwRWQWcCywWke+x76SUlwMDgGNV1S8im3FqEc1jBuf3mNFBcQLMVdV7uxC/6aOsj8P0JZWA132+EpgkIgcBiEiWiBzcznFeYLuIpOB80O5zPlWtAMpF5CT3vW8Cy+meV4CrmkaAiUj/NvZ5E2fyRVrFtJeIjAQ2qerdwHPAUbT8HYCzwt8uN2mcDBzYUWCqWgkUi8gMt4w0N86XgKub9RMNEZGBIV2t6XMscZi+5D7gRRFZqqolODMaPyYi63GadQ5t57hf4rTrvwl80mz7AuCG/9/eHdogGMRgGH67BUMgEMyCAwZAYNiCOUAxAGEBDAnJz78GMxyiZyAgqnkffWly6su1SS8i7n1AvCaH5QMwI+ccZa21M9nauvVW2+7LsS2wiYgHv39uWwBjrzElvwp9ku25MSL2wAGY9zqrj/v9siS3Qw/kLGbSWrsAR+Daa514Dyj9EbfjSpJKfHFIkkoMDklSicEhSSoxOCRJJQaHJKnE4JAklRgckqSSF5uzLnAy17pFAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Evaluations')\n", - "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_uccsd.ipynb b/community/chemistry/h2_uccsd.ipynb deleted file mode 100644 index 881f9d0de..000000000 --- a/community/chemistry/h2_uccsd.ipynb +++ /dev/null @@ -1,206 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*H2 dissociation curve using VQE with UCCSD*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and UCCSD. It is compared to the same energies as computed by the ExactEigensolver. `UCCSD` should be used together with `HartreeFock` initial state.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYQUANTE chemistry driver. See the PYQUANTE chemistry driver readme if you need to install the external PyQuante2 library that this driver requires." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515973 -1.07591359 -1.09262986 -1.105918 -1.11628597 -1.12416088\n", - " -1.12990475 -1.1338262 -1.13618942 -1.13722134 -1.13711707 -1.13604434\n", - " -1.13414766 -1.1315512 -1.12836187 -1.12467173 -1.12056027 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133943 -1.10634212 -1.10115034]]\n", - "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", - " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", - " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [45. 51. 51. 51. 43. 54. 50. 47. 51. 46. 42. 57. 49. 53. 49. 55. 50. 46.\n", - " 51. 56. 55.]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "import copy\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYQUANTE'},\n", - " 'PYQUANTE': {'atoms': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'jordan_wigner',\n", - " 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", - " 'variational_form': {'name': 'UCCSD'},\n", - " 'initial_state': {'name': 'HartreeFock'}\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "algorithms = ['VQE', 'ExactEigensolver']\n", - "\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(algorithms), steps+1])\n", - "hf_energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)\n", - "eval_counts = np.empty(steps+1)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", - " for j in range(len(algorithms)):\n", - " dict = copy.deepcopy(qiskit_chemistry_dict)\n", - " dict['algorithm']['name'] = algorithms[j] \n", - " if algorithms[j] == 'ExactEigensolver':\n", - " del dict['optimizer']\n", - " del dict['variational_form']\n", - " del dict['initial_state']\n", - " solver = QiskitChemistry()\n", - " result = solver.run(dict)\n", - " energies[j][i] = result['energy']\n", - " hf_energies[i] = result['hf_energy']\n", - " if algorithms[j] == 'VQE':\n", - " eval_counts[i] = result['algorithm_retvals']['eval_count']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)\n", - "print('VQE num evaluations:', eval_counts)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VMXXwPHvSScQQgstoZdQA4EQSijSpApEmoAFFFFE5GfHAoiKFVFpKlhA6YL0UFWkCwFCCAmh9wChpRBSd94/dpM3YBpkN5syn+fZx9175957doN7dmbuzIhSCk3TNE3LLRtrB6BpmqYVDjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmaZpmFjqhaJqmaWahE4qmWYiIDBeRndaOQ9Pyik4oWp4QkbMi0uW+bWlfuCLiKCI/icg5EYkRkSAR6ZHNOSuJyFwRuSwisSJyWkTmiUg9S74XcxGR50TkmOn9XhWRABFxMe2bJyIfP8C5cpW8TMenmD7H9I/KD3tOrejRCUXLL+yAC0AHwBV4H1gmItUzKiwiZYHdgDPQDnABmgH/AF0zOcbO3EE/LBHpAHwCDFFKuQD1gaXWjYo9SqkS9z0um/MC+elvoJmfTihavqCUuqOU+kApdVYpZVBKrQPOAM0zOeRVIBp4Sil1ShndVkr9opSaASAi1UVEmWoC54G/TNv7iMhREbktIttEpH7qSU3la6d7nVZTEJFHROSiiLwuItdEJEJERqQrW1ZE1ohItIjsA2pl8ZZbYPwCP2R6/zeVUvOVUjEiMgoYBrxlqiWsNZ1/vIicMtVoQkXE37S9PvA90NpU/rZpu6OITBWR86Ya0PciUizHf5R0TDXMN0QkWESiRGSpiDil29/bVKu8LSK7RcTrvmPfFpFg4I6I2IlIMxE5ZHovv5vOl/o5h4jIY+mOtxeR6yLi/TCxa3lHJxQtXxKRCkBd4GgmRboAK5VShhycrgPGGkA3EakLLAb+B7gBAcBaEXHIYWgVMdag3IHngFkiUtq0bxYQD1QCnjU9MvOvKZ7JIuInIo6pO5RSc4CFwBemWkLql+spjLUxV2AysEBEKimlwoAX+f8aRilT+c8wfoZNgdqmmCfm8H1mZBDQHagBeAHDAUxf9D8DLwBlgR+ANenfEzAE6AWUwvi9sxKYB5TB+PfwT1f2V+DJdK97AhGpyVfLv3RC0fLSKtMv2NumX9GzMyokIvYYv1DnK6WOZXKucsCVdMf0MZ03RkQ231f2A1MN6C4wGFivlNqilEoCpgLFgDY5fA9JwIdKqSSlVAAQC3iKiC3QH5houlYIMD+zkyildgCPY2ymWw/cEJFppvNkdszvSqnLphrcUuAE4JtRWRERYBTwqqn2E4Oxie2JLN5bq/R/HxE5dd/+6abr3wTWYkxUmK7zg1LqX6VUilJqPpAAtLrv2Aumv0ErjE2c002f4x/AvnRlFwA9RaSk6fVTwG9ZxK3lEzqhaHmpn1KqVOoDeOn+AiJig/HLIxF4OYtz3cBYEwBAKbXGdM5XgftrGxfSPa8MnEt3nMG03z2H7+GGUio53es4oATG2k5qP1Cqc2RBKbXBVPsoA/TF+It/ZGblReTpdM1Kt4FGGBNrRtww9i8dSFd+o2l7Zvam//sope5vsruS7nnq+waoBrx+34+FKhg/61T3/w0uqXtnpk3bb+q32QX0F5FSQA+MPzC0fE4nFC3fMP2q/gmoAPQ31SAy8yfQz5SAspP+i+syxi/A9NesAlwybYrD+EWcqmIOzg8QCSSbzpWqak4ONNU4/sTYx9Mog5gRkWrAXIxJtqwpeYYAklF54DpwF2iYLkG4KqVKYH4XgCn3JSNnpdTidGXSxxcBuJs++1TpPzcw1u6eBAZibMq7hJbv6YSi5SffYezreMzUNJKVaUBp4DcRqSVGLvx/M0xmlgG9RKSzqWntdYzNM7tN+4OAoSJiKyLdMfa/ZEsplQL8AXwgIs4i0gB4JrPyItJXRJ4QkdKm2H1N19prKnIVqJnukOIYv5QjTceP4P+TT2p5j9S+IFPNay7wtYiUNx3jLiLdcvJ+HtBc4EURaWl6L8VFpJfp75GRPUAK8LKpg74v/226W4WxOXAcxj4VrQDQCUXLF0y/wF/AmBCuyP+PgxiWUXml1HWMbfHxwE4gBmMycAFGZ3YdpVQ4xl++MzD+in8MYwJLNBUZZ9p2G+OdVqse4G28jLEZ6ArGDudfsih7C3geYz9INMZ+gy+VUqlNOz8BDUxNSKuUUqHAVxi/jK8CjTE2C6X6C+MNDFdE5Lpp29vASWCviEQDWwHPLGJqLf8dh9IiuzetlAo0vZeZpvd1ElOHfSblEzH2Hz2H8XN+EliHMbGnlrkLrMB4A8Af2cWg5Q+iF9jSNM3aRORf4Hul1C/ptk0E6iqlnsz8SC0/0TUUTdPynIh0EJGKpiavZzDehrwx3f4yGGswc6wVo/bgdELRNM0aPIHDGJu8XgcGKKUiAETkeYwd/RuUUtutF6L2oHSTl6ZpmmYWuoaiaZqmmUWRmqitXLlyqnr16tYOQ9M0rUA5cODAdaVUVoNiASsmFBEZCHyAcdyBr+nWw4zKdQe+BWyBH5VSn923fzrwbE4GbFWvXp3AwAwvo2mapmVCRLKc9SGVNZu8QjDei55pp5tpXqNZGKdeaAAMMQ0YS93vg3Fwm6ZpmmZlVksoSqkw0yCzrPgCJ5VSp02DoZZgnPMoNdl8Cbxl2Ug1TdO0nMjvnfLu3Dup3EX+fxK/l4E1qbcaZkZERolIoIgERkZGWihMTdM0zaJ9KCKylYwn13tPKbU6F+etjHHSuEeyK2taW2IOgI+Pj75HWtMeUlJSEhcvXiQ+Pt7aoWgW4uTkhIeHB/b29g91vEUTilKqS/alsnSJe2ch9TBt88a4YNBJ04SlziJyUilV+7+n0DTNHC5evIiLiwvVq1fn3omCtcJAKcWNGze4ePEiNWrUeKhz5Pcmr/1AHRGpYZpF9QmMzVzrlVIVlVLVlVLVgTidTDTNsuLj4ylbtqxOJoWUiFC2bNlc1UCtllBExF9ELgKtgfUissm0vbKIBACYFjJ6GdgEhAHLlFKZLQmraZqF6WRSuOX272u1cShKqZUY15W+f/tljGtIp74OwLjud1bnssSiQWm2H48k5HIULz2iK0GapmmZye9NXvnCrpPXmbb5ODfvJGZfWNM0iylR4t7fjvPmzePll7NaKfq/goKCCAjI8jdqrsybNw83NzeaNm1K06ZNefrppx/4HNu2baN3794WiM6ydELJgX7e7iQbFOuCL1s7FE3TciE5OTnLhJKcnGyW6wwePJigoCCCgoL49deis+CkTig5UL9SSepVdGHlIb2stablV2vXrqVly5Z4e3vTpUsXrl69CsAHH3zAU089hZ+fH0899RQTJ05k6dKlNG3alKVLl/5nf0pKCm+++SYtWrTAy8uLH374Ie0aX375Zdr2SZMmPVB8QUFBtGrVCi8vL/z9/bl16xYAJ0+epEuXLjRp0oRmzZpx6tSpe47bv38/3t7e/9meHxWpySFzw9/bnU83HOPM9TvUKFfc2uFomlVNXnuU0MvRZj1ng8olmfRYwyzL3L17l6ZNm6a9vnnzJn369AGgbdu27N27FxHhxx9/5IsvvuCrr74CIDQ0lJ07d1KsWDHmzZtHYGAgM2fOBIwJJ/3+OXPm4Orqyv79+0lISMDPz49HH32UEydOcOLECfbt24dSij59+rB9+3bat2//nziXLl3Kzp07ARg3bhwjRozg6aefZsaMGXTo0IGJEycyefJkvvnmG4YNG8b48ePx9/cnPj4eg8HAhQvG8dy7d+9m7NixrF69mqpVq+b+Q7YwnVByqG9Tdz7beIxVhy7xate61g5H04qkYsWKERQUlPY6NTmAcZzM4MGDiYiIIDEx8Z6xFH369KFYsWKZnjf9/s2bNxMcHMzy5csBiIqK4sSJE2zevJnNmzfj7e0NQGxsLCdOnMgwoQwePDgtYaWe4/bt23To0AGAZ555hoEDBxITE8OlS5fw9/cHjAMLU4WFhTFq1Cg2b95M5cqVH+yDshKdUHKooqsTbWqVZVXQJf7XpY6+fVIr0rKrSVjD2LFjee211+jTpw/btm3jgw8+SNtXvHjWrQrp9yulmDFjBt26dbunzKZNm3jnnXd44YUX7tk+a9Ys5s6dC2DWzv5KlSoRHx/PoUOHCkxC0X0oD8Df24NzN+I4eP6WtUPRNO0+UVFRuLsbp/qbP39+puVcXFyIiYnJdH+3bt347rvvSEpKAuD48ePcuXOHbt268fPPPxMbGwvApUuXuHbtGmPGjEnrgM/si9/V1ZXSpUuzY8cOAH777Tc6dOiAi4sLHh4erFq1CoCEhATi4uIAKFWqFOvXr+edd95h27ZtD/ZhWIlOKA+ge6OKONnb6M55TcuHPvjgAwYOHEjz5s0pV65cpuU6duxIaGhoWqf8/UaOHEmDBg1o1qwZjRo14oUXXiA5OZlHH32UoUOH0rp1axo3bsyAAQOyTEz3mz9/Pm+++SZeXl4EBQUxceJEwJhcpk+fjpeXF23atOHKlStpx1SoUIF169YxZswY/v333wf4NKyjSK0p7+Pjo3K7wNYriw+x/UQk+97tgoOdzsda0REWFkb9+vWtHYZmYRn9nUXkgFLKJ7tj9TfiA/Jv5s7tuCS2hV+zdiiapmn5ik4oD6hd7XKUK+Ggm700TdPuoxPKA7KzteGxJpX5M+waUXeTrB2OpmlavqETykPw93YnMcVAwJEsF4vUNE0rUnRCeQiN3V2p5VaclQd1s5emaVoqnVAegojg7+3OvrM3uXAzztrhaJqm5Qs6oTykvk2NA6hWB+laiqblhY4dO7Jp06Z7tn3zzTeMHj2ao0eP0qlTJzw9PalVqxaTJk3CYDAA/51OvmnTpoSGhlrjLRR6OqE8pCplnPGtUYaVhy5RlMbyaJq1DBkyhCVLltyzbcmSJTzxxBP06dOH8ePHEx4ezpEjR9i3bx/ffvttWrn008kHBQXRoEGDvA6/SNAJJRf8vd05FXmHI5eirB2KphV6AwYMYP369SQmGhe6O3v2LJcvX+bkyZNpMwIDODs7M3PmTL788ktrhlsk6ckhc6Fn40pMWn2UlYcu4eVRytrhaFre2TAerhwx7zkrNoYen2W6u0yZMvj6+rJhwwb69u3LkiVLGDRoEEePHqV58+b3lK1VqxZ3797l9u3bwL3TyQPs2bMny9mHtYejayi54FrMns71y7P28GWSUwzWDkfTCr30zV5LlixhyJAhOTru/iYvnUwsQ9dQcsnf250NIVfYceI6HeuVt3Y4mpY3sqhJWFLfvn159dVXOXjwIHFxcTRv3pxDhw6xffv2e8qdPn2asmXLUqqUbjnIS7qGkkuPeJanlLO9nopF0/JAiRIl6NixI88++2xa7WTYsGHs3LmTrVu3AsZVHV955RUmT55szVCLJJ1QcsnBzobeXpXYHHqF2IRka4ejaYXekCFDOHz4cFpCKVasGGvWrGHKlCnUrVuXcuXK4efnx7Bhw9KOSV1DPvWxe/dua4VfqOnp683gwLmb9P9uD1MHNmFAcw+zn1/T8oOCMn39qlWreO211/j777+pVq2atcMpcPT09XkgOupCpvuaVS1NtbLOrDx0MQ8j0jQtI/369eP06dM6mViBTig5MGVpTwat6IkyZHwnl4jQr6k7u0/d4EpUfB5Hp2malj/ohJIDjdy8uGQLwaHLMi3Tz9sdpfRULJqmFV06oeRA5xbjcFCKgNAFmZapUa443lVL6bu9NE0rsnRCyYESLpXoYFuKTbFnSU7KvEnL39udY1diCIuIzsPoNE3T8gedUHKoR42e3LAV9h3+OdMyvb0qY2cjupaiaVqRpBNKDrVrPpoSBsWG439kWqZMcQce8XRjddAlUgxF53ZsTcsrtra294wn+ewz843YDwoKIiAgIO11ZtPeX758mQEDBpjtug/j7NmzNGrUyKoxZERPvZJDTsVK08mxAlsTrvB+fBSOTq4ZlvP39mBr2DX2nLpB2zrl8jhKTSvcihUrRlBQkEXOHRQURGBgID179kzbNnjwYGbOnPmfssuXL7dIDHktOTkZOzvzpQFdQ3kAPev4E2sj7DzwXaZlOtcvj4ujnW720rQ8EhUVhaenJ+Hh4YBxJP3cuXMBGD16ND4+PjRs2JBJkyalHbN//37atGlDkyZN8PX1JSoqiokTJ6aNqF+6dGmm10tfO4iLi2PQoEE0aNAAf39/WrZsSerg6c2bN9O6dWuaNWvGwIEDiY2NBaB69epMmjSJZs2a0bhxY44dOwbAP//8k1YT8vb2JiYmBqUUb775Jo0aNaJx48YZxtWqVSuOHj2a9vqRRx4hMDCQO3fu8Oyzz+Lr64u3tzerV68GjDWvPn360KlTJzp37vzQn3tGrFJDEZGBwAdAfcBXKZXh8HUR6Q58C9gCPyqlPjNtF+BjYCCQAnynlJpu6bhbNh1JmZDvWX96PZ39xmdYxsnelp6NK7Eu+DIf92tEMQdbS4elaXnu832fc+zmMbOes16Zerzt+3aWZe7evUvTpk3TXr/zzjtptYjhw4czbtw4bt26xfPPPw/AlClTKFOmDCkpKXTu3Jng4GDq1avH4MGDWbp0KS1atCA6OhpnZ2c+/PBDAgMD02ok8+bNy3Da+/Rmz55N6dKlCQ0NJSQkJC2269ev8/HHH7N161aKFy/O559/zrRp05g4cSIA5cqV4+DBg8yePZupU6fy448/MnXqVGbNmoWfnx+xsbE4OTnxxx9/EBQUxOHDh7l+/TotWrSgffv298QwePBgli1bxuTJk4mIiCAiIgIfHx/effddOnXqxM8//8zt27fx9fWlS5cuABw8eJDg4GDKlCnzMH+qTFmrySsEeBz4IbMCImILzAK6AheB/SKyRikVCgwHqgD1lFIGEcmTaX7t7J141LkqK+POExsTQQmXShmW82/mztLAC2wOvZK2VLCmabmXWZNX165d+f333xkzZgyHDx9O275s2TLmzJlDcnIyERERhIaGIiJUqlSJFi1aAFCyZMlMr5dZk1eqnTt3Mm7cOAAaNWqEl5cXAHv37iU0NBQ/Pz8AEhMTad26ddpxjz/+OADNmzfnjz+M/bJ+fn689tprDBs2jMcffxwPDw927tzJkCFDsLW1pUKFCnTo0IH9+/enXQdg0KBBPProo0yePJlly5al9e9s3ryZNWvWMHXqVADi4+M5f/582udl7mQCVkooSqkwMI4wz4IvcFIpddpUdgnQFwgFRgNDlVIG0/muWTTgdHo1GMaSg5/x1/4Z9On0SYZlfKuXwb1UMVYeuqQTilYoZVeTyGsGg4GwsDCcnZ25desWHh4enDlzhqlTp7J//35Kly7N8OHDiY/Pm5kslFJ07dqVxYsXZ7jf0dERMN5kkJxsnFR2/Pjx9OrVi4CAAPz8/Ni0aVOOruXu7k7ZsmUJDg5m6dKlfP/992kxrFixAk9Pz3vK//vvvxQvXvxh31qW8nMfijuQfgKti6ZtALWAwSISKCIbRKROZicRkVGmcoGRkZG5DqpJwyFUToGAC39mWsbGRujbtDI7TlwnMiYh19fUNC1rX3/9NfXr12fRokWMGDGCpKQkoqOjKV68OK6urly9epUNGzYA4OnpSUREBPv37wcgJiaG5ORkXFxciImJeaDr+vn5sWyZcQaN0NBQjhwxrmLZqlUrdu3axcmTJwG4c+cOx48fz/Jcp06donHjxrz99tu0aNGCY8eO0a5dO5YuXUpKSgqRkZFs374dX1/f/xw7ePBgvvjiC6KiotJqL926dWPGjBmkTgB86NChB3pvD8NiCUVEtopISAaPvmY4vSMQb5r9ci6Q6eAQpdQcpZSPUsrHzc0t1xcWGxt6uHqyV93h5s2TmZbz93YnxaBYe/hyrq+paZpRah9K6mP8+PGEh4fz448/8tVXX9GuXTvat2/Pxx9/TJMmTfD29qZevXoMHTo0rfnJwcGBpUuXMnbsWJo0aULXrl2Jj4+nY8eOhIaG3tMpn9209y+99BKRkZE0aNCA999/n4YNG+Lq6oqbmxvz5s1jyJAheHl50bp167TO98x88803ac1m9vb29OjRA39/f7y8vGjSpAmdOnXiiy++oGLFiv85dsCAAWlLIqeaMGECSUlJeHl50bBhQyZMmJDbjz9bVp2+XkS2AW9k1CkvIq2BD5RS3Uyv3wFQSn0qIseAHkqpM6YO+ttKqYzv403HXNPXh59Yz4Dd43mvwiM80X1GpuV6z9iBIKwd2zbX19Q0ayso09fnpZSUFJKSknBycuLUqVN06dKF8PBwHBwcrB3aQyus09fvB+qISA0RcQCeANaY9q0COpqedwCyrkuaWd1aPaidIgRcyXqRnn5N3TlyKYqT1x6sGq1pWsEQFxdH27ZtadKkCf7+/syePbtAJ5PcskpCERF/EbkItAbWi8gm0/bKIhIAoJRKBl4GNgFhwDKlVOrN1p8B/UXkCPApMDJP47exoUe5JhySRC5fzrzG06dpZWwEPSZF0wopFxcXAgMDOXz4MMHBwfTo0cPaIVmVVRKKUmqlUspDKeWolKqQ2qyllLqslOqZrlyAUqquUqqWUmpKuu23lVK9lFKNlVKtlVKHM7qOJfXwfgmADQdmZVqmvIsTbeu4serQZQx6KhatEChKK7wWRbn9++bnJq98rUqV1ngZ7Nhw/WCW5fo3c+fS7bv8cyL3d5hpmjU5OTlx48YNnVQKKaUUN27cwMnJ6aHPoefyyoWeFVvx2bWdnDq1hVq1umZYpkejSnxa8hg/7jhNR888GX+paRbh4eHBxYsXMcft91r+5OTkhIeHx0MfrxNKLnTzeYUv1u8gIPhHxmaSUBzsbBjhV51PNxwj5FIUjdyzvRlN0/Ile3t7atSoYe0wtHxMN3nlQjm3+viKMwG3QjNdbx5gSMuqlHC0Y+6O03kYnaZpWt7SCSWXerp34KIthIStyLRMSSd7nmhRhXXBEVy6fTcPo9M0Tcs7OqHkUucWr2CvFAFHf82y3Ii2xqaCX3aeyYuwNE3T0kRE5c0PWZ1QcqmkaxXa2bqyMfYMKcmJmZZzL1WM3l6VWLzvPFF3k/IwQk3TirK1hy/T4YttbA29avFr6YRiBj2rd+e6rRAYPC/Lcs+3q8mdxBSW7DufN4FpmlakLQu8wLglh2hapRQta5p/uvr76YRiBh18XsbZoAgI/z3Lco3cXfGrXZZfdp0lMTnzTnxN07TcmrfrDG8tD8avdjnmP+uLi5O9xa+pE4oZOBUrTWeH8myJjyAxIet5u55vV5Mr0fF6FmJN0yxm1t8n+WBtKN0aVuDHZ3zybOVYnVDMpEedfsRks948QIe6bnhWcGHujtN6xLGmaWallOKLjcf4clM4/ZpWZtbQZjja5d0y5DqhmEkr75GUNig2nF6XZTkRYWS7Ghy7EsOOE9fzKDpN0wo7g0ExeW0os7edYohvVaYNaoqdbd5+xeuEYib29s48WqwK25JuEheb9YrEfZpWpryLox7oqGmaWaQYFG+tCGbe7rOMbFuDT/wbYWOT5RLrFqETihn1rD+EeBvhr8DMF90CcLSzZbhfdXacuE7o5eg8ik7TtMIoMdnAK0sOsfzARcZ1rsN7vepjXHcw7+mEYkZNGw2lYooi4PyWbMsO862Gs4MtP+paiqZpDyk+KYXRCw6wPjiC93rW59Wuda2WTEAnFLOysbWjh2td9hhiuXXzVJZlXZ3teaJFVdYcvpxno1g1TSs87iQk8+y8/fwVfo2P+zXi+fY1rR2STijm1rPRcJJF2LJ/erZlR/hVRwG/7Dpr8bg0TSs8ou4m8dRP/7L39A2+GtiEJ1tVs3ZIgE4oZudZpzc1U4SAiF3Zlq1SxpmejSux6N/zRMfr6Vg0TcvejdgEhszZy5FLUcwe1ozHmz38+iXmphOKmYmNDT3KenFAErgScSjb8s+3q0FsQjJL913Ig+g0TSvIrkTFM3jOXk5FxjL3aR+6N6pk7ZDuoROKBfT0fhGAjVmsN5/Ky6MUrWqW4eddZ0hK0dOxaJqWsQs34xj4w24ibt9l/rO+PJIPV4DVCcUCqlZtSyODHQGRgTkqP6p9TSKi4lkfHGHhyDRNK4hOXotl4Pd7iL6bzMLnW9GqZllrh5QhnVAspGcFX8JsUjh95q9syz5Stzy1y5dgznY9HYumafcKunCbgd/vJtlgYMmoVjStUsraIWVKJxQL6dZ8LKIUG4LmZlvWxkYY1a4moRHR7D51Iw+i0zStINh+PJKhc/fi4mTPitFtqF+ppLVDypJOKBZSvkIjfKUYG26FZLnefKq+3pUpV8KRH7brgY6apsGaw5d5bv5+qpUtzvIXW1OtbHFrh5QtnVAsqEfl9pyzhdDwldmWdbSzZYRfdbYfjyQsQk/HomlF2fzdZxm35BDeVUuzZFQrypd0snZIOaITigV18R2HnVIEhGS93nyqYS2rUszelh936HXnNa0oUkoxbctxJq05Spf6Ffj1WV9ci1l+YSxz0QnFglxdq9LWpiQbY05lud58qlLODgxuUYU1hy9xJSo+DyLUNC2/SDEo3l8VwvQ/TzDIx4PvhjXDyT7v1jIxB51QLKx3jR5csxV25WBMCsCzfjVIMSjm7T5r2cA0Tcs3EpJTGLv4IAv/Pc/oR2rxeX+vPF/LxBwKXsQFTKdWr1M+RbHg2OIcla9a1pkejSqx8N9zxCYkWzg6TdOsLTYhmRG/7CfgyBXe71Wft7vXs+qMwbmhE4qF2ds7M7icN3u4y6lT2U9rD8aBjjHxySzdr6dj0bTC7LppXq5/z9xk2qAmjGxn/RmDc0MnlDwwoO0kHJRi4f6vclS+SZVS+NYow8879XQsmlZYXbgZx8Dv93DiWgxzn26eryZ5fFg6oeSBMmVq08uxImvvXiTq9tkcHTOqXU0u3b5LwBE9HYumFTbHrkTT/7vd3IhNYOHIlnSqV8HaIZmFTih5ZJjPq8TbCCt2fJij8p3qlaemW3Hm7tDTsWhaYRJ49iaDvt+DCPz+YhuaVytj7ZDMxmoJRUQGishRETEtduupAAAgAElEQVSIiE8W5bqLSLiInBSR8em2dxaRgyISJCI7RaR23kT+cDzr9KKFcmRx5D6Sk7K/JdjGRni+XU1CLkWz8+T1PIhQ0zRL+zPsKsN+/JdyJRxZMboNnhVdrB2SWVmzhhICPA5sz6yAiNgCs4AeQANgiIg0MO3+DhimlGoKLALet2y4ufdk3UFcsRX+2js1R+X9vd3xKF2MKevDSNZ9KZpWoP0eeIFRvx3As6ILv7/YGo/SztYOyeysllCUUmFKqfBsivkCJ5VSp5VSicASoG/qKYDUmdJcgcuWidR8Ovj+D/cUWHgq+6lYAJzsbXmvZ32OXYlhsb7jS9MKJKUU32w9zpvLg2ldsyyLnm9F2RKO1g7LIvJ7H4o7kP6b9KJpG8BIIEBELgJPAZ9ldAIRGSUigSISGBkZadFgs2Nr58DQiq05KImEHluVo2O6N6pIq5plmLY5nNtx2Y+21zQt/0hMNvDm8mC+2XqCAc09+Hl4C0o42lk7LIuxaEIRka0iEpLBo2/2R2frVaCnUsoD+AWYllEhpdQcpZSPUsrHzc3NDJfNHf+2k3A2KBYenJ6j8iLCxN4NibqbxDdbT1g4Ok3TzCU6PokR8/ax/MBFXu1Sly8HeOFgl99/w+eORVOlUqpLLk9xCaiS7rUHcElE3IAmSql/TduXAhtzea084VLSnb7O1Vh+9xyvXj9GuXL1sj2mQeWSDPGtym97zzG0ZVXqVihcHXmaVthcun2XEb/s43TkHaYObMKA5gV/jElO5Pd0uR+oIyI1RMQBeAJYA9wCXEWkrqlcVyDMSjE+sKEt3yJJhN935uwWYoDXH/WkuIMtH60L1bcRa1o+FnIpCv9Zu4i4Hc/8Z32LTDIB69427G/q/2gNrBeRTabtlUUkAEAplQy8DGzCmDCWKaWOmrY/D6wQkcMY+1DetMb7eBjVq3egnRRn6c1gEhNicnRMmeIOvNq1LjtOXGdr2DULR6hp2sP4O/wag37Yg52NsHx0G/xql7N2SHlKitKvXR8fHxUYGGjtMADYvX8WL4R+z5Qqj9Gn0yc5OiYpxUDPb3eQmGJg86vtcbQrWFNba1phtujf80xYHUK9ii78PLwFFQrIolg5ISIHlFKZjhdMlaMaioj8ISK9RCS/N5EVGK2bj6ZmirDgXECOlggGsLe1YeJjDTh3I46fd561bICapuWIwaD4fOMx3l15hPZ1yrHshdaFKpk8iJwmiNnAUOCEiHwmIp4WjKlIEBsbhrl3JMwmhUNHFuT4uHZ13OhSvwIz/zrBtWi9CJemWVNCcgrjlgbx3bZTDG1ZlblP+1C8EN8WnJ0cJRSl1Fal1DCgGXAW2Coiu0VkhIgUnPUp85ne7SZQ0qBYEDz3gY57v1d9ElMMfL4xu3GhmqZZyu24RJ76cR9rD19mfI96TOnXqEAuimVOOX73IlIWGI5xQOEh4FuMCSZni3xo/+HsXI7+JevyV8otIi4fyPFx1csV59m2NVhx8CJBF25bMEJN0zJy/kYcj3+3m6ALt5k+xJsXO9QqsItimVNO+1BWAjsAZ+AxpVQfpdRSpdRYoIQlAyzshrR+D4DFe6Y80HFjO9XBzcWRD9YcxWAoOjdWaJq1BV24jf/sXdyITWTByJb0aVLZ2iHlGzmtoUxXSjVQSn2qlLpngY6c9PxrmatUuTmdbEuzIvo4cXE5n1W4hKMdb3XzJOjCbVYFXbJghJqmpdp09ApPzNmDs6Mtf7zUBt8ahWfqeXPIaUIpLSKP3/foLCLlLRpdEfGk1/NE2wjrdn78QMf1b+ZBEw9XPttwjDt6/XlNsxilFLP+PsmLCw7gWbEkK1/yo5abbpy5X04TynPAj8Aw02Mu8DawS0SeslBsRYZ34yepb7Bl0cW/cnwLMRjXTJn4WEOuxSQwe9tJC0aoaUXX3cQUXlkSxJebwnnMqzJLR7WiXCGdLTi3cppQ7IH6Sqn+Sqn+GNcmUUBLjIlFywWxseHJaj05ZavYc/D7Bzq2ebXS+Hu7M3fHGc7fiLNQhJpWNEVE3WXQD3tYF3yZt7p78u0TTXGy1wOKM5PThOKhlLqa7vU1oIpS6iaQZP6wip7ufu9QNkWxMPS3Bz727e71sLMRpgSEWiAyTSuaDp6/RZ+ZuzgdGcvcp3x46ZHa+k6ubOQ0oWwTkXUi8oyIPAOsNm0rDuj7Vs3AwdGFQaUbs13Fcu7cjgc6tqKrE2M61mbT0avs0ssFa1quLT9wkSd+2Esxe1tWjvGjS4MK1g6pQMhpQhmDcc2RpqbHr8AYpdQdpVRHSwVX1AxqOxE7pVj07+cPfOxzbWvgUboYH64N1csFa9pDSjEopqwP5Y3fD9O8WmlWj/HTy0U8gGwTimld97+UUiuUUq+aHstVUZpVMo+Uc6tPT4fyrLpzlpjoB7sV2Mnelvd71Sf8agyL9p23UISaVnhF3U3i2Xn7mbvjDM+0rsavz/lSuriDtcMqULJNKEqpFMAgIq55EE+RN6zZK8TZCCt3Tn7gY7s1rEjrmmX5avNxbt3RywVrWk6diozFf9Yudp28zif+jZnctxH2RXwalYeR008sFjgiIj+JyPTUhyUDK6oa1OtHM+XAoit7SEl+sKQgIkzq04CY+CS+2XrcQhFqWuHyz/FI+s3axe27SSwc2ZKhLataO6QCK6cJ5Q9gArAdOJDuoVnAsFr+XLKFf/Z988DH1qtYkmEtq7Hg3/OEX8nZ4l2aVhQppfhxx2lG/LIP91LFWD3Gj5Y1y1o7rAItp7MNzweWAXuVUvNTH5YNrejq1OoNKqUoFh5f9lDHv9a1LiUc7Zi89qheLljTMpCQnMKby4P5eH0YXRtUYMXoNlQp42ztsAq8nE4O+RgQBGw0vW4qImssGVhRZmfvxBNuvuyTBMJPrH/g40sXd+C1rnXZfeoGG0OuWCBCTSu4rsXEM2TOXpYfuMgrnevw3bDmRXoNE3PKaZPXB4AvpjEnSqkgoKaFYtKA/u0m4mRQLAp88GYvgGEtq1K/UkneXXmEy7fvmjk6TSuYDpy7Rd+ZuwiNiGbW0Ga81rUuNjZ6sKK55DShJCmlou7bpgc7WJBrqeo8VsyD9fER3Lp56oGPt7O1YdZQbxKTDby86CBJemyKVoQppfh55xkG/7AHWxth+Ytt6OVVydphFTo5TShHRWQoYCsidURkBrDbgnFpwJMt3yRRYN7fbz3U8TXdSvD5AC8Onr/N5xuOmTk6TSsYYuKTeGnhQT5cF8ojnuVZP7Ydjdz1KAhLyGlCGQs0BBKAxUA08D9LBaUZ1azRmV72biyMDudKxKGHOkdvr8o807oaP+48o/tTtCInLCKaPjN3sTn0Ku/0qMfcp5vj6qxXLbeUnN7lFaeUek8p1UIp5WN6Hm/p4DQY2/FLDAIz/37zoc/xbq/6eHm48ubyw3pGYq3IWBZ4gX6zdnEnIZlFI1vygl6m1+JyepdXXRGZIyKbReSv1Ielg9OgcmUfhpWow5rEKxw/ueGhzuFoZ8usoc0Q4KVFB4hPSjFvkJqWj8QnpfDW8sO8tTyYZlVLs/6Vdnp8SR7JaZPX78Ah4H3gzXQPLQ+M7PotLgq+3vXg07GkqlLGma8GNSXkUjQfr9fT3GuF05nrd+g3axfLAi/ycsfaLBjZEjcXvRhWXslpQklWSn2nlNqnlDqQ+rBoZFoaV9eqPO/Wip3cYe+BHx76PF0bVOCF9jVZsPc8q/U69Fohs+FIBI/N2MmV6Hh+GdGCN7p5YqtvCc5TOU0oa0XkJRGpJCJlUh8WjUy7x5AuX1EpRTEt+DsMKQ+/fvwb3TzxqVaad/44wslrsWaMUNOsIzHZwIdrQxm98CC1ypdg/Svt6OhZ3tphFUk5TSjPYGzi2s3/z+MVaKmgtP9ydHJlbI1+hNmksHHnRw99HntbG2YM9cbJ3paXFh7gbqLuT9EKrsu37/LEnD38vOsMw9tU5/cXWuNeqpi1wyqycnqXV40MHnqkfB7r1f4D6hlsmH7qDxITHn7ix0quxfhmcFNOXItlwuoQM0aoaXnnn+OR9Jq+g/ArMcwc6s0HfRriYKennLemLD99EXkr3fOB9+37xFJBaRmzsbXj1cYvcMkWlvz5eq7O1b6uG2M71WH5gYss23/BTBFqmuWlGBTTthxn+C/7KO/ixJqxbentVdnaYWlkX0N5It3zd+7b193MsWg50MbnJdpQjDlXdxMdlbtEMK5zHfxql2XC6hDCIqLNFKGmWc6Fm3EM/mEP0/88wePeHqwa40cttxLWDkszyS6hSCbPM3qt5ZFXW71PtMBPW3M3WYGtjfDNYG9ci9nz0sKDxMQnmSlCTTMvpRTLAi/Q/ZvthF+JYdqgJkwd6EUxB1trh6alk11CUZk8z+i1lkfqefbhMYfyLIgJJ+Jy7u7ednNxZMYQb87duMM7fxzR66do+c6N2AReXHCAt5YH08jdlQ3/a8fjzTz0qPd8KLuE0kREokUkBvAyPU993fhhLyoiA0XkqIgYRMQni3I/i8g1EQm5b3sZEdkiIidM/y39sLEUVC8/8iUAM7c93MSR6bWsWZY3unmyLjiC3/aey/X5NM1c/jp2lW7f7ODvY5G827Mei55vhUdpvRBWfpVlQlFK2SqlSiqlXJRSdqbnqa9zM8NaCPA4xiWFszKPjPtqxgN/KqXqAH+aXhcplSo3Z1iJOqxNvEr48XW5Pt+L7WvRqV55PloXyuELt80QoaY9vLjEZN5beYRn5wVSroQDq1/2Y1T7WnqgYj5nlXvslFJhSqnwHJTbDtzMYFdfIHUJ4vlAPzOGV2A8lzoly56HH5eSysZG+GpgE8q7ODFm0UGi4nR/imYdh87fotf0nSzad55R7Wuyaowf9SuVtHZYWg4U1Ju2KyilIkzPrwAVMisoIqNEJFBEAiMjI/Mmujzi6lqVUeXbsIs49hz4PtfnK13cgZlDvbkaHc/rvx/W/SlankpKMfD1luMM+H4PickGFo1sxbs96+NkrzveCwqLJRQR2SoiIRk8+przOsr4rZfpN59Sao5pyn0fNzc3c146XxjS5Ssqp8DXwd/nakqWVN5VS/NOj/psDbvKd/88+EqRmvYwTkXGMuC73Xz75wn6NqnMhv+1o3UtPUOwOURHXeCzZY8RGxORfeFcslhCUUp1UUo1yuCx2gynvyoilQBM/71mhnMWSA6OLoytaZySJWDHw89GnN4Iv+r09qrEFxvD+WnnGbOcU9MyopTit73n6DV9B2dvxDFraDOmDW5KSSe9CJY5HDg8nwErerA07gyBRxdZ/HoFtclrDcb5xTD91xxJqsDq2W4S9Q22zDi9KldTsqQSEaYNakqPRhX5aF0os7edNEOUmnava9HxjJi3nwmrQmhRvQyb/tder/NuJklJccxYOZhnD32JPcJvvpN4pFXuZtfICaskFBHxF5GLQGtgvYhsMm2vLCIB6cotBvYAniJyUUSeM+36DOgqIieALqbXRZaNrR2veY3msi0s3mqefzQOdjbMGOJN36aV+WJjOF9vOa77VDSzUEqxOugS3b7Zzp5TN5jcpyG/PutLRVcna4dWKFy4sIfhC9oyJzqUxxwqsmzQFho1GJj9gWYgRelLwsfHRwUGFt5Jkl+c35IjhjsEPB6Aq2tVs5wzxaAYvyKY3w9c5MUOtXi7u6ceUKY9tLPX7zBhdQg7TlzHy8OVaYOaULu8i7XDKhSUwcC6fyYw5exqbICJtQbRvf1Es5xbRA4opTIdM5jKzixX0/KFV1tPYODu8fy0ZRyvDVhplnPa2gif9/fCwc6G7/85RUJyChN7N9BJRXsgCckpzPnnNDP+PomDrQ0fPNaAp1pX1+NKzCQm+hIfrRnKhpSbNBNHPnt0DpUqN8/zOHRCKUQ86/bmscCvWRh7giGXD5jtH5SNjfBxv0Y42tny864zJCYb+KhvI2z0l4GWA3tP3+C9lUc4FXmHXo0rMaF3A928ZUaHghcwPvBzrtooXi7tzcheP2Fr52CVWHRCKWTGdpzKxk1PMXPbm0wZ+pfZzisiTOhdH0d7G77bdoqEZAOf9/fSvzC1TN28k8iU9WGsOHgRj9LF+GV4CzrW0yspmktyUjxz1o3gh6gjVEaY7/M+TRo9kf2BFqQTSiFTsZI3w1zqMi/mOE+Fr6GeZx+znVtEeKubJ052tny99TiJyQamDWqCnW1BvVlQswSDQbH8wEU+2RBGbHwyLz1Si7Gd6uiZgc3o4sW9vLP1JYIkiT4O5XnnsYWUcLH+HXI6oRRCI7t8yx9/9ODrvR/zgxkTChiTyrgudXCws+HzjcdITDYwfYi3XilPA+D41RjeXxnCvrM3aVG9NFP8G1O3gu50N6d12yYw5Yyxj/TzGv3p2cE848/MQSeUQqikaxVGVWjDl5F72B04mzY+L5n9GqMfqYWjnQ0frgvlxQUHmD2smZ4iowi7m5jCjL9OMGf7aUo42fFFfy8GNPfQ/WxmFBsTwZQ1Q1mXfB1vceTTrt/h7u5r7bDuoW8bLqQSE2Lot7ANClg+aAvFS1S0yHUW7D3H+6tCaFenHHOe8tHNGkXQ3+HXmLg6hAs379K/mQfv9qxH2RKO1g6rUAk6spDx+z/jio3ihVJNeL7XT9jZ592NDTm9bVi3UxRSDo4uTPF5m8s2is/XPmmx6zzZqhpfDvBi58nrjJi3jzsJuZ9PTCsYrkbHM2bhQUb8sh8HWxsWP9+KrwY10cnEjBITYvhmxQCeOfApAPOav8PofgvzNJk8CJ1QCjFvryd5rmR9ViZe5c/dn1vsOgN9qvDN4KbsP3uLp3/eR7ReSrhQi7qbxBcbj9Hhy7/ZEnaV17vWJWCcnszR3MJPrGfIorb8FBuOv2NlVgzaQtPGw6wdVpZ0k1chl5Rwh2GL/IggmT96LcWtfEOLXWtjSARjFx+ifqWS/PqsL6WcrXMvvGYZdxNTmLf7LN9tO0lMQjJ9mlTm9a6eVC2rV1A0p5TkROZveJGZN/ZR0gCTGzxLh1avWTWmnDZ56YRSBJw+8yeDto2jhU0JZj+1G7GxXMX0z7CrjF5wkBrlijN9iDeeFfUdPgVdUoqBpfsvMP3PE1yLSaBTvfK88agnDSrrRa/M7cKFXbz35ysckkS62Lgyodc8ypSpbe2wdB+K9v9q1ujMa5U6sJM7LN08zqLX6ly/Ar+MaMH12AQem7GTWX+fJDnFYNFrapZhMBgncewy7R/eXxVC1TLO/P5ia34e3kInEzNTBgO/b36V/ltf4KRK4JOqfZk2bHu+SCYPQtdQighlMDD6t9YcMNxhWceZ1Kj+iEWvd/NOIhNXh7AuOAIvD1emDmyixyMUEEopth2P5IuN4YRFRFOvogtvdfeko2d5PYebBUReO8qkjc+xQ92hJU58/OgcKlbytnZY99BNXhkoygkF4NrVEB4PeAIP7Pjtyd3Y21u+7TvgSAQTVoUQE5/MuC51eKF9TT2yPh8LPHuTLzaGs+/sTaqWceb1R+vymFdlPZ7EQjbt+IiPTi4lHni1YjuGPDoDG9v8NzxQJ5QMFPWEArB156e8emoRo0o2YKz/0jy55o3YBCauPsr6IxE0MdVW6ujaSr4SFhHN1E3h/HnsGm4ujrzSuQ6DfaroGRAsJCrqPJ+ue4b1yddpaLDlk0emUbNGJ2uHlSmdUDKgE4rR+4u6sDbxCvObv5OntyGuD45gwuoQYuOT+V/XOoxqp2sr1nb+Rhxfbz3OqqBLlHC048UOtRjhVx1nh/z3K7mw2B04mwnBs7lhAy+U8mJkrx/zpLUgN3RCyYBOKEaxMREM+P1RBMuOos/I9dgEJq4OIeDIFV1bsRKlFHtO32D+7rNsCb2Kva0NI/xq8GKHmvpWbwu6G3eTr9c+xeL489RIET5tPYmG9ftbO6wc0QklAzqh/L+Dh39lxKEv6OdYiclDtuT59dcFX2bi6qPExifzate6PN+uhq6tWFhcYjIrD13i193nCL8aQ2lne57wrcrwNtWpUDJ/jrwuLAKD5jHp4Fect4UnnWswrvd8nIqVtnZYOaYTSgZ0QrnXtysG8GNsON/UeZLObd7O8+tfj01gwqoQNoRcoUmVUnw10EsvB2sB52/E8euesywLvEB0fDINKpVkeJvq9GlaWU/oaWF3Yq/w9fpnWRp/AfcU+NB7HL7eI60d1gPTCSUDOqHcK3UU/RWS+aP375Rzq5/nMSilWBccwcTVIdxJTOG1rnV5vl1NvXBXLiml2HHiOvN3n+Wv8GvYiNC9UUWGt6mOT7XS+vbfPLB7/yw+OPIdV2xgmHMNxvb+BWfnctYO66HohJIBnVD+Ky9H0WclMsZYW9l41FhbGduxNh3rldeJ5QHFJiSz4sBF5u85y+nIO5Qr4cAQ36oMa1lNL7ubR6KjLjA1YAQrE69SPUX4qMXb+X4OruzohJIBnVAytnDDS3x2bQfvV+zI4G7TrRaHUoq1wRF8vC6UazEJuJcqxtCWVRnkUwU3Fz2DbVZOR8by655zLD9wkdiEZJp4uPJMm+r08qqEo51u1sorf++Zysdh87hhA8Nd6jG61084OrlaO6xc0wklAzqhZMyQksxLC/zybBR9dpJSDGwJvcqCvefYfeoG9rZCt4YVebJVNVrWKKOba0wiYxL469hV1gVHsOPEdexthV6NK/FMm+p4Vy04Hb6Fwa2bp/hsw3MEJN+gjsGGj1pNLDB3cOWETigZ0Aklc9YYRZ8TpyJjWbj3PMsPGDuU65QvwbCWVXm8uQclneytHV6eUkpx4losW0KvsjXsKkEXbqMUuJcqxkAfD4a2rEp5F92slZeUwcDmXVP45ORSogVGlfJiZI+52DsWt3ZoZqUTSgZ0Qsnalp2f8NqpxbxQsiEv+y+xdjj3uJuYwtrgyyzce47DF6MoZm9LP+/KDGtZjUbuBb9JITNJKQb2n73J1tBrbA27yvmbcQB4ebjSpX4FutSvQP1KLrrWZgXXI8P4eONI/jRE09Bgy4ftPqVu7R7WDssidELJgE4o2XtvUWfWJV5lvs+7NG001NrhZCj44m0W7D3HmsOXiU8y0LRKKZ5sVY3eXpUKxW2w0fFJ/BMeydawq/x97BrR8ck42NngV6ssXRpUoHO9CrqD3YqUwcDabe/z+bk1xAuMKevL091n59tVFM1BJ5QM6ISSPWuOon9QUXFJrDh4kQX/nuN05B1KOdszoJkHHTzdaFCpZIFaivbCzTj+DLvK1rBr7D19g2SDokxxBzrVK0+X+hVoV6ccxR31dCjWdiXiEJM3j2Ynd2iq7PnwkWlW73PMCzqhZEAnlJw5cHg+Iw59SW/78kwZstVqtxLnVOpUIgv3nmfT0SskG4z/piuWdKJB5ZI0rFySBpVK0rCyK1XKFLNa85BSiuuxiZy4FsPJa7GcuBqb9vx6bCIANd2K07V+Bbo0qECzqqX1bdP5RHJSPIu3jGPm1V0oYFzFdjzR9Vts7YrGVDU6oWRAJ5Sc+27VUGZHHWFkCU/G9V9u7XByLCouiZDLUYRejubo5ShCI6I5eS0WU47BxdGO+mkJpiQNKpekTnkXs86qq5TiWkxCWsI4cS2Wk6bnt+KS0sq5ONpRp0IJ6pR3wbOiCx083ajlVsJscWjmEXx0KR/t+4RjNgbaUpx3O31NlSqtrR1WntIJJQM6oeScMhj4cFkPlidc5o1yrXmm1xxrh/TQ4pNSCL8Sw9HL0YRGRHH0cjTHImK4m5QCgL2tUKe8Cw0rl6RcBuNdMvpfRPHfjbfvJKUlkJj45LTtrsXsqVuhBLXLu1CnfAnqVChB3QoulHdx1J3p+VhU1HmmbxjF7/EXcTPA+LpD6dJmfL6vsVuCTigZ0AnlwaQkJ/Lm4s5sMdzm4yq96NvpM2uHZDYpBsWZ63cIjTDVZC5HExYRTfTd5P8WzuQ7//7NLk521C5vrHHUqVAi7Xm5Eg46cRQgymBg3T8TmXp2FVECQ4vXYkyPH/J1f6Kl6YSSAZ1QHlxiQgxjlnRmv4rja8/hdGz9hrVD0jSLOX3mL6b88xb7JAEvgx0T2kymnmcfa4dldTlNKEWv7qY9EAdHF77tv44Gyp43wuexP+hna4ekaWYXf/cW0/8YRP9/XiFMxTOhUmd+e3q/TiYPyCoJRUQGishRETGISKZZT0R+FpFrIhJy3/YvReSYiASLyEoRKWX5qIsu5xLlmdV3OR4GG145NI2w8NXWDknTzGb7v9/Sb3F75saE0cO+PGsf+4NBj36TL9d2z++sVUMJAR4HtmdTbh7QPYPtW4BGSikv4Djwjlmj0/6jdJla/NDzV1wUvLj7Pc6d22HtkDQtV65cCeK139oy5tiPOCD85DWOT4b9Rdlyda0dWoFllYSilApTSoXnoNx24GYG2zcrpVJ7T/cCHmYOUctAxYpN+aHTTBTwwp8vce1qSLbHaFp+k5wUz68Bo+i74Um2J9/mldLerBi2p0AufJXfFIY+lGeBDZntFJFRIhIoIoGRkZF5GFbhVKP6I3zXajK3RPFCwDCibp+1dkialmP7g37miQUt+TJyD81sSrCyy1ye7/NroZvM0VosllBEZKuIhGTw6GvGa7wHJAMLMyujlJqjlPJRSvm4ubmZ69JFWsP6/Zne5BXOSQpjVj5OXNx1a4ekaVk6f34n//vNj2cPf02USuGrmoOZ/dTuIjdA0dIs1uuklOpiqXMDiMhwoDfQWRWle5/ziZbNRvFF3A1eP7mQ137vxYwn/tK/8rR8JzrqAnM2j2XhnZPYKxhb1punu07HqZheL8YSCmSTl4h0B94C+iil4qwdT1HVpe07TPLozi7ieO/3nhhSMhgUqGlWkJwUz5KNY+n9Rw9+vXOSxxwrsr7XUkb1+U0nEwuy1m3D/iJyEWgNrBeRTabtlUUkIF25xcAewFNELorIc6ZdMwEXYIuIBInI93n8FjSTx7tM5dUyLdiQcpNPl/dBGXfBZ3EAABH4SURBVAzWDkkr4nbtn8mA33yZcnUbtcWJpa2n8OGQrbiVb2jt0Ao9PVJeM4uvlvsz785JXnJtzOh+i6wdjlYEnT7zJ19uf4+d3KFKCrxe70k6tXqzSM69ZW45HSmvR+5oZvHa4yu4veRRZkcdwXXjGIZ2n2XtkLQi4tbNU8zeMpbf757HWcEb5VszpMs0HBxdrB1akaMTimYWYmPDpIHriFrcmU+vbsd120R6PfKhtcPSCrGkhDss2voqP1zbTZzAgGJVeanrdMqUqW3t0IosXRfUzMbO3okvBwXgoxx59+wf/LLuOd2nopmdMhj4a/cX9FvYiqnX9+BlU5zl7abx/uAAnUysTCcUzawcnVyZNSCALnalmXZjH28s6kBc7DVrh6UVAspgYM+B73lqvg/jTvyGHcJ39Ufx/TP/UrvWo9YOT0MnFM0CnEuUZ+rQf3itrC9bk28xdFkXPfeXliv7D/3E8F9b/F979x4dVXnucfz7S4LcIchFQCDhZpEqIsrFGyICtdKKF2prFaXW2mN7vB1be1rb2uNx1QtrVY+ttWKPtVIFW9Qj1htgQS2FAAYIQaAiDfdLBKSAEJPZz/ljb+wQBxhgkp1Jns9as/Jm9p49zzszmV/23jPvy42lj7LFPuGnnUbw/Lj5nDvo5rhLc0n8U16uRs199zfcWfIrqoD7T76e84f8R9wluSxSvORpHl30CPNVQYeEcUPnYVxxwX1+wr2W+QRbKXigxGPDhvncPv1GluckuKnVKfzbJZN8aHB3SEtKp/Drd3/B39hL24RxQ6dzGTvsPv9SYkw8UFLwQInPvr07+O8XxzKtcivnqwU/H/NHWrXuGndZro5Ztvx5Hl0wgXdsD20C45sdzuLKCx6gabPj4y6tQfNAScEDJV4WBEyZfgsPbp5N50A8PHQCvXulmu7GNTQrVk7j0aL7mW27aB0Y49udydcveJBmLTrEXZrDAyUlD5S6oXjJ09zx7oPsEdzT80ouGvrTuEtyMXl/1es8NvdeZgQ7aRkY1x1/OlcPf5AWLTvFXZpL4oGSggdK3bF1Syl3vHYti1XJN5r34pYxk8lr1CTuslwt+fuq13hi3n28UbWd5gbj8k/lmuEP+mHQOsoDJQUPlLqlsmIPD7w4lucq1jOYJkz48hTaHN8z7rJcDQkSVbyz4BEmrZxMEftoGhjXtD6Z64ZPoHV+YdzluUPwQEnBA6VuevHNO7l33au0DeChs+/h830uj7skl0Ef797KS3+9h2c2vsWaXOiQML7efiBjz7vbgyRLeKCk4IFSdy1b/jy3zb2b7Tnwk66jGXPBfT5KbJbbvGkRz865h6m73mdXjjg1yGNcjzGMOPtOGjVqFnd57gh4oKTggVK3bd++ijtfvooi9jGYJtw++Ie+t5KFlpRO4Q+Lf82Mqu0YMCKvDeP638Rpfb/m/yRkKQ+UFDxQ6r6qyn08N/N2Ht/8DjtyxBdzj+fm839O167nxF2aO4Sqyn3MnPsAkz54iZKcSloGxhUte3PV2XfRufNh34dcHeeBkoIHSvbYvWsTv5t5G5M+Wkal4Mpmhdw4/Be0bXdS3KW5JDt3ruX5t3/G5PL5bM4V3RJwdeehXHru3f4dknrEAyUFD5TsU751GY/95Q5e2Leexgbj25zGdSMe8jerGAWJKoqX/oE/L3+WV/dtZG+OGGSNGdfnKoYOvNWH1amHPFBS8EDJXv8om80v3/kxM4KdtE0YN504nMuH3+8nd2vRqg+m88riibyycwWbckXTwBjVuCPXnHELfT53SdzluRrkgZKCB0r2W1I6hV8snECxPqEgAbf0/iojz/mRn+ytIVu3lPLawv/hz1vnsyInINeMs9SC0QUjGX7mzb6n2EB4oKTggVI/WBDw9vyHefi9p1iVa5wa5HH76TczsP/1cZdWL+zetYkZ8x/ilfWzmG97MYUf+R3dcQhfGHgr7dr1ibtEV8s8UFLwQKlfElWfMO2tH/PomlfZkivOU3NuO/tuTur1xbhLyzqVFXv4a/FjvPLBNGZXbqciR3RNwJfanMLoAd+hoOC8uEt0MfJAScEDpX7at3cHk9/8Hk+UF7FbMEhNGdnxLC4ccBPt2p8cd3l1VmXFHhYvf443VvyJ1/euY2eOaBMYFzUrYPTnx9Gv75V+KNEBHigpeaDUbzs/KuMPs37I6ztKKcsFmXE6jRl5wkBG9P82HTudHneJsQoSVaxc9QpF77/MvG1LKQ72sDdHNAmMCxq15Uu9L+esAd/yDzq4z/BAScEDpWGwIGDV6unMLH2a6TuWsSonAKBfkMfI9mcwov8NdOkyJOYqa54FAWvXzaFoxVTmbS1mQdUOPsoRAN0TYnDzLgzpMpQhp42neYuOMVfr6jIPlBQ8UBqmsrK3mFnyJNO3LWF5TgKAk4NcRrbtx4h+19O9cFi8BWbQ1i2lFL03haJN8yjat5nNuWGAdEwYg5t0ZHCnwQzq+1VOOKFfzJW6bOKBkoIHilu/fh4zF/+WGeXFlORUAtAryGFkfl9GnnodvXqMyprzBpUVe1i3sYgPNsxjwYY5FO1Zx+rc8O+5dWAMymvDkA4DGNxnLN26npM1/XJ1jwdKCh4oLtnmzYt5c9HjzNiygGL2YRKtA6OARnQ9Lp+C5p3omt+Tbu1PoeDEwbEMtR4kqti8ZTFlG+ez5sP3WPvPNZTtLWdNYg8bcoxA4R5I08AYkNOcIW1PZXDvL/O5XqP9G+suYzxQUvBAcQfzYflyZi2ayIrty1lbsZ21ib1syjEsesMGaBUY3WhEt+Na061ZJ7pFYdOt80Dy87sf0R6ABQGJxCcEQSVViQo+/vhD1m1cSFl5CWs+Ws2ajzdTVrWLdSSoyPlXDU0Do5A8Chq1oqB5Zwrye1HY4TT69LqYRo2bZ/QxcW4/D5QUPFDckfikYhfrN85n7ZbFrNm2knW71rGmYhvrEnvZWC1sWgZGW8shwEgAVRgBkBBUQdgGqhS1k25bXZ4ZXYMcCvJaUNjsBLq1KqSw/SkUdB5M+/Z9/dCVq3XpBorvEzt3EMc1bkmP7hfSo/uFn1kWhs0C1m5ZxNrtK1n7z3XsqNpNLjnkKZdc5SRdcv/1M2d/O++AduO8JnRr24fCTmfQqeMZ5DVqEkOPnTs2HijOHYUwbIbTo/vwuEtxrs7wfWfnnHMZEUugSPqKpGWSAkkHPS4n6UlJWyWVHmT5HZJMUruaq9Y551w64tpDKQUuB94+zHpPARelWiCpKzAKWJvRypxzzh2VWALFzJab2co01nsb2H6QxQ8BdwIN52NqzjlXh2XlORRJY4ANZrYkjXVvlLRQ0sLy8vJaqM455xqmGvuUl6SZQKoR5+4ys5eOYbvNgB8RHu46LDObCEyE8HsoR3u/zjnnDq3GAsXMRtTQpnsC3YElCr8c1gUoljTIzDbX0H0655w7jKz7HoqZLQU+nchaUhlwppl9GFtRzjnn4hl6RdJlwC+B9sBHwGIz+4KkzsBvzeziaL3JwDCgHbAFuNvM/rfatspIM1AklQNrjrLsdkBDCy3vc8PgfW4YjqXPBWbW/nArNaixvI6FpIXpjGVTn3ifGwbvc8NQG33Oyk95Oeecq3s8UJxzzmWEB0r6JsZdQAy8zw2D97lhqPE++zkU55xzGeF7KM455zLCA8U551xGeKBUI+kiSSslrZL0nymWj5dULmlxdLkhjjoz6XB9jta5UtJ70bQDz9Z2jZmWxvP8UNJz/HdJH8VRZyal0edukmZJWiSpRNLFcdSZKWn0t0DSm1FfZ0vqEkedmZTGlB+S9Ej0mJRIGpDRAszML9EFyAU+AHoAxwFLgL7V1hkP/CruWmu5z72BRUCb6PcOcddd032utv7NwJNx110Lz/NE4Kao3Rcoi7vuGu7vn4DrovZwYFLcdWeg30OBAUDpQZZfDLwGCBgCFGXy/n0P5UCDgFVmttrMPgGmAGNirqmmpdPnbwGPmtkOADPbWss1ZtqRPs9XAZNrpbKak06fDWgVtVsDG2uxvkxLp799gb9E7VkplmcdO/SUHxD28WkLzQPyJXXK1P17oBzoRGBd0u/ro+uquyLaXZwaTfSVzdLp80nASZLmSJonKeWkZ1kk3ecZSQWEg5H+JdXyLJJOn38GXCNpPfAq4Z5Ztkqnv0sIJ/oDuAxoKaltLdQWp7Rf+0fDA+XIvQwUmlk/YAbw+5jrqQ15hIe9hhH+t/6EpPxYK6o9XwOmmlki7kJqwVXAU2bWhfDQyCRJ9fk94nvA+ZIWAecDG4CG8DzXmPr8YjkaG4DkPY4u0XWfMrNtZlYR/fpb4Ixaqq2mHLbPhP/FTDOzSjP7B/B3woDJVun0eb+vkf2HuyC9Pn8T+COAmc0FmhAOKJiN0vlb3mhml5vZ6cBd0XVZ/+GLwziS1/4R80A50AKgt6Tuko4jfDOZlrxCteONlwDLa7G+mnDYPgP/R7h3gqR2hIfAVtdmkRmWTp+R1AdoA8yt5fpqQjp9XgtcCCDpZMJAydZpTtP5W26XtAf2Q+DJWq4xDtOAa6NPew0BdprZpkxtPOvmQ6lJZlYl6d+BNwg/JfKkmS2TdA+w0MymAbdIugSoIjz5NT62gjMgzT6/AYyS9B7hIYHvm9m2+Ko+Nmn2GcI3oSkWfTwmm6XZ5zsID2feTniCfny29j3N/g4D7pNkwNvAd2MrOEOSp/yIzoXdDTQCMLPfEJ4buxhYBXwMfCOj95+lrxfnnHN1jB/ycs45lxEeKM455zLCA8U551xGeKA455zLCA8U55xzGeGB4rKapN1prHObpGYZvM9LJfXN4Pb+dgy33R397Cxp6iHWy5f0naO9H+fS4YHiGoLbgCMKFEm5h1h8KeHAghlhZmdnYBsbzWzsIVbJBzxQXI3yQHH1gqRh0ZwWUyWtkPRM9G3gW4DOwCxJs6J1R0maK6lY0p8ktYiuL5P0gKRi4CuSviVpgaQlkp6X1EzS2YQjJEyI5krpKal/NGhmiaQXJbWJtjdb4bwqCyUtlzRQ0guS3pd0b1Ltu5PaP5C0NLrP+1P0s3tU+9Jq2yjcPweGpM9Lmh/VVyKpN3A/0DO6boKkFgrnAimOtjUmaTvLJT2hcO6b6ZKaRst6SZoZ1VYsqWd0/fejx6lE0n9l9Il12SXu8fv94pdjuQC7o5/DgJ2EYxPlEA6Xcm60rAxoF7XbEX4runn0+w+Anyatd2fSttsmte8Fbo7aTwFjk5aVAOdH7XuAh6P2bOCBqH0r4XDwnYDGhOOjta3Why8CfwOaRb8fn6K/04Bro/Z3k25bSDQHBvBL4OqofRzQNHl5dH0e0CrpMVlFOEdGIeEoEP2jZX8EronaRcBlUbsJ4V7fKMJ5VBQ97n8Ghsb9uvBLPBcfesXVJ/PNbD2ApMWEb45/rbbOEMLDVXMkQfiGmzxW13NJ7VOivYB8oAXhMB4HkNQayDezt6Krfk84cdN++4dxWQoss2jcJEmrCQfpSx7CZgTwOzP7GMDMUs1rcQ5wRdSeBDyQYp25wF0KZyB8wczej/p6QOnAzyUNBQLCIcxPiJb9w8wWR+13gUJJLYETzezFqLZ9UT9GEYbKomj9FoQDh76doi5Xz3mguPqkIqmdIPXrW8AMM7vqINvYk9R+CrjUzJZIGk80QOZR1hRUqy84SH3pOOR4SWb2rKQiYDTwqqRv89nBPK8G2gNnmFmlpDLCvY7kmiF8HJse4u4E3Gdmjx9B/a6e8nMoriHYBbSM2vOAcyT1ApDUXNJJB7ldS2CTpEaEb8Cf2Z6Z7QR2SDovWjYOeIujMwP4xv5PpEk6PsU6cwgHraRaTZ+S1ANYbWaPAC8B/TjwMYBwRsatUZhcABQcqjAz2wWsl3RpdB+NozrfAK5POg91oqQOafXW1TseKK4hmAi8LmmWmZUTjhA9WVIJ4eGhPge53U8IzxvMAVYkXT8F+L6kRdGJ6esIT9KXAP0Jz6McMTN7nfAQ2cLokN33Uqx2K/BdSUs5+Ex7VwKl0TZOIZzydRvhYb5SSROAZ4Azo+1cW61/BzOOcLTtEsJzPR3NbDrwLDA32tZUDgwu14D4aMPOOecywvdQnHPOZYQHinPOuYzwQHHOOZcRHijOOecywgPFOedcRnigOOecywgPFOeccxnx/8N/bkLxDnv5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[j], label=algorithms[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VNX9//HXm7DvEnZCAFkUUNYI7oALYFXAqgWlYltb/bZu39ra6rf9KtpNa/urtVpbt6K0FtRvtbiCKIgoAlEDCIiERZOwJshOIMvn98e90CFmGZhMJsvn+XjMgzv3nnvv58wM88k95845MjOcc86541Uv0QE455yr2TyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicXElaaqkv4fLqZL2SkoKn3eQtEDSHkm/V+Bvkr6UtCSxkR8/SZdJygrrOjjR8VQ3JT8H1U3kZ9ZFxxNJNSVpo6QD4X+4w4+HEx1XLMzsCzNrbmZF4arrgVygpZn9CDgbuBBIMbNhiYqzEvwOuCms68dVfXJJJmlfic/OT+J4vm9JWlhi3TRJh0rEsAxK/Ry4Gq5+ogNw5brUzObG8wSS6ptZYTzPUY5uwCr7z69iuwEbzWzfsR4owfUoqRuwsrQNVRjnQDPLrILzlOe3ZvbzBMdQbUhKqq3J069IaqDDfwFK+l3YDLRB0kUR21tJelLSZkk5kn4Z0Zz0LUnvSfqDpDxgqqSksGkpNzzWTeFftfUlXSnpwxLnv03Sv8uIrYekd8LmqjeBthHbukccdxpwLfCT8K/VG4AngDPC5/eE+1wiKUPSTknvSxoQcbyNkn4qaTmwLzxuZ0n/J2l7WJdbIspPlfScpGfC+FZKSovY3lXSv8J98yKvACV9R9Lq8PWeLalbKXVvJGkvkAQsk7SunDj7Spof1mulpHERx5km6c+SXg9fi/ckdZT0YHj+T4+3yUzSa5J+H/F8hqSnwuWekt4O654r6R+SWpf3+kjqC/wl4n3bGUUMRz4H4fMe+k8T51xJjyiiaUnS6eF7v1PSMkkjI7bNl/SL8DXaI2mOpLbhtsaS/h7GulPSUkkdwm2dJc2StENSpqTvlRHr65JuKrFumaSvh8snS3ozPM4aSd+IKDdN0qPha74PGFXRa1NjmZk/quED2AhcUMa2bwEFwPcIvrS+D2wCFG5/Efgr0AxoDywBbojYtxC4meCKtAnwX8AqIAU4AZgLWLi9EbAD6Btx/o+By8uIbRHw/8L9zgX2AH8Pt3U/fNzw+TTglyXqtTDi+WBgGzA8rOe14evSKOI1ygC6hvWoB3wI3AU0BE4E1gNjwvJTgXzga+HxfgN8EG5LApYBfwhft8bA2eG28UAm0Dd8TX4OvF/Oe2dArxLvZWScDcLj/U8Y53nh63RSxOuSCwwN43gb2ABMCeP8JTAv2vOX2NYxfE3PAyaHr0+LcFsvgqbFRkA7YAHwYBSvz1HvW2nvbYltJT8HiwiaAxsSNG/u5j+fmS5AXvie1QvjywPahdvnA+uAPuFrOx+4L9x2A/Ay0DSMfyhBMyph3f4c1mMQsB04L+Jzcvj8U4D3ImLvB+wMX6NmQBbw7fBzMTh83/pFvAa7gLPC2Bsn+nslbt9XiQ7AH2W8McGXz97wQ3v48b1w27eAzIiyTcP/mB2BDsBBoEnE9qsOf/GE+35R4lxvEyaa8PkFJf6jPwr8KlzuD3xJ+GVe4jipBEmqWcS6Zzn+RPIo8IsS51gDjIh4jb4TsW14KXW7E/hbuDwVmBuxrR9wIFw+I/wyqV9KvV4Hrot4Xg/YD3Qr470rLZFExnkOsAWoF7Hun8DUiNfl8YhtNwOrI56fCuws57NjBF/GkZ+dMRHbLyf4AswlTAZlHGcC8HEUr89R71tEHfJLxPB0yc9BxGemacS+f4/4zPwUmF7i2LOBa8Pl+cDPI7b9AHgjXP4O8D4woMT+XYEiwgQarvsNMC3ic3L4/C2AfYffa+BXwFPh8kTg3RLH/itwd8Rr8Ews3wM15eFNW9XbBDNrHfF4PGLblsMLZrY/XGxO0D7fANgcXs7vJPhwt4/YN6vEeTqXWFdy+9PA1ZIEXAM8Z2YHS4m3M/ClHd3H8Xn5VSxXN+BHh+sR1qVreJ7SYu0GdC5R/n8IkuthWyKW9wONwyaWrsDnVnr/RTfgjxHH3AGI4K/laEXG2RnIMrPiiHWflzje1ojlA6U8b17B+YaU+OzMjtj2MsFf6GvM7EgnuYK76GYoaA7dTfCFfrhpsrzXpyy/KxHDtaWU6QzsiPgMw1ff0ytLvKdnA50iypR8Tw+/NtMJks4MSZsk/VZSg4hz7onYr+TrD0BY5lVgUrjqKuAfEbENLxHbZII/6EqrS63lne21TxbBFUnbcv7TlxzyeTNBs9ZhXY8qbPaBpEMEf0lfHT5Ksxk4QVKziGSSWsr5opVFcCX0q3LKRB47C9hgZr2P81ypKr0z/HAc/yhlv2hFxrkJ6CqpXkQySQU+i+H4x+JXwGqgh6SrzOyf4fpfh3GeamY7JE0ADvcTlff6xDKE+GagjaSmEckk8vOXRXBFUmofRnnMrAC4B7hHUnfgNYIr2jnhOVtEJJNUIKeMQ/0TuFvSAoKmsHkRsb1jZheWF8axxl0T+RVJLWNmmwn+o/xeUktJ9cJO1BHl7PYccKukLmHn6k9LKfMMwZdKQeRfsSXO/TmQTvAft6Gks4FLY6jO48B/SRquQDNJF0tqUUb5JcAeBR3bTRTcRHCKpNOiONcSgi+1+8LzNJZ0VrjtL8CdkvrDkZsZroyhXosJ/nL+iaQGYefxpcCMGI4ZFUnnErTpTyHoc/qTpMN/ibcgaE7dFa67PWLX8l6frUCKpIbHGk/EZ2Zq+Jk5g6M/M38HLpU0Jnw/G0saKSml1AMeXddRkk5VcKPJboJ+xWIzyyJo8vpNeLwBwHXhuUrzGsHVx73AzIjk/wrQR9I14fvYQNJpCm5AqFM8kVRvL+vo+/BfjHK/KQQdl6sI+jNe4OimgJIeJ0g+ywk60l8jaLeOvFVxOnAKZf9nO+xqgr6KHcDdBAnouJhZOsENBQ8T1COToD2+rPJFwCUEnacbCPoAngBaRXGuIoIvsF7AF0A2QRs4ZvYicD9BE8lu4BPgojIOVSEzOxSe66Iwxj8DU8zs0+M9ZimWlfjsPCipJcH7cZOZ5ZjZu8CTwN/CZst7gCEEHcSvAv+KiLnM14egj20lsEVSbkQMPykRQ+S2SJMJ+mDyCG4kmElwVU34pT+eoIlyO8FVwO1E993VkeCzv5vgCuwdgs8xBE1U3QmuDl8k6Nco9Vb7sBn3XwR9h89GrN8DjCZo9tpE0MR2P0FHfJ1y+C4f545QcCvxX8ysW8S6JgR3+wwxs7UJC87VepJmAp+a2d2JjsVFx69IHGEz0NcU/L6hC8GVRMmrn+8DSz2JuMoWNgf1DJthxxJcgbyU6Lhc9Lyz3UFwB9I9BE0KBwiaNe46slHaGJaZkIjgXK3XkaDpKJmgyez7loChZdzx86Yt55xzMfGmLeecczGpE01bbdu2te7duyc6DOecqzHatm3L7NmzZ5vZ2IrK1olE0r17d9LT0xMdhnPO1SgKB8CsiDdtOeeci4knEuecczHxROKccy4mdaKPpDQFBQVkZ2eTn5+f6FDqvMaNG5OSkkKDBg0SHYpz7jjU2USSnZ1NixYt6N69O8EwQy4RzIy8vDyys7Pp0aNHosNxzh2HuDZtSRqrYPrJTEl3lLK9kaSZ4fbF4VDPSBqmYHrVDAXTWl4Wsc9GSSvCbcd9K1Z+fj7JycmeRBJMEsnJyX5l6FwNFrcrknDo5kcIpsbMBpZKmmVmqyKKXUcwEVIvSZMIRs6cSDC6apqZFUrqRDCS6csR8yCMMrOyRhI9lhhjPYSrBP4+OFezxfOKZBjBdLDrw2GzZxAMxhZpPMHsexAM93y+JJnZ/oik0Zg6MjmMc85Vlk+37Ob+Nz6lKobBimci6cLR00xm89WpLI+UCRPHLoKB2wgnM1oJrAD+KyKxGDBH0oeSri/r5JKul5QuKX379u2VUqHK1rz50bOlTps2jZtuuumYjpGRkcFrr71WmWEdZdq0abRr145BgwYxaNAgpkyZcszHmD9/PpdcckkconPOlZRfUMQDsz/lkocWMnNpFpt3xb/ZuNp2tpvZYqB/ONvY05JeN7N84Gwzy5HUHnhT0qdmtqCU/R8DHgNIS0urlVc0hYWFZGRkkJ6ezte+9rVSt9evH/tbPHHiRB5++OGKCzrnEuq9zFx+9uIKNubt5/IhKfzs4r60aXbME1ces3hekeRw9NzLKXx1TuQjZSTVJ5jJLi+ygJmtJpj+85TweU747zaCOTOGxSH2hHv55ZcZPnw4gwcP5oILLmDr1q0ATJ06lWuuuYazzjqLa665hrvuuouZM2cyaNAgZs6c+ZXtRUVF3H777Zx22mkMGDCAv/71r0fO8cADDxxZf/fdxzaHUEZGBqeffjoDBgzgsssu48svvwQgMzOTCy64gIEDBzJkyBDWrVt31H5Lly5l8ODBX1nvnDt+O/Yd4kfPLWPyE4sB+Md3h/P7bwyskiQC8b0iWQr0ltSDIGFMIpiGNdIsgnmjFwFXAG+bmYX7ZIWd7d2Ak4GNkpoB9cxsT7g8mmAe5Zjc8/JKVm3aHethjtKvc0vuvrR/uWUOHDjAoEGDjjzfsWMH48aNA+Dss8/mgw8+QBJPPPEEv/3tb/n9738PwKpVq1i4cCFNmjRh2rRppKenH7limDp16lHbH3vsMVq1asXSpUs5ePAgZ511FqNHj2bt2rWsXbuWJUuWYGaMGzeOBQsWcO65534lzpkzZ7JwYTBN+6233sq3v/1tpkyZwp/+9CdGjBjBXXfdxT333MODDz7I5MmTueOOO7jsssvIz8+nuLiYrKyghfP999/n5ptv5t///jepqamxv8jO1XFmxksZOfzildXsPlDAjaN6cvN5vWncIKlK44hbIgmTwE3AbCAJeMrMVkq6F0g3s1kE80VPl5RJMMf3pHD3s4E7JBUAxcAPzCxX0onAi+FdPvWBZ83sjXjVId6aNGlCRkbGkeeHkwIEv3OZOHEimzdv5tChQ0f9xmLcuHE0adKkzONGbp8zZw7Lly/nhRdeAGDXrl2sXbuWOXPmMGfOHAYPHgzA3r17Wbt2bamJpGTT1q5du9i5cycjRowA4Nprr+XKK69kz5495OTkcNllwd3ajRs3PrLP6tWruf7665kzZw6dO3c+thfKOfcVX+Tt52cvreDdtbkM6tqa+y4/lZM7tkxILHHtIzGz14DXSqy7K2I5H7iylP2mA9NLWb8eGFjZcVZ05ZAIN998M7fddhvjxo1j/vz5TJ069ci2Zs2albtv5HYz409/+hNjxow5qszs2bO58847ueGGG45a/8gjj/D4448DVGonfqdOncjPz+fjjz/2ROJcDAqKinly4QYenPsZ9evV497x/Zk8vBtJ9RJ3G72PtVVN7dq1iy5dgpvcnn766TLLtWjRgj179pS5fcyYMTz66KMUFBQA8Nlnn7Fv3z7GjBnDU089xd69ewHIyclh27Zt3HjjjWRkZJCRkVHmF36rVq044YQTePfddwGYPn06I0aMoEWLFqSkpPDSS8F02wcPHmT//v0AtG7dmldffZU777yT+fPnH9uL4ZwDYFnWTsY9/B73vf4p5/Zux5u3ncuUM7onNImAJ5Jqa+rUqVx55ZUMHTqUtm3LnhJg1KhRrFq16khne0nf/e536devH0OGDOGUU07hhhtuoLCwkNGjR3P11VdzxhlncOqpp3LFFVeUm5BKevrpp7n99tsZMGAAGRkZ3HVXcKE5ffp0HnroIQYMGMCZZ57Jli1bjuzToUMHXnnlFW688UYWL158DK+Gc3Xb3oOF3PPySib8+T127DvIX745lMempNGpVdlN3FWpTszZnpaWZiUntlq9ejV9+/ZNUESuJH8/nCvd3FVbuevfn7B5dz7fHN6N28eeRMvGVTPAqaQPzSytonLV9nckzjlXl23aeYBfvLKK1z/ZQp8OzXnh6jMZ2u2ERIdVKk8kzjlXjRwqLOap9zbw0FtrKTbj9jEn8b1zTqRh/erbE+GJxDnnqon31+Vy179XkrltLxf07cDdl/aja5umiQ6rQp5InHMuwbbtzueXr65m1rJNdG3ThCevTeP8vh0SHVbUPJE451yCFBYV8/Siz/nDm59xqLCYW87rxQ9G9aryX6bHyhOJc84lQPrGHfz8pU/4dMsezu3TjnvG9adH2/J/bFxdVd/em1pu1KhRzJ49+6h1Dz74IN///vdZuXIl5513HieddBI9e/bk7rvvpri4GPjqsO6DBg1i1apVpZ3COVcN5e09yO3PL+OKvyxi14ECHp08hKe/fVqNTSLgiSRhrrrqKmbMmHHUuhkzZjBp0iTGjRvHHXfcwZo1a1ixYgVLlizhj3/845FyEydOPPLr84yMDPr161fV4TvnjlFRsfH3Dz7nvN+/w4sf53DDiBOZe9sILjq1U42fJdQTSYJcccUVvPrqqxw6dAiAjRs3smnTJjIzM4+M0AvQtGlTHn74YR544IFEhuuci8GyrJ1c9uf3+PlLn9C3Uwtev/Uc7ryoL80a1Y7ehdpRi1i9fgdsWVG5x+x4Klx0X5mb27Rpw7Bhw3j99dcZP348M2bM4Bvf+AYrV65k6NChR5Xt2bMnBw4cYOfOncDRw7oDLFq0qNzRgJ1zibFj3yF+N2cN/1zyBW2bN+KPkwYxbmDnGn8FUpJfkSRQZPPWjBkzuOqqq6Lar2TTlicR56qXgqJinlq4gZEPzGPm0iy+dWZ33vrRCMYP6lLrkgj4FUmgnCuHeBo/fjw//OEP+eijj9i/fz9Dhw7l448/ZsGCo2cOXr9+PcnJybRu3TohcTrnorfgs+3c+8oqMrft5Zzebbnrkn707tAi0WHFlV+RJFDz5s0ZNWoU3/nOd45cjUyePJmFCxcyd+5cIJhF8ZZbbuGee+5JZKjOuQpsyN3Hd59eypSnllBQVMzjU9J45jvDan0SAU8kCXfVVVexbNmyI4mkSZMmzJo1i1/96lf06dOHtm3bctZZZzF58uQj+xyeo/3w4/33309U+M7VeXvyC/jN66sZ/Yd3WLQujzsuOpk5PzyXC/t1qJXNWKXxYeSruZdeeonbbruNefPm0a1bt0SHEzc15f1w7rDiYuOFj7L57RtryN17kCuHpnD72JNo36JxxTvXED6MfC0xYcIEJkyYkOgwnHMRPvx8B1NnrWJFzi4Gp7bmyWvTGNi17vZheiJxzrkobd51gPte/5R/Z2yiQ8tGPDhxEOMH1b7beY9VXPtIJI2VtEZSpqQ7StneSNLMcPtiSd3D9cMkZYSPZZIui/aYx6IuNOvVBP4+uOouv6CIP721lvN+9w6vf7KFm0b14u0fjWTC4Np5O++xitsViaQk4BHgQiAbWCpplplFDgx1HfClmfWSNAm4H5gIfAKkmVmhpE7AMkkvAxbFMaPSuHFj8vLySE5O9g9CApkZeXl5NG5ce9qVXe1RXGy8vHwTv31jDTk7D3DRKR35n6/1rRFzhFSleDZtDQMyzWw9gKQZwHgg8kt/PDA1XH4BeFiSzGx/RJnGBAkk2mNGJSUlhezsbLZv336su7pK1rhxY1JSUhIdhnNHWbw+j1+/tppl2bvo26klD1wxgDN7tU10WNVSPBNJFyAr4nk2MLysMuHVxy4gGciVNBx4CugGXBNuj+aYAEi6HrgeIDU19SvbGzRoQI8ePY6jWs652mz99r3c9/qnzFm1lY4tG/O7Kwdy2eAuJNXzlouyVNvOdjNbDPSX1Bd4WtLrx7j/Y8BjENz+G4cQnXO1SN7egzz01lr+sfgLGtWvx49H9+G6s0+kScOaNclUIsQzkeQAXSOep4TrSiuTLak+0ArIiyxgZqsl7QVOifKYzjkXtfyCIp56bwOPzlvH/oIirhrWlVvP70O7Fo0SHVqNEc9EshToLakHwZf9JODqEmVmAdcCi4ArgLfNzMJ9ssLmrG7AycBGYGcUx3TOuQoVFxsvZeTwu9lr2LQrnwv6tueOi06mV/vaP6RJZYtbIgmTwE3AbCAJeMrMVkq6F0g3s1nAk8B0SZnADoLEAHA2cIekAqAY+IGZ5QKUdsx41cE5Vzu9vy6XX7+2mk9ydnNql1b8/huDOKNncqLDqrHq7BApzrm6J3PbHn7z2qe89ek2urRuwu1jTmLcwM7U8470UvkQKc45F9q2O58/vrWWGUuzaNogiZ+OPZlvn9Wdxg28I70yeCJxztVauw4U8Nd31vG39zZSUFTMNad34+bzepHc3DvSK5MnEudcrXPgUBFPL9rIo/PXsetAAeMGdua2C/vQvW2zRIdWK3kicc7VGgVFxTyXnsUf565l256DjDqpHT8ecxL9O7dKdGi1micS51yNV1xsvLJiM/9vzho25u0nrdsJPHz1EIb1aJPo0OoETyTOuRrLzJj/2XYeeGMNqzbv5uSOLXjy2jTOO7m9D8ZahTyROOdqpA8/38H9b6xhyYYddG3ThAcnDuLSgZ19TKwE8ETinKtRPt2ym9/NXsPc1dto27wRvxjfn4mnpdKwflynV3Ll8ETinKsRvsjbz4NzP+PFjByaN6rP7WNO4ttndadpQ/8aSzR/B5xz1VrWjv08Mi+TFz7MJqmeuP7cE/n+iJ60btow0aG5kCcS51y1lLPzAI/My+T59CyE+Obp3fj+yJ50aOmzaVY3nkicc9XK5l0H+PO8dcxcmoVhTDotlR+M6kmnVk0SHZorgycS51y1sG13Pn+ev45nl3xBcbHxjdO6cuOoXnRp7QmkuvNE4pxLqO17DvKXd9bx9w8+p7DYuHJoCjeO6kXXNk0THZqLkicS51xC5O09yF8XrOeZRRspKDIuG9yFm8/rRbdkHw+rpvFE4pyrUjv2HeKxMIHkFxQxYVAXbj6/Nz18QMUayxOJc65K5O09yJMLN/D0+xvZX1DEuIGdueX83vRs1zzRobkYeSJxzsXV1t35PL5gPf9Y/AX5hUVcfGonbj2/N707+NzotYUnEudcXGR/uZ+/vLOO59KzKSo2xg/qzA9G9qJXe78CqW3imkgkjQX+CCQBT5jZfSW2NwKeAYYCecBEM9so6ULgPqAhcAi43czeDveZD3QCDoSHGW1m2+JZD+dc9Dbk7uPP8zJ58eMcJLhiaFe+P6Inqcl+F1ZtFbdEIikJeAS4EMgGlkqaZWarIopdB3xpZr0kTQLuByYCucClZrZJ0inAbKBLxH6TzSw9XrE7547dmi17eGReJq8s30SDpHp88/Ru3DDiRP8hYR0QzyuSYUCmma0HkDQDGA9EJpLxwNRw+QXgYUkys48jyqwEmkhqZGYH4xivc+44rMjexcPz1jJ75VaaNUzie+eeyHfPPpF2LXxe9LoinomkC5AV8TwbGF5WGTMrlLQLSCa4IjnscuCjEknkb5KKgP8DfmlmVvLkkq4HrgdITU2NsSrOuZI+/HwHf3o7k/lrttOycX1uOb833z6zOyc088EU65pq3dkuqT9Bc9foiNWTzSxHUguCRHINQT/LUczsMeAxgLS0tK8kGufcsTMz3l+Xx8NvZ7JofR5tmjXk9jEncc0Z3WjZuEGiw3MJEs9EkgN0jXieEq4rrUy2pPpAK4JOdySlAC8CU8xs3eEdzCwn/HePpGcJmtC+kkicc5WnqNh445Mt/HXBOpZn76J9i0b8/OK+XD081ecDcXFNJEuB3pJ6ECSMScDVJcrMAq4FFgFXAG+bmUlqDbwK3GFm7x0uHCab1maWK6kBcAkwN451cK5Oyy8o4oUPs3n83fV8nrefHm2b8evLTuXrQ7rQuEFSosNz1UTcEknY53ETwR1XScBTZrZS0r1AupnNAp4EpkvKBHYQJBuAm4BewF2S7grXjQb2AbPDJJJEkEQej1cdnKurdu4/xN8/+Jxp728kd+8hBnZtzZ0XncyF/Tr6nOjuK1RKP3Wtk5aWZunpfrewcxXZtPMATy7cwD+XfMH+Q0WMPKkd/zWiJ8N7tEHyBFLXSPrQzNIqKueNm8451mzZw18XrGNWxiYMGDewM9efeyJ9O7VMdGiuBvBE4lwdZWYs2bCDv7yzjnlrttOkQRLXnNGN687uQcoJ/it0Fz1PJM7VMUXFxpurtvKXd9aRkbWT5GYN+dGFffjm6d38NyDuuHgica6O2HuwkOfTs5j2/kY+z9tPapum/GLCKVw5NMXvwHIx8UTiXC2Xs/MAT7+/kX8u+YI9+YUMSW3NT8aczJj+HaifVC/R4blawBOJc7XUR198yZMLN/DGJ1sAuOiUjlx3dg8Gp56Q4MhcbeOJxLlapLComNkrt/LEwvV8/MVOWjSuz3fP7sGUM7vTpbWPwuviwxOJc7XA7vwCZi4J+j9ydh6gW3JTpl7ajyvTutKskf83d/HlnzDnarDP8/bxt/c28nx6FvsOFTG8RxvuvrQf5/ft4L9Ad1XGE4lzNYyZsXjDDv723gbmrNpKksSlAztz3dk9OKVLq0SH5+ogTyTO1RD7DhbyUkYOz7z/OWu27qF10wb8YGRPppzRnQ4tGyc6PFeHeSJxrprbkLuP6Ys+5/kPs9iTX0j/zi357RUDGDews//+w1ULnkicq4aKio13PtvG0+9/zjufbadBkvjaqZ2YckZ3hqS29gEUXbXiicS5amTn/kM8n57N9A8+54sd++nQshG3XdiHScO60r6FN1+56skTiXPVwKpNu3lm0UZeysghv6CYYd3b8JOxJzGmf0ca+K/PXTXnicS5BCkoKuaNT7bwzKKNLN34JY0b1OOywV245vTu9Ovsw7e7msMTiXNVLGvHfv655AueS88md+9BUts05ecX9+XKoV1p1bRBosNz7ph5InGuChQWFfPWp9t4dvEXLFi7HQHnndyeycO7MaJPO+r5jwddDeaJxLk4ytl5gJlLvmBmehZbdx+kQ8tG3Hxebyad1pXOPvaVqyXimkgkjQX+CCQBT5jZfSW2NwKeAYYCecBEM9so6ULgPqAhcAi43czeDvcZCkwDmgCvAbdcJ18VAAAZ0ElEQVRaXZh43tUYRcXG/DXB1ce8NdswYESfdvxifCrnndzeh253tU7cEomkJOAR4EIgG1gqaZaZrYoodh3wpZn1kjQJuB+YCOQCl5rZJkmnALOBLuE+jwLfAxYTJJKxwOvxqodz0dq6O5+ZS7OYuTSLnJ0HaNeiEd8f2ZNJp6XStY1PXetqr6gSiaR/AU8Cr5tZcZTHHgZkmtn68BgzgPFAZCIZD0wNl18AHpYkM/s4osxKoEl49dIGaGlmH4THfAaYgCcSlyDFxca7mbn844PPeevTbRQVG+f0bsvPL+7LBf06+K27rk6I9orkz8C3gYckPQ/8zczWVLBPFyAr4nk2MLysMmZWKGkXkExwRXLY5cBHZnZQUpfwOJHH7EIpJF0PXA+QmppaQajOHZucnQd4IT2b5z/MIvvLAyQ3a8h3z+nBVael0r1ts0SH51yViiqRmNlcYK6kVsBV4XIW8DjwdzMriEdwkvoTNHeNPtZ9zewx4DGAtLQ070NxMTtYWMSclVt5Lj2LhZm5mMHZvdryk7HBtLWN6vu4V65uirqPRFIy8E3gGuBj4B/A2cC1wMhSdskBukY8TwnXlVYmW1J9oBVBpzuSUoAXgSlmti6ifEoFx3SuUq3atJvn0rN4KSOHnfsL6NK6Cbec15srhqZ434dzRN9H8iJwEjCdoBN8c7hppqT0MnZbCvSW1IPgy34ScHWJMrMIEtEi4ArgbTMzSa2BV4E7zOy9w4XNbLOk3ZJOJ+hsnwL8KZo6OHcsdu0vYNayHGamZ/FJzm4aJtVjdP8OTDytK2f2bOuTRjkXIdorkofMbF5pG8wsrYz1hZJuIrjjKgl4ysxWSroXSDezWQQd+NMlZQI7CJINwE1AL+AuSXeF60ab2TbgB/zn9t/X8Y52V0mKi41F6/OYuTSLN1Zu4VBhMX07tWTqpf2YMLgLrZs2THSIzlVLiuYnGJK+XsrqXcCK8Mu9WktLS7P09LIunFxdV7LjvGXj+kwY3IVvpHX1GQddnSbpw7IuFiJFe0VyHXAGcPiqZCTwIdBD0r1mNv24onQuQfYeLOT1FZt58eMcFq3PwwzO6pXM7WOCEXd9wijnohdtImkA9DWzrQCSOhD8In04sICg78S5aq2o2HgvM5d/fZTNGyu3kF9QTLfkptx6fm8uH+Id584dr2gTScrhJBLaBnQ1sx2S4nLrr3OVZc2WPfzro2xeyshh6+6DtGxcn68PSeHyIV0YknqCzzboXIyiTSTzJb0CPB8+vzxc1wzYGZfInIvB9j0HmbVsE//6KJuVm3ZTv54YeVI77r40hfNObu9NV85VomgTyY3A1wl+NwJBs9b/hYMljopHYM4dq/yCIuau3sq/Psrhnc+2U1RsDEhpxd2X9uPSgZ1p27xRokN0rlaqMJGEgy/ONbNRwP/FPyTnoldcbCzesIN/Z+Tw6orN7MkvpGPLxlx/7ol8fXAXendokegQnav1KkwkZlYkqVhSKzPbVRVBOVceM2NFzi5mZWzi5eWb2Lr7IE0bJjH2lI5cPiSF009M9h8MOleFom3a2guskPQmsO/wSjO7JS5ROVeKzG17mbVsEy8v28SG3H00SBIj+rTnZxd35oK+7Wna0Odpcy4Rov2f96/w4VyV2rTzAC8v28SsZZtYuWk3EpxxYjI3nHsiY0/p6L82d64aiHb036clNQFSoxg+3rmY7Nh3iFdXbObljE0s2bgDgIEprfjfS/pxyYBOdGjZOMEROuciRTto46XA7wimvu0haRBwr5mNi2dwru7Ye7CQN1dtYVbGJt5dm0thsdGzXTNuu7AP4wZ29jk+nKvGom3amkow4+F8ADPLkHRinGJydcTeg4W8tXorryzfzDufbedQYTFdWjfhunN6MG5gZ/p1auk/FnSuBog2kRSY2a4S/6mjnXLXuSP25Bfw1uptvLriP8mjQ8tGXD0slYsHdGJo6gnU8zuunKtRok0kKyVdDSRJ6g3cArwfv7BcbbInv4C5q7fy6vItLFh7dPK4ZEAnhnjycK5GizaR3Az8DDgI/JNgjpFfxCsoV/MdlTw+286hoiB5TB6eysWnevJwrjaJ9q6t/QSJ5GfxDcfVZLvzC3hr9VZeXb6ZBZ/lcqiomI4tGzP5dE8eztVm0d611Qf4MdA9ch8zOy8+YbmaYtuefN5ctZXZK7eyaF0uBUVGx5aN+ebp3bh4QEcGd/Xk4VxtF23T1vPAX4AngKL4heNqgs/z9jF75RZmr9zKR198iRmktmnKt87szthTPHk4V9dEm0gKzezRuEbiqi0zY9Xm3cxeuZU5K7fw6ZY9APTt1JJbz+/NmP4dObljC79V17k6KtpE8rKkHwAvEnS4A2BmO8rbSdJY4I9AEvCEmd1XYnsjgiHphwJ5wEQz2ygpGXgBOA2YZmY3RewzH+gEHAhXja4J88bXNEXFxkdffMnsT7Ywe9UWsnYcQIK0bifw84v7MqZ/R59R0DkHRJ9Irg3/vT1inQFl/igxHH7+EeBCIBtYKmmWma2KKHYd8KWZ9ZI0CbgfmAjkA/8LnBI+SppsZulRxu6ilF9QxKJ1ecxZtYU3V20ld+8hGibV46xeydw4shfn9+1AuxY+p4dz7mjR3rXV4ziOPQzINLP1AJJmAOOByEQynuBX8xBcgTwsSWa2D1goqddxnNcdg2178pn36Tbmrt7GwrW5HCgoolnDJEad3J4x/Tsy8qR2tGjcINFhOueqsXITiaSfmNlvw+Urzez5iG2/NrP/KWf3LkBWxPNsYHhZZcysUNIuIBnIrSDuv0kqIpho65fhTI0lY78euB4gNTW1gsPVHYf7O95evY25n25jWVYwU3LnVo25YmgK5/dtz+knJvtUtM65qFV0RTIJ+G24fCf/mbMdYCxQXiKJl8lmliOpBUEiuYagn+UoZvYY8BhAWlraVxJNXZJfUMSi9Xm8tXorb6/exqZd+UgwMKU1P7qwD+f37UDfTt5Z7pw7PhUlEpWxXNrzknKArhHPU8J1pZXJllQfaEXQ6V4mM8sJ/90j6VmCJrSvJJK6bvueg2GT1VYWZuay/1ARTRokcU7vtvz3BX0YdXJ77+9wzlWKihKJlbFc2vOSlgK9JfUgSBiTgKtLlJlF0JG/CLgCeLu0ZqrDwmTT2sxyJTUALgHmVhBHnVBcbCzP2cX8NduYv2Y7y7J3YhY0WV0+JIXz+rbnDG+ycs7FQUWJZKCk3QRXH03CZcLn5c4uFPZ53EQwLlcS8JSZrZR0L5BuZrOAJ4HpkjKBHQTJJjiBtBFoCTSUNAEYDXwOzA6TSBJBEnn8WCpcm+TtPciCtdt5Z812FqzNZce+Q0earG67wJusnHNVQ+VcANQaaWlplp5e8+8WLio2lmXvZP6a7byzZhvLc3ZhBsnNGjKiTztGnNSOc3q3o00zn37WORc7SR+aWVpF5aL9HYlLkNy9B1nw2Xbmr9nOu2u38+X+AuoJBnVtzQ8v6MPIk9pxSudWPiSJcy5hPJFUMwVFxWRk7eTdz7Yz/7PtLM/eBUDb5g0ZdXJ7Rp7UnnN6teUEv+pwzlUTnkgSzMxYt30fC9duZ2FmLh+s38Heg4XUEwxOPYEfXdiHkSe1p3/nln7V4ZyrljyRJEDe3oMszMxl4dpc3svMZdOufCAYQXfcoM6c06stZ/ZsS6um/oty51z154mkCuQXFLF04w4Wrs3l3bW5rNoc3PzWsnF9zurVlhvPa8s5vdqRmuyDIDrnah5PJHFQVGys3ryb9zJzWZiZy5INOzhYWEyDJDEk9QR+PLoPZ/dux6ldWpHkzVXOuRrOE0klKC42Ptu2h0Xr8li0Lo/FG3aw60ABAH06NGfy8G6c07stw3q0oVkjf8mdc7WLf6sdh8Md5IvW5/HBujwWrc9jx75DQNDPMbZ/R87omcwZPZPp0LLc320651yN54kkCmbGFzv2B1cc64Orjm17gvm9OrVqzMiT2nHGiUHiSDnB+zmcc3WLJ5JyvPhxNgvX5rFo3X/urGrbvBFn9EzmzJ7JnHFiMt2Sm/oQJM65Os0TSTkeX7CBzbsOcPqJyfzXyCB59GzX3BOHc85F8ERSjmnfOY22zRr5DwGdc64cnkjK0b6Fd5Q751xF6iU6AOecczWbJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOOReTuCYSSWMlrZGUKemOUrY3kjQz3L5YUvdwfbKkeZL2Snq4xD5DJa0I93lI/utA55xLqLglEklJwCPARUA/4CpJ/UoUuw740sx6AX8A7g/X5wP/C/y4lEM/CnwP6B0+xlZ+9M4556IVzyuSYUCmma03s0PADGB8iTLjgafD5ReA8yXJzPaZ2UKChHKEpE5ASzP7wMwMeAaYEMc6OOecq0A8E0kXICvieXa4rtQyZlYI7AKSKzhmdgXHdM45V4VqbWe7pOslpUtK3759e6LDcc65WiueiSQH6BrxPCVcV2oZSfWBVkBeBcdMqeCYAJjZY2aWZmZp7dq1O8bQnXPORSueiWQp0FtSD0kNgUnArBJlZgHXhstXAG+HfR+lMrPNwG5Jp4d3a00B/l35oTvnnItW3Eb/NbNCSTcBs4Ek4CkzWynpXiDdzGYBTwLTJWUCOwiSDQCSNgItgYaSJgCjzWwV8ANgGtAEeD18OOecSxCVcwFQa6SlpVl6enqiw3DOuRpF0odmllZRuVrb2e6cc65qeCJxzjkXE08kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xM4ppIJI2VtEZSpqQ7StneSNLMcPtiSd0jtt0Zrl8jaUzE+o2SVkjKkJQez/idc85VrH68DiwpCXgEuBDIBpZKmmVmqyKKXQd8aWa9JE0C7gcmSuoHTAL6A52BuZL6mFlRuN8oM8uNV+zOOeeiF88rkmFAppmtN7NDwAxgfIky44Gnw+UXgPMlKVw/w8wOmtkGIDM8nnPOuWomnomkC5AV8Tw7XFdqGTMrBHYByRXsa8AcSR9Kur6sk0u6XlK6pPTt27fHVBHnnHNlq4md7Web2RDgIuBGSeeWVsjMHjOzNDNLa9euXdVG6JxzdUg8E0kO0DXieUq4rtQykuoDrYC88vY1s8P/bgNexJu8nHMuoeKZSJYCvSX1kNSQoPN8Vokys4Brw+UrgLfNzML1k8K7unoAvYElkppJagEgqRkwGvgkjnVwzjlXgbjdtWVmhZJuAmYDScBTZrZS0r1AupnNAp4EpkvKBHYQJBvCcs8Bq4BC4EYzK5LUAXgx6I+nPvCsmb0Rrzo455yrmIILgNotLS3N0tP9JyfOOXcsJH1oZmkVlauJne3OOeeqEU8kzjnnYuKJxDnnXEw8kTjnnIuJJxLnnHMx8UTinHMuJp5InHPOxcQTiXPOuZh4InHOORcTTyTOOedi4onEOedcTDyROOeci4knEuecczHxROKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xM4ppIJI2VtEZSpqQ7StneSNLMcPtiSd0jtt0Zrl8jaUy0x3TOOVe14pZIJCUBjwAXAf2AqyT1K1HsOuBLM+sF/AG4P9y3HzAJ6A+MBf4sKSnKYzrnnKtC9eN47GFAppmtB5A0AxgPrIooMx6YGi6/ADwsSeH6GWZ2ENggKTM8HlEcs/I8Owm+3BCXQzvnXJW4YQHUbxTXU8QzkXQBsiKeZwPDyypjZoWSdgHJ4foPSuzbJVyu6JgASLoeuB4gNTX1+GrQpgfUb3h8+zrnXLWguJ8hnokkoczsMeAxgLS0NDuug4z9TWWG5JxztVI8O9tzgK4Rz1PCdaWWkVQfaAXklbNvNMd0zjlXheKZSJYCvSX1kNSQoPN8Vokys4Brw+UrgLfNzML1k8K7unoAvYElUR7TOedcFYpb01bY53ETMBtIAp4ys5WS7gXSzWwW8CQwPexM30GQGAjLPUfQiV4I3GhmRQClHTNedXDOOVcxBRcAtVtaWpqlp6cnOgznnKtRJH1oZmkVlfNftjvnnIuJJxLnnHMx8UTinHMuJp5InHPOxaROdLZL2g58fpy7twVyKzGcmsDrXDfUtTrXtfpCbHXOBTCzsRUVrBOJJBaS0qO5a6E28TrXDXWtznWtvlB1dfamLeecczHxROKccy4mnkgq9liiA0gAr3PdUNfqXNfqC1VUZ+8jcc45FxO/InHOORcTTyTOOedi4okkJGmspDWSMiXdUcr2b0naLikjfHw3EXFWlorqG5b5hqRVklZKeraqY6xsUbzHf4h4fz+TtDMRcVamKOqcKmmepI8lLZf0tUTEWZmiqHM3SW+F9Z0vKSURcVYWSU9J2ibpkzK2S9JD4euxXNKQSg/CzOr8g2BI+nXAiUBDYBnQr0SZbwEPJzrWKqxvb+Bj4ITweftExx3vOpcofzPBNAUJjz3O7/NjwPfD5X7AxkTHXQV1fh64Nlw+D5ie6LhjrPO5wBDgkzK2fw14nWDO3dOBxZUdg1+RBIYBmWa23swOATOA8QmOKZ6iqe/3gEfM7EsAM9tWxTFWtmN9j68C/lklkcVPNHU2oGW43ArYVIXxxUM0de4HvB0uzytle41iZgsI5nMqy3jgGQt8ALSW1KkyY/BEEugCZEU8zw7XlXR5eGn4gqSupWyvKaKpbx+gj6T3JH0gqcJhEqq5aN9jJHUDevCfL5uaKpo6TwW+KSkbeI3gSqwmi6bOy4Cvh8uXAS0kJVdBbIkS9Wf/eHkiid7LQHczGwC8CTyd4HjirT5B89ZIgr/OH5fUOqERVZ1JwAsWzspZy10FTDOzFIImkOmSavv3wo+BEZI+BkYAOUBdeK/jprZ/YKKVA0ReYaSE644wszwzOxg+fQIYWkWxxUOF9SX4q2WWmRWY2QbgM4LEUlNFU+fDJlHzm7UgujpfBzwHYGaLgMYEA/3VVNH8X95kZl83s8HAz8J1Nf7GinIcy2f/uHgiCSwFekvqIakhwRfJrMgCJdoUxwGrqzC+ylZhfYGXCK5GkNSWoKlrfVUGWcmiqTOSTgZOABZVcXzxEE2dvwDOB5DUlyCRbK/SKCtXNP+X20Zcdd0JPFXFMVa1WcCU8O6t04FdZra5Mk9QvzIPVlOZWaGkm4DZBHd9PGVmKyXdC6Sb2SzgFknjgEKCjq1vJSzgGEVZ39nAaEmrCC77bzezvMRFHZso6wzBF88MC293qcmirPOPCJotf0jQ8f6tmlz3KOs8EviNJAMWADcmLOBKIOmfBHVqG/Z13Q00ADCzvxD0fX0NyAT2A9+u9Bhq8GfGOedcNeBNW84552LiicQ551xMPJE455yLiScS55xzMfFE4pxzLiaeSFyNJGlvFGX+W1LTSjznBEn9KvF478ew797w386SXiinXGtJPzje8zgXDU8krjb7b+CYEomkpHI2TyAY8K9SmNmZlXCMTWZ2RTlFWgOeSFxceSJxNZqkkeGcEi9I+lTSP8Jf8N4CdAbmSZoXlh0taZGkjyQ9L6l5uH6jpPslfQRcKel7kpZKWibp/yQ1lXQmwYgGD4TzlfSUNCgc0HK5pBclnRAeb76CuU3SJa2WdJqkf0laK+mXEbHvjVj+qaQV4TnvK6WePcLYV5Q4RvfD81BI6i9pSRjfckm9gfuAnuG6ByQ1VzAXx0fhscZHHGe1pMcVzD8zR1KTcFsvSXPD2D6S1DNcf3v4Oi2XdE+lvrGuZkn0WPr+8MfxPIC94b8jgV0E4wfVIxja5Oxw20agbbjcluBXzM3C5z8F7ooo95OIYydHLP8SuDlcngZcEbFtOTAiXL4XeDBcng/cHy7fSjA0eyegEcEYZskl6nAR8D7QNHzeppT6zgKmhMs3RuzbnXAeCuBPwORwuSHQJHJ7uL4+0DLiNckkmKeiO8GoDYPCbc8B3wyXFwOXhcuNCa7yRhPMZaLwdX8FODfRnwt/JObhQ6S42mCJmWUDSMog+FJcWKLM6QTNUu9JguCLNnI8rZkRy6eEf/W3BpoTDLdxFEmtgNZm9k646mmCCZMOOzzkygpgpYVjG0laTzCAXuRwMxcAfzOz/QBmVtrcEmcBl4fL04H7SymzCPiZghn//mVma8O6HhU68GtJ5wLFBMOJdwi3bTCzjHD5Q6C7pBZAFzN7MYwtP6zHaIJk8nFYvjnBoJ4LSonL1XKeSFxtcDBiuYjSP9cC3jSzq8o4xr6I5WnABDNbJulbhINXHmdMxSXiKy4jvmiUO56RmT0raTFwMfCapBv46kCbk4F2wFAzK5C0keAqIzJmCF7HJuWcTsBvzOyvxxC/q6W8j8TVZnuAFuHyB8BZknoBSGomqU8Z+7UANktqQPDF+5Xjmdku4EtJ54TbrgHe4fi8CXz78B1mktqUUuY9ggElKRHTEZJOBNab2UPAv4EBHP0aQDAL4rYwiYwCupUXmJntAbIlTQjP0SiMczbwnYh+pi6S2kdVW1freCJxtdljwBuS5pnZdoIRm/8paTlBM9DJZez3vwT9Au8Bn0asnwHcLunjsMP5WoLO9+XAIIJ+kmNmZm8QNIWlh01zPy6l2K3AjZJWUPbsdt8APgmPcQrB9Kp5BM15n0h6APgHkBYeZ0qJ+pXlGoLRr5cT9OV0NLM5wLPAovBYL3B0wnJ1iI/+65xzLiZ+ReKccy4mnkicc87FxBOJc865mHgicc45FxNPJM4552LiicQ551xMPJE455yLyf8HByXLL4ekyaQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", - "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvXl4W+d1r/suTAQIiZooidRMSZZoeZBFS85gR46oNh3i2qmbOB7Sk7Q3dZ1z2vQmqdO47W2Ge1znxLc5aZvTum6bsXGcNHVSN3MiyVac2LFkUrKo0TYpWQM1UJRECgRADOv+sTdAkOKAaWPi9z4PHgIbe+9vbQDEwvettX5LVBWDwWAwTF9c5TbAYDAYDOXFOAKDwWCY5hhHYDAYDNMc4wgMBoNhmmMcgcFgMExzjCMwGAyGaY5xBAaDwTDNMY7AULOIyFER+ZUyjb1QRHaKyKCI/E0Jx/2SiPxPh859n4j82IlzG8qLcQTTFBH5oYh8apztd4jIaRHx2I/fLCLb7S+0SyLytIi0Zuz/VhFJisjlMbc3lfJ6KpD7gT6gQVU/Um5jckVEVoiIpj4HAKr6NVV9WzntMjiDcQTTly8D7xERGbP9d4GvqWrc/jL/MfCfwCKgBXgZ+LmIrMg45pSqzhhze975SygNmV+GObAcOKCmdN9QBRhHMH35DjAPeEtqg4jMAW4DvmJv+gzwFVX9W1UdVNV+Vf1L4EXg4/kMai/X/KmIvGzPML4hIn77ufeJyHNj9lcRWW3f/5KI/IOI/MCedfxcRJpE5HMickFEDonIhjFDbhKRA/bzX0yNZZ/vNhHZIyIXReQXInL9GDv/TEReBkLjOQN7trTLvo5dIvLmlJ3Ae4GP2nZesTwlInUi8v+JyOsickZEHhORgP3cQRG5LWNfj4icE5E2+/G/27O2S/by0zUTvNZTvZ5vF5FOERkQkeMi8omMXXfafy+mZnhjzzfR9dvPPSMi/6/9Hg2KyI9FpNF+zi8i/yYi5+3XfpeILBzvGgylwTiCaYqqhoFvAv8tY/NdwCFV3Ssi9cCbgX8f5/BvAoUsEdwF/DrWDON64H05HvuXQCMQBZ4HOuzH3wI+O2b/+4BfA1YBa+xjsR3GF4A/xHKI/wQ8LSJ1GcfeA7wdmK2q8cyTishc4HvA39nHfxb4nojMU9X3AV8DPmPPjn46znV82rbnBmA1sBj4K/u5r9tjp/g1oE9VO+zHPwCuAhbY1/618V+qKQlhvf+z7ev8gIi8w35us/139ngzvMmuP2O3e4Hfs+30AX9qb38vMAtYah/7ABDO8xoMRcA4gunNl4F3ZvxK/m/2NoC5WJ+P3nGO6wXmZzxeZP+yy7wFJxn371T1lKr2A/+F9WWYLd9W1ZdUNQJ8G4io6ldUNQF8Axg7I/i8qh63x3qYkS/Y+4F/UtVfqmpCVb+M5VjeOMbO47bTHMvbgVdU9auqGlfVrwOHgN+a6gLs5bj7gQ/Zs6xB4K+Bu+1dngBut50xWF+oX08dr6pfsGdoUeATwHoRmTXVuGNR1WdUdZ+qJlX1ZXuMW7M8PJvr/6KqHsn40ZF6n2NYDmC1/dq/pKoDudpvKB7GEUxjVPU5rIDmO0RkFXAT1pcQwAUgCTSPc2izfVyKU6o6e8wtNMnQpzPuDwEzcjD7TMb98DiPx57reMb9Y1ixDrDW8D+S6bywfqEumuDYsSyyz5fJMaxf9lMxH6gHXsoY+4f2dlT1VeAg8Fu2M7gd+30REbeIfFpEXhORAeCofc7GLMYdhYi8QUR22MtOl7B+mWd7nmyuf6L3+avAj4AnReSUiHxGRLy52m8oHsYRGL6CNRN4D/AjVT0DYH+RPw+8a5xj7gKeccCWENYXJAAi0lSEcy7NuL8MOGXfPw48PMZ51du/bFNMFug9heVMMlkGnMzCpj4sp3VNxtizVDXTiaWWh+7ACjq/am+/1972K1jLKyvs7WOD/jD16/kE8DSwVFVnAY9lnGeqIHfe16+qMVX9pKquw1p+vI3RS5SGEmMcgeErWF8qf8DIslCKjwHvFZEPishMEZkjVo76W7CWMorNXuAaEbnBXq76RBHO+T9EZIm9pv0XWMtHAP8MPGD/KhYRCdrB05lZnvf7wBoRudcO5r4bWAd8d6oDVTVpj/+/RWQBgIgsFpFfy9jtSaw4zAcYmaUBzMRawjqP9SU/2fsw1es5E+hX1YiI3ITlZFKcw5oRrpzg3Hlfv4hsEZHrRMQNDGAtFSWnOs7gHMYRTHNU9SjwCyCI9esw87nnsAKVd2LFBfqxAn1bVbUrY9dFcmUdwe/kYcsR4FPAT4FXgOcmPyIrnsBKge0GXgP+pz3Wbizn93msZbBXySForarnsX7JfgTrS/mjwG2q2jfpgSP8mT3mC/YSz0+BtRnn78Wakb2ZEecFluM+hvXL+wDwwiQ2TvV6/nfgUyIyiBWo/mbGsUNYMZWf28tXmbGTQq+/CSuwP4C1BPYs1nKRoUyISXM2ZItY6ZU7gHtV9UfltsdgMBQHMyMwZI2dWfIO4DrJr8jKYDBUIGZGYDAYDNMcMyMwGAyGaU5VTO8bGxt1xYoV5TbDYDAYqoqXXnqpT1XnT7VfVTiCFStWsHv37nKbYTAYDFWFiIwt+hsXszRkMBgM0xzjCAwGg2GaYxyBwWAwTHOqIkYwHrFYjBMnThCJRMptiiP4/X6WLFmC12u0uAwGg7NUrSM4ceIEM2fOZMWKFcgVTbaqG1Xl/PnznDhxgpaWlnKbYzAYapyqXRqKRCLMmzev5pwAgIgwb968mp3tGGBg51N0P7CJI+9aTPcDmxjY+VS5TTJMY6p2RgDUpBNIUcvXNt0Z2PkUZx57EB22+t3E+05y5rEHAWjYfGc5TTNMU6p2RmAwVCt9TzySdgIpdDhM3xOPlMkiw3THOII82bJlCz/60WgBzs997nN84AMfYP/+/bS3t7N27VpWrVrFxz/+cZJJS279S1/6EvPnz+eGG25I3w4cOFCOSzCUifj5UzltNxicZto4gmKvyd5zzz08+eSTo7Y9+eST3H333dx+++187GMf4/Dhw+zbt48XX3yRv/3bv03v9+53v5s9e/akb+vWrSvIFkN14Zm3KKftBoPTTAtHkFqTjfedBNX0mmwhzuCd73wn3/ve9xgeHgbg6NGjnDp1ildffZWbb76Zt73tbQDU19fz+c9/nkcffbQo12KofhrvfQg8o9OCxRewthsMZaCqg8Upzn7xr4j27J/w+ciRl9D48KhtOhzmzD98mEs//dq4x9S1XMOC3/vUhOecO3cuN910Ez/4wQ+44447ePLJJ7nrrrvYv38/N95446h9V61aRTgc5uLFiwB84xvf4LnnRppFPf/88wQCgSmv01AbNGy+k1DndgZ/Zv0Q8TQupvHeh0yg2FA2psWMYKwTmGp7tmQuDz355JPcc889WR03dmnIOIHph3fBUgBc9Q20/OOLxgkYykpNzAgm++UO0P3AJmtZaAyexsUs/dR/5D3uHXfcwYc+9CE6OjoYGhrixhtvpLOzk507d44ev7ubefPmMXv27LzHMtQWicELACSHBkgM9OOZNa/MFhmmM9NiRtB470OIb/Sv7mKsyc6YMYMtW7bw+7//++nZwH333cdzzz3HT3/6UwDC4TAf/OAH+eQnP1nQWIbaIjHQn74f6+0uoyUGwzRxBA2b72ThA4/iaVwMIngaF7PwgUeLMh2/55572Lt3b9oRBAIBnn76aR5++GHWrFlDY2MjN998M/fdd1/6mG984xuj0kd/8YtfFGyHobpIDPbjnm31Cxk+3VNmawzTnaroWbxx40Yd25jm4MGDXH311WWyKHu+853v8OEPf5gdO3awfPnynI6tlms05M7RD2/F27iY0J4dzP3tP6Lxnj8rt0mGGkREXlLVjVPtNy1mBOXkHe94B93d3Tk7AUNtkxjsxz1nPt4Fyxg2S0OGMuOoIxCRoyKyT0T2iMjujO1/LCKHRGS/iHzGSRsMhkpDVS1HMHMu3uYWYr1maagWqSZhwVJkDW1R1b7UAxHZAtwBrFfVqIgsyPfEqlqz4mzVsGRnyI9k+DLEY7hnzsXX3MKlg7+s6c/ydKTahAXLsTT0AeDTqhoFUNWz+ZzE7/dz/vz5mvzCTPUj8Pv95TbF4ABJO3XUPXMO3uYWNBIicfFcma0yFJNqExZ0ekagwI9FRIF/UtXHgTXAW0TkYSAC/Kmq7hp7oIjcD9wPsGzZsitOvGTJEk6cOMG5c7X5D5TqUGaoPRKDVuqou2EuHk8TAMO9PXjm5D05NlQY1SYs6LQjuEVVT9rLPz8RkUP2mHOBNwKbgG+KyEod89PedhqPg5U1NPbEXq/XdO8yVCWpGgL3zLnpFNJYbzese0M5zTIUEc+8ReMXsc5rLoM1U+Po0pCqnrT/ngW+DdwEnACeUosXgSTQ6KQdBkMlkbhsLw01zMXbuBg8XlNLUGOMV8QKgMdH/FLfldvLjGOOQESCIjIzdR94G9AFfAfYYm9fA/iAyntlDAaHSM8IZsxB3B68C5aZzKEao2Hzncx914fSjz2Ni5n19veT6D/N8T//LYZPvlpG667EyaWhhcC37UwID/CEqv5QRHzAF0SkCxgG3jt2WchgqGUSg/3gcuEKzgLA19zCsHEENYfbfn9X/P1z+JpXAtBw8zs49en38vpf3M6ij36B+nVvLKeJaRybEahqt6qut2/XqOrD9vZhVX2Pql6rqm2qut0pGwyGSiQx0G/NBlzWv5+3qYXY6Z6azICbzoQP7cI9qxFv00gsM7CmjaWPfBfPrEZOfupuBn5WGbUFprLYYCgxicELuGfOST/2Nbeg0TDx/tNltMpQbCKHdxFYu+mK+hDfwuUsffhp/Gs3cvpv/4jz3/pc2X8EGEdgMJSYVFVxCm+z9YvRxAlqh/iFM8TOHMPfumnc590zZrP4L7/GzM2/w/knP8OZf/wIGo+V2MoRjCMwGEpMYrAfV8OII0itH5s4Qe0QPmSVRgUmcAQALm8dTX/8d8x914cY2P4kJ//6PSRCA6UycbQtZRnVYJjGWEtDI47AM28R4vERMymkNUP40C7E58ffct2k+4kIje9+kIV/9DmG9j/P8b+8g9i5EyWycgTjCAyGEjIiODcSIxC3G2/TcrM0VEOED+/Cv2o94vVltf+st97Fkr98gvj5Xl5/6DYir73ssIWjMY7AYCghmYJzmXibWmq6qKyalDgLJRkdItrTNWF8YCLqr7uFpQ8/jXh9HP+r3+bslz9RstfMOAKDoYSkBecaRjsCX3MLsdNH0WSyHGY5SkqJM953ElTTSpy16gwir+yBRJzA2twcAUDd0jUs++vv4prVyMX/erxkr5lxBAZDCUkLzmUsDQF4m1eiwxHi/b3lMMtRqk2Js1DCh+1A8dopG4ONi2fOAiSRuGK7k6+ZcQQGQwnJFJzLxFfDKaTVpsRZKOFDu/AtWXOFs8+FiX4QOPWaGUdgMJSQTAnqTFK1BLWYQuqZtyin7dWMJpNEDu+eNG00G0r9mhlHYDCUkES6Kc1oR+CZ24z4/JYcdY0xnhKn+AI03vtQmSxyjuHjh0kODeQcKB5LqV+zUrSqNBgMNmnBufqGUdvF5cLbtKImZwQNm+8kGb7M2X/+WHrbvPseqsiWjYWSLiTLI1CcSeq16XviEeLnT+GZt4jGe517zYwjMBhKyFjBuUx8TS0Mn6oseeJi4W1aDkDje/6Cvn97GM+s2mxBEj6cEppbUfC5GjbfWTJnaZaGDIYSkhi8cEV8IIW3uYXY6WPoOBkj1U60ex8ADVvejfjriRy+ojttTRA5NL7QXKVjHIHBUEISg9aMYDx8zS1ofLgms2miPV145i/BM6sR/+q29BJKLRG/cIbY2dcLjg+UA+MIDIYSMlZwLhNvWnyu9gLGkaNd1LVcC0CgdSPRYwesKusaYkRo7qYyW5I7xhEYDCUkMdB/RcZQilqtJUiGLxPr7cGfdgQ3QTJJ+JWOMltWXEaE5q4ttyk5YxyBwVAiVJXE5YljBO45C5G6QM1lDkWP7gfV9IzAf1UbiBCpseWh8OFd+FffkLXQXCXhqCMQkaMisk9E9ojI7jHPfUREVERqM32gyphOomDlIi04N0GMQESstpU15ggiPV0A1NmSzO5gA75lVxM+9GI5zSoqycgQ0e59BaeNlotSpI9uUdW+zA0ishR4G/B6CcY3TEFKFCylB5MSuAJqMte7XExUVZyJr7mF6OsHS2VSSYj2dOFumIdnblN6W6B1EwPPfgtNxBF39WexR17thGSiKgPFUL6lof8NfBQw3borgOkmClYukhNUFWfibW4hduZ1NBEvlVmOE+2xAsWZKZWB1k1oJET0WG04vXSgeM2NZbYkP5x2BAr8WEReEpH7AUTkDuCkqu6d7EARuV9EdovI7nPnzjls5vRmuomClYsRwbmJxch8TS2QiJelS5UTJGNRoscPp+MDKVKZNeEaqScohtBcOXHaEdyiqm3AbwD/Q0Q2A38O/NVUB6rq46q6UVU3zp8/32EzpzfTSRSsnGSzNJRKIa2VOMHw8cOQiONfObplo6dxMZ65zTURMNZkksiRlwoWmisnjjoCVT1p/z0LfBu4FWgB9orIUWAJ0CEiTROexOA400kUrJxMJDiXiS+tQlobtQTRdKB49IxARPC3bqyJGUFKaK4a6wdSOOYIRCQoIjNT97GCw7tUdYGqrlDVFcAJoE1VTztlh2FqGjbfycIHHoUM/ZtaFQUrJ5bgnPsKwblM3LPnI/5gzcwIIj1duAIz8C5cccVzgbWbiPedItZ3svSGFZFUfKBaA8Xg7IxgIfCciOwFXgS+p6o/dHA8QwHMvPkOQJhx028A4PLWldegGsQSnJs9ruBcChHB19xSM7UE0e591K24ZtxrTscJqnx5KHx4F+7Z8/EuXF5uU/LGMUegqt2qut6+XaOqD4+zz4qxqaWG8pC4dA6SCeqvfwueBUsJdWwrt0k1R2Kwf9L4QApLfK76HYEmEkSPHbhiWShF3Yp1iL++6usJwoderEqhuUxMZbEBgHi/tTrnmdtEcEM7Q/t+RjIWLbNVtUVi8MKk8YEUvuaVxM4eR+OxEljlHLHT3Wg0PKEjELeHwFVtVR0wjvefJn72eFUHisE4AoNNqkeqZ24zwbataDRM+MALZbaqtkgM9uPKIr3Q29wCyQSxc8dLYJVzpCqKJ9Pe8bduIvr6waoVoEvHB6q0ojiFcQQGAOL9ZwDwzGui/to3I946Qp07ymxVbTGZ4Fwmvqba6F8c7d6HeHz4lqyZcJ/A2k2WAN2Rl0poWfEIH65eoblMjCMwAPbSkMuNu6ERV109gWvebOIERWQqwblMaqWWINrThW9ZK+LxTriPf82N4HJVbcA4fKh6heYyMY7AAFiOwDNnAeJ2AxBsayd26jWGTx8tr2E1wlSCc5m4G+biqm9wpJagVOKCqkqkZ/+E8YEU7vqZ1C1rrcqOZcnIENGerqquH0hhHIEBsGIEnjkjdX3BDe0AhDq3l8ukmiKbquIUImJlDhV5RpASF4z3nQTVtLigE84g3neS5OULWS2Z+NduInyko+r0lapdaC4T4wgMgD0jyFCH9DW34F20klCHcQTFYERnaGpHANbrX2xHUEpxwWiP1aO4boy0xHhUqwBdtQvNZWIcgQGwHcG80UofwQ3thPf/gmR0qExW1Q5p5dEsZgRg1xL0nUBjw0WzoZTigpGeLnC5qFt+9ZT7jhSWVVc9QfjQi/iWrsU9Y3a5TSkY4wgMJMMhkkODo2YEYDkCHY4wtP/5MllWO6SXhrJUp/Q1r4RkktjZY0WzoZTigtGeLnyLVuGqq59yX0/jYjzzqkuAThOJqheay8Q4AsOoGoJMAuveiNQFTPZQEch1acjbtAIobgpp470PwZgmME6JC0a7u6hbkV1KpYgQWLupqgToLKG5wartSDYW4wgMxC/YNQRjZgQun5/6624h1LENVdNDqBASly9MKTiXiRON7Bs234l7bhPisVMd3V4WPvBo0cUF45fOE+/vzSo+kMLfuon4+d6q6cOQclq1ECgG4wgMjJaXGEtww1biZ48TO/Vqqc2qKbIRnMvEPXMurhmzizojiF84Q+LcCebd9REa73sIEjEC17ypaOdPkQoU51JklVpiqZZZQfhQ9QvNZWIcgYH4+dTS0DiOoM1OI+0wVcaFkK3gXCa+phZiRawlSFWKB9vaCW7YCsDQnuK/r+keBCuuyfqYuuUpAboqcQSHdxFovamqheYyMY7AQLz/NK7ADFyBGVc8552/BN/StYQ6TZygELIVnMvEW2Q56lDnDtxzm/AtX4dv+dV45jY7IiMS6dmHZ8HSnNo2VpMAXex8ryU0VyPxATCOwMCVNQRjCba1M3TgBZLhUAmtqi0Sg9npDGXia24hfv4UyeFIweNrPMbQ3mcJbmhHRBAR633d+2zRVU6jPfvxZxkoziQlQJcYGiyqPcUmUmPxATCOwEAWjmDDVojHGNr3sxJaVVskBrJTHs3E29wCqsTOFJ5CGj7yEsmhAYJtW9Pbgm3tJMOXi7ockwxfJtbbPaW0xHikBOgiFS5AFz5UG0JzmRhHYLDkJcakjmYSaN2EKzDDyE3kiarmFyNIi88VHicIdWwDj5f6625Jb6u/7i3g8RZ12S96dD9wZY/ibEgL0FV4wNgSmtswqZheteGoIxCRoyKyT0T2iMhue9ujInJIRF4WkW+LSPWX5VUxmkgQv3B20hmBeLzUX7/ZpJHmSTJ8GRLxvGIEUJxaglDHdgKtb8BdPzO9zRWYQf3VbyiqjEik284YyiF1NIUlQHd1RccJkuEQ0aP7a6aQLEUpZgRbVPUGVd1oP/4JcK2qXg8cAYpfzWLImsTAeUgmJnUEYC0jxM/3Mvz6oRJZVjvkWlWcwh2chbthbsG1BLG+kwy/fjCdAZZJsG0rw8cPFy1/P3q0C/esRtxzFuZ1vL91E+FXKleArpaE5jIp+dKQqv5YVVPv8gvAklLbYBghXUMwbwpHkFIjNVXGOZNrVXEm3qbCM4dG0ka3XvHcSHpwcWYF0Z4u6lquzTut0hKgGyJ67EBR7Ck2tSQ0l4nTjkCBH4vISyJy/zjP/z7wg/EOFJH7RWS3iOw+d+6co0ZOZyaSlxiLZ24TdSuuMXGCPMhVcC4TX/PKgmcEoY5teOYvwbd49RXPeRetxrtgWVHiBMlYlOjxI3nFB1KkUjIrtZ4gfHgXvmWtNSE0l4nTjuAWVW0DfgP4HyKyOfWEiPwFEAe+Nt6Bqvq4qm5U1Y3z58932MzpS2pGkM1UPti2lfChXSRCl5w2q6YYWRrKY0bQ3EK8vzdvBdhkLMrQvp8RbNs67q90EaG+rZ2hfc8VnKY6/PphSMTxt+QeH0jhnb+kYgXo0kJzNVQ/kMJRR6CqJ+2/Z4FvAzcBiMj7gNuA+9REH8uK1aLShWf21M422NYOyQRDL5s00lwYWRrKLUYAmZpDR/MaO3zwl2hkKL20Nx7Btq1oNEz4wAt5jZEi3YOgwLTKwNpNhA/tqrjEhOHjhyyhuRqLD4CDjkBEgiIyM3UfeBvQJSK/DnwUuF1VjdB9mYn39+KevQAZo0o5Hv6r2nDNmG3iBDmSGOzPSXAuk3Tm0On8lodCHdsRbx3119484T7117wJ8dYVXGUc6enCFZhRsP6Ov3UT8f5eq5NaBZFarqq1QDE4OyNYCDwnInuBF4HvqeoPgc8DM4Gf2Gmljzlog2EK4ucnLybLRNwegutvJdS5A00mHbasdrDkJeZkLTiXia/ARvahjm0ErnkTLv/EfQFcdfUErnlzwXGCaE8XdSuuyes6M6nURjWW0NwCvAuWlduUouOYI1DVblVdb9+uUdWH7e2rVXWpnVJ6g6o+4JQNhqmZqqp4LMG2rSQuniV6tMtBq2oLS14i92UhsHL93bPn5zUjGD5zjNip1yZdFkoRbGsndqo77wwlTSSIHjuQk/T0RNQtvxrxBysuYGwJzW2qGaG5TExl8TQnfuFMTo6g/oa3AsVLN5wOJAZy1xnKxFIhzf0Lesh+j8ZLGx1LOj04z6yw4d5uNBouOD4AtgDdmra0pk8lEDvfS/zciZoMFEOWjkBEVolInX3/rSLyQVMRXP0ko0MkQ5fwTpE6molnViN1q28wcYIcSFzOXXk0E2/zirx+qYc6t+NtXpkOOE+Gr7kF76KVeTv4dA+CPMTmxsO/dhPR1w9VjABdLQrNZZLtjOA/gISIrAYeB5YCTzhmlaEkTNaQZjKCG9qJvNJhVSUbpiQxkLvOUCbeppUkLpzJSf01GQ0z1PXzcauJJyK4YSvh/b/IK1U12tOFeOvwLbkq52PHI9BaWQJ0tSg0l0m2jiBpVwP/NvD3qvogkP3PSENFEj+fpyNo2wqqhPY+64RZNUVKcC5X5dFMfHlkDoX3P48OR7KKD6QItrWjsShDXb/I2cZIdxe+Za1FE2ILVJgAXfjQLvxXtdWU0Fwm2TqCmIjcA7wX+K69rTZfEWBg51N0P7CJI+9aTPcDmxjY+VTJji907FxIF5Pl6Aj8q9bjbphXEXGCUr5e+ZAcGsxLcC4Tbx79i0Od25C6AIF1b8z6mMC6NyJ1gZyX/VSV6NGuov5adgVmULfsasIHy+sIBnY+RfcfbiTa/TLR7n0V9/kqFlMnj1v8HvAA8LCq9ohIC/BV58wqHwM7n+LMYw+iw2EA4n0nOfPYgwBZNfku5PhCx86VEXmJ3ByBuFzU37CFUOc2NJFA3O6i25YNpX698iFxOX95iRS+ptxUSFWVUMd26q+9GZfPn/U4Lm8d9de9hVDndlQ16+yYeN9JkpcvFiVQnEng6pu4tOMbaCKeVZ1LsRn7+UqGByvu81Ussnp1VfUA8MGMxz3A/3LKqHLS98Qj6Tc+hQ6HOfuvf5HVmvj5f/9s3sdPdGzfE4845AhOI/7gKGnibAm2tTO481tEXttLYE1b0W3LhoneK6der3xIVxXPyH9pyBUI4p6zkNjp7PoSxE69RuzMMebcnntmdrBtK6HdP2b45KvUZbnen5KeritAWmI8/Gs3cfEHXyR69AD+VdcX9dzZUA2fr2KRlSO/DigLAAAgAElEQVQQkZuBTwDL7WMEUFVd6Zxp5SF+/tS425OhS5z70sfzPm8hx09kU6HkWkOQSXD9reByEercVjZHMNHr4tTrlQ9pnaECZgRgxQmynRGkluxyiQ+kCG7YYp9jW9aOINqzD1wu6pa35jzeZKSkHMKHXiyLI6iGz1exyHa+9a/Ah4CXgIRz5pQfz7xF45a2e+YtYvlnp147PfbhreN+ULI5frJjncByBPnF/N0z5+BfcyOhju00vvvBIluWHZO9V5VCWnm0gBgBWHGC0O6fZLVvqHMbviVr8C5Ymvs485fgW9bKUOd25mY5o4j2dOFbtBpX3cTVy/ngbVyMp3ER4cO7mPP29xf13NlQDZ+vYpFtsPiSqv5AVc+q6vnUzVHLykTjvQ8hvsCobeIL0Hjfn1uNQqa4Nd7353kfP+Gx9zrTu6eQGQFY6YbR1/YSv1gemfDGex+CMWvHTr5e+ZBeGip0RtDUQuJS35R59clwiKEDL+SUNjqW4IYtDB38pdVZLQuiPfuLHh9IEVi7icih3WURoGu89yHEWzdqW6V9vopFto5gh91i8k0i0pa6OWpZmWjYfCcL/uCR9GNP42IWPvBo1muCDZvvZOEDj+JpXAwiOR2fOjYlTuaZtyinsXNBk0mrqniKhjSTkV5G2FOYWFm+NGy+E/e8ReCygtWu4GzHXq98KURwLhNvlppDQ/t+BvFYVtXEExHcsBXiMetcUxC/1Ee8vzev1pTZUE4BuobNdzLj5tvtR7n9L1cb2S4NvcH+uzFjmwL5/+yoYOpWrAOg6f/+BxpueUfOxzdsvjPvD0vD5jsRj4fezz7Aoo99ybEClsTAeUjEC5oR1LVci3vOQkId25j11ruKaF12xC+eI3H2dea9+0Eu/uSr1K97Y8X9k6YF5wrUp0nXEvR2T7peHurcgSswoyAphEDrJlyBGYQ6tjPjpt+YdN9oj6U55eSMACB88EW888vQzDAexz1nISsf76hJjaEU2WYNbXHakEoi9eF26lfOVHibRvLGnXIE6dTROfk7AhEhuGELl1/4fllS/Ib2PANA8MatRF8/VHFqlZASnCtsWQjA22RJO082I1BVQp3bqL9+M+L15T2WeLzUr7+VUMfUaaTpHgQrrsl7vMlIC9Ad3lUWJx8+9CKBtbUpNJdJtlpDs0Tks6nWkSLyNyIyy2njykW0Zx/iD6a/kEtNuhnJ6aOOjZGvvMRYgm1bSQ4NED5ceimAUMc23LMXULfiWgKtm4j3nSJWYRr2luBc/qmjKVx19XjmNU+aOTR8/DDxvlMFxQdSBDe0E+/vZfjYwUn3i/R04Vmw1LHWjZYA3Y1lUSKNnT9FvO9kTTaiGUu2MYIvAIPAXfZtAPiiU0aVm0hPF3Ur1hWsq54vlvTwAoZ7s8sbz4e0vEQBMQKA+uveAm5PUXre5oIm4oT2PktwwxbE5crQsK8MSYIUxZoRgBUniE0iM5GqCK6/ofAJfDr+M8X7Gu3uKqg1ZTYEWjcx/PpBEqEBR8cZS6pdpnEEI6xS1Y/bPQa6VfWTQM3VEIAVRI0ePeD4h3sqfM35SQ9ny0iLygUFnccdbCDQelPJ5SYiR14iGbqUDorWrViH+OsrSroY7BhBgRlDKaxagol/HIQ6tlO3Yh3eeYXLgHnmNlHXcu2k72tiaJDY6R7H4gMp/K2bQJXIKx2OjjOW8KFdSF3AsWWvSiJbRxAWkVtSD+wCs/Ak+1ctsdM9aCTk+Id7KrzNLXm3J8yG+IXTuGfNL8q6frCtneFjB4id7y2CZdkR6tgOLjf1128GrCUE/+q2ipoRpATnijYjaGohOXiBxOWLVzyXCA0QPvSilfFTJIJtWwkf3j3ueADRowcA5wLFKQJXtVkCdCWOAYUP78K/ekPNCs1lkq0j+ADwf0TkqIgcw2o3OWW1ib3/Prsl5W5721wR+YmIvGL/LXwBtYiMlMuX1xH4mltIXDznmB57oTUEmWjSyvHu+cMbSyb8FurcRqD1JtzBkbTMQOtGoscOZJ3/7jQpwblClEczGckcuvIHwtDLOyGZKEp8IEVwQzskE9a5xyHdg8Dh/xVXYAbuuYu48J//WDJxwWQ4RPTogfSSY62TlSNQ1T2quh64HrhOVTeo6t4sx9hit6RMpZ5+DNimqlcB2+zHFUO0pws8XuqWrCmrHem8cYdmBcVyBAM7n6L/3z87cl5b+M3Jf9TY+V6iRw9c8aUXaL0JkknCJV5CmIhiCM5lMlktQahjG67gLPxrbizKWAD+q9pwzZgz4fJQtKcL9+z5uOcsLNqY4zGw8ykS/b1oLAqqJfmMRV7pgGRiWsQHYApHICLvsf9+WEQ+DLwfeH/G43y4A/iyff/LQO6J+g4S7emibllrQel3xcDXlLv0cC4UyxFMJszlFEOd42vp+K9qAxHCBysjjTRdVVyspaGFy0DkijiBJpOEOncQXH9rUVN4xe0meMOthPbsQJPJK563kiqudTy1su+JRyA5WtnG6c9Y+PAuECmqY61kppoRBO2/M8e5zcji/Ar8WEReEpH77W0LVTW1mHwaGPfnhIjcn0pXPXeuNBIGqkqkZ1/Zl4XAak8I2UsP50IyGiZ5+WLeOkOZlEOYK9S5A8+8ZnzLRoucuYMN+JZdXTEB47TgXJGWhlw+P555i674cRA92kXi4tmCqoknIti2lcTFc+namhTJWJThE0dK0rGrHJ+x8MEX8S1tHbX0WMtM+vNBVf/JvvtTVf155nN2wHgqblHVkyKyAPiJiBwac34VkXFFRFT1cay2mGzcuLEkQiPx86dIDl4oWt/VQnDV1eOZ2+zIjGCkhqDwKX2phbk0NszQyzuZecs7xv0lGmjdxMCz3yqbhn0mySLPCMDOHBqzXJhauqnfUPy6z/r1bwURQh3bRlU0D79+GBJx6kpQdFnyz1giQeSVDma+pbKq1J0k22Dx32e5bRSqetL+exb4NnATcEZEmgHsv2eztMFxnC6XzxXvFOmC+VKsYjKYSKTP75gwV/jwLpLhyxNKLAdaN6GRENEpCqFKQWKwuDECSNUSHB21LdSxjbrVN+CZ1Vi0cVJ4Zs3Dv+oGQp2j4wSlTKqYUAjSoc9Y9PWDJMOXp018AKaOEbxJRD4CzE/FBezbJ4BJ21KJSFBEZqbuA28DuoCnsVpeYv/9zwKvoWhEe7pApGLyhr1NKxwJFo90Jit8aWiUyB7WL/QZb/hNx+QAQh3bwOO1CtnGIV1YVgHLQ8USnMvE19xC8vLF9LJTYrCfyKud6QIwJwi2tRN5pWNUY6Xo0S5c9TPxLljm2LgpUp8xt+3o3A3zHBV/SxeSFaDXVG1MNSPwYcUCPIyODwwA75zi2IXAcyKyF3gR+J6q/hD4NPCrIvIK8Cv244og0r0P36JVuPzF1VXPF19zC4mBfhKhS0U9b7z/DFCcGQFY/6grH9vFmm+dxL96A9FjBxyTDQ51bKd+3RtxBYLjPu9pXIxnbnP6n7mcWDUEhQvOZeIdk0Ia2vssJJNFrR8YS7BtK6gS2vNselu0p4u6FdeUrPre+oztxhWYwYw3/IajukPhw7twz1mIJ49+DtXKVDGCZ4FnReRLqnoslxOrajewfpzt5wHnPrUFED3aVVF5w5npgu7VNxTtvFaLynpcebSonIqG9rs5+/ifEX1tL/4i2gwQO3uc4RNHmLX13gn3ERH8rRsrZEZwoajxAcjQoertIWA3BnI3zMW/6op/taJRt/J63A3zCHVso2HznWgiQfTofmb96u86NuZ4iNdH/fWbCXVsy6mncq6ED+0i0HpTzQvNZZKtOx+y+xF8X0S2p26OWlZiEoP9xPtOFb3vaiFkSg8Xk1TqqBMf9Jk334H4/Fza9vWinzu1Tj1V0VRgrS1Ad+5E0W3IhcRAf1HjAwDeBcvB5WK4txtNJBjas4P6G7Yg7klXagtCXC6CG9oJ7XkGTSQYPvUaOhwpScbQWIJt7cTP9zL8+qGpd86D6SQ0l0m2juBrwCGgBfgkcBQo/0+uIhJJSU9XSKAYwLtwaunhfIj39xYlPjAe7mADM954G4M//w7J6FBRzx3q2IZ34XK8i1ZNul+lxAkSg/0FNa0fD/H68DYuIdbbQ+S1vSQG+otaTTwRwbZ2kpcvEHm1s6xJFakkgZTAXrGZjvEByN4RzFPVfwViqvqsqv4+NdaUJloh0hKZuOoCeBoXFb2WoJjyEuMxa+s9JIcGufzC94t2zuRwhKF9zxFsa59yJpMSoCu37lAxBecy8dqN7EOd28DlIrj+1qKPMZb69beCy0WoY7sl0+6tw7d4tePjjsUzt4m6FesIdTrTFW9EaG6dI+evVLJ1BDH7b6+IvF1ENgDF/4SXkWhPF57GxUUr/ikW3qaVRZ0RpFtUOigLEFj3RrxNK7i0/cminTN84AV0OEL9BGmjmYjbQ+CqtrIGjIstOJeJt7mF2OkeQi9tw39VmyNjjMU9YzaBNRsJdW4j0tOFb/nVZRNjC27YSvjQi47IUocPvYj/qrZpITSXSbaO4H/ajWg+Avwp8C/AhxyzqgxEerpKUhyTK+MVEBVCYrAf4jFHZwQiQsOWuwnv/wXDRWquE+rcjvj81F/zpqz297duSueDl4NiC85l4mteSXJokGj3y45UE09EsG0r0e59RF7pKOsSarBtcjG8fEmGLxM9dmDaLQtB9qJz31XVS6rapapbVPVGVX3aaeNKRTIcItbbXVHxgRTeMXnjhRK3paI9RdCsn4yGt74LXC4GdnyjKOcLdWwncM2bcdVll9obWLvJEqA7UvrOaZAhL+HA0lAsQ1rh4g++WBK1VyCdEqzRMIPPf7dk447Fv+ZGXMFZRY8ThF/pgGRy2gWKIftWlV8UkS+MvTltXKmIHtsPqhUVH0gxkjl0tCjni18obg3BRHjnNRO8YQsDO76JJhJTHzAJw73dxHq7cwqK+tfcaGvYl2d5KF1VXORlm4GdT3HpByPNARMXzzquxJkat/8//jb9OHn5YknGHQ9xewiuv5VQ5/hiePkSOTS9hOYyyXZp6LvA9+zbNqABqAzR9yIQqTBpiUyKLUddTHmJqWhov4d4fy+hvc8UdJ6Ulk4uyyDu+pnULWstmwDdiOBccR1B3xOPWHLMGTitxJket8Qqs5NhieGdJXq0a+qdsyR8aBe+ZVdPG6G5TLJdGvqPjNvXsPoWb5zquGoh2tOFu2GeYymVheBduCydN14M4v29IFJwi8psmHHjr+BumMdAgUHjUOd2vItW4bPTabPFv3YT4SMdaCJe0Pj5MCI4V9wYQTmUOMs57kSkBPaK1SI1JTQ3HZeFIPsZwViuApz/JikR0W5LeroSKwld3jo8jYuLljkU77dbVJYgK0K8PhpufSeXd/+Y+KXzUx8wDsnIEOH9z+cVFB0RoDuQ19iF4ITgHEysuOmUEme5x50Iz6xG6lbfULQ4QVpobhoGiiH7GMGgiAyk/gL/BfyZs6aVBo0NEz1xpCKXhVL4mlqKVksQP+9sDcFYGtrvhniMwZ3/kdfxQ10/R2PRvIqm0oVlZYgTOCE4B6VX4iz3uJMR3HClGF6+pAvJzIxgYlR1pqo2ZPxdo6r5/WdXGNHjhyEeq8iMoRTe5hZivT1FEXKzismcbS2YSd3StfivauPS9q/nZX+oczvirydw9RtyPtY7fwmeeeURoHNCcA7GqL2K4Glc7KgSZ7nHnYy0GN7eZ6feeQrCh17EPbcJz/wlRbCs+phUdE5E2iZ7XlUrozlsAaTL5SuwhiCFlTc+QGKgH8+seQWdK95/uuS/ehra7+bsP32UyKt7CFy1IevjVJVQxzbqr70Fl7cur7EDazeVRWoiMeBMMRlYX8rl+AIu17gT4V+1HnfDXEKdO2gosIlM+PAuAms3VeTycCmYqoXT30zynFIDMhORnn24AjPwLlxRblMmxJtWnOwuyBFYLSovlHRpCCwhunNf+jgD27+ekyMYPvEK8XMnmPvbf5z32P7WTQz+4mli507gLeGvPafkJQwjiMtF/Q1bGNqzA00k8hbei/WdJN53isBvPVBkC6uHSZeG7OKxiW5V7wTA1lVfvq5kuur5kK4lKDCFNH7RagZXakfgrp/JzDf9FoPP5SZEl1YbLaDpSmr2U+pZgVPyEobRBNvaSQz0E3ltb97nCE9ToblMsv72E5FrReQuEflvqZuThpUCTSSIHjtQ0ctCgNUFyuUuOHMofr50NQRjaWi/m2T4Mpef/17Wx4Q6tuNb1lrQL/m65eURoEvFCAzOEkyJ4XXmnz0UObwL8ddT11IZnQnLQbZZQx/H6lH898AW4DPA7Q7aVRJip3vQyFBFZwwBiMeLd8HSgmsJ0i0qHZaXGI/A1W/A29TCpe3Z9SlIDA0SPvTLCXsTZ8uIAN2LBZ0nFyzBueI3pTFciXvmXPxXtRVUTxA+tAv/6jbEPdVKee2S7YzgnVhdxU6r6u9hdR6b5ZhVJSLSY0lPV3LGUApvU0vhM4ISVhWPRUSY1X434QMvZOXQhvY9B/FYUUTV/K03EX39EImhwYLPlQ0pwTkTIygNwbatRF/bS/ziuZyPTQvNtdZMfWxeZOsIwqqaBOIi0gCcBbJq6CkibhHpFJHv2o+3ikiHiOwRkedEpPSi5jbRni7E48O3ZE25TMgan61BX0gKabz/NFIXKHpue7akhei2Ty1EF+rYhqt+JoG1hf+DBlotAbpIiQToUvISTiiPGq4k3axmT+49CkaE5iqnRW05yNYR7BaR2cA/Ay8BHcDzWR77J8DBjMf/CNynqjcATwB/meV5ik60pwvfstaq0B73Nq1AIyESefzqSZHqTFauFDnP3CaCN7Rz6dl/n1T2QVUJdW6n/vpbi/LeBFICdCUKGDslOGcYn7qWa3HPWZhXlXH44IuW0NxVk2bK1zzZFpT9d1W9qKqPAb8KvNdeIpoUEVkCvB2rf0H6dFiidWAtL5VFrERViXR3VXx8IIXPFp8rpMI43n/a0YY02dCw9R4S/acJ7Xlmwn2Gjx0g0X+6aC0YXYEZ1C27umSFZU4JzhnGR0QIbtjC0J5nc9aVihyevkJzmWQbLH5aRO4VkaCqHlXVl7M8/+eAjwKZWrHvB74vIieA3wU+PcGY94vIbhHZfe5c/r+CJyLed5Lk5QtVER+A0bUE+eJ0i8psmNG2dUohurTaaAFpo2Pxt24i/EppBOjSgnMmRlAygm1bSQ4NED6c/fKfJuKEj0xfoblMsl0a+hvgFuCAiHxLRN4pIv7JDhCR24Czqjr2nfkQ8JuqugT4IvDZ8Y5X1cdVdaOqbpw/f36WZmZPORtw54N3wVJwe/KuJVBVEv1n8MwrryMYLUTXN+4+oY5t1LVcW9TZiyVAN1QSAbqRGYGJEZSK+uveAm5PTmmk0WMH0UhoWtcPpMh2aehZVf3vwErgn7BkqM9OcdjNwO0ichR4EmgXke8B61X1l/Y+3wDenI/hhRLp6QKXi7rl1dGkWtwevAuW5Z05lBzsR+PDFSG13dB+DyTi4wrRJS5fJHxkd9FbMKb+2UtRT5AYvOCI4JxhYtzBBgJrNzHUmX0aaSpmFLh6egeKIbeCsgDwO8ADwCbgy5Ptr6oPqeoSVV0B3A1sB+4AZolIKk3nVxkdSC4Z0Z59+BatwuXPrvVhJeCzm5bnQzlTR8dSt3QN/jU3cmnblUJ0Q3ufhWSy4PqBsaQE6MIlqCdIDPbjbpg7bXVrykWwrZ3o0QPE7HasUxE5tAvP3GZLSG+ak22M4JtYX9jtwOeBVaqaswCMqsaBPwD+Q0T2YsUIHsz1PMUg2tNF3YrqWBZK4W1uYfj00bxSSGMV5AgAZrXfzfCJI0ReGa1bGOrcgWvGHEeyOAKtNxE5tLsoKq6TkRjoxz3DLAuVmtQsMttZQfjwLvytG43DJvsZwb9iffk/oKo77JqCrFHVZ1T1Nvv+t1X1OlVdr6pvVdXitN7KgcTAeeLne6smPpDC19SCRoZI2H2Hc6Gc8hLjMePNtyN1gVFBY00mCXVuJ3jDrXkLiE2Gv3UT8f5e4n0ni37uTIzgXHnwLV2Lp3FRVlXGsXMnLKE5Ex8ApnAEIvJRAFX9EXDnmOf+2kG7HCXVo9hf4RpDY/GmG9nnvjyUlpcoc/poCnf9TGa++bcY/Pl/koxYQnTR7n0kLvUVPT6QYiRO4OzykBGcKw9WGulWQi/vRGPDk+6bjg9M80KyFFPNCO7OuD+2FdGvF9mWkhHttqQl6lZUl8hUqpYgnxRSq0VlY0UVzzVsuYdk+DKDL3wXwMr4EKF+/VsdGa9u+dWIP+h4wDgVIzCUnmBbOxoJTensw4dsobkV1ZEs4jRTOQKZ4P54j6uGaE8XnvlLqi69z9O4GPH48pwRlL+GYCyBq2/C27ySgW2WEF2oYzv+1RsKbr4zEeL2EFjTRsTBCuO04JyJEZSF+mtvQTy+KauMI0ZobhRTOQKd4P54j6uGyNEu/C3VtSwEIG433oX5pZAmLlSeI7CE6N5N+OAvCR/aReTVzqJVE0+Ef+0mRwXojOBceXEFggTWvTHdy2I8kuHLRF8/SOBqEx9IMZUjWJ9qWg9cb99PPa6+b1KsD0HsVHfVBYpTWJlD+c4Iyl9DMJaGt94FCMf/6ndAlYs/+goDO59ybDynBeiMvET5CbZtZfjEK8TOvD7u8+EjL1lCcyZQnGaqDmXujKb1Hvt+6nHlLDbnQPTofqB6KorH4mteSez0UTSZfeJWMha1+h1X2IwAYGjfz8ElkLSkHxIXz3LmsQcdcwZpATqHAsaJAaM8Wm5Ss8qJZgXhQ7vA5cK/5sZSmlXRVG5/RoeIVJm0xFi8TS3ocCSdBZQNiX4r3bQSHUHfE4/AGKemw2FruwO4AjOoW76O8KHdjpw/cdkoj5Ybb/NKvAuXT+gIIod3UbesFXf9zBJbVrlMO0cQ7enCPauxIr8Us8GXFp/LfnmonJ3JpiJ+fnzx2Ym2F4NA6yYirzojQGcE58qPiBBsa2do33MkhyOjnksJzfnNstAopqEj2Eddy7VVW02YTy1BJclLjMUzb1FO24uBf60tQHe0+AJ0JkZQGQQ3bEWHI4QPvDBqe1poziiOjmJaOYJkLEr0+JGqXRYC6wtSfP6cagkq2RE03vsQ4guM2ia+AI33ji1bKR6pLwEn4gSJwQvg9uAyyw5lJXDNmxCf/4o00tR7bgrJRjOtHMHw8cOQiFdND4LxEJcL78LlOc8IxOfHFay8NtMNm+9k4QOPWsJfIngaF7PwgUdp2Hzn1AfnibdxMZ7GRY50LLOqiudU7YyzVnDVBai/9uYr5CaM0Nz4TKtqipEeBFWZ+ZrG29xC7NRrWe+fKiar1C+nhs13OvrFPx6BtZsYOvhLVLWor0tiwMhLVArBDe2EOrYx3NudrsoPH95FoHVTxf4vlItpNSOIdO/DFZiBd+HycptSEJYc9TE0kchq/0qsKi43/tZNJPpPEz93oqjnTc0IDOWnPpVGas8KYudOED/fi9/EB65gWjkCS3r6GsRV3ZftbWpB48NZZ9YYR3AlqTXiYusOJQYvmBlBheBbuBzf4tXpOMGI0JxxBGOp7m/EHNBEguixA9RVmeLoePjSmUNTB4xV1TiCcahbdjWuwIyixwmM4FxlEWzbSnj/8yQjQyNCc1XSlbCUTBtHMNzbjUbDVZ0xlMKbQy1B8vIFNBatSHmJciJuN/6r2oo6IzCCc5VHcEM7Gh9mqOs5Iod2EbjKCM2Nx7RxBNEeS3raX2VdycbDM6cJ8fkZPn10yn0rrSFNJRFo3cTw6wdJhAaKcj4jOFd5+K++CfHXM/jzp4m+ftDEBybAcUcgIm4R6RSR79qPRUQeFpEjInJQRD7otA1gxQfEW4dvyVWlGM5RxOXC29SSVS1BJdcQlJtELAqqvPbeVrof2FSwvpEpJqs8XN46vM2rGPzZU5BMcunHX3VU1LBaKcUc6U+w+h032I/fBywFWlU1KSILSmAD0Z4ufMtaK6oxSyH4mluIHj885X5peQnjCEYxsPMpLn3vX9KP430nOfOY1T4731TWtOCcmRFUDAM7n2L4+KH048SlvoLf51rE0RmBiCwB3g78S8bmDwCfSvU9VtWzTtpgj0Gkp6uqC8nG4m1uIXb29Sn1cuJ2f+NKaVFZKfQ98Qg6VoemQLG79IzAxAgqhr4nHoF4bNQ2J0UNqxWnl4Y+B3wUyJSXXAW8W0R2i8gPRGTctRoRud/eZ/e5c+cKMiLed5Lk5Ys1EShO4WtugXiM2BSN2OP9p3E3zEO8vhJZVh04IXaXHLSVR82MoGIoh6hhNeKYIxCR24Czqjq2A0gdEFHVjcA/A18Y73hVfVxVN6rqxvnz5xdkSypQXEuOwJvuXzx55lD8vEkdHQ8nxO5MjKDyKIeoYTXi5IzgZuB2ETkKPAm0i8i/ASeAVLTm28D1DtoA2D0IXC7qll/t9FAlI9tagnh/r0kdHQcnxO4SA/1GcK7CKIeoYTXimCNQ1YdUdYmqrgDuBrar6nuA7wBb7N1uBY44ZUOKaPc+fItW46qrd3qokuGevQDxB6eeEfSfxjPPzAjGMkrsDsDlZsEDnykogJi4fMEIzlUY5RA1rEbKUVnxaeBrIvIh4DLwfqcHjPbsJ3DNm5wepqSICL6mFZOqkFotKs+bpaEJSIndXfzRlzn7zw8RWLW+oPMZwbnKpByihtVGSRyBqj4DPGPfv4iVSVQS4pfOE+/vran4QApv88q0oup4JC5YCVnGEUxOcMOIOJlv8eq8z2MJzhlHYKg+ar6yOF1RXAMaQ2PxpVJIx6THpUjXEMwxjmAyvAuW4luyhlDntql3ngRrRmBSRw3Vx7RxBHUrrimzJcXH29wCyQSxc8fHfT5ewU3rK41gWztDB14gGQ7lfY7E5QsmddRQldS8I4j0dOFZsBT3jNnlNqXo+KboX5yWlzDB4ikJtm2FeD79WLYAAA/eSURBVIyhfT/L63hVNTECQ9VS844g2rMff5V3JJuIqWoJ4v29iLcOl6l0nZLA2k24AjMIde7I6/jk0AAkE2ZpyFCV1KwjGNj5FN1/uJFYbzdD+56rSaEpd8M8XPUzJ6wlqPQWlZWEeH3UX7+ZUOc2VDXn4xOpqmIzIzBUITXpCAZ2PsWZxx5Ml5EnhwY489iDNecMRMRWIZ14acjEB7InuGEL8b5TDGch5jcWIzhnqGZq0hFYgmLhUdtqVWjK12wcQbGoT6eR5p49ZOQlDNVMTTqC6SQ05W1uIdZ3Ao0Nj9puWlTmjndeM3Ur1qWbnedCWnDOxAgMVUhNOoLpJDTla2qBZJLY2ddHbU9evogOR4zOUI4EN2wlfOjFnLuWmRmBoZqpSUcwnYSmvBOkkKb7EMw1fQhyIdjWDskEQy/vzOk4IzhnqGZq0hFMJ6Ep3wSN7E2Lyvzwr7kRV3BWznECS17CCM4ZqpNyiM6VhOkiNOWaORdXcBbDp8c4gvOpFpVmaSgXxO0huP5WQp070GQScWX3WykxeMEsCxmqlpqcEUwnRMQKGI+pJUjNCNxmaShngm1bSVw8S/ToxIJ+YzGCc4ZqxjiCGsDX1HJljKD/NO6Gubi8dWWyqnqp32C1y8gleygx0G90hgxVi3EENYC3ucXqy5zRjN3qTGbiA/ngmdVI3eobCHXm4AjspjQGQzViHEEN4GteCarEzoykkFo1BCY+kC/BDVuIvNKRTgudDCM4Z6h2jCOoAbzpzKGROIEpJiuM4IatkEwS2vvslPuOCM4ZR2CoThx3BCLiFpFOEfnumO1/JyKXnR5/OjBWjlrjMRKX+nDPMYHifPGvWo+7YW5WcYKUzpBZGjJUK6WYEfwJcDBzg4hsBMx/TZFwz5iNa+YcYnYK6UgxmVkayhdxu6m/YQtDe3agicSk+6aUR43gnKFacdQRiMgSrP7E/5KxzQ08CnzUybGnG77mlekZgWlIUxyCbe0kBvqJvLZ30v2MvISh2nF6RvA5rC/8ZMa2PwKeVtVeh8eeVlhy1FaMIOUIvCZGUBDB9beCyzVlL+O0IzAzAkOV4pgjEJHbgLOq+lLGtkXAu4C/z+L4+0Vkt4jsPnfunFNm1gy+5hbi53tJRoeMvESRcM+ci/+qtinjBGnlUdMJzlClODkjuBm4XUSOAk8C7cB+YDXwqr29XkReHe9gVX1cVTeq6sb58+c7aGZtkM4cOn1spEWlWaoomGDbVqKv7SV+ceIfI0ZwzlDtOOYIVPUhVV2iqiuAu4HtqjpHVZtUdYW9fUhVVztlw3TCZ/cvHu7tIX7+NJ45C40AWhEIpprV7Jm4l3FKXsK83oZqxdQR1AiZtQSmhqB41LVci3v2gknVSC3BObMsZKheSuIIVPUZVb1tnO0zSjH+dMBdPxP3rEaGT/cQv3DGOIIiISIEN2xhaO9ONBEfdx8jOGeodsyMoIbw2v2L4/29uI0jKBrBtq0kQ5eIHHlp3OeN4Jyh2jGOoIbwNbcQ7elCo2EzIygi9ddvBpd7wuwhMyMwVDvGEdQQ3qaVJMOWaodxBMXDHWwg0HrTuPUEqmpiBIaqxziCGiKlOQRGXqLYBNvaiR49QOz86DpIIzhnqAWMI6ghvE0r0veNvERxCbZtBWBoTI+CtOCciREYqhjjCGqISPe+9P0TH/8dBnY+VUZragvf0rV4GhddESdIC86ZpSFDFWMcQY0wsPMpzn3h/0k/jved4sxjDxpnUCSsNNKthF7eicaG09uN4JyhFjCOoEboe+IRdDg8apsOh+l74pEyWVR7BNva0UiI8KEX09uM4JyhFjCOoEaInz+V03ZD7tRfewvi8Y2qMh5pSmMcgaF6MY6gRvDMW5TTdkPuuAJBAuveQKhzRHcoOXjBEpwLmCJ5Q/ViHEGN0HjvQ4gvMGqb+AI03vtQmSyqTYIbtjJ84gixs8cBIzhnqA2MI6gRGjbfycIHHsXTuBhE8DQuZuEDj9Kw+c5ym1ZTBNtsNVI7jdTISxhqAU+5DTAUj4bNd5ovfofxLlqFd+FyQh3bmP1r7yVx+YJpSGOoesyMwGDIAREh2NbO0L7nSA5HzIzAUBMYR2Aw5Ehww1Z0OEL4wAtGcM5QExhHYDDkSOCaNyE+P6GXfmoE5ww1gXEEBkOOuOoC1F97M4PP/5cRnDPUBMYRGAx5ENzQTsJuaG9iBIZqx3FHICJuEekUke/aj78mIodFpEtEviAiXqdtMBiKTTIeS98/9+VPGk0nQ1VTihnBnwAHMx5/DWgFrgMCwPtLYIPBUDQGdj7F+a//r/TjxMB5I/BnqGocdQQisgR4O/AvqW2q+n21AV4Eljhpg8FQbIzAn6HWcHpG8Dngo0By7BP2ktDvAj8c70ARuV9EdovI7nPnzjlrpcGQA0bgz1BrOOYIROQ24KyqvjTBLv8A7FTVn433pKo+rqobVXXj/PnznTLTYMgZI/BnqDWcnBHcDNwuIkeBJ4F2Efk3ABH5ODAf+LCD4xsMjmAE/gy1hmOOQFUfUtUlqroCuBvYrqrvEZH3A78G3KOqVywZGQyVjhH4M9Qa5RCdeww4BjxvS/c+paqfKoMdBkPeGIE/Qy1REkegqs8Az9j3jeKpwWAwVBCmsthgMBimOcYRGAwGwzTHOAKDwWCY5hhHYDAYDNMcsZQeKhsROYeVaZQPjUBfEc2pBsw1Tw/MNU8PCrnm5ao6ZUVuVTiCQhCR3aq6sdx2lBJzzdMDc83Tg1Jcs1kaMhgMhmmOcQQGg8EwzZkOjuDxchtQBsw1Tw/MNU8PHL/mmo8RGAwGg2FypsOMwGAwGAyTYByBwWAwTHNqxhGIyK+LyGEReVVEPjbO8+8TkXMisse+VX2v5Kmu2d7nLhE5ICL7ReSJUttYbLJ4n/93xnt8REQulsPOYpLFNS8TkR0i0ikiL4vIb5bDzmKRxfUuF5Ft9rU+Y7fErWpE5AsiclZEuiZ4XkTk7+zX5GURaSuqAapa9TfADbwGrAR8wF5g3Zh93gd8vty2lviarwI6gTn24wXlttvpax6z/x8DXyi33SV4nx8HPmDfXwccLbfdDl/vvwPvte+3A18tt91FuO7NQBvQNcHzvwn8ABDgjcAvizl+rcwIbgJeVdVuVR3G6oh2R5ltcppsrvkPgP+jqhcAVPVsiW0sNrm+z/cAXy+JZc6RzTUr0GDfnwVUc/PkbK53HbDdvr9jnOerDlXdCfRPsssdwFfU4gVgtog0F2v8WnEEi4HjGY9P2NvG8jv2tOpbIrK0NKY5RjbXvAZYIyI/F5EXROTXS2adM2T7PiMiy4EWRr4wqpVsrvkTwHtE5ATwfayZULWSzfXuBVJdgX4bmCki80pgWznJ+rOfD7XiCLLhv4AVqno98BPgy2W2pxR4sJaH3or16/ifRWR2WS0qHXcD31LVRLkNKQH3AF9S1SVYSwhfFZFa/t/+U+BWEekEbgVOAtPhfXaMWvmwnAQyf+EvsbelUdXzqhq1H/4LcGOJbHOKKa8Z61fD06oaU9Ue4AiWY6hWsrnmFHdT/ctCkN01/1/ANwFU9XnAjyVUVo1k8798SlXvVNUNwF/Y26o+KWAKcvns50ytOIJdwFUi0iIiPqwvgaczdxiznnY7cLCE9jnBlNcMfAdrNoCINGItFXWX0sgik801IyKtwBzg+RLb5wTZXPPrwFb+//bONcSqKorjv39lpo416fTSD02NRQ+JgQpEywxioIKayIIwTYMIstQok4iKRFLxS9SXHmBG+KhMaYjwEfggNc0mvaMpKDYfJCGRECcpMlcf9po4M94ZruPNOzNn/eBw1z17n33WOnPmrHv2Pue/AUk3kxLB0fPqZfko5X+5JnPH8yqw+Dz7WAmagCn+9NAY4LiZHSlX4/1i/mAzOyXpeWAt6amDxWa2V9JcYKeZNQEzJD0EnCINykytmMNloMSY1wINkn4m3TrPNrNjlfP63CgxZkgXjxXmj1v0ZUqM+SVSt9+LpIHjqX019hLjnQDMl2TAZmB6xRwuE5KWk+Kq8bGeN4EBAGb2Pmns5wHgIHASmFbW/ffR8yUIgiAoE/2laygIgiDoIZEIgiAIck4kgiAIgpwTiSAIgiDnRCIIgiDIOZEIgoogqa2EOrMkDS7jPhsl3VLG9raew7Zt/jlC0spu6lVLeq6n+wmCUohEEPRmZgFnlQgkXdhNcSNJsKwsmNnYMrTxq5lN7KZKNRCJIPhfiUQQVBRJE1xTfqWk/ZKW+tuTM4ARwAZJG7xug6RtkpolfSGpyte3SlooqRl4TNIzkn6QtFvSl5IGSxpLeqN8kc9VUCep3sX4CpJWS7rc29uoNK/BTkn7JN0paZWkA5LmZXxvy9hzJLX4PhcUifM6972lUxu17Rr0km6VtMP9K0i6AVgA1Pm6RZKqlLT4m72thzPt7JP0kdLcE+skDfKyUZK+dd+aJdX5+tl+nAqS3irrHzboW1RahzuWfC5Am39OAI6TtFMuIMlC3OVlrUCN2zWkt0iH+Pc5wBuZeq9k2h6esecBL7i9BJiYKSsA97g9F3jH7Y3AQrdnkmSdrwEGkvSbhneK4X5gKzDYvw8rEm8TMMXt6Zlta3ENeuA9YJLbFwODsuW+/iLg0swxOUjSqK8lvTVf72WfA0+6vR14xO1LSHdZDaR5DOTH/WtgfKXPi1gqs/QLiYmgz7PDzA4DSNpFuqh916nOGFK3zhZJkC6UWS2hzzL2aP/VXQ1UkeQKOiDpMqDazDb5qk9IE5600y5X0QLsNdd1kXSIJP6Vleq4D/jYzE4CmFkxXflxwKNufwosLFJnG/Ca0oxbq8zsgMfawXXgbUnjgdMkKeKrvOwXM9vl9o9AraShwEgzW+2+/elxNJCSwU9ev4okSLi5iF9BPycSQdAb+Ctj/0Px81LAejN7oos2/sjYS4BGM9staSouvNdDn0538u90F/6VQrd6Lma2TNJ24EHgG0nPcqZI4CTgCuB2M/tbUivpV37WZ0jHcVA3uxMw38w+OAv/g35KjBEEvZkTwFC3vwfGSRoFIGmIpBu72G4ocETSANKF84z2zOw48Luku71sMrCJnrEemNb+hJOkYUXqbCGJ4dHJp/+QdD1wyMzeBb4CbqPjMYA0A9lvngTuBa7tzjEzOwEcltTo+xjofq4Fns6Ms4yUdGVJ0Qb9jkgEQW/mQ2CNpA1mdpSkGLtcUoHUjXJTF9u9TuoX3wLsz6xfAcxWmuS9DniKNHhcAOpJ4wRnjZmtIXUl7fSurZeLVJsJTJfUQtczSz0O7PE2RpOmJjxG6g7bI2kRsBS4w9uZ0im+rphMUt8tkMYyrjazdcAyYJu3tZKOCSfIEaE+GgRBkHPijiAIgiDnRCIIgiDIOZEIgiAIck4kgiAIgpwTiSAIgiDnRCIIgiDIOZEIgiAIcs6/EhPNGI/f+6gAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Evaluations')\n", - "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_var_forms.ipynb b/community/chemistry/h2_var_forms.ipynb deleted file mode 100644 index f386f756f..000000000 --- a/community/chemistry/h2_var_forms.ipynb +++ /dev/null @@ -1,212 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*H2 energy with various RY and RYRZ variational forms*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule using VQE with different variation form configurations. The results are compared to the same energy as computed by the ExactEigensolver\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here. \n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hartree-Fock energy: -1.1173432691225829\n", - "FCI energy: -1.1372213770723014\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'problem': {'random_seed': 50},\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': 'H .0 .0 -0.3625; H .0 .0 0.3625', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'jordan_wigner',\n", - " 'two_qubit_reduction': False},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "var_forms = ['RYRZ', 'RY']\n", - "entanglements = ['full', 'linear']\n", - "depths = [x for x in range(3, 11)]\n", - "\n", - "energies = np.empty([len(var_forms), len(entanglements), len(depths)])\n", - "hf_energy = None\n", - "energy = None\n", - "eval_counts = np.empty([len(var_forms), len(entanglements), len(depths)])\n", - "\n", - "solver = QiskitChemistry()\n", - "result = solver.run(qiskit_chemistry_dict)\n", - "hf_energy = result['hf_energy']\n", - "energy = result['energy']\n", - "print('Hartree-Fock energy:', hf_energy)\n", - "print('FCI energy:', energy)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With a reference FCI energy computed from ExactEigensolver we now compute the ground state energy with VQE and different variational form setups" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 7 --- complete\n", - "Depths: [3, 4, 5, 6, 7, 8, 9, 10]\n", - "Energies: [[[-1.11734306 -1.13720243 -1.13720372 -1.13722021 -1.13722135\n", - " -1.13722136 -1.13722136 -1.13722136]\n", - " [-1.13722127 -1.13722069 -1.13722133 -1.13711301 -1.13715782\n", - " -1.13717939 -1.13722016 -1.13717511]]\n", - "\n", - " [[-1.13722034 -1.13722128 -1.13722094 -1.13722098 -1.13722135\n", - " -1.13722136 -1.13722137 -1.13722136]\n", - " [-1.1372213 -1.13722138 -1.13722136 -1.13722137 -1.13722137\n", - " -1.13722137 -1.13722137 -1.13722137]]]\n", - "Num evaluations: [[[ 8011. 10000. 10000. 10000. 4405. 3554. 3410. 3097.]\n", - " [ 5603. 10000. 5328. 10000. 10000. 10000. 10000. 10000.]]\n", - "\n", - " [[ 7455. 2840. 4351. 3553. 1145. 1944. 1053. 1052.]\n", - " [ 1956. 380. 1052. 841. 1024. 1016. 675. 702.]]]\n" - ] - } - ], - "source": [ - "qiskit_chemistry_dict['algorithm']['name'] = 'VQE' \n", - "qiskit_chemistry_dict['optimizer'] = {'name': 'COBYLA', 'maxiter': 10000 }\n", - "qiskit_chemistry_dict['variational_form'] = {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'}\n", - "qiskit_chemistry_dict['initial_state'] = {'name': 'ZERO'}\n", - " \n", - "print('Processing step __', end='')\n", - "for i, d in enumerate(depths):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " qiskit_chemistry_dict['variational_form']['depth'] = d\n", - " for j in range(len(entanglements)):\n", - " qiskit_chemistry_dict['variational_form']['entanglement'] = entanglements[j] \n", - " for k in range(len(var_forms)):\n", - " qiskit_chemistry_dict['variational_form']['name'] = var_forms[k] \n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[k][j][i] = result['energy']\n", - " eval_counts[k][j][i] = result['algorithm_retvals']['eval_count']\n", - "print(' --- complete')\n", - "\n", - "print('Depths: ', depths)\n", - "print('Energies:', energies)\n", - "print('Num evaluations:', eval_counts)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4FUXbh+8nnd57Db0TujQFBAGlKSJFFAQBRcTyva8dxYq+NkBQREBAEAURKWIDjfTee0IP0gLS0zPfH7MJh5BykpyWk7mva69kd2dnnt2zu7+deWaeEaUUBoPBYDDYi4+7DTAYDAZDzsIIh8FgMBgyhREOg8FgMGQKIxwGg8FgyBRGOAwGg8GQKYxwGAwGgyFTGOHIxYjIYBFZ4247DCAi10SkivV/HhFZKiKXRWSBte0dEYkUkTPutTTriEhrEQmzzrWXu+3JLCLypIictewv5m573IkRDgsROSYiHVNsS36xikigiEwXkeMiclVEdohI1wzyLCMiX4nIP9bNdkREZopILWeei6MQkaEicsA637MislxEClj7ZorIO5nIK1siZR2fYF1H26VsVvN0BSLSTkQSbeyNEJH5ItLMNp1SKr9S6oi1+iBQCiimlOojIhWB/wPqKKVKu/gUHMlbwCTrXH9ydeHWMx5l/Q5nrHs4v53H+gOfAPdY9l9wrrWejREO+/EDTgJ3AYWA14D5IlI5tcTWF8k6IC/QFigANAb+BjqlcYyfo43OKiJyF/Ae0F8pVQCoDXzvXqtYbz20tss/jizASb/BP0qp/Oh74A7gALBaRO5OI30l4JBSKt5arwhcUEqdy2zBovGU57wSsDe1HS60s7v1W4QAjYCX7TyuFBBEGvZnhIj4ZuU4j0UpZRY9ev4Y0DHFtsHAmnSO2QX0TmPfO8BOwCed4ysDChgKnABWWdt7oG/QS0AoUNvmGAVUs1mfCbxj/d8OiEB/nZ4DTgOP2aQtBiwBrgCbgLfTOj/gP8BPaewbDsQBscA1YKm1/SXgMHAV2Afcb22vDUQDCVb6S9b2QOAj69zPAlOAPGmUmdFvccyyeRdwGS1yQTb7uwE7rGu6DmiQ4tgXrWNj0B8JjYHt1rkssPJLus570C+gpOP9gUigUSp2tQMiUtk+CdiS8ncF3rSua5x1rUYAUUCitT7TSn+HdR6XrPusnU1eocC7wFrr2Groj53p1j1xCn1/+tpeW+u3+Bc4CnS1ya8o8DXwj7X/J3uua4rzPWydQ5R1HoFp2FkWfY9eBMKBYTZ5jLV+iznW77IbqIF++Z9Df9jdY+8zDvwP+NlmPdX70SrjuvUbXQP+tNLXAv6wbD0IPJTiufwCWG4d2zGt/O18dvMAHwPH0ff3Gptj07wXnPa+dHYBOWVJeVPZPlBppC+FfhnWSmP/BmBsBmVWtm7G2UC+FDdpJ/QL6QXrAQqwjslIOOLRTQL+wL3ADaCItf87YL5VVj30CySt82uLfpjfBFoDgSn2J5drs60P+sH3Afpa51EmrWsJfIp+SRRFf40vBcalYU+av4XN77fJKr8osB94wtrXyHoYWwC+wCArfaDNsTuACtZvEGA9oM9Y1/EB9Ms86Tq/AHxvU3ZPYHcadrUjdeHogH6R5kv5u6JfkHPSygMoB1ywfl8f6165AJSw9oeiX0510SLoDywCvrR++5LWtRphc23jgGHW9XkSLRJi7f8ZLZxFrLzusue6ZvSMpWHnKuBz9Nd9CHAe6GBzXaKBzlb62WiRe9U6dhhw1J5nHCiPFp4J9tyP3HxW/az1fGihesyypRH646GOzfNxGf3s+Fjnk17+7Uj/2Z1sXa9y1rVuhRaidO8Fp70vnZl5Tlqsm+oaWrWTlhuk8rKyftgVwJfp5BeO9eKy1ntYeV4Ffk9xM1axSTcGmG+z7oN+wbez1jMSjqikm9vadg79ReKLfjnUstn3XmrnZ7O/q3VzX7KuzSfc/EpNLjed43cAPa3/B9uWBQhaWKrabGtJGg++dXx8it/ncIrfb6DN+v+AKdb/XwBvp8jvIDdfgMeAITb77rSuudhsW2Nznctav2NBa/0H4IU07G5H6sJRy/oty6X8XclYOF4EvkmR32/AIOv/UOAtm32l0DWpPDbb+gN/2VzbcJt9eS17SgNl0AJXJJVzSPe6pvGMpRQOWzsroGulBWy2jeNmLWss8IfNvu7o+zLpnixg2V04g2f8qpVuZVJaMrgfuV04+gKrU+T/JfCGzfMx2977nfSfXR9rX8NUzinde8FZi8e0qXsIvZRSK5JWRGQw8LhtAqsd9hv0F+iodPK6gH7oAFBKLQEKi8jjwMAUaU/a/F8W/bWbdFyiiJxEf1nYwwV1s20ctPjlB0pw00+TxHHSQSn1C/CLdc7t0c0EB9EPyG2IyKPA8+iHDKvc4mlkXwL9gtoqIslZoAUuLTYopdqks9+2x9EN9LUE3bY+SESettkfYLMfbv8NTinrKUy5Xyn1j4isBXqLyCK0wD6Tjl2pUQ79IrqUyeNAn08fEelus80f+Cs1e630/sBpm2vtkyJN8rVTSt2w0uVHfx1fVEr9m4YdGV3XjEh53S8qpa7abDsONLVZP2vzfxQQqZRKsFlPsjut69pLKbXC8uF9i74/L5H5+7ES0EJEbMvxQ78bUjs3e/JP69ktjq6xHE7DjozuBYdjhCMTiP7Fp6O/4O5VSsWlk3wl0EtE3lRKJWaQte0L6h+gfooyK6C/gEHfTHlt0pdGt41mxHn0F3sFtHMWtNM1Qyz7V4rIn+gmrpQ2IyKVgK+Au9FO7AQR2YF+OG5Lj67WRwF1lVKncC4ngXeVUu+mk8bWvtNAORERG/GowK0P7iz0R4Uf+nwzew73A9uUUtczeRzo8/lGKTUsnTQpRS8GKJ7ixWRvWUVFpLBSKuXL2J7rmhEp7/2iIlLARjwqcvPedxhKqb9FZCba59CLzN+PJ4G/lVKpdnRJKsbm/+zc75HoJrqqaB9GSjsyuhccjqf0tsgpfIF29HZXSkVlkPYTdJvwNyJS1eo1UgDdbpse84H7RORuqwvg/6Ef+nXW/h3AABHxFZEu6F5eGWJ9lf0IjBWRvCJSB90mnSoi0lNE+olIEcv25lZZG6wkZ4EqNofkQz8o563jH+OmyCSlLy8iAZY9iWih+VRESlrHlBORzvacTyb5CnhCRFpY55JPRO5L6lqcCuvRTSajRMRPRHoCzVOk+QntQH8G3daeIVbZ5UTkDbTovJKls9HO4e4i0tm6D4Ksbr/lU0uslDoN/A58LCIFRcTHuiczvHesY38BPrfuBX8RudPandnrmlFZJ9H3+TjrnBqgO47MyUp+djAe6CQiDbNwPy4DaojII9Y18ReRZiJSO7XE2bnfrWNnAJ+ISFnrN28pIoFk8l5wFEY47MT6oh6BfvGfkZv98h9OLb1SKhLdPhmNbh+/in7pF0A7H1NFKXUQ3ZT1GfpLoztaqGKtJM9Y2y4BD6NfYPYyCl31PYNug/06nbT/op2NYeheWHOAD5VSc63904E6InJJRH5SSu1D9/pYjxaJ+ujeMkn8ie4pdkZEIq1tL6J9QRtE5Arab1QzHZtayu3jOJqlkx4ApdQW61wmWecVjm7XTyt9LNohPhR9nQeiXxQxNmmigIVAMFqQ06OsiFxDt69vRl+bdkqp3zOyPQ37TqId8q+ghfok8F/Sf54fRTcj7UNfgx+waUrNgEfQ/rED6Hb3Zy07MnVd7aQ/uqnzH7RD/w3b5mNHopQ6jxb9161Ndt+PVo3oHqCfZesZ4AO0wzotMnu/2/IftDN/M7oX1wfoHptZuReyTVKvCYPBkA4ishHtbP/aZtvrQA2lVEqflcHg1Zgah8GQCiJyl4iUtpqqBgENgF9t9hdF10imustGg8FdGOEwGFKnJtoReQntZ3rQau9HRIahmwR+UUqtcp+JBoN7ME1VBoPBYMgUpsZhMBgMhkzhleM4ihcvripXruxuMwwGgyFHsXXr1kilVImM0nmlcFSuXJktW7a42wyDwWDIUYhIutEkkvCqpioR6S4iUy9fvuxuUwwGg8Fr8SrhUEotVUoNL1SokLtNMRgMBq/Fq4TDYDAYDM7Hq3wcVoTI7tWqVXO3KQZDriUuLo6IiAiio6PdbYohDYKCgihfvjz+/v5ZOt4rx3E0bdpUGee4weAejh49SoECBShWrBg2IcQNHoJSigsXLnD16lWCg4Nv2SciW5VSTdM4NBnTVGUwGBxKdHS0EQ0PRkQoVqxYtmqERjgMBoPDMaLh2WT39zHCYcOqQ+eZtvqIu80wGAwGj8arhCO74zj+2HeWD349wMmLNxxsmcFgcCW+vr6EhIRQr149unfvzqVLl4iOjqZWrVrs3r07Od2HH37IiBEjOHbsGHny5CEkJIQ6derw6KOPEhenJ/h89dVXCQkJSV5q1KiBr68v165dy5aNq1evpm7duoSEhBAVlfa8cO3atUse0Fy5cmUiIyPTTOsqvEo4sjuOY2T7qogIk/8Kd7BlBoPBleTJk4cdO3awZ88eihYtyuTJkwkKCmL8+PGMHDkSpRSnTp1iypQpvP/++wBUrVqVHTt2sHv3biIiIpg/fz4A7777Ljt27EhemjVrxssvv0z+/PnTLH/s2LHMnDkzXRvnzp3Lyy+/zI4dO8iTJ4/Dzt0VeJVwZJcyhfIwoHlFFmyN4PiFrEwFbTAYPI2WLVty6pSe5rtLly6UKVOG2bNn89xzzzF27FiKFClyS3pfX1+aN2+efIwtc+bMITw8nLFjx2bLpmnTpjF//nzGjBnDww8/TGhoKN26dUveP2rUqAyFx5141TgORzCyXVXmbTrBxJXhfPxQQ3ebYzDkaN5cupd9/1xxaJ51yhbkje517UqbkJDAypUrGTp0aPK28ePH07x5c6pXr84jjzxy2zHR0dFs3LiRCRMm3LL92LFjvPTSS4SGhuLnl71X5+OPP86aNWvo1q0bDz74IKGhodnKz9WYGkcKShYM4pE7KrFoewRHzmevDdNgMLiHqKgoQkJCKF26NGfPnqVTp07J+8qWLUuHDh148sknbznm8OHDhISEUKpUKcqUKUODBg2S9yUkJDBw4EDefvtt0hpgvHv37mQ/yJQpU3j99deT1y9cuOCcE3UTOaLGISK9gPuAgsB0pdTvzizviXZVmbvxBBNXhjG+XyNnFmUweDX21gwcTZKP48aNG3Tu3JnJkyczevTo5P0+Pj74+Nz63Zzk44iMjKR169YsWbKEHj16APDOO+9QpkwZHnvssTTLrF+/Pjt27AC0j6Ny5coMHjzYLnv9/PxITExMXvf0UfdOr3GIyAwROScie1Js7yIiB0UkXEReSi8PpdRPSqlhwBNAX2faC1A8fyCDWlVm8c5/CD931dnFGQwGJ5E3b14mTpzIxx9/THx8vF3HFC9enPfff59x48YBsGHDBmbOnMnUqc6bXr5SpUrs27ePmJgYLl26xMqVK51WliNwRVPVTKCL7QYR8QUmA12BOkB/EakjIvVFZFmKpaTNoa9Zxzmd4XdWIa+/L+NXhLmiOIPB4CQaNWpEgwYNmDdvnt3H9OrVixs3brB69WreeOMNbty4Qfv27W/plnv48GGH2VihQgUeeugh6tWrx0MPPUSjRp7d0uGSWFUiUhlYppSqZ623BMYqpTpb6y8DKKXGpXG8AO8DfyilVmRUnqNiVX3020Em/RXOr8+2pVbpgtnOz2DIDezfv5/atWu72wxDBqT2O3l6rKpywEmb9QhrW1o8DXQEHhSRJ1JLICLDRWSLiGw5f/68Q4x8vG0wBQL9GP+HqXUYDAZDEjnCOa6UmghMzCDNVBE5DXQPCAho4ohyC+cNYEibYCasDGPPqcvUK2cmiDIYDAZ31ThOARVs1stb2zyOIW2CKRjkZ3wdBoPBYOEu4dgMVBeRYBEJAPoBS7KbqTOmji2Ux5/hd1Zhxf6z7Iq45LB8DQaDIafiiu6484D1QE0RiRCRoUqpeGAU8BuwH5ivlNrrgLKyFeQwLQa3DqZwXn8+/eOQQ/M1GAyGnIjThUMp1V8pVUYp5a+UKq+Umm5tX66UqqGUqqqUetdBZTm8xgGQP9CPEXdW5a+D59l24l+H5m0wGAw5Da8KOeKsGgfAoy0rUSxfgKl1GAw5gJwQVt02XPq9997LpUs5pyncq4TDWTUOgHyBfjxxV1VWh0Wy6ehFh+dvMBgcR04Iq27L8uXLKVy4cLbOOT3sHTVvL14lHM6scQAMvKMSxfMHmlqHwZCD8MSw6ilJmqDp2LFj1K5dm2HDhlG3bl3uueee5EmeDh8+TJcuXWjSpAlt27blwIEDACxdupQWLVrQqFEjOnbsyNmzZwEtXo888gitW7dONQpwdsgR4zjsRSm1FFjatGnTYc7IP0+ALyPbVeWtZftYdziSVlWLO6MYg8F7+OUlOLM743SZoXR96Pq+XUk9Nax6eoSFhTFv3jy++uorHnroIRYuXMjAgQMZPnw4U6ZMoXr16mzcuJGRI0fy559/0qZNGzZs2ICIMG3aNP73v//x8ccfA7Bv3z7WrFnj8ImivEo4XMGAFhX5ctVhxv8RRssqxbI96bvBYHA8SWHVT506Re3atVMNq247cRLcDKt+9OhR7rvvviyFVU8SojNnzhAQEMD48eMBWLlyJcWKFbPL9uDgYEJCQgBo0qQJx44d49q1a6xbt44+ffokp4uJiQEgIiKCvn37cvr0aWJjYwkODk5O06NHD6fMLuhVwiEi3YHuaf2wjiDI35dR7asxZvFe1oZfoE11U+swGNLEzpqBo8lpYdVtCQwMTP7f19eXqKgoEhMTKVy4cHL+tjz99NM8//zz9OjRg9DQ0Fua0fLly5fp8u3Bq3wcznSO2/JQswqULRTEx38cxBVBIg0GQ9bIKWHVM6JgwYIEBwezYMECAJRS7Ny5E4DLly9TrpwO9Tdr1iyX2ONVwuEqAv18GdWhOttPXCL0kGMCKhoMBueQE8Kq28PcuXOZPn06DRs2pG7duixevBjQtZs+ffrQpEkTihd3TQuIS8KquwqbpqphYWHOjS0VG59Ih49DKZovgMVPtTa+DoPBwoRVzxnkxLDqTsFVTVUAAX4+jO5QnV0Rl1m5/5zTyzMYDAZPwauEw9Xc37gclYrl5ZM/Dhlfh8FgyDUY4cgG/r4+PHN3dfadvsJve8+62xyDwWBwCUY4skmPhmWpUiIfn/5xiMREU+swGAzej1cJh7NDjqSGn1XrOHj2Ksv3nHZZuQaDweAuvEo4XOkct6Vbg7JUL5mf8SvCSDC1DoPB4OV4lXC4C18f4dmONQg/d41lu/5xtzkGQ64ns2HVs8P58+eTgwyuXr06zXRjx47lo48+AmDw4MH88MMP2SrXnRjhcBBd65WmVukCTFgRRnxCorvNMRhyNVkJq54aoaGhGYYNWblyJfXr12f79u20bdvWwWfimRjhcBA+PsJznWpwJPI6i3eYWofB4ClkNqx6ZtixYwcvvPACixcvJiQkhKioqFvm6fjhhx+yFK/K0/GqIIfu5p46pahbtiAT/wyjR0hZ/H2NLhtyNx9s+oADFw84NM9aRWvxYvMX7UqblbDqmSEkJIS33nqLLVu2MGnSpGzllZPweOEQkdrAM0BxYKVS6gs3m5QmIsLznWowdNYWftwWQd9mFd1tksGQK8lKWHVbWrRoQUxMDNeuXePixYvJYc4/+OADOnfu7HT7PR2nCoeIzAC6AeeUUvVstncBJgC+wDSlVJqNjEqp/cATIuIDzAY8VjgAOtQqScPyhZi4Mpz7G5UnwM/UOgy5F3trBo4mK2HVbdm4cSOgfRwzZ87M1DSwtnHroqOjM298DsDZb7WZQBfbDSLiC0wGugJ1gP4iUkdE6ovIshRLSeuYHsDPwHIn25ttRLSv49SlKBZsPelucwyGXE1Wwqpnl1KlSrF//34SExNZtGiRS8p0NU4VDqXUKuBiis3NgXCl1BGlVCzwHdBTKbVbKdUtxXLOymeJUqor8HBaZYnIcBHZIiJbzp93b6jzu2qUoHHFwkz6M5yY+AS32mIw5HayElY9O7z//vt069aNVq1aUaZMGZeU6WqcHlZdRCoDy5KaqkTkQaCLUupxa/0RoIVSalQax7cDHgACgV1KqcnplOWysOoZsSYskoHTN/JWz7o82rKyW20xGFyJCaueM/DqsOpKqVCl1Gil1Ij0RMNK65aR46nRuloxmgcXZfJf4UTHmVqHwWDwHtwhHKeACjbr5a1t2cYdsarSsYXnO9Xg7JUY5m484W5zDAaDwWG4Qzg2A9VFJFhEAoB+wBI32OF07qhSjFZVi/FFaDg3Yl3jmDMYDAZn41ThEJF5wHqgpohEiMhQpVQ8MAr4DdgPzFdK7XVEeZ7UVJXEc51qEHktljkbjrvbFIPBYHAITh3HoZTqn8b25Tiha62Nc9zRWWeZZpWL0rZ6cab8fYSHW1QiX6DHj7k0GAyGdPF453hm8MQaB8DznWpw8Xoss9Yfc7cpBoPBkG28Sjg8lUYVi9ChVkmmrjrC1eg4d5tjMHg9rgyrbhsu/fXXX2fFihXZyi8n4FXC4Um9qlLyXMcaXLoRx9drj7nbFIPB63FlWHVb3nrrLTp27OiAM0gdV41+zwivEg5PbaoCqF++EJ3qlOKr1Ue4HGVqHQaDq3BmWPWU2E7QVLlyZd544w0aN25M/fr1OXBARwm+fv06Q4YMoXnz5jRq1IjFixcDcOzYMdq2bUvjxo1p3Lgx69atA7R4tW3blh49elCnTh2H2ZodvMpT64nOcVue7Vid+yaeZfqaozzfqYa7zTEYnM6Z994jZr9jw6oH1q5F6VdesSuts8OqZ0Tx4sXZtm0bn3/+OR999BHTpk3j3XffpUOHDsyYMYNLly7RvHlzOnbsSMmSJfnjjz8ICgoiLCyM/v37s2XLFgC2bdvGnj17CA4Odqq99uJVwqGUWgosbdq06TB325IadcsWomu90sxYc5QhrStTOG+Au00yGLwSTwmr/sADDwDQpEkTfvzxRwB+//13lixZkuwXiY6O5sSJE5QtW5ZRo0axY8cOfH19OXToUHI+zZs39xjRAC8TjpzAsx1r8OveM3y1+gj/7VzL3eYYDE7F3pqBo3FnWHVbAgMDAe2sT/JPKKVYuHAhNWvWvCXt2LFjKVWqFDt37iQxMZGgoKDkffny5ctS+c7Cq3wcOYGapQtwX/0yfL32GBevx7rbHIPBq3FHWPWM6Ny5M5999hlJAWa3b98OwOXLlylTpgw+Pj588803JCR4bow7rxIOT+5VZcuzHWsQHZfAl6sOu9sUg8HrcXVY9YwYM2YMcXFxNGjQgLp16zJmzBgARo4cyaxZs2jYsCEHDhzwuFqGLU4Pq+4OmjZtqpKcSp7Kc9/v4Nc9Z1j1QntKFAh0tzkGg8MwYdVzBl4dVt1bGX13dWITEpnyt6l1GAyGnIURDjcRXDwf9zcqx5wNxzl7xTvnJTYYDN5JhsIhmoEi8rq1XlFEmjvfNO9ndIfqxCcqvgg1tQ6Dd+GNTeDeRHZ/H3tqHJ8DLYGkSLdXgXRn4nMXOcU5nkTFYnnp06Q83248wenLUe42x2BwCEFBQVy4cMGIh4eilOLChQu3dPfNLBk6x0Vkm1KqsYhsV0o1srbtVEo1zHKpTiYnOMeTiPj3Bu0/CqVvswq806u+u80xGLJNXFwcERERREebJlhPJSgoiPLly+Pv73/Ldnud4/YMAIwTEV9AWRmXABKzYqzhdsoXyUvfZhX4fvNJnrirKuWL5HW3SQZDtvD39/eoUc4Gx2NPU9VEYBFQUkTeBdYA7znVqlzGU+2rIQiT/gx3tykGg8GQIRkKh1JqLvACMA44DfRSSi1wtmG5iTKF8jCgRUUWbI3g+IXr7jbHYDAY0sWeXlV3AKeUUpOVUpOAUyLSwvmm3WJDPhHZIiJpRyXL4TzZrip+PsJnptZhMBg8HHuaqr4ArtmsX7O2ZYiIzBCRcyKyJ8X2LiJyUETCReQlO7J6EZhvT5k5lVIFgxh4RyV+3BbB0UhT63AriYmwawEc/BUiwyHBzJ9iMNhij3NclE3XK6VUoojYG1V3JjAJmJ2cmXa0TwY6ARHAZhFZAviim8NsGQI0BPYBWe87lkN44q6qfLvxBBNXhvFp3xB3m5N72bcIfnz85rqPHxQJhmLVoHg1KFbd+r865CsBIu6z1WBwA/YIwBERGc3NWsZI4Ig9mSulVolI5RSbmwPhSqkjACLyHdBTKTUOuK0pSkTaAfmAOkCUiCxXSt3Wq0tEhgPDASpWrGiPeR5HiQKBPNqqEl+tOsJT7atSrWQBd5uU+1AK1k7QwtDrC7gQDpFh+u+FcDj8JyTE3EwfWAiKVdUiUqzaTUEpWhUCTA85g3dij3A8ge5Z9Rq6S+5KrBd0FikHnLRZjwDS9JkopV4FEJHBQGRqomGlmwpMBT2OIxv2uZURd1ZlzvrjjF8RxqQBjd1tTu7jSCic3gndJ0KF5nqxJTEBLkfAhTC4cNgSlTA4vg52fX9r2oLlbUSl+s0aS6EK4OPrslMyGBxNhsKhlDoH9HOBLRnZMTOjNJ4+daw9FM0XwODWlfk89DCjzlyhVumC7jYpd7F2AuQvBQ3TuOV9fKFIJb1U63jrvtgbcPGwVUuxaigXwrS/JMYmmoFvIBStcnuzV7FqkLeo887NYHAQGQqHNeBvGFDZNr1SakgWyzwFVLBZL29tM1gMa1uFWeuOM2FFGF8MbOJuc3IPp3fCkb+g41jwy0Ko+4C8ULq+XmxRCq5HahGxbfY6f1A74BNtnO95it7e7FWsmhaarNhkMDgBe5qqFgOrgRWAI6ak2gxUF5FgtGD0AwY4IF+Pn3PcXgrnDWBIm2Amrgxj7z+XqVu2kLtNyh2snQgBBaDJY47NVwTyl9BLpVa37kuIh0vHb/elhK+EHXNt8vDRTVzJzV42TWAFyxoHvcGl2CMceZVSL2YlcxGZB7QDiotIBPCGUmq6iIwCfkP3pJqhlNqblfxTKS/HN1UlMbRNMF+vPcr4FWF89WiGoWMM2eXfY7D3R2g5CvIUdl25vn5aBIpVhRqdb90Xc/X2Zq8L4XC6dn+lAAAgAElEQVR8PcTZdNn2z6t7fRUqb7NUuPl/gTK6HIPBQdgT5PAdYJ1SarlrTMo+OSnIYXpMXBnGJ38cYumoNtQvb2odTmX5f2HL1/DsLv0F78koBVdP31pL+fc4XD6pHfdRF29NLz5QoGwKYUkhLkGFTK3FYHeQQ3uE4yq6O2ystQiglFIe57W1qXEMCwsLc7c52eZqdBxt//cXjSoU5uvHzBQoTuP6Bfi0LtTrDb08csaAzBF7HS6fuikkyYu1fuUUJMTeekxAgfSFpWBZ8PVPvTyD1+Cw6LhKqRwzmMBbfBxJFAjyZ/idVfjfrwfZduJfGlcs4m6TvJNNUyE+ClqPdrcljiEgH5SooZfUSEyE6+dvFRPb///ZDjciUxwkuskrLWEpVB7yFDG1Fndz/QLkK+b0YuypcQjwMBCslHpbRCoAZZRSm5xuXSbxthoHwPWYeNr+7y/qli3IN0NdGiIsdxB7HT6tBxXvgP7z3G2N5xB7A678k3at5XLErQMhAfzzpS8sBcuBX4B7zic3cGA5LHwcBnwHwXdmKQtHzsfxOXr+jQ7A2+hYVZOBZlmyzIl4W40DIF+gH0/cVYX3lh9g87GLNKts+vk7lO1ztU+g9TPutsSzCMirx5kUT6OjSVIX47SE5cxuuH4uxUGix8gUqwpd3ocyDZx+GrmGsBWwYBCUqgdlnD/Hnj3C0SJpBkAApdS/ImI+G1zII3dUZuqqo3z6xyG+HXaHu83xHhLiYf1nUKGFrnEY7Me2i3G5NCIcxEVrf0pKYQlfAbN7wKNLjHg4giOh8N0AKFETHvlRd3RwMl41A6A3dce1JU+AL0+2q8rby/ax/vAFWlZ1fhtmrmDfT3DpBHT5wN2WeCf+QTe7Gtty8SjM7GbEwxEcWwvf9tPX+JHF2s/kArxqBkCl1FKl1PBChbyv6+rDLSpSqmAgn/5xiIz8UgY7UArWjofiNaBGF3dbk7soGgyDl2mfyOweulnLkHlOboJvH4LCFeDRxS5xiidhZgDMIQT5+/JU+2psOnaRteEX3G1Ozufwn/qF1Wo0+Njz/WRwKLbiMau7EY/McmobzOkN+UvqWlv+ki4tPt0nRkR8ReSAUupA0gyASqn9rjIus4hIdxGZevny5YwT50D6NqtAmUJBfPLHQVPryC5rJ+jupQ0ecrcluZeiwTB4qRGPzHJ6F3xzv45wMGgpFCzjchPSFQ6lVAJwUERyxAQX3txUBRDo58uoDtXYduISfx86725zci7/bIejf8MdT5rAge6maBVLPPLCLNNslSFn98E3vfRYnUFLdTdnN2BPHb0IsFdEVorIkqTF2YYZUqdPkwqUK5zH+Dqyw9oJEFgQmgx2tyUGsMRjGfjnMeKRHpFhMLsn+Phr0ShS2W2m2CMcY9Az870FfGyzGNxAgJ8Po++uxs6Iy/x5IGU/eUOGXDwC+xZD0yEu6bZosJPbxGOPuy3yLC4e0c15KBi05Paeai7GHuf438AxwN/6fzOwzcl2GdLhgcblqVg0L5+YWkfmWT9ZzyHe4gl3W2JISdEq+kvaP4/l8zDiAegu47N6QHyM7j1Voqa7LbIr5Mgw9FSxRZVSVUWkOjBFKXW3KwzMDN4YciQtFm6N4P8W7CTA1wc/X8HPRwjw88HPR6/7+/rg5yP4+frgb+338/WxSW9t9/XB30f0Nut/f18fm+OS8ktxTBr7k8pOKt/fKs/fx4eSBQMJ8nfjlKnXzsP4elC/D/Sc5D47DOlz4bAWjrgoLSSl67nbIvdx+RR83RWiL+neU2VDnFqcI6Pj7gCaAxuVUo2sbbuVUvXTPdCNeEtY9fRISFTM23SCk//eID5BEZ+QSFyi/hufoJL/j0tQxCfqbbEJiXp/otLbk//X++MTE5O3xyUo4hITcWSFpnj+QD7r38h9Axj/fBdWfQijNutJkAyey4XDepBgQox+YeZG8bh6Br6+F66d0zWN8s6fDdSRsapilFKxYkW9FBE/rFHkBvfh6yMMvKOS08tJSBKWVIQozkZ4bAUntf0x8YlM+fswD0/bwH8712LEnVXw8XFhJNWYazoKbq37jGjkBIpV1T6PpBHmg5ZCqbrutsp1XI/UjvCrZ3QYEReIRmawRzj+FpFXgDwi0gkYCSx1rlkGT8HXR/D1cUzz0r31y/Diwl188OsBth6/yMd9QiiU10VzPGyfo6v7JphhzsFWPGZ1zz3iceOiFo1/j8PDCzwyjpo9vapeAs4Du4ERwHLgNWcaZfBO8gf6Mal/I8Z2r8Pfh87TbdJq9pxywWDNhDhYPwkqtoIKZkKsHEWSePgGavE465BZpj2XqEt6nEZkGPT/FoLbutuiVElTOERkpfXvOKXUV0qpPkqpB63/XdZUJSLtRGS1iEwRkXauKtfgHESEwa2D+X5ES+ITFA98sY5vN55wbu+wvYt0VFZT28iZ3CYe+9xtkXOIuarDiJzdB32/gaod3G1RmqRX4ygjIq2AHiLSSEQa2y72ZC4iM0TknIjsSbG9i4gcFJFwEXkpg2wUeg6QICDCnnINnk/jikX4eXRbWgQX5ZVFu/m/BTuJik1wfEFK6QF/JWpB9Xscn7/BNSSLRwDM6uZ94hF7Heb20VEN+nwNNTq726J0SbNXlYg8CAwF2gApuygppVSGcigid6Jf+rOVUvWsbb7AIaATWgg2A/0BX3QgRVuGAJFKqUQRKQV8opR6OKNyc0OvKm8hIVExcWUYE/8Mo0bJAnwxsDFVSuR3XAFhK2Bub+j1BYQMcFy+Bvdw4TDMvE/PmT5oGZSq426Lsk9clI5ye2wN9J4O9R5wmyn29qpKr8ZxWinVFfhQKdU+xWJXHUoptQq4mGJzcyBcKXVEKRULfAf0VErtVkp1S7GcU0olzf3xL2ACC3kZvj7Cc51qMPOx5py7Gk2PSWtZvvu04wpYOx4KlIV6DzouT4P7KFYVBv9s1Ty8oNkqLhq+exiOroZeU9wqGpkhPeGYaP3t5eAyywEnbdYjrG2pIiIPiMiXwDdAmqO2RGS4iGwRkS3nz5sAgDmNu2qU4OfRbalWMj8j527jraX7iEvI5nxhp7bCsdXQcqSZ69qbKFZV1zZ8/XO2eMTHwoLBcHgl9JgIDfu62yK7Sa87bpyITAXKicjElDuVUqOdZ9Yt5fwI/GhHuqkichroHhAQ4Fmdng12UbZwHuaPaMl7y/czY+1RdkZcYtKARpQplCdrGa6dAIGFoPEgxxpqcD/Fq2nxmHmfFo/By6BkbXdbZT8J8bBwKBz6Be79CBo/6m6LMkV6NY5uwJ9ANLA1lSWrnAIq2KyXt7YZDAT4+TC2R10+69+IA6evcN/ENawJi8x8RhcOw74l0GwoBBV0vKEG91O8mm628vHTYz3OeexUQbeSmACLhsP+JdB5HDQf5m6LMo09IUcaKqV2ZrkAkcrAMhvnuB/aOX43WjA2AwOUUg7roG2c495B+LlrjJy7lbBz13iuYw1Gta9m/2jzZc/pQX/P7oECpZxrqMG9RIbrmodK0IMEPbnmkZgIi5+Cnd9Cx7HQ5jl3W3QL2XaOi8gL1r+Pi8jElIudRswD1gM1RSRCRIYqpeKBUcBvwH5gvqNEw9tnAMxtVCuZn5+eak3PhmX55I9DDJm1mX+vx2Z84LVzsH0uNOxvRCM3kFTzEF/dbOWpNQ+lYNmzWjTaveJxopEZ0uuO210ptVREUm0gVkrNcqpl2cDUOLwLpRRzN57graX7KFEgkMkPNyakQuG0D1j5Nqz+GEZt0S8VQ+4gMkw3WakE7f8oWcvdFt1EKfjlBR0vre3/QYcxIC6M1WYnDouOm5PITWHVcyO7Ii7x5JxtnLsazevd6jDwjkpIyocv5hp8WgeC74S+c9xjqMF9eKJ4KAW/v6bD3rQcBfe845GiAQ4QDhFZSjpRcJVSPbJunnMxNQ7v5dKNWJ77fgd/HTxPj4ZlGfdAffIF2nQOXD8ZfnsFHl8J5TO8/w3eSGSY5fNIdL94KAV/WjXg5sOh6/88VjTAMQMAP0JPEXsUiAK+spZrwGFHGOlojI/D+ymcN4Dpg5rx3841WbbrH3pOXkv4uat6Z0KcFo5KbYxo5GaKV7d8Hj6Wz+OA+2xZ9aEWjcaDoMsHHi0amcGeXlVbUipQats8CVPjyB2sDY9k9LztRMUlMO6B+vSU1bBoBAxYADVMXKpcT3LNQ1m9rVxc81gzHla8AQ0HQM/J4GNPMHL34ogaRxL5RKSKTcbBQL7sGGcwOILW1Yrz8+i21ClTkGe+287ZXz4gsURtqN7J3aYZPIHi1XVTlYiueZw/6Lqy13+uRaNebz1NcQ4Qjcxgz9k8B4SKSKiI/A38BXhkfGrTVJX7KF0oiHnD72BcvTOUij7ChOh7ibgU5W6zDJ5CiRo3xWNmN9eIx+Zp8NvLULs73P8lOGgiNE/Crl5VIhIIJNXzDiilYpxqVTYxTVW5kK/vI+rcYVrd+Bjl68/4viG0q1nS3VYZPIXzh3SzFejwJCVqOqecbbNhydNQoys8NDvHxUhzZFMVSqkYpdROa/Fo0TDkQiK2wPE15LnzaX58uh2lCwbx2MzNfPL7QRISvae7uSEblKihHeZg1TwOOb6Mnd/DktFQ9W54aFaOE43M4FUNb6apKpeydjwEFYbGgwguno9FI1vTu3F5Jv4ZzqAZm7hwzXzrGEghHvc5Vjz2/Ag/PQGV20C/ueDn3TNAeJVwKKWWKqWGFypUyN2mGFxFZDjsXwbNHodAPQFUngBfPurTkA9612fTsYvcN3ENW4+nnBbGkCspUUM3VYGeSdAR4rF/GSx8HCq0gAHfg38WoznnIDIUDhH5UUTuExGvEhmDl7D+Mz2pT4sRt+3q26wiPz7ZigA/H/p+uYHpa446d25zQ86gRE0tHkplXzwO/abn1CjbCAbMh4Dc0eHUHjH4HBgAhInI+yLiJK+SwZBJrp6FHfOg0cOQP3VHeL1yhVj6dBva1yrJ28v28dS327gaHediQw0eR4maemxHdsTj8J/w/SNQqi4MXJirwvdnKBxKqRXWPN+NgWPAChFZJyKPiYi/sw00GNJk4xQ993TLUekmK5THn6mPNOHlrrX4be9Zek5ay4EzV1xkpMFjKVnLEo9ELR6RmYhvd2wNzBugx4o8sgjypBN00wuxq/lJRIoBg4HHge3ABLSQ/OE0y7KAcY7nImKuwubpUKeHnko0A0SEEXdV5dvHW3A1Jp5ek9eycGuECww1eDQla+lxHipRO8ztEY8TG2DuQ1CkEjzyE+Qt6nw7PQx7fByLgNVAXqC7UqqHUup7pdTTQH5nG5gZjHM8F7F1JsRchtaZG4vaokoxfh7dhpAKhfm/BTt5+cfdRMclOMdGQ87gFvHIoOYRsRXmPAgFSsOjiyF/CdfZ6UHYU+OYqJSqo5Qap5Q6bbvDk+NVGbyY+Fgd0qFyWyiX+enlSxYIYs7QFjzZrirzNp3gwSnrOHnxhhMMNeQYksUjIW3xOL0T5twP+YrpJq4CpV1vp4dgj3AUEZEHUix3i4gZlmtwD3t+gKv/QOtns5yFn68PL3apxbRHm3Liwg3um7iaFfvOOtBIQ44j2eeRinic3Quze0FgQZ2mUDn32ekB2CMcQ4FpwMPW8hXwIrBWRB5xom0Gw+0kJsLaCVCqHlS7O9vZdaxTimVPt6Visbw8PnsLH/x6gPiERAcYasiRlKythSEx3hKPcN3janZPPahv0BIoXNHdVrode4TDH6itlOqtlOoN1EFP8NQCLSAGg+sI+x3OH9C+DQfNbVCxWF5+eKIV/ZtX4IvQwwycvpFzV6MdkrchB1Kyth7nkRivHeazugOiBaVolQwPzw3YIxzllVK2dfhzQAWl1EXA6R3iRcRHRN4Vkc/Smv/ckItYOwEKVYC69zs02yB/X8Y90ICP+jRkx8lL3DdxDftPmy67uRZb8UiM0zWN4tXdbZXHYI9whIrIMhEZZL24F1vb8gGX0jtQRGaIyDkR2ZNiexcROSgi4SLyUgbl9wTKo0XKqf0nD186zI5zO5xZhCE7nNwEJ9ZBy6fA1zlDiB5sUp6fnmqNn48waMYm4zTPzZSsDSPXw5Pr9P+GZOwRjqeAr4EQa5kNPKWUuq6Uap/BsTOBLrYbRMQXmAx0RTd79ReROiJS3xIo26UkUBNYp5R6HngyMyeXWT7b/hmP/vIoH23+iOh401ThcaydAHmKQONHnVpMrdIFmTWkOdFxCSZIYm4nf8lc3XsqLdIVDusl/6dSaqFS6jlr+UHZGfBHKbUKSBldrjkQrpQ6opSKBb4DeiqldiuluqVYzqFrGf9ax6bZ4V5EhovIFhHZcv78eXvMu413Wr9Dnxp9mLVvFn2W9mH7ue1ZysfgBM4fggM/Q7NhLokHVKNUAWYMbsapS1EMmbWF6zHxTi/TYMgppCscSqkEIFFEHDmirhxw0mY9wtqWFj8CnUXkM2BVWomUUlOBN4FtAQFZi4OfPyA/Y1qOYdo904hLjGPQL4P4YNMHRMWbGeXczrqJuldL8+EuK7Jp5aJMGtCY3RGXeHLuNuJMbyuDAbCvqeoasFtEpovIxKTF2YYloZS6oZQaqpR6Wik1OYO0Dhk53qJMC37s8SN9a/Zlzv459F7Smy1nzIyCbuPKadj1PTQa6PKRup3qlGLcA/VZdeg8L/ywi0QzMZTBYJdw/AiMQX/tb7VZssopoILNenlrW7ZxZKyqvP55efWOV5nReQZKKR777THGbRzHjTgPcpZejtDjGrydjVN075aWT7ml+L7NKvKfe2qwaPsp3v/1gFtsMBg8Cb+MEiilZolIHqCiUsoRM71vBqqLSDBaMPqhw7Z7JM1KN2Nhj4VM3D6Rufvn8nfE37zV6i2al2nuPqPO7oUVb0LYb1CtE/T6wntj5kRfhi0zoE5Pt/ahf6p9Nc5fjWHqqiOUyB/IsDtNf35D7sWeIIfdgR3Ar9Z6iIgssSdzEZkHrAdqikiEiAxVSsUDo4DfgP3AfKXU3qyegC3OCnKY1z8vLzV/iZldZuIrvgz9fSjvbHjH9bWPf4/DjyPgi9Y6QmfjQXB0FUxpDUdCXWuLq9g6E2KuZDqYoaMREV7vXpf76pfh3eX7WbTdRNY15F4kow5SIrIV6ACEKqUaWdv2KKXqucC+TGGJXPdq1aoNCwvLRGz9TBAVH8Vn2z9jzr45lMlXhjdbv8kdZe5wSlnJXI+EVR/B5mng46sdxG2e0+Gcz+yBH4ZA5CFo+zy0ewV8M6xI5gziY2BCQyheQw/A8gBi4hN47OvNbDp6kemDm3FXDS+t6RlyJSKy1Z7gtfb4OOKUUimdBh7ZsO6KsOp5/PLwQrMXmN11NgG+AQz7fRhvrX+La7HXHF9YzFUIfV+/PDd9CQ37wdPb4J63b84BULoeDP9LO45Xfwwz74VLJxxvizvYvQCunnZ7bcOWQD9fvnykCTVKFeDJOVvZeTLdMbAGg1dij3DsFZEBgK+IVLe6xa5zsl1ZwpUTOYWUDGFB9wUMrjuYhWELuX/J/aw75aDLEh8LG7+ECSEQOg6qtIORG6DnpNSjcgbk0/t6T4ez+2BKG9i32DG2uIukYIal60PVDu625hYKBPkzc0gziuUP4LGZmzly3gkfDQaDB2NPU1Ve4FXgHkDQvom3lVIeO7S6adOmassW13Wf3Xl+J2PWjuHo5aM8UP0B/tP0PxQIKJD5jBITdcjwP9+BS8f1fBMdx0L5TEx7cvEoLBwKp7ZC0yHQ+T3wz5N5WxzIldgrLD28lLB/w/D38SfAN0AvPgH4+/oT4BOQvC15/+ndBKz6kIC2/8W/Wsfk9Lels7aLgwIeZoZjkdfp/cU68gT48uOTrShZMMjlNhgMjsTepqoMhSMn4mrhAIhJiOHzHZ8zc+9MSuQpwRst36Bt+bb2HawUhK/QPaXO7oZS9bVgVLs7axFg42Phz7f1oLmSdeDBGW6JtXPw4kHmHZjH8qPLiYqPomhQURJUArEJscQlxBGvHDca28/H76awJAmSjdhkJFgpt+UPyE/Xyl3JH5D+JJe7Iy7Tb+p6KhTNy/wnWlIwyDkxtAwGV+Aw4RCRGsB/gMrYdN9VSnlW+wGucY5nxO7zuxmzdgyHLx+mZ9We/LfZfykUmI7P5eRmWDEWjq+BwpWgwxio1xt87JoOPn3CV8CiJyDmGnT9QMd4cvKXeVxCHL8f/53vD37P9nPbCfIN4t4q99K3Zl/qFKtzS9pElUhsQiyxibHJYhKbGEtsxBZifxpBXMunia3VNXl/bKKVxvaYRGs9nW3J+Sak2J+y3IRYFDefh+BCwUxoP4HgQsHpnvPqsPMMmbmZxhWLMGtIc4L8fZ1ybQ0GZ+NI4dgJTEEP+kuOFaWUys4gQKfijhqHLbEJsUzZOYUZe2ZQLKgYr7d8nbsq3HVrovMHYeVbcGAZ5CsBd74ATQaDX9bCpaTJ1bOwaLjurlv3fug+AYIc33ngzPUzzD84n4VhC7kYfZGKBSryUM2H6FWtV/rCmRrz+uvuxs/tcUlcqiSUUsSreOIS4thxfgcvrXqJuMQ4xrUdR7sK7dI9dvGOUzzz3Q661ivNpAGN8fVxfdOZwZBdHCkcW5VSmZ/Y2Y24WziS2HthL6+teY3wS+F0r9KdF5u/SKFoq6fUjrngnw9aPa1HRAem3ySSLRITYd0EWPm2dq4/+HXm/CZpoJRiw+kNfHfgO0IjQlFKcVf5u+hXqx8ty7bER7JQazp/ECY3h7tegvYvZ9vG7HD62mme+esZ9l/cz8iGIxnRcES65zR9zVHeXraPgXdU5O2e9dzidzEYsoMjhWMsevKmRUByfGlrIiePxFOEA3TTzZe7vmT67mkUFj/GnD1Lh6hoaPY4tP0/yFfcdcac3AwLh8CVf6DDa9DqmSw1iV2JvcKS8CV8f/B7jl05RpHAIjxQ/QH61OxDufzZnIv5p6dgz0J4bi/kK5a9vBxAdHw0b61/i6VHltKuQjvGtRmXrt9j3C/7+fLvIzzfqQaj7zYT/xhyFo4UjqOpbFZKKY+LueAJPo7biL0BG79g/4bPGFMokIOBAdxb7i5ebvMOhYMKu96eqEuw9BnY9xNUaQ8PTNVzDtjBwYsH+e7gd/x85Gei4qNoUKIB/Wr2457K9xDoG5h92678A+MbQNPH4N4Ps5+fg1BK8e2Bb/lw84dUKFCBCR0mUKVQ6re/Uor/LNjFwm0RvHd/fQa0MPNTG3IOpleVu2scCXGw/RsI/QCunYEaXYhr/wrTzq1j6s6pFAwsyJg7xtCxUkfX26aUDuXx60sQWBDun6J7cKVCXEIcfxz/g+8Ofsf2c9sJ9A3k3uB76Ver323O7mzz+xhYPwlGb4cilR2btwPYfGYz//n7P8QkxDCuzTjaV0x9HrO4hESGz97C34fO88XAJnSuayYCMuQMsi0cIvKCUup/1v99lFILbPa9p5R6xWHWOhi3CodS+mt+5dtw8TBUaAEd34RKLZOTHLx4kDFrx7D/4n66VO7Cyy1epmhQUdfbem4/LHgMzu/Xo7M7jEmektWhzm57iLoEn9aDGvfo7sMeyulrp3k29Fn2XdjHkw2f5ImGT6Tq97gRG8+Arzay7/QV5gxtQfNgN/y+BkMmcYRwbFNKNU75f2rrnobbhOPwX7pr7ekdUKI2dHwDanRJtQtsXGIcM3bPYMquKRQMKMgrLV6hc+XOrrc5Lgp+ewW2zECVa8KGu0bzXcRfjnN228uaT/W1G7EKyjR0XjkOIDo+mrc3vM2Sw0toV74d77V9L9UBnxevx/LglHVEXo1h/hMtqVW6oBusNRjsxxHCsd0mqGHy/6mtexouF45/tuuX3pFQKFQB2r8CDfrqgIQZEPZvGK+tfY19F/bRqVInXm3xKsXyuNYpfCX2CkvWvMv3R5ZyzN+XIn55eaBWf8c4u+0hPgbG19eDFR/9yfnlOQClFPMOzOPDzR9SvkB5JrSfQJXCt/s9Iv69Qe8vdCiahU+2onyRvK421WCwG0cEOVRp/J/aukfgylhVAFw4DAsGw9R2cHqXDu8xaguEDLBLNACqF6nO3Hvn8kzjZwg9GUqvxb345egvuML3dPDiQd5c/yYdF3Tkg5PLKViyDu/FF+KP8AM8e+ow5QKKON0GAHZ+B9fOelQww4wQEQbUHsBX93zFldgrDFg+gJUnVt6WrnyRvMwa0pwbsQk8OmMTF6/HusFag8GxpFfjSACuo+NT5QGSJp8QIEgp5bGxFZxe47h6Bv7+ALbNBt8APQ6j1dPZHlh3+NJhxqwdw+7I3dxd8W5eu+M1iudxbHfdtJzdfWv1pW6xutqp/9d7uumoRE3tbyhV16E23EJiIkxupgf6Df/b6SPbncGZ62d47q/n2HNhDyMajGBkyMjbmvU2Hb3IwOkbqVOmIN8Oa0HeAC8JfW/wKkyvKmcIR/RlHbF1wxeQEKtHet/5AhQo5bAi4hPjmb1vNpO3TyaPfx5eav4S9wXfl+3BZCmd3RUKVKBvzb5pO7sP/wWLRuhz7vyeDpjojJf6/mXw/cNaoOr1dnz+LiImIYa317/N4sOLubP8nYxrO46CAbf6NH7be4Yn52zlrholmPpoU/x9negzMhiygBEORwpHXDRs/krPdxH1r37BtX8VilV1XBkpOHL5CGPWjmHX+V20K9+OMS3HUDKvfeMtkkga2f39we/56+Rfyc7uvrX60qpsq4yd3dfOw09P6JhXtXtAj4mQx4HNV0rB9E5w7ZyeZySHT0CllOL7g9/zwaYPKFegHBPaT6Bq4VvvkW83nuCVRbvp3bg8H/VpYEaXGzwKIxyOEI6EeNg5T8+JceUUVL1b95RyUa+fhMQE5uyfw2fbPyPAN4CXmr9E9yrdM3zZOHRkd2IibJisnf8FykDvaVDRQTMeHl8HX3eFez+C5sMck6cHsPXsVp4PfZ7o+Gjea/Med1e6dYzMhNBBQxoAACAASURBVBVhfLriEE/cVZWXutZyk5UGw+14jXCISFvgYXRk3jpKqVYZHZNt4VAKDvysgxBGHoRyTXSY8+A7s55nNjh2+Rivr3ud7ee207ZcW95o+Qal8t3ePHbbyO7iDehXy0Eju09t1VPUXjqpe421ec7uDgBp8m1fiNgMz+6BAO/qbXTm+hmeD32e3ZG7Gd5gOCMbjsTXul5KKcYs3sOcDScY060OQ9ukH33XYHAVHiEcIjID6Aacs52jXES6ABMAX2CaUup9O/LqBZRSSn2ZUdpsCcextfrrOmITFKsGd7+um2nc3KSQkJjAvAPzmLBtAv4+/vy32X/pVa0X8Ynx6Tu7HUn0FVj2nJ5sKvhOuH8qFCyTtbzO7YfP79BzpLd70bF2eggxCTG8u+FdFoUvom25trx/5/vJfo+ERMWob7fxy54zTOgXQs8QF3R7NhgywFOE407gGjA7SThExBc4BHQCIoDNQH+0iIxLkcUQpdQ567j5wFCl1NWMys2ycCx7DrbM0E0y7V6CkIEe1+5+4soJxqwdw7Zz2wgpEcKJqyfsc3Y7CqV0ZN/l/9UzC97/JVTvlPl8Fj2pR9g/t/fm/OleiFKK+Qfn8/6m9ymbvywT2k+gWpFqAETHJTBoxia2nfiXGYOb0bZ6CTdba8jteIRwWIZUBpbZCEdLYKxSqrO1/jKAUiqlaNjmUREYo5RKsyFcRIYDwwEqVqzY5Pjx45k3du9P8O9RaD7Co5tOElUi3x34jmm7p1GnWB361epnn7PbkZw/qJuuzu6BlqPg7jfsn0vk8imY0EBHCO76gXPt9BC2nd3G86HPcyP+Bu+2eZdOlbTYXomO46Ep6zl58QbfDW9J/fJOFH2DIQM8WTgeBLoopR631h8BWiilRqWTx5vAb0qpdfaU6RFBDnMDcdHw+2u6x1nZRtB7un09zX57VXdpHr0dilRyvp0ewtnrZ3k+9Hl2Re5iWP1hPBXyFL4+vpy9Ek3vL9YRFZvAD0+2Iri46yavMhhsccTIcY9BKfWGPaKR3ZHjV//6i/MTJ7pk1LZX4B8E930EfefCxaPw5V2wa0H6x0T9qyPz1uudq0QDoFS+Unzd5Wt6V+/NV7u/YtSfo7gcc5lSBYOYPaQ5Cnh0xkbOXY12t6kGQ7q4QzhOARVs1stb29zO9TVrifz8CyInf+5uU3IWtbvBE2ugdD348XH4aaSe5zw1tsyA2GvQerRrbfQQAnwDeKPlG4y5YwwbTm+g/8/9Cfs3jCol8jNjcDMuXItl8IzNXI2Oc7epBkOauEM4NgPVRSRYRAKAfsASR2SslFqqlBpeqFDW2olLvfoKhe6/n8hJk4ic+pUjTMo9FK4Ag5bBXS/Cjm9vxu+yJS4aNkzR42FK13eLmZ6AiPBQzYeY0XkGUfFRPLz8YX4/9jshFQrzxcAmHDp7lRHfbCUmPsHdphoMqeJU4RCRecB6oKaIRIjIUKVUPDAK+A3YD8xXSu11UHnZaqoSHx/KvPP2/7d37uFxVfXe//xmz0zSTDJpcyu9pSlKQS4i4IstN6m8QCkJN/GAHrACgoCKtQWOcM5bih4oUiz1ipTeaFVE8YA0KBcV0CNSWku5FIQCvSTNfdLmMpPLXH7vH3unmaRJm7RJ9iRZn+fZz157zey1vns/yf7OWmuv3yJYXEzt0qWE1qwZCFmjB8trz/GY+7TdqlhxDmxYbr+JBfZkynANnDHPXZ0pwkkFJ/F48eMcNe4oFry8gGX/XMYZH89hyRc+ySsfhpj/+BvEE6bb1JB6pPwEwEPhcAfHNRZj94JbaXruOcYv/H/kfOlLA6hulBAOwe9vhvefhaMvtMOVrDwP0oNw/Yuuz4tJJdrj7dy74V5+t+13nD7xdL5/1vf5zYYQ9/zhXebOnMqii44zoUkMQ8KIGhzvKwMVVl28XiY9sITMz32O6u9+jz2/PciAr2F/ArnwxV/D7Ptg2/Pwo5PsFRFP/5YxjW74LT+LTlvEwpkL2VC1gStLr+SzJ8S4/sxpPPqPnfzspQ/dlmgwdGFEGcfhjnEkIz4fk5Y9SODMM6laeBd7nxoeCwylFCIw4yb46p8gkA/5x9iz8A098oXpX2D1+atpi7dx1R+u4uRP7OLSkyax5Ln3eHzjLrflGQz7GFFdVSJSApR8/OMfv37btm0DUmaitZWym24isuE1Jj2whOCcOQNS7qgjHrND0afwxMpUoSZSw/yX5vNG7Rt85bhr2PLmafx9W4iHr/405x47cCH8DYbujMquqoFscXTgSU9nyk9/ypiTT2L3bbfT+MILA1b2qMLyGtPoIwUZBaw+fzVfmP4F1mxdTdqkVRw7ycs3frWZTTvq3ZZnMIws4xgsPBkZTPn5w4w5/nh2z19A04svui3JMMLxWT4WzlzIXTPvYnPNJtrHP0hBbj3XPbqJ96sPGq7NYBhURpRxDOaa41ZmgCmPLCd9+nR23/Itmv/37wNeh8HQncunX87q2auJaTst+cuwsrYwd9VrVOxtcVuaYRQzooxjMLqqkrGCQQpXrsD/sY9R/vWvE97w2qDUYzAkc2L+iTxe/DjH5n6CaO46mjOe4upV/2BvpN1taYZRyogyjqHAGjuWwlUr8RdOsQfNN292W5JhFJCfkc/K81ZyxdFXwNiXqBrzE+aueZGWdjO73DD0jCjjGMyuqmS8OTkUrlqFr6CAsutvoOWNNwa1PoMB7HGP/5rxX9x92t34Ajv4wHcP1/7qKWLxhNvSDKOMEWUcg91VlYw3P5/CR9dg5eSw66vX07J1QKKmGAwH5bKjLmPtBWsIZghv6T185bcPm4jOhiFlRM3j6GAo1+OI7t7NjquvRsMRCteuJf3o6UNSr8FQ11LHlU/dTHX7u4zlBCZmHkFBYCwTgzlMGZvDuPRssvxZBP1Bgv4gWf4ssvxZpFlpJoSJoUdSZiEnNxjqhZzay8rYedXVaDTK1HVrSftYHxYzMhgGgPZYO1c9uYh3GzaQkBbE04J4Ygc8x+fx7TOSZEPpftzTd4L+ID7LN0RXZxhqjHEM8QqAbdu3s/PqLyMiTF23Fn9R0ZDWbzDsjbSzvS7Mtto9bKut48P6Wsr2hqhq3ENLImybitWKx2ohMyNKRnoUn68Ny9tKnAhtiTDhaBMxPbDxpFvp+xlOr0aT5uT57H2mPxOvxztEd8TQX0alcQxGyJH+0LZtGzu/PBdJS2PqL9bhnzx5yDUYDN1RVULhdnbUhdnubDtCYbbXRdhRF6Yl2vlmlt8SJud4mZwnHDFWyQ3GGRuIERgTw+NtpTnaRGNbI03RJpram2hsb6SpvWs6oQcerM/0ZTIlawpTg1OZGpxKUXYRRUF7y/RnDvbtMByAUWkcHbi55njrv/7FzrlfwcrMZOq6tfgmTnRFh8HQF1SVmqa2TkNJMpYdoQjtsU4TSPd5KMoN2FtegGl5GRTlBpiWHyA/0x43UVUisUgXI+luNHtb97KraRc7GnZQEa7oYjS56bldjKTDWCZnTcbnMV1kg40xDpeMA6Dl7a3suuYarHHjmLpuHb7xBa5pSQUS4TChNWuIVlYSPP98AjNnIl7TXZHqJBJKZWMr22vDbA/ZprKjzk6X1UeIxjufHQG/RVGeYyj7jMXexmX4eh2Mb4+3U9ZUxo7GHexs3MmOBmffuIP61s64XJZYTM6abBuJYyjTsqcxNTiV/DH5ZrB/gDDG4aJxALRs2cKua6/De8QRTF37KN68PFf1uIEmEjQ8/TS1Sx8kVlODJxAgEQ5j5eYSvOACskuKSf/kJ80//TAkFk+we2/LvlbKjlBkX0ulrD5C8sKFwXQv0xxTKcoNMDU3gwy/hdfjwWsJfsuD17LTPo8Hn1fwejy0xZuoaimnqqWM3c272B3eRVnTTsqadtEab91XfoY3Y5+hFGUXden+CvgCLtyd4YsxDpeNAyCyaRO7rr8B/+TJFK59FO+4cW5LGjIim1+nevFiWt96i/QTTmD8nXeQftxxNL/8Mo3rS2l+6SW0vR1fYSHZxcUEi4tJO3Ka27INA0B7LEHZnkjXbq8621gqGlo4/EdOAo+vEV96CG9aLZ60EOKrAV8datWDdFZgJbLx63jSGc8YjiBDJpDpmUCmVYDf68Pr8eB3jMprCT7Lg8+yj32W4LU8WCIkVFHsVZAVtffq7MH+3EmjSiL5e87nOGnt+Lx7WUnlJ9Ru8cVpJZpooV0jxBKtRGklpi1JWytRWoirk08Ld50xn7OPPOGQ7uyIMQ4RKQR+BNQD76vqfQc7J1WMAyD86quUfe1G/EceydQ1q7GGYHKim0QrKqj5wVIan3kGb0EBBQvmEywpQTxd55rGm5poev55GkpLiby6AVRJP+44giXFBOfMwVcwurv3Riqt0Ti797bQFk0QSySIxhNE40osrkQTCXsft/NjcSWWSNAeV2LOcTSRIBpT51w7PxpPEE3Y6bZYG43xKprjlYS1knCiilaqaJMq4hLuFKIePPE8PLECNJqHtueRaMsn2pZLrD2T2CFPxk8gVjseTytitSOeNjxWG+JxtqQ0SXt7a7X30ta5lz48n1UQTUc0DdF0Fs64m8uOO+2Q1KeEcYjIKqAYqFHV45PyZwM/BCxgxYHMQEQuBMap6i9E5HFVveJg9aaScQA0/+1/Kb/5ZtKOOYbCVSuxsrLcljTgJCIRQitWElq1ClTJve5acq+7Dk/g4F0F0eoaGv/wBxrXr6f1nXfA4yEw4zMEi0vIOu9crEzzpo3h8NnburdzLMXZb2/Yzq7GXbQnOgNGBnwBpganUphVxJTMQjK8AVpiESKxCOFYmEg0TCQWIRINO8cRwtFmwrEwrbHWAyjoxOvxEvAFCHgDBPzO3tf/LcObwRjvmAHr7k0V4zgLaAbWdhiHiFjA+8C5QDmwEfgitoks7lbEtUAceAK7lbdOVVcfrN5UMw6Apr+8SPkttzDmhBOY8sgjWJkjo+9VEwkaS0up+cFSYtXVBOdcQMGCBfgmTTqk8to+/JCG0lIa15cSLS9H0tLInDWL7JJiMs88E/H7B/gKDKOdhCaoDFeys2En2xu3dxmkrwxXYnciQZqVtu9hnenPJMObQcAXINOXSYavf2m/lZp/xylhHI6QIqA0yThmAotU9Xzn+A4AVe1uGh3n3wq8pqp/FZEnVPXyg9WZisYB0Pjc8+yeP5+Mk09myvKH8YwZ47akw6JlyxaqFi+m9Y03ST/+eMbfeQcZJ588IGWrKi1bttC4vpTGP/6R+J49eLKzCZ5/PtklxYw55ZT9ur8MhoGmNdZKW7yNDF/GqHgdOJWN43Jgtqp+1Tm+GviMqn6jl/OPBxYBdUCzqt7ay/duAG4AKCwsPGXnzp0DeyEDREPpM1TcfjuBGZ9h8kMP4UlLc1tSv4lWVdnjGOvX483PJ3/+fLIvvmjQHuQajRJ+5RUa1pfS9Oc/oy0teCdOIPvCCwkWl5j4YAbDANFX40j5l+lV9W3goK0MVV0uIpVAid/vP2XwlR0a2cUXotEolXfeSfkttzD5xz/GM0y6XxItLYRWriK0YgUkEuTe+DXyrr++T+MYh4P4fGR+9rNkfvazJMJhmv7yFxrWrye0ajWhR1aQNn06weJisosvNBMuDYYhwA3j2A1MSTqe7OSNGsZeegkabadq4V3s/vZ8Ji97EPGlbjNYVWksfYaaH/yAWFUVWRfMpmDBrfgnH9o4xuHgCQTILikhu6SEWChE4x+fpbG0lNqlS6ldupQxnz6F7OISgrPPxxo7dsj1GQyjATe6qrzYg+PnYBvGRuBLqjpgC1qk6hhHd+p/8Uuq//u/yZo9m0kPLEnJ2dQtb75J9b2LadmyhfRjj7XHMT590JbskNNeVkZjaSkN60tp/+gj8PnIPPNMe1B91iw86eluSzQYUp6UGOMQkceAs4E8oBq4S1VXisgcYBn2m1SrVPWeAarP1SCHh0Jo1Wpq7r+fYEkJE+9bjFiW25IAiFZXU7t0KQ2/fxorP4+Ced8m+9JLUn5AWlVpfecde1D9mWeI1dbiCQTIOvdcgiXFBGbMSJl7PJJQVRINDcTq6uyt1tnX1RLvclxHvKEBKzMTKy8Pb04OVm6us8/Bm5vn7HP3febJzDTRBYaIlDAOtxguLY4O6n7+MLXLlpH9+cuY8L3vufpwTrS2Elq1itAjKyAeJ+crXyH3hhuG5evDGo8Tee01e1D9+edJNDdj5eeRPWeOPah+/HHmgXQQEpFINzOoJR4KdTGCjo1odL/zxe/Hm5eHlZ+HNy/fTmdnk2huIhaqt8sKhYjV15PoZcln8fu7mktO7j6T8ebmYOXk2vvcXLzjxplXtg+DUWkcw7HF0UHtj35M3c9+xtgvXskRCxcO+QNNVWn64x+pfuABYhWVZJ13HgW33zZiQsMnWltpfullGkrXE375r2g0ir+oiGBJMdnFxfinTnVb4pCh0Six+vpOI9ivleDk19aRiET2L8DjsR/cefl2yyAvD29+nm0KeY5BOMeerKw+/y1rezuxPXuJ14eI1YXsfah+3z5WHyJeZ5tMvK4O7cGoADzZ2V1MxpuX22kuyfu83H7pGw2MSuPoYLi1OMB+cNcuXUrokRWM+/LVjL/jjiH7g255622qFy+mZfNm0j7xCcbf8R0Cp546JHW7QbyhgcbnnqNxfSmRjRsBSD/xk/ag+pwL8Obmuqyw/2giQbyhgVjtAYzAyYvv3dtjGZ5g0DaBji0/yQiSzWHcONe7+1SVRDjc2WIJhYh3mEuo3jl2TCYU6vWa8fm6mkxurt1ySTIZb0EBvgkT8ASDI95kRqVxDOcWB9j/DNWLF7Nn7Tpyv3od+QsWDOofarS6htply2h48kms3FwKvj2P7Esvdf2hMJREKytpfOYZGtaX0vbee2BZBE47jeDs2VjjxqLxOMTjaCwO8Rgai6PxGCQS3fKcdDxhf56cF4ujifj+eR1lx+Ndz4nF0MTBy0n+PBGJQGz/lfskLQ1vfn43I0hqFTgtBisvb1jOKeorGo0S27OHeL1jKh37HkwmFgqhbW37leEJBPBNnIB3wgR8EyfimzAR38SO9AS8BQUp+YJLfxiVxtHBcGxxdKCqVH33u+x97Nfk3Xwz+bd8c8DrSLS2Ur/mUeqWL4dolJy5Xyb3xhtHfUyo1vffp3F9KQ3PlBKrqDz0gjwe23wty957vUhy2uMBr4VY3i6fY3mS8pI+33eu1fVzT2eeJyNj/y6j/Hw8gcCI/5U80Nitmci+LrNYTQ3RykqiFRVEKyuIVdjp/VoxloV3fIFtKB3mkmwsEyam/FihMY5hahxgdztULlxIwxO/I3/ePPJu/NrAlKtK03PPUXP/EqIVFWSdey4Ft92Kv7BwQMofKWgiQdu2D9BoFPFaXR/elrczr8MEkvMsK+XfPDMMDIlIhGhVFdHdtqFEKyuJVVQQrai0jaaqar9WoCc72zaVZGNx0t4JE/Hm57n69zNiZo73h6SuKrelHBbi8TDh7rvR9nZqly1D/H5yr73msMps2brVHsfY9E87Su+99xKY8ZkBUjyyEI/HhDExHBRPRgZpRx5J2pFH9vi5xuPE6ur2GUuso9XitFgimzaRaGrqepLPh++II7oYS5eusQlHpESMO9PiSGE0FmP3rbfR9OyzjP/P/yTn6qv6XUastpaaB51xjHHjyJ/3LcZ+/vOjahzDYEhV4k1N+7rBbGPp6BJz8mpqINF1cRArJ6d3Y5k4ASsn55C7J0dli2OkIV4vk5bcT3ksSvU99yB+P+Ou+Lc+nZtoa6N+zaOEHn6YRDRKzrXXkHfjjSNyLRCDYbhiZWVhZWWRPr3nFq5Go/YYyz4z6TSWtu0f0fz3v6PdXpkuXLWSwGmHtpBTXxlRxjFSuqqSEZ+PSUuXUv7Nb1K1aBHi9zP20kt6/b6q0vT8C9QsWUK0vJzMc85h/O23jap5CgbDSEF8PnyTJvW6vk3HjP1oUjdYWi8mNKC6TFfV8CDR1kb5TTcRfnUDE++/n+ziC/f7Tus771C9+D4iGzeSNn26PR9j5kwX1BoMhuGI6aoaYXjS0pj8059SdsPXqPiP/0B8PoLnnwdArK6O2h/+kL1P/A5r7FiOWLSIsZd/fti/U24wGFIT82QZRnjGjGHKzx9i11evZ/eCBaAPEC0vo+6hn5NoayNn7lzybr4JKxh0W6rBYBjBGOMYZngCAaYsf5hd117H7nnzAMicNYuC228jbdo0l9UZDIbRwIgyjpE4ON4TVlYWhSseofbHPyFz1tlknn6625IMBsMowgyOGwwGgwHo++C4iY1gMBgMhn5hjMNgMBgM/cIYh8FgMBj6hTEOg8FgMPSLlDcOETlWRH4jIg+JyOVu6zEYDIbRzqAah4isEpEaEXm7W/5sEXlPRD4Qke8cpJgLgB+r6k3AlwdNrMFgMBj6xGDP41gD/ARY25EhIhbwU+BcoBzYKCJPAxawuNv51wLrgLtE5CJg+C0GbTAYDCOMQTUOVf2riBR1yz4V+EBVPwIQkV8DF6vqYqC4l6K+7hjO//RWl4jcANwAUGhWtDMYDIZBw42Z45OAsqTjcqDXpegc47kTCABLevueqi4XkUqgZNeuXUeJyLZD1JcH1B3iuW4wnPQOJ60wvPQOJ60wvPSOJq19Wn8h5UOOqOoOnJZEH767Hljf1+/3hIhs6svMyVRhOOkdTlpheOkdTlpheOk1WvfHjbeqdgNTko4nO3kGg8FgGAa4YRwbgaNEZJqI+IErgadd0GEwGAyGQ2CwX8d9DPgHcLSIlIvIdaoaA74BPAe8C/xGVbcOpo5+stxtAf1kOOkdTlpheOkdTlpheOk1WrsxIqPjGgwGg2HwSPmZ4waDwWBILYxxGAwGg6FfGONwEJF0EXlNRN4Qka0icrfbmg6GiFgi8rqIlLqt5WCIyA4ReUtEtohISq+yJSJjReQJEfmXiLwrIjPd1tQbInK0c087tkYRmee2rt4QkW87/19vi8hjIpLutqbeEJFvOTq3puI97Smkk4jkiMgLIrLN2Y8bjLqNcXTSBnxOVU8EPgXMFpEZLms6GN/CfsFguDBLVT81DN6J/yHwrKoeA5xICt9jVX3PuaefAk4BIsCTLsvqERGZBNwCfFpVj8cOM3Slu6p6RkSOB67HjnRxIlAsIqm2JvUaYHa3vO8Af1bVo4A/O8cDjjEOB7Vpdg59zpaybw6IyGTgQmCF21pGEiKSDZwFrARQ1XZV3euuqj5zDvChqu50W8gB8AJjRMQLZAAVLuvpjU8AG1Q14rwJ+jJwmcuauqCqfwXqu2VfDDzqpB8FLhmMuo1xJOF0/WwBaoAXVHWD25oOwDLgdiDhtpA+osDzIvJPJ65YqjINqAVWO92AK0Qk4LaoPnIl8JjbInpDVXcDDwC7gEqgQVWfd1dVr7wNnCkiuSKSAcyh68TlVGW8qlY66Spg/GBUYowjCVWNO03+ycCpTnM15RCRYqBGVf/ptpZ+cIaqnowdJv/rInKW24J6wQucDDykqicBYQapuT+QOJNpLwJ+67aW3nD62y/GNueJQEBErnJXVc+o6rvA94HngWeBLUDcVVH9RO25FoPSa2KMowecrokX2b//MFU4HbhIRHYAvwY+JyK/cFfSgXF+baKqNdh98Ke6q6hXyoHypNbmE9hGkupcAGxW1Wq3hRyA/wtsV9VaVY1iR7s+zWVNvaKqK1X1FFU9C9gDvO+2pj5QLSITAJx9zWBUYozDQUTyRWSskx6DvV7Iv9xV1TOqeoeqTlbVIuzuib+oakr+cgMQkYCIZHWkgfOwuwJSDlWtAspE5Ggn6xzgHRcl9ZUvksLdVA67gBkikiEign1vU/bFAxEpcPaF2OMbv3JXUZ94GpjrpOcCvx+MSlI+Ou4QMgF41Fn3w4MdCiXlX3MdJowHnrSfFXiBX6nqs+5KOiDfBH7pdP98BFzjsp4D4pjxucDX3NZyIFR1g4g8AWwGYsDrpHY4j9+JSC4QBb6eai9JOCGdzgbyRKQcuAu4D/iNiFwH7AT+bVDqNiFHDAaDwdAfTFeVwWAwGPqFMQ6DwWAw9AtjHAaDwWDoF8Y4DAaDwdAvjHEYDAaDoV8Y4zCkFCLyooic3y1vnog81M9y/tAxL+cA37mz2/Er/amjjzrWiMjlPeQf40SzfV1EPjbQ9fZXTx/PPVtETks6PuSyDMMbYxyGVOMx9o+Y2ucYTGLjUdU5fXjvvotxqOpQzmK+BHhCVU9S1Q8P9uWO6xoCXQfibFJ4prdh6HD7D9Fg6M4TwIXO5DtEpAg7rtHfRCRTRP4sIpudtT0u7viOiLwnImuxZ6RPcdb/yHM+f8oJrri1I8CiiNyHHaV1i4j80slrdvYiIkuctRjeEpErnPyzReQl6Vyr45fODGhEZKGIbHTOWd6R3xMiMgeYB9wkIi86efOdc98WZ+2HXq6r2dG2VUT+JCKnOpo+EpGLeqhLROQnTjl/AgqSPjtFRF527s1zSaEqXhKRHzr35m2njiLgRuDbTv6ZTjFnicgrTv2m9TFaUFWzmS2lNqAUuNhJfwd4wEl7gaCTzgM+AAQowo4SPCOpjB1AnpPOcfZjsB/Auc5xc7d6m53954EXsNeLGI8dKmMC9i/uBuwgmB7gH9jBG/fV4aTXASVOeg1weQ/XuAi41UmfArwFBIBMYCtwUi/XpcAFTvpJ7CB8Puw1I7b0UM9lSdcyEdgLXO6c8wqQ73zvCmCVk34JeMRJnwW83V1z0rX91rkXxwIfuP23Y7ah2UyLw5CKJHdXJXdTCXCviLwJ/AmYRGfY6J2q+mov5d0iIm8Ar2KHxj7qIPWfATymdrTkauy1GP6P89lrqlquqgnsiKlFTv4sEdkgIm8BnwOO69ul7qvvSVUNq70mzP8AHb/ou19XO3a0VrDN5mW1Awa+laQlmbOSrqUC+IuTfzRwPPCC2EsJ/Be2IXbw33ZfvQAAAeJJREFUGOxb8yF4gPGip1Q1oarvMEghvA2ph4lVZUhFfg88KCInAxnaGT7+34F84BRVjYodHbhj6dFwTwWJyNnYUVlnqmpERF5KOudQaEtKxwGv2Muf/gx7ZbsyEVl0mHUk0/26oqraESco0aFHVRNiL47UVwTYqqq9LYvbPRZRb7GJku9Hr91zhpGFaXEYUg7nV/eLwCq6DopnY69DEhWRWcDUPhSXDexxTOMYIHk54KiI+Ho452/AFWIv7JWP/av9tQPU0WESdSKSid0V1B/+BlwidtTYAHCpkzcQ/JXOa5kAzHLy3wPyxVlPXUR8IpLcSuoY1zkDe8GlBqAJyBogXYZhjGlxGFKVx7D78JPfsPolsN7pDtpE38LePwvcKCLvYj8sk7t9lgNvishmVf33pPwngZnAG9i/tG9X1SrHePZDVfeKyCPY4ydVwMa+XGDS+ZtFZA2d5rRCVV93BqQPlyexu87ewR6r+YdTZ7szmP0jsZfL9WKvKrnVOa9VRF7HHgu51slbDzzhvJTwzQHQZhimmOi4BoOhC0533q2qusltLYbUxHRVGQwGg6FfmBaHwWAwGPqFaXEYDAaDoV8Y4zAYDAZDvzDGYTAYDIZ+YYzDYDAYDP3CGIfBYDAY+sX/B/IvA2FuLud6AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for k in range(len(var_forms)):\n", - " for j in range(len(entanglements)):\n", - " pylab.plot(depths, energies[k][j]-energy, label=var_forms[k]+' + '+entanglements[j])\n", - "pylab.xlabel('Variational form depth')\n", - "pylab.ylabel('Energy difference')\n", - "pylab.yscale('log')\n", - "pylab.title('H2 Ground State Energy Difference from Reference')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above plot shows how close the ground state energy result from VQE was to the reference. The next plot shows how many evaluations (calls to the objective/cost function) were needed by the optimizer before it stopped and returned. Note that the optimzer was configured with a maximum number of iterations of 10,000. The COBYLA optimizer makes one evaluation per iteration and it can be seen that for some points that the iteration limit was reached which caused the optimizer to return." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXdYlMfah+9hqSKKgkpVsSuKCIhRY5oeTezHiGkmmp54ountOzHhJPGkmsSYoml2TSyJJSYxiYnHXkCxd0WlKYqgIHWZ74/3RQEpC+yyuzD3de21u/NO+e2i+7wzz8zzCCklCoVCoVCYAwdrC1AoFApF3UEZFYVCoVCYDWVUFAqFQmE2lFFRKBQKhdlQRkWhUCgUZkMZFYVCoVCYDWVUFAqFQmE2lFFRKCpBCBEvhBhgpbFbCCHWCyEuCyGm1uK4s4UQb1uo7/uEEL9bom+F9VFGRVEjhBC/CSHeLKN8hBAiRQjhqL/vI4T4S/9xzBBCrBRCdCpW/xYhRKEQIrPUo3dtfh4b5DHgPNBISvm8tcVUFSFEayGELPp3ACClXCClHGhNXQrLoYyKoqbMAcYKIUSp8vuBBVLKAt0w/A6sAPyAIGAPsEkI0bpYmyQpZcNSjy2W/wi1Q/Ef1irQCjggVegLhZ2gjIqipiwHvIB+RQVCiCbAUGCuXvQ+MFdKOU1KeVlKmSalfA3YDrxRnUH1JakXhBB79JnPD0IIV/3aeCHExlL1pRCinf56thDiCyHEr/psaJMQwkcI8YkQ4qIQ4pAQokepIXsKIQ7o12cVjaX3N1QIESeESBdCbBZChJTS+bIQYg+QVZZh0WdxO/TPsUMI0adIJzAOeEnXed0SnBDCRQjxoRDitBDirBBihhDCTb92UAgxtFhdRyFEqhAiTH+/RJ9NZuhLbMHlfNeVfZ9DhBC7hBCXhBBnhBDRxaqu15/Ti2aepfsr7/Pr19YJId7S/0aXhRC/CyG89WuuQoj5QogL+ne/QwjRoqzPoKg9lFFR1AgpZTawGHigWPEY4JCUcrcQogHQB1hSRvPFQE2WQcYAt6PNfEKA8VVs+xrgDeQCW4Cd+vulwEel6t8HDALaAh30tujG5zvgcTTjOhNYKYRwKdb2HmAI4CmlLCjeqRCiKbAa+FRv/xGwWgjhJaUcDywA3tdnbX+W8Tne1fWEAu0Af+B1/doifewiBgHnpZQ79fe/Au2B5vpnX1D2V1UpWWh/f0/9cz4phBipX7tJf/Ysa+ZZ0ecvVu1e4EFdpzPwgl4+DmgMBOptnwCyq/kZFGZCGRWFOZgDjC529/6AXgbQFO3fWXIZ7ZKBZsXe++l3nMUf7hWM+6mUMklKmQasQvthNZWfpJSxUsoc4CcgR0o5V0ppBH4ASs9UPpNSntHHmsK1H+vHgJlSym1SSqOUcg6akbqhlM4zugEuzRDgqJRynpSyQEq5CDgEDKvsA+hLjo8Bz+qzv8vAf4G79SoLgeG6YQftx3lRUXsp5Xf6zDEXiAa6CyEaVzZuaaSU66SUe6WUhVLKPfoYN5vY3JTPP0tKeaTYDUzR3zkfzZi007/7WCnlparqV5gXZVQUNUZKuRHNmTxSCNEWiET7QQO4CBQCvmU09dXbFZEkpfQs9ciqYOiUYq+vAA2rIPtssdfZZbwv3deZYq9PofmGQPN5PF/cEKLdOfuV07Y0fnp/xTmFNuOojGZAAyC22Ni/6eVIKY8BB4FhumEZjv53EUIYhBDvCiGOCyEuAfF6n94mjFsCIUQvIcTf+tJaBtqMwdR+TPn85f2d5wFrgO+FEElCiPeFEE5V1a8wL8qoKMzFXLQZylhgjZTyLIBuFLYAUWW0GQOss4CWLLQfWwCEED5m6DOw2OuWQJL++gwwpZQhbKDfcRdRkZM9Cc0wFaclkGiCpvNoBjC42NiNpZTFDWLREtgINIf/Mb38Xr1sANoSUmu9vPSGC6j8+1wIrAQCpZSNgRnF+qlsg0G1P7+UMl9K+R8pZRe0JdahlFyGVVgBZVQU5mIu2g/Uo1xb+iriFWCcEGKSEMJDCNFEaGcg+qEt15ib3UCwECJUX5KLNkOf/xJCBOg+gH+jLZEBfA08od+tCyGEu+649jCx31+ADkKIe3VH+l1AF+DnyhpKKQv18T8WQjQHEEL4CyEGFav2PZrf6kmuzR4BPNCW6S6gGYyK/g6VfZ8eQJqUMkcIEYlmsIpIRZuptimn72p/fiHErUKIbkIIA3AJbTmssLJ2CsuijIrCLEgp44HNgDvaXWvxaxvRnMSj0PwoaWhO1v5Syn3FqvqJ68+p3FkNLUeAN4E/gaPAxopbmMRCtG3RJ4DjwNv6WDFohvQztKW+Y1Rhw4CU8gLaHfbzaD/wLwFDpZTnK2x4jZf1Mbfqy1h/Ah2L9Z+MNlPswzVDCNpNwCm0GcEBYGsFGiv7PicAbwohLqNtElhcrO0VNB/UJn2Jrrivqaaf3wdtU8UltGW+/6EtiSmsiFDb3xW1jdC23P4N3CulXGNtPQqFwnyomYqi1tF3CI0EuonqHQhUKBQ2ipqpKBQKhcJsqJmKQqFQKMxGvVt68Pb2lq1bt7a2DIVCobAbYmNjz0spm1Vesx4aldatWxMTE2NtGQqFQmE3CCFKH1AtF7X8pVAoFAqzoYyKQqFQKMyGMioKhUKhMBv1zqeiUCisR35+PgkJCeTk5FhbiqIMXF1dCQgIwMmp+nE5lVFRKBS1RkJCAh4eHrRu3RpxXbJQhTWRUnLhwgUSEhIICgqqdj8WMypCiO/QYvqck1J21cuaosUfao0WanuMlPKinhdiGjAYLbT1+KJEQkKIcegJkYC39XwVCCHCgdmAG1pQuqdVylXYsXImgTs/oLlM5ZxoxpmwF+k5/HFryyqX5bsS+WDNYZLSs/HzdOPFQR0Z2cOUqO+1j719t+xZDGvfhIwEaBwA/V+HkDFWlZSTk1O2QbmSBpeTwZgHBmfw8IUGTa0j0hTsSa+JWoUQeHl5kZqaWqPhLOlTmY2Wla84rwBrpZTtgbX6e4A70DLQtUdLOvQlXDVCbwC90HJ0vCG0VLXodR4t1q70WPWOHStn0jX2NXxIxUGAD6l0jX2NHStnWltamSzflcirP+4lMT0bCSSmZ/Pqj3tZvsuUqO+1i719t+xZDKsmQcYZQGrPqyZp5VamTIOScUb70QPtOeOMVm6L2JPeKmo1x+zRYjMVKeV6IUTrUsUjgFv013PQcmm8rJfP1WcaW4UQnkIIX73uH3q2PYQQfwC3CyHWAY2klFv18rlosaR+tdTnsQcCd36Am8grUeYm8vCPfZ+PXG+xjqgKmLUpnux8Y4my7Hwjk5fv40RqppVUlc3dse+X+d123hkNDU0NKFyLbJsB+aUSTeZnw+rn4fxR62gCaNIfLpVKApqVCrJUxHpZqM2wCnJrT5up2JPe8rReTrbYzKq2fSot9FDcoGVza6G/9qdkdrwEvayi8oQyystECPEY2gyIli1b1kC+bdNcppaZYsmHC0z/+9j1F6xMeYuVl3MLbE7vM85lGw53eQXWf1DLakyhnC8395J19Q6KgMyUyusBSKPpdauAITCCbp3aUWA0EhTox7xP38bVxZnQgfewZOZ7dOvcHoAPvpzDsZNneHXiQ3S+5U46tmlFXn4+ESFd+Hbq6zg5OfHvdz9j9dprmQCuZOdw/FQCGYfW09C9QXkSKmXDtp088cp/cXJ0ZMvK2bi5uZZZ75bRj/Lh5GeJ6N6F1r2GEPPrfLybNimzbgmMeZXXqSZWc9RLKaUQolZ8IFLKr4CvACIiIuqs3+Ws8MaX63/8zglvTr4zxAqKKqbvu3+RmH592nZ/Tzc2vXKbFRSVT0p0M3y4fq35rGiGT7RtGUAAPu6qL32VonEgPLvv+vLa4uBB8Otcsuzs/rJ/5AzOLE/yNLvPzc3Njbj9hwEYN24cn/+4gX//+9988tmXTIiewvr160lKSmLGwlXExMSQkZFB27btiNu3D6PRyD9u7sPiVX9w36jBTHnlKaa88tRVvfc991/G3BtEw/Z9yx0/Ojqa1q1bM378+HLrLFgzk1cn/4exY8dW/GGcG0KzjuDXQ/OX+ISAd7FMzhV8t5aits+pnNWXtdCfz+nliZRM1xqgl1VUHlBGeb1lw9FU3i+4iwJZ8k+aI504E/ailVRVzIuDOuLmZChR5uZk4MVBHctpYT3OhL143XebLZ1t9rul/+vg5FayzMlNK7c1PHxBlPopEg4sj3e0uM+td+/eJCZq/d1+++34+voyd+5cnn32WaKjo2nSpORdv8FgILLXDSSmlLrBEA7M/3kDx44dIzo6ukaavvnmGxYvXszkyZO57777WLduHUOHDr16/amnnmL27NmmdVbOd4uHb400VkRtz1RWomX8e1d/XlGs/CkhxPdoTvkMKWWyEGIN8N9izvmBwKtSyjQhxCU9i9w2tLzU02vzg9gSv+1LYdKiXdzo1R2HS4Vk4kYDmY0QkNGsp83uUCq647SH3V89bx1B4c5XyMIVN5lLkvQitv1TjLDR7/bqLi8b2/1VnP+s2s+BpEvam8ICMOZqa6JCgMGFXQlJ5BlL+gOy8428tHQPi7afLrPPLn6NeGNYsEnjG41G1q5dy8MPP3y17JNPPiEyMpL27dtz//33X9cmJyeHbTv3MO3dN7W7fX1HVXxaPq+88Tbr1q3D0bFmP6uPPPIIGzduZOjQoYwePZp169ZVv7Miv0kt7lSz5JbiRWiOdm8hRALaLq53gcVCiIfRUpkW/Qv/BW078TG0LcUPAujG4y1gh17vzSKnPVoK09loW4p/pZ466ZfGJvDS0t2EBnoyo8UqHA640PCZ3eDRApZPoMX+n7SdHja63XFkD3+bNCLXsf0rHJC4T9xMTqPWDJ7yJ7c4NmeEtXVVRMgYmzIiFeLgqD2KUdqgVFZuKtnZ2YSGhpKYmEjnzp35xz/+cfWan58ft912W4mZAcDx48cJDQ3l5MmTDBkyhJBe/a5eMxqNjL3zZt566y3atWtX5ph79+69aqRSUlJwdnbmk08+AWDt2rV4eXnV6DNVSIOmtfr/35K7v+4p51L/MupK4F/l9PMd8F0Z5TFA15potHfmbI7njZX7ubGdN18Nb4HzjB8g/EHNoAD0/hfELYCY7+CmF6wr1p7JzYQd30LnoeDVFldgRKg/i2POkJGdT2O36p8+rs9UNqOoyOf2w+O9qz2um5sbcXFxXLlyhUGDBvH5558zadKkq9cdHBxwcCi5ZNS2bVvi4uI4f/48ffv2ZeXKlQwfPhyAt99+G19fXx588MFyx+zWrRtxcXGAaT6V4jg6OlJYeM2Q2no0AhX7yw6RUvLZX0d5Y+V+BnZpwTfjImgQ87l2se/T1yq2CIa2/WHbTNvb6mhPxC2AnHToc+2HZ3R4ALkFhfy8J8mKwuo2lva5NWjQgE8//ZSpU6dSUFBgUhtvb2/effdd3nnnHQC2bt3K7Nmz+eqrr8yiqSxatWrFgQMHyM3NJT09nbVr11psLHOgjIqdIaXknV8P8eHvRxjVw58v7gvDNfcC7JwL3e8Gz8CSDfpMhKxzNnHozS4xFsCWzyGwFwRGXi0OCWhMhxYNWRKTUEFjRU0Y2cOfd0Z1w9/TDYE2Q3lnVDezLpf26NGDkJAQFi1aZLqukSO5cuUKGzZs4I033uDKlSvceuuthIaGXn0cP37cbBoDAwMZM2YMXbt2ZcyYMfTo0cNsfVuCepejPiIiQtprki5joeS15ftYtP00D/RuRfSwYBwcBPzxOmyeDk/FgFfbko2khBn9NCfdhK3goO4jqsT+n2DJeLhrPnQeVuLS1+tPMOWXg/z53E20a+5hHX12xsGDB+ncuXPlFRVWo6y/kRAiVkoZYUp79QtjJ+QbC3nmhzgWbT/Nv25ty3+G6wblSpq23h/8z+sNCmg7afpMhPOH4diftS/cnpESNn0KTdtAx8HXXR7Zwx+Dg1CzFYWiGMqo2AE5+UYenxfLqt1JvHJHJ14c1OlajJ5tMyEvE/o9X34HXUeBhx9s/rR2BNcVTm+BpJ3ahgcHw3WXm3m4cGvH5vy4K5GCGu5IUijqCsqo2DiXc/IZ9912/j58jin/7MoTNxebjeRe1mI8dRyiOeXLw+AENzwJ8RsgaZflRdcVNk8Ht6bQ/d5yq0RFBJB6OZf/HalZZFeFoq6gjIoNczErj7HfbCPm1EU+uSuU+3q1Kllhx7farqSbKpilFBE+Dpw9YPNnlhFb1zh/FA7/ApGPgnP5MZxu7dicpu7OLI1VS2AKBSijYrOcvZTDmJlbOJhymZljwxkRWmrHS362tiupza3gH155h66NNcOy/ydILyMmlKIkWz4Hgwv0fLTCas6ODowM9efPg2dJy7JckD6Fwl5QRsUGOZN2hagZW0hKz2b2gz0Z0KXF9ZV2ztO2ClflUOMNT2qO+20zzCe2LpKZCrsXQeg90LBZpdWjIgLIN0pWxNXr8HMKBaCMis1x9OxlRs/YTEZ2PgsevYE+bb2vr1SQB5s+gcAboFX50VCvo3EABI+C2NmQnW42zXWOHd9AQQ70fsqk6p19G9HVv5HaBWYnGAwGQkND6dq1K8OGDSM9PZ2cnBw6derE3r17r9b74IMPePzxx4mPj8fNzY3Q0FC6dOnCAw88QH5+PgD//ve/S5xP6dChAwaDgczMmuUDuuWWWyg6+jB48GDS0+3n/6syKjbE3oQMxszcQqGExY/3JjTQs+yKe76HS4lw04vazKMq9HlK2y22c07NBddF8q7Ajq+1LcTe7U1uFhUeyIHkS+xPyrCguHrInsVaGP9oT+3ZDId4i8K07Nu3j6ZNm/L555/j6urKJ598woQJE5BSkpiYyIwZM3j33XeBa2Fa9u7dS0JCAosXazqmTJlCXFzc1UfPnj159dVXadiwYbnjR0dHmx5lGPjll1/w9Cznt8AMmBpNwFSUUbERtp24wD1fb8XdxZGlT/Smo085h+mMBbDxY/ANhXbXhVGrHN/uEHQzbJ2hzXgUJdm9CK5cMHmWUsTw7n44GxyUw96c1EJK5GqFvo+MvNqmOPPnzzdL6PvStG7dmvPnzxMfH0/nzp159NFHCQ4OZuDAgWRna7HRjh8/zu233054eDj9+vXj0KFDAKxatYpevXrRo0cPBgwYwNmzZwHNsN1///307du3zGjMNcFqSboU1/j78DmemBdLQBM35j/SC9/GbuVXPrAc0k7AmHlVn6UU0WcSLLgT9v+ohXZRaBQaNQe9Xxi06lOlpk3cnRnQpTkr4pJ49Y7OODuq+7VK+fUVSNlb/vWEHVo4/OLkZ8OKpyC2nJm2Tze4412Thq926Ptt25g2bVqJ8vj4eF555RWzhL6viKNHj7Jo0SK+/vprxowZw7Jlyxg7diyPPfYYM2bMoH379mzbto0JEybw119/ceONN7J161aEEHzzzTe8//77TJ06FYADBw6wceNG3Nwq+L2pBsqoWJmf9yTxzPdxdPL1YM6DkXg1dCm/cmEhbJgKzTpBp6Hl16uMdv2heRftHEbIXdU3TnWNw79C2nEYPata30lUeCC/7E3hr0Nnub2r5ZIg1RtKG5TKyk3ELKHvQ0KuyTEaGTt2bK2Evg8KCiI0NBSA8PBw4uPjyczMZPPmzURFRV2tl5urfUcJCQncddddJCcnk5eXR1BQ0NU6w4cPN7tBAWVUrMoPO07z6o97CW/VhG/H96SRayUh1I/8CucOwD+/qlkMLyG05Z0VE+DE39DWtlL3Wo3N08GzJXQeXq3m/dp709zDhSUxCcqomEJlM4qKUiI/uLraw9pb6PviuLhcu+k0GAxkZ2dTWFiIp6fn1f6LM3HiRJ577jmGDx/OunXrSizNubu7V3l8U1BzdCvxzYYTvLxsL/3aN2PuQ70qNyhSwvoPoElr6HpnzQV0Gw0NfbQfUgWc2Q5ntsIN/wJD9e61HA0OjAoLYN2RVM5dtu2cF3aBhVMi20vo+8po1KgRQUFBLFmyBNAime/evRuAjIwM/P21M25z5tTO5hxlVGoZKSUf/XGEt1cfZHA3H75+IAI35+vjSl3H8b+0ECs3PlvtH70SOLpAr8e0flP21bw/e2fzdO2AaI+xNepmdHgAxkLJTzvVmZUaEzIGhn2qzUwQ2vOwT82azdIeQt+bwoIFC/j222/p3r07wcHBrFihZWqPjo4mKiqK8PBwvL3LOJ5gAVTo+1qksFDy1uoDzNoUz5iIAN4ZFYLBwcS1+1mDIe0kPB2nGQRzcCVNW2LoMhz+WY8PRKadgE/DNIM94I0ad/fPLzaRmVPA78/edC3wpwJQoe/tARX63k4oMBby8rI9zNoUz0N9g3i3Kgbl1BY4tQn6TjKfQQEtb3XY/bB3CWTU4zvrLV9o+dF7PW6W7qLCAzl6LpPdCerMiqL+oYxKLZBbYGTiol0siU3gmQHtmTy0s5YLxVQ2fAgNvCFsnPnF3fAkyELYPtP8fdsDV9Jg13xtF5yHj1m6HNrdF1cnB5bEqBhrivqHMioWJjvPyKNzY/l1XwqTh3bhmQEdqrYkkrhTS67V+18VRsutNk1aQ5cREDMLci6Zv39bZ8e3UJCtRRowE41cnbg92IeVu5PIyTearV+Fwh5QRsWCXMrJ54HvtrHxaCrv3xnCwzcGVd6oNBumag7kno+YX2ARfSZC7iXYNc9yY9gi+TnaDK3dP6C5edf5oyICuZxTwJr9KWbtV6GwdZRRsRAXMnO556utxJ1JZ/o9YYzpGVj1Ts4dhEM/Q+Tj4NrI/CKL8A/XAlNu/RKM+ZYbx9bY8wNkpWpG1cz0buOFv6ebCtuiqHcoo2IBkjOyGTNzC8dTM/n6gQiGhFTzINyGj8DJXfN7WJo+E7WDZgdWWH4sW6CwELZ8Bj4hEHST2bt3cBDcGebPxmPnSUrPNnv/CoWtooyKmYk/n8XoL7dw9lIucx/qxS0dm1evo7QTsG8pRDyo7dKyNO0HgVd7LY99fdhmfvR3OH9Ei4NmoW2/o8MDkRJ+3KlmK7ZEVUPf14TU1NSrAR03bNhQbr3o6Gg+/PBDAMaPH8/SpUtrNK41UUbFjBxKuUTUzC1cyStg0aM3EBlUA2Ow8WNwcLLI0kyZODhozurk3Vou+7rO5unQKACCR1psiJZeDegV1JSlsQnUt/Ng5mL1idUMXDqQkDkhDFw6kNUnqh+epYjqhL4vi3Xr1lUaamXt2rV069aNXbt20a9fvxprtweUUTETcWfSuWvmVhyElgulW0Dj6neWkQBxi7QzJGba5moSIXeDe7O6n8c+cSec2qgtKxoqCY9TQ6IiAom/cIUd8RctOk5dZPWJ1URvjiY5KxmJJDkrmejN0WYxLEVUNfR9VYiLi+Oll15ixYoVhIaGkp2dXSLPytKlS6sV/8vWUQElzcDm4+d5dE4MXg1dWPBILwKb1nDr7+bpgIS+T5tFn8k4uULkY/D3FDh3CJp3qt3xa4stn4FLIwh7wOJDDe7mwxsr9rEk5kzNZq51kPe2v8ehtEPlXt+Tuoe8wpI5f3KMOby+6XWWHil7eahT0068HPmySeNXJ/R9VQgNDeXNN98kJiaGzz6r4zdqxVAzlRry54GzjJ+1A/8mbix5onfNDUpmqpYrIuQuLWJubRPxMDi6aT+8dZGLp2D/cggfb9kddToNnB0Z3M2X1XuTyco1b4a9uk5pg1JZuakUhb738fHh7NmzZYa+f/LJ8jfH9OrVi9DQUB555BFWrlx5Nd7XmjVraqSrrqBmKjVgRVwizy3eTVe/Rsx+MJIm7s4173Tr51p+9BufrXlf1cHdC3rcBzvnwm2TwaOFdXRYim0zNMd8rydqbcioiECWxCbw674URocH1Nq4tk5lM4qBSweSnJV8Xbmvuy+zbp9V7XGrE/q+ONu2bQM0n8rs2bOrlBq4+MHnnJy6GclazVSqyfytp3jmhzgiWjVhwaM3mMegZF+E7d9A8D+rlB/d7NwwQTuvst164bwtQvZFbRbY9U5o7F9rw/Zs3YTWXg1U2JYq8nTY07gaXEuUuRpceTrMPMvC1Ql9X1NatGjBwYMHKSws5KeffqqVMWsbZVSqwZfrjvPa8n3c2rE5cx6KpKGLmSZ8276CvMvQ73nz9FddvNpC56Gw4xvIy7KuFnMSOxvys6qcf76mCCEYHR7AtpNpnL5wpVbHtmeGtBlCdJ9ofN19EQh83X2J7hPNkDZDzDZGdULf14R3332XoUOH0qdPH3x962YiN6uEvhdCPAs8AkhgL/Ag4At8D3gBscD9Uso8IYQLMBcIBy4Ad0kp4/V+XgUeBozAJCllpYua1Ql9v3xXIh+sOUxSejbuLo5k5hYwrLsfH43pjpPBTHY5NxM+6QqBN8C935unz5pwZjt8+w+44wMt74q9U5AHn3TTNh88UPsHPJPSs+n73l9MvLUdzw3sWOvj2woq9L3tY3eh74UQ/sAkIEJK2RUwAHcD7wEfSynbARfRjAX680W9/GO9HkKILnq7YOB24AshhAnZrqrG8l2JvPrjXhLTs5FAZm4BBgfBrR2amc+gAMR8py3P3PSC+fqsCYGREBCpOewL60BQxH1LITOl9s79lMLP040b23mzbGcihYXqzIqi7mKt5S9HwE0I4Qg0AJKB24CifYJzgKJTaSP09+jX+wvN2zUC+F5KmSulPAkcAyLNLfSDNYfJLhVp1lgomfrHEfMNkp+t/XgH3QwBJt0M1A59JkL6KTi4ytpKaoaU2jbt5l2gbX+ryRgdHkBiejZbTlywmgaFwtLUulGRUiYCHwKn0YxJBtpyV7qUsshblgAUeVL9gTN62wK9vlfx8jLalEAI8ZgQIkYIEZOamlolveXFbTJrPKdd8yHzLNz0ovn6NAedhkCTIPsP3XJ8LZw7oBlJK2ZiHBTsg4ero3LYK+o01lj+aoI2ywgC/AB3tOUriyGl/EpKGSGljGjWrFmV2vp5ulWpvMoY82HTNAjsBa1vNE+f5sLBoOVxSYyF01utrab6bJ4OHr7QdbRVZbg6GRje3Y9f96VwKaceRYNW1Cussfw1ADgppUyVUuYDPwJ9AU99OQwgACjKb5sIBALo1xujOeyvlpfRxmy8OKjAqoPkAAAgAElEQVQjbk4lXTVuTgZeHGQmZ+ueH7TowP1esOpddLmE3gduTfVT/nZI8h44sU5LFexohm3fNSQqIpDcgkJ+3n39+QuFoi5gDaNyGrhBCNFA9430Bw4AfwNFt5LjgKItOiv19+jX/5LalrWVwN1CCBchRBDQHthubrEje/jzzqhu+Hu6IQB/TzfeGdWNkT3McM6h0KiFt/cJgfb/qLy+NXBuoCUIO/wLnD9qbTVVZ8tn4NwQwh+0thIAugc0pn3zhiyJVUtgirqJNXwq29Ac7jvRthM7AF8BLwPPCSGOoflMvtWbfAt46eXPAa/o/ewHFqMZpN+Af0kpLbJNaWQPfza9chsn3x3CplduM49BATiwHNKOa+dSbHGWUkTko2Bwhi2fW1tJ1chIgH3LtBhfbp7WVgNoZ1aiIgLYdTqdY+cyrS2nXlKboe+Lh7R//fXX+fPPP2vUnz1gld1fUso3pJSdpJRdpZT36zu4TkgpI6WU7aSUUVLKXL1ujv6+nX79RLF+pkgp20opO0opf7XGZ6k2hYWwfip4d4TOw62tpmIaNofud8PuRVpsMnth2wxtg0EthmQxhZE9/DE4CJUV0gQyVq3i6G39Odi5C0dv60/GqprvRKzN0PfFefPNNxkwYECN9ZdHbUUFqAx1ot5aHPkNzu2Hfs9puUxsnd5PaTHJdnxjbSWmkZMBMbO1fClNWllbTQmae7hyS4dm/LgzgQJjobXl2CwZq1aRPPl1CpKSQEoKkpJInvy6WQxLEZYMfV+a4sm3WrduzRtvvEFYWBjdunXj0CEtWnNWVhYPPfQQkZGR9OjRgxUrNC9AfHw8/fr1IywsjLCwMDZv3gxohq1fv34MHz6cLl26mE1rTVABJa2BlLDhQ/BsZfUdSSbTrAN0uAN2fK2F5HeuYTRmS7NzrhbyppZDsphKVEQAaw+dY8PR89zaqZrZQe2clP/+l9yD5Ye+z969G5lXMiKxzMkh+d+vkb54SZltXDp3wuf//s+k8S0d+r4yvL292blzJ1988QUffvgh33zzDVOmTOG2227ju+++Iz09ncjISAYMGEDz5s35448/cHV15ejRo9xzzz0URQbZuXMn+/btIygoyKJ6TUUZFWtwYp22TXfox2Cwoz9Bn4kwe7C2DNbz4crrWwtjPmz9Elr3A/8wa6spk9s6taCpuzNLYs/UW6NSGaUNSmXlplIU+j4xMZHOnTuXGfp+6NCh5bbv1asXubm5ZGZmkpaWRmhoKADvvfcegwYNMlnHqFGjAAgPD+fHH38E4Pfff2flypVX/TA5OTmcPn0aPz8/nnrqKeLi4jAYDBw5cu3wdWRkpM0YFFBGxSRWn1jNtJ3TSMlKwcfdh6fDnq5ZULsNU7VzE6H3mU9kbdCqD/iFaQ778Adtd9lu/09wKVEz2jaKs6MDI0L9WLD1NBez8swT5drOqGxGcfS2/trSVykc/fxoNW9utce1Zuj74ri4uADaxoEif4iUkmXLltGxY8kjC9HR0bRo0YLdu3dTWFiIq+u16M3u7u7VGt9S2Oivgu1g9pSmp7dqOeD7TAJHF/OKtTRCaLOVtONwxEb3RRSFZPHuCO1sdJu2TlR4IHnGQlbuvv6HUwHNn30G4Voy9L1wdaX5s8+YpX9rhL6vjEGDBjF9+nSKAv3u2rULgIyMDHx9fXFwcGDevHkYjbYbj08ZlUqYtnMaOcaSyXRyjDlM2zmteh2u/xAaeEH4uMrr2iKdh2sZKW31MOTJ9ZCyB/o8ZbszKZ0ufo3o4ttInVkph8bDhuH71ps4+vmBEDj6+eH71ps0HjbMbGPUduj7ypg8eTL5+fmEhIQQHBzM5MmTAZgwYQJz5syhe/fuHDp0yOZmJ8WxSuh7a1LV0Pchc0KQXP8dCQR7xu2p2uBJcfDVzVpGRVuJRlwdts6A316Gh/+EwJ7WVlOS+aMhOQ6e2QdOrpXXtzKzNp3kP6sO8OvT/ejsa/n0xtZGhb63fewu9L294ePuU6XyCtkwFVwaa4cJ7ZkeY8G1MWyxsdnK2QNw7A+IfNwuDArAiFB/nAyCJTHqzIqibqCMSiWYLaVp6mEthHzko9oPsj3j0hAiHtY+T9qJyuvXFls+B0c3296ZVoqm7s4M6NyC5XGJ5BWoMysK+0cZlUoontK0iAEtB1R999eGj8DJTcv/XheIfAyEQdu6awtcTtGCc/YYCw2aWltNlYiKCCAtK4+/D5+ztpRaob4tudsT5vjbKKNiAkPaDOH30b+zd9xewpqHEXsulvzCKoQuTzsJe5dAxEPg7mU5obVJI18IGaPlgrmSZm01sG0mFBZAb/sz2je1b0YzD5d6sQTm6urKhQsXlGGxQaSUXLhwocR25eqgzqlUkQe7PsjEvybye/zvps9WNn2i5yaxzdPd1ab3UxC3AGK+tW6CsdxMTUPnYdC0jfV0VBNHgwOjevjzzcaTpF7OpZmHnW01rwIBAQEkJCRQ1WR5itrB1dWVgICAGvWhjEoVuSngJto0bsOsfbMYHDQYUVl04UtJELdQW5Zp5FtxXXujRRdoNwC2fQW9J1rPOb5rvhbrq8+kyuvaKFERAcxcf4LluxJ59Cb7M4ym4uTkZFOnvxXmRy1/VREH4cD44PEcvniYLclbKm+webqWN6VvFR379kKfiZB1DvYuts74xgLY+jkE3mB725urQLvmHoQGerIk9oxaGlLYNcqoVIMhbYbQzK0Zs/bNqrhi1nmImQUhd0GT1rWirdYJuhl8usHmz7Rw/rXNwZWQflozbnZOVEQAR85msjcxw9pSFIpqo4xKNXA2OHNf5/vYmryVgxcOll9xy+dauPh+z9WeuNpGCG3Z6fxh7YxIbVIUkqVpW+h4R+2ObQGGhvjh4uhQLxz2irqLMirVJKpjFA0cGzB7/+yyK2Sna7lHuowA7/a1qq3WCf4nNPKv/dAtpzZD0k7o/S9tI4Sd09jNiUHBPqyISyQn33ZjOykUFaGMSjVp5NyIqA5RrIlfQ1JmGQEBt38NuZe0VMF1HYMT3PCkFigzcWftjbt5uhZHrfs9tTemhYmKCOBSTgF/HDhrbSkKRbVQRqUGjO0yFoFg3oF5JS/kZsLWL6D9IPANsY642iZsHLg0gi2f1c54qUe0SMk9H7X9hGFVoE9bb/wau7JEpRpW2CnKqNQAH3cf7gi6g2VHl5GRW8y5GjsbstPsO2hkVXFtpEVe3r8cLp6y/HhbPgNHV+j5iOXHqkUMDoI7wwPYeDSVlIycyhsoFDaGMio1ZHzX8WQXZPPD4R+0gvwc2PwpBN0EgZHWFVfb9HpCc9xvm2HZcTLPwe7vtWWvhs0sO5YVGB0eQKGEZTvVbEVhfyijUkM6NOlAX/++LDi4gFxjLsTNh8yz0K8ezVKKaBwAXe/U8sNnp1tunO1fgzFPc9DXQVp5uRMZ1JSlsQnqzIrC7lBGxQw8FPwQaTlprDz6E2ycBgE9tZlKfaT3U5CXqS0BWoK8K9quuo6D6/SuutHhAZw8n0XsqYvWlqJQVAllVMxAT5+edPHqwty4LynMOK3NUioL31JX8Q2BNrdoS2AFeebvf/dCzV9VBw47VsSQbr40cDaoMysKu0MZFTMghODBLuOIz03jb79O0GGQtSVZlz4T4XIy7Ftm3n4LjdqBUv8IaHmDefu2MdxdHBnczZef9yRxJc828qcrFKagjIqZGJCVhX9+AbOaetXfWUoRbftD8y7aORJz+gQO/6IlBevzVL34jqPCA8jKM/LbvhRrS1EoTMYkoyKEaCuEcNFf3yKEmCSE8LSsNDtCShw3TuOBAld2Z51h17ld1lZkXYTQfCvn9sPxv8zX7+bp4NkKOg0zX582TGRQU1p5NVBLYAq7wtSZyjLAKIRoB3wFBAILLabK3jiyBs7uZWTPp2ns0rjyQJP1gW6joaGP+UK3nN4GZ7ZpO74M9SNjgxCC0WEBbDlxgTNpV6wtR6EwCVONSqGUsgD4JzBdSvkiUMeSg1QTKWHDh+DZkgah93FPp3v4+8zfnMiwodzt1sDRBXo9Dif+hpS9Ne9vy3Rw9YTQ+2relx0xKjwAIWCpOmGvsBNMNSr5Qoh7gHHAz3qZk2Uk2Rkn10PCDuj7DBicuKfTPbgYXJi7f661lVmfiAfByV0Li18TLhyHgz9Dz4fBpaF5tNkJ/p5u9G3rzdLYBAoL1ZkVhe1jqlF5EOgNTJFSnhRCBAHzKmlTP1j/gbbMo99BN3Vtysh2I1l5fCWpV+p5ylS3JhD2AOxbChmJ1e9n6xda0MrIx8ynzY6IigggMT2brScvWFuKQlEpJhkVKeUBKeUkKeUi/f1JKeV7lpVmB5zZrkXm7VMyle4DXR6goLCAhYeU24kbngRZWP3QLVkXYNcCCBkDHj7m1WYnDAr2wcPVkaXKYa+wA0zd/dVXCPGHEOKIEOKEEOKkEKLaTgMhhKcQYqkQ4pAQ4qAQorcQoqk+xlH9uYleVwghPhVCHBNC7BFChBXrZ5xe/6gQYlx19VSb9R+CW1NtmacYLRu1ZECrAfxw+Aey8rNqXZZN0aQVdBmpnbDPuVT19jHfQkG2tpusnuLqZGBYdz9+2ZfM5Zx8a8tRKCrE1OWvb4GPgBuBnkCE/lxdpgG/SSk7Ad2Bg8ArwFopZXtgrf4e4A6gvf54DPgSQAjRFHgD6AVEAm8UGaJaIXkPHF0DN0wAZ/frLo8PHs/lvMssO2LmA4D2SJ+JWm6ZnVX0M+XnwLaZ0H4gNO9sGW12wujwAHLyC1m9J9naUhSKCjHVqGRIKX+VUp6TUl4oelRnQCFEY+AmNEOFlDJPSpkOjADm6NXmACP11yOAuVJjK+AphPAFBgF/SCnTpJQXgT+A26ujqVpsmKrlD4l8tMzLIc1CCG8RzryD88gvrOd3l/5h0OpG2PolGKvwXez5Hq6cr/MhWUyhR6AnbZu5qzwrCpvHVKPytxDiA32ZKqzoUc0xg4BUYJYQYpcQ4hshhDvQQkpZdBuWArTQX/sDZ4q1T9DLyiu/DiHEY0KIGCFETGqqGZznqUfgwArNoLiVfwb0oa4PkZKVwpr4NTUf097pMxEuJWj5VkyhsFDbNebbHVr3s6w2O0AIQVREILGnLnI8NdPachSKcjHVqPRCW/L6LzBVf3xYzTEdgTDgSyllDyCLa0tdAEgt3rfZ9k9KKb+SUkZIKSOaNTND/o2NH4GTm7b0VQE3+t9I28ZtmbVvlgph3n4geHfQcs2Y8l0cXQMXjkKfSfUiJIspjOrhj8FBsEzNVhQ2jKm7v24t43FbNcdMABKklNv090vRjMxZfVkL/fmcfj0R7QR/EQF6WXnlluViPOxZDOHjwd27wqoOwoFxweM4cvEIW5K2WFyaTePgoDnbU/ZoZ3sqY/N0aBwIXUZYXpud0LyRKzd3aMaPOxMxqjMrChvF1N1fjYUQHxUtIQkhpuq+kSojpUwBzgghOupF/YEDwEq0w5Xozyv01yuBB/RdYDeg+XeSgTXAQCFEE91BP1AvsyybpoGDweR1/iFthtDcrTnf7f/OwsLsgJC7wL1Z5aFbEmLh1CZtO7JBnbEtTlR4ACmXcthwtJ6fgVLYLKYuf30HXAbG6I9LQE0CXE0EFggh9gChaMtq7wL/EEIcBQbo7wF+AU4Ax4CvgQkAUso04C1gh/54Uy+zHJeSYdd87aBjIz+TmjgbnLmvy31sS97GgQsHLCrP5nFyhcjH4dgfcLaC72LLdHBprB2cVJTgts7N8WzgpBz2CpvFVKPSVkr5hpTyhP74D9CmuoNKKeN0H0eIlHKklPKivqOsv5SyvZRyQJGB0Hd9/UtK2VZK2U1KGVOsn++klO30h+WjOG75TMvpceMzVWoW1SEKdyd3Zu+fbRld9kTPh8HRTcuLUhYX47VNEBHjwcWjNpXZBS6OBkaG+vPH/rOkX7FAEjSFooaYalSyhRA3Fr0RQvQFsi0jyQbZsxg+6qwZFUcX7SR9FfBw9iCqQxS/x/9OYqbl3T42TYOm0GMs7F0Ml8vIE7J1BggH6PVE7WuzE0aHB5BnLGTV7iRrS1EorsNUo/Ik8LkQIl4IcQr4DKgf/+v3LIZVk+CS/h84/4r2fs/iKnVzX+f7EAjmHVAh0+g9QTuvsv2rkuXZF7UDkt2iTF5erI909W9MZ99GaglMYZOYuvsrTkrZHQgBukkpe0gpd1tWmo2w9k3ILzUpy8/WyquAj7sPg9sM5sejP5Kek25GgXZI0zbQeSjs+BZyi525iJkF+VlazhRFhUSFB7AnIYPDKZetLUWhKEGFRkUIMVZ/fk4I8RzwCPBIsfd1n4xy7gbLK6+A8cHjyS7I5ofDP9RQVB2gzyTISYe4Bdr7glwtJEubW8Gnm3W12QEje/jjZBAsiTlTeWWFohapbKZSFNTKo4xH/Uhs0TigauUV0L5Je270v5GFhxaSU5BTQ2F2TmAkBPbSHPbGAti7FDJTVEgWE2nq7sxtnZqzPC6RfGOhteUoFFep0KhIKWfqL/+UUv6n+AMt6GPdp//r2un54ji5aeXV4KGuD5GWk8bK4yvNIM7O6TMR0k/B1A6wYgI4OMEVlTPEVKLCAzmfmcffh85VXlmhqCVMddSXdVrNTMnHbZyQMTDsU+10N0J7HvapVl4NIlpEEOwVzNwDczEWGs2r1d7IywLENUNSmF+tTRD1lVs6NsO7oYtKNaywKRwruiiE6A30AZqV8qE0AgyWFGZThIypthEpjRCC8V3H8+L/XmTdmXX0b9XfLP3aJX+9zXUh3oo2QZjp+67LOBocGBXmz3cbT3I+Mxfvhi7WlqRQVDpTcUbznThS0p9yCRhtWWl1lwEtBxDQMIDv9n9XvwNNmnETRH1ldHgABYWS5bvq+fknhc1QmU/lf7r/5IZSPpWPpJRHa0ljncPRwZEHgh9gT+oedp3bZW051sOMmyDqKx1aeNA9oDFLYxPq9w2KwmYw1adyRc+n8osQ4q+ih0WV1XFGthuJp4sns/ZbPrqMzWLmTRD1ldERgRxKucy+xGqka1YozIypRmUBcAgtwdZ/gHi0II6KauLm6MY9ne5h3Zl1nEg/YW051sHMmyDqK8ND/HB2dGBprDqzorA+phoVLynlt0C+viT2EFDdfCoKnbs73Y2LwYU5B+ZUXrmuEjIGnt0H0enaszIoVaZxAycGBfuwYncSuQX1fEehwuqYalSKEosnCyGGCCF6AE0tpKne0NS1KSPbjWTV8VWkXlH5MRTVJyo8gPQr+fx5QJ1ZUVgXU43K23pSrueBF4BvgGctpqoeMa7LOIzSyIKDC6wtRWHH9G3njW9jV5aoJTCFlTE1oOTPUsoMKeU+PZVwuJRSHQk3A4GNAunfsj+LDy8mKz/L2nIUdorBQTAqzJ/1R1JJyajnIYAUVsXUdMKzhBDflX5YWlx94aGuD3E5/zJLjyy1thSFHTM6PJBCCT/uUud8FNbD1OWvn4HV+mMt2on6zApbKEymq3dXIlpEMP/gfPIL8ytvoFCUQZC3Oz1bN1FnVhRWxdTlr2XFHgvQ8tRHWFZa/eLBrg+SkpXCbyd/s7YUhR0TFR7IidQsdp6u5zl7FFbD1JlKadoDzc0ppL7Tz78f7TzbMWv/LHWXqag2g0N8cXMyqDMrCqthqk/lshDiUtEzsAp42bLS6hdCCMYFj+PoxaNsTtpsbTkKO6WhiyODu/myancy2XnqzIqi9jF1+ctDStmo2HMHKeUyS4urbwwJGkJzt+bM2lePQ7coaszo8AAycwv4bX+ytaUo6iGVpRMOq+hRWyLrC04GJ8Z2Gcu2lG0cuHDA2nIUdkqvoKYENnVTeVYUVqHCfCrA1AquSVSoFrMzusNoZu6Zyex9s3n/5vetLUdhhzg4CEaHBfLJ2iMkXLxCQJMG1pakqEdUaFSklLfWlhCFhoezB2M6jGHOgTlMujyJAA8VBl5Rde4M9+fjP49wx7QNZOYU4OfpxouDOjKyh7+1pSnqOCbv/hJCdBVCjBFCPFD0sKSw+sx9ne/DQTgw78A8a0uxOKtPrGbg0oGEzAlh4NKBrD6x2tqS6gQx8RdxEHA5pwAJJKZn8+qPe1UyL4XFMXX31xtoOemnA7cC7wPDLairXtPCvQVDgobw07GfSM+pu+cNVp9YTfTmaJKzkpFIkrOSid4crQyLGfhgzWEKS+1Mz8438sGaw9YRpKg3mDpTGQ30B1KklA8C3YHGFlOlYHzweLILsvn+8PfWlmIxpu2cRo6xZJyqHGMO03ZOs5KiukNSenaVyhUKc2GqUcmWUhYCBUKIRsA5INByshTtmrSjn38/Fh1aRE5B3QwQmJKVUqVyhen4ebqVWS6BJ+bFsv5IKoWlpzIKhRkw1ajECCE8ga+BWGAnsMViqhSAFrolLSeNlcfrXkDoDQkbEIgyr0kkE9dOZO2pteQbVSy06vDioI64ORlKlLk4OnBrx2Zsj0/jge+2c/OHf/P538dIvZxrJZWKuoioakgQIURroJGUco8lBFmaiIgIGRMTY20ZJiGl5N7V93Ip7xIrR67E4GCovJGNk2vM5ePYj1lwcAEtGrQgPTedXOO1HzUXgwu9fHtx4MIBzmefp4lLE4a0GcKIdiPo1LSTFZXbH8t3JfLBmsMkpWeX2P2VW2Dkt30pLNx2mm0n03B0EAwMbsG9ka3o09YLB4eyjb2i/iKEiJVSmhTv0SSjIoRYCXwPrJBS2nXSD3syKgC/x//O8/97no9v+ZgBrQZYW06NOHrxKC9veJmjF48ytvNYngl/hj9P/cm0ndNIyUrBx92Hp8OeZkibIRQUFrA5aTPLjy1n3Zl15Bfm06lpJ0a0HcGQNkNo4trE2h+nTnDsXCbfbz/N0p0JpF/Jp7VXA+6ObElUeABeDV2sLU9hI1jCqNwM3AUMAXagGZifpZTVXuwXQhiAGCBRSjlUCBGk9+uFtsR2v5QyTwjhAswFwoELwF1Syni9j1eBhwEjMElKuaayce3NqBgLjQxbPowmLk2YP3g+QtjfXaSUkkWHFjE1Zioezh681fct+gX0M7l9ek46v5z8hRXHV3DgwgEcHRy5JeAWRrQbQV//vjg5OFlQff0gJ//a7GV7fBpOBsGgYB/u7dWS3m287PLfncJ8mN2oFOvYgHaK/lHgdillo+pJBCHEc2jh8xvpRmUx8KOU8nshxAxgt5TySyHEBCBESvmEEOJu4J9SyruEEF2ARUAk4Af8CXSQUlYYRc/ejArA94e+Z8q2Kcy+fTbhLcKtLadKXMi+wORNk9mQuIF+/v14q+9beLl5Vbu/IxePsOLYCn4+8TNpOWl4uXoxtM1QRrYbSbsm7cyovP5y9OxlFm4/zbLYBC7lFNDG2517IltyZ3gATd2drS1PYQUsYlSEEG7AMLQZSxjaTGViNQUGAHOAKcBzer+pgI+UskAI0RuIllIOEkKs0V9vEUI4AilAM+AVACnlO3qfV+tVNLY9GpXsgmwGLR1E92bdmd5/urXlmMyGhA28tuk1svKzeD7iee7ueLfZ7njzC/PZmLCR5ceWsz5hPQWygGCvYEa2G8kdQXfQ2EXteK8pOflGVu9JZuH208SeuoizwYE7uvlwb2RLIoOaqtlLPaIqRqWy2F9FHS5GmxH8BnwG/E/fYlxdPgFeAjz0915AupSyQH+fABTFk/AHzgDoBidDr+8PbC3WZ/E2dQo3Rzfu6XQPX+z+guPpx2nr2dbakiqkuDO+fZP2fDvwW7PPIpwcnLi15a3c2vJW0nLSWH1iNcuPLWfKtim8v+N9bmt5GyPajqCPX586scHBGrg6GbgzPIA7wwM4nHKZhdtO8eOuRFbEJdGueUNt9hLmj2cDNXtRXMNUn8og4M/KlpZMGlCIocBgKeUEIcQtwAvAeGCrlLKdXicQ+FVK2VUIsQ9tqS1Bv3Yc6AVE623m6+Xf6m2uS/QuhHgMeAygZcuW4adOnarpx6h1LuZcZODSgdwRdAdv9n3T2nLK5ejFo7y0/iWOpR+76ox3MdSew/fghYOsOL6C1SdWk56bTnO35gxtqy2PBTUOqjUddZXsPCOr9iSxcNtp4s6k4+zowNBuvtzbqyXhrZqo2UsdxWzLX0KIl6SU7+uvo6SUS4pd+6+U8v+qIe4d4H6gAHBFy3f/EzAItfxVIVO2TmHp0aWsuXMNzRvYVuJNKSULDy3ko5iP8HD24O0b3+ZG/xutpifPmMf6hPUsP7acjYkbMUoj3Zt1Z0S7Edze+nY8nD0q70RRIQeSLrFw+ymW70oiM7eADi0acm9kS/7ZI4DGDdTmibqEOY3KTillWOnXZb2vptBbgBd0R/0SYFkxR/0eKeUXQoh/Ad2KOepHSSnHCCGCgYVcc9SvBdrXRUd9EWcun2HoT0MZHzyeZ8Oftbacq5zPPs/rm15nQ+IGbgq4iTf7vFkjZ7y5OZ99np+P/8zyY8s5nnEcF4ML/Vv2Z2S7kfTy7YWDqG5WbQVAVm4Bq3YnsWj7aXYnZODq5MCQbn7c26slYS091eylDmBOo7JLStmj9Ouy3ldT6C1cMypt0LYUNwV2AWOllLlCCFdgHtADSAPullKe0Nv/G3gIbdbzjJTy18rGtGejAvDC/15gc+Jmfh/9Ow2dG1pbDusT1jN502SLOOPNjZSS/Rf2s/zYcn45+QuX8y7j4+7D8LbDGdF2BC0btbS2RLtnX2IGC7efZsWuRLLyjHTy8eDeXi0Z2cOfRq5q9mKv2M1MxRrYu1HZf34/d6++mxciXmBc8Dir6cg15vJRzEcsPLSQ9k3a836/9+1qS2+uMZe/z/zN8mPL2ZK0hUJZSFjzMEa2G8nA1gNxd3K3tkS7JjO3gJVxSSzcfop9iZdwczIwrLsv9/ZqRfeAxjZ746EoG3MaFSOQBQjADbhSdAlwlVLa3a2HvRsVgIfWPMTpS6f59c5frXLwz9rOeHNzNussq06sYsWxFUBPLD8AACAASURBVMRfisfN0Y1/tPoHI9uNJLxFuFoeqyF7EtJZuO00K3cncSXPSBffRldnLw1dTNqAqrAyFjv8WBeoC0ZlQ8IGJqydwH9v/C/D2g6rtXFtzRlvbqSU7E7dzfJjy1kTv4bM/Ez8G/ozou0IhrcbTty5uDJDyihM43JOPsvjtJ1jB5Mv0cDZwIhQP+6NbMXx1Mwy45QpbANlVCqgLhgVKSWjVo5CCMGyYctqZSnhfPZ5Jm+azMbEjdwccDP/6fMfm3LGm5vsgmzWnl7LimMr2Ja8DYnEAQcKuXY8y9XgSnSfaGVYqoiUkrgz2uxl1Z4kcvILEQKK/xS5ORl4Z1Q3ZVhsBGVUKqAuGBWAFcdW8Nqm1/hywJcWny3YkzPeEiRnJnPnyju5nH/5umu+7r78Pvp3K6iqG2Rk53PT+3+TkX19igNHB0FooCeeDZxo5OaEp5szjd2caOzmiGcD/XUDJ71MezgZ1FKlJTD7iXqF7TE4aDCf7vqUWftmWcyo5BTk8HHsxyw8tJAOTTpY5GS8PeDb0JfM/Mwyr6mEYjWjsZsTl8owKAAFhRIngwNJ6TkcTL5MRnY+mbkFZdYtwt3ZgGcDZ90IXTM2Vw2TboSuGSjNMHm4OFYp5H95aQUUyqjYLU4GJ+7vfD9TY6ey/8J+gr2Czdr/kYtHeHn9y3XGGV9TfNx9SM5Kvq68RYMWVlBTt/DzdCOxjDTH/p5uLHrshhJl+cZCLmXnk5GdT7r+fCk7n/Qrepn+nJGdR0Z2PifOZ5J+RaubV1B+ZCkHAY2KDJCb07XXpYxQIzcn9iWm8/WGk+Tq/SWmZ/Pqj3sBlGFBGRW7ZnSH0czcM5PZ+2bzwc0fmKXP0s742lhesweeDnua6M3R5BhLZnvwdvOmUBaqHWI14MVBHXn1x71k5187t+zmZODFQR2vq+tkcMCroUu1cr3k5BtLGZ580q/kXX19rUx7TriYfbXMWEnq5ex8I68t30dOvpEgb3eCmrnTrKFLvVomLkIZFTumoXNDojpGMWf/HCZdnkSgR2CN+ivtjH+z75s0dW1qJrX2TZEzvvjur7DmYaw+uZoPYz7kpZ4vWVmh/VJ0d2/p5SRXJwOuTgZaNHKtUjspJZm5BVcNztDpG8usl5lbwCv6jAWgoYsjrb0bEOTdkCBvd9p4uxPk7U5rb3cau9ndaQyTUY56O+fclXMMWjaIqA5R/F+vKodiu0pxZ/wLES9wV8e76uVdVlV5b/t7zD84n5d7vszYLmOtLUdRC/R9968yl+v8PF354bHenDyfdfVx4nwWJ89nkngxm+KTHe+GzrT2cr86q9EMTkNaeTXA1cn2omorR309onmD5gxtM5Sfjv7Ek92frHKa3ZyCHD6K/YhFhxbVa2d8dXkh4gVSslJ4f8f7tHD///buPD6q6nz8+OfJTHbWrCQBWRIEcUOquGABIeAuaX9apMrPn9r2q9IWsO7aSm21roD92tJfv2ql1WKVKhQRZRO1YLWIWlYlCWsWE5IAWcwyM+f7x72BCWSFmdyZ5Hm/XvOae8/c5ZmBzDP3nHPPSWXSwElOh6SCrKXqunsuHc6AhDgGJMQx9tTkJvvUebzsK68hv7Rpwln3VSmvf7r/yHYikN471ko2SU2TTkafWNxh0LtNr1S6gLyDeeQszeGOkXdw+9m3t3s//8b46SOmM3PUzG7dGH+iaj21/HDlD9levp3nJz/PyJSRToekgiyQvb8qaxvYU1ZjXdWUWlc2jUmnsvZob7dIl3BKQpxfwrGr1ZLjSenZcvtNIGLV+1Ra0RWTCsCMNTPYXLqZldeuJMbdep3xsY3xj178KGMyxnRSpF1TRW0F01dM51DdIf5y+V8Y1HuQ0yGpMGeMoby63q8arTHpVLOrrLpJb7a4KJdVnZZ8tO1mcFI824sO86u3th93VdXRG0s1qbSiqyaVjcUbufndm3no/IeYOnxqi9sd+OYAD61/iPUF67UxPsD2Hd7HjStuJM4dx8tXvNylRxxQzvL5DEWHa49c2eT7tePsK6+hjc5qZPSJZf19E9p9Pk0qreiqScUYww1v38DBuoMsy1nW7BS62hgffJtLN3PLu7eQ1SeLFy59gbjIOKdDUt1MvcfHvooadpVW84M/N/9dJ8Cux9s/vFBHkkrot/qodhERbj7jZvZV7mPtvrVNXqv11PLYx48xY80MkmKTePXKV7l+ePcaaqWznJl8Jk+Ne4pt5du494N78fhavwNcqUCLckeQmdyD7BGpZPSJbXab9BbKA0GTShcyYcAEEqITuPeDezlr4VlMXjyZ5zc/z7Tl01i0YxHTR0xn0ZWLtHdXkI0fMJ4HRj/Auv3rePyTx+lutQEqdNx96TBij+mi3NKNpYGiXYq7kHd2v0NlQyUNPmsspaLqIp7d9Cw9Invwh+w/aGN8J5o6fCqF1YW8uOVF0uLTuPXMW50OSXVDnXVjqT9NKl3Is5uePZJQ/MVHxmtCccDMUTMpqi5i/qb59Ivvp0PkK0fknJPRqWOSaVLpQloaMbekpqSTI1EAERLBr8f8+kiPu5S4FM7rd57TYSkVVNqm0oX0i+/XoXIVfFGuKOZfMp+BPQcyc+1McitynQ5JqaDSpNKFzBw1kxhX0xsfY1wxzBw106GIFECvqF4syF5AjDuG29fcrleOqkvTpNKFXDnkSuZcNIe0+DQEIS0+Tae7DRFpPdL4ffbvOVx3mBlrZlDdUO10SEoFhd78qFQnWl+wnhlrZnB+2vk8N/E5IiO67hDoquvQmx+VClFjMsbw8IUPs6FwA4989Ijew6K6HO39pVQn+87Q71BYXcgfvvgD6fHp3D6y/SNLKxXqNKko5YA7zr6Doqoifv/F7+kX34/vDP2O0yEpFRCaVJRygIjw8EUPU1JTwiMfPUJqXCoXZVzkdFhKnTRtU1HKIZERkcwdP5fMPpnMXjebHeU7nA5JqZOmSUUpB/WI6sHvJv6OnlE9uWO1VSWmVDjTpKKUw1LjU1mQvYBaTy13rLmDw/WHnQ5JqROmSUWpEDC071DmXzKf3Yd3M+u9WdR7650OSakToklFqRAxOm00vxrzK/5d/G9+vv7n+Iyv7Z2UCjGdnlREZICIvCci20Rkq4jMtMsTRGSViOy0n/va5SIivxWRXBH5j4iM8jvWTfb2O0Xkps5+L0oF2lVDrmLmqJm8vettfrvpt06Ho1SHOXGl4gF+ZowZAVwAzBCREcB9wBpjzFBgjb0OcDkw1H78CFgAVhICHgbOB0YDDzcmIqXC2a1n3Mp1p17HC1te4LUvX3M6HKU6pNOTijGmyBizyV6uBLYDGcAUYKG92UIgx16eAvzZWP4F9BGRNOBSYJUxptwYUwGsAi4LRsyHli1j54SJbD9tBDsnTOTQsmXBOI1SgHUPywPnP8C4/uN49ONHWbdvndMhBd3y/OVMXjz5yDTYy/OXOx2SOkGOtqmIyCDgHOBjINUY09ifshhItZczgH1+u+23y1oqD6hDy5ZR9PNf4CksBGPwFBZS9PNfaGJRQeWOcPPk2Cc5LeE07vngHrYc2OJ0SEGzPH85czbMoai6CIOhqLqIORvmaGIJU44lFRHpAfwdmGWMadKH0lij7AVspD0R+ZGIbBSRjaWlpR3at2TefExtbZMyU1tLybz5gQpPqWbFRcbx3MTnSIhJYMaaGeyr3Nf2TmFo/qfzqfU2/Rur9dby7KZnHYpInQxHkoqIRGIllFeMMW/YxV/b1VrYz40zGRUAA/x272+XtVR+HGPMH40x5xpjzk1OTu5QrJ6i5m9Ga6lcqUBKik1iQfYCvMbLHavv4GDtQadDCgif8fFJ0Sc8+M8HKa5pfhrsouoiPi/5XEdyDjNO9P4S4AVguzFmrt9L/wAae3DdBCz1K/+/di+wC4BDdjXZu8BkEelrN9BPtssCyp2W1vz7iInBW6UTLangG9x7MP894b8prCrkJ2t/Qq2ntu2dQlRBVQELPl/AFW9cwa0rb2Xt3rXEueOa3VYQpq+YztS3pvLmzjfD+n13J50+SZeIXAx8CGwGGjviP4DVrvIacAqwB/ieMabcTkLPYTXC1wA3G2M22se6xd4X4FFjzJ/aOn9HJ+lqbFNpUgXmdoPHQ9SgQWTMm0vMaae1+3hKnaiVu1dy1/t3kT0wm6fHPU2EhMdtZjUNNazZu4YluUv4pPgTBOH8tPPJycph4ikTWbN3DXM2zGlSBRbjiuH+0ffjMR4W7VhE7sFcekf35rtZ3+V7w75H/579HXxH3U9HJunSmR/b4dCyZZTMm4+nqAh3Whops2fhTk2l8K678R48SOr999Hn+uux8p9SwfPnrX/mqY1PMX3EdO457x6nw2mRMYbPSz9nSe4S3t39LtUN1QzoOYApmVO4JvMa0no0rQFYnr+cZzc9S3F1Mf3i+zFz1Mwj02AbY9j49UYW7VjE2r1r8Rkf4/qPY9rwaVyQfkHYJNdwpkmlFYGcTthTXk7hvfdR/eGH9Lz8MtIeeQRXz54BObZSLXnikyd4efvL3Hvevdw44kanw2miuLqYZXnLWJq3lD2H9xDrjuXSQZeSk5XDqJRRJ/3Dq7i6mNe/ep3FXy2mvLacgb0Gcv2w65mSNYWeUfq3FyyaVFoR6Dnqjc9H2QsvUDr/WSLT08mYO5fYM88I2PGVOpbX5+Wu9+9izd41PDP+GSYNnORoPHXeOtbuXcuS3CV8VPgRBsO5qeeSk5XDpIGTiItsvs3kZNR761m1ZxWLdizii9IviHXHcvWQq7l++PUM7Ts04Ofr7jSptCLQSaVRzaZNFNz5MzxlZaTefTd9p9+o1WEqaGo9tfxg5Q/YUb6D5yc/z8iUkZ16fmMMWw5sYUnuElbsXkFlfSVp8WlMyZrCNUOuYUCvAW0fJEC2lm3l1R2vsmLXCuq8dZybei7Thk/jklMuITIistPi6Mo0qbQiWEkFwFNRQdH9D1C1bh09sieS/uijuHr3Dsq5lKqorWD6iukcqjvEXy7/C4N6Dwr6OQ98c8Cq3spdSt6hPGJcMWQPzGZK1hRG9xvtaPvGwdqDvJn7Jn/78m8UVBWQEpfCdadex7WnXktSbJJjcXUFmlRaEcykAtYvuPKXFlLyzDNEpqSQMW8usWefHbTzqe5t3+F93LjiRuLccbx8xcskxiYG/BwN3gbW7V/H0tyl/LPgn3iNl5HJI5mSNYVLB10acm0ZXp+Xfxb8k0U7FrG+cD3uCDeTB05m2vBpnJ18ttYgnABNKq0IdlJp9M0XX1Aw+04aSkpIufNOEv7fTUiE9lJRgbe5dDO3vHsLWX2yeOHSFwLWhrG9bDtL85ayPH85B+sOkhKbwtWZVzMlawqDew8OyDmCbfeh3fzty7+xJHcJVQ1VnJZwGtOGT+PywZcT445xOrywoUmlFZ2VVAC8hw5R9NBDVK5aTY9x40h7/De4++pAyirw3tv7HrPWzWJsxljmXTIPd4T7hI5TXlvO2/lvsyR3CV9WfElkRCQTTplATlYOF6ZdiCvCFeDIO0dNQw1v5b+l97ycIE0qrejMpAJWdVjFK3+l5IkncCUmkjH3GeJGjWp7R6U66NUdr/Lox48yddhUHjz/wXZX8zT4GlhfsJ4luUt4f//7eHweTk88nZysHC4ffDm9o7tOu2Bz97yM7T+WacOncWH6hXrPSws0qbSis5NKo2+2bKXgzjtpKCgg+ac/JfGHP9DqMBVwcz+dy5+2/IlZo2Zx65m3trptbkUuS3KX8Fb+W5TVlpEQk8DVQ6zqre7QLbe4upjFXy3m9a9eb3LPyzVZ19ArqpfT4YUUTSqtcCqpAHgrKyn6xS+oXPEO8WPGkP7kE7gTA9+wqrovn/Fx3wf3sWL3CqYOm8oH+z9ocpf6xRkXs2LXCpbkLmFr2Vbc4mbcgHHkZOUwJmNMt+yC29w9L1cNuYrrh1/PqX1PdTq8kKBJpRVOJhWwLr8P/u01vn7sMVy9e5P+9NPEnz/asXhU11Pvrefaf1zLrsO7mpRHSAQY8OFjWN9h5GTlcMWQK0iISXAo0tCzrWwbr+54lbd3va33vPjRpNIKp5NKo9odOyiYNZv6vXtJmnEHSbfdhrjCsxH0ZDQ3rlrvq692Oqywl/16Nl/XfH1ceZw7jpcue4nTEnUQ1NYcd89LbArXDTt6z0trY5WFmkDEqkmlFaGSVAC8VdUU//KXHF62jLgLLiDjqSdxd3C+l3DW3AjQEhND2q8e0cRyks5aeBYXbfXw/XWGxMNQ1gv+Ol7YcLqb/9z0H6fDO06o/rho7p6X0xNOZ3v5dup99Ue2i3HFMOeiOSGXWBpn1Tx2BOiOxqpJpRWhlFTAqg479MYbFP/q10TEx5Px1JPEX3SR02F1ip2XTGh2sjNXQgKnvPQn3MnJuPr00ZvVTsD9D43he0vKifEcLatzw9+v6sOch1YjAogcfXB0XTjmtcbyIP07hMuPi8Z7Xl7Z/gqmmYlpY1wxjO0/tklZa5+Z/Ul3+DV7g3btu3bv2uNm1QRIi09j5bUrWz+H/zE1qbQs1JJKo7qdO9k/ezb1efkk/tePSP7xjxH3id1rEMp81dVUffghlatWc3h523OQS2Qk7uRk3CkpLT+ndJ/kYxoa8JRX4C0vw1NW3vT5QBme8jK8ZeV8s20r4gvS33ZzCedEyu3XvIcPg8933Gki+vRmwIIFRGdm4uoVOr2xzlp4VrNJBWBI7yFHllvaBjip2Sw7cty9lXub3U6QDl2xdiSpdL1vrTAVPXQog197jeJfP0rZH/4/32z8lPRnniYyNdXp0E6ap6KCqrXvUbl6NdXr12Pq63H17YvExWJqvjlue1dSIv0efBBPaSmekhIaSkrwlJZSl59P9ccf4zt8+Lh9JDISV3ISkclWknEf+5ySgjsl5aSSTzCqaIwx+Cor8ZSV4S0vx3Og7PiEUVaGp9x69h461OxxJDISV2Ii7oQEXEmJrSaUlLvvBgzYX0DGGDBY68Ycec00rh/zWkvlR/fxK2+yz7HlAIaKvy5qNk7fwUPsmfZ9AFzJSURnZhE9ZAhRmUOs5cwhuJKSOv3HRL/4fhRVH3+FnRafxtKcpc3s4ZzJiyc3G2u/+H5BO6deqYSgQ0uXUvTLR4iIjib9icfpMXZs2zuFmIaiIipXr6Fy9WpqNm4Erxd3eho9s7PpmZ1N3KhRHF6x4oSqPXy1tUcSTnPPVhI6gK+5L+DISNzJSbiTk4ls5erH1adPk/uIOlJF46uvtxLBsVcSjQmi7OgVhae8HBoamn2frj59jiaKI88JuBMTrXW/1yJ69Gjy5bpzwkQ8hYXHHdOdns7QtWta/Gyd0GKsKSn0mzOH+vw86nLzqMvPpz4vD1/10Wm8I3r1shJNVibRQzKJzhxCVGYWkelpQbsPLFDtFJ1B21Q6QTgkFYC6/HwKZs2m7quvSPzBrSTPnIlEhnaXxrr8fCpXraZy9WpqN28GICor004kk4g5fcRxvyqD2UDrq63Fc+CAlWxKGpOOvVzamIBKm08+breVYJKTcackU73hI0xNzXGbSVwcPcZc1OSKwldZ2Ww8Eh19NCE0JorExKOJIsHvuW/fk/r3Dpd2CuhYrMYYPCUl1OXmUp+XT11+nv2cj7es7Oj+sbFEDR5kJZqsTKKGDCE6M5OoU04JyN+R9v5qZVtNKqHLV1vL14/9hoOvvUbsOeeQ8czTRKanOx3WEcYYardspXK1lUjq8/IAiDnrrCNXJNFDQn/gQV9dnX2l0/LVT93OnS3uHz00C1dikl+iSGiaIJKs1yQurlOrakK1R1VzAhGrp6KC+vx86vLsRJOXR11+Hp5Cv+oft5uogQOPq0aLGjyYiNjYAL+r0BCIz1aTSivCKak0OrR8OcU//wVERpL+m8foOWGCY7EYj4eaTzdZiWTNausP1uUi7rzz7EQykch+wauvdUo4VSeppnzV1dTt2k19Xi51flc39Xv3gtdrbSRCZHr6MdVomS12EgiXhB2oK1ZNKq0Ix6QCUL97N/vvvJO6bdtJuOkmUn52JxIV1Snn9tXVUb1hA5WrV1O19j28FRVIdDTxY8bQMzubHpeM7/KjL4dTdZJqH1NfT/2ePUcTTWO7za5dmLq6I9u5kpPsRJNJVOYQGr4uoWLhwibbNPd/wRhj9WrzejE+H8bjBZ8X4/VCk3Wf9ey/7vUcLT9u3e8YXq91/OOOaa2XzJvfbPVuR38MaVJpRbgmFbC+3EuefIqKV14h5swzyZg3l6j+wRm221tVRdX771s9tt7/AF9NDRE9etBj/HgrkXz7YiLi44Ny7lAVLr9O1ckxXi8NhYVWu01+PnV5VgeBurw8fFVVLe8ogkRHH0kiR66CQpEIp23f1oHNNam0KJyTSqPD766k6KGHAEh79Nf0mjw5IMf1lJVRuXYtlatWUfPRvzANDbiSkug5YQI9J2UTf/75nXZ1pFSosToJlJI7blyL2yTccgviioAIlzXskivCfnYhEfZ6hAvcfusut98+EdDautsFEfYxj1k/ep4I69nlYte11+H5+vjheoJ5paL3qYShXpdOJmbEaRTc+TMKfjqTmhtuIOWeu4mIju7wsRoKCqhcvZrDq1bxzabPwOcjsn9/+t5wAz0nZRM7cmS3HJNMqWOJCJGpKbjT01tsX0u9524HImtZyl0/a7baNmX2rKCdU5NKmIoaMIBBr7xMyTNzKV+4kJrPNtF/3jyiBg5sdT9jDPW5uUcSSd227QBEn3oqSbfdRs/Jk4geNqxb3J2u1IlImT2r07+oT1Rj9WxnVttq9VcXULl2LYX3PwAeD72mXEPVuveb/AfqdeWV1G7ebPXYWrmK+j17AIgdOZKek6yuv20lI6XUUd2tfU3bVFrRFZMKWNVYe26+hYa9x4z143IhcXGYykpwu4kfPZqek7LpMWEikakpzgSrlAor2qbSDUVmZGCaG+7D64WGBmu4l/HjcfXuOvONK6VCjyaVLsRTXNxsuamro/eUKZ0cjVKqOwrOiGvKEe60tA6VK6VUoGlS6UJSZs9CYmKalIVqrxSlVNek1V9diBPdB5VSyp8mlS6m99VXaxJRSjkm7Ku/ROQyEflSRHJF5D6n41FKqe4srJOKiLiA3wGXAyOAaSIywtmolFKq+wrrpAKMBnKNMfnGmHrgVUD7ziqllEPCPalkAPv81vfbZU2IyI9EZKOIbCwtLe204JRSqrsJ96TSLsaYPxpjzjXGnJucnOx0OEop1WWFe++vAmCA33p/u6xFn3766QER2XOC50sCDpzgvp0tnGKF8Io3nGKF8Io3nGKF8Ir3ZGJt94izYT2gpIi4ga+AiVjJ5N/A940xW4N0vo3tHVTNaeEUK4RXvOEUK4RXvOEUK4RXvJ0Va1hfqRhjPCLyY+BdwAW8GKyEopRSqm1hnVQAjDFvA287HYdSSqlu0lAfQH90OoAOCKdYIbziDadYIbziDadYIbzi7ZRYw7pNRSmlVGjRKxWllFIBo0lFKaVUwGhSaYOIxIjIJyLyhYhsFZFfOh1Te4iIS0Q+E5G3nI6lNSKyW0Q2i8jnIrLR6XjaIiJ9RGSxiOwQke0icqHTMTVHRIbZn2nj47CIhPTEOiIy2/4b2yIii0Qkpu29nCEiM+04t4bi5yoiL4pIiYhs8StLEJFVIrLTfu4bjHNrUmlbHTDBGHM2MBK4TEQucDim9pgJbHc6iHa6xBgzMkz6+z8LvGOMGQ6cTYh+xsaYL+3PdCTwLaAGeNPhsFokIhnAT4FzjTFnYN0icL2zUTVPRM4Afog19uDZwFUikuVsVMd5CbjsmLL7gDXGmKHAGns94DSptMFYquzVSPsR0r0bRKQ/cCXwvNOxdCUi0hsYC7wAYIypN8YcdDaqdpkI5BljTnQkic7iBmLtm5rjgEKH42nJacDHxpgaY4wHeB/4rsMxNWGM+QAoP6Z4CrDQXl4I5ATj3JpU2sGuSvocKAFWGWM+djqmNswH7gF8TgfSDgZYKSKfisiPnA6mDYOBUuBPdtXi8yIS73RQ7XA9sMjpIFpjjCkAngb2AkXAIWPMSmejatEW4NsikigiccAVNB0uKlSlGmOK7OViIDUYJ9Gk0g7GGK9djdAfGG1f/oYkEbkKKDHGfOp0LO10sTFmFNacODNEZKzTAbXCDYwCFhhjzgGqCVIVQqCISBRwDfC607G0xq7fn4KVuNOBeBG50dmommeM2Q48AawE3gE+B7yOBtVBxrqXJCg1LppUOsCu6niP4+sqQ8kY4BoR2Y01v8wEEXnZ2ZBaZv9CxRhTglXnP9rZiFq1H9jvd6W6GCvJhLLLgU3GmK+dDqQN2cAuY0ypMaYBeAO4yOGYWmSMecEY8y1jzFigAmsMwlD3tYikAdjPJcE4iSaVNohIsoj0sZdjgUnADmejapkx5n5jTH9jzCCsao+1xpiQ/MUnIvEi0rNxGZiMVbUQkowxxcA+ERlmF00EtjkYUntMI8Srvmx7gQtEJE5EBOuzDclOEAAikmI/n4LVnvJXZyNql38AN9nLNwFLg3GSsB/7qxOkAQvtqYsjgNeMMSHdTTeMpAJvWt8huIG/GmPecTakNv0EeMWuVsoHbnY4nhbZiXoS8F9Ox9IWY8zHIrIY2AR4gM8I7SFQ/i4iiUADMCPUOmyIyCJgPJAkIvuBh4HHgddE5FZgD/C9oJxbh2lRSikVKFr9pZRSKmA0qSillAoYTSpKKaUCRpOKUkqpgNGkopRSKmA0qaiwISLvicilx5TNEpEFHTzO2433HrWyzQPHrG/oyDnaGcdLInJtM+XD7ZGFPxORzECft6PxtHPf8SJykd/6CR9LhTdNKiqcLOL4kWvbPa6VWCKMMVe0476CJknFGNOZd3fnAIuNMecYY/La2rjxfXVCXK0ZTwjfAa86j9P/EZXqiMXAlfaNh4jIIKxxoj4UkR4iskZENtnzs0xp3EZE3vaYXAAAA8NJREFUvhSRP2PdrT/AnsMlyX59iT2Y5dbGAS1F5HGs0XI/F5FX7LIq+1lE5Cl7Lo3NIjLVLh8vIuvk6Fwrr9h3hiMivxCRf9v7/LGxvDkicgUwC7hdRN6zy+60990i9twdLbyvKju2rSKyWkRG2zHli8g1zZxLROQ5+zirgRS/174lIu/bn827fsN7rBORZ+3PZot9jkHAbcBsu/zb9mHGisgG+/x61dJdGGP0oY+weQBvAVPs5fuAp+1lN9DLXk4CcgEBBmGN1nyB3zF2A0n2coL9HIv15Zxor1cdc94q+/n/AKuw5vtIxRpeJA3rl/ohrEFHI4CPsAbLPHIOe/kvwNX28kvAtc28xznAXfbyt4DNQDzQA9gKnNPC+zLA5fbym1gDHkZizfnxeTPn+a7fe0kHDgLX2vtsAJLt7aYCL9rL64D/sZfHAluOjdnvvb1ufxYjgFyn/+/oo3MeeqWiwo1/FZh/1ZcAj4nIf4DVQAZHh/beY4z5VwvH+6mIfAH8C2v48qFtnP9iYJGxRq7+GmsujfPs1z4xxuw3xviwRq4dZJdfIiIfi8hmYAJwevve6pHzvWmMqTbWvD5vAI1XAse+r3qsUXPBSkTvG2twxs1+sfgb6/deCoG1dvkw4AxglVhTPjyElSwbLYIjc3b0aqV9aokxxmeM2UaQhllXoUfH/lLhZikwT0RGAXHm6BD/NwDJwLeMMQ1ijdLcOB1tdXMHEpHxWKPjXmiMqRGRdX77nIg6v2Uv4BZrStzfY81ouE9E5pzkOfwd+74ajDGN4y75GuMxxvjEmviqvQTYaoxpaarkY8d2ammsJ//Po8UqP9W16JWKCiv2r/X3gBdp2kDfG2semQYRuQQY2I7D9QYq7IQyHPCfJrpBRCKb2edDYKpYE7clY/3a/6SVczQmkAMi0gOreqkjPgRyxBq9Nx74jl0WCB9w9L2kAZfY5V8CySJyIYCIRIqI/9VVYzvSxViTaR0CKoGeAYpLhTG9UlHhaBFWm4F/T7BXgGV2FdNG2jc9wTvAbSKyHeuL1L8q6Y/Af0RkkzHmBr/yN4ELgS+wfqHfY4wptpPScYwxB0Xkf7Daa4qBf7fnDfrtv0lEXuJo4nreGPOZ3Th+st7Eqo7bhtU29JF9znq7Yf23Yk2h7MaaTXSrvV+tiHyG1fZyi122DFhsd5D4SQBiU2FKRylWSrWbXUV4lzFmo9OxqNCk1V9KKaUCRq9UlFJKBYxeqSillAoYTSpKKaUCRpOKUkqpgNGkopRSKmA0qSillAqY/wVsUWjTml1TcgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for k in range(len(var_forms)):\n", - " for j in range(len(entanglements)):\n", - " pylab.plot(depths, eval_counts[k][j], '-o', label=var_forms[k]+' + '+entanglements[j])\n", - "pylab.xlabel('Variational form depth')\n", - "pylab.ylabel('Evaluations')\n", - "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_vqe_initial_point.ipynb b/community/chemistry/h2_vqe_initial_point.ipynb deleted file mode 100644 index 2e83c3549..000000000 --- a/community/chemistry/h2_vqe_initial_point.ipynb +++ /dev/null @@ -1,291 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Initializing next computation from prior result*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE and RYRZ. It is compared to the same energies as computed by the ExactEigensolver and we also compare using the previous computed optimal solution as the starting initial point for the next distance.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYQUANTE chemistry driver. See the PYQUANTE chemistry driver readme if you need to install the external PyQuante2 library that this driver requires." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.05515974 -1.07591361 -1.09262987 -1.10591801 -1.11628598 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", - " -1.13414767 -1.1315512 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634212 -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591801 -1.11628598 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722135 -1.13711706 -1.13604436\n", - " -1.13414767 -1.1315512 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634212 -1.10115033]\n", - " [-1.05515974 -1.07591361 -1.09262987 -1.10591802 -1.11628599 -1.12416089\n", - " -1.12990476 -1.1338262 -1.13618944 -1.13722136 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133943 -1.10634212 -1.10115034]]\n", - "Hartree-Fock energies: [-1.04299622 -1.0630621 -1.0790507 -1.09157046 -1.10112822 -1.10814997\n", - " -1.11299652 -1.11597525 -1.11734902 -1.11734325 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251056 -1.09745432 -1.09191405 -1.08595588\n", - " -1.07963694 -1.07300677 -1.06610866]\n", - "VQE num evaluations: [[377 418 377 357 374 380 361 376 365 353 350 353 351 360 378 342 345 365\n", - " 344 341 349]\n", - " [377 300 262 263 281 293 286 273 292 259 288 266 265 241 301 280 283 273\n", - " 296 291 266]\n", - " [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "import copy\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'problem': {'random_seed': 50},\n", - " 'driver': {'name': 'PYQUANTE'},\n", - " 'PYQUANTE': {'atoms': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'parity',\n", - " 'two_qubit_reduction': True},\n", - " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'COBYLA', 'maxiter': 10000 },\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 5, 'entanglement': 'linear'}\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "algorithms = [{'name': 'VQE'},\n", - " {'name': 'VQE'},\n", - " {'name': 'ExactEigensolver'}]\n", - "titles= ['VQE Random Seed', 'VQE + Initial Point', 'ExactEigensolver']\n", - "\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(algorithms), steps+1])\n", - "hf_energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)\n", - "eval_counts = np.zeros([len(algorithms), steps+1], dtype=np.intp)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYQUANTE']['atoms'] = molecule.format(d/2) \n", - " for j in range(len(algorithms)):\n", - " dict = copy.deepcopy(qiskit_chemistry_dict)\n", - " dict['algorithm'] = algorithms[j] \n", - " if algorithms[j]['name'] == 'ExactEigensolver':\n", - " del dict['optimizer']\n", - " del dict['variational_form']\n", - " solver = QiskitChemistry()\n", - " result = solver.run(dict)\n", - " energies[j][i] = result['energy']\n", - " hf_energies[i] = result['hf_energy']\n", - " if algorithms[j]['name'] == 'VQE':\n", - " eval_counts[j][i] = result['algorithm_retvals']['eval_count']\n", - " if j == 1:\n", - " algorithms[j]['initial_point'] = result['algorithm_retvals']['opt_params'].tolist()\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)\n", - "print('VQE num evaluations:', eval_counts)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The plot of ground energies from VQE, whether starting from a random initial point or the optimal solution from the prior point are indistinguisable here." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xdc1dX/wPHXYQkogiAqQ8WJqEwRB7lX5QpzpFaO0szSsm3fMlvfX8PMTFuaq8yR5bY0K3MPVFQEcaKCCIiyZMP5/XEvfNEYF7iXyzjPx+M+vPfzOZ/zed+Lj/u+5zPeR0gpURRFUZSKMjF2AIqiKErNoBKKoiiKohcqoSiKoih6oRKKoiiKohcqoSiKoih6oRKKoiiKohcqoSiKgQghJgoh9hs7DkWpLCqhKJVCCBEphOh/37KCL1whRB0hxPdCiKtCiBQhRIgQ4qFS+nQSQiwRQtwQQqQKIS4LIVYIIdoZ8r3oixDiKSHEOe37jRVC7BBC2GjXrRBCfFCGviqUvLTb52o/x8IP5/L2qdQ+KqEoVYUZcB3oBdgCbwHrhRBuRTUWQjgABwFroAdgA/gB/wADitnGTN9Bl5cQohfwX2CslNIG8ADWGTcqDkkp6933uKHPHVSlv4GifyqhKFWClPKulHKulDJSSpknpdwGXAE6FbPJLCAZeEJKeUlqJEopl0spvwQQQrgJIaR2JHAN+Eu7fJgQ4qwQIlEIsUcI4ZHfqbZ960KvC0YKQojeQogoIcTLQog4IUSMEGJSobYOQogtQohkIcRRoFUJb7kzmi/wk9r3f1tKuVJKmSKEmAqMB17TjhK2avt/QwhxSTuiCRNCBGmXewDfAN207RO1y+sIIeYJIa5pR0DfCCGsdP6jFKIdYb4ihDgthEgSQqwTQlgWWj9EO6pMFEIcFEJ43bft60KI08BdIYSZEMJPCHFS+15+1vaX/zmHCiGGFtreXAhxSwjhW57YlcqjEopSJQkhGgNtgbPFNOkPbJRS5unQXS80I4BBQoi2wBrgRcAR2AFsFUJY6BhaEzQjKBfgKWCxEKKBdt1iIANwAiZrH8U5oo3nXSFEoBCiTv4KKeV3wGrgE+0oIf/L9RKa0Zgt8C7woxDCSUoZDkzjfyMMO237j9B8hj5Aa23Mc3R8n0UZDTwItAC8gIkA2i/6ZcAzgAPwLbCl8HsCxgKDATs03zsbgRWAPZq/R1ChtquAxwu9fhiIyU++StWlEopSmTZpf8Eman9Ff1VUIyGEOZov1JVSynPF9NUQuFlom2HaflOEELvuaztXOwJKB8YA26WUf0gps4F5gBXQXcf3kA28J6XMllLuAFIBdyGEKfAoMEe7r1BgZXGdSCn3ASPQHKbbDiQIIeZr+ylum5+llDe0I7h1wAUgoKi2QggBTAVmaUc/KWgOsT1WwnvrWvjvI4S4dN/6hdr93wa2oklUaPfzrZTyiJQyV0q5EsgEut637XXt36ArmkOcC7Wf46/A0UJtfwQeFkLU175+AvihhLiVKkIlFKUyPSKltMt/ANPvbyCEMEHz5ZEFPF9CXwloRgIASCm3aPucBdw/2rhe6LkzcLXQdnna9S46vocEKWVOoddpQD00o53880D5rlICKeVv2tGHPTAczS/+p4trL4R4stBhpUSgI5rEWhRHNOeXjhdq/7t2eXEOF/77SCnvP2R3s9Dz/PcN0Bx4+b4fC03RfNb57v8bRMt7K9MWrNeetzkAPCqEsAMeQvMDQ6niVEJRqgztr+rvgcbAo9oRRHH+BB7RJqDSFP7iuoHmC7DwPpsC0dpFaWi+iPM10aF/gHggR9tXvma6bKgdcfyJ5hxPxyJiRgjRHFiCJsk6aJNnKCCKag/cAtKBDoUShK2Ush76dx348L5kZC2lXFOoTeH4YgAX7Wefr/DnBprR3ePAKDSH8qJRqjyVUJSq5Gs05zqGag+NlGQ+0AD4QQjRSmjY8L/DMMVZDwwWQvTTHlp7Gc3hmYPa9SHAOCGEqRDiQTTnX0olpcwFfgXmCiGshRDtgQnFtRdCDBdCPCaEaKCNPUC7r8PaJrFAy0Kb1EXzpRyv3X4S/0s++e1d888FaUdeS4DPhRCNtNu4CCEG6fJ+ymgJME0I0UX7XuoKIQZr/x5FOQTkAs9rT9AP59+H7jahORz4AppzKko1oBKKUiVof4E/gyYh3BT/uw9ifFHtpZS30ByLzwD2AylokoEN8Gxx+5FSRqD55fslml/xQ9EksCxtkxe0yxLRXGm1qQxv43k0h4FuojnhvLyEtneAKWjOgySjOW/wqZQy/9DO90B77SGkTVLKMOAzNF/GsYAnmsNC+f5CcwHDTSHELe2y14GLwGEhRDKwG3AvIaZu4t/3oXQu7U1LKYO172WR9n1dRHvCvpj2WWjOHz2F5nN+HNiGJrHnt0kHfkFzAcCvpcWgVA1CTbClKIqxCSGOAN9IKZcXWjYHaCulfLz4LZWqRI1QFEWpdEKIXkKIJtpDXhPQXIb8e6H19mhGMN8ZK0al7FRCURTFGNyBU2gOeb0MjJRSxgAIIaagOdH/m5Ryr/FCVMpKHfJSFEVR9EKNUBRFURS9qFWF2ho2bCjd3NyMHYaiKEq1cvz48VtSypJuigWMmFCEEKOAuWjuOwjQXnpYVLsHgS8AU2CplPKj+9YvBCbrcsOWm5sbwcFF7kZRFEUphhCixKoP+Yx5yCsUzbXoxZ5009Y1Woym9EJ7YKz2hrH89f5obm5TFEVRjMxoCUVKGa69yawkAcBFKeVl7c1Qa9HUPMpPNp8Crxk2UkVRFEUXVf2kvAv3FpWL4n9F/J4HtuRfalgcIcRUIUSwECI4Pj7eQGEqiqIoBj2HIoTYTdHF9f4jpdxcgX6d0RSN611aW+3cEt8B+Pv7q2ukFaUY2dnZREVFkZGRYexQFCOxtLTE1dUVc3Pzcm1v0IQipexfeqsSRXNvFVJX7TJfNBMGXdQWLLUWQlyUUrb+dxeKougiKioKGxsb3NzcuLcQsFIbSClJSEggKiqKFi1alKuPqn7I6xjQRgjRQltF9TE0h7m2SymbSCndpJRuQJpKJopSMRkZGTg4OKhkUksJIXBwcKjQCNVoCUUIESSEiAK6AduFEDu1y52FEDsAtBMZPQ/sBMKB9VLK4qaEVRSlglQyqd0q+vc32n0oUsqNaOaVvn/5DTRzSOe/3oFm3u+S+jLEpEEF9p6PJ/RGEtN7q0GQoihKcar6Ia8q4cDFW8zfdZ7bd7NKb6woSrnVq3fvb8MVK1bw/PMlzQT9byEhIezYUeJv0ApZsWIFjo6O+Pj44OPjw5NPPlnmPvbs2cOQIUMMEJ1xqYSig0d8XcjJk2w7fcPYoSiKUoKcnJwSE0pOTo5e9jNmzBhCQkIICQlh1So1oWQ+lVB04OFUn3ZNbNh4Uk1rrSjGsnXrVrp06YKvry/9+/cnNjYWgLlz5/LEE08QGBjIE088wZw5c1i3bh0+Pj6sW7fuX+tzc3N59dVX6dy5M15eXnz77bcF+/j0008Llr/zzjtlii8kJISuXbvi5eVFUFAQd+7cAeDixYv0798fb29v/Pz8uHTp0j3bHTt2DF9f338tr45qVXHIigjydeH/fjvHlVt3adGwrrHDURSDenfrWcJuJOu1z/bO9XlnaIcS26Snp+Pj41Pw+vbt2wwbNgyABx54gMOHDyOEYOnSpXzyySd89tlnAISFhbF//36srKxYsWIFwcHBLFq0CNAknMLrv/vuO2xtbTl27BiZmZkEBgYycOBALly4wIULFzh69ChSSoYNG8bevXvp2bPnv+Jct24d+/fvB+CFF15g0qRJPPnkk3z55Zf06tWLOXPm8O6777JgwQLGjx/PG2+8QVBQEBkZGeTl5XH9uuZ+7YMHDzJjxgw2b95Ms2bNKv4hG5lKKDoa7uPCR7+fY9PJaGYNaGvscBSlRrKysiIkJKTgdX5yAM19MmPGjCEmJoasrKx77pUYNmwYVlZWxfZbeP2uXbs4ffo0GzZsACApKYkLFy6wa9cudu3aha+vLwCpqalcuHChyIQyZsyYgoSV30diYiK9evUCYMKECYwaNYqUlBSio6MJCgoCNDcO5gsPD2fq1Kns2rULZ2fnsn1QVZRKKDpqYmtJ91YObAqJ5sX+bdTllUqNVtpIwhhmzJjBSy+9xLBhw9izZw9z584tWFe3bslHDQqvl1Ly5ZdfMmjQoHva7Ny5k9mzZ/PMM8/cs3zx4sUsWbIEQK8n+52cnMjIyODkyZM1JqGocyhlEOTrytWENE5cu2PsUBSl1klKSsLFRVPKb+XKlcW2s7GxISUlpdj1gwYN4uuvvyY7OxuA8+fPc/fuXQYNGsSyZctITU0FIDo6mri4OJ577rmCE/DFffHb2trSoEED9u3bB8APP/xAr169sLGxwdXVlU2bNgGQmZlJWloaAHZ2dmzfvp3Zs2ezZ8+esn0YVZRKKGXwYMcmWJqbqJPzimIEc+fOZdSoUXTq1ImGDRsW265Pnz6EhYUVnJS/39NPP0379u3x8/OjY8eOPPPMM+Tk5DBw4EDGjRtHt27d8PT0ZOTIkSUmpvutXLmSV199FS8vL0JCQpgzZw6gSS4LFy7Ey8uL7t27c/PmzYJtGjduzLZt23juuec4cuRIGT6NqqlWzSnv7+8vKzrB1sw1J9l7IZ6jb/bHwkzlY6XmCA8Px8PDw9hhKEZW1P8DIcRxKaV/aduqb8QyCvJzITEtmz0RccYORVEUpUpRCaWMerRuSMN6Fuqwl6Ioyn1UQikjM1MThno782d4HEnp2cYOR1EUpcpQCaUcgnxdyMrNY8eZEieLVBRFqVVUQikHTxdbWjnWZeMJddhLURQln0oo5SCEIMjXhaORt7l+O83Y4SiKolQJKqGU03AfzQ1Wm0PUKEVR9KFPnz7s3LnznmULFizg2WefBeDs2bP07dsXd3d3WrVqxTvvvENeXh7w75LyPj4+hIWF/Wsfpqam+Pj40LFjR4YOHUpiYqJeYo+MjKRjx4566auwiIgIevfujY+PDx4eHkydOlUv/c6dO5d58+bppa/CVEIpp6b21gS0sGfjyWhq0708imIoY8eOZe3atfcsW7t2LWPHjiU9PZ1hw4bxxhtvEBERwZkzZzh69ChffPFFQdvCJeVDQkJo3779v/aRXyssNDQUe3t7Fi9ebPD3VREzZ85k1qxZhISEEB4ezowZM4wdUolUQqmAIF8XLsXf5Ux0krFDUZRqb+TIkWzfvp2sLM1EdpGRkdy4cYMePXrw008/FVQFBrC2tmbRokV8+umn5d5ft27diI7WHGFITU2lX79++Pn54enpyebNmwti8PDwYMqUKXTo0IGBAweSnp4OwPHjx/H29sbb2/uexJSRkcGkSZPw9PTE19eXv//+G9CMoh555BEGDBiAm5sbixYtYv78+fj6+tK1a1du3779rxhjYmJwdXUteO3p6QlQrhL8H374IW3btuWBBx4gIiKi3J9bSVRxyAp42NOJdzafZePJaLxc7YwdjqLoz29vwM0z+u2ziSc89FGxq+3t7QkICOC3335j+PDhrF27ltGjRyOE4OzZs3Tq1Ome9q1atSI9Pb3gsFXhkvIAhw4dKrYCcW5uLn/++SdPPfUUoKkCvHHjRurXr8+tW7fo2rVrQdn8CxcusGbNGpYsWcLo0aP55ZdfePzxx5k0aRKLFi2iZ8+evPrqqwV9L168GCEEZ86c4dy5cwwcOJDz588DEBoaysmTJ8nIyKB169Z8/PHHnDx5klmzZrFq1SpefPHFe+KcNWsWffv2pXv37gwcOJBJkyZhZ2fH999/X6YS/HXr1mXt2rWEhISQk5ODn5/fvz5PfVAjlAqwtTKnn0cjtp66QU5unrHDUZRqr/Bhr/zDXbq6/5BXUckkf76VJk2aEBsby4ABAwBNBeI333wTLy8v+vfvT3R0dMEEXi1atCiYo6VTp05ERkaSmJhIYmJiQWn7J554omAf+/fv5/HHHwegXbt2NG/evCCh9OnTBxsbGxwdHbG1tWXo0KGAZuQRGRn5r3gnTZpEeHg4o0aNYs+ePXTt2pXMzEx27drFqlWr8PHxoUuXLiQkJPyrBL+fnx/nzp3jwoUL7Nu3j6CgIKytralfv35BstQ3NUKpoCBfF34Lvcm+C7fo066RscNRFP0oYSRhSMOHD2fWrFmcOHGCtLS0gl/R7du3Z+/evfe0vXz5Mg4ODtjZ6X50IP8cSlpaGoMGDWLx4sXMnDmT1atXEx8fz/HjxzE3N8fNzY2MjAwA6tSpU7C9qalpwSGv8ijcl4mJScFrExOTYqcndnZ2ZvLkyUyePJmOHTsSGhpa5hL8CxYsKHfMZaFGKBXU270RdtbmqhSLouhBvXr16NOnD5MnT75ndDJ+/Hj279/P7t27Ac1IY+bMmbz77rvl2o+1tTULFy7ks88+Iycnh6SkJBo1aoS5uTl///03V69eLXF7Ozs77OzsCg6xrV69umBdjx49Cl6fP3+ea9eu4e7uXq44f//994Iy+zdv3iQhIQEXF5cyl+Dv2bMnmzZtIj09nZSUFLZu3VqueEqjRigVZGFmwhAvJzYcjyI1M4d6ddRHqigVMXbsWIKCgu654svKyootW7YwY8YMpk+fTnR0NG+99Rbjx48vaHP/OZSvvvqK7t27F7sfX19fvLy8WLNmDePHj2fo0KF4enri7+9Pu3btSo1z+fLlTJ48GSFEwcUCANOnT+fZZ5/F09MTMzMzVqxYcc/IpCx27drFCy+8UDDT46effkqTJk14+umniYyMxM/PDykljo6ObNq0iYEDBxIeHk63bt0ATYL+8ccf8fPzY8yYMXh7e9OoUSM6d+5crnhKo8rX68Hxq7d59OtDzBvlzchOrqVvoChVUHUqX79p0yZeeukl/v77b5o3b27scGoUVb6+EiRGhRe7zq9ZA5o7WLPxZFQlRqQotdcjjzzC5cuXVTKpYlRC0cG2JwMIfXQEebm5Ra4XQvCIjwsHLyVwMymjkqNTFEWpGlRC0UHddq1xSILQzZ8X2+YRXxekVKVYFEWpvVRC0UGnSe+RZQrXNm8otk2LhnXxbWanrvZSFKXWUglFB/WdWhPVxoKGoUlkp6cW2y7I14VzN1MIj0muxOgURVGqBpVQdGTbpyu2d+Hk2g+KbTPEyxkzE6FGKYqi1EoqoejI78l3SbOAuJ1/FNvGvq4Fvd0d2RwSTW5e7bkcW1H0oTLK15eFLiXeg4ODmTlzJgB79uzh4MGDBeu++eYbVq1aVa59zJ07FxcXl4JS+1u2bCmxH132FRISwo4dO0psU1EqoejIukETYjyscApLIz0prth2Qb6uxCZncuhSQiVGpyjVX2WUr8+3Z88eJk6cWOGY/f39WbhwYUGfhRPKtGnTePLJJ8vdd37Z+p9//pnJkycXJM+i6LIvlVCqmEYD+2OdBSdWvVNsm34ejbCpY6YOeylKGVV2+fqy6N27N6+//joBAQG0bduWffv2AZokMmTIECIjI/nmm2/4/PPP8fHxYd++ffeMPpYsWULnzp3x9vbm0UcfJS1N95lePTw8MDMz49atW0RGRtK3b1+8vLzo168f165dA+4d6RQVa1ZWFnPmzGHdunX4+Piwbt06PX9CGkapEyKEGAXMBTyAACllkbevCyEeBL4ATIGlUsqPtMsF8AEwCsgFvpZSLjR03L7j5nBi8VYS/zwIxcxzY2luysOeTmw7fYMPHumIlYWpocNSFL37+OjHnLt9Tq99trNvx+sBrxe7vjLL15dHTk4OR48eZceOHbz77rsFdcUA3NzcmDZtGvXq1eOVV14B4M8//yxYP2LECKZMmQLAW2+9xffff6/zZFlHjhzBxMQER0dHhg0bxoQJE5gwYQLLli1j5syZbNq0SadY33vvPYKDg1m0aFFFPoYSGWuEEgqMAPYW10AIYQosBh4C2gNjhRD5Y9iJQFOgnZTSA1hbZCd6Zm5Vj/iONrhezCI55mKx7YL8XLiblcuusJuVEZai1BiGLl/fpUsXfHx8ePrpp9myZUvB+Zb7z90UZcSIEcD/StiXRWhoKD169MDT05PVq1dz9uzZUrfJH+288sorrFu3DiEEhw4dYty4cYCmZH7hBKqvWCvCKCMUKWU4aO4wL0EAcFFKeVnbdi0wHAgDngXGSSnztP0Vf1JDz5oOG4HF0ZUcXz6XPm/+WGSbADd7XOys2HgyumDueUWpTkoaSRiSocvXHzlyBNAcqlqxYgUrVqzQedv8Ao+mpqbFlpovzsSJE9m0aRPe3t6sWLGCPXv2lLrNrFmzCkY7ZVWRWCuiKp9DcQGuF3odpV0G0AoYI4QIFkL8JoRoU1wnQoip2nbB8fHxFQ7KM+hVbteHjP0hxbYxMREM93Fm34VbxKdkVnifilJbVFb5ekOwsbEhJSWlyHUpKSk4OTmRnZ19T6n7surevXvBCG716tX06NFDL/Hpi8ESihBitxAitIjHcD10XwfI0Fa/XAIsK66hlPI7KaW/lNLf0dGxwjs2MTUl0achTa/kcuvS8WLbBfm6kJsn2XrqRoX3qSi1ydixYzl16tQ9CSW/fH3+vOgNGzYkMDDwX+XrC182XPiKq8owdOhQNm7cWHBSvrD333+fLl26EBgYqFNp/OJ8+eWXLF++HC8vL3744Yd7rnIrTZ8+fQgLCzPoSXmklEZ7AHsA/2LWdQN2Fno9G5itfX4OaKF9LoAkXfbXqVMnqQ/hO7+TYe7t5K7/DC+x3eCFe+WQhfv0sk9FMbSwsDBjh6CzjRs3yhYtWsjIyEhjh1LjFPX/AAiWOnzHVuVDXseANkKIFkIIC+AxIP/unk1AH+3zXsD5ygysbb/JxDYEefhCie0e8XHhTHQSF+MMO8xUlNpGla+vmoySUIQQQUKIKDSjkO1CiJ3a5c5CiB0AUsoc4HlgJxAOrJdS5l8a8RHwqBDiDPB/wNOVGb+JqSnpnZxpGpVH1Infi203zMcZE4G6J0VRlFrBKAlFSrlRSukqpawjpWwspRykXX5DSvlwoXY7pJRtpZStpJQfFlqeKKUcLKX0lFJ2k1Kequz30H68ptxC6I/zi23TyMaSB9o4sunkDfJUKRZFUWq4qnzIq0prHjCcKCeBRXDJszQ+6udCdGI6/1yo+BVmiqIoVZlKKBUgu7bCKU5y8e/ii7I91NGJJvUtWbrvciVGpiiKUvlUQqkAnwmzyRMQsf77YttYmJkwKdCNAxcTCI1OqsToFEVRKpdKKBXQqF13rjc3pf7JuGLnmwcY26UZ9eqYsUSNUhSlRKampvfcS/LRRx/pre/7q+0WV/L+xo0bjBw5Um/7LY/IyEg6duxo1BjKwyilV2oSi8AONFx9mrNbF+L5yKwi29S3NOexzk1ZfjCS1x5sh4ud/grWKUpNYmVlRUhI8VUoKiIkJITg4GAefrjguh/GjBlTZLHEDRuKn+67OsnJycHMrPK+5tUIpYL8Js0l2xSubir5ztNJD7QAYPn+K5URlqLUGElJSbi7uxMREQFo7qRfsmQJAM8++yz+/v506NCBd97537QSx44do3v37nh7exMQEEBSUpLO5dsLjw7S0tIYPXo07du3JygoiC5duhAcrCmOvmvXLrp164afnx+jRo0iNVUzPbibmxvvvPMOfn5+eHp6cu6cpmrzP//8UzAS8vX1JSUlBSklr776Kh07dsTT07PIuLp27XpPMcnevXsTHBzM3bt3mTx5MgEBAfj6+rJ582ZAM/IaNmwYffv2pV+/fgBk5RQ/l4o+qRFKBdm5enCwlTkNzySRk5mOWZ2iRx8udlYM8XJizdFrzOjXBlsr80qOVFF0d/O//yUzXL/l6+t4tKPJm2+W2CY9PR0fH5+C17Nnzy4YRUycOJEXXniBO3fuFJSC//DDD7G3tyc3N5d+/fpx+vRp2rVrx5gxY1i3bh2dO3cmOTkZa2vrf5VvX7FiRZEl7wv76quvaNCgAWFhYYSGhhbEduvWLT744AN2795N3bp1+fjjj5k/fz5z5swBoGHDhpw4cYKvvvqKefPmsXTpUubNm8fixYsJDAwkNTUVS0tLfv31V0JCQjh16hS3bt2ic+fO9OzZ854YxowZw/r163n33XeJiYkhJiYGf39/3nzzTfr27cuyZctITEwkICCA/v37A3DixAlOnz6Nvb09iWlZXL+TTnN7a+ob+HtHjVD0oF6fLtjehZD1H5bYbkqPltzNymXt0WuVFJmiVC/5h7zyH2PGjAFgwIABeHp68txzz7F06dKC9uvXr8fPzw9fX1/Onj1LWFgYERERODk50blzZwDq169f7GGf0kre79+/n8ceewyAjh074uXlBcDhw4cJCwsjMDAQHx8fVq5cydWrVwu2K6p8fGBgIC+99BILFy4kMTERMzMz9u/fz9ixYzE1NaVx48b06tWLY8eO3RPD6NGjCw7BrV+/vuD8zq5du/joo4/w8fGhd+/eZGRkFEy4NWDAAOzt7bl9N4vrt9OwNjelbh3Dz82kRih64D/xfc4t78PNHb/BEx8U266jiy2BrR1YfiCSSYEtsDBT+VypmkobSVS2vLw8wsPDsba25s6dO7i6unLlyhXmzZvHsWPHaNCgARMnTiQjI6NS4pFSMmDAANasWVPk+qLKx7/xxhsMHjyYHTt2EBgYqNMcLAAuLi44ODhw+vRp1q1bxzfffFMQwy+//IK7u/s97Y8cOULdunW5lZrJjcR06tUxw82hLiYmJU4XohfqG00PrBs04Ya7FU3C0shMKXku+Sk9WnIzOUNVIVaUMvj888/x8PDgp59+YtKkSWRnZ5OcnEzdunWxtbUlNjaW3377DQB3d3diYmIKfumnpKSQk5NTrvLtgYGBrF+/HoCwsDDOnDkDaM5rHDhwgIsXNRPt3b17l/PnSy4peOnSJTw9PXn99dfp3Lkz586do0ePHqxbt47c3Fzi4+PZu3cvAQEB/9p2zJgxfPLJJyQlJRWMkgYNGsSXX36ZXzyXkydPFrRPz8rhRmI6tlbmuDWsnGQCKqHoTcOBfaibCcGr5pTYrldbR9wb27Bk3+WC/wiKomjkn0PJf7zxxhtERESwdOlSPvs1qywDAAAgAElEQVTsM3r06EHPnj354IMP8Pb2xtfXl3bt2jFu3DgCAwMBsLCwYN26dcyYMQNvb28GDBhARkZGkeXbSyt5P336dOLj42nfvj1vvfUWHTp0wNbWFkdHR1asWMHYsWPx8vKiW7duBSffi7NgwYKCw2bm5uY89NBDBAUF4eXlhbe3N3379uWTTz6hSZMm/9p25MiRBVMi53v77bfJzs7Gy8uLDh068PbbbyOlJCkti7tZudhZW9DM3hqTkicy1CtRm77U/P39Zf4VGvqWlZZESGBX4lvUYfCvJV/2+HPwdV7dcJpVkwPo2bbic7Qoij6Eh4fj4eFh7DCqlNzcXLKzs7G0tOTSpUv079+fiIgILCwsjB3av0gpiUnK4FZqJvZ1LXCxsyptVtwiFfX/QAhxXGrmnyqRGqHoiYW1LXEdbHA5n0lqXGSJbYf5ONPIpo660VFRqri0tDQeeOABvL29CQoK4quvvqqyySTqTjq3UjNpWK9OuZNJRamEokeuQ4dTJweCl79TYrs6ZqZMDHRj34VbhN1IrqToFEUpKxsbG4KDgzl16hSnT5/moYceMnZI/5InJddup3EnLYvG9S1xsrU0SjIBlVD0ynPEq9y2gfS9J0ptOz6gOdYWpqpopFKl1KZD4DVBXp7kWkIaSenZONla0bh+xZJJRf/+KqHokam5BYk+DrheySHhcslJxdbanMc6N2PLqRvEJKVXUoSKUjxLS0sSEhJUUqkmcvMkkQl3Sc7IxsXOCkebOhXqT0pJQkIClpaW5e5D3YeiZy1HPA77vuDk8g/o//6vJbadFOjGykORLD8QyZsPq5OhinG5uroSFRVFfLyau6eqy5OShNQssnLyaFDXnLgUM+L00K+lpSWurq7l3l4lFD1zHziFvQ5fkHs4otS2Te2tedjTiZ+OXOP5vq2pb6nKsSjGY25uTosWLYwdhlKKhNRMnvj+KBfiUvhyrC+dOjoZO6QC6pCXnpmYmpLm50yz63ncOLW71PZTerQgNTOHdUevV0J0iqJUZzeTMhjz3WEuxaey5El/HqxCyQRUQjGI9uOeA+D0D5+V2tbL1Y6uLe1ZduAK2bmVUxFUUZTq5/rtNEZ9e5CYxHRWTg6gt3sjY4f0LyqhGIBbtxFEOwnMj10tvTEwtWdLYpIy2H46xsCRKYpSHV2MS2XUN4dITs9h9ZSudG3pYOyQiqQSioHkBrTAOVZyce9Ppbbt3bYRrRvV47u9qhyLoij3CrmeyKhvDpKTl8faqV3xaWpn7JCKpRKKgXg/+Tp5wPm135Xa1sREMLVHS8Jikjl4qeTikoqi1B57z8czbslhbCzN+eXZ7ng41Td2SCVSCcVAmnToyfXmptQ7GVvifPP5hvs607BeHb7dq250VBQFtpy6wVMrj9HcoS4bpnWjuUNdY4dUKpVQDMi8e3sc70D4jsWltq1jZsqkQDf2no8nPEaVY1GU2mzlwUheWHsS32YNWDu1K43ql/9mw8qkEooB+U1+hxwTuLJxrU7tx3dphpW5KUv3qXnnFaU2klIy/4/zvLPlLP09GrNqckC1mi5cJRQDatC0A9dbmeNw+g45maWXV7GztmBM56ZsORXNzaTKmXlOUZSqITdP8tamUBb+eYHR/q58Pd4PS3PDT9urTyqhGFi9vl2wS4XgFbpNqTo5sAW5eZIVByMNG5iiKFVGZk4uM9acYPWRazzbuxUfP+qFmWn1+3qufhFXM12fmUdiPUjc+IdO7Zs5WPNQRydWH7lKamaOgaNTFMXYUjNzmLT8GDvO3OStwR68/mA7o5WfryiVUAzMwtqWxEBnmkfmcvHvVTptM7VnS1Iyclh3TJVjUZSa7FZqJmO/O8yRK7eZP9qbp3u0NHZIFaISSiXoPPMTskzh3NIvdWrv3dSOgBb2LNuvyrEoSk11/XYao745xIW4FJY82YkRfuWv8ltVqIRSCRq26sR1T2tcT6Vy5+oZnbaZ2qMl0Ynp7DijyrEoSk1z7mYyj359kITUTFY/3YW+7RobOyS9UAmlkrSePI06OXDki1d0at+3XSNaOtZlyT5VjkVRapLgyNuM/uYQQsDP07rTqbm9sUPSG6MlFCHEKCHEWSFEnhDCv4R2DwohIoQQF4UQbxRa3k8IcUIIESKE2C+EaF05kZdPu4FTuNbMBJt918hOTy21vYmJYEqPloRGJ7P/4q1KiFBRFEP7MzyW8UuP0LBeHX55tjvuTWyMHZJeGXOEEgqMAPYW10AIYQosBh4C2gNjhRDttau/BsZLKX2An4C3DBtuxdUb3hv7FDj87Us6tQ/ydcG1gRUfbg8nR51LUZRq7efg60z94TjuTWz4eVo3XBtYGzskvTNaQpFShkspS5vWMAC4KKW8LKXMAtYCw/O7APIrpdkCNwwTqf50eXoeCbaQvu2ATu0tzU35z8MenLuZwhp1xZeiVEtSShbsPs+rG07TraUDP03pikO9is3/XlVV9XMoLkDhb9Io7TKAp4EdQogo4Ango6I6EEJMFUIECyGCjT1XtlkdK+72bknTqDzCtpde3wvgwY5N6NrSnvm7IkhMyzJwhIqi6FNWTh6vbjjNgt0XGNnJlWUTO1OvTs2ded2gCUUIsVsIEVrEY3jpW5dqFvCwlNIVWA7ML6qRlPI7KaW/lNLf0dFRD7utmK4vzCfdAi6v/F6n9kII5gzpQFJ6Ngt2XzBwdIqi6EtyRjaTVhxlw/EoZvVvy6cjvbAwq+q/4SvGoKlSStm/gl1EA00LvXYFooUQjoC3lPKIdvk64PcK7qtS2Dq7c8OnPs2OJxN3/jCN2nYtdZv2zvUZG9CMHw5fZVyXZrRtXLNO5ClKTROdmM6k5Ue5HH+XeaO8Gdmp+t9joouqni6PAW2EEC2EEBbAY8AW4A5gK4Roq203AAg3Uoxl1n7qy5jnQvDC2Tpv8/JAd+pamPL+tjB1GbGiVGGh0UkELT5ATGIGKycH1JpkAsa9bDhIe/6jG7BdCLFTu9xZCLEDQEqZAzwP7ESTMNZLKc9ql08BfhFCnEJzDuVVY7yP8mj5wGgiW5lhf+gmmSm6zdBoX9eCWQPasu/CLXaHxxk4QkVRyuPviDhGf3sIMxPBhme7E9i6obFDqlSiNv3a9ff3l8HBwcYOA4Cjy17H5pMt3HyyE33e/FGnbbJz83j4i31k5eaxa1ZP6phVr9LWilKT/XTkGm9vDqVdExuWTexM42oyKZYuhBDHpZTF3i+YT6cRihDiVyHEYCFEVT9EVm34T/gvsQ6Qt/OETlMEA5ibmjBnaHuuJqSxbH+kYQNUFEUneXmSj38/x5sbz9CzTUPWP9OtRiWTstA1QXwFjAMuCCE+EkK4GzCmWsHE1JScvh44x0pObyjyiuci9WjjSH+Pxiz66wJxyWoSLkUxpsycXF5YF8LXey4xrkszljzpT90afFlwaXRKKFLK3VLK8YAfEAnsFkIcFEJMEkJUn/kpq5iuL37BXUuIXrO+TNu9NdiDrNw8Pv69tPtCFUUxlMS0LJ5YepStp27wxkPt+PCRjtVyUix90vndCyEcgIlobig8CXyBJsHoNnOU8i/1HJoS29mB5hFZRJ/cqfN2bg3rMvmBFvxyIoqQ64kGjFBRlKJcS0hjxNcHCbmeyMKxvkzr1araToqlT7qeQ9kI7AOsgaFSymFSynVSyhlAPUMGWNP5TH8bgJCv3i/TdjP6tsHRpg5zt5wlL6/2XFihKMYWcj2RoK8OkJCaxY9Pd2GYt7OxQ6oydB2hLJRStpdS/p+U8p4JOnQ5868Uz8V3EFfdLWh8LIHUBN3rddWrY8Zrg9wJuZ7IppBoA0aoKEq+nWdv8th3h7CuY8qv07sT0KLmlJ7XB10TSgMhxIj7Hv2EEI0MGl0t4TJ2NHUz4PDCF8u03aN+rni72vLRb+e4q+afVxSDkVKy+O+LTPvxOO5N6rNxeiCtHNXBmfvpmlCeApYC47WPJcDrwAEhxBMGiq3W8Br5BjcaC8x2h+l8CTFo5kyZM7QDcSmZfLXnogEjVJTaKz0rl5lrQ/h0ZwRDvZxZN7UrDWtoteCK0jWhmAMeUspHpZSPopmbRAJd0CQWpQJMTE0xGeRH4wQIXvWfMm3bqXkDgnxdWLLvCtcS0gwUoaLUTjFJ6Yz+9hDbTt/gtQfd+eIxHyzN1Q3FxdE1obhKKWMLvY4DmkopbwPZ+g+r9uk+4wuS6kLCL9vLvO3rD7bDzETw4Y4wA0SmKLXTiWt3GLboAJfjU1nyhD/Te7dWV3KVQteEskcIsU0IMUEIMQHYrF1WF1DXrepBHRsHbndtjNvFHK4c3FCmbZvYWvJcn9bsPBvLATVdsKJU2IbjUTz27WGszE3Z+Fwg/ds3NnZI1YKuCeU5NHOO+Ggfq4DnpJR3pZR9DBVcbeM/47/kmMDZb+eVedunHmiBawMr3tsapqYLVpRyys2TfLg9jFd+PkWn5g3Y/Fygmi6iDEpNKNp53f+SUv4ipZylfWyQtamqZCVp1K47Vzta4XwyiaQbZbsL3tLclLcGexARm8JPR68ZKEJFqbmS0rOZvOIYS/ZdYUK35qx6KoAGdS2MHVa1UmpCkVLmAnlCCNtKiKfWaznhKayy4PAXL5V520EdmtCtpQOf7TrPnbtqumBF0dWl+FSCFh/gwMVb/DfIk3eHd8S8lpdRKQ9dP7FU4IwQ4nshxML8hyEDq63aD36O664m1N1zmZzM9DJtK4TgnWHtScnIZsHu8waKUFFqln/Ox/PI4gMkpmez+ukujOvSzNghVVu6JpRfgbeBvcDxQg/FAKyGBOKQBEeWvlLmbds1qc/4Ls358cg1Im6mGCA6RakZpJQs3XeZScuP4mJnxebnAunS0sHYYVVrOk+wJYSwAppJKattiduqNMFWSbLTUznaqzOpdiYM2nW2zNvfuZtF73l76OBcn9VPd1GXOirKfTJzcvnPxlA2HI9iUIfGzB/tU6vLzpdG3xNsDQVCgN+1r32EEFsqFqJSHHOreqQ80Ixm1/I4t2tJmbdvUNeClwa05eClBH4PvWmACBWl+opLyWDsd4fZcDyKmf3a8PX4TiqZ6Imuh7zmAgFo7zmRUoYALQ0UkwJ0eWEemWZwcfk35dp+fJdmeDjV582NZ7iRWLZzMYpSUx2/eofhiw4QFpPM4nF+vDSgLSYmagSvL7omlGwpZdJ9y9TNDgbUoLknUd71aHomjYTLJ8q8vZmpCYvH+ZKVk8fzP50gW92botRiUkqW7b/CmG8PYWoi2DCtO4O9nIwdVo2ja0I5K4QYB5gKIdoIIb4EDhowLgVoN/VFzHLg8Eczy7V9S8d6fDzSixPXEvn4t3N6jk5RqoeUjGymrz7Be9vC6O3eiO0zetDRRd0FYQi6JpQZQAcgE1gDJANlq7WulFnrXuO54mmJ68EEbpzaXa4+hng5M6Fbc5buv6LOpyi1TnhMMsMWHWBXWCyzH2rHkic7YWutZi03FF3nlE+TUv5HStlZSumvfZ5h6OAU8Jn9fwgJJ/5b/qLObw72wMvVllc3nFIViZVaY33wdR5ZfIC7mTn89HQXnlHT9Bqcrld5tRVCfCeE2CWE+Cv/YejgFHD1e5Dr3expcSqNiN3fl6uPOmamLB7nhwCm/3ScjGzd51xRlOomIzuX1zac4rUNp/Fr1oDtM3uo+0sqia6HvH4GTgJvAa8WeiiVoPs735FuCZfnLyh3H03trflstA+h0cl8sF2VuVdqpiu37vLI4gOsD47i+T6t+fHpLjjaqMmwKouuCSVHSvm1lPKolPJ4/sOgkSkFGjTtwK3+brhdzuHYyrJNwFXYgPaNeaZnS348fI3Nah56pYb57UwMQ7/cz83kDJZP6swrg9wxVZcEVypdE8pWIcR0IYSTEMI+/2HQyJR79Hp7JbfrQ/KyjeRml7/w4yuD3PFv3oDZv57hYlyqHiNUFOPIysnjva1hPLv6BK0a1WP7zB70cW9k7LBqJV0TygQ0h7gO8r86XlW/hkkNYmXbiKwRnXGOlexf8Ey5+zE3NeHLcb5YmpsyffVx0rPU+RSl+rqRmM5j3x1i2YErTOzuxs/PdMPFzsrYYdVaul7l1aKIh7pTvpL1fHkpMY0EphsOk5mSUO5+nGytWDDGhwtxqby9OVSPESpK5fnnfDyDF+4j4mYKi8b5MndYByzMVMl5Yyrx0xdCvFbo+aj71v3XUEEpRTM1t6DepGE4JMGeD56sUF892zoyo28bNhyPYv2x63qKUFEMLzdPMv+P80xcfpRGNpZsmfEAQ7ycjR2WQukjlMcKPZ9937oH9RyLooOASR9xtYUp9jsvkxgVXqG+XujXhsDWDry9OZTwmGQ9RagohnP9dhpjvj3Ewj8vMMLXlU3PBdLKsZ6xw1K0SksoopjnRb1WKknzmc9jnQEH3ptSoX5MTQQLxvhia2XO9NUnSMnI1lOEiqJfUkrWB1/nwQV7ibiZwvzR3swb5YWVhamxQ1MKKS2hyGKeF/VaqSQeD03jipcVrgcSiD65s0J9OdrU4cuxvlxNuMvsX8+g6/w4ilJZElIzmfbjcV7bcJqOLrb89mIPRvi5qrveq6DSEoq3ECJZCJECeGmf57/2LO9OhRCjhBBnhRB5QohiJ20RQiwTQsQJIULvW24vhPhDCHFB+2+D8sZSXfnO/j8ATn50/5HIsuvS0oFXBrmz7XQMPxy+WuH+FEVf/joXy6AF+/j7XDxvPtyOn6Z0xbWBtbHDUopRYkKRUppKKetLKW2klGba5/mvK1JhLRQYgWZK4ZKsoOhzNW8Af0op2wB/al/XKi6+g4jqZk+LU+mc2/ldhfub1rMVfds14v1tYZy6nqiHCBWl/NKycvjPxjNMXhFMw3oWbH4+kKk9W6kbFas4o1xjJ6UM12UqYSnlXuB2EauGAyu1z1cCj+gxvGojvyTLlS8WVrgvExPBZ6O8aWRjyXM/nSApTZ1PUYzj5LU7DF64n5+OXmNqz5Zsei4QD6f6xg5L0UF1vWi7sZQyRvv8JtC4uIZCiKlCiGAhRHB8fHzlRFdJGjTtQMLAFrhdzuXYyjcr3l9dCxaN8yU2OYOXfz6lzqcolSo7N4/P/zjPyG8OkZWTx09Pd+XNhz2wNFcn3qsLgyUUIcRuIURoEY/h+tyP1HzrFfvNJ6X8Tlty39/R0VGfu64Ser/9g7Yky6YKlWTJ59usAbMf8mB3eCxf/3NJDxEqSukuxacy8uuDfPHnBYZ7O/Pbiz3o1kpVCNaHxKhwtk3sSnLMRYPvy2AJRUrZX0rZsYjHZj10HyuEcALQ/hunhz6rpTo2DmQ/GoBzrGTf/IpdRpxvUqAbQ7yc+OT3CL7ff0UvfSpKUaSU/HD4KoMX7iMyIY3F4/yYP8aH+pZqEix9OLn2A86OGEHzo0mEbqr4ofHSmBl8D4axBU19sY+0/+ojSVVbPV5awp4dPlj+cpTM6QnUsanYLzshBPNH+5CbJ3l/WxiZOblM791aT9EqikZccgav/XKaPRHx9GjTkE9HetPE1tLYYdUIWWlJ/PHyMNz2xJFiC+L/nqH7cMNPsmuUcyhCiCAhRBTQDdguhNipXe4shNhRqN0a4BDgLoSIEkI8pV31ETBACHEB6K99XWuZmltQf3IQ9smw5/0n9NKnhZkJX471ZbiPM5/8HsHnf5xX51QUvZBSsjkkmkEL9nLoUgLvDuvAqskBKpnoydWjm/lnSDda/h3HFS9rfDdvp2MlJBMAUZu+JPz9/WVwcM0tkvzbQx1xjMml1dYNNGjaQS995uZJ3vjlND8fj2Jar1a8/qC7uqFMKbfIW3d5e3Mo+y7cwsvVlvmjvWndyMbYYdUIebm57P10IvV/CkYKuDshkJ4vLdVL30KI41LKYu8ZzFddD3kpRWjx4kxyX/icg+9OZfDSA3rp09RE8PGjXliYmfDNP5fIzMllzpD2KqkoZZKZk8t3/1zmy78vYmFqwtyh7Xmim5u6r0RPkm5EsG/GGFqdzeS6qwkdPp2Pi++gSo9DJZQapN2gqWzz/oamh24TfXKn3v5DmZgIPnikI3XMTFl24ApZOXm8P7wjJurLQNHB4csJ/GfjGS7F32WwpxNvD2mvDm/pUcj6/+PuvFW4pUDkQGcGfLoNszrGmRNGJZQaxu/NT4gfN4OT/zcbl/X6+4UihODtIR7UMTfh6z2XyMzJ4+NHvdQvTKVYt+9m8eH2cH45EYVrAyuWT+xMn3ZqJkV9yU5P5Y9XhtD8r1jybCHvw6d4aMQrRo1JJZQaxtm7Pye7O9BiXwLhv32Dx0PT9Na3EILXBrljaWbK57vPk5WTx/zR3piZVtf7YxVDyMuTbDgexX9/Cyc1I4fpvVsxo28bVRlYj64d28q5N96gRXQel7ys6PnFeuo7Gf9KTJVQaqDAd5ZwYcgIEhYu0mtCAU1SeaF/GyzMTPj493Nk5eSxcKyvmilPAeB8bApvbQzlaORtOrs14MMgT9o2Vifd9WnPxxOwWX0UByDuqa4MeXW5sUMqoL4FaiA7Vw9uD2pJ8yu5HF1umLqZz/ZuxZwh7fn97E2m/XicjGw1N31tlp6Vyye/n+PhL/ZxPi6FTx71Yt3UbiqZ6FFyzEW2jfKl8fKjJDQyodHyefSqQskE1GXDNVZmSgJHBzwAgM/m7dg0bmmQ/fx4+CpvbQqlR5uGfPeEvzqsUQv9HRHHnM2hXL+dzqN+rrz5cDsc6tUxdlg1yqkNH5Hy6UrskuFaPycGfLoFc6vKm6lS18uG1Qilhqpj44DNS09inwT/vDDKYPt5vGtzPh3pxf6Lt5i04ih3M3MMti+laolNzuC51SeYtPwYFqYmrJnSlc9Ge6tkokeZKQlsn9oDs7c1xdVz35/Aw4v+qtRkUhYqodRgPqNnE9nLkVYhaRxYNN1g+xnl35QFY3w4FnmHJ5cdJVlNJVyjJaVn88nv5+j16d/8ER7LywPasuMFVcxR387tWsKBh3vQcu8trvjUxXvLdrxHVu2pn9QhrxouKzWRfYO7Uz9Z0mz1Ehq3f8Bg+/o9NIYZa07i4VSfVZMDsLO2MNi+lMqXnpXLioORfL3nIimZOQzzdublAe40c1AzKOpTTmY6u2c/gvPOa6RZgpwykG7TvjBqTLoe8lIJpRa4+M9q7j73ATeamTFoawgmpoY7z/FneCzP/niCFg3rsnCsL+5N1EnZ6i47N491x66z8M8LxKVk0rddI14Z6E57ZzXplb5dPbKRiP+8RdOoPK64WxAwfxkNW3UydlgqoRSltiYUgF3/GU7TX84TNdKdAR9sMui+Dly8xcw1J0nJyOGF/m14pmdLda9KNZSXJ9l6+gbz/zjP1YQ0/Js34PWH2tHZzd7YodU4ebm5/PXeGBx+PUueCSSP7UyvV5cb9MdfWaiEUoTanFDycnPZOcQbp+u52Hz9Dq16PGbQ/d2+m8WczaFsOx2Dl6st80Z5q0tIqwkpJXvOx/PJ7xGExyTTrokNrz3oTh/3RqqGmwHEhu3nxKvP4nYph6vNTfH6ZAHO3v2NHdY9VEIpQm1OKAA3z+7l+vhnSLIT9NxxCAtrW4Pvc8eZGN7eFKpGK9VEcORtPvk9gqORt2lmb83LA9sy1MtZ1W0zkL2fT8Fq5X4sciB2aGv6vfcLpuZV79yjSihFqO0JBWD/F9Nw+PofLvdpxOCv/6mUfSakZjJn81m2n4nBWztaaaNGK1VKeEwy83ZG8Oe5OBxt6jCzXxvG+DdVFRAM5M71sxyY9TitQjOIbiJwe+8tWvccZ+ywiqUSShFUQtHYNqYTLU6nkfP+hEq9DHH76Rje3hxKakYOLw5ow9QearRibNcS0vh893k2hURTr44Z03q1YlKgG9YWqiqToRxd/gY5izdT/y5c69eE/p9sqpSjBRWhEkoRVELRSI65yOlHhiKFYe+iL8qt1EzmbA5lx5mbarRiJFJKDl1OYOXBSP4Ii8Xc1IRJgS2Y1qulutTbgO4m3ODvWUG0OppMnD00nP0sHYbONHZYOlEJpQgqofxPyLoPMZ/7I1d8rBmy5nil73/b6RvM2XyW1IwcZg1oy5QeLdRoxcDSsnLYeDKaVQevEhGbQgNrcx4LaMbE7m40rq/mJzGkE2veJ/WLn3BMhEvd7Og7fyPWDZoYOyydqYRSBJVQ7rX9mR60/OcWt5/vQ+DzX1X6/m+lZvL2plB+C72Jd1M7PhvlpaaDNYBrCWmsOhTJ+uDrJGfk0N6pPhO7uzHMxxlL86pxWWpNlRJ7mX9eeYxWx1JIsAWrGaPo9Ph7xg6rzFRCKYJKKPfKv4veJlnituZ7GrXrXukxSCnZdjqGOZtDuZuVy0sD2jKlR0s1cVcFSSnZd+EWKw9G8ldEHCZC8GDHJkzs7oZ/8wbq8t9KcHTZ62R/swW7ZLjS1Zben/1MPYemxg6rXFRCKYJKKP9WmXfRlyQ+RTNa+f2sZrQyo09r+rRrpBJLGaVm5vDL8ShWHorkcvxdGtazYGxAM8Z3aa6m3a0kiVHh7H/lcVqFpBFnD3YvVe7FL4agEkoRVEIp2q7Zw2i68QJRo9ox4P2NRotDSsnW0zF8sC2MuJRMXOysGNelGaP9m+JooyrYluRyfCqrDl1lw/EoUjNz8Ha1ZUJ3NwZ7OVHHTB3WqiwHv5qBWLYbm7twtUdD+n76C1a21X/aY5VQiqASStFys7PYNcyv0u6iL012bh5/hMXy4+GrHLyUgLmpYFCHJjzetTldWtirwzVa8SmZ/HUulm2nY9h34RbmpoLBnk5M6O6Gb7MGxg6vVkm4fIJDrz1Fq9AMbjoKGr02rdpcwaULlVCKoBJK8YxxF70uLsWnsvrwNTYc15xQbtOoHuO7NGNEJ1fqW5obO7xKJaXkQlwqf4TFsjs8lpDriUgJLnZWjPJ3ZVyXZjSyUYe1KlNebi77F06jzg/7sc6A632b0P+jjVjUszN2aHqlEkoRVDBVkhQAABhPSURBVEIp2f4vnsHh671c6duYh7/aY+xw7pGelcvW0zdYffgqp6KSsDI35RFfZ8Z3aU5Hl6qR/AwhOzePY5G32R0Wx+7wWK7dTgPAy9WW/h6N6e/RGA8nGzVqM4K4cwcJfn0aLSKyiW4iaPrWy7j3f8rYYRmESihFUAmldNvG+NHidDo5H0zC+9HXjB1OkU5HJfLj4atsOXWDjOw8fJra8XjX5gzxcqoRl8EmZ2TzT0Q8u8Nj+ftcHMkZOViYmRDYyoH+7RvTr11jdYLdiPJyc/nn4wnYrD+OeTbEDGpGvw9/qbKzKOqDSihFUAmldMa8i76sktKy+eVEFD8eucrl+LvYWZsz0s+VXu6OtHeqX62mor1+O40/w2PZHR7H4csJ5ORJ7Ota0LddI/p7NKZHm4bUraPKoRjbjVO7OTV7Fm6Xc7juYkKruW8b/ZxjZVAJpQgqoejm5NoPsJi7miueVjy89liVmZOhOPmlRFYfvsbOszfJydP8n25S35L2zvXp4Fyf9k716eBsS1N7K6MdHpJScis1iwtxKVyMS+VCbGrB81upWQC0dKzLAI/G9G/fGL9mDdRl01VEdnoqf80dg+NvlzGREDekNX3nrsesjpWxQ6sUKqEUQSUU3e14vg8tdt/kcq+GDP52n7HD0VlS2v+3d+dxVZX5A8c/34tAICSKghIKiltaam6ZmlqaW1baMi2a6VQztm9jTVnj1NSvGmtabJvKskUrx2kzNbcs08zEDUXNUEEFERcUUGS5PL8/ztFBu+hV7+Vw4ft+ve6L557zcM73ufdyv5zznPM8JazLOsD6rDxSsw6wfmceaTkF2DmGyNBanHs0wZxNm7izaRET6dNRdY0x5OQXHU0Yv+UUkGaXcw+VHK0XGVqLFrERtIiJpFXDSHq3akBSg+p72iRQrf3iRXa/NIlGOYb0ZrVo8/enSeh6ldNhVSpNKB5oQvFemdvNrJHdSFpRwLYrmzLgn7OcDum0HS5x82t2PqlZeazfeYDUrDw27synsMQNQHCQ0CImkrZxZ1Pfw/0unv5EDL9fuP9gydEEkn+49OjyOmHBtIyNoHlMJC1iImgRG0HL2EhiIkO1M70Ky92eypJHR9E0uYADEVB2cy+63/1GlT9i9wdNKB5oQjk1pUWFzLm+G802FpM98gIueWyq0yH5jLvMsHXPQdbvtI9ksvLYsDOPvMLS31eu4Dv/+MWRZ9WieYx1xNEiNuJouX5EiCaOAFLmdvPDhNGET1tO7UJIvyiK3s9OqdL9if6mCcUDTSinrih/Lwuv6018hpu8e/rR/c6JToeklN+kLZrK5qefocm2MnY0EuIfvpdzB41xOizHeZtQdLxwdUKhkdH0/PAbshsKtV+fz4qpTzodklI+dyg3m5ljelE45h9E7yoj8/o2XDp3tSaTU+RIQhGR60QkVUTKRKTCrCci74lIjoisO275BBHZKCIpIvKFiFSv21KrmIiYRC6Y9DG5UcBzn7JhduUPda+Uv/z89oOsHHgJzb7fTUbbMBKmf0C/J6vm3O5VnVNHKOuAq4FFJ6k3GRjoYfk84DxjTDtgE/CoT6NTvxPdrCMt33yNw2dB3riJbP1putMhKXVGslIWMHNoe+r8azbuIDj0+HUM+c9KGrTo6nRoAcuRhGKM2WCM+dWLeouAfR6WzzXGHOk9/RmI93GIyoO4dn1p+OJ4xEDmA0+QnXqy/weUqnpKCguY88jlZI+4m/i0YtIHnsNFc5cG5MRXVU116EP5IzC7opUi8icRSRaR5N27d1diWNVT0sU3UPupOwgvhA1/HkNuxlqnQ1LKayumPsmPA7rS5Kst7IqvRdR7zzHo5fnVbjBHp/gtoYjIfBFZ5+HhszuCRGQcUApMqaiOMeZtY0xnY0znBg0a+GrXNVrbK+6lbOw1ROcakkffQMHe7U6HpNQJpS/9nFlXtSP8qU8JLTTsGXMxA2asrnE3KPqb3wYHMsb089e2AURkFDAE6Gtq0rXPVUTnm59m8b49xL31Az/ePIi+0xbrf3mqytm/YwNLxt9Kk6W5NAqC9AFx9P77FMLrNnQ6tGopIE95ichA4GHgSmPMIafjqal63vcW2TeeT+IWN/NG9sFdUux0SEoBVj/JvMeHsumKq0lckktGu3DiPnuHQa8s0GTiR05dNjxMRHYAFwEzRWSOvTxORGaVq/cJsBRoJSI7ROTIZAOvAZHAPBFZLSJvVXITlK3v36aRMbgJzdYXMfvWnpS53U6HpGq4XyY9zJJ+XYif/iu5DVy4XrqHIZ+uILZNT6dDq/b0TnnlEzNv60GzxfvY2q8hg19b6HQ4qgZK+2EKvz3/HIlbStkTBa4Rl3DRHRNr5NhbvqZ3yqtKNejfi9jcIZym87OZO047OlXl2btlJd+M7MrhMU8Tk1nKtisS6TpvMT1q6ECOTtKEonzCFRTEgPd/YGvLYBr/dxPf/3OU0yGpaq64YD9zHh7M1mHDSVyeT3rnSBI+/5gBE2YTGhntdHg1kiYU5TPBYRFc8tF8tjV20eD9ZXz70EDtU1E+V+Z2s+T1u/i530U0+Xoru+OCCH39rwz56BfqJ3VyOrwaTROK8qmwOjH0mDKT9NYhJMzMYPa1HSnISXc6LFUNlLndLP/gMRZc1o56E7+jLAjy/jKEQbPX0eLSW5wOT6EJRflBREwig6avJOPyBBI3FpM8bJCO/aXOyMop45k/oB0Rz35BeH4Zmde3pcf85Vx42wSnQ1PlaEJRfuEKCmLgi99y6K/DqH0I9o15gqVv3ed0WCrArP7sGeb0b0vYP6YRub+MHde0pPN3i+n35HSCw3S65KpGLxtWfrd9xUw2PTiWuF2GrX1jGfDyXB0aXJ1QyucvkPXOZBK2ujlQG/IuS6LnI+/qTYkO0cuGVZXRuNPlXPTld2xuH0bTBbuYM6wT+3dscDosVQWlzniV2ZefT/Bjk6iX7WbbFYmcP3cB/Z/7RpNJANCEoipFeN2GDJ66nB3XtKTxllJSrr2aTfPfdzosVUVsmP0Ws65oh2vsm9TPLCV9UGPazJnNgAmzqR0d53R4ykuaUFSlcQUFcdkzX+EeP4KQEjj4wD9Z9K/bnA5LOWjT/PeZObQ9PPAKMdtKSO8fR6vZMxj00lwiYhKdDk+dIu1DUY7ITl1Eyr130DizjC0969F/4hztZK1Bfp0/ibQ3JpK4vojDIbDr4li6P/omUfHnOh2a8sDbPhRNKMoxxQX7mTumP0nJ+WQkBtHljQ+JbtbR6bCUn7hLivll0lgOfLmAhHQ3h4Mhq0cDuj/6OnUTznc6PHUC2imvqryQiCiGfPwLO0e0p9F2NxtvGE7qNxOdDkv5WEFOOvPGXcWSXu2JenkuZ+9xkzG4MYnfTOPytxZpMqlG9AhFVQmpM15l/1NvEnEI9t7YgT6PfqwD+wW4rDXzWTVxPLHL91G7CDIbCSGXd6PbnS8REl7H6fDUKdBTXh5oQqna9mxeQfKdt5CQ4SYjMYjGd/+ZtkPucTosdYpSPn+B7R9/TMKGIgRIbx1C/IjhnD/0If0nIUBpQvFAE0rVV1JYwMKnbiTq2zQiC2FLm1DOe2Q8CRcOczo0dQIlhQUsfeM+imYuJT7LcCgUsrvUo/2dTxDfcaDT4akzpAnFA00ogSNvZxo/PnUr5yzOIcgNGV3qcOHjr9KgRVenQ1Pl5G5PZdlLDxL54zbq5cPuKDjctyXd73tFL/utRjSheKAJJfDsWr+Y5c88QOLKAoqDIbtXI3r97T39snKQu6SYNdOfJ2vGV8SvPUhoCWxr4iJyWF8uvO0FHVanGtKE4oEmlMC1+cdP2fjiszTbWMyB2pA/uDW9H52snbuV6LfvPmDTZ+8StWoP9fKgKBh2tAknadTtnDtojNPhKT/ShOKBJpTAl/L5C2S/8T6Nd5Sxuy7I9RfT4543tbPXT7JTF7Fm8rMEL8ugUY7BLbC9aS3Cenek8+gn9UixhtCE4oEmlOqhzO1m2TsPUvTxXGL3WJej1r39ejrdNN7p0KqFvJ1pJE96nOLF62ic7saF9RqXdUuiw+hxxLTs5nSIqpJpQvFAE0r1UlpUyKIJoznrqzXUzYf0pFo0e+B+WvW71enQAk5xwX6SP3yC3Pk/Er+piJBS2BMF+Z1iOXf43TTtfq3TISoHaULxQBNK9XQoN5tFT4+i/vwMwopge2IQQV1a0H74WGJad3c6vCqruGA/a79+hZ2zZhK7Lp+Iw5AfBjnnn02Toddx3lUP6KlEBWhC8UgTSvWWm7GWpc/fQ8SqXTTIhTIgM94FnZty3o33E9e+n9MhOspdUsym+e+SsWAGZv12Gm53c1YJFNWCHa1CqT/gUjqOGK8XOqjf0YTigSaUmqHM7SZt4YekffkhYat30XCP9Rnf0Uhwd0qgzfV30qTLFQ5H6X9lbjcZy75g8+ypFK3dTExGMRGF1rqcepDfPJK6XTrR7g9jiYxt5mywqkrThOKBJpSaacviafw6/R1CVmUSt8v6vGfFCsUXxNHymttIuvgGhyP0nezURWyY8S4HV6VSd8sh6uVby/dFQm6zcCIuaEOrIbfS6Lw+jsapAosmFA80oahty2ew/rM3CFqZQXyW9dnPri8Uto+h+bBbaH7JyIDpNygu2M+2lbPIXvUD+1esJmJzHrF7rXUFZ0FOYgih5yeRNOgmEi4cFjDtUlWPJhQPNKGo8rJSFrDuk5cxyVuI316GC+uLeH9doSg6FFfDKMIbNyG6ZTviO/Z3ZJh1d0kxO9d+R9aa7zmQtoGizF0E5RwkYl8p9Q6Ay/7zLQqGnY2DkDaNSeh7BS373aZ3rCuf0YTigSYUVZGcjT+R8sm/OLw5g1p7Conc5yYq79gJgw7ayeZwdCiumDqENbGSzTkdLqVuQvtTOgIoc7txFxdSVlpESfEhDu3NJGv1QvZtWkPhtkxkVx5he0uot98QUvq/3zscDPvqCYejQ5CGUYQ1aUL91hfQqt9oQiKifPeCKFWOJhQPNKGoU1GUv5ftK78lZ/0y8remUZK1h1p7DhGR66bugeOSTSgcrA1SZh01uMr+Vw6yy0H2cpddrkipC/ZFwcHoYExsJKHnNKJey7bEdehLTOseeupKVTpvE0qtyghGqUAUGhlN897Dad57+O/WFeXvZfuqOeSk/kx++mZKMncjB4swLgGXC4IERKyfLhe4BAlyQZALXC7E5YKgICRIEFcQrtBQzm7WgkbtehLX7jKCwyIcaLFSZ0YTilKnITQymua9bqJ5r5ucDkWpKkPnlFdKKeUTjiQUEblORFJFpExEKjwvJyLviUiOiKyrYP1DImJEpL7/olVKKeUNp45Q1gFXA4tOUm8y4HH+UBFpDPQHtvk0MqWUUqfFkYRijNlgjPnVi3qLgH0VrH4JeBioOZepKaVUFRaQfSgichWQaYxZ40XdP4lIsogk7969uxKiU0qpmslvV3mJyHygoYdV44wxX53BdsOBx7BOd52UMeZt4G2w7kM53f0qpZQ6Mb8lFGOMv8YKTwKaAmtEBCAeWCkiXY0x2X7ap1JKqZMIuPtQjDFrgZgjz0UkHehsjNnjWFBKKaWcGXpFRIYBE4EGwH5gtTFmgIjEAe8aYwbb9T4B+gD1gV3AeGPMpOO2lY6XCUVEdgMZpxl2faCmJS1tc82gba4ZzqTNCcaYBierVKPG8joTIpLszVg21Ym2uWbQNtcMldHmgLzKSymlVNWjCUUppZRPaELx3ttOB+AAbXPNoG2uGfzeZu1DUUop5RN6hKKUUsonNKEopZTyCU0oxxGRgSLyq4ikichfPawfJSK7RWS1/bjNiTh96WRttuv8QUTW29MOTK3sGH3Ni/f5pXLv8SYR2e9EnL7kRZubiMhCEVklIikiMtiJOH3Fi/YmiMgCu63fi0i8E3H6khdTfoiIvGq/Jiki0tGnARhj9GE/gCBgM9AMCAHWAG2OqzMKeM3pWCu5zS2AVUBd+3mM03H7u83H1b8HeM/puCvhfX4buMMutwHSnY7bz+39D3CLXb4U+MjpuH3Q7l5AR2BdBesHA7MBAboBy3y5fz1COVZXIM0Ys8UYUwx8ClzlcEz+5k2bbwdeN8bkAhhjcio5Rl871ff5RuCTSonMf7xpswHOtst1gKxKjM/XvGlvG+A7u7zQw/qAY0485QdYbfzQWH4GokSkka/2rwnlWOcA28s932EvO9419uHidHuir0DmTZtbAi1FZImI/CwiHic9CyDevs+ISALWYKTfeVofQLxp89+BESKyA5iFdWQWqLxp7xqsif4AhgGRIhJdCbE5yevP/unQhHLqZgCJxph2wDzgA4fjqQy1sE579cH6b/0dEYlyNKLKcwMw3RjjdjqQSnAjMNkYE491auQjEanO3xF/AXqLyCqgN5AJ1IT32W+q84fldGQC5Y844u1lRxlj9hpjiuyn7wKdKik2fzlpm7H+i/naGFNijNkKbMJKMIHKmzYfcQOBf7oLvGvzrcA0AGPMUuAsrAEFA5E3f8tZxpirjTEXAOPsZQF/8cVJnMpn/5RpQjnWcqCFiDQVkRCsL5Ovy1c47nzjlcCGSozPH07aZuBLrKMTRKQ+1imwLZUZpI9502ZEpDVQF1hayfH5gzdt3gb0BRCRc7ESSqBOc+rN33L9ckdgjwLvVXKMTvgaGGlf7dUNOGCM2emrjQfcfCj+ZIwpFZG7gTlYV4m8Z4xJFZGngGRjzNfAvSJyJVCK1fk1yrGAfcDLNs8B+ovIeqxTAmONMXudi/rMeNlmsL6EPjX25TGBzMs2P4R1OvMBrA76UYHadi/b2wd4VkQMsAi4y7GAfaT8lB92X9h4IBjAGPMWVt/YYCANOASM9un+A/TzopRSqorRU15KKaV8QhOKUkopn9CEopRSyic0oSillPIJTShKKaV8QhOKCmgiUuBFnftFJNyH+xwqIm18uL2fzuB3C+yfcSIy/QT1okTkztPdj1Le0ISiaoL7gVNKKCISdILVQ7EGFvQJY0x3H2wjyxhz7QmqRAGaUJRfaUJR1YKI9LHntJguIhtFZIp9N/C9QBywUEQW2nX7i8hSEVkpIv8RkQh7ebqIPC8iK4HrROR2EVkuImtE5L8iEi4i3bFGSJhgz5WSJCId7EEzU0TkCxGpa2/ve7HmVUkWkQ0i0kVEPheR30Tk6XKxF5QrPyIia+19PuehnU3t2Ncet43EI3NgiEhbEfnFji9FRFoAzwFJ9rIJIhIh1lwgK+1tXVVuOxtE5B2x5r6ZKyJh9rrmIjLfjm2liCTZy8far1OKiDzp0zdWBRanx+/Xhz7O5AEU2D/7AAewxiZyYQ2X0tNelw7Ut8v1se6Krm0/fwT4W7l6D5fbdnS58tPAPXZ5MnBtuXUpQG+7/BTwsl3+HnjeLt+HNRx8IyAUa3y06OPaMAj4CQi3n9fz0N6vgZF2+a5yv5uIPQcGMBEYbpdDgLDy6+3ltYCzy70maVhzZCRijQLRwV43DRhhl5cBw+zyWVhHff2x5lER+3X/Bujl9OdCH848dOgVVZ38YozZASAiq7G+HBcfV6cb1umqJSIC1hdu+bG6PitXPs8+CogCIrCG8TiGiNQBoowxP9iLPsCauOmII8O4rAVSjT1ukohswRqkr/wQNv2A940xhwCMMZ7mtegBXGOXPwKe91BnKTBOrBkIPzfG/Ga39ZjQgf8TkV5AGdYQ5rH2uq3GmNV2eQWQKCKRwDnGmC/s2A7b7eiPlVRW2fUjsAYOXeQhLlXNaUJR1UlRubIbz59vAeYZY26sYBsHy5UnA0ONMWtEZBT2AJmnGVPZcfGVVRCfN044XpIxZqqILAMuB2aJyJ/5/WCew4EGQCdjTImIpGMddZSPGazXMewEuxPgWWPMv08hflVNaR+KqgnygUi7/DPQQ0SaA4hIbRFpWcHvRQI7RSQY6wv4d9szxhwAckXkYnvdzcAPnJ55wOgjV6SJSD0PdZZgDVrJcTEdJSLNgC3GmFeBr4B2HPsagDUjY46dTC4BEk4UmDEmH9ghIkPtfYTacc4B/liuH+ocEYnxqrWq2tGEomqCt4FvRWShMWY31gjRn4hICtbpodYV/N4TWP0GS4CN5ZZ/CowVkVV2x/QtWJ30KUAHrH6UU2aM+RbrFFmyfcruLx6q3QfcJSJrqXimvT8A6+xtnIc15eterNN860RkAjAF6GxvZ+Rx7avIzVijbadg9fU0NMbMBaYCS+1tTefYxKVqEB1tWCmllE/oEYpSSimf0ISilFLKJzShKKWU8glNKEoppXxCE4pSSimf0ISilFLKJzShKKWU8on/B75JSh191qMkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[j], label=titles[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VFX6+PHPQ2gBIh0poUSa9GIAUbor2Gg2YFlBRRAVcPGnK+z6VXR1bevaYFFRRBEBRaqCsIqodAKEGiBITQApAaQkkPL8/rg3cYgpA5PJpDzv12te3Ln33HOfOzPMk3vOnXNEVTHGGGOuVJFAB2CMMSZ/s0RijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonE+JWIjBORz9zlWiJyVkSC3OdXi8hPInJGRN4Qx8ciclJE1gY28isnIn1F5KB7rq0CHU9ek/5zkNd4fmaNdyyR5FEisk9E4t3/cKmP8YGOyxeqekBVy6hqsrtqGHAcuEpV/x/QAbgZCFXVtoGKMwf8GxjhnuvG3D64iKiInEv32fmbH493v4gsT7duiohcTBfDJsjwc2DyuaKBDsBkqaeqfufPA4hIUVVN8ucxslAb2K6//yq2NrBPVc9dbkUBPo/0agPbMtqQi3G2UNXduXCcrLymqs8EOIY8Q0SCCmrytCuSfCj1L0AR+bfbDLRXRG712F5WRD4SkcMiEisiL3o0J90vIitE5E0ROQGME5Egt2npuFvXCPev2qIico+IrE93/CdEZF4msYWJyI9uc9X/gEoe2+p41DsFGAz8zf1r9WHgQ6C9+/x5d587RCRSRE6JyEoRae5R3z4ReVpENgPn3Hqri8hXInLMPZdRHuXHicgXIvKpG982EQn32F5TRGa7+57wvAIUkQdFJMp9vReLSO0Mzr2EiJwFgoBNIvJLFnE2EpFl7nltE5FeHvVMEZH/isgi97VYISJVReQt9/g7rrTJTEQWisgbHs9niMhkd7muiCx1z/24iEwTkXJZvT4i0gh4z+N9O+VFDGmfA/d5mPzexPmdiEwQj6YlEbnefe9PicgmEenisW2ZiPzTfY3OiMgSEankbispIp+5sZ4SkXUicrW7rbqIzBeROBHZLSJDM4l1kYiMSLduk4jc6S5fKyL/c+vZKSL3epSbIiIT3df8HNA1u9cm31JVe+TBB7AP+FMm2+4HEoGhOF9ajwCHAHG3zwHeB0oDVYC1wMMe+yYBI3GuSIOB4cB2IBQoD3wHqLu9BBAHNPI4/kbgrkxiWwX8x92vE3AG+MzdVie1Xvf5FODFdOe13ON5K+Ao0M49z8Hu61LC4zWKBGq651EEWA88CxQHrgH2AD3c8uOABOA2t76XgdXutiBgE/Cm+7qVBDq423oDu4FG7mvyDLAyi/dOgXrp3kvPOIu59f3djbOb+zo19HhdjgPXuXEsBfYCg9w4XwR+8Pb46bZVdV/TbsBA9/UJcbfVw2laLAFUBn4C3vLi9bnkfcvovU23Lf3nYBVOc2BxnObN3/j9M1MDOOG+Z0Xc+E4Ald3ty4BfgAbua7sMeMXd9jCwACjlxn8dTjMq7rn91z2PlsAxoJvH5yT1+IOAFR6xNwZOua9RaeAg8ID7uWjlvm+NPV6D08CNbuwlA/294rfvq0AHYI9M3hjny+es+6FNfQx1t90P7PYoW8r9j1kVuBq4AAR7bB+Q+sXj7nsg3bGW4iYa9/mf0v1Hnwi85C43AU7ifpmnq6cWTpIq7bHuc648kUwE/pnuGDuBzh6v0YMe29plcG5jgY/d5XHAdx7bGgPx7nJ798ukaAbntQgY4vG8CHAeqJ3Je5dRIvGMsyNwBCjisW46MM7jdZnksW0kEOXxvBlwKovPjuJ8GXt+dnp4bL8L5wvwOG4yyKSePsBGL16fS943j3NISBfDJ+k/Bx6fmVIe+37m8Zl5Gpiaru7FwGB3eRnwjMe2R4Fv3eUHgZVA83T71wSScROou+5lYIrH5yT1+CHAudT3GngJmOwu9wN+Tlf3+8BzHq/Bp758D+SXhzVt5W19VLWcx2OSx7YjqQuqet5dLIPTPl8MOOxezp/C+XBX8dj3YLrjVE+3Lv32T4A/i4gA9wFfqOqFDOKtDpzUS/s49md9ilmqDfy/1PNwz6Wme5yMYq0NVE9X/u84yTXVEY/l80BJt4mlJrBfM+6/qA287VFnHCA4fy17yzPO6sBBVU3xWLc/XX2/eizHZ/C8TDbHa53us7PYY9sCnL/Qd6pqWie5OHfRzRCnOfQ3nC/01KbJrF6fzPw7XQyDMyhTHYjz+AzDH9/Te9K9px2Aah5l0r+nqa/NVJykM0NEDonIayJSzOOYZzz2S//6A+CW+Qbo764aAEzziK1dutgG4vxBl9G5FFjW2V7wHMS5IqmUxX/69EM+H8Zp1kpV85LCqqtF5CLOX9J/dh8ZOQyUF5HSHsmkVgbH89ZBnCuhl7Io41n3QWCvqta/wmPVkow7w1PjmJbBft7yjPMQUFNEingkk1rALh/qvxwvAVFAmIgMUNXp7vp/uXE2U9U4EekDpPYTZfX6+DKE+GGggoiU8kgmnp+/gzhXJBn2YWRFVROB54HnRaQOsBDninaJe8wQj2RSC4jNpKrpwHMi8hNOU9gPHrH9qKo3ZxXG5cadH9kVSQGjqodx/qO8ISJXiUgRtxO1cxa7fQE8LiI13M7VpzMo8ynOl0qi51+x6Y69H4jA+Y9bXEQ6AD19OJ1JwHARaSeO0iJyu4iEZFJ+LXBGnI7tYHFuImgqIm28ONZanC+1V9zjlBSRG91t7wFjRaQJpN3McI8P57UG5y/nv4lIMbfzuCcww4c6vSIinXDa9Afh9Dm9KyKpf4mH4DSnnnbXPeWxa1avz69AqIgUv9x4PD4z49zPTHsu/cx8BvQUkR7u+1lSRLqISGiGFV56rl1FpJk4N5r8htOvmKKqB3GavF5262sODHGPlZGFOFcfLwAzPZL/10ADEbnPfR+LiUgbcW5AKFQskeRtC+TS+/DneLnfIJyOy+04/RmzuLQpIL1JOMlnM05H+kKcdmvPWxWnAk3J/D9bqj/j9FXEAc/hJKAroqoRODcUjMc5j9047fGZlU8G7sDpPN2L0wfwIVDWi2Ml43yB1QMOADE4beCo6hzgVZwmkt+ArcCtmVSVLVW96B7rVjfG/wKDVHXHldaZgU3pPjtvichVOO/HCFWNVdWfgY+Aj91my+eB1jgdxN8Asz1izvT1welj2wYcEZHjHjH8LV0Mnts8DcTpgzmBcyPBTJyratwv/d44TZTHcK4CnsK7766qOJ/933CuwH7E+RyD00RVB+fqcA5Ov0aGt9q7zbizcfoOP/dYfwbojtPsdQinie1VnI74QiX1Lh9j0ohzK/F7qlrbY10wzt0+rVU1OmDBmQJPRGYCO1T1uUDHYrxjVyQGtxnoNnF+31AD50oi/dXPI8A6SyImp7nNQXXdZthbcK5A5gY6LuM962w34NyB9DxOk0I8TrPGs2kbRfa5ZfoEIjhT4FXFaTqqiNNk9ogGYGgZc+WsacsYY4xPrGnLGGOMTwpF01alSpW0Tp06gQ7DGGPyjUqVKrF48eLFqnpLdmULRSKpU6cOERERgQ7DGGPyFXEHwMyONW0ZY4zxiSUSY4wxPrFEYowxxieFoo8kI4mJicTExJCQkBDoUEwAlCxZktDQUIoVKxboUIzJ9wptIomJiSEkJIQ6dergDDNkCgtV5cSJE8TExBAWFhbocIzJ9/zatCUit4gz/eRuERmTwfYSIjLT3b7GHeoZEWkrzvSqkeJMa9nXY599IrLF3XbFt2IlJCRQsWJFSyKFkIhQsWJFuxo1Jof47YrEHbp5As7UmDHAOhGZr6rbPYoNwZkIqZ6I9McZObMfzuiq4aqaJCLVcEYyXeAxD0JXVc1sJNHLidHXKkw+Ze+9MTnHn1ckbXGmg93jDps9A2cwNk+9cWbfA2e455tERFT1vEfSKEkhmRzGGGNyyq6Tu3hr/VvkxjBY/kwkNbh0mskY/jiVZVoZN3Gcxhm4DXcyo23AFmC4R2JRYImIrBeRYZkdXESGiUiEiEQcO3YsR04oJ3Xt2pXFixdfsu6tt97ikUceAWDbtm1069aNhg0bUrduXZ577jlSUpz5dKZMmULlypVp2bJl2mP79u1/OEZQUBAtW7akadOm9OzZk1OnTuVI7Pv27aNp06Y5UpennTt30qVLF1q2bEmjRo0YNizTt/eyjBs3jn//+985UpcxeV1CUgLvbHiHfgv6MTt6Nr+e/zX7nXyUZ2//VdU1qtoEaIMzO11Jd1MHVW2NMynQY+6Mbxnt/4GqhqtqeOXKlXMpau8NGDCAGTMunRBvxowZDBgwgPj4eHr16sWYMWPYuXMnW7ZsYe3atbz99ttpZfv160dkZGTao3Hjxn84RnBwMJGRkWzdupUKFSowYcIEv5+XL0aNGsXo0aOJjIwkKiqKkSNHBjokY/KV1YdXc9f8u5i0ZRK3XXMb8/rMo2rpqtnv6CN/JpJYLp17OZQ/zomcVkZEiuLMZHfCs4CqRuFM/9nUfR7r/nsUZ86Mtn6I3e/uvvtuvvnmGy5evAg4f+UfOnSIjh078vnnn3PjjTfSvXt3AEqVKsX48eN5/fXXr/h47du3JzbWefnPnj3LTTfdROvWrWnWrBnz5s1Li6FRo0YMHTqUJk2a0L17d+Lj4wFYv349LVq0oEWLFpckpISEBB544AGaNWtGq1at+OEHZzrrKVOm0KdPH26++Wbq1KnD+PHj+c9//kOrVq24/vrriYuL+0OMhw8fJjT09xlUmzVrBkBycjJPPfUUbdq0oXnz5rz//vtpZV5//fW09c899/s8SC+99BINGjSgQ4cO7Ny584pfN2Pyg5MJJ/nH8n8wdIkztf2k7pN4qcNLlC9ZPleO78/bf9cB9UUkDCdh9MeZhtXTfJx5o1cBdwNLVVXdfQ66ne21gWuBfSJSGiiiqmfc5e448yj75PkF29h+6Ddfq7lE4+pX8VzPJplur1ChAm3btmXRokX07t2bGTNmcO+99yIibNu2jeuuu+6S8nXr1iU+Pj6teWrmzJksX/771OmrVq0iODg4w2MlJyfz/fffM2TIEMD5DcWcOXO46qqrOH78ONdffz29evUCIDo6munTpzNp0iTuvfdevvrqK/7yl7/wwAMPMH78eDp16sRTT/0+lfeECRMQEbZs2cKOHTvo3r07u3btAmDr1q1s3LiRhIQE6tWrx6uvvsrGjRsZPXo0n376KX/9618viXP06NF069aNG264ge7du/PAAw9Qrlw5PvroI8qWLcu6deu4cOFCWpKNjo4mOjqatWvXoqr06tWLn376idKlSzNjxgwiIyNJSkqidevWf3g9jSkIVJWv93zN6+te58zFMwxtNpRhzYdRsmjJ7HfOQX5LJG4SGAEsBoKAyaq6TUReACJUdT7OfNFTRWQ3zhzf/d3dOwBjRCQRSAEeVdXjInINMMe946Yo8Lmqfuuvc/C31Oat1ETy0Ucfeb1vv379GD9+fJZl4uPjadmyJbGxsTRq1Iibb74ZcD58f//73/npp58oUqQIsbGx/Pqr044aFhZGy5YtAbjuuuvYt28fp06d4tSpU3Tq5LQi3nfffSxatAiA5cuXpzVBXXvttdSuXTstkXTt2pWQkBBCQkIoW7YsPXv2BJwrjc2bN/8h3gceeIAePXrw7bffMm/ePN5//302bdrEkiVL2Lx5M7NmzQLg9OnTREdHs2TJEpYsWUKrVq0A50orOjqaM2fO0LdvX0qVKgWQliSNKUgOnjnIP1f9k1WHV9G8UnOeu+E5GpRvEJBY/PqDRFVdCCxMt+5Zj+UE4J4M9psKTM1g/R6gRU7HmdWVgz/17t2b0aNHs2HDBs6fP5/2V3Pjxo356aefLim7Z88eKlasSLly5byuP7WP5Pz58/To0YMJEyYwatQopk2bxrFjx1i/fj3FihWjTp06ab+pKFGiRNr+QUFBaU1bV8KzriJFiqQ9L1KkCElJSRnuU716dR588EEefPBBmjZtytatW1FV3n33XXr06HFJ2cWLFzN27FgefvjhS9a/9dZbVxyzMXldYkoiU7dPZWLkRIKKBPH3dn/n3gb3ElQkKGAx5dnO9sKgTJkydO3alQcffJABAwakrR84cCDLly/nu+++A5wri1GjRvH8889f0XFKlSrFO++8wxtvvEFSUhKnT5+mSpUqFCtWjB9++IH9+/dnuX+5cuUoV65cWlPatGnT0rZ17Ngx7fmuXbs4cOAADRs2vKI4v/32WxITEwE4cuQIJ06coEaNGvTo0YOJEyembdu1axfnzp2jR48eTJ48mbNnzwIQGxvL0aNH6dSpE3PnziU+Pp4zZ86wYMGCK4rHmLxm6/GtDPh6AG+uf5Mbqt/A3N5zGXDtgIAmESjEQ6TkFQMGDKBv376X3MEVHBzM/PnzGTlyJI8++iixsbE888wzDBw4MK1M+j6S//73v9xwww2ZHqdVq1Y0b96c6dOnM3DgQHr27EmzZs0IDw/n2muvzTbOjz/+mAcffBARSbsJAODRRx/lkUceoVmzZhQtWpQpU6ZcciVyOZYsWcLjjz9OyZJO++7rr79O1apVeeihh9i3bx+tW7dGValcuTJz586le/fuREVF0b59e8BJzJ999hmtW7emX79+tGjRgipVqtCmTZsriseYvOJc4jnGbxzPtKhpVA6uzFtd3uKm2jcFOqw0hWLO9vDwcE0/sVVUVBSNGjUKUESXZ+7cuTzxxBP88MMP1K5dO9DhFBj56TNgCq9lB5fx0pqX+PXcr9zb8F4eb/04IcVDcuXYIrJeVcOzK2dXJPlAnz596NOnT6DDMMbkoiPnjvDautf43/7/Ua9cPV6/9XVaVmkZ6LAyZInEGGPykMTkRKZGTeW9Te+hqoxqNYr7m9xPsaC8O+WBJRJjjMkj1h5ey0trXmLP6T10qdmFMW3HUKNM+pGl8h5LJMYYE2DHzh/j9YjXWbR3ETXK1GB8t/F0rtk50GF5zRKJMcYESFJKEtN3TGdC5AQuJl/k4eYP81Czh3L9l+m+skRijDEBsPHoRl5c/SK7Tu7ixuo3MrbdWGpflT/vyrQfJAZIbgwjfzm8GWo9IiKCUaNGAbBs2TJWrlyZtu29997j008/vaJjjBs3jho1aqQNeT9//vws6/HmWJGRkSxcuDDLMsYEQlxCHP+34v8YtGgQpy+c5j9d/sPEP03Mt0kE7IokYFLH2fIc9mPGjBm89tpracPIT5w4ke7du3P+/Hnuuusu3n77bUaPHg14N9ZWqmXLljFlyhSmTJniU8zh4eGEh4en1VmmTJm0H0EOHz7cp7pHjx7Nk08+SVRUFB07duTo0aMUKZLx3zneHCsyMpKIiAhuu+02n+IyJqckpyTzVfRXvL3hbc4nnueBpg8wvPlwShUrFejQfGZXJAGS28PIX44uXbrw9NNP07ZtWxo0aMDPP/8MOMnjjjvuYN++fbz33nu8+eabtGzZkp9//vmSq41JkybRpk0bWrRowV133cX58+e9PnajRo0oWrQox48fZ9++fXTr1o3mzZtz0003ceDAAeDSK5uMYr148SLPPvssM2fOpGXLlsycOTOHXyFjLs/W41sZuHAg/1z9TxpWaMisXrN44ronCkQSAbsicSwaA0e25GydVZvBra9kujk3h5G/EklJSaxdu5aFCxfy/PPPp437BVCnTh2GDx9OmTJlePLJJwH4/vvv07bfeeedDB3qzIvwzDPP8NFHH3k9SdWaNWsoUqQIlStXplevXgwePJjBgwczefJkRo0axdy5c72K9YUXXiAiIsLrqzZj/OFkwkne3fgus3bNomJwRV7p+Aq3hd2GO4J5gWGJJID8PYx8u3btuHDhAmfPniUuLi5tePhXX331DyPppnfnnXcCvw8lfzm2bt3KM888w6lTpzh79my2xwJ48803+eyzzwgJCWHmzJmICKtWrWL27NmAM3T93/72txyP1Rh/SExJZOaOmfx30385n3iegY0G8mjLR3NtaJPcZokEsrxy8Cd/DyO/Zs0a4Mr6SFIHXgwKCsp0yPfM3H///cydO5cWLVowZcoUli1blu0+qX0kV8KXWI3JaStjV/LqulfZc3oP7au15+m2T1O3XN1Ah+VX1kcSQLk1jLw/hISEcObMmQy3nTlzhmrVqpGYmHjJkPOX64YbbkgbFXnatGl07NgxR+Izxh/2/7afkd+P5OHvHiYxJZF3ur7D+ze/X+CTCFgiCbgBAwawadOmSxJJ6jDyqfOOV6pUiRtvvPEPw8h73v7reStubujZsydz5sxJ62z39M9//pN27dpx4403ejVEfWbeffddPv74Y5o3b87UqVN5++23vd63a9eubN++3Trbjd+dvXiW/6z/D33m9WHtkbWMvm40c3vPpWutrgWuLyQzNox8PmDDyPtHfvoMmLwnRVOYt3seb294mxMJJ+hTrw+Pt36cSsGVAh1ajrFh5AsQG0bemLwl8mgkL699me0nttO8cnPG3zSeppWaBjqsgLFEYowxXjpy7ghvrn+ThXsXUiW4Ci93fJnbw24vNE1YmfFrH4mI3CIiO0Vkt4iMyWB7CRGZ6W5fIyJ13PVtRSTSfWwSkb7e1mmMMTktISmB9ze9T6+5vfhu/3cMbTaUBX0XcMc1dxT6JAJ+vCIRkSBgAnAzEAOsE5H5quo5KNQQ4KSq1hOR/sCrQD9gKxCuqkkiUg3YJCILAPWiTmOMyREpmsK3e7/l7Q1vc+jcIW6ufTNPXPcEoSGhgQ4tT/Fn01ZbYLeq7gEQkRlAb8DzS783MM5dngWMFxFRVc8xNUriJBBv6zTGGJ9FHIngjYg32HpiKw3LN+TDGz+kXbV2gQ4rT/JnIqkBHPR4HgOkfxfSyrhXH6eBisBxEWkHTAZqA/e5272pEwARGQYMA6hVq5bvZ2OMKRT2nd7Hm+vfZOnBpVQpVYUXb3yRO665g6AiQYEOLc/Ks78jUdU1qtoEaAOMFZHLmulFVT9Q1XBVDa9cubJ/gvRRmTJlLnk+ZcoURowYcVl1+Hu49PRD1g8aNOiy60gd7NGYvCwuIY5/rfkXfef1ZfXh1YxsNZKv+35N73q9LYlkw59XJLFATY/noe66jMrEiEhRoCxwwrOAqkaJyFmgqZd1FhpJSUlZDpeelJRE0aK+v8WXM2S9MflNQlICn0V9xkdbPiI+KZ67G9zN8BbDC9TvQfzNn4lkHVBfRMJwvuz7A39OV2Y+MBhYBdwNLFVVdfc56DZn1QauBfYBp7yos0BYsGABL774IhcvXqRixYpMmzaNq6++mnHjxvHLL7+wZ88eatWqxYoVK4iPj2f58uWMHTuWqKioS7Z/9tlnjBkzhmXLlnHhwgUee+wxHn74YQBef/11vvjiCy5cuEDfvn0vawiWyMhIhg8fzvnz56lbty6TJ0+mfPny7N69m+HDh3Ps2DGCgoL48ssvL9lv3bp1DBs2jFmzZlG3bsEfOsLkXSmawjd7vuGdje9w5NwRuoR2YfR1o7mm3DWBDi3f8VsicZPACGAxEARMVtVtIvICEKGq84GPgKkishuIw0kMAB2AMSKSCKQAj6rqcYCM6vQ11lfXvsqOuB2+VnOJaytcy9Ntn86yTHx8fNqIvABxcXH06tULgA4dOrB69WpEhA8//JDXXnuNN954A4Dt27ezfPlygoODmTJlyiXDpY8bN+6S7R988AFly5Zl3bp1XLhwIW2ek+joaKKjo1m7di2qSq9evfjpp5/o1KnTH+L0HLL+8ccf54EHHmDQoEG8++67dO7cmWeffZbnn3+et956i4EDBzJmzBj69u1LQkICKSkpHDzodGutXLmSkSNHMm/ePOu3MgG19vBa/h3xb6LiomhcsTH/6vAv2lRtE+iw8i2//iBRVRcCC9Ote9ZjOQG4J4P9pgJTva0zvwoODiYyMjLteWpSAIiJiaFfv34cPnyYixcvEhYWllauV69eWc494rl9yZIlbN68mVmzZgFw+vRpoqOjWbJkCUuWLKFVq1YAnD17lujo6AwTSfqmrdOnT3Pq1Ck6d+4MwODBg7nnnns4c+YMsbGx9O3r/OynZMnfu7WioqIYNmwYS5YsoXr16pf3QhmTQ/ac2sN/1v+HH2N+pFrparzc8WVuC7uNIpJnu4vzBftlO2R75RAII0eO5IknnqBXr14sW7aMcePGpW0rXbp0lvt6bldV3n333T/MCbJ48WLGjh2b1syVasKECUyaNAkgRzvxq1WrRkJCAhs3brREYnLdsfPHeG/Te3wV/RXBRYP5a+u/MrDRQEoWvax7eEwmLA3nUadPn6ZGjRoAfPLJJ5mWy2649B49ejBx4kQSExMB2LVrF+fOnaNHjx5MnjyZs2fPAhAbG8vRo0d57LHHiIyMJDIyMtMv/LJly1K+fPm0UX+nTp1K586dCQkJITQ0NG0WwwsXLqRNs1uuXDm++eYbxo4d69X8JMbkhN8u/sbbG97m9jm3Mzt6Nv0a9uObO79hSLMhlkRykF2R5FHjxo3jnnvuoXz58nTr1o29e/dmWK5r16688sortGzZkrFjx/5h+0MPPcS+ffto3bo1qkrlypWZO3cu3bt3Jyoqivbt2wPOrcifffYZVapU8Sq+Tz75JK2z/ZprruHjjz8GnKTy8MMP8+yzz1KsWLFLOtuvvvpqvv76a2699VYmT55Mu3b24y7jH/FJ8UzfMZ2PtnzEbxd/49awWxnRcgS1rrK+OX+wYeRNoWWfgYInMSWROdFzeG/TexyLP0bHGh0Z1XoU11a48nlxCjMbRt4YU2ikaAqL9y1m/MbxHDhzgFZVWvF659e57urrAh1aoWCJxBiTb6kqy2OX887Gd9gRt4P65eszvtt4OoV2slF5c1GhTiSqah+2QqowNOkWdJFHI3lrw1us/3U9NcrU4OWOL3NrnVttOJMAKLSJpGTJkpw4cYKKFStaMilkVJUTJ05c8jsXk3/sOrmLdze8y7KYZVQsWZF/tPsHd9W/i2JBxQIdWqFVaBNJaGgoMTExHDt2LNChmAAoWbIkoaE2p0StFz0QAAAgAElEQVR+cvDMQSZGTuTrPV9TplgZRrUaxcBGAylVrFSgQyv0Cm0iKVas2CW/FjfG5E2xZ2OZtHkS83bPI6hIEPc3vZ8hTYdQtkTZQIdmXIU2kRhj8rbDZw8zacsk5uyegyDc2/BehjQbQpVS3v3WyeQeSyTGmDzlyLkjfLjlQ2ZHz0ZR7qp/Fw81e4iqpasGOjSTCUskxpg84dj5Y3y45UNm7ZpFiqbQt35fhjYbSrUy1QIdmsmGJRJjTEAdjz/O5K2T+WLnFySlJNGnXh+GNh9KjTI1Ah2a8ZIlEmNMQMQlxPHx1o+ZsWMGiSmJ3HHNHTzc/GFqXlUz+51NnmKJxBiTq04mnGTKtilM3zGdC8kXuD3sdh5u8TC1r6od6NDMFbJEYozJFXEJcUzdPpXPoz4nPimeW8NuZXiL4YSVtdvw8ztLJMYYvzp6/iifbPuEL3d9SUJSAj3q9GB4i+HULVc30KGZHGKJxBjjF4fOHmLy1snMiZ5DsiZz+zW3M6TZEK4pe02gQzM5zK+JRERuAd4GgoAPVfWVdNtLAJ8C1wEngH6quk9EbgZeAYoDF4GnVHWpu88yoBoQ71bTXVWP+vM8jDHe2//bfj7c8iFf//I1CPSp14cHmz5IzRDrRC+o/JZIRCQImADcDMQA60Rkvqpu9yg2BDipqvVEpD/wKtAPOA70VNVDItIUWAx43gs4UFUvnanKGBNQ0SejmbRlEov3LaZYkWL0u7Yf9ze5335IWAj484qkLbBbVfcAiMgMoDfgmUh6A+Pc5VnAeBERVd3oUWYbECwiJVT1gh/jNcZcgW0ntjFp8yS+P/A9pYqWYnCTwQxqPIhKwZUCHZrJJf5MJDWAgx7PY4D0k3SnlVHVJBE5DVTEuSJJdRewIV0S+VhEkoGvgBc1g8klRGQYMAygVi2bp9mYnBZ5NJL3N7/P8tjlhBQPYXiL4Qy8diDlSpYLdGgml+XpznYRaYLT3NXdY/VAVY0VkRCcRHIfTj/LJVT1A+ADcOZsz4VwjSnwVJU1R9YwafMk1h5ZS/kS5Xm89eP0a9iPkOIhgQ7PBIg/E0ks4Nm7Fuquy6hMjIgUBcridLojIqHAHGCQqv6SuoOqxrr/nhGRz3Ga0P6QSIwxOSc5JZnvDnzHx1s/ZtuJbVQOrsxT4U9xd4O7bT4Q49dEsg6oLyJhOAmjP/DndGXmA4OBVcDdwFJVVREpB3wDjFHVFamF3WRTTlWPi0gx4A7gOz+egzGFWkJSAvN/mc+UbVM4eOYgta+qzbPtn6VX3V6UCCoR6PBMHuG3ROL2eYzAueMqCJisqttE5AUgQlXnAx8BU0VkNxCHk2wARgD1gGdF5Fl3XXfgHLDYTSJBOElkkr/OwZjC6vSF08zcOZNpUdOIS4ijWaVmPHHdE3St2dXmRDd/IBn0Uxc44eHhGhFhdwsbk50j547w6fZPmbVrFvFJ8XSo0YEHmz5I+NXhiEigwzO5TETWq2p4duXydGe7MSZ3RJ+MZsq2KSzcsxBFuTXsVu5vcj8NKzQMdGgmH7BEYkwhpaqs/3U9k7dO5ufYnwkuGkz/a/tzX+P7qF6meqDDM/mIJRJjCpnklGSWHVzG5K2T2Xx8MxVKVmBEyxH0a9jPfgNiroglEmMKiXOJ55i7ey7ToqZx8MxBQsuE8ky7Z+hdrzcli5YMdHgmH7NEYkwBd/jsYT7f8Tlf7fqKM4lnaFG5BY+3fpybat1E0SL2FWB8Z58iYwqoTcc2MXX7VL7b7/zU6ubaN3Nf4/toXrl5gCMzBY0lEmMKkKSUJL4/8D2fbv+Uzcc2E1IshEGNBzHg2gFUK1Mt0OGZAsoSiTEFwJmLZ5gdPZvPoz7n0LlD1AypyZi2Y+hbr68NYWL8zhKJMfnYwd8OMm3HNOZEz+F80nnCrw7n6bZP0zm0s/0C3eQaSyTG5DOqSsSvEUyLmsbSA0sJkiBuCbuF+xrfR+OKjQMdnimELJEYk0+cTzzP13u+ZvqO6ew+tZuyJcryULOH6H9tf6qUqhLo8EwhZonEmDxu/2/7mbFjBvN2z+NM4hkaVWjECze8wK1ht9rvP0yeYInEmDwoOSWZFYdW8PmOz1kRu4KiRYrSvXZ3Blw7gBaVW9gAiiZPsURiTB5y+sJp5u6ey4wdM4g5G0OV4Co81vIx7m5wt82BbvIsSyTG5AE743Yyfcd0vtnzDQnJCbSu0prHr3N+fV6sSLFAh2dMliyRGBMgiSmJfL//e6bvmM6GoxsoGVSS26+5nQHXDrDh202+YonEmFwWcyaGr6K/Yk70HE4knCC0TChPhj9Jn3p9KFuibKDDM+ayWSIxJhckpSTxY8yPfLnrS1bGrkRE6FSjE/c0vIcONTpQRIoEOkRjrpglEmP86PDZw2lXH0fjj1IluAoPt3iYu+rfRdXSVQMdnjE5wq+JRERuAd4GgoAPVfWVdNtLAJ8C1wEngH6quk9EbgZeAYoDF4GnVHWpu891wBQgGFgIPK6FYeJ5k28kpySzPHY5X+76kp9jf0ZVubHGjfyjwT/oFNrJhm43BY7fPtEiEgRMAG4GYoB1IjJfVbd7FBsCnFTVeiLSH3gV6AccB3qq6iERaQosBmq4+0wEhgJrcBLJLcAif52HMd46ev4os6NnMzt6NofPHaZScCWGNB3CXQ3uokaZGtlXYEw+5VUiEZHZwEfAIlVN8bLutsBuVd3j1jED6A14JpLewDh3eRYwXkREVTd6lNkGBLtXLxWAq1R1tVvnp0AfLJGYAEnRFFYdWsUXO7/gx5gfSdZk2ldrz1NtnqJLzS52664pFLy9Ivkv8ADwjoh8CXysqjuz2acGcNDjeQzQLrMyqpokIqeBijhXJKnuAjao6gURqeHW41lnhn/qicgwYBhArVq1sgnVmMtz+Oxh5v4yl3m75xF7NpYKJSswqMkg7q5/N7Wuss+bKVy8SiSq+h3wnYiUBQa4yweBScBnqproj+BEpAlOc1f3y91XVT8APgAIDw+3PhTjs4vJF1l6YClzds9h1aFVKMr11a5Pm7a2eFDxQIdoTEB43UciIhWBvwD3ARuBaUAHYDDQJYNdYoGaHs9D3XUZlYkRkaJAWZxOd0QkFJgDDFLVXzzKh2ZTpzE5amfcTmZHz+abvd9w+sJpqpWuxvAWw+ldr7f1fRiD930kc4CGwFScTvDD7qaZIhKRyW7rgPoiEobzZd8f+HO6MvNxEtEq4G5gqaqqiJQDvgHGqOqK1MKqelhEfhOR63E62wcB73pzDsZcjtMXTrNo7yJmR88mKi6KYkWKcVOtm+hbvy/tqrazSaOM8eDtFck7qvpDRhtUNTyT9UkiMgLnjqsgYLKqbhORF4AIVZ2P04E/VUR2A3E4yQZgBFAPeFZEnnXXdVfVo8Cj/H777yKso93kkBRNYe2RtcyOns33+7/nYspFGpZvyJi2Y7jjmjvsV+fGZEK8+QmGiNyZwerTwBb3yz1PCw8P14iIzC6cTGGXvuM8pHgIt4fdTt/6fW3GQVOoicj6zC4WPHl7RTIEaA+kXpV0AdYDYSLygqpOvaIojQmQc4nn+N/+//H1L1+z9shaFKVdtXaMajWKbrW62YRRxlwGbxNJMaCRqv4KICJX4/wivR3wE07fiTF5WnJKMmsOr2H+nvl8v/97EpITqBlSk0daPEKver2s49yYK+RtIglNTSKuo0BNVY0TEb/c+mtMTok+Gc2CXxbwzZ5vOBp/lJDiIfSs25NedXvZbIPG5ABvE8kyEfka+NJ9fpe7rjRwyi+RGeOD4/HHWbR3EQt+WUBUXBRFpSgdanTg6bpP07lmZ0oElQh0iMYUGN4mkseAO3F+NwJOs9ZX7mCJXf0RmDGXKyEpgWUxy1jwywJWxK4gWZNpUrEJY9qO4ZY6t1AxuGKgQzSmQMo2kbiDL36nql2Br/wfkjHeS9EU1v+6nm/2fMOSfUs4k3iGKqWqcH+T++lZtyd1y9UNdIjGFHjZJhJVTRaRFBEpq6qncyMoY7Kiqmw/sZ2Fexfy7d5vORp/lOCiwdxc+2Z61u1Jm6vb2A8GjclF3jZtnQW2iMj/gHOpK1V1lF+iMiYDe07vYdHeRSzau4j9v+2naBGn3+PJsCfpHNqZUsVKBTpEYwolbxPJbPdhTK46cu5IWvKIiotCENpWbcsDTR7gT7X/ZL82NyYP8Hb0309EJBio5cXw8cb45GTCSZbsW8LCvQvZcHQDAE0rNuVvbf5Gjzo9qFKqSoAjNMZ48nbQxp7Av3Gmvg0TkZbAC6ray5/BmcLjXOI5lh5YyqK9i1h1aBVJmkRY2TAea/kYt4XdZnN8GJOHedu0NQ5nxsNlAKoaKSLX+CkmU0icSzzHsoPLWLxvMStiV3Ax5SLVSlfjvib3cVvYbTQs39B+LGhMPuBtIklU1dPp/lN7O+WuMWnOXjzLsphlLNm3JC15VAmuwj0N76F77e60rNKSIlIk0GEaYy6Dt4lkm4j8GQgSkfrAKGCl/8IyBcnZi2f54eAPLNm/hJWxKy9JHj3q9KBF5RaWPIzJx7xNJCOBfwAXgOk4c4z8019BmfzPM3msiF1BYkoiVYKrcG/De+lep7slD2MKEG/v2jqPk0j+4d9wTH525uIZlh10m60OucmjVBX6NexnycOYAszbu7YaAE8CdTz3UdVu/gnL5BfH44+z9MBSlh5Yypoja0hKSUpLHj3q9KB55eaWPIwp4Lxt2voSeA/4EEj2XzgmPzj420G+P/A93x/4nk3HNqEooWVCGXjtQP5U+0+WPIwpZLxNJEmqOtGvkZg8S1XZeXJnWvKIPhkNQMPyDXmkxSN0q9WNBuUb2K26xhRS3iaSBSLyKDAHp8MdAFWNy2onEbkFeBsIAj5U1VfSbS+BMyT9dcAJoJ+q7hORisAsoA0wRVVHeOyzDKgGxLuruueHeePzm+SUZDYd25SWPGLPxiIIraq04snwJ7mp1k2EhoQGOkxjTB7gbSIZ7P77lMc6BTL9UaI7/PwE4GYgBlgnIvNVdbtHsSHASVWtJyL9gVeBfkAC8H9AU/eR3kBVjfAyduOlC8kXWHN4DUsPLOWHgz8QlxBHsSLFuL7a9QxtNpTONTtTKbhSoMM0xuQx3t61FXYFdbcFdqvqHgARmQH0BjwTSW+cX82DcwUyXkREVc8By0Wk3hUc11yG4/HH+SnmJ5YdXMbqw6uJT4qnVNFSdArtxE21bqJDjQ6UKV4m0GEaY/KwLBOJiPxNVV9zl+9R1S89tv1LVf+exe41gIMez2OAdpmVUdUkETkNVASOZxP3xyKSjDPR1ovuTI3pYx8GDAOoVcvGaUqV2t/x48Ef+THmR7Yc3wJA1dJV6VW3F11qdqFN1TY2Fa0xxmvZXZH0B15zl8fy+5ztALcAWSUSfxmoqrEiEoKTSO7D6We5hKp+AHwAEB4e/odEU5hcSL7A2sNr+THGSR5Hzh1BEJpVasaIliPoUrOLdZYbY65YdolEMlnO6Hl6sUBNj+eh7rqMysSISFGgLE6ne6ZUNdb994yIfI7ThPaHRFLYHY8/zs8xP7Ps4DJWHV5FfFI8wUWDaV+tPY+2eJSOoR2tv8MYkyOySySayXJGz9NbB9QXkTCchNEf+HO6MvNxOvJXAXcDSzNqpkrlJptyqnpcRIoBdwDfZRNHoZCiKWw7vo3lsctZHrucLce3oGhak1Xn0M60rdbWmqyMMTkuu0TSQkR+w7n6CHaXcZ+XzGpHt89jBM64XEHAZFXdJiIvABGqOh/4CJgqIruBOJxk4xxAZB9wFVBcRPoA3YH9wGI3iQThJJFJl3PCBUlcQhwrYlew4tAKVsau5OSFk2lNVo+1fMyarIwxuUKyuAAoMMLDwzUiIv/fLZyckszWE1udq46Y5Ww7sQ1FqVCyAjdWv5Eba9zIDdVvoHzJ8oEO1RhTAIjIelUNz66ct78jMQFyIv4EKw+t5OfYn1l1aBWnLpyiiBShWaVmPNryUTrW6Eijio1sSBJjTMBYIsljElMS2XJsCysPrWR5rHPVAVChZAU6hXaiQ40OtK/WnnIlywU4UmOMcVgiCTBVZe9ve1l1aBWrD61m3a/rOJd4jiJShOaVmjOi5Qg6hHagUQW76jDG5E2WSAIgLiGO1YdWs+rwKlYfXs2Rc0cACC0Tym1ht9G+envaVm1L2RJlAxypMcZkzxJJLkhISmDD0Q1pyWNH3A4AQoqHpI1j1b56e2qG1MymJmOMyXsskfhBckoyO0/uZM3hNaw6tIoNRzdwIfkCRYsUpWXlloxsNZL21drTuGJjgooEBTpcY4zxiSWSHJCiKew+tZt1R9ax9vBaIn6N4LeLzk9u6pWrxz0N7qF99faEXx1OqWKlAhytMcbkLEskVyC1g3zd4XWsPbKWdUfWcfLCScDp5/hT7T/Rpmob2lZtS5VSVQIcrTHG+JclEi+oKjFnYlh7ZG1a4jgWfwyAq0tdTcfQjmmJo3qZ6gGO1hhjcpclkiws+GUBqw+vZu2RtWl3VlUsWZG2VdvStlpb2lZtS82QmjYEiTGmULNEkoVPt3/KkXNHaFO1DQ82fZB2VdsRVjbMEocxxniwRJKFiX+aSIWSFeyHgMYYkwVLJFmw+TqMMSZ79qe2McYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSY4wxPvFrIhGRW0Rkp4jsFpExGWwvISIz3e1rRKSOu76iiPwgImdFZHy6fa4TkS3uPu+I/TrQGGMCym+JRESCgAnArUBjYICINE5XbAhwUlXrAW8Cr7rrE4D/A57MoOqJwFCgvvu4JeejN8YY4y1/XpG0BXar6h5VvQjMAHqnK9Mb+MRdngXcJCKiqudUdTlOQkkjItWAq1R1taoq8CnQx4/nYIwxJhv+TCQ1gIMez2PcdRmWUdUk4DRQMZs6Y7Kp0xhjTC4qsJ3tIjJMRCJEJOLYsWOBDscYYwosfyaSWMBzEvJQd12GZUSkKFAWOJFNnaHZ1AmAqn6gquGqGl65cuXLDN0YY4y3/JlI1gH1RSRMRIoD/YH56crMBwa7y3cDS92+jwyp6mHgNxG53r1baxAwL+dDN8YY4y2/jf6rqkkiMgJYDAQBk1V1m4i8AESo6nzgI2CqiOwG4nCSDQAisg+4CiguIn2A7qq6HXgUmAIEA4vchzHGmACRLC4ACozw8HCNiIgIdBjGGJOviMh6VQ3PrlyB7Ww3xhiTOyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xPLJEYY4zxiSUSY4wxPrFEYowxxieWSIwxxvjEEokxxhifWCIxxhjjE0skxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ35NJCJyi4jsFJHdIjImg+0lRGSmu32NiNTx2DbWXb9TRHp4rN8nIltEJFJEIvwZvzHGmOwV9VfFIhIETABuBmKAdSIyX1W3exQbApxU1Xoi0h94FegnIo2B/kAToDrwnYg0UNVkd7+uqnrcX7EbY4zxnj+vSNoCu1V1j6peBGYAvdOV6Q184i7PAm4SEXHXz1DVC6q6F9jt1meMMSaP8WciqQEc9Hge467LsIyqJgGngYrZ7KvAEhFZLyLDMju4iAwTkQgRiTh27JhPJ2KMMSZz+bGzvYOqtgZuBR4TkU4ZFVLVD1Q1XFXDK1eunLsRGmNMIeLPRBIL1PR4Huquy7CMiBQFygInstpXVVP/PQrMwZq8jDEmoPyZSNYB9UUkTESK43Sez09XZj4w2F2+G1iqququ7+/e1RUG1AfWikhpEQkBEJHSQHdgqx/PwRhjTDb8dteWqiaJyAhgMRAETFbVbSLyAhChqvOBj4CpIrIbiMNJNrjlvgC2A0nAY6qaLCJXA3Oc/niKAp+r6rf+OgdjjDHZE+cCoGALDw/XiAj7yYkxxlwOEVmvquHZlcuPne3GGGPyEEskxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZIjDHG+MQSiTHGGJ9YIjHGGOMTSyTGGGN8YonEGGOMTyyRGGOM8YklEmOMMT6xRGKMMcYnlkiMMcb4xBKJMcYYn1giMcYY4xNLJMYYY3xiicQYY4xP/JpIROQWEdkpIrtFZEwG20uIyEx3+xoRqeOxbay7fqeI9PC2TmOMMbnLb4lERIKACcCtQGNggIg0TldsCHBSVesBbwKvuvs2BvoDTYBbgP+KSJCXdRpjjMlFRf1Yd1tgt6ruARCRGUBvYLtHmd7AOHd5FjBeRMRdP0NVLwB7RWS3Wx9e1JljVv93KCGnovxRtTHG+N2Zco24/tFJfj+OP5u2agAHPZ7HuOsyLKOqScBpoGIW+3pTJwAiMkxEIkQk4tixYz6chjHGmKz484okoFT1A+ADgPDwcL2SOnIjkxtjTH7nzyuSWKCmx/NQd12GZUSkKFAWOJHFvt7UaYwxJhf5M5GsA+qLSJiIFMfpPJ+frsx8YLC7fDewVFXVXd/fvasrDKgPrPWyTmOMMbnIb01bqpokIiOAxUAQMFlVt4nIC0CEqs4HPgKmup3pcTiJAbfcFzid6EnAY6qaDJBRnf46B2OMMdkT5wKgYAsPD9eIiIhAh2GMMfmKiKxX1fDsytkv240xxvjEEokxxhifWCIxxhjjE0skxhhjfFIoOttF5Biw/wp3rwQcz8Fw8gM758KhsJ1zYTtf8O2cjwOo6i3ZFSwUicQXIhLhzV0LBYmdc+FQ2M65sJ0v5N45W9OWMcYYn1giMcYY4xNLJNn7INABBICdc+FQ2M65sJ0v5NI5Wx+JMcYYn9gViTHGGJ9YIjHGGOMTSyQuEblFRHaKyG4RGZPB9vtF5JiIRLqPhwIRZ07J7nzdMveKyHYR2SYin+d2jDnNi/f4TY/3d5eInApEnDnJi3OuJSI/iMhGEdksIrcFIs6c5MU51xaR793zXSYioYGIM6eIyGQROSoiWzPZLiLyjvt6bBaR1jkehKoW+gfOkPS/ANcAxYFNQON0Ze4Hxgc61lw83/rARqC8+7xKoOP29zmnKz8SZ5qCgMfu5/f5A+ARd7kxsC/QcefCOX8JDHaXuwFTAx23j+fcCWgNbM1k+23AIkCA64E1OR2DXZE42gK7VXWPql4EZgC9AxyTP3lzvkOBCap6EkBVj+ZyjDntct/jAcD0XInMf7w5ZwWucpfLAodyMT5/8OacGwNL3eUfMtier6jqTzjzOWWmN/CpOlYD5USkWk7GYInEUQM46PE8xl2X3l3upeEsEamZwfb8wpvzbQA0EJEVIrJaRLIdJiGP8/Y9RkRqA2H8/mWTX3lzzuOAv4hIDLAQ50osP/PmnDcBd7rLfYEQEamYC7EFitef/StlicR7C4A6qtoc+B/wSYDj8beiOM1bXXD+Op8kIuUCGlHu6Q/MUndWzgJuADBFVUNxmkCmikhB/154EugsIhuBzkAsUBjea78p6B8Yb8UCnlcYoe66NKp6QlUvuE8/BK7Lpdj8IdvzxfmrZb6qJqrqXmAXTmLJr7w551T9yf/NWuDdOQ8BvgBQ1VVASZyB/vIrb/4vH1LVO1W1FfAPd12+v7EiC5fz2b8ilkgc64D6IhImIsVxvkjmexZI16bYC4jKxfhyWrbnC8zFuRpBRCrhNHXtyc0gc5g354yIXAuUB1blcnz+4M05HwBuAhCRRjiJ5FiuRpmzvPm/XMnjqmssMDmXY8xt84FB7t1b1wOnVfVwTh6gaE5Wll+papKIjAAW49z1MVlVt4nIC0CEqs4HRolILyAJp2Pr/oAF7CMvz3cx0F1EtuNc9j+lqicCF7VvvDxncL54Zqh7u0t+5uU5/z+cZsvROB3v9+fnc/fynLsAL4uIAj8BjwUs4BwgItNxzqmS29f1HFAMQFXfw+n7ug3YDZwHHsjxGPLxZ8YYY0weYE1bxhhjfGKJxBhjjE8skRhjjPGJJRJjjDE+sURijDHGJ5ZITL4kIme9KPNXESmVg8fsIyKNc7C+lT7se9b9t7qIzMqiXDkRefRKj2OMNyyRmILsr8BlJRIRCcpicx+cAf9yhKrekAN1HFLVu7MoUg6wRGL8yhKJyddEpIs7p8QsEdkhItPcX/COAqoDP4jID27Z7iKySkQ2iMiXIlLGXb9PRF4VkQ3APSIyVETWicgmEflKREqJyA04Ixq87s5XUldEWroDWm4WkTkiUt6tb5k4c5tEiEiUiLQRkdkiEi0iL3rEftZj+WkR2eIe85UMzjPMjX1LujrqpM5DISJNRGStG99mEakPvALUdde9LiJlxJmLY4NbV2+PeqJEZJI4888sEZFgd1s9EfnOjW2DiNR11z/lvk6bReT5HH1jTf4S6LH07WGPK3kAZ91/uwCnccYPKoIztEkHd9s+oJK7XAnnV8yl3edPA896lPubR90VPZZfBEa6y1OAuz22bQY6u8svAG+5y8uAV93lx3GGZq8GlMAZw6xiunO4FVgJlHKfV8jgfOcDg9zlxzz2rYM7DwXwLjDQXS4OBHtud9cXBa7yeE1248xTUQdn1IaW7rYvgL+4y2uAvu5ySZyrvO44c5mI+7p/DXQK9OfCHoF52BAppiD4/+3dT4iNURjH8e9vIclMJuVPzYIkWUxSLNREKdnYTCkljX8bCwsbVrIl2dmxQTIokY2GWWhkGkQz7oxSalhMKZI0Ecl9LM4ZvffOvdPMvLvr91md7j3vuc/7dnuf+55ze86LiJgEkDRKuik+reuzjTQtNSQJ0o22WE/rdqHdlX/1dwBtpHIbNSQtAzoiYjC/dI20YdK06ZIrY8CbyLWNJE2QCugVy83sAq5ExA+AiGi0t0Q3sDe3rwPnG/QZBk4r7fh3NyLe5XOtCR04K2kHUCWVE1+V33sfEaO5/QpYK6kd6IyIezm2n/k8dpOSyUju30Yq6vmkQVzW4pxIrFifYfMAAAF7SURBVBX8KrT/0Ph7LWAgIvY3GeN7oX0V6ImI15IOk4tXLjCmal181SbxzcWs9Ywiok/Sc2AP8EDSMWYW2jwArAC2RMRvSR9ITxnFmCFdxyWzfJyAcxFxaR7xW4vyGom1simgPbefAd2S1gNIWippQ5Pj2oGPkhaRbrwzxouIb8BXSdvze73AIAszAByZ/oeZpOUN+gyRCkpSF9M/ktYBExFxEbgPbKL2GkDaBfFTTiI7gTWzBRYRU8CkpJ78GYtznA+Bo4V1pk5JK+d0ttZynEislV0G+iU9jojPpIrNNyVVSNNAG5scd4a0LjAEvC28fgs4JWkkLzgfIi2+V4DNpHWSeYuIftJU2Ms8NXeyQbcTwHFJYzTf3W4fMJ7H6CJtr/qFNJ03LukCcAPYmsc5WHd+zfSSql9XSGs5qyPiEdAHDOex7lCbsOw/4uq/ZmZWip9IzMysFCcSMzMrxYnEzMxKcSIxM7NSnEjMzKwUJxIzMyvFicTMzEr5C2IAadLMCf1XAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for i in range(2):\n", - " pylab.plot(distances, np.subtract(energies[i], energies[2]), label=titles[i])\n", - "pylab.plot(distances, np.subtract(hf_energies, energies[2]), label='Hartree-Fock')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Lets plot the difference of the VQE ground state energies from the ExactEigensolver. They are both in the same ballpark and both very small." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4VGXa/z/PpPdGQoCEJBAglEDoCNIURFfBgmVVXAV73WXVVXff17Lu7m/3taxrr2tbC2tDVERsKCjSg9KSUNJIIT2Tnsk8vz+emUlhkmlnkgDnc125BmbOOfNMO/e52/cWUkp0dHR0dHScxdDXC9DR0dHRObHQDYeOjo6OjkvohkNHR0dHxyV0w6Gjo6Oj4xK64dDR0dHRcQndcOjo6OjouIRuOHR0PEQIcY0QYlNfr0NHp7fQDYeOpgghcoUQC7rcZzuxCiEChBCvCCHyhBBGIUSmEOIcB8ccJIR4SQhRJISoE0IcFkK8JoRI8+Zr0QohxLVCiAOW11sqhFgrhAizPPaaEOIvLhzLIyNl2b/N8j52/Bvs7jF1Tj10w6HT2/gCBcBcIAL4H+C/QohkexsLIWKAH4FgYDYQBkwCvgMWdrOPr9aLdhchxFzgb8DlUsowYDSwqm9XxWYpZWiXvyItn6A/fQY62qMbDp1eRUpZL6V8UEqZK6U0Syk/BY4Ak7vZZSVQC1wlpTwkFdVSylellE8BCCGShRDScmWfD3xjuX+JEGKvEKJaCLFBCDHaelDL9qkd/m+78hdCzBNCFAoh7hRCHBNCFAshlnfYNkYIsUYIUSuE2AoM7+ElT0WdqHdZXn+llPJ1KaVRCHEDcCXwB8tV/yeW498rhDhk8VD2CSEutNw/GngeOM2yfbXl/gAhxKNCiHyLR/O8ECLI6Q+lAxaP8S4hxM9CiBohxCohRGCHx8+zeInVQogfhRDju+x7jxDiZ6BeCOErhJgkhNhleS3vWY5nfZ/3CCEWd9jfTwhRLoSY6M7adXoP3XDo9ClCiIHASGBvN5ssAD6SUpqdONxc1BX9IiHESOAd4HdALLAW+EQI4e/k0uJRHtEQ4FrgGSFElOWxZ4AmYBCwwvLXHVss63lICDFLCBFgfUBK+SLwFvB/lqt+60n0EMq7igAeAv4jhBgkpdwP3ES7xxBp2f7vqPcwA0i1rPl+J1+nPS4FzgZSgPHANQCWE/q/gRuBGOAFYE3H1wRcDpwLRKLOLx8BrwHRqM/jwg7bvgEs6/D/XwHFViOr03/RDYeON1htuSKttlwVP2tvIyGEH+rE+bqU8kA3xxoAlHTYZ4nluEYhxPou2z5o8WgagcuAz6SUX0opW4FHgSBgppOvoRX4s5SyVUq5FqgDRgkhfIClwP2W59oDvN7dQaSUG4GLUOG1z4AKIcTjluN0t897Usoii0e2CsgBptnbVgghgBuAlRZvxogKjf26h9c2o+PnI4Q41OXxJy3PXwl8gjJIWJ7nBSnlFillm5TydaAZmNFl3wLLZzADFZp80vI+fghs7bDtf4BfCSHCLf+/Cnizh3Xr9BN0w6HjDS6QUkZa/4Bbum4ghDCgThItwG09HKsCdWUPgJRyjeWYK4Gu3kNBh38PBvI67Ge2PD7EyddQIaU0dfh/AxCK8l6seRorefSAlPJzizcRDZyPuoK/rrvthRC/6RAOqgbGoQyoPWJR+Z8dHbZfZ7m/O37q+PlIKbuG2ko6/Nv6ugGSgDu7XBQkot5rK10/g6Oys5Kq7XFLXuUHYKkQIhI4B3UhodPP0Q2HTq9juUp+BRgILLV4BN3xNXCBxdA4ouMJqgh1ouv4nInAUctdDagTrpV4J44PUAaYLMeyMtSZHS0exNeoHMw4O2tGCJEEvIQypjEWI7kHEPa2B8qBRmBsB0MQIaUMRXsKgL92MTrBUsp3OmzTcX3FwBDLe2+l4/sGyltbBlyCCsEdRaffoxsOnb7gOVQuYrElpNETjwNRwJtCiOFCEUZ7+KQ7/gucK4Q40xISuxMVVvnR8ngmcIUQwkcIcTYqP+IQKWUb8CHwoBAiWAgxBri6u+2FEOcLIX4thIiyrH2a5bl+smxSCgzrsEsI6uRbZtl/Oe1Gxrp9gjVXY/GkXgL+KYSIs+wzRAixyJnX4yIvATcJIaZbXkuIEOJcy+dhj81AG3CbJVF+PseH3Fajwni/ReU8dE4AdMOh06tYrqhvRJ34S0R7H8GV9raXUpajYuVNwCbAiDrphwE3d/c8Usos1JXsU6ir8sUoQ9Vi2eS3lvuqUZVNq114GbehwjclqMTvqz1sWwVcj8pT1KLi+o9IKa0hmVeAMZbQz2op5T7gMdRJtxRIR4VzrHyDKiQoEUKUW+67BzgI/CSEqAW+Akb1sKbTxPF9HFMdvWgp5XbLa3na8roOYkmcd7N9Cyq/cy3qfV4GfIoy4NZtGoEPUIn4Dx2tQad/IPRBTjo6Or2FEGIL8LyU8tUO990PjJRSLut+T53+hO5x6OjoeA0hxFwhRLwlVHU1qrx3XYfHo1EeyYt9tUYd19ENh46OjjcZBexGharuBC6WUhYDCCGuRyXcP5dSft93S9RxFT1UpaOjo6PjErrHoaOjo6PjEielENmAAQNkcnJyXy9DR0dH54Rix44d5VLKnppHgZPUcCQnJ7N9+/a+XoaOjo7OCYUQokcVBCt6qEpHR0dHxyV0w6Gjo6Oj4xK64dDR0dHRcYmTMseho6PTPa2trRQWFtLU1NTXS9HpIwIDA0lISMDPz8+t/U8qw2GZJrY4NTXV4bY6OqcqhYWFhIWFkZycTGfhWp1TASklFRUVFBYWkpKS4tYxTqpQlZTyEynlDREREX29FB2dfktTUxMxMTG60ThFEUIQExPjkcd5UhkOHR0d59CNxqmNp5+/bjh03Kd0H2R93ter0NHR6WV0w6HjHns+hJfOgHcuB2OJ4+11dCzMnz+fL774otN9TzzxBDffrMar7N27lzPOOINRo0YxfPhwHnjgAcxmMwCvvfYasbGxZGRk2P727dt33HP4+PiQkZHBuHHjWLx4MdXV1ZqsPTc3l3Hjxjne0EWysrKYN28eGRkZjB49mhtuuEGT4z744IM8+uijmhyrI7rh0HENsxm++Qu8vxxihgMS9n3c16vSOYG4/PLLeffddzvd9+6773L55ZfT2NjIkiVLuPfee8nKyuKXX35h69at/Otf/7Jte9lll5GZmWn7GzNmzHHPERQURGZmJnv27CE6OppnnnnG66/LE+644w5WrlxJZmYm+/fv5/bbb+/rJfWIbjh0nKe5Dv57FXz/CExcBtd/A3FjlPeho+MkF198MZ999hktLWoYY25uLkVFRcyePZu3336bWbNmcdZZZwEQHBzM008/zSOPPOL285122mkcPapGmdfV1XHmmWcyadIk0tPT+fjjj21rGD16NNdffz1jx47lrLPOorFRTTXesWMHEyZMYMKECZ0MUFNTE8uXLyc9PZ2JEyfy7bffAsoruuCCC1i4cCHJyck8/fTTPP7440ycOJEZM2ZQWVl53BqLi4tJSEiw/T89PR2AtrY27r77bqZOncr48eN54YUXbNs88sgjtvsfeOAB2/1//etfGTlyJKeffjpZWVluv289cVKV4+p4kapceOcKKNsPZ/8dpt8EQsC4i5QHUlMIEQkOD6PTv3jok73sK6rV9JhjBofzwOKx3T4eHR3NtGnT+Pzzzzn//PN59913ufTSSxFCsHfvXiZPntxp++HDh9PY2GgLN61atYpNmzbZHt+8eTNBQUF2n6utrY2vv/6aa6+9FlD9Cx999BHh4eGUl5czY8YMlixZAkBOTg7vvPMOL730EpdeeikffPABy5YtY/ny5Tz99NPMmTOHu+++23bsZ555BiEEv/zyCwcOHOCss84iOzsbgD179rBr1y6amppITU3lH//4B7t27WLlypW88cYb/O53v+u0zpUrV3LGGWcwc+ZMzjrrLJYvX05kZCSvvPIKERERbNu2jebmZptRzcnJIScnh61btyKlZMmSJXz//feEhITw7rvvkpmZiclkYtKkSce9n1qgexw6jjmyEV6cD7WFcOX7MONmZTQAxl6kbvd+1Hfr601++BesvhX0OTYe0TFcZQ1TOUvXUJU9o9HY2EhGRgbx8fGUlpaycOFCQPUw/PGPf2T8+PEsWLCAo0ePUlpaCkBKSgoZGRkATJ48mdzcXKqrq6murmbOnDkAXHXVVbbn2LRpE8uWqWm3aWlpJCUl2QzH/PnzCQsLIzY2loiICBYvXgwoTyI3N/e49S5fvpz9+/dzySWXsGHDBmbMmEFzczPr16/njTfeICMjg+nTp1NRUUFOTg7r169n/fr1TJw4kUmTJnHgwAFycnLYuHEjF154IcHBwYSHh9uMotboHodOz2x7BT7/A0QPg8vfteQ1OhAzHAZNUOGqmf07LusxZjNsfhbqSmDchZC6oK9X5DE9eQbe5Pzzz2flypXs3LmThoYG21XxmDFj+P77zsMADx8+TExMDJGRkU4f35rjaGhoYNGiRTzzzDPccccdvPXWW5SVlbFjxw78/PxITk629TMEBATY9vfx8bGFqtyh47EMBoPt/waDAZPJZHefwYMHs2LFClasWMG4cePYs2cPUkqeeuopFi1a1GnbL774gvvuu48bb7yx0/1PPPGE22t2Bd3j0LFPWyt8did89nsYfgZc99XxRsPKuKVQtBMqj/TuGnub4kxlNIQPfPkAmNv6ekUnLKGhocyfP58VK1Z08jauvPJKNm3axFdffQUoz+GOO+7goYcecut5goODefLJJ3nssccwmUzU1NQQFxeHn58f3377LXl5PauIR0ZGEhkZaQuNvfXWW7bHZs+ebft/dnY2+fn5jBo1yq11rlu3jtbWVgBKSkqoqKhgyJAhLFq0iOeee872WHZ2NvX19SxatIh///vf1NXVAXD06FGOHTvGnDlzWL16NY2NjRiNRj755BO31uOIk8pwCCEWCyFerKmp6eulnNjUV8CbF8K2l2HWb5WnEdhDN/7YC9Xt3t5LkvfJyOPsdSAMcM4/oHQP/Lyq99dwEnH55Zeze/fuToYjKCiINWvW2BK8AwYMYNasWVx55ZW2bVatWtWpHPfHH3/s8XkmTpzI+PHjeeedd7jyyivZvn076enpvPHGG6SlpTlc56uvvsqtt95KRkZGp+/dLbfcgtlsJj09ncsuu4zXXnutk6fhCuvXr2fcuHFMmDCBRYsW8cgjjxAfH891113HmDFjmDRpEuPGjePGG2/EZDJx1llnccUVV3DaaaeRnp7OxRdfjNFoZNKkSVx22WVMmDCBc845h6lTp7q1HkeclDPHp0yZIvVBTm5Sug/e+bXqzVjyFEy4zLn9Xl4ArU1w8ybH27rBMWMT23Or2Hqkku15lWSX1PHibyYzb1ScV57PLs/PBv8QuGYtvHwm1JXC7TvAz35itr+yf/9+Ro8e3dfLcIrVq1fz+9//nm+//ZakpKS+Xs5Jhb3vgRBih5RyiqN99RyHTjsH1sKH14N/KCxfCwkOvz/tjFsK6+6FsmyIHenRMqSUHCmvV4Yit5LtuZXkVjQAEOhnICMxErOUbDlS2XuGo+YolPwMCx4CgwEW/hlePw+2PA+nr+ydNZyCXHDBBVxwwQV9vQydLuiGox/Q2mYms6Ca9CERBPr59P4CpISNj6my2sEZ8Ou3IXywa8cYcwGsu0+Fq+bd69KupjYz+4pr2ZZbxTaLR1Fep2r8o4L9mJIczRXThzI1OZqxgyPw9zWw4PHvOHiszrU1ekL2OnU76hx1mzIbRp4NGx+Hib+BkJjeW4uOTh+jG44+xGyWfPJzEY+tzya/soG4sABuOyOVX08dir9vL6WfWhrg41vVCT/9EhWecif0Ej4Ikmaq6qq597SX63ZDdUMLb27OY8uRSnbmV9HQohLNidFBzBkRy5TkaKalRDFsQCgGw/HHSo0NJbvU6Po63SXrc4hKgQEdvKkFD8JzM2Hjo3D2/+u9tejo9DG64egDpJR8c+AYj3yRxYESI2nxYfztwnRW7zrK/R/v5YXvDvPbBSO4aOIQfH28bEDW3K56MBY8CLN+5/CE3yPjLlKVWMf2wcDuyzx35ldx+9u7KKppJC0+nIsnJzA1OZopyVEMinDOaKXGhfLl/lJaTGbvG9mWejjyPUy9tvP7EzdaddBvfQmm3whRyd5dh45OP0E3HL3MlsMVPPJFFtvzqkiKCeZfv85g8fjBGAyCy6cl8n1OOY+tz+IP7//M8xsO8buFIzkvfZDdq25NyPsRxl+qTZx+9Pmw9m7Y84FdwyGl5JVNR/j75wcYFBnIx7fOYnyC87X5HRkxMJQ2syS3op6RA8M8XXnPHPoW2ppVaKor8/4IP78HXz8MF7/i3XXo6PQTTqpy3P7M3qIarnl1K5e9+BP5lQ389cJxfPX7uZyfMcRmFIQQzB0Zy8e3zuKFqybj52Pgjnd28asnN/LlvlLtS1CbjWAsglj3as+PIzQWUuaocFWXtdY0tHLDmzv4y2f7OXN0HJ/ePtttowEwPDYUoHfyHNmfQ0CECsV1JXwQnHYr7Hkfju70/lp0dPoBuuHwMkfK67nt7Z2c++QmduVXc+85aXx393yunJ6EXzdhKCEEi8bGs/a3s/nXrzNoam3j+je2c8GzP7Ixp0w7A1Keo24HeFYF1YlxS6HqiGqWs7C7oJpzn9rItweO8b/njeH5ZZOJCHJv1rGV4bGhCNELhsNshuz1kHom+HSz5lm/heAY+PJ+XYrECXpDVt0VnJEe3759O3fccQcAGzZs6NQ78vzzz/PGG2+49RwPPvggQ4YMsUnAr1mzpsfjOPNcmZmZrF27tsdtPEU3HF6ipKaJ+z78hQWPf8fX+49x6/zhfP+H+dw0dzhB/s5VTvkYBOdnDOHL38/lH0vTKatt4qpXtvLrF39ie+7xCpsuU3FQ3WppONLOA4Mv7PkQKSWv/nCEi5//ESnhvZtO49rTUzSZPhfk78OQyCDvG46inVB/rL2ayh6B4TD3XsjdCDlfenc9JwG9IatuZcOGDVxzzTUer3nKlCk8+eSTtmN2NBw33XQTv/nNb9w+tlVO/b333mPFihU2I2kPZ55LNxwnIFX1Lfxt7X7mPvIt7+8oYNn0oXz3h3ncvSjN7atsPx8Dl00dyrd3z+PBxWM4VFbPxc9v5up/b+WXQg+65MuzlXxGlHsD6+0SHA3Dz8C850Nu+c8OHvpkH3NHxvLZHaczcWiUds+DSpDneNtwZH2u3iNHulSTr1F6Xl/er0uROKC3ZdVdYd68edxzzz1MmzaNkSNHsnHjRkAZi/POO4/c3Fyef/55/vnPf5KRkcHGjRs7eRMvvfQSU6dOZcKECSxdupSGhgann3v06NH4+vpSXl5Obm4uZ5xxBuPHj+fMM88kPz8f6Oy52FtrS0sL999/v627ftUq76gb6MlxjWgxmXnhu0O8+P1h6lpMXDhxCCsXjCQxOtjxzlLCwa+UJpShe28kwNeHa2alcNnUoby+OZfnvzvE4qc3cfbYeP74q9EMjXHiuTpSnqMqgXz9XdvPAYVDziEhZz1lFZv406+WcN1sbbyMrqTGhrL5UAVtZomPt4oHstfB0NOUQewJX3848wF472rIfBsmXdXz9v2Fz++Fkl+0PWZ8Opzzd0D16LRJSYBv+/e6N2XV3cFkMrF161bWrl3LQw89ZNPNAkhOTuamm24iNDSUu+66C4Cvv/7a9vhFF13E9ddfD8D//M//8Morrzg9lGnLli0YDAZiY2NZsmQJV199NVdffTX//ve/ueOOO1i9erVTa/3zn//M9u3befrppz15G3pE9zg0YtX2Ah77Mpvpw2JY99s5PH5phnNGAyB/M7x1MRz4zKnNg/x9uGmuCn39bsEINh0s59ynNrJ+r4sjXMtzYMAI1/bpASklb27OZfGXETTjxzMTcrl+zjCvGA1QHkezyczRKvdVTHukOl9pUo2yU01ljzHnw5Ap8O3fVH/MKU5jaxs5x+o4XFZ/3GPellWfPn06GRkZXHfddaxZs8aWD+maW7HHRRepUQFWaXVX2LNnD7NnzyY9PZ233nqLvXv3OtzH6r3cddddrFq1CiEEmzdv5oorrgCUlHtHQ6nVWj1B9zg04pfCagaE+vPy1S7IdFgptOhqle6FMc7r54cH+vG7BSNZOimBW97ayQ1v7uDGucO4+6xRjvs/zG0qx5F6huvrtYOxqZV7P/yFz34uZv6oRITfQgbmfw7mx3r0ojwhNc5SWVVmdN3bcoZsy0lmZA/5jY4IAWc9DK+eA1ueg9l3ar8mrbF4BlpT19RKXkUDbZZigTazGR9D+3fS27LqW7ZsAVSI6bXXXuO1115zel+rUKGPj0+3Eujdcc0117B69WomTJjAa6+9xoYNGxzus3LlSpv34iqerNUTTiqPoy/VcbNK69zvJ7BWIJUdcGv3xOhg3rvpNK6YPpQXvjvMsle2cMzY1PNONQWqN0GDxPjeohoWP7WJdXtKuOfsNF65eir+GRcrCfL8zR4fvztshsNbeY6stRCTCgNSnd8naSaM+hVs/CfUl3tnXf2cqvoWjpQ34OdrsDV0tpg6V5v1lqy6NwgLC8NotK9aYDQaGTRoEK2trZ0k2F1l5syZNo/srbfeYvbs2ZqsTytOKsMhpfxESnlDREQPEuBewGyW5JQaGRXvpuEo2qVu3TQcAIF+PvztwnQeu2QCmQXVnPfkJrYe6aHyylqKG+N+qEpKyVtb8rjw2R9pbG3j3RtmcPO84aovZeTZ4Bfs1XnkkcH+DAgN8I7haDZC7ib7TX+OWPAgtNar2eynEFJKSmubKKhqICTAh2GxIYQEKG+zpe34SqHeklXXmsWLF/PRRx/ZkuMdefjhh5k+fTqzZs1ySrK9O5566ileffVVxo8fz5tvvtmpqswR8+fPZ9++fV5NjiOlPOn+Jk+eLHuTvPJ6mXTPp/KdLXmu79xQJeUD4VL+JV7Kh6KlNLV4vJ79xTVy3iPfymH3fSZf/O6QNJvNx2/04zPqeevKXT6+2WyWPxwsk5e/uFkm3fOpvOqVLbLc2HT8hv+9Wsp/DJPS1Or6i3CSy174UV74zCbtD7x3tXp/jmx0b/81d6jPs/ygtuvSgH379ml+zDazWRZU1svdBVUyv6Jetlm+c62mNrm7oEoeq7Xz/XCCjz76SKakpMjc3Fwtl6sj7X8PgO3SiXPsSeVx9BUHSmoB3PM4iner29FLwGyCikMeryctPpyPb5vFwtED+eva/dz8n53UNrV23qg8G4KiXFJ1lVLy1b5SLnruR654aQs5x+q4/7wxvHbNVGJC7QywGbcUGsoh9/vjH9MIa0mu1LrxLmsdBEZC4gz39p93H/j4wzcPa7uufkibWZJX0UBlfQtxYYEkRAVhsBRE+BgEPkLQasfjcIYLLriAw4cP67M4+hm64dAAq0rrCHdyHNb8hnVgkgfhqo6EB/rx3LJJ/M+5o/lyfylLntrE/uLa9g3Kc5zOb7SZJWt2F3HOvzZy3RvbKTM28/AF49j4h/msOD2lex2t1IXgH+bVcFVqbCjGJhNlxmbtDmpug5wvYMRC8HGzfiQsXs1g3/sRFO7Qbm39jNY2M4fL6qhrMjEkKoj4iMBOVXRCCPx8DbSY3DMcOv0T3XBowIESI4nRQYQGuHGSKdoFEYmWK1uhmeEA9aO9bvYw3rl+Bg0tbVz47A98sKNQPVjhuBS3xWRm1bZ8znxsA3e8s4vWNjOPXTKBb++ax1UzkhzPDvELhLRfwf41YGrR6FV1JjVOGWtN8xyF26Ghwr38Rkdm3g4hsf1SikQLD62ptY1Dx+poNplJGhBMTIj9san+Pga7OQ6dvsPTz183HBqQXWpklLsVVUWZaniSf7BqxtPQcFiZlhLNp3ecTkZiJHe+t5uH3vtRjT3tJjHe2NLGqz8cYe4j33LPB78QGujL88sm8eXKuSydnNCtxpZdxi2Fpho4/K1Gr6Yz7SW5GhqO7M+VbIqjbnFHBISp2SR5m9pLe/sBgYGBVFRUeHTyqGtq5VBZHWZgeGwI4YHdqyL4WzwOzcOJOm4hpaSiooLAwEC3j6H3cXhIi8nM4bJ6Fo4Z6PrOjVVKEHDiMvX/2DQ4pr3hAIgLC+Q/107n0fXZ/PT9FxAAZYFJxHbYpraplTc35/HvTUeoqG9hWnI0f186njkjBrjfxDdsvsoV7PkQRi7S5LV0ZGB4AGEBvtp6HFnrVFltkPvqvTYmXwM/PQdfPaAMkbuhLw1JSEigsLCQsrIyt/ZvaDFR1dCKr0EQE+pPbnXPFxJ1TSaqG1sR1YHeGw+g4xKBgYEkJCS4vX/ff4tPcA6X12EyS/d6OKyJ8cET1W1cmpIeaWvtXonVA3x9DNx7Thp75AbYCtd+Ws3K0GOMT4jg3z8c4Y0f8zA2m5g7MpZb56cyLcWBzIZTT+oPo8+DvR9Da5MKX2mIEILhcaHaGY7KI1C2Hya5L1rXCR8/VZ7736sg8y2YfLU2x/UAPz8/UlJc1yeTUvLshkM88sVhZgyL5oVlU4gIdvw9/WJvCTeu2sGa22Yx1gMpfZ2eMZslQuA1pYaO6KEqD8kqUYnxtPhw13cusiTGrYYjNg3Mrerk5UXG+ZciDb6YI5NZ/to2Zv79G57dcIjZIwfw6e2n8/qKadoYDStjL4IWIxz0jnJsqpaGwzZb3MP8RkdGL4aEaRYpkuPlN04ETG1m/rR6D498kcX5GYN5fcU0p4wGQGKU6uov9JY0jA4AW3MrGXP/F9ooZztANxweklVixNcgSBkQ4vrORbsgcmi7gF6spWGobL92C7RHRQ4iehjv3zqHa2Ymc37GYL5cOYdnr5zMuCFeaJ5MmavmVXipuio1LpRjxmZqGlsdb+yIrM9hwCildKsVVimSuhLY/Kx2x+0l6ptNXP/Gdt7eks8t84bzz0szOokWOiIhWnWPF1Tq+l3epKCygcbWNgbYK43XGD1U5SFZJUaGx4a6N/e6OBMGZbT/f8BIVGVVlmbrs0t5DsSMINDPhweXdD8bXDN8fJUA4O531RW3vxtGtgdSO0wDnJzkgXR7Uw3k/aAyXTVtAAAgAElEQVQm+mnN0BlqVsnGR5VXedqtENi7CgfusnJVJt9ll/HXC8dx5XTX+ynCA/2ICPLTPQ4vU1DViBAwOFI7peDu0D0OD8kqNTLSnca/hkqoym0PU4GlsioJjnnR42izNBlqqIrrFGMvgtaG9lCQhlgrqw55Gq46+LVqwnRW1NBVzn1cFQh89w94Yjxs+me/D101m9rYkF3G1TOT3TIaVhKigiio0j0Ob1JY2cCg8ED3LmJdRDccHlDXbKKwqpE0TzrGB2d0vj82zbseR3WeuuLVcuqfMyTNhNB4r4SrEqOD8fc1eF6Sm70OgqIhcZo2C+tK2EC49A244TtImApfPQj/yoAtL4BJwwZGDdlbVEuLycx0D3NeiVHBusfhZQqqGkhwdpSDh+iGwwOsHeNuVVRZhQ0H2TEcFTnKM/AGtjnjvexxGHxg7AVqtGpTrePtXcDHIBg2IMSzBHmbCXLWw4izvCYDb2NwBix7H5avU5/D53+ApybDzje7/dxbTGbe217gtnSHu+zIrQJgkichQJTHUVjVoPdyeJGCykZbIYK30Q2HB7RXVLkpNRKZdPxkudg0aGtR/R3eoMKqiuuCVLhWjL1ISblnaT8P2ePKqsKtqq9Gy2oqRySdBtd8Bss+hJABsOY2eHY6/PI+dJk7/faWPO5+/2fW7XFxWJeH7MirYmh0MHFhnpVRJ0YH09RqprzOOwoCpzrNpjZKjU0kRns/vwG64fCIrBIjwf4+DHEnGVW0q3N+w0rsKHXrrTxHeTYED3A8CtUbJExV8ipeCFelxoVSUNVAU6ub876zPgeDHww/U9uFOUIISD0Trv8WLntLCSN+cC28MFutSUpa28y8tFFdSPQola8xUkq251UxxUNvA5THATif5yjdB5/fA68v1txDPRk5WtWIlOgex4lAVomRkQPDXO+GbahUY0m75jeg3XB4K8/hgrih5hgMKlx16Bv1HmhIalwoUsIhd/Mc2esg+XQIdKMfRwuEUI2SN22Ci15WSfN3fg0vL2Dzlx9ytLqRqGA/tvVCjb6VgspGyuuaPQ5TAbYxyj3mOZrrYOcb8PICeO402PoiHPleNcWeSFTna6Jy7QoFlvfV6XHVHqIbDg9wW6PKmt+w53H4h6jeDm/1cmg8Z9xlxl6kkvMHPtX0sB5NA6w4pDyxUV6qpnIFgw+MvwRu2waL/4U0FjPnp2tZHfp3/phu5ECJkeqG3gn3bM9TRmpKsoYeR9deDinh6A745Lfw2ChYc7sqiz7rr3BnlpKrOdEMx8e3wX97VyHA+r72VqjqpOrjEEIsBhanpno/fl9mbKaivsXNGRyWjvFBE+w/HjvaOx5HQ6Waj9GXhmPwRIhKUeEqrWQ9gJQBIRiEmyW5WZ+rW0/VcLXExw8mX8PXfvP5YdUj3BOwlozdKzjocznbcqe4p43mItvzqggL8GVknJsCnh0I9vclJsSfQmuoqrEafnkPdrwOpb+AbxCMvVBJsiROVx4YwPAzlOGQsv2+/ozZrC4MW+qhtRH8eudEXlDVgL+PgYEe5qKc5aTyOGQvjo61VlS5ZTiKdqmTZ1A3V3Kxo9QVsNaVVRUH1W1fhapA/fjHXaRCEHXuiezZI8DXh6HRwe6V5Gavg7gxqoemHyGl5OmNhXwVcRG+v8ukbcyF3Of3DgGb/q9XZNp35lUxMSlKM2HChKgggku2woc3Ku9i7V3q+3DuY3DnAbjwOdUo2dFAjFiolJxLftFkDV6n6gg014Js824/VhcKKhsYEhXUayKSJ5Xh6E0OlHhiOHbbz29YiRttqazKdW9x3VGerW77oqKqI2MvUj+s/R9reli3KqsaqyDvx/7lbVjYfLiCzIJqbpgzHN+gcHwufoVvgxYyp+hl1QPiReNR09hKVqlRk8Q49eXww5O8UHMT/3vsTjjwGWRcATdsgJs2wtTrulcithYreEnnTHOs/VkAJT/32tMWVDbawoG9gW443CS7xEhMiL/rujD1FVCTbz+/YcWWINdYYr08W1XtRPbxlfXAsUoPas9Hmh52eFwoR8rrMbnS63Dwa2XE+kN+owvPbTjEgNAALplskb82+LBjwsO81bYAfnhCVR2ZvdPXkVlQjZR4JuECsOsteCwNvvxfTAFR3Gu6EfPvD8B5/+z5N2AlbCDEj4ecEyTPUbxbVef5h/Wql1RQ1dBriXE4yXIcvcmBUqOb+Y1uGv86MsBqOParShutKD8I0cP7fiaENVy14e/wzAxVyRQYAQGW2+P+H3n8fX5Bx8W8R8SF0domya9sYJhFv8ohWZ+r8uQhk73wQt3nl8IaNuaUc8/ZaZ0mLU4bNoDfbFjOvLEJDNn6Apia4LwnVMWahuzIrcQgICPRQxn0Q9+o0u/ffMyGw8G8u3oPv232YZArofgRC2HTEyovosWMFG9SvBsGjgG/kF4zHMamVqobWnutFBd0w+EWZrMkp9TIpVMSXd+5yEFiHCAgFCKGap8gL89WMz/6A1NWgLFEjWhtqoH6MpWDaapRdftmB0q3voEweTmc8Sc1aY/OlVVOGY62VhUCSTvP+93iLvL8d4cIC/DlyhlDO90/KSkKH4OBd6Nu5s7ZMbDxMSVXcv4zml4Q7MivYvSgcELcGYfcEWOJuliJG01itcppFVY1MijChbBK6kL1Og9vUOXc/RUpleEYfR74BSslAHOb179bBZXWUtzeC1XphsMNCqsaaWhpc69jvGiXkux2dOUUp/E0wLZWlbgbs0S7Y3pCaBwsfsL+Y1KqipTm2nZD0lQDTdXt95VlwZbnYf8ncO6jMOochscq1d2cY3Wc5Yzob/5P6lj9LL9xuKyOtXuKuXnu8ONGsoYG+DJucDhbcqvgxvuV5/XNX8DUqPo/fP09fn5Tm5ld+dXtITJPqCuB+HSgc0nu1GQXGlATpiov8+CX/dtw1BRCY6W6KPQNhNZ6NVtngHdzitamSt3j6OdkWTWq3BU3TJjqeLvYUXD4O+2uWKpylfJrN3PG+xVCKKVg/2AIi+9+uykrVP3/O7+GMecTds7/ER8e6HxJbvY6lfMZfoY269aIF747jL+PgeWz7E/pm5YSzeub82g2tREw525Vyrr+T2BqgUte83jK4oESIw0tbZo0/mEsVR4D2BQWXBY79PFVI4gPft2/y3JtZfYZ7RM8S3Z733BYejiG9mKOQ0+Ou0FWiZJAcFncsL4cagqcSwrGpildJ60qq6wVVX1Ziqs1idOU0uyZ96s54U9P5YbgDRw65oREhZRKMytljgoN9hNKapr4cFchl05JJDbMfuHF1ORoWkxmfi6sUXfMvE2VtGZ/roxoi2fy5TvylLDhFFe8Ans016nJj2Gq5yTQz4e4sAD3BjqlLgBjMZTu9WxN3qR4NwgfVfwRO1olyXshz1FY1UhogC+RTk5k1ALdcLhBVmkdCVFBhLoa/7WNiu0hMW4ldrS61aqyyqaK28eluFrj6w+z74RbNsPgDFZUP8mD5XciS/f1vF95DlQe7ndhqpc3HsYs4YY53U8gtIZ5OulWTb1O5TkOb4C3LoFmo9tr2J5XxaCIQPc02DpSV6puwwbZ7kqMdlNePXWBuu3PZbnFu9UFn1+Q+l7GpkGx90tyCyobSIgK6pVZ41Z0w+EGWSW17uc3oOfEuJVYi2egVRNReQ6EDjxhps65TMxw+M0afkj/C0kUwQtzVOy/tcn+9tn9r1u8qr6Ft7fms2TC4B5LK6NC/Bk1MIwtXQUPJy6DpS9D/mZ480JVheQGO/OqNApTWZR8Q9u73N0e6BQ+CAam9++y3OLdnX/bg8b3isfR26W4oBsOl2kxmTlcVu/eDI7iTFVh4szJOyBMKclqVVlVnn1yhansIQSGjCs4s/lRjiWdB98/As/NVF3qXclap05EkW5UxnmJNzbn0dDSxk1zhzvcdlpKNDtyK4/vWUm/GC59XXm3ry9WfUMuUFzTyNHqRm0a/+oshqNDnioxKpjimibXem2sjFgABT/1T7VcY4nysDoajvh0qD+m8jxeQkrZq3M4rOiGw0UOl9dhMkv3pUacyW9YiR2ljdihlBbDcQIkxj1kxMBQqgjns+EPwFWrQZrVCXT1Le2KvA2V6gTUm7M3HNDQYuK1H4+wYHScU9+taSnR1Le0sa/Yzkl09GK4/B31mb9+HtQdc3od1vyGx41/0O5xdDAcCVFBtJklxTXdeII9kbpQFXgc3uD52rTG2jHe1XCAVzvIK+pbaGxt69VSXNANh8tkuSs1UncMao86l9+wEpumQkxmN2dMWGmoUKWsJ0JFlYfEhPgTGexHzrE6GD5f5T5O/z38vAqengK7V6kphNLsvdnibvDu1gKqGlq5eZ5jbwOU4YAe5nOMWAhX/FcVV7x6DtQcdeq423OrCPLzYfQgDeTljSXgE6AaOC1YQypuhasSp6kG0P6ollu8GxAQP679vl4wHDZVXN3j6N9klRjxNQiGDXCxEseWGHfF40hTncGeVlbZEuMneagKEEKQGhvaXpLrFwQLHoAbv1f9Mx/dAJ+uVHF3Vz4LL9JiMvPSxsNMS4lmcpJzlUwDwwNJignuebDTsLlquqCx1GnjsTO/igmJEfj5aHBqqCtVFVUdkrbWXg63EuQ+fuo1WdVy+xPFu5UGXECHC8rACCXv48UEeac5HMZS2Pi40xcJnqAbDhfJLjUyLDYEf18X3zprjXf8eOf3ibNWVnmY57CV4p5kFVXdkBoXerxK7sCxsOIL+NWjIAwwbqnmMh3usjrzKMU1TdzipLdhZVpyNNtyKzGbeziJJp0GV3+sysB3vtHj8RpaTOwtqmWKk8bLIcbiThVVAIMjgzAIKHSnJBdUuKr2aK8qzzpF18S4FS8nyK0eR0JUEORuhK8fUnkVL9M/fjknEAdKjIyKd8ONL9qlQkWuTJizegie5jnKs1Una0T/SQR7k9S4UCrrW6is7zLwyOAD066HPxyChQ/3zeK6YDZLnv/uEGMGhTN3ZKxL+05LiaaqodWxlPyQycrDqi3scbPMgmrazJLJGgxuAtQVcGjnuSF+PgYGRQS553FA/yzLra9Qhtme4Ygfr8q+PSiP7onCqgZiQvyVNEz+ZvAPVUUfXkY3HC5Q12yisKqRUQPdaBgrynQtvwHKyIQneO5xVBxUbnQ/02PyFsMdTQP0Deh7oUcL6/eVcLisnpvnDXe5Dn96SgzA8WW59ggbBLXFPW6y05IYn5SokeGoK7Hb+T/E3ZJcgIghEDdW5an6CyV2EuNW4scD0muNiwWVjSRYS3Hzf1KqFL3w3dYNhwu0D29y0eMwloKxyL2Yeuwoz5sAy7P7fgZHL5Ia68EY2V5ESsmzGw6RFBPMr9IHOd6hC4nRQcSHB/ac57ASPhhqi3rcZHteFSMHhhKhRQdya6PSAQs9flJhYpSbTYBWRixQJ0kvXcW7jK2iyk4Y2pYg9064qqCqgcSoINWzU7oXhp7mlefpim44XCDbWlHlag9HRw0bV4lNg7Js9+cumCyyJadAYtzKkMgggvx8+r3h+PFQBT8X1nDjnOH4uDG5TQjB1JRoth2pRDpKFocNUhcv3WA2S3bmVWlThgsdSnGPN4gJUUGU1DbRbHKzWjB1gVJPttef0xcUZaokuL2JnuGDISi684AnjWgzS45WNarEeMFWQKoJir2Abjhc4ECJkWB/H9cnbRXtAoT9KxJHxKUp5dPqPNf3BaXOKc2nRA+HFYNBMDwuhJxj/eSKtBue3XCQuLAAlk4e4vYxpqVEU1LbZJPW7pbwwcoDaKm3+/DBsjpqm0xOV3U5xCY3YsfjiA5WCuTVbvRyACTOULH8/hKu6i4xDqqizEsJ8uKaRkxmqUpx8zeDwRcSpmj+PPbQDYcLZJcaGTEwzPW5vkWZ6sQd4EbTYKxlfoa74SpbRdWpYziAziW5/ZDdBdX8cLCC62anEODrfu5puqWfY8sRBx3i4YPVbTd5Dk0b/6CD3MjxOQ6bvLq7eQ5ffxg2r3+U5TZWq3EFPckIxafDsX1qtIGGdJrDkf+TWoN/iKbP0R264XCBrBIjae5KjbjbM+DpGNkKSw/HKdD815HUuFCKapqobzb19VLs8tyGQ4QH+nLFdM/G+KbGhhIV7Oc4z2ENGXUTrtqeW0VMiD/JMRo1kvUQqrI2AXqU50hdoCqZtB525ipWT6Knwpf4CdDW0n4RpxG2ORzhPnB0R6/lN0A3HE5TXtdMRX2L6zM4jCWqnt2d/AaoJqKwwe4PdSrPUfv3I+nw3sA6DfCQo1LVPuDgsTq+2FfC1TOTXVdY7oLBIJiaHM3WXAeGI9wSDuvW46hkUlKUdgqrdSVKVjz4+NBXfHggvgbhnry6lRFqxkefl+VacxfxDjwO0DxcVVjZgBAwpOGAGsGgG47+h1VqxGVVXHc6xrsSl+ZZqOoUC1NB5zGy/Y0XvjtEgK+Ba2Yma3K8aSnR5FU0UFrbQ84g3HLlX3t8V3F5XTO5FQ3aCBtasfZw2DFEPgbB4EgPejkAIhLU6IG+znMU71ZGObSHHpwBI9SwLY07yAuqGhkUHojf0S3qjl5KjMNJZjiEEIuFEC/W1NRofmyr4XBZFdeaGI/3oCknNk0ZAFcrq6SE8oOnpOFIignB1yD6neEoqm7ko11H+fXUocSE2h/U5CoOdatAxb4DIpT324X2wU0aGo66EruJcStuy6t3JPVMlRRu7sPPuKfEuBWDDwwco7lmVUFlg+rhyNusqiZDBmh6/J44qQyHlPITKeUNERHaz5zIKjESE+Lf7VS2binOVHkKT0JFsWnQ2gA1+a7tV3cMmmtOqVJcK34+BpJigvud4Xhp42EArpttfyysO4wZFE6Iv4/jPEc3vRw786rw9zEwdrCGvxtjid38hhWPezlAhavaWpTURl/QUq8u6JyZrxOfrgyHhsn8gqoGkqICldJzL3obcJIZDm+SVWp0bwZH0S738xtWrJVVruY5rInxU9DjABgRF9avDEdlfQvvbi1gScZgEjRUM/X1MTA5OdoJwzHIruHYnldFekIEgX4aKgsYS+w2/1lJiAqizNhMU6sHys9DTwO/kL4LV5XsAaSThmO8KoeuKdDkqZta2yitbWZCQIk6bi/mN0A3HE5hNkuyS42uS6nXFqt6dlelRrribmWVtYrjFKuospIaF0peZQMtJjebJzVk86EKrnjpJ5pMbdzsxKAmV5meEk1WqZGqrvpcHQkbfFyoqtnUxi+FNdqV4YJqOm2stCs3YqW9ssqDcJVvgEUt98u+Kcu1N4OjO6zipholyI9WK29trMkiZaIbjv7H0epGGlraXDcc1lGxnsp3B0Uqt99lw5EDfsHtFTWnGKlxobSZJbkV9pveeoOi6kZufXsnl7/0E8YmEy9eNYUR7niuDrDmObb1VF0VPlhdyLS1lyjvOVpDS5tZW8Nha/7r3nC093J4GK5KXQDV+e2jA3qT4t0QEttjSM7GwLFKlVmjBLm1Im1o/c+qVyYqWZPjOotuOJzggLvDm4oz1ZfFk8S4FXc0q8pzLOKGp+bH3JeVVU2tbTz1dQ5nPLaBr/aVsnLBSL6+cy4Lx3QfvvGE8QkR+PsaHBiOQUpFoK59lKk1MT5pqMYVVWC3+c+KzePwpCQXvKaWe82rW7nvw597DqVZE+POlDD7B6vfokYeh9XgRpbtUPkNrcqonaR/SIT2c6zihm5VVA0YpU03Z+xoNU/BbHbeEJRn95oEQX9kWKx633vTcEgp+XJfKQ9/to+CykbOGRfPn84drWlOwx4Bvj5kJEb2nOcIs3SPG4uVyiyq8S85Jtj1oo+esM0a795IxoYG4O9r8DxBHpWkij8OfgWn3erZsSwUVjWwIasMgH3FRl68ajIDwwM7b9TapMYdjDzL+QPHp1s0pTRYY2UDSb6V+BgLIekOTY7pCqfmpaiLHCgxkhAV5FqzlpTuSal3R+woaK13PrnW2qRc+FOwospKsL8vQyKDes1wHDxWx9WvbuOGN3cQ6OvDW9dN57llk71uNKxMT4lmT1Etdd11y9tkR1SCXErJjrwqJmkZpoIe5UasGAyChEgNSnJBDXfK/QFaNDgW7eG+3y8cSU6pkcVPbWJXflXnjY7tVfPPnclvWIkfr36/DU6oGTugoKqBhSGqQq+3K6pANxxOkV1idF0Rt7ZITeLSajypq9MAKw8B8pSSU7dHalyo1w2HsamVv63dz9lPfM+u/CruP28Ma387m1mpvVdXDyrP0WZRubVLeAePA8iraKCivkW7iX9WjCUgfBz2FSREa1CSC0pmva1Zs7LcrUeqCAv05db5qXx4y0wC/Axc9sJPvL+jwyAsVxLjVjTsIC+obOQ0vxzwD4OB4xzvoDG64XBAi8nMobI69/Ib4HkprhVbZZWT0wBt4oanrscBynAcKqujrafxqm5iNkve31HI/Ee/46WNh1k6KYFv75rHitNTtJnZ7SKThkbhYxDdh6uCY8DH39Y9vt0bjX+gQlWhcQ4HhyVEBXkmO2IlaZYqAtGoLHdbbiVTktR7mRYfzppbT2dKchR3vbebhz/dh6nNrAxHYKSSU3cWDSurCqoaVEVV4rQ+GdCm5zgccKS8HpNZuldRpVViHJTWf2i88x5H+UF1e4p7HCPiQmk2mTla1chQrQT8gJ8Lq3lgzV525VeTkRjJK1dPYUJipGbHd4eQAF/GDYnoXrdKCFXpZNGr2pFXRXigr23wlWbYGRlrj8SoYKoaWqlrNnmm2eUbAClz2styPUgUV9Q1c/BYHRdNaq9EjArx5/UV0/jrZ/t5ZdMRskuNvNqaia+ziXEroZYKLA8Nh7GpFXNDFfHmwzD0Co+O5S66x+GAAyW1gBsVVUWZqnHPX8P4duwoOOaCxxGRqO3zn4DYKqvKtJnNUVnfwr0f/Mz5z/xAQWUjj14ygQ9vntnnRsPKtOQoMguqu68GCh9iC1VZhQ1dHhPgCAdd41asJbke9XJYSV2gBpZVHPLoMNtylRc2Lblz+M7Px8CDS8byj6XpbD9cirlkD5URo11/gvjxHkuPFFQ2MtlgKT9O6t3+DSu64XBAdqkRX4Ng2AAXrsqkVB6HVvkNK3GjlcfhTLPTKSpu2BUtS3LNZsm1r2/j/R2FXHd6Ct/eNZeLJydof+L1gGkpMbSYzPxc2I1eW9ggqD1KTWMr2aV1TNayDNeKA50qK+0luRrkOWxluV95dJhtuZX4+xpIT7Avv3LZ1KF8cHE0/pj4205/vtxXane7bolPV7/hVjeHWKHCVNMMBzAb/GDwJLeP4wm64XBAVomRYbEh+Pu68FbVHoWGcu3yG1acraySEioOnrId4x2JDPZnQKi/Jobjg52F7Mqv5u9Lx/Onc8cQFqjBbG6NmWrJV2ztbrBT+GCoLWZnngpnTdY6v9HWCvXlPVZUWfF4oFNHolNUWNbDfo5tuZVkJEb2OFxrDLkAGKPHccOb23n6mxzHo3utxKeDbFODndykoLKBKYYszAMn9FlEQTccDnBLo0oLKXV7xDpZWWUshpY63eOwMDzW88qq2qZW/rEui4lDI7loYv/txI8M9ictPowt3SXIwweDqZE9h/LxMQgytA6x1R0DpFMeR0yIP0F+PtpUVoGlLHcTtLp3vPpmE3uLam1TFbuleDf4h/KvWy5iyYTBPLo+m9ve3kVDixNDwwZ5niAvLq9igjiMT8pMt4/hKbrh6IG6ZhMFlY1uzODYpcoR4zUuk7NWVjnKc1jlF07xiior1pJcp68K7fDU1zlU1Dfz0JKx/So0ZY9pKdHszKtS1T9dseQeCnIPMmZQOMH+GtfH1HU/+a8rQgjtKqtAleWampTxcIOd+VW0mSVTk50wHPHjCfT344nLMrjvnDTW7ilm6XObHedrIpNVCa0HhsO3dDf+woToZX2qjuiGowdy3O0YL85U+Qi/IG0XFBwNIXGOPY5TdM54d6TGhVLbZKKsrtmt/Q8eM/LqD7lcNiWR8Qn9IwneE9NSoqlvaWNfce3xD1p6OapK8rTVp7JikxtxTlolMTrYc70qK0mnq4FJbpblbjtSiUHQc0OkuU2d9C39G0IIbpw7nFevmUphVQNLnv6BLYd7mP9uMLRLrLtJXNVO9Y8+aPyzohuOHmif+hfu/E7WxLjW+Q0rcWmOeznKc8A/1DnxtVMAW4K81PVwlZSShz7ZR5C/D3cvGqX10ryCtSLIbj+HxXBEmcu9YzhsHofjHAeoPIcmVVUAfoGQMtvtPMfW3ErGDo7ouTS44qCajdOl8W/eqDhW3zqLyGA/rnx5Cx/uLOzmAFgMxx7XB7Ohvo8jmn7hWGCK3bG8vYVuOHogq9RIsL+PLYnnFDWF0FChndRIV2LTHFdWVVjEDXtZ+Ky/MiJOeYwH3Zg//uW+UjbmlPP7hSM1m9jnbeLCA0mOCbaf57AkrQdRqX3jH1jkRoTyjJ0gMSoYY5OJmoZWbZ4/dQFUHna5LLfFZGZXfrXjMJU1f2mnY3x4bCirb53F2CERPPpFD1GB+HRV5FJ52KU1ApTXNpJBNlUxfVNNZcUpwyGE+FAIca4Q4pQyNFklRkYMDHMtpq2VlHp3xKapxLed2dE2ynP0/EYHBoYHEBrg63KCvKm1jYc/28fIgaEsm+FCh3A/YFpKNNtyKzF37Zj39afWJ4phAbUMitA4lArKcITEgo9zuRNNK6ugQ1nu1y7t9svRGppNZqalODCmxbvBN7Db31d4oB8XZAymqKbJNjPjOGwJctfDVeVHMgkXDbQOme7yvlrirCF4FrgCyBFC/F0IcWL47B6SXWpk1EAXu2qLM8Hgq/T3vYGjaYAtDapcVzccNoQQDHdDs+ql7w9TUNnIg4vH9omEiCdMS4mhuqGVHDuvucgcRWqQNg2Rx1FX6lRFlRVNBjp1JGY4RA9zOVxlFTac4kxifOC4Hg2j1WvZ3l0Hf2yaOke4kSBvPfwDAEGps13eV0uc+jVIKW3cpxMAACAASURBVL+SUl4JTAJyga+EED8KIZYLIfpfMbsGlNc1U17XwihX8hugPI5YLyTGrdjEDrsxHBUWqZEBp7bUSFdSXSzJLapu5JkNB/lVejwze1msUAusJaVd5UeOVjdSYIpkkPBcodUuxmKXcmvt3eMaJchBleUe2ehSk922I5UMiw1hQE/hSLNZeQkOhA3T4sMI9vexzTo5Dt8AdY5ww+MILN5GsYxmUFLfFr44fRklhIgBrgGuA3YB/0IZkj4a+Otdsq3Dm1ypqNJaSt0ewdEqFNBdglwXN7RLalwox4zN1DY5F0v/61r1/v7xV27ISvQDEqKCiA8PPC5BviOvilIZRXhrmXee2EmdKisRQX6EBfhqV5ILMGIhmBohz7myXLNZsi238jiZkeOoOgLNtQ5/374+BiYNjbLJl9glPt11j0NKBlbt5GfDaIID+vZ63dkcx0fARiAYWCylXCKlXCWlvB3QWCGtf+DW1L/qfDVr2ZuGA9oT5PaoOAgIiNZ+rvWJjCvSI5sPVfDZz8XcPDe112ZpaI0Qgmkp0Ww9UtGpf2VHbiUVhgH4Nld5JHthF3ObGiXgZEWVdZ1DooK09TiSZoFPAOQ4Jz+SVWqktsnkXP8GOCWlPiU5iqyS2u4vVAaNV2E9owuSJdX5RJjKyA0Z7/w+XsJZj+NJKeUYKeX/k1J2mnYvpTwpR8xllxqJDlFyFU5jk1L3UmLcSk+VVeXZEDlUlSbq2HC2JNfUZuahT/YyJDKIG+cO642leY1pKdGU1jaT3+Fqfkd+FQHRCeo/xiJtn7C+XI2mdcHjAGsvh4Yeh38wJJ/udJ7Dmt+Y5kzHuMGvXcGhB6YkRWOWsCu/2v4G7szmyP8JgKqYyc7v4yWcNRxRQoiLuvydKYRwrubuBOSAZXiTcKWktWiXdxPjVuLSlMtca+eHr1dU2SUxKgh/H4PDkty3tuRzoMTI/543mkC/3p9zoCXWPIe1LLe+2cT+YiMDBierDWqLu9nTTSyqu672DyVYPA5POvuPY8RC5X1XHnG46dYjlcSHBzouuy/eDQPHgK/ji8mMoZH4GAQ7ukuQW4cvlex2eCwr5vzN1MpgfOLHOL2Pt3DWcFwLvAxcafl7CbgH+EEIcZWX1tZnmM2SnFKje1LqcaO9f7Vvrazqmucwm9WPRe8YPw5fHwPDYkN6DFVV1rfw2PosTk8dwKKxzodb+iupcaFEh/izzWI4dhdU02aWDE22hDGNGhuOOkvYxYVQFahejoaWNirrW7RbywjLLPDt/+5xMylVfmNqSnTPF4lSKsPh5MS/0ABfRg8K6z7PEWQZAuWCx9F25Ad2mEeQEOPieckLOGs4/IDRUsqlUsqlwBhAAtNRBuSk4mh1I/Utba4ZDm9JqdvDZji65Dlqj6quVt1w2MVRSe6j67Oob2njgcVjXPM0+ylCCKYmR9kqq7bnVSEEjBppCbX01AvkDrZZ466HqkDjyqqY4ZCxDH56rl27zQ4FlY2U1jY7DlPVFKr8pQujYqckRZNZUE2rPc0wcC1B3lCJX2U228yjSOwHeTdnDUeClLJjFucYkCilrAQ0avnsP1ilRlzSqKrOg6Zq70mNdCRkAAQPOF7ssEIXN+yJ1NhQCqoa7A452nO0hne25nP1acmMcFWbrB8zNTmavIoGSmqa2JFXxci4MCIio5UkjeahKvcMh+ZNgFYWPKDK4j+/p1ulBatRdVhRZUuMO//7npIcRWNrG/uK7GiGgTJCFYeg2Yky8YItAGwzp5EY7aVSfxdw1nBsEEJ8KoS4WghxNfCx5b4QoJvsz4lLlk3c0IWCMWunam94HGC/ssp6ZaXP4bBLalwoUsLhsvpO90speWDNXmJC/PndwpPrvZueEgPAliMV7Myvap+/ETZI++R4XYmaa+5EDqAjNsOhxUCnjoTGwbz74NDXkLXW7ibbjlQSEeTHiDgHv/XiTKV47UL+ckqSpRGwu36O+HRAQulexwfL+xGT8OMXhjE48sQxHLcCrwIZlr83gFullPVSyvneWlxfkVViZEhkkHODesxm+P4R+OxONRZSqxnjjohLU02AHa+kyrMhIEL9YHSOo32MbOcrvI8zi9iRV8UfFqUR3g+HM3nC6EFhhAb48p+f8jA2mdon/lkGOmmKsdSpAU5dCQv0IzLYT7vu8Y5Mu15dZK27z+6cjm25lUxNdmJ8bvFuNdbAhcbe+AiVcO+2gzzeBemR/J8oCBxFTEREv1AxcLgCIYQP8I2U8gMp5UrL3/tS0xKI/kVWidG5GRxNNbBqGXzzFxi3FFasA59eOvHEWiqrOiY4y3NUx/hJEJ/3BikDQjAIOFjaLrdR12zib2v3MyEhgosnJ/Th6ryDr4+ByUntzWg2YcPwwfar8jzByZGx9kiM0lBevSM+fnDO/6lQ8g9PdnqozNjM4fJ6x/0b4FJivCNTk6PZnldlv2IsfDAERTs2HK2NULSLTDHaNcFVL+LQcEgp2wCzEML+EN6TjBaTmUNldYx0ZDiO7YcX50P2Ojj777D0ZfAP6Z1FQgfNqg55Dr0Ut0cC/XxIjA7u5HE8/c1BjhmbefAEGNDkLtbE74BQf4ZaEtGEDVInejekvbvFWOK2lL+m8updGTYXxlwAmx5XTboWrJ7AVEeJcWOJqhhzw3BMToqizNi5l8aGEM4lyI/uAHMrG5tTbYUEfY2zPk8d8IsQ4hUhxJPWP28urK84Ul6PySx79jj2fAgvnQnNRrj6E5hxc+9f5XetrGo2qpi1XlHVIx01q46U1/PKpsNcPDmBiUO9IDHeT7D2c0xOimqvFgsfDGYT1GskPWI2q5Ori4lxK4nRwRRWNR6v5qsVZ/0FEPDFn2x3bTlSSaCfgXGDHVwTu9Ax3pV2wcNu8hyDxkPpPjWrvTvyNwPwdX1Kv6ioAucNx4fA/wLfAzs6/J10ZPU09a/NpL547y9XSbIbv4PkWb28QguhsSoRaRU7tIob6onxHkkdGKouDtrM/PmTvQT6+nDP2Wl9vSyvkp4QQWJ0EAvHdMg/WAY6aVaS21ipDJGLPRxWEqKCaDGZKXdzSqNDIhNh9p2wfw0c3gCo/MbExCj8fR2cBot3A8Kt/OWIuFDCA33ZntdDnqOtuceSYfI20xydRg2h/aKiCsAp0Xwp5etCiCBgqJTSwdzSE5usklp8DYLhsV2qLOrKlMHI3QhTr4NF/8/l6hHNiU1rNxz6nHGnSI0NpbVN8tqPuXybVcb/nDua2LATY0CTuwT4+rDxD2d0vtMaUtKqCdDWNe6e4bBeSRdUNRAX7qUG2pm3Q+Z/YO0fMC7fwP7iWm47w4kLreLdajBagOtl2gaDYHJSVPceR8cE+UA7HeHmNijYSvnQ86CIEytUJYRYDGQC6yz/zxBCrPHmwvqKrJI6UgaEdL4KKdwOL86Fwm1wwfNw7mN9bzSg3XBIqQyHMEB0Sl+vql9jraz6x7oDDI8N4TenJfftgvqK8CHqVqsEuW3WuPseB2jcBNgVv0B1wVeeRelXT2GWTvRvgNuJcStTkqPJ+f/t3Xt0XOV57/Hvo7tkz+hiy7ZkWZYBE+5gLBMSlwCFZgFtEtIkXXCSEJo09ELS0tWQtM1pm+a0uRy61mmbdLWhPSQpbcgJNG1JF20IhIQ0OLENGHMxcQjIlm1JNpZsS5Ys6/KeP969pZE0I89lj2ak+X3W0vKema0975ZkPXpvz3N4iGPDSXbGrzjHF4ZKNc/R9yKcHuTVWh9gFttQ1aeAKwj2bDjndgGLOwNcCj/pOzG9Y9w52Pll+PKNUFYOH3oULru1sA1M1HyeX9k12OuX4jZ2+Fz/ktLZQeAYm3B86u0XnnmYYqla1uzzqkUVOKZqjWc3xxFmIY40vXoyb7gRzrmedbv/itVlx9nU3jD/+SeP+sJouQSOoLZ70voc5RWw6oLpeZTZgvmN58rOp6qijFVF0jtO93/NmHPu+KznIlyOURxOjo7T3T/ia3CMnYKHPwL/cRd0XAV3fD+nH568aA4KMR55OchRpWGqM4nXVHJW8zJuvGgNV21sLnRzCqeszPcOoh6qyrLHUVtVzsrlVfntcYBfxHLD5ymfGOUzsYdYVn2G0fre7CfGQ5eua6Cy3FLnrWq5xPc4ki3Z3b8N4m28eDJOW0Nt0az8SzdwvGhm/wMoN7ONZvYF4Kk8tqsg9gYT45fGTsCXb4Bn/wmu+hi890FfQKnYhNUAD7/kA8cKVf1Lx7/duZW/umWBdvgXsyj3cgz2QU1DTgk+2xojTq+ewmjDBu6bvInrRh+H7u3znzy1oir7Ghg1leVctLaep1NOkF/s0xUdPzDzeed8KvX1b6J7YJi2IpnfgPQDx0eBC4FR4AHgBHBXvhpVKHv7Btla9jxbv/sun0Pmlq/BdX/kh6mK0bJmqG2En34Hxk+px5GmeE1l6Q5RJYq3RDtUleXEeKgt6oJOKew+cJy/PH0zp2pWwSN3+wnoVHqe81lsa3Nbrt25vpHnDhxndDzJe60JejOzNwIOdPmeXPuVdPeP0F4kK6og/Zrjw865TzrntjjnOoPjiMuHJWdmF5jZN8zsb83s3fl8r8ZdX+IfKz9HWWw1fPgJOO8X8/l2uTPzRWW6fuAfK3BIJmKtEQ5VZb+HI7SuqY5Dx0aYyNdejsD21/oZpobx6z7tc1A9e3/qkw/timSIurOjidPjk7xwcPaIP8FqKps7QR4UbhpavYXjI2NFMzEO6a+qOtfM7jWzR83su+FHGp93n5kdNrMXZj1/g5n9xMxeMbPfP8NlbgS+4Jz7TeC2dNqbrWWVxq7Y1divPe5TdywGzW/w6+dBm/8kM/EWOD0Ep1Jkb81EDrvGQ22NtYxNOHpP5Pdv0h1d/WxctZzlnbdA+5vh8U/DSJL5h5Fjvs54BIFjczBBnnSeo2qZ/7/bM6vHsX8b1NSzr7wdKJ6luJDmPg7gQeDv8MWc5unXzfEV4Iv4pIjAVO6rvwF+ATgA7AiW9pYDn531+R8E7gf+xMzeDqzI4L0ztvUD/ytsZD7fJlrhPEdto98QKJKuxCW5NfHsr+NcTnmqQuFf1Af6h1mbpwywE5OOp7sGeNtlrf7/+U3/G770FnjiM3DTPTNPDnsAEZRKWLm8mrNWLvP7Oa5OcsKai6F7x8zn9m+DdVfSPeA3RRZTjyPdwDHunPvbTC/unHvSzDpmPX0F8Ipz7lUAM/s68A7n3GeBX0pxqTuDgPPNVO9lZncAdwC0t7dn2tTwItl9XiGFK6tWbFyc7ZfCmdoEeMhnW87WyABMnM56RVUo/Iu6e2CEN+Z0pdRe7j3B4Oj49P6NNRdD5wdhxz/A5bfN3B0ewcR4os3rG3lsTx/OubmFwtZcDC/8i/9a1jb6+u2v74VLb53K4VUsu8Yh/cnxb5nZb5lZi5k1hR9ZvudaoDvh8YHguaTMrMPM7sX3Wu5JdZ5z7t5g/qWzubmEllk2Bz0OzW9IpuJB4Mg1vXpYwCnHyfHWhhrMyF+yQ/z8BsxKbHjtJ/2KsEc+PnNJbM9zfh4oojIFWzqaGBge42ez6sEACTvIg15OULiJ9W+mu3+YWHUF9bXFk/I/3cDxAeBu/BLcME/Vznw1KpFzrss5d4dz7r3Ouf9eiPdcVJavgovfAxfeXOiWyGITC/NV5biyaiiawFFdUc7qWE30BZ0S7OjqZ21D7cyhsLomuO6PYf9T/q/+UI47xmcLi2glrc8xO3DsewrKq6F1E90DI7Q11RVVOeN0V1VtSPKR7c7xg8C6hMdtwXOSDTOf0n3jLxS6JbLYVNb4ehC5VgKcSjeS2xwH5De9unOO7a8NsKUjydLay2/zQeLR/+lLuZ4+6YeKIgwcZ61cRtOyquQVAZc3+6HDcIJ8/49g7eVQUU13/zDriqQOR2jewGFmH084fs+s1z6T5XvuADaa2QYzqwJuAZZk3iuRohdFJcCIehwwnV49H7qODvP60Gjy+htl5XDTX/jlyT/4C+h9AXDQmvvEeMgsTHg4z0bA3ufh9LBfJtz+JpxzdA8MF9WKKjhzj+OWhOM/mPXaDWe6uJk9AGwD3mBmB8zsQ865ceAjwLeBPcA3nHNpFN0VkcjFW3NPrT7YC9XxSAqZtTXW0nN8hLGJ6DMa7QjmN1ImNlx3BVx6Kzz1xekhq4jTDG3paKTr6DBHBpOkj19ziU8ftO8pv8S+/U0cGRrl1Njk4upxAJbiONnjOZxztzrnWpxzlc65Nufc/w2ef8Q5d65z7mzn3J9n2GYRiUqsJfdNgIO9kQxTgV9yOumg51j0ezm2d/XTWFc5lSE5qev/1Ger3f4ln5khx70ps21e74NW0vQjay4GNwE77wMM1l0xNd+z2HocLsVxsscFZ2ZvM7N7jx9PsjtTROaKt/oqgONJUn6na6gvkmEqSEyvHv08x46ufrZ0NM0/yRxbDdd8wh+3XBr5EveL1saprihLXp8jXAq89z99objahoSluIsrcFxqZifMbBC4JDgOH2deDivPnHPfcs7dUV9fEuXRRXIXVgIM5ymyMdgTWeCY3ssRbeA4fOIU+44OT9Vfn9cbfwPOvg4ufGekbQC/cuzStgZ2JJsgb9wAVTFwk9B+JTCdZr5tMQ1VOefKnXNx51zMOVcRHIePi2dRsYhkJ9cluc5FkqcqtKa+hjKLvqDT9mBCeks6hZvKK+H934RN74u0DaHOjkZePHickdOzknCUlcGai/xx+5sA6O4fYeXyKuqq0t2rvTCUIlSklE1tAswycIyegPGRyHocleVltNTXRl7Qacdr/dRVlXNhaw6pVSLS2dHI+KRjV/exuS+G+znCwDEwPFXkqpgocIiUsnCoKtsJ8hxLxibT1lhLd+Q9jgEub2+korzwv/I2t88zQf7GX/fLgut9Mo1iXIoLChwipa2mASpqs+9xhAEnoh4HhHs5outxHB8Z4+XeE+kNUy2A+rpKzl29PHmm3BVnwxUfBmB8YpJDx04V3VJcUOAQKW1muRV0Ggp6HBEGjrbGWvpOjHJqLJNE3Kk9va8f52DLhtyKMUWps6OJZ/YPzFt7pOf4KSYmnXoc+abluCJZyKWgU5jgMKLJcZhOH37oWDTDVdtfG6Cy3Ni0rogCx/pGBk+NT5WrTiZcWVZM6dRDSypwaDmuSBZy2T0+2AuVy6A6FllzwqWnUc1z7Ojq56K19dRWFU8J6HDYLGneqsCBYPNfu3ocIlJ04i0+ALgs9vSGBZwi3CgXDs1EMc9xamyC3QeOpU4zUiBtjbWsilWnzluF73GUGbQ01Cxgy9KjwCFS6mKtvhDT8NHMP3ewL9IVVQCr4zVUllsk6dV3dR9jbMIVzcR4yMzY0tGUfAd5oLt/mJb6WiqLYCXYbMXXIhFZWOGS3GyGqwZ7ci4ZO1t5mdHaEE169TCxYWeyVOoFtnl9IwePjaScy+keGCmqqn+JFDhESt1U4MhignyoL/JEgOAnhKOY49je1c95a2I01FVF0KponWmew9fhKL75DVDgEJHE2uOZGB2C00ORrqgKtTXWcjDHHsf4xCTP7BsoumGq0PktMeqqynk6yTzHqbEJDg+OFuVSXFDgEJHlq8HKMt/LkYc9HKF1TXW8PnSa4dPjWV9jT88gJ09PJC/cVAQqysvY1N6QdCNgmKtLQ1UiUpzKK3zwyHSoKg+7xkPhktyDOQxXhYkNi21FVaLN65t4ufcEg6fGZjxfzHs4YIkFDm0AFMlSrCXzoaqpzX/5CBy5p1ff/tpR1jXVsqa++JazhrZ0NDLp4Nn9MxMehkkeNVS1ALQBUCRL8dYchqqin+NYN1XQKbseh3OOnV3FO78R2tTeSJnNnSDv7h+mqqKM5uXVBWrZ/IorybuIFEa8FV77QWafM9gD5dU+UWLEmmPVVFeUZZRefXR8gh+/2s/je/p4bM9hjp48zdazV0betigtr67g/Jb4nI2A3f0jtDXWUlYWbQXCqChwiIgfqho97ldKVc9TkzvRYFAyNuLyquA3yK1trD3jJsCBk6d54ieHeWxPH0/ufZ2h0XFqKsu4amMzd12/kXduWht526LWub6RB58+wNjE5NRmv+6B4l2KCwocIgIQD37BDvZA9cb0PmeoNy8T46F1jXUcODa3x/GzI0O+V/HSYXbu62fSwapYNW+7tJXrz1/F1nNWUlNZPHmpzqSzo4mvbtvHnp4TXNLme2/d/cNsao++JxcVBQ4RmVkJcGWagWOwD5rfkLcmtTXWsqv7GOMTkzy9b4DHXz7MYy/18errJwE4vyXOR649h+svWM1FrfVFO6xzJuGu9p1dA1zS1sDxkTFOnBpXj0NEilwsi0qAg71w1jX5aA3gVxQdHxmj888f49jwGJXlxpVnreD2rR38/HmrirKkajZa6mtZ21DLzn39fPDnNhT9iipQ4BARyLz2+NiInxPJw4qq0JVnraBjRR2Xtzdy/QWruWrjSmI1lXl7v0Lq7Ghk28+O4pybytGlHoeIFLeqZVBTn37gyOMejtBl6xr43t3X5u36xaSzo4l/33WI7v6RqQUBxbprHJbYPg4RyUEmlQDDwJHHyfFS0rk+mOfY10/3wDCx6grqa4u3d7WkAod2jovkIJPa40MKHFE6d3WMWE0FO7oG6O4fpq2pDsvDMueoLKnAoZ3jIjnIZPf4YLBrPI9DVaWkvMy4vL2Rp/f10z0wQnsRD1PBEgscIpKDWCucPAwTaWSkHeqFskqoK+6UHovJlo5G9vYNsf9ocW/+AwUOEQnFW8BNTuegms9gb952jZeqzet9ED49MVnUS3FBgUNEQuHu8XSGqwZ781LAqZRdtq6BimATYzGvqAIFDhEJZVIJcKhPE+MRq60q58K1fn5WQ1UisjhkUnt8sEeBIw/euKGJijIr+l3x2gAoIl7dCiivghMH5z9vfBRGBrSiKg/uvOYcrj9/NbVVxZ2kUT0OEfHMgkqAZ+hx5LGAU6mrr6vkiiKtkZ5IgUNEpsVbzzxUtQDpRqS4KXCIyLR465mHqpRupOQtqcChlCMiOQqHqpxLfc7UUJUCR6laUoFDKUdEchRvhfFTfvI7lcFesHKoK+563pI/SypwiEiOYmnU5Qg3/5Xp10ep0ndeRKYl1h5PZahXK6pKnAKHiExLpxLgYJ9WVJU4BQ4RmRYGhHkDR496HCVOgUNEplVUwbJVqfNVTYzB8OvTcyFSkhQ4RGSmeEvqTYBDh/2/yoxb0hQ4RGSm+WqPq2SsoMAhIrPNt3tcu8YFBQ4RmS3e4jcAjo3MfU15qgQFDhGZLRbU5Ug2XDXUBxgsa17QJklxUeAQkZmmCjolWVk12OODRrlK+ZQyBQ4RmWm+SoCDKhkrSyxwKDuuSATmqz0+1KvAIUsrcCg7rkgEauJQFUsxVNWnPRyytAKHiEQk3jI3cExOwMnD2jUuChwikkSy2uMnj4CbVJ4qUeAQkSTirXN7HNrDIQEFDhGZK97qA8XkxPRzU7vGNVRV6hQ4RGSuWAu4CT88FZrKU6WhqlKnwCEic03t5UjIWTXY5/9dtmrh2yNFRYFDROZKtglwsAfqVviaHVLSFDhEZK5k+aqG+jS/IYACh4gks6wZyipmDVX1avOfAAocIpJMWZnvXZyY3ePQUlxR4BCRVGIt0/mqJicVOGSKAoeIJJeYdmT4KEyOa/OfAAocIpJKfK0fqnJOezhkBgUOEUku1gJjJ2H0hNKNyAwKHCKSXOJejql0IwocosAhIqkk7h4Ph6q0HFdYYoFDFQBFIjRVCbDHpxupaYDKmsK2SYrCkgocqgAoEqEwcJzo8cFDu8YlsKQCh4hEqLIGapuCoao+raiSKQocIpJafO30UJVWVElAgUNEUou3TE+Oq8chAQUOEUkt1gJH9sLEac1xyBQFDhFJLb4WJkb9sZbiSkCBQ0RSiyf0MrT5TwIKHCKSWljQCRQ4ZIoCh4ikFk8IHFpVJQEFDhFJLRyqqo5DVV1h2yJFQ4FDRFKraYCKWg1TyQwKHCKSmpkfrtKKKklQUegGiEiRu/YP/VCVSECBQ0Tmd/G7C90CKTIaqhIRkYwocIiISEYUOEREJCMKHCIikhEFDhERyYgCh4iIZESBQ0REMqLAISIiGTHnXKHbEDkzOwLsy/LTVwKvR9icxUD3XBp0z0tfrve73jnXfKaTlmTgyIWZ7XTOdRa6HQtJ91wadM9L30Ldr4aqREQkIwocIiKSEQWOue4tdAMKQPdcGnTPS9+C3K/mOEREJCPqcYiISEYUOEREJCMlGzjM7AYz+4mZvWJmv5/k9dvN7IiZ7Qo+fq0Q7YzSme45OOdXzOwlM3vRzL620G2MWhrf5/+T8D3ea2bHCtHOqKRxv+1m9oSZPWtmu83spkK0M0pp3PN6M3s8uN/vmVlbIdoZJTO7z8wOm9kLKV43M/vr4Guy28wuj7QBzrmS+wDKgZ8BZwFVwHPABbPOuR34YqHbusD3vBF4FmgMHq8qdLvzfc+zzv8ocF+h253n7/G9wG8GxxcAXYVu9wLc84PAB4LjnwfuL3S7I7jvtwCXAy+keP0m4D8BA64Efhzl+5dqj+MK4BXn3KvOudPA14F3FLhN+ZbOPX8Y+Bvn3ACAc+7wArcxapl+n28FHliQluVHOvfrgLCAeD1waAHblw/p3PMFwHeD4yeSvL7oOOeeBPrnOeUdwD8670dAg5m1RPX+pRo41gLdCY8PBM/N9q6gm/eQma1bmKblTTr3fC5wrpn90Mx+ZGY3LFjr8iPd7zNmth7YwPQvmMUonfv9FPA+MzsAPILvZS1m6dzzc8AvB8fvBGJmtmIB2lZIaf/sZ6NUA0c6vgV0OOcuAb4DfLXA7VkIFfjhqmvwf33/vZk1FLRFC+cW4CHn3EShG5JntwJfcc614Ycz7jezpf574GPA1Wb2LHA1cBBY6t/nvFrqPzCpHAQSexBtwXNTnHNHnXOjwcN/ADYvUNvy5Yz3jP+rn8JQIAAABX5JREFU5GHn3Jhz7jVgLz6QLFbp3HPoFhb3MBWkd78fAr4B4JzbBtTgE+MtVun8Xz7knPtl59wm4JPBc4t6EUQaMvnZz1ipBo4dwEYz22BmVfhfGg8nnjBrPPDtwJ4FbF8+nPGegX/D9zYws5X4oatXF7KREUvnnjGz84BGYNsCty9q6dzvfuA6ADM7Hx84jixoK6OVzv/llQm9qj8A7lvgNhbCw8BtweqqK4HjzrmeqC5eEdWFFhPn3LiZfQT4Nn5Vxn3OuRfN7NPATufcw8Bvm9nbgXH8JNTtBWtwBNK8528DbzWzl/Bd+budc0cL1+rcpHnP4H/ZfN0Fy1EWqzTv9/fwQ5C/i58ov30x33ea93wN8Fkzc8CTwJ0Fa3BEzOwB/H2tDOar/gSoBHDO/R1+/uom4BVgGPjVSN9/Ef/MiIhIAZTqUJWIiGRJgUNERDKiwCEiIhlR4BARkYwocIiISEYUOGRRMLOhNM65y8zqInzPm83sggiv91QOnzsU/NtqZg/Nc16Dmf1Wtu8jkg4FDllK7gIyChxmVj7PyzfjE+RFwjn35giuccg59+55TmkAFDgkrxQ4ZFExs2uCmgoPmdnLZvbPwe7Y3wZagSfM7Ing3Lea2TYze8bMHjSz5cHzXWb2eTN7BniPmX3YzHaY2XNm9i9mVmdmb8ZnDLgnqNVxtpldFiR/3G1m/2pmjcH1vme+rsdOM9tjZlvM7Jtm9lMz+7OEtg8lHH/CzJ4P3vNzSe5zQ9D252ddoyOswWBmF5rZ9qB9u81sI/A54OzguXvMbLn5WhTPBNd6R8J19pjZ35uvvfKomdUGr51jZo8FbXvGzM4Onr87+DrtNrM/jfQbK4tLofPK60Mf6XwAQ8G/1wDH8bl3yvBpQn4ueK0LWBkcr8TvEl4WPP4E8McJ53084dorEo7/DPhocPwV4N0Jr+0Grg6OPw38ZXD8PeDzwfHv4FOVtwDV+PxfK2bdw43AU0Bd8Lgpyf0+DNwWHN+Z8LkdBDUYgC8A7w2Oq4DaxNeD5yuAeMLX5BV8jYYOfFaEy4LXvgG8Lzj+MfDO4LgG34t7K76WhwVf9/8A3lLonwt9FOajJFOOyKK33Tl3AMDMduF/Cf73rHOuxA8z/dDMwP9iTcxF9f8Sji8K/qpvAJbj01fMYGb1QINz7vvBU1/FFwgKhelLngdedEFeIDN7FZ9sLjF1y/XAl51zwwDOuWR1FbYC7wqO7wc+n+ScbcAnzVe0+6Zz7qfBvc5oOvAZM3sLMIlPrb06eO0159yu4PhpoMPMYsBa59y/Bm07FdzHW/HB49ng/OX4BJhPJmmXLHEKHLIYjSYcT5D859iA7zjnbk1xjZMJx18BbnbOPWdmtxMkesyyTZOz2jeZon3pmDcfkHPua2b2Y+AXgUfM7NeZm5TyvUAzsNk5N2ZmXfheRGKbwX8da+d5OwM+65z7UgbtlyVKcxyylAwCseD4R8BWMzsHwMyWmdm5KT4vBvSYWSX+F+2c6znnjgMDZnZV8Nr7ge+Tne8AvxquADOzpiTn/BCffJFZbZpiZmcBrzrn/hr4d+ASZn4NwFf5OxwEjWuB9fM1zDk3CBwws5uD96gO2vlt4IMJ80RrzWxVWncrS44Chywl9wL/ZWZPOOeO4DMaP2Bmu/HDOuel+Lw/wo/r/xB4OeH5rwN3m9mzwQTxB/CT5buBy/DzHBlzzv0XfmhrZzDU9rEkp/0OcKeZPU/qym2/ArwQXOMifKnQo/jhuRfM7B7gn4HO4Dq3zbq/VN6Pzw69Gz8Xs8Y59yjwNWBbcK2HmBmgpIQoO66IiGREPQ4REcmIAoeIiGREgUNERDKiwCEiIhlR4BARkYwocIiISEYUOEREJCP/H68jv1tS/Bk/AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for i in range(len(algorithms)-1):\n", - " pylab.plot(distances, np.subtract(energies[i], energies[2]), label=titles[i])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.yscale('log')\n", - "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally lets plot the number of evaluations taken at each point. Both start out at the same number since we start them the same. But we can see, as we step along small distances, that the prior solution is a better guess as the starting point for the next step leading to fewer evaluations." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4lMXWwH8nhSRASAQSCAQI0ktCQlNElKKiUsQGIjasqJ94UVG81yuo13v1Yhe7IHpFQTrSLSCgSA2ELoiBEEInoSUhZb4/5t2wSTbJJtnNbsL8nmef3XfeeWfOtvfMnHPmjCilMBgMBoOhID6eFsBgMBgM3olREAaDwWBwiFEQBoPBYHCIURAGg8FgcIhREAaDwWBwiFEQBoPBYHCIURAGg8FgcIhREIaLDhFJFJFrPNR3PRFZISKnReTNCux3soj8y01tDxORpe5o2+BZjIIw5ENEFovIyw7KbxKRQyLiZx1fISI/Wze6NBGZJyKt7er3FJFcETlT4NGtIt+PF/IwcAyopZR62tPClBYRiRIRZfsdACilpiilrvOkXAb3YBSEoSBfAneJiBQovxuYopTKtm7yS4G5QAOgKZAA/CoiUXbXHFRK1SzwWO3+t1Ax2N8kS0ETYLsyKQwMlQCjIAwFmQPUAXrYCkTkEqA/8JVV9F/gK6XUu0qp00qpE0qpF4C1wNiydGqZfZ4RkQRrRjJNRAKtc/eJyKoC9ZWINLdeTxaRD0VkkTVL+VVE6ovIOyJyUkR2ikhcgS67iMh26/wXtr6s9vqLyCYRSRWR30QkpoCcz4lIAnDWkZKwZlfrrPexTkSusMkJ3As8a8lZyMwlIgEi8oaI7BeRwyLysYgEWed2iEh/u7p+InJURDpax9OtWV6aZcZqV8RnXdLn2U9E4kXklIgkicg4u6orrOdU24ywYHtFvX/r3HIRecX6jk6LyFIRqWudCxSRr0XkuPXZrxOReo7eg6FiMArCkA+lVDrwHXCPXfFgYKdSarOIVAeuAKY7uPw7oDymhsHA9egZSQxwXymvfQGoC2QCq4GN1vEM4K0C9YcBfYFmQEvrWixFMgl4BK0oPwHmiUiA3bVDgX5AqFIq275REakNLADes65/C1ggInWUUvcBU4D/WrOpHx28j9cseWKB5kBD4EXr3LdW3zb6AseUUhut40VACyDceu9THH9UJXIW/f2HWu/zUREZZJ27ynoOdTQjLO7921W7ExhuyVkNeMYqvxcIARpZ144A0sv4HgwuwCgIgyO+BG6zG1XfY5UB1Eb/blIcXJcChNkdN7BGgvaPGsX0+55S6qBS6gTwPfom6SyzlVIblFIZwGwgQyn1lVIqB5gGFJxBTFBKJVl9vcqFG+/DwCdKqTVKqRyl1JdohXN5ATmTLGVakH7AbqXU/5RS2Uqpb4GdwICS3oBl1nsYGGXNyk4D/wbusKp8Awy0lDToG+23tuuVUpOsGV0mMA7oICIhJfVbEKXUcqXUFqVUrlIqwerjaicvd+b9f6GU+sNuMGL7nrPQiqG59dlvUEqdKq38BtdhFIShEEqpVWhH6iARaQZ0Rd+cAE4CuUCEg0sjrOtsHFRKhRZ4nC2m60N2r88BNUsh9mG71+kOjgu2lWT3eh/alwLaR/C0vVJDj2gbFHFtQRpY7dmzDz0TKIkwoDqwwa7vxVY5Sqk9wA5ggKUkBmJ9LyLiKyKvicifInIKSLTarOtEv/kQkctEZJllvkpDj+SdbceZ91/U9/w/YAkwVUQOish/RcS/tPIbXIdREIai+Ao9c7gLWKKUOgxg3eBXA7c7uGYwsNwNspxF3zgBEJH6Lmizkd3rxsBB63US8GoBpVbdGgnbKM7BfBCtZOxpDCQ7IdMxtDJrZ9d3iFLKXrnZzEw3oZ3de6zyO62ya9BmmiirvGCwAZT8eX4DzAMaKaVCgI/t2inJuV7m96+UylJKvaSUaos2Y/Ynv6nTUMEYBWEoiq/QN5uHuGBesjEGuFdERopIsIhcIjrGvgfaJOJqNgPtRCTWMnuNc0Gbj4tIpGUz/wfaDAXwGTDCGkWLiNSwnLbBTra7EGgpIndaTuQhQFtgfkkXKqVyrf7fFpFwABFpKCJ97apNRft5HuXCrA4gGG0KO46++Rf3PZT0eQYDJ5RSGSLSFa18bBxFzyAvLaLtMr9/EeklItEi4gucQpuccku6zuA+jIIwOEQplQj8BtRAjybtz61CO0hvQfsdTqAdjH2UUlvtqjaQwusgbi2DLH8ALwM/AruBVcVf4RTfoEN19wJ/Av+y+lqPVooT0Oa0PZTCWa6UOo4e+T6Nvlk/C/RXSh0r9sILPGf1+btlKvoRaGXXfgp6BncFF5QaaIW+Dz1S3w78XoyMJX2ejwEvi8hptIP8O7trz6F9Nr9aZjB730x53399dEDBKbQp7Re02cngIcSEYxvKi+gw0GXAnUqpJZ6Wx2AwuAYzgzCUGyvSZRAQLWVbPGYwGLwQM4MwGAwGg0PcPoOwwu/iRWS+dTxFRHaJyFYRmWQLYxOduydN9ArWTSLyYvEtGwwGg8GdVIQ54Em0w6mWdTwFHToJ2lH4IPCRdbxSKdUfJ6lbt66KiopykZgGg8FwcbBhw4ZjSqmwkuq5VUGISCR6ZeWrwFMASqmFdufXApFlbT8qKor169eXV0yDwWC4qBCRgosZHeJuE9M76DC3QrHMlmnpbvRKURvdRGSz6KRrRSUae1hE1ovI+qNHj7pFaIPBYDC4UUGIzjp5RCm1oYgqHwIrlFIrreONQBOlVAfgfXRW0UIopT5VSnVWSnUOCytxhmQwGAyGMuLOGUR3dGKxRPTqz94i8jWAiIxF55d5ylZZKXVKKXXGer0Q8LelATYYDAZDxeM2BaGUel4pFamUikJno/xZKXWXiDyIXoU71EotAOh8MFY2S6zl/T7olZgGg8Fg8ACeWNT0MTolwGpLH8xSSr0M3IbOO5+NTlh2h9l1y2AwGDxHhSgIpdRyrCyfSimHfSqlJqDz33g1c+KTGb9kFwdT02kQGsTovq0YFOdMJmeDwWCoXJi0CKVgTnwyz8/aQnpWDgDJqek8P2sLgFESBoOhymFyMZWC8Ut25SkHG+lZOYxfsstDEhkMBoP7MAqiFBxMdbw9blHlBoPBUJkxCqIUNAgNKlW5wWAwVGaMgigFo/u2Qgps4Bjk78vovq0cX2AwGAyVGKMgSkGXprVRCoIDtW8/yN+X/9wSbRzUBoOhSmIURClYtCUFgPlPXMntnSLx8xFuiC6437vBYDBUDYyCKAULtqTQrkEtmtSpwY0xEZzOzGbVbme3GjYYDIbKhVEQTpKcmk78/lRujI4AoHuzutQK9GOBNaswGAyGqoZREE5iMy/1sxRENT8frmtXnx+2HSYzO6e4Sw0Gg6FSYhSEkyzYkkLbiFpE1a2RV9Yv2piZDAZD1cUoCCc4aJmX+sVE5Cvv3tyYmQwGQ9XFKAgnWGgpAJv/wUY1Px+ubVufH7YbM5PBYKh6GAXhBAu3pNAmohZN7cxLNvrHRHA6I5tf9xgzk8FgqFoYBVECB1PT2bg/lf4FzEs28sxMCYcqWDKDwWBwL0ZBlMCirfrGX9C8ZOOCmekQ57NzHdYxGAyGyohRECVQnHnJRr+Y+pwyZiaDwVDFMAqiGFLS0tmw7yT9SkincWXzMIJNNJPBYKhiGAVRDIu2FG9esqHNTPVYus2YmQwGQ9XB7QpCRHxFJF5E5lvHTUVkjYjsEZFpIlLNKg+wjvdY56PcLVtJLNySQuv6wVwaVrPEuv2iI4yZyWAwVCkqYgbxJLDD7vh14G2lVHPgJPCAVf4AcNIqf9uq5zFS0tJZv+9kXmqNkriyRV2CA4yZyWAwVB3cqiBEJBLoB3xuHQvQG5hhVfkSGGS9vsk6xjrfx6rvEfLMS0WEtxYkwM/XmJkMBkOVwt0ziHeAZwHbHbMOkKqUyraODwC23XYaAkkA1vk0q34+RORhEVkvIuuPHj3qNsFt5qVmTpiXbNxoMzP9acxMBoOh8uM2BSEi/YEjSqkNrmxXKfWpUqqzUqpzWFiYK5vO41BaBuv3nSzROV2QHi21mWlhgjEzGQyGyo87ZxDdgYEikghMRZuW3gVCRcTPqhMJJFuvk4FGANb5EOC4G+UrkkVbHedeKok8M9P2w2TlGDOTwWCo3LhNQSilnldKRSqlooA7gJ+VUsOAZcBtVrV7gbnW63nWMdb5n5VSyl3yFcfCLSm0qhdM83DnzUs2boyOIC09y0QzGQyGSo8n1kE8BzwlInvQPoaJVvlEoI5V/hQwxgOycfhU2cxLNvLMTCaayWAwVHL8Sq5SfpRSy4Hl1uu9QFcHdTKA2ytCnuJYtCUFpXT6jLIQ4OfLNZaZ6dWcXPx9zVpEg8FQOTF3rwIs3HLIMi8Fl7mNG6MjSD2XxW9/esSFYjAYDC7BKAg7Dp/KYN2+E2U2L9no0aIuNQP8WJBw0EWSGQwGQ8VjFIQd5TUv2Qj09+WaNuEmmslgMFRqjIKwY+GWQ7SsV7Nc5iUbxsxkMBgqO0ZBWBxxkXnJxlUtw6hpFs0ZDIZKjFEQFou2HtLmJRcpiEB/X/q0CWfJ9kPGzGQwGColRkFYLNiSQovwmrSoV37zkg2bmWm1MTMZDIZKiFEQWOalRNeZl2xc3TKMGtV8zaI5g8FQKTEKAli8zTIvOZna21kC/fWiuSXbjJnJYDBUPoyCABYkpNA8vCYtXWhesnFjdAQnz2Xx+15jZjIYDJWLi15BHDmdwVo3mJdsGDOTwWCorFz0CmKJi6OXCqKjmeqxeKsxMxkMhsrFRa8g5ueZl0qf2ttZjJnJYDBURi5qBWFvXnLn9tc9Wxkzk8FgqHxc1ArC3eYlG4H+vvRuU48l2w6TXQnNTHPik+n+2s80HbOA7q/9zJz45JIvMhgMlZ6LWkEs2JJCs7AabjUv2egXXZ8TZ8/z+94Tbu/LlcyJT+b5WVtITk1HAcmp6Tw/a4tREgbDRcBFqyCOns5k7V8n6Odm85KNnq3CqV7NlwWVzMz06sIdpGfl5CtLz8ph/JJdHpLI4I2YWWbVpEJ2lPM21s37hIYb/8ueasc4/Ftd1mU8S5eBj7i1z0B/X1rWq8m0dfuZunY/DUKDGN23FYPiGrq137KQk6v4YfshJq76i6OnMx3WOZiaXsFSGbwV2yzTNpCwzTIBr/x9G5znolMQ6+Z9QvsNLxAk50EggmOEbniBdeBWJTEnPpntB0+Rq/SxN/6JTmdkMW1dEpN/S+TAyXQa1Q4iJMiPtPTsQnUbhAa5XZ458cmMX7KLg6npXq1QL3bGL9lV5CzTfF+VG7eZmEQkUETWishmEdkmIi9Z5StFZJP1OCgic6zyniKSZnfuRXfI1WjjeK0c7AiS8zTaON4d3eUxfskuzueofGXeYqrZf/wcL3+/nW7/+Zl/LdhBREggH9/VkeXP9OKlge0J8vfNV9/XRxjdt5VbZTK+j8pDUbNJM8us/LhzBpEJ9FZKnRERf2CViCxSSvWwVRCRmcBcu2tWKqX6u1EmwtVRcOByCFfH3NmtR/9EjkbiN8U2YO1fJ5j061/8sP0wPiL0j4ng/iubEhMZmnetbQRou756gC9nM3MIDnTv5NOMSisPNQJ8OZOZU6i8ImaZBvfitn+5UkoBZ6xDf+uRN4QWkVpAb2C4u2RwxBEJoz5HHZTXpXwbjRZPg9Agkh0oA3f/iRzZh0fP2MwbS3ZyIDWD0Or+jLi6Gfd0i6J+SKDDNgbFNcy7KWdm5zDog98YPSOBxU/2ILyW42vKixmVVg6WbjvEmcwcfH2EnNwLM+Qgf1+3zzIN7setUUwi4isim4AjwA9KqTV2pwcBPymlTtmVdbNMUotEpF0RbT4sIutFZP3Ro4Vv9CWR1HE06apavrJ0VY2kjqNL3VZpGN23lUdMNY5G4lk5ikOnMnn15vasHtOHZ69vXaRyKEiAny/vD43l3Plsnp6+mdxcVfJFZaBuzQCH5eG1HJcbKp6kE+d4ZvpmohuG8Pot0TQM1b+har4+/OeWaDPTqwK4VUEopXKUUrFAJNBVRNrbnR4KfGt3vBFoopTqALwPzCmizU+VUp2VUp3DwsJKLVOXgY+wtdO/OEcgSsEhwtja6V9uj2IaFNeQ/9wSTcPQIAQ9Lc/JVYQHu/eGV9SIOydXMeyyJgRV83V4vjiahwfzz/5tWbn7GJN+/au8IhZiz5HTnMnMcmQJ5HR6Fr/tca850FAymdk5PP7NRhTw4bCO3Na5Eb+O6cPovq04n5NLbKPQEtsweD8Vsg5CKZUKLAOuBxCRukBXYIFdnVNKqTPW64WAv1XP5XQZ+AjVr38JEaj/9Cq3Kwcbg+Ia8uuY3vz1Wj/W/+NaLq1bg9EzEjidkeW2PosyYZXXtHVn18Zc17Yery/eydbktHK1ZU9KWjr3TFxLjQB/XujXJk+hNgwN4h83tqHhJdW5e9JaJq76C23FNHiCfy/YQcKBNN64vQONalfPK7+1YyQ+AjM2HPCgdAZX4c4opjARCbVeBwHXAjut07cB85VSGXb164u1Yk1EulqyuS+7Xb22+vnwNrd1URxB1Xx5Y3AHUtLSeWX+drf1c1Nsg8J9u8A+LCK8fmsMtWtU48mp8Zw7XzgUtrSknjvPPRPXcjojmy/v78IDPS7NU6i/junNQ1ddyuzHu9O7dTivzN/OM9MTyMgq7Bw1uJf5CQf5cvU+HryyKX3b5ffc1Q8J5MoWYczceCCfT8JQOXHnDCICWCYiCcA6tA9ivnXuDvKbl0Arja0ishl4D7hDuXOIGG65OI647+ZcEh0bX8KIq5vx3foD/LTjsMvbTzpxjm/X7qdecAARIYF5I3FX2YcvqVGNtwbHsvfYWV6Zv6NcbaWfz+GBL9ez7/g5Pr2nM+0ahDisVzPAj0/u6sTfrmnBzI0HGPLJalLSjOO6ovjr2FnGzNxCx8ahPHdDa4d1bu8USUpaBr8aU2Clx51RTAlAXBHnejoomwBMcJc8hahRB2rWh8OeUxAAT17Tgp93HmHMrC0s/dslXFKjWskXOUH6+Rwe+d8GsnMVsx7rRtO6NVzSbkG6N6/Lw1ddyie/7OXqlmFc3770sWBZObn83zcb2bj/JB/e2ZFuzeoUW9/HR/jbNS1pE1GLp6ZtYsD7v/LxXR3pHFW7rG/D4AQZWTk8NmUj/r7ChDs74u/reHx5bdt61Ar0Y/qGA1zVsvR+QoP3cNHmYgK0menwVo+KEODny1uDY0k9d55/znWNLEopnpuZwI5Dp3hvaJzblIONp69tRXTDEMbMSij1aF4pxfOztvDTziO8clN7bihFZt2+7eoz+/Hu1AzwZehnv/PNmv2lFd1QCl76fhs7Uk7x1pDYYn1Ygf6+3BTbkCXbDpGW7j7/msH9XOQKoh0c3QU55befl4e2DWrxZJ8WzE9I4fvNB8vd3ucr/2Le5oM8c10rerUKd4GExVPNz4d374glMyuXp6ZtLpXt+fXFu5ix4QB/u6YFd13epNR9t6wXzNzHr+SKZnX5++wt/GP2Fs5nV76U6t7OrI0H+HZtEo/1bObUb+r2zpGcz851ye/Z4DkubgUR3g5yMuHEXk9Lwoirm9GhUSj/nLuVI6cySr6gCFbuPsp/Fu3gxuj6PNazmQslLJ5Lw2ry0sB2rN57nE9XOPd5fr5yLx//8id3Xd6YJ/u0KHPfIdX9mXRfF0Zc3Ywpa/Yz7PPf+Wp1osku6iJ2Hz7NP2ZvpWvT2jx1bUunroluGEKresFM9+JoJpOBtmQubgWRF8nkWTMTgJ+vD2/e3oH08zk8P2tLmUI4k06c44lv42kRHsz42zpUSBpze27vHEm/6AjeXLqLzUmpxdadE5/MvxZoRfbSwPblltXXRxhzQ2veGxpH/P6TvDh3m8nj5ALOnc/msSkbqRHgy/tD4/Arwu9QEBHh9s6RbE5KZffh026WsvSYXF/OcXEriLqtQHw9GslkT/Pwmjx3fWt+2nmk1COvc+ezeeir9eTmKj69pxM1Aio+Ua+I8O+bowkPDuDJqfGczXRsulu+6wjPTN9Mt0vr8PaQWHx9XKfIBnZowCU1Ci8+9JbEiJUJpRQvzN7KnqNnePeOOOqVMq3KoLiG+PmIV84iisv1ZbjAxa0g/AOhTnOPRzLZc98VUVzWtDYvf7+dAyfPOXWNUopnZyTwx+HTvH9nR5rUca9TujhCqvvz9pBY9p04x7h5hdeYxO8/yaNfb6RlvWA+vacTAX6lX8ldEsfMHhYu4bv1ScyKT+ZvfVrSvXnp16zWrRlAr9bhzNqYTJaXbbVrcn05x8WtIMArIpns8fER3ri9Q95N35lcR5+s2Mv8hBRG923N1V4QVnjZpXV4vGdzpm84wPyEC07KPUfOcP/kdYQFBzD5/i4EB/q7pf+iImwiQt2TWLAqsv3gKV6cu40rm9fl/3o3L3M7t3eK5NiZTH7ZVfq8ae7EXRkGqhpGQYS3g9R9kOk9dtJGtavzz/5t+e3P43y1OrHYuiv+OMp/F++kX0wEI66+tELkc4Ynr2lBbKNQnv5uE5f9+0eajllA37dXkJWTy/8e6Ep4sPtu1o4SIwIEB/hxpgizl+ECpzOyePybjYQE+fPOHeUzAfZqHU6dGtWYviHJhRKWn/uvjCpU5lcByTMrG0ZB1LOtqN5ZfL0KZkiXRvRsFcZri3ey9+gZh3X2HT/LE9/G07JeMONvi6lwp3Rx+Pv6MCAmgsxsxeFTmSggRymychTx+4t3YJeXgokRG4YGMaRLJHuOnmXwx6s5XI4osaqKfURP11d/JPHYWd4fGldkVl1n8ff1YVBcQ37acYTjZxyb/iqa3FzFj9uPUM1XqFcrAEGnn1FK0a5BLU+L51UYBWGLZDrimZxMRWHLdRTg58vT0wuvLTh3PptH/rcBgE/v7kz1at63e+ykXxMLlWVm51aII9A+MeKvY3rz+q0d+PzeziQeP8stH/7mlZE1nqJgRE96Vi6+PkJKmmsU6e2dI8nOVczd5B1rIr5cncjqvcd5+ab2rPn7Nfz1Wj9WPteLWkH+PDszweSQssMoiJDGUK2mx5L2FUe9WoG8fFM74ven8smKP/PKlVKMnq6d0hPujKNxnerFtOI5vM0R2KtVON890o3zObnc+tFv/L7XfbkgKxOOInqyc5XLFHnr+rWIbhjiFdFMfx49w2uLdtKrVRhDujTKK69bM4CxA/R/7cvfEj0noJdhFISPD4S39apIJnsGdmhAv+gI3liyi66valt+h5eWsmBLCs9d35oeLTzvlC4Kb3QEtm8YwqxHryC8ViD3TFzLPLPSt0IU+e2dI9mRcsqlqeFLS3ZOLs9M30ygvy+v3VrYJHtTbAN6tQpj/JJdJJ1wLoKwqmMUBGgz05Ft4IX7C4gI3ZrVIVfBkdPaln8qIxtfEbdvNlReHDmLvWEryka1qzNjRDdiG4Uy8tt4Pl3x50W7t8SiLSkU5bpypSIf2KEB1Xx9PLpPxCcr9hK/P5VXBrV3uKZDRHj15mh8hDIvVq1qGAUBOpIp/SScTvG0JA75aPmfhcpylOKNpX94QBrnceQs9patKEOrV+OrB7rSLyaCfy/cybh52y4q2/OxM5k8PmUjj07ZSIOQQAL88t8KXK3IQ6tX49p29ZizKZnM7Irfw2NHyine+fEP+kVHMCCm6ISQDUKDGHNjG1btOeYVJjFP432eTU+Ql3JjO9QqvMGOp/E2W35pGBTX0CsUgiMC/X15/444GoQE8tnKv0hJy+DdO+LKtA1rZUEpxfyEFMbO28aZjGxG923Fw1ddyoKEFMYv2cXB1HQahAYxum8rl39vt3eKZEFCCj/tOMKNpcjaW17OZ+fy1HebCQmqxiuDSk7rMqxrY77fdJB/zd9Oz5ZhhJdyBXlVwswgQPsgwOsimWx4oy2/quDjI/yjX1vGDmjLDzsOc+fnv3Pi7HlPi+UWjpzOYMTXG3ji23gaXRLE/JFX8niv5nmhqPZRX+5Q6j1ahFG/ViDT11fsmoj3ftrNjpRTvHZLNLWd2G/Fx0d47dZoMrJzeXGud94TKgozgwCoXhuCG3hlJBNoW/7zs7bkizTxBlt+VWJ496ZEhATy5NRN3PrRbwy7rDFf/Jro1hG1I+bEJ7t8JK+UYs6mZMbN2056Vg5jbmjNg1c2dTrxnqvw9RFu6diQj3/5k8OnMkqd26ksxO8/yYfL93B7p0iuaVvP6esuDavJqGta8vrinSzcklKhMx5vwswgbNTz3kgmb7blVyWubx/BNw9dxuG0dP61YEeFZ/p0R4bRQ2kZPPjlekZN20yzsBosHNmDEVc3q3DlYOO2TpHkKpi10f1ZU9PP5/D0d5upXyuQfw5oW+rrH+rRlPYNa/Hi3K2knquas8qSMDMIG/XawV8rICcLfN2TI6g8eLMtvyrRqUltagb6cy4r/6rf9KwcXl+80y3fQU6u4o/Dpxk3b5vDDKPj5m0jPDiApmE1qBcciE8RqS/yzz4C6dEyjAUJKWTl5PJCvzYM797UpZlzy8KlYTXp1OQSZmxIYsTVl7p19f/4JbvYe+wsUx68jFplyPvl5+vDf2/twMAJq3hl/g7eHNzBDVJ6N04pCBFpBhxQSmWKSE8gBvhKKVVkzgQRCQRWAAFWPzOUUmNFZDJwNWALiL5PKbVJ9C/lXeBG4JxVvrFsb6sMhLeDnPNw/E8Id7wZu+Hi4GgR2WBT0jK45q1f6Ng4lLjGlxDXOJQW4cGFbrolmYmOn8lkU1IqG/efJH5/KpuTUjl7vujIntT0LO78fA2gTYtN6lTn0rAaRNWpQdO6+rHz0CleXbCD9CydNTU5NYOpa5O4tG4NJt3XhSg3bztbGm7vFMmYWVuIT0qlY+NL3NLH6j+PM+nXv7i3W5MyZaK10bZBLUZc3YwJy/YwMLaBVyTDrEicnUHMBDqLSHPgU2Au8A36Zl4UmUBvpdQZEfEHVonIIuvcaKXUjAL1bwBaWI/LgI+s54rBfvMgoyAuahqEBpHsIEKsVqAfTWpX54fth/luvQ6BrBngR4dGIcQ1uoSOTUI5mJph3aj1DT85NZ3nZiawcvdRcpW2iSce14uwfH2ENhHB3NrXj28BAAAgAElEQVQpkrjGoby2aCeHTxVWTvVqBfDW4Fj2HjtL4rGz/HXsLDtSTrN022GySwjNzcjO8SrlANAvJoJx329j+voDblEQZzKzeWb6ZqLqVOe5G8r/X/6/3s1ZtDWFv8/awpJRV1HTA3ut2OMOP1VROPtOc5VS2SJyM/C+Uup9EYkv7gKlV5nYssz5W4/ifs03oWclCvhdREJFJEIpVTGLE+q2BB8/r9k8yOA5igoKePmm9gyKa4hSin3Hz+XNAOKTTvLRL38WuY4iMzuXmRuTCQsOoGPjUO7o2pi4RqHERIbmC6kVxGG/z9/Qhu7N6xYaCWfl5HLgZDqJx84yfPI6h32npHpfYsLgQH9ubB/B/M0HebF/W5eHFf9r/nZS0tKZPqKbS3KUBfr78vqtMdz+yWreWLKLcQPbuUDKsmHzU9kPQJ6ftQXALUrC2U8vS0SGAvcCA6yyEo16IuILbACaAx8opdaIyKPAqyLyIvATMEYplQk0BOzj3w5YZSkF2nwYeBigcePGTorvBH4BUKeF1zqqDRWH7Y9W1ChNRIiqW4OoujW4pWMkoJMnbjmQxpBPf3fYpgBr/96nWJt7Sf0WxN/XJ8/E1LCIWY+3hkLf1jmSWfHJLNl2yKU3tmU7jzB1XRIjrm5Gpya1XdZu56ja3Nstii9XJ9I/JoLOUa5ruzQUtxOeJxXEcGAE8KpS6i8RaQr8r6SLlFI5QKyIhAKzRaQ98DxwCKiGNlc9B7zsrMBKqU+t6+jcubNrl77WawtJjkdihouL0gYFVK/mx2WX1in2Ru2MQ7aswQiVLRT68qZ1iLwkiOkbklx2Y0s9d57nZibQql4wo65t4ZI27RndtxU/bD/MszMTWDiyB4EO9hxxNxW9aNapWDel1Hal1Eil1LfW8V9Kqded7cRyZi8DrldKpShNJvAF0NWqlgw0srss0iqrOMLbQtp+yDhVod0aqg6eyj9V2UKhfXyE2zpF8tufx53eWrckXpy7jRNnz/Pm4A5u2cq2RoAf/74lmr1Hz/L+z7td3n5xpJ3LYty8bUXa6N01U3Q2iqk7MA5oYl0jaDdDkVuYiUgYkKWUShWRIOBa4HWbX8GKWhoE2Pb7nAf8n4hMRTun0yrM/2CjXnv9fGQHNK44/7ih6lBaM5Gr+/ZWheCIWztG8s6Pu5m5IZknrynbiN/msLXN2m5sX5/2DUNcKWY+rm4Zxq0dI/n4l73cGB1Buwbu6wt0CPR365MYv2QXqefO071ZHTbsP0lG1oU9vt05AHHWxDQRGIX2JzibaSsC+NLyQ/gA3yml5ovIz5byEGAT2nQFsBAdFbUHHeY63Ml+XId9JJNREIYyUtlu1J6iUe3qXNGsDjM2JvFE7+ZFru8oioIOW4Cfdx1hTnyyWz//f/Zvw5JtKQz64Feyc5TbBgEb9p1g3LztbElOo2tUbcYObEu7BiFeGcWUppRaVHK1CyilEoA4B+W9i6ivgMdL04fLCWkEAbVMJJPBUEHc1imSp77bzNrEE1x+aR2nrsnIymHbwVOMnbe1kMM2IyvXbQ5bG8t3HeV8di5ZOdrg4+pIoiOnMnht0U5mxSdTv1Yg7w2NY0BMRJ4PqyIHIM4qiGUiMh6YhV7fAECFLmSrCES8evMgg6GqcUP7CJ6fmcDwL9aRkZVTaESslCI5NZ2N+1OJt8KKtx88xfmc3CLbdHeW4/FLdnE+J783ID0rh1cX7OCG6Ppl9n9kZufwxa+JvP/TbrJyFP/XqzmP9Wrm0e2Ene3ZZm/pbFemAIezAU+SlZXFgQMHyMgoY/x33Itw/hzs2OFawQwVRmBgIJGRkfj7e1/KFEN+lmw7RLaCHLu4/mdnJvDTjsOcz8ll4/7UvJXtgf4+xESGMvzKKOIaXcK4eds4dKrw/9zdob1FKaCjZzKJHruUdg1r5S2cjGt8CQ1CAgtFsBU0E/WLqc8P24/w17GzXNOmHv/s34YmdTy/wNEpBaGU6uVuQVzFgQMHCA4OJioqqmx5Xs4ehbQDEN4M/EpODWzwLpRSHD9+nAMHDtC0aVNPi2MogfFLdhVaYHg+O5fvE1KIqlOdK5vXzUtt0qp+MP52SQYzsnI8Etpb1Er72jX8ub1TI+L3pzJlzT4m/foXoFfCxzXSqVk6NrmExGNneXHutnyL3T5d8RdhNasxeXgXerYKd6v8pcHZKKYQYCxwlVX0C/CyUspzG8wWQUZGRtmVA4CfNfrITjcKohIiItSpU4ejR496WhSDExQ1Ghdg+ejix6Weihgras3Ji/3b5fWdlZPLzpTT1mr7k8QnpbJ426Fi2/X39fEq5QDOm5gmocNRB1vHd6PXMNziDqHKS7kyRPpbOeqzMiDQvSFsBvfgzgyhBtdS1GjcWTORJyLGnFFM/r4+REeGEB0Zwr1XRAF6m9dN+1N58Kv1DttNSfO+tCjOJoVvppQaq5Taaz1eAopcA1Gp8fEDH389gygDvXr1YsmSJfnK3nnnHR599FEAtm3bRu/evWnVqhXNmjVj7Nix5OZqh9vkyZMJCwsjNjY277F9e2GHua+vL7GxsbRv354BAwaQmlpkUt1SkZiYSPv27V3Slj27du2iZ8+exMbG0qZNGx5++GGXtDtu3DjeeOMNl7Rl8AyeWlhYXsqyA1/dmgFc07YeDSvRDpHOKoh0EbnSdmAtnPP+DZGdYE58Mt1f+5mmYxbQ/bWf9eYs/kGQVba3N3ToUKZOnZqvbOrUqQwdOpT09HQGDhzImDFj2LVrF1u2bGHt2rW8++67eXWHDBnCpk2b8h5t2xbe6CQoKIhNmzaxdetWateuzQcffFAmWSuKkSNHMmrUKDZt2sSOHTt44oknPC2SwUuobCvAXUFlUorOKohHgQ9EJFFE9gETuLDArdJS5A5eu9IhOxNU0aF0RXHbbbexYMECzp/XO1AlJiZy8OBBevTowTfffEP37t257rrrAKhevToTJkxg/PjxZX4P3bp1IzlZZyQ5c+YMffr0oWPHjkRHRzN37tw8Gdq0acNDDz1Eu3btuO6660hP1wpww4YNdOjQgQ4dOuRTNBkZGQwfPpzo6Gji4uJYtmwZoGc5gwYN4tprryUqKooJEybw1ltvERcXx+WXX86JEycKyZiSkkJkZGTecXR0NAA5OTmMHj2aLl26EBMTwyeffJJXZ/z48XnlY8eOzSt/9dVXadmyJVdeeSW7du0q8+dm8B4qYj9sb6IyKUVno5g2AR1EpJZ1XCmSFb30/Ta2Hyxa1Pj9qYXiqdOzcnh2wX6+re8P/qtB8uvQtg1qMXZA0el+a9euTdeuXVm0aBE33XQTU6dOZfDgwYgI27Zto1OnTvnqN2vWjPT09Dwz0bRp01i1alXe+dWrVxMU5HjqmZOTw08//cQDDzwA6PDO2bNnU6tWLY4dO8bll1/OwIEDAdi9ezfffvstn332GYMHD2bmzJncddddDB8+nAkTJnDVVVcxevTovLY/+OADRIQtW7awc+dOrrvuOv744w8Atm7dSnx8PBkZGTRv3pzXX3+d+Ph4Ro0axVdffcXf/va3fHKOGjWK3r17c8UVV3DdddcxfPhwQkNDmThxIiEhIaxbt47MzMw85bl79252797N2rVrUUoxcOBAVqxYQY0aNZg6dSqbNm0iOzubjh07Fvo8DYbKQGVZbV+sghCRu5RSX4vIUwXKAVBKveVG2dxOUYtt8hbBqNxCCsIZbGYmm4KYOHGi09cOGTKECRMmFFsnPT2d2NhYkpOTadOmDddee60WVyn+/ve/s2LFCnx8fEhOTubw4cMANG3alNjYWAA6depEYmIiqamppKamctVVOjjt7rvvZtEivWB+1apVeaag1q1b06RJkzwF0atXL4KDgwkODiYkJIQBA3QG+OjoaBISEgrJO3z4cPr27cvixYuZO3cun3zyCZs3b2bp0qUkJCQwY4beOyotLY3du3ezdOlSli5dSlycXoh/5swZdu/ezenTp7n55pupXr06QJ7yMxgM7qGkGYRtpUawg3OuTbXtBoob6QN0f+1nhxEUDUMDmXZrHagZDrUalLrfm266iVGjRrFx40bOnTuXN8pt27YtK1asyFd379691KlTh9DQUKfbt/kgzp07R9++ffnggw8YOXIkU6ZM4ejRo2zYsAF/f3+ioqLyFgwGBATkXe/r65tnYioL9m35+PjkHfv4+JCdne3wmgYNGnD//fdz//330759e7Zu3YpSivfff5++ffvmq7tkyRKef/55HnnkkXzl77zzTpllNhgMpafY4bFSymYU/lEp9ZL9A73ZT6WmaGdRa72BUBkd1TVr1qRXr17cf//9DB06NK982LBhrFq1ih9//BHQM4GRI0fy0ksvlamf6tWr89577/Hmm2+SnZ1NWloa4eHh+Pv7s2zZMvbt21fs9aGhoYSGhuaZtKZMmZJ3rkePHnnHf/zxB/v376dVq7I50RYvXkxWVhYAhw4d4vjx4zRs2JC+ffvy0Ucf5Z37448/OHv2LH379mXSpEmcOaM3JExOTubIkSNcddVVzJkzh/T0dE6fPs33339fJnkMBoNzOLsO4n2goxNllYpi45lPZkHmmRJaKJqhQ4dy880354toCgoKYt68eTzxxBM89thjJCcn88ILLzBs2LC8OgV9EB9++CFXXHFFkf3ExcURExPDt99+y7BhwxgwYADR0dF07tyZ1q1L3o/3iy++4P7770dE8pznAI899hiPPvoo0dHR+Pn5MXny5Hwzh9KwdOlSnnzySQID9RqT8ePHU79+fR588EESExPp2LEjSinCwsKYM2cO1113HTt27KBbt26AVrhff/01HTt2ZMiQIXTo0IHw8HC6dOlSJnkMBoNziE6iWsRJkW7AFcDfgLftTtUCblZKdXCveMXTuXNntX59/kUnO3bsoE2bNuVv/PRhOH0Q6kfrtRFuYM6cOTz11FMsW7aMJk2auKWPixWX/Q4MhiqIiGxQSnUuqV5JHthqQE30TCPY7nEKuK28Qno19iuq3cSgQYPYu3evUQ4Gg8ErKXZorJT6BfhFRCYrpYo3aFc17HMyBdT0rCwGg8HgAZy1nZyz9oNoBwTaCova/KdK4OsP4uvWGYTBYDB4M84G+U8BdgJNgZeARGCdm2TyDkS0mamMkUwGg8FQ2XFWQdRRSk0EspRSvyil7scLNwtyOX5BkJ0BxTjyDQaDoarirILIsp5TRKSfiMQBtYu7QEQCRWStiGwWkW0i8pJVPkVEdonIVhGZJCL+VnlPEUkTkU3W48UyvytX4R8IKgdyzntaEoPBYKhwnFUQ/7I2DXoaeAb4HBhVwjWZQG8rFDYWuF5ELkebq1oD0UAQ8KDdNSuVUrHW4+VSvA/3kOeodt4PURHpvkuDMymx169fz8iRIwFYvnw5v/32W965jz/+mK+++qpMfYwbN46GDRvmpSafN29ese0409emTZtYuHBhsXUMBoNrcEpBKKXmK6XSlFJblVK9lFKdlFLF/tuVxrbSzN96KKXUQuucAtYCkUU2UhEkfAdvt4dxofo54bsL5/wtBVEKP0RFpPu2sXz5cu677z6nZSuKzp0789577+W1aa8gRowYwT333FPmtm1pvqdPn87999+fpwwd4UxfRkEYDBWHUwpCRL6wzEH5Hk5c5ysim4AjwA9KqTV25/zRO9Mttrukm2WSWiQiDhMpicjDIrJeRNaXe1vJhO/g+5GQlgQo/fz9yAtKwscXfKuVKpKpotN9l4aePXvy3HPP0bVrV1q2bMnKlSsBrRT69+9PYmIiH3/8MW+//TaxsbGsXLky3+zgs88+o0uXLnTo0IFbb72Vc+fOOd13mzZt8PPz49ixYyQmJtK7d29iYmLo06cP+/fvB/LPRBzJev78eV588UWmTZtGbGws06ZNc/EnZDAY7HE2zHW+3etA4GbgYEkXKaVygFgRCQVmi0h7pdRW6/SHwAql1ErreCPQRCl1RkRuBOYALRy0+SnwKeiV1MUKsGgMHNpS9PkD6yAnM39ZVjrM/T/Y8KU+zk7XWV39rbyF9aPhhteKbLIi032XhezsbNauXcvChQt56aWX8vJCAURFRTFixAhq1qzJM888A8BPP11IuXXLLbfw0EMPAfDCCy8wceJEpzf/WbNmDT4+PoSFhTFw4EDuvfde7r33XiZNmsTIkSOZM2eOU7K+/PLLrF+/vsSMtwaDofw4ux/ETPtjEfkWWFVEdUfXp4rIMuB6YKuIjAXCgEfs6pyye71QRD4UkbpKqWPO9lNqCioHR+XiA7k56OS1zu117O5035dddhmZmZmcOXOGEydO5KXxfv311wtlRi3ILbfobcRtKb9Lw9atW3nhhRdITU3lzJkzJfYF8Pbbb/P1118THBzMtGnTEBFWr17NrFmzAJ1i/Nlnn3W5rAaDofyUNclQCyC8uAoiEoYOi00VkSDgWuB1EXkQ6Av0UerClm0iUh84rJRSItIVbf46Xkb5NMWM9AHtc0hLKlwe0giGL9Cvz52A1H0Q1gr8qzvVrbvTfa9Zoy11y5cvZ/LkyUyePNnpa20J93x9fYtMzV0U9913H3PmzKFDhw5MnjyZ5cuXl3jNqFGj8mYjpaU8shoMhvLjrA/itIicsj0D3wPPlXBZBLBMRBLQi+p+UErNBz4G6gGrC4Sz3oaeXWwG3gPuUMVlEnQFfV684Ii24R+ky+2PoVR+iIpK9+0OgoODOX36tMNzp0+fJiIigqysrHypwUvLFVdckefInzJlCj169HCJfAaDwbU4G8UUrJSqZffcsqDZycE1CUqpOKVUjFKqvS1sVSnlp5RqVjCcVSk1QSnVTinVQSl1uVLqt+Ladwkxg2HAe3rGgOjnAe/pcht+AfpcdulWVA8dOpTNmzfnUxC2dN+2fZXr1q1L9+7dC6X7tg9ztY8oqggGDBjA7Nmz85zU9rzyyitcdtlldO/e3alU4kXx/vvv88UXXxATE8P//ve/fFFcJdGrVy+2b99unNQGQwVQUrrvYvd7UEptdLlEpcCt6b7tObITfP2gTnOXNmvSfbsPk+7bYCgaZ9N9l+SDeLOYc4qLId0G6BXV5dg8qCgGDRrEoEGDXN6uwWAwuIKS0n33qihBvBr/IEg/CbnZbts8yGAwGLwNp+92ItIeaEv+dN/F50WoKvjZOarN3hAGg+EiwSkFYa1b6IlWEAuBG9DrILxSQSilEHFuzYJT5O0uZzYPqgy4O/jNYLhYcDZZ321AH+CQUmo40AEIcZtU5SAwMJDjx4+79ibhY20eVMpIJkPFo5Ti+PHjBAYGllzZYDAUi7MmpnSlVK6IZItILXRupUZulKvMREZGcuDAAcqdp6kgZ06COgHBZ13brsHlBAYGEhnp2RyQBkNVwFkFsd7Kp/QZsAE4A6x2m1TlwN/fn6ZNm7q+4YWTYNM3MCYJfJydeBkMBkPlxdlcTI9ZLz8WkcVALaVUgvvE8kLqtYPzZyBtP1wS5WlpDAaDwe04m2pjnojcKSI1lFKJF51yAAi3so8fLt8GPgaDwVBZcNZW8iZwJbBdRGaIyG0icnF5AcOt1BKHt3lWDoPBYKggnDUx/QL8IiK+6NXTDwGTgFpulM27CAiG0CZwxCgIg8FwcVCahXJBwABgCNAR+NJdQnkt9dobE5PBYLhocNYH8R2wAz17mAA0U0o5t5VYVaJeWzi+p1Spvw0Gg6Gy4uwMYiIw1NpC9OIlvC2oHDi2CyI6eFoag8FgcCvFziBE5FkApdQS4JYC5/7tRrm8k3rt9bMxMxkMhouAkkxMd9i9fr7AuetdLIv3U/tS8A0wjmqDwXBRUJKCkCJeOzqu+vj66b2pTairwWC4CChJQagiXjs6vjgwkUwGQ2ESvoO328O4UP2c8J2nJTK4gJIURAcROSUip4EY67XtOLq4C0UkUETWishmEdkmIi9Z5U1FZI2I7BGRaSJSzSoPsI73WOejXPD+XE/OeThzyPwRDAYbCd/B9yMhLQlQ+vn7kea/UQUoVkEopXyVUrWUUsFKKT/rte3Yv4S2M4HeSqkOQCxwvYhcDrwOvK2Uag6cBB6w6j8AnLTK37bqeRcJ38GO760D80cwGAD46WW9V4o9Wem63FCpcVtaUqWxbeTsbz1s+1jPsMq/BGybMt/EhcV3M4A+4tJdf1zATy9DTmb+MvNHMFzspB0oXbmh0uDWvNUi4isim9D7R/wA/AmkKqWyrSoHgIbW64ZAEoB1Pg2o46DNh0VkvYisd/meDyVh/ggGQ2FCith7o6hyQ6XBrQpCKZWjlIoFIoGuQGsXtPmpUqqzUqpzWFhYuWUsFeaPYDAUps+LIAVuJX4BuryqcpE45Stk5xulVCqwDOgGhIqIbQV3JJBsvU7G2qXOOh8CHK8I+Zymz4vgH5S/zD+oav8RDIaSaDsIEKgWrJ/FB6qHQbubPS2Ze7iInPJuUxAiEmbtQmdL9HctOp/TMvQe1wD3AnOt1/OsY6zzPytv230+ZjAMeA9CrN1Wffz1ccxgz8plMHiSQwk6Bc2gD2BcKgz+Ck4dgN/e97Rk7uEicsq7cwYRASwTkQRgHfCDUmo+8BzwlIjsQfsYJlr1JwJ1rPKngDFulK3sxAyGUVvh+tcgNwvqx3haIoPBsySt0c+RXfVzmwHQ9iZY/hoc2+05udxFcb5ILxvTlhd3RjElKKXilFIxSqn2SqmXrfK9SqmuSqnmSqnblVKZVnmGddzcOr/XXbK5hPa3gvjClqo3rSzERWJvNZSRpDUQ2hhqRVwou2G8Nr/OewJycz0nmzso0ueo4MNusOodOHWwQkVyFxXig6iS1AyHZr0gYXrV+wPYU1ntrUapVQxKwf410Oiy/OXB9eD6/8D+1bB+ouNrKyt9XtSDQ3v8giB2GATWgh/Hwltt4aubYPNUyDzjuJ1KgFEQ5SF6MKTtvzDFropURntrZVVqlZHU/TqzQEEFAdBhKDTrDT+O0/WqCnVbaJ9LtZqAaJ/kwPdg0IfwwFJ4YiNc/Syc+AtmPwJvtITZI2Dvcsi1dkyoJAMYp3eUMzigdT/wrw4J06BJN09L4x4q49qP4pSaCShwLUlr9bMjBSEC/d/RZpf5o2DYDF1WmcnNhYWjoUYYPLEBAkMK16nTDHr9HXo+D/t/h83fwLY5sPlbqNUQ6kdrZZFtbTxmG8CA1/0+zQyiPATUhNb9YdtsyM4suX5lY/0kis3JuOzfkJFWYeI4TWVUapWVpDV6JB3e1vH5S5rANWNhz496IFXZSZgKB9bBNS85Vg72iOiB48D34Zk/4LYvdLLPPxZfUA42vHRWbhREeYkZAhmpsPsHT0viOpTSP9b5o/QP2q/A2g+/QGgQB7+8Du/EwIo3vMvOGtKwiPIKWtBYScwHLiFpDTTspFPhF0WXB/UMY/EYOHOk4mRzNRlp8MOLENlFm89Kg38QtL8Fhn1HkTsleOEAxiiI8nJpTz3drAqjI4Ds89puuvJN6HgvPPyLtq+GNOKCvfV9eHgZPLICGl8OP78C78bouPeCph1P4Mjc4RdYMQsaLyb/R+YZOLzV8edtj4+v/s2cPwuLnq0Y2dzB8tfg7DG4cTz4lOPWWYkyMhgFUV58/XTI6x9LID3V09KUj4w0mHKbVna9X4AB7+r3Z1v7MS5VP9vspBEd4M5p8OBPej3I0hfg3VhY86nnTG4H42H7XGjQ8YJSA2hyZcXYdyujU7+sJG8AlVuyggC90dbVz2lz7I757pfN1RzZAWs+gU736tlzeahEGRmMgnAFMYN1ltcd8zwtSdlJS4ZJN8C+X+HmT+Cq0c47FCM7wz1z4L6F2kG3aDS81xE2TIZN31acuSXzDMx4AGrWg7tmXlBq7W/VduPzZ93Xt42Lyf+RtAYQ/f07Q/cnoV40LHgK0k+6VTSXopR2TAcEQ28X3MTzZWSw/mPtbvE6BzUYBeEaGnSEOs0rrxnh8Db4/BodijhsBnS4o+RrHBHVHe5bAHfPgeD68P2TMOfRijO3LB4DJ/bCLZ9C9doXyrs8CJlpsHWme/q1pxKZD8pN0hoIbwNBoc7V9/WHmyZoM83Sf7pXNleybTYkroQ+/4QahRJMlw3brHzsSWh8hfZhepMfz8IoCFcgop3ViSshNcnT0pSOvb/ApOsBBfcv0ov/yoOIbuPBH6F6XQpFQbnL3LJtDsT/D3o8BVFX5j/XuBuEtYF1n7s/FcIVTxQu8/NO80G5yM2FpHXQqGvprmsQqz+j+P/pUE9v5/xZbTqtHw2dhru+fRG49mU4ewRWT3B9++XEKAhXEX27ft46o/h63sTmafD1rXp0++CP+k/gKkTgXBHJeF1tbkk7oGcmDTvp2HNHsnR5AFI2Q/JG1/ZdkNT9gEBwBHnmg2a9vdJ8UC6O7dKzMmf8DwXpOQZqN4N5I8tv9nN3xNjKN+FUMtz4hna2u4NGXXTuql/fg9OH3dNHGTEKwlXUbqqTlSVM97QkJaOU/uHPflhHIQ1f5B4TSFFt1mrguj5yc2DWw/r51s+1GcMRMUN0vP66z13Xd0HOnYD1X2hl8PRO7f+IGQK7l8LRP9zXryewZQ8oi4LwD9JRTan74OdXyy6DuyPGjv+pI/Ni7tD/E3fSZ6z2Y/7ymnv7KSVGQbiSmMFwZBsc2uppSfKTb5TVTueI+ellnSrkrpnO25BLi6NoDdAKylUjpVVvacf6jW9A7UuLrhdYS38/W2fqG7k7WPc5ZJ3Vzlgb170K1arrNSVVKdNn0lqoXqf4z7w4orpD5wfg9w+1qaq05GRp0487I8YWPw++AXDtS65przjqNNMmrA1felUGXKMgXEm7W8DHz7vWRBQaZR2Av36BljfoaCW/APf1XTBaI6QRXPmUDqf94oby+2sOrIdl/9FRSs441js/oEdpm6aUr19HnD8Lv38ELa+Heu0ulNcM06tu963SiduqCklWgr7ypM64ZpyeTX53t53frWQAABhSSURBVB64FGcmOpWiw5eXvqB9Zv+JhDNFDDJcYcLctRh2L4Gez+mAi4rg6uf0gOrHcRXTnxOYXEyupEYdaH4tbJmhf/zuslmWBkdx+aAXOJVnsY+zxAwubH9veT1MuV0riXvm6tFTack4BTMf0Llt+r3l3I2qfnvtsF43ES5/3LXvf+P/IP0EXDmq8LmO98Kmb2DpP6Bl3/wRVpWRs8fg+B6Iu7t87QTWgna3wur3LpTZzETH/9Tnk9bqgcAp66bvWw0iYrWyT5jq2M8VdImerZVVeWVlwOLnoG5L6PpI2dooCzXD9Oxz2as6Q27jMpjvXIyZQbiamMFw+iAkrvK0JBpvjMtvfBncO0+Pur+4EY7sLH0bi57VDuFbPyudiazLg3DyL9j7c+n7LIqcLG2rbnyFY1u1jw/0f1svpPxxrOv69RTFJegrLdtnFy7LSte2+CV/10EFjbrqDboe/AmePwAP/gDX/1uXFTRhio9W1LMehszTZZNp9ftwMhFueB38qpWtjbLS7XG9jueHf3qFSdIoCFfT6ga9N6+3bCTkrXH5DWJh+EJA6ZnEwU3OX5swXWfGvOrZ0jsP2wzQ4bfrJpXuuuLYMkOPcB3NHmzUb6///Bu/gn2rXde3J0hao7fbbRBb/raKG6g8vQtGbYHbv4DLH9UL8uxNoo5MmIM+gl4v6GjCT67SK+tLQ2oSrHgT2gzU0WcVTbUaOhIvaQ3sXFDx/RfAKAhX4x8EbQfC9nnekZfIUXiltyzrD2+jI6iq1YAvB14YmRbHyUS9ErfRZXq1d2nxC4CO98Afi1yzZiU3F1a9DeHtoMW1xdftOUbfxOaP0rOOykrSWp1mxVEAQmkpcgDTyDnbf8E0MB3ugKtH6wWb2Znw+bWw+gPnR+NLX9DPfcsRXVVe4u7W5q0fx0FOtufkwCgI9xAzGDJP6bS+nuT0YYj/GmrU07Z62yhrwHveE5dfp5lWEjXqwFeD9MK9osjJ1qYDgFs+Kz6DaHF0Hq5vGBsml+16e/5YpNcEXDmqZJt3tRo60dvRHV65KMopss/DwY2uMS+B+/ISNbkCRqyCFtdpU9U3Q+BsEetybOxdDtvn6MWWoY3L13958PXTPszjuyH+K8/JgRsVhIg0EpFlIrJdRLaJyJNW+TQR2WQ9EkVkk1UeJSLpduc+dpdsbieqh14o5cnUG7k52ombcQrumQ1PbS+cbM9bCG2klURoY+28/mOJ43orxuupd/+39T4DZe6vsXYWb/xS3/DKilKw8i0IbQLtbnbumlY36D1Elr+uZ0OVjUNb9F4GpV1BXRSOzESuGsBUrw13TNH7Y+9dBh93h79WOq6bkwULn4VLouCKkeXvu7y0ulEHVCz7j0dTcLhzBpENPK2UagtcDjwuIm2VUkOUUrFKqVhgJjDL7po/beeUUiPcKJt78fGF6Nv0Ail3xdyXxPLXdOqPfm/kD7v0VoLra7NAeGuYOkynzrBn/++w4r960VL0beXvr8uDcPYo7Py+7G0kroLk9dB9ZOlmMze8rn8jC0d7hSOyVJRngVxRFJUt2BWIwGUPawd3tRrw5QC90VVB083aT/VMsO9/wD/Qdf2XFS9JweE2BaGUSlFKbbRenwZ2AHk7uYiIAIOBb90lg0eJHgy52TrRV0Wz5yc92o4dBnF3VXz/ZaVGHbj3e2jYEWYMh+//dmGB3xc3QlBtbaJxBc366JH/uollb2PV23ovkNhhpbsuJFJvSbl7aeXLAJy0Rs/AakV4WpLSERGj9zbpMFRvdPXlAPj94wu/ryX/gPD2eobnLTTqqp3lv77nsY2WKsQHISJRQBywxq64B3BYKWW/bLCpiMSLyC8i0qOIth4WkfUisv7o0aNuk7nc1I/WCeIq2sx06iDMekg7gG98o2L7dgWBIXD3bKjTEjZ8cWGBn8rRYYuu8uv4+Oj8TPt+hcPbS399ymb48ye4/LGyOWu7PqJ/I4ueK3s4ZkWj1IUFcpWRgJpw80dw86d6L4vFz134faHgxB7Y4mWpcvqM1Sa95Z5JweF2BSEiNdGmpL8ppU7ZnRpK/tlDCtBYKRUHPAV8I/L/7d15mBT1ncfx90dAFFCQw4shoghB9EHUMSFho3gb3Mf7XC9iNMZoIhuPRJNVgxpjiIlrEo26eMT1Rl2Ji7coj8jhCDqIeKAYBsQFuQREzu/+8auRZqyZ6Zmpqp7u/r6ep5+pqaqu/v16eurbVfWr71fb1t2emd1hZpVmVtmjR480m94yUjhUrpkMS+Zk85ob1sGYc8KNPifdG1I8FKMtO8LamPOuG9Ykmwl20BkhlUJVM4a8vnoztN82BJnmaNMW/vVmWPFpy/IRZWl5DaxYULwBotbep8TfrLj+y9ZX2Kn77mFQxRv3FCQFR6oBQlI7QnC438wez5nfFjge+ConhZmtMbPF0fQbwIdAvzTbl7raDK8zMsrw+tK1MHdSqATXo7jfOj6fHz8/yRv8OnYLF5ffeqhp3+IXfxhGu1Se03jh+oZUVIZtTL29afeBFMpXN8gldIG6kFZ8Gj+/NRZ2qk3B8WIGOaHqSHMUk4DRwCwz+2OdxYcC75rZvJz1e0hqE03vBvQFPkqrfZno0iuUuqx+OP2Lke89AxP/MyT8GnhSuq+Vhaxu8Nv/XFi7ommnAl+7JdwoNvgnLX/9Q64KN+49NSKMPGvNaqZAu47hno9i11pvII3TafswsmrWP/K7VyhBaR5BDAHOBA7OGbo6LFp2Kl+/OH0AUB0Nex0D/NjMCjQEKEEDTwrjmRek+A1x2Vx4IjqnfWTrShfcbFnV7a2oDO/b66PzC+IrPg15lfY5HbbZoeWvv3UXOPKGcMdvc051ZalmClTs1/z7T1qTIqoLDYS78DtuHyrxZTjyLc1RTK+amcxsYM7Q1XHRsuFm9rc66z9mZntG6+1rZi0Yf9iKDDgmJBhL62L1+rXw6PBQPP6ke1vHEL0kpDk+PpcUjiIWztw0hLMhk/4aRqfFVY5rrr1OgN0OCue/P1+Q3HaTtGZlSGPfK+W6CFnJ6vOVlPad4KArwjXN98Zl9rKyYhuHnaOystKqqqoK3YzGPXxGyM7481nJf/t6+pcw5TY4+e8hGLmmW7sKbuofbp47oYGCQquXhmGR/Y6AExP+tr/4Q7j1O9D/qJB7qLWZMyEMDT39Meh7aKFbU542rIdbB4cvNRdMatG+RNIbZlbZ2HqeaiMLA08JN7zMeTnZ7b7zZAgO3/6xB4eW2LIjDPq3cHPeygaGTr8+OoyuGjIi+TZ06wMHXAozH4dRfdIrodlcc6Ojq4pG9ykuLbUpOD57H/6weyafEQ8QWeh7eBjtkmQ50iUfwZMXhTrMh12b3HbLVeU5sHEdTL8vfvnaL0JBoN0PCzddpaFzBaBQb6E5JTTTrM9cMyXc15NW9UGXn3VfRCnNl5JKmdU6PEBkoW17GHBsGIXQ0iLtEO5zeOTs8EE58e7sc9aXoh7fDDm0qu6OH0305v3wxWcNp/RuqfG/Jdy0lWPdavjfS2DKHeELxuwXQo2EpR+HPFu1p4jTrM+8cSPMm1oaw1uL3Ysjw/XGXEmWWa2jBIYjFImBp4TkcO+Oa94w1OpHwodg+bxwA9zaVXDawy1LWuc2t/+58OjZ8MHz8M0jN83fsC6kO6j4VsgSmpb6xuCv+Ryerie1+RZtQwW11UvDxfNctTuOll54/ez9UCa22G+QKwUZFwDzAJGVb3wn5BIae1FIhdG5Igypy+eft/bbYW19ibWrwo5hzecNP881Tf+joNOOUDV68wAx8wlYPheG/b5lNZgb07kiOgKImf+jV0Lix9VLop9Lc6aX1J+6PIkdR+3orqYWZ3LJa+gzkgIPEFl5e0zYodd+y6s9BQDxQcIsfGtbvSTUMq5bfGjj+mS+HbpN2rSD/c6GV34f0qN03XVTQaAee0DfI9J9/UOu2vyLAERj86+Gjt3Doz6zX0xvx1EzFTp0g667tXxbrmXq/Yykc/+GB4isvDgy/hTAUz8PhUq+9u1waUhQ15DWmBag2O17Nkz4Q0gUeNjIkHF14Ttw3O0hwV+aaoN97anEphxlxu042rRLZsdRm6AvzaMnl5+WfEaawQNEVurbma9dEaqoddgunILaYc+QSGzrrpt+PvfrcIG0rtaYFqDYde4J/YfBtPtg6JXh6KHzN8LNbFkYeHLz/tnr7jjatIO2W4XCMy2xanHIBLBPE1Oau/Q09zPSDB4gslLvucNeoUhKQ7Zok+lhZdmr/GEYcTZqt3C9Z6su4TpEaz+dl7vjqHkdRh8KE2+Gg3/d/G3Oq03Q5xeoy5EPc81KS3K/FFtagGK3ciGgTUOSv1yW6ljzVPTaP2QTfu3PsCzmi0m+aqaEARE775Nc21zR8COIrLT03GGGh5Vl76Vrib0fodgGBRxydTgSeuEaOLGZlfNqpsJOezevKJIreh4gsuQ7+eKQ8Vjz1HTpFZIKThgF3z6/6Te6bVgXKq9VNrMokit6forJubqKqVZAY4aMCPd2PHNFGLLbFJ9Whyprfgd12fIA4VxdxVYroCHtO4V2z6+Ctx9r2nNr/AJ1ufMA4VxdpTYoYO/TwnWEF64OSQfzNXdyGOK77U7ptc21an4Nwrk4pXS9aIst4Igb4J5hMOkvcODljT/HLIxg2mVI+u1zrZYfQThXDnoPgT2ODjf+5VO1bvk8WLHATy+VOQ8QzpWLw0ZuyuHVmK8S9HmAKGepBQhJvSSNl/SOpJmSLo7mXyNpvqQ3o8ewnOdcIWm2pPckpZwZzbky03VXGHwBvPUAfDK94XVrpkK7jrD9ntm0zbVKaR5BrAcuMbMBwGDgQkkDomV/MrNB0WMcQLTsVGBP4EjgVkltUmyfc+Xne5dCh+5h2GtD9ehrpkDFfsnXUHdFJbUAYWYLzGxaNL0CmAX0bOApxwAPmdkaM5sDzAZ8ALZzSdpq25Cbae6kUNM8ztpV8OkMv/7gsrkGIak3sA8QndjkIknVku6StF00ryeQmzRmHjEBRdKPJFVJqlq0qIEC8865ePueFU4dPX9VKF9b1/xpIdW8B4iyl3qAkNQJeAwYYWafA7cBfYBBwALgpqZsz8zuMLNKM6vs0aNH4u11ruRt0QaOuB6W/ROm3Pb15TWTw8+Kymzb5VqdVAOEpHaE4HC/mT0OYGb/Z2YbzGwjcCebTiPNB3rlPL0imuecS1qfg6Df92HCTVH22hw1U6FH/1Dr2pW1NEcxCRgNzDKzP+bMz70t8zigthjCWOBUSe0l7Qr0Baam1T7nyt7h18H61TD++k3zNm4MAcJPLznSvZN6CHAmMEPSm9G8K4HTJA0i5FP+GDgfwMxmSnoEeIcwAupCs8Zqbjrnmq377rD/eTD19vBzx71C9bgvl3mAcECKAcLMXgXiitiOa+A51wPX17fcOZewAy+H6ofg2SvhrCc33SDnAcLhd1I7V946dIWhV8CcV+C9p0OA2LordOtT6Ja5VsADhHPlrvKcUDPikTNh+n/Dui9gxqOFbpVrBTxAOFfuZj4Bq5eEPE0QigQVWw1ulwoPEM6VuxdHwoa1m8+rrcHtypoHCOfKXanU4HaJ8wDhXLkrpRrcLlEeIJwrd6VUg9slygOEc+Wu1Gpwu8R4snfnXGnV4HaJ8SMI55xzsTxAOOeci+UBwjnnXCwPEM4552J5gHDOORdLZlboNjSbpEXAP1uwie7AZwk1pxiUW3/B+1wuvM9Ns4uZNVqzuagDREtJqjKzsim8W279Be9zufA+p8NPMTnnnIvlAcI551yscg8QdxS6ARkrt/6C97lceJ9TUNbXIJxzztWv3I8gnHPO1cMDhHPOuVglHyAkHSnpPUmzJf0yZvlwSYskvRk9zi1EO5PUWJ+jdU6W9I6kmZIeyLqNScvj7/ynnL/x+5KWFaKdScqjz9+QNF7SdEnVkoYVop1JyqPPu0h6Mervy5KKuuqRpLskLZT0dj3LJemW6P2olrRvog0ws5J9AG2AD4HdgC2Bt4ABddYZDvyl0G3NuM99genAdtHv2xe63Wn3uc76PwXuKnS7M/g73wFcEE0PAD4udLsz6POjwNnR9MHAfYVudwv7fACwL/B2PcuHAU8DAgYDU5J8/VI/gvgWMNvMPjKztcBDwDEFblPa8unzecBfzWwpgJktzLiNSWvq3/k04MFMWpaefPpswLbRdGfgkwzbl4Z8+jwAeCmaHh+zvKiY2QRgSQOrHAP83YLJQBdJOyX1+qUeIHoCNTm/z4vm1XVCdHg2RlKvbJqWmnz63A/oJ2mipMmSjsysdenI9++MpF2AXdm0EylW+fT5GuAMSfOAcYQjp2KWT5/fAo6Ppo8DtpHULYO2FUren/3mKPUAkY9/AL3NbCDwPHBvgduThbaE00xDCd+m75TUpaAtys6pwBgz21DohmTgNOAeM6sgnIq4T1Kp/89fChwoaTpwIDAfKIe/dSpK/cMyH8g9IqiI5n3FzBab2Zro1/8C9suobWlptM+EbxljzWydmc0B3icEjGKVT59rnUrxn16C/Pr8Q+ARADObBGxFSPBWrPL5f/7EzI43s32AX0Xzin5AQgOa8tlvslIPEK8DfSXtKmlLws5hbO4Kdc7XHQ3MyrB9aWi0z8D/EI4ekNSdcMrpoywbmbB8+oyk/sB2wKSM25eGfPo8FzgEQNIehACxKNNWJiuf/+fuOUdJVwB3ZdzGrI0FzopGMw0GlpvZgqQ23japDbVGZrZe0kXAs4QREHeZ2UxJI4EqMxsL/EzS0cB6wsWg4QVrcALy7POzwOGS3iEcfl9mZosL1+qWybPPEHYoD1k0/KOY5dnnSwinD/+dcMF6eDH3Pc8+DwVukGTABODCgjU4AZIeJPSpe3Qt6WqgHYCZ/Y1wbWkYMBv4AvhBoq9fxJ8X55xzKSr1U0zOOeeayQOEc865WB4gnHPOxfIA4ZxzLpYHCOecc7E8QLhWRdLKPNYZIalDgq95rKQBCW7vtRY8d2X0c2dJYxpYr4uknzT3dZzLhwcIV4xGAE0KEJLaNLD4WEKSt0SY2XcT2MYnZnZiA6t0ATxAuFR5gHCtkqShUT7/MZLelXR/dLfoz4CdgfGSxkfrHi5pkqRpkh6V1Cma/7GkGyVNA06SdJ6k1yW9JekxSR0kfZdwB/2oqFZEH0mDoiSG1ZKekLRdtL2XFepKVEmaJWl/SY9L+kDSdTltX5kz/QtJM6LX/F1MP3eN2j6jzjZ619YAkLSnpKlR+6ol9QV+B/SJ5o2S1EmhDsK0aFvH5GxnlqQ7FWp/PCdp62jZ7pJeiNo2TVKfaP5l0ftULek3if5hXXEpdL5zf/gj9wGsjH4OBZYTcstsQUiP8S/Rso+B7tF0d8Idsx2j338BXJWz3uU52+6WM30d8NNo+h7gxJxl1cCB0fRI4OZo+mXgxmj6YkL67J2A9oT8Vt3q9OH7wGtAh+j3rjH9HQucFU1fmPPc3kQ1AIA/A6dH01sCW+cuj+a3BbbNeU9mE2oE9CZkCRgULXsEOCOangIcF01vRTgqO5xQR0LR+/4UcEChPxf+KMyjpFNtuKI31czmAUh6k7Cze7XOOoMJp4cmSoKwA83NtfRwzvRe0bf0LkAnQsqGzUjqDHQxs1eiWfcSitDUqk3bMQOYaVHeG0kfEZKm5aYsORS428y+ADCzuLz+Q4AToun7gBtj1pkE/EqhOtrjZvZB1NfNmg78VtIBwEZCyucdomVzzOzNaPoNoLekbYCeZvZE1LYvo34cTggS06P1OxESOU6IaZcrcR4gXGu2Jmd6A/GfVwHPm9lp9WxjVc70PcCxZvaWpOFECQub2aaNddq3sZ725aPBfDdm9oCkKcBRwDhJ5/P15IqnAz2A/cxsnaSPCUcFuW2G8D5u3cDLCbjBzG5vQvtdifJrEK4YrQC2iaYnA0Mk7Q4gqaOkfvU8bxtggaR2hB3q17ZnZsuBpZK+Fy07E3iF5nke+EHtiCtJXWPWmUhIIkidNn1F0m7AR2Z2C/AkMJDN3wMIFeMWRsHhIGCXhhpmZiuAeZKOjV6jfdTOZ4Fzcq7j9JS0fV69dSXHA4QrRncAz0gab2aLCBl4H5RUTTgd07+e5/0H4bz7RODdnPkPAZdJmh5dqD2bcNG6GhhEuA7RZGb2DOGUVFV0iuzSmNUuBi6UNIP6K4GdDLwdbWMvQonJxYTTam9LGgXcD1RG2zmrTv/qcyYhm3E14VrJjmb2HPAAMCna1hg2D0SujHg2V+ecc7H8CMI551wsDxDOOedieYBwzjkXywOEc865WB4gnHPOxfIA4ZxzLpYHCOecc7H+H/wFOpZqnsaXAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for i in range(2):\n", - " pylab.plot(distances, eval_counts[i], '-o', label=titles[i])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Evaluations')\n", - "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='center left');" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Total evaluations for 'VQE Random Seed' = 7616\n", - "Total evaluations for 'VQE + Initial Point' = 5936\n", - "\n", - "Total evaluations for 'VQE + Initial Point' are 77.94% of 'VQE Random Seed'\n" - ] - } - ], - "source": [ - "for i in range(2):\n", - " print(\"Total evaluations for '{}' = {}\".format(titles[i], np.sum(eval_counts[i])))\n", - "\n", - "percent = np.sum(eval_counts[1])*100/np.sum(eval_counts[0])\n", - "print(\"\\nTotal evaluations for '{}' are {:.2f}% of '{}'\".format(titles[1], percent, titles[0]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_vqe_spsa.ipynb b/community/chemistry/h2_vqe_spsa.ipynb deleted file mode 100644 index a8538f625..000000000 --- a/community/chemistry/h2_vqe_spsa.ipynb +++ /dev/null @@ -1,181 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*H2 ground state energy with VQE and SPSA*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Hydrogen (H2) molecule over a range of inter-atomic distances using VQE with SPSA optimizer. It is compared to the same energies as computed by the ExactEigensolver. SPSA is designed to work well with probabalistic/noisy measurements. And with RYRZ variational form makes this a suitable configuration to run on a near term device.\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the qiskit.chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 20 --- complete\n", - "Distances: [0.5 0.525 0.55 0.575 0.6 0.625 0.65 0.675 0.7 0.725 0.75 0.775\n", - " 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1. ]\n", - "Energies: [[-1.06086904 -1.07138175 -1.09113875 -1.10744489 -1.11953674 -1.13116184\n", - " -1.13320145 -1.13667867 -1.13892688 -1.13662612 -1.13536438 -1.13603326\n", - " -1.13339153 -1.1308772 -1.12739979 -1.12469779 -1.12047399 -1.11336415\n", - " -1.11008319 -1.10846154 -1.10181643]\n", - " [-1.05515979 -1.07591366 -1.09262991 -1.10591805 -1.11628601 -1.12416092\n", - " -1.12990478 -1.13382622 -1.13618945 -1.13722138 -1.13711707 -1.13604436\n", - " -1.13414767 -1.13155121 -1.12836188 -1.12467175 -1.12056028 -1.11609624\n", - " -1.11133942 -1.10634211 -1.10115033]]\n", - "Hartree-Fock energies: [-1.04299627 -1.06306214 -1.07905074 -1.0915705 -1.10112824 -1.10814999\n", - " -1.11299655 -1.11597526 -1.11734903 -1.11734327 -1.11615145 -1.11393966\n", - " -1.1108504 -1.10700581 -1.10251055 -1.09745432 -1.09191404 -1.08595587\n", - " -1.07963693 -1.07300676 -1.06610865]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'problem': {'random_seed': 750},\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'transformation': 'full', \n", - " 'qubit_mapping': 'parity', 'two_qubit_reduction': True},\n", - " 'algorithm': {},\n", - "}\n", - "molecule = 'H .0 .0 -{0}; H .0 .0 {0}'\n", - "algorithms = [{'name': 'VQE', 'operator_mode': 'paulis'},\n", - " {'name': 'ExactEigensolver'}\n", - " ]\n", - "optimizer = {'name': 'SPSA', 'max_trials': 200}\n", - "variational_form = {'name': 'RYRZ', 'depth': 3, 'entanglement': 'full'}\n", - "backend = {'provider': 'qiskit.BasicAer', 'name': 'qasm_simulator', 'shots': 1024}\n", - "\n", - "start = 0.5 # Start distance\n", - "by = 0.5 # How much to increase distance by\n", - "steps = 20 # Number of steps to increase by\n", - "energies = np.empty([len(algorithms), steps+1])\n", - "hf_energies = np.empty(steps+1)\n", - "distances = np.empty(steps+1)\n", - "\n", - "print('Processing step __', end='')\n", - "for i in range(steps+1):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " d = start + i*by/steps\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", - " for j in range(len(algorithms)):\n", - " qiskit_chemistry_dict['algorithm'] = algorithms[j]\n", - " if algorithms[j]['name'] == 'VQE':\n", - " qiskit_chemistry_dict['optimizer'] = optimizer\n", - " qiskit_chemistry_dict['variational_form'] = variational_form\n", - " qiskit_chemistry_dict['backend'] = backend\n", - " else:\n", - " qiskit_chemistry_dict.pop('optimizer')\n", - " qiskit_chemistry_dict.pop('variational_form')\n", - " qiskit_chemistry_dict.pop('backend')\n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[j][i] = result['energy']\n", - " hf_energies[i] = result['hf_energy']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4VNXWwOHfSgglEEKvAUIoIQGSkER6VZCOEqSJgAgiiqByLei9F/GzXAtiA0GKghSJShVQEAQF6SX00HuvSSCFlPX9MZMYIGVIJoVkv88zj+TMPuesmcRZc/Y+e21RVQzDMAwjsxxyOgDDMAwjbzAJxTAMw7ALk1AMwzAMuzAJxTAMw7ALk1AMwzAMuzAJxTAMw7ALk1AMI4uIyNMisj6n4zCM7GISipEtROSEiLS9a1vSB66IFBKR6SJyUkQiRCRERDqmc8yKIjJVRM6JyE0ROSYiM0SkTla+FnsRkcEiEmp9vRdFZLmIuFifmyEi793HsTKVvKz7x1vfx+SPShk9ppH/mIRi5BYFgNNAK8AV+A/wo4i4p9RYREoDGwBnoAXgAvgDfwLtUtmngL2DzigRaQV8APRVVRfACwjO2ajYqKrF7nqcs+cJctPvwLA/k1CMXEFVb6nqWFU9oaoJqroUOA4EpLLLK0A40F9Vj6rFDVX9TlW/AhARdxFR65XAKeAP6/ZuIrJPRG6IyFoR8Uo8qLV9zWQ/J10piEhrETkjIv8SkUsicl5EBiVrW1pElohIuIhsAWqk8ZIfwvIBvtP6+q+p6kxVjRCRoUA/4HXrVcIv1uOPFpGj1iua/SLS3brdC5gMNLG2v2HdXkhExonIKesV0GQRKWLzLyUZ6xXmqyKyW0TCRCRYRAone76L9aryhohsEBGfu/Z9Q0R2A7dEpICI+IvITutr+cl6vMT3ea+IdE22v5OIXBGRBhmJ3cg+JqEYuZKIlAdqA/tSadIWWKiqCTYcrhWWK4D2IlIb+AF4GSgLLAd+EZGCNoZWAcsVVGVgMDBRREpan5sIRAMVgWesj9Rstsbzjog0E5FCiU+o6hRgDvCx9Soh8cP1KJarMVfgHWC2iFRU1QPAMP65wihhbf8hlvfQD6hpjXmMja8zJb2ADkB1wAd4GsD6Qf8t8BxQGvgGWJL8NQF9gc5ACSyfOwuBGUApLL+P7snafg88leznTsD5xORr5F4moRjZaZH1G+wN67for1NqJCJOWD5QZ6pqaCrHKgNcSLZPN+txI0Rk5V1tx1qvgKKA3sAyVf1dVWOBcUARoKmNryEW+D9VjVXV5cBNwFNEHIEewBjrufYCM1M7iKquA4KwdNMtA66KyHjrcVLb5ydVPWe9ggsGDgMNU2orIgIMBV6xXv1EYOli65PGa2uc/PcjIkfvev5L6/mvAb9gSVRYz/ONqm5W1XhVnQnEAI3v2ve09XfQGEsX55fW93EBsCVZ29lAJxEpbv25PzArjbiNXMIkFCM7Pa6qJRIfwAt3NxARBywfHreBF9M41lUsVwIAqOoS6zFfAe6+2jid7N+VgJPJ9kuwPl/ZxtdwVVXjkv0cCRTDcrWTOA6U6CRpUNVfrVcfpYDHsHzjH5JaexEZkKxb6QZQD0tiTUlZLONL25O1/826PTWbkv9+VPXuLrsLyf6d+LoBqgH/uuvLQhUs73Wiu38HZ/XOyrRJz1vHbf4GeohICaAjli8YRi5nEoqRa1i/VU8HygM9rFcQqVkNPG5NQOlJ/sF1DssHYPJzVgHOWjdFYvkgTlTBhuMDXAbirMdKVNWWHa1XHKuxjPHUSyFmRKQaMBVLki1tTZ57AUmpPXAFiALqJksQrqpaDPs7Dbx/VzJyVtUfkrVJHt95oLL1vU+U/H0Dy9XdU0BPLF15ZzFyPZNQjNxkEpaxjq7WrpG0jAdKArNEpIZYuPBPN0xqfgQ6i8gj1q61f2HpntlgfT4EeFJEHEWkA5bxl3SpajywABgrIs4i4g0MTK29iDwmIn1EpKQ19obWc22yNrkIeCTbpSiWD+XL1v0H8U/ySWzvljgWZL3ymgp8JiLlrPtUFpH2trye+zQVGCYijayvpaiIdLb+PlKyEYgHXrQO0D/GvV13i7B0B76EZUzFeACYhGLkCtZv4M9hSQgX5J95EP1Saq+qV7D0xUcD64EILMnABXg+tfOo6kEs33y/wvItviuWBHbb2uQl67YbWO60WnQfL+NFLN1AF7AMOH+XRtvrwLNYxkHCsYwbfKKqiV070wFvaxfSIlXdD3yK5cP4IlAfS7dQoj+w3MBwQUSuWLe9ARwBNolIOLAK8EwjpiZy7zyUh9J70aq6zfpaJlhf1xGsA/aptL+NZfxoMJb3+SlgKZbEntgmCpiP5QaABenFYOQOYhbYMgwjp4nIZmCyqn6XbNsYoLaqPpX6nkZuYq5QDMPIdiLSSkQqWLu8BmK5Dfm3ZM+XwnIFMyWnYjTun0kohmHkBE9gF5Yur38BT6jqeQAReRbLQP+vqvpXzoVo3C/T5WUYhmHYhblCMQzDMOwiXxVqK1OmjLq7u+d0GIZhGA+U7du3X1HVtCbFAjmYUESkJzAWy7yDhtZbD1Nq1wH4AnAEpqnqh3c9/yXwjC0Tttzd3dm2LcXTGIZhGKkQkTSrPiTKyS6vvVjuRU910M1a12giltIL3kBf64SxxOcDsUxuMwzDMHJYjiUUVT1gnWSWlobAEVU9Zp0MNQ9LzaPEZPMJ8HrWRmoYhmHYIrcPylfmzqJyZ/iniN+LwJLEWw1TIyJDRWSbiGy7fPlyFoVpGIZhZOkYioisIuXiev9W1cWZOG4lLEXjWqfX1rq2xBSAwMBAc4+0HcXGxnLmzBmio6NzOhTDMOygcOHCuLm54eTklKH9szShqGrb9Ful6Sx3ViF1s25rgGXBoCPWgqXOInJEVWveewgjq5w5cwYXFxfc3d25s3CsYRgPGlXl6tWrnDlzhurVq2foGLm9y2srUEtEqlurqPbB0s21TFUrqKq7qroDkSaZZL/o6GhKly5tkolh5AEiQunSpTPV45BjCUVEuovIGaAJsExEVli3VxKR5QDWhYxeBFYAB4AfVTW1JWGNHGCSiWHkHZn9/znH5qGo6kIs60rfvf0cljWkE39ejmXd77SOlRWLBiVZd/gye86G8UJrcxFkGIaRmtze5ZUrrD98hfErD3H1Zkz6jY1sVazYnd8lZsyYwYsvprVy8L1CQkJYvjzN7yyZMmPGDMqWLYufnx9+fn4MGDDgvo+xdu1aunTpkgXRGYb9mIRigyB/N+ISlCW7zuV0KIadxcXFpZlQ4uLiUtx+v3r37k1ISAghISF8/71ZgNDIm0xCsYFnBRfqVS7Ogh1mWesHyS+//EKjRo1o0KABbdu25eLFiwCMHTuW/v3706xZM/r378+YMWMIDg7Gz8+P4ODge56Pj4/ntdde46GHHsLHx4dvvvkm6RyffPJJ0va33377vuILCQmhcePG+Pj40L17d65fvw7AkSNHaNu2Lb6+vvj7+3P06NE79tu6dSsNGjS4Z7th5LR8VRwyM4IauPF/S/dz6GIEtcuntlR2/vXOL/vYfy7crsf0rlSct7vWTbNNVFQUfn7/LCN/7do1unXrBkDz5s3ZtGkTIsK0adP4+OOP+fTTTwHYv38/69evp0iRIsyYMYNt27YxYcIEwJJwkj8/ZcoUXF1d2bp1KzExMTRr1oxHH32Uw4cPc/jwYbZs2YKq0q1bN/766y9atmx5T5zBwcGsX78egJdeeolBgwYxYMAAvvrqK1q1asWYMWN45513+Pzzz+nXrx+jR4+me/fuREdHk5CQwOnTlvm9GzZsYMSIESxevJiqVatm/k02DDsyCcVG3fwq8f7yAyzYcZbRHevkdDiGVZEiRQgJCUn6OTE5gGWeTO/evTl//jy3b9++4976bt26UaRIkVSPm/z5lStXsnv3bn7++WcAwsLCOHz4MCtXrmTlypU0aNAAgJs3b3L48OEUE0rv3r2TElbiMW7cuEGrVq0AGDhwID179iQiIoKzZ8/SvXt3wDLRLNGBAwcYOnQoK1eupFKlSvf3RhlGNjAJxUZlihWide2yLNp5ltfae+LoYG6XTS69K4mcMGLECEaNGkW3bt1Yu3YtY8eOTXquaNGiae6b/HlV5auvvqJ9+/Z3tFmxYgVvvvkmzz333B3bJ06cyNSpUwHsOthfsWJFoqOj2blzp0koRq5kxlDuQ48ANy6ER7Ph6JWcDsWwQVhYGJUrW0q/zZw5M9V2Li4uREREpPp8+/btmTRpErGxsQAcOnSIW7du0b59e7799ltu3rwJwNmzZ7l06RLDhw9PGoBP7YPf1dWVkiVLsm7dOgBmzZpFq1atcHFxwc3NjUWLFgEQExNDZGQkACVKlGDZsmW8+eabrF279v7eDMPIBiah3IeH65SjeOECZnD+ATF27Fh69uxJQEAAZcqUSbVdmzZt2L9/f9Kg/N2GDBmCt7c3/v7+1KtXj+eee464uDgeffRRnnzySZo0aUL9+vV54okn0kxMd5s5cyavvfYaPj4+hISEMGbMGMCSXL788kt8fHxo2rQpFy5cSNqnfPnyLF26lOHDh7N58+b7eDcMI+vlqzXlAwMDNbMLbL21cA8Ld5xl63/aUqxQ/u4xPHDgAF5eXjkdhmEYdpTS/9cisl1VA9Pb11yh3Kce/pWJio3nt70X0m9sGIaRj5iEcp/8q5bEvbQz87efyelQDMMwchWTUO6TiBDk78bGY1c5cz0yp8MxDMPINUxCyYDuDSx3Di0OMaVYDMMwEpmEkgFVSjnTsHop5u84Q366qcEwDCMtJqFkUA//yhy7fItdZ8JyOhTDMIxcwSSUDOpYvyKFCjiYwXnDMAwrk1AyqHhhJ9rXrcAvu88RExef0+HkawkJCXTp0oX69esnFVF8+umnc2w2+dixY5kxY0aabdauXcvTTz/NiRMncHNzIyEh4Y7n/fz8kiYuTpkyhTp16lCnTh0CAwPveF2tW7fG09Mzaa2VJ554wuYYZsyYcUc5muz2wQcf5Ni509K6dWvSm6/WunVrTpw4kWYbW34HGeHu7s6VK5ZqHU2bNk23baJRo0bh5eXFmjVr7B5TIpNQMiHIvzI3ImNZE3o5p0PJ1/bs2cOlS5fYs2cPVapUyelw7ou7uztVq1ZNKsECEBoaSkREBI0aNWLp0qV88803rF+/ntDQUKZMmcJTTz3F2bP/VGuYM2dOUqmXxAKWuUF6a8ncb0JR1XsSb363YcMGm9uOHz+et99+m2+//TbL4jEJJROa1yxDWZdCLNhhur34dTR819m+j19H23TqGzduUK5cuTu2ubq6UrBgQcDyof3222/j7+9P/fr1CQ0NBWDLli00adKEBg0a0LRpUw4ePAhYvrk//vjjtGvXDnd3dyZMmMD48eNp0KABjRs35tq1awAcPXqUDh06EBAQQIsWLZKOW6xYsTQrGQMULFgQV1dXAPr27cu8efOSnps3bx59+vQB4KOPPuKTTz5JKh3j7+/PoEGDmDhxYprHtyWGIkWKJK14eeLECR5++GF8fHx45JFHOHXqFGC50hs2bBiBgYHUrl2bpUuXAqS6RszatWtp0aIF3bp1w9vbG4DHH3+cgIAA6taty5QpUwAYPXp00tID/fr1AywfePXq1aNevXp8/vnnSXF5enoyYMAA6tWrl3QFmtLrfe2116hbty5t27Zly5YttG7dGg8PD5YsWQJAdHQ0gwYNon79+jRo0CDpm3pUVBR9+vTBy8uL7t27ExUVlXTclStX0qRJE/z9/enZs2dS3bZSpUrh6Oho8++gdevWvPTSS/j5+VGvXj22bNkCpP03mHzl0S5duqR4xZ34+zt//jwtW7ZMOn7iF5SyZcve0b5ChQrcuHEjzbgzRVXzzSMgIEDt7b2l+7TmW8v06s0Yux87t9u/f/8/Pyx/Q/XbTvZ9LH/DpjhWr16tXbt2TfX5atWq6ZdffqmqqhMnTtTBgwerqmpYWJjGxsaqqurvv/+uQUFBqqr63XffaY0aNTQ8PFwvXbqkxYsX10mTJqmq6ssvv6yfffaZqqo+/PDDeujQIVVV3bRpk7Zp0+aec0+aNClp39RcuHBBK1SokBRLnTp1dM+ePaqqWrJkSb1x48Yd7RctWqSPPfaYqqq2atVKa9eurb6+vurr66uvvvpqmudKTZcuXXTGjBmqqjp9+vSk4w8cOFDbt2+v8fHxeujQIa1cubJGRUXpN998o++++66qqkZHR2tAQIAeO3ZM16xZo87Oznrs2LGkY1+9elVVVSMjI7Vu3bp65coVVVUtWrRoUptt27ZpvXr19ObNmxoREaHe3t66Y8cOPX78uIqIbty4Mc34AV2+fLmqqj7++OParl07vX37toaEhKivr6+qqo4bN04HDRqkqqoHDhzQKlWqaFRUlH766adJ23ft2qWOjo66detWvXz5srZo0UJv3rypqqoffvihvvPOO/ece/Dgwbp169Y042vVqpUOGTJEVVX//PNPrVu3rqqm/Tc4fPjwpP07d+6sa9asUVXL3/Ply5fveA/HjRun7733nqqqxsXFaXh4eIpx/Pnnn9qxY8c0Y73j/2srYJva8Bmbv4tR2UGQvxtT1x3nl13nGNjUPafDyTkdP8yxU4eEhODm5pZmm6CgIAACAgJYsGABYKlGPHDgQA4fPoyIJFUTBkvBSBcXF1xcXHB1daVr164A1K9fn927d3Pz5k02bNhAz549k/aJiYm557zDhg1LN/7y5ctTr149Vq9eTfny5SlQoAD16tVL/4VbzZkzh8DAdMsspWnjxo1J70v//v15/fXXk57r1asXDg4O1KpVCw8PD0JDQ1NdI6ZgwYI0bNjwjrVnvvzySxYuXAjA6dOnOXz4MKVLl77j/OvXr6d79+5JywYEBQWxbt06unXrRrVq1WjcuHGa8RcsWJAOHToAlt9RoUKFcHJyon79+kljHevXr2fEiBEA1KlTh2rVqnHo0CH++usvRo4cCYCPjw8+Pj4AbNq0if3799OsWTMAbt++TZMmTe4597Rp09J7ewHLlShAy5YtCQ8P58aNG0RERKT6N3g/HnroIZ555hliY2N5/PHH71h0LrnKlStz6NAhoqOj71hrx15MQskkr4rF8a5YnAU7zuTvhJJDnnzySZYuXZruAHyhQoUAcHR0TOrb/+9//0ubNm1YuHAhJ06coHXr1ve0B3BwcEj62cHBgbi4OBISEihRosQdi3tlRmK3V/ny5ZM+eAC8vb3Zvn07Dz/8cNK27du3ZzqB3A8RuednTWWNmLVr196xlszatWtZtWoVGzduxNnZmdatWxMdHX1f509v7RoAJyenpDhT+n1lhKrSrl07fvjhhwztf7eU3sfU/gYLFChwx3hReu9Zy5Yt+euvv1i2bBlPP/00o0aNYsCAAfe0q1GjBt7e3lStWpXVq1dTv379zL+wZMwYih0E+Vdm15kwjlyyvXS5YR9z587lk08+Sepzvx/J10u537txihcvTvXq1fnpp58Ay4fPrl277juGREFBQSxfvpzg4OCk8ROA119/nTfeeIOrV68ClquxhQsX3rOoV1omTJhwx2qRKWnatGnSOM6cOXNo0aJF0nM//fQTCQkJHD16lGPHjuHp6ZnqGjF3CwsLo2TJkjg7OxMaGsqmTZuSnnNyckrav0WLFixatIjIyEhu3brFwoUL74jBHlq0aMGcOXOS4j116hSenp60bNmSuXPnArB37152794NQOPGjfn77785cuQIALdu3eLQoUMZPn/i0gjr16/H1dUVV1fXVP8G3d3dCQkJSVr+OXHMJTUnT56kfPnyPPvsswwZMoQdO3ak2G7Xrl0cO3aMs2fP2j2ZgEkodtHNrxKODmLWSckhnp6eSQPl9+P111/nzTffpEGDBhn6FjtnzhymT5+Or68vdevWZfHixfe0mTx5MpMnT073WCVKlKBJkyaUL18eDw+PpO3dunVj8ODBNGvWjJo1a9K8eXMWLVp0x2Brv379km4bbtu27T3HDg0NvaeL6W5fffUV3333HT4+PsyaNYsvvvgi6bmqVavSsGFDOnbsyOTJkylcuHCqa8TcrUOHDsTFxeHl5cXo0aPv6LoaOnQoPj4+9OvXD39/f55++mkaNmxIo0aNGDJkSNLSyvbywgsvkJCQQP369enduzczZsygUKFCPP/889y8eRMvLy/GjBlDQEAAYBnQnjFjBn379sXHx4cmTZok3XiR3JAhQ9K9zRgsyzk3aNCAYcOGMX36dCD1v8FmzZpRvXp1vL29GTlyJP7+/mkee+3atfj6+tKgQQOCg4N56aWXUmx3/fp13N3dcXJySjfeDLFloCWvPDI6KL/z4k794cAPabZ5+tvN2viDVRofn5ChczyIUhq8ywmbN2/Whg0bakJC3n7vY2Nj9amnntInn3zyvl5r586dNSYmYzeNDBw4UH/66acM7Wv8o1WrVukO3GeH4OBg7dWrV5ptMjMob65QbLDixAo+3voxYTGpl1kJ8nfjfFg0G49dzcbIDLBMAqxSpQp+fn6p3laaFxQoUIBZs2YxZ86ce/rj07J06dKkW6iN/GvUqFF8/PHHDBkyJMvOYQblbdDZozOzD8xm1clV9KjdI8U27bzL41K4APN3nKFZzdSXmzXsr2DBgrlqQl9ekhUzvTOjUaNG99xNN2vWrCwZD7CnnKrakNz48eOz/Bwmodigbum6VCtejWXHl6WaUAo7OdLFpyKLQ87x7mNxFM3nywMbRlZILEdj5E6my8sGIkLn6p3ZdmEbF26lvvRvkL8bkbfjWbHPLA9sGEb+YxKKjTp7dEZRfj3+a6ptAquVpEqpIuZuL8Mw8iWTUGxUtXhVfMr4sOzYslTbiAhBDdz4++gVzt2ISrWdYRhGXmQSyn3o5NGJg9cPcuT6kVTb9PB3QxUWhZirlOzyIJevB8vAd9myZZPmkvj5+bF//367xTNjxgzOnftnuerUSt5PnjyZ77//3m7nzYixY8cybtw4ux0r8fewZs0avLy8eOWVV+xybCNlOZJQRKSniOwTkQQRSbWGhIh0EJGDInJEREYn2y4i8r6IHBKRAyIyMjvi7uDeAUdxZNnx1K9SqpZ25iH3kizYcRbL7dtGVnuQy9cn6t27d1IJ+pCQkKRKvfZwd0KBlEveDxs2LMVyHQ+iuydZtmnTht27d/Pdd99luF6Wkb6cukLZCwQBf6XWQEQcgYlAR8Ab6Csiif+XPQ1UAeqoqhcwL8WD2FnpIqVpXKkxy44tI0FTX5chyN+NI5dusuesWR44Ozzo5etTs3DhQh555BFUlfPnz1O7dm0uXLjAiRMnaNGiBf7+/vj7+9+xJsZHH31E/fr18fX1ZfTo0fz8889s27YtaTZ98tLsd0t+dbB161Z8fHzw8/PjtddeSypWmVbZ+tatW/PEE09Qp04d+vXrl/SFavTo0Xh7e+Pj48Orr74KpF4uP1FoaCgNGzZM+vnEiRNJtwZv376dVq1aERAQQPv27Tl//jxgufJ6+eWXCQwM5Isvvrjn9+Dk5ESJEiUIDw9P8303Mi5H7m1V1QNwb7G0uzQEjqjqMWvbecBjwH7geeBJVcunuqpeytKAk+lcvTNvrX+LnZd2ElA+IMU2nepX5O0l+5i//Qw+biWyK7Qc9dGWjwi9dm9ZisyoU6oObzR8I9128fHxODjc+d0oeekQgDJlyrBjxw6+/vprxo0bx7Rp06hTpw7r1q2jQIECrFq1irfeeov58+cDlppOO3fuJDo6mpo1a/LRRx+xc+dOXnnlFb7//ntefvllhg4dyuTJk6lVqxabN2/mhRde4I8//kj60ASSyq7cXXW4adOmd6y2FxwczPr165N+3rhxI927d2f+/PlMnDiR3377jXfeeYcKFSoQGRnJ77//TuHChTl8+DB9+/Zl27Zt/PrrryxevJjNmzfj7OzMtWvXKFWqFBMmTGDcuHF3FJTs169f0odtu3bt+OSTT+6Ib9CgQUydOpUmTZowevQ/69JMnz4dV1dXtm7dSkxMDM2aNePRRx8FYOfOnezbt49KlSrRrFkz/v77b7y8vFi4cCGhoaGISNJaHCNGjGDgwIEMHDiQb7/9lpEjR7Jo0aKk89SpU4fbt29z/PhxqlevTnBwML179yY2NpYRI0awePFiypYtS3BwMP/+97+TFo26fft2mmVQHBwciI83K6xmldw8WaIykHza8xmgkfXfNYDeItIduAyMVNXDKR1ERIYCQ8FSkyizHqn6CEUKFGHZsWWpJhTXIk608y7Pkl3n+HdnbwoWMENVWelBL18Pli6vlAo4fvXVV9SrV4/GjRsnVSGOjY3lxRdfJCQkBEdHx6SChatWrWLQoEE4OzsDlkWgUpNWyfvEsuqJpdoTKzoD6ZatT/w9+Pn5ceLECRo3bkzhwoUZPHgwXbp0oUuXLkDa5fIT9erVi+DgYEaPHk1wcDDBwcEcPHiQvXv30q5dO8DyZaJixYp3vI9pqVy5Mrt3706x5pmReVmWUERkFVAhhaf+rar3VtG7P4WAaFUNFJEg4FsgxdKkqjoFmAIQGBiYsUGNXfPg6BroPhlnJ2daV2nNypMrebPhmzg5plxk7Ql/N5btPs/ag5d4tG5Kb0PeYsuVRFbIK+XrU3PmzBkcHBy4ePEiCQkJODg48Nlnn1G+fHl27dpFQkJClqxrkRpNo2x98vcs8X0uUKAAW7ZsYfXq1fz8889MmDCBP/74w6Zz9e7dm549exIUFISIUKtWLfbs2UPdunXZuHFjivukV+p+5MiRdO3alTfffJMxY8bYFIdhuyz76qyqbVW1XgoPW5PJWSzjJIncrNvAcrWywPrvhYCPfaJOxa3LsHse7JwNQBePLoTFhLH+7PpUd2lRqwxlihU0c1KyWF4pX5+SuLg4nnnmGX744Qe8vLySSmeEhYVRsWJFHBwcmDVrVlIXTrt27fjuu++IjIwESBrrcXFxISLC9qUVSpQogYuLS9Ks9OTLE9tatj7RzZs3CQsLo1OnTnz22WdJ71Fa5fIT1ahRA0dHR959992kKw9PT08uX76clFBiY2PZt2+fza8We5ooAAAgAElEQVTtgw8+4I8//jDJJIvk5r6YrUAtEakuIgWBPsAS63OLgDbWf7cCMr5IgS0aDwf3FvDrG3DtGE0qNaFkoZJp3u1VwNGBx/wqszr0Ijcib2dpePldXihfHxwcfMdtwxs2bOCDDz6gRYsWNG/enPHjxzNt2jQOHDjACy+8wMyZM/H19SU0NDTpW3mHDh3o1q0bgYGB+Pn5JQ2wJ64Ln3xQPr2S99OnT+fZZ5/Fz8+PW7duJd1AYGvZ+kQRERF06dIFHx+fpNcBaZfLT653797Mnj2bXr16Af/UbXvjjTfw9fVNeq9sdf36dWrVqmVze+M+2VKS2N4PoDuWq4wY4CKwwrq9ErA8WbtOWJLFUSxdZYnbSwDLgD3ARsDXlvNmak35G6dV/1dFdeojqnGx+u7GdzVgVoBGxESkusvesze02htL9fsNxzN+3lzMlK/PuyIi/vm7/t///qcjR47MwWjsIyYmRkuWLKm3bt3K6VBytQeufL2qLlRVN1UtpKrlVbW9dfs5Ve2UrN1yVa2tqjVU9f1k22+oamdVra+qTVTVvn0NKXF1gy6fwZmtsO5Tunh0ISY+htWnVqe6i3fF4tSp4MJ80+2VpfJL+frstGzZMvz8/KhXrx7r1q3jP//5T06HlClr1qwhMDCQp59+OummBcP+cvNdXrlPvR5w8Df48yN8azxM5WKVWXZsGY/VfCzF5iJCD3833l9+gNAL4dSpUDybA84fTPl6++vdu3e6d0w9SBInNhpZKzePoeROnT6B4pWQhUPpVLUdmy9s5krUlVSb9wx0o4iTI1P+OpaNQWYfNdUADCPPyOz/zyah3K8iJaD7ZLh2nC5nD5CgCWlWIC7hXJA+DauwJORcnisYWbhwYa5evWqSimHkAarK1atXM3Ubuunyygj35tDsJTz+/hyvuk1YdmwZ/b37p9p8cPPqfL/xJNPXH+e/XexXoymnubm5cebMGS5fvpzToRiGYQeFCxdOd5JwWkxCyag2/4ajq+l88RjjXApxPOw41V2rp9jUraQz3Xwr8cOWU4x8uBauzilPhnzQODk5Ub16yq/ZMIz8x3R5ZVSBghA0jY7hEQikuU4KwNCWHkTejmf25pPZE59hGIZV1O3sqV9mEkpmlKtDuUfeoWFUNMsOzEtzLMGrYnFa1S7Ld38fJzrWFKczDCN7bDl+jRYfr2HzsatZfi6TUDKr4bN0dq7Kmdgwdh9J+yrluVYeXLl5m/k7zmRTcIZh5GdrQi/Rf/pmihcpQJVSWT//xiSUzBKhbedvKKjKsr/GQnzqi/c08SiNr5srU/86RnyCuTPKMIys88uuczz7/TZqlivGj881oVKJtNfosQeTUOzApXRNWpWqzwqJJHbNB6m2ExGea1WDE1cjWbnvQjZGaBhGfjJ38ylGztuJf9WS/DC0MWWKFUp/JzswCcVOOvsN4ZqjI5t2TIaTKZfWBmhftwLVSjsz+c+jZv6GYRh2N2ntUd5auIfWtcsy85mGFC+cfXeVmoRiJy0qt8DFyYVlJcvAwqEQnfIyo44OwrMtPNh1JoxNx+6/Qq5hGEZKVJWPfgvlo99C6epbiW/6B1KkoGO2xmASip0UdCzIo+6P8keRQkSGn7WUuk/FEwFulClWkG/+OpqNERqGkVfFJyj/WbSXSWuP8mSjqnze2y9HVoo1CcWOOnt0Jio+hjX+T8CuubBvUYrtCjs58nRTd9YevMyB8ylfyRiGYdgiNj6Bl4NDmLP5FM+3rsH7j9fD0UFyJBaTUOwooHwAFYpWYFkhR6jkD0tfhvBzKbZ9qnE1nAs6MjWPFo00DCPrRd2OZ+j32/hl1zne6FCHNzrUQSRnkgmYhGJXDuJAp+qd2HB+I9c6j4O4GFj0AiQk3NO2hHNB+jxUlSW7znE2jxWNNAwj64VHxzLw2y2sPXSZ97vX4/nWNXI6JJNQ7K2zR2fiNZ4VEYeg/QdwbA1s+SbFtoNbWOpgTV93PDtDNAzjAXf1ZgxPTt3EjlPX+aJPA/o1qpbTIQEmodhd7ZK1qVWyFkuPLYWAp6F2R/j9bQi7d9XGyiWK0M23EvO2njLrzhuGYZNzN6Lo9c1GDl+8ydQBgXTzrZTTISWxKaGISEkRqSsiHiJiklA6OlfvzO7LuzkdcQY6fADxMbB7Xopth7ayFI2ctdEUjTQMI23Hr9yi5+SNXAqPYdbgRrSpUy6nQ7pDqslBRFxF5C0R2QNsAr4BfgROishPItImu4J80HSq3gmAZceXQSkPqNYMQuZCChMZ61QoTmvPsszYcMIUjTQMI1X7z4XTc/IGomPj+WFoYxpWL5XTId0jrauNn4HTQAtV9VTV5qoaqKpVgA+Bx0RkcLZE+YCpWKwiAeUDWHZsmWU2vG9fuHoEzmxLsf2wVjW4eus2P283RSMNw7jXthPX6D1lIwUdHfhxWBPqVXbN6ZBSlGpCUdV2qjpLVW+k8Nx2VX1ZVadnbXgPrs4enTkRfoL91/ZD3cfByRlC5qTYtlH1UvhWKcHUdaZopGEYd1qx7wL9pm2mbLFC/PR8U2qULZbTIaUq3fEQsXhKRMZYf64qIg2zPrQH26PVHqWAQwHLwluFXMCrG+xdALH33iIsIgxr6cHJq5H8ttcUjTQMw2LO5pM8P3s7XhWL8/PzTamcDRWDM8OWAfavgSZAX+vPEcDELIsoj3At5EqLyi347fhvxCfEg19fiAmDg8tTbP9o3QpUL1PUFI00DANVZfzvh/j3wr20ql2Wuc82olTRgjkdVrpsSSiNVHU4EA2gqteB3P/KcoHOHp25HHWZLRe2gHtLKO5mGZxPQWLRyD1nw9iYDSurGYaRO8XFJ/Dmgj18ufowvQLdmDogEOeCBXI6LJvYklBiRcQRUAARKQvcO/XbuEcrt1YUdSpq6fZycLBcpRz9A8LPp9g+yL+ypWjkn6Yci2HkR1G34xk2ezvztp5mxMM1+aiHDwUcH5yZGrZE+iWwECgvIu8D64HUV5EykhQuUJi2Vduy6tQqouKiLHd7aQLsDk65vZMjg5pV589Dl9l/zhSNNIz85Pqt2/SbtonVoZd497G6/OtRzxyty5UR6SYUVZ0DvI4liZwHHlfVn7I6sLzisZqPcSv2luUqpXQNqNI41TkpAE81qkbRgo5MMaXtDSPfOHM9kh6TN7D3XDiT+vnTv4l7ToeUIbZeS5UBIlV1AnBFRKpnYUx5SmD5QOqUqsPs/bMtg+1+T8KVg3B2R4rtXZ2d6NuwKr/sPs+Z65HZHK1hGNntwPlwgr7ewJWIGGYPbkSHehVzOqQMs+W24beBN4A3rZucgNlZGVReIiL09+7P0bCjbDi3wTInpUBhy3opqXimeXUEmGaKRhpGnrbx6FV6Td6Igwg/DWuaK2e/3w9brlC6A92AWwCqeg5wycqg8pqO7h0pU6QMs/bPgsKu4NUV9vwMsdEptq9Uogjd/CoRvPU012+ZopGGkRct232egd9uoYJrYRa80BTPCg/+x6otCeW2WiZGJN7lVTRrQ8p7nByd6OPZh7/P/c3RG0ct3V7RN+DQr6nu81zLGkTFxjNrkykaaRh5zYy/j/PiDzvwreLKT8OaUCmXT1i0lS0J5UcR+QYoISLPAquAqZk9sYj0FJF9IpIgIoFptOsgIgdF5IiIjE62/RER2SEiISKyXkRqZjamrNTLsxeFHAtZrlKqt4LilSHkh1Tbe1Zw4eE65UzRSMPIQ1SVj34LZewv+2nnVZ5ZgxtRwjnvTOuz5S6vcVgKRc4HPIExqvqVHc69FwgC/kqtgXX+y0SgI+AN9BURb+vTk4B+quoHzAX+Y4eYskzJwiXpWqMrvxz9hWu3w8CnNxxZBRGpl1p5rqUH127dZuaGE9kXqGEYWSI2PoF//bSLSWuP8mSjqkx6KoDCTo45HZZdpZlQRMRRRNao6u+q+pqqvqqqv9vjxKp6QFUPptOsIXBEVY+p6m1gHvBY4iGA4tZ/uwIpL96ei/T36s/thNv8ePBHS7eXxsPuH1Nt38ijNA/XKceXqw9zKTzl8RbDMHK/8OhYnpmxlQU7zjKqXW3ef7wejg4P1hwTW6SZUFQ1HkgQkZyqlVwZSwn9RGes2wCGAMtF5AzQH0tJ/XuIyFAR2SYi2y5fvpylwabHo4QHzSo3Y17oPG6XrAZuDdOckwIwpos3sfHKh7+GZmOkhmHYy5nrkTwxaQMbj17lox71GflIrQduwqKtbBlDuQnsEZHpIvJl4sOWg4vIKhHZm8LjsfT3TtcrQCdVdQO+A8an1EhVp1jXcQksW7asHU6bOQO8BnA1+iq/Hv/VUorl8gE4H5Jqe/cyRRnSojoLdp5l+8lr2RipYRiZFXL6Bo9P3MD5sGhmPtOQ3g9VzemQspQtCWUB8F8sYx3brY+UV4q6i6q2VdV6KTwW2xjfWaBKsp/dgLPWemK+qrrZuj0YaGrjMXNUk0pNqFmiJrP2z0K9u4NjoVQLRiYa3qYmFYoXZszifWa9FMN4QPy65zx9pmykSEEHFr7QlGY1y+R0SFnOloRSQlVnJn8AJbM6MKutQC0RqS4iBYE+wBLgOuAqIrWt7doBB7IppkwREZ7yeoqD1w+yNewweHWBPT9BXEyq+xQtVIC3Onux71w487aeysZoDcO4X6rK5D+P8vycHXhXLM7CF5pRs9yDP8fEFrYklIEpbHs6sycWke7W8Y8mwDIRWWHdXklElgOoahzwIrACS8L4UVX3Wbc/C8wXkV1YxlBey2xM2aWzR2dKFippuYXY90mIug6HVqS5T1efijSqXopxKw5yI9JMdjSM3CjWWnr+w19D6eJTkbnPNqZMsUI5HVa2STWhiEhfEfkF8BCRJckea4BMd+ar6kJVdVPVQqpaXlXbW7efU9VOydotV9XaqlpDVd+/a//6quqrqq1V9YGp+V64QGF6efbizzN/crKsB7hUTLfbS0QY260uYVGxfLryUDZFahiGrcKiYhn03VbmbT3N8DY1+LJPgzx3W3B60rpC2QB8iuXK4NNkj38B7bM+tLytT50+FHAowOzQHyxzUg6vhJuX0tzHq2Jx+jeuxpzNJ015e8PIRU5fs9zJtfn4VT55wofX2tfBIQ/eFpyeVBOKqp4E1gHRqvpnsscOa5eTkQllipShU/VOLD66mDDvrpY5KXvSXxVgVDtPSjgXZOySfWapYMPIBXacuk73r//mYng03z/TiJ6BVdLfKY/K7fNQ8rT+3v2Jiovi52u7oHIA7JyT5pwUsJS3f629J1tOXGPJrlw/l9Mw8rRlu8/Td8omnAsWYOHwZjSpUTqnQ8pRWToPxUibZylPGlVoxNzQucT69oZL++DC7nT36xVYhfqVXflg+QFuxZiLRcPIbqrKxDVHGD53B/Uqu7LwhabUKFssp8PKcRmdh7I9K4PKT/p79+dS5CV+L14SHAumWTAykaOD8M5jdbkYHsNXfxzJhigNw0h0Oy6BN+bv5pMVB+nmW4k5QxpROh/dyZWWAuk1sM47MbJIC7cWuBd3Z9aRhXSs3RHZ8yO0+z8okHYFUv+qJenh78b09cfoFeiGh/l2ZBhZLiwylufnbGfD0auMfLgmr7SrnWfLqGSELSs21hKRn0Vkv4gcS3xkR3D5gYM40M+rH3uv7iWkRjOIvGq548sGb3T0pFABR/5v6X4zQG8YWezo5Zt0n/Q3W09c49Oevox61NMkk7vY0uX1HZZS8XFAG+B7zBLAdtWtRjeKFyzOrIgDUKw87Eq/2wugnEthXm5bi7UHL7P6QNq3HBuGkXF/hF7k8Ql/cyMyltmDG9EjwC2nQ8qVbEkoRVR1NSCqelJVxwKdszas/MXZyZknaj/B6tNrOOPdGQ79Breu2LTvwKbu1CxXjP9but8sxGUYdqaqTPjjMINnbqNqaWd+GdGcRh75+06utNiSUGJExAE4LCIvikh3wHTY21nfOn1xwIG5zoUgIc6mOSkATo4OjO1al1PXIpm2zvREGoa93IqJY/jcHYxbeYiuPpX4eVhTKueRpXqzii0J5SXAGRgJBGCpm5VSfS8jEyoUrcCj7o+y4NxablbyTbcUS3LNa5WhQ90KTFxzlHM3orIuSMPIJ05djaTHpA38tvcC/+7kxRd9/ChSMH+VUckIW5YA3qqqN1X1jKoOUtUgVd2UHcHlNwO8B3Ar9hYLqtS1zEe5sMfmff/d2YsEVd5f/kAUXTaMXGv94St0nbCe82HRzBjUkGdbepjBdxuletuwtTBkqrcOqWq3LIkoH6tbpi7+5fyZe/MI/RyccAz5ATrUt2nfKqWceb51DT5fdZh+ja7QtEbeX3vBMOxJVZm+/jgfLD9ArXIuTBkQQLXSRXM6rAdKWlco47AUgxwPeHFngchPsz60/Km/d3/ORl7gj5pNYM+PEB9r877DWtXArWQR3lmyn7j4hCyM0jDylujYeEb9uIv3lh3gUe8KLHihqUkmGZBWccjEYpBrgZt3FYj8M/tCzF/aVGlD5WKVmVUYuHUZjqyyed/CTo78p7M3By9GMGvTyawL0jDykLM3onhi8gYW7jzLv9rV5ut+/hQtlO6cbyMFtgzKQxpdX4Z9OTo40s+rHzsjTrDXtRyEzLmv/dvXLU+LWmUY//shrtxMfRVIwzBgy/FrdPtqPSeuRDJtQCAjHqmVL8vO20taC2yVSnwAjiJS8q5tRhbpXrM7RZ2K8n2lGnDwN4i0fT0zEeHtrnWJuh3PJ78dzMIoDePBparM2nSSJ6duwrWIE4uGN6Otd/mcDuuBl9YVynZgm/W/xYEd/FMYclvWh5Z/FStYjKBaQfwec4ELkgA7768wQc1yxXimeXV+3H6akNM3sihKw3gwxcTF8+aCPfx30V5a1CrDwuHNqFnOTK2zh7TGUKqrqof1v3c/PLIzyPyon1c/ElDmVvGCzZPva3AeYMTDNSnnUohRwSFERN/fvoaRV50Pi6LvlE3M23qaF9vUZNrAh3At4pTTYeUZaXV5uae1o1iYgjZZpHKxyjxS9RF+LhBLZMQ52LfwvvZ3KezEl30acPJaJG/M322KRxr53pqDl+j0xToOXohg4pP+vNreE0czXmJXaXV5fSIi80VkgIjUFZFyIlJVRB4WkXeBv7HcTmxkkQHeA4iIjyK4ogds+DLd1Rzv1sijNG908GT5ngtMX388i6I0jNwtNj6BD38NZdB3WylfvDC/jGhOZ5+KOR1WnpTqvXGq2lNEvIF+wDNARSASOAAsB95X1ehsiTKf8ivnR/PKzZl6fivdj++jxPE/waP1fR3j2RYe7Dh5g//9GoqPWwkaVjf3Uxj5x/mwKEbM3cm2k9fp27Aqb3f1prCTKaGSVSQ/dYUEBgbqtm0P1v0ER64foccvPXjy1m3ecPGGp+bf9zHCo2N5bMLf3IqJY+nI5pRzKZwFkRpG7rLm4CVGBYdwOy6BD4Lq85hf5ZwO6YElIttVNTC9drbOQzFySM2SNQmqFcQ8ZydOnlgLF/ff9zGKF3Zi0lP+hEfHMmLuTjOL3sjT7u7iWjKiuUkm2cQklAfAcL/hODkW5vPSpWHjhAwdo06F4nzQvT6bj19j3MpDdo7QMHKHxLu4Jv95lL4Nq7JoeDNqmOWxs41JKA+AMkXK8Ez9Z1jlXIgdBxdC+PkMHSfI341+jaoy+c+jrNh3wc5RGkbOSryL68D5cL7o48f/guqb8ZJsZsua8gtEpLN1kS0jhwysO5ByhUsxrmRxdPPkDB9nTFdvfNxcefXHXZy4csuOERpGzoiLT+Cj30wXV25gS5L4GngSy4qNH4qIZxbHZKSgSIEijAh4hT2FCvLbvtkQE5Gh4xQq4MjX/fxxdBSGzd5O1G2zbLDx4DofFkWfKZuYtNZ0ceUGtiywtUpV+wH+wAlglYhsEJFBImKmmGajrh5d8SxWhc+LFSRm+4wMH8etpDOf9/bj4MUI/rNor5n0aDyQEru49p8P5/PeposrN7CpG0tESgNPA0OAncAXWBLM71kWmXEPRwdHXm06hnNOBfhh1xSIj8vwsVp7lmPkw7WYv+MM87aetmOUhpG1Yu/q4vplRHMeb2C6uHIDW8ZQFgLrsKwr31VVu6lqsKqOAMy1ZTZrXLExLUp4MqVQAjf2/JCpY418pBYta5fl7cX72H3GFJE0cr8jlyLoMWmDtYuriuniymVsuUL5UlW9VfV/qnrH7UW2THQx7G9Uiw+45eDA5O33X44lOUcH4fPefpR1KcTzs3dwI/K2HaM0DPtJSFCmrTtGpy/Xc/paJF/38+d/QT6miyuXsSWhlBSRoLsej4hIuSyPzkhRzVK1CSpVn2DHKE4euL+ikXcrVbQgX/fz53JEDC8Hh5CQYMZTjNzl9LVI+k7dxHvLDtCiZhlWvNKSTvVNLa7cyJaEMhiYhqWmVz9gKvAG8LeI9M/ISUWkp4jsE5EEEUn1KkdEvhWRSyKy967tpUTkdxE5bP1vyYzE8SAb3vojCip8vm1cpo/lW6UEY7p6s/bgZSasOWKH6Awj81SV4K2n6PD5X+w7F87HPXyYNjDQlA7KxWxJKE6Al6r2UNUegDeWJYEbYUksGbEXCAL+SqfdDKBDCttHA6tVtRaw2vpzvlKmeBWeKenLKo1g+8FFmT5ev0ZV6d6gMp+tOsRfhy7bIULDyLhL4dEMnrmNN+bvob6bK7++1IJeD1VBxJSbz81sSShuqnox2c+XgCqqeg3I0MpNqnpAVdNdn1ZV/wJSWv/2MWCm9d8zgcczEseDbkCbjygXF8+4rR+ToJmrzyUivN+9HrXLufDSvJ2cvRFlpygN4/4s3X2ORz//i7+PXGFMF2/mDmlMlVLOOR2WYQNbEspaEVkqIgNFZCCw2LqtKJBTtwaVT3aDwAUg1cWgRWSoiGwTkW2XL+etb95FXN0Y6VqfvfERrAj9MdPHcy5YgElP+RMbr7wwZwcxcWbSo5F9bkTeZsQPO3lx7k6qlXJm2cgWPNO8Og5mEawHhi0JZTjwHeBnfXwPDFfVW6raJrWdRGSViOxN4fGYfUK3UMusvFRHklV1iqoGqmpg2bJl7XnqXKFLq/+jTsxtPt/+GTHxMZk+nkfZYozr6cOu0zcYs2ifGaQ3ssWag5d49LO/+HXPeUa1q83855uadd7t5FjYMYasHMKFW1lfvy/VBbYARMQRWGVNHPe1EIeqts1MYOm4KCIVVfW8iFTE0g2XLzmW9eRfxTx5NvY4c/fOYJDvc5k+Zod6FXmxTU0mrDlCgiof9vAxS6UaWeJWTBzvLTvAD1tOUatcMb59+iHqVXbN6bDyBFVl3sF5jN82nsIIZ8JPUaFohSw9Z5pXKKoaDySISG77DS8BBlr/ndgNl281bv4WLSOjmLp7Ctejr9vlmP96tDYjH6nFT9vP8NK8ncSaNVQMO9t64hodv1jHvK2neK6lB7+MaG6SiZ1cibrCC6tf4IPNHxBAYRYcP0zg1ayviGFLl9dNYI+ITBeRLxMfmTmpiHQXkTNAE2CZiKywbq8kIsuTtfsB2Ah4isgZERlsfepDoJ2IHAbaWn/Ov6o0YpSTG7fib/PNrkl2OaSIMKpdbd7sWIelu88zbNZ2omPNmIqReRHRsYxdso9e32wEIHhoE97s5GUmKdrJH6f+IGhxEFsvbOEtKcukI7sp2+otqBuU5edOdwlg60D8PVR1Zkrbc7MHcQlgm+1fzP+tfomFrq4sfGwx7q7udjv0rE0n+e+ivTStUZqpAwIpWijNnlLDSJGqsmTXOd5bdoArN2N4qlE1RnesY/6e7CQyNpKPt37M/MPz8SpRkw8vXcbj3H7o+jn4D8jUsW1dAtimNeVFpAhQ1ZZbfXOzPJ1QEuK5MqEBnYtDk2oP83mbz+16+Pnbz/Daz7vwq1KC7wY1xLWIKTRt2O7IpZuMWbyXDUev4uPmyruP1cO3SomcDivP2H15N2+ue5PTEad5pmYQw7cvwin8AvScAZ4pTeW7P3ZbU15EugIhwG/Wn/1EZEmmIzTsy8GRMo1HMPj6dVafWs32i9vtevgeAW5MfNKfPWfDeHLqJq7ezPwdZUbeF3U7nk9WhNLxi7/YezaMdx+vx8IXmplkYidxCXFMCpnEgF8HEJsQy7eBb/Hyhtk4Rd2AgUvskkzuhy1jKGOBhljnnKhqCOCRhTEZGeX3JP1vO1IOJ8ZtHZfpyY5361i/IlMHBHLk0k16T9nEhbBoux7fyFtW7b9I2/F/MnHNUbr5VuaPV1vTv3E1c8egnZwKP8XAXwfy9a6v6Vi9I/Prv0zg4n9BgcLwzAqo0jDbY7IlocSqathd28wtP7lRwaIUeWgIIy9fYO/Vvfx2/De7n6K1ZzlmPtOQ8zei6PXNRk5fi7T7OYwH2+lrkQyZuZUh32+jaCFHgoc25tNevpQpViinQ8sTVJUFhxfwxC9PcDz8OJ+0/IT/lQjAJXgAlKgKg1dC2ZxZWNeWhLJPRJ4EHEWkloh8BWzI4riMjHroWbpGxVLH0YUvdnxhl8mOd2vsUZrZQxpxI/I2PSdv5Ojlm3Y/h/HgiYmLZ+KaI7T77E82HL3KW53qsGxkCxp5lM7p0PKM69HXeXnNy7y94W18yviwoNsCOlw4CvMHW65IBv0KxSvlWHy2JJQRQF0gBvgBCAdezsqgjExwKY+DT29ePX+Kc7fOMXNf1tyM16BqSYKfa0JcQgK9v9nI/nPhWXIe48Hw95ErdPxiHZ+sOEgbz3KsGtWKoS1r4ORo06Kwhg3WnVlH0JIg1p1dx6uBrzKl7WQq/D0RVrwFXl3hqQVQJGfHpmy6yyuvyNN3eSV3KRS+bsSous1ZE32OOZ3m4F3aO0tOdfTyTZ6atplbMXHMfKYhDarmu5UE8rVL4dG8t+wAS3ado1ppZ97pVpfWnmapJHuKjI1k/PbxBB8MpmaJmnzY4kM8XT1g8XDYHQwPDYGOH4ND1s3jsdttwyJSG/bDaI4AACAASURBVHgVcCdZqRZVfTiTMWa7fJNQAOb0IuzcdoKquePs5Exwl2CcnbKmYuvpa5H0m7aZqzdjmDbwIZrUMF0ceV10bDyzNp7ki9WHuR2fwAutazCsVQ0zOdHOtl3Yxn///i9nb56lv3d/RvqPpFBcLPw4AI6uhof/Ay1ehSwu62/PhLILmAxsB5KmSquqfe9LzQb5KqEcXwczu7C59Ss8e3IBT9R+gjFNxmTZ6S6GR9Nv2mZOX4tkcv8A2phvqXlSbHwCP247zVerj3AhPJrWnmUZ27Uu7mWK5nRoeUp0XDRf7vyS2ftnU7lYZd5r/h4B5QPg5mWY2xPO77bLhEVb2TOhbFfVALtFloPyVUJRhW/bw9WjjG85mO8O/sDnbT7nkaqPZNkpr96MYcC3Wzh0MYIv+jQwy7TmIfEJyuKQs3y+6jCnrkUSUK0krz7qaa5Gs8Duy7v59/p/cyL8BL09ezMqYJSld+HacZgdBOHn7TZh0Vb2TChjsVTzXYhlYB4A6wJbD5R8lVDA8i1mSiti/QfQj/Ocv3We+d3mU845664ewqJieWbGVrafvM5TjasyuqPX/7d33uFRVOsf/7zpCSmQQEJISKETFAEhgIAgAaUoIhaa7RZsiOK9du7Pfq9yFStibyhSRL0ionRUakBKKKFDQgiQkEYKSTa75/fHjBhwAwE2u9nkfJ5nnj0z5+yZ98zszndOew+B2rWG26KU4qdtR3l18W72ZBXRoVkwD1/dln5tm+jVEx1MubWcaZun8cn2T4gIiOC5Xs/Ro/FlcGQLHEqG1W+CrQLGzHH6HBNHCsoBO4eVUsrtJjfWO0EB+OkJWPsO+0d/zsj1z9E5vDPvDnwXD6m50Tcny61MWbSLj1YdoFmIP/8ZcSl929S9tWjqMkopft6dzZRFu9l6uICWTRrwz6vbMqhDU73gVQ2wI2cHk1ZOYm/+XkaEdeIRGhOYuQmObjVEBCC8A9z8iUvmmDjUl1ddoV4KSukJeDsRAsOZ03c8z697gYe7PswdHez6/HQov6Xl8ejcLezLLubmy6P519AEQgK0D7DaTvKBXF5euJP1B/OIbuTPxAFtuKFzlJ7h7mjKCrFkbODDbR/xfv4WGlltPJN9nCtPloJ3A4jqAtHd/tgCXfdSdtGCIiKPKqX+a4ZvVkp9VSnuP0qpJx1mrZOol4ICsO0bmPsX1KD/8mDJdlYeXsmXQ7+kXWi7Gj91qcXKW8v28O7P+wlr4MO/b7iUgQlVrtiscSEpGfm8smg3v+zOJjzIlwn9WzGyWww+XnouiUMoPAp7l0JGMmRsYE/ebiY1DiXV14ehFg+eCE0kJKanIR5N2oNn7WkqdoSgbFRKdTkzbG/fXai3gqIUfH4DHP6NvHFLuXHZPQT5BDHr2ln4e/k7xYRthwt4+Kst7DxayLDLmvH0dQmEaVcctYLdxwqZsmgXC7cfo1GAN/f2a8ltPeLw99FDgB3CkS2wZhps+xpsFqy+IXwa1YK3VR5BXgE8lfgYSa2Hu9rKs+IIQdmklOp8ZtjevrtQbwUF4PheeKcnJAxndc+/cPfiuxnZdiT/6vEvp5lQXmHjnRX7mLp8D0F+3jw7rAPXdozUnbsuQCnF5kP5fLLqIN+nZNLAx4txfVrw195xBPnpZsmLxmaDPQthzdtw8FejCavLbRxsO4BJqZ+ScjyFgbED+VePfxHqF+pqa89JdQXlbHUqVUXY3r6mttO4FfR+CH6ezBWdb+X2hNuZvmM6faL60Ld5X6eY4OPlwYMDWnPNJRE8OjeFCTM3MT8lk+evv4TwYD+n2FDfKbVYmbclk8/XpLH1cAGBvl7cdWUL7rmyJY0a+LjaPPenvBi2zDRqJLn7IDgKBj6HtdOtzDj4A2+tfhIfTx8m95nM4PjBde5l6mw1FCtQDAjgD/zuVlYAP6WU273G1OsaCoDlJEzrAR7elN+1gjEL7ySrJItvrv+Gxv6NnWpKhdXGhysP8Ori3fh7e/LUtQmM6BJV5/5gtYX0nBK+WJfGnA2HyC+x0Do8kNt7xnJDl2g9rNsRnDgCye/Dho+hNB+adYGe4yHhenafOMAzq59h6/Gt9Ivux1M9n6JJgHuNetSjvOxQ7wUFYM9imHETJD3FvkuHM3L+SLpGdGXagGk1OpS4KvZlF/Ho3BR+S8ujX9sm/OeGS2nW0Dn9OnUdm80Y+jt9zUFW7M7GQ4RrOkRwW484erQI1eLtCE7rH6mA9tdCz/uheXfKbRbeS3mPj7d+TLBvMI8nPs6guEFued21oNhBC4rJ7NsMYRm/llnH1vLvdf/m8cTHGdt+rEvMsdoU09cc5L8/7cLTQ3h8cDtGdmuuPdVeIPkl5czZcIgv1qaTnltCkyBfRifGMCYxhqYhumnxojmzf8QnEDrfBt3vhtB4ADZlbeLp1U9zoOAAw1oO45Guj9DQz31XqdSCYgctKCYFGTA1EeKvRI2eyYRlE1iTuYaZ186kTaM2LjMrPaeEx75OYc3+HMKDfBnZrTkjuzUnulHNOLWsa2w7XMD0NQf5bnMmZRU2EuNCua1nLNd0aKqH/jqKlDmw4iWzfyTaEJEut59yG19sKeb1315n9q7ZRDaI5KmeT9ErqpeLjb54tKDYQQtKJVa/BYv+BaNmkhPbnRvn3Ugjv0bMHDoTPy/XvcUqpViamsWMdWms2J0NwFVtwxmTGMNV7cL15LozOFFqYcmOY3y+No1N6fn4e3syvHMUt/eMpX1ksKvNq1v88gosex4iO0GvB6D9MPD8oyv5l4xfeH7t8xwrPsbY9mOZ0HlCjXn4djZaUOygBaUSVgu8dyWUFcL4dazM3sS9S+5lbPuxPJ74uKutAyAjr4TZ6w8xa/0hsgvLiAzxY2S35ozqVr+bbg4eL2bpziyWph4j+UAuFTZFi8YNuLVHLDdeHk2Iv9uNl6ndKAXLXoBfX4GOI+H6aadNOswtzWVy8mQWHFhAq4ateOaKZ7isyWUuNNjxaEGxgxaUM0hbA58MMoYTD3iGycmT+SL1C6YlTaNPdB9XW3cKi9XG0tRjzFiXzq97juPpIfRvF86Y7jFc2bpJna+1VFht/JaWx7KdWSxJPca+7GIAWocHktQ+gqT24Vwe00j72KoJlDJq8mumQpc74NrXwcPDjFLM3z+f/67/L0WWIu669C7+funf8fase4KuBcUOWlDs8L/xkDIL7llFWVg8o+aPIrc0l2+GfUOYf+1zTZ6eU8LM9el8teEQx4vKiWroz5juMdzcNZrwoLpTayk4aeHn3dksSz3Git3Z5JdY8PYUuseHkdQ+nKR2EcSE1Y3mlFqLzQYLHoYNH0Hi3TB48qmFrDKLMnl+7fOsPLySjk068mzPZ2nVqJWLDa45tKDYQQuKHYqPw1uXQ9NL4Y7v2ZO/l1HzR9GjWQ+m9p9aa4c4llfYWLTjKF+uS2f1vhy8PISBCRGM6R5DjxZhbjlC7MDxYpamHmNpahbrDxpNWaENfLiqbThJ7cPp07qxnsXuLGxWmDcBNs+AXg/CgGdBBKvNyqxds3hj4xsAPNjlQUa1HYVnDS6/WxvQgmIHLShVsOETmD8RbngfLhvJjNQZvJT8Ek8kPsGY9mNcbd052Z9dxKz1h/hqwyHySiz4eHrQKjyQhGbBtI8MJsHcaounY4vVRlpOCXuzitiXXcSeY4WkZBSw/7jRlNU2IsiohbQPp1PzRnW+Sa/WYbXAN3fB9m+g3xPQ9zEQITUnlRfWvUBKdgq9onrxVI+naBbYzNXWOgUtKHbQglIFNht8NBDy0+D+DSi/EO5fdj+rDq/i1X6v0j+mv6strBalFivLd2axOSOf1COF7Mg8wfGiU2vCEdXQ3xCYZsEkRAaREBlCdCP/Gut7KLVY2ZddxN6s07eDOcVYrH/875qF+NG2aRD92obTv104zUN1U5bLqCiDuX+FnfONWknviZwoP8HUTVOZvWs2DX0b8nDXh7m2xbW1tvZeE2hBsYMWlLNwZAu83w+6/hWGTqHYUsy4RePYmbuTaQOm0SOyh6stvCCyCktPiUvqkRPsOHKC/dlF2MyffaCvF+0jg0iINGozje14QLb3D7H3v8kvsbDXFJA9WYVk5J3k92QeArFhDWgVHmhsTQJpHRFIyyaBNNCuT2oHlpMw+1bYuwQGv4xKHMf8/fOZsmEKeWV53NLmFiZ0mUCwT/0bjq0FxQ5aUM7Bj4/Buvdg3DKI6kJBWQF3/nQnh4sO8+HVH9KxSUdXW+gQTpZb2X2skB1HTpwSmtQjJygut1503j6eHrRoUkk4wgNpHR5EXOMAfL3qdju7W1NWBDNHwcGVcN0b7GlxBS+sfYGNWRvp2Lgjk3pMIiEswdVWugwtKHbQgnIOSk/A1G4QHAl/XwoenmSXZHP7j7dzovwEnwz6xKUz6WsSm02RnltCYWnFn+Kq27IR6OtF89AA3efhbpQWwIxbIGM9xcPeYFrFUWakziDIJ4iJXSZyQ+sbXOLnrjahBcUOWlCqwda58PXfYMgrkDgOgIzCDO748Q6sysr0wdOJCY5xsZEajYMoyYUvRqCObuWnqybyypEVZJ/MZkTrEUzsMtGt/W85kuoKiktkV0RuFpHtImITkSqNFJGPRSRLRLadcfxlEdkpIiki8q2I6LvuKC65EVr0g6XPQ1EWANFB0bx/9ftYlZVxi8ZxtPioS03UaBxCUTZ8dh37c3YxrmNfHt0/hzD/ML4Y8gXPXPGMFpMLwFX1uG3ACOCXc6T7FBhk5/hi4BKlVEdgN/CEQ62rz4jAkClQcdKYIWzSsmFL3h34LgXlBdy1+C5yS3NdaKRGc5GcOELJp4N5veIoN0ZFsOPkUSZ1n8TMoTPrTF+hK3CJoCilUpVSu6qR7hfgT08updQipdTvjd1rgWgHm1i/+X11x5TZsHfpqcMdwjowtf9UMosyuWfxPRSWF7rQSI3mwlB5aSz5YhDX+5fwUXAAQ1tcy/fDv2dUu7o/QbGmqQs9TX8FfqwqUkTuEpENIrIhOzvbiWa5Ob3/AWGtYf5DUF5y6nDXpl15td+r7Mnbw/1L7+dkxUkXGqnRnAdKsX/TJ9w7dygPNbAR3DCOzwZ9xgu9X6iVbobckRoTFBFZIiLb7GzXO/Ack4AKYEZVaZRS7yuluiqlujZp4l7LbroUbz+47g1jsuOKF0+LujL6Sl7s8yKbsjbxjxX/wGK1uMhIjaZ6HE9byfPTezFiyxRSvIVH297K7Bvm0SWii6tNq1PU2IwqpdSAmsobQETuBK4FklR9GqrmTOJ6GR5W17wNl94EkX+45B4UP4giSxHPrnmWJ1Y+weQ+k3VzgabWUVqQwecL7+ej4j2UiXBL6GXcm/Q6jRrol8uawC2n6IrIIOBRoK9SquRc6TUXwcDnYPdPMO8BY25KpXUgbmpzE0XlRUz5bQqB3oE83fPpeuWOQlN7sVlK+WHpI7yRuYxjnh5c5RfJQ/2nEB9Rt9YpqW24atjwDSKSAfQEfhCRhebxZiKyoFK6mcAaoK2IZIjI38yoqUAQsFhENovIu04uQv3Bv6HhtvvIZlj358t85yV3Mu7ScXy952umbJhi1yWJRuM0lGJ98puM+rwbTx5bQZhnAB93f443Ry/RYuIEXFJDUUp9C3xr53gmMKTS/ugqvl93Fx6ojSQMhzaDYfm/of210CjutOgJnSdQWF7IZzs+I9g3mLs63uUaOzX1mv37FvHayv9jBSU0FeHF1mMZ0vORej/L3Zm4ZZOXxsmIwNBX4O3u8MM/Yezc0/yRiAhPdH+CIksRb216i0DvQLdwe6+pG+Tm7mXaognMLT2En4IHI3pxa9IU/HwDXW1avUMLiqZ6hERD0lPw46OGe5aON58W7SEePN/reYotxbyY/CKBPoEMaznMRcZq6gNlZYV8sXgiH2av46TATQFx3DvgDcJCW7ratHqL9uWlqT42K3x0NeQdhPvXQ0Don5KUWcsYv3Q8yUeSufeye7n7srt1k4PGodhsVn5c/RJv7JnFEQ/oJ4E81OfftIh3j3V73JFa7ctL46Z4eMKwN6E0HxZOspvE19OXt/q/xXUtr2PalmmMXzqegrICJxuqqYvYcvax6If7uPHTTjy+bxYNlfBhh/t46/Y1WkxqCbqGojl/lj4Hv06B278zHEnaQSnFV7u/4sXkF4kIiODVfq/W6/UkNBfIyXxs275hydbPeMd6lL0+PsThxT0xQxnc5//w8Przgmgax6Pd19tBC4qDsJTCO1eAssF9a8Dbv8qkKdkp/GPFP8grzWNSj0mMaD3CiYZq3BKrBfYuwbZ5JosPLefdkABDSLxDuKfj3QxKGKMn0ToZLSh20ILiQA78Ap9dB70mwsBnz5o0tzSXx355jLVH1jKi9Qie7P4kvp76zVJTCaUgcxOkzMa2dS6LKebdsDD2enkQ3yCSe7o8yDVxg7SQuIjqCooe5aW5MOKvhM63wuq3DLcsTS+tMmmoXyjvDniXtze/zQdbPyA1J5XXrnqNqMAoJxqsqZUUZEDKHNgyC9vxXSwODObdpk3ZqwKID45j8mX3ck3cNVpI3ARdQ9FcOCW58HYihDSHvy8xOu3PwfL05UxaOQkPDw9e6vMSvaN6O8FQTa3CZoXU72HDR3DgV2woFsd04t0AYW9ZDvEh8dzT8R4tJLUIPcpLU/MEhMKglyBzI6x7r1pfuSrmKmZdO4uIgAjuW3If72x+B5uy1bChmlpBRRlsnG68hHx1B7b8NBZ2G8ONHXvzsGcuVr9gJveZzLfDvmVIiyFaTNwQXUPRXBxKwZe3wMFVMH4tNKzeevMnK07ywtoXmLdvHr2jevNSn5cI8Q2pYWM1LqGsCH771PBaXZhJeWRHFrZP4uPczewt2KdrJG6A7pS3gxaUGiI/Hd7uYbi7HzPnNLcsZ0MPLa7jFOdA8ntG7bU0n+NxVzAnpgNzsjeQU5pDi5AW3N3xbi0kboAWFDtoQalB1kyDhU/AjR8ZnfTngR5aXMcoyIDVU2HjZ2ApYXub/nwR2oSfstdTYaugT1QfxrYfS89mPbUXBTdBC4odtKDUIDYrfJhkPEzGJ9t1y3I2zhxa/HDXhwnyCaohYzU1QvZuWPU6pMzGAixt148vfGFL/m4CvAIY3mo4o9uNJi4kztWWas4TLSh20IJSwxzdCu/1hU6j4fq3z/vrVpv11NDiEN8Qxl06jpFtR+Ln5VcDxmocxuHf4NdXYecP5Pr483XrK5hlyyGrNIfmQc0Z024M17e6Xr8guDFaUOygBcUJLH7aeEu943tjrsoFsCNnB29ufJNVmauM0WCd7mNYy2F4eehpU7WGinLYtxTWvgMHfmZXYCNmxHXkh5MZlNss9Ijswa3tb6V3VG/dP1IH0IJiBy0oTqC8BN7pabhn6TQGWiVBdCJ4+Zx3VslHknlj4xukHE8hLjiOB7o8wICYAXqZYVdhrYADP8O2b2Dn91hLC1gRGskXETFsKD2Cn6cf17W8jrHtx9KyoXYhX5fQgmIHLShO4vBGWPgkHEoGZQWfQIjrY4hLy/4Q2uK8RoItO7SMNze+yf6C/XQI68CDXR6kZ7OeNVwIDWD0jaWtMkQkdR6qJIcdDRqyIKotP1FMluUEkQ0iGd1uNCNaj9BDv+soWlDsoAXFyZQWwIFfjaaRvUshP8043jDWFJckiO8Dfud+CFltVr7f/z3TNk/jSPERukd2Z2KXiVzS+JIaLkQ9xGaDjGTY9jXs+A6KjpHmH8iC5pewwLOcg6XH8fLwok9UH4a1HEa/5v10c2QdRwuKHbSguBClIHc/7FtmiMvBX6G8CMQTmica4tKyPzTrdFYXLmXWMubsmsMHKR+QV5bHwNiB3N/5flqEtHBiYeogShk1y+3fwPZv4cRhsnz8+Sn2Mhb4wPaSTAShW9NuDIkfwoDYAbo2Uo/QgmIHLSi1iIpy4y1471JDZI5sNo77NzLEJXEcxPSo8utF5UVM3zGdz7Z/Rqm1lOGthnPvZffStEFTJxWgDqCUMTJv29eGiOSnccLThyXxnVng70tyURoKRUJYAkPihzAobhARDSJcbbXGBWhBsYMWlFpM8XHYt9wQl90/wsk8iLkCej8ErQdW2eeSW5rLBykfMHvXbARhVLtRjG43muigaCcXwI3IT4etXxlefrN3Uurhyc9xl7MgKIhfiw5isVmIDY5lSPwQBscPJj4k3tUWa1yMFhQ7aEFxE8qLYePnhmv8ExkQcYkhLAnDwdN+W31mUSbTNk/j+/3fY1M22oW2IykmiYGxA2kR0kKPDCvJNfpDUuZA+moyvTxZ16wDaxtF8HPJIYorSmji34RB8YMYGj+UhLAEfc00p9CCYgctKG6G1WK8Sa98HY7vgkZxcMUD0GkseNuf7JhRmMHS9KUsSVvC5myjGS0uOI6kmCQGxA6gQ1iH+vOgtJTC7p9g61dk71tMso8n6xtGsC7An4yKIsBYq6ZvdF+GthhK14iues6Ixi5aUOygBcVNsdlg1wJY+aoxK7tBOPS8D7r+DfyCq/xaVkkWy9OXsyR9CeuPrseqrDRt0JSkmCSSYpLoEt6ldjxAywqh8Cj4hxp9SB4X4d/KZoO0leRvnsH6g4tJ9rKRHNCA/V5GnkE+QXSL6EZiZCLdm3anZcOW9UdgNReMFhQ7aEFxc5QyRof9+irsXw6+IZD4d+h+LwQ2OetXC8oKWHFoBUvSl7Amcw1l1jJC/UK5qvlVJMUk0T2yOz6e5z/58rywlMLx3ZCVClk7jM/sVKNP43c8vKBBE2MLDDfEM7AJBEb8EW4QbsT5h54Sn6KMZDZu/IB1matJ9qhgl483SgR/Dx8ub9qN7pE9SIxMpG2jtrVDRDVuhRYUO2hBqUNkboKVr8GOeeDlC51vgysmQKPYc361xFLCysMrWZK+hF8yfqHYUkygdyBXRl/J5RGXExMcQ0xQDBEBERf28LVaIGefIRaVxSN3P/y+mJiHNzRuA+HtILy9serlyTwoyoLiLCjKNj/NzWYBoFiEdG8v0ry9SfP2Id2/Afu8PNnpqbCK4IPQOSiOxPhrSIzqRYfGHfD28D7/Mmg0ldCCYgctKHWQ43sN32FbZhkP60tuNNa6j70CPM/9IC23lrP2yFqWpi9lefpy8sryTsV5e3gTFRh1SmCaBzUnJtj4bBbY7I8HdcFho0kufa0hHMd3nxIAxMPwDBDeHsIToEk74zOsZZX2naw4yaHCQ6SfSOfgiYOkn0gnLX8f6YXpHC/LPy1tuPgQJz50Dk0gMWE0l8X0wdfT98KupUZTBVpQ7KAFpQ5zItNYEXDDJ2ApNprDWg+EtoOh1QDwb3jOLGzKRlZJFukn0kkvNLaMwoxT+ycrTp5K6ykeRHoGEFNeRvOiXJpbKgjzCcEWEoU1OJKKwKbYgiKoCAjDKoJN2ahQFVhtVrvhEksJhwoPkXYijWMlx06zK8wvjNjgWGKCY4gNjjXCQTHEBMfg7+Xv8Eup0ZyJFhQ7aEGpB5QXw/4VRo1h109Qctzol4jtBW2HQNtBxmix80RZK8jZt4RDu/5HesYa0svyOOTtxaGAENK8PCi0lZ9XfoLg6eGJl3jhIR74efkRHRRNbNCfhSPQJ/C87dVoHIkWFDtoQaln2KzGqLBdC2DXj5C90zge3sGoubQdAs06Vz2qynLSEKedPxjfLzkOnj6GW/52Q6HNYAiOBIxO/7zSvNNE4lTYwwMv8cLTw9M4Lp56pUKNW6EFxQ5aUOo5OfuMeRm7foS01YYn5MAIaDPIEJcWfQ0R2bMIds433MJYSsA3GFpfbYhIqwFnHaqs0dRFarWgiMjNwDNAeyBRKWX3KS8iHwPXAllKqT+5lRWRfwKvAE2UUsfPdV4tKJpTlOTC3iVG7WXPEigvBC9/sJYbQhMUaQhIu6EQ2/uC1nPRaOoK1RUUV/mc3gaMAN47R7pPganA9DMjRKQ5cDWQfmacRnNOAkKh4y3GVlEOaSthz2Lw9jdEJPIsTWEajcYuLhEUpVQqcM4ZukqpX0Qkroro14BHge8caZumHuLlY7jOb9nf1ZZoNG6NW76Cicj1wGGl1JZqpL1LRDaIyIbs7GwnWKfRaDT1kxqroYjIEsDe4hSTlFIXXKsQkQDgSYzmrnOilHofeB+MPpQLPa9Go9Fozk6NCYpSakANZd0SiAe2mE1m0cBGEUlUSh2toXNqNBqN5hy43ULQSqmtQPjv+yJyEOhanVFeGo1Go6k5XNKHIiI3iEgG0BP4QUQWmsebiciCSulmAmuAtiKSISJ/c4W9Go1Gozk3rhrl9S3wrZ3jmcCQSvujq5FXnEON02g0Gs0F4ZajvDQajUZT+9CCotFoNBqHUK98eYlINpB2gV9vDNS3jn9d5vqBLnP94GLKHKuUOvuyqNQzQbkYRGRDdXzZ1CV0mesHusz1A2eUWTd5aTQajcYhaEHRaDQajUPQglJ93ne1AS5Al7l+oMtcP6jxMus+FI1Go9E4BF1D0Wg0Go1D0IKi0Wg0GoegBeUMRGSQiOwSkb0i8rid+DtFJFtENpvb311hpyM5V5nNNLeIyA4R2S4iXzrbRkdTjfv8WqV7vFtE8l1hpyOpRpljRGS5iGwSkRQRGWIvH3ehGuWNFZGlZllXiEi0K+x0JCLysYhkici2KuJFRN40r0mKiHRxqAFKKb2ZG+AJ7ANaAD7AFiDhjDR3AlNdbauTy9wa2AQ0MvfDXW13TZf5jPQTgI9dbbcT7vP7wL1mOAE46Gq7a7i8XwF3mOH+wOeuttsB5b4S6AJsqyJ+CPAjIEAPYJ0jz69rKKeTCOxVSu1XSpUDs4DrXWxTTVOdMo8D3lZK5QEopbKcbKOjOd/7PBqY6RTLao7qlFkBwWY4BMh0on2OpjrlTQCWmeHlduLdDqXUL0DuWZJcD0xXBmuBhiIS6ajza0E5nSjgUKX9DPPYmdxoVhfnikhz55hWwN2OPgAACGdJREFUY1SnzG2ANiKySkTWisggp1lXM1T3PiMisRgLui2zF+9GVKfMzwC3mktLLMCombkr1SnvFmCEGb4BCBKRMCfY5kqq/du/ELSgnD/fA3FKqY7AYuAzF9vjDLwwmr36YbytfyAiDV1qkfMYBcxVSlldbYgTGA18qpSKxmga+VxE6vIz4mGgr4hsAvoCh4H6cJ9rjLr8Y7kQDgOVaxzR5rFTKKVylFJl5u6HwOVOsq2mOGeZMd5i5imlLEqpA8BuDIFxV6pT5t8Zhfs3d0H1yvw3YA6AUmoN4IfhUNAdqc5/OVMpNUIp1RmYZB5z+8EX5+B8fvvnjRaU01kPtBaReBHxwXiYzKuc4Iz2xmFAqhPtqwnOWWbgfxi1E0SkMUYT2H5nGulgqlNmRKQd0Ahj1VB3pzplTgeSAESkPYagZDvVSsdRnf9y40o1sCeAj51soyuYB9xujvbqARQopY44KnO3W1O+JlFKVYjI/cBCjFEiHyultovIc8AGpdQ84AERGQZUYHR+3ekygx1ANcu8ELhaRHZgNAk8opTKcZ3VF0c1ywzGQ2iWMofHuDPVLPM/MZozH8LooL/TXctezfL2A14UEQX8Aox3mcEOwlw2vR/Q2OwLexrwBlBKvYvRNzYE2AuUAH9x6Pnd9Pei0Wg0mlqGbvLSaDQajUPQgqLRaDQah6AFRaPRaDQOQQuKRqPRaByCFhSNRqPROAQtKBqHICJF1UgzUUQCHHjO4SKS4MD8Vl/Ed4vMz2YiMvcs6RqKyH0Xep6LxZx/sExEgisdGy4iypx34+jzxYnIGEfnWyn/+0XkrzWVv+b80IKicSYTgfMSFBHxPEv0cAwHfw5BKXWFA/LIVErddJYkDQGXCQrGHIQtSqkTlY6NBlaan44mDrArKCLiiHlwH+PePsfqFFpQNA5FRPqZa0vMFZGdIjLDfCt+AGgGLBeR5Wbaq0VkjYhsFJGvRCTQPH5QRCaLyEbgZhEZJyLrRWSLiHwtIgEicgWGp4KXxVizpKWIdDKdV6aIyLci0sjMb4UY65tsEJFUEekmIt+IyB4ReaGS7UWVwo+JyFbznC/ZKWe8afvWM/KIE3MtChHpICLJpn0pItIaeAloaR57WUQCxViTY6OZ1/WV8kkVkQ/EWINmkYj4m3GtRGSJadtGEWlpHn/EvE4pIvJsFbdoLPBdJXsDgd4YbldGnes+mnFDzGO/ibG2xnzzeF/5Yw2ZTSISZJa3j3nsITHWE5onIsuApeZv42UR2WaWf2Sl8/8sIt+JyH4ReUlExprXc+vvZVZKlQAHRSTxbL9LjZNwtf9+vdWNDSgyP/sBBRg+gjww3Jb0NuMOAo3NcGOM2ckNzP3HgKcqpXu0Ut5hlcIvABPM8KfATZXiUoC+Zvg54HUzvAKYbIYfxHDLHgn4YvgpCzujDIOB1UCAuR9qp7zzgNvN8PhK343DXIsCeAsYa4Z9AP/K8eZxLyC40jXZi7FWRRyGN4ZOZtwc4FYzvA64wQz7YdT6rsZYz0TM6z4fuNKO3WlAUKX9scBHZng1cPnZ7qN5vkNAvJluJjDfDH8P9DLDgWbZ+v0ebx6/07zmoeb+jRhOVj2BCAz3L5Hm9/Ir3afDwLOV7uHrlfKcBPzT1f8Bven1UDQ1Q7JSKkMpZQM2Yzwcz6QHRnPVKhHZDNwBxFaKn10pfImI/CoiWzEegB3OzExEQoCGSqmfzUOfYSw29Du/u1PZCmxXSh1RhpPP/ZzuLA9gAPCJMt5+UUrZW1+iF384jfzcTjwYD+EnReQxIFYpddJOGgH+IyIpwBIMV+IRZtwBpdRmM/wbEGe+9Ucppb41bSs17bza3DYBG4F22HfgGaqUKqy0PxpjrRDMz8rNXvbuYztgvzKchMLpjjNXAa+atdGGSqmKKq7L4krXtDcwUyllVUodA34Guplx6yvdp33AIvP4Vk7/TWVh1H41Lkb78tLUBGWVwlbs/84E48FSVbt9caXwp8BwpdQWEbkT01HlBdpkO8M+WxX2VYez+i1SSn0pIuuAocACEbmbPzvVHAs0wagZWETkIEYtoLLNYFxH/7OcToAXlVLvncPmChHxUErZRCQUY6XCS8XwZ+UJKBF5pIrzn/U6KaVeEpEfMPppVonINVUkLa7i+JmceZ8q38PKtvgB9sRa42R0DUXjTAqBIDO8FuglIq0ARKSBiLSp4ntBwBER8cZ4AP8pP6VUAZAnIn3MuNsw3nYvhMXAX8QckWY+eM9kFX/0OYy1E4+ItMB4m38To9+iI6dfAzBWRswyxeQqTq+l/QmzdpEhIsPNc/iadi4E/ip/9ENFiUi4nSx2YSyLC3ATxrK3sUqpOKVUc+AA0MfO9077vojEmfsjK5W3pVJqq1JqMoa333Z2ynsmvwIjRcRTRJpg1CqTz5LeHm0Au2uoa5yLFhSNM3kf+ElEliulsjHa02eazT1rMB5A9vg/jH6DVcDOSsdnAY+YHcAtMZrNXjbz64TRj3LeKKV+wmgi22A2xz1sJ9mDwHizGa6qFe9uAbaZeVyCsfRqDsbb+zYReRmYAXQ187n9jPJVxW0YXq9TMPo9miqlFgFfAmvMvOZi/0H+A3/U8EYD354R/zVnGe1lNtvdh3Eff8MQjAIzeqJZrhTAgrF2eQpgNQcQPGQny2/NNFswVsV8VCl19GyFt0MvjJcAjYvR3oY1mnqEGOv5TFdKDbyIPAKVUkXmqK+3gT1KqdccZuT52dIZ+IdS6jZXnF9zOrqGotHUI5SxmNIHUmli4wUwzqx1bcdosjtXv01N0hijBqupBegaikaj0Wgcgq6haDQajcYhaEHRaDQajUPQgqLRaDQah6AFRaPRaDQOQQuKRqPRaBzC/wNIgMoxefwvhQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[j], label=algorithms[j])\n", - "pylab.xlabel('Interatomic distance (Angstrom)')\n", - "pylab.ylabel('Energy (Hartree)')\n", - "pylab.title('H2 Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd4lFX2wPHvSaeEEFqoIfQOAQKISBUEFRFQFGGlqGtZ2667tv3tKu6iq2vvHbGgIq4oICqCFOlNmvQSCDWQkEAI6ff3x30TJzFlAplMyvk8zzyZmbedeWcyZ2557xVjDEoppVRhfLwdgFJKqbJPk4VSSqkiabJQSilVJE0WSimliqTJQimlVJE0WSillCqSJgtVIkRkioh84twPF5EkEfF1HoeJyDIROSsiz4v1gYicFpG13o38wonIKBGJcV5rV2/HU9bk/RyUNa6fWVU0TRZeJiLRInLe+afKvr3m7bguhjHmkDGmujEm03nqduAUUMMY81fgMmAI0NgY09NbcZaA54B7nNf6S2kfXESMiJzL89l5yIPHmyQiy/M8N11E0vLEsBny/RyocszP2wEoAK4xxiz05AFExM8Yk+HJYxSiKbDd/HYFaFMg2hhzrrg78vLryKsp8Gt+C0oxzi7GmL2lcJzC/NcY8w8vx1BmiIhvRUyQWrIow7J/yYnIc06VzQERudJleYiIvC8ix0TkiIhMdan6mSQiK0TkRRGJA6aIiK9TDXTK2dc9zq9TPxEZIyIb8hz/ARH5poDYmonIUqdq6UegjsuyCJf9TgcmAg85vzrvAN4DejuPn3C2GS4im0QkQURWikhnl/1Fi8jDIrIFOOfst6GI/E9ETjqv5T6X9aeIyBci8pET368iEuWyvImIfOVsG+dakhORW0Rkh3O+fxCRpvm89kARSQJ8gc0isq+QONuJyBLndf0qIiNc9jNdRN4Qke+cc7FCROqLyEvO8XdeaPWWiMwXkeddHn8uItOc+y1E5CfntZ8SkRkiUrOw8yMi7YC3XN63BDdiyPkcOI+byW/VkQtF5HVxqQYSkUuc9z5BRDaLyACXZUtE5N/OOTorIgtEpI6zLEhEPnFiTRCRdSIS5ixrKCJzRCReRPaKyB8LiPU7Ebknz3ObRWS0c7+tiPzo7GeXiNzgst50EXnTOefngIFFnZtyyRijNy/egGhgcAHLJgHpwB+xX0x3AUcBcZbPBt4GqgH1gLXAHS7bZgD3YkuQVYA7ge1AYyAUWAgYZ3kgEA+0czn+L8B1BcS2CnjB2a4fcBb4xFkWkb1f5/F0YGqe17Xc5XFXIBbo5bzOic55CXQ5R5uAJs7r8AE2AI8BAUBzYD8w1Fl/CpACXOXs7z/AameZL7AZeNE5b0HAZc6ya4G9QDvnnPwDWFnIe2eAlnneS9c4/Z39/d2Jc5Bzntq4nJdTQHcnjp+AA8AEJ86pwGJ3j59nWX3nnA4CxjvnJ9hZ1hJbDRgI1AWWAS+5cX5yvW/5vbd5luX9HKzCVt0FYKsiz/DbZ6YREOe8Zz5OfHFAXWf5EmAf0No5t0uAp51ldwBzgapO/N2xVZ44r+0N53VEAieBQS6fk+zjTwBWuMTeHkhwzlE1IAaY7HwuujrvW3uXc5AI9HFiD/L294pHvqu8HUBlvzlfMEnOBzP79kdn2SRgr8u6VZ1/vvpAGJAKVHFZflP2l4uz7aE8x/oJJ5k4jwfn+Wd+E3jSud8BOI3zhZ1nP+HYRFTN5blPufBk8Sbw7zzH2AX0dzlHt7gs65XPa3sU+MC5PwVY6LKsPXDeud/b+cLwy+d1fQfc6vLYB0gGmhbw3uWXLFzj7AscB3xcnvsMmOJyXt51WXYvsMPlcScgoZDPjsF+4bp+doa6LL8O+yV3CucLv4D9jAR+ceP85HrfXF5DSp4YPsz7OXD5zFR12fYTl8/Mw8DHefb9AzDRub8E+IfLsj8B3zv3bwFWAp3zbN8EyMRJks5z/wGmu3xOso8fDJzLfq+BJ4Fpzv0bgZ/z7Ptt4HGXc/DRxXwPlIebVkOVDSONMTVdbu+6LDuefccYk+zcrY6tL/cHjjlF7wTsB7iey7YxeY7TMM9zeZd/CIwTEQFuBr4wxqTmE29D4LTJ3eZwsPCXWKimwF+zX4fzWpo4x8kv1qZAwzzr/x2bQLMdd7mfDAQ51SFNgIMm//aEpsDLLvuMBwT7q9ddrnE2BGKMMVkuzx3Ms78TLvfP5/O4ehHH65bns/ODy7K52F/au4wxOQ3TYnunfS626vIM9ks7uxqxsPNTkOfyxDAxn3UaAvEun2H4/Xs6Js97ehnQwGWdvO9p9rn5GJtYPheRoyLyXxHxdznmWZft8p5/AJx1vgXGOk/dBMxwia1XntjGY3+05fdaKiRt4C6/YrAlizqF/GPnHVL4GLYKKluTXCsbs1pE0rC/iMc5t/wcA0JFpJpLwgjP53juisGWaJ4sZB3XfccAB4wxrS7wWOGSfwN0dhwz8tnOXa5xHgWaiIiPS8IIB3ZfxP6L40lgB9BMRG4yxnzmPP+UE2cnY0y8iIwEstttCjs/FzNE9TGglohUdUkYrp+/GGzJIt82hcIYY9KBJ4AnRCQCmI8tmS5wjhnskjDCgSMF7Ooz4HERWYattlrsEttSY8yQwsIobtzljZYsyiljzDHsP8PzIlJDRHychsv+hWz2BXC/iDRyGjQfzmedj7BfHOmuv0bzHPsgsB77zxkgIpcB11zEy3kXuFNEeolVTUSuFpHgAtZfC5wV25hcRWzDfUcR6eHGsdZiv7iedo4TJCJ9nGVvAY+KSAfI6UAw5iJe1xrsL+CHRMTfabC9Bvj8IvbpFhHph61jn4BtA3pVRLJ/UQdjqz4TnecedNm0sPNzAmgsIgHFjcflMzPF+cz0Jvdn5hPgGhEZ6ryfQSIyQEQa57vD3K91oIh0Etu54wy2nS/LGBODrZ76j7O/zsCtzrHyMx9bivgXMNMlwc8DWovIzc776C8iPcQ2+lcamizKhrmSu5/6bDe3m4BtLNyObV/4ktzF9rzexSaYLdjG6/nYemTXbn4fAx0p+B8q2zhs20E88Dg2yVwQY8x6bCP+a9jXsRdbP17Q+pnAcGyD5QFsnfx7QIgbx8rEfkm1BA4Bh7F10hhjZgPPYKszzgDbgCsL2FWRjDFpzrGudGJ8A5hgjNl5ofvMx+Y8n52XRKQG9v24xxhzxBjzM/A+8IFTxfgE0A3bKPst8JVLzAWeH2yb16/AcRE55RLDQ3licF3majy2TSQO23g/E1s6xvlivxZbnXgS+2v+Qdz7jqqP/eyfwZaklmI/x2CrkyKwpbzZ2HaGfLupO1WuX2Hb8j51ef4scAW2iuootjrsGWzjd6WR3atGVUJiu+G+ZYxp6vJcFWwvmm7GmD1eC05VeCIyE9hpjHnc27GoomnJohJxqmyuEtv/vxG2RJC3FHMXsE4ThSppTtVNC6fKdBi2JPG1t+NS7tEG7soluwpiJranzbfYaxXsQpFoZ52R3ghOVXj1sdU8tbHVW3cZLwyToi6MVkMppZQqklZDKaWUKlKFqYaqU6eOiYiI8HYYSilVrmzYsOGUMaZuUetVmGQRERHB+vXrvR2GUkqVKyLi1ugLWg2llFKqSJoslFJKFUmThVJKqSJVmDaL/KSnp3P48GFSUlK8HYpSqgQEBQXRuHFj/P39vR1KpVOhk8Xhw4cJDg4mIiICOySOUqq8MsYQFxfH4cOHadasmbfDqXQqdDVUSkoKtWvX1kShVAUgItSuXVtrCrykQicLQBOFUhWI/j97T4VPFkopVVFlZGbx2dpD/PDr8aJXvkiaLDysevXcs2JOnz6de+65p1j72LRpE/Pnzy/JsHKZPn06devWJTIyksjISCZMmFDsfSxZsoThw4d7IDqlVF5ZWYa5m48y5MVlPPrVVuZuPurxY1boBu6KICMjg02bNrF+/XquuuqqfJf7+V3823jjjTfy2muvFb2iUsprjDEs2X2SZ7/fxfZjZ2gTFsy7E6IY3K6ex4+tycKL5s6dy9SpU0lLS6N27drMmDGDsLAwpkyZwr59+9i/fz/h4eGsWLGC8+fPs3z5ch599FF27NiRa/knn3zCI488wpIlS0hNTeXuu+/mjjvuAODZZ5/liy++IDU1lVGjRvHEE0+4Hd+mTZu48847SU5OpkWLFkybNo3Q0FD27t3LnXfeycmTJ/H19WXWrFm5tlu3bh233347X375JS1atCjRc6ZUZbU+Op7/fr+LtdHxNKlVhRdv7MKILo3w9SmddpxKkyyemPsr24+eKdF9tm9Yg8ev6VDoOufPnycyMjLncXx8PCNGjADgsssuY/Xq1YgI7733Hv/97395/vnnAdi+fTvLly+nSpUqTJ8+nfXr1+f88p8yZUqu5e+88w4hISGsW7eO1NRU+vTpwxVXXMGePXvYs2cPa9euxRjDiBEjWLZsGf369ftdnDNnzmT5cjvl9v3338/kyZOZMGECr776Kv379+exxx7jiSee4KWXXmL8+PE88sgjjBo1ipSUFLKysoiJiQFg5cqV3HvvvXzzzTeEh4df/ElWqpLbfvQMzy3YxU87Y6kbHMi/r+3AjT3CCfAr3VaESpMsvKVKlSps2rQp53H2Fz/Y60BuvPFGjh07RlpaWq6+4yNGjKBKlSoF7td1+YIFC9iyZQtffvklAImJiezZs4cFCxawYMECunbtCkBSUhJ79uzJN1nkrYZKTEwkISGB/v37AzBx4kTGjBnD2bNnOXLkCKNGjQLsRVLZduzYwe23386CBQto2LBh8U6UUiqX6FPneOHH3czZfJQaQX48NKwNky6NoGqAd762K02yKKoE4A333nsvDzzwACNGjGDJkiVMmTIlZ1m1atUK3dZ1uTGGV199laFDh+Za54cffuDRRx/NqZLK9vrrr/Puu+8ClGjDeYMGDUhJSeGXX37RZKHUBTqemMIrP+3hi3Ux+Pv68KcBLbijXwtCqnr3qnXtDeVFiYmJNGrUCIAPP/ywwPWCg4M5e/ZsgcuHDh3Km2++SXp6OgC7d+/m3LlzDB06lGnTppGUlATAkSNHiI2N5e6772bTpk1s2rSpwC/1kJAQQkND+fnnnwH4+OOP6d+/P8HBwTRu3Jivv7ZTJ6emppKcnAxAzZo1+fbbb3n00UdZsmRJ8U6GUpXc6XNp/Gf+Dvo/u5hZ62MY1yucpQ8N4KFhbb2eKKASlSzKoilTpjBmzBhCQ0MZNGgQBw4cyHe9gQMH8vTTTxMZGcmjjz76u+W33XYb0dHRdOvWDWMMdevW5euvv+aKK65gx44d9O7dG7DdeD/55BPq1XOv58SHH36Y08DdvHlzPvjgA8AmjjvuuIPHHnsMf3//XA3cYWFhzJs3jyuvvJJp06bRq1ev4p4WpSqVsynpTF8RzTvL9pOUlsGoyEb8ZUhrmtSq6u3Qcqkwc3BHRUWZvJMf7dixg3bt2nkpIqWUJ1SU/+uk1Aw+XBnNuz/vJyE5nSHtw/jbFW1oUz+4VOMQkQ3GmKii1tOShVJKlaJzqRl8tOog7yzbx+nkdAa1rcefB7eic+Oa3g6tUJoslFKqFCSnZfDxqoO8vWw/8efS6N+6Ln8Z0prIJmU7SWTTZKGUUh50Pi2TT1Yf5O1l+ziVlEbfVnX48+DWdG8a6u3QikWThVJKeUBKeiYz1hzizSX7OJWUymUt6/CXIa3o3rSWt0O7IJoslFKqBKWkZ/LZWpskYs+m0rt5bd4Y342ezcpnksimyUIppUpASnomM9fF8MaSvZw4k0qvZrV45aauXNK8trdDKxGaLJRS6iKkpGfy+dpDvLV0P8fPpNAzohYv3hjJpS3qeDu0EqVXcJeCrKwshg8fTqdOnXIG3Js0aZLXrnKeMmUK06dPL3SdJUuWMGnSJKKjo2ncuDFZWVm5lkdGRrJmzRoA3nnnHdq2bUvbtm2JiorK9boGDBhAmzZtcubKuP76692OYfr06bmGQCltTz31lNeOXZgBAwaQ95qi/NaJjo4udB133oMLERERwalTpwC49NJLi1w32wMPPEC7du1YvHhxicfkCUmpGby1dB+XPfMTU+Zup0mtKnxyay9m3nFJhUsUoCWLUrF161ZiY2PZunWrt0MptoiICMLDw/n5559zBhXcuXMnZ8+epVevXsybN4+3336b5cuXU6dOHTZu3MiIESNYs2ZNzlAmM2bMICqqyGt+Sl1Rc4E89dRT/P3vf3d7f8YYjDH4+OhvsGwrV650e90XXniBnj17Mm3aNAYOHOjBqC5OYnI6H6w8wAcrokk8n07fVnW4Z2BLelWQ6qaCVJ5P9XePwAdXl+ztu0fcOnRCQsLvhtgICQkhICAAsF/Ijz/+ON26daNTp07s3LkTgLVr19K7d2+6du3KpZdeyq5duwD7i3vkyJEMGTKEiIgIXnvtNV544QW6du3KJZdcQnx8PAD79u1j2LBhdO/enb59++bst3r16oWOaAsQEBBASEgIADfddBOff/55zrLPP/+csWPHAvDMM8/w7LPPUqeO/SXVrVs3Jk+ezOuvv17o/t2JoUqVKjkzDUZHRzNo0CA6d+7M5ZdfzqFDhwBbQrvzzjuJioqidevWzJs3D4DMzEwefPBBevToQefOnXn77bcBW2Lq27cvI0aMoH379gCMHDmS7t2706FDB9555x0AHnnkkZzh5cePHw/YL7OOHTvSsWNHXnrppZy42rRpw4QJE+jYsWNOyTG/1/vggw/SoUMHBg8ezNq1axkwYADNmzdnzpw5AKSkpDB58mQ6depE165dc35hnz9/nrFjx9KuXTtGjRrF+fPnc/a7YMECevfuTbdu3RgzZkzOOGC1atXC19fX7fdgwIAB3H///URGRtKxY0fWrl0LFP4ZdJ3xcfjw4fmWlLPfv2PHjtGvX7+c/WePOVa3bt1c69evX5+EhIRC4/aWU0mpPP3dTvo88xMvLdxDj4hafH13Hz6+tVeFTxTAb7+Gyvute/fuJq/t27f/9mD+w8ZMu6pkb/Mf/t0x87No0SJzzTXXFLi8adOm5pVXXjHGGPP666+bW2+91RhjTGJioklPTzfGGPPjjz+a0aNHG2OM+eCDD0yLFi3MmTNnTGxsrKlRo4Z58803jTHG/PnPfzYvvviiMcaYQYMGmd27dxtjjFm9erUZOHDg74795ptv5mxbkOPHj5v69evnxNK2bVuzdetWY4wxoaGhJiEhIdf6X3/9tbn22muNMcb079/ftG7d2nTp0sV06dLF/O1vfyv0WAUZPny4mT59ujHGmPfffz9n/xMnTjRDhw41mZmZZvfu3aZRo0bm/Pnz5u233zb//ve/jTHGpKSkmO7du5v9+/ebxYsXm6pVq5r9+/fn7DsuLs4YY0xycrLp0KGDOXXqlDHGmGrVquWss379etOxY0eTlJRkzp49a9q3b282btxoDhw4YETErFq1qtD4ATN//nxjjDEjR440Q4YMMWlpaWbTpk2mS5cuxhhjnnvuOTN58mRjjDE7duwwTZo0MefPnzfPP/98zvObN282vr6+Zt26debkyZOmb9++JikpyRhjzNNPP22eeOKJ3x371ltvNevWrSs0vv79+5vbbrvNGGPM0qVLTYcOHYwxhX8G77777pztr776arN48WJjjP08nzx5Mtc5fO6558zUqVONMcZkZGSYM2fO5BvH0qVLzZVXXllorLn+r0vB0YRk8/g320ybf8w3EY/MM3fP2GC2H00s1Rg8CVhv3PiOrTzVUFc+7bVDb9q0icaNGxe6zujRowHo3r07X331FWBHpZ04cSJ79uxBRHJGlQU7uGBwcDDBwcGEhIRwzTXXANCpUye2bNlCUlISK1euZMyYMTnbpKam/u64d955Z5Hxh4WF0bFjRxYtWkRYWBh+fn507Nix6BfuKIlqqFWrVuWcl5tvvpmHHnooZ9kNN9yAj48PrVq1onnz5uzcubPAOT4CAgLo2bNnrrlDXnnlFWbPng1ATEwMe/bsoXbt3L8Uly9fzqhRo3KGhh89ejQ///wzI0aMoGnTplxyySWFxh8QEMCwYcMA+x4FBgbi7+9Pp06dctoWli9fzr333gtA27Ztadq0Kbt372bZsmXcd999AHTu3JnOnTsDsHr1arZv306fPn0ASEtLyxk00tV7771X1OkFbAkSoF+/fpw5c4aEhATOnj1b4GewOHr06MEtt9xCeno6I0eOzDUhmKtGjRqxe/duUlJScs2V4g2H4pJ5c+k+vtwQgzEwsmsj7hrQghZ1q3s1Lm/xaLIQkWHAy4Av8J4x5uk8ywOBj4DuQBxwozEmWkR6Au9krwZMMcbM9mSsnjJu3DjmzZtXZGN2YGAgAL6+vmRkZADwz3/+k4EDBzJ79myio6MZMGDA79YH8PHxyXns4+NDRkYGWVlZ1KxZM9fESxcjuyoqLCws50sFoH379mzYsIFBgwblPLdhw4ZSbaMQkd89NgXM8bFkyZJcc4EsWbKEhQsXsmrVKqpWrcqAAQNISUkp1vGLmnsEwN/fPyfO/N6vC2GMYciQIXz22WcXtH1e+Z3Hgj6Dfn5+uTo9FHXO+vXrx7Jly/j222+ZNGkSDzzwABMmTPjdei1atKB9+/aEh4ezaNEiOnXqdPEvrJj2xp7ljcX7+GbzUXxFuLFHE+7o16LMjQJb2jzWZiEivsDrwJVAe+AmEWmfZ7VbgdPGmJbAi8AzzvPbgChjTCQwDHhbRMplKejTTz/l2WefzanjLg7X+S6K22ulRo0aNGvWLGf4cGMMmzdvLnYM2UaPHs38+fOZOXNmTnsFwEMPPcTDDz9MXFwcYEtRs2fP/t2ES4V57bXXcs3Sl59LL700p91kxowZ9O3bN2fZrFmzyMrKypmXvE2bNgXO8ZFXYmIioaGhVK1alZ07d7J69eqcZf7+/jnb9+3bl6+//prk5GTOnTvH7Nmzc8VQEvr27cuMGTNy4j106BBt2rShX79+fPrppwBs27aNLVu2AHDJJZewYsUK9u7dC8C5c+fYvXv3BR9/5syZgC3hhISEEBISUuBnMCIigk2bNuVMqZvdxlGQgwcPEhYWxh//+Eduu+02Nm7cmO96mzdvZv/+/Rw5cqTUE8W2I4n8acYGhry4jO+2HWfypRH8/PBApo7sVOkTBXi2ZNET2GuM2Q8gIp8D1wLbXda5Fpji3P8SeE1ExBiT7LJOEFCux1Fv06YNc+fOLfZ2Dz30EBMnTmTq1KlcffXVxd5+xowZ3HXXXUydOpX09HTGjh1Lly5dcq3z1ltvAUVXR9WsWZPevXtz/PhxmjdvnvP8iBEjOHr0KH369CEjI4Pjx4+zefPmXA2X48ePz2lIrVOnDgsXLsy17507d+ZUpRTk1VdfZfLkyTz77LPUrVs3Z24NgPDwcHr27MmZM2d46623CAoKKnCOj7yGDRvGW2+9Rbt27WjTpk2u6qTbb7+dzp07061bN2bMmMGkSZPo2bMnYOcQ6dq1a5HdU4vjT3/6E3fddRedOnXCz8+P6dOnExgYyF133cXkyZNp164d7dq1o3v37oBtHJ4+fTo33XRTThXj1KlTad26da793nbbbTmdAAoTFBRE165dSU9PZ9q0aUDBn8E+ffrQrFkz2rdvT7t27ejWrVuh+16yZAnPPvss/v7+VK9enY8++ijf9U6fPk1ERAT+/qUz2Y8xhuV7T/H20v0s33uK4EA/7h7Qklsua0atagGlEkO54U7DxoXcgOuxVU/Zj28GXsuzzjagscvjfUAd534v4FcgCRhVwDFuB9YD68PDw3/XcFPaDWEFWbNmjenZs6fJysrydigelZ6ebv7whz+YcePGFeu1Xn311SY1NfWCjjlx4kQza9asC9pW/aZ///5FNoKXhpkzZ5obbrih0HVK4v86PSPTfP3LYXPlS8tM04fnmR5TfzRvLdlrEs+nXfS+yxvKewO3MWYN0EFE2gEfish3xpiUPOu8g9O2ERUVVWZLH5GRkTRp0oTIyEjmzZtHkyZNvB2SR/j5+fHxxx8Xe7vs7q6qcnvggQdYtmwZ//nPfzx2jOS0DGatP8y7P+/n8OnztKhbjf9e15lruzYk0K/wrsaVnSeTxRHA9VuxsfNcfuscdtokQrAN3TmMMTtEJAnoiC1FlDsBAQE5vXJUyfLEFcgXo1evXr/rdfbxxx97paG2OMrCnOkvvPCCx/Ydl5TKR6sO8tGqaE4npxPVNJTHr+nA5W3r4eMjRW6vPJss1gGtRKQZNimMBcblWWcOMBFYha22+skYY5xtYowxGSLSFGgLRF9IEMaY3/XyUMpTsodAUZ5hijkN9KG4ZN5bvp8v1seQkp7F4HZh3Nm/OVER5XsEWG/wWLJwvujvAX7Adp2dZoz5VUT+ha0jmwO8D3wsInuBeGxCAbgMeERE0oEs4E/GmFPFjSEoKIi4uDhq166tCUOpcs4YQ1xcnFvXX2w7kshbS/cxf+sxfH2EUV0bcXu/5rSsV7rzW1ckUtxMXVZFRUWZvIOrpaenc/jw4WL3m1dKlU1BQUE0btw4395SxhiW7TnFu8t+69k07pJwbunTjLAa3r3ArywTkQ3GmCIvjCqzDdwlwd/fP9eVukqpiiclPZOvfznC+8sPsCc2iXrBgTxyZVvG9QqnRlDpdMGtDCp0slBKVVyxZ1P4ZNVBPllziPhzabRvUIPnx3RheJcG2rPJAzRZKKXKle1Hz/D+8gPM3XyU9KwsLm8bxq2XNeOS5rW0bdKDNFkopcq8rCzDTztjeX/5AVbtj6NqgC839WzCpD7NaFan6LG51MXTZKGUKrOS0zL4csNhPlgRzYFT52gYEsSjV7ZlbI9wQqpqe0Rp0mShlCpzjiac58NV0Xy25hBnUjKIbFKTV2/qyrCO9fH3rTxztpUlmiyUUmWCMYYNB0/z4aqDzN96DGMMV3ZswC2XNaN701Bvh1fpabJQSnlVSnom32w6wocrD7L92BmCg/y4pU8EEy+NoHGoDg1eVmiyUEp5RUx8Mp+sPsjM9TEkJKfTtn4wT43qxMiuDakaoF9NZY2+I0qpUpOVZeeP+GhVNIt2xuIjwrAO9ZnQuyk9m2nX17JMk4VSyuOvEIcHAAAgAElEQVTOpKTzvw2H+XjVQfafOked6gHcO7Al43o1pX6IDsVRHmiyUEp5zO4TZ/loVTRfbTxCclom3cJr8vLYSIZ1rK9XWZczmiyUUiUqPTOLRTtO8OHKg6zaH0eAnw/XdmnIhN4RdGoc4u3w1AXSZKGUKhFHEs7z+dpDzFwXQ+zZVBrVrMLDw9pyY48mOp91BaDJQil1wTKzDIt3xvLp2kMs2RWLAQa0rsuTvZoyqG09fHUWugpDk4VSqtiOJ6Ywc10MM9cd4mhiCvWCA7l7YEtu7NFEr42ooDRZKKXckpVlWLbnJDPWHOKnnbFkZhn6tqrDY9e05/J2YToMRwWnyUIpVajYsynMWn+Yz9Ye4vDp89SuFsAf+zbnpp5NaFpbR3ytLDRZKKV+JyvLsHJfHJ+uPciCX0+QkWXo3bw2j1zZliva1yfAT0sRlY0mC6VUjqMJ5/lyw2FmbYghJv48oVX9mdwngpt6htO8bnVvh6e8SJOFUpVcakYmC7fH8sX6GJbtOYkxcGmL2vztijYM7VCfIH+9eE5pslCq0tp1/Cwz18Uw+5fDnE5Op0FIEPcObMmYqCY0qaU9mlRumiyUqkTOpKQzd/NRvlgXw+bDifj7Cle0r8+YqMb0bVVXr4tQBdJkoVQFZ4xhzYF4vlgXw/xtx0hJz6JNWDD/HN6eUV0b6dXVyi2aLJSqoI4npvC/jYeZtT6G6LhkggP9GN2tMTdGNaFz4xAdDlwViyYLpSqQ5LQMfvj1OF9tPMLyvacwBi5pXov7Lm/FlR0bUCVAG6vVhdFkoVQ5l5VlWH0gjq82HuG7rcc4l5ZJ49Aq3DuoFaO7NiKijl44py6eJgulyql9J5OYvfEIs385wpGE81QP9GN454aM7taIHhG18NHGalWCNFkoVY4kJKcxd/NR/rfxCJtiEvAR6NuqLg9f2ZYh7cK0mkl5jFvJQkRCgYbAeSDaGJPl0aiUUjnSMrJYsiuWrzYeYdHOE6RnGtrWD+b/rmrHtZENqVdDpyVVnldgshCREOBu4CYgADgJBAFhIrIaeMMYs7hUolSqkjHGsPFQAnM2HWHulmPEn0ujTvUAJvSOYHS3RrRvUEN7M6lSVVjJ4kvgI6CvMSbBdYGIdAduFpHmxpj3PRmgUpXJnhNn+XrTEeZsPkpM/HkC/XwY3C6M67o3om+rujoMuPKaApOFMWZIIcs2ABs8EpFSlcyRhPPM3XyUbzYdZcexM/gIXNaqLn++vDVXdAgjOMjf2yEqVXSbhdiy7niguTHmXyISDtQ3xqz1eHRKVVDx59KYv/UYczYdZW10PABdw2sy5Zr2XN25IXWDA70coVK5udPA/QaQBQwC/gWcBf4H9PBgXEpVOMlpGfy4/QTfbDrKst0nycgytKxXnb9d0ZoRXRoRXlsH71NllzvJopcxppuI/AJgjDktIjqYjFJuSMvI4uc9J5mz+SgLfj3B+fRMGoYEcWvfZlzbpRHtGgRrQ7UqF9xJFuki4gsYABGpiy1pKKXykZaRxYp9p/h2yzF++PU4Z1MyqFnVn9HdGnFtZCOimobqBXOq3HEnWbwCzMZ2mX0SuB74h0ejUqqcSc/MYuW+OL7dcpQffj1B4vl0goP8uKJ9fa7uXJ/LWtbVqUhVuVZksjDGzBCRDcDlgAAjjTE73Nm5iAwDXgZ8gfeMMU/nWR6I7Z7bHYgDbjTGRIvIEOBp7PUdacCDxpif3H9ZSnleRmYWq/bH8e2WY3z/63ESktMJDvRjSPswru7cgMta1SHQT6+oVhWDu8N91AGSjTEfiEhdEWlmjDlQ2AZO1dXrwBDgMLBOROYYY7a7rHYrcNoY01JExgLPADcCp4BrjDFHRaQj8APQqHgvTamSl5GZxZoD8czbcozvtx3jdHI61QJ8nQTRkL6t6ug0pKpCcqfr7ONAFNAG+ADwBz4B+hSxaU9grzFmv7Ofz4FrAddkcS0wxbn/JfCaiIgx5heXdX4FqohIoDEmtchXpFQJy8jMYm10vC1BbDtO3Lk0qgb4MridLUH0b11XE4Sq8NwpWYwCugIbAZxf+8FubNcIiHF5fBjoVdA6xpgMEUkEamNLFtmuAzbmlyhE5HbgdoDw8HA3QlLKPakZmazcG8f3247z444TxJ9Lo4q/L5e3q8fwzg0Y0KaeJghVqbiTLNKMMUZEsntDldrg+CLSAVs1dUV+y40x7wDvAERFRZnSiktVTOdSM1i6+yTfbzvOTztjSUrNoHqgH5e3q8fQDvUZ2KaejuqqKi13ksUXIvI2UFNE/gjcArzrxnZHgCYujxs7z+W3zmER8QNCsA3diEhjbC+sCcaYfW4cT6liS0xOZ9HOE3y/7ThLd58kNSOLWtUCuLpTA4Z1rM+lLWtrI7VSuNcb6jmnd9IZbLvFY8aYH93Y9zqglYg0wyaFscC4POvMASYCq7Bdcn9ySjE1gW+BR4wxK9x+NUq5IfZsCj9utwli1b44MrIM9WsEcVPPcIZ2qE+PiFD8dMA+pXIpNFk4PZoWGmMGAu4kiBxOG8Q92J5MvsA0Y8yvIvIvYL0xZg7wPvCxiOwF4rEJBeAeoCXwmIg85jx3hTEmtjgxKJUtJj6ZBdtP8MO246w7GI8xEFG7Krf1bc6wjvXp3ChEL5RTqhBiTOFV/SKyCBhtjEksnZAuTFRUlFm/fr23w1BlRFaWYcuRRBZuP8HCHSfYefwsAO0a1GBYh/oM61if1mHVdagNVemJyAZjTFRR67nTZpEEbBWRH4Fz2U8aY+67iPiUKnEp6Zms3HeKH7fHsmjHCWLPpuLrI/SICOUfV7djSPswmtYutf4ZSlUo7iSLr5ybK+15pMqEuKRUftoZy4/bT/DznlOcT8+keqAf/VvXZXD7egxsU4+aVXXcS6UuljvJoqYx5mXXJ0Tkfg/Fo1SR9p1M4sftJ1i4/QQbDp3GGGgQEsT13RszpH0YvZrX0h5MSpUwd5LFROz4Tq4m5fOcUh6RlpHF+uh4Fu+KZdGOWPafsrWhHRrW4P7LWzG4XRgdGuqc1Ep5UoHJQkRuwnZ1bS4ic1wWBWN7LinlMbFnUliy6yQ/7Yxl+d5TJKVmEODrQ6/mtZjcJ4LL24XRsGYVb4epVKVRWMliJXAMO4jg8y7PnwW2eDIoVflkZhk2H05gyc5YftoVy7YjZwCoXyOIa7o0ZGCbuvRpWYdqge6OfamUKkkF/ucZYw6KyGEgxRiztBRjUpVEQnIay/acYvHOWJbuPkn8uTR8BLo3DeXBoW0Y1LYebevrTHJKlQWF/kwzxmSKSJaIhJT16yxU2WeMYcexsyzZHcvinbFsOHiaLAOhVf0Z0KYeA9vWo1+rOtp7SakySK+zUB4Vl5TK8r2nWLr7JD/vOcXJs3bw4I6NanD3wJYMbFuPLo1r4qtXTytVpl3odRZK5Ss9M4uNB0+zbM9Jlu0+xbajiRgDNav6c1nLOvRrXZf+resSViPI26EqpYrBnYEEPyyNQFT5dSgumaV7TrJs90lW7YsjKTUDXx+hW3hNHhjcmn6t69KxUYiWHpQqx9yZKa8V8B+gPZDzc9AY09yDcaky7FxqBqv2xTmlh5NExyUD0Di0CiMiG9KvVV0ubVmbGkH+Xo5UKVVS3KmG+gB4HHgRGAhMBnT85kokPTOLTTEJrNh7ihV7T/HLoQQysgxV/H3p3aI2ky6NoF/rujSrU017LilVQbmTLKoYYxY5c2MfBKaIyAbgsaI2VOWTMYZdJ86yfM8pVu6LY83+OM6lZSICnRqFcFvf5vRrVYfuEaE6rIZSlYQ7ySJVRHyAPc78FEeA6p4NS5W2w6eTnZJDHCv3neJUUhoAzetUY1S3RlzWsg6XNK+t3VqVqqTcSRb3A1WB+4B/A4Ow40Wpcuz0uTRW7otjxT5btXTQaXeoGxxI31Z1ubRFbfq0rKNDaiilAPd6Q61z7iZh2ytUOZSQnMaaA/Gs3h/H6v3x7Dx+BmOgeqAflzS37Q6XtaxDy3o6IZBS6vcKG0hwLoXMW2GMGeGRiFSJKCg5BPn7ENW0Fg8Mbk2fVnXo3ChE55tWShWpsJLFc85fAd4FbvN8OOpCJSSnsfZAPKv32wSxI09y+OuQ1lzSvDadG9ckwE+Tg1KqeAobSDBn8EARSdLBBMuW0+fSWBf9++QQ6OdDVEQoDwxuzSUtatO5cYj2WFJKXTR3x3vWaVS97EjCedYdiGdtdDzrDsSzJzYJ0OSglCodhbVZ1HJ56CsiodgqKQCMMToBkodkZRn2nkxi7YF41jnJ4WhiCgDBgX50axrKyK6N6BFRiy5NNDkopTyvsJLFBmyJIjtBbHRZZgAd7qOEpGVkse1oIuuc5LD+4GkSktMB25W1Z0Qtbo8IpUezWrStX0PHWFJKlbrC2iyalWYglUlicjobY06z8eBp1kXHsykmgZT0LACa1anGFe3DiIqoRc+IWjStXVW7siqlvK6waqgIY0x0IcsFaGSMOeyJwCqKrCzD/lNJbDh4mo0HE9hw6DR7nfYGH4F2DWowtkc4PZvVIioilHrBOnS3UqrsKawa6llnmI9vsFVSJ7GjzrbEDih4OXaAQU0WLpJSM9gck8DGg6fZcMiWHs6kZAB2Todu4aGMjGxIt6ahdGlcU+eUVkqVC4VVQ40RkfbAeOAWoAGQDOwA5gNPGmNSSiXKMsoYw6H4ZDYeOs2Gg6fZcDCBXcfPkOX0HWsdVp2rOjWgW9NQuoWH0rxONXy0vUEpVQ4VNQf3duD/SimWMi/+XBqbYxLY5Nw2H07IaYiuHuhH1/CaDBnUiu5NQ4lsUpOQKjqfg1KqYtA6kAKkpGfy69EzNik4yeFQvB1sz0egdVgwQ9vXp0uTmnRrWpNW9YK1l5JSqsLSZMFvjdC/HLKlhU0xCew8dpYMpz6pYUgQXZrUZFyvcCKb1KRToxBta1BKVSqV/htv46HTTHx/LWdTbSN0cKAfnZuEcHu/5kQ2qUlkk5rUq6E9lJRSlZs7c3B/BbwPfGeMyfJ8SKUronY1ru3akMgmoUQ2CaF5neraCK2UUnm4U7J4AzuPxSsiMgv4wBizy7NhlZ5a1QKYOrKTt8NQSqkyrcixqo0xC40x44FuQDSwUERWishkEdHuPkopVQm4NbGBiNQGJmHntPgFeBmbPH70WGRKKaXKDHfaLGYDbYCPgWuMMcecRTNFZL0ng1NKKVU2uNNm8YoxZnF+C4wxUSUcj1JKqTLInWQRKiKj8zyXCGw1xsR6ICallFJljDttFrcC72HHiBqPnY/7YWCFiNxc2IYiMkxEdonIXhF5JJ/lgSIy01m+RkQinOdri8hiEUkSkdeK+ZqUUkqVMHeShT/QzhhznTHmOqA9dvKjXtikkS8R8QVeB650trnJGZjQ1a3AaWNMS+BF4Bnn+RTgn8DfivFalFJKeYg7yaKxMeaEy+NYoIkzrWp6Idv1BPYaY/YbY9KAz4Fr86xzLfChc/9L4HIREWPMOWPMcmzSUEop5WXutFksEZF5wCzn8XXOc9WAhEK2awTEuDw+jC2N5LuOMSZDRBKB2sApN+JCRG4HbgcIDw93ZxOllFIXwJ1kcTcwGrjMefwR8D9jjMFOguQ1xph3gHcAoqKijDdjUUqpiqzQZOG0Oyw0xgwE/lfMfR8Bmrg8buw8l986h0XEDwgB4op5HKWUUh5WaJuFMSYTyBKRkAvY9zqglYg0E5EAYCwwJ886c4CJzv3rgZ+cEotSSqkyxJ1qqCRgq4j8CJzLftIYc19hGzltEPcAPwC+wDRjzK8i8i9gvTFmDnY0249FZC8Qj00oAIhINFADCBCRkcAVzsx9SimlSpk7yeIr51Zsxpj52Pm6XZ97zOV+CjCmgG0jLuSYSimlSl6RycIY86GIVAHCK9LQ5EoppdxX5HUWInINsAn43nkcKSJ52x6UUkpVYO5clDcFe4FdAoAxZhPQ3IMxKaWUKmPcSRbpxpjEPM9VuOlVlVJKFcydBu5fRWQc4CsirYD7gJWeDUsppVRZ4k7J4l6gA5AKfAacAf7syaCUUkqVLe70hkoG/s+5KaWUqoTcmVa1NXao8AjX9Y0xgzwXllJKqbLEnTaLWcBb2AmQMj0bjlJKqbLInWSRYYx50+ORKKWUKrPcaeCeKyJ/EpEGIlIr++bxyJRSSpUZ7pQsskeFfdDlOYNemKeUUpWGO72hmpVGIEoppcquAquhROQhl/tj8ix7ypNBKaWUKlsKa7MY63L/0TzLhnkgFqWUUmVUYclCCrif32OllFIVWGHJwhRwP7/HSimlKrDCGri7iMgZbCmiinMf53GQxyNTSilVZhSYLIwxvqUZSLllDIjWyimlKjZ3LspTBclIhVe7w9d/gsx0b0ejlFIe485FeaogB5ZB/D57O58A108Df62hU0pVPFqyuBg75kJAdbjiSdj1LXw6BlKTvB2VUkqVOE0WFyorE3bNh1ZD4NJ7YNTbEL0CProWkuO9HZ1SSpUoTRYX6vA6OHcS2g63j7uMhRs+guNbYPpwOHvCu/EppVQJ0mRxoXbMBd8AaHXFb8+1Gw7jvoDT0fDBMEg45LXwlFKqJGmyuBDGwM550Kw/BNXIvazFQJjwNSTHwbRhcHK3d2JUSqkSpMniQpz41ZYe2g3Pf3mTnjDpW8hMgw+uhGObSzU8pZQqaZosLsTOeYBAm6sKXqd+J7jlB/CvAtOvgUOrSy08pdQFiFkHi5/S6uMCaLK4EDvmQZNeUL1e4evVbgGTv4PqdeGjkbB3YenEp5Qqno0f2VqApc/Ay5Hw5a1aI5CHJoviOh0NJ7YWXAWVV80mMPl7qNMSPh0L27/xaHhKqWLIzID5D8GceyHiMrhzBVxyF+z+Ad7uBx+OsD/yjI6dqsmiuHbMs3/bupkswJYsJs6DRt1g1iT4ZYZHQlNKFUNyPHwyCta+DZfcDeO/hPodYeiT8JdtMPgJOLUbPrkO3uwDmz6DjDRvR+01miyKa+c8COsItYo522yVmnDzbGg+AL75E6x+0xPRKaXccWI7vDvQtiVe+wYMewp8XUY/qlITLvsz3L8FRr4JGPj6Tni5C6x4GVISvRa6t2iyKI6kWPvhKk6pwlVANbjpc2h3DXz/CCx5Rou3FVVWlr2if8598Fwb+Hy8dqMuK3Z+C+8PgfTzttdi1/EFr+sXAJHj4K6VMP5/tjr5x8fghQ6w4B+QeKT04vYyHUiwOHbNB4z77RX58QuE66fD3PtgyVP2F8rQJ3WY84rixHbY+gVs/RISY8C/mi1N7l9iPz9db4YBj0CNhl4OtBIyBn5+Dn6aCg27wthP3X8fRKDVYHs7+gusfBVWvWFrCDpeD5fea6uwKjAxFeSXbVRUlFm/fr1nDzJjDJzcBfdvvvgv96ws+OFRWPMWRP4Brnk5dzFYlR+JR2Dbl7Bllu38IL7Q8nLofCO0udKWKJNO2i+qde+Dj69tRO3zZ1vdoTwv7ZydSmD719DpBhjxiu3WfjFOH7TJYuNHkH4OWg62VVrBYSUTcykRkQ3GmKgi19Nk4aaUM/BsC+h5uy0JlARjbFe9Jf+xVVPXvW9LHqrsS0mE7XNgy0yIXg4YaBRlE0SHUbZTQ37iD9i+/Fu/gKCa0O9v0OOPFWNo+6xMOHfKjpmWkmCvNQoK8XZU9rqJz8fB8W0weAr0ub9kS/LJ8bDhA1j2HIRG2KqtqrVKbv8epsmipG37H3x5i+0G27R3ye579Zu2DaP5ALhxBgRWL9n9q5KRkQZ7f7QJYtf3kJkKtVpA5xug0xh7XY27jm2GhU/AvkVQozEM/LsdjNKnhCaozMqCkzsgIQZ8/e04Zn6Bzv1A53GAc9/fWRYAPn65v0gzUu2Xf1Kskwhinfsnf/ubfT85DnD5PvHxs91R21xlS1g1w0vmtRXHwZUw82Y7msJ170PrK4re5kLtX2prH+q1hQlzyk2pUZNFSZs1GaJ/hr/uKrl/aFebPoVv7rHda8d9Ua5+mVR45xNg0b/sD4aUBKhaBzpdb6szGnW7uF+p+5fCwsdtPXjddvaXb+uhxd9n2jk4vB5i1kLMans1cuqF9NiR3xILQOqZ/FcLqA7V6kC1evbi1Gp17S37fkA1+/+ycz7E7bHbhHWySaPNldAgEnw83L9mw3T49m8Q2hTGfgZ1W3v2eAC7F9hSTMOutvdjOfjhVyaShYgMA14GfIH3jDFP51keCHwEdAfigBuNMdHOskeBW4FM4D5jzA+FHcujySIjFf7bAjqOtnWdnrJjHnw5GWq3tB+04PqeO5ZyT8oZ+HiULQl0GGWrmZoPKNn2JWNsXfqif0H8fgjvbfv4h/cqeJszR23PvJg19u/xrWAyAYF67ewIA+GXQO1WkJVhS0GZabZ0lOlyy0i1UwJnprosc54zWTYxVq9rk0K1ur/dD6jq/us7tQd2fWdvMavtfoMbQOthttTRrF/JVsNlpsP3j8K6d6HF5XYGy9L8lb/9G/vjsumlMH7WxbeNeJjXk4WI+AK7gSHAYWAdcJMxZrvLOn8COhtj7hSRscAoY8yNItIe+AzoCTQEFgKtjTGZBR3Po8li9wI7C974L+1kR560fwl8Ns7+U074xtaBKu9IO2cvyDq8zs5V0vZqzx4vMx02fmi7VJ+LtV20L3/M/niI3e6SHNZAojN+kV8VaBz1W3Jo3KNsV3+ci4M9C2zPsL2LbMOwfzVoOcgmjlZDoVpt9/eXlQUZKfaWft6WhOY/aEs1ve+BIf/yTE1AUbZ8AV/dbhu9x84o022RZSFZ9AamGGOGOo8fBTDG/MdlnR+cdVaJiB9wHKgLPOK6rut6BR3Po8lizr2wbTY8tK903vTDG2DGdbY+ecLX9peiKl3p5+HTG2zj9fXTbKmitKQm2XasFS//9mWadtYuq17fljiaXGL/1u9s2xzKo/QUe353fWtLHWePgfjYxBfc4LcE8Lu/qZBx3m6fmfr7/foG2t6FkTeV/mtytWE6zL3fJv0xH5bZ3o7uJgtPRt8IiHF5fBjIW67OWccYkyEiiUBt5/nVebZtlPcAInI7cDtAeLiHGs+yMm29a6shpffroHF3mDTfVn98cKW9GKhx99I5trJfQp+PhwM/w+h3SjdRgK3n7v8gRE22/flTz/yWHGo2rTjX5PgH/XbtwtUvwLFNNmns/sHOOOlXxa7jF2SrwPyDXJ5z+esXaKt6/ILs34bdSqd9oijdJ9nP0vcP26u/R73tnVJOCSmbqc5Nxph3gHfAliw8cpCYNZB86uIuxLsQYe3hlu/h45Hw0Qh7AVHz/qUbQ2WUkWbH79q3CEa8Zns6eUu1OjDkCe8dvzSJ2Ebhhl1tz7CK4pI7IT0ZFj1hE9nwlz3fsO8hnoz6CNDE5XFj57l813GqoUKwDd3ubFs6dsyzvUNaeritIj+1mtk5MWqGw4zrfxvEUHlGZgb871bY/Z39pdvtZm9HpCqCvg9AvwftxXvfP1KyQ/ycPWGvSN8wveT2WQBPJot1QCsRaSYiAcBYYE6edeYAE5371wM/GduIMgcYKyKBItIMaAWs9WCs+TMGds61vV/yTp9aWoLr24t86neGLybYkS9VycvKhNl3wI45MOxp6HGrtyNSFcnA/7MN7mvfhoVTLj5hxO6Ab+6GlzraiwGPby2RMAvjsWoopw3iHuAHbNfZacaYX0XkX8B6Y8wc4H3gYxHZC8RjEwrOel8A24EM4O7CekJ5zPGt9urPvn8r9UPnUrWW7Rk1c7yt+0xJsMNFqJKRleV0YvjSdlnVc6tKmghcMdVWSa14yV6H0v+h4u3DGNtbctVrdo4Nvyp2rLHedxfvgtAL5NE2C2PMfGB+nucec7mfAowpYNsngRIaV+MC7fzW9s4obPrU0hJY3V6s979bbVH2fIIdkK6iNHZ6izHw7V9g0wwY8Hc7LLVSniACVz1ve3QtftK2YVx6b9HbZaTZHzKrXocT2+x1LoP+AVG3lurFu+W6gdvjds6zvVAKGuentOWMWHs/LH0akk7YBtCyMP5OeWQMfPewre/t+9fi/9JTqrh8fGzHifTzdohz/yrQ47b8180ec2rNO5B03F7hf+3rdmgZL1y3ocmiIPEHbBYf+pS3I8nN1w9GvApVQ223yu1f2y+6ijIYXWkxBn78p61D7n0PDPqnltJU6fD1g9Hv2utFvv0r+Fe1c2Zki99vr7P55RNbbdV8IIx83V6N7sXPqCaLguy8gOlTS4uPj63/7HidHSJiwT/sh2vAo9DlpjJ78U+Z8tNUm2x7/NGeS00UqjT5BcCY6fDZWNtQ7RdoB5Rc9art9ejjZ0sQve8uM/Nk6ECCBXl/qL169s7lJbdPT9m/1PbjPrIB6rSBy/9pk5x+AeZv6bOweCp0m1Cu+72rCiDtHHxyPRxaaR8H1YSoW+xUCDUalEoIZeEK7vIrKdZejDfgEW9H4p7m/aHZItgxF376N8z8g51bYfAUaNbX29GVLStetomi81hNFMr7AqrBuJm2diCso53iNaCat6PKlyaL/Oz8FjBlswqqICLQfoTtubX5Mzuh0ofDbT3n4MehQRdvR+h9q9+y8yd3GG0bCjVRqLIgqIZnR7MuIZos8rNznh3tNayDtyMpPl8/e+VxpzF2iOafn4e3+9n2jYH/Vyr9sUtcZoadz/r0ATs9afYgcvn+Pe8y6FyeZfH77Q+A0e9ou45SxaT/MXmlJNo2gF53lO86f/8g24e72wRY8QqsfsOOs99tAvR/uOzNlZGWDKejbUKI3297o50+YP8mxtg5GQriG1jwIHNBIXYEU78gmzD7PVR+R2lVyos0WeS150fISrdzYlcEQSG2wbvn7bDsWdtve9NntpfFgEdL/xd2wiE7m1u8kxSyE0LS8d/HHdoMGkbaSadCm9mxsqrXt4nAv6pNAH5BWp2kVCnQZJHXjrn2CsnGPb0dSckKDoOrn4Pef4LFT8HPz9k5k4e/WGLyVxIAAA1qSURBVHolqKOb4IOrbC8zgOCGNgG0HAy1In5LCKHNdFpZpcoYTRau0lPsmCudrq+4v1ZrNYfr3oOQxrD8Rfvl3Od+zx834ZCdTKhqbRj7HdRpXeanm1RK/UaThasDSyEtCdpWkCqowgx6DE4ftL2DajaFDiM9d6zzCTBjjE3GE+ZAvbaeO5ZSyiM0WbjaMRcCa9gJ5Cs6Hx8Y+SacOWKH5q7RCJr0KPnjZKTa6z7i9sHNszVRKFVOVdC6lguQlWmndGx1hb0UvzLwD4Kxn9neQp+NtQ3NJckYO/R39M82MekFgkqVW5ossh1a7Z3pU72tWm0Y/yWYTFtVlBxfcvte/CRsmWkH6euc70j0SqlyQpNFtp3zbH/9loO9HUnpq9PSzvGdcBBm3myrji7Whg9tV91uE+2ouEqpck2TBdjqkh3z7PSpgcHejsY7ml4K174BB5fDnPsubtrHPQth3l9s4r36hfJ9caNSCtBkYR3fAomHKl8VVF6dx8DAf8CWz2HpMxe2j2NbYNZECGtvh2DWYTWUqhD0PxlsqaKsTJ/qbf3+Zq+qXvIfOz5Wl7Hub5sQY9s9gmrCuFmVt5SmVAWkyQJse0V4b6hWx9uReJ8IDH/Jjsf0zT22S607vZhyrqVIhlt+KLWx+JVSpUOroeL2Qez28jUcuaf5BcANH9urvWeOh5O7C18/Iw2+uBni9sKNn9gqKKVUhaLJAiDyD9pekVeVmjB+FvgGwIzr7dDg+cm+luLAMrj2NTsR0/+3d+dBUpRnHMe/P8EbkEuNirKIUojGEq8yooImQUMqiooHWVE0MamIZxRNYiVGyygUVdEysSqRBA9KQUWJeMQb1AAeyLGAeCBiRE0gRoloYgSe/PG+ZJtxdrsXeqbdnedTNbXvdPe8/TzTs/1OH/O+zrk2xxuLbr3DYOid9yg6ki+fLj1h+N1h5MDJw8M4EaVmXB8uiB99ZcuubzjnWhVvLFzzehwEJ4+HFXPg/h/A+vWN8+ZODHdN9T8DjhpdXIzOuYrzxsKl2+c7MPhaWDINnrwqTFv6FDx4EfQ+JlwQ999SONem+d1QLpuvjQq31M6KYwXPuRV22gdOud1HnnOuBnhj4bKR4LixYVyKWTeFW2rr7w2DzTvn2jxvLFx27drDsFvDRe3+I6DTrkVH5JyrEm8sXMts3QGO/VXRUTjnqswvcDvnnEvljYVzzrlU3lg455xL5Y2Fc865VN5YOOecS+WNhXPOuVTeWDjnnEvljYVzzrlUMrOiY8iFpFXA25tRRXfgHzmF0xrUWr7gOdcKz7lleprZjmkLtZnGYnNJmmNmBxcdR7XUWr7gOdcKz7ky/DSUc865VN5YOOecS+WNRaNbig6gymotX/Cca4XnXAF+zcI551wqP7JwzjmXyhsL55xzqWqqsZB0nKTXJC2V9JMy80dKWiVpfnx8v4g485SWc1zmVEmvSFos6a5qx5i3DNv5hsQ2fl3SR0XEmacMOe8habqkeZIaJA0pIs48Zci5p6SnYr4zJPUoIs68SJogaaWkRU3Ml6Sb4vvRIOnAXAMws5p4AO2AN4E9ga2ABUC/kmVGAr8tOtYq57w3MA/oEp/vVHTclc65ZPkLgAlFx12F7XwL8KNY7gcsLzruKuR8L3BWLB8DTCw67s3M+SjgQGBRE/OHAH8GBBwGvJDn+mvpyOJQYKmZLTOz/wKTgRMKjqnSsuR8LnCzmX0IYGYrqxxj3lq6nYcDk6oSWeVkydmATrG8A/BeFeOrhCw59wOejuXpZea3Kmb2LPDPZhY5AbjDgueBzpJ2yWv9tdRY7Aa8k3i+Ik4rdXI8hJsiaffqhFYxWXLuA/SRNFPS85KOq1p0lZF1OyOpJ9CLxh1Ka5Ul518CZ0haATxCOKJqzbLkvAA4KZZPBDpK6laF2IqS+bO/KWqpscjiQaDOzPYHngBuLzieamhPOBU1iPAte7ykzoVGVD2nA1PMbF3RgVTBcOA2M+tBOF0xUVJb//+/DBgoaR4wEHgXqIVtXRFt/cOS9C6QPFLoEaf9n5l9YGafxad/AA6qUmyVkpoz4dvHNDP73MzeAl4nNB6tVZacNzid1n8KCrLl/D3gHgAzmw1sQ+h8rrXK8v/8npmdZGb9gSvjtFZ/M0MzWvLZb7FaaixeAvaW1EvSVoQdxbTkAiXn944HllQxvkpIzRn4E+GoAkndCaelllUzyJxlyRlJfYEuwOwqx1cJWXL+K/B1AEn7EBqLVVWNMl9Z/p+7J46efgpMqHKM1TYNODPeFXUYsNrM3s+r8vZ5VfRlZ2ZrJZ0PPEa4k2KCmS2WdA0wx8ymARdKOh5YS7iQNLKwgHOQMefHgMGSXiEcoo82sw+Ki3rzZMwZws5lssXbSFqzjDlfSjjFeAnhYvfI1px7xpwHAddLMuBZYFRhAedA0iRCTt3jtaergC0BzOx3hGtRQ4ClwKfA2bmuvxV/XpxzzlVJLZ2Gcs45t4m8sXDOOZfKGwvnnHOpvLFwzjmXyhsL55xzqbyxcJlIWpNhmYslbZfjOodK6pdjfbM247Vr4t9dJU1pZrnOks7b1PVsrniP/dOSOiWmDZVk8bclea+vTtJ38643Uf/5ks6pVP0uO28sXJ4uBlrUWEhq18zsoYTO4HJhZofnUMd7ZjasmUU6A4U1FoT77BeY2b8S04YDf4l/81YHlG0sJOXxO64JtP5+rNoEbyxci0gaFMcGmCLpVUl3xm+zFwK7AtMlTY/LDpY0W9JcSfdK6hCnL5c0VtJc4BRJ50p6SdICSfdJ2k7S4YRf0Y9TGHeit6QDYmeHDZKmSuoS65uhMEbFHElLJB0i6X5Jb0i6NhH7mkT5CkkL4zrHlMmzV4x9YUkddYrjCUjaV9KLMb4GSXsDY4Decdo4SR0UxlSYG+s6IVHPEknjFcYReVzStnHeXpKejLHNldQ7Th8d36cGSVc3sYnqgQcS8XYAjiB093F62naM84bEaS8rjI/wUJw+UI3jgMyT1DHme2ScdonCmDDTJD0NPBU/G+MkLYr5n5ZY/zOSHpC0TNIYSfXx/Vy4IWcz+xRYLunQ5j6XrgqK7qPdH63jAayJfwcBqwn9zmxB6C7jiDhvOdA9lrsTfjW7fXx+BfCLxHKXJ+rulihfC1wQy7cBwxLzGoCBsXwNcGMszwDGxvJFhO63dwG2JvR91a0kh28Bs4Dt4vOuZfKdBpwZy6MSr60jjicA/Aaoj+WtgG2T8+P09kCnxHuylDDeQB2hp4AD4rx7gDNi+QXgxFjehnC0NpgwJoXi+/4QcFSZuN8GOiae1wN/jOVZwEHNbce4vneAXnG5ScBDsfwgMCCWO8TcBm2YH6ePjO951/j8ZEKnnO2AnQndjuwSX/dRYju9C1yd2IY3Juq8Eri06P+BWn/4kYXbFC+a2QozWw/MJ+z4Sh1GOIU0U9J84CygZ2L+3YnyfpKek7SQsHPbt7QySTsAnc3smTjpdsJgMBts6MZjIbDYzN630CnkMjbuXA3gG8CtFr61YmblxggYQGMngxPLzIewg/2ZpCuAnmb27zLLCLhOUgPwJKHL6J3jvLfMbH4svwzUxW/ru5nZ1Bjbf2Kcg+NjHjAX6Ev5Dh+7mtnHiefDCWM9EP8mT0WV2459gWUWOpWEjTtanAn8Oh5FdjaztU28L08k3tMjgElmts7M/g48AxwS572U2E5vAo/H6QvZ+DO1knDU6gpUM31DuVx9liivo/znSISdRlPnyT9JlG8DhprZAkkjiR0bbmJM60viW99EfFk02xeOmd0l6QXg28Ajkn7IFzthrAd2JHyj/1zScsK392TMEN7HbZtZnYDrzez3KTGvlbSFma2X1JUwQtxXFfpHageYpNFNrL/Z98nMxkh6mHBdZKakY5tY9JMmppcq3U7JbZiMZRugXEPsqsiPLFyePgY6xvLzwABJewFI2l5SnyZe1xF4X9KWhJ3rF+ozs9XAh5KOjPNGEL6lboongLMV79yKO9VSM2k8x19fZj6S9iR8C7+JcJ1gfzZ+DyCMSrcyNhRHs/HR1RfEo4IVkobGdWwd43wMOEeN1312k7RTmSpeIww1CjCMMJRoTzOrM7PdgbeAI8u8bqPXS6qLz09L5NvbzBaa2VhCr699y+Rb6jngNEntJO1IOBp8sZnly+kDlB132lWPNxYuT7cAj0qabmarCOevJ8VTMLMJO5dyfk44Tz8TeDUxfTIwOl5M7U04lTUu1ncA4bpFi5nZo4TTVnPiKbLLyix2ETAqnhprarSxU4FFsY79CENafkD41r1I0jjgTuDgWM+ZJfk1ZQShB+QGwnWGr5jZ48BdwOxY1xTK76QfpvHIbDgwtWT+fTRzV1Q8lXYeYTu+TGgMVsfZF8e8GoDPCeM9NwDr4sX4S8pUOTUus4AwIuHlZva35pIvYwChgXcF8l5nnWtDFMZkucPMvrkZdXQwszXx7qibgTfM7IbcgmxZLP2BH5vZiCLW7xr5kYVzbYiFwW7GK/GjvE1wbjxaWkw4jZZ2naSSuhOOPF3B/MjCOedcKj+ycM45l8obC+ecc6m8sXDOOZfKGwvnnHOpvLFwzjmX6n8V9Nusa8mJDwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", - "pylab.plot(distances, np.subtract(energies[0], energies[1]), label=algorithms[0])\n", - "pylab.xlabel('Interatomic distance (Angstrom)')\n", - "pylab.ylabel('Energy (Hartree)')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2o.ipynb b/community/chemistry/h2o.ipynb deleted file mode 100644 index f028e74d7..000000000 --- a/community/chemistry/h2o.ipynb +++ /dev/null @@ -1,512 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Qiskit Chemistry, H2O ground state computation*_\n", - "\n", - "This notebook demonstrates how to use Qiskit Chemistry to compute the ground state energy of a water (H2O) molecule using VQE and UCCSD.\n", - "\n", - "While the molecule has been input below to the driver in xyz format, the Z-matrix format is also support. H2O in Z-matrix format would look like this \n", - "```\n", - "H; O 1 1.08; H 2 1.08 1 104.5\n", - "```\n", - "and is convenient when the goal is to change bond angle, or plot the energy changing distance(s) while preserving the angle.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# imports needed by declarative approach here. List is short as classes are dynamically\n", - "# loaded based on dictionary names which are registered to our pluggable framework.\n", - "# The name of a given algorithm or component can be found in its CONFIGURATION dictonary\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# imports needed by programmatic approach\n", - "from qiskit import BasicAer\n", - "\n", - "from qiskit.aqua import Operator, QuantumInstance\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import SLSQP\n", - "\n", - "from qiskit.chemistry.drivers import PySCFDriver, UnitsType\n", - "from qiskit.chemistry.core import Hamiltonian, TransformationType, QubitMappingType \n", - "from qiskit.chemistry.aqua_extensions.components.variational_forms import UCCSD\n", - "from qiskit.chemistry.aqua_extensions.components.initial_states import HartreeFock" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Using a declarative dictionary approach with QiskitChemistry\n", - "\n", - "Lets format up a dictionary and run the experiment this way. The operator will default to `parity` mapping and `two_qubit_reduction` of True.\n", - "\n", - "With the input problem dictionary for water we now create an QiskitChemistry object and call run on it passing in the dictionary to get a result. We use ExactEigensolver first as a reference." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': 'O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0', 'basis': 'sto-3g'},\n", - " 'operator': {'name': 'hamiltonian', 'freeze_core': True},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "solver = QiskitChemistry()\n", - "result = solver.run(qiskit_chemistry_dict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `run` method returns a result dictionary. Some notable fields include 'energy' which is the computed ground state energy." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ground state energy: -75.0123592858051\n" - ] - } - ], - "source": [ - "print('Ground state energy: {}'.format(result['energy']))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "There is also a 'printable' field containing a complete ready to print readable result" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== GROUND STATE ENERGY ===\n", - " \n", - "* Electronic ground state energy (Hartree): -84.206272446428\n", - " - computed part: -23.544497240436\n", - " - frozen energy part: -60.661775205992\n", - " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", - "> Total ground state energy (Hartree): -75.012359285805\n", - " Measured:: Num particles: 8.000, S: 0.000, M: 0.00000\n", - " \n", - "=== DIPOLE MOMENT ===\n", - " \n", - "* Electronic dipole moment (a.u.): [0.0 1.57867263 0.0]\n", - " - computed part: [0.0 1.57778798 0.0]\n", - " - frozen energy part: [0.0 0.00088465 0.0]\n", - " - particle hole part: [0.0 0.0 0.0]\n", - "~ Nuclear dipole moment (a.u.): [0.0 2.21475902 0.0]\n", - "> Dipole moment (a.u.): [0.0 0.63608639 0.0] Total: 0.63608639\n", - " (debye): [0.0 1.61677018 0.0] Total: 1.61677018\n" - ] - } - ], - "source": [ - "for line in result['printable']:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Lets do the same programmatically\n", - "\n", - "First we create and run a driver to produce our molecule object. The molecule object holds data from the drivers in a common way so it can then be used independently of which specific driver created it.\n", - "\n", - "And let's print some of fields it has. You can refer to qiskit.aqua.qmolecule.py for more information or look at the API documentation." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Hartree-Fock energy: -74.96294665653834\n", - "Nuclear repulsion energy: 9.193913160623385\n", - "Number of molecular orbitals: 7\n", - "Number of alpha electrons: 5\n", - "Number of beta electrons: 5\n" - ] - } - ], - "source": [ - "driver = PySCFDriver(atom='O 0.0 0.0 0.0; H 0.757 0.586 0.0; H -0.757 0.586 0.0',\n", - " unit=UnitsType.ANGSTROM, charge=0, spin=0, basis='sto3g')\n", - "molecule = driver.run()\n", - "\n", - "print('Hartree-Fock energy: {}'.format(molecule.hf_energy))\n", - "print('Nuclear repulsion energy: {}'.format(molecule.nuclear_repulsion_energy))\n", - "print('Number of molecular orbitals: {}'.format(molecule.num_orbitals))\n", - "print('Number of alpha electrons: {}'.format(molecule.num_alpha))\n", - "print('Number of beta electrons: {}'.format(molecule.num_beta))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now need to create a qubit operator as input to compute the ground state energy. The Hamilitonian object can be used. This wraps a `FermionicOperator` class, which can be used directly but entails more steps. Other tutorials here show FermionicOperator being used.\n", - "\n", - "The Hamiltonian class not only gives us a qubit operator for the main Hamiltonian but also auxilliary operators including dipole operators and others to measure spin and num particles. The algorithm, if it supports aux_ops, which ExactEignesolver and VQE both do, will evaluate these at the ground state where the minimum energy is found." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Representation: paulis, qubits: 10, size: 551\n" - ] - } - ], - "source": [ - "core = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY, \n", - " two_qubit_reduction=True, freeze_core=True)\n", - "qubit_op, aux_ops = core.run(molecule)\n", - "\n", - "print(qubit_op)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now pass these to the ExactEigensolver and run it to produce a result. This result will include the computed electronic part of the ground state energy. We can pass this result back to the Hamiltonian object from above and it will combine it with values it stored such as the frozen core energy to form a complete result for the molecule. As can be seen this matches the result from the declarative approach above.\n", - "\n", - "Note: the num particles printed here is that which is observed from the spin operator that is in the aux_ops. It says 8 which matches what we expect; the molecule has 10 (5 alpha and 5 beta) but the operator was left with 8 after we took away 2 from freezing the core. The molecule has a core_orbitals property which lists the orbitals comprising the core ones that can be frozen so we can easily figure how many electrons that is (2 per orbital in that list)." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== GROUND STATE ENERGY ===\n", - " \n", - "* Electronic ground state energy (Hartree): -84.206272446429\n", - " - computed part: -23.544497240436\n", - " - frozen energy part: -60.661775205992\n", - " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", - "> Total ground state energy (Hartree): -75.012359285805\n", - " Measured:: Num particles: 8.000, S: 0.000, M: 0.00000\n", - " \n", - "=== DIPOLE MOMENT ===\n", - " \n", - "* Electronic dipole moment (a.u.): [0.0 1.57867263 0.0]\n", - " - computed part: [0.0 1.57778798 0.0]\n", - " - frozen energy part: [0.0 0.00088465 0.0]\n", - " - particle hole part: [0.0 0.0 0.0]\n", - "~ Nuclear dipole moment (a.u.): [0.0 2.21475902 0.0]\n", - "> Dipole moment (a.u.): [0.0 0.63608639 0.0] Total: 0.63608639\n", - " (debye): [0.0 1.61677018 0.0] Total: 1.61677018\n" - ] - } - ], - "source": [ - "ee = ExactEigensolver(qubit_op, aux_operators=aux_ops)\n", - "algo_result = ee.run()\n", - "result = core.process_algorithm_result(algo_result)\n", - "for line in result[0]:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Using VQE. First declaratively with the dictionary.\n", - "\n", - "We update the dictionary, for VQE with UCCSD, and run the computation again. By default, if a backend is not explicitly provided, as is the case here, it will use the `statevector_simulator` from `BasicAer`. \n", - "\n", - "_*Please note that with 10 qubits the simulation can take a while.*_" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ground state energy: -75.0122585919439\n", - "=== GROUND STATE ENERGY ===\n", - " \n", - "* Electronic ground state energy (Hartree): -84.206171752567\n", - " - computed part: -23.544396546575\n", - " - frozen energy part: -60.661775205992\n", - " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", - "> Total ground state energy (Hartree): -75.012258591944\n", - " Measured:: Num particles: 8.000, S: 0.000, M: 0.00000\n", - " \n", - "=== DIPOLE MOMENT ===\n", - " \n", - "* Electronic dipole moment (a.u.): [-0.00000112 1.57887918 0.00000014]\n", - " - computed part: [-0.00000112 1.57799453 0.00000014]\n", - " - frozen energy part: [0.0 0.00088465 0.0]\n", - " - particle hole part: [0.0 0.0 0.0]\n", - "~ Nuclear dipole moment (a.u.): [0.0 2.21475902 0.0]\n", - "> Dipole moment (a.u.): [0.00000112 0.63587984 -0.00000014] Total: 0.63587984\n", - " (debye): [0.00000284 1.61624518 -0.00000036] Total: 1.61624518\n" - ] - } - ], - "source": [ - "qiskit_chemistry_dict['algorithm']['name'] = 'VQE'\n", - "qiskit_chemistry_dict['optimizer'] = {'name': 'SLSQP', 'maxiter': 2500}\n", - "qiskit_chemistry_dict['variational_form'] = {'name': 'UCCSD'}\n", - "qiskit_chemistry_dict['initial_state'] = {'name': 'HartreeFock'}\n", - "\n", - "solver = QiskitChemistry()\n", - "result = solver.run(qiskit_chemistry_dict)\n", - "\n", - "print('Ground state energy: {}'.format(result['energy']))\n", - "\n", - "for line in result['printable']:\n", - " print(line)" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Actual VQE evaluations taken: 666\n" - ] - } - ], - "source": [ - "print('Actual VQE evaluations taken: {}'.format(result['algorithm_retvals']['eval_count']))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Using VQE, programmatically\n", - "\n", - "The solver above, with the complete dictionary, will recompute the molecule internally again with the driver. Here we will start with the qubit operator that we computed above. We need to setup an optimizer, variational form and initial state for use with VQE.\n", - "\n", - "The variational form and UCCSD are a little more complex since they need information about numbers of orbitals and numbers of electrons, as well as what qubit mapping etc was used for the qubit operator. However we have some help from the Hamiltonian class that we can use (which internally is what the declarative form takes advantage of too). \n", - "\n", - "Note: If you use FermionicOperator directly to make a qubit operator then you need to keep track of electrons removed etc. The molecule object from the driver has the original values but if you freeze out orbitals then the electrons remaining in the operator is what is required." - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Ground state energy: -75.0122585919439\n", - "=== GROUND STATE ENERGY ===\n", - " \n", - "* Electronic ground state energy (Hartree): -84.206171752567\n", - " - computed part: -23.544396546575\n", - " - frozen energy part: -60.661775205992\n", - " - particle hole part: 0.0\n", - "~ Nuclear repulsion energy (Hartree): 9.193913160623\n", - "> Total ground state energy (Hartree): -75.012258591944\n" - ] - } - ], - "source": [ - "init_state = HartreeFock(num_qubits=qubit_op.num_qubits, \n", - " num_orbitals=core._molecule_info['num_orbitals'],\n", - " num_particles=core._molecule_info['num_particles'],\n", - " qubit_mapping=core._qubit_mapping,\n", - " two_qubit_reduction=core._two_qubit_reduction)\n", - "\n", - "var_form = UCCSD(num_qubits=qubit_op.num_qubits,\n", - " depth=1,\n", - " num_orbitals=core._molecule_info['num_orbitals'], \n", - " num_particles=core._molecule_info['num_particles'],\n", - " qubit_mapping=core._qubit_mapping,\n", - " two_qubit_reduction=core._two_qubit_reduction, \n", - " initial_state=init_state)\n", - "\n", - "optimizer = SLSQP(maxiter=2500)\n", - "\n", - "# setup backend on which we will run\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend)\n", - "\n", - "vqe = VQE(qubit_op, var_form, optimizer, 'matrix')\n", - "algo_result = vqe.run(quantum_instance)\n", - "lines, result = core.process_algorithm_result(algo_result)\n", - "\n", - "print('Ground state energy: {}'.format(result['energy']))\n", - "\n", - "for line in lines:\n", - " print(line)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Internally the core, when processing the algorithm result, stores the result dictionary from the algorithm under the `algorithm_retvals` key. We used this above in declarative approach, to get the eval count, and since we process the result the same way here, using the core, we can do this here too. But here we have direct access to the algorithm result since we ran it. Hence we can access the count directly from the above algo_result. To show these are the same they are both printed below." - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Actual VQE evaluations taken: 666\n", - "Actual VQE evaluations taken: 666\n" - ] - } - ], - "source": [ - "print('Actual VQE evaluations taken: {}'.format(result['algorithm_retvals']['eval_count']))\n", - "\n", - "print('Actual VQE evaluations taken: {}'.format(algo_result['eval_count']))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Z-matrix format\n", - "\n", - "Z-matrix was mentioned in the introduction. Lets show it in use in a quick final example here. We'll use ExactEigensolver as the goal here is just to show the technique. We will keep the bond angle between the Hydrogen atoms and Oxygen constant while varying the interatomic distance of one the Hydrogen atoms. This is simple to do in Z-matrix format, though can of course be done using xyz format but that needs more work to compute the coordinates each time." - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pylab\n", - "\n", - "h2o = 'H; O 1 1.08; H 2 {} 1 104.5'\n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto-3g'},\n", - " 'operator': {'name': 'hamiltonian', 'freeze_core': True},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "\n", - "distances = [x * 0.01 + 1.00 for x in range(17)]\n", - "energies = np.empty(len(distances))\n", - "\n", - "for i, distance in enumerate(distances):\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = h2o.format(distance)\n", - " solver = QiskitChemistry()\n", - " result = solver.run(qiskit_chemistry_dict)\n", - " energies[i] = result['energy']" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaEAAAEWCAYAAADPZygPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8leX9//HXm4S9l2wEVESWjABqXVW0rlbcoyoqrtY6+qutWNvv16/Val1Vayu1DnAh7lUXuKoVhYQpIBtkBAhECCshJJ/fH/cVPcZMSHJnfJ6Px3nkPte9Pvc5J+dz7uu67uuWmeGcc87FoV7cATjnnKu7PAk555yLjSch55xzsfEk5JxzLjaehJxzzsXGk5BzzrnYeBJysZFkkvavxO33CPtIrqx9uJJJuljSpwnPt0nqFWdM1cXevBaV/b9TlTwJ1VCSVkgaWajs2394SQ0lPSZppaStkmZJOrHQ8q0kPSxpnaQdkuZKuqQqj8N9n6Txkm4rVLbHyVTS0ZJWV1yEe8fMmpnZspKWqW4xV5ayvBZ1gf9CrL2SgVXAUcDXwEnA85IGmNkKSQ2AKcAG4FBgNXAsMEFSazO7L6a4navVJCWb2e6446gu/EyoljKz7WZ2i5mtMLN8M3sTWA4MDYtcCHQHzjKz5WaWa2bvANcCt0pqUdR2wy/yX0paHM6w/iRpP0mfScqS9HxIcAXLXy5piaRMSa9L6lzMdhtKukfS15LWSxonqXHC/FPD2VyWpKWSTgjl3zsjlHSLpKeL2UfLcHaYLmmNpNskJZXl9ZTUOcSfGY7n8kL7fF7Sk+E1mScppdC6L0nKkLRc0rVl2WdZSbpE0oKw72WSrgzlTYG3gc6h6mdbiKWhpPslrQ2P+yU1DOscLWm1pN9J2hBeq1GSTpK0KBz/70uIpW14nbIkTQP2KzT/22qksM35Ie41km4oIebhkqZK2hxieqjQ58wkXRU+l5sl/V2SEuZfnvAazZc0JJSX6b2RNEJRjUFSQtlpkuaE6bLEd7WkxcDiIl6L0j7/vw3bXSvp0pI/ETWMmfmjBj6AFcDIQmUXA58Ws3wHIBvoE54/B0woYrlkYDfwk2K2Y8BrQAugH5ADvA/0AloC84HRYdljgI3AEKAh8DfgP4W2tX+Y/ivwOtAGaA68AdwR5g0HtgDHEf1w6pJwHN97HYBbgKfDdI+wj+Tw/BXgn0BTYB9gGnBlGV/v/wD/ABoBg4AM4JiEfWYTnW0mAXcAn4d59YA04H+ABuF1WlbC6zseuK1Q2feOo4h1Tib6shfRme8OYEiYdzSwutDytwKfh9egPfAZ8KeE5XeHeOsDl4djfTa8L/2AnUDPYmJ5Dng+vMb9gTUkfCYLvefpwBFhunUpMQ8FDiH6fPYAFgDXF9rum0Aroh9XGcAJYd5ZIY5h4TXaH9h3D96bpcBxCc9fAMaWI77JRJ/vxuX8/J8ArA+vZ9PwXny7bk1/xB6AP/bwjYu+fLcBmxMeOygiCYUvkynAPxPKpgB3FrPtdcDPi5lnwI8SnqcBNyY8vxe4P0w/BtyVMK8ZkAv0SNjW/uGLYTuwX8KyhwLLw/Q/gb+W8DqUmoSIknBOwRdAmH8e8GEZXutuQB7QPKHsDmB8wj6nJMzrC+wM0yOArwtt7ybgiWL2NZ4ooSW+r1mUkISK2MarwHVh+mh++IW+FDgp4flPgBUJy+8EksLz5mHfIwq956OK2G9SeH/7JJT9meKT0NfAlUCLQtv5QcxF7Ot64JVC2z084fnzfJcg3i14PQpto7zvzW3A4wmvy3Zg33LEd0wR/0tl+fw/TsL/KtCbWpSEvDquZhtlZq0KHsAvCy8gqR7wFLAL+FXCrI1ApyKWTwbahfnFWZ8wvbOI583CdGdgZcEMM9sGbCI6k0nUHmgCpIXqjM3AO6EcoiSwtIR4ymJfomScnrCPfxKdDZSmM5BpZlsTylby/eNYlzC9A2gUXst9iaqWNifs9/dESbE49xR6XweWFJykEyV9HqrKNhOdkbUr5XhWJjxfGcoKbDKzvDC9M/wt7j1O1J7v2iITt12cM0KsKyV9LOnQ4haU1FvSm6FKLIsouRU+xsLvQUGMxX1+yvvePAucHqouTwdmmNnKcsS3iqKV9vnvTNlf0xrHk1AtFurEHyP6pzrDzHITZk8BTgx18InOIDpj+LwCQlhL9I9eEE9ToC1R1UiijURfbP0SvnxbmlnBl8gqCrUtJNhO9A9coGMxy60iOq52CftoYWb9yngcbSQ1TyjrXsRxFLff5YlJxcyam9lJZVi3VOEL8SXgHqBDSFpvEf26hugXc2Hfe1+IjmVtBYSTQVSV163QtotkZtPN7FSiHwKvEp29QNExPwx8BRxgZi2IkoWKWK4oxX1+yvXemNl8ogRwInA+UVIqT3zF3bKgtM9/OmV8TWsiT0K128PAQcBPzWxnoXlPEfWIe0FRF+D6kn4CPAjcYmZbKmD/E4FLJA0KX5Z/Br4wsxWJC5lZPvAv4K+S9gGQ1CXEA1EivUTSsZLqhXl9wrxZwLkh/hTgzKICMbN04D3gXkktwnb2k3RU2F9BN+geRay7iqjd5A5JjSQNBMYARXaAKGQasFXSjZIaS0qS1F/SsDKsWxYNiNrbMoDdirrhH58wfz3QVlLLhLKJwB8ktZfUjqhNpCzHUqJw9vQycIukJpL6AqOLWlZSA0k/l9Qy/DjKAvJLiLl5WGZbeO9/UY7QHgVukDRUkf0l7cuevTfPAtcBRxK1Ce11fGX4/D8PXCypr6QmwP+Wdds1gSehWir8k11J1Ii+Tt/1NPo5gJnlACOJfg1+QfQPdB9ws5ndXRExmNkU4I9Ev9TTiX6NnlvM4jcCS4DPQ3XGFODAsJ1pwCVEjbdbgI/57pf8H8N2vwH+j+//Oi3sIqIv7flh+Rf5rkqyG9Gv3OLObs4jamNaS9TB4X/D8ZUofDGfQvQ+LCf61fsoUSeOvRaqCK8l+qL6hugX+usJ878iSjrLQlVPZ6K2jVRgDjAXmBHKKsKviKrB1hG1bz1RwrIXAivC+30VUPDZLCrmG8KxbSX6wp5U1oDM7AXgdqLPxlais642e/jeTCTq/PGBmSVWWe9xfEFJn/+3gfuBD8IyH5Rz29WaQkOXc3WapD8AGWb2z7hjca4u8STknHMuNrFUx0mapOjCw1mKLjacFcp7SNqZMG9cMeu3kTRZ0YVpkyW1DuWS9KCiiwnnKFyQFuZ1l/SeogvW5hdV9++cc65qxTJsj5mdUzAt6V6iev4CS81sUCmbGAu8b2Z3Shobnt9I1GvlgPAYQdQwPyKs8yRwu5lNltSM7xpBnXPOxSTWjgmhC/HZRI195XEqMCFMTwBGJZQ/aZHPgVaSOoVeOslmNhmi61XMbMfeH4Fzzrm9EfcApkcA681scUJZT0kziXpr/cHMPilivQ6hyy1EvXAKLi7rwvcv6lodyroCmyW9DPQk6nkyNuGCvGK1a9fOevToUY5Dcs65ui0tLW2jmbUvfclKTEKSplD0hYM3m9lrYfo8vn8WlA50N7NNkoYCr0rqZ2ZZxe3HzExSab0rkokS3mCioUImEY2z9lgxsV8BXAHQvXt3UlNTS9m8c865ApLKPKpDpSUhMxtZ0nxFQ5qcznejOhdcu5ITptMkLSUaJ6lwFlgvqZOZpUvqRHQ7Aoiu8Ui8srhrKEsGZlm4d4ekV4kGGywyCZnZI8AjACkpKd590DnnKkmcbUIjga/M7NubV4UruJPCdC+iDgZF3fTpdb67Ens00ajOBeUXhV5yhwBbQrXddKL2oYLTw2OILlh0zjkXoziT0Ln8sEPCkcCc0GX7ReAqM8sEkPSovrtHy53AcYruzTEyPIdozKxlRFcV/4swoGdo+7kBeF/SXKIxnf5VWQfmnHOubPxi1VKkpKSYtwk551zZSUozs5TSl/Sx45xzzsXIk5BzzrnYeBJyzjkXG09Czjnnvmfa8kwe+3Q5VdFnwJOQc865b23clsM1E2fw9Ocr2Zlb6qAye82TkHPOOQDy841fT5rFNzty+fv5Q2jSoPJHdvMk5JxzDoCHP17KJ4s3cstP+9G3c4sq2acnIeecc3y+bBP3vreQnx3cmfOGdyt9hQriScg55+q4jdtyuHbiTHq0bcqfTx9AdJedqhH3rRycc87FqKAdaMvOXCZcOpxmDas2LXgScs65OuzvHy7hk8UbueP0ARzUqWragRJ5dZxzztVRU5du4q9TFjFqUGfOHVZ17UCJPAk551wdlLE1h2ufm0mPdk25/bSqbQdK5NVxzjlXx+SFdqCsnbk8eelwmlZxO1AiT0LOOVfH/P3DJXy6ZCN/OSOedqBEXh3nnHN1yGdLN3L/lEWcNrgLZ6fE0w6UyJOQc87VERlbc7juuVn0bNeU20b1j60dKJFXxznnXB2Ql29cP2kmW7NzeXrMiFjbgRJVjyicc85Vqoc+WMJ/l2zirjMGcmDH5nGH8y2vjnPOuVrusyUbuf/9RZw+uAtnpXSNO5zv8STknHO12Iat2Vz73Cz2a9+M206rHu1Aibw6zjnnaqm8fOP652axLSeXZy4bUSX3Byqv6heRc865CvG3Dxbz2dJN3HVm9WoHSuTVcc45Vwv9d8lGHnh/MWcM6Votrgcqjich55yrZTZszea60A70p1H94g6nRLElIUmTJM0KjxWSZoXyHpJ2JswbV8z6bSRNlrQ4/G0dyiXpQUlLJM2RNCRhnbskzZO0ICxTvVronHNuL+XlG9dNnMX2nN384+dDqmU7UKLYkpCZnWNmg8xsEPAS8HLC7KUF88zsqmI2MRZ438wOAN4PzwFOBA4IjyuAhwEkHQb8CBgI9AeGAUdV8GE551ysHnh/MVOXbeJPo/rTu0P1bAdKFHt1XDgbORuYWM5VTwUmhOkJwKiE8ict8jnQSlInwIBGQAOgIVAfWL+X4TvnXLXx6eKN/O2DxZw5tCtnDq1e1wMVJ/YkBBwBrDezxQllPSXNlPSxpCOKWa+DmaWH6XVAhzDdBViVsNxqoIuZTQU+BNLD410zW1DUhiVdISlVUmpGRsYeHpZzzlWdDVnZXD9pJvu3b8atp1bvdqBElVpZKGkK0LGIWTeb2Wth+jy+fxaUDnQ3s02ShgKvSupnZlnF7cfMTJKVEsv+wEFAwc+DyZKOMLNPitjeI8AjACkpKSVu1znn4pabl8+vnp3J9pw8Jl5e/duBElVqpGY2sqT5kpKB04GhCevkADlhOk3SUqA3kFpo9fWSOplZeqhu2xDK1wCJ/RG7hrILgM/NbFvY99vAocAPkpBzztUkf35rAdNWZPLAuYM4oAa0AyWKuzpuJPCVma0uKJDUXlJSmO5F1MFgWRHrvg6MDtOjgdcSyi8KveQOAbaEaruvgaMkJUuqT9QpocjqOOecqylenbmGJ/67gkt/1JNTB3WJO5xyizsJncsPOyQcCcwJXbZfBK4ys0wASY9KSgnL3QkcJ2kxUTK7M5S/RZS0lgD/An4Zyl8ElgJzgdnAbDN7o1KOyjnnqsC8tVsY+/IcRvRsw00n9Yk7nD0iM2/yKElKSoqlphauCXTOuXht3rGLnz70Kbm7jTeuOZz2zRvGHdK3JKWZWUrpS/rYcc45V+Pk5RvXPjeL9VtymHTlIdUqAZWXJyHnnKth7p+yiP8syuDPpw1gcPfWcYezV+JuE3LOOVcO785bx98+WMK5w7px/ojucYez1zwJOedcDbE0Yxu/eX42B3dtyS0/qzkXpJbEk5BzztUA23J2c+VTaTRMrsfDFwylUf2kuEOqEN4m5Jxz1ZyZ8dsXZrN843aeGjOczq0axx1ShfEzIeecq+bGfbyMt79cx00n9uGw/drFHU6F8iTknHPV2CeLM7j73a/46cGdGXN4z7jDqXCehJxzrppalbmDayfO5IB9mvOXMwZQG+/D6UnIOeeqoezcPK56Oo3d+cY/Lxxao0bGLo/aeVTOOVeDmRm/f2Uu89OzeGx0Cj3aNY07pErjZ0LOOVfNPP35Sl6esYbrj+3NMX06lL5CDeZJyDnnqpHUFZn83xvzObbPPlxzzP5xh1PpPAk551w1sSErm188M4OurRtz3zmDqFev9nVEKMzbhJxzrhrYtTufXz4zg+05u3l6zAhaNq4fd0hVwpOQc85VA7f/ez6pK7/hofMHc2DHmnWL7r3h1XHOORezl9JWM2HqSq44shenDOwcdzhVypOQc87F6Ms1W/j9K3M5bL+2/O4nB8YdTpXzJOScczH5ZvsurnwqjbZNG/C38waTnFT3vpK9Tcg552KQm5fP1c/OIGNbDi9edShtm9XcW3TvjbqXdp1zLmZmxv++Po/Plm7ijtMGMLBrq7hDio0nIeecq2ITPlvBs198zS+O3o8zhnaNO5xYeRJyzrkq9NHCDdz65nyO79uB3x5f9zoiFOZJyDnnqsji9Vu55tmZ9OnYgr/WkRERSuNJyDnnqkDm9l2MmZBKowZJPDo6haYNvV8YxJSEJE2SNCs8VkiaFcp7SNqZMG9cMeu3kTRZ0uLwt3Uo7yNpqqQcSTcUWucESQslLZE0tvKP0jnnIrt253PVU2msz8rmXxel0LlV47hDqjZiScVmdk7BtKR7gS0Js5ea2aBSNjEWeN/M7gwJZSxwI5AJXAuMSlxYUhLwd+A4YDUwXdLrZjZ/rw/GOedKYGbc/Mpcpq3I5MHzBjOoW93tCVeUWKvjFN2r9mxgYjlXPRWYEKYnEJKOmW0ws+lAbqHlhwNLzGyZme0CngvbcM65SvWvT5bxQtpqrj32AH52cN0akqcs4m4TOgJYb2aLE8p6Spop6WNJRxSzXgczSw/T64DS7vrUBViV8Hx1KCuSpCskpUpKzcjIKGXTzjlXtCnz13PH219x8sBOXH/sAXGHUy1VWnWcpClAxyJm3Wxmr4Xp8/j+WVA60N3MNkkaCrwqqZ+ZZRW3HzMzSVZhgUfbfAR4BCAlJaVCt+2cqxsWpGdx3XMzGdClJfecebD3hCtGpSUhMxtZ0nxJycDpwNCEdXKAnDCdJmkp0BtILbT6ekmdzCxdUidgQynhrAG6JTzvGsqcc67CZWzN4bIJqTRrlMy/LkqhcYOkuEOqtuKsjhsJfGVmqwsKJLUPnQiQ1As4AFhWxLqvA6PD9GjgtSKWSTQdOEBST0kNgHPDNpxzrkJl5+Zx5VOpbNqew6MXDaNDi0Zxh1StxdlR/Vx+2CHhSOBWSblAPnCVmWUCSHoUGGdmqcCdwPOSxgAriTo3IKkj0VlTCyBf0vVAXzPLkvQr4F0gCXjczOZV+hE65+oUM+Oml+cy4+vNPPzzIQzo2jLukKo9mXmTR0lSUlIsNbVwbaBzzv3Q3z9cwt3vLuSG43vzq2PqbkcESWlmllKWZePuHeecc7XCO1+mc/e7Cxk1qDNX/3j/uMOpMTwJOefcXvpyzRZ+PWk2g7u34s4zBhJdAunKwpOQc87thfVZ2Vw2IZXWTerzyIUpNKrvPeHKw0fQc865PbRzVx6XP5lKVnYuL/3iMNo3r5t3R90bnoScc24P5OcbN7w4m7lrtvDIhSkc1KlF3CHVSF4d55xze+CB9xfz7znpjD2hD8f1LW3kMFccT0LOOVdOr89eywPvL+asoV254shecYdTo3kScs65cpi1ajO/fWE2w3u04bbT+ntPuL3kScg558poxcbtjBk/nX1aNOThC4bQMNl7wu0tT0LOOVcGG7flMPqJaeSbMf6S4bRt5j3hKoL3jnPOuVJsz9nNpeOnsz4rm4mXH8J+7ZvFHVKt4UnIOedKkJuXzy+emcG8tVk8cuFQBndvHXdItYpXxznnXDHMjBtfmsN/FmVw+6j+HHuQd8WuaJ6EnHOuGHe9u5CXZ6zh1yN7c+7w7nGHUyt5EnLOuSJM+GwFD3+0lPNHdOfaY31U7MriScg55wp5a246t7wxj+P6duBPp/q1QJXJk5BzziX4Ytkmrp80iyHdW/O38waTVM8TUGXyJOScc8HCdVu57MlUurVuzGOj/bYMVcGTkHPOAWs372T049No0iCJCZcOp1WTBnGHVCd4EnLO1Xmbd+xi9OPT2J6zm/GXDKdr6yZxh1RnlCkJSXpZ0smSPGk552qV7NzoxnQrN+3gkYv8vkBVraxJ5R/A+cBiSXdKOrASY3LOuSqRl29c99xMUld+w33nHMyh+7WNO6Q6p0xJyMymmNnPgSHACmCKpM8kXSKpfmUG6JxzlcHMuOX1ebw7bz1/PLkvpwzsHHdIdVKZq9cktQUuBi4DZgIPECWlyZUSmXPOVaJ/fLSUpz5fyZVH9uLSw3vGHU6dVaYBTCW9AhwIPAX81MzSw6xJklIrKzjnnKsML6Su4u53F3La4C7ceEKfuMOp08p6JvSgmfU1szsSEhAAZpZS3p1KmiRpVniskDQrlPeQtDNh3rhi1m8jabKkxeFv61DeR9JUSTmSbkhYvpukDyXNlzRP0nXljdk5Vzt8uHADY1+eyxEHtOMvZwyknl+MGquy3sqhtaTTC5VtAeaa2Yby7tTMzimYlnRv2FaBpWY2qJRNjAXeN7M7JY0Nz28EMoFrgVGFlt8N/MbMZkhqDqRJmmxm88sbu3Ou5pq1ajO/fHoGB3VqzsMXDKVBsnf4jVtZk9AY4FDgw/D8aCAN6CnpVjN7ak92rmhAprOBY8q56qkhBoAJwEfAjSEhbpB0cuLC4ewtPUxvlbQA6AJ4EnKujli+cTuXjp9Ou+YNePziYTRr6LdTqw7K+jOgPnCQmZ1hZmcAfQEDRhCdgeypI4D1ZrY4oaynpJmSPpZ0RDHrdUioFlwHlPkmH5J6AIOBL0pY5gpJqZJSMzIyyrpp51w1lbE1h4sej/7ln7x0BPs0bxRzRK5AWX8KdDWz9QnPNwDdzCxTUm5RK0iaAnQsYtbNZvZamD4PmJgwLx3obmabJA0FXpXUz8yyigvMzEySleUgJDUDXgKuL2WbjwCPAKSkpJRp28656qlgNISNW3cx8YpD6NmuadwhuQRlTUIfSXoTeCE8PyOUNQU2F7WCmY0saYOSkoHTgaEJ6+QAOWE6TdJSoDdQuAfeekmdzCxdUieipFiicD3TS8AzZvZyacs752q+rOxcRj8+jSUbtvHo6BQGdWsVd0iukLJWx10NPAEMCo8ngavNbLuZ/XgP9z0S+MrMVhcUSGovKSlM9wIOAJYVse7rwOgwPRp4rYhlvhXanh4DFpjZfXsYr3OuBtmes5tLn5jOvLVZPHzBEI7s3T7ukFwRSj0TCklhSkg2L1Xgvs/l+1VxAEcCt4YqvnzgKjPLDHE8Cowzs1TgTuB5SWOAlUSdG5DUkeisqQWQL+l6ovargcCFwNyC7uDA783srQo8HudcNbFzVx5jJkxn5qrNPHTeYI49qMzNxq6Kyaz0Jg9J7wOnm9mWUheuZVJSUiw11a/Hda6myNmdx2UTUvl0yUbuP2cQpw7qEndIdY6ktLJeQ1rWNqFtRGcRk4HtBYVmdu0exOecc5Vi1+58rn5mBp8s3shdZw70BFQDlDUJvRwezjlXLe3Oy+f6STOZsmADfxrVn7NTusUdkiuDMiUhM5sgqTFR9+mFlRyTc86VS16+ccMLs3lr7jr+cPJBXHjIvnGH5MqorDe1+ykwC3gnPB8k6fXKDMw558oiP9/4/ctzeXXWWn77kwO57IhecYfkyqGsXbRvAYYTrgkys1mAv9POuViZGbe8MY9Jqau49pj9ufrH+8cdkiunsiah3CJ6xuVXdDDOOVdWZsaf31rAk1OjewL9+rjecYfk9kBZOybMk3Q+kCTpAKKRqj+rvLCcc65k901exL8+Wc7Fh/Vg7Il9iK5JdzVNWc+ErgH6EQ2pMxHIAq6vrKCcc64kD32wmL99sITzhnfjf07p6wmoBitr77gdwM3h4ZxzsfnXf5Zxz3uLOH1wF24fNcBvSlfDlfX23r2BG4AeieuYWXnvA+Scc3vsyakruP2tBZw8sBN3nel3Ra0Nytom9AIwDngUyKu8cJxzrmjPTfua/3ltHsf17cD95wwiOcnviloblDUJ7Tazhys1EuecK8YrM1dz0ytzOap3ex46fzD1PQHVGmV9J9+Q9EtJnSS1KXhUamTOOQf8e046v3l+Nof2ass/LxxKw+SkuENyFaisZ0IF9+75bUKZ4ResOucq0eT567nuuZkM3bc1j45OoVF9T0C1TVl7x/Ws7ECccy7RRws3cPUzM+jXpSWPXzyMJg3K+pvZ1SQlVsdJ+l3C9FmF5v25soJyztVt73y5jiueTGP/fZrx5CXDad6oftwhuUpSWpvQuQnTNxWad0IFx+Kcc7wyczVXPzuDfl1aMPHyQ2jZxBNQbVZaElIx00U9d865vfLU5yv59aTZjOjZhqfHjPAEVAeUVslqxUwX9dw55/bYwx8t5S/vfMXIg/bhofOHeCeEOqK0JHSwpCyis57GYZrwvFGlRuacqxPMjHveW8jfP1zKzw7uzL1nH+zXAdUhJSYhM/OfIs65SpOfb/zfG/OYMHUl5w3vxm2jBpDkQ/HUKd7n0TkXi915+dz40lxemrGay4/oye9POshHw66DPAk556pczu48rn9uFm9/uY7/d1xvrjlmf09AdZQnIedcldq5K48rn07jP4sy+OMpfRlzuF8LX5d5EnLOVZms7FwuG5/K9JWZ/OWMAZwzrHvcIbmYxdIFRdIkSbPCY4WkWaG8h6SdCfPGFbN+G0mTJS0Of1uH8j6SpkrKkXRDEeslSZop6c3KPULnXGGZ23fx8399wYyvv+HBcwd7AnJATGdCZnZOwbSke4EtCbOXmtmgUjYxFnjfzO6UNDY8vxHIBK4FRhWz3nXAAqDFnsbunCu/9VnZXPDoF3yduYNHLhrKMX06xB2SqyZi7YyvqCXybGBiOVc9FZgQpicQko6ZbTCz6UBuEfvqCpxMdGM+51wVWZW5g7PGTWXt5p2Mv2S4JyD3PXFfEXYEsN7MFieU9QxVZh9LOqKY9TqYWXqYXgeU5VN9P/A7IL+0BSVdISlVUmpGRkYZNu2cK8qSDds4a9xUtuzM5ZnLD+HQ/drGHZKrZiqtOk7SFKBjEbNuNrPXwvR5fP8sKB3mYNvSAAAamklEQVTobmabJA0FXpXUz8yyfrCVwMxMUolDCEk6BdhgZmmSji4tdjN7BHgEICUlxYcncm4PfLlmCxc9Po16EpOuPIQ+Hb0W3P1QpSUhMxtZ0nxJycDpwNCEdXKAnDCdJmkp0BtILbT6ekmdzCxdUidgQynh/Aj4maSTiIYbaiHpaTO7oFwH5Zwrk9QVmVwyfjotGtXn6ctG0LNd07hDctVUnNVxI4GvzGx1QYGk9pKSwnQv4ABgWRHrvs53d3sdDbxWxDLfMrObzKyrmfUguj3FB56AnKscnyzO4MLHptGuWUOev+pQT0CuRHFeJ3QuP+yQcCRwq6Rcorabq8wsE0DSo8A4M0sF7gSelzQGWEnUuQFJHYnOmloA+ZKuB/qWVJ3nnKs473y5jmsnzqRX+6Y8NWYE7Zs3jDskV83JzJs8SpKSkmKpqYVrA51zicyMRz9Zzp/fXsCgbq0Yf/FwvxdQHSYpzcxSyrKsj5jgnNsruXn5/M9r85g47WtOGtCRe88aROMGPgC/KxtPQs65PbZlZy6/fCaN/y7ZxNU/3o/fHHcg9fxWDK4cPAk55/bIyk3buXT8dL7O3ME9Zx3MmUO7xh2Sq4E8CTnnym36ikyueDIVA54aM4JDevlFqG7PeBJyzpXLKzNXc+OLc+naujGPXTzMu2C7veJJyDlXJmbGXycv4sEPlnBIrzaMu2AorZo0iDssV8N5EnLOlSo7N4/fvjiHN2av5eyUrtw2agANkuMeetLVBp6EnHMlytiawxVPpTLz682MPbEPVx7Zy2/F7SqMJyHnXLEWrtvKpeOns2l7DuMuGMIJ/TvFHZKrZTwJOeeK9PGiDK5+ZgZNGiTx/JWHMrBrq7hDcrWQJyHn3A88NXUFt7wxn94dmvP4xSl0atk47pBcLeVJyDn3rbx847Z/z+eJ/67g2D778OB5g2na0L8mXOXxT5dzDoBtObu5duJMPvhqA2MO78nvTzqIJB+Cx1UyT0LOOdZs3smY8dNZvGEbt43qzwWH7Bt3SK6O8CTkXB03a9VmLpuQSs7uPMZfMowjDmgfd0iuDvEk5FwdZWZM+GwFf37rKzq0bMjEy0dwQIfmcYfl6hhPQs7VQVt25PK7l2bz7rz1jDxoH+4+82BaN/UheFzV8yTkXB0za9VmfvXsDNZtyeYPJx/EmMN7+ggILjaehJyrI8yMxz5dzp1vf0WHFo144apDGdy9ddxhuTrOk5BzdcDmHbu44YXZTFmwgeP7duDuMw+mZZP6cYflnCch52q7tJWZXPPsTDZu28UtP+3L6MN6ePWbqzY8CTlXS+XnG498soy7311Il1aNeekXhzGga8u4w3LuezwJOVcLbdqWw29emM1HCzM4eUAn7jhjAC0aefWbq348CTlXy0xbnsk1E2fwzY5c/jSqPxeM6O7Vb67a8iTkXC2Rn2/846Ml3Dd5Efu2bcrjFw+jX2evfnPVWyz355U0SdKs8FghaVYo7yFpZ8K8ccWs30bSZEmLw9/WobyPpKmSciTdUGidVpJelPSVpAWSDq38I3WuamRszWH0E9O4571FnDKwM29cc7gnIFcjxHImZGbnFExLuhfYkjB7qZkNKmUTY4H3zexOSWPD8xuBTOBaYFQR6zwAvGNmZ0pqADTZm2Nwrrr4bOlGrntuFlk7c7nz9AGcM6ybV7+5GiPW6jhF/ylnA8eUc9VTgaPD9ATgI+BGM9sAbJB0cqH9tASOBC4GMLNdwK49jdu56iAv3/jbB4t58P3F9GzXlKfGDKdPxxZxh+VcucTdJnQEsN7MFieU9ZQ0E8gC/mBmnxSxXgczSw/T64AOpeynJ5ABPCHpYCANuM7Mthe1sKQrgCsAunfvXuaDca6qbMjK5rrnZjF12SZOH9KFP53a328+52qkSvvUSpoCdCxi1s1m9lqYPg+YmDAvHehuZpskDQVeldTPzLKK24+ZmSQrJZxkYAhwjZl9IekBoiq8PxazzUeARwBSUlJK27ZzVcbMeDFtNbe/tYDs3DzuPnMgZ6V0izss5/ZYpSUhMxtZ0nxJycDpwNCEdXKAnDCdJmkp0BtILbT6ekmdzCxdUidgQynhrAZWm9kX4fmLREnIuRpjxcbt/P6VuXy2dBPDerTmjtMHsv8+zeIOy7m9Euf5+0jgKzNbXVAgqT2QaWZ5knoBBwDLilj3dWA0cGf4+1oRy3zLzNZJWiXpQDNbCBwLzK+g43CuUuXm5fPIf5bx4PuLaZBUj9tP6895w7pTz2+97WqBOJPQuXy/Kg6izgO3SsoF8oGrzCwTQNKjwDgzSyVKPs9LGgOsJOrcgKSORGdNLYB8SdcDfUN13jXAM6Fn3DLgkso+QOf21syvv+Gml+fy1bqtnNi/I7f8rB8dWjSKOyznKozMvMmjJCkpKZaaWrg20LnKtS1nN/e8u5AJU1fQoXkjbj21H8f3K6qJ1bnqR1KamaWUZVnvTuNcNfP+gvX88dUvSc/K5qJD9uWGnxxIcx/3zdVSnoScqyY2bM3m/96Yz7/npNO7QzNePP8whu7rN51ztZsnIedilp9vPJ+6ij+/tYDs3fnccHxvrjhyPxokxzKqlnNVypOQczFamrGNm16ey7TlmYzo2YY7Th9Ar/be7drVHZ6EnIvBrt35jPt4KQ99sIRG9evxlzMGcHaKj/nm6h5PQs5VsbSV33DTy3NYtH4bpwzsxP/8tC/7NPdu165u8iTkXBXZmp3LXe8s5OkvVtK5ZWMevziFY/qUNuyhc7WbJyHnKll2bh7PfPE1D3+0hMztu7jksJ785vjePuCoc3gScq7S7Nqdz/Opq3jogyWsy8rmR/u35cYT+jCwa6u4Q3Ou2vAk5FwF252Xz6uz1vLA+4tYlbmTofu25r5zDuaw/drFHZpz1Y4nIecqSH6+8e+56fx1yiKWZWynf5cW3HpJf47u3d57vTlXDE9Czu0lM2PKgg3c+95Cvlq3ld4dmjHugqH8pF8HTz7OlcKTkHN7yMz4dMlG7nlvEbNXbaZH2yY8cO4gThnYmSS/zYJzZeJJyLk9MG15Jve8t5BpyzPp0qoxd50xkNOHdCE5yYfaca48PAk5Vw6zV23m3smL+M+iDNo3b8itp/bjnGHdaJicFHdoztVInoScK4MF6VncN3kRk+evp3WT+vz+pD5ceEgPGjfw5OPc3vAk5FwJFq/fyoMfLOHNOWtp1jCZ3xzXm0sO70kzv9DUuQrh/0nOFbJzVx7/npvOpOlfM33FNzRpkMQvj96Py4/oRasmDeIOz7laxZOQc0Q93b5ck8Vz07/m9Vlr2Zqzm57tmjL2xD6cNbQrbZs1jDtE52olT0KV5NqJM+nbuQWnDe5ChxY+QnJ1tWVHLq/NXsNz01YxPz2Lhsn1OHlAJ84Z1o3hPdv4dT7OVTJPQpVge85u1m7eyeuz13LXO19xVO/2nJXSjWMP2sd7UVUDZsYXyzOZNH0Vb81NJ2d3Pv06t+BPo/rzs4M707Jx/bhDdK7OkJnFHUO1lpKSYqmpqXu07vKN23kxbRUvpa1hXVY2rZrU59SDO3Pm0G7079LCf2VXsQ1bs3kpbQ3Pp65i+cbtNG+UzKhBXThnWDf6d2kZd3jO1RqS0swspUzLehIq2d4koQJ5+cZ/l2zkhbTVvDtvHbt259OnY3POHNqVUYO70M7bGyrN7rx8/rM4g+emreL9rzaQl28M79mGc4d148T+nbyLtXOVwJNQBaqIJJRoy45c3pizlhfSVjN71WaS64kf99mHs4Z25cd99qG+X3FfIVZl7uD51FW8kLqadVnZtGvWgDOGduXslG7s175Z3OE5V6t5EqpAFZ2EEi1av5WX0lbz8sw1ZGzNoW3TBowa3IUzh3bloE4tKmWftVXO7jxmfb2Zz5Zu4rOlG5m+4hvqCY7q3Z5zhnXjmD4daJDsCd65qlDtk5CkScCB4WkrYLOZDZLUA1gALAzzPjezq4pYvw0wCegBrADONrNvJPUBngCGADeb2T0J6/wauAwwYC5wiZlllxZrZSahArvz8vl4UQYvpq1myoL15OYZ/bu04Kyh3fjZwZ1p3dSvTSlsd14+c9ZsYerSTUxduonUlZlk5+YjQf/OLRl5UAfOSulK51aN4w7VuTqn2ieh7wUg3QtsMbNbQxJ608z6l7LOXUCmmd0paSzQ2sxulLQPsC8wCvimIAlJ6gJ8CvQ1s52SngfeMrPxpcVXFUkoUeb2Xbw2aw0vpq1m3tosGiTVY2TfffjxgftwcLdW7Ne+WZ0coTkv31iQnsVnSzcydekmpi3PZPuuPAD6dGzOofu15dBebRnRsy0tm3jvNufiVJ4kFGsXbUXdw84GjinnqqcCR4fpCcBHwI1mtgHYIOnkItZJBhpLygWaAGv3JObK1qZpAy75UU8u+VFP5q/N4sW01bw6aw1vzV0HQOP6SfTv0oIBXVoxsGtLBnZtSY+2TalXyxKTmbFo/bZvk87nyzaRlb0bgF7tm3LakC4ctl87RvRs4xeSOleDxXomJOlI4L6CjBnOhOYBi4As4A9m9kkR6202s1ZhWkRnPa0S5t8CbCtUHXcdcDuwE3jPzH5eQlxXAFcAdO/efejKlSv37kD3Un6+sWzjduas3syc1VuYu2YL89ZuITs3H4DmDZPp3yVKSAO6tuTgrq3o2rpxjeoCbmYs37idz5ZuYuqyTXy+dBObtu8CoHubJhzaq210trNfW7/417lqrlqcCUmaAnQsYtbNZvZamD4PmJgwLx3obmabJA0FXpXUz8yyituPmZmkEjOppNZEZ089gc3AC5IuMLOni9nmI8AjEFXHlbTtqlCvnth/n2bsv08zTh/SFYjaRBZv2Mbc1VuYs2Yzc1dv4Yn/rmBXXpSYWjWpz4CCxNSlFQd3a0nHFo1iS0zZuXmkb8kmffPO6O+Wnazdks26Ldms3byTtZt3fnum07FFI47q3Z5DQhVbtzZNYonZOVf5Ki0JmdnIkuZLSgZOB4YmrJMD5ITpNElLgd5A4UaZ9ZI6mVm6pE7AhlLCGQksN7OMsO+XgcOAIpNQTZCcVI+DOrXgoE4tOHtYNyDqIbZo3bZvk9Ls1VsY9/Ey8vKjPNquWUMGdm1Jx5aNaFI/icYNwqN+Ek0aJNGofhJNGiTTOMxrkjivQRJN6icVedO27Nw81mdls3ZzlFwKkkyUYKLpb3bk/mC9Nk0b0KllI7q2bkxKj9Yc1KkFh+3Xjh5tm9Soszjn3J6Ls01oJPCVma0uKJDUnqjDQZ6kXsABwLIi1n0dGA3cGf6+VsQyib4GDpHUhKg67lh+mNhqvIbJSQwIVXKMiMqyc/OYn54VktJmvlyzhTmrN7NjVx47c/Mob21s/SR9m6Qa109ia/bub6vNErVqUp9OLRvTqWUjBndvRedWjenYohGdWjWic8vGdGzZiEb1/UJR5+q6OJPQuXy/Kg7gSODW0HkgH7jKzDIBJD0KjDOzVKLk87ykMcBKos4NSOpIlFxaAPmSrifqEfeFpBeBGcBuYCahuq22a1Q/iSHdWzOke+sfzDMzcnbns3NXHjty89i5Kzxy89ixazfZuXnfJquCeTsKTTdrmEznlo3o2LIRnVtFSadjy0Y0aeDDEjrnShd7F+3qrqq7aDvnXE1Xno4Jfgm5c8652HgScs45FxtPQs4552LjScg551xsPAk555yLjSch55xzsfEk5JxzLjaehJxzzsXGL1YthaQMolEZ9kQ7YGMFhlNRPK7y8bjKx+Mqn9oY175m1r4sC3oSqkSSUst61XBV8rjKx+MqH4+rfOp6XF4d55xzLjaehJxzzsXGk1Dlqq4jdXtc5eNxlY/HVT51Oi5vE3LOORcbPxNyzjkXG09CzjnnYuNJaA9IelzSBklfFjNfkh6UtETSHElDEuaNlrQ4PEZXh7gkDZI0VdK8UH5OdYgrYX4LSaslPVRd4pLUXdJ7khZImi+pRzWJ667wPi4Iy6gK4+oTPkc5km4oNO8ESQtDzGMrKqa9iUtSN0kfhvdvnqTrqkNcCfOTJM2U9GZ1iUtSK0kvSvoqfMYO3euAzMwf5XwQ3YZ8CPBlMfNPAt4GBBwCfBHK2wDLwt/WYbp1NYirN3BAmO4MpAOt4o4rYf4DwLPAQ9XhfQzzPgKOC9PNgCZxxwUcBvwXSAqPqcDRVRjXPsAw4HbghoTyJGAp0AtoAMwG+laDuDoBQ8J0c2BRdYgrYf7/C5/7Nysqpr2NC5gAXBamG1TE94SfCe0BM/sPkFnCIqcCT1rkc6CVpE7AT4DJZpZpZt8Ak4ET4o7LzBaZ2eKwjbXABqBMVztXZlwAkoYCHYD3KiqevY1LUl8g2cwmh+1sM7MdcccFGNCI6MuhIVAfWF9VcZnZBjObDuQWmjUcWGJmy8xsF/BcOIZY4zKzdDObEaa3AguALnHHBSCpK3Ay8GhFxbO3cUlqSZTAHgvL7TKzzXsbjyehytEFWJXwfHUoK6487ri+JWk40ZfY0rjjklQPuBf4QVVFFSnu9eoNbJb0cqguuVtSUtxxmdlU4EOiM9l04F0zW1CFcRUn7s99qUJ16mDgi3gj+db9wO+A/LgDSdATyACeCJ/7RyU13duNehJy3wq/pp8CLjGz6vDh/yXwlpmtjjuQQpKBI4iS4zCiaqaL4wwIQNL+wEFAV6Iv+WMkHRFvVNWfpGbAS8D1ZpZVDeI5BdhgZmlxx1JIMlE13sNmNhjYDux1+54nocqxBuiW8LxrKCuuPO64kNQC+Ddwc6jiqUrFxXUo8CtJK4B7gIsk3VkN4loNzArVS7uBV4n+OeOO6zTg81A9uI2o3WjvG473Xtyf+2JJqk+UgJ4xs5fjjif4EfCz8Ll/jujHxNPxhgREn/vVZlZwtvgiFfC59yRUOV4n+sKUpEOALWaWDrwLHC+ptaTWwPGhLNa4JDUAXiFqZ3ixCuMpMS4z+7mZdTezHkRnHU+aWYX2rNqTuIDpRO0wBe1mxwDzq0FcXwNHSUoOX65HEbVzxG06cICknuGzdi7RMcQq9Bx8DFhgZvfFHU8BM7vJzLqGz/25wAdmdkHMYWFm64BVkg4MRcdSEZ/7ve3ZUBcfwESiOvdcol8HY4CrgKvCfAF/J2pXmQukJKx7KbAkPC6pDnEBF4R1ZiU8BsUdV6FtXEzF947bm/fxOGBOKB8PNIg7LqJeaP8kSjzzgfuq+PXqGMqzgM1hukWYdxJR77OlRGfbsccFHE7UmWNOwuf+pLjjKrSNo6n43nF78z4OAlLDa/YqFdC714ftcc45FxuvjnPOORcbT0LOOedi40nIOedcbDwJOeeci40nIeecc7HxJORqDEl5kmaFEY9nS/pNGNoHSSmSHixh3R6Szq+6aMtG0rVhNOJnCpUfXXj0ZEnjJZ1Zjm1frAoeebyiKRrB/aS443DxSY47AOfKYaeZDQKQtA/RCMMtgP81s1Si6xeK0wM4P6xTnfwSGGlVODSRpGSLRnqoDgYBKcBbcQfi4uFnQq5GMrMNwBVEw/oo8cxB0lHhjGlWGGixOXAncEQo+3U4M/pE0ozwOCyse7SkjxLumfJMuLIeScMkfRbOwqZJaq7oni93S5qu6N4+VxYVr6T/J+nL8Lg+lI0jGnfubUm/LuuxSzpG0qsJz4+T9EqYvkTSIknTiIZ/KVhmvKRxkr4A7pLURtKrIebPJQ0My7WXNDmcbT4qaaWkdmHeBeG4Z0n6p8KgrZK2Sbo9vC6fS+pQRMzDFd2jZmZ4DQ8MoyfcCpwTtnlOCXHdImlCeM9WSjpd0b2T5kp6J4wQ4WqiirwS1x/+qMwHsK2Iss1Et3o4mnBlOfAG8KMw3YzojP/b+aG8CdAoTB8ApIbpo4EtROOb1SO6J8/hRCOLLwOGheVahO1eAfwhlDUkOhvrWSjGoUQjGzQN8cwDBod5K4B2RRxXQRyJo1hkAmcSjZjwFdA+LPss8FOi++N8TXQbjgZE9xZ6KCwzHngTSArP/0Z0BgnRsEOzwvRDwE1h+gSiEQXaEQ2M+gZQP8z7B3BRmDbgp2H6roLXo9DxtCC6/QXASOClMH0xCSNhlBDXLcCnRLenOBjYAZwY5r0CjIr78+mPPXt4dZyrjf4L3BfaWV42s9X64Q1G6wMPSRoE5BHdnqHANAvVY5JmEVXlbQHSLbrPChZGW5Z0PDAwoa2mJVFSW56wvcOBV8xse1jnZaJRuGeWchyfmNkpBU8kjQ/7NklPARdIeoJokNKLgFOAj8wsIyw/qdBxvWBmeQkxnRG294GktooGsT2caCBUzOwdSd+E5Y8lSqbTw2vZmOi+UwC7iBIcQBrRkEaFtQQmSDqAKGkVd+ZSXFwAb5tZrqS5REMUvRPK5xK9R64G8iTkaixJvYgSyAaiX+oAmNmdkv5NNF7ZfyX9pIjVf010w7eDic54shPm5SRM51Hy/4mAa8ysKgeiBXiC6Mwkmyi57C4i0Ra2fS/2J2CCmd1UxLxcMysY/6u41+tPwIdmdpqie/d8tAcx5ACYWb6kxH3mF7NPVwN4m5CrkRSNYD2OqCrHCs3bz8zmmtlfiEZw7gNsJbqFc4GWRGc2+cCFRL+sS7IQ6CRpWNhHc0nJRKOg/6KgTUJSb/3wRl+fAKMkNQnzTgtle8yiO+CuBf5AlJAguiHbUeHsoT5wVgmb+AT4eYj5aGBjOLv7L3B2KD+e6Db0AO8DZyrqEEJou9m3HCG35LvbN1ycUF74fSkuLldL+a8HV5M0DtVj9YHdRDfgK2oI/usl/ZjoF/I8ovvq5AN5kmYTtY/8A3hJ0kVE1TolniWY2S5J5wB/k9QY2EnUtvEoUVXQjNCBIQMYVWjdGaEqbVooetTMSquKK4tniNqFFoT9pEu6hagdazNRO1JxbgEelzSHqH1ldCj/P2CipAvDdtYBW81so6Q/AO8p6hafC1wNrCxjrHcRVcf9gei+VQU+BMaG9/WOEuJytZSPou1cDaXoGqCZZvZYBW6zIZAXqvcOJbqL5qCK2r5zhfmZkHM1kKQ0orO331TwprsDz4eznV3A5RW8fee+x8+EnHPOxcY7JjjnnIuNJyHnnHOx8STknHMuNp6EnHPOxcaTkHPOudj8fwwalvxAKpX4AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, energies)\n", - "pylab.xlabel('Distance of Hydrogen atom')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('H2O molecule, one H atom distance varied');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt b/community/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt deleted file mode 100644 index 81d5e84d2..000000000 --- a/community/chemistry/input_files/gaussian_h2_0.735_sto-3g.txt +++ /dev/null @@ -1,43 +0,0 @@ -&name -Gaussian H2 experiment -&end - -&driver - name=GAUSSIAN -&end - -&gaussian -# rhf/sto-3g scf(conventional) - -h2 molecule - -0 1 -H 0.0 0.0 -0.3675 -H 0.0 0.0 0.3675 - - -&end - -&operator - name=hamiltonian - qubit_mapping=parity -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=RYRZ -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt b/community/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt deleted file mode 100644 index cb2eb7211..000000000 --- a/community/chemistry/input_files/gaussian_lih_1.6_sto-3g.txt +++ /dev/null @@ -1,49 +0,0 @@ -&name -Gaussian LiH experiment -&end - -&driver - name=GAUSSIAN -&end - -&gaussian -# rhf/sto-3g scf(conventional) - -lih molecule - -0 1 -Li 0.0 0.0 -0.8 -H 0.0 0.0 0.8 - - -&end - -&operator - name=hamiltonian - qubit_mapping=parity - freeze_core=True - orbital_reduction=[-3, -2] -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=UCCSD -&end - -&initial_state - name=HartreeFock -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/h2_on_device.txt b/community/chemistry/input_files/h2_on_device.txt deleted file mode 100644 index 512898bd9..000000000 --- a/community/chemistry/input_files/h2_on_device.txt +++ /dev/null @@ -1,47 +0,0 @@ -&name -H2 molecule experiment. This configuration shows what might be used on a near-term real device. -The device (backend) has been set to qasm_simulator so it can be run. On a real device -the Qconfig.py would need to be set with token etc. This experiment will make many evaluations -on the device during its variational approach to finding the minimum eigenvalue of the -Hamiltonian, i.e. the ground state energy. -&end - -&driver - name=HDF5 -&end - -&hdf5 - hdf5_input=../h2_0.735_sto-3g.hdf5 -&end - -&operator - name=hamiltonian - qubit_mapping=parity - two_qubit_reduction=True -&end - -&algorithm - name=VQE - operator_mode=paulis -&end - -&initial_state - name=ZERO -&end - -&optimizer - name=SPSA - max_trials=200 -&end - -&variational_form - name=RYRZ - depth=3 - entanglement=full -&end - -&backend - provider=qiskit.BasicAer - name=qasm_simulator - shots=1024 -&end diff --git a/community/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt b/community/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt deleted file mode 100644 index c2b6a594d..000000000 --- a/community/chemistry/input_files/hdf5_h2_0.735_sto-3g.txt +++ /dev/null @@ -1,35 +0,0 @@ -&name -HDF5 H2 experiment -&end - -&driver - name=HDF5 -&end - -&hdf5 - hdf5_input=../h2_0.735_sto-3g.hdf5 -&end - -&operator - name=hamiltonian - qubit_mapping=parity -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=RYRZ -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt b/community/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt deleted file mode 100644 index 99882238e..000000000 --- a/community/chemistry/input_files/hdf5_lih_1.6_sto-3g.txt +++ /dev/null @@ -1,41 +0,0 @@ -&name -HDF5 LiH experiment -&end - -&driver - name=HDF5 -&end - -&hdf5 - hdf5_input=../lih_1.6_sto-3g.hdf5 -&end - -&operator - name=hamiltonian - qubit_mapping=parity - freeze_core=True - orbital_reduction=[-3, -2] -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&initial_state - name=HartreeFock -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=UCCSD -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/input_file_sample.txt b/community/chemistry/input_files/input_file_sample.txt deleted file mode 100644 index 7f248282f..000000000 --- a/community/chemistry/input_files/input_file_sample.txt +++ /dev/null @@ -1,100 +0,0 @@ -# Sample input file for Qiskit Chemistry stack. -# -# This is a simple sample to show representative sections but not -# all fields are shown. Consult the documentation for further -# information and complete list of sections and field names. -# Many sections and fields default to suitable values in order to -# simplify editing this input file. However using the GUI to edit -# an input file is recommended as it simplifies the editing task -# by presenting only appropriate sections according to problem type -# and algorithm selected. The input file is also validated against -# the combined schema of all the constituent sections - -# NAME is an optional section for the user to describe this file's purpose -# -&name -H2 molecule experiment. In order to be to run this, with no further -driver installation requirements this will use the HDF5 file driver. -&end - -# Problem to be solved. Defaults to energy -# -&problem - name=energy -&end - -# External library DRIVER used for electronic structure computation. -# The DRIVER is named here and matching section should contain the -# molecular configuration for the driver. This molecular configuration -# is driver dependent so please consult the driver documentation -# for more information. The configuration will include the molecule and -# and basis set plus any additional configuration needed. From the -# driver computation one and two electron integrals are extracted from -# the result. -# -&driver - name=HDF5 -&end - -# -- Molecule and config in driver specific format -# Drivers need an external chemistry program or library to be installed. -# Qiskit Chemistry provides the interfacing logic but the actual -# program or library it interfaces with needs to be separately installed. -# The configuration needed in this section depends on the specific driver. -# Please see the particular driver documentation for more information. -# This sample, as it uses the HDF5 driver, just needs to refer to an -# hdf5 file that was written from a prior chemistry driver usage. See the -# HDF5 driver documentation for more detail on this. -&hdf5 - hdf5_input=../h2_0.735_sto-3g.hdf5 -&end - -# Absolute bare minimum input file is just the driver info. With just -# this a default OPERATOR and ALGORITHM will be used for the computation -# OPERATOR and ALGORITHM may be given here to select a specific chosen -# configuration other than the default. -# -# At this point we have integral matrices which we are passed on down the -# chemistry stack to create the fermionic and qubit hamiltonians and run the -# energy computation using the algorithm which defaults to VQE. -# -&operator - name=hamiltonian - qubit_mapping=parity -&end - -# Algorithm is named here. Default is VQE. -# -# VQE has some parameters and an Optimizer and Variational form can be specifically -# defined in this input file to replace the default ones that would otherwise be used -# -&algorithm - name=VQE - operator_mode=matrix -&end - -# Below are specific configuration sections that depend on choice of ALGORITHM -# For VQE this is OPTIMIZER, VARIATIONAL_FORM and INITIAL_STATE -# Each specific entity to be used is named here -# - -&initial_state - name=ZERO -&end - -&optimizer - name=L_BFGS_B -&end - -&variational_form - name=RYRZ -&end - -# BACKEND specifies the particular quantum computing backend, whether real -# device or simulator that wll be used. The BACKEND will default to a QISkit -# local simulator without this section. -# -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/iqpe_h2.txt b/community/chemistry/input_files/iqpe_h2.txt deleted file mode 100644 index 3043ead2a..000000000 --- a/community/chemistry/input_files/iqpe_h2.txt +++ /dev/null @@ -1,56 +0,0 @@ -&name - H2 molecule experiment -&end - -&problem - name=energy - auto_substitutions=True - random_seed=None -&end - -&driver - name=PYQUANTE - hdf5_output=None -&end - -&pyquante - atoms=H .0 .0 .0; H .0 .0 0.735 - units=Angstrom - charge=0 - multiplicity=1 - basis=sto3g -&end - -&operator - name=hamiltonian - transformation=full - qubit_mapping=parity - two_qubit_reduction=True - freeze_core=False - orbital_reduction=[] - max_workers=4 -&end - -&algorithm - name=IQPE - num_time_slices=200 - expansion_mode=suzuki - expansion_order=2 - num_iterations=9 -&end - -&initial_state - name=HartreeFock - qubit_mapping=jordan_wigner - two_qubit_reduction=True - num_particles=2 - num_orbitals=4 -&end - -&backend - provider=qiskit.BasicAer - name=qasm_simulator - shots=100 - skip_transpiler=False - noise_params=None -&end diff --git a/community/chemistry/input_files/psi4_h2_0.735_sto-3g.txt b/community/chemistry/input_files/psi4_h2_0.735_sto-3g.txt deleted file mode 100644 index 6869a2c36..000000000 --- a/community/chemistry/input_files/psi4_h2_0.735_sto-3g.txt +++ /dev/null @@ -1,44 +0,0 @@ -&name -PSI4 H2 experiment -&end - -&driver - name=PSI4 -&end - -&psi4 -molecule h2 { - 0 1 - H 0.0 0.0 -0.3675 - H 0.0 0.0 0.3675 -} - -set { - basis sto-3g - scf_type pk -} -&end - -&operator - name=hamiltonian - qubit_mapping=parity -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=RYRZ -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/psi4_lih_1.6_sto-3g.txt b/community/chemistry/input_files/psi4_lih_1.6_sto-3g.txt deleted file mode 100644 index 6253a52d5..000000000 --- a/community/chemistry/input_files/psi4_lih_1.6_sto-3g.txt +++ /dev/null @@ -1,50 +0,0 @@ -&name -PSI4 LiH experiment -&end - -&driver - name=PSI4 -&end - -&psi4 -molecule lih { - 0 1 - Li 0.0 0.0 -0.8 - H 0.0 0.0 0.8 -} - -set { - basis sto-3g - scf_type pk -} -&end - -&operator - name=hamiltonian - qubit_mapping=parity - freeze_core=True - orbital_reduction=[-3, -2] -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=UCCSD -&end - -&initial_state - name=HartreeFock -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/psi4_save_hdf5.txt b/community/chemistry/input_files/psi4_save_hdf5.txt deleted file mode 100644 index 925a1f9a3..000000000 --- a/community/chemistry/input_files/psi4_save_hdf5.txt +++ /dev/null @@ -1,30 +0,0 @@ -# Sample input file for Qiskit Chemistry stack -# To show how to save an hdf5 file -# -&name -H2 molecule experiment -&end - -# To the external library DRIVER used for electronic structure computation -# we add an hdf5_output=*filename* This will run the stack and after -# the molecular information is extracted from the driver it will be -# written to the hdf5 file. At this point the stack ends and no further -# processing is done. -# -&driver - name=PSI4 - hdf5_output=molecule.hdf5 -&end - -&PSI4 -molecule h2 { - 0 1 - H 0.0 0.0 0.0 - H 0.0 0.0 0.735 -} - -set { - basis sto-3g - scf_type pk -} -&END diff --git a/community/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt b/community/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt deleted file mode 100644 index f3434bef4..000000000 --- a/community/chemistry/input_files/pyquante_h2_0.735_sto-3g.txt +++ /dev/null @@ -1,39 +0,0 @@ -&name -PyQuante H2 experiment -&end - -&driver - name=PYQUANTE -&end - -&pyquante - atoms=H 0.0 0.0 -0.3675; H 0.0 0.0 0.3675 - units=Angstrom - charge=0 - multiplicity=1 - basis=sto3g -&end - -&operator - name=hamiltonian - qubit_mapping=parity -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=RYRZ -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt b/community/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt deleted file mode 100644 index 0dba669cf..000000000 --- a/community/chemistry/input_files/pyquante_lih_1.6_sto-3g.txt +++ /dev/null @@ -1,45 +0,0 @@ -&name -PyQuante LiH experiment -&end - -&driver - name=PYQUANTE -&end - -&pyquante - atoms=Li 0.0 0.0 -0.8; H 0.0 0.0 0.8 - units=Angstrom - charge=0 - multiplicity=1 - basis=sto3g -&end - -&operator - name=hamiltonian - qubit_mapping=parity - freeze_core=True - orbital_reduction=[-3, -2] -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=UCCSD -&end - -&initial_state - name=HartreeFock -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt b/community/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt deleted file mode 100644 index d7ea2b2c2..000000000 --- a/community/chemistry/input_files/pyscf_h2_0.735_sto-3g.txt +++ /dev/null @@ -1,39 +0,0 @@ -&name -PySCF H2 experiment -&end - -&driver - name=PYSCF -&end - -&pyscf - atom=H 0.0 0.0 -0.3675; H 0.0 0.0 0.3675 - unit=Angstrom - charge=0 - spin=0 - basis=sto3g -&end - -&operator - name=hamiltonian - qubit_mapping=parity -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=RYRZ -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt b/community/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt deleted file mode 100644 index dca5b057b..000000000 --- a/community/chemistry/input_files/pyscf_lih_1.6_sto-3g.txt +++ /dev/null @@ -1,45 +0,0 @@ -&name -PySCF LiH experiment -&end - -&driver - name=PYSCF -&end - -&pyscf - atom=Li 0.0 0.0 -0.8; H 0.0 0.0 0.8 - unit=Angstrom - charge=0 - spin=0 - basis=sto3g -&end - -&operator - name=hamiltonian - qubit_mapping=parity - freeze_core=True - orbital_reduction=[-3, -2] -&end - -&algorithm - name=VQE - operator_mode=matrix -&end - -&optimizer - name=L_BFGS_B - factr=10 -&end - -&variational_form - name=UCCSD -&end - -&initial_state - name=HartreeFock -&end - -&backend - provider=qiskit.BasicAer - name=statevector_simulator -&end diff --git a/community/chemistry/input_files/pyscf_minimal.txt b/community/chemistry/input_files/pyscf_minimal.txt deleted file mode 100644 index 9b9cdffdc..000000000 --- a/community/chemistry/input_files/pyscf_minimal.txt +++ /dev/null @@ -1,18 +0,0 @@ -# Sample input file for Qiskit Chemistry stack -# This demonstrates the bare minimum configuration. This is to specify a driver -# along with the required driver specific configuration -# All other sections are optional and being omitted fallback to their default -# values, such as VQE for the algorithm with itself having a default optimizer -# and a default variational form. - -# PySCF driver. -# -&DRIVER - name=PYSCF -&END - -# Molecule atoms and basis set are required -&PYSCF - atom=H .0 .0 .0; H .0 .0 0.735 - basis=sto3g -&END diff --git a/community/chemistry/input_files/qpe_h2.txt b/community/chemistry/input_files/qpe_h2.txt deleted file mode 100644 index b72c0b228..000000000 --- a/community/chemistry/input_files/qpe_h2.txt +++ /dev/null @@ -1,60 +0,0 @@ -&name - H2 molecule experiment with QPE -&end - -&problem - name=energy - auto_substitutions=True - random_seed=None -&end - -&driver - name=PYQUANTE - hdf5_output=None -&end - -&pyquante - atoms=H .0 .0 .0; H .0 .0 0.735 - units=Angstrom - charge=0 - multiplicity=1 - basis=sto3g -&end - -&operator - name=hamiltonian - transformation=full - qubit_mapping=parity - two_qubit_reduction=True - freeze_core=False - orbital_reduction=[] - max_workers=4 -&end - -&algorithm - name=QPE - num_time_slices=50 - expansion_mode=suzuki - expansion_order=2 - num_ancillae=9 -&end - -&initial_state - name=HartreeFock - qubit_mapping=parity - two_qubit_reduction=True - num_particles=2 - num_orbitals=4 -&end - -&iqft - name=STANDARD -&end - -&backend - provider=qiskit.BasicAer - name=qasm_simulator - shots=100 - skip_transpiler=False - noise_params=None -&end diff --git a/community/chemistry/lih_1.6_sto-3g.hdf5 b/community/chemistry/lih_1.6_sto-3g.hdf5 deleted file mode 100644 index 49dc41ef7796b513e327f64a2dffd96fffd8424d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 26032 zcmeHP3tUZE`#vS)HbUc0XL1W6q3fF2F(gWItwFk;Zqhv}q~sDpg``jhX>tp>94(!s z4i$ z3Tpn8l?6%y71=5Kry75$BK{M0&F}ep%cyJ`6|vFgHEyW{PUg9XvgpT%Btek^eKo@%J7k zn2#N#{ zId3EVM@f2Yh-*bfMHxg{Is?|6G*GaG3pJ?U{#yTwypY)TQr3$7?dBJFRu?bI$BD&+ zQG;iCx{DnA-9aQjHzn@lry_%0qq&M-A^hB@eyrxZk zMSikY_IAFmzCvF=&whiPrBGi7CmX*&FOkq|M$>uT3*&c1_^4$ztGMFZJF|>ygf2t0 z3)nF?#-QW$%F9cTaPMQzka>JC#n=ts0uDMJ3YQ)NxJ^N)K_- zEni%Hl99-HXx{S|tKXC~>D00K`r5}5rzn#fL=fZaZfyo%pn+-GTydPM{j7-Xi*rtjP51qL?QE+?2g$yp^l`$gmz=wK(EjgFD`xr(nL4C+=tYUCZ;zRRMrmBx zhW#mxtFpNY9M_!Ob@9^TI~2+cN@_pA2|njaJ)ASH zmbA_c?==5>BgJ${_N#{%-c8Sus2{y{RQqWbxp^^s#>-hdiNOu$BSVgDmaGJ>BB}a) z@tt2JL2Zj2CKe@fTeS6-75ZZ zsQuJT;u!I?-SQO)bW@LW+QNPbwR$&0USHrYEn7H?Xug#2zDAO;J&M7%wb#)bu&*uj z+Cv`mw*c*4`Y%1(&T}0xfgeKHmk7P#kSCbM;~qSZ4;kn2T+$<@W0=XEy)@u}&Y6^T z$BBvKnsy3lXURMDi0foTnj~rM*z=~2CncjFU3iw2ew@q(PPc>i?WNX7$=FD-;YUMH98}Dwu5nCguYmwuU9a+Vk)j-Q)<-V`D zJ8M>^Je#(YGQA5RkKtmki@KYSx=gJ)r8Rr}w z-JpD;FuBlFbM<46`JoB>nBJa{rwE+F6i<&4%TsBO*P%D{--eRu#@>7G<;T+ip<|ME z>PoVe*UP;}KlL*^7L*70K^D8iD;0lEXOKasZ zT!W4Fi=2!MS|FZxfS0i5PUyTxhZy)Iu+I{DJs^)CUy0NZ?Y90H zFe|ltK3xbuw!uCf=yiiUhU+@zoYIbCmpzNZp-_|mJh#q`p?q}PQ+^%TO2}cw zXCxThOfa|_>)E=;Z7#+wV@O`{$Ky6!&Z0l}lJP&Y+T!c_?P23Jxn2FZzuVpaUR<63 zOU9LgbR^a+I$6B1eFgb?(WmB#@XmZBnf%=X>K}h)J;3G(wy$7|eo;~9PwI*@`8sD^ zIQcp!#7krMQ}sj@S$wNVM<+i(jbu&ho*#<-&2b#bO!%UX{5;W6z~by-Tq6*)gRvkX?O_2Y!No!YB@9OH>hjrwta z*4;lou15Z)}gqe6DMs)$UXIT_wy_{w(SL zH2SOe0L$;J;0Qlj1cG9`SIGR6u1`EYL?Rnk4?o$^mR^f|Tx&0D*CiiDKWkn0(bLD( z+110w(Z_X`$VUoen@Rt=cB*OZEb^Qw^7CQaOaiGLB4-~guB7)JUA?4l$^EuIV*b>$ z{UiQ9#VhjbT>0zI=auE)l`m`E&-SJG*-;=c(yqUk8NZa^ee?R!f1kS_$CZi9c?BhY zW|WVk-+TS}ac41ze+nUt5@eSj&u6^7f7BDZW!gc1-qJVR)@!N0jn-4HqLZp#K0U_i zwz9U4+O?l{h}*lc&)Y@x_@eJtAJW*tB?33CV$Zh50YzNEInOxDh~-?g{ZM1BbR8A^ zqR~)M-;%~Al&n zHuSE6JceuEr_&o#>#KOlYCef9HS+a-A5Ol8eZ{YNy-AQ4I{jhWt7+efJEL95l3_)H zplF%{KeofZN1nXid5{+jTygW9x9fWr)%xqxL32^M#d7YEn?|;2kphP^ObW?w?8C=kJJ!hz7j3B9_CpO%3+MO63 zZT^0vo-g+h@=}0XtmY??Ij~Ok$QLGNC>1S3S2)vnMKk3zK(F9>(QEUWqP`bIf1o zru4vC((vn&?6})@WTNJ*L0#2nkp(szJbEekaHpa7JIH&b%H#S+72m3~_2VjK{WE|> zEg5$@e8MEU3HC9);~isjk8Zcc9#dIs`-0B+(Tr?@-^Z=$w(bo@JoMUt+|-o9A7 zL`8q+dV^Ng`|K#wdl&MA!1bCfOw;C860)}Z=Hb!f$f@Vs`+wUcP@-~UuKkh2YP9LD zv|Bmp73n40N341`;!XN@z8g}k>qj}y{6 z_SU~P>}QiiHy_dr<5v%Hx(?67%G+4?;rXd&i61rg%{U;7r!eiE+?aM~qVE zPq=6;pxcCTuTyvH>)(f8f}Od7CEHX8d%m{7nW;8+3X5DvUdZA=ji|%_xV+5AYX;ks zNaIUcVLEpDbDJ;8j-Onjr!?Y7^rdK5{jMj=7J7XfLrQzTd?~)>O-#LK962#bQ=i%Q z5PF%sXTarL+m)E>6kFS$)$l`*!rRC6ZW_~OWJLF#;?wA-Y2jyY^zIr7=WaK~fTXB<+PD-j&5-ek9HDi^$=jfv^4(d2UagLWz5?j*#- zFYcbFyybOiB4yHu-shjzr-;|J(|o_cr9cl>z(H5VU*c8K2nWs2vG~AHtEm zeLJAH4D#LrcddzUyJB@$Ndo30Z}9Ft@C)NfL&OW~KR@8y!Os%#t_%3|0C;kO96wXw zR)L>$z`L`-rxZNN#<@4-G2A!cS;Mr$ok};Uh~2=a`mk?5^!h{ID?UDHceFDB@7~Ar z9S{4mpmzr3nF5ysex8bXIvD=G0`K~OUq)dZ{-%|tiYsZA($+4H$HGX8 z`J`)EW+|Kqde=anJ8<6~tgx9k`U2-39J6+l^+a*xL%KEF&xx{e9tOQk-mkL$@gzoQ zSJmTi?3}q#tfoWQ%B$zviLMoFV47@xa}-Pl^(659UJq z8fA>EoKCz#BKsaYphxDuU+8*qc$mZ=dVL_T4{-L;tyNMIX5$MiQ%HM9^}BZG{Ymga z-acFCErC3q-v&?-+No}upBCypn~sAYiLh@L^mc_j72rxQdFHxnCrM(FhfPI1PsY5; z<|AQ8vyHaTx{Dpb2cE!%;Q7YEkBues`*f*V$88s!v5S7JB91C~UAlGNY-$8~p1>tu zFSzV`$AexxDiV!9x|$nnu_5;Mu#V#LgI?|5Eto}$!Lv+WK5$?8FWb_v)q1+n`R%#% zb}qy$XRc&ovo&1Wl3z<#j(K6Y>H4Y$#TD8#!E?Dq-Yh-30=S=+P1&Jt9Zs)q8W!6_ zsSh0kKYoOLPobB|yC{ph0kmpQ!$vL%_LSwFhcSLNk-vxzeV_Q2DAmqKH^F}_4+}*+ zTjROeH1JsOcbOCah<;jQ?H2m(t0=T)T@1%?ag70=mYfUX6R-8 zJ{P!@2ZCOvyF!Tt`tu6>VD`O+-jlFrEN}tm_vR|+t))@Ov(3O)UdZd-Ab+`uc`$Vp z&-WIi>tm;OLcczIm=-r1EJ zd*-|BoRlbe1idkkR|#Ac&9Z&GJCfs9fuY3Ab;ru~QM1YMUHm*9i|0WhkFR6;k&S3~ z#B;ZA`qW5Tj(N2Z_6>tx7sz9{C)Z7rxAr?Gd5QJWUCdjjk?$TyUKcBuKi>!LSMaVa z_~m@-A_2&ES-!^fGI_Fa zs8*ws&~7dA;sMAvvSD8c^oBs*YT%wAe+~pc?_u*a)&Y~jlY^1hse;!I$no82<7(bVTpBI96{lKSQ;K?b_8vuFBfZOr`KTjrV;L}Xl$Hwn)$h#x!AT^pK z$IpG?$B(ej4|=;mUTg64EAaDktfyBXFEPjSHOD%D<-2*v>y`ue3iEV6{9Os&6*%+! zl8ABC8S)rzNZR&aZzNpi24DT=XSXeh^!n0OW3&YJYP1?=|2w=Ugugv8*C~)@&Ccvz)KW-9 zTe}q~1a~5FEoYC+&==Ax=N&I*4_H9XO|I^qXA(x|kBazu=nO5w>|^uReaJflT&9%X zQ?>(_guIjSMhWtWSC}siF)u`b|AH{i!x7Kgcy6p;W{y6ZZ}@dQw;y`%L*5YJnm-N` zBu%oHRLGu#DVhKCHyRxzj+Cu0nO^2E-~UrdL$tfLL#g;&wKqwH9|ZQfLGK92y8>LC ziHW^YR8nnygVn>>{85H=J6}IFq8+eqT#ovN71jZ>!KbVqaS7wm0`-H_n2+WFHxm59 z#_urHH@2Z)oaWqifkGk~x>mg$wxpH+}QFP6)nuQ%fRf_GbhpSyy0 zGSELo;I;F>*@B;wjfV# z`_M069b4B(>3k~^3EUd+bGc^K8%5o0!>910E$n0S0^|GRGJgkuje+|P>*7e{7p?Go!?6yCMBX|G@?wEw^K>QrEd=kDm+<_efpMe?d8}V@ zlzxdfYg~Z!X$VzW|8%4JVpY-+b+ft9dkON2&cEBydYzuwL^Vw@{MH3dI6Kj8*W`KB z34TPwKE`X2vAjHW;8w@AZKu@x0=Fn`=Zp}=i-)T(T1**tM^pc4MP#Gv=d{JFK3R@B zTuHvY!A`yY;$)IFU&(JA-5TBG>Y7JhGzhm*tw5%Y$u+coc00Wb#u2M4FVO5I-u6QqT37wK3~_(5j{36^?2Cck0$IPP5mtY; zL;blC_VZZXqA%(Z4P}8NB&^&}B-mBBk@9)`f{GOJyS7ZG{)g~=TB={u+E-J!BPpB5LQvnhg#4N9tFe5SuOn#H=KFV$cd~jh%byp1B7e3- z{+tcmgF5o(W5{C%d6k8k4clR8d1Olai#J-4w-d^&0@`$-1>jxAFFk&a9krx&m)iXg zmbbHfoZ(cEKVQZ;EruUy$e(kdmw(?ti!z)O^5=GYhWSownUnr{xz#E004=hix6A#T zrUJ_LnVup}2URrg)#=G_nw_i><&{2!o_Ls5GIP6>m)sWYS)eeR#)3~5;rZTF8d7EO ziv@`ZKAS#&>@*VovNUGnL`xcQt6$c`$)R*Dc=tTxQ_tyljH^U+1o$}u@1yWGL|hLbayKin@Yw4yh571-npJ5e#@*#OsJ zo_)9XyFw`2pYDu#+Yr`fuZ zt&eQ64)B299gw#c`3sw;`MQ@ET?5|D1;4O5VROU_AO9irH1Y!4VOheUF@ZD~^ZPQ` z*BN@(L0%egF__<%Vn1F7`x>FB5Aknx3dsq~V-K+}WCa|n^Rv3Q@cN^!jY9PGSsn8* z>UD9D*A{gZR%hVln^3kMyo7bneWkGqY2CBZ1yxtXU38YG&v~Srrs6In8puo7^PPXM z$BJSW&BuKA27WO6u0k)*hZgiaaOUCbl5{tO6AAVQ+4~2bQD5sU zw?7zweKocZ#`XtQP;Z)ryq)o1h#6mx{RZ;d0#}6k%R}U`j1MxfZtMuXevrp-`FQR^ z*}PGnUX6L0?O!szY=5vPk2AcCcJI+If$$>|_A$LxkXH>{0QLtrqyB7#x^i3W+mFKf zt^W>wo))71JXx;(%=SsxdW+2qmr&o$LmiXh4x%n~1N9eH2hqcNx;OMPd8NR`VLUvS z5z0u)@+)1~w^pwH++5Z_CL|v1SiF>&^3Ux8>@$Gg$;gKeBJN92e}0emU-qGH5srEU zTTiq4#u+@{<-l!2ePbT#7G-kv4ISv+1$k_riPbk)-69Y3hdb&FnOILhfjk}5H_l-F z!PhrT$av&++mOG!M1GJ9dHZGk*plR;-Fb|oWcV={_IX3^G|0;bE)w;PRmh*6kQXmQ zzMBQ!nS5utdA`ok!%8jr{cbDZVvs+7BbPs)mf1Ccvi$`Ld2IiU)kRre%>Vq57B!a3 zpT{6yVfpKUS! z-q`8h@YKLIl+7PZFUw!-fIAF+zKH%5c=7Kk9Dsd{pVe2X1Pg~6h#8OTfS+&SJ+f@< z$DhN#MltF`w#c&+!B@S-{Ciay*q?rmI)5?hC3BH?mSX(wguG|K<)H4Jg!+Ly@-SAf z`xSbdr}F!kJAhk*`IgV?y=VxY?{wG~1icQB$Ip*ml+Duw{wg))-^*b9vJT_O2=WYo zGuCLZ{%X^k+^61`53rF1oZy3(BKeR0`S)+o1MGeIRQT$GWBG?a2lj{e#K-Rm^AX6t z*Yc_NfowyW9e|6CLZv@#{u`z-4;o#9hP!Iu?Re_nq)ZNbODm);+I)$@|Yn7Jt?H zqu=!o__Kz}2YLf+q~AEQk$wvbUx*5nyAG1OX1|Nae@{u;aHhz^Pb$$zB>mo#uc!ts z{r-}TudB0%Ob=hL5C}{@(E9r?K8|Oe;h6je(oCl2yuGxLQgf{NK0SX=SztWWY{CfX cXA{RysyWDR)cyU|Zg_r7vaE&ROM8C*2lv" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='HF')\n", - "pylab.plot(distances, energies, label='Computed')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('LiH Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8VvX5//HXlUUmAcIIOyxFtoiIuHDUrVi1inVUq2LVKtp+q7VDq11af47a2hbU1oGzjrpQ60Bx4GAPRTaVIWEIJEASkly/P+4DxpiEO5A7507u9/PxOI+c+z4n57xzINd98jnnfD7m7oiISPOXFHYAERFpHCr4IiIJQgVfRCRBqOCLiCQIFXwRkQShgi8ikiBU8CWmzOwwM/u8Efbzipn9oAG28xszm9gQmUTijQq+NAgzW25mx1R/393fdfd961rPzC40s/fq2Lab2VYzKzazDWb2ppmdXW0/J7j7Qw3xs+yp4GcrM7O21d6fGfwMBeEkq5mZPWhmvws7hzQeFXxpKga7ezawL/Ag8FczuyncSDVaBpyz84WZDQQyw4sj8jUVfIkpMxtlZisbanvuvt7dHwEuB24ws7xgP2+b2SXB/IVm9r6Z/dXMNpvZAjM7ukqmTmb2gpltNLPFZnZpHflHmNkHZrbJzGab2ajdRHwEuKDK6x8AD1fbZq6ZPWxm68xshZn9ysySqmW/K9jnUjMbGbz/hZkVVm26MrMWZvb/zOx/ZrbWzP5hZhnBslFmttLMfhp83xozuyhYNhY4F7gu+Mvpxd38XNIMqOBLU/U8kAIMr2X5QcASoC1wE/CsmbUJlj0BrAQ6AWcCfzCzo6pvwMw6Ay8DvwPaAP8HPGNm7erI9SHQ0sz2M7NkYAxQ/ZrAX4BcoCdwBJEPiIuqZZ8D5AGPBXkPBHoD5xH56yY7WPdWYB9gSLC8M3BjlW3lB/vqDFwM3Gtmrd19AvAo8Cd3z3b3U+r4maSZUMGXMPwnOHvdZGabgL/VdwPuvgNYT6QQ16QQuNvdd7j7k8DnwElm1hU4BLje3UvcfRZwP988K9/pPGCSu09y90p3fx2YBpy4m3g7z/K/A3wGrNq5oMqHwA3uXuTuy4E7gPOrfP8yd/+Xu1cATwJdgVvcvdTd/wuUAb3NzICxwLXuvtHdi4A/BNvfaUfwvTvcfRJQTKRZTBJQStgBJCGd5u5v7HxhZhcCl9RnA2aWCrQDNtayyir/Zs+AK4ic0XcCdhbHqsuG1bCN7sD3zKzq2W8qMHk38R4BpgA9qNacQ+QvjtRgn1X337nK67VV5rcDuHv197KJ/PyZwPRI7QfAgOQq625w9/Iqr7cF3ysJSGf40lSNBsqBj2tZ3tmqVEGgG7A6mNqYWU61Zav4ti+AR9y9VZUpy91vrSuYu68gcvH2RODZaovXEznr7h7F/ndnPZHi379Kvtzg4nY01FVuglHBl4aUambpVaYG/wvSzNqY2bnAvcBt7r6hllXbA1ebWaqZfQ/Yj0jzzBfAB8Afg4yDiLRt13Tv/UTgFDM7zsySg/VHmVmXKKJeDBzl7lurvhk00zwF/N7McsysO/CTWvZfJ3evBO4D7jKz9hC57mBmx0W5ibVEriNIglDBl4Y0icgZ587pNw247dlmVgwsJtL8c62731jH+h8BfYicBf8eOLPKh8M5QAGRs/3ngJuqNjHtFHw4jAZ+Aawjcsb/M6L4vXH3Je4+rZbFVwFbgaXAe0QuzP5zd9usxfVEjsmHZrYFeIPo2+gfAPoF11L+s4f7lybENACKNDc7rwm4+6FhZxGJJzrDFxFJECr4IiIJQk06IiIJQmf4IiIJIq4evGrbtq0XFBSEHUNEpMmYPn36enevq7uPXeKq4BcUFDBtWm13somISHVmtmL3a0WoSUdEJEGo4IuIJAgVfBGRBKGCLyKSIFTwRUQShAq+iEiCUMEXEUkQTb7gV1Y6905ezNyVm8OOIiIS15p8wS8qKefRD1fwo4nT+WprWdhxRETiVpMv+LmZqfz9vANYV1TK1U/MpKJSncGJiNSkyRd8gMFdW3Hz6P68u2g9d72+MOw4IiJxqVkUfIBzhnfj7GFd+evkxfx3/pdhxxERiTvNpuAD3Dy6P4O65PLTp2azdF1x2HFEROJKsyr46anJ/O3coaQkGz+aOJ1tZeVhRxIRiRvNquADdGmdyT3n7M/iwmKuf2YuGtFLRCSi2RV8gMP6tOOnx+7Li7NX88/3l4cdR0QkLjTLgg9wxaheHNuvA3+Y9BkfLd0QdhwRkdA124JvZtxx1mC6t8nkysdmsnZLSdiRRERC1WwLPkBOeirjzz+AbWXlXPHoDMrKK8OOJCISmpgWfDNbbmZzzWyWmYUyWG2fDjncfuZgpq/4ih8++InO9EUkYTXGGf6R7j7E3Yc1wr5qdNKgjtx2xkCmr/iK4+6ewqvz1oQVRUQkNM26Saeqsw/sxktXH0q3Npn8aOIMrnt6NltLdZ++iCSOWBd8B/5rZtPNbGxNK5jZWDObZmbT1q1bF9Mwvdpl88zlI7nyyF78e/pKTrznXWb+76uY7lNEJF5YLB9MMrPO7r7KzNoDrwNXufuU2tYfNmyYT5vWOE39Hy/byLVPzuLLLSVcfVQfrjyyFynJCfMHj4g0E2Y2Pdom85hWOHdfFXwtBJ4Dhsdyf/UxvEcbXrnmME4Z1JG73ljIWeOn8r8N28KOJSISMzEr+GaWZWY5O+eBY4F5sdrfnmiZnsrdY/bnz2OGsKiwmBP+PIVbX1nAwrVFYUcTEWlwKTHcdgfgOTPbuZ/H3P3VGO5vj40e0pkDurfm5hc/5b53l/KPd5bQr2NLTh/amVMHd6J9y/SwI4qI7LWYtuHXV2O24ddmXVEpL81ZzXMzVzFn5WaSDA7t047v7t+J4/rnk5kWy89IEZH6qU8bvgp+HRYXFvOfmat4buYqVm3aTmZaMsf1z2dEzzb075RLnw7ZtEhJDjumiCQwFfwGVlnpTFvxFc/NXMWkuWvYvH0HAKnJRu/2OfTv1DKYctmvYw456akhJxaRRKGCH0OVlc6Kjdv4dPUW5q/ezPzVW5i/egvri0t3rdM9L5NubTLplJtBx1bpdGqV8fV8bgYZafqrQEQaRn0Kvhqk6ykpyejRNosebbM4aVDHXe8XbikJiv9mPvuyiJVfbefzLwtZV1xK9c/U1pmpdMzNIC87jbysNNpktSAvO402WZEpb9fXFuSkp5CUZI38U4pIc6SC30Dat0ynfct0juzb/hvvl5VXsnZLCas3bWf15u2s3hSZ/3JzCeu3lrF8w1Y2Fpextayixu2aQU6LFFpmpJIbTC3Tg/nMVFqmp5CTnkp2ixSy01PICb5+/TqV9NQkgrulRCSBqeDHWFpKEl3bZNK1TWad65XsqGDj1jI2bi1jw9YyNm4tZUNxGVtKytmyfQebt+/Y9XXp+mI2B/MlO3bf5XNykpGVlkx2ixSydk3JZKWl7Hpv54dEzs4PiyofGFWXpaeqOUqkqVLBjxPpqcmRtv5WGfX6vtLyCraWVlBcUk5R6Q6KS8opLo1MRSU7v+6IrFNaztZg2bayCjYUb/vGezsqdn89Jz01idaZabTKTKNVRiqts1LJzUijdWYqrTPTaJ2VRsfcdPJz08lvmU5WC/0XE4kX+m1s4lqkJNMiJZk2WWl7va3S8opdHxhFJV9/YBQHHyRbSsrZtK2MTdt28NW2HWzaVsbCtcW73iuv/PYHRk56SvABkEHHlpEPgs6tM+jTPps+HXLI1geCSKPRb5vs0iIlmRbZyeRlt6j397o7xaXlbCgu48stJXy5uWTX1zWbI9csFqzZ8q2L2J1bZdCnQzb7dMihT/ts9s3PoXf7bD3gJhID+q2SBmFm5KSnkpOeSkHbrFrX21FRyaqvtrNwbRGLCotZuLaIhWuL+WDxBsoqvr4e0bNtFgf1zGNkrzxG9MyjXU79P4RE5Jt0H77EhfKKSlZs3Mai4ANg9heb+HjZRoqCQWr6tM9mZK88Du6Vx0E98mjdAE1YIs2BHrySZqG8opL5q7fwwZINTF26gU+WbWT7jgrMYL/8lhyzX3t+MLJgj5qgRJoLFXxplsrKK5mzchNTl2zggyUb+HDZBtJTkjlvRDcuPbwn7XPUq6kkHhV8SQiLC4u4d/ISnp+1itTkJM4Z3o0fHdGL/FwVfkkcKviSUJat38rfJi/m2ZmrSDbjrAO7cPmo3nSu5zMNIk2RCr4kpC82buNvby/h6elfAHDG0C5cMao33fLqfspZpClTwZeEtmrTdsa/s4QnPv6CCndOG9KZK4/sRc922WFHE2lwKvgiwNotJYx/ZymPfrSCHRWVnDK4Ez8+sjd9OuSEHU2kwajgi1RRWFTC/e8u45GpKygpr+DEgR256qje9M1vGXY0kb2mgi9Sgw3FpTzw3jIenrqC4tJyjuvfgauO6sOAzrlhRxPZYyr4InXYtK2Mf76/nH+9v4yiknKO7tueq47uw5CurcKOJlJvKvgiUdhSsoOH3l/O/e8tY/P2HRy+TzvGHd2bA7q3CTuaSNRU8EXqobi0nEemruC+d5eycWsZh/TO4/YzB9d7bAKRMNSn4CfFOoxIvMtukcLlo3rx3vVH8quT9mP2F5s5a/xU/rdhW9jRRBqUCr5IIDMthUsO68mjlxxEUUk5Z42fyuLC4rBjiTQYFXyRagZ3bcUTY0dQXlnJmAlTWfDllrAjiTQIFXyRGuzXsSVPjD2Y5CRjzIQPmbNyU9iRRPaaCr5ILXq3z+bfl40ku0UK5973EdOWbww7ksheUcEXqUO3vEyeuuxg2ua04PwHPuaDxevDjiSyx2Je8M0s2cxmmtlLsd6XSCx0apXBk5eNoGubDC568BMmf14YdiSRPdIYZ/jjgM8aYT8iMdM+J50nxh5Mnw7ZjH14Gq/OWxN2JJF6i2nBN7MuwEnA/bHcj0hjaJOVxqOXjGBg51yufGwmz89aFXYkkXqJ9Rn+3cB1QGWM9yPSKHIzUnnk4oM4sKA11zw5iyc/+V/YkUSiFrOCb2YnA4XuPn036401s2lmNm3dunWxiiPSYLJapPCvC4dzWJ92XP/MXB58f1nYkUSiEssz/EOAU81sOfAEcJSZTay+krtPcPdh7j6sXbt2MYwj0nAy0pK574IDOLZfB37z4qf8/e0lYUcS2a2YFXx3v8Hdu7h7ATAGeMvdz4vV/kQaW4uUZO49dyinDO7Eba8u4M7XFxJPnRGKVJcSdgCRpiw1OYm7zx5CRmoS97y5iJIdFdxwQl/MLOxoIt/SKAXf3d8G3m6MfYk0tuQk49bTB5GemsyEKUvZXlbBzaf2JylJRV/ii87wRRpAUpJx86n9yUhNZvyUpWzfUcFtZwwiWUVf4ogKvkgDMTN+fkJfMtKSufuNSPPOXWcPITVZPZhIfFDBF2lAZsY1x+xDRmoyf3xlAaXllfz1+/vTIiU57Ggi6jxNJBYuO6IXN5/an9c/XculD09ne1lF2JFEVPBFYuUHIwv40xmDeHfROi568GOKS8vDjiQJTgVfJIbOOrArd589hE+Wf8X5D3zE5u07wo4kCWy3Bd/M9jGzN81sXvB6kJn9KvbRRJqH0UM6c+/3hzJv1WYunzidyko9nCXhiOYM/z7gBmAHgLvPIfLkrIhE6fgB+fx29AA+WLKB+99bGnYcSVDRFPxMd/+42ntqjBSpp7MP7Mqx/Tpw+2ufM3/15rDjSAKKpuCvN7NegAOY2ZmARn8QqScz49YzBtE6M41xT8zSnTvS6KIp+FcC44G+ZrYKuAb4UUxTiTRTbbLSuOOswSwuLOaPr2ggOGlc0RT8Fe5+DNAO6Ovuh7r7ihjnEmm2DuvTjh8e0oOHp65g8gKNjyuNJ5qCv8jMbge6uXtRrAOJJILrjt+Xvvk5/Ozp2awvLg07jiSIaAr+YGAh8ICZfRiMUNUyxrlEmrX01GT+PGZ/tpSUc93Tc9SPvjSK3RZ8dy9y9/vcfSRwPXATsMbMHjKz3jFPKNJM7Zufw8+P78tbCwqZ+JHGxpXYi+bBq2QzO9XMniMyKPkdQE/gRWBSjPOJNGsXjizg8H3a8fuXP2VxoVpMJbaiasMHRgO3u/v+7n6nu69196eBV2MbT6R5S0oy/t+Zg8hMS2HcE7MoK68MO5I0Y9EU/EHufrG7f1B9gbtfHYNMIgmlfct0bj19IPNXb+GO1z8PO440Y9EU/PZm9qKZrTezQjN73sx6xjyZSAI5tn8+5wzvxoQpS/lgyfqw40gzFU3Bfwx4CsgHOgH/Bh6PZSiRRPTrk/ejR14WP31qNpu3qVdNaXjR9qXziLuXB9NEID3WwUQSTWZaCnePGcK6olJ+8dxc3aopDa7Wgm9mbcysDfCKmf3czArMrLuZXYfuzhGJiUFdWnHtd/bh5blreGbGqrDjSDNT15i204l0mGbB68uqLHMiXSaLSAP70RG9eGfhOm56fh7DC9rQLS8z7EjSTNR6hu/uPdy9Z/C1+qSLtiIxkpxk3HnWYJKSjGuenEl5hW7VlIYRzYNXmWb2KzObELzuY2Ynxz6aSOLq0jqT3502gBn/28RfJy8OO440E9FctP0XUAaMDF6vAn4Xs0QiAkSGRjxtSCf+8tZiZvzvq7DjSDMQTcHv5e5/4ushDrfxdbu+iMTQLacNIL9lOtc8MYviUg00J3snmoJfZmYZfD3iVS9A/bmKNIKW6ancdfYQVn61jd+8MD/sONLERVPwbyLSZ05XM3sUeBO4LqapRGSX4T3acMWo3jw9fSWT5mp0Udlzdd2WCYC7v25mM4ARRJpyxrm7nv0WaUTjjunDu4vWccOzc9m/Wys65maEHUmaoLoevBq6cwK6Exm4fDXQLXivTmaWbmYfm9lsM5tvZjc3XGyRxJKanMTdY/anrLySnz41m8pKPYUr9VfXGf4dwdd0YBgwm8gZ/iBgGnDwbrZdChzl7sVmlgq8Z2avuPuHe5lZJCH1aJvFTaf04+fPzuX+95Yy9vBeYUeSJqauB6+OdPcjiZzZD3X3Ye5+ALA/kVsz6+QRxcHL1GDSaYnIXjj7wK4c268Dt7/2OfNXbw47jjQx0Vy03dfd5+584e7zgP2i2XgwWtYsoBB43d0/qmGdsWY2zcymrVu3LtrcIgnJzLj1jEG0zkxj3BOz2F5WEXYkaUKiKfhzzOx+MxsVTPcBc6LZuLtXuPsQoAsw3MwG1LDOhOCvh2Ht2rWrX3qRBNQmK407zhrM4sJi/vjKZ2HHkSYkmoJ/ETAfGBdMnwbvRc3dNwGTgePrG1BEvu2wPu344SE9eHjqCiYvKAw7jjQRuy347l7i7ne5+3eD6S53L9nd95lZOzNrFcxnAN8BFux9ZBEBuO74fembn8PPnp7N+mI9Cym7F80Z/p7qCEw2sznAJ0Ta8F+K4f5EEkp6ajJ/HrM/W0rKue7pORowRXYrZgXf3ee4+/7uPsjdB7j7LbHal0ii2jc/h+uP78tbCwo1YIrsVjTdI38vmvdEJBwXjSxgWPfW3PLifAq37La1VRJYNGf4NY1spdGuROJEUpJx25mDKCmv5Ff/maemHalVrU/amtkJwIlAZzO7p8qiloD6aRWJI73aZXPtMftw26sLeHnuGk4e1CnsSBKH6jrDX02kC4USIuPb7pxeAI6LfTQRqY9LD+vBwM653PT8fDZuLQs7jsShurpWmO3uDwG93f2hKtOz7q7hd0TiTEpyErd/bxBbSnZw84vqO1++LZo2/OFm9rqZLTSzpWa2zMyWxjyZiNRb3/yWXDGqN8/PWs0bn64NO47EmWgK/gPAncChwIFEes48MJahRGTPXXlkb/btkMMv/zOXzdt3hB1H4kg0BX+zu7/i7oXuvmHnFPNkIrJH0lIiTTvrikr5w8vqa0e+Fk3Bn2xmt5vZwdUGRRGRODWoSysuPbwnT077gncXqRdaidjtEIfAQcHXYVXec+Coho8jIg3l2mP24fX5a/n5M3P577WHk9Uiml93ac6i6TztyBomFXuROJeemsxtZw5i9ebt3P7a52HHkTgQTdcKHczsATN7JXjdz8wujn00EdlbBxa04QcHF/DgB8v5eNnGsONIyKJpw38QeA3Y+ejeQuCaWAUSkYb1s+P2pUvrDK5/Zg4lOzRCViKLpuC3dfengEoAdy8H9L9GpInIapHCracPYtn6rdz1xsKw40iIoin4W80sj2AAcjMbAWj0ZJEm5NA+bRlzYFfum7KU2V9sCjuOhCSagv8TIv3n9DKz94GHgatimkpEGtwvTtqP9jnpXPf0HMrKK8OOIyGI5i6dGcARwEjgMqC/u0c1iLmIxI+W6an8/rsD+HxtEfdOXhx2HAlBNHfpJBPpJvlo4FjgKjP7SayDiUjDO3q/Dpw2pBP3Tl7MZ2u2hB1HGlk0TTovAhcCeUBOlUlEmqAbT+lPbkYq1z09h/IKNe0kkmgevevi7oNinkREGkWbrDRuGT2AKx+bwX3vLuPyUb3CjiSNJJoz/FfM7NiYJxGRRnPiwHyO75/PXW8sZMm64rDjSCOJpuB/CDxnZtvNbIuZFZmZGv9EmjAz45bT+pORmsz1T8+hslLj4CaCaAr+ncDBQKa7t3T3HHdvGeNcIhJj7XPSufHkfkxb8RUPT10edhxpBNEU/C+Aee6uUwCRZub0oZ0ZtW87bnv1c77YuC3sOBJj0RT8pcDbZnaDmf1k5xTrYCISe2bGH747kOQk4+fPzkHndc1bNAV/GfAmkIZuyxRpdjq1yuCGE/vy/uINPPnJF2HHkRja7W2Z7n4zgJllB691SV+kmTnnwG68OHs1v3/5M47Ytx0dczPCjiQxEM2TtgPMbCYwH5hvZtPNrH/so4lIY0lKMm47YxA7Kiv51XPz1LTTTEXTpDMB+Im7d3f37sBPgftiG0tEGlv3vCx+dlxf3lxQyPOzVocdR2IgmoKf5e6Td75w97eBrJglEpHQXDiygKHdWvGbF+ezrqg07DjSwKK6S8fMfm1mBcH0KyJ37tTJzLqa2WQz+9TM5pvZuL2PKyKxlJxk/OnMQWwrreA3L8wPO440sGgK/g+BdsCzwdQueG93yoGfuns/YARwpZn129OgItI4erfPYdwxfXh57hpenbcm7DjSgKK5S+cr4Or6btjd1wBrgvkiM/sM6Ax8Wt9tiUjjGnt4TybNXcOv/jOfET3zaJWZFnYkaQBW29V4M3uhrm9091Oj3olZATAFGODuW6otGwuMBejWrdsBK1asiHazIhJD81dv5rR73+fQ3m154AcHkpRkYUeSGpjZdHcfFs26dZ3hH0ykW4XHgY+APfrXDu7ffwa4pnqxB3D3CUTuBGLYsGG6F0wkTvTvlMuNJ/fj18/P589vLuLa7+wTdiTZS3UV/HzgO8A5wPeBl4HH3T3qKzlmlkqk2D/q7s/uTVARaXznjejO7JWb+fObixjYOZdj+nUIO5LshVov2rp7hbu/6u4/IHLRdTGRPnV+HM2GzcyAB4DP3P3OBkkrIo3KzPjdaQMY0Lkl1z45i2Xrt4YdSfZCnXfpmFkLMzsdmAhcCdwDPBfltg8BzgeOMrNZwXTiXqUVkUaXnprMP847gJRkY+zD09haWh52JNlDtRZ8M3sYmAoMBW529wPd/bfuviqaDbv7e+5u7j7I3YcE06QGyi0ijahL60z+cs5Qlqwr5mdPz1bXC01UXWf45wF9gHHAB8FoVxrxSiRBHdqnLdcf35dJc79kwpTdPnspcajWi7buHs1DWSKSQMYe3pM5Kzdz26sL6N8pl0P7tA07ktSDirqIRM0s0vVC7/bZXPX4DI2S1cSo4ItIvWS1SGH8+cMor3Quf3Q6JTsqwo4kUVLBF5F669E2i7vPHsK8VVv4pfrPbzJU8EVkjxy9XwfGHd2HZ2asZOKH6hKlKVDBF5E9Nu7oPhzdtz03v/gp05ZvDDuO7IYKvojssaQk486zh9CldQaXPzqDtVtKwo4kdVDBF5G9kpuRyvjzh7G1tJwrHp1BWXll2JGkFir4IrLX9s3P4U9nDmL6iq/47Usa8iJe7XYAFBGRaJw8qBNzVm5mwpSlDOqSy/eGdQ07klSjM3wRaTDXHbcvh/TO45f/mcfclZvDjiPVqOCLSINJSU7injH70y67BT+aOJ0NxaVhR5IqVPBFpEHlZbfgH+cdwLriUq5+YiblFbqIGy9U8EWkwQ3sksvvTxvA+4s3cPtrn4cdRwIq+CISE98b1pXzRnRj/JSlvDRnddhxBBV8EYmhG0/uzwHdW3Pd03P4/MuisOMkPBV8EYmZtJQk/nbuULJapHDZI9PYvH1H2JESmgq+iMRUh5bp/O3coaz8ajs/eXIWlZXqWTMsKvgiEnMHFrThxlP68eaCQu55a1HYcRKWCr6INIrzR3TnjKFduPuNRbz52dqw4yQkFXwRaRRmxu+/O4ABnVtyzZOzWLZ+a9iREo4Kvog0mvTUZP5x3gGkJBkX/PMjlq4rDjtSQlHBF5FG1aV1Jv+6aDjbSis4/e8faOCURqSCLyKNbkjXVjx7xUhaZ6bx/fs/4uU5a8KOlBBU8EUkFN3zsnjm8pEM7JzLlY/N4L4pSzUYeoyp4ItIaNpkpfHoJQdx4sB8fj/pM37zwnwqdJ9+zKjgi0io0lOT+es5Q7n0sB48NHUFP5o4ne1lFWHHapZU8EUkdElJxi9P6sdvTunHG5+tZcx9H7Jefek3OBV8EYkbFx7Sg/HnHcDnX27hu397nyW6bbNBxazgm9k/zazQzObFah8i0vwc2z+fJ8YezLbSCs74+wd8ots2G0wsz/AfBI6P4fZFpJka0rUVz11xCG0y0zhXt202mJgVfHefAuijWUT2SLe8TJ65fCSDgts2J0xZots291LobfhmNtbMppnZtHXr1oUdR0TiSOusNCZechAnDezIHyYt4CbdtrlXQi/47j7B3Ye5+7B27dqFHUdE4kx6ajJ/OWd/xh7ek4enruCyR6axraw87FhNUugFX0Rkd5KSjF+cuB+3jO7PWwsKOWfCh6wr0m2b9aWCLyJNxgUHFzD+/GF8vraI0/+u2zbrK5a3ZT4OTAX2NbOVZnZxrPYlIonjO/068MTYg9leVsFvE1IrAAAMZElEQVTpf/uAj5fp3pBoxfIunXPcvaO7p7p7F3d/IFb7EpHEMqRrK569/BDystM47/6PeHH26rAjNQlq0hGRJqlbXibPXj6SwV1zuerxmYx/R7dt7o4Kvog0Wa0y03jk4oM4eVBH/vjKAm58fj7lFZVhx4pbKWEHEBHZG+mpydwzZn86t85g/DtLWbVpO7eePpD2LdPDjhZ3dIYvIk1eUpJxwwn78dvR/Xl30TqOuP1t7nx9IVtLdb9+VSr4ItJsnH9wAW/85AiO6tuee95cxBG3v82jH61QM09ABV9EmpXueVnce+5QnrtiJD3aZvLL5+Zx3N1TeP3TtQl/UVcFX0Sapf27teapyw5m/PkH4A6XPjyNsyd8yOwvNoUdLTQq+CLSbJkZx/XP57VrD+e3o/uzpLCY0fe+z1WPz+SLjdvCjtfoLJ7+xBk2bJhPmzYt7Bgi0kwVlexg/DtLuf+9pVRWwgUHd+fHR/WmVWZa2NH2mJlNd/dhUa2rgi8iiebLzSXc+frn/Hv6SnJapPDjo3pzwcEFpKcmhx2t3upT8NWkIyIJJz83nT+dOZhXxh3G/t1a84dJCzj6jnd4ftYqKptxf/sq+CKSsPrmt+ShHw5n4sUHkZuRyrgnZjH63veZumRD2NFiQgVfRBLeoX3a8tJVh3LH9wazobiUc+77kIsf/IRFa4vCjtagVPBFRIg8rXvGAV146/9Gcf3xffl42UaOu3sKNzw7h8ItJWHHaxC6aCsiUoONW8u4581FTPxwBWkpSVx6WE9+eEgPcjNTw472DbpLR0SkgSxfv5U/vbaASXO/JDXZOKR3W04c2JFj+3WIi9s5VfBFRBrY/NWbeWHWal6eu4aVX20nJckY2bstJw3M59h++bTOCqf4q+CLiMSIuzNv1RZenruGSXPX8L+N20hOMkb2yuPEgR05rn8+bRqx+Kvgi4g0Andn/uotTAqK//INkeI/omebXcW/bXaLmGZQwRcRaWTuzqdrtvDK3C+ZNHcNS9dvJcngoB55nDioI8f3z6ddTsMXfxV8EZEQuTsLvixi0tw1vDx3DUvXRYr/8B6RM//jB+TTPqdhRuRSwRcRiRPuzsK1xbva/BcXFmMGBxa04cQB+ZwwsCMd9mI4RhV8EZE4tWht0a7iv3BtpPgPL2jDxEsOIjW5/s/C1qfgaxBzEZFG1KdDDtd0yOGaY/ZhcWERk+Z+yepN2/eo2NeXCr6ISEh6t8/h6qNzGm1/6ktHRCRBqOCLiCQIFXwRkQShgi8ikiBU8EVEEkRMC76ZHW9mn5vZYjP7eSz3JSIidYtZwTezZOBe4ASgH3COmfWL1f5ERKRusTzDHw4sdvel7l4GPAGMjuH+RESkDrF88Koz8EWV1yuBg6qvZGZjgbHBy2Iz+7yGbbUF1jd4wthqapmbWl5Q5sbS1DI3tbywd5m7R7ti6E/auvsEYEJd65jZtGj7iogXTS1zU8sLytxYmlrmppYXGi9zLJt0VgFdq7zuErwnIiIhiGXB/wToY2Y9zCwNGAO8EMP9iYhIHWLWpOPu5Wb2Y+A1IBn4p7vP38PN1dnkE6eaWuamlheUubE0tcxNLS80Uua46g9fRERiR0/aiogkCBV8EZEEEVcFf3ddMZjZhWa2zsxmBdMlYeSskuefZlZoZvNqWW5mdk/w88wxs6GNnbFant3lHWVmm6sc3xsbO2MNmbqa2WQz+9TM5pvZuBrWibfjHE3muDnWZpZuZh+b2ewg7801rNPCzJ4MjvFHZlbQ+Em/kSeazHFVL3Yys2Qzm2lmL9WwLLbH2d3jYiJyYXcJ0BNIA2YD/aqtcyHw17CzVslzODAUmFfL8hOBVwADRgAfxXneUcBLYR/Xapk6AkOD+RxgYQ3/L+LtOEeTOW6OdXDcsoP5VOAjYES1da4A/hHMjwGebAKZ46peVMn1E+Cxmv79Y32c4+kMv8l1xeDuU4CNdawyGnjYIz4EWplZx8ZJ921R5I077r7G3WcE80XAZ0Se4q4q3o5zNJnjRnDcioOXqcFU/W6O0cBDwfzTwNFmZo0U8VuizBx3zKwLcBJwfy2rxPQ4x1PBr6krhpp+Sc4I/mx/2sy61rA8nkT7M8WTg4M/k18xs/5hh6kq+PN2fyJnc1XF7XGuIzPE0bEOmhlmAYXA6+5e6zF293JgM5DXuCm/KYrMEH/14m7gOqCyluUxPc7xVPCj8SJQ4O6DgNf5+pNQGsYMoLu7Dwb+Avwn5Dy7mFk28AxwjbtvCTtPNHaTOa6OtbtXuPsQIk/EDzezAWHmiUYUmeOqXpjZyUChu08PK0M8FfzddsXg7hvcvTR4eT9wQCNl21NNqnsJd9+y889kd58EpJpZ25BjYWapRArno+7+bA2rxN1x3l3meD3W7r4JmAwcX23RrmNsZilALrChcdPVrLbMcVgvDgFONbPlRJqsjzKzidXWielxjqeCv9uuGKq1y55KpG00nr0AXBDcRTIC2Ozua8IOVRszy9/ZXmhmw4n8/wj1lzrI8wDwmbvfWctqcXWco8kcT8fazNqZWatgPgP4DrCg2movAD8I5s8E3vLgymIYoskcb/XC3W9w9y7uXkCkvr3l7udVWy2mxzn03jJ38lq6YjCzW4Bp7v4CcLWZnQqUE7n4eGFogQEze5zI3RZtzWwlcBORi0e4+z+ASUTuIFkMbAMuCidpRBR5zwQuN7NyYDswJsxf6sAhwPnA3KC9FuAXQDeIz+NMdJnj6Vh3BB6yyKBFScBT7v5Std+9B4BHzGwxkd+9MSFl3SmazHFVL2rTmMdZXSuIiCSIeGrSERGRGFLBFxFJECr4IiIJQgVfRCRBqOCLiCQIFXyJGTMrjmKda8wsswH3eZqZ9WvA7X2wF99bHHztZGZP17FeKzO7Yk/3IxItFXwJ2zVAvQp+cO91bU4DGqzgu/vIBtjGanc/s45VWhHpJVEkplTwJeYs0vf720EHVgvM7NHgqdirgU7AZDObHKx7rJlNNbMZZvbvoD8azGy5md1mZjOA75nZpWb2SdD52DNmlmlmI4k8UXm7Rfo/72VmQ8zsw6ADrefMrHWwvbfN7C4zm2Zmn5nZgWb2rJktMrPfVcleXGX+ejObG+zz1hp+zh5B9rnVtlFgwRgEZtbfIv24zwoy9QFuBXoF791uZtlm9mZwDOaa2egq2/nMzO6zSB/w/w2eMsXMepvZG0G2GWbWK3j/Z8FxmmM19BkvCaYh+1rWpKnqBBQHX0cR6fWvC5GTjKnAocGy5UDbYL4tMAXICl5fD9xYZb3rqmw7r8r874CrgvkHgTOrLJsDHBHM3wLcHcy/DdwWzI8DVhN5erMFkd4286r9DCcAHwCZwes2Nfy8LwAXBPNXVvneAoIxCIh0lHZuMJ8GZFRdHryfArSsckwWE+n/vYDIU6NDgmVPAecF8x8B3w3m04n81XQskcGxLTjuLwGHh/3/QlN4U9x0rSDN3sfuvhIg6G6gAHiv2jojiDTHvB90M5NG5MNhpyerzA8IzqJbAdlEuuT4BjPLBVq5+zvBWw8B/66yys6+muYC8z3of8fMlhLpwKpq3zbHAP9y920A7l7TuAKHAGcE848At9WwzlTglxbpF/1Zd19k3+7u3IA/mNnhRLrR7Qx0CJYtc/ed3TVMBwrMLAfo7O7PBdlKgp/jWCJFf2awfjbQh8iHqiQgFXxpLKVV5iuo+f+eEenX/JxatrG1yvyDwGnuPtvMLiTyV8SeZqqslq+ylnzRqLOvEnd/zMw+IjIIxiQzuwxYWm21c4F2wAHuvsMivSumV8sMkeOYUcfuDPiju4+vR35pxtSGL2ErIjIMIMCHwCFm1hvAzLLMbJ9avi8HWGORbojPrWl77r4Z+MrMDguWnQ+8w555Hbho5x1FZtamhnXe5+vOrs6tYTlm1hNY6u73AM8Dg/jmMYBIl7iFQbE/EuheVzCPjKq10sxOC/bRIsj5GvDDKtdBOptZ+6h+WmmWVPAlbBOAV81ssruvI9Kj4eNmNodI80ffWr7v10Tard/nm93iPgH8zCKDRPci0tXs7cH2hhBpx683d3+VSBPQtKBJ6v9qWG0ccKWZzaX2EbfOAuYF2xhAZGjGDUSaseaZ2e3Ao8CwYDsX8O2uimtyPpHeIecQudaQ7+7/JTJ26tRgW0/zzQ8WSTDqLVNEJEHoDF9EJEGo4IuIJAgVfBGRBKGCLyKSIFTwRUQShAq+iEiCUMEXEUkQ/x9wqnx3v5ezdgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, dipoles)\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Moment debye')\n", - "pylab.title('LiH Dipole Moment');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/lih_uccsd.ipynb b/community/chemistry/lih_uccsd.ipynb deleted file mode 100644 index c5b8cbd1b..000000000 --- a/community/chemistry/lih_uccsd.ipynb +++ /dev/null @@ -1,234 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*LiH dissociation curve using VQE with UCCSD variational form*_\n", - "\n", - "This notebook demonstrates using Qiskit Chemistry to plot graphs of the ground state energy of the Lithium Hydride (LiH) molecule over a range of inter-atomic distances using VQE and UCCSD. It is compared to the same energies as computed by the ExactEigensolver\n", - "\n", - "This notebook populates a dictionary, that is a progammatic representation of an input file, in order to drive the Qiskit Chemistry stack. Such a dictionary can be manipulated programmatically and this is indeed the case here where we alter the molecule supplied to the driver in each loop.\n", - "\n", - "This notebook has been written to use the PYSCF chemistry driver." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Processing step 22 --- complete\n", - "Distances: [0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9\n", - " 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4. ]\n", - "Energies: [[-7.3133458 -7.50092206 -7.63097823 -7.7208124 -7.78224239 -7.82359927\n", - " -7.85069837 -7.86756328 -7.87700148 -7.8810157 -7.88107203 -7.87826815\n", - " -7.87344011 -7.86723367 -7.86015319 -7.84104235 -7.82307636 -7.80861236\n", - " -7.79836328 -7.79175303 -7.78771683 -7.7853196 -7.78391829]\n", - " [-7.31334583 -7.50092209 -7.63097825 -7.72081241 -7.7822424 -7.82359928\n", - " -7.85069838 -7.86756329 -7.87700149 -7.88101572 -7.88107204 -7.87826817\n", - " -7.87344029 -7.86723396 -7.86015321 -7.84104271 -7.82307664 -7.8086124\n", - " -7.79836343 -7.79175325 -7.78771697 -7.78531972 -7.78391847]]\n", - "Hartree-Fock energies: [-7.29954105 -7.48594487 -7.61577016 -7.70575334 -7.76736214 -7.80874318\n", - " -7.83561583 -7.85195386 -7.86053866 -7.86335762 -7.86186477 -7.85714496\n", - " -7.8500187 -7.84111204 -7.83090558 -7.80193896 -7.77087367 -7.74000074\n", - " -7.7108299 -7.68437642 -7.6612016 -7.64145387 -7.62497563]\n", - "VQE num evaluations: [71. 62. 71. 71. 71. 71. 71. 71. 71. 71. 71. 62. 60. 60. 61. 60. 70. 71.\n", - " 70. 80. 90. 90. 90.]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import pylab\n", - "import copy\n", - "from qiskit.chemistry import QiskitChemistry\n", - "\n", - "# Input dictionary to configure Qiskit Chemistry for the chemistry problem.\n", - "qiskit_chemistry_dict = {\n", - " 'driver': {'name': 'PYSCF'},\n", - " 'PYSCF': {'atom': '', 'basis': 'sto3g'},\n", - " 'operator': {'name': 'hamiltonian', 'qubit_mapping': 'parity',\n", - " 'two_qubit_reduction': True, 'freeze_core': True, 'orbital_reduction': [-3, -2]},\n", - " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'SLSQP', 'maxiter': 1000},\n", - " 'variational_form': {'name': 'UCCSD'},\n", - " 'initial_state': {'name': 'HartreeFock'}\n", - "}\n", - "molecule = 'H .0 .0 -{0}; Li .0 .0 {0}'\n", - "algorithms = ['VQE', 'ExactEigensolver']\n", - "\n", - "pts = [x * 0.1 for x in range(6, 20)]\n", - "pts += [x * 0.25 for x in range(8, 16)]\n", - "pts += [4.0]\n", - "energies = np.empty([len(algorithms), len(pts)])\n", - "hf_energies = np.empty(len(pts))\n", - "distances = np.empty(len(pts))\n", - "dipoles = np.empty([len(algorithms), len(pts)])\n", - "eval_counts = np.empty(len(pts))\n", - "\n", - "print('Processing step __', end='')\n", - "for i, d in enumerate(pts):\n", - " print('\\b\\b{:2d}'.format(i), end='', flush=True)\n", - " qiskit_chemistry_dict['PYSCF']['atom'] = molecule.format(d/2) \n", - " for j in range(len(algorithms)):\n", - " dict = copy.deepcopy(qiskit_chemistry_dict)\n", - " dict['algorithm']['name'] = algorithms[j] \n", - " if algorithms[j] == 'ExactEigensolver':\n", - " del dict['optimizer']\n", - " del dict['variational_form']\n", - " del dict['initial_state']\n", - " solver = QiskitChemistry()\n", - " result = solver.run(dict)\n", - " energies[j][i] = result['energy']\n", - " hf_energies[i] = result['hf_energy']\n", - " dipoles[j][i] = result['total_dipole_moment'] / 0.393430307\n", - " if algorithms[j] == 'VQE':\n", - " eval_counts[i] = result['algorithm_retvals']['eval_count']\n", - " distances[i] = d\n", - "print(' --- complete')\n", - "\n", - "print('Distances: ', distances)\n", - "print('Energies:', energies)\n", - "print('Hartree-Fock energies:', hf_energies)\n", - "print('VQE num evaluations:', eval_counts)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEWCAYAAABxMXBSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd81fX1+PHXO3uHkB2SkLAChBEgIBCGDAFRcVSJSKs4irXU2tpaR39V7Ff7tVZbay36dSDWBSgqqKiIihCGECAECIEAScjee997378/7oWGmIQAubkZ5/l43HLvZ557Y++576201gghhBAdZWfrAIQQQvQskjiEEEJcFEkcQgghLookDiGEEBdFEocQQoiLIolDCCHERZHEIaxKKTVdKXXc1nFYm1JKK6WG2DoOIbqCJA7RKZRSGUqpuS23a613aK2j2jtOKbVMKZXQzrWVUupXSqlkpVStUipfKbVNKXVr574L61BKRSultiilSpVS5Uqp/UqphZZ9Vyqlsi/yepeVpCzn1yilqps9/nCp1xN9j4OtAxCiA14ErgbuAxKARmAKcA+wtuXBSikFKK21qSuDbMenwMvAtZbXEwFlu3AAGKu1PmnNGyilHLTWBmveQ9iGlDiEVV3KL+oW5w8DfgncqrX+Wmtdp7U2aq0TtNbLmh23TSn1tFJqJ1ALDFJKhSilNll+6Z9USv282fFrlFJPtRWnpWT0e0spp0IptU4p5dJs/0NKqTylVK5S6q524vcDIoHXtNaNlsdOrXWCUsod+AIIafbLP0QpNUkptdtSOslTSr2klHKyXG+75dKHLMfHW7Zfq5RKspyzSyk15hI/75VKqfVKqf8opaqUUkeVUrHN9ocopTYopYqUUulKqV+3OPdDpdQ7SqlKYJlSylUp9ZZSqkwpdUwp9Yezn7PlM9zQ4v4vKqX+eSmxi64jiUN0d7OBLK11YgeO/RmwHPAEMjGXRrKBEOBm4C9KqdkXce/FwALMX/xjgGUASqkFwO+Bq4ChwI+q6JopAU4C7yilblBKBZ7dobWuwVySytVae1geuYAR+C3gh7lkNQdz8kRrPcNy+ljL8euUUuOA1cC9gC/wf8AmpZTzRbzX5hZh/uz6AZuAlyzv2w5z6ekQMMAS12+UUvObnXs98KHl3HeBJ4AIYBDmz+unzY59B1iglOpnub4DcCvwn0uMW3QRSRzCFj6x/DIuV0qVA6vaOdYPyG++QSmVbTm3Xik1sNmuNVrro5bqkSAgDnhYa12vtU4CXgduv4g4X9Ra52qtSzF/YcZYti8G3tRaH7F8+a9s6wLaPBncLCADeB7IU0ptV0oNbeec/VrrPVprg9Y6A3MimNlOnMuB/9Na/2Apjb0FNACT2znnQPO/QYsv/wSt9WattRF4Gxhr2T4R8Nda/9lScjoNvIb5y/6s3VrrT7TWJq11HebP6i9a6zKtdTbmasez7zMP2A7cYtm0ACjWWu9vJ27RDUjiELZwg9a639kHll/TbSgBgptv0FqHYk4ozpzfVpDV7HkIUKq1rmq2LRPzL+WOap6wagGPZtdufq/M9i6itc7WWv9Kaz0YGAjU0M6vaqXUMKXUZ5ZOAJXAXzC/37YMBH7XIhmHWeJsy/jmfwOt9VfN9rV83y6W0sBAzNVqze/zGBDY7Pjmnwv8+LNquf8t/lsK+SnmRCW6OUkcorv7FghtXs/ejuZTPecC/ZVSns22hQM5luc1gFuzfUEXEVMe5i/m5tftEK11FvBvYNTZTa0c9jKQCgzVWnth/nJurzE9C3i6RSJw01q/39G4OigLSG9xH0+t9cJmx7R8P3lAaLPXYS32fwKMUUqNwtx54N1OjllYgSQO0ZkclVIuzR6X3WtPa30cc1XNWqXUVZbGVntg6gXOywJ2Af9riWUMcDfmenWAJGChUqq/UioI+M1FhLUec8PvSKWUG+Z6/FYppXyUUk8qpYYopewsjeV3AXsshxQAvkop72aneQKVQLVSajjm3mTNFWBuMzjrNeAXSqkrlJm7UuqaFkmzM+wFqpRSD5/9OyilRimlJrZzznrgUcvnMAD4VfOdWut6zG0i7wF7tdZnOjlmYQWSOERn2gzUNXus7KTrrsBcN/53oBRzg/f/APFAe180SzA3zOYCHwNPaK23Wva9jbmRNwPYAqzraDBa6y+AFzCXhk5a/m1LoyWGrZiTwRHM7Q/LLNdKBd4HTluqf0IwN7zfBlRhTgotY1sJvGU5frGl48DPMTdil1liWnaBt3G2V9bZxwsdeN9GzKWCGCAdKMbcbuTdzml/xvz3Srd8Bh9a3n9zbwGjkWqqHkPJQk5CiK6ilLoPc9fqmc22hWOumgvSWlfaLDjRYVLiEEJYjVIqWCkVZ6mmiwJ+h7n0d3a/HfAgsFaSRs8hI8eFENbkhLmNKhIoxzw+ZBWAMg+ALMDcK22BrQIUF0+qqoQQQlwUqaoSQghxUXplVZWfn5+OiIiwdRhCCNFj7N+/v1hr7d+RY3tl4oiIiCAxsSNTGwkhhABQSrU7A0JzUlUlhBDiokjiEEIIcVEkcQghhLgovbKNQwhx6ZqamsjOzqa+vt7WoQgrcHFxITQ0FEdHx0u+hiQOIcR5srOz8fT0JCIiAqVsvcKt6Exaa0pKSsjOziYyMvKSr2OTqiplXoYzyfLIUEoltXKMi1Jqr1LqkGX5yidtEasQfU19fT2+vr6SNHohpRS+vr6XXZq0SYlDax1/9rlS6nmgopXDGoDZWutqpZQjkKCU+kJrvaeVY4UQnUiSRu/VGX9bmzaOK/M7WIx5WunzaLNqy0tHy8Nq86MYTZp/f3eS7SeKrHULIYToFWzdq2o6UKC1Tmttp2WhmCSgEPhaa/1DWxdSSi1XSiUqpRKLii7+y9/eTvHq9tNsScm/8MFCCKvy8PA47/WaNWv41a9+1cbRrUtKSmLz5s2dGdZ51qxZg7+/PzExMcTExHD77ReznL3Ztm3buPbaa60QnXVZrapKKbWV1pfj/KPWeqPl+RJaKW2cZVk4JkYp1Q/4WCk1Smt9pI1jXwVeBYiNjb2kkkmErxuZJbWXcqoQohsxGAwkJSWRmJjIwoULW93v4HD5X3/x8fG89NJLl32dnsZqiUNrPbe9/ZZlRW8CJnTgWuVKqe8wT73cauLoDAN93TmYVWatywshOsGnn37KU089RWNjI76+vrz77rsEBgaycuVKTp06xenTpwkPD2fnzp3U1dWRkJDAo48+yrFjx87b/8477/DII4+wbds2GhoaWLFiBffeey8Af/vb31i/fj0NDQ3ceOONPPlkx/vmJCUl8Ytf/ILa2loGDx7M6tWr8fHx4eTJk/ziF7+gqKgIe3t7Pvjgg/PO27dvH8uXL+fDDz9k8ODBnfqZdTZbdsedC6RqrbNb26mU8geaLEnDFbgK+Ks1A4rwdeOz5FwaDSacHGxdiyeE7T356VFScjt3faWRIV48cV10u8fU1dURExNz7nVpaSmLFi0CYNq0aezZswelFK+//jrPPvsszz//PAApKSkkJCTg6urKmjVrSExMPFciWLly5Xn7X331Vby9vdm3bx8NDQ3ExcUxb9480tLSSEtLY+/evWitWbRoEdu3b2fGjBk/inPdunUkJCQA8MADD3DnnXdy++23869//YuZM2fy+OOP8+STT/LCCy+wdOlSHnnkEW688Ubq6+sxmUxkZWUBsGvXLu6//342btxIeHj45X/IVmbLxHErLaqpLOstv661XggEY15X2R5zW8x6rfVn1grGaGjkh6x4pvaPILtsJoP8PS58khDCKlxdXUlK+m8v/bNJAMzjTOLj48nLy6OxsfG88QiLFi3C1dW1zes2379lyxaSk5P58MMPAaioqCAtLY0tW7awZcsWxo0bB0B1dTVpaWmtJo6WVVUVFRWUl5czc6Z5Zdw77riDW265haqqKnJycrjxxhsB8yC8s44dO8by5cvZsmULISEhF/dB2YjNEofWelkr23KBhZbnycC4rorH3sGJEmUgyCWfzJJaSRxCwAVLBrZw//338+CDD7Jo0SK2bdvGypUrz+1zd3dv99zm+7XW/Otf/2L+/PnnHfPVV1/x6KOPnqu2Ouvf//43r732GkCnNroHBwdTX1/PwYMHe0zikPqYZsKUCzWOtaQX19g6FCFEGyoqKhgwYAAAb731VpvHeXp6UlVV1eb++fPn8/LLL9PU1ATAiRMnqKmpYf78+axevZrqavNogJycHAoLC1mxYgVJSUkkJSW1+QXv7e2Nj48PO3bsAODtt99m5syZeHp6EhoayieffAJAQ0MDtbXmjjj9+vXj888/59FHH2Xbtm0X92HYiCSOZsJd+lPiaCSzRBKHEN3VypUrueWWW5gwYQJ+fn5tHjdr1ixSUlKIiYlh3bp1P9p/zz33MHLkSMaPH8+oUaO49957MRgMzJs3j9tuu40pU6YwevRobr755nYTUEtvvfUWDz30EGPGjCEpKYnHH38cMCeRF198kTFjxjB16lTy8//b9T8wMJDPPvuMFStW8MMPbY466DZ65ZrjsbGx+lIWcnrj0zt5oTSRK5r+xuv3LLBCZEJ0f8eOHWPEiBG2DkNYUWt/Y6XUfq11bEfOlxJHM2H9zF3gasoP2jgSIYToviRxNBMeMAYAU9MpmowmG0cjhBDdkySOZsIGTALAyTGP3PI6G0cjhBDdkySOZtw9gvA1arRTmfSsEkKINkjiaCFUOVHnVCNzVgkhRBskcbQw0NmHUkcDGdIlVwghWiWJo4Vw9xCKHezILpLp1YWwhVmzZvHVV1+dt+2FF17gvvvu4+jRo8yePZuoqCgGDx7ME088gclk7sjScprzmJgYUlJSbPEWej1JHC2EW7rkVpVJl1whbGHJkiWsXbv2vG1r167l1ltvZdGiRTzyyCMcP36cw4cPs3fvXv75z3+eOy4+Pv7c6O6kpCRGjhzZ1eH3CZI4WggPGA2AqfEEBumSK0SXu/nmm/n8889pbGwEICMjg9zcXE6ePHluBlsANzc3XnrpJf72t7/ZMtw+yZaz43ZLoSETAXB2zCOvop6w/m42jkgIG/riEcg/3LnXDBoNVz/T5u7+/fszadIkvvjiC66//nrWrl3L4sWLOXr0KBMmnL98z+DBg6mrq6O8vBw4f5pzgN27d7c7W664NFLiaMHbO5x+RhM4lUoDuRA20ry6au3atSxZsqRD57WsqpKkYR1S4mhFqHKi3rGGjJJapg+1dTRC2FA7JQNruv766/ntb3/LgQMHqK2tZcKECRw8eJDt27efd9zp06fx9fWlX79+Nomzr5ISRysGOvWjzLGJTBkEKIRNeHh4MGvWLO66665zpY2lS5eSkJDA1q1bAfMqgb/+9a8vallX0TkkcbQi3C2IIgfFmeIiW4ciRJ+1ZMkSDh06dC5xuLq6smnTJp5++mmGDRuGn58fcXFxLF269Nw569atO6877q5du2wVfq8mVVWtCOs3GFPlESpLDgEzbR2OEH3SDTfcQMtlH0aNGsV3330HwCeffMKDDz7IbbfdxsCBA1m2bBnLli2zQaR9j5Q4WhHuPwoAY/1xjKbet16JEL3BDTfcwOnTpxk4cKCtQ+lzJHG0IizEvJaJs2MO+ZX1No5GCCG6F0kcrfDpNwgPkwnlVCIN5EII0YIkjlYoOztCtSMNjtVkyCy5QghxHkkcbRjo5EW5UxOZMghQCCHOI4mjDeFugRQ5QEZRia1DEUKIbkUSRxvCvCMxKEVlSSfP0yOEuCB7e/vzxmM880znjWBPSkpi8+bN5163NR17bm4uN998c6fd91JkZGQwatQom8bQGpuM41BKrQOiLC/7AeVa65g2jrUHEoEcrfW1XRQi4X7RkP0FTQ3HMJk0dnaqq24tRJ/n6upKUlKSVa6dlJREYmIiCxcuPLctPj6el1566UfHfvjhh1aJoasZDAYcHDrv694mJQ6tdbzWOsaSLDYAH7Vz+APAsa6J7L/Cgy1dcu1zKKxq6OrbCyFaqKioICoqiuPHjwPmkeWvvfYaAPfddx+xsbFER0fzxBNPnDtn3759TJ06lbFjxzJp0iQqKip4/PHHz40wX7duXZv3a/5rv7a2lsWLFzNy5EhuvPFGrrjiChITEwHYsmULU6ZMYfz48dxyyy1UV1cDEBERwRNPPMH48eMZPXo0qampAHz//ffnSjbjxo2jqqoKrTUPPfQQo0aNYvTo0a3GNXnyZI4ePXru9ZVXXkliYiI1NTXcddddTJo0iXHjxrFx40bAXJJatGgRs2fPZs6cOZf8ubfGpiPHlVIKWAzMbmN/KHAN8DTwYBeGhp/fCFxMGnunYjJKagjydunK2wvRLfx1719JLU3t1GsO7z+chyc93O4xdXV1xMT8txLi0UcfPVcqWLZsGQ888ABlZWX8/Oc/B+Dpp5+mf//+GI1G5syZQ3JyMsOHDyc+Pp5169YxceJEKisrcXNz489//jOJiYnnShhr1qxpdTr25latWoWPjw8pKSkcOXLkXGzFxcU89dRTbN26FXd3d/7617/y97//nccffxwAPz8/Dhw4wKpVq3juued4/fXXee655/j3v/9NXFwc1dXVuLi48NFHH5GUlMShQ4coLi5m4sSJzJgx47wY4uPjWb9+PU8++SR5eXnk5eURGxvLY489xuzZs1m9ejXl5eVMmjSJuXPnAnDgwAGSk5Pp37//pfyp2mTrKUemAwVa67Q29r8A/AHwvNCFlFLLgeUA4eHhlx2YsrMjTNvT4FRFZkkNkwf5XvY1hRAd01ZV1VVXXcUHH3zAihUrOHTo0Lnt69ev59VXX8VgMJCXl0dKSgpKKYKDg5k40bzGjpeXV5v3a6uq6qyEhAQeeOABwDztyZgxYwDYs2cPKSkpxMXFAdDY2MiUKVPOnXfTTTcBMGHCBD76yFyxEhcXx4MPPsjSpUu56aabCA0NJSEhgSVLlmBvb09gYCAzZ85k37595+4DsHjxYubNm8eTTz7J+vXrz7W/bNmyhU2bNvHcc88BUF9fz5kzZ859Xp2dNMCKiUMptRUIamXXH7XWGy3PlwDvt3H+tUCh1nq/UurKC91Pa/0q8CpAbGxsp8wTEu7oyXFjOenFMpZD9E0XKhl0NZPJxLFjx3Bzc6OsrIzQ0FDS09N57rnn2LdvHz4+Pixbtoz6+q6Z8UFrzVVXXcX777f6NYazszNgbuw3GAwAPPLII1xzzTVs3ryZuLi4H62v3pYBAwbg6+tLcnIy69at45VXXjkXw4YNG4iKijrv+B9++AF3d/dLfWvtslobh9Z6rtZ6VCuPjQBKKQfgJqCtSsY4YJFSKgNYC8xWSr1jrXhbE+4WQIEjZBaVd+VthRBt+Mc//sGIESN47733uPPOO2lqaqKyshJ3d3e8vb0pKCjgiy++ACAqKoq8vDz27dsHQFVVFQaDAU9PT6qqqi7qvnFxcaxfvx6AlJQUDh8297acPHkyO3fu5OTJkwDU1NRw4sSJdq916tQpRo8ezcMPP8zEiRNJTU1l+vTprFu3DqPRSFFREdu3b2fSpEk/Ojc+Pp5nn32WioqKc6WR+fPn869//evchJAHDx68qPd2KWxZVTUXSNVaZ7e2U2v9KPAogKXE8Xut9U+7LjwI94qgqTqNstKjwOSuvLUQfVrLNo4FCxZw55138vrrr7N37148PT2ZMWMGTz31FE8++STjxo1j+PDhhIWFnas2cnJyYt26ddx///3U1dXh6urK1q1bmTVrFs888wwxMTE8+uijwI+XnF21ahUhISHnXv/yl7/kjjvuYOTIkQwfPpzo6Gi8vb3x9/dnzZo1LFmyhIYGcyeap556imHDhrX53l544QW+++477OzsiI6O5uqrr8bJyYndu3czduxYlFI8++yzBAUFkZGRcd65N998Mw888AB/+tOfzm3705/+xG9+8xvGjBmDyWQiMjKSzz777NI//A5QLact7ipKqTXAHq31K822hQCva60Xtjj2SsyJo0PdcWNjY/XZHg+XY+/B17k7+Z9E5V7FB488j7ktX4je7dixY4wYMcLWYXQrRqORpqYmXFxcOHXqFHPnzuX48eM4OTnZOrRL0trfWCm1X2sd25HzbVbi0Fova2VbLrCwle3bgG1WD6qF8KAJkAxO9tkUVTcQ4Ck9q4Toi2pra5k1axZNTU1orVm1alWPTRqdwda9qrq1gIDROGmNg2MxmSW1kjiE6KM8PT3pjFqM3kKmHGmHnb0DA0x2NDlVki7Tq4s+xFZV2ML6OuNvK4njAsId3Kl0rJdZckWf4eLiQklJiSSPXkhrTUlJCS4ul1d7IlVVFxDuGsAeYxXpRdW2DkWILhEaGkp2djZFRUW2DkVYgYuLC6GhoZd1DUkcFxDuGU5D7WnKSlOADnU4EKJHc3R0JDIy0tZhiG5MqqouINx3OACNNUel6C6EEEjiuKCwoPEAONmdoaSm0cbRCCGE7UniuIDgoHE4aI2jU6E0kAshBJI4LsjB0YUQk8LgWEmGTHYohBCSODoi3N6NKifpkiuEECCJo0PCXf0pdDRJl1whhEASR4eEe4ZRa2dHcWlb600JIUTfIYmjA8L6m7vkNlQfli65Qog+TxJHB4QHmtcFcFIZlNc22TgaIYSwLUkcHTAgOBY7rXFyKiJDGsiFEH2cJI4OcHR2J9ikMDqVk1kiXXKFEH2bJI4OCrN3pdqxTkocQog+TxJHB4U796fI0SQlDiFEnyeJo4PCPcOosrcjr/C0rUMRQgibksTRQWE+QwFoqE62cSRCCGFbkjg66FyXXNKpkC65Qog+TBJHB4WGTATA2amAzFJpIBdC9F2SODrIxdWHQKPG5FROhjSQCyH6MEkcFyHMzoUax1pOy2SHQog+TBLHRRjo3J8SJyNHciptHYoQQtiMgy1uqpRaB0RZXvYDyrXWMa0clwFUAUbAoLWO7bIgWxHmMYCyxjxO5pwGbBqKEELYjE0Sh9Y6/uxzpdTzQEU7h8/SWhdbP6oLC/cZCqWJODYeo7CyngAvF1uHJIQQXc6mVVVKKQUsBt63ZRwdFR4wBoB+Tpkczmkv1wkhRO9l6zaO6UCB1rqtFZI0sEUptV8ptby9CymlliulEpVSiUVFRZ0eKEBYyCQAXJ3zSc6WxCGE6JusVlWllNoKBLWy649a642W50tov7QxTWudo5QKAL5WSqVqrbe3dqDW+lXgVYDY2FirrLbk5hFAqBFwK5YShxCiz7Ja4tBaz21vv1LKAbgJmNDONXIs/xYqpT4GJgGtJo6uEu3kwyFdSll2BVprzLVtQgjRd9iyqmoukKq1zm5tp1LKXSnlefY5MA840oXxtSq631DyHRSGukzyK+ttHY4QQnQ5WyaOW2lRTaWUClFKbba8DAQSlFKHgL3A51rrL7s4xh+JHjAFgAjXJGnnEEL0STbpjgugtV7WyrZcYKHl+WlgbBeHdUEjBl8Nyf/Ey/UUh7MrmB/dWjOOEEL0XrbuVdXjeHoNIMII2r2IZGkgF0L0QZI4LsFIZ19yHes4nF2O1lbpwCWEEN2WJI5LMLLfMAodFHYNmWSX1dk6HCGE6FKSOC5B9ICpAIS7HZTxHEKIPkcSxyUYMWQBSmu8XE9LzyohRJ8jieMSuHsEEWmyw+hWzOGccluHI4QQXUoSxyWKdvYj26mOZMsIciGE6CskcVyi6P5RlNjb4WI4TaYsJSuE6EMkcVyi6NBpAIS7HpIGciFEnyKJ4xJFDb4aO63xcDstiUMI0ad0KHEopT5SSl2jlJJEY+Hq1p9B2h6DWwnJ2dJALoToOzqaCFYBtwFpSqlnlFJRFzqhL4h29ifLsZ4jOeWYTNJALoToGzqUOLTWW7XWS4HxQAawVSm1Syl1p1LK0ZoBdmfR/YdTZm+Hu/EU6SU1tg5HCCG6RIernpRSvsAy4B7gIPBPzInka6tE1gNEh00HIMztEIdlIKAQoo/oaBvHx8AOwA24Tmu9SGu9Tmt9P+BhzQC7s2GD5uGgNR5u6TKCXAjRZ3R0PY4XtdbftbZDax3bifH0KC6uPgzW9jS6lsoIciFEn9HRxOGjlLqpxbYK4LDWurCTY+pRol0C+EbnUpJejtGksbeTNciFEL1bR9s47gZeB5ZaHq8BDwM7lVI/s1JsPUJ0/5FU2Nvho9I4VVRt63CEEMLqOpo4HIERWuufaK1/AowENHAF5gTSZ0WHzwBggEuytHMIIfqEjiaOUK11QbPXhUCY1roUaOr8sHqOoZYGcnf3DA7LQEAhRB/Q0TaObUqpz4APLK9/YtnmDvTpb0snZ0+GaQfqXUplDXIhRJ/Q0cSxArgJmGZ5/R9ggzbPJz7LGoH1JNGuQXxJFiWnyjEYTTjYy8wsQoje64KJQyllD2zVWs8CNlg/pJ5npO9IPsjNwc/uOGmF0xkR7GXrkIQQwmou+NNYa20ETEop7y6Ip0eKDp8JwADXwzKCXAjR63W0TqUaOKyUekMp9eLZhzUD60mGRMzFSWvc3DJJloGAQoherqNtHB9ZHp1CKbUOODvDbj+gXGsd08px/TCPHxmFufvvXVrr3Z0VR2dxdHYnSjtS51omJQ4hRK/XocShtX5LKeUKhGutj1/uTbXW8WefK6WexzwKvTX/BL7UWt+slHLCPFdWtzTSLZjPajMpyyyj0WDCyUEayIUQvVNHJzm8DkgCvrS8jlFKbbrcmyulFLAYeL+Vfd7ADOANAK11o9a629YDRfuNosbOjkCHY5woqLJ1OEIIYTUd/Vm8EpiEZcyG1joJGNQJ958OFGit01rZFwkUAW8qpQ4qpV63jBtplVJquVIqUSmVWFRU1AmhXZzogeZeycEuR2QEuRCiV+to4mjSWrf8NjS1d4JSaqtS6kgrj+ubHbaEVkobFg6Y1/t4WWs9DqgBHmnrflrrV7XWsVrrWH9//wu/o042aOAsXEwaN/czMlOuEKJX62jj+FGl1G2AvVJqKPBrYFd7J2it57a3XynlgHlQ4YQ2DskGsrXWP1hef0g7icPWHBxdiMKJGpdyKXEIIXq1jpY47geigQbMJYRK4DeXee+5QKrWOru1nVrrfCCr2frmc4CUy7ynVUW7h5DhaCAtv4xY08DOAAAgAElEQVT6JqOtwxFCCKvo6JrjtVrrP2qtJ1qqg/6ota6/zHvfSotqKqVUiFJqc7NN9wPvKqWSgRjgL5d5T6uK9htDnZ0ixPEoqfnSQC6E6J06VFWllBoG/B6IaH6O1nr2pd5Ya72slW25wMJmr5OAHrPCYPTAWZD1KUGuR0g6U0ZMWD9bhySEEJ2uo20cHwCvYB6MJ3UwbYgYOBPX7Rp3jxy2pxWzLC7S1iEJIUSn62jiMGitX7ZqJL2AvYMTI5QzVc7lJJ8qpr7JiIujva3DEkL0ESaTxq4Llq/uaOL4VCn1S+BjzA3kAFgWchLNjHQfwIfVp2lqqmf3qRJmDQ+wdUhCiF6qvslIUlY5e06XsOd0CVX1Bj7/9XSr37ejieMOy78PNdum6ZxBgL1KtP9Y3qlNZ6j7Mb5NHSqJQwjRaVomigNnymk0mFAKokO8mDLIF6NJY2/lUkdH56qSyvoOio6YA5mfEO2fxnfHC9FaY55ZRQghLs6FEsXtkwcyeZAvEyP74+3q2GVxtZs4lFJ/0Fo/a3l+i9b6g2b7/qK1fszaAfY0A8Om4WvU1DudILusjpOF1QwN9LR1WEKIHqDBYCTpTDl7TpdaEkUZDd0gUbR0oRLHrcCzlueP8t81xwEWAJI4WrCzd2CaSxDfNuRjTyPfphZK4hBCtOpCieJnZxNFRH+83WyXKFq6UOJQbTxv7bWwmBF2JRtPr2Nm8AG+TQ3i3pmDbR2SEKIbMBhNHMwqZ9fJkh8lipHBXvzUkigmdbNE0dKFEodu43lrr4XFlLF34nBqLb4e+/n+1BQq6ppsWqwUQthOZX0T3x8v4ptjBWw7UUR5bVOPSxQtXShxjFVKVWIuXbhanmN57WLVyHowT68BjMeFNJWN0aTZkVbEtWNCbB2WEKKLZBTX8E1qId8cK2BveikGk8bHzZHZwwOYMzyQaUP8elSiaKndxKG1ltFrl2iG/zieK97DEI9Mvk0dIIlDiF7MYDRx4Ew53xwrYOuxAk4V1QAwLNCDe6YPYu6IAMaF+1i9m2xX6eg4DnGRpo9cwnPb9zA+cDffHB/aZSM6hRBdo7UqKEd7xRWRvvx08kDmDA8k3LfbrnZ9WSRxWEnkwCsJNUKp/XFKaho5lF3OuHAfW4clhLgMGcU1bD1WwLephT+qgpo7IpDpQ/3wdOm5VVAdJYnDSpSdHTM8BvJRTQaudjV8l1ooiUOIHqa9KqifzxjEnOG9qwqqoyRxWNHMyKt5L+UVZof8wLfHg3lwXtSFTxJC2FSjwcT3J4r4PDm3z1VBdZQkDiuKHXM7rkdextktiSMnZlNYWU+Al3RGE6K7MZk0P6SXsulQDpsP51NR19Qnq6A6ShKHFTk5ezLZ3pvDhgLAxLbjRSyeGGbrsIQQgNaao7mVbDqUy6akXPIr63Fzsmd+dBCLYkKYNsQPR/uOrq7dt0jisLIZwVfwXe7XTPA5xrepIZI4hLCxjOIaNh3KZWNSDqeKanCwU1wZ5c9j14xg7ogA3Jzka/FC5BOysuljlkHu1wzx3cvnJ8fSaDDh5CC/YoToSoVV9XyenMcnSbkcyioH4IrI/tw9bRBXjwrCx93JxhH2LJI4rCwwcAzDTXZkq9NUNxjYl1FK3BA/W4clRK9XWd/EV0fy2XQol50nizFp88SBjy0czrVjQgjp52rrEHssSRxdYLp3FKsrU/B1KuHb1EJJHEJYSX2TkW3HC9mYlMs3qYU0GkyE93djxawhXB8TwpAAmam6M0ji6AIzht3Aa/uPMSt4N9+lhvOna0faOiQheg2jSbPndAkbk3L44kg+VfUG/DycuG1SONfHhBAT1k8WU+tkkji6wOjhN+Oz7y80OR/hdOa1ZBTXEOHnbuuwhOjRThdVs3ZfFh8fzKGoqgEPZwcWjAri+pgQpgzyxUF6RFmNJI4uYO/gRJyTPwmNhdhh4NvUQu6aJqvxCnGxGgxGvjpawPs/nGH36RIc7BSzhwdww7gBzB4egIujzMvaFSRxdJEZoTP5LGMD0wIP8t3xIEkcQlyEjOIa3t97hg/2Z1Na00hYf1cemh/FLbGhBHjKoNquZpPEoZRaB5ydf6MfUK61jmlxTBSwrtmmQcDjWusXuibKzjU15i7s0z8k0CuRjaevoKbBgLuz5G0h2tJoMPF1SgHv7c1k58kS7O0Uc0cEcNsVA5k+xE9mm7Yhm3xzaa3jzz5XSj0PVLRyzHEgxnKMPZADfNxVMXY2b+9wxuLMKbJoNJrYebKYedFBtg5LiG4ns6SG9/dm8eH+LIqrGxnQz5XfzxvG4tgwmbKnm7DpT15l7uqwGJh9gUPnAKe01pnWj8p6ZviO4YXSRCLccvjueJgkDiEsmowmtqYU8N7eM+xIK8be0nZx2xXhzBjq3+dmn+3ubF1XMh0o0FqnXeC4W4H32ztAKbUcWA4QHh7eOdF1shkj4nlhZyITg3byXepgtNbSTVD0aVmltby/9wzrE7Mprm4gxNuFB68yly6CvKV00V1ZLXEopbYCrf2k/qPWeqPl+RIunBCcgEXAo+0dp7V+FXgVIDY2Vl90wF1gyKB5BG//PRX2x8mvrCclr5LoEG9bhyVEl2oymvjmWKGldFGEgnOli5nDAqR00QNYLXForee2t18p5QDcBEy4wKWuBg5orQs6KzZbUXZ2zHALY1NdFq729WxKypXEIfqM7LJa1u7NYn1iFoVVDQR5ufDr2UOJnxgm03/0MLasqpoLpGqtsy9w3AVLJT3JjMh5rEtdzaKIA6zd58lv5g7D1Un6noveSWvNjrRi3tyZzrYTRQDMigpgyaRwZkX5yyC9HsqWieNH7RZKqRDgda31Qstrd+Aq4N6uD886Jo6+A+eUN3ByPUBF3VQ+ScphyaTu2SYjxKWqbzKyMSmHNxLSOVFQjZ+HM/fPGkL8pHAGSOmix7NZ4tBaL2tlWy6wsNnrGsC3C8OyOle3/kyy92B/YzYjgjx4a1cGt04Mk0Zy0SsUVTXwzp5M3tmTSUlNIyOCvXjulrFcNzYYZwcpWfcWtu5V1SfNDJzEjvzv+P3IQp741o09p0uZMrhX5UfRxxzPr+KNhNN8cjCXRqOJOcMDuHt6JFMG+cqPol5IEocNzBh9B+R/R3XNx/i4LeOtXRmSOESPYzJpvk8rYnVCOjvSinFxtGPxxFDujItksL+HrcMTViSJwwaCQyYQhxsbypKJn+DPqwm55JTXSd2v6BHqm4x8dCCH1TvTOVlYTaCXMw/Nj+K2SeGykl4fIYnDRpaOWMovj73GYKcNwBTe3p3JI1cPt3VYQrSpsKqet3dn8u4PZyitaWTUAC9eiI9h4ehgWQ65j1Fad8uxcpclNjZWJyYm2jqMdpmMBha9NY5+yhFPx9fYfbqEPY/OkWmhRbeTklvJGwnpbDqUg8GkmTsikHumRTIpsr+0X/QiSqn9WuvYjhwrJQ4bsbN3YEnwNJ4pTOB/wpL54kgAG5NyiJ8oXXOF7ZlMmu+OF/JGQjq7TpXg5mTPbZPCuTMuUhYhE1LisKXqqjzmfHgVs538OVj0JEopNv96mvyKEzZT22hgw4Ec3kxI53RxDcHeLtwxNYIlE8PxdnO0dXjCiqTE0UN4eAZzg3sEH9Rm8NuxRv70VS1700u5YpD0sBJdq6S6gTW7Mnh7TybltU2MDfXmxSXjuHpUEI4yulu0IInDxpZMeoj3vv8VVeWv4+16B2/tzpDEIbpMVmktr+84zbrELBoMJuaNDOTn0wcxYaCPlHxFmyRx2FhExEzivnfjw7JDxE/w441d+eSW18mkb8KqjudX8cr3p9h0KBc7BTeOG8DyGYMZEiDjL8SFSeLoBs52zR3itAGtp/LOnkz+sEC65orOl5hRysvbTvFNaiFuTvbcOTWCu6dHEuwtP1REx0njeDfQvGuum/2r7MsoZbd0zRWdRGvNtuNFrNp2kn0ZZfi4OXJnXCS3TxlIPzcZsCfMpHG8h2neNffP4YfZkhLApkO5LI4Ns3VoogczGE18fjiPl7edIjW/igH9XFl53UgWTwzDzUn+ry8unXSX6Caun/Y4bibN3pz/EBXoyVu7MuiNpUFhffVNRt7encGVz23jgbVJGE2avy8ey7aHrmRZXKQkDXHZ5L+gbuJs19z1tRn8NsbI41/VkphZxsSI/rYOTfQQFXVNvLMnk9UJ6ZTUNDI+vB8rr4tm9vAA7GQ5VtGJJHF0I8275nq53M6aXRmSOMQFFVTWszohnXd/OEN1g4Ero/y5b+ZgmRJEWI0kjm7kbNfcDWWHWDzejzf35JNXUSc9XkSr0otreHX7KTbsz8FgMnHtmBB+MXMwI0O8bB2a6OUkcXQzZ7vmDnP+CDsVx7NfHucf8TG2Dkt0I0dyKnh52yk2H8nD0d68Bsby6YMJ93WzdWiij5DE0c3ETfglA4+8xsbcL7jvyjt48Zs0bhg3gJnD/G0dmrAhrTV7TpeyattJdqQV4+nswH0zB3NnXCT+ns62Dk/0MZI4upnmXXN/F5TEZ/4B/PHjw2z57QzpDdMHmUyarccKWLXtFElZ5fh5OPPwguEsnRyOl4tMOihsQ7rjdkNnu+Z+mPwKz9w0huyyOv7x9QlbhyW6UJPRxEcHslnwz+0sf3s/JTUN/M8No0h4eBb3XTlYkoawKfkJ2w0175r7oEcBSyaF80ZCOovGDmB0qLetwxNWVNdoZH1iFq9uP01OeR3Dgzz5560xXDM6GAeZpVZ0EzLlSDeVkfE9N2xbwQ3OIfz2hs+56u/f4+/pzMYVcfIF0gu1HIMxYaAPv7xyMLOHB0iX2h7CaGikob6cuvpyGhorqW8wPxoaq6lvqqa+sZqGphrqm2ppNDZgMDXRZGwy/2tqwmAynPvXoI00mQwYtIEmk9H8WhsxaNO5fw1omlr866UcePfOg5cUv0w50gtERMzkZx5DWVNzkmuOv82Ti67mvncP8EZCOvfOHGzr8EQnKayq542EdN7d898xGL+8cgiTImX8jjU1NlRRVZVHVXUeVTWFVNUVUVVXQlV9GdUNlVQ2VlLdVEODqZE6YyMN2kCDyUCdNtCgjTRoE3VoGtA0KKhTYOiEBO+oNQ4aHDF/OTtqcECZXys7HFE4oszPlR2uygFHZY+DssNB2eHt2DWzG0uJoxurqy3lxrUzcQQ+uG0H968/yY60Irb8ZqZ0vezhzpTU8n/bT/HB/mwMRhMLRwdz35WDiQ6RqsiOqq0upLD4GOVV2VTWFlNVV0J1QzlVDRVUNlVR3VRLlaGWKmMDVaZGqrSRKkxUKWi4wEh6O61x1+CqwRmFi7LDBTtclD3OygEXOwdc7BxxtnPExd4ZF3tnnO2dcXFwwcXBFRcHV5wd3XBxdMfF0R1nJw9cnD1xcfTE2dkTJ0cPHB1dcXBwwcHBFUdHN+ztnVB2tqtNuJgSh00Sh1JqHRBledkPKNda/2iwglLqt8A9gAYOA3dqresvdP3ekjgAdiWu4t6jL7PcayS3zH6LuX//npiwfrx99ySpwuiBjuVV8sr3p/j0UC4Odnb8ZEIo984YJOt4N1NbW0xR0TEKy9IorjhDYXUuRbWFFDWWU9RUTZGpgUKlqW3ny99Razw1eGmFp3LAw84RT3tnPO1d8XR0x9PJA08nbzxdfMwPVz883QPwdA/E0zMYN7cAm36J20K3r6rSWseffa6Ueh6oaHmMUmoA8GtgpNa6Tim1HrgVWNNVcXYHU2N/yXXHP2R1xVEWFG3j4QXD+dPGo3x0IIefTAi1dXiigxIzSlm17RTfphbi7mTPz6cP4q5pkQR6udg6tC5TW1tMcXEqhaUnKa7MpLA6h6LaIooayilqqqLQ1EiRMlHTSkJwNmn8tSLAzolhTv2Y5tQPf1d//D2C8XEPwss9AA83f7w8gvH0DMHZRUpu1mTTNg5l/sm8GJjdxiEOgKtSqglwA3K7Krbu5KGrXyNh4/Ws3PEYa5bu5uODOTz1eQpXRvnj6yGDv7qrlutg9Hd34ndXDeP2KRF4u/XO7rRNDTVk5e4hPXcf6aWppFdlkdFQSjpNVLWSEJy0xt90NiF4E+fUD39XPwI8QvDzCiOg32D8/Ybj6Tmgz5UAujNbN45PBwq01mktd2itc5RSzwFngDpgi9Z6S1sXUkotB5YDhIeHWylc2/DpP5iHIm7gsTMb+eDbB3nmJ89wzYs7+J/PUnjh1nG2Dk+00Ggw8VlyLq/tSOdYXiUh3i48cd1I4nvROhgV5RmkZ+0kvSCJ9PKTpNcWkGGoIstOY2xWhRpg1ETau7LQOYgg90AC3EPw8wolwGcI/n7D8fIMlYTQA1mtjUMptRUIamXXH7XWGy3HvAyc1Fo/38r5PsAGIB4oBz4APtRav3Ohe/emNo6ztMnEfW9P4aCpho0L3ua9w268+O1J3rprkkxH0k2UVDfw3g9n+M+eTIqqGhga4MG9MwdzfUwIjj2wC7XR0Ehu3j7Sc/eSXpxCemUm6Q0lZOgGSpuVHhy1ZqDJjkhHLyLcQ4j0GcagoHEMDJ2Kh2ewDd+BuBjdvnEcQCnlAOQAE7TW2a3svwVYoLW+2/L6dmCy1vqXF7p2b0wcANnZe7jp63u4wt6LZ+O/55qXdtJoMPHVb2bg7tw7fsn2RMfzq3hzZzofH8yhwWBi5jB/7p4WyfShfj2mA0NhwRGS0z4lpfAgGTW5pBuqyFRGmprF72PSRCpnIp19ifQaSKTfSCJDJhESPBF7B1mCtqfr9o3jFnOB1NaShsUZYLJSyg1zVdUcoPdlg4sQGjqZFQFTeK54D9v3PsMzN63g1ld38/P/JLJ62URZo7wLmUya79OKWJ2Qzo60YlwczT2k7oqLYEiAp63Da1djQxUpaZ+SfGYbyaWpJDeWkmdvThD2WhNqUkQ6eDLdLZDIfkOIDIwhInQq/XwibRy56C5sWeJYA+zRWr/SbFsI8LrWeqHl9ZOYq6oMwEHgHq11w4Wu3VtLHACGpnqWvjOZAm1g4082880pO373wSGmDfHjtdtjJXlYWV2jkQ0HsnlzZzqnimoI8HTmjqkR3DYpHB/37verW5tM5OUf4FDaZyQX7Ce5JptjqulcSSLYqBnr1J8x/UcwJnwWw4dcLT2S+qgeUVVlTb05cQAcO76RJbv/yA3OIaxcsoX1+7L4w4ZkZkX588rPJuDsIMmjs+VX1PPW7gze33uG8tomRg/w5u5pkSwcHYyTQ/dpv6itLSblxGccyvqe5PITJDdVUGwpTbiYNCOVM2M9BzI2aBKjh1xLQOAoG0csuoueUlUlLtGIqOu5/fAa3qw5yTVJq1k88S4MJs1jHx/mV+8dZNXS8T2yMbY7OpRVzuqd6XyenIdJa+aNDOLu6ZHEDvSxefuFNpk4k7WT5NNfcqjgAMl1eZxQhnO9msKNMNnZn7G+oxgTMYehg+fh6CgzDojLJyWOHqqutpSb1s7EHvhwyXZcXH34z+4MHt94lKtHBfHiknGSPC6RwWji65QC3khIJzGzDA9nB+InhrFsagRh/W33xWsyGjh2YiO70zZxoPw4ycZqKiy9m9xNmlF2roz1GsTYkMmMHroIn/4yp5noOKmq6gOJA2D3/ldYfuTfXKk8+Xv81zg6u7M6IZ0/f5bCtWOCeSE+RmbSvQiV9U2s35fFmzszyCmvI6y/K3dOjeSW2FA8bbT+RX7eQXYffY9d+T+wp6mUckuiGGRUjHUNYKzfWMZEXsWgiNnSs0lcFqmq6iOmTPgF/684hafyv+Ph9fN59tat3DUtEoPJxF82p+Jgp3h+cQz2F5jQra/LLKnhzZ0ZfJCYRU2jkUmR/fnTtSO5amRgl392tdWFJB59l12Z37KrOpN0e/MPO3+jZoZLIFND4rhi1G34+Q3v0riEaE4SRw8XP/9FGjffy7NFu3hs3Xz+99avWT5jME1Gzd++Oo6DvR3P/mQMdpI8ztNkNPHNsULWJ2bx3fFCHOwU144J4a64yC5dLKt59dOu0qMcpB6DUjibNLH27vzEbyxTo25iyKB5MsJadBuSOHqBny38Pxo/vZMXShNxWr+QP8d/yYpZQzAYNf/YegIHO8XTN46WkgdwsrCa9YlZfHQgm+LqRgI8nfnVrCH8dPLALptwsK3qp+Hajp95DWNKxDzGRy+RbrGi25LE0Uvcfd2bNH6ylFUVyTh+cA2PL/6CX88ZQpPRxEvfnSQlr5K/3DiaUQP63pdRTYOBzw/nsX5fFomZZTjYKWYPDyB+Yhgzh/lbvR3obPXTbkv102lL9ZOfUTPDJYApIXFMHrVUqp9EjyGN472INpn41yfxvFaVym2uA3nk5k2gFJ8m5/HnT1MorWngjqkR/G5eFB69fIoSk0mz/0wZHx3IZlNSLjWNRgb5uxMfG8ZN40Px97TerMLaZOLEyc3sSP3gx9VPdu5M8RvLlKgbGTpovlQ/iW5DelX10cQB5i+t5zbcyH9qT7PMfQgP3rQBZWdHRV0Tf/sqlXd/OEOgpwsrF41kfnSQzccidCatNQfOlPN5ch6bD+eRX1mPq6M914wJJn5imFXHXtRU57Pn0Bp2nPmWHXW5FFoG3UWZ7JjqOYgpkfOl+kl0a5I4+nDiAHPy+N8PruP9+jP83HMEv75p/bl9B8+U8djHRziWV8mc4QGsXBRt07EJl0trTXJ2BZ8fzuPz5DxyyutwsrdjZpQ/144JZs6IQKuUrrTJRMaZ7Ww/+h47ig+yX9dhUAoPk2aKgw/TQ6YwbfQd+AdEd/q9hbAGSRx9PHGAubfOn9cvZENjHiv6jeUX1/93NnqD0cSbOzP4x9YTaA0PzB3K3dMie8yAQYPRxKHscr5OKeTzw7lkldbhaK+YPtScLOaODMTLCuMu6uvKSDz8DtvTv2RHzRmyLTO7DDEqpnsNZvrga4kZtURGZ4seSRKHJA7AnDz+tG4+m5oKmW/vwyMLXj2vATanvI6Vm47ydUoBwwI9uHViOAtGBRHSz9WGUf+Y1pqMkloS0orYkVbM7lMlVDUYcLBTxA3x45oxwcwfGWSVVfVycxPZcfg/bC/Yx15jFfV2CheT5gp7T6YHTmTaqJ8yYMCkTr+vEF1NEockjnOMhkZWb76HV0oP4KLh9+ELuWHWM+c1ym45ms/fvz5Ban4VADFh/bh6VBBXjwom3Nc2v57LaxvZebKEhJNFbD9RTE55HQChPq5MH+rHtCH+xA3xpZ9b546WbmqqJenI+2w/9Rk7Kk9xytIDKtQIMzwGMj1iPrGjf4qLq0+n3lcIW5PEIYnjR9IztvHktt+zXzVwBS48MfsFwsLizjvmdFE1XxzJ58sj+RzOqQAgOsSLhaODWTAqiMH+Hp0el8mkySmv41heJcfzq0jNr+JYfiXpxTVoDZ7ODkwZ7Mv0oX5MH+rPQF+3Tm/gLio8SsLht9iRu4vdhnKq7RQOWhOr3JjuH8P0kbcRET5DekCJXk0ShySOVpmMBjZ88xB/z/maJmCF/xX8bP6/cXD88cC3rNJavjySz+YjeRw8Uw7AID93IvzcCfRyIdjbhSAvF4K8//vwdHY496WutabBYKKyvomqegPV9Qbzvw1NFFU1kGpJEsfzq6huMJy770BfN4YHeRId4k3cEF/Ghvbr9HEW9XVlHDj6PnsyvmZ31WlS7UyAeX3s6a4hTB84h8lj7sDdo7WVj4XonSRxSOJoV0FBMn/Zch/fmioZYbJn5ZSVjBx+Q5vH51XU8eWRfHaeLCa3vJ6CynpKahp/dJybkz0+bk7UNpqThMHU9n9bXi4ODA/2YkSQJ1FBXgwP9iQq0NMqS+CajAZS0z5jd9pGdpce4aCuo1GZSxXjcGFK/5HMGL6YYUMWSqlC9FmSOCRxdMjWhP/l6RPvUmYHP/MYytJpTxAUFNOhcxsMRgorG8ivrCevop6CinryK+spq23E3ckBTxcHPFwc8HRxxNPZ8trZ/Lq/uxOBXs5WG1NhMho4nfEtB05tZl/hAX5oKqXMMq3HEJMdUzwimDJwDhNG3Yabm59VYhCip5HEIYmjwyoqzvCPzfewoTEPpTUTceHa0FnMnfQbPL0G2Dq8DmlsqCLlxCYOZHzDgbJjHDRWUWlJFP5GzWTnAKaETGFy9G0yrkKINkjikMRx0c6cSeDzA6v4vPQwmfbgpDUz7X24dvB1TJ+wAkdnd1uHCJgH3mXn/MCJM99ztGA/ByrTOaLrabAkiggjjHcNYlzAeMYPvY6w0KlS/SREB0jikMRxybTJxJFjG/js6Ft8WZNBqZ3C26SZ5xrKgqibiRo0D2/v8C6Jpba2mJPp33A8Zw/Hy45zoq6AE7qBGkuSsNeaEdqR8R7hjA+ZQkzUTfj6DeuS2ITobSRxSOLoFE1Ntew5+DqfpX3Et43F1Fu+sPubNBHKmUhnXyI8w4nwG0FEUCwDBkzs8KhpbTJRUZFJQXEKhWWnKKjIoLA6j4L6YgoaK8kx1pJpp9Hqv0ujDlPODHMNJMoniqgBkxkaeRWubv2t9v6F6EskcUji6HS11YXsPfI26cUpZFSdIaOhlAzdQGmzNT4ctCbQpM7N1a9+9L/mfxvRFCl9rnrpLKU1/U0QoBwIcXBnmEc4UQFjGRY+kwEhE7Gz790z+gphS7J0rOh0bh4BXDn5d1zZYntFxRkysnaRUfj/2zv7YKvKKg4/P5FviKt8qSBeQRo/GCUthiTMihyjBijJcFDEJmvSEsZJrZxschyTcSrH+sNITDNEFDGJQQQVtRBQRD7D4kY0kUwQGYrmB7D6432v7nvY53IO956z9zmsZ2bPffd513n3b697zl5nv3vvtday7bUmdry9mwMWnoswLP6lxXoHjqJf52Po370//XoOpH/DYPr3PpU+fU/zPE+OUwN44HDaRK9egzir1yDOYlLWUhzHqRJ+u4njOI5TFpkEDklzJa2NyzZJa4vYTZO0UdImSdOrrdNxHMc5mEymqszsK81tSV/hsYUAAAkDSURBVD8B9hTaSBoGXAmMAN4FFktaaGZNVRPqOI7jHESmU1UKOScuBuakdJ8GrDKzt8xsH/As8KVq6nMcx3EOJutrHKOBf5nZlpS+jcBoSb0ldQPGAicWG0jS1yWtlrR6165dFZLrOI7jVGyqStKTQFpe6hvN7LHYvoT0sw3MbLOkGcAS4E1gLbC/2PbMbCYwE8JzHG2Q7jiO47RCxQKHmY1prV/S0YSpp3NaGWMWMCva3wpsb0+NjuM4Tvlk+RzHGOAVMysaDCT1M7OdkgYRgszIqqlzHMdxUsks5Yike4GVZnZX4rUTgLvNbGxc/wPQG3gPuNbMnipx7F3A31O6+gD/bqP0alNrmmtNL7jmalFrmmtNL7RN80lm1rcUw7rMVVUMSatLzcWSF2pNc63pBddcLWpNc63pheppzvquKsdxHKfG8MDhOI7jlMWRFjhmZi3gMKg1zbWmF1xztag1zbWmF6qk+Yi6xuE4juO0nSPtjMNxHMdpIx44HMdxnLKoy8Ah6UJJf5bUJOm7Kf1TJe1KpHb/WhY6E3rukbRT0sYi/ZJ0Z9yf9ZLOrrbGAj2H0nu+pD0J/95UbY0pmk6UtEzSn2Ka/mkpNnnzcymac+NrSV0kvSBpXdT7oxSbzrGsQpOkVZIaq6+0hZ5SNOfqeNGMpA6SXpa0MKWvsn42s7pagA7AX4HBQCdgHXB6gc1U4BdZa03oOQ84G9hYpH8s8DihZPdIQtbgPOs9H1iYtV8LNB0PnB3bPYG/pHwu8ubnUjTnxtfRbz1iuyOwChhZYHMVcFdsTwLm1oDmXB0vErquBR5I+/9X2s/1eMYxAmgys61m9i7wIDA+Y02tYmbPAf9pxWQ88BsLrAQaJB1fHXUHU4Le3GFmO8xsTWy/AWwGBhSY5c3PpWjODdFve+Nqx7gU3n0zHrgvtucBn4nlFTKhRM25Q9JA4PPA3UVMKurnegwcA4B/JNa3k/5luyhOR8yTVDRde04odZ/yxMfj6f/jks7IWkySeNr+EcKvyyS59XMrmiFHvo7TJ2uBncBSMyvqYwt1dvYQ0gplRgmaIX/HizuA64EDRfor6ud6DByl8Hug0czOBJbyQWR22oc1hLw3ZwE/B36XsZ73kdQDeASYbmavZ62nFA6hOVe+NrP9ZjYcGAiMUKjkmWtK0Jyr44WkLwA7zeylrDTUY+D4Jy0LPg2Mr72Pme02s3fi6t20kto9Jxxyn/KEmb3efPpvZouAjpL6ZCwLSR0JB+DZZjY/xSR3fj6U5rz62sz+CywDLizoet/HCqUVegG7q6sunWKac3i8GAWMk7SNMBX/aUm/LbCpqJ/rMXC8CAyVdLKkToQLQwuSBgXz1uMIc8d5ZgEwJd71MxLYY2Y7shZVDEnHNc+nShpB+JxlenCIemYBm83sp0XMcuXnUjTnydeS+kpqiO2uwGeBVwrMFgCXx/ZE4GmLV3CzoBTNeTtemNn3zGygmTUSjm9Pm9mlBWYV9XOW9Tgqgpntk/Qt4AnCHVb3mNkmSTcDq81sAXCNpHHAPsJF3qmZCQYkzSHcHdNH0nbgh4SLdFhIO7+IcMdPE/AWcEU2SgMl6J0IfFPSPuB/wKQsDw6RUcBlwIY4nw3wfWAQ5NPPlKY5T74+HrhPUgdCAHvIzBYWfPdmAfdLaiJ89yZlpLWZUjTn6nhRjGr62VOOOI7jOGVRj1NVjuM4TgXxwOE4juOUhQcOx3Ecpyw8cDiO4zhl4YHDcRzHKQsPHE7ukbS3BJvpkrq14zYnSDq9Hcd7vg3v3Rv/niBpXit2DZKuOtztOE6peOBw6oXpQFmBI967X4wJQLsFDjM7tx3GeNXMJrZi0kDIiuo4FcUDh1MzKNSeeCYmmntF0uz4lPc1wAnAMknLou0FklZIWiPp4ZjvCUnbJM2QtAb4sqQrJb0YkwQ+IqmbpHMJTwjfrlB/YYik4ZJWxkR3j0o6Jo73jKSfSVotabOkj0maL2mLpFsS2vcm2jdI2hC3eVvKfp4ctW8oGKNRsQaKpDMU6kisjZqGArcBQ+Jrt0vqIemp6IMNksYnxtks6VcKNSiWxKemkXSKpCejtjWShsTXr4t+Wq+UmhXOEUZ75mj3xZdKLMDe+Pd8QpbPgYQfPSuAT8S+bUCf2O4DPAd0j+s3ADcl7K5PjN070b4F+HZs3wtMTPStBz4Z2zcDd8T2M8CM2J4GvEp4GrkzIbtu74J9+BzwPNAtrh+bsr8LgCmxfXXivY3EGiiEhIaTY7sT0DXZH18/GvhQwidNhPoTjYSnoIfHvoeAS2N7FfDF2O5COIu7AJgZ33sUsBA4L+vPhS/ZLXWXcsSpe14ws+0AMQ1HI/DHApuRhGmm5TGNUydCkGlmbqI9LP6qbwB6EFLVtEBSL6DBzJ6NL90HPJwwac6FtgHYZDG/laSthERzydxRY4Bfm9lbAGaWVtdkFHBRbN8PzEixWQHcqFCXYb6ZbdHB5RYE3CrpPEL67QFA/9j3NzNrTmPyEtAoqScwwMwejdrejvtxASF4vBztewBDCcHZOQLxwOHUGu8k2vtJ/wyLUFfhkiJjvJlo3wtMMLN1kqYSzmoOV9OBAn0HiugrhVZzAZnZA5JWEYr5LJL0DWBrgdlkoC9wjpm9p5BNtUuBZgh+7NrK5gT82Mx+WYZ+p47xaxxOvfAGobwqwEpglKRTACR1l/ThIu/rCexQSF8+OW08M9sDvCZpdOy7DHiWw2MpcEXzHWCSjk2xWc4HSekmp/QjaTCw1czuBB4DzqSlDyCk0t4Zg8angJNaE2ahyuB2SRPiNjpHnU8AX01cJxogqV9Je+vUJR44nHphJrBY0jIz20XIYDpH0nrCtM6pRd73A8K8/nJaptN+ELhO0svxAvHlhIvl64HhhOscZWNmiwlTW6vjVNt3UsymAVdL2kDxCoQXAxvjGMMIJW93E6bnNkq6HZgNfDSOM4WDU5yncRkhG+x6wrWY48xsCaG29Yo41jxaBijnCMOz4zqO4zhl4WccjuM4Tll44HAcx3HKwgOH4ziOUxYeOBzHcZyy8MDhOI7jlIUHDsdxHKcsPHA4juM4ZfF/G284OAnJc3YAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[j], label=algorithms[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('LiH Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8VNX5x/HPNwkQ9l2UHQERFGQJi2Ldat0FbVFBZBEtaN1af9Xqr/0p2s3WLtalVUQWcQGlaqmiqFW0KluAAAIiAVHCvu9Lluf3x73BYUxIgExmkjzv12teuXPvufc+c2cyz9xz7j1HZoZzzjl3JEnxDsA551zi82ThnHOuSJ4snHPOFcmThXPOuSJ5snDOOVckTxbOOeeK5MnClQhJIyW9EE43l7RbUnL4vJGkjyXtkvRnBcZK2iZpdnwjP3aSrpa0OnytXeIdT6KJ/hwkmsjPrCuaJ4s4k7RK0r7wnyr/8WS84zoeZvaNmdUws9xw1nBgM1DLzP4HOBv4AdDUzHrEK84S8Cfg9vC1zi/tnUsySXuiPjv3xnB/QyV9EjVvnKSDUTEsgAI/B64MS4l3AA6AK83s/VjuQFKKmeXEch9H0AJYYt/eAdoCWGVme452Q3F+HdFaAIsLWlCKcZ5hZpmlsJ8j+aOZ/SrOMSQMScnlMUH6mUUCy/8lJ+lPYZXNV5IujVheW9JzktZJWiPpNxFVP0MlfSrpr5K2ACMlJYfVQJvDbd0e/jpNkXSNpLlR+79b0r8Kia2VpI/CqqX3gAYRy1pGbHccMAS4N/zVOQIYDZwZPn8oXOcKSRmStkv6TFKniO2tkvQLSQuBPeF2G0v6p6RN4Wu5M6L8SEmvSHo+jG+xpLSI5c0kvRauuyXyTE7SMElLw+M9TVKLAl57FUm7gWRggaQVR4izvaTp4etaLKlPxHbGSfq7pLfDY/GppBMlPRbu/4tjrd6SNFXSnyOeT5Q0JpxuLemD8LVvlvSipDpHOj6S2gNPR7xv24sRw6HPQfi8lb6tjnxf0lOKqAaS1Ct877dLWiDpvIhl0yX9OjxGuyS9K6lBuCxV0gthrNslzZHUKFzWWNIUSVslZUr6cSGxvi3p9qh5CyT9MJw+VdJ74XaWSbo2otw4Sf8Ij/ke4Pyijk2ZZGb+iOMDWAVcWMiyoUA28GOCL6ZbgbWAwuWvA88A1YETgNnAiIh1c4A7CM4gqwK3AEuApkBd4H3AwuVVgK1A+4j9zwd+VEhsM4C/hOudA+wCXgiXtczfbvh8HPCbqNf1ScTzLsBGoGf4OoeEx6VKxDHKAJqFryMJmAs8AFQGTgZWAheH5UcC+4HLwu39HpgZLksGFgB/DY9bKnB2uKwvkAm0D4/Jr4DPjvDeGdAm6r2MjLNSuL3/DeO8IDxO7SKOy2agWxjHB8BXwOAwzt8AHxZ3/1HLTgyP6QXAwPD41AyXtSGoBqwCNAQ+Bh4rxvE57H0r6L2NWhb9OZhBUHVXmaAqcifffmaaAFvC9ywpjG8L0DBcPh1YAZwSHtvpwCPhshHAv4FqYfzdCKo8CV/b38PX0RnYBFwQ8TnJ3/9g4NOI2DsA28NjVB1YDdwYfi66hO9bh4hjsAPoHcaeGu/vlZh8V8U7gIr+CL9gdocfzPzHj8NlQ4HMiLLVwn++E4FGwAGgasTyAflfLuG630Tt6wPCZBI+vzDqn/kfwG/D6dOAbYRf2FHbaU6QiKpHzHuJY08W/wB+HbWPZcC5EcdoWMSyngW8tvuBseH0SOD9iGUdgH3h9JnhF0ZKAa/rbeCmiOdJwF6gRSHvXUHJIjLO7wHrgaSIeS8DIyOOy7MRy+4AlkY87whsP8Jnxwi+cCM/OxdHLP8RwZfcZsIv/EK2cxUwvxjH57D3LeI17I+KYXz05yDiM1MtYt0XIj4zvwAmRG17GjAknJ4O/Cpi2U+Ad8LpYcBnQKeo9ZsBuYRJMpz3e2BcxOckf/81gT357zXwW2BMOH0d8N+obT8DPBhxDJ4/nu+BsvDwaqjEcJWZ1Yl4PBuxbH3+hJntDSdrENSXVwLWhafe2wk+wCdErLs6aj+No+ZFLx8PXC9JwCDgFTM7UEC8jYFtdnibw9dHfolH1AL4n/zXEb6WZuF+Coq1BdA4qvz/EiTQfOsjpvcCqWF1SDPgayu4PaEF8LeIbW4FRPCrt7gi42wMrDazvIh5X0dtb0PE9L4CntcoYn9doz470yKW/Zvgl/YyMzvUMK3g6rSJCqoudxJ8aedXIx7p+BTmT1ExDCmgTGNga8RnGL77nl4T9Z6eDZwUUSb6Pc0/NhMIEstESWsl/VFSpYh97opYL/r4AxCWeQvoH84aALwYEVvPqNgGEvxoK+i1lEvewF12rSY4s2hwhH/s6C6F1xFUQeVrdlhhs5mSDhL8Ir4+fBRkHVBXUvWIhNG8gP0V12qCM5rfHqFM5LZXA1+ZWdtj3FdzFdwAnR/HiwWsV1yRca4FmklKikgYzYEvj2P7R+O3wFKglaQBZvZyOP93YZwdzWyrpKuA/HabIx2f4+mieh1QT1K1iIQR+flbTXBmUWCbwpGYWTbwEPCQpJbAVIIz03fDfdaMSBjNgTWFbOpl4EFJHxNUW30YEdtHZvaDI4VxtHGXNX5mUUaZ2TqCf4Y/S6olKSlsuDz3CKu9AtwlqUnYoPmLAso8T/DFkR35azRq318D6QT/nJUlnQ1ceRwv51ngFkk9Fagu6XJJNQspPxvYpaAxuaqChvvTJXUvxr5mE3xxPRLuJ1VS73DZ08D9kk6DQxcQXHMcr2sWwS/geyVVChtsrwQmHsc2i0XSOQR17IMJ2oCekJT/i7omQdXnjnDePRGrHun4bACaSqp8tPFEfGZGhp+ZMzn8M/MCcKWki8P3M1XSeZKaFrjBw1/r+ZI6Kri4YydBO1+ema0mqJ76fbi9TsBN4b4KMpXgLOJhYFJEgn8TOEXSoPB9rCSpu4JG/wrDk0Vi+LcOv0799WKuN5igsXAJQfvCZA4/bY/2LEGCWUjQeD2VoB458jK/CcDpFP4Ple96graDrcCDBEnmmJhZOkEj/pMEryOToH68sPK5wBUEDZZfEdTJjwZqF2NfuQRfUm2Ab4AsgjppzOx14A8E1Rk7gc+BSwvZVJHM7GC4r0vDGP8ODDazL451mwVYEPXZeUxSLYL343YzW2Nm/wWeA8aGVYwPAV0JGmXfAl6LiLnQ40PQ5rUYWC9pc0QM90bFELks0kCCNpEtBI33kwjOjgm/2PsSVCduIvg1fw/F+446keCzv5PgTOojgs8xBNVJLQnO8l4naGco8DL1sMr1NYK2vJci5u8CLiKoolpLUB32B4LG7woj/6oaVwEpuAz3aTNrETGvKsFVNF3NbHncgnPlnqRJwBdm9mC8Y3FF8zOLCiSssrlMwfX/TQjOCKLPYm4F5niicCUtrLppHVaZXkJwJvFGvONyxeMN3BVLfhXEJIIrbd4iuFchWCitCstcFY/gXLl3IkE1T32C6q1bLQ7dpLhj49VQzjnniuTVUM4554pUbqqhGjRoYC1btox3GM45V6bMnTt3s5k1LKpcuUkWLVu2JD09Pd5hOOdcmSKpWL0veDWUc865InmycM45VyRPFs4554pUbtosCpKdnU1WVhb79++PdygOSE1NpWnTplSqVCneoTjnjlJMk0V4l+bfCLpJHm1mj0QtPwd4DOgE9DezyRHLmhP099OMoEfHy8xs1dHsPysri5o1a9KyZUuCLnFcvJgZW7ZsISsri1atWsU7HOfcUYpZNVTYA+RTBJ2odQAGSOoQVewbgg7jXuK7ngceNbP2QA+C/oqOyv79+6lfv74nigQgifr16/tZnnNlVCzPLHoQjPK2EoIxgAn6glmSXyD/TEFS5OAwhEklxczeC8vtPtYgPFEkDn8vnCu7YtnA3YTDR4/Kovgjjp0CbFcwaPx8SY+GZyqHkTRcUrqk9E2bNpVAyM45V7a8t2QDr6bHfqC+RL0aKoVgtLafA92BkylgfAMzG2VmaWaW1rBhkTcgxkWNGoePijlu3Dhuv/32o9pGRkYGU6dOLcmwDjNu3DgaNmxI586d6dy5M4MHDz7qbUyfPp0rrrgiBtE55wpiZjzz0QqGT0jn5dnfkJsX237+YlkNtYbDh01sSuHDGUbLAjIiqrDeAHoRDOBSoeTk5JCRkUF6ejqXXXZZgctTUo7/bbzuuut48skniy7onIu7gzl5/PL1Rbw6N4vLO57En645g+Sk2FbzxvLMYg7QVlKrcBjG/sCUo1i3jqT804ULiGjrKC/+/e9/07NnT7p06cKFF17Ihg0bABg5ciSDBg2id+/eDBo0iAceeIBJkybRuXNnJk2a9J3lubm53HPPPXTv3p1OnTrxzDPPHNrHo48+emj+gw8e3RgzGRkZ9OrVi06dOnH11Vezbds2ADIzM7nwwgs544wz6Nq1KytWrDhsvTlz5tClS5fvzHfOHb+tew5yw+hZvDo3i7u+35YnBnShauXv1NKXuJidWZhZjqTbgWkEl86OMbPFkh4G0s1sSjhm8utAXYLxdx8ys9PMLFfSz4H/hMNAziUYEvSYPfTvxSxZu/P4XlSUDo1r8eCVpx2xzL59++jcufOh51u3bqVPnz4AnH322cycORNJjB49mj/+8Y/8+c9/BmDJkiV88sknVK1alXHjxpGenn7ol//IkSMPWz5q1Chq167NnDlzOHDgAL179+aiiy5i+fLlLF++nNmzZ2Nm9OnTh48//phzzjnnO3FOmjSJTz4Jhty+6667uPHGGxk8eDBPPPEE5557Lg888AAPPfQQjz32GAMHDuS+++7j6quvZv/+/eTl5bF6dVBn+tlnn3HHHXfwr3/9i+bNmx//QXbOHbJ8wy5uGp/O+p37eXxAF/qc0bjU9h3T+yzMbCrBOM+R8x6ImJ5DUD1V0LrvEdx/UaZVrVqVjIyMQ8/zv/ghuA/kuuuuY926dRw8ePCw+w/69OlD1apVC91u5PJ3332XhQsXMnlycJvKjh07WL58Oe+++y7vvvsuXbp0AWD37t0sX768wGQRXQ21Y8cOtm/fzrnnngvAkCFDuOaaa9i1axdr1qzh6quvBoIb7fItXbqU4cOH8+6779K4cel9iJ2rCKYv28gdL82nSqVkJg3vRZfmdUt1/+X6Du5IRZ0BxMMdd9zB3XffTZ8+fZg+fTojR448tKx69epHXDdyuZnxxBNPcPHFFx9WZtq0adx///2MGDHisPlPPfUUzz4bnKiVZMP5SSedxP79+5k/f74nC+dKiJkx/rNVPPzmEtqdWIvnhqTRuE7hPyRjJVGvhqoQduzYQZMmwdXE48ePL7RczZo12bVrV6HLL774Yv7xj3+QnZ0NwJdffsmePXu4+OKLGTNmDLt3B7eprFmzho0bN3LbbbeRkZFBRkZGoV/qtWvXpm7duvz3v/8FYMKECZx77rnUrFmTpk2b8sYbwdDJBw4cYO/evQDUqVOHt956i/vvv5/p06cf3cFwzn1Hdm4ev3rjc0b+ewnfb9+IybecGZdEAZ4s4mrkyJFcc801dOvWjQYNGhRa7vzzz2fJkiWHGrij3XzzzXTo0IGuXbty+umnM2LECHJycrjooou4/vrrOfPMM+nYsSP9+vU7YtKJNn78eO655x46depERkYGDzwQ1CBOmDCBxx9/nE6dOnHWWWexfv36Q+s0atSIN998k9tuu41Zs2YdxdFwzkXasTeboWNn8+Ksb7j1vNY8c0M3qleJX2VQuRmDOy0tzaIHP1q6dCnt27ePU0SuIP6eOFe0rzbv4aZxc1i9bS+//2En+nUrsGm3REiaa2ZpRZWrMG0WzjlXFnyWuZlbX5xHcpJ46ce96N6yXrxDAjxZOOdcwnhp1jc88K/POblhdZ4b0p1m9arFO6RDPFk451yc5eTm8dupSxn76SrOb9eQxwd0oWZqYo374snCOefiaOf+bO58eT7Tl23iprNb8b+XtY951x3HwpOFc87FyTdb9nLT+Dl8tXkPv/9hRwb0SNxeDzxZOOdcHMz+aiu3vDCX3Dzj+Zt6cFbrwi+fTwR+n0WMnX/++UybNu2weY899hi33norixcv5oILLqBdu3a0bt2aBx98kLy8YByo6G7DO3fuzJIl5a4vRecqpFfTVzNw9EzqVK3EG7f1TvhEAZ4sYm7AgAFMnDjxsHkTJ06kf//+9OnTh/vuu49ly5axaNEiZs+ezd/+9rdD5a677rpDd1pnZGTQoUP0qLTOubIkL8/4/dtLuWfyQnq2qs/rP+lNqwZH7tonUXiyiLF+/frx1ltvcfDgQQBWrVrF2rVryczMPNQ7LEC1atV48sknefTRR+MZrnMuRvYcyGHEC3N55qOVDOrVgrE3dqd2tcS64ulIKk6bxdv3wfpFJbvNEzvCpY8csUi9evXo0aMHb7/9Nn379mXixIlce+21LF68mG7duh1WtnXr1uzbt4/t27cDh3cbDjBjxowj9kTrnEtMG3ftZ8iYOXy5YRcP9z2NwWe2jHdIR83PLEpBZFXUxIkTGTBgQLHWi66G8kThXNmzbsc++j8zk6+37GHM0O5lMlFARTqzKOIMIJb69u3Lz372M+bNm8fevXvp1q0b8+fP5+OPPz6s3MqVK6lfvz516tSJU6TOuZK0euterh89k+17splwUw+6tUiMrjuORUzPLCRdImmZpExJ9xWw/BxJ8yTlSOpXwPJakrIklenBoWvUqMH555/PsGHDDp1VDBw4kE8++YT3338fCEbUu/POO3nooYfiGapzroR8tXkP1z4zg537cnjxxz3LdKKAGCYLScnAU8ClQAdggKToy3m+AYYCLxWymV8DHxeyrEwZMGAACxYsOJQsqlatypQpU/jtb3/LKaecQoMGDejduzcDBw48tE7+uNv5j88++yxe4TvnjsLyDbu49pkZHMzJY+LwXnRqWvZrC2JZDdUDyDSzlQCSJgJ9gUM3C5jZqnBZXvTKkroBjYB3gCK7z010V111FdHdwZ9++ul8+OGHALzxxhvcfffdXH/99bRo0YKhQ4cydOjQOETqnDsei9fuYNBzs0lJEpNG9KLNCTXjHVKJiGU1VBNgdcTzrHBekSQlAX8Gfl5EueGS0iWlb9q06ZgDTQRXXXUVK1eupEWLFvEOxTl3jDJWb2fAqJlUrZTMKyPOLDeJAhL3aqifAFPNLOtIhcxslJmlmVlaw4YNSyk055z7rjmrtnLD6FnUqVaZSSN60bKM3GxXXLGshloDNIt43jScVxxnAt+T9BOgBlBZ0m4z+04jeVHMDCnxenCsiMrLqIzORfs0czM3j0+ncZ1UXry5FyfWTo13SCUulsliDtBWUiuCJNEfuL44K5rZoVZeSUOBtGNJFKmpqWzZsoX69et7wogzM2PLli2kppa/fyJXsX34xUZGvDCXkxtUZ8JNPWlYs0q8Q4qJmCULM8uRdDswDUgGxpjZYkkPA+lmNkVSd+B1oC5wpaSHzOy0koqhadOmZGVlUdbbM8qL1NRUmjaN3VjCzpW2dz5fzx0vz6PdiTWZMKwndatXjndIMaPyUjWQlpZm6enp8Q7DOVdBTFmwlp9NyuCMprUZe2MPalctO/08RZI018yKvOK04tzB7ZxzJeTV9NXc+8+F9GhZj+eGdqdGlfL/VVr+X6FzzpWgCTO/5v/e+JzvtW3AqEFpVK2cHO+QSoUnC+ecK6bR/13Jb95ayoXtT+DJ67uSWqliJArwZOGcc8Xy1IeZPDptGZd1PJHHrutC5ZREvU0tNjxZOOfcEZgZf3nvS574IJOruzTh0X6dSEmuWIkCPFk451yhzIzfTV3Ks//9iv7dm/G7qzuSlFQx79nyZOGccwXIyzMenLKYCTO/ZuhZLXngig4VNlGAJwvnnPuO3Dzj/tcW8kp6FiPOPZn7Ljm1wvcC4cnCOeciZOfm8T+vLGDKgrXc9f22/PTCthU+UYAnC+ecO+RgTh53vDyPaYs38ItLTuXW81rHO6SE4cnCOeeAnNxvE8WDV3bgxt6t4h1SQql4138551yUvDzj3n8u9ERxBJ4snHMVmpnx8JtLeG3eGu7+wSmeKArhycI5V6H95b0vGffZKm4+uxV3XNAm3uEkLE8WzrkKa9THK3jig0z6d2/GLy9v71c9HYEnC+dchfTSrG/43dQvuKLTSfz26o6eKIoQ02Qh6RJJyyRlSvrOsKiSzpE0T1KOpH4R8ztLmiFpsaSFkq6LZZzOuYplyoK1/PKNRZzfriF/ubYzyRX4zuziilmykJQMPAVcCnQABkjqEFXsG2Ao8FLU/L3A4HCI1UuAxyTViVWszrmK44MvNnD3pAy6t6zH3wd2q3C9xx6rWN5n0QPINLOVAJImAn2BJfkFzGxVuCwvckUz+zJieq2kjUBDYHsM43XOlXMzVmzh1hfm0aFxLZ4bUnEGLioJsUypTYDVEc+zwnlHRVIPoDKwooBlwyWlS0rftGnTMQfqnCv/Fqzezs3j59C8XjXG3diDmqllc8zseEno8y9JJwETgBvNLC96uZmNMrM0M0tr2LBh6QfonCsTlq3fxZCxs6lXozIv3NyTetUrxzukMieWyWIN0CziedNwXrFIqgW8BfzSzGaWcGzOuQri6y17uOG5WVRJSeLFm3rRqFZqvEMqk2KZLOYAbSW1klQZ6A9MKc6KYfnXgefNbHIMY3TOlWPrduxj4OhZ5OTm8cJNPWlev1q8QyqzYpYszCwHuB2YBiwFXjGzxZIeltQHQFJ3SVnANcAzkhaHq18LnAMMlZQRPjrHKlbnXPmzZfcBbhg9i+17sxk/rAdtG9WMd0hlmsws3jGUiLS0NEtPT493GM65BLBzfzbXPzuT5Rt28/ywHvQ8uX68Q0pYkuaaWVpR5RK6gds5547WvoO53DRuDl+s28XTN3TzRFFCfDwL51y5cTAnj1temEv619t4vH8Xzj/1hHiHVG74mYVzrlzIzTN+NimDj77cxO+v7siVZzSOd0jliicL51yZl5dn3P/aQt5atI5fXd6e/j2axzukcseThXOuTDMzfvPWUl5Jz+LO77fl5u+dHO+QyiVPFs65Mu1v/1nOmE+/YuhZLfnZhW3jHU655cnCOVdmPffJVzz2/nL6dWvKA1d08DEpYsiThXOuTHplzmp+/eYSLj39RB75YUeSfEyKmPJk4Zwrc95auI77XlvI99o24LH+nUlJ9q+yWPMj7JwrUz5ZvpmfTppP1+Z1eWZQN6qk+JgUpcGThXOuzFiUtYMRE9Jp3bAGzw3tTrXKfl9xafFk4ZwrE77avIehY2dTp1plxg/rQe2qPnhRafJk4ZxLeBt37WfwmFnkmfH8TT18TIo48HM451xC27k/myFj5rB510FeHt6L1g1rxDukCsnPLJxzCWt/di7Dn09n+YZdPD2oG52b1Yl3SBVWTJOFpEskLZOUKem+ApafI2mepBxJ/aKWDZG0PHwMiWWczrnEk5tn3P1KBjNXbuVP15zBuac0jHdIFVrMkoWkZOAp4FKgAzBAUoeoYt8AQ4GXotatBzwI9AR6AA9KqhurWJ1zicXMGDllMVMXredXl7fnqi5N4h1ShRfLM4seQKaZrTSzg8BEoG9kATNbZWYLgbyodS8G3jOzrWa2DXgPuCSGsTrnEsjj/8lkwsyvGXHuyd4xYIKIZbJoAqyOeJ4Vzov1us65MuzFWV/z1/e/5Eddm3LfJafGOxwXKtMN3JKGS0qXlL5p06Z4h+OcO07vfL6O/3vjc85v15BHftTROwZMILFMFmuAZhHPm4bzSmxdMxtlZmlmltawoTd+OVeWzVy5hTsnZnBGszo8NbArlby/p4QSy3djDtBWUitJlYH+wJRirjsNuEhS3bBh+6JwnnOuHFqydic/Hp9O83rVGDPEu/FIRDFLFmaWA9xO8CW/FHjFzBZLelhSHwBJ3SVlAdcAz0haHK67Ffg1QcKZAzwcznPOlTOrt+5lyNjZ1EhN4flhPahbvXK8Q3IFkJnFO4YSkZaWZunp6fEOwzl3FLbsPkC/p2ewdc9BXr3lTE5pVDPeIVU4kuaaWVpR5bxS0DkXF3sO5HDjuDms27GPMUPTPFEkOK8YdM6VuoM5edzywlwWr93JqEHd6NaiXrxDckXwMwvnXKnKyzN+/uoC/rt8M4/8sCPfb98o3iG5YvBk4ZwrNWbGr99awpQFa/nFJadyTVqzoldyCcGThXOu1Dz90UrGfrqKYb1bccu53o1HWVKsZCHpNUmXS/Lk4pw7Jq+kr+YP73xBnzMa86vL2/vd2WVMcb/8/w5cDyyX9IikdjGMyTlXzvxn6Qbuf20R32vbgD9dcwZJSZ4oyppiJQsze9/MBgJdgVXA+5I+k3SjJB8I1zlXqLlfb+W2l+ZxWuNa/OOGblRO8QqKsqjY75qk+gRjT9wMzAf+RpA83otJZM65Mm/5hl0MG5fOSbWrMnZod2pU8av1y6pivXOSXgfaAROAK81sXbhokiS/bdo59x1rtu9j8JjZVElJ4vlhPahfo0q8Q3LHobhp/nEz+7CgBcW5Tdw5V7Fs3Lmfgc/OZM+BHCYOP5Nm9arFOyR3nIqbLOpK+mHUvB3AIjPbWMIxOefKsG17DnLDc7PYuOsAL9zckw6Na8U7JFcCipssbgLOBPLPLs4D5gKtJD1sZhNiEJtzrozZuT+bwWNm8/WWvYy9sTtdm9eNd0iuhBQ3WVQC2pvZBgBJjYDngZ7AxwRtGc65CmzvwRxuGjeHpet2MmpwN85q3SDeIbkSVNyroZrmJ4rQRqBZOMZEdsmH5ZwrS/Zn5zJiwlzmfr2Nv/XvwgWnen9P5U1xzyymS3oTeDV8/qNwXnVge0wic86VCdm5edzx8nz+u3wzf7rmDC7vdFK8Q3IxUNwzi9uAsUDn8PE8cJuZ7TGz8wtbSdIlkpZJypR0XwHLq0iaFC6fJallOL+SpPGSFklaKun+o31hzrnYyw17kH1vyQYe7nsa/bo1jXdILkaKPLOQlAy8HyaFfxZ3w+F6TwE/ALKAOZKmmNmSiGI3AdvMrI2k/sAfgOsIhlmtYmYdJVUDlkh62cxWFXf/zrnYMjN++foi/pUR9CBOPM4bAAAb10lEQVQ7+MyW8Q7JxVCRZxZmlgvkSap9lNvuAWSa2UozOwhMBPpGlekLjA+nJwPfV9C7mAHVJaUAVYGDwM6j3L9zLkbMjF+/uZSJc1Zz+/ltuPW81vEOycVYcdssdgOLJL0H7MmfaWZ3HmGdJsDqiOdZBFdPFVjGzHIk7QDqEySOvsA6oBrws7Ax/TCShgPDAZo3b17Ml+KcO15/fe9Lxnz6FTf2bsn/XHRKvMNxpaC4yeK18FFaegC5QGOgLvBfSe+b2crIQmY2ChgFkJaWZqUYn3MV1tMfreDxDzK5Lq0ZD1zRwbsaryCKlSzMbLykqkBzM1tWzG2vASKHwWoaziuoTFZY5VQb2ELQHfo7ZpYNbJT0KZAGrMQ5FzcTZqzikbe/4MozGvO7H3b0RFGBFHfwoyuBDOCd8HlnSVOKWG0O0FZSK0mVgf5A9DpTgCHhdD/gAzMz4BvggnBf1YFewBfFidU5FxuT52bxf/9azIXtG/GXa88g2cekqFCKe+nsSIKqoe0AZpYBHHFMRDPLAW4HpgFLgVfMbLGkhyX1CYs9B9SXlAncDeRfXvsUUEPSYoKkM9bMFhb7VTnnStTUReu4d/ICzm7TgCev70KlZB+ToqIpbptFtpntiDrlzCtqJTObCkyNmvdAxPR+gstko9fbXdB851zp+/CLjdw1cT5dm9dl1OBupFZKjndILg6KmywWS7oeSJbUFrgT+Cx2YTnnEsGMFVu45YW5tDuxJmNu7E61yj54UUVV3HPJO4DTgAPAywT3PPw0VkE55+Jv/jfbuHn8HJrXq8bzw3pSK9VHUK7Iins11F7gl+HDOVfOLVm7kyFjZtOgZhVevLkn9apXjndILs6KO6zqKcDPgZaR65jZBbEJyzkXL5kbdzPouVnUqJLCizf35IRaqfEOySWA4lZAvgo8DYwmuFnOOVcOrd66lxtGz0ISL9zck6Z1fThUFyhussgxs3/ENBLnXFyt37Gf60fPZF92LpNG9OLkhjXiHZJLIMVt4P63pJ9IOklSvfxHTCNzzpWaLbsPMHD0TLbtyeb5YT049UQfN9sdrrhnFvl3Wd8TMc8o4sY851zi27Evm0HPzWbN9n2Mv7EHZzSrE++QXAIq7tVQrWIdiHOu9G3adYAbx80mc+Nunh2SRs+T68c7JJegjlgNJeneiOlropb9LlZBOedib/XWvVzz9GdkbtzNM4O7ce4pDeMdkktgRbVZ9I+Yjh7a9JISjsU5V0qWrN3JD//xGdv2ZvPizb04v90J8Q7JJbiiqqFUyHRBz51zZcCslVu4eXw6NVJTeOmWM2nbqGa8Q3JlQFHJwgqZLui5cy7Bvbt4Pbe/PJ9mdasy4aaeNK5TNd4huTKiqGRxhqSdBGcRVcNpwud+W6dzZcikOd9w/2uL6NS0DmOHdqeud+HhjsIRk4WZeV/EzpVxZsbfp6/g0WnLOOeUhjx9Q1fvPdYdNf/EOFeO5eUZv35rCWM/XUXfzo15tN8ZVE7xgYvc0Yvpp0bSJZKWScqUdF8By6tImhQunyWpZcSyTpJmSFosaZEkr/Zy7igczMnjZ69kMPbTVQzr3Yq/XtvZE4U7ZjE7s5CUTDA86g+ALGCOpClmtiSi2E3ANjNrI6k/8AfgOkkpwAvAIDNbIKk+kB2rWJ0rb/YezOGWF+bx8ZebuPeSdtx6bmuiRrp07qjE8mdGDyDTzFaa2UFgItA3qkxfYHw4PRn4voJP9EXAQjNbAGBmW8zMe7t1rhi27TnI9c/O4pPlm3jkhx35yXltPFG44xbLZNEEWB3xPCucV2AZM8sBdgD1gVMAkzRN0rzIO8kjSRouKV1S+qZNm0r8BThX1qzZvo9+T3/GknU7+ccN3ejfo3m8Q3LlRKI2cKcAZwPdgb3AfyTNNbP/RBYys1HAKIC0tDS/78NVaMs37GLwmNnsPpDDhGE9vJ8nV6JieWaxBmgW8bxpOK/AMmE7RW1gC8FZyMdmtjkc0nUq0DWGsTpXps39ehv9np5BTp7xyogzPVG4EhfLZDEHaCuplaTKBP1MTYkqM4Vvuz/vB3xgZgZMAzpKqhYmkXOBJTjnvuPDZRsZOHomdatV4rVbz6L9ST4WhSt5MauGMrMcSbcTfPEnA2PMbLGkh4F0M5sCPAdMkJQJbCXsuNDMtkn6C0HCMWCqmb0Vq1idK6ten5/FPa8upN2JNRl3Yw8a1qwS75BcOaXgh3zZl5aWZunp6fEOw7lSM/q/K/nNW0s5q3V9nhnUjZqpleIdkiuDwvbgtKLKJWoDt3OuEGbGI+98wTMfreSyjify1+s6UyXFe+ZxseXJwrkyJCc3j/tfW8Src7MY2LM5D/c9neQkv4fCxZ4nC+fKiP3Zudz+0jzeX7qRu77flp9e2NZvtnOlxpOFc2XA+h37ue2lecz7Zhu/7nsag85sGe+QXAXjycK5BPfekg3cM3kBB3PyeHJAVy7vdFK8Q3IVkCcL5xLU/uxcfj91KeNnfM1pjWvx+IAutG5YI95huQrKk4VzCShz4y5uf2k+X6zfxbDerfjFpe38iicXV54snEsgZsYr6asZOWUJVSsnM2ZoGhec2ijeYTnnycK5RLFjXza/fH0Rby5cx1mt6/PX6zrTqJaP+eUSgycL5xLA3K+3cdfE+azbsZ97L2nHiHNa+/0TLqF4snAujnLzjKc/WsFf3vuSk2qn8uotZ9K1ed14h+Xcd3iycC5ONuzcz88mZfDZii1c0ekkfvfDjtTy/p1cgvJk4Vwc/GfpBn7+6gL2Z+fxxx914pq0pn43tktoniycK0UHcnL5/dQvGPfZKtqfVIsnBnShzQl+74RLfJ4snCslKzbt5o6X5rNk3U6GntWS+y49ldRKfu+EKxs8WTgXY2bGq3OzePBfi0mtlMTowWlc2MHvnXBlSyyHVUXSJZKWScqUdF8By6tImhQunyWpZdTy5pJ2S/p5LON0LlZ27s/mzokZ3Dt5IWc0q83bd53jicKVSTE7s5CUDDwF/ADIAuZImmJmkWNp3wRsM7M2kvoDfwCui1j+F+DtWMXoXCzN/2Ybd06cz9rt+/n5Radw63lt/N4JV2bFshqqB5BpZisBJE0E+gKRyaIvMDKcngw8KUlmZpKuAr4C9sQwRudKXF6e8fTHK/jLu1/SqFYqr4zoRbcW9eIdlnPHJZbJogmwOuJ5FtCzsDJmliNpB1Bf0n7gFwRnJYVWQUkaDgwHaN68eclF7twxWr11L/e/tohPMjdzecfg3onaVf3eCVf2JWoD90jgr2a2+0jXnpvZKGAUQFpampVOaM591/a9B3nqw0zGf/Y1SUnwyA87cl33Zn7vhCs3Ypks1gDNIp43DecVVCZLUgpQG9hCcAbST9IfgTpAnqT9ZvZkDON17qjtz87l+RmrePKDTHYdyKFf16bcfdEpnFS7arxDc65ExTJZzAHaSmpFkBT6A9dHlZkCDAFmAP2AD8zMgO/lF5A0EtjticIlkrw8418L1vCnaV+yZvs+zmvXkPsuPZVTT6wV79Cci4mYJYuwDeJ2YBqQDIwxs8WSHgbSzWwK8BwwQVImsJUgoTiX0D7N3Mzvpi5l8dqdnN6kFn/s14nebRrEOyznYkrBD/myLy0tzdLT0+MdhivHlq7bySNvf8FHX26iSZ2q3HNxO/qc0ZgkvxzWlWGS5ppZWlHlErWB27mEsW7HPv787pf8c14WNauk8MvL2jPozBbeVYerUDxZOFeInfuzeXr6Cp775CvM4MffO5mfnNeaOtUqxzs050qdJwvnohzMyePFWV/z+H+Ws21vNld1bsz/XNSOZvWqxTs05+LGk4VzITNj6qL1/HHaF3y9ZS9nta7P/17WntOb1I53aM7FnScL54DZX23ld1OXkrF6O+0a1WTsjd0575SGflOdcyFPFq5Cy9y4m0fe/oL3l27gxFqp/LFfJ37Utal3+OdcFE8WrkLauHM/j/1nOZPmrKZqpWTuubgdw3q3omplv8LJuYJ4snAVyqKsHYz99Cv+vXAtZjCoVwvuuKAN9WtUiXdoziU0Txau3MvJzePdJRsY++lXzFm1jWqVk7m+R3OGnd2KFvWrxzs858oETxau3Nq+9yAT56xmwoyvWbN9H83qVeVXl7fn2u7NqJXq3YY7dzQ8WbhyZ9n6XTw/YxWvzVvDvuxcep1cjwev7MD32zfyhmvnjpEnC1cubNtzkCkL1jJ5bhaL1uygckoSV3VuzNCzWtGhsfcE69zx8mThyqyc3Dw++nITk+dm8f7SDWTnGqc1rsUDV3Tgqi5NqFfdu+VwrqR4snBlzrL1u5g8dzWvz1/L5t0HqFe9MoN6taRft6Z+FuFcjHiycAnPzFi2YRfvfL6edz5fzxfrd5GSJC449QT6dWvKee1OoHJKUrzDdK5c82ThElJenpGRtZ1pn69n2uL1rNqyFwnSWtTlgSs60LdzY783wrlSFNNkIekS4G8EI+WNNrNHopZXAZ4HuhGMvX2dma2S9APgEaAycBC4x8w+iGWsLv6yc/OY89VW3lkcJIgNOw+QkiTOatOA4ee05sIOJ3BCzdR4h+lchRSzZCEpGXgK+AGQBcyRNMXMlkQUuwnYZmZtJPUH/gBcB2wGrjSztZJOJxiatUmsYnXxYWZkbtzNJ5mb+TRzMzNXbmX3gRxSKyVx3ikncPHpjbjg1EbUrur3RDgXb7E8s+gBZJrZSgBJE4G+QGSy6AuMDKcnA09KkpnNjyizGKgqqYqZHYhhvK4UbNi5n08zNx9KEBt2Bm9py/rV6Nu5Md9r25BzT2nofTQ5l2BimSyaAKsjnmcBPQsrY2Y5knYA9QnOLPL9CJhXUKKQNBwYDtC8efOSi9yViLw8Y8Wm3cxfvZ2M1duZ89VWlm/cDUC96pU5q3V9zm7TgN5tGvjAQs4luIRu4JZ0GkHV1EUFLTezUcAogLS0NCvF0FwBNu06QMbq7WSs3kbG6u0sXL2DXQdyAKiZmkKX5nW5Jq0pvds0oP2JtUjyu6mdKzNimSzWAM0injcN5xVUJktSClCboKEbSU2B14HBZrYihnG6o7Q/O5cVm3azfMNulm/cxZcbdrN03U6ytu0DIDlJnHpiTfp0bkyX5nXp3KwOJzeo7snBuTIslsliDtBWUiuCpNAfuD6qzBRgCDAD6Ad8YGYmqQ7wFnCfmX0awxhdIfLyjI27DrBm+z6+2bqH5Rt28+WG3WRu3MU3W/eSF57HpSSJlg2qc0azOgw5syWdm9fh9Ma1vc3BuXImZskibIO4neBKpmRgjJktlvQwkG5mU4DngAmSMoGtBAkF4HagDfCApAfCeReZ2cZYxVtRmBn7snPZtjebbXsOsmXPQdZt38ea/Me2fazdsY/1O/aTnfttzV5KkmjVoDqnNa5N385NOKVRTdo2qkHL+tX9hjjnKgCZlY+q/rS0NEtPTy/RbeblGWu27yNz425WbNrNngO5HMjJ5UBOXvA3O4/9OXkcyA7mHczJIzlJpCSLlKQkKqcEf1OSRaWkJCql5M9PonJyEpWSg+lKyTpsXqWUJARIIBT+DQRDQgfPDuZ+u+8DOXnsz46KLTuXbXsPsn1vNtv3ZgfT+7I5mJP3ndeaJDixVipN6lalcZ2qNKnz7d+mdavSwpOCc+WSpLlmllZUuYRu4C4tObl5fLN1L8s37iYzfCzfuIsVG/ewLzv3sLIpSaJKShKplZKpkpJElYi/lZPFgRwjJ8/IzjWyc/PIyc0jO9fIycs7NC87nJebF5tEXSUl6VCMdapVok61yrRsUI3OVetQp3ol6larTN1qlahdtTL1a1SmcZ2qNKpZhZRkTwbOuYJV+GSxdvs+znt0Ogdzv/213bh2Km0a1aRHj/q0bVSDtifU4OSGNaiVmlKiX6i5eUHyOJgbnJVkR/w1A4Pwb5BUzA5/XiUlP1ElUSUlmdRKwdmJ5A3JzrmSVeGTRaNaqQw7uxVtTgiSQusTalCjSukcluQkkZyUTGolbwx2ziW2Cp8skpPEfZeeGu8wnHMuoXkltXPOuSJ5snDOOVckTxbOOeeK5MnCOedckTxZOOecK5InC+ecc0XyZOGcc65Iniycc84VyZOFc865InmycM45VyRPFs4554rkycI551yRYposJF0iaZmkTEn3FbC8iqRJ4fJZklpGLLs/nL9M0sWxjNM559yRxSxZSEoGngIuBToAAyR1iCp2E7DNzNoAfwX+EK7bgWCI1dOAS4C/h9tzzjkXB7HsorwHkGlmKwEkTQT6AksiyvQFRobTk4EnFYzc0xeYaGYHgK/CMbp7ADNKPMq9W2HspSW+WRdD5WQo4GPiA1u5gjQ6DfqNiekuYpksmgCrI55nAT0LK2NmOZJ2APXD+TOj1m0SvQNJw4HhAM2bNz+2KJOSoWG7Y1vXxdHxfmlaCWyjtFXgJOmOrE6LmO+iTA9+ZGajgFEAaWlpx/aflFobrn2+JMNyzrlyJ5YN3GuAZhHPm4bzCiwjKQWoDWwp5rrOOedKSSyTxRygraRWkioTNFhPiSozBRgSTvcDPjAzC+f3D6+WagW0BWbHMFbnnHNHELNqqLAN4nZgGpAMjDGzxZIeBtLNbArwHDAhbMDeSpBQCMu9QtAYngPcZma5sYrVOefckcnKyZUlaWlplp6eHu8wnHOuTJE018zSiirnd3A755wrkicL55xzRfJk4ZxzrkieLJxzzhWp3DRwS9oEfF3I4gbA5lIM53iVtXjBYy4tHnPslbV44fhibmFmDYsqVG6SxZFISi9Oa3+iKGvxgsdcWjzm2Ctr8ULpxOzVUM4554rkycI551yRKkqyGBXvAI5SWYsXPObS4jHHXlmLF0oh5grRZuGcc+74VJQzC+ecc8fBk4VzzrkilZtkIekSScskZUq6r4DlQyVtkpQRPm6OR5xRMY2RtFHS54Usl6THw9e0UFLX0o4xKp6i4j1P0o6IY/xAacdYQEzNJH0oaYmkxZLuKqBMoh3n4sScMMdaUqqk2ZIWhPE+VECZKpImhcd4lqSWpR/pYfEUJ+aE+84AkJQsab6kNwtYFrvjbGZl/kHQBfoK4GSgMrAA6BBVZijwZLxjjYrpHKAr8Hkhyy8D3iYY/7MXMCvB4z0PeDPexzUqppOAruF0TeDLAj4biXacixNzwhzr8LjVCKcrAbOAXlFlfgI8HU73ByaVgZgT7jsjjOtu4KWC3v9YHufycmbRA8g0s5VmdhCYCPSNc0xFMrOPCcbxKExf4HkLzATqSDqpdKL7rmLEm3DMbJ2ZzQundwFL+e547ol2nIsTc8IIj9vu8Gml8BF95UxfYHw4PRn4vqS4DYJezJgTjqSmwOXA6EKKxOw4l5dk0QRYHfE8i4L/uX4UVjNMltSsgOWJprivK5GcGZ7avy3ptHgHEyk8Je9C8CsyUsIe5yPEDAl0rMOqkQxgI/CemRV6jM0sB9gB1C/dKA9XjJgh8b4zHgPuBfIKWR6z41xekkVx/BtoaWadgPf4Nvu6kjOPoJ+ZM4AngDfiHM8hkmoA/wR+amY74x1PcRQRc0IdazPLNbPOQFOgh6TT4xlPcRQj5oT6zpB0BbDRzObGY//lJVmsASKzftNw3iFmtsXMDoRPRwPdSim241Hk60okZrYz/9TezKYClSQ1iHNYSKpE8KX7opm9VkCRhDvORcWcqMfazLYDHwKXRC06dIwlpQC1gS2lG13BCos5Ab8zegN9JK0iqGq/QNILUWVidpzLS7KYA7SV1EpSZYKGnSmRBaLqoPsQ1AMnuinA4PBqnV7ADjNbF++gCiPpxPz6UUk9CD5fcf1CCON5DlhqZn8ppFhCHefixJxIx1pSQ0l1wumqwA+AL6KKTQGGhNP9gA8sbIWNh+LEnGjfGWZ2v5k1NbOWBN9xH5jZDVHFYnacU0piI/FmZjmSbgemEVwZNcbMFkt6GEg3synAnZL6ADkEjbRD4xZwSNLLBFe1NJCUBTxI0NCGmT0NTCW4UicT2AvcGJ9IA8WItx9wq6QcYB/QP55fCKHewCBgUVg/DfC/QHNIzONM8WJOpGN9EjBeUjJB0nrFzN6M+v97DpggKZPg/69/nGLNV5yYE+47oyCldZy9uw/nnHNFKi/VUM4552LIk4VzzrkiebJwzjlXJE8WzjnniuTJwjnnXJE8WbiEJWl3Mcr8VFK1EtznVZI6lOD2PjuOdXeHfxtLmnyEcnUk/eRY9+NccXiycGXdT4GjShbhtfWFuQoosWRhZmeVwDbWmlm/IxSpQ9DbqHMx48nCJTwFYzdMDztz+0LSi+Hd1ncCjYEPJX0Ylr1I0gxJ8yS9GvavhKRVkv4gaR5wjaQfS5oTdsT3T0nVJJ1FcKfuowrGL2gtqbOkmWFncq9Lqhtub7qkv0pKl7RUUndJr0laLuk3EbHvjpj+haRF4T4fKeB1tgpjXxS1jZYKxxCRdJqCcRgywpjaAo8ArcN5j0qqIek/4TFYJKlvxHaWSnpWwRgO74Z3LyOpjaT3w9jmSWodzr8nPE4LVcCYD64CKam+zv3hj5J+ALvDv+cR9J7ZlOAHzgzg7HDZKqBBON0A+BioHj7/BfBARLl7I7ZdP2L6N8Ad4fQ4oF/EsoXAueH0w8Bj4fR04A/h9F3AWoK7gqsQ9FpbP+o1XAp8BlQLn9cr4PVOAQaH07dFrNuScAwRgk4DB4bTlYGqkcvD+SlArYhjkkkwfkNLgruRO4fLXgFuCKdnAVeH06kEZ2sXAaPCdZOAN4Fz4v258Ed8HuWiuw9XIcw2syyAsAuMlsAnUWV6EVQhfRp2m1SZILHkmxQxfXr4670OUIOgq5jDSKoN1DGzj8JZ44FXI4rk9z+2CFhsYX9SklYSdOYW2VfThcBYM9sLYGYFjQvSG/hROD0B+EMBZWYAv1QwrsFrZrZc3x2uQMDvJJ1D0JV1E6BRuOwrM8vvQmQu0FJSTaCJmb0exrY/fB0XESSM+WH5GkBbgoTsKhhPFq6sOBAxnUvBn10RjEswoJBt7ImYHgdcZWYLJA0lOHs51pjyouLLKyS+4jhi/ztm9pKkWQQD4EyVNAJYGVVsINAQ6GZm2Qp6KU2NihmC41j1CLsT8Hsze+Yo4nfllLdZuLJuF8HQowAzgd6S2gBIqi7plELWqwmsU9AV+MCCtmdmO4Btkr4XLhsEfMSxeQ+4Mf/KLUn1CijzKd92/DawgOVIOhlYaWaPA/8COnH4MYCgW+qNYaI4H2hxpMAsGI0vS9JV4T6qhHFOA4ZFtPs0kXRCsV6tK3c8WbiybhTwjqQPzWwTQc+gL0taSFBlc2oh6/0fQT39pxzeNfVE4B5J88NG3iEEDd4Lgc4E7RZHzczeIai2Sg+r0X5eQLG7gNskLaLwkfquBT4Pt3E6wXCwWwiq3j6X9CjwIpAWbmcw3+0uvCCDCHpZXUjQtnKimb1LMNbzjHBbkzk8KbkKxHuddc45VyQ/s3DOOVckTxbOOeeK5MnCOedckTxZOOecK5InC+ecc0XyZOGcc65Iniycc84V6f8BFDmpPK/ufxUAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", - "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd4FOXax/Hvnd4DCaGGjtKbBAQRpShiQ0UUEQvisR9EOfbXcvSox4Ll2I4iKmIjqKioYEFBLLQAAaRJh0CEUJIQEki73z924QRMwgaymU32/lzXXNndmZ357UDuzD7zzDOiqhhjjKn5ApwOYIwxpmpYwTfGGD9hBd8YY/yEFXxjjPETVvCNMcZPWME3xhg/YQXfeJWI9BGRNVWwnRkicm0lrOefIvJ+ZWQyxtdYwTeVQkQ2ichZR7+uqj+rauvylhORkSLySznrVhHZLyI5IrJbRH4QkWFHbedcVX23Mj7L8XJ/tnwRqXPU60vcn6GZM8lKJyITReRxp3OYqmMF31QXnVU1CmgNTAReEZFHnI1Uqo3A8ENPRKQjEOFcHGP+xwq+8SoR6SsiaZW1PlXdparvAbcA94tIvHs7s0Xkb+7HI0XkVxF5RUSyRGS1iAwokamhiEwTkT0isk5Ebignf08R+U1EMkVkqYj0PUbE94BrSjy/Fph01DpjRWSSiGSIyGYReVBEAo7K/oJ7mxtE5DT361tFZGfJpisRCRWRcSKyRUR2iMjrIhLuntdXRNJE5B/u96WLyHXueTcCI4B73N+cvjzG5zI1gBV8U119AQQBPcqYfyqwHqgDPAJMFZE497zJQBrQEBgKPCki/Y9egYg0Ar4GHgfigLuAT0UkoZxc84AYEWkrIoHAFcDR5wReBmKBFsCZuP5AXHdU9mVAPPChO293oBVwFa5vN1HuZZ8CTga6uOc3Ah4usa767m01Aq4HXhWR2qo6HvgAeEZVo1T1wnI+k6khrOAbJ3zuPnrNFJFM4LWKrkBVC4BduApxaXYCL6pqgaomA2uA80WkMdAbuFdVD6hqKjCBI4/KD7kKmK6q01W1WFW/B1KA844R79BR/tnAKmDboRkl/gjcr6r7VHUT8BxwdYn3b1TVd1S1CEgGGgOPqepBVf0OyAdaiYgANwJ3quoeVd0HPOle/yEF7vcWqOp0IAdXs5jxQ0FOBzB+6WJVnXnoiYiMBP5WkRWISDCQAOwpY5FteuTIgJtxHdE3BA4Vx5LzkkpZR1PgMhEpefQbDMw6Rrz3gDlAc45qzsH1jSPYvc2S229U4vmOEo/zAFT16NeicH3+CGCRq/YDIEBgiWV3q2phiee57vcaP2RH+Ka6uggoBBaUMb+RlKiCQBNgu3uKE5Hoo+Zt46+2Au+paq0SU6SqPlVeMFXdjOvk7XnA1KNm78J11N3Ug+0fyy5cxb99iXyx7pPbnrChcv2MFXxTmYJFJKzEVOnfIEUkTkRGAK8CT6vq7jIWrQvcLiLBInIZ0BZX88xW4Dfg3+6MnXC1bZfW9/594EIROUdEAt3L9xWRRA+iXg/0V9X9JV90N9NMAZ4QkWgRaQqMLWP75VLVYuBN4AURqQuu8w4ico6Hq9iB6zyC8RNW8E1lmo7riPPQ9M9KXPdSEckB1uFq/rlTVR8uZ/n5wEm4joKfAIaW+OMwHGiG62j/M+CRkk1Mh7j/OFwEPABk4DrivxsPfm9Udb2qppQxezSwH9gA/ILrxOzbx1pnGe7FtU/miUg2MBPP2+jfAtq5z6V8fpzbN9WI2A1QTE1z6JyAqp7udBZjfIkd4RtjjJ+wgm+MMX7CmnSMMcZP2BG+Mcb4CZ+68KpOnTrarFkzp2MYY0y1sWjRol2qWt5wH4f5VMFv1qwZKSll9WQzxhhzNBHZfOylXKxJxxhj/IQVfGOM8RNW8I0xxk/4VBu+Meb4FRQUkJaWxoEDB5yOYrwgLCyMxMREgoODj3sdVvCNqSHS0tKIjo6mWbNmHDlQqKnuVJXdu3eTlpZG8+bNj3s91qRjTA1x4MAB4uPjrdjXQCJCfHz8CX97s4JvTA1ixb7mqox/22pf8LW4iAXvPsD6pT87HcUYY3xatS/42Zm7abIxmYjPryN7945jv8EY4zWBgYF06dLl8PTUU+XeHKxCUlNTmT59+uHnEydOJCEh4YjtrVy5ku3btzN06NBK2+7x2LRpEx06dHA0Q2mq/Unb2Li6pF/4Fi2mXcofb15Bu7u+JyCo2n8sY6ql8PBwUlNTvbLu1NRUUlJSOO+8/91DftiwYbzyyit/WfaTTz7xSoaqVlhYSFAl1rNqf4QP0KZbXxZ1eIAOBxazcOJdTscxxpSQlZVF69atWbNmDQDDhw/nzTffBOCWW24hKSmJ9u3b88gjjxx+z8KFCznttNPo3LkzPXr0ICsri4cffpjk5GS6dOlCcnJymdsreXSdm5vL5ZdfTrt27bjkkks49dRTDw/f8t1339GrVy9OOeUULrvsMnJycgDXEC+PPPIIp5xyCh07dmT16tUA/PTTT4e/SXTt2pV9+/ahqtx999106NCBjh07lpqrZ8+erFix4vDzvn37kpKSwv79+xk1ahQ9evSga9eufPHFF4Drm8vgwYPp378/AwYMOO79Xpoacyjcc+hY5m9bxKlp77BsZnc6nTXC6UjGOObRL1ewcnt2pa6zXcMYHrmwfbnL5OXl0aVLl8PP77///sNH4SNHjmTMmDHs3buXG264AYAnnniCuLg4ioqKGDBgAMuWLaNNmzYMGzaM5ORkunfvTnZ2NhERETz22GOkpKQcPqKfOHEiycnJ/PLLL4e3N3fu3CPyvPbaa9SuXZuVK1fy+++/H862a9cuHn/8cWbOnElkZCRPP/00zz//PA8/7LprZp06dVi8eDGvvfYa48aNY8KECYwbN45XX32V3r17k5OTQ1hYGFOnTiU1NZWlS5eya9cuunfvzhlnnHFEhmHDhjFlyhQeffRR0tPTSU9PJykpiQceeID+/fvz9ttvk5mZSY8ePTjrrLMAWLx4McuWLSMuLu54/qnKVGMKvojQ+aY3+WPcmTT/5R9sa9aRRq06OR3LGL9SVpPO2Wefzccff8xtt93G0qVLD78+ZcoUxo8fT2FhIenp6axcuRIRoUGDBnTv3h2AmJiYMrdXVpPOIb/88gtjxowBoEOHDnTq5KoJ8+bNY+XKlfTu3RuA/Px8evXqdfh9Q4YMAaBbt25MnToVgN69ezN27FhGjBjBkCFDSExM5JdffmH48OEEBgZSr149zjzzTBYuXHh4OwCXX345AwcO5NFHH2XKlCmHzy989913TJs2jXHjxgGubrVbtmw5vL8qu9hDDSr4AGHhkURd/QGFEwdQ8OEI8sb+QnhUrNOxjKlyxzoSr2rFxcWsWrWKiIgI9u7dS2JiIhs3bmTcuHEsXLiQ2rVrM3LkyCq7SlhVOfvss/noo49KnR8aGgq4TkIXFhYCcN9993H++eczffp0evfuzbfffuvRtho1akR8fDzLli0jOTmZ119//XCGTz/9lNatj7zn/Pz584mMjDzej1auGtGGX1LDZq3Z2v8VGhdtZdUb16LFxU5HMsbvvfDCC7Rt25YPP/yQ6667joKCArKzs4mMjCQ2NpYdO3YwY8YMAFq3bk16ejoLFy4EYN++fRQWFhIdHc2+ffsqtN3evXszZcoUAFauXMny5csBV7v6r7/+yrp16wDYv38/f/zxR7nrWr9+PR07duTee++le/furF69mj59+pCcnExRUREZGRnMmTOHHj16/OW9w4YN45lnniErK+vw0f8555zDyy+/zKG7Di5ZsqRCn+141LiCD9DpjIuZ3/w2Ttk3iwWTH3c6jjF+41Ab/qHpvvvuY82aNUyYMIHnnnuOPn36cMYZZ/D444/TuXNnunbtSps2bbjyyisPN6+EhISQnJzM6NGj6dy5M2effTYHDhygX79+rFy58oiTtodO4h6afvvttyPy3HrrrWRkZNCuXTsefPBB2rdvT2xsLAkJCUycOJHhw4fTqVMnevXqdfjkbFlefPHFw81CwcHBnHvuuVxyySV06tSJzp07079/f5555hnq16//l/cOHTqUyZMnc/nllx9+7aGHHqKgoIBOnTrRvn17HnrooRPd/cfkU/e0TUpK0sq6AUpxUTGpz11Ip/2/se7cD2jT87xjv8mYamzVqlW0bdvW6Rg+paioiIKCAsLCwli/fj1nnXUWa9asISQkxOlox6W0f2MRWaSqSZ68v0a14ZcUEBhAq5veY/uLp5Pwzc3savwTdRod/6BDxpjqJzc3l379+lFQUICq8tprr1XbYl8ZamzBB4iJjWP3Ze8RlnwuaROvIOaunwgJDXM6ljGmikRHR9ttU0vwahu+iGwSkeUikioijuz15u26serUp2ldsJo/nh/Erm0bnYhhjDGOq4qTtv1UtYunbUzekHTedczr+BgtDqwk6M3TSf32XaeiGGOMY2pkL53S9Lx0DBkjZrIzsAFd5t5Oyn+Gsz97r9OxjDGmyni74CvwnYgsEpEbS1tARG4UkRQRScnIyPBqmKYnd6LZPb/yW6Pr6LpnBpkv9OSPRT96dZvGGOMrvF3wT1fVU4BzgdtE5IyjF1DV8aqapKpJCQkJXo4DIaGhnHbDi6weNJkALaLFtEuZ9/bdFBbke33bxtRk/fr1+8vVpy+++CK33HILK1asoH///rRu3ZqWLVvyyCOPUOy+KLKsYY5N5fNqwVfVbe6fO4HPgL9eguaQ9r0GEXHHfJbEDqDnlvGse+YMtm9c5XQsY6qt4cOHM3ny5CNemzx5MldccQWDBw8+fBHW8uXLWbBgAf/5z38OLzds2DBSU1MPT+3atavq+H7BawVfRCJFJPrQY2Ag8Lu3tnc8YmvF033sJ6QkjaNh/mZiJ/Zl3vjRbF5l3biMqaihQ4fy9ddfk5/v+ra8adMmtm/fzrp16+jduzcDBw4EICIigldeeYVnn33Wybh+yZv98OsBn7nvwxgEfKiq33hxe8ct6YIbSO94JunJd5C07X2CkiexPrAFGS0uplX/kdRp0NTpiMZUzIz74M/llbvO+h3h3LLvYBUXF0ePHj2YMWMGF1100eGhBFasWEG3bt2OWLZly5bk5eWRmZkJUOowx+Hh4ZWb33jvCF9VN6hqZ/fUXlWf8Na2KkODpidzyj3Tybx1OfNOvocigui59nlqv96ZZU8NIGXaf8nNyXI6pjE+rWSzzuTJkxk+fLhH7zu6SceKvXfU6Cttj0edeonUufL/gP9j85olbJvzLs22f03DxfeRu+gRUmLPQJueTu1WSTRp3Y2QMPuPaXxQOUfi3nTRRRdx5513snjxYnJzc+nWrRtLlixhzpw5Ryy3YcMG4uPjqVWrliM5/ZUV/HI0bd2Vpq27Ulz0HCsWfE/Owg9os+cHYpd/D8uhQANZH9SEPdGtKa7XkZhm3UhsdyrRsZV/4wJjqoOoqCj69evHqFGjDh/djxgxgieffJKZM2dy1llnkZeXx+23386jjz7qcFr/YwXfAwGBgbTvNQh6DaK4qIgtG1aQsTaF/LRUIvaspHnmPOpkfgNrgG9hm9Rjb0hD8sIbUhTdkMDajQmv05SY+s1IaNiC8Kiy7+BjTHU3fPhwLrnkksNNO+Hh4UybNo3Ro0dz6623sm3bNh588EFGjPjfbUiPbsN/7bXXOO2006o8e01XY4dHrkqqyq70LWxfPY/czUsI2b2K6APbqV2YQbxmEiBH7uNMotgdmEBuUG0OhsZRGBYHEXUIiKpDcExdwmPrElm7HrHxDYmKjSOgEu9ab2qu6jI88ueff87YsWOZNWsWTZtah4iKsOGRfYCIkNCwKQkNmwLDjph38GAeu7ZtJnPHRvIyNlGwdysB2dsIzf2TiII9xO/bRmxWFpFS9q3dsolgv0SSGxDNgcBo8oOjKQiOoTg0Fg2LRcJiCQyPITA8lpCIGEIiaxEWXYuIqNpExNQiPDwKCfCbUTSMj7v44ou5+OKLnY7hl6zge1loaDiNWrShUYs25S53IG8/mbvSydmzg9zMHRzM2knhvgw4kIUcyCQwP4vg/GxCC/dRO28LEftziNYcwuXYVwgXagC5Ek4u4RwICOdgQAQFgeEUBEZSGBxJUXAkGhwNYdFIaAyBYTEERsYSEh5LaFQsoZG1CI+pRXRMPGHhEZW1a4wxVcwKvo8IC4+kfuNW0LhVhd538EAuufuyyN2XyYGcvRzcn0V+bhaFuVkU5WWjB7LRg9kE5OcQULCfwIL9BBXtJ6Qol8iCvYTl5RKueURqHsFSdMzt5Woo2RJNTmAMeYEx5IfEUhBSi+LwOCS8NgFRCe7zFS2o07AZURHWi6kqqSrua19MDVMZze9W8Ku50LAIQsMiqJ3Q4MRWpMrBg7nsz9pDXk4mefsyyc/NomC/+4/HgWyK8zKRvL0EHswkOD+TsIIsYnPXEZ2zjxjdR+BR5yqKVdhBbXYF1WVfSD0ORDakOCaR4Lim1G7WiaYt2xAdHnpiuc1hYWFh7N69m/j4eCv6NYyqsnv3bsLCTuwGTlbwjYsIoWGRhIZFQr3GFX67FheRsy+TrIw0sv/cxIHdmynau5XA7DTC89Jpkr+WOnm/ErKrEDYAKZCnIawJaMTu8BYcrN2K4AbtiG/WiSYt2xEZbncmq6jExETS0tLw9qizxhlhYWEkJiae0Dqsl46pOsXFFO7bya4tq9iz+Xfy01cRmvkH8XmbqFv8vyJ1UIPYFNiEnbWTCG51Ji27DyShTl0HgxvjuyrSS8cKvvEJRXnZ/LlhOXs2LSM/fSURu5bR4sAKQimgSIV1gS3IiO9B6Eln0jJpIHFx8U5HNsYnWME3NUJRfh6blv7E3hU/EJU+jxYHVhIiha4/AEGt2NWgH20uGkv8iZ6/MKYas4JvaqSCA/vZkDqb7JU/Ev3nXNrkr2C/hrKs/hBOuuh+6jS0i3iM/7GCb/zCltWLyJjxb7pkzqSQIJYlXEDTwfdTt0lrp6MZU2UqUvDt8ktTbTVp041ud37Cn9f+SmrcIDpnTKP2W71Y9J8rSF+/zOl4xvgcK/im2mvUoj2njnmf3dcvYEHCENrt+YF6k85g6fMXs331fKfjGeMzrOCbGqNBk1b0/vsEsm9exK/1r6Zl1jwaTh7IinGDSFv+k9PxjHGcFXxT49Rr0IQ+t7xM3m2pzG54A432LSfx08GseaYfWxd9Az503sqYqmQF39RYCXXr0/fGcRSOWcaPTW4nbv8GGn85jA1PncbmuZ9a4Td+xwq+qfHqxMXTf9S/CBq7nJkt7iH0QAZNvx3Fln93Y/Oc96H42IPGGVMTWLdM43eycnKZ/8UbnLR2PM3ZTnpQYw72vJ1m/a6DwGCn4xlTIdYP3xgP7Ms9wG9fvU2zlW/Qmk1kBNYjp9utND/7Zgi2wdtM9WAF35gKyD1YwM9ff0CDZa/SiT/YExBH4dBJ1G3Xx+loxhyTXXhlTAVEhAZzzpCRnPzAXL7pNp6c4mAip1xG+vLZTkczplJZwTfGLSwkiEEXDiP3yi/ZRS1iPh3G1iUznY5lTKWxgm/MUdqc3JrCa74igzjivxjBxpRvnY5kTKWwgm9MKVq2aEXAddPZIXWo/9VVrJ33tdORjDlhVvCNKUOTps0J/dsM0qU+jWdcy6pfPnc6kjEnxAq+MeVo2KgJkTfOYHtgQ1p8/zeWz/7U6UjGHDevF3wRCRSRJSLylbe3ZYw31GuQSOzN35AW1JiTZ93Ekh+SnY5kzHGpiiP8McCqKtiOMV4TX7chdW79hq1BTWg/51bmf/OB05GMqTCvFnwRSQTOByZ4czvGVIXY+HrUG/0tW4Kb03XuaH79epLTkYypEG8f4b8I3AMUe3k7xlSJ6FoJNLz9W7aEnkSPBXcw+/O3nI5kjMe8VvBF5AJgp6ouOsZyN4pIioikZGRkeCuOMZUmIiaexNHfsDmsNacvuYuZn7zhdCRjPOLNI/zewGAR2QRMBvqLyPtHL6Sq41U1SVWTEhISvBjHmMoTFl2bJrd/w+bwdvRdfh8zPnoFXxqXypjSeK3gq+r9qpqoqs2AK4AfVfUqb23PmKoWEhlL0zEz2BzZkYGrH+TL9/9jRd/4NOuHb8wJCAqPofnt09kc1YXz1/2Tzyc+R3GxFX3jmzwq+CLSVETOcj8OF5HoimxEVWer6gXHE9AYXxcQFkXzMV+zOaYbF216nE/feooiK/rGBx2z4IvIDcAnwKEzU4mAXWNuTAkSEknz0V+ypXYPLk17minjH6egyDqnGd/iyRH+bbhOwGYDqOpaoK43QxlTHUlIBM1um8bWuF4M/3Mcyf99lIOFdr9c4zs8KfgHVTX/0BMRCQLs+6oxpQkOo+mtn7GlTh+u2vUiya8+zIECK/rGN3hS8H8SkQeAcBE5G/gY+NK7sYypxoLDaHLzp6TV7cs1e19h8sv/x/6DhU6nMsajgn8fkAEsB24CpgMPejOUMdVeUCiJN37M9voDGJn9X5Jfvo+svAKnUxk/50nBPx94S1UvU9WhqvqmWmdjY44tKISGNyTzZ6OBjMp5k09evoe9+/OP/T5jvMSTgj8MWCsiz4hIG28HMqZGCQym/qgP2dH4PK7PfZvPX3/Iumwaxxyz4Luvju0KrAcmishc9/g3FeqLb4zfCgym3sj32F6vH1dlv8mnX9mtIYwzPLrwSlWzcfXFnww0AC4BFovIaC9mM6bmCAyiwbVvkxMcR9Kiu1m+cbvTiYwf8uTCq8Ei8hkwGwgGeqjquUBn4B/ejWdMzSERcQQPfZNm8iebP7id3HzruWOqlidH+JcCL6hqR1V9VlV3AqhqLnC9V9MZU8NEtelHevubuKDwe6Z+8JrTcYyf8aQN/1rgD/eR/oUiUr/EvB+8ms6YGqjRJf8iPbItF2x6ip8WLnE6jvEjnjTpXA8sAIYAQ4F5IjLK28GMqbGCQoi/9j1CpYiIr29jR+Z+pxMZP+FJk849QFdVHek+2u8G3OvdWMbUbCF1TyK735N0ZwWz33nQhlQ2VcKTgr8b2Ffi+T73a8aYE1DvjFFsrj+QIZnv8uUM66ppvK/Mgi8iY0VkLLAOmC8i/xSRR4B5wB9VFdCYGkuEJteMJzsojs4L7mL1lnSnE5karrwj/Gj3tB7X+PeHvnN+AWz0ci5j/IJE1CZo6Js0kR1sfu/vNrKm8aqgsmao6qMln4tIhLsrpjGmEsW27cfm9jdzzor/MuXD17j8Wrue0XiHJ710eonISmC1+3lnEbEOxMZUoqZD/kVaRHvO2fAkcxenOh3H1FCenLR9ETgH94laVV0KnOHNUMb4ncBgEkZOIliUkGm3sDvbvkybyufpWDpbj3rJGhqNqWShdVuR2fcJurGSn975P2wUclPZPCn4W0XkNEBFJFhE7gJWeTmXMX6p4ZmjWF93IIP3TOTb76yrpqlcnhT8m3HdyLwRsA3o4n5ujKlsIjQfOZ7MoDq0+20s69P+dDqRqUE8GUtnl6qOUNV6qlpXVa9SVbvwyhgvCYioTcDQCTSSDDa+dyv5hcVORzI1RJndMkXkZf7X9/4vVPV2ryQyxhDX9kzWtb2Fs1a9xheTX+Wiq6yrpjlx5R3hpwCLgDDgFGCte+oChHg/mjH+rdXQf7E5vD391j7JoqXLnI5jaoAyC76qvquq7wKdgL6q+rKqvgwMwFX0jTHeFBhEwrWTCBQl8PMbycrJczqRqeY8OWlbG4gp8TzK/Zoxxssi6rdi15lP0kVX8fM791tXTXNCPCn4TwFLRGSiiLwLLAae9G4sY8whTfuNYk3CIAbtepeffvja6TimGvOkl847wKnAZ8BUoJe7qccYU0VaXfcGe4ISaPnznaSl73A6jqmmPL3S9k9V/cI9edQxWETCRGSBiCwVkRUi8uix32WMKU1gRC0YMp6GZLDu3VsoLLKumqbiPCr4x+kg0F9VO+M6yTtIRHp6cXvG1Gh12/dlbZtb6HvgB2Ymv+p0HFMNea3gq0uO+2mwe7IzTsacgDaX/4sN4R3oveYJfl9hXTVNxXhU8EUkUEQaikiTQ1MF3pcK7AS+V9X5pSxzo4ikiEhKRkZGxdIb428Cg6hz7SREBP30BnLyDjidyFQjnoyHPxrYAXwPfO2ePBrVSVWLVLULkAj0EJEOpSwzXlWTVDUpISGhQuGN8Ucx9Vuyo8+TdCxezW9v3+d0HFONeHKEPwZorartVbWje+pUkY2oaiYwCxh0PCGNMUdqOeA6VtQZxICdE5k7y7pqGs94NDwykFXRFYtIgojUcj8OB87GfdcsY8yJO3nUG2QE1qXJT2P4c6d11TTH5knB3wDMFpH7RWTsocmD9zUAZonIMmAhrjZ8G+DbmEoSHFGLokvGU093s/6dmygutj4RpnyeFPwtuNrvQ4DoElO5VHWZqnZV1U6q2kFVHzuxqMaYozXq2JeVJ91M77xZzJn2ttNxjI8TXxqbIykpSVNSUpyOYUy1ooX5bHq6F9H5GeTf9BsNGyY6HclUIRFZpKpJnixb5hG+iLzo/vmliEw7eqqssMaYEyNBIYQP/S+x5LDh/TE2wJopU5k3QAHec/8cVxVBjDHHr37rHixteT2nbxjPz9M/oM/5Vzkdyfgga9IxpoYozj9A2jM9CC3ch9w2n7oJdZ2OZKpApTTpGGOql4CQMAIvfo06upfVk+6wph3zF1bwjalBGnU4neVNr+GMfV8zb+anTscxPsaToRUu8+Q1Y4xv6HDlv9kW2Iimv97H7j27nY5jfIgnR/j3e/iaMcYHBIVFUnTBK9TXXfw+6R9OxzE+pMxeOiJyLnAe0EhEXioxKwYo9HYwY8zxa9K1P0sWDOPM9MksmD2UHn0vcDqS8QHlHeFvB1KAA8CiEtM04BzvRzPGnIj2V48jPaAe9Wf/g6ysCg+HZWqgMgu+qi5137u2laq+W2Kaqqp7qzCjMeY4hEREkzfoRZrwJ0sm3eN0HOMDPGnD7yEi34vIHyKyQUQ2isgGryczxpywFj3OI7XuJfTZlczi3753Oo5xmCcF/y3geeB0oDuQ5P5pjKkG2lzzArsD4qj9/Z3k7N/vdBzjIE8KfpaqzlDVnaq6+9A8jVJfAAAVyElEQVTk9WTGmEoRFlWbrLPG0Vy3kjLJOtj5M08K/iwReVZEeonIKYcmryczxlSak3oPITX+PE7/8z2WLZzjdBzjkPIGTzvkVPfPkmM1KNC/8uMYY7zl5GteIuuF7kTMGE1eh/mEh4c5HclUsWMe4atqv1ImK/bGVDMRsQlknPkkrYo3Mf/9h5yOYxzgydAK9UTkLRGZ4X7eTkSu9340Y0xla9PvSpbWGsBpaW+xcul8p+OYKuZJG/5E4Fugofv5H8Ad3gpkjPGulte8yn6JJOCL2ziYf9DpOKYKeVLw66jqFKAYQFULgSKvpjLGeE1UXAO2n/YYbYrXMu+Dfzkdx1QhTwr+fhGJx3WiFhHpCdh12sZUY+3PHsny6NPpuel1/lix2Ok4pop4UvDH4ho/p6WI/ApMAkZ7NZUxxrtEaHL1fzkoIRRMvY2CQhsP0R940ktnMXAmcBpwE9BeVZd5O5gxxrti6zZhU9JDtC9aydzJTzkdx1QBT3rpBOIaJnkAMBAYLSJjvR3MGON9nc6/mRURp5K09iU2rl3hdBzjZZ406XwJjATigegSkzGmuhOhwVWvUywB7JtyC0VFxU4nMl7kyZW2iarayetJjDGOiGvYgtQu99Il9Z/8/PFz9LnibqcjGS/x5Ah/hogM9HoSY4xjOg8ew6qwrnRd9RxbN/7hdBzjJZ4U/HnAZyKSJyLZIrJPRLK9HcwYU3UkIIA6w18nQIrZNflWiq1pp0bypOA/D/QCIlQ1RlWjVTXGy7mMMVUsoWkbVre7k64HFzL381edjmO8wJOCvxX4XVXV22GMMc7qOvQe1oS0p8Oyf5O+bZPTcUwl86TgbwBmi8j9IjL20HSsN4lIYxGZJSIrRWSFiIw58bjGGG+SgEBihr1BKPlse/9WtNiadmoSTwr+RuAHIISKdcssBP6hqu2AnsBtItLueIMaY6pGg5YdWdH67yTl/cq8ryY4HcdUIvG0pUZEogBUNee4NiTyBfCKqpZ5J+WkpCRNSUk5ntUbYypRcWEBG54+jbiCdApvnkfd+olORzJlEJFFqpp07CU9u9K2g4gsAVYAK0RkkYi0r2CgZkBX4C8DcIvIjSKSIiIpGRkZFVmtMcZLAoKCCRv6OlGaR/rbV1NQUOB0JFMJPGnSGQ+MVdWmqtoU+AfwpqcbcH8z+BS4Q1X/0p1TVcerapKqJiUkJHi6WmOMlyW27saKrg/TOX8x8ybYaCo1gScFP1JVZx16oqqzgUhPVi4iwbiK/QeqOvW4EhpjHNP14jEsqnMRfXZMYt5X7zgdx5wgj3rpiMhDItLMPT2Iq+dOuUREgLeAVar6/IkGNcY4o/MNb7AuuDUdF97H2t/tHFt15knBHwUkAFPdU4L7tWPpDVwN9BeRVPd03nEnNcY4Iig0nLhRyRyUEEI+vYa9e3Y7HckcJ4976VQF66VjjO9au+Abmn89nNSInnS96ysCAwOdjmSoWC+dMkfLFJFp5b1RVQdXNJgxpvo6qccglmy6i6SVz/DTO//HmX+zm6ZUN+UNj9wL17AKH+HqTilVksgY47O6XvYAS/+zmD5bX2fh96fQ/ezLnY5kKqC8Nvz6wANAB+A/wNnALlX9SVV/qopwxhgfI0KbG99hc3AzTv7lDrtLVjVTZsFX1SJV/UZVr8U1NMI6XGPq/L3K0hljfE5oRAxRV09GBAo/GkH2viynIxkPldtLR0RCRWQI8D5wG/AS8FlVBDPG+K6Epm1IH/AKLYs2seL1UTZ+fjVRZsEXkUnAXOAU4FFV7a6q/1LVbVWWzhjjs1r3GUJqq1votX8mcz54wuk4xgPlHeFfBZwEjAF+c9/tyu54ZYw5rOuIx/k9qje917/AojlfOR3HHEN5bfgB7rtbRbvvdHVosjteGWMA1/j5rW76gJ2B9Wj6461s3bTe6UimHJ5caWuMMWUKi65NwPAPieAA+967kv25uU5HMmWwgm+MOWENTurK5tOfpV3Raha9cRO+dAW/+R8r+MaYStH2rGtZ0vgazsiaxpzkF52OY0phBd8YU2m6jHye1eGn0HPVEyydP+vYbzBVygq+MabSSGAwiTd+RGZALerO+Bvp6WlORzIlWME3xlSqqNr1KRj6LnGaxY63r+TAwYNORzJuVvCNMZUusX1v1vV4jC4FS5k7foydxPURVvCNMV7R/vxbSa1/Kf12f8ScLyY4HcdgBd8Y40Wdrv8v60LakrTk/1ixdL7TcfyeFXxjjNcEBIdS9/opHAgIJ+qza8nI2Ol0JL9mBd8Y41Ux9Zqwf/BbNNSdbJpwNfkFhU5H8ltW8I0xXtek61ms6XIf3Q/O4+e373M6jt+ygm+MqRIdLr6b5fGD6Ld9Ar9M/8jpOH7JCr4xpmqI0PaGt9gS0pyO8//BmpVLnU7kd6zgG2OqTFBYFLHXTkZECJ9yOSt+T3U6kl+xgm+MqVK1E1uTc+mHxLCf+h9fyLyfv3M6kt+wgm+MqXINO56JjvqOgsAIOs8cwczP3nE6kl+wgm+McUTtJu2IHf0Tf4Y1p1/qncx4+zGKi20IBm+ygm+McUx47fo0ufNH1tbqzblbnmPmSzdxIL/A6Vg1lhV8Y4yjAsOiaDNmGisTL2dgZjIpzw1hd2aW07FqJCv4xhjnBQTS7vrxrO54N6cfnMPWl85lS5qNpV/ZrOAbY3yDCG0ufZCNfV+iXfEaCicMZPnvy5xOVaN4reCLyNsislNEfvfWNowxNU/zvtey+5IpJJBJ/Y8v4Nc53zsdqcbw5hH+RGCQF9dvjKmhGnQeQNGo79DAULr8MIJvP5/kdKQawWsFX1XnAHu8tX5jTM1Wq0kHYv4+m91hTRiwZAxfvv0ERdZt84Q43oYvIjeKSIqIpGRkZDgdxxjjQ8LiGpF45yw21erJhVue4duXbiXvoA2vfLwcL/iqOl5Vk1Q1KSEhwek4xhgfExAWTavbv2RNoyGcl/kh854fyq6sfU7HqpYcL/jGGHNMgUG0/tvbrO1wJ/0OzmLLf85lY9o2p1NVO1bwjTHVgwgnDf0nm898gY7FqyiacA5LV1gnwIrwZrfMj4C5QGsRSROR6721LWOM/2jabxR7Lv6I+uym/pQL+HnOj05Hqja82UtnuKo2UNVgVU1U1be8tS1jjH+p12UgRSNnEBgYSJcfruTrz95H1XrwHIs16RhjqqXYZl2Ium02WaENGJh6O5+/84x12zwGK/jGmGorLL4xDe+cTVpsNy7Z8iRfvzSa3IM22mZZrOAbY6q1gPBYmo+ZzrqGgxmc+R5znx/G6k3bnY7lk6zgG2Oqv8BgWt0wiQ3t/s6Agz9Q551T+fT1f7J9d7bTyXyKFXxjTM0gQovLnyDnmu/YH9OSS/98gYMv9WDqh6+TnZfvdDqfYAXfGFOjRLU4laZjZ7HrwkmEh4Yw5I97Wf/06Xz19efkFxY7Hc9RVvCNMTWPCHW6XUT9exezrc9TNAvI4IKF1/Lbv89n9tx5ftuF0wq+MabmCgyi0YBbqHXvMjZ2uJ1TixbT+5vzmP7MNaSuXut0uipnBd8YU+NJaDTNh/6LkLFL2dx0COfkfUWLj/rw2Utj2ZjuP6P0WsE3xviNwJj6tBo1gYIbf2FXfHcu2fMWYa/3YOpbT7MrO9fpeF5nBd8Y43fCG7anxe1fkjnsCwoj6zFk65Psfq4n0z6ZRF5+kdPxvMYKvjHGb9Vq25fGd8/lz4GvERecz+DfR7Ps3/34bub3NXKYBiv4xhj/JkL900aQcN9SNnd/iLZs4KyfL+PHfw9h7uLUGtWjxwq+McYABIXS9Py7iL5nORtaj+KMgp855Yuz+PL5G1m5cavT6SqFFXxjjClBwmvT6srnkdGL2NrgHC7Y9zH1J/bks/8+yJq0ndX6iF98KXxSUpKmpKQ4HcMYYw7bt2kRu6beQ/PsFHI0jPnBPchpcT4nn34JbRrXRUQczScii1Q1yaNlreAbY8wxqJK1ahY7f3ufettnElOcRa6GsiA4iazm53FS7yG0bdrAkeJvBd8YY7ylqJCsNbPZMW8KddO+o1bxXg5oMAuCupHZ7Dxa9r6Uds0bVVnxt4JvjDFVobiI7D9+5s+5ydRJ+5a4ot0c1CAWBnVlb9NzaX7aUNq3bOLV4m8F3xhjqlpxMdnrfiN9bjJ1tswgviiDfA1kUWBndjc5hyanXUbHk1pUevG3gm+MMU5SJWfDArb99hFxm2eQUPgnhRrA4oAOZDQZRGKvy+l4cisCAk68+FvBN8YYX6HKvs2L2fbrZGpt/Jr6hdsoUiE1oD07Es+hYa/L6dSm9XEXfyv4xhjji1TJ2bqMtF8/ImbDdBoWbKZYhaWBbelw32yCQ0IrvMqKFPygCq/dGGPM8REhqkln2jTpDDzF/m2/s+XnyYRkbj2uYl9RVvCNMcYhkY060PaKx6tseza0gjHG+Akr+MYY4yes4BtjjJ+wgm+MMX7CCr4xxvgJrxZ8ERkkImtEZJ2I3OfNbRljjCmf1wq+iAQCrwLnAu2A4SLSzlvbM8YYUz5vHuH3ANap6gZVzQcmAxd5cXvGGGPK4c0LrxoBJW8EmQacevRCInIjcKP7aY6IrCllXXWAXZWe0LuqW+bqlhcsc1WpbpmrW144scxNPV3Q8SttVXU8ML68ZUQkxdOxInxFdctc3fKCZa4q1S1zdcsLVZfZm00624DGJZ4nul8zxhjjAG8W/IXASSLSXERCgCuAaV7cnjHGmHJ4rUlHVQtF5O/At0Ag8LaqrjjO1ZXb5OOjqlvm6pYXLHNVqW6Zq1teqKLMPjUevjHGGO+xK22NMcZPWME3xhg/4VMF/1hDMYjISBHJEJFU9/Q3J3KWyPO2iOwUkd/LmC8i8pL78ywTkVOqOuNReY6Vt6+IZJXYvw9XdcZSMjUWkVkislJEVojImFKW8bX97Elmn9nXIhImIgtEZKk776OlLBMqIsnufTxfRJpVfdIj8niS2afqxSEiEigiS0Tkq1LmeXc/q6pPTLhO7K4HWgAhwFKg3VHLjARecTpriTxnAKcAv5cx/zxgBiBAT2C+j+ftC3zl9H49KlMD4BT342jgj1L+X/jafvYks8/sa/d+i3I/DgbmAz2PWuZW4HX34yuA5GqQ2afqRYlcY4EPS/v39/Z+9qUj/Go3FIOqzgH2lLPIRcAkdZkH1BKRBlWT7q88yOtzVDVdVRe7H+8DVuG6irskX9vPnmT2Ge79luN+Guyeju7NcRHwrvvxJ8AAEZEqivgXHmb2OSKSCJwPTChjEa/uZ18q+KUNxVDaL8ml7q/tn4hI41Lm+xJPP5Mv6eX+mjxDRNo7HaYk99fbrriO5kry2f1cTmbwoX3tbmZIBXYC36tqmftYVQuBLCC+alMeyYPM4Hv14kXgHqC4jPle3c++VPA98SXQTFU7Ad/zv7+EpnIsBpqqamfgZeBzh/McJiJRwKfAHaqa7XQeTxwjs0/ta1UtUtUuuK6I7yEiHZzM4wkPMvtUvRCRC4CdqrrIqQy+VPCPORSDqu5W1YPupxOAblWU7XhVq+ElVDX70NdkVZ0OBItIHYdjISLBuArnB6o6tZRFfG4/Hyuzr+5rVc0EZgGDjpp1eB+LSBAQC+yu2nSlKyuzD9aL3sBgEdmEq8m6v4i8f9QyXt3PvlTwjzkUw1HtsoNxtY36smnANe5eJD2BLFVNdzpUWUSk/qH2QhHpgev/h6O/1O48bwGrVPX5Mhbzqf3sSWZf2tcikiAitdyPw4GzgdVHLTYNuNb9eCjwo7rPLDrBk8y+Vi9U9X5VTVTVZrjq24+qetVRi3l1Pzs+WuYhWsZQDCLyGJCiqtOA20VkMFCI6+TjSMcCAyLyEa7eFnVEJA14BNfJI1T1dWA6rh4k64Bc4Dpnkrp4kHcocIuIFAJ5wBVO/lK79QauBpa722sBHgCagG/uZzzL7Ev7ugHwrrhuWhQATFHVr4763XsLeE9E1uH63bvCoayHeJLZp+pFWapyP9vQCsYY4yd8qUnHGGOMF1nBN8YYP2EF3xhj/IQVfGOM8RNW8I0xxk9YwTdeIyI5Hixzh4hEVOI2LxaRdpW4vt9O4L057p8NReSTcparJSK3Hu92jPGUFXzjtDuAChV8d9/rslwMVFrBV9XTKmEd21V1aDmL1MI1SqIxXmUF33iduMZ+n+0ewGq1iHzgvir2dqAhMEtEZrmXHSgic0VksYh87B6PBhHZJCJPi8hi4DIRuUFEFroHH/tURCJE5DRcV1Q+K67xz1uKSBcRmeceQOszEantXt9sEXlBRFJEZJWIdBeRqSKyVkQeL5E9p8Tje0VkuXubT5XyOZu7sy8/ah3NxH0PAhFpL65x3FPdmU4CngJaul97VkSiROQH9z5YLiIXlVjPKhF5U1xjwH/nvsoUEWklIjPd2RaLSEv363e799MyKWXMeONnKnOsZZtsKjkBOe6ffXGN+peI6yBjLnC6e94moI77cR1gDhDpfn4v8HCJ5e4pse74Eo8fB0a7H08EhpaYtww40/34MeBF9+PZwNPux2OA7biu3gzFNdpm/FGf4VzgNyDC/TyulM87DbjG/fi2Eu9thvseBLgGShvhfhwChJec7349CIgpsU/W4Rr/vRmuq0a7uOdNAa5yP54PXOJ+HIbrW9NAXDfHFvd+/wo4w+n/FzY5N/nM0AqmxlugqmkA7uEGmgG/HLVMT1zNMb+6h5kJwfXH4ZDkEo87uI+iawFRuIbkOIKIxAK1VPUn90vvAh+XWOTQWE3LgRXqHn9HRDbgGsCq5Ng2ZwHvqGougKqWdl+B3sCl7sfvAU+Xssxc4P/ENS76VFVdK38d7lyAJ0XkDFzD6DYC6rnnbVTVQ8M1LAKaiUg00EhVP3NnO+D+HANxFf0l7uWjgJNw/VE1fsgKvqkqB0s8LqL0/3uCa1zz4WWsY3+JxxOBi1V1qYiMxPUt4ngzFR+Vr7iMfJ4od6wSVf1QRObjugnGdBG5Cdhw1GIjgASgm6oWiGt0xbCjMoNrP4aXszkB/q2qb1Qgv6nBrA3fOG0frtsAAswDeotIKwARiRSRk8t4XzSQLq5hiEeUtj5VzQL2ikgf97yrgZ84Pt8D1x3qUSQicaUs8yv/G+xqRCnzEZEWwAZVfQn4AujEkfsAXEPi7nQX+35A0/KCqeuuWmkicrF7G6HunN8Co0qcB2kkInU9+rSmRrKCb5w2HvhGRGapagauEQ0/EpFluJo/2pTxvodwtVv/ypHD4k4G7hbXTaJb4hpq9ln3+rrgasevMFX9BlcTUIq7SequUhYbA9wmIssp+45blwO/u9fRAdetGXfjasb6XUSeBT4AktzruYa/DlVcmqtxjQ65DNe5hvqq+h2ue6fOda/rE478w2L8jI2WaYwxfsKO8I0xxk9YwTfGGD9hBd8YY/yEFXxjjPETVvCNMcZPWME3xhg/YQXfGGP8xP8DIcKLYC5W7lgAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for j in reversed(range(len(algorithms))):\n", - " pylab.plot(distances, dipoles[j], label=algorithms[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Moment in debye')\n", - "pylab.title('LiH Dipole Moment')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xt8HGW9+PHPN8nmnjYlSS9JKW0DFQGh0FKgHJC7okgRkSMF5XIU6w1FRcDfOaIIAuJdzhFRFFDKRaw23G8ClaQU2lKupUBDoW3SNuktm/tu9vv7YybtNt0km2Qns5fv+/XKK7OzM898d9LOd+d5nnkeUVWMMcZkriy/AzDGGOMvSwTGGJPhLBEYY0yGs0RgjDEZzhKBMcZkOEsExhiT4SwRGGNMhrNEYNKWiKwTkVN8OvYEEVkiIkER+fkoHvcOEbnOo7LPF5EnvCjb+MsSQYYSkcdE5NoY6+eJyCYRyXFfzxWRf7kXtJ0iUiMiB0Ztf4KIRESktc/PMaP5eZLQpUAzMEZVv+N3MEMlIlNFRHv/HQCo6t2qepqfcRlvWCLIXHcCF4iI9Fn/eeBuVQ27F/MngMVAJTANeBWoFZGpUfs0qGpxn5+l3n+E0RF9MRyC/YA31R7dNynAEkHm+idQBhzXu0JExgFnAHe5q34K3KWqv1bVoKpuU9X/Bl4ErhnOQd3qmu+KyKvuHcZ9IpLvvneRiDzfZ3sVkf3d5TtE5P9E5FH3rqNWRCaKyK9EZLuIvCUih/c55JEi8qb7/p97j+WWd4aIrBKRHSJSJyKH9onzShF5FWiLlQzcu6WX3M/xkojM7Y0TuBD4nhvnXtVTIpInIj8TkQ9EZLOI3CoiBe57q0XkjKhtc0SkSUSOcF//zb1r2+lWPx3cz7ke7Hx+UkReFpEWEVkvIj+M2nSJ+3tH7x1e3/L6+/zue8+KyI/dv1FQRJ4QkXL3vXwR+auIbHXP/UsiMiHWZzCjwxJBhlLVDuB+4AtRq88F3lLVV0SkEJgL/C3G7vcDI6kiOBf4OM4dxqHARUPc97+BcqALWAqsdF8/APyiz/bnAx8DqoEZ7r64CeNPwJdxEuLvgRoRyYva9zzgk0CpqoajCxWRfYCHgd+4+/8CeFhEylT1IuBu4Kfu3dFTMT7HjW48M4H9gSrgB+5797jH7vUxoFlVV7qvHwUOAMa7n/3u2KdqUG04f/9S93N+RUTOct873v1dGusOb6DPH7XZfOBiN85c4Lvu+guBscC+7r4LgI5hfgaTAJYIMtudwDlR35K/4K4D2Afn30djjP0agYqo15XuN7von6IBjvsbVW1Q1W3AgzgXw3j9Q1VXqGon8A+gU1XvUtUe4D6g7x3BLaq63j3W9ey+wF4K/F5Vl6lqj6reiZNYju4T53o3afb1SeAdVf2LqoZV9R7gLeBTg30AtzruUuBy9y4rCPwE+Jy7yULgTDcZg3NBvad3f1X9k3uH1gX8EDhMRMYOdty+VPVZVX1NVSOq+qp7jI/GuXs8n//Pqvp21JeO3r9zCCcB7O+e+xWq2jLU+E3iWCLIYKr6PE6D5lkiUg3MwbkIAWwHIsCkGLtOcvfr1aCqpX1+2gY49Kao5XageAhhb45a7ojxum9Z66OW38dp6wCnDv870ckL5xtqZT/79lXplhftfZxv9oOpAAqBFVHHfsxdj6q+C6wGPuUmgzNx/y4iki0iN4rIWhFpAda5ZZbHcdw9iMhRIvKMW+20E+ebebzlxPP5+/s7/wV4HLhXRBpE5KciEhhq/CZxLBGYu3DuBC4AHlfVzQDuhXwp8NkY+5wLPOtBLG04F0gARGRiAsrcN2p5CtDgLq8Hru+TvArdb7a9BmrobcBJJtGmABvjiKkZJ2kdHHXssaoancR6q4fm4TQ6v+uun++uOwWnemWqu75voz8Mfj4XAjXAvqo6Frg1qpzBGrmH/flVNaSqP1LVg3CqH89gzypKM8osEZi7cC4qX2J3tVCvq4ALReQyESkRkXHi9FE/DqcqI9FeAQ4WkZluddUPE1Dm10Rkslun/f9wqo8A/gAscL8Vi4gUuY2nJXGW+wgwQ0Tmu425/wkcBDw02I6qGnGP/0sRGQ8gIlUi8rGoze7FaYf5Crvv0gBKcKqwtuJc5Af6Owx2PkuAbaraKSJzcJJMryacO8Lp/ZQ97M8vIieKyEdEJBtowakqigy2n/GOJYIMp6rrgDqgCOfbYfR7z+M0VJ6N0y6wDaeh72RVfT1q00rZ+zmCzwwjlreBa4GngHeA5wfeIy4LcbrA1gNrgevcYy3HSX634FSDvcsQGq1VdSvON9nv4FyUvwecoarNA+6425XuMV9wq3ieAj4UVX4jzh3ZXHYnL3AS9/s437zfBF4YIMbBzudXgWtFJIjTUH1/1L7tOG0qtW71VXTbyUg//0Schv0WnCqw53Cqi4xPxLo5m3iJ073yGWC+qj7udzzGmMSwOwITN7dnyVnAR2R4D1kZY5KQ3REYY0yGszsCY4zJcClxe19eXq5Tp071OwxjjEkpK1asaFbVisG2S4lEMHXqVJYvX+53GMYYk1JEpO9DfzFZ1ZAxxmQ4SwTGGJPhLBEYY0yGS4k2glhCoRAbNmygs7PT71A8kZ+fz+TJkwkEbCwuY4y3UjYRbNiwgZKSEqZOnYrsNclWalNVtm7dyoYNG5g2bZrf4Rhj0pynVUMi8k0ReV1E3hCRb7nr9hGRJ0XkHff3uOGU3dnZSVlZWdolAQARoaysLG3vdowZbS1LFlG/4Eje/mwV9QuOpGXJoqQu1+uy+/IsEYjIITiDes0BDgPOcKfIuwp4WlUPAJ52Xw/3GIkINSml82czZjS1LFnE5luvINy8EVQJN29k861XjPjC6lW5Xpcdi5dVQx8GlrmjGCIiz+GMYjkPOMHd5k6cce2v9DAOY0wGa154A9q95yRz2t3Blj9eTXfDu/3sNbgdj9zuSbkDld288AbGHH/2iMqOxctE8DpwvTuHaQfwCWA5MMEdYhecGYxiTlotIpfiTOfHlClTPAxzeE488USuuuoqPvax3UPI/+pXv2LNmjV8/etf5xvf+AYbN24kHA5zwQUXcM0115CVlcUdd9zBFVdcQVXV7omcFi5cyEEHHeTHxzAm7YW3NsRcH2kPsu3vvx5+wf2M0zbicgcou7/PMlKeJQJVXS0iN+GMBd8GrAJ6+myjIhLzE6vqbcBtALNnzx7xyHgtSxbRvPAGwlsbyCmrpHz+1SPKrOeddx733nvvHong3nvv5aabbuLMM8/kd7/7Haeddhrt7e185jOf4de//jWXX345AP/5n//JLbfcMtKPZIyJQ05ZpVPF0nd9eRXTb31p2OXWLzjSk3IHLLusMsbWI+dpY7Gq3q6qs1T1eJzJP94GNovIJAD39xYvYwBv6tvOOeccHn74Ybq7uwFYt24dDQ0NvPvuuxx77LGcdtppABQWFnLLLbdw8803J+SzGGOGpnz+1dCnzU1yC5z1IyxXcgsSXq7XZcfiafdRERmvqltEZApO+8DRwDScWa5udH8vHulxtvz5B3S990a/73e+vQINd++xTrs72Px/32bnU3fH3Cdv2sGMv/jafsvcZ599mDNnDo8++ijz5s3j3nvv5dxzz+WNN95g1qxZe2xbXV1NR0cHO3bsAOC+++7j+ed3Txa1dOlSCgr2/KMbYxIj/0OzQJWsorFE2lsSUiMA7No/kTUNo1F2LF4/R/B3t40gBHxNVXeIyI3A/SLyXzhT7p3rcQx7JYHB1sert3qoNxHcfvvt3H137MQSzaqGjBk9rXXODKz7/exJAhWTE1r2mOPP9uzi7GXZfXmaCFT1uBjrtgInJ/I4A31zh4Hr8va99u/DPu68efO4/PLLWblyJe3t7cyaNYuXX36ZJUuW7Hn8+nrKysooLS0d9rGMMcMTrK0hf8ashCeBdJIRYw15Vd9WXFzMiSeeyCWXXMJ5550HwPnnn8/zzz/PU089BUBHRweXXXYZP/rRj0Z0LGPM0HU3rKVr3RuUzD3T71CSWkYkgjHHn82EBTeTU14FIuSUVzFhwc0Jue0677zzeOWVV3YlgoKCAmpqarj++uuZMWMG5eXlHHvssZx//vm79rnvvvuYOXPmrp+6uroRx2GM2VuwtgZEKD7mDL9DSWopMWfx7Nmzte/ENKtXr+bDH/6wTxHF75///Cff/va3eeaZZ9hvv/2GtG+qfEZjktW6y08ku7iUfX/8D79D8YWIrFDV2YNtlxF3BH4666yzqK+vH3ISMMaMTNf6NXSvX2PVQnGwRGCMSUvB2sWQlWXVQnFI6USQCtVaw5XOn80Yr6kqwboaCg6aS07poHO3Z7yUTQT5+fls3bo1LS+YvfMR5Ofn+x2KMSmp+/03CTXUU3KsVQvFI2Unppk8eTIbNmygqanJ71A80TtDmTFm6IK1NZCVTclRp/sdSkpI2UQQCARs9i5jzF56q4UKDz2O7DFlfoeTElK2asgYY2LpWvsqoc3vU3LMp/wOJWVYIjDGpJVg3WLICVBs1UJxs0RgjEkbTrXQgxQd+lGyi21sr3hZIjDGpI3Ot1cQbt5ovYWGyBKBMSZtBOtqkEAeRUd+bPCNzS6WCIwxaUEjEYJLH6Lw8BPJLizxO5yUYonAGJMWOt56kZ5tm2xsoWGwRGCMSQvB2sVIbj7Fs071O5SUY4nAGJPytCdM6wsPUzTrVLIKivwOJ+VYIjDGpLyON5bSs7PZegsNkyUCY0zKC9bVIPlFFB1+kt+hpCRLBMaYlKbhEMEXHqF49mlk5RUMvoPZiyUCY0xKa3/teSKt261aaAQsERhjUlqwbjFZhWMonHmC36GkLEsExpiUFQl10brsMYrnfJysQJ7f4aQsTxOBiFwuIm+IyOsico+I5IvIHSLynoiscn9mehmDMSZ9tb/yHJH2FnuIbIQ8m5hGRKqAy4CDVLVDRO4HPue+fYWqPuDVsY0xmSFY9yBZxeMoPPQ4v0NJaV5XDeUABSKSAxQCDR4fzxiTISLdnbS99DjFR52O5AT8DieleZYIVHUj8DPgA6AR2KmqT7hvXy8ir4rIL0UkZsWeiFwqIstFZHm6zktsjBm+tpefIdLRar2FEsCzRCAi44B5wDSgEigSkQuAq4EDgSOBfYArY+2vqrep6mxVnV1RUeFVmMaYFNVau5jsMWUUHjzX71BSnpdVQ6cA76lqk6qGgEXAXFVtVEcX8GdgjocxGGPSUKSzndYVT1J89CeRbM+aOjOGl4ngA+BoESkUEQFOBlaLyCQAd91ZwOsexmCMSUNtK59Cuzqst1CCeJZKVXWZiDwArATCwMvAbcCjIlIBCLAKWOBVDMaY9BSsrSG7dDwFHz7K71DSgqf3VKp6DXBNn9U2KpQxZtgiHa20vfwvxp48H8nO9juctGBPFhtjUkrrS0+g3Z3WWyiBLBEYY1JKsG4xOWWTyJ8x2+9Q0oYlAmNMyuhp20nbqmcpmXsmkmWXr0SxM2mMSRmtLz4G4RDF1lsooSwRGGNSRrC2hsD4KeTvb2NVJpIlAmNMSugJbqP9tX9TPPdTOI8hmUSxRGCMSQnBFx6FnrA9ROYBSwTGmJTQWreYwKTp5E07xO9Q0o4lAmNM0gvvaKL9jTqnt5BVCyWcJQJjTNJrfeFhiETsITKPWCIwxiS9YF0NuZNnkDflQL9DSUuWCIwxSS28bRMdq5fZ3YCHLBEYY5JacOlDoGq9hTxkicAYk9SCdTXkTT2I3Kr9/Q4lbVkiMMYkrVDzRjrXLKdk7jy/Q0lrlgiMMUkrWPcgAMVzP+VzJOnNEoExJmkF62rIm34ouROn+h1KWrNEYIxJSt2b36fr3VXWW2gUWCIwxiSl1roaAOstNAosERhjklKwtob8GbMIVEz2O5S0Z4nAGJN0uhvW0rXuDbsbGCWWCIwxSSdYWwMiFB9zht+hZARLBMaYpBOsq6HgwDkEyib5HUpGsERgjEkqXevX0L1+jVULjaIcLwsXkcuBLwIKvAZcDEwC7gXKgBXA51W128s4jDHJr2XJIpoX3kC4eSMAavMOjBrP7ghEpAq4DJitqocA2cDngJuAX6rq/sB24L+8isEYkxpalixi861X7EoCAM13/ZiWJYt8jCpzeF01lAMUiEgOUAg0AicBD7jv3wmc5XEMxpgk17zwBrS7Y4912t1B88IbfIoos3iWCFR1I/Az4AOcBLATpypoh6qG3c02AFWx9heRS0VkuYgsb2pq8ipMY0wSCG9tGNJ6k1heVg2NA+YB04BKoAj4eLz7q+ptqjpbVWdXVFR4FKUxJhnklFUOab1JLC+rhk4B3lPVJlUNAYuAY4FSt6oIYDKwsb8CjDGZoXz+1Uggb491kltA+fyrfYoos3iZCD4AjhaRQhER4GTgTeAZ4Bx3mwuBxR7GYIxJAWOOP5uCj/yH+0rIKa9iwoKbGXP82b7GlSk86z6qqstE5AFgJRAGXgZuAx4G7hWR69x1t3sVgzEmNagq3R+8RdGsU6i6+i6/w8k4nj5HoKrXANf0WV0PzPHyuMaY1NL59grCzRspn3+V36FkJHuy2Bjju2BdDRLIo2j2aX6HkpHiSgQiUi0iee7yCSJymYiUehuaMSYTaCRCcOlDFB1+EtmFJX6Hk5HivSP4O9AjIvvj1PPvCyz0LCpjTMboeOtFerZtsnmJfRRvIoi4D4F9Gvitql6BM2aQMcaMSLB2MZKbT/GsU/0OJWPFmwhCInIeTnfPh9x1AW9CMsZkCu0J0/rCwxTNOpWsgiK/w8lY8SaCi4FjgOtV9T0RmQb8xbuwjDGZoOONpfTsbLYJ6n0WV/dRVX0TZyTR3tfv4Ywiaowxwxasq0Hyiyg6/CS/Q8locSUCETkW+CGwn7uPAKqq070LzRiTzjQcIvjCIxTPPo2svAK/w8lo8T5QdjtwOc7ooT3ehWOMyRTtrz1PpHW7VQslgXgTwU5VfdTTSIwxGSVYt5iswjEUzjzB71AyXryJ4BkRuRlnBNGu3pWqutKTqIwxaS0S6qJ12WMUz/k4WX1GHTWjL95EcJT7e3bUOsWZbcwYY4ak/ZXniLS32AT1SSLeXkMneh2IMSZzBGtryCoeR+Ghx/kdiiH+sYbGisgveqeOFJGfi8hYr4MzxqSfSFcHrS89TvFRpyM59lxqMoj3gbI/AUHgXPenBfizV0EZY9JX28vPoJ1t1lsoicTbRlCtqp+Jev0jEVnlRUDGmPQWrFtM9pgyCg+e63coxhXvHUGHiPTOI9f7gFmHNyEZY9JVpLOdthVPUXzMGUi2p/NimSGI9y/xFeBOt11AgG3ARV4FZYxJT20rnkS7Oqy3UJKJt9fQKuAwERnjvm7xNCpjTFoK1taQPW4CBQfabLXJZMBEICIXqOpfReTbfdYDoKq/8DA2Y0waiXS00vbyvxh76gVIdrbf4Zgog90R9A4QHmv+OE1wLMaYNNb60hNoqMuqhZLQgIlAVX/vLj6lqrXR77kNxsYYE5dg3WJyyiaRP2OW36GYPuLtNfTbONcZY8xeetp20rbqWUrmnolkxXvZMaNlsDaCY4C5QEWfdoIxgFXyGWPi0vriYxAOUWzVQklpsDaCXKDY3S66naAFOGegHUXkQ8B9UaumAz8ASoEvAU3u+u+r6iNDiNkYk2KCtTUExk8hf/+ZfodiYhisjeA54DkRuUNV3x9Kwaq6BpgJICLZwEbgHzjzH/9SVX82vJCNMamkJ7iN9tf+zbhPfXlXj0OTXOJ9oKzdnY/gYCC/d6WqxjsM9cnAWlV93/4hGJNZgi88Cj1h6y2UxOJttbkbeAuYBvwIWAe8NITjfA64J+r110XkVRH5k4iMi7WDiFzaO9ppU1NTrE2MMSmgtW4xgUnTyZt2iN+hmH7EmwjKVPV2IKSqz6nqJcQ5KY2I5AJnAn9zV/0OqMapNmoEfh5rP1W9TVVnq+rsioqKOMM0xiST8I4m2t+oc3oLWW1A0oq3aijk/m4UkU8CDcA+ce57OrBSVTcD9P4GEJE/AA/FWY4xJsW0vvAwRCI25HSSizcRXOcOOPcdnOcHxgCXx7nveURVC4nIJFVtdF9+Gng9znKMMSkmWFdD7uQZ5E050O9QzADiHXSu91v7TiDuaStFpAg4Ffhy1OqfishMnCEq1vV5zxiTJsLbNtGxehll537H71DMIOJKBCLyZ2KMLeS2FfRLVduAsj7rPj+UAI0xqSm49CFQtd5CKSDeqqHoevx8nCqdhsSHY4xJF8HaxeRNPYjcqv39DsUMIt6qob9HvxaRe4DnPYnIGJPyQk0b6Hx7BeXzr/Y7FBOH4Y7+dAAwPpGBGGPSR7DuQQCKrbdQSoi3jSCI00Yg7u9NwJUexmWMSWHBuhryqg8jd8J+fodi4hBv1VCsiWmMMWYv3ZvW0bX2Fco//z9+h2LiNNgw1EcM9L6qrkxsOMaYVNfqVguVzP2Uz5GYeA12RxBz+AeXEucwE8aYzBGsW0z+jFkEKib7HYqJ02DDUMf98JgxxnRvfJeudW9ScdGP/A7FDEG8zxEgIocAB7HnMNR3eRGUMSY1BeseBBGKjznD71DMEMTba+ga4AScRPAIzkByzwOWCIwxuwTraig4cA6Bskl+h2KGIN7nCM7BmVxmk6peDBwGjPUsKmNMyulav4bu9WtsSIkUFG8i6FDVCBAWkTHAFmBf78IyxqSaYO1iyMqyaqEUFG8bwXIRKQX+AKwAWoGlnkVljEkpqupUCx00l5xSm0gq1cT7QNlX3cVbReQxYIyqvupdWMaYVNK17g1CDfWM+9QCv0MxwxBX1ZCI1IjIfBEpUtV1lgSMMdGCdTWQlU3JUaf7HYoZhnjbCH4O/Afwpog8ICLniEj+YDsZY9KfqtJaW0PhoceRPaZs8B1M0okrEbgT1n8VmA78HjgXp8HYGJPhuta+QmjLB9ZbKIXFPQy1iBQAnwEWAEcCd3oVVCK0LFlE/YIjefuzVdQvOJKWJYs8K8e2Gfl5Nok3Wn+bYO1iyAlQPOfjnpRvvBfvA2X3A3OAx4BbgOfc7qRJqWXJIjbfegXa3QFAuHkjm2+9AoAxx5+d0HJsm5GfZ5N4o/W30UiE4NIHKTrso2QXlyasXDO64u0+ejtwnqr2eBlMojQvvGHXf4Be2t1B88IbhvSfoL9ymu64hqz8AgCa7rjGtumzzVDPs0m8RP0fGEzn2ysINzfYTGQpTlT3mpN+95si31PVn7rLn1XVv0W99xNV/f4oxMjs2bN1+fLlcW//9merINbnEmHG3zaOvBwzsCGeZ5M43Zvfp23FUzT9qb+5AIQD7l+PZA13csI9bfnT/7Dzyb8y/fZXyS60aUuSjYisUNXZg2032L+Gz0Ut9035SVshmFNWOaT1Qy0nu3Q8U25+gik3P0F2aewZOzN5m6GeZzN8Gg7R/nodTXddy7pvfZR1XzvGSQLZ/d3sK/WXHs6m//0WwRcepqc9OPxj9/QQXPoQRYefZEkgxQ2WCKSf5Vivk0b5/KuR3II91kluwZBvX/srp+ILPyB/2iHkTzuEii/8wLbps41VE3grvHMrLc/+jYZffJm1l3yEDT88h+2P3E7OPhOpuPhapv62lolf+1WMv00+Yz52IYUHz6X1xcdp/NmXWHvJIaz/4blsf/A2uhvWDimOjrdepGf7ZkpsXuKUN1gbgfazHOt10uitA236y3X0bN9EVnEp4y+5bsh1o2OOP5vw9s00/+XHAOSUV1E+/+o9yuldbl54A+GtDeSUVWbcNptv+x7a2R7z/JiRU1W61r1B24qnaFv5NJ3vrARVskvHU3z0JyiadSpFhx5HVkHxrn1yJ00D+v/7aU+YjjXLd5XZdOcPabrzhwQmTqNo1ikUzTqZwg8fjQRy+40rWFeD5BVQNOtUb0+A8dxgbQQ9QBvOt/8CoL33LSBfVQMD7Psh4L6oVdOBH+AMXX0fMBVYB5yrqtsHCnKobQS9tKeHdy/Yn9JPXELFMOdPbV3+BA03XsS+P3mQghmzhlVGutv2z/+l+a/XU33narKLbFDaoWhZsijmxTrS2U77a/92L9T/IrytEYC8/WdSfMTJFB1xCnnTP5Kwuv7QlvW0rXiK1pVP0/F6LRrqQvKLKDrsoxQdcTJFR5xMzrjxe8bcvBHJK2DCl2+25J+k4m0jGGyGsuzhBqCqa4CZbjDZwEbgH8BVwNOqeqOIXOW+vnK4xxmIZGcTmDiV7o1Du+WN1rtv7qTpiQor7eRWVgPQ3VBPwQGH+xxN6ojVxXPT/17O1n/+L+HG+j0vxrOuoOjwk3ZdjBMtMH5fSk+/mNLTL3aS0OvPO0loxdO0LnsEgLzqw8gpq6T95X+hoS4AtKvDugyngbhnKBuhk4G1qvq+iMzDmeQGnIfSnsWjRADORap7w9vD3j/UWE/2mH3ILhmXwKjSS8BNBKFGSwRDEauLJz0hQhveofT0iymedQoFHz5qwOoZL2TlF1I8+zSKZ5+2u1pq5dNOYnjx0b22ty7DqW+0EsHngHvc5Qmq2ugubwImxNpBRC4FLgWYMmXKsA8cqJxO64on0Z4w0m9Piv51N6zddaEzseVO2A+yskd055WJwlsbYr+hPYy/ODnm/BWRXZ0Dyj7zTd4+p4pYzYP9fhaTEhJTwTgAEckFzgT+1vc9dRooYjZSqOptqjpbVWdXVAx/fPPcymoIhwht+WBY+3c3rN1V9WFik0AugfFThtzrJNMlqpvzaMopT72YzeA8TwQ48xuvVNXN7uvNIjIJwP3t6eB10fXXQ9XT1kLPjiZrH4hDbuV0Qo2WCIaifP7VkLNnf4tk736bqK7ZJrmMRiI4j93VQgA1wIXu8oXAYi8PnlvpXMRDw/i2Gmp0kkduld0RDCZQWU13Qz0aSdohqJLOmOPPJjCpGrKyQYSc8iomLEjuHjhjjj+bCQtuJqe8KmViNoPztI1ARIqAU4EvR62+EbhfRP4LeB9nSGvPZJfsQ1bJuGHdEfRWdQQq9090WGknt7Ia7e4kvLWBQMVkv8NJCeGdWwltfIdx875CxfmjMlpLQow5/my78KcZTxOBqrYBZX3WbcXpRTRqciurh1V/3d2wFrKyCEwYfmN1pui98+purLeq1mpSAAAV0klEQVREEKfWZY9ApMfG8Te+G42qId/lVk4fdiIIjJ9CViDPg6jSS29bTMh6DsUtWFdDoHI6eVMP9jsUk+EyJBFU07N9M5GO1iHtF7IeQ3HLHjcByS+ynkNxCm/fQsebSymZeyYiSTtsl8kQGZEIApOG3nNIIxG6G98jYD2G4iIizp1X49DbYjJR8IWHIBKh5Nh5fodiTGYkgt5eP90N78a9T3hbI9rVYXcEQzDctphM1FpbQ+6+HyJv3w/5HYoxmZEIAhOngsiQ7gh6L2jWdTR+uZXVhJs2EOnqGHzjDBba2kDHWy9aI7FJGhmRCLICeQQq9h3SswQhN2lY1VD8ApXTQZXQ5vf9DiWptdY9BGDj+JukkRGJAHofeIo/EXQ3rEXyC8nZZ6KHUaWX3U9xW/XQQIJ1NeRNPdiqHU3SyJhEkFtVTXdjPQPNvxCtu2EtuZOmW4+OIegdiiM0jIf3MkVoy3o631lpdwMmqWROIpg0He1sJ7xtU1zbhxrq7RvbEGUVFJO9z0S7IxhAcOmDABRb+4BJIpmTCHofeIrjIhXp7iTUtN6Gnx4G6zk0sGBtDXnVhzlDdxuTJDImEQSq4n+WILT5fVDdNWyCiV/upOnDGtcpE3Q3vkdX/avWW8gknYxJBDnjJiJ5BXF9W901PaUNNjdkuZXVRFq309Oy1e9Qkk6wzqkWKpn7KZ8jMWZPGZMIJCvL/bY6eCLorT6yO4Kh233nZdVDfQXrasifMcsG5TNJJ2MSATjfVkNxDIHQ3biW7HETyCooHoWo0ktvzyGrHtpT98Z36H7/TRtSwiSljEoEgcrphLZ8QCTUNeB23RttsLnhCozfF3ICdkfQR7C2BkQoOeYMv0MxZi8ZlQhyK/eHSITQpoGffO22rqPDJtk55E6caokgiqoSrKuh4MNH2QOKJillWCJwH3gaYG7dnuA2Iq3brX1gBAKTpttDZVG6P3iL7g3vWG8hk7QyKhH0PhfQPcDkKb3v2TMEw5dbWU1o0zq0p8fvUJJCsK4GsrIoPvqTfodiTEwZlQiyC0vILh0/YLXFrlFHLREMW25lNRruJtS03u9QfKeqBGtrKDx4LjmlFX6HY0xMGZUIgEEnT+lurIecgNPoaYZlVxWcVQ/R9d5rhDa9R/Fc6y1kklcGJoLqAYeZCG1cS+6E/ZDsnFGMKr0E3AfxrMHY7S2UnUPJ0af7HYox/cq4RBCorKanZRs9we0x3+9uWGtzEIxQ9ph9yCoam/HTVqoqwaUPUviR48gu2cfvcIzpV8Ylgt5qi1gXKe3pIbRpnc1KNkLO/MXVAzbKZ4LOd14mvGW9DTltkl4GJoL+h0AINW9Aw93WUJwAg1XBZYJgXQ2Sk0vxnI/7HYoxA/I0EYhIqYg8ICJvichqETlGRH4oIhtFZJX78wkvY+grMH4KZOfEbMgM9XYdnWSJYKQCldMJb2sk0tHmdyi+0EiE1roHKZz5UbKLxvodjjED8vqO4NfAY6p6IHAYsNpd/0tVnen+POJxDHuQnACBCVNi3hH0VhdZ1dDI7brzytB2gs41LxHe1kiJ9RYyKcCzRCAiY4HjgdsBVLVbVXd4dbyh6G/ylO6GtWQVjSV7TJkPUaWXTJ+/OFhXg+TmU3zkaX6HYsygvLwjmAY0AX8WkZdF5I8iUuS+93UReVVE/iQi42LtLCKXishyEVne1NSU0MByJ00n1PgeGonssT5k8xQnTGDiVBCJa7TXdKM9PQSXPkzR4SfZCLYmJXiZCHKAI4DfqerhQBtwFfA7oBqYCTQCP4+1s6repqqzVXV2RUVin8gMVO6PhroIN2/cY313w1obWiJBsvIKyCmvysieQx2rX6BnxxabgMakDC8TwQZgg6ouc18/AByhqptVtUdVI8AfgDkexhBTbozJUyKd7YS3Nlr7QAJl6vzFwdoaJK+Aolmn+h2KMXHxLBGo6iZgvYh8yF11MvCmiEyK2uzTwOtexdCf3ZOn7L5I7WootofJEia3cjqhxnpU1e9QRo32hGld9jBFs04hK7/Q73CMiYvX4yh8A7hbRHKBeuBi4DciMhNQYB3wZY9j2Et2aQVZhSV7JIKQDTaXcIHKaiIdrfTs2ELOuAl+hzMq2l+vpadlm/UWMinF00SgqquA2X1Wf97LY8ZDRAj0eeCpNykEJk3zK6y0s7vnUH3GJIJgXQ2SX0TR4Sf6HYoxccu4J4t7ORPZ7+7R0t1QT055FVl5BT5GlV4yrQuphrppXfYoxUd+zP4dmZSSuYmgsppw80YiXe2Ac7GyaqHEyimrRHLzM2aoibbX/k2kdYeNLWRSTuYmArd3UKjxPVTVeYbAegwllGRlEZg0PWPuCFpra8gqHEPhYR/1OxRjhiRjE0FgV8+henp2NBHpaLXhpz3QtwouXUW6O2l96TGKj/o4WYE8v8MxZkgyNhFEdyG16Sm9k1tVTWjz+2io2+9QPNW+6lki7UHrLWRSUsYmgqz8QnLKJlki8FjupOkQ6SG05QO/Q/FUsK6GrJJxFH7kP/wOxZghy9hEAL1j5tcTaliL5OaTU17ld0hpJ5ABPYciXe20Ln+CkqM+geQE/A7HmCHL6EQQcIdA6G5YS2DiNCQro0+HJ3bNCJfGiaBt5b/QznZK5lpvIZOaMvrKl1tZTaS9hY41K3ZdsExiZReXkj2mLK0bjIO1NWSPLafg4GP8DsWYYcn4RAAQad1u7QMeSudpKyMdbbStfIrioz+JZHs9Yosx3rBEEGPZJFagKn1HIW1d8QTa3UnJsdZbyKSujE4E7atf3LXc9NfraFmyyMdo0leks52enc28fU4V9QuOTKvzHKytIXufiRQcOOqjqRuTMBmbCFqWLGLLbVfuet2zo4nNt16RVhepZNCyZBFtyx51Xynh5o1pc5572lpof/kZSo45wzoamJSWsf96mxfegHZ37LFOuztoXniDTxGlp+aFN6DhPR8mS5fz3PbS42i423oLmZSXsYkgvLVhSOvN8KTzeQ7W1ZBTXkX+jFl+h2LMiGRsIsgpqxzSejM86Xqee4LbaXvlOadaSMTvcIwZkYxNBOXzr0Zy9xwzXnILKJ9/tU8RpadY55nsQMqf59YXH4WesPUWMmkhYzs+jzn+bMCpww5vbSCnrJLy+VfvWm8So+95lpxcNNJD/gEzE36sliWLRu3vGaytITBhP/KqD/OkfGNGk6TCxOKzZ8/W5cuX+x2GSYDQ1kbe//ZJ5E4+gH2v/QeSnZ2QcluWLGLzrVfs0QFAcguYsODmhCeD8M6t1H9pJuPmfYWK87+f0LKNSSQRWaGqfacL3kvGVg0ZfwTKJjH+v66nc81ytj/0+4SVO5q9wFqXPQKRHustZNKGJQIz6kqO+zTFR32Crff8lK71axJSZr+9k5o30rbqWSLdnQk5Dji9hQKV08mbenDCyjTGT5YIzKgTEcZfeiNZhSVs+u1laDg0ovJUlayisf2+v/G6+ay9+GA23nQxO568m9DWxmEfK7x9Cx1vLqVk7pnWW8ikjYxtLDb+yhlbzvhLb6LxZ19k26LfUHbud4ZVTk/bTjbf+j0irTtAskAju96T3AIqvng9OaUVtK14yvl56XEA8qYdQtERp1A062Tyq2fG3VYRfOEhiESst5BJK9ZYbHzV+OuvE6yrYcpPHiK/+tAh7dvx9koaf/UVwlsbKT/vSrLHTWTrPTf222tIVelev2ZXUuh4ezlEImSPKaPo8JMomnUyhYedQHbRmH6Puf6/z6KnbSdTf/nMsD+zMaMl3sZiTxOBiJQCfwQOARS4BFgD3AdMBdYB56rq9oHKsUSQvnpad7Du2ycBIFnZA3b9jO4emlU4hkh7CzkVk5n0rf+jYBhP9/YEt9O26hnaVjzttCO0bofsHAoOnEPRrFMonnUygcr9ERFaliyi6a/X0bNtE1mFYxj/xZ9YV2OT9JIlEdwJ/FtV/ygiuUAh8H1gm6reKCJXAeNU9cqByrFEkN623PVjdtT8bo91fbt+xuoeSlY24790A6WnXjDiGLQnTOfbK2hd+TRtK56m+4PVAAQm7EfOxKl0vrkUDe0eM8mrrqnGJJLviUBExgKrgOkadRARWQOcoKqNIjIJeFZVPzRQWZYI0lv9giMJN2/c+43sHHInuVNdNtZDT3ivTXLKq5h+60sJjynUtIG2lU871Ugrn465jVfHNiZRkuE5gmlAE/BnEXlZRP4oIkXABFXt7baxCZgQa2cRuVRElovI8qamJg/DNH7rdwC6njC5k2eQO3lGzCQw4L4jFKiYTOnHLqTq+38BYvcOSoeB84wBbxNBDnAE8DtVPRxoA66K3sC9U4h5S6Kqt6nqbFWdXVFR4WGYxm/9DkxXXkXld2+j8ru3kVNeNaR9EymnPD0HzjOml5eJYAOwQVWXua8fwEkMm90qIdzfWzyMwaSAeAYA9HOQQBug0KQ7zxKBqm4C1otIb/3/ycCbQA1wobvuQmCxVzGY1DDm+LOZsOBm51u/CDnlVXs1xMazjZ/xGZPKvO41NBOn+2guUA9cjJN87gemAO/jdB/dNlA51lhsjDFDF29jsadPFqvqKiBWECd7eVxjjDHxs7GGjDEmw1kiMMaYDGeJwBhjMpwlAmOMyXApMfqoiDTh9DDqqxxoHuVwRspi9l6qxQsW82jJtJj3U9VBn8hNiUTQHxFZHk/XqGRiMXsv1eIFi3m0WMyxWdWQMcZkOEsExhiT4VI9EdzmdwDDYDF7L9XiBYt5tFjMMaR0G4ExxpiRS/U7AmOMMSNkicAYYzJcSiQCEfm4iKwRkXfdeY77vn+RiDSJyCr354t+xBkVz59EZIuIvN7P+yIiv3E/z6sicsRoxxgjpsFiPkFEdkad4x+Mdox94tlXRJ4RkTdF5A0R+WaMbZLqPMcZc7Kd53wReVFEXnFj/lGMbfJE5D73PC8TkamjH+ke8cQTc1JdM9yYst3ZHB+K8Z6351hVk/oHyAbWAtNxhrN+BTiozzYXAbf4HWtUPMfjTMLzej/vfwJ4FGcOxKOBZSkQ8wnAQ37HGRXPJOAId7kEeDvGv4ukOs9xxpxs51mAYnc5ACwDju6zzVeBW93lzwH3pUDMSXXNcGP6NrAw1t/f63OcCncEc4B3VbVeVbuBe4F5Psc0IFVdAgw0x8I84C51vACU9s7a5pc4Yk4qqtqoqivd5SCwGug7n2VSnec4Y04q7rlrdV8G3J++PUzmAXe6yw8AJ4tI7ImeR0GcMScVEZkMfBJn/pZYPD3HqZAIqoD1Ua83EPs/z2fc2/8HRGTf0Qlt2OL9TMnmGPd2+1EROdjvYHq5t8mH43zzi5a053mAmCHJzrNbZbEKZ1rZJ3X39LO9dp1nVQ0DO4Gy0Y1yT3HEDMl1zfgV8D0g0s/7np7jVEgE8XgQmKqqhwJPsjtzmsRZiTNuyWHAb4F/+hwPACJSDPwd+JaqtvgdTzwGiTnpzrOq9qjqTGAyMEdEDvE7psHEEXPSXDNE5Axgi6qu8CuGVEgEG4HobD3ZXbeLqm5V1S735R+BWaMU23AN+pmSjaq29N5uq+ojQEBEyv2MSUQCOBfUu1V1UYxNku48DxZzMp7nXqq6A3gG+Hift3adZxHJAcYCW0c3utj6iznJrhnHAmeKyDqcqu+TROSvfbbx9BynQiJ4CThARKaJSC5OQ0lN9AZ96n3PxKl7TWY1wBfcXi1HAztVtdHvoAYiIhN76yRFZA7Ovx3f/rO7sdwOrFbVX/SzWVKd53hiTsLzXCEipe5yAXAq8FafzWqAC93lc4B/qduq6Yd4Yk6ma4aqXq2qk1V1Ks717V+qekGfzTw9x57OWZwIqhoWka8Dj+P0IPqTqr4hItcCy1W1BrhMRM4EwjgNnhf5FjAgIvfg9P4oF5ENwDU4DVao6q3AIzg9Wt4F2oGL/Yl0tzhiPgf4ioiEgQ7gc37+Z8f5FvV54DW3Lhjg+8AUSNrzHE/MyXaeJwF3ikg2TlK6X1Uf6vP/73bgLyLyLs7/v8/5Fy4QX8xJdc2IZTTPsQ0xYYwxGS4VqoaMMcZ4yBKBMcZkOEsExhiT4SwRGGNMhrNEYIwxGc4SgfGFiLTGsc23RKQwgcc8S0QOSmB5dSPYt9X9XSkiDwywXamIfHW4xzEmHpYITDL7FjCkROD2He/PWUDCEoGqzk1AGQ2qes4Am5TijDxpjGcsERhfiTP+/rPuwF9vicjd7pPAlwGVwDMi8oy77WkislREVorI39wxexCRdSJyk4isBD4rIl8SkZfcgdv+LiKFIjIX5wnSm8UZf75aRGaKyAvuwGP/EJFxbnnPisgvRWS5iKwWkSNFZJGIvCMi10XF3hq1fKWIvOYe88YYn3OaG/trfcqYKu4cECJysDjj6K9yYzoAuBGodtfdLCLFIvK0ew5eE5F5UeWsFpE/iDMG/xPuU7WIyP4i8pQb20oRqXbXX+Gep1clxpj9JoMkckxr+7GfeH+AVvf3CTgjKU7G+WKyFPgP9711QLm7XA4sAYrc11cCP4ja7ntRZZdFLV8HfMNdvgM4J+q9V4GPusvXAr9yl58FbnKXvwk04DytmoczgmlZn89wOlAHFLqv94nxeWuAL7jLX4vadyruHBA4g8yd7y7nAgXR77vrc4AxUefkXZzx96fiPCU7033vfuACd3kZ8Gl3OR/nLus0nEnRxT3vDwHH+/3vwn78+Un6ISZMRnhRVTcAuEMvTAWe77PN0TjVOrXuUDy5OEmj131Ry4e437pLgWKc4Un2ICJjgVJVfc5ddSfwt6hNesezeg14Q90xikSkHmfwr+jxf04B/qyq7QCqGmteh2OBz7jLfwFuirHNUuD/iTM2/SJVfUf2HnJegJ+IyPE4QxZXARPc995T1d6hK1YAU0WkBKhS1X+4sXW6n+M0nGTwsrt9MXAATrI1GcYSgUkGXVHLPcT+dyk448qf108ZbVHLdwBnqeorInIRzl3HcGOK9Ikv0k988RhwPBdVXSgiy3AmKHlERL4M1PfZ7HygApilqiFxRqzM7xMzOOexYIDDCXCDqv5+CPGbNGVtBCaZBXGmdAR4AThWRPYHEJEiEZnRz34lQKM4Qz6fH6s8Vd0JbBeR49z3Pg88x/A8CVzc28NJRPaJsU0tuwcKOz/G+4jIdKBeVX8DLAYOZc9zAM7ww1vcJHAisN9AgakzE9oGETnLPUaeG+fjwCVR7SxVIjI+rk9r0o4lApPMbgMeE5FnVLUJZ4TIe0TkVZxqlAP72e9/cOrFa9lz+OF7gSvEmSC8GmdY35vd8mbitBMMmao+hlOVtNyt2vpujM2+CXxNRF6j/1nSzgVed8s4BGeaza041WGvi8jNwN3AbLecL7D3kNCxfB5ntM1XcdoyJqrqEzjz4y51y3qAPROOySA2+qgxxmQ4uyMwxpgMZ4nAGGMynCUCY4zJcJYIjDEmw1kiMMaYDGeJwBhjMpwlAmOMyXD/H+tAxni817S3AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Evaluations')\n", - "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/nah_1.9_sto-3g.hdf5 b/community/chemistry/nah_1.9_sto-3g.hdf5 deleted file mode 100644 index c6715f258b055492ec658b647a030329a2aa02c3..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 98128 zcmeFa30#lex;~y1l@O9Ll@uXVqG;s_nUjz?G!L3bO)9B`=BN;wBuP>lWaUX@OfqK< zA#*Y}{`7sW=iTSEKkvKG+5dh1=j^k0`?KHg*wuYs_r0EHt##e^vUQIBtez4BC4@SE z#KeR|gro#d`Tum_$0)Fi;4S_&|G6oiaGweZh2wRWF!!X3Q0M=Igk$hQ zXA1rNCXdfQ;@5=gM7d{T{2Tv%{Fh>2&dg~>oet;0>lJv^9?w1bqdcpz=Q6X=k4 z;(zktk8tO71P3QlIW3Vsp_3JPip>YWdU zW(sQK)CB(@t2S=(#LoBT{QMN}{e1HCy^RtQ?p7Xx-!nIJw{ur;_i!FN!RF_8-7T!w zdHA?kDY)26Y&74L9-ks^S$?==RNdNOF+FZZBlI(D+zPltPUjwhZxU*h^O2oYpS)e?hPdbLt__B|fYq^SLssG@m`5q;E1b@)3Dp-eNSfcmr+lzZEL$9nMtEyi`)=bCW5Y z-?!OSfamEPys%X2c$C=NQ!R45)gJlgaQ`?`45$NHLMwCz=w4%wdH z$?6*yB$i+J$oNY3G)TL+n>LQK^viOIq!+%e%^7ZajLACjwm^YaGFPg4T%I$#OW88{ zcqVH{KGDB_@ul$lG&+3wodr_G&)CEiy*n})?^p@3?Jia0J`>Y>;@{^mQ{Pe#)Emi&sf@Q-Wx{t-Po+{t8TGJ z%$AOOeDDa7SU#l1G~y-QZYQnQ=lWAtZ@qi6g`9qQ?TcoEJ3YIVce4&M@4xLU``(Is z{E^FMnEHHWOU=hlJkK6y*X(wD>E-!=IqWt}>E@J|Om}zg@u2#M+fBOf82;KNxC;J! zf%}h;;j}sYN54Jx`(SRh;6y9?+Z%X-_nDXj(s|Rn8pk!2l4jE0bCT$WwnX;&b^lZEjVjq5F+;b!HNDR+?^-KuApe%Ek3JJQsA^c*tTgGt zw~bD-7Qo35DQTVbeoXoKfga7iVPa(=xkmO{KW@^n^SfW<94%$#w|LF#asN5%z3j|{ zM?o!YwZ4>UTH-UhLOJ-@diy$Rm;caX>D-6xKG;(Y9E)vPcG=5Em46kiW**Up`$h~i zFRY_RBa^Q!_tq$zQKEh?;i!)8+q=p$qsNJqzZ@%k(C$SYvuv5vp9a6^w}DrJ@O4ogPW zcPYOOo`-^;#qdiF_V74SmhZ1FQjsdR6rFc-+KH#E+UU5_v8LCFd)%qV@m)UBN$2Lj z^ltpXiX&dG;CT-CSp>iGVUIa*gv0#n+Dc@~ErRlNE<4?#Q?#y|MVK^@@*_n(9H!o4 z79;L_ym&rT!A}?X#oJ>JoJ;o(=WSaeTh685SNdZ8E&ckyRN{pEu|(XTB3`c%zvJM? z4SuP?9uDU_y$M{gP2}0;E+2^=^3WFfvlwxALA-dLd45XZSCBntk2G+qOB=(NKahdF z++XYbufwf1>uNr!|JD0{`Nn_yGj9GV{M)WVR-Zrrll=TnrTd?M?_cfH|H}Nca{=+k z^G{1qELdjzM&m!*{PS?gac@k``*I7APx!L&O z4JS_v2P-qTb#7KJo(}GI&Q8Do__y`A0uS)ZD{E`sUi>b%da|<;V03=Q zu`2YN9?5_I?|uAR^E=xS9J1Qq`v?C0d;io7{L%cbZuEbzTYr6B;VyrC{&)SkBii}= zKR>@S!}SA~QJDYN*N^|*^E*A*T{8+#{@{VXO2&-&gD>E1o{bgCfBroMe4ID(&%eiC zC(2d+{CodXpZ??X%I=>!um16Txc(pG>$7w zy!Q6-<^LFeJ?F1i{QH0J<6q}9cOl~E=YNSC_ZNPB{rAsLHzL0L6_CUK>-&rC-|O1n z^?QG7e)k>biv3;a|Nf#{&fECKjP$gUm8$v{^#HR*ZK6X^Jdo$=Q^`metJ`}59d0vClKZT=qJ`TDQ#XPmv< zcmKctx9Xn#;?h|I^>m+lUYOeDC39L`YviKE&xoJb^FeD4U8I*nE+vJvBrzY4>UNT30#{?1|Bp+bGsrx%u;*{TULn(a zl`Xt7<}Nkia2PS*-t%V1t~I_us=-ej{5rRpvq#^A!1 z&Qr?d0(;6dyXszXj($9I&I9H%coy2r@skI?czZ;FQ!wSNNbJtr zj6qCV+07S4Ot7AC&%lER>8i7HRw%WdBi854T#kvIVeTVdy}|QQ@G}E`dBC1Uz)?tS zF<7$TIg^(7{G9Q%Ofs)q+?LxRh1BEjENhho$5?&DJsR;60UwLO5APRm&wk*{&oeM? z2x?%sKB>z@Lw=rO$EI*vhx`fW$#C%#2S2=DhOmdr{EK86aQ7|kNL%b%PRAh+ zyC8p(5cemD*LCpB^WzG?2E(2#;IP>RWAq=rVDymBhbE`I(p^x_d|E4U->IgAq>Zi< zsW})%b8P(`>#o=_qc#UV-_Xc6osp=LZYdMU)cvIM+@f5eiy5K8GcNh=vqlHomi$r zAz-@p7dL9I93{Udb|(?@wfy9~)|+XBJ#&B)P*SC|vwSC4#wry+nuR2+dR}oMbE1!0 zeikhzr3tc!-)}0T>3Y6R-|Dw9wZjicT7+7&hZKheU0rmW9D-jXVb3=~z=lw7;I4~} zT{TcciP%XvrzO!yZqYhIrngR$2RE7Jteklf}F0L|@;^D1qm% z;KvGnZHGM-z_~Z{dgl2-Cd|pNS-sXtnKR`t`{gU`wWU)QHtX4Gx|5?1&s-{BZo|kU zUK_!)Y9hza8Tb_rduo6)epBt9;K`eq=(UyE62%_0-=_2hVZ&|7u9N$A-J3LmO-9^B zhH>%Q2R`P5p9=VO8uskuaV$hGn)q%)+=9sd$)VH6i&#(-moZ&aXCY&K~P14#z-z z>A{NgK}-d%&tH&-TFcUd+c#u#e(33u5oN6p$9;4qt9;M({@V2dxjz2j;nTCO(s!da zT3=e8%*@MulhSZ<1ABeh7Kiy>FUf1*?0YVpo7**;=;WQA;a!u%3f7H5i)i6F8#Db1 zYob&#`h{v}1yz&#sBpvQ8p&?GJZRpd1h%Mo`>=&0+?iby4Bsmsd_uKh&t%{@Zuxq% zarZg8Ote(^+bA1qsnH;}G-55Q{&nk(fX_bcitf@U=Nm+`uPjq*RlU-vNSec!%N?7D zgR%WQ*@+%(sWj<6R%1RXb5YR~8MT~-0mnMeMXI-V4&Ast!lwHGG3u2NUobgBnLa-3 zcVfl-Nz}IcthKVDnbH+nxI!B!!yaki9G1#=JT-B>oPzvpTXc0Tgw1mgZAm5Ubz&t>3; z_iGUBIjzCr6xp~0J1$G1{=I@7g(Vj;HORvxD3GTuDUyYD>Gs+MiAtJh|7Z2asKj@7%V3+ET}3gcv# z*1Y$wcS6Z7;9L<~^YOs8BHGd!2G*RaBERK66z00OnNfv?kTqxIVrh!qnSz!}w&X3x z4|@>2_p#giOk?~us$Y3(`SAihQfHGtRC44(y8Tp-E1C0-(}<$u!|wgarRV#_&bZh8 z%SqR4m&g4SMv)g6`pFo(P9qnr?yk(9x{Ge!*XyOX@-F(WcSC*My-{Qw{2B{;qJVQ_ zt(NYrvO>BH`K^k)T!?)7mhn){d%#Aj?b-eL%x-bi4!oaO!SR#%p7ZN*XWj)0(-EdFj$jI(g2O zt$}B3Xf&6H>|5kdI^rILcxi!WXYkV<xds5mx0cdaKorRQ6l#wno;qq$Sj{L3?PrGb8)B}r+c zP*44Zi+8ZsV9$(|98SZ`FJs3}pUDWu-6vi0{zR(MvG2Kb;OjB^vTrt$3z^y7B-hy;mhO~~uVdQ{&ahJ{gsm4obCHN_WUm~TPJ#TC{oDU0EtywtLj(s!l z#OL!Dy;;d0hiqONMzcG;GAgnILWqa5?dTUv=h9Kf9j{&)zkzKB&vM{L2!36KJ#T?? zcyE7JA=Qi3>rxSM&Z8T%?%aqeW#`Y5&+q&Uo!9QAXMTvgTEE`FRv}(G;MwdT$4>+N z>H&MiggG2P*^wi+ZQR1#9&#sP%jA3HKyj3~R$)Gk@LcsoBp{sCK-_f^um0fUEBHAB zzj%9iocx=OS2yLUGwA}pCy{OA%b%OsohHBK58_^gc>UPM#qaqDj-L+rbqMx!!gO>< zlN{jgIPJV4Nq#r2Mjn1d{>UTlOA)UT;JE_)Y=d80VNW=46uX)a$V%VD^6SB|nD?&4 z{k<92F+N@w#6?ps6}d5HkCLPAj0$3^w(C9cSz<-=b%uN~ySs~Q-zWR>!FfMM9ymAO zp0u+&;Lj+txvyQ_E>hjWS%U{BMbYWmi~0m82e6|qux4f=T1=O2$1_6ixiGHREa$jf zo<}m}&p0)`P$ycWT!$RGyN2cM;ca?ccc#&L z^=C}i*$ZjN;6qcs_Vb|^jtOuWXW%CI%`Q1*J&$%EpQpmF`>vclsf8Sl+ce>Iqtk7f z8%2>P%OobT8KLFsH}b97lLy0ZW~d#ZCA$u4TvP}prhzCoCeRkz>g~YdH{Ql z0jF_HsO~m1ZMJK&dB1z}CoxJ^Jv~h3P9X74vwYubYmt17(m0*7Q`i-VmoRu<1%6`T zS3c~S4V=u<1FUJBE%Uj>_}CzkrR1*9dipwgHhq@UlvaIn6?+YF_d>i@gO3~FXDj^T z?fC$l?*?-+eJ?I!1ZlnBnB;WL2$_FciIgILOcl7e7jZc3BH&tspFH?g4SNK)LA?p2 z9k?~`+~raiWvl)B!leC z-9a%-w*_6!CtkTj7RZmcec+l%x|y6m^0|IHQyrr)**V;WxxYm!OJtMxF7taj*|*Iw_>T!lU2z>%(-QMa2J9jIT^?KK%NCHj zr8`<@`W+&}4mVZB33)PK!^g$UN?63Il$x#>u<{%!fnNr&M^r%c0xAUDq_z)%XqoOm=SKQ04PCrd){41}c-;igyTQ*? z_@xMY`uF5;2D`s{b=t?6sd*l}jLJ_V83RY3tGXLR!u$u0D5|t#S`l|XUNYdr8T@#_ zFIm`g0XR`wW0Rl1bL7THhaY*+-(b+7qoc_P++BVA`#N$8d1#6J(MH^bu5$5G0?z}$5AWBLA)Gx&fU_y*!iQ6-Ud&AF*YW#N z{JNW8U-0v&8eBJceq?ss-u@;(j?2@ajpRauwKNd>8v zSV2Eve#+xa2)uU7*}9Zo$TU8x(Lad#XnD5WQ(MedOxqc}V7)WjaZo9BXV=Z_VP#KE zRy>9J&0F=+zTSaM*cm9PpKi;#V*Z>AdoBTI?wQ`J_N%8-za!e-<2Q_B&rPpU3p1R@ z-rVf>eNgQ>)}vM_KzE-5y&5`axZ|)b^jwabR!XY=Z}ZFw__YD{xC3XeQ}@7wntMs; z)9k?#simY{{`9`c$2DZ|sJl&JRnu4-!Gdor&6)DHd$()(M-bNw|zLe5;ju~JR zP7Hzb=*}EZF}172p36gKC&r2ChQ&%-dR0=zHAXa9E|x?PsbxZoa|x&U`2IFdlH{!o zjEZ&;et*mkIK87q8p0~Cl7PJzRZ^~`(ivPHGD%$iFv(op8Hrvqhx8N4Cnax02F6#W z&~%O;hW9HT_G|>ssAjpix{52r6Zw4>dD((|a^AP)1eMxG(oQ^z(eIW|)WG{QtiM*m zuPLyH$9WU1dbNu|LeV%pa%atu84{KUbp zGq6W-ABV%sqfvYp)P92e{|s)@WjUoGWutu&DgK)g1C=e^*k4Sp%X zp7+3+F5B+1L4*=P)liT<%|m`mzVs52PTWB2M)+1I$_9|kTr=~NM}4Uzcy<6ktndM= z#d70mbndY1^6$p9qeiK_(6IHiasI|$nw4c_`cu8bqAvQhe2(tgJJE|MpFg)T-ii>f zec+krM;(40g*{rpc{}{0kMXNAqJi-yk38Io{7FXK`EjBOp3i}wp72X>9nf1s)qyjS zl$@=1phOjV%1P`S^ZR4T*azU(-TeCE2ku|@F;01V?zcSGxVb!zDFDvh_c}$JKW}8_ zC?KV%N_RIy2-?7!Z*1xb}1iId*HDq($^2TZ7kJ3@^=M>03DWsQbGA23n ztDy=Ds;9bdSj|MwNDYt_(qg?1AJ)6u<1pO|zp`PEROgM_bR^jT+@n7=MAb(NsJ3;E z^yY4l@L}t-*Fjn?p<}&(9_JbszR#n-OR(luaYYp*xi z^|oVe`|P>oc|4e1WZM7W`a4YmJ87en&LXl}z59-AR~Hihc7bt_h#z|waSunlx`B^X;70|1X~=T+ zbOX-)O(`E|#4q92jbf(6_IdmLGg~yMGV=Kp;;zBru+0Ws{FZ?qY4|lC_Hf(Nggygq zv!!$Eu=F*A&%+VOpEZd4_|06rMuF%3;AaQ?T2{~5(*m67>z-c8E^uO}LLbb8uJ@kT zFR)LWf&HivSaRIDhD9P0+t0pj&l;-edxuNC^7Q zE7&s%I2O?H1oxXDbuvht(+6ilM|%Q&Fbew83+RL8(20`a7q1U;^?Zb^0`C4DoIYp{ zJ#H^_wBFFaB7oZny(ty^1i-IpV$dtoIUEn@gZrTCnLv*#fsWRAkkbb>p<5|{=Lg_N z7k;gSJ@LSK1br~|7kzL9bhI7Nzxef_4|u)Sggr-qvk>}VJL*6Rpm!gGu2%*9VkY)! zrQdP;QAJpHn__+O5c8;d+%NV4=fb-V@y4nqM(K-HukX3nXdibS<7+D156t1Q3j5;apH2x zwM|@oNzefz^pv@m67NfQYxthN(zTuBJ(aNbaS$zQFgzxHQS2%s`y^BEVe28bdd05n zndt*`FT*bx*wZYSuOIoTA9A?g+t$wgsi~6qA-$(ud{It5$Ex{uQ@=z*I2`5)aO>}h z)=G3MA~V2`2K>q^A@lB8eP^&B)*&xm!$h_?ocVL&q57K9|Rsxu#L; z2gUvS7@i{CZeKDS(dQ&{81ZWFpaPzAz)uVO(t!=NaYgOp6J|n*Lb-|1Zc<%! zw)oxhGft|RVJh}R3?&ILcN@as105vKnR)jF<@0bP^5-JreiQNHc@_sh zC*fBS?6Cq)Kbht0M{Ie@NTaSv8P{iR=w^byA7n~zE#q_tdF<1QU>|7*zn;LlU>@c_ zLx7`*e10KR9iW<4&2ZQ0V3M&|(QsdW6xGgrpwL72F;TTM?-SDgk~;W2>Rv3I$0TXS zw>s2pV`Fv>xUiz-8_|M2FM;E$UNg&O>tk~5WDnnOX=+q?RP&rcrW=^n{}4%k2#xroJ<$E0-;b>yjNv(knQe z$wr4s>clhTvRY}yXj5g991`1fet;|~Z;|zSJfTqMg3IM%xkuqdr&aUG{PnrSNG_x7 zQ-dVcUcvFR!I<+)3HB`QBrr&UEQwj@@Idqo@%LJCO*-W$mC70HT5vm@zK^-;>^Z@b zNv+VS+x%LOjqm^FW_9Fwq6nUOety6&6TyUXJXrypZLb|^sZkSg^4~h+oW?0SNWwcz z$8i2w1?1%Wbiy0{Mf;-eAx2^I8t9j7M=O_i9A4^o+{=)Ts`I#qJq54-NWf< z4DkMQs&r%d`yJ%z?%w7F2_q@B%zN7N$z~#HVlF1{pF|dH_08J+W`^v*zV+B2P>7rBnGZ%WU-6ga}EP?3C*QbteI!^QyFC2R?ekC0Vziz@F9;c}- z)}Z^hMA9Gm-H5!DMm~*rIeu@)-3>(FZ>G@EOe?Yz<1HFG<7D`?K;Z94G5|O|yFZEi9!C@AnpY58V;W8!H*35iiABLz%enEUS57ShvXu^bC8Ga$e*49e^=5Z z#A^U}_5wfK;8z#elLwsB#>UQZM}F=*qVANh8{Bh-t0Rg=9mpx@!g|oZx?-Qd4Evd@ zuy0d|^{E@?;rx6fZ6SAEZSL4E7#Gf09t8#Osb)?uFewc-j$?X%Y)OzzOlGGjge@y+ zZ=vClxhXAyH;A60r`eV4!;CxXn&#p9ETuVmX~`aUMsTcB-CR=tbjw|JT1j5m)SPmi zm`BfkS0_87W9dRKdA-J*)r|iLT6lYqszzZt8|Vr7H)1)mPDEy;0Ebxt+{-hr?#;MYsob73-v^I&Jb zn{{LiM4=^w67L6#o|}EnOkMxy@l?zWZ<-kRtC0t3?Fwr#LEzT zoZxu=&96+@qY0e;iCNNSJ(e@F$2$2QLT~pf>snFrg04pXL?iA#h}Qz(#(^K+FL&4@ zINl^^4p9W|DaEB>dh;p>pN9;!d>!Ky;B-GE<*aiw54wvx z`EcY)#NNX7BxCKqN6B$lNwih#jWJ~vG}g{6YvkwMjLQ5+u><40*n5gra^@dikfEq+ z8VGy1qg-c`)+`Qp(6fzSmhYNRqGm6fr%)VAiu4|?%Iz9T?KvD~8*s;o?r_&njUY1M zrviSdRC4w#zsBKYB_HZuUz*2sYy44FlpV~>SRJx?)m=|Eq>ge5!4RrIt;3o}!#ljvT;OL14$lbqWz{qK@P?)G|&x~1hOTOvIEULGl%Y?l# z0pyhb7`=sZzRYdJYY})(1wZ%Tmk#Vv2F^D5)~ik5!&NK9rE7f%8{xXw{;8|hWr_b zxN9R`+ku+{ehB<(fjxrTf>9{(2X6A?H{&Ktdr*7iVSnTgA9qj0t1oyy4t_SlugF}^ zo+RK{v^#!!tRKrrp)VjE`x_dlr`?TuwyCJw8G-tQvEiKFoeRBbEB4i$uzwf;98s*h zCt%*Ig8O?v+%HxkULC>0!;U8%W~Q#!D9WpGAvGq8AFVgpM3j0jfAMgLDWeX1`1$jr zsaLlddYt9Phfp|4{Uqg^?U+JESJe&ey7e|O%MZ}oVf2B1{n0SIxYsd8_~eP<`mqsg zi(9q2gU1h&3BN|e9znc1g2{E@`brlcl4)}!DP9HXdyniQAA$~=U-dXfEjb+K6L4j{ z+x8C4*-7~NG2XA`?>KwzNO3rijJxO_UwxL57~9X#@ANiixuwyo307(BD};ddx9uiTdE2$?c$XuLBzRs3enj9`ChYmB%Hixg^J3Nq_03GoWQVIdbKRL6J==!8 z$Ty;DUqT|!M2C~2%yG*S9737T(9J)9XB+VI8GbE+J^8>1bc#GtsFliizn@i5nGi<4 zDB6j~uZW~}`j3Q9yKiETAnv0OFP`VA;O8Cu66?j;vjI3K3qBepxnwdN-`j{~#obB0 z8s^hY$e&|~dvC<65j;NvKbr8X5%vhiM_nR01KijJ*^^qAhEp5lp#<`WkNXD1OBOtr zfS+0Li)A@`41jZFRnHVV^K>Q-eJ)?nf02ng$_CVD>YxrS3iUQ8Q3rAZdJebG>PLgH zAI|U7?!kVPJ?54Ce3hR^N#XjV4W9c|bXR>aD&^;X*3X}y?Zhkc>8>A^rt|>p;n(k4 z-z)-r(kn^L$MQRA8e7Q6;3SU;N+wLLUO?sDd7GJ|_3I_ye@=wOnvpw!2-3XqCf}cC^D=iiYxVjKhsxSo(_+h!J)yOT?ZmkxM70)A$}FW#Ojz)9JmIm7HhCaL;x zM|*vf6~onqhmg%9PZ>8{aiP}{cWK0HDR}Myex%`-ChVyM&ZCb#Vl4F!k@-1QKzJ>YpN_z8z!#;`}AhY8sb(%M?E zB_M+Yqi@Rs`_IK({xBKH%QL8}T!Q*BDb&db#;=ec!QLHK>GrG1qu&o@Mp4ZBsN)Fghc%eXvbleqk0 zM{#jy_q=#tqJ1xk+=_hS+^a`88N~6!rok_3*y9Nt!;PcXZ0?s%>XF~qk(URNPpad# zx{KcTAp^9$ep0fR1cCSS;3pn_9fv*dfHN&V`O~vSIV7#G%AJwHhsi6kghvwVPm)i9 zJk}-skWU(pr_&E~$t9OipE(5lB*L#7uxA%=es+1x2#SoOhRJ8!w#B;;Zk}jQ=p1gG zd>)@78no1oh#_88;8_Ly9EM*nU=NRDtGz;T-bOFV#bYz^Mt(OpEs8j_GJsw`*>^y9 zRbP7XPLb{2;B90dcvb;FYxE3ib)qJbV_gQOM0~R(Yx~^!eq^){3Ciym_TkMeTCdoc zfBvWq@v^G6iWzN6`0>^seP^VZ}#aB7|%vUX~;rtPI%AM0@FaeQCWVARilMxAh9)I++W z?rRL{TVkN&^LqCi=rStUf8K?CHifa=e$;HNo8&M*{Mw6~N1erZ-wwadc5S-&e(hd{ z?{kR-j>b9Va~B*kvHmb6xhK93HK;gA4r=LMTo_VIoY$4)=sVStsX+}H3lGLK8_G}9F?O-N9WAy+Fyk_#Dy6<|XTpXw z1b-Ovgl^6E`8Z$w1c|-w*}l9ri5Ul;rNK`o{L+Oz=D=C+XRy8{-;M1iR!^^tabiq% ziLt8BC)3L=)i1;)9Etdq46&s;o{TBt)efH5f}c(BYdq{x0FIK|`%5C;K1}~!hZ)CB zb4l-$3L%P){?uei#gVNa&Dbf3`xeBD0Uy!eXFL1~hdtYX^R;m3%%q817=iBHv6yK3 zF8-Kwc^!#H{_I8EeGsoHz%2(q2jQ0x?BU`TNZNs$vgg==@MrE+8M=8H@@E<1z6tS) z0?*yS&ph}g273~K6Eou6-Pp6?42%B3chIT%em%k8uUkh|>F@goZ=jx*uNz#1{;wP8 z+iCz#Hgvry*iRLVPdzhQSkCQ_@%?d{SYI5%b)COo?D?gCkk>(6&_7s!zCUyHA&vi~ zfAB5(+8WW1#`lr!?}$&-Up1W!HEMCcI&~qXz;Q+YplV$G-jNqNPI@}8KcD3)L#2(x z`kFsip$cML|DY}U+EONdy{-SICtZ#H!C>tB@%@b4IT3y6Z1fM-qVMmnF4sTkiN2pw z^v4ZGU)yr@7mWC&fACJ{{U%V0^8JHf&_C#c{z1MkY8Ltj`Tn?@h!?-ET!nrwfgWXQ zL|b5w3UGeyACyJE-V^lMy+>W%ul<8lz>gRF;`m>R zcx?mE#o%W){NnBD0-Pi0AM{1vUp4Y@H}c07eNo)LwiF!#p85Vt-Y?#sjlemI{y{nD zgX+-r_&gMh4a1iv0PtdIrp*QWr{7W?|V{3Xuz8Mdbg=H8jP->k<~vTXClold`np8-viij7@j>|{AbjJZ6QlQ% z#ZMQ>x5otlzD}=O+0N6tS4(nhnA+*dhXNZ9v%wv6v&nWj-EHve2ka5Z(riA_ zyS>t5?z)f6^f7~c)BTgl@q&Sep2)Bytzb>j*&`Pyaq={bR?lL}H$>i?TVKVj-Q zp5AMlk3_3S??s1>Tx5EIXPzG;_>~WPc$~??;g;S_HyMvX#^*1W9%I%YvPtk1G7Cg*_6$nY&c@^~M2DnIN%~w}ks-5>uafH_tBjrr$B&*oMCB+*i$B3P(m$ zk&=UA!)s^K(cPYiHm+JpFQac_6Y9flpI>;@Y@kP%l}dKmW5at=puUu!HP z6_1bAs*KBH>^)EW#r0W5hOdiNT1P_2>sOnmhCPm?jfW=P4gTiH#EmT(xxYS^A))<~ z9%Oovt?+9;^miUdfGd?qCVrA%SA4^Vn4hw%Te|cNaX;kwT+Q+v<#CiaTsAED?ZD{B z`^0j4%_^xTu_8Igf019lz=v?up^>%=YA+e*apLdxD`ETLYZ`RzIv=8$OkWdVC?lTT|$p4TKQ zrU{QGJ&z)%vSxQbIL(vv$!mIeb5#Zz-%h)(6F);N-Z(z+IJ}Yk==S~DVf(dIWk(-# z6%%XP=MBdX@7L%ZU9N3Zw4=-RXfE|nb0w#*tkXZ1vWw_@K6o3@^$^{t-dEh|^BH=o z@Y>pMPRr;y#JvLhe*3|540z6Q<^1Xod*%U0&qFXSn4KLG&vcY`FkRO_T%g>&obdex zZissXaK2;-;>UhU<@gx~zx-fN0&r^Fx$$-^Rk(Us-V@TZi{toFXD5;x(bpsH1iR9( zFfQ)lh}XfkqvLPZ`&0SRrzdnvTtFJa8-)hwuOsbtoIO0w8s?$(hc%msbvSok(`Qkx z?$i|XdBN>mL6$b5zk3P#So6@Y$M-i(M85-HXD-#9!|5fbC#W0b=NkhB2{@eGg}!W? z%IRoopEp}`2(Gp|B_4e}%Nu|xQSw$D4nOhp8#aeuO(`9Y*eUcKMpPZS%;f#)W zm-$HG23ulKT>=AB9wn7!C1Oe+WfI zvu~#qDhJFkW}dy;=kMI}7WG1ZOf&Z9HiPG!5{{oj_$3N^ih%Rrk@$ihGn(k+Oq=g% z*;QoDjQ5M&Ja;gBzf1w*-hp^!MRPna1V1z2*L&C#103g#M@`CJq|;4d1I|_sb7l9S zzn~oXa}sgybhm?DLi&Jb7W^E7U%Wj5z&YOYd6dbaMsgJAk0qjxdMwttg1*x_hRWi6 zfCJmO{_eTx_dJ1qodERj$e>SQDRAOZcgoM71@pgyHuNg$C6b^Ee_zSzdiSt@nTGw$ zRP5XE>uw>eFBW0GacC`fzX(PC6uYhYA=lG|aUT(A>XPEm$n2_^dE5F0X_6P2P%y57 zCOw;VsZh<6k=Qn1f@X0)YT!2}zc9gq%HsOmWW4oUreP})E}J{G-CdsU4o$Eha6*y9 z1P6XxF>ee>c%{PjG(1iEe{a1!`QbC7M-x-(JhVy4EACu~`|xWs>=9gFf@GD6B*K`ATT#jmVnjknmH{jqx@(|6Yr-FxDfNI%4@ zD|ALT@YB$lFM+d2KiE?T91+z=p0#715Ji!_d%vkVu%?Iow@4<4M+a$Mcf}FUb5iX z1^ldmUpBC3?tTvEO2n%b{o0Z)>0*E03Hy*sVGobP&z~n?o}h>8p$p=! z*Zi%UOj!a`b9tm%PFf@FfAYo;<;#~z`e2u9<4UZUP}vn%N@pn2_3i}+;sgAsH|ArX zM@JUkb?;iXuO=z?z&u%+w|wu>k!7+ZE#rG(kMRa%Q~$?J+8r0^_3szm-H*JZVR~ne zJ$k4>kAfc?)P3>xyb;7>0(rLgirs#fu4U3Cxh!FXPbXC4C^}aR0}(*~}H>p)vC3 zIO2X)5RZN|06fcsAK@s@ucxr51UQD@_JpWPH&9`m56Pbk$e*iLiSwhz;ry1JI8VYH zee-P^_E<#A%M z9t^^~m!C&T;W~B=@j56ZG&E!#Wxo3!xB9BOla(IOJxHm&tL{1YRRVk3xp^*g5bHtJ z@(UL(o%JOXD>Dz(Yv&TG({Fq2o?<%2Pk_UeefRo!WkL~?JZ-{^XO~I{e-4c`?-%A9 z%n1%B@WzfHb#M<%4QR$C<6KKAZbCX%XXXY%|p8Eh6kLt^D| zW&wEK1%7(NuSu{+7&v;<^+wCQ+0HE6mu0spHJm@C_5ce#^YY2G027aXAR|)J9 zS;FDGSlE14XXQ~w0_UC1#kr2P*ni%FbGlyRJR-$>?wp(r+&L9&Ao}Rb&@Y^fzQ}6y ze<`ES7o2}s0G!*{-#CbMoaqv7ebJ2j zvL3EKtr!<&_CwyzITyoBuk;8ybFGes!Y>`vQRe{Xq@!SeijA{8UpaT@Dzfa{#;mDt zkCA=nB+C}couI3(4wPlm0vU0{@1#!DZiDjcWCZxRg}PIvrJOxAfgH}LI#0n!`>`Vq23#;YmoyE((3cd-xg>IpvPfS#tkz7}R5$<`?BHtHX_j2+#aZF8WPH7!Q|lp^kD5ifq6bnDCUBL=^Az#blF z#o!gs%yc8z7jcokGCy|EQ|PBogU&b+aW6)^yuq^{__2atMzBXBp2I1(*6OCCw~bA} z`ModEhiC&mMextE*G-_~aK4tr&x5`?&yPyLc`3>`pI|%s-|uE~{oS{LQ-i)OUUv}m z>1jDqih5(duJQ-!2E(EMk48O!0d!A$*s}-w*xuN$i;v*;CC*^|m56!f0o+d|aoy+- ze%#g8whdC+%ADGK`GojbA=+!0&ZXfaEooyohcm$W?YV7oGP++Up7U)UtV>;jKhGaL zLyhQUII#+2M$n)fFa5{oACi-&Bi26M*+n-_$Uoq7nlaG^KYacC3E1JxRdPdadr_BGp93?Oh+Y`hgSsU9?5-(4D!=Q)h)-P0<=U z3UQA_ykx+$8Tc`PU-w~;I&efh50%D#`az^5A}XJhSWvH~hsMve*0Tx7pOJ{W9O6|D zp7(&CX86?(d#*Nb7vQAzOmRNk_Jgdg>Kg0*c_yQYe)HAH9~Z=3FuxaC@$=j!j%PXW zQwP5sV2>VfjvP4P+U)oBw{zOF(3dTsjkPA@aSmtDJnp=~A2?U-IL?pq#W^|r`H;~# z_aFs0{Q05+-M2%Bj)smd-pHN9IS6&;*{G-G>jwFACcB{yWY_s+4YtL`MDxb&VGmX= zqP%_)iGAAFr^oJ6jBGv`d0nl93Mr98o)hHV_iK~$znm|6_l(h9{nf*MJ707Z>pI2G7kmDx_eI+e|LZ}-j`SV4salWV@&IP@X^E_YT z98MSL&HTBS{P}f5es{j8G#LeZ;(j?_bO+7_<x`0;D`5%w`T%yLU6t)e}3)`;Y8Yfa`yF6CiH#3DOyi5 z+$g`^nSy!LqDi%?r_ERW)<1abm;S-`zw{6C{d#?|zo3BrI5qUO?ZW*m8Rw=t!!IjA zA&nH}`w$1BfAB2&2R$0Nem%a=?gjK_^O3JWAy9s zeYPvmAIHZ_0Xz%pafAH-(m#lP#^hi62iK$TF9Q8~@#wSLiMTf-UX@tK@%&ss{~+Jb z=meZP^bfkD?@t*0dVK$>9pcU)UW(wE=SLRx0a38W>6iXNzVGiS`Uf8)e>i_FDIc$y z;Mo@ZY=K{`oc_-6eTb##A5?#*{Dd)yBXudaRC^i4P=jvVx#;1zt~y@5_}S56I=wm7 zVdLJOw)E3y&&gJ2H&XswwGiloyQ7z8)z(_jeiLQ|&n~s6^P~FfoN_%v?wsIsJwxbm zy;r<%eQY#`%oN=pe80$%Bo*9Ow~E_FZbEP3>vAuS+?sj9%Z9UJSr4^8NePEI0D?1WFp$a>3X~#=LLN*5jY{x zt+qmM>d|ras+yA;t&VWheWEvvER5#tasI~P7@SV&`^Z0oB+YCPmLK6jBE?$oH9K#h z3tTuI&1n~>e--Qu{U#w6MHJ@@`n=Crh3*bacb@s$mLy^S*%JETS;bWwy{_vKkxFtk zBQl00Eln`UoxPFtfF8%|Xy;B0PAgh&PHJl=UVZ;+8J%vF=qR^-1?~Bo(+6GP*CyAg zVPj>Mkfg2C4Q|HylX;Oh-rH-Z5pC#t-q7Pr7o{(Bm~BpYeee?E^%OiugP)u0IKO(q z9s(Q#=!3kj*9<+5&mTYNgFH?oc(&jFdwtLc_UwW__~I9RFub?k{=MU7)5#-LH-8@5 zkLGOU;=UR2y0~*x;`kgp(tdpSt+WlUq-o=Ts+C8Ukgu@kD0Ie`!ByS0L!(GK>Pr@* zF2n(KdN*;Nc_Hd26j1l@2K5U3d4nTxu9_EgeJdUZ^(DHfYkG_8bNd9YKlVHN^{Pr1Js!hM16o4?BQ|vIuNd}IE;*p;&i>w&@aAWpEei!QMFii55f9^Kc}6)UkG%v zjx9tLbt|fl@fUBM+E2L~`{dNvP+zxG<=Pud!U2bn3LARW2XNSkyfaLiF((q3c` z?jEp*=w(JOTluw&4o4lvJe)Im8S%;i&r`t975Ft9_6QeqIR2;uX~a13-=(^~&1)%9 zM*bKf?pF}6E#SEy_=$jD(_v3JZ~{=bVm{}t&-cRP)DC&b*JBSt+(QtrG2of!XE6MV zNaE}X1da~sOWv;L{+%NuS?=F+Stq!VzS3EYdAKspGgm9+&RgDE z?frPl$GsKtnpVK^JRba{9_RE^<`#6>(dc)m{XXr@#gef^Co^nw z|0qS8hdMoL%r~NQE>3GWKZw@Jbhkb>bu77isKB~GZYEKOUcm3ucI@6Ir4ulM42NHz zU=Lqsbqe>34ama`=+;Ki=LSgnjvXbsnM`~$`JQ1>HVMLh*;nu*4Zq9;>yH{8AK>_R zELNFRaf-CK#)#L6#Smwcnyn|7#L<16F3hy)aXPy95+AFi_zcohgF82#?|;t~{QDoO zBn$R51Lr}yN6Kq9jeeMTp}N#Oj%afFGP@YMb(+G2hj-`4lga;&uJ`ck`ThR*LpIra zWUq{5MHkPIY*N`P$<8V>N=0Orok~)Ktc*gQyh3H~y=Cu_nbnWib-(;R?|#2;f55q& z^ElV*+4Ffl&UrlOR~$GuHWGv8dJpOvOg>+T<6&c7WaYXjVJCTN!_OR&M>jv~F!S7) zU_Ft(AD~~2!MO(bgix0i`B)JrKDKAPfD*1R<&Y>me=cKV8<;86JqvC;cyGqlaGr-S2af_cVNkN3Vij<#OVDLw~HP@%Pq5 z6yrPByR6jBNJSsuDSOaeB!8-HftTIM{!V&e9Z4hcGcG~cRHT;=Uvn5 zjl9v$N<9DV^tE%Koj97|svS!jAojq2t>m76+N<29?aOo$_SB_xpj4b|yl*t*x$4CE zsSO|R?31neq56yUkAD_le&^V$2XaqZx4pz?Wd&K+%fHX(`)zb<;*7rK)@#wO6Z*Gy zjZc^_TCNuzGvGp6mk2RQ^1_A$c=QD)y0vR?B2M=Q=M?Y>{2MQ`oftqqCiXH;sP|zn zkByPKKI>`Ao2$p`XC!ZK5b)NnTRom0IK4y;^sqsp~2E6e5n?fnwJse$P zSM*m46K5WJdO6seD9ZiM3v^&6Nd8Of&0c?Z_Lpn2ry0RM+HCT9&VGRvbJQF89z0cQ zvT<%OjQO7+<{T8C>i};xo%{Kp)K!su)c3m`@6X+NPq5*6xSYOUhqtnaC+>20ajhlR ze|+@7=L&UIcr54i)caVFP*6DR$%kss7dGK{>Qwr}>1_35z#^gM57+ilzIA$CjtORGV@I)L+7@aalj zLFDsI@{C%x^G1G9tK1@~PLEl=g;R*-_fzge^=^_!GYq5e_34)_cpL|xaOyfrKGwvk zSi#8SX;aN5KbW?mYlDv0opmS9j|F{iNWVG~*9?4GQr80Vc}^T%@{U@+qmDDHzn`E# zm;9i%mh&^3zUQM~LExMQKBKAYDEYh~PQejIeo)KCe92PgLVVcUYRWx-MdnLpGWX!j zyuxwx=cCct?w4i0u6)HztoJjJr5 z=c5AmM~SlFGmg3{FyFh4I6lmm4K@dr9-iZnur9bbdzbs7EOQUt!CB4U z6rrw`p_!50ier>ir1L{8|gG?DzNHXB}c5c|Ro`5WczHnXM(s^D3q z=@uK^fjyUn+}DLYC|uY3b64GC{maUOYS$LkT>Y9YKHpKyW8UTfa|JHXeEK_D#M=y^ zE|pIJaXh)-P~UO>ysrlHe>wAx{C_bIocqGd-UT0}KPJD=^NIw%2kZ2Fly{C*ym)ZI zqn&5#MM89a+u(Yy)%p?13u~R=o5yWkW)i=2y;wd&;%o&zvyAUo%|rnCTqaJoO*`zL zyZGw^Cgi^}Yu6;PP4dfzM0o4%H3Ejr>@!>3#K&g_INvnJtNQQ#unGB`Bu>{wdwRFE zS}MLsp4w0v{@cs;M(X1HJ;Z+c-jRMS2j^Abv!A*Qh0* zJ-g(o4Rts_N@paFekq*Wf=@Da6(%1K;@C&*c;5QmQsDsq-2t6;b$;acLSwxj{pt(O z$H6D5wXCZe`PdPs=dm4?UQ`Mb7qj>eX0lJ+4BtuRucv&(lwVRKeCVFyf1!Nel>eX| zy3L*O4Qvo1bxIBBF)CfPmgs9K9ifBhfuy4g@tAxTyAEW=EmQz2;J*^A(QT6frtH$?5BJWYHh?|_ne^Aw>{1E+! zqx=Wo;Tu>OzrP54`r6c#{(80W#ruU{oAPJ;&HQ`@_W*B*6N~>~WETIyFZlE&7!zN>y!29F)!bAY-A;fJW=JisTg z-QT`xRsQ)8D*u#Z`aXw#nG-hvd@`sj=0E;}WyE9RF2OfY`Aw+vqx=U;g-XB3I$8V& z7vev-5dXndS^Nh>(HC8UE@*#r2A1Q;s`N8$&=*yDl}cx_5BiYF=!-5TP95~jUHkr5 zUvwNgoQKdG%z<8drAR%8ujq>wXOGq5@BgKwmf{V2N$KogbU{B;>5IBC zH<-xWS5xLd+Gm&gqSyZRYgRi^h`49w$a~tM+(+$3hqD0sqGNfFs>A<5<;$t+x~23* z{VEvmvG1WTItg9S4d{!WM_)7!{mc&NUN#43r7xOuq|{B_Mm|%BV~xJ3(god&p64|5 zMQfgv`l8v;gEa%^x8QTOyu44?L_W{Z7fnK6ROy0FLC>=cI-EMXvaRXYFz`6b_tzon zQhKKrZ$-pB^uLCmq^I ze?8?RruM&F*xTwvoRKf2&VNmK54k^BS-j%>e2bO)ag);JURwtD-%39!o&7K6Ctia% zzTR?waDSrYsf)rhs69Iy?u~viXYS5CZ6fbGZ7aGAyffWIPnlWAZ@XE>!G!!rjr+NY z^Cho0_51gr&KE|A#ueJFYk#Mv2B?4e(zlVI%Y+GFFSDyeC|$%h|`~>dXMo50A_6#rIWS83qUyeE8I{ipZajTxxJqURxdA)n{^q9Q?qs4B!oy>+Gbb;6Fw?gu9$?#~3|C+Q|@>VU6Nt`WSNqlY^^%cwNDxbl` z=>tFb3x03_d|VEGCpF*)PlU^Uy(uDbu3_v)F`@3UPr(oNCr+K_k{>JpuNTMpJ`9gG zg}$58ucrGY&H{WC?>UHk3K7Q-e()~5-WvEg#V^07?}lL6uXEt6_)}Br+Cx5fh;syf zusy#wo6+(d&KxPvkL2_0^nLtJ#(?u?@CjHic~6y(+OrMsEBV1T_wKkYa?8-B;d9gk zy{2Kzoxa4sdp$nIzwu*TgYV=c{PphOBc}Y42H^`M(6`CYoZfBTHzLt(zJNY$TXZ-r z(Hq=}u9_|RxDn?n^BTtIv&lx0`A9yWe-4p*tasSg^X1;in*EE606Awqg1Rb_kMTTb zZWX7Ad&g1o-4o&U2Et!#;GT9aaUVI$@9x*&qjcKqzm)lCy<{BotKrsDr+(CqUvR21 zpyeLzWl5)20lyOsi=DF_`P8Svq3px%92wm5lc>=kyLq=;XEk?l-T*$?*w39#KF5gT zX=|Up?BZ2zb}=XK%YEat>m#NubXav&pE+brvSnnl@Sk+pP&HE5p3tvr;H>r;M^e{A z^6@85yHmHP_dJlM{n~nZ=ck6(#lxpv21g$}s$aS^wgUW1P(b=4rBtIOpaND}9HW8bZM z;I2T;u4c9TFWV0{jL&orD_-%L-mmG#%E#U&i3Oz&1)QF-RyzdF+0kkDrmm0VvxPW= zH&w6hn6}ukZfL^JCyu^a|HS&GCf@$TPkW!PYgj)-#9F+q?V9k%N05GHf^%u`$%L;Q zOg`(0W9#s-c&D4owLRPW@5-IJUp$TN`m0BoaD89Ks2`C{=NP8ach#@_;2Z`%p48<+ zJ_m?1DPOm70l!yjVSoRB8D@yW;p4BZPK^-PI6oWcyW0QCN!(H3bAY;@laI0gwmxDi zalfq1j4N{|SkI3?qZ{X^8ht-czgB{C9QYigu43f#k~pU-U$c!azDS!`wanzg15Oww z;Y0VnmDKk$J6YsM^CLbY2lpHM@R5&wA^p2E@C7!<|8xvKkM_h-zFjMKNIkS~X>zW6 zBj1Dd(beyae)ubNo6Yh{ecHtXt6-k+7uz0ON9})gqhGDSSqGn0)MZOP0mMl=@us#{-w4CzO{LzrR z6<SN>_|PdIvD54Y?BIUG z51)v8=;4<|huG)g-*`5{8y(kw`LHLU^v51-lylSxN>2vej6~)UCa?!xpM6gU?$O^- zR|@$oi@XN@n6Te=l>2qsnn&uPmdC3KJOb7d9JGS^F6-8 zgbfD+wX4PtM-SoD(SK`nJ<~%2z6h|TQ2GgDscRnR*_}9P``$0B(*KKI%Jj;B4ncji zX2u7Roqq1ly$k-gFaPsxFG;_~fO8=D{G_fEelf`cUO^za~Qz+=|SI*(y#8|JP&+sQ&%POX>9z*H0+Pg z$<3XglYZ!#F9tjjMRT-Vg-@u`gY{rH2-v*+Z}NpoDYD{B7t?yn-${iwbr+0&8833suQTA>9DL$=j_e_y zPsB+!{T<(S{TU(uKilg~Ip1N&TlJoOd7HkV$j);cR$1yk?Q7IneL{$G;9L=W+$(;x z4SYRGEPUJ{|2mV7;-;5(A;TIw-D^;bCk~ZsH+kA^f$R>jFZype23y=FN?FB?`K=3U-o{^PYiwUOuu@AvlaLxQ#V z*6Px)8sO{=J^|EaLq1K2ACaQc-D&Mm-aBz0MnPbcD37!edc zZ&IxGZhKtD@1KXY%J^<8{qXPXoBx2%HRR11c`Cs}bG{e8Dz58 zd>(Rhjqu0UzC3Z>;8U#hmIc0(%ExdSK4L}jOH#ftNAbT4pEM{!3KH1dX9Pi5awy0 zGB-G%xZjz#`3XL);q@Amk2!G`aUZps@9zD4U)pb~H z5$C=|K+6R~tPR)0T#Mc6+*JGER&dgQj(_yF#@Tzlwr(cetP+>mB)2g1q+gji_imVT zYl1cae3ntyUh+9XoaKod4KB+@YHxlx?YjFf4tg1 z|G|7&{0Eg!Uvd2PUeT{7_}MMMhpqFU6ZFipqiZey|Mw6(w@4msIeLS0(4Cvf{9|2oa!#TLqI3_`{=4!2N9IJK z_8I%Lm$Zoe6g7vh{0F^=JCyk-g-;Um0D)U&KE2;d{$d^XwBNX|E6aEHG`=s^@*ZWv z|BEBwtngV$T?@%a#S!=q*1$LLRbS~pSP7rLjri+5re99rJQsWpFh5_8d}@qK%|lm3A@kZ}6`8-39S>_vs6 zGpT%GR6Z(>(lbwEFI(w(?q`2!3VRYtU-WqvebK>V2GuoGFDXi2sW+khg`WBY;;8-H zzE{11W{obZ&y34Ep!>i^qF<2dqmnD_#JVi{qC;L(f0&ZmT;yZ!>s1zg(Qn2d-Y=V+ z@E3Eqr&ae+>bqNgUt~jH)Crt7f{&`ps4wc@9r~iT&;^~s{*Y}JebIvSD;N5r zQ^7~-i?$OgpDV=4hQ4SCbU{0y=Q#m=QJucur(YG&uUnf%UvwJz6d{fs`l4kcq%P=B z_L&xQe!}Sc8~SC=+_L(v>`YzV$)|RhjB^Qn(O2k#*5w>-MPF3u%F4Z$=HeUgt4e=$ zG}`!9&Pw(N zHyY1LS@DB?y%x+7E#r9@&0gC+_R(&GdsFtmz7Jj!xukg|-RVvR|Fb{%6aHct_q5^MkE#8^DOvUhmxE7l z;|ob+5lcRb2T}Wj>FoUp_Vv1OF1N8Cr_rxiaBgnQuY>5%??l}jt2pD?ALMsoNM~QK zI(v2o)pz>U4xAM}>!_;@`KUMt*&p1`{@@|@_0;c8_1%$vbq425?j?Fsm&(VMI9BWr zUgLawat^IIKOV+si9b`M{%@!he0t!VhkNCmI326GA?diId|${GgM_ z2_H9;=W0p#FEjWhH~2xNt2ULoR6g?FVz~GQKe(Db@h_a`kML-r@Lzd|n+)Id3Vgh% zs{;9ygJ(>EAKVJB=Lml>nS0uC+(#|v`~3kpX9FMg|Kc0@#1f|;{NP%6yQ@osjsYJN>bm~F{9q-2;Y-|m@Os5KhwA)Pf*;&Lzkb(+HL-q_Wvp0y_k;7W6C(_X#M#z(vA=JbtJ?gRWA#LbbnzCwCgp2y z!uzuiKE)OBW3|I~asvK(U&%-LB`IGR<6epHQen=Vp3*a4eMRav+p<68f)3|2^afR3 zZ^*}}bC?+fg-Z3BL!5oM>&%5CD z2E$+U;-0n^_faO`e9lz*o2T<0b(ehl^Sg*mZM3s(-^W_DTwd#HmpEqJNzp*~~m^ixY3 zx2d{gpJ-9*#>!P=612+nUHRuKob!B<`;3#RE1Y~HiBqzOL*iS%OWG&n`@|N}t5eMr zX2bmS!71*Lsy=2YeTL-e)i>8;K# z_X0YG%X^Zd1y?;7d(=U@UphXpm30^WZI{&B>}79e|I~`OrP(K10zPl4>mm6>eUy42 zzRWd+@q7-3r?!BPYrS9c7j?N`tqabDz~>rusrMiCoUhG!eqDTKhYxpSv}2){oNt$& ztG8bLBIn*-J4Mnt_qhYTW3}w`YZEwc+bs3oJ*mr?d{mtHw~_AgIij@SnzVFNxPj^pg za%h~ZQ0J#HeLqLPniF?6yi8l_x;nHj~{C=rs>;LzfiUC{^zcD5AGvQ&myNShD?mom7br{_fvZTMf=J7 zmTUOhm&PyqtMR!oMhwFLH2?Z*lPhOTHIzp`Zw$U&h0z~VzAyp2pY~;sKO$P{nFpYg ze1rWnH|kRQe#&=AL$68Aownfp`8zrThuNoAd#s7<#|;4=wSS>}VbnbBRp#^t^Zw(- z+=VUtvX^l{vZGiGUtm2<-qSV#AAjoVL_R}^vzF&`D(CR|XFYnzq{W(}5x>D=;PqAw zKW?9^yB3xG%4YVf^3&Z8|9lWkq+ftx2KlHsP8ahx&2u$aPx@N9W8WI#S~X*X|M-rl zo%A)ao*^vgdnx*5f=>G(@QI?Xr{rTGPNw@Tzvl0j>#1IrCyz}I5?7ADU3_~&kalii zt)C<2_tIYtJ2bc4)=^>w{fc2fxBp(xVy#o{#i`+aqpgn(7Hcz#-#cYHMjRuKUGTL7 zgHx92>mE$3yQkI=vA?uDhvzvzSLu5){R#nRg-;3UQu#D8*6S+5dxSf0G@qmQP43XA z+OJeGw)=P6QH?!C7konVa4x^Ix3y!uyjQokYUZ*o)kE^NT5r7pcs1(1WOI&H!-WNL z#@*RhqDZ&HLg1^Y^dUXjb1BDtUD?lb79R@=6p~LKBTnFR?S!9iNAgkrjGgeItB2o~ z+6(9*&yQ9NpNLNA;U8Zi^~@hgd^Dxws`62B=Al2Pbe0BlF5B~aD~mqBEcT#}g1g$+ zQ+r8j|3bx?&fMuw=Ic5!AN9g`j@t`Mc;RIDuTbv!n}Sa_>grEEcZrk1`-Xb1dh)yY z&bhQ{)h6Ai!d_9Fesu=tT;S7&x(1MsEzjrXslQfQWv&#`?{$JW&-u=6cIlkix-I(Y zc9V`YE!|6RF?UDtizmhkXK*eLKJNxz*>L5L@6L|m*~j!-Jwz0+vv2*l(O40?CA?Cr z7du4v6N|mV*S7iNmyqJqsrC?|&d)LW{*8Y5fb($h`9@tA$mh&S8E2(uX!gR6`@~~@ zZ{<0M$()}X^!+gXiUVg2e0~>{b^Tr2GBI)a7ssw^!l)Me1N333LniFXb4+`G_t>eV z-XpZN_j1PM@k!B@e(y2%G+#87e3N6(0LS^IhiRU@PetDeAF7``SJ?ex;%c#Y(1tbV zO-C5Qh?D=?sctoj9MoFk6FLpOQ?=KY!2R?7nEJg|xd&*rj~29xPx2Hm@NGB2pIZ6w zwjj<8bOEJq%M3A#J(ukG0hPx0B$@sDN>Zo7@WxN-nIAxxcnbL#k5%Rrah$jv&<%^` zexn0AFnM+u{Q@-QtFegvWra@-_R)Tj&kN$rVvah7@4*D-;=Gyvsmq*0EBM?ej1ZhGPF9z~noT_Q%}YkvvFi%r;U4Mk3pxM1pSi)u%t!e#2cqT^ zE`v`MRTue`BF-|tyYCc`--Agd<$F{){$Et%cX5e+-I*tG9tA$9sp~oUoFvW-j~6eF zOn24}Kk@IS|KYh8m#vd}=BBS`J+o|$gp^_05Bh$NemR0iKk$j6uKnb5j5wy&^}?UL z87uko@qIA1Ym* zeo>^Nhp+bfOEU+e&hzG43G++Y&erFP!o5r!cZksq-3*O$`D%-ZlilP{pRc1*G^}W7iXx;oP3P(gqh>SS>k$?k$ZMg@CC2X zRcniW)GOjD-4&%TQHZ+Uk*%`k37yM}i z`Me;Gy7$|`clR;A;~McErT#B}=XdcDoO^-K3+n1fKI)!i#JI%=;+w74Ccm}cld@{A zcwA*v-sOE3>#lb9vLEsEGsM#OX7uYVcys}u`_y%Yd_0M>bZ3S^_c=fB=zDkc zTk?W)0{>5kQ`ai;u_4Z;egz{(xkhWsf3P^dfxXceZ29VN4U4d{%}=3sF_gKT7Ce8x zqno%ii~r!2Ri(GS^*f~Re3)x4M zt`GT?BThs7yMxdnZ^=Hj@||prF5ne>#OmQEwFR9X_son|%U@fH#3eS9227Z!7f0_s z16}L89j>OnJy2MfPTl!noVTrr9rMh?BX57P2wkFQv8q&n zaWXcrsQ!d~#`5qoPuaiN&-`o?=4t(z8|(zmTfs;9DmF95YbQz&N8MxB%HluBcehr7 z_o%z{%N?Bm<3E_`Djt)MKXGp2KNyF=at~2>gvPyO&D>U@gLlb z|KJOB3PU(Q_2|1L{dx$_HsDi`?`?c!7B}_n=z^B}8^^b@-idSB*Raj`<8oc} zn{1&+pf5TOebGTza-x~!B`E<44t@c>Iz{h=KFKM*w zyFuw^&dQ=M`uIQkqV}RU`Ftl%82rTr?r95fAJvX?>BRTNN%Td(g0tLjbrJQc>jC+^ zBaS!vqLt7E_2+z_K!@`reOLWT0_Q2^gO?lLFkLB z{lS^+{mp18_Xp$f6)M1foPjyd{k*TL{lTj2e@$d>%aJ(EJKY+(?ZW}X`K@w)u<(1i zuNTYyU^C|89QgnKoPD&p6gL&`~ z+d^H--pPE7@&}p2^ku}2XYX$Ub0D8MKWaZt?aMV}AFUwxsJa@EPjr_3!JhEcOW4<2 zz+Tci_Agp6XC4X8?ZKxw`-9`M><{jP*V_w!;ln+xEB8@xe0O`WKiCVL)&GkpS@s9d z5+@(~gZ}If9${Z^BztzM@2X$E;Cz_0n;G0^&6Mf13SU+nqPBS5&ImDTig&$OWoSLr-hyN1rOAp|ihQJf8r>BcCr5 zgz~?Lh9CS0KRAZxY6$#SBjWnNH_Zeer62VOelUhOKJbI9;Rh`_ht1#zC&GUfhPNsW zKlmDa?!XUzBA;;LD1Puc{NQnTkT%@YD*o#o{hA2QWq6O;KwZnpN5$Cq6HarKWbPFG%we`?|tvHS79c#&x#eeI9({#*bZSxfv_>*70knYyl! zkDRj&5y}^475*3Q%;`<%edD=|qp7%s(czp4K1ZmlHu_PH#IZvUq#<)nKP}{b_bK*R zo!Qsx&tB3Ta8~$aXP$N}`7|Sr19Kn=oM&fvJqP#;2kvQI=~r)Xz5qVcs4F-BFZL3r zRqe6wruMs|g{+CIzVB9u2z+DNI^x~|-TzcupKc4b8G`BiI{K9doPUGQJyjR^s5qBm zHXi(9d0XCJW$qFt-#qG-d7n$D^K+TL3;I=zxWVAljk@NLkGz-PB_0rWOoejp*H`V< ze{&9xaDJ@mdu{qP9-RAt&ur@Q-7E7MN}Mibr+c>&H?_5^pQJipj1g-FrNrjjH%Tv* z{dChNd6pQO;m`QTw$`XKsrFn>abFi(-R;Jb<^Bfa^Vip1&vvt^_c)s#B7`_r`zs|4 zFbNgG_{ELKhfe9~I|YwA+Icx{NI{E`Zy*E9g%idwusmqdp=2YSmz zav6PH4L86?)s;v-g^81iPEI^?dI7v|;}zR_LhRvjtI%k!ftpU_R{oepDfYsvrKKbwrvw}V&fhPhY7PMjdh`^h+0&m`}A z(|fP(Dt{LS<*Vq4US;`NL%Vp#IqP|<%KJm(zg?5L!U5dt9;`H{%GjBDS@Ic5oN>v? zF{4f|*Jt2E_Ypn4ZtMl{J*dsWM}7%@+2}26#rVAi@w-)Vtnuwq`eVPC>sH@`vFPew zKtH?;xGR0yNz|qE{o?tZJV38W&A}ez{aNz09rW6qr&jEZewr@#^=@&ha}@JX$3EDgn-QYl>blD?>`26# zTTN>i?iZgOF*nau{j~DEMZdQ`dx+KGiK<>~*=EQn7g6uo6w~6Xr|L1UyE^-t&M@3h zlyT1VSa)x5j?ISAX19NsdHxg&@d;IWr#;fkb;!BZ$uOJy=dm>pJ3l`=K`-*L$D%EL zef0BAN4L-aFyvo8?!>8pU!3v1NORXOp%3ZKo=bM_>$0QA-vbnp9$^ehq;FCmMX5`~ZoR9%Iu2uP?8&uf% zJD#b3KIrDv;g^f3%K52G-z(6sU&M6;pG@XJHjA#JN~42^A*2h5@fY{aTdGfPY{(m_Pwmw2!R1HO|=H#LbpAmx)a z6knK=_+K1F=idrF^P|)?4ZYRL=x~OkHyFU)#8332l zx&_a}67>BV{n`Z1)4)gRk*GOF^**+?wr!uhPK)(HUtb+)@`pF7msx0ks?{h%xvFy( zG)tH%9Gbh|4R)KUPoQ6?!8xGu(xNBkTk5rAI%FH!xR*Y4{-k-IwvW+g66ach8&P>u z7U;F>g@z}DI_g(BhxIr=4e7g1zhc1I3w)|kS6%Wk{rmg%?XIur_W4a4rcxYOgMld{T*{_AkzG?`O+At^42KN9K4Tm}k2{zgmN{;u*S8 z*F*AA_fe62cR%NSC%5su_>1ZMzqm@@%h0a@;9LZJDxr(jhkSk!=k|yE!ESb2#P9BT z4S6hv>K;3$&$4~qU28G>+pG&kXXv9Yc8uD2caeyuUk>1W_-wW{OE%ev!c%VzTxl^@ zY~K)Q@crQ@@;JyiOWtf>Gp1XN2yAgZ-`<@g#B|Q#Y|hUT`ff|V)`D|O@R>+m&g3Ki zzl{)0fBxJv&u4?kfqzsm{!!^}>u=PZ5~U{(yV*Ck)f&ApJ`DcoNep5xMm?Vkn6;}= z%yhT#!nbDuao*t{_2F!-RIf`%#Swhu2cTOY#QuFc^9hdN9RBp}e(OK?Cf4}>d?BBA z#95BdQ!u{Ud(jV9`{p;`bK~$I%7cGY`BJ%ktNqT=@&t7ylaKOA-;OU;0bS}Xw`OlN z1^!Fabyq+KVsC^4{A2pHh?qI$z%JaS& z%m0hM^lOLmdBQ(R)m4~$rV{5lK2I)1jlNIXj)RL12c(4Sc{x9u>3b&rQOChKFZei7 z*AnuXR!qiug)dcEr_3r>OE1+wcRAO}b83H0`A1cx?;Ge>4RnL9flp=X+DSe|h?9nY zR9E~5tKl1%7r(#X`1BpY_vAhLEu)x28^`}sH~izq;XhcGIMeVSOu{#?41Rwb@rf9Y z-i4ZLYQyuV7Cv-K@sDdlKDUU|692(a{0H+DmAd*-=mUf@=b-%1THt55D2xAKdGc9H z99#ScJD@{epMCSu@WN;D*K5T&NXIW}BlsMpuEfGJAEoymhHkUkKQ+Lkg(*Eobk)Mq zkD3Y26Tv5(y3~HRij#|dy+C+}W9(lPXU_Zr^Rz|immBj@Vc_FWT`A-fM4Xr0)8^qm zDv|H*O?+QWpzk&4mjigDf=?`UT_T?%#A${9U_X2V599YYl=IVuzL%z73g>Sb(w|Z7 z7le|J3vo{2Ke!R!z$%=>SkBL^EdGO`;Cuyq)OXV(@;OPIX7~?g)fb(FZelt*oTt&x z)X_Cs$9!hF+BehZo@s69|K;!dK||daUB`IzMNgqG`Wju(Q|NgfM2B-eIxx?eXDjs| zebMH^4}C~a@=^MW8F|Z93GG_u(1V#$7gYIZ1fK(0^hK2qco6!cYTtY@{Bp+s>WgX|F!?wU=Pvw(8TUrx zje`n}^?Q7GtM7}_^h^D}*a|+Xt~l~3PMjv_iw5VDx}c@dDGXh9ddcF92Kw2DOS@{W zHvjZR70$M+?|D59nJCuVhj;FNz)r+;PH8gmYE%7lZW*Tz`l6qwx=c(eHAs}@9M0$b zsJ90Pbt~}&3%6Nb9=bjjSQD624&#?EGo4u$}?AZ-qKkhC2gFQ;iIqI7K z*&iIByPM0st%Jnron?Pe?d!$hb7aYW+$ZKd^ZaLjaJ;y~{+HTkDw}10&@9XT-~#rC z1~7m0oBhG7?4#YuvOm~U?rmv>h|`MwLACd%^f$6IM|6tk;Rg2F)IOTpuT*tq-5<-2Ga%-xycn?rt46-^o)Xvp?9L{lO>CJIAIUaTDK) z%X9dZ^P~1gkFq})4$canvj4yPgDxVJ{lRefLB;DSen7yZU55X93vZPO-?aHZ{NVV1 z{NSoA{Gj4J+~Efs<-V1ivu3tKiXT*S)V_Sj8GpVe{vsdzj><>HDFi>*8eUKFagE^z zHo$+4c@N!#<^#|ICsoq!?#IW z5|@6=5UQ?Q7QLoi%$-{E{`{QpL1+9}1Hh*db)}Kd0^%rN zm@(+kgfma4-Zz}kZ8m8x^=S`ukvg0TA3bFrq-;ru4| znJ?KV))#o@vj44zc+2^@u}k*-3jKPia0VY$*L?Dk&(ZzD?$pV33-8|6rfhyx%)4!z zzSmEl!%v)_Y?Ec*57V!*;CvN)Hd9wC@|jGWZ_6hix|n)P3-4II?CH#8(Rh4XYQXP- zqP10-!ObhQ*KIqToj>c?2t7yN2SbkMEhvU8^BVc=Q)6M$v*XHpqP5t={d2-2+pRe# z*y(*Le!pL2PC2pYW{dXIO?&B8Evg?X(cB%+i}Tyqd4$;z;XyvVh;z@w_`5J{$jtZ1 zruqtP3VwDoL#3YHGWG&&3(ETqOTOdg{9KrlwtuK@LtQh-CxSRdCd=R3V|=?D&>wrq zJho*;>1*%ud&8}653LN!UpV$qRQug&dGrcfZfu(Jv97*=eA0d;At6sA2F7cV?^Huonm?>Syq%HT? zz3F>3`n8Drs8sN2npb`oC>;j%oHw552l1lrwEF2L#n))=J{@)*oZL8<-B&XCA6tVsigUhNWiyW3w0NVF<+c*4Ya8xBKOEHY?t@pa;{;l zct73oL&)jDLgllAIJfE!Ts$lOgZMe>ZrAF$lSD^+=kmKHuG;46Xi$4M8@R8t_!&E5 zquFr1FTU2n)RlvLGKq6Er0(cnQ+kRJeDRXe(|g2TK*q+d4LV+T*4N`B|L$~-rJkSK z8Rmh{Me0&Mk1CGx5i5>A(O~ANE%_dFG46{D6(!LRUjWVv!6zSeogg1m;y9q!G?F>k zYv>cW7!S+ARfMQ}a)QbbOr7*2V)N;XhT)>y581DH zaDFsn^1<-2L&VLs?HB*ma|m4b?9&7>T%0D3|F8quc3c@Gp7lwpTfE^|ahY@Yl=I_8 z-@nkWD&YK%ee)~u=3mL@vGE0Ugm{zKU{BK*L&RM#w~TMw--|9`K_~AXHHh|-UpBmj zN56-^`Brqc)xNp04M~2YG<<5A=#>_wMg$56;yk$CVR9bJ^J0wTskPRLuV-o&Z?z09%)N6!l7H<|=*{R2LJ1ox1U2kr&i<=QRk z!OPwUpFz}RPd=03(bMqPYqd`5Ox9rELGn=bbafw87oGn&aIOSCYpBaWK4XcKgs$3S z=EIG?0S2dkdNQf#9+YRldmcDPf{&_8?O%K#jve#ZlBXT1Z{s_&B6A=)oeaN_G z1qWT7AJzAG`V|4rYR*9Eoa`W<-o$xb^}}@M7l(u;zuQWj!ywL&>U(|qRU4d>!KWH^ z8Ru-1dgu*^(^%|Je(bIbzy9rZtEC)&zF2sN)?H$mZ<~n27kG{2mkqVp(_9JP^mB3Ac(eS0 zqLk!M4bjx4@|j7TuHLl=&Mp=$-elq9cf!Zl<9@zavnj`(>ube)c-iCN6GUCR$>$w$ zn&CScihkxJ_JE}RpRG_nOf~Vp_zuqHz(?tI-()^O>2P*LZ_rll%NU<~4L%N)cTQEP(p-<2ZeNTn@r-noY zix6Vg}}KS_sF@pFI!GNzll@t`01T<^GwlS^8f4v=WsXYrwV;nJh~M)e?c$hI&~SJ z&%W;BA#uJu+A@6H`{8;H$qyR7Roz%%Xuxp8tM%@mPiOiG-w3m3)2gr0gCzfD(D7yH zDETIXnrlkr_ugCbGKPD^DJ1zp!_3^>{Bj>#r?)nLyuLyDUNId1_d4jH9wVH36KvfDd!0+Ai{mC(eT5&2rh;E-++czGOXfAuf47e$8j< zp|_Zv`$@Z8%k=upmngrPk<2To`LQVe5Bf7-vW7S>m@l#W**LB9=pCZgjCLkFV}^;= z%whO3KkGghpoc57wN!OAAfK|tna|vc1-{#D&<|Jp<~`www=hq!b?N!2!2MAoKlpT^uDd=m zpJ~KVKGV6-Tb{-|M>BXvSA4`uGxyM!`I1H8qw2CFpS;9zXTGEbdv=@Q3#Oo}c82+h zlJx5nIH!S6Huk&K9%~!olwvPQ-DBTl&b%md7^?3B=~oIkHv=D4m*OveKC4nPti@QN z?xQSo81GFCw^N*IHkj?MtM}FF^t~|siU#M&;NwSKx5(#0b{Xdb_h+3Jzi_QsYo%U_ zbJ&XWlS1E*(=T&yz6?IasOtgw*c0a|^Cfv+O8>!m#6M2? zA%+v@H2#CbR!HB#ep&nnh2({`+RW|z;`yWe2PaUM@*iABoZ?yh2bJ%@UUWwCF$Xe% ze%Zsv=f|IMC3OuXpB?xQDu44S=#cMYpW66-HEW#s0gvv8k63V6USy$XeXXO{H)_p~Rtk1{Xv zT`zcM$Unc&qV#<${qh0lU*Ho=UCqd6CvkS+Ke&r~0aMQ5@htv>9q3mBa5e{@3t9XJ z!-+E%|3PQ;MJxOt`l3J37d?UQrP3cW_CxEVTf(E8qw83lIOG2hebGtii>Qr?flzqV==ri}pc>vm81wYM$*O?;C08Ose^SlJM~=P9XZCIW|T7 z+Olkl)+dX;Xg=neX7C(Kf{$1FtE#T{^&*=5c|REJ6p~8dS`>ZxIgd9^AmOYioJtcg}%z> zCicS1jO3oSckyIzi(LIhJ(Cl{4O%6>k|84+lUj2zUWi#%ZhRiLpeVW z>AULJesFGq9%DA@>Sp}lauzC%HTt4m*dI*FvOidqJ-dzU53XW=Fz|o(2Ytu<@aeKlqjX zK@axqTCg9d<~&#OzFJ!H-C7aqT0}lGi6ht_+{@nIZ}ta$;p3y2i&O6#X7I9Vzj7jV zseE=5=OO!pFWLKh%D!HAV?QkQ#yk%@u-A5v{lQl3500j;pXBqAILYh}Dt&cJV?39C zdbw}ekJ~`Mat!>Glmq^zA2vx*xNk@8R_8 z0q;@P;G=YR)jnep;&fzxusi&Bcg|rI_6PIO_u}-c88|C^BB<+x@t(bba3D@U_6Ki& zj4a>d=W&s2k=lDpt(jtfL&*We|SM^!pMucs(prsT4L1ODt&z!MdN z-)WO);cC}coki~<&sK`Z6NSU3;(0D?J0kqE@Pq5-2NYRcr-RtC!zS;ta*ISpr|}tG z&qa${>;*KcD*3^uwL6%-&c8quf*%Yf&Rh7wD0sad@Nq}hN*=8r`eP6BNq+D>yj9yA zi;VoBs!Q>M;lz0ckDdmv_ZvR$8T{Zh;=JemxoStrH(fkbcvI5IS|YV!uWhYrnF?3( zc|n}MSJte2pO_@t_VaTI%kUPBTR7ZU_ItLT%|!BOKEEYDI3nPs-@TD5MQTjivt|2= zh>6{7KfC(*hz_e{UAM}1YTvr3&`r06b&V`NSCl@#a6~}!SaIcydGOI3bN}g?@8!9A zE#u~3QDB}(JY!w#W>q)gQE2;{r2b3ATlm2s_`zA(mOky>cA*}gZ@2aQ-QMEhh0bS+ z72YF$!4GD@4?Z|^_?OkBnfes^UNj3o*b5%^cOF@nnveQT9OKXTL835+*Bj|8`MC4k z)86Mkste!UGfm|8g~oeSC3w$f{4P`+V_cIxqQgkZ57v2o_E7lJcH+~?t^GotO%U_b zB|kX2gY1|4AHOm0CQ-tv=7DP`A1x4fiWReXxu=Jo&tK+aNu1BoCf%GJ_KIH2mk8!d zqDM^dAKNQZpEG|%3(ahk{+#)V1hb|9# zdTI{Dmivw1f|295{>l)luKwh6gE%vpThY6|SQ51OjHrumS7Y?Yl9;1@$@gHDh#k*c zzgsFI!KV^+ZSs-%#1SX-LCX9y6(4C+nG4y$JV$NjPFL{$T%5UwH0DbtfX^A~szpA^ zhe`RuTw^Xo>HM$aed7W16HAyc*#pj1z(-KmF7mlToO{fdcre!_cs_4s4&yredcpMT zDRUq@z^5j4*)un&;;1BdA&FA7dhyAANutIoMXU8y+^enANjk86Mfa( zN`bDOy4>EWKVZJ(HRmUazB|#c3gE2pNuaK0ezX$ zMJs)}9KT8JO18Us zKu=#|CGMXegzefG_{j5LKJSTBPUoccE-i_ni+d8_qnetamL7ZYhKI;Y=@8EMVzr6 zZchIezgM@1kH3cxT`GKYJbM8S+;236mkk1+gVYsBJ}OSn6UEHV-Z&s0;@jnh{+QIs z=q)brJy;&!?JD3L2tKu_OXc&LI4|)zibk)=&j?_jfA7!7(IM|dzv_eYTXZ-tP*+#- zSxuaN=-ccxeqeSN>b<2Jd)e0}jNhMG%TcdhuF~v-3*E(MN4b~O5qy62jz3eYx~oX& z`07dc^ZsJ$L-ULQ9c+XLb4?4G-`IcBVQiiILx9b*{2{&JBxK`t}+{!p`Rm(odZ@ZSWkk&ftj;?{M^lN3a)p0e+`u zYM0O)lLHKw$fpx={CD+VGy3TWZM*S7lxDN+LGSmi8|>6;;ahqU{Z&8i`Rw3j@^9U0 zdo%x5eI<1zkk4#+@pI6VxE>>GwXA!utKJWv$1dnqy0UjOgSdrfkJ|Zt&H(*1_?)4x zAo8hBoQwM|p0{t=MJtXk-URghmb#SKH2V5x-G%#>bM-=Arlb!v%mwEu;8UNvoXAJT z3B*TiE_!J1tIN6WN_?M2qVs=|ez}74W$q+Y!897~x*mN|bpb=aEWsevZ@k^7PAzxVGR^k-F^3$2iwy zB7`k*AMm@l#W}3S`LUw!<>=QJa9#&K8>p)Q`8*^}wZRY1#_kzs_?@^Y)2_flt(ceF z$MJ)vX!t}s-&u`j#=-t%aV^pkG~t<^%w zXC-kOrdCfq;U1&?UCYYMY^L8n@TFpxqX&iZgC349vD(j_22a#!@7AitBcF)!)TQ!~ z|F?#UYQ!BpCM~(cxe>w&|I=ycxJI&%)`WZY9@Z{!TpikaI3g{@wd$h*lb$6+Y4U6gMOv7vfCDU#|*2V$<1oh~?fU zFa8(q^veLw!@#E}bu}lSio|(}uG-ClQh)3&_aybvlPO8x7tya~;1Lc!bEs<(`CKN> zHQslOZ8J<3Nz6wrV-6&azE7fGjfk5FK2g+_jqh&Rx5?rLacA-Wq8h)8L!6(k^xc_$ zDV+0zk2Q5&As=7j%&L)kb7^v*7INCxqyL|0-Tf++eb4u}CPq7t=~TMOB*PSAA%#R) z_c^(?mk-hJT&-|@g~d9t06zr_=2=3RYkC+fpU<0!bD__g*mlvSTCQze^hN%T{?eDR zy^|hqQMKTRb;rdueA_e7pI7{US>^#cQ`boH2_??-%#N{QVVRbX0!xJ4iJ2k{BYN2< zoD9-d;kUdV9pbX=9b3bndRPwnRj%56ZFi5FdHl1L5&4$v9h|AA_V*tz%OQx^!Iv` z87~{I_u`C|rnw&GsLDbIcm~$vGihI&$U=3})Knc=^W&0+l5U=Bz|U^@HA$KfCggMA z9K*cPRnX6@#CkKEm((wm&I8gzyxxN6H1I>`*qM=c(5Kx79CPRmnqj@C7uJ86KGG<} zJsSIK7|&7QXBPZobInYFBfvg$-QVf;@*JG+BqM*+5ce+-uVU2oSlz0gt|KkLERDe@(@Zjnz-huW-`erBF=yl?^imjK=R)cEMuIBExlz-* z>J#~2h+%hJLsa;E$Zz8*S5xvf2N3t(yVhD~Y$uB_mx1YluzgK)aJSEoND2Lua2Lg*e{WyzF4))4)41`mqy3$WN%lx`Fp9@M90Z zr1bfYC%*tk!?{TzZ2WOjjQPT!K_~e<`aN0QYHCh`;COrn;e#m8PT;4g8*r25`}y6a zz`2iktcRd0%laAF9I-~sOL}-^WqX1|r)>s!rt^Tz$yWF^81@tahl37hKbnW4&ynB$ z9M$_eg}9s3eC8O>_Tc9t{9^W~0Vf^(7f+_qb)>u4PpgmPjp@sz*noiykOjbr;x zabBkZoX1+bgG>A`b8#AvDzC(pklw^;k6h3eGSh1CLI3e_oMQYX_XTl#xlb{#Bn`SN z2G~Eg0p}YguqO>Tri#iAM{>)k?v~|dGIq=I#@~|ekT+*E)?JQmem~zq7yAg@n{&{I&)y%^+jL8vL@I@&1Ds^F&+eyxE$495s_inXD)yc2z+<*0v| zV2+pq;-v+i12O-C>HIU@_%DF74*Imi(PuXq^@2d?s-+_C`w=h3b1L{@ee{X2hv|8; zbtCCMnEG z_kw-@oCVJl!O!>bi}e=_2hK>(xcw1+M>%)QAI!(xz|0>UHKlHWO z{J3OX?`#E*LXY`_em&+7{($*<`IzIwL67JG_EkPD&+6+uX&sjVdrbe?{6WD6(u{e3 zDwxx!i@7JI*k7ZMeQ2`yJr!d9AhU1k(A=+lT=DDQB_Iya92yLA;ngkrw!2_3q#PG=DIbv|t_k3f7|zA`d%|KZ=O^ zef(aqp^F6cJsd1^t2v*kI}7j=j3bU+)V-}_Vf zZ0LC|hrXx=^fUWo-XCuDHnxQW`6#Ako;Fk{UVK_`* z)E>H^y3iST10Bx8h4_qs()5c>xstWnj zgt*VNpz-nn&spFn4Stov9!ubihrZ}z^bd~g(LWg1qkmA0zP5byqy4FWu*i`=gTAdX zz|s6)`UfxP(*D8MnESQ^>)-Tz(Tn6^J%QCLSpB3H{eyzJ`1vXV->x{V?>k z9YsIdbevbl!mln`PvIDjYclO0+>8FfI`r#3M*m>^A=*DELSI`e&R1D~CF>uY4ttV; zqpqXux1;L0M0el!*6!j|G6Vg3_YD0lPoAGCqWyzz@B0Ted(%Em;g6J`KJbh6GxkOQ z;6n5deu=(6Hotp`^mt!L>hOIya0u-m5=i?`S>Nar z#A`6l>u!J_W%%{#PyK_wq^OYg4`!o2n6!h|^@4iT2U-0q1$8Tj|5+atIPym5w>pJ& zV{r_{S%v!GZ$0XRr%^}CNBwL5pX!6(5`FMqhIO_8*u(0KN;i$)T(tPIF{5Vb2 z2XCW3sPuvQAgeR3Kz(o;^1A``!Acx&r&0fM=}{kK^;1^&WcJtsXIhW?pg-zybnb`; z2|+%|;k?)HF|EVy2S0)y^}z-rYXMZr1yTuBI* z7nooinsbexy~ibKrT-ybPj2ae!v{8t?u|R-aJ*y~SMmd$d%F$#y(Z{GR6#vu6mZlu z=YBULqLEX673Ofhqn!wyoO}~6OCz`~X*__Qg@AkXa@mxCQgieCqX=F3)+j7GC z^D)@dA2`#TWm`86XyoX;#qFfz)BCXtk31t2Cr`0jVqHb1ckBx@P=COeWB+~#`doOd z*D=2eU=O`MPatN%^>bO^S#O$3Uf+=a(b0P^3B?>bUFhi*19$%gy1p?2{LF-3mtarg zHxwt+e@ck`j3%!1vs;!2)VFi3nA`OL`eTmRM?D7DgCT~L=f&V>GW>b~d&+=w^m$iP z#FQGY2y>2@UXuX(PHl1iya@670X)wIKP%wZBiJJbjy>kWSVG@s9`@;}<9uT$;%EfKP>JoSdaPwJllbvA@D03_KX5f?DzuJ^#kiUr#Ut@0)dQxe%{}2rC&#q zn*d+h8LrPB`0xFH6a%(4RQ-ewe%Bo@k;5N z1*$;le(u@sfeQoz#sq!-Uw!L1bC$J?#OjIops^dNl^^nJx8Z+!mx zbp!E1MXUb$bu>x>fq3;_zwSeJ|EnMWczN~ApEC0Al~*5+50$`wM?P5o1-QC_W0Xp-LjP)Zfm+9^MN%g3|GbX>$~#`<=yI-eeaS&l*v>`M+hZHZuHZcb z1WgWIgO*I1kRJpHnp}A-lYy+v;k|Ndwt@H%q*d8?3ayYvk8iqWzydj1Au< z6j`qG_4IfuCI(Fwt}2UelUqhc=C^xgh@9Y;GVDnJPG#CRxkuE3`0B3Gp;0oSTx-9W zt)}w}MTd9TB^U~?h$eoXelcajX8z}wex1%=3VF42P0jK)$3@}b=M4N}_S68!_E%>e zhd~v5YUj0FE0f>IwZ&%E@lk!v`)SEVZD#L{PEH+a4Tezf6N z8|+~?noEc8OB|ign++>`n>!|lf36ifdFdZwPStAllVOq7TPYTj^?4Lm$EdUxndf3Zk1C~(gCMx zzGY^Ips?Z=8A17Z@7I^Ghv7sn2oHBX>cQW`@%CJi9&g^rr!CDtU3wAXNh%Zc49+TK z@h8Ch6Y$dtzwW@EM&JlF)EB2exV10SxP9&lfrC!F(&IuTk9>M_Hm!BD zQ0BBgcxL>_!LMhqhvEEjXv0N|ed*+;jc4T_ce05B%^y)aj*~{ug};YYSMlYD*9`D{ z0sQ#DuVC0y2^_iMzGGt5kCIZFhoT3_Z&A>Bv0UIIemLSj1o83#&mrJvG5qQSdy0W` zZd6^Oz_Ebu?_N^BBBq>org% zy&!_Jsot&nX}oObN>!Qd+1$WhMtzj~t>;SebmoRBM2J!*n^bnjCGj2aVvS$ztt575 z@_ZYX@8b-BGfOX~Fhu_?_uanFG8a|opEhv3oow;0l|L~lWx?qBI?)9GqRbU3yE&ah ziQ}XGI4bhyt9CZ&m6AdzuY|>fcwNC$CGXU(6nMovs4h4jFm> z({8E6VU6h%MUxt`t6#gDp~r0^{dq6ChWk2F=Sk6p>nGqzB$Ib3XVoUvER-qg6FZ|hxx_q zISZV;$4mLom0yY!Ef!@i4sPQPy)9kmSX#nwpS7>;o#O*yR$EZ2wV{QpLcE58=M3i#$An{7FaLm6p(W>4Rqie%j#I64>(?>sWdv zB_l&KkX>Z{{r>-Y-CChcePUN?^sj%sZVjMMe5Bid" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, hf_energies, label='Hartree-Fock')\n", - "for j in range(len(algorithms)):\n", - " pylab.plot(distances, energies[j], label=algorithms[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('NaH Ground State Energy')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl8FPX9+PHXOzch4QrhDJccIpccEbSg1vtoy1FRLsGzHvXq136t2G+raLX1qNUqHvUE8QCLR1GxUH9KvYEA4RaJCCThDrC5yP3+/TETXNZNskA2u5u8n4/HPjI785mZ985u9r3z+cznM6KqGGOMMbWJCnUAxhhjwp8lC2OMMXWyZGGMMaZOliyMMcbUyZKFMcaYOlmyMMYYUydLFqZeiMgMEXnVne4qIoUiEu0+by8in4pIgYg8Ko6XReSAiCwLbeTHTkTGiUi2+1qHhDqecOP7OQg33p9ZUzdLFiEmIltF5JD7T1X9mBnquI6Hqm5X1SRVrXRnXQfsA1qo6m+BUcB5QJqqDg9VnPXgr8DN7mtd1dA7FxEVkSKfz87vgri/K0Xkc595s0SkzCeG1eD3c2AiWEyoAzAA/EJVPwrmDkQkRlUrgrmPWnQDNugPPUC7AVtVtehoNxTi1+GrG7De34IGjPNkVc1qgP3U5mFV/UOIYwgbIhLdGBOknVmEsepfciLyV7fK5nsRuchreUsReVFEdopIrojc71X1c6WIfCEij4lIHjBDRKLdaqB97rZudn+dxojIpSKywmf/t4vIv2qIrYeI/NetWvoP0NZrWXev7c4CrgB+5/7qvB54ATjNfX6vu87PRSRTRA6KyJciMshre1tF5E4RWQMUudvtJCJviche97Xc6lV+hoi8KSKvuPGtF5F0r+VdRORtd9087zM5EblaRDa6x3uRiHTz89rjRaQQiAZWi8h3tcR5kogscV/XehEZ7bWdWSLytIh86B6LL0Skg4g87u7/m2Ot3hKRhSLyqNfzuSLykjvdU0Q+dl/7PhF5TURa1XZ8ROQk4Fmv9+1gADEc/hy4z3vID9WRH4nIU+JVDSQip7rv/UERWS0iP/VatkRE/uQeowIRWSwibd1lCSLyqhvrQRFZLiLt3WWdRGSBiOwXkSwR+VUNsX4oIjf7zFstIr90p/uKyH/c7WwSkcu8ys0SkWfcY14EnFXXsYlIqmqPED6ArcC5NSy7EigHfoXzxXQjsAMQd/k7wD+A5kA7YBlwvde6FcAtOGeQzYAbgA1AGtAa+AhQd3k8sB84yWv/q4BLaojtK+Bv7npnAAXAq+6y7tXbdZ/PAu73eV2fez0fAuwBRriv8wr3uMR7HaNMoIv7OqKAFcDdQBxwArAFuMAtPwMoAS52t/cX4Gt3WTSwGnjMPW4JwCh32RggCzjJPSZ/AL6s5b1ToJfPe+kdZ6y7vd+7cZ7tHqcTvY7LPmCYG8fHwPfANDfO+4FPAt2/z7IO7jE9G5jiHp9kd1kvnGrAeCAV+BR4PIDjc8T75u+99Vnm+zn4CqfqLg6nKjKfHz4znYE89z2LcuPLA1Ld5UuA74A+7rFdAjzoLrseeA9IdOMfhlPlifvannZfx2BgL3C21+ekev/TgC+8Yu8HHHSPUXMgG7jK/VwMcd+3fl7HwAOMdGNPCPX3SlC+q0IdQFN/uF8whe4Hs/rxK3fZlUCWV9lE95+vA9AeKAWaeS2fVP3l4q673WdfH+MmE/f5uT7/zM8AD7jT/YEDuF/YPtvpipOImnvNe51jTxbPAH/y2ccm4EyvY3S117IRfl7bXcDL7vQM4COvZf2AQ+70ae4XRoyf1/UhcI3X8yigGOhWw3vnL1l4x3k6sAuI8pr3BjDD67g877XsFmCj1/OBwMFaPjuK84Xr/dm5wGv5JThfcvtwv/Br2M5YYFUAx+eI983rNZT4xDDb93Pg9ZlJ9Fr3Va/PzJ3AHJ9tLwKucKeXAH/wWvZr4N/u9NXAl8Agn/W7AJW4SdKd9xdgltfnpHr/yUBR9XsNPAC85E5PAD7z2fY/gHu8jsErx/M9EAkPq4YKD2NVtZXX43mvZbuqJ1S12J1MwqkvjwV2uqfeB3E+wO281s322U8nn3m+y2cDk0VEgKnAm6pa6ifeTsABPbLNYVvtL7FW3YDfVr8O97V0cffjL9ZuQCef8r/HSaDVdnlNFwMJbnVIF2Cb+m9P6Ab83Wub+wHB+dUbKO84OwHZqlrlNW+bz/Z2e00f8vM8qY79DfX57CzyWvYezi/tTap6uGFanKvT5opTdZmP86VdXY1Y2/GpyV99YrjCT5lOwH6vzzD8+D291Oc9HQV09Crj+55WH5s5OIllrojsEJGHRSTWa58FXuv5Hn8A3DIfABPdWZOA17xiG+ET2xScH23+XkujZA3ckSsb58yibS3/2L5DCu/EqYKq1uWIwqpfi0gZzi/iye7Dn51AaxFp7pUwuvrZX6Cycc5oHqiljPe2s4HvVbX3Me6rq/hvgK6O4zU/6wXKO84dQBcRifJKGF2Bb49j+0fjAWAj0ENEJqnqG+78P7txDlTV/SIyFqhut6nt+BzPENU7gTYikuiVMLw/f9k4ZxZ+2xRqo6rlwL3AvSLSHViIc2a62N1nslfC6Ark1rCpN4B7RORTnGqrT7xi+6+qnldbGEcbd6SxM4sIpao7cf4ZHhWRFiIS5TZcnlnLam8Ct4lIZ7dB804/ZV7B+eIo9/416rPvbUAGzj9nnIiMAn5xHC/neeAGERkhjuYi8jMRSa6h/DKgQJzG5GbiNNwPEJFTAtjXMpwvrgfd/SSIyEh32bPAXSLSHw5fQHDpcbyupTi/gH8nIrFug+0vgLnHsc2AiMgZOHXs03DagJ4Ukepf1Mk4VZ8ed94dXqvWdnx2A2kiEne08Xh9Zma4n5nTOPIz8yrwCxG5wH0/E0TkpyKS5neDR77Ws0RkoDgXd+TjtPNVqWo2TvXUX9ztDQKucfflz0Kcs4j7gHleCf59oI+ITHXfx1gROUWcRv8mw5JFeHhPjrxO/Z0A15uG01i4Aad9YT5Hnrb7eh4nwazBabxeiFOP7H2Z3xxgADX/Q1WbjNN2sB+4ByfJHBNVzcBpxJ+J8zqycOrHaypfCfwcp8Hye5w6+ReAlgHsqxLnS6oXsB3IwamTRlXfAR7Cqc7IB9YBF9WwqTqpapm7r4vcGJ8GpqnqN8e6TT9W+3x2HheRFjjvx82qmquqnwEvAi+7VYz3AkNxGmU/AN72irnG44PT5rUe2CUi+7xi+J1PDN7LvE3BaRPJw2m8n4dzdoz7xT4GpzpxL86v+TsI7DuqA85nPx/nTOq/OJ9jcKqTuuOc5b2D087g9zJ1t8r1bZy2vNe95hcA5+NUUe3AqQ57CKfxu8movqrGNEHiXIb7rKp285rXDOcqmqGqujlkwZlGT0TmAd+o6j2hjsXUzc4smhC3yuZica7/74xzRuB7FnMjsNwShalvbtVNT7fK9EKcM4l3Qx2XCUxQk4WIXChOB5YsEZnuZ3m8iMxzly91G6cQkSnidNCqflSJyOBgxtpEVFdBHMCphtqI01fBWSiyFbgN+G0ogjONXgecS2ALgSeAGzUEw6SYYxO0aii3selbnM41OcByYJKqbvAq82uca6NvEJGJwDhVneCznYHAu6raMyiBGmOMqVMwzyyG43Qo2+I29M3FOe30Ngbn2n5wGqjOcRvgvE2iAa4eMcYYU7Ng9rPozJEdVXJwrp7xW0ZVK0TEA6TgXDlSbQI/TjIAiMh1OCOa0rx582F9+/atn8iNMaaJWLFixT5VTa2rXFh3yhOREUCxqq7zt1xVnwOeA0hPT9eMjIyGDM8YYyKeiAQ0+kIwq6FyObKHZho/7jl5uIw4QzG0xLkGu9pEnF6VxhhjQiiYyWI50FucYYnjcL74F/iUWYDTuxRgPPCxui3uIhIFXIa1VxhjTMgFrRrKbYO4GWeAr2icERzXi8h9QIaqLsDpVTpHRLJwegJP9NrEGTiDsG0JVozGGGMC02h6cPtrsygvLycnJ4eSkpIQRWW8JSQkkJaWRmxsbKhDMca4RGSFqqbXVS6sG7iPV05ODsnJyXTv3p0fX5FrGpKqkpeXR05ODj169Ah1OMaYo9Soh/soKSkhJSXFEkUYEBFSUlLsLM+YCNWokwVgiSKM2HthTORq9MnCGGMas6VvPMDG/3fMdwgImCWLIEtKOvKumLNmzeLmm28+qm1kZmaycOHC+gzrCLNmzSI1NZXBgwczePBgpk2bdtTbWLJkCT//+c+DEJ0xpibf7Mon7ZuXKFzzftD31agbuBuDiooKMjMzycjI4OKLL/a7PCbm+N/GCRMmMHPmzLoLGmPCQmWVctf8TP4p+2lzUr+g78/OLELovffeY8SIEQwZMoRzzz2X3bt3AzBjxgymTp3KyJEjmTp1KnfffTfz5s1j8ODBzJs370fLKysrueOOOzjllFMYNGgQ//jHPw7v45FHHjk8/557ju4eM5mZmZx66qkMGjSIcePGceDAAQCysrI499xzOfnkkxk6dCjffffdEestX76cIUOG/Gi+Mab+zPpyKztzthJDFc3adqt7hePUZM4s7n1vPRt25NfrNvt1asE9v+hfa5lDhw4xePAPt+LYv38/o0ePBmDUqFF8/fXXiAgvvPACDz/8MI8++igAGzZs4PPPP6dZs2bMmjWLjIyMw7/8Z8yYccTy5557jpYtW7J8+XJKS0sZOXIk559/Pps3b2bz5s0sW7YMVWX06NF8+umnnHHGGT+Kc968eXz+uXPL7dtuu42rrrqKadOm8eSTT3LmmWdy9913c++99/L4448zZcoUpk+fzrhx4ygpKaGqqorsbGfMyC+//JJbbrmFf/3rX3Tt2vX4D7Ix5key9xfz10WbuLx7lXOT15Zd6lzneDWZZBEqzZo1IzMz8/Dz6i9+cPqBTJgwgZ07d1JWVnZE/4PRo0fTrFmzGrfrvXzx4sWsWbOG+fPnA+DxeNi8eTOLFy9m8eLFDBkyBIDCwkI2b97sN1n4VkN5PB4OHjzImWeeCcAVV1zBpZdeSkFBAbm5uYwbNw5wOtpV27hxI9dddx2LFy+mU6dOR3egjDEBUVV+/85aoqOEG4fEw4dAy85B32+TSRZ1nQGEwi233MLtt9/O6NGjWbJkCTNmzDi8rHnz5rWu671cVXnyySe54IILjiizaNEi7rrrLq6//voj5j/11FM8//zzAPXacN6xY0dKSkpYtWqVJQtjguTtlbl8tnkffxrTnzbl7l1pWwQ/WVibRQh5PB46d3be5NmzZ9dYLjk5mYKCghqXX3DBBTzzzDOUl5cD8O2331JUVMQFF1zASy+9RGFhIQC5ubns2bOHm266iczMTDIzM2v8Um/ZsiWtW7fms88+A2DOnDmceeaZJCcnk5aWxrvvOh/S0tJSiouLAWjVqhUffPABd911F0uWLDm6g2GMqdO+wlL+9MEG0ru1ZsqIbpCfCwktIaFF0PdtySKEZsyYwaWXXsqwYcNo27ZtjeXOOussNmzYcLiB29e1115Lv379GDp0KAMGDOD666+noqKC888/n8mTJ3PaaacxcOBAxo8fX2vS8TV79mzuuOMOBg0aRGZmJnff7dyue86cOTzxxBMMGjSIn/zkJ+zatevwOu3bt+f999/npptuYunSpUdxNIwxdZmxYD3FpZU8eMkgoqIEPDkN0l4BjXwgwY0bN3LSSSeFKCLjj70nxhybjzbs5tpXMvjteX245ZzezsxnR0FyJ5jy5jFvN9CBBO3MwhhjwlxBSTl/eHcdfTskc/2ZPX9Y4MmBlmkNEkOTaeA2xphI9dC/v2FPQQnPTh1GXIz7G7+sCA4daLBkYWcWxhgTxpZ9v59Xv97OVSN7MLhLqx8WeNy7VDdQm4UlC2OMCVMl5ZVMf3sNXdo047fn9zlyocfpCNsQfSzAqqGMMSZszfw4iy17i5hzzXAS43y+rvOrzyysGsoYY5qsjTvzefa/33HJ0DRO75364wKeHJAoSO7YIPFYsgiis846i0WLFh0x7/HHH+fGG29k/fr1nH322Zx44on07NmTe+65h6qqKuDHQ4YPHjyYDRs2hOIlGGNCoKKyijvfWkOrxFj++PMaLjX35DiJIrph7mlvySKIJk2axNy5c4+YN3fuXCZOnMjo0aOZPn06mzZtYu3atSxbtoy///3vh8tNmDDhcC/rzMxM+vUL/hDExpjwMOvLrazJ8TBjdH9aJcb5L+TJbpBhPqoFNVmIyIUisklEskRkup/l8SIyz12+VES6ey0bJCJfich6EVkrIgm+64e78ePH88EHH1BWVgbA1q1b2bFjB1lZWYdHhgVITExk5syZPPLII6EM1xgTBrbnFfPXxZs496R2/GxgLVVMntwGa6+AIDZwi0g08BRwHpADLBeRBarqXZ9yDXBAVXuJyETgIWCCiMQArwJTVXW1iKQA5ccV0IfTYdfa49rEj3QYCBc9WOPiNm3aMHz4cD788EPGjBnD3Llzueyyy1i/fj3Dhg07omzPnj05dOgQBw8eBI4cMhzgq6++qnUUWmNM5KseUTYmKoo/jR1Q833rVZ1qqL4/a7DYgnlmMRzIUtUtqloGzAXG+JQZA1SPoDcfOEeco3M+sEZVVwOoap6qVgYx1qDxroqaO3cukyZNCmg932ooSxTGNH7zV+TwedY+pl/Ul44ta/mfL9oHlaUN1scCgnvpbGcg2+t5DjCipjKqWiEiHiAF6AOoiCwCUoG5qvqw7w5E5DrgOqDuG+3UcgYQTGPGjOF//ud/WLlyJcXFxQwbNoxVq1bx6aefHlFuy5YtpKSk0KpVqxq2ZIxpzPYWlHL/BxsZ3r0Nk4fX8X3WwH0sIHwbuGOAUcAU9+84ETnHt5CqPqeq6aqanprq59KyMJCUlMRZZ53F1VdfffisYsqUKXz++ed89NFHgHM3vVtvvZV77703lKEaY0JoxoL1HCqv5C+XDHRGlK1NA/exgOAmi1zA+xwpzZ3nt4zbTtESyMM5C/lUVfepajGwEBgaxFiDatKkSaxevfpwsmjWrBkLFizggQceoE+fPrRt25aRI0cyZcqUw+tU33O7+vHll1+GKnxjTJAtXr+LD9bu5LZzetMzNanuFTw5zt9GUg21HOgtIj1wksJEYLJPmQXAFcBXwHjgY1Wtrn76nYgkAmXAmcBjQYw1qMaOHYvvUPADBgzgk08+AeDdd9/l9ttvZ/LkyXTr1o0rr7ySK6+8MgSRGmMaWn5JOX/8lzOi7HVnnBDYSp4ciGkGzVoHNzgvQUsWbhvEzcAiIBp4SVXXi8h9QIaqLgBeBOaISBawHyehoKoHRORvOAlHgYWq+kGwYg21sWPHMnbs2FCHYYwJgQc//Ia9BaU8Py2d2OgAK3s82U4VVE1XSwVBUMeGUtWFOFVI3vPu9pouAS6tYd1XcS6fNcaYRunrLXm8vnQ7vzq9B4PSjuLilgbuYwHh28BdbxrLnQAbA3svjPlBSXkld729lq5tErn9vBOPbuUGvOlRtUadLBISEsjLy7MvqTCgquTl5ZGQEHEd8Y0Jiif+32a+31fEn8cNpFlcdOArVpRC4a4GTxaNeojytLQ0cnJy2Lt3b6hDMTjJOy2tYT/gxoSj9Ts8/OPTLVw6LI1Rvdse3cr5O5y/lizqT2xsLD169Ah1GMYYc1hFZRXT31pL68Q4/vCzYxggNAR9LKCRJwtjjAk3L33xPWtzPTw9ZSgtE49hePEQ9LGARt5mYYwx4WRbXhF/+8+3nNevPRcN6HBsG6ke6qNFp/oLLACWLIwxpgGoKne9vZbYqCj+NKaWEWXr4smFxLYQ27CDi1qyMMaYBvDa0u18+V0ed118Eh1aHsdVgSG4bBYsWRhjTNB9tnkvMxas5/TebZl4ynG2NViyMMaYxmfDjnxufHUlvdol8dSUoXWPKFsXSxbGGNO47Dh4iKtmLSMpPoaXrzqFFgnHcPWTtxIPlBVYsjDGmMbCc6icK19eRnFpJbOuPqX2O98FvNHqy2YbPllYPwtjjKlnpRWV3DBnBd/vK2L2VcPp26FF/Wy4Olm0sGRhjDERTVW5c/4avtqSx2MTTuYnvY5yOI/aHL6dqlVDGWNMRHtk0SbezdzBHRecyLgh9fyl7smFqFhIal+/2w2AJQtjjKknr369jaeXfMfkEV359U971v8OPDlOz+2ohv/qtmRhjDH14KMNu7n7X+s4p2877hvd/9h7aNcmRJfNgiULY4w5bquzD3LLG6sY0LklT04eQkygt0c9WpYsjDEmMm3PK+aa2ctpmxzHi1ecQmJckK4bqqqEgh2WLIwxJtLsLyrjipeXUVGlzLpqOKnJ8cHbWeFuqKponMlCRC4UkU0ikiUi0/0sjxeRee7ypSLS3Z3fXUQOiUim+3g2mHEaY8zRKimv5NrZy8k9eIgXpqXTMzUpuDsMYR8LCGI/CxGJBp4CzgNygOUiskBVN3gVuwY4oKq9RGQi8BAwwV32naoODlZ8xhhzrCqrlN/MzWRV9kGenjyU9O5tgr/TEPbehuCeWQwHslR1i6qWAXOBMT5lxgCz3en5wDkSlEsIjDGm/tz/wQb+vX4Xf/hZPy4a2LFhdtqIk0VnINvreY47z28ZVa0APECKu6yHiKwSkf+KyOlBjNMYYwL2wmdbePmLrVw9sgfXjOrRcDv25EB8S0iop6FDjlK4DvexE+iqqnkiMgx4V0T6q2q+dyERuQ64DqBr164hCNMY05R8sGYn93+wkYsHduAPPzupYXfuyYGWvr+3G04wzyxyAe+7fKS58/yWEZEYoCWQp6qlqpoHoKorgO+APr47UNXnVDVdVdNTU1OD8BKMMcaxfOt+/ufNTNK7teZvlw0+/vtSHK380PWxgOAmi+VAbxHpISJxwERggU+ZBcAV7vR44GNVVRFJdRvIEZETgN7AliDGaowxNcraU8i1szNIa92M56elkxAb3fBBhLBDHgSxGkpVK0TkZmAREA28pKrrReQ+IENVFwAvAnNEJAvYj5NQAM4A7hORcqAKuEFV9wcrVmOMqcmeghKufHkZsdHC7KuG07p5XMMHUVYMxXmNM1kAqOpCYKHPvLu9pkuAS/2s9xbwVjBjM8aYuhSVVnD1rOXkFZYx7/pT6dImMTSB5Ls1+CHqYwHWg9sYY/yqqKzi5tdXsmFHPk9NGcKgtFahCybEl81C+F4NZYwxIaOq/PFf6/hk017+PG4gZ/dt+PtHHCEMkoWdWRhjjI+nPsnijWXZ3HRWTyaPCIPL8j05gDj3sggRSxbGGOPlvdU7+Ovibxk3pDP/e/6JoQ7H4cmB5A4QHRuyECxZGGOM69vdBdz51hqGdWvNQ5cMCs4NjI5FiPtYgCULY4wBoKCknBvmrCAxLoanpwwlLiaMvh5D3McCLFkYYwyqyh3/XMO2/cXMnDyE9i0SQh3SD1Tde2+HbqgPsGRhjDE89+kW/r1+F9Mv7MupJ6TUvUJDKs6DihJo2aXuskFkycIY06R9+d0+Hvr3N1w8sAPXnt6Ao8gGKgwumwVLFsaYJmyn5xC3vL6KHm2b8/D4k8OnQdubJQtjjAmdsooqfv3aSkrKK/nH1GEkxYdpH+UwSRZhenSMMSa4HvhgA6u2H+SpyUPp1S451OHULD8HYhIgMbRtKXZmYYxpct5dlcvsr7Zx7age/GxQA90W9VhVXzYb4ioySxbGmCZl4858pr+9huE92nDnRX1DHU7dwqCPBViyMMY0IZ5D5dz46gpaJMQyc/IQYqMj4CvQkxPSocmrWZuFMaZJqKpSfvvmanIOHOKN606lXXIYdbyrSWU5FOyyMwtjjGkoz/z3Oz7auJvfX3wSp3RvE+pwApO/A1BLFsYY0xA+37yPRxdv4hcnd+Kqkd1DHU7gDl82G9qhPsCShTGmkcs9eIhb566iZ2oSD/5yYHh2vKvJ4WQR2qE+wJKFMaYRK62o5NevrqCsoopnpw6jebh2vKtJvpssQjyIIFgDtzGmEbvvvQ2szvHw7OXD6JmaFOpwjp4nx+mMF5cY6kiCe2YhIheKyCYRyRKR6X6Wx4vIPHf5UhHp7rO8q4gUisj/BjNOY0zj88+MbF5bup3rzzyBCwd0CHU4xyYMhiavFrRkISLRwFPARUA/YJKI9PMpdg1wQFV7AY8BD/ks/xvwYbBiNMY0Tut3ePjDu+s47YQU7giXW6MeC09OWLRXQHDPLIYDWaq6RVXLgLnAGJ8yY4DZ7vR84BxxW59EZCzwPbA+iDEaYxoZT3E5N7y6gtaJcTw5eQgxkdDxriae3LC4bBaCmyw6A9lez3PceX7LqGoF4AFSRCQJuBO4t7YdiMh1IpIhIhl79+6tt8CNMZGpqkr5zbxV7PKU8NSUobRNig91SMeuxAOlniaRLI7HDOAxVS2srZCqPqeq6aqanpqa2jCRGWPC1sxPsvhk017++PN+DOvWOtThHB9PrvM3DPpYQHCvhsoFvCvb0tx5/srkiEgM0BLIA0YA40XkYaAVUCUiJao6M4jxGmMi2JJNe3jso28ZN6QzU0/tFupwjl9+dbIIjzaLYCaL5UBvEemBkxQmApN9yiwArgC+AsYDH6uqAqdXFxCRGUChJQpjTE2y9xdz29xMTmyfzJ/HRVjHu5p43Fr8MKmGClqyUNUKEbkZWAREAy+p6noRuQ/IUNUFwIvAHBHJAvbjJBRjjAlYSXklN762gipVnr18GM3iokMdUv3w5EBUDCS1D3UkQIDJQkTexvli/1BVqwLduKouBBb6zLvba7oEuLSObcwIdH/GmKbnnn+tZ11uPs9PS6d72+ahDqf+eHIguRNEhUfyC7SB+2mcKqTNIvKgiETwhcvGmMZi7rLtzMvI5qazenJev/D4BV5vwuiyWQgwWajqR6o6BRgKbAU+EpEvReQqEYkNZoDGGOPPmpyD3L1gPaN6teX28xrh71dPduQlCwARSQGuBK4FVgF/x0ke/wlKZMYYU4P9RWXc+OpKUpPieWLSEKKjGkGDtreqSudeFmGULAJts3gHOBGYA/xCVXe6i+aJSEawgjPGGF+VVcqtb6xib2Ep8284jTbN40IdUv0r3ANV5WHTxwK843biAAAgAElEQVQCvxrqCVX9xN8CVU2vx3iMMaZWjy7exOdZ+3jokoEMSmsV6nCCI8z6WEDgyaK1iPzSZ54HWKuqe+o5JmOM8WvR+l08veQ7Jp7ShQmndA11OMETZn0sIPBkcQ1wGlB9dvFTYAXQQ0TuU9U5QYjNGGMO+25vIb99czWD0loyY3T/UIcTXJ7wuelRtUCTRSxwkqruBhCR9sArOMNyfIrTlmGMMUFRVFrBDXNWEBcTxTOXDyMhNjz6HgSNJwfikiGhZagjOSzQq6HSqhOFaw/QRVX3A+X1H5YxxjhUld/NX8N3ewt5ctIQOrdqFuqQgs+T41RBhdGwJYGeWSwRkfeBf7rPL3HnNQcOBiUyY4wBXvjsez5Yu5M7L+zLyF5tQx1Ow6hOFmEk0GRxE/BLYJT7/BXgLXfQv7OCEZgxxnz1XR4P/vsbLuzfgRvOPCHU4TQcTw50GhzqKI5QZ7Jwb4/6kaqeBbwV/JCMMQZ2eg5x8+sr6Z6SyCOXDmocI8kGovwQFO8LuzOLOtssVLUS534S4dPSYoxp1EorKrnx1ZWUlFfyj6nDSE5oQqMK5e9w/oZRHwsIvBqqEFgrIv8BiqpnquqtQYnKGNOk3ffeBjKzD/L0lKH0apcc6nAaVhj2sYDAk8Xb7sMYY4LqnxnZvLZ0O9efcQIXD+wY6nAaXhj2sYAAk4WqzhaRZkBXVd0U5JiMMU3UulwP//fuOk47IYU7LmiEI8kGwpMLCLToFOpIjhBQPwsR+QWQCfzbfT5YRBYEMzBjTNNyoKiM6+esIKV5HE9OHkJMdMCDYjcunmzn7ngx8aGO5AiBvhszgOG4fSpUNRNoQtexGWOCqbJKuXXuKvYWlPLM5cNomxReX5QNKgz7WEDgyaJcVT0+8wK+vaoxxtTmsf98y2eb9zFjdH8Gd2mkI8kGypMTVkOTVws0WawXkclAtIj0FpEngS+DGJcxpon4z4bdzPwki8vS05g0PLwuF21wqs7w5GF22SwEnixuAfoDpcAbQD7wm2AFZYxpGr7fV8Tt8zIZ2Lkl940Z0HQ63tXk0AEoL47caihVLVbV/1PVU1Q13Z0uqWs9EblQRDaJSJaITPezPF5E5rnLl4pId3f+cBHJdB+rRWTc0b4wY0x4Ky5zRpKNiRaeuXxo4x9JNhDVfSzC7LJZCPy2qn2A/wW6e6+jqmfXsk408BRwHpADLBeRBaq6wavYNcABVe0lIhOBh4AJwDogXVUrRKQjsFpE3lPViqN6dcaYsKSq3PnWWr7dU8ArVw8nrXViqEMKD9V9LMLwzCLQTnn/BJ4FXgAqA1xnOJClqlsARGQuMAbwThZjcK60ApgPzBQRUdVirzIJgAa4T2NMBHjpi628t3oHd1xwIqf3Tg11OOHDE363U60WaLKoUNVnjnLbnYFsr+c5ODdL8lvGPYvwACnAPhEZAbwEdAOm+jurEJHrgOsAunZtxLdYNKYRWboljz8v3Mh5/dpz45k9Qx1OePFkQ3Q8NA+/odgDbeB+T0R+LSIdRaRN9SOYganqUlXtD5wC3CUiCX7KPOe2oaSnptqvE2PC3e78Em56fRXd2iTy6GUnExXVxBu0fVVfNhuGDf2Bnllc4f69w2ueUnvHvFzA+1wqzZ3nr0yOiMQALYE87wKqulFECoEBQEaA8RpjwkxZRRU3vrqC4rIKXv/VCFo0pZFkAxWmHfIg8LGhehzDtpcDvUWkB05SmAhM9imzACcRfQWMBz5WVXXXyXarproBfYGtxxCDMSZM3P/BBlZuP8jMyUPo076JjSQbqPxcOOGnoY7Cr1qroUTkd17Tl/os+3Nt67ptDDcDi4CNwJuqul5E7hOR0W6xF4EUEckCbgeqL68dhXMFVCbwDvBrVd0X+MsyxoSTt1bk8MpX27h2VA9+Pii8BsgLG5XlULAzYs8sJgIPu9N38cM9uAEuBH5f28qquhBY6DPvbq/pEuBSP+vNAebUEZsxJgK8t3oHd761hlNPaMP0i/qGOpzwVbATtCos+1hA3Q3cUsO0v+fGGHOE+StyuG3uKoZ2bc3z09Kb7kiygTh82WxknlloDdP+nhtjzGFzvt7GH99dx6hebXlu2jAS4wK9nqaJOtwhL/z6WEDdyeJkEcnHOYto5k7jPv/RpazGGAPwwmdbuP+DjZzdtx1PT7GhPAJy+Haq4VkNVWuyUFV7h40xR2Xmx5v56+JvuXhgBx6fMIS4GKt6CognB5q1hrjmoY7ELzsvNMbUC1Xlr4s38dQn3zFuSGceGT/I2iiORn5u2LZXgCULY0w9UFX+9P5GXvrieyYN78IDYwda7+yj5cmBVuE7bJGlfWPMcamqUv7v3XW89MX3XPmT7vx5nCWKY+LJDtvLZsHOLIwxx6GisorfvbWGt1fmcsOZPbnzwhPtBkbHorQASjxWDWWMaXzKK6v4zbxMPlizk9vP68MtZ/eyRHGswryPBViyMMYcg9KKSm56bRUfbdzN7y/uy3Vn2FDjxyXM+1iAJQtjzFE6VFbJdXMy+GzzPu4b059pp3UPdUiRL8z7WIAlC2PMUSgsreCaWctZtnU/D18yiMtOCd9fwhHFkwMSDUkdQh1JjSxZGGMC4jlUzpUvL2NNjofHJwxmzODw/RUccfJzoUUniA7fr+TwjcwYEzb2F5Ux9cWlfLu7gKcmD+HCAR1DHVLjEsY3Papm/SyMMbXaU1DCpOe+JmtPIc9NTbdEEQxh3scCLFkYY2qx03OIif/4mu37i3n5ylM4q2+7UIfU+FRVOZfOhvmZhVVDGWP8yt5fzKTnv+ZgcTlzrhlOevc2oQ6pcSraC1XlliyMMZFny95CJj+/lEPllbx27QhO7tIq1CE1XhHQxwIsWRhjfGzaVcCUF5aiqrzxq1Pp16lFqENq3CKgjwVYsjDGePkyax83vb6SuJgoXrv2VHq1Sw51SI1ffvgP9QFBbuAWkQtFZJOIZInIdD/L40Vknrt8qYh0d+efJyIrRGSt+/fsYMZpTFO3OvsgU19cyuQXlpKUEMOb159miaKheHIgLgkSwruqL2hnFiISDTwFnAfkAMtFZIGqbvAqdg1wQFV7ichE4CFgArAP+IWq7hCRAcAiILzP0YyJQN/uLuDRxZtYtH43bZrH8YefncTlp3az26A2JE+2c1YR5oMwBrMaajiQpapbAERkLjAG8E4WY4AZ7vR8YKaIiKqu8iqzHuf+3/GqWhrEeI1pMrblFfH4R5t5NzOXpLgYbj+vD1eP6kFSvNVMNzhPTtj3sYDgJovOQLbX8xxgRE1lVLVCRDxACs6ZRbVLgJWWKIw5frs8JTzx8WbeXJ5NTLRw/Rk9uf6ME2jdPC7UoTVdnlzoMCjUUdQprH9GiEh/nKqp82tYfh1wHUDXruF7O0JjQi2vsJRnlnzHK19vQ1WZMqIrN53Vi3YtEkIdWtNWXgJFe8L+slkIbrLIBbyPQJo7z1+ZHBGJAVoCeQAikga8A0xT1e/87UBVnwOeA0hPT9d6jd6YRiC/pJwXPt3Ci59/z6HySi4Zmsat5/SmS5vEUIdmwOtKqKZdDbUc6C0iPXCSwkRgsk+ZBcAVwFfAeOBjVVURaQV8AExX1S+CGKMxjVJxWQWzv9zGs//9Ds+hcn42sCP/c14ferVLCnVoxtvhDnnhfdksBDFZuG0QN+NcyRQNvKSq60XkPiBDVRcALwJzRCQL2I+TUABuBnoBd4vI3e6881V1T7DiNaYxKK2oZO6ybGZ+ksXeglLOOjGV355/IgM6twx1aMafCOljAUFus1DVhcBCn3l3e02XAJf6We9+4P5gxmZMY1JRWcXbq3L5+0ebyT14iOE92vDMlKE2nlO4qz6zaOJXQxljgqyqSlm4bid/+8+3bNlbxKC0lvzllwM5vXdbJMyv2zc4fSyat4OY+FBHUidLFsZEoPLKKj79di+PLv6WDTvz6dM+iWcvH8YF/dtbkogkEXDTo2qWLIyJAAeLy1i1/SAZ2/azYtsBVmd7OFReSdc2iTw24WRGn9yZ6ChLEhHHkwupJ4Y6ioBYsjAmzKgq3+8rYsW2A4cfm/cUAhAdJfTv1IIJp3RheI82nNevPbHRdg+ziKTqnFn0OjfUkQTEkoUxIVZSXsnaXA8rth0gY+sBVm4/wP6iMgBaJMQwrFtrxgzuxLBubTi5S0sS4+zftlE4dADKiyKijwVYsjCmwe0pKGGle8aQse0A63I9lFc6fUpPaNucs/u2I71ba4Z1a03P1CSirHqpcYqgy2bBkoUxQVNVpeQVlbHTc4g1OZ7DVUrb9xcDEBcTxclpLbl6VA/Su7VhaNdWpCSF/1Uxpp5EUIc8sGQBwOeb9zGyV4pdRWICUp0EdueXsLeglN35JezOL2VPgfN3b/XfwlIqq34YhaZtUjzp3Voz9dRuDOvemv6dWhAfY0OBN1kRcjvVak0+WXy+eR+Xv7iU03u35c/jBtqYOU1YdRLYU1DCnnwnCewp+OHvHjcp7CsspaLqx0ORtWkeR7vkeNq1SKBP+2TatYinfYsE2iXH069jS7q0aWY/SMwPPNkQHQeJbUMdSUCafLL4Sc8U/jR2AA8u3Mj5j33KHRecyBU/6W6XIUa4sooqDhaXsb+4jP1FZRwsLnf/lnGguJwDxc4877+eQ+Won+EoWyfG0r5FAqnJ8fRun0z7FvG0S05w/rrJIDU53s4SzNHx5Do9t6Mi42q2Jp8soqKEqad24+y+7fjDO2u57/0NvLdmBw9fMoje7e22kuGivLKK/UVl7CssZV9hGXmFzi/8vMIy9rp/DxS7j6JyCksratxWYlw0rRPjaJUYS+vEODq3akbrxDhaJ8bSpnkcHVomkOomA0sCJmgiqEMeWLI4rHOrZrx05SksWL2DGQvWc/ETn3HzWb258ac9iYuJjMwfibzr/3fnl7DLrerZ7Slhd0EJuzxOFVD1paS+4qKjaJsUR0pSPG2ax9EzNYlWibG0SYyjdfM4Jwk0d5JAdYKwL38TFjw50OP0UEcRMEsWXkSEMYM7M6pXW+59bwOPffQtC9fu5KHxgxjcJbxvph6uSsor2ekpYcfBQ+QeOETuQeexw/2782AJZZVVR6wj4jQGt28RT1rrZgzp2pp2yfG0TY6nbfM4529SPClJcSTHx1g7gIk8lRVQsMPOLCJdSlI8T0wawpjBnfi/d9bxy6e/4PJTuzH11G5WNeVDVdlbUMr2/cVHPLLdv7vzj7wbrgi0T06gU6sEBqW14sIBCXRq2Yz2LRLo0NKt+kmKJ8Z6JZvGrHAXaJUli8binJPac0qPNjz04Te8tnQ7r3y1jQGdW/DLIWmMHtyJtk3kmviKyip2HCxha14R2/YXs21fEVvzitm+v4jt+4spKf/hzEAEOrRIoEubRE7vnUqX1omktW5Gp1bNSGvtJAWr1jNNXoT1sQAQ9Xf5RwRKT0/XjIyMoG1/b0Ep763ewdurcliXm090lHBmn1TGDenMef3akxAb2fXgh8oq2b6/mG15RYfPDrblOc9zDhw64lLRhNgourVpTteURLqnJNK1TSJpbZy/nVs1i/hjYUzQrZ0Pb10Dv14K7fqGNBQRWaGq6XWVszOLAKUmx3P1qB5cPaoH3+4u4O2Vuby7KpePv9lDcnwMFw/syNkntaNvh2S6tE4MuyEayiur2OUpcdoM3LaDbe7Zwba8YvYUHFldlBwfQ9eURPp3asnFAzvSPaU53VIS6ZbSnHbJ8WH3+oyJKJ5s52+EjAsFliyOSZ/2yUy/qC93XHAiX2/J462VOby3ZgfzMpwPQGJcNH3aJ3NSx2RObJ9M344t6NshmVaJcfUei6qSf6iCfUXO5aPVl5Tu8JSQe+CHhuTd+SX49iPr0CKBrm0SOaNPKt3aJNLVTQbd2iTSKjHWGo6NCRZPLiS0gvjIaQO1ZHEcoqOEkb3aMrJXWx4YW8k3u/L5ZlcBm3YV8M2ufD5ct4s3lmUfLt8uOZ6UpHiS4qNpHh9Dkvvwnk6IjaK0osrrUUlpudd0RRUFJRXkuX0L8opKDw9C5y0mSujYKoHOrZrxk55t6dwqgc6tm9G5VSKdWiXQyaqLjAkdT07EDPNRzZJFPWkWF82Qrq0Z0rX14Xmqyp6CUr7ZVcA3O/PZvKcQz6Fyikor2F9Uxvb9xRSWVFBUWkFRWaXf7cbHRDmP2OjD00nxMXRokUD/Ti1ISYonpXkcqcnxpDR3LidNae70O7Be6MaEKU9ORFVBgSWLoBIR2rdIoH2LBM7sk1pr2aoqpaisgpLyKuJjnaQQFx1lVUHGNEaebOg6ItRRHJWgXsMoIheKyCYRyRKR6X6Wx4vIPHf5UhHp7s5PEZFPRKRQRGYGM8ZwERUlJCfEkpocT4sEp5exJQpjGqHSQig5GFGXzUIQk4WIRANPARcB/YBJItLPp9g1wAFV7QU8Bjzkzi8B/gj8b7DiM8aYkDh806PIarMI5pnFcCBLVbeoahkwFxjjU2YMMNudng+cIyKiqkWq+jlO0jDGmMaj+rLZFpHVZhHMZNEZyPZ6nuPO81tGVSsAD5AS6A5E5DoRyRCRjL179x5nuMYY0wA8kXU71WoRPe6Cqj6nqumqmp6aWnsDsjHGhAVPDkgUJHcMdSRHJZjJIhfwrpRLc+f5LSMiMUBLIC+IMRljTGh5ciC5E0RH1sWowUwWy4HeItJDROKAicACnzILgCvc6fHAx9pYBqsyxhh/PNkR18cCgtjPQlUrRORmYBEQDbykqutF5D4gQ1UXAC8Cc0QkC9iPk1AAEJGtQAsgTkTGAuer6oZgxWuMMQ0iPxc6DQl1FEctqOdBqroQWOgz726v6RLg0hrW7R7M2IwxpsFVVTkN3Cf9ItSRHLWIbuA2xpiIUrwPKkuhRWRdCQWWLIwxpuEcHprckoUxxpiaRGgfC7BkYYwxDScCb6dazZKFMcY0FE8OxCZCs9Z1lw0zliyMMaaheLKds4oIHFHakoUxxjSU/NyIrIICSxbGGNNwPDmWLIwxxtSiohQKd0dkHwuwZGGMMQ0jf4fz184sjDHG1CiCL5sFSxbGGNMwLFkYY4ypVUUp7FrrTEfY7VSrRdbdN4wxJtxVVUHeZshdCbkrnMfudVBZBq26QmxCqCM8JpYsjDHmWKk6fSdyV/yQHHauhtJ8Z3lcEnQcDCNugM5Doduo0MZ7HCxZGGNMoIr3w46VbmJwk0PRHmdZVCx0GAADL4XOw5zk0LYPREWHNuZ6YsnCGGP8KSuGXWt+qErKXQkHvncXCrTtDb3OgU5DneTQYQDExIc05GCyZGGMMaqwfwtkL4PspZCTAXs2gFY6y1ukQechMOwKJzl0GgwJLUMbcwOzZGGMaXrKip3qpOxlziNnGRTnOcviW0BaOpx4u3PG0GkoJLcPbbxhwJKFMaZxU3VGe61ODNlLnauTqiqc5Sm9oc+F0GU4pA2H1L4QZb0KfFmyMMY0LhWlzhVJ2Ut/SBCFu5xlsYnO2cLI26DLCEg7BRLbhDbeCBHUZCEiFwJ/B6KBF1T1QZ/l8cArwDAgD5igqlvdZXcB1wCVwK2quiiYsRpjIlT+TqcaqTox7Mx0+jQAtOoGPc5wzhq6DId2/SHafiMfi6AdNRGJBp4CzgNygOUiskBVN3gVuwY4oKq9RGQi8BAwQUT6AROB/kAn4CMR6aNa3dpkjIlolRVQVghlRe7fQij1eV5W5M6r5XmJxxnJFSA6HjoNcfo0VFcpWVtDvQlmih0OZKnqFgARmQuMAbyTxRhghjs9H5gpIuLOn6uqpcD3IpLlbu+reo9y93r451X1vlnjpSHuCqYa/H0cj2Acg3B/zUdQp3qoOhlUlAS+amyi07ktrjnEJznTiW2ds4b4JOdsoctw6DAIYuKC9xKauGAmi85AttfzHGBETWVUtUJEPECKO/9rn3V/NKCKiFwHXAfQtWvXY4syJgHanXRs6x5Bgfr4Qqiv7dSH+oilIb/QwuW4+QrmMQjX1+xHTLzzhR/nfuHHJ9X+PK6582gkndoiXURX3qnqc8BzAOnp6cf2H5nSEy6bXZ9hGWNMoxPM68NygS5ez9PceX7LiEgM0BKnoTuQdY0xxjSQYCaL5UBvEekhInE4DdYLfMosAK5wp8cDH6uquvMniki8iPQAegPLghirMcaYWgStGsptg7gZWIRz6exLqrpeRO4DMlR1AfAiMMdtwN6Pk1Bwy72J0xheAdxkV0IZY0zoiEbUFRU1S09P14yMjFCHYYwxEUVEVqhqel3lrE+7McaYOlmyMMYYUydLFsYYY+pkycIYY0ydGk0Dt4jsBbYdxybaAvvqKZxgi6RYIbLitViDJ5LijaRY4fji7aaqqXUVajTJ4niJSEYgVwSEg0iKFSIrXos1eCIp3kiKFRomXquGMsYYUydLFsYYY+pkyeIHz4U6gKMQSbFCZMVrsQZPJMUbSbFCA8RrbRbGGGPqZGcWxhhj6mTJwhhjTJ2aVLIQkZdEZI+IrKthuYjIEyKSJSJrRGRoQ8foFUtdsf5URDwikuk+7m7oGL1i6SIin4jIBhFZLyK3+SkTTsc2kHjD4viKSIKILBOR1W6s9/opEy8i89xju1REujd8pIdjCSTeK0Vkr9exvTYUsXrFEy0iq0TkfT/LwubYuvHUFmtwj6uqNpkHcAYwFFhXw/KLgQ9x7lV5KrA0jGP9KfB+qI+pG0tHYKg7nQx8C/QL42MbSLxhcXzd45XkTscCS4FTfcr8GnjWnZ4IzAvzeK8EZob62HrFczvwur/3O5yObQCxBvW4NqkzC1X9FOe+GTUZA7yijq+BViLSsWGiO1IAsYYNVd2pqivd6QJgIz++Z3o4HdtA4g0L7vEqdJ/Gug/fq1LGANX3Bp4PnCMiIbk5d4Dxhg0RSQN+BrxQQ5GwObYBxBpUTSpZBKAzkO31PIcw/RJxneae7n8oIv1DHQyAe5o+BOcXpbewPLa1xAthcnzdqodMYA/wH1Wt8diqagXgAVIaNsofBBAvwCVudeR8EeniZ3lDeRz4HVBVw/JwOrZ1xQpBPK6WLCLXSpwxXU4GngTeDXE8iEgS8BbwG1XND3U8dakj3rA5vqpaqaqDce5FP1xEBoQqlkAEEO97QHdVHQT8hx9+uTcoEfk5sEdVV4Ri/0cjwFiDelwtWRwpF/DOxmnuvLCjqvnVp/uquhCIFZG2oYpHRGJxvnhfU9W3/RQJq2NbV7zhdnzdOA4CnwAX+iw6fGxFJAZoCeQ1bHQ/VlO8qpqnqqXu0xeAYQ0dm2skMFpEtgJzgbNF5FWfMuFybOuMNdjH1ZLFkRYA09wrd04FPKq6M9RB+SMiHarrTkVkOM57GZIvCDeOF4GNqvq3GoqFzbENJN5wOb4ikioirdzpZsB5wDc+xRYAV7jT44GP1W3xbGiBxOvTVjUap82owanqXaqapqrdcRqvP1bVy32KhcWxDSTWYB/XmPrcWLgTkTdwrnJpKyI5wD04DXCo6rPAQpyrdrKAYuCq0EQaUKzjgRtFpAI4BEwM1RcEzq+eqcBat64a4PdAVwi/Y0tg8YbL8e0IzBaRaJyE9aaqvi8i9wEZqroAJ/HNEZEsnIsiJoYgzmqBxHuriIwGKnDivTJk0foRxsf2RxryuNpwH8YYY+pk1VDGGGPqZMnCGGNMnSxZGGOMqZMlC2OMMXWyZGGMMaZOlixM2BKRwgDK/EZEEutxn2NFpF89bu/L41i30P3bSUTm11KulYj8+lj3Y0wgLFmYSPcb4KiShdsHoCZjgXpLFqr6k3rYxg5VHV9LkVY4o6MaEzSWLEzYE+feEkvcwdG+EZHX3J7gtwKdgE9E5BO37Pki8pWIrBSRf7rjPyEiW0XkIRFZCVwqIr8SkeXuQIFviUiiiPwEp+frI+LcD6CniAwWka/dwdneEZHW7vaWiMhjIpIhIhtF5BQReVtENovI/V6xF3pN3ykia919PujndfZwY1/rs43u4t7XRET6i3O/iEw3pt7Ag0BPd94jIpIkIv/PPQZrRWSM13Y2isjz4txrYrHbyxoR6SUiH7mxrRSRnu78O9zjtEb83JvCNCHBGvvcHvY43gdQ6P79Kc5on2k4P3C+Aka5y7YCbd3ptsCnQHP3+Z3A3V7lfue17RSv6fuBW9zpWcB4r2VrgDPd6fuAx93pJcBD7vRtwA6c3svxOCPqpvi8houAL4FE93kbP693ATDNnb7Ja93uuPc1wRnUcIo7HQc0817uzo8BWngdkyyc+0x0x+ndO9hd9iZwuTu9FBjnTifgnK2dDzznrhsFvA+cEerPhT1C82hSw32YiLZMVXMA3CE6ugOf+5Q5FacK6Qt3WKc4nMRSbZ7X9AD313srIAlY5LtDEWkJtFLV/7qzZgP/9CqywP27Fliv7lhXIrIFZ/A577GkzgVeVtViAFX1d6+SkcAl7vQc4CE/Zb4C/k+cexu8raqb5ce3VxDgzyJyBs5w1p2B9u6y71W1eoiTFUB3EUkGOqvqO25sJe7rOB8nYaxyyycBvXESsmliLFmYSFHqNV2J/8+u4Nw/YVIN2yjymp4FjFXV1SJyJc7Zy7HGVOUTX1UN8QWi1vF3VPV1EVmKcxOchSJyPbDFp9gUIBUYpqrl4oxUmuATMzjHsVktuxPgL6r6j6OI3zRS1mZhIl0Bzq1RAb4GRopILwARaS4ifWpYLxnYKc5Q5VP8bU9VPcABETndXTYV+C/H5j/AVdVXbolIGz9lvuCHgeqm+FmOiJwAbFHVJ4B/AYM48hiAM4z2HjdRnAV0qy0wde4WmCMiY919xLtxLgKu9mr36Swi7QJ6tabRsWRhIt1zwL9F5BNV3Ysz0uYbIrIGp8qmbw3r/RGnnv4LjhxCey5wh4ischt5r8Bp8F4DDMZptzhqqvpvnGqrDLca7X/9FLsNuElE1lLzXQQvA9a52xiAc6vaPJyqt3Ui8gjwGpDubmcaP3B4wSoAAABaSURBVB7S3J+pOKOWrsFpW+mgqotx7vf8lbut+RyZlEwTYqPOGmOMqZOdWRhjjKmTJQtjjDF1smRhjDGmTpYsjDHG1MmShTHGmDpZsjDGGFMnSxbGGGPq9P8BPTvSOIHcgkQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, np.subtract(hf_energies, energies[1]), label='Hartree-Fock')\n", - "pylab.plot(distances, np.subtract(energies[0], energies[1]), label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy difference from ExactEigensolver')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xd8VfX9+PHXO4vsQEhkBQx7Q4CASARBBTc4EKRYZ7VVqzhq1f6+6he/2lq1jtZaRa1oqwIqKioqYkH2CHsPEUggQBi5GSQh4/P745ykISThEnJz7ng/H4/7uOee+b4HzfuezxRjDEoppQJXkNMBKKWUcpYmAqWUCnCaCJRSKsBpIlBKqQCniUAppQKcJgKllApwmghUwBCRiSIypwHOkywiRkRCGiIupZymiUA1OBHZLSKHRCSqyrpfich8N4//XxH5dw3rjYh0quWYqSJyQkTy7NdGEfmTiMRV7GOM+cAYM6oeX6nB2N/NiMikausn2ev/16HQaiQiw0Uk0+k4lGdpIlCeEgxMOu1eDet5Y0wMkAjcBgwGFldNSF5iO3BztXW32OuVanSaCJSnvAD8TkSa1rRRRF4VkQwRyRWRVSIytKEubIwpMsasBEYDzbGSAiJyq4gsqhKDEZH7RWSXiBwWkRdEJMjeFiQi/yMie+ynm/erPl1U+y5xIvKOiGSJyD4ReUZEgusIcSUQKSI97eN7AuH2+qrnvVNEdorIURGZJSKtq8V+j4jssJ+A/k9EOorIEvuezhCRsCr7XyUia0Ukx96nT5Vtu0XkdyKyXkRcIjJdRMLtBPoN0FpE8u1Xa5Tf0USgPCUdmA/8rpbtK4EUIB74EPhYRMIbMgBjTB7wPVBXkrkWSAX6A2OA2+31t9qvEUAHIBp4rZZzTAVKgU5AP2AU8KvThPcv/vtUcIv9uZKIXAT8CRgHtAL2ANOqneNSYADWk8/vgSnATUBboBcwwT5XP+CfwK+xEuObwCwRaVLlXOOAy4D2QB/gVmNMAXA5sN8YE22/9p/meykfpIlAedKTwH0iklh9gzHm38aYI8aYUmPMX4AmQNcqu4yzf71WvuoZw36sZFObPxtjjhpj9gKvYP/xBCYCLxljdhlj8oHHgRurVxCLSAvgCuABY0yBMeYQ8DJw42ni+jcwQURC7X2r14lMBP5pjFltjCm2r3++iCRX2ed5Y0yuMWYTsBGYY8frwvol38/e7y7gTWPMcmNMmTHmPaAYK4FU+KsxZr8x5ijwJVaSVgFCE4HyGGPMRuAr4LHq2+yiiC12UUQOEAckVNllhjGmadVXPcNoAxytY3tGleU9QEXRR2v7c9VtIUCLasefC4QCWVUS1pvAOXUFZSeencAfgR3GmIxqu5x0fTsZHbG/T4WDVZYLa/gcXSXGh6sl1bZVvivAgSrLx6scqwKAJgLlaU8Bd1LlD5hdH/B7rOKIZvYfeRcgDXlhEYkGLgEW1rFb2yrL7bCeILDfz622rZST/9iClUiKgYQqSSvWGNPTjRDfBx6236s76fp2eX1zYJ8b560uA3i2WmKNNMZ85MaxOjxxANBEoDzKGLMTmA7cX2V1DNYf1WwgRESeBGIb6poi0kREBgCfA8eAd+vY/RERaSYibbFaOU23138EPCgi7e2E8kdgujGmtOrBxpgsYA7wFxGJtSuZO4rIhW6EOh2rPmFGDds+Am4TkRS7LP+PwHJjzG43zlvdW8BvROQ8sUSJyJUiEuPGsQeB5rVVlCv/oIlANYangapNOL8DvsVqLrkHKOLkIpr6+r2I5GEVobwPrAKG2JWetfnC3m8t8DXwjr3+n1gVuAuAn+0Y76vlHDcDYcBmrMTzCVYFb52MMYXGmLnGmMIats0FngA+BbKAjpy+3qG266RjPZW9Zse3E6si3J1jt2IlpV12sZK2GvJDohPTqEAlIgbobD+1KBWw9IlAKaUCnCYCpZQKcFo0pJRSAU6fCJRSKsD5xDC6CQkJJjk52ekwlFLKp6xateqwMeaUnv3V+UQiSE5OJj093ekwlFLKp4jIntPvpUVDSikV8DQRKKVUgNNEoJRSAc4n6giUUvVXUlJCZmYmRUVFToeiPCQ8PJykpCRCQ0PrdbwmAqX8XGZmJjExMSQnJyPSoAO8Ki9gjOHIkSNkZmbSvn37ep1Di4aU8nNFRUU0b95ck4CfEhGaN29+Vk98mgiUCgCaBPzb2f77aiJQSilvVFYCufuhxPN1O5oIlFIeFxwcTEpKSuXrueeea7Bzr127ltmzZ1d+njp1KomJiSddb/Pmzezfv5+xY8c22HXrY/fu3fTq1cu9nUuLIP8glJd4Nii0slgp1QgiIiJYu3atR869du1a0tPTueKKKyrXjR8/ntdee+2UfT/55BOPxOARZSes9+CwUzaVlpYSEtJwf771iUAp5QiXy0XXrl3Ztm0bABMmTOCtt94C4O677yY1NZWePXvy1FNPVR6zcuVKhgwZQt++fRk0aBAul4snn3yS6dOnk5KSwvTp02u8Fpz8a/z48eOMGzeOHj16cO2113LeeedVDmMzZ84czj//fPr3788NN9xAfn4+YA1189RTT9G/f3969+7N1q1bAfjxxx8rnzz69etHXl4exhgeeeQRevXqRe/evWuMa/DgwWzatKny8/Dhw0lPT6egoIDbb7+dQUMvod+oCXzxlfW0M3XqVEaPHs1FF13ExRdfXO/7XhN9IlAqgEz+chOb9+c26Dl7tI7lqat71rlPYWEhKSkplZ8ff/zxyl/tt956K5MmTeLYsWPceeedADz77LPEx8dTVlbGxRdfzPr16+nWrRvjx49n+vTpDBw4kNzcXCIjI3n66adJT0+vfAKYOnUq06dPZ9GiRZXXW7p06UnxvP766zRr1ozNmzezcePGytgOHz7MM888w9y5c4mKiuLPf/4zL730Ek8++SQACQkJrF69mtdff50XX3yRt99+mxdffJG///3vpKWlkZ+fT3h4ODNnzmTt2rWsW7eOw4cPM3DgQIYNG3ZSDOPHj2fGjBlMnjyZrKwssrKySE1N5Q9/+AMXXXQR//zLU+Qc2segq2/lkpGjAFi9ejXr168nPj6+Pv9UtdJEoJTyuNqKhkaOHMnHH3/Mvffey7p16yrXz5gxgylTplBaWkpWVhabN29GRGjVqhUDBw4EIDY2ttbr1VY0VGHRokVMmjQJgF69etGnTx8Ali1bxubNm0lLSwPgxIkTnH/++ZXHXXfddQAMGDCAmTNnApCWlsZDDz3ExIkTue6660hKSmLRokVMmDCB4OBgWrRowYUXXsjKlSsrrwMwbtw4Ro0axeTJk5kxY0Zl/cWcOXOYNWsWLz73LGA1/927d2/l/WroJACaCJQKKKf75d7YysvL2bJlC5GRkRw7doykpCR+/vlnXnzxRVauXEmzZs249dZbG61XtDGGkSNH8tFHH9W4vUmTJoBV+V1aWgrAY489xpVXXsns2bNJS0vju+++c+tabdq0oXnz5qxfv57p06fzxhtvVMbw6aef0rVpGYRGQLzVSWz58uVERUWd7VeskdYRKKUc8/LLL9O9e3c+/PBDbrvtNkpKSsjNzSUqKoq4uDgOHjzIN998A0DXrl3Jyspi5cqVAOTl5VFaWkpMTAx5eXlndN20tDRmzJgBwObNm9mwYQNgldsvXryYnTt3AlBQUMD27dvrPNdPP/1E7969efTRRxk4cCBbt25l6NChTJ8+nbKyMrKzs1mwYAGDBg065djx48fz/PPP43K5Kp8WLr30Uv72179iSoshOIw1a9ac0XerD30iUEp5XPU6gssuu4zbbruNt99+mxUrVhATE8OwYcN45plnmDx5Mv369aNbt260bdu2spgmLCyM6dOnc99991FYWEhERARz585lxIgRPPfcc6SkpPD4448DnFJH8Prrr9O6devKz/fccw+33HILPXr0oFu3bvTs2ZO4uDgSExOZOnUqEyZMoLi4GIBnnnmGLl261PrdXnnlFebNm0dQUBA9e/bk8ssvJywsjKVLl9K3b19EhOeff56WLVuye/fuk44dO3YskyZN4oknnqhc98QTT/DApPvpc8k4ygmmfcdOfPXVV/W/+W7wiTmLU1NTjU5Mo1T9bNmyhe7duzsdhlcpKyujpKSE8PBwfvrpJy655BK2bdtGWNipTTUdcaIADm+H+A4QHufWITX9O4vIKmNM6umO1ScCpVTAOX78OCNGjKCkpARjDK+//rr3JAGosw+BJ2giUEoFnJiYGO+e/rYyEdRvWOkzpZXFSinlbcpOgARDUOP8VvdYIhCRtiIyT0Q2i8gmEZlkr48Xke9FZIf93sxTMSillE8qPdFoTwPg2SeCUuBhY0wPYDBwr4j0AB4DfjDGdAZ+sD8rpZSqUFbSaPUD4MFEYIzJMsastpfzgC1AG2AM8J6923vANZ6KQSmlfFLZCf9IBFWJSDLQD1gOtDDGZNmbDgAtajnmLhFJF5H07OzsxghTKeUBI0aMOKW37SuvvMLdd9/Npk2buOiii+jatSsdO3bkqaeeory8HKh9OGm/V14Gpsy/EoGIRAOfAg8YY04a7cpYnRhq7MhgjJlijEk1xqQmJiZ6OkyllIdMmDCBadOmnbRu2rRp3HjjjYwePZrHHnuMbdu2sWHDBlasWMGrr75aud/48eNZu3Zt5atHjx6NHX7ja+QWQ+DhRCAioVhJ4ANjzEx79UERaWVvbwUc8mQMSilnjR07lq+//poTJ6w/cLt372b//v3s3LmTtLQ0Ro2yRtaMjIzktdde44UXXnAyXOdVJIKQJo12SY+1TRJrEs13gC3GmJeqbJoF3AI8Z79/4akYlFLVfPMYHNjQsOds2Rsur33Gsfj4eAYNGsQ333zDmDFjmDZtGuPGjWPTpk0MGDDgpH07duxIYWEhOTk5wKlDRSxdupSIiIiGjd/b+NkTQRrwS+AiEVlrv67ASgAjRWQHcIn9WSnlx6oWD02bNo0JEya4dVz1oiG/TwJgJwKBoMZLBB57IjDGLAKkls0NO72OUso9dfxy96QxY8bw4IMPsnr1ao4fP86AAQNYs2YNCxYsOGm/Xbt20bx5c5o2bepInF6htMR6GpDa/nw2PO1ZrJTyuOjoaEaMGMHtt99e+TQwceJEFi1axNy5cwFrhNL777+fyZMnOxmq8xq56ShoIlBKNZIJEyawbt26ykQQERHBrFmzePbZZ+nSpQsJCQmkpaUxceLEymMq5iKueC1ZssSp8BuPA4lAh6FWys/5yjDUn3/+OQ899BDz5s3j3HPPdTocZ5hyyFoH0S0httUZHXo2w1DrE4FSyitcc8017Nq1K3CTAFhDS0CjthgCTQRKKeU9GnkeggqaCJQKAL5QBKyo0pnszBLB2f77aiJQys+Fh4dz5MgRTQa+oKJoKMj9RGCM4ciRI4SHh9f7sjpDmVJ+LikpiczMTHTwRh9w/CiUFIJr2xkdFh4eTlJSUr0vq4lAKT8XGhpK+/btnQ5DueP9MVCcB3f+p1Evq0VDSinlLVyZEFf/X/b1pYlAKaW8gTF2Imjb6JfWRKCUUt6g4DCUFmkiUEqpgOXaa7031USglFKBKSfDetcnAqWUClCuTOtdK4uVUipAuTIgLBoimjX6pTURKKWUN8jJsIqFGnFCmgqaCJRSyhu4MhwpFgJNBEop5R1cGY60GAJNBEop5bzifCg8pk8ESikVsCpbDLVz5PKaCJRSymkuuw+BFg0ppVSAqkgEWjSklFIBKicDgkIg5swmrG8omgiUUspprgyIbQ1BwY5cXhOBUko5zaHhpytoIlBKKadV9Cp2iCYCpZRyUlkJ5O13rMUQaCJQSiln5WWBKXesxRBoIlBKKWc5OA9BBU0ESinlpMpexZoIlFIqMFVMUalFQ0opFaByMiAyAcIiHQtBE4FSSjnJleno0wBoIlBKKWc5OA9BBU0ESinlFGPszmTODD9dwa1EICLnisgl9nKEiMS4ccw/ReSQiGyssu5/RWSfiKy1X1fUP3SllPJxx49CaaH3Fw2JyJ3AJ8Cb9qok4HM3zj0VuKyG9S8bY1Ls12x3A1VKKb9T0WLIB4qG7gXSgFwAY8wO4JzTHWSMWQAcPavolFLKn3lBHwJwLxEUG2NOVHwQkRDAnMU1fysi6+2io2ZncR6llPJtXtCrGNxLBD+KyB+ACBEZCXwMfFnP6/0D6AikAFnAX2rbUUTuEpF0EUnPzs6u5+WUUsqLuTIgNBIi4x0Nw51E8BiQDWwAfg3MBv6nPhczxhw0xpQZY8qBt4BBdew7xRiTaoxJTUxMrM/llFLKu7kyrIpiEUfDCHFjnyuBd4wxb53txUSklTEmy/54LbCxrv2VUsqvOTwPQQV3ngjGAztE5HkR6ebuiUXkI2Ap0FVEMkXkDuB5EdkgIuuBEcCD9YpaKaX8gRd0JgM3ngiMMTeJSCwwAZgqIgZ4F/jIGJNXx3ETalj9Tr0jVUopf3LiOBw/4ngfAnCzQ5kxJherL8E0oBVWsc5qEbnPg7EppZT/qmw66myvYnCvQ9loEfkMmA+EAoOMMZcDfYGHPRueUkr5KS/pTAbuVRZfj9UbeEHVlcaY43a5v1JKqTNV+UTgfNGQO3UEt4hISxEZjdWRbKUx5oC97QdPB6iUUn4pJwMkGGJaOx2JW0VDdwArgOuAscAyEbnd04EppZRfc2VCbGsIdqdgxrPcieD3QD9jzBEAEWkOLAH+6cnAlFLKr1V0JvMC7rQaOgJUbSaaZ69TSilVX17SmQzqeCIQkYfsxZ3AchH5AquOYAywvhFiU0op/1ReBrn7vOaJoK6ioYrJZ36yXxW+8Fw4SikVAPKywJR5RdNRqCMRGGMmV/0sIpHGmOOeD0kppfxc5fDTzncmA/daDZ0vIpuBrfbnviLyuscjU0opf+VFfQjAvcriV4BLsSuIjTHrgGGeDEoppfyaF/UqBvfHGsqotqrMA7EopVRgcGVCRDyERTkdCeBeP4IMERkCGBEJBSYBWzwbllJK+bEc7+lDAO49EfwGawL7NsA+rGkm7/VkUEop5ddcGdDUOyqKwb2xhg4DExshFqWU8n/GWEVDHUY4HUmlujqU/Q2rA1mNjDH3eyQipZTyZ4XH4ES+zxQNpQOrgHCgP7DDfqUAYZ4PTSml/JDLbnvjJS2GoO4OZe8BiMjdwAXGmFL78xvAwsYJTyml/IyX9SEA9yqLmwGxVT5H2+uUUkqdKS/rVQzuNR99DlgjIvMAwepM9r+eDEoppfyWKwNCwiEqwelIKrnTauhdEfkGOM9e9WjFDGVKKaXOUMU8BCJOR1LJralx7D/8OuqoUkqdLS+ah6CCW0NMKKWUaiCuTK9qMQSaCJRSqvGUFEHBIa97InCraEhEgoEWVfc3xuz1VFBKKeWXKpuO+lgiEJH7gKeAg0C5vdoAfTwYl1JK+R8v7EwG7j0RTAK6GmN0wnqllDobFYnAizqTgXt1BBmAy9OBKKWU38vJAARi2zgdyUnceSLYBcwXka+B4oqVxpiXPBaVUkr5I1cmxLSC4FCnIzmJO4lgr/0KQwebU0qp+nNleF39ALjXs3hyYwSilFJ+z5UBbVKdjuIUdc1H8Iox5gER+ZIa5iUwxoz2aGRKKeVPysvBtQ96XON0JKeo64ngX/b7i40RiFJK+bX8A1Be4ltFQ8aYVfb7j40XjlJK+anKzmTeM/x0BR1iQimlGkOOPRiDl/UhAE0ESinVOLy0VzG4kQhE5AZ31tWwzz9F5JCIbKyyLl5EvheRHfa7znSmlAoMrkwIbwpNYpyO5BTuPBE87ua66qYCl1Vb9xjwgzGmM/CD/VkppfyfF85DUKGu5qOXA1cAbUTkr1U2xQKlpzuxMWaBiCRXWz0GGG4vvwfMBx51O1qllPJVrgxolux0FDWq64lgP5AOFAGrqrxmAZfW83otjDFZ9vIBrKGtayQid4lIuoikZ2dn1/NySinlJVyZXllRDHU3H10HrBORD40xJQ19YWOMEZFTOqpV2T4FmAKQmppa635KKeX1CnOgONdri4bcqSMYZFfsbheRXSLys4jsquf1DopIKwD7/VA9z6OUUr6jog+BF7YYAvcGnXsHeBCrWKjsLK83C7gFeM5+/+Isz6eUUt6vch4C300ELmPMN2d6YhH5CKtiOEFEMrFmOXsOmCEidwB7gHFnel6llPI5Ob6fCOaJyAvATE6ej2B1XQcZYybUsuli98NTSik/4MqA4CYQleh0JDVyJxGcZ79XHTvVABc1fDhKKeWHXBkQ1waCvHMwB3fmIxjRGIEopZTf8uLOZODeEBMtROQdEfnG/tzDLuNXSinlDlem17YYAveaj04FvgNa25+3Aw94KiCllPIrpcXWXAS+/EQAJBhjZgDlAMaYUs6+GalSSgWG3H3Wu48nggIRaY49XaWIDAZcHo1KKaX8RWXTUe8cXgLcazX0EFZHsI4ishhIBMZ6NCqllPIXXjwPQQV3Wg2tFpELga6AANs8MfaQUkr5JVcmIBDbxulIanXaRCAiwVjDUSfb+48SEYwxL3k4NqWU8n05GRDdAkKaOB1JrdwpGvoSayjqDdgVxkoppdzk2uvVxULgXiJIMsb08XgkSinlj1yZ0CrF6Sjq5E6roW9EZJTHI1FKKX9TXu7VE9JUcOeJYBnwmYgEASVYFcbGGBPr0ciUUsrXFRyCshPQtJ3TkdTJnUTwEnA+sMEYozOFqYBnjOF40QlcriOY0lJat2mLiDgdlvJGFRPSeHFnMnAvEWQAGzUJKH9TUlaO63gxuccOc9x1mMLcbEryjlCSf4TygmNI4VGCinMIPeGiSUkOEaW5RJXnEWPyiaOAKHum1b20JKPpQKT9MNr1v4w2SZoYlC1nr/XuB0VDu4D59qBzVecj0Oajyqtl5+Sxe+sqcnetQg5tJqz4KE1KXESW5RJdnkcs+cRTQELtU2eTRxT5QTEcD46lOLwpx8LOJbtJU4hohkTGY8pKCdu3jL45PxC95ktY8wg/STv2NxtISMfhtE8dRcsWLRvxWyuv4uVTVFZwJxH8bL/C7JdSXsUYw/6Dh8jcupKCPasJzd7IOQXbaV++l4FiDYtVRBiu4HgKg2MpbtKUvLBkXOFN2RvRjKDIeEKi4wmLSSAiNoHIpolEN00kJLIZMcEhxLgTQ1kJGZuXcWj990RkLib16JdEHP2UshXC1uCOHGw+iCadR9Ax9RIS4+M9e0OU93BlQJNYCI9zOpI6ibslPiISDWCMyfdoRDVITU016enpjX1Z5aVKS8vYuW0dBzf+SHDmMpLy1pPM/srtORLHgcguFCf0JLJdP1p1G0R0q64QFNxoMZafKGLvhoUc2TiX6KwldCjcRKiUUWKC2RrSlSOJg4noOoKuA0bQNNadVKN80oc3WsVD9yxx5PIissoYk3ra/U6XCESkF/AvoOJnzGHgZmPMprOO0k2aCAJbYWEhO9YtwrV1IREHVtK+cCPNJRcAFzFkRveipNUAYpL707rbICLik8DLyuhLi/LZvXYeuZt/IO7AEpKLtxMshiITytbQHhxrMZiY7hfTtf8wYiIjnA5XNZR/XGDNTPaL6Y5c3t1E4E7R0BTgIWPMPPvEw4G3gCFnFaFStSgtKWHHukUc3fA9MVmL6VK8iT5iDW+1P6gVe5sPIbPd+bTuM4LE5N7Eeen0f1WFhEfTafDVMPhqAE7kH+OnNd9TsOU/xB9aRsq+N2Hfm+R9H8HKJr043uVahl57N0HB3v/dVB1ce6Hdeaffz2HuJIKoiiQAYIyZLyJRHoxJBRhTXk7GTxvYv+pbwvYuoFPBGrpLAQA/B7dnQ6vriOh4Ae1SLqJ1YlLlDEm+LCy6GV2GjoOh4wAoyjnInlXfUbh9HknZS2m18Q8s2rOAvr9+m5hoLTrySUW5UOTy+qaj4GarIRF5Aqt4COAmrJZEStWb61g2Py39krLtc2iXs4J2HKEdcEAS2dZ8BCGdhtNh4OW0T0yivdPBNoLwpi3oevHNcPHNmLJS1v77MS74+S22vjSC8IkfkNyxq9MhqjPlIy2GwL1EcDswGZhpf15or1PKbaa8nJ83r+TgqlnE7ZtPl+LN9JdyXETxU3Qqe84dRlL/y2ndoQctvax8v7FJcAgpt7zI9vkDSJr/IMXvX8Ly4a9x3ogxToemzkTFPAT+8ERgjDkG3N8IsSg/k597jB3LvqZk67ckH11MB47SAdgZ3JGVSbfQrO+VdOp3If1DtVVyTboMn0B2ux4Uf/ALBsy/lR92T2L4zU8SrPUGvsEfEoGIzKrrQGPM6IYPR/m6A3t3sGfpp0T8PIduhevoJ6XkmQi2Rw9kd8eRtB88hk6tz6WT04H6iMQOfSl+aBHb3ryJi/e8zOK/rKPHXe/SrGlTp0NTp5OTAUGh1lwEXq6uJ4LzsYaX+AhYjjXYnFInKS8rY+e6RRxZ/QXnZP2HjmU/0xLYK61Z1fIGYvpcRZfUkQxo4r2Tcni7JlHN6PnAl6yf9gTnb/s7O18dTvaN/6ZL115Oh6bq4sqwmo76Qqu2Ora1BEYCE4BfAF8DHzVm/wHlnYoKC9i65EuKN31Nh6ML6cIxyoywLawny9o/QOtB19KuSwrePd6ijwkKos8vnuWnxQNo9f29lH14KYuHvELapTc4HZmqjSvTJ4qFoI5EYIwpA74FvhWRJlgJYb6ITDbGvNZYASrvkHP4IDsWfUrQjtl0y19BihSTbyLYHjOIPV0uo9OQ6+iRoGPqeFrHtOs40rY7Be/fyOAld/L93tUMv+0ZQkMar9e0clNOBnQY7nQUbqmzsthOAFdiJYFk4K/AZ54PS3mD/bu3sWfJJ8Ts/o5uxRsYKOUcIp6NCZcT2Xs0XQdfQf9w7QXb2Jq3607swwvZOuUWRu57nSUvbqTznVNJbN7c6dBUhdITkJflE01Hoe7K4veBXsBsYLIxZmOjRaUcYcrL+WnTCg6t+JRz9s+lU9kuWgO7g9qSnnQz8QOupVPfoZwTrL8+nRYaEUvP+2ey8eP/47xNL/Hza8M5dP379OzVz+nQFEDefsD4ftEQVsexAmAScH+V8dV1hjI/UlZayraV35O75nPaZc+jkzlIByNsD+uj9ekSAAAXWElEQVTOsvYPkjT4epI79SbZ6UDVqUToNe5J9qzoT+LsX8PHVzL/5+cZfvVNTkemciqajnr3PAQV6qoj8P6qblUvRcfz2brkS05snEXnnEX0IJcTJoQtkf3Z1+k3dLjgBrq18I1fMgrOHXQVuUnzOfbueIal/5Y5mWsYdsdzhIeFOh1a4KroQ+DlU1RWcKdnsfIDuTmH2bHwE2Tb13TLW06KFFvt++OGQLer6XrBNfSNbeZ0mKqeYlt3Jup3C9n61u2MOvg2y17cyLl3/ItWLc5xOrTAVDG8RGwbZ+NwkyYCP3b4wF52LZxBxE+z6Vq4lgFSxmGasiHhciL6jKHb4CsY0CTc6TBVAwluEkWPe6ex5fPnSV37HJn/uJA1o9+jX/9BTocWeHL2QtQ5EOob/39pIvAz+3/ewt7F02m65zu6nNhCghgypSWrWt1IswHX0aX/CBK0std/idD92kfZl5xC3Kw7af7FaL7f/SyXXHu7zqPcmFyZPtNiCDQR+DxTXs7uLekcXP4xifu+p2PZz7QGfgruwPJz76TFoLG07zGQJB/o3agaTpt+l5LfZgHZ74xj5PqH+G7fGobd+RIR4TquU6NwZUAL3+n5rYnAB5nyMnas+ZGj6Z+SdOAH2psszjXCtrAeLGv/EG2HjKdjh250dDpQ5ajoc5KJfPhHNr9zF5ce/BcrXtxM69v/TVJrf5jRwYsZYz0RdLnM6Ujc5kgiEJHdQB5QBpS6M5VaoCsrLWHrsm8pWPcZ7bPn0YWjlJhgtkT0Y1+HX9Fx6Di6t/KNFgqq8QSFRdDjN++z/etX6Zf+NDvfvprse+do5zNPKjgMpUU+02IInH0iGGGMOezg9b3eieIiti79iqL1n9H56AJ6kkuhCWNL1CB2d72KLkPH0ic+0ekwlbcToctVD7CrWRKd59zJ+jeuJ+LB2URHRjodmX9y7bXefaQPAWjRkNcpKixg66IvKNn4OV1di+hDAQUmnC2xaQT1HE23C66lf3Sc02EqH9QhbSxbXIfov+JxFr92E4MemkFoiP4JaHA5vjMPQQWn/iswwBwRMcCbxpgp1XcQkbuAuwDatfOdR6z6KCzIY8vCmZRv+pzuuUtIkSJyiWJb3FBCe19Dt7TRpEboNNHq7HW/4h7WuQ6Qtu1V5r/+Gy787RREGxI0LB+aorKCU4ngAmPMPhE5B/heRLYaYxZU3cFODlMAUlNTjRNBelJRQS5bFn5K+cbP6Z63lP5SzDFi2dR8JBF9rqXbkCsZGOYbbZCVb+l742TWvHWI4fs/Yv7UFgy//VmnQ/IvrgwIi4Zw35k8yJFEYIzZZ78fEpHPgEHAgrqP8n1FBS62LvgUs+lzuuYto58Uc5RYNiRcRlTK9XQbfDmDdNpG5WkipPzq76z9azbD977G4k9akDZWZ6NtMBXzEPhQv41GTwQiEgUEGWPy7OVRwNONHUdjKSk+ztYFn1C2/mO65i4jRU5wmKasT7ic6H5j6XbeZZwXqmPCqMYlQcH0uucDNr90OedteIpVcecwYOSNToflH3L2+lSxEDjzRNAC+Mzu5RgCfGiM+daBODymvLSE7ctnU5A+jS7H5tGbQo4Qx9qEq4juP5bug0YxWP/4K4eFhIXT/t7P2P3qxfRYdB+b4xLpMehip8Pyfa4MSPKtFvGNngiMMbuAvo19XU8z5eXsXreAw8s+oMPBOXQjhzwTweamFxLWbzw9h1zF+WFa7KO8S0RMU5rfNYsj/7iY1rNvZk/sl5zbrb/TYfmu4nwoPOZTLYZAm4+etcOZO/l57hTa7PmC9uYArU0oG6IG81OvsfQaPpbzIqOdDlGpOjU7pw2FN39G6XuX0WTaDWTf+T2JbTo4HZZvqmwx5FstHTUR1ENJcSGb5k0jZN2/6HF8NfHAhiYp7O56L91H/ILU+ASnQ1TqjLRu352d131Ey0+v48g7o8m97z/ENtMhrM+Yy7cmpKmgieAM7N2aTta8t+h68GtSyCOLBJYk3UG7i+6kb8duToen1Fnp1GcI61xT6D73Nnb94xqaPPgdTSJinA7Lt7h8rzMZaCI4rcKCPDZ8+w5xWz6ia+lWWppg1kdfQPCAm+k9dAyttNJX+ZG+Q0ezzPU8g1Y+zKbXxtHzwVkEheh/427LyYCgEIhp6XQkZ0QTQS0O7dvDztkv033fJwwij91BbVna6WE6j7yD1Ba+MeuQUvUx+Ko7WODKZtiOP7H2jdtIufdfPtUm3lGuDIhtDUG+NeeHJoJqtq9dRM5/XiXF9QODKWdddBpZF/yW7uddSrJ2xVcBYugvHmX+mwcYfuBd1r73MCm3vuR0SL7BlQlxvlVRDJoIACgrLWXtD9MIT3+DniUbKDDhrGlxPW0ve5B+HXo4HZ5SjU5EGHrnSyx8NZuhu99h48wW9LruUafD8n45GZB8gdNRnLGATgRFRYWs/vyvtN32LgNMFgckkeWdHqTHVb/lvKba8kcFtuDgIAbe+y7LXxrDwHV/YntsC7pccqvTYXmvslLI2+9zvYohQBNBWVkZ6V9OIWndywwxB9ke2pW1/X9P75G/pKVWjClVKbxJGN3uncHGVy+l+6KH2Ns0kXapVzodlnfK2w+m3OdaDEGAJQJTXs6a/3xM3JI/cl75bnYFd2DjsHfpNexarQxTqhZxsTEk3DmTPW+OotVXt5Md8wWJXQc7HZb3yfHNPgQAAVP7uXHZd2z+0wX0X3QX4aaINYP+Qvv/l06vC6/TJKDUabRu2RJu+oQcE0PItHHkZW51OiTv46O9iiEAEsHOjctZ8+dL6fXtOFqU7CO95//Q4vF19LviV4iPNfFSykmdOnbh4DUfYcrLOf7uGIqO7Xc6JO/ig1NUVvDrRLDkrQfo8PGldCpcx4r29xL9yAZSb3iEEJ3wRal66d9vIJuGv0106TGy37iaskKX0yF5j5wMiEyA0AinIzljfp0IItqmkN5mIub+dQy65Y+ER8U6HZJSPm/oiMtY0O8lWhb9zN6/X4MpKXI6JO/gyvTJFkPg54mg32W3MuiuvxMb38LpUJTyK5dfcxNfd3yC9vmr2TVlIpSecDok57kyfLJYCPw8ESilPGf0TQ8wM/FeOmbPpeDPXSn/fvJ/W84EGmN8tlcxaCJQStVTUJBw5a//jzfb/YUlRe1h8SuYV/vAhzfCjrlQXu50iI3n+FEoOa5FQ0qpwNMkJJhf3/4r8q97n1Hlf+Ntcw3Fe1bAB9fD3/rBoleg4IjTYXqeD7cYAk0ESqkGcG2/JN66/1q+aH47vVwv83Hy05THtIG5T8FL3WHmXZCxwipC8UcVfQh8sFcxaCJQSjWQ9glRfHr3EH6Z1plHtnbi6vzHybjxPzDgFtg6G94ZCW8MhfR3rbl9/UlF3YgPdiYDTQRKqQbUJCSYJ6/uwds3p7I/p5BLP8zm0xaT4OGtcNUr1k5fPQB/6QZf/w4ObXE24IbiyoDQSIho5nQk9aKJQCnV4C7p0YLZk4bSq00cD3+8joc+30l+71/CbxbCHd9Dtytg9Xvw+mB49wrY+KlvN0F1ZVjFQj46XI0mAqWUR7SKi+CjOwfzwCWd+XztPq7+2yI27s+FtoPguinw0Ba4ZLJVvv7J7fByT/jhad9sgpqT4bMthgDE+EDlTWpqqklPT3c6DKVUPS3fdYRJ09ZytOAEj13ejdvSkpGKX8/l5fDTD7DyHdjxnbWu86XQe6w15WNpsfUqO2G/F1tPDxXvpUWnrqtrmykDxP71XtM7p9lew/vhHdBvIlz9aiPf2bqJyCpjTOpp99NEoJRqDMcKTvDIJ+uYu+UQl3Q/h+fH9iU+KuzknXL2wqqpsPp9KMiu+4RBoRDSxHoFN4GQsGrvtWwLCrFbL5mT32ta5+67CAy533ra8SKaCJRSXscYw9Qlu/nT7K3ER4Xxyo0pDO7Q/NQdS09A9lbrj3ZNf9CDw0DnED8tdxOB3kmlVKMREW5La8/Me4YQERbML95axitzt1NWXu0HaUgYtOoDLXpA845WR63oRAiPg9BwTQINTO+mUqrR9WoTx5f3XcA1KW14Ze4OfvHWMrJchU6HFbA0ESilHBHdJISXxqfwlxv6smGfiyteXcgPWw46HVZA0kSglHLU9QOS+Oq+C2gVF8Ed76Uz+ctNFJeWOR1WQNFEoJRyXIfEaD67dwi3Dknm3cW7ue71Jfx8uMDpsAKGthpSSnmVOZsO8PtP15NfVEr/ds0Y1iWBoZ0T6dUmjuAg3+y56xRtPqqU8llZrkLeX7qHhTuy2bgvF4CmkaGkdUpgWGcrMbRu6ntzAzc2TQRKKb9wJL+YRTsPs3DHYRbuyOZgbjEAHROjGNo5kQu7JHJeh3giw0IcjtT7aCJQSvkdYww7DuWzYHs2C3YcZvmuIxSXlhMaLKSeG8/QLgkM65xIj1axBGkxkiYCpZT/KyopI333MRbusBLDliyrGCk+KowLOiUw1C5GahkX7nCkztBEoJQKOIfyili88zALtx9mwY7DHM63ipG6tIhmaOdEhnVJpG9SHHERof8d9M6PeXUiEJHLgFeBYOBtY8xzde2viUApdabKyw1bD+SxcEc2C3ccZsXuo5woLQcgJEhoFhVG86gw4u2XtdyE+KhQ+z2M5tHWtmaRYT7ZYslrE4GIBAPbgZFAJrASmGCM2VzbMZoIlFJnq/BEGSt2H2XHwTyOFpzgaMEJjtjvFS9XYUmNx4pA04hQO2FYSSI++uREEhkWQmiwEBYcREhwEKHBQmhwkP2qthwSZO0XJAQHiceeTtxNBE5Usw8CdhpjdgGIyDRgDFBrIlBKqbMVERbMhV2sVka1KSkr59hxOzHk/zdRWO/F1nL+CX7Kzmfl7hMcO36C6uPlnSkRrAQRZCWI6st/vLY3g9rHn91FTsOJRNAGqDoFUSZwXvWdROQu4C6Adu18c0JopZRvCQ0O4pyYcM6Jca9yuazc4Cos4WhBMUUl5ZwoK6e0zFBSZi2XlJZTWm5/rrZcUmYoLSu397XWl1ZZLrHPFdUk2MPf2plE4BZjzBRgClhFQw6Ho5RSpwgOksqiIV/mxFhD+4Cqk3sm2euUUko5wIlEsBLoLCLtRSQMuBGY5UAcSimlcKBoyBhTKiK/Bb7Daj76T2PMpsaOQymllMWROgJjzGxgthPXVkopdTKdj0AppQKcJgKllApwmgiUUirAaSJQSqkA5xOjj4pINrCnnocnAIcbMBxP86V4fSlW8K14fSlW8K14fSlWOLt4zzXG1D6mhs0nEsHZEJF0dwZd8ha+FK8vxQq+Fa8vxQq+Fa8vxQqNE68WDSmlVIDTRKCUUgEuEBLBFKcDOEO+FK8vxQq+Fa8vxQq+Fa8vxQqNEK/f1xEopZSqWyA8ESillKqDJgKllApwfpEIROSfInJIRDbWsl1E5K8islNE1otI/8aOsVo8p4t3uIi4RGSt/XqysWOsEktbEZknIptFZJOITKphH6+4v27G6k33NlxEVojIOjveyTXs00REptv3drmIJDd+pG7HequIZFe5t79yItZqMQWLyBoR+aqGbV5xb6vEU1esnr23xhiffwHDgP7Axlq2XwF8AwgwGFju5fEOB75y+r7asbQC+tvLMcB2oIc33l83Y/WmeytAtL0cCiwHBlfb5x7gDXv5RmC6F8d6K/Ca0/e1WkwPAR/W9G/uLffWzVg9em/94onAGLMAOFrHLmOA941lGdBURFo1TnSnciNer2GMyTLGrLaX84AtWPNOV+UV99fNWL2Gfb/y7Y+h9qt6640xwHv28ifAxSIijRRiJTdj9SoikgRcCbxdyy5ecW/BrVg9yi8SgRvaABlVPmfixX8gbOfbj+HfiEhPp4MBsB+d+2H9GqzK6+5vHbGCF91buzhgLXAI+N4YU+u9NcaUAi6geeNGaXEjVoDr7eLBT0SkbQ3bG9MrwO+B8lq2e8295fSxggfvbaAkAl+zGmuMkL7A34DPHY4HEYkGPgUeMMbkOh1PXU4Tq1fdW2NMmTEmBWvu7kEi0svJeOriRqxfAsnGmD7A9/z313ajE5GrgEPGmFVOxeAuN2P16L0NlESwD6iaQZPsdV7JGJNb8RhurNncQkUkwal4RCQU6w/rB8aYmTXs4jX393Sxetu9rWCMyQHmAZdV21R5b0UkBIgDjjRudCerLVZjzBFjTLH98W1gQGPHVkUaMFpEdgPTgItE5N/V9vGWe3vaWD19bwMlEcwCbrZbtwwGXMaYLKeDqo2ItKwoqxSRQVj/To78z2/H8Q6wxRjzUi27ecX9dSdWL7u3iSLS1F6OAEYCW6vtNgu4xV4eC/zH2LWHjcmdWKvVC43GqqNxhDHmcWNMkjEmGasi+D/GmJuq7eYV99adWD19bx2Zs7ihichHWK1BEkQkE3gKqzILY8wbWPMjXwHsBI4DtzkTqcWNeMcCd4tIKVAI3OjEf6C2NOCXwAa7fBjgD0A78Lr7606s3nRvWwHviUgwVkKaYYz5SkSeBtKNMbOwEtu/RGQnVgODG7041vtFZDRQasd6q0Ox1spL722NGvPe6hATSikV4AKlaEgppVQtNBEopVSA00SglFIBThOBUkoFOE0ESikV4DQRKEeISL4b+zwgIpENeM1rRKRHA55vyVkcm2+/txaRT+rYr6mI3FPf6yjlDk0Eyps9AJxRIrDbudfmGqDBEoExZkgDnGO/MWZsHbs0xRolUymP0USgHCXW/ADz7YG0torIB3YP5fuB1sA8EZln7ztKRJaKyGoR+dgeUwgR2S0ifxaR1cANInKniKy0B5b7VEQiRWQIVo/MF8Qaz72jiKSIyDJ7IK/PRKSZfb75IvKyiKSLyBYRGSgiM0Vkh4g8UyX2/CrLj4rIBvuaz9XwPdvbsW+odo5kseelEJGeYo35v9aOqTPwHNDRXveCiESLyA/2PdggImOqnGeLiLwl1nwBc+wewIhIJxGZa8e2WkQ62usfse/TeqlhfgEVQDw1vrW+9FXXC8i334djjfqYhPXDZClwgb1tN5BgLycAC4Ao+/OjwJNV9vt9lXM3r7L8DHCfvTwVGFtl23rgQnv5aeAVe3k+8Gd7eRKwH6tnbROskVWbV/sOlwNLgEj7c3wN33cWcLO9fG+VY5Ox56XAGgRvor0cBkRU3W6vDwFiq9yTnVhzBSRj9TpNsbfNAG6yl5cD19rL4VhPWaOwJkUX+75/BQxz+r8LfTnz8oshJpTPW2GMyQSwh4ZIBhZV22cwVrHOYnuooDCspFFhepXlXvav7qZANPBd9QuKSBzQ1Bjzo73qPeDjKrvMst83AJuMPXaSiOzCGqis6vhElwDvGmOOAxhjapprIg243l7+F/DnGvZZCvw/scamn2mM2SGnDo8vwB9FZBjWkMVtgBb2tp+NMRVDa6wCkkUkBmhjjPnMjq3I/h6jsJLBGnv/aKAzVrJVAUYTgfIGxVWWy6j5v0vBGgN/Qi3nKKiyPBW4xhizTkRuxXrqqG9M5dXiK68lPnfUOZ6LMeZDEVmONUHJbBH5NbCr2m4TgURggDGmRKwRK8OrxQzWfYyo43IC/MkY8+YZxK/8lNYRKG+WhzXlJMAyIE1EOgGISJSIdKnluBggS6whqSfWdD5jjAs4JiJD7W2/BH6kfr4Hbqto4SQi8TXss5j/Dmo2sYbtiEgHYJcx5q/AF0AfTr4HYA2VfMhOAiOAc+sKzFgztWWKyDX2NZrYcX4H3F6lnqWNiJzj1rdVfkcTgfJmU4BvRWSeMSYba8TFj0RkPVYxSrdajnsCq1x8MScPlTwNeESsCcI7Yg1B/IJ9vhSseoIzZoz5FqsoKd0u2vpdDbtNAu4VkQ3UPnvbOGCjfY5eWNN/HsEqDtsoIi8AHwCp9nlu5tRhq2vyS6zRK9dj1WW0NMbMwZofd6l9rk84OeGoAKKjjyqlVIDTJwKllApwmgiUUirAaSJQSqkAp4lAKaUCnCYCpZQKcJoIlFIqwGkiUEqpAPf/Abvf+eArUPFjAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for j in reversed(range(len(algorithms))):\n", - " pylab.plot(distances, dipoles[j], label=algorithms[j])\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Moment in debye')\n", - "pylab.title('NaH Dipole Moment')\n", - "pylab.legend(loc='upper right');" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xl4VOX1wPHvSWZCCAECmSGQBMXiUpcqVbQqSl1aa20rLtS6tKLVIlardRdrcfm5lrpbRawoWhCsRUWrxQ2l7oIi7ooIZc0GZCF75vz+uDdhEibJJGTmzkzO53nm4c5dz73RnNz3vve8oqoYY4wxbaV5HYAxxpjEZAnCGGNMRJYgjDHGRGQJwhhjTESWIIwxxkRkCcIYY0xEliCMMcZEZAnC9DoislJEfuTRsfNEZJGIVIrIbXE87iMickOM9n2aiLwYi30bb1mCMK2IyH9E5PoI88eJyAYR8bnfDxaRV91fdOUiMl9Evhu2/mEiEhKRqjafg+J5PgloIlAKDFDVS7wOpqtEZISIaPN/BwCqOktVj/IyLhMbliBMWzOBX4uItJn/G2CWqja6v+RfBJ4B8oGdgGXAmyIyImybdaqa3ebzduxPIT7Cf0l2wY7AZ2olDEwSsARh2noayAUObZ4hIoOAnwOPurP+AjyqqnepaqWqblTVq4H3gGu6c1C32edSEVnm3pHMFZFMd9kZIvJGm/VVRHZ2px8RkftE5AX3LuVNERkqIneKyCYR+UJEvt/mkPuLyGfu8oebj+Xu7+cislRENovIWyKyd5s4rxCRZcCWSEnCvbt63z2P90Xk4OY4gQnA5W6c2zRziUgfEfmriPxPRIpEZJqI9HWXfS4iPw9b1yciJSKyr/v9n+5dXrnbjLVnO9e6s+v5MxH5UEQqRGS1iFwbtuoi99/NzXeEbffX3vm7y14Tkf9zf0aVIvKiiATcZZki8g8RKXOv/fsikhfpHEx8WIIwrahqDfAEcHrY7JOAL1T1IxHJAg4G/hlh8yeA7WlqOAk4GueOZG/gjC5uezUQAOqAt4EP3O9PAre3Wf804CfASGBXd1vcRDIDOAcnUT4AzBeRPmHbngL8DMhR1cbwnYrIYODfwN3u9rcD/xaRXFU9A5gF/MW9m3o5wnnc4sYzCtgZKACmuMsed4/d7CdAqap+4H5/AdgFGOKe+6zIl6pTW3B+/jnueZ4rIse5y8a6/+ZEuiPs6PzDVjsVONONMwO41J0/ARgIDHe3nQTUdPMcTA+wBGEimQmMD/ur+nR3HsBgnP9u1kfYbj0QDPue7/4lGP7p18Fx71bVdaq6EXgW55dktJ5S1SWqWgs8BdSq6qOq2gTMBdreQdyrqqvdY93I1l+8E4EHVPVdVW1S1Zk4CefANnGudpNpWz8DvlbVx1S1UVUfB74AftHZCbjNehOBi9y7skrgJuBkd5XZwLFukgbnF+3jzdur6gz3jq4OuBbYR0QGdnbctlT1NVX9WFVDqrrMPcYPo9w8mvN/WFW/CvtjpPnn3ICTGHZ2r/0SVa3oavym51iCMNtQ1TdwHqQeJyIjgQNwfjkBbAJCwLAImw5zt2u2TlVz2ny2dHDoDWHT1UB2F8IuCpuuifC97b5Wh02vwnmWAs4zgkvCkxrOX7T57WzbVr67v3CrcO4EOhMEsoAlYcf+jzsfVV0OfA78wk0Sx+L+XEQkXURuEZFvRKQCWOnuMxDFcVsRkR+IyEK3+aoc5y/5aPcTzfm393N+DFgAzBGRdSLyFxHxdzV+03MsQZj2PIpz5/BrYIGqFgG4v+DfBn4ZYZuTgNdiEMsWnF+cAIjI0B7Y5/Cw6R2Ade70auDGNkkty/1LuFlHD5jX4SSZcDsAa6OIqRQnme0ZduyBqhqe3JqbmcbhPOxe7s4/1Z33I5xmmhHu/LadDaDz6zkbmA8MV9WBwLSw/XT2cL3b56+qDap6narugdOM+XNaN3WaOLMEYdrzKM4vm9+xtXmp2ZXABBG5QET6i8ggcfrYH4rTJNLTPgL2FJFRbrPXtT2wz/NEpNBtM/8TTjMUwIPAJPevaBGRfu5D2/5R7vd5YFcROdV9iPwrYA/guc42VNWQe/w7RGQIgIgUiMhPwlabg/Oc51y23tUB9MdpCivD+eXf0c+hs+vZH9ioqrUicgBO8mlWgnMH+Z129t3t8xeRw0XkeyKSDlTgNDmFOtvOxI4lCBORqq4E3gL64fw1Gb7sDZwHpCfgPHfYiPOA8UhV/SRs1XzZ9j2IE7sRy1fA9cDLwNfAGx1vEZXZOF11VwDfADe4x1qMkxTvxWlOW04XHparahnOX76X4Pyyvhz4uaqWdrjhVle4x3zHbSp6GdgtbP/rce7gDmZrUgMnoa/C+Uv9M+CdDmLs7Hr+HrheRCpxHpA/EbZtNc4zmzfdZrDwZzPbe/5DcToUVOA0pb2O0+xkPCLWHdtsL3G6gS4ETlXVBV7HY4zpGXYHYbab29PlOOB70r2Xx4wxCcjuIIwxxkRkdxDGGGMiSurmgEAgoCNGjPA6DGOMSSpLliwpVdVgZ+sldYIYMWIEixcv9joMY4xJKiLS9mXGiGLexOS+4fmhiDznft9JRN4VkeXiFGTLcOf3cb8vd5ePiHVsxhhj2hePZxAX4vRpbnYrcIeq7ozTz/wsd/5ZwCZ3/h3uesYYYzwS0wQhIoU4xbv+7n4X4Aicl2HAeUO3uUrkOLa+sfskcKS7vjHGGA/E+hnEnThvUjaXKcgFNoeVSF7D1iJeBbhF0NxBacrd9Vu9gSkiE3EqXrLDDjtsc8CGhgbWrFlDbW1tz55JgsjMzKSwsBC/32qYGWNiK2YJQpyBTYpVdYmIHNZT+1XV6cB0gNGjR2/zEseaNWvo378/I0aMINVuQFSVsrIy1qxZw0477eR1OMaYFBfLJqYxOLXrV+IUGDsCuAvICXvbtpCtVR7X4lbYdJcPxKnl0iW1tbXk5uamXHIAEBFyc3NT9u7ImM5ULJrHikn789UvC1gxaX8qFs3zOqSUFrMEoaqTVbVQVUfgDHjyqqqehlOzZ7y72gSccY3BKQg3wZ0e767frde8UzE5NEvlczOmIxWL5lE07TIaS9eCKo2laymadpkliRjy4k3qK4CLRWQ5zjOGh9z5DwG57vyLcUpKG2MMAKWzb0brWw/ip/U1lM6+2aOIUl9cEoQ7hOHP3ekVqnqAqu6sqr90h0dEVWvd7zu7y1fEI7aedvjhh7NgQeuCpnfeeSfnnnsun376KUcccQS77bYbI0eO5JprriEUcsrdP/LIIwSDQUaNGtXy+eyzz7w4BWMSUmPZui7NN9uv19di6uk2zVNOOYU5c+a0mjdnzhxOPvlkjj32WK688kq+/PJLPv74Y9577z3uuuuulvV+9atfsXTp0pbPHnvssV2xGJNK0rIHRZzvy82PON9sv16dIGLRpjl+/Hj+/e9/U19fD8DKlStZt24dy5cvZ8yYMRx11FEAZGVlce+99zJ16tQeORdjUln9+m8J1W6BNs/gxJ9B4NTJHkWV+pK6FlNnih+eQt23n7a7vParJWhjfat5Wl9D0X0XU/7yrIjb9NlpT4aceX27+xw8eDAHHHAAL7zwAuPGjWPOnDmcdNJJfPrpp+y3336t1h05ciQ1NTVs3rwZgLlz5/LGG1sH93r77bfp27dvp+dpTCoL1dey/raJpPXpy+Bf/4nNzz5AY+k6SE8HXwZZex3sdYgpq1ffQbRNDp3Nj1Z4M9OcOXM45ZRTotqubROTJQdjoOSRa6lb+SlDz7+TwT87m+9Me59dn1zLjn99CUJNrL99EtrY4HWYKSml7yA6+ksfYMWk/Z3mpTZ8gQKGX/+vbh933LhxXHTRRXzwwQdUV1ez33778eGHH7Jo0aLWx1+xgtzcXHJycrp9LGNSWcUbT1P+4qMMOnYS2aOParWsz/DdyJs0lQ13nU/p7JsJnj7FoyhTV6++gwicOhnJaP1XumT03e42zezsbA4//HB++9vfttw9nHbaabzxxhu8/PLLANTU1HDBBRdw3XXXbdexjElV9eu+oWjaZWTuNrrd/ycHHHoCA38ygU3zp1H57gtxjjD19eoEMWDsCeRNmoovUAAi+AIF5E2ayoCxJ2z3vk855RQ++uijlgTRt29f5s+fz4033siuu+5KIBBgzJgxnHbaaS3bzJ07t1U317feemu74zAmGYXqalh32zmIP4NhF92P+NqvPRY841r6jNyHor/9kfr138YxytSX1GNSjx49WtsOGPT555+z++67exRR9J5++mkuvvhiFi5cyI477tilbZPlHI3prqJpl1H+8iwKrvoH/fY9otP1G4pXs+ryn+AP5DP8xmdJ62PP7zoiIktUdXRn6/XqOwgvHXfccaxYsaLLycGYVFexaB7lL89i0PHnR5UcAPxDhjP0gnuoW/kZxQ/9KcYR9h6WIIwxCaN+7dcUTb+cvrv/gMDJl3dp2+x9j2TwiRdS8eocyl95PEYR9i4pmSCSudmsM6l8bqZ3C9VVs+62c0jLyGToH+9D0rveyTL3pEvJ+t4hFD/0J2q//SQGUfYuKZcgMjMzKSsrS8lfpM3jQWRmZnodijE9rvihq6lf/SVDL7gXf+6wbu1D0tMZ+sf7SMvOYf1tE2naUt7DUUYvFUqTp9x7EIWFhaxZs4aSkhKvQ4mJ5hHljEklFa/9k4pX5zD4xAvpN+qw7dqXb2CA/Iunsfqa8Wz420XkX/ZQ3MvkN5fxaa4+21zGB+iRXpLxknIJwu/322hrxiSRutVfUfTglfTd4yByT7qkR/bZ97sHEPz11ZTMvJZN86cxeNy5PbLfaHVUmjyZEkTKNTEZY5JHqLbaqbOU2Y9hF3XvuUN7cn7+O7IP/Bmls26i+rN3e2y/nVG38GckyVaa3BKEMcYTqkrxg5OpX/s1wy78G75BeT26fxEh7/e348/bkfV3TKJxU3GP7j+S+g0rWXvDqe0uT7bS5JYgjDGeqFg4l4rX/8ng8ReRtfehMTlGelZ/8i99kNCWctbfdR7a1BiT42hjAxufuodVFx9B7VdL6P/D8TEp4xNvliCMMXFX978vKP77VfTd6xByx18U02P12XF3hky8hZpP3qRsTs+Pv1LzxfusuvwnlM66mX77HsmOd77OsD/cTd6kqaQPyAUgPSfYY2V84ilmD6lFJBNYBPRxj/Okql4jIo8APwSa+5+doapLxelmcBdwDFDtzv8gVvEZY7wRqtniPHfI6s+wC+9F0tNjfsyBh51E7Rfvs/Gpe8jcbTTZo3+83fts2lJO6aybKX/xUXyBfPKvfKRVxdkBY0+gz467s+qSIxny2/+j/8HHbvcx4y2WvZjqgCNUtUpE/MAbItJcbvEyVX2yzfo/BXZxPz8A7nf/NcakCFWlaPoV1K9fQeGUufgGDYnbsYO//T9qv/mIDfdcwI5/WYA/b4du7UdVqXprPsUPT6GpooxBvziH3JMuJa1vv23W9QWdLukNJZEfWie6mDUxqaPK/ep3Px29vTYOeNTd7h0gR0S697aMMSYhlb88m8r/ziP3l5eQtdeYuB47LSOTYZc+CKqsu+13hOpru7yPhqL/sfbGX7P+jnPx5eazwy3PE5xwTcTkAM4zkLSsATSWrtne8D0R02cQIpIuIkuBYuAlVW3ua3ajiCwTkTtEpI87rwBYHbb5GneeMSYF1K38lJIZV5O191gGn3CBJzFk5O3I0D/cRd2Kjyl5+Jqot9PGBjY+/TdWXnQYNV+8R/DM69nhpufI/M7enW7rCxbaHUQkqtqkqqOAQuAAEdkLmAx8F9gfGAxc0ZV9ishEEVksIotT9W1pY1JNqKbKqbPUfxBD4/TcoT3Z+/+EQcedR/lLj1HxetuW7m3VfLWEVZcfTek/biRr1GGMuPM1Bv3s7KjPwR/ItzuIjqjqZmAhcLSqrnebkeqAh4ED3NXWAsPDNit057Xd13RVHa2qo4PBYKxDN8ZsJ1WlaNplNBStZNgf78M3MOB1SAROuYK+exxE0QOXU/e/LyKu07SlgqIHJ7P6T8cS2rKZ/MsfouDyGfgDXWvY8AUKaChNrhfkmsUsQYhIUERy3Om+wI+BL5qfK7i9lo4DmksuzgdOF8eBQLmqro9VfMaY+Ch/8TEq33yG3F9dTtYeB3odDgCS7mPYRfeTljWAdX89m1BNVcsyVaXyrWdZeeFYyl96jJxjzmLEna+TfcBPu3Usf7CQUNXmVsdIFrHsxTQMmCki6TiJ6AlVfU5EXhWRICDAUmCSu/7zOF1cl+N0cz0zhrEZY2KoYtE8SmffTGPpOkDx77A7g48/3+uwWvENGsKwi6exZsqJfHPWPmhDLemD8kjvP5j6VZ/R5zvfo+DKmWTuvM/2Hce942goXUuf4bv1ROhxE7MEoarLgO9HmB9xiCh16nOfF6t4jDHx0baSKUDjhm+pfOPphHtRrLF0HaSnt8TatHEDTRs30P/QExh6/p09UhvK73Z1bSxJvgRhb1IbY3pU5EqmtZTOvtmjiNpXOvtmiFB+o+bzd3uscGDLHURJ8j2otgRhjOlR7VUsTcRKpvGI1ZczBNJ97VZ4TWSWIIwxPSq9nV5KiVjJtL2YejJWSU/Hn5tPgyUIY0xv1lheRqihHqcPylaJWsk0cOrkuFRd9QUKaLQmJmNMb6VNTWy46zyor2XwyZc7be8i+AIFCVvJdMDYE8ibNDXmsfqDhUl5B5FyQ44aY7xR9uTtVC9bRN6kqQz80WkExl/odUhRGTD2hJgnL1+ggMaNG9Cmxh4dNS/W7A7CGLPdtny4kI1P3smAw05iwJHtj6jWW/mDBRBqonHjBq9D6RJLEMaY7dJQsob1d51PxvDvMuR3N+EUSTDhtnZ1Ta5mJksQxphu04Z61t92DjQ1kH/pdNL6ZHkdUkLyB50EkWxdXZOnMcwYk3BKHr2O2uUfMuzSv5ORP9LrcBJW8x1EsiUIu4MwxnRLxRtPs/mFhxn0i3Pof+AxXoeT0NL6ZJE+YHDSvU1tCcIY02V1a76maNqlZH53fwKnXeV1OEnBF0i+rq6WIIwxXRKq2cL6v55NWkZfhl00DfH5vQ4pKfiT8GU5SxDGmKipKkUPXEb9um8Y9sf78OfasPHR8gULaChdi1O4OjlYgjDGRK18wUwq33ia3F9dRtbeh3odTlLxBwrR2i2EtpR7HUrULEEYY6JS8/WHFD9yDf32PZLBx//B63CSji+YfGW/LUEYYzrVVLmR9bdNxDcoj6F/uBtJs18dXeUPuAMHJdGDansPwhjTIQ2FWH/3BTRtLmH4DU+T3n+Q1yElpWS8g7AEYYzp0MZ5d1P94asM+d3NZO48yutwklb6gFwkIzOp7iBidp8oIpki8p6IfCQin4rIde78nUTkXRFZLiJzRSTDnd/H/b7cXT4iVrEZY6KzZdkiyuZOpf8hxzPwqNO9DiepiQi+QH5S1WOKZUNiHXCEqu4DjAKOFpEDgVuBO1R1Z2ATcJa7/lnAJnf+He56xhiPNJStY8OdvyejYBfyzvmLFeHrAf5Agd1BAKijyv3qdz8KHAE86c6fCRznTo9zv+MuP1Lsv0hjPKGNDay/fRKh+lqGXfogaX37eR1SSvAl2cBBMe2KICLpIrIUKAZeAr4BNqtqo7vKGqDAnS4AVgO4y8uB3Aj7nCgii0VkcUlJSSzDN6bXKvnHjdR+uZih595Gn8JdvA4nZfgDBTRtKiLUUOd1KFGJaYJQ1SZVHQUUAgcA3+2BfU5X1dGqOjoYDG53jMaY1irffo7Nz00n56e/pf+YcV6Hk1J8Qbera9l6jyOJTlw6M6vqZmAhcBCQIyLNvacKgeb7rbXAcAB3+UCgLB7xGWMc9eu+oei+i8ncZV+Cp0/xOpyU428u+50kXV1j2YspKCI57nRf4MfA5ziJYry72gTgGXd6vvsdd/mrmkxFS4xJcqG6atb9dSL4/Ay7eBriz/A6pJTTMrJckjyHiOV7EMOAmSKSjpOInlDV50TkM2COiNwAfAg85K7/EPCYiCwHNgInxzA2YwxQsWgepbNvprFsHZLRF62rpuDq2fjdphDTs3y5w0AkaXoyxSxBqOoy4PsR5q/AeR7Rdn4t8MtYxWOMaa1i0TyKpl2G1tcAoHXVkO6jqWKjx5GlrjR/H9JzhiTN29RWUMWYXqp09s0tyaFFUyOls2/2JqBewh8sTJo7CEsQxvRSjaXrIs8vizzf9IxkepvaEoQxvYyqUvX+AminIqsvNz/OEfUuzXcQydAHx4r1GdOL1G9YScmMKWz54GXSBw0lVLURbahvWS4ZfQmcOtnDCFOfL1CANtTRVF6KLyex3+WyOwhjeoFQXQ2lc6ey6qLDqf7sbQKnT+E7979L3rm3O10vRfAFCsibNJUBY0/wOtyU1vIuRBI8h7A7CGNSXNXiFymZMYWG4v/Rf8w4AqdPaRlLesDYEywhxFlzF+KG0rUJXz7dEoQxKaq+aBUlM/7MliUvk1G4C4XX/pOsvcZ4HVav50uit6ktQRiTYkJ1NWx65j42PnUvpKcT+M2fGXTMWfZmdIJI6zeQtL7ZSfE2tSUIY1JI1ZKXKZnxZxqKVtH/4GMJTJiC33olJRRxn/ckw8tyliCMSQENRf+j+OEpbFn8IhkFO1M4ZS5Zex/qdVimHb4kGTjIEoQxSSxUX7u1OSktjcBvrmbQMWdbc1KC8wcLqftmqddhdMoShDFJILyoni83n8Cpk0nPzqF4xtU0bFhJ9sG/IDjhGmtOShL+QAFNFRsJ1VaTlpnldTjtsgRhTIJrW1SvsXQtG+69AEIh/PkjKZgyh357j/U4StMVvqDbk6lsLRkFiTtinyUIYxJcxKJ6oRBpWQMYcdsr1pyUhJpflmsoSewEYW9SG5Pg2iueF6qptOSQpJqHHk30on2WIIxJYKHaaiSzX8RlVlQvefkG5UFaOo2lid3V1RKEMQmqetl/WXXxEWhNFaSlt1pmRfWSm6T78A0emhp3ECIyUkT6uNOHicgFzeNNG2N6VtOWcjbcfylrrv8VpPsovH4eQ8+/y4rqpZhkGDgo2ofU/wJGi8jOwHTgGWA2cEx7G4jIcOBRIA9QYLqq3iUi1wK/A0rcVa9S1efdbSYDZwFNwAWquqDLZ2RMEqt6fwFFD06maXMxg8b9ntyTLiGtT18ASwgpxhcooObL970Oo0PRJoiQqjaKyPHAPap6j4h82Mk2jcAlqvqBiPQHlojIS+6yO1T1r+Eri8gewMnAnkA+8LKI7KqqTdGfjjHJqbG8jJIZV1P55jNk7LgHBZc/TObO+3gdlokhf7CQyrfmo01NSHp65xt4INoE0SAipwATgF+48/wdbaCq64H17nSliHwOFHSwyThgjqrWAd+KyHLgAODtKGM0JumoKpVvPk3JjD/TVF1J7q8uY/Bx51nvpF7AFyiApkYaNxcl7AuO0T6kPhM4CLhRVb8VkZ2Ax6I9iIiMAL4PvOvOOl9ElonIDBEZ5M4rAFaHbbaGCAlFRCaKyGIRWVxSUtJ2sTFJo6FsPetumcCGO8/DnzeCHae+SO4vL7Lk0Eu0DByUwA+qo0oQqvqZql6gqo+7379V1Vuj2VZEsnGeYfxRVSuA+4GRwCicO4zbuhKwqk5X1dGqOjoYTOzh+oyJRFXZ/NIsVl10GNUfv0FwwrUMv+EZ+gzfzevQTBz5wgYOSlRRNTGJyBjgWmBHdxsBVFW/08l2fpzkMEtV5+FsVBS2/EHgOffrWmB42OaF7jxjUkb9hpUUTbuMmk/epO9eY8ibNJWMoSO8Dst4wJ8EAwdF+wziIeAiYAlOD6NOiYi4232uqreHzR/mPp8AOB74xJ2eD8wWkdtxHlLvArwXZXzGJDRtamLz83+n9PFbEZ+fIedMZeCPTsX538T0Rml9+5GWPSj57yCAclV9oYv7HgP8BvhYRJrr2l4FnCIio3C6vq4EzgFQ1U9F5AngM5weUOdZDyaTCupWf0nRfZdQ+/UH9NvvRwyZeEvCPpQ08eUP5Cf0M4hoE8RCEZkKzAPqmmeq6gftbaCqb+A0RbX1fAfb3AjcGGVMJkqRSkVbn/rYabnepetIy+pPqKaKtOyBDL3wXvofcrzdNZgWvmAhDUX/8zqMdkWbIH7g/js6bJ4CR/RsOKanRSoVXTTtMsBevIqFttc7VF0Baenk/upyBhxq19u05g8UUPPpW16H0a5oezEdHuFjySEJRCoVrfU1lM6+2aOIUlvprJsilOZuYtPT93oTkElovkABoepKmrZUeB1KRNHWYhooIrc3v38gIreJyMBYB2e2X3ulotubb7qvavGLdr1Nl/jdrq6JWpMp2hflZgCVwEnupwJ4OFZBmZ7TXkloKxXdcxrK1rNu6tmsu+UMSI/camvX20Tiaxk4KDG7ukb7DGKkqp4Y9v26sJ5JJoH13fMgKl9/cpv5OT/7nQfRpBZtamLzizMpm30L2tTojBM9KI/iBye3amay0tymPYl+BxFtgqgRkUPcnknNL87VdLKN8VhD6Vqq3n0B/w67o9UVNJatI31QHk2Vm9iy+EUG/exsJM2GBOmO2m8/ofiBK6hd/iFZe49lyMRbWl54k3Sf9RozUUkfGEB8GUl/B3EuMNN97iDARuCMWAVltp+qUvzgZNAQhVc8jD9vh5Zl5a88TtH9l1D+4qPkHH2Gd0EmoVBtNWVP/JVNzz1Iev9BEbuuDhh7giUEExVJS8MXyE/uOwhVXQrsIyID3O+J+cjdtKh6az5blrxMcMI1rZIDwIAjTqby7Wcp+ccN9Pv+EdssN5FVffAKxQ9OprFkDQOOPJXgr/9Eev9BnW9oTAd8gcKEfZu6wwQhIr9W1X+IyMVt5gMQXkLDJI6myk0Uz/gzfUbuQ84xZ22zXETImzSVVRcfwYb7LqbwmiesqakDjZuKKJ4xhaq3nyWjcBcKr3+KrD1+0PmGxkTBH8yn+qP/eh1GRJ39VmgeLb1/hE92DOMy26Hk0etpqtzE0HP/irTTq8YfKCA44RpqPn2L8peirtzeq2goxOYFM1l54Vi2LH6R3JMvZ8epL1lyMD3KFyikcdMGtLHB61C20eEdhKo+4E6+rKpvhi9zH1SbBFO97L9ULJwYH/zNAAAbcElEQVTLoOPPp8+IPTtcd8ARp1D51rOUPPZ/9Bt1uDU1halb+RlF06+g9qslZH3vEOch9LAOixcb0y3+QAGo0li2PuH+H4y2XeGeKOcZD4XqqimafgX+oTuRO/6iTtdvbmoSSWPD/ZegoVAcokxsobpqSv5xI6uuOJqGDd8y9IJ7KJgy15KDiRlf0H0XIgGfQ3T2DOIg4GAg2OY5xAAgMQdR7UQ0heuSrbjd1uJwzn9gg064oGWg+874g4UEJ1xD0bTL+Oa3exHaUp4U59yZ7vycs8eMo+rtZ2ksXs2AI04m+JurSe8/2KMzML1Fy7sQCdjVtbNeTBk4zxp8OM8dmlUA42MVVKxEU7gu2YrbtY0XYPNzD9KncNfo483IBEkjVLUZSPxz7kx3f86bn7mPtJwhFF73L7L2PMib4E2v0/yWfdLdQajq68DrIvKIqq6KU0wx017huuK/X0VDkXN6m559oN3idon4y7KjYnzRxls2+xbQ1s1LiXzOnenuzxkgzee35GDiKi0jk/ScYEK+CxHti3LV7ngQewKZzTOTraJrewXTQtUVlM2d2q1tvdYTxeFSrcBcKv6cTWrzBQoS8m3qaB9SzwK+AHYCrsMZCe79GMUUM+0WrgsUsMvc1ewyd3VL8axot/VaTxTjS7WCfqn4czapzR8oTMg7iGgTRK6qPgQ0qOrrqvpbknCwoMCpk5GM1g9vmwupSXo6kp4ecR3S/QlbbC331CtpO3BfV4vDRTzntPSEPefODPzx6dvMi+bnbEX1jFf8QecOQlW9DqWVaBNE8xsc60XkZyLyfaDD7h0iMlxEForIZyLyqYhc6M4fLCIvicjX7r+D3PkiIneLyHIRWSYi+3b7rNoxYOwJ5E2a6vz1KIIvUEDepKmt2tnbriP+PiDQd/cDejqcHtFn+G6AkpY9qN1z6sw255zZD0JNZBTsHLvAY0Sbmqh6/wUksx++3GFR/5y7c92M6Sm+QAFaX0uocqPXobSmqp1+gJ8DA4G9gIXAEuDYTrYZBuzrTvcHvgL2AP4CXOnOvxK41Z0+BngB58/hA4F3O4trv/3201irL16tX502UlffcJqGQqGYH6+rSp+4Tb8cn68Nm4p7bJ+NVeW6/Kx9dOXlR2uosbHH9hsPG5+drl+eOEzL//uU16EYE7XKd5/XL08cpjXffBSX4wGLNYrf/dEOOfqcqpar6ifqDDe6n6rO72Sb9ar6gTtdCXwOFADjgJnuajOB49zpccCjbvzvADkiMiya+GLJHywkcMqVVH/4KpVvPu11ONuoen8Bmbvuhy8n2GP7TO83gOAZ11L3zUdJVYajoXg1pXNupd++R9J/zDivwzEmalsHDkqs5xDRDjn6sIjMaPuJ9iAiMgL4PvAukKeq691FG4A8d7oAWB222Rp3Xtt9TWwe+rSkpCTaELZLztFnkrnz9ymZMYWmBLoFbChdS92Kj8kefVSP77v/mHFk7X0opbNvoXFTcY/vv6epKkXTrwRgyO9ublV+25hEl6gDB0X7DOI54N/u5xWcN6mrotlQRLKBfwF/1DZlwt1bnS49lVHV6ao6WlVHB4M991dzRyQ9nbxz/0rTlnJKZl4fl2NGY8vilwDIPuAnPb5vEWHI2Teh9bWUzLyux/ff0yrfeIrqpQsJnHJly/9sxiSLtOxBSJ++CdfVNdompn+FfWbhjEs9urPtRMSPkxxmqeo8d3ZRc9OR+2/zn6drgeFhmxe68xJCnx13Z/Bx51Hx2hNs+eh1r8MBnOYlf/53yCjYJSb7z8gfyaDjz3N++S5LzHLEAE0VZZQ8PIXMXfYl5+gzvQ7HmC4TEfyBgqS9g2hrF2BIRyuIc4//EPC5th43Yj4wwZ2eADwTNv90tzfTgUB5WFNUQhh84oX4879D8QNXEKqr9jSWpupKqj99KybNS+EGH/8H/ENHUPT3yYQa6mJ6rO4qfuQ6mrZUOIUH05OyRJgx+IKFyXkHISKVIlLR/C/wLHBFJ5uNAX4DHCEiS93PMcAtwI9F5GvgR+53gOeBFcBy4EHg910/ndhKy8gk75ypNBT/j7K5f/U0luqlC6Gxgez9e755KVxaRiZDzr6JhnUr2PTM/TE9VndsWfoalYueZPBx59Nnx929DseYbkvEO4hohxzt3/la22zzBm3f4NrqyAjrK3BeV48Tb1l7HsTAH53GpvnTqFg0j6byEk+qwla9t4D0AYPJ3LXTlr7t1m/UYWQf/AvKnriNzQtm0rS5OOL5xKsK7tbqtesgLY20nCEMPvGCHj+OMfHkCxbSVF5KqK4m6mrMsdbhHYSI7NvRJ15BJpo+I/cBoGlzsTPQh1sttGLRvJZ1mquFNpaubXed7tLGBrZ8+Cr99vtR3JpU+u7+Awg10bSpKOL5RHu+FYvmsWLS/nz1ywJWTNo/4vXoaJ1Wx0Eh1IRuKafqnedjev7GxJrf7eqaSPXAOruDuK2DZUoSltvoCRv/ddc287S+hqIHLqPmy/dJ7zeQzQtmxqwqbM3n7xLaUh7z5qVwkZqXtL6GDfdeSOmcW52/5kNN2ywv/vtVoCF8weHUfvsxZbNu7nq59fsvpW71F2QMHUHJI9dte10b6pK28qwxzXxu77uG0rVk5I/0OBpHZ+W+D49XIMmkvQyvdTVUvf0sTVXl2/yy7Gzbrqh6fwGSkUnW3j/c7n1Fq924Q01k7X4gFa//M/Li6go23NN+84/W17DhvovY/PxDANSu/ATajM2rDbVseure7sVnTJJouYNIoAfVUfdiEpG9ROQkETm9+RPLwBJZR9VCR874hF3m/i9mFVJVlarFL5L1vUNIy8zarn11RUfnPPQPd7VfHTWQz4i7/0vB1bPb33ljA2nZOaRl52yTHLYSdvrbO1aF1aQs3+ChkJaWUAMHRduL6RqcMajvAQ7Hqad0bAzjSmidVQIVEQKnXRWTaqH1qz6nsXg1/UbHr3kJOj/n9pdfRUb+SPqNOqyDJFJA4dWzKLx6VoeJxp+3g1VhNSlLfH58g/ISqidTtHcQ43F6Hm1Q1TOBfXCK9/VKXa4K6+p/+C+3u528avGLIEL26B9v1366qrNzjuaaRPPLvbN1rAqrSWXOwEGJkyBEo6g/LiLvqeoBIrIE5w6iEucFuO/GOsCOjB49WhcvXuxlCFHRpiZW//k46tevYMSdi/ANzO32vlZd8VMk3ccONz3bgxHGTzRdYePVXdaYRLP+zt9Tu3wpO937VkyPIyJLVLXTPvLRDjm6WERycF5gW4JTh+nt7YivV2mu5bTqsqMomXktwy64p1v7aShbT903HyV1c8qAsSd0+ss+mnWMSUW+QAGN7zyPhkJIWncLXfScaGsx/V5VN6vqNODHwAS3qclEqc/w3Rh8/PlULvoXW5a+1q19NBfn6xfH7q3GmPjxBwrQxnqayuNTqboz0T6kni8ip4pIP1VdqarLYh1YKhp8wgVkFOxM0QOXE6rZ0uXtq95fgH/oCDIKY1OczxjjrZZ3IRKkq2u09zC3AYcAn4nIkyIyXkQyYxhXSkrz9yFv0lQaS9ZQOndql7YN1VRR88mbZO//ExvrwJgU1fIuRIL0ZIq2iel1Vf098B3gAZxy34k/ikwC6rv7Dxj4kwlsfv7v1C5fGvV2W5a+hjbWW/OSMSls6x1EEiUIABHpC5wITAL2Z+uwoaaLAqdOJj1nCBvuvxRt98Ww1qreX0Ba9iD67hb74nzGGG+kZ/UnLWsAjaVJ1MQkIk/gjCl9BHAvMFJV/xDLwFJZer8B5J19E/WrPuOb336vw8J14Bbn++AVsvf7EZIebcczY0wycsaFSK47iIdwksIkVV2oqqFYBtUbhGqrIS2dUHVF59VPz9mPUNVmqj58pUeqwRpjEpc/kJ8wdxAd/jkqIper6l9UdYGI/BL4Z9iym1T1qphHmKJKZ98cufrpg5Np3FxMer8B1K76nIqXHkMb6gEIVWzcpvqpMSa1+AIF1HyZGC8Ad3YHcXLYdNu3s47u4Vh6lfaqj4ZqKil99HqK7r+U8ucfakkOzZpLhhtjUpM/WEioajOhmiqvQ+k0QUg705G+my7osCLso1+y0/3v0d4lttLWxqSu5vptiVDVtbMEoe1MR/reiojMEJFiEfkkbN61IrK2zRjVzcsmi8hyEflSRFK+L2dHRenSs/rjDxbiC8SmZLgxJnH53a6ujQnwoLqzBLGPiFSISCWwtzvd/P17nWz7CJGboe5Q1VHu53kAEdkDpzlrT3eb+0QkPmNpeqSnqp8aY1JLyx1EArxN3dmIct3+Ja2qi0RkRJSrjwPmqGod8K2ILAcOIMULAnZWlK55mVU2Nab38OUMgXRfQrxN7UWn+vPd0egWA5eo6iagAHgnbJ017rxtiMhEYCLADjvsEONQvWeVTY3pXSQ9HX9ufkLcQcS7nuz9wEhgFLAep8ZTl6jqdFUdraqjg8FgT8dnjDGe8wUKEuIOIq4JQlWLVLXJfdHuQZxmJIC1wPCwVQvdecYY0+v4g4VJ0YupR4nIsLCvxwPNPZzmAyeLSB8R2QnYBXgvnrEZY0yi8AUKaNy4AW1q9DaOWO1YRB4HDgMCIrIGuAY4TERG4XSRXQmcA6Cqn7r1nj4DGoHzVLUp0n6NMSbV+YMFEGqiceOGlm6vXohZglDVUyLMfqiD9W8EboxVPMYYkyy2dnVd62mC8H7QU2OMMa34g4kxcJAlCGOMSTC+BBlZzhKEMcYkmLQ+WaQPGOz5uxCWIIwxJgH5At53dbUEYYwxCcgfKKDR7iCMMca05QsW0FC6FtUOC2fHlCUIY4xJQP5AIVq7hVDVZs9isARhjDEJyBf0fuAgSxDGGJOA/AF34CBLEMYYY8K13EF4+KDaEoQxxiSg9AG5SEam3UEYY4xpTUTwBfJp8HBsaksQxhiToPweDxxkCcIYYxKUz+OBgyxBGGNMgvIHCmjaVESooc6T41uCMMaYBOVzx4JoLFvvyfEtQRhjTILyN5f99qirqyUIY4xJUC0jy3n0HMIShDHGJChf7jAQSb07CBGZISLFIvJJ2LzBIvKSiHzt/jvInS8icreILBeRZSKyb6ziMsaYZJHm70N6zpCUvIN4BDi6zbwrgVdUdRfgFfc7wE+BXdzPROD+GMZljDFJwx8s9OxdiJglCFVdBGxsM3scMNOdngkcFzb/UXW8A+SIyLBYxWaMMcnCy7ep4/0MIk9Vm/trbQDy3OkCYHXYemvcedsQkYkislhEFpeUlMQuUmOMSQDNb1N7MXCQZw+p1TnbLp+xqk5X1dGqOjoYDMYgMmOMSRy+YCHaUEdTeWncjx3vBFHU3HTk/lvszl8LDA9br9CdZ4wxvVrLuxAePIeId4KYD0xwpycAz4TNP93tzXQgUB7WFGWMMb2W332b2oueTL5Y7VhEHgcOAwIisga4BrgFeEJEzgJWASe5qz8PHAMsB6qBM2MVlzHGJBOfh29TxyxBqOop7Sw6MsK6CpwXq1iMMSZZpfUbSFrfbE/uIOxNamOMSWDOwEEFngw9agnCGGMSnM+jgYMsQRhjTILzBwvtDsIYY8y2/IECQpWbCNVWx/W4liCMMSbB+YJuT6ay+DYzWYIwxpgE1/yyXLxrMlmCMMaYBOezBGGMMSYS3+ChkJZOY2l8H1RbgjDGmAQn6T58g4faHYQxxphteTFwkCUIY4xJAr5AAQ3WxGSMMaYtf7CQxrL1aFNT3I5pCcIYY5KAL1AATY00bi6K2zEtQRhjTBJoGTgojg+qLUEYY0wS8LUMHBS/5xCWIIwxJgnYHYQxxpiI0vr2Iy17UFwHDrIEYYwxScIfyI/rHUTMhhztiIisBCqBJqBRVUeLyGBgLjACWAmcpKqbvIjPGGMSkS9QQEPx6rgdz8s7iMNVdZSqjna/Xwm8oqq7AK+4340xxrict6l750PqccBMd3omcJyHsRhjTMLxBQoIVVfStKUiLsfzKkEo8KKILBGRie68PFVd705vAPIibSgiE0VksYgsLikpiUesxhiTEPxuV9d41WTyKkEcoqr7Aj8FzhORseELVVVxksg2VHW6qo5W1dHBYDAOoRpjTGLYOi5EfJqZPEkQqrrW/bcYeAo4ACgSkWEA7r/FXsRmjDGJKuXvIESkn4j0b54GjgI+AeYDE9zVJgDPxDs2Y4xJZOkDA4gvI253EF50c80DnhKR5uPPVtX/iMj7wBMichawCjjJg9iMMSZhSVoavkB+3O4g4p4gVHUFsE+E+WXAkfGOxxhjkokvUJjazyCMMcZ0jz+YT2PpurgcyxKEMcYkEV+gkMZNG9DGhpgfyxKEMcYkEX+gAFRpLFvf+crbyRKEMcYkkboN3wLw7XkHsWLS/lQsmhezY1mCMMaYJFGxaB7lzz3oflMaS9dSNO2ymCUJSxDGGJMkSmffjDbUtZqn9TWUzr45JsezBGGMMUmisSxy76X25m8vSxDGGJMkfLn5XZq/vSxBGGNMkgicOhnJ6NtqnmT0JXDq5Jgcz5MR5YwxxnTdgLEnAM6ziMaydfhy8wmcOrllfk+zBGGMMUlkwNgTYpYQ2rImJmOMMRFZgjDGGBORJQhjjDERWYIwxhgTkSUIY4wxEYmqeh1Dt4lICc7oc90RAEp7MJxYS6Z4kylWSK54kylWSK54kylW2L54d1TVYGcrJXWC2B4islhVR3sdR7SSKd5kihWSK95kihWSK95kihXiE681MRljjInIEoQxxpiIenOCmO51AF2UTPEmU6yQXPEmU6yQXPEmU6wQh3h77TMIY4wxHevNdxDGGGM6YAnCGGNMRCmfIERkhogUi8gn7SwXEblbRJaLyDIR2TfeMYbF0lmsh4lIuYgsdT9T4h1jWCzDRWShiHwmIp+KyIUR1kmkaxtNvAlxfUUkU0TeE5GP3Fivi7BOHxGZ617bd0VkRPwjbYklmnjPEJGSsGt7thexhsWTLiIfishzEZYlzLV14+ko1theV1VN6Q8wFtgX+KSd5ccALwACHAi8m8CxHgY85/U1dWMZBuzrTvcHvgL2SOBrG028CXF93euV7U77gXeBA9us83tgmjt9MjA3weM9A7jX62sbFs/FwOxIP+9EurZRxBrT65rydxCqugjY2MEq44BH1fEOkCMiw+ITXWtRxJowVHW9qn7gTlcCnwMFbVZLpGsbTbwJwb1eVe5Xv/tp25tkHDDTnX4SOFJEJE4hthJlvAlDRAqBnwF/b2eVhLm2UcQaUymfIKJQAKwO+76GBP3F4TrIvZV/QUT29DoYAPcW/Ps4fzmGS8hr20G8kCDX121WWAoUAy+parvXVlUbgXIgN75RbhVFvAAnuk2NT4rI8DiHGO5O4HIg1M7yRLq2ncUKMbyuliCSywc4NVT2Ae4BnvY4HkQkG/gX8EdVrfA6ns50Em/CXF9VbVLVUUAhcICI7OVVLNGIIt5ngRGqujfwElv/Qo8rEfk5UKyqS7w4fldEGWtMr6slCFgLhGfdQndewlHViuZbeVV9HvCLSMCreETEj/PLdpaqzouwSkJd287iTbTr68axGVgIHN1mUcu1FREfMBAoi29022ovXlUtU9U69+vfgf3iHZtrDHCsiKwE5gBHiMg/2qyTKNe201hjfV0tQcB84HS3x82BQLmqrvc6qEhEZGhzW6iIHIDz8/Pkl4Ibx0PA56p6ezurJcy1jSbeRLm+IhIUkRx3ui/wY+CLNqvNBya40+OBV9V9ahlv0cTb5tnTsTjPgOJOVSeraqGqjsB5AP2qqv66zWoJcW2jiTXW19XXkztLRCLyOE7vlICIrAGuwXmIhqpOA57H6W2zHKgGzvQm0qhiHQ+cKyKNQA1wsle/FHD+uvkN8LHb9gxwFbADJN61Jbp4E+X6DgNmikg6TpJ6QlWfE5HrgcWqOh8n2T0mIstxOjac7EGczaKJ9wIRORZoxIn3DM+ijSCBr+024nldrdSGMcaYiKyJyRhjTESWIIwxxkRkCcIYY0xEliCMMcZEZAnCGGNMRJYgTEIRkaoo1vmjiGT14DGPE5E9enB/b23HtlXuv/ki8mQH6+WIyO+7exxjomEJwiSjPwJdShBuH/32HAf0WIJQ1YN7YB/rVHV8B6vk4FQdNSZmLEGYhCTO2AyvuQXIvhCRWe4b2RcA+cBCEVnornuUiLwtIh+IyD/dekuIyEoRuVVEPgB+KSK/E5H33WJ8/xKRLBE5GOcN1Kni1NMfKSKjROQdtwDaUyIyyN3fayJyh4gsFpHPRWR/EZknIl+LyA1hsVeFTV8hIh+7x7wlwnnu5Mb+cZt9jBB3XBAR2VOc8RaWujHtAtwCjHTnTRWRbBF5xb0GH4vIuLD9fC4iD4ozVsOL7tvOiMjOIvKyG9sHIjLSnX+Ze52WSYSxHUwvEqs64vaxT3c+QJX772E4VTQLcf6QeRs4xF22Egi40wFgEdDP/X4FMCVsvcvD9p0bNn0D8Ad3+hFgfNiyZcAP3enrgTvd6deAW93pC4F1OG8R98GpVJvb5hx+CrwFZLnfB0c43/nA6e70eWHbjsAdFwSncOBp7nQG0Dd8uTvfBwwIuybLccZpGIHzlu0od9kTwK/d6XeB493pTJy7sqOA6e62acBzwFiv/7uwjzeflC+1YZLae6q6BsAtjzECeKPNOgfiNA+96ZZRysBJJs3mhk3v5f6VngNkAwvaHlBEBgI5qvq6O2sm8M+wVea7/34MfKpubSkRWYFT4C28dtOPgIdVtRpAVSON9TEGONGdfgy4NcI6bwN/EmdsgHmq+rVsOzyBADeJyFic0tAFQJ677FtVbS4vsgQYISL9gQJVfcqNrdY9j6NwksSH7vrZwC44Sdj0MpYgTCKrC5tuIvJ/r4Iz/sAp7exjS9j0I8BxqvqRiJyBc5fS3ZhCbeILtRNfNDqsd6Oqs0XkXZyBY54XkXOAFW1WOw0IAvupaoM4FUAz28QMznXs28HhBLhZVR/oQvwmRdkzCJOMKnGGDQV4BxgjIjsDiEg/Edm1ne36A+vFKft9WqT9qWo5sElEDnWX/QZ4ne55CTizuceViAyOsM6bbC0Gd1qE5YjId4AVqno38AywN62vATglqYvd5HA4sGNHgakzqt4aETnOPUYfN84FwG/DnuMUiMiQqM7WpBxLECYZTQf+IyILVbUEp4Ll4yKyDKc55rvtbPdnnHb3N2ldjnoOcJk4A8OPxCn1PNXd3yic5xBdpqr/wWmSWuw2kV0aYbULgfNE5GPaH23vJOATdx974QzjWobTrPaJiEwFZgGj3f2czrblwSP5DU410GU4z0qGquqLOOMfv+3u60laJyLTi1g1V2OMMRHZHYQxxpiILEEYY4yJyBKEMcaYiCxBGGOMicgShDHGmIgsQRhjjInIEoQxxpiI/h/c9ES0QJXV3QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.plot(distances, eval_counts, '-o', color=[0.8500, 0.3250, 0.0980], label='VQE')\n", - "pylab.xlabel('Interatomic distance')\n", - "pylab.ylabel('Evaluations')\n", - "pylab.title('VQE number of evaluations')\n", - "pylab.legend(loc='upper left');" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/finance/README.md b/community/finance/README.md deleted file mode 100644 index 6bb2400b6..000000000 --- a/community/finance/README.md +++ /dev/null @@ -1,19 +0,0 @@ -# Qiskit Aqua Finance Tutorials, Samples and Input Files - -Qiskit Finance is a set of tools, algorithms and software for use with quantum computers to -carry out research and investigate how to take advantage of quantum computing power to solve problems -in the financial domain. - -Qiskit Finance translates finance-specific problems into inputs -for a quantum algorithm residing in Qiskit Aqua, which in turn uses [Qiskit](https://www.qiskit.org/) for the relevant -quantum computation. - -This folder contains some Jupyter Notebook examples. There are Python code files too. - -For more detail see the main [index](../aqua/index.ipynb#optimization) - -## Input files - -The folder [input_files](input_files) contains example JSON input files that can be loaded -and run by the Qiskit Aqua [GUI](https://github.com/Qiskit/aqua/README.md#gui) or by the Qiskit Aqua -[command line](https://github.com/Qiskit/aqua/README.md#command-line) tool. diff --git a/community/finance/input_files/portfolio.json b/community/finance/input_files/portfolio.json deleted file mode 100644 index 9b7e20629..000000000 --- a/community/finance/input_files/portfolio.json +++ /dev/null @@ -1,129 +0,0 @@ -{ - "problem": { - "name": "ising", - "random_seed": 50 - }, - "algorithm": { - "name": "VQE", - "operator_mode": "matrix" - }, - "optimizer": { - "name": "COBYLA", - "maxiter": 25000 - }, - "variational_form": { - "name": "RYRZ", - "depth": 3, - "entanglement": "full" - }, - "backend": { - "provider": "qiskit.BasicAer", - "name": "statevector_simulator" - }, - "input": { - "aux_ops": [], - "name": "EnergyInput", - "qubit_op": { - "paulis": [ - { - "coeff": { - "imag": 0.0, - "real": -0.24403472627604428 - }, - "label": "IIIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 0.3881691708820725 - }, - "label": "IIZI" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.9473142336529263 - }, - "label": "IIZZ" - }, - { - "coeff": { - "imag": 0.0, - "real": -0.2667811512679368 - }, - "label": "IZII" - }, - { - "coeff": { - "imag": 0.0, - "real": 2.3988667437794624 - }, - "label": "IZIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.8728983411674296 - }, - "label": "IZZI" - }, - { - "coeff": { - "imag": 0.0, - "real": -4.440892098500626e-16 - }, - "label": "IZZZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 0.3158601888295829 - }, - "label": "ZIII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.8821687969396752 - }, - "label": "ZIIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 2.0525084750150535 - }, - "label": "ZIZI" - }, - { - "coeff": { - "imag": 0.0, - "real": -5.551115123125783e-17 - }, - "label": "ZIZZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.73738172527763 - }, - "label": "ZZII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.1102230246251565e-16 - }, - "label": "ZZIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 5.551115123125783e-17 - }, - "label": "ZZZZ" - } - ] - } - } -} \ No newline at end of file diff --git a/community/finance/simulation/iron_condor.ipynb b/community/finance/simulation/iron_condor.ipynb deleted file mode 100644 index 96d23bc5f..000000000 --- a/community/finance/simulation/iron_condor.ipynb +++ /dev/null @@ -1,401 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Pricing Iron Condor Option*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Stefan Woerner[1], Daniel Egger[1]\n", - "### Affliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "
\n", - "Suppose a iron condor option with strike prices $K_1 < K_2 < K_3 < K_4$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", - "The corresponding payoff function is defined as:\n", - "
\n", - "
\n", - "$$ F(S_T) = \n", - "\\begin{cases}\n", - "0 ,& S_T < K_1 \\\\\n", - "S_T - K_1 ,& K_1 \\leq S_T < K_2 \\\\\n", - "K_2 - K_1 ,& K_2 \\leq S_T < K_3 \\\\\n", - "K_3 - S_T ,& K_3 \\leq S_T < K_4 \\\\\n", - "0 ,& S_T \\geq K_4. \n", - "\\end{cases}$$\n", - "
\n", - "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", - "
\n", - "
\n", - "$$\\mathbb{E}\\left[ F(S_T) \\right].$$\n", - "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", - "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", - "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncertainty Model\n", - "\n", - "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", - "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", - "The unitary operator corresponding to the circuit factory implements the following: \n", - "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", - "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", - "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# number of qubits to represent the uncertainty\n", - "num_uncertainty_qubits = 3\n", - "\n", - "# parameters for considered random distribution\n", - "S = 2.0 # initial spot price\n", - "vol = 0.4 # volatility of 40%\n", - "r = 0.05 # annual interest rate of 4%\n", - "T = 40 / 365 # 40 days to maturity\n", - "\n", - "# resulting parameters for log-normal distribution\n", - "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", - "sigma = vol * np.sqrt(T)\n", - "mean = np.exp(mu + sigma**2/2)\n", - "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", - "stddev = np.sqrt(variance)\n", - "\n", - "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", - "low = np.maximum(0, mean - 3*stddev)\n", - "high = mean + 3*stddev\n", - "\n", - "# construct circuit factory for uncertainty model\n", - "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", - "text/plain": [ - "

" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot probability distribution\n", - "x = uncertainty_model.values\n", - "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", - "plt.ylabel('Probability ($\\%$)', size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Payoff Function\n", - "\n", - "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K_1$, then increases linearly, and is bounded by $K_2$.\n", - "The implementation uses two comparators, that flip an ancilla qubit each from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K_1$ and $S_T \\leq K_2, and these ancillas are used to control the linear part of the payoff function.\n", - "\n", - "The linear part itself is then approximated as follows.\n", - "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", - "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", - "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", - "\n", - "We can easily construct an operator that acts as \n", - "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", - "using controlled Y-rotations.\n", - "\n", - "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", - "$\\sin^2(a*x+b)$.\n", - "Together with the approximation above, this allows to approximate the values of interest.\n", - "The smaller we choose $c_{approx}$, the better the approximation.\n", - "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", - "\n", - "For more details on the approximation, we refer to:\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price_1 = 1.438\n", - "strike_price_2 = 1.896\n", - "strike_price_3 = 2.126\n", - "strike_price_4 = strike_price_3 + strike_price_2 - strike_price_1\n", - "\n", - "# set the approximation scaling for the payoff function\n", - "c_approx = 0.25\n", - "\n", - "# setup piecewise linear objective fcuntion\n", - "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2, strike_price_3, strike_price_4]\n", - "slopes = [0, 1, 0, -1, 0]\n", - "offsets = [0, 0, strike_price_2 - strike_price_1, strike_price_2 - strike_price_1, 0]\n", - "f_min = 0\n", - "f_max = strike_price_2 - strike_price_1\n", - "iron_condor_objective = PwlObjective(\n", - " uncertainty_model.num_target_qubits, \n", - " uncertainty_model.low, \n", - " uncertainty_model.high,\n", - " breakpoints,\n", - " slopes,\n", - " offsets,\n", - " f_min,\n", - " f_max,\n", - " c_approx\n", - ")\n", - "\n", - "# construct circuit factory for payoff function\n", - "iron_condor = UnivariateProblem(\n", - " uncertainty_model,\n", - " iron_condor_objective\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XeYVPX1x/H3AVQ6YsPOWmJBUxRLVNSAKBI7FlAUFRRRQNjENM0vtpBiCktRAUUQRcHeoqIoYC8QYwyKjaZUaSIu0vb8/jh3ZRh2d2a2zHfuzHk9zzy7c+fe3c8Ow5y599tEVXHOOeeqq17oAM455+LNC4lzzrka8ULinHOuRryQOOecqxEvJM4552rEC4lzzrka8ULicpaI3CQimnBbKCKPish+ATMdJyL/FpHvRESjbU1EZIKILI9yXlbJsWOT/p7y291Z/SM25+ktImdXsH2uiPw9RCYXTw1CB3Auha+BU6Pv9wVuBV4SkUNU9dsAeUYCS4FOwLpo29XAGUAPYAHweRXHzwIuT9q2tJYzpqs38D/giaTt5wDLsx/HxZUXEpfrNqrqW9H3b4nIfOBV4OfAwwHyHASMUtVpSds+VtVH0zj+24S/Jyep6nuhM7h48UtbLm5mRF+LAETkGBF5Krrs9a2I/EdEupfvLCI7RJehLk38IWLmiMg/E7Z1EJG3o/2XiMgdItI0euxn0aWs+sCQ6JLUWBGZC/QCDiu/VFXdP6z8d4jIoUnbp4rIIwn3x4rIdBE5WUT+G/3dr4nIIUnH1ReR34nIJyKyTkS+FJGx5T8TaAtcmnCJ7bLosa0ubYnIBSLyQfRzvhCRQSLSIOHxy6Kf8UMReTHKNEtEulT3+XDx4YXExU1R9HVx9LU18DpwBXZ56VFgjIhcCKCqK4DH2fpy0s+inzUGQETaAM8Dy4BzgRuBi4DyN/B/A8dE3/8j+v5W7DLQs9glq2MS9qmUiDRIvKX1V29tb+BvwCDgQmAX4CERkYR9RgI3Aw8BpwO/BJpEj10TZX42Ife/Ksl7CjARew7OAoYB1wHDK9j9AeAp7Hn5FJggIntW8290MeGXtlzOS3iz3Re4A/gGmAygqhMS9hPgFWBP4Ergweih0cALIrKvqs6Otl0OzFDVD6L7fwDmAWeq6qbo560AJorIMar6JnZpDWBu4uUpEfkKaJXmJau2wIakv+8HqvpZGscm2gE4TlU/jX5GPaxgHgjMEpGDsDOlAao6NOG4iQCq+qGIfAt8lUbuW4Cpqlp+Vvd89Dz8WUT+qKpfJuw7WFXviTLNAJZgRWxEhn+fixE/I3G5bkfsjXcD8DFWTLqq6iIAEWkpIkNFZF7Cfr2BAxJ+xktYkbg0OqYZ0IXobCRyFPB4eRGJPApsBNrV4t/zEXBk0u2LavycueVFJPJh9LX803/76OvYavzs74lIfeBwtm6Pmoi9fySfgb1Q/o2qLsc6EvgZSZ7zMxKX674GOgKKXc5aqFtOWT0W+Cl2melDYDXWi+qs8h1UVUVkDNBTRG4CLsBe+w8k/JzdsE/PJBy3SUSWY5/+a0upqk6vhZ+zKun++uhrw+jrjljD/uoa/p6dgG1Iem4S7ic/NxXlaojLa15IXK7bWNkbr4g0BE4D+qnqiITtFZ1pj8HaPdoDlwFPqOrKhMcXYe0MiT+/PvaGvKImf0AGvou+bpu0fQes7SYTy4EmItK8hsVkGXaWt0vS9lbR12w9Ny6H+aUtF2fbYb2oysdzlF+2OjN5R1X9ArvscjN2qWpM0i5vA+dExaNcF+zD1mu1G7tS5W0NB5dvEJG9sHaPTL0cfe1RxT4pzxaiS30zgPOTHroAKAPerEY2l2f8jMTFlqp+LSLvAn8QkdXYG9tvscthzSs4ZDR2rf9L4MWkx/4IvAc8ISJ3Ytf1/wpMihra65yqfhn9PbeKSCn2Qe96qvGpX1U/FpFRwD9EZBesE8L2wHmq2i3abRbQSUQ6YWcwc6J2jWQ3ApOiy4MTgB9ilxLvSmpodwXKz0hc3F0EzAHGAUOwBvJxlez7DNZ4fq+qliU+oKozgc7YJZzHsMLyIHBe3cSu1EXAfOB+4E9Yj6mPq/mzrsHOwC7GuvmWAGsTHv8j1vj/EPAu1n16K6r6AtANOAJ4GhiIdYHuV81cLs+IL7XrCoWI/BwrJgdUo7utc64SXkhc3hOR3YEfYAPp5qvq6YEjOZdX/NKWKwS9sbEk3wH9A2dxLu/4GYlzzrka8TMS55xzNVIQ3X932mknLSoqqtax3377LU2aNEm9Y46IU944ZYV45Y1TVohX3jhlhZrlnTFjxjJV3Tnljqqa97e2bdtqdU2ZMqXax4YQp7xxyqoar7xxyqoar7xxyqpas7zAdE3jPdYvbTnnnKsRLyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOpTJ+PBQVcWKHDlBUZPdzVZyyurxREONInKu28eOhd28oLUUA5s2z+wDdu4dMtrU4ZXV5xQuJc1W54QYoLd1yW2kp9O0LH1d3dvc6MnRoxVlvuMELiatTXkicq8r8+RVv//pr+OMfs5sllcrmzavsb3CulngbiXNV2Xvvire3bg1lZbl1a906s7/BuVrihcS5qlx33dbbGjeGQYOynyWVQYMsW6JGjXIzq8srXkicq8rChfZ1991REfvUP2pUbrY5dO9u2Vq35vuLXGeckZtZXV7xQuJcZUpLYeRIOOccWLCAaS+/DHPn5vYbc/fuMHcu06ZMgZNOgtdfhw0bQqdyec4LiXOVue8+WLECiotDJ6me4mJYsAAeeSR0EpfnvJA4V5GyMigpgbZtoV270Gmqp3NnOOAAGDy48h5dztUCLyTOVeSFF2DWLBg4EERCp6meevVgwAB49114443QaVwe80LiXEUGD4bddoMLLgidpGYuvRRatrSzK+fqiBcS55LNnGlnJP36wbbbhk5TM02a2DQpjz1mHQWcqwNeSJxLVlICDRtunqcq7vr2tctzw4aFTuLylBcS5xJ99ZX11urRA3baKXSa2rHXXnD++XD33fDNN6HTuDzkhcS5RCNHwrp11kidT4qLYfVqGDMmdBKXh7yQOFdu3Tq4/Xbo1AnatAmdpnYddRQceywMGQKbNoVO4/KMFxLnyj30ECxeHN8BiKkMHAizZ8Mzz4RO4vKMFxLnwAbsDR4MBx8Mp5wSOk3dOOccmyts8ODQSVye8ULiHMArr8B778V7AGIqDRpA//4wbZr9rc7VEi8kzoF1+d1xR7jkktBJ6lavXja2xAcoulrkhcS5zz+HJ5+EPn1s/Y58tv320LMnPPggLFoUOo3LE15InBs61C77XHNN6CTZce21sHEj3HFH6CQuT2S9kIhIGxF5SURKRWShiNwiIvUzOL6eiMwQERWR0+syqysAX38N99wDXbvC7ruHTpMd++9vC16NGAFr14ZO4/JAVguJiLQEJgMKnAXcAvwSuDmDH3MFsEftp3MFafRoWLPGGtkLSXExLFsG48eHTuLyQLbPSPoAjYAuqvqiqo7AisgvRKR5qoOjQjQIuKFuY7qCsHGjXdY6/nhbd6SQnHgi/OQn1ujua5W4Gsp2IekMTFLV1QnbJmDF5cQ0jr8VeB14qQ6yuULz5JMwb17+DkCsioidhc2cCS++GDqNi7lsF5KDgFmJG1R1PlAaPVYpEfkRcDlwXZ2lc4Vl8GDYZx8488zQScLo1g1atfKuwK7GRLN4WisiG4BfqWpJ0vYvgXGqen0Vx04D3lbVX4tIETAHOENVK5zvQUR6A70BWrVq1XbChAnVyrxmzRqaNm1arWNDiFPekFmbzZpF26uv5rO+ffnyvPPSOiYfn9vW48axz5gxvDN2LKWtW2chWcXy8bnNFTXJ2759+xmqekTKHVU1azdgAzCggu0LgEFVHNcNWAw0j+4XYQ32p6fze9u2bavVNWXKlGofG0Kc8gbNetFFqs2aqX79ddqH5OVzu2SJ6nbbqV51VZ3mSSUvn9scUZO8wHRN4z0225e2VgLbV7C9BbCqogNEZBvgb8BfgXoisj1Q3jDfRESa1UVQl8cWLLAJGq+4Apqn7OOR33bZBS6+GMaNg+XLQ6dxMZXtQjKLpLYQEdkLaEJS20mCJsCewD+xQrQSeD96bALgkwa5zAwfDmVlNu+Us0b3tWth1KjQSVxMZbuQPAd0SjqL6AqsBaZVcswaoH3S7cLoseuB7nUT1eWl0lJbvOrss62h3cGhh0LHjlZg168PncbFULYLyQhgHfCYiHSMGsRvAv6pCV2CReQzERkNoKobVXVq4g14K9r1A1V9O7t/gou1ceNg5crC7PJbleJiWLgQHnkkdBIXQ1ktJKq6EjgJqA88jQ1GHAzcmLRrg2gf52pPWZl1dW3bFo47LnSa3HLqqXDggdYl2gcougw1yPYvVNUPgQ4p9ilK8fhcIE8XjXB1ZtIk+PhjuP/+/F1zpLrq1bN16q+5Bl5/Hdq1C53IxYjP/usKx+DBNjHj+eeHTpKbevSAli19gKLLmBcSVxj+9z+bCqRvX9h229BpclOTJnDVVfD44zBnTug0Lka8kLjCMGSILVp11VWhk+S2vn3tMtewYaGTuBjxQuLy31dfwX332aWbHXcMnSa37bmnXfq7+25YvTr1/s7hhcQVghEjYN06a0x2qRUXwzffwJgxoZO4mPBC4vLbunW2pOypp8LBB4dOEw9HHmndo4cMgU2bQqdxMeCFxOW3iRNh8WIfgJipgQOtwf2pp0IncTHghcTlL1Xr8tumDZx8cug08XL22dC6tXcFdmnxQuLy1yuvwH/+Y5+ufQBiZho0gGuvtefw3/8OncblOC8kLn8NHmy9tC6+OHSSeOrVC5o2tefRuSp4IXH56bPP7Pp+nz42fsRlrkUL6NnT2pkWLgydxuUwLyQuPw0bZpdn+vYNnSTerr0WNm60nm/OVcILics/X38N99wD3brBbruFThNv++0HZ55pY3HWrg2dxuUoLyQu/9x9N6xZY43sruaKi20Z3vvvD53E5SgvJC6/bNxol7VOOAEOPzx0mvxwwglw2GHWFdjXKnEV8ELi8ssTT8C8eT4AsTaJ2Nndhx/CCy+ETuNykBcSl18GD4Z994UzzgidJL906wa77uoDFF2FvJC4/PHOO/DGG9bTqL6v1Fyrtt3WesA9/zx89FHoNC7HeCFx+aOkBJo3t7EPrvZddRVst52flbiteCFx+eHLL+Hhh200drNmodPkp513hksugXHjYNmy0GlcDvFC4vLD8OFQVmaXtVzdGTgQvvsORo0KncTlEC8kLv6+/dbe2M45B4qKQqfJb4ccYjMpDx8O69eHTuNyhBcSF3/jxsHKlT4AMVuKi2HRInjoodBJXI7wQuLirazMGn+POMJW9XN1r1MnOOgg62rtAxQdXkhc3D3/PHzyiX1K9jVHsqNePRgwwNYpee210GlcDvBC4uJt8GDYfXc477zQSQpLjx6www6+VokDvJC4OPvgA5g8Gfr1swFzLnsaN7ZxJU88AbNnh07jAvNC4uJryBBbtKp379BJClPfvjaDwLBhoZO4wLyQuHhautSmNe/Rw5bTddm3xx5wwQUwejSsXh06jQvIC4mLpxEjYN067/IbWnExfPONLSTmClbWC4mItBGRl0SkVEQWisgtIlLlDHsicoiIPB/tv05E5ovI3SLiy98VonXrbOnXzp2tG6oL54gjoF07GDoUNm0KncYFktVCIiItgcmAAmcBtwC/BG5OcWgLYA5wHdAJuBHoCDwrIg3qLLDLTRMmwJIlfjaSKwYOhDlz4MknQydxgWT7TbgP0AjooqqrgRdFpDlwk4jcFm3biqq+AbyRsGmqiHwJvAD8CPh3Hed2uULVupyWT9Xhwjv7bJuapqQEunQJncYFkO1LW52BSUkFYwJWXE7M8Gctj756v89CMm0avP++fQr2AYi5oX59myzz1VdhxozQaVwA2S4kBwGzEjeo6nygNHqsSiJST0S2FZEDgb8A7wLv1EVQl6MGD4addoLu3UMncYl69oSmTX2AYoESzeJcOSKyAfiVqpYkbf8SGKeq16c4/nmsjQRgBvBzVV1ayb69gd4ArVq1ajthwoRqZV6zZg1Nmzat1rEhxClvplkbLVjAUZdcwryLL2ZugMWr8vm5rQ37Dx/O7k88wVsPPsj6nXfO6Fh/butOTfK2b99+hqoekXJHVc3aDdgADKhg+wJgUBrH/wA4GrgYO7OZATRMdVzbtm21uqZMmVLtY0OIU96Ms/bvr7rNNqoLF9ZJnlTy+rmtDZ9/riqiev31GR/qz23dqUleYLqm8d6e7UtbK4HtK9jeAliV6mBV/VRV31bV+7Ezk8OAi2o3ostJq1bZWIVu3WA37/Wdk/bdF846y8b4lJaGTuOyKNuFZBZJbSEishfQhKS2k1RUdR6wAti31tK53HX33baAVXFx6CSuKsXFsGIF3Hdf6CQui7JdSJ4DOolI4qLaXYG1wLRMflDU4L4jNr7E5bONG20+pxNPhMMOC53GVeX44+Hww60rcFlZ6DQuS7JdSEYA64DHRKRj1CB+E/BPTegSLCKficjohPt/F5G/iMg5ItJeRK4BJgGfY92HXT57/HGYP98HIMaBiP07zZoFL7wQOo3LkqwWElVdCZwE1Aeexka0D8ZGqidqEO1TbjpwPDAa+BdwLfAo8FNV/baOY7vQBg+26+9nnBE6iUtH167WjuVdgQtG1qcXUdUPgQ4p9ilKuj8BP/MoTG+/DW++aVPG169ySjaXK7bd1qaY//3vYeZMm4XA5TWf/dfltpISaN4cLr88dBKXiauugoYN7QOAy3teSFzu+uILePhhuOIKaNYs9f4ud+y0E1xyifXeWrYsdBpXx1IWEhHpISK+cpDLvttvt0ka+/cPncRVx8CB8N13MHJk6CSujqVzRjIG2A9ARDaJyFF1G8k5bMzIqFFwzjk2s6yLnzZt4JRT7APB+vWh07g6lE4hWQnsHn0v2FoiztWte++FlSt9AGLcFRfDokUwcWLoJK4OpdNrazJwn4h8jBWRsSJSaZdbVfUzFlczZWXWSHvkkXDssaHTuJro1AkOPti6Al98sU/9n6fSKSQ9gWuAA4HDsZHkX9VlKFfgnnsOPvkExo/3N564E4EBA6BPH1uv5IQTQidydSBlIVHVUuDvACLSEbhBVd+v62CugA0eDHvsAeefHzqJqw2XXALXX2//rl5I8lI6vbY2iciR0d2pQIXL4TpXKz74AF56Cfr1g222CZ3G1YbGje2M5Mkn4fPPQ6dxdSCdxvb1wHbR9z2AzFascS4TJSXQqBH07h06iatN11xjMxMMGxY6iasD6bSRfAjcJCJPYL22zhORylbMUlW9s9bSucKydKm1i1x+OeywQ+g0rjbtsYfNwTV6NNx8M7RoETqRq0XpFJL+wEhsckUFrqtiXwW8kLjqGTEC1q2zxlmXf4qL7YPC6NHwi1+ETuNqUcpLW6r6hqr+UFW3wc5Ifqqq9Sq5+ax6rnrWrYM77oDOneGgg1Lv7+KnbVto1w6GDrU1ZlzeyHSurfbYpS7nateDD8KSJT4AMd8VF8O8edbw7vJGRtPIq+o0ABE5GmgH7IAtd/uaqr5d+/FcQVC1RvZDDoGOHUOncXXprLNgn32sK/C554ZO42pJRoVERJoADwOdgE3Acmy52/oi8jxwfjTuxLn0TZ0K778Pd93lAxDzXf36cO21dmby7rs2e4GLvUwvbd0GHAN0Axqq6m5Aw+j+McBfazeeKwiDB9u04927h07isqFnT1sWoKQkdBJXSzItJOcCv1HVh1W1DEBVy1T1YeC3gA9Fdpn59FN45hm4+mobP+LyX/Pm0KsXPPQQLFgQOo2rBZkWkhbAF5U89gXQvGZxXMEZOhQaNLBC4grHtdfa5Jy33x46iasFmRaS94GrRba8kB3dvzp63Lm0NFizBsaMgQsvhN12Cx3HZdM++1jD+8iRUOrNqnGXaSG5HmtonyUifxGRYhH5M/ARcEr0uHNVGz8eioo47owzbAGrAw4InciFUFwMK1bAXntxYocOtoDZ+PGhU7lqyLT778sichjwB6w9ZDdgEfA20EVVfYyJq9r48TaPVmkp35/W/ulP9ibije2FZf5866W3YoW9FubN2zzHmr8WYiXTMxJU9UNV7aaq+6lq4+jrRV5EXFpuuGHrSxmlpbbdFZYbbrAxRIn8tRBLGRUSEfm7iLSpqzCuAMyfn9l2l7/8tZA3qtP99wMReUdE+oiIT+HpMrP33pltd/nLXwt5I6NCoqr7AB2BWcDfgEUi8kC0cqJzqQ0aZKObEzVubNtdYRk0yP7tE/lrIZaq00YyRVV7YA3t/YE9gUkiMk9EbhaRfWs7pMsjJ5xg4weaNUNFoHVrGDXKG1cLUffu9m/fujXft5T84x/+WoihjAtJOVVdo6qjgRuB14G9gN8Bn4jIkyLSupYyunwyfLj11Pnvf5n28sswd66/cRSy7t1h7lzeHTPG7i9bFjaPq5ZqFRIRKRKRG0VkNvACsAbrDtwMOBMoAibUVkiXJ7791j6Bduli3X2di5QWFUGnTjbSff360HFchjLttXWJiLwMfAZcCowB9lHVn6vqo6q6TlWfBa4FKluO1xWqe++FVatg4MDQSVwuGjgQFi+GiRNDJ3EZyvSMZBSwGOikqvuq6q2q+mUF+30C/LGiHyAibUTkJREpFZGFInKLiFS5sqKIHCkiY0Tks+i4j6MzooYZ5nehlJXBkCE2bfixx4ZO43JRp05w8ME2G3Ty+BKX0zIa2Q7srqorU+2kqouAm5O3i0hLYDK2yuJZwH7AP7CC9vsqfmTXaN+/Ap8CPwJujb766jhx8Nxz8MknNrLd1xxxFRGBAQOgTx949VXrmOFiIdMpUlIWkRT6AI2w6VRWAy+KSHPgJhG5LdpWkb+q6lcJ96eKyHfASBFprarzapjL1bWSEth9dzjfVxpwVbjkErj+ejsr8UISGxk3totIVxGZLCLzRWRp8i3F4Z2BSUkFYwJWXE6s7KCkIlLuvejrLhn9AS77PvgAJk+Gfv1gm21Cp3G5rHFjOyN58kmYPTt0GpemTBvbLwLuxRrb9wSeAp6Jfs5qYHiKH3EQNpjxe6o6HyiNHsvEsUAZ8HGGx7lsKymxRavKJ+RzrirXXGODVocODZ3EpSnTM5JfYW0TfaP7d6hqT2AfYBlWEKrSElhVwfaV0WNpEZFdgRuA+6q4HOZywdKl1i7SowfsuGPoNC4O9tgDunaFe+6B1f7fOw5EM+gdISJrgNNVdaqIbABOVtWp0WPnAINVtaiK4zcA16nqkKTtC4Cxqppy2k8R2RZrsN8TaFtZu42I9AZ6A7Rq1arthAnVG9ayZs0amjZtWq1jQ8i1vK3vvZd9xo7lnXvvpTRpDqVcy5pKnPLGKStsnbfZxx/Ttk8fPrvmGr7MsXa1uD+3mWjfvv0MVU09lENV074BC7CuvwBzgasTHusCfJPi+KXAjRVsXwP8Ko3fL1ibynLgoHRzt23bVqtrypQp1T42hJzK+913qq1aqXbuXOHDOZU1DXHKG6esqpXkbddOtahIdePGrOepSl48t2kCpmsa77GZXtqajnW5BWsf+YOIXCkil2KTOL6d4vhZJLWFiMheQBOS2k4qMRjrNnyWqqazvwtpwgRYssQHILrqGTjQptB58snQSVwKmRaSPwPliwX8AXgHuAMb4b6M6FJSFZ4DOolIs4RtXYG1wLSqDhSR32GTRF6sqq9lmNtlm6o1srdpAyefHDqNi6Ozz7apdEpKQidxKaRVSESkkYicCxwHNBCRVqq6SlXPApoC26vq0aqaqr/eCGAd8JiIdIzaMW4C/qkJjebRCPbRCfcvAv4EjAMWiMhPE247Z/D3umyZNg3+8x/7VOkDEF111K8P/fvb4MQZM0KncVVIWUiiaeFnAg9jl6/uAz4WkVMA1ObXSqtrhVrD+ElAfeBpbPT7YGwG4UQNon3KnRJ9vQx4M+l2Wjq/22VZSYn10rr44tBJXJz16gVNm9oARZez0jkjuQ0br3E80Bg4BBsMOLI6v1BtzfcOqtpIVXdT1f9T1U1J+xSp6mUJ9y9TVankNrY6OVwd+uwzeOopG1jWqFHoNC7OWrSwYjJxIixcGDqNq0Q6heQY4Peq+rqqfqeqHwFXAXuLyG51G8/F0tCh0KAB9O2bel/nUunfHzZtsinmXU5Kp5DsBiS3fXyOdcXdtdYTuXhbtcoGknXrBrv55wxXC/bbD846C0aOhNJUY55dCOn22vI5nV16Ro+2Bay8y6+rTQMHwvLlcP/9oZO4CqRbSCYlTcy4KNr+UoaTNrp8tnEjDBtms7YefnjoNC6fnHACHHaYdeLwtUpyTjrTyG+1rohzFXriCZg3z3vYuNonYmcll14KL7xgi2C5nJGykKiqFxKXnpIS2GcfOPPM0ElcPuraFX7zG3udeSHJKRmvR+Jchd59F15/Ha691gaSOVfbttvOpph//nn46KPQaVwCLySudpSUQLNm0LNn6CQun/XpYwVlyJDU+7qs8ULiam7BAnjoIbjiCmjePHQal8923tmW4x03znpxuZzghcTV3PDhUFZmA8ecq2sDBsDatTauxOUELySuZkpL7T/02WdbQ7tzde3QQ21G6dtvh/XrQ6dxeCFxNTVuHKxc6QMQXXYNHGhzbz38cOgkDi8kribKyqzRs21baNcudBpXSE49FQ480Aco5ggvJK76Jk2CWbN8zRGXffXqWVvJ9OnW7dwF5YXEVV9JiU3MeMEFoZO4QtSjB7Rs6Sso5gAvJK56Zs60qSr69YNttw2dxhWiJk2gd294/HGYMyd0moLmhcRVT0kJNGxo/5GdC6VfP7vMNXx46CQFzQuJy9xXX8F999mlhZ12Cp3GFbI994Tzz4e774ZvvgmdpmB5IXGZGzkS1q2zxk7nQhs4EFavhjFjQicpWF5IXGbWr7eBYJ06QZs2odM4B0cdBccea13RN20KnaYgeSFxmZk4ERYv9gGILrcMHAizZ8PTT4dOUpC8kLj0qdqiVQcf7OtBuNxyzjmw997eFTgQLyQufa++Cu+95wMQXe5p0MCo1nPKAAAfqUlEQVQmDZ02zV6jLqu8kLj0lZTADjvAxReHTuLc1q64wsaW+FlJ1nkhcemZPdvWZO/TBxo3Dp3Gua1tvz1cfjk8+CAsWhQ6TUHxQuLSM3SoLaF7zTWhkzhXuQEDYONGuPPO0EkKihcSl9rq1XDPPdC1K+yxR+g0zlVu//3hjDOskKxdGzpNwfBC4lIbPdpGDXuXXxcHAwfCsmXwwAOhkxQMLySuaps22WWtdu3giCNCp3EutZ/9DH78Y+uq7muVZIUXEle1J5+EuXP9bMTFh4i9XmfOhJdeCp2mIHghcVUrKYGiIluT3bm4uPBC2GUXOytxdS7rhURE2ojISyJSKiILReQWEamf4phtReRvIvKqiKwVET9fzYYZM2wQ4rXXWo8t5+Jiu+2sh+Gzz9oqnq5OZbWQiEhLYDKgwFnALcAvgZtTHNoYuAIoBd6oy4wuQUkJNG0KPXuGTuJc5q6+2hZdGzo0dJK8l+0zkj5AI6CLqr6oqiOwIvILEWle2UGqugrYQVU7AY9nJ2qBW7gQJkyAXr2gRYvQaZzL3C67QPfucO+9sGJF6DR5LduFpDMwSVVXJ2ybgBWXE6s6UNW7X2TV7bdbj63+/UMnca76Bg6E0lK4667QSfJatgvJQcAWFyxVdT52yeqgLGdxlSkttcWrzjoL9tsvdBrnqu9HP4IOHWDYMNiwIXSavNUgy7+vJbCqgu0ro8dqjYj0BnoDtGrViqlTp1br56xZs6bax4ZQG3l3e/ppDly+nPdOPJGv6/BvL8TnNlvilBXqNu+OHTvyw5df5sNbb2Vphw41/nn+3FZAVbN2AzYAAyrYvgAYlObP6Ed0pSvdW9u2bbW6pkyZUu1jQ6hx3rIy1YMPVj3sMPu+DhXcc5tFccqqWsd5N21S/cEPVI86qlZe04X03ALTNY332Gxf2loJbF/B9hZUfKbisu2FF+Cjj6C42NcccfmhXj2bzPGdd+Ctt0KnyUvZLiSzSGoLEZG9gCYktZ24QEpKYNddbYJG5/LFpZfaNPM+QLFOZLuQPAd0EpFmCdu6AmuBaVnO4pJ99BE8/zz07Wv9753LF02bwpVXwqOPwrx5odPknWwXkhHAOuAxEekYNYjfBPxTE7oEi8hnIjI68UAR6Swi5wE/ie6fF91aZy9+nhsyxEYEX3VV6CTO1b5+/exy7fDhoZPknawWElVdCZwE1AeexgYjDgZuTNq1QbRPojuBh4Fe0f2Ho1v7uspbUJYvh3Hj4JJLYOedQ6dxrvbtvTece66NKVmzJnSavJLt7r+o6odAlX3wVLUonW2uFo0caQsBDRgQOolzdae4GB56CMaOtTMUVyt89l8H69fbSPaTT4ZDDw2dxrm689OfwtFH22XcsrLQafKGFxIHDz9sc2sVF4dO4lzdKy6Gzz6Df/0rdJK84YWk0Klal98DD4ROnUKnca7unXsu7LWXdwWuRV5ICt3rr8P06Ta5XT1/ObgC0KCBtY9MmQLvvx86TV7wd45CV1ICLVtaby3nCsWVV0Ljxvb6dzXmhaSQzZkDjz9u40aaNAmdxrnsadkSLrsMHngAliwJnSb2vJAUsmHD7HJW376hkziXfQMGWI/FO+8MnST2vJAUqtWr4e674fzzYc89Q6dxLvsOOABOO80KyXffhU4Ta15ICtWYMfDNN9bI7lyhKi6GpUvhwQdDJ4k1LySFaNMmGDoUjj0WjjoqdBrnwunQAX74Q+sK7Kt5V5sXkkL09NMwe7YPQHROxM7KP/jAugO7avFCUohKSqB1azj77NBJnAvvootsolIfoFhtXkgKzXvvwbRp0L+/DcxyrtA1bAhXXw3PPAOffho6TSx5ISk0JSU2ZqRXr9T7Olcorr7aFnMbMiR0kljyQlJIFi2y3ik9e9qyo845s+uucOGF1ptx5crQaWLHC0khueMO2LgRrr02dBLncs/AgVBaauOrXEa8kBSKtWthxAg44wzYf//QaZzLPT/5CfzsZzbjw8aNodPEiheSQjF+PCxb5l1+natKcTF88QU89ljoJLHihaQQlK858uMfw4knhk7jXO467TTYbz+fFThDXkgKweTJMHOmfdoSCZ3GudxVv75N5vjmm/D226HTxIYXkkJQUgKtWkG3bqGTOJf7Lr8cWrTwAYoZ8EKS72bNgmefhWuuge22C53GudzXtClccQU88oi1l7iUvJDku6FDrYD06RM6iXPx0b+/tS0OHx46SSx4IclnK1bAvfdC9+6wyy6h0zgXH61bQ5cuMGoUfPtt6DQ5zwtJPhs1ygZY+ZojzmWuuBhWrbIPY65KXkjy1YYNdlp+0km23oJzLjPHHANHHmnzb5WVhU6T07yQ5KtHHoEFC3wAonPVJWL/fz75BJ57LnSanOaFJB+pWtfFAw6Azp1Dp3Euvs47D/bYwwcopuCFJB+9+Sa8+64NrKrn/8TOVds220C/fjao94MPQqfJWf4uk49KSmya+B49QidxLv5694ZGjXytkipkvZCISBsReUlESkVkoYjcIiL10ziuhYiMEZGVIvK1iIwXkR2zkTlOtlu8GB591F78TZuGjuNc/O2wA1x6Kdx/PyxdGjpNTspqIRGRlsBkQIGzgFuAXwI3p3H4ROBnwBXAZcCRwBN1kTPO9njiCWsk7NcvdBTn8seAAbBunS3F4LaS7TOSPkAjoIuqvqiqI7Ai8gsRaV7ZQSJyDNAJuFRVH1XVx4GLgXYi0rFOko4fD0VFnNihAxQV2f1cNn487L03e02caCPZX3kldCLn8sdBB8GPfgQ33xyv94QsvYdlu5B0Biap6uqEbROw4lLV/OadgSWq+v27o6q+A8yJHqtd48fbpaF58xBVmDfP7ufqC6c87xdfIGCDEHM5r3NxM348fPwxlJXF6z0hS+9hDerkp1buIODlxA2qOl9ESqPHnq7iuFkVbP8oeqx23XCDvRknKi2Fyy6DP/2p1n9djX3yydYrupWW2t/RvXuYTM7lkxtusEtbifw94XvZLiQtgVUVbF8ZPVad4/at6AAR6Q30BmjVqhVTp05NO+SJ8+dT0aodunEjX+28c9o/J1t2/vDDivPOn8+0DP7ubFuzZk1G/y6hxSlvnLJC7uf194QUVDVrN2ADMKCC7QuAQVUc9yLweAXbxwOvp/q9bdu21Yy0bq1qw/q2vLVundnPyZa45Y1MmTIldISMxClvnLKqxiBv3P6P1VJeYLqm8d6e7TaSlcD2FWxvQcVnHKmO2z7FcdUzaBA0brzltsaNbXsuilte5+Imbv/Hspw324VkFkltGiKyF9CEittAKj0uUlnbSc10724z57ZujYrYlNKjRuVue0Pc8joXN3H7P5blvNkuJM8BnUSkWcK2rsBaYFqK43YVkXblG0TkCKx9pG5mU+veHebOZdrLL8Pcubn7gikXt7zOxU3c/o9lMW+2C8kIYB3wmIh0jBrEbwL+qQldgkXkMxEZXX5fVd8EJgHjRKSLiJyNtY+8pqqTs/oXOOec20JWC4mqrgROAupjXX1vBgYDNybt2iDaJ1E37KzlHmAcMAM4py7zOuecSy3b3X9R1Q+BDin2Kapg2yrg8ujmnHMuR/jsv84552rEC4lzzrkaERtzkt9E5CtgXjUP3wlYVotx6lqc8sYpK8Qrb5yyQrzyxikr1Cxva1VNOXS/IApJTYjIdFU9InSOdMUpb5yyQrzyxikrxCtvnLJCdvL6pS3nnHM14oXEOedcjXghSW1U6AAZilPeOGWFeOWNU1aIV944ZYUs5PU2EuecczXiZyTOOedqxAuJc865GvFC4pxzrka8kDjnnKsRLyTOOedqJOuz/7raEa0s+XNAgIdVdbmI7AlcB+wHzAVGqeoH4VKCiPwGeDZ0jnSJSCOggap+k7BtZ6Af0AYoA/4D3KGqX4dJ6Vxu8e6/ERERbH2T04CDgR2ATcAS4C1grKp+Ei7hZiJyFPAC0BTYCKwAOgHPYplnAocCuwIdVfXVQFERkTJAsSWRHwAmqupnofKkIiLPAp+q6oDo/jHYKpxl2Bo4ArQF1gMdVHVmwKyHAY1U9Y2EbacCv2Nz0XsfuClxn1wR/Z87Azgce41Mxz505PSbkog0x+au6qCqr4XOA99n6gBsC/xLVb+NPgD1xVaSnY19sFxYJ78/x//NsiJ6wp/F3iCWYKs47oG9uJ/D/iEOBG5V1VtD5SwnIi9iZ5PnAN9ii4Odjb3RnaeqG0RkO+AJoKGqtg+YtQz4K/BD4GQs97+xovKQqi4Ila0iIrIM6KWqT0b338Ke47PLz1JEpAXwFPCdqnYKmPUt4GlVHRTd7wncDUwBXsaK3knA8cC55X9ToKxvYM/rR9H9ltiHobbAmmi3ptiHtk6JZ4QhiMg1VTzcCPgbMAT4FEBV78hGroqIyP7AS8Be0aY5wCnAi8D2wOfY+9daoK2qflnrIVS14G/Ag9gL4ocJ23YHngceje6fiL3ge+ZA3uVA54T7u2CfPk9J2u80YFngrGXAUdH3LYHe0Yt+Y3SbGm3bMfTzGmUsBU5IuL8++XlNeG6/DZx1dWI24DNgWAX7jQDez5XXQXR/NHYmfWrCtlOBlcDgHHgdlGFn92WV3BIf2xQ460PYmef+2JWU+6L3szeAZtE+O0X7jKyLDN7YbjoDv9WE6/hqp4B9gLNFZDdVnQb8CRgQKGMijW6J90naVtH9oFR1paqOUtWTgD2BX2Kn4iOAhSLyr6ABzf+AxDO4Jdh/zmQ7YkUnpLKk+62BRyrY7xHsE2kuORO4RVWfL98QfT8I6BIs1WZPAUuBXkB9Va1XfsNeDwL8LNqWvCx4trUDBqnqZ6q6Avg91k76d43O7FR1GVDClq/tWuOFxAj2CSPZpuixFtH9t4EDshWqCjOA60SkmYjUA64HFgBXi0h9ABFpAFyDvTHmHFVdrKpDVPVYYB/gRuwsMLS/AL8VkZ7RczgI+JuInCwi24rIdlE7xJ+xT4IhvQp0T7g/E6houvAjsddHLtkeaxNJNgNr2wtKVc8GLgV+BbwrIsclPhwmVaVaAosT7pf/WyevwTQb+wBX67zXlpkM/FFE/quqs+H7a7hDsX+g8kb2pkAu9NS5Abv+uQK7PFSKNbQ9AnwqIuWN7btjlwtymqrOw97A/5IDWR4Tkf7Yp7fBwMfYB4nyT86Kfbh4CnuTCel64PXow8QwrJH9XhHZAbtkCNZGMhD4bZCEWzpXRMoL3UqgogWTdsIu2QWnqi+IyI+w5+9fIvI81isyaPtNBZZiZ6PlNgEjsbPpRLtQR9m9sR2Ius0+j53+z8Oui++DNbpfqKrPRfvdhq0Y1jVU1nJR5tOxDwOPquoiEdkV+DWb/467VfXfAWMiIjcCd2kd9RapKyKyI9AVOAr7hFwPK9wfAc+o6oyA8b4nIj8B7gSOZnORI+H7ldglpCFhEpqo00WysaraM2m/kUAbVT0+O8nSE/3fug277DYSKy7tVfWVoMEAEXkCWJH8XFaw3zDgYFXtWOsZvJCY6JLQBcCPgYZYw+UD0TVH53KaiByMFZPkoveGqm4ImS0TInIl8Lmqvhw6S0Wi7uCDsQ9rp2kOdKsWkVZAY1Wdk2K/X2CdLl6q9QxeSPKPiNRX1YrafHKGiDTEGgTLgM9y8c0uaiPZl4QxRao6P2wq53KPN7YnEZFDRORcEblCRHpF3x8SOlcyEekiIk+IyLMicka0rauIzAXWi8i86NNdUCJycTS+ofx+AxH5C/aJ+b9YZ4AVIpIL1/ABEJG2IvIUdj35I+B1bHzDHBFZICK3iEjjoCHziERC56iIiDRK/rcWkZ9E7wttQ+XKOSH7P+fSDeiJtStU1Hd8EzblyOWhc0ZZL4hyvQY8iTW2X4m17YzGRrM+GOXuFDjrh8DVCff/EeX9P+A4rOviTdhgqetz4Lk9BWsbm471zLoJG5S6Psr8S6x31H+AljmQ93RsXM4HwEQSxsAk7HM04cc6nEI0piFh29nY4NSNwIboOT8t9HMaZWsBPB7l2gjcBdQH7k16X3gd2Cl03jT/pnPr6nUQ/I/LhRvQP3rB3I6NAt4petHUj75vBwyP3mD65kDed4ERCfe7R9n+kbTfGGBy4KylwIkJ95cCAyrY7zpgXg48tzOAeyt5jczFzuIbRm+AdwTOenLCm9nwKPumqFhLwn65UEg2seWAxHOiN+M3on/766LvN1LBANAAeYdi06D0B3pEHx4eBb6IiuLO2PizBcCdofOm+TfVWSHxNhJARGZjb8y3pdjv10AfVd03O8kqzbEa6KKqk6P7LbDeOR01oZEyuuQ1UlWDjc8QkUVAP1V9NLq/DjtLmpq038nAU6raKPspt8ixFjhTVV9M2t4Sm1HgEFX9SER6AH9V1d1C5IwyvYbNC3Z5wrae2Jvgi1iPw+9E5Gis0T3YwLmo19ZPVfWd6P6/gQWqekbSfs8CTVT1xAAxE3PMAf6kqndF9w/DCvXlqnpvwn5XYmfS+4RJCiJyT5q7tsYGUdb668DbSMyuwDtp7PcOOTBYCuvamfhiKJ+raFXSfmuwgV8hPYUNntw2uj8ZuLCC/S7EPvWFthTruZfsx9jzXj6OaB6bB6qGcihwf+IGVb0Hm87np8DL0ZiSXHQo1o022ShsEsfQdmHz+DGI5tTC5q1K9BkVj4fJpkuxs6Qfpri1ruwH1JQPSDT/Ba4UkVdUtaL+7uUzlV4Z7RvaPGx210kAqrop6pb4UdJ++7LliNcQfoeNwP6fiNwNPA38VUQOZfOguQ7AYdhMsKGNAm4VkSZY28N6bGT4DcAU3TweZl8gdA+u74AmyRtVdUY0EnsSdrnopiznqkzi5Y+v2fwBKNG35MYH3DlYQZ4W3T8euxR3LNY2We44wr8OPgXeUdUeVe0kIudh7Wi1zguJ+SU2IPFDEXkMm/J8FfbC3x44CLumuye5MVL8MZKmOlDVtyvY7yK2fNFnnaquEJGfYm/Ev8A+6QEcE93WY5dhjlfVd8Ok3ExVB0WXYX6LTdsC9jp4EBuEVm4DNvdaSP/FrtM/lfyAqs6OismzwNgs56rMJBHZGH3fAvgJmz9MlDsIWJTNUJUYAQwRkR9iRe8C7EPRH0SkKTYB4uFAMRB6RvC3sAKXSuKA1VrlbSQREdkPGxV+KpunYy73BdZz52+qmnxqm7NEZG9glarmxJQTACJSxJaD5j7X3BxDsg02zqUhMDuXnsNyInIVNk3KYVrJwNnozOpxrP0s2Cf9aIaDZJ+q6gNJ+02NtudC1/VrsUuu22CzRIwQkQuxNqjySTtHAb8J+RqOuiEfp6pDU+y3E9bGN62q/aqVwQvJ1qJ+4+VtC6tUNfQsr865HBFd5t5JVb8KnSVXeCHJM9Fp97+B7rlwqUhiuHStxGQZY+dyhReSBNEbyC7Ax6q6VUNgdGr4c1Udl/VwW+b4eRUPN8Ea1H5LNIW8qj6bjVwVkRgtXQvxWsY4XdE8XOer6i2BcwRdDramojORxKWBZ2B/R/A3UbFZlc/F/j+NVdVZIvJj4GY2f/i5XRPWf6lVoQfJ5MIN2A54GHuj2IQ1pI4GWiTtF3xgV5QjTqu3LQPOSrj/FtYbqlnCthZY75hJOfDcvogtVbs9dm18OPAlNoPANgmvl+ewXlzBX79p/E11NhAtgwz7Y70Ny1+Xn2NvcLOxYv0uNn38EmDPHHjO3sBmyi2/3zLKWBblXM3mAZXNQuWMsnXCPogtjp7X1dgCViuxwaq3R//vNmFLRtd+htD/YLlwA/6A9dK6ElsYaED0gv4U+EHCfrlSSGZgPVsux/qGJ95+FL3ALyjfFjhrbJaujXLEaRnjvdO89Qn9uiUHloPNMG9slgaOisXD2EqOYB0wVgKjk/a7D3irTjKE/gfLhRvW3bdf0rZdgVeAr4Bjom25UkgEW+d8KTZtwz4Jj7WI/hNsNedSoKzvADcm3P8C6FbBfj2Ar3Ig77KkN4udo+fz5KT9fp4DhaT87DPVLRfOTBcCFyTcbx3l6pK03+XAJznwOkguJF8BAyvYL/jUPlj35I4J91tG+Tsk7XcK1nmo1jP4OBKzF0kDDVV1sYichFXxySLSndzo347aq2KUiDwE/BH4r4gMj77PNX8BxovIF8A4Ni9duxy7nCXYaXguLF0Lm5cxfh0bHJe4jPHLaoM/c2UZ42+Al4G7U+zXDuvaHlLw5WBrKJeXBl7LlgNTy79Pnm6oMTaItdZ5ITELgR9gZyDfU+sb3k1ESrBTx6CN7MlUdRXQT0RGYX3bPwX+Sg6tKa3xWroW4rWM8TtYO96/qtopWvsltODLwVZDXJYGfh0bKPlplOXv2Kzbv4lm6/gmmo/v11jhq3Xea4vvJz3bV1V/VsU+v8M+TasGnPyuKiLSDVsOdE9scrbgy4CWk5gsXQuxWsb4/4Deqpo8gDZ5vxOAm1W1fXaSVZgh+HKwmZAYLQ0sIvtjc9iVvw7mYmf5j2AzBcwDirAPRu1V9T+1nsELyfdd57oCf1HV5VXsdxF2rfzyyvYJLbrs0gRYozm+SqIrHJIDy8HWBcmRpYGj8WPHYT0NX1LVtdHA6ivY/OHnAVX9sk5+vxcS55xzNZELs2y6OiIid4nI6NA50hGnrBC/vM7VJW9sz4CI3AXUU9VeobOkqT3x+bAQp6wQo7wiMhm7+nBS6CypxCkrxCtvXWb1QpKZ2Lx5AKjq/qEzpCtOWSF2eYX4vG7jlBXilbfOsnobSR6Lun3uoqqhF95JKU5ZIX55natLcamkOUFEGkZrfMTFadhKb3EQp6wQo7wisk1cXrdxygrxyluXWb2QZCY2bx6uMIhIXxH5XES+EZG3ReSSCnY7nBx43cYpK8Qrb+is3kYSQyKSbp/1ikbiZlWcskK88kYDUIdhywC/h40jGCsiZwGXqOrakPkSxSkrxCtvLmT1NhIyfvNoE3pku9i61x9j0yBUZQ/g6JB545QV4pVXRKYDL6vqrxO2nQSMx0Y3n6a2KNfRwBueNX1xypsLWb2QEK83DwAR+Q+2+FbXFPudB0wM/CKPTdYoR2zyisg3wBmqOjVpexG2Xkp9oDM2H1ToN7vYZIV45c2FrN5GYv4H/E9Vz6/qBvwzdNDI28BP09ivfELEkOKUFeKV92vszWELqjoXOBabEv8N4MjsxqpQnLJCvPIGz+pnJHw/8dqpqto6xX7nYmt4By3AIrIfcIiqPpViv0ZYF9XkqbqzJk5ZoxyxySsiTwLfqOrFlTzeCJu4rzOBJxuNU9YoT2zy5kJWLyTE683DuXIicj5QDJyuqisq2ac+cCc22eg+2cyXlCM2WaMsscmbC1m9kDjnnKsRbyNxzjlXI15InHPO1YgXEldQROQyEZkRjQBeKSLviUid9MYTkQNE5CYR2T6NfW8SEU24LRSRR6P2u1THXhYd07R2kjuXGS8krmCILZd8NzAJ6AL0AJ4EzqyjX3kAcCOQspBEvgaOiW7XAT8BXhKRJimO+1d0TGk1czpXIz5Fiisk/YCRqnp9wranReTmUIGSbFTVt6Lv3xKR+cCrwM+Bh5N3jnri1FfVr4CvshfTuS35GYkrJNsDi5M3akLXRREpii4TXSQi90WXwJaKyI3Jx4lIh2iCvO9EZImI3FF+eUlEfgY8He06J/qZczPMOyP6WhT9zLEiMl1EzhaRmcB3wNEVXdoSkUYicpuIzBORdSIyR0T+nJT/ChGZGT0+T0R+jXPV4GckrpD8G+gffdJ/RlWXV7Hv34BngPOAE4AbRWSZqt4OICJtgOeBF4Fzgb2AvwD7AqdGv+s64O/YZbRFwLoM8xZFXxcnbbsNuAVYgs3mukU7iogIdsnuGOBWrCDtARyfsM+vgD9FP2sq0Ba4VURKVXV4hjldoVNVv/mtIG7Aj4DZ2PQmZcBM7A25ecI+RdHjLyQdexewAFtqGWAC8Cl2aal8nwuiY4+J7p8e3S9KI9tN2FQWDaLbAcAUYDWwW7TP2Ojn/STp2Mui7U2j+52i+2dW8ruaA2uAG5O234IVrfqp8vrNb4k3v7TlCoaq/hc4GGtcvwObK+v/gOkV9Hh6POn+Y8DuwJ7R/aOAx1V1U8I+jwIbgXbVjLgjsCG6fYyd3XRV1UUJ+yxQ1f+k+DkdgBVa+UwNxwBNgIdFpEH5DXgZaMXmv9G5tPilLVdQVHUd1nbxNICI9MJ6cvUChiTsujTp0PL7uwHzo69Lkn72JhFZDuxQzXhfAx2xs4nFwEJVTZ56YslWR21tR+xSWmXKJ/ibWcnjewE+DZBLmxcSV9BUdbSI3AYclPTQLpXcX5TwdYt9ol5UOwIVzneUho2qOj3FPunMabQcK3SVKc93OhUXpo/T+B3Ofc8vbbmCISLJxQER2RlowdZvqOck3S9vMP8yuv82cE5UPBL3aQC8Ft1fH31tWIPY1fESsIOInF7J428Ca4HdVXV6BbdvshfV5QM/I3GF5INoyu0XsEtVrbGeVaXAvUn7HhItL/Ao1murFzBAVcuix/+ILWv6hIjcibUr/BWYpKpvRvuUf7K/SkQmAKWq+kHd/GlbeBEbdPmAiNyC9SDbDThBVa9S1VUichMwRERaA69gHyoPANqranIRda5KXkhcIbkFOAsYirVjLMYW/OmqqnOS9v01dunnUWy8xq3A991iVXWmiHTGutA+hvWuejA6rnyfeSJyHXAt0B87mymqiz8skaqqiJwTZR6ILRG9EHggYZ/bRGQhNv34L7G/8RNgYl3nc/nHp5F3LkG0POkcbOnSZ8KmcS4evI3EOedcjXghcc45VyN+acs551yN+BmJc865GvFC4pxzrka8kDjnnKsRLyTOOedqxAuJc865Gvl/T2D1lNDCAdoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", - "x = uncertainty_model.values\n", - "def payoff(x):\n", - " if x <= strike_price_1:\n", - " return 0\n", - " elif x < strike_price_2:\n", - " return x - strike_price_1\n", - " elif x < strike_price_3:\n", - " return strike_price_2 - strike_price_1\n", - " elif x < strike_price_4:\n", - " return strike_price_2 - strike_price_1 + strike_price_3 - x\n", - " else:\n", - " return 0\n", - "y = [payoff(x_) for x_ in x]\n", - "plt.plot(x, y, 'ro-')\n", - "plt.grid()\n", - "plt.title('Payoff Function', size=15)\n", - "plt.xlabel('Spot Price', size=15)\n", - "plt.ylabel('Payoff', size=15)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "exact expected value:\t0.3569\n" - ] - } - ], - "source": [ - "# evaluate exact expected value (normalized to the [0, 1] interval)\n", - "exact_value = np.dot(uncertainty_model.probabilities, y)\n", - "print('exact expected value:\\t%.4f' % exact_value)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate Expected Payoff" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# set number of evaluation qubits (=log(samples))\n", - "m = 5\n", - "\n", - "# construct amplitude estimation \n", - "ae = AmplitudeEstimation(m, iron_condor)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exact value: \t0.3569\n", - "Estimated value:\t0.3428\n", - "Probability: \t0.9697\n" - ] - } - ], - "source": [ - "print('Exact value: \\t%.4f' % exact_value)\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHjVJREFUeJzt3XvUHFWd7vHvw0UIt3APDDJE8BJhZHnkFWEOI4ncwzlyEU0WembFQaMeFWYWOiAiBHRYBkdAF+MClk44nNGEGWA4wyWEcHnDXQgSxEkCBg13EZyXxBiIQH7nj13BSr39dlffqvN2ns9avd7uXbt27dqp9K+rau9digjMzMy6bZNeV8DMzDYODjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDGrQ9IMSYPZ+0FJM5pcf6KkKJY1Qt4bJT1WZ/mlkoYkbVFy2++UFJKObqbOZt3igGO24ZgN/IWk/YoLJG0KnARcFxFrKq+ZWQc44JhtOP4fsBqYWmPZJGAcKSiZjUoOOGYtknSwpP+Q9LykP0haJOmTrZYXEauAG4EpNRZPBV4E7sy2vYekWZJ+LelVSU9IOk/S5nXqu1l2ie3zhfRvSfpNIW0vSVdnl/BWS5or6V2t7psZwGa9roDZhiwiZuTeTyws3gu4F7gMeA3478AsSWsjYna2ziCgYll1zAY+IemAiHgYIAsiJwA/jog3s3y7AC8Dfwu8AkwAzgV2Br7Y5G6uR9LO2X69CEzP9u0sYL6k9/iSnrXKAcesRRExZ917SQLuAt4OfJbWL33NJQWQqcDDWdpRwI75MiNiEbAot/17gVeByySdFhFvtLh9gNOBLYDDIuKVrPz7gOXANODyNsq2jZgvqZm1SNIOkr4v6Sng9ew1HXh3q2VmZw//TjrLUZY8BXgKeCC37U0knS5piaRXs23/H2AMKei143BgHrAquwy3GbAC+Bkw0GbZthFzwDFr3ZWkYPAd4Ejgg8A/A1u2We5s4M+BgyVtCRwHzI71p3Y/HZgJ/BvwUeBA4NRsWbvb3xn4JH8KouteHwb2bLNs24j5kppZC7JAcCzwpYi4LJfeiR9xd5Dun0wFdge2Zfgluo8DcyLinNy2929Q7pvAG8DbCuk7Fj7/F/AIcEGNMlY22IbZiBxwzFqzBbAp8NYNdEnbks422nrIVES8KenfSEFlD2BJRPy8kG1MftuZuj3kIiIkPQe8N1fnTYGPFLLeTjqreswdBKyTHHDMWhARKyQ9BJwjaSWwFjiTdK9juw5sYjbwJVLvtHNqLJ8PfEHSQuBXwF8D40uU++/AdEmPku4LfRbYqpDnH4GTgTskXQo8D+wGHAoMRsS/Nr03ZjjgmLXjZOAK4Crgd8ClpC/vL3Wg7PtJvcLGA3NqLD8X2Il02SuAa4C/A65vUO45pHs0FwB/BL4PLAY+sy5DRPxW0kHAPwCXANsDLwB3AyNOvWPWiKp+xLSkdwJfBQ4C/gK4u8b4hlrrjSUd/MeTOjvcCJwaEb8r5DsO+BbwLtIvv/Mi4upO7oOZmTWvF73U9gMmA09kr7KuBiaSfolNI/UIWu/XnKRDgGtJo7GPAW4CZks6st1Km5lZe3pxhrNJRKzN3l8D7NzoDEfSwcB9wKERcVeWdiDwU+CIiLgtS5sHbB4RH8mtezOwXUQc0o39MTOzcio/w1kXbJp0DPDiumCTlfMg8OtsGdmU7ZOA4g3NOaTxDGNbq7GZmXXCaBn4OQFYWiN9SbYMYB9g8xr5lpD2s+XR32Zm1r7R0kttB9L8UkVDwN65PNTIN1RYvh5J00nTkTBmzJgD9tyzMwOp165dyyabjJZ43jtup3LcTuW4ncrpZDs98cQTL0fELmXyjpaAA7UH06lGevGzRkhPiRFXkLq2MjAwEAsXLmynjm8ZHBxk4sSJHSmrn7mdynE7leN2KqeT7ZTNJVjKaPkpMEQaC1C0PX86oxnKpRXzQO0zJDMzq8hoCThL+dO9mrz8vZ0nSRMMFvNNII0Cb6YLtpmZddhoCThzgd2ycTYASBog3b+ZC29N634naf6pvCnA/RGxoqK6mplZDZXfw5G0FWngJ6SJCbeTdFL2+eaIWC1pGbAgIk4BiIj7szE2V0n6CumMZSZwz7oxOJlvAoOSLiENCp2cvY7u+o6ZmVldveg0sCvpGR556z6/gzR/1GakmXjzpgIXk5438tbUNvkMEXFPFry+BXyBNE7n5Ii4tYP1NzOzFlQecCJiOX/qOTZSnvE10l4BPp296q17PY0nMDSznPFn3tQwz/JvH1tBTayfjZZ7OGZmNso54JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklKg84kvaVdLuk1ZKel3S+pE0brDNDUozw+lou35Uj5JnQ/T0zM7N6NqtyY5J2AG4DFgPHAfsA3yUFvrPrrPpD4JZC2vHAGcDcQvpS4NOFtOWt1djMzDql0oADfB4YA5wYESuB+ZK2A2ZIujBLGyYingWezadJ+gawNCIWFbL/ISIe6ELdzcysDVVfUjsGmFcILHNIQejQsoVI2hE4Apjd2eqZmVm3VB1wJpAueb0lIp4GVmfLyjoJ2JwUrIr2lbRS0hpJ90gqHcjMzKx7FBHVbUx6HfhqRFxSSH8WuCoizipZzh3A2Ig4oJB+GvBH0j2iXYDTgQOAQyLiwRHKmg5MBxg3btwBc+bUimHNW7VqFdtss01Hyupnbqdyut1Ojz23omGe9+0xtmvb7xQfT+V0sp0mTZr0cEQMlMlb9T0cgFoRTiOkD88o7U66/HbGsIIjvlfIexMp+JxF6mQwvDIRVwBXAAwMDMTEiRPLVKOhwcFBOlVWP3M7ldPtdpp25k0N8yz/ZPe23yk+nsrpVTtVfUltCNi+RvpY4JWSZXyCFKCubpQxIl4FbgY+ULaCZmbWHVUHnKUU7tVI2hPYmsK9nTqmAvdExDNNbLe664ZmZlZT1QFnLnCUpG1zaVOAV4EFjVaWNB44iJK90ySNIfWMe7jZipqZWWdVHXAuA9YA10k6PLthPwO4KN9VWtIyST+qsf5U4A3gmuICSWMl3S3pc5IOkzQFuBPYA7igC/tiZmZNqLTTQEQMSToMuBS4gXTf5mJS0CnWq9Z0N1OB2yPipRrL1gAvkWYs2BV4DbgfODQiFnZkB8zMrGWV91KLiMXARxrkGT9C+vvrrPMacGJblTMzs67xbNFmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVommAo6kWtPNmJmZNdTsGc5zki6U9N6u1MbMzPpWswHncuAk4BeSfippuqTtulAvMzPrM00FnIg4NyL2Bo4AHgcuAl6Q9GNJh3ejgmZm1h9a6jQQEXdExF8DuwFfBt4DzJO0XNIMSX/WyUqamdno124vtQHgw6THRg8BdwOfAZZJ+lSbZZuZWR9pOuBI2kvSuZKeBG4Hdgf+BviziPhfwF6kez3f6WhNzcxsVGvqAWyS7iCd0TwLXAnMioin8nki4k1JPwFO61Qlzcxs9Gv2iZ8vA5OB+RERdfItAt7Rcq3MzKzvNHtJ7VLgvlrBRtI2kj4MEBGvF898zMxs49ZswLkT2HeEZe/JlpuZmQ3TbMBRnWXbAKvbqIuZmfWxhvdwsstkE3NJn5F0dCHblsCxwGOdq5qZmfWTMp0GPkQa3AkQwMeBNwp5/ggsBb7auaqZmVk/aRhwIuI7ZGNqJP0aOCEiFnW7YmZm1l+a6hYdEe7qbGZmLSlzD2cycE9ErMze1xURN3ekZmZm1lfKnOHcCBwEPJi9D0burRaAH9JmZmbDlAk47wBeyL03MzNrWplOA0/Vem9mZtaMMvdwtmqmwIjw4E8zMxumzCW1VaR7M2X5Ho6ZmQ1TJuD8Dc0FHDMzs2HK3MO5soJ6mJlZn2v3EdNmZmallOk08CAwLSIWS3qIBpfXIuLATlXOzMz6R5l7OP8JvJp77/s5ZmbWtDL3cD6dez+tq7UxM7O+1fI9HCW7SKr3UDYzMzOghYAjabKk+4DXgN8Ar0m6T9KxHa+dmZn1jaYCjqTPATeQBoOeRnoY22nZ5//IlpuZmQ3T1PNwgLOAKyLiC4X0yyRdBnwduLwjNTMzs77S7CW1nYDrRlh2LbBjowIk7SvpdkmrJT0v6XxJdafDkTReUtR4zamR9zhJj0l6TdJiSVNK7ZmZmXVVs2c4dwKHAvNrLDsUuKveypJ2AG4DFgPHAfsA3yUFvrNLbP8rwL25zy8Xyj+EFPh+AJwKTAZmSxqKiFtLlG9mZl1SZuDnvrmP3wd+KGkn4Hrgt8CuwAnAMcBnGhT3eWAMcGJErATmS9oOmCHpwiytnscj4oE6y78B3BURp2af75S0H3AO4IBjZtZDZc5wfsH6gz0FfC57FZ/+eQv1Z4s+BphXCCxzgJmkM6QbStSnJklbAJNIZzZ5c4BZksZGxIpWyzczs/aUCTiTOri9CcAd+YSIeFrS6mxZo4AzS9KOpDOr2cDXI2LdLAj7AJsDSwvrLCFdsns38FB71Tczs1aVmWlgQQe3twPwSo30oWzZSNYA/0S6LLYSmAicQQoyx+XKpkb5Q4Xl65E0HZgOMG7cOAYHB+vVv7RVq1Z1rKx+5nYqp9vtdPr73miYZzT8O/l4KqdX7dRsp4G3SNoE2LKYXuKJn7XmYtMI6evKfAH4Ui5pUNKLwA8kvT8iFtUpXyOkryv7CuAKgIGBgZg4cWL92pc0ODhIp8rqZ26ncrrdTtPOvKlhnuWf7N72O8XHUzm9aqdmB35K0hmSlgGvA7+v8apnCNi+RvpYap/51HNN9vcDubKpUf66z82Wb2ZmHdTsOJxTgTOBH5HOHP4BOB94AlhOdmmqjqWkezVvkbQnsDXD7700EoW/T5KC4IRCvgnA2qyOZmbWI80GnM8C5wIXZp+vj4jzgP1IAeNdDdafCxwladtc2hTS4w+avVd0Uvb3YYCIWEMaJ/TxQr4pwP3uoWZm1lvN3sN5B7AoIt6U9DrZ5aqIWCvpB8APSWdAI7mMdJZ0naSZwN7ADOCifFfp7JLdgog4Jfs8A9iWNOhzJfBh4KvAdRHx81z53yTd37mENE5ocvY6usn9NDOzDmv2DOd3wDbZ+6eB/5ZbtgNpUOeIImIIOIw0VucG4DzgYtJZU95mrD+eZylpnM4s4GbgZOA72d98+feQznwOB+YBHwVO9iwDZma91+wZzr3AB0lf+j8hzRCwI/BH4IvA7Y0KiIjFwEca5Blf+DyHNICzoYi4nnR2Y2ZmG5BmA84MYI/s/QWkS2rTSGc284Evd6piZmbWX5oKOBHxOPB49n4N6Vk4p3WhXmZm1mfaGfj5dmB34PmIeK5zVTIzs37UyiOmvyDpGeAp4KfA05KelfS/O147MzPrG83ONHAOcClpPM2xwED2dy7w/Wy5mZnZMM1eUvsicEFEfKOQfks2t9kXSTMPmJmZrafZS2pjGPmpnguoMZmnmZkZNB9wrgdOHGHZx4Ab26uOmZn1qzKPmJ6c+zgXuFDSeIY/Yno/4O87X0UzM+sHZe7h3MjwR0nvARxVI++/kJ7EaWZmtp4yAecdXa+FmZn1vTKPmH6qioqYmVl/a3qmAUmbkToIHALsCPwXcDfpUQGNH4xuZmYbpaYCjqRdgVuB/UlP+HwROJg0/uZRSUdGxEudrqSZmY1+zXaLvgjYCfhQROwdEQdHxN7Ah7L0izpdQTMz6w/NBpzJwBkR8VA+Mfv8NdI0N2ZmZsM0G3C2AH4/wrLfA29rrzpmZtavmg04DwBnSNo6n5h9PiNbbmZmNkyzvdROB+4EnpF0K6nTwK6kQaACJna0dmZm1jeaOsOJiEXAu4ArgF2AI0gB5zLgXRHxaMdraGZmfaH0GY6kzYEDgV9HxJndq5KZmfWjZs5w3gTuAN7bpbqYmVkfKx1wImIt8EtgXPeqY2Zm/arZXmpfB86R9L5uVMbMzPpXs73UzibNKLBI0nOkXmqRzxARB3aobmZm1keaDTi/yF5mZmZNKRVwJI0hTWvzC+A3wG0R8WI3K2ZmZv2lzCOm9wZuA8bnkldK+kRE3NqtipmZWX8p02ngQmAt8FfAVsB+wCPA5V2sl5mZ9ZkyAedg4OyIuDciXouIJcDngD+XtHt3q2dmZv2iTMDZHfhVIe1J0txpu3W8RmZm1pfKjsOJxlnMzMxGVrZb9DxJb9RIv72YHhG7tl8tMzPrN2UCznldr4WZmfW9hgEnIhxwzMysbc3OpWZmZtYSBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0pUHnAk7SvpdkmrJT0v6XxJmzZY54OSZklalq33uKRzJW1ZyDdDUtR4Hd3dvTIzs0aafQBbWyTtQHrUwWLgOGAf4LukwHd2nVWnZHlnAr8E9ge+mf39WCHvCqAYYJa0W3czM2tPpQEH+DwwBjgxIlYC8yVtB8yQdGGWVsvMiHgp93lQ0mvA5ZL2ioincsveiIgHulN9MzNrVdWX1I4B5hUCyxxSEDp0pJUKwWadR7K/nrvNzGwUqDrgTACW5hMi4mlgdbasGX9JejDc44X07SW9LOl1SY9IOrHl2pqZWccooronD0h6HfhqRFxSSH8WuCoizipZzm7Az4GbI2JaLv1TpDOeRcA2pAfFTQY+FhHXjVDWdGA6wLhx4w6YM2dOs7tV06pVq9hmm206UlY/czuV0+12euy5FQ3zvG+PsV3bfqf4eCqnk+00adKkhyNioEzeXgScr0TE9wrpzwFXRsTXS5TxNlLHg7cDB0TEUJ28Au4DxkTE+xuVPTAwEAsXLmyUrZTBwUEmTpzYkbL6mdupnG630/gzb2qYZ/m3j+3a9jvFx1M5nWwnSaUDTtWX1IaA7WukjwVeabRyFkCuAvYDJtcLNgCRoul1wP6Nul6bmVl3Vd1LbSmFezWS9gS2pnBvZwQXk7pTHxERZfKv4yeWmpn1WNVnOHOBoyRtm0ubArwKLKi3oqSvAV8GPhUR95TZWHZGdALwaES82VqVzcysE6o+w7kMOBW4TtJMYG9gBnBRvqu0pGXAgog4Jft8MnABcCXwnKSDcmU+ua7btKQFwLWks6Wtgc8CBwHHd3e3zMyskUoDTkQMSToMuBS4gXTf5mJS0CnWK3/P5cjs77TslfdpUiACWAb8LbA7qcv0z4BjI2JuJ+pvZmatq/oMh4hYDHykQZ7xhc/TGB5oaq13ShtVMzOzLvJs0WZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6tE5QFH0r6Sbpe0WtLzks6XtGmJ9cZKmiVpSNIKST+WtFONfMdJekzSa5IWS5rSnT0xM7NmVBpwJO0A3AYEcBxwPnA6cF6J1a8GJgKfAaYBHwSuL5R/CHAtcCdwDHATMFvSkR3ZATMza9lmFW/v88AY4MSIWAnMl7QdMEPShVnaMJIOBo4CDo2Iu7K054CfSjo8Im7Lsn4DuCsiTs0+3ylpP+Ac4Nbu7ZaZNWP8mTc1zLP828dWUBOrUtUB5xhgXiGwzAFmAocCN9RZ78V1wQYgIh6U9Ots2W2StgAmAacW1p0DzJI0NiJWdGg/zLqq+IV8+vveYFouzV/GNhpVHXAmAHfkEyLiaUmrs2UjBZwJwNIa6UuyZQD7AJvXyLeEdOnw3cBDrVXbNmaNfo37y3/D5X+7DUvVAWcH4JUa6UPZslbW2zuXhxr5hgrL1yNpOjA9+7hK0uN16tGMnYGXO1RWPxv17aSZ3d/GqYV2qmKbRVVvs8XtNXU89aIdNxCd/H+3V9mMVQccSB0GijRCeivrFT+rzvpExBXAFQ223TRJCyNioNPl9hu3Uzlup3LcTuX0qp2q7hY9BGxfI30stc9gGq23fW69oVxaMQ8Nyjczsy6rOuAs5U/3XACQtCewNbXv0Yy4XiZ/b+dJ4PUa+SYAa4EnWqivmZl1SNUBZy5wlKRtc2lTgFeBBQ3W2y0bZwOApAHS/Zu5ABGxhjT+5uOFdacA9/egh1rHL9P1KbdTOW6nctxO5fSknRTR6NZJBzeWBn4uBn5B6gq9N3ARcElEnJ3LtwxYEBGn5NJuIfU0+wrpjGUm8NuI+KtcnkOAQeBS0qDQyVn+oyPC43DMzHqo0jOciBgCDgM2JXWBPg+4GDi3kHWzLE/eVNJZ0D8DVwEPAycUyr8HOAk4HJgHfBQ42cHGzKz3Kj3DMTOzjZdni27Ak4021kobSfpg1j7LsvUel3SupC0L+WZIihqvo7u7V53XYjuNH2H/59TIO+qPJWi5nUY6TkLS13L5rhwhT61OSRs0Se+UdLmkRyW9KWmw5Ho9+27qxTicUSM32ehi0mSj+wDfJQXqs+usCmmy0feQJhtdd8/peqB4z+la4AekKXkmkyYbHRotlwHbaKMpWd6ZwC+B/YFvZn8/Vsi7AigGmCXt1r1KbR5LkO5F3pv7vN6gvX44lqCtdvohcEsh7XjgDLKORTlLgU8X0pa3VuOe2o/07/wA8LYm1uvdd1NE+DXCC/gaaXzPdrm0vwdW59NqrHcwaaDph3NpB2Zph+fS5gF3FNa9Gbin1/teQRvtUiNtetZGe+XSZgAv93o/e9hO47M2+R8Nyh/1x1I77TRCWTcBSwppVwILe72fHWqrTXLvrwEGS6zT0+8mX1Krb6TJRseQJhutt96wyUaBdZONkpts9F8L684BDpY0tv3qV6KlNoqIl2okP5L93bVz1dtgtHosNdRHxxJ0qJ0k7QgcAczubPU2HBGxtoXVevrd5IBT37BJQyPiadKvrXrXfDs12eho0Gob1fKXpFP84nx220t6WdLrkh6RdGLLte2ddttpVnad/gVJF0kak1vWL8cSdO54OonUJsPudQH7SlopaY2keyS1FfBHmZ5+Nzng1NeNyUZ3yOWhRr66k41ugFpto/VI2g34OvB/C79ul5EuqXyCdG/neeDaURh0Wm2nNcA/AaeQhhRcDnyB9b9I++VYgg4dT6RhFD+LiOIMI4+QHvr4P4FPkoZfzJd0YAt1HY16+t3kTgONbVCTjW6gWm2jlFF6G+n0fRXwd+sVHPEvhbw3APeRHqp3XSuV7aGm2ykiXgC+lEsalPQi8ANJ74+IRXXKH43HErR/PO1Ouvx2xrCCI75XyHsTqYPCWaROBhuDnn03+QynPk822lirbQSAJJEG8u4HTI40OHhEke5eXgfsX6Z7+gakrXYquCb7+4Fc2dQof7QdS9CZdvoE6cvx6kYZI+JV0s3wDzTK2yd6+t3kgFOfJxttrNU2WudiUvfX4yKiTP51Rtuv9nbbKS8Kf/vlWILOtNNUUm+qZ5rY7mg7nlrV0+8mB5z6NqbJRlvVahuRDcj7MvCpSNMSNZSdEZ0APBoRb7ZW5Z5ouZ1qOCn7+zD01bEEbbaTpPHAQZTsnZZ1vjiGrC03Ar39bup1X/IN+UW6OfYCMJ80P9t00n2GbxXyLQN+VEi7BfgVcCLp2vDjwN2FPIcAbwCXABOBC0m/II7s9b53u42Ak0m/KmeRviDyr11y+RaQBp4dSQo0N2dt9NFe73tF7TSDNPDxxGy980lfvtf227HUTjvl0s8k/TqvNc5rLHA38DlSB4wppEGTa4CBXu97C221FenHx0nA/cB/5j5vNVI79fK7qeeNtqG/gH2BO7L/5C+QRsNvWsizHLiykLZ99mX6CrAS+Amwc43yjyfNnr2GdEo7tdf7XEUbkQbgxQivabl8P8r+c7wK/CH7wjim1/tcYTtNBRaSZlv4Y/YFcj6wRT8eS622Uy59EXDLCOVuSbr/90zWRiuyL9+Der3PLbbT+Dr/h8aP1E69/G7y5J1mZlYJ38MxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpX4/3wikDlpOrGeAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXFWd//H3h0WIBMKagAwSQTHDMqKEzWGkIyBbMIgg62gUDCqy+CATQISwTJyAbBPGgfwcCQ5CcIBhhgAJa4LgBkiYIBAMGlYTWQIhJuzf3x/nNhTVVdW3qqtudVc+r+epp7vOPefW91RV17fvueeeUkRgZmbWaiu1OwAzM1sxOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCceaStIESVHldkTOfWyR7WftsvKx2X4Gtyb6fHH0cZ/XSpqVo94qkk6Q9JCk5ZIWS7pZ0i4NPm5/eU7Hlr0n/iJppqRP5WjblbXZuohYrfmccKwVXgF2rnCbkbP9FsAZQPkH/U3ZfpY1J8yG42gpSSsDNwATgf8F9gHGAm8DsyQd1sBu+8tz2u2z2eMeDWwA3CXpQ720+V3W5okWx2Ytskq7A7CO9FZE/LrZO42I54Hnm73ffuhYYF9g74goTdL/I2kaMEXS7Ih4tq8P1Mbn9L6IWAog6X7gSeBw4LzyipIErBYRS4Cmv6+sOD7CsbaQdIqk+ZJek7RI0gxJG0rqAm7Mqv0pG0JZkLV53/CPpOHZ/UMkXS5piaRnuofuJP2TpOckPS9pkqSVSh5/hKRpkp6WtEzS77MhrJWy7VXjyLZ/OGv/UtZ+pqSPl/Vxk2wYbLmkBZKOyvn0HA/cVZZsun0PWB04suRxFkj6oaTvS1ooaamkn0ka0ltfKg2pSVpf0hWSXsz6NkvSyLK+dT/md7LnfHH2fNR9NBgRT5OS3vBs3xMkvSBpF0n3Aa8BB1UaUpO0cvZeelzS61ksU8tiHSPp/uy9tlDSuZJWrTdO6zsf4VhLSOrx3oqIt7JtXwZOBcYDvwfWIw2xrEEaNvku8EPgAODPwOu9PNwk4GfAF4GvAVdI+iSwaXZ/O+Ac4EFgWtZmY2Be1u5VYFvgTGAQ8INacUhaF7gHeBH4Bmk46mTgdklbRMTy7L/y/wHWJyWH17L9rwv8ocbztgnpg/fCStsj4glJc4HPlG06FJgPfB3YCDgX+DFwUK2+VHED8NGszQvASaQhr09GxPySel8C/g8YB/wNcAFpGPBbNfbdg6Q1Sc/LwpLiDwJXZP14HHgu61e5y4AvZ/VmZ/s5sGTfXwKuzuqdCmxOen1XyvpnRYoI33xr2g2YAESV2/CsziXAdTX2Mbq0fkn52Kx8cHZ/eHb/8pI6awFvkj7UVy4p/y1wTZXHE+mfr1OBP+aI42xSslm3pGwd0rmrY7L7+2RtdyypsynwFjCrRt93ytqNqVHnBuDRkvsLgJe6n5es7HDgHeBv63xO98ru71pSZw3SEchlZY/5BLBKSdlFwMJe3h/djzcke843Aa7Jnpdty95DY8radmXlW2f3R2T3j6vxuj5Z+v7Iyr8GLAfWa/ffy4p28xGOtcIrwO4Vyp/Lfs4BjpR0Jumk9QMR8XYfHu+O7l8iYomk54HZZfucD3y4+46k1YFTSB/MHwZWLdm2SmRHY1XsDtwGLCk5knsVeADoHnraAVgUEb8pie1JSQ800L88bovsnEjmeuBKYHvg0Tr2swPwfETM7i6IiL9Kmg6Uz5C7q+x5egQYKukDEfFGL4/zcsnvLwBfi4g5JWUB3NLLPkZlP6dW2b4F6bX9edkR952kYcmtSUdFVhAnHGuFtyLi/hrbfwKsSRqKOR14UdK/AxMaTDwvl91/o0rZ6iX3JwFHkYa5fpfVHwOcltVbSnXrk45EDq6wrTv5bQj8pcL2v5D6Xk33RIBNa9TZtKRe6X7fFWlYbymVh6Fq2QhYVKF8EWm4qlSl51jAB7Lfa/kMaSjyBeDpiHinbPviHElrPeCvkSYTVLJ+9vPmKts36WX/1mROOFa47MPlQuDC7JzF4cA/kz5ELy0ojIOAyRFxbneBpH1ztn2JNF357ArbXs1+LgSGVtg+lDScU1FEPJ2d0P888K/l2yV9hPSfefljDy2rNwgYTDpfU48/l+8rM4zU72Z5sOyIrFye7015EVhD0lpVkk53vONI5+/K/SnHY1gTeZaatVVEPB0R/0Ia8toyK+7+z3b1yq2aYhAlJ86Vrn05pKxOtTjuALYCfh8R95fd5mV17gOGSdqx5DE+DPR6gSNwMbCbpM9V2HZOFvd/lJXvofdfvHkA6UO7+0gz73P6G9Kw2LuTEiR9kDRN+54csRfpzuznl6tsn0f6J2Z4hdfp/oh4sZgwrZuPcKwVVpG0U4XypyPiWUmXkf77/DXpfM8o4GOkWWuQPigAjla67mRZRMxtcoy3AcdImp/FcgywWlmdanFcABwB3ClpMulDbRiwK3BPRFxNGsZ5CPgvSeNJs9TOovIwW7nJpPNE/y3ph8As0jDckaST//8YPa/BWQ7cJOk80rDYecB/R8QjvfTlfSJipqR7gWsknUw6ivguKUH3uEamnSJinqQpwPmShgJ3ky5sPTAiDomIdySdCPynpLVI54TeADYD9s/qFX3B64qt3bMWfOusG7VnqZ2W1RkL3Ev6oF9Gmlp7ZNl+TiTNMHoLWFDSrtIstdFlbRcAPywrmwrcX3J/GPDfwBLS+YlzSVOK391/tTiy8g8Bl2dtX88e80pgq5I6HyatrrA828fRwLXUmKVW0nYV4DvZc7McWEz6wNylQt0FwPnZc78I+CtpKvDa9T6nWdkGwE+zx1xOOrG+fY7nuMe+KsSap84E4IUK5V2UzFLLylYmm11ISibP0HNW2t7AL7LnZQlp0so5lMyw862Ym7IXpDCSPkqa178TaSz6FxHRlaPdENK0y/1JQ4HTSdMhXyyrN4b0ZvoY6U14ZkRc08w+mPUn2TmfayPC15VYv9aOczhbka5ReDy75XUN6T+co0j/JW1Puh7hXUoLG14H3EX6r+Ym4OoqY+FmZlagdhzhrBTZFEhJ1wLr93aEI2ln4Jeki9Huzsp2IJ3g3CMibs/KZgKrRsRnS9reDKwVEQ2tsmvW3/kIxwaKwo9woud8+zz2Jl1Ed3fJfn5Lmta4N4Ck1Ugnn39e1nYasHP3ulJmnSYihjvZ2EAwUKZFjwAeq1D+aLYN0hpJq1ao9yipn1u0LDozM+vVQJkWvQ49r2qGNItms5I6VKi3uGz7+0gaR7owjEGDBm23ySb5Lj5+5513WGmlgZKvK+uEPoD70WprPp5Otb66Re//s/XXPtTL/cjv8ccffyEiNshTd6AkHKh85bEqlJffV432RMQUYArAyJEj4/77a63I8p5Zs2bR1dWVq25/1Ql9APej5ZT9Cc2bV7se/bgPdXI/8pP0ZN66AyWFL6byty6uzXtHNItLysrrQOUjJDMzK8hASTiP8d65mlKl53aeIC1LX15vBGmZ9nqmYJuZWZMNlIRzC7Bhdp0NANk3EG6WbSMiXiddf3NQWduDgV9FxCsFxWpmZhUUfg4nWwhwn+zuxsBakrq/oe/miFiWrW81OyKOBIiIX2XX2PxU0ndJRyyTSOtW3V6y+7OBWZIuIl0Uuk9226vlHTMzs5raMWlgKPBfZWXd9z9CWqNpFdIaSaUOIS1p/xNKlrYprRAR92TJ6xzgm6TrdA6LiFubGL/ZiqXgi8OtcxWecCJiAe/NHKtWZ3iFspeBr2a3Wm1voGzJGzPrafjJNzXcdsG/5P3qILP3DJRzOGZmNsA54ZhZTTdOPZ4bpx7f7jCsAwykCz/NrA22WfREu0OwDuEjHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQniWmpnVdNUn9mx3CNYhnHDMrKZT9zq23SFYh/CQmpmZFcIJx8xq2nrhfLZeOL/dYVgH8JCamdU0/YoTABg+fnqbI7GBzkc4ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeFq0mdU0+isXtTsE6xBOOGZW08MbfrTdIViH8JCamZkVwgnHzGqaOGMyE2dMbncY1gGccMyspsMemslhD81sdxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4Qs/zaymucM2b3cI1iGccMyspv3GXtzuEKxDeEjNzMwK4YRjZmaFcMIxs5oWTBrNgkmj2x2GdQAnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIbzSgJnVdMqe3253CNYhnHDMrKart92r3SFYhyh8SE3SlpLukLRM0nOSzpK0ci9tJkiKKrdTSupNrVJnROt7ZmZmtRR6hCNpHeB24BFgDLA5cD4p8Z1Wo+mPgRllZfsD44FbysofA75aVragsYjN7NA56U/PRzrWV0UPqX0DGAQcEBFLgNskrQVMkHRuVtZDRDwDPFNaJun7wGMRMaes+l8j4tctiN1shfSDmZcATjjWd0UPqe0NzCxLLNNISWjXvDuRtC6wB3B1c8MzM7NWKTrhjCANeb0rIp4ClmXb8joQWJWUrMptKWmJpNcl3SMpdyIzM7PWUUQU92DSm8BJEXFRWfkzwE8j4tSc+7kTGBIR25WVHw+8QTpHtAFwIrAdsEtE/LbKvsYB4wCGDRu23bRplXJYT0uXLmXw4MG56vZXndAHcD8aNffZV3LVO/aI/QGYfOUN75Zts/GQinX9WvQvRfRj1KhRD0TEyDx12zEtulKGU5XynhWljUjDb+N77Dji4rK6N5GSz6mkSQY9g4mYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ih5SWwysXaF8CPByzn18iZSgrumtYkQsB24GPpU3QDMza42iE85jlJ2rkbQJsAZl53ZqOAS4JyKeruNxixs3NDOziooeUrsFOEnSmhHxalZ2MLAcmN1bY0nDgZ2Ab+V5MEmDSDPjHmgkWDOD4eOntzsE6xBFH+FcCrwOXC9p9+yE/QTggtKp0pLmS/qPCu0PAd4Cri3fIGmIpF9IOlrSbpIOBu4CNgYmtqAvZmZWh0KPcCJisaTdgEuAG0nnbS4kJZ3yuCotd3MIcEdEPF9h2+vA86QVC4YCrwG/AnaNiPub0gEzM2tY4bPUIuIR4LO91BlepXzbGm1eAw7oU3Bm1sONU48HYL+xF/dS06w2rxZtZjVts+iJdodgHcJfwGZmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVgjPUjOzmq76xJ7tDsE6hBOOmdV06l7H9l7JLAcPqZmZWSHqSjiSKi03Y2YdbOuF89l64fx2h2EdoN4jnGclnSvpb1sSjZn1O9OvOIHpV5zQ7jCsA9SbcC4DDgQelvQbSeMkrdWCuMzMrMPUlXAi4oyI2AzYA5gHXAD8WdLPJO3eigDNzKwzNDRpICLujIgvAxuSvvL848BMSQskTZD0oWYGaWZmA19fZ6mNBD5D+troxcAvgKOA+ZKO6OO+zcysg9SdcCRtKukMSU8AdwAbAV8DPhQR/whsSjrXc15TIzUzswGtrgs/Jd1JOqJ5BpgKXB4RT5bWiYi3JV0FHN+sIM3MbOCrd6WBF4B9gNsiImrUmwN8pOGozKzfGP2Vi9odgnWIehPOJcDvKiUbSYOBT0XE3RHxJvBkj9ZmNuA8vOFH2x2CdYh6z+HcBWxZZdvHs+1mZmY91JtwVGPbYGBZH2Ixs35o4ozJTJwxud1hWAfodUhN0meArpKioyTtVVZtdWBfYG7zQjOz/uCwh2YCXjXa+i7POZwdSRd3AgRwEPBWWZ03gMeAk5oXmpmZdZJeE05EnEd2TY2kPwFfiIg5rQ7MzMw6S12z1CLCU53NzKwhec7h7APcExFLst9rioibmxKZmZl1lDxHONOBnYDfZr8H1WerBeAvaTMzsx7yJJyPAH8u+d3MViBzh23e7hCsQ+SZNPBkpd/NbMWw39iL2x2CdYg853A+WM8OI8IXf5qZWQ95htSWks7N5OVzOGZm1kOehPM16ks4ZtZBFkwaDcDw8dPbHIkNdHnO4UwtIA4zM+twff2KaTMzs1zyTBr4LTA2Ih6RdB+9DK9FxA7NCs7MzDpHnnM4vweWl/zu8zlmZla3POdwvlry+9iWRmNmZh2r4XM4SjaQVOtL2czMzIA6V4uGdxfzPA3YLmv/lqQHgH+OiJuaHJ+Ztdkpe3673SFYh6gr4Ug6GvgRcAdwPPAXYChwAPC/kr4VEZc1PUoza5urty3/gl+zxtR7hHMqMCUivllWfqmkS4HvAU44ZmbWQ73ncNYDrq+y7Tpg3d52IGlLSXdIWibpOUlnSaq5HI6k4ZKiwm1ahbpjJM2V9JqkRyQdnKtnZlbRoXNmcOicGe0OwzpAvUc4dwG7ArdV2LYrcHetxpLWAW4HHgHGAJsD55MS32k5Hv+7wL0l918o2/8upMT3I+A4YB/gakmLI+LWHPs3szI/mHkJ4KE167s8F35uWXL3X4EfS1oPuIH3zuF8AdgbOKqX3X0DGAQcEBFLgNskrQVMkHRuVlbLvIj4dY3t3wfujojjsvt3SdoKOB1wwjEza6M8RzgP8/6LPQUcnd3Kv/1zBrVXi94bmFmWWKYBk0hHSDfmiKciSasBo0hHNqWmAZdLGhIRrzS6fzMz65s8CWdUEx9vBHBnaUFEPCVpWbatt4RzuaR1SUdWVwPfi4juVRA2B1YFHitr8yhpyG4L4L6+hW9mZo3Ks9LA7CY+3jrAyxXKF2fbqnkd+DfSsNgSoAsYT0oyY0r2TYX9Ly7b/j6SxgHjAIYNG8asWbNqxf+upUuX5q7bX3VCH8D9aNSJ27zVcP1qcfq16F/6Wz/qvvCzm6SVgNXLy3N842eltdhUpbx7n38GSq8+myVpEfAjSdtGxJwa+1eV8u59TwGmAIwcOTK6urpqR98dwKxZ5K3bX3VCH8D9aNTYk/Ndp31s9vP8ue99XCw4vKtiXb8W/Ut/60dd06Kz5WzGS5oPvAm8WuFWy2Jg7QrlQ6h85FPLtdnPT5Xsmwr7775f7/7NzKyJ6j3COQ44GTgX+GfgHOBt4BDgA8DEXto/RjpX8y5JmwBr0PPcS2+i7OcTpCQ4AigdBhwBvAM8Xuf+zQx/06c1T70Xfn4dOIOUcABuiIgzga1ICeNjvbS/BdhT0polZQeTvv6g3nNFB2Y/HwCIiNdJ1wkdVFbvYOBXnqFmZtZe9R7hfASYExFvS3qTbLgqIt6R9CPgx6QjoGouJR0lXS9pErAZMAG4oHSqdDZkNzsijszuTwDWJF30uQT4DHAScH1E/F/J/s8mnd+5iHSd0D7ZzVesmZm1Wb1HOC8Cg7PfnwI+WbJtHdJFnVVFxGJgN9K1OjcCZwIXko6aSq3C+6/neYx0nc7lwM3AYcB52c/S/d9DOvLZHZgJfB44zKsMmDXuxqnHc+PU49sdhnWAeo9w7gW2J33oX0VaIWBd4A3gGNIq0jVFxCPAZ3upM7zs/jTSBZy9iogbSEc3ZtYE2yx6ot0hWIeoN+FMADbOfp9IGlIbSzqyuY33ZlCamZm9T10JJyLmAfOy318nfSeOj7XNzKxXfbnw82+AjYDnIuLZ5oVkZmadqN5JA0j6pqSngSeB3wBPSXpG0reaHp2ZmXWMelcaOB24hHQ9zb7AyOznLcC/ZtvNzMx6qHdI7RhgYkR8v6x8Rra22THAWU2JzMz6has+sWe7Q7AOUW/CGUT1b/WcjWepmXWcU/fyn7U1R73ncG4ADqiy7YuAF10yM7OK8nzF9D4ld28BzpU0nJ5fMb0V8E/ND9HM2mnrhfMBeHjDj7Y5Ehvo8gypTafnV0lvDFQa2L2S9E2cZtYhpl9xAuBVo63v8iScj7Q8CjMz63h5vmL6ySICMTOzzlb3SgOSViFNENgFWBd4CfgF6asC6vuSdDMzW2HUlXAkDQVuBf4OWAAsAnYmXX/zkKTPRcTzzQ7SzMwGvnqnRV8ArAfsGBGbRcTOEbEZsGNWfkGzAzQzs85Qb8LZBxgfEfeVFmb3TyEtc2NmZtZDvedwVgNerbLtVeADfQvHzPqb0V+5qN0hWIeoN+H8Ghgv6c6I+Gt3oaQ1gPHZdjPrIL7g05ql3oRzInAX8LSkW0mTBoaSLgIV0NXU6MzMrGPUdQ4nIuYAHwOmABsAe5ASzqXAxyLioaZHaGZtNXHGZCbOmNzuMKwD5D7CkbQqsAPwp4g4uXUhmVl/cthDMwGvGm19V88RztvAncDftigWMzPrYLkTTkS8A/wBGNa6cMzMrFPVex3O94DTJW3TimDMzKxz1TtL7TTSigJzJD1LmqUWpRUiYocmxWZmZh2k3oTzcHYzMzOrS66EI2kQaVmbh4GFwO0RsaiVgZlZ/zB32ObtDsE6RJ6vmN4MuB0YXlK8RNKXIuLWVgVmZv3DfmMvbncI1iHyTBo4F3gH+Afgg8BWwIPAZS2My8zMOkyehLMzcFpE3BsRr0XEo8DRwIclbdTa8MzMrFPkSTgbAX8sK3uCtHbahk2PyMz6lQWTRrNg0uh2h2EdIO91ONF7FTMzs+ryToueKemtCuV3lJdHxNC+h2VmZp0mT8I5s+VRmJlZx+s14USEE46ZmfVZvWupmZmZNcQJx8zMClHvWmpmtoI5Zc9vtzsE6xBOOGZW09Xb7tXuEKxDeEjNzMwK4YRjZjUdOmcGh86Z0e4wrAMUnnAkbSnpDknLJD0n6SxJK/fSZntJl0uan7WbJ+kMSauX1ZsgKSrcPCZg1qAfzLyEH8y8pN1hWAco9ByOpHVIX3XwCDAG2Bw4n5T4TqvR9OCs7iTgD8DfAWdnP79YVvcVoDzBPNrX2M3MrG+KnjTwDWAQcEBELAFuk7QWMEHSuVlZJZMi4vmS+7MkvQZcJmnTiHiyZNtbEfHr1oRvZmaNKnpIbW9gZllimUZKQrtWa1SWbLo9mP302m1mZgNA0QlnBPBYaUFEPAUsy7bV49OkL4abV1a+tqQXJL0p6UFJBzQcrZmZNY0iivvmAUlvAidFxEVl5c8AP42IU3PuZ0Pg/4CbI2JsSfkRpCOeOcBg0hfF7QN8MSKur7KvccA4gGHDhm03bdq0XH1ZunQpgwcPzlW3v+qEPoD70ai5z76Sq96xR+wPwOQrb3i3bJuNh1Ss69eifymiH6NGjXogIkbmqduOCz8rZThVKe9ZUfoA8HNgKfCd9+044sqyujcCvwROByomnIiYAkwBGDlyZHR1deUJg1mzZpG3bn/VCX0A96NRY0++KVe9Y7Of58997+NiweFdFev6tehf+ls/ik44i4G1K5QPAV7urbEkAT8FtgL+PiIW16ofESHpemCSpJUj4u0GYjZboQ0fP73dIViHKDrhPEbZuRpJmwBrUHZup4oLSdOp94iIPPW7+RtLzczarOhJA7cAe0pas6TsYGA5MLtWQ0mnkI7uj4iIe/I8WHZE9AXgIR/dmJm1V9FHOJcCxwHXS5oEbAZMAC4onSotaT4wOyKOzO4fBkwEpgLPStqpZJ9PdE+bljQbuI50tLQG8HVgJ2D/1nbLrHPdOPV4APYbe3GbI7GBrtCEExGLJe0GXALcSDpvcyEp6ZTHVbrczeeyn2OzW6mvkhIRwHzgBGAj0pTp3wH7RsQtzYjfbEW0zaIn2h2CdYjCZ6lFxCPAZ3upM7zs/lh6JppK7Y7sQ2hmZtZCXi3azMwK4YRjZmaFcMIxM7NCOOGYmVkh2rG0jZkNIFd9Ys92h2AdwgnHzGo6da9je69kloOH1MzMrBBOOGZW09YL57P1wvntDsM6gIfUzKym6VecAHjVaOs7H+GYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhadFmVtPor1zU7hCsQzjhmFlND2/40XaHYB3CQ2pmZlYIJxwzq2nijMlMnDG53WFYB3DCMbOaDntoJoc9NLPdYVgHcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEL/w0s5rmDtu83SFYh3DCMbOa9ht7cbtDsA7hITUzMyuEE46ZmRXCCcfMalowaTQLJo1udxjWAZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZlbTKXt+u90hWIdwwjGzmq7edq92h2AdwkNqZmZWCCccM6vp0DkzOHTOjHaHYR3AQ2pmVtMPZl4CeGjN+s5HOGZmVojCE46kLSXdIWmZpOcknSVp5Rzthki6XNJiSa9I+pmk9SrUGyNprqTXJD0i6eDW9MTMzOpRaMKRtA5wOxDAGOAs4ETgzBzNrwG6gKOAscD2wA1l+98FuA64C9gbuAm4WtLnmtIBMzNrWNHncL4BDAIOiIglwG2S1gImSDo3K+tB0s7AnsCuEXF3VvYs8BtJu0fE7VnV7wN3R8Rx2f27JG0FnA7c2rpumVktw0++qeG2C/5l3yZGYu1UdMLZG5hZllimAZOAXYEba7Rb1J1sACLit5L+lG27XdJqwCjguLK204DLJQ2JiFea1A+zppv77CuMbeCD2R/INlAUnXBGAHeWFkTEU5KWZduqJZwRwGMVyh/NtgFsDqxaod6jpKHDLYD7GgvbVjT+j3zg8WvW/xWdcNYBXq5Qvjjb1ki7zUrqUKHe4rLt7yNpHDAuu7tU0rwacZRaH3ghZ93+qhP6AP2sH5rUcNOG+tGHx8u3/+5fSr71s8ZjNv21aHX/qjxGv3pP9UER/dg0b8V2XIcTFcpUpbyRduX3VaU8FUZMAab08tg9H1i6PyJG1tuuP+mEPoD70Z90Qh/A/WiVoqdFLwbWrlA+hMpHML21W7uk3eKSsvI69LJ/MzNrsaITzmO8d84FAEmbAGtQ+RxN1XaZ0nM7TwBvVqg3AngHeLyBeM3MrEmKTji3AHtKWrOk7GBgOTC7l3YbZtfZACBpJOn8zS0AEfE66fqbg8raHgz8qgUz1OoehuuHOqEP4H70J53QB3A/WkIRvZ06aeKDpQs/HwEeJk2F3gy4ALgoIk4rqTcfmB0RR5aUzSDNNPusb93LAAAGwUlEQVQu6YhlEvCXiPiHkjq7ALOAS0gXhe6T1d8rInwdjplZGxV6hBMRi4HdgJVJU6DPBC4EziirukpWp9QhpKOgnwA/BR4AvlC2/3uAA4HdgZnA54HDnGzMzNqv0CMcMzNbcXm16JwkfV3SH7JFQR+QtFud7T8p6W1JbZ3b30g/JB0t6TZJi7KFU+8tYn26Vi/0WpRG+iFp+6wP87N28ySdIWn1ouKuEFNDr0dJ+5Wy91xIGt17i+brSx8kHSDpPknLJb0oaYakNVodc5VYGv3bGCnp1iz+lyTdLmnHImIGICJ86+VGGs57m7RW2yjSkN5yYOuc7QXcCywEXhho/QCeIp183B/YA7iCdB7t8y2MdR3gOdJir3uQ1uH7K3BOjrYzgD8BXyQNuz4O/KJNz3lD/QB+CNwNfJ20aO1xwCvAdQOpH2X7GJf9DQQweiD1gbRo8GukBYe7svfVZGDIQOkHsAnp8pA7gX2z26zsfbVpIbEX/WQNxBswD/hJyf2VgLnAlTnb/yMwH5jY5oTTUD+A9SuU/RK4q4WxnkK6tmqtkrJ/ApaVllVot3P2gfaZkrIdsrLd2/CcN9qPDSqUjcv6selA6UdJ3XWA54Ej25hwGn0t1gdeBb5edMxN7sc3SP9wrl32urwNfLOI2D2k1gtJm5Fmx/28uywi3gH+i7RwaG/t1yTNqPsu8EaLwuxVX/oREZWGAR8EhjYzxjLVFnodRFrotVa7Hgu9ko54en29WqChfkTE8xWKH8x+tvJ5r6bR16Pb2aSj/DtaEFtejfbhS9nPK1oVWJ0a7ceqwFvA0pKypVmZKrZoMiec3nVfSFppUdB1JW3QS/vTgUcj4oZe6rVaX/tRbmfSFPdW6bFga0Q8RfovrtJFwFXbZUoXei1So/2o5NOkocy86/01U8P9kPR3wFdJ/3S1U6N92JH0nB8p6RlJb0r6jaRPty7Umhrtx3VZnfMlDZU0lDRLeDHpH8+Wc8LpXUOLggJI+jhwDHBCC+KqV8P9KCfpa8AngR81Ia5qWrHQa+4+NlFT4pG0IfA94D+jyvdGtVhf+jEZ+LeImN/0qOrTaB82BD4OnAaMB/YjnTOZIWlYs4PMoaF+RMRzpHO3XwQWZbcDgD2rHFE3XTsW72w7SUOAjXqrFxGl/0XUtSho5mJgakTMrS/CfArsR+ljbkf6ALk4Iu7K06YPWr3Qa1H6FI+kD5CGQpcC32liXPWqux+SDiF9WO/XqqDq1MhrsRIwGDgoImYASPol8CTwbdIknKI18lpsBFxLuobxqKz4GOAmSZ/OjpJaaoVMOKTlb/5fjnri/YuCli6PU3NRUEl7A38PfFtSd93V0yatDSyPtBxPX7S8H+/bSToPdBNpHP7E/GE2pC8LvVYaHixd6LVIjfYDSG8W0mzCrYC/j3TxdDvU3Q9JqwLnkc5hrpS979fKNq8hac2IeLUVwVbR6GvxUvZzVndBRCyR9ACwZdOiy6/RfpxE+sw/MCLeBJB0J/AH0nBn+ZdXNt0KOaQWET+OCPV2y6p3Hx1UWhT0pRqHoh8n/Vf0B9IbZDHpcHzd7PeTBkg/AMjGe2eS/qs7JCLe7mv8vWjlQq9FarQf3S4ExgBjyo5Ui9ZIP9YA/oa0fFX338BD2bZpvDcJoiiNvhaPko4cyk+si3ROrWiN9mME8PvuZAMQEW8Avyd9gWXLrZAJpx4R8UfSdRzvLgoqaaXs/i01ml5LGi8tvV0BLMl+/88WhVxRH/qBpMHAzdnd0RGxrFVxlmjZQq8Fa7QfSDoFOBY4ItKyTe3USD+W0vNv4NBs26nA4a0JtapGX4vppOQyqrsgG87ejvcSaJEa7ceTwNbZEC0AklYDtgYWtCDOnto5n3yg3Eh/JG+TThqOAqZSdsEkaTriW8CuNfYzgfZeh9NQP4BbSVO6DwN2Kr21MNZ1gD8Dt5HWxhtH+gA7p6zefOA/yspmAH8knRDdnzTDqJ0Xftbdj+y5DuDy8uecCtfo9Nd+VNjPcNp74Wej76kbsrZfIV0wOZt0XdE6A6UfpAT5JmlYfF9gNCl5vQl8opDYi36yBuqNdMX3fOB14HfAbmXbu7I/pK4a+5hAGxNOo/3I7le8tTjWLUlXRS/P/sDOBlYuq7OANDGjtGzt7IP6ZdIR5VVUuHi1wOe87n6Q/hmo9ryPHSj9qLCPtiWcPr6nBgP/DryYtb0d2GYgvaeyst1IK1i8lN1m1/rMavbNi3eamVkhfA7HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPqkbRjapwSQAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot estimated values for \"a\"\n", - "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", - "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('\"a\" Value', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()\n", - "\n", - "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", - "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", - "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", - "plt.xticks(size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('Estimated Option Price', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_master", - "language": "python", - "name": "qiskit_master" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/finance/simulation/long_butterfly.ipynb b/community/finance/simulation/long_butterfly.ipynb deleted file mode 100644 index 52c9ae6f6..000000000 --- a/community/finance/simulation/long_butterfly.ipynb +++ /dev/null @@ -1,397 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Pricing Long Butterfly Options*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Stefan Woerner[1], Daniel Egger[1]\n", - "### Affliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "
\n", - "Suppose a long butterfly option with strike prices $K_1 < K_2 < K_3$, with $K_2 - K_1 = K_3 - K_2$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", - "The corresponding payoff function is defined as:\n", - "
\n", - "
\n", - "$$ F(S_T) = \n", - "\\begin{cases}\n", - "0 ,& S_T < K_1 \\\\\n", - "S_T - K_1 ,& K_1 \\leq S_T < K_2 \\\\\n", - "2K_2 - K_1 - S_T ,& K_2 \\leq S_T < K_3 \\\\\n", - "0 ,& S_T \\geq K_3. \n", - "\\end{cases}$$\n", - "
\n", - "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", - "
\n", - "
\n", - "$$\\mathbb{E}\\left[ F(S_T) \\right].$$\n", - "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", - "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", - "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncertainty Model\n", - "\n", - "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", - "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", - "The unitary operator corresponding to the circuit factory implements the following: \n", - "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", - "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", - "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# number of qubits to represent the uncertainty\n", - "num_uncertainty_qubits = 3\n", - "\n", - "# parameters for considered random distribution\n", - "S = 2.0 # initial spot price\n", - "vol = 0.4 # volatility of 40%\n", - "r = 0.05 # annual interest rate of 4%\n", - "T = 40 / 365 # 40 days to maturity\n", - "\n", - "# resulting parameters for log-normal distribution\n", - "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", - "sigma = vol * np.sqrt(T)\n", - "mean = np.exp(mu + sigma**2/2)\n", - "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", - "stddev = np.sqrt(variance)\n", - "\n", - "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", - "low = np.maximum(0, mean - 3*stddev)\n", - "high = mean + 3*stddev\n", - "\n", - "# construct circuit factory for uncertainty model\n", - "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot probability distribution\n", - "x = uncertainty_model.values\n", - "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", - "plt.ylabel('Probability ($\\%$)', size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Payoff Function\n", - "\n", - "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K_1$, then increases linearly, and is bounded by $K_2$.\n", - "The implementation uses two comparators, that flip an ancilla qubit each from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K_1$ and $S_T \\leq K_2, and these ancillas are used to control the linear part of the payoff function.\n", - "\n", - "The linear part itself is then approximated as follows.\n", - "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", - "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", - "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", - "\n", - "We can easily construct an operator that acts as \n", - "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", - "using controlled Y-rotations.\n", - "\n", - "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", - "$\\sin^2(a*x+b)$.\n", - "Together with the approximation above, this allows to approximate the values of interest.\n", - "The smaller we choose $c_{approx}$, the better the approximation.\n", - "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", - "\n", - "For more details on the approximation, we refer to:\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price_1 = 1.438\n", - "strike_price_2 = 1.896\n", - "strike_price_3 = 2*strike_price_2 - strike_price_1\n", - "\n", - "# set the approximation scaling for the payoff function\n", - "c_approx = 0.25\n", - "\n", - "# setup piecewise linear objective fcuntion\n", - "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2, strike_price_3]\n", - "slopes = [0, 1, -1, 0]\n", - "offsets = [0, 0, strike_price_2 - strike_price_1, 0]\n", - "f_min = 0\n", - "f_max = strike_price_2 - strike_price_1\n", - "butterfly_objective = PwlObjective(\n", - " uncertainty_model.num_target_qubits, \n", - " uncertainty_model.low, \n", - " uncertainty_model.high,\n", - " breakpoints,\n", - " slopes,\n", - " offsets,\n", - " f_min,\n", - " f_max,\n", - " c_approx\n", - ")\n", - "\n", - "# construct circuit factory for payoff function\n", - "butterfly = UnivariateProblem(\n", - " uncertainty_model,\n", - " butterfly_objective\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecVPXVx/HPAUSaFBtqVNZek6gYlUSjYMFOwIIVwYIFkCUxpvg8ETU8STTJIioCiiIKYkOxIyqY2AW72BVQUEGKVKWd549zV4Zhd2dmp/zmzpz36zWvZe7cO/udYfaeuff+iqgqzjnnXH01CB3AOedcvHkhcc45lxUvJM4557LihcQ551xWvJA455zLihcS55xzWfFC4oqWiAwUEU24zRGRB0Rkp4CZfiUir4vI9yKi0bLmIjJOROZHOXvWsu2opNdTfbu1oC9iXZ7eIvKbGpbPEJF/hsjk4qlR6ADOpfAdcHT07x2Ba4BnRGQvVV0WIM9wYC7QGfghWnYxcALQA5gNfFrH9h8AvZKWzc1xxnT1Bt4FHkpa3hWYX/g4Lq68kLhit1pVX47+/bKIzAL+CxwL3Bcgz+7ACFV9LmnZh6r6QBrbL0t4PUVJVd8IncHFi5/acnEzLfpZASAiHUTk4ei01zIReVNEzqxeWUQ2jU5DnZP4JGI+F5F/JyzrJCKvROt/IyJDRaRF9Nhh0amshsD10SmpUSIyAzgP2Lf6VFV9X1j17xCRvZOWTxGR+xPujxKRqSJypIi8Hb3u50Vkr6TtGorIn0TkIxH5QUS+FJFR1c8JtAfOSTjF1jN6bINTWyJyqoi8Ez3PFyIySEQaJTzeM3qOn4rIpCjTByLSrb7vh4sPLyQubiqin19HP9sBLwDnY6eXHgBuF5HTAVR1AfAgG55OOix6rtsBRGRP4EngW+Ak4ErgDKB6B/460CH697+if1+DnQZ6HDtl1SFhnVqJSKPEW1qvekPbA9cBg4DTgS2Be0VEEtYZDlwF3AscD/wOaB49dkmU+fGE3I/Vkvco4B7sPegC3ABcBtxYw+pjgYex9+VjYJyIbFvP1+hiwk9tuaKXsLPdERgKLAGeBlDVcQnrCfAfYFvgAuDu6KGRwFMisqOqfhYt6wVMU9V3ovt/AWYCJ6rqmuj5FgD3iEgHVX0JO7UGMCPx9JSIzAPapnnKqj2wKun17aKqn6SxbaJNgV+p6sfRczTACuZuwAcisjt2pNRfVYckbHcPgKpOF5FlwLw0cl8NTFHV6qO6J6P34W8i8ldV/TJh3SpVvS3KNA34BitiwzJ8fS5G/IjEFbvNsB3vKuBDrJh0V9WvAESkjYgMEZGZCev1BnZNeI5nsCJxTrTNJkA3oqORyAHAg9VFJPIAsBo4OIev533gF0m3L+rxPDOqi0hkevSz+tt/x+jnqHo8949EpCGwHxtej7oH238kH4E9Vf0PVZ2PNSTwI5IS50ckrth9BxwBKHY6a46uP2T1KOAg7DTTdGAx1oqqS/UKqqoicjtwrogMBE7FPvtjE55na+zbMwnbrRGR+di3/1xZrqpTc/A8i5Lur4x+Nol+boZd2F+c5e/ZHNiIpPcm4X7ye1NTria4kuaFxBW71bXteEWkCXAc0FdVhyUsr+lI+3bsukdHoCfwkKouTHj8K+w6Q+LzN8R2yAuyeQEZ+D762Thp+abYtZtMzAeai0jLLIvJt9hR3pZJy9tGPwv13rgi5qe2XJxtjLWiqu7PUX3a6sTkFVX1C+y0y1XYqarbk1Z5BegaFY9q3bAvW8/nNnatqq817FG9QES2w657ZOrZ6GePOtZJebQQneqbBpyS9NCpwFrgpXpkcyXGj0hcbKnqdyLyGvAXEVmM7dj+iJ0Oa1nDJiOxc/1fApOSHvsr8AbwkIjcjJ3X/wcwMbrQnneq+mX0eq4RkeXYF70/U49v/ar6oYiMAP4lIltijRBaAyer6mnRah8AnUWkM3YE83l0XSPZlcDE6PTgOOCn2KnEW5IutLsy5UckLu7OAD4HRgPXYxfIR9ey7qPYxfM7VHVt4gOq+h5wDHYKZzxWWO4GTs5P7FqdAcwC7gL+D2sx9WE9n+sS7AjsLKyZ72BgRcLjf8Uu/t8LvIY1n96Aqj4FnAbsDzwCVGJNoPvWM5crMeJT7bpyISLHYsVk13o0t3XO1cILiSt5IrINsAvWkW6Wqh4fOJJzJcVPbbly0BvrS/I90C9wFudKjh+ROOecy4ofkTjnnMtKWTT/3XzzzbWioqJe2y5btozmzZunXrFIxClvnLJCvPLGKSvEK2+cskJ2eadNm/atqm6RckVVLflb+/bttb4mT55c721DiFPeOGVVjVfeOGVVjVfeOGVVzS4vMFXT2Mf6qS3nnHNZ8ULinHMuK15InHPOZcULiXPOuax4IXHOOZcVLyTOpTJmDFRUcGinTlBRYfedcz8qi34kztXbmDHQuzcsX44AzJxp9wHOPDNkMueKhh+ROFeXK66A5cvXX7Z8uS13zgFeSJyr26xZmS13rgx5IXGuLttvn9ly58qQFxLn6nLZZRsua9YMBg0qfBbnipQXEufqMmeO/dxmGxRABG64wS+0O5fAC4lztVm+HIYPh65dYfZs3rjpJlDd8OK7c2XOC4lztRk9GhYsgAEDAFi8555w0EFw/fWwdm3gcM4VDy8kztVk7VorGO3bw8EHr1teWQmffAKPPRYum3NFxguJczWZOBE++MAKh8i65SedBNttB4MHh8vmXJHxQuJcTaqqYOut4dRT11/eqBH07QvPPgtvvRUmm3NFxguJc8nefRcmTbKC0bjxho9fcIE1Ab7++sJnc64IeSFxLtngwdCkCVx4Yc2Pt2kDPXvaOFzffFPQaM4VIy8kziWaNw/uugt69IDNNqt9vUsvhZUrYdiwwmVzrkh5IXEu0bBh8MMPdpG9LrvtBscdB0OH2vrOlTEvJM5V++EHuOkmOPpo2GOP1OtXVsLcuXD33fnP5lwR80LiXLVx4+yaR9QBMaXDD4e997ZrKqr5zeZcEfNC4hxYIRg8GPbcE448Mr1tROyo5K23YMqUvMZzrph5IXEO4Lnn4M03N+yAmMoZZ8Dmm3sHRVfWvJA4B9YBcfPN4ayzMtuuaVO4+GJ45BEbOsW5MuSFxLlPPrFCcNFFVhgydfHF1uN9yJDcZ3MuBryQODdkiBWCSy6p3/Zbbw2nnQa33QaLFuU2m3MxUPBCIiJ7isgzIrJcROaIyNUi0jCD7RuIyDQRURE5Pp9ZXRlYtMgKwGmnWUGor8pKWLYMRo7MXTbnYqKghURE2gBPAwp0Aa4GfgdclcHTnA/8JPfpXFm69VYrAOk2+a3NfvvBr39tsyeuXp2bbM7FRKGPSC4CmgLdVHWSqg7DishvRaRlqo2jQjQIuCK/MV1ZWL3advyHHgr77pv98w0YADNnwoQJ2T+XczFS6EJyDDBRVRcnLBuHFZdD09j+GuAF4Jk8ZHPl5sEHYdas7I9Gqp1wAuywg7UAc66MFLqQ7A58kLhAVWcBy6PHaiUiPwN6AZflLZ0rL1VVsOOOcHyOLrU1bGiDOb7wArz2Wm6e07kYEC3g0A4isgr4vaoOTlr+JTBaVf9cx7bPAa+o6uUiUgF8Dpygqo/Wsn5voDdA27Zt248bN65emZcuXUqLFi3qtW0IccobMusm06fTvk8fPu7bl9knnZTWNunkbbhsGR1OPZX5HTrw/v/8Ty6i1kucPgcQr7xxygrZ5e3YseM0Vd0/5YqqWrAbsAroX8Py2cCgOrY7DfgaaBndr8Au2B+fzu9t37691tfkyZPrvW0IccobNGv37qotW6ouXpz2JmnnraxUbdRI9csv65ctB+L0OVCNV944ZVXNLi8wVdPYxxb61NZCoHUNy1sBNTbAF5GNgOuAfwANRKQ1UH1hvrmIbJKPoK6EffEF3H+/zXS4SR4+PpdeCmvX2kjCzpWBQheSD0i6FiIi2wHNSbp2kqA5sC3wb6wQLQSqJ8seB7yRl6SudN14ow3S2K9ffp5/hx2gSxcYPhyWL8/P73CuiBS6kDwBdE46iugOrACeq2WbpUDHpNvp0WN/Bs7MT1RXkpYuhREjoFs3aNcuf7+nshIWLLDZFp0rcYUuJMOAH4DxInJEdEF8IPBvTWgSLCKfiMhIAFVdrapTEm/Ay9Gq76jqK4V9CS7W7rjDerPnqslvbQ45xDop+lwlrgwUtJCo6kLgcKAh8AjWGbEKuDJp1UbROs7lztq1cP31cMAB0KFDfn9X9Vwl778PTz2V39/lXGCNCv0LVXU60CnFOhUpHp8BZDBphHPA44/Dxx/b1LiZzDlSX927w+WXW3+Vzp3z//ucC8RH/3Xlo6oKtt0W0uw3krXGjaFPH5g4EaZPL8zvdC4ALySuPLz1Fjz7LPTtCxttVLjfe+GFsPHGPleJK2leSFx5GDwYmjWD3r0L+3u32ALOPhtGj4b58wv7u50rEC8krvR98w2MHQs9e0KbNoX//f37w4oV1uzYuRLkhcSVvptvhpUrrcd5CHvvDUceaR0hV64Mk8G5PPJC4krb99/D0KFw3HGw227hclRWwpw5NjSLcyXGC4krbWPHwrx5+e+AmMrRR1shq6ryDoqu5HghcaVL1S6y//Sn0KnOrkv516CBXSuZOhVefDFsFudyzAuJK13PPgvvvGOnlQrRATGVHj3sYv/gwanXdS5GvJC40lVVBVtuCWecETqJad7cmh+PHw8zZoRO41zOeCFxpenDD+Gxx+Dii6FJk9Bp1unTx46ObrwxdBLncsYLiStNQ4bYECUXXxw6yfq22w5OPhluvRWWLAmdxrmc8ELiSs+CBTBqFJx5JrRtGzrNhgYMgO++s4zOlQAvJK703HKLzUzYv3/oJDU78EA46CAb0n7t2tBpnMuaFxJXWlatghtusOa+P/956DS1GzAAPv0UHn00dBLnsuaFxJWW+++H2bPDd0BMpVs3u17iTYFdCfBC4kqHqjX53WUXOPbY0Gnq1qiRDWk/ebINce9cjHkhcaXjpZfgtdfs2kiDGHy0L7jAhrb3oxIXczH4a3MuTVVV0Lo1nHNO6CTpadPGhrYfO9aGuncupryQuNIwY4b1GO/dG1q0CJ0mff3729DyN98cOolz9eaFxJWGG2+0HuN9+4ZOkpldd7Uh7m++2Ya8dy6GvJC4+FuyxPqOnHyytYSKm8pKmDsX7r47dBLn6sULiYu/22+HxYuLv8lvbQ4/3GZRHDzY5ypxseSFxMXbmjXWQ7xDB+sxHkcidlTy9tswZUroNM5lzAuJi7dHH4XPPovv0Ui1M8+EzTe3lmfOxYwXEhdvVVWw/fbQtWvoJNlp0sRGKn70Ufj449BpnMuIFxIXX2+8Ac89B/36WU/xuLv4YnsdQ4aETuJcRryQuPiqqrJZB88/P3SS3Nh6azj9dGs8sGhR6DTOpc0LiYunr76CcePg3HOtN3upqKyEZctg5MjQSZxLmxcSF09Dh8Lq1XDppaGT5Na++8Khh9rprdWrQ6dxLi0FLyQisqeIPCMiy0VkjohcLSINU2yzl4g8Ga3/g4jMEpFbRWTrQuV2RWTFChg2DE44AXbeOXSa3KushFmz4KGHQidxLi0FLSQi0gZ4GlCgC3A18DvgqhSbtgI+By4DOgNXAkcAj4tICVxldRm56y749tv4N/mtzQknwI47elNgFxuF3glfBDQFuqnqYmCSiLQEBorItdGyDajqi8CLCYumiMiXwFPAz4DX85zbFQtV6wG+zz52CqgUNWxop+wqK+HVV+GAA0Incq5OhT61dQwwMalgjMOKS6Z7hfnRz8a5COZiYtIkmD7djkZEQqfJn169YJNNrNe+c0Wu0IVkd+CDxAWqOgtYHj1WJxFpICKNRWQ34O/Aa8Cr+QjqilRVFbRtC927h06SXy1bWrPme++1qYOdK2KiBRwkTkRWAb9X1cFJy78ERqvqn1Ns/yR2jQRgGnCsqs6tZd3eQG+Atm3bth83bly9Mi9dupQWMZrfIk55M83abOZMDujZk8979WJmjx55TFazQr+3Tb76igPPOotZp53G5xdckNG2cfocQLzyxikrZJe3Y8eO01R1/5QrqmrBbsAqoH8Ny2cDg9LYfhfgQOAs7MhmGtAk1Xbt27fX+po8eXK9tw0hTnkzztq7t+rGG6vOnZuXPKkEeW+7dlXddFPVZcsy2ixOnwPVeOWNU1bV7PICUzWNfXuhT20tBGrqPdYKSNmVV1U/VtVXVPUu7MhkX+CM3EZ0RWn+fBg9Gs4+G7bYInSawhkwABYsgDvvDJ3EuVoVupB8QNK1EBHZDmhO0rWTVFR1JrAA2DFn6VzxGj7cZhDs3z90ksI6+GDYbz9rqbZ2beg0ztWo0IXkCaCziGySsKw7sAJ4LpMnii64b4b1L3GlbOVKm0r3yCNtAqhyImJHJR98AE89FTqNczUqdCEZBvwAjBeRI6IL4gOBf2tCk2AR+URERibc/6eI/F1EuopIRxG5BJgIfIo1H3al7N57bWytUu2AmMqpp8JWW9lRiXNFqKCFRFUXAocDDYFHsB7tVVhP9USNonWqTQUOAUYCjwGXAg8AB6nqsjzHdiGpWpPf3XeHzp1Tr1+KGjeGPn1g4kTrQ+NckSn48CKqOh3olGKdiqT74/Ajj/L0/PPw+utw883QoIzHGL3wQhg0yDooDh8eOo1z6ynjv0wXC1VVsOmmEKDfSFHZYgs46yxruTZ/fur1nSsgLySueH32mY2Ae+GF0KxZ6DThVVZayzU/InFFJmUhEZEeIrJZIcI4t54bbrABDPv0CZ2kOOy1l7Vcu+kma8nmXJFI54jkdmAnABFZIyI+FKnLv8WLbZbA7t3hJz8JnaZ4VFbCnDlw332hkzj3o3QKyUJgm+jfgs0l4lx+jRwJS5bYjtOtc/TRsNtu1hS4gOPkOVeXdFptPQ3cKSIfYkVklIjU2uRWVf2IxWVnzRqbavbgg2H/1OPFlZUGDax3/yWXwAsv2HvkXGDpHJGci/X3eAM7IvkceK+Om3PZmTABZswo3w6IqfToAW3aeAdFVzRSHpGo6nLgnwAicgRwhaq+le9groxVVUFFBXTpEjpJcWreHHr3huuus4JbURE6kStz6bTaWiMiv4juTgFqnA7XuZyYOtU6IV56qbXYcjXr08fG4brhhtBJnEvr1NZKYOPo3z2AMhrD2xVcVZVNMXveeaGTFLfttoNTToFbb7VGCc4FlM7F9unAQBF5CLtGcrKI1HYFVFX15pylc+Vl9mwboLFvX5tq1tWtshLGjYPbb7cjOOcCSaeQ9AOGY4MrKnBZHesq4IXE1c9NN9mcG75TTM+BB0KHDtbCrU8fPxXogkl5aktVX1TVn6rqRtgRyUGq2qCWm3+SXf0sX25Df3TpAjvsEDpNfFRWwqefwmOPhU7iylimY211xE51OZdbo0fblLLe5Dcz3brZ9ZKqqtBJXBnLaBh5VX0OQEQOBA4GNsWmu31eVV/JfTxXFtautT4R7dt7B7tMNWoE/frB5ZfDm2/CPvuETuTKUEZHJCLSXEQeB14E/oZ1Vvwb8KKIPCYiPkSry9zEifDhh3Y0IhI6Tfycf76NjuwdFF0gmZ7auhboAJwGNFHVrYEm0f0OwD9yG8+Vhaoq2GYba87qMtemDfTqBXffDV9/HTqNK0OZFpKTgD+o6n2quhZAVdeq6n3AHwHfE7jMvPsuTJpkrY4aNw6dJr4uvdSGlh82LHQSV4YyLSStgC9qeewLwBv/u8wMHgxNm9rkVa7+dt0VjjsOhg61ya+cK6BMC8lbwMUi65/Iju5fHD3uXFo2WrQI7rrLBiHczOdOy9qAATBvnp3icq6AMmq1BfwZeAL4QEQeBL4BtgS6AhXAMTlN50rTmDFwxRX8cuZMu7/TTmHzlIpOnWDbbeHCCzl09WrYfnsYNAjOPDN0MlfiMm3++6yI7Av8BbsesjXwFfAK0E1VvY+Jq9uYMTZy7fLl/HhYO3CgXWz3HV52xo6FuXNh1Sp7b2fOtPca/L11eZXpqS1UdbqqnqaqO6lqs+jnGV5EXFquuMJ6sSdavtyWu+xcccWGc7n7e+sKINN+JP8UkT3zFcaVgVmzMlvu0ufvrQukPs1/3xGRV0XkIhFplY9QroRtv31my136/L11gWRUSFR1B+AI4APgOuArERkbzZzoXGqDBm04Sm2zZrbcZWfQIHsvEzVt6u+ty7v6XCOZrKo9sAvt/YBtgYkiMlNErhKRHXMd0pWQgw6CNWugZUtUBNq1gxEj/GJwLpx5pr2X7dqh1ctOPNHfW5d3GReSaqq6VFVHAlcCLwDbAX8CPhKRCSLSLkcZXSkZMgQ22gjef5/nnn3W5hz3HV3unHkmzJjBc5Mnw2GHwQsvwKpVoVO5ElevQiIiFSJypYh8BjwFLMWaA28CnIj1KRmXq5CuRHz3Hdx2G3Tvbs19XX4NGABffgnjx4dO4kpcpq22zhaRZ4FPgHOA24EdVPVYVX1AVX9Q1ceBS4HapuN15WrkSFi61CZjcvl3/PGw884+V4nLu0yPSEYAXwOdVXVHVb1GVb+sYb2PgL/W9AQisqeIPCMiy0VkjohcLSJ1zqwoIr8QkdtF5JNouw+jI6ImGeZ3oaxebae1DjnE5h1x+degAfTvD6+8Ai+9FDqNK2GZFpJtos6Hz9S1kqp+papXJS8XkTbA09jc7l2Aq4HfARusm6Q7sBM2TP2xwE3Ab4ExGeZ3oUyYYD2tfQbEwurZE1q39qMSl1eZDpGyMMvfdxHQFBtOZTEwSURaAgNF5NpoWU3+oarzEu5PEZHvgeEi0k5VZ2aZy+Xb4ME2F/uJJ4ZOUl5atIALLoB//csKeTtvA+NyL+OL7SLSXUSeFpFZIjI3+ZZi82OAiUkFYxxWXA6tbaOkIlLtjejnlhm9AFd4U6fC88/bnBnJfUhc/vXtazNP3nBD6CSuRGV6sf0M4A7sYvu2wMPAo9HzLAZuTPEUu2OdGX+kqrOA5dFjmfglsBb4MMPtXKENHgybbALnnhs6SXnafns46SS49VZYsiR0GleCMj0i+T1wDdAnuj9UVc8FdgC+xQpCXdoAi2pYvjB6LC0ishVwBXBnHafDXDGYPRvuuQfOOw9a+rxnwQwYYM2vR40KncSVIFHV1GtVryyyFDheVaeIyCrgSFWdEj3WFahS1Yo6tl8FXKaq1yctnw2MUtWUw5SKSGPsgv22QPvartuISG+gN0Dbtm3bjxtXv24tS5cupUWLFvXaNoRiy7vDrbey/dixvHLXXXyf1Hek2LKmEqe8NWXdt08fGi9axCujRxfdKca4v7fFLJu8HTt2nKaqqbtyqGraN2A21vQXYAZwccJj3YAlKbafC1xZw/KlwO/T+P2CXVOZD+yebu727dtrfU2ePLne24ZQVHmXLVPddFPVrl1rfLiosqYhTnlrzHrPPaqg+tBDBc+TSuzf2yKWTV5gqqaxj8301NZU4GfRvx8G/iIiF4jIOdggjq+k2P4Dkq6FiMh2QHOSrp3UogprNtxFVdNZ34V0112wYIF3QCwW3brZ9RJvCuxyLNNC8jegenKDvwCvAkOxHu7fEp1KqsMTQGcR2SRhWXdgBfBcXRuKyJ+wQSLPUtXnM8ztCk3VLrLvt591QnThNWoE/frBc8/BG2+kXt+5NKVVSESkqYicBPwKaCQibVV1kap2AVoArVX1QFX9LMVTDQN+AMaLyBHRdYyBwL814aJ51IN9ZML9M4D/A0YDs0XkoITbFhm8XlcoTz0F779vRyMiqdd3hXH++dC8uRV553IkZSGJhoV/D7gPO311J/ChiBwFoDa+Vlotp9QujB8ONAQewXq0V2EjCCdqFK1T7ajoZ0/gpaTbcen8bldgVVWw1VY2QKMrHq1bQ69ecPfd8NVXodO4EpHOEcm1WH+NQ4BmwF5YZ8Dh9fmFanO+d1LVpqq6tar+r6quSVqnQlV7JtzvqapSy21UfXK4PJo+HSZOhD59oHHj0Glcsv79beyzoUNDJ3ElIp1C0gH4H1V9QVW/V9X3gQuB7UVk6/zGc7E0ZAhsvDFceGHoJK4mO+8MJ5wAw4bBihWh07gSkE4h2RpIvvbxKdYUd6ucJ3LxNn8+jB4NZ58NW/jlq6I1YAB8+621rHMuS+m22kq/16IrbyNG2Lfc/v1DJ3F1OfRQ2Gcfu+ieQadk52qSbiGZmDQwY/VVumcyHLTRlbKVK+HGG+HII2HvvUOncXURsRZ106fDpEmh07iYS2cY+VRzhThn7r8f5syBW24JncSl47TT4A9/sBZ2Rx2Ven3napGykGgNE1Q5twFV2yHtthscfXToNC4dG29sLev+8hfr87PHHqETuZjKeD4S52r04os270j//jbFq4uHiy6yguIdFF0W/C/e5UZVFbRpAz16hE7iMrHFFtbCbvRoa8XlXD14IXHZmzEDHnwQeve24TdcvFRWwvffW4s75+rBC4nL3g03WCugvn1DJ3H1sdde1tLuxhut5Z1zGfJC4rKzZIlN4XrKKbDttqHTuPoaMMDG3rr33tBJXAx5IXHZuf12WLzYdkQuvjp3ht13t2td3kHRZcgLiau/NWtsXK0OHeCAA0Kncdlo0MCulbz+Ovz3v6HTuJjxQuLq79FH4dNP/WikVJx9Nmy6qc+g6DLmhcTV3+DBNnVr166hk7hcaNbM+pVMmACfpZqjzrl1vJC4+nnzTZgyxaZubZTOSDsuFi65BBo2tFOWzqXJC4mrn8GDrc/IeeeFTuJy6Sc/sVktR46E774LncbFhBcSl7mvv7apWnv2tN7srrQMGABLl1oxcS4NXkhc5m6+2Tqu+Zwjpal9ezjkEDu9tXp16DQuBryQuMx8/70VkuOPh112CZ3G5cuAATBzJjz0UOgkLga8kLjMjB0L8+Z5k99Sd+KJsMMOPiqwS4sXEpc+Vdux/Oxn0LFj6DQunxo2hEsvhRdegNdeC53GFTkvJC59zz4L77xjPaBFQqdx+XbuubDJJt5B0aXkhcSlb/Bg2HJLOP300ElcIbRsCeefD/fdB19+GTqNK2JeSFx6PvrIhkS5+GJo0iR0Glcol14Ka9faEPPO1cJjCZXoAAAfeElEQVQLiUvPkCHQuLEVElc+KipsCJwRI2DZstBpXJHyQuJSW7jQhos/4wxo2zZ0GldoAwbYZ2D06NBJXJHyQuJSu/VWWL7cLrK78vPLX8L++9s1srVrQ6dxRcgLiavb6tU2lW7HjvDzn4dO40IQsaOSjz6CJ54IncYVIS8krm7jx8MXX/jRSLk75RQb0NGbArsaeCFxdauqgp12siFRXPnaaCPo2xeeeQbefjt0GldkCl5IRGRPEXlGRJaLyBwRuVpEGqbYprGIXCci/xWRFSLik0oXwssv261/f5uK1ZW33r1t8qvrrw+dxBWZgu4dRKQN8DSgQBfgauB3wFUpNm0GnA8sB17MZ0aX4PrroVUr6NUrdBJXDDbdFM45B8aMgblzQ6dxRaTQXzMvApoC3VR1kqoOw4rIb0WkZW0bqeoiYFNV7Qw8WJioZe6LL6xH8/nnQ4sWodO4YtG/P/zwg40A7Vyk0IXkGGCiqi5OWDYOKy6H1rWhqvrprEK66SYbpLFfv9BJXDHZbTc49lgYOtSmFHCOwheS3YEPEheo6izslNXuBc7iarNsmfVk7tYN2rULncYVmwED7NTW3XeHTuKKRKMC/742wKIali+MHssZEekN9AZo27YtU6ZMqdfzLF26tN7bhpCLvNtMmMCuCxfy+qGHsjiPr70c39tCyWvWhg3Zf8cd4a9/ZWpFRU5Ggvb3Nn8KkldVC3YDVgH9a1g+GxiU5nP0JTrTle6tffv2Wl+TJ0+u97YhZJ13zRrVXXdV/cUvVNeuzUmm2pTde1tAec86cqQqqD7zTE6ezt/b/MkmLzBV09jHFvrU1kKgdQ3LW1HzkYortCeftB7MPueIq8sZZ8AWW3gHRQcU/hrJByRdCxGR7YDmJF07cYFUVcE221hPZudq06SJjQT96KP2xcOVtUIXkieAziKyScKy7sAK4LkCZ3HJ3n0Xnn7aejBvtFHoNK7YXXKJTS3gHRTLXqELyTDgB2C8iBwRXRAfCPxbE5oEi8gnIjIycUMROUZETgb2ie6fHN28WVGuDB4MTZtaD2bnUmnb1k5xjRoFCxaETuMCKmghUdWFwOFAQ+ARrDNiFXBl0qqNonUS3QzcB5wX3b8vunXMV96yMm8e3HUX9OgBm20WOo2Li8pKm2LglltCJ3EBFbr5L6o6HeiUYp2KdJa5HBo2zHos9+8fOomLk5//HDp1sql4f/tbPyVapnwkPmcFZOhQOPpo2GOP0Glc3AwYAF9+CQ88EDqJC8QLiYN77oGvv7YdgnOZOvZY2GUXa/HnIxmVJS8k5U7VLrLvuScceWToNC6OGjSwU6KvvgovvRQ6jQvAC0m5+89/4I03vAOiy84550Dr1t5BsUx5ISl3gwdbK62zzgqdxMVZixbWbHz8eJgxI3QaV2BeSMrZZ5/BhAlw0UXWf8S5bPTta0e1N94YOokrMC8k5WzIEGjUyHooO5et7bazoXVuuQWWLAmdxhWQF5JytXgx3HYbdO9uY2s5lwuVlfbZuv320ElcAXkhKVcjR9q3xsrK0ElcKTnwQOjQwcbfWrMmdBpXIF5IytGaNXZa65BDoH370GlcqRkwwK6/PfJI6CSuQLyQlKMJE6xljR+NuHzo2tWmaPamwGXDC0k5GjwYKiqgS5fQSVwpatQI+vWzPkqvvx46jSsALyTlZto0+O9/4dJLoWHyAMvO5cj551vfksGDQydxBeCFpNwMHmx/4OeeGzqJK2WtWkGvXjBuHHz1Veg0Ls+8kJSTOXPsD/u88+wP3bl86t8fVq+Gm24KncTlmReScjJ0qLXY6tcvdBJXDnbaCU480ea6WbEidBqXR15IysWKFfYH3aWL/YE7VwgDBsD8+Tb7pitZXkjKxV132R+0N/l1hfTrX8O++9q1OZ+rpGR5ISkH1XOO7Luv/WE7VygidlQyfTo89VToNC5PvJCUg0mT7A/Z5xxxIXTvDltt5R0US5gXknJQVWV/yN27h07iylHjxtCnD0ycaF9oXMnxQlLq3n8fnnzShorfeOPQaVy5uugiaNLEOyiWKC8kpW7IECsgF10UOokrZ5tvDmefDXfeCd9+GzqNyzEvJKVs/ny44w6bRneLLUKnceWushK+/x6GDw+dxOWYF5JSdsst1n/Em/y6YrDnntC5s/V0X7kydBqXQ15IStWqVTZ39hFHwN57h07jnKmstLG37rkndBKXQ15IStX998Ps2daG37li0bkz7LGHtST0DoolwwtJKVK1P9TddoOjjw6dxrl1ROyo5I03bL4SVxK8kJSil16C116z0Vcb+H+xKzJnnw2bbeZNgUuI72VKUVUVtGkDPXqETuLchpo2teboEybAp5+GTuNyoOCFRET2FJFnRGS5iMwRkatFJOVUfSLSSkRuF5GFIvKdiIwRkc0KkTlONv76axg/Hnr3hubNQ8dxrmaXXGJT8g4ZEjqJy4GCFhIRaQM8DSjQBbga+B1wVRqb3wMcBpwP9AR+ATyUj5xxtu2DD9p56D59QkdxrnbbbGND9tx2G3z3Xeg0LkuFPiK5CGgKdFPVSao6DCsivxWRlrVtJCIdgM7AOar6gKo+CJwFHCwiR+Ql6ZgxUFHBoZ06QUWF3S9mY8bA9tuz7b33Wk92v5Dpit2AAbB0aXz+zuK4TyhQ3kIXkmOAiaq6OGHZOKy4HJpiu29U9ce9o6q+CnwePZZbY8bYqaGZMxFVmDnT7hfrB6c67xdfIADLlxd3XufAxoFr0AAWLSr+v7O47hMKlFe0gG25RWQuMFRVByYtXwYMVNXratnuXmBLVT0safljAKp6XF2/d//999epU6emH7Siwt74ZI0awa67pv88hfLRRzY3drJ27WDGjILHSdeUKVM47LDDQsdIW5zyxiJrnP7OavsbK8askLN9gohMU9X9U63XKJNsOdAGWFTD8oXRY/XZbseaNhCR3kBvgLZt2zJlypS0Qx46axY1zdqhq1czrwjHrNpi+vSa886axXMZvO5CW7p0aUb/L6HFKW8cssbp76zWv7EizAoB9gmqWrAbsAroX8Py2cCgOrabBDxYw/IxwAupfm/79u01I+3aqVq3vvVv7dpl9jyFEre8kcmTJ4eOkJE45Y1F1jh9buOUVTVneYGpmsa+vdDXSBYCrWtY3oqajzhSbdc6xXb1M2gQNGu2/rJmzWx5MYpbXucgXp/bOGWFguctdCH5ANg9cYGIbAc0jx5Le7vI7im2q58zz4QRI6BdO1TEziuOGGHLi1Hc8joH8frcxikrFD5vOoctuboBfwIWAJskLLsMWA60rGO7Dljfk4MTlu0fLTsi1e/N+NRWglicIkgQp7xxyqoar7xxyqoar7xxyqqaXV6K9NTWMOAHYLyIHBFdEB8I/FsTmgSLyCciMrL6vqq+BEwERotINxH5DXZ95HlVfbqgr8A559x6ClpIVHUhcDjQEHgE64xYBVyZtGqjaJ1EpwHPAbcBo4FpQNd85nXOOZdaoZv/oqrTgU4p1qmoYdkioFd0c845VyR89F/nnHNZ8ULinHMuKwUdIiUUEZkH1DAWQ1o2B77NYZx8i1PeOGWFeOWNU1aIV944ZYXs8rZT1ZRd98uikGRDRKZqGmPNFIs45Y1TVohX3jhlhXjljVNWKExeP7XlnHMuK15InHPOZcULSWojQgfIUJzyxikrxCtvnLJCvPLGKSsUIK9fI3HOOZcVPyJxzjmXFS8kzjnnsuKFxDnnXFa8kDjnnMuKFxLnnHNZKfjovy43opkljwUEuE9V54vItthEYTsBM4ARqvpOuJQgIn8AHg+dI10i0hRopKpLEpZtAfQF9gTWAm8CQ1X1uzApnSsu3vw3IiKCzW9yHLAHsCmwBvgGeBkYpaofhUu4jogcADwFtABWY7NOdgYexzK/B+wNbIXNIPnfQFERkbXYTJYfAGOBe1T1k1B5UhGRx4GPVbV/dL8D8ARWQKZhhbs9sBLopKrvBcy6L9BUVV9MWHY0NhNpddF7CxiYuE6xiP7mTgD2wz4jU7EvHUW9UxKRltjYVZ1U9fnQeeDHTJ2AxsBjqros+gLUB9gR+Az7YjknL7+/yP/PCiJ6wx/HdhDfYLM4/gT7cD+B/UfsBlyjqteEyllNRCZhR5NdgWXY5GC/wXZ0J6vqKhHZGHgIaKKqHQNmXQv8A/gpcCSW+3WsqNyrqrNDZauJiHwLnKeqE6L7L2Pv8W+qj1JEpBXwMPC9qnYOmPVl4BFVHRTdPxe4FZgMPIsVvcOBQ4CTql9ToKwvYu/r+9H9NtiXofbA0mi1FtiXts6JR4QhiMgldTzcFLgOuB74GEBVhxYiV01EZGfgGWC7aNHnwFHAJKA18Cm2/1oBtFfVL3MeIp35eEv9BtyNfSB+mrBsG+BJ4IHo/qHYB/7cIsg7Hzgm4f6W2LfPo5LWOw74NnDWtcAB0b/bAL2jD/3q6DYlWrZZ6Pc1yrgc+HXC/ZXJ72vCe7sscNbFidmAT4AbalhvGPBWsXwOovsjsSPpoxOWHQ0sBKqK4HOwFju6X1vLLfGxNYGz3osdee6MnUm5M9qfvQhsEq2zebTO8Hxk8Ivt5hjgj5pwHl/tEPAi4DcisrWqPgf8H9A/UMZEGt0S75O0rKb7QanqQlUdoaqHA9sCv8MOxYcBc0TksaABzbtA4hHcN9gfZ7LNsKIT0tqk++2A+2tY737sG2kxORG4WlWfrF4Q/XsQ0C1YqnUeBuYC5wENVbVB9Q37PAhwWLQseVrwQjsYGKSqn6jqAuB/sOuk/9ToyE5VvwUGs/5nO2e8kBjBvmEkWxM91iq6/wqwa6FC1WEacJmIbCIiDYA/A7OBi0WkIYCINAIuwXaMRUdVv1bV61X1l8AOwJXYUWBofwf+KCLnRu/hIOA6ETlSRBqLyMbRdYi/Yd8EQ/ovcGbC/feAmoYL/wX2+SgmrbFrIsmmYdf2glLV3wDnAL8HXhORXyU+HCZVrdoAXyfcr/6/Tp6D6TPsC1zOeast8zTwVxF5W1U/gx/P4Q7B/oOqL7K3AIqhpc4V2PnPBdjpoeXYhbb7gY9FpPpi+zbY6YKipqozsR3434sgy3gR6Yd9e6sCPsS+SFR/c1bsy8XD2E4mpD8DL0RfJm7ALrLfISKbYqcMwa6RVAJ/DJJwfSeJSHWhWwjUNGHS5tgpu+BU9SkR+Rn2/j0mIk9irSKDXr+pwVzsaLTaGmA4djSdaEvylN0vtgNRs9knscP/mdh58R2wi+6nq+oT0XrXYjOGdQ+VtVqU+Xjsy8ADqvqViGwFXM6613Grqr4eMCYiciVwi+aptUi+iMhmQHfgAOwbcgOscL8PPKqq0wLG+5GI7APcDBzIuiJHwr8XYqeQrg+T0ESNLpKNUtVzk9YbDuypqocUJll6or+ta7HTbsOx4tJRVf8TNBggIg8BC5LfyxrWuwHYQ1WPyHkGLyQmOiV0KvBzoAl24XJsdM7RuaImIntgxSS56L2oqqtCZsuEiFwAfKqqz4bOUpOoOXgV9mXtOC2CZtUi0hZopqqfp1jvt1iji2dynsELSekRkYaqWtM1n6IhIk2wC4JrgU+KcWcXXSPZkYQ+Rao6K2wq54qPX2xPIiJ7ichJInK+iJwX/Xuv0LmSiUg3EXlIRB4XkROiZd1FZAawUkRmRt/ughKRs6L+DdX3G4nI37FvzG9jjQEWiEgxnMMHQETai8jD2Pnk94EXsP4Nn4vIbBG5WkSaBQ1ZQiQSOkdNRKRp8v+1iOwT7Rfah8pVdEK2fy6mG3Audl2hprbja7AhR3qFzhllPTXK9TwwAbvYfgF2bWck1pv17ih358BZpwMXJ9z/V5T3f4FfYU0XB2Kdpf5cBO/tUdi1salYy6yBWKfUlVHm32Gto94E2hRB3uOxfjnvAPeQ0AcmYZ0DCd/X4SiiPg0Jy36DdU5dDayK3vPjQr+nUbZWwINRrtXALUBD4I6k/cILwOah86b5mk7K1+cg+IsrhhvQL/rA3IT1At48+tA0jP59MHBjtIPpUwR5XwOGJdw/M8r2r6T1bgeeDpx1OXBowv25QP8a1rsMmFkE7+004I5aPiMzsKP4JtEOcGjgrEcm7MxujLKviYq1JKxXDIVkDet3SOwa7YxfjP7vL4v+vZoaOoAGyDsEGwalH9Aj+vLwAPBFVBS3wPqfzQZuDp03zdeUt0Li10gAEfkM2zFfm2K9y4GLVHXHwiSrNcdioJuqPh3db4W1zjlCEy5SRqe8hqtqsP4ZIvIV0FdVH4ju/4AdJU1JWu9I4GFVbVr4lOvlWAGcqKqTkpa3wUYU2EtV3xeRHsA/VHXrEDmjTM9j44L1Slh2LrYTnIS1OPxeRA7ELroH6zgXtdo6SFVfje6/DsxW1ROS1nscaK6qhwaImZjjc+D/VPWW6P6+WKHupap3JKx3AXYkvUOYpCAit6W5ajusE2XOPwd+jcRsBbyaxnqvUgSdpbCmnYkfhuqxihYlrbcU6/gV0sNY58nG0f2ngdNrWO907FtfaHOxlnvJfo6979X9iGayrqNqKHsDdyUuUNXbsOF8DgKejfqUFKO9sWa0yUZggziGtiXr+o9BNKYWNm5Vok+ouT9MIZ2DHSX9NMWtXW1PkC3vkGjeBi4Qkf+oak3t3atHKr0gWje0mdjorhMBVHVN1Czx/aT1dmT9Hq8h/Anrgf2uiNwKPAL8Q0T2Zl2nuU7AvthIsKGNAK4RkebYtYeVWM/wK4DJuq4/zI5A6BZc3wPNkxeq6rSoJ/ZE7HTRwALnqk3i6Y/vWPcFKNEyiuML7udYQX4uun8Idirul9i1yWq/Ivzn4GPgVVXtUddKInIydh0t57yQmN9hHRKni8h4bMjzRdgHvzWwO3ZOd1uKo6f4eJKGOlDVV2pY7wzW/9AXnKouEJGDsB3xb7FvegAdottK7DTMIar6WpiU66jqoOg0zB+xYVvAPgd3Y53Qqq3Cxl4L6W3sPP3DyQ+o6mdRMXkcGFXgXLWZKCKro3+3AvZh3ZeJarsDXxUyVC2GAdeLyE+xoncq9qXoLyLSAhsAcT9gABB6RPCXsQKXSmKH1ZzyayQREdkJ6xV+NOuGY672BdZy5zpVTT60LVoisj2wSFWLYsgJABGpYP1Oc59qcfYh2Qjr59IE+KyY3sNqInIhNkzKvlpLx9noyOpB7PpZsG/60QgHyT5W1bFJ602JlhdD0/VLsVOuG2GjRAwTkdOxa1DVg3aOAP4Q8jMcNUP+laoOSbHe5tg1vufqWq9eGbyQbChqN159bWGRqoYe5dU5VySi09ybq+q80FmKhReSEhMddr8OnFkMp4okhlPXSkymMXauWHghSRDtQLYEPlTVDS4ERoeGx6rq6IKHWz/HsXU83By7oPZHoiHkVfXxQuSqicRo6lqI1zTG6YrG4TpFVa8OnCPodLDZio5EEqcGnoa9juA7UbFRlU/C/p5GqeoHIvJz4CrWffm5SRPmf8mp0J1kiuEGbAzch+0o1mAXUkcCrZLWC96xK8oRp9nbvgW6JNx/GWsNtUnCslZY65iJRfDeTsKmqm2NnRu/EfgSG0Fgo4TPyxNYK67gn980XlPeOqJlkGFnrLVh9efyU2wH9xlWrF/Dho//Bti2CN6zF7GRcqvvt4kyro1yLmZdh8pNQuWMsnXGvoh9Hb2vi7EJrBZinVVviv7u1mBTRuc+Q+j/sGK4AX/BWmldgE0M1D/6QH8M7JKwXrEUkmlYy5ZeWNvwxNvPog/4qdXLAmeNzdS1UY44TWO8fZq3i0J/bimC6WAzzBubqYGjYnEfNpMjWAOMhcDIpPXuBF7OS4bQ/2HFcMOa+/ZNWrYV8B9gHtAhWlYshUSwec7nYsM27JDwWKvoj2CDMZcCZX0VuDLh/hfAaTWs1wOYVwR5v03aWWwRvZ9HJq13bBEUkuqjz1S3YjgynQOcmnC/XZSrW9J6vYCPiuBzkFxI5gGVNawXfGgfrHnyEQn320T5OyWtdxTWeCjnGbwfidmOpI6Gqvq1iByOVfGnReRMiqN9O2qfihEici/wV+BtEbkx+nex+TswRkS+AEazbura+djpLMEOw4th6lpYN43xC1jnuMRpjJ9V6/xZLNMYLwGeBW5Nsd7BWNP2kIJPB5ulYp4aeAXrd0yt/nfycEPNsE6sOeeFxMwBdsGOQH6k1jb8NBEZjB06Br3InkxVFwF9RWQE1rb9Y+AfFNGc0hqvqWshXtMYv4pdx3usrpWiuV9CCz4dbD3EZWrgF7COkh9HWf6Jjbr9h2i0jiXReHyXY4Uv57zVFj8Oerajqh5Wxzp/wr5NqwYc/K4uInIaNh3ottjgbMGnAa0mMZm6FmI1jfH/Ar1VNbkDbfJ6vwauUtWOhUlWY4bg08FmQmI0NbCI7IyNYVf9OZiBHeXfj40UMBOowL4YdVTVN3OewQvJj03nugN/V9X5dax3BnauvFdt64QWnXZpDizVIp8l0ZUPKYLpYPNBimRq4Kj/2K+wlobPqOqKqGP1+az78jNWVb/My+/3QuKccy4bxTDKpssTEblFREaGzpGOOGWF+OV1Lp/8YnsGROQWoIGqnhc6S5o6Ep8vC3HKCjHKKyJPY2cfDg+dJZU4ZYV45c1nVi8kmYnNzgNAVXcOnSFdccoKscsrxOdzG6esEK+8ecvq10hKWNTsc0tVDT3xTkpxygrxy+tcPsWlkhYFEWkSzfERF8dhM73FQZyyQozyishGcfncxikrxCtvPrN6IclMbHYerjyISB8R+VRElojIKyJydg2r7UcRfG7jlBXilTd0Vr9GEkMikm6b9Zp64hZUnLJCvPJGHVBvwKYBfgPrRzBKRLoAZ6vqipD5EsUpK8QrbzFk9WskZLzz2DN0z3axea8/xIZBqMtPgAND5o1TVohXXhGZCjyrqpcnLDscGIP1bj5ObVKuA4EXPWv64pS3GLJ6ISFeOw8AEXkTm3yre4r1TgbuCfwhj03WKEds8orIEuAEVZ2StLwCmy+lIXAMNh5U6J1dbLJCvPIWQ1a/RmLeBd5V1VPqugH/Dh008gpwUBrrVQ+IGFKcskK88n6H7RzWo6ozgF9iQ+K/CPyisLFqFKesEK+8wbP6EQk/Drx2tKq2S7HeSdgc3kELsIjsBOylqg+nWK8p1kQ1eajugolT1ihHbPKKyARgiaqeVcvjTbGB+44h8GCjccoa5YlN3mLI6oWEeO08nKsmIqcAA4DjVXVBLes0BG7GBhvdoZD5knLEJmuUJTZ5iyGrFxLnnHNZ8WskzjnnsuKFxDnnXFa8kLiyIiI9RWRa1AN4oYi8ISJ5aY0nIruKyEARaZ3GugNFRBNuc0Tkgej6Xapte0bbtMhNcucy44XElQ2x6ZJvBSYC3YAewATgxDz9yl2BK4GUhSTyHdAhul0G7AM8IyLNU2z3WLTN8nrmdC4rPkSKKyd9geGq+ueEZY+IyFWhAiVZraovR/9+WURmAf8FjgXuS145aonTUFXnAfMKF9O59fkRiSsnrYGvkxdqQtNFEamIThOdISJ3RqfA5orIlcnbiUinaIC870XkGxEZWn16SUQOAx6JVv08es4ZGeadFv2siJ5zlIhMFZHfiMh7wPfAgTWd2hKRpiJyrYjMFJEfRORzEflbUv7zReS96PGZInI5ztWDH5G4cvI60C/6pv+oqs6vY93rgEeBk4FfA1eKyLeqehOAiOwJPAlMAk4CtgP+DuwIHB39rsuAf2Kn0b4Cfsgwb0X08+ukZdcCVwPfYKO5rncdRUQEO2XXAbgGK0g/AQ5JWOf3wP9FzzUFaA9cIyLLVfXGDHO6cqeqfvNbWdyAnwGfYcObrAXew3bILRPWqYgefypp21uA2dhUywDjgI+xU0vV65wabdshun98dL8ijWwDsaEsGkW3XYHJwGJg62idUdHz7ZO0bc9oeYvofufo/om1/K6WwFLgyqTlV2NFq2GqvH7zW+LNT225sqGqbwN7YBfXh2JjZf0vMLWGFk8PJt0fD2wDbBvdPwB4UFXXJKzzALAaOLieETcDVkW3D7Gjm+6q+lXCOrNV9c0Uz9MJWKC1j9TQAWgO3CcijapvwLNAW9a9RufS4qe2XFlR1R+waxePAIjIeVhLrvOA6xNWnZu0afX9rYFZ0c9vkp57jYjMBzatZ7zvgCOwo4mvgTmqmjz0xDcbbLWhzbBTabWpHuDvvVoe3w7wYYBc2ryQuLKmqiNF5Fpg96SHtqzl/lcJP9dbJ2pFtRlQ43hHaVitqlNTrJPOmEbzsUJXm+p8x1NzYfowjd/h3I/81JYrGyKSXBwQkS2AVmy4Q+2adL/6gvmX0f1XgK5R8UhcpxHwfHR/ZfSzSRax6+MZYFMROb6Wx18CVgDbqOrUGm5LChfVlQI/InHl5J1oyO2nsFNV7bCWVcuBO5LW3SuaXuABrNXWeUB/VV0bPf5XbFrTh0TkZuy6wj+Aiar6UrRO9Tf7C0VkHLBcVd/Jz0tbzySs0+VYEbkaa0G2NfBrVb1QVReJyEDgehFpB/wH+1K5K9BRVZOLqHN18kLiysnVQBdgCHYd42tswp/uqvp50rqXY6d+HsD6a1wD/NgsVlXfE5FjsCa047HWVXdH21WvM1NELgMuBfphRzMV+XhhiVRVRaRrlLkSmyJ6DjA2YZ1rRWQONvz477DX+BFwT77zudLjw8g7lyCanvRzbOrSR8OmcS4e/BqJc865rHghcc45lxU/teWccy4rfkTinHMuK15InHPOZcULiXPOuax4IXHOOZcVLyTOOeey8v/mwF8tDK9VzQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", - "x = uncertainty_model.values\n", - "def payoff(x):\n", - " if x <= strike_price_1:\n", - " return 0\n", - " elif x < strike_price_2:\n", - " return x - strike_price_1\n", - " elif x < strike_price_3:\n", - " return 2*strike_price_2 - strike_price_1 - x\n", - " else:\n", - " return 0\n", - "y = [payoff(x_) for x_ in x]\n", - "plt.plot(x, y, 'ro-')\n", - "plt.grid()\n", - "plt.title('Payoff Function', size=15)\n", - "plt.xlabel('Spot Price', size=15)\n", - "plt.ylabel('Payoff', size=15)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "exact expected value:\t0.2598\n" - ] - } - ], - "source": [ - "# evaluate exact expected value (normalized to the [0, 1] interval)\n", - "exact_value = np.dot(uncertainty_model.probabilities, y)\n", - "print('exact expected value:\\t%.4f' % exact_value)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate Expected Payoff" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# set number of evaluation qubits (=log(samples))\n", - "m = 5\n", - "\n", - "# construct amplitude estimation \n", - "ae = AmplitudeEstimation(m, butterfly)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exact value: \t0.2598\n", - "Estimated value:\t0.2290\n", - "Probability: \t0.7939\n" - ] - } - ], - "source": [ - "print('Exact value: \\t%.4f' % exact_value)\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHmdJREFUeJzt3Xu0HFWd9vHvw0UItwACgWEYIniJMLAciQgOIydyD+8rF9Fkoe+sOGjUV4WZFRkQEQI6LMHhootxAUsnvLxqwgwwvMMlhHA5gXBRgwRxkoBBA3IRxTkkxoRIyO/9Y1dIpU6f7urLqc7pPJ+1enXXrl27d+1U+neqau9digjMzMyG2xbdroCZmW0eHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNWh6Tpkvqzz/2Spje5fZ+kKJY1RN7bJT1ZZ/3VkgYkbVPyu98uKSQd30ydzYaLA47ZpmMm8JeSDiyukLQlcBpwS0SsqbxmZh3ggGO26fh/wCpgco11E4AxpKBkNiI54Ji1SNLhkv5T0ouS/ihpoaSPt1peRKwEbgcm1Vg9GXgZuD/77r0lzZD0K0mrJT0t6SJJW9ep71bZJbbPFtK/Luk3hbR9Jd2YXcJbJWm2pHe0um9mAFt1uwJmm7KImJ773FdYvS/wEHAN8Brw18AMSesiYma2TT+gYll1zAQ+JumQiHgMIAsipwA/iIg3sny7A68Afw+8CowDLgR2Az7f5G5uRNJu2X69DEzN9u08YK6kd/mSnrXKAcesRRExa/1nSQIeAP4c+DStX/qaTQogk4HHsrTjgF3zZUbEQmBh7vsfAlYD10g6KyLWtvj9ANOAbYCjIuLVrPyHgWXAFODaNsq2zZgvqZm1SNIukr4t6Vng9ew1FXhnq2VmZw//QTrLUZY8CXgWeDT33VtImiZpsaTV2Xf/H2AUKei142hgDrAyuwy3FbAc+Ckwvs2ybTPmgGPWuutJweCbwLHA+4B/BbZts9yZwF8Ah0vaFjgJmBkbT+0+DbgU+Hfgw8ChwJnZuna/fzfg42wIoutfHwT2abNs24z5kppZC7JAcCLwhYi4JpfeiT/i7iPdP5kM7AXsyOBLdB8FZkXEBbnvPrhBuW8Aa4G3FNJ3LSz/N/A4cEmNMlY0+A6zITngmLVmG2BL4M0b6JJ2JJ1ttPWQqYh4Q9K/k4LK3sDiiPhZIduo/Hdn6vaQi4iQ9ALw7lydtwQ+VMh6L+ms6kl3ELBOcsAxa0FELJf0E+ACSSuAdcC5pHsdO3XgK2YCXyD1Trugxvq5wOckLQB+CfwtMLZEuf8BTJX0BOm+0KeB7Qp5/hk4HbhP0tXAi8CewJFAf0T8W9N7Y4YDjlk7TgeuA24Afg9cTfrx/kIHyn6E1CtsLDCrxvoLgbeSLnsFcBPwD8CtDcq9gHSP5hLgT8C3gUXAp9ZniIjfSjoM+CfgKmBn4CXgQWDIqXfMGlHVj5iW9HbgbOAw4C+BB2uMb6i13WjSwX8yqbPD7cCZEfH7Qr6TgK8D7yD95XdRRNzYyX0wM7PmdaOX2oHARODp7FXWjUAf6S+xKaQeQRv9NSfpCOBm0mjsE4A7gJmSjm230mZm1p5unOFsERHrss83Abs1OsORdDjwMHBkRDyQpR0K/Ag4JiLuydLmAFtHxIdy294J7BQRRwzH/piZWTmVn+GsDzZNOgF4eX2wycr5MfCrbB3ZlO0TgOINzVmk8QyjW6uxmZl1wkgZ+DkOWFIjfXG2DmB/YOsa+RaT9rPl0d9mZta+kdJLbRfS/FJFA8B+uTzUyDdQWL8RSVNJ05EwatSoQ/bZpzMDqdetW8cWW4yUeN49bqdy3E7luJ3K6WQ7Pf30069ExO5l8o6UgAO1B9OpRnpxWUOkp8SI60hdWxk/fnwsWLCgnTq+qb+/n76+vo6U1cvcTuW4ncpxO5XTyXbK5hIsZaT8KTBAGgtQtDMbzmgGcmnFPFD7DMnMzCoyUgLOEjbcq8nL39t5hjTBYDHfONIo8Ga6YJuZWYeNlIAzG9gzG2cDgKTxpPs3s+HNad3vJ80/lTcJeCQilldUVzMzq6HyeziStiMN/IQ0MeFOkk7Llu+MiFWSlgLzIuIMgIh4JBtjc4OkL5HOWC4F5q8fg5P5GtAv6SrSoNCJ2ev4Yd8xMzOrqxudBvYgPcMjb/3y20jzR21Fmok3bzJwJel5I29ObZPPEBHzs+D1deBzpHE6p0fE3R2sv5mZtaDygBMRy9jQc2yoPGNrpL0KfDJ71dv2VhpPYGhmZhUbKfdwzMxshHPAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlaJrbpdATMbbOy5d2y0PO2gtUzJpS37xolVV8msbT7DMTOzSjjgmJlZJRxwzMysEg44ZmZWicoDjqQDJN0raZWkFyVdLGnLBttMlxRDvL6cy3f9EHnGDf+emZlZPZX2UpO0C3APsAg4CdgfuJwU+M6vs+l3gbsKaScD5wCzC+lLgE8W0pa1VmMzM+uUqrtFfxYYBZwaESuAuZJ2AqZLuixLGyQingeez6dJ+iqwJCIWFrL/MSIeHYa6m5lZG6q+pHYCMKcQWGaRgtCRZQuRtCtwDDCzs9UzM7PhUnXAGUe65PWmiHgOWJWtK+s0YGtSsCo6QNIKSWskzZdUOpCZmdnwUURU92XS68DZEXFVIf154IaIOK9kOfcBoyPikEL6WcCfSPeIdgemAYcAR0TEj4coayowFWDMmDGHzJpVK4Y1b+XKleywww4dKauXuZ1qe/KF5RstjxkFL6/esHzQ3qMrrtHI4OOpnE6204QJEx6LiPFl8nZjaptaEU5DpA/OKO1Fuvx2zqCCI75VyHsHKficR+pkMLgyEdcB1wGMHz8++vr6ylSjof7+fjpVVi9zO9U2pcbUNpc/ueG/67KP91Vco5HBx1M53Wqnqi+pDQA710gfDbxasoyPkQLUjY0yRsRq4E7gvWUraGZmw6PqgLOEwr0aSfsA21O4t1PHZGB+RPy6ie+t7rqhmZnVVHXAmQ0cJ2nHXNokYDUwr9HGksYCh1Gyd5qkUaSecY81W1EzM+usqgPONcAa4BZJR2c37KcDV+S7SktaKul7NbafDKwFbiqukDRa0oOSPiPpKEmTgPuBvYFLhmFfzMysCZV2GoiIAUlHAVcDt5Hu21xJCjrFetWa7mYycG9E/K7GujXA70gzFuwBvAY8AhwZEQs6sgNmZtayynupRcQi4EMN8owdIv09dbZ5DTi1rcqZmdmw8WzRZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlaJpgKOpFrTzZiZmTXU7BnOC5Iuk/TuYamNmZn1rGYDzrXAacDPJf1I0lRJOw1DvczMrMc0FXAi4sKI2A84BngKuAJ4SdIPJB09HBU0M7Pe0FKngYi4LyL+FtgT+CLwLmCOpGWSpkv6s05W0szMRr52e6mNBz5Iemz0APAg8ClgqaRPtFm2mZn1kKYDjqR9JV0o6RngXmAv4O+AP4uI/wXsS7rX882O1tTMzEa0ph7AJuk+0hnN88D1wIyIeDafJyLekPRD4KxOVdLMzEa+Zp/4+QowEZgbEVEn30LgbS3XyszMek6zl9SuBh6uFWwk7SDpgwAR8XrxzMfMzDZvzQac+4EDhlj3rmy9mZnZIM0GHNVZtwOwqo26mJlZD2t4Dye7TNaXS/qUpOML2bYFTgSe7FzVzMysl5TpNPB+0uBOgAA+Cqwt5PkTsAQ4u3NVMzOzXtIw4ETEN8nG1Ej6FXBKRCwc7oqZmVlvaapbdES4q7OZmbWkzD2cicD8iFiRfa4rIu7sSM3MzKynlDnDuR04DPhx9jkYurdaAH5Im5mZDVIm4LwNeCn32czMrGllOg08W+uzmZlZM8rcw9mumQIjwoM/zcxskDKX1FaS7s2U5Xs4ZmY2SJmA83c0F3DMzMwGKXMP5/oK6mFmZj2u3UdMm5mZlVKm08CPgSkRsUjST2hweS0iDu1U5czMrHeUuYfzX8Dq3GffzzEzs6aVuYfzydznKcNaGzMz61kt38NRsrukeg9lMzMzA1oIOJImSnoYeA34DfCapIclndjx2pmZWc9oKuBI+gxwG2kw6Fmkh7GdlS3/Z7bezMxskKaehwOcB1wXEZ8rpF8j6RrgK8C1HamZmZn1lGYvqb0VuGWIdTcDuzYqQNIBku6VtErSi5IullR3OhxJYyVFjdesGnlPkvSkpNckLZI0qdSemZnZsGr2DOd+4Ehgbo11RwIP1NtY0i7APcAi4CRgf+ByUuA7v8T3fwl4KLf8SqH8I0iB7zvAmcBEYKakgYi4u0T5ZmY2TMoM/Dwgt/ht4LuS3grcCvwW2AM4BTgB+FSD4j4LjAJOjYgVwFxJOwHTJV2WpdXzVEQ8Wmf9V4EHIuLMbPl+SQcCFwAOOGZmXVTmDOfnbDzYU8Bnslfx6Z93UX+26BOAOYXAMgu4lHSGdFuJ+tQkaRtgAunMJm8WMEPS6IhY3mr5ZmbWnjIBZ0IHv28ccF8+ISKek7QqW9co4MyQtCvpzGom8JWIWD8Lwv7A1sCSwjaLSZfs3gn8pL3qm5lZq8rMNDCvg9+3C/BqjfSBbN1Q1gD/QrostgLoA84hBZmTcmVTo/yBwvqNSJoKTAUYM2YM/f399epf2sqVKztWVi9zO9U27aC1Gy2PGbVxmtusNh9P5XSrnZrtNPAmSVsA2xbTSzzxs9ZcbBoifX2ZLwFfyCX1S3oZ+I6k90TEwjrla4j09WVfB1wHMH78+Ojr66tf+5L6+/vpVFm9zO1U25Rz79hoedpBa7n8yQ3/XZd9vK/iGo0MPp7K6VY7NTvwU5LOkbQUeB34Q41XPQPAzjXSR1P7zKeem7L39+bKpkb565ebLd/MzDqo2XE4ZwLnAt8jnTn8E3Ax8DSwjOzSVB1LSPdq3iRpH2B7Bt97aSQK78+QguC4Qr5xwLqsjmZm1iXNBpxPAxcCl2XLt0bERcCBpIDxjgbbzwaOk7RjLm0S6fEHzd4rOi17fwwgItaQxgl9tJBvEvCIe6iZmXVXs/dw3gYsjIg3JL1OdrkqItZJ+g7wXdIZ0FCuIZ0l3SLpUmA/YDpwRb6rdHbJbl5EnJEtTwd2JA36XAF8EDgbuCUifpYr/2uk+ztXkcYJTcxexze5n2Zm1mHNnuH8Htgh+/wc8Fe5dbuQBnUOKSIGgKNIY3VuAy4CriSdNeVtxcbjeZaQxunMAO4ETge+mb3ny59POvM5GpgDfBg43bMMmJl1X7NnOA8B7yP96P+QNEPArsCfgM8D9zYqICIWAR9qkGdsYXkWaQBnQxFxK+nsxszMNiHNBpzpwN7Z50tIl9SmkM5s5gJf7FTFzMystzQVcCLiKeCp7PMa0rNwzhqGepmZWY9pZ+DnnwN7AS9GxAudq5KZmfWiVh4x/TlJvwaeBX4EPCfpeUn/u+O1MzOzntHsTAMXAFeTxtOcCIzP3mcD387Wm5mZDdLsJbXPA5dExFcL6Xdlc5t9njTzgJmZ2UaavaQ2iqGf6jmPGpN5mpmZQfMB51bg1CHWfQS4vb3qmJlZryrziOmJucXZwGWSxjL4EdMHAv/Y+SqamVkvKHMP53YGP0p6b+C4Gnm/T3oSp5mZ2UbKBJy3DXstzMys55V5xPSzVVTEzMx6W9MzDUjaitRB4AhgV+C/gQdJjwpYW29bMzPbfDUVcCTtAdwNHEx6wufLwOGk8TdPSDo2In7X6UqamdnI12y36CuAtwLvj4j9IuLwiNgPeH+WfkWnK2hmZr2h2YAzETgnIn6ST8yWv0ya5sbMzGyQZgPONsAfhlj3B+At7VXHzMx6VbMB51HgHEnb5xOz5XOy9WZmZoM020ttGnA/8GtJd5M6DexBGgQqoK+jtTMzs57R1BlORCwE3gFcB+wOHEMKONcA74iIJzpeQzMz6wmlz3AkbQ0cCvwqIs4dviqZmVkvauYM5w3gPuDdw1QXMzPrYaUDTkSsA34BjBm+6piZWa9qtpfaV4ALJB00HJUxM7Pe1WwvtfNJMwoslPQCqZda5DNExKEdqpuZmfWQZgPOz7OXmZlZU0oFHEmjSNPa/Bz4DXBPRLw8nBUzM7PeUuYR0/sB9wBjc8krJH0sIu4eroqZmVlvKdNp4DJgHfA3wHbAgcDjwLXDWC8zM+sxZQLO4cD5EfFQRLwWEYuBzwB/IWmv4a2emZn1ijIBZy/gl4W0Z0hzp+3Z8RqZmVlPKjsOJxpnMTMzG1rZbtFzJK2tkX5vMT0i9mi/WmZm1mvKBJyLhr0WZmbW8xoGnIhwwDEzs7Y1O5eamZlZSxxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwqUXnAkXSApHslrZL0oqSLJW3ZYJv3SZohaWm23VOSLpS0bSHfdElR43X88O6VmZk10uwD2NoiaRfSow4WAScB+wOXkwLf+XU2nZTlvRT4BXAw8LXs/SOFvMuBYoBZ3G7dzcysPZUGHOCzwCjg1IhYAcyVtBMwXdJlWVotl0bE73LL/ZJeA66VtG9EPJtbtzYiHh2e6puZWauqvqR2AjCnEFhmkYLQkUNtVAg26z2evXvuNjOzEaDqgDMOWJJPiIjngFXZumZ8gPRguKcK6TtLekXS65Iel3Rqy7U1M7OOUUR1Tx6Q9DpwdkRcVUh/HrghIs4rWc6ewM+AOyNiSi79E6QznoXADqQHxU0EPhIRtwxR1lRgKsCYMWMOmTVrVrO7VdPKlSvZYYcdOlJWL3M71fbkC8s3Wh4zCl5evWH5oL1HV1yjkcHHUzmdbKcJEyY8FhHjy+TtRsD5UkR8q5D+AnB9RHylRBlvIXU8+HPgkIgYqJNXwMPAqIh4T6Oyx48fHwsWLGiUrZT+/n76+vo6UlYvczvVNvbcOzZannbQWi5/csMt12XfOLHqKo0IPp7K6WQ7SSodcKq+pDYA7FwjfTTwaqONswByA3AgMLFesAGIFE1vAQ5u1PXazMyGV9W91JZQuFcjaR9gewr3doZwJak79TERUSb/en5iqZlZl1V9hjMbOE7Sjrm0ScBqYF69DSV9Gfgi8ImImF/my7IzolOAJyLijdaqbGZmnVD1Gc41wJnALZIuBfYDpgNX5LtKS1oKzIuIM7Ll04FLgOuBFyQdlivzmfXdpiXNA24mnS1tD3waOAw4eXh3y8zMGqk04ETEgKSjgKuB20j3ba4kBZ1ivfL3XI7N3qdkr7xPkgIRwFLg74G9SF2mfwqcGBGzO1F/MzNrXdVnOETEIuBDDfKMLSxPYXCgqbXdGW1UzczMhpFnizYzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0ps1e0KmFn3jT33joZ5ln3jxApqYr3MZzhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlfBs0WYNNJpJ2bMom5XjMxwzM6uEA46ZmVWi8oAj6QBJ90paJelFSRdL2rLEdqMlzZA0IGm5pB9IemuNfCdJelLSa5IWSZo0PHtiZmbNqPQejqRdgHuARcBJwP7A5aTAd36DzW8E3gV8ClgHXArcCvxNrvwjgJuB7wBnAhOBmZIGIuLuju6MmbXMTxjdPFXdaeCzwCjg1IhYAcyVtBMwXdJlWdogkg4HjgOOjIgHsrQXgB9JOjoi7smyfhV4ICLOzJbvl3QgcAHggNMj/GNlNjJVHXBOAOYUAsss0tnKkcBtdbZ7eX2wAYiIH0v6VbbuHknbABNIZzZ5s4AZkkZHxPIO7YeZjQDuYbhpqTrgjAPuyydExHOSVmXrhgo444AlNdIXZ+sgXZ7buka+xaRLdu8EftJatZsz9tw7mHbQWqaU+Et8KLX+I3TqP89wnSH4zMM2F5081lv5f13m++uZdtBa+toqoTWKiOq+THodODsiriqkPw/cEBHnDbHdXOCPEXFyIf37wH4R8QFJfw3MB/4qIhbm8rwd+AVwXK37OJKmAlOzxXcBT7W8gxvbDXilQ2X1MrdTOW6nctxO5XSynfaNiN3LZOzGwM9aEU5DpLeyXXFZdbYnIq4Drmvw3U2TtCAixne63F7jdirH7VSO26mcbrVT1d2iB4Cda6SPBl5tYbudc9sN5NKKeWhQvpmZDbOqA84SNtxzAUDSPsD21L5HM+R2mfy9nWeA12vkG0fqRv10C/U1M7MOqTrgzAaOk7RjLm0SsBqY12C7PbNxNgBIGg/sl60jItYA9wMfLWw7CXikCz3UOn6Zrke5ncpxO5XjdiqnK+1UdaeBXUiDPn9O6gq9H3AFcFVEnJ/LtxSYFxFn5NLuIvU0+xIbBn7+NiKKAz/7gatJg0InZvmP98BPM7PuqvQMJyIGgKOALUldoC8CrgQuLGTdKsuTN5l0FvSvwA3AY8AphfLnA6cBRwNzgA8DpzvYmJl1X6VnOGZmtvnybNENeLLRxlppI0nvy9pnabbdU5IulLRtId90SVHjdfzw7lXntdhOY4fY/1k18o74YwlabqehjpOQ9OVcvuuHyFOrU9ImTdLbJV0r6QlJb0jqL7ld136b/AC2OjzZaGNttNGkLO+lpIG5BwNfy94/Usi7HCgGmMXt1r1KbR5LkO5FPpRb3mjQXi8cS9BWO30XuKuQdjJwDlnHopwlwCcLactaq3FXHUj6d34UeEsT23Xvtyki/BriBXyZNL5np1zaPwKr8mk1tjucNND0g7m0Q7O0o3Npc4D7CtveCczv9r5X0Ea710ibmrXRvrm06cAr3d7PLrbT2KxN/keD8kf8sdROOw1R1h3A4kLa9cCCbu9nh9pqi9znm4D+Ett09bfJl9TqG2qy0VGkyUbrbTdoslFg/WSj5CYb/bfCtrOAwyWNbr/6lWipjSLidzWSH8/e9+hc9TYZrR5LDfXQsQQdaidJuwLHADM7W71NR0Ssa2Gzrv42OeDUN2jS0Ih4jvTXVr1rvp2abHQkaLWNavkA6RS/OJ/dzpJekfS6pMclndpybbun3XaakV2nf0nSFZJG5db1yrEEnTueTiO1yaB7XcABklZIWiNpvqS2Av4I09XfJgec+nah9pQ4A9m6drZb/17MN1BYv6lrtY02ImlP4CvA/y38dbuUdEnlY6R7Oy8CN4/AoNNqO60B/gU4gzSk4Frgc2z8Q9orxxJ06HgiDaP4aUQUZxh5HJgG/E/g46ThF3MlHdpCXUeirv42udNAY5vUZKObqFbbKGWU3kI6fV8J/MNGBUd8v5D3NuBh0kP1bmmlsl3UdDtFxEvAF3JJ/ZJeBr4j6T2Rmxm9Rjkj8ViC9o+nvUiX384ZVHDEtwp57yB1UDiP1Mlgc9C13yaf4dTnyUYba7WNAJAk0kDeA4GJkQYHDynS3ctbgIPLdE/fhLTVTgU3Ze/vzZVNjfJH2rEEnWmnj5F+HG9slDEiVpNuhr+3Ud4e0dXfJgec+jzZaGOtttF6V5K6v54UEWXyrzfS/mpvt53yovDeK8cSdKadJpN6U/26ie8dacdTq7r62+SAU9/mNNloq1ptI7IBeV8EPhFpWqKGsjOiU4AnIuKN1qrcFS23Uw2nZe+PQU8dS9BmO0kaCxxGyd5pWeeLE8jacjPQ3d+mbvcl35RfpJtjLwFzSfOzTSXdZ/h6Id9S4HuFtLuAXwKnkq4NPwU8WMhzBLAWuAroAy4j/QVxbLf3fbjbCDid9FflDNIPRP61ey7fPNLAs2NJgebOrI0+3O19r6idppMGPp6abXcx6cf35l47ltppp1z6uaS/zmuN8xoNPAh8htQBYxJp0OQaYHy3972FttqO9MfHacAjwH/llrcbqp26+dvU9Ubb1F/AAcB92X/yl0ij4bcs5FkGXF9I2zn7MX0VWAH8ENitRvknk2bPXkM6pZ3c7X2uoo1IA/BiiNeUXL7vZf85VgN/zH4wTuj2PlfYTpOBBaTZFv6U/YBcDGzTi8dSq+2US18I3DVEuduS7v/9Omuj5dmP72Hd3ucW22lsnf9DY4dqp27+NnnyTjMzq4Tv4ZiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSvx/yX3D0Td3Kb0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm8HFWd9/HPN4AQWUJYElCRiCNkQH2URBaHkSAgsoxBBGHQ8UEhiQ4jzrxAkUUJ4PgMIKCD45CgggsDzACDo+zbDYKKJAEHhQSDhlWQ5UIICUvg9/xx6kJTt7tvdd/u6oXv+/WqV98+dar6d7rv7d+tU6dOKSIwMzNrtzGdDsDMzF4fnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGMtJWm2pKixfLLgPrbM9rN+rvyQbD/rtCf6YnGMcp8XSxooUG91Sf8o6TeSVkoalHSFpJ2afN1ueU8Pyf1O/FnS1ZK2LbDttGybd5YRq7WeE461w9PAjlWWqwpuvyVwApD/or8828+K1oTZdBxtJWk14DLg68D/AHsBhwAvAQOSDm5it93yng75YPa6s4CNgRslvWmEbRZm29zb5tisTVbvdADWl1ZFxK9avdOIeAx4rNX77UKfB/YG9oyIyiT9E0kXAnMlzYuIh0b7Qh18T2+LiOUAkuYD9wGfAE7LV5QkYM2IWAa0/PfKyuMjHOsIScdIWiLpOUmPSrpK0iaSpgE/zar9MetCWZpt85ruH0mTsucHSTpX0jJJDw513Un6kqSHJT0m6RRJYypef7KkCyU9IGmFpN9lXVhjsvU148jWvzXb/sls+6slbZVr42ZZN9hKSUslHVbw7fkCcGMu2Qw5DlgLOLTidZZK+oakr0h6RNJySedLGjdSW6p1qUnaSNIPJD2RtW1A0tRc24Ze85+y93wwez8aPhqMiAdISW9Stu/Zkh6XtJOk24DngAOqdalJWi37XbpH0vNZLOflYp0uaX72u/aIpFMlrdFonDZ6PsKxtpA07HcrIlZl6z4FHAscDfwO2JDUxbI2qdvkKOAbwH7An4DnR3i5U4DzgY8BnwF+IOm9wObZ8ynA14DbgQuzbd4MLM62ewZ4D3AiMBb4f/XikLQBcDPwBPBZUnfUl4HrJG0ZESuz/8p/AmxESg7PZfvfAPh9nfdtM9IX75nV1kfEvZLuBD6QW/W3wBJgBrApcCrwXeCAem2p4TLgL7JtHge+SOryem9ELKmo93Hgf4GZwFuAM0jdgH9fZ9/DSFqX9L48UlH8RuAHWTvuAR7O2pU3B/hUVm9etp/9K/b9ceCCrN6xwNtJn++YrH1Wpojw4qVlCzAbiBrLpKzOt4FL6uxjn8r6FeWHZOXrZM8nZc/PraizHvAi6Ut9tYryXwMX1Xg9kf75Ohb4Q4E4TiYlmw0qysaTzl0dnj3fK9t2+4o6mwOrgIE6bd8h2256nTqXAXdXPF8KPDn0vmRlnwBeBv6ywff0w9nznSvqrE06ApmTe817gdUryr4JPDLC78fQ643L3vPNgIuy9+U9ud+h6bltp2Xl78yeT86eH1Hnc72v8vcjK/8MsBLYsNN/L6+3xUc41g5PA7tVKX84e7wDOFTSiaST1gsi4qVRvN71Qz9ExDJJjwHzcvtcArx16ImktYBjSF/MbwXWqFi3emRHYzXsBlwLLKs4knsGWAAMdT1tBzwaEbdWxHafpAVNtK+IayM7J5K5FPgx8D7g7gb2sx3wWETMGyqIiGcl/QzIj5C7Mfc+3QVMkPSGiHhhhNd5quLnx4HPRMQdFWUBXDnCPnbJHs+rsX5L0mf7n7kj7htI3ZLvJB0VWUmccKwdVkXE/Drrvw+sS+qK+SrwhKR/B2Y3mXieyj1/oUbZWhXPTwEOI3VzLczqTweOz+otp7aNSEciB1ZZN5T8NgH+XGX9n0ltr2VoIMDmdepsXlGvcr+viNStt5zq3VD1bAo8WqX8UVJ3VaVq77GAN2Q/1/MBUlfk48ADEfFybv1ggaS1IfBspMEE1WyUPV5RY/1mI+zfWswJx0qXfbmcCZyZnbP4BPDPpC/Rs0sK4wDgrIg4dahA0t4Ft32SNFz55CrrnskeHwEmVFk/gdSdU1VEPJCd0P8I8K/59ZLeRvrPPP/aE3L1xgLrkM7XNOJP+X1lJpLa3Sq3547I8orcN+UJYG1J69VIOkPxziSdv8v7Y4HXsBbyKDXrqIh4ICL+hdTltXVWPPSf7VrVt2qJsVScOFe69uWgXJ1acVwPbAP8LiLm55bFWZ3bgImStq94jbcCI17gCHwL2FXSh6qs+1oW9/dy5bvrtRdv7kf60h460iz6nt5K6hZ7ZVCCpDeShmnfXCD2Mt2QPX6qxvrFpH9iJlX5nOZHxBPlhGlDfIRj7bC6pB2qlD8QEQ9JmkP67/NXpPM9uwDvII1ag/RFATBL6bqTFRFxZ4tjvBY4XNKSLJbDgTVzdWrFcQbwSeAGSWeRvtQmAjsDN0fEBaRunN8A/yXpaNIotZOo3s2WdxbpPNF/S/oGMEDqhjuUdPL/72L4NTgrgcslnUbqFjsN+O+IuGuEtrxGRFwt6RbgIklfJh1FHEVK0MOukemkiFgsaS5wuqQJwE2kC1v3j4iDIuJlSUcCP5K0Humc0AvAFsC+Wb2yL3h9fev0qAUv/bVQf5Ta8VmdQ4BbSF/0K0hDaw/N7edI0gijVcDSiu2qjVLbJ7ftUuAbubLzgPkVzycC/w0sI52fOJU0pPiV/deKIyt/E3Butu3z2Wv+GNimos5bSbMrrMz2MQu4mDqj1Cq2XR34p+y9WQkMkr4wd6pSdylwevbePwo8SxoKvH6j72lWtjHww+w1V5JOrL+vwHs8bF9VYi1SZzbweJXyaVSMUsvKViMbXUhKJg8yfFTansDPs/dlGWnQyteoGGHnpZxF2QdSGkl/QRrXvwOpL/rnETGtwHbjSMMu9yV1Bf6MNBzyiVy96aRfpneQfglPjIiLWtkGs26SnfO5OCJ8XYl1tU6cw9mGdI3CPdlS1EWk/3AOI/2X9D7S9QivUJrY8BLgRtJ/NZcDF9ToCzczsxJ14ghnTGRDICVdDGw00hGOpB2BX5AuRrspK9uOdIJz94i4Liu7GlgjIj5Yse0VwHoR0dQsu2bdzkc41itKP8KJ4ePti9iTdBHdTRX7+TVpWOOeAJLWJJ18/s/cthcCOw7NK2XWbyJikpON9YJeGRY9GVhUpfzubB2kOZLWqFLvblI7t2xbdGZmNqJeGRY9nuFXNUMaRbNFRR2q1BvMrX8NSTNJF4YxduzYKZttVuzi45dffpkxY3olX1fXD20At2Pde9Kp0Ge27Pz/VK/3z6LblNGOe+655/GI2LhI3V5JOFD9ymNVKc8/V53tiYi5wFyAqVOnxvz59WZkedXAwADTpk0rVLdb9UMbwO1A2a/44sX165Xgdf9ZdJky2iHpvqJ1eyWFD1L9rovr8+oRzWBFWb4OVD9CMjOzkvRKwlnEq+dqKlWe27mXNC19vt5k0jTtjQzBNjOzFuuVhHMlsEl2nQ0A2R0It8jWERHPk66/OSC37YHALyPi6ZJiNTOzKko/h5NNBLhX9vTNwHqShu7Qd0VErMjmt5oXEYcCRMQvs2tsfijpKNIRyymkeauuq9j9ycCApG+SLgrdK1s+3PaGmZlZXZ0YNDAB+K9c2dDzt5HmaFqdNEdSpYNIU9p/n4qpbSorRMTNWfL6GvA50nU6B0fENS2M36y7lHzxtlmzSk84EbGUV0eO1aozqUrZU8Cns6XetpeRm/LGzMw6r1fO4ZiZWY9zwjHrdVOmpMWsy/XShZ9mVs3ChZ2OwKwQH+GYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9TMet2MGZ2OwKwQJxyzXjd3bqcjMCvEXWpmZlYKJxyzXrdgQVrMupy71Mx63dSp6dGzRluX8xGOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUHhZt1uvmz+90BGaFOOGY9TrfXtp6hLvUzMysFE44Zr1u5sy0mHU5JxyzXnfOOWkx63JOOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfCFn2a9btttOx2BWSFOOGa9zreXth7hLjUzMyuFE46ZmZXCCces10lpMetyTjhmZlYKJxwzMyuFE46ZmZXCw6LNusSdDz3NIV++vOHtlrY+FLO28BGOmZmVwgnHzMxK4S41s143Z06nIzArxAnHrNf59tLWI0rvUpO0taTrJa2Q9LCkkyStNsI2syVFjeWYinrn1agzuf0tMzOzeko9wpE0HrgOuAuYDrwdOJ2U+I6vs+l3gatyZfsCRwNX5soXAZ/OlS1tLmKzHjB3bnr0kY51ubK71D4LjAX2i4hlwLWS1gNmSzo1KxsmIh4EHqwsk/QVYFFE3JGr/mxE/KoNsZt1p1mz0qMTjnW5srvU9gSuziWWC0lJaOeiO5G0AbA7cEFrwzMzs3YpO+FMJnV5vSIi7gdWZOuK2h9Yg5Ss8raWtEzS85JullQ4kZmZWfuU3aU2HniqSvlgtq6og4CFEXFPrvx24FbSOaKNgSNJ3XY7RcSvq+1I0kxgJsDEiRMZGBgoFMDy5csL1+1W/dAG6J92TBwLR75rVdPbd8N70C+fhdvRHp0YFh1VylSjfHhFaVNS99vRw3Yc8a1c3ctJyedY0iCD4cFEzAXmAkydOjWmTZtWJAwGBgYoWrdb9UMboH/acdb5P+H0Oxv/k/x89tgN70G/fBZuR3uU3aU2CKxfpXwc1Y98qvk4KUFdNFLFiFgJXAH4pu9mZh1WdsJZRO5cjaTNgLXJndup4yDg5oh4oIHXLXT0ZGZm7VN2wrkS2EPSuhVlBwIrgXkjbSxpErADBUenSRpLGhm3oNFAzXpGRFrMulzZCeds4HngUkm7ZSfsZwNnVA6VlrRE0veqbH8QsAq4OL9C0jhJP5c0S9Kukg4EbgTeDHy9DW0xM7MGlDpoICIGJe0KfBv4Kem8zZmkpJOPq9p0NwcB10fEY1XWPQ88RpqxYALwHPBLYOeImN+SBpiZWdNKH6UWEXcBHxyhzqQa5e+ps81zwH6jCs6sF02Zkh4XuOfYuptnizbrdQsXdjoCs0J8AzYzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJpZr5sxo9MRmBXihGPW64ZuMW3W5dylZmZmpWgo4UiqNt2MmXXSggWeZcB6QqNdag9J+iFwbkTc3Y6AzKxBU6emR88YbV2u0S61OcD+wG8l3SpppqT12hCXmZn1mYYSTkScEBFbALsDi4EzgD9JOl/Sbu0I0MzM+kNTgwYi4oaI+BSwCemW6lsBV0taKmm2pDe1MkgzM+t9ox2lNhX4AOm20YPAz4HDgCWSPjnKfZuZWR9pOOFI2lzSCZLuBa4HNgU+A7wpIv4O2Jx0rue0lkZqZmY9raFRapJuIB3RPAicRxqtdl9lnYh4SdJ/AF9oVZBmZtb7Gh0W/TiwF3BtRN0xmHcAb2s6KjMrbr7voG69odGE821gYbVkI2kdYNuIuCkiXgTuG7a1mbXe0C2mzbpco+dwbgS2rrFuq2y9mZnZMI0mHNVZtw6wYhSxmFkzZs5Mi1mXG7FLTdIHgGkVRYdJ+nCu2lrA3sCdrQvNzAo555z06FmjrcsVOYezPeniToAADgBW5eq8ACwCvti60MzMrJ+MmHAi4jSya2ok/RH4aETc0e7AzMysvzQ0Si0iPNTZzMyaUuQczl7AzRGxLPu5roi4oiWRmZlZXylyhPMzYAfg19nPQe3RagH4Jm1mZjZMkYTzNuBPFT+bWTfZdttOR2BWSJFBA/dV+9nMuoRvL209osg5nDc2ssOI8MWfZmY2TJEuteWkczNF+RyOmZkNUyThfIbGEo6ZlUnZGJ66E7ibdV6RczjnlRCHmZn1udHeYtrMzKyQIoMGfg0cEhF3SbqNEbrXImK7VgVnZmb9o8g5nN8BKyt+dkexmZk1rMg5nE9X/HxIW6MxM7O+1fQ5HCUbS6p3UzYzMzOgwdmi4ZXJPI8HpmTbr5K0APjniLi8xfGZ2UjmzOl0BGaFNJRwJM0CvgNcD3wB+DMwAdgP+B9Jfx8R/u03K5NvL209otEjnGOBuRHxuVz52ZLOBo4DnHDMzGyYRs/hbAhcWmPdJcAGI+1A0taSrpe0QtLDkk6SVHc6HEmTJEWV5cIqdadLulPSc5LuknRgoZaZ9aq5c9Ni1uUaPcK5EdgZuLbKup2Bm+ptLGk8cB1wFzAdeDtwOinxHV/g9Y8Cbql4/nhu/zuREt93gCOAvYALJA1GxDUF9m/We2bNSo/uWrMuV+TCz60rnv4r8F1JGwKX8eo5nI8CewKHjbC7zwJjgf0iYhlwraT1gNmSTs3K6lkcEb+qs/4rwE0RcUT2/EZJ2wBfBZxwzMw6qMgRzm957cWeAmZlS/7un1dRf7boPYGrc4nlQuAU0hHSTwvEU5WkNYFdSEc2lS4EzpU0LiKebnb/ZmY2OkUSzi4tfL3JwA2VBRFxv6QV2bqREs65kjYgHVldABwXEUOzILwdWANYlNvmblKX3ZbAbaML38zMmlVkpoF5LXy98cBTVcoHs3W1PA/8G6lbbBkwDTialGSmV+ybKvsfzK1/DUkzgZkAEydOZGBgoF78r1i+fHnhut2qH9oA/dOOiWPhyHetanr7bngP+uWzcDvao+ELP4dIGgOslS8vcMfPanOxqUb50D7/BPxDRdGApEeB70h6T0TcUWf/qlE+tO+5wFyAqVOnxrRp0+pHPxTAwABF63arfmgD9E87zjr/J5x+Z+N/kp/PHrvhPeiXz8LtaI+GhkVn09kcLWkJ8CLwTJWlnkFg/Srl46h+5FPPxdnjthX7psr+h543un8zM2uhRq/DOQL4MvA90pHDPwMnAfcAS8m6pupYRDpX8wpJmwFrM/zcy0gi93gvKQlOztWbDLycxWjWfyJ8t0/rCY0mnBnACcCp2fPLIuJEYBtSwnjHCNtfCewhad2KsgNJtz9o9FzR/tnjAoCIeJ50ndABuXoHAr/0CDUzs85qtMP4bcAdEfGSpBfJuqsi4mVJ3wG+SzoCquVs0lHSpZJOAbYAZgNnVA6Vzrrs5kXEodnz2cC6pIs+lwEfAL4IXBoR/1ux/5NJ53e+SbpOaK9s+XCD7TQzsxZr9AjnCWCd7Of7gfdWrBtPuqizpogYBHYlXavzU+BE4EzSUVOl1Xnt9TyLSNfpnAtcARwMnJY9Vu7/ZtKRz27A1cBHgIM9y4D1tSlT0mLW5Ro9wrkFeB/pS/8/SDMEbAC8ABxOmkW6roi4C/jgCHUm5Z5fSLqAc0QRcRnp6Mbs9WHhwk5HYFZIowlnNvDm7Oevk7rUDiEd2VzLqyM0zczMXqOhhBMRi4HF2c/Pk+6J84U2xGVmZn1mNBd+vgXYFHg4Ih5qXUhmZtaPGh00gKTPSXoAuA+4Fbhf0oOS/r7l0ZmZWd9odKaBrwLfJl1PszcwNXu8EvjXbL2ZmdkwjXapHQ58PSK+kiu/Kpvb7HDSzANmVpYZMzodgVkhjSacsdS+q+c8PErNrHy+vbT1iEbP4VwG7Fdj3ceAn40uHDMz61dFbjG9V8XTK4FTJU1i+C2mtwG+1PoQzayuBQvSo2cbsC5XpEvtZwy/lfSbgT2q1P0x6U6cZlaWqVPTo2eMti5XJOG8re1RmJlZ3ytyi+n7ygjEzMz6W8MzDUhanTRAYCdgA+BJ4OekWwU0f0N2MzPraw0lHEkTgGuAd5Pu8PkosCPp+pvfSPpQRDzW6iDNzKz3NTos+gxgQ2D7iNgiInaMiC2A7bPyM1odoJmZ9YdGE85ewNERcVtlYfb8GNI0N2ZmZsM0eg5nTeCZGuueAd4wunDMrGHz53c6ArNCGk04vwKOlnRDRDw7VChpbeDobL2ZlckXfFqPaDThHAncCDwg6RrSoIEJpItABUxraXRmZtY3GjqHExF3AO8A5gIbA7uTEs7ZwDsi4jctj9DM6ps5My1mXa7wEY6kNYDtgD9GxJfbF5KZNeScc9KjZ422LtfIEc5LwA3AX7YpFjMz62OFE05EvAz8HpjYvnDMzKxfNXodznHAVyW9qx3BmJlZ/2p0lNrxpBkF7pD0EGmU2mvmRI+I7VoUm5mZ9ZFGE85vs8XMzKwhhRKOpLGkaW1+CzwCXBcRj7YzMDMraNttOx2BWSFFbjG9BXAdMKmieJmkj0fENe0KzMwKGrrFtFmXKzJo4FTgZeCvgTcC2wC3A3PaGJeZmfWZIglnR+D4iLglIp6LiLuBWcBbJW3a3vDMzKxfFEk4mwJ/yJXdS5o7bZOWR2RmjZHSYtblil6HEyNXMTMzq63osOirJa2qUn59vjwiJow+LDMz6zdFEs6JbY/CzMz63ogJJyKccMzMbNQanUvNzMysKU44ZmZWikbnUjOzbjPH12Bbb3DCMet1vr209Qh3qZmZWSmccMx63dy5aTHrcqUnHElbS7pe0gpJD0s6SdJqI2zzPknnSlqSbbdY0gmS1srVmy0pqiwfbm+rzDpo1qy0mHW5Us/hSBpPutXBXcB04O3A6aTEd3ydTQ/M6p4C/B54N3By9vixXN2ngXyCuXu0sZuZ2eiUPWjgs8BYYL+IWAZcK2k9YLakU7Oyak6JiMcqng9Ieg6YI2nziLivYt2qiPhVe8I3M7Nmld2ltidwdS6xXEhKQjvX2iiXbIbcnj167jYzsx5QdsKZDCyqLIiI+4EV2bpGvJ90Y7jFufL1JT0u6UVJt0var+lozcysZcruUhsPPFWlfDBbV4ikTYDjgB/ljpaWAF8C7gDWId0o7hJJH4uIS2vsayYwE2DixIkMDAwUimH58uWF63arfmgD9E87Jo6FI99VbVL2YrrhPeiXz8LtaA9FlHerG0kvAkdFxLdy5Q8B50XEcQX28QbSwIO3AFMiYrBOXQG/AMZGxHtG2vfUqVNj/vz5I1UD0h/3tGnTCtXtVv3QBuifdpx1/k84/c7G/wdceso+6YcS/5Zr6ZfPwu0oTtKCiJhapG7ZXWqDwPpVysdR/cjnNbIE8kNgG2CveskGIFI2vRR490hDr816VkRXJBuzkZTdpbaI3LkaSZsBa5M7t1PDmaTh1LtHRJH6Q/zXaGbWYWUf4VwJ7CFp3YqyA4GVwLx6G0o6Bvg88MmIuLnIi2VHRB8FfhMRLzUXspmZtULZRzhnA0cAl0o6BdgCmA2cUXnyX9ISYF5EHJo9Pxj4OnAe8JCkHSr2ee/QsGlJ84BLSEdLawMzgB2AfdvbLLMOmjIlPS5Y0Nk4zEZQasKJiEFJuwLfBn5KOm9zJinp5OOqPOfyoezxkGyp9GlSIoI0Su0fgU1JQ6YXAntHxJWtiN+sKy1c2OkIzAop/fYEEXEX8MER6kzKPT+E4Ymm2naHjiI0MzNrI88WbWZmpXDCMTOzUjjhmJlZKZxwzMysFKUPGjCzFpsxo9MRmBXihGPW63x7aesR7lIzM7NSOOGY9boFCzzLgPUEd6mZ9bqp2czwnjHaupyPcMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfCwaLNeN39+pyMwK8QJx6zXDd1i2qzLuUvNzMxK4YRj1utmzkyLWZdzwjHrdeeckxazLueEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCl/4adbrtt22qc0mffnypl9y6b/s3fS29vrlhGPW63x7aesR7lIzM7NSOOGYmVkpnHDMep2UFrMu54RjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFZxow63Vz5nQ6ArNCnHDMep1vL209wl1qZmZWCh/hmFXRUzMpz52bHn2kY13OCces182alR6dcKzLuUvNzMxKUXrCkbS1pOslrZD0sKSTJK1WYLtxks6VNCjpaUnnS9qwSr3pku6U9JykuyQd2J6WmJlZI0rtUpM0HrgOuAuYDrwdOJ2U+I4fYfOLgK2Aw4CXgVOAy4C/rtj/TsAlwHeAI4C9gAskDUbENS1tjJkV1lPnxKxtyj6H81lgLLBfRCwDrpW0HjBb0qlZ2TCSdgT2AHaOiJuysoeAWyXtFhHXZVW/AtwUEUdkz2+UtA3wVcAJp8fV+tI68l2rOGSELzR/aZl1XtkJZ0/g6lxiuZB0tLIz8NM62z06lGwAIuLXkv6YrbtO0prALqQjm0oXAudKGhcRT7eoHWbWZXwU1f3KTjiTgRsqCyLifkkrsnW1Es5kYFGV8ruzdZC659aoUu9uUpfdlsBtzYXdmNH84rdD5R9TZWxFjgxq7SfPf+zWr1r1u92J74V6f+Od+LtTRJT3YtKLwBcj4pu58geBH0bEsTW2uxZ4NiL2zZX/GNgiIt4v6a+Am4H3RsQdFXX+Avg9sEe18ziSZgJD40m3AhYXbM5GwOMF63arfmgDuB3dpB/aAG5HIzaPiI2LVOzEdTjVMpxqlDezXf65apSnwoi5wNwRXnv4C0vzI2Jqo9t1k35oA7gd3aQf2gBuR7uUPSx6EFi/Svk44Kkmtlu/YrvBirJ8HUbYv5mZtVnZCWcRr55zAUDSZsDaVD9HU3O7TOW5nXuBF6vUm0waRn1PE/GamVmLlJ1wrgT2kLRuRdmBwEpg3gjbbZJdZwOApKnAFtk6IuJ54EbggNy2BwK/bMMItYa74bpQP7QB3I5u0g9tALejLcoeNDCedNHnb0lDobcAzgC+GRHHV9RbAsyLiEMryq4ijTQ7ilcv/PxzROQv/BwAvk26KHSvrP6HfeGnmVlnlXqEExGDwK7AaqQh0CcCZwIn5KquntWpdBDpKOj7wA+BBcBHc/u/Gdgf2A24GvgIcLCTjZlZ55V6hGNmZq9fni26IEkzJP0+mxR0gaRdG9z+vZJektTRsf3NtEPSLEnXSno0mzj1FkkfKiHWtk70WpZm2iHpfVkblmTbLZZ0gqS1yoq7SkxNfR4V24/JfudC0j7tjLVODE23QdJ+km6TtFLSE5KukrR2u2OuEUuzfxtTJV2Txf+kpOskbV9GzABEhJcRFlJ33kukudp2IXXprQTeWXA/y8hAAAAF20lEQVR7AbcAjwCP91o7gPtJJx/3BXYHfkA6j/aRNsY6HniYNNnr7qR5+J4FvlZg26uAPwIfI3W73gP8vEPveVPtAL4B3ATMAKaRpmx6Grikl9qR28fM7G8ggH16qQ2kSYOfA07KPo+PAmcB43qlHcBmpMtDbgD2zpaB7Pdq81JiL/vN6sWFNPvA9yuejwHuBH5ccPu/A5YAX+9wwmmqHcBGVcp+AdzYxliPIV1btV5F2ZeAFZVlVbbbMftC+0BF2XZZ2W4deM+bbcfGVcpmZu3YvFfaUVF3PPAYcGgHE06zn8VGwDPAjLJjbnE7Pkv6h3P93OfyEvC5MmJ3l9oIJG1BGh33n0NlEfEy8F+kiUNH2n5d0oi6o4AX2hTmiEbTjoio1g14OzChlTHm1JrodSxpotd62w2b6JV0xDPi59UGTbUjIh6rUnx79tjO972WZj+PISeTjvKvb0NsRTXbho9njz9oV2ANarYdawCrgOUVZcuzMlXdosWccEY2dCFptUlBN5A00hxCXwXujojLWh5ZY0bbjrwdSUPc22XYhK0RcT/pv7hqFwHX3C5TOdFrmZptRzXvJ3VlFp3vr5WaboekdwOfJv3T1UnNtmF70nt+qKQHJb0o6VZJ729fqHU1245LsjqnS5ogaQJplPAg6R/PtnPCGdn47DE/Nc5gbv0wkrYCDgf+sQ1xNarpduRJ+gzwXtKN7tplPNWnIxqkfqzNbtcuLYlH0ibAccCPosZ9o9psNO04C/i3iFjS8qga02wbNiFN7Hs8cDTwN6RzJldJmtjqIAtoqh0R8TDp3O3HgEezZT/SxMbVjqhbrhOTd3acpHHApiPVi4jK/yIamhQ08y3gvIi4s7EIiymxHZWvOYX0BfKtiLixyDaj0O6JXssyqngkvYHUFboc+KcWxtWohtsh6SDSl/XftCuoBjXzWYwB1gEOiIirACT9ArgP+AfSIJyyNfNZbApcTLqG8bCs+HDgcknvz46S2up1mXBI09+cU6CeeO2koJXT49SdFFTSnsBfAf8gaajuWmmV1gdWRpqOZzTa3o7X7CSdB7qc1A9/ZPEwmzKaiV6rdQ9WTvRapmbbAaRfFtJowm2Av4p08XQnNNwOSWsAp5HOYY7Jfu/Xy1avLWndiHimHcHW0Oxn8WT2ODBUEBHLJC0Atm5ZdMU1244vkr7z94+IFwEk3UC6fctRDL95Zcu9LrvUIuK7EaGRlqz60NFBtUlBn6xzKLoV6b+i35N+QQZJh+MbZD9/sUfaAUDW33s16b+6gyLipdHGP4J2TvRapmbbMeRMYDowPXekWrZm2rE28BbS9FVDfwO/ydZdyKuDIMrS7GdxN+nIIX9iXaRzamVrth2Tgd8NJRuAiHgB+B3pBpZt97pMOI2IiD+QruN4ZVJQSWOy51fW2fRiUn9p5fIDYFn284/aFHJVo2gHktYBrsie7hMRK9oVZ4W2TfRasmbbgaRjgM8Dn4w0bVMnNdOO5Qz/G/jbbN2xwCfaE2pNzX4WPyMll12GCrLu7Cm8mkDL1Gw77gPemXXRAiBpTeCdwNI2xDlcJ8eT98pC+iN5iXTScBfgPHIXTJKGI64Cdq6zn9l09jqcptoBXEMa0n0wsEPl0sZYxwN/Aq4lzY03k/QF9rVcvSXA93JlVwF/IJ0Q3Zc0wqiTF3423I7svQ7g3Px7TpVrdLq1HVX2M4nOXvjZ7O/UZdm2/5d0weQ80nVF43ulHaQE+SKpW3xvYB9S8noR+D+lxF72m9WrC+mK7yXA88BCYNfc+mnZH9K0OvuYTQcTTrPtyJ5XXdoc69akq6JXZn9gJwOr5eosJQ3MqCxbP/uifop0RPkfVLl4tcT3vOF2kP4ZqPW+H9Ir7aiyj44lnFH+Tq0D/DvwRLbtdcC7eul3KivblTSDxZPZMq/ed1arF0/eaWZmpfA5HDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWiv8POcOrZEXhl0QAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot estimated values for \"a\"\n", - "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", - "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('\"a\" Value', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()\n", - "\n", - "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", - "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", - "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", - "plt.xticks(size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('Estimated Option Price', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_master", - "language": "python", - "name": "qiskit_master" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/finance/simulation/short_butterfly.ipynb b/community/finance/simulation/short_butterfly.ipynb deleted file mode 100644 index 227ec7e2c..000000000 --- a/community/finance/simulation/short_butterfly.ipynb +++ /dev/null @@ -1,397 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Pricing Short Butterfly Options*_ \n", - "\n", - "The latest version of this notebook is available on https://github.com/Qiskit/qiskit-tutorials.\n", - "\n", - "***\n", - "### Contributors\n", - "Stefan Woerner[1], Daniel Egger[1]\n", - "### Affliation\n", - "- [1]IBMQ" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "
\n", - "Suppose a short butterfly option with strike prices $K_1 < K_2 < K_3$, with $K_2 - K_1 = K_3 - K_2$ and an underlying asset whose spot price at maturity $S_T$ follows a given random distribution.\n", - "The corresponding payoff function is defined as:\n", - "
\n", - "
\n", - "$$ F(S_T) = \n", - "\\begin{cases}\n", - "0 ,& S_T < K_1 \\\\\n", - "K_1 - S_T ,& K_1 \\leq S_T < K_2 \\\\\n", - "S_T - 2K_2 + K_1 ,& K_2 \\leq S_T < K_3 \\\\\n", - "0 ,& S_T \\geq K_3. \n", - "\\end{cases}$$\n", - "
\n", - "In the following, a quantum algorithm based on amplitude estimation is used to estimate the expected payoff, i.e., the fair price before discounting, for the option:\n", - "
\n", - "
\n", - "$$\\mathbb{E}\\left[ F(S_T) \\right].$$\n", - "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "%matplotlib inline\n", - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua.algorithms import AmplitudeEstimation\n", - "from qiskit.aqua.components.uncertainty_models import LogNormalDistribution\n", - "from qiskit.aqua.components.uncertainty_problems import UnivariateProblem\n", - "from qiskit.aqua.components.uncertainty_problems import UnivariatePiecewiseLinearObjective as PwlObjective" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Uncertainty Model\n", - "\n", - "We construct a circuit factory to load a log-normal random distribution into a quantum state.\n", - "The distribution is truncated to a given interval $[low, high]$ and discretized using $2^n$ grid points, where $n$ denotes the number of qubits used.\n", - "The unitary operator corresponding to the circuit factory implements the following: \n", - "$$\\big|0\\rangle_{n} \\mapsto \\big|\\psi\\rangle_{n} = \\sum_{i=0}^{2^n-1} \\sqrt{p_i}\\big|i\\rangle_{n},$$\n", - "where $p_i$ denote the probabilities corresponding to the truncated and discretized distribution and where $i$ is mapped to the right interval using the affine map:\n", - "$$ \\{0, \\ldots, 2^n-1\\} \\ni i \\mapsto \\frac{high - low}{2^n - 1} * i + low \\in [low, high].$$" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# number of qubits to represent the uncertainty\n", - "num_uncertainty_qubits = 3\n", - "\n", - "# parameters for considered random distribution\n", - "S = 2.0 # initial spot price\n", - "vol = 0.4 # volatility of 40%\n", - "r = 0.05 # annual interest rate of 4%\n", - "T = 40 / 365 # 40 days to maturity\n", - "\n", - "# resulting parameters for log-normal distribution\n", - "mu = ((r - 0.5 * vol**2) * T + np.log(S))\n", - "sigma = vol * np.sqrt(T)\n", - "mean = np.exp(mu + sigma**2/2)\n", - "variance = (np.exp(sigma**2) - 1) * np.exp(2*mu + sigma**2)\n", - "stddev = np.sqrt(variance)\n", - "\n", - "# lowest and highest value considered for the spot price; in between, an equidistant discretization is considered.\n", - "low = np.maximum(0, mean - 3*stddev)\n", - "high = mean + 3*stddev\n", - "\n", - "# construct circuit factory for uncertainty model\n", - "uncertainty_model = LogNormalDistribution(num_uncertainty_qubits, mu=mu, sigma=sigma, low=low, high=high)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot probability distribution\n", - "x = uncertainty_model.values\n", - "y = uncertainty_model.probabilities\n", - "plt.bar(x, y, width=0.2)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.grid()\n", - "plt.xlabel('Spot Price at Maturity $S_T$ (\\$)', size=15)\n", - "plt.ylabel('Probability ($\\%$)', size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Payoff Function\n", - "\n", - "The payoff function equals zero as long as the spot price at maturity $S_T$ is less than the strike price $K_1$, then increases linearly, and is bounded by $K_2$.\n", - "The implementation uses two comparators, that flip an ancilla qubit each from $\\big|0\\rangle$ to $\\big|1\\rangle$ if $S_T \\geq K_1$ and $S_T \\leq K_2, and these ancillas are used to control the linear part of the payoff function.\n", - "\n", - "The linear part itself is then approximated as follows.\n", - "We exploit the fact that $\\sin^2(y + \\pi/4) \\approx y + 1/2$ for small $|y|$.\n", - "Thus, for a given approximation scaling factor $c_{approx} \\in [0, 1]$ and $x \\in [0, 1]$ we consider\n", - "$$ \\sin^2( \\pi/2 * c_{approx} * ( x - 1/2 ) + \\pi/4) \\approx \\pi/2 * c_{approx} * ( x - 1/2 ) + 1/2 $$ for small $c_{approx}$.\n", - "\n", - "We can easily construct an operator that acts as \n", - "$$\\big|x\\rangle \\big|0\\rangle \\mapsto \\big|x\\rangle \\left( \\cos(a*x+b) \\big|0\\rangle + \\sin(a*x+b) \\big|1\\rangle \\right),$$\n", - "using controlled Y-rotations.\n", - "\n", - "Eventually, we are interested in the probability of measuring $\\big|1\\rangle$ in the last qubit, which corresponds to\n", - "$\\sin^2(a*x+b)$.\n", - "Together with the approximation above, this allows to approximate the values of interest.\n", - "The smaller we choose $c_{approx}$, the better the approximation.\n", - "However, since we are then estimating a property scaled by $c_{approx}$, the number of evaluation qubits $m$ needs to be adjusted accordingly.\n", - "\n", - "For more details on the approximation, we refer to:\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# set the strike price (should be within the low and the high value of the uncertainty)\n", - "strike_price_1 = 1.438\n", - "strike_price_2 = 1.896\n", - "strike_price_3 = 2*strike_price_2 - strike_price_1\n", - "\n", - "# set the approximation scaling for the payoff function\n", - "c_approx = 0.25\n", - "\n", - "# setup piecewise linear objective fcuntion\n", - "breakpoints = [uncertainty_model.low, strike_price_1, strike_price_2, strike_price_3]\n", - "slopes = [0, -1, 1, 0]\n", - "offsets = [1, 1, 1+strike_price_1 - strike_price_2, 1]\n", - "f_min = 0\n", - "f_max = strike_price_2 - strike_price_1\n", - "butterfly_objective = PwlObjective(\n", - " uncertainty_model.num_target_qubits, \n", - " uncertainty_model.low, \n", - " uncertainty_model.high,\n", - " breakpoints,\n", - " slopes,\n", - " offsets,\n", - " f_min,\n", - " f_max,\n", - " c_approx\n", - ")\n", - "\n", - "# construct circuit factory for payoff function\n", - "butterfly = UnivariateProblem(\n", - " uncertainty_model,\n", - " butterfly_objective\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecVPX1//HXAUQQFBEEQRFiiYqaaLBhiWIJtthQEbGCIBZk+cYkJv5iDUk0ZWkioCCoKBbsJSgIaqyBxKgoigVQUZQugpTl/P44d2QYtszulM/cmfN8POaxO3funX3PMMy55VNEVXHOOefqql7oAM455+LNC4lzzrmMeCFxzjmXES8kzjnnMuKFxDnnXEa8kDjnnMuIFxJXsETkBhHRpNsCEZkkIrsGzHSYiPxHRL4XEY2WNRGRiSKyOMp5URXbjkt5PYnbnXl9ERvz9BWR0ypZPldE/hYik4unBqEDOFeD5cDx0e+7ADcDU0Vkb1X9LkCeUcDXQFdgTbTsMuCXwAXAF8DH1Ww/G7g4ZdnXWc6Yrr7Au8BjKctPBxbnP46LKy8krtCtV9XXo99fF5H5wMvAicBDAfLsCYxW1RdTln2gqpPS2P67pNdTkFT1v6EzuHjxU1submZGPzsAiEhnEXkiOu31nYi8JSI9EyuLyHbRaagLk59EzKci8o+kZUeLyBvR+gtFZISINI0eOyo6lVUfGBKdkhonInOB3sD+iVNVdX1hib8hIvukLJ8uIg8n3R8nIjNE5DgReTt63f8Skb1TtqsvIr8TkQ9FZI2IfC4i4xLPCXQCLkw6xXZR9Nhmp7ZE5GwReSd6ns9EZJCINEh6/KLoOfYVkeejTLNF5Iy6vh8uPryQuLjpEP38KvrZHngFuAQ7vTQJuEtEegCo6hLgUTY/nXRU9Fx3AYhIR+CfwCKgG3A9cC6Q+AL/D9A5+v3v0e83Y6eBnsFOWXVOWqdKItIg+ZbWq97czsBfgUFAD6AV8KCISNI6o4AbgQeBk4FfAU2ixy6PMj+TlPvpKvL+AngAew9OBYYBVwPDK1n9PuAJ7H2ZA0wUkZ3q+BpdTPipLVfwkr5sdwFGAN8CUwBUdWLSegK8BOwE9AHujx4aAzwnIruo6ifRsouBmar6TnT/OmAecIqqVkTPtwR4QEQ6q+pr2Kk1gLnJp6dE5BugdZqnrDoB61Je3+6q+lEa2ybbDjhMVedEz1EPK5h7ALNFZE/sSGmAqg5N2u4BAFV9T0S+A75JI/dNwHRVTRzV/TN6H/4sIn9U1c+T1i1X1bFRppnAQqyIjazl63Mx4kckrtC1wL541wEfYMWku6p+CSAizUVkqIjMS1qvL/DjpOeYihWJC6NttgbOIDoaiRwEPJooIpFJwHrg8Cy+nveBA1Nun9XheeYmikjkvehnYu+/S/RzXB2e+wciUh/4GZtfj3oA+/5IPQJ7LvGLqi7GGhL4EUmR8yMSV+iWA8cCip3OWqCbDlk9DjgEO830HrACa0V1amIFVVURuQvoJSI3AGdjn/37kp6nDbb3TNJ2FSKyGNv7z5ZVqjojC8+zLOX+2uhno+hnC+zC/ooM/05LYAtS3puk+6nvTWW5GuGKmhcSV+jWV/XFKyKNgJOAK1V1ZNLyyo6078Kue3QBLgIeU9WlSY9/iV1nSH7++tgX8pJMXkAtfB/9bJiyfDvs2k1tLAaaiMg2GRaTRdhRXquU5a2jn/l6b1wB81NbLs62xFpRJfpzJE5bnZK6oqp+hp12uRE7VXVXyipvAKdHxSPhDGxn61/ZjV2lxLWGvRILRKQddt2jtl6Ifl5QzTo1Hi1Ep/pmAmelPHQ2sAF4rQ7ZXJHxIxIXW6q6XET+DVwnIiuwL7ZrsNNh21SyyRjsXP/nwPMpj/0R+C/wmIjcjp3XvwWYHF1ozzlV/Tx6PTeLyCpsR+/31GGvX1U/EJHRwN9FpBXWCGFb4ExVPSdabTbQVUS6Ykcwn0bXNVJdD0yOTg9OBPbFTiXekXKh3ZUoPyJxcXcu8ClwNzAEu0B+dxXrPoVdPB+vqhuSH1DVWcAJ2CmcR7DCcj9wZm5iV+lcYD5wL/AnrMXUB3V8rsuxI7DzsGa+g4HVSY//Ebv4/yDwb6z59GZU9TngHOAA4EmgDGsCfWUdc7kiIz7VrisVInIiVkx+XIfmts65KnghcUVPRNoCu2Md6ear6smBIzlXVPzUlisFfbG+JN8D/QNnca7o+BGJc865jPgRiXPOuYyURPPfli1baocOHeq07XfffUeTJk1qXrFAxClvnLJCvPLGKSvEK2+cskJmeWfOnLlIVbevcUVVLfpbp06dtK6mTZtW521DiFPeOGVVjVfeOGVVjVfeOGVVzSwvMEPT+I71U1vOOecy4oXEOedcRryQOOecy0jeC4mI7CYio0TkfyJSEU35mc52zUTkLhFZKiLLRWSCiLTIcVznnHM1CNFqa2/gROB1Nh8uuzoPYKOgXoINzncL8BhwRLYDOuecS1+IU1tPqmo7VT0LmJXOBiLSGegKXKiqk1T1UWwgusNF5NicpJwwATp04Mijj4YOHex+IYtbXucgXp/bOGWFvObN+xGJpoy6mqYTgIWq+lLS87wpIp9Gj03JVj7A3vC+fWHVKgRg3jy7D9CzZ1b/VFbELa9zEK/PbZyyQt7zxqVD4p7Y3Amp3o8ey65rr4VVqzZdtmoVXHEFfFDXEb1zaOjQyvNee21hfsidg3j9P6vq/1ghZoW8fycEHWtLRB4GWqrqUTWs9zw2//RpKcvvBXZR1UMr2aYvNlgfrVu37jRx4sS0cx159NFIJe+L2hOn/Tx5o0plqVSEF194oZJHCsPKlStp2rRp6Bhpi1PeOGSN1f+zqv6PQeFlhax9J3Tp0mWmqh5Q03pxOSKB6N8shVSxHFUdDYwGOOCAA/Soo45K/y/tvLMdCqb+sfbtYe7c9J8nXzp0qDzvzjtTq9edZ9OnTy/ofKnilDcWWdu1g/nzN1tckP/Pqvo/VohZIe/fCXHpR7IUmyY01bbAsqz/tUGDYKutNl221Va2vBDFLa9zAOefv/myQv3cxu3/WJ7zxqWQzKbyayFVXTvJTM+eMHo0tG+PikD79na/UK83JOcFqF8fbr+9cPM6B/Duu9C0KbRrV/j/z+L8nZCHvHEpJM8CO4jI4YkFInIAsEv0WPb17Alz59r5xLlzC/cDkxDlfXfQIKiogEaNQidyrmoffQRPPAFlZTB/fjz+n8X0OyEfeUP0bN9KRM4UkTOBHYHtE/dFZKtonY9EZExiG1V9DZgM3C0iZ4jIacAE4F+qmt2mvzG3+JBDYLfdoLw8dBTnqjZ0KDRoAJdfHjqJy4IQRyStgIei2yFAx6T7raJ1GgD1U7Y7B3gRGAvcDcwETs9D3nipVw8GDIDXX7ebc4Vm2TIYOxZ69IA2bUKncVmQ90KiqnNVVaq4zY3W6aCqF6Vst0xVL1bVbVV1G1U9V1UX5Tt/LFx0ETRrBoMHh07i3ObuvBO++85Oa7miEJdrJK42mjaFPn3g4Yfhs89Cp3Fuo/XrYdgwOPJI2H//0GlclnghKVZXXgmqMHx46CTObfToo9Z3ZODA0ElcFnkhKVbt20O3btbk77vvQqdxzpSXw667wsknh07issgLSTErK7MLm+PHh07iHLzxBrz2mjUGqZ/alsbFmReSYta5Mxx0EAwZAhvqMuiyc1lUXg7bbGONQVxR8UJSzETsqOTDD+HZ3PTbdC4t8+db448+fWDrrUOncVnmhaTYnXkm7LijNwV2YQ0fbo0/+vcPncTlgBeSYrfFFtaCa8oUeOed0GlcKVq5Eu64wxp/tG8fOo3LAS8kpaBvX2jc2K6VOJdv48dbow9v8lu0vJCUgu22gwsvhHvvha+/Dp3GlZING2wH5uCDrfGHK0peSErFgAGwZg2MGhU6iSslTz8Nc+b4cChFzgtJqdhzTzjhBLjtNisozuVDeTnstJNdH3FFywtJKSkrg4UL4YEHQidxpeCtt2DaNGuptcUWodO4HPJCUkqOOw46drS9RK10qnvnsmfIEJvetU+f0ElcjnkhKSWJDopvvQUvvRQ6jStmX30F990HF18MzZuHTuNyzAtJqTnvPGjRwjsouty6/XZYu9Yaebii54Wk1DRuDP36weOPw8cfh07jitH331shOflk2H330GlcHnghKUWXX27zZQ8bFjqJK0YTJsA333gHxBLihaQUtW0L3bvDmDGwfHnoNK6YqFpjjp/8BLp0CZ3G5YkXklJVVmZjII0dGzqJKyZTp8KsWXY0IhI6jcsTLySlqlMnOOIIGDoUKipCp3HForwcWreGHj1CJ3F55IWklA0cCHPn2oV35zI1ezY884xdg9tyy9BpXB55ISllp5wCHTrYXqRzmRoyxApIv36hk7g880JSyurXh6uugn/9C2bMCJ3GxdnixTZcfM+e0KpV6DQuz7yQlLrevW3qU++g6DIxejSsXu2j/JYoLySlbpttoFcvG8hxwYLQaVwcrV1rU+keeyzsu2/oNC4ALyTOTm9VVNgQ887V1sMP206Id0AsWV5IHOyyC5x6qk16tWpV6DQuThIdEPfYA44/PnQaF4gXEmcGDrQLpvfeGzqJi5NXXrGGGgMGQD3/OilV/i/vzBFHwP7720V3n6vEpau83IaJv+CC0ElcQHkvJCLSUUSmisgqEVkgIjeJSP00tttbRJ6LtlskIreLSNN8ZC4JInZU8v778NxzodO4OPj0U3jsMbj0UmjSJHQaF1BeC4mINAemAAqcCtwE/Aq4sYbtmgEvAI2B7sDVQDfAz8NkU/fusMMO3hTYpWfoUDuddeWVoZO4wBrk+e/1w4rBGaq6AnheRLYBbhCRW6Nllbk82u6XqroMQESWAI+LyAGq6r3psqFhQ7jiCvjDH+zIZK+9QidyhWrFChs9+uyzYccdQ6dxgeX71NYJwOSUgjERKxJHVrPdfsCMRBGJPIcd2ZyU9ZSl7NJLbZiLIUNCJ3GFbOxY+PZb74DogPwXkj2B2ckLVHU+sCp6rCqNgLUpy9YDGwDfbc6m7beH88+Hu++2VlzOpaqosNNahx0GBx4YOo0rAPk+tdUcWFbJ8qXRY1X5CDhXRLZQ1XXRsk5AfWC7yjYQkb5AX4DWrVszffr0OgVeuXJlnbcNIRt5mxx6KAfeeSefXHMN83v2zE6wSpTie5svucza8qWX2OfTT3n3wgtZlKW/4e9t7uQlr6rm7QasAwZUsvwLYFA12+2JHYGMBHYA9gZmRsuerenvdurUSetq2rRpdd42hKzlPe441bZtVdeuzc7zVaJk39s8yGnWww9X7dBBdf36rD2lv7e5k0le7JJCjd/t+T61tRTYtpLlzaj8SAUAVZ2NHV30AL4E3gbeBN4CFmY/pqOszIa9eOih0ElcIZkxw0aLvuoqGz3aOfJ/jWQ2KddCRKQd0ISUayepVHUs0Br4CdAWuBLYDXg9J0lL3fHH27AX5eXeQdFtNHiwjRbdu3foJK6A5LuQPAt0FZGtk5Z1B1YDL9a0sap+r6rvqOpC4Dws/4M5SVrq6tWzYS9mzIBXXw2dxhWCL76wUaJ79bJRo52L5LuQjATWAI+IyLHRBfEbgH9oUpNgEflIRMYk3d9GRG4RkZNEpKuI/AW4E7hKVZfk+TWUjgsusOEvvIOiAxsduqLCTms5lySvhURVlwLHYK2tnsR6tJcD16es2iBaJ6EC2B+4B3gseo6zVHVcjiOXtiZNoG9feOQRm9vdla5Vq2x06NNOs9GinUuS97G2VPU9VT1aVRurahtV/YOqVqSs00FVL0q6/52q/kJVt4u2O1BVH8t39pJ0xRU2Dtfw4aGTuJDuvhuWLPE5R1ylfPRfV7127eCss+COO6wnsys9GzbY6c1OneDww0OncQXIC4mrWVmZja00blzoJC6EyZPhgw/saEQkdBpXgLyQuJodfDB07mzjb1VU1Ly+Ky7l5dCmjR2ZOlcJLyQuPWVl8PHH8PTToZO4fHr3XXj+eRsqvmHD0GlcgfJC4tJzxhl2vaS8PHQSl0+DB0PjxjYqtHNV8ELi0tOgAfTvD9Onw1tvhU7j8uHrr+Hee60/UYsWodO4AuaFxKXvkkusb4l3UCwNI0fCmjU+54irkRcSl77mzeGii+D+++Grr0Kncbm0Zg2MGAEnnAB7VjdVkHNeSFxtDRgAa9fC7beHTuJyaeJEWLjQj0ZcWryQuNrZfXc4+WQrJN9/HzqNywVVa1Sx995w3HGh07gY8ELiam/gQPjmGzvF5YrP9Onwv//Z0Yh3QHRp8ELiaq9LF9h3X5+rpFiVl0PLlpDDaZZdcfFC4mpPxPZW33kHpk0LncZl05w58NRTcNll1n/EuTR4IXF1c+65sP323kGx2Awdan2GLr88dBIXI15IXN00amR7rU89ZXuxLv6WLYO77oIePWCHHUKncTHihcTV3WWX2fhLQ4aETuKy4Y474LvvfM4RV2teSFzd7bCD7b3edRcsXRo6jcvE+vUwbBgcdRTst1/oNC5mvJC4zJSV2TSsd94ZOonLxKRJ8NlnfjTi6sQLicvMfvvZXuywYbZX6+KpvBx23dU6mzpXS15IXOYGDrS92UceCZ3E1cXrr8Mbb9jwN/X8K8HVnn9qXOZOOsn2Zn1U4HgqL4dmzeDii0MncTHlhcRlrn5925t97TXbs3XxMX++XR/p0weaNg2dxsWUFxKXHRddBNts40clcTNsmP3s3z9sDhdrXkhcdmy9te3VPvSQXS9xhW/lSus70q0b7Lxz6DQuxryQuOy58kobxPG220Incem46y5Yvtyb/LqMeSFx2dOhA5xxBowebT2kXeHasMFGJDj4YDjkkNBpXMx5IXHZVVZmvdzvvjt0Eledp56Cjz/2oxGXFTUWEhG5QERa5COMKwKHHgoHHmgX3TdsCJ3GVaW8HNq1s+sjzmUonSOSu4BdAUSkQkQOym0kF2uJuUo+/BD++c/QaVxl3nrLZkHs39+GjHcuQ+kUkqVA2+h3AXxKPFe9M8+Etm19rpJCVV4OTZpYKzvnsiCdQjIFuEdEZmBFZJyIvFnVraYnE5GOIjJVRFaJyAIRuUlE6qex3QEi8pyILBaRJSIyRUQOTiO/y7eGDa0F15Qp8O67odO4ZF9+Cfffb73Yt902dBpXJNIpJL2AG4H/YkcknwKzqrlVSUSaY4VJgVOBm4BfRc9f3Xbtou0aABcA50e/Pyci7dN4DS7f+va1qVp9rpLCcvvtNrjmVVeFTuKKSI0nSFV1FfA3ABE5FrhWVf9Xx7/XD2gMnKGqK4DnRWQb4AYRuTVaVpmTgK2j7ZZFWV4FFgEnArfXMY/LlRYt4IILYNw4+NOfbFpeF9bq1VZITj4Zdt89dBpXRNJptVUhIgdGd6cDVX3Zp+MEYHJKwZiIFZcjq9luC2A9sDJp2cpomWSQx+XSgAGwZg2MGhU6iQOYMAEWLfImvy7r0jm1tRbYMvr9AiCTXcs9gdnJC1R1PrAqeqwqk6J1/i4irUSkFVCONQR4KIM8Lpf22guOP956uq9ZEzpNaVO1Jtk//anNH+NcFqXT9u897NTTY9je/5kickAV66qqVneaqTmwrJLlS6PHqnrSBSLSBXgKSJzc/RLoqqrf1PQCXEBlZVZMHnwQzj8/dJrS9fzzMGuWnWoUP4h32SWq1bfmFZFDgVHYEUM9qj+VpKpaZQssEVkHXK2qQ1KWfwGMU9Vrq9iuDfAydjE/UaiuAPYHDo2OalK36Qv0BWjdunWniRMnVhO7aitXrqRpjIbXLri8qhx48cVsaNiQmaNGbfIlVnBZaxCnvKlZ9/3tb9l6zhxemzgRbdgwYLLKxfm9LXSZ5O3SpctMVa3qwGEjVU37BmwADqrNNinbfw1cX8nylcCvq9nuH8BcYIukZQ2BecDQmv5up06dtK6mTZtW521DKMi8o0apguqLL26yuCCzViNOeTfJ+t579v7feGOwPDWJ7XsbA5nkBWZoGt/ttR1rqwt2qquuZpNyLSRq2tuElGsnKfYEZqnqusQCVV2LHaHsmkEelw/nn2+tuLyDYhhDhsCWW0K/fqGTuCJVq0Kiqi+q6koROVhEfiUig6Kf6XYMfBboKiJbJy3rDqwGXqxmu3nAPiLywzG5iGwJ7IMdqbhC1rgxXHopPP44fPJJ6DSlZfFiG0DzvPOgVavQaVyRqlUhEZEmIvIM8CrwZ6yz4p+BV0XkaRHZqoanGAmsAR4RkWOj6xg3AP/QpCbBIvKRiIxJ2u5ObJiWR0XkJBE5GXgMaAOMrs1rcIFccYVNyTt0aOgkpWXUKOs/UlYWOokrYrU9tXUr0Bk4B2ikqm2ARtH9zsAt1W2sqkuBY4D6wJNYj/Zy4PqUVRtE6yS2mwkcj3VKvAe4G9gKOE7r3jnS5VPbttC9O4wdCysy6Yrk0rZ2LQwfDscdB/vsEzqNK2K1HfqzG/BbVf2h74aqbgAeioY/uQmodvJnVX0POLqGdTpUsmwqMLWWeV0hGTjQOsWNGeOd4vLhwQdtbK077wydxBW52h6RNAOqmpD7M2CbzOK4otapExx+uJ3eqqgInaa4qVrjhj32sH48zuVQbQvJ/4DLRDbt0RTdvyx63LmqDRwIc+fahXeXM83eeQf+8x+7NlLPJ0J1uVXbU1u/x1pezRaRR4GFQCvgdKADNpaWc1U79VRo2RLOPZcj166FnXeGQYOgZ8/QyYrDhAlw7bXsN2+eFZAtt6x5G+cyVKtCoqoviMj+wHXAWVirqS+BN7CReTPpY+JKwcSJsHw5rFtnQyTMm2dDzoMXk0xNmGDv5apV9t5u2GDzwjRs6O+ty6laH/Oq6nuqeo6q7qqqW0U/z/Ui4tJy7bWwbt2my1atsuUuM9dea+9lMn9vXR7Uth/J30SkY67CuBIwf7Nh0apf7tLn760LpLZHJN2Ad6JpdfuJSLNchHJFbOeda7fcpc/fWxdIbYdI+RFwLDYu1l+BL0XkvmjmROdqNmgQbJUyAELjxrbcZebmmzcfIn6rrfy9dTlXl2sk01T1AuxCe39gJ2CyiMwTkRtFZJdsh3RFpGdPGD0a2rfnhwkMevTwi8HZ0LSp9R9p2RIVgfbt7b3299blWJ0bmKvqSlUdgw1v8grQDvgd8KGIPC4i7bOU0RWbnj1h7lxefOEF2H9/eO01+wJ0mSkvt+Lx5Zf23s6d60XE5UWdComIdBCR60XkE+A5bD6Rs7CxsE7B+pTUbSYpVzpErIPi++/D5Mmh08TbzJnw8stw1VXQoLbdw5zLTG1bbZ0vIi8AHwEXAncBP1LVE1V1kqquUdVnsOlwa55Vy7nu3aFNG5tP3NXdkCF2aqt379BJXAmq7RHJaOArbK70XVT1ZlX9vJL1PgT+mHE6V/waNrQh5idPhve8K1KdfPmldfS8+GJo5g0pXf7VtpC0jTofVjsKr6p+qao3ZpDLlZJLL4VGjfyopK5GjID16+20lnMB1Lb579JcBXElrGVLm473nntg0aLQaeJl9WoYORJ++UvYbbfQaVyJqvXFdhHpLiJTRGS+iHydestFSFcCysrg++9tRj+XvgkTrPj6/C4uoNpebD8XGI9dbN8JeAJ4KnqeFcDwbAd0JaJjR+jaFW67zWb2czVTtdOBP/0pHHlk6DSuhNX2iOTXwM3AFdH9EaraC/gRsAhYVdWGztWorMwuHD/wQOgk8TBlCsyaZe9bao925/KotoVkd+AVVa0AKohmRFTVb7H52q/MbjxXUrp2hb32so513kGxZoMHQ6tWNjKAcwHVtpAsBxIz5XwB7JX0mAAtshHKlSgR27v+73/hpZdCpylss2fDM8/A5Zf75FUuuNoWkhnAT6LfnwCuE5E+InIhNojjG9kM50rQ+edDixbeFLgmQ4daH5zLLgudxLlaF5I/A4nJDa4D3gRGYD3cFwF9sxfNlaTGja1fyeOPw8cfh05TmJYsgfHjbRytVq1Cp3EuvUIiIo1FpBtwGNBARFqr6jJVPRVoCmyrqger6ie5DOtKxBVX2HhRQ4eGTlKY7rjDZj4cMCB0EueANApJNCz8LOAh7PTVPcAHIvILgGh8rRU5TelKS9u2NgbX2LE2v7vbaN06GD4cjj7amv06VwDSOSK5FdgAHAFsBewN/BfwnmMudwYOhJUrYcyY0EkKy6RJ8Pnn1ijBuQKRTiHpDPw/VX1FVb9X1feBS4GdRaRNbuO5kvWzn8HPf26nt9avD52mcAwebEOhnHRS6CTO/SCdQtIGSL328THW3HeHrCdyLqGsDObNg8ceC52kMLz+Orzxhl0bqVfnOemcy7p0P43eO8zl3ymnwC67WAdFZ+9Ds2Zw0UWhkzi3iXQLyeSUgRm/jJZP9UEbXc7Ur29Do7/6Krz5Zug0Yc2fb9dH+vSxCaycKyDpzMnp84q4cHr1guuus2sD990XOk04w4fbsDFX+ihErvDUWEh8gioX1NZb2/Sxw4bBrbfCTjuFTpR/K1da35Fu3aB9+9BpnNtM3q/YiUhHEZkqIqtEZIGI3CQi9WvY5gYR0Spuv8tXdhfIVVfBhg22V16K7r4bli3zJr+uYOW1kIhIc2AKdvH+VOAm4FfUfPrsTqwZcvLtluixZ3MS1hWODh3g9NNh9Gj47rvQafJrwwY7rXfQQdC5c+g0zlUq30ck/YDGwBmq+ryqjsSKyP+JyDZVbaSqn6vq68k3YF9gtqq+lZ/oLqiBA2HpUts7LyXPPgtz5vicI66g5buQnABMThlSZSJWXNKe4k1EtgOOA+7PbjxXsA49FA44wPbON2wInSZ/ysthxx3hzDNDJ3GuSvkuJHsCs5MXqOp8bGbFPWvxPGcCW2BFyJUCETsq+fBD20svBe+8A1OnWkutLbYInca5KonmcSY6EVkH/FpVB6cs/xy4W1V/n+bzvAA0U9VO1azTl2hY+9atW3eaOLFuNWflypU0jVG7/TjlrW1WWb+eQ3r0YNXOO/O/v/89h8kql+/3do+//pVWU6fy2oMPsn6bKs/8VipOnwOIV944ZYXM8nbp0mWmqh5Q44qqmrcbsA4YUMnyL4BBaT5HG2ya36vT/budOnXSupo2bVqdtw0hTnl1gffGAAAfnklEQVTrlPXPf1YF1bffznqemuT1vV24UHXLLVX79avT5nH6HKjGK2+csqpmlheYoWl8x+b71NZSYNtKljcDlqX5HGdj43w9kK1QLkb69rXJr4p9BsVRo2DNGmv67FyBy3chmU3KtRARaQc0IeXaSTXOAf6lqp9lOZuLg+22gwsvhAkT4OsiHZFnzRq47TY4/njYa6/QaZyrUb4LybNAVxHZOmlZd2A18GJNG4tIB+AQvLVWaSsrsy/b228PnSQ3HngAFi60xgXOxUC+C8lIYA3wiIgcG10QvwH4hyY1CRaRj0SkshmNzgHWAw/nI6wrUHvsASeeCCNGWEEpJqp22q5jRzjuuNBpnEtLXguJqi4FjgHqA09inRHLgetTVm0QrZPqHGCqqn6Ty5wuBsrK7NTW/UV2cPrSS/Df/3oHRBcr6Yz+m1Wq+h5wdA3rdKhi+X65yORi6NhjYZ99rMPehRcWz5fu4MHQogWcd17oJM6lzadZc/EkYnvtb78N06aFTpMdH38Mjz8Ol15qLdOciwkvJC6+evaE7bcvnqbAw4bZZF5XXBE6iXO14oXExVejRnDZZfDUUzawYZytWAFjx0L37tC2beg0ztWKFxIXb5ddZuNQDRkSOklmxoyBb7/1Jr8ulryQuHjbYQfo0QPuusuGmY+jigoYOhQOPxw6VTl8nHMFywuJi7+BA2HVKpuONo4efxzmzvUZEF1seSFx8ffTn0KXLnaxet260Glqb/BgmwXytNNCJ3GuTryQuOJQVgaffw6PPBI6Se3MnAkvvwz9+1uLLediyAuJKw4nnwy77WYdFONk8GBo2hR69w6dxLk680LiikO9ejBgALzxBrz2Wug06VmwwAZo7NULmjULnca5OvNC4orHRRfZF3JcOiiOGAHr1/ucIy72vJC44tG0KfTpA5Mmwfz5odNUb/VqGDkSTjkFdt01dBrnMuKFxBWX/v3t57BhYXPUZMIEWLzYm/y6ouCFxBWXnXeGbt2sT8nKlaHTVC4x58h++8GRR4ZO41zGvJC44jNwICxfDuPGhU5SuSlTYNYsn3PEFQ0vJK74HHIIHHywjb+1YUPoNJsrL4fWreGcc0IncS4rvJC44jRwIHz0kY0MXEhmz4Znn4XLL4cttwydxrms8ELiilO3btCuXeF1UBw61ApIv36hkziXNV5IXHFq0MBacE2fDm+9FTqNWbIExo+3CblatQqdxrms8ULiitcll0CTJoXTQfGOO2yUYm/y64qMFxJXvJo3t97u998PX30VNsu6dda35ZhjYN99w2ZxLsu8kLjiNmCAfYmPGBE2x6RJ8MUXfjTiipIXElfcdt/dRga+/XYbliSUwYMty4knhsvgXI54IXHFb+BAWLQI7rsvzN9/7TUblXjAABul2Lki459qV/yOOgp+8hNrCqya/78/eDBsuy1ceGH+/7ZzeeCFxBU/ETsqmTXLhifJp/nz7fpInz42OrFzRcgLiSsNPXrYsCT57qA4fLj9vPLK/P5d5/LIC4krDVtuacOSPPusDVOSDytXWt+RM86wUYmdK1JeSFzp6NfPCsqQIfn5e+PHw7JldlrNuSLmhcSVjlatbHiS8eNtUqlc2rDBCtZBB9loxM4VsbwXEhHpKCJTRWSViCwQkZtEpH6a254hIv8WkdUislhE/ikiTXKd2RWRsjLrTzJ6dG7/zjPPwJw5djTic464IpfXQiIizYEpgAKnAjcBvwJuTGPbS4D7gGeBE4BLgDlAg1zldUVo333h2GPtIvi6dbn7O4MHw4472ijEzhW5fB+R9AMaA2eo6vOqOhIrIv8nIttUtZGItATKgf6qep2qTlfVR1W1v6ouz090VzTKymDBAnjoodw8/zvvwNSp1lJriy1y8zecKyD5LiQnAJNVdUXSsolYcalu8uqzo5/jcxXMlZATToA99shdB8XBg6FxY+jbN/vP7VwBynch2RPYpO2lqs4HVkWPVeVg4AOgt4h8LiLrROQNETk0d1Fd0apXz4YrmTEDXnklu8/99dcwYYL1Yt9uu+w+t3MFSjSPQ0aIyDrg16o6OGX558Ddqvr7KrabDBwKrAB+AyyOfh4A7K6qCyvZpi/QF6B169adJk6cWKfMK1eupGmMeiTHKW/IrPVWr6Zz9+4s239/Zt1Y4yU6IL287ceP50fjxvHm+PGsCth3JE6fA4hX3jhlhczydunSZaaqHlDjiqqatxuwDhhQyfIvgEHVbPc8doH++KRl2wBLgZtr+rudOnXSupo2bVqdtw0hTnmDZ73mGtV69VQ/+SSt1WvM+/33qq1bq55wQubZMhT8va2lOOWNU1bVzPICMzSN7/Z8n9paCmxbyfJmwLJqtlsS/ZyeWKB2nWUm0DFb4VyJueIKO801bFh2nu+BB2DhQu+A6EpOvgvJbFKuhYhIO6AJKddOUryPHZGkNsgXYEM2A7oSstNOcNZZcOedsGJFzetXR9Uu3nfsaM2LnSsh+S4kzwJdRWTrpGXdgdXAi9Vs9xRWNLokFohIM6AT8L8c5HSlYuBA+PZbGDs2s+d56SV46y1rWuwdEF2JyXchGQmsAR4RkWOjC+I3AP/QpCbBIvKRiIxJ3FfVGcDjwBgRuVBETgKewK653JbPF+CKzIEHwmGHwdChUFFR9+cpL4cWLeC887KXzbmYyGshUdWlwDFAfeBJrDNiOXB9yqoNonWSnQc8BvwDeBgrIkdHz+lc3ZWVwaefwhNP1G37jz+2bfv1s/4jzpWYvA8voqrvAUfXsE6HSpatBC6Lbs5lz2mnQfv2dlRx+um1337YMGjQwIapd64E+ei/zjVoAFddBS+/DDNn1m7b5cthzBjo3h3ats1NPucKnBcS5wB697apcAcPrnndZGPH2gRWZWW5yeVcDHghcQ6gWTPo1QsmTrQBHdNRUWEX6Y84Ajp1ym0+5wqYFxLnEq66yorDbWk2BHz8cZg7149GXMnzQuJcwq67wqmnwsiRsGpVzesPHgwdOtg2zpUwLyTOJRs4EJYsgXvvrX69mTPt4vxVV0H9tCb4dK5oeSFxLtkRR8D++9vRRnUjYw8ebBfne/XKXzbnCpQXEueSidhRyfvvw+TJla+zYIFdlO/d2y7SO1fivJA4l6p7d2jTxjooVmbECLso379/fnM5V6C8kDiXqmFDG2L+uedg1qxNH1u92i7Gn3qqXZx3znkhca5Sl14KjRrBkCGbLr/3Xli82Jv8OpfEC4lzlWnZEs4/H+65BxYtsmWqdpF9v/3g5z8Pm8+5AuKFxLmqlJXB99/bqSyg+YwZ8N57djHe5xxx7gdeSJyrSseO0LWr9XRfs4adJk2C1q3tYrxz7gdeSJyrzsCB8NVX0KoVLd54w45QHn44dCrnCooXEueqs2iRncZKzOm+fDn07QsTJoTN5VwB8ULiXHWuvXbzHu6rVtly5xzghcS56s2fX7vlzpUgLyTOVWfnnWu33LkS5IXEueoMGgRbbbXpsq22suXOOcALiXPV69kTRo+G9u1REWjf3u737Bk6mXMFwwuJczXp2RPmzuXFF16wGRG9iDi3CS8kzjnnMuKFxDnnXEa8kDjnnMuIFxLnnHMZ8ULinHMuI6Kpwz8UIRH5BphXx81bAouyGCfX4pQ3TlkhXnnjlBXilTdOWSGzvO1VdfuaViqJQpIJEZmhqgeEzpGuOOWNU1aIV944ZYV45Y1TVshPXj+15ZxzLiNeSJxzzmXEC0nNRocOUEtxyhunrBCvvHHKCvHKG6eskIe8fo3EOedcRvyIxDnnXEa8kDjnnMuIFxLnnHMZ8ULinHMuI15InHPOZaRB6ACubkSkHXAiIMBDqrpYRHYCrgZ2BeYCo1X1nXApQUR+CzwTOke6RKQx0EBVv01atj1wJdAR2AC8BYxQ1eVhUjpXWLz5b0REBDgdOAnYC9gOqAAWAq8D41T1w3AJNxKRg4DngKbAemAJ0BV4Bss8C9gH2AE4VlVfDhQVEdkAKDAbuA94QFU/CpWnJiLyDDBHVQdE9zsDz2IFZCZWuDsBa4GjVXVWwKz7A41V9dWkZccDv2Nj0fsfcEPyOoUi+j/3S+Bn2GdkBrbTUdBfSiKyDTZ21dGq+q/QeeCHTEcDDYGnVfW7aAfoCmAX4BNsx3JBTv5+gf+b5UX0hj+DfUEsBNYAO2If7mexf4g9gJtV9eZQORNE5HnsaPJ04DugHDgN+6I7U1XXiciWwGNAI1XtEjDrBuAWYF/gOCz3f7Ci8qCqfhEqW2VEZBHQW1Ufj+6/jr3HpyWOUkSkGfAE8L2qdg2Y9XXgSVUdFN3vBdwJTANewIreMcARQLfEawqU9VXsfX0/ut8c2xnqBKyMVmuK7bR1TT4iDEFELq/m4cbAX4EhwBwAVR2Rj1yVEZHdgKlAu2jRp8AvgOeBbYGPse+v1UAnVf086yFUteRvwP3YB2LfpGVtgX8Ck6L7R2If+F4FkHcxcELS/VbY3ucvUtY7CVgUOOsG4KDo9+ZA3+hDvz66TY+WtQj9vkYZVwE/T7q/NvV9TXpvvwucdUVyNuAjYFgl640E/lcon4Po/hjsSPr4pGXHA0uB8gL4HGzAju43VHFLfqwicNYHsSPP3bAzKfdE32evAltH67SM1hmViwx+sd2cAFyjSefx1Q4B+wGniUgbVX0R+BMwIFDGZBrdku+Tsqyy+0Gp6lJVHa2qxwA7Ab/CDsVHAgtE5OmgAc27QPIR3ELsP2eqFljRCWlDyv32wMOVrPcwtkdaSE4BblLVfyYWRL8PAs4IlmqjJ4Cvgd5AfVWtl7hhnwcBjoqW1Q8ZFDgcGKSqH6nqEuD/YddJ/6bRkZ2qLgIGs+lnO2u8kBjB9jBSVUSPNYvuvwH8OF+hqjETuFpEthaResDvgS+Ay0SkPoCINAAux74YC46qfqWqQ1T1UOBHwPXYUWBofwGuEZFe0Xs4CPiriBwnIg1FZMvoOsSfsT3BkF4GeibdnwVUNlz4gdjno5Bsi10TSTUTu7YXlKqeBlwI/Br4t4gclvxwmFRVag58lXQ/8W+dOgfTJ9gOXNZ5qy0zBfijiLytqp/AD+dwh2L/QImL7E2BQmipcy12/nMJdnpoFXah7WFgjogkLra3xU4XFDRVnYd9gf+lALI8IiL9sb23cuADbEcisees2M7FE9iXTEi/B16JdiaGYRfZx4vIdtgpQ7BrJGXANUESbqqbiCQK3VKgsgmTWmKn7IJT1edE5CfY+/e0iPwTaxUZ9PpNJb7GjkYTKoBR2NF0slbkKLtfbAeiZrP/xA7/52HnxX+EXXTvoarPRuvdis0Y1j1U1oQo88nYzsAkVf1SRHYAfsPG13Gnqv4nYExE5HrgDs1Ra5FcEZEWQHfgIGwPuR5WuN8HnlLVmQHj/UBE9gNuBw5mY5Ej6fel2CmkIWESmqjRRapxqtorZb1RQEdVPSI/ydIT/d+6FTvtNgorLl1U9aWgwQAReQxYkvpeVrLeMGAvVT026xm8kJjolNDZwE+BRtiFy/uic47OFTQR2QsrJqlF71VVXRcyW22ISB/gY1V9IXSWykTNwcuxnbWTtACaVYtIa2ArVf20hvX+D2t0MTXrGbyQFB8Rqa+qlV3zKRgi0gi7ILgB+KgQv+yiayS7kNSnSFXnh03lXOHxi+0pRGRvEekmIpeISO/o971D50olImeIyGMi8oyI/DJa1l1E5gJrRWRetHcXlIicF/VvSNxvICJ/wfaY38YaAywRkUI4hw+AiHQSkSew88nvA69g/Rs+FZEvROQmEdkqaMgiIpHQOSojIo1T/61FZL/oe6FTqFwFJ2T750K6Ab2w6wqVtR2vwIYcuTh0zijr2VGufwGPYxfb+2DXdsZgvVnvj3J3DZz1PeCypPt/j/L+ATgMa7p4A9ZZ6vcF8N7+Ars2NgNrmXUD1il1bZT5V1jrqLeA5gWQ92SsX847wAMk9YFJWudgwvd1+AVRn4akZadhnVPXA+ui9/yk0O9plK0Z8GiUaz1wB1AfGJ/yvfAK0DJ03jRfU7dcfQ6Cv7hCuAH9ow/MbVgv4JbRh6Z+9PvhwPDoC+aKAsj7b2Bk0v2eUba/p6x3FzAlcNZVwJFJ978GBlSy3tXAvAJ4b2cC46v4jMzFjuIbRV+AIwJnPS7py2x4lL0iKtaStF4hFJIKNu2QeHr0Zfxq9G9/dfT7eirpABog71BsGJT+wAXRzsMk4LOoKG6P9T/7Arg9dN40X1POColfIwFE5BPsi/nWGtb7DdBPVXfJT7Iqc6wAzlDVKdH9ZljrnGM16SJldMprlKoG658hIl8CV6rqpOj+GuwoaXrKescBT6hq4/yn3CTHauAUVX0+ZXlzbESBvVX1fRG5ALhFVduEyBll+hc2LtjFSct6YV+Cz2MtDr8XkYOxi+7BOs5FrbYOUdU3o/v/Ab5Q1V+mrPcM0ERVjwwQMznHp8CfVPWO6P7+WKG+WFXHJ63XBzuS/lGYpCAiY9NctT3WiTLrnwO/RmJ2AN5MY703KYDOUljTzuQPQ2KsomUp663EOn6F9ATWebJhdH8K0KOS9Xpge32hfY213Ev1U+x9T/QjmsfGjqqh7APcm7xAVcdiw/kcArwQ9SkpRPtgzWhTjcYGcQytFRv7j0E0phY2blWyj6i8P0w+XYgdJe1bw619VU+QKe+QaN4G+ojIS6paWXv3xEilfaJ1Q5uHje46GUBVK6Jmie+nrLcLm/Z4DeF3WA/sd0XkTuBJ4BYR2YeNneaOBvbHRoINbTRws4g0wa49rMV6hl8LTNON/WF2AUK34PoeaJK6UFVnRj2xJ2Oni27Ic66qJJ/+WM7GHaBk31EYO7ifYgX5xej+EdipuEOxa5MJhxH+czAHeFNVL6huJRE5E7uOlnVeSMyvsA6J74nII9iQ58uwD/62wJ7YOd2dKIye4o+QMtSBqr5RyXrnsumHPu9UdYmIHIJ9Ef8ftqcH0Dm6rcVOwxyhqv8Ok3IjVR0UnYa5Bhu2BexzcD/WCS1hHTb2WkhvY+fpn0h9QFU/iYrJM8C4POeqymQRWR/93gzYj407Ewl7Al/mM1QVRgJDRGRfrOidje0UXSciTbEBEH8GDARCjwj+OlbgapLcYTWr/BpJRER2xXqFH8/G4ZgTPsNa7vxVVVMPbQuWiOwMLFPVghhyAkBEOrBpp7mPtTD7kGyB9XNpBHxSSO9hgohcig2Tsr9W0XE2OrJ6FLt+FmxPPxrhINUcVb0vZb3p0fJCaLp+FXbKdQtslIiRItIDuwaVGLRzNPDbkJ/hqBnyYao6tIb1WmLX+F6sbr06ZfBCsrmo3Xji2sIyVQ09yqtzrkBEp7lbquo3obMUCi8kRSY67P4P0LMQThVJDKeulZhMY+xcofBCkiT6AmkFfKCqm10IjA4NT1TVu/MebtMcJ1bzcBPsgto1REPIq+oz+chVGYnR1LUQr2mM0xWNw3WWqt4UOEfQ6WAzFR2JJE8NPBN7HcG/RMVGVe6G/X8ap6qzReSnwI1s3Pm5TZPmf8mq0J1kCuEGbAk8hH1RVGAXUscAzVLWC96xK8oRp9nbFgGnJt1/HWsNtXXSsmZY65jJBfDePo9NVbstdm58OPA5NoLAFkmfl2exVlzBP79pvKacdUSrRYbdsNaGic/lx9gX3CdYsf43Nnz8QmCnAnjPXsVGyk3cbx5l3BDlXMHGDpVbh8oZZeuK7Yh9Fb2vK7AJrJZinVVvi/7fVWBTRmc/Q+h/sEK4AddhrbT6YBMDDYg+0HOA3ZPWK5RCMhNr2XIx1jY8+faT6AN+dmJZ4Kyxmbo2yhGnaYx3TvPWL/TnlgKYDraWeWMzNXBULB7CZnIEa4CxFBiTst49wOs5yRD6H6wQblhz3ytTlu0AvAR8A3SOlhVKIRFsnvOvsWEbfpT0WLPoP8FmYy4FyvomcH3S/c+AcypZ7wLgmwLIuyjly2L76P08LmW9EwugkCSOPmu6FcKR6QLg7KT77aNcZ6SsdzHwYQF8DlILyTdAWSXrBR/aB2uefGzS/eZR/qNT1vsF1ngo6xm8H4lpR0pHQ1X9SkSOwar4FBHpSWG0b0ftUzFaRB4E/gi8LSLDo98LzV+ACSLyGXA3G6euXYydzhLsMLwQpq6FjdMYv4J1jkuexvgFtc6fhTKN8bfAC8CdNax3ONa0PaTg08FmqJCnBl7Nph1TE7+nDje0FdaJNeu8kJgFwO7YEcgP1NqGnyMig7FDx6AX2VOp6jLgShEZjbVtnwPcQgHNKa3xmroW4jWN8ZvYdbynq1spmvsltODTwdZBXKYGfgXrKDknyvI3bNTt30ajdXwbjcf3G6zwZZ232uKHQc92UdWjqlnnd9jetGrAwe+qIyLnYNOB7oQNzhZ8GtAEicnUtRCraYz/APRV1dQOtKnr/Ry4UVW75CdZpRmCTwdbGxKjqYFFZDdsDLvE52AudpT/MDZSwDygA7Zj1EVV38p6Bi8kPzSd6w78RVUXV7Peudi58ourWie06LRLE2ClFvgsia50SAFMB5sLUiBTA0f9xw7DWhpOVdXVUcfqS9i483Ofqn6ek7/vhcQ551wmCmGUTZcjInKHiIwJnSMdccoK8cvrXC75xfZaEJE7gHqq2jt0ljR1IT47C3HKCjHKKyJTsLMPx4TOUpM4ZYV45c1lVi8ktRObLw8AVd0tdIZ0xSkrxC6vEJ/PbZyyQrzy5iyrXyMpYlGzz1aqGnrinRrFKSvEL69zuRSXSloQRKRRNMdHXJyEzfQWB3HKCjHKKyJbxOVzG6esEK+8uczqhaR2YvPl4UqDiFwhIh+LyLci8oaInF/Jaj+jAD63ccoK8cobOqtfI4khEUm3zXplPXHzKk5ZIV55ow6ow7BpgP+L9SMYJyKnAuer6uqQ+ZLFKSvEK28hZPVrJNT6y6Nj6J7tYvNef4ANg1CdHYGDQ+aNU1aIV14RmQG8oKq/SVp2DDAB6918ktqkXAcDr3rW9MUpbyFk9UJCvL48AETkLWzyre41rHcm8EDgD3lsskY5YpNXRL4Ffqmq01OWd8DmS6kPnICNBxX6yy42WSFeeQshq18jMe8C76rqWdXdgH+EDhp5AzgkjfUSAyKGFKesEK+8y7Evh02o6lzgUGxI/FeBA/Mbq1Jxygrxyhs8qx+R8MPAa8eravsa1uuGzeEdtACLyK7A3qr6RA3rNcaaqKYO1Z03ccoa5YhNXhF5HPhWVc+r4vHG2MB9JxB4sNE4ZY3yxCZvIWT1QkK8vjycSxCRs4CBwMmquqSKdeoDt2ODjf4on/lScsQma5QlNnkLIasXEueccxnxayTOOecy4oXEOedcRryQuJIiIheJyMyoB/BSEfmviOSkNZ6I/FhEbhCRbdNY9wYR0aTbAhGZFF2/q2nbi6JtmmYnuXO144XElQyx6ZLvBCYDZwAXAI8Dp+ToT/4YuB6osZBElgOdo9vVwH7AVBFpUsN2T0fbrKpjTucy4kOkuFJyJTBKVX+ftOxJEbkxVKAU61X19ej310VkPvAycCLwUOrKUUuc+qr6DfBN/mI6tyk/InGlZFvgq9SFmtR0UUQ6RKeJzhWRe6JTYF+LyPWp24nI0dEAed+LyEIRGZE4vSQiRwFPRqt+Gj3n3FrmnRn97BA95zgRmSEip4nILOB74ODKTm2JSGMRuVVE5onIGhH5VET+nJL/EhGZFT0+T0R+g3N14EckrpT8B+gf7ek/paqLq1n3r8BTwJnAz4HrRWSRqt4GICIdgX8CzwPdgHbAX4BdgOOjv3U18DfsNNqXwJpa5u0Q/fwqZdmtwE3AQmw0102uo4iIYKfsOgM3YwVpR+CIpHV+Dfwpeq7pQCfgZhFZparDa5nTlTpV9ZvfSuIG/AT4BBveZAMwC/tC3iZpnQ7R48+lbHsH8AU21TLARGAOdmopsc7Z0bado/snR/c7pJHtBmwoiwbR7cfANGAF0CZaZ1z0fPulbHtRtLxpdL9rdP+UKv7WNsBK4PqU5TdhRat+TXn95rfkm5/aciVDVd8G9sIuro/Axsr6AzCjkhZPj6bcfwRoC+wU3T8IeFRVK5LWmQSsBw6vY8QWwLro9gF2dNNdVb9MWucLVX2rhuc5GliiVY/U0BloAjwkIg0SN+AFoDUbX6NzafFTW66kqOoa7NrFkwAi0htrydUbGJK06tcpmybutwHmRz8Xpjx3hYgsBrarY7zlwLHY0cRXwAJVTR16YuFmW22uBXYqrSqJAf5mVfF4O8CHAXJp80LiSpqqjhGRW4E9Ux5qVcX9L5N+brJO1IqqBVDpeEdpWK+qM2pYJ50xjRZjha4qiXwnU3lh+iCNv+HcD/zUlisZIpJaHBCR7YFmbP6FenrK/cQF88+j+28Ap0fFI3mdBsC/ovtro5+NMohdF1OB7UTk5Coefw1YDbRV1RmV3L7NX1RXDPyIxJWSd6Iht5/DTlW1x1pWrQLGp6y7dzS9wCSs1VZvYICqboge/yM2reljInI7dl3hFmCyqr4WrZPYs79URCYCq1T1ndy8tE08j3W6vE9EbsJakLUBfq6ql6rqMhG5ARgiIu2Bl7Cdyh8DXVQ1tYg6Vy0vJK6U3AScCgzFrmN8hU34011VP01Z9zfYqZ9JWH+Nm4EfmsWq6iwROQFrQvsI1rrq/mi7xDrzRORq4CqgP3Y00yEXLyyZqqqInB5lLsOmiF4A3Je0zq0isgAbfvxX2Gv8EHgg1/lc8fFh5J1LEk1P+ik2delTYdM4Fw9+jcQ551xGvJA455zLiJ/acs45lxE/InHOOZcRLyTOOecy4oXEOedcRryQOOecy4gXEueccxn5/ynPUFMiyLbBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot exact payoff function (evaluated on the grid of the uncertainty model)\n", - "x = uncertainty_model.values\n", - "def payoff(x):\n", - " if x <= strike_price_1:\n", - " return 1\n", - " elif x < strike_price_2:\n", - " return 1+strike_price_1 - x\n", - " elif x < strike_price_3:\n", - " return 1+x - 2*strike_price_2 + strike_price_1\n", - " else:\n", - " return 1\n", - "y = [payoff(x_) for x_ in x]\n", - "plt.plot(x, y, 'ro-')\n", - "plt.grid()\n", - "plt.title('Payoff Function', size=15)\n", - "plt.xlabel('Spot Price', size=15)\n", - "plt.ylabel('Payoff', size=15)\n", - "plt.xticks(x, size=15, rotation=90)\n", - "plt.yticks(size=15)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "exact expected value:\t0.7402\n" - ] - } - ], - "source": [ - "# evaluate exact expected value (normalized to the [0, 1] interval)\n", - "exact_value = np.dot(uncertainty_model.probabilities, y)\n", - "print('exact expected value:\\t%.4f' % exact_value)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Evaluate Expected Payoff" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# set number of evaluation qubits (=log(samples))\n", - "m = 6\n", - "\n", - "# construct amplitude estimation \n", - "ae = AmplitudeEstimation(m, butterfly)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "# result = ae.run(quantum_instance=BasicAer.get_backend('qasm_simulator'), shots=100)\n", - "result = ae.run(quantum_instance=BasicAer.get_backend('statevector_simulator'))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exact value: \t0.7402\n", - "Estimated value:\t0.6413\n", - "Probability: \t0.4953\n" - ] - } - ], - "source": [ - "print('Exact value: \\t%.4f' % exact_value)\n", - "print('Estimated value:\\t%.4f' % result['estimation'])\n", - "print('Probability: \\t%.4f' % result['max_probability'])" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdBJREFUeJzt3Xu0XVV99vHvw0UItxAEAkVKBC8RKsNqRLBUgtzDW7mIJgN9O7Bo1FeFdqAFESGgZQhWQAd1AEMbXqomtEB5yyWEcDmBcFGDBLFJwKDcEcUeiDEQgfzeP+YKrKyzzzlrX87cOfs8nzH22HvPNdfcc83s7N+Za805lyICMzOzkbZRtytgZmZjgwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGM2BEmzJPUVr/skzWpy/6mSolrWIHmvl/TgENsvltQvabOan/0WSSHp8GbqbDZSHHDMNhxzgL+QtFd1g6SNgeOAayJiTfaamXWAA47ZhuP/AauBGQ22HQhMJAUls1HJAcesRZL2k/Rfkp6W9EdJSyR9rNXyImIVcD0wvcHmGcCzwO3FZ+8iabakX0t6UdLDks6WtOkQ9d2kOMX2mUr61yX9ppK2m6Qri1N4qyXNk/TWVo/NDGCTblfAbEMWEbNKr6dWNu8G3AVcArwE/BUwW9LaiJhT7NMHqFrWEOYAH5X0noi4D6AIIscAP4yIV4t8OwDPAX8PPA9MBs4Ctgc+1+RhrkfS9sVxPQvMLI7tdGCBpLf7lJ61ygHHrEURMXfda0kC7gDeBHyK1k99zSMFkBnAfUXaYcB25TIjYgmwpPT5dwEvApdIOjkiXmnx8wFOATYDDoqI54vy7wYeBU4ALm2jbBvDfErNrEWSJkj6jqTHgJeLx0zgba2WWfQe/pPUy1GRPB14DLi39NkbSTpF0jJJLxaf/X+BcaSg146DgfnAquI03CbAC8DPgCltlm1jmAOOWesuJwWDbwKHAu8F/hXYvM1y5wB/DuwnaXPgKGBOrL+0+ynAecB/AB8C9gFOKra1+/nbAx/j9SC67vEBYNc2y7YxzKfUzFpQBIIjgc9HxCWl9E78EXcb6frJDGBnYGsGnqL7CDA3Is4sffbew5T7KvAK8IZK+naV9/8D3A+c26CMlcN8htmgHHDMWrMZsDHw2gV0SVuTehtt3WQqIl6V9B+koLILsCwifl7JNq782YUhR8hFREh6CnhHqc4bAx+sZL2V1Kt60AMErJMccMxaEBEvSPopcKaklcBa4DTStY5tOvARc4DPk0anndlg+wLgs5IWA78C/haYVKPc/wRmSnqAdF3oU8AWlTz/DBwP3CbpYuBpYCfgAKAvIv696aMxwwHHrB3HA5cBVwC/By4m/Xh/vgNl30MaFTYJmNtg+1nAG0mnvQK4CvgH4Nphyj2TdI3mXOBPwHeApcAn12WIiN9K2hf4J+AiYFvgGeBOYNCld8yGo9y3mJb0FuBLwL7AXwB3Npjf0Gi/8aQv/9GkwQ7XAydFxO8r+Y4Cvg68lfSX39kRcWUnj8HMzJrXjVFqewHTgIeLR11XAlNJf4mdQBoRtN5fc5L2B64mzcY+ArgBmCPp0HYrbWZm7elGD2ejiFhbvL4K2H64Ho6k/YC7gQMi4o4ibR/gx8AhEXFLkTYf2DQiPlja90Zgm4jYfySOx8zM6snew1kXbJp0BPDsumBTlPMT4NfFNool2w8Eqhc055LmM4xvrcZmZtYJo2Xi52RgeYP0ZcU2gD2ATRvkW0Y6zpZnf5uZWftGyyi1CaT1par6gd1LeWiQr7+yfT2SZpKWI2HcuHHv2XXX9iZSr127lo02Gi1xvLvcVvW5repzW9XXibZ6+OGHn4uIHerkHS0BBxpPplOD9Op7DZKeEiMuIw1tZcqUKbF48eJ26khfXx9Tp05tq4yxwm1Vn9uqPrdVfZ1oq2ItwVpGy58B/aS5AFXb8nqPpr+UVs0DjXtIZmaWyWgJOMt5/VpNWfnaziOkBQar+SaTZoE3MwTbzMw6bLQEnHnATsU8GwAkTSFdv5kHry3rfjtp/amy6cA9EfFCprqamVkD2a/hSNqCNPET0sKE20g6rnh/Y0SslrQCWBgRJwJExD3FHJsrJH2R1GM5D1i0bg5O4WtAn6SLSJNCpxWPw0f8wMzMbEjdGDSwI+keHmXr3r+ZtH7UJqSVeMtmABeS7jfy2tI25QwRsagIXl8HPkuap3N8RNzcwfqbmVkLsgeciHiU10eODZZnUoO054FPFI+h9r2W4RcwNDOzzEbLNRwzMxvlHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLIvsAUfSnpJulbRa0tOSzpG08TD7zJIUgzy+XMp3+SB5Jo/8kZmZ2VA2yflhkiYAtwBLgaOAPYBvkQLfGUPs+j3gpkra0cCpwLxK+nLgE5W0R1ursZmZdUrWgAN8BhgHHBsRK4EFkrYBZkk6v0gbICKeBJ4sp0n6KrA8IpZUsv8xIu4dgbqbmVkbcp9SOwKYXwksc0lB6IC6hUjaDjgEmNPZ6pmZ2UjJHXAmk055vSYiHgdWF9vqOg7YlBSsqvaUtFLSGkmLJNUOZGZmNnJyn1KbADzfIL2/2FbXDOBnEfFwJf1+4Meka0Q7AKeQTtvtHxE/aVSQpJnATICJEyfS19fXRDUGWrVqVdtljBVuq/rcVvW5rerL3Va5Aw5ANEjTIOkDM0o7k06/nTqg4IhvV/LeQAo+p5MGGQysTMRlwGUAU6ZMialTp9apxqD6+vpot4yxwm1Vn9uqPrdVfbnbKvcptX5g2wbp42nc82nko6QAdeVwGSPiReBG4N11K2hmZiMjd8BZTuVajaRdgS2pXNsZwgxgUUQ80cTn1uo9mZnZyMkdcOYBh0naupQ2HXgRWDjczpImAftSc3SapHGkkXH3NVtRMzPrrNwB5xJgDXCNpIOLC/azgAvKQ6UlrZD0/Qb7zwBeAa6qbpA0XtKdkj4t6SBJ04HbgV2Ac0fgWMzMrAlZBw1ERL+kg4CLgetI120uJAWdar0aLXczA7g1In7XYNsa4HekFQt2BF4C7gEOiIjFHTkAMzNrWfZRahGxFPjgMHkmDZL+riH2eQk4tq3KmZnZiPFq0WZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZFUwFHUqPlZszMzIbVbA/nKUnnS3rHiNTGzMx6VrMB51LgOOAXkn4saaakbUagXmZm1mOaCjgRcVZE7A4cAjwEXAA8I+mHkg4eiQqamVlvaGnQQETcFhF/C+wEfAF4OzBf0qOSZkn6s05W0szMRr92R6lNAT5Aum10P3An8ElghaSPt1m2mZn1kKYDjqTdJJ0l6RHgVmBn4O+AP4uI/w3sRrrW882O1tTMzEa1pm7AJuk2Uo/mSeByYHZEPFbOExGvSvoRcHKnKmlmZqNfs3f8fA6YBiyIiBgi3xLgzS3XyszMek6zp9QuBu5uFGwkbSXpAwAR8XK152NmZmNbswHndmDPQba9vdhuZmY2QLMBR0Ns2wpY3UZdzMyshw17Dac4TTa1lPRJSYdXsm0OHAk82LmqmZlZL6kzaOB9pMmdAAF8BHilkudPwHLgS52rmpmZ9ZJhA05EfJNiTo2kXwPHRMSSka6YmZn1lqaGRUeEhzqbmVlL6lzDmQYsioiVxeshRcSNHamZmZn1lDo9nOuBfYGfFK+DwUerBeCbtJmZ2QB1As6bgWdKr83MzJpWZ9DAY41em5mZNaPONZwtmikwIjz508zMBqhzSm0V6dpMXb6GY2ZmA9QJOH9HcwHHzMxsgDrXcC7PUA8zM+tx7d5i2szMrJY6gwZ+ApwQEUsl/ZRhTq9FxD6dqpyZmfWOOtdw/ht4sfTa13PMzKxpda7hfKL0+oQRrY2ZmfWslq/hKNlB0lA3ZTMzMwNaCDiSpkm6G3gJ+A3wkqS7JR3Z8dqZmVnPaCrgSPo0cB1pMujJpJuxnVy8/69iu5mZ2QBN3Q8HOB24LCI+W0m/RNIlwFeASztSMzMz6ynNnlJ7I3DNINuuBrYbrgBJe0q6VdJqSU9LOkfSkMvhSJokKRo85jbIe5SkByW9JGmppOm1jszMzEZUsz2c24EDgAUNth0A3DHUzpImALcAS4GjgD2Ab5EC3xk1Pv+LwF2l989Vyt+fFPi+C5wETAPmSOqPiJtrlG9mZiOkzsTPPUtvvwN8T9IbgWuB3wI7AscARwCfHKa4zwDjgGMjYiWwQNI2wCxJ5xdpQ3koIu4dYvtXgTsi4qTi/e2S9gLOBBxwzMy6qE4P5xesP9lTwKeLR/Xunzcx9GrRRwDzK4FlLnAeqYd0XY36NCRpM+BAUs+mbC4wW9L4iHih1fLNzKw9dQLOgR38vMnAbeWEiHhc0upi23ABZ7ak7Ug9qznAVyJi3SoIewCbAssr+ywjnbJ7G/DT9qpvZmatqrPSwMIOft4E4PkG6f3FtsGsAf6FdFpsJTAVOJUUZI4qlU2D8vsr29cjaSYwE2DixIn09fUNVf9hrVq1qu0yxgq3VX1uq/rcVvXlbqtmBw28RtJGwObV9Bp3/Gy0FpsGSV9X5jPA50tJfZKeBb4r6V0RsWSI8jVI+rqyLwMuA5gyZUpMnTp16NoPo6+vj3bLGCvcVvW5rerrRltNOu2G9d4/+o3RMQ8+d1s1O/FTkk6VtAJ4GfhDg8dQ+oFtG6SPp3HPZyhXFc/vLpVNg/LXvW+2fDMz66Bm5+GcBJwGfJ/Uc/gn4BzgYeBRilNTQ1hOulbzGkm7Alsy8NrLcKLy/AgpCE6u5JsMrC3qaGZmXdJswPkUcBZwfvH+2og4G9iLFDDeOsz+84DDJG1dSptOuv1Bs9eKjiue7wOIiDWkeUIfqeSbDtzjEWpmZt3V7DWcNwNLIuJVSS9TnK6KiLWSvgt8j9QDGswlpF7SNZLOA3YHZgEXlIdKF6fsFkbEicX7WcDWpEmfK4EPAF8CromIn5fK/xrp+s5FpHlC04rH4U0ep5mZdVizPZzfA1sVrx8H/rK0bQJpUuegIqIfOIg0V+c64GzgQlKvqWwT1p/Ps5w0T2c2cCNwPPDN4rlc/iJSz+dgYD7wIeB4rzJgZtZ9zfZw7gLeS/rR/xFphYDtgD8BnwNuHa6AiFgKfHCYPJMq7+eSJnAOKyKuJfVuzMxsA9JswJkF7FK8Ppd0Su0EUs9mAfCFTlXMzMx6S1MBJyIeAh4qXq8h3Qvn5BGol5mZ9Zh2Jn6+CdgZeDoinupclczMrBe1covpz0p6AngM+DHwuKQnJf2fjtfOzMx6RrMrDZwJXEyaT3MkMKV4ngd8p9huZmY2QLOn1D4HnBsRX62k31SsbfY50soDZmZm62n2lNo4Br+r50IaLOZpZmYGzQeca4FjB9n2YeD69qpjZma9qs4tpqeV3s4Dzpc0iYG3mN4L+MfOV9HMzHpBnWs41zPwVtK7AIc1yPsD0p04zczM1lMn4Lx5xGthZmY9r84tph/LUREzM+ttTa80IGkT0gCB/YHtgP8B7iTdKuCVzlbPzMx6RVMBR9KOwM3A3qQ7fD4L7Eeaf/OApEMj4nedrqSZmY1+zQ6LvgB4I/C+iNg9IvaLiN2B9xXpF3S6gmZm1huaDTjTgFMj4qflxOL9l0nL3JiZmQ3QbMDZDPjDINv+ALyhveqYmVmvajbg3AucKmnLcmLx/tRiu5mZ2QDNjlI7BbgdeELSzaRBAzuSJoEKmNrR2pmZWc9oqocTEUuAtwKXATsAh5ACziXAWyPigY7X0MzMekLtHo6kTYF9gF9HxGkjVyUzM+tFzfRwXgVuA94xQnUxM7MeVjvgRMRa4JfAxJGrjpmZ9apmR6l9BThT0jtHojJmZta7mh2ldgZpRYElkp4ijVKLcoaI2KdDdTMzsx7SbMD5RfEwMzNrSq2AI2kcaVmbXwC/AW6JiGdHsmJmZtZb6txienfgFmBSKXmlpI9GxM0jVTEzM+stdQYNnA+sBf4a2ALYC7gfuHQE62VmZj2mTsDZDzgjIu6KiJciYhnwaeDPJe08stUzM7NeUSfg7Az8qpL2CGnttJ06XiMzM+tJdUepxfBZzMxsKJNOu2G9949+Y2zdQqxuwJkv6ZUG6bdW0yNix/arZWZmvaZOwDl7xGthZmY9b9iAExEOOGZm1rZm11IzMzNriQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lPSrZJWS3pa0jmSNh5mn/dKmi1pRbHfQ5LOkrR5Jd8sSdHgcfjIHpWZmQ2n2RuwtUXSBNKtDpYCRwF7AN8iBb4zhth1epH3POCXwN7A14rnD1fyvgBUA8yydutuZmbtyRpwgM8A44BjI2IlsEDSNsAsSecXaY2cFxG/K73vk/QScKmk3SLisdK2VyLi3pGpvpmZtSr3KbUjgPmVwDKXFIQOGGynSrBZ5/7i2Wu3mZmNArkDzmRgeTkhIh4HVhfbmvF+0o3hHqqkbyvpOUkvS7pf0rEt19bMzDpGEfnuPCDpZeBLEXFRJf1J4IqIOL1mOTsBPwdujIgTSukfJ/V4lgBbkW4UNw34cERcM0hZM4GZABMnTnzP3Llzmz2s9axatYqtttqqrTLGCrdVfW6r+rrRVg8+9cJ679+5y/i28uXSibY68MAD74uIKXXydiPgfDEivl1Jfwq4PCK+UqOMN5AGHrwJeE9E9A+RV8DdwLiIeNdwZU+ZMiUWL148XLYh9fX1MXXq1LbKGCvcVvW5rerrRlvVvc/NhnY/nE60laTaASf3KbV+YNsG6eOB54fbuQggVwB7AdOGCjYAkaLpNcDeww29NjOzkZV7lNpyKtdqJO0KbEnl2s4gLiQNpz4kIurkX8d3LDUz67LcPZx5wGGSti6lTQdeBBYOtaOkLwNfAD4eEYvqfFjRIzoGeCAiXm2tymZm1gm5eziXACcB10g6D9gdmAVcUB4qLWkFsDAiTizeHw+cC1wOPCVp31KZj6wbNi1pIXA1qbe0JfApYF/g6JE9LDMzG07WgBMR/ZIOAi4GriNdt7mQFHSq9Spfczm0eD6heJR9ghSIAFYAfw/sTBoy/TPgyIiY14n6m5lZ63L3cIiIpcAHh8kzqfL+BAYGmkb7ndhG1czMbAR5tWgzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCyLTbpdATOzDdGk025Y7/2j3ziySzXpHe7hmJlZFu7hmJltIKq9KuitnpV7OGZmloUDjpmZZeGAY2ZmWWQPOJL2lHSrpNWSnpZ0jqSNa+w3XtJsSf2SXpD0Q0lvbJDvKEkPSnpJ0lJJ00fmSMzMrBlZBw1ImgDcAiwFjgL2AL5FCnxnDLP7lcDbgU8Ca4HzgGuBvy6Vvz9wNfBd4CRgGjBHUn9E3NzRgzGzUaUXLsiP9qHauUepfQYYBxwbESuBBZK2AWZJOr9IG0DSfsBhwAERcUeR9hTwY0kHR8QtRdavAndExEnF+9sl7QWcCTjgmJl1Ue6AcwQwvxJY5pJ6KwcA1w2x37Prgg1ARPxE0q+LbbdI2gw4kNSzKZsLzJY0PiJe6NBxmFkX9UJvpZNGS3vkDjiTgdvKCRHxuKTVxbbBAs5kYHmD9GXFNkin5zZtkG8Z6ZTd24CftlZts9a182Owbt9T3vkKJ5x2Q9P7tfOZ7e5Xd9/R8mM52jRq16pmv1ftUkRk+SAASS8DX4qIiyrpTwJXRMTpg+y3APhjRBxdSf8BsHtEvF/SXwGLgL+MiCWlPG8Bfgkc1ug6jqSZwMzi7duBh1o+wGR74Lk2yxgr3Fb1ua3qc1vV14m22i0idqiTsRsrDTSKcBokvZX9qu81xP5ExGXAZcN8dm2SFkfElE6V18vcVvW5repzW9WXu61yD4vuB7ZtkD4eeL6F/bYt7ddfSqvmYZjyzcxshOUOOMt5/ZoLAJJ2Bbak8TWaQfcrlK/tPAK83CDfZNIw6odbqK+ZmXVI7oAzDzhM0taltOnAi8DCYfbbqZhnA4CkKcDuxTYiYg1wO/CRyr7TgXsyjlDr2Om5McBtVZ/bqj63VX1Z2yr3oIEJpEmfvyANhd4duAC4KCLOKOVbASyMiBNLaTeRRpp9kdcnfv42IqoTP/uAi0mTQqcV+Q/3xE8zs+7K2sOJiH7gIGBj0hDos4ELgbMqWTcp8pTNIPWC/hW4ArgPOKZS/iLgOOBgYD7wIeB4Bxszs+7L2sMxM7Oxy6tFN+AFRutrpa0kvbdopxXFfg9JOkvS5pV8syRFg8fhI3tUI6PFtpo0SBvMbZB3rH+vBvu+hKQvl/JdPkieRgOTNniS3iLpUkkPSHpVUl/N/bL/XvmOnxVeYLS+NtpqepH3PNKk3L2BrxXPH67kfQGoBphl7dY9tza/V5CuRd5Ver/eZD1/rwD4HnBTJe1o4FSKwUUly4FPVNIeba3GXbcX6d/7XuANTeyX//cqIvwoPYAvk+b0bFNK+0dgdTmtwX77kSaXfqCUtk+RdnApbT5wW2XfG4FF3T72jG21Q4O0mUVb7VZKmwU81+3j7HJbTSra5X8NU/6Y/14NUtYNwLJK2uXA4m4fZwfba6PS66uAvhr7dOX3yqfUBhpsgdFxpAVGh9pvwAKjwLoFRiktMPrvlX3nAvtJGt9+9bNqqa0i4ncNku8vnnfsXPU2KK1+r4bl71VjkrYDDgHmdLZ6G5aIWNvCbl35vXLAGWjAQqER8Tjpr6uhzvF2aoHR0aTVtmrk/aRufXUtu20lPSfpZUn3Szq25dp2V7ttNbs4P/+MpAskjStt8/eqseNI7TLgehewp6SVktZIWiSpraA/CnXl98oBZ6AJNF4Gp7/Y1s5+656r+for20eLVttqPZJ2Ar4C/Fvlr9oVpFMpHyVd23kauHqUBp1W22oN8C/AiaQpBZcCn2X9H1F/rxqbAfwsIqqrjNwPnAL8DfAx0hSMBZL2aaGuo1VXfq88aKCxDWqB0Q1cq22VMkpvIHXZVwH/sF7BET+o5L0OuJt0Q71rWqlslzXdVhHxDPD5UlKfpGeB70p6V5RWRm9Qzlj+Xu1MOv126oCCI75dyXsDaYDC6aRBBmNF9t8r93AG8gKj9bXaVgBIEmkS717AtEgTgwcV6YrlNcDedYapb2DaaquKq4rnd5fKpkH5Y/J7Vfgo6YfxyuEyRsSLpAvh7x4ubw/pyu+VA85AXmC0vlbbap0LScNej4qIOvnXGY1/sbfbVmVRefb3aqAZpJFUTzTxuaPxe9WqrvxeOeAMNBYWGO2UVtuKYiLeF4CPR1qSaFhFj+gY4IGIeLW1KndNy23VwHHF833g71WVpEnAvtQcnVYMwDiCoj3HiO78XnV7DPmG9iBdCHsGWEBak20m6frC1yv5VgDfr6TdBPwKOJZ0Lvgh4M5Knv2BV4CLgKnA+aS/Fg7t9rHnaivgeNJfk7NJPwzlxw6lfAtJk80OJQWaG4u2+lC3jz1jW80iTXo8ttjvHNIP79X+Xg38P1ikn0b6y7zRfK/xwJ3Ap0mDMKaTJkyuAaZ0+9hbbK8tSH+EHAfcA/x36f0Wg7VVN36vut5YG+ID2BO4rfiP/QxpFvzGlTyPApdX0rYtfkSfB1YCPwK2b1D+0aQVs9eQuq8zun3MOduKNPEuBnmcUMr3/eI/xIvAH4sfiiO6fcyZ22oGsJi04sKfih+Oc4DN/L0a+H+wSF8C3DRIuZuTrgM+UbTTC8UP777dPuY22mrSEP+fJg3WVt34vfLinWZmloWv4ZiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZ/H/+7sS3NSEb2QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XucHFWd9/HPl4sQCYRwSUBFIq6QBfVRErm4rCQCIsE1iCAsuj4oJNFlxd2XsFxECaA+AnLxsi4EFWRVggssu8r9kgTBGwngokAwSLgKchkIIQES+D1/nBooarp7unu6q6eG7/v1qldPnzpV/TvdM/2bOnXqlCICMzOzbluj1wGYmdlrgxOOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHCsoyTNlhR1lk80uY+ts/1sWCg/ONvP6O5E31wcQ9znRZLmN1FvLUn/LOl3klZK6pN0uaRd2nzd4fKeHlz4nfiLpKskbd/EtlOybd5eRqzWeU441g1PAzvXWK5scvutgeOB4hf9Zdl+VnQmzLbj6CpJawKXAl8D/geYBhwMvAjMl3RQG7sdLu9pv/dnrzsL2BSYJ+kNg2xzS7bNPV2OzbpkrV4HYCPS6oj4dad3GhGPAY91er/D0OeAvYG9IiKfpP9b0lxgjqQFEfHQUF+oh+/pzRGxHEDSQuA+4OPAqcWKkgSsExHLgI7/Xll5fIRjPSHpGElLJD0n6VFJV0raTNIU4GdZtXuzLpSl2Tav6v6RNCF7fqCkcyUtk/Rgf9edpH+V9LCkxySdLGmN3OtPlDRX0gOSVkj6Q9aFtUa2vm4c2fo3Z9s/mW1/laRtCm3cIusGWylpqaRDm3x7Pg/MKySbfl8E1gUOyb3OUknfkPQlSY9IWi7px5LGDNaWWl1qkjaR9ENJT2Rtmy9pcqFt/a/5L9l73pe9Hy0fDUbEA6SkNyHb92xJj0vaRdLNwHPA/rW61CStmf0u3S3p+SyW8wqxTpe0MPtde0TSKZLWbjVOGzof4VhXSBrwuxURq7N1nwSOBY4C/gBsTOpiWY/UbXIE8A1gX+DPwPODvNzJwI+BjwKfBn4o6d3AltnzScBXgFuBudk2bwQWZ9s9A7wLOAEYBfy/RnFI2gi4EXgC+AypO+po4FpJW0fEyuy/8v8GNiElh+ey/W8E/LHB+7YF6Yv3jFrrI+IeSbcD7yus+ntgCTAD2Bw4BfgesH+jttRxKfBX2TaPA0eSurzeHRFLcvU+BvwvMBN4E3A6qRvwHxvsewBJ65Pel0dyxa8Hfpi1427g4axdRWcDn8zqLcj2s19u3x8DLsjqHQu8lfT5rpG1z8oUEV68dGwBZgNRZ5mQ1fkOcHGDfXwoXz9XfnBWPjp7PiF7fm6uzgbAKtKX+pq58t8CF9Z5PZH++ToW+FMTcZxESjYb5crGks5dHZY9n5Ztu2OuzpbAamB+g7bvlG03vUGdS4E7c8+XAk/2vy9Z2ceBl4C/bvE9/WD2fNdcnfVIRyBnF17zHmCtXNmZwCOD/H70v96Y7D3fArgwe1/eVfgdml7YdkpW/vbs+cTs+eENPtf78r8fWfmngZXAxr3+e3mtLT7CsW54Gti9RvnD2eNtwCGSTiCdtF4UES8O4fWu6/8hIpZJegxYUNjnEuDN/U8krQscQ/pifjOwdm7dWpEdjdWxO3ANsCx3JPcMsAjo73raAXg0In6Ti+0+SYvaaF8zronsnEjmEuBHwHuAO1vYzw7AYxGxoL8gIp6V9HOgOEJuXuF9ugMYJ+l1EfHCIK/zVO7nx4FPR8RtubIArhhkH1Ozx/PqrN+a9Nn+tHDEfT2pW/LtpKMiK4kTjnXD6ohY2GD9D4D1SV0xXwaekPTvwOw2E89Thecv1ClbN/f8ZOBQUjfXLVn96cBxWb3l1LcJ6UjkgBrr+pPfZsBfaqz/C6nt9fQPBNiyQZ0tc/Xy+31ZpG695dTuhmpkc+DRGuWPkrqr8mq9xwJel/3cyPtIXZGPAw9ExEuF9X1NJK2NgWcjDSaoZZPs8fI667cYZP/WYU44Vrrsy+UM4IzsnMXHga+SvkTPKimM/YFvR8Qp/QWS9m5y2ydJw5VPqrHumezxEWBcjfXjSN05NUXEA9kJ/Q8D3yqul/QW0n/mxdceV6g3ChhNOl/Tij8X95UZT2p3p9xaOCIraua+KU8A60naoE7S6Y93Jun8XdG9TbyGdZBHqVlPRcQDEfF1UpfXtllx/3+269beqiNGkTtxrnTty4GFOvXiuA7YDvhDRCwsLIuzOjcD4yXtmHuNNwODXuAIfBPYTdIHaqz7Shb39wvle+jVF2/uS/rS7j/SbPY9/Q2pW+zlQQmSXk8apn1jE7GX6frs8ZN11i8m/RMzocbntDAinignTOvnIxzrhrUk7VSj/IGIeEjS2aT/Pn9NOt8zFXgbadQapC8KgFlK152siIjbOxzjNcBhkpZksRwGrFOoUy+O04FPANdL+jbpS208sCtwY0RcQOrG+R3wn5KOIo1SO5Ha3WxF3yadJ/ovSd8A5pO64Q4hnfz/hxh4Dc5K4DJJp5K6xU4F/isi7hikLa8SEVdJugm4UNLRpKOII0gJesA1Mr0UEYslzQFOkzQOuIF0Yet+EXFgRLwk6QvAf0jagHRO6AVgK2CfrF7ZF7y+tvV61IKXkbXQeJTacVmdg4GbSF/0K0hDaw8p7OcLpBFGq4Glue1qjVL7UGHbpcA3CmXnAQtzz8cD/wUsI52fOIU0pPjl/deLIyt/A3Butu3z2Wv+CNguV+fNpNkVVmb7mAVcRINRarlt1wL+JXtvVgJ9pC/MXWrUXQqclr33jwLPkoYCb9jqe5qVbQqcn73mStKJ9fc08R4P2FeNWJupMxt4vEb5FHKj1LKyNclGF5KSyYMMHJW2F/CL7H1ZRhq08hVyI+y8lLMo+0BKI+mvSOP6dyL1Rf8iIqY0sd0Y0rDLfUhdgT8nDYd8olBvOumX6W2kX8ITIuLCTrbBbDjJzvlcFBG+rsSGtV6cw9mOdI3C3dnSrAtJ/+EcSvov6T2k6xFepjSx4cXAPNJ/NZcBF9TpCzczsxL14ghnjciGQEq6CNhksCMcSTsDvyRdjHZDVrYD6QTnHhFxbVZ2FbB2RLw/t+3lwAYR0dYsu2bDnY9wrCpKP8KJgePtm7EX6SK6G3L7+S1pWONeAJLWIZ18/mlh27nAzv3zSpmNNBExwcnGqqAqw6InAnfVKL8zWwdpjqS1a9S7k9TOrbsWnZmZDaoqw6LHMvCqZkijaLbK1aFGvb7C+leRNJN0YRijRo2atMUWtS8+fumll1hjjark58bcluFppLRlpLQDhldb1r87nfJ+Zuv2/nfuVlvuvvvuxyNi02bqViXhQO0rj1WjvPhcDbYnIuYAcwAmT54cCxfWnpFl/vz5TJkypdlYhzW3ZXgaKW0ZKe2AYdYWZV9lixc3rldHt9oi6b5m6w6P1D24PmrfdXFDXjmi6cuVFetA7SMkMzMrSVUSzl28cq4mL39u5x7StPTFehNJ07S3MgTbzMw6rCoJ5wpgs+w6GwCyOxBula0jIp4nXX+zf2HbA4BfRcTTJcVqZmY1lH4OJ5sIcFr29I3ABpL679B3eUSsyOa3WhARhwBExK+ya2zOl3QE6YjlZNK8Vdfmdn8SMF/SmaSLQqdlywe73jAzM2uoF4MGxgH/WSjrf/4W0hxNa5HmSMo7kDSl/Q/ITW2TrxARN2bJ6yvAZ0nX6RwUEVd3MH4zs/KVfJF+N5SecCJiKa+MHKtXZ0KNsqeAT2VLo20vpTDljZmZ9V5VzuGYmVnFOeGYmVXBpElpqbAqXfhpZvbadcstvY5gyHyEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCo9SMzOrghkzeh3BkDnhmJlVwZw5vY5gyNylZmZmpXDCMTOrgkWL0lJh7lIzM6uCyZPTY4VnjfYRjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFB4WbWZWBQsX9jqCIXPCMTOrgorfXhrcpWZmZiVxwjEzq4KZM9NSYU44ZmZVcM45aakwJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1L4wk8zsyrYfvteRzBkTjhmZlVQ8dtLg7vUzMysJE44ZmZWCiccM7MqkNJSYU44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSeKYBM7MqOPvsXkcwZE44ZmZVUPHbS0MPutQkbSvpOkkrJD0s6URJaw6yzWxJUWc5JlfvvDp1Jna/ZWZm1kipRziSxgLXAncA04G3AqeREt9xDTb9HnBloWwf4CjgikL5XcCnCmVL24vYzGyYmDMnPVb4SKfsLrXPAKOAfSNiGXCNpA2A2ZJOycoGiIgHgQfzZZK+BNwVEbcVqj8bEb/uQuxmZr0za1Z6rHDCKbtLbS/gqkJimUtKQrs2uxNJGwF7ABd0NjwzM+uWshPORFKX18si4n5gRbauWfsBa5OSVdG2kpZJel7SjZKaTmRmZtY9iojyXkxaBRwZEWcWyh8Ezo+IY5vcz/XAmIiYVCj/PPAC6RzRpsAXgEnALhHx2zr7mgnMBBg/fvykuXNr5TBYvnw5o0ePbia8Yc9tGZ5GSltGSjtgeLVlytSpAMyfN6+t7bvVlqlTpy6KiMlNVY6I0hZgFfD5GuUPAV9tch+bAy8CRzRRdxRwL3BpM/ueNGlS1DNv3ry666rGbRmeRkpbRko7IoZZWyAtbepWW4CF0WQOKLtLrQ/YsEb5GOCpJvfxMUDAhYNVjIiVwOVA9W8GbmZWcWUnnLsonKuRtAWwHoVzOw0cCNwYEQ+08Lrl9RuamVlNZSecK4A9Ja2fKzsAWAksGGxjSROAnWhydJqkUaSRcYtaDdTMbFjp71SrsLITzlnA88AlknbPTtjPBk6P3FBpSUskfb/G9gcCq4GLiiskjZH0C0mzJO0m6QBgHvBG4GtdaIuZmbWg1As/I6JP0m7Ad4Cfkc7bnEFKOsW4ak13cyBwXUQ8VmPd88BjpBkLxgHPAb8Cdo2IhR1pgJmZta30yTsj4g7g/YPUmVCn/F0NtnkO2HdIwZmZDVeTsqtAFlX3DIFnizYzq4Jbbul1BEPmG7CZmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9TMzKpgxoxeRzBkTjhmZlXQf4vpCnOXmpmZlaKlhCOp1nQzZmbWbYsWVXqWAWi9S+0hSecD50bEnd0IyMzMapic3VSzwjNGt9qldjawH/B7Sb+RNFPSBl2Iy8zMRpiWEk5EHB8RWwF7AIuB04E/S/qxpN27EaCZmY0MbQ0aiIjrI+KTwGbA54BtgKskLZU0W9IbOhmkmZlV31BHqU0G3ke6bXQf8AvgUGCJpE8Mcd9mZjaCtJxwJG0p6XhJ9wDXAZsDnwbeEBH/AGxJOtdzakcjNTOzSmtplJqk60lHNA8C55FGq92XrxMRL0r6CfD5TgVpZmbV1+qw6MeBacA1EQ3H5t0GvKXtqMzM7NUWLux1BEPWasL5DnBLrWQjaTSwfUTcEBGrgPsGbG1mZu3pv8V0hbV6DmcesG2dddtk683MzAZoNeGowbrRwIohxGJmZvXMnJmWChu0S03S+4ApuaJDJX2wUG1dYG/g9s6FZmZmLzvnnPRY4VmjmzmHsyPp4k6AAPYHVhfqvADcBRzZudDMzGwkGTThRMSpZNfUSLoX+EhE3NbtwMzMbGRpaZRaRHios5mZtaWZczjTgBsjYln2c0MRcXlHIjMzsxGlmSOcnwM7Ab/Nfg7qj1YLwDdpMzOzAZpJOG8B/pz72czMyrb99r2OYMiaGTRwX62fzcysRBW/vTQ0dw7n9a3sMCJ88aeZmQ3QTJfactK5mWb5HI6ZmQ3QTML5NK0lHDMz6zRlY7UaTtQ/vDVzDue8EuIwM7MRbqi3mDYzM2tKM4MGfgscHBF3SLqZQbrXImKHTgVnZmYjRzPncP4ArMz9XN0ORDMz65lmzuF8KvfzwV2NxszMRqy2z+Eo2VRSo5uymZmZAS3OFg0vT+Z5HDAp2361pEXAVyPisg7HZ2ZmAGef3esIhqylhCNpFvBd4Drg88BfgHHAvsD/SPrHiKj+u2JmNtxU/PbS0PoRzrHAnIj4bKH8LElnAV8EnHDMzGyAVs/hbAxcUmfdxcBGg+1A0raSrpO0QtLDkk6U1HA6HEkTJEWNZW6NutMl3S7pOUl3SDqgqZaZmQ1nc+akpcJaPcKZB+wKXFNj3a7ADY02ljQWuBa4A5gOvBU4jZT4jmvi9Y8Abso9f7yw/11Iie+7wOHANOACSX0RcXUT+zczG55mzUqPFe5aa+bCz21zT78FfE/SxsClvHIO5yPAXsChg+zuM8AoYN+IWAZcI2kDYLakU7KyRhZHxK8brP8ScENEHJ49nydpO+DLgBOOmVkPNXOE83tefbGngFnZUrz755U0ni16L+CqQmKZC5xMOkL6WRPx1CRpHWAq6cgmby5wrqQxEfF0u/s3M7OhaSbhTO3g600Ers8XRMT9klZk6wZLOOdK2oh0ZHUB8MWI6J8F4a3A2sBdhW3uJHXZbQ3cPLTwzcysXc3MNLCgg683FniqRnlftq6e54F/I3WLLQOmAEeRksz03L6psf++wvpXkTQTmAkwfvx45s+fXzOA5cuX111XNW7L8DRS2jJS2gHDqy1Tssd24xkObWn5ws9+ktYA1i2WN3HHz1pzsalOef8+/wz8U65ovqRHge9KeldE3NZg/6pT3r/vOcAcgMmTJ8eUKVNqxjB//nzqrasat2V4GiltGSntgMZtmXB04+vcl3597y5ERNvv7XD4XFoaFp1NZ3OUpCXAKuCZGksjfcCGNcrHUPvIp5GLssftc/umxv77n7e6fzMz66BWr8M5HDga+D7pyOGrwInA3cBSsq6pBu4inat5maQtgPUYeO5lMFF4vIeUBCcW6k0EXspiNDOrpohK3+0TWk84M4DjgVOy55dGxAnAdqSE8bZBtr8C2FPS+rmyA0i3P2j1XNF+2eMigIh4nnSd0P6FegcAv/IINTOz3mr1HM5bgNsi4kVJq8i6qyLiJUnfBb5HOgKq5yzSUdIlkk4GtgJmA6fnh0pnXXYLIuKQ7PlsYH3SRZ/LgPcBRwKXRMT/5vZ/Eun8zpmk64SmZcsHW2ynmZl1WKtHOE8Ao7Of7wfenVs3lnRRZ10R0QfsRrpW52fACcAZpKOmvLV49fU8d5Gu0zkXuBw4CDg1e8zv/0bSkc/uwFXAh4GDPMuAmVXepElpqbBWj3BuAt5D+tL/CWmGgI2AF4DDSLNINxQRdwDvH6TOhMLzuaQLOAcVEZeSjm7MzEaOW27pdQRD1mrCmQ28Mfv5a6QutYNJRzbXAJ/rVGBmZjaytJRwImIxsDj7+XnSPXE+34W4zMxshBnKhZ9vAjYHHo6IhzoXkpmZjUStDhpA0mclPQDcB/wGuF/Sg5L+sePRmZnZiNHqTANfBr5Dup5mb2By9ngF8K1svZmZ2QCtdqkdBnwtIr5UKL8ym9vsMNLMA2Zm1kkzZvQ6giFrNeGMov5dPRfgUWpmZt1R8dtLQ+vncC4F9q2z7qPAz4cWjpmZjVTN3GJ6Wu7pFcApkiYw8BbT2wH/2vkQzcyMRYvSY4VnG2imS+3nDLyV9BuBPWvU/RHpTpxmZtZJkyenxwrPGN1MwnlL16MwM7MRr5lbTN9XRiBmZjaytTzTgKS1SAMEdgE2Ap4EfkG6VcDqzoZnZmYjRUsJR9I44GrgnaQ7fD4K7Ey6/uZ3kj4QEY91OkgzM6u+VodFnw5sDOwYEVtFxM4RsRWwY1Z+eqcDNDOzkaHVhDMNOCoibs4XZs+PIU1zY2ZmNkCr53DWAZ6ps+4Z4HVDC8fMzGpauLDXEQxZqwnn18BRkq6PiGf7CyWtBxyVrTczs06r8AWf/VpNOF8A5gEPSLqaNGhgHOkiUAFTOhqdmZmNGC2dw4mI24C3AXOATYE9SAnnLOBtEfG7jkdoZmYwc2ZaKqzpIxxJawM7APdGxNHdC8nMzAY455z0WOFZo1s5wnkRuB746y7FYmZmI1jTCSciXgL+CIzvXjhmZjZStXodzheBL0t6RzeCMTOzkavVUWrHkWYUuE3SQ6RRaq+aKzsiduhQbGZmNoK0mnB+ny1mZmYtaSrhSBpFmtbm98AjwLUR8Wg3AzMzs5ztt+91BEPWzC2mtwKuBSbkipdJ+lhEXN2twMzMLKf/FtMV1syggVOAl4C/BV4PbAfcCpzdxbjMzGyEaSbh7AwcFxE3RcRzEXEnMAt4s6TNuxuemZmNFM0knM2BPxXK7iHNnbZZxyMyM7OBpLRUWLOj1GLwKmZmVjTh6Mvqrlv69dfWLcSaTThXSVpdo/y6YnlEjBt6WGZmNtI0k3BO6HoUZmY24g2acCLCCcfMzIas1bnUzMzM2uKEY2ZmpWh1LjUzM+uFs6t/rb0TjplZFVT89tLgLjUzMyuJE46ZWRXMmZOWCis94UjaVtJ1klZIeljSiZLWHGSb90g6V9KSbLvFko6XtG6h3mxJUWP5YHdbZWbWZbNmpaXCSj2HI2ks6VYHdwDTgbcCp5ES33ENNj0gq3sy8EfgncBJ2eNHC3WfBooJ5s6hxm5mZkNT9qCBzwCjgH0jYhlwjaQNgNmSTsnKajk5Ih7LPZ8v6TngbElbRsR9uXWrI+LX3QnfzMzaVXaX2l7AVYXEMpeUhHatt1Eh2fS7NXv03G1mZhVQdsKZCNyVL4iI+4EV2bpWvJd0Y7jFhfINJT0uaZWkWyXt23a0ZmbWMYoo784DklYBR0bEmYXyB4HzI+LYJvezGfC/wOURcXCu/BOkI57bgNGkG8VNAz4aEZfU2ddMYCbA+PHjJ82dO7fmay5fvpzRo0c3E96w57YMTyOlLSOlHdC4Lbc/9HTDbd/xxjGD1uuv04wpU6cCMH/evKa3yevW5zJ16tRFETG5mbq9SDhHRMQ3C+UPAedFxBeb2MfrSAMP3gRMioi+BnUF/BIYFRHvGmzfkydPjoULF9ZcN3/+fKZMmTLYLirBbRmeRkpbRko7oHFbGt3nBl65103H7ofTf/O1Nr+zu/W5SGo64ZTdpdYHbFijfAzw1GAbZwnkfGA7YFqjZAMQKZteArxzsKHXZmbDWkTbyWa4KHuU2l0UztVI2gJYj8K5nTrOIA2n3iMimqnfr9qfkpnZCFD2Ec4VwJ6S1s+VHQCsBBY02lDSMcDngE9ExI3NvFh2RPQR4HcR8WJ7IZuZWSeUfYRzFnA4cImkk4GtgNnA6fmh0pKWAAsi4pDs+UHA14DzgIck7ZTb5z39w6YlLQAuJh0trQfMAHYC9ulus8zMumzSpPS4aFFv4xiCUhNORPRJ2g34DvAz0nmbM0hJpxhX/pzLB7LHg7Ml71OkRASwBPhnYHPSkOlbgL0j4opOxG9m1jO33NLrCIas9NsTRMQdwPsHqTOh8PxgBiaaWtsdMoTQzMysizxbtJmZlcIJx8zMSuGEY2ZmpXDCMTOzUpQ+aMDMzNowY0avIxgyJxwzsyqo+O2lwV1qZmZWEiccM7MqWLSo0rMMgLvUzMyqYXJ2B4AKzxjtIxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8LNrMrAoWLux1BEPmhGNmVgX9t5iuMHepmZlZKZxwzMyqYObMtFSYE46ZWRWcc05aKswJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFL7w08ysCrbfvtcRDJkTjplZFVT89tLgLjUzMyuJE46ZmZXCCcfMrAqktFSYE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBSeacDMLDPh6Mte9fwL71jNwbmypV/fu+yQXnH22b177Q5xwjEzq4KK314anHDMzHqqeFRV1NOjqg7zORwzsyqYMyctFeYjHDOzKpg1Kz1WuGvNRzhmZlaK0hOOpG0lXSdphaSHJZ0oac0mthsj6VxJfZKelvRjSRvXqDdd0u2SnpN0h6QDutMSMzNrRaldapLGAtcCdwDTgbcCp5ES33GDbH4hsA1wKPAScDJwKfC3uf3vAlwMfBc4HJgGXCCpLyKu7mhjzKwSGp2Ur8IJ+f74lxae96tCG/qVfQ7nM8AoYN+IWAZcI2kDYLakU7KyASTtDOwJ7BoRN2RlDwG/kbR7RFybVf0ScENEHJ49nydpO+DLgBOOmVkPlZ1w9gKuKiSWuaSjlV2BnzXY7tH+ZAMQEb+VdG+27lpJ6wBTSUc2eXOBcyWNiYinO9QOM+uB19IQ4mbVe0+G43tRdsKZCFyfL4iI+yWtyNbVSzgTgbtqlN+ZrYPUPbd2jXp3krrstgZubi9ss/a0250zlC/Wsl+z3avznTy6a7DPJa+s91oRUcoLAUhaBRwZEWcWyh8Ezo+IY+tsdw3wbETsUyj/EbBVRLxX0t8ANwLvjojbcnX+CvgjsGet8ziSZgL94wy3ARbXCX8T4PEmmlkFbsvwNFLaMlLaAW5LM7aMiE2bqdiL63BqZTjVKW9nu+Jz1SlPhRFzgEGvppK0MCImD1avCtyW4WmktGWktAPclk4re1h0H7BhjfIxwFNtbLdhbru+XFmxDoPs38zMuqzshHMXr5xzAUDSFsB61D5HU3e7TP7czj3Aqhr1JpKGUd/dRrxmZtYhZSecK4A9Ja2fKzsAWAksGGS7zbLrbACQNBnYKltHRDwPzAP2L2x7APCrDoxQq/YkRq/mtgxPI6UtI6Ud4LZ0VNmDBsaSLvr8PWko9FbA6cCZEXFcrt4SYEFEHJIru5I00uwIXrnw8y8RUbzwcz7wHdJFodOy+h/0hZ9mZr1V6hFORPQBuwFrkoZAnwCcARxfqLpWVifvQNJR0A+A84FFwEcK+78R2A/YHbgK+DBwkJONmVnvlXqEY2Zmr12eLboOSTMk/TGbBHSRpN1a3P7dkl6U1PMx/O20RdIsSddIejSbLPUmSR8oI97s9bs6yWuZ2mmLpPdk7ViSbbdY0vGS1i0r7jpxtfW55LZfI/sdDEkf6masg8TRdjsk7SvpZkmGQswpAAAGDUlEQVQrJT0h6UpJ63U75gbxtPu3MlnS1VkbnpR0raQduxpsRHgpLKTuuxdJc7NNJXXhrQTe3uT2Am4CHgEer2JbgPtJJxn3AfYAfkg6d/bhEmIeCzxMmuh1D9IcfM8CX2li2yuBe4GPkrpc7wZ+0cP3v622AN8AbgBmAFNIUzY9DVxctbYU9jEz+7sI4ENVawdp8uDngBOzz+UjwLeBMVVqC7AF6VKR64G9s2V+9ju2Zdfi7cWbNNwX0mwDP8g9XwO4HfhRk9v/A7AE+NowSDhttQXYpEbZL4F5JcR8DOm6qg1yZf8KrMiX1dhu5+yL7H25sh2yst179P6325ZNa5TNzNqyZZXakqs7FngMOKTHCafdz2QT4BlgRi/i7nBbPkP6R3TDwufzIvDZbsXrLrUCSVuRRsP9tL8sIl4C/pM0Uehg269PGkF3BPBCl8JsylDaEhG1ugJvBcZ1MsY66k3yOoo0yWuj7QZM8ko64hn0s+uSttoSEY/VKL41eyzjM6il3c+l30mkI//ruhBbK9ptx8eyxx92K7A2tNuWtYHVwPJc2fKsTDW36AAnnIH6LxytNQnoRpIGmzPoy8CdEXFpxyNr3VDbUrQzaVh7tw2YrDUi7if911brAuC622Xyk7yWrd221PJeUrdmvfn+uq3ttkh6J/Ap0j9ivdZuO3YkvfeHSHpQ0ipJv5H03u6FOqh223JxVuc0SeMkjSONGO4j/UPaFU44A43NHotT4fQV1g8gaRvgMOCfuxBXO9puS5GkTwPvJt3crtvGUnsqoj4ax9zudt3UkZgkbQZ8EfiPqHPfqBIMpS3fBv4tIpZ0PKrWtduOzUgT/B4HHAX8Hel8yZWSxnc6yCa11ZaIeJh0TvejwKPZsi9pkuNaR9cd0YvJO0snaQyw+WD1IiL/n0JLk4BmvgmcFxG3txZh80psS/41J5G+ML4ZEfOa2aYDuj3Ja5mGFJOk15G6RZcD/9LBuNrRclskHUj6ov67bgXVhnY+kzWA0cD+EXElgKRfAvcB/0QamNML7XwmmwMXka5nPDQrPgy4TNJ7s6OkjntNJBzSdDfnNFFPvHoS0Px0OA0nAZW0F/A3wD9J6q+7blqlDYGVkabfGaqut+VVO0nngS4j9bt/ofkwh2Qok7zW6ibMT/JatnbbAqRfHtLIwu2Av4l08XSvtNwWSWsDp5LOa66R/S1skK1eT9L6EfFMN4JtoN3P5MnscX5/QUQsk7QI2LZj0bWm3bYcSfr+3y8iVgFIup50K5cjGHgjy454TXSpRcT3IkKDLVn1/iODWpOAPtngcHMb0n8/fyT9EvSRDrs3yn4+skJtASDr172K9B/cgRHxYifa0IRuTvJatnbb0u8MYDowvXDU2gvttGU94E2kKaz6/y5+l62byysDIcrU7mdyJ+mooXhSXaRza73QblsmAn/oTzYAEfEC8AfSzSy74jWRcFoREX8iXbvx8iSgktbInl/RYNOLSH2i+eWHwLLs5//oUsh1DaEtSBoNXJ49/VBErOhWnDV0bZLXHmi3LUg6Bvgc8IlI0zb1WjttWc7Av4u/z9YdC3y8O6E21O5n8nNScpnaX5B1cU/ilSRatnbbch/w9qy7FgBJ6wBvB5Z2Ic6k1+PIh+NC+oN4kXRycCpwHoWLJUlDDlcDuzbYz2x6fx1OW20BriYN6z4I2Cm/lBDzWODPwDWkefFmkr64vlKotwT4fqHsSuBPpBOg+5BGFfX6ws+W25K97wGcW3z/qXGNznBuS439TKD3F362+/t1abbt/yVdLLmAdG3R2Cq1hZQkV5G6y/cGPkRKXquA/9O1eHvxJlVhIV3hvQR4HrgF2K2wfkr2RzOlwT5m0+OE025bsuc1l5Ji3pZ0FfTK7A/qJGDNQp2lpEEa+bINsy/pp0hHlz+hxkWsJb//LbeF9I9Bvc/g4Cq1pcY+eppwhvj7NRr4d+CJbNtrgXdU7fcrK9uNNJvFk9myoNH3WScWT95pZmal8DkcMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaK/w+Ok5xmyZdiQQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# plot estimated values for \"a\"\n", - "plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities']))\n", - "plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('\"a\" Value', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()\n", - "\n", - "# plot estimated values for option price (after re-scaling and reversing the c_approx-transformation)\n", - "plt.bar(result['mapped_values'], result['probabilities'], width=1/len(result['probabilities']))\n", - "plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2)\n", - "plt.xticks(size=15)\n", - "plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15)\n", - "plt.title('Estimated Option Price', size=15)\n", - "plt.ylabel('Probability', size=15)\n", - "plt.ylim((0,1))\n", - "plt.grid()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "qiskit_master", - "language": "python", - "name": "qiskit_master" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/optimization/3-Coloring Oracle via Reduction to SAT.ipynb b/community/optimization/3-Coloring Oracle via Reduction to SAT.ipynb deleted file mode 100644 index 3ff37dcf9..000000000 --- a/community/optimization/3-Coloring Oracle via Reduction to SAT.ipynb +++ /dev/null @@ -1,225 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Constructing Quantum Oracles for 3-Coloring Problems via NP-Reduction\n", - "\n", - "In this notebook, we demonstrate how to easily construct quantum oracles for [3-Coloring problems](https://en.wikipedia.org/wiki/Graph_coloring) using Qiskit Aqua via simple NP-Reduction to [SAT problems](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem).\n", - "\n", - "3-Coloring is the decision problem of determining whether a graph's vertices can be colored using only 3 different colors s.t. no neighboring vertices share the same color. SAT is also a decision problem where we want to see if an \n", - "given conjunctive normal form (CNF) has a satisfying assignment.\n", - "\n", - "Aqua already provides an `LogicExpressionOracle` class capable of building Quantum Oracle circuits from arbitrary logic expressions, with support for the [DIMACS CNF format](https://www.satcompetition.org/2009/format-benchmarks2009.html). So, to take advantage of that, we in this notebook aim to reduce 3-coloring problems to SAT problems, and then directly use the `LogicExpressionOracle` class to build the Oracle circuit.\n", - "\n", - "For 3-coloring problem instances, we work with the [DIMACS graph coloring format](https://mat.tepper.cmu.edu/COLOR/instances.html), which basically indicates the number of vertices and edges on the `'p edge'` line, followed by the `'e'` lines listing all edges (vertex pairs). For example we can have the following toy instance, and easily parse it." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The input 3-coloring instance has 3 vertices and 3 edges: [[1, 2], [1, 3], [2, 3]].\n" - ] - } - ], - "source": [ - "three_coloring_instance = '''\n", - "c This is an example DIMACS 3-coloring file\n", - "p edge 3 3\n", - "e 1 2\n", - "e 1 3\n", - "e 2 3\n", - "'''\n", - "\n", - "import itertools\n", - "\n", - "def parse_3_coloring_instance(instance):\n", - " ls = [\n", - " l.strip() for l in instance.split('\\n')\n", - " if len(l) > 0 and not l.strip()[0] == 'c'\n", - " ]\n", - " headers = [l for l in ls if l[0] == 'p']\n", - " if len(headers) == 1:\n", - " p, sig, nv, ne = headers[0].split()\n", - " assert p == 'p' and sig == 'edge'\n", - " elif len(headers) > 1:\n", - " raise RuntimeError('Invalid input format for 3-Coloring.')\n", - " h_nv, h_ne = int(nv), int(ne)\n", - " edges = [[int(v) for v in l.split()[1:]] for l in ls if l[0] == 'e']\n", - " nv = len(set(list(itertools.chain.from_iterable(edges))))\n", - " ne = len(edges)\n", - " if not h_nv == nv:\n", - " print((\n", - " 'Warning: inaccurate vertex count {} in header. '\n", - " 'Actual vertex count is {}.'\n", - " ).format(h_nv, nv))\n", - " if not h_ne == ne:\n", - " print((\n", - " 'Warning: inaccurate edge count {} in header. '\n", - " 'Actual edge count is {}.'\n", - " ).format(h_ne, ne))\n", - "\n", - " return nv, ne, edges\n", - "\n", - "nv, ne, edges = parse_3_coloring_instance(three_coloring_instance)\n", - "\n", - "print('The input 3-coloring instance has {} vertices and {} edges: {}.'.format(nv, ne, edges))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For any 3-coloring problem instance, we can use the following simple strategy to reduce it to a SAT problem:\n", - "\n", - "- For each vertex $v$, we create three boolean variables $v_r$, $v_g$, and $v_b$, corresponding to the vertex $v$ being of color red, green, and blue, respectively.\n", - "- For each vertex $v$, we then have the constraint that it needs to be of one and only one color. Therefore, $v_r \\vee v_g \\vee v_b = True$, and $v_i \\wedge v_j = False$ for $i,j \\in \\{r,g,b\\}, i \\ne j$.\n", - "- For each edge $(v, t)$, we have the constraint that they cannot both be of the same color. Therefore, $v_i \\wedge t_i = False$ for $i \\in \\{r, g, b\\}$.\n", - "\n", - "With this simple strategy and the help of the [De Morgan's Law](https://en.wikipedia.org/wiki/De_Morgan%27s_laws), we can carry out the reduction as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The input 3-Coloring instance can be reduced to the following SAT instance:\n", - "\n", - "p cnf 9 21\n", - "1 2 3 0\n", - "-1 -2 0\n", - "-1 -3 0\n", - "-2 -3 0\n", - "4 5 6 0\n", - "-4 -5 0\n", - "-4 -6 0\n", - "-5 -6 0\n", - "7 8 9 0\n", - "-7 -8 0\n", - "-7 -9 0\n", - "-8 -9 0\n", - "-1 -4 0\n", - "-2 -5 0\n", - "-3 -6 0\n", - "-1 -7 0\n", - "-2 -8 0\n", - "-3 -9 0\n", - "-4 -7 0\n", - "-5 -8 0\n", - "-6 -9 0\n" - ] - } - ], - "source": [ - "def reduce_to_sat(nv, ne, edges):\n", - "\n", - " def _get_vertex_rgb(v):\n", - " return 3 * v - 2, 3 * v - 1, 3 * v\n", - "\n", - " def _get_vertex_constraints(v):\n", - " r, g, b = _get_vertex_rgb(v)\n", - " return [\n", - " '{0} {1} {2} 0'.format(r, g, b),\n", - " '{} {} 0'.format(-r, -g),\n", - " '{} {} 0'.format(-r, -b),\n", - " '{} {} 0'.format(-g, -b)\n", - " ]\n", - "\n", - " def _get_edge_constraints(v1, v2):\n", - " r1, g1, b1 = _get_vertex_rgb(v1)\n", - " r2, g2, b2 = _get_vertex_rgb(v2)\n", - " return [\n", - " '{0} {1} 0'.format(-r1, -r2),\n", - " '{0} {1} 0'.format(-g1, -g2),\n", - " '{0} {1} 0'.format(-b1, -b2)\n", - " ]\n", - "\n", - " buf = list()\n", - " buf.append('p cnf {0} {1}'.format(nv * 3, nv * 4 + ne * 3))\n", - " buf.extend(itertools.chain.from_iterable([\n", - " _get_vertex_constraints(v)\n", - " for v in range(1, nv + 1)])\n", - " )\n", - " buf.extend(itertools.chain.from_iterable([\n", - " _get_edge_constraints(v1, v2)\n", - " for v1, v2 in edges])\n", - " )\n", - " return '\\n'.join(buf)\n", - "\n", - "sat_instance_cnf = reduce_to_sat(nv, ne, edges)\n", - "print('The input 3-Coloring instance can be reduced to the following SAT instance:\\n\\n{}'.format(sat_instance_cnf))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we have successfully reduced the 3-Coloring problem instance to its equivalent SAT instance, we can go ahead using Aqua's `LogicExpressionOracle` to build the oracle and construct the quantum circuit." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc4AABdJCAYAAAAWXWQkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XtUHPXdP/D3ssR4yV6s5LQnl4WANqF5lMF1DSKy5FFcbZJuUqStbTliYtOnv4NKzUl3s7ZKxPJsKNpEe2KkraHNzcdU6iJUgo1Abs0uCy5ovDbgYhJDpGFZwHIJO78/cpg6QpIdMrMzsJ/XOXNO9rvf/c5n57OZD7MzO18Vy7IsCCGEEBKWGLkDIIQQQqYSKpyEEEKIAFQ4CSGEEAGocBJCCCECUOEkhBBCBKDCSQghhAhAhZMQQggRgAonIYQQIgAVTkIIIUQAKpyEEEKIAFQ4CSGEEAGocBJCCCECUOEkhBBCBKDCSQghhAgQK3cAkVBYWAifzyd3GByGYbB582a5w4goygEhZLqIiiNOn88naKc9PDyMxsZG9PX18doHBwfR2NiIgYGBiMUyXUzmfUuVh2jNASFEJKyItm/fzprNZkGvufnmm9na2loxwxjHbDYLiqu6upq96qqr2JGREV77K6+8wmo0GnZ0dDRisUwXk3nfUuUhWnNACBGHpEeco6OjWL9+PWbPng2NRoOcnBx0d3fz+litVlRVVUkZhmBerxcMwyA2lv9NtsfjgdFoRExMVByoy47yQAhRIkn3PE6nEy6XC263GydOnAAA5OXl8footXCaTKZx7R6PZ8J2qfT19aGtrW3cHxtKEAwG0dbWhrNnz0q2DiXkIRQK4aOPPsLHH3+MUCh02eP19PSgra0Nvb29IkRHCJGDpIWzvLwcNpsNiYmJ0Ol0KC0tRW1tLfx+P9cnJSUFarUazc3NUoYiyEQ77FAohJaWFphMJnR1dSE9PR1ZWVlYsmQJ9u/fL3oMR44cQXx8PFJSUjBnzhzs2LFD9HVM1ltvvYV58+Zxse3du1eS9cidh3//+9+49957sXDhQnzzm9/EihUrMDQ0NOnx/vrXv2LOnDlISUnBvHnz8Oabb4oYLSEkYsL9Tvd///d/2RtvvPGifb58jrOnp4cFwL799tu8PlqtlnW5XLy2Rx55hP3Vr34VbiiCCTmndeLECRYA+9577/Ham5ubWQBsZ2cne+7cOfbcuXMsy7Ls8ePH2VtuuUXUWEKhEDtnzhw2JiaGBcACYGNjY9lTp06FvR6pnDt3jr322mu52FQqFTtz5kz2X//610VfJ/S8opR5CDeWjRs3ctt/bCkpKQn7PXxZb28ve+WVV7IqlYoFwMbExLBarXbc+VtCSOQ9+uij7KOPPsp7fDGSXRzU2dnJAmDb29t5fQwGA7tjxw5e2759+9ibb75Z0Lq+ukO71BLuTvvo0aMsgHFFat26dWxaWtq4/s3Nzezq1avDjttsNguOfbosQgqnlHmI5hzQQgst4S0XI9lXtRqNBgDGncsJBALQarW8Nr/fD4PBIGh89nzRD2sxm81hj5ucnAydTgen04lAIICzZ89i27Zt2Lp1K5xOJ9evo6MDGRkZsFgsWLVqlaDYzWbzJWO+4YYbeBe/XH311fj8888FvW8pllAohHnz5vFi02q16O3tFS0HkchDODl45plnxr3uueeem9R26+/vh16v57ZbTEwMvvGNb+DcuXOy55QWWqJ9MZvNvH3CpfZXkhVOvV4Pg8GAlpYWrq29vR3BYBA33XQTr29VVRWsVqtUoQii1WpRXV0Nr9eLefPmYdGiRaisrERtbS1vYy5YsACHDh2C2+1GQUGB6HG89tpriI+P5x6/+uqriIuLE309QqlUKrz++uuYO3cu1+Zyucb9MXS5lJCHRx55BA8++CD3+Cc/+Qn+3//7f5Ma65prrkFVVRW+9rWvAQC+8Y1voLq6Gmq1WpRYCSGRI+mdg9auXYtNmzZh6dKluO6662Cz2WCxWJCQkMD1GRgYQH19PbZv3y5lKIJkZGTg8OHDF3x+aGgIM2fOBHB+Bz9r1izRY/jWt76F48ePIxAI4Gtf+xruuece0dcxWQzDwO/3c7FlZWVJsh658xAbG4uXXnoJzz//PGbNmoXy8vLLGu+OO+5AV1cX1Go1Tpw4AZVKJVKkhJBICrtwlpSUYNeuXTh27FjYg9vtdvT09MBkMmFoaAjZ2dnYuXMnr09dXR1SU1MVcTQVrqamJjgcDqjVaoyMjGDLli2SrEelUuHaa6+VZOzLpYTYIpWHa665RrSxxr6qpaJJyNQVduF0OBxwOByCBler1SgrK0NZWdkF+yjpa9pwZWRk4MCBA3KHEfUoD4QQOch+k/f4+Hjk5uZKvh6fzyfZV4pC42AYRu4wZEE5IIRMB6IWToZhkJ+fL+g1RUVFYoYwISXtJBmGUVQ8kaKk9xytOSCEiEPFsiwrdxDk4lQqFZSaJiXHJiYx32e0bDNCpoqxb8IaGhq4x2P/ngjdJZsQQggRgAonIYQQIgAVTkIIIUQAKpyEEEKIALL/HCUSCgsL4fP55A6DwzAMNm/eLHcYEUU5IIRMF6IecVZUVAj+nZ7RaMS+ffvEDGMcn88naKc9PDyMxsZG9PX18doHBwfR2NiIgYGBiMUyXUzmfUuVh2jNASFEHJIecY6OjsJut6OiogKDg4O4++678eKLL/Jur2e1WlFVVQWLxSJlKGAY5qKXF39ZTU0NcnNz4Xa7ERv7n020d+9erFmzBm63mzc7iBBKuAGAXITkAJAuD9GcA0LI5ZP0HKfT6YTL5YLb7caJEycAAHl5ebw+Y4VTSbxeLxiG4e2sAcDj8cBoNE66aBJhKA+EECWSdM9TXl4Om82GxMRE6HQ6lJaWora2Fn6/n+uTkpICtVqN5uZmKUMRxOv1wmQyjWv3eDwTtkthZGQETz31FJYvXw4A6Onpich6wzE0NIRf/epXXGzBYFCS9SghD/v378d9990HAIKOliPhb3/7G3JycvC9730PR44ckTscQqJG2IXT6XSOm0fzYgKBADo7O2E0Grm2pKQkaLVatLa28vparVa4XK6wx5baRDvsUCiElpYWmEwmdHV1IT09HVlZWViyZAn2798vegw/+clP8OSTT+KNN94AANx1110YHh4WfT2T8aMf/QhPP/00F9u9996Lc+fOib4eufPQ2NiIu+++G3/9618BAHfeeedFpzmLpNraWixfvhyvvfYaXn31VWRlZSnqj09CprOwC6fdbkdbW1vYA49d0KHT6Xjter1+3BHKsmXLUFNTE/bYUjp58iROnz7NK/jA+QtK+vv7kZaWhri4OBw8eBANDQ3Ys2cP7Ha7qDGMjIxgx44dAM4XCgBoaWnBu+++K+p6JqOvrw+vvvoqgP/EduTIERw/flzU9SghD1/NAYBx0+LJ5U9/+hNUKhVCoRBCoRDOnTuH3bt3yx0WIVFBsouDNBoNAKC3t5fXHggEoNVqeW1+vx8Gg0HQ+ELnMzSbzWH1GzsXq9free27d+9GWloa5s+fz2sPBAKCjsSB80cyk5mP8atFREkWLVp0yT7h5gCQPg+TyUEoFMK2bduwbds2Qa+biNjzcbIsi2effRbPPvusqOMSEk3C/X8p2TlOvV4Pg8GAlpYWrq29vR3BYHDcDm4yc3KyLBv2ImSHnZycDJ1OB6fTiUAggLNnz2Lbtm3YunUrnE4n16+jowMZGRmwWCxYtWqVoNjNZvMlY37iiScA/CeR3/nOdzA6OirofUu1rFu3jhfb/fffj1AoJFoOIpGHcHLw7rvv8iax1mg0+OCDDy57+wHCPr8TLc3Nzbjyyiu52K699lp0dHTI/tmghZapuJjNZt4+4ZL7K1ZE27dvZ81mM/f46aefZr/5zW+y7e3tbG9vL3vfffexFouF95r+/n72mmuuYT///HMxQ+Exm828uC7l4MGDbHp6OnvNNdews2fPZrOzs9nGxsYJ+x4/fpyNj48XPZZQKMS+/PLL7Lp161gA7PDwcNjrkFooFGJ37NjBxXbu3LlLvkZoDlhWujwIieWDDz5gH3/8cRYA+/HHH4cZ+cWJ9d/unXfeYR0OBwuA/eSTT0QZk5Bo9NV9wqX2D2EfcZaUlGDx4sVh/0UPnD8vumLFCphMJsydOxejo6PjzhHV1dUhNTWV99tOuWVkZODw4cPo7+/HmTNnUFdXh8zMTO75oaEh7t9arRazZs0SPQaVSoXvf//7KCsrAwDMmDFD9HVMlkqlwo9//GMuNrVaLcl6lJCHhQsX4umnnwYAXH/99aKPfzn+67/+C7/+9a8BnJ8QnhASGWGf43Q4HHA4HIIGV6vVKCsr43awE5nM17Rya2pqgsPhgFqtxsjICLZs2SJ3SFGJ8kAIkYPs96qNj49Hbm6u5Ovx+Xyi3jEmJiYGLMsiNjYWxcXFKC4uDjsOhmFEi2MqETsHwOTyEM05IIRcPlELJ8MwyM/PF/SaoqIiMUOYkJJ2kgzDKCqeSFHSe47WHBBCxKFiWZaVOwhycSqVCkpNk5JjE5OY71PsbRYtOSBEKmPfhI3dHSwrK+uidwqjm30SQgghAlDhJIQQQgSgwkkIIYQIQIWTEEIIEUD2n6NEQmFhIXw+n9xhcBiGwebNm+UOI6IoB4SQ6SIqjjh9Pp+gnfbw8DAaGxu5GV7GDA4OorGxEQMDAxGLZbqYzPuWKg/RmgNCiDhEPeKsqKhARUWFoAl/jUYjSkpKYLFYxAxlHIZhwo6rpqYGubm5cLvdiI39zybau3cv1qxZA7fbjZiYyf3NIfYNAKYSITkApMtDNOeAEHL5JD3iHB0dxfr16zF79mxoNBrk5OSgu7ub18dqtaKqqkrKMATzer1gGIa3swYAj8cDo9E46aJJhKE8EEKUSNI9j9PphMvlgtvt5uZXzMvL4/VRauE0mUzj2j0ez4TtU0EoFEJbWxuam5sxPDwsdzhhmY55+OyzzwAAZ86cueyxhoeHuWn7vjzZNiFEWpIWzvLycthsNiQmJkKn06G0tBS1tbXw+/1cn5SUFKjVajQ3N0sZiiAT7bBDoRBaWlpgMpnQ1dWF9PR0ZGVlYcmSJdi/f79MkYZnZGQEVqsVKSkpuOWWW5CWloaenh65w7qk6ZaHPXv2cLOYxMfH4/XXX5/0WL29vcjIyOAmN1+2bNmU+YOIkKku7MLpdDrHTUB9MYFAAJ2dndx/bABISkqCVqtFa2srr6/VaoXL5Qp7bCmdPHkSp0+f5sUNnL+gpL+/H2lpaYiLi8PBgwfR0NCAPXv2wG63yxRteF588UVUV1dzj99++208+eSTMkZ0adMtD4FAAPn5+RgZGQFwfkq0+++/n3ssVHFxMZqamrjHtbW1+N3vfidKrISQSxBzMtAvT2Td2dnJAmDb29t5fQwGA7tjxw5e2759+9ibb75Z0LoACFrCnbj46NGjLAD21KlTvPZ169axaWlp4/o3Nzezq1evDjtus9ksOPbpsgiZyFrKPERzDmihhZbwlouR7KtajUYD4PxXSl8WCASg1Wp5bX6/HwaDQdD4LMuGvZjN5rDHTU5Ohk6ng9PpRCAQwNmzZ7Ft2zZs3boVTqeT69fR0YGMjAxYLBasWrVKUOxms1lQ/ELf71eXl19+eVwMTz311GWNKTQ2ITmIRB4inYOBgQHExcVxFzTFxMRg/vz5GB0dndR4X94GY/785z+LklNaaIm2xWw28/YJl9pfSVY49Xo9DAYDd/ECALS3tyMYDI77yldJk1lrtVpUV1fD6/Vi3rx5WLRoESorK1FbW8vbmAsWLMChQ4fgdrtRUFAgY8SX9r3vfQ9PPPEEZsyYAQB44IEHFP21JjD98nD11VejpqYGc+fOBQAkJiaipqZm0lcGr1u3Dg899BDUajWA8xPN//jHPxYtXkLIhUl656C1a9di06ZNWLp0Ka677jrYbDZYLBYkJCRwfQYGBlBfX4/t27dLGYogGRkZOHz48AWfHxoawsyZMwGc38HPmjUrUqFNikqlwsaNG/HEE08gNjYWFRUVcocUlumWh1tvvRWdnZ1QqVT4+OOPL2us2NhY/P73v8cLL7yAGTNm4Ne//rVIURJCLiXswllSUoJdu3bh2LFjYQ9ut9vR09MDk8mEoaEhZGdnY+fOnbw+dXV1SE1NRVxcXPhRy6ypqQkOhwNqtRojIyPYsmWL3CGFZezoZLqYqnkQ01d/40oIkV7Y/+scDgccDoegwdVqNcrKylBWVnbBPkr6mjZcGRkZOHDggNxhRD3KAyFEDrL/uRofH4/c3FzJ1+Pz+RRxqzWfzweGYeQOQxaUA0LIdCBq4WQYBvn5+YJeU1RUJGYIE1LSTpJhGEXFEylKes/RmgNCiDhULMuycgdBLk6lUkGsNIk5lhTjKRXlgJDpa+ybsLFJKLKysi46IQXdJZsQQggRgAonIYQQIgAVTkIIIUQAKpyEEEKIALL/HIUQEhmFhYXw+Xxyh8HDMAw2b94sdxgRpbQ8RGMOLpeoR5wVFRWCf6dnNBqxb98+McMghEzA5/MJ3mEPDw+jsbERfX19vPbBwUE0NjZiYGAgovFMB0LfN+VAeSQ94hwdHYXdbkdFRQUGBwdx991348UXX+TdXs9qtaKqqgoWi0XKUAghOH90cbHL7L+qpqYGubm5cLvdvNv77d27F2vWrIHb7Z70jeqVcDMMuQjJA+VAeSQ9x+l0OuFyueB2u3HixAkAQF5eHq/PWOEkhCiP1+sFwzDj7onr8XhgNBonvcMm4aMcKI+kW7y8vBw2mw2JiYnQ6XQoLS1FbW0t/H4/1yclJQVqtRrNzc1ShkIImQSv1wuTyTSu3ePxTNguhdOnT+PBBx/Ef//3f8PhcGBoaCgi6w3HiRMnkJeXhzvvvBNPPvkkRkZGRF+HEnLAsiy2bNmCu+66C7m5uXjvvfcua7yPP/4Y3//+93HXXXfhN7/5DUKhkEiRRkbYX9U6nU7s3r0bbW1tYfUPBALo7OyE0Wjk2pKSkqDVatHa2or4+Hiu3Wq1wuVy8foSQuTn9Xrx/e9/n9cWCoXQ0tKCgoICdHV1YdWqVbjiiivw73//GyUlJbjzzjtFW/+///1vLF26FB9++CFYlkV9fT0+/fRT7NixQ7R1TFZfXx/uuOMOdHZ2IhQK4a233kJXVxe2bdsm6nrkzgEAbNq0CRs2bIBKpYJKpcLf//53vPPOO5g3b57gsbq6upCeno6zZ8+CZVns378ffX19eOqpp0SNWUphH3Ha7fawiyYA7kS2Tqfjtev1egSDQV7bsmXLUFNTE/bYhBDpnTx5EqdPnx73B63P50N/fz/S0tIQFxeHgwcPoqGhAXv27BF9gnSfz4cPPviAd0vBPXv2YHR0VNT1TIbH48Enn3zCO1oSu6ArIQcA8Oc//xnA+SPPUCiEQCAw6Ys633rrLXR3dyMUCnF5HRt/qpDs4iCNRgMA6O3t5bUHAgFotVpem9/vh8FgEDS+SqW6vACnGDHfr9jbLlpyMR1yYDabwx5z7LoEvV7Pa9+9ezfS0tIwf/58XnsgEMBNN90U9vgA0NjYKHhbjI6OKnYe0i+++CKs9xNuHpSaAwB46KGH8NBDDwl+3UT8fr8i9iPhxiDZOU69Xg+DwYCWlhaurb29HcFgcFxiJzMnJ8uyUbOI+X7F3nbRkovpkAMhRRMAkpOTodPp4HQ6EQgEcPbsWWzbtg1bt26F0+nk+nV0dCAjIwMWiwWrVq0StA6z2XzRmEOhEL773e/yXvPMM8/I/nlgWRbnzp3DPffcw4vthRdeEDUPSsgBy7J4/fXXeRchMQyDgYGBSW23wcFB3HrrrdxYMTEx2Lt3r6y5NJvNvO1wyRyxItq+fTtrNpu5x08//TT7zW9+k21vb2d7e3vZ++67j7VYLLzX9Pf3s9dccw37+eefixnKtCJmmkROuejjKdV0yIHZbOb9/wzHwYMH2fT0dPaaa65hZ8+ezWZnZ7ONjY0T9j1+/DgbHx8f9tjhxjMyMsL+8Y9/ZAGwf/vb38IePxKGh4fZF198kQXA1tXVhfUaoXlQQg5YlmWPHj3KFhUVsQDYvr6+sNcxkS+++IJ9/vnnWQDsoUOHLmssMXx1O1xqm4R9xFlSUoLFixeH2x3A+fOiK1asgMlkwty5czE6OoqdO3fy+tTV1SE1NZX3205CiDJkZGTg8OHD6O/vx5kzZ1BXV4fMzEzu+S9f4arVajFr1izRY4iNjcXq1asBAPfee6/o41+OGTNmYO3atQCA7OxsSdahhBwAwJIlS/Dkk08CwGWv46qrrkJBQQEA4Pbbb7/s2CIt7BMFDocDDodD0OBqtRplZWUoKyu7YJ/JfE1LCFGGpqYmOBwOqNVqjIyMYMuWLXKHFHUoB5En+xn2+Ph45Obmyh0GIVHB5/OJfreYmJgYsCyL2NhYFBcXo7i4OOxYGIYRNZapQuw8UA4iS9TCyTAM8vPzBb2mqKhIzBAIIRegtB0kwzCKiykSlPSeozUHl0vFsix76W5ETiqVCmKlScyxpBhPqSgH8lPy+1RybGJT8v+FyRo7+h+7f3BWVtZF7yVMNzkkhBBCBKDCSQghhAhAhZMQQggRgAonIYQQIoDsP0chhERGYWEhfD6f3GHwMAyDzZs3yx1GRCktD9GYg8tFR5yERAmfzyd4hz08PIzGxkZutqMxg4ODaGxsxMDAQETjmQ6Evm/KgfKIesRZUVGBioqKi17G+1VGoxElJSWwWCxihkIImQDDMIL+f9bU1CA3Nxdut5s3I8nevXuxZs0auN1u3s2/hRD7RgxTiZA8UA6UR9IjztHRUaxfvx6zZ8+GRqNBTk4Ouru7eX2sViuqqqqkDIMQMklerxcMw4ybxsvj8cBoNE56h03CRzlQHkm3uNPphMvlgtvt5uaVy8vL4/WhwkmIcnm9XphMpnHtHo9nwnapfPTRRwCAzz77LGLrDNf7778PAOjq6pJkfKXkIBAI4K233gIARdy04Mv+9a9/4a233kJbW1tE1idp4SwvL4fNZkNiYiJ0Oh1KS0tRW1sLv9/P9UlJSYFarUZzc7OUoRBCJmGinXYoFEJLSwtMJhO6urqQnp6OrKwsLFmyBPv37xc9hrKyMixcuBAAcP311+Pvf/+76OuYrKeeegrf+ta3AAA33HADDh48KPo6lJCD999/H4sWLcKdd94JAFi7dq1iimdraysWLlyIO++8EykpKXj00Ucljy3swul0OgXNLB4IBNDZ2Qmj0ci1JSUlQavVorW1ldfXarXC5XKFPTYhRHonT57E6dOnef+HgfMXlPT39yMtLQ1xcXE4ePAgGhoasGfPHtjtdlFjOH78ONavX889HhwcHPetlVzeffddbpotABgYGMADDzwg6jqUkAMAePjhh/H5559zj//whz/gjTfeEH09k/HTn/4UPT093OPnnnsOjY2Nkq4z7IuD7Ha7oISMXQGm0+l47Xq9HsFgkNe2bNkybNiwAU899VTY46tUqrD7Tgdivl+xt1205GI65OCSM9t/ydjpFb1ez2vfvXs30tLSMH/+fF57IBAQ9Mc1ADQ2NgraFqFQCKdPn1bkZy4UCqGjoyOs2MLNgxJzMGbZsmWCXzMRKXK5dOnSSb0u3Fgk+6pWo9EAAHp7e3ntgUAAWq2W1+b3+2EwGASNz7Js1Cxivl+xt1205GI65EBI0QSA5ORk6HQ6OJ1OBAIBnD17Ftu2bcPWrVvhdDq5fh0dHcjIyIDFYsGqVasErcNsNl805s8//xxarZa7ACYmJga33nqr7J8HlmVx8uRJXH311bzYli5dKmoelJADlmWxevVqXlGJiYnB22+/rYj/C9/73vd4scXGxuL9998XNIbZbOZth0vlSLLCqdfrYTAY0NLSwrW1t7cjGAyO+4uIJrMmRHm0Wi2qq6vh9Xoxb948LFq0CJWVlaitreXtWBYsWIBDhw7B7XajoKBA1Bji4uJQU1PD/WGdlpaGv/zlL6KuY7LmzJmDqqoqzJkzBwBwxx13YPfu3aKuQwk5AIDNmzdj5cqVmDFjBgBg165dipmObNu2bfj2t7/NxfbKK69g0aJFkq5T0jsHrV27Fps2bcLSpUtx3XXXwWazwWKxICEhgeszMDCA+vp6bN++XcpQCCGTkJGRgcOHD1/w+aGhIcycORPA+Z38rFmzJIlh7CvQi8UihzvvvBOffvopVCqVoN/HCqGEHGg0GlRWVoJlWcTExOAHP/iB6OuYrGuvvRbV1dVcbEKPuCcj7MJZUlKCXbt24dixY2EPbrfb0dPTA5PJhKGhIWRnZ2Pnzp28PnV1dUhNTUVcXFz4URNCFKGpqQkOhwNqtRojIyPYsmWL3CFFnUjmQInnlsdEMrawC6fD4YDD4RA0uFqtRllZGcrKyi7Yh76mJWTqysjIwIEDB+QOI6pRDiJP9pu8x8fHIzc3V+4wCIkKPp9PMbdZ8/l8ijlPFmlKyUM05+ByiFo4GYZBfn6+oNcUFRWJGQIh5AKUtoNkGEZxMUWCkt5ztObgcqnYsWuCiWKpVCqIlSYxx5JiPKWiHMhPye9TybGJbTr+Xxg7+h+7wCsrK+uiF3vR3YEJIYQQAahwEkIIIQJQ4SSEEEIEoMJJCCGECCD7z1EIIZFRWFgIn88ndxg8DMNg8+bNcocRUUrLQzTm4HKJesRZUVEh+LdJRqMR+/btEzMMQsgEfD6f4B328PAwGhsbudmOxgwODqKxsREDAwMRjWc6EPq+KQfKI+kR5+joKOx2OyoqKjA4OIi7774bL774Iu/2elarFVVVVbBYLFKGQgjB+aMLIfdUrampQW5uLtxuN2Jj/7O72Lt3L9asWQO3283NDiKUEm4AIBcheaAcKI+k5zidTidcLhfcbjc3r9xXJ6EdK5yEEOXxer1gGIa3wwYAj8cDo9E46R02CR/lQHkk3eLl5eWw2WxITEyETqdDaWkpamtr4ff7uT4pKSlQq9Vobm6WMhRCyCR4vV6YTKZx7R6PZ8J2pWNZFs8//zzS09ORnZ09Je7xOt1yAADvvvsuli9fDuD83ePOnTs36bHOnTuHoqIipKWlcWNLLezC6XQ6Bc0sHggE0NkfL7aQAAAgAElEQVTZCaPRyLUlJSVBq9WitbWV19dqtcLlcoU9NiEkMibaaYdCIbS0tMBkMqGrqwvp6enIysrCkiVLsH//fpkiDc/WrVvxyCOP4B//+AfeeustZGdn45133pE7rIuabjk4deoUMjMz8cYbbwAANm7ciMcff3zS423YsAEbN26E2+0GAGRmZuKzzz4TJdYLCbtw2u12tLW1hT3w2IlsnU7Ha9fr9QgGg7y2ZcuWoaamJuyxCSHSO3nyJE6fPs374xc4f0FJf38/0tLSEBcXh4MHD6KhoQF79uyB3W6XKdrw/OUvf+GmnwqFQhgeHkZ1dbXMUV3YdMxBQ0MDenp6EAqFuLaXX3550uP93//9H+9xT0+PZHOjjpHs4iCNRgMA6O3t5bUHAgFotVpem9/v52Z4D5eS54WTgpjvV+xtFy25mA45MJvNYY85dl2CXq/nte/evRtpaWmYP38+rz0QCAj6VgoAGhsbBW0LKT5rk5kycSJCYgs3D0rMASB+Hjo7O0Ud84c//CF++MMfCn5duDFIdo5Tr9fDYDCgpaWFa2tvb0cwGByX2MnMycmybNQsYr5fsbddtORiOuRASNEEgOTkZOh0OjidTgQCAZw9exbbtm3D1q1b4XQ6uX4dHR3IyMiAxWLBqlWrBK3DbDZHdLu53W5cddVV3PoXLlyIQCAQ0ZwKyYPSciBGHoaHh5GZmcmtX61Ww+VyTXq81157DWq1mhsvMzMTw8PDgsYwm8287XCpHEl6cdDatWuxadMmdHR0IBgMwmazwWKxICEhgeszMDCA+vp67kQxIUQZtFotqqur4fV6MW/ePCxatAiVlZWora3l7VgWLFiAQ4cOwe12o6CgQMaIL+3WW2/F22+/jWeeeQbA+Qtsvno6SUmmYw5mzJiBN998Ey+99BIAwO124zvf+c6kx7NarXC73SgtLQUAvPnmm5gxY4YosV5I2F/VlpSUYNeuXTh27FjYg9vtdvT09MBkMmFoaAjZ2dnYuXMnr09dXR1SU1N5v+0khChDRkYGDh8+fMHnh4aGMHPmTADnd/KzZs2KVGiTtnDhQixcuBDr1q0bd9pIiaZjDq644go8+OCDWL169bjzt5NhNBphNBrxi1/8AldccYUIEV5c2IVzMucB1Go1ysrKUFZWdsE+k/malhCiDE1NTXA4HFCr1RgZGcGWLVvkDinqUA4iT/Z71cbHxyM3N1fuMAiJCj6fT/S7xcTExIBlWcTGxqK4uBjFxcVhx8IwjKixTBVi54FyEFmiFk6GYZCfny/oNUVFRWKGQAi5AKXtIBmGUVxMkaCk9xytObhcKnbsMimiWCqVCmKlScyxpBhPqSgH8lPydouWHADK3m6THW/s6H/s959ZWVkX/S0o3eSQEEIIEYAKJyGEECIAFU5CCCFEACqchBBCiABUOAkhhBABqHASQgghAohaOCsqKgT/qNdoNGLfvn1ihkEIIYRIRtIjztHRUaxfvx6zZ8+GRqNBTk4Ouru7eX2sViuqqqqkDIMQQggRjaSF0+l0wuVywe12c/PK5eXl8fpQ4SSEEDKVSFo4y8vLYbPZkJiYCJ1Oh9LSUtTW1sLv93N9UlJSoFar0dzcLGUohBBCiCjCLpxOp1PQzOKBQACdnZ28KWOSkpKg1WrR2trK62u1WuFyucIemxBCCJFL2Dd5t9vtsNvtYQ/c19cHAOMmidXr9QgGg7y2ZcuWYcOGDXjqqafCHl+lUoXddzoQ8/2Kve2iJReUA/kpebtFSw4AZW+3yxkv3NdKNq2YRqMBAPT29vLaA4HAuMlj/X4/DAaDoPGj5YbKwPS8qfJUQzmQn5K3W7TkAFD2dhPzJu8XI9k5Tr1eD4PBgJaWFq6tvb0dwWBw3Fe+NJk1IYSQqULSi4PWrl2LTZs2oaOjA8FgEDabDRaLBQkJCVyfgYEB1NfXY/ny5VKGQgghhIgi7MJZUlKCxYsXCxrcbrdjxYoVMJlMmDt3LkZHR7Fz505en7q6OqSmpiIuLk7Q2IQQQogcwi6cDocDx44dEzS4Wq1GWVkZuru70dfXh8rKynEFkr6mJYQQMpXIfq/a+Ph45Obmyh0GIYQQEhZRr6plGAb5+fmCXlNUVCRmCIQQQoikRC+cDMOIOSQhhBCiKLJ/VUsIIYRMJVQ4CSGEEAGocBJCCCECUOEkhBBCBKDCSQghhAggauGsqKi45M1xv8poNGLfvn1ihkEIIYRIRtIjztHRUaxfvx6zZ8+GRqNBTk4Ouru7eX2sViuqqqqkDIMQQggRjaSF0+l0wuVywe1248SJEwCAvLw8Xh8qnIQQQqYSSQtneXk5bDYbEhMTodPpUFpaitraWvj9fq5PSkoK1Go1mpubpQyFEEIIEUXYhdPpdI6bR/NiAoEAOjs7YTQaubakpCRotVq0trby+lqtVrhcrrDHJoQQQuQSduG02+1oa2sLe+C+vj4AgE6n47Xr9XoEg0Fe27Jly1BTUxP22IQQQohcRL1X7ZdpNBoAQG9vL689EAhAq9Xy2vx+PwwGg6DxVSrV5QU4xYj5fsXedtGSC8qB/JS83aIlB4Cyt9vljBfuayUrnHq9HgaDAS0tLdyN39vb2xEMBsd95VtVVYWcnBxB47MsK1qsSqdSqUR7v2KOJcV4SkU5kJ+St1u05ABQ9nab7HhjP6NsaGjgPb4QSS8OWrt2LTZt2oSOjg4Eg0HYbDZYLBYkJCRwfQYGBlBfX4/ly5dLGQohhBAiirALZ0lJCRYvXixocLvdjhUrVsBkMmHu3LkYHR3Fzp07eX3q6uqQmpqKuLg4QWMTQgghcgi7cDocDhw7dkzQ4Gq1GmVlZeju7kZfXx8qKyvHFciqqipYrVZB4xJCCCFykf1etfHx8cjNzZU7DEIIISQsol4cxDAM8vPzBb2mqKhIzBAIIYQQSYleOMeuoCWEEEKmI9m/qiWEEEKmEiqchBBCiABUOAkhhBABqHASQgghAlDhJIQQQgSgwkkIIYQIIGrhrKiouOTNcb/KaDRi3759YoZBCCGESEbSI87R0VGsX78es2fPhkajQU5ODrq7u3l9rFYrqqqqpAyDEEIIEY2khdPpdMLlcsHtduPEiRMAgLy8PF4fKpyEEEKmEkkLZ3l5OWw2GxITE6HT6VBaWora2lr4/X6uT0pKCtRqNZqbm6UMhRBCCBFF2IXT6XSOm4D6YgKBADo7O2E0Grm2pKQkaLVatLa28vparVa4XK6wxyaEEELkEva9au12O+x2e9gD9/X1AQB0Oh2vXa/XIxgM8tqWLVuGDRs24Kmnngp7fJVKFXbf6UDM9yv2touWXFAO5Kfk7RYtOQCUvd0uZ7xwXyvqTd6/TKPRAAB6e3t57YFAAFqtltfm9/thMBgEjc+y7OUFOIWoVCrR3q+YY0kxnlJRDuSn5O0WLTkAlL3dJjve2K9BGhoaeI8vRLJznHq9HgaDAS0tLVxbe3s7gsHguK98aTJrQgghU4WkFwetXbsWmzZtQkdHB4LBIGw2GywWCxISErg+AwMDqK+vx/Lly6UMhRBCCBFF2IWzpKQEixcvFjS43W7HihUrYDKZMHfuXIyOjmLnzp28PnV1dUhNTUVcXJygsQkhhBA5hF04HQ4Hjh07JmhwtVqNsrIydHd3o6+vD5WVleMKJH1NSwghZCqR/V618fHxyM3NlTsMQgghJCyiXlXLMAzy8/MFvaaoqEjMEAghhBBJiV44GYYRc0hCCCFEUWT/qpYQQgiZSqhwEkIIIQJQ4SSEEEIEkOyWe0pSWFgIn88ndxgchmGwefNmucMghBAyCVFxxOnz+RRTOJUUCyGEEOFEPeKsqKhARUUFd6PccBiNRpSUlMBisYgZyjgMw4Qd15kzZ/D1r38dLS0tSE1N5dr9fj8SEhLw3nvvITk5eVJxXOrmwVL56KOPcODAAQBAc3Mzb7o3Qggh4ZP8iHN0dBTr16/H7NmzodFokJOTg+7ubu55q9WKqqoqqcMQpKmpCVdddRVuvPFGXrvH44FGo8HChQtliky4kydP4p577sHChQvxk5/8BABwyy234NZbb0VbW5vM0RFCyNQjeeF0Op1wuVxwu904ceIEACAvL497XomF0+v1gmEYxMbyD8g9Hg+MRiNiYqbGN9yff/45MjMzceTIERQXF+Of//wnAOD555/HiRMnYDab8f7778scJSGETC2SV4Dy8nLYbDYkJiZCp9OhtLQUtbW18Pv9AICUlBSo1Wo0NzdLHUrYvF4vTCbTuHaPxzNhu1L95je/gd/vx5tvvolf/vKXSEpKAgAUFBTgyJEjiImJgcPhkDlKQgiZWgQVTqfTOW4uzYsJBALo7OzknU9LSkqCVqtFa2sr12a1WuFyuYSEIqmJCmcoFEJLSwtMJhO6urqQnp6OrKwsLFmyBPv375cp0gsbGRnBH//4R6xatQpLliwZ93xCQgJ++tOfoqqqCqdOnZIhQkIImZoEFU673S7ovFhfXx8AQKfT8dr1ej2CwSD3eNmyZaipqRESimROnjyJ06dPj7t4xufzob+/H2lpaYiLi8PBgwfR0NCAPXv2wG63yxTthZ09exZnz5696MVIS5cuRSgUwvHjxyMXGCGETHGS/o5To9EAAHp7e3ntgUAAWq2We+z3+2EwGASNrVKpBPU3m81h9Rs7D6vX63ntu3fvRlpaGubPn89rDwQCgo7CAaCxsVFw/EL7jykoKEBBQcFFx8rMzJzU2Bcab7oS832Kvc0oB/KPFy05AJS93S5nvHBfK2nh1Ov1MBgMaGlp4W7+3t7ejmAwyCs2VVVVyMnJETQ2y7Jh9xXyE5Dk5GTodDo4nU5s3LgRoVAIr7zyCrZu3Yo33niD69fR0YG8vDx8+OGH2L59u5DQYTabBf1kR6VSCXq/X17Pp59+io8++oi70GlsLJZlkZ2djY8++gjt7e3jLoSSOrapRsz3KfY2oxzIP1605ABQ9nab7HhjNWJsv3ypmiH5xUFr167Fpk2b0NHRgWAwCJvNBovFgoSEBADAwMAA6uvrsXz5cqlDCYtWq0V1dTW8Xi/mzZuHRYsWobKyErW1tbyj1gULFuDQoUNwu93jjuiU4rHHHkNHRwdWr16NL774gmsfGRnBk08+if379+ORRx6ZdNEkhJBoJGiPWVJSgl27duHYsWNhv8Zut6OnpwcmkwlDQ0PIzs7Gzp07uefr6uqQmpqKuLg4IaFIKiMjA4cPH77g80NDQ5g5cyaA84V21qxZkQpNEKvViqeffhq//OUvUVVVhe985zsAzk8e/tlnnyE/Px+PPfaYzFESQsjUIuiI0+FwCCqaAKBWq1FWVobu7m709fWhsrKSVySrqqpgtVoFjSm3pqYmZGZmYunSpVi5ciW2bNkid0gX9Pjjj+PQoUP49re/jb///e8Azt9FqaqqCi+99NKU+U0qIYQohezf0cXHxyM3N1fy9fh8PlFvdxcTEwOWZREbG4vi4mIUFxeHHUekJ/u+/fbbcfvttwM4fw7gb3/7W0TXTwgh04mohZNhGOTn5wt6TVFRkZghTCjShepiGIZRVDyEEEKEEb1wKrEo0BRehBBCxEInuAghhBABqHASQgghAlDhJIQQQgSgwkkIIYQIIPvPUUh0KCwshM/nkzsMDsMwdNEYIWRS6IiTRITP5xNcOIeHh9HY2MjNsjNmcHAQjY2NGBgYiFgshBAyRtQjzoqKClRUVAi6gbnRaERJSQksFouYoRAFYhhG0GejpqYGubm5cLvdvPvp7t27F2vWrIHb7Z7UnY/CuREGy7LYt28ftm7diiNHjkCtVsNqtaKgoADZ2dmC10kImT4kP+IcHR3F+vXrMXv2bGg0GuTk5KC7u5t73mq1oqqqSuowyBTk9XrBMMy4m9B7PB4YjUbJbhfIsiweffRR3HvvvfB4PPjud7+L0dFR/OMf/8Ddd9+NdevWRc1MGISQ8SQvnE6nEy6XC263m5vrMi8vj3ueCie5EK/XC5PJNK7d4/FM2C6W3//+93j++efx85//HJ2dnSgvLwcAfPrppygoKMCzzz6LP/3pT5KtnxCibJIXzvLycthsNiQmJkKn06G0tBS1tbXw+/0AgJSUFKjVajQ3N0sdCpliJiqcoVAILS0tMJlM6OrqQnp6OrKysrBkyRLs37//stfJsix++9vfwmQy4ZlnnsEVV1zBPTdz5kxs2bIFKSkp+O1vf0tHnYREKUGF0+l08iagvpRAIIDOzk4YjUauLSkpCVqtFq2trVyb1WqFy+USEgqZ5k6ePInTp0/zPjvA+Qt7+vv7kZaWhri4OBw8eBANDQ3Ys2cP7Hb7Za/3+PHj+OCDD7B69eoJZ4OPiYnBgw8+iLa2Nnz66aeXvT5CyBTEimj79u2s2WzmHnd2drIA2Pb2dl4/g8HA7tixg3u8b98+9uabbxa0LgC0TLHly5+NSzl69CgLgD116hSvfd26dWxaWtq4/s3Nzezq1avDGttsNsu+LWihhRZlLxcj6Ve1Go0GANDb28trDwQC0Gq13GO/3w+DwSBobJZlo2YR8/2Kve3CHc9sNgvKb3JyMnQ6HZxOJwKBAM6ePYtt27Zh69atcDqdXL+Ojg5kZGTAYrFg1apVYY9vNpsnjDMQCODKK6/E//zP/1zwfa5evRpXX301+vr6plQOpvqi5O0WLTlQ+nab7Hhms5m3T7jU/krSwqnX62EwGNDS0sK1tbe3IxgM8r7ynYqTWRNpabVaVFdXw+v1Yt68eVi0aBEqKytRW1vL+1AvWLAAhw4dgtvtRkFBwWWvV6fT4Qc/+AH+/Oc/Tzhpe1tbG3bv3o0f//jHmDVr1mWvjxAy9Uh+cdDatWuxadMmdHR0IBgMwmazwWKxICEhAQAwMDCA+vp6LF++XOpQyBSTkZGBw4cPo7+/H2fOnEFdXR0yMzO554eGhrh/a7Va0QpZUVERtFotMjMzUVpaiuPHjwM4f44/KysLX/va1/CrX/1KlHURQqYeQYWzpKQEixcvFrQCu92OFStWwGQyYe7cuRgdHcXOnTu55+vq6pCamoq4uDhB4xLS1NSEzMxMLF26FCtXrsSWLVtEGTc+Ph6HDh3CTTfdBJvNhuuvvx4AsGHDBqSmpuLQoUOYN2+eKOsihEw9gu4c5HA44HA4BK1ArVajrKwMZWVlEz5PX9OSycrIyMCBAwckGTspKQn19fU4duwYjh49ioceegjvvfcekpOTJVkfIWTqkP0m7/Hx8cjNzZU7DBIBPp8vrNvdRSIOhmHC6rt48WIsXrwYa9askTgqQshUIWrhZBgG+fn5gl5TVFQkZghEocItVJHAMIyi4iGETC2iF07aIZGJ0BRehJDpgqYVI4QQQgSgwkkIIYQIQIWTEEIIEUD2q2pJdCgsLITP55M7DA7DMHTelRAyKXTESSLC5/MppnAqKRZCyNQj6hFnRUUFKioq0NDQEPZrjEYjSkpKYLFYxAyFKBDDMII+G2fOnMHXv/51tLS0IDU1lWv3+/1ISEiY9A0J5PotaSAQwGuvvQYA2LlzJ6xWKzcRAiFk6pD8iHN0dBTr16/H7NmzodFokJOTg+7ubu55q9WKqqoqqcMgU1BTUxOuuuoq3Hjjjbx2j8cDjUaDhQsXyhSZMKOjo9iwYQPmzJmDBx98EACQl5eHuXPn4umnn+ZmdSCETA2SF06n0wmXywW3240TJ04AOL/TGEOFk1yI1+sFwzCIjeV/MeLxeGA0GhETMzXONDz88MNwOp1YtWoVmpqaAABHjhzBXXfdhV/96ld4/PHHZY6QECKE5Hue8vJy2Gw2JCYmQqfTobS0FLW1tfD7/QCAlJQUqNVqNDc3Sx0KmWK8Xi9MJtO4do/HM2G7Eh07dgwvvPACCgsLsWvXLtxyyy0AgNtuuw2vvvoq8vPzsWnTJnz66acyR0oICZegwul0OnnzaF5KIBBAZ2cnjEYj15aUlAStVovW1lauzWq1wuVyCQmFRIGJCmcoFEJLSwtMJhO6urqQnp6OrKwsLFmyBPv375cp0gv7wx/+gJkzZ054VKlSqfDkk0+CZVm89NJLMkRHCJkMQYXTbrejra0t7P59fX0Azk8O/GV6vR7BYJB7vGzZMtTU1AgJhUxzJ0+exOnTp3l/dAHnr4jt7+9HWloa4uLicPDgQTQ0NGDPnj2w2+0yRXth//znP5GcnHzBafMSEhJgMBi4OT8JIcon6e84x64Y7O3t5bUHAgFotVrusd/vh8FgEDS2SqW6/ACnEDHfr9jbLtzxzGZz2GOOnQ/X6/W89t27dyMtLQ3z58/ntQcCAUHfhjQ2Nkb0M/TVdX318Y4dO7Bjxw7Rxp+u5PrsRnospVPydruc8cJ9raTnOPV6PQwGA1paWri29vZ2BINB3k5uMnNysiwbNYuY71fsbRfueEKKJgAkJydDp9PB6XQiEAjg7Nmz2LZtG7Zu3Qqn08n16+joQEZGBiwWC1atWhX2+GazOSK5e/nllwEAr7/++oTbbKxY7tu3TzE5Veoi12eXcjB1tttkxzObzbx9wqX2V5JfHLR27Vps2rQJHR0dCAaDsNlssFgsSEhIAAAMDAygvr4ey5cvlzoUMoVotVpUV1fD6/Vi3rx5WLRoESorK1FbW8v7UC9YsACHDh2C2+1GQUGBjBFPbNWqVUhMTMSaNWtw9OhR3nP19fV4+OGHcdNNN+Guu+6SKUJCiFCCvqotKSnBrl27cOzYsbBfY7fb0dPTA5PJhKGhIWRnZ2Pnzp3c83V1dUhNTb3gOSASvTIyMnD48OELPj80NISZM2cCOF9oZ82aFanQwnbFFVegpqYG2dnZuO2223DbbbcBAG655RY0Nzfj+uuvR1VV1ZT5aQ0hROARp8PhEFQ0AUCtVqOsrAzd3d3o6+tDZWUlr0hO5mtaQoDzN0jIzMzE0qVLsXLlSmzZskXukCa0aNEitLW14ZlnnsHg4CAAICYmBr/73e/Q3NyM+Ph4mSMkhAgh+03e4+PjkZubK3cYJAJ8Pp/ot7uLiYkBy7KIjY1FcXExiouLw4oj0hOuX3vttXjsscfw2GOPRXS9hBDxiVo4GYZBfn6+oNcUFRWJGQJRqEgXqothGEZR8RBCphbRCyftkMhEaAovQsh0QVckEEIIIQJQ4SSEEEIEoMJJCCGECECFkxBCCBFA9p+jkOhQWFgIn88ndxgchmHogiVCyKTQESeJCJ/PJ7hwDg8Po7GxkZtlZ8zg4CAaGxsxMDAQsVgIIWSMqEecFRUVqKioQENDQ9ivMRqNKCkpgcViETMUokAMwwj6bNTU1CA3Nxdutxuxsf/5qO7duxdr1qyB2+2e1K3qxL4JQ6SFQiG88sor2Lp1K5qamhATE4N7770XBQUF+Pa3vx1Vs3QQIgfJjzhHR0exfv16zJ49GxqNBjk5Oeju7uaet1qtqKqqkjoMMgV5vV4wDMMrmgDg8XhgNBqj8v6uo6Oj+NGPfoT7778fp06dws9+9jOEQiG0tbVh+fLlWLduHTdLBCFEGpLveZxOJ1wuF9xuNzfHYl5eHvc8FU5yIV6vFyaTaVy7x+OZsD0alJWV4eWXX8avf/1rfPTRR3j22WcBAJ988gkefvhh/Pa3v8WuXbtkjpKQ6U3ywlleXg6bzYbExETodDqUlpaitrYWfr8fAJCSkgK1Wo3m5mapQyFTzESFMxQKoaWlBSaTCV1dXUhPT0dWVhaWLFmC/fv3yxRpZJw7dw7PP/887rrrLjgcDt4R94wZM7B582Z861vfUuzN7gmZLgQVTqfTyZuA+lICgQA6OzthNBq5tqSkJGi1WrS2tnJtVqsVLpdLSChkmjt58iROnz7N++wA5y/s6e/vR1paGuLi4nDw4EE0NDRgz549sNvtMkUbGe+++y5OnjyJBx54YMLnY2Ji8MADD8Dr9eLzzz+PcHSERBFWRNu3b2fNZjP3uLOzkwXAtre38/oZDAZ2x44d3ON9+/axN998s6B1AaBlii1f/mxcytGjR1kA7KlTp3jt69atY9PS0sb1b25uZlevXh3W2GazWfZtQQsttCh7uRhJf8ep0WgAAL29vbz2QCAArVbLPfb7/TAYDILGZqPoAgiVSiXa+xVzLCHjCb2SNTk5GTqdDk6nExs3buRdSfrGG29w/To6OpCXl4cPP/wQ27dvD3t8s9ks6ApfJeju7sacOXPws5/9jPd17JdzcN9996G+vh6fffYZrrjiCrlClYRcn91Ij6V0St5ukx1vbP80tk+41P5K0nOcer0eBoMBLS0tXFt7ezuCwSDvK1+azJp8lVarRXV1NbxeL+bNm4dFixahsrIStbW1MJvNXL8FCxbg0KFDcLvdKCgokDFi6cXFxeG+++7DSy+9NOGE8ocOHcJrr72GNWvWTLuiSYiSSH5x0Nq1a7Fp0yZ0dHQgGAzCZrPBYrEgISEBADAwMID6+nosX75c6lDIFJORkYHDhw+jv78fZ86cQV1dHTIzM7nnh4aGuH9rtVrMmjVLjjAjqqSkBNdccw3uuOMOFBcX49133wUAbNiwAXfffTcSExNhs9lkjpKQ6U1Q4SwpKcHixYsFrcBut2PFihUwmUyYO3cuRkdHsXPnTu75uro6pKamIi4uTtC4hDQ1NSEzMxNLly7FypUro+Jq0oSEBBw+fBi33HILnnjiCdx4440AgNLSUtx77704ePAgrrvuOpmjJGR6E3SO0+FwwOFwCFqBWq1GWVkZysrKJnyevqYlk5WRkYEDBw7IHUbEJSUloa6uDh9//DGam5tx//3345NPPsH8+fPlDo2QqCD7Td7j4+ORm5srdxgkAnw+nyJud+fz+cAwjNxhXLYbbrgBN9xwA37wgx/IHQohUUXUwskwDPLz8wW9pqioSMwQiEIpqVAxDKOoeAghU4vohZN2SGQiNIUXIWS6iL67ZBNCCCGXgQonIYQQIgAVTkIIIUQA2a+qJUfVyB4AACAASURBVNGhsLAQPp9P7jA4DMPQeVdCyKTQESeJCJ/Pp5jCqaRYCCFTj6hHnBUVFaioqBB082yj0YiSkhJYLBYxQyEKxDCMoM/GmTNn8PWvfx0tLS1ITU3l2v1+PxISEvDee+8hOTlZcBxK+C0pkce5c+dQU1ODtrY2AEBzc/O4qesIuRTJjzhHR0exfv16zJ49GxqNBjk5Oeju7uaet1qtqKqqkjoMMgU1NTXhqquu4m4rN8bj8UCj0WDhwoUyRUamon379mHBggVYuXIlnnjiCQDALbfcgttvvx1+v1/m6MhUInnhdDqdcLlccLvdOHHiBAAgLy+Pe54KJ7kQr9cLhmEQG8v/YsTj8cBoNCImhs40kPA0NDRgxYoVuPbaa/HXv/6VmyDgueeew7Fjx5CVlUWTf5OwSb7nKS8vh81mQ2JiInQ6HUpLS1FbW8v9hZeSkgK1Wo3m5mapQyFTjNfrhclkGtfu8XgmbCfkQmw2G+bPn48DBw5g5cqV3LRrDz/8MN588034/X4899xzMkdJpgpBhdPpdPLm0byUQCCAzs5O3jmEpKQkaLVatLa2cm1WqxUul0tIKCQKTFQ4Q6EQWlpaYDKZ0NXVhfT0dGRlZWHJkiXYv3+/TJESJXvnnXfg8XhQWFgIvV4/7nmTyYRly5bhD3/4gwzRkalIUOG02+3cSfVw9PX1AQB0Oh2vXa/XIxgMco+XLVuGmpoaIaGQae7kyZM4ffr0uAs3fD4f+vv7kZaWhri4OBw8eBANDQ3Ys2cP7Ha7TNESJevo6AAA3HbbbRfsk5aWhtOnT/PmeCXkQiT9HadGowEA9Pb28toDgQC0Wi332O/3w2AwCBpbpVJdfoBTiJjvV+xtF+54ZrM57DHHzod/9Qhh9+7dSEtLGzeFViAQEPRtSGNjY9R9hqaDy8nZRF/vf3W8K6+8ctLjR9PnaTrsjy7ntZIWTr1eD4PBgJaWFu7m7+3t7QgGg7ydXFVVFXJycgSNzbKsqLEqmUqlEu39ijmWkPGE/gQkOTkZOp0OTqcTGzduRCgUwiuvvIKtW7fijTfe4Pp1dHQgLy8PH374IbZv3x72+GazWdBPY4j8JvvZHR4exvz582E0GlFTU8PtHMfGCwaDiI+Pxz333IM9e/ZENLapaDrsj75qbP80tk+41P5K8ouD1q5di02bNqGjowPBYBA2mw0WiwUJCQkAgIGBAdTX12P58uVSh0KmEK1Wi+rqani9XsybNw+LFi1CZWUlamtreUeuCxYswKFDh+B2u1FQUCBjxESprrjiCvz85z/HG2+8AZvNhi+++IJ77tSpU7Barejr68PPf/5zGaMkU4mgI86SkhLs2rULx44dC/s1drsdPT09MJlMGBoaQnZ2Nnbu3Mk9X1dXh9TUVMTFxQkJhUSBjIwMHD58+ILPDw0NYebMmQDOF9pZs2ZFKjQyxfziF7/AJ598gt/85jf4/e9/j6VLlwIADAYDYmJisGPHDtx6660yR0mmCkFHnA6HQ1DRBAC1Wo2ysjJ0d3ejr68PlZWVvCJZVVUFq9UqaExCgPM3SMjMzMTSpUuxcuVKbNmyRe6QiELFxMTghRdewIEDB3Dvvffiww8/BAA89thjeP/993H//ffLHCGZSmS/yXt8fDxyc3PlDoNEgM/nE/12dzExMWBZFrGxsSguLkZxcXFYcdCE69FHpVLhjjvuwB133ME9Li0tlTkqMhWJWjgZhkF+fr6g1xQVFYkZAlEoJRUqhmEUFQ8hZGoRvXDSDolMhKbwIoRMF3SzT0IIIUQAKpyEEEKIAFQ4CSGEEAGocBJCCCECyP5zFEIIiSaFhYXw+Xxyh8FhGIYu3hNI1CPOiooKwb/TMxqN2Ldvn5hhEEKIYvl8PkGFc3h4GI2NjdxsU2MGBwfR2NiIgYGBiMVy7ty5Sa9rOpH8iHN0dBR2ux0VFRUYHBzE3XffjRdffJG7e5DVakVVVRUsFovUoRBCiCIwDBP2JAM1NTXIzc2F2+1GbOx/dtl79+7FmjVr4Ha7ERMzuWOgcA50+vv7sW3bNrz44ov45z//CZVKhZUrV6KwsFD0G5pMFZKf43Q6nXC5XHC73dxUUXl5edzzY4WTEELIeF6vFwzD8IomAHg8HhiNxkkXzXD09PQgMzMT69evx5w5c7Bx40awLIsjR45g6dKlUXubS8kLZ3l5OWw2GxITE6HT6VBaWora2lr4/X4AQEpKCtRqNZqbm6UOhRBCphyv1zvhXKIej2fCdjH97Gc/w7Fjx1BdXY3GxkY88cQTAIDOzk5897vfRWFhIY4ePSppDEokqHA6nU5BkwUHAgF0dnbCaDRybUlJSdBqtWhtbeXarFYrXC6XkFAIISQqTFQ4Q6EQWlpaYDKZ0NXVhfT0dGRlZWHJkiXYv3+/KOs9efIk/vKXv+CRRx75/+zdcXAjZ30+8EengwtwWgliQztOZMdm2gRPsIwQHOHI3TEkKpHdTaIaWqYuJhRDOhkaJjHaM+3U3IF+a9fABIYQPIEIMElbpgZpYrDdgnRcUkaXszibmgCTSpXrkBwRF3l1hlxAt78/Di9Z54z1nndvrfPzmdEf++7q3e9qJT/e1epdRCIR07zLLrsMX/nKVyBJEj73uc9Zsr56IhSciqJgfn6+5uVXv8z2er2mdp/PB03TjOlIJILJyUmRUoiILnlPPvkknn76adPBB3Duop7Tp09jz549aGhowNGjR5HJZPDQQw9BURRL1p1Op1GtVk1frb3Q7t27ceutt27LizttvTjI4/EAAJaXl03t5XIZkiQZ08ViEX6/X6jv1bu4bxdWbq/Vr9122xfknK383hXp64U3Y/9DVq8L8fl8pvYHH3wQe/bswZVXXmlqL5fLQmcFAeDIkSN/sPaOjo4Xta1dfjOv41bap7U+19bvOH0+H/x+P3K5nNGWz+ehaZpp517IPTl1Xd82Dyu31+rXbrvtCz6ce2zl965IX7WGJgBcc8018Hq9UFUV5XIZp06dwn333Yd7770XqqoayxUKBezduxfhcBi33HKL0N/Sffv2nbfOxx57DADw+c9//rzbWq1W8drXvhZ79+7dEvtgM/3t27fP9DpstI9svziov78fw8PDKBQK0DQNsVgM4XAYLS0tAICVlRWk02l0dXXZXQoRUV2RJAkPP/wwjh8/jiuuuAJXX301JiYmMDU1ZfrjftVVV+GRRx5BNpvFHXfcYcm6g8EggsEgVFXFU0899aL5X/jCF/DEE0/g9ttvt2R99UToVG08HsfXv/51LCws1PwcRVHw7LPPIhQK4cyZM7jhhhswPj5uzJ+ZmUFnZ6fxu04iIvq9vXv34tFHH113/pkzZ7Br1y4A54J29+7dlqzX5XLhC1/4Ag4cOIA3vvGNuPPOO/GOd7wDAPCe97wHDz30ECKRCN71rndZsr56InTEOTg4KBSaAOB2uzE6OopSqYRKpYKJiQlTSF7IaVoiIjrnsccew/XXX48DBw7g5ptvtvS3laFQCEeOHMFrX/tafPSjH8Ub3vAGAOcGZbj77rvx7//+7y/6fel24PgWNzc3o6enx+kyiIgumhMnTlg66s6OHTug6zp27tyJw4cP4/DhwzXXEQgE/uAywWAQR44cweOPP46f/vSnuOWWW/Dkk09admRbjywNzkAggL6+PqHnDA0NWVkCEdGWtlFQXUyBQKDmeq655hpcc801xkU425nlwbmV3hRERFsN70RS/3g/TiIiIgEMTiIiIgEMTiIiIgEMTiIiIgGO/xyFiGg7ufPOO3HixAmnyzAEAgFesCSIR5xERBfRiRMntkxwbqVa6omlR5yJRAKJRAKZTKbm5wSDQcTjcYTDYStLISLasgKBQM1/J3/xi1/gNa95DXK5HDo7O432YrGIlpYW/PjHP8Y111xzQXVYOQiDiFwuh1QqBQC4//778e53v9u4m1Y9sP2Is1qtYmBgAI2NjfB4PIhGoyiVSsZ8WZaNF5CIiMwee+wxvOxlL8O1115raj927Bg8Hg/+9E//1KHKxJ08eRIHDhxAMBjEoUOHAAAf+MAH0NTUhPvuu8/h6mpne3CqqopkMolsNmvcW+6FN0ZlcBIRre/48eMIBAIvGhP22LFjCAaD2LGjPr5xW1lZwQ033IBsNotPf/rTOHXqFADgBz/4Afbs2YPbb78dX/7ylx2usja2v+JjY2OIxWJobW2F1+vFyMgIpqamUCwWAZy7Sarb7cbs7KzdpRAR1Z3jx48jFAq9qP3YsWPnbd+qvvrVr+JHP/oRvvGNb+AjH/mIcXPuPXv24Nvf/jbe9ra34WMf+xief/55hyvdmFBwqqoqdHfxcrmMxcVFBINBo62trQ2SJGFubs5ok2UZyWRSpBQiom3hfMF59uxZ5HI5hEIhnDx5Etdddx3279+PN7/5zfjud7/rUKV/2Je//GV0dnbipptuetG8nTt3QlEUPP300/jOd77jQHVihIJTURTMz8/XvHylUgEAeL1eU7vP54OmacZ0JBLB5OSkSClERJe8J598Ek8//bTp4AM4dzXs6dOnsWfPHjQ0NODo0aPIZDJ46KGHoCiKQ9X+YYuLiwiFQnC5XOedv/rPweLi4sUs64LY+jvO1auklpeXTe3lchmSJBnTxWIRfr9fqO/1XvxLlZXba/Vrt932BTlnK793Rfrat29fTcutXheyelpz1YMPPog9e/bgyiuvNLWXy2Whs4IAcOTIkYvyGd6xYwfGxsYwNjZmal+77g9/+MP48Ic/fMHr2cy21PpcW7/j9Pl88Pv9yOVyRls+n4emaaadeyE3s9Z1fds8rNxeq1+77bYv+HDusZXfuyJ91RqawLlbeXm9XqiqinK5jFOnTuG+++7DvffeC1VVjeUKhQL27t2LcDiMW265Rehv6b59+y7K/jt48CBcLhd+9rOfnfd1u+2223DZZZfhl7/85UXfp/v27TO9DhvtI9svDurv78fw8DAKhQI0TUMsFkM4HEZLSwuAc1dapdNpdHV12V0KEVFdkSQJDz/8MI4fP44rrrgCV199NSYmJjA1NWX6437VVVfhkUceQTabxR133OFgxev70Ic+BEmS0NXVZRp04de//jU+8YlP4Mtf/jI++MEP4lWvepWDVdZG6FRtPB7H17/+dSwsLNT8HEVR8OyzzyIUCuHMmTO44YYbMD4+bsyfmZlBZ2cnGhoaREohItoW9u7di0cffXTd+WfOnMGuXbsAnAva3bt3X6zShFxxxRWYnJxEV1cXOjs7je9tm5qa8Oyzz+Jd73oX/vmf/9nhKmsjdMQ5ODgoFJoA4Ha7MTo6ilKphEqlgomJCVNIXshpWiIiOuexxx7D9ddfjwMHDuDmm2/GPffc43RJ63rrW9+KJ554AqOjo3jFK14BAPizP/szZDIZ/Mu//Ate8pKXOFxhbRwf5L25uRk9PT1Ol0FEdNGcOHHC0uHuduzYAV3XsXPnThw+fBiHDx+uuY5AIGBZHbW4/PLLcdddd+Guu+66qOu1kqXBGQgE0NfXJ/ScoaEhK0sgItrSLnZQ/SGBQGBL1VMvLA9O7gQiovXxFl71rz4GOSQiItoiGJxEREQCGJxEREQCGJxEREQCHP85ChHRdnLnnXeaRs5xWiAQ4AVLgiw94kwkEsK/TQoGg5ienrayDCKiLevEiRNCwfn888/jyJEjxt2mVj333HM4cuQIVlZWLlotW9XZs2dfdDMRO9l+xFmtVqEoChKJBJ577jnceOON+OIXv2iMHiTLMlKpFMLhsN2lEBFtCYFAAJlMpqZlJycn0dPTg2w2i507f/8n+xvf+Abe//73I5vNYseOCzsGsnIQBif88pe/xGc+8xncf//9OHnyJADgpptuwkc+8hHccMMNtq3X9u84VVVFMplENps1bpHT29trzF8NTiIierHjx48jEAiYQhMAjh07hmAweMGhWe9+/vOfY8+ePYjH43jTm95kjHN74sQJ3HjjjfjsZz9r27ptf8XHxsYQi8XQ2toKr9eLkZERTE1NoVgsAgA6OjrgdrsxOztrdylERHXn+PHjxk2eX+jYsWPnbd8ubrvtNjz99NM4evQoUqkU7r77bgDnbrF266234u///u9tyxWh4FRVVegmqeVyGYuLi6a7l7e1tUGSJMzNzRltsiwjmUyKlEJEtC2cLzjPnj2LXC6HUCiEkydP4rrrrsP+/fvx5je/Gd/97ncdqvTi+elPf4rp6WkoioK3vvWtpnm7du3CAw88gFe84hX4/Oc/b8v6hYJTURTMz8/XvPzql9ler9fU7vP5oGmaMR2JRDA5OSlSChHRJe/JJ5/E008/bTr4AM6djjx9+jT27NmDhoYGHD16FJlMBg899BAURXGo2osnnU4DAN7znvecd74kSeju7sZ//ud/2rJ+Wy8O8ng8APCiq53K5TIkSTKmi8Ui/H6/UN8ul2vzBdYRK7fX6tduu+0Lcs5Wfu+K9PXCm1D/IavXhfh8PlP7gw8+iD179uDKK680tZfLZaGzggBw5MiRuv0Mt7a2vqht7baIbFuty9r6HafP54Pf70culzPa8vk8NE0z7dwLuSenruvb5mHl9lr92m23fcGHc4+t/N4V6avW0ASAa665Bl6vF6qqolwu49SpU7jvvvtw7733QlVVY7lCoYC9e/ciHA7jlltuEfpbum/fPsf3rejjkUceAQDcf//9590Pzz//PP74j/8YN910U8375IWvw0b7yPaLg/r7+zE8PIxCoQBN0xCLxRAOh9HS0gIAWFlZQTqdRldXl92lEBHVFUmS8PDDD+P48eO44oorcPXVV2NiYgJTU1OmP+5XXXUVHnnkEWSzWdxxxx0OVnxxXHfddbj22mtx+PBhPPXUUy+aH4/H8dRTT+H222+3Zf1Cp2rj8Ti+/vWvY2FhoebnKIqCZ599FqFQCGfOnMENN9yA8fFxY/7MzAw6OzuN33USEdHv7d27F48++ui688+cOYNdu3YBOBe0u3fvvlilOcblcuH+++/H29/+drzhDW/AHXfcYfwjEYlE8O1vfxu9vb2IRCK2rF/oiHNwcFAoNAHA7XZjdHQUpVIJlUoFExMTppC8kNO0RER0zmOPPYbrr78eBw4cwM0334x77rnH6ZIuije96U04evQorr32WvzDP/wD3va2twEAZmdn8clPfhIPPPCAbd/dOj5WbXNzM3p6epwug4joojlx4oSlo/bs2LEDuq5j586dOHz4MA4fPlxzHYFAwLI6LrbOzk7MzMwgn8/jiSeeQDgcxuLiIl760pfaul5LgzMQCKCvr0/oOUNDQ1aWQES0pW2loAoEAluqngvV2tqK1tZW4wIhu1kenJfCTiAisgvvRFL/tucgh0RERBeIwUlERCSAwUlERCSAwUlERCTA8Z+jEBFtJ3feeSdOnDjhdBmGQCDAC5YE8YiTiOgiOnHihFBwPv/88zhy5Ihxt6lVzz33HI4cOYKVlZWLVgudY+kRZyKRQCKRQCaTqfk5wWAQ8Xgc4XDYylKIiLasQCBQ89/JyclJ9PT0IJvNYufO3//J/sY3voH3v//9yGaz2LHjwo6BrByEYTux/YizWq1iYGAAjY2N8Hg8iEajKJVKxnxZlpFKpewug4ioLh0/fhyBQMAUmgBw7NgxBIPBCw5NunC2v+KqqiKZTCKbzRr3luvt7TXmMziJiNZ3/PhxhEKhF7UfO3bsvO1kP9uDc2xsDLFYDK2trfB6vRgZGcHU1BSKxSIAoKOjA263G7Ozs3aXQkRUd84XnGfPnkUul0MoFMLJkydx3XXXYf/+/Xjzm9+M7373uw5Vun0IBaeqqkJ3Fy+Xy1hcXEQwGDTa2traIEkS5ubmjDZZlpFMJkVKISK65D355JN4+umnTX9DgXMX9Zw+fRp79uxBQ0MDjh49ikwmg4ceegiKojhU7fYhFJyKomB+fr7m5VevAvN6vaZ2n88HTdOM6UgkgsnJSZFSiIgueatfb/l8PlP7gw8+iD179uDKK6+E2+2G2+0GcO5gReTghi6Mrb/j9Hg8AIDl5WVTe7lchiRJxnSxWITf7xfq2677rG1VVm6v1a/ddtsX5Jyt/N4V6Wv1pssbueaaa+D1eqGqKj7+8Y/j7Nmz+Ld/+zfce++9+M53vmMsVygU0Nvbi5/+9Kd44IEHhOo+cuQIP8O/U+vrYGtw+nw++P1+5HI5464p+XwemqaZ/itKpVKIRqNCfV+s28dsBS6Xy7LttbIvO/ojWs9Wfu+K9CXyExBJkvDwww8jFovhiiuuwMtf/nIEAgFMTU3h+uuvN5a76qqr8MgjjyCfz+Ptb387urq6al7Hvn37hH5CeCla3Serr8NG+8j2kYP6+/sxPDyMAwcO4PLLL0csFkM4HEZLSwsAYGVlBel0Wvi/JCKi7WDv3r149NFH151/5swZ7Nq1C8C5oN29e/fFKm3bEvqOMx6Po729XWgFiqKgu7sboVAITU1NqFarGB8fN+bPzMygs7MTDQ0NQv0SERHw2GOP4frrr8eBAwdw880345577nG6pEue0BHn4OAgBgcHhVbgdrsxOjqK0dHR885PpVKQZVmoTyIiOmfv3r34/ve/73QZ24rjg7w3Nzejp6fH6TKIiC6aEydObInh7k6cOGFcf0K1szQ4A4EA+vr6hJ4zNDRkZQlERFvaVgqqQCCwpeqpF5YHJ3cCEdH6eAuv+sfRgYmIiAQwOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJREL4t0nBYBDT09NWlkFERGQb2484q9UqBgYG0NjYCI/Hg2g0ilKpZMyXZRmpVMruMoiIiCxhe3CqqopkMolsNmvcW663t9eYz+AkIqJ6Yntwjo2NIRaLobW1FV6vFyMjI5iamkKxWAQAdHR0wO12Y3Z21u5SiIiINk0oOFVVFbq7eLlcxuLiIoLBoNHW1tYGSZIwNzdntMmyjGQyKVIKERGRI4SCU1EUzM/P17x8pVIBAHi9XlO7z+eDpmnGdCQSweTkpEgpREREjrD17igejwcAsLy8bGovl8uQJMmYLhaL8Pv9Qn27XK7NF1hHrNxeq1+77bYvyDlb+b3Lz0H9q3Uf2hqcPp8Pfr8fuVzOGPw9n89D0zTTKd9UKoVoNCrUt67rlta6lblcLsu218q+7OiPaD1b+b3Lz0F9W/0ZZSaTMU2vx/aLg/r7+zE8PIxCoQBN0xCLxRAOh9HS0gIAWFlZQTqdRldXl92lEBERbZpQcMbjcbS3twutQFEUdHd3IxQKoampCdVqFePj48b8mZkZdHZ2oqGhQahfIiIiJwgF5+DgIBYWFoRW4Ha7MTo6ilKphEqlgomJCVNIplIpyLIs1CcREZFTHB+rtrm5GT09PU6XQUREVBNLLw4KBALo6+sTes7Q0JCVJRAREdnK8uBcvXqWiIjoUuT4qVoiIqJ6wuAkIiISwOAkIiISwOAkIiISwOAkIiISwOAkIiISYGlwJhKJDQfHXSsYDGJ6etrKMoiIiGxj+xFntVrFwMAAGhsb4fF4EI1GUSqVjPmyLCOVStldBhERkSVsD05VVZFMJpHNZrG0tAQA6O3tNeYzOImIqJ7YHpxjY2OIxWJobW2F1+vFyMgIpqamUCwWAQAdHR1wu92YnZ21uxQiIqJNEwpOVVVNN6DeSLlcxuLiIoLBoNHW1tYGSZIwNzdntMmyjGQyKVIKERGRI4SCU1EUzM/P17x8pVIBAHi9XlO7z+eDpmnGdCQSweTkpEgpREREjrB0kPe1PB4PAGB5ednUXi6XIUmSMV0sFuH3+4X6drlcmy+wjli5vVa/dtttX5BztvJ7l5+D+lfrPrQ1OH0+H/x+P3K5nHHXlHw+D03TTKd8U6kUotGoUN+6rlta61bmcrks214r+7KjP6L1bOX3Lj8H9W31Z5SZTMY0vR7bLw7q7+/H8PAwCoUCNE1DLBZDOBxGS0sLAGBlZQXpdBpdXV12l0JERLRpQsEZj8fR3t4utAJFUdDd3Y1QKISmpiZUq1WMj48b82dmZtDZ2YmGhgahfomIiJwgFJyDg4NYWFgQWoHb7cbo6ChKpRIqlQomJiZMIZlKpSDLslCfRERETnF8rNrm5mb09PQ4XQYREVFNLL04KBAIoK+vT+g5Q0NDVpZARERkK8uDc/XqWSIiokuR46dqiYiI6gmDk4iISACDk4iISACDk4iISACDk4iISIClwZlIJDYc42+tYDCI6elpK8sgIiKyje1HnNVqFQMDA2hsbITH40E0GkWpVDLmy7KMVCpldxlERESWsD04VVVFMplENpvF0tISAKC3t9eYz+AkIqJ6Yntwjo2NIRaLobW1FV6vFyMjI5iamkKxWAQAdHR0wO12Y3Z21u5SiIiINk0oOFVVNd1HcyPlchmLi4sIBoNGW1tbGyRJwtzcnNEmyzKSyaRIKURERI4QCk5FUTA/P1/z8pVKBQDg9XpN7T6fD5qmGdORSASTk5MipRARETnC0rFq1/J4PACA5eVlU3u5XIYkScZ0sViE3+8X6tvlcm2+wDpi5fZa/dptt31BztnK711+DupfrfvQ1uD0+Xzw+/3I5XLG4O/5fB6applO+aZSKUSjUaG+dV23tNatzOVyWba9VvZlR39E69nK711+Durb6s8oM5mMaXo9tl8c1N/fj+HhYRQKBWiahlgshnA4jJaWFgDAysoK0uk0urq67C6FiIho04SCMx6Po729XWgFiqKgu7sboVAITU1NqFarGB8fN+bPzMygs7MTDQ0NQv0SERE5QSg4BwcHsbCwILQCt9uN0dFRlEolVCoVTExMmEIylUpBlmWhPomIiJzi+Fi1zc3N6OnpcboMIiKimlh6cVAgEEBfX5/Qc4aGhqwsgYiIyFaWB+fq1bNERESXIsdP1RIREdUTBicREZEABicREZEABicREZEABicREZEABicREZEAS4MzkUhsxEn1cgAAIABJREFUODjuWsFgENPT01aWQUREZBvbjzir1SoGBgbQ2NgIj8eDaDSKUqlkzJdlGalUyu4yiIiILGF7cKqqimQyiWw2i6WlJQBAb2+vMZ/BSURE9cT24BwbG0MsFkNrayu8Xi9GRkYwNTWFYrEIAOjo6IDb7cbs7KzdpRAREW2aUHCqqmq6AfVGyuUyFhcXEQwGjba2tjZIkoS5uTmjTZZlJJNJkVKIiIgcIRSciqJgfn6+5uUrlQoAwOv1mtp9Ph80TTOmI5EIJicnRUohIiJyhKWDvK/l8XgAAMvLy6b2crkMSZKM6WKxCL/fL9S3y+XafIF1xMrttfq12277gpyzld+7/BzUv1r3oa3B6fP54Pf7kcvljLum5PN5aJpmOuWbSqUQjUaF+tZ13dJatzKXy2XZ9lrZlx39Ea1nK793+Tmob6s/o8xkMqbp9dh+cVB/fz+Gh4dRKBSgaRpisRjC4TBaWloAACsrK0in0+jq6rK7FCIiok0TCs54PI729nahFSiKgu7uboRCITQ1NaFarWJ8fNyYPzMzg87OTjQ0NAj1S0RE5ASh4BwcHMTCwoLQCtxuN0ZHR1EqlVCpVDAxMWEKyVQqBVmWhfokIiJyiuNj1TY3N6Onp8fpMoiIiGpi6cVBgUAAfX19Qs8ZGhqysgQiIiJbWR6cq1fPEhERXYocP1VLRERUTxicREREAhicREREAhicREREAhicREREAiwNzkQiseEYf2sFg0FMT09bWQYREZFtbD/irFarGBgYQGNjIzweD6LRKEqlkjFflmWkUim7yyAiIrKE7cGpqiqSySSy2SyWlpYAAL29vcZ8BicREdUT24NzbGwMsVgMra2t8Hq9GBkZwdTUFIrFIgCgo6MDbrcbs7OzdpdCRES0aULBqaqq6T6aGymXy1hcXEQwGDTa2traIEkS5ubmjDZZlpFMJkVKISIicoRQcCqKgvn5+ZqXr1QqAACv12tq9/l80DTNmI5EIpicnBQphYiIyBGWjlW7lsfjAQAsLy+b2svlMiRJMqaLxSL8fr9Q3y6Xa/MF1hErt9fq12677QtyzlZ+7/JzUP9q3Ye2BqfP54Pf70culzMGf8/n89A0zXTKN5VKIRqNCvWt67qltW5lLpfLsu21si87+iNaz1Z+7/JzUN9Wf0aZyWRM0+ux/eKg/v5+DA8Po1AoQNM0xGIxhMNhtLS0AABWVlaQTqfR1dVldylERESbJhSc8Xgc7e3tQitQFAXd3d0IhUJoampCtVrF+Pi4MX9mZgadnZ1oaGgQ6peIiMgJQsE5ODiIhYUFoRW43W6Mjo6iVCqhUqlgYmLCFJKpVAqyLAv1SURE5BTHx6ptbm5GT0+P02UQERHVxNKLgwKBAPr6+oSeMzQ0ZGUJREREtrI8OFevniUiIroUOX6qloiIqJ4wOImIiAQwOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJRGLDwXHXCgaDmJ6etrIMIiIi29h+xFmtVjEwMIDGxkZ4PB5Eo1GUSiVjvizLSKVSdpdBRERkCduDU1VVJJNJZLNZLC0tAQB6e3uN+QxOIiKqJ7YH59jYGGKxGFpbW+H1ejEyMoKpqSkUi0UAQEdHB9xuN2ZnZ+0uhYiIaNOEglNVVdMNqDdSLpexuLiIYDBotLW1tUGSJMzNzRltsiwjmUyKlEJEROQIobFqFUWBoig1L1+pVAAAXq/X1O7z+aBpmjEdiURw8OBBHDp0qOa+XS5XzcteCqzcXqtfu+22L8g5W/m9y89B/at1H1o6yPtaHo8HALC8vGxqL5fLkCTJmC4Wi/D7/UJ967q++QLrhMvlsmx7rezLjv6I1rOV37v8HNS31V+DZDIZ0/R6bP2O0+fzwe/3I5fLGW35fB6applO+fJm1kREVC9svziov78fw8PDKBQK0DQNsVgM4XAYLS0tAICVlRWk02l0dXXZXQoREdGmCQVnPB5He3u70AoURUF3dzdCoRCamppQrVYxPj5uzJ+ZmUFnZycaGhqE+iUiInKCUHAODg5iYWFBaAVutxujo6MolUqoVCqYmJgwhSRP0xIRUT1xfKza5uZm9PT0OF0GERFRTSy9qjYQCKCvr0/oOUNDQ1aWQEREZCvLgzMQCFjZJRER0Zbi+KlaIiKiesLgJCIiEsDgJCIiEsDgJCIiEsDgJCIiEmBpcCYSiQ0Hx10rGAxienrayjKIiIhsY/sRZ7VaxcDAABobG+HxeBCNRlEqlYz5siwjlUrZXQYREZElbA9OVVWRTCaRzWaxtLQEAOjt7TXmMziJiKie2B6cY2NjiMViaG1thdfrxcjICKamplAsFgEAHR0dcLvdmJ2dtbsUIiKiTRMKTlVVTffR3Ei5XMbi4iKCwaDR1tbWBkmSMDc3Z7TJsoxkMilSChERkSOEglNRFMzPz9e8fKVSAQB4vV5Tu8/ng6ZpxnQkEsHk5KRIKURERI6wdKzatTweDwBgeXnZ1F4ulyFJkjFdLBbh9/uF+na5XJsvsI5Yub1Wv3bbbV+Qc7bye5efg/pX6z60NTh9Ph/8fj9yuZwx+Hs+n4emaaZTvqlUCtFoVKhvXdctrXUrc7lclm2vlX3Z0R/Rerbye5efg/q2+jPKTCZjml6P7RcH9ff3Y3h4GIVCAZqmIRaLIRwOo6WlBQCwsrKCdDqNrq4uu0shIiLaNKHgjMfjaG9vF1qBoijo7u5GKBRCU1MTqtUqxsfHjfkzMzPo7OxEQ0ODUL9EREROEArOwcFBLCwsCK3A7XZjdHQUpVIJlUoFExMTppBMpVKQZVmoTyIiIqc4PlZtc3Mzenp6nC6DiIioJpZeHBQIBNDX1yf0nKGhIStLICIispXlwbl69SwREdGlyPFTtURERPWEwUlERCSAwUlERCSAwUlERCSAwUlERCSAwUlERCTA0uBMJBIbDo67VjAYxPT0tJVlEBER2cb2I85qtYqBgQE0NjbC4/EgGo2iVCoZ82VZRiqVsrsMIiIiS9genKqqIplMIpvNYmlpCQDQ29trzGdwEhFRPbE9OMfGxhCLxdDa2gqv14uRkRFMTU2hWCwCADo6OuB2uzE7O2t3KURERJsmFJyqqppuQL2RcrmMxcVFBINBo62trQ2SJGFubs5ok2UZyWRSpBQiIiJHCI1VqygKFEWpeflKpQIA8Hq9pnafzwdN04zpSCSCgwcP4tChQzX37XK5al72UmDl9lr92m23fUHO2crvXX4O6l+t+9DSQd7X8ng8AIDl5WVTe7lchiRJxnSxWITf7xfqW9f1zRdYJ1wul2Xba2VfdvRHtJ6t/N7l56C+rf4aJJPJmKbXY+t3nD6fD36/H7lczmjL5/PQNM10ypc3syYionph+8VB/f39GB4eRqFQgKZpiMViCIfDaGlpAQCsrKwgnU6jq6vL7lKIiIg2TSg44/E42tvbhVagKAq6u7sRCoXQ1NSEarWK8fFxY/7MzAw6OzvR0NAg1C8REZEThIJzcHAQCwsLQitwu90YHR1FqVRCpVLBxMSEKSR5mpaIiOqJ42PVNjc3o6enx+kyiIiIamLpVbWBQAB9fX1CzxkaGrKyBCIiIltZHpyBQMDKLomIiLYUx0/VEhER1RMGJxERkQAGJxERkQAGJxERkQAGJxERkQBLgzORSGw4OO5awWAQ09PTVpZBRERkG9uPOKvVKgYGBtDY2AiPx4NoNIpSqWTMl2UZqVTK7jKIiIgsYXtwqqqKZDKJbDaLpaUlAEBvb68xn8FJRET1xPbgHBsbQywWQ2trK7xeL0ZGRjA1NYVisQgA6OjogNvtxuzsrN2lEBERbZpQcKqqarqP5kbK5TIWFxcRDAaNtra2NkiShLm5OaNNlmUkk0mRUoiIiBwhFJyKomB+fr7m5SuVCgDA6/Wa2n0+HzRNM6YjkQgmJydFSiEiInKEpWPVruXxeAAAy8vLpvZyuQxJkozpYrEIv98v1LfL5dp8gXXEyu21+rXbbvuCnLOV37v8HNS/WvehrcHp8/ng9/uRy+WMwd/z+Tw0TTOd8k2lUohGo0J967puaa1bmcvlsmx7rezLjv6I1rOV37v8HNS31Z9RZjIZ0/R6bL84qL+/H8PDwygUCtA0DbFYDOFwGC0tLQCAlZUVpNNpdHV12V0KERHRpgkFZzweR3t7u9AKFEVBd3c3QqEQmpqaUK1WMT4+bsyfmZlBZ2cnGhoahPolIiJyglBwDg4OYmFhQWgFbrcbo6OjKJVKqFQqmJiYMIVkKpWCLMtCfRIRETnF8bFqm5ub0dPT43QZRERENbH04qBAIIC+vj6h5wwNDVlZAhERka0sD87Vq2eJiIguRY6fqiUiIqonDE4iIiIBDE4iIiIBDE4iIiIBDE4iIiIBDE4iIiIBlgZnIpHYcHDctYLBIKanp60sg4iIyDa2H3FWq1UMDAygsbERHo8H0WgUpVLJmC/LMlKplN1lEBERWcL24FRVFclkEtlsFktLSwCA3t5eYz6Dk4iI6ontwTk2NoZYLIbW1lZ4vV6MjIxgamoKxWIRANDR0QG3243Z2Vm7SyEiIto0oeBUVdV0A+qNlMtlLC4uIhgMGm1tbW2QJAlzc3NGmyzLSCaTIqUQERE5QmisWkVRoChKzctXKhUAgNfrNbX7fD5ommZMRyIRHDx4EIcOHaq5b5fLVfOylwIrt9fq12677QtyzlZ+7/JzUP9q3YeWDvK+lsfjAQAsLy+b2svlMiRJMqaLxSL8fr9Q37qub77AOuFyuSzbXiv7sqM/ovVs5fcuPwf1bfXXIJlMxjS9Hlu/4/T5fPD7/cjlckZbPp+HpmmmU768mTUREdUL2y8O6u/vx/DwMAqFAjRNQywWQzgcRktLCwBgZWUF6XQaXV1ddpdCRES0aULBGY/H0d7eLrQCRVHQ3d2NUCiEpqYmVKtVjI+PG/NnZmbQ2dmJhoYGoX6JiIicIBScg4ODWFhYEFqB2+3G6OgoSqUSKpUKJiYmTCHJ07RERFRPHB+rtrm5GT09PU6XQUREVBNLr6oNBALo6+sTes7Q0JCVJRAREdnK8uAMBAJWdklERLSlOH6qloiIqJ4wOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJRGLDwXHXCgaDmJ6etrIMIiIi29h+xFmtVjEwMIDGxkZ4PB5Eo1GUSiVjvizLSKVSdpdBRERkCduDU1VVJJNJZLNZLC0tAQB6e3uN+QxOIiKqJ7YH59jYGGKxGFpbW+H1ejEyMoKpqSkUi0UAQEdHB9xuN2ZnZ+0uhYiIaNOEglNVVdN9NDdSLpexuLiIYDBotLW1tUGSJMzNzRltsiwjmUyKlEJEROQIoeBUFAXz8/M1L1+pVAAAXq/X1O7z+aBpmjEdiUQwOTkpUgoREZEjLB2rdi2PxwMAWF5eNrWXy2VIkmRMF4tF+P1+ob5dLtfmC6wjVm6v1a/ddtsX5Jyt/N7l56D+1boPbQ1On88Hv9+PXC5nDP6ez+ehaZrplG8qlUI0GhXqW9d1S2vdylwul2Xba2VfdvRHtJ6t/N7l56C+rf6MMpPJmKbXY/vFQf39/RgeHkahUICmaYjFYgiHw2hpaQEArKysIJ1Oo6ury+5SiIiINk0oOOPxONrb24VWoCgKuru7EQqF0NTUhGq1ivHxcWP+zMwMOjs70dDQINQvERGRE4SCc3BwEAsLC0IrcLvdGB0dRalUQqVSwcTEhCkkU6kUZFkW6pOIiMgpjo9V29zcjJ6eHqfLICIiqomlFwcFAgH09fUJPWdoaMjKEoiIiGxleXCuXj1LRER0KXL8VC0REVE9YXASEREJYHASEREJYHASEREJYHASEREJYHASEREJsDQ4E4nEhoPjrhUMBjE9PW1lGURERLax/YizWq1iYGAAjY2N8Hg8iEajKJVKxnxZlpFKpewug4iIyBK2B6eqqkgmk8hms1haWgIA9Pb2GvMZnEREVE9sD86xsTHEYjG0trbC6/ViZGQEU1NTKBaLAICOjg643W7Mzs7aXQoREdGmCQWnqqqmG1BvpFwuY3FxEcFg0Ghra2uDJEmYm5sz2mRZRjKZFCmFiIjIEUJj1SqKAkVRal6+UqkAALxer6nd5/NB0zRjOhKJ4ODBgzh06FDNfbtcrpqXvRRYub1Wv3bbbV+Qc7bye5efg/pX6z60dJD3tTweDwBgeXnZ1F4ulyFJkjFdLBbh9/uF+tZ1ffMF1gmXy2XZ9lrZlx39Ea1nK793+Tmob6u/BslkMqbp9dj6HafP54Pf70culzPa8vk8NE0znfLlzayJiKhe2H5xUH9/P4aHh1EoFKBpGmKxGMLhMFpaWgAAKysrSKfT6OrqsrsUIiKiTRMKzng8jvb2dqEVKIqC7u5uhEIhNDU1oVqtYnx83Jg/MzODzs5ONDQ0CPVLRETkBKHgHBwcxMLCgtAK3G43RkdHUSqVUKlUMDExYQpJnqYlIqJ64vhYtc3Nzejp6XG6DCIioppYelVtIBBAX1+f0HOGhoasLIGIiMhWlgdnIBCwsksiIqItxfFTtURERPWEwUlERCSAwUlERCSAwUlERCSAwUlERCTA0uBMJBIbDo67VjAYxPT0tJVlEBER2cb2I85qtYqBgQE0NjbC4/EgGo2iVCoZ82VZRiqVsrsMIiIiS9genKqqIplMIpvNYmlpCQDQ29trzGdwEhFRPbE9OMfGxhCLxdDa2gqv14uRkRFMTU2hWCwCADo6OuB2uzE7O2t3KURERJsmFJyqqpruo7mRcrmMxcVFBINBo62trQ2SJGFubs5ok2UZyWRSpBQiIiJHCAWnoiiYn5+veflKpQIA8Hq9pnafzwdN04zpSCSCyclJkVKIiIgcYelYtWt5PB4AwPLysqm9XC5DkiRjulgswu/3C/Xtcrk2X2AdsXJ7rX7tttu+IOds5fcuPwf1r9Z9aGtw+nw++P1+5HI5Y/D3fD4PTdNMp3xTqRSi0ahQ37quW1rrVuZyuSzbXiv7sqM/ovVs5fcuPwf1bfVnlJlMxjS9HtsvDurv78fw8DAKhQI0TUMsFkM4HEZLSwsAYGVlBel0Gl1dXXaXQkREtGlCwRmPx9He3i60AkVR0N3djVAohKamJlSrVYyPjxvzZ2Zm0NnZiYaGBqF+iYiInCAUnIODg1hYWBBagdvtxujoKEqlEiqVCiYmJkwhmUqlIMuyUJ9EREROcXys2ubmZvT09DhdBhERUU0svTgoEAigr69P6DlDQ0NWlkBERGQry4Nz9epZIiKiS5Hjp2qJiIjqCYOTiIhIAIOTiIhIAIOTiIhIAIOTiIhIAIOTiIhIgKXBmUgkNhwcd61gMIjp6Wkry6h7v/rVr/ClL30Je/fuRUtLC3bs2AFVVVEqlZwuDadPn8Z9992Ht7zlLUZtn/rUp3Dq1CmnS6NL0C9+8QvE43Hjhvdve9vb8MADD+DXv/6106XhqaeewqFDh3DttdfC7XZj//79+NrXvoYzZ844XRrZzPYjzmq1ioGBATQ2NsLj8SAajZoCQJZlpFIpu8uoGydPnsRb3vIW/O3f/i2Wl5dx/fXX4+zZszh48CDa29tx4sQJx2pbWlrCG9/4Rtx+++349a9/bdR299134/Wvfz1+/OMfO1YbXXqOHz+O9vZ2fOxjH4PP50O1WsWpU6dw22234a1vfSueeeYZx2r7r//6L7zuda/DP/3TP6GxsRHVahVPPfUU/uZv/gb79u3Ds88+61htZD/bg1NVVSSTSWSzWSwtLQEAent7jfkMzt/TdR09PT144oknkEqlMD8/j69+9asAgB/+8IfYtWsX3vnOd+L06dPCfZ85cwbf/va3AZy7H+qF1HbzzTfj5z//Oaanp/HDH/7QqC2bzaJareKd73wn/9smSywvL+Omm27C7t27MT8/jyNHjgAA/vu//xvf/OY38fjjj+Mv//IvL6jvUqmEb37zmwCA3/72t8LPf+aZZxCJRNDY2IjHH38c3/ve9wAAP/nJT/DQQw8hl8vhve997wXVRnVCt9ADDzyg79u3z9Tm9/v1+++/35h+4okndAD6//7v/xptzc3N+vHjx60spS5ls1kdgP7Zz37W1L66m77//e/rAPQvfvGLQv2ePn1af+Mb36gD0AHofr9fX1paEurje9/7ng7AtC9fWNt3vvMdHYA+Pj4u1C/R+Xzuc5/TAeg/+MEPjLYX/rkaHR3VAei5XE6o35/97Gf6q1/9auOzsH//fv3MmTNCfaiqqgPQ5+fnz1vboUOHdAD6T37yE6F+yTn79u0zZdfaHFtL6IhTVVXTDag3Ui6Xsbi4iGAwaLS1tbVBkiTMzc0ZbbIsI5lMipRySfrmN7+Jl7zkJeuO97t3715cffXVxn/Ltbr33ntx/PhxY/r//u//hMcI/ta3voWXv/zleM973nPe+TfeeCP8fj8mJiaE+iU6n29961u49tprsWfPnvPOf//7348dO3YIfxYGBwdNXxVlMhl85StfEa5tz549uPbaa887/wMf+ICxHF2irEzttUeci4uLOgA9n8+blvP7/frXvvY1Y3p6elp/wxveILQu/O4/Rj744OPSe7hcLsdrWO+xY8cOx2vgw/7HH2Lrd5wejwfAue8rXqhcLkOSJGO6WCzC7/cL9a3r+iX3+MxnPgMA+NGPfmRqX93eSqUCSZLQ19cn1O/qd5svdM899wj18clPfhIA8MQTT5y3tlOnTuFlL3sZ/u7v/s7x15GP+n/81V/9FV75ylfiV7/6ldH2ws/97OwsAODzn/+8UL8vPNPicrngcrnwyCOPCPXR3d2NP/qjP8Lzzz9/3tqOHj0K4NyvDJx+Hfmo7bFv3z7s27fPNL1RAFlmve84v/SlLxnT//M//6MD0AuFgtHW1dWlP/DAA1aWUpeeeeYZfdeuXfqtt96qV6tVo311N3384x/XAeiPPvqocN9f/OIX9SuvvFJ/zWteo3/sYx8z9V+LJ598Une73fpf//Vf62fPnn1RbR/96Ed1APoPf/hD4dqI1kqn0zoA/f/9v/9ntK2+16rVqt7d3a2//OUv15999lmhfn/zm9/oH/nIR/RXv/rVenNzs/7ggw8K1/bwww/rAPR77rnnRbX95je/0d/xjnfoXq9XP336tHDf5AzR7zhtD85PfOIT+p/8yZ/o+XxeX15e1v/iL/5CD4fDxvzTp0/rr3jFK/RnnnnGylLq1uqFB+985zv1I0eO6JVKRQegf+ADH9AB6O9+97tNwXUx/eM//qMOQJdlWX/00UeN2t773vfqAPTbbrvNkbro0nP27Fn91ltv1QHoH/rQh/Qf/ehHOgA9nU7rN954ow5A/9SnPuVIbb/97W/1m266SXe5XPqHP/xh/fHHH9cB6P/xH/+h79+/Xweg33fffY7URhfG1uD85Cc/qb/uda9bd/75gvO3v/2tftddd+mXX365vnv3bv2WW24xheTExIS+d+9ekTIuaWfPntU//elP616v13S+/aUvfal+xx136M8//7yjtcXjcd3j8Zhqu+yyy/S77rpL/81vfuNYbXTpee655/QPfehD+kte8hLT++2Vr3zli648v9h+9atf6e973/v0nTt3mmq7/PLL9bGxMUdrI3GiwenS9d+doLdAIpFAIpFAJpOp+Tnve9/70N7ejrvvvtuqMi4JKysrSCaTWFpaQiwWwy9+8Qs0NjY6XRYAoFKp4Fvf+haeeuopxGIx/PKXv8SrXvUqp8uiS9TJkyeRTCbxwQ9+EA8++CBuvvlmvOxlL3O6LADAz3/+c6RSKdx+++3413/9V/z5n/85LrvsMqfLIkGrI96tZtf+/fv/YI45HpxDQ0N43/veh+bmZqvKICIiqplocO60cuWBQGDd3yCuR/T3hERERE6yPDgDgYCVXRIREW0pvK0YERGRAAYnERGRAAYnERGRAAYnERGRAAYnERGRAEuDM5FIGL+HqVUwGMT09LSVZRAREdnG9iPOarWKgYEBNDY2wuPxIBqNmu6HJ8syUqmU3WUQERFZwvbgVFUVyWQS2WwWS0tLAIDe3l5jPoOTiIjqie3BOTY2hlgshtbWVni9XoyMjGBqagrFYhEA0NHRAbfbbdxfj4iIaCsTCk5VVfH617++5uXL5TIWFxcRDAaNtra2NkiShLm5OaNNlmUkk0mRUoiIiBwhFJyKomB+fr7m5SuVCgDA6/Wa2n0+HzRNM6YjkQgmJydFSiEiInKEpWPVruXxeAAAy8vLpvZyuQxJkozpYrEIv98v1LfL5dp8gURERL9Ta67YGpw+nw9+vx+5XM4Y/D2fz0PTNNMp31QqhWg0KtS3hXdDIyKibex8txX7Q2y/OKi/vx/Dw8MoFArQNA2xWAzhcBgtLS0Azt2wOZ1Oo6ury+5SiIiINk0oOOPxONrb24VWoCgKuru7EQqF0NTUhGq1ivHxcWP+zMwMOjs70dDQINQvERGRE4SCc3BwEAsLC0IrcLvdGB0dRalUQqVSwcTEhCkkU6kUZFkW6pOIiMgpjo9V29zcjJ6eHqfLICIiqomlFwcFAgH09fUJPWdoaMjKEoiIiGxleXCuXj1LRER0KXL8VC0REVE9YXASEREJYHASEREJYHASEREJYHASEREJYHASEREJsDQ4E4nEhoPjrhUMBjE9PW1lGURERLax/YizWq1iYGAAjY2N8Hg8iEajKJVKxnxZlpFKpewug4iIyBK2B6eqqkgmk8hms1haWgIA9Pb2GvMZnEREVE9sD86xsTHEYjG0trbC6/ViZGQEU1NTKBaLAICOjg643W7Mzs7aXQoREdGmCQWnqqqmG1BvpFwuY3FxEcFg0Ghra2uDJEmYm5sz2mRZRjKZFCmFiIjIEUJj1SqKAkVRal6+UqkAALxer6nd5/NB0zRjOhKJ4ODBgzh06FDNfbtcrpqXJSIi2kituWLpIO9reTweAMDy8rKpvVwuQ5KFJeiSAAAgAElEQVQkY7pYLMLv9wv1rev65gskIqJtb/XXIJlMxjS9Hlu/4/T5fPD7/cjlckZbPp+HpmmmU768mTUREdUL2y8O6u/vx/DwMAqFAjRNQywWQzgcRktLCwBgZWUF6XQaXV1ddpdCRES0aULBGY/H0d7eLrQCRVHQ3d2NUCiEpqYmVKtVjI+PG/NnZmbQ2dmJhoYGoX6JiIicIBScg4ODWFhYEFqB2+3G6OgoSqUSKpUKJiYmTCHJ07RERFRPHB+rtrm5GT09PU6XQUREVBNLr6oNBALo6+sTes7Q0JCVJRAREdnK8uAMBAJWdklERLSlOH6qloiIqJ4wOImIiAQwOImIiAQwOImIiAQwOImIiARYGpyJRGLDwXHXCgaDmJ6etrIMIiIi29h+xFmtVjEwMIDGxkZ4PB5Eo1GUSiVjvizLSKVSdpdBRERkCduDU1VVJJNJZLNZLC0tAQB6e3uN+QxOIiKqJ7YH59jYGGKxGFpbW+H1ejEyMoKpqSkUi0UAQEdHB9xuN2ZnZ+0uhYiIaNOEglNVVdN9NDdSLpexuLiIYDBotLW1tUGSJMzNzRltsiwjmUyKlEJEROQIoeBUFAXz8/M1L1+pVAAAXq/X1O7z+aBpmjEdiUQwOTkpUgoREZEjLB2rdi2PxwMAWF5eNrWXy2VIkmRMF4tF+P1+ob5dLtfmCyQiIvqdWnPF1uD0+Xzw+/3I5XLG4O/5fB6applO+aZSKUSjUaG+dV23tFYiItqeVn9GmclkTNPrsf3ioP7+fgwPD6NQKEDTNMRiMYTDYbS0tAAAVlZWkE6n0dXVZXcpREREmyYUnPF4HO3t7UIrUBQF3d3dCIVCaGpqQrVaxfj4uDF/ZmYGnZ2daGhoEOqXiIjICULBOTg4iIWFBaEVuN1ujI6OolQqoVKpYGJiwhSSqVQKsiwL9UlEROQUx8eqbW5uRk9Pj9NlEBER1cTSi4MCgQD6+vqEnjM0NGRlCURERLayPDhXr54lIiK6FDl+qpaIiKieMDiJiIgEMDiJiIgEMDiJiIgEMDiJiIgEMDiJiIgEWBqciURiw8Fx1woGg5ienrayDCIiItvYfsRZrVYxMDCAxsZGeDweRKNRlEolY74sy0ilUnaXQUREZAnbg1NVVSSTSWSzWSwtLQEAent7jfkMTiIiqie2B+fY2BhisRhaW1vh9XoxMjKCqakpFItFAEBHRwfcbjdmZ2ftLoWIiGjThIJTVVXTDag3Ui6Xsbi4iGAwaLS1tbVBkiTMzc0ZbbIsI5lMipRCRETkCKGxahVFgaIoNS9fqVQAAF6v19Tu8/mgaZoxHYlEcPDgQRw6dKjmvl0uV83LEhERbaTWXLF0kPe1PB4PAGB5ednUXi6XIUmSMV0sFuH3+4X61nV98wUSEdG2t/prkEwmY5pej63fcfp8Pvj9fuRyOaMtn89D0zTTKV/ezJqIiOqF7RcH9ff3Y3h4GIVCAZqmIRaLIRwOo6WlBQCwsrKCdDqNrq4uu0shIiLaNKHgjMfjaG9vF1qBoijo7u5GKBRCU1MTqtUqxsfHjfkzMzPo7OxEQ0ODUL9EREROEArOwcFBLCwsCK3A7XZjdHQUpVIJlUoFExMTppDkaVoiIqonjo9V29zcjJ6eHqfLICIiqomlV9UGAgH09fUJPWdoaMjKEoiIiGxleXAGAgEruyQiItpSHD9VS0REVE8YnERERAIYnERERAIYnERERAIYnERERAIsDc5EIrHh4LhrBYNBTE9PW1kGERGRbWw/4qxWqxgYGEBjYyM8Hg+i0ShKpZIxX5ZlpFIpu8sgIiKyhO3BqaoqkskkstkslpaWAAC9vb3GfAYnERHVE9uDc2xsDLFYDK2trfB6vRgZGcHU1BSKxSIAoKOjA263G7Ozs3aXQkREtGlCwamqquk+mhspl8tYXFxEMBg02tra2iBJEubm5ow2WZaRTCZFSiEiInKEUHAqioL5+fmal69UKgAAr9dravf5fNA0zZiORCKYnJwUKYWIiMgRlo5Vu5bH4wEALC8vm9rL5TIkSTKmi8Ui/H6/UN8ul2vzBRIREf1Orblia3D6fD74/X7kcjlj8Pd8Pg9N00ynfFOpFKLRqFDfuq5bWisREW1Pqz+jzGQypun12H5xUH9/P4aHh1EoFKBpGmKxGMLhMFpaWgAAKysrSKfT6OrqsrsUIiKiTRMKzng8jvb2dqEVKIqC7u5uhEIhNDU1oVqtYnx83Jg/MzODzs5ONDQ0CPVLRETkBKHgHBwcxMLCgtAK3G43RkdHUSqVUKlUMDExYQrJVCoFWZaF+iQiInKK42PVNjc3o6enx+kyiIiIamLpxUGBQAB9fX1CzxkaGrKyBCIiIltZHpyrV88SERFdihw/VUtERFRPGJxEREQCGJxEREQCGJxEREQCGJxEREQCGJxEREQCLA3ORCKx4eC4awWDQUxPT1tZBhERkW1sP+KsVqsYGBhAY2MjPB4PotEoSqWSMV+WZaRSKbvLICIisoTtwamqKpLJJLLZLJaWlgAAvb29xnwGJxER1RPbg3NsbAyxWAytra3wer0YGRnB1NQUisUiAKCjowNutxuzs7N2l0JERLRpQsGpqqrpBtQbKZfLWFxcRDAYNNra2togSRLm5uaMNlmWkUwmRUohIiJyhNBYtYqiQFGUmpevVCoAAK/Xa2r3+XzQNM2YjkQiOHjwIA4dOlRz3y6Xq+ZliYiINlJrrlg6yPtaHo8HALC8vGxqL5fLkCTJmC4Wi/D7/UJ967q++QKJiGjbW/01SCaTMU2vx9bvOH0+H/x+P3K5nNGWz+ehaZrplC9vZk1ERPXC9ouD+vv7MTw8jEKhAE3TEIvFEA6H0dLSAgBYWVlBOp1GV1eX3aUQERFtmlBwxuNxtLe3C61AURR0d3cj9P/Zu/+oqM47f+DvYdyYROeHCbRpsIBgNnH9wdApCRq2Q4wpbcVMOVNMty0pSRptt8ZqU8uU2m+pdjmjIV3NaUxKu5WckHo2aWlmDA2QGGaiRgeB8qOYbDUgLFpN0Awz0oAy83z/cJ064o+5cC+XH+/XOfcc55lnnvsZHp2393LnuenpiI+PRzAYREVFRfj52tpapKWlITY2VtK4REREapAUnEVFRWhvb5e0A61Wi9LSUvT29iIQCKCysjIiJHmaloiIJhLV16pNTExEXl6e2mUQERFFRdarak0mEwoKCiS9pri4WM4SiIiIFCV7cJpMJjmHJCIiGldUP1VLREQ0kTA4iYiIJGBwEhERScDgJCIikoDBSUREJIGswVleXn7dxXEvZzabUVNTI2cZREREilH8iDMYDGLDhg2Ii4uDTqeDzWZDb29v+Hmr1QqXy6V0GURERLJQPDgdDgecTie8Xi96enoAAPn5+eHnGZxERDSRKB6cZWVlKCwsRHJyMgwGA7Zu3Yrq6mp0dXUBAFJTU6HVatHY2Kh0KURERKMmKTgdDkfEfTSvx+fzobu7G2azOdyWkpICvV6PlpaWcJvVaoXT6ZRSChERkSokBafdbkdra2vU/QOBAADAYDBEtBuNRvj9/vDj5cuXo6qqSkopREREqpB1rdrL6XQ6AEBfX19Eu8/ng16vDz/u6upCQkKCpLE1Gs3oCyQiIvo/0eaKosFpNBqRkJCApqam8OLvHR0d8Pv9Ead8XS4XbDabpLGFELLWSkREU9PFr1G63e6Ix1ej+MVBq1atwpYtW9DZ2Qm/34/CwkJkZ2cjKSkJANDf34+6ujrk5OQoXQoREdGoSQrOkpISzJ8/X9IO7HY7VqxYgfT0dMTHxyMYDKKioiL8fG1tLdLS0hAbGytpXCIiIjVICs6ioiK0t7dL2oFWq0VpaSl6e3sRCARQWVkZEZIulwtWq1XSmERERGpRfa3axMRE5OXlqV0GERFRVGS9OMhkMqGgoEDSa4qLi+UsgYiISFGyB+fFq2eJiIgmI9VP1RIREU0kDE4iIiIJGJxEREQSMDiJiIgkYHASERFJIGtwlpeXX3eNv8uZzWbU1NTIWQYREZFiFD/iDAaD2LBhA+Li4qDT6WCz2dDb2xt+3mq1wuVyKV0GERGRLBQPTofDAafTCa/Xi56eHgBAfn5++HkGJxERTSSKB2dZWRkKCwuRnJwMg8GArVu3orq6Gl1dXQCA1NRUaLVaNDY2Kl0KERHRqEkKTofDEXEfzevx+Xzo7u6G2WwOt6WkpECv16OlpSXcZrVa4XQ6pZRCRESkCknBabfb0draGnX/QCAAADAYDBHtRqMRfr8//Hj58uWoqqqSUgoREZEqZF2r9nI6nQ4A0NfXF9Hu8/mg1+vDj7u6upCQkCBpbI1GM/oCiYiI/k+0uaJocBqNRiQkJKCpqSm8+HtHRwf8fn/EKV+XywWbzSZpbCGErLUSEdHUdPFrlG63O+Lx1Sh+cdCqVauwZcsWdHZ2wu/3o7CwENnZ2UhKSgIA9Pf3o66uDjk5OUqXQkRENGqSgrOkpATz58+XtAO73Y4VK1YgPT0d8fHxCAaDqKioCD9fW1uLtLQ0xMbGShqXiIhIDZKCs6ioCO3t7ZJ2oNVqUVpait7eXgQCAVRWVkaEpMvlgtVqlTQmERGRWlRfqzYxMRF5eXlql0FERBQVWS8OMplMKCgokPSa4uJiOUsgIiJSlOzBefHqWSIioslI9VO1REREEwmDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCSQNTjLy8uvuzju5cxmM2pqauQsg4iISDGKH3EGg0Fs2LABcXFx0Ol0sNls6O3tDT9vtVrhcrmULoOIiEgWigenw+GA0+mE1+tFT08PACA/Pz/8PIOTiIgmEsWDs6ysDIWFhUhOTobBYMDWrVtRXV2Nrq4uAEBqaiq0Wi0aGxuVLoWIiGjUJAWnw+GIuAH19fh8PnR3d8NsNofbUlJSoNfr0dLSEm6zWq1wOp1SSiEiIlKFpOC02+1obW2Nun8gEAAAGAyGiHaj0Qi/3x9+vHz5clRVVUkphYiISBWyLvJ+OZ1OBwDo6+uLaPf5fNDr9eHHXV1dSEhIkDS2RqMZfYFERET/J9pcUTQ4jUYjEhIS0NTUFL5rSkdHB/x+f8QpX5fLBZvNJmlsIYSstRIR0dR08WuUbrc74vHVKH5x0KpVq7BlyxZ0dnbC7/ejsLAQ2dnZSEpKAgD09/ejrq4OOTk5SpdCREQ0apKCs6SkBPPnz5e0A7vdjhUrViA9PR3x8fEIBoOoqKgIP19bW4u0tDTExsZKGpeIiEgNkoKzqKgI7e3tknag1WpRWlqK3t5eBAIBVFZWRoSky+WC1WqVNCYREZFaVF+rNjExEXl5eWqXQUREFBVZLw4ymUwoKCiQ9Jri4mI5SyAiIlKU7MF58epZIiKiyUj1U7VEREQTCYOTiIhIAgYnERGRBAxOIiIiCRicREREEsganOXl5ddd4+9yZrMZNTU1cpZBRESkGEWPOIPBIDZs2IC4uDjodDrYbDb09vZG9LFarXC5XEqWQUREJBtFg9PhcMDpdMLr9aKnpwcAkJ+fH9GHwUlERBOJosFZVlaGwsJCJCcnw2AwYOvWraiurkZXV1e4T2pqKrRaLRobG5UshYiISBaSgtPhcETcR/NafD4furu7YTabw20pKSnQ6/VoaWmJ6Gu1WuF0OqWUQkREpApJwWm329Ha2hpV30AgAAAwGAwR7UajEX6/P6Jt+fLlqKqqklIKERGRKmRdq/ZSOp0OANDX1xfR7vP5oNfrI9q6urqQkJAgaXyNRjO6AomIiC4Rba4oFpxGoxEJCQloamoKL/ze0dEBv98/7HSvy+WCzWaTNL4QQrZaiYho6rr4NUq32x3x+GoUvTho1apV2LJlCzo7O+H3+1FYWIjs7GwkJSWF+/T396Ourg45OTlKlkJERCQLScFZUlKC+fPnR93fbrdjxYoVSE9PR3x8PILBICoqKiL61NbWIi0tDbGxsVJKISIiUoWk4CwqKkJ7e3vU/bVaLUpLS9Hb24tAIIDKysphAelyuWC1WqWUQUREpBrV16pNTExEXl6e2mUQERFFRdaLg0wmEwoKCiS9pri4WM4SiIiIFCV7cF68gpaIiGgyUv1ULRER0UTC4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJZA3O8vLy6y6Oezmz2Yyamho5yyAiIlKMokecwWAQGzZsQFxcHHQ6HWw2G3p7eyP6WK1WuFwuJcsgIiKSjaLB6XA44HQ64fV60dPTAwDIz8+P6MPgJCKiiUTR4CwrK0NhYSGSk5NhMBiwdetWVFdXo6urK9wnNTUVWq0WjY2NSpZCREQkC0nB6XA4ht2E+mp8Ph+6u7thNpvDbSkpKdDr9WhpaYnoa7Va4XQ6pZRCRESkCknBabfb0draGlXfQCAAADAYDBHtRqMRfr8/om358uWoqqqSUgoREZEqZF3k/VI6nQ4A0NfXF9Hu8/mg1+sj2rq6upCQkCBpfI1GM7oCiYiILhFtrigWnEajEQkJCWhqagrfMaWjowN+v3/Y6V6XywWbzSZpfCGEbLUSEdHUdfFrlG63O+Lx1Sh6cdCqVauwZcsWdHZ2wu/3o7CwENnZ2UhKSgr36e/vR11dHXJycpQshYiISBaSgrOkpATz58+Pur/dbseKFSuQnp6O+Ph4BINBVFRURPSpra1FWloaYmNjpZRCRESkCknBWVRUhPb29qj7a7ValJaWore3F4FAAJWVlcMC0uVywWq1SimDiIhINaqvVZuYmIi8vDy1yyAiIoqKrBcHmUwmFBQUSHpNcXGxnCUQEREpSvbgvHgFLRER0WSk+qlaIiKiiYTBSUREJAGDk4iISAIGJxERkQQMTiIiIglkDc7y8vLrrvF3ObPZjJqaGjnLICIiUoyiR5zBYBAbNmxAXFwcdDodbDYbent7I/pYrVa4XC4lyyAiIpKNosHpcDjgdDrh9XrR09MDAMjPz4/ow+AkIqKJRNHgLCsrQ2FhIZKTk2EwGLB161ZUV1ejq6sr3Cc1NRVarRaNjY1KlkJERCQLScHpcDiG3Uvzanw+H7q7u2E2m8NtKSkp0Ov1aGlpiehrtVrhdDqllEJERKQKScFpt9vR2toaVd9AIAAAMBgMEe1GoxF+vz+ibfny5aiqqpJSChERkSpkXav2UjqdDgDQ19cX0e7z+aDX6yPaurq6kJCQIGl8jUYzugKJiIguEW2uKBacRqMRCQkJaGpqCi/83tHRAb/fP+x0r8vlgs1mkzS+EEK2WomIaOq6+DVKt9sd8fhqFL04aNWqVdiyZQs6Ozvh9/tRWFiI7OxsJCUlhfv09/ejrq4OOTk5SpZCREQkC0nBWVJSgvnz50fd3263Y8WKFUhPT0d8fDyCwSAqKioi+tTW1iItLQ2xsbFSSiEiIlKFpOAsKipCe3t71P21Wi1KS0vR29uLQCCAysrKYQHpcrlgtVqllEFERKQa1deqTUxMRF5entplEBERRUXWi4NMJhMKCgokvaa4uFjOEoiIiBQle3BevIKWiIhoMlL9VC0REdFEwuAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCWQNzvLy8usujns5s9mMmpoaOcsgIiJSjKJHnMFgEBs2bEBcXBx0Oh1sNht6e3sj+litVrhcLiXLICIiko2iwelwOOB0OuH1etHT0wMAyM/Pj+jD4CQioolE0eAsKytDYWEhkpOTYTAYsHXrVlRXV6OrqyvcJzU1FVqtFo2NjUqWQkREJAtJwelwOIbdhPpqfD4furu7YTabw20pKSnQ6/VoaWmJ6Gu1WuF0OqWUQkREpApJwWm329Ha2hpV30AgAAAwGAwR7UajEX6/P6Jt+fLlqKqqklIKERGRKmRd5P1SOp0OANDX1xfR7vP5oNfrI9q6urqQkJAgaXyNRjO6AomIiC4Rba4oFpxGoxEJCQloamoK3zGlo6MDfr9/2Olel8sFm80maXwhhGy1EhHR1HXxa5Rutzvi8dUoenHQqlWrsGXLFnR2dsLv96OwsBDZ2dlISkoK9+nv70ddXR1ycnKULIWIiEgWkoKzpKQE8+fPj7q/3W7HihUrkJ6ejvj4eASDQVRUVET0qa2tRVpaGmJjY6WUQkREpApJwVlUVIT29vao+2u1WpSWlqK3txeBQACVlZXDAtLlcsFqtUopg4iISDWqr1WbmJiIvLw8tcsgIiKKiqwXB5lMJhQUFEh6TXFxsZwlEBERKUr24Lx4BS0REdFkpPqpWiIioomEwUlERCQBg5OIiEgCBicREZEEDE4iIiIJZA3O8vLy667xdzmz2Yyamho5yyAiIlKMokecwWAQGzZsQFxcHHQ6HWw2G3p7eyP6WK1WuFwuJcsgIiKSjaLB6XA44HQ64fV60dPTAwDIz8+P6MPgJCKiiUTR4CwrK0NhYSGSk5NhMBiwdetWVFdXo6urK9wnNTUVWq0WjY2NSpZCREQkC0nB6XA4ht1L82p8Ph+6u7thNpvDbSkpKdDr9WhpaYnoa7Va4XQ6pZRCRESkCknBabfb0draGlXfQCAAADAYDBHtRqMRfr8/om358uWoqqqSUgoREZEqZF2r9lI6nQ4A0NfXF9Hu8/mg1+sj2rq6upCQkCBpfI1GM7oCiYiILhFtrigWnEajEQkJCWhqagov/N7R0QG/3z/sdK/L5YLNZpM0vhBCtlqJiGjquvg1SrfbHfH4ahS9OGjVqlXYsmULOjs74ff7UVhYiOzsbCQlJYX79Pf3o66uDjk5OUqWQkREJAtJwVlSUoL58+dH3d9ut2PFihVIT09HfHw8gsEgKioqIvrU1tYiLS0NsbGxUkohIiJShaTgLCoqQnt7e9T9tVotSktL0dvbi0AggMrKymEB6XK5YLVapZRBRESkGtXXqk1MTEReXp7aZRAREUVF1ouDTCYTCgoKJL2muLhYzhKIiIgUJXtwXryCloiIaDJS/VQtERHRRMLgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIglkDc7y8vLrLo57ObPZjJqaGjnLICIiUoyiR5zBYBAbNmxAXFwcdDodbDYbent7I/pYrVa4XC4lyyAiIpKNosHpcDjgdDrh9XrR09MDAMjPz4/ow+AkIqKJRNHgLCsrQ2FhIZKTk2EwGLB161ZUV1ejq6sr3Cc1NRVarRaNjY1KlkJERCQLScHpcDiG3YT6anw+H7q7u2E2m8NtKSkp0Ov1aGlpiehrtVrhdDqllEJERKQKSWvV2u122O32qPoGAgEAgMFgiGg3Go3w+/0RbcuXL8ePfvQjbNq0KepaNBpN1H2JiIiuJ9pckXWR90vpdDoAQF9fX0S7z+eDXq+PaOvq6kJCQoKk8YUQoyuQiIgICH8bxO12Rzy+GsV+x2k0GpGQkICmpqZwW0dHB/x+/7DTvbyZNRERTRSKXhy0atUqbNmyBZ2dnfD7/SgsLER2djaSkpLCffr7+1FXV4ecnBwlSyEiIpKFpOAsKSnB/Pnzo+5vt9uxYsUKpKenIz4+HsFgEBUVFRF9amtrkZaWhtjYWCmlEBERqUJScBYVFaG9vT3q/lqtFqWlpejt7UUgEEBlZeWwgORpWiIimkhUX6s2MTEReXl5apdBREQUFVmvqjWZTCgoKJD0muLiYjlLICIiUpTswWkymeQckoiIaFxR/VQtERHRRMLgJCIikoDBSUREJAGDk4iISAIGJxERkQSyBmd5efl1F8e9nNlsRk1NjZxlEBERKUbRI85gMIgNGzYgLi4OOp0ONpsNvb29EX2sVitcLpeSZRAREclG0eB0OBxwOp3wer3o6ekBAOTn50f0YXASEdFEomhwlpWVobCwEMnJyTAYDNi6dSuqq6vR1dUV7pOamgqtVovGxkYlSyEiIpKFpOB0OBzD7qV5NT6fD93d3TCbzeG2lJQU6PV6tLS0RPS1Wq1wOp1SSiEiIlKFpOC02+1obW2Nqm8gEAAAGAyGiHaj0Qi/3x/Rtnz5clRVVUkphYiISBWyrlV7KZ1OBwDo6+uLaPf5fNDr9RFtXV1dSEhIkDS+RqMZXYFERESXiDZXFAtOo9GIhIQENDU1hRd+7+jogN/vH3a61+VywWazSRpfCCFbrURENHVd/Bql2+2OeHw1il4ctGrVKmzZsgWdnZ3w+/0oLCxEdnY2kpKSwn36+/tRV1eHnJwcJUshIiKShaTgLCkpwfz586Pub7fbsWLFCqSnpyM+Ph7BYBAVFRURfWpra5GWlobY2FgppRAREalCUnAWFRWhvb096v5arRalpaXo7e1FIBBAZWXlsIB0uVywWq1SyiAiIlKN6mvVJiYmIi8vT+0yiIiIoiLrxUEmkwkFBQWSXlNcXCxnCURERIqSPTgvXkFLREQ0Gal+qpaIiGgiYXASERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBLIGZ3l5+XUXx72c2WxGTU2NnGUQEREpRtEjzmAwiA0bNiAuLg46nQ42mw29vb0RfaxWK1wul5JlEBERyUbR4HQ4HHA6nfB6vejp6QEA5OfnR/RhcBIR0USiaHCWlZWhsLAQycnJMBgM2Lp1K6qrq9HV1RXuk5qaCq1Wi8bGRiVLISIikoWk4HQ4HMNuQn01Pp8P3d3dMJvN4baUlBTo9Xq0tLRE9LVarXA6nVJKISIiUoWktWrtdjvsdntUfQOBAADAYDBEtBuNRvj9/oi25cuX40c/+hE2bdoUdS0ajSbqvkRERNcTba7Iusj7pXQ6HQCgr68vot3n80Gv10e0dXV1ISEhQdL4QojRFUhERASEvw3idrsjHl+NYr/jNBqNSEhIQFNTU7ito6MDfr9/2Ole3syaiIgmCkUvDlq1ahW2bNmCzs5O+P1+FBYWIjs7G0lJSeE+/f39qKurQ05OjpKlEBERyUJScJaUlGD+/PlR97fb7VixYgXS09MRH45Wi5MAACAASURBVB+PYDCIioqKiD61tbVIS0tDbGyslFKIiIhUISk4i4qK0N7eHnV/rVaL0tJS9Pb2IhAIoLKyclhA8jQtERFNJKqvVZuYmIi8vDy1yyAiIoqKrFfVmkwmFBQUSHpNcXGxnCUQEREpSvbgNJlMcg5JREQ0rqh+qpaIiGgiYXASERFJwOAkIiKSgMFJREQkAYOTiIhIAlmDs7y8/LqL417ObDajpqZGzjKIiIgUo+gRZzAYxIYNGxAXFwedTgebzYbe3t6IPlarFS6XS8kyiIiIZKNocDocDjidTni9XvT09AAA8vPzI/owOImIaCJRNDjLyspQWFiI5ORkGAwGbN26FdXV1ejq6gr3SU1NhVarRWNjo5KlEBERyUJScDocjmH30rwan8+H7u5umM3mcFtKSgr0ej1aWloi+lqtVjidTimlEBERqUJScNrtdrS2tkbVNxAIAAAMBkNEu9FohN/vj2hbvnw5qqqqpJRCRESkClnXqr2UTqcDAPT19UW0+3w+6PX6iLauri4kJCRIGl+j0YyuQCIioktEmyuKBafRaERCQgKamprCC793dHTA7/cPO93rcrlgs9kkjS+EkK1WIiKiaCl6cdCqVauwZcsWdHZ2wu/3o7CwENnZ2UhKSgr36e/vR11dHXJycpQshYiISBaSgrOkpATz58+Pur/dbseKFSuQnp6O+Ph4BINBVFRURPSpra1FWloaYmNjpZRCRESkCo2Q8ZxneXk5ysvL4Xa7o37NI488gvnz5+MHP/iBXGUQEREpRvW1ahMTE5GXl6d2GURERFGR9YizubkZzc3NKCgokGtIIiKicUXW4CQiIprsVD9VS0RENJEwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgmmqV0AEdF4tm7dOjQ3N6tdRgSTyYRt27apXcaUxSNOIqJraG5ulhyc586dg8fjQSAQiGgfGBiAx+NBf3//mNZD8lLsiDMUCkGn02H37t1YunRpuN1msyE+Ph7PPPOMUrsmIpKVyWSC2+2Oun9VVRXy8vLg9Xoxbdo/PmZfeeUVPPbYY/B6vYiJGdlxS1ZW1oheR/JRLDhjYmKwYMECtLW1hYPT4/HA4/HgyJEjSu2WiEh1DQ0NMJlMEaEJAPX19TCbzSMOTRofFJ291NRUtLW1AbhwBLp+/Xps2rQJs2bNQkVFBRYvXozFixejrq5OyTKI6Do+/PBDPPbYY8jKysKTTz6Jv//972qXpAghBH7zm99g2bJlePDBB+H1ehXZT0NDA9LT04e119fXX7GdJhZFLw4ymUx44YUXAAA7d+7E0NAQVq9eDZ/Ph9LSUhw8eBBnz57FsmXL0NTUxP+FEang3LlzWLZsGdra2iCEgMfjQUdHB/74xz+qXZrsfvOb32DVqlXQaDTQaDR444030NTUhHnz5sm6n4aGBjz00EMRbaFQCE1NTVizZg1OnTqF3Nxc3HDDDfj4449RUlKC+++/X9YaSDmKH3G2t7fD7/dj48aN2LZtG7RaLbxeLywWC2688UbExsbi9ttvx7Fjx6Ied926dVi3bt1VHxNR9N577z20trZCCBFue/XVV/Hxxx+rWJUydu3aBY1GAyEEQqEQBgYG4HQ6Zd3H8ePHcfLkSZjN5oj25uZmnD17FhkZGYiNjcXevXvhdruxa9cu2O12WWsgaa6UKdckFOT3+4VGoxErV64Uubm54faXXnpJ/PSnPw0//trXvibq6+ujHtdisQgA3Lhx4zYmm8Viifrz6eDBgwKAOHHiRET7k08+KTIyMob1b2xsFI8++ig//8bZdi2KHnHqdDokJyfD6XTi6aefDrffeuut+Oijj8KPfT4fbr31VkljWywWCCEghIDFYol4zI0bt+i3UCiEb37zmxH/vn7+85+rXpcS2759+zB9+vTw+0xOTsaZM2eu+RqLxSLps2nevHkwGAxwOBzw+Xw4c+YMnn/+eezYsQMOhyPcr7OzE5mZmcjOzkZubu6IP/+4jX67PEOuN+eK/1Lx6NGjGBgYwJw5c8Jt99xzD/bu3YvBwUGcOXMGx48fR1JSktKlENEVaDQa/Pa3v8WLL74IAHC5XPjxj3+sclXKuPfee3Ho0CH8/Oc/B3Dhd5GzZs2SdR96vR6vvfYaGhoaMHv2bNx1112orKxEdXV1xAfynDlzsG/fPni9XqxZs0bWGkhZqqwcZDQasW7duvD3kZ5++mleGESkopiYGHzjG99Afn4+VqxYoXY5ilq4cCEWLlyIjRs3yh6aF2VmZmL//v1XfX5wcDB85KvX6zFz5kxF6iBlqLbk3sMPP4yHH35Yrd0TEanm0KFDKCoqglarxfnz57F9+3a1SyIJuFYtEdF1NDc3y75iT0xMDIQQmDZtGjZv3ozNmzdHXYvJZJK1FpKGwUlEdA3jLaRMJtO4q2mqYXASEV0D70JCl+MVOURERBIwOImIiCRgcBIREUnA4CQiIpKAFwcREY2hdevWobm5We0ywkwmEy+AkohHnEREY6i5uVlScJ47dw4ejweBQCCifWBgAB6PB/39/WNWC12g6BFnKBSCTqfD7t27sXTp0nC7zWZDfHw8nnnmGSV3T0Q0LplMJrjd7qj6VlVVIS8vD16vF9Om/eMj+5VXXsFjjz0Gr9c74iVL5V7UYapQNDhjYmKwYMECtLW1hYPT4/HA4/HgyJEjSu6aiGhSaGhogMlkighNAKivr4fZbOY63ypQ/CeempqKtrY2ABeOQNevX49NmzZh1qxZWLZsGeLi4sJ3KiCiyaG/vx9utxvvvPMOgsGg2uUoqr29HW+88QZOnjypyPgNDQ1IT08f1l5fX3/FdlKe4sFpMpnCwblz504MDQ1h9erVAIDy8nI89dRTSpdARGPo5MmTMJlMuO+++3Dvvffii1/8Is6dO6d2WYooLi7GggUL8PnPfx533HEH3n77bdn3caXgDIVCaGpqQnp6Ok6dOoUlS5YgKysL99xzD/bs2SN7DRRpTI4429vb4ff7sXHjRmzbtg1arRYAMHv2bKV3T0RjbOPGjXj//ffDj9944w38+te/VrEiZfzlL3/Bz372s/Djv//97ygoKJB1H8ePH8fJkydhNpsj2pubm3H27FlkZGQgNjYWe/fuhdvtxq5du2C322WtgYZT/OsoixYtwt///nc8/vjjWLx4ccRFQqPh8Xig0Wgi2i5/TETSKfHvaM2aNePyZs1yvtdQKITOzs6oxrz0htbX0tPTA+DCPYwv9bvf/Q4ZGRn49Kc/HdHu8/mwaNGiKCu+4EqfpVNVtD8HxY84dTodkpOT4XQ68fTTT8s2rsVigRACQghYLJaIx9y4cRvZBmDUY1zp9livvfaa6u9N7vd6/PhxzJgxI3xxTkxMDJYuXXrd10UbmgAwb948GAwGOBwO+Hw+nDlzBs8//zx27NgBh8MR7tfZ2YnMzExkZ2cjNzd3xJ+lU3W7PEOuN0djcjnW0aNHMTAwgDlz5ozF7ohIRXa7Hd/5zndw0003AQD+8z//E8uXL1e5Kvndfvvt2L17d/hXThaLBb/73e9k3Yder8drr72GhoYGzJ49G3fddRcqKytRXV0d8eE+Z84c7Nu3D16vd1we2U82qq4c9Oijj8Lr9WJwcBBerxe7d+9WsxwiksG0adOwY8cOPPvss4iJicG6devULkkx9913H7q6uqDRaPDWW28pso/MzEzs37//qs8PDg5i+vTpAC4E7cyZMxWpg/5B1eD87W9/q+buiUhB/L3Z2Dh06BCKioqg1Wpx/vx5bN++Xe2SJj2uVUtENIFlZmYq8jUYujoGJxHRGGtubh4Xy901NzfDZDKpXcaEw+AkIhpD4ymoTCbTuKpnomBwEhGNId7Ca+Lj6sBEREQSMDiJiIgkYHASERFJwOAkIiKSgBcHERFNUOvWrUNzc7PaZUQwmUyT/gIoHnESEU1Qzc3NkoPz3Llz8Hg8CAQCEe0DAwPweDzo7+8f03omIkWPOEOhEHQ6HXbv3h1xOzGbzYb4+Hg888wzSu6eiGjSM5lMcLvdUfevqqpCXl4evF4vpk37RwS88soreOyxx+D1esN3fJFqPCzqMBYUDc6YmBgsWLAAbW1t4eD0eDzweDw4cuSIkrsmIqIraGhogMlkighNAKivr4fZbB5xaE4liv+EUlNT0dbWBuDCEej69euxadMmnDlzBp/73Ofwr//6r8jMzERDQ4PSpRDRBNTd3Y2vfOUrMJvNeOKJJ0Z1KnE8C4VCeOqpp5CRkYEHHngABw4cUGQ/DQ0NSE9PH9ZeX19/xXYaTvGLg0wmE1544QUAwM6dOzE0NITVq1fD5/Phj3/8I2699VYcPnwYq1evxt69e5Uuh4gmkLNnz8JisaC7uxuhUAhNTU3429/+ht///vdqlya7p556Cna7HcCFs3X79u1Dc3Mz7rzzTln309DQgIceeiii7eLPds2aNTh16hRyc3Nxww034OOPP0ZJSQnuv/9+WWuY6BQPztTUVLS3t8Pv92Pjxo146aWXoNVqceutt4b7TJ8+HVqtVulSiGiCaW1txbFjxyLaXn31VQSDwUn3mfHKK6+E/xwKhTAwMICamhpZg/P48eM4efIkzGZzRHtzczPOnj2LjIwMxMbGYu/evdBqtejo6MBDDz2EQ4cOyVbDpCAU5vf7hUajEStXrhS5ubnDnh8aGhJf+tKXxOuvvx71mBaLRQDgxo0btym/WSyWqD87Dx48KACIEydORLQ/+eSTIiMjY1j/xsZG8eijj07Jz+ZrUTw4hRAiJSVFTJ8+XXR0dES0h0Ih8fDDD4sdO3ZIGs9isUT8Zbn8MRGNzPU+MMZ6vFAoJPLz8yM+0J577rlxUZvcY+3du1dMnz49/D5NJpPo7++/5mukfvb19fUJg8Eg1q5dKz766CNx+vRp8dxzz4mbbrpJuN3ucL+Ojg5x7733itjYWLF79+6ox5+on8VXypRrGZPLp44ePYqBgQHMmTMnov2JJ57A3Llz8Z3vfGcsyiCiCUaj0aC8vBwvv/wygAtX5X/7299WuSplZGZm4s9//jN+8YtfAAD279+Pm2++WdZ96PV6vPbaa2hoaMDs2bNx1113obKyEtXV1bBYLOF+c+bMwb59++D1erFmzRpZa5gMVFs5yO12o6ysDEuWLMGePXtwyy23oLKyUq1yiGiciomJQV5eHgDgc5/7nMrVKGvevHmYN28evv/978semhdlZmZi//79V31+cHAQ06dPB3AhaGfOnKlIHROZasGZlZWFc+fOqbV7IiK6gkOHDqGoqAharRbnz5/H9u3b1S5p3OFatUREE1hzc7PsK/bExMRACIFp06Zh8+bN2Lx5c9S1mEwmWWsZjxicREQT1HgLKZPJNO5qUgKDk4hogprsdyEZr7goIRERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpJA0eAMhUKYMWMG3nrrrYh2m82GtWvXKrlrIiIiRSj6Pc6YmBgsWLAAbW1tWLp0KYALizR7PB4cOXJEyV0TEREpQvFTtampqWhrawNw4Qh0/fr12LRpE86dO4clS5YgKysL99xzD/bs2aN0KUR0DS0tLQAu3M2IJj4hBA4ePAin04menh61y5lUFA9Ok8kUDs6dO3diaGgIq1evDt9l3O12Y9euXbDb7UqXQkRX8dRTT4WXSps3bx5eeeUVlSui0RBCYM2aNVi8eDG+/OUv46677sLevXvVLmvSGJMjzvb2dvj9fmzcuBHbtm2DVqsNbwDg8/mwaNEipUshoivo6elBYWFh+HEwGMQjjzyCUCikYlU0GgcOHMCOHTvCjz/++GOsXr1axYomGQVvqi2EEMLv9wuNRiNWrlwpcnNzI54bzV3Gcckd4blx48aNGzc5t2vRCCEEFDZ37lz09PTg3XffxZw5c4Y939HRgaVLl+LYsWNRjXfxFjput/uKj4koemfPnsXcuXPx4YcfIhQKISYmBmlpaWhoaBj12BqNBnJ9xMg5ltzjjbfauru7MW/ePAwMDCAUCkGj0cBms/EU/FVcKVOulSdj8j3Oo0ePYmBgICI0BwcHw3/mXcaJ1DNz5ky88cYbSE1NBQBYLBY4nU6Vq6LRSEhIQFVVFVJSUgAAubm5+PWvf61yVZOHarcV413GicaPhQsXoqmpCRqNZtj3rmliysrKwl//+ldoNBr84Q9/ULucSUW14MzMzMTbb7+t1u6JiIhGhEvuERERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpJAseAMhUKYMWPGsHUvbTYb1q5dq9RuiYiIFKXYWrUxMTFYsGAB2trasHTpUgCAx+OBx+PBkSNHlNotERGRohQ9VZuamoq2tjYAF45A169fj02bNmHWrFkAgNOnT2PWrFmoqKhQsgwiGkNCCPziF7/AokWLAACvvvqqyhXRaJ0/fx4/+tGPMG/ePGRmZuKdd95RuyRVKRqcJpMpHJw7d+7E0NAQVq9eHX7+5z//OTIzM5UsgYjG2K9+9Ss8+eST4X/7NpsN+/fvV7kqGo2f/OQncDgceO+993DgwAEsW7YMR48eVbss1Sh+xNne3g6/34+NGzdi27Zt0Gq1AC7c3Pr06dMwm81KlkBEY2z37t3QaDThx6FQCH/6059UrIhG69KzBqFQCB9//DHq6upUrEhdGiGEUGrwQCAAg8GAvLw8nD9/HpWVleHnvva1r2Hz5s148cUXMXfuXHzjG9+IetysrCx4PB4lSiYiIsK1olHRG1nrdDokJyfD6XTi3XffDbe/8847uPXWW5GSkjLisS0WC9xuN4ALQQog/JiIRkaj0VzzAyMa//M//4PFixfjo48+AgDcddddOHjwIAwGg+q1KTXeZK/t7bffRnZ2NgYGBgBc+Mytra3FP/3TP8lRououz5CLj69G0eAEcMXz4A0NDWhtbcUXvvAFHD16FDNmzEBKSgoWL16sdDlEpLA777wTbW1teP311/H444/j0KFDmDlzptpl0Sh87nOfQ0tLC+rq6vDtb397UoXmSCh6qjYaxcXFIzpVCwz/3wGPOIlGZ7IfOSk1Hmub2K6UKdfKE8WPOK+nuLhY7RKIiIiixiX3iIiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRQNDhDoRBmzJiBt956K6LdZrNh7dq1Su6aiIhIEYouuRcTE4MFCxagra0NS5cuBQB4PB54PB4cOXJEyV0TEREpQvFTtampqeE7wYdCIaxfvx6bNm3CrFmzcNNNNyErKwtZWVkoKytTuhQimqD27dsHABG3J6SJKxQKoba2Frt27UJXV5fa5Uim+CLvJpMJL7zwAgBg586dGBoawurVqwEA8fHxvKMJEV3TD3/4Qzz11FMAgEWLFmHXrl34yle+onJVNFKhUAj/9m//hpdffhkAcPPNN6OmpgaZmZkqVxa9MTnibG9vh9/vx8aNG7Ft2zZotVoAwMmTJ2GxWPDlL38ZHR0dSpdCRBPMe++9Fw5NAAgGg1i1apWKFdFo1dbWhkMTAAYGBvC9731PxYpGQCjM7/cLjUYjVq5cKXJzcyOe+/DDD4UQQrz55pvCYrFEPabFYhEAuHHjxo0bN0W2axmTG1nPnTsXPT09ePfddzFnzpyr9jl69GhU4/FG1kTKGG83Pfb5fPjnf/5nnD59GqFQCBqNBvfddx/27Nmjem1KjSX3eOOtto6ODsyfPx/nzp1DKBQCADz++OOqXuci9UbWY/I9zqNHj2JgYCAiNM+ePYtgMAgA+Mtf/oJbbrllLEohognEaDRiz549uPvuuwEAubm5Eaf5aOJJTk5GdXU1FixYAAD41re+hW3btqlclTSKXxx0NYcPH8bq1auh0+kAAL/61a/UKoWIxrGFCxfiwIED0Gg0+MMf/qB2OSQDi8WClpYWaDQa/PrXv1a7HMlUC867774bf/7zn9XaPRER0YhwyT0iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIAtW+xzmW1q1bh+bmZrXLCDOZTBNupYzR4hwQ0WQxJY44m5ubx82H9niqZSyNp/c9nmohoolnShxxAheOMKJdBP6DDz7AJz/5STQ1NSEtLS3c3tXVhaSkJBw+fBjz5s0bUR0XFxOeiqTMAaDcPEzlOSCi0VPsiDMUCmHGjBl46623ItptNhvWrl2r1G5lcejQIdx0001YuHBhRHt9fT10Oh3uvPNOlSqbWjgPRDQeKXbEGRMTgwULFqCtrQ1Lly4FAHg8Hng8Hhw5ckSp3cqioaEBJpMJ06ZF/njq6+thNpsREzMlznCrjvNAROORop88qampaGtrA3DhCHT9+vXYtGkTZs2ahZaWFnzhC1/A0qVL8cgjjyhZhmQNDQ1IT08f1l5fX3/FdiWcPn0aX/nKVzB79mxYLBa89957Y7LfaJw6dQpWqxWzZ8/G/fffj/fff1+R/YyHefjlL3+JuXPn4o477sDzzz8/qrGOHTuGBx54ALNnz0ZOTg5OnDghU5UUrWAwiB//+MdISkoCAPzxj39UtyAFXfrv5JFHHkF/f7/KFU0i17zN9Sg9++yz4u677xZCCPGb3/xGLFy4UAwNDYnBwUGxbNky4fP5RjSuxWIRFovlqo+v1/96brvtNvHiiy9GtAWDQTFz5kzx8ssvi5MnT4rFixcLi8Ui7r77bvHmm2+OuParycrKEhqNRgAQMTEx4vbbbxeBQCDq/SglFAqJ9PR0ERMTE65tzpw54uOPP77m66TOgRDKzUO0tezatWvYXeF///vfS3oPFw0ODoq5c+dG/NxMJpMIhUIjGk8pcn8kyDmeHGOVlJREzGdMTIw4ePDguKhNzvGOHz8u9Hp9+O8bAJGfnz8ualNqrNG4UqZci+JHnO3t7fD7/di4cSO2bdsGrVaLgwcPQqfT4eGHH0ZWVhZee+01JcuQ5Pjx4zh58iTMZnNEe3NzM86ePYuMjAzExsZi7969cLvd2LVrF+x2u6w1DA4Owu12h++yHgqFcOLECRw+fFjW/YxEX18fDh06FL5zeygUQmdnp+xHneNhHqqrqyNOB8fExKC6unpEYx07dgxHjx6N+Lk1Nzfjww8/lKVWis7l8xcKhfDmm2+qVI1yvF4v/H5/+O8bgHH1OTvhKZnifr9faDQasXLlSpGbmxtu/93vficSExPFRx99JM6cOSPmzZsn+vr6oh7XYrEMOxK43hbt0c7BgwcFAHHixImI9ieffFJkZGQM69/Y2CgeffRRRWufLJuUI04l52EqzwE3btyi265F0SNOnU6H5ORkOJ1OPP300+H2W265BRkZGTAajZg1axYWLVqEo0ePShrbYrFACAEhBCwWS8TjyzeLxRL1uPPmzYPBYIDD4YDP58OZM2fw/PPPY8eOHXA4HOF+nZ2dyMzMRHZ2NnJzc0dc+9W2F198MeJox263X/c1Y7WVlZVBo9GEa9u0adN1XyNlDsZiHqKZg5MnT4Z/FwYAKSkp+PDDD0f8cyspKQmPpdFo8Oyzz6o+l5dvAMbteHKMdfjwYdxyyy3hecjIyMDHH388LmqTc7xQKIT8/Pzw+7zhhhtQU1MzLmpT8uc20u3yDLnu55VQgc/nE2azWZw7d04MDg6KRYsWid7e3qhfr/TvOPfu3SuWLFkiZsyYIeLi4sQDDzwgPB7PFfu+//77IjExMeqxpdTS2toqXnjhhev+70cNTU1Nkmobye84lZoHKbX4fD7x3//93wKApLMiV3PgwAEBQDQ0NIx6LCXI/XdNzvHkGuvEiRPipZdeEgDE4OCgLGOOx59bKBQSNTU1AoD461//KkNVF4zHOR0tqb/jVGUBBIPBgB/84Ae47777cO7cOaxduxa33nqrGqVcUWZmJvbv33/V5wcHBzF9+nQAgF6vx8yZMxWpY+HChVi4cCG++c1vKjL+aKSlpSEtLU3R2sbDPBgMBqxcuRIPPfQQ9Hr9qMfLyMgAgGG/u6Wx86lPfQpf+9rX8PWvfx033HCD2uUoRqPR4POf/zwA4I477lC5mslFtZWDvvrVr+KrX/2qWrsflUOHDqGoqAharRbnz5/H9u3b1S5pSuI8EJEapsySe83NzbIutRYTEwMhBKZNm4bNmzdj8+bNUddhMplkq2MikXsOgJHNw1SeAyIavSkRnOPpQ9JkMo2resbKeHrPU3UOiEgeUyI4efso9XEOiGiy4GKfREREEjA4iYiIJGBwEhERScDgJCIikmBKXBy0bt06NDc3q11GmMlkmnIXy3AOiGiymBJHnM3NzZI+tM+dOwePx4NAIBDRPjAwAI/HM6r72kmtZbIYyftWah6m6hwQkTwUPeIMhULQ6XTYvXs3li5dGm632WyIj4/HM888o+TuI5hMJrjd7qj6VlVVIS8vD16vF9Om/eNH9Morr+Cxxx6D1+uNWIBdCrkXAJhIpMwBoNw8TOU5IKLRUzQ4Y2JisGDBArS1tYWD0+PxwOPx4MiRI0ruelQaGhpgMpkiPqyBC3dUN5vNIw5NkobzQETjkeK/40xNTUVbWxuAC0eg69evx6ZNm3DkyBH88Ic/BHDh1NuRI0dw+vRppcuJSkNDA9LT04e119fX45577hmzOhobG9HY2Ajgwq13Lr2Vl9q8Xi9aWloU3cd4mIczZ86EbwD80UcfYdasWWOy32h88MEHeP3116HVavHggw/Ksgg9SSOEwJ/+9CcAQGtryRPqJQAAIABJREFUKxYtWqRyRcp5//33UVdXBwAYGhoa9h/aqUTx/7KbTKZwcO7cuRNDQ0NYvXo17r77brjdbrjdbqxduxYPPfSQ0qVE7Uof2KFQCE1NTUhPT8epU6ewZMkSZGVl4Z577sGePXtkr2Hnzp1IT0/H6tWrAQDf//73Zd/HSD377LPIyMgI17Zx40ZF9qP2PJw4cQKpqanhO8CkpaXh1KlTsu5jpLq6urBo0SIUFBQgPz8fn/3sZ3HmzBm1y5pShBB49NFHkZOTAwD4zGc+g9///vcqV6WMffv2YeHChXj88ccBAF/4whcwNDSkclUqUuwGZ/9n3759YsaMGaKvr0/cdtttYs+ePcP6ZGdni3feeSfqMZW8H2dPT48AIA4fPhzR3tjYKACI7u5uMTQ0JIaGhoQQF+4D+dnPfnbEtV9JMBgUN99887A7kst5T72RGhwcFNOmTRtWW09PzzVfJ/V+nErOQ7S1fO973xMajSbifW7YsCHq93A1cvyze/zxx4fV9tOf/nRc1KbUeOOttvr6+oifv0ajEbfddtu4qE3usTIyMkRMTEzE+3355ZfHRW1ykHo/TsWr9vv9QqPRiJUrV4rc3Nxhz//tb38Td955p6QxLRbLsA/u623RfmgfPHhQABAnTpyIaH/yySdFRkbGsP6NjY3i0UcfVbT2ybJJCU4l52EqzwE3btyi265lTOI+JSVFTJ8+XXR0dAx7rrS0VBQXF0saT8kjzr6+PmEwGMTatWvFRx99JE6fPi2ee+45cdNNNwm32x3u19HRIe69914RGxsrdu/ePeLar2bZsmURRxSf/vSnxdmzZ6Pej1JCoZDIyMiIqG3u3LliYGDgmq+TesSp5DxEW8vLL7887B/Tq6++GvV7uJrr/aOMRnl5+bDaampqxkVtSo033mrr7e0VsbGxEUdieXl546I2ucfasGFDxN+1G2+8UZYzYHLP6UiNuyPO6zGZTOLo0aOSXqNkcAohxN69e8WSJUvEjBkzRFxcnHjggQeEx+O5Yt/3339fJCYmRj12tLWcOXNGfP3rXxcpKSkCgDhy5EjU+1DaBx98IPLy8sK1HTt27LqvkToHQig3D1Jq+dWvfiUWLFggAIj/+q//irLya5PjwyIUCont27eLefPmCQDipZdekqGy8RdOSo0l13htbW0iKytLABCPPfaYCAQCMlQ2/n5u586dEz/4wQ/EHXfcIQCIt99+W4bKJm5waoQQAippa2vDt7/9bezfv1/S6y5+D+/idwIvf3y9/qM1ODiI6dOnAwB6e3uRlZWFv/zlL1G9diS1aDQaqDhN1xRtbXLPATDyeVB7DuSeT9am/nisTf2xRuNKmXKtzwdVrydeuHCh5NAcDw4dOoSioiJotVqcP38e27dvV7ukKYnzQERqmLpfxBmFzMxMvP3222qXMeVxHohIDVMmOJubm8fFUmvNzc0wmUxql6EKzgERTQZTIjjH04ekyWQaV/WMlfH0nqfqHBCRPKZEcPL2UerjHBDRZMFVsomIiCRgcBIREUnA4CQiIpJgSvyOc926dWhubla7jDCTyTTlfufHOSCiyWJKHHE2NzePmw/t8VTLWBpP73s81UJEE8+UOOIELhxhRLvE2gcffIBPfvKTaGpqQlpaWri9q6sLSUlJOHz4MObNmzeiOsbD9xjVImUOAOXmYSrPARGNnqJHnKFQCDNmzMBbb70V0W6z2bB27Voldz0qhw4dwk033YSFCxdGtNfX10On0+HOO+9UqbKphfNAROORokecMTExWLBgAdra2rB06VIAgMfjgcfjwZEjR5Tc9ag0NDTAZDJh2rTIH099fT3MZjNiYqbEGW7VcR6IaDxS/JMnNTUVbW1tAC4cga5fvx6bNm2C0WjEmjVrsHjxYqSnp6OiokLpUqLW0NCA9PT0Ye319fVXbJ8IysrK8OlPfxq33XYbNm7ciFAopHZJ1zXZ5uGvf/0rlixZAgC477770N3dPeKxhBD42c9+hk996lMAgB07dshSI6nn3Llz+O53v4tPfOITAIDKykqVK1LOm2++GT5j9PDDD6O/v1/liqRRPDhNJlM4OHfu3ImhoSGsXr0a7e3taG9vx4EDB+B2u/H//t//U7qUqF3pAzsUCqGpqQnp6ek4deoUlixZgqysLNxzzz3Ys2ePSpVG5/XXX8fq1avR09ODU6dO4T/+4z/wy1/+Uu2yrmsyzcPg4CA+//nPw+v1AgDefvttfOlLXxrxLZWef/55FBcX4+TJkwCA7373u3C5XLLVS2PvJz/5CXbs2IEPP/wQAJCXl4fGxkaVq5Lf0aNHkZOTg6NHjwIAXnzxRTzxxBMqVyXNmBxxtre3w+/3Y+PGjdi2bRu0Wi1uv/123HDDDTh//jwCgQBuueUWpUuJyvHjx3Hy5EmYzeaI9ubmZpw9exYZGRmIjY3F3r174Xa7sWvXLtjtdpWqjc6ePXug0WjCj2NiYsZ1yACTbx6OHTuGrq6u8JF+KBRCe3t7+ENSqj179kScqtZoNON+Tuna3njjjYjHoVBoUt7958CBAxgcHIw463X5ex/35LyL9pX4/X6h0WjEypUrRW5ubrg9FAqJ73znOyIpKUnExcWJysrKqMe0WCwCgKTtenf0vujgwYMCgDhx4kRE+5NPPikyMjKG9W9sbBSPPvqoorVPli3aOVB6HqbyHHDjxi267VoUD04hhEhJSRHTp08XHR0d4bbq6mrx4IMPiqGhIXH69Gkxb948MTAwENV4Fosl4kP48sfX638tfX19wmAwiLVr14qPPvpInD59Wjz33HPipptuEm63O9yvo6ND3HvvvSI2Nlbs3r07qrGl1nLR9Sbxes6ePSvS09PDfyESEhJET0/PqMaUWpvU963kPKgxB0IIsW3btvAcxMTEiN/+9rcjHutvf/ubmDNnTni8z3zmM8Lv94+6Rjnep1LjTfba2tvbxa233hqe0y996Uvi/Pnz46I2OccLhUIiPz8//D51Op04cOCATNWNzJUy5VrG5LLEo0ePYmBgAHPmzIlov+WWW6DVaqHT6XD+/HkEg8GxKOea9Ho9XnvtNTQ0NGD27Nm46667UFlZierqalgslnC/OXPmYN++ffB6vVizZo2KFV/fjBkzsHfvXvzpT38CALS0tCA+Pl7lqq5tMs7D9773vfDCC21tbXjkkUdGPNZtt92G5uZmOJ1OAMD+/fuh0+lkqZPU8S//8i84fPhw+KIgl8s17IryyUCj0eCFF14If6f73XffRUZGhrpFSaTarCxbtgy7du3Cvffei3PnzuGJJ57AzTffrFY5ETIzM7F///6rPj84OIjp06cDuPABP3PmzLEqbcSmT5+OL37xiwAAo9GocjXRmYzzkJqaCuDCh+Ro6fV6PPjggwCAG2+8cdTjkfo+8YlPIDc3FwCg1WpVrkY5Go0m/B/g8f6f+CtRLTi1Wi3Ky8vV2v2oHDp0CEVFRdBqtTh//jy2b9+udklTEueBiNQw+c4DXEVzc7OsS63FxMRACIFp06Zh8+bN2Lx5c9R1mEwm2eqYSOSeA2Bk8zCV54CIRm9KBOd4+pA0mUzjqp6xMp7e81SdAyKSx5QITt4+Sn2cAyKaLLjYJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpJgTIJz//79uP/++6HX62E0GpGXlzcWuyUiIpKd4sH5hz/8Abm5ufj3f/93fPDBB/jf//1ffOtb31J6t0RERIpQNDj7+/uxevVqlJWVwWaz4cYbb4ROp0N2djYAoKKiAosXL8bixYtRV1enZClERDRJtbS0YPv27XjppZdw/vx5xfen6MpBHo8HGo0GVqt12HM+nw+lpaU4ePAgzp49i2XLlqGpqSnirvZERETXUlVVhS9/+csYGhoCAOzcuRPV1dWK3pJN0ZTq7e3FrFmzoNFohj3n9XphsVhw4403IjY2FrfffjuOHTumZDlERDTJ/PCHP4y4l/OePXtQXV2t6D4VPeL8zGc+g87OTuzevRvLly+H3++H1+tFdnY2Tp8+jVmzZoX7zpo1C6dPn0by/2fv/qOiqvP/gT8HMMmcgVFs+4GrZqfkLLETRIw0ORgQmu3ShHySPquTyEYSmu3S5tLGWkJLaltsLSHxcbFMPy1Cm+hHateNEaa6MNGk/XIzcRdJJFRCZr8Cyf3+0XHWEVAu3pk7DM/HOfcc533vvO+Lmes8uXcu7/d11w2r77Nns+caLKB9hZw/m9yvky+/7ucaK+8Ba1O+L7n7G0u1AcBPfvKTET1vuLW49YwzPDwcZWVlyMnJgUajQVhYGPbu3QsAmDx5Mk6ePOnctrOzE5MnTx5230ajEaIoQhRFGI1Gl8e+tgDwyr7c0Z+3LmPlPWBtyvfF2qQtjz76qEs2BAUF4ciRI5L6OD9Dzk6yPRS3z45iNpthNpsHtMfExODXv/41enp64HA40NraiunTp7u7HCIi8iHPPvssAgMDsXv3btjtdtTW1uLaa6916z4Vm1YsODgYq1atck5s/Nxzz/HGICIikmTcuHF45pln8Mwzz0ClUnlkrl1F5+NcsmQJlixZomQJREREkvAUj4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEHglOq9WK+Ph4aDQaBAcHIzU11RO7JSIikp3bg7OyshImkwlZWVlob29HS0sLMjIy3L1bIiIit3BrcDocDmRmZqK0tBQpKSkIDAyEWq1GUlISACAhIQFTpkxBfn6+O8sgIiIf9e233+Lee+/FhAkTAAA7d+50+z7dGpwWiwUqlQrJycmDri8vL8f69evdWQIREfmw5cuX4y9/+Qv+3//7fwCAlJQU/OMf/3DrPt0anB0dHdBqtVCpVIOuDw0NdefuiYjIx1ksFoii6Hzc29uLhoYGt+7TrfNxRkZGorm5GdXV1ViwYAG6urogCILzUu2lOHs2e66hAtoXyPmzyf06+fLrfq6x8h6wNuX7kru/sVQbACxevBiLFy92Wy1uPeMMDw9HWVkZcnJyoNFoEBYWhr1798rSt9FohCiKEEURRqPR5bGvLQC8si939Oety1h5D1ib8n2xNmmLzWaDVqt1ZkNmZib6+/sl9XF+hhiNxgvmj1vPOAHAbDbDbDa7ezdERDQGRUVF4YsvvkBTUxPmz5+Pl19+2e1XwdwenBeSnp4OQRDQ09MDQRBQXV2tZDlERDQKXXnllZg3bx4Az3x1pGhwbtq0ScndExERScYh94iIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgk8EhwWq1WxMfHQ6PRIDg4GKmpqZ7YLRERkezcHpyVlZUwmUzIyspCe3s7WlpakJGR4e7dEhERuYVbg9PhcCAzMxOlpaVISUlBYGAg1Go1kpKS8NVXX2HOnDm4/fbbYTAYYLPZ3FkKERGRLNw6yPvZyaaTk5MHrAsODsabb76JyZMn47PPPkNmZibq6urcWQ4REdElc2twdnR0QKvVDjrNy+TJk53/Hj9+PPz9/d1ZChERkTxEN9q/f78YEBAg7tixQzxz5ox48uRJsaamxmWb7777TrzrrrvE3bt3D7tfo9EoAuDChQsXLlzcslyIW884w8PDUVZWhpycHKSlpUGtViM9PR1JSUnA95UhPT0dd999t3MS0uEyGo2ora0FAMTFxQGA87GvUalUEEXR6/pyR3/eaqy8B6xN+b7k7o+1Xdz5GXL28VDcPpG12WyG2WwedN2KFStw/fXXY/ny5e4ug4iISBaKDYBQW1uL0tJS7NmzB3Fxcbj33nuVKoWIiGjY3H7GOZS4uDj09vYqtXsiIqIR4ZB7REREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCTwSHBarVbEx8dDo9EgODgYqampntgtERGR7NwenJWVlTCZTMjKykJ7eztaWlqQkZHh7t0SERG5hVuD0+FwIDMzE6WlpUhJSUFgYCDUajWSkpJw7NgxxMbGIi4uDjExMdizZ487SyEiIpKFW2dHsVgsUKlUSE5OHrAuJCQEdXV18Pf3x6FDh3DfffehsbHRneUQERFdMrcGZ0dHB7RaLVQq1YB1/v7+zn93dnYiIiLCnaUQERHJQ3Sj/fv3iwEBAeKOHTvEM2fOiCdPnhRramqc6w8dOiTedtttYkhIiFhdXT3sfo1GowiACxcuXLhwcctyISpRFEW40ebNm/HMM8+gtbUVarUa6enpKCgocNnm0KFDuOOOO3D48OFh9RkXFwcAqK2tHfSxr1GpVJDrbZKzL3f0563GynvA2pTvS+7+WNvFDZYpF8oTt16qBQCz2Qyz2TygvaenB+PHjwcAaDQaTJw40d2lEBERXTK3B+dQGhsbkZubC39/f/T19aGoqEipUoiIiIZNseA0GAzYu3evUrsnIiIaEQ65R0REJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCSBR4LTarUiPj4eGo0GwcHBSE1N9cRuiYiIZOf24KysrITJZEJWVhba29vR0tKCjIwMd++WiIjILdwanA6HA5mZmSgtLUVKSgoCAwOhVquRlJTk3Ob48ePQarXYsmWLO0shIiKShVuD02KxQKVSITk5echt8vPzYTAY3FkGERGRbNwanB0dHdBqtVCpVIOuP3jwII4fP46oqCh3lkFERCQbt04rFhkZiebmZlRXV2PBggXo6uqCIAjOS7V5eXlYu3YtXnvtNcl9nz2bPddQAe0L5PzZ5H6dfPl1P9dYeQ9Ym/J9yd0fa5P3uW4NzvDwcJSVlSEnJwdpaWlQq9VIT09HUlIS3nvvPUyePBkzZ84cUd9GoxG1tbUAgLi4OABwPvY1KpUKoih6XV/u6M9bjZX3gLUp35fc/bG2izs/Q84+HorbJ7I2m80wm80D2m02G/bt24d58+bh4MGDuOKKKzBz5kzMnj3b3SURERGNmNuDcygrV67EypUrAQBr1qzB9ddfz9AkIiKvp1hwnmvNmjVKl0BERDQsHHKPiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAKPBKfVakV8fDw0Gg2Cg4ORmprqid0SERHJzu3BWVlZCZPJhKysLLS3t6OlpQUZGRnu3i0REZFbuHWsWofDgczMTJSVleGee+4BAAQGBjrn47z88ssRExMDALj//vvx4IMPurMcIiKiS+bW4Dw72XRycvKg66+99lqfnUOTiIh8k1sv1XZ0dECr1Q45q3ZbWxuMRiPuueceHDp0yJ2lEBERycKtwRkZGYnm5mZUV1ejv78fnZ2dePvtt53rDx8+DIvFghUrViA9Pd2dpRAREclDdLPy8nLxhhtuEK+44grxqquuEnNzcwfdbubMmcPu02g0igC4cOHChQsXtywX4vaJrM1mM8xm84D27u5uXH755fD398cnn3yCSZMmSerXaDQ6vx+Ni4sDAJ/9vlSlUkEURa/ryx39eaux8h6wNuX7krs/1nZx52fI2cdDcXtwDuWzzz5DZmYm1Go1AGDjxo1KlUJERDRsigXnrbfeio8++kip3RMREY0Ih9wjIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJIFHgtNqtSI+Ph4ajQbBwcFITU31xG6JiIhk5/bgrKyshMlkQlZWFtrb29HS0oKMjAx375aIiMgt3BqcDocDmZmZKC0tRUpKCgIDA6FWq5GUlAQA+PjjjzFv3jzccccdWLp0qTtLISIikoVbZ0exWCxQqVRITk4esK63txc5OTnYvn07goKC3FkGERGRbNx6xtnR0QGtVguVSjVg3QcffAC1Wo0lS5YgLi4OO3fudGcpRERE8hDdaP/+/WJAQIC4Y8cO8cyZM+LJkyfFmpoaURRFcevWreK0adPEkydPiidOnBDDwsLEb7/9dlj9Go1GEQAXLly4cOHiluVC3HqpNjw8HGVlZcjJyUFaWhrUajXS09ORlJSESZMmQa/XIzg4GAAQERGBgwcPIjIyclh9G41G1NbWAgDi4uIAwPnY16hUKoii6HV9uaM/bzVW3gPWpnxfcvfH2i7u/Aw5+3gobg1OADCbzTCbzQPa9Xo9nnjiCfT19UEURXz++eeYNm2au8shIiK6JG4PzqEEBQUhJycHc+fORW9vL1auXInJkycrVQ4REdGwKBacALBo0SIsWrRIyRKIiIgk4ZB7REREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBJ4JDitVivi4+Oh0WgQHByM1NRUT+yWiIhIdm4PzsrKSphMJmRlZaG9vR0tLS3IyMhw926JiIjcwq1j1TocDmRmZqKsrAz33HMPACAwMBBJSUloaGjAr371KwDA6dOn8eWXX+L48ePuLIeIiOiSuTU4LRYLVCoVkpOTB6y79dZbnXOfbd26FfX19e4shYiISBZuvVTb0dEBrVYLlUp1we1effVVLF682J2lEBERycKtwRkZGYnm5mZUV1ejv78fnZ2dePvtt122aWtrw+HDhzF79mx3lkJERCQLt16qDQ8PR1lZGXJycpCWlga1Wo309HQkJSU5t3n99deRlpYmue+zl4HPdbEz29FMzp9N7tfJl1/3c42V94C1Kd+X3P2xNnmfqxJFURzxXmRw8803Y/v27Zg5c+awnxMXFwcAzu9Iz3/sa1QqFeR6m+Tsyx39eaux8h6wNuX7krs/1nZxg2XKhfJE0QEQ9u/fjwkTJkgKTSIiIiUpGpw33XQTrFarkiUQERFJwiH3iIiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBIwOImIiCRgcI4RZ86cwaFDhwAAPT09CldDRDR6eSQ4rVYr4uPjodFoEBwcjNTUVE/slgD09fVh3bp1mDlzpnNM4NDQUPz617/GqVOnFK6OiGj0cXtwVlZWwmQyISsrC+3t7WhpaUFGRoa7d0sAvvvuOyxcuBCPP/44rrvuOmzcuBEAcPvtt2PdunWIi4tDV1eXwlUSEY0ubg1Oh8OBzMxMlJaWIiUlBYGBgVCr1UhKSoIoisjOzsbs2bMRHR2NLVu2uLOUMam4uBg7duzAiy++iL///e948MEHAQBVVVXYsWMH9u3bhyeeeELhKomIRhe3BufZyaaTk5MHrPv000/x6aef4v3330dtbS3y8vLcWcqYI4oiiouLodfrkZ2dPWD9ggULkJaWhs2bN/OSLRGRBG4Nzo6ODmi12kFn1b7mmmtw2WWXoa+vD6dOncKkSZPcWcqYc/z4cRw4cAALFy4ccpvU1FScOnUKn3zyiQcrIyIa5UQ32r9/vxgQECDu2LFDPHPmjHjy5EmxpqZGFEVR7O/vF5cvXy5Onz5dnDJlilhVVTXsfo1GowiACxcuXLhwcctyIQFwo/DwcJSVlSEnJwdpaWlQq9VIT09HUlIS3nnnHbS2tuLgwYP49ttvYTAYcNddd2H8+PHD6ttoNKK2thYAEBcXBwDOx75GpVJBFEVJz+nv78eNN96Iq666CnV1dYP2lZ6ejj//+c/4+uuvodFoPFbbaCTnzyn3a8balO+PtSnf16X0d36GnH08FLffVWs2m3HgwAF0d3fj6NGjKCgocK6bNGkS/P39oVar0dfXhzNnzri7nDHDz88PWVlZqK+vxyuvvDJg/V//+lds2bIFixcvHnFoEhGNRYoNgJCQkABRFHHbbbchNjYWK1aswIQJE5Qqxyc9/PDDmDdvHh588EHMnz8fmzdvBgCkpaXhrrvuwqxZs/DMM88oXCUR0eji1ku1F+Lv74/y8nKldj8mXHbZZXjrrbdQWFiIjRs3oqamBgCwe/duPPzww1izZg2Cg4MVrpKIaHThkHs+7rLLLkNeXh4OHz6Mzz77DADw9ddf44UXXmBoEhGNAINzjBg3bhzCwsIAgJfEiYguAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJFDs7zhpbFm1ahXsdrvSZTjpdDq88MILSpdBRKMQzzjJI+x2u+Tg7O3thcViGTDt2enTp2GxWOBwODxWCxHRWR4547RarcjLy0NjYyP8/PyQmJiIiooKT+yavIhOp5M0EP+uXbuQmpoKQRAQEPCfQ7WiogLLli2DIAjw85P+u9/FBnA+6+TJk9i8eTPef/99AMAf/vAHLFmyhANHEI1xbj/jrKyshMlkQlZWFtrb29HS0oKMjAx375Z8gM1mg06ncwlNAGhoaEBUVNSIQnO4tm/fjtDQUDz66KOw2WwAgEceeQShoaH4y1/+4rb9EpH3c2twOhwOZGZmorS0FCkpKQgMDIRarUZSUhIA4Le//S1iY2MRFxfHyZRpAJvNhujo6AHtDQ0Ng7bLpba2FosWLYJOp0NTUxO++uorZz3h4eFITU1FfX292/ZPRN7NrcFpsVigUqmQnJw8YJ3dbkdDQwPee+89lJeX45FHHnFnKTQKDRac/f39aGpqQnR0NI4dO+b8xSsmJgZ79uyRZb/5+fm4+uqrUVNTg5tvvtnZHhUVhbfffhtTpkzhrDJEY5hbg7OjowNarRYqlWrAun/84x+IiooCAEyfPh2ff/45vvvuO3eWQ6NIa2sr2tranMfIWXa7Hd3d3dDr9QgJCUFdXR1qa2uxbds2rF69+pL3+/XXX2PPnj3IzMyEWq0esD4oKAgZGRmoqanBN998c8n7I6JRSHSj/fv3iwEBAeKOHTviVEYwAAAgAElEQVTEM2fOiCdPnhRrampEURTFTz75RIyNjRV7enrEDz/8UFSpVOI333wzrH6NRqMIgMsoW4xG47CPnQ8++EAEIH799dcu7b/85S9FvV4/YPsPP/xQTE9P5/HDhQsXWZYLcesZZ3h4OMrKypCTkwONRoOwsDDs3bsXAPCjH/0IaWlpSEhIQHFxMW666SZMnjx52H0bjUaIoghRFGE0Gl0e+9oCwCv7ktKf0WiUdOyEhYUhKCgIhYWF6OzsxIkTJ1BSUoLi4mIUFhY6t2tubobBYEBSUhJMJtOIjp9zl6+//hoA8PTTTw/5c/7mN7+BSqXCN998M6reA9bG2rytP2+p7fwMudjnldvvqjWbzThw4AC6u7tx9OhRFBQUONdlZ2dj7969WLVqFXQ63aCXdGls0mg02LlzJ2w2G0JDQzFr1ixUVVWhpqbG5aCeMWMG6uvrIQgCsrOzL3m/V199NRISErBx40Z0dXUNWN/Z2YmysjLMnz8fISEhl7w/Ihp9FB056M4778R3332HkJAQ/PGPf1SyFPJCBoMBVqt1yPU9PT0YP348gO+DduLEibLs98knn8Qdd9yBefPm4cUXX3R+z9rY2Ijs7GwcP34cTzzxhCz7IqLRR9HgfOedd5TcPY1yjY2NyM3Nhb+/P/r6+lBUVCRLv3PmzMGf//xnLFmyBLfccgumTZsGALj11luhVquxfft2xMbGyrIvIhp9OFYtjVoGg8H5nbnc7r33XsTHx+PVV1/F+++/j3/+85946aWXsHjxYmg0Grfsk4hGBwYneYzdbh/2cHfurkOn0110u6CgIKxYsQIrVqzA1q1bPVAZEY0GDE7yiOEElafodDqvqoeIRhcGJ3kEp/AiIl/BacWIiIgkYHASERFJwOAkIiKSgMFJREQkAW8OIo9YtWoV7Ha70mU46XQ63rBERCPCM07yCLvdLjk4e3t7YbFYcOrUKZf206dPw2KxwOFweKwWufzrX/8C8P20aUQ0Osl6xmm1WpGXl4fGxkb4+fkhMTERFRUVcu6CRjGdTofa2tphb79r1y6kpqZCEAQEBPznUK2oqMCyZcsgCAL8/KT/7qfEIAxvv/028vPzUV9fDwAIDQ1FfHw88vLyMGfOHI/XQ0QjJ9sZZ2VlJUwmE7KystDe3o6WlhZkZGTI1T2NQTabDTqdziU0AaChoQFRUVEjCk0lvPbaa5g/fz5aW1vx7LPPAgDWrl2LAwcOID4+Hm+99ZbCFRKRFLJ88jgcDmRmZqK0tBQpKSkIDAyEWq1GUlISACAhIQFTpkxBfn6+8zlbtmzB7NmzMXv2bLz77rtylEE+xmazITo6ekB7Q0PDoO3eqL29HRkZGZg7dy4++eQT/OpXvwIA/OY3v8Enn3yCyMhILFmyBN3d3QpXSkTDJUtwWiwWqFQqJCcnD7q+vLwc69evdz7u7OzEhg0b8O6776K6uhqPPvoo+vv75SiFfMhgwdnf34+mpiZER0fj2LFjiI2NRVxcHGJiYrBnzx6FKh3apk2b0Nvbiz/+8Y+YMGGCy7qgoCAUFRWhq6sLW7ZsUahCIpJKluDs6OiAVqsdciLq0NBQl8eCIMBoNCIwMBAhISG45pprcPjwYTlKIR/R2tqKtrY251yYZ9ntdnR3d0Ov1yMkJAR1dXWora3Ftm3bsHr1aoWqHdoHH3yAsLAwzJo1a9D1MTExuPrqqyEIgocrI6KRkuXmoMjISDQ3N6O6uhoLFixAV1cXBEFwXqo93/Hjx6HVap2PtVotjh8/juuuu27Y+zx7lnuuoYLbF8j5s8n9Og23P6PROOw+jxw5AgAIDg52ad+6dSv0ej2mTp3q0t7Z2YmIiIhh9z/Y8eNOFztWy8vLUV5eLlv/l0Kp48PTfcndH2tTvq9L7W+4z5XljDM8PBxlZWXIycmBRqNBWFjYBedJnDx5Mk6ePOl83NnZicmTJ0vap9FohCiKEEURRqPR5bGvLQC8si8p/UkJTQAICwtDUFAQCgsL0dnZiRMnTqCkpATFxcUoLCx0btfc3AyDwYCkpCSYTKYRHT/uXDZs2AAA+Pjjjwd9zSwWCwCgrKzMK95TpY4P1sbalOzv/Ay52OeVbLclms1mHDhwAN3d3Th69CgKCgqG3DYmJgZ1dXXo6enBiRMn0NraiunTp8tVCvkAjUaDnTt3wmazITQ0FLNmzUJVVRVqampcDuoZM2agvr4egiAgOztbwYoHt3TpUlx++eV46KGH0NXV5bKuo6MDK1euxKRJk5CWlqZQhUQklUdGDkpPT4cgCOjp6YEgCKiursaqVaucf0/33HPPjZo/LSDPMRgMsFqtQ67v6enB+PHjAXwftBMnTvRUacM2adIkvPbaa1i0aBFuvPFG559oPf7449i0aRNOnTqFHTt2DLhxiIi8l0eCc9OmTQPalixZgiVLlnhi9+SjGhsbkZubC39/f/T19aGoqEjpkgaVkpKCd999F4WFhc4rMc899xx++tOfIjc3F7fccovCFRKRFByrljzGbrfLPmqPn58fRFFEQEAA1q5di7Vr1w6rDp1OJ2sdF2MwGLBz506cOHECJ06cQEhIyIAbn4hodGBwkkd4OqguRKfTKVbPpEmTMGnSJEX2TUTyYHCSR3AmEiLyFbwjh4iISAIGJxERkQQMTiIiIgkYnERERBLw5iDyiFWrVsFutytdhpNOp+MNS0Q0IjzjJI+w2+2Sg7O3txcWiwWnTp1yaT99+jQsFgscDofHaiEiOkv2M06r1Yq8vDw0NjbCz88PiYmJqKiokHs3NArpdDrU1tYOe/tdu3YhNTUVgiAgIOA/h2pFRQWWLVsGQRBGNFSj3IMwKOHrr7/GK6+8gsbGRgDAhg0bsHTpUsmTJRCRdLKecVZWVsJkMiErKwvt7e1oaWlxjs1JJJXNZoNOp3MJTQBoaGhAVFTUmB3fuLS0FNOmTcNTTz2FlpYWAMBjjz2GH/7wh3jzzTcVro7I98n2yeNwOJCZmYnS0lKkpKQgMDAQarXaOSdnQkICpkyZgvz8fOdzBmsjOstmsyE6OnpAe0NDw6DtY8Fbb72FzMxMJCYm4ssvv8THH38MANi/fz8iIiLwX//1X/jggw8UrpLIt8kWnGcnBk5OTh50fXl5OdavX3/RNqKzBgvO/v5+NDU1ITo6GseOHUNsbCzi4uIQExODPXv2KFSp5+Tn5+PGG2/Em2++iZkzZzrbw8PDsXv3bgQHB+PZZ59VsEIi3yfbd5wdHR3QarVDzqAdGho6rDYiAGhtbUVbWxuioqJc2u12O7q7u6HX6xESEoK6ujr4+/vj0KFDuO+++5zf+fmiL7/8EjabDUVFRc7p1M4VHByM9PR0bNiwAV1dXdBoNApUSeT7ZAvOyMhINDc3o7q6GgsWLEBXVxcEQXBeqpXb2TPccw0V2r5Azp9N7tdpuP1dbFb1cx05cgQABswgsnXrVuj1ekydOtWlvbOzExEREcPuf7DjZ7R45JFH8Mgjj7i0nf+zBAUFjbh/pY4PT/cld3+sTfm+LrW/4T5Xtku14eHhKCsrQ05ODjQaDcLCwrB37165uh/AaDRCFEWIogij0ejy2NcWAF7Zl5T+pIQmAISFhSEoKAiFhYXo7OzEiRMnUFJSguLiYhQWFjq3a25uhsFgQFJSEkwm04iOn9GyNDc3AwAKCwuHfA9WrlyJcePG4dSpU6Pq+GBtrE3J/s7PkIt9Xsl6W6LZbMaBAwfQ3d2No0ePOiftJZJKo9Fg586dsNlsCA0NxaxZs1BVVYWamhqXg3rGjBmor6+HIAjIzs5WsGL3mz59OubMmYOXX355wN+2AkBbWxs2b96M1NRUTJw4UYEKicYGj40clJ6eDkEQ0NPTA0EQUF1dPWgb0VkGgwFWq3XI9T09Pc7v+jQazZgIizVr1iAxMRGJiYl4/vnnodfrAQB/+9vfsGLFCvT19WH16tUKV0nk2zwWnJs2bRpWG9FwNTY2Ijc3F/7+/ujr60NRUZHSJbnd3LlzUVFRgQceeACxsbG48sorAQCJiYm48sorsXv3btx0000KV0nk2zhWLY1aBoPBrd+jeyuTyYTExERs3boVjY2NKCsrw5YtW7Bw4cJB77YlInkxOMlj7Ha7Vwx3Z7fbodPplC7jkkycOBEPPvggHnzwQbzyyitKl0M0pjA4ySO8Kah0Op1X1UNEowuDkzyCU3gRka8Ym6NkExERjRCDk4iISAIGJxERkQQMTiIiIgl4cxB5xKpVq2C325Uuw0mn0/GGJSIaEZ5xkkfY7XbJwdnb2wuLxTJgXNbTp0/DYrHA4XB4rBZfJ4oiPv30UwDAV199pXA1RN5N9jNOq9WKvLw8NDY2ws/PD4mJiaioqJB7NzQK6XQ61NbWDnv7Xbt2ITU1FYIgICDgP4dqRUUFli1bBkEQ4Ocn/Xc/bxiEwZu88cYbKCgowP79+wEA119/PW6//XY89dRTmDt3rsLVEXkfWc84KysrYTKZkJWVhfb2drS0tCAjI0POXdAYYrPZoNPpXEITABoaGhAVFTWi0CRXL7zwAhYtWgQAePnllwEA69atw7/+9S8kJibirbfeUrI8Iq8k2yePw+FAZmYmSktLkZKSgsDAQKjVaudE1gkJCZgyZQry8/MBfH85aM6cObj99tthMBhgs9nkKoV8hM1mQ3R09ID2hoaGQdtJmubmZvziF7+AyWTChx9+iIceeggA8Nhjj2Hfvn24+eab8cADD+Df//63wpUSeRfZgtNisUClUiE5OXnQ9eXl5Vi/fr3zcXBwMN58803U1dWhtLQUjz76qFylkI8YLDj7+/vR1NSE6OhoHDt2DLGxsYiLi0NMTAz27NmjUKWj08aNG6FSqVBUVIRx48a5rNNoNNiwYQM6OzvxxhtvKFQhkXeS7TvOjo4OaLVaqFSqQdeHhoa6PJ48ebLz3+PHj4e/v79cpZAPaG1tRVtbG6Kiolza7XY7uru7odfrERISgrq6Ovj7++PQoUO477770NjYqFDFo8+HH36IW265BVOnTh10/Zw5cxAcHAybzYalS5d6uDoi7yVbcEZGRqK5uRnV1dVYsGABurq6IAiC81LtUM6cOYOVK1dKnnz37BnuuYYKbV8g588m9+s03P6MRuOw+zxy5AiA769MnGvr1q3Q6/UDPuw7OzsREREx7P4HO37Gqov9PyouLkZxcbFs/V8KpY5dT/cld3+sTd7nynapNjw8HGVlZcjJyYFGo0FYWNhF50oURRHp6em4++67MW/ePEn7MxqNEEURoijCaDS6PPa15exr5W19SelPSmgCQFhYGIKCglBYWIjOzk6cOHECJSUlKC4uRmFhoXO75uZmGAwGJCUlwWQyjej4GavLM888AwD4/PPPB30/d+zYAQDYvn27VxxvSh27rM33azs/Qy72eSXrbYlmsxkHDhxAd3c3jh49ioKCggtuv2LFClx//fVYvny5nGWQD9BoNNi5cydsNhtCQ0Mxa9YsVFVVoaamxuWgnjFjBurr6yEIArKzsxWsePRZtmwZAgMDsWzZMnz77bcu61paWrBq1SqEhobipz/9qUIVEnknj40clJ6eDkEQ0NPTA0EQ8Mtf/hKlpaWIjY3Fnj17MGnSJFRVVXmqHBoFDAYDrFbrkOt7enowfvx4AN8H7cSJEz1Vmk+48sor8dprryEtLQ3XX389HnjgAQDAQw89hNdffx1+fn54++23B9w4RDTWeSw4N23aNKCtt7fXU7snH9TY2Ijc3Fz4+/ujr68PRUVFSpc06ixcuBChoaFYt24dfv/73wMANm/ejEWLFuHxxx/HrFmzFK6QyPtwrFryGLvdLvuoPX5+fhBFEQEBAVi7di3Wrl07rDp0Op2sdYxmer0eVVVV6O7uRldXF7RaLS6//HKlyyLyWgxO8ghvCiqdTudV9XiLiRMn8nI30TAwOMkjOBMJEfkKDvZJREQkAYOTiIhIAgYnERGRBAxOIiIiCXhzEHnEqlWrYLfblS7DSafT8YYlIhoRnnGSR9jtdsnB2dvbC4vFglOnTrm0nz59GhaLBQ6Hw2O1EBGdJesZp9VqRV5eHhobG+Hn54fExERUVFTIuQsaxXQ6HWpra4e9/a5du5CamgpBEBAQ8J9DtaKiAsuWLYMgCPDzk/67n9yDMJCrf/zjHygpKUFTUxMAoKCgABkZGfjBD36gcGVE8pDtjLOyshImkwlZWVlob29HS0sLMjIy5OqexiCbzQadTucSmgDQ0NCAqKioEYUmudfvfvc73HjjjXjppZfw3XffAQB+85vfYPr06XjzzTcVro5IHrJ88jgcDmRmZqK0tBQpKSkIDAyEWq12zsWZkJCAKVOmID8/HwBw7NgxxMbGIi4uDjExMdizZ48cZZCPsdlsiI6OHtDe0NAwaDspa/PmzcjNzUVaWhr+9a9/ob6+HsD305bpdDpONE4+Q5bgPDspcHJy8qDry8vLsX79eufjkJAQ1NXVoba2Ftu2bZM8iTWNDYMFZ39/P5qamhAdHc1fwLxIf38/CgoKcMstt+C1117DVVdd5Vw3a9Ys7N69GxMnTsSGDRsUrJJIHrJ8x9nR0QGtVjvk7NmhoaEuj/39/Z3/7uzsREREhBxlkA9pbW1FW1sboqKiXNrtdju6u7uh1+udv4D5+/vj0KFDPKNRkN1ux5dffok//elPLv+/zwoODsbixYtRXFzsMh0c0WgkS3BGRkaiubkZ1dXVWLBgAbq6uiAIgvNS7WCam5uxePFiHDhwAH/6058k7/PsWe65hgpuXyDnzyb36zTc/i42q/q5jhw5AuD7D9xzbd26FXq9HlOnTnVpl/oL2GDHD126pUuXYunSpS5t57/OgYGBI+5fqWPX033J3R9rk/e5slyqDQ8PR1lZGXJycqDRaBAWFoa9e/de8DkzZsxAfX09BEFAdna25H0ajUaIoghRFGE0Gl0e+9oCwCv7ktKflNAEgLCwMAQFBaGwsBCdnZ04ceIESkpKUFxcjMLCQud2zc3NMBgMSEpKgslkGtHxw+XSl88//xwA8Pzzzw95fJjNZkycOBG9vb1uPdaU6I+1Kd/XpfR3foZc7PNKttsSzWYzDhw4gO7ubhw9ehQFBQVDbtvT0+P8t0aj4VRGNIBGo8HOnTths9kQGhqKWbNmoaqqCjU1NS4H9aX+AkbymDVrFvR6PV566aUBf3cLAF999RXeeOMNLF68GOPGjVOgQiL5eGTkoPT0dAiCgJ6eHgiCgMcffxy5ubnw9/dHX18fioqKPFEGjTIGgwFWq3XI9ed+V8ZfwJSXn5+PpKQkxMfHY926dc5fcLZv345f/OIXmDBhAnJychSukujSeSQ4N23aNKDtYpdyiS6msbGRv4B5kfj4eGzfvh3p6emYO3cu1Go1ACA1NRUzZszA3/72N1x33XUKV0l06ThWLY1aBoOBv4B5mXvuuQdJSUl444038NFHH+EPf/gDqqurMX/+/EHvtiUajRic5DF2u90rhruz2+3Q6XRKl+GzLr/8cjzwwAN44IEHeBWAfBKDkzzCm4JKp9N5VT1ENLowOMkjOIUXEfkKjpJNREQkAYOTiIhIAgYnERGRBAxOIiIiCXhzEHnEqlWrYLfblS7DSafT8YYlIhoRnnGSR9jtdsnB2dvbC4vFMmDs09OnT8NiscDhcHisFlLOmTNn8MEHHwAAPvvsM4WrIZL5jNNqtSIvLw+NjY3w8/NDYmIiKioq5NwFjWI6nQ61tbXD3n7Xrl1ITU2FIAgICPjPoVpRUYFly5ZBEAT4+Un/3c8bBmGgixNFERs3bsSzzz6Lw4cPAwB+9KMfISYmBs888wzuuOMOZQukMUu2M87KykqYTCZkZWWhvb0dLS0tyMjIkKt7GoNsNht0Op1LaAJAQ0MDoqKiRhSaNHo8+eSTWL58Oa699lq8/vrrAICioiJ0dHTgzjvvxI4dOxSukMYqWT55HA4HMjMzUVpaipSUFAQGBkKtVjsnsk5ISMCUKVOQn5/v8rzjx49Dq9Viy5YtcpRBPsZmsyE6OnpAe0NDw6Dt5Dv279+PgoICpKenY+/evbj//vsBACtXrkRTUxN0Oh2WLVvmMkUhkafIEpwWiwUqlQrJycmDri8vL8f69esHtOfn58NgMMhRAvmgwYKzv78fTU1NiI6OxrFjxxAbG4u4uDjExMRgz549ClVKcispKUFgYCDWrVs34MqCRqPB7373O3R0dGD79u0KVUhjmSzfcXZ0dECr1UKlUg26PjQ0dEDbwYMHcfz4cURFRclRAvmY1tZWtLW1DTg+7HY7uru7odfrERISgrq6Ovj7++PQoUO477770NjYqFDFJKePPvoIs2fPxuTJkwddHx8fj8DAQNjtdvz3f/+3h6ujsU6W4IyMjERzczOqq6uxYMECdHV1QRAE56XaweTl5WHt2rV47bXXRrTPs2e55xoquH2BnD+b3K/TcPs7O7HxcBw5cgQAEBwc7NK+detW6PV6TJ061aW9s7MTERERw+5/sOOHvM/F/o9v2LABGzZskK3/S6HU/ytP9yV3f95U23CfK8ul2vDwcJSVlSEnJwcajQZhYWEXnCfxvffew+TJkzFz5swR79NoNEIURYiiCKPR6PLY1xYAXtmXlP6khCYAhIWFISgoCIWFhejs7MSJEydQUlKC4uJiFBYWOrdrbm6GwWBAUlISTCbTiI4fLt63rFmzBgDw5ZdfDnqsvfrqqwCAv/71ryPehy/8v2Jt8vR3foZc7PNKtj9HMZvNMJvNw9rWZrNh3759mDdvHg4ePIgrrrgCM2fOxOzZs+Uqh0Y5jUaDnTt34vHHH0doaCgmTJgAnU6HmpoazJkzx7ndjBkzUF9fj0OHDuGOO+7A3XffrWDVJJef//zneOaZZ2A2m/F///d/CAoKcq774osv8Ktf/QphYWH8kxRShEdGDkpPT4cgCOjp6YEgCKiursbKlSsBAGvWrMH111/P0KQBDAYDrFbrkOt7enowfvx4AN8H7cSJEz1VGrnZNddcg9dffx1paWmYPn06fvaznwEA0tLSUFlZCa1Wi+3bt/NPkkgRHgnOTZs2Dbnu7CUZIqkaGxuRm5sLf39/9PX1oaioSOmSSEYLFy7EtGnT8Nxzz6GkpAQAsHv3bjz88MP4xS9+MeB7biJP4Vi15DF2u132UXv8/PwgiiICAgKwdu1arF27dlh16HQ6Wesg94iOjsb//u//oq+vD//+97+hVqt5lkmKY3CSR3hTUOl0Oq+qhy5u3LhxLt9zEimJwUkewZlIiMhX8JoHERGRBAxOIiIiCRicREREEjA4iYiIJODNQeQRq1atgt1uV7oMJ51OxxuWiGhEeMZJHmG32yUHZ29vLywWC06dOuXSfvr0aVgsFjgcDo/VQkR0lqxnnFarFXl5eWhsbISfnx8SExNRUVEh5y5oFNPpdKitrR329rt27UJqaioEQUBAwH8O1YqKCixbtgyCIIzoj+HlHoSBRg+bzYaSkhLs27cPwPcjl/385z/Htddeq3BlNJrIdsZZWVkJk8mErKwstLe3o6WlBRkZGXJ1T2OQzWaDTqdzCU0AaGhoQFRUFEeQoWETRRGPPvqocyQirVYLAHj66acxc+ZMVFVVKVwhjSayfPI4HA5kZmaitLQUKSkpCAwMhFqtds7HmZCQgClTpiA/P9/5nMsvvxxxcXGIi4tDaWmpHGWQj7HZbIiOjh7Q3tDQMGg70VBeeOEFvPDCC3j44YfR2tqKt99+G8D305ZFRkZi0aJFaGpqUrhKGi1kCc6zkwInJycPur68vBzr1693abv22mtRW1uL2tpaPPjgg3KUQT5msODs7+9HU1MToqOjcezYMcTGxiIuLg4xMTHYs2ePQpWSN+vr68OGDRuQkJCAF1980WXovpkzZ2LXrl0IDAzE888/r2CVNJrIEpwdHR3QarVDzp4dGho6oK2trQ1GoxH33HMPDh06JEcZ5ENaW1vR1taGqKgol3a73Y7u7m7o9XqEhISgrq4OtbW12LZtG1avXq1QteTN3nvvPXz99ddYvnz5oJ9RWq0W999/PyoqKpyTIRNdiCw3B0VGRqK5uRnV1dVYsGABurq6IAiC81LtYA4fPoyQkBDs2bMH6enpkm4aAf5zlnuuoYLbF8j5s8n9Og23v4vNqn6uI0eOAACCg4Nd2rdu3Qq9Xj9gSqnOzk5EREQMu//Bjh/ybSkpKQPazj8GLuV7c6X+X3m6L7n786bahvtcWc44w8PDUVZWhpycHGg0GoSFhWHv3r0XfE5ISAgAID4+3vkhKYXRaIQoihBFEUaj0eWxry0AvLIvKf1JCU0ACAsLQ1BQEAoLC9HZ2YkTJ06gpKQExcXFKCwsdG7X3NwMg8GApKQkmEymER0/XHx7+eijjwAAxcXFLu3nHrv33HMPpkyZgv7+/hHtQ6n/V6xNnv7Oz5CLfV7Jdlui2WzGgQMH0N3djaNHj6KgoGDIbbu7u3HmzBkAwCeffIJJkybJVQb5CI1Gg507d8JmsyE0NBSzZs1CVVUVampqXA7qGTNmoL6+HoIgIDs7W8GKyVv9+Mc/xs0334wXXnhhwN8EA8DHH3+MHTt2YNmyZbwKQcPikZGD0tPTIQgCenp6IAgCnnzySWRmZkKtVgMANm7c6IkyaJQxGAywWq1Dru/p6cH48eMBfB+0EydO9FRpNIqoVCoUFhbirrvuwh133IGCggIkJCQAAMrKyrB69WpcffXVeOSRRxSulEYLjwTnpk2bBrSdvXxCNFKNjY3Izc2Fv78/+vr6UFRUpHRJ5KXuvPNObN++HQ8++CCSkpIwbtw4AMDPf/5z6HQ6VFRU4KqrrlK4ShotOFYtjVoGg+Gi36UTnXXPPfdg/vz5qKqqwr59+1BYWIi9e/fCYDDwEi1JwuAkj7Hb7V4x3J3dbodOp1O6DFLA+PHjkZaWhrS0NDDcP+wAACAASURBVPzud79TuhwapRic5BHeFFQ6nc6r6iGi0YXBSR7BKbyIyFdwlGwiIiIJGJxEREQSMDiJiIgkYHASERFJwJuDyCNWrVoFu92udBlOOp2ONywR0YjwjJM8wm63Sw7O3t5eWCyWAeOLnj59GhaLBQ6Hw2O1EA2mp6cHf/3rXwEATU1NzoHGybfJesZptVqRl5eHxsZG+Pn5ITExERUVFXLugkYxnU4nafq4Xbt2ITU1FYIgICDgP4dqRUUFli1bBkEQRjQNlDcMwkCjW39/P5599lk8//zz+OabbwAAUVFR0Ol0WLduHRITExWukNxJtjPOyspKmEwmZGVlob29HS0tLcjIyJCrexqDbDYbdDqdS2gCQENDA6Kioi5p7kSikRJFEcuXL0dubi5uvfVWVFdXAwBefvll/Pvf/8b8+fOdbeSbZPnkcTgcyMzMRGlpKVJSUhAYGAi1Wu2cyDohIQFTpkxBfn6+8zkff/wx5s2bhzvuuANLly6VowzyMTabDdHR0QPaGxoaBm0n8gSr1YrS0lI89thjqK6uxt133w0AeOihh2Cz2RAREYHMzEz09fUpXCm5iyzBabFYoFKpkJycPOj68vJyrF+/3vm4t7cXOTk5eOONN/D3v/8df/rTn+Qog3zMYMHZ39+PpqYmREdH49ixY4iNjUVcXBxiYmKwZ88ehSqlsaSkpARBQUH47W9/O2BweLVajbVr1+Lo0aN46623FKqQ3E2W4Ozo6IBWqx1yhoHQ0FCXxx988AHUajWWLFmCuLg47Ny5U44yyIe0traira0NUVFRLu12ux3d3d3Q6/UICQlBXV0damtrsW3bNqxevVqhamks2b9/P+bMmYMrrrhi0PVnr7Tt37/fk2WRB8lyc1BkZCSam5tRXV2NBQsWoKurC4IgOA+g87W2tqKpqQl2ux2iKOK2227DnDlzoNFohr3Ps2e55/LlqYHk/Nnkfp2G25/RaBx2n0eOHAEABAcHu7Rv3boVer0eU6dOdWnv7OxERETEsPsf7PghGg6VSoV9+/Zd9PPn6aefxtNPP31J+5GLUv/nPd3XpfY33OfKcsYZHh6OsrIy5OTkQKPRICws7ILzJE6aNAl6vR7BwcHQarWIiIjAwYMHJe3TaDRCFEWIogij0ejy2NcWAF7Zl5T+pIQmAISFhSEoKAiFhYXo7OzEiRMnUFJSguLiYhQWFjq3a25uhsFgQFJSEkwm04iOHy5cpCyrV6+Gn58f/vnPfzrbzv1/8NJLLwH4/rv4ke7DF/7Pj6bazs+Qi31eyXZbotlsxoEDB9Dd3Y2jR4+ioKBgyG31ej0OHjyIvr4+9Pb24vPPP8e0adPkKoV8gEajwc6dO2Gz2RAaGopZs2ahqqoKNTU1Lgf1jBkzUF9fD0EQkJ2drWDFNFZkZmYiICAA999/P06ePOmyrqGhAU888QRmz57NG9h8mEdGDkpPT4cgCOjp6YEgCKiurkZOTg7mzp2L3t5erFy5EpMnT/ZEKTSKGAwGWK3WIdf39PRg/PjxAL4P2okTJ3qqNBrDpk2bhtdffx33338/pk2bhkWLFgEA7rrrLtTU1GDatGnYtm2bwlWSO3kkODdt2jSgbdGiRc4DjmgkGhsbkZubC39/f/T19aGoqEjpkmiMWLhwIa677jq88MIL2LJlCwBg3759ePLJJ5GdnY0pU6YoXCG5E8eqJY+x2+2yj9rj5+cHURQREBCAtWvXYu3atcOqQ6fTyVoHjT2RkZF49dVXsXnzZpw5c2bAQB3ku/hOk0d4U1DpdDqvqodGN5VKxdAcY/huk0dwJhIi8hUc7JOIiEgCBicREZEEDE4iIiIJGJxEREQS8OYg8ohVq1bBbrcrXYaTTqfjDUtENCI84ySPsNvtkoOzt7cXFosFp06dcmk/ffo0LBYLHA6Hx2ohIjpL1jNOq9WKvLw8NDY2ws/PD4mJiaioqJBzFzSK6XQ61NbWDnv7Xbt2ITU1FYIguPydXEVFBZYtWwZBEODnJ/13P7kHYSC6VKIo4u9//ztKSkrw2Wefwc/PD7/+9a+RmZmJ6dOnK10enUe2M87KykqYTCZkZWWhvb0dLS0tyMjIkKt7GoNsNht0Ot2APy5vaGhAVFTUiEKTyNucOXMGZrMZCQkJePfddzFr1iz09/dj3bp1zskNyLvI8snjcDiQmZmJ0tJSpKSkIDAwEGq12jkfZ0JCAqZMmYL8/HwA33/wxcXFIS4uDnq9ngO806BsNtugM0w0NDRw5gnyGWvWrMFrr72GvLw8HDlyBJWVlQC+nzIvMjISixYtwr59+xSuks4lS3CenRQ4OTl50PXl5eVYv3698/Gtt96K2tpa1NbWYuXKlbjvvvvkKIN8zGDB2d/fj6amJkRHR+PYsWOIjY1FXFwcYmJisGfPHoUqJRoZh8OBF198ESkpKXjqqacQGBjoXPfDH/4Q1dXVGDduHP7whz8oWCWdT5bg7OjogFarHXL27NDQ0CGf++qrr2Lx4sVylEE+pLW1FW1tbYiKinJpt9vt6O7uhl6vR0hICOrq6lBbW4tt27Zh9erVClVLNDLvvvsuvv32Wzz00EODrp88eTJSU1Oxfft2D1dGFyLLzUGRkZFobm5GdXU1FixYgK6uLgiC4LxUO5S2tjYcPnwYs2fPlrzPs2e55xoquH2BnD+b3K/TcPu72Kzq5zpy5AgAIDg42KV969at0Ov1mDp1qkt7Z2cnIiIiht3/YMcPkVISExMHtMn5+abU/3lP93Wp/Q33ubKccYaHh6OsrAw5OTnQaDQICwvD3r17L/q8119/HWlpaSPap9FohCiKEEURRqPR5bGvLQC8si8p/UkJTQAICwtDUFAQCgsL0dnZiRMnTqCkpATFxcUoLCx0btfc3AyDwYCkpCSYTKYRHT9cuCi1vP/++wCA//mf/3FpP/f/1dy5czFz5swR70Op//OjqbbzM+Rin1ey3ZZoNptx4MABdHd34+jRoygoKLjoc7Zs2YKf/exncpVAPkSj0WDnzp2w2WwIDQ113l1YU1PjclDPmDED9fX1EAQB2dnZClZMJF1MTAx+9KMfYf369eju7h6wfu/evXj33Xf5FwpexiMjB6Wnp0MQBPT09EAQBFRXV2P//v2YMGECZs6c6YkSaBQyGAywWq1Dru/p6cH48eMBfB+0EydO9FRpRLJQqVTYsGEDFixYAKPRiKeeesr5Fddzzz2HNWvW4IYbbkBmZqbCldK5PBKcmzZtGtB20003XfBDkehiGhsbkZubC39/f/T19aGoqEjpkogkmzdvHt5880089NBD+MlPfuJsz8nJwdy5c7FlyxZotVoFK6TzcaxaGrUMBsOwvksn8nY//elPMX/+fFRXV+PTTz9FXl4e7HY7fvzjHytdGg2CwUkeY7fbvWK4O7vdDp1Op3QZRC7GjRuHe++9F/feey+efPJJpcuhC2Bwkkd4U1DpdDqvqoeIRhcGJ3kEp/AiIl/BUbKJiIgkYHASERFJwOAkIiKSgN9xkkesWrUKdrtd6TKcdDodv3clohHhGSd5hN1u95rg9KZaiGj04RkneYxOp0Ntbe2wt29vb8cPfvADNDU14eabb3a2//Of/8T06dPx2WefISwsTHId3vC3pETu1tXV5Zyj9r333sPs2bM5I5BMZD3jtFqtiI+Ph0ajQXBwMFJTU+XsnsaYxsZGXH755bjppptc2hsaGqBWq3HjjTcqVBmR9+rr68Njjz2Ga6+9Fvfeey8A4LbbbkN4eDjefvtthavzDbIFZ2VlJUwmE7KystDe3o6WlhaO6E+XxGazQafTISDA9cJIQ0MDoqKi4OfHbxqIztXf34/7778fGzZsQHJyMiwWC4Dvxwvv7+/HggULsGvXLoWrHP1k+eRxOBzIzMxEaWkpUlJSEBgYCLVa7RzlPyEhAVOmTEF+fj6A7+dLy87OxuzZsxEdHY0tW7bIUQb5GJvNhujo6AHtDQ0Ng7YTjXW7d+/G9u3b8eyzz2LLli2YM2cOAGDp0qVoaGhAeHg4li9fjjNnzihc6egmS3BaLBaoVCokJycPur68vBzr1693Pv7000/x6aef4v3330dtbS3y8vLkKIN8zGDB2d/fj6amJkRHR+PYsWOIjY1FXFwcYmJinN/nEI1VJSUluPrqq/Hoo48OWKdWq5GXl4eWlhbs3r1bgep8hyw3B3V0dECr1Q75xXNoaKjL42uuuQaXXXYZ+vr6cOrUKUyaNEmOMsiHtLa2oq2tDVFRUS7tdrsd3d3d0Ov1CAkJQV1dHfz9/XHo0CHcd999aGxsVKhiIuV99tlniIuLw7hx4wZdf+eddzq3u/vuuz1Zmk+RJTgjIyPR3NyM6upqLFiwAF1dXRAEwXmp9nxarRYzZ87EDTfcAIfDgY0bN0re59mz3HP58h1jcv5scr9Ow+3PaDQOu88jR44AAIKDg13at27dCr1ej6lTp7q0d3Z2IiIiYtj9D3b8EI12fn5+OHToELZt2+bSfv6x/vjjj+Pxxx8f8X584fPoUp4ry6Xa8PBwlJWVIScnBxqNBmFhYRecJ/Gdd95Ba2srDh48iC+++AJPPPEEenp6JO3TaDRCFEWIogij0ejy2NcWAF7Zl5T+pIQmAISFhSEoKAiFhYXo7OzEiRMnUFJSguLiYhQWFjq3a25uhsFgQFJSEkwm04iOHy5cfGV59NFHERAQgCNHjjjbzv0/unbtWgDAF198MeJ9+MLn0fnL+Rlysc8r2W5LNJvNOHDgALq7u3H06FEUFBRccPtJkybB398farUafX19/LKaXGg0GuzcuRM2mw2hoaGYNWsWqqqqUFNT43JQz5gxA/X19RAEAdnZ2QpWTKS85cuXw8/PD/fddx+OHz/usu6dd95BQUEB7rrrLv4p1yXyyAAI6enpEAQBPT09EAQBf/nLX7Bt2zbcdttt6O3txYoVKzBhwgRPlEKjiMFggNVqHXJ9T08Pxo8fD+D7oJ04caKnSiPySjNnzsTrr7+O+++/Hz/84Q+xcOFCAN//Hed7772H8PBwlJeXK1ukD/BIcG7atGlAG988ulSNjY3Izc2Fv78/+vr6UFRUpHRJRIpbuHAhbrjhBrz44ouoqqoCAJw8eRK///3vkZGRAbVarXCFox+H3COPsdvtsg935+fnB1EUERAQgLVr1zq/w7lYHTqdTtY6iLxJREQEXnnlFfx/9u4/Oqrq3v//a2ZcgpKQHAJtEmMDkmu18iNKKCQGZ4ppS/xxW0t7k9iSxFjLtY1T5uK6o9Zqr6Yr9qpUvNpWaiEqtFlXa8TYGg1gRvw1gRKagNSASCu01ApkEqJOgDnfP/ww3xt+OQfOyQB9PtY6a7n3nLP3W4zzYs+c7PPLX/4y2aWclghODImTKajy8/NPqnoAnFoITgwJHuEF4HTBZp8AAFhAcAIAYAHBCQCABQQnAAAWcHMQhsS8efO0fv36ZJcRl5+fzw1LAI4LK04MifXr11sOzoGBAYVCIfX19Q3q/+ijjxQKhdTf3z9ktQDAQbauOF999VXdcccdWrNmjdxut774xS/qySeftHMKnMLy8/PV1taW8Pm/+93v9I1vfEPhcFhnnPH//6g++eSTuv766xUOh+V2W/+7n92bMACnswMHDmj58uV65JFH9Kc//Ulut1vz58/XjTfeqLy8vGSXlxS2rTh/+9vf6pprrtF3v/tdvffee3r33Xf17W9/267h8U9o7dq1ys/PHxSaktTe3q4pU6YcV2gCSFw0GtVXvvIVzZ49W3/605/k8/kUi8X04IMP6qKLLopv6ffPxpZ3nv7+fs2dO1eLFi3S7NmzNXz4cKWmpsafx1lSUqIxY8aorq4ufs2dd96poqIi+Xw+bdiwwY4ycJpZu3atpk6delh/e3v7EfsB2Gv+/Pn63e9+pwcffFBbt27VY489Jkn685//rClTpqiiokJvvvlmkqscerYE58GHAn/lK1854usNDQ2699574+3169ervb1dr732mhoaGvT973/fjjJwmjlScMZiMa1bt05Tp07V3//+9/hfvqZNm6aVK1cmqVLg9LN792796le/0vXXX6+bbrpJHo8n/lp2draeeeYZuVwuPfTQQ0msMjlsCc73339fhmEc9enZOTk5g9rd3d2aMmWKJGns2LHatGmT9u/fb0cpOE3s2LFDO3fujP+cHLR+/Xrt3btX06dP1+jRo7V69Wq1tbXpN7/5jW655ZYkVQucfl588UV99NFHuuGGG474+qc+9Sldc801ampqGuLKks+Wm4MuueQSvfPOO2pubtaVV16p3t5ehcPh+Ee1h7rooou0cOFCDQwMaMOGDdq5c6d6eno0evTohOc8uMr9v44W3KcDO//d7P5zSnS8T3qq+v+1fft2SVJ6evqg/l//+teaPn26zj333EH9PT09mjRpUsLjH+nnB8Dhpk+fflifne+9yXo/OpFrbVlxTpgwQY8++qhuvvlmjRw5UhdeeKFefvnlo55/0UUXqaKiQiUlJfrZz36miRMnKiMjw9KcXq9XpmnKNE15vd5B7dPtkHRSjmVlPCuhKUkXXnih0tLSdM8996inp0e7d+/WL37xC/3sZz/TPffcEz/vnXfeUXFxsb785S/rmmuuOa6fHw4OjsOPg3fAP/HEE4P6D/4/H4vFdPHFFys/P/+450jW+9Ghx6EZ8knvV7bdllhVVaW33npLe/fu1d/+9jf9+Mc/Pub5tbW1evnllzVv3jzl5+fzt38MMnLkSD333HNau3atcnJydMEFF+jpp59WS0vLoB/qcePG6ZVXXlE4HFZtbW0SKwZOLzNmzND555+ve+65R3v37j3s9eXLl6ujo0Pf+c53klBdcg3JzkE1NTUKh8OKRqMKh8Nqbm7Wl770Je3fv1+jR4/Www8/PBRl4BRTXFysV1999aivR6NRDRs2TNLHQZuSkjJUpQGnPbfbrZ/+9Ke6+uqrVVxcrB/+8IcqKSmRJP3whz/Uf//3f2vKlCmqqqpKcqVDb0iCc/HixYf1vfjii0MxNU5ja9as0W233SaPx6N9+/Zp4cKFyS4JOK1cccUVeuaZZ1RbW6uvf/3r8f4f//jHuuaaa/Too4/q7LPPTmKFycFetThlFRcXH/O7dAAn7uqrr9YVV1yhlpYW/elPf9LNN9+st99+W+PGjUt2aUlDcGLIrF+//qTY7m79+vXKz89PdhnAKcPj8ejKK6/UlVdeqfnz5ye7nKQjODEkTqagys/PP6nqAXBqITgxJHiEF4DTBbtkAwBgAcEJAIAFBCcAABbwHSeGxLx587R+/fpklxGXn5/P964AjgsrTgyJ9evXnzTBeTLVAuDUw4oTQyY/Pz++cXQi3nvvPX3605/WunXrdPHFF8f7//znP2vs2LF68803deGFF1qu42T4XVLgn9l7772nF154QZL00ksvyev1yu0+ddZxtlb66quv6vLLL9fIkSOVnp6ub3zjG3YOj38ya9as0VlnnaWJEycO6m9vb1dqaqo++9nPJqkyAMfjgw8+0PXXX6+cnBxVVlZKkmbOnKnPfvazev7555NcXeJsC87f/va3uuaaa/Td735X7733nt599119+9vftmt4/BNau3at8vPzdcYZgz8YaW9v15QpU06pv6EC/+z27dunq6++WkuWLNF3vvMdrVu3TpK0dOlSDRs2TFdffbV+97vfJbnKxNjyztPf36+5c+dq0aJFmj17toYPH67U1FR9+ctf1ttvv63LLrtMM2bMUHFxsdauXSvp4z+swsJCFRYW6qWXXrKjDJxm1q5dq6lTpx7W397efsR+ACevJ598UqtWrdKiRYv00EMPxb9++eY3v6nXX39dF154ofx+v2KxWJIr/WS2BGcoFJLL5dJXvvKVw15LT09XU1OTVq9erUWLFikQCKinp0f33XefXnrpJTU3NysQCJwSf1gYWkcKzlgspnXr1mnq1Kn6+9//rqKiIvl8Pk2bNk0rV65MUqUAPskjjzyivLw81dTUHPZaamqqfvCDH2jr1q2nxP/Httwc9P7778swjCM+jDojIyP+z8OGDZPH41E4HJbX69Xw4cM1fPhwZWdna9u2bTrvvPPsKAengR07dmjnzp2aMmXKoP7169dr7969mj59ukaPHq3Vq1fL4/Fo69atKisr05o1a5JUMYBjeeutt/Sv//qvR/2KZebMmfHzvvjFLw5ladaZNujq6jLPOOMM89lnnzUPHDhg7tmzx2xpaRl0zv79+80rrrjCfP75581ly5aZd955Z/y1a6+91mxvb094Pq/Xa0riOMUOr9eb8H/jN954w5Rk/vWvfx3UP3/+fHP69OmHnf+HP/zBrKmp4eeHg+MkPTweT9JrsHIciy0f1U6YMEGPPvqobr75Zo0cOVIXXnjhoOckmqapmpoaXXXVVZo1a5YyMjK0Z8+e+Os9PT2DVqaJ8Hq9Mk1TpmnK6/UOap9ux8E/w5NtLCvjeb1eS/99L7zwQqWlpemee+5RT0+Pdu/erV/84hf62c9+pnvuuSd+3jvvvKPi4mJ9+ctf1jXXXHNcPz8cHBzOHzfeeKPOPPNM7dy5M973f98/5s+fL4/Ho+3btx/3HMf7/nZohnzS+5VttyVWVVXprbfe0t69e/W3v/1NP/7xj+Ov3XTTTcrLy9ONN94oSZo2bZpWr16taDSq3bt3a8eOHRo7dqxdpeA0MHLkSD333HNau3atcnJydMEFF+jpp59WS0vLoB/qcePG6ZVXXlE4HFZtbW0SKwZwLN/73vdkmqZmz56tf/zjH/F+0zT1m9/8Rg888IDKysp0zjnnJLHKxDi+AUJbW5sWLVqkoqIirVy5UqNGjdLTTz+tefPmxX8R/f777+dXC3CY4uJivfrqq0d9PRqNatiwYZI+DtqUlJShKg2ARRdccIGWLVumb37zmzr33HPjN5NOnDhRGzduVFFRkX7+858nucrEOB6cPp9PAwMDh/VXVlbGfwEWOB5r1qzRbbfdJo/Ho3379mnhwoXJLgnAMXzjG9/QRRddpIcffljLly+XJI0YMUK/+tWvdO2112r48OFJrjAxbLmHIbN+/Xrbt7tzu90yTVNnnHGG7r77bt19990J1ZGfn29rHQAS87nPfU4PP/ywHn744WSXctwITgyJkymo8vPzT6p6AJxaCE4MCR7hBeB0wR05AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCB48HZ2Nio/Px8paam6oILLtAzzzzj9JQAADjG0eBctGiRbr31Vv3yl79UX1+ffvrTn6qiokJ/+ctfnJwWAADHOBacfX19uvXWW7V48WJNnTpVklRaWqoxY8Zo7dq1Wrp0qQoLC1VYWKiXXnrJqTIAALCVYzsHrVq1Sh6PR1/4whfifaZp6v3335fb7dZ9992nN954Q3v37lVJSYnWrVvHE1IAACc9x5Kqt7dXhmEM6mtubtZZZ50ll8slr9er4cOHa/To0crOzta2bducKgUAANs4tuKcNm2atm3bppdfflmXXnqpQqGQ/v3f/13333+/+vv7B4WqYRjatWuXzjvvvITHD4VCcrlcg/oObZ9O7Px3s/vP6XT+cwdwajmR96NEr3UsOM8//3w9+uijuu6667Rz506df/75evDBB/X1r39dL7zwgvbs2RM/t6enRxkZGZbG93q9amtrk6T4o6oOtk83LpdLpmmedGM5MR4AHK/jfT86NEM+6fGHjj4dZc6cOZozZ85h/dOmTdOtt96qaDSq/v5+7dixQ2PHjnWyFAAAbJGUx4qlp6dr3rx58VS///77uTEIAHBKSNrzOCsrK1VZWZms6QEAOC4s8wAAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsCBpOwfh2D788EM1Nzdr+/btkqRdu3ZZ3gjfKf39/Xr22Wf1t7/9TdLHm/Snp6cnuSoA/4z279+vlpYWdXd3S5LeffddnXvuuY7O6eiKMxaLqbKyUrm5uUpJSVFeXp4aGxudnPKUZ5qmHnroIeXk5KisrEzz58+XJOXk5CgQCGjfvn1Jre3ee+/VOeeco2uvvTZe2znnnKNbbrlFBw4cSFptAP75PP300xo3bpyuvvrq+PvR2LFjde2116qvr8+xeR0NzkgkotLSUnV2dqq3t1eBQEDV1dUaGBhwctpT2v3336+bbrpJBQUFWrVqVfzxa9dee60eeOABVVdXJ+0xXnfddZf+8z//UzNmzFAoFIrX9rWvfU0/+clPdOONNyalLgD/fJ5++ml9/etf16c//Wk988wz2r17tyRp/vz5+t///V9dccUVikajzkxuDqG+vj5Tkrl7927ziSeeMKdPn25Onz7dXLVqlaVxvF6v6fV6j9o+Vb3//vvm8OHDza9+9avmgQMH4v0H/zPdcccdpiTztddeszz2r371K3Ps2LGmJPPOO+80Y7GYpev/+te/mmeccYZ57bXXDrr2YG3z5883JZnr16+3XBsAWLF//37z3HPPNS+55BKzv78/3n/w/eiJJ54wJZmPP/54QuMdKVOOxdHgfPHFF81Zs2aZ55xzjjly5EgzJSXFzMrKMvfs2WNOnjzZ/PDDD81//OMf5uTJkwcFxSc5XYNz4cKFpiTzj3/846D+gz8MfX19ZmpqqnnddddZGvf55583JQ06/ud//sfSGPX19aYks7u7+4i17dq1yxw+fLj5ve99z9K4AGDV73//e1OS+dvf/nZQ/8H3o1gsZn72s581i4uLExrPanA69lFte3u7ysvL5ff71d3drUgkomAwqIKCAoXDYXm9Xg0fPlyjR49Wdna2tm3b5lQpp4zNmzcrLS1NkyZNOuLrKSkpuuSSS7RlyxZL465YsUIulyvedrvdam1ttVxbVlaW/uVf/uWIr48aNUoTJ07U22+/bWlcALBq8+bNkqQZ3cIg3gAAIABJREFUM2Yc8XWXy6UZM2ZYfq9MlGN31XZ0dMgwDBUVFcnj8aihoUH19fUKBoPatWuXDMOIn2sYhnbt2qXzzjsv4fFDodCgMJB0WPtUdaR/Dzv/XWOxmJ599tnjGsPp2gAgUZ/61KcO6zuR96NEz3VsxVlWVqa8vDxlZ2frc5/7nPbs2SPDMFRQUKCMjIz4jSXSx7/OYPVXLbxer8yPP2qW1+sd1D5Vj9dff12S9NBDDw3qlz6+o/WVV16RJP385z+3NG5fX58uvvji+J/dOeeco7/85S+WxlixYoUkacmSJUes7YUXXpAkPf7440n/c+Tg4Di9j7/+9a8644wz9P3vf39Q/8H3o3fffVdnnHGG5s+fn9B4h2aI1+s9dgCZSbBnzx7z4osvNj/66CNz165dfMf5/8RiMfPSSy81R4wYYf7+97+P34Qjyezs7DRzc3PNT33qU2Zvb6/lsT/88EPz2WefNZ966ilz9+7dx1Vbfn6+mZaWZq5cuTLeL8n8wx/+YGZnZ5vnnnuu+eGHH1oeGwCsqqqqMt1ut/noo4/G80OS+Ze//MWcMmWKOXz4cHPLli0JjWX1O86kbICQnp6uefPmyefzSfr4VzDcbjYxcrlcevLJJ/XFL35RV1xxhSZPnqxLLrlEkjRp0iSNGTNGzz//vFJTUy2PPXz4cF199dUnVNvy5ctVUlKiyy+/XFOmTIl/FztlyhRlZWXp97//vYYPH37ccwBAoh5++GG9++67+va3v636+vr4953jxo3TmWeeqaeeekrjx493ZO6kpVVlZaVef/11vf7667r88suTVcZJJysrS+FwWI888oiGDx+uF198UZJUV1enDRs2aMqUKUmr7TOf+Yz+8Ic/6KGHHpLL5YrX9pOf/ERdXV2aMGFC0moD8M9lxIgRamlpUWNjoz7zmc/Ev076j//4D23YsEFXXnmlY3O7/t/y9pRycKXa1tZ2xDYAAIk6UqYcK0/4fBQAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACR4MzFoupsrJSubm5SklJUV5enhobG52cEgAARzkanJFIRKWlpers7FRvb68CgYCqq6s1MDDg5LQAADjG0eA0DEMVFRVKS0uT2+1WVVWVotGo+vv7VVJSojFjxqiurs7JEgAAsJWjwdna2qrS0lLl5OQoLS1NWVlZysrKkmEYamho0L333uvk9AAA2M6x4Gxvb1d5ebn8fr+6u7sViUQUDAZVUFAgScrJyXFqagAAHOPY8zg7OjpkGIaKiork8XjU0NCg+vp6BYNBW8YPhUJyuVyD+g5tAwCQqEQzxLHgLCsrU1NTk7Kzs5WZmana2loZhhFfcZ4or9fLY8UAACfsaI+qPBrHgjM9PV0tLS2D+gKBgFPTAQAwJBwLzk9SU1OjcDisaDSqcDis5ubmZJUCAEDCkhacixcvTtbUAAAcN7bcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA/OWCymyspK5ebmKiUlRXl5eWpsbHR6WgAAHOF4cEYiEZWWlqqzs1O9vb0KBAKqrq7WwMCA01MDAGA7x4PTMAxVVFQoLS1NbrdbVVVVikaj6urq0mWXXaYZM2aouLhYa9eudboUAABOmONPR2ltbdWCBQvU1dWlvr4+xWIxZWVlaezYsWpqalJGRobefPNNzZ07V6tXr3a6HAAAToijwdne3q7y8nItXbpUXq9XZ599turq6tTe3q6MjIz4ecOGDZPH43GyFAAAbOFocHZ0dMgwDBUVFcnj8aihoUH19fUKBoPxcw4cOCC/369bbrnF0tihUEgul2tQ36FtAAASlWiGOBqcZWVlampqUnZ2tjIzM1VbWyvDMFRQUCBJMk1TNTU1uuqqqzRr1ixLY3u9XrW1tUmSfD6fJMXbAAAk6tAMOdg+GkeDMz09XS0tLYP6AoFA/J9vuukm5eXl6cYbb3SyDAAAbJO0DRDa2tq0aNEirVy5Uj6fT1/72teSVQoAAAlz/K7ao/H5fPwuJwDglMOWewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWOBocMZiMVVWVio3N1cpKSnKy8tTY2Ojk1MCAOAoR4MzEomotLRUnZ2d6u3tVSAQUHV1NVvtAQBOWY4Gp2EYqqioUFpamtxut6qqqhSNRrVnzx4VFRXJ5/Np2rRpWrlypZNlAABgG0c3eW9tbdWCBQvU1dWlvr4+xWIxZWVlafTo0Vq9erU8Ho+2bt2qsrIyrVmzxslSAACwhWMrzvb2dpWXl8vv96u7u1uRSETBYFAFBQXyeDzyeDySpJ6eHk2aNMmpMgAAsJVjK86Ojg4ZhqGioiJ5PB41NDSovr5ewWBQkvTOO+9ozpw5euutt7RkyRLL44dCIblcrkF9h7YBAEhUohniWHCWlZWpqalJ2dnZyszMVG1trQzDUEFBgSRp3LhxeuWVV7R161bNnDlTV111laXxvV6v2traJH38bE9J8TYAAIk6NEMOto/GseBMT09XS0vLoL5AICBJikajGjZsmCRp5MiRSklJcaoMAABs5ejNQUezZs0a3XbbbfJ4PNq3b58WLlyYjDIAALAsKcFZXFysl19+ORlTAwBwQthyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAscDQ4Y7GYKisrlZubq5SUFOXl5amxsdHJKQEAcJSjwRmJRFRaWqrOzk719vYqEAiourpaAwMDTk4LAIBjHA1OwzBUUVGhtLQ0ud1uVVVVKRqNqr+/X5K0a9cuGYahpUuXOlkGAAC2cTQ4W1tbVVpaqpycHKWlpSkrK0tZWVkyDEOSVFdXp+LiYidLAADAVo4FZ3t7u8rLy+X3+9Xd3a1IJKJgMKiCggJJ0pYtW7Rr1y5NmTLFqRIAALCdY8/j7OjokGEYKioqksfjUUNDg+rr6xUMBiVJd9xxh+6++2498cQTxzV+KBSSy+Ua1HdoGwCARCWaIY4FZ1lZmZqampSdna3MzEzV1tbKMAwVFBTotddeU0ZGhsaPH3/c43u9XrW1tUmSfD6fJMXbAAAk6tAMOdg+GseCMz09XS0tLYP6AoGAJOnBBx9UZ2enZs2apS1btmjEiBEaP368CgsLnSoHAABbOBacx+L3++X3+yVJP/rRj5SXl0doAgBOCUkJzv/rRz/6UbJLAAAgYWy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABY4GZywWU2VlpXJzc5WSkqK8vDw1NjY6OSUAAI5yNDgjkYhKS0vV2dmp3t5eBQIBVVdXa2BgwMlpAQBwjKPBaRiGKioqlJaWJrfbraqqKkWjUfX39+uss86Sz+eTz+fTokWLnCwDAADbOLrJe2trqxYsWKCuri719fUpFospKytLhmHonHPO4fmZAIBTjmMrzvb2dpWXl8vv96u7u1uRSETBYFAFBQWSpJ07d8rr9eqrX/2qtm7d6lQZAADYy3TIL37xC3P8+PFmT0+P+dFHH5lLliwxzz77bPO//uu/TNM0zX/84x+maZrmihUrTK/Xa2lsr9drSuLg4ODg4HDkOBbHPqotKytTU1OTsrOzlZmZqdraWhmGEV9xjh49WpJ0+eWXa+7cuZbH93q98Y96fT6fJPHRLwDAskMz5GD7aBwLzvT0dLW0tAzqCwQCkqS9e/fqrLPOksfj0YYNGzRq1CinygAAwFaO3hx0NG+++abmzp2r1NRUSdIjjzySjDIAALAsKcH5+c9/Xh0dHcmYGgCAE8KWewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWOBocMZiMVVWVio3N1cpKSnKy8tTY2Ojk1MCAOAoR4MzEomotLRUnZ2d6u3tVSAQUHV1tQYGBpycFgAAxzganIZhqKKiQmlpaXK73aqqqlI0GlV/f7/++Mc/atasWZo5c6auu+46J8sAAMA2jm7y3traqgULFqirq0t9fX2KxWLKysrSiBEjdPPNN+upp55SWlqakyUAAGArx1ac7e3tKi8vl9/vV3d3tyKRiILBoAoKCvTGG28oNTVVlZWV8vl8eu6555wqAwAAWzm24uzo6JBhGCoqKpLH41FDQ4Pq6+sVDAa1Y8cOrVu3TuvXr5dpmrr00kt12WWXaeTIkU6VAwCALRwLzrKyMjU1NSk7O1uZmZmqra2VYRgqKCiQx+PR9OnTlZ6eLkmaNGmStmzZoksuuSTh8UOhkFwu16C+Q9sAACQq0QxxmaZpOlzLYSKRiC6//HK9/vrrMk1TU6dO1apVq5SRkZHQ9T6fT5LU1tZ2xDYAAIk6UqYcK08cvTnoaNLS0nTzzTfrC1/4ggYGBuT3+xMOTQAAkikpwSlJ5eXlKi8vT9b0AAAcF7bcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA3OWCymyspK5ebmKiUlRXl5eWpsbHRySgAAHOVocEYiEZWWlqqzs1O9vb0KBAKqrq7WwMCAk9MCAOAYR4PTMAxVVFQoLS1NbrdbVVVVikaj6ujokM/nk8/n0/Tp03kyCgDglOHo01FaW1u1YMECdXV1qa+vT7FYTFlZWZo2bVr8WWe//vWv9corrzhZBgAAtnFsxdne3q7y8nL5/X51d3crEokoGAyqoKBg0HmPP/645syZ41QZAADYyrEVZ0dHhwzDUFFRkTwejxoaGlRfX69gMBg/Z+fOndq2bZsKCwstjx8KheRyuQb1HdoGACBRiWaIY8FZVlampqYmZWdnKzMzU7W1tTIMY9CKc9myZaqoqDiu8b1eb/zjXp/PJ0nxNgAAiTo0Qw62j8ax4ExPT1dLS8ugvkAgMKi9dOlSPfXUU06VAACA7ZK2AUJXV5fOPvtsjR8/PlklAABgWdKCc+LEiXr11VeTNT0AAMeFLfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALDA0eCMxWKqrKxUbm6uUlJSlJeXp8bGRienBADAUY4GZyQSUWlpqTo7O9Xb26tAIKDq6moNDAw4OS0AAI5xNDgNw1BFRYXS0tLkdrtVVVWlaDSq/v5+1dbWqrCwUFOnTtXSpUudLAMAANs49lgxSWptbdWCBQvU1dWlvr4+xWIxZWVlaceOHdq4caNef/119ff3a+LEifrWt77lZCkAANjCsRVne3u7ysvL5ff71d3drUgkomAwqIKCAmVnZ+vMM8/Uvn371NfXp1GjRjlVBgAAtnIsODs6OmQYhoqKiuTxeNTQ0KD6+noVFBTIMAyNHz9e559/viZNmqQf/OAHTpUBAICtHPuotqysTE1NTcrOzlZmZqZqa2tlGIYKCgr04osvaseOHdqyZYsikYiKi4t1xRVXaNiwYQmPHwqF5HK5BvUd2gYAIFGJZohjwZmenq6WlpZBfYFAQJL0wgsvaNSoUfJ4PEpNTdW+fft04MABS+N7vV61tbVJknw+nyTF2wAAJOrQDDnYPpqkbIBQUlIi0zR16aWXqqioSDfddJPOPvvsZJQCAIAljt5VezQHv/MEAOBUw5Z7AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZi8VUWVmp3NxcpaSkKC8vT42NjU5OCQCAoxwNzkgkotLSUnV2dqq3t1eBQEDV1dUaGBhwcloAABzjaHAahqGKigqlpaXJ7XarqqpK0WhU/f39uvPOO1VUVCSfz6cNGzY4WQYAALZxNDhbW1tVWlqqnJwcpaWlKSsrS1lZWfrzn/+s9vZ2vfbaa2poaND3v/99J8sAAMA2jgVne3u7ysvL5ff71d3drUgkomAwqIKCAnV3d2vKlCmSpLFjx2rTpk3av3+/U6UAAGAbx57H2dHRIcMwVFRUFH/+Zn19vYLBoC666CItXLhQAwMD2rBhg3bu3Kmenh6NHj064fFDoZBcLtegvkPbAAAkKtEMcSw4y8rK1NTUpOzsbGVmZqq2tlaGYaigoEAXXXSRKioqVFJSovPPP18TJ05URkaGpfG9Xq/a2tokST6fT5LibQAAEnVohhxsH41jwZmenq6WlpZBfYFAIP7PtbW1qq2t1YYNG3TvvfeyWgQAnBIcC85P8qUvfUn79+/X6NGj9fDDDyerDAAALElacL744ovJmhoAgOPGlnsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhgS3DGYjFVVlYqNzdXKSkpysvLU2Njox1DAwBwUrElOCORiEpLS9XZ2ane3l4FAgFVV1drYGDAjuEBADhp2BKchmGooqJCaWlpcrvdqqqqUjQaVX9/v0pKSjRmzBjV1dUNumbp0qUqLCxUYWGhXnrpJTvKAADAcbZs8t7a2qoFCxaoq6tLfX19isViysrKkmEYamho0IoVK7R9+/b4+T09Pbrvvvv0xhtvaO/evSopKdG6devkdvOVKwDg5HbCSdXe3q7y8nL5/X51d3crEokoGAyqoKBAkpSTk3PYNeFwWF6vV8OHD9fo0aOVnZ2tbdu2nWgpAAA47oSDs6OjQ4ZhqKioSB6PRw0NDaqvr48H55Hs2rVLhmHE24ZhaNeuXSdaCgAAjjvhj2rLysrU1NSk7OxsZWZmqra2VoZhHDM4MzIytGfPnni7p6dHGRkZluYNhUJyuVyD+g5tAwCQqEQz5ISDMz09XS0tLYP6AoHAMa+ZNm2abr311vgNRDt27NDYsWMtzev1etXW1iZJ8vl8khRvAwCQqEMz5GD7aGy5OehYampqFA6HFY1GFQ6H1dzcrPT0dM2bNy9e3P3338+NQQCAU4Ljwbl48eIj9ldWVqqystLp6QEAsBXLPAAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwLbgjMViqqysVG5urlJSUpSXl6fGxka7hgcA4KRgW3BGIhGVlpaqs7NTvb29CgQCqq6u1sDAgF1TAACQdLYFp2EYqqioUFpamtxut6qqquKPDSspKdGYMWNUV1c36Jqj9QMAcLKy7ekora2tWrBggbq6utTX16dYLKasrCwZhqGGhgatWLFC27dvH3TN0foBADhZ2bLibG9vV3l5ufx+v7q7uxWJRBQMBlVQUCBJysnJOeJ1R+sHAOBkZcuKs6OjQ4ZhqKioSB6PRw0NDaqvr1cwGLRj+CMKhUJyuVyD+g5tAwCQqEQzxJbgLCsrU1NTk7Kzs5WZmana2loZhhFfcTrB6/Wqra1NkuTz+SQp3gYAIFGHZsjB9tHYEpzp6elqaWkZ1BcIBOwYGgCAk4ptNwcdS01NjcLhsKLRqMLhsJqbm4/ZDwDAyWpIgnPx4sWW+gEAOFmx5R4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABbYFpyxWEyVlZXKzc1VSkqK8vLy1NjYaNfwAACcFGwLzkgkotLSUnV2dqq3t1eBQEDV1dUaGBiwawoAAJLOtuA0DEMVFRVKS0uT2+1WVVWVotGo+vv7VVJSojFjxqiuri5+/ttvv63LLrtMM2bMUHFxsdauXWtXKQAAOMa2Td5bW1u1YMECdXV1qa+vT7FYTFlZWTIMQw0NDVqxYoW2b98ePz89PV1NTU3KyMjQm2++qblz52r16tV2lQMAgCNsCc729naVl5dr6dKl8nq9Ovvss1VXV6f29nZJUk5OzmHXZGRkxP952LBh8ng8dpQCAICjbAnOjo4OGYahoqIieTweNTQ0qL6+XsFg8BOvPXDggPx+v2655RZLc4ZCIblcrkF9h7YBAEhUohliS3CWlZWpqalJ2dnZyszMVG1trQzDUEFBwTGvM01TNTU1uuqqqzRr1ixLc3q9XrW1tUmSfD6fJMXbAAAk6tAMOdg+GluCMz09XS0tLYP6AoHAJ1530003KS8vTzfeeKMdZQAA4Djbbg46lpqaGoXDYUWjUYXDYTU3N6utrU2LFi1SUVGRVq5cqVGjRunpp58einIAADhuQxKcixcvPqzP5/PxO54AgFMOW+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAW2BWcsFlNlZaVyc3OVkpKivLw8NTY22jU8AAAnBduCMxKJqLS0VJ2dnert7VUgEFB1dTX70QIATiu2BadhGKqoqFBaWprcbreqqqoUjUbV39+vkpISjRkzRnV1dfHz//73v6uoqEg+n0/Tpk3TypUr7SoFAADH2PZ0lNbWVi1YsEBdXV3q6+tTLBZTVlaWDMNQQ0ODVqxYoe3bt8fPHz16tFavXi2Px6OtW7eqrKxMa9assascAAAcYcuKs729XeXl5fL7/eru7lYkElEwGFRBQYEkKScn57BrPB6PPB6PJKmnp0eTJk2yoxQAABxly4qzo6NDhmGoqKhIHo9HDQ0Nqq+vVzAYPOZ177zzjubMmaO33npLS5YssTRnKBSSy+Ua1HdoGwCARCWaIbYEZ1lZmZqampSdna3MzEzV1tbKMIz4ivNoxo0bp1deeUVbt27VzJkzddVVVyU8p9frVVtbm6SPH4otKd4GACBRh2bIwfbR2BKc6enpamlpGdQXCASOeU00GtWwYcMkSSNHjlRKSoodpQAA4Cjbbg46lpqaGoXDYUWjUYXDYTU3N2vNmjW67bbb5PF4tG/fPi1cuHAoSgEA4IQMSXAuXrz4sL7i4mK9/PLLQzE9AAC2Ycs9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU4Y7GYKisrlZubq5SUFOXl5amxsdGOoQEAOKnYEpyRSESlpaXq7OxUb2+vAoGAqqurNTAwYMfwAACcNGwJTsMwVFFRobS0NLndblVVVSkajaq/v18lJSUaM2aM6urqDrtu165dMgxDS5cutaMMAAAcZ0twtra2qrS0VDk5OUpLS1NWVpaysrJkGIYaGhp07733HvG6uro6FRcX21ECAABD4oSDs729XeXl5fL7/eru7lYkElEwGIw/xDonJ+eI123ZskW7du3SlClTTrQEAACGzAk/Vqyjo0OGYaioqEgej0cNDQ2qr69XMBg85nV33HGH7r77bj3xxBPHNW8oFJLL5RrUd2gbAIBEJZohJxycZWVlampqUnZ2tjIzM1VbWyvDMOIrziN57bXXlJGRofHjxx/3vF6vV21tbZIkn88nSfE2AACJOjRDDraP5oSDMz09XS0tLYP6AoHAMa9Zu3atOjs7NWvWLG3ZskUjRozQ+PHjVVhYeKLlAADgqBMOzk9SU1OjcDisaDSqcDis5uZm+f1++f1+SdKPfvQj5eXlEZoAgFOC48G5ePHiY77+ox/9yOkSAACwDVvuAQBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFtgVnLBZTZWWlcnNzlZKSory8PDU2Nto1PAAAJwXbgjMSiai0tFSdnZ3q7e1VIBBQdXW1BgYG7JoCAICksy04DcNQRUWF0tLS5Ha7VVVVpWg0qv7+fpWUlGjMmDGqq6sbdM1ZZ50ln88nn8+nRYsW2VUKAACOse3pKK2trVqwYIG6urrU19enWCymrKwsGYahhoYGrVixQtu3bx90zTnnnMPDpwEApxRbVpzt7e0qLy+X3+9Xd3e3IpGIgsGgCgoKJEk5OTlHvG7nzp3yer366le/qq1bt9pRCgAAjrJlxdnR0SHDMFRUVCSPx6OGhgbV19crGAwe87pt27Zp9OjRWrlypWpqaiytPkOhkFwu16C+Q9sAACQq0QyxJTjLysrU1NSk7OxsZWZmqra2VoZhxFecRzN69GhJ0uWXX665c+damtPr9caD1ufzSRIf+wIALDs0Qw62j8aW4ExPT1dLS8ugvkAgcMxr9u7dq7POOksej0cbNmzQqFGj7CgFAABH2XZz0LHU1NQoHA4rGo0qHA6rublZb775pubOnavU1FRJ0iOPPDIUpQAAcEKGJDgXL158WN/nP/95dXR0DMX0AADYhi33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwJbgjMViqqysVG5urlJSUpSXl6fGxkY7hgYA4KRiS3BGIhGVlpaqs7NTvb29CgQCqq6u1sDAgB3DAwBw0rAlOA3DUEVFhdLS0uR2u1VVVaVoNKr+/n6VlJRozJgxqqurG3TNH//4R82aNUszZ87UddddZ0cZAAA4zpZN3ltbW7VgwQJ1dXWpr69PsVhMWVlZMgxDDQ0NWrFihbZv3x4/f2BgQDfffLOeeuoppaWl2VECAABD4oRXnO3t7SovL5ff71d3d7cikYiCwWD8IdY5OTmHXfPGG28oNTVVlZWV8vl8eu655060DAAAhsQJrzg7OjpkGIaKiork8XjU0NCg+vp6BYPBo16zY8cOrVu3TuvXr5dpmrr00kt12WWXaeTIkQnPGwqF5HK5BvUd2gYAIFGJZsgJB2dZWZmampqUnZ2tzMxM1dbWyjCM+IrzSEaNGqXp06crPT1dkjRp0iRt2bJFl1xyScLzer1etbW1SZJ8Pp8kxdsAACTq0Aw52D6aEw7O9PR0tbS0DOoLBALHvGb69On6wQ9+oH379sk0TW3atEm5ubknWgoAAI6z5eagY6mpqVHyQfeaAAAgAElEQVQ4HFY0GlU4HFZzc7PS0tJ088036wtf+IIGBgbk9/uVkZHhdCkAAJwwx4Nz8eLFR+wvLy9XeXm509MDAGArttwDAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAtsC85YLKbKykrl5uYqJSVFeXl5amxstGt4AABOCrYFZyQSUWlpqTo7O9Xb26tAIKDq6moNDAzYNQUAAElnW3AahqGKigqlpaXJ7XarqqpK0WhU/f39Kikp0ZgxY1RXVxc/v729XT6fTz6fT9OnT+fpKACAU4JtT0dpbW3VggUL1NXVpb6+PsViMWVlZckwDDU0NGjFihXavn17/PzPf/7z8YeG/vrXv9Yrr7xiVykAADjGlhVne3u7ysvL5ff71d3drUgkomAwqIKCAklSTk7OMa9//PHHNWfOHDtKAQDAUbasODs6OmQYhoqKiuTxeNTQ0KD6+noFg8FPvHbnzp3atm2bCgsLLc0ZCoXkcrkG9R3aBgAgUYlmiC3BWVZWpqamJmVnZyszM1O1tbUyDCO+4jyWZcuWqaKiwvKcXq83/lGvz+eTpHgbAIBEHZohB9tHY0twpqenq6WlZVBfIBBI6NqlS5fqqaeesqMMAAAcZ9vNQcdSU1OjcDisaDSqcDis5uZmSVJXV5fOPvtsjR8/fijKAADghA1JcC5evPiI/RMnTtSrr746FCUAAGALttwDAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMAC24IzFoupsrJSubm5SklJUV5enhobG+0aHgCAk4JtwRmJRFRaWqrOzk719vYqEAiourpaAwMDdk0BAEDS2RachmGooqJCaWlpcrvdqqqqUjQaVX9/v0pKSjRmzBjV1dXFzzdNU7W1tSosLNTUqVO1dOlSu0oBAMAxtm3y3traqgULFqirq0t9fX2KxWLKysqSYRhqaGjQihUrtH379vj5Gzdu1MaNG/X666+rv79fEydO1Le+9S27ygEAwBG2rDjb29tVXl4uv9+v7u5uRSIRBYPB+IOsc3JyDrsmOztbZ555pvbt26e+vj6NGjXKjlIAAHCULSvOjo4OGYahoqIieTweNTQ0qL6+XsFg8KjXGIah8ePH6/zzz1d/f78eeeSRhOfLz8/XwoUL5XK5BvUf2gYAIFGJZogtwVlWVqampiZlZ2crMzNTtbW1MgwjvuI8khdffFE7duzQli1bFIlEVFxcrCuuuELDhg37xPkeeOABPfDAA3aUDgCAJbYEZ3p6ulpaWgb1BQKBT7xu1KhR8ng8Sk1N1b59+3TgwAE7ygEAwDEu0zRNpyepqalROBxWNBrVhRdeqObmZh04cEDXX3+9Nm/erIGBAc2ZM0d+v9/pUgAAOCFDEpwAAJwu2HIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHAvOWCymESNGaNWqVYP6Z8+eLb/f79S0AAA46gynBna73ZowYYK6uro0c+ZMSVIoFFIoFNLmzZudmhYAAEc5+lHt5MmT1dXVJenjFWggENBdd90lwzC0dOlSFRYWqrCwUC+99JKTZQAAYBvHVpySlJ+fr8cee0yStGTJEu3fv19z585VT0+P7rvvPr3xxhvau3evSkpKtG7dOrndfOUKADi5Ob7i3Lhxo3p7e3X77bfrgQcekMfjUTgcltfr1fDhwzV69GhlZ2dr27ZtCY87b948zZs376htAAASdaRMOSbTQb29vabL5TL/7d/+zbzmmmvi/cuWLTPvvPPOePvaa68129vbEx7X6/Wakjg4ODg4OBw5jsXRj2pTU1N13nnnafny5dq0aVO8PyMjQ3v27Im3e3p6lJGRYWlsr9ertrY2SZLP55OkeBsAgEQdmiEH20fj+JeKW7Zs0UcffaRx48bF+6ZNm6bVq1crGo1q9+7d2rFjh8aOHet0KQAAnDBHV5xHk56ernnz5sVT/f777+fGIADAKSEpwSlJlZWVqqysTNb0AAAcF5Z5AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZi8U0YsQIrVq1alD/7Nmz5ff7nZwaAABHOLpXrdvt1oQJE9TV1aWZM2dKkkKhkEKhkDZv3uzk1AAAOMLxj2onT56srq4uSR+vQAOBgO666y4ZhqGSkhKNGTNGdXV1TpcBAIAtHA/O/Pz8eHAuWbJE+/fv19y5cyVJDQ0Nuvfee50uAQAA2zj+WLHJkydr48aN6u3t1e23365ly5bJ4/FIknJycpyeHgAAWzkenJMmTdIHH3ygG264QYWFhfHvOk9UKBSSy+Ua1HdoGwCARCWaIY4HZ2pqqs477zwtX75cmzZtsm1cr9ertrY2SZLP55OkeBsAgEQdmiEH20fjeHBK0pYtW4ZiGgAAHDckwXk0NTU1CofDikajCofDam5uTmY5AAB8oqQG5+LFi5M5PQAAlrHlHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFjganLFYTCNGjNCqVasG9c+ePVt+v9/JqQEAcISjW+653W5NmDBBXV1d8ceJhUIhhUIhbd682cmpAQBwhOMf1U6ePFldXV2SPl6BBgIB3XXXXdq9e7cuu+wyzZgxQ8XFxVq7dq3TpQAAcMIc3+Q9Pz9fjz32mCRpyZIl2r9/v+bOnauenh41NTUpIyNDb775pubOnavVq1c7XQ4AACfE8eCcPHmyNm7cqN7eXt1+++1atmyZPB6PMjIy4ucMGzZMHo/H6VIAADhhjgfnpEmT9MEHH+iGG25QYWFh/LvOgw4cOCC/369bbrnF0rihUEgul2tQ36FtAAASlWiGOB6cqampOu+887R8+XJt2rRp0GumaaqmpkZXXXWVZs2aZWlcr9ertrY2SZLP55OkeBsAgEQdmiEH20czJA+y3rJlyxH7b7rpJuXl5enGG28cijIAADhhSdsAoa2tTYsWLdLKlSvl8/n0ta99LVmlAACQsCFZcR6Jz+fTwMBAsqYHAOC4sOUeAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFjgaHDGYjGNGDFCq1atGtQ/e/Zs+f1+J6cGAMARju5V63a7NWHCBHV1dcWfwxkKhRQKhbR582YnpwYAwBGOf1Q7efJkdXV1Sfp4BRoIBHTXXXdpYGBARUVF8vl8mjZtmlauXOl0KQAAnDDHn46Sn5+vxx57TJK0ZMkS7d+/X3PnzpUkrV69Wh6PR1u3blVZWZnWrFnjdDkAAJwQx4Nz8uTJ2rhxo3p7e3X77bdr2bJl8ng8g87p6enRpEmTnC4FAIAT5nhwTpo0SR988IFuuOEGFRYWxr/rlKR33nlHc+bM0VtvvaUlS5ZYGjcUCsnlcg3qO7QNAECiEs0Ql2mapsO1KC8vT9u3b9emTZs0bty4w17funWrZs6cqW3btiU0ns/nkyS1tbUdsQ0AQKKOlCnHyhPHV5yStGXLlsP6otGohg0bJkkaOXKkUlJShqIUAABOyJAE55GsWbNGt912mzwej/bt26eFCxcmqxQAABKWtOAsLi7Wyy+/nKzpAQA4Lmy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABY4FZywW04gRI7Rq1apB/bNnz5bf73dqWgAAHOXYlntut1sTJkxQV1dX/FFioVBIoVBImzdvdmpaAAAc5ehHtZMnT1ZXV5ekj1eggUBAd911lwzDkCTt2rVLhmFo6dKlTpYBAIBtHA3O/Pz8eHAuWbJE+/fv19y5c+Ov19XVqbi42MkSAACwlaNPR5k8ebI2btyo3t5e3X777Vq2bJk8Ho+kj5/RuWvXLk2ZMsXJEgAAsJWjwTlp0iR98MEHuuGGG1RYWBj/rlOS7rjjDt1999164oknjmvsUCgkl8s1qO/QNgAAiUo0QxwNztTUVJ133nlavny5Nm3aFO9/7bXX9P+xd//BUdX3/sdfJ0EI4C7ZBHqvgCMFKkUjIsiPAGVXkjEoOCE3RolTs5qmRjPCld58/dFadRT6Y6rVtlNviSkExR+1xCrREZEfCRJlEQENiEj40YYIDQmBkFWSkD3fP/yyX4EEc8I52YDPx8xnxrNn9/151Xvh1bNJz4mPj9ewYcM6Pdvr9aq0tFSS5PP5JCl8DABAR53eISeP2+P4g6wrKyvPeG3Tpk365JNPNH36dFVWVqpv374aNmyYEhMTnY4DAMA5cbw42zJ37tzw/5bzscce0/DhwylNAMB5ISLF+U2PPfZYpCMAANBh3HIPAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACxwtDhDoZD69u2rNWvWnPJ6enp6+F61AACcTxy9V21UVJQSEhJUUVERfhZnWVmZysrKtGvXLie3BgDAEY5/VXv11VeroqJC0tdXoPPmzdPjjz8uj8ej3r17y+fzyefzqaCgwOkoAACcM8efjjJ69GgtWbJEkrR48WKdOHFCubm5kqRBgwbx8GkAwHmlS644t2/froaGBj388MN65plnFB0dLUk6ePCgvF6vZs2apT179jgdBQCAc2c6rKGhwTQMw7zlllvMtLS0U84dOnTINE3TXLVqlen1ejs80+v1mpJYLBaLxXJknY1hmqYphw0fPlz79+/Xjh079P3vf7/d91RWVnZons/nk6Tw17ynHwMA0FFtdcrZ+sTxn3FKarMQGxsb1bt3b0VHR2vbtm2Ki4vriigAAJyTLinOtnz66afKzc2Vy+WSJC1cuDBSUQAA6LCIFef48eO1ZcuWSG0PAECncMs9AAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAscKw4Q6GQ+vbtqzVr1pzyenp6uubOnevUtgAAOMqxW+5FRUUpISFBFRUVmjZtmiSprKxMZWVl2rVrl1PbAgDgKEe/qr366qtVUVEh6esr0Hnz5unxxx+Xx+PRxx9/rOnTp2vatGm68847nYwBAIBtHL3J++jRo7VkyRJJ0uLFi3XixAnl5uaqublZ+fn5WrZsmfr16+dkBAAAbOX4Fef27dvV0NCghx9+WM8884yio6O1YcMGuVwuZWVlyefz6c0333QyBgAAtnH0inPUqFH68ssv9dOf/lSJiYnhn3VWV1dr8+bN2rp1q0zT1OTJkzV16lS53e4Ozy4rK5NhGKe8dvoxAAAd1dEOcbQ4XS6Xhg4dqjfeeEM7duwIvx4XF6eJEycqNjZW0tcFW1lZqTFjxnR4ttfrVWlpqSTJ5/NJUvgYAICOOr1DTh63x/H/HWdlZaWOHz+u73//++HXJk6cqMrKSrW0tKi5uVk7duzQZZdd5nQUAADOmaNXnO3p16+f8vPzdd1116m5uVlz585VfHx8JKIAAGBJRIpTkmbPnq3Zs2dHansAADqFW+4BAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAWOFmcoFFLfvn21Zs2aU15PT0/X3LlzndwaAABHOHqv2qioKCUkJKiioiL8LM6ysjKVlZVp165dTm4NAIAjHL/J+9VXX62KigpJX1+Bzps3T48//rh27dql+++/X5J0/Phx7dq1S3V1dU7HAQDgnDhenKNHj9aSJUskSYsXL9aJEyeUm5ur6Ojo8ENDX3rpJa1fv97pKAAAnDPHfzno6quv1vbt29XQ0KCHH35YzzzzjKKjo095z/PPP6/bb7/d6SgAAJwzwzRN08kNjh07pn79+ikjI0MtLS167bXXTjl/8OBB+Xw+ffbZZx2e6fP5VFZWZndUAAAkSWerRse/qnW5XBo6dKjeeOMN7dix44zzL774ojIzMy3P9Xq94a96fT6fJIWPAQDoqNM75ORxexwvTkmqrKxs99zSpUu1bNmyrogBAMA5i+gNECoqKtSnTx8NGzYskjEAAOiwiBbnVVddpfLy8khGAADAEm65BwCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABY4WZygUUt++fbVmzZpTXk9PT9fcuXOd3BoAAEc4epP3qKgoJSQkqKKiQtOmTZMklZWVqaysTLt27XJyawAAHNElD7KuqKiQ9PUV6Lx58/T4448rNjZW9957rxITEzVu3DgtXbrU6SgAAJwzx4tz9OjR4eJcvHixTpw4odzcXG3fvl3bt2/XBx98oNLSUj3yyCNORwEA4Jw5/jzOq6++Wtu3b1dDQ4Mefvhhvfjii4qOjtbAgQPVs2dPtbS06NixY4qLi3M6CgAA58zx4hw1apS+/PJL/fSnP1ViYmL4Z50ej0fDhg3T5ZdfrmAwqIULF1qaW1ZWJsMwTnnt9GMAADqqox3ieHG6XC4NHTpUb7zxhnbs2BF+feXKlaqurlZlZaWOHj2qKVOm6MYbb1SvXr06NNfr9aq0tFSS5PP5JCl8DABAR53eISeP2+N4cUpSZWVlm6/HxcUpOjpaLpdLLS0tam1t7Yo4AAB0WsRugJCcnCzTNDV58mRNmjRJc+bMUZ8+fSIVBwCADumSK862REdHq6ioKFLbAwDQKdxyDwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAs6JLiLC8vV1JSktxut2JjY5WRkdEV2wIAYDvHi7O4uFhpaWnKy8tTTU2NqqqqlJOT4/S2AAA4wtHiDAaDys3NVUFBgdLT0xUTEyOXy6WUlBRJ0tKlS5WYmKjExEStXbvWySgAANjC0aejlJWVyTAMpaamnnHuyJEjevLJJ7VhwwY1NjYqOTlZmzdvVlQUP3YFAHRfjrZUbW2tPB6PDMM441wgEJDX61VMTIz69++vgQMHat++fU7GAQDgnDl6xTlmzBjt3btXJSUlmjFjhhoaGhQIBJSSkqK6ujp5PJ7wez0ej+rq6jR06NAOzT55NftNbRU0AAAd0dEOcbQ4ExISVFhYqPz8fGVmZsrlcik7O1spKSmKj49XfX19+L1HjhxRfHx8h2d7vV6VlpZKknw+nySFjwEA6KjTO+TkcXscLU5J8vv98vv9Z7w+YcIEPfTQQ2pqalIwGFR1dbWGDBnidBwAAM6J48XZntjYWN13333hZn/qqaf4xSAAQLcXseKUpKysLGVlZUUyAgAAlnCJBwCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABV1SnOXl5UpKSpLb7VZsbKwyMjK6YlsAAGzneHEWFxcrLS1NeXl5qqmpUVVVlXJycpzeFgAARzhanMFgULm5uSooKFB6erpiYmLkcrmUkpIiSUpOTtaAAQM0f/58J2MAAGAbR2/yfvJh06mpqW2eLyoq0qpVq7R//34nYwAAYBtHrzhra2vl8Xjafar24MGDndweAADbOXrFOWbMGO3du1clJSWaMWOGGhoaFAgEwl/VnouTV7Pf1F5BAwDwbTraIY4WZ0JCggoLC5Wfn6/MzEy5XC5lZ2fbUpxer1elpaWSFH4Y9sljAAA66vQOOXncHscfZO33++X3+53eBgCALuF4cZ5Ndna2AoGAmpqaFAgEVFJSEsk4AAB8q4gW56JFiyK5PQAAlnHLPQAALKA4AQCwgOIEAMACihMAAAsoTgAALKA4AQCwgOIEAMACihMAAAsoTgAALOiS4iwvL1dSUpLcbrdiY2OVkZHRFdsCAGA7x4uzuLhYaWlpysvLU01NjaqqqpSTk+P0tgAAOMLR4gwGg8rNzVVBQYHS09MVExMjl8ullJQU7d69W1OnTtWPfvQjTZkyRZs2bXIySrtM01RDQ4NCoVBE9gcAnF8cLc6TD5tOTU0941xsbKz+8Y9/6L333lNBQYHmzZvnZJQ27dmzRwkJCerXr588Ho/efPPNLs8AADi/OFqctbW18ng8bT5VOz4+XvHx8ZKkXr16KTo62skobbrlllv02WefSZKOHTumm2++WV988UWX5wAAnD8cLc4xY8Zo7969KikpUSgU0pEjR/TOO++c8p7W1lbNnTtXDz74oJNRzmCaprZu3Rr+itY0TTU1NWnHjh1dmgMAcJ4xHVZUVGRefvnlZt++fc3//M//NH/+85+Hz4VCITMrK8t89tlnLc30er2mJBaLxWKxHFlnY5imaSpC7r33Xv3Hf/yHfvnLX1r6nM/nkySVlpa2edxRGzdu1I033qi6ujpJ0rPPPqt77rnH0gwAwPmtrU45W59E7AYIpaWlKigo0OrVq+Xz+fRf//VfXZ5h/Pjx2rNnjzZv3ixJlCYA4Fv1iNTGPp9Pzc3Nkdo+zO1265prrol0DADAeYJb7gEAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABV1SnOXl5UpKSpLb7VZsbKwyMjK6YlsAAGzneHEWFxcrLS1NeXl5qqmpUVVVlXJycpzeFgAARzh6k/dgMKjc3FwVFhZq1qxZkqSYmBilpKTo3//+t9LS0tSzZ0999dVX+tWvfqWkpCQn4ziuqqpK//u//6vjx4/rlltu0cSJEyMdCQBgM0eLs6ysTIZhKDU19Yxz/fv313vvvafo6Gjt2bNHt956qz788EMn4ziqurpaY8eO1aFDh2QYhv74xz9q5cqVmjZtWqSjAQBs5OhXtbW1tfJ4PDIM44xz0dHRio6OliQdOXJEo0aNcjKK41544QUdOnRIkmSapkzT1NNPPx3hVAAA25kOqqioMHv06GEuX77cbG1tNevr680VK1aEz+/Zs8ecPHmy2b9/f7OkpKTDc71erymJxWKxWCxH1tkYpmmactCSJUv0q1/9StXV1XK5XMrOztaCBQtOec+ePXs0bdo07du3r0MzfT6fJKm0tLTN484wDEPn8q9i165duuaaa/TVV18pFApJkpYtW6b09PROzwQAOK+tTjlbnzj+W7V+v187d+5UY2OjDhw4EC7Npqam8Hvcbrcuvvhip6M46gc/+IE2bNigrKwsSdLy5cspTQC4AEXsBggffvihpk6dquuuu06zZs3SH/7wh0hFsU1CQoIWL14sSbrpppsinAYA4ARHf6v2bKZMmaJ169ZFansAADqFW+4BAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFlCcAABYQHECAGBBlxRneXm5kpKS5Ha7FRsbq4yMjK7YFgAA2zlenMXFxUpLS1NeXp5qampUVVWlnJwcp7cFAMARjhZnMBhUbm6uCgoKlJ6erpiYGLlcLqWkpITfU1dXJ4/Ho6VLlzoZ5bzU2tqqgwcPqrm5OdJRAAD/j6PFWVZWJsMwlJqa2u575s+frylTpjgZ47xUUVGhIUOG6JJLLlFcXJzefPPNSEcCAMjh4qytrZXH45FhGG2er6ysVF1dncaOHetkjPNSWlqavvjiC0nSl19+qYyMDB06dCjCqQAAjhbnmDFjtHfvXpWUlCgUCunIkSN65513wucfeeQRPfroo05GOC8dP35cu3fvVigUkiSZpqnjx49rz549EU4GAHD0eZwJCQkqLCxUfn6+MjMz5XK5lJ2drZSUFL3//vuKj4/XsGHDOjX75NfA39TelW1HnevnnZp10sSJE22fCQD4Wkf/3jZM0zQdztKmP/7xjyouLlbv3r1VWVmpvn376i9/+YsSExO/9bM+n0+SVFpa2uZxZxiGIbv+Vdgxa+PGjZoxY4Zqa2slSa+88opuvfVWO+IBAL6hrU45W584esV5NnPnztXcuXMlSY899piGDx/eodL8rhg/frz++c9/qqqqSj/84Q8pTQDoJiJWnN/02GOPRTpCt9SnTx+NGDEi0jEAAN/ALfcAALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwIIuKc7y8nIlJSXJ7XYrNjZWGRkZXbEtAAC2c7w4i4uLlZaWpry8PNXU1Kiqqko5OTlObwsAgCMcvcl7MBhUbm6uCgsLNWvWLElSTEyMUlJSJEm9e/fWhAkTJEm33Xab7rrrLifjfKd99tln+vOf/6yWlhbdfvvtmjx5cqQjAcB5ydHiPPmw6dTU1DbPDxo06JyeoYmO2bVrl8aNG6dgMCjDMPTcc89p1apVuu666yIdDQDOO45+VVtbWyuPx9PuU7UPHjwor9erWbNmac+ePU5G+U5bsmSJGhsbZZqmQqGQJOkvf/lLhFMBwHnKdFBFRYXZo0cPc/ny5WZra6tZX19vrlixInz+0KFDpmma5qpVq0yv19vhuV6v15TEYrFYLJYj62wM0zRNOWjJkiX61a9+perqarlcLmVnZ2vBggVnvG/48OGqrKzs0EyfzydJ4a95Tz/uDMMwZNe/Cjtn2TFv586dGjt2rL788kuZpqmoqCitXLlSSUlJtmUEgPNVW51ytj5x/Ldq/X6/du7cqcbGRh04cCBcmo2NjWptbZUkbdu2TXFxcU5H+c4aMWKENm7cqLvvvluStHbtWkoTADopYjdA+PTTT3Xttddq6tSpysvL08KFCyMV5Tvhiiuu0LPPPitJmjp1aoTTAMD5y9Hfqj2b8ePHa8LsD8cAACAASURBVMuWLZHaHgCATuGWewAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWNAlxVleXq6kpCS53W7FxsYqIyOjK7YFAMB2jhdncXGx0tLSlJeXp5qaGlVVVSknJ8fpbQEAcISjxRkMBpWbm6uCggKlp6crJiZGLpdLKSkpkqSPP/5Y06dP17Rp03TnnXc6GQU2O378uHbv3q1gMBjpKADQpRy9yXtZWZkMw1BqauoZ55qbm5Wfn69ly5apX79+TsaAzd5//33ddNNNOnz4sPr06aO//e1vmjlzZqRjAUCXcPSKs7a2Vh6PR4ZhnHFuw4YNcrlcysrKks/n05tvvulkFNgkFApp1qxZOnLkiCTpq6++0i233BI+BoALnumgiooKs0ePHuby5cvN1tZWs76+3lyxYoVpmqb50ksvmZdddplZX19vHj582Bw5cqR59OjRDs31er2mJBaLxWKxHFln4+hXtQkJCSosLFR+fr4yMzPlcrmUnZ2tlJQUxcXFaeLEiYqNjZUkjRo1SpWVlRozZkyHZnu9XpWWlkqSfD6fJIWPO8MwDJmm2enPOzXL7nnnOisUCmngwIE6dOiQQqGQJKlv376qrq7mK3cA56XTO+TkcXsc/61av9+vnTt3qrGxUQcOHNCCBQskSRMnTlRlZaVaWlrU3NysHTt26LLLLnM6Ds5RVFSU3njjDcXHx4df4+fUAL5LHL3iPJt+/fopPz9f1113nZqbmzV37txT/jJG9zVhwgRVV1fr3//+ty699FJNnz490pEAoMtErDglafbs2Zo9e3YkI6CTLrroIg0ePDjSMQCgy3HLPQAALKA4AQCwgOIEAMACihMAAAsoTgAALKA4AQCwgOIEAMACihMAAAsoTgAALKA4AQCwoEuKs7y8XElJSXK73YqNjVVGRkZXbAsAgO0cL87i4mKlpaUpLy9PNTU1qqqqUk5OjtPbAgDgCEdv8h4MBpWbm6vCwkLNmjVLkhQTE6OUlBRt3LhR999/vyTp+PHj2rVrl+rq6pyMg27qww8/1LPPPqtQKKScnBz96Ec/inQkAGiXo8VZVlYmwzCUmpp6xrnx48eHHxr60ksvaf369U5GQTe1ZcsWTZkyRSdOnJAkLV26VKWlpZQngG7L0a9qa2tr5fF4ZBjGWd/3/PPP6/bbb3cyCrqpoqIitbS0KBQKKRQKSZL++te/RjgVAJyF6aCKigqzR48e5vLly83W1lazvr7eXLFixSnvOXDggDlixAhLc71erymJxWKxWCxH1tk4+lVtQkKCCgsLlZ+fr8zMTLlcLmVnZyslJSX8nhdffFGZmZmWZ3u93vBXvT6fT5LCx51hGIZM0+z0552aZfe87pZtx44dGjdunL788kuZpqlevXpp/fr1uvbaa23LCABnc3qHnDxuj6PFKUl+v19+v7/d80uXLtWyZcucjoFuauTIkfrwww9VWFio3//+9/rggw90zTXXRDoWALQrojdAqKioUJ8+fTRs2LBIxkCEjRw5Uk899ZQkUZoAur2IFudVV12l8vLySEYAAMASbrkHAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFXVKc5eXlSkpKktvtVmxsrDIyMrpiWwAAbOd4cRYXFystLU15eXmqqalRVVWVcnJynN4WAABHOFqcwWBQubm5KigoUHp6umJiYuRyuZSSkiLTNHXvvfcqMTFR48aN09KlS52Mgu+QI0eO6JNPPlF9fX2kowC4ADlanGVlZTIMQ6mpqWec2759u7Zv364PPvhApaWleuSRR5yMgu+It99+W4MGDdLVV1+tQYMGqaSkJNKRAFxgHC3O2tpaeTweGYZxxrmBAweqZ8+eamlp0bFjxxQXF+dkFHwHNDU16ZZbbtFXX30lSTp+/Lhmz56tYDAY4WQALiSOPsh6zJgx2rt3r0pKSjRjxgw1NDQoEAgoJSVFHo9Hw4YN0+WXX65gMKiFCxdamn3yavab2ipoK871807NsnvedyWbaZr68ssvdfHFF9s2E8CFq6N//zhanAkJCSosLFR+fr4yMzPlcrmUnZ2tlJQUrVy5UtXV1aqsrNTRo0c1ZcoU3XjjjerVq1eHZnu9XpWWlkqSfD6fJIWPO8MwDJmm2enPOzXL7nkXcraWlhYNGjRIdXV1CoVCkqT4+Hjt379fMTExtmQEcOE5vUNOHrfH0eKUJL/fL7/f3+a5uLg4RUdHy+VyqaWlRa2trU7HwQXsoosu0ptvvqnU1FQdPHhQkrR8+XJKE4CtInYDhOTkZJmmqcmTJ2vSpEmaM2eO+vTpE6k4uECMHz9eX3zxherq6iRJkyZNinAiABcax6842xMdHa2ioqJIbY8LmGEY/LIZAMdwyz0AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsKBLirO8vFxJSUlyu92KjY1VRkZGV2wLAIDtHC/O4uJipaWlKS8vTzU1NaqqqlJOTo7T2wIA4AhHizMYDCo3N1cFBQVKT09XTEyMXC6XUlJSJEmPPvqoJk2aJJ/Pp23btjkZBeiU1atXKyMjQ7fccss5Pe8VwIXD0aejlJWVyTAMpaamnnFu69at2rhxo95//33t27dPP/nJT7R69Won4wCWlJWV6frrrw8fFxcXa926dZo8eXIEUwGINEevOGtra+XxeGQYxhnnPv/8c40dO1aSNGTIEO3YsUMnTpxwMg5gyQsvvCBJCoVCCoVCkqSlS5dGMhKA7sB0UEVFhdmjRw9z+fLlZmtrq1lfX2+uWLHCNE3T3LZtmzlp0iSzqanJ/Oijj0zDMMxDhw51aK7X6zUlsVgsFovlyDobR7+qTUhIUGFhofLz85WZmSmXy6Xs7GylpKToyiuvVGZmppKTk3X55ZfrqquuUnx8fIdne73e8M+cfD6fJJ3Tz6AMw5Bpmp3+vFOz7J5Hto7bvn27JkyYoGAwKElyuVz68MMPNWLECLsiAugGTu+Qk8ftcfy3av1+v3bu3KnGxkYdOHBACxYsCJ+79957tW7dOt13330aPXp0m1/pApFy5ZVX6qOPPtIvfvELSdLmzZspTQDO/nLQt7n++ut14sQJ9e/fX3/+858jGQVo04gRIzR//nwtWLBAw4cPj3QcAN1ARItz5cqVkdweAADLuOUeAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAW2Fqc5eXlSkpKktvtVmxsrDIyMuwcDwBAxNlWnMXFxUpLS1NeXp5qampUVVWlnJwcu8YDANAt2FKcwWBQubm5KigoUHp6umJiYuRyuZSSkiJJSk5O1oABAzR//vzwZ5YuXarExEQlJiZq7dq1dsQAur0DBw7ogw8+UE1NTaSjAOgkW27yXlZWJsMwlJqa2ub5oqIirVq1Svv375ckHTlyRE8++aQ2bNigxsZGJScna/PmzYqK4keuuHC9/PLL8vv9amlpUUxMjP7+979r5syZkY4FwCJbmqq2tlYej6fd52kOHjz4lONAICCv16uYmBj1799fAwcO1L59++yIAnRLR44c0R133KETJ05IkpqamjR79my1tLREOBkAq2y54hwzZoz27t2rkpISzZgxQw0NDQoEAuGvak9XV1cnj8cTPvZ4PKqrq9PQoUM7vOfJq9xvOtcHYdv5IG27H8pNtsjPs3OWaZoKBoPq2bOnbTMBnJuO/hm3pTgTEhJUWFio/Px8ZWZmyuVyKTs7u93ijI+PV319ffj4yJEjio+Pt7Sn1+tVaWmpJMnn80lS+LgzDMOQaZqd/rxTs+yeR7bIzPryyy912WWX6fDhwwqFQoqKitKgQYO0b98+fkQBRNjpHXLyuD22/Yn1+/3auXOnGhsbdeDAAS1YsKDd906YMEHvvfeempqadPjwYVVXV2vIkCF2RQG6nT59+uitt97SoEGDJElDhw7VW2+9RWkC5yFbrji/TXZ2tgKBgJqamhQIBFRSUqL77rsv3OpPPfUUf4Hggjd+/Hj961//kmEY2rVrV6TjAOikLinORYsWnfFaVlaWsrKyumJ7AABsw2UeAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhge3GWl5crKSlJbrdbsbGxysjIsHsLAAAixtbiLC4uVlpamvLy8lRTU6Oqqirl5OTYuQUAABFlW3EGg0Hl5uaqoKBA6enpiomJkcvlCj+TMzk5WQMGDND8+fPDn2nrNQAdU1xcrBtuuEEzZ87UmjVrIh0H+M6w7ekoZWVlMgxDqampbZ4vKirSqlWrtH///rO+BuDbLV++XDfffLMMw5BhGFqxYoXWr1+viRMnRjoacMGz7YqztrZWHo9HhmG0eX7w4MEdeg3At3vppZcUFRUl0zQVCoUUCoX06quvRjoW8J1g2xXnmDFjtHfvXpWUlGjGjBlqaGhQIBAIf1Vrt5NXuN/UXml31Ll+3qlZds8j24U1S5JM09TTTz+tp59+2ta5wHdJR/9c2lacCQkJKiwsVH5+vjIzM+VyuZSdne1YcXq9XpWWlkqSfD6fJIWPO8MwDJmmee7BbJ5l9zyyXRiztm3bpokTJyoYDEqSBgwYoM2bN/MtDtAJp3fIyeP22FackuT3++X3++0cCaANCQkJ2rJli1599VU9/PDD2rp1qwYOHBjpWMB3gq3FeTbZ2dkKBAJqampSIBBQSUlJm68B6Jgf/OAH+sUvfqGHH36Y0gS6UJcV56JFizr0GgAA3Rm33AMAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwALbi7O8vFxJSUlyu92KjY1VRkaG3VsAABAxthZncXGx0tLSlJeXp5qaGlVVVSknJ8fOLQAAiCjbijMYDCo3N1cFBQVKT09XTEyMXC5X+LFiycnJGjBggObPny9J2r17t6ZOnaof/ehHmjJlijZt2mRXFACdUFlZqdWrV6u6ujrSUYBuzbabvJ98sHRqamqb54uKirRq1Srt379fkhQbG6t//OMfio+P16effqrc3Fy99957dsUBYMGzzz6rOXPmKBQKqVevXlq2bJlmzpwZ6VhAt2RbcdbW1srj8bT7BO3TH7AbHx8f/udevXopOjrarigALPjiiy/CpSlJzc3N+vGPf6z6+vp2/zwD32W2FeeYMWO0d+9elZSUaMaMGWpoaFAgEAh/Vdue1tZWzZ07Vw8++KCl/U5e4X7Tuf4ht/MvCbv/wiFb5Od111l2zzNNU0ePHlVUFL90j++Wjv45sq04ExISVFhYqPz8fGVmZsrlcik7O/usxWmaprKzszVz5kxNnz7d0n5er1elpaWSJJ/PJ0nh484wDEOmaXb6807Nsnse2S6sWXbMa2ho0NChQ1VfX69QKKSoqChdccUVqqiosC0j0J2d3iEnj9tj64Os/X6//H5/h98/Z84cDR8+XPfcc4+dMQBY4Ha79fbbbyszM1O7d+/WmDFj9Le//S3SsYBuy9biPJvs7GwFAgE1NTUpEAjof/7nf1RQUKBJkyZp9erViouL02uvvdZVcQB8w7hx41RZWSnDMPThhx9GOg7QrXVZcS5atOiM15qbm7tqewAAbMFP/wEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAluLs7y8XElJSXK73YqNjVVGRoad4wEAiDjbirO4uFhpaWnKy8tTTU2NqqqqlJOTY9d4AAC6BVuKMxgMKjc3VwUFBUpPT1dMTIxcLlf4WZzJyckaMGCA5s+fL0n697//rUmTJsnn82nChAlavXq1HTEAdAOmaeq5557TlClTlJSUpHfffTfSkQBb2fJ0lLKyMhmGodTU1DbPFxUVadWqVdq/f78kqX///nrvvfcUHR2tPXv26NZbb+VRRsAFYsmSJbrrrrskSVFRUSorK9MHH3ygcePGRTgZYA9brjhra2vl8XhkGEab5wcPHnzKcXR0tKKjoyVJR44c0ahRo+yIAaAbWLZsWfjvglAopNbWVr3xxhsRTgXYyLRBRUWF2aNHD3P58uVma2urWV9fb65YseKU9yxevNh84oknwsd79uwxJ0+ebPbv398sKSmxtJ/X6zUlsVgsFovlyDobW76qTUhIUGFhofLz85WZmSmXy6Xs7Ozwzzjb8v3vf1/r16/Xnj17NG3aNM2cOdPSnl6vV6WlpZIkn88nSeHjzjAMQ6ZpdvrzTs2yex7ZLqxZds+zY9Ynn3yiyZMnq7GxUZI0ZMgQbdq0SfHx8XZEBGx3eoecPG6PLcUpSX6/X36/v0PvbWpqUq9evSRJbrdbF198sV0xAETYqFGjtHXrVi1fvlw/+9nPtHnzZnk8nkjHAmxjW3GeTXZ2tgKBgJqamhQIBPTAAw/o5z//uaKjo9XS0qI//OEPXREDQBcZNmyY5s2bp5/97GeUJi44XVKcixYtOuO1devWdcXWAADYilvuAQBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgga3FWV5erqSkJLndbsXGxiojI8PO8QAARJxtxVlcXKy0tDTl5eWppqZGVVVVysnJsWs8AADdgi3FGQwGlZubq4KCAqWnpysmJkYulyv8WLHk5GQNGDBA8+fPP+VzdXV18ng8Wrp0qR0xAFygPv74Yy1fvlz//Oc/Ix0FsKc4y8rKZBiGUlNT2zxfVFSk3/3ud2e8Pn/+fE2ZMsWOCAAuUE888YRGjx6t1NRUjRgxQm+99VakI+E7zpbirK2tlcfjkWEYbZ4fPHjwGa9VVlaqrq5OY8eOtSMCgAvQrl279Mgjj4SPm5ubdccdd0QuECCbHis2ZswY7d27VyUlJZoxY4YaGhoUCATCX9W25ZFHHtETTzyhF154oVN7nrzK/ab2irujzvXzTs2yex7ZLqxZds/rztlM01Rtba3tGQGp4/+/aktxJiQkqLCwUPn5+crMzJTL5VJ2dna7xfn+++8rPj5ew4YN6/SeXq9XpaWlkiSfzydJ4ePOMAxDpml2+vNOzbJ7HtkurFl2z+tu2Q4fPqzhw4fr6NGjCoVCioqKUmJiotavX29bRuD0Djl53B7bHmTt9/vl9/s79N5Nmzbpk08+0fTp01VZWam+fftq2LBhSkxMtCsOgAtAXFyc3nnnHd1xxx369NNPNW3atE5/SwXYxbbiPJvs7GwFAgE1NTUpEAiopKREc+fOlSQ99thjGj58OKUJoE3jxo3T9u3bZRiG3n333UjHAbqmOBctWtTuuccee6wrIgAAYAtuuQcAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFlCcAABYQHECAGABxQkAgAUUJwAAFthanOXl5UpKSpLb7VZsbKwyMjLsHA8AQMTZVpzFxcVKS0tTXl6eampqVFVVpZycHLvGAwDQLdhSnMFgULm5uSooKFB6erpiYmLkcrnCz+NMTk7WgAEDNH/+/PBnevfuLZ/PJ5/Pp4KCAjtiAMBZmaap3/zmNxo1apQSExO1cuXKSEfCeciWp6OUlZXJMAylpqa2eb6oqEirVq3S/v37w68NGjTonB48DQBWPfPMM3rooYckff2Q7RkzZmjjxo265pprIpwM5xNbrjhra2vl8XhkGEab5wcPHnzGawcPHpTX69WsWbO0Z88eO2IAwFm98cYb4X82TVMnTpzQ22+/HcFEOC+ZNqioqDB79OhhLl++3GxtbTXr6+vNFStWnPKexYsXm0888UT4+NChQ6ZpmuaqVatMr9draT+v12tKYrFYLBbLkXU2tlxxJiQkqLCwUPn5+XK73Ro5cqTWrVt31s/0799fkpSUlHTKV7gd5fV6ZZqmTNOU1+s95bgzS9I5fd6pWWTrHvO66yyyWVtbtmyRy+UK/z1y9dVXq7Gx0db/zKzzb53eIV6v96z9Y8vPOCXJ7/fL7/d36L2NjY3q3bu3oqOjtW3bNsXFxdkVAwDaNXr0aH3yySdasWKF7rnnHr3//vvq06dPpGPhPGNbcZ5Ndna2AoGAmpqaFAgE9Mtf/lK5ubnh/+a3cOHCrogBABoyZIjuvvtu3XPPPZQmOqVLinPRokVnvLZly5au2BoAAFtxyz0AACygOAEAsIDiBADAAooTAAALKE4AACygOAEAsIDiBADAAooTAAALKE4AACywtTjLy8uVlJQkt9ut2NhYZWRk2DkeAICIs604i4uLlZaWpry8PNXU1Kiqqko5OTl2jQcAoFuwpTiDwaByc3NVUFCg9PR0xcTEyOVyKSUlRZKUnJysAQMGaP78+eHPfPzxx5o+fbqmTZumO++8044YANClTNPUunXr9Morr6iysjLScdBFbLnJe1lZmQzDUGpqapvni4qKtGrVqvBzN5ubm5Wfn69ly5apX79+dkQAgC733//93/rTn/4kSerZs6dee+01zZgxI8Kp4DRbrjhra2vl8XhkGEab5wcPHnzK8YYNG+RyuZSVlSWfz6c333zTjhgA0GU2b94cLk1JamlpUW5ubgQToavYcsU5ZswY7d27VyUlJZoxY4YaGhoUCATCX9Werrq6Wps3b9bWrVtlmqYmT56sqVOnyu12d3jPk1e539RecXfUuX7eqVl2zyPbhTXL7nlk6xzTNFVdXW17RnSdjv7fzpYrzoSEBBUWFio/P19ut1sjR47UunXr2n1/XFycJk6cqNjYWHk8Ho0aNcryzwe8Xq9M05RpmvJ6vaccd2ZJOqfPOzWLbN1jXnedRbbIzaupqVFsbKyior7+a9QwDN100022ZmR1zTq9Q7xe71n7x7bfqvX7/dq5c6caGxt14MABLViwoN33Tpw4UZWVlWppaVFzc7N27Nihyy67zK4oAOC4AQMG6N1339Xo0aMlSTfffLOWLFkS4VToCrZ8VfttsrOzFQgE1NTUpEAgoJKSEuXn5+u6665Tc3Oz5s6dq/j4+K6IAgC2ufbaa/XRRx/JMAy9+uqrkY6DLtIlxblo0aIzXps9e7Zmz57dFdsDAGAbbrkHAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABbYWpzl5eVKSkqS2+1WbGysMjIy7BwPAEDE2VacxcXFSktLU15enmpqalRVVaWcnBy7xgMA0C3YUpzBYFC5ubkqKChQenq6YmJi5HK5wg+yTk5O1oABAzR//nxJ0saNG+Xz+eTz+TRx4kSejALgO+/EiRN68MEHNWzYMI0ePVrvvPNOpCOhHbY8HaWsrEyGYSg1NbXN80VFRVq1apX2798vSRo/frxKS0slSS+99JLWr19vRwwAOG89/vjj+u1vfyvp/z8Ue9OmTRo1alSEk+F0tlxx1tbWyuPxyDCMNs8PHjy43c8+//zzuv322+2IAQDnrbfeeiv8z6ZpqqWlRWvWrIlgIrTLtEFFRYXZo0cPc/ny5WZra6tZX19vrlix4pT3LF682HziiSdOee3AgQPmiBEjLO/n9XpNSSwWi8ViObLOxpYrzoSEBBUWFio/P19ut1sjR47UunXrvvVzL774ojIzMzu1p9frlWmaMk1TXq/3lOPOLEnn9HmnZpGte8zrrrPI1j3m2TFr8+bNcrvdp/wd19TUZOt/Zlbb6/QO8Xq9Z+0fW37GKUl+v19+v9/SZ5YuXaply5bZFQEAzlvXXHONtm3bprVr18rv9+vdd9/VRRddFOlYaINtxXk22dnZCgQCampqUiAQUElJiSoqKtSnTx8NGzasKyIAQLd36aWXKisrS36/n9LsxrqkOBctWnTGa1dddZXKy8u7YnsAAGzDLfcAALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALDA1uIsLy9XUlKS3G63YmNjlZGRYed4AAAizrbiLC4uVlpamvLy8lRTU6Oqqirl5OTYNR4AgG7BluIMBoPKzc1VQUGB0tPTFRMTI5fLpZSUFElScnKyBgwYoPnz50v6+vE79957rxITEzVu3DgtXbrUjhgAgP8nFArpzTff1F//+ld99tlnkY5zQbHlJu9lZWUyDEOpqaltni8qKtKqVau0f/9+SdL27du1fft2ffDBBwoGg7rqqqv04x//2I4oAPCdZ5qmbrvtNv3tb3+TJPXs2VOvv/66brjhhggnuzDYcsVZW1srj8cjwzDaPD948OBTjgcOHKiePXuqpaVFx44dU1xcnB0xAACS1q1bFy5NSTpx4oTmzJkTwUQXFluuOMeMGaO9e/eqpKREM2bMUENDgwKBQPir2tN5PB4NGzZMl19+uYLBoBYuXGh5z5NXud/UXnF31Ll+3qlZds8j24U1y+55ZIv8LLvnhUIh7d692/aMF5qO/vuxpTgTEhJUWFio/Px8ZWZmyuVyKTs7u93iXLlypaqrq1VZWamjR49qypQpuvHGG9WrV68O7+n1elVaWipJ8vl8khQ+7gzDMGSaZqc/79Qsu+eR7cKaZfc8skV+lh3zDhw4oJEjR+rYsWMKhUKSJL/fr6KiIpsSXlhO75CTx+2x7bdq/X6/du7cqcbGRh04cEALFiw46/vj4uIUHR0tl8ullpYWtba22hUFAL7TLrnkEq1evVoTJ06UJOXm5urZZ5+NcKoLhy1XnN8mOztbgUBATU1NCgQCev311/Xyyy9r8uTJam5u1pw5c9SnT5+uiAIA3wljx45VeXm5DMPQX/7yl0jHuaB0SXEuWrTojNf4ygAAcD7ilnsAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYIGtDFz2ZgAAIABJREFUxVleXq6kpCS53W7FxsYqIyPDzvEAAEScbcVZXFystLQ05eXlqaamRlVVVcrJybFrPAAA3YItxRkMBpWbm6uCggKlp6crJiZGLpcr/DzO5ORkDRgwQPPnzw9/5tFHH9WkSZPk8/m0bds2O2IAABxw/Phx3XXXXfre976nESNG6O233450pLBgMKg77rhD3/ve93TllVdqzZo1ju9py9NRysrKZBiGUlNT2zxfVFSkVatWaf/+/ZKkrVu3auPGjXr//fe1b98+/eQnP9Hq1avtiAIAsNn999+v5557TpJUV1en1NRUbd26VVdccUWEk0lz5szR888/L9M0VVdXpxkzZmj79u0aOnSoY3vacsVZW1srj8cjwzDaPD948OBTjj///HONHTtWkjRkyBDt2LFDJ06csCMKAMBmK1asCP9zKBRSS0uL1q9fH8FE/98777wj0zQlfZ3t+PHj+uCDD5zd1LRBRUWF2aNHD3P58uVma2urWV9fb65YseKU9yxevNh84oknTNM0zW3btpmTJk0ym5qazI8++sg0DMM8dOhQh/fzer2mJBaLxWKxHFlnY8sVZ0JCggoLC5Wfny+3262RI0dq3bp17b7/yiuvVGZmppKTk/Xss8/qqquuUnx8vKU9vV6vTNOUaZryer2nHHdmSTqnzzs1i2zdY153nUW27jHvQs+2adMm9evXL/z3b1pamlpbW239z9zZVV5erosvvjic7bbbblMoFLI04/QO8Xq9Z+0f236r1u/3a+fOnWpsbNSBAwe0YMGCs77/3nvv1bp163Tfffdp9OjR7X7NCwCIrLFjx+rTTz/V3//+d0nSsmXLFBXVPW4DMGnSJH366ad69dVXJUlLly51vE9s+eWgb5Odna1AIKCmpiYFAgGVlJTo+uuv14kTJ9S/f3/9+c9/7ooYAIBOGjhwoG6++WZJ6jaledKll16qSy+9VJK65CKsS4pz0aJFZ7y2cuXKrtgaAABbda//2gAAQDdHcQIAYAHFCQCABRQnAAAWUJwAAFhAcQIAYAHFCQCABRQnAAAWUJwAAFhga3GWl5crKSlJbrdbsbGxysjIsHM8AAARZ1txFhcXKy0tTXl5eaqpqVFVVZVycnLsGg8AQLdgS3EGg0Hl5uaqoKBA6enpiomJkcvlUkpKinbv3q2pU6fqRz/6kaZMmaJNmzZJ+voO9omJiUpMTNTatWvtiAEAOA+0tLTo5Zdf1p/+9CdVVFREOo5lttzkvaysTIZhKDU19YxzsbGx+sc//qH4+Hh9+umnys3NVUlJiZ588klt2LBBjY2NSk5O1ubNm7vdHfcBAPY6ceKEbrzxRq1atUqSdNFFF2n58uWaPn16hJN1nC1NVVtbK4/H0+bjXOLj48MPqe7Vq5eio6MVCATk9XoVExOj/v37a+DAgdq3b58dUQAA3djbb78dLk3p6yL9P//n/0QwkXW2XHGOGTNGe/fuVUlJiWbMmKGGhgYFAgGlpKSE39Pa2qq5c+fqwQcfVF1dnTweT/icx+NRXV2dhg4d2uE9T17lftO5PofNzue42f1MOLJFfl53nWX3PLJFfpbd87pzNtM0tW3bNttmnsucjn7WlivOhIQEFRYWKj8/X263WyNHjtS6devC503TVHZ2tmbOnKnp06crPj5e9fX14fNHjhwJX5V2lNfrlWmaMk1TXq/3lOPOrJM57Vh2ziJb95jXXWeRrXvMI1vHV1VVlfr163fKj+bmzZsX0Wynd4jX6z1r/9j2Q0W/36+dO3eqsbFRBw4c0IIFC8Ln5syZo+HDh+uee+6RJE2YMEHvvfeempqadPjwYVVXV2vIkCF2RQEAdFODBw/W2rVr5fP5JEkPPPCAfvvb30Y2lEW2fFV7NqWlpSooKNCkSZO0evVqxcXF6bXXXtN9990X/hf31FNP8YtBAPAdcc0112j16tUyDEO/+c1vIh3HMseL0+fzqbm5+YzXs7KylJWV5fT2AADYiss8AAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBALCA4gQAwAKKEwAACyhOAAAsoDgBAF1q586d+t3vfidJevnll3X8+PEIJ7LG8eJ85ZVXNHr0aLlcLv3whz/U66+/7vSWAIBu6PDhw5o5c6Z++MMf6v7775ck3XbbbRo8eLBeeOGFCKfrOEeLs6CgQA899JCee+45HTt2TE8//bQyMzP1r3/9y8ltAQDdzFdffaXrr79e7777rp544gl98cUXkqRVq1bpiiuuUFZWll588cUIp+wYx4rz2LFjeuihh7Ro0SKNGzdOknTDDTdowIAB2rRpk5YuXarExEQlJiZq7dq1TsUAAHQDL774oj766CO9/PLLevjhh3XJJZdIkpKSkvTuu+9qwoQJuv/++9XS0hLhpN/OseJcs2aNoqOjdd1114VfM01TtbW1ioqK0pNPPqm1a9eqpKRE8+bNUygUcioKACDCCgsLddVVVyktLe2Mc7169dLPf/5zffHFF3rnnXcikM4ax4qzoaFBHo/nlNdKSkrUu3dvGYYhr9ermJgY9e/fXwMHDtS+ffucigIAiLC9e/cqMTFRhmG0eX7ixImSdH50gemQnTt3mj179jTLysrMEydOmKtXrzYvueQSc/HixeaLL75oPvroo+H33nbbbebGjRs7PNvr9ZqSWCwWi3WerKioqIhnsLLOxrEHWV9++eUqLCzUnXfeqYMHD+ryyy/XH//4R91888165513VF9fH37vkSNHFB8fb2m+1+tVaWmppK8fli0pfNwZhmHINM1Of96pWXbPI9uFNcvueWSL/Cy753WXbA888ICeeuopVVZWasiQIWfMuvvuu1VUVKT9+/erf//+XZrt9A45edweR3+r9vbbb9fu3bsVDAa1ZcsW3XzzzZKkCRMm6L333lNTU5MOHz6s6urq8L9IAMCF55577lHv3r1100036fPPPw+/3tzcrKeffloLFy7UnXfe2enS7EqOXXGeTWxsrO67775wqz/11FOKiuJeDABwoRoyZIhef/11zZo1SyNGjNDUqVMlSZdddpkOHjyomTNn6plnnolwyo6JSHFKUlZWlrKysiK1PQCgiyUlJWnnzp0qLCzU8uXLJUnjx4/XXXfdpenTpys6OjrCCTsmYsUJAPjuGThwoB555BE98sgjMgxDb7zxRqQjWcb3owAAWEBxAgBgAcUJAIAFFCcAABZQnAAAWEBxAgBgAcUJAIAFFCcAABY4WpyhUEhZWVm67LLLdPHFF2v48OF65ZVXnNwSAABHOVqcR48e1Q033KBPPvlEDQ0Nmjdvnu644w41Nzc7uS0AAI5xtDg9Ho8yMzPVr18/RUVFye/3q6mpScFgUEuXLlViYqISExO1du1aJ2OcVWlpqX79619LklpbWyOWAwBwfnD0XrXvvvuufv/736uiokLHjh1TKBTSJZdcIsMw9OSTT2rDhg1qbGxUcnKyNm/e3OVPSFm4cKHuvvvu8PGtt96qv//97+0+oRwAAMeaauPGjZo9e7bmzp2rzz//XEePHtUDDzyga6+9VoFAQF6vVzExMerfv78GDhyoffv2ORWlXQ888MApx8XFxfroo4+6PAcA4Pzh2BXnli1b5PF4NGnSJEVHR6uoqEi//vWv9cADD6iurk4ejyf8Xo/Ho7q6Og0dOrTD88vKys64MrTjSnHcuHHnPEOyJ4tT88h2Yc2yex7ZIj/L7nlks/ez/5e9e4+Lss7///9gxiNCw2i2C7KLq9O20WF3i0rpMOSSOnawtAS0ACkt3WSdTxplB0+obZ7KajNNITXFTXPLzUXRTStNqNYWSltWOxjuupXioCQDMtfvj77NLzzFJTMO4vN+u71uN65r5npdLwrmySXD9Q5acKakpLBq1SpiYmL46U9/yv3334/dbichIQGr1UplZaX/uQcOHKBTp06m+judTjZu3AjgXxD7++3Guuuuu1iyZIl/Oy4ujrKyMiIjI031OVpYWBiGYTSpR7D6abaW1SvQ/TRb6HsFup9m+3FHZ8j32ycStOCMioqisLCwwT632w18F5QPP/yw/41Ce/bsoWvXrsEa5YTmz5/PT37yEzZv3szWrVt56623mhyaIiLSsoVkIeuoqChGjx7tT/WZM2ee9jcGAbRr144ZM2YA3/2k8vOf//y0zyAiImeWkAQnQHp6Ounp6aE6vYiIyCnRLfdERERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOERERExScIiIiJig4RURETAjZnYOag3379rFs2TK+/PJLAP71r39xwQUXhHgqERFpzoJ6xenz+UhPTycuLo6IiAgcDgcFBQXBPGWjGIbB5MmTiY2NZdSoUTz99NMA/OpXv2LAgAFUVVWFeEIREWmughqcHo8Hl8tFaWkpVVVVuN1uMjMzqa2tDeZpf9SUKVN4/PHHufnmm/nnP/9JTU0NAOPHj+f111+nf//+1NfXn1LvQC6RIyIizU9Qg9Nut5OWlobNZsNisZCRkeFfSiw5OZnOnTuTm5sbzBGOsX//fqZMmcLtt9/O8uXLufTSS/2PTZgwgeeff56NGzeyZs0a072feuop/7JkWVlZIf8BQUREAi+owVlUVITL5SI2NhabzUZ0dDTR0dHY7Xby8/OZPn16ME9/XAUFBdTU1PDoo48ed7XvzMxMYmJiWLBggam+hYWFuN1uqqurAcjLy2Py5MkBmVlERJqPoAVnSUkJqampZGdnU15ejsfjIScnh4SEBABiY2ODdeqT2r17N61bt+bXv/71cR9v3bo1v/3tb9m9e7epvlu2bGmwHRYWdsw+ERE58wXtXbXbtm3DbreTmJiI1WolPz+fadOmkZOTE5D+mzZtOuaK8XhXkCdyvOc2pd/RDMPg73//e5N6BGqWYPYKdL+zZbaz5fMMdD/NFvpege7XnGZr7LFBu+JMSUnB4XAQExNDfHw8lZWV2O12/xVnUzmdTgzDwDAMnE5ng+2TVXl5OQCPPfZYg/3wXdi9/fbbADz//PON6vd91dXVcfPNN/vnO//88/nPf/5jqseJ6vvZmlsvzRb6XpqtefTTbKHv1ZR+R2eI0+k8af4E7YozKiqKwsLCBvvcbnewTtdo559/PrfffjtTp04lJiaGu+++m9atWwPw9ttvk5KSQpcuXRgyZIipvq1ateIvf/kL//jHP7jiiiv48MMPCQ8PD8anICIiIRSyGyBkZWVRXFyM1+uluLiY1atXn7ZzL1y4kP379zNixAgmTpzIb3/7WwCuu+46unTpwtq1a/3vjjXDYrH4r6gVmiIiLVPIgnPhwoWhOjWRkZGsW7eOwsJCFi5cyBdffAHA3LlzGTx48CmFpoiInB3O2lvuWa1WbrzxRm688cZQjyIiImcQ3eRdRETEBAWniIiICQpOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBGWCHDx8GtKC1iEhLFfTg9Pl8pKenExcXR0REBA6Hg4KCgmCf9rQyDIOCggISExP9t9o7//zzmTFjhj9IRUSkZQh6cHo8HlwuF6WlpVRVVeF2u8nMzKS2tjbYpz4tDMMgOzubtLQ0vvnmG8aPHw9ATEwMY8eOpXfv3v7FrUVE5MwX9OC02+2kpaVhs9mwWCxkZGTg9XopKyvjuuuu49prr+Waa67h/fffD/YoQfHnP/+ZZ599FrfbzSeffMKECRMAeOuttygoKGDLli08/PDDp9T79ddf59FHHwWgvr4+UCOLiEgTBD04i4qKcLlcxMbGYrPZiI6OJjo6mq5du7Jq1Srefvtt5s2b1yyWHDsVzzzzDA6HgxkzZmCxNPzPmZKSwpAhQ8jLy+PgwYOm+k6dOpX+/fszZcoUAFJTU/V7UxGRZiCowVlSUkJqairZ2dmUl5fj8XjIyckhISGBTp060alTJwDatm2L1WoN5ihBUVNTw+bNm0lLSzsmNL935513cujQIUpKShrdt76+3n/l+r0VK1awffv2powrIiKBYATR3Llzje7duxsHDhwwampqjLy8PCM8PNyYOHGi/zlHjhwx+vXrZ/ztb39rdF+n02kAKpVKpVIFpU4mqFecKSkpOBwOYmJiiI+Pp7KyErvd7l/s2TAMsrKyuOmmm+jbt6+p3k6nE8MwMAwDp9PZYPt0lc/n4/zzz+fqq69usP/7z80wDMaOHYvVamXPnj2meqelpQEQFhYGwCWXXEJNTU2TZ/7hbIGoQPY7W2Y7Wz5PzdY8+mm2H6+jM8TpdJ40f4K6HmdUVBSFhYUN9v3wd5mjRo3C4XAwYsSIYI4RNGFhYdx333088MADLF26lMGDBzd4vKysjLlz59K/f39iYmJM9V64cCFdu3blvffeY/369WzYsIG2bdsGcnwRETkFIbsBwsaNG5k3bx4bNmwgKSmJAQMGhGqUJhk5ciTXXnstd955J3fddRd/+9vfABg7dixXX301kZGRzJo1y3Tfdu3aMXXqVIqKigDo3LlzQOcWEZFTE9QrzpNJSkpqEX/L2a5dOwoLC3nkkUdYuHAhS5YsAWD27NnceuutzJw5k7i4uBBPKSIigaJb7gVAeHg4s2fPZs+ePbz55psAfPnll6xYsUKhKSLSwoTsirMlioiIICkpyf9LahERaXl0xSkiImKCglNERMQEBaeIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYENTg9Pl8pKenExcXR0REBA6Hg4KCgmCessWoqKhg2rRp3H///cB3970VEZHQC2pwejweXC4XpaWlVFVV4Xa7yczMbBG32guW+vp63G43Xbt2Zdy4cSxduhSASy+9lFtuuYWqqqoQTygicnYLanDa7XbS0tKw2WxYLBYyMjLwer1UVlaSmJhIUlISV111FRs2bAjmGGeUMWPG8NRTT3H33Xfz6aefsn//fgByc3NZs2YNt956Kz6f75R6HzlyJJCjioiclYIanEVFRbhcLmJjY7HZbERHRxMdHc25557L22+/zcaNG1m2bBkPPfRQMMc4Y1RUVPDMM88wbNgwXnjhBX7xi1/4H3vkkUd45plnePPNN/0rpjSWYRg89thjtGvXDoD09HRd9YuInKKgBWdJSQmpqalkZ2dTXl6Ox+MhJyeHhIQErFYrVqsVgAMHDnDppZcGa4wzypIlS6ivrz/hDxJZWVl07tyZ/Px8U32XL19Obm4u9fX1ACxevJgnnniiqeOKiJyVghac27Ztw263k5iYiNVqJT8/n2nTppGQkADAZ599xjXXXEOfPn247bbbgjXGGWXPnj1ERUXRrVu34z7etm1bLrroIioqKkz1fe+99wgLC/NvWywW3n///SbNKiJy1jKCpLKy0ujTp48RHh5udOvWzZg1a5bRpUsX44033mjwvF27dhlxcXGmejudTgNQqVQqlSoodTJBC86Tqamp8X/89ddfGxdddJGp451Op+F0Ok+4fab66KOPDMCYOHFig/3f/0987bXXDMBYunSpqb61tbXGLbfc4v+CuPzyy43KysqAzPxjX2Ch6hXofs21V6D7abbQ9wp0P832446XKScTkvU433vvPcaNG4fVaqWuro6nn346FGM0OxdddBG33norkyZNomPHjgwbNoy2bdsC8Prrr5ORkcEvf/lLBgwYYKpv69atWbVqFTt27ODiiy9my5YttGnTJhifgohIixeS4Lzmmmt46623QnHqZm/RokUMGDCAUaNGMXHiRC666CIA+vfvzy9/+UvWrl3rD1MzLBaLv5dCU0Tk1OmWe81MZGQka9eupaioiBtuuMH/N5tLly6lrKyMrl27hnZAEZGzXEiuOOXkLBYLycnJJCcnh3oUERE5iq44RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMUnGcJwzD4+uuvAfzLi4mIiHlBDU6fz0d6ejpxcXFERETgcDgoKCgI5inlKD6fj7lz53LJJZdw3nnnAdCtWzemTp3K4cOHQzydiMiZJ6jB6fF4cLlclJaWUlVVhdvtJjMzk9ra2mCeVv4fn8/HnXfeyYgRI2jfvj0zZswA4Je//CWPPPIIN9xwA9XV1SGeUkTkzBLU4LTb7aSlpWGz2bBYLGRkZOD1ev0v1vv27cNut7NkyZJgjnHWmj9/PsuWLWPq1Km89957PPDAAwAUFRWxfPly3n33XR5//HHTfQ3DYNGiRbjdbgCOHDkS0LlFRJqzoAZnUVERLpeL2NhYbDYb0dHRREdHY7fbAcjNzeWaa64J5ghnLcMwePbZZ7n88st56KGHjnl80KBBDBo0iIULF/Ltt9+a6v3AAw+QkZHhXw7uzjvv5Lul8EREWr6gBWdJSQmpqalkZ2dTXl6Ox+MhJyeHhIQEAHbu3Mm+ffu4/PLLgzXCWW3//v189NFHpKSkEBYWdtznpKamcuDAAUpLSxvd9/Dhw8yePRvAH5bLly/ns88+a/rQIiJnglNaLrsR5s6da3Tv3t04cOCAUVNTY+Tl5Rnh4eHGxIkTDcMwjLS0NGPnzp3G+PHjjcWLF5vq7XQ6DUClUqlUqqDUyQTtijMlJQWHw0FMTAzx8fFUVlZit9tJSEhgy5YtdOrUie7du59yf6fTiWEYGIaB0+lssK0yqK+vJy4ujuuvv77BfsD/8fDhw2nXrh379+831fuOO+4Avlv+DODqq6/myJEjTZ75h7MFogLZr7n20mzNo59mC32vpvQ7OkOcTudJ8ydo63FGRUVRWFjYYN/3byaZM2cOpaWl9O3bl507d9KhQwe6d+9Oz549gzXOWcdisXDffffx8MMPs2zZMtLS0ho8/s477/DSSy8xZMgQ/++cG2vx4sXEx8fz4Ycf8tprr/G3v/0Nq9UayPFFRJqtkCxknZ2dTXZ2NgATJkzA4XAoNINg9OjRrFmzhiFDhrBq1SpSU1MBGD58OIsWLeLnP/85TzzxhOm+bdu2ZcKECQCEhYURGRkZyLFFRJq1kN85aMKECdx5552hHqNFateuHYWFhTzwwAOsX7+egQMHArBkyRKGDBnCO++8Q+fOnUM8pYjImSUkV5xy+oSHhzN9+nQmTZpEWVkZ9fX1XHjhhURFRYV6NBGRM5KC8yzRvn17rrzyylCPISJyxgv5P9WKiIicSRScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExISgBqfP5yM9PZ24uDgiIiJwOBwUFBQE85RyGnzyySeMGzeOoUOHAvCPf/wjxBOJiJw+QQ1Oj8eDy+WitLSUqqoq3G43mZmZ1NbWBvO0EiRer5f09HQuvPBCpk+fzvr16wG4/PLLufHGG6mqqgrxhCIiwRfU4LTb7aSlpWGz2bBYLGRkZOD1eqmurqZ9+/YkJSWRlJTEvHnzgjmGBMiwYcNYvHgxDz30EHv27OHLL78E4I9//CPr1q1jwIAB/qV9zKqurg7kqCIiQRPU4CwqKsLlchEbG4vNZiM6Opro6GjsdjtdunRh48aNbNy4keHDhwdzDAmATz75hMWLF5OTk8O0adM477zz/I89+OCDzJo1iw0bNrBp0yZTfX0+H/fddx8REREA3HnnndTV1QV0dhGRQApacJaUlJCamkp2djbl5eV4PB5ycnJISEgAYO/evTidTm699VY+/fTTYI0hAbJ48WJatWrlX1P1aPfccw92u538/HxTfefNm8cLL7zg33755ZeZOXNmU0YVEQmqoAXntm3bsNvtJCYmYrVayc/PZ9q0af7g/Pzzz9m0aROjRo0iKysrWGNIgOzdu5fzzjuPn/zkJ8d9vH379px//vns3bvXVN8PP/wQi+X//zK0Wq18+OGHTZpVRCSojCCprKw0+vTpY4SHhxvdunUzZs2aZXTp0sV44403jnlu9+7dTfV2Op0GoFKpVCpVUOpkghacJ3Pw4EHjyJEjhmEYRllZmXHFFVeYOt7pdBpOp/OE2xJ427ZtMwBj6tSpDfZ//wWWn59vAMf9wehkvF6v0b9/f/8Xa3JyslFdXR2QmX/si78l9Ap0P80W+l6B7qfZftzxMuVkQrIe5/bt27n33nuJjIwEaPA7LmmefvOb33DTTTfx2GOPER4ezrBhwwgPDwfgpZdeYuTIkSQkJNCnTx9Tfdu0acOqVav4/PPP6datG2vXrm3wT7ciIs1NSILzyiuvZNu2baE4tTTB0qVLuf322xk9ejQTJkzA4XAAkJmZyRVXXMHq1auxWq2m+4aFhfGLX/wCQKEpIs2eXqWk0SIjIyksLGTTpk3cdtttnHvuuQCsWbOGrVu3nvCNQyIiLUlIrjjlzBUWFsZ1113HddddF+pRRERCQlecIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKTgm5+vp6Pv/8cwCtxSkizV5Qg9Pn85Genk5cXBwRERE4HA4KCgqCeUo5g9TW1jJt2jS6devmv+VeXFwcEyZM4Ntvvw3xdCIixxfU4PR4PLhcLkpLS6mqqsLtdpOZmUltbW0wTytngNraWm655RbGjRvH+eef77/R/29/+1smTpxI7969FZ4i0iwFNTjtdjtpaWnYbDYsFgsZGRl4vV6qq6v55z//Sd++fenVqxdDhw4N5hjSDM2ePZu1a9cyf/581q9fz/DhwwF44403WL58OVu2bGHSpEmm+x45coQ5c+Zw7733+rdFRAIpqPeqLSoqYtasWZSVlXHw4EF8Ph/R0dF06NCBMWPGsGLFCmw2WzBHkGaovr6eP/3pT/Tq1Yt77rnnmMcHDRpEQUEBCxYsYMKECbRr165RfQ3DICsri8WLF/tXWbnrrrtYunQpYWFhAf0cROTsFbQrzpKSElJTU8nOzqa8vByPx0NOTg4JCQls3bqVyMhI0tPTSUpK4q9//WuwxpBmqKKigt27d3PHHXec8DmDBg32Us66AAAgAElEQVTim2++oby8vNF99+3bx+LFi4Hvfr8OUFBQwN69e5s2sIjID53SctmNMHfuXKN79+7GgQMHjJqaGiMvL88IDw83Jk6caCxdutSIi4szKisrjf379xsXXnih4fF4Gt3b6XQagEqlUqlUQamTCdoVZ0pKCg6Hg5iYGOLj46msrMRut5OQkEDHjh3p0aMHUVFR2O12Lr30Unbu3Gmqv9PpxDAMDMPA6XQ22FY176qrq6NLly707du3wX7A/3FKSgpRUVFUV1c3uq/P52PAgAEA/gW1b775Znw+X5Nn/uFszamXZmse/TRb6Hs1pd/RGeJ0Ok+aP0ELzqioKAoLC6murmbXrl243W4qKiro168fPXr0YOfOndTV1VFbW8uOHTuIi4sL1ijSzLRq1Yrhw4dTWFjIsmXLjnn8jTfeYMWKFQwdOpTw8PBG9w0LC2PZsmVMmTKFQYMGAfDKK6/o95siElAhWcjaZrMxZswYrr/+empra8nOzqZTp06hGEVCZOzYsaxfv54hQ4awfPlyf9ClpKSwcuVKfv3rXzNhwgTTfdu0acO4ceMAWLZsGW3btg3k2CIioQlOgNTUVFJTU0N1egmx9u3bs3btWnJzc5k/fz6vvfYa8N07sf/whz8wYcIEIiMjQzyliMixQhacIu3bt2fKlCk8/vjj/Pvf/8bn8+FwOEz986yIyOmm4JSQa9u2LRdffHGoxxARaRTd5F1ERMQEBaeIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExIajB6fP5SE9PJy4ujoiICBwOBwUFBcE8pZzFDMOguLiY+++/338Lv3fffdd/82cRkUAIanB6PB5cLhelpaVUVVXhdrvJzMyktrY2mKeVs9ChQ4e4+eab6dGjB3l5eZSVlQGQmJiIy+WiqqoqxBOKSEsR1OC02+2kpaVhs9mwWCxkZGTg9XrZtm0bSUlJJCUl0aNHD93gXZrEML5bhqywsJAnn3ySvXv3smPHDgBmzpzJhg0buOOOO07pytMwDP73v//5PxYRCWpwFhUV4XK5iI2NxWazER0dTXR0NFdddRUbN25k48aNZGdnk5KSEswxpIV77733WLNmDVOnTmXs2LENbg7/f//3fzz55JOsW7eOd99911Tf2tpaBg0axE9/+lMAhgwZwpEjRwI6u4iceYIWnCUlJaSmppKdnU15eTkej4ecnBwSEhIaPG/RokXcddddwRpDzgJLliwhPDyc++6777iPDx8+nMjISBYtWmSq76xZs1ixYoV/e9myZcyZM6dJs4rImS9owblt2zbsdjuJiYlYrVby8/OZNm1ag+Dcu3cvn3/+OT179gzWGHIW+Oqrr4iNjeWcc8457uMdOnTg5z//OV999ZWpvtu3b8dqtfq3LRYLH3/8cZNmFZEWwAiSyspKo0+fPkZ4eLjRrVs3Y9asWUaXLl2MN954w/+cGTNmGBMmTDDd2+l0GoBKpVKpVEGpkwlacDbGb37zG2Pnzp2mj3M6nYbT6Tzhtpxdtm7dagDGk08+2WD/91/8Tz31lAEY77zzjqm+Xq/XuO222/zfSCkpKUZtbW2T5/2xb8pQ9tNsoe8V6H6a7ccdL1NOJmQ3QCgrKyM8PJzu3buHagRpIa688kpcLhcPP/wwM2bM4ODBg/7HnnrqKcaMGcMNN9xAYmKiqb5t2rRh5cqV/Pe//wW++x1n69atAzq7iJx5Qhacl1xyCZs3bw7V6aUFCQsLY/ny5dxwww2MHTuW6Oho4uPjAXC73SQlJfHKK68QFhZ2Sr2/f1ftqRwvIi1Pq1APIBIIkZGRrFmzhuLiYhYtWsRXX33Fjh072Lx5Mz179lToiUjAKDilxQgLC6NHjx706NEj1KOISAumm7yLiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOERERExScIiIiJujvOEVOoqamhp07dwLg9Xpp27ZtiCcSkVAL6hWnz+cjPT2duLg4IiIicDgcFBQUBPOUIgFRXV3NQw89RGxsLJdccgkAP/vZzxg3bhzffvttiKcTkVAKanB6PB5cLhelpaVUVVXhdrvJzMyktrY2mKcVaZLq6mp+97vfMX36dJxOJy+//DIAV199NU888QS9e/dWeIqcxYIanHa7nbS0NGw2GxaLhYyMDLxeL9XV1dx///307NmTK664giVLlgRzDBFTcnNzKSkp4ZVXXmHlypUMHjwYgFWrVlFQUMCWLVt44oknTPetqalh8uTJADz55JPU1dUFdG4ROT2CGpxFRUW4XC5iY2Ox2WxER0cTHR3Nnj17+Pjjj3n33XfZuHEjjz/+eDDHEGm0mpoaXnzxRW699VYGDBhwzOODBg2iX79+zJ8/31Tw+Xw+Bg4c6P9az8nJITMzM1Bji8hpFLTgLCkpITU1lezsbMrLy/F4POTk5JCQkEBMTAxt2rShrq6OgwcP0rFjx2CNIWLKp59+yjfffMPAgQNP+JyBAweyd+9evvjii0b33b17N2vWrGmwb+nSpRw4cOCUZxWREDml5bIbYe7cuUb37t2NAwcOGDU1NUZeXp4RHh5uTJw40fD5fMaIESOMrl27Gp07dzZeffVVU72dTqcBqFQqlUoVlDqZoF1xpqSk4HA4iImJIT4+nsrKSux2OwkJCaxbt449e/awc+dOPvnkEx555BG8Xq+p/k6nE8MwMAwDp9PZYFulOtXyer2cd9553HzzzQ32A/6P+/TpQ0xMDHV1dY3u6/P5uPXWWxt8DWdmZgZk5h/O1px6abbm0U+z/XgdnSFOp/Ok+RO04IyKiqKwsJDq6mp27dqF2+2moqKCfv36AdCxY0esViuRkZHU1dVRX18frFFEGq1NmzYMGzaM1atXs2zZsmMeX7x4MWvXruXee++lVavG/xl0WFgYy5cvZ/r06QDMmTOHF198MWBzi8jpE5I7ByUnJ2MYBldffTWJiYmMGjWK8PDwUIwicoxHHnmEa6+9lsGDB9OvXz8WLFgAQN++fUlPT+f666/nwQcfNN23TZs2jBkzBoBRo0ZhtVoDOreInB4huXOQ1WolPz8/FKcW+VHt27dn7dq1PPnkk7zwwgv87W9/A+Cjjz5i0qRJPPjgg7qDkMhZTLfcEzmO9u3bM378eMaNG8fu3bsJCwvj5z//ual/nhWRlkmvAiIn0bp1a7p37x7qMUSkGdHqKCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJQQ1On89Heno6cXFxRERE4HA4KCgoCOYpRZoln8/HunXryMjIAODuu+9m06ZN/htTi8iZI6jB6fF4cLlclJaWUlVVhdvtJjMzk9ra2mCeVqRZ+eabb7jmmmvo06cPf/3rXwFYuXIlSUlJ9O7dm6qqqhBPKCJmBDU47XY7aWlp2Gw2LBYLGRkZeL1eqqurGT9+PImJiSQlJfHRRx8FcwyRkPH5fPTv359t27Yxf/58/vOf/wDwn//8h6effpqNGzeSlpZ2Sr3r6+vZtWsXgK5cRU6joAZnUVERLpeL2NhYbDYb0dHRREdH88UXX1BSUsKWLVvIz8/nD3/4QzDHEAmZv//972zZsoU5c+Zwzz33+G8OHx4eTnZ2NlOnTmXNmjW8//77pvpWV1fTu3dvHA4HAGlpaRw5ciTg84vIsYIWnCUlJaSmppKdnU15eTkej4ecnBwSEhIoLy/n8ssvB6Br167s2LFD3/TSIi1ZsoSOHTuSnp5+3MeHDx9Ou3btePnll031nTJlCn//+9/928uXL2fu3LlNmlVEGskIkrlz5xrdu3c3Dhw4YNTU1Bh5eXlGeHi4MXHiROOjjz4yEhMTDa/Xa3zwwQdGWFiY8fXXXze6t9PpNACVSqVSqYJSJxO0K86UlBQcDgcxMTHEx8dTWVmJ3W4nISGBiy66iLS0NJKTk/nTn/7EJZdcQqdOnUz1dzqdGIaBYRg4nc4G2ypVc6l77rmHc845h0OHDvn3Af6Pv/nmG/8C12b6Tpw48ZjviRdffLHJ8/5wtkBUIPtpttD3aqmzHZ0hTqfzpPkTtOCMioqisLCQ6upqdu3ahdvtpqKign79+gFw//3389ZbbzF69Gh+85vfEBYWFqxRREImPT2dqqoq5s+ff9zH58yZQ21trf/PVBorJyeHO+64w7/9+9//nqFDhzZpVhFpnJCtx9m7d2+OHDnCueeey3PPPReqMUSC6vs/QxkzZgw1NTXcd999wHd/ojJnzhxyc3NJSUnh4osvNtW3bdu2/PnPf8bj8RAVFcWzzz4bjPFF5DhCFpzr1q0L1alFTpuwsDBeeeUVBg8ezMMPP8yECRMA6NKlC7W1taSkpJCXl3fK/W02W4AmFZHG0i33RIIsMjKS1atX88EHH/D73/8egNGjR1NWVkZBQQHt27cP8YQiYkbIrjhFzjaXXXYZl112GTNnzgz1KCLSBLriFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVEREzQ33GKnKGqqqrYsWMHAIcPH9aNFEROk4Bccfp8PtLT04mLiyMiIgKHw0FBQUEgWovIUfbt28d9991HTEwMPXr0AL67hd/YsWP59ttvQzydSMsXkOD0eDy4XC5KS0upqqrC7XaTmZlJbW1tINqLyP+zb98+rr32WvLy8hg0aBCvvfYa8N2iCTNnzqR3794cPnw4xFOKtGwBCU673U5aWho2mw2LxUJGRgZer5fq6mqSk5Pp3Lkzubm5DY5ZsmQJPXv2pGfPnrz55puBGEOkxXv00UfZuXMnhYWFLFy4kFtuuQWAgoICCgoK2Lx58ynd0q+qqooxY8YAkJubS11dXUDnFmlJAhKcRUVFuFwuYmNjsdlsREdHEx0djd1uJz8/n+nTpzd4/oEDB5gxYwZvvvkmq1evxu124/P5AjGKSIt18OBBFi9ezJAhQ7j++uuPeXzQoEEkJyfzwgsvUF9f3+i+R44coU+fPv7Afeyxx8jKygrY3CItTZODs6SkhNTUVLKzsykvL8fj8ZCTk0NCQgIAsbGxxxxTXFyM0+mkXbt2nHvuucTExPD55583dRSRFu2TTz6hurqa/v37n/A5t912GxUVFfzvf/8z1Xfr1q0N9r388svU1NSc8qwiLVmT31W7bds27HY7iYmJWK1W8vPzmTZtGjk5OSc8Zt++fdjtdv+23W5n3759dOvWrdHn3bRpE2FhYQ32Hb0t0hLddtttx+w7+mu/S5cuTTqHYRgBe5duIL8vA/09rtlC3685zdbYY5t8xZmSkoLD4SAmJob4+HgqKyux2+3+K87j6dSpE5WVlf7tAwcO0KlTJ1PndTqdGIaBYRg4nc4G2ypVS6zDhw/TsWNHbr/99gb7Af/HPXr04IILLsDn8zW6b319/TFXsWPHjg3IzD+crTn10mzNo19zme3oDHE6nSfNnyYHZ1RUFIWFhVRXV7Nr1y7cbjcVFRX069fvhMdcddVVvP3223i9Xvbv38+ePXvo2rVrU0cRadHatWvHPffcw8qVK1m2bNkxj8+ePZutW7cycuRIUz91WywWXnnlFebMmQPASy+9xB//+MeAzS3S0gT9BghZWVkUFxfj9XopLi5m9erVREVFMXr0aJKSkgCYOXMmFotuYiTyYyZMmMC7777L4MGDefHFF/3/bNuzZ0+2bt3KgAED+P3vf2+6b+vWrRk1ahTZ2dmkp6cHemyRFiXowblw4cLj7k9PT9c3qIhJ7du3Z926dcyePZu5c+cyatQoACorK3nmmWcYMWIEVqs1xFOKtGy65Z7IGaZdu3Y8/PDDPPjgg3z99deEhYVx3nnn6c1xIqeJglPkDGW1WvnpT38a6jFEzjr6xaKIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJiQsCC0+fzkZ6eTlxcHBERETgcDgoKCgLVXkSCpK6ujldeeYWBAwcCMGTIEIqKirRGrsgJBCw4PR4PLpeL0tJSqqqqcLvdZGZmUltbG6hTiEiAffnll/z2t79l0KBBlJSUALB27Vp69+5NcnIyVVVVIZ5QpPkJWHDa7XbS0tKw2WxYLBYyMjLwer1UV1eTnJxM586dyc3NbXDMifaLSPDV1dXhcrn48ssvWbFihX8x+T179vDcc8/x1ltvMWTIkFPqXVtbS2lpKYB/uSeRliJgwVlUVITL5SI2NhabzUZ0dDTR0dHY7Xby8/OZPn36McecaL+IBN9rr73Gxx9/zIIFCxg4cKD/5vBt27Zl5MiRTJo0ib/+9a/+AGys/fv307NnT379618D363ZW19fH/D5RUIlIMFZUlJCamoq2dnZlJeX4/F4yMnJ8S9mHRsbe9zjTrRfRIJv2bJldOnSxb802dHuu+8+WrVqZfq9Co8++ijbtm3zb7/yyisnXCVJ5EwUkJu8b9u2DbvdTmJiIlarlfz8fKZNm0ZOTk4g2h/Xpk2bjlkNQqtDiJjXqlXDl4Gjv4+mTZvGtGnTmnSO4cOHM3z48Cb1gMB/jweyn2YLfa+m9mvssQG54kxJScHhcBATE0N8fDyVlZXY7Xb/FWcwOJ1ODMPAMAycTmeDbZVK9eM1ZMgQOnbsyOHDh/37AP/Hu3fvJiwsjEmTJpnq+8gjjxzz/bpixYomz/vD2QJRgeyn2ULfqyn9js4Qp9N50vwJSHBGRUVRWFhIdXU1u3btwu12U1FRQb9+/QLRXkSCYOjQoezfv5/58+cf9/Enn3wSwPSC84899hgpKSn+7ccff5wBAwac+qAizcxpWY8zKyuL4uJivF4vxcXFrF69+qT7RST4evXqRXJyMm63mwMHDjBy5EgAdu/ezfTp03n22WcZMWIEcXFxpvq2bduWgoIC8vPzad++PRMnTgzG+CIhc1qC80RvDNAbBkRCJywsjFdffZW77rqLxx9/nEmTJgHQtWtXwsLCGDlyJE8//fQp92/Xrl2gRhVpVnTLPZGzWGRkJH/5y18oKyvjwQcfBGDixIl8+umnPPfcc8e8cUhETtMVp4g0bxdffDFTpkxhypQpoR5FpNnTFaeIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigv6OU0QC7n//+x8fffQRAIcOHSIiIiLEE4kETsCuOH0+H+np6cTFxREREYHD4TC9jp+InNkqKipIS0vjZz/7GcnJyQDExMTwhz/8gerq6hBPJxIYAQtOj8eDy+WitLSUqqoq3G43mZmZ1NbWBuoUItKMVVRUkJiYyOrVq7n//vv5+9//DkD//v159tln6dOnD4cPHw7xlCJNF7DgtNvtpKWlYbPZsFgsZGRk4PV6qa6uJjk5mc6dO5Obm+t//q5du7juuuu49tprueaaa3j//fcDNYqIhMCDDz7I/v37eeutt5g1axbXX389AIsXL2bZsmVs3ryZZ555xnTfr776imHDhgHfLVGmH8Yl1AIWnEVFRbhcLmJjY7HZbERHRxMdHY3dbic/P5/p06c3eH5UVBSrVq3i7bffZt68ebjd7kCNIiKn2VdffcWKFSsYNmwYl1122TGPDxo0CKfTydy5c/H5fI3ue/jwYa6//noWLFgAwOTJkxk+fHjA5hY5FQEJzpKSElJTU8nOzqa8vByPx0NOTg4JCQkAxMbGHnNMp06d6NSpE/Dd+n1WqzUQo4hICHz88cfU1dVx0003nfA5N998M5999hlVVVWN7vvPf/6T7du3YxiGf9/LL79MfX19k+YVaYqAvKt227Zt2O12EhMTsVqt5OfnM23aNHJycn702Pr6erKzs3nooYdMnXPTpk2EhYU12Hf0toicXt+/IeiHjv6+tNvtTTrHkSNHArbcWSBfMwL9+qPZTn+/xh4bkCvOlJQUHA4HMTExxMfHU1lZid1u919xnohhGGRlZXHTTTfRt29fU+d0Op0YhoFhGDidzgbbKpXq9NahQ4c455xzGDx4cIP933+f+3w+LrzwQq644gpTfevr67nlllsafO//8Y9/DMjM38/W3HppttPf7+gMcTqdJ82fgPzYFhUVRWFhYYN9jfmd5ahRo3A4HIwYMSIQY4hIiHTo0IG7776bp556ihtvvJHBgwf7HzMMg3HjxrFjxw4WLVpkqq/FYmHlypUsXLiQe++9l9dff52bb7450OOLmHJaboCQlZVFcXExXq+X4uJiVq9ezcaNG5k3bx6JiYls2LCBjh078uqrr56OcUQkCHJzc3n//fcZMmQIzz//vP9KMT4+nk8++YRhw4Zx5513mu7bqlUrhg8fzr333qvQlGbhtATnwoULj9mXlJSkt5WLtCDh4eGsW7eOZ599lrlz5/Lggw8CcM4557Bo0SLuvPNOvQ9BWgTdck9EAqZdu3aMGTOGBx54gIMHD2K1WunQoUOoxxIJKAWniARcWFgY55xzTqjHEAkKrY4iIiJigoJTRETEBAWniIiICQpOERERExScIiIiJig4RURETFBwioiImBCw4PT5fKSnpxMXF0dERAQOh4OCgoJAtReRs1B1dTUvvvgiN9xwA2FhYQwcOJA33nhDy4pJSAUsOD0eDy6Xi9LSUqqqqnC73WRmZuq2eiJySv71r39x0UUXMWzYMCoqKjAMgy1btnDTTTeRnJzMwYMHQz2inKUCFpx2u520tDRsNhsWi4WMjAy8Xi/V1dUkJyfTuXNncnNz/c//3//+R2JiIklJSVx11VVs2LAhUKOIyBnu22+/pU+fPhw+fJgNGzawfft2AHbv3s0LL7zA22+/TXp6+in1rq6uZvPmzQD+pahEzAjYLfeKioqYNWsWZWVlHDx4EJ/PR3R0NHa7nfz8fNavX09FRYX/+eeeey5vv/02VquVTz/9lJSUFN57771AjSMiZ7Bly5bxxRdfsH79enr16uXf37p1a4YPH87evXsZP348O3bs4MILL2x03z179uB0Otm1axcAgwYNoqCgAKvVGvDPQVqugFxxlpSUkJqaSnZ2NuXl5Xg8HnJycvwLWcfGxh5zjNVq9X+xHjhwgEsvvTQQo4hIC/DnP/+ZCy64oEFo/tCIESMICwvjlVdeMdU3JyeHzz77zL+9YsUKXn755SbNKmchIwDmzp1rdO/e3Thw4IBRU1Nj5OXlGeHh4cbEiRP9z8nLyzMmT57c4LhPP/3UuPrqq41zzz3XWL16daPP53Q6DUClUrXQCgsLC/kMqrO7TiYgV5wpKSk4HA5iYmKIj4+nsrISu93uv+I8kV/84he88847FBcXc//995s6p9PpxDAMDMPA6XQ22FapVGd2DRw4kPPOOw+v1+vfB/g//vjjjwGYPXu2qb5jx4495rWkqKioyfP+cLZAVCD7abYfr6MzxOl0njR/AhKcUVFRFBYWUl1dza5du3C73VRUVNCvX78THuP1ev0fn3POOURERARiFBFpAbKysvjqq69YsGDBMY8ZhsGUKVNo06YNQ4YMMdV30qRJDBkyhFatvnt7x5w5c0hOTg7IzHL2OC3rcWZlZVFcXIzX66W4uJjVq1fz3nvvMW7cOKxWK3V1dTz99NOnYxQROQP06dOHXr16MWrUKPbu3cvIkSMB2L59O1OnTmXp0qU8+uijdO7c2VTfdu3asWTJEl566SVatWrFqFGjgjG+tHCnJTgXLlx4zL5rrrmGt95663ScXkTOMBaLhb/85S8MHTqUSZMmMWnSJAAuuugi2rRpw2OPPcaECRNOub/eRStNoVvuiUizFBkZyYoVK/jkk0+YPHkyAE899RQVFRVMmjQJi0UvXxIap+WKU0TkVF1wwQU8+uijPProo6EeRQTQFaeIiIgpCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigv6OU0TOKp999hkfffQRAB6PB5vNFuKJ5EwTkCtOn89Heno6cXFxRERE4HA4KCgoCERrEZGA+Ne//oXL5aJ79+7ccsstAMTExDBy5Eiqq6tDPJ2cSQISnB6PB5fLRWlpKVVVVbjdbjIzM6mtrQ1EexGRJikvL+fqq6+mpKSE8ePHU1JSAkBqaiovvPACffr04fDhwyGeUs4UAQlOu91OWloaNpsNi8VCRkYGXq+X6upqkpOT6dy5M7m5uccct2/fPux2O0uWLAnEGCIixzV69GgMw2Dr1q2MHz+eK664AoAFCxbw8ssvs3nzZubNm2e67xdffEFKSgoADz/8cIPlEqXlCkhwFhUV4XK5iI2NxWazER0dTXR0NHa7nfz8fKZPn37c43Jzc7nmmmsCMYKIyHF99tlnFBYWMmrUKM4///xjHk9NTaVHjx48//zzpvpWVVVx7bXXsmLFCgCeeOIJfv/73wdkZmnemhycJSUlpKamkp2dTXl5OR6Ph5ycHBISEgCIjY097nE7d+5k3759XH755U0dQUTkhD7++GMMw8Dlcp3wOf369eNf//qXqV8vlZSU8OWXX+Lz+fz7li1b1qRZ5czQ5HfVbtu2DbvdTmJiIlarlfz8fKZNm0ZOTs5Jj3v88ceZPHkyixcvPqXzbtq0ibCwsAb7jt4WEflejx49jtl39GtG27Ztm3SOb7/9NmCvQ4F8PQv0a2NLna2xxzb5ijMlJQWHw0FMTAzx8fFUVlZit9v9V5zHs2XLFjp16kT37t1P+bxOpxPDMDAMA6fT2WBbpVKpvq8DBw7QoUMHMjMzG+wHMAyDuro6fvazn5GcnGyqb319PTfffHOD16X58+cHZObvZ2tuvVrqbEdniNPpPGn+NPmKMyoqisLCwgb73G73SY95//33KS0tpW/fvuzcuZMOHTrQvXt3evbs2dRxREQasNlsDB06lOeee44bbriBwYMH+x87cuQII0eO5Msvv+S5554z1ddisfDqq6+yZMkShg4dysaNG3/0BVdahqDfACErK4vi4mK8Xi/FxQLTqUUAACAASURBVMWsXr2a7OxssrOzAZgwYQIOh0OhKSJB88c//pHS0lKGDBnC008/zY033gjAL37xCyoqKhg3btwxV4+N0apVKzIzMxk6dKhC8ywS9OBcuHDhSR+fMGFCsEcQkbNceHg4a9euZf78+Tz//POMHz8egAsvvJA//elPpxSacvbSLfdE5KzQrl07Ro0axahRo6irq8NqtWKx6HbdYp6CU0TOOq1btw71CHIG049bIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkBC06fz0d6ejpxcXFERETgcDgoKCgIVHsRkWZl//79zJw5kx49emC1Wrnxxht59dVXOXLkSKhHkyALWHB6PB5cLhelpaVUVVXhdrvJzMw0tb6diMiZ4IMPPuBXv/oVY8aM8a+UUlZWxsCBA0lOTubgwYOhHlGCKGDBabfbSUtLw2azYbFYyMjIwOv1Ul1dTXJyMp07dyY3N7fBMe3btycpKYmkpCTmzZsXqFFERIJm//799O3blw4dOvDBBx9QXFwMwGeffcaLL77IO++8Q1ZW1in1rqysZN26dQD+ZbKk+QnYLfeKioqYNWsWZWVlHDx4EJ/PR3R0NHa7nfz8fNavX09FRUWDY7p06cLGjRsDNYKISNDl5+fzzTffUFhYyGWXXebfb7Vaufvuu/n888/Jzc1l165dptYc/ve//811113H3r17AbjjjjtYvnw5Vqs14J+DNE1ArjhLSkpITU0lOzub8vJyPB4POTk5/sWsY2Njj3vc3r17cTqd3HrrrXz66aeBGEVEJKhWrFjBFVdcweWXX37cx++77z4AXn31VVN9/+///o+vvvrKv71y5UpWrFhx6oNK8BgBMHfuXKN79+7GgQMHjJqaGiMvL88IDw83Jk6c6H9OXl6eMXny5AbHff3114ZhGMb69esNp9PZ6PM5nU4DUKlUqtNeFosl5DOogl8nE5ArzpSUFBwOBzExMcTHx1NZWYndbvdfcZ7IueeeC8Dvfve7Y/4Z98c4nU4Mw8AwDJxOZ4NtlUqlClb169ePLl26UFdX598H+D9+9913AViwYIGpvqNHj27wGmexWNi6dWuT5/3hbIGoQPZrLrMdnSE/tih5QIIzKiqKwsJCqqur2bVrF263m4qKCvr163fCYw4dOkR9fT0AH330ER07dgzEKCIiQXX33XezZ88eFi5ceMxjPp+P3NxcIiMjueOOO0z1nTZtGpmZmXTo0AGARYsWcdVVVwVkZgms07IeZ1ZWFsXFxXi9XoqLi1m9ejXbt2/n3nvvJTIyEoAXXnjhdIwiItIkN910E7169WLEiBF8/vnnjBgxAoB3332X3Nxc1qxZw+zZs/2vbY3Vrl078vLyyMvLIywsjCFDhgRjfAmA0xKcx/vJ7Morr2Tbtm2n4/QiIgHTqlUrXnvtNe6++26eeOIJpk2bBkBiYiKRkZHMnj2bP/zhDyGeUoJJt9wTETEpIiKC5cuXs3PnTmbMmAF8d4Hwn//8h9GjRxMWFhbiCSWYFJwiIqeoW7duPPDAAxiGwdChQ4mIiAj1SHIaKDhFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOERERE07LnYNEROTHlZWV8fHHHwOwb98+OnXqFOKJ5HgCcsXp8/lIT08nLi6OiIgIHA4HBQUFgWgtItLiffDBByQmJnLppZeSlpYGQJcuXRg2bBiHDh0K8XRytIAEp8fjweVyUVpaSlVVFW63m8zMTGprawPRXkSkxfrggw9wOp3s3r2b2bNn+684hw4dysKFC3G5XNTU1IR4SvmhgASn3W4nLS0Nm82GxWIhIyMDr9dLdXU1ycnJdO7cmdzc3AbH/POf/6Rv37706tWLoUOHBmIMEZEzTnZ2NlFRUZSUlDB69Gji4+MBeP7551myZAnvvPMOeXl5pvt+/PHHuFwuAMaMGYPX6w3o3GezgPyOs6ioiFmzZlFWVsbBgwfx+XxER0djt9vJz89n/fr1DRaqrq2tZcyYMaxYsQKbzRaIEUREzjhlZWVs2bKFWbNmERMTc8zjqampzJgxg7lz5/qXL2uMr776CqfTSWVlJQAzZ87k0KFDzJ07N2Czn82afMVZUlJCamoq2dnZlJeX4/F4yMnJISEhAYDY2Nhjjtm6dSuRkZGkp6eTlJTEX//616aOISJyxtm+fTsAvXv3Pu7jYWFh9O7dm+3bt2MYRqP7btmyhX379uHz+fz7VqxY0bRhxa/JV5zbtm3DbreTmJiI1WolPz+fadOmkZOTc8Jj9uzZwz/+8Q8+/PBDDMPg6quv5rrrruOcc85p9Hk3bdp0zNI9WspHRM5EF1988TH7jn49s1iadp2zb9++gL1GBvK1NtCv203p19hjm3zFmZKSgsPhICYmhvj4eCorK7Hb7f4rzuPp2LEjPXr0ICoqCrvdzqWXXsrOnTtNndfpdGIYBoZh4HQ6G2yrVCrVmVD79u2jXbt2DBs2rMF+AMMw+Pbbb+nYsSO33367qb719fXcdNNN/tdLi8XCypUrAzLz97M1t15N6Xd0hjidzpPmT5ODMyoqisLCQqqrq9m1axdut5uKigr69et3wmN69OjBzp07qauro7a2lh07dhAXF9fUUUREzigdO3YkIyODBQsWsGTJEv+LP8Dhw4dJT09n//79jBo1ylRfi8XCqlWrWLZsGQDvvfceAwYMCOjsZ7Og3wAhKyuL4uJivF4vxcXFrF69GpvNxpgxY7j++uupra0lOztbf+grImelmTNnsmPHDu666y5mzpxJnz59gO/eH7J//35mzZrFddddZ7pvq1atSE1NJS0tjcsuuyzQY5/Vgh6cCxcuPO7+1NRUUlNTg316EZFmrUOHDqxbt46XXnqJ559/nlmzZgHQq1cvsrOzufbaa0M8oRxNt9wTEQmxtm3bMnz4cIYPHx7qUaQRdJN3ERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkBC06fz0d6ejpxcXFERETgcDgoKCgIVHsREWmkiooKHnvsMS6++GKsViu/+93vKCgooLa2NtSjtQgBC06Px4PL5aK0tJSqqircbjeZmZn6HyUichq9+eabXHjhhUyZMoXo6Gjq6+v5/PPPSUtL44YbbuDgwYOhHvGMF7DgtNvtpKWlYbPZsFgsZGRk4PV6qa6uJjk5mc6dO5Obm+t/fklJCUlJSSQlJdGjRw/d5F1EpIn27NlD//79iYuLo7y8nKKiIgD+/e9/k5eXx+bNm7n33ntPqfd///tfVq5cCdBggezmoKKiwj/bD1eYCZaABWdRUREul4vY2FhsNhvR0dFER0djt9vJz89n+vTpDZ5/5ZVXsnHjRjZu3Eh2djYpKSmBGkVE5Kw0b948Dh06xF/+8hccDod/v8ViITMzkzFjxrB8+XJ2795tqu+2bduIj4/n9ttvB2DQoEHNJjzfffddLrzwQv9sGRkZQQ/PgARnSUkJqampZGdnU15ejsfjIScnx7+YdWxs7EmPX7RoEXfddVcgRhEROWutWrWKXr16NQjNHxo2bBg+n4/XX3/dVN/Ro0dTVVXl3165ciWrV69u0qyBcv/99/Ptt9/6txcvXsyGDRuCe1IjAObOnWt0797dOHDggFFTU2Pk5eUZ4eHhxsSJE/3PycvLMyZPnnzMsf/973+NCy64wNT5nE6nAahUKpXqB2W1WkM+Q0upkwnIFWdKSgoOh4OYmBji4+Op/P/Yu/foqMp7/+OfySBEYIYMAdsqPSqw7IqNQMELQWSPJDZUtDFN4+UUGYVwpkZMpU29IvVwUVe1VmsvmqYQFGx7NFoIbdECZsAogxSQIYBNBNpAhZAIRIIkIdm/P1jMr4EQs2HvTID3a63vWt17T57nmxry4dkz7GffPvl8vuiKsz0LFy7UHXfcYXlOwzBkmqZM05RhGK2OKYqizsW6/vrrdemll+rIkSPRc5Ki/3vp0qWSpNdee83SuPfee2+r37/nnXeeysvLT7vf/+ztVOuuu+5q1VuPHj1UWVlpaYzjM8QwjHbzx5b9OBMSEqL/QY6ZNm1ah752wYIFev311+1oAwDOaVOmTNFtt92moqIiTZ48udW1xsZGzZ49WxdccIFuvvlmS+M+/fTTOnz4sBYtWqSamhr96U9/0uWXX25n66fshRdeUHNzs/7yl7+otrZWS5Ys0aBBgxyds1M2sp40aZLC4bAaGhoUDoej98YjkYh69uzp+DcJAOeCzMxMXX/99fqf//kfbd26Nbox9tKlSzV79myVlZXp5ZdfVo8ePSyNe/7556uwsFCFhYVyuVy68cYbnWj/lPTu3Vsvv/yyJMnlciktLc3xOTslOOfOndvm+SuuuEJlZWWd0QIAnPXOO+88LV68WN///vf17LPP6plnnpEkfetb39IFF1zABzFtwiP3AOAs0rt3by1YsEA7duzQr371K0nS66+/rqqqKkLTJgQnAJyFvvrVryo3N1emaSorK0vdu3ePdUtnDYITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsKBTnhwEADhzmaapsrIybd26VZK0Z88efelLX4pxV0eZpqmVK1fqH//4hySppqZG/fr1c3RO21acLS0tmjhxoi6++GL17t1bgwcP1h/+8Ae7hgcAxMA777yjK664Qtddd52mTJki6ejDFe6++24dPHgwpr0tXbpUSUlJ8vv90efyDhgwQMFgUJ9//rlj89oWnAcOHNC3vvUtbdy4UXV1dZo2bZruuusuNTY22jUFAKATvfPOO0pPT1dTU5Pmzp2rf/7zn5Kke+65Ry+//LJuvPFGNTQ0xKS3v/71r7rpppvkdrv1yiuvRHu7++679dvf/lYZGRlqampyZG7bgtPn8+mOO+5Qnz59FBcXp0AgoIaGBtXX1ystLU39+/fX7Nmzo683TVNTp05VSkqKrrrqKi1YsMCuVgAAp8k0Td1333265JJLtHr1at199936r//6L0nS888/r/nz52vVqlVauHCh5bFXr16tlJQUSdIPfvADy+Hb0tKiqVOnKikpSatXr9aECROivf3mN7/Riy++qL/97W964403LPfWEbYF59/+9jd961vf0oABA9SnTx995Stf0Ve+8hX5fD4VFRXp6aefbvX68vJylZeX6/3331dpaalmzJhhVysAgNP03nvvqby8XA899JB8Pt8J17/3ve/p61//ul588UVL4/7zn//UDTfcoDVr1kiSfvGLXyg/P9/SGMuXL9e2bds0ffp0eTyeE67n5ORo4MCBlnvrKFuCc82aNbr99tuVl5enf/zjHzpw4IAefPBBXXnllZKO3nM+3oUXXqju3burqalJn332mfr27WtHKwAAG3z00UeSpLFjx7Z5/djel8c+MNRRq1at0sGDB9XS0hI9t2jRIktjHJvzZL3FxcVp7NixlnvrKFs+Vbt+/Xr5fD6NGjVKbrdbRUVFevLJJ/Xggw+e9Gt8Pp8GDRqkyy67TPX19XrppZc6PN+wYcP0/PPPy+VytTp//DEA4PRceumlJ5yz+3dvVVXVKY1xwQUXnHDudHrr6GttWXHedtttGjx4sC688EJdfvnl2rdvn3w+X3TF2Za3335bu3btUmVlpbZu3apHH320w/e5n3vuOZmmSVEURTlUe/bsUffu3XXvvfe2Oi8dff/z008/Vc+ePTV58mRL4x45ckQ33XRT9Pd5jx49tGzZMktjVFVVye1264EHHmizt927d6t79+7Ky8s75e+/PbasOBMSErR06dJW56ZNm/aFX9e3b1+53W55PB41NTWpubnZjnYAAKfpggsu0IQJE/Sb3/xGV199te68887oimzfvn3Kzs5WQ0ODpk6damlct9utP/3pTyopKVFNTY3GjBmjyy67zNIYAwYMUHZ2tp599lmNGDFC2dnZ0d5qamr03e9+V6ZpKjc319K4HeUyvyhabTBp0iSFw2E1NDQoKSlJJSUlam5u1uTJk1VRUaHGxkbdeeedysvLc7oVAEAH1dfXa/z48QqFQrr88suVmpqqF154QT179lRDQ4Pmzp2riRMnxqS3AwcOaNy4cVq9erWGDBkiwzD0wgsvKD4+Xs3NzVq4cKGys7MdmbtTghMAcGZqbGzUq6++qhdffFFbt27VgQMHlJOTo6lTp2ro0KEx7e3w4cNasGCBXnrpJVVUVOjAgQP6/ve/r6lTp+rrX/+6Y/MSnAAAWMBD3gEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACxwLDhbWlrUq1cvrVixotX5rKws5eXlOTUtAACO6ubUwHFxcUpOTlYkEtHYsWMlSaFQSKFQSBUVFU5NCwCAoxy9VTt06FBFIhFJR1eg06ZN08yZM+Xz+bRgwQKlpKQoJSVF77zzjpNtAABgG8dWnJI0bNgwzZ8/X5I0b948HTlyRMFgUPv379czzzyj1atX6+DBg0pLS9O6desUF8dbrgCArs3xFWd5ebnq6uo0ffp0Pffcc3K73QqHwzIMQ/Hx8erXr58uvPBC7dixo8Pj3n///br//vtPegwAQEe1lSntMh1UV1dnulwu89ZbbzUzMzOj5xcuXGj+5Cc/iR7/93//t7lmzZoOj2sYhimJoiiKohyp9jh6q9bj8WjgwIFatGiRtmzZEj2fmJioffv2RY/379+vxMRES2MbhqHS0lJJkt/vl6ToMQAAHXV8hhw7PhnH31SsrKzU4cOHdemll0bPXXPNNVq1apUaGhr06aefateuXbrkkkucbgUAgNPm6IrzZBISEnT//fdHU/1nP/sZHwwCAJwRYhKckjRx4kRNnDgxVtMDAHBKWOYBAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8HZ0tKiXr16acWKFa3OZ2VlKS8vz8mpAQBwhKOP3IuLi1NycrIikYjGjh0rSQqFQgqFQqqoqHByagAAHOH4rdqhQ4cqEolIOroCnTZtmmbOnCmfz6e0tDT1799fs2fPdroNAABs4XhwDhs2LBqc8+bN05EjRxQMBiVJRUVFevrpp51uAQAA2zi+O8rQoUNVXl6uuro6TZ8+XQsXLpTb7ZYkDRgwwOnpAQCwlePBOWTIEB06dEhTpkxRSkpK9L3O0xUKheRyuVqdO/4YAICO6miGOB6cHo9HAwcO1KJFi7RlyxbbxjUMQ6WlpZIU3RD72DEAAB11fIYcOz6ZTtnIurKysjOmAQDAcZ0SnCczadIkhcNhNTQ0KBwOq6SkJJbtAADwhWIanHPnzo3l9AAAWMYj9wAAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAkeDs6WlRb169dKKFStanc/KylJeXp6TUwMA4AhHn1UbFxen5ORkRSKR6D6coVBIoVBIFRUVTk4NAIAjHL9VO3ToUEUiEUlHV6DTpk3TzJkz9emnn2rMmDG67rrrNHr0aK1du9bpVgAAOG2O744ybNgwzZ8/X5I0b948HTlyRMFgUPv379ebb76pxMREbd68WcFgUKtWrXK6HQAATovjwTl06FCVl5errq5O06dP18KFC+V2u5WYmBh9TY8ePeR2u51uBQCA0+Z4cA4ZMkSHDh3SlClTlJKSEn2v85jm5mbl5eXpoYcesjRuKBSSy+Vqde74YwAAOqqjGeJ4cHo8Hg0cOFCLFi3Sli1bWl0zTVOTJk3STTfdpHHjxlka1zAMlZaWSpL8fr8kRY8BAOio4zPk2PHJOB6cklRZWdnm+fvuu0+DBw/WPffc0xltAABw2mL2AITS0lIVFBRo+fLl8vv9+s53vhOrVgAA6LBOWXG2xe/3q7GxMVbTAwBwSnjkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFjganC0tLerVq5dWrFjR6nxWVpby8vKcnBoAAEc4+si9uLg4JScnKxKJRLcTC4VCCoVCqqiocHJqAAAc4fit2qFDhyoSiUg6ugKdNm2aZs6cqcbGRo0aNUp+v1/XXHONli9f7nQrAACcNscf8j5s2DDNnz9fkjRv3jwdOXJEwWBQkrRq1Sq53W5t27ZNt912mz744AOn2wEA4LQ4HpxDhw5VeXm56urqNH36dC1cuFBut7vVa/bv368hQ4Y43QoAAKfN8eAcMmSIDh06pClTpiglJSX6Xqckbd++XXfeeac++ugjzZs3z9K4oVBILper1bnjjwEA6KiOZojLNE3T4V40ePBg7dy5U1u2bNGll156wvVt27Zp7Nix2rFjR4fG8/v9ko5uht3WMQAAHdVWprSXJ52ykXVlZeUJ5xoaGtSjRw9JktfrVe/evTujFQAATkunBGdbPvjgAz3yyCNyu91qamrS888/H6tWAADosJgF5+jRo7Vy5cpYTQ8AwCnhkXsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYIFjwdnS0qJevXppxYoVrc5nZWUpLy/PqWkBAHCUY8+qjYuLU3JysiKRSHQPzlAopFAopIqKCqemBQDAUY7eqh06dKgikYikoyvQadOmaebMmfL5fJKk2tpa+Xw+LViwwMk2AACwjaPBOWzYsGhwzps3T0eOHFEwGIxenz17tkaPHu1kCwAA2MrRbcWGDh2q8vJy1dXVafr06Vq4cKHcbreko5tb19bWasSIEU62AACArRwNziFDhujQoUOaMmWKUlJSou91StKMGTM0a9YsvfLKK6c0digUksvlanXu+GMAADqqoxniaHB6PB4NHDhQixYt0pYtW6Ln33vvPSUmJmrQoEGnPLZhGCotLZUk+f1+SYoeAwDQUcdnyLHjk3E0OKWjt2SPt3btWm3cuFHjxo1TZWWlevXqpUGDBiklJcXpdgAAOC2OB2db8vLyov+W8/HHH9fgwYMJTQDAGSEmwfmfHn/88Vi3AABAh/HIPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALHA0OFtaWtSrVy+tWLGi1fmsrKzoI/cAADiTOPrIvbi4OCUnJysSiUS3FAuFQgqFQqqoqHByagAAHOH4rdqhQ4cqEolIOroCnTZtmmbOnCmfz6fzzz9ffr9ffr9fBQUFTrcCAMBpc/wh78OGDdP8+fMlSfPmzdORI0cUDAYlSRdddBF7aAIAziidsuIsLy9XXV2dpk+frueee05ut1uStHv3bhmGoVtuuUXbtm1zuhUAAE6f6bC6ujrT5XKZt956q5mZmdnq2t69e03TNM1ly5aZhmF0eEzDMExJFEVRFOVItcdlmqYphw0ePFg7d+7Uli1bdOmll570NZWVlR0az+/3S1L0Nu/xxwAAdFRbmdJennTKRtZtBeLBgwd1/vnny+12a9OmTerbt29ntAIAwGnplOBsy+bNmxUMBuXxeCRJL730UqxaAQCgw2IWnFdffbXWr18fq+kBADglPHIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHAvOlpYW9erVSytWrGh1PisrS3l5eU5NCwCAoxx75F5cXJySk5MViUQ0duxYSVIoFFIoFFJFRYVT0wIA4ChHb9UOHTpUkUhE0tEV6LRp0zRz5kz5fD59+OGHGjdunMaOHau7777byTYAALCNow95HzZsmObPny9Jmjdvno4cOaJgMKjGxkbl5+fr9ddfV58+fZxsAQAAWzm+4iwvL1ddXZ2mT5+u5557Tm63W6tXr5bH49HEiRPl9/u1ZMkSJ9sAAMA2jq44hwwZokOHDmnKlClKSUmJvte5a9curVu3Ths2bJBpmrr22ms1ZswYeb1eJ9sBAOC0ORqcHo9HAwcO1KJFi7Rly5bo+b59+2rkyJFKSEiQdDRgKysrNXz48A6PHQqF5HK5Wp07/hgAgI7qaIY4vpF1ZWXlCedGjhypRx99VE1NTTJNU1u2bNHFF19saVzDMFRaWipJ8vv9khQ9BgCgo47PkGPHJ+N4cLalT58+ys/P1/XXX6/Gxkbl5eUpMTExFq0AAGBJTIJTkm6//XbdfvvtsZoeAIBTwiP3AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACR4OzpaVFvXr10ooVK1qdz8rKUl5enpNTAwDgCEefVRsXF6fk5GRFIpHoXpyhUEihUEgVFRVOTg0AgCMcf8j70KFDFYlEJB1dgU6bNk0zZ85URUWFHnjgAUnS4cOHVVFRodraWqfbAQDgtDgenMOGDdP8+fMlSfPmzdORI0cUDAbldruje5+9+uqrevfdd51uBQCA0+b4h4OGDh2q8vJy1dXVafr06Xruuefkdrtbvebll1/WnXfe6XQrAACcNpdpmqaTE3z22Wfq06ePsrOz1dTUpDfeeKPV9d27d8vv92vr1q0dHtPv9ysUCtndKgAAkqT2otHxW7Uej0cDBw7UokWLtGXLlhOuL1y4UHfccYflcQ3DiN7q9fv9khQ9BgCgo47PkGPHJ+N4cEpSZWXlSa8tWLBAr7/+eme0AQDAaYvpAxAikYh69uypQYMGxbINAAA6LKbBecUVV6isrCyWLQAAYAmP3AMAwAKCEwAACwhOAAAsIDgBALCA4AQAS+HVogAAIABJREFUwAKCEwAACwhOAAAsIDgBALCA4AQAwAJHg7OlpUW9evXSihUrWp3PyspSXl6ek1MDAOAIRx/yHhcXp+TkZEUiEY0dO1aSFAqFFAqFVFFR4eTUAAA4olM2so5EIpKOrkCnTZummTNnKiEhQVOnTlVKSoquuuoqLViwwOlWAAA4bY4H57Bhw6LBOW/ePB05ckTBYFDl5eUqLy/X+++/r9LSUs2YMcPpVgAAOG2O78c5dOhQlZeXq66uTtOnT9fChQvldrt14YUXqnv37mpqatJnn32mvn37Ot0KAACnzfHgHDJkiA4dOqQpU6YoJSUl+l6nz+fToEGDdNlll6m+vl4vvfSS060AAHDaHA9Oj8ejgQMHatGiRdqyZUv0/Ntvv61du3apsrJSBw4c0OjRo3XjjTeqR48eHRo3FArJ5XK1Onf8MQAAHdXRDHE8OCWpsrKyzfN9+/aV2+2Wx+NRU1OTmpubOzymYRgqLS2VJPn9fkmKHgMA0FHHZ8ix45OJ2QMQ0tLSZJqmrr32Wo0aNUr33XefevbsGat2AADokE5ZcbbF7XarqKgoVtMDAHBKeOQeAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABTF7AAIA4Ox1//33a8OGDbFuo5Vhw4bpueeeO+1xWHECAGy3YcMGy8HZ2NioUCikzz77rNX5w4cPKxQKqb6+vlP7OZlOWXGWlZVpxowZ+uCDDxQXF6cbbrhBr732WmdMDQCIkWHDhlnafOPPf/6zsrOzFQ6H1a3b/4+n1157TZMnT1Y4HFZc3Kmt977owe1WOL7iLC4uVmZmpnJzc1VdXa2qqirl5OQ4PS0A4Ayzdu1aDRs2rFVoStKaNWs0YsSIUw5NuznaRX19vYLBoAoKCpSVlaX4+Hh5PB6lp6dLkhYsWKCUlBSlpKTonXfecbIVAMBpeOutt3TfffdpxowZqq2tdWSOtWvX6qqrrjrh/Jo1a9o8HyuO3qo9ttl0RkbGCdf279+vZ555RqtXr9bBgweVlpamdevWdZm/UQAAjlq4cKEmTJggl8sl0zS1cOFCrVu3Tn369LF1nrVr1+q2225rda6lpUXr1q3T1KlTtWfPHmVmZqp79+76/PPP9cQTTyg1NdXWHjrC0ZSqqamRz+drc1ftcDgswzAUHx+vfv366cILL9SOHTucbAcAcAqefvrpaGhK0rZt27R48WJb59i1a5d2796tESNGtDq/YcMGHTx4UCNHjlS/fv20atUqlZaW6ve//70eeughW3voKEdXnMOHD9f27dtVUlKi8ePHq66uTuFwWOnp6aqtrZXP54u+1ufzqba2VgMHDuzQ2MdWs/+prYAGANhv4sSJmjhxYruvMQyjw+Pt3LlTkpSQkNDq/KuvvqqRI0fqq1/9aqvz+/fv15AhQzo8vtR2bvynjmaIoyvO5ORkFRYWKj8/X16vV0lJSVq5cqUkKTExUfv27Yu+dv/+/UpMTOzw2IZhyDRNmaYpwzBaHVMURVH21S9/+UtJir6V9qUvfUl79uxp92ushKYkJSUlqU+fPnrqqae0f/9+ffrpp3rxxRf161//Wk899VT0ddu3b9fo0aOVnp6uzMxMS3OcLCeOz5Av6t3xf44SCAQUCAROOH/NNdfo4YcfVkNDg+rr67Vr1y5dcsklTrcDALDo3nvvVZ8+fbRkyRL98Y9/1Jo1a3TBBRfYOofX69WSJUv04IMPasCAAerZs6eGDRumpUuXasyYMdHXXXrppXr33Xe1bds2jR07VjfddJOtfXREzJ4clJCQoPvvvz/6b2t+9rOf8cEgAOiiJkyYoAkTJuiPf/yj/uu//suROUaPHq2ysrKTXm9oaFCPHj0kHQ3a3r17O9LHF4npI/c6co8cAABJ+uCDD/TII4/I7XarqalJzz//fEz64Fm1AABHbNiwwdYn9khH32c1TVPdunXTrFmzNGvWrA73MmzYMFt6IDgBALazK6TsMmzYMIITANB12bELSVfFp3EAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwIJOCc6ysjKlpqbK6/UqISFB2dnZnTEtAAC2czw4i4uLlZmZqdzcXFVXV6uqqko5OTlOTwsAgCMcDc76+noFg0EVFBQoKytL8fHx8ng8Sk9PlySlpaWpf//+mj17tpNtAABOk2ma2r17d6zb6BIcDc5jm4ZmZGS0eb2oqEhPP/20ky0AAE7Tnj17dOWVV+orX/mKpKO7WZ3LHA3Ompoa+Xy+k+6qPWDAACenBwDY4N5779X69eujx/n5+e1u/3W2czQ4hw8fru3bt6ukpEQtLS3av3+/3nrrLSenBADY7MMPP5Rpmq3Obdq0KUbddAGmw4qKiszLLrvM7NWrl/nlL3/ZfOSRR1pdnzdvnjlr1ixLYxqGYUqiKIqiKEeqPY7vjhIIBBQIBGwf1zAMlZaWSlJ0v7djxwAA++zatUvp6ekqLy+XJM2cOVOPPfZYjLuyz/EZ8kV7iMZ0W7FJkyYpHA6roaFB4XBYJSUlsWwHANCGiy66SBs2bNC//vUvDRo06KwKzVMR0+CcO3duLKcHAHRQt27dNHDgwFi30SXwyD0AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsKBTgrOsrEypqanyer1KSEhQdnZ2Z0wLAIDtHA/O4uJiZWZmKjc3V9XV1aqqqlJOTo7T0wIA4AhHH/JeX1+vYDCowsJC3XLLLZKk+Ph4paen6+OPP9bdd98t0zRlmqaee+45XXnllU62AwDnjE8//VQ//elPtWfPHo0dO1YTJkyQy+WKdVtnBUeDMxQKyeVyKSMj44RrCQkJevPNN5WYmKjNmzcrGAxq1apVTrYDAOeE+vp6XXfdddq8ebPi4uJUVFSkf//733rwwQdj3dpZwdFbtTU1NfL5fG3+LScxMVGJiYmSpB49esjtdjvZCgCcM0KhkDZv3ixJamlpkSQ999xzsWzp7GI6KBKJmN26dTMXL15sNjc3m/v27TOXLl3a6jVHjhwxb7zxRvOvf/1rh8c1DMOURFEURVGOVHscXXEmJyersLBQ+fn58nq9SkpK0sqVK6PXTdPUpEmTdNNNN2ncuHGWxjYMI/r+qGEYrY4piqLO5Tp48KAuv/zyVr8zn3rqKVvGPva7+2yq4zPEMIx288fR9zglKRAIKBAItHntvvvu0+DBg3XPPfc43QYAnDN69eqlVatW6emnn9ZTTz2lV155Rd/73vdi3dZZI2YPQCgtLVVBQYGWL18uv9+v73znO7FqBQDOOn379tWTTz4pSXyi1maOrzhPxu/3q7GxMVbTAwBwSnjkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFnRKcJaVlSk1NVVer1cJCQnKzs7ujGkBALCd48FZXFyszMxM5ebmqrq6WlVVVcrJyXF6WgAAHOFocNbX1ysYDKqgoEBZWVmKj4+Xx+NRenq69uzZo1GjRsnv9+uaa67R8uXLnWwFALq8I0eOaPv27dq7d2+sW0E7HA3OUCgkl8uljIyME67169dPq1atUmlpqX7/+9/roYcecrIVAOjSqqurdfXVV2vgwIG64IIL9PDDD0f3v0TX4mhw1tTUyOfztbmdjdvtltvtliTt379fQ4YMcbIVAOjSpk2bpg0bNkSPn3rqKf31r3+NYUc4KdNBkUjE7Natm7l48WKzubnZ3Ldvn7l06dLo9W3btpnXXnut2a9fP7OkpKTD4xqGYUqiKIqiKEeqPS7TdPZewPz58/XEE09o165d8ng8mjRpkubMmdPqNdu2bdPYsWO1Y8eODo3p9/slHd0Mu61jADjTBAIBvfLKK61uz7711lv65je/eVrjulwuW2/52j1eV9BWprSXJ45vZB0IBBQIBE4439DQoB49ekiSvF6vevfu7XQrANBlPfvss6qoqND7778vSZo5c+Zphyac4XhwnswHH3ygRx55RG63W01NTXr++edj1QoAxFxiYqLKyspUXV2tL3/5y3rsscdi3RJOImbBOXr0aK1cuTJW0wNAl+NyufSlL30p1m3gC/DIPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwoFOCs6ysTKmpqfJ6vUpISFB2dnZnTAsAgO0cD87i4mJlZmYqNzdX1dXVqqqqUk5OjtPTAgDgCEeDs76+XsFgUAUFBcrKylJ8fLw8Ho/S09Ojr6mtrZXP59OCBQucbAUAbFdbW6v7779ft956q1544QW1tLTEuiV0Akd3RwmFQnK5XMrIyDjpa2bPnq3Ro0c72QYA2O7zzz+X3+/Xpk2bFBcXp9dee01VVVX66U9/GuvW4DBHV5w1NTXy+XxyuVxtXq+srFRtba1GjBjhZBsAYLvVq1dr06ZNkhRdab744ouxbAmdxNEV5/Dhw7V9+3aVlJRo/PjxqqurUzgcjt6qnTFjhmbNmqVXXnnF8tjHVrP/6WQBDQCd4bPPPrPt95Cdv8/s/t14tv6u7ej35eiKMzk5WYWFhcrPz5fX61VSUlJ08+r33ntPiYmJGjRo0CmNbRiGTNOUaZoyDKPVMUVRlNPV2NiolJSUVr+XnnjiCVvGlmRbn3aO5cR4XaGOzxDDMNrNH0dXnJIUCAQUCAROOL927Vpt3LhR48aNU2VlpXr16qVBgwad8IMIAF3Reeedp2XLlun555/XI488oj/84Q+67bbbYt0WOkHMHoCQl5enUCikpUuXasKECfrxj39MaAI4o/Ts2VMPP/ywJBGa5xDHV5wd8fjjj8e6BQAAOoRH7gEAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYEGnBGdZWZlSU1Pl9XqVkJCg7OzszpgWAADbOR6cxcXFyszMVG5urqqrq1VVVaWcnBynpwUAwBGOBmd9fb2CwaAKCgqUlZWl+Ph4eTye6H6c559/vvx+v/x+vwoKCpxsBQAkSY2Njdq0aZO2bdsW3SYLsMLRh7wf22w6IyOjzesXXXSRSktLnWwBAKL27t2rtLQ0bdy4UZI0efJkFRQUKC6Oj3ug4xz9aampqZHP5zvprtq7d++WYRi65ZZbtG3bNidbAQA98MADikQi0ePf/e53+r//+78YdoQzkumgSCRiduvWzVy8eLHZ3Nxs7tu3z1y6dGn0+t69e03TNM1ly5aZhmF0eFzDMExJFEVRFOVItcdlms7e5J8/f76eeOIJ7dq1Sx6PR5MmTdKcOXNOeN3gwYNVWVnZoTH9fr8kRW/zHn8MAG35wQ9+oF/84hetzi1ZskTjx48/rXFdLpet75faOV5X7q2raCtT2ssTxzeyDgQCCgQCJ5w/ePCgzj//fLndbm3atEl9+/Z1uhUA57g5c+bo448/1p///GdJ0qxZs047NHHucTw4T2bz5s0KBoPyeDySpJdeeilWrQA4R/Tu3VtLlizRwYMH5fF4NH369Fi3hDNQzILz6quv1vr162M1PYBzWO/evWPdAs5gfAYbAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACzolOAsKytTamqqvF6vEhISlJ2d3RnTAgBgO8eDs7i4WJmZmcrNzVV1dbWqqqqUk5Pj9LQAADjC0eCsr69XMBhUQUGBsrKyFB8fL4/Ho/T0dEnShx9+qHHjxmns2LG6++67nWwFwBmqpqZGubm5Gj9+vGbNmqWmpqZYt4RznKO7o4RCIblcLmVkZJxwrbGxUfn5+Xr99dfVp08fJ9sAcIY6fPiwxo4dq02bNsnlcukvf/mLduzYod/97nexbg3nMEdXnDU1NfL5fHK5XCdcW716tTwejyZOnCi/368lS5Y42QqAM9CGDRsUiURkmqZaWlokSS+//LKam5tj3BnOaaaDIpGI2a1bN3Px4sVmc3OzuW/fPnPp0qWmaZrmq6++al588cXmvn37zE8//dRMSkoyDxw40KFxDcMwJVEURVGUI9UeR1ecycnJKiwsVH5+vrxer5KSkrRy5UpJUt++fTVy5EglJCTI5/NpyJAhqqys7PDYhmHINE2ZpinDMFodUxR1dlRzc7PGjx/f6s/+nDlzbBlbkm192jnWudRbV6njM8QwjHbzx/FP1QYCAX300Uc6ePCgPvnkE82ZM0eSNHLkSFVWVqqpqUmNjY3asmWLLr74YqfbAXAGiYuL05tvvqlf/vKXko5+Sv+RRx6JcVc418XsAQh9+vRRfn6+rr/+eo0ePVp5eXlKTEyMVTsAuqjzzjtP9957ryTpO9/5Toy7ARz+VO0Xuf3223X77bfHsgUAACzhkXsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFjQKcFZVlam1NRUeb1eJSQkKDs7uzOmBQDAdo4HZ3FxsTIzM5Wbm6vq6mpVVVUpJyfH6WkBAHCEo8+qra+vVzAYVGFhoW655RZJUnx8vNLT07VmzRo98MADko7u8l5RUaHa2lon2wHQSQ4fPqxIJKLu3bvriiuuUFwc7wrh7OFocIZCIblcLmVkZJxw7eqrr1Zpaakk6dVXX9W7777rZCsAOklNTY3Gjh2rSCQiSfr2t7+t4uJidesW0z0lANs4+tfAmpoa+Xw+uVyudl/38ssv684773SyFQCdZPr06dq0aVP0ePHixSosLIxhR4DNTAdFIhGzW7du5uLFi83m5mZz37595tKlS1u95pNPPjG/9rWvWRrXMAxTEkVRFEU5Uu1xdMWZnJyswsJC5efny+v1KikpSStXrmz1moULF+qOO+6wPLZhGDJNU6ZpyjCMVscURcWuZsyYccKf1zfeeOO0x5Vka592jkdvZ3YdnyGGYbSbP46/6RAIBBQIBE56fcGCBXr99dedbgNAJ3n00Ue1Y8cOLVy4UM3NzZo9e7YyMzNj3RZgm5h+1C0Siahnz54aNGhQLNsAYKPu3btr/vz5Onz4sKSjQQqcTWIanFdccYXKyspi2QIAh/ApWpyt+MdVAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGBBpwRnWVmZUlNT5fV6lZCQoOzs7M6YFgAA2zkenMXFxcrMzFRubq6qq6tVVVWlnJwcp6cFAMARjgZnfX29gsGgCgoKlJWVpfj4eHk8HqWnp8s0TU2dOlUpKSm66qqrtGDBAidbAdCOvXv3avLkyfL7/frRj36kQ4cOxboloMtydPuCUCgkl8uljIyME66Vl5ervLxc77//vurr63XFFVdowoQJTrYDoA2NjY1KS0tTJBKRaZoKhULatm2b3nzzzVi3BnRJjq44a2pq5PP55HK5Trh24YUXqnv37mpqatJnn32mvn37OtkKgJPYunWrNm7cKNM0o+f+9Kc/6fPPP49hV0DX5eiKc/jw4dq+fbtKSko0fvx41dXVKRwOKz09XT6fT4MGDdJll12m+vp6vfTSS5bGPraa/U9tBTSAU9OzZ09bxrHzz6Xdf8bprWuM11V09PtydMWZnJyswsJC5efny+v1KikpSStXrpQkvf3229q1a5cqKyu1detWPfroo2poaOjw2IZhyDRNmaYpwzBaHVMU1fFqaWnRxIkTW/35mjVrli1jS7KtTzvHoreuM15XqOMzxDCMdvPH8S3aA4GAAoFAm9f69u0rt9stj8ejpqYmNTc3O90OgOO4XC7NmzdPN9xwg+68804tXrxYN998c6zbArqsmD0AIS0tTaZp6tprr9WoUaN033332XZrCIA1cXFx0Q/nEZpA+xxfcZ6M2+1WUVFRrKYHAOCU8Mg9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAs6JTgLCsrU2pqqrxerxISEpSdnd0Z0wIAYDvHg7O4uFiZmZnKzc1VdXW1qqqqlJOT4/S0AAA4wtHgrK+vVzAYVEFBgbKyshQfHy+Px6P09HRJ0k9+8hONGjVKfr9fmzZtcrIV4Kzz+eefKxQKqaysTEeOHIl1O8A5w9GHvB/bbDojI+OEaxs2bNCaNWv03nvvaceOHZo8ebKWL1/uZDvAWaO2trbVXzivu+46vfXWWzr//PNj3Blw9nN0xVlTUyOfz9fmrtr/+Mc/NGLECEnSJZdcoi1btvC3ZqCDZs2apfLy8ujxqlWr9MILL8SwI+AcYjooEomY3bp1MxcvXmw2Nzeb+/btM5cuXWqapmlu2rTJHDVqlNnQ0GD+/e9/N10ul7l3794OjWsYhimJoiiKohyp9jh6qzY5OVmFhYXKz8/XHXfcIY/Ho0mTJik9PV1f//rXdccddygtLU2XXXaZrrjiCiUmJnZ4bMMwVFpaKkny+/2SFD0GznY///nP9cMf/rDVuT/+8Y+69dZbT2tcl8sl0zRPawynxqO32I/lxHhdwfEZcuz4ZBzfyDoQCCgQCLR5berUqZo6dao2bdqkp59+us1bugBO9IMf/ED/+te/VFBQoEOHDumJJ5447dAE0DGOB2d7vvnNb+rIkSPq16+ffvWrX8WyFeCMEhcXp5///Od69tlnFRcXp4cffjjWLQHnjJgG59tvvx3L6YEzHndpgM7HI/cAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAJbg7OsrEypqanyer1KSEhQdna2ncMDABBztgVncXGxMjMzlZubq+rqalVVVSknJ8eu4QEA6BJsCc76+noFg0EVFBQoKytL8fHx8ng8Sk9PlySlpaWpf//+mj17dvRrFixYoJSUFKWkpOidd96xow2gS6uurtaECRM0YsQITZ48Wfv27Yt1SwBOgS27o4RCIblcLmVkZLR5vaioSMuWLdPOnTslSfv379czzzyj1atX6+DBg0pLS9O6desUF8dbrjg7HTlyROnp6frwww9lmqbWr1+vioqK6J8dAGcOW5KqpqZGPp/vpL8ABgwY0Oo4HA7LMAzFx8erX79+uvDCC7Vjxw47WgG6pB07dmjDhg0yTVOSZJqmVq1apdra2hh3BsAqW1acw4cP1/bt21VSUqLx48errq5O4XA4eqv2eLW1tfL5fNFjn8+n2tpaDRw4sMNztvU3df7mjjNN//79bRnHzp99u/8c0Vvsx+vKvXUlHf2+bFlxJicnq7CwUPn5+fJ6vUpKStLKlStP+vrExMRW7+/s379fiYmJluY0DEOmaco0TRmG0eqYorpi/fCHP2z1Mzxr1ixbxpVkW492jkVvXWO8rtxbV6njM8QwjHbzx5YVpyQFAgEFAoEOvfaaa67Rww8/rIaGBtXX12vXrl265JJL7GoF6JKeeeYZ+f1+ffvb39bSpUtPekcGQNdmW3C2Z9KkSQqHw2poaFA4HFZJSYnuv/9++f1+SdLPfvYzPhiEs57L5dLNN98sSYQmcAbrlOCcO3fuCecmTpyoiRMndsb0AADYhmUeAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAW2B6cZWVlSk1NldfrVUJCgrKzs+2eAgCAmLE1OIuLi5WZmanc3FxVV1erqqpKOTk5dk4BAEBM2Rac9fX1CgaDKigoUFZWluLj4+XxeKIPs05LS1P//v01e/bs6Ne0dQ7oSg4dOqSlS5fqrbfe0ueffx7rdgB0AbY95P3YxtIZGRltXi8qKtKyZcu0c+fOds8BXcWnn36q6667Tps3b5YkDRkyRKFQSAkJCTHuDEAs2bbirKmpkc/nO+kO2gMGDOjQOaCreOqpp6KhKUkbN27UM888E8OOAHQFtq04hw8fru3bt6ukpETjx49XXV2dwuGwY/sOHlvh/qeThTZglzlz5mjOnDmnPY7dP6t2jkdvsR/L7vG6cm9dSUe/L9tWnMnJySosLFR+fr68Xq+SkpK0cuVKu4Y/gWEYMk1TpmnKMIxWxxRlR7W1j+wrr7xy2uNKsrVPO8ejt9iPdS711lXq+AwxDKPd/LF1I+tAIKBAIGDnkEDM3HXXXdq1a5d+8YtfaO/evXryySf1ve99L9ZtAYgxW4OzPZMmTVI4HFZDQ4PC4bBKSkraPAd0FS6XS9OnT9f06dPlcrn00EMPxbolAF1ApwVnW7e92joHAEBXxiP3AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMAC24OzrKxMqamp8nq9SkhIUHZ2tt1TAAAQM7YGZ3FxsTIzM5Wbm6vq6mpVVVUpJyfHzikAAIgp24Kzvr5ewWBQBQUFysrKUnx8vDweT3Qj67S0NPXv31+zZ8+WJH388ccaM2aMrrvuOo0ePVpr1661qxWcw/bs2aNbb71VX/va15SVlaVPPvkk1i0BOMvYtjtKKBSSy+VSRkZGm9eLioq0bNky7dy5U5KUkJCgN998U4mJidq8ebOCwaBWrVplVzs4B7W0tOjGG2/U+vXrZZqmKisrVVlZqXXr1sntdse6PQBnCdtWnDU1NfL5fHK5XG1eHzBgQKvjxMREJSYmSpJ69OjBLzactt27d2vdunXRXepbWlq0ceNGVVVVxbgzAGcT21acw4cP1/bt21VSUqLx48errq5O4XA4eqv2ZJqbm5WXl2d5k+BjK9z/dLLQxrnt0ksvtWUcO3++7P5ZpbfYj0dvZ76Ofl+2rTiTk5NVWFio/Px8eb1eJSUlaeXKle1+jWmamjRpkm666SaNGzfO0nyGYcg0TZmmKcMwWh1T5249+eSTrX5OZs6cacvQDeRLAAAgAElEQVS4x35eu9pY9NY1xqO3M7uOzxDDMNrNH9tWnJIUCAQUCAQ6/Pr77rtPgwcP1j333GNnGziHPfTQQxo1apQ2bdqke++9V4899lisWwJwlrE1ONszadIkhcNhNTQ0KBwO60c/+pEKCgo0atQoLV++XH379tUbb7zRWe3gLDZmzBiNGTNG9957b6xbAXAW6rTgnDt37gnnGhsbO2t6AABswSP3AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwNbgLCsrU2pqqrxerxISEpSdnW3n8AAAxJxtwVlcXKzMzEzl5uaqurpaVVVVysnJsWt4AAC6BFuCs76+XsFgUAUFBcrKylJ8fLw8Hk90L860tDT1799fs2fPliTt2bNHo0aNkt/v1zXXXKPly5fb0QbOUPX19XrzzTdVXFysAwcOxLodAGiXLQ95P7apdEZGRpvXi4qKtGzZMu3cuVOS1K9fP61atUput1vbtm3Tbbfdpg8++MCOVnCG2bdvn0aNGqWtW7dKki655BK9//77+vKXvxzjzgCgbbasOGtqauTz+U66e/aAAQNaHbvdbrndbknS/v37NWTIEDvawBno5z//eTQ0Jemf//znCZtRA0CXYtogEomY3bp1MxcvXmw2Nzeb+/btM5cuXdrqNfPmzTNnzZoVPd62bZt57bXXmv369TNLSkoszWcYhimJoiiKohyp9tiy4kxOTlZhYaHy8/Pl9XqVlJSklStXtvs1l156qd59912Fw2FNnTrV8pyGYcg0TZmmKcMwWh1TZ069+eabJ/y3nTdvni1jS7Ktz646Fr11jfHo7cyu4zPEMIx288e2T9UGAgF99NFHOnjwoD755BPNmTPnpK9taGiI/m+v16vevXvb1QbOMLfccot+/etfa+DAgZKkn/70pwoEAjHuCgBOzpYPB32RSZMmKRwOq6GhQeFwWA8++KAeeeQRud1uNTU16fnnn++MNtBF3XPPPbrnnnvkcrn04x//ONbtAEC7OiU4586de8K5L7qVCwBAV8Qj9wAAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAluDs6ysTKmpqfJ6vUpISFB2dradwwMAEHO2BWdxcbEyMzOVm5ur6upqVVVVKScnx67hAQDoEmwJzvr6egWDQRUUFCgrK0vx8fHyeDxKT0+XJKWlpal///6aPXt2q6+rra2Vz+fTggUL7GgDnWTPnj265ZZb9NWvflVpaWnatm1brFsCgE5jy+4ooVBILpdLGRkZbV4vKirSsmXLtHPnzlbnZ8+erdGjR9vRAjqJaZq6+eab9fe//10tLS3697//rbS0NG3evFnx8fGxbg8AHGfLirOmpkY+n08ul6vN6wMGDDjhXGVlpWprazVixAg7WkAnOXDggD744AO1tLRIklpaWrR9+3Z9/PHHMe4MADqHLSvO4cOHa/v27SopKdH48eNVV1encDgcvVXblhkzZmjWrFl65ZVXTmnOY6vc/3Sy4IbzkpOTbRnH7v+Gdo7XVceyezx6i/1Ydo/XlXvrSjr6fdmy4kxOTlZhYaHy8/Pl9XqVlJTU7kbV7733nhITEzVo0KBTntMwDJmmKdM0ZRhGq2PK2SooKGj1AzZz5kxbxpVka592jtdVx6K3rjEevZ3ZdXyGGIbRbv7YsuKUpEAgoEAg0KHXrl27Vhs3btS4ceNUWVmpXr16adCgQUpJSbGrHThoypQpuvLKK7Vx40bdddddeuyxx2LdEgB0GtuCsz2TJk1SOBxWQ0ODwuGwSkpKlJeXJ0l6/PHHNXjwYELzDPONb3xD3/jGN3TXXXfFuhUA6FSdEpxz58496bXHH3+8M1oAAMAWPHIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALbA3OsrIypaamyuv1KiEhQdnZ2XYODwBAzNkWnMXFxcrMzFRubq6qq6tVVVWlnJwcu4YHAKBLsCU46+vrFQwGVVBQoKysLMXHx8vj8UT340xLS1P//v01e/bs6Necf/758vv98vv9KigosKMNtOPgwYNauHChioqKtGfPnli3AwBnLFse8n5sU+mMjIw2rxcVFWnZsmXauXNn9NxFF12k0tJSO6bHF9i/f79SUlK0detWSVL//v31/vvvn9Z+qABwrrJlxVlTUyOfz3fS3bMHDBhwwrndu3fLMAzdcsst2rZtmx1t4CR+/etfR0NTkmprazVr1qwYdgQAZzDTBpFIxOzWrZu5ePFis7m52dy3b5+5dOnSVq+ZN2+eOWvWrOjx3r17TdM0zWXLlpmGYViazzAMUxJFURRFOVLtsWXFmZycrMLCQuXn58vr9SopKUkrV65s92v69esnSUpNTW11C7ejDMOQaZoyTVOGYbQ6plrXihUr5HK5Wt0R+O1vf2vL2JJs69POsbpyb+fK90lvXWO8rtxbV6njM8QwjHbzx7ZP1QYCAX300Uc6ePCgPvnkE82ZM+ekrz148KCam5slSZs2bVLfvn3tagNtuP766/WHP/xBQ4YMkSQ988wzmjx5coy7AoAzky0fDvoikyZNUjgcVkNDg8LhsB577DEFg0F5PB5J0ksvvdQZbZzTbr31Vt16661yuVz60Y9+FOt2AOCM1SnBOXfu3BPOrV+/vjOmBgDAVjxyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssDU4y8rKlJqaKq/Xq4SEBGVnZ9s5PAAAMWdbcBYXFyszM1O5ubmqrq5WVVWVcnJy7BoeAIAuwZbgrK+vVzAYVEFBgbKyshQfHy+Px6P09HRJUlpamvr376/Zs2dHv+bDDz/UuHHjNHbsWN199912tHFW2b17t2688Ub17dtXV155pTZu3BjrlgAAsml3lFAoJJfLpYyMjDavFxUVadmyZdENqxsbG5Wfn6/XX39dffr0saOFs05WVpZWr16tlpYWrV+/XjfccIMqKirk9Xpj3RoAnNNsWXHW1NTI5/PJ5XK1eX3AgAGtjlevXi2Px6OJEyfK7/dryZIldrRx1jh8+LDee+89tbS0SJJaWlpUXV2trVu3xrgzAIAtK87hw4dr+/btKikp0fjx41VXV6dwOBy9VXu8Xbt2ad26ddqwYYNM09S1116rMWPGWFpNHVvl/qeTBffZ4pprrrFlHLv/f7JzvHOlt3Pl+7R7PHqL/VhOjNdVdPT7smXFmZycrMLCQuXn58vr9SopKUkrV6486ev79u2rkSNHKiEhQT6fT0OGDFFlZaWlOQ3DkGmaMk1ThmG0Oj4b6rXXXlO3bv//7zX/+7//a8u4kmzt087xzpXezpXvk966xnhdubeuUsdniGEY7eaPbZ+qDQQC+uijj3Tw4EF98sknmjNnzklfO3LkSFVWVqqpqUmNjY3asmWLLr74YrtaOSt897vfVXl5uV577TX9P/buPSzKOv//+HNA8xAKI1qCJCqTFam5RSlaDiodwA6WFtAmILZZpuSULZ12y123tjUzO5p5CRWZrplr1EahialtkKaRHSSPiR1Mg8Hmuw7q3L8/vJrfeswb7nEAX4/r+lxXc9/zed9vwHjxGYb7A/DnP/85yB2JiAhY9FLtb8nJyaGsrAyv10tZWRlFRUVMmjSJwYMHU1dXR25uLpGRkSejlSalZ8+e9OzZM9htiIjI/zgpwTlnzpwjjqWnp5Oenn4yLi8iImIZ3XJPRETEBAWniIiICQpOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExARLg3PVqlUMHTqU9u3bExERwY033mhleRERkaCzLDgXLlzI9ddfz7hx49i5cyfbt2/n1ltvtaq8iIhIo2BJcHo8HsaOHcusWbMYMWIErVu3pl27dv79OJOTk+nUqRNTpkwBoLy8nKSkJJKSkujfv3+zucH7nj17mD17Ns8++yxbtmwJdjsiIhIAltzk/ddNpa+77rqjni8oKGDJkiVUVVUBcMkll1BaWgrA3LlzWblypRVtBJXb7aZ///58/fXXADzwwAOsXLmSPn36BLkzERGxkiUrzl27dmG324+5e3ZMTMwx577yyiuMGjXKijaCas6cOf7QhIOr8MmTJwexIxERCQRLVpwXXnghW7ZsoaioiGHDhlFbW0tZWZn/pdpj+eGHH9i6dSuJiYmmr/nrKvd/HSu4g8Hn8/Hmm29a1pOVH5vVnyf1FtxaVtdTb8GvZXW9xtxbY3KiH5clK85evXoxe/ZsJk2aRPv27TnvvPP48MMPf3Pea6+9RkZGRr2u6XQ6MQwDwzBwOp2HPA7GWL16NS1atDjkE//8889bUhuwrE8ra6m34NdSb42jnnpr2uPwDHE6ncfNH8veVZuVlcWGDRv45Zdf+P777/nb3/72m3MKCwu55ZZbrGohqC666CLeeecdBg4cCMBTTz3F7bffHuSuRETEapa8VPtbcnJyKCsrw+v1UlZWRlFREZ9//jlt27YlLi7uZLRwUlxxxRVcccUV2Gw27rrrrmC3IyIiAXBSgnPOnDlHHOvduzerVq06GZcXERGxjG65JyIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQES4Nz1apVDB06lPbt2xMREcGNN95oZXkREZGgsyw4Fy5cyPXXX8+4cePYuXMn27dv59Zbb7WqvIiISKNgSXB6PB7Gjh3LrFmzGDFiBK1bt6Zdu3b+jayTk5Pp1KkTU6ZMAQ7u5TZ+/HgSExO5+OKLKSwstKIN03744QeGDh1K69atcTgcuum8iIj8Jkt2R1m+fDk2m43rrrvuqOcLCgpYsmQJVVVVAHzxxRd88cUX/Oc//8Hj8dC7d++g7MuZlpbGypUr8fl8bNmyhdTUVL755hvOOOOMk96LiIg0DZasOHft2oXdbsdmsx31fExMzCGPo6OjOe2009i3bx979uyhQ4cOVrRhimEYrFq1Cp/PB4DP56O2tpb169ef9F5ERKTpsGTFeeGFF7JlyxaKiooYNmwYtbW1lJWV+V+qPZzdbicuLo6ePXvi8Xh48cUXTV/z11Xu/zpWcJsxdOjQBtcAa3oJVD311rxqWV1PvQW/ltX1GnNvjcmJflyWrDh79erF7NmzmTRpEu3bt+e8887jww8/PObz33//fXbs2MHGjRv5+uuvefDBB/F6vaau6XQ6MQwDwzBwOp2HPD7R8f7779OmTRt/zcmTJ5uucbQBWFInEPXUW/Oqpd4aRz311rTH4RnidDqPmz+WrDgBsrKyyMrKOuHnd+jQgdDQUNq1a8e+ffs4cOCAVa2csMsvv5zKyko+//xzUlNT+fOf/3zSexARkabFsuA8npycHMrKyvB6vZSVlfGvf/2L119/nYEDB1JXV8eECRNo27btyWjlCDExMUf8DlZERORYTkpwzpkz54hjBQUFJ+PSIiIiltIt90RERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJCk4RERETFJwiIiImKDhFRERMsDQ4V61axdChQ2nfvj0RERHceOONVpYXEREJOsuCc+HChVx//fWMGzeOnTt3sn37dm699VaryouIiDQKlgSnx+Nh7NixzJo1ixEjRtC6dWvatWvn348zOTmZTp06MWXKFP+chx9+mAEDBpCUlKTNo0VEpMmw5Cbvv24qfd111x31fEFBAUuWLKGqqgqAdevWUV5ezkcffcTWrVsZM2YMS5cutaIVERGRgLJkxblr1y7sdvsxd88+fNuuyspKLrroIgC6devGV199xf79+61oRUREJKAsWXFeeOGFbNmyhaKiIoYNG0ZtbS1lZWX+l2oPd/755zNjxgzq6upYv349P/zwAzU1NXTs2PGEr/nrKvd/HSu4T1RD5weqltX11FvzqmV1PfUW/FpW12vMvTUmJ/pxWRKcvXr1Yvbs2UyaNImMjAzatWtHTk7OcYMzIyOD5ORkevbsSe/evYmMjDR1TafTSWlpKQBJSUkA/sf1YbPZMAyj3vMDVcvqeuqtedWyup56C34tq+s15t4ai8Mz5NfHx2LZRtZZWVlkZWWd8PPHjx/P+PHjWb9+PVOnTm22P8GIiEjzYllwHk9OTg5lZWV4vV7KysooKiriiiuuYP/+/XTs2JHnnnvuZLQhIiLSYCclOOfMmXPEsffff/9kXFpERMRSuuWeiIiICQpOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMsDc5Vq1YxdOhQ2rdvT0REBDfeeKOV5UVERILOsuBcuHAh119/PePGjWPnzp1s376dW2+91aryIiIijYIlwenxeBg7diyzZs1ixIgRtG7dmnbt2nHllVeyadMmBg0axGWXXcall17K6tWrASgsLCQxMZHExESWLVtmRRsiIiIBZ8nuKMuXL8dms3HdddcdcS4iIoJFixYRGRnJl19+ydixYykqKuKJJ57g448/5pdffiE5OZlPP/2UkBD9ylVERBo3S5Jq165d2O32o25GHRkZSWRkJACtWrUiNDSUsrIynE4nrVu3pmPHjkRHR7N161YrWhEREQkoS1acF154IVu2bKGoqIhhw4ZRW1tLWVkZV155pf85Bw4cIDc3l/vuu4/du3djt9v95+x2O7t376ZHjx4nfM1fV7n/62jBbUZD5weqltX11FvzqmV1PfUW/FpW12vMvTUmJ/pxWRKcvXr1Yvbs2UyaNImMjAzatWtHTk6OPzgNwyAnJ4err76aq666ivfee4/q6mr//JqaGv+q9EQ5nU5KS0sBSEpKAvA/rg+bzYZhGPWeH6haVtdTb82rltX11Fvwa1ldrzH31lgcniG/Pj4WS4ITICsri6ysrKOemzBhAg6HgzvuuAOAfv36cf/99+P1evF4POzYsYNu3bpZ1YqIiEjAWBacx1JaWsqsWbMYMGAAS5cupUOHDrz55ptMnDjRn+rTpk3TG4NERKRJCHhwJiUlUVdXd8TxzMxMMjMzA315ERERS2mZJyIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImJCwINz3rx59O3bl3bt2nHuuefyr3/9K9CXFBERCZiABuesWbO4//77eemll9izZw/Tp08nIyODb7/9NpCXFRERCZiABeeePXu4//77mTNnDhdffDEAKSkpdOrUidWrV1NYWEhiYiKJiYksW7YsUG2IiIhYKmA3ef/ggw8IDQ1l8ODB/mOGYbBr1y5CQkJ44okn+Pjjj/nll19ITk7m008/1Q4pIiLS6AUsqWpra7Hb7YccKyoqok2bNthsNpxOJ61bt6Zjx45ER0ezdevWQLUiIiJimYCtOPv168fWrVv58MMPGThwIMuXL+f2229n2rRpeDyeQ0LVbreze/duevToccL1ly9fjs1mO+TY4Y/Nauj8QNWyup56a161rK6n3oJfy+p6jbm3xuREP66ABWfPnj2ZPXs2o0eP5ocffqBnz548/fTTjBw5kvfee4/q6mr/c2tqaoiMjDRV3+l0UlpaCuDfEPvXx/Vhs9kwDKPe8wNVy+p66q151bK6nnoLfi2r6zXm3hqLwzPk18fHEtCNrEeNGsWoUaOOON6vXz/uv/9+vF4vHo+HHTt20K1bt0C2IiIiYomABuexREREMHHiRH+qT5s2TW8MEhGRJiEowQmQmZlJZmZmsC4vIiJSL1rmiYiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJgQ0OD0+XxkZmYSGxtLWFgYDoeDefPmBfKSIiJiserqap555hnuvPNOAJYtW9bsbvRuRkCD0+12k5KSQkVFBbW1tbhcLrKzs6mrqwvkZUVExCLPPvssXbp0ITc317/wGTJkCL/73e/YsmVLkLsLjoAGp91uJyMjg/DwcEJCQsjKyvLviFJYWEhiYiKJiYksW7YskG2IiJySfD5fg+bPmTOHCRMmMHjwYNauXcvu3bv9x7/99luGDBnCzz//bEWrTUpAg7OkpISUlBRiYmIIDw8nKiqKqKgobDYbTzzxBMuWLaOoqAiXy9XgL7CIiPx///znPwkPDwfgkksu4bvvvjM1f9++ffzpT39i4MCBLF68mL59+/rPjR49mnfeeYetW7fy0ksvWdp3UxCw4CwvLyc9PZ3c3FwqKytxu93k5eWRkJBAWVkZTqeT1q1b07FjR6Kjo9m6dWugWhEROaV88803/P73v8fj8QCwZs0asrOzTdVYsmQJ3333Hffeey8tWhy5kVZiYiJOp5P8/HwrWm5SAhaca9euxW63M2DAAEJDQykoKOCxxx4jISGB3bt3Y7fb/c+12+3+lwBERKRhKioq2L9/v/8NPD6fj08++cRUjV9XqP+70jzc7373O3bs2FH/RpuogO3HmZaWxqJFi4iOjqZz586MHz8eu91OQkICoaGhVFdX+59bU1NDZGSkqfrLly/HZrMdcuzwx2Y1dH6galldT701r1pW11Nvwa8ViHo1NTX1qtmtW7cjjln9vbexOOGPwwiC6upq43e/+52xd+9eY/fu3cYFF1xgHDhw4ITnO51Ow+l0HvNxfVj5qbD606regl+vsdayup56C34tq+o9+uijBmAAxplnnmlUVFSYmu/xeIzw8HDj+uuvN3w+3xG9ffPNN0ZISIiRl5fX4F6D7WiZcjxBuQFCREQEEydOJCkpiWHDhjFt2jRCQnQvBhERq9x///1s27YNOPg7z969e5ua37ZtW+6++24WLVqEy+U65FXCjz/+mJSUFNq3b8+4ceMs7bspCNhLtb8lMzOTzMzMYF1eRKTZ69q1KwDt2rWr1/yHHnqIH3/8kRkzZjBr1iwuuugi4OAbgyIjI/n3v//tv8apRMs8ERE5qpCQEJ577jnWrl1LVlYWLVu2BOC5555j8+bNJCYmBrnD4AjailNERJqGvn378sILLwS7jUZDK04RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniEgz9ett8rxeb5A7aV4CGpw+n4/MzExiY2MJCwvD4XAwb968QF5SROSU98477zB48GA6dOgAQKdOnRg/fjxVVVVB7qx5CGhwut1uUlJSqKiooLa2FpfLRXZ2NnV1dYG8rIjIKWv69OlcffXVbN26lUceeQSA4cOHM3v2bC655BI2btwY3AabgYAGp91uJyMjg/DwcEJCQsjKysLr9eLxeEhOTqZTp05MmTIlkC2IiDQZH374Iffccw8AP/30k+n569at4+6772bkyJFs2LCBhx9+GIBXXnmF1atXU1dXxy233GJpz6eigAZnSUkJKSkpxMTEEB4eTlRUFFFRUdjtdgoKCpg6dWogLy8i0mS89dZbDB48mOnTpwOQkJDAzz//bKrG888/T5s2bXjppZc47bTTDjnXq1cvHnnkEcrKyli9erVlfZ+KAhac5eXlpKenk5ubS2VlJW63m7y8PBISEgCIiYkJ1KVFRJqcf/zjHxiGgWEYAHz77bf885//NFVj+fLlXHnllURERBz1fFpaGnBwZSsNEKgdtWfOnGnExcUZNTU1xt69e438/Hyjbdu2xuTJk/3Pyc/PN/7617+aru10Ov07m2toaGhoHByhoaFB76G5jOMJ2IozLS0Nh8NBdHQ08fHxVFdXY7fb/SvOhnI6nf6fzpxO5yGP6zOABs0PVC311jjqNdZa6q1x1LOi1uzZs4GDe2DCwfeIfPvtt6Zq3HjjjURERODxeI7aW35+PgDLli2z9HPZ1MfhGeJ0Oo+bPwELzoiICIqLi/F4PGzatAmXy0VVVRWpqamBuqSISJM1ZswY5s6dyw033ABAWVkZZ511lqka48aNo6amhry8PH9o/mrHjh088sgjnHfeeb8ZDHJ8QdvIOicnh7KyMrxeL2VlZRQVFQWrFRGRRiEjI4OMjAxsNhtnn3226fmXXXYZd999N08++SRr1qzhD3/4AwAPPfQQL774Inv37uWNN97AZrNZ3fopJWjBOWfOnGBdWkSk2XriiSc4++yzmTZtGjk5OQA89thjDBs2jClTptCnT58gd9j0BS04RUTEejabjdtvv53bbruN9evX4/F4iI2NJTo6OtitNRsKThGRZigkJESrywDRTd5FRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEREREwIenD6fj8zMTGJjYwkLC8PhcDBv3rxAX1ZEpEn56aefmDp1KqNHjwZg0aJF7N+/P8hdydEEPDjdbjcpKSlUVFRQW1uLy+UiOzuburq6QF9aRKRJeOaZZ4iJieGPf/wjS5YsAeCGG26gZ8+efP7550HuTg4X8OC02+1kZGQQHh5OSEgIWVlZeL1ePv/8cwYNGsRll13GpZdeqh3JRaRJ+nURcPhuJCfq5ZdfJjc3lyuuuIIvvviC7du3AwdXnF6vl+TkZHbs2GFZv9JwAQ/OkpISUlJSiImJITw8nKioKKKioujWrRuLFi1ixYoVzJo1C5fLFehWREQsNX/+fCIiIgA455xz2Lhxo6n5Bw4c4OGHH6Z///4sWrSI+Ph4/7nhw4dTUlLCrl27eO655yztWxomoMFZXl5Oeno6ubm5VFZW4na7ycvLIyEhgcjISCIjIwFo1aoVoaGhgWxFRMRSW7du5ZZbbmHv3r0AbNq0iYyMDFM1PvzwQ7Zt28bdd99NixZH3jo8Pj6eYcOG8fLLL1vSs1gjoMG5du1a7HY7AwYMIDvWgtEAACAASURBVDQ0lIKCAh577DESEhL8zzlw4AC5ubncd999gWxFRMRSX3/9Nfv37/e/ROvz+aioqDBV44cffgCgV69ex3xO7969+eGHH+r9UrBYL6C7o6SlpbFo0SKio6Pp3Lkz48ePx263+4PTMAxycnK4+uqrueqqq0zVXr58+RGbsTZ0c1YrN3e1eqNY9Rb8eo21ltX11Fv91dXV1avm/75E+6vD64SE6K8HA+1Ev3Y2I4g/xowfP54zzzyTP/3pT6bmJSUlAVBaWnrUx/Vhs9ks+4nOylpW11NvzauW1fXUmzkvvvgid955JwcOHKBz58689957prby2rdvH7GxsZx77rksWbLEH46/9rZlyxZ69uzJhAkTePLJJxvUqxzb0TLleHkStB9hSktLmTVrFkuXLiUpKYkbbrghWK2IiNTL2LFj+fHHHwHYvHmz6f0vW7ZsyQMPPMCyZcvIzs4+5N2zK1as4IorruD0009nwoQJlvYtDRO0jayTkpL0t5wi0uT9+ibHNm3a1Gv+nXfeya5du/jLX/7C3Llz6d27NwCDBg2iU6dOvPvuu3Tv3t2yfqXh9KK5iEgQ2Ww2HnnkETZu3MikSZOIiYkB4KWXXmLLli0kJiYGuUM5XNBWnCIi8v/16NGDv//978FuQ06AVpwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEZEG+P777wFwu91B7kROloAGp8/nIzMzk9jYWMLCwnA4HMybNy+QlxQROSkWL17MgAEDiI6OBuCMM87glltuYcOGDUHuTAItoMHpdrtJSUmhoqKC2tpaXC4X2dnZuketiDRp06dPZ/jw4fz000/+u/3cdtttvPXWW/Tv359169YFuUMJpIAGp91uJyMjg/DwcEJCQsjKysLr9VJdXc2AAQNISkqiX79+LF26NJBtiIj4ffDBB9xxxx0AbNu2zfT8L774grvvvpsRI0bwxRdfkJeXB8AzzzxDRUUF7dq1IyMjQxtPN2MBDc6SkhJSUlKIiYkhPDycqKgooqKi6NixIytWrKC0tJTXX3+d++67L5BtiIgA8Pbbb5OcnMysWbMASEhIOGQrrxPxwgsv0KpVK2bOnMlpp512yLlu3brxt7/9ja+//poPPvjAsr6lcQlYcJaXl5Oenk5ubi6VlZW43W7y8vJISEggNDSU0NBQAGpqakzvYSciUh9PP/00cPD9FwC7du0y/b6LVatWkZSURMeOHY96fuTIkf7nSTNlBMjMmTONuLg4o6amxti7d6+Rn59vtG3b1pg8ebJhGIaxefNmY+DAgUbHjh2NoqIiU7WdTqcBaGhoaJz0ERISEvQeNAI/jidgK860tDQcDgfR0dHEx8dTXV2N3W4nISEBgO7du7Ny5UrKysoYP3686fpOpxPDMDAMA6fTecjj+gygQfMDVUu9NY56jbWWejM3Fi5cCEBIyMFvfXa7nW3btpmq8Yc//IHWrVuze/fuo/Y2d+5cAIqLiy39XGoEbhyeIU6n87j5E7DgjIiIoLi4GI/Hw6ZNm3C5XFRVVZGamorX6/U/r3379oSFhQWqDRERvxtuuIF33nmHUaNGAQd/pdS1a1dTNcaNG8fevXuZMGEC+/fvP+Tcjh07ePDBB3E4HFx++eWW9S2NS1BugPDJJ58waNAgBg8ezPDhw5kxY0Yw2hCRU1BqaioFBQUAOBwO0/P79OnDo48+yty5c+nbt6//+9cf//hHevfuza5du3jttdf8q1ppfloE46KXXnopH374YTAuLSLSYPfffz89evTg8ccfZ+LEiQA8+eSTDB8+nEceeYRevXoFuUMJpKAEp4hIU5eWlsZNN93E1q1bqa2tpUuXLsd8p600LwpOEZF6stlsdO/ePdhtyEmmF+FFRERMUHCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEREREwIanD6fj8zMTGJjYwkLC8PhcJjewkdExCrff/89U6ZM4aabbgKgoKCA//73v0HuSpqagAan2+0mJSWFiooKamtrcblcZGdnU1dXF8jLiogc4emnn6Zr16786U9/4rPPPgNg9OjRdOvWjY8++ijI3UlTEtDgtNvtZGRkEB4eTkhICFlZWXi9XjweDwC7d+/GbrdTWFgYyDZEpIn79XtGfX/oLiws5K677iI1NZXKyko2bNgAwAcffEB4eDgpKSl88803lvUrzVtAg7OkpISUlBRiYmIIDw8nKiqKqKgo7HY7AFOmTOHSSy8NZAsi0sTNnz+fyMhIALp16+ZfLZ4on8/H5MmTSUhI4I033uDss8/2nxs8eDBLlizB6/Uyffp0S/uW5itgwVleXk56ejq5ublUVlbidrvJy8vzb2S9ceNGdu/ezUUXXRSoFkSkiduxYwejRo3yrzR//PFHRo4caapGWVkZGzdu5K677qJly5ZHnO/atSs33ngjhYWF/k2pRY7LCJCZM2cacXFxRk1NjbF3714jPz/faNu2rTF58mTDMAwjIyPD2Lhxo/Hwww8br776qqnaTqfTADQ0NDQ0NAIyjidgK860tDQcDgfR0dHEx8dTXV2N3W4nISGBjz76iMjISOLi4upd3+l0YhgGhmHgdDoPeVyfATRofqBqqbfGUa+x1mruvVVVVXHaaadhs9kACAkJ4eyzzzZV4z//+Q8Ar7zyyjF7u+WWW2jXrh0+n8/Sj1+jaYzDM8TpdB43fwK2rVhERATFxcWHHHO5XMDBd7dVVFRw1VVXsXHjRk4//XTi4uJITEwMVDsi0gR16dKFwsJCMjMz2bt3L507d+aNN94wVeOSSy7h7LPP5umnnyY9Pf2Il2u3bdvGggULGDNmjD+gRY4nKDdAyM3NZfny5RQXF3PLLbdw7733KjRF5KhuvPFGdu/eDcDWrVvp06ePqfkhISE88sgjrF69mhEjRvjfUQuwdOlShg4dSuvWrf0/2Iv8lqBvZP3II48EuwURaeTatm0LcNQ395yIm2++mZ9//pm7776boqIiHA4HAMnJyZx55pkUFxf7j4n8Ft1yT0ROCePHj2f79u08+uij/nfzv/LKK2zdupX+/fsHuTtpSoK+4hQROVnOPPNM7r//fgDd/lPqTStOERERExScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4g0eps3bwYObismEmwBDU6fz0dmZiaxsbGEhYXhcDj0R8cicsIWLlzIxRdf7N9JKSoqimuuuYY1a9YEuTM5lQU0ON1uNykpKVRUVFBbW4vL5SI7O9u/Ka2IyLFMnz6dkSNH4vF4mD59OgAPPPAAZWVlXHbZZSxfvjzIHcqpKqDBabfbycjIIDw8nJCQELKysvB6vXg8Htq0aUNSUhJJSUnMmjUrkG2IyElWUlJCdnY2AF988YXp+ZWVldxzzz3ccMMNfPbZZ0ycOBGAKVOmsH79emJjY/n973/Pvn37rGxb5IQE9F61JSUlPPnkk3z++efs2bMHn89HVFQUdrudLl26UFpaGsjLi0gQvPvuuwwbNsy/t2W/fv349NNP6dmz5wnXmDlzJqGhoTz33HNH7Ihyxhln8Pjjj3Pdddfx1ltvMWLECEv7F/ktAVtxlpeXk56eTm5uLpWVlbjdbvLy8khISADghx9+wOl0Mnz4cP8v/kWk6XvxxRex2Wz4fD4APB4Pc+fONVWjrKyMAQMG0Llz56OeHzZsGK1ataKsrKzB/YqYZgTIzJkzjbi4OKOmpsbYu3evkZ+fb7Rt29aYPHmyYRiG8dNPPxmGYRhLliwxnE6nqdpOp9MANDQ0NDQ0AjKOJ2ArzrS0NBwOB9HR0cTHx1NdXY3dbvevODt27AjA0KFDqaqqMl3f6XRiGAaGYeB0Og95XJ8BNGh+oGqpt8ZRr7HWaoy9LV26lJCQEP9LtREREWzZssVUjby8PEJDQ9m+fftRe3vjjTcAWLx4saWfS41TcxyeIU6n87j5E7DgjIiIoLi4GI/Hw6ZNm3C5XFRVVZGamsovv/zCgQMHAFi/fj0dOnQIVBsicpINGTKEDz/8kHHjxgGwevVqunXrZqrG2LFjMQyD2267jb179x5yrqqqij/+8Y/ExsYybNgwq9oWOWFB2cj6yy+/ZOzYsbRr1w44+DsREWk+Bg4cyMCBA3nuuef8f4NpRvfu3XnhhRcYO3Ys5557LmPGjAHgrrvu4uWXX8bn81FSUkJoaKjVrYv8pqAE5yWXXMLatWuDcWkRaSJuu+02YmNjefzxx/nzn/8MwAsvvMCNN97Igw8+SHx8fJA7lFNVUIJTROREXHnllVx55ZXs3LkTt9vNmWeeSfv27YPdlpziFJwi0uidccYZnHHGGcFuQwTQTd5FRERMUXCKiIiYoOAUERExQcEpIiJigoJTRETEBAWniIiICQpOEREREwIanD6fj8zMTGJjYwkLC8PhcDBv3rxAXlJEgmz79u386U9/8t9H9qmnnqKmpibIXYlYJ6DB6Xa7SUlJoaKigtraWlwuF9nZ2dTV1QXysiISJDNmzKBbt2787W9/47vvvgPA5XJx1lln8e677wa5OxFrBDQ47XY7GRkZhIeHExISQlZWFl6vF4/Hw2effcZVV13FkCFDGD16dCDbEJET8PPPPwOwZ8+ees2fN28eEydO5Nprr2Xz5s3++1GvWbOGs88+m+uvv55169ZZ1q9IsAQ0OEtKSkhJSSEmJobw8HCioqKIiori9NNPZ9KkScyfP58PPviA/Pz8QLYhIr9h/vz5REVFAdC1a1dWrlxpar5hGPz1r3+lb9++/POf/zxkG7ELL7yQ999/n1atWvHEE09Y2bZIUAQsOMvLy0lPTyc3N5fKykrcbjd5eXkkJCTw8ccf065dOzIzM0lKSuLtt98OVBsi8ht27txJZmYm+/btA6C2tpaRI0diGMYJ1/jss8/48ssvufPOO2nZsuUR5zt27MioUaNYsGABXq/Xst5FgsIIkJkzZxpxcXFGTU2NsXfvXiM/P99o27atMXnyZGPu3LlGbGysUV1dbfz888/GeeedZ7jd7hOu7XQ6DUBDQ0NDQyMg43gCtuJMS0vD4XAQHR1NfHw81dXV2O12EhIS6NChA/379yciIgK73U6fPn3YuHGjqfpOpxPDMDAMA6fTecjj+gygQfMDVUu9NY56jbWWFfV2797N6aefTkjIwW8HISEhdOvWDZ/Pd8I11q9fD8AzzzxzzN7GjBlDmzZtqKurs/Tj19Bo6Dg8Q5xO53HzJ2DBGRERQXFxMR6Ph02bNuFyuaiqqiI1NZX+/fuzceNG9u3bR11dHV999RWxsbGBakVEjqNDhw4sWrSIdu3aAdClSxcWL16MzWY74Rrx8fFcdNFFPPvss/zf//3fEee3b9/O3Llz+f3vf3/Ul3JFmpKg3AAhPDycSZMmMXjwYC699FJyc3OJjIwMRisiAlx++eXs3r0bgG3bttGnTx9T8202G3/5y1+orKzkqquu4pNPPvGfe/fddxk8eDAtW7bk3nvvtbRvkWAI2kbW6enppKenB+vyInKY0NBQAFMrzf+VmppKYWEht912G5dccgmdO3f2H4+KiuK9996jZ8+elvUrEiy65Z6IWObmm2/mu+++49lnn/XfOWjevHls3bqV/v37B7k7EWsEbcUpIs1T+/btufPOOwGYPXt2kLsRsZ5WnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJCk4RwTAMvvzySwA2b94c5G5EGreABqfP5yMzM5PY2FjCwsJwOBzMmzcvkJcUEZMWLFhA3759Of/88wGIi4tj0KBBlJaWBrcxkUYqoMHpdrtJSUmhoqKC2tpaXC4X2dnZ1NXVBfKyInKCZsyYwU033YRhGLzwwgsA/OMf/+Dbb7/l8ssvZ/HixUHuUKTxCWhw2u12MjIyCA8PJyQkhKysLLxeL2vXriUpKYmkpCT69++vnVFE6qG4uJibbroJgI8//tj0/K1bt+Jyubj++utZs2YNt99+OwD33nsvFRUV9O3bl+zs7KNuEyZyKgtocJaUlJCSkkJMTAzh4eFERUURFRVFv379KC0tpbS0lNzcXNLS0gLZhkiz895775GamsrChQuBgxu7f/rpp6ZqvPjii9hsNmbMmHHEHpnt27fniSeeoKamhvnz51vWt0hzELDgLC8vJz09ndzcXCorK3G73eTl5ZGQkHDI81555RVGjRoVqDZEmqWXX34Zm82Gz+cDYN++fcydO9dUjdWrV5OQkMBZZ5111PODBg0iIiKCNWvWNLhfkWbFCJCZM2cacXFxRk1NjbF3714jPz/faNu2rTF58mT/c77//nvjnHPOMV3b6XQagIaGhoaGRkDG8QRsxZmWlobD4SA6Opr4+Hiqq6ux2+2HrDhfe+01MjIy6lXf6XRiGAaGYeB0Og95XJ8BNGh+oGqpt8ZRr7HVWr16Na1atfL//xAREcGmTZtM1Xj00UcB+Oqrr47a21tvvQXAG2+8YenXRUOjsY3DM8TpdB43fwIWnBERERQXF+PxeNi0aRMul4uqqipSU1P9zyksLOSWW24JVAsizdZFF13EJ598Ql5eHgCffvopPXr0MFVjzJgxtG7dmjFjxuB2uw85t337diZOnEhMTAzXXnutZX2LNAdBuwHC559/Ttu2bYmLiwtWCyJNWu/evfn73/8OQPfu3U3PP+OMM3j11VcpLy/H4XBw7733AnD77bcTHx/Prl27WLBgwRFvHBI51QUtOHv37s2qVauCdXkRAUaOHMmKFSu47LLLePLJJ4GDbzwaOXIkZWVl9O/fP8gdijQ+LYLdgIgEV//+/XnzzTf55ZdfqK2txW6306ZNm2C3JdJoKThFBICwsDDCwsKC3YZIo6ebvIuIiJig4BQRETFBwSkiImKCglNERMQEBaeIiIgJCk4RERETFJwiIiImBDQ4fT4fmZmZxMbGEhYWhsPhYN68eYG8pMgpYfPmzeTl5TFkyBAA/vKXv/Ddd98FuSuRU0NAg9PtdpOSkkJFRQW1tbW4XC6ys7Opq6sL5GVFmrWnnnoKh8PBtGnT+O9//wvAww8/TPfu3Xn99deD3J1I8xfQ4LTb7WRkZBAeHk5ISAhZWVl4vV48Hg/jx48nMTGRiy++mMLCwkC2IdJo/PjjjwDs2rWrXvMXLFiAy+Vi+PDhbNu2jf/85z8AfPPNNyQmJjJq1ChWrFhhWb8icqSABmdJSQkpKSnExMQQHh5OVFQUUVFR7Nixgy+++IL//Oc/lJaW8uc//zmQbYg0CvPnz6dr164AdO3alXfeecfUfMM4uIfm+eefz/z58+nSpYv/nMPh4O2336ZTp048/vjjlvYtIocKWHCWl5eTnp5Obm4ulZWVuN1u8vLySEhIIDo6mtNOO419+/axZ88eOnToEKg2RBoFt9tNVlYW+/btA2Dv3r2kp6f7H5+IyspK1q1bxx133HHUrb7CwsIYPXo0//73v4/YX1NELGQEyMyZM424uDijpqbG2Lt3r5Gfn2+0bdvWmDx5suHz+Yw77rjD6Natm9GpUyfjzTffNFXb6XQagIaGhoaGRkDG8QRsxZmWlobD4SA6Opr4+Hiqq6ux2+0kJCTw/vvvs2PHDjZu3MjXX3/Ngw8+iNfrNVXf6XRiGAaGYeB0Og95XJ8BNGh+oGqpt8ZRr6G1PB4PkZGRhIQc/F8uJCSELl26cODAgROusW3bNgCmTJlyzN7uuOMOWrVqxS+//GLp51JDozmPwzPE6XQeN38CFpwREREUFxfj8XjYtGkTLpeLqqoqUlNTAejQoQOhoaG0a9eOffv2ceDAgUC1IhJ0bdu25Z133iEqKgqA2NhY/v3vf/uD9ER07dqVIUOGMHPmTKqrq484v337dl599VXS0tI4/fTTLetdRA4VlBsgJCcnYxgGAwcOZMCAAUyYMIG2bdsGoxWRk6Zfv35s374dOPh3mH369DFd4y9/+Qs//vgjQ4YMYcmSJRjGwRXn4sWLSUpKIiQkhPvuu8/SvkXkUEHZyDo0NJSCgoJgXFokqGw2W4PmDxw4kMWLF5OZmcnll19Ou3btABg+fDhnnXUW77//Puedd54VrYrIMeiWeyJNTEpKiv9l2dGjRwPw5ptvsnnzZvr16xfk7kSaPwWnSBPUunVrbrnlFmbMmIFhGFx//fW0aBGUF5BETjkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBwSkiImKCglNERMQEBafISWIYBmvWrAHgs88+898uT0SaloAGp8/nIzMzk9jYWMLCwnA4HMybNy+QlxRplF5//XXi4+NJSEgAoG/fvvTt25fFixcHuTMRMSugwel2u0lJSaGiooLa2lpcLhfZ2dnU1dUF8rIijcqMGTO4+eabadOmDXPmzAHgxRdf5MCBAwwfPlz3bRZpYgIanHa7nYyMDMLDwwkJCSErKwuv14vH4+Hhhx9mwIABJCUlsX79+kC2IVJv77zzDldffTUA7733nun5VVVV3HPPPVx33XWUlZX57y172223sXr1aoYOHcq4ceOOuk2YiDROAQ3OkpISUlJSiImJITw8nKioKKKioti2bRvl5eV89NFHFBQUcNdddwWyDZF6WbJkCddccw3vvvsuAKmpqZSWlpqqMXv2bHw+H9OnT6dly5aHnGvdujVPPPEE//3vf3n55ZetaltEAixgwVleXk56ejq5ublUVlbidrvJy8sjISGByspKLrroIgC6devGV199xf79+wPViki9vP7669hsNnw+n/+Y2d/Rr127lvPPP5/u3bsf9Xzfvn2JiYlh3bp1DepVRE4iI0BmzpxpxMXFGTU1NcbevXuN/Px8o23btsbkyZON9evXGwMGDDC8Xq+xZs0aw2azGT/99NMJ13Y6nQagoaGhoaERkHE8AVtxpqWl4XA4iI6OJj4+nurqaux2OwkJCZx//vlkZGSQnJzM888/T+/evYmMjDRV3+l0YhgGhmHgdDoPeVyfATRofqBqqbfg1duwYQPt27f3/5uLiIhg48aNpmo899xzAJSVlR21r19/bzp37lxLP3YNDY0TH4dniNPpPG7+2AzDMEwllsXWr1/P1KlTTf2OJykpCcD/+6bDH9eHzWbDqk+FlbWsrqfezNm8eTOvv/46Dz30EFu3biU2NtbU/NraWrp27UrXrl0pKSnhzDPP9Pf17bffMmTIEP7v//6PLVu20KpVqwb1KiL1c7RMOV6eBG3n2yuuuIL9+/fTsWNH/0/lIo1Njx49ePDBB3nooYdMhyZA+/btWbhwIddccw0Oh4Obb74ZgNGjRzN//nxatmzJe++9p9AUaUKCFpzvv/9+sC4tclINHTqU8vJypk2bxiuvvALAggULGDVqFPfccw89e/YMcociYkbQglPkVNKrVy/y8/N56aWX8Hg8hIWFERoaGuy2RKQeFJwiJ1GLFi0IDw8Pdhsi0gC6ybuIiIgJCk4RERETFJwiIiImKDhFRERMUHCKiIiYoOAUERExQcEpIiJigiXB6fP5yMzMJDY2lrCwMBwOh+ntl0Qamw0bNjBx4kT69euHzWbj7rvvprKyMthtiUiQWRKcbreblJQUKioqqK2txeVykZ2dTV1dnRXlRU66p556inPPPZfnn3+esLAwDMPgmWee4dxzz+XZZ58NdnsiEkSWBKfdbicjI4Pw8HBCQkLIysrC6/Xi8XhITk6mU6dOTJky5ZA5hYWFJCYmkpiYyLJly6xoQwSA7du3N+jf1KJFi3C5XNxwww1s376dpUuX+utee+21TJgwgbffftuqdkWkibEkOEtKSkhJSSEmJobw8HCioqKIiorCbrdTUFDA1KlTD3l+TU0NTzzxBMuWLaOoqAiXy4XP57OiFTnFzZ8/n7i4OIYMGQLAa6+9ZrrG3//+d8455xzmzZvHmWee6T/euXNnf/3HH3/csp5FpGlpcHCWl5eTnp5Obm4ulZWVuN1u8vLySEhIACAmJuaIOWVlZTidTlq3bk3Hjh2Jjo5m69atDW1FTnH//e9/ycrKYv/+/f5jOTk57Nmz54RrbNu2jfLycm677TZatmx5xPlWrVpx6623snLlSr7//ntL+haRpqXBN3lfu3YtdrudAQMGEBoaSkFBAY899hh5eXnHnLN7927sdrv/sd1uZ/fu3fTo0eOEr7t8+XJsNtshxw5/bFZD5weqltX1TqXe6urqaN++vel599xzD/fcc88hxw7vLTo6ukG9iUjjcqLffxq84kxLS8PhcBAdHU18fDzV1dXY7Xb/ivNoIiMjqa6u9j+uqakhMjLS1HWdTieGYWAYBk6n85DH9RlAg+YHqpZ6O/Gxb98+zjrrLEJC/v8/66ioKLxe7wnX+OmnnwgNDeWPf/zjMXubOHEiLVu2pLq62tLPpYaGRnDG4RnidDqPmz8NDs6IiAiKi4vxeDxs2rQJl8tFVVUVqampx5zTr18/VqxYgdfr5eeff2bHjh1069atoa3IKa5Fixa8++67nHvuuf7wLC4u5rTTTjvhGh07duTaa69l9uzZfPfdd0ecr6qqIj8/nxEjRhAREWFZ7yLSdAT8Bgg5OTlMnTqVgoICrrnmGuBg2E6cOJGkpCSGDRvGtGnTDlkliNTX+eefzxdffMG+ffsA6NOnj+kaDz/8MF6vF6fTycKFC/21FixYgNPpxOfz8dBDD1nat4g0HQHfyHrOnDlHPZ6ZmUlmZmagLy+nqIb8IHbBBRdQUlJCRkYGI0eOpEWLg/+b3HTTTXTv3p0lS5Zw/vnnW9WqiDQxWuaJHEViYiKbNm3irbfe4t577wXg7bff5ptvvuGSSy4JcnciEkwBX3GKNFWhoaFcc801XHPNNTz66KPBbkdEGgmtOEVERExQcIqIiJig4BQRETFBwSkiImKCUCjr2gAAIABJREFUglNERMQEBaeIiIgJCk4RERET9Hec0qz4fD4++ugjdu7cCcCBAwcIDQ0Nclci0pxYtuL0+XxkZmYSGxtLWFgYDoeDefPmWVVe5De9+uqrnH322Vx22WWMGDECAIfDQUFBQXAbE5FmxbLgdLvdpKSkUFFRQW1tLS6Xi+zsbOrq6qy6hMgxPf3002RmZhIZGclrr73GunXrAOjcuTOjR49m2rRpQe5QRJoLy4LTbreTkZFBeHg4ISEhZGVl4fV68Xg8JCcn06lTJ6ZMmXLInGMdl1NLUVERQ4cOBajXqxQ//PADkyZN4tprr2XVqlXcfPPNXHDBBQCsWLGCESNGkJeXd9RtwkREzLIsOEtKSkhJSSEmJobw8HCioqKIiorCbrdTUFDA1KlTj5hzrONy6li2bBnXXXcdy5YtAyAjI4O33nrLVI38/Hz27dvHP/7xD1q2bHnIuRYtWvD444/j8/mYPXu2ZX2LyKnLkuAsLy8nPT2d3NxcKisrcbvd5OXlkZCQAEBMTMxR5x3ruJw6Fi5cCIBhGMDB7cAWLFhgqsbnn39Ojx49OOecc456Pi4ujnPOOYeKioqGNSsigkXvql27di12u50BAwYQGhpKQUEBjz32GHl5eVaUP6rly5djs9kOOXb4Y7MaOj9Qtayu15h78/l8FBYWUlhYaEkf/3vs66+/tvxjF5Hm40S/P1iy4kxLS8PhcBAdHU18fDzV1dXY7Xb/ijMQnE4nhmFgGAZOp/OQx/UZQIPmB6pWc++tqqqKM8880/91tdvtfPPNN6Zq/Bqy77333lF7+/Vl4Pz8fEs/dg0NjeYxDs8Qp9N53PyxJDgjIiIoLi7G4/GwadMmXC4XVVVVpKamWlFemrEuXbqwbt06nnrqKQDWrVuHw+EwVWPkyJFERUVx++23s3nz5kPObdu2jT/84Q+cccYZpKWlWda3iJy6TsoNEHJycigrK8Pr9VJWVkZRUdFxj8uppXPnztx1111MnDiRrl27mp7fqlUrFi9ezBVXXMG5557LiBEjiI+PB6Bnz560adOGd999lzZt2ljduoicgk5KcM6ZM8fUcRGzLr74Yj799FNmzJjBK6+84v+zlrFjx3LXXXcRFxcX5A5FpLnQLfek2ejevTtPPfUUTz31FPv376dFC/3zFhHr6Sbv0iwpNEUkUBScIiIiJig4RURETFBwioiImKDgFBERMUHBKSIiYoKCU0RExAQFp4iIiAmWBafP5yMzM5PY2FjCwsJwOBz12pRYTi3r169n3Lhx9O7dm5CQEMaMGcOaNWuC3ZaIyDFZFpxut5uUlBQqKiqora3F5XKRnZ1NXV2dVZeQZmb69On07t2b/Px8YmNj8fl8zJs3j4SEBCZPnhzs9kREjsqy4LTb7WRkZBAeHk5ISAhZWVl4vV48Hg/Jycl06tSJKVOm+J+/adMmBg0axGWXXcall17K6tWrrWpFToLNmzfz9ttv13v+W2+9xd13382IESOoqqry1/ruu+/Izs7mkUce4dVXX7WqXRERy1gWnCUlJaSkpBATE0N4eDhRUVFERUVht9spKChg6tSphzw/IiKCRYsWsWLFCmbNmoXL5bKqFQmw+fPnc84553DNNdcA8Mwzz5iuMXXqVOLi4pg7dy6RkZH+4+Hh4cyePZsLLriAqVOnYhiGZX2LiFjBkuAsLy8nPT2d3NxcKisrcbvd5OXl+TeyjomJOWJOZGSk/xtmq1atCA0NtaIVCbD9+/czevRoDhw44D82ceJEdu7cecI1du7cycqVK8nJyeG000474nxoaCi33XYbn3/+Od98840lfYuIWMawwMyZM424uDijpqbG2Lt3r5Gfn2+0bdvWmDx5sv85+fn5xl//+tcj5u7fv99ITU013n333RO+ntPpNAANDQ0NDY2AjOOxZMWZlpaGw+EgOjqa+Ph4qqursdvt/hXnsRiGQU5ODldffTVXXXWVqWs6nU4Mw8AwDJxO5yGP6zN+7ceKYWWtxtabz+cjPj6ekJD//0+nc+fOeDyeE66xZ88eWrduzdixY4/ZW15eHqGhofz444+Wfi41NDQ0Dh+HZ4jT6Txu/lgSnBERERQXF+PxeNi0aRMul4uqqipSU1OPO2/ChAk4HA7uuOMOK9qQk8Bms/HOO+/Qv39/2rZtC8D777/v/+8TERYWRkZGBoWFhWzcuPGI8zt27OCll17i2muv5YwzzrCsdxERK5yUGyDk5OQwdepUCgoK/G8oKS0tZdasWSxdupSkpCRuuOGGk9GKWKBbt26sWrUKj8cDQO/evU3XePDBB2ndujWDBg1izpw5/PLLLwAUFhZy6aWXsm/fPv1Jiog0Sidlt985c+YccSwpKUl/43kKi4uLo7S0lJtvvpkxY8YwZswYAEaNGkXPnj1ZunRpvQJZRCTQdMs9CZpevXrx2WefsXz5cv72t78BB1/2/eqrr7j44ouD3J2IyNGdlBWnyLHYbDYGDRrEoEGDeOCBB4LdjojIb9KKU0RExAQFp4iIiAkKThERERMUnCIiIiYoOEVERExQcIqIiJig4BQRETFBf8cpph04cIDS0lK+//57ALxeL61atQpyVyIiJ4dlK06fz0dmZiaxsbGEhYXhcDiYN2+eVeWlkSgoKKBHjx4kJyczatQoALp27cqTTz6JYRhB7k5EJPAsC063201KSgoVFRXU1tbicrnIzs7W/WibkWeeeYbRo0fTpUsXFixYwIYNGwDo27cv99xzD/fff3+QOxQRCTzLgtNut5ORkUF4eDghISFkZWXh9XrxeDwkJyfTqVMnpkyZ4n/+jz/+yIABA0hKSqJfv34sXbrUqlbkKBYvXkxiYiIAzz//vOnV4e7du7n33nsZNmwYH374ISNHjqRnz54AFBcXM2bMGB5//HF/mIqINFeWBWdJSQkpKSnExMQQHh5OVFQUUVFR2O12CgoKmDp16iHP79ixIytWrKC0tJTXX3+d++67z6pW5DArVqzghhtuoKysDIA777yTV155xVSNl19+Ga/Xy9///ndatDj0V+M2m40pU6bQsmVLZs2aZVnfIiKNkSXBWV5eTnp6Orm5uVRWVuJ2u8nLyyMhIQGAmJiYI+aEhoYSGhoKQE1NDX369LGiFTmKoqIi/87mACEhISxatMhUjS+//JLOnTvTq1evo57v3LkzF1xwAV999VWD+xURacwseVft2rVrsdvtDBgwgNDQUAoKCnjsscfIy8s77rwtW7YwatQoNmzYQH5+vqlrLl++HJvNdsixwx+b1dD5gapldT2fz8fixYvrVfNoc6z+OoiIBMOJfu+yZMWZlpaGw+EgOjqa+Ph4qqursdvt/hXnsXTv3p2VK1dSVlbG+PHjTV3T6XT6V1FOp/OQx/UZQIPmB6qWFfV2795Njx49/J87u93Ohg0bTNUoKioCYP78+UftbeXKlQC8+OKLln7sGhoaGoEeh2eI0+k8bv5YsuKMiIiguLj4kGMul+u4c/73b//at29PWFiYFa3IUXTo0IFPP/2UN954g1tvvZWKioqjvnx+PCkpKZx99tnk5uZyzjnncMEFF/jPbdmyhezsbDp27MjNN99sdfsiIo3KSbkBQk5ODmVlZXi9XsrKyigqKuKTTz7hgQceIDQ09P+xd/dxUVb5//hfM4PhDXej+EkFNW8+bRTBVYTcyDZkmtrqGmuEdqMGmd9tDSVNW3MrRcsyTW293RK2vCktWxf9SBnujEo6MOEoUmsg2iatVsq9cTvn9wc/p0ZR54LrYgZ8PR+P83g4Z67rnDfXGebNmbk8B/X19Vi5cmVbhHLD8vX1RVJSEp566inZSRNo+k56586duP/++3HXXXdh1KhR9u+lb731VnTr1g179uzhH0BE1OG1SeLcuHHjFXUxMTHYv39/W3RPCgkKCsKRI0ewZs0apKen4/PPPwcAzJgxA9OnT8ctt9zi2gCJiNoAl9wjWW6++WYsWLAACxYscHUoREQuwUXeiYiIZGDiJCIikoGJk4iISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZFEmcNpsNkyZNQv/+/eHl5YXBgwfjgw8+UKJpUkBeXh6SkpIwaNAg6HQ6PPzww9i3bx+EkLeZNRERKZQ4y8vLMXr0aBw7dgwVFRVISUnBlClTUFdXp0Tz1ApvvfUWwsLC8MEHH+Duu+9GY2MjjEYj7r//fjz77LNMnkREMimSOPV6PSZOnAhfX19otVpMnjwZtbW1qK6uxvDhw9GzZ08sWrToivPOnz8PvV6PTZs2KRFGh3PixAl8+OGHLT5/z549eO655/Dwww+jpKQE27dvBwB89913eO6557B69Wr89a9/VSpcIqIbgiKJc+/evRg9ejQCAwPh6+uL3r17o3fv3tDr9UhPT8fSpUubPW/RokWIiYlRIoQOZ/v27QgODsaECRMAAK+88orsNpYtW4Z+/fph8+bN8PPzs9d36dIFb775Ju69914sX74cjY2NSoVNRNThtTpx5uTkYMKECUhOTsY333yD8vJyzJ07176J9dW2sCoqKsL58+cRFhbW2hA6HCEEkpKSHBLaggULcOrUKafbqKioQFZWFiZPnoybbrrpiuc1Gg2mTp2K06dP4+jRo4rETUR0I2j17ihHjhyBXq9HdHQ0dDod0tPT8dprr2Hu3LnXPO+ll15Camoq3n///Rb1azKZoNFoHOoufyxXa89Xq61LBg4cKPuc1NRUpKamOtRdHhv/eCEicv59u9UzzoSEBAwePBh9+vTB7bffjtLSUuj1evuMszlffPEFevTogUGDBrW4X4PBACEEhBAwGAwOj1tSALTqfKXbGjp0KLTaX4bn5ptvRkVFhdPn19XVwc/PDxMmTLhqbH/5y1+g0Wjw3XffKfazs7CwsLS3cnkOMRgM18w/rZ5x+vn5ITMz06EuJSXlmudYLBYcO3YMo0aNQlFREbp164ZBgwYhKiqqteF0GB9//DGSkpJgNpvx008/Ye/evfD29nb6/E6dOmHKlClYvXo1rFYrJElyeL6kpATr1q3Dgw8+eNWP04mI6EqqL4CQmJiIpUuXIj09HWPHjgUAJCcnw2QyITMzE48//jief/55Js3L3Hzzzdi1axd+/PFHAMCdd94pu405c+agV69eGDZsGJYvX47vv/8eALBx40YMHToUP//8MxYvXqxo3EREHZ1GCNHu/iNfbGwsAMBoNDb7uCU0Gg2UuhRKttXa9k6dOoVJkybh4MGDDvV33HEH0tLSEB4erkSIRETtVnM55Vr5hEvudXADBgzAgQMHYLVasXLlSgBNN1bl5+czaRIRtUCrv+Ok9iE0NBShoaFITk52dShERO0aZ5xEREQyMHESERHJwMRJREQkAxMnERGRDEycREREMjBxEhERycDESUREJAP/H6ebqq+vx6effoqSkhIAQGVlpay1aomISB2KzThtNhsmTZqE/v37w8vLC4MHD8YHH3ygVPM3lI0bN6J///4YO3Ys/t//+38AgICAAMyfP5+bThMRuZhiibO8vByjR4/GsWPHUFFRgZSUFEyZMgV1dXVKdXFDWL16NZKSkjB48GBkZGTgzJkzAIAHH3wQixcvxrRp01wcIRHRjU2xxKnX6zFx4kT4+vpCq9Vi8uTJqK2tRXV1NYYPH46ePXti0aJFDud06dIFsbGxiI2NxYYNG5QKxWU++eQThIaGAgAWLVoEm80m6/yysjLMmTMHo0ePxr59+zBmzBgEBAQAAD744APMmTMH7777LnJzcxWPnYiInKPYd5x79+7F8uXLkZ+fj8rKSthsNvTu3Rt6vR7p6en4/PPP7bOnSwICAlq1o4k7OXToEB5++GH7LiZ/+ctf4OXlhZkzZzrdxubNm3Hx4kUsWrQIHh5XDs28efOwevVqbNiwgQu0ExG5iCIzzpycHEyYMAHJycn45ptvUF5ejrlz5+Kee+4BgKtulHz27FkYDAY89NBDKC4uViIUl/n0009hs9nsiVOj0WD37t2y2jhx4gR8fX1x9913N/u8r68v7rnnHpw4caLV8RIRUcsoMuM8cuQI9Ho9oqOjodPpkJ6ejtdeew1z58695nmnT5+Gv78/srKykJiYKGv2aTKZoNFoHOoufyxXa8//NSEEPv/88xa12dw5Sv+sRETkyNn3VUVmnAkJCRg8eDD69OmD22+/HaWlpdDr9fYZ59X4+/sDAO6///4rPsa9HoPBACEEhBAwGAwOj1tSALTq/KqqKtx11132+Lp3746vv/5aVhv79+8HAKxfv77Z2MxmMwDg7bffblWsLCwsLCy/lMtziMFguGb+UWTG6efnh8zMTIe6lJSUa55TVVWFLl26QKfT4fjx4+jevbsSobhMt27dkJ2djYyMDCQkJOD48ePo3bu3rDZiYmJwzz334Pnnn8dvfvMbh8ErKirCY489hu7du+OJJ55QOnwiInJSmyyAkJiYCLPZjNraWpjNZmRkZOCrr77CtGnT7P+pf/369W0Riqq6dOmCRx55BAkJCbKTJtD0McHHH3+M4cOHIzY2FtHR0fbvO3/zm9/Ax8cHu3fvhq+vr9KhExGRk9okcW7cuPGKuiFDhuDIkSNt0X270q9fP+Tm5mLjxo3YuHEjNm3aBACYO3cu/vjHP6Jv374ujpCI6MbGJffckK+vL1JSUq77cTcREbU9LvJOREQkAxMnERGRDEycREREMjBxEhERycDESUREJAMTJxERkQxMnERERDIwcRIREcmgSOK02WyYNGkS+vfvDy8vLwwePBgffPCBEk23G2azGU888QT69OkDnU6HBx54ADt27JC9mTUREbk3RRJneXk5Ro8ejWPHjqGiogIpKSmYMmUK6urqlGje7S1fvhyRkZHYuXMn7r//fjQ2NuLf//43xo8fj0cffRQNDQ2uDpGIiBSiSOLU6/WYOHEifH19odVqMXnyZNTW1qK6uhrDhw9Hz549sWjRIodzjh49ilGjRmHYsGF48sknlQijRY4fP460tDQATVt3ybV3717MmjULDz/8MEpKSvD+++8DAIqLi/Hqq6/iww8/xOLFixWNmYiIXEeRxLl3716MHj0agYGB8PX1Re/evdG7d2/o9Xqkp6dj6dKlDsfX1dVh9uzZ+PDDD7Fv3z574mpr27dvhyRJSExMBABMnz5ddhtvvfUWevfujU2bNtl3egEADw8P/PnPf8bvf/97rF69GrW1tYrFTURErtPqxJmTk4MJEyYgOTkZ33zzDcrLyzF37lz7JtaBgYFXnHP48GF4e3tj0qRJiI2Nxa5du1obRos888wzDt9BrlmzBseOHXP6/Pr6emRmZuLxxx+Hp6dns8ckJibixx9/xOHDh1sdLxERuQHRSuvWrRODBg0SZWVloqamRqSlpYmuXbuKBQsW2I9JS0sTqamp9sdbtmwR/fv3F6WlpeLChQsiKChIlJeXO92nwWAQAFhYWFhYWFQp19LqGWdCQgIGDx6MPn364Pbbb0dpaSn0er19xtmc7t27IzIyEn5+ftDr9QgJCUFRUZGsfg0GA4QQEELAYDA4PHa2jB07FhqNxt7m//zP/+DChQtOn2+z2dC7d2+MHj3aoR6A/d+pqakAgKKiItnxsbCwsLCoXy7PIQaD4Zr5p9WJ08/PD5mZmaiursbJkyeRkpKCM2fO4MEHH7zqOZGRkSgqKkJ9fT3q6urw9ddfo3///q0NRbb3338fjz76KPr16wcAyMrKgl6vd/p8jUaDp59+GpmZmTCZTFc8X1JSgr/+9a8YMWIEBg0apFjcRETkOqpvZJ2YmAiz2Yza2lqYzWZkZGTA19cXs2fPxn333Ye6ujokJyejR48eaodyBV9fX2zatAlAUxIMDg6W3caMGTPw4YcfYvTo0Xj++efx2GOPAQDWrVuHV199FdXV1XjjjTcUjZuIiFxHI4QQrg5CrtjYWACA0Whs9nFLaDQatPRSnDt3DlOnTsWuXbsc2rjrrruwYcOGa35sTURErtVcTrlWPuGSewq4+eab8c9//hNFRUV45513ADTdOfzll18yaRIRdTCqf1R7Ixk4cCAGDhyIpKQkV4dCREQq4YyTiIhIBiZOIiIiGZg4iYiIZGDiJCIikoGJk4iISAYmTiIiIhmYOImIiGS4of8fZ21tLTIyMvCf//wHAPDjjz+iZ8+eLo6KiIjcmWIzTpvNhkmTJqF///7w8vLC4MGD8cEHHyjVvOL+9re/ITAwEPHx8Zg1axaApr1Dn3nmGdTV1bk4OiIicleKJc7y8nKMHj0ax44dQ0VFBVJSUjBlyhS3TEJr167F008/jeDgYHz66acoLS0F0LQg/dq1azFhwoQWr1tLREQdm2KJU6/XY+LEifD19YVWq8XkyZNRW1uL6upqDB8+HD179sSiRYvsx+fk5CA2NhaxsbGIjIxss91RKisrMXfuXDzwwAPYu3cvHnjgAfj5+QFoSqivv/46PvnkE+zbt69N4iEiovZFscS5d+9ejB49GoGBgfD19UXv3r3Ru3dv6PV6pKenY+nSpQ7HDxkyBEajEUajEcnJyUhISFAqlGvatm0bKisrsWDBAnh4XPkV76UtzjZs2NAm8RARUfuiSOLMycnBhAkTkJycjG+++Qbl5eWYO3eufWeQwMDAa57/3nvv4YknnlAilOsqLCxEp06dEBER0ezznTt3RkREBIqKitokHiIial8Uuav2yJEj0Ov1iI6Ohk6nQ3p6Ol577TXMnTv3uueePXsWp0+fRlRUlKw+TSYTNBqNQ93lj69Fq73yb4bWtEdERO2bs+/5isw4ExISMHjwYPTp0we33347SktLodfrndqLcvPmzZg4caLsPg0GA4QQEELAYDA4PL5WOXr0KADgjTfecKgHACEEjhw5AgBYtmyZU+2xsLCwsLTvcnkOMRgM18w/isw4/fz8kJmZ6VCXkpLi1LmbNm3CRx99pEQYTgkJCcGIESPw0ksvYfDgwXjooYfsf2WcOHEC8fHx6N69O6ZMmdJmMRERUfvRJgsgJCYmwmw2o7a2FmazGRkZGQCA/Px8dO3aFYMGDWqLMOy2bNmCBx54AH/4wx8QHByM8PBwAEBQUBB8fX3xf//3f+jevXubxkRERO1DmyTOjRs3Nlt/5513Ijs7uy1CcODv74/s7Gxs2bIFGzduxGeffQYAeOmll/D000+jT58+bR4TERG1DzfskntdunRBUlISkpKSXB0KERG1I1zknYiISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZmDiJiIhkYOIkIiKSQbHEabPZMGnSJPTv3x9eXl4YPHgwPvjgA6WaJyIicguKJc7y8nKMHj0ax44dQ0VFBVJSUjBlyhTU1dUp1QUREZHLKZY49Xo9Jk6cCF9fX2i1WkyePBm1tbWorq7G8OHD0bNnTyxatMh+vBAC06dPR1RUFMLDw7Fp0yalQiEiIlKNYmvV7t27F8uXL0d+fj4qKyths9nQu3dv6PV6pKen4/PPP8eZM2fsxxcUFKCgoACHDh1CdXU17rzzTjz++ONKhUNERKQKRWacOTk5mDBhApKTk/HNN9+gvLwcc+fOtW9kHRgYeMU5ffr0wU033YT6+npUVlZyGy8iImoXFJlxHjlyBHq9HtHR0dDpdEhPT8drr72GuXPnXvUcvV6PQYMG4dZbb0V1dTXWr1/vdH+SJGHlypX2DagvufwxERGRs5zNIYokzoSEBHzyySfo06cPevXqhenTp0Ov19tnnM357LPPUFJSgqKiIpSXlyMmJgYPPvggPD09r9vfihUrsGLFCiVCJyIikkWRxOnn54fMzEyHupSUlOue1717d+h0Onh7e6O+vh6NjY1KhENERKQajRBCqN1JYmIizGYzamtrERQUhIyMDDQ2NiIpKQmFhYWoq6vDE088geTkZLVDISIiapU2SZxEREQdBZfcIyIikoGJk4iISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZmDiJiIhkYOIkIiKSgYmTiIhIBiZOIiIiGZg4iYiIZGDiJCIikoGJk4iISAYmTiIiIhmYOImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZmDiJiIhkYOIkIiKSgYmTiIhIBiZOIiIiGZg4iYiIZGDiJCIikoGJk4iISAYmTiIiIhk8XB0AKWfmzJmwWq2uDsOBJElYsWKFq8MgIlIMZ5wdiNVqlZ046+rqYDKZUFlZ6VBfU1MDk8mE6urqNo2HiMjdqTbjtNls8Pb2RkZGBoYNG2avHz9+PAICArBq1Sq1ur6hSZIEo9Ho9PG7d+9GfHw8zGYzPDx+eTls374dSUlJMJvN0Gpb9vdVbGxsi84jInJnqiVOrVaL4OBg5Ofn2xOnyWSCyWRCYWGhWt2STBaLBZIkOSRNAMjJyUFYWFiLkyYRUUel6necoaGhyM/PB9A0A01JScHChQuh1+uxadMmrF69GgDw6quv4r777lMzlKvav38/Dh06hL59+yIhIQE6nc4lcTRn3759yM3NxYABA/Dwww+rksQsFgvCw8OvqM/JyUFERITi/TXn3Llz2LZtG2w2G/7whz+gb9++rWpv9+7dOH78OIKCgjB27FhoNBqFIiUiAiBUtHr1ajFkyBAhhBDvvPOOuPPOO0VDQ4MoLS0VoaGh4ueffxY//vijCA0NFY2NjWqG0qz169cLAPYSHx8vbDZbm8fRnBUrVjjENmXKlOvGZjAYhMFgkNVPr169xPvvv+9Q19jYKLy8vMS2bdvE2bNnRVRUlDAYDGLIkCHi888/d7ptZ+I5c+aMuPnmm+0/Z/fu3UVhYaGsn+HXXnzxRYfrNmfOnBa3RUTUHFUT58GDB0W3bt1EeXm56NWrl8jKyhJCCJGZmSmSk5Ptx40ePVqcPHnS6XZnzJghZsyYcdXHzvL19XV4kwVLGUtGAAAgAElEQVQgLBaL7HaU1tjYKDw9Pa+I7euvv77meXIT55kzZwQA8dVXXznUf/nllwKA+M9//iMaGhpEQ0ODEEKIkydPinvuucfp9p2JZ86cOQ4/o0ajEdOmTXO6j18rKyu74poBED/++GOL2iOiG0NzOeVaVE2cFRUVQqPRiEceeUTExcXZ6zdv3ixefvll++NHH31U5OTkON2uwWBo9g2SBbIS5+HDhwUA8f333zvUz5o1S0RGRl5x/JdffikSExM5TiwsLB2+XIuqd354e3tj4MCB2LlzJ5YtW2av79GjB0pLS+2Py8rK0KNHD1ltGwwGiKbED4PB4PDY2fLoo486tNmvXz9UVFTIbkeNMm7cOIfYbr31Vly8ePGa5xgMBlnXMCgoCL6+vliyZAnKyspw4cIFrFu3DmvWrMGSJUvsx506dQoxMTEYOXIk4uLiWjxOzZWsrCxoNBqH7yE/+eSTFl2zxsZGREdHO7QVHh6OhoYGl48nCwuL+5bLc8j13ktVv2WyqKgINTU1GDBggL0uIiICBw4cQG1tLS5cuICSkhLccsstaodyhXfeeQcpKSkYMmQIgKa7fr29vds8juZs3rwZ06dPt8e2b98+dOnSRdE+fHx8sGvXLlgsFgQGBuK2227Djh07kJmZ6fDCGTBgAA4ePAiz2Yzp06crGsOwYcPwySef2P/ryubNm/HQQw+1qC2tVotdu3bhySeftN/wtGfPHre64YuI2j+XrBzk5+eHmTNn2t8sly1b5pL/9tClSxcsX74cAKDRaFySvK+mW7duePvttwE0xRYQEKBKPzExMcjOzr7q87W1tfD09ATQlGi9vLwUj2HcuHEYN24cNBrNFZ8CyKXX6/Huu+8CaLpucj/JICK6HpctuTdp0iRMmjTJVd2Tk3JzczFv3jzodDrU19dj5cqVrg6JiMiluFZtB2O1WhVfsUer1UIIAQ8PD6SmpiI1NdXpWCRJUjQWIiJXY+LsQNwtSUmS5HYxERG1FhNnB8JdSIiI1MeFSImIiGRg4iQiIpKBiZOIiEgGJk4iIiIZeHNQBzJz5kxYrVZXh+FAkiTetEREHQpnnB2I1Wp1q8TpbvEQESmBM84ORpIkGI1Gp4//4YcfcPPNNyMvLw933XWXvf7bb7/FLbfcgq+++gpBQUEtikXphRiIiNyBqjNOm82Gbt26Yd++fQ7148ePR3Jysppdk5Nyc3PRpUsX3HnnnQ71OTk58Pb2xm9+8xsXRUZE5J5UnXFqtVoEBwcjPz8fw4YNA9C0A4nJZEJhYaGaXcsihHB1CFeldmwWiwWSJMHDw/GlkJOTg7CwsDZbfL89jMGvtysjohuX6u+KoaGhyM/PB9A0A01JScHChQuh1+sxfPhw9OzZE4sWLVI7jGaVlJTgt7/9LTp16gSgKam7i2+//RaRkZH22A4dOqRKPxaLxb4F16/l5OQ0W680IQReeeUV+3Zus2fPhs1mU71fZwgh8MILL8DLywteXl6YP3++Wyd4ImobqidOSZLsiTMtLQ0NDQ2YNm0aACA9PR1Lly5VO4SrSkhIwBdffIHGxkYAwJgxY3Du3DmXxfNrcXFxyM3Ntcf24IMPoqysTPF+mkucNpsNeXl5CA8Px7lz5xAdHY3Y2FhEREQgKytL0f43bdqEBQsWoLq6GkDTFnNr1qxRtI+W2rBhA15//XVcvHgRFy9exOLFi5GWlubqsIjIxdpkxllQUICKigrMnz8fK1assG8sHBgYqHb3VyWEwOHDhx1mN1VVVSgoKHBZTJfU1NTgyJEjDrGVlZXhxIkTivZTUlKCs2fPIiwszKHearWiqqoKkZGR8Pf3x4EDB2A0GrF161a88MILisbwxRdfOHwcrNPprrk/aFvKzs52iE2r1eKLL75wYURE5BaEyioqKoRGoxGPPPKIiIuLu+L5tLQ0kZqaKqtNg8EgALA0UwwGg9PX8fDhwwKA+P777x3qZ82aJSIjI684/ssvvxSJiYkcJxYWlg5frkX1Gae3tzcGDhyInTt3YtmyZYq1azAYIISAEAIGg8HhsbPlX//6F7p162Zv89VXX5Xdhlplz5496Ny5sz22FStWXPccg8Eg6xoGBQXB19cXS5YsQVlZGS5cuIB169ZhzZo1WLJkif24U6dOISYmBiNHjkRcXFyLx6m5Ul1djejoaPvxkiShtLRUkWsIoFXnl5eX45577rHHFhERgcrKSpe/NlhYWJQtl+eQ672Xtsktk0VFRaipqcGAAQPaojunxcbGoqioCJ9//jkA4M9//rOLI/rFqFGjcPLkSXtsM2bMULwPHx8f7Nq1CxaLBYGBgbjtttuwY8cOZGZmOrxwBgwYgIMHD8JsNmP69OmKxtC1a1cYjUb7R6CHDh2Cn5+fon20lI+PDw4ePIiDBw8CAPbv3w8vLy8XR0VErubSBRASExNhNptRW1sLs9mMjIyMNo+hV69e6NWrV5v364w+ffqgT58+qvYRExNzze8Ua2tr4enpCaApkaiRODp16oSoqCgAcJhluwNPT08MHToUAHDTTTe5OBoicgcuTZwbN250ZffkhNzcXMybNw86nQ719fVYuXKlq0MiInIpLrnXwVitVsWXutNqtRBCwMPDA6mpqUhNTXU6FkmSFI2FiMjVmDg7EHdLUpIkuV1MREStxcTZgXD7LiIi9XFbMSIiIhmYOImIiGRg4iQiIpKBiZOIiEgG3hzUgcycORNWq9XVYTiQJIk3LRFRh8IZZwditVplJ866ujqYTCZUVlY61NfU1MBkMtm3+2qreIiI3J2qM06bzQZvb29kZGRg2LBh9vrx48cjICAAq1atUrP7G5IkSTAajU4fv3v3bsTHx8NsNsPD45eXw/bt25GUlASz2eywtZYcSi/EQETkDlRNnFqtFsHBwcjPz7cnTpPJBJPJhMLCQjW7JidZLBZIkuSQNAEgJycHYWFhLU6aREQdlerfcYaGhiI/Px9A0ww0JSUFCxcuxIULFzBu3Dj7Ni4rVqxw2MKpPfrpp5+QlpaGmpoa/OEPf8Add9zh6pCuy2KxIDw8/Ir6nJwcREREuCCi1hFCYPv27Th+/Lj9sUajaXF7p0+fxpYtWwAA//nPf9CvXz9F4iSi9kv16YQkSfbEmZaWhoaGBkybNg1+fn745JNPcODAAWzYsAEpKSlqh6Kqn376CXfffTfmzJmDl156CWFhYTCbza4O67qaS5w2mw15eXkIDw/HuXPnEB0djdjYWERERCArK8tFkTpn9uzZSEhIsK+n25rt2AoLCyFJEl588UUATa/l4uJiReIkovZL9cQZGhqKgoICVFRUYP78+VixYgV0Oh169OiBHj16AGjaukmn06kdiqrS0tLw3Xff2R/X19fjtddec2FE11dSUoKzZ88iLCzMod5qtaKqqgqRkZHw9/fHgQMHYDQasXXrVrzwwgsuivb6ysrKsHz5coe6t99+Gz/++GOL2nvrrbdQUVHh0D6/lyciCJVVVFQIjUYjHnnkEREXF3fF8w0NDeLBBx8Ue/bscbpNg8EgALA0UwwGg9PX8fDhwwKA+P777x3qZ82aJSIjI684/ssvvxSJiYkcJxYWlg5frkX1xCmEEIMGDRKenp6iuLjYod5ms4lJkyaJNWvWyGrPYDA4JIjLH7fE9S7U9eTn5wtPT0+h1WrtF/7vf/97q9qUG5vc61BeXi58fX1FcnKyKC0tFefPnxdr164VXbp0EUaj0X5ccXGxGDp0qPD39xcZGRlOty83ntaOgc1mE8OGDXN48f/2t78VjY2NLWrvs88+ExqNxj6mWq1W7Nu3r1UxEpH7aS6nXEub3DJZVFSEmpoaDBgwwKH+2WefxeDBg/HHP/6xLcJQVXBwMIxGI8aOHQsAeO+99zBp0iQXR3VtPj4+2LVrFywWCwIDA3Hbbbdhx44dyMzMhMFgsB83YMAAHDx4EGazGdOnT3dhxNem0Wjwj3/8A88++yzuu+8+AEBGRkaL7wweMWIE/vnPf2LUqFEAgF27dtnbJaIbl8tWDjIajdiwYQOio6ORlZWF7t27Y8eOHa4KRxGRkZH4xz/+AY1GgyeeeMLV4TglJiYG2dnZV32+trYWnp6eAJoSrZeXV1uF1iLe3t727yE1Gg18fX1b1d6YMWMwZswYaDQajB49WokQiaidc1nijI2NRV1dnau6Jyfl5uZi3rx50Ol0qK+vx8qVK10dEhGRS3Gt2g7GarUqvmKPVquFEAIeHh5ITU21/1cPZ2KRJEnRWIiIXI2JswNxtyQlSZLbxURE1FpMnB0IdyEhIlIfFyIlIiKSgYmTiIhIBiZOIiIiGZg4iYiIZODNQUQKmjlzJqxWq6vDcCBJ0g1345i7jcONOAYdGWecRAqyWq2y37Dr6upgMplQWVnpUF9TUwOTyYTq6uo2jacjkPtzcwxIDlVnnDabDd7e3sjIyMCwYcPs9ePHj0dAQAC3aKIOSZIkGI1Gp4/fvXs34uPjYTab4eHxy6/k9u3bkZSUBLPZ3OL1dpVeDKM9kTMOHAOSQ9XEqdVqERwcjPz8fHviNJlMMJlMKCwsVLNronbDYrFAkiSHN2wAyMnJQVhYWIvfsMl5HAOSo002ss7PzwfQNANNSUnBwoULUVdXh+joaMTGxiIiIgJZWVlqh0LkliwWC8LDw6+oz8nJabZeLUII1NbWtll/cqgdm7uMAdD0sbHNZlOkLXce0/ZM9cQpSZI9caalpaGhoQHTpk2Dv78/Dhw4AKPRiK1bt+KFF15QOxQit9Tcm7bNZkNeXh7Cw8Nx7tw51f/IPHjwIAICAtC5c2cEBQXhxIkTivfRUllZWejVqxc6d+6M0NBQFBcXK96HO4xBZWUlfv/736Nz587w8vLCmjVrWtXexx9/DL1ej86dOyM6Ohpnz55VKFJS/a7a0NBQFBQUoKKiAvPnz8fmzZuh0+kcjikrK0NISIjaoRC5nZKSEpw9exZhYWEO9VarFVVVVYiMjLT/kanT6VBcXIyEhATk5uYqFkNZWRnGjBljvzHmm2++wdixY/HNN98o1kdL/fDDDxg3bhx+/vlnAMDx48fx8MMPIy8vT7E+3GEMAOD5559HRkYGAODnn3/Gn/70JwQHB+Pee++V3VZRUREmTpyIhoYGAIDZbMaUKVOQmZmpaMw3KtVnnCEhIbh48SKmTp2KqKgoh5uETp06hZiYGIwcORJxcXFqh0Lkds6cOQMA8PPzc6jfsmULIiMj0bdvX+h0Ovsfm2r8kXny5EmUl5fbPx602WwoLCxEVVWVov20xIkTJ1BdXe0Q25EjR9DY2KhYH+4wBkBTcrvcl19+2aK2jh49ivr6egghADRdt+bapxYSbWDQoEHC09NTFBcXN/v8yZMnRf/+/Z1uz2AwCAAsLG5ZDAaD06/l8vJy4evrK5KTk0Vpaak4f/68WLt2rejSpYswGo3244qLi8XQoUOFv7+/yMjI4O+KguPAMWBprlxLmyTO5tTU1Nj//eOPP4o77rjD6XMNBoPDL8Xlj1viehfKVW2p0Z67cufr5mxbLXktHjhwQERHR4tu3bqJnj17ihEjRgiTydTssS35I9OZeDZu3Ch0Op0AILp16yY+++wzp/tQ21//+leh1WoFAOHj4yP2799/3XPkjoM7jMG3334rBg4caH/jfuqpp4TNZnO6n8stWLDA3lbPnj2F1WptcVsdXXM55VpctnJQbm4u5s2bB51Oh/r6eqxcudJVoRC5VExMDLKzs6/6fG1tLTw9PQEAPj4+8PLyUjyGJ598Eg888AACAwNx+vRp+Pv7K95HS/3pT3/C73//e/Tr1w+nTp1C9+7dFe/DHcagX79+yM/PR0FBAYYMGYINGzZAo9G0uL2XXnoJjz/+OAYNGoTCwkL4+voqGO2NzWWJMyYmBvv373dV90TtRlv9kRkQEAAAbpU0L+nbty8AqJI0ndFWY9C1a1f73b2tSZqXDBw4EACYNBXGtWqJ3Bz/yHQ9jgH9GhMnkcKsVqvbLLNmtVohSZKrw3AJdxmHG3kMOiomTiIFudsbpCRJbhdTW3Cnn/lGHYOOjImTSEHcOso9cBxITVy5mIiISAYmTiIiIhmYOImIiGRg4iQiIpKBNwcRKWjmzJmwWq2uDsOBJEk33M0y7jYON+IYdGSccRIpyGq1yn7Drqurg8lksm/rdUlNTQ1MJhOqq6vbNJ6OQO7PzTEgOVSbcdpsNnh7eyMjI8NhK7Hx48cjICAAq1atUqtrIpeSJAlGo9Hp43fv3o34+HiYzWZ4ePzyK7l9+3YkJSXBbDZDq23Z37jusACAq8gZB44ByaFa4tRqtQgODkZ+fr49cZpMJphMJhQWFqrVLVG7Y7FYIEmSwxs2AOTk5CAsLKzFb9jkPI4ByaHqqyE0NBT5+fkAmmagKSkpWLhwIfR6PQDg/Pnz0Ov12LRpk5phELk1i8ViX9j713JycpqtV0NDQwPWrl0LoGkDZ/H/b4DsDurq6uyfUH300Ueq9OEOYwAA2dnZmDt3LgDgp59+arN+nWE0GjFnzhy8+uqrKCsrc3U4LqVq4pQkyZ4409LS0NDQgGnTptmfX7RoEWJiYtQMgcjtNfembbPZkJeXh/DwcJw7dw7R0dGIjY1FREQEsrKyFO1fCIGEhAQ888wzAIDHHnsML774oqJ9tFRjYyMeeughzJgxAwAQHx+PRYsWKd6Pq8cAaPq4+N5778Ubb7wBABgyZAhKS0sV76clPvroIwwbNgxLly7Fiy++iKioqCu+D76RqD7jLCgoQEVFBebPn48VK1ZAp9MBAIqKinD+/HmEhYWpGQKRWyspKcHZs2ev+D2wWq2oqqpCZGQk/P39ceDAARiNRmzduhUvvPCCojGcOHECO3bscKh7/fXXUV9fr2g/LXH06FHs2bPHoW7x4sWKzojdYQwAYMmSJQ4/16lTp7Bt2zbF+2mJxYsXOzz+97//jZ07d7ooGjeg3p7aQlRUVAiNRiMeeeQRERcX5/DcxIkTRVFRkXj55ZfF+++/L6tdg8Fg39mchcXdyvV2j/+1w4cPCwDi+++/d6ifNWuWiIyMvOL4L7/8UiQmJvJ3RcFx4BiwNFeuRdUZp7e3NwYOHIidO3di2bJl9vovvvgCPXr0wKBBg1rctsFggBACQggYDAaHxy0pAFp1vlptqdGeuxZ3vm7OtmUwGGS9joOCguDr64slS5agrKwMFy5cwLp167BmzRosWbLEftypU6cQExODkSNHIi4ursW/K82Vuro6DBkyxOGciRMnuvz1IITAzz//jJCQEIdNnZ966ilFx8EdxkAIgfXr1wOA/UYkPz8/fPvtt27xe7B8+XKH2Pz9/fHf//7X5a8PpcrlOeR6rx/VbxUrKipCTU0NBgwYYK+zWCw4duwYRo0ahU2bNmHp0qU4dOiQ2qEQuR0fHx/s2rULFosFgYGBuO2227Bjxw5kZmY6/PIOGDAABw8ehNlsxvTp0xWNoVOnTvjss8/s3yO+/PLLSE9PV7SPlurcuTP27dtn//510aJF9puYlOIOYwAATz/9NP7+979j7NixAIBDhw6hX79+ivfTEjNnzsTf/vY3jBkzBgBw+PBh9OrVy8VRuY5GXPqTxEVeeeUVDB48GI8//rjT51z6f1GX/o/W5Y9bQqPRQKlLoWRbarTnrtz5ujnblhKvxcvV1tbC09MTQNOdlrGxsTh+/LhT58qNx51fa3JiU3oc2nIMAL4ftbXmcsq1xsvlS+698sorrg6ByK3l5uZi3rx50Ol0qK+vx8qVK10d0g2HY0C/5vLESdTRWK1WxVeL0Wq1EELAw8MDqampSE1NdToWSZIUjaW9UHocOAZ0CRMnkYLc7Q1SkiS3i6ktuNPPfKOOQUfGxEmkIO6A4R44DqQmLsBIREQkAxMnERGRDEycREREMjBxEhERycCbg4gUNHPmTFitVleH4UCSpBvuZhl3G4cbcQw6Ms44iRRktVplv2HX1dXBZDJdsU1TTU0NTCYTqqur2zSejkDuz80xIDlUnXHabDZ4e3sjIyMDw4YNs9ePHz8eAQEB9s1piToSSZJkLa+2e/duxMfHw2w2w8Pjl1/J7du3IykpCWaz2b64tlxKL8TQnsgZB44ByaFq4tRqtQgODkZ+fr49cZpMJphMJhQWFqrZNVG7YbFYIEmSwxs2AOTk5CAsLKzFb9jkPI4ByaH6qyE0NBT5+fkAmmagKSkpWLhwIfR6Pbp06YLY2FjExsZiw4YNaodC5JYsFgvCw8OvqM/JyWm2vr2orKxETU2Nq8NwSkcdg4aGBgBQbFH28vJyRdpp71RPnJIk2RNnWloaGhoaMG3aNABAQEAAjEYjjEYjnn76abVDIXJLzb1p22w25OXlITw8HOfOnUN0dDRiY2MRERGBrKwsF0XqnJ9//hlxcXHw8fFB165d8cILL7j9bhodbQwAYNOmTfD29gbQ9D783Xfftbitn376CUOHDoWfnx8AYPXq1YrE2F6pfldtaGgoCgoKUFFRgfnz52Pz5s3Q6XQAgLNnz8JgMECv12P58uUYOHCg2uEQuZWSkhKcPXsWYWFhDvVWqxVVVVWIjIyEv78/Dhw4AJ1Oh+LiYiQkJCA3N9dFEV/fwoUL8Y9//ANA00zn9ddfx1133YWEhAQXR9a8jjgGJ06cwOTJk+1/sBw/fhyTJ0/Gvn37WtTes88+67Bn8vTp0xEWFobIyEhF4m1vVJ9xhoSE4OLFi5g6dSqioqIcbhI6ffo0TCYTnn32WSQmJqodCpHbOXPmDADY/5K/ZMuWLYiMjETfvn2h0+nsf2yWlZUhJCSkzeOU48iRI9BoNA517nxXaUccg+PHj8Nms9kTp81mw5EjR1rcnsViueJTg6NHj7YqxnZNtIFBgwYJT09PUVxcfM1jnGUwGAQAFha3LAaDwenXcnl5ufD19RXJycmitLRUnD9/Xqxdu1Z06dJFGI1G+3HFxcVi6NChwt/fX2RkZPB3RcFx4BiwNFeupU0SZ3MqKytFQ0ODEEKI/Px8ER4e7vS5BoPB4Zfi8sctcb0L5aq21GjPXbnzdXO2rZa8Fg8cOCCio6NFt27dRM+ePcWIESOEyWRq9tiTJ0+K/v37O9223HiUuGalpaViyJAh9jegxx9/3P673hpyYpP7c7vTGAihzDi8+eabQqPRCAAiICBAFBQUtLit06dPi8GDB9vHdN68ea2Oz500l1OuxWUrB3311VeYNm2a/cvr9evXuyoUIpeKiYlBdnb2VZ+vra2Fp6cnAMDHxwdeXl5tFVqL+Pn5ITs7G0VFRQgKCsJ77713xUe37qajjQEAzJo1C4899hh69+6NwsJCdOnSpcVt9e/fH8ePH0dRURGCg4OxePFiBSNtf1yWOIcMGdKqz9yJbhS5ubmYN28edDod6uvrsXLlSleHdF0eHh647bbbAMDtk6Yz2uMYAECvXr0AoFVJ8xJPT0/ccccdrW6nI+BatURuLiYmBvv373d1GDc0jgH9GhMnkcKsVqvbLLNmtVohSZKrw3AJdxmHG3kMOiomTiIFudsbpCRJbhdTW3Cnn/lGHYOOjImTSEHcOso9cBxITVy5mIiISAYmTiIiIhmYOImIiGRg4iQiIpKBNwcREZHiZs6c6XaL+0uSpMiNY5xxEhGR4qxWq+zEWVdXB5PJhMrKSof6mpoamEwmVFdXt2k8V6PajNNms8Hb2xsZGRkOW4mNHz8eAQEBWLVqlVpdExGRG5AkCUaj0enjd+/ejfj4eJjNZnh4/JKetm/fjqSkJJjNZmi1LZvvKbkYhmqJU6vVIjg4GPn5+fbEaTKZYDKZUFhYqFa3RETUTlksFkiS5JA0ASAnJwdhYWEtTppKUzWK0NBQ5OfnA2iagaakpGDhwoXQ6/U4evQoRo0ahWHDhuHJJ59UMwwiImoHLBYLwsPDr6jPyclptt5VVE2ckiTZE2daWhoaGhowbdo01NXVYfbs2fjwww+xb98+pKWlqRkGERG1A80lTpvNhry8PISHh+PcuXOIjo5GbGwsIiIikJWV5ZI4Vb2rNjQ0FAUFBaioqMD8+fOxefNm6HQ6ZGdnw9vbG5MmTUJ5eTlmz56NMWPGqBkKERG5sZKSEpw9exZhYWEO9VarFVVVVYiMjIS/vz8OHDgAnU6H4uJiJCQkIDc3t81jVTVxhoSE4OLFi5g6dSqioqLs33WWlJQgLy8PVqsVQggMHToU9957L3x8fJxu22QyXbHPX2v3/VNy30Cl9yDsCHsaOsOdrxvHwPXt3ShjALj3dXO2PYPB4HSbZ86cAdC0EfqvbdmyBZGRkejbt69DfVlZGUJCQpxuH2g+b/yasz+XqonT29sbAwcOxM6dO/H111/b67t3747IyEj7BQoJCUFRURHuvvtup9s2GAz2u7Uu3S0l5+6ty2k0GgghWny+Wm2p0Z67cufrxjFwfXs3yhgA7n3dnG1P7l2sQUFB8PX1xZIlS7BgwQLYbDZs27YNa9aswZ49e+zHnTp1Ck888QROnDgh+2u+X+eN5mK9PKdcjeq3KBUVFaGmpgYDBgyw10VGRqKoqAj19fWoq6vD119/jf79+6sdChERuSkfHx/s2rULFosFgYGBuO2227Bjxw5kZmY6zFwHDBiAgwcPwmw2Y/r06S6J1SUrB/n6+mL27Nm47777UFdXh+TkZPTo0cMVoRARkZuIiYlBdnb2VZ+vra2Fp6cngKZE6+Xl1VahOXDZknsTJkzAhAkTXNU9ERG1M7m5uZg3bx50Oh3q6+uxcuVKl8TBtWqJiEgVVqtV0RV7gKbFdYQQ8PDwQGpqKlJTU52ORZIkRWJg4iQiIsUplaSUIkkSEycREbkvJXYhcVfusfAfERFRO8HESUREJAMTJxERkQxMnERERDLw5iAiIlLczJkzYbVaXR2GA0mSFLlpiTNOIiJSnNVqlZ046+rqYC554XgAACAASURBVDKZUFlZ6VBfU1MDk8mE6urqNo3nalSdcdpsNnh7eyMjI8O+MwoAjB8/HgEBAVi1apWa3RMRkQtJkiRr843du3cjPj4eZrMZHh6/pKft27cjKSkJZrMZWm3L5ntKLsSgauLUarUIDg5Gfn6+PXGaTCaYTCYUFhaq2TUREbUzFosFkiQ5JE0AyMnJQVhYWIuTptJU/44zNDQU+fn5AJpmoCkpKVi4cCEKCwsxZ84cAE3T8MLCQpw/f17tcIiIyE1ZLBaEh4dfUZ+Tk4OIiAgXRNQ81dO3JEn2xJmWloaGhgZMmzYNQ4YMgdFohNFoRHJyMhISEtQOhYiI3FhzidNmsyEvLw/h4eE4d+4coqOjERsbi4iICGRlZbkkzjaZcRYUFKCiogLz58/H5s2bodPpHI5577338PLLL6sdChERuamSkhKcPXsWYWFhDvVWqxVVVVWIjIyEv78/Dhw4AJ1Oh+LiYiQkJCA3N7fNY1U9cYaEhODixYuYOnUqoqKiHG4SAoCzZ8/i9OnTiIqKUjsUIiJyU2fOnAEA+Pn5OdRv2bIFkZGR6Nu3r0N9WVkZQkJC2iw+B6INDBo0SHh6eori4uIrnnvzzTfFK6+8Iqs9g8EgALCwsLCwuHExGAxOv6+Xl5cLX19fkZycLEpLS8X58+fF2rVrRZcuXYTRaLQfV1xcLIYOHSr8/f1FRkaGannjWjRCCAEXuuuuu/DRRx9h0KBBTp9z6bbiS7c5X/64JTQaDZS6FEq2pUZ77sqdrxvHwPXt3ShjALj3dXO2vZa8Lx88eBBz587F0aNH0bVrV0iShPnz5+Pee++94tji4mIMGzYMp0+fdqrta8XTXE65VtwuXTkoPz8fXbt2lZU0iYioY4qJiUF2dvZVn6+trYWnpycAwMfHB15eXm0VmgOXJs4777zzmheJiIjoktzcXMybNw86nQ719fVYuXKlS+LgWrVERNQuxMTEYP/+/a4Og4mTiIjUYbVaFV3qrjWsViskSVKkLSZOIiJSnFJJSimSJDFxEhGR+1Ji+y535R4r5hIREbUTTJxEREQyMHESERHJwMRJREQkA28OIiIixc2cORNWq9XVYTiQJEmRm5Y44yQiIsVZrVbZibOurg4mkwmVlZUO9TU1NTCZTKiurm7TeK5G1RmnzWaDt7c3MjIyHLYTGz9+PAICArBq1So1uyciIheSJEnWIu+7d+9GfHw8zGYzPDx+SU/bt29HUlISzGYztNqWzfeUXIhB1cSp1WoRHByM/Px8e+I0mUwwmUwoLCxUs2siImpnLBYLJElySJoAkJOTg7CwsBYnTaWpHkVoaCjy8/MBNM1AU1JSsHDhQvj5+WH69OmIiopCeHg4Nm3apHYoRETkxiwWC8LDw6+oz8nJabbeVVRPnJIk2RNnWloaGhoaMG3aNBQUFKCgoACHDh2C0WjESy+9pHYoRETkxppLnDabDXl5eQgPD8e5c+cQHR2N2NhYREREICsryyVxqn5XbWhoKAoKClBRUYH58+dj8+bN0Ol06NOnD2666SbU19ejsrIS3bt3VzsUIiJyUyUlJTh79izCwsIc6q1WK6qqqhAZGQl/f38cOHAAOp0OxcXFSEhIQG5ubpvHqnriDAkJwcWLFzF16lRERUXZv+vU6/UYNGgQbr31VlRXV2P9+vWy2jWZTNBoNA51lz+Wq7Xnq9WWGu25K3e+bhwD17d3o4wB4N7Xzdn2DAaD022eOXMGAODn5+dQv2XLFkRGRqJv374O9WVlZQgJCXG6faD5vPFrzv5cqidOb29vDBw4EDt37sTXX39tr//ss89QUlKCoqIilJeXIyYmBg8++KB9d+/rMRgM9ru1Lt0tJefurctpNBoIIVp8vlptqdGeu3Ln68YxcH17N8oYAO593ZxtT+5drEFBQfD19cWSJUuwYMEC2Gw2bNu2DWvWrMGePXvsx506dQpPPPEETpw4gbS0NFl9/DpvNBfr5TnlatpkAYSioqJm67t37w6dTgdvb2/U19ejsbGxLcIhIiI34+Pjg127dmHu3LkIDAxE165dIUkSMjMzce+999qPGzBgAA4ePIji4mIMGzYMY8aMafNYXbZy0PDhw7F161YMHToUdXV1ePbZZ9G1a1dXhUNERC4WExOD7Ozsqz5fW1tr/1TSx8cHXl5ebRWaA5clTp1Oh/T0dFd1T0RE7Uxubi7mzZsHnU6H+vp6rFy50iVxcK1aIiJShdVqVXTFHqBpYR0hBDw8PJCamorU1FSnY5EkSZEYmDiJiEhxSiUppUiSxMRJRETuS4ldSNyVeyz8R0RE1E4wcRIREcnAxElERCQDEycREZEMTJxEREQyMHESERHJ0CaJMzs7G/fffz98fHzg5+eH+Pj4tui2TVVWVmLt2rV4+OGHAQCvvPKKfbV/IiLqOFRPnB9//DHi4uLwzDPP4IcffsB3332Hp556Su1u29S+ffvQr18/PPPMM8jLywMALFy4ELfccgveeustF0dHRERKUjVxVldXY9q0adiwYQPGjx+Pzp07w9vbGyNHjgQAbNq0CVFRUYiKisK//vUvNUNRTUFBAcaOHYuAgAAcOnQIJ0+eBNC0I8zYsWPx3HPPYcuWLS6OkoiIlKLqykGXNg0dN27cFc+VlZXhzTffxOHDh1FVVYXhw4cjLy8PWm37+tp12bJl0Gg0+Pzzz9GrVy97/cCBA7Ft2zZERkZi4cKFmDhx4g21CS8RUUelapb66aefoNfrm00YZrMZBoMBnTt3hr+/P/r06YPTp0+rGY7iGhsbsXXrVkycONEhaV7SqVMnPPvsszhx4gQsFosLIiQiIqWpOuO8++67cerUKWRkZOB3v/sdKioqYDabMXLkSJw/fx56vd5+rF6vx/nz5zFw4ECn2r40m/211s7oWnr+O++8g3feeeeabQ0ZMqTFcTXXXkel9M+pZHscA9e3d6OMAeDe162jjoOzP5eqM87g4GC88847mD17Nnx8fBAUFIT9+/cDAHr06IHS0lL7sWVlZejRo4fTbRsMBgghIISAwWBweNySAkD2OY2NjejWrRsmT5581bY2bNgAAMjLy2vT2NpjUfrnVLI9joHr27tRxsDdr1tHHIfLc4jBYLhm/lH9C8XJkyfjxIkTqKqqwn//+18sXrwYABAREYEDBw6gtrYWFy5cQElJCW655Ra1w1GUVqvF448/jg8//BDffvvtFc/X1NRg1apVCA4OdrstdoiIqGVcdieOn58fZs6cidjYWPzud7/DsmXL2t2NQQAwa9Ys3HTTTRg2bBg+/fRT2Gw2AMDRo0cxduxYHD9+HAsXLuywH20QEd1oXLof56RJkzBp0iRXhtBq//u//4vPPvsMcXFxGDVqFHr27AmgadPUzp07491330VcXJyLoyQiIqW0vymeG4qIiMCpU6ewZcsWjB07FgCwfPlylJSUIDEx0cXRERGRkpg4FeLp6YmJEyfi3XffBQCkpKSge/fuLo6KiIiUxsRJREQkAxMnERGRDEycREREMjBxEhERycDESUREJAMTJxERkQwuXQCBlDVz5kxYrVZXh+FAkiSsWLHC1WEQESmGM84OxGq1yk6cdXV1MJlMqKysdKivqamByWRCdXW16vFcvHjRvu1aVVVVi/sjImoLbTLjzM7OxksvvYTc3FxotVqMGDEC27dvb4uubziSJMFoNDp9/O7duxEfHw+z2QwPj19eDtu3b0dSUhLMZnOL1xCOjY295vPV1dV4+eWXsXHjRvtOOX369MHkyZORmpoKPz+/FvVLRKQm1WecH3/8MeLi4vDMM8/ghx9+wHfffYennnpK7W7JSRaLBZIkOSRNAMjJyUFYWJhqC+9fvHgRI0aMwFtvvYURI0bgo48+AgA89NBDWLduHQwGA8rKylTpm4ioNVRNnNXV1Zg2bRo2bNiA8ePHo3PnzvD29sbIkSMBAMOHD0fPnj2xaNEiNcOga7BYLAgPD7+iPicnp9l6pbzxxhs4fPgwtm3bhg8//BDjx48HALz33nvYtWsXvvrqK7z88suq9U9E1FKqJk6TyQSNRoNx48Y1+3x6ejqWLl2qZgh0Hc0lTpvNhry8PISHh+PcuXOIjo5GbGwsIiIikJWV1eo+6+vrsX79eowePdqeMH9t5MiRiI+Px9///vdWfcdKRKQGVRPnTz/9BL1ef9W9KAMDA9Xsnq6jpKQEZ8+eRVhYmEO91WpFVVUVIiMj4e/vjwMHDsBoNGLr1q144YUXFOv3oYceuuoxcXFxKC8vR1FRUav7IyJSkqo3B9199904deoUMjIy8Lvf/Q4VFRUwm832j2pb49Js9tdau1m0kptNK71xtbPtGQwGp9s8c+YMAFxxE86WLVsQGRmJvn37OtSXlZUhJCTE6faB5sfpkqeffhpPP/20Q93lx0qSJKu/y7nzmLorV71227otd+fO162jjoOzP5eqM87g4GC88847mD17Nnx8fBAUFIT9+/cr0rbBYIAQAkIIGAwGh8ctKQBadb5abclpT07SBICgoCD4+vpiyZIlKCsrw4ULF7Bu3TqsWbMGS5YssR936tQpxMTEYOTIkbI35W5uXBoaGjBgwADExsZe9eccN24cevbsiZqaGrcYB6XH1F2Lq167HIP2c9064jhcnkOu916q+l21kydPxokTJ1BVVYX//ve/WLx4sdpdkpN8fHywa9cuWCwWBAYG4rbbbsOOHTuQmZnp8MIZMGAADh48CLPZjOnTp7e6X51Oh2eeeQZGoxFr1qy54vlNmzZh586dmDp1Kjw9PVvdHxGRkly6clBiYiLMZjNqa2thNpuRkZHhynBuSDExMcjOzr7q87W1tfbk5ePjAy8vL0X6nTFjBkwmE/70pz9h69atiI+PBwDcf//92LdvH2JjY/GXv/xFkb6IiJTk0sS5ceNGV3ZPTsjNzcW8efOg0+lQX1+PlStXKtJup06dsGPHDrz99ttYs2YNZsyYAQAoKirC4sWL8dxzz6Fz586K9EVEpCSuVdvBWK3W667YI5dWq4UQAh4eHkhNTUVqaqrTsVzr5p5OnTrhueeew8yZM3Hu3DkIIXDzzTdDp9MpFToRkeKYODuQ1t6BqjRJkpyKSavVonfv3m0QERFR6zFxdiDchYSISH3cHYWIiEgGJk4iIiIZmDiJiIhkYOIkov+PvfuPi6rM+8f/GqBEcwZGoDaju0xXo8WahSUQ0ZkEw8JCIm6lTWcb2dhIve0jrebuaqXtuvfW7m2taSw3sWVaa5grupFJDirKANKUmmuSWIAigSAyJSBe3z/6MnfIjM2Bc2ZGfD0fj+vx6Py6rndwZl6cmeO5iEgC3hw0iCxcuBBWq9XTZfSi0+l40xIRDSq84hxErFar5ODs7OxESUkJzp0712v9+fPnUVJSMqBpvfpTDxGRt3PLFWdpaSmWLVuGiooK+Pj4YOrUqdi0aZM7hr7q6HQ6mM1ml/ffvn070tLSYLFY4Of3f6fDpk2bMHfuXFgsFvj49O/vK7kfxPBDLl68iKKiIrz55ptobGwEAGzbtg333XcfH6pARLJR/IqzoKAAKSkpyMrKQmNjI2pra5GRkaH0sOSiyspK6HS6XqEJAOXl5YiMjOx3aLpbc3Mz4uLikJSUhI8++ggdHR0AgAceeACxsbH4+uuvPVwhEQ0Wir4r2mw2ZGZmIicnB6mpqfD394darUZiYiK++OILTJ48GZMmTUJcXBwqKyuVLIWcqKysRFRUVJ/15eXlDtd7IyEEHnroIVRVVeF///d/UVtbi7179wIA8vPz8emnnyI5Odk+JRIR0UAoGpw9kxgnJyf32RYYGIj33nsPe/bsQU5ODp566iklSyEnHAXnxYsXUVVVhaioKJw+fRqxsbEwGAyIjo5GcXGxhyp1bs+ePdi9ezf+/Oc/w2Qy4dprr7VvMxqNePnll7F//37s2rXLg1US0WChaHA2NTVBq9U6nFU7KCgIQUFBAIAhQ4bwOygPqK+vR0NDAyIjI3utt1qtaG9vR0xMDIKDg7Fnzx6YzWZs3LgRS5Ys8VC1zr399tsYPnw4fvGLXzjcPnv2bAQGBmLDhg3uLYyIBiehoIMHDwo/Pz+xdetW0d3dLVpaWkRRUVGvfS5cuCDuv/9+8f7777vcr16vFwDYHDS9Xu/yz7GsrEwAECdPnuy1ftGiRSImJqbP/gcOHBAmk4m/JzY2tkHfLkfRK87w8HDk5uYiOzsbGo0GYWFh2L17t327EAImkwnTp0/HtGnTJPWt1+shhIAQAnq9vtdyf1pPPXI0OfuS0p9er5f0MwwLC0NAQABWrVqF1tZWnDlzBuvWrcOrr76KVatW2ferqalBXFwcEhMTkZKS0u/fk1LtqaeewpAhQ9Dc3Ozw59ba2ophw4bhySef9Jrfqbc2T527/B1cOT+3wfh7uDRDfui9VPFbJo1GI44ePYr29nacOnUKL7zwgn3b/PnzMWbMGDzxxBNKl0EOaDQabNu2DZWVlQgNDcXtt9+OzZs3o6ioqNeJM2rUKOzduxcWiwXz5s3zYMWOGY1GdHR0OJ1k+69//Su++eYbPPbYY26ujIgGI489OchsNiMnJwexsbEoLi7GiBEjsHnzZk+Vc9WKi4tDaWmp0+0dHR0YMmQIgO+Cdvjw4e4qzWV33XUXZs6cieeffx6dnZ1YuHAhbrjhBgDA7373O7zwwgt46KGH+nyXS0TUHx4LToPBgM7OTk8NTy6qqKjA0qVL4evri66uLqdXdZ6Wn5+Pa665BqtWrcKf/vQn+41nK1euxKxZs5CXl+fhColosOCzaumy4uLien0v7a38/f3x5ptv4re//S3Wr1+PxsZG5OTk4MiRI7j99ts9XR4RDSIMzkHGarW6/VF3zlitVuh0OreOOW7cOKxYsQIA8Nprr7l1bCK6OjA4BxF3h9QP0el0XlcTEdFAMTgHEU7fRUSkvCvjCd5ERERegsFJREQkAYOTiIhIAgYnERGRBLw5aBBZuHAhrFarp8voRafT8aYlIhpUeMU5iFitVsnB2dnZiZKSEpw7d67X+vPnz6OkpAQ2m82t9Xib1tZWlJSUAADOnj3r4WqIyBu45YqztLQUy5YtQ0VFBXx8fDB16lRs2rTJHUNfdXQ6Hcxms8v7b9++HWlpabBYLPDz+7/TYdOmTZg7dy4sFgt8fPr395W3PIihP86cOYPFixfjrbfewrfffgsAGDlyJB599FH88Y9/RGBgoIcrJCJPUfyKs6CgACkpKcjKykJjYyNqa2uRkZGh9LDkosrKSuh0ul6hCQDl5eWIjIzsd2heyVpaWjBp0iS88cYbePTRR1FUVAQASE9Px+uvvw69Xs+rT6KrmKLvijabDZmZmcjJyUFqair8/f2hVquRmJiI06dPIzY2FgaDAdHR0SguLlayFHKisrISUVFRfdaXl5c7XH81eO655/D555/j/fffR05ODhITEwEAubm52LZtGw4fPoyVK1d6uEoi8hRFg7OkpAQqlQrJycl9tgUHB2PPnj0wm83YuHEjlixZomQp5ISj4Lx48SKqqqoQFRV11f2B88033yA/Px9paWmYMmVKn+333nsvZsyYgby8PHR0dHigQiLyNEWDs6mpCVqtFiqVqs82X19f+Pr6AvjuBow777xTyVLIgfr6ejQ0NPSZp9JqtaK9vR0xMTFX3R84NTU1OHv2LB544AGn+zzwwAM4c+YMvvrqKzdWRkReQyjo4MGDws/PT2zdulV0d3eLlpYWUVRUZN9+/PhxMXHiRBEcHCwKCwtd7lev1wsAbA6aXq93+edYVlYmAIiTJ0/2Wr9o0SIRExPTZ/8DBw4Ik8nE3xMbG9ugb5ejaHAKIUR+fr4YO3asuO6668SPfvQjsXTp0j77fPHFF+KWW25xuU+9Xt8rIC5d7o8f+kF5qi8p/Un9OZw9e1YEBASIBQsWiJaWFtHc3CzWrl0rhg4dKsxms32/gfyBM9Dfi7t1dXWJm266SUydOrXX+u//DvR6vRg1apS4cOGCu8tTnKfOXXf35e28+ec2GH8PjjLlchS/ZdJoNOLo0aNob2/HqVOn8MILLwBAr++HNBoNhg8frnQpdAmNRoNt27ahsrISoaGhuP3227F582YUFRVBr9fb9xs1ahT27t0Li8WCefPmebBi5fn5+SErKwsffvghXn311V7bhBBYvXo1SkpKkJWVZf+qgYiuLh57clBFRQWWLl0KX19fdHV1YfXq1Z4q5aoWFxeH0tJSp9s7OjowZMgQAFfPHzhPP/009u/fjyeffBJ///vfkZqaCgCIiorCgQMHMGPGDCxcuNDDVRKRp3gsOOPi4rB7925PDU8uuhr/wLnmmmvw3nvvYd26dVizZg0WL14MAPj222+xZs0aPP74433+3SsRXT346h9krFar7E/s8fHxgRACfn5+WLFiBVasWOFyLTqdTtZa3MXPzw/z5s3Dk08+iba2NqhUKqjVaod3iBPR1YXBOYh4W0jpdDqvq0kqlUqFgIAAT5dBRF6EwTmIcBYSIiLlXX0PIiUiIhoABicREZEEDE4iIiIJGJxEREQS8OagQWThwoWwWq2eLqMXnU7Hm5aIaFDhFecgYrVaJQdnZ2cnSkpKcO7cuV7rz58/j5KSEthsNrfWQ0Tk7dxyxVlaWoply5ahoqICPj4+mDp1KjZt2uSOoa86Op0OZrPZ5f23b9+OtLQ0WCyWXk/D2bRpE+bOnQuLxQIfn/79fSX3gxjoynD48GGsXbsWVVVVAIDly5fj8ccfx0033eThyojkofgVZ0FBAVJSUpCVlYXGxkbU1tYiIyND6WHJRZWVldDpdH0eIVdeXo7IyMh+hyZdfYQQePbZZxEeHo7c3Fz4+/sDAFasWIHbbrsN//jHPzxcIZE8FH1XtNlsyMzMRE5ODlJTU+Hv7w+1Wo3ExET7Ps3NzdBqtVi/fr2SpZATlZWViIqK6rO+vLzc4XoiZ/Ly8vDcc8/BaDSirq4OH330EQCguroa0dHR+PnPf46ysjIPV0k0cIoGZ0lJCVQqFZKTk53us3LlSsTFxSlZBl2Go+C8ePEiqqqqEBUVhdOnTyM2NhYGgwHR0dEoLi72UKXkzS5evIhVq1YhOjoaeXl5CA4Otm+77bbbsG3bNgQEBOCll17yYJVE8lD0O86mpiZotVqnD8aurq5Gc3MzIiMjlSyDnKivr0dDQ0Ofn7/VakV7eztiYmIQHByMPXv2wNfXF8ePH8fMmTNRUVHhoYrJW3388ceorq7G7373O4cf72s0GsyePRuvvPIKzp8/b/8Yl+iKpOCk2uLgwYPCz89PbN26VXR3d4uWlhZRVFRk356eni6qq6vF8uXLxZtvvulyv3q9XgBgc9B+aOby7ysrKxMAxMmTJ3utX7RokYiJiemz/4EDB4TJZOLviY2NbdC3y1H0o9qemwSys7Oh0WgQFhZmn4Nz3759CAoKwujRo/vVt16vhxACQgjo9fpey/1pAAZ0vFJ9SelPr9dL+hmGhYUhICAAq1atQmtrK86cOYN169bh1VdfxapVq+z71dTUIC4uDomJiUhJSen374nN+1t/z91///vfAICXXnrJaX+PPvoo1Go1urq63FrbldgGw/vRldQuzZAfei9V/J+jGI1GGI3GPusrKyvx6aefYtq0aaiursZ1112H0aNHY8KECUqXRP8/jUaDbdu2YfHixQgNDcWwYcOg0+lQVFSEyZMn2/cbNWoU9u7di+PHj2PKlCmYPn26B6smbzRu3DjExsbilVdewdy5c/tMxXbs2DFs2rQJGRkZnAScrngeO4MXLFiABQsWAACeffZZjBkzhqHpAXFxcSgtLXW6vaOjA0OGDAHwXdAOHz7cXaXRFeaFF17A1KlTcc8992DVqlVISEgAAGzYsAFPP/001Go1srOzPVwl0cB5xZ9+zz77rKdLICcqKiqwdOlS+Pr6oqurC6tXr/Z0SeSlDAYDtmzZgsceewyJiYn2G4B+/vOfY+zYsXj33Xdx6623erZIIhl4RXCS94qLi7N/L030Q5KSklBbW4uCggJ8/PHHePHFF/HBBx8gISGBD9OgQYPBOchYrVavedSd1WqFTqfzdBnkZkOGDMEjjzyCRx55BC+++CLuvfdeT5dEJCsG5yDibSGl0+m8riYiooFicA4inL6LiEh5/NKBiIhIAgYnERGRBAxOIiIiCRicREREEvDmICIadBYuXAir1erpMux0Oh1v3htEeMVJRIOO1WqVFJydnZ0oKSnBuXPneq0/f/48SkpKYLPZ3FLL8ePHsX37dgBAe3t7v8ckZbnlirO0tBTLli1DRUUFfHx8MHXqVGzatMkdQxPRVUqn08FsNru07/bt25GWlgaLxdLrIfSbNm3C3LlzYbFY+v3kI1ceSPLZZ5/hqaeewo4dO+zrRo4ciYyMDPz+97/n/KVeRvErzoKCAqSkpCArKwuNjY2ora1FRkaG0sMSEbmssrISOp2uz8wt5eXliIyMVPRxgYcOHcLEiRPx8ccf4/nnn0dZWRkA4MEHH8Rf/vIXPPjgg+js7FRsfJJO0StOm82GzMxM5ObmYsaMGQAAf39/JCYmAgCGDh2K6OhoAMAjjzyCxx9/XMlyiIgcqqysRFRUVJ/15eXl9vcopcybNw/XXnstysrKMGrUKPv69evXw2Aw4Je//CXefPNNzJ07V9E6yHWKXnGWlJRApVIhOTnZ4fabbroJZrMZZrOZoUlEHuMoOC9evIiqqipERUXh9OnTiI2NhcFgQHR0NIqLi2UZ98iRIygpKcGiRYt6hWaPuXPnIjw8HGvXrpVlPJKHosHZ1NQErVYLlUrlcHtDQwP0ej1mzJiB48ePK1kKEZFD9fX1aGhoQGRkZK/1VqsV7e3tiImJQXBwMPbs2QOz2YyNGzdiyZIlsox98OBBAMD999/vcLtKpUJSUhI+TNyKtQAAIABJREFU+eQTCCFkGZNkIBR08OBB4efnJ7Zu3Sq6u7tFS0uLKCoqsm//+uuvhRBC7Ny5U+j1epf71ev1AgAbGxub0+bqe0pZWZkAIE6ePNlr/aJFi0RMTEyf/Q8cOCBMJhPfrwZ5uxxFrzjDw8ORm5uL7OxsaDQahIWF9ZrbMTg4GAAQHx+Puro6SX3r9XoIISCEgF6v77XcnwZgQMcr1ZcS/bGxOWvefO5K6Uuv17v8XhIWFoaAgACsWrUKra2tOHPmDNatW4dXX30Vq1atsu9XU1ODuLg4JCYmIiUlpd/vV99vjY2NuPbaa/Hkk086/H89f/48rr/+ejz44INe8TtQoj9vaJdmyA+dP4r/cxSj0Qij0dhnfXt7O4YOHQpfX18cOnQII0aMULoUIqI+NBoNtm3bhsWLFyM0NBTDhg2DTqdDUVERJk+ebN9v1KhR2Lt3L44fP44pU6Zg+vTpAx47JCQEjzzyCF577TVMnTq11/0gXV1dePzxx9HY2Ij58+cPeCySj8eeHPTZZ58hMzMTarUaAPDaa695qhQiusrFxcWhtLTU6faOjg4MGTIEwHdBO3z4cNnG/p//+R8cPnwYM2bMwKRJk+z/6mDUqFGor6/H888/j4SEBNnGo4HzWHDefffd+Pjjjz01PBGRyyoqKrB06VL4+vqiq6sLq1evlq3vgIAA7Nq1C+vWrcPatWvx29/+FsB3X3X97W9/w3333SfbWCQPPquWiAYlq9Xq0lN7XOXj4wMhBPz8/LBixQqsWLHC5Tp0Ot1l97nuuuuwaNEiLFq0CB0dHfDz84Ovr68cZZMCGJxENOj8UFC5k06nk1RPz0fC5L0YnEQ06HAmElISZ0chIiKSgMFJREQkAYOTiIhIAgYnERGRBLw5iIgGnYULF8JqtXq6DDudTscblgYRXnES0aBjtVolBWdnZydKSkpw7ty5XuvPnz+PkpIS2Gw2t9VC3s8tV5ylpaVYtmwZKioq4OPjg6lTp2LTpk3uGJqIrlI6nQ5ms9mlfbdv3460tDRYLBb4+f3f2+KmTZswd+5cWCwW+Pj07zpDzocwuKqpqQl5eXl477334OPjgxkzZuCXv/wlpk2bxgcryEDxK86CggKkpKQgKysLjY2NqK2tRUZGhtLDEhG5rLKyEjqdrldoAkB5eTkiIyP7HZqesH//fowdOxaLFy+GEAIXL16ExWLB9OnTMX36dHz77beeLvGKp+jZYLPZkJmZiZycHKSmpsLf3x9qtdr+EONPPvkE06ZNw5QpU/DYY48pWQoRkVOVlZWIiorqs768vNzhem91+vRpJCUlISgoCFarFWVlZQCAr776Ci+//DI++OADPPnkkx6u8sqnaHCWlJRApVL1miqnR2dnJ7Kzs/HOO+/go48+wuuvv65kKURETjkKzosXL6KqqgpRUVE4ffo0YmNjYTAYEB0djeLiYg9Venl/+9vf0NLSgn/+85+466677OuvueYazJ8/H//1X/+FN954AydPnvRglVc+RYOzqakJWq0WKpWqz7aysjKo1WrMmTMHBoMB27ZtU7IUIiKH6uvr0dDQgMjIyF7rrVYr2tvbERMTg+DgYOzZswdmsxkbN27EkiVLPFTt5b377rvQ6/W44447HG7/1a9+he7ubmzZssXNlQ0yQkEHDx4Ufn5+YuvWraK7u1u0tLSIoqIiIYQQGzZsELfccotoaWkRZ86cEWFhYeLs2bMu9avX6wUANjY2NqdNr9e79H5SVlYmAIiTJ0/2Wr9o0SIRExPTZ/8DBw4Ik8nkUt/ufr/y9fX1+M99sLTLUfSKMzw8HLm5ucjOzoZGo0FYWBh2794NABgxYgRiYmIQGBgIrVaLO++8E9XV1S73rdfrIYSAEAJ6vb7Xcn8agAEdr1RfSvTHxuasefO5K6UvvV7v8ntJWFgYAgICsGrVKrS2tuLMmTNYt24dXn31Vaxatcq+X01NDeLi4pCYmIiUlBSX+7/0/UrJNmnSJPz4xz9Gd3e3w59bz0fMGzdu9Irfqbe0SzPkh84fxW8VMxqNOHr0KNrb23Hq1Cm88MILAICYmBhUV1ejq6sLnZ2dOHLkCG655RalyyEi6kWj0WDbtm2orKxEaGgobr/9dmzevBlFRUW93kBHjRqFvXv3wmKxYN68eR6s2LmMjAwcO3YM77zzTp9tFy5cwO9//3uMGDECM2bM8EB1g4fHnhwUEBCA7Oxs3HPPPejs7MSCBQsQFBTkqXKI6CoWFxeH0tJSp9s7Ojrs82RqNBoMHz7cXaVJ8vDDD+Ovf/0rjEYjjh07hscffxzAd/+W/vnnn0dxcTHWrVsHf39/D1d6ZfPoI/dmzZqFWbNmebIEIqIfVFFRgaVLl8LX1xddXV1YvXq1p0tyaMiQIXj//fdhNBqxfPlyLF++HMB3fxhoNBqsWbMGmZmZHq7yysdn1RIR/YC4uDj7/RneLjAwEP/85z9x9OhRbNmyBUuWLMHrr7+OtLQ0XHfddZ4ub1BgcBLRoGS1Wj3yuDtHdeh0OrePO27cOCxevBiLFy92+9iDHYOTiAYdTwSVMzqdzqvqoYFjcBLRoMMpvEhJV86Ti4mIiLwAg5OIiEgCBicREZEE/I6TiAadhQsXwmq1eroMO51Ox+9dBxFecRLRoGO1Wr0mOL2pFpIHrziJaFDS6XQwm80u7dvY2IgbbrgBVVVV+OlPf2pf/+WXX+LWW2/FZ599hrCwsH7V4Q3/llQOn3zyCf79738DAM6ePYuAgAAPV+Q5brniLC0tRXx8PDQaDQIDA5GWluaOYYmIXFJRUYGhQ4di/PjxvdaXl5dDrVZj3LhxHqrM8ywWC2JiYqDT6eyPSB05ciQWLFiA8+fPe7g6z1A8OAsKCpCSkoKsrCw0NjaitrYWGRkZSg9LROSyyspK6HQ6+Pn1/hCuvLwckZGR8PG5Or/V2r9/P+655x6cOnUKq1evxqFDhwAAM2fOxCuvvILk5GR0dXV5uEr3U/SjWpvNhszMTOTm5tqnsfH390diYiLKy8vx61//GgBw/vx5HDt2DM3NzUqWQ0TkUGVlJaKiovqsLy8vR3R0tAcq8jwhBLKysnDDDTegrKwMN9xwg31bXl4eYmJikJmZibfffhuzZ8/2YKXup+ifUSUlJVCpVEhOTu6z7e6774bZbIbZbMaCBQswc+ZMJUshInLKUXBevHgRVVVViIqKwunTpxEbGwuDwYDo6Gj7hNCDWUVFBaxWK5YsWdIrNHv88pe/xLhx47B27VoPVOdZil5xNjU1QavVQqVSXXa/N954wz79DRGRO9XX16OhoQGRkZG91lutVrS3tyMmJgbBwcHYs2cPfH19cfz4ccycORMVFRUeqtg9Dh8+DAC49957HW5XqVRITExEfn6+G6vyDooGZ0REBGpqalBYWIikpCS0tbXBYrEgMTHRvk9DQwNOnDiBCRMmSOq752r2+34ooH/IQI9Xqi8l+iNyxpvPXSl96fV6l/arq6sD8N10XN+3YcMGxMTE4Oabb+61vrW1FXfeeafLdQCO36+uFLfddlufdXK/93oLV/8/FP2oNjw8HLm5ucjOzoZGo0FYWFifOe3eeustpKenS+5br9dDCAEhBPR6fa/l/jQAAzpeqb6U6I+NzVnz5nNXSl+uhiYAhIWFISAgAKtWrUJrayvOnDmDdevW4dVXX8WqVavs+9XU1CAuLg6JiYlISUnp9/vVldJOnjwJPz8//L//9/8c/h7a2tqgVqsxe/Zsj9c60HZphvzQ+aP4v+M0Go0wGo1Ot69fvx7vvvuu0mUQETmk0Wiwbds2LF68GKGhoRg2bBh0Oh2KioowefJk+36jRo3C3r17cfz4cUyZMgXTp0/3YNXKu/HGGzFz5ky8/PLLiIuL6/XHgs1mw89//nO0t7dj3rx5HqzSMzz6AISDBw9i2LBhGD16tCfLIKKrXFxcHEpLS51u7+jowJAhQwB8F7TDhw93V2ketWbNGhw7dgwPPfQQ7r77biQkJAAAbr75ZrS2tmLNmjW4++67PVyl+3n0HyeNHz/+sicrEZE3qKiowOTJk3HPPfdgxowZWL16tadLcouAgADs2rULL7/8Mtrb2/HHP/4RwHc3DO3duxdPPPGEhyv0DD5yj4gGJavVKuvj7nx8fCCEgJ+fH1asWIEVK1a4XIdOp5OtDncbNmwY5s+fj/nz50MIMWhuBBoIBicRDTreFFQ6nc6r6hkIhuZ3GJxENOhwCi9S0tX5AEYiIqJ+YnASERFJwOAkIiKSgMFJREQkAW8OIqJBZ+HChbBarZ4uw06n0/GGpUGEV5xENOhYrVZJwdnZ2YmSkhKcO3eu1/rz58+jpKQENpvNbbWQ93PLFWdpaSmWLVuGiooK+Pj4YOrUqdi0aZM7hiaiq5ROp4PZbHZp3+3btyMtLQ0WiwV+fv/3trhp0ybMnTsXFosFPj79u86Q8yEM5B0Uv+IsKChASkoKsrKy0NjYiNraWmRkZCg9LBGRyyorK6HT6XqFJgCUl5cjMjKy36FJg5OiZ4PNZkNmZiZycnKQmpoKf39/qNVqJCYmQgiBefPmYcKECYiKisL69euVLIWIyKnKykpERUX1WV9eXu5wPV3dFA3Onslbk5OT+2w7fPgwDh8+jP3798NsNmPZsmVKlkJE5JSj4Lx48SKqqqoQFRWF06dPIzY2FgaDAdHR0SguLvZQpeQNFP2Os6mpCVqt1uHzDUeOHIlrr70WXV1dOHfuHEaMGKFkKUREDtXX16OhoQGRkZG91lutVrS3tyMmJgbBwcHYs2cPfH19cfz4ccycORMVFRUeqpg8TdHgjIiIQE1NDQoLC5GUlIS2tjZYLBYkJiZCq9Vi9OjRGDt2LGw2G1577TVJffdczX7fQB9ALOcDjOV+GDIfrkzu4s3nrpS+9Hq9S/vV1dUBAAIDA3ut37BhA2JiYnDzzTf3Wt/a2oo777zT5ToAx+9X5H1c/R0pGpzh4eHIzc1FdnY20tPToVarYTKZkJiYiB07dqC+vh7V1dU4e/Ys4uLicP/999sni/0her3efsdcz11rrt5B54hKpYIQot/HK9WXEv0ROePN566UvqTcyRoWFoaAgACsWrUKzz33HC5evIh//OMfePXVV/H+++/b96upqcHs2bNx9OhRvP7665Jq//77FXmfSzPkh84fxf85itFohNFodLhtxIgR8PX1hVqtRldXF7q7u5Uuh4ioF41Gg23btmHx4sUIDQ3FsGHDoNPpUFRUhMmTJ9v3GzVqFPbu3Yvjx49jypQpmD59ugerJk/y2JODEhISsHHjRkycOBGdnZ2YP38+hg0b5qlyiOgqFhcXh9LSUqfbOzo67J+GaTQaDB8+3F2lkRfyWHD6+voiPz/fU8MTEbmsoqICS5cuha+vL7q6urB69WpPl0QexGfVEhH9gLi4OOzevdvTZZCXYHAS0aBktVq94nF3VqsVOp3O02WQjBicRDToeFNQ6XQ6r6qHBo7BSUSDDqfwIiXxycVEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIArcEZ2lpKeLj46HRaBAYGIi0tDR3DEtERCQ7xYOzoKAAKSkpyMrKQmNjI2pra5GRkaH0sERERIpQNDhtNhsyMzORk5OD1NRU+Pv7Q61WIzExEQCwfPlyxMbGwmAw4NChQ0qWQkREJAtFnxzUM+t5cnJyn21WqxXl5eXYt28fTpw4gblz56K4uFjJcoiIiAZM0SvOpqYmaLVaqFSqPts+//xzREZGAgBuvfVWHDlyBBcuXFCyHCIiooETCjp48KDw8/MTW7duFd3d3aKlpUUUFRUJIYQ4dOiQiI2NFR0dHeLAgQNCpVKJr7/+2qV+9Xq9AMDGxsbGxqZIuxxFP6oNDw9Hbm4usrOzkZ6eDrVaDZPJhMTERPzkJz9Beno6EhISMHbsWIwfPx5BQUEu963X62E2mwHAPnVQz3J/qFQqCCH6fbxSfSnRH5Ez3nzu8nVASrk0Q35oOjrFZ0cxGo0wGo0Ot82bNw/z5s3DoUOH8Kc//cnhR7pERETexKPTit177724cOECgoODsWbNGk+WQkRE5BKPBueOHTs8OTwREZFkfOQeERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQSyBmdpaSni4+Oh0WgQGBiItLQ0ObsnIiLyONmCs6CgACkpKcjKykJjYyNqa2uRkZEhV/dEREReQZbgtNlsyMzMRE5ODlJTU+Hv7w+1Wo3ExEQAQEJCAkJCQrBy5Ur7MevXr8eECRMwYcIE7Nq1S44yiIiIFCfLQ95LSkqgUqmQnJzscHt+fj527tyJuro6AEBraytefPFFlJWVob29HQkJCaiqqoKPD79yJSIi7yZLUjU1NUGr1TqdTzM0NLTXssVigV6vh7+/P4KDgzFy5EicOHFCjlKIiIgUJcsVZ0REBGpqalBYWIikpCS0tbXBYrHYP6q9VHNzM7RarX1Zq9WiubkZt912m8tj9lzlft9AJ8KWcyJtuSfl5iTf5C7efO7ydUBKcvX8kiU4w8PDkZubi+zsbKSnp0OtVsNkMjkNzqCgILS0tNiXW1tbERQUJGlMvV4Ps9kMADAYDABgX+4PlUoFIUS/j1eqLyX6I3LGm89dvg5IKZdmSM+yM7JNZG00GmE0Gl3aNzo6Gs888ww6Ojpgs9lQX1+PW2+9Va5SiIiIFCNbcF6OyWSCxWJBR0cHLBYLCgsLsXDhQnuqv/TSS7wxiIiIrghuCc68vLw+6+bMmYM5c+a4Y3giIiLZ8DKPiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQSyB2dpaSni4+Oh0WgQGBiItLQ0uYcgIiLyGFmDs6CgACkpKcjKykJjYyNqa2uRkZEh5xBEREQeJVtw2mw2ZGZmIicnB6mpqfD394darbbPyZmQkICQkBCsXLnSfoyjdURERN5MttlRSkpKoFKpkJyc7HB7fn4+du7cibq6usuuIyIi8mayXXE2NTVBq9VCpVI53B4aGurSOiIiIm8m2xVnREQEampqUFhYiKSkJLS1tcFisdg/qpVbzxXu9zkLbVcN9Hil+lKiPyJnvPnc5euAlOTq+SVbcIaHhyM3NxfZ2dlIT0+HWq2GyWRSLDj1ej3MZjMAwGAwAIB9uT9UKhWEEAMvTOa+lOiPyBlvPnf5OiClXJohPcvOyBacAGA0GmE0GuXskoiIyKvIGpyXYzKZYLFY0NHRAYvFgsLCQofriIiIvJnbgjMvL8+ldURERN6Mj9wjIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikkD24CwtLUV8fDw0Gg0CAwORlpYm9xBEREQeI2twFhQUICUlBVlZWWhsbERtbS0yMjLkHIKIiMijZAtOm82GzMxM5OTkIDU1Ff7+/lCr1fZpxRISEhASEoKVK1cCAL744gtMnjwZkyZNQlxcHCorK+UqhYiISDGyPeS9Z2Lp5ORkh9vz8/Oxc+dO1NXVAQACAwPx3nvvISgoCJ999hkyMzOxZ88eucohIiJShGzB2dTUBK1W63QG7dDQ0F7LQUFB9v8eMmQIfH195SqFiIhIMbIFZ0REBGpqalBYWIikpCS0tbXBYrHYP6p1pru7GwsWLMCSJUskjddzhft9zkLbVQM9Xqm+lOiPyBlvPnf5OiAluXp+yRac4eHhyM3NRXZ2NtLT06FWq2EymS4bnEIImEwmTJ8+HdOmTZM0nl6vh9lsBgAYDAYAsC/3h0qlghCi38cr1ZcS/RE5483nLl8HpJRLM6Rn2RlZJ7I2Go0wGo0u7z9//nyMGTMGTzzxhJxlEBERKUbW4Lwck8kEi8WCjo4OWCwWLFq0CDk5OYiNjUVxcTFGjBiBzZs3u6scIiKifnFbcObl5fVZ19nZ6a7hiYiIZMFH7hEREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSQNbgLC0tRXx8PDQaDQIDA5GWliZn90RERB4nW3AWFBQgJSUFWVlZaGxsRG1tLTIyMuTqnoiIyCvIEpw2mw2ZmZnIyclBamoq/P39oVar7XNxJiQkICQkBCtXrgQAnD59GrGxsTAYDIiOjkZxcbEcZRARESlOltlRSkpKoFKpkJyc7HB7fn4+du7cibq6OgBAcHAw9uzZA19fXxw/fhwzZ85ERUWFHKUQEREpSpbgbGpqglarhUqlcrg9NDS017Kvr6/9v1tbW3HnnXfKUQYREZHiZAnOiIgI1NTUoLCwEElJSWhra4PFYrF/VOtITU0NZs+ejaNHj+L111+XPGbPVe73OQtuVw30eKX6UqI/Ime8+dzl64CU5Or5JUtwhoeHIzc3F9nZ2UhPT4darYbJZLpscI4aNQp79+7F8ePHMWXKFEyfPl3SmHq9HmazGQBgMBgAwL7cHyqVCkKIfh+vVF9K9EfkjDefu3wdkFIuzZCeZWdkCU4AMBqNMBqNLu3b0dGBIUOGAAA0Gg2GDx8uVxlERESKki04L8dkMsFisaCjowMWiwWLFy/G0qVL4evri66uLqxevdodZRAREQ2YW4IzLy+vz7rdu3e7Y2giIiJZ8ZF7REREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJAGDk4iISAIGJxERkQQMTiIiIgkYnERERBLIGpylpaWIj4+HRqNBYGAg0tLS5OyeiIjI42QLzoKCAqSkpCArKwuNjY2ora1FRkaGXN0TERF5BVmC02azITMzEzk5OUhNTYW/vz/UarV9WrGEhASEhIRg5cqVvY5rbm6GVqvF+vXr5SiDiIhIcbI85L1nUunk5GSH2/Pz87Fz507U1dX1Wr9y5UrExcXJUQIREZFbyHLF2dTUBK1W63T27NDQ0D7rqqur0dzcjMjISDlKICIicgtZrjgjIiJQU1ODwsJCJCUloa2tDRaLxf5RrSPLli3DihUr8Oabb/ZrzJ6r3O9zFtyuGujxSvWlRH9EznjzucvXASnJ1fNLluAMDw9Hbm4usrOzkZ6eDrVaDZPJ5DQ49+3bh6CgIIwePbrfY+r1epjNZgCAwWAAAPtyf6hUKggh+n28Un0p0R+RM9587vJ1QEq5NEN6lp2RbSJro9EIo9Ho0r6VlZX49NNPMW3aNFRXV+O6667D6NGjMWHCBLnKISIiUoRswXk5JpMJFosFHR0dsFgsKCwsxIIFCwAAzz77LMaMGcPQJCKiK4JbgjMvL8/ptmeffdYdJRAREcmCj9wjIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikoDBSUREJIGswVlaWor4+HhoNBoEBgYiLS1Nzu6JiIg8TrbgLCgoQEpKCrKystDY2Ija2lpkZGTI1T0REZFXkCU4bTYbMjMzkZOTg9TUVPj7+0OtVtvn40xISEBISAhWrlxpP2bo0KEwGAwwGAzIycmRowwiIiLFyTI7SklJCVQqFZKTkx1uz8/Px86dO1FXV2dfd9NNNw1o4mkiIiJPkOWKs6mpCVqtFiqVyuH20NDQPusaGhqg1+sxY8YMHD9+XI4yiIiIFCfLFWdERARqampQWFiIpKQktLW1wWKx2D+qdeTEiRMIDg5GcXExTCaT5KvPnqvc73MW3K4a6PFK9aVEf0TOePO5y9cBKcnV80uW4AwPD0dubi6ys7ORnp4OtVoNk8l02eAMDg4GAMTHxyMzM1PymHq93h62BoMBAAb00a9KpYIQot/HK9WXEv0ROePN5y5fB6SUSzOkZ9kZWYITAIxGI4xGo0v7tre3Y+jQofD19cWhQ4cwYsQIucogIiJSlGzBeTkmkwkWiwUdHR2wWCz43e9+h8zMTKjVagDAa6+95o4yiIiIBswtwZmXl9dn3ccff+yOoYmIiGTFR+4RERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERSSBrcJaWliI+Ph4ajQaBgYFIS0uTs3siIiKPky04CwoKkJKSgqysLDQ2NqK2thYZGRlydU9EROQVZAlOm82GzMxM5OTkIDU1Ff7+/lCr1fZpxRISEhASEoKVK1faj/nkk08wbdo0TJkyBY899pgcZRARESlOloe890wqnZyc7HB7fn4+du7cibq6OgBAZ2cnsrOz8e677yIgIECOEoiIiNxClivOpqYmaLVap7Nnh4aG9louKyuDWq3GnDlzYDAYsG3bNjnKICIiUpwsV5wRERGoqalBYWEhkpKS0NbWBovFYv+o9lL19fWoqqqC1WqFEAITJ07E5MmTodFoXB6z5yr3+5wFt6sGerxSfSnRH5Ez3nzu8nVASnL1/JIlOMPDw5Gbm4vs7Gykp6dDrVbDZDI5Dc4RI0YgJiYGgYGBAIA777wT1dXViIiIcHlMvV4Ps9kMADAYDABgX+4PlUoFIUS/j1eqLyX6I3LGm89dvg5IKZdmSM+yM7JNZG00GmE0Gl3aNyYmBr/5zW/Q1dUFIQSOHDmCW265Ra5SiIiIFCNbcF6OyWSCxWJBR0cHLBYLCgsLkZ2djXvuuQednZ1YsGABgoKC3FEKERHRgLglOPPy8vqsmzVrFmbNmuWO4YmIiGTDR+4RERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCRicREREEjA4iYiIJGBwEhERScDgJCIikkDW4CwtLUV8fDw0Gg0CAwORlpYmZ/dEREQeJ1twFhQUICUlBVlZWWhsbERtbS0yMjLk6p6IiMgryBKcNptGj5EgAAAgAElEQVQNmZmZyMnJQWpqKvz9/aFWq+3zcSYkJCAkJAQrV64EAJSXl8NgMMBgMCAmJoYzoxAR0RVDltlRSkpKoFKpkJyc7HB7fn4+du7cibq6OgDA3XffbZ8wdMOGDdi7d68cZRARESlOlivOpqYmaLVaqFQqh9tDQ0OdHvvGG29g9uzZcpRBRESkOFmuOCMiIlBTU4PCwkIkJSWhra0NFovF/lGtMw0NDThx4gQmTJggecyeq9zvcxbcrhro8Ur1pUR/RM5487nL1wEpydXzS5bgDA8PR25uLrKzs5Geng61Wg2TyfSDwfnWW28hPT29X2Pq9Xr7x70GgwEA7Mv9oVKpIITo9/FK9aVEf0TOePO5y9cBKeXSDOlZdkaW4AQAo9EIo9Eo6Zj169fj3XfflasEIiIixckWnJdjMplgsVjQ0dEBi8WCwsJCHDx4EMOGDcPo0aPdUQIREZEs3BKceXl5fdaNHz8epaWl7hieiIhINnzkHhERkQQMTiIiIgkYnERERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEsgZnaWkp4uPjodFoEBgYiLS0NDm7JyIi8jjZgrOgoAApKSnIyspCY2MjamtrkZGRIVf3REREXkGW4LTZbMjMzEROTg5SU1Ph7+8PtVptn1YsISEBISEhWLlyJQBACIF58+ZhwoQJiIqKwvr16+Uog4iISHGyPOS9Z1Lp5ORkh9vz8/Oxc+dO1NXVAQAOHz6Mw4cPY//+/bDZbBg/fjweffRROUohIiJSlCxXnE1NTdBqtU5nzw4NDe21PHLkSFx77bXo6urCuXPnMGLECDnKICIiUpwsV5wRERGoqalBYWEhkpKS0NbWBovFYv+o9lJarRajR4/G2LFjYbPZ8Nprr0kes+cq9/ucBberBnq8Un0p0R+RM9587vJ1QEpy9fySJTjDw8ORm5uL7OxspKenQ61Ww2QyOQ3OHTt2oL6+HtXV1Th79izi4uJw//33Y8iQIS6PqdfrYTabAQAGgwEA7Mv9oVKpIITo9/FK9aVEf0TOePO5y9cBKeXSDOlZdka2iayNRiOMRqPL+48YMQK+vr5Qq9Xo6upCd3e3XKUQEREpRrbgvByTyQSLxYKOjg5YLBZs2bIFGzduxMSJE9HZ2Yn58+dj2LBh7iiFiIhoQNwSnHl5eX3W5efnu2NoIiIiWfGRe0RERBIwOImIiCRgcBIREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSyBqcpaWliI+Ph0ajQWBgINLS0uTsnoiIyONkC86CggKkpKQgKysLjY2NqK2tRUZGhlzdExEReQVZgtNmsyEzMxM5OTlITU2Fv78/1Gq1fVqxhIQEhISEYOXKlfZjli9fjtjYWBgMBhw6dEiOMoiIiBQny0PeeyaVTk5Odrg9Pz8fO3fuRF1dHQDAarWivLwc+/btw4kTJzB37lwUFxfLUQoREZGiZLnibGpqglardTp7dmhoaK/lzz//HJGRkQCAW2+9FUeOHMGFCxfkKIWIiEhRsgRnREQEampqUFhYiIsXL6K1tRUffPCB0/1/8pOfYNeuXejs7ERVVRUaGhrQ2toqRylERESKkuWj2vDwcOTm5iI7Oxvp6elQq9UwmUz27zgv9ZOf/ATp6elISEjA2LFjMX78eAQFBUkas+fj4e9zdsXrqoEer1RfSvRH5Iw3n7t8HZCSXD2/ZJvI2mg0wmg0urz/vHnzMG/ePBw6dAh/+tOfJL8g9Ho9zGYzAMBgMACAfbk/VCoVhBD9Pl6pvpToj8gZbz53+TogpVyaIT3LzsgWnJdjMplgsVjQ0dEBi8WCwsJC3Hvvvbhw4QKCg4OxZs0ad5RBREQ0YG4Jzry8vD7rduzY4Y6hiYiIZMVH7hEREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSQNbgLC0tRXx8PDQaDQIDA5GWliZn90RERB4nW3AWFBQgJSUFWVlZaGxsRG1tLTIyMuTqnoiIyCvIEpw2mw2ZmZnIyclBamoq/P39oVarkZiYiC+++AKTJ0/GpEmTEBcXh8rKSgDA+vXrMWHCBEyYMAG7du2SowwiIiLFyTI7Ss+k0snJyX22BQYG4r333kNQUBA+++wzZGZmorCwEC+++CLKysrQ3t6OhIQEVFVVwceHX7kSEZF3kyWpmpqaoNVqHU5GHRQUhKCgIADAkCFD4OvrC4vFAr1eD39/fwQHB2PkyJE4ceKEHKUQEREpSpYrzoiICNTU1KCwsBBJSUloa2uDxWJBYmKifZ/u7m4sWLAAS5YsQXNzM7RarX2bVqtFc3MzbrvtNpfH7LnK/T5HwS3FQI9Xqi8l+iNyxpvPXb4OSEmunl+yBGd4eDhyc3ORnZ2N9PR0qNVqmEwme3AKIWAymTB9+nRMmzYNH3zwAVpaWuzHt7a22q9KXaXX62E2mwEABoMBAOzL/aFSqSCE6PfxSvWlRH9EznjzucvXASnl0gzpWXZGluAEAKPRCKPR6HDb/PnzMWbMGDzxxBMAgOjoaDzzzDPo6OiAzWZDfX09br31VrlKISIiUoxswemM2WxGTk4OYmNjUVxcjBEjRmDz5s1YuHChPdVfeukl3hhERERXBMWD02AwoLOzs8/6OXPmYM6cOUoPT0REJCte5hEREUnA4CQiIpKAwUlERCQBg5OIiEgCBicREZEEDE4iIiIJGJxEREQSMDiJiIgkYHASERFJoHhwvv3229DpdFCr1bj99tuxZcsWpYckIiJSjKLBmZOTg2eeeQZ/+9vfcO7cOfzlL39Beno6vvrqKyWHJSIiUoxiwXnu3Dk888wzyMvLQ1RUFADgvvvuQ0hICCorK7F+/XpMmDABEyZMwK5du5Qqg4iISFaKPeT9o48+gq+vL+655x77OiEEmpqa4OPjgxdffBFlZWVob29HQkICqqqqOEMKERF5PcWSqq2tDVqttte6wsJCDB06FCqVCnq9Hv7+/ggODsbIkSNx4sQJpUohIiKSjWLBGR0djRMnTmD37t3o7u7GRx99hF/96ld46aWXYLPZeoWqVqtFc3OzUqUQERHJRrGPaseOHYvc3Fw89thjaGhowNixY/Hyyy/j4YcfxgcffICWlhb7vq2trQgKCpLUf0lJCVQqVa91ly5LNdDjlepLif6InPHmc5evA1KSq+eXSgghFK6lj9bWVkyZMgX79++HzWbDlClTJH3HaTAYAABms9nhcn+oVCrI9aOQsy8l+iNyxpvPXb4OSCmOMuVyeaLYFeflBAYGYuHChfZiX3rpJd4YREREVwSPBCcAzJkzB3PmzPHU8ERERP3CyzwiIiIJGJxEREQSMDiJiIgkYHASERFJwOAkIiKSgMFJREQkAYOTiIhIAgYnERGRBAxOIiIiCa764GxtbcW///1vT5fh0JkzZ3DkyBFPl0FXiYaGBgDwypmKTp48CQC9Jocg8hRFg/PixYuYM2cObrnlFgwfPhxjxozB22+/reSQLjt8+DBmzZqFkJAQhIWFAQAmTpyIrVu3ergy4JNPPsHDDz+M66+/HnfccQeA7x46XFRU5OHKaDD68MMPMWXKFNx4440AgOuvvx4PPfQQqqqqPFwZsH37dkyaNAk33XQTgO9q+8///E8cPHjQw5XR1UzR4Dx79izuu+8+fPrpp2hra8NTTz2FX/ziF+js7FRy2B9UUVGBCRMmoKioCPPmzcOGDRsAAI2NjUhOTsYrr7zisdr27NmD2NhY7Nq1C0899ZS9ti+//BL33XcfcnNzPVYbDT5///vfkZiYiC+++AIrVqwAADz99NPYvXs34uLisGvXLo/VtnbtWkyfPh0nT57EH/7wBwDAggULsHPnTsTGxmL//v0eq42ucsKNzp07JwCIM2fOiDfffFPExMSImJgY8dFHH0nqR6/XC71e73T5crq7u8Xo0aPFqFGjxFdffWVfD0B0dHSIGTNmCJVKJY4ePSqpJiGEqK6uFgsWLBAAxK5duyQf39nZKUaOHCnGjRsnTp061au2b775RkybNk34+vqKL7/8UnLfRJeqr68X11xzjUhISBA2m00I8d25JoQQp0+fFnfccYe4/vrrxfnz5yX3XVJSIjIzMwUA8fnnn0s+vrq6Wvj4+Ijp06fbx++prb6+XowZM0b8x3/8h7hw4YLkvoku5ShTLkfR4NyxY4eYNm2auOmmm4RGoxHDhw8XN954o2hpaRF33XWX+Pbbb8XXX38t7rrrLtHd3e1yvwMJzu3btwsA4p133um1vudFeerUKXHNNdeIhQsXulyPEEJ8+eWXQqvVCpVKJQAIHx8f8a9//UtSH//4xz8EAFFYWOiwthMnTgiVSiV+85vfSOqXyJHly5cLlUolqqur7eu+/7d0UVGRACA2bNggqd8PP/xQ+Pj4CB8fHwFABAQEiC+++EJSH08//bTw9fUVdXV1DmsrKCgQAMSWLVsk9UvkiNTgVOyj2vLycsyaNQsLFizA559/jrNnz2Lx4sX42c9+BovFAr1eD39/fwQHB2PkyJE4ceKEUqX0sm/fPvj4+GDGjBkOt//oRz/CpEmTsG/fPkn9vvXWW2hpaek10e6aNWsk1zZs2DDcd999DrffcsstuPvuuyXXRuTIvn37EBERgdGjRzvcPnXqVGg0GsnnW895f/HiRQDffWWzfv16ybXFxsbav9u81IMPPohrr72WH9eSZyiV4OvWrROjR48Wra2t4vz58+L1118Xw4YNE88995x46623xPLly+37PvLII6K8vNzlvvV6vQDAxsbGxsamSLscxa44Z86ciTFjxmDkyJG444470NLSAq1Wi5/97GcICgrqdVt5a2srgoKCJPWv1+shvvuoGXq9vtfy5dq2bdsAAJs2beq1HgCEEDh9+jSuueYaLFiwwKX+elpNTQ0CAgKgUqng4+MDlUqFwsJCSX288847AL67k9BRbV9++SV8fHzwzDPPSOqXjc1RW7ZsGVQqFY4fP25f13OuCSGwY8cOAMD69esl9VtUVAQfHx/760CtVuPYsWOS+li0aBH8/PxQX1/vsLb33nsPALB582aP/xzZrvx2aYbo9frLB5DwgJaWFvHTn/5UnD9/XjQ3N7v1O84LFy6IUaNGidGjR4v6+nr7egCis7NTPPzwwwKAOHLkiMv19Dh69KjIysoSJpNJfPjhh5KP7+joEDfeeKMICwsTp0+f7lXb+fPnRVJSkvDx8RE1NTWS+ya6VG1trfDz8xOJiYnim2++EUII+1/aX3/9tRg/frwICQnp181BxcXFYu7cueKJJ57o12vp2LFjQqVSieTkZNHR0dGrtlOnTomxY8eKm2++WXR1dUnum+hSXnVz0OX8/e9/t99Vu3PnTknHDiQ4hRBi//79Yvjw4UKr1Yrs7Gz7TTnjxo0TAMSf//xnSfXIadeuXWLo0KEiODhYLFmyxF7b6NGjBQCxdu1aj9VGg09ubq4AIEaNGiX+8Ic/CABi6dKl4vrrrxdDhgzp1x+Acnn55ZcFAPHjH/9Y/Pd//7cAIH7961+LoKAgMWzYMLFnzx6P1UaDyxUTnAMx0OAUQohPPvlEpKamCl9fX/tn2nfffbcoKCiQt9h+OHDggEhOTrbflQhATJw4sc/dtkRy+Ne//iUmTZpkP9dUKpV44IEHJN13oJQtW7aICRMm2Gvz8fERKSkp4uOPP/Z0aTSISA1OlRBCSPpy0QsYDAYAgNlsdrgsRXNzM06ePImAgAD8x3/8hzwFyuTrr79GQ0MDAgMDcfPNN3u6HBrk6uvrcebMGdxwww24/vrrPV1OL7W1tWhtbcWNN96I4OBgT5dDg4yjTLlcnvgpX5J3CwoKknxjkruEhIQgJCTE02XQVeKmm25y+s8/PO3mm2/mH4/kNa76h7wTERFJweCk/4+9+4+Oqr7zP/6amSoCweTyY01iahSydm35kUoUiNSZIrVEPd1aVpNsa5LG40k9G6eM5exYSitiTuNZNQue6lZqIVbUuPWYdWO70QDNiL8S0GAGpAYEdKHSCsokRJlJMvf7B4fZb/jlXHIvE/D5OOeew+eTuZ/POwnJK5/J5PMBAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYIGjwRmPx1VWVqbc3FylpaUpLy9PDQ0NTk4JAICjHA3OSCSioqIidXZ2qru7W4FAQBUVFYrFYk5OCwCAYxwNTsMwVFpaqvT0dLndbpWXlysajaq3t1dz587VhAkTVFNT42QJAADYytHgbGlpUVFRkXJycpSenq6srCxlZWXJMAzV19fr/vvvd3J6AABs51hwtre3q6SkRH6/X11dXYpEIgoGgyooKJAk5eTkODU1AACOcWyT946ODhmGocLCQnk8HtXX16u2tlbBYNCW8UOhkFwu16C+o9sAACQr2QxxLDiLi4vV2Nio7OxsZWZmqrq6WoZhJFacQ+X1em05VgwA8MV2oqMqT8Sx4MzIyFBzc/OgvkAg4NR0AACcFik7j7OyslJtbW2KRqNqa2tTU1NTqkoBACBpKQvOlStXpmpqAABOGVvuAQBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFjgdnPB5XWVmZcnNzlZaWpry8PDU0NDg9LQAAjnA8OCORiIqKitTZ2anu7m4FAgFVVFQoFos5PTUAALZzPDgNw1BpaanS09PldrtVXl6uaDSqcDisq6++Wt/4xjc0e/Zsbdy40elSAAAYMsdPR2lpaVFdXZ3C4bB6enoUj8eVlZWliy++WI2NjRo3bpzeeecdVVVVaf369U6XAwDAkDganO3t7SopKdHq1avl9Xo1atQo1dTUqL29XePGjUs8bsSIEfJ4PE6WAgCALRwNzo6ODhmGocLCQnk8HtXX16u2tlbBYDDxmIGBAfn9ft11112Wxg6FQnK5XIP6jm4DAJCsZDPE0eAsLi5WY2OjsrOzlZmZqerqahmGoYKCAkmSaZqqrKzUDTfcoHnz5lka2+v1qrW1VZLk8/kkKdEGACBZR2fIkfaJOBqcGRkZam5uHtQXCAQS/77jjjuUl5en22+/3ckyAACwTco2QGhtbdWKFSu0du1a+Xw+fe9730tVKQAAJM3xV9WeiM/n4285AQBnHLbcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAkeDMx6Pq6ysTLm5uUpLS1NeXp4aGhqcnBIAAEc5GpyRSERFRUXq7OxUd3e3AoGAKioq2GoPAHDGcjQ4DcNQaWmp0tPT5Xa7VV5ermg0qk8++USFhYXy+XyaMWOG1q5d62QZAADYxtFN3ltaWlRXV6dwOKyenh7F43FlZWVp/PjxWr9+vTwej3bs2KHi4mJt2LDByVIAALCFYyvO9vZ2lZSUyO/3q6urS5FIRMFgUAUFBfJ4PPJ4PJKkAwcOaOrUqU6VAQCArRxbcXZ0dMgwDBUWFsrj8ai+vl61tbUKBoOSpJ07d+qWW27Ru+++q1WrVlkePxQKyeVyDeo7ug0AQLKSzRDHgrO4uFiNjY3Kzs5WZmamqqurZRiGCgoKJEmXXHKJXnnlFe3YsUNz5szRDTfcYGl8r9er1tZWSYfP9pSUaAMAkKyjM+RI+0QcC86MjAw1NzcP6gsEApKkaDSqESNGSJLOP/98paWlOVUGAAC2cvTFQSeyYcMGLVq0SB6PR319fVq+fHkqygAAwLKUBOfs2bP18ssvp2JqAACGhC33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACR4MzHo+rrKxMubm5SktLU15enhoaGpycEgAARzkanJFIREVFRers7FR3d7cCgYAqKioUi8WcnBYAAMc4GpyGYai0tFTp6elyu90qLy9XNBpVb2+vJGn//v0yDEOrV692sgwAAGzjaHC2tLSoqKhIOTk5Sk9PV1ZWlrKysmQYhiSppqZGs2fPdrIEAABs5Vhwtre3q6SkRH6/X11dXYpEIgoGgyooKJAkbd++Xfv379f06dOdKgEAANs5dh5nR0eHDMNQYWGhPB6P6uvrVVtbq2AwKEn6xS9+oXvvvVdPPPHEKY0fCoXkcrkG9R3dBgAgWclmiGPBWVxcrMbGRmVnZyszM1PV1dUyDEMFBQV67bXXNG7cOE2aNOmUx/d6vWptbZUk+Xw+SUq0AQBI1tEZcqR9Io4FZ0ZGhpqbmwf1BQIBSdJDDz2kzs5OzZs3T9u3b9fo0aM1adIkzZo1y6lyAACwhWPBeTJ+v19+v1+StGTJEuXl5RGaAIAzQkqC8/+3ZMmSVJcAAEDS2HIPAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA3OeDyusrIy5ebmKi0tTXl5eWpoaHBySgAAHOVocEYiERUVFamzs1Pd3d0KBAKqqKhQLBZzcloAABzjaHAahqHS0lKlp6fL7XarvLxc0WhUvb29GjlypHw+n3w+n1asWOFkGQAA2MbRTd5bWlpUV1encDisnp4exeNxZWVlyTAMXXjhhZyfCQA44zi24mxvb1dJSYn8fr+6uroUiUQUDAZVUFAgSdq7d6+8Xq+++93vaseOHU6VAQCAvUyH/PrXvzYnTZpkHjhwwDx06JC5atUqc9SoUeY999xjmqZpfvTRR6ZpmuaaNWtMr9draWyv12tK4uLi4uLicuQ6Gceeqi0uLlZjY6Oys7OVmZmp6upqGYaRWHGOHz9eknTNNdeoqqrK8vherzfxVK/P55MknvoFAFh2dIYcaZ+IY8GZkZGh5ubmQX2BQECSdPDgQY0cOVIej0ebN2/W2LFjnSoDAABbOfrioBN55513VFVVpTFjxkiSHn300VSUAQCAZSkJziuvvFIdHR2pmBoAgCFhyz0AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsMDR4IzH4yorK1Nubq7S0tKUl5enhoYGJ6cEAMBRjgZnJBJRUVGROjs71d3drUAgoIqKCsViMSenBQDAMY4Gp2EYKi0tVXp6utxut8rLyxWNRtXb26u3335b8+bN05w5c/TDH/7QyTIAALCNo6ejtLS0qK6uTuFwWD09PYrH48rKytLo0aO1cOFCPfvss0pPT3eyBAAAbOXYirO9vV0lJSXy+/3q6upSJBJRMBhUQUGB3njjDY0ZM0ZlZWXy+Xx64YUXnCoDAABbObbi7OjokGEYKiwslMfjUX19vWpraxUMBrVnzx699dZb2rRpk0zT1FVXXaWrr75a559/ftLjh0IhuVyuQX1HtwEASFayGeJYcBYXF6uxsVHZ2dnKzMxUdXW1DMNQQUGBPB6PZs6cqYyMDEnS1KlTtX37dl1++eVJj+/1etXa2ipJ8vl8kpRoAwCQrKMz5Ej7RBwLzoyMDDU3Nw/qCwQCkg6/2vZnP/uZ+vr6ZJqmtm7dqtzcXKdKAQDANo6+OOhE0tPTtXDhQn3zm99ULBaT3+/XuHHjUlEKAACWpCQ4JamkpEQlJSWpmh4AgFPClnsAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFjgaHDG43GVlZUpNzdXaWlpysvLU0NDg5NTAgDgKEeDMxKJqKioSJ2dneru7lYgEFBFRYVisZiT0wIA4BhHg9MwDJWWlio9PV1ut1vl5eWKRqPq6OiQz+eTz+fTzJkz2eAdAHDGcHST95aWFtXV1SkcDqunp0fxeFxZWVmaMWNG4tyzp556Sq+88oqTZQAAYBvHVpzt7e0qKSmR3+9XV1eXIpGIgsGgCgoKBj3ud7/7nW655RanygAAwFaOrTg7OjpkGIYKCwvl8XhUX1+v2tpaBYPBxGP27t2rXbt2adasWZbHD4VCcrlcg/qObgMAkKxkM8Sx4CwuLlZjY6Oys7OVmZmp6upqGYYxaMX55JNPqrS09JTG93q9iad7fT6fJCXaAAAk6+gMOdI+EceCMyMjQ83NzYP6AoHAoPbq1av17LPPOlUCAAC2S9kGCOFwWKNGjdKkSZNSVQIAAJalLDinTJmiV199NVXTAwBwSthyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAscDQ44/G4ysrKlJubq7S0NOXl5amhocHJKQEAcJSjwRmJRFRUVKTOzk51d3crEAiooqJCsVjMyWkBAHCMo8FpGIZKS0uVnp4ut9ut8vJyRaNR9fb2qrq6WrNmzdIVV1yh1atXO1kGAAC2cew8TklqaWlRXV2dwuGwenp6FI/HlZWVpT179mjLli16/fXX1dvbqylTpugHP/iBk6UAAGALx1ac7e3tKikpkd/vV1dXlyKRiILBoAoKCpSdna1zzz1XfX196unp0dixY50qAwAAWzm24uzo6JBhGCosLJTH41F9fb1qa2sVDAZlGIYmTZqkSy+9VL29vXr00Uctjx8KheRyuQb1Hd0GACBZyWaIY8FZXFysxsZGZWdnKzMzU9XV1TIMQwUFBXrppZe0Z88ebd++XZFIRLNnz9Z1112nESNGJD2+1+tVa2urJMnn80lSog0AQLKOzpAj7RNxLDgzMjLU3Nw8qC8QCEiSXnzxRY0dO1Yej0djxoxRX1+fBgYGnCoFAADbpGQDhLlz58o0TV111VUqLCzUHXfcoVGjRqWiFAAALHH0VbUncuR3ngAAnGnYcg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACgq3FhbgAACAASURBVBMAAAscDc54PK6ysjLl5uYqLS1NeXl5amhocHJKAAAc5WhwRiIRFRUVqbOzU93d3QoEAqqoqFAsFnNyWgAAHONocBqGodLSUqWnp8vtdqu8vFzRaFS9vb26++67VVhYKJ/Pp82bNztZBgAAtnE0OFtaWlRUVKScnBylp6crKytLWVlZev/999Xe3q7XXntN9fX1+vGPf+xkGQAA2Max4Gxvb1dJSYn8fr+6uroUiUQUDAZVUFCgrq4uTZ8+XZJ08cUXa+vWrerv73eqFAAAbOPYsWIdHR0yDEOFhYWJY8Rqa2sVDAb1ta99TcuXL1csFtPmzZu1d+9eHThwQOPHj096/FAoJJfLNajv6DYAAMlKNkMcC87i4mI1NjYqOztbmZmZqq6ulmEYKigo0Ne+9jWVlpZq7ty5uvTSSzVlyhSNGzfO0vher1etra2SJJ/PJ0mJNgAAyTo6Q460T8Sx4MzIyFBzc/OgvkAgkPh3dXW1qqurtXnzZt1///2sFgEAZwTHgvPzXHvtterv79f48eP18MMPp6oMAAAsSVlwvvTSS6maGgCAU8aWewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBggS3BGY/HVVZWptzcXKWlpSkvL08NDQ12DA0AwLBiS3BGIhEVFRWps7NT3d3dCgQCqqioUCwWs2N4AACGDVuC0zAMlZaWKj09XW63W+Xl5YpGo+rt7dXcuXM1YcIE1dTUDLpn9erVmjVrlmbNmqU//elPdpQBAIDjbDkdpaWlRXV1dQqHw+rp6VE8HldWVpYMw1B9fb3WrFmj3bt3Jx5/4MABPfDAA3rjjTd08OBBzZ07V2+99Zbcbn7lCgAY3oacVO3t7SopKZHf71dXV5cikYiCwaAKCgokSTk5Ocfc09bWJq/Xq/POO0/jx49Xdna2du3aNdRSAABw3JBXnB0dHTIMQ4WFhfJ4PKqvr1dtba2CweAJ79m/f78Mw0i0DcPQ/v37NXHixKTnDYVCcrlcg/qObgMAkKxkM2TIwVlcXKzGxkZlZ2crMzNT1dXVMgwjseI8nnHjxumTTz5JtA8cOKBx48ZZmtfr9aq1tVWS5PP5JCnRBgAgWUdnyJH2iQw5ODMyMtTc3DyoLxAInPSeGTNm6Kc//WniBUR79uzRxRdfPNRSAABwnC0vDjqZyspKtbW1KRqNqq2tTU1NTcrIyNCCBQsSqf7ggw/ywiAAwBnB8eBcuXLlcfvLyspUVlbm9PQAANiKZR4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABbYFpzxeFxlZWXKzc1VWlqa8vLy1NDQYNfwAAAMC7YFZyQSUVFRkTo7O9Xd3a1AIKCKigrFYjG7pgAAIOVsC07DMFRaWqr09HS53W6Vl5cnTj+ZO3euJkyYoJqamkH3nKgfAIDhyrZN3ltaWlRXV6dwOKyenh7F43FlZWXJMAzV19drzZo12r1796B7TtQPAMBwZcuKs729XSUlJfL7/erq6lIkElEwGEwcZp2Tk3Pc+07UDwDAcGXLirOjo0OGYaiwsFAej0f19fWqra1VMBi0Y/jjCoVCcrlcg/qObgMAkKxkM8SW4CwuLlZjY6Oys7OVmZmp6upqGYaRWHE6wev1qrW1VZISB2IfaQMAkKyjM+RI+0RsCc6MjAw1NzcP6gsEAnYMDQDAsGLbi4NOprKyUm1tbYpGo2pra1NTU9NJ+wEAGK5OS3CuXLnSUj8AAMMVW+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAW2BWc8HldZWZlyc3OVlpamvLw8NTQ02DU8AADDgm3BGYlEVFRUpM7OTnV3dysQCKiiokKxWMyuKQAASDnbgtMwDJWWlio9PV1ut1vl5eWKRqPq7e3V3LlzNWHCBNXU1CQe/9577+nqq6/WN77xDc2ePVsbN260qxQAABxj2+koLS0tqqurUzgcVk9Pj+LxuLKysmQYhurr67VmzRrt3r078fiMjAw1NjZq3Lhxeuedd1RVVaX169fbVQ4AAI6wJTjb29tVUlKi1atXy+v1atSoUaqpqVF7e7skKScn55h7xo0bl/j3iBEj5PF47CgFAABH2RKcHR0dMgxDhYWF8ng8qq+vV21trYLB4OfeOzAwIL/fr7vuusvSnKFQSC6Xa1Df0W0AAJKVbIbYEpzFxcVqbGxUdna2MjMzVV1dLcMwVFBQcNL7TNNUZWWlbrjhBs2bN8/SnF6vV62trZIkn88nSYk2AADJOjpDjrRPxJbgzMjIUHNz86C+QCDwuffdcccdysvL0+23325HGQAAOM62FwedTGVlpdra2hSNRtXW1qampia1trZqxYoVKiws1Nq1azV27Fg999xzp6McAABO2WkJzpUrVx7T5/P5+BtPAMAZhy33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwLbgjMfjKisrU25urtLS0pSXl6eGhga7hgcAYFiwLTgjkYiKiorU2dmp7u5uBQIBVVRUsK0eAOCsYltwGoah0tJSpaeny+12q7y8XNFoVL29vZo7d64mTJigmpqaxOP/+te/qrCwUD6fTzNmzNDatWvtKgUAAMfYtsl7S0uL6urqFA6H1dPTo3g8rqysLBmGofr6eq1Zs0a7d+9OPH78+PFav369PB6PduzYoeLiYm3YsMGucgAAcIQtK8729naVlJTI7/erq6tLkUhEwWAwcZB1Tk7OMfd4PB55PB5J0oEDBzR16lQ7SgEAwFG2rDg7OjpkGIYKCwvl8XhUX1+v2tpaBYPBk963c+dO3XLLLXr33Xe1atUqS3OGQiG5XK5BfUe3AQBIVrIZYktwFhcXq7GxUdnZ2crMzFR1dbUMw0isOE/kkksu0SuvvKIdO3Zozpw5uuGGG5Ke0+v1qrW1VdLhsz0lJdoAACTr6Aw50j4RW4IzIyNDzc3Ng/oCgcBJ74lGoxoxYoQk6fzzz1daWpodpQAA4CjbXhx0MpWVlWpra1M0GlVbW5uampq0YcMGLVq0SB6PR319fVq+fPnpKAUAgCE5LcG5cuXKY/pmz56tl19++XRMDwCAbdhyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU44/G4ysrKlJubq7S0NOXl5amhocGOoQEAGFZsCc5IJKKioiJ1dnaqu7tbgUBAFRUVisVidgwPAMCwYUtwGoah0tJSpaeny+12q7y8XNFoVL29vZo7d64mTJigmpqaY+7bv3+/DMPQ6tWr7SgDAADH2RKcLS0tKioqUk5OjtLT05WVlaWsrCwZhqH6+nrdf//9x72vpqZGs2fPtqMEAABOiyEHZ3t7u0pKSuT3+9XV1aVIJKJgMKiCggJJUk5OznHv2759u/bv36/p06cPtQQAAE6bIZ/H2dHRIcMwVFhYKI/Ho/r6etXW1ioYDJ70vl/84he699579cQTT5zSvKFQSC6Xa1Df0W0AAJKVbIYMOTiLi4vV2Nio7OxsZWZmqrq6WoZhJFacx/Paa69p3LhxmjRp0inP6/V61draKkny+XySlGgDAJCsozPkSPtEhhycGRkZam5uHtQXCAROes/GjRvV2dmpefPmafv27Ro9erQmTZqkWbNmDbUcAAAcNeTg/DyVlZVqa2tTNBpVW1ubmpqa5Pf75ff7JUlLlixRXl4eoQkAOCM4HpwrV6486duXLFnidAkAANiGLfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALDAtuCMx+MqKytTbm6u0tLSlJeXp4aGBruGBwBgWLAtOCORiIqKitTZ2anu7m4FAgFVVFQoFovZNQUAAClnW3AahqHS0lKlp6fL7XarvLxc0WhUvb29mjt3riZMmKCamppB94wcOVI+n08+n08rVqywqxQAABxj2ybvLS0tqqurUzgcVk9Pj+LxuLKysmQYhurr67VmzRrt3r170D0XXnghZ2gCAM4otqw429vbVVJSIr/fr66uLkUiEQWDwcRh1jk5Oce9b+/evfJ6vfrud7+rHTt22FEKAACOsmXF2dHRIcMwVFhYKI/Ho/r6etXW1ioYDJ70vl27dmn8+PFau3atKisrLa0+Q6GQXC7XoL6j2wAAJCvZDLElOIuLi9XY2Kjs7GxlZmaqurpahmEkVpwnMn78eEnSNddco6qqKktzer3eRND6fD5J4mlfAIBlR2fIkfaJ2BKcGRkZam5uHtQXCAROes/Bgwc1cuRIeTwebd68WWPHjrWjFAAAHGXbi4NOprKyUm1tbYpGo2pra1NTU5PeeecdVVVVacyYMZKkRx999HSUAgDAkJyW4Fy5cuUxfVdeeaU6OjpOx/QAANiGLfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAJbgjMej6usrEy5ublKS0tTXl6eGhoa7BgaAIBhxZbgjEQiKioqUmdnp7q7uxUIBFRRUaFYLGbH8AAADBu2BKdhGCotLVV6errcbrfKy8sVjUbV29uruXPnasKECaqpqRl0z9tvv6158+Zpzpw5+uEPf2hHGQAAOM6W01FaWlpUV1encDisnp4exeNxZWVlyTAM1dfXa82aNdq9e3fi8bFYTAsXLtSzzz6r9PR0O0oAAOC0GPKKs729XSUlJfL7/erq6lIkElEwGFRBQYEkKScn55h73njjDY0ZM0ZlZWXy+Xx64YUXhloGAACnxZBXnB0dHTIMQ4WFhfJ4PKqvr1dtba2CweAJ79mzZ4/eeustbdq0SaZp6qqrrtLVV1+t888/P+l5Q6GQXC7XoL6j2wAAJCvZDBlycBYXF6uxsVHZ2dnKzMxUdXW1DMNIrDiPZ+zYsZo5c6YyMjIkSVOnTtX27dt1+eWXJz2v1+tVa2urJMnn80lSog0AQLKOzpAj7RMZcnBmZGSoubl5UF8gEDjpPTNnztTPfvYz9fX1yTRNbd26Vbm5uUMtBQAAx9ny4qCTqaysVFtbm6LRqNra2tTU1KT09HQtXLhQ3/zmNxWLxeT3+zVu3DinSwEAYMgcD86VK1cet7+kpEQlJSVOTw8AgK3Ycg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAtsC854PK6ysjLl5uYqLS1NeXl5amhosGt4AACGBduCMxKJqKioSJ2dneru7lYgEFBFRYVisZhdUwAAkHK2BadhGCotLVV6errcbrfKy8sVjUbV29uruXPnasKECaqpqUk8vr29XT6fTz6fTzNnzmSTdwDAGcG2Td5bWlpUV1encDisnp4exeNxZWVlyTAM1dfXa82aNdq9e3fi8VdeeWXi7LOnnnpKr7zyil2lAADgGFtWnO3t7SopKZHf71dXV5cikYiCwWDiMOucnJyT3v+73/1Ot9xyix2lAADgKFtWnB0dHTIMQ4WFhfJ4PKqvr1dtba2CweDn3rt3717t2rVLs2bNsjRnKBSSy+Ua1Hd0GwCAZCWbIbYEZ3FxsRobG5Wdna3MzExVV1fLMIzEivNknnzySZWWllqe0+v1Jp7q9fl8kpRoAwCQrKMz5Ej7RGwJzoyMDDU3Nw/qCwQCSd27evVqPfvss3aUAQCA42x7cdDJVFZWqq2tTdFoVG1tbWpqapIkhcNhjRo1SpMmTTodZQAAMGSnJThXrlx53P4pU6bo1VdfPR0lAABgC7bcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALbAvOeDyusrIy5ebmKi0tTXl5eWpoaLBreAAAhgXbgjMSiaioqEidnZ3q7u5WIBBQRUWFYrGYXVMAAJBytgWnYRgqLS1Venq63G63ysvLFY1G1dvbq7lz52rChAmqqalJPN40TVVXV2vWrFm64oortHr1artKAQDAMbadjtLS0qK6ujqFw2H19PQoHo8rKytLhmGovr5ea9as0e7duxOP37Jli7Zs2aLXX39dvb29mjJlin7wgx/YVQ4AAI6wZcXZ3t6ukpIS+f1+dXV1KRKJKBgMqqCgQJKUk5NzzD3Z2dk699xz1dfXp56eHo0dO9aOUgAAcJQtK86Ojg4ZhqHCwkJ5PB7V19ertrZWwWDwhPcYhqFJkybp0ksvVW9vrx599NGk58vPz9fy5cvlcrkG9R/dBgAgWclmiC3BWVxcrMbGRmVnZyszM1PV1dUyDCOx4jyel156SXv27NH27dsViUQ0e/ZsXXfddRoxYsTnzrds2TItW7bMjtIBALDEluDMyMhQc3PzoL5AIPC5940dO1Yej0djxoxRX1+fBgYG7CgHAADHuEzTNJ2epLKyUm1tbYpGo7rsssvU1NSkgYEB3Xrrrdq2bZtisZhuueUW+f1+p0sBAGBITktwAgBwtmDLPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAscC854PK7Ro0dr3bp1g/rnz58vv9/v1LQAADjqS04N7Ha7NXnyZIXDYc2ZM0eSFAqFFAqFtG3bNqemBQDAUY4+VTtt2jSFw2FJh1eggUBAS5culWEYWr16tWbNmqVZs2bpT3/6k5NlAMOGaZr67LPPUl3GaRGLxTQwMJDqMgDbORqc+fn5ieBctWqV+vv7VVVVpQMHDuiBBx7Qn/70JzU1NSkQCCgejztZCpBybW1t+vKXv6xRo0Zp4sSJ6uzsTHVJjohGo/r+97+v8847T+edd57uuecemaaZ6rIA2zi+4tyyZYu6u7u1ePFiLVu2TB6PR21tbfJ6vTrvvPM0fvx4ZWdna9euXU6WAqTUp59+quuvv14ffvihJOn999/Xddddd1b+wFhTU6OnnnpKpmmqv79fS5Ys0XPPPZfqsgDbOBqcU6dO1aeffqrbbrtNs2bNSvyuc//+/TIMI/E4wzC0f//+pMddsGCBFixYcMI2MNx88MEH2r9/fyIo4/G49uzZo48++ijFldlvw4YNcrlcg/o2btyYomoAB5gOmzRpkjlixAhzx44dib7m5mbT7/cn2tddd5353nvvJT2m1+s1JXFxcXFxcTlynYzLNE//Lx8OHDigOXPm6PXXX1dvb6/mzJmjt956S253cgtgn88nSWptbT1uGxiOGhoaVFZWpr6+Po0cOVK///3vdf3116e6LNvt379fc+fO1aZNmyRJ3/ve9/TMM8/oS19y7EX8wGmVkv/JGRkZWrBgQSLwHnzwwaRDEzhTlZSU6Jvf/KYyMzP1/vvva8KECakuyRHjxo1TW1ubtmzZossvv1zPPvvsMU/dAmeylKw4h4oVJ85kLpfrC/Mq0y/S+4ovDpZ5AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZj8c1evRorVu3blD//Pnz5ff7nZwaAABHOLrJu9vt1uTJkxUOhxNncYZCIYVCIW3bts3JqQEAcITjT9VOmzZN4XBY0uEVaCAQ0NKlS2UYhubOnasJEyaopqbG6TKAs044HNZdd92lxYsXa+fOnakuxzGxWEzLli3TnXfeqWeeeYZN45Fyjh8rlp+fr8cff1yStGrVKvX396uqqkqSVF9frzVr1mj37t1OlwGcVd58801dddVVikajkqSHH35Yb731li655JIUV2avgYEBfec739GLL76YOGmlq6tLP//5z1NdGr7ATsuKc8uWLeru7tbixYu1bNkyeTweSVJOTo7T0wNnpeXLl6uvry/RPnDggFasWJHCipzx9ttv68UXX5SkxErzl7/8JatOpJTj53H29PQoPT1dN910k/r6+vTcc88Nent9fb12796txYsXJz2mz+dTKBSyu1QAACTppD+cOf5U7ZgxYzRx4kQ9//zz2rp1q23jer1eDrLGGcmOw51feuklzZs3Ty6XS/F4XOeee65ef/11XX755TZVaY+hvq/RaFQzZsxQZ2dnYpzbbrvtrFxd48xxWv6Oc/v27Tp06NBZ9/sXIFWuvfZa/fGPf9T8+fMlHX61+nALTTuMGDFC69atU3V1taTDT9M+8sgjKa4KX3SOP1V7MpWVlWpra1M0GtVll12mpqampO47eoXJihNnEjtWnE6OZyc7axvO7ye+WBx/qvZkVq5cmcrpAQCwjC33AACwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwNHgjMfjGj16tNatWzeof/78+fL7/U5ODQCAIxzdcs/tdmvy5MkKh8OaM2eOpMObUYdCIW3bts3JqQEAcMRpOcg6HA5LOrwCDQQCWrp0qT7++GNdffXV+sY3vqHZs2dr48aNTpcC4CQGBga0b98+xePxVJfiuEgkos8++yzVZeAM5Xhw5ufnJ4Jz1apV6u/vV1VVlTIyMtTY2Kj169drxYoVCgQCTpcC4ARaWlo0btw4TZgwQRdffLE6OztTXZIjenp69O1vf1sZGRkaPXq0lixZkuqScAY6LSvOLVu2qLu7W4sXL9ayZcvk8Xg0btw4jRs3TtLhM/c8Ho/TpQA4jo8//lg33nijenp6JEl79uzRP/7jP56VR3gtWrRIL730kiTJNE3dc889SR9nCBzheHBOnTpVn376qW677TbNmjUr8bvOIwYGBuT3+3XXXXc5XQqA49i5c6d6e3sTT9HG43Ht2rVLBw8eTHFl9tu0aVNSfcDJnJaDrPPy8rR7925t3bpVl1xySaLfNE1VVFRo5syZuv3225Mez+fzKRQKOVEqAAAnfcbltATniVRXV+uCCy7Qz3/+c0v3+Xw+SVJra+tx28Bw5nK5bH0a1I7xnnnmGZWVlSkWiykjI0NNTU2aPXv2sKjNzrH27duna6+9Vh0dHZKkqqoq/cd//IdcLpcdJeILImXB2draqmuvvVaFhYWSpLFjx+q5555L6l6CE2ey4RickvTJJ59o7Nix6unpUVpamg2VDb/glKS+vj7t2LFD//AP/3BW/h4XznP07zhPxufzKRaLpWp6AEcxDEOSbAvN4eqcc87RV77ylVSXgTMYW+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAWOBmc8Htfo0aO1bt26Qf3z58+X3+93cmoAABzh6F61brdbkydPVjgcTpzDGQqFFAqFtG3bNienBgDAEY4/VTtt2jSFw2FJh1eggUBAS5cuVSwWU2FhoXw+n2bMmKG1a9c6XQqQUn19faqrq5MkPfzwwxoYGEhxRRiqgwcPaunSpfrRj36k1atXc9rKF4Tjp6Pk5+fr8ccflyStWrVK/f39qqqqkiStX79eHo9HO3bsUHFxsTZs2OB0OUBKmKapkpKSxNF51dXV6ujo0GOPPZbiynCqYrGYrrnmGrW3t8vtduvRRx/Vrl27tHjx4lSXBoedlhXnli1b1N3drcWLF2vZsmXyeDyJS5IOHDigqVOnOl0KkDIffPDBMefN/va3v1V3d3eKKsJQvf7662pvb5d0+Nk0SXrggQdSWRJOF9Nh3d3dpsvlMm+++WbzxhtvHPS2HTt2mFdddZU5fvx4s6mpKekxvV6vKYmLi4uLi8uR62Rcpun8k/J5eXnavXu3tm7dqksuueSYt+/YsUNz5szRrl27khrP5/NJklpbW4/bBoabeDyu66+/Xs3NzYm+4uJiNTQ0DHlsl8tl2+/W7BzL7vGGW22fffaZZs6cqc7OzkRfMBjUfffdZ0d5GMZOy99xbt++XYcOHRoUmtFoNPHv888//6w/dR5fbG63W88995yWLFkiSaqtrdUTTzyR2qIwJCNHjlRra6sWLlwoSXrkkUdUW1ub4qpwOpyWFefxvPLKK1q0aJE8Ho/6+vp0zz336JprrknqXlacOJMNt5WTU2PZPd4XqTYMb46/qvZEZs+erZdffjlV0wMAcErYcg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAscC854PK7Ro0dr3bp1g/rnz58vv9/v1LQAADjKsS333G63Jk+erHA4rDlz5kiSQqGQQqGQtm3b5tS0AAA4ytGnaqdNm6ZwOCzp8Ao0EAho6dKlMgxDkrR//34ZhqHVq1c7WQZwVjJNU3v37k11GbBRPB7Xnj17dODAgVSXgpNwNDjz8/MTwblq1Sr19/erqqoq8faamhrNnj3byRKAs9KhQ4f0ne98R1lZWZKkW2+9VfF4PMVVYSj27dunWbNmKScnR4ZhJI6gw/Dj+Ipzy5Yt6u7u1uLFi7Vs2TJ5PB5Jh8/o3L9/v6ZPn+5kCcBZ6Ze//KVeeOGFRHvlypX6zW9+k8KKMFR33nmnNmzYkGjfc889evHFF1NYEU7E0eCcOnWqPv30U912222aNWtW4nedkvSLX/xCd999t5PTA2etLVu2yO3+vy9fl8ulLVu2pLAiDFU4HD7mTE8+p8OU6bBJkyaZI0aMMHfs2JHoe/XVV83q6mrTNE3z7rvvNp944glLY3q9XlMSFxcXFxeXI9fJOH6Q9fbt24/p27hxozo7OzVv3jxt375do0eP1qRJkzRr1qykx/V6rP7NwQAAIABJREFUvWptbZUk+Xw+SUq0geHM5XIds7Kw6rPPPtP8+fP1P//zP5Kk8vJy/fa3v038KiSVtTk13tle20cffaTrrrtOGzdulCQtXrxY9957rx3lwWYu087/iadgyZIlysvL0w9+8IOk7zk6KAlOnEns+oZtmqY+/PBDXXjhhYrH43K5XMOmNifG+yLUNjAwoL/85S+66KKLbH1fYS/HV5yfh1eOAafG5XIpOzs78W+c+Twej7785S+nugx8DrbcAwDAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALCE4AACwgOAEAsIDgBADAAoITAAALHA3OeDyu0aNHa926dYP658+fL7/f7+TUAAA4wtG9at1utyZPnqxwOJw4izMUCikUCmnbtm1OTg0AgCMcf6p22rRpCofDkg6vQAOBgJYuXSrDMDRy5Ej5fD75fD6tWLHC6VIAnMCnn36aOFj+3//93zUwMJDiijBU+/fv18KFC3XLLbdo1apVnLZiI8dPR8nPz9fjjz8uSVq1apX6+/tVVVUlSbrwwgs5CgxIsYGBAV1//fWJr8U777xTW7du5YfZM9jBgwd11VVX6d1335Xb7dbq1av14YcfatGiRaku7axwWlacW7ZsUXd3txYvXqxly5YlDtvdu3evvF6vvvvd72rHjh1OlwLgOP785z8f8wPsY489pmg0mpqCMGShUEjvvvuupMPP9EnSQw89lMqSzi6mw7q7u02Xy2XefPPN5o033jjobR999JFpmqa5Zs0a0+v1Jj2m1+s1JXFxcXFxcTlynYzLNJ1/4jsvL0+7d+/W1q1bdckll5zwMdu3b09qPJ/PJ0mJn5KPbgPDmcvlsvX3TUMdLx6P67rrrtOLL76Y6PuXf/kX/epXv0p5bU6NZfd4w622Tz/9VDNmzNDmzZsTfffff78WLlxoR3lfeKfl7zi3b9+uQ4cODQrNgwcPJl6AsHnzZo0dO/Z0lALgKG63W//1X/+l2tpaSdIjjzzC03pnuFGjRmn9+vVavHixJOnpp58mNG10Wlacx9Pe3q6qqiqNGTNGkrR8+XJ9/etfT+peVpw4kw231YlTY9k9HrWlfiwc5virak/kyiuvVEdHR6qmBwDglLDlHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGBByv6OE/ZbsGCBNm3alOoyBsnPz9eyZctSXQYA2IYV51lk06ZNloMzFospFAqpp6dnUP+hQ4cUCoXU29t7WusBgOHOsRVnPB7XmDFj1NTUpDlz5iT658+frwsvvJC9MB2Sn59vaevBP/zhD7rpppvU1tamL33p//47/P73v9ett96qtrY2ud2n9vPVka0QAeBs4lhwut1uTZ48WeFwOBGcoVBIoVBI27Ztc2paWLRx40bl5+cPCk3p8F7C06dPP+XQBICzlaPfFadNm6ZwOCzp8Ao0EAho6dKlMgxDb7/9tubNm6c5c+bohz/8oZNlnNRnn32mrVu36uOPP05ZDSfy6aefauvWrTpw4IBjc2zcuFFXXHHFMf3t7e3H7XeCaZp6//33tXPnzsShu0PR09OjrVu3qru724bqcCoGBgb03nvvSdJZv8H4/v37JR3+XoIvBkeDMz8/PxGcq1atUn9/v6qqqhSLxbRw4UI988wzWrdunVatWuVkGSfU0dGhiy++WF/96ld1wQUXaOXKlSmp43ja2tp00UUXJWp7+umnHZnneMEZj8f11ltv6YorrtBf//pXFRYWyufzacaMGVq7dq2t8/f19emf/umfdPHFF2vixIkqKioa0jeglpYWZWdn66tf/aqysrL0xz/+0cZqkYxIJKKrr75aeXl5kqTKykpbfiAajlasWKELLrhAkjRx4kR1dnamuCKcFic95nqIXnnlFXP06NFmJBIxMzMzzbVr15qmaZqhUMi88cYbze985zum1+s1m5qaLI3r9XpNr9d7wnayLr30UtPtdidO/Ha73ebOnTstj+OEnJycRG0ul8s855xzzA8//PCk91j9OOzevduUZL7zzjuD+t98801TkvnBBx+Y/f39Zn9/v2mapvnee++ZBQUFSY+fTD11dXXHnLx+9913Jz3H/+/QoUPmmDFjBn3cRo8ebfb29p7SeE6x+8vOzvHsGMvv9x/zOV21atWwqM3O8bq6uo75/jFlypRhUZtTY+EwRz+i3d3dpsvlMm+++WbzxhtvTPQ/9dRTZm5urvnJJ5+YH3/8sXnZZZeZkUgk6XG9Xu8xX5hchy8rwfnGG2+Yksy//OUvg/p/8pOfmDNnzjzm8W+++aZZWVnJ54mLi+usv07G0adqx4wZo4kTJ+r555/Xgw8+mOgfO3asZs6cqYyMDBmGoalTp2r79u2WxvZ6vTIPB7+8Xu+gdrLXtGnTBr345dxzz9X//u//Wh7HiWvSpEmDahs5cqT+9re/nfQer9dr6WN42WWXKT09Xffdd58OHDigjz/+WL/+9a/1yCOP6L777ks8bufOnZo9e7a+/e1v68Ybbzzlz9PxrkceeeSYe375y1+e0scsGo1q/Pjxgz5uhmHos88+S/nn8/+/JA3b8ewY61//9V+P+Zw+9dRTw6I2O8fbuXOnzjnnHLlcLkmHXxBZUFAwLGpz8uP2RblOykyBAwcOmNOnTzdjsZgZjUbNqVOnmvv27Uv6frueqv3zn/9sTpw4MfETxrPPPmt5DKeEw2HzoosuStT2wgsvfO49p/JxWL9+vVlYWGiOHj3anDBhgvmtb33LDIVCx33se++9Z+bm5iY9djL1DAwMmLfddlvi/SwpKTFjsZiF92Cw1157zZwwYUJivJdffvmUx3KK3V92do5nx1i9vb3m9ddfn/gc/OQnPzHj8fiwqM3u8Z555hnzvPPOMyWZf//3f29u27bNhsqG3+cUg7lM8/Oi1RkNDQ361a9+pVgspqqqKt16661J33vk7wOP/L3i0W0r4vG49u3bpwsuuODzf8o4zazWNpSPw4lEo1GNGDFCkrRv3z75fD5t3rw5qXut1NPT06Pzzz/fls/BwMCA9u3bp8zMzGH3OZUkl8tla112jmfnWJ988onGjh07LGuzc7xYLKYRI0YoHo8nVp9DNVw/pzgsZVvulZSUqKSkJFXTJ7jdbv3d3/1dqss4ruFQ24YNG7Ro0SJ5PB719fVp+fLljswzZswY28byeDyJVzoidQzDSHUJp8W5554rSbaFJoY/9qrFSc2ePVsvv/xyqssAgGGD4DzLbNq0adhsdbdp0ybl5+enugwAsBXBeRYZbiGVn58/7GoCgKEiOM8iHN8FAM5jB28AACwgOAEAsIDgBADAAoITAAALeHHQWWTBggXatGlTqssYJD8/nxctATirsOI8i2zatMlycMZiMYVCIfX09AzqP3TokEKhkHp7e09rPQAw3Dm64ozH4xozZoyampo0Z86cRP/8+fN14YUX6qGHHnJy+i+k/Px8S3vV/uEPf9BNN92ktrY2felL//ff4fe//71uvfVWtbW1DTptxIrhshEDANjJ0eB0u92aPHmywuFwIjhDoZBCoZC2bdvm5NRI0saNG5Wfnz8oNCWpvb1d06dPP+XQBICzlePfFadNm6ZwOCzp8Ao0EAho6dKl2rZtm3w+n3w+n2bOnKlx48Y5XcoxBgYG9MADDyTOmPz4449Pew0n0t/fr9ra2kRtkUjEkXk2btyoK6644pj+9vb24/Y74fXXX9f3v/99SdK6detOy5zJCoVCKi0t1T//8z/rlVdeSXU5X0iffPKJFixYIEn6t3/7Nw0MDKS4Iuc8/fTTuummmySJxcVw5vS5ZQ8//LB55ZVXmqZpmo899pg5ZcoUs7+/f9BjnnzySfP2229Peky7zuO84447TEmm2+02JZlTpkwxP/vsM8vjOKGysnJQbVdccYUZjUZPes+pfBwyMzPNJ554YlDfwMCAmZaWZv7nf/6nuXfvXnPWrFmm1+s1r7zySnPNmjVJj51MPe3t7eY555yTeD/dbre5bt06S+/DiQz1v/fLL79sut3uxOXxeMzXXnst5XU5Od5wq+3QoUPm17/+9cTZnpLMqqqqYVGb3WM99thjg77mDcMwP/jgg2FRGwY7LSvOLVu2qLu7W4sXL9ayZcvk8XgGPeZ3v/udbrnlFqdLGcQ0Tf3mN7+RdHglLEnhcFgbN248rXUcT19fn+rr6yX9X20bNmzQli1bbJ1nz5492rt3r6ZPnz6of9OmTTp48KBmzpyp8ePHa/369WptbdXTTz+tu+66y9YaVq9erf7+/sT7KSnxvqfa448/Lunw5yAej8s0TT3xxBMpruqLZdOmTero6BjUt3LlyrNy1Xn096NPPvlE//3f/53KknAiTidzd3e36XK5zJtvvtm88cYbj3n7hx9+aH7lK1+xNKbX6x30EyjX/11WVpxvvPGGKcn8y1/+Mqj/Jz/5iTlz5sxjHv/mm2+alZWVfJ64uLjO+utkHF9xjhkzRhMnTtTzzz+vBx988Ji3P/nkkyotLbU8rtfrlWmaMk1TXq93UDvZq6amRtL/HUDr8/nU19dneRwnrkWLFg2q7brrrtPAwMBJ7/F6vZY+hpdddpnS09N133336cCBA/r444/161//Wo888ojuu+++xON27typ2bNn69vf/nbid66n8nk63vXuu+8OOsT6vPPOU0dHhy0fQ0lDur+zs1MjR45M1DZ69Gi98847Ka/LyfGGW239/f361re+Nej/1N133z0sarN7rOeff15utzvxNX/RRRdp//79w6K2L+J1UmaK5efnm9u3b7d0j12/44zH4+Yzzzxj/vjHPzYlDZvfb5rm4dpWr16dqO3zfr9pmqf2cVi/fr1ZWFhojh492pwwYYL5rW99ywyFQsd97HvvvWfm5uYmPXay9XR1dZk//elPTUlmOBxOevzPY8d/7y1btpjBYNCUZP75z3+2oSp76nJqvOFY26FDh8y6ujpTkvn000+b8XjchsqG58ctFAqZd955pynJ/Nvf/mbLmMPg2/xZx2WanxetzgmHw/rRj36kV1991dJ9R/4+8MjfKx7dPhUul+vzf8pIkWRrs+PjcLRoNKoRI0ZIkvbt2yefz6fNmzcnda/Veuz+HNg53nAdy+7xqC31Y9k93nD+3namSumWe1OmTLEcmji9NmzYoEWLFsnj8aivr0/Lly9PdUkAkFLsVXuW2bRpk+079rjdbpmmqS996Uu69957de+99yZdS35+vq21AECqEZxnkeEWUvn5+cOuJgAYKoLzLMIpJADgPDYiBQDAAoITAAALCE4AACwgOAEAsIAXB51FFixYoE2bNqW6jEHy8/N50RKAsworzrPIpk2bLAdnLBZTKBRST0/PoP5Dhw4pFAqpt7f3tNYDAMOdoyvOeDyuMWPGqKmpSXPmzEn0z58/XxdeeKEeeughJ6f/QsrPz7e05d4f/vAH3XTTTWpr+3/s3X9YU+fdP/B3CC34IxEU11axau1W2ZAnlVFRU5MKjrb4lGZc1DKrqYijUsqspdNZZ3/443F13Wqt1DGK1Fp9HMX2KrjRXXUjYloDkaW1P+ZGwRaZyANClawCwvn+4ZesKaCccE5ODO/Xdd3XZe5z8rk/5oR8OIeT+7YhMPA/b4eioiIsX74cNpsNAQGe/X4l9UQMRES+QNbCGRAQgMjISJw4ccJVOC0WCywWC1c39xF2ux06nc6taAJAZWUloqOjPS6aRET+yisLWZ84cQLA5TPQxx9/HM899xxCQkKQlZWF2bNnIyYmBnv37pU7FdkJwuVlsj788EN0dnYqnc6g2O12xMTE9OmvrKzst/9a0NzcLNmC5N3d3a5J7f1x8eThqKOjw/UnBH+f/Ly+vh4A0N7ernAm/kX2wqnT6VyFc/fu3bh06RIyMjLwySef4JNPPsEHH3yA8vJybNiwQe5UZNXd3Y2HHnoI06dPh06nwx133IHm5mal07qq/gpnT08PqqurERMTg7Nnz2LOnDkwGo2YNWsWDh8+rFCmg1NSUoJJkya5/k9vvfWWx7H+/e9/Iz4+HjNmzAAA3HPPPbh48aIkeZIyzp49i+joaNx+++0AgGXLlqGnp0fhrOSxZcsW3HzzzQCAW2+91fU5TBKQe92yo0ePCqNGjRK++uor4cYbbxQOHz4sCIIgtLS0CD/60Y+Ezs5O4cyZM0J0dPSgY0q1Huc3DfWl2L17t9vq4SqVSkhPTx9STLG5iX0dTp8+LQAQPv30U7f+48ePCwCEL7/8Urh06ZJw6dIlQRAur8f5wx/+cNDxxeYz1GPw9ddfCyNHjhRUKpXrOIwYMUK4cOGCR/GefvrpPqvCb9q0aUg5CoJvrnkpRyyp40kRa+nSpW7vDwDCG2+84RO5SRmvurra7f8YEBAg6jOWrkz2wnn+/HlBpVIJDzzwgGAymVz9PT09wsqVK4UpU6YI48ePFw4ePDjomAaDoc8HGtvlJqZQHTt2TAAg/Otf/3Lrf+KJJ4TY2Ng++x8/flxIS0vjcWJjY/P7diVeWRp82rRpQlBQkFBbW+vqKysrE+677z7h0qVLQktLixARESFcvHhxUPF88Yzz7bff7vPCP/nkk0OKKTY3sa/DV199JYwZM0bIzs4WWltbhZaWFuGVV14RRowYIZSXl7v2q62tFebOnSuEhYUJJSUlg47v7TPOzs5O4cYbbxQCAgJcx2D8+PHC119/7VG8F198sc8x3blz55ByFATfOzuRK5bU8aSI9bOf/azPMf3jH//oE7lJGe/kyZNCYGCg6+w6ICBAiI+Plyg78sotkzU1Nbh48SKmTp3q1j927Fio1WpoNBp0dXVd0zdfJCUlYePGja67U5OTk/Hss88qnNWVabValJaWwm63Izw8HNOnT8fBgwdRVlYGg8Hg2m/q1Kk4evQobDYbsrKyFMz4yq677jqUlpZi4sSJrr7S0lIEBwd7FC8rKwsZGRmuO4sfffRRPPLII5LkSsrYvHkzkpKSXI//53/+B/fcc4+CGcnje9/7Ht544w2MHDkSABAdHY3XXntN4az8h0oQlLmtrLu7G8uXL8c///lPdHZ2YsmSJcjOzh7Uc3u/H9j7fcVvP/aESqWS5A67S5cu4brrrpP0br3B5ibF6/BtHR0dCAoKAnD5blWj0ei6y1TqfKQ6BoIgwOl0QqPRSBKvo6MDwcHBkh1Tqf6fcsQbLrl9/fXXGDlypE/mJmW8np4eqNVqv7972NsUm3JPrVajsLBQqeFl8+3vQ17rqqqqsG7dOqjVanR1dWH79u1Kp3RVKpUKo0ePlixe7y8O5D9GjBihdApewe9hy8O/PuVJcnq9HkeOHFE6DSIin8HC6WccDofPTHXncDig0+mUToOISFIsnH7E14qUTqfzuZyIiIaKhdOPcPkuIiL58S/HREREIrBwEhERicDCSUREJAILJxERkQgsnERERCKwcBIREYnglcJptVoRFxcHrVaLkJAQpKSkeGNYIiIiycleOIuLi2EymZCZmYmmpibU19cjPT1d7mGJiIhkIWvhdDqdyMjIQF5eHpKTkxEcHAyNRoOEhAQAwN69ezF79mzMnj0bf/3rX+VMhYiISBKyzhxksVigUqnc1r/r1dbWhl//+tc4duwY2tvbER8fj+rqas7mT0REPk3WKtXc3IzQ0FCoVKo+22w2GwwGA4KDgxEWFoYJEybg1KlTcqZDREQ0ZLKecc6cORN1dXUoKSlBYmIizp8/D5vNhoSEBLS0tCA0NNS1b2hoKFpaWnDLLbcMKnbv2ew39VegxRjq8+WKJUc8X+XLr5uvxpI6HnNTPpbU8YbL54eUrrT4t6yFMzIyEvn5+cjJyUFqaio0Gg3S0tKQkJCAcePGobW11bVvW1sbxo0bN+jYBoMB5eXlAOBaRqv3sSd8daV6OeL5Kl9+3Xw1ltTxmJvysaSON1w+P7xJ9tVRzGYzzGZzn/5Zs2bhF7/4BTo6OuB0OtHQ0IApU6bInQ4REdGQKLasWEhICFatWuU6W3zhhRd4YxAREfk8RdfjXLp0KZYuXapkCkRERKLwFI+IiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBBZOIiIiEVg4iYiIRGDhJCIiEoGFk4iISASvFE6r1Yq4uDhotVqEhIQgJSXFG8MSERFJTvbCWVxcDJPJhMzMTDQ1NaG+vh7p6elyD0tERCQLWQun0+lERkYG8vLykJycjODgYGg0GiQkJAAA4uPjMX78eGzatEnONIiIiCQj6yTvvYtNJyUl9bu9sLAQ7733Hk6fPi1nGkRERJKR9YyzubkZoaGhA64+Hh4eLufwREREkpP1jHPmzJmoq6tDSUkJEhMTcf78edhsNtel2qHoPZv9poEK9GAN9flyxZIjnq/y5dfNV2NJHY+5KR9L6njD5fNDSoIgDLhN1sIZGRmJ/Px85OTkIDU1FRqNBmlpaZIUToPBgPLycgBwLYbd+9gTKpXqii+UUrHkiOerfPl189VYUsdjbsrHkjrecPn88CbZF7I2m80wm81yD0NEROQVshfOK0lLS4PNZkNHRwdsNhtKSkqUTIeIiOiqFC2cBQUFSg5PREQkGqfcIyIiEoGFk4iISAQWTiIiIhFYOImIiERg4SQiIhKBhZOIiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBK8UTqvViri4OGi1WoSEhCAlJcUbwxIREUlO9sJZXFwMk8mEzMxMNDU1ob6+Hunp6XIPS0REJAtZC6fT6URGRgby8vKQnJyM4OBgaDQaJCQk4PPPP8e8efNw5513Qq/Xw263y5kKERGRJGRdHcVisUClUiEpKanPtpCQELz11lsYN24cPv30U2RkZKCiokLOdIiIiIZM1sLZ3NyM0NBQqFSqPtvGjRvn+ndQUBDUarWcqRAREUlDkNGJEyeEwMBA4Z133hG6u7uF1tZWoayszG2fS5cuCffee6/wpz/9adBxDQaDAICNjY2NjU2WdiUqQRAEyOi1117Dli1b0NDQAI1Gg7S0NGzevBm4nBkefvhhxMbGYuXKlYOOaTQaAQDl5eX9PvaESqWCVC+FlLHkiOerfPl189VYUsdjbsrHkjrecPn88CZZL9UCgNlshtls7nfbY489hltvvVVU0SQiIlKSYhMglJeXIy8vD4cPH4bRaMSPf/xjpVIhIiIaNNnPOAdiNBrR2dmp1PBEREQe4ZR7REREIrBwEhERicDCSUREJAILJxERkQgsnERERCKwcBIREYnAwklERCQCCycREZEILJxEREQieKVwWq1WxMXFQavVIiQkBCkpKd4YloiISHKyF87i4mKYTCZkZmaiqakJ9fX1SE9Pl3tYIiIiWchaOJ1OJzIyMpCXl4fk5GQEBwdDo9EgISEBZ8+exZw5c2A0GjFr1iwcPnxYzlSIiIgkIesk7xaLBSqVCklJSX22hYWFoaKiAmq1GrW1tVi0aBGqqqrkTIeIiGjIZC2czc3NCA0NhUql6rNNrVa7/t3W1oaoqCg5UyEiIpKGIKMTJ04IgYGBwjvvvCN0d3cLra2tQllZmWt7bW2tMHfuXCEsLEwoKSkZdFyDwSAAYGNjY2Njk6VdiUoQBAEyeu2117BlyxY0NDRAo9EgLS0NmzdvdtuntrYW8+fPx6lTpwYV02g0Ari8GHZ/jz2hUqkg1UshZSw54vkqX37dfDWW1PGYm/KxpI43XD4/vEn2hazNZjPMZnOf/o6ODgQFBQEAtFotRo8eLXcqREREQyZ74RxIVVUV1q1bB7Vaja6uLmzfvl2pVIiIiAZNscKp1+tx5MgRpYYnIiLyCKfcIyIiEoGFk4iISAQWTiIiIhFYOImIiERg4SQiIhKBhZOIiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBK8UTqvViri4OGi1WoSEhCAlJcUbwxIREUlO9sJZXFwMk8mEzMxMNDU1ob6+Hunp6XIPS0REJAtZC6fT6URGRgby8vKQnJyM4OBgaDQaJCQkuPZpaWlBaGgo9u7dK2cqREREkpC1cFosFqhUKiQlJQ24z6ZNm6DX6+VMg4iISDKyFs7m5maEhoZCpVL1u72mpgYtLS2Ijo6WMw0iIiLJyLoe58yZM1FXV4eSkhIkJibi/PnzsNlsrku1GzZswMaNG/H666+Ljt17NvtNAxXowRrq8+WKJUc8X+XLr5uvxpI6HnNTPpbU8YbL54eUBEEYcJushTMyMhL5+fnIyclBamoqNBoN0tLSkJCQgPfffx/jxo3DtGnTPIptMBhQXl4OADAajQDgeuwJlUp1xRdKqVhyxPNVvvy6+WosqeMxN+VjSR1vuHx+eJOshRMAzGYzzGZzn3673Y6PPvoId999N2pqajBq1ChMmzYNs2fPljslIiIij8leOAeSnZ2N7OxsAMAzzzyDW2+9lUWTiIh8nmKF85ueeeYZpVMgIiIaFE65R0REJAILJxERkQgsnERERCKwcBIREYnAwklERCQCCycREZEILJxEREQisHASERGJwMJJREQkglcKp9VqRVxcHLRaLUJCQpCSkuKNYYmIiCQne+EsLi6GyWRCZmYmmpqaUF9fj/T0dLmHJSIikoWsc9U6nU5kZGQgPz8f999/PwAgODjYtR7niBEjMGvWLADAT37yE/z0pz+VMx0iIqIhk7Vw9i42nZSU1O/2iRMnDmkNTSIiIm+T9VJtc3MzQkNDB1x9vLGxEQaDAffffz9qa2vlTIWIiEgagoxOnDghBAYGCu+8847Q3d0ttLa2CmVlZa7t//d//ycIgiC89957gsFgGHRcg8EgAGBjY2NjY5OlXYlKEAQBMnrttdewZcsWNDQ0QKPRIC0tDZs3b+6z36233oqamppBxTQajQDgusz77ceeUKlUkOqlkDKWHPF8lS+/br4aS+p4zE35WFLHGy6fH94k+0LWZrMECxU6AAAgAElEQVQZZrO5T397eztGjBgBtVqNjz/+GGPHjpU7FSIioiGTvXAO5NNPP0VGRgY0Gg0A4He/+51SqRAREQ2aYoXzjjvuwN/+9jelhiciIvIIp9wjIiISgYWTiIhIBBZOIiIiEVg4iYiIRGDhJCIiEoGFk4iISAQWTiIiIhFYOImIiERg4SQiIhKBhZOIiEgErxROq9WKuLg4aLVahISEICUlxRvDEhERSU72wllcXAyTyYTMzEw0NTWhvr4e6enpcg9LREQkC1kLp9PpREZGBvLy8pCcnIzg4GBoNBokJCQAAD788EPcfffdmD9/PpYtWyZnKkRERJKQdXUUi8UClUqFpKSkPts6OzuRk5ODN998E2PGjJEzDSIiIsnIesbZ3NyM0NBQqFSqPtuOHTsGjUaDpUuXwmg0orS0VM5UiIiIpCHI6MSJE0JgYKDwzjvvCN3d3UJra6tQVlYmCIIg7Nu3T5g8ebLQ2toqnDt3ToiIiBC++uqrQcU1GAwCADY2NjY2Nlnalch6qTYyMhL5+fnIyclBamoqNBoN0tLSkJCQgLFjxyI2NhYhISEAgKioKNTU1GDmzJmDim0wGFBeXg4AMBqNAOB67AmVSgVBEDx+vlyx5Ijnq3z5dfPVWFLHY27Kx5I63nD5/PAmWQsnAJjNZpjN5j79sbGxeOqpp9DV1QVBEPDZZ59h8uTJcqdDREQ0JLIXzoGMGTMGOTk5uOuuu9DZ2Yns7GyMGzdOqXSIiIgGRbHCCQAPPvggHnzwQSVTICIiEoVT7hEREYnAwklERCQCCycREZEILJxEREQisHASERGJwMJJREQkAgsnERGRCCycREREIrBwEhERieCVwmm1WhEXFwetVouQkBCkpKR4Y1giIiLJyV44i4uLYTKZkJmZiaamJtTX1yM9PV3uYYmIiGQh61y1TqcTGRkZyM/Px/333w8ACA4ORkJCAiorK/Hzn/8cAHDx4kX885//REtLi5zpEBERDZmshdNisUClUiEpKanPtjvuuMO1fua+fftw9OhROVMhIiKShKyXapubmxEaGgqVSnXF/fbs2YMlS5bImQoREZE0BBmdOHFCCAwMFN555x2hu7tbaG1tFcrKytz2OXPmjHDbbbeJimswGAQAbGxsbGxssrQrkfVSbWRkJPLz85GTk4PU1FRoNBqkpaUhISHBtc8bb7yB1NRU0bENBoPrUq/RaAQA12NPqFQqCILg8fPliiVHPF/ly6+br8aSOh5zUz6W1PGGy+eHN8m+kLXZbIbZbB5w+969e/Hmm2/KnQYREZEkFJ0A4cSJExg5ciSmTZumZBpERESDpmjhnDFjBqxWq5IpEBERicIp94iIiERg4SQiIhKBhZOIiEgEFk4iIiIRWDiJiIhEYOEkIiISgYWTiIhIBBZOIiIiEVg4iYiIRGDhlNDJkyfxyiuvAAAqKio4sTIRkR/ySuG0Wq2Ii4uDVqtFSEgIUlJSvDGs1/zrX/9CQkICpk+fjszMTADAvHnzMGPGDBw7dkzh7IiISEqyF87i4mKYTCZkZmaiqakJ9fX1SE9Pl3tYr2lpaYHBYIDVasWmTZtQV1cHACgoKMC///1vxMXF4fjx4wpnSUREUpG1cDqdTmRkZCAvLw/JyckIDg6GRqNBQkICBEFAVlYWZs+ejZiYGOzdu1fOVGSzfft2fP7553j33Xfx1FNPYcqUKQCAZcuW4f3338eYMWPw85//XNkkiYhIMrIWTovFApVKhaSkpD7bPvnkE3zyySf44IMPUF5ejg0bNsiZiiwEQcDvf/973HvvvZg7d26f7TfeeCMee+wx/OUvf0FNTY0CGRIRkdRkLZzNzc0IDQ2FSqXqs23ChAm4/vrr0dXVhQsXLmDs2LFypiKL9vZ2NDY2Yt68eQPuYzAYAICFk4jIXwgyOnHihBAYGCi88847Qnd3t9Da2iqUlZUJgiAIPT09wsqVK4UpU6YI48ePFw4ePDjouAaDQQDAxsbGxsYmS7uSQMgoMjIS+fn5yMnJQWpqKjQaDdLS0pCQkIA///nPaGhoQE1NDb766ivo9Xrce++9CAoKGlRsg8GA8vJyAIDRaAQA12NPqFQqj74+snDhQtjtdpw6dQrBwcF9YiUmJsJut6O+vh7XX3+9V3O71kj9/5Qynq/Gkjoec1M+ltTxhsvnhzfJflet2WzGyZMn0d7ejjNnzmDz5s2ubWPHjoVarYZGo0FXVxe6u7vlTkdyq1evxtmzZ/Hggw+ira3N1d/V1YVnn30Wf/zjH5Gdne1x0SQiIt8i6xnnlcTHx2P//v2YO3cuOjs78dhjj2HkyJFKpeOx+fPnY8eOHcjOzsbEiROxcOFCAMDNN9+MxsZGPPTQQ1i7dq3CWRIRkVQUK5xqtRqFhYVKDS+prKwszJ07Fzt37sR7770HAIiOjsYjjzyCxMTEfm+OIiKia5NihdPf3H777cjPzwdw+W8KpaWlCmdERERy4Fy1REREIrBwEhERicDCSUREJAILJxERkQgsnERERCKwcBIREYnAr6P4kVWrVsHhcCidhhudTocXX3xR6TSIiCTDM04/4nA4RBfOzs5OWCwWXLhwwa3/4sWLsFgscDqdXs2HiMjXeeWM02q1YsOGDaiqqkJAQAAWLFiAoqIibww97Oh0OlGT3R86dAgpKSmw2WwIDPzP26GoqAjLly+HzWZDQIBnv1/1Tr4/EEEQUFZWhp07d6KiosL13nj00UeRlJTEGZeIyCfJfsZZXFwMk8mEzMxMNDU1ob6+Hunp6XIPS4Nkt9uh0+nciiYAVFZWIjo62uOieTWCIOCJJ57Avffei+PHj2Px4sXo6enByZMnYTKZkJ6ejp6eHlnGJiIaClkLp9PpREZGBvLy8pCcnIzg4GBoNBokJCQAAJ5++mnMmTMHRqMRH3/8sZyp0ADsdjtiYmL69FdWVvbbL5XXX38dv/3tb/HYY4/hyy+/RG5uLgCgtrYWTz31FAoKCrBjxw7Zxici8pSshdNisUClUiEpKanPNofDgcrKSrz//vsoLCzEz372MzlToQH0Vzh7enpQXV2NmJgYnD171vXLzaxZs3D48OEhjykIAn77298iKioKL774Iq677jrXtsDAQGzcuBF33nknXnrpJZ51EpHPkbVwNjc3IzQ0tN+/Vf3jH/9AdHQ0AGDKlCn47LPPcOnSJTnToW9paGhAY2Oj6zj0cjgcaG9vR2xsLMLCwlBRUYHy8nLs379fkiXSzpw5A4fDAbPZ3O+lYJVKhYcffhi1tbX4+9//PuTxiIgkJcjoxIkTQmBgoPDOO+8I3d3dQmtrq1BWViYIgiB8/PHHwpw5c4SOjg7h+PHjgkqlEv7v//5vUHENBoMAgK2fZjAYBn18jh07JgAQ/vWvf7n1P/HEE0JsbGyf/Y8fPy6kpaUNOj6PExsb27XarkTWM87IyEjk5+cjJycHWq0WEREROHLkCADgBz/4AVJTUxEfH4/c3FzMmDED48aNG3Rsg8EAQRAgCAIMBoPbY08agCE9X65YYuIZDAZRxyciIgJjxozB1q1b0dbWhnPnzmHXrl3Izc3F1q1bXfvV1dVBr9cjISEBJpNJ1Bj9HZd///vf0Gq1WLx48YD/z8zMTAQFBeHcuXM+cRx8NRZz8414wym34dKuRPa7as1mM06ePIn29nacOXMGmzdvdm3LysrCkSNHsGrVKuh0On79wMu0Wi1KS0tht9sRHh6O6dOn4+DBgygrK3MrwlOnTsXRo0dhs9mQlZU15HFHjBgBs9mMoqIiVFVV9dn+ySef4LXXXsMDDzyA0NDQIY9HRCQlRWcO+tGPfoRLly4hLCwMO3fuVDKVYUuv18NqtQ64vaOjA0FBQQAuF9rRo0dLMu5TTz2FkpISxMXFYfXq1UhJSQEAbNmyBS+88AI0Gg2ee+45ScYiIpKSooXzz3/+s5LD0yBUVVVh3bp1UKvV6Orqwvbt2yWJe8MNN6CiogIZGRl47rnn8OyzzwK4XFDnz5+PvLw8TJkyRZKxiIikxLlq6Yr0er3r79JSCw8Px6FDh/D555/jgw8+wJIlS/DZZ59h+vTpsoxHRCQFFk4/43A4rjrVnbc4HA7odLqr7jdt2jRMmzYNDz30kBeyIiIaGhZOPzKYIuVNOp3O53IiIhoqFk4/wuW7iIjkx2XFiIiIRGDhJCIiEoGFk4iISAT+jdOPrFq1Cg6HQ+k03Oh0Ov7tlYj8Cs84/YjD4fCpwulr+RARSYFnnH5Gp9OhvLx80Ps3NTXhhhtuQHV1NW6//XZX/xdffIEpU6bg008/RUREhEe5KPF90tbWVhQXF6OpqQkAcO7cOYwdO9breRCR/5L0jNNqtSIuLg5arRYhISGu+UfJd1VVVWHEiBGYMWOGW39lZSU0Gg1uu+02hTITp6enB0899RQmTpyIFStW4KmnngIATJw4EWvWrEF3d7fCGRKRv5CscBYXF8NkMiEzMxNNTU2or69Henq6VOFJJna7HTqdDoGB7hcfKisrER0d3e9C075o9erV2LJlC0wmE6qrq3Hx4kUAQEpKCp5//nlkZ2crnCER+QtJPhWdTicyMjKQl5eH5ORkBAcHQ6PRICEhAQAQHx+P8ePHY9OmTa7n7N27F7Nnz8bs2bPx17/+VYo0yAN2ux0xMTF9+isrK/vt90U1NTXYvn07Vq5cib179+L22293reiyZ88e/OxnP0Nubi7+/ve/K5wpEfkDSQqnxWKBSqVCUlJSv9sLCwuxbds21+O2tjb8+te/xl//+leUlJTg8ccfR09PjxSpkEj9Fc6enh5UV1cjJiYGZ8+exZw5c2A0GjFr1iwcPnxYoUwHVlBQALVajfXr1/e7puu6detw3XXX4dVXX1UgOyLyN5LcHNTc3IzQ0NABF6IODw93e2yz2WAwGBAcHIzg4GBMmDABp06dwi233CJFOjRIDQ0NaGxsRHR0tFu/w+FAe3s7YmNjERYWhoqKCqjVatTW1mLRokX9Lj6tpNraWtxyyy2YMGFCv9u/853v4Lvf/S5qa2u9nBkR+SNJCufMmTNRV1eHkpISJCYm4vz587DZbK5Ltd/W0tKC0NBQ1+PQ0FC0tLSIKpy9Z7nfNFDhHqyhPl+uWGLiGQyGQcc8ffo0ACAkJMStf9++fYiNjcWkSZPc+tva2hAVFTXo+ED/x0ku/Y3zzb5PP/10SLn4w/vD27GkjsfclI81XAiCMOA2SS7VRkZGIj8/Hzk5OdBqtYiIiLjiGo7jxo1Da2ur63FbWxvGjRsnakyDwQBBECAIAgwGg9tjTxqAIT1frlhi4okpmgAQERGBMWPGYOvWrWhra8O5c+ewa9cu5ObmYuvWra796urqoNfrkZCQAJPJ5PFxkqsdOnQIAPDGG2/0+7oVFRUBAN5++22fOKZKvT+YG3NjE/e6DUSy73GazWaYzeZB7Ttr1iz84he/QEdHB5xOJxoaGjBlyhSpUqFB0mq1KC0txZo1axAeHo6RI0dCp9OhrKwM8+bNc+03depUHD16FLW1tZg/fz4WLlyoYNZ9JSQkIDIyEo8++ii+853vIC4uzvUbdnl5OTIyMjB9+nQkJiYqnCkR+QOvTICQlpYGm82Gjo4O2Gw2lJSUYNWqVa4vyL/wwgvXzNce/I1er4fVah1we0dHh+sOVa1Wi9GjR3srtUFTq9UoLS3FggULsGDBAvzXf/0Xvv/97wMA7rrrLtxyyy04dOhQn6/cEBF5wiufJAUFBX36li5diqVLl3pjeBqCqqoqrFu3Dmq1Gl1dXdi+fbvSKfVr8uTJqK6uxhtvvIE9e/agsrISALBz504sWbIEGo1G4QyJyF+ohKtdzPVBvWeqvVPLffuxJ1Qq1VWvaysRS0w8o9EIh8MBnU4n2dhD0ZvLUI6Lr/CH94e3Y0kdj7kpH4su47UrP+IrBbOXTqfzuZyIiIaKhdOPcPkuIiL58Y4cIiIiEVg4iYiIRGDhJCIiEoGFk4iISATeHORHVq1aBYfDoXQabnQ6HW9aIiK/wjNOP+JwOEQXzs7OTlgsFly4cMGt/+LFi7BYLHA6nV7NxxfxO3BE9E2Sn3FarVZs2LABVVVVCAgIwIIFC1yTbJP8xE44cOjQIaSkpMBms7lNSVdUVITly5fDZrN5PB1i78QU16Kenh4cOHAAubm5OHbsGFQqFebNm4esrCykpKRwtQmiYUzSM87i4mKYTCZkZmaiqakJ9fX1SE9Pl3IIkpjdbodOp+szj2tlZSWio6OH5RzCPT09ePjhh/GTn/wEjY2NWL16NQRBQENDAxYtWoTly5dz4XWiYUyyT0Wn04mMjAzk5eUhOTkZwcHB0Gg0rjU54+PjMX78eGzatMn1nP76yLvsdjtiYmL69FdWVvbbPxzs2LEDr7/+Op599lmcPHkSv/rVrwAA//znP7F+/Xrs3r0bu3btUjhLIlKKZIWzd8HipKSkfrcXFhZi27ZtV+0j7+qvcPb09KC6uhoxMTE4e/Ys5syZA6PRiFmzZuHw4cMKZeodPT09eOmll6DX6/HLX/7S7Yw7ICAAzz33HO644w689NJL/Nsn0TAlWeFsbm5GaGjogH/7CQ8PH1QfeU9DQwMaGxsRHR3t1u9wONDe3o7Y2FiEhYWhoqIC5eXl2L9/P9auXatQtt5RU1OD2tpamM3mft/LKpUKS5cuxcmTJ/HFF18okCERKU2ym4NmzpyJuro6lJSUIDExEefPn4fNZnNdqpVa7xnuNw31hg0pb/iQ+uaRwcYzGAyDjnn69GkAQEhIiFv/vn37EBsbi0mTJrn1t7W1ISoqatDxgf6P07VgxYoVWLFihVvft/8fU6dO9Ti+Uu8Pb8eSOh5zUz7WcHGlK0qSnXFGRkYiPz8fOTk50Gq1iIiIwJEjR6QK34fBYIAgCBAEAQaDwe2xJw3AkJ4vVywx8cQUTQCIiIjAmDFjsHXrVrS1teHcuXPYtWsXcnNzsXXrVtd+dXV10Ov1SEhIgMlk8vg4XQvt/PnzGDVqFJYtWzbgMVi8eDG0Wi2cTuc19f5gbsyNTdzrNhBJb5k0m804efIk2tvbcebMGWzevFnK8CQxrVaL0tJS2O12hIeHY/r06Th48CDKysrcivDUqVNx9OhR2Gw2ZGVlKZix/DQaDR566CHs27cPVVVVfbYfO3YMf/jDH2A2mzFy5EgFMiQipXlt5qC0tDTYbDZ0dHTAZrOhpKSk3z7yLr1eD6vVOuD2jo4OBAUFAbhcaEePHu2t1BTzzDPP4N1338X8+fORlZWF5ORkAMCaNWuwc+dOTJo0CevXr1c4SyJSitcKZ0FBwaD6yLdUVVVh3bp1UKvV6Orqwvbt25VOSXY33ngjjh49iqysLDz//POuy9YvvPACkpKS8PLLL+M73/mOwlkSkVI4Vy1dkV6vl/Vv1b5q4sSJeOutt1BfX4+qqiokJyfj1KlTvBOciFg4/Y3D4fCZqe4cDgd0Op3SaQzJpEmTMGnSpKveLEBEwwcLpx/xtSKl0+l8LicioqFi4fQjXL6LiEh+w28GbyIioiFg4SQiIhKBhZOIiEgE/o3Tj6xatQoOh0PpNNzodDr+7ZWI/ArPOP2Iw+HwqcLpa/kQEUmBZ5x+RqfToby8fND7NzU14YYbbkB1dTVuv/12V/8XX3yBKVOm4NNPP0VERIRHufjK90l9RUNDA/7whz8AuLxY9qJFizgDEdE1SPIzTqvViri4OGi1WoSEhCAlJUXqIUhCVVVVGDFiBGbMmOHWX1lZCY1Gg9tuu02hzPxHZ2cnVq5cicmTJ2P16tUAgOzsbISHhyMnJwfd3d0KZ0hEYkhaOIuLi2EymZCZmYmmpibU19cjPT1dyiFIYna7HTqdDoGB7hcfKisrER0djYAAXs0fquXLl2PXrl145JFHUFNTAwD47LPPsGTJErzwwgtYtWqVwhkSkRiSfSo6nU5kZGQgLy8PycnJCA4OhkajcS1kHR8fj/Hjx2PTpk0AgM8//xzz5s3DnXfeCb1eD7vdLlUqJILdbkdMTEyf/srKyn77SZzq6mrs3bsX69evx8svv4xp06YBAKZPn45XX30Vjz76KHbu3InPP/9c4UyJaLAkK5wWiwUqlQpJSUn9bi8sLMS2bdtcj0NCQvDWW2+hoqICeXl5ePzxx6VKhUTor3D29PSguroaMTExOHv2LObMmQOj0YhZs2bh8OHDCmV6bSooKMCIESPwxBNP9Lv9F7/4BQICAlBYWOjdxIjIY5LdHNTc3IzQ0FCoVKp+t397VYlx48a5/h0UFAS1Wi1VKjRIDQ0NaGxsRHR0tFu/w+FAe3s7YmNjERYWhoqKCqjVatTW1mLRokX9LvBM/fviiy9w2223ISQkpN/tEydOxKRJk/DFF194OTMi8pRkhXPmzJmoq6tDSUkJEhMTcf78edhsNtel2oF0d3cjOzsba9euFTVe7xnuNw1UtAdrqM+XK5aYeAaDYdAxT58+DQB9PtT37duH2NhYTJo0ya2/ra0NUVFRg44P9H+chqOrvVdPnTqF119/XbL4Q6HUe9fbsaSON5xyGw6utCKSZJdqIyMjkZ+fj5ycHGi1WkRERFx1HUdBEJCWloaFCxfi7rvvFjWewWCAIAgQBAEGg8HtsSetNx8pmpSxxMQTUzQBICIiAmPGjMHWrVvR1taGc+fOYdeuXcjNzXUt3gwAdXV10Ov1SEhIgMlk8vg4Dcf21ltvAQCKior6PZ55eXkAgPLycp94vyn13mVu105uw6VdiaTf4zSbzTCbzYPe/7HHHsOtt96KlStXSpkGDZJWq0VpaSnWrFmD8PBwjBw5EjqdDmVlZZg3b55rv6lTp+Lo0aOora3F/PnzsXDhQgWzvrYsXLgQ3//+97FixQqMHj3adQWmp6cHb7/9Nh5//HHMmjXL7fUmIt/mtQkQ0tLSYLPZ0NHRAZvNhieeeAJ5eXmYM2cODh8+jLFjx+LgwYPeSof+P71eD6vVOuD2jo4OBAUFAbhcaEePHu2t1PxCYGAgDh06hB/96Ee45557MH36dADAbbfdhpqaGkRFReHtt9/mpTSia4jXCmdBQUGfvs7OTm8NTx6qqqrCunXroFar0dXVhe3btyud0jVnypQpcDgcOHDgAPbu3Yu///3vuOWWW/Dss88iOTnZ9YsJEV0bVMLVLub6oN6p3Hqnlvv2Y0+oVKqrXtdWIpaYeEajEQ6HAzqdTrKxh6I3l6EcF7o6f3jvejuW1PGGU27EuWr9iq8UzF46nc7nciIiGioWTj/C5buIiOTHiUiJiIhEYOEkIiISgYWTiIhIBBZOIiIiEXhzkB9ZtWoVHA6H0mm40el0vGmJiPwKzzj9iMPhEF04Ozs7YbFYcOHCBbf+ixcvwmKxwOl0ejUfEqejo0PpFIiGHUnPOK1WKzZs2ICqqioEBARgwYIFKCoqknIIugqxEw4cOnQIKSkpsNlsCAz8z9uhqKgIy5cvh81mQ0CAZ79f9U5MQdLq6urCq6++itzcXJw4cQIAMHv2bDz66KNYvHgxp+8jkplkZ5zFxcUwmUzIzMxEU1MT6uvrkZ6eLlV4kondbodOp3MrmgBQWVmJ6Ohoj4smyaOzsxP3338/Vq5cicDAQDz77LMAgNbWVixZsgTLly9HT0+PwlkS+TdJPhWdTicyMjKQl5eH5ORkBAcHQ6PRuFaCiI+Px/jx47Fp0yYAwNmzZzFnzhwYjUbMmjULhw8fliIN8oDdbkdMTEyf/srKyn77SVlbtmzBH//4R+zcuRPHjx/Hhg0bAACfffYZ1q9fj927d+PVV19VOEsi/yZJ4exdrDgpKanf7YWFhdi2bZvrcVhYGCoqKlBeXo79+/eLXsSapNNf4ezp6UF1dTViYmL4S44P6ezsxK5du5CYmIjMzEy3S7IqlQrPPfccbr/9duzYsYNzkxLJSJK/cTY3NyM0NHTAv62Eh4e7PVar1a5/t7W1ISoqSoo0SKSGhgY0NjYiOjrard/hcKC9vR2xsbGuX3LUajVqa2uxaNEiVFVVKZTx8Pbxxx/j7NmzeOihh/rdrlKpsHjxYuTk5KCpqQk33HCDlzMkGh4kKZwzZ85EXV0dSkpKkJiYiPPnz8Nms7ku1fanrq4OS5YswcmTJ7F7927RY/ae5X7TUG+KkPKmCqlv0BhsPIPBMOiYp0+fBgCEhIS49e/btw+xsbGYNGmSW78nv+T0d5xoaFJTU5GamurW9+3X+MYbb/Q4vlLvXW/HkjrecMptOLjSVRtJLtVGRkYiPz8fOTk50Gq1iIiIwJEjR674nKlTp+Lo0aOw2WzIysoSPabBYIAgCBAEAQaDwe2xJw3AkJ4vVywx8cQUTQCIiIjAmDFjsHXrVrS1teHcuXPYtWsXcnNzsXXrVtd+dXV10Ov1SEhIgMlk8vg4sQ2tnTt3DsHBwcjIyBjw/bFw4ULccMMN6OzsvKbeu8zt2sltuLQrkeyWSbPZjJMnT6K9vR1nzpzB5s2bB9z3m98902q1GD16tFRpkAharRalpaWw2+0IDw/H9OnTcfDgQZSVlbkV4aH+kkPSCA0NRWpqKvbs2dPv5fKysjIcOnQIK1aswHXXXadAhkTDg1dmDkpLS4PNZkNHRwdsNhvWrFmDdevWQa1Wo6urC9u3b/dGGtQPvV4Pq9U64PaOjg4EBQUB4C85vmDz5s34y1/+grvuugsZGRmuKwCPPPIICgoKEBUVhSeffFLhLIn8m1cKZ0FBQZ++q13KJd9QVVXFX3J8yE033YT3338fjz/+OF566SX85je/AQC89tprWLp0KX79619Dq9UqnCWRf+NctX7G4XBIPmNPQEAABEFAYGAgNm7ciI0bNw46F51OJ2kuBEyYMAEHDhzAmTNn8OGHH+Kee+5BQ0MDxo4dq3RqRMMCC6cf8bUipdPpfC4nf3LTTTfhpptuuuqNDEQkLRZOPzZsbJ8AACAASURBVMJVSIiI5MeJSImIiERg4SQiIhKBhZOIiEgEFk4iIiIReHOQH1m1ahUcDofSabjR6XS8aYmI/ArPOP2Iw+EQXTg7OzthsVhw4cIFt/6LFy/CYrHA6XR6NR8iIl8n6Rmn1WrFhg0bUFVVhYCAACxYsABFRUVSDkFXodPpUF5ePuj9Dx06hJSUFNhsNgQG/uftUFRUhOXLl8NmsyEgwLPfr6SeiIHk849//AP/+7//CwB4/vnnsXjxYkycOFHhrIh8k2RnnMXFxTCZTMjMzERTUxPq6+uRnp4uVXiSid1uh06ncyuaAFBZWYno6GiPiyZdG5xOJxYtWoTbbrsNzzzzDABgzZo1mDx5Mh5//HF0d3crmyCRD5LkU9HpdCIjIwN5eXlITk5GcHAwNBqNaz3O+Ph4jB8/Hps2bXJ7XktLC0JDQ7F3714p0iAP2O12xMTE9OmvrKzst5/8hyAISElJwZtvvolf/vKXOHPmDACgpqYGy5cvx4svvojVq1crnCWR75GkcPYuVpyUlNTv9sLCQmzbtq1P/6ZNm6DX66VIgTzUX+Hs6elBdXU1YmJicPbsWcyZMwdGoxGzZs3C4cOHFcqUpGaxWPCnP/0J27Ztw3PPPYcbbrgBADBt2jT87ne/wyOPPIKXX34ZX375pcKZEvkWSQpnc3MzQkNDB1xlPDw8vE9fTU0NWlpaEB0dLUUK5IGGhgY0Njb2OQYOhwPt7e2IjY1FWFgYKioqUF5ejv3792Pt2rUKZUtSKygoQGhoKFauXNnv9rVr10IQBOzZs8fLmRH5NkkK58yZM1FXV4eSkhL09PSgra0N77777hWfs2HDBjz99NNSDE8eOn36NAAgJCTErX/fvn2IjY3FpEmToFaroVarAQBtbW2Iioryep4kj9OnT+P73/8+RowY0e/2yZMnIywszPU+IaL/T5BIYWGh8L3vfU8YNWqUcOONNwrr1q1z2757925h48aNgiAIgtVqFbKysgRBEISnn35aeP3110WNZTAYBABs/TSDwTDo1/Grr74SxowZI2RnZwutra1CS0uL8MorrwgjRowQysvLXfvV1tYKc+fOFcLCwoSSkhIeJzY2Nr9vVyLZ11HMZjPMZvOg9rXb7fjoo49w9913o6amBqNGjcK0adMwe/bsQY9nMBhcX7vo/dqDmK9hfJtKpZJseSYpY4mJJ/brH1qtFqWlpVizZg3Cw8MxcuRI6HQ6lJWVYd68ea79pk6diqNHj6K2thbz58/HwoULBz3GN48T+ZYDBw7gwQcfxFtvvYX7778fgPt77fnnn8eaNWvwt7/9zePl4fzh58rbsaSOJ3Vu5KWZg9LS0mCz2dDR0QGbzYaSkhJkZ2cDAJ555hnceuutooomSUev18NqtQ64vaOjA0FBQQAuF9rRo0d7KzWSmclkwm233YZly5ZBrVYjMTERANDV1YXXXnsN69evx9133801VYm+xSuFs6CgYMBtvd8dI99UVVWFdevWQa1Wo6urC9u3b1c6JZLI9ddfj7KyMiQkJOC+++7DLbfcAgC4+eab0djYCL1ej/379yucJZHv4Vy1dEV6vR5HjhxROg2SyZQpU/DRRx/hzTffxP79+1FbW4u5c+di2bJluPvuu103hhHRf7Bw+hmHw+EzU905HA5e5rsGBAUFYfHixVi8eLHSqRBdE1g4/YivFSmdTudzORERDRULpx/h8l1ERPLjDN5EREQisHASERGJwMJJREQkAgsnERGRCLw5yI+sWrUKDodD6TTc6HQ63rRERH6FZ5x+xOFwiC6cnZ2dsFgsuHDhglv/xYsXYbFY4HQ6vZoP+Yeenh60tLQAAOdJJb8j6Rmn1WrFhg0bUFVVhYCAACxYsABFRUVSDkFXodPpRE2qfujQIaSkpMBmsyEw8D9vh6KiIixfvhw2mw0BAZ79fuUrEzGQ93z99dd46aWXsGvXLpw6dQoA8MMf/hBZWVl4+OGHB1yzl+haItkZZ3FxMUwmEzIzM9HU1IT6+nqkp6dLFZ5kYrfbodPp3IomAFRWViI6OtrjoknDj9PpxIIFC7B27VpMnToVv/nNbwBcvqqRlpaG9PR0nn2SX5DkU9HpdCIjIwN5eXlITk5GcHAwNBoNEhISAADx8fEYP348Nm3a5HrOiBEjYDQaYTQakZeXJ0Ua5AG73Y6YmJg+/ZWVlf32Ew3kqaeewgcffIADBw7gL3/5Cx5//HEAwEcffYT169ejoKAAe/bsUThLoqGTpHBaLBaoVCokJSX1u72wsBDbtm1z65s4cSLKy8tRXl6On/70p1KkQR7or3D29PSguroaMTExOHv2LObMmQOj0YhZs2bh8OHDCmVKvqy9vR27d+9GamoqHnjgAbdtKpUKzz33HH7wgx9gx44dPOuka54khbO5uRmhoaED/v0iPDy8T19jYyMMBgPuv/9+1NbWSpEGidTQ0IDGxkZER0e79TscDrS3tyM2NhZhYWGoqKhAeXk59u/fj7Vr1yqULfmy6upqnD9/Hqmpqf1uV6lUSE1NxfHjx9He3u7l7IikJcnNQTNnzkRdXR1KSkqQmJiI8+fPw2azuS7V9ufUqVMICwvD4cOHkZaWJuqGFuA/Z7nfNNQbD6S8cUHqmyAGG89gMAw65unTpwEAISEhbv379u1DbGwsJk2a5Nbf1taGqKioQccH+j9O5L8WLlzYp+/bx1+r1XocX6mfK2/HkjoefwbFu9KVEUnOOCMjI5Gfn4+cnBxotVpERERcdQ3HsLAwAEBcXJzrA1wMg8EAQRAgCAIMBoPbY08agCE9X65YYuKJKZoAEBERgTFjxmDr1q1oa2vDuXPnsGvXLuTm5mLr1q2u/erq6qDX65GQkACTyeTxcWLz39bU1ITrr78e2dnZbv3ffO/eeeedmDZtGnp6ejwaQ6mfK+Y2PNuVSHbLpNlsxsmTJ9He3o4zZ85g8+bNA+7b3t6O7u5uAMDHH3+MsWPHSpUGiaDValFaWgq73Y7w8HBMnz4dBw8eRFlZmVsRnjp1Ko4ePQqbzYasrCwFMyZfNX78eKSkpCA/Px9VVVV9tu/btw8VFRV45JFHePZD1zyvzByUlpYGm82Gjo4O2Gw2/PKXv0RGRgY0Gg0A4He/+5030qB+6PV6WK3WAbd3dHQgKCgIwOVCO3r0aG+lRteY559/HlarFUajEWlpabjvvvsAAKmpqThw4ADmzZvHX7zIL3ilcBYUFPTp+9vf/uaNoWmIqqqqsG7dOqjVanR1dWH79u1Kp0Q+asKECXj//ffx85//HHl5eXj55ZcBAGVlZVi9ejU2btyI4OBghbMkGjqVcLWLuT6od0aa3huKvv3YEyqV6qrXtZWIJSae0WiEw+GATqeTbOyh6M1lKMeFrk3Nzc349NNPYTAY4HQ6MXLkyCHHVOrnytuxpI4ndW7ESd79iq8UzF46nc7nciLvCAsLw7x58/iBTX6JhdOPcBUSIiL5cSJSIiIiEVg4iYiIRGDhJCIiEoGFk4iISATeHORHVq1aBYfDoXQabnQ6HW9aIiK/wjNOP+JwOEQXzs7OTlgsFly4cMGt/+LFi7BYLHA6nV7Nh4jI10l6xmm1WrFhwwZUVVUhICAACxYsQFFRkZRD0FWInXDg0KFDSElJgc1mQ2Dgf94ORUVFWL58OWw2GwICPPv9qndiCqKhsNvtOHDgAABg48aNWLp0KSZPnqxwVjScSXbGWVxcDJPJhMzMTDQ1NaG+vh7p6elShSeZ2O126HQ6t6IJAJWVlYiOjva4aBIN1blz57BgwQLExMRgx44dAIBnnnkGt9xyC7Kzs10LRRB5mySfik6nExkZGcjLy0NycjKCg4Oh0Whc63HGx8dj/Pjx2LRpk+s5H374Ie6++27Mnz8fy5YtkyIN8oDdbkdMTEyf/srKyn77ibzh0qVLWLhwIY4cOYIXXngBTU1NAC4vcZeRkYEdO3bgySefVDhLGq4kuVTbu1hxUlJSv9sLCwvx3nvvudbd7OzsRE5ODt58802MGTNGihTIQ3a7HYsWLXLr6+npQXV1NbKysnD27FmYTCZcf/31+Prrr7FlyxbExcUplC0NF4cOHcIHH3yA3bt34+GHH3b133zzzcjNzUVXV5ereN50003KJUrDkiRnnM3NzQgNDR1wnb3w8HC3x8eOHYNGo8HSpUthNBpRWloqRRokUkNDAxobGxEdHe3W73A40N7ejtjYWISFhaGiogLl5eXYv38/1q5dq1C2NJwUFhZiwoQJeOihh/rdvmbNGly6dAlvvPGGlzMjkuiMc+bMmairq0NJSQkSExNx/vx52Gw216Xab2toaEB1dTUcDgcEQcDcuXMxb948aLVaKdKhQeq9AhASEuLWv2/fPsTGxmLSpElu/W1tbYiKivJafjR8nTlzBj/4wQ/6/O2916233opRo0bhzJkzXs6MCIAgkcLCQuF73/ueMGrUKOHGG28U1q1b57Z99+7dwsaNGwVBEISysjJh0aJFrm2LFi0Sjh8/PuixDAaDAICtn2YwGAb9On711VfCmDFjhOzsbKG1tVVoaWkRXnnlFWHEiBFCeXm5a7/a2lph7ty5QlhYmFBSUsLjxMbG5vftSiQrnFfzzcLZ1tYmREdHC52dnUJHR4cQFRUlNDc3DzqWwWBwKxDffuyJq71QSsUSE8+T16GiokKYM2eOMGrUKGH8+PHCggULBIvF0u++n3/+uTB58uRBx5biuNDwtGfPHgGAUFpa6ur75s/B2rVrBQBCTU2Nx2P4w8+8t2PRZV6ZOSgtLQ02mw0dHR2w2WwoKSlBTk4O7rrrLnR2diI7Oxvjxo3zRir0LXq9HlardcDtHR0dCAoKAgBotVqMHj3aW6nRMJaSkoJNmzbhoYceQkFBAe677z4Al+/gz83Nxa9+9Sv85Cc/wbRp0xTOlIYjrxTOgoKCPn0PPvggHnzwQW8MT0NQVVWFdevWQa1Wo6urC9u3b1c6JRoGgoOD8e677+Kee+7Bj3/8Y9cNhhMnTsRXX32F//7v/8bvf/97hbOk4Ypz1dIV6fV6HDlyROk0aBiaMmUKPvroI7z99ts4cOAATp8+DZPJhOXLl2Pu3LkD3sVPJDcWTj/jcDh8Zqo7h8MBnU6ndBp0DbvuuuuQkpKClJQUpVMhcmHh9CO+VqR0Op3P5URENFQsnH6Ey3cREcmPM3gTERGJwMJJREQkAgsnERGRCCycREREIvDmID+yatUqOBwOpdNwo9PpeNMSEfkVnnH6EYfDIbpwdnZ2wmKx4MKFC279Fy9ehMVigdPp9Go+RHLr7OzEl19+CQAQBEHhbOhaJOkZp9VqxYYNG1BVVYWAgAAsWLAARUVFUg5BV6HT6VBeXj7o/Q8dOoSUlBTYbDa3JZyKioqwfPly2Gw2BAR49vuVr0zEQARcXhbvV7/6FfLz89Hc3AwAmDFjBrKzs5Genu7x+5yGH8neKcXFxTCZTMjMzERTUxPq6+uRnp4uVXiSid1uh06n67PuYWVlJaKjo/lhQn7h3LlzuPPOO/H8889Dr9cjLy8PwOU5cTMyMrBixQqefdKgSfKp6HQ6kZGRgby8PCQnJyM4OBgajca1kHV8fDzGjx+PTZs2Abj8oWw0GmE0GhEbG8uVURRkt9sRExPTp7+ysrLffqJr0erVq/GPf/wD7777Lt566y2sWLECwOVFDNavX4+CggLs27dP4SzpWiFJ4bRYLFCpVEhKSup3e2FhIbZt2+Z6fMcdd6C8vBzl5eXIzs7GokWLpEiDPNBf4ezp6UF1dTViYmJw9uxZzJkzB0ajEbNmzcLhw4cVypTIM83Nzdi/fz9WrFiB+Ph4t20qlQrPPvssvvvd72Lnzp0KZUjXGkkKZ3NzM0JDQwdcraB3SaD+7NmzB0uWLJEiDRKpoaEBjY2NiI6Odut3OBxob29HbGwswsLCUFFRgfLycuzfvx9r165VKFsiz1RWVqKzsxMPPPBAv9sDAgLwwAMP4IMPPsClS5e8nB1diyS5OWjmzJmoq6tDSUkJEhMTcf78edhsNtel2oE0Njbi1KlTmD17tugxe89yv2moywxJuUyR1EseDTaewWAYdMzTp08DAEJCQtz69+3bh9jYWEyaNMmtv62tDVFRUYOOD/R/nIiU0N/Pxrffm9ddd53H8ZX6mfd2rOHiSn/zluSMMzIyEvn5+cjJyYFWq0VERMSg1nB84403kJqa6tGYBoMBgiBAEAQYDAa3x540AEN6vlyxxMQTUzQBICIiAmPGjMHWrVvR1taGc+fOYdeuXcjNzcXWrVtd+9XV1UGv1yMhIQEmk8nj48TGpkRraGiAWq3Gk08+6dbf+3PV09ODqKgo6HQ6j8dQ6mdeidyGS7sSyb6OYjabYTabRT1n7969ePPNN6VKgUTSarUoLS3FmjVrEB4ejpEjR0Kn06GsrAzz5s1z7Td16lQcPXoUtbW1mD9/PhYuXKhg1kTiTJgwASaTCbm5uUhJSenzN/0dO3bgo48+ct1pS3Q1Xpk5KC0tDTabDR0dHbDZbCgpKcGJEycwcuRITJs2zRsp0AD0ej2sVuuA2zs6OhAUFATgcqEdPXq0t1Ijksz27dtht9sxb948LFmyBImJiQCAe+65B2VlZUhKSsKyZcsUzpKuFV4pnAUFBX36ZsyYccUPbPINVVVVWLduHdRqNbq6urB9+3alUyISbcKECXj//fexfv167N27F7///e8BAB999BE2btyINWvW9PkuM9FAVMLVLub6oN4ZaXpnyPn2Y0+oVKqrXtdWIpaYeEajEQ6HAzqdTrKx/1979x8VZ3nn//81TGtiJBnuQFpA+iEaNkdrtawhJhB0phY1WFvrrwXOUSBom6o4zazujsau2koXtypt3Go1tXFUqrTR0F3sHipJBZOoQ3KEgj9WNiZRwza2YhjIbB1I5v7+kZP5Sn5gbrhvwPh8nHOf433dc1/X+wThxTVzc13jcbCW8XxdALv19/dr27Zt+vznP68vf/nL43og6KDJ+p6f6L5wAL9iHUemSmAelJubO+VqAlJSUpSXlzfZZeBTjOA8jrALCQA4j4VIAQCwgOAEAMACghMAAAsITgAALODhoOPIihUr1NnZOdlljJCbm8tDSwCOK8w4jyOdnZ2Wg3NoaEhtbW0aHBwc0f7RRx+pra1N0Wh0QusBgKnO1hnn5s2bdccdd2jLli1KSkrSBRdcoLVr19o5BD6B1QUHfv/73+uqq65SOBwesXLK2rVrde211yocDispaWy/Xx1cmAI4HsXjcf3xj39MrLd9++23a9myZcrJyZnkyuA022aczz77rC677DLdcMMN+stf/qL33ntP1113nV3dwyFbt25Vbm7uYcuNtbe3a8GCBWMOTeB49r//+78655xzdMEFF+jpp5+WJP3kJz/R3/3d36m6ulr79++f5ArhJFt+KkajUS1fvlyrV6/WFVdcoenTp2vmzJmJ/TiLioo0Z84c1dTUSDqwxU11dbXy8/O1cOFC1dfX21EGxmDr1q2H7RYhHQjOI7UDn3V/+9vfdOGFF+qtt97SmjVr9P7770uS3nnnHVVXV+vBBx9kw/fjnC3BeXCz4ksvvfSI10OhkO69997E+euvv67XX39dL7/8slpbW3XHHXfYUQbG4EjBGY/H9eqrr2rhwoV6//33VVBQIJ/Pp0WLFmnDhg2TVCkwNfz2t7/V66+/rl//+tdatmyZpk+fLunAQvL//u//rmXLlumBBx7QX//610muFE6xJTg/+OADGYZx1F3Gs7KyRpxnZmbqhBNO0PDwsAYHBzV79mw7yoBFvb292r17txYsWDCivbOzU3v37tXixYuVlpamjRs3qrW1VU8//TS/SeMz78knn9T8+fP1zW9+84jXb7nlFg0NDek3v/nNBFeGiWJLcJ599tnasWOHmpqaFI/H1d/frz/84Q9Hfb1hGJo3b57mz5+vs846S7fffrsdZcCiXbt2STqw6PXHPfXUU1q8eLG+9KUvye12y+12Szqwq8RZZ5014XUCU8n777+vM84446gThdNPP10ulyvxFi6OQ6ZNQqGQOX/+fPOkk04y09PTzZUrV464/thjj5l33323aZqm2dzcbH7rW98y9+3bZ/b19Zmnn366+dFHHx3zWF6v15TEcYTD6/Ue879jJBIxPR6P6ff7zT179ph9fX3mL37xC/PEE080W1tbE6/bvn27uWTJEjMtLc1samri68TBwXHcH6Ox7c9RKioqVFFRccyvnz17ttxut2bOnKnh4WHLT6F5vV724zyE1T//mDVrlp577jkFg0FlZWVpxowZys3NVXNzs84777zE60455RRt2rRJ27dv1/nnn69LLrnkmMf4+NcJOB48+uij+s53vqPm5ubEA5Af/x793ve+p1/96ld67733lJ6ePqYxpvLPI0zQykFVVVUKh8OKxWIKh8P63e9+p6efflpLlizR0NCQbrrpJs2YMWMiSsEhCgsLtXnz5qNej8VimjZtmqQDQZucnDxRpQFTUllZmX7yk5+otLRUjzzyiC6//HJJ0ocffqh7771XjzzyiKqrq8ccmpj6JiQ416xZc1hbKBSaiKExTlu2bNHKlSvldrs1PDysVatWTXZJwKQ66aST1NLSoosvvlglJSX6whe+IEk6+eST9dFHH6myslJ1dXWTXCWcxFq1GFVhYaFefPHFyS4DmFKys7P1pz/9Sf/1X/+ltWvXqr6+Xt/97nd17bXX8gDdZwDBeZzp7OycMkvddXZ2Kjc3d7LLABzxuc99Tt/61rf0rW99S08++eRkl4MJRHAeR6ZaSOXm5k65mgBgvAjO4wjbdwGA81jBGwAACwhOAAAsIDgBALCA4AQAwAIeDjqOrFixQp2dnZNdxgi5ubk8tATguMKM8zjS2dlpOTiHhobU1tamwcHBEe0fffSR2traFI1GJ7Qe4LMsGo3qzTfflHRgX1xMTbbOODdv3qw77rhDW7ZsUVJSki644AKtXbvWziHwCXJzcy0tqv773/9eV111lcLhsD73uf//f4e1a9fq2muvVTgcVlLS2H6/mioLMQBT3e7du/WjH/1ITz75pPbu3SvpwPZkfr9f119//Zi/B+EM274azz77rC677DLdcMMN+stf/qL33ntP1113nV3dwyFbt25Vbm7uiNCUpPb2di1YsIBvWMBhvb29ys/P169+9StdccUVeuqppyQd2EGqurpa3/nOd9jdZIqx5adiNBrV8uXLtXr1al1xxRWaPn26Zs6cmdhyp6ioSHPmzFFNTU3injvvvFMFBQXy+Xx67bXX7CgDY7B161YtXLjwsPb29vYjtgOw14033qgPPvhAmzZtUigUUllZmSTppZde0g9+8AOtWbNGzzzzzCRXiY+zJTjb2trkcrl06aWXHvF6KBTSvffemzjv7OxUe3u7XnrpJYVCIX3/+9+3owyMwZGCMx6P69VXX9XChQv1/vvvJ37BWbRokTZs2DBJlQLHn3feeUdNTU3y+/2HfR+6XC7dddddmjt3rh566KFJqhBHYstnnB988IEMw5DL5Tri9aysrBHnPT09WrBggSRp7ty5evPNN7Vv377D3i6Es3p7e7V79+7E1+Kgzs5O7d27V4sXL1ZaWpo2btwot9ut7du3q6SkRFu2bJmkioHjy5YtWxSPx3XllVce8brb7dbll1+uBx98UKZpHvVnLCaWLUl19tlna8eOHWpqatI3vvENDQwMKBwOJ96qPdQZZ5yhVatWaWhoSK+99pp2796t/v5+paWlHfOYB2e5Hzfe/6ns/J/S7v/Bj7U/r9d7zH3u2rVLkpSSkjKi/amnntLixYv1pS99aUR7f3+/5S2TjvR1AjDS2WeffVjbod8343negO9B60b7XNmWt2q/8pWv6NFHH9Utt9yiWbNm6fTTTx91D8czzjhDZWVlKioq0kMPPaQzzzxTqamplsb0er0yTVOmacrr9Y44H8shaVz3O9WXlf6shKZ04Kk9j8eje+65R/39/frwww/18MMP66GHHtI999yTeN2OHTtUWFioiy66SJdddtmYv04cHBwjj507d8rlcmnlypUj2g9+z+/bt09z584d1/eR3T+PPivHaGx7ZLKiokJvvfWW9u7dqz//+c/68Y9/POrrq6ur9eKLL2rFihXKzc3lN6JJMGvWLD333HPaunWrsrKydNppp2ndunVqbm4eEcKnnHKKNm3apHA4rOrq6kmsGDi+ZGdn65vf/KYeeOCBwz4CMU1TP/zhD7Vz507deOONk1QhjmRCPlSsqqpSOBxWLBZTOBxWU1OTLrzwQu3bt09paWl68MEHJ6IMHEFhYaE2b9581OuxWEzTpk2TdCBok5OTJ6o04DPhoYce0pIlS3TuueeqtLQ08RFXQUGBXnnlFS1btuyon4FickxIcK5Zs+awtueff34ihsY4bdmyRStXrpTb7dbw8LBWrVo12SUBx5WTTz5Zr7zySmIBhMcff1yS1NfXp5///Oe6/vrreUduinGZn/Rm7hR0cEWagyvkHHo+Fi6X6xPf156Mvqz05/P51NnZqdzcXNvGHo+DtYzn6wJ8lkSjUb377rs64YQTdMopp9iyAIndP4/AIu/HlakSmAfl5uZOuZqAqeykk07S6aefPtll4BMQnMcRdiEBAOexECkAABYQnAAAWEBwAgBgAcEJAIAFPBx0HFmxYoU6Ozsnu4wRcnNzeWgJwHGFGedxpLOz03JwDg0Nqa2tTYODgyPaP/roI7W1tSkajU5oPQAw1dk649y8ebPuuOMObdmyRUlJSbrgggu0du1aO4fAJ7C64MDvf/97XXXVVQqHwyO2dVu7dq2uvfZahcPhMf8R9sGFKQBMrOHhYf3nf/6nGhsbJUk333yzrrvuOv5G1Ca2zTifffZZXXbZZbrhhhv0l7/8Re+9956uu+46u7qHQ7ZuINnapgAAIABJREFU3arc3NzD9kJtb2/XggULbFm5BMDE2bZtm8444wxdeeWVWr9+vSTp5z//ub785S/rhhtu0P79+ye5wk8/W34qRqNRLV++XKtXr9YVV1yh6dOna+bMmbrooov09ttv67zzztO5556rwsJCbd26VZJUX1+v/Px85efn64UXXrCjDIzB1q1bD9t5XjoQnEdqBzB1RSIRFRUVac+ePVq3bp16e3slHdh7d8WKFfrFL36hH/zgB5Nc5aefLcF5cLPiSy+99LBrKSkpamxs1MaNG7V69WoFAgH19/frvvvu0wsvvKCmpiYFAgHF43E7SoFFRwrOeDyuV199VQsXLtT777+vgoIC+Xw+LVq0SBs2bJikSgF8kieeeELvvPOO1q1bp8suu0xut1uSNGfOHP30pz/V1VdfrVWrVmnPnj2TXOmnmy3B+cEHH8gwjCOu4J+amprYpHratGlyu90Kh8Pyer2aPn260tLSlJmZqZ07d9pRCizo7e3V7t27tWDBghHtnZ2d2rt3rxYvXqy0tDRt3LhRra2tevrpp3XrrbdOUrUAPkl9fb3y8vJ07rnnHvH6P/7jP+pvf/ub1q1bN8GVHV9seTjo7LPP1o4dO9TU1KRvfOMbGhgYUDgcTuwrJ0n79++X3+/Xrbfeqr6+PhmGkbhmGIb6+vp06qmnHvOYB2e5HzferXfs3LrH7m2AjrW/j29A/Ul27dol6cC7Ah/31FNPafHixfrSl740or2/v19nnXXWMfcvHfnrBMAZbrdb+/fv/8Sfjddddx3PoHyC0XaUsWXG+ZWvfEWPPvqobrnlFs2aNUunn366XnzxxREFVFVV6ZJLLtHSpUuVmpo64q2C/v7+xKz0WHm9XpmmKdM05fV6R5yP5ThYpx2HnX1Z6c9KaErS6aefLo/Ho3vuuUf9/f368MMP9fDDD+uhhx7SPffck3jdjh07VFhYqIsuukiXXXbZmL9OHBwczh4LFy7U3//93ysejyfaPv7zo729XdKBPZInu9apfozGtkcmKyoq9NZbb2nv3r3685//rB//+MeJazfddJNycnJ0/fXXS5IWLVqkjRs3KhaL6cMPP1Rvb6/mzp1rVyk4RrNmzdJzzz2nrVu3KisrS6eddprWrVun5ubmESF8yimnaNOmTQqHw6qurp7EigGMpry8XB0dHfrjH/942DXTNHXffffppJNO0uWXXz4J1R0/HF85qLW1VatXr1ZBQYE2bNig2bNna926dVqxYkXi7/zuv/9+/uxhkhQWFmrz5s1HvR6LxTRt2jRJB4I2OTl5okoDYNHVV1+turo6XXnllfr5z3+uq666StKBj2Xuvvtu/fa3v9Wdd94pj8czyZV+ujkenD6fT0NDQ4e1l5eXq7y83OnhMU5btmzRypUr5Xa7NTw8rFWrVk12SQCOYubMmVq/fr2++c1v6uqrr9aNN94oSZo7d67i8bhuvvlm3XHHHZNc5acfa9ViVIWFhSM+rwYwtWVnZ6uzs1PPP/+81q1bp1/+8pe67bbbdO211/KRmE0IzuNMZ2fnlFnqrrOzU7m5uZNdBvCZk5SUpKVLl2rp0qVavXr1ZJdz3CE4jyNTLaRyc3OnXE0AMF4E53GE7bsAwHk8ygoAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFjgenA0NDcrNzdXMmTN12mmn6Xe/+53TQwIA4BhHg3P16tW67bbb9Mtf/lKDg4P66U9/qrKyMr377rtODgsAgGMcC87BwUHddtttWrNmjRYuXChJKi4u1pw5c7R161bV19crPz9f+fn5euGFF5wqAwAAWzm2ctAf//hHud1ufe1rX0u0maapDz74QElJSbrvvvv0yiuvaO/evSoqKtKrr77K1mIAgCnPsaQaGBiQYRgj2pqamnTiiSfK5XLJ6/Vq+vTpSktLU2Zmpnbu3OlUKQAA2MaxGeeiRYu0c+dOvfjii1qyZIna2tr0ve99T/fff7+i0eiIUDUMQ319fTr11FOPuf+2tja5XK4RbYeeWzXe+53qy4n+AABHZ5rmUa85Fpzz58/Xo48+qmXLlmn37t2aP3++HnjgAV155ZX6wx/+oD179iRe29/fr9TUVEv9e71etba2SlJiG62D52PhcrlG/YearL6c6A8AMHaO7o5yzTXX6JprrjmsfdGiRbrtttsUi8UUjUbV29vLBqsAgE+FSdlWLCUlRStWrEjMFO+//34eDAIAfCpM2n6c5eXlKi8vn6zhAQAYE6Z5AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABY4GhwxuNxlZeXKzs7W8nJycrJyVFDQ4OTQx4z0zT10ksv6dprr9UFF1wgSfrNb36joaGhSa7sQG0vvviili1blqjt2Wef1b59+ya5MgCAo8EZiURUXFysrq4uDQwMKBAIqLKyctLD6aOPPtIVV1yhJUuW6JlnntHevXslSaWlpfrKV76i7du3T1pt0WhUl1xyibxer373u98larvyyiuVm5ur9957b9JqAwA4HJyGYaisrEwej0dJSUmqqKhI7IhSX1+v/Px85efn64UXXnCyjMNcf/31amxs1L/+67+qt7dXL7/8siTpP/7jP9TX16cLL7xQ//d//2e5X9M09fbbb0uShoeHx1TbsmXL1NzcrPvvv39EbWvXrtV7772npUuXTvovHgDwmWY66PnnnzeXLl1qnnzyyeasWbPM5ORkMyMjw9yzZ4/51a9+1fzb3/5m/vWvfzW/+tWvmvv37z/mfr1er+n1eo96PpodO3aYLpfLvPnmm0e0H/ynaG5uNiWZa9asOeZ6TNM09+/fb5aXl5uSTEnm2WefbX7wwQeW+njjjTdMSea//Mu/HLG2Z5991pRkNjQ0WOoXAGAfx2ac7e3tKi0tld/vV09PjyKRiILBoPLy8hQOh+X1ejV9+nSlpaUpMzNTO3fudKqUEX7729/KNE35/f4jXr/wwgt12mmn6amnnrLUb319vZ544onEeUdHh1auXGmpj4aGBiUlJam6uvqI17/97W/r//2//6enn37aUr8AAPs4tq1YR0eHDMNQQUGB3G63QqGQamtrFQwG1dfXJ8MwEq81DEN9fX069dRTj7n/trY2uVyuEW2Hno8mOzv7sLaP3//f//3flvo7lGmaWr16tVavXm353i9+8Yuj1vbuu++OqzYAwOhM0zzqNcdmnCUlJcrJyVFmZqa+/OUva8+ePTIMQ3l5eUpNTdWePXsSr+3v71dqaqql/r1er0zTlGma8nq9I85HO372s59Jkt58880R7dKBf6h9+/YpOztb3/jGN46pv4NHY2PjYTXefPPNlvr48Y9/LJfLpR07dhyxtlgspi9+8Yv6h3/4B0v9cnBwcHBYO0bjWHCmpKSoublZ0WhUb7/9tgKBgHbt2qWLL75YixYt0saNGxWLxfThhx+qt7dXc+fOdaqUEcrKyvT5z39e//Zv/3bE67/5zW/0zjvvqLKy0lK/l156qe68804lJSUlzn/0ox9Z6uPqq6+Wy+XSvffee8Trjz/+uN5//31VVFRY6hcAYCNzkjz++OPm4sWLzcWLF5vr16+3dO94Hg4yTdP853/+Z1OS+d3vftfcuXOnaZqmKclctWqVOW3aNHPhwoXm0NCQpZoOisVi5t69e8d0r2ma5o033mhKMm+66SbzvffeS9T2k5/8xPz85z9vFhYWmvv27Rtz/wCA8XGZ5ifMSacgn88nSWptbT3i+SfZv3+//umf/kmrVq2SaZr64he/qN27dyf6Wrt2rdLS0myu+tjs27dPfr9fDz/8sFwul77whS8karvooovU0NCglJSUSakNACB9JoPzoHfffVdPPPGE3nnnHT366KMKh8NauHDhlHjwZseOHXriiSe0a9cuPfroo9q6dasWLFgw2WUBwGfeZzo4AQCwikXeAQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALHA0OOPxuMrLy5Wdna3k5GTl5OSooaHBySEBAHCUo8EZiURUXFysrq4uDQwMKBAIqLKyUkNDQ04OCwCAYxwNTsMwVFZWJo/Ho6SkJFVUVCgWiykajaqoqEhz5sxRTU2NkyUAAGArR4OzpaVFxcXFysrKksfjUUZGhjIyMmQYhkKh0FH3nQQAYKpyLDjb29tVWloqv9+vnp4eRSIRBYNB5eXlSZKysrKcGhoAAMd8zqmOOzo6ZBiGCgoK5Ha7FQqFVFtbq2AwaEv/bW1th23/NRW2AwMAfPqNtnGYY8FZUlKixsZGZWZmKj09XdXV1TIMIzHjHC+v18u2YgCACedYcKakpKi5uXlEWyAQcGo4AAAmhGPB+UmqqqoUDocVi8UUDofV1NQ0WaUAAHDMJi0416xZM1lDAwAwZiy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABY4HZzweV3l5ubKzs5WcnKycnBw1NDQ4PSwAAI5wPDgjkYiKi4vV1dWlgYEBBQIBVVZWamhoyOmhAQCwnePBaRiGysrK5PF4lJSUpIqKCsViMXV3d+u8887Tueeeq8LCQm3dutXpUgAAGDfHF3lvaWlRXV2duru7NTg4qHg8royMDM2dO1eNjY1KTU3VG2+8oeXLl2vjxo1OlwMAwLg4Gpzt7e0qLS1VfX29vF6vZsyYoZqaGrW3tys1NTXxumnTpsntdjtZCgAAtnA0ODs6OmQYhgoKCuR2uxUKhVRbW6tgMJh4zf79++X3+3Xrrbda6rutrU0ul2tE26HnAACMhWmaR73maHCWlJSosbFRmZmZSk9PV3V1tQzDUF5eXqKwqqoqXXLJJVq6dKmlvr1er1pbWyVJPp9PkhLnAAA4xdHgTElJUXNz84i2QCCQ+O+bbrpJOTk5uv76650sAwAA20zaAgitra1avXq1NmzYIJ/Pp8svv3yySgEA4Jg5/lTt0fh8Pv6WEwDwqcOSewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBggaPBGY/HVV5eruzsbCUnJysnJ0cNDQ1ODgkAgKMcDc5IJKLi4mJ1dXVpYGBAgUBAlZWVrFELAPjUcjQ4DcNQWVmZPB6PkpKSVFFRoVgspj179qigoEA+n0+LFi3Shg0bnCwDAADbOLo7SktLi+rq6tTd3a3BwUHF43FlZGQoLS1NGzdulNvt1vbt21VSUqItW7Y4WQoAALZwbMbZ3t6u0tJS+f1+9fT0KBKJKBgMKi8vT263W263W5LU39+vs846y6kyAACwlWMzzo6ODhmGoYKCArndboVCIdXW1ioYDEqSduzYoWuuuUZvvfWWHnvsMcv9t7W1yeVyjWg79BwAgLEwTfOo1xwLzpKSEjU2NiozM1Pp6emqrq6WYRjKy8uTJJ1yyinatGmTtm/frvPPP1+XXHKJpf69Xq9aW1slHdgUW1LiHAAApzgWnCkpKWpubh7RFggEJEmxWEzTpk2TJM2aNUvJyclOlQEAgK0cfTjoaLZs2aKVK1fK7XZreHhYq1atmowyAACwbFKCs7CwUC+++OJkDA0AwLiw5B4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABY4GpzxeFzl5eXKzs5WcnKycnJy1NDQ4OSQAAA4ytHgjEQiKi4uVldXlwYGBhQIBFRZWamhoSEnhwUAwDGOBqdhGCorK5PH41FSUpIqKioUi8UUjUYlSX19fTIMQ/X19U6WAQCAbRwNzpaWFhUXFysrK0sej0cZGRnKyMiQYRiSpJqaGhUWFjpZAgAAtnIsONvb21VaWiq/36+enh5FIhEFg8HERtbbtm1TX1+fFixY4FQJAADYzrFtxTo6OmQYhgoKCuR2uxUKhVRbW6tgMChJuuOOO3T33XfrySefHFP/bW1tcrlcI9oOPQcAYCxM0zzqNceCs6SkRI2NjcrMzFR6erqqq6tlGIby8vL00ksvKTU1VfPmzRtz/16vV62trZIkn88nSYlzAACc4lhwpqSkqLm5eURbIBCQJD3wwAPq6urS0qVLtW3bNp100kmaN2+e8vPznSoHAABbOBaco/H7/fL7/ZKku+66Szk5OYQmAOBTYVKC8+PuuuuuyS4BAIBjxpJ7AABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZj8dVXl6u7OxsJScnKycnRw0NDU4OCQCAoxwNzkgkouLiYnV1dWlgYECBQECVlZUaGhpyclgAABzjaHAahqGysjJ5PB4lJSWpoqJCsVhM0WhUJ554onw+n3w+n1avXu1kGQAA2MbR3VFaWlpUV1en7u5uDQ4OKh6PKyMjQ4Zh6OSTT2bjaQDAp45jM8729naVlpbK7/erp6dHkUhEwWBQeXl5kqTdu3fL6/Xq29/+trZv3+5UGQAA2Mt0yMMPP2zOmzfP7O/vNz/66CPzscceM2fMmGH+8Ic/NE3TNP/617+apmma69evN71er6W+vV6vKYmDg4ODg8ORYzSOvVVbUlKixsZGZWZmKj09XdXV1TIMIzHjTEtLkyR9/etf1/Llyy337/V6E2/1+nw+SeKtXwCA4xwLzpSUFDU3N49oCwQCkqS9e/fqxBNPlNvt1muvvabZs2c7VQYAALZy9OGgo3njjTe0fPlyzZw5U5L0yCOPTEYZAABYNinBec4556ijo2MyhgYAYFxYcg8AAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAscDc54PK7y8nJlZ2crOTlZOTk5amhocHJIAAAc5WhwRiIRFRcXq6urSwMDAwoEAqqsrNTQ0JCTwwIA4BhHg9MwDJWVlcnj8SgpKUkVFRWKxWKKRqP605/+pKVLl+r888/XsmXLnCwDAADbOLrIe0tLi+rq6tTd3a3BwUHF43FlZGTopJNO0i233KJnnnlGHo/HyRIAALCVYzPO9vZ2lZaWyu/3q6enR5FIRMFgUHl5eXrllVc0c+ZMlZeXy+fz6bnnnnOqDAAAbOXYjLOjo0OGYaigoEBut1uhUEi1tbUKBoPq7e3Vq6++qs7OTpmmqSVLlui8887TrFmzjrn/trY2uVyuEW2HngMAMBamaR71mmPBWVJSosbGRmVmZio9PV3V1dUyDEN5eXlyu91avHixUlJSJElnnXWWtm3bprPPPvuY+/d6vWptbZUk+Xw+SUqcAwDgFMeCMyUlRc3NzSPaAoGApANP295+++0aHh6WaZp68803lZ2d7VQpAADYxtGHg47G4/Holltu0de+9jUNDQ3J7/crNTV1MkoBAMCSSQlOSSotLVVpaelkDQ8AwJiw5B4AABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWOBocMbjcZWXlys7O1vJycnKyclRQ0ODk0MCAOAoR4MzEomouLhYXV1dGhgYUCAQUGVlpYaGhpwcFgAAxzganIZhqKysTB6PR0lJSaqoqFAsFlNHR4d8Pp98Pp8WL17MzigAgE8NR3dHaWlpUV1dnbq7uzU4OKh4PK6MjAwtWrQosen0U089pU2bNjlZBgAAtnFsxtne3q7S0lL5/X719PQoEokoGAwqLy9vxOueeOIJXXPNNU6VAQCArRybcXZ0dMgwDBUUFMjtdisUCqm2tlbBYDDxmt27d2vnzp3Kz8+33H9bW5tcLteItkPPAQAYC9M0j3rNseAsKSlRY2OjMjMzlZ6erurqahmGMWLG+etf/1plZWVj6t/r9Sbe7vX5fJKUOAcAwCmOBWdKSoqam5tHtAUCgRHn9fX1euaZZ5wqAQAA203aAgjd3d2aMWOG5s2bN1klAABg2aQF55lnnqnNmzdP1vAAAIwJS+4BAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGCBo8EZj8dVXl6u7OxsJScnKycnRw0NDU4OCQCAoxwNzkgkouLiYnV1dWlgYECBQECVlZUaGhpyclgAABzjaHAahqGysjJ5PB4lJSWpoqJCsVhM0WhU1dXVys/P18KFC1VfX+9kGQAA2MaxbcUkqaWlRXV1deru7tbg4KDi8bgyMjLU29ur119/XS+//LKi0ajOPPNMXX311U6WAgCALRybcba3t6u0tFR+v189PT2KRCIKBoPKy8tTZmamTjjhBA0PD2twcFCzZ892qgwAAGzl2Iyzo6NDhmGooKBAbrdboVBItbW1CgaDMgxD8+bN0/z58xWNRvXII49Y7r+trU0ul2tE26HnAACMhWmaR73mWHCWlJSosbFRmZmZSk9PV3V1tQzDUF5enp5//nn19vZq27ZtikQiKiws1MUXX6xp06Ydc/9er1etra2SJJ/PJ0mJcwAAnOJYcKakpKi5uXlEWyAQkCT94Q9/0OzZs+V2uzVz5kwNDw9r//79TpUCAIBtJmUBhKKiIpmmqSVLlqigoEA33XSTZsyYMRmlAABgiaNP1R7Nwc88AQD4tGHJPQAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwNHgjMfjKi8vV3Z2tpKTk5WTk6OGhgYnhwQAwFGOBmckElFxcbG6uro0MDCgQCCgyspKDQ0NOTksAACOcTQ4DcNQWVmZPB6PkpKSVFFRoVgspmg0qjvvvFMFBQXy+Xx67bXXnCwDAADbOBqcLS0tKi4uVlZWljwejzIyMpSRkaF33nlH7e3teumllxQKhfT973/fyTIAALCNY8HZ3t6u0tJS+f1+9fT0KBKJKBgMKi8vTz09PVqwYIEkae7cuXrzzTe1b98+p0oBAMA2ju3H2dHRIcMwVFBQkNh/s7a2VsFgUGeccYZWrVqloaEhvfbaa9q9e7f6+/uVlpZ2zP23tbXJ5XKNaDv0HACAsTBN86jXHAvOkpISNTY2KjMzU+np6aqurpZhGMrLy9MZZ5yhsrIyFRUVaf78+TrzzDOVmppqqX+v16vW1lZJks/nk6TEOQAATnGZo8XqBHjttdd077336vHHHz/mew4NSoITADBRHJtxfpILL7xQ+/btU1pamh588MHJKgMAAEsmLTiff/75yRoaAIAxY8k9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU44/G4ysvLlZ2dreTkZOXk5KihocGOrgEAmFJsCc5IJKLi4mJ1dXVpYGBAgUBAlZWVGhoasqN7AACmDFuC0zAMlZWVyePxKCkpSRUVFYrFYopGoyoqKtKcOXNUU1Mz4p76+nrl5+crPz9fL7zwgh1lAADgOFsWeW9paVFdXZ26u7s1ODioeDyujIwMGYahUCik9evXa9euXYnX9/f367777tMrr7yivXv3qqioSK+++qqSkvjIFQAwtY07qdrb21VaWiq/36+enh5FIhEFg0Hl5eVJkrKysg67JxwOy+v1avr06UpLS1NmZqZ27tw53lIAAHDcuGecHR0dMgxDBQUFcrvdCoVCqq2tVTAYPOo9fX19MgwjcW4Yhvr6+nTqqace87htbW1yuVwj2g49BwBgLEzTPOq1cQdnSUmJGhsblZmZqfT0dFVXV8swjMSM80hSU1O1Z8+exHl/f79SU1Mtjev1etXa2ipJ8vl8kpQ4BwDAKeMOzpSUFDU3N49oCwQCo96zaNEi3XbbbYkHiHp7ezV37tzxlgIAgONseThoNFVVVQqHw4rFYgqHw2pqalJKSopWrFiRmCnef//9PBgEAPhUcJmjvZE7RR361ixv1QIAJgrTPAAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwgOAEAMACghMAAAsITgAALCA4AQCwwLbgjMfjKi8vV3Z2tpKTk5WTk6OGhga7ugcAYEqwLTgjkYiKi4vV1dWlgYEBBQIBVVZWamhoyK4hAACYdLYFp2EYKisrk8fjUVJSkioqKhLbhhUVFWnOnDmqqakZcc/R2gEAmKps21aspaVFdXV16u7u1uDgoOLxuDIyMmQYhkKhkNavX69du3aNuOdo7QAATFW2zDjb29tVWloqv9+vnp4eRSIRBYNB5eXlSZKysrKOeN/R2gEAmKpsmXF2dHTIMAwVFBTI7XYrFAqptrZWwWDQju6PqK2tTS6Xa0TboecAAIzFaFtV2xKcJSUlamxsVGZmptLT01VdXS3DMBIzTid4vV42sgYATDhbgjMlJUXNzc0j2gKBgB1dAwAwpdj2cNBoqqqqFA6HFYvFFA6H1dTUNGo7AABT1YQE55o1ayy1AwAwVbHkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFtgWnPF4XOXl5crOzlZycrJycnLU0NBgV/cAAEwJtgVnJBJRcXGxurq6NDAwoEAgoMrKSg0NDdk1BAAAk8624DQMQ2VlZfJ4PEpKSlJFRYVisZii0aiKioo0Z84c1dTUJF7/9ttv67zzztO5556rwsJCbd261a5SAABwjG2LvLe0tKiurk7d3d0aHBxUPB5XRkaGDMNQKBTS+vXrtWvXrsTrU1JS1NjYqNTUVL3xxhtavny5Nm7caFc5AAA4wpbgbG9vV2lpqerr6+X1ejVjxgzV1NSovb1dkpSVlXXYPampqYn/njZtmtxutx2lAADgKFuCs6OjQ4ZhqKCgQG63W6FQSLW1tQoGg5947/79++X3+3XrrbdaGrOtrU0ul2tE26HnAACMhWmaR71mS3CWlJSosbFRmZmZSk9PV3V1tQxl5KKGAAAMpUlEQVTDUF5e3icWVlVVpUsuuURLly61NKbX61Vra6skyefzSVLiHAAAp9gSnCkpKWpubh7RFggEPvG+m266STk5Obr++uvtKAMAAMfZ9nDQaKqqqhQOhxWLxRQOh9XU1KTW1latXr1aBQUF2rBhg2bPnq1169ZNRDkAAIzZhATnmjVrDmvz+Xz8jScA4FOHJfcAALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwALbgjMej6u8vFzZ2dlKTk5WTk6OGhoa7OoeAIApwbbgjEQiKi4uVldXlwYGBhQIBFRZWcl6tACA44ptwWkYhsrKyuTxeJSUlKSKigrFYjFFo1EVFRVpzpw5qqmpSbz+/fffV0FBgXw+nxYtWqQNGzbYVQoAAI6xbXeUlpYW1dXVqbu7W4ODg4rH48rIyJBhGAqFQlq/fr127dqVeH1aWpo2btwot9ut7du3q6SkRFu2bLGrHAAAHGHLjLO9vV2lpaXy+/3q6elRJBJRMBhUXl6eJCkrK+uwe9xut9xutySpv79fZ511lh2lAADgKFtmnB0dHTIMQwUFBXK73QqFQqqtrVUwGBz1vh07duiaa67RW2+9pccee8zSmG1tbXK5XCPaDj0HAGAsTNM86jVbgrOkpESNjY3KzMxUenq6qqurZRhGYsZ5NKeccoo2bdqk7du36/zzz9cll1xyzGN6vV61trZKOrAptqTEOQAATrElOFNSUtTc3DyiLRAIjHpPLBbTtGnTJEmzZs1ScnKyHaUAAOAo2x4OGk1VVZXC4bBisZjC4bCampq0ZcsWrVy5Um63W8PDw1q1atVElAIAwLhMSHCuWbPmsLbCwkK9+OKLEzE8AAC2Yck9AAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAssCU44/G4ysvLlZ2dreTkZOXk5KihocGOrgEAmFJsCc5IJKLi4mJ1dXVpYGBAgUBAlZWVGhoasqN7AACmDFuC0zAMlZWVyePxKCkpSRUVFYrFYopGoyoqKtKcOXNUU1Nz2H19fX0yDEP19fV2lAEAgONsCc6WlhYVFxcrKytLHo9HGRkZysjIkGEYCoVCuvfee494X01NjQoLC+0oAQCACTHu4Gxvb1dpaan8fr96enoUiUQUDAYTm1hnZWUd8b5t27apr69PCxYsGG8JAABMmHFvK9bR0SHDMFRQUCC3261QKKTa2loFg8FR77vjjjt0991368knnxzTuG1tbXK5XCPaDj0HAGAsTNM86rVxB2dJSYkaGxuVmZmp9PR0VVdXyzCMxIzzSF566SWlpqZq3rx5Yx7X6/WqtbVVkuTz+SQpcQ4AgFPGHZwpKSlqbm4e0RYIBEa9Z+vWrerq6tLSpUu1bds2nXTSSZo3b57y8/PHWw4AAI4ad3B+kqqqKoXDYcViMYXDYTU1Ncnv98vv90uS7rrrLuXk5BCaAIBPBceDc82aNaNev+uuu5wuAQAA27DkHgAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYQHACAGABwQkAgAUEJwAAFhCcAABYYFtwxuNxlZeXKzs7W8nJycrJyVFDQ4Nd3QMAMCXYFpyRSETFxcXq6urSwMCAAoGAKisrNTQ0ZNcQAABMOtuC0zAMlZWVyePxKCkpSRUVFYrFYopGoyoqKtKcOXNUU1Mz4p4TTzxRPp9PPp9Pq1evtqsUAAAcY9vuKC0tLaqrq1N3d7cGBwcVj8eVkZEhwzAUCoW0fv167dq1a8Q9J598MptPAwA+VWyZcba3t6u0tFR+v189PT2KRCIKBoPKy8uTJGVlZR3xvt27d8vr9erb3/62tm/fbkcpAAA4ypYZZ0dHhwzDUEFBgdxut0KhkGpraxUMBke9b+fOnUpLS9OGDRtUVVVlafbZ1tYml8s1ou3QcwAAxsI0zaNesyU4S0pK1NjYqMzMTKWnp6u6ulqGYSRmnEeTlpYmSfr617+u5cuXWxrT6/Umgtbn80kSb/sCABxnS3CmpKSoubl5RFsgEBj1nr179+rEE0+U2+3Wa6+9ptmzZ9tRCgAAjrLt4aDRVFVVKRwOKxaLKRwOq6mpSW+88YaWL1+umTNnSpIeeeSRiSgFAIBxmZDgXLNmzWFt55xzjjo6OiZieAAAbMOSewAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWEBwAgBgAcEJAIAFBCcAABYQnAAAWGBLcMbjcZWXlys7O1vJycnKyclRQ0ODHV0DADCl2BKckUhExcXF6urq0sDAgAKBgCorKzU0NGRH9wAATBm2BKdhGCorK5PH41FSUpIqKioUi8UUjUZVVFSkOXPmqKamZsQ9f/rTn7R06VKdf/75WrZsmR1lAADgOFsWeW9paVFdXZ26u7s1ODioeDyujIwMGYahUCik9evXa9euXYnXDw0N6ZZbbtEzzzwjj8djRwkAAEyIcc8429vbVVpaKr/fr56eHkUiEQWDwcQm1llZWYfd88orr2jmzJkqLy+Xz+fTc889N94yAACYEOOecXZ0dMgwDBUUFMjtdisUCqm2tlbBYPCo9/T29urVV19VZ2enTNPUkiVLdN5552nWrFnHPG5bW5tcLteItkPPAQAYC9M0j3pt3MFZUlKixsZGZWZmKj09XdXV1TIMIzHjPJLZs2dr8eLFSklJkSSdddZZ2rZtm84+++xjHtfr9aq1tVWS5PP5JClxDgCAU8YdnCkpKWpubh7RFggERr1n8eLFuv322zU8PCzTNPXmm28qOzt7vKUAAOA4Wx4OGk1VVZXC4bBisZjC4bCamprk8Xh0yy236Gtf+5qGhobk9/uVmprqdCkAAIybyxztjdwp6tC3ZnmrFgAwUVhyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAAC2wLzng8rvLycmVnZys5OVk5OTlqaGiwq3sAAKYE24IzEomouLhYXV1dGhgYUCAQUGVlpYaGhuwaAgCASWdbcBqGobKyMnk8HiUlJamiokKxWEzRaFRFRUWaM2eOampqEq9vb2+Xz+eTz+fT4sWLWeQdAPCpYNvuKC0tLaqrq1N3d7cGBwcVj8eVkZEhwzAUCoW0fv167dq1K/H6c845J7Eo+1NPPaVNmzbZVQoAAI6xZcbZ3t6u0tJS+f1+9fT0KBKJKBgMJjazzsrKGvX+J554Qtdcc40dpQAA4ChbgrOjo0OGYaigoEBut1uhUEi1tbWJ4BzN7t27tXPnTuXn59tRCgAAjrLlrdqSkhI1NjYqMzNT6enpqq6ulmEYxxScv/71r1VWVmZ5zLa2NrlcrhFth54DADAWo21VbUtwpqSkqLm5eURbIBA4pnvr6+v1zDPPWB7T6/WykTUAYMLZ9nDQaKqqqhQOhxWLxRQOh9XU1CRJ6u7u1owZMzRv3ryJKAMAgHGbkOBcs2bNEdvPPPNMbd68eSJKAADAFiy5BwCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAWEJwAAFhAcAIAYAHBCQCABQQnAAAW2Bac8Xhc5eXlys7OVnJysnJyctTQ0GBX9wAATAm2BWckElFxcbG6uro0MDCgQCCgyspKDQ0N2TUEAACTzrbgNAxDZWVl8ng8SkpKUkVFhWKxmKLRqIqKijRnzhzV1NQkXm+apqqrq5Wfn6+FCxeqvr7erlIAAHCMbbujtLS0qK6uTt3d3RocHFQ8HldGRoYMw1AoFNL69eu1a9euxOtff/11vf7663r55ZcVjUZ15pln6uqrr7arHAAAHGHLjLO9vV2lpaXy+/3q6elRJBJRMBhUXl6eJCkrK+uwezIzM3XCCSdoeHhYg4ODmj17th2lAADgKFtmnB0dHTIMQwUFBXK73QqFQqqtrVUwGDzqPYZhaN68eZo/f76i0ageeeSRYx4vNzdXq1atksvlGtF+6DkAAGNhmuZRr9kSnCUlJWpsbFRmZqbS09NVXV0twzASM84jef7559Xb26tt27YpEomosLBQF198saZNm/aJ4/3sZz/Tz372MztKBwDAEluCMyUlRc3NzSPaAoHAJ943e/Zsud1uzZw5U8PDw9q/f78d5QAA4BiXOdp81CZVVVUKh8OKxWI6/fTT1dTUpP379+vaa6/V//zP/2hoaEjXXHON/H6/06UAADAuExKcAAAcL1hyDwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwAKCEwAACwhOAAAsIDgBALCA4AQAwIL/D1Dqf/JuLdNzAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from qiskit.aqua.components.oracles import LogicExpressionOracle\n", - "\n", - "oracle = LogicExpressionOracle(expression=sat_instance_cnf)\n", - "oracle.circuit.draw(output='mpl', scale=0.3)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/optimization/3sat2-3.cnf b/community/optimization/3sat2-3.cnf deleted file mode 100644 index 2d2944119..000000000 --- a/community/optimization/3sat2-3.cnf +++ /dev/null @@ -1,5 +0,0 @@ -c This is an example DIMACS 3-sat file with unique satisfying solution: 1 2 0 -p cnf 2 3 -1 2 0 -1 -2 0 --1 2 0 diff --git a/community/optimization/README.md b/community/optimization/README.md deleted file mode 100644 index 5106864fd..000000000 --- a/community/optimization/README.md +++ /dev/null @@ -1,19 +0,0 @@ -# Qiskit Aqua Optimization Tutorials, Samples and Input Files - -Qiskit Aqua Optimization is a set of tools, algorithms and software for use with quantum computers to -carry out research and investigate how to take advantage of quantum computing power to solve optimization -problems. - -Qiskit Aqua Optimization translates optimization-specific problems into inputs -for a quantum algorithm residing in Qiskit Aqua, which in turn uses [Qiskit](https://www.qiskit.org/) for the relevant -quantum computation. - -This folder contains some Jupyter Notebook examples. There are Python code files too. - -For more detail see the main [index](../aqua/index.ipynb#optimization) - -## Input files - -The folder [input_files](input_files) contains a number of example JSON input files that can be loaded -and run by the Qiskit Aqua [GUI](https://github.com/Qiskit/aqua/README.md#gui) or by the Qiskit Aqua -[command line](https://github.com/Qiskit/aqua/README.md#command-line) tool. diff --git a/community/optimization/clique.ipynb b/community/optimization/clique.ipynb deleted file mode 100644 index 802bbeb8e..000000000 --- a/community/optimization/clique.ipynb +++ /dev/null @@ -1,319 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Using Qiskit Aqua for clique problems*_\n", - "\n", - "This Qiskit Aqua Optimization notebook demonstrates how to use the VQE quantum algorithm to compute the clique of a given graph. \n", - "\n", - "The problem is defined as follows. A clique in a graph $G$ is a complete subgraph of $G$. That is, it is a subset $K$ of the vertices such that every two vertices in $K$ are the two endpoints of an edge in $G$. A maximal clique is a clique to which no more vertices can be added. A maximum clique is a clique that includes the largest possible number of vertices. \n", - "\n", - "We will go through three examples to show:\n", - "1. How to run the optimization using the declarative approach\n", - "2. How to run the optimization using the programmatic approach\n", - "3. How how to run the optimization with the VQE.\n", - "\n", - "Note that the solution may not be unique." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### The problem and a brute-force method." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from qiskit import BasicAer\n", - "\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import clique\n", - "from qiskit.aqua.algorithms import ExactEigensolver" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "first, let us have a look at the graph, which is in the adjacent matrix form." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 0. 4. 5. 3. -5.]\n", - " [ 4. 0. 7. 0. 6.]\n", - " [ 5. 7. 0. -4. 0.]\n", - " [ 3. 0. -4. 0. 8.]\n", - " [-5. 6. 0. 8. 0.]]\n" - ] - } - ], - "source": [ - "K = 3 # K means the size of the clique\n", - "np.random.seed(100)\n", - "num_nodes = 5\n", - "w = clique.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", - "print(w) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let us try a brute-force method. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is not in the clique) or 1 (meaning the vertex is in the clique). We print the binary assignment that satisfies the definition of the clique (Note the size is specified as K)." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [1, 0, 0, 1, 1]\n" - ] - } - ], - "source": [ - "def brute_force():\n", - " # brute-force way: try every possible assignment!\n", - " def bitfield(n, L):\n", - " result = np.binary_repr(n, L)\n", - " return [int(digit) for digit in result]\n", - "\n", - " L = num_nodes # length of the bitstring that represents the assignment\n", - " max = 2**L\n", - " has_sol = False\n", - " for i in range(max):\n", - " cur = bitfield(i, L)\n", - " cur_v = clique.satisfy_or_not(np.array(cur), w, K)\n", - " if cur_v:\n", - " has_sol = True\n", - " break\n", - " return has_sol, cur\n", - "\n", - "has_sol, sol = brute_force()\n", - "if has_sol:\n", - " print(\"Solution is \", sol)\n", - "else:\n", - " print(\"No solution found for K=\", K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part I: Run the optimization using the declarative approach\n", - "\n", - "Here the steps are:\n", - "* Create the qubit operator i.e. Ising Hamiltonian, using clique ising translator\n", - "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", - "* Run the algorithm and get the result\n", - "* Use the result with the clique object to determine a solution" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [1. 0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "qubit_op, offset = clique.get_clique_qubitops(w, K)\n", - "\n", - "algo_input = EnergyInput(qubit_op)\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "result = run_algorithm(params, algo_input)\n", - "\n", - "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", - "ising_sol = clique.get_graph_solution(x)\n", - "if clique.satisfy_or_not(ising_sol, w, K):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution found for K=\", K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part II: Run the optimization using the programmatic approach\n", - "\n", - "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [1. 0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "# We will use the qubit_op and offset from above and not re-compute them here\n", - "\n", - "algo = ExactEigensolver(qubit_op)\n", - "result = algo.run()\n", - "\n", - "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", - "ising_sol = clique.get_graph_solution(x)\n", - "if clique.satisfy_or_not(ising_sol, w, K):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution found for K=\", K) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part III: Run the optimization with the VQE\n", - "\n", - "##### Declarative\n", - "\n", - "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [1. 0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': {'name': 'VQE'},\n", - " 'optimizer': {'name': 'COBYLA'},\n", - " 'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}\n", - "}\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", - "ising_sol = clique.get_graph_solution(x)\n", - "\n", - "if clique.satisfy_or_not(ising_sol, w, K):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution found for K=\", K)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Programmatic\n", - "\n", - "We can create the objects directly ourselves too and run VQE for the result" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [1. 0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "from qiskit.aqua import aqua_globals\n", - "from qiskit.aqua.algorithms import VQE\n", - "from qiskit.aqua.components.optimizers import COBYLA\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "aqua_globals.random_seed = 10598\n", - "\n", - "optimizer = COBYLA()\n", - "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubit_op, var_form, optimizer)\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = vqe.run(backend)\n", - "\n", - "x = clique.sample_most_likely(len(w), result['eigvecs'][0])\n", - "ising_sol = clique.get_graph_solution(x)\n", - "\n", - "if clique.satisfy_or_not(ising_sol, w, K):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution found for K=\", K)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/optimization/exact_cover.ipynb b/community/optimization/exact_cover.ipynb deleted file mode 100644 index 172b6110a..000000000 --- a/community/optimization/exact_cover.ipynb +++ /dev/null @@ -1,299 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Using Qiskit Aqua for exact cover problems*_\n", - "\n", - "In mathematics, given a collection $S$ of subsets of a set $X$.\n", - "An exact cover is a subcollection $S_{ec} \\subseteq S$ such that each element in $X$ is contained in exactly one subset $\\in S_{ec}$. \n", - "\n", - "We will go through three examples to show:\n", - "1. How to run the optimization using the declarative approach\n", - "2. How to run the optimization using the programmatic approach\n", - "3. How how to run the optimization with the VQE." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### The problem and the brute-force method.\n", - "\n", - "First, let us take a look at the list of subsets." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[2, 3, 4], [1, 2], [3, 4], [1, 2, 3]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import json\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import exact_cover\n", - "from qiskit.aqua.algorithms import ExactEigensolver\n", - "\n", - "input_file = 'sample.exactcover'\n", - "with open(input_file) as f:\n", - " list_of_subsets = json.load(f)\n", - " print(list_of_subsets)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Then we apply the brute-force method. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a subset is either 0 (meaning the subset is not in the cover) or 1 (meaning the subset is in the cover). We print the binary assignment that satisfies the definition of the exact cover." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [0, 1, 1, 0]\n" - ] - } - ], - "source": [ - "def brute_force():\n", - " # brute-force way: try every possible assignment!\n", - " has_sol = False\n", - "\n", - " def bitfield(n, L):\n", - " result = np.binary_repr(n, L)\n", - " return [int(digit) for digit in result] # [2:] to chop off the \"0b\" part\n", - "\n", - " L = len(list_of_subsets)\n", - " max = 2**L\n", - " for i in range(max):\n", - " cur = bitfield(i, L)\n", - " cur_v = exact_cover.check_solution_satisfiability(cur, list_of_subsets)\n", - " if cur_v:\n", - " has_sol = True\n", - " break\n", - " return has_sol, cur\n", - "\n", - "has_sol, cur = brute_force()\n", - "if has_sol:\n", - " print(\"Solution is\", cur)\n", - "else:\n", - " print(\"No solution is found\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part I: Run the optimization using the declarative approach\n", - "\n", - "Here the steps are:\n", - "* Create the qubit operator i.e. Ising Hamiltonian, using `exact_cover` ising translator\n", - "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", - "* Run the algorithm and get the result\n", - "* Use the result with the `exact_cover` object to determine a solution" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "qubit_op, offset = exact_cover.get_exact_cover_qubitops(list_of_subsets)\n", - "algo_input = EnergyInput(qubit_op)\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "result = run_algorithm(params, algo_input)\n", - "\n", - "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exact_cover.get_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [0, 1, 1, 0])\n", - "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution is found\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part II: Run the optimization using the programmatic approach\n", - "\n", - "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", - "result = algo.run()\n", - "\n", - "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exact_cover.get_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [0, 1, 1, 0])\n", - "\n", - "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution is found\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part III: Run the optimization with the VQE\n", - "\n", - "##### Declarative\n", - "\n", - "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': {'name': 'VQE'},\n", - " 'optimizer': {'name': 'COBYLA'},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 5}\n", - "}\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exact_cover.get_solution(x)\n", - "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution is found\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Programmatic\n", - "\n", - "We can create the objects directly ourselves too and run VQE for the result" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Solution is [0. 1. 1. 0.]\n" - ] - } - ], - "source": [ - "from qiskit.aqua import aqua_globals\n", - "from qiskit.aqua.algorithms import VQE\n", - "from qiskit.aqua.components.optimizers import COBYLA\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "aqua_globals.random_seed = 10598\n", - "\n", - "optimizer = COBYLA()\n", - "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubit_op, var_form, optimizer)\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = vqe.run(backend)\n", - "\n", - "x = exact_cover.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = exact_cover.get_solution(x)\n", - "if exact_cover.check_solution_satisfiability(ising_sol, list_of_subsets):\n", - " print(\"Solution is\", ising_sol)\n", - "else:\n", - " print(\"No solution is found\")" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/optimization/graph_partition.ipynb b/community/optimization/graph_partition.ipynb deleted file mode 100644 index e64c44514..000000000 --- a/community/optimization/graph_partition.ipynb +++ /dev/null @@ -1,282 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Using Qiskit Aqua for graph partition problems*_\n", - "\n", - "Here we consider a simplified graph partition problem.\n", - "Consider a graph $G = (V, E)$, where $V$ denotes the set of n vertices and $E$ the set of edges. \n", - "The objective of graph partition is to partition $G$ into two sets of the same size (let us assume we have even number of vertices), \n", - "while minimizing the capacity of the edges across the two sets.\n", - "\n", - "We will go through three examples to show:\n", - "1. How to run the optimization using the declarative approach\n", - "2. How to run the optimization using the programmatic approach\n", - "3. How how to run the optimization with the VQE.\n", - "\n", - "Note the objective_value below is defined as the the number of crossing edges. The goal is to minimize this value.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### The problem and the brute-force method\n", - "\n", - "The graph involved in our example is as follows. The graph is in the adjacent matrix form." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 0. 4. 5. 3.]\n", - " [ 4. 0. -5. 7.]\n", - " [ 5. -5. 0. 0.]\n", - " [ 3. 7. 0. 0.]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import graph_partition\n", - "from qiskit.aqua.algorithms import ExactEigensolver\n", - "\n", - "np.random.seed(100)\n", - "num_nodes = 4\n", - "w = graph_partition.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", - "print(w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is in the first partition) or 1 (meaning the vertex is in the second partition). We print the binary assignment that satisfies the definition of the graph partition and corresponds to the minimial number of crossing edges." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Objective value computed by the brute-force method is 3\n" - ] - } - ], - "source": [ - "def brute_force():\n", - " # use the brute-force way to generate the oracle\n", - " def bitfield(n, L):\n", - " result = np.binary_repr(n, L)\n", - " return [int(digit) for digit in result] # [2:] to chop off the \"0b\" part\n", - "\n", - " L = num_nodes\n", - " max = 2**L\n", - " minimal_v = np.inf\n", - " for i in range(max):\n", - " cur = bitfield(i, L)\n", - "\n", - " how_many_nonzero = np.count_nonzero(cur)\n", - " if how_many_nonzero * 2 != L: # not balanced\n", - " continue\n", - "\n", - " cur_v = graph_partition.objective_value(np.array(cur), w)\n", - " if cur_v < minimal_v:\n", - " minimal_v = cur_v\n", - " return minimal_v\n", - "\n", - "sol = brute_force()\n", - "print(\"Objective value computed by the brute-force method is\", sol)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part I: Run the optimization using the declarative approach" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Objective value computed by ExactEigensolver is 3.0\n" - ] - } - ], - "source": [ - "qubit_op, offset = graph_partition.get_graph_partition_qubitops(w)\n", - "algo_input = EnergyInput(qubit_op)\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "result = run_algorithm(params, algo_input)\n", - "\n", - "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", - "# check against the oracle\n", - "ising_sol = graph_partition.get_graph_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [0, 1, 0, 1])\n", - "print(\"Objective value computed by ExactEigensolver is\", graph_partition.objective_value(x, w))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part II: Run the optimization using the programmatic approach" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Objective value computed by the ExactEigensolver is 3.0\n" - ] - } - ], - "source": [ - "algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])\n", - "result = algo.run()\n", - "\n", - "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", - "# check against the oracle\n", - "ising_sol = graph_partition.get_graph_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [0, 1, 0, 1])\n", - "print(\"Objective value computed by the ExactEigensolver is\", graph_partition.objective_value(x, w))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part III: Run the optimization with the VQE\n", - "\n", - "##### Declarative\n", - "\n", - "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Objective value computed by VQE is 3.0\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': {'name': 'VQE'},\n", - " 'optimizer': {'name': 'COBYLA'},\n", - " 'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}\n", - "}\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", - "# check against the oracle\n", - "ising_sol = graph_partition.get_graph_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [1, 0, 1, 0])\n", - "print(\"Objective value computed by VQE is\", graph_partition.objective_value(x, w))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Programmatic\n", - "\n", - "We can create the objects directly ourselves too and run VQE for the result." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Objective value computed by VQE is 3.0\n" - ] - } - ], - "source": [ - "from qiskit.aqua import aqua_globals\n", - "from qiskit.aqua.algorithms import VQE\n", - "from qiskit.aqua.components.optimizers import COBYLA\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "aqua_globals.random_seed = 10598\n", - "\n", - "optimizer = COBYLA()\n", - "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubit_op, var_form, optimizer)\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = vqe.run(backend)\n", - "\n", - "x = graph_partition.sample_most_likely(result['eigvecs'][0])\n", - "# check against the oracle\n", - "ising_sol = graph_partition.get_graph_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [1, 0, 1, 0])\n", - "print(\"Objective value computed by VQE is\", graph_partition.objective_value(x, w))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/optimization/grover.ipynb b/community/optimization/grover.ipynb deleted file mode 100644 index 0dba7d671..000000000 --- a/community/optimization/grover.ipynb +++ /dev/null @@ -1,332 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# _*Using Grover's Algorithm to Perform Quantum Search*_\n", - "\n", - "This notebook demonstrates how to use the `Qiskit Aqua` library `Grover` search algorithm and process the result." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pylab\n", - "import numpy as np\n", - "from qiskit import BasicAer\n", - "from qiskit.tools.visualization import plot_histogram\n", - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.algorithms import Grover\n", - "from qiskit.aqua.components.oracles import LogicalExpressionOracle, TruthTableOracle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Use Quantum Search to Find Solutions to 3-SAT Problems\n", - "\n", - "Let's look at an example 3-Satisfiability (3-SAT) problem and walkthrough how we can use Quantum Search to find its satisfying solutions. 3-SAT problems are usually expressed in [Conjunctive Normal Forms (CNF)](https://en.wikipedia.org/wiki/Conjunctive_normal_form) and written in the [DIMACS-CNF](https://www.satcompetition.org/2009/format-benchmarks2009.html) format. For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "input_3sat_instance = '''\n", - "c example DIMACS-CNF 3-SAT\n", - "p cnf 3 5\n", - "-1 -2 -3 0\n", - "1 -2 3 0\n", - "1 2 -3 0\n", - "1 -2 -3 0\n", - "-1 2 3 0\n", - "'''" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The CNF of this 3-SAT instance contains 3 variables and 5 clauses:\n", - "\n", - "$(\\neg v_1 \\vee \\neg v_2 \\vee \\neg v_3) \\wedge (v_1 \\vee \\neg v_2 \\vee v_3) \\wedge (v_1 \\vee v_2 \\vee \\neg v_3) \\wedge (v_1 \\vee \\neg v_2 \\vee \\neg v_3) \\wedge (\\neg v_1 \\vee v_2 \\vee v_3)$\n", - "\n", - "It can be verified that this 3-SAT problem instance has three satisfying solutions:\n", - "\n", - "$(v_1, v_2, v_3) = (T, F, T)$ or $(F, F, F)$ or $(T, T, F)$\n", - "\n", - "Or, expressed using the DIMACS notation:\n", - "\n", - "`1 -2 3`, or `-1 -2 -3`, or `1 2 -3`.\n", - "\n", - "With this example problem input, we then create the corresponding `oracle` for our `Grover` search. In particular, we use the `LogicalExpressionOracle` component provided by Aqua, which supports parsing DIMACS-CNF format strings and constructing the corresponding oracle circuit." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "oracle = LogicalExpressionOracle(input_3sat_instance)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `oracle` can now be used to create an Grover instance:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "grover = Grover(oracle)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can then configure the backend and run the Grover instance to get the result:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1, -2, 3]\n" - ] - } - ], - "source": [ - "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024)\n", - "result = grover.run(quantum_instance)\n", - "print(result['result'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As seen above, a satisfying solution to the specified 3-SAT problem is obtained. And it is indeed one of the three satisfying solutions.\n", - "\n", - "Since we used the `'qasm_simulator'`, the complete measurement result is also returned, as shown in the plot below, where it can be seen that the binary strings `000`, `011`, and `101` (note the bit order in each string), corresponding to the three satisfying solutions all have high probabilities associated with them." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt8VdWZ//HPY7hoEJDQlCZiQITGgEojeKFKsIoVa62OUrXjtZ3WUaut4zjaOh0VW3WqtdXpryqltd7GqVqotajVoShBoV4IRYEY0XARiBSBIsMtJH1+f6yd9BCTkLOTcyPf9+t1Xpyz9zqbZ59zsp+91l5rbXN3REREJDn7ZDoAERGRXKQEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjE0CPTAWTSwIEDvaSkJNNhiIhIFvnzn//8obsX7qlct06gJSUlzJ49O9NhiIhIFikoKFjZkXJqwhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJIewI1syvMbLmZ7TCzBWY2vp2yE8xsnpltMLPtZva2mV3bosw3zGyumW0ys7+a2Ytmdnzq90RERLqztCZQMzsXuAe4DSgH5gHPmVlb9xT7P+C/gApgJPADYIqZXZFQ5gTgceBE4BigBnjezEakYh9EREQAzN3T95+ZvQq86e7fSFi2DPiNu3+3g9uYAex096+0sd6AOuBWd/9pe9sqLy933c5MREQSFRQULHD3sXsql7YaqJn1AsYAL7RY9QLw2Q5uozwqO6edYr2AfYFNMcIUERHpkHTeUPsTQB6wrsXydcDE9t5oZquBQkK8U9z9/naK/4DQ9Pt0G9u6FLgUoKioiKqqKgCKi4vJz8/n3XffBaB///4MGzaMhQsXApCXl8fo0aOpqalh69atAJSVlbFx40bWrQu7NHjwYHr16kVtbS0AAwYMoKSkhEWLFgHQs2dPDj/8cKqrq9m+fTsAI0eOZP369axfvx6AIUOGYGasWLECgIEDB1JUVMTixYsB6N27N6NGjWLJkiXs3LkTgMMOO4y6ujo2bNgAwNChQ3F3Vq4M94QtLCyksLCQpUuXArDffvtRVlbGW2+9xa5duwAYPXo0q1atYtOmcN4xbNgw6uvrWb16NQCDBg2ioKCA6upqAPr06UNpaSmLFi2isbERgPLycmpra9m8eTMAw4cPZ9u2baxdu5amz7tfv37U1NQA0LdvX0aMGMHChQtxd8yM8vJyli1bxpYtWwAoLS3lo48+oq6uTt+Tvid9T/qe0vI9dVTamnDNrBhYA0xw98qE5TcC57t7aTvvPRjYHzgW+CHwbXd/pJVy3wa+D0x099f2FJOacEVEpKWONuGmswb6IdAIDGqxfBDwQXtvdPfl0dO3zGwQcDOwWwI1s6sJyfPUjiRPERGRzkjbNVB3rwcWACe3WHUyoTduR+0D9E5cYGbXEJLnae7+cmfiFBER6Yh01kABfgw8YmavAa8AlwHFwP0AZvYwgLtfFL2+ClhOGJoCYTjLtcC9TRs0s38DbgUuAN4xs09Fq7a7++ZU75CIiHRPaU2g7v64mQ0EvgcUAYuBL7j7yqhIy/GgeYRrnkOBBuA94DtECTfyTaAnYSxoooeAS7owfBERkWZpHQeabdSJSEREWsq6caAiItlg1qxZHH300YwZM4a77777Y+t/9rOfceyxx3L88cdz5pln8v777zevu+mmmxg3bhzHHHMM3/nOd2iqgJx++ukcffTRVFRUUFFR0Tw8Q/ZuSqAi0m00NjZy3XXX8cQTTzB//nymT5/O22+/vVuZI444gtmzZ/Pyyy/zpS99iZtuugmAV199lVdffZWXX36ZefPmUVVVxSuvvNL8vqlTp1JZWUllZSWFhYVp3S/JDCXQTurqs9lt27Zx7rnncswxxzBu3DimTJmSzt0R2astWLCAgw8+mKFDh9KrVy/OOussnnvuud3KjB8/nvz8fADGjh3bPHGBmbFz507q6+vZuXMnDQ0NSpTdnBJoJ6TqbPbKK6/k1VdfZc6cObz66qv87//+b9r3TWRvVFdXx4EHHtj8uri4uHlWntY8+uijTJwYJko7+uijOf744ykrK6OsrIwTTzyR0tK/z/9y5ZVXUlFRwZ133kl37lvSnSiBdkIqzmbz8/MZPz7c4a1Xr14cccQRze8RkfR54oknWLhwIVdddRUAtbW1vPPOOyxevJglS5ZQWVnJ/PnzgdB8+8orr/DMM88wf/58Hn+85aAA2RspgXZCKs9mATZv3szzzz/PhAkTUrMDIt1MUVERa9asaX69du1aioqKPlbupZde4q677uKxxx6jd+8wb8vMmTMZO3Ys+++/P/vvvz8TJ07k9ddfB8LfPoT5aCdPntw8x7bs3ZRA0ySZs1mAhoYGvv71r3PppZcydOjQDEUtsnc58sgjqa2tZeXKldTX1zNjxgwmTZq0W5k333yTa665hscee2y3a5yDBw9m3rx5NDQ0sGvXLubNm8enP/1pGhoamic037VrF88//zxlZWVp3S/JjHTPRLRXSfZsdubMma2ezQLNZ7Pjxo0D4Oqrr+aQQw7h8ssvT8OeiHQPPXr04I477mDy5Mk0NjZy/vnnU1ZWxm233UZ5eTmnnnoqN910E1u3buWrX/0qEBLnY489xhlnnMHcuXM57rjjMDNOOukkJk2axNatW5k8eTK7du2isbGRCRMmcNFFF2V4TyUdNJFCJyZSaGho4KijjuKpp56iqKiIk046iZ///Oe7nX2++eabXHLJJTz55JMccsghzctnzJjBI488wpNPPom78+Uvf5nLLruMSZMmceutt1JTU8ODDz7IPvuokUBEJJ00kUIaJJ7NHnvssZx55pnNZ7NNnYkSz2YrKir4x3/8RwDOOOMMhg4dynHHHcf48eMZNWoUkyZNYs2aNdx1113U1NRwwgknUFFRwcMPP5zJ3RQRkVaoBqqp/EREJIFqoCJZLO4EHHPnzm2eLq6iooKioiKeeeYZAKZNm8aYMWMoKCho7tQiIqmjGqhqoJJmjY2NHHXUUcyYMYPi4mJOOukkpk2bxqGHHtpcZu7cuYwZM4b8/HweeOABXn75ZR544IHdtrNp0ybGjBnD4sWLyc/P58033+SAAw7g9NNPZ/bs2QwcODDduyayV1ANVCRLdWYCjkS/+93vmDhxYnO5I444gpKSlncEFJFUUQIVSbPOTMCR6Le//S1nn312SmIUkT3TOFCRLNY0AcfMmTN3W/7BBx+wdOlSTjzxxAxFJiJKoCJp1pkJOJo89dRTnHbaafTs2TPl8YpI69SEK5JmnZlOrsn06dPVfCuSYUqgImnWmQk4AFatWsXatWs57rjjdtvu1KlTGTVqFGvXrmX8+PF861vfSut+iXQ3GsaiYSwiIpKgo8NYdA1URLqd6x4akLJt33HxppRtW7KLmnBFRERiUAIVERGJQU24XSCVzUGgJiERkWykGqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKBxoCIZovHDIrlNNVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJIa0J1Azu8LMlpvZDjNbYGbj2yl7lpm9YGbrzWyLmb1qZl9qp/xXzMzNbGZqohcREQnSmkDN7FzgHuA2oByYBzxnZiVtvGUCMBs4LSr/LPDb1pKumQ0D7gTmpiB0ERGR3aS7BnoN8KC7T3P3ane/CqgDLm+tsLt/293/091fc/d33X0KsAA4M7GcmfUE/gf4d6A2tbsgIiKSxgRqZr2AMcALLVa9AHw2iU31BTa1WHYrsMLdH4ofoYiISMf1SOP/9QkgD1jXYvk6YGJHNmBm3wQGA48kLPs8cA7wmQ5u41LgUoCioiKqqqoAKC4uJj8/n3fffReA/v37M2zYMBYuXAhAXl4eo0ePpqamhq1btwJQVlbGxo0bgQEd+a9jq6+vZ/HixQD07t2bUaNGsWTJEnbu3AnAYYcdRl1dHRs2bABg6NChuDsrV64EoLCwkMLCQpYuXQrAfvvtR1lZGW+99Ra7du0CYPTo0axatYpNm8K5ybBhw6ivr2f16tUADBo0iIKCAqqrqwHo06cPpaWlLFq0iMbGRgDKy8upra1l8+bNAAwfPpxt27axdu1aIHze/fr1o6amBoC+ffsyYsQIFi5ciLtjZpSXl7Ns2TK2bNkCQGlpKR999BF1dXVA576ndevCT2/w4MH06tWL2trQWDFgwABKSkpYtGgRAD179uTwww+nurqa7du3AzBy5EjWr1/P+vXrARgyZAhmxooVKwAYOHAgRUVFSX1PcFJyP4QkVVVV6Xtq43tKpaqqKv09ZeDvqSuPex1l7t7hwp1hZsXAGmCCu1cmLL8RON/dS/fw/rMJifNcd/99tKwQWAR8xd3nRMseBD7h7l/cU0zl5eU+e/bsmHv0d9c9lNoEesfFLSvcsjfQ7yZzUvnZ63PPfQUFBQvcfeyeyqWzBvoh0AgMarF8EPBBe280s8nAw8BFTckzMgooAv5oZk3L9one0wCMcveazocuIiKyu7RdA3X3ekIHoJNbrDqZ0Bu3VWZ2DqHmeYm7/6bF6teBwwnNt02Ppwk9cT8DLO+S4EVERFpIZw0U4MfAI2b2GvAKcBlQDNwPYGYPA7j7RdHr8wjJ81qg0sw+FW2n3t03uvtWYHHif2BmfwV6uPtuy0VERLpSWhOouz9uZgOB7xGaXhcDX3D3lVGRluNBLyPEeHf0aDIHOCG10YqIiLQt3TVQ3P1e4N421p3Q3usObv+SOHGJiIgkQ3PhioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEkFQCNbNzovtvNr2+0cxWm9nzZpbam+yJiIhkkWRroDc3PTGzI4EbgP8CegJ3dV1YIiIi2S3ZuXCHAE331/wH4Cl3v8PMXgCe79LIREREsliyNdAdQN/o+UnArOj55oTlIiIie71ka6BzgbvM7GVgLDA5Wv5p4P2uDExERCSbJVsDvRKoJyTOy9x9bbT8VNSEKyIi3UhSNVB3Xw2c3sryq7ssIhERkRyQ9DhQM9vXzCab2fVmdkC07BAzK+j68ERERLJTUjVQMxtO6Di0P3AA8CTwV+Dy6PXXuzpAERGRbJRsDfRu4AVgELA9YfnTwOe6KigREZFsl2wv3M8Cx7p7o5klLl8FFHdZVCIiIlkuzly4PVtZVkIYCyoiItItJJtAXwCuSXjtZtYPmAI802VRiYiIZLlkm3CvAV40sxpgX+BxYDiwDjini2MTERHJWsmOA11rZp8BvgIcSajB/hz4b3ff3u6bRURE9iLJ1kCJEuUD0UNERKRb2mMCNbOzgN+7+67oeZvcfUaXRSYiIpLFOlID/Q3wKeAv0fO2OJDXFUGJiIhkuz0mUHffp7XnIiIi3VlSCdHMKszsY0nXzPLMrKLrwhIREcluydYoXwRamzT+gGidiIhIt5BsAjXCtc6WBgJbOx+OiIhIbujQMBYzezp66sCjZrYzYXUecBgwr4tjExERyVodHQe6IfrXgE3sfieWeuBlYFoXxiUiIpLVOpRA3f2rAGa2AviRu6u5VkREurVkp/KbkqpAREREcklHZiJ6E5jg7pvM7C1a70QEgLsf0ZXBiYiIZKuO1ECnA02dhtqbiUhERKTb6MhMRFNaey4iItKdaWo+ERGRGDpyDbTd656JdA1URES6i47ejUVEREQSJHUNVERERAJdAxUREYlB40BFRERi0DhQERGRGDQOVEREJIak5sJtYmaHAGXRy2p3f6/rQhIREcl+SSVQMxsI/BL4EvC3vy+2mcDX3H1Dm28WERHZiyTbC/cXwHBgPLBv9KgADkb3AxURkW4k2SbcU4CT3H1+wrJXzOyfgVldF5aIiEh2S7YGuh5o7Wba2wA134qISLeRbAK9BbjbzA5sWhA9vytaJyIi0i3EmUz+YGCFma2JXh8I7AA+SbhGKiIistdL+2TyZnYF8G9AEbAEuNrd57ZRtohQuz0SGAE84u6XtFKuH/ADYDIwEHgfuMHdn+jK2EVERJqkdTJ5MzsXuAe4Ang5+vc5Mxvp7qtaeUtv4EPgP4FL29hmT+B/gY3AOcBqYDB/nz1JRESky8WaSKETrgEedPemIS9Xmdkk4HLguy0Lu/sK4FsAZja5jW1+FSgExrt7fbRsRRfGLCIi8jFJdSIys15mNsXM3jGzHWbWmPjY03uBMcALLVa9AHw2ubB3cybwCvBTM/vAzJaa2c1RzVRERCQlkq2Bfh84F7gd+AnhWuZQ4DzgP/bw3k8AecC6FsvXAROTjCPRMOBE4DHgtCienwH7A9e2LGxmlxI1BxcVFVFVVQVAcXEx+fn5vPvuuwD079+fYcOGsXDhQgDy8vIYPXo0NTU1bN0aRvKUlZWxceNGYEAnwt+z+vp6Fi9eDEDv3r0ZNWoUS5YsYefO0Ep92GGHUVdXx4YNYSTR0KFDcXdWrlwJQGFhIYWFhSxduhSA/fbbj7KyMt566y127doFwOjRo1m1ahWbNm0CYNiwYdTX17N69WoABg0aREFBAdXV1QD06dOH0tJSFi1aRGNjOHcqLy+ntraWzZs3AzB8+HC2bdvG2rVrgfB59+vXj5qaGgD69u3LiBEjWLhwIe6OmVFeXs6yZcvYsmULAKWlpXz00UfU1dUBnfue1q0LP73BgwfTq1cvamtrARgwYAAlJSUsWrQIgJ49e3L44YdTXV3N9u3bARg5ciTr169n/fr1AAwZMgQzY8WKFQAMHDiQoqKipL4nOCm5H0KSqqqq9D218T2lUlVVlf6eMvD31JXHvY4y9zbvTvbxwmbLgcvd/Q9mtgX4jLu/Z2aXEyZYaKuZFTMrBtYQbo1WmbD8RuB8dy/dw/89E/iwZSciM3uHMCPSwe7eGC27lJDg9/d2drC8vNxnz57d/k53wHUPpTaB3nHxppRuXzJDv5vMSeVnr8899xUUFCxw97F7KpfsONBBwNLo+f8BB0TP/wB8fg/v/RBojLbRcpsfJBlHojrgnabkGakG8gm1XhERkS6XbAJdBRRHz98lTO0HMA7Y3t4bow4+C4CTW6w6GZiXZByJXgGGm1nivnyaMDvSh53YroiISJuSTaC/5e8Xbu4BpkTNug/SsUkUfgxcYmZfN7MyM7uHkJDvBzCzh83s4cQ3mNlnzOwzQD+gIHo9MqHIfUABcI+ZlZrZKcAU4N72mm9FREQ6I6lORO7+3YTnvzGz1YQetO+4+8wOvP/x6JZo3yNMpLAY+IK7r4yKlLTytoUtXp8OrCR0FsLd3zezzxOS858JzcEPECZWEBERSYlOjQN19z8Bf0ryPfcC97ax7oRWllkH4+jMUBgREZGkJNuEi5kdGTW1vhE9HjGzI1MRnIiISLZKdiKF84HXCc2vz0aPQcBrZnZB14cnIiKSnZJtwr0V+A93vy1xoZl9l3DN8dGuCkxERCSbJduEWwi0doeTJwm3MxMREekWkk2gLwIntLL8BGBOZ4MRERHJFR25ofZZCS+fA243s7H8vfftscBZwM1dHp2IiEiWintD7eYJ2RP8lDaGp4iIiOxtOnJD7aSHuoiIiOztlBxFRERiiDORwmlmVmlmH5rZejObY2ZfSEVwIiIi2SrZiRS+TphQ/j3geuA7wHLgt2b2ta4PT0REJDslO5HC9cA17v7/Epb90swWEJLpA10WmYiISBZLtgm3hHDz7JaeA4Z0PhwREZHcEOeG2i1viA3wecItxkRERLqFZJtwfwT8NLr7yrxo2XHAhcBVXRmYiIhINkv2htpTzewvwL8SZh8CqAbOcfffdXVwIiIi2arDCdTMehCaaivd/bepC0lERCT7dfgaqLs3ADOAvqkLR0REJDck24loETA8FYGIiIjkkmQT6M3AXWZ2ppkdZGYFiY8UxCciIpKVku2F+0z07wzAE5Zb9DqvK4ISERHJdskm0M+lJAoREZEc06EEamb5wJ3AmUBPYBbwLXf/MIWxiYiIZK2OXgOdAlxCaML9H8JsRPelKCYREZGs19Em3LOAf3L3XwOY2X8Dr5hZnrs3piw6ERGRLNXRGuhBwNymF+7+GtAAFKciKBERkWzX0QSaB9S3WNZA8p2QRERE9godTYAGPGpmOxOW7QtMM7NtTQvc/UtdGZyIiEi26mgCfaiVZY92ZSAiIiK5pEMJ1N2/mupAREREckmyU/mJiIgISqAiIiKxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjEogYqIiMSgBCoiIhKDEqiIiEgMSqAiIiIxKIGKiIjEoAQqIiISgxKoiIhIDEqgIiIiMSiBioiIxKAEKiIiEoMSqIiISAxKoCIiIjGkPYGa2RVmttzMdpjZAjMbv4fyE6JyO8ys1swua7E+z8y+n7DN5Wb2AzPrkdo9ERGR7iytCdTMzgXuAW4DyoF5wHNmVtJG+YOBZ6Ny5cDtwE/N7OyEYtcD3wS+BRwKfDt6/d0U7YaIiAjprqVdAzzo7tOi11eZ2STgclpPeJcBa939quh1tZkdA1wLTI+WfRb4vbv/Pnq9wsyeBo5JyR6IiIiQxhqomfUCxgAvtFj1AiEJtmZcK+WfB8aaWc/o9cvA58zs0Oj/GQmcSKi5ioiIpEQ6a6CfAPKAdS2WrwMmtvGeTwGzWinfI9peHfBDoC+w1Mwao3W3uvu9rW3QzC4FLgUoKiqiqqoKgOLiYvLz83n33XcB6N+/P8OGDWPhwoUA5OXlMXr0aGpqati6dSsAZWVlbNy4ERjQoQ8grvr6ehYvXgxA7969GTVqFEuWLGHnzp0AHHbYYdTV1bFhwwYAhg4diruzcuVKAAoLCyksLGTp0qUA7LfffpSVlfHWW2+xa9cuAEaPHs2qVavYtGkTAMOGDaO+vp7Vq1cDMGjQIAoKCqiurgagT58+lJaWsmjRIhobGwEoLy+ntraWzZs3AzB8+HC2bdvG2rVrgfB59+vXj5qaGgD69u3LiBEjWLhwIe6OmVFeXs6yZcvYsmULAKWlpXz00UfU1dUBnfue1q0LP73BgwfTq1cvamtrARgwYAAlJSUsWrQIgJ49e3L44YdTXV3N9u3bARg5ciTr169n/fr1AAwZMgQzY8WKFQAMHDiQoqKipL4nOCm5H0KSqqqq9D218T2lUlVVlf6eMvD31JXHvY4yd+9w4c4ws2JgDTDB3SsTlt8InO/upa285x3gUXe/JWFZBTAHKHb3OjM7D7gT+DdgCfAZwnXWf3P3X7YXU3l5uc+ePbvT+3bdQ6lNoHdcvCml25fM0O8mc1L52etzz30FBQUL3H3snsqlswb6IdAIDGqxfBDwQRvv+aCN8g3R9iAkzx+5+6+j12+Z2RDCNdV2E6iIiEhcabsG6u71wALg5BarTib0sm3N/DbKv+Huu6LX+YTEnKgRjXEVEZEUSncv3B8Dj5jZa8ArhF62xcD9AGb2MIC7XxSVvx+40szuBqYCxwGXAF9J2Obvge+Y2XJCE245obfvw6neGRER6b7SmkDd/XEzGwh8DygCFgNfcPeVUZGSFuWXm9kXgJ8QhrqsBb7l7tMTil0FfB+4F/gkoWPRNOAWREREUiTts/VEvWNb7SHr7ie0smwOcGQ729sCXB09RERE0kLXCUVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVEZG0mDVrFkcffTRjxozh7rvv/tj6nTt38rWvfY0xY8YwceJEVq1aBcCCBQuoqKigoqKC8ePHM3PmTACWLVvWvLyiooKSkhLuu+++tO2PEqiIJK2rD4QAo0eP5rjjjqOiooITTzwxbfsi6dHY2Mh1113HE088wfz585k+fTpvv/32bmUeffRRDjjgABYsWMDll1/OzTffDEBZWRmzZ8+msrKSJ598kmuuuYaGhgZGjBhBZWUllZWVvPjii+Tn5/PFL34xbfukBCoiSUnFgbDJ008/TWVlJbNnz07nLkkaLFiwgIMPPpihQ4fSq1cvzjrrLJ577rndyjz77LOcd955AJxxxhlUVlbi7uTn59OjRw8gnJyZ2ce2P2fOHIYOHcpBBx2U+p2JKIF2c11dk9ixYwcTJ05k/PjxjBs3jttvvz2t+yOpl+oDoeyd6urqOPDAA5tfFxcXU1dX12aZHj160K9fPzZu3AjAG2+8wbhx4zj++OO56667mn9HTWbMmMHZZ5+d4r3YnRJoN5aKmkTv3r156qmnmDt3LpWVlfzxj3/k9ddfz8DeSaqk6kBoZpx99tl87nOf48EHH0zPzkjOGDt2LPPnz2fWrFncfffd7Nixo3ldfX09f/jDHzjjjDPSGpMSaDeWipqEmbH//vsDsGvXLhoaGlJWy0jFdbg9bVM6r60D4bPPPstLL73EE088wS9/+UvmzZuX4UilKxUVFbFmzZrm12vXrqWoqKjNMg0NDXz00UcUFBTsVqa0tJQ+ffpQXV3dvGzWrFkcccQRfPKTn0zhHnycEmg3lqqaRGNjIxUVFZSWlnLCCScwduzYLo89FbXnjmxTUncgLC4uBqCwsJDTTjuNBQsWpHI3JM2OPPJIamtrWblyJfX19cyYMYNJkybtVubUU0/l17/+NQC/+93vGD9+PGbGypUrm6+Vv//++yxbtoySkpLm902fPj3tzbegBCqd0FZNIi8vj8rKShYvXkxVVRVLly7t8v87FbXnjmxTUnMg3Lp1K1u2bAFg69atvPjii5SVlaVt7syvAAASrklEQVR3xySlevTowR133MHkyZM59thjOfPMMykrK+O2225r/ju74IIL2LhxI2PGjOG+++7jpptuAuBPf/oT48ePp6KiggsvvJA777yTgQMHAuH38tJLL3H66aenf5/S/j9K1kimJnHggQd2qCZRXl7evLx///4cf/zx/PGPf2TkyJFdGntrteeWNZa2as8DBw7kjTfe4KqrrmL16tXcd9999OjRo0PblN0PhI2NjZx//vnNB8Ly8nJOPfVULrjgAi677DLGjBnDgAED+MUvfgGEA+Hdd99Nz5492WeffZoPhCtWrODCCy8EQo118uTJTJw4MZO7KSlw8sknc/LJJ++27IYbbmh+vu+++7Z6/fvcc8/l3HPPbXWbffr04b333uvSODtKCbQbS6xJFBUVMWPGDH7+85/vVqapJnH00Ud/rCZx4IEH0qNHj91qEh9++CE9e/akf//+bN++nZdeeolvf/vbGdrDtjXVnmtqavjmN7+pg3WSuvpAOHToUObOndvlce5tZs2axQ033EBjYyMXXnghV1999W7rd+7cyeWXX86iRYsYMGAADzzwACUlJbz44ovccsst1NfX06tXL6ZMmUJFRQUAp59+OuvWrWPfffcFQnNoYWFh2vctFymBdmOpqEksWbKEK664gsbGRv72t79x5plncsopp3R57KmoPXdkmyKZ0nSNfsaMGRQXF3PSSScxadIkDj300OYyidf9p0+fzs0338wDDzzAwIEDeeyxxygqKmLp0qV8+ctfZsmSJc3vmzp16m6tR9IxSqDdXFfXJEaNGsWcOXO6PM6WUlF77t+//x63KZIpidfogeZr9IkJ9Nlnn+X6668HwnX/66+/HnfniCOOaC5TVlbG9u3b2blzJ717907rPlz30ICUbv+OizeldPstKYFKTkpF7RlodZvycXvbgTAXdPa6f5Onn36a0aNH75Y8r7zySvLy8jj99NO59tprNcFFBymBSs5KRYeE1rYpsreorq5mypQpTJ8+vXnZ1KlTKS4uZsuWLVx88cU8/vjjzb3XpX1KoN2cahIiuaGz1/3XrFnDRRddxL333svBBx/c/J6m8bd9+/Zl8uTJVFVVKYF2kMaBiojkgM6Mv928eTPnnXceN954I8cee2xz+YaGBjZs2ACEmcOef/55XbZIgmqgktNSWYNW7VmySWeu+0+bNo3ly5dz5513cueddwJhuEp+fj6TJ09m165dNDY2MmHCBC666KJM7mZOUQIVEckRca/7X3vttVx77bWtbvPFF1/s0hi7EzXhioiIxKAEKiIiEoOacEVEcoh6zmcP1UBFRERiUAIVERGJQQlUREQkBiVQERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGJQAhUREYlBCVRERCQGJVAREZEYlEBFRERiUAIVERGJQQlUREQkhrQnUDO7wsyWm9kOM1tgZuP3UH5CVG6HmdWa2WWd3aaIiEhnpTWBmtm5wD3AbUA5MA94zsxK2ih/MPBsVK4cuB34qZmdHXebIiIiXSHdNdBrgAfdfZq7V7v7VUAdcHkb5S8D1rr7VVH5acBDwLWd2KaIiEinpS2BmlkvYAzwQotVLwCfbeNt41op/zww1sx6xtymiIhIp5m7p+c/MisG1gAT3L0yYfmNwPnuXtrKe94BHnX3WxKWVQBzgGLAYmzzUuDS6GUpUNMFu5esTwAfZuD/7QqKPXNyOf5cjh1yO37Fnrwh7l64p0I90hFJNnH3nwM/z2QMZvaGu4/NZAxxKfbMyeX4czl2yO34FXvqpDOBfgg0AoNaLB8EfNDGez5oo3xDtD2LsU0REZFOS9s1UHevBxYAJ7dYdTKh52xr5rdR/g133xVzmyIiIp2W7ibcHwOPmNlrwCuEXrbFwP0AZvYwgLtfFJW/H7jSzO4GpgLHAZcAX+noNrNURpuQO0mxZ04ux5/LsUNux6/YUyRtnYia/0OzK4DrgCJgMfAvTR2AzOwlAHc/IaH8BOAnwChgLfBDd7+/o9sUERFJhbQnUBERkb2B5sIVERGJQQlUREQkBiXQDDAzy3QM3ZE+dxHpSkqgGeC68JwRTZ+7Emn6mZmONRmS+Nnrt9+11IkoTcysN3AE8A/AZmAJ8C7wvrtvNTPL9sRqZnmEPPS3TMeSDDPbH6gAzgM2AcuAd4DF7r42k7F1lJn1AP6Wa5+9ZAcz6+vuWzIdx95GCTRNzOy/gLMId4oZAAwlDMt5Crjb3WszF137zGyMuy9osSyPcEDP+h+QmT1ESKDLCJ/9QYRE+mdgmrvPzmB47TKz49395RbLciaZmtlBwNeAo4D3CHNPLwHedPdN2XrimBhXLn3eicysjHC3qnLCyfoqYBFQ6e7vR2Wy8vPPFUqgaWBmI4E/AZOBBe6+wcwKgX8C/hn4FPBtwsE8q74QMxtBOOgtJdzl5hF3X5iw3ggTcpQDf45mh8oa0Wf/KmF2qtfdvdHM+gPnAF8HxgK3AD8gy04IzOxQwue+FXgG+Km7v5Kw3oCewCnAa+6+LiOBtiG6n+90YD/gdeAwwjSbG4C5wI/d/b3MRdi26O+zrMVNKgzIAxqz6XfSGjM7hHAv5XWECWYOJRxnehOS6S/cveVdrLKCmQ0i/L0+6+4b2ynX0913pS+yVri7Hil+ADcQzvqaXvdosf424G2gONOxthL7jYSa208I0yOuIZwMXAccFJU5EPgbMDjT8bYS/9XAywmve7VYfxnwPvDpTMfaxu9mIfBdQsJpIMzx/CPgkKjMJ6PP/qBMx9tK/PcDvwc+lbCsBLgeWAmsB87IdJxtxP6z6HP9IHo+ssX6faJ9+TKQl+l4W4n/vuiz75uwbBBhJrdKwknZP2U6zjZi/2n02W8EngS+APRuUaaEcF/o3pmIsemhC/vpUQ0UmdlwAHdvMLMeZrZvtH4asI1QQ802pYQz2R8C3yAc1BcDFwDzzez3hGkWq919dcaibNsiYIiZnQRhTubos98vWv8k4WD+lbY2kEEHEmoPU4EzgBOBB4DTgGVm9ibwa8Jn/37GomzbKGCOu38Q3b+3h7uvcvcfuvsQYBZwmZntk4WdW44inADcBxwPLDazd83sBjMr8NCcezFhZrTGTAbahiFAlbtvMbM8M8tz93Xu/qC7VxD27Rtmlp/hOFszlnC8+VfCJZffAsvN7KdmdmRU5hvAZe6+M0MxAuqFmy6VhNrDTDM7x8x6u3uDu+8AcPflhKahjP4YWoqu/TwDfODuH7j7End/iFD7/GfgP4HthDPEH2cu0nbNJ9TuHzWzy8xsv+iz3w7g7huA/cmy+yVG15ifAZa6+8boUQncTGiy/RKhafoEQo00G/0RuCDqwLIrOnHsmXDy8jPg08DRHlUrsoGZDSFcI38N+D7h930q8DyhxeJDM3sF+BdCbSkbPQ981cwOdfdGD5cueplZr2j9Lwk10mMyF+LHRfeNXg0sd/dfAZOA0cA9wHjgdTN7i3BtN+Ofva6Bpkn0w/gJcDjhB/IaMDt6/k3gH4Gh7r41Y0HuQWvXHMzsLOA3wP7uvi0zkbUvOmDfSqjhbyc0Qf8O+D/gq4QaRmm2xg9hKIK36MRiZqcAz5Gln72ZjSE0I34A3OzuT7dYfyihI1dBNsVvZv0IveVXuPuchOX7EW5UMQa4gvC76dt0MpZNouvPM4ADgO+7+wMt1h8GVAEHZNln34fQ0vIXd3+1xbp8wnX0awkdMjP+2SuBppGZDQS+SLhAPozQPDoAmANMdfdfZzC8j2ntoB0t70HUkcLMfgSM9YQbAGSTqOmqMRrKcjzhLPZY4EhCrX8WofPWcxkM82OiJk1r7fNPKHMzMM7dT0lbYB3U1LszumxxB+Ezb+o89BwwknBCs9zdz8lcpO1r6jjk7g0tlv83cGC2/u4hDF0BbgfOJ3Q2e4Hwez+M8LfwZ//7na+yUmu9hM3sQUIfgPGZiSohFiXQ1DKzwcDw6OVWQq/K7YQEuj/h2ueH3k5vs0xJiN0IF/Vr3P2DhPVGuDa3xt1fz0yUyYmasAoJ38G+wOZsrvW3x8xOANa7+5JMx9Ke6Fr/RMKJ49GEa6MbCdf+H3X3lRkMr0MSe+ASehVXAre7+/SMBtaKKNZ9ohPHfQmtXhWEmt2RwHLgUWBG4t9zNogmffC2mvSjVoDfAfe5+2/TGlxr8SiBpo6ZXU4YAzeakChrCU22LwK/ydKOH8DHYt9K6Pq+mtD8+ZS712QwvD2KrnVuT3jd7h9mNmkZe66JPuszCCcq+xHGf851983RAd0JzW9Zdd0ZPhZ7PqHX+Rx3/0tCmd7ARHd/JjNRJi9x3LaZ9Xf3zZmOKQ4z60lo8Zqf6VhACTRloubad4G7CD35Cgln4ScQmq/WAt9y96XZNph5D7GXERLpv0Sx52VbL0QzG0DoffsM4Ux7XtPnm5hIo4Hmqz2LZmjZQ+yJg/vLgDp3/2vGgm1F1Gz4S+BzhFaLNYQWjG2E5sNH3X1ZVLbVSwSZ0krsqwnJfgfhMssj7v525iJsX5RcDgZWttY7NduOM4n2FHvWajmuRY8uG8t0FfBqG+uOJ1wLqgU+kelY96bYE+LfSeio1UioAd1C6CjUVOYgwhjLYZmOd2+JPYrt3wknAEdFrw8lDHm6D1hA6FRUmOk4Y8T+OvB0tsYexXs1obXoV8DphIkT8lqU6UfoUdwz0/HGjP00WozlzuRDw1hSpx7oG/V2w8x6N3Uh9zA12/mEM9vPZy7ENuVy7BDmHP4VocNWOfAEYZznUjP7k5ldSjgwjvDsm0Ixl2OHMOzgIY+uibv72+7+KHAlYdjHocAjGYyvPe3F/q+E1pdsjR3gXMKJ13DCFKHzgTvN7HgLs29B6O1/k2d6Bp+P62js/+FZNNuZEmjq/IbQDHR1NA5up4dB/PsAuPsq4K/A4EwG2YacjT26PrWUMEn/X9z9TXf/LmFw9inRupsJw1p+mLFAW5HLsUNz7+zFwNkWpsIjGsS/j4exiJWEcZSDzWx0JmNtKZdjh+apB3cRepSPJ0yk8EvCiVglMNvMrifU9F5tc0MZkMuxZ7wKvDc+CNd8DDiTMMvNFsIPYgx/nwLsgmj50EzHu7fEnrAPvYmmjyP0nNynxfoTyN6pB3M29ii+YwnNzj8EBrWy/iDC+NsDMx3rXhZ7EaGGf0or68oJk1ZsiH47WRV/LseuTkQpZGYHEBLOZwkDs4+LVn1ASFKPuPvNmYmufbkae8L4w2HAVk+YYD1h3Y3AJe4+LHORflwuxw7NHbT2IUxOcRvhJgPTgccJdwI5glCrGOnuR2UqztbkcuxNoiEe7u47oqEswG73wb0V+IK7l2cqxrbkauxKoF3MzD4JXEi4ZvIhYbzhX4GXCUNAehLa+f/g7u9kKs7W5HLssFv81wB/IUyfWEeY73aGR/ddJcyjudbdZ2Ys2BZyOfbWRCdglxCuW32G0GKxg9AZ53ZvMctMNsnx2FvtaWthFp8q4FfunnXN/5CbsSuBdrFoloxRhN6GG4ECwkDmTxMOjN/L1j/AXI4d2oy/nNBxZTVwp2fvLZweJEdjh+bp77YkHgCjWt2+hAlDDiPUqrPu95PLsUPr8bdSZl9CR53/8SzqhJPLsYMSaJeKaghbCE0NlQnLSgiTNn+dMAPROe5elbFAW5HLsUO78Q8mXNv6BqFzwleyLf5cjr2JmU0l9KJ8jTCW76NWygzwLLyJdi7HDh2O/wDPsjHDkNuxA+pE1JUPQg3iLeDYNtb3Bt4gNANlPN69JfYOxt8rW+PP5dij+L5C6ODxV8L44KmEyb6HA/tFZfYnDE84PNPx7i2xtxP/PwCHJMTfNP3dYZmOd2+JvemhGmgXii6EzyRMAXYR8J5//A4aVxFuZPuZDITYplyOHXI7/lyOHcDMphEmfbiDkHwuJhwEawj3kv0j4cYJ97h7r7a2kwm5HDvkdvy5HHsTjQPtQh7mL/13wlnTw8BFZnaQhTuBNF0Mn0AYb5ZVcjl2yO34czn2aPzkcuCv7l7r7j9y98MJN6SeQzgoPkG4d2NWTUKQy7FDbsefy7EnUg00BSzM4PMfhJsebyXMqrGeMJ9sHfB1d38rcxG2LZdjh9yOP1djtzB/7yB3f9vCjFW7POHAYmbnAv8DHOnuf85UnK3J5dght+PP5dibKIGmUDQ04TTCpAQ7CDWIJz2LJ6RuksuxQ27Hn8uxN4l6sZqHW2p9g9AMl5/puDoil2OH3I4/12JXAk0Ty7I7TyQjl2OH3I4/l2NvYmbXECYGvzPTsSQrl2OH3I4/F2JXAhWRlLJwq6rGXDwRyOXYIbfjz4XYlUBFRERiUC9cERGRGJRARUREYlACFRERiUEJVEREJAYlUBERkRiUQEVERGL4/6Eq2mwcLGS1AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plot_histogram(result['measurement'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFGCAYAAADaYs5eAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8VdW5//HPw6ggKGBKEzEggjGixggiKJOCt1rb6lV/2modatWKltZynWp7EW1rr1qna+uE9Tpd22rBGarloiCCE2AEiQiGQSBQBESKmJD4/P5YO+khJiHnJGci3/frdV7k7L3O5tknJ+fZa+01mLsjIiIi8WmT7gBERESykRKoiIhIApRARUREEqAEKiIikgAlUBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJQLt0B5BOPXr08Pz8/HSHISIiGeTdd9/9xN1zdlWuVSfQ/Px8ZsyYke4wREQkg3Tv3n1lU8qpCVdERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikgAlUBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikgAlUBERkQSkPIGa2WVmttzMvjCzeWY2vJGyI81sjpltNLPtZvaBmV1Zp8zFZvaamW02s0/N7BUzG5b8MxERkdYspQnUzM4C7gJuAoqBOcA0M8tv4CX/BP4bGAEcAvwauMHMLospMwr4C3A8cDSwBHjJzPon4xxEREQAzN1T95+ZvQm85+4Xx2xbCvzV3X/exGNMASrc/XsN7DegHPiNu9/d2LGKi4t9xowZTY5fRER2f927d5/n7oN2VS5lNVAz6wAMBF6us+tl4JgmHqM4KjuzkWIdgD2AzQmEKSIi0iTtUvh/7Qu0BdbX2b4eGNPYC81sNZBDiPcGd7+vkeK/JjT9PtfAsS4BLgHIzc1l/vz5AOTl5dGpUyeWLVsGwN57703fvn1ZsGABAG3btqWoqIglS5awbds2AAoLC9m0aRPr14dT6tWrFx06dKCsrAyAbt26kZ+fT0lJCQDt27fnsMMOo7S0lO3btwNwyCGHsGHDBjZs2ABA7969MTNWrFgBQI8ePcjNzWXRokUAdOzYkQEDBvD+++9TUVEBwKGHHkp5eTkbN24EoE+fPrg7K1euBCAnJ4ecnBwWL14MwJ577klhYSELFy5kx44dABQVFbFq1So2bw7XHX379qWyspLVq1cD0LNnT7p3705paSkAnTt3pqCggJKSEqqrqwEoLi6mrKyMLVu2ANCvXz8+//xz1q5dS8373bVrV5YsWQJAly5d6N+/PwsWLMDdMTOKi4tZunQpW7duBaCgoIDPPvuM8vJy/Z70e9LvSb+nlPyemiplTbhmlgesAUa6+6yY7ROAc9y9oJHXHgDsBQwBbgZ+6u6P1VPup8CvgDHu/tauYlITroiI1NXUJtxU1kA/AaqBnnW29wTWNfZCd18e/bjQzHoCE4GdEqiZXUFInic1JXmKiIg0R8rugbp7JTAPOKHOrhMIvXGbqg3QMXaDmY0nJM+T3X12c+IUERFpilSPA70duMDMLjKzQjO7C8gD7gMws0fN7NGawmY2zsy+ZWb9o8cPgSuBx2PKXAX8F/BD4EMz+3r02DuVJyYSj+nTpzN48GAGDhzInXfe+ZX9f/jDHxgyZAjDhg3j1FNP5eOPP67dd/311zN06FCOPvporr32Wmpuw0yZMoVhw4YxdOhQJk6cmKpTEWm1UppA3f0vwBXAL4F3gWHAN919ZVQkP3rUaEu45/ku8A5wOXAtcF1MmcuB9oSxoOUxj7uSdiIizVBdXc3VV1/Nk08+ydy5c5k8eTIffPDBTmUOP/xwZsyYwezZs/nOd77D9ddfD8Cbb77Jm2++yezZs5kzZw7z58/n9ddfZ9OmTVx//fU888wzzJ07l3/84x/MnNlYZ3URaa6Uz0Tk7ve4ex937+juA2M7FLn7KHcfFfP8Tncf4O6d3X1vdz8yev2XMWX6uLvV87ggtWcm0jTz5s3jgAMOoE+fPnTo0IHTTjuNadOm7VRm+PDhdOrUCYBBgwbV9rw0MyoqKqisrKSiooKqqipycnJYsWIFBx54IPvuuy8AI0eO5Pnnn0/tiYm0MpoLVyTFysvL2W+//Wqf5+Xl1Q4rqM/jjz/OmDFhpNfgwYMZNmwYhYWFFBYWcvzxx1NQUEDfvn1ZunQpq1atoqqqihdffJE1a9Yk/VxEWrNU9sIVkTg9+eSTLFiwgBdeeAGAsrIyPvzww9rxcaeddhpz585l6NCh3HbbbVx44YW0adOGwYMH146pE5HkUAIVSbHc3Nydaodr164lNzf3K+VeffVVbrvtNl544QU6dgwdz1944QUGDRrEXnvtBcCYMWN4++23GTp0KCeeeCInnngiAA8//DBt27ZNwdmItF5qwhVJsSOPPJKysjJWrlxJZWUlU6ZMqU18Nd577z3Gjx/PE088QU5OTu32Xr16MWfOHKqqqtixYwdz5szhoIMOAqid1eXTTz/loYce4txzz03dSYm0QqqBiqRYu3btuOWWWzjjjDOorq7mnHPOobCwkJtuuoni4mJOOukkrr/+erZt28YPfvADICTOJ554glNOOYXXXnuNY489FjNj9OjRtcn35z//eW3T7lVXXUW/fv3Sdo4irUFKV2PJNJrKT0RE6sq41VhERER2J0qgIiIiCVACFRERSYASqIiISAKUQEVERBKgBCoirUqiK+G89tprjBgxovaRm5vLiy++CMCkSZMYOHAg3bt3Z+PGjSk9H0kfDWPRMBaRVqO6upqjjjqKKVOmkJeXx+jRo5k0aRIHH3xwbZnXXnuNgQMH0qlTJx566CFmz57NQw89tNNxNm/ezMCBA1m0aBGdOnXivffeY5999uHb3/42M2bMoEePHqk+NWlBGsaSIs1Z13H16tWcdtppHH300QwZMoRVq1YBMGvWLEaNGsUxxxzDZZddRlVVVcrOR2R31pyVcGI9++yzjBkzprbc4YcfTn5+/lfKye5NCbQZmrOuI8DYsWMZN24cb775JtOnT2ffffflyy+/5LLLLuPBBx9kzpw59OrViz/96U+pPjWR3VJzVsKJ9fTTT3P66acnJUbJHkqgzdCcq9kPPviAqqoqjjvuOAD22msvOnXqxKZNm+jQoUPtNGzHHXec1nUUSYOalXDGjRu30/Z169axePFijj/++DRFJplCCbQZmnM1+9FHH7H33ntz3nnnMXLkSCZMmEB1dTU9evSgqqqKBQsWAKGpSOs6irSMeFfCeeKJJ2pXwqnxzDPPcPLJJ9O+ffukxyuZTZPJp0jddR2rqqqYO3cuM2fOpFevXlx44YU88cQTnHvuuTz44IP84he/oLKykuOOO07LUu2mrn6kW1KPf8v5m5N6/GwUuxJObm4uU6ZM4YEHHtipTM1KOE899dROK+HUmDx5MhMmTEhVyJLBVANthuZczebl5XHYYYfRp08f2rVrx8knn8x7770HwODBg5k6dSrTp09n6NChHHjggak5IZHdXOxKOEOGDOHUU0+tXQmn5vZL7Eo4I0aM4Oyzz659/apVq1i7di3HHnvsTse9//77GTBgAGvXrmX48OH85Cc/Sel5SXpoGEszhrFUVVVx1FFH8cwzz5Cbm8vo0aN54IEHKCwsrC3z3nvvccEFF/DUU0/tlAirq6sZNWoUTz/9NPvuuy+XX345xcXFXHTRRWzYsIGcnBwqKio466yzGD9+PCNGjGjWuUrmUQ1UJDM1dRiLmnCboTnrOrZt25Ybb7yRU089FXfniCOO4LzzzgPg7rvv5qWXXsLda6+CRUQks6gGqokUJE1UAxXJTJpIQUREJImUQEVERBKgBCoiIpIAJVAREZEEKIGKiIgkQAlUREQkAUqgIiIiCVACFRERSYASqIiISAKUQEVERBKguXBFpNVJ5jSKmkKx9VACbQGa01REpPVRE66IiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSkPIEamaXmdlyM/vCzOaZ2fBGyp5mZi+b2QYz22pmb5rZdxop/z0zczN7ITnRi4iIBClNoGZ2FnAXcBNQDMwBpplZfgMvGQnMAE6Oyk8Fnq4v6ZpZX+BW4LUkhC4iIrKTVNdAxwMPu/skdy9193FAOTC2vsLu/lN3/y93f8vdl7n7DcA84NTYcmbWHvgT8AugLLmnICIiksIEamYdgIHAy3V2vQwcE8ehugCb62z7DbDC3R9JPEIREZGma5fC/2tfoC2wvs729cCYphzAzC4HegGPxWz7N+BM4IgmHuMS4BKA3Nxc5s+fD0BeXh6dOnVi2bJlAOy999707duXBQsWANC2bVuKiopYsmQJ27ZtA6CwsJBNmzYB3ZryXyessrKSRYsWAdCxY0cGDBjA+++/T0VFBQCHHnoo5eXlbNy4EYA+ffrg7qxcuRKAnJwccnJyWLx4MQB77rknhYWFLFy4kB07dgBQVFTEqlWr2Lw5XJv07duXyspKVq9eDUDPnj3p3r07paWlAHTu3JmCggJKSkqorq4GoLi4mLKyMrZs2QJAv379+Pzzz1m7di0Q3u+uXbuyZMkSALp06UL//v1ZsGAB7o6ZUVxczNKlS9m6dSsABQUFfPbZZ5SXlwPN+z2tXx8+er169aJDhw6UlYXGim7dupGfn09JSQkA7du357DDDqO0tJTt27cDcMghh7BhwwY2bNgAQO/evTEzVqxYAUCPHj3Izc2N6/cEo+P7IMRp/vz5+j018HtKpvnz5+vvKQ1/Ty35vddU5u5NLtwcZpYHrAFGuvusmO0TgHPcvWAXrz+dkDjPcvfno205QAnwPXefGW17GNjX3b+1q5iKi4t9xowZCZ7Rv1z9SHIT6C3n161wy+5An5v0SeZ7r/c9+3Xv3n2euw/aVblU1kA/AaqBnnW29wTWNfZCMzsDeBQ4ryZ5RgYAucD/mVnNtjbRa6qAAe6+pPmhi4iI7Cxl90DdvZLQAeiEOrtOIPTGrZeZnUmoeV7g7n+ts/tt4DBC823N4zlCT9wjgOUtEryIiEgdqayBAtwOPGZmbwGvA5cCecB9AGb2KIC7nxc9/y4heV4JzDKzr0fHqXT3Te6+DVgU+x+Y2adAO3ffabuIiEhLSmkCdfe/mFkP4JeEptdFwDfdfWVUpO540EsJMd4ZPWrMBEYlN1oREZGGpboGirvfA9zTwL5RjT1v4vEvSCQuERGReGguXBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIAuJKoGZ2ZjR5e83zCWa22sxeMrPkztAsIiKSQeKtgU6s+cHMjgSuA/4baA/c1nJhiYiIZLZ4J1LoDdRMzv7vwDPufouZvQy81KKRiYiIZLB4a6BfEBa0hrCY4fTo5y0x20VERHZ78dZAXwNuM7PZwCDgjGj7QcDHLRmYiIhIJou3BvpjoJKQOC9197XR9pNQE66IiLQicdVA3X018O16tl/RYhGJiIhkgbjHgZrZHmZ2hpldY2b7RNsONLPuLR+eiIhIZoqrBmpm/Qgdh/YC9gGeAj4FxkbPL2rpAEVERDJRvDXQO4GXgZ7A9pjtzwHHtVRQIiIimS7eXrjHAEPcvdrMYrevAvJaLCoREZEMl8hcuO3r2ZZPGAsqIiLSKsSbQF8Gxsc8dzPrCtwAvNhiUYmIiGS4eJtwxwOvmNkSYA/gL0A/YD1wZgvHJiIikrHiHQe61syOAL4HHEmowT4A/K+7b2/0xSIiIruReGugRInyoeghIiLSKu0ygZrZacDz7r4j+rlB7j6lxSITERHJYE2pgf4V+Drwj+jnhjjQtiWCEhERyXS7TKDu3qa+n0VERFqzuBKimY0ws68kXTNra2YjWi4sERGRzBZvjfIVoL5J4/eJ9omIiLQK8SZQI9zrrKsHsK354YiIiGSHJg1jMbPnoh8deNzMKmJ2twUOBea0cGwiIiIZq6njQDdG/xqwmZ1XYqkEZgOTWjAuERGRjNakBOruPwAwsxXA79xdzbUiItKqxTuV3w3JCkRERCSbNGUmoveAke6+2cwWUn8nIgDc/fCWDE5ERCRTNaUGOhmo6TTU2ExEIiIirUZTZiK6ob6fRUREWjNNzSciIpKAptwDbfS+ZyzdAxURkdaiqauxiIiISIy47oGKiIhIoHugIiIiCdA4UBERkQRoHKiIiEgCNA5UREQkAXHNhVvDzA4ECqOnpe7+UcuFJCIikvniSqBm1gP4I/Ad4Mt/bbYXgAvdfWODLxYREdmNxNsL90GgHzAc2CN6jAAOQOuBiohIKxJvE+43gNHuPjdm2+tm9iNgesuFJSIiktnirYFuAOpbTPtzQM23IiLSasSbQG8E7jSz/Wo2RD/fFu0TERFpFRKZTP4AYIWZrYme7wd8AXyNcI9URERkt6fJ5EVERBKgyeRFREQSkPLJ5M3sMjNbbmZfmNk8MxveSNlcM3vCzD4ws2oze7iBcl3N7L/NbK2ZVZjZMjM7M2knISIirV5cCdTMOpjZDWb2YZQAq2MfTXj9WcBdwE1AMTAHmGZm+Q28pCPwCfBfwJsNHLM98HegP3AmUABcACyP59xERETiEW8N9FfA+YRet18CVwF/IAxhuawJrx8PPOzuk9y91N3HAeXA2PoKu/sKd/+Juz8MbGrgmD8AcoBT3H129JrZ7v52PCcmIiISj3gT6JnApe5+P1ANPOvuPwGuB05o7IVm1gEYCLxcZ9fLwDFxxhHrVOB14G4zW2dmi81sYlQzFRERSYp4ZyLqCSyOfv4nsE/089+Am3fx2n2BtsD6OtvXA2PijCNWX+B44AngZKAPoVa8F3Bl3cJmdglwCUBubi7z588HIC8vj06dOrFs2TIA9t57b/r27cuCBQsAaNu2LUVFRSxZsoRt28JcEoWFhWzatAno1ozwd62yspJFixYB0LFjRwYMGMD7779PRUVYZe7QQw+lvLycjRvDXBZ9+vTB3Vm5ciUAOTk55OTksHhx+NXtueeeFBYWsnDhQnbs2AFAUVERq1atYvPmzQD07duXyspKVq9eDUDPnj3p3r07paWlAHTu3JmCggJKSkqorg6t98XFxZSVlbFlyxYA+vXrx+eff87atWuB8H537dqVJUuWANClSxf69+/PggULcHfMjOLiYpYuXcrWrVsBKCgo4LPPPqO8vBxo3u9p/frw0evVqxcdOnSgrKwMgG7dupGfn09JSQkA7du357DDDqO0tJTt27cDcMghh7BhwwY2bNgAQO/evTEzVqxYAUCPHj3Izc2N6/cEo+P7IMRp/vz5+j018HtKpvnz5+vvKQ1/Ty35vddU5t7g+thfLWz2AXCBu79hZq8B09z9JjM7G7jD3Xs28to8YA1hce5ZMdsnAOe4e8Eu/u8XgE/c/YI62z8kzMl7gLtXR9suAe4A9vJGTrC4uNhnzJjR+Ek3wdWPJDeB3nL+5qQeX9JDn5v0SeZ7r/c9+3Xv3n2euw/aVbl4m3Cf5l+XzXcBN5jZcuBhdj2JwieEZt+6SbYnsC7OOGKVAx/WJM9IKdCJUOsVERFpcXE14br7z2N+/quZrSbcv/zQ3V/YxWsrzWwe4V7pUzG7TgAmxxNHHa8DZ5tZG3evWWLtIML8vJ8047giIiINSmhB7Rru/gbwRhwvuR14zMzeIiS+S4E84D4AM3s0Ou55NS8wsyOiH7sCX0bPK9295l7svcCPgbvM7PeEe6A3APc01nwrIiLSHHEnUDM7ErgCOCTaVEq4/zl/V691979Ei3L/EsgFFgHfdPeVUZH6xoMuqPP828BKQqLE3T82s38jJOd3Cc3BDwG/juO0RERE4hJXAjWzc4BHgRnA1GjzEOAtM7vA3R/f1THc/R7gngb2japnmzXhmG/QvKEwIiIicYm3Bvob4D/d/abYjWb2c0KNb5cJVEREZHcQby/cHODJerY/RVjOTEREpFWIN4G+AoyqZ/soYGZzgxEREckWTVlQ+7SYp9OA35rZIP7V+3YIcBowscWjExERyVCJLqhdOx1ejLtpoHOQiIjI7qYpC2qnfM1QERGRTKfkKCIikoC4E6iZnWxms8zsEzPbYGYzzeybyQhOREQkU8WVQM3sIsKE8h8B1wDXAsuBp83swpYPT0REJDPFO5HCNcB4d/99zLY/RpPEX0uYQk9ERGS3F28Tbj5h8ey6pgG9mx+OiIhIdog3ga4iLD9W178RJngXERFpFeJtwv0dcHe0IsucaNuxwLnAuJYMTEREJJPFu6D2/Wb2D+A/CLMPQVjO7Ex3f7algxMREclUTU6gZtaO0FQ7y92fTl5IIiIima/J90DdvQqYAnRJXjgiIiLZId5ORCVAv2QEIiIikk3iTaATgdvM7FQz29/Musc+khCfiIhIRoq3F+6L0b9TAI/ZbtHzti0RlIiISKaLN4Eel5QoREREskyTEqiZdQJuBU4F2gPTgZ+4+ydJjE1ERCRjNfUe6A3ABYQm3D8RZiO6N0kxiYiIZLymNuGeBvzQ3f8MYGb/C7xuZm3dvTpp0YmIiGSoptZA9wdeq3ni7m8BVUBeMoISERHJdE1NoG2Byjrbqoi/E5KIiMhuoakJ0IDHzawiZtsewCQz+7xmg7t/pyWDExERyVRNTaCP1LPt8ZYMREREJJs0KYG6+w+SHYiIiEg2iXcqPxEREUEJVEREJCFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSgJQnUDO7zMyWm9kXZjbPzIbvovzIqNwXZlZmZpfW2d/WzH4Vc8zlZvZrM2uX3DMREZHWLKUJ1MzOAu4CbgKKgTnANDPLb6D8AcDUqFwx8FvgbjM7PabYNcDlwE+Ag4GfRs9/nqTTEBERIdW1tPHAw+4+KXo+zsxOBMZSf8K7FFjr7uOi56VmdjRwJTA52nYM8Ly7Px89X2FmzwFHJ+UMRERESGEN1Mw6AAOBl+vsepmQBOsztJ7yLwGDzKx99Hw2cJyZHRz9P4cAxxNqriIiIkmRyhrovkBbYH2d7euBMQ285uvA9HrKt4uOVw7cDHQBFptZdbTvN+5+T30HNLNLgEsAcnNzmT9/PgB5eXl06tSJZcuWAbD33nvTt29fFixYAEDbtm0pKipiyZIlbNu2DYDCwkI2bdoEdGvSG5CoyspKFi1aBEDHjh0ZMGAA77//PhUVFQAceuihlJeXs3HjRgD69OmDu7Ny5UoAcnJyyMnJYfHixQDsueeeFBYWsnDhQnbs2AFAUVERq1atYvPmzQD07duXyspKVq9eDUDPnj3p3r07paWlAHTu3JmCggJKSkqorq4GoLi4mLKyMrZs2QJAv379+Pzzz1m7di0Q3u+uXbuyZMkSALp06UL//v1ZsGAB7o6ZUVxczNKlS9m6dSsABQUFfPbZZ5SXlwPN+z2tXx8+er169aJDhw6UlZUB0K1bN/Lz8ykpKQGgffv2HHbYYZSWlrJ9+3YADjnkEDZs2MCGDRsA6N27N2bGihUrAOjRowe5ublx/Z5gdHwfhDjNnz9fv6cGfk/JNH/+fP09peHvqSW/95rK3L3JhZvDzPKANcBId58Vs30CcI67F9Tzmg+Bx939xphtI4CZQJ67l5vZd4FbgauA94EjCPdZr3L3PzYWU3Fxsc+YMaPZ53b1I8lNoLecvzmpx5f00OcmfZL53ut9z37du3ef5+6DdlUulTXQT4BqoGed7T2BdQ28Zl0D5aui40FInr9z9z9HzxeaWW/CPdVGE6iIiEiiUnYP1N0rgXnACXV2nUDoZVufuQ2Uf8fdd0TPOxESc6xqNMZVRESSKNW9cG8HHjOzt4DXCb1s84D7AMzsUQB3Py8qfx/wYzO7E7gfOBa4APhezDGfB641s+WEJtxiQm/fR5N9MiIi0nqlNIG6+1/MrAfwSyAXWAR8091XRkXy65RfbmbfBO4gDHVZC/zE3SfHFBsH/Aq4B/gaoWPRJOBGREREkiTls/VEvWPr7SHr7qPq2TYTOLKR420FrogeIiIiKaH7hCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERGRBCiBioiIJEAJVEREJAFKoCIiIglQAhUREUmAEqiIiEgClEBFREQSoAQqIiKSACVQERFJienTpzN48GAGDhzInXfe+ZX9FRUVXHjhhQwcOJAxY8awatWqnfavXr2a/fffn7vvvrt2249//GMOOuggjjnmmKTHX5cSqIiIJF11dTVXX301Tz75JHPnzmXy5Ml88MEHO5V5/PHH2WeffZg3bx5jx45l4sSJO+3/xS9+wejRo3fadvbZZ/PUU08lO/x6KYGKiEjSzZs3jwMOOIA+ffrQoUMHTjvtNKZNm7ZTmalTp/Ld734XgFNOOYVZs2bh7gC8+OKL9O7dm4MPPnin1xxzzDF069YtNSdRhxKoiMQt0aa4efPmMWLECEaMGMHw4cN54YUXAFi6dGnt9hEjRpCfn8+9996b0nOS5CovL2e//farfZ6Xl0d5eXmDZdq1a0fXrl3ZtGkT//znP7nrrru4+uqrUxrzrrRLdwAikl1qmuKmTJlCXl4eo0eP5sQTT9ypZhDbFDd58mQmTpzIQw89RGFhITNmzKBdu3asW7eOESNGcOKJJ9K/f39mzZpVe/wBAwbwrW99K12nKBnm5ptvZuzYsey1117pDmUnqoFK1mrpWhBAUVERxx57LCNGjOD4449P2blkk+Y0xXXq1Il27cJ1e0VFBWb2lePPnDmTPn36sP/++yf/ZCRlcnNzWbNmTe3ztWvXkpub22CZqqoqPvvsM7p37868efOYOHEiRUVF3Hfffdxxxx1MmjT/5aWiAAAULklEQVQppfHXRwlUslJzOiTU1IJmzZrFU089xfjx46mqqqp93XPPPcesWbOYMWNGKk8pazSnKQ7gnXfeYejQoQwbNozbbrutNqHWmDJlCqeffnqSzyI7JeOiEcLf08iRI2svepLhyCOPpKysjJUrV1JZWcmUKVM48cQTdypz0kkn8ec//xmAZ599luHDh2NmTJ06lZKSEkpKSrj00kv52c9+xsUXX5y0WJtKCVSyUrJrQZI8gwYNYu7cuUyfPp0777yTL774onZfZWUlf/vb3zjllFPSGGFmSuZF43333cdBBx2U1PjbtWvHLbfcwhlnnMGQIUM49dRTKSws5Kabbqr92/3+97/Ppk2bGDhwIPfeey/XX3/9Lo970UUX8Y1vfINly5YxYMAAHnvssaSeRyzdA5WsVF8taN68eQ2Wia0F9ejRg3feeYdx48axevVq7r333tqEamacfvrpmBnnn38+F1xwQcrOKVvE0xS333777dQUF6ugoIDOnTtTWlpKcXExEGpYhx9+OF/72teSfyJZJvaiEai9aIy99zx16lSuueYaIFw0XnPNNbUXjTXqXjSuWbOGv//974wfP5577rknqedwwgkncMIJJ+y07brrrqv9eY899uDhhx9u9BjXXnvtTs8ffPDBFosvXqqBSqvUUC1o6tSpvPrqqzz55JP88Y9/ZM6cOWmONPM0pylu5cqVtTWfjz/+mKVLl5Kfn1/7usmTJ6v5tgHJajq/7rrrmDhxIm3aKB3ES++YZKXmdEiIFVsLgvClBJCTk8PJJ5/8lVqtNK8p7o033mD48OGMGDGCc889l1tvvZUePXoAsG3bNl599VW+/e1vp+3cdmf1XTS+9NJL5OTkcMQRR6Q7vKykJlzJSrG1oNzcXKZMmcIDDzywU5maWtDgwYO/Ugvab7/9aNeu3U61oG3btvHll1/SpUsXtm3bxiuvvMJVV12VpjPMbIk2xZ111lmcddZZ9R6zc+fOfPTRRy0a5+4kGU3nb775JtOmTePvf/87FRUVbN26lR/96Efcf//9STmHqx9J7oQHt5y/OanHr0sJVLJSbC2ourqac845p7YWVFxczEknncT3v/99Lr30UgYOHEi3bt1q75W88cYb3HnnnbRv3542bdrU1oJWrFjBueeeC4Qa6xlnnMGYMWPSeZoitZJx0ThhwgQmTJgAwOzZs/n973+ftOS5O1IClazV0rWgPn368Nprr7V4nCItIRkXjdI8SqCt3PTp07nuuuuorq7m3HPP5Yorrthpf0VFBWPHjqWkpIRu3brx0EMPkZ+fzyuvvMKNN95IZWUlHTp04IYbbmDEiBE7vfbss89mxYoV6oizG9rdmuKyRTKazmsMGzaMYcOGtUicrYU6EbVizRlX1qNHD5544glef/11/vCHPzB27NidXvf888/TuXPnVJ2KiEjKqQbaijVnXNnhhx9eW6awsJDt27dTUVFBx44d+ec//8k999zDHXfcwYUXXpjUc0hmTUi1IMlEqv1nDtVAW7Hmjiur8dxzz1FUVETHjh0BuOmmm7j88st3GrwtIrK7UQKVZiktLeWGG27g9ttvB2DhwoWsWLFCK2mIyG5PCbQVa+5kBGvWrOG8887jnnvu4YADDgDg7bff5t1336WoqIiTTjqJjz76SAPjRWS3pATaijVnSrYtW7bw3e9+lwkTJjBkyJDa8hdeeCGLFy+mpKSEadOmceCBB/L888+n9LxERFJBCbQVa86UbJMmTWL58uXceuuttcskbdiwIZ2nIyKSUuqF28olOq7syiuv5Morr2z02Pn5+RoDKiK7LdVARUREEqAaaCunMWUiIolRDVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikgAlUBERkQQogYqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEqAEKiIikoCUJ1Azu8zMlpvZF2Y2z8yG76L8yKjcF2ZWZmaXNveYIiIizZXSBGpmZwF3ATcBxcAcYJqZ5TdQ/gBgalSuGPgtcLeZnZ7oMUVERFpCqmug44GH3X2Su5e6+zigHBjbQPlLgbXuPi4qPwl4BLiyGccUERFptpQlUDPrAAwEXq6z62XgmAZeNrSe8i8Bg8ysfYLHFBERaTZz99T8R2Z5wBpgpLvPitk+ATjH3Qvqec2HwOPufmPMthHATCAPsASOeQlwSfS0AFjSAqcXr32BT9Lw/7YExZ4+2Rx/NscO2R2/Yo9fb3fP2VWhdqmIJJO4+wPAA+mMwczecfdB6YwhUYo9fbI5/myOHbI7fsWePKlMoJ8A1UDPOtt7AusaeM26BspXRcezBI4pIiLSbCm7B+rulcA84IQ6u04g9Jytz9wGyr/j7jsSPKaIiEizpboJ93bgMTN7C3id0Ms2D7gPwMweBXD386Ly9wE/NrM7gfuBY4ELgO819ZgZKq1NyM2k2NMnm+PP5tghu+NX7EmSsk5Etf+h2WXA1UAusAj4WU0HIDN7FcDdR8WUHwncAQwA1gI3u/t9TT2miIhIMqQ8gYqIiOwONBeuiIhIApRARUREEqAEmgZmZumOoTXS+y4iLUkJNA1cN57TouZ9VyJNPTPTd02axL73+uy3LHUiShEz6wgcDvw7sAV4H1gGfOzu28zMMj2xmllbQh76Mt2xxMPM9gJGAN8FNgNLgQ+BRe6+Np2xNZWZtQO+zLb3XjKDmXVx963pjmN3owSaImb238BphJViugF9CMNyngHudPey9EXXODMb6O7z6mxrS/hCz/gPkJk9QkigSwnv/f6ERPouMMndZ6QxvEaZ2TB3n11nW9YkUzPbH7gQOAr4iDD39PvAe+6+OVMvHGPjyqb3O5aZFRJWqyomXKyvAkqAWe7+cVQmI9//bKEEmgJmdgjwBnAGMM/dN5pZDvBD4EfA14GfEr7MM+oXYmb9CV96iwmr3Dzm7gti9hthQo5i4N1odqiMEb33bxJmp3rb3avNbG/gTOAiYBBwI/BrMuyCwMwOJrzv24AXgbvd/fWY/Qa0B74BvOXu69MSaAOi9XwnA3sCbwOHEqbZ3Ai8Btzu7h+lL8KGRX+fhXUWqTCgLVCdSZ+T+pjZgYS1lNcTJpg5mPA905GQTB9097qrWGUEM+tJ+Hud6u6bGinX3t13pC6yeri7Hkl+ANcRrvpqnrers/8m4AMgL92x1hP7BELN7Q7C9IhrCBcDVwP7R2X2A74EeqU73nrivwKYHfO8Q539lwIfAwelO9YGPjcLgJ8TEk4VYY7n3wEHRmW+Fr33+6c73nrivw94Hvh6zLZ84BpgJbABOCXdcTYQ+x+i93Vd9PMhdfa3ic7l/wFt0x1vPfHfG733XWK29STM5DaLcFH2w3TH2UDsd0fv/SbgKeCbQMc6ZfIJ60J3TEeMNQ/d2E+NUiDXzPoBuHuVmbUzsz2i/ZOAzwk11ExTQLiSvRm4mPClvgj4PjDXzJ4nTLNY6u6r0xZlw0qA3mY2GsKczNF7v2e0/ynCl/n3GjpAGu1HqD3cD5wCHA88BJwMLDWz94A/E977j9MWZcMGADPdfV20fm87d1/l7je7e29gOnCpmbXJwM4tRxEuAO4FhgGLzGyZmV1nZt09NOeeT5gZrTqdgTagNzDf3beaWVsza+vu6939YXcfQTi3i82sU5rjrM8gwvfNfxBuuTwNLDezu83syKjMxcCl7l6RphgB9cJNlVmE2sMLZnammXV09yp3/wLA3ZcTmobS+mGoK7r38yKwzt3Xufv77v4Iofb5I+C/gO2EK8Tb0xdpo+YSavePm9mlZrZn9N5vB3D3jcBeZNh6idE95heBxe6+KXrMAiYSmmy/Q2iaHkWokWai/wO+H3Vg2RFdOLaPuXj5A3AQMNijakUmMLPehHvkbwG/Iny+TwJeIrRYfGJmrwM/I9SWMtFLwA/M7GB3r/Zw66KDmXWI9v+RUCM9On0hflW0bvRqYLm7/w9wIlAE3AUMB942s4WEe7tpf+91DzRFog/GHcBhhA/IW8CM6OfLgbOBPu6+LW1B7kJ99xzM7DTgr8Be7v55eiJrXPSF/RtCDX87oQn6WeCfwA8INYyCTI0fwlAEr9OJxcy+AUwjQ997MxtIaEZcB0x09+fq7D+Y0JGreybFb2ZdCb3lV7j7zJjtexIWqhgIXEb43HSpuRjLJNH95ynAPsCv3P2hOvsPBeYD+2TYe9+Z0NLyD3d/s86+ToT76FcSOmSm/b1XAk0hM+sBfItwg7wvoXm0GzATuN/d/5zG8L6ivi/taHs7oo4UZvY7YJDHLACQSaKmq+poKMswwlXsEOBIQq1/OqHz1rQ0hvkVUZOm1ff+x5SZCAx192+kLLAmqundGd22uIXwntd0HpoGHEK4oFnu7memL9LG1XQccveqOtv/F9gvUz/3EIauAL8FziF0NnuZ8Hk/lPC38K7/a+WrjFRfL2Eze5jQB2B4eqKKiUUJNLnMrBfQL3q6jdCrcjshge5FuPf5iTfS2yxdYmI3wk39Je6+Lma/Ee7NrXH3t9MTZXyiJqwcwu9gD2BLJtf6G2Nmo4AN7v5+umNpTHSvfwzhwnEw4d7oJsK9/8fdfWUaw2uS2B64hF7Fs4DfuvvktAZWjyjWNtGF4x6EVq8RhJrdkcBy4HFgSuzfcyaIJn3whpr0o1aAZ4F73f3plAZXXzxKoMljZmMJY+CKCImyjNBk+wrw1wzt+AF8JfZthK7vqwnNn8+4+5I0hrdL0b3O7THPG/3DzCR1Y8820Xt9CuFCZU/C+M/X3H1L9IXuhOa3jLrvDF+JvROh1/lMd/9HTJmOwBh3fzE9UcYvdty2me3t7lvSHVMizKw9ocVrbrpjASXQpImaa5cBtxF68uUQrsJHEZqv1gI/cffFmTaYeRexFxIS6c+i2NtmWi9EM+tG6H37IuFKe07N+xubSKOB5qs9g2Zo2UXssYP7C4Fyd/80bcHWI2o2/CNwHKHVYg2hBeNzQvPh4+6+NCpb7y2CdKkn9tWEZP8F4TbLY+7+QfoibFyUXA4AVtbXOzXTvmdi7Sr2jFV3XIseLTaWaRzwZgP7hhHuBZUB+6Y71t0p9pj4KwgdtaoJNaAbCR2FasrsTxhj2Tfd8e4usUex/YJwAXBU9PxgwpCne4F5hE5FOemOM4HY3waey9TYo3ivILQW/Q/wbcLECW3rlOlK6FHcPt3xJhj7ydQZy53Oh4axJE8l0CXq7YaZdazpQu5harZzCFe2/5a+EBuUzbFDmHP4fwgdtoqBJwnjPBeb2Rtmdgnhi7G/Z94UitkcO4RhB494dE/c3T9w98eBHxOGfRwMPJbG+BrTWOz/QWh9ydTYAc4iXHj1I0wROhe41cyGWZh9C0Jv/+s93TP4fFVTY/9Pz6DZzpRAk+evhGagK6JxcBUeBvG3AXD3VcCnQK90BtmArI09uj+1mDBJ/z/c/T13/zlhcPY3on0TCcNabk5boPXI5tihtnf2IuB0C1PhEQ3ib+NhLOIswjjKXmZWlM5Y68rm2KF26sEdhB7lwwkTKfyRcCE2C5hhZtcQanpvNnigNMjm2NNeBd4dH4R7PgacSpjlZivhAzGQf00B9v1oe590x7u7xB5zDh2Jpo8j9JxsU2f/KDJ36sGsjT2Kbwih2flmoGc9+/cnjL/dL92x7max5xJq+N+oZ18xYdKKjdFnJ6Piz+bY1YkoicxsH0LCOYYwMPvYaNc6QpJ6zN0npie6xmVr7DHjD/sC2zxmgvWYfROAC9y9b/oi/apsjh1qO2i1IUxOcRNhkYHJwF8IK4EcTqhVHOLuR6Urzvpkc+w1oiEe7u5fRENZgJ3Wwf0N8E13L05XjA3J1tiVQFuYmX0NOJdwz+QTwnjDT4HZhCEg7Qnt/H9z9w/TFWd9sjl22Cn+8cA/CNMnlhPmu53i0bqrhHk017r7C2kLto5sjr0+0QXYBYT7VkcQWiy+IHTG+a3XmWUmk2R57PX2tLUwi8984H/cPeOa/yE7Y1cCbWHRLBkDCL0NNwHdCQOZDyJ8Mf4yU/8Aszl2aDD+YkLHldXArZ65Szg9TJbGDrXT322N/QKManV7ECYMOZRQq864z082xw71x19PmT0IHXX+5BnUCSebYwcl0BYV1RC2EpoaZsVsyydM2nwRYQaiM919ftoCrUc2xw6Nxt+LcG/rYkLnhO9lWvzZHHsNM7uf0IvyLcJYvs/qKdPNM3AR7WyOHZoc/z6eYWOGIbtjB9SJqCUfhBrEQmBIA/s7Au8QmoHSHu/uEnsT4++QqfFnc+xRfN8jdPD4lDA++H7CZN/9gD2jMnsRhicclu54d5fYG4n/34EDY+Kvmf7u0HTHu7vEXvNQDbQFRTfCXyBMAXYe8JF/dQWNcYSFbI9IQ4gNyubYIbvjz+bYAcxsEmHSh1sIyed8wpfgEsJasv9HWDjhLnfv0NBx0iGbY4fsjj+bY6+hcaAtyMP8pb8gXDU9CpxnZvtbWAmk5mb4SMJ4s4ySzbFDdsefzbFH4yeXA5+6e5m7/87dDyMsSD2T8KX4JGHtxoyahCCbY4fsjj+bY4+lGmgSWJjB5z8Jix5vI8yqsYEwn2w5cJG7L0xfhA3L5tghu+PP1tgtzN/b090/sDBj1Q6P+WIxs7OAPwFHuvu76YqzPtkcO2R3/Nkcew0l0CSKhiacTJiU4AtCDeIpz+AJqWtkc+yQ3fFnc+w1ol6s5mFJrYsJzXCd0h1XU2Rz7JDd8Wdb7EqgKWIZtvJEPLI5dsju+LM59hpmNp4wMfit6Y4lXtkcO2R3/NkQuxKoiCSVhaWqqrPxQiCbY4fsjj8bYlcCFRERSYB64YqIiCRACVRERCQBSqAiIiIJUAIVERFJgBKoiIhIApRARUREEvD/AZVU9ZsCqD6SAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "params = {\n", - " 'problem': {\n", - " 'name': 'search',\n", - " },\n", - " 'algorithm': {\n", - " 'name': 'Grover'\n", - " },\n", - " 'oracle': {\n", - " 'name': 'LogicalExpressionOracle',\n", - " 'expression': input_3sat_instance\n", - " },\n", - " 'backend': {\n", - " 'shots': 1000,\n", - " },\n", - "}\n", - "\n", - "result_dict = run_algorithm(params, backend=backend)\n", - "plot_histogram(result_dict['measurement'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quantum Search with Arbitrary Boolean Logical Expressions\n", - "\n", - "Aqua's `Grover` can also be used to perform Quantum Search on `Oracle` constructed from means in addition to DIMACS. For example, the `LogicalExpressionOracle` can actually be configured using arbitrary Boolean logical expressions, as demonstrated below." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdAAAAFOCAYAAAA2MUwzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl8FPX9x/HXF8ItV5BCInIVjREwBtByRqlSUawn1bZe2J9aT1TqD8R6gFrrXTxRqXhhaz2o8hOtiIBBAZWAEYRSNBIEouUSkZvw/f3xncRl2YTd2ZlkQ97Px2Me2Z2d/exnj8xn5jvf+Y6x1iIiIiKJqVPdCYiIiNREKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA9p1Z1AdWrVqpVt3759dachIiIp5NNPP11nrW29v+VqdQFt3749M2bMqO40REQkhaSnpxfHs5yacEVERHxQARUREfFBBVRERMQHFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8UEFVERExAcVUBERER9UQEVERHxQARUREfFBBVRERMQHFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8UEFVERExAcVUBER2a/p06dz7LHH0rNnT8aNG1fhclOmTCE9PZ2FCxcCsHLlSjIzM8nLyyMvL48RI0aUL3vnnXfSrVs3Dj300NDzD0NadScgIiKprbS0lJEjRzJ58mQyMzM54YQTGDx4MEccccRey23evJknn3ySnj177jW/Y8eO5Ofn7xP3pJNO4pJLLuGYY44JNf+waA9UREQqVVBQQKdOnejYsSP169fnrLPO4u23395nubvuuotrr72Whg0bxhX3mGOOoW3btkGnW2VUQEVEpFIlJSUccsgh5fczMzMpKSnZa5nCwkJWr17NL37xi32ev3LlSo477jhOPfVU5s6dG3q+VUVNuCIikpQ9e/Zw880389hjj+3zWJs2bfjss89IT0/n008/5fzzz2fOnDk0a9asGjINlvZARUSkUhkZGaxevbr8/po1a8jIyCi//8MPP7B06VJ++ctfkpOTw/z58znvvPNYuHAhDRo0ID09HYCjjz6aTp068eWXX1b5ewiDCqiIiFSqR48eFBUVUVxczM6dO5k8eTKDBw8uf7xZs2Z88cUXFBYWUlhYSK9evXjxxRfJzc1l3bp1lJaWArBixQqKioro2LFjNb2TYKmAiohIpdLS0rj33nsZOnQovXv35owzziA7O5u77rorZmeiSHPmzKF///7k5eUxbNgwHnjgAVq2bAnAbbfdRteuXdm6dStdu3bl7rvvroq3Exhjra3uHKpNbm6unTFjRnWnISIiKSQ9Pb3AWttrf8tpD1RERMQHFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8aHKC6gx5kpjzFfGmO3GmAJjzIA4n9ffGLPbGLM4av4wY4yNMcV3PR0REREfqrSAGmPOBR4C7gJygTnA28aY9vt5XkvgeeC9ChbZCmRETtba7UHlLSIiEq2q90BHAM9aaydYa5daa68BSoAr9vO8p4HngIouJGettd9ETgHmLCIiso8qux6oMaY+0BO4P+qhaUDfSp53JdAGuBO4pYLFGhljioG6wKfALdbahUknLSIi+zXyuZZxL3vvRRtDzKRqVeUFtQ/GFbhvo+Z/C5wY6wnGmO7AbUBva22pMSbWYsuA3wGFQFPgWuBDY0yOtXZ5jJiXAZeBu8bdggULAHeF9caNG/PFF18A0Lx5czp37szCha4O161bl5ycHJYtW8aWLVsAyM7OZsOGDXz7rXtL7dq1o379+hQVFQHQsmVL2rdvT2FhIQD16tWje/fuLF26lG3btgFw5JFHsnbtWtauXQtAhw4dMMawYsUKAFq1akVGRgaLF7tDvw0aNKBr1658/vnn7NixA4Bu3bpRUlLC+vXrAejYsSPWWoqLiwFo3bo1rVu3ZsmSJQA0atSI7OxsFi1axK5duwDIyclh5cqVbNzoftydO3dm586drFq1CnAXxU1PT2fp0qUANGnShKysLAoLC8svVZSbm0tRURGbNm0CoEuXLmzdupU1a9ZQ9nk3a9aMZcuWAdC0aVMOO+wwFi5ciLUWYwy5ubksX76czZs3A5CVlcX3339PSUmJvid9T/qeUvR7gvgL6IIFC1L+e4pXlV2NxRiTCawGjrPW5kfMvxU4z1qbFbV8A2Ah8Gdr7QvevDHAUGttt0pep2wvdKa1dnhlOelqLCIiyTvQ9kDjvRpLVe6BrgNKcc2xkdoAsY5ZZgDZwDPGmGe8eXUAY4zZDZxirZ0W/SRvT3U+cFhgmYuIiESpsk5E1tqdQAEwKOqhQbjeuNFWA92BoyOmJ4AvvNuxnoNx7bxH4ToniYiIhKIq90ABHgReMMZ8DHwIXA5k4gojxpjnAay1F1prdwHR53z+F9hhrV0cMe82YB6wHGgGDMcV0P317BUREfGtSguotfYfxphWwM24JtrFuKbYYm+RSs8HrUAL4CmgLbAJd9w0z1r7cQApi4iIxFTVe6BYax8HHq/gseP389wxwJioedcD1weTnYiISHw0Fq6IiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4kNCBdQYc44x5hcR9281xqwyxrxjjMkIPj0REZHUlOge6JiyG8aYHsBNwMNAPeCB4NISERFJbWkJLt8BWObdPhN43Vp7rzFmGvBOoJmJiIiksET3QLcDTb3bJwDTvdubIuaLiIgc8BLdA50NPGCM+QDoBQz15h8OfB1kYiIiIqks0T3Qq4GduMJ5ubV2jTf/ZNSEKyIitUhCe6DW2lXAL2PMvy6wjERERGqAhM8DNcY0NMYMNcaMMsa08Ob91BiTHnx6IiIiqSmhPVBjTBdcx6GDgBbAK8B3wBXe/UuCTlBERCQVJboHOg6YBrQBtkXMnwIMDCopERGRVJdoL9y+QG9rbakxJnL+SiAzsKxERERSnJ+xcOvFmNcedy6oiIhIrZBoAZ0GjIi4b40xzYCxwNTAshIREUlxiTbhjgBmGmOWAQ2BfwBdgG+BcwLOTUREJGUleh7oGmPM0cBvgB64PdingBettdsqfbKIiMgBJNE9ULxCOdGbREREaqX9FlBjzFnA/1lrd3m3K2StnRxYZiIiIiksnj3QV4G2wH+92xWxQN0gkhIREUl1+y2g1to6sW6LiIjUZgkVRGNMnjFmn6JrjKlrjMkLLi0REZHUluge5Uwg1qDxLbzH9ssYc6Ux5itjzHZjTIExZkAlyx5njJljjFlvjNlmjPm3MeaGGMudbYxZYozZ4f09M+53JCIi4kOiBdTgjnVGawVs2e+TjTkXeAi4C8gF5gBvG2PaV/CUH4CHgTzgSOBOYKwx5sqImH1w56O+CBzt/X3FGPOzON+TiIhIwuI6jcUYM8W7aYFJxpgdEQ/XBbrhiuH+jACetdZO8O5fY4wZjLuay+joha21BUBBxKyvvJ7AA4DHvXnXATOttX/y7v/JGDPQm/+bOHISERFJWLx7oOu9yQAbI+6vB1YBTwDnVxbAGFMf6IkbDjDSNNwg9ftljMn1ln0/YnafGDHfiTemiIiIH3HtgVprLwYwxqwA7rfW7re5NoaDcXur30bN/xY4sbInGmNWAa1x+Y611j4R8XDbCmK2rSDWZcBlABkZGSxYsACAzMxMGjduzBdffAFA8+bN6dy5MwsXLgSgbt265OTksGzZMrZscW8/OzubDRs28O237uXbtWtH/fr1KSoqAqBly5a0b9+ewsJCAOrVq0f37t1ZunQp27a5gZuOPPJI1q5dy9q1awHo0KEDxhhWrFgBQKtWrcjIyGDx4sUANGjQgK5du/L555+zY4drCOjWrRslJSWsX78egI4dO2Ktpbi4GIDWrVvTunVrlixZAkCjRo3Izs5m0aJF7Nq1C4CcnBxWrlzJxo0bAejcuTM7d+5k1apVALRp04b09HSWLl0KQJMmTcjKyqKwsJDS0lIAcnNzKSoqYtMmd12BLl26sHXrVtasWUPZ592sWTOWLVsGQNOmTTnssMNYuHAh1lqMMeTm5rJ8+XI2b94MQFZWFt9//z0lJSX6nvQ96XtK0e8JWhKvBQsWpPz3FC9jbaxDmsEzxmQCq4HjrLX5EfNvBc6z1mZV8txOuIt49wbuAa611r7gPbYTuMRa+3zE8hcCE6y1DSrLKTc3186YMSOJdyUiIiOfi7+A3nvRxhAzCUZ6enqBtbbX/paLZySiz3BFb6MxZhGxOxEBYK09qpJQ64BS3MW4I7UBvqksB2vtV97NRcaYNsAY4AVv3jd+YoqIiCQjnibc14CyTkOVjURUKWvtTmNMATAIeCXioUHea8SrDhC5ZznXi3FfVMx4OjWJiIj4Es9IRGNj3fbpQeAFY8zHwIfA5UAmrhMSxpjnvde50Lt/DfAVsMx7fh5wAz/2wAV3Wky+MeZG4HXgTGAg0D/JXEVERCqU8NVYkmGt/YcxphVwM5ABLAZOsdYWe4tEnw9aF3fMsyOwG/gSuBGv4Hox5xhjfo07R/R2b5lzrbUfhfhWRESklovnGGilxz0j7ecYaNkyj7P3HmTkY8dH3R8HjIsj5qsk0bwsIiKSqHivxiIiIiIREjoGKiIiIo4uTyYiIuJDVZ4HKiIicsCosvNARUREDiRVfR6oiIjIAcHXeaDGmJ8C2d7dpdbaL4NLSUREJPUlVEC9QRCeBk4D9vw427wJ/M5auz7g/ERERFJSor1w/wp0wV3QuqE35QGdgAmVPE9EROSAkmgT7knACdbauRHzPjTG/B6YHlxaIiIiqS3RPdC1QKyLaW8F1HwrIiK1RqIF9HZgnDHmkLIZ3u0HvMdERERqBT+DyXcCVhhjVnv3DwG2Az/BHSMVERE54GkweRERER80mLyIiIgPGkxeRETEh4QKqDGmvjFmrDHmP8aY7caY0sgprCRFRERSTaJ7oHcAF+F63e4B/hd4DHcKy5XBpiYiIpK6Ei2g5wCXW2ufBEqBN6y1w4HbgEFBJyciIpKqEi2gbYAl3u0fgBbe7X8BvwgqKRERkVSXaAFdCWR6t7/ADe0H0AfYFlRSIiIiqS7RAvpP4ATv9kPAWGPMV8CzaBAFERGpRRIaTN5aOzri9qvGmFVAX+A/1to3g05OREQkVfm6oHYZa+08YF5AuYiIiNQYCQ+kYIzpYYx53hgz35teMMb0CCM5ERGRVJXoQArnAZ8AGcBb3tQG+NgYc37w6YmIiKSmRJtw/wTcYq29K3KmMWY0cCcwKajEREREUlmiTbitgZdjzH8FdzkzERGRWiHRAjoTOD7G/OOB95NNRkREpKaI54LaZ0XcfRv4szGmFz/2vu0NnAWMCTw7ERGRFOX3gtqXeVOkR4DHk85IRESkBojngtq6ZqiIiEgUFUcREREf/AykMMQYk2+MWWeMWWuMed8Yc0oYyYmIiKSqRAdSuAQ3oPyXwCjgRuAr4J/GmN8Fn56IiEhqSnQghVHACGvtoxHznjbGFOCK6cTAMhMREUlhiTbhtsddPDva20CH5NMRERGpGfxcUHtQjPm/AIqTT0dERKRmSLQJ937gEe/qK3O8ef2AC4BrgkxMREQklSV6Qe0njTH/Bf6AG30IYClwjrX2jaCTExERSVVxF1BjTBquqTbfWvvP8FISERFJfXEfA7XW7gYmA03DS0dERKRmSLQTUSHQJYxEREREapJEC+gY4AFjzBnGmEONMemRUwj5iYiIpKREe+FO9f5OBmzEfOPdrxtEUiIiIqku0QI6MJQsREREapi4CqgxpjFwH3AGUA+YDgy31q4LMTcREZGUFe8x0LHAMFwT7t9xoxGNDyknERGRlBdvE+5ZwP9Ya18CMMa8CHxojKlrrS0NLTsREZEUFe8e6KHA7LI71tqPgd1AZhhJiYiIpLp4C2hdYGfUvN0k3glJRETkgBBvATTAJGPMjoh5DYEJxpitZTOstacFmZyIiEiqireAPhdj3qQgExEREalJ4iqg1tqLw05ERESkJkl0KD8RERFBBVRERMQXFVAREREfVEBFRER8UAEVERHxQQVURETEBxVQERERH1RARUREfFABFRER8UEFVERExAcVUBERER+qvIAaY640xnxljNlujCkwxgyoZNkMY8zfjDH/NsaUGmOejbHMMGOMjTE1DPWNiIhIrValBdQYcy7wEHAXkAvMAd42xrSv4CkNgHXA3cBHlYTeCmRETtba7UHlLSIiEq2q90BHAM9aaydYa5daa68BSoArYi1srV1hrR1urX0W2FBJXGut/SZyCj51ERGRH8V7PdCkGWPqAz2B+6Memgb0TTJ8I2NMMVAX+BS4xVq7sII8LgMuA8jIyGDBggUAZGZm0rhxY7744gsAmjdvTufOnVm40IWpW7cuOTk5LFu2jC1btgCQnZ3Nhg0b+PbbbwFo164d9evXp6ioCICWLVvSvn17CgsLAahXrx7du3dn6dKlbNu2DYAjjzyStWvXsnbtWgA6dOiAMYYVK1YA0KpVKzIyMli8eDEADRo0oGvXrnz++efs2OGub96tWzdKSkpYv349AB07dsRaS3FxMQCtW7emdevWLFmyxH1YjRqRnZ3NokWL2LVrFwA5OTmsXLmSjRs3AtC5c2d27tzJqlWrAGjTpg3p6eksXboUgCZNmpCVlUVhYSGlpaUA5ObmUlRUxKZNmwDo0qULW7duZc2aNZR93s2aNWPZsmUANG3alMMOO4yFCxdircUYQ25uLsuXL2fz5s0AZGVl8f3331NSUqLvSd+TvqcU/Z6gJfFasGBByn9P8TLW2rgXToYxJhNYDRxnrc2PmH8rcJ61Nms/z38TWGetHRY1vw9wOFAINAWuBU4Bcqy1yyuLmZuba2fMmOHj3YiISJmRz8VfQO+9aGOImQQjPT29wFrba3/LVdkeaFistXOBuWX3jTFzcHuh1wDDqysvERE5sFXlMdB1QCnQJmp+GyCwY5bW2lJgPnBYUDFFRESiVVkBtdbuBAqAQVEPDcL1xg2EMcYAR+E6J4mIiISiqptwHwReMMZ8DHwIXA5kAk8AGGOeB7DWXlj2BGPM0d7NZsAe7/5Oa+0S7/HbgHnAcm+Z4bgCGrNnr4iISBCqtIBaa/9hjGkF3Iw7X3MxcIq1tthbJNb5oNG9aX8JFAMdvfstgKeAtsAmb/k8a+3HwWYvIiLyoyrvRGStfRx4vILHjo8xz+wn3vXA9YEkJyIiEieNhSsiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMKqIiIiA8qoCIiIj6ogIqIiPigAioiIuKDCqiIiIgPKqAiIiI+qICKiIj4oAIqIiLigwqoiIiIDyqgIiIiPqiAioiI+KACKiIi4oMK6AFu+vTpHHvssfTs2ZNx48bt8/iOHTv43e9+R8+ePTnxxBNZuXLlXo+vWrWKQw89lEceeaR83hNPPEHfvn3p06cP48ePD/09BE2fiYgEQQX0AFZaWsrIkSN5+eWXmTt3Lq+99hr//ve/91pm0qRJtGjRgoKCAq644grGjBmz1+N//OMfOeGEE8rvL1myhOeff57p06cze/Zspk2bRlFRUVW8nUDoMxGRoKiAHsAKCgro1KkTHTt2pH79+px11lm8/fbbey3z1ltv8etf/xqA008/nfz8fKy1AEydOpUOHTpwxBFHlC//n//8h549e9K4cWPS0tLo27cvb775ZtW9qSTpM5HqFkYLSE5ODv369SMvL4+f//znob8HcVRAD2AlJSUccsgh5fczMzMpKSmpcJm0tDSaNWvGhg0b+OGHH3jooYcYOXLkXstnZ2czb948NmzYwNatW3n33XdZvXp1+G8mIPpM9hX0Cn3VqlWcdtpp9O7dmz59+vDEE09UyfuoCcJoASkzZcoU8vPzmTFjRphvQSKogEpM99xzD1dccQUHHXTQXvOzsrIYPnw4Z599Nr/61a/o3r07derUjp/RgfiZhLFCT0tL44477mDevHlMmzaNp59+ep+YtVUYLSBSfWrGf3kK8LuVXlBQQF5eHnl5eQwYMGCvpr3HH3+cPn360LdvXy655BK2b98eaM4ZGRl77QmtWbOGjIyMCpfZvXs333//Penp6RQUFDBmzBhycnJ44okn+Mtf/sKECRMAuOCCC5g5cyZTp06lRYsWdOnSJdC8w6TPZG9hrNDbtm1LTk4OAE2bNuXwww/fZy+/tgqjBQTAGMPZZ5/NwIEDefbZZ0N9D/IjFdA4JLOVnp2dzYwZM8jPz+eVV15hxIgR7N69mzVr1vDUU08xY8YM5syZQ2lpKZMnTw407x49elBUVERxcTE7d+5k8uTJDB48eK9lTj75ZF566SUA3njjDQYMGIAxhrfeeovCwkIKCwu5/PLLuf7667n00ksBWLt2LQAvvfQSjz76KI8++mhgGxWbNm3ioosuolu3brRp04auXbsGGvuRRx5h9uzZ9OjRgw8//DDwz2TVqlW8+eabDB06NN6vqVqFtUIvs3LlSj777DN69uwZzhuoRSpqAQG3kTNr1ixefvllnn76aebMmVMNGdY+KqBxSGYrvaxjCbiVvjGm/Dm7d+9m+/bt7N69m23bttG2bdtA805LS+Pee+9l6NCh9O7dmzPOOIPs7Gzuuuuu8vzPP/98NmzYQM+ePRk/fjy33XbbfuNedNFF/OxnP+Paa6/l4Ycf5qOPPgpkowJg9OjRDBw4kPr16/PBBx8wa9asQGMPGjSIF198kTp16nDVVVcF+pn07t2b3/zmN9x77700b958v8+p6SpboQP88MMPnHnmmZSWljJw4MDANoSqosNMGC1OOTk5jBkzhtdff70876BaQDIzMwFo3bo1Q4YMoaCgIPgPRfaRVt0J1ASxttKjf6AVbaW3atWK+fPnc80117Bq1SrGjx9PWloamZmZXH311Rx11FE0bNiQgQMHhrIyGDRoEIMGDdpr3k033VR+u2HDhvtt8rnxxhv3uv/WW2/x8ccfc88993DuuecClG9URDblvfXWW4waNQpwGxWjRo0q36goE7lR8f333zNnzhyGDRtGp06dOOywwwKP/dhjj2GMCeUzqYkSadI+5JBD9lmhT5kyhTFjxrBp0ybq1KlDw4YNufTSS9m1axcXXngh3333He+99x6ZmZmccMIJDB48eK/vMXJD6LXXXmPMmDFMnDixfEMoLS2Nb775hry8PAYPHly+MTplyhQWLlzITTfdRM+ePbngggu47rrr9sp7x44dXHHFFRQWFtKyZUsmTpxI+/btKSgo4PrrrwfAWsuoUaM49dRT2b59e/nf5cuXM2zYMO64445A8/7Xv/7F4MGDeeaZZ8pbhZ566qm98i5rATn22GP3aQEpc/fdd9OkSRMuvfRStmzZwp49e2jatClbtmxh5syZ/O///m8yP4sqN336dG666SZKS0sD/S537NjB7t27Oe200xg9enTgeWsPtAr06tWLuXPnMn36dMaNG8f27dv57rvvePvtt1m4cCFLlixh69atvPzyy9WdatySafoDmD9/Pn369KF///488MADpKWlUVxczMEHH8wdd9zBp59+yvDhw9myZUugsa+++mqOO+648ti1XRjN/NZahg8fTvPmzTn66KMDb7mBcA6rNGjQgNdff50HH3yQfv36UVBQQGFhYaB5h9EqtHbtWk455RQGDBhAnz59+PLLLxk1alRge85XX301hx9+OH379q00D7/C/C5nz55Nfn4+7733Hp988knguWsPNA7JbKVHysrKokmTJixdupTi4mLat2/PwQcfDMCpp57Kxx9/zDnnnBP+G/KMfK5l3Mvee9HGQF+7bKNi2bJlXHXVVZx44ons3r2bwsJCRo8eTadOnWjcuDHjxo1LuENOZbHvvvtuevXqxY033si4ceP44x//uNdzk/1M/G5Jz5w5k9tvv52dO3dSv359xo4dS15eHgCTJ0/mwQcfpLS0lJNOOmmfXrDJiFyhl5aWct5555Wv0HNzczn55JM5//zzufzyy+nZsyctW7bkr3/9a6UxP/roI/7xj3/Qrl07tmzZQl5eHrfccksgLTfgOswMGTKEdevWMWvWLIYNGxZIK4UxhoMOOoiSkhLatm3Lhg0bMMYEmvfZZ5+NMYarrrqKYcOGlcdLpgWkY8eOzJ49m9LSUo455himT58e6B7/b3/7Wy699FKuuOKKSnPyK/IQGQTT4lT2XQLs2rWL3bt377MxEwTtgcYhma304uLi8mNwX3/9NcuXL6d9+/a0a9eO+fPns3XrVqZPn86oUaN44403EtpqnDlzJgMHDqRfv34MHDiQ/Pz88ue89tpr9OvXj/79+zN06FDWr18f6GeSTG/WSJEbFZmZmWRmZtK/f39Wr17N6aefzmeffRZo7F69egGUxw5SMlvSrVq14m9/+xsffvghjz32WPnKasOGDdx2222MGDGC0tJSJk6cyPDhw/d57WR+I2PHjqVDhw68++67/OEPfwDcCv3kk08GflyhFxQUMH369PIVXaQbb7yRa665BoDevXuzYcMG7rjjDoYMGUJ+fv54J1nHAAAcw0lEQVQ+TebxiNVyA25levPNNzN48ODyDjNBtFKA+w5vvfVWXn31VY4//vjy30tQeYfZ0Sesvhp9+/alZcv4NywTFUZrFrjvMi8vj6ysLN/f5f6ogMYhmWaXefPmMWDAAPLy8rjgggu47777aNWqFb169eK0007j+OOP57zzzmPAgAEsWLAgkJXu7t27GT16NFOmTOGDDz6ga9eu5Z0NghLGRkWbNm045JBDaNq0KUVFRbzxxht06dIl0NjLly8H4P333ycrKyvQzySZFdhRRx1VvpGQnZ3Ntm3b2LFjBytWrKBz587ceeedvPzyy/z5z39m6tSpNeI3EsZGFvzYYaZhw4a+O8xUVOTq1q3LhAkT6NOnDwsWLGDJkiWB511ZR5+Rz7WMe4oWViFKdZV9l/n5+SxevLj8uwyaCmicBg0axCeffMKCBQsS2ko/99xzmTt3Lvn5+cyaNYshQ4aUxxw9ejSPPvoo/fv3Z9KkSTRt2jSQla61FmstW7duxVrL5s2bU6qHb0UbFeB6dl511VXs2bOHSZMmMXXq1EBj//73v6d///4sXryYESNGBPqZJLsCKzNlyhRycnJo0KABnTt3ZsmSJWRkZNCuXTveeecdDj744BrxGwljI2vLli1s3ryZjIwMVq5cycyZM8nOzg6syJXlvXLlSrp168Y777wTaN5AeUef7OzspD7foFVUiMIW1oZWmebNm9O/f3/ee++9wHOvGZsYB7Bke/iWiVzpAtx///3069ePJk2a0LlzZ+67777Ac/fbw/fcc88t770brXv37hUORRZm7FSxdOlSxo4dy2uvvQZAixYtOP/885k0aRKnnHIKxx57LF9//XXchTnZ30gix4Rh7+PCyRxfnTdvHuPGjaNevXrUqVOnfENoxYoVXHDBBVhrWb58OZdddhl5eXmMHTs27t6sxcXFHHLIIaSlpe1V5NatW0e9evVo3rw5d9xxB5dddhnNmjXj0ksvDSxvcAVg6NChnHjiiQl9tvsTRl+N3NzcQHOMJXJDKyMjI6GeyfF8l9u2bWPWrFlce+21geeuAnoAiF7p7tq1i2eeeYb333+fjh07MmrUKP7yl79www03VHOmB7ZkV2CrV6/mwgsv5PHHH6dTp07lzzn66KNZv349Dz/8MM8++2x5M3Qiqus3EvRGVlmHGYB3332Xm266ialTpwZSnD///HOuvPJKSktL2bNnD9ddd91eg0QElXdYwihEVSGMDa3o7/KMM87gpJNOCj73wCPWQsn03Axjpbto0SKA8vtnnHFGzM5JEqxkVmCbNm3i17/+Nbfeeiu9e/fe6zmNGjVi9erVfPfdd0ycOJG8vLy99iyhdv5Ggi7OXbt25f333w88z6oSRiECuOSSS/jwww9Zv349Xbt25cYbbyzfmw5KTf0uVUCrWRgr3YyMDJYtW8a6des4+OCDmTlzJocffniVvq8wT5GpztNvKpPMCmzChAl89dVX3HfffeVNqa+99hqtW7fmpZde4oMPPuCEE05g5MiRPProo7XuNwJV+11WJlV/fxDOYZX9nbZUm6mAVrMwVroZGRmMHDmSIUOGUK9ePQ499FAee+yx6nybtYbfFdgNN9xQYfPpxIkTy5sr77nnHv1G4lBTi7PsK5U3WFRAU0AYK92LL76Yiy++ONA8pfroNyLJSuVCVFOpgKY4/egPDGHuEWlvS6R66DxQERERH1RARUREfFABFRER8UEFVERExAcVUBERER9UQEVERHxQARUREfFBBVRERMQHFVAREREfVEBFRER8qPICaoy50hjzlTFmuzGmwBgzYD/LH+ctt90YU2SMuTzZmCIiIsmq0gJqjDkXeAi4C8gF5gBvG2NiXrnVGNMJeMtbLhf4M/CIMeZsvzFFRESCUNV7oCOAZ621E6y1S6211wAlwBUVLH85sMZae423/ATgOSDy8hKJxhQREUlalRVQY0x9oCcwLeqhaUDfCp7WJ8by7wC9jDH1fMYUERFJmrHWVs0LGZMJrAaOs9bmR8y/FTjPWpsV4zn/ASZZa2+PmJcHvA9kAsZHzMuAy7y7WcCyAN5eRQ4G1il26HEVW7EVO/Vi18Scy3Sw1rbe30K17nqg1tqngKeq4rWMMfOttb0UO9y4iq3Yip16sWtizomqygK6DigF2kTNbwN8U8Fzvqlg+d1ePOMjpoiISNKq7BiotXYnUAAMinpoEK7nbCxzK1h+vrV2l8+YIiIiSavqJtwHgReMMR8DH+J62WYCTwAYY54HsNZe6C3/BHC1MWYc8CTQDxgG/CbemNUszKbimhi7Juas2Iqt2KkVN+zYcauyTkTlL2jMlcBIIANYDFxf1gHIGDMLwFp7fMTyxwF/AboCa4B7rLVPxBtTREQkDFVeQEVERA4EGgtXRETEBxVQERERH1RAQ2KMMRG3a8znHJW3qWzZVFKD864xvw0R2Zv+eUNirbXeUINYa/eUzQ9i5R7mStfLu1nZ7SBjG2PqBhkvUg3Oe48xpo33Og2NMTVicJOy33FN2lgRCZo6EYXAGNMWGAr0wA0XOA941Vo7N+DXMbjvcE+sxxItJMaYLrhThAYCHXHn4f4fMNNa+63fuDFepw7svWFRS/M+GrgQOAVoC8wH3gXeAxZaa0uTydsr/HuC3qDwYqcBTay1m0KIXddaWxp0XC92U6AJ8F+gMbA11veZampq3gc6FdAQGGOmAl2ApbhTb/oC3YAvgLuBF/yuIIwxVwGfAx9Za7dFzK+D2/ny/YUaY94HmgIf4EZy+jnQH1iPu2TcA35X6saYPwELgGnW2s0R85NeydfgvAuAzbhi/y0wxJtKgWeBm621W5It/t5vwwRVlIwxg4GLgRygPq7gv4HbYNkSxGt4rxNzg6Vsr9fHd/lbXN49vFlzgbeB6dbaZWWxk9lgCaPw19S8vdgZuP/NbUBd4Btr7faAYqdZa3cHEcs3a62mACfcynst0M673xBojiuiE4AiYITP2P2BPUA+MAkYDuRELdMAuAXISDD2QC/vllHzM4HbcIP2Pw7UTSLvhcBs4H7cBQAil2kEPAy0ryV5H+/l3TDGY/8DFONWkk19/laeAX4f43NJA+ok8fvuj7sAwzTgSu+39hGu6C8GfpVE7O7ed3UikBb1WF28DX6fsfOAFcDzwMnARd7nuwP4GrjKb+wYr1U3mc/4QMjbi3clrlVlO25DcRZuB+IXQANvGd/faVTeCf9/B/Ieq+NFD+QJGAPMqOCxZsAfgR+AHj5i/wU3ROHtwJvAJ8BM3ChNF+KaL3/mrfQPSjD2Dbim5kbe/b3+mYDzgU3Az33kfa+X5+XAo94/0qe4S9ONxu2dH+vlnVDBqMF5X+7FauPdbwDUj3j8ONxe6Zk+8i4r/P8BVgKvAKdHLdMImAgcmWDsV4EJMeYfgRsdZjVwoc//nedweyqfANO9/6UeUcv08X7vCa14gZeBp2LMb+y9znrgFp959/L+H4cC9aIeS0s01wMk7+O938I9QDau+E/wfpOrgT8RtZGUQOx+QCFwSeT/TETedXDjpKcn8x7iyiXM4LVx8lZea4HBFTyehtt6v95H7BeAh73b9YHBwAPADG+l8yaumfhdH7GP9PI+L2q+ibj9BjDWR+yJwNPe7TreP+41uK3qucDH3mu/VYvybofbgxgRNb98T8tbeT7oI/aduCJ/Om4D403cXsx/gMeA3sAx+Cv8M4A7on7PdbzbDXF7vguAn/jIewFwF27PZSJuaM6F3vd3FdAeGA8s8RH7dWB8xP0GRBQN3Ebp50BHH7GfA3Z6n++XwF/Zt6WiL/ASCe4p1eC8/wY8GWN+PdzG43/L/rd85l0KlOAuLPIv4NSoZfp5830V6bhzCTN4bZxwW/bP4wrZjbgLfjeJeLwFsAo4y0fsbsDJMeb/BNeJ5llvpXiKj9h1ccV4PW5P4hSgVcTjbXEr/KE+YrcFjo8xvzmuCfb2APLeUFPy5scCOQrXGjEd+B2QGbFMZy/vhJtEcS0Vz5atPIBOwC9xxSkfV0x3AVN9xB6OO858eAXv6VDvt59QCwtwGO46v7/z7jcFBnif0cu4jZX53ud9uo+8z/N+232jfz/e33TgK6CPj9hzcYcLhgBjca0WXwOf4TZmsnAbLotrUd7P4lo+Gnr3GxJRzHCHKf4NdPUR+31cC1B3L86/cC0X3wNP447NPwJ8lmjshHMJ+wVq4+StRB7Hbdl9hGv+u9n70qcAy5KIXbZSrEPU8SxvJbkpidgNcHss+bg92n96P8gHcXsDCwL6fMo6tUTm/UMS8RoDf8B1IioIIm+imn4iPu/A8vZinIlrFl3Aj02XL+COJ+b7jHkQ0DvG/Ea4PfZL8L/B0hrXU/hLXDNcHhF7scBZwGafeXchqjB789vgmgBfB77z8116n8nfgY24vaOzgRYR3+1v/OSNO2zyJnCFd78hrvCcg+vA9gmuKO0BTksi7+9qSt5evJNwl5w8J2p+2fqrCe7wwnEJxs3E7Sn/3rtfF2iJa1G50ct7h5f3L/38DhOZ1As3RMaYo3DH4PriVr4tcccwH7TWLgrwdQzun+1VoJm19sQk4x0BnAocjcs5A7diH2+t/SrJdKNfqw5uYyPdWntOkrHa44pab9wV69sQQt4Rn3dQeR+Ka3LqimvabYfbqn7BWvvfJNPdp4emMeY04GVrbUOf8brgmlmPwzWhrQK24laKRwBvWmtHJplzWVP27oh5rwNbrLXn+YzZFHc1pyG438Ye3PHxut79l6y1Y3zEbYNrZSqK8XqdcZ/VudbaFj7zboLrhXs6rrVpdyrn7f1/NMC1eFyDazl4DnjFWrveGHMwcBowzlrbzEferYDG1tqvo+aXrWOvAYb7/bwTykUFNBjGmAbAUXhb4LhmkPnW2m+8x7NwTWc7bYIfekTsM3H/OJ/jmsm+tu40hzrWnZCfBjS31q73kX9Z55tdUfNbW2vXJhovRmxrKzhvzXu8qbX2uwRiHoTb+/kNbut8GW7vc761dlcyeUfF3gAsx7UmLLLWliSTd8Rz0wBsVDd8Y0wDa+0OP3nH+boG11zXxlr7+yRjHYnbYDkS15TYCNd8PNNauzXZXCNepw5uxfgxroPSh0nGy8J1RuqE21hpiGslKrDuGsNJibHB8jqww1p7rs94Day1O7zzy/NwG1qH4opUIHlXssHiO28vxqnAb4FcXOvFt7gNgAbAX6219yeTdwWv+TpQaq09O+jY+7yWCmgwjDEP44pnCW5l0hF3rOgN3CXYigOM3QF3funruK24okqevr/YPa21BVHz6uMK3q4KnpZM7EBO7jfGPIdbmSzHfSbtcMdAPgUes9a+H3DsjV7sp6y1M5OI3d9a+0HUvL0+72TPb/OK855KNljq4PY8Nsd6vILnHIo7Tnss7pjb58Aca22h9502stb+4DPfstjH4JqGl3nxP7PWbiwrSMaYgxJ5jchCFmuDpWzD00/OCeTQApgMjLLWfpLA87KBEbjCU4T7zD/ENesnvMFWyes0jf4deL+PZn7yjogR+dln4Day2uM2WhriOokttwGff+pt/D4CPGSt/TTI2DGF3UZcGybcj+N73PlNrbx5rXFt8l/hDnD/Hh9dquOMfRmuSTHRrv2H4ZqxFuOOF+ZGPW5wvX2PJaq7eECx6/mMfSRuL783P3amaA5cyo/nJI7Bx7mDcca+DR/nzOGaN/d48V8C+kU9Xge3Zf5LvNNbEozfP8a86OPkCZ/nh1vpLcANDPKcd3s1rsg9iY8eoPuJvQrXgvM48NPo300CsVuzb6/Sss+47Ficwd85wpHHwis9txbX3JhI7J/iNiLygT/jjunPw5268Rpwot/P24ufjTulZL73O7wXt5d4aNRyjZJ8nVBPIankdRtU2WtVxxs80CbgJiI6fLDvSeB34XqcZaZY7Ftxe1ll55eu9v5RR5b9MwGHeCv9dikU+zrgg4j70eeCXY7rALFPh5Rqjn0T7rSM0biBGXbjWinuLysUuGNce6JXZnHE3l9xLtsYSrg4A0/gRktqGzGvPa6HbDGus0jCPWPjjL02idiPeZ/JN97tI6Mer+u91q9I/DSNWMXZsG9Hs7KNsEQK/3jvM4nsnNUGd/w2H3e8+X98fiaxivNc3IbLy8Avot9TArHbABfg+gVEzi/vNOh95gkXuIpix1iurNdvlRTv0F+gNky4Y5PLgS4R89IivsyyrezhKRb7RVyPu7a44yoX4Xq4fYbbC/g/XE+9z1Ms9kBcETsh6jMpG0yhFa5H7m0pFvsx3DGrdG/Kw20ALcWt6D/DnWfp5zMJszjPBm7wbtdj3424v+NGx9mrd3UKxP4Ytxd7G27vbQ+u78BNZSti3EhKRT6/y8qKcx1+LM4JnYsIvIV33jIxRtnBnbY1jwT3bL3n7q84b8F/cX7E+0w24E5hOYWoYul9JjdEz6/O2MlMVfIiB/rkrVSX4vYEz4n1BXr/wL9Pldi4ovBbYHTU/HRcB4urcVukexL9hwozthenIe5UihLcHuE+TU2445UJD3MWVmxvRXgKcGXU/PreP/6puGa1PcDFPvIOsziP8d5z5Eq3Hj9uVPTHHbvc59SZ6oqN6yfwDq4w1MG1dpzkfU4rvc/kQ2+F7GdQkzCL87VejkdE/U7qe7ePxB2+GegjdpjFeS5ur/ZiXO/3Hbi+Go/gnRcM3AF8kUqxk5mq7IUO9Al3ftI/gCW4kYbuxI2LezhuT2wtEQMqpErsiNeoF2PeWd6KIeF/prBj43p8PuitaJbhjp+dhTtW/HfcXmTKxY54jX2OmXkr+IQ/E8Ivzj29ldUCYpwTiGs+3u5zpRtKbFwnmIuIPXbxT3Ebo7Nwe+oJHesj/OLcCdea8BXewBJRj3fDjSDk5/MOpTh766hXgMu8+2nedzcKt4FUCizC7eFemyqxk52q7IVqw4TbW7wIN9D7HNwIIntwI3z8OpVix1qBe/PLj+Hgmv9mpVJs77llx5UOwg1n+CfcFUE24jpcTSbGiE3VGRt3fKzSDjy4vbF3AvgdBlmcy76vLt57X+OtrB7HHU8dhTt5/WU/n0lYsWN89vs0o+IOM/j5fYdWnCNiNcW1KGzEjVY1GXde5uO41oTnfcYNpTjjzgH+JfCzGI81xnUWfNnPZxJm7GQnncaSJGNMO9wKANwW0BJcz9jOuJXwVmCdtXZDisY2uBXrMuuds+o9bnAnbq+2CXZjDzN2Ba9XH9epYxuuCXaTDeiyWmHGjvFaxwNrrbWfJ/i8Cq8LG7HMGNxwbyclkV9D3JVSBuFWWl1xe1kTgEk2uVO1Qosd8RoGt7deiit2+cCfrbWvJRvT7ns+74vAIdba433Eq2Pd5fca4oary8O1OPXAFb5JwOTI/6kEX6Mprjn0PFxz+TRcs2g3XJP5p9baC/3EjnwfNqq4GGOexR2PH5CqsRPORQXUP2PMFbjz13JwxawI10FmJu4C2l9X8vRUib0Fd+xmFe7Yx+vWu8ZgCsZuZAO+Bmp1xK4Ofoqz9xmcjtuAaIQ7FjnbWrvJW7lb3LHLdT7yqarYjXE9wN+3EaM6eYOTnGitnZpo/ApeM/DiHBG7/NxpY0xz6/Mi5mEW5/39vxhjGuHOiR9vrf1nqsROlgqoT95wUl/gDrqPx/2znoi7jM+RuOao4dbaJbG2mFI0djau2F3vxU7oQrshx26J66wxFa8Zu+x9R/6DeSegr7KJDRJQXbEjTzbPBkpsgifJh1Wcvb2Up3G9kvfgipDBbcxNx+0VLveWTWhAgiqOvQpXjLfjBiF/wVr773jjxYgfSnE2xtTDNa8W2xgjUSX6f57A6wZSnON4nXpAL2vt3JoUe7/CbB8+kCfceIsfVfBYf1z3/CLgYMUOLPYOXO/HUtwey+1AVsQyh+KO73SuJbFb4jqEjMeNpRt5/mHk7Wy8AcgTiP1HXOE/xrt/BG5c5/G4IRP/D2id6PdYzbE/wV3MwW/sprhjbWtxQ9IV4AYj+AB3rPwIP3G92NfhWmyewR3va8u+PWSb4QbV36dT3n5i18N1OIx5ekfkb8VH3pXGTmYKM3ZgOVZ3AjV1wo0stATo5t2PviBye+/x3yp2ILEn4E66/wluXOA/486PLcU1D1+GOwcy4auj1ODYYRbn2URdq9SbX5cfhzn8l8//nZoaO8ziPBd3eGa2911+hesJ3h83vjW406rm+YgdZnGON/YQEh9xLLTYQU1V/oIHyoTrFbsYNzhA5DlskcOmzQFGKnZysXGF+Hrgj1Hzm+OaiCfimrX3ALfUhthenFCKM6639HjcqRitvXl7DV0InOB91zm1Ibb33FCKM645OB9vwxI39vLNuAsY7MHt6Y7CnQv+kI/4YRbnGhk7qKlaXrSmT3jjzgJn4IYb24w77tKTH0cgOd+b31Gxk4vtxW+AN9xb9ErRm3c8PoYFrKmxCb8498bt0d5DjKH/cHu2P+B6mh7wsQm38Gd43+VJMR7LxZ1fWnbaWqJ5h1aca2rsIKdqedEDZQJa4Lb8L8edWP2DN33h/ROPUezkY/NjZ7fO0SvFiMduxd+oLzUytvfcsIpz2cXDL8Ud79uIa1UYhLvo8q9wg0t84iPnGhnbix9m4W9ExDiuZVPE438CFvqIG2ZxrpGxg5zUCzdBxpif4AY1/gNuEO1tuOtRfoBrNquHOwfyX9ba/yh2YLFHAP/FnSxdghuZZLJ110M1uJXmGmvtmwd6bC9+2SW+OuMuMv1tjMduBYZZazsnEjvqdVrgRtz5Le4C65txPVo/wZ2m8VFtiO31vq2DG0ruLlyhfg03QthK3EbjqbgxcY/xmXPMnrbGmMa4kZqesdbe4yNuI1xP8u3ebw68Gd7jfwJOsdbm1pbYQVEBTZB3wm5XXE/BDbhxR7vjeov9F7jZ7z++YscdOxfXgWMVcJ+1dlotix1m4W8GbI5ckXvFoyFu8I5uuIKd8PdZU2PHeK3AinOsvGMs0xA4F/i79Xnh7LCKc02OHYjq2vWtiROuWeUHIC9qXgfc8F3TcE2VPRQ71NiH4prjpuHGqq01sb1Yz+JW1rfiBua/FXdZqqW4gfB/4SeuF/tJ4H9wG0DNKlimZdl7qiWxm0U/B7c32hjXgevnxBhmLsC8EzoFqbK8YyzTEDcsYaI9ZGtk7KCnanvhmjjh9igWUcGVIXDHpObjtkIVO/zY9Wth7DAL/29wx5S+w52v+yRuEP0u/Hh1lIOA14HutSG299xQinMFeZ+JG0+3LO+yUXa6hZS33+JcI2MHPVV7AjVp8n7M7+G6Vx9G7EG7r8GNJanYih1G7DCLc9lpMZ1x11VchBsdaCGuE8vPgSuAnbUodpiFv6rzDqQ419TYYUzV+uI1ccL1xPvUWzkOw235H+Q91hh4FTcUmWIrduCxCak44zrF3ATcHTW/KzAOd9x2He5469O1IbYXJ5QiV1Pzrsmxw5iqPYGaOOE6JPwD19t0Ha6jyERcb7yP8NFMpNiKnUDcsIpzS7zh6HB7stHH/c7F7R0cXRtiE36Rq3F519TYYU3qhZsErzfkENzgAdtxJ1G/YpMYrFqxFTvOmN2AW4DTcMOdzcWd+3girkfuJdbaRUmmXtaT1Vh3BY9LcSetN042bk2J7V0MoI219t/GXdpul41YaRpjzsVdZL2HtfbT2pB3TY0dBhXQgCR61QjFVuyA4oVW+GO81gjcWKT31ebYYRb+qNepMXnX1NjJUgEVOUCEWfi9+PWA0jBeowbHDrPw19S8a2RsP1RARUR8CrPIhakGb7Ck1OetAioiIuJDnepOQEREpCZSARUREfFBBVRERMQHFVAREREfVEBFRER8+H9mlo26PBT+VwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "expression = '(w ^ x) & ~(y ^ z) & (x & y & z)'\n", - "oracle = LogicalExpressionOracle(expression)\n", - "grover = Grover(oracle)\n", - "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024))\n", - "plot_histogram(result['measurement'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the example above, the input Boolean logical expression `'(w ^ x) & ~(y ^ z) & (x & y & z)'` should be quite self-explanatory, where `^`, `~`, and `&` represent the Boolean logical XOR, NOT, and AND operators, respectively. It should be quite easy to figure out the satisfying solution by examining its parts: `w ^ x` calls for `w` and `x` taking different values; `~(y ^ z)` requires `y` and `z` be the same; `x & y & z` dictates all three to be `True`. Putting these together, we get the satisfying solution `(w, x, y, z) = (False, True, True, True)`, which our `Grover`'s result agrees with." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quantum Search with Oracles from TruthTable\n", - "\n", - "With Aqua, `Oracle`s can also be constructed from truth tables, meaning we can also perform Quantum Search on truth tables. Even though this might seem like a moot point as we would be essentially searching for entries of a truth table with the $1$ value, it'd a good example for demonstrative purpose." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "truthtable = '1000000000000001'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As shown, the `truthtable` is specified with a bitstring containing values of all entries in the table. It has length $16$, so the corresponding truth table is of $4$ input bits. Since the very first and last values are $1$, the corresponding truth table target entries are `0000` and `1111`.\n", - "\n", - "Next, we can setup the `Oracle` and `Grover` objects to perform Quantum Search as usual." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAFOCAYAAADzQ9aiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt8FNX9//HXIZBAlFswxQQJF9EQLo0heEHl4hdRtLUiUi/FG9Qf9V6LFr9Sv4qt4lcUxbaiFmu9ttpKVFRoEeULVqhiiCmXmIKRUEjEkFBAQELC+f1xJmEZNmR3s5sLvJ+Pxz6yOzvzmZPZ3fnMnDnnjLHWIiIiIge0auoCiIiINDdKjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj5KjiIiIj6tm7oAsdKlSxeblpbW1MUQEZFm5LPPPttqrU2ub74jNjmmpaXxwQcfNHUxRESkGUlKSioOZT5Vq4qIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqIiPgoOYqISMwsWrSI0047jezsbGbNmlXnfPPmzSMpKYm8vLzaaY8//jjZ2dmcdtppvP/++7XTt2/fzrXXXsvpp5/O6aefzieffBL1creOekQRERGgurqaKVOmkJOTQ2pqKiNHjmT06NH07dv3oPl27tzJM888Q3Z2du20zz//nJycHJYtW8ZXX33FJZdcwooVK4iLi+Puu+9m5MiRvPDCC1RWVrJnz56ol11njiIiEhO5ubn06tWLnj17Eh8fz9ixY1mwYMEh802fPp2f/vSntG3btnbaggULGDt2LAkJCfTo0YNevXqRm5vLjh07WLZsGVdffTUA8fHxdOzYMeplV3IUEZGYKC0tpVu3brWvU1NTKS0tPWie/Px8Nm/ezHnnnRfSssXFxRx33HHccsstDB8+nNtuu41du3ZFvexKjiIi0iT279/PPffcwwMPPBDyMlVVVeTn5zNhwgSWLFlCYmLiYa9lRkrJUUREYiIlJYXNmzfXvi4pKSElJaX29TfffENBQQEXXXQRmZmZfPrpp4wfP568vLw6l01NTSU1NZXBgwcDcPHFF/PPf/4z6mVXchQRkZgYNGgQRUVFFBcXU1lZSU5ODqNHj659v0OHDqxfv578/Hzy8/MZPHgwr7zyCllZWYwePZqcnBz27t1LcXExRUVFZGdn07VrV7p168a6desAWLJkCenp6VEvu1qriohITLRu3ZoZM2Ywbtw4qqurGT9+PBkZGUyfPp2srCwuuOCCOpfNyMhgzJgxDBkypDZOXFwcAA8//DA/+clPqKyspGfPnvz2t7+NetmNtTbqQZuDrKws+8EHHzR1MUREpBlJSkrKtdYOrm8+VauKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4KDmKiIj4NPrA48aYm4CfAynAGuB2a+2HISx3NvB/wOfW2gExLaSIiMTclBc6hzzvjGu3xbAkh2rUM0djzOXAE8B0IAtYBiwwxqTVs1xn4EXg/ZgXUkREjnqNXa06GXjeWjvHWltgrb0VKAVurGe53wMvAMtjXUAREZFGS47GmHggG1joe2shcOZhlrsJ6Ao8ELvSiYiIHNCY1xyPA+KALb7pW4Bzgy1gjBkI3AecYa2tNsYcdgXGmEnAJICUlBRWrlwJQGpqKomJiaxfvx6Ajh070rt3b/Ly8gDIzc1lzpw57Nmzh9GjR3PllVeSkZFBRUUFW7Zs4e2332b+/Pm0bt2aVq1aMXnyZE455RTS0tJ44403ePzxx9mzZw/t2rXjySefZP/+/QD069ePK6+8kuLiYp599ll69OiBMYYNGzYA0KVLF1JSUli9ejUACQkJ9O/fnzVr1rB3714ABgwYQGlpKeXl5QD07NkTay3FxcUAJCcnk5yczNq1awFo164dGRkZrFq1in379gGQmZnJxo0b2bbN1dn37t2byspKNm3aBEDXrl1JSkqioKAAgGOOOYb09HTy8/Oprq4GICsri6KiIrZv3w5Anz592L17NyUlJdRs7w4dOlBYWAhA+/btOemkk8jLy8NaizGGrKws1q1bx86dOwFIT09nx44dlJaWhvQ5xcXFkZmZSWFhIbt27QI46HMCOOGEE4iPj6eoqAiAzp07k5aWRn5+PgBt2rRh4MCBFBQUsGfPntrPqaysjLKyMgB9Tvqc9Dk12uc0klCVl5dH5XMKVaPd7NgYkwpsBoZba5cGTL8XGG+tTffNnwDkAQ9Za1/ypk0DxoXSICfUmx1XV1dz6qmnkpOTQ2pqKiNHjmTOnDn07du3dp4dO3bQoUMHABYsWMDvf/97Xn/9daqqqhgxYgRPP/00AwYMoKKigo4dO9berfrtt99m3rx5rFmzhmXLltVbFhGRo0lTNMhpjjc73gpU46pIA3UFvgoyfwqQAfzBGFNljKkC7gX6e6/Pi0ahcnNz6dWrFz179iQ+Pp6xY8eyYMGCg+apSYwAu3fvpuYMdvHixfTv358BA1yuTkpKqk2M33zzDbNnz+aOO+6IRjFFRKQRNVq1qrW20hiTC4wC/hLw1ihgbpBFNgMDfdNu8ua/BNgQjXKVlpbSrVu32tepqank5uYeMt+zzz7L7Nmzqays5K233gJg/fr1GGO49NJLKS8vZ+zYsdx2220ATJ8+nZtvvpnExMRoFFNERBpRY/dzfAx4yRjzCfARcAOQCjwNYIx5EcBae421dh+wOnBhY8zXwF5r7UHTG8P111/P9ddfz+uvv87MmTOZPXs2VVVV/OMf/+D999+nXbt2jBkzhszMTJKSktiwYQPTp09n48aNjV1UERFpoEZNjtba14wxXYB7cNWmq4ELrbXF3iyH7e8YCykpKWzevLn2dUlJCSkpKXXOP3bs2Nqq0tTUVM4880y6dOkCwKhRo8jPz+fYY4/ls88+IzMzk6qqKrZu3cpFF13E22+/Hdt/RkREoqLRh4+z1s621va01iZYa7MDG+dYa0dYa0ccZtlp0R4dZ9CgQRQVFVFcXExlZSU5OTmMHj36oHm++OKL2ucLFy7kxBNPBGDkyJGsXbuW3bt3U1VVxbJly+jbty8TJ05k7dq15Ofns2DBAk488UQlRhGRFqTRh49rblq3bs2MGTMYN24c1dXVjB8/noyMDKZPn05WVhYXXHABc+bMYcmSJbRp04ZOnTrx5JNPAtCpUyduuukmRo4ciTGGUaNGcd55UWknJCIiTajRunI0tlC7coiISNNQVw4REZEWRMlRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETER8lRRETE56gfeLw+4Yz9B9Eb/09ERJqOzhxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8lBxFRER8wkqOxpjLjDHnBby+1xizyRjzN2NMSvSLJyIi0vjCPXOcVvPEGDMImAr8GmgDzIxesURERJpO6zDn7wEUes8vAd601s4wxiwE/hbVkomIiDSRcM8cvwXae89HAou859sDpouIiLRo4SbHD4GZxpj/AQYD873pJwP/DiWAMeYmY8yXxphvjTG5xpihh5l3uDFmmTGm3BizxxjzuTHmzjDLLCIiEpZwk+MtQCUwDrjBWlviTb+AEKpVjTGXA08A04EsYBmwwBiTVsci3+CuaQ4D+gEPAPcbY24Ks9wiIiIhC+uao7V2E3BRkOm3hxhiMvC8tXaO9/pWY8xo4Ebg7iBxc4HcgElfGmPGAkOB2eGUXUREJFThNsjBGNMW+D5wIvCMtfY/xpgTgW3W2orDLBcPZAOP+t5aCJwZ4rqzvHmn1fH+JGASQEpKCitXrgQgNTWVxMRE1q9fD0DHjh3p3bs3eXl5AMTFxZGZmUlhYSG7du0CICMjg4qKCqBzKEWrVVBQwJ49ewDo168fZWVllJWVAdCjRw+MMWzYsAGALl26kJKSwurVqwFISEigf//+rFmzhr179wIwYMAASktLKS8vB6Bnz55YaykuLgYgOTmZ5ORk1q5dC0C7du3IyMhg1apV7Nu3D4DMzEw2btzItm3bAOjduzeVlZVs2rQJgK5du5KUlERBQQEAxxxzDOnp6eTn51NdXQ1AVlYWRUVFbN++HYA+ffqwe/duSkpc5UFKSgodOnSgsNC112rfvj0nnXQSeXl5WGsxxpCVlcW6devYuXMnAOnp6ezYsYPS0tIGf05btmwB4IQTTiA+Pp6ioiIAOnfuTFpaGvn5+QC0adOGgQMH6nPS56TPqVl8TiMJVXl5eVQ+p1AZa23oMxvTB9cI51igE3CytbbIGPMo0Mlae/1hlk0FNgPDrbVLA6bfC4y31qYfZtlNQDIumd9vrf1lfWXNysqyH3zwQYj/Wd2mvBBecpxx7bYGr1NE5GgQzv41WvvWpKSkXGvt4PrmC/ea4yzcmV5XYE/A9HnAOWHGCsdQXAOgG4DbjTFXx3BdIiJylAu3WvVM4AxrbbUxJnD6RiC1nmW3AtW4xBqoK/DV4Ra01n7pPV1ljOmKq1Z9KcQyi4iIhCWSsVXbBJmWhuvrWCdrbSWucc0o31ujcK1WQ9UKSAhjfhERkbCEe+a4ENfi9Mfea2uM6QDcD7wbwvKPAS8ZYz4BPsJVk6YCTwMYY14EsNZe472+FfiSA6PyDAPuRC1VRUQkhsJNjpOBxcaYQqAt8BrQB9gCXFbfwtba14wxXYB7gBRgNXChtbbYm8Xf3zEOeBjoCVQBXwD/jZdMRUREYiHcfo4lxphTgCuBQbgqzt8Br1hr9xx24QMxZlPHmZ+1doTv9SxcIyAREZFGE3Y/Ry8JPuc9REREjjj1JkdvRJq3rbX7vOd1stbmRK1kIiIiTSSUM8fXgeOBr73ndbG4a4QiIiItWr3J0VrbKthzERGRI1VYyc4YM8wYc0hCNcbEGWOGRa9YIiIiTSfcM8HFQFKQ6Z2890RERFq8cJOjwV1b9OsC7Gp4cURERJpeSF05jDHzvKcWeNkYszfg7ThgAOENASciItJshdrPsdz7a4BtHHxHjkrg78Ac/0IiIiItUUjJ0Vo7AcAYswF41FqrKlQRETlihTt83P2xKoiIiEhzEcoIOf8EhltrtxljVhG8QQ4A1trvRrNwIiIiTSGUM8e5QE0DnMONkCMiInJECGWEnPuDPRcRETlSaTg4ERERn1CuOR72OmMgXXMUEZEjQah35RARETlqhHXNUURE5Giga44iIiI+6ucoIiLio36OIiIiPurnKCIi4hPW2Ko1jDEnAhneywJr7RfRK5KIiEjTCis5GmO6AL8HfgDsPzDZvANMtNaW17mwiIhICxFua9VngT7AUKCt9xgG9EL3cxQRkSNEuNWq5wMjrbXLA6Z9ZIz5CbAoesUSERFpOuGeOZYBwW50vBtQlaqIiBwRwk2OvwRmGWO61Uzwns/03hMREWnxIhl4vBewwRiz2XvdDfgW+A7umqSIiEiLpoHHRUREfDTwuIiIiI8GHhcREfEJKzkaY+KNMfcbY/5ljPnWGFMd+IhVIUVERBpTuGeOvwKuxbVO3Q/8HHgS143jpugWTUREpGmEmxwvA26w1j4DVANvWWtvA+4DRkW7cCIiIk0h3OTYFVjrPf8G6OQ9/ytwXrQKJSIi0pTCTY4bgVTv+XrccHIAQ4A90SqUiIhIUwo3Ob4BjPSePwHcb4z5EngeDQAgIiJHiLAGHrfW3h3w/HVjzCbgTOBf1tp3ol04ERGRphDRzY5rWGv/AfwjSmURERFpFsIeBMAYM8gY86Ix5lPv8ZIxZlAsCiciItIUwh0EYDywAkgB5nuPrsAnxpirol88ERGRxhduteqDwP9Ya6cHTjTG3A08ALwcrYKJiIg0lXCrVZOBPweZ/hfcLatERERavHCT42JgRJDpI4AloQQwxtxkjPnSG5s11xgz9DDzjjXGLDTGlBljdhpjPjbG/CDMMouIiIQllJsdjw14uQB4yBgzmAOtVM8AxgLTQoh1Oa5/5E3A372/C4wx/ay1G4MsMhz4ALgHqADGA28YY0ZYaz+sb30iIiKRiPRmx5O8R6DfALPriTUZeN5aO8d7fasxZjRwI3C3f2Zr7U99k+43xnwPGAMoOYqISEyEcrPjqNzz0RgTD2QDj/reWogbSCBU7YFt0SiTiIhIMA0aBCBMxwFxwBbf9C3AuaEEMMbcDJwAvFTH+7VntCkpKaxcuRKA1NRUEhMTWb9+PQAdO3akd+/e5OXlARAXF0dmZiaFhYXs2rULgIyMDCoqKoDO4fyPFBQUsGePG2a2X79+lJWVUVZWBkCPHj0wxrBhwwYAunTpQkpKCqtXrwYgISGB/v37s2bNGvbu3QvAgAEDKC0tpby8HICePXtiraW4uBiA5ORkkpOTWbvWjQffrl07MjIyWLVqFfv27QMgMzOTjRs3sm2bO6bo3bs3lZWVbNq0CYCuXbuSlJREQUEBAMcccwzp6enk5+dTXe1u05mVlUVRURHbt28HoE+fPuzevZuSkhJqtneHDh0oLCwEoH379px00knk5eVhrcUYQ1ZWFuvWrWPnzp0ApKens2PHDkpLSxv8OW3Z4r5WJ5xwAvHx8RQVFQHQuXNn0tLSyM/PB6BNmzYMHDhQn5M+J31OzeJzqhmNtH7l5eVR+ZxCZay1Ic8M4FVr3gX0AyzuLh0PW2vn17NcKrAZGG6tXRow/V5gvLU2vZ7lL8UlxcuttW/XV86srCz7wQcf1Ddbvaa8EF5ynHGtTmpFREIRzv41WvvWpKSkXGvt4PrmC3cQgOtxg49/gUuQ/w18iWskM7Gexbfi7gHZ1Te9K/BVPesdh0uM14SSGEVERBoi3GrVu4DJ1trfBkz7vTEmF5con6trQWttpTffKFy/yBqjgLl1LWeMuQx4AbjWWhuscZCIiEhUhdvYJg13Y2O/BUCPEJZ/DLjOGHO9MSbDGPME7v6QTwN4Y7a+WDOzMeYK4BVc4l1qjDneeySFWW4REZGQhXvmuBF3prfeN/08oLi+ha21rxljuuD6LaYAq4ELrbU1y6b5FrnBK+Ms71FjCcEHIxAREWmwcJPjo8BvvLtwLPOmnQVcDdwaSgBr7Wzq6A9prR1xuNciIiKNIdybHT9jjPkauAM3Kg5AAXCZtfataBdORESkKYScHI0xrXHVp0uttW/ErkgiIiJNK+QGOdbaKiAHN0KNiIjIESvc1qr5QJ9YFERERKS5CDc5TgNmGmPGGGO6G2OSAh8xKJ+IiEijC7e16rve3xzc0HE1jPc6LhqFEhERaUrhJsdzYlIKERGRZiSk5GiMSQQewd1HsQ2wCLjNWrs1hmUTERFpEqFec7wfuA5Xrfon3Cg5T8WoTCIiIk0q1GrVscCPrbWvAhhjXgE+MsbEWWurY1Y6ERGRJhDqmWN34MOaF9baT4Aq3KDhIiIiR5RQk2Mc4L+FchXhN+gRERFp9kJNbgZ42RizN2BaW2COMWZ3zQRr7Q+iWTgREZGmEGpyfCHItJejWRAREZHmIqTkaK2dEOuCiIiINBfhDh8nIiJyxFNyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8VFyFBER8Wn05GiMuckY86Ux5ltjTK4xZuhh5k0xxvzRGPO5MabaGPN8IxZVRESOUo2aHI0xlwNPANOBLGAZsMAYk1bHIgnAVuB/gY8bpZAiInLUa+wzx8nA89baOdbaAmvtrUApcGOwma21G6y1t1lrnwcqGrGcIiJyFGu05GiMiQeygYW+txYCZzZWOUREROrTuhHXdRwQB2zxTd8CnBuNFRhjJgGTAFJSUli5ciUAqampJCYmsn79egA6duxI7969ycvLAyAuLo7MzEwKCwvZtWsXABkZGVRUVACdwypDQUEBe/bsAaBfv36UlZVRVlYGQI8ePTDGsGHDBgC6dOlCSkoKq1evBiAhIYH+/fuzZs0a9u7dC8CAAQMoLS2lvLwcgJ49e2Ktpbi4GIDk5GSSk5NZu3YtAO3atSMjI4NVq1axb98+ADIzM9m4cSPbtm0DoHfv3lRWVrJp0yYAunbtSlJSEgUFBQAcc8wxpKenk5+fT3V1NQBZWVkUFRWxfft2APr06cPu3bspKSmhZnt36NCBwsJCANq3b89JJ51EXl4e1lqMMWRlZbFu3Tp27twJQHp6Ojt27KC0tLTBn9OWLe5rdcIJJxAfH09RUREAnTt3Ji0tjfz8fADatGnDwIED9Tnpc9Ln1Cw+p5GEqry8PCqfU6iMtTbkmRvCGJMKbAaGW2uXBky/FxhvrU2vZ/l3gK3W2utCWV9WVpb94IMPGlBiZ8oL4SXHGddua/A6RUSOBuHsX6O1b01KSsq11g6ub77GvOa4FagGuvqmdwW+asRyiIiIHFajJUdrbSWQC4zyvTUK12pVRESkWWjMa44AjwEvGWM+AT4CbgBSgacBjDEvAlhrr6lZwBhzive0A7Dfe11prV3bmAUXEZGjR6MmR2vta8aYLsA9QAqwGrjQWlvszRKsv2Oe7/VFQDHQM1blFBGRo1tjnzlirZ0NzK7jvRFBpplYl0lERCSQxlYVERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXIUERHxUXKURrdo0SJOO+00srOzmTVr1iHv7927l4kTJ5Kdnc25557Lxo0bAVi8eDHnnHMOZ511Fueccw5Lly4FYPfu3Vx++eWcfvrpDBkyhPvvv1/lliOOvn+NS8kxxqL9hQZ44IEHGDBgAN27d2+0/yNaqqurmTJlCn/+859Zvnw5c+fO5fPPPz9onpdffplOnTqRm5vLjTfeyLRp0wDo0qULf/zjH/noo4948sknufHGG2uXueWWW/j4449ZsmQJH3/8Me+9957KLUcMff8an5JjDMXqC33++eezaNGixvxXoiY3N5devXrRs2dP4uPjGTt2LAsWLDhonvnz53PFFVcAcPHFF7N06VKstXz3u98lJSUFgIyMDPbs2cPevXtJTExk6NChAMTHx/Pd736XkpISlVuOGPr+NT4lxxiKxRca4NRTT+X444+nqqoqorPSiooKfvCDH9C9e3emTJly0DI5OTmcffbZDBkypDZRR1NpaSndunWrfZ2amkppaWmd87Ru3ZoOHTpQUVFx0Dzz5s0jMzOThISEg6Zv376dv/3tbwwfPlzljrFIa0UO9/2bO3cuZ511FmeffTbjxo2jvLy8Uf6X5k7fv8an5BhDsfxCV1dXU1lZGdFZaUJCAlOnTuWXv/zlQfNXVFRw33338eabb7J8+XK+/vprlixZ0uDtEG0FBQXcf//9PPbYYwdNr6qq4vrrr2fSpEn07NmzaQp3GE1R7mgnsJ07dzJs2DCGDh3K+PHjKSsrY+TIkVH5/lVVVXH33Xczb948pk2bxsqVKzn11FOjlngrKyu5/fbbOfXUUzn99NOZN29e+Bu0HrHa3vfeey/vvvsuffr04e67746obC31d9NUlBybubq+0Lm5ubRq1Sqis9JjjjmGM84445Cjxw0bNnDiiSdy3HHHATB8+HDefvvtqP4/KSkpbN68ufZ1SUlJ7RlysHmqqqrYsWMHSUlJAGzevJlrrrmG2bNn06tXr4OWu/322znxxBMPqoJuKeWOj4/nD3/4Q1TPwmqq9VNTU4mPj49KAmvfvj1Lly5l5syZnH322fTs2ZMxY8ZE5ftnrcVay86dO5kyZQojR45k6tSpUSk3wMyZM0lOTmbFihUsX76cs84665B5GqIhl1Hq295z5szhlFNOoXv37lx00UUt5nfTkik5xlAsd6ilpaUYY2pfR3pWGqh3796sW7eOjRs3UlVVxbvvvntQ+aNh0KBBFBUVUVxcTGVlJTk5OYwePfqgeS644AJeffVVAN566y2GDh2KMYbt27dzxRVXcO+993LGGWcctMyDDz7Ijh07mD59elTL2xjl3r59OwUFBVHdqYI7gDr22GNJTk7GGBOVBFajtLSU9u3bU1ZWxpAhQ6Ly/WvTpg2PPvooZ511FiUlJZSUlDBhwoSolfuVV17h9ttvB6BVq1Z06dKlzrJEoiGXUerb3oMGDaKwsJDS0lKys7Oj/rsZOXJk1KvIx40bx9ChQxkyZAiTJ0+muro6jK3Z9JQcYyhWO9RY6dSpEzNnzmTixIlceOGFpKWlERcXF9V1tG7dmhkzZjBu3DjOOOMMxowZQ0ZGBtOnT6/dkVx11VVUVFSQnZ3NU089xX333QfAnDlz+PLLL3nkkUcYNmwYw4YNo6ysjM2bNzNz5kwKCwsZMWIEw4YN48UXX2wx5c7Pz2fr1q1cc801vPrqq1HbqX755Zds2bKFO+64A4jOAVSgDRs2cMkllxx0kNYQ+/bt4w9/+APTpk3jsssuo3///jz++ONRKff27dsBmD59OtnZ2XTv3p1TTjlEb+uPAAAfGElEQVQlKomgpkvEddddx8qVK2u7RERze7du3ZqzzjqLvXv3MmTIkKh+/z7//HOuuuoqWrVqxc033xy1g7PnnnuODz/8kGXLlrF161befPPNev/P5qR1UxfgSBa4Q62urmb8+PG1X+isrCwuuOACrrrqKm644Qays7Pp3Lkzzz77LHDwF/qRRx4BXGOF5ORk7rvvPv74xz9SVVVF//79ufrqq0lISKjzrLRbt26HnJXWZfTo0YwePZpFixZx8803U1lZyaxZs2qPuGvs3buXG2+8kfz8fDp37sxzzz1HWloaAI8//jgvv/wycXFxPPTQQ4wcORKAp59+mhdffBFrLRMnTjyoGmfq1Km1z9u2bcvzzz9/SNnuvPNO7rzzzqDlrtnBLFq0iKlTp/LEE09QUVERcrkrKiq47rrryMvL48orr2TGjBm1y3z22WfcfPPNfPvtt4waNYqHHnqoNiFEo9xvvfUW77//Pr/+9a8BeO2118jNzT1ovrp2qoc7+8nJyaFfv34kJibWOU+kUlJSWL9+fW1yOVytSKjfv1WrVgHwne98B4AxY8Ywa9asqHRZqqqqoqSkhMGDB7NgwQImTZrExo0bmTt3LqNHj6Zv37618wYmgrlz5zJt2jSee+652kRQUFBAQUHBQfFvueUWKioqeO+992LWJSI/P5833niDU045pXZaNL5/n3zyCQ8//DBz584F3IHEggULDtom8+fP56677gLcwdldd9110MFZUVHRIbE7dOgAuG2/b9++qB1ENRadOcbYqFGjWLFiBStXrqw9gp86dSoXXHABcOALnZuby6JFi2oviN95551s2rSJpUuX1j6Sk5MBuP/++ykoKKBHjx7Mnz+fyZMnh3VWejhlZWVUV1dz55130rlzZ+bPnx/WkeTnn39OTk4Oy5Yt4y9/+Qs///nPqa6uZu3atbz44ossWrSIDz/8kIULFwb9QTVELK75gPssZs2axaeffsoXX3zRIrrRrFq1ih07dtCq1YGfeLjV+ocTHx9PZWUlnTt3DrtWpC4pKSkUFhaSmJjI5s2bWbx4MSeffHJUyp2UlERiYiKpqan06tWLCRMmsHr16qicpdd0iUhJSaG0tLS2S0Q0t/fq1auprq4+KDFGS7QaDgZz6aWXcvLJJ3Psscdy8cUXR7fgMaYzxxaqIWelAJmZmezcuZN9+/bx7rvvMnfuXPr27cvdd9/NihUrKC8v54knniAjI6N2BxLKkeSCBQsYO3YsCQkJ9OjRg169epGbm0tJSQnZ2dm1ZzFnnnkm77zzDrfddttB/9eUFzqHvA1mXLvtoNeB13yAsMpd1xHwV199xc6dOzn11FMBuOKKK5g/fz6jRo2KWrnDuTYd6lnYihUr2LBhA1u3bmXUqFFs27aNmTNnHnJGU5PATjvttJAPoMAlu4svvjjq378pU6bwi1/8guLiYqqqqnjmmWf44Q9/yO9+97sGldsYw/nnn8/ixYvp1q0bS5cuJT09ndTU1KicpYO7jLJ+/XoKCwv58Y9/zMSJExtc7hpz585l7Nixdb7fkO9fLM2dO5dvv/2WSZMmsXTpUs4555xGW3dDKTk2oYZ+oUeNGnXITjqUahZwVTTBPPvss7XVfJdeeilAWDuQ0tJSBg8eXDtfzVFoRkYGDz74IBUVFbRt25b33nuPrKys+v/xMAQ7Am7ojq+0tJTU1NRD/p9oCrw2nZKSQk5OToN3qhMnTmTixIm89957/PznP+c///kPP/vZz6KSwADefPNNXnvtNU4++eSD1tvQ79+ECROYMGEC7733HlOnTuXCCy+MWuKdNm0aP/zhD/n666/ZuHEjv/3tb/noo4/q3IaRSEpKYtOmTVx++eVRKzcc2N6xEIuDs0Bt27blwgsvZMGCBUqO0vSa25Fkeno6t912G5deeimJiYkMHDjwoCq/o1msagHAHUDNmzePK6644qBq/RqRJDCAvLy8KPzndYvFgV/37t359a9/fdD1tWgmgttvv53TTz+dxYsXR7XcENvtHYuDs2+++YZvvvmmdrCShQsXMmTIkJj9D7Gg5CiHaMiR5OGWvfrqq7n66qsB+NWvfnXQGVlTl/twMQOH1AoWMxpikQxqpKWlsWzZskOmh3MABeEdRMUydkPEIhHAgS4RNY2qgmluB6w1YnFwlpSUxPjx49m7dy/79+9n6NChTJgwodH+p2hQcpRDNGQHMnr0aCZNmsRNN93EV199RVFREdnZ2YBr7JOcnMymTZt45513WLhwYbMpd12OP/542rdvz4oVKxg8eDCvvvoqkyZNimq5JTwNSbyxSATt27dn5syZnHTSSYwYMQKA66+/nmuuuSYq/29jiMXB2fvvvx+18jUFJUc5REN2IBkZGYwZM4YhQ4bUxqnpK3nttddSUVFBmzZtmDFjBh07dmw25Ya6qycfeeSR2q4c5557Lueee25Uy304zfUMrCWLRSIItW+otBxKjhJUQ3Ygd9xxR+31rUDz58+PahmDicWOLysrK2i1pBx5dDByqOZaHRxrSo5y1Dhaf+QiEj4lRwmbkoyIHOkavS29MeYmY8yXxphvjTG5xpih9cw/3JvvW2NMkTHmhsYqq4iIHJ0aNTkaYy4HngCmA1nAMmCBMSatjvl7AfO9+bKAh4DfGGMubZwSi4jI0aixzxwnA89ba+dYawustbcCpUBdNxK7ASix1t7qzT8HeAEIPoquiIhIFDRacjTGxAPZgL9z20LgzDoWGxJk/r8Bg40xbaJbQhEREcdYaxtnRcakApuB4dbapQHT7wXGW2vTgyzzL+Bla+0vA6YNA5YAqdbaUt/8k4CaHtrpQGHU/5EDjgO2KnajxG6JZVZsxVbs5hW3Rg9rbXJ9Mx1RrVWttb8DflfvjFFgjPnUWju4/jkVu7nGVWzFVuzmFzuWZQ5HY15z3ApUA11907sCX9WxzFd1zF9FbI8sRETkKNZoydFaWwnkAqN8b43CtUYNZnkd839qrd0X3RKKiIg4jd1a9THgOmPM9caYDGPME0Aq8DSAMeZFY8yLAfM/DXQzxszy5r8euA54tJHLHUwsq28Vu3HiKrZiK3bzi90ol8bq02gNcmpXaMxNwBQgBVgN/KymgY4x5v8ArLUjAuYfDjwO9AdKgIettU83aqFFROSo0ujJUUREpLnTrdhFRER8lBxFRER8lBwjYAJuHW+MaTHb0Fduc7h5m5MWXO4W890QkYPpxxsBa631hsPDWru/Zno0dtyx3KF65e5Q8zyasY0xcdGMF6gFl3u/Maart562xpgWMehGzfe4JR2IiESbGuSEyRhzPDAOGIQbou4fwOvW2uVRXo/BfT77g70XbpIwxvQBrgTOAXri+pC+DSy21m6JNG6Q9bSCgw8ajtJynwJcA1wIHA98CrwHvA/kWWurG1JuL6nvj/bBghe7NXCMtXZ7DGLHWWurox3Xi90eOAb4GkgEdgf7PJubllruI52SY5iMMe8CfYACXNeSM4EBwHrgf4GXIv3xG2NuBtYAH1tr9wRMb4U7aYr4wzLGLAHaA3/HjTz0X8DZQDnuNmIzI91hG2MeBFYCC621OwOmN3gH3oLLnQvsxCXyLcD3vEc18Dxwj7V2V0MTu/fdMNFKOMaY0cAEIBOIxyXzt3AHI7uisQ5vPUEPRmrOViP4LH+EK/cgb9JyYAGwyFpbWBO7IQcjsUjqLbXcXuwU3G9zDxAHfGWt/TZKsVtba6uiESti1lo9QnzgdsxlwAne67ZAR1yCnAMUAZMjjH02sB9YCrwM3AZk+uZJAP4HSAkz9jleuTv7pqcC9+EGhJ8NxDWg3HnAh7gBGob75mkH/BpIO0rKPcIrd9sg7/0YKMbtANtH+F35A/CTINulNdCqAd/vs3GD9S8EbvK+ax/jEvpq4IcNiD3Q+6zOBVr73ovDO1CPMPYwYAPwInABcK23ffcC/wZujjR2kHXFNWQbHwnl9uLdhKsN+RZ3EPh/uJOD84AEb56IP1NfucP+fUflf2yKlbbUBzAN+KCO9zoAvwC+AQZFEPtx3DB6vwTeAVYAi4FncNVzPYHTvR36sWHGvhNX/dvOe33QDwW4CtgO/FcE5Z7hlfMG4Lfej+Qz3K3F7sadVZ/mlTusZNCCy32DF6ur9zoBiA94fzjubPKSCMpdk9T/BWwE/gJc7JunHfAc0C/M2K8Dc4JM74sbtWQzcE2Ev50XcGcYK4BF3m9pkG+eId73PaydKvBn4HdBpid66ykH/ifCcg/2fo/jgDa+91qHW9YjpNwjvO/Cw0AGLrHP8b6Tm4EH8R0AhRH7LCAfuD7wNxNQ7laAAZIa8j+EVJZYBj/SHt6OqQwYXcf7rXFH3T+LIPZLwK+95/HAaGAm8IG3Q3kHV3X7XgSx+3nlHu+bbgKevwXcH0Hs54Dfe89beT/KW3FHw8uBT7x1zz+Kyn0C7sh/sm967RmSt2N8LILYD+AS+MW4g4d3cGcf/wKeBM4ATiWypP4B8Cvf97mV97wt7ox1JfCdCMq9EpiOO+N4DvgId9b+FnAzkAY8BayNIPabwFMBrxMISAi4A841QM8IYr8AVHrb9wvgWQ6tYTgTeJUwz3BacLn/CDwTZHob3IHh1zW/rQjLXQ2U4m4w8Vfg+755zvKmR5SAQy5LLIMfaQ/cEfmLuCT137ibNx8T8H4nYBMwNoLYA4ALgkz/Dq5ByvPeDu/CCGLH4RJtOe4M4EKgS8D7x+N25uMiiH08MCLI9I64atFfRqHcFS2l3BxIfnfhahEWARNx9x+tmae3V+6wqylxNQzP1+wYgF7ARbjEsxSXKPcB70YQ+zbcdd2T6/ifunvf/bBqRoCTcPdgnei9bg8M9bbRn3EHIp962/viCMo93vtun+n//nh/k4AvgSERxF6Oq8L/HnA/rrbh38A/cQcq6biDktVHUbmfx9VYtPVetyUgUeEuHXwO9I8g9hJczc1AL85fcTUOO4Df466F/wb4Z7ixwy5LrFdwpD28HcRs3BHZx7gquXu8D3QeUNiA2DU7vFb4rh95O8DtDYidgDvTWIo7E33D+7I9hjuKXxml7VPTQCSw3N80IF4icAeuQU5uNMqNrzomYHtHrdxejEtwVZUrOVCd+BLu+t3SCGMeC5wRZHo73Jn29UR+MJKMa1H7Ba5qbBgBZ5/AWGBnhOXugy/petO74qrl3gT+E8ln6W2TPwHbcGc1lwKdAj7bKyMpN+5SxjvAjd7rtrikchmuMdgKXMLZD/ygAeX+T0sptxfvfNwtAy/zTa/Zfx2Dq/IfHmbcVNwZ7k+813FAZ1xNyH975d7rlfuiSL6H4TzUWjVCxpjv4q55nYnbsXbGXTN8zFq7KorrMbgf0utAB2vtuQ2M1xf4PnAKrswpuJ32U9baLxtYXP+6WuEOJJKstZc1MFYaLmGdgbtTeFdiUO6A7R2tcnfHVQP1x1W3noA7Gn7JWvt1A4t7SEtGY8wPgD9ba9tGGK8PrupzOK5aaxOwG7fD6wu8Y62d0sAy11QvVwVMexPYZa0dH2HM9rg79nwP993Yj7seHee9ftVaOy2CuF1xtUNFQdbXG7etLrfWdoqw3MfgWqtejKslqmrO5fZ+Hwm4mopbcWf8LwB/sdaWG2OOA34AzLLWdoig3F2ARGvtv33Ta/axtwK3Rbq9wyqLkmP9jDEJwHfxjpxxVROfWmu/8t5Px1VnVdowN2hA7EtwP4o1uKqrf1vX1L+VdZ3JWwMdrbXlEZS/piHLPt/0ZGttWbjxgsS2to5+Wd777a21/wkj5rG4s5YrcUfVhbizxk+ttfsaUm5f7ApgHa4WYJW1trQh5Q5YtjWA9TVFN8YkWGv3RlLuENdrcFVoXa21P2lgrH64g5F+uOq9drgq3cXW2t0NLWvAelrhdnqf4Br7fNTAeOm4hj29cAcibXG1O7nW3VO2QYIcjLwJ7LXWXh5hvARr7V6v//Qw3EFUd1wCikq5D3MwEnG5vRjfB34EZOFqHbbgknsC8Ky1Nuq3FvTKXW2tvTTasQ9Zl5Jj/Ywxv8YlxlLcjqIn7trMW7hbaBVHMXYPXP/JN3FHX0WHWby+2NnW2lzftHhcMmvQzaLriB2VjunGmBdwO4p1uG1yAu6aw2fAk9baJVGOvc2L/Ttr7eIGxD7bWvt337SDtndD+295iXf/YQ5GWuHOGHYGe7+OZbrjrouehrvGtQZYZq3N9z7TdtbabyIsb03sU3HVtYVe/H9aa7fVJBtjzLHhrCMwSQU7GKk5qIykzGGUoROQA9xlrV0RxnIZwGRcUinCbfOPcFXtYR+MHWY97f3fA+/70SGScgfECNz2KbgDqDTcAUlbXIOrdTbK/Su9A9vfAE9Yaz+LZuygYl1v29IfuA9+B67/ThdvWjKuDvxL3MXinxBBs+IQY0/CVfOF27z9JFzV0mrc9bks3/sG1yr2NHxNpqMUu02Esfvhzs7P4EDDhI7A/+NAn7tpRNA3LsTY9xFBnzBcleN+L/6rwFm+91vhjqgvwuviEWb8s4NM81+XDrsfG26HthI3qMUL3vPNuAT2DBG0lKwn9iZczcts4ET/9yaM2Mkc2vqyZhvXXPsyRNYHNvDa82H7juKqAMOJfSLuAGEp8BDuGvo/cN0X5gLnRrq9vfgZuG4Vn3rfwxm4s7vuvvnaNXA9Me1GcZj1JjTaupriH2xJD2AqAY0nOLQD83Rcy6zUZhb7XtzZUU3/yc3ej3BKzQ8F6Obt0E9oRrFvB/4e8Nrf1+kGXGOCQxp3NHHsqbiuCXfjBhWowtUuPFqTBHDXlPb7d1QhxK4v8dYc6ISdeIGncaP4HB8wLQ3XkrQY1/Ai7BakIcYua0DsJ71t8pX3vJ/v/ThvXT8k/K4KwRKv4dBGWzUHWOEk9ae8bRLY0Kkr7nrpUtz13R9HuE2CJd7luIOSPwPn+f+nMGJ3Ba7GXYcPnF7bAM/b5mEnr7piB5mvpnVsoyTmmK+gpT9w1wLXAX0CprUO+KBqjo5va2axX8G1TDsedx3jWlxLsH/ijt7fxrVoW9PMYp+DS1AjfdukZiCALriWq/c1s9hP4q4RJXmPYbiDmwLcTvyfuH6EkWyTWCbeD4E7vedtOPQA7U+4UVsOaoXcDGJ/gjv7vA931rUfd61+as1OFjfCT1GEn+XhEm8rDiTesPraAfPx+uUSZPQXXNelfxDmGam3bH2JdxeRJ97feNukAteN40J8idDbJnf6pzdl7IY8GmUlLfnh7TALcGdwlwX7cLwf50+aS2zcDv9HwN2+6Um4xgq34I4k94f7Y4llbC9OW1x3glLcmdwh1T+464NhD60Vq9jeTu5C4Cbf9HjvR/19XFXXfmBCBOWOZeKd5v3PgTvUNhw4YDgbd63wkO4jTRUbd13+b7idfitcLcX53nba6G2Tj7ydbSQDcsQy8f7UK2Nf3/ck3nveD3dJ5ZwIYscy8S7HnY1OwLUS34trG/EbvH6vwK+A9c0pdkMejbailvzA9b95DViLGwHnAdw4qyfjzqDKCBgMoLnEDlhHmyDTxno/+rB/KLGOjWsZ+Zi3EynEXa8ai7s2+yfc2V+zix2wjkOuUXk777C3CbFPvNnejmglQfq84ap0v41whxqT2LgGJdcSfCzcE3EHmv+HO8MO69oasU+8vXC1AF/iDYrge38AbmSbSLZ3TBKvt4/6CzDJe93a++zuwh38VAOrcGemP20usRv6aLQVtfQH7izvWtyg4MtwI1vsx408cUVzih1s5+xNr71mgquS+7/mFNtbtuY6zrG4IfQexN0ZYhuu8VIOQUYSasrYuOtRh20MgzuL+lsUvofRTLw1n1cf738v8XZEs3HXL+/Cdbz+cyTbJFaxg2z7Q6o2cVX/kXy/Y5Z4A2K1x9UEbMONopSD63c4G1cL8GKEcWOSeHF9XC8CTg/yXiKu4d2fI9kmsYzd0Ie6chyGMeYE3I8b3JHLWlwL0t64HexuYKu1tqKZxja4nWah9fpkeu8bXKfjzTbMptyxjF3H+uJxDST24KpFt9so3ToplrGDrGsEUGatXRPmcnXe1zNgnmm4IcbOb0D52uLumDEKt0Pqjzs7mgO8bBvWXSlmsQPWYXBn2dW4RLYUeMhaO7ehMe2h/VVfAbpZa0dEEK+VdbdYa4sbIm0YrqZoEC6pvQzkBP6mwlxHe1wV5XhcFfZCXFXlAFw19mfW2msiiR34f1hf4jDGPI+7/j20ucYOuyxKjsEZY27E9c/KxCWqIlxjk8W4mxv/+zCLN5fYu3DXSjbhrjW8ab17xDXD2O1slO9h2RSxm0IkidfbBhfjDg7a4a79fWit3e7tuC3uWuHWCMrTWLETcS2ll9iA0Ya8gTXOtda+G278OtYZ9cQbELu2b7AxpqON8AbTsUy89f1ejDHtcH2+n7LWvtFcYjeUkmMQ3hBG63EXsJ/C/RDPxd2qpR+uiug2a+3aYEc6zTR2Bi6R/cyLHdZNUGMcuzOu4cO7eFXLNf934I/H6zy9yYbXwb2pYgd2lM4ASm2YHbxjlXi9s4vf41rv7sclGIM7UFuEO5tb580bVmf6Ro69CZdov8UNWP2StfbzUOMFiR+TxGuMaYOr8iy2QUZICvd3HsZ6o5J4Q1hPG2CwtXZ5S4pdr1jW2bbUB278vo/reO9sXBP1IuA4xY5a7L24VoLVuDONXwLpAfN0x11P6X2UxO6Ma1zxFG5s1sD+dYHPM/AGqw4j9i9wSf1U73Vf3DjBT+GG6XsbSA73c2zi2CtwA/9HGrs97tpWGW4YtFxcR/q/465N940krhf7dlxNyx9w19eO59CWpB1wA7Af0sCtnthtcI33gnZxCPyuRFDuw8ZuyCOWsaNWxqYuQHN84Ea8WQsM8F77b1ab5r3/I8WOSuw5uA7j38GNM/sQrv9nNa7KdhKuj1/Yd8lowbFjmXg/xHevSW96HAeG1vtrhL+dlho7lol3Oe6SyYfeZ/klrsX02bjxksF1LfpHBLFjmXhDjf09wh8JK2axo/Vo9BW2hAeu9ehqXMf2wD5agUN1LQOmKHbDYuOS7M+AX/imd8RV2z6Hq2reT5h3RW+psb04MUm8uFbFT+G6IyR70w4aLg8Y6X3WmUdDbG/ZmCReXBXtUryDRtxYvvfgBrvfjztDvQvX1/mJCOLHMvG2yNjRejTJSpvzA28cU2AMboirnbjrHNkcGBnjKm96T8VuWGwvfgLeEGP+HZ43bQQRDEXXUmMT+8R7Bu5M9GGCDDeHOyP9Btci84iPTWyTeor3WZ4f5L0sXP/Jmq5b4ZY7Zom3pcaO5qNJVtoSHkAn3BH7DbhOwd94j/XeD3SaYjc8NgcahfX27/AC3ruXyEYjaZGxvWVjlXhrbuz8/3DX17bhagNG4W6I+0PcwAgrIihzi4ztxY9lUm9HwLigNY+A9x8E8iKIG8vE2yJjR/Oh1qoBjDHfwQ2AewduwOU9uPsJ/h1XldUG18fvr9bafyl21GJPBr7GdfQtxY2YkWPd/SwNbodYYq1950iP7cWvuY1Tb9wNgLcEee9e4Dprbe9wYvvW0wk3EsyPcDe/3olr+bkC11Xh46MhttdKtRVu+LLpuCQ8Fzdy1UbcAeH3cWOsnhphmYO2SDXGJOJGEPqDtfbhCOK2w7W4/tb7zoE3wXv/QeBCa23W0RI7WpQcA3idTfvjWtRV4MaxHIhrVfU1cE+kP2rFDjl2Fq4xxCbgEWvtwqMsdiyTegdgZ+BO2ksMbXEDTwzAJeOwP8+WGjvIuqKWeIOVO8g8bYHLgT/ZCG9qHKvE25JjR0VTnbI2tweuquMbYJhvWg/ckFELcdWHgxQ7prG746rIFuLGPj1qYnuxnsftiO/FDeJ+L+7WQwW4QdPPiySuF/sZ4Me4g5sOdczTueZ/Okpid/AvgzuLTMQ1hvovggxtFsVyh9UN53DlDjJPW9xQeOG2JG2RsaP9aLIVN7cH7kxgFXXcIQB3DehT3NGjYsc+dvxRGDuWSf1K3DWc/+D6oz6DG3C9DwfuknEs8CYw8GiI7S0bk8RbR7kvwY3PWlPumtFfBsSo3JEm3hYZO9qPJi9Ac3l4X9T3cU2MTyL4AM+34sYmVGzFjkXsWCbemq4hvXH3xVuFG7UmD9cg5L+AG4HKoyh2LJN6Y5c7Kom3pcaOxaNJV97cHrgWa595O77rcEfsx3rvJQKv44a/UmzFjnpsYpR4cQ1MpgL/65veH5iFu066FXd98/dHQ2wvTkwSWEstd0uOHYtHkxeguT1wF/dfw7XK3IprdPEcrtXax0RQdaPYih1G3Fgl3s54Q6DhzkD919kuxx3Vn3I0xCb2CazFlbulxo7VQ61V6+C1GvweruP7t7gOwH+xDRjYWLEVO8SYA3B3mv8Bboit5bi+fefiWq5eb61d1cCi17T4NNbdyeH/4TpcJzY0bkuJ7Q0c39Va+7lxty/bZwN2iMaYy3E3wB5krf3saCh3S40dC0qOIQj37gGKrdhRihezpB5kXZNxY1s+cjTHjmVS962nxZS7pcZuKCVHkRYglkndi98GqI7FOlpw7Fgm9ZZa7hYZOxJKjiIiQcQygcVSCz4YaVbbW8lRRETEp1VTF0BERKS5UXIUERHxUXIUERHxUXIUERHxUXIUERHx+f+YinFt05vA/gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "oracle = TruthTableOracle(truthtable)\n", - "grover = Grover(oracle)\n", - "result = grover.run(QuantumInstance(BasicAer.get_backend('qasm_simulator'), shots=1024))\n", - "plot_histogram(result['measurement'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As shown, the search result coincides with our expectation." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/optimization/input_files/grover.json b/community/optimization/input_files/grover.json deleted file mode 100644 index 84d511af7..000000000 --- a/community/optimization/input_files/grover.json +++ /dev/null @@ -1,17 +0,0 @@ -{ - "algorithm": { - "name": "Grover" - }, - "backend": { - "provider": "qiskit.BasicAer", - "name": "qasm_simulator", - "shots": 1000 - }, - "oracle": { - "expression": "c example DIMACS-CNF 3-SAT\np cnf 3 5\n-1 -2 -3 0\n1 -2 3 0\n1 2 -3 0\n1 -2 -3 0\n-1 2 3 0", - "name": "LogicalExpressionOracle" - }, - "problem": { - "name": "search" - } -} diff --git a/community/optimization/input_files/maxcut.json b/community/optimization/input_files/maxcut.json deleted file mode 100644 index f14958c22..000000000 --- a/community/optimization/input_files/maxcut.json +++ /dev/null @@ -1,179 +0,0 @@ -{ - "algorithm": { - "initial_point": null, - "name": "VQE", - "operator_mode": "matrix" - }, - "backend": { - "provider": "qiskit.BasicAer", - "name": "statevector_simulator", - "skip_transpiler": false - }, - "initial_state": { - "name": "ZERO" - }, - "input": { - "aux_ops": [], - "name": "EnergyInput", - "qubit_op": { - "paulis": [ - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "ZIIIZIIIII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "ZIIIIIIIZI" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IZIZIIIIII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IZIIIIZIII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IZIIIIIIZI" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIZIZIIIII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIZIIIIZII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIZIIIIIIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIZIIIIZI" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIZIIIIIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIZIIZII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIZIIIIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIZZIII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIZIZII" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIZIIZI" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIZIIIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIIZIZI" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIIZIIZ" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIIIZZI" - }, - { - "coeff": { - "imag": 0.0, - "real": 1.0 - }, - "label": "IIIIIIIZIZ" - } - ] - } - }, - "optimizer": { - "factr": 10, - "iprint": -1, - "maxfun": 2000, - "name": "L_BFGS_B" - }, - "problem": { - "name": "ising", - "random_seed": null - }, - "variational_form": { - "depth": 10, - "entanglement": "linear", - "entangler_map": null, - "name": "RYRZ" - } -} \ No newline at end of file diff --git a/community/optimization/max_cut.ipynb b/community/optimization/max_cut.ipynb deleted file mode 100644 index fcc88a02c..000000000 --- a/community/optimization/max_cut.ipynb +++ /dev/null @@ -1,294 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*Using Qiskit Aqua for max-cut problems*_\n", - "\n", - "This Qiskit Aqua Optimization notebook demonstrates how to use the VQE quantum algorithm to compute the max cut of a given graph. \n", - "\n", - "The problem is defined as follows. Given a graph $G = (V,E)$ with weights $w_{ij}$ on the edges, we are looking for a subset $S \\subseteq V$ such that $\\sum_{(i,j) \\in E : i \\in S, j \\not\\in S} w_{ij}$ is maximized.\n", - "\n", - "The graph provided as an input is used first to generate an Ising Hamiltonian, which is then passed as an input to VQE. As a reference, this notebook also computes the max cut using the Exact Eigensolver classical algorithm and the solver embedded in the commercial non-quantum IBM CPLEX product (if it is available in the system and the user has followed the necessary configuration steps in order for Qiskit Aqua to find it). Please refer to the Qiskit Aqua Optimization documentation for installation and configuration details for CPLEX." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from qiskit.aqua import Operator, run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import max_cut\n", - "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", - "from qiskit import Aer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here an Operator instance is created for our Hamiltonian. In this case the paulis are from an Ising Hamiltonian translated from the max-cut problem. We load a small sample instance of the max-cut problem." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "w = max_cut.parse_gset_format('sample.maxcut')\n", - "qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", - "algo_input = EnergyInput(qubitOp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also offer a function to generate a random graph as a input." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 0. 8. -9. 0.]\n", - " [ 8. 0. 7. 9.]\n", - " [-9. 7. 0. -8.]\n", - " [ 0. 9. -8. 0.]]\n" - ] - } - ], - "source": [ - "if True:\n", - " np.random.seed(8123179)\n", - " w = max_cut.random_graph(4, edge_prob=0.5, weight_range=10)\n", - " qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", - " algo_input.qubit_op = qubitOp\n", - "print(w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we test for the presence of algorithms we want to use in this notebook. If Aqua is installed correctly `ExactEigensolver` and `VQE` will always be found. `CPLEX.Ising` is dependent on IBM CPLEX being installed (see introduction above). CPLEX is *not required* but if installed then this notebook will demonstrate the `CPLEX.Ising` algorithm , that uses CPLEX, to compute max-cut as well." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['ExactEigensolver', 'CPLEX.Ising', 'VQE']\n" - ] - } - ], - "source": [ - "to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']\n", - "print(to_be_tested_algos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now use the Operator without regard to how it was created. First we need to prepare the configuration params to invoke the algorithm. Here we will use the ExactEigensolver first to return the smallest eigenvalue. Backend is not required since this is computed classically not using quantum computation. We then add in the qubitOp Operator in dictionary format. Now the complete params can be passed to the algorithm and run. The result is a dictionary." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -20.5\n", - "max-cut objective: -24.0\n", - "solution: [1. 0. 1. 1.]\n", - "solution objective: 24.0\n" - ] - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "result = run_algorithm(params,algo_input)\n", - "# print('objective function:', max_cut.max_cut_obj(result, offset))\n", - "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('max-cut objective:', result['energy'] + offset)\n", - "print('solution:', max_cut.get_graph_solution(x))\n", - "print('solution objective:', max_cut.max_cut_value(x, w))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Note*: IBM CPLEX is an _optional_ installation addition for Aqua. If installed then the Aqua CPLEX.Ising algorithm will be able to be used. If not, then solving this problem using this particular algorithm will simply be skipped. \n", - "\n", - "We change the configuration parameters to solve it with the CPLEX backend. The CPLEX backend can deal with a particular type of Hamiltonian called Ising Hamiltonian, which consists of only Pauli Z at most second order and often for combinatorial optimization problems that can be formulated as quadratic unconstrained binary optimization problems, such as the max-cut problem.\n", - "\n", - "Note that for a max-cut problem, since we are computing a bipartition of the graph, every binary vector $x$ and its complement (i.e., the vector $y$ such that $y_j = 1 - x_j$ for all $j$) represent exactly the same solution, and will have the same objective function value. Different solution methods may return solutions that look different, but in fact have the same objective function value." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPXPARAM_TimeLimit 600\n", - "CPXPARAM_Read_DataCheck 1\n", - "CPXPARAM_Threads 1\n", - "CPXPARAM_MIP_Tolerances_MIPGap 0\n", - "CPXPARAM_MIP_Tolerances_Integrality 0\n", - "CPXPARAM_MIP_Display 0\n", - "energy: -20.5\n", - "time: 0.026632682000126806\n", - "max-cut objective: -24.0\n", - "solution: [1 0 1 1]\n", - "solution objective: 24.0\n" - ] - } - ], - "source": [ - "cplex_installed = True\n", - "try:\n", - " CPLEX_Ising.check_pluggable_valid()\n", - "except Exception as e:\n", - " cplex_installed = False\n", - "\n", - "\n", - "if cplex_installed:\n", - " algorithm_cfg = {\n", - " 'name': 'CPLEX.Ising',\n", - " 'display': 0\n", - " }\n", - "\n", - " params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - " }\n", - "\n", - " result = run_algorithm(params, algo_input)\n", - "\n", - " x_dict = result['x_sol']\n", - " print('energy:', result['energy'])\n", - " print('time:', result['eval_time'])\n", - " print('max-cut objective:', result['energy'] + offset)\n", - " x = np.array([x_dict[i] for i in sorted(x_dict.keys())])\n", - " print('solution:', max_cut.get_graph_solution(x))\n", - " print('solution objective:', max_cut.max_cut_value(x, w))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we want VQE and so change it and add its other configuration parameters. VQE also needs and optimizer and variational form. While we can omit them from the dictionary, such that defaults are used, here we specify them explicitly so we can set their parameters as we desire." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -20.499999999997623\n", - "time: 12.321285724639893\n", - "max-cut objective: -23.999999999997623\n", - "solution: [1. 0. 1. 1.]\n", - "solution objective: 24.0\n" - ] - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'L_BFGS_B',\n", - " 'maxfun': 6000\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RYRZ',\n", - " 'depth': 3,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", - "}\n", - "\n", - "backend = Aer.get_backend('statevector_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "print('max-cut objective:', result['energy'] + offset)\n", - "print('solution:', max_cut.get_graph_solution(x))\n", - "print('solution objective:', max_cut.max_cut_value(x, w))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/optimization/partition.ipynb b/community/optimization/partition.ipynb deleted file mode 100644 index c619277a4..000000000 --- a/community/optimization/partition.ipynb +++ /dev/null @@ -1,301 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*Using Qiskit Aqua for partition problems*_\n", - "\n", - "This Qiskit Aqua Optimization notebook demonstrates how to use the VQE algorithm to compute a balanced partition of a set of numbers. This problem is known as \"number partitioning\" or simply \"partition\" in computer science.\n", - "\n", - "The problem is defined as follows. We are given a set of numbers $S$, and we want to determine a partition of $S$ into disjoint sets $S_1, S_2$ such that $|\\sum_{a \\in S_1} - \\sum_{a \\in S_2}|$ is minimized.\n", - "\n", - "The list of numbers provided as an input is used first to generate an Ising Hamiltonian, which is then passed as an input to VQE. As a reference, this notebook also computes the maximum stable set using the Exact Eigensolver classical algorithm and the solver embedded in the commercial IBM CPLEX product (if it is available in the system and the user has followed the necessary configuration steps in order for Qiskit Aqua to find it). Please refer to the Qiskit Aqua Optimization documentation for installation and configuration details for CPLEX." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from qiskit.aqua import Operator, run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import partition\n", - "from qiskit import Aer\n", - "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here an Operator instance is created for our Hamiltonian. In this case the Paulis are from an Ising Hamiltonian of the number partitioning problem (expressed in minimization form). Rather than minimizing the absolute value of the difference of the sum of numbers into two sets, we minimize the difference square.\n", - "\n", - "We load a small instance of the problem." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 1 3 4 7 10 13 15 16]\n" - ] - } - ], - "source": [ - "number_list = partition.read_numbers_from_file('sample.partition')\n", - "qubitOp, offset = partition.get_partition_qubitops(number_list)\n", - "algo_input = EnergyInput(qubitOp)\n", - "print(number_list)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also offer a function to generate a set of numbers as a input." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 9 8 23 4 2]\n" - ] - } - ], - "source": [ - "if True:\n", - " np.random.seed(8123179)\n", - " number_list = partition.random_number_list(5, weight_range=25)\n", - " qubitOp, offset = partition.get_partition_qubitops(number_list)\n", - " algo_input.qubit_op = qubitOp\n", - " print(number_list)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we test for the presence of algorithms we want to use in this notebook. If Aqua is installed correctly `ExactEigensolver` and `VQE` will always be found. `CPLEX.Ising` is dependent on IBM CPLEX being installed (see introduction above). CPLEX is *not required* but if installed then this notebook will demonstrate the `CPLEX.Ising` algorithm , that uses CPLEX, to compute partition as well." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['ExactEigensolver', 'CPLEX.Ising', 'VQE']\n" - ] - } - ], - "source": [ - "to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']\n", - "print(to_be_tested_algos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now use the Operator without regard to how it was created. First we need to prepare the configuration params to invoke the algorithm. Here we will use the ExactEigensolver first to return the smallest eigenvalue. Backend is not required since this is computed classically not using quantum computation. We then add in the qubitOp Operator in dictionary format. Now the complete params can be passed to the algorithm and run. The result is a dictionary." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -694.0\n", - "partition objective: 0.0\n", - "solution: [1. 1. 0. 1. 1.]\n", - "solution objective: 0\n" - ] - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "result = run_algorithm(params,algo_input)\n", - "\n", - "x = partition.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('partition objective:', result['energy'] + offset)\n", - "print('solution:', x)\n", - "print('solution objective:', partition.partition_value(x, number_list))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Note*: IBM CPLEX is an _optional_ installation addition for Aqua. If installed then the Aqua CPLEX.Ising algorithm will be able to be used. If not, then solving this problem using this particular algorithm will simply be skipped. \n", - "\n", - "We change the configuration parameters to solve it with the CPLEX backend. The CPLEX backend can deal with a particular type of Hamiltonian called Ising Hamiltonian, which consists of only Pauli Z at most second order and often for combinatorial optimization problems that can be formulated as quadratic unconstrained binary optimization problems, such as the Number Partitioning problem.\n", - "\n", - "Note that for a Number Partitioning problem, since we are computing a bipartition of the set $S$, every binary vector $x$ and its complement (i.e., the vector $y$ such that $y_j = 1 - x_j$ for all $j$) represent exactly the same solution, and will have the same objective function value. Different solution methods may return solutions that look different, but in fact have the same objective function value." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPXPARAM_TimeLimit 600\n", - "CPXPARAM_Read_DataCheck 1\n", - "CPXPARAM_Threads 1\n", - "CPXPARAM_MIP_Tolerances_MIPGap 0\n", - "CPXPARAM_MIP_Tolerances_Integrality 0\n", - "CPXPARAM_MIP_Display 0\n", - "energy: -694.0\n", - "time: 0.007695371999943745\n", - "partition objective: 0.0\n", - "solution: [1 1 0 1 1]\n", - "solution objective: 0\n" - ] - } - ], - "source": [ - "cplex_installed = True\n", - "try:\n", - " CPLEX_Ising.check_pluggable_valid()\n", - "except Exception as e:\n", - " cplex_installed = False\n", - " \n", - "if cplex_installed:\n", - " algorithm_cfg = {\n", - " 'name': 'CPLEX.Ising',\n", - " 'display': 0\n", - " }\n", - "\n", - " params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - " }\n", - "\n", - " result = run_algorithm(params, algo_input)\n", - "\n", - " x_dict = result['x_sol']\n", - " print('energy:', result['energy'])\n", - " print('time:', result['eval_time'])\n", - " print('partition objective:', result['energy'] + offset)\n", - " x = np.array([x_dict[i] for i in sorted(x_dict.keys())])\n", - " print('solution:', x)\n", - " print('solution objective:', partition.partition_value(x, number_list))\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we want VQE and so change it and add its other configuration parameters. VQE also needs and optimizer and variational form. While we can omit them from the dictionary, such that defaults are used, here we specify them explicitly so we can set their parameters as we desire." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -693.9999999996322\n", - "time: 378.3389091491699\n", - "partition objective: 3.6777692002942786e-10\n", - "solution: [1. 1. 0. 1. 1.]\n", - "solution objective: 0\n" - ] - } - ], - "source": [ - "\n", - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'L_BFGS_B',\n", - " 'maxfun': 6000\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RYRZ',\n", - " 'depth': 3,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", - "}\n", - "\n", - "backend = Aer.get_backend('statevector_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = partition.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "print('partition objective:', result['energy'] + offset)\n", - "print('solution:', x)\n", - "print('solution objective:', partition.partition_value(x, number_list))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "mykernel", - "language": "python", - "name": "mykernel" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/optimization/sample.exactcover b/community/optimization/sample.exactcover deleted file mode 100644 index 325e206dc..000000000 --- a/community/optimization/sample.exactcover +++ /dev/null @@ -1 +0,0 @@ -[[2,3,4], [1, 2], [3,4], [1,2,3]] diff --git a/community/optimization/sample.maxcut b/community/optimization/sample.maxcut deleted file mode 100644 index 84d5352f4..000000000 --- a/community/optimization/sample.maxcut +++ /dev/null @@ -1,21 +0,0 @@ -10 20 -1 5 1 -1 9 1 -2 4 1 -2 7 1 -2 9 1 -3 5 1 -3 8 1 -3 10 1 -4 9 1 -4 10 1 -5 8 1 -5 10 1 -6 7 1 -6 8 1 -6 9 1 -6 10 1 -7 9 1 -7 10 1 -8 9 1 -8 10 1 diff --git a/community/optimization/sample.partition b/community/optimization/sample.partition deleted file mode 100644 index acfe57e6f..000000000 --- a/community/optimization/sample.partition +++ /dev/null @@ -1,8 +0,0 @@ -1 -3 -4 -7 -10 -13 -15 -16 diff --git a/community/optimization/sample.setpacking b/community/optimization/sample.setpacking deleted file mode 100644 index 99340e656..000000000 --- a/community/optimization/sample.setpacking +++ /dev/null @@ -1 +0,0 @@ -[[4,5], [4], [5]] diff --git a/community/optimization/set_packing.ipynb b/community/optimization/set_packing.ipynb deleted file mode 100644 index 4d435e1e2..000000000 --- a/community/optimization/set_packing.ipynb +++ /dev/null @@ -1,277 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Using Qiskit Aqua for set packing problems*_\n", - "\n", - "Given a collection $S$ of subsets of a set $X$, the set packing problem tries to find the subsets that are pairwise disjoint (in other words, no two of them share an element). The goal is to maximize the number of such subsets.\n", - "\n", - "We will go through three examples to show:\n", - "1. How to run the optimization using the declarative approach\n", - "2. How to run the optimization using the programmatic approach\n", - "3. How how to run the optimization with the VQE." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### The problem and the brute-force method.\n", - "\n", - "The problem is as follows. First, let us print the list of subsets." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[4, 5], [4], [5]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import json\n", - "\n", - "from qiskit import BasicAer\n", - "\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import set_packing\n", - "from qiskit.aqua.algorithms import ExactEigensolver\n", - "\n", - "\n", - "input_file = 'sample.setpacking'\n", - "with open(input_file) as f:\n", - " list_of_subsets = json.load(f)\n", - " print(list_of_subsets)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a subset is either 0 (meaning the subset is not taken) or 1 (meaning the subset is taken). We print the binary assignment that satisfies the definition of the set packing. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of set packing 2\n" - ] - } - ], - "source": [ - "def brute_force():\n", - " # brute-force way: try every possible assignment!\n", - " def bitfield(n, L):\n", - " result = np.binary_repr(n, L)\n", - " return [int(digit) for digit in result] # [2:] to chop off the \"0b\" part\n", - "\n", - " L = len(list_of_subsets)\n", - " max = 2**L\n", - " max_v = -np.inf\n", - " for i in range(max):\n", - " cur = bitfield(i, L)\n", - " cur_v = set_packing.check_disjoint(cur, list_of_subsets)\n", - " if cur_v:\n", - " if np.count_nonzero(cur) > max_v:\n", - " max_v = np.count_nonzero(cur)\n", - " return max_v\n", - "\n", - "size = brute_force()\n", - "print(\"Size of set packing\", size)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part I: Run the optimization using the declarative approach\n", - "\n", - "Here the steps are:\n", - "* Create the qubit operator i.e. Ising Hamiltonian, using `set_packing` ising translator\n", - "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", - "* Run the algorithm and get the result\n", - "* Use the result with the `set_packing` object to determine a solution" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of set packing 2\n" - ] - } - ], - "source": [ - "qubit_op, offset = set_packing.get_set_packing_qubitops(list_of_subsets)\n", - "\n", - "algo_input = EnergyInput(qubit_op)\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "result = run_algorithm(params, algo_input)\n", - "\n", - "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = set_packing.get_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [0, 1, 1])\n", - "print(\"Size of set packing\", np.count_nonzero(ising_sol))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part II: Run the optimization using the programmatic approach\n", - "\n", - "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of set packing 2\n" - ] - } - ], - "source": [ - "algo = ExactEigensolver(qubit_op)\n", - "result = algo.run()\n", - "\n", - "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = set_packing.get_solution(x)\n", - "np.testing.assert_array_equal(ising_sol, [0, 1, 1])\n", - "oracle = brute_force()\n", - "print(\"Size of set packing\", np.count_nonzero(ising_sol))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part III: Run the optimization with the VQE\n", - "\n", - "##### Declarative\n", - "\n", - "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of set packing 2\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': 100},\n", - " 'algorithm': {'name': 'VQE'},\n", - " 'optimizer': {'name': 'COBYLA'},\n", - " 'variational_form': {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}\n", - "}\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = set_packing.get_solution(x)\n", - "print(\"Size of set packing\", np.count_nonzero(ising_sol))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Programmatic\n", - "\n", - "We can create the objects directly ourselves too and run VQE for the result" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of set packing 2\n" - ] - } - ], - "source": [ - "from qiskit.aqua import aqua_globals\n", - "from qiskit.aqua.algorithms import VQE\n", - "from qiskit.aqua.components.optimizers import COBYLA\n", - "from qiskit.aqua.components.variational_forms import RY\n", - "\n", - "aqua_globals.random_seed = 100\n", - "\n", - "optimizer = COBYLA()\n", - "var_form = RY(qubit_op.num_qubits, depth=5, entanglement='linear')\n", - "vqe = VQE(qubit_op, var_form, optimizer)\n", - "\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = vqe.run(backend)\n", - "\n", - "x = set_packing.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])\n", - "ising_sol = set_packing.get_solution(x)\n", - "print(\"Size of set packing\", np.count_nonzero(ising_sol))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/community/optimization/stable_set.ipynb b/community/optimization/stable_set.ipynb deleted file mode 100644 index dfe91fa4f..000000000 --- a/community/optimization/stable_set.ipynb +++ /dev/null @@ -1,293 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*Using Qiskit Aqua for stable-set problems*_\n", - "\n", - "This Qiskit Aqua Optimization notebook demonstrates how to use the VQE algorithm to compute the maximum stable set of a given graph. \n", - "\n", - "The problem is defined as follows. Given a graph $G = (V,E)$, we want to compute $S \\subseteq V$ such that there do not exist $i, j \\in S : (i, j) \\in E$, and $|S|$ is maximized. In other words, we are looking for a maximum cardinality set of mutually non-adjacent vertices.\n", - "\n", - "The graph provided as an input is used first to generate an Ising Hamiltonian, which is then passed as an input to VQE. As a reference, this notebook also computes the maximum stable set using the Exact Eigensolver classical algorithm and the solver embedded in the commercial IBM CPLEX product (if it is available in the system and the user has followed the necessary configuration steps in order for Qiskit Aqua to find it). Please refer to the Qiskit Aqua Optimization documentation for installation and configuration details for CPLEX." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "\n", - "from qiskit.aqua import Operator, run_algorithm\n", - "from qiskit.aqua.translators.ising import stable_set\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.algorithms.classical.cplex.cplex_ising import CPLEX_Ising\n", - "from qiskit import Aer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here an Operator instance is created for our Hamiltonian. In this case the Paulis are from an Ising Hamiltonian of the maximum stable set problem (expressed in minimization form). We load a small instance of the maximum stable set problem." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "w = stable_set.parse_gset_format('sample.maxcut')\n", - "qubitOp, offset = stable_set.get_stable_set_qubitops(w)\n", - "algo_input = EnergyInput(qubitOp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We also offer a function to generate a random graph as a input." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[0. 1. 1. 1. 0.]\n", - " [1. 0. 0. 0. 1.]\n", - " [1. 0. 0. 1. 1.]\n", - " [1. 0. 1. 0. 0.]\n", - " [0. 1. 1. 0. 0.]]\n" - ] - } - ], - "source": [ - "if True:\n", - " np.random.seed(8123179)\n", - " w = stable_set.random_graph(5, edge_prob=0.5)\n", - " qubitOp, offset = stable_set.get_stable_set_qubitops(w)\n", - " algo_input.qubit_op = qubitOp\n", - "print(w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we test for the presence of algorithms we want to use in this notebook. If Aqua is installed correctly `ExactEigensolver` and `VQE` will always be found. `CPLEX.Ising` is dependent on IBM CPLEX being installed (see introduction above). CPLEX is *not required* but if installed then this notebook will demonstrate the `CPLEX.Ising` algorithm , that uses CPLEX, to compute stable set as well." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['ExactEigensolver', 'CPLEX.Ising', 'VQE']\n" - ] - } - ], - "source": [ - "to_be_tested_algos = ['ExactEigensolver', 'CPLEX.Ising', 'VQE']\n", - "print(to_be_tested_algos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now use the Operator without regard to how it was created. First we need to prepare the configuration params to invoke the algorithm. Here we will use the ExactEigensolver first to return the smallest eigenvalue. Backend is not required since this is computed classically not using quantum computation. We then add in the qubitOp Operator in dictionary format. Now the complete params can be passed to the algorithm and run. The result is a dictionary." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -5.5\n", - "stable set objective: -2.0\n", - "solution: [0. 1. 1. 0. 0.]\n", - "solution objective and feasibility: (2.0, True)\n" - ] - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "result = run_algorithm(params,algo_input)\n", - "\n", - "x = stable_set.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('stable set objective:', result['energy'] + offset)\n", - "print('solution:', stable_set.get_graph_solution(x))\n", - "print('solution objective and feasibility:', stable_set.stable_set_value(x, w))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*Note*: IBM CPLEX is an _optional_ installation addition for Aqua. If installed then the Aqua CPLEX.Ising algorithm will be able to be used. If not, then solving this problem using this particular algorithm will simply be skipped.\n", - "\n", - "We change the configuration parameters to solve it with the CPLEX backend. The CPLEX backend can deal with a particular type of Hamiltonian called Ising Hamiltonian, which consists of only Pauli Z at most second order and can be used for combinatorial optimization problems that can be formulated as quadratic unconstrained binary optimization problems, such as the stable set problem. Note that we may obtain a different solution - but if the objective value is the same as above, the solution will be optimal." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "CPXPARAM_TimeLimit 600\n", - "CPXPARAM_Read_DataCheck 1\n", - "CPXPARAM_Threads 1\n", - "CPXPARAM_MIP_Tolerances_MIPGap 0\n", - "CPXPARAM_MIP_Tolerances_Integrality 0\n", - "CPXPARAM_MIP_Display 0\n", - "energy: -5.5\n", - "time: 0.011368974000106391\n", - "stable set objective: -2.0\n", - "solution: [0 0 0 1 1]\n", - "solution objective and feasibility: (2, True)\n" - ] - } - ], - "source": [ - "cplex_installed = True\n", - "try:\n", - " CPLEX_Ising.check_pluggable_valid()\n", - "except Exception as e:\n", - " cplex_installed = False\n", - "\n", - "\n", - "if cplex_installed:\n", - " algorithm_cfg = {\n", - " 'name': 'CPLEX.Ising',\n", - " 'display': 0\n", - " }\n", - "\n", - " params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - " }\n", - "\n", - " result = run_algorithm(params, algo_input)\n", - "\n", - " x_dict = result['x_sol']\n", - " print('energy:', result['energy'])\n", - " print('time:', result['eval_time'])\n", - " print('stable set objective:', result['energy'] + offset)\n", - " x = np.array([x_dict[i] for i in sorted(x_dict.keys())])\n", - " print('solution:', stable_set.get_graph_solution(x))\n", - " print('solution objective and feasibility:', stable_set.stable_set_value(x, w))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we want VQE and so change it and add its other configuration parameters. VQE also needs and optimizer and variational form. While we can omit them from the dictionary, such that defaults are used, here we specify them explicitly so we can set their parameters as we desire." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -5.499999999924708\n", - "time: 95.46273922920227\n", - "stable set objective: -1.9999999999247082\n", - "solution: [0. 0. 0. 1. 1.]\n", - "solution objective and feasibility: (2.0, True)\n" - ] - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'L_BFGS_B',\n", - " 'maxfun': 2000\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RYRZ',\n", - " 'depth': 3,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg\n", - "}\n", - "\n", - "backend = Aer.get_backend('statevector_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = stable_set.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "print('stable set objective:', result['energy'] + offset)\n", - "print('solution:', stable_set.get_graph_solution(x))\n", - "print('solution objective and feasibility:', stable_set.stable_set_value(x, w))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/optimization/vertex_cover.ipynb b/community/optimization/vertex_cover.ipynb deleted file mode 100644 index 00aec67c9..000000000 --- a/community/optimization/vertex_cover.ipynb +++ /dev/null @@ -1,277 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Using Qiskit Aqua for the vertex-cover problems*_\n", - "\n", - "A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The goal of NPC problem is to minimize the size of the vertex cover. \n", - "\n", - "We will go through three examples to show:\n", - "1. How to run the optimization using the declarative approach\n", - "2. How to run the optimization using the programmatic approach\n", - "3. How how to run the optimization with the VQE." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### The problem and the brute-force method\n", - "\n", - "The problem is as follows. the graph is in the adjacent matrix form." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[0. 4. 5.]\n", - " [4. 0. 3.]\n", - " [5. 3. 0.]]\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "from qiskit.aqua.translators.ising import vertex_cover\n", - "from qiskit.aqua.algorithms import ExactEigensolver\n", - "\n", - "np.random.seed(100)\n", - "num_nodes = 3\n", - "w = vertex_cover.random_graph(num_nodes, edge_prob=0.8, weight_range=10)\n", - "print(w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The brute-force method is as follows. Basically, we exhaustively try all the binary assignments. In each binary assignment, the entry of a vertex is either 0 (meaning the vertex is not in the cover) or 1 (meaning the vertex is in the cover). We print the binary assignment that satisfies the definition of the vertex cover and corresponds to the minimial size. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of the vertex cover 2\n" - ] - } - ], - "source": [ - "def brute_force():\n", - " # brute-force way\n", - " def bitfield(n, L):\n", - " result = np.binary_repr(n, L)\n", - " return [int(digit) for digit in result] # [2:] to chop off the \"0b\" part\n", - "\n", - " L = num_nodes\n", - " max = 2**L\n", - " minimal_v = np.inf\n", - " for i in range(max):\n", - " cur = bitfield(i, L)\n", - "\n", - " cur_v = vertex_cover.check_full_edge_coverage(np.array(cur), w)\n", - " if cur_v:\n", - " nonzerocount = np.count_nonzero(cur)\n", - " if nonzerocount < minimal_v:\n", - " minimal_v = nonzerocount\n", - "\n", - " return minimal_v\n", - "\n", - "size = brute_force()\n", - "print('Size of the vertex cover', size)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part I: Run the optimization using the declarative approach\n", - "\n", - "Here the steps are:\n", - "* Create the qubit operator i.e. Ising Hamiltonian, using `vertex_cover` ising translator\n", - "* Create an EnergyInput object and a dictionary describing the algorithm and the components for Aqua to solve the problem\n", - "* Run the algorithm and get the result\n", - "* Use the result with the `vertex_cover` object to determine a solution" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of the vertex cover 2\n" - ] - } - ], - "source": [ - "qubit_op, offset = vertex_cover.get_vertex_cover_qubitops(w)\n", - "\n", - "algo_input = EnergyInput(qubit_op)\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': {'name': 'ExactEigensolver'}\n", - "}\n", - "result = run_algorithm(params, algo_input)\n", - "\n", - "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertex_cover.get_graph_solution(x)\n", - "np.testing.assert_array_equal(sol, [0, 1, 1])\n", - "print('Size of the vertex cover', np.count_nonzero(sol))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part II: Run the optimization using the programmatic approach\n", - "\n", - "The main difference here is running the Aqua algorithm. Here we directly construct the algorithm and then run() it to get the result. The post computation on the result is identical." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of the vertex cover 2\n" - ] - } - ], - "source": [ - "algo = ExactEigensolver(qubit_op)\n", - "result = algo.run()\n", - "\n", - "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertex_cover.get_graph_solution(x)\n", - "np.testing.assert_array_equal(sol, [0, 1, 1])\n", - "print('Size of the vertex cover', np.count_nonzero(sol))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Part III: Run the optimization with the VQE\n", - "\n", - "##### Declarative\n", - "\n", - "We reuse the EnergyInput object we created above. VQE algorithm needs an optimizer and a variational form. Then also we need a quantum backend on which the algorithm will run." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of the vertex cover 2\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': 100},\n", - " 'algorithm': {'name': 'VQE', 'operator_mode': 'paulis'},\n", - " 'optimizer': {'name': 'SPSA', 'max_trials': 200},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 3}\n", - "}\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "result = run_algorithm(params, algo_input, backend=backend)\n", - "\n", - "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertex_cover.get_graph_solution(x)\n", - "print('Size of the vertex cover', np.count_nonzero(sol))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "##### Programmatic\n", - "\n", - "We can create the objects directly ourselves too and run VQE for the result" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Size of the vertex cover 2\n" - ] - } - ], - "source": [ - "from qiskit.aqua import aqua_globals\n", - "from qiskit.aqua.algorithms import VQE\n", - "from qiskit.aqua.components.optimizers import SPSA\n", - "from qiskit.aqua.components.variational_forms import RYRZ\n", - "\n", - "aqua_globals.random_seed = 100\n", - "\n", - "optimizer = SPSA(max_trials=200)\n", - "var_form = RYRZ(qubit_op.num_qubits, depth=3)\n", - "vqe = VQE(qubit_op, var_form, optimizer, operator_mode='paulis')\n", - "\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "result = vqe.run(backend)\n", - "\n", - "x = vertex_cover.sample_most_likely(len(w), result['eigvecs'][0])\n", - "sol = vertex_cover.get_graph_solution(x)\n", - "print('Size of the vertex cover', np.count_nonzero(sol))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/qiskit/algorithm_introduction_with_vqe.ipynb b/qiskit/algorithm_introduction_with_vqe.ipynb deleted file mode 100644 index e74cbabe9..000000000 --- a/qiskit/algorithm_introduction_with_vqe.ipynb +++ /dev/null @@ -1,298 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "## _*Using Qiskit Aqua algorithms, a how to guide*_\n", - "\n", - "This notebook demonstrates how to use the `Qiskit Aqua` library to invoke an algorithm and process the result.\n", - "\n", - "Further information may be found for the algorithms in the online [Aqua documentation](https://qiskit.org/documentation/aqua/algorithms.html).\n", - "\n", - "Algorithms in Aqua can be created and run as usual in Python by constructing instances and calling methods. There is also a high level `run_algorithm` method that takes a configuration dictionary with data describing which algorithm to use, which components etc along with an InputInstance type to supply data to the algorithm. This latter approach is what we call `declarative` with the former, the regular Python way, `programmatic`. This tutorial will show both approaches.\n", - "\n", - "Aqua has many `algorithms` for solving different problems. For some we also have classical algorithms, that take the exact same input data, to solve the problem. This can be useful in the near term as Quantum algorithms are developed since we are still at a stage where we can do classical comparison of the result.\n", - "\n", - "Aqua also has various `components` which are dependent objects used by algorithms, such as variational forms, qfts, initial states etc. We will see more on this below.\n", - "\n", - "Lastly for developers we also have a collections of `circuits` and gates which can be used to help build out new components and algorithms.\n", - "\n", - "Here we will choose to show some of the main aspects of Aqua by solving a ground state energy problem." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit.aqua import Operator" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As input, for an energy problem, we need a Hamiltonian and so we first create a suitable `Operator ` instance. In this case we have a paulis list, as below, from a previously computed Hamiltonian, that we saved, so as to focus this notebook on using the algorithms. We simply load these paulis to create the original Operator.\n", - "\n", - "This Hamiltonian was created originally using Qiskit Chemistry for an H2 molecule at 0.735A interatomic distance. Please refer to the chemistry tutorials here if you are interested in understanding more. Suffice to say at this level Aqua does not really care about the source of the Operator." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "pauli_dict = {\n", - " 'paulis': [{\"coeff\": {\"imag\": 0.0, \"real\": -1.052373245772859}, \"label\": \"II\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.39793742484318045}, \"label\": \"ZI\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.39793742484318045}, \"label\": \"IZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.01128010425623538}, \"label\": \"ZZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.18093119978423156}, \"label\": \"XX\"}\n", - " ]\n", - "}\n", - "\n", - "qubit_op = Operator.load_from_dict(pauli_dict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Let's start with a classical algorithm\n", - "\n", - "We can now use the Operator without regard to how it was created. We chose to start this tutorial with a classical algorithm as it involves a little less setting up than the `VQE` quantum algorithm we will use later. Here we will use `ExactEigensolver` to compute the minimum eigenvalue of the Operator (Hamiltonian).\n", - "\n", - "#### First let's show the `programmatic` approach.\n", - "\n", - "We construct an `ExactEigensolver` instance, passing in the Operator, and then call `run()` on in order to compute the result. All Aqua algorithms have the run method (it is defined by a base class which all algorithms extend) and while no parameters are need for classical algorithms a quantum algorithm will require a backend (quantum simulator or real device) on which it will be run. The `result` object returned is a dictionary. While the results fields can be different for algorithms solving different problems, and even within a given problem type there may be algorithm specific data returned, for a given problem the fields core to that problem are common across algorithms in order that different algorithms can be chosen to solve the same problem in a consistent fashion." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-1.857275030202378\n" - ] - } - ], - "source": [ - "from qiskit.aqua.algorithms import ExactEigensolver\n", - "\n", - "ee = ExactEigensolver(qubit_op)\n", - "result = ee.run()\n", - "print(result['energy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Now let's show the `declarative` approach. \n", - "\n", - "Here we need to prepare a configuration dictionary of parameters to define the algorithm. Again we we will use the ExactEigensolver and need to create an `algorithm` where it is named by `name`. The name comes from a `CONFIGURATION` dictionary in the algorithm and this name is registered to the Aqua discovery framework so we can load the corresponding class and run it during the exceution of `run_algorithm`. `run_algorithm` requires the configuration dictionary and input data passed via an InputInstance class. For an energy problem the data is supplied via an EnergyInput (extends InputInstance), other problem types have their own specific InputInstance. `run_algorithm` returns the same dictionary as above (internally it calls the run() method of the algorithm and passes back the result)\n", - "\n", - "Note: there are other fields such `problem` that could have been added below. This field defaults to `energy`, which is what we want so it has been omitted. Defaults are convenient in the declarative form too as algorithms can define for both their properties as well as defaults for dependent components." - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-1.8572750302023808\n" - ] - } - ], - "source": [ - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.input import EnergyInput\n", - "\n", - "aqua_cfg_dict = {\n", - " 'algorithm': {\n", - " 'name': 'ExactEigensolver'\n", - " }\n", - "}\n", - "\n", - "algo_input = EnergyInput(qubit_op)\n", - "result = run_algorithm(aqua_cfg_dict, algo_input)\n", - "print(result['energy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Lets switch now to using a Quantum algorithm.\n", - "\n", - "We will use the Variational Quantum Eigensolver (VQE) to solve the same problem as above. As its name implies its uses a variational approach. An ansatz (a variational form) is supplied and using a quantum/classical hybrid technique the energy resulting from evaluating the Operator with the variational form on a quantum backend is taken down to a minimum using a classical optimizer that varies the parameters of the variational form.\n", - "\n", - "#### Lets do the `declarative` approach first this time\n", - "\n", - "In the description above we talked about `VQE` a `variational form` and an `optimizer`. We can now set this up as a dictionary. While we can omit them from the dictionary, such that defaults are used, here we specify them explicitly so we can set their parameters as we desire.\n", - "\n", - "As this is a quantum algorithm we need to specify a backend. Here we use the `statevector_simpulator` from the `qiskit.BasicAer` provider from `Qiskit Terra`. As this is a variational algorithm going from quantum to classical and looping until it finds a minimum it takes a few seconds. The result here is very close to our classical result above." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-1.8572750302012253\n" - ] - } - ], - "source": [ - "aqua_cfg_dict = {\n", - " 'algorithm': {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - " },\n", - " 'variational_form': {\n", - " 'name': 'RYRZ',\n", - " 'depth': 3,\n", - " 'entanglement': 'linear'\n", - " },\n", - " 'optimizer': {\n", - " 'name': 'L_BFGS_B',\n", - " 'maxfun': 1000\n", - " },\n", - " 'backend': {\n", - " 'name': 'statevector_simulator',\n", - " 'provider': 'qiskit.BasicAer'\n", - " }\n", - "}\n", - "\n", - "algo_input = EnergyInput(qubit_op)\n", - "result = run_algorithm(aqua_cfg_dict, algo_input)\n", - "print(result['energy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### And now `programmatic`\n", - " \n", - "Here we create the variational form and optimizer and then pass them to VQE along with the Operator. The backend is created and passed to the algorithm so it can be run there." - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-1.8572750301886618\n" - ] - } - ], - "source": [ - "from qiskit import BasicAer\n", - "from qiskit.aqua.algorithms import VQE\n", - "from qiskit.aqua.components.variational_forms import RYRZ\n", - "from qiskit.aqua.components.optimizers import L_BFGS_B\n", - "\n", - "var_form = RYRZ(qubit_op.num_qubits, depth=3, entanglement='linear')\n", - "optimizer = L_BFGS_B(maxfun=1000)\n", - "vqe = VQE(qubit_op, var_form, optimizer)\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "result = vqe.run(backend)\n", - "print(result['energy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "While a backend can be passed directly to the quantum algorithm run(), internally it will be detected as such and wrapped as a QuantumInstance. However by doing this explicitly yourself, as below, various parameters governing the execution can be set, including in more advanced cases ability to set noise models, coupling maps etc. The following shows the above but using a QuantumInstance and setting up a default transpiler PassManager for circuit processing." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-1.8572750302012366\n" - ] - } - ], - "source": [ - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.transpiler import PassManager\n", - "\n", - "var_form = RYRZ(qubit_op.num_qubits, depth=3, entanglement='linear')\n", - "optimizer = L_BFGS_B(maxfun=1000)\n", - "vqe = VQE(qubit_op, var_form, optimizer)\n", - "backend = BasicAer.get_backend('statevector_simulator')\n", - "qi = QuantumInstance(backend=backend, pass_manager=PassManager())\n", - "result = vqe.run(qi)\n", - "print(result['energy'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Concluding\n", - "\n", - "This completes an introduction to programming and using Aqua algorithms. There are plenty of other tutorials showing Aqua being used to solve other problems, including AI, Finance, Optimization and Chemistry. We encourage you to explore these further and see that various capabilities and techniques employed." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/artificial_intelligence/index.ipynb b/qiskit/artificial_intelligence/index.ipynb index 30d03091c..645421d35 100644 --- a/qiskit/artificial_intelligence/index.ipynb +++ b/qiskit/artificial_intelligence/index.ipynb @@ -4,17 +4,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Qiskit Aqua Artificial Intelligence\n", + "# Qiskit Artificial Intelligence\n", "\n", - "Qiskit Aqua Artificial Intelligence is a set of tools, algorithms and software for use with quantum computers to \n", - "carry out research and investigate how to take advantage of quantum computing power to solve artificial intelligence\n", - "problems. \n", + "Qiskit Artificial Intelligence is a set of tools, algorithms and software for use with quantum computers to carry out research and investigate how to take advantage of quantum computing power to solve artificial intelligence problems. \n", "\n", "## Contents\n", "\n", "* [Quantum SVM for Classification](qsvm_classification.ipynb)\n", "* [qGANs for Learning & Loading Random Distributions](qgans_for_loading_random_distributions.ipynb)\n", - "* More examples can be found in [commuity/aqua/artificial_intelligence](../../../community/aqua/artificial_intelligence)" + "* More examples can be found in [community/artificial_intelligence](https://github.com/Qiskit/qiskit-tutorials-community/tree/master/artificial_intelligence)" ] }, { @@ -43,7 +41,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.6.1" } }, "nbformat": 4, diff --git a/qiskit/artificial_intelligence/qsvm_datasets.py b/qiskit/artificial_intelligence/qsvm_datasets.py deleted file mode 100644 index 1688b524a..000000000 --- a/qiskit/artificial_intelligence/qsvm_datasets.py +++ /dev/null @@ -1,559 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2018 IBM. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -import numpy as np -import scipy -from scipy.linalg import expm -import matplotlib.pyplot as plt -from mpl_toolkits.mplot3d import Axes3D -from sklearn import datasets -from sklearn.model_selection import train_test_split -from sklearn.preprocessing import StandardScaler, MinMaxScaler -from sklearn.decomposition import PCA - - -def ad_hoc_data(training_size, test_size, n, gap, PLOT_DATA): - class_labels = [r'A', r'B'] - if n == 2: - N = 100 - elif n == 3: - N = 20 # courseness of data seperation - - label_train = np.zeros(2*(training_size+test_size)) - sample_train = [] - sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] - - sample_Total = [[[0 for x in range(N)] for y in range(N)] for z in range(N)] - - interactions = np.transpose(np.array([[1, 0], [0, 1], [1, 1]])) - - steps = 2*np.pi/N - - sx = np.array([[0, 1], [1, 0]]) - X = np.asmatrix(sx) - sy = np.array([[0, -1j], [1j, 0]]) - Y = np.asmatrix(sy) - sz = np.array([[1, 0], [0, -1]]) - Z = np.asmatrix(sz) - J = np.array([[1, 0], [0, 1]]) - J = np.asmatrix(J) - H = np.array([[1, 1], [1, -1]])/np.sqrt(2) - H2 = np.kron(H, H) - H3 = np.kron(H, H2) - H = np.asmatrix(H) - H2 = np.asmatrix(H2) - H3 = np.asmatrix(H3) - - f = np.arange(2**n) - - my_array = [[0 for x in range(n)] for y in range(2**n)] - - for arindex in range(len(my_array)): - temp_f = bin(f[arindex])[2:].zfill(n) - for findex in range(n): - my_array[arindex][findex] = int(temp_f[findex]) - - my_array = np.asarray(my_array) - my_array = np.transpose(my_array) - - # Define decision functions - maj = (-1)**(2*my_array.sum(axis=0) > n) - parity = (-1)**(my_array.sum(axis=0)) - dict1 = (-1)**(my_array[0]) - if n == 2: - D = np.diag(parity) - elif n == 3: - D = np.diag(maj) - - Basis = np.random.random((2**n, 2**n)) + 1j*np.random.random((2**n, 2**n)) - Basis = np.asmatrix(Basis).getH()*np.asmatrix(Basis) - - [S, U] = np.linalg.eig(Basis) - - idx = S.argsort()[::-1] - S = S[idx] - U = U[:, idx] - - M = (np.asmatrix(U)).getH()*np.asmatrix(D)*np.asmatrix(U) - - psi_plus = np.transpose(np.ones(2))/np.sqrt(2) - psi_0 = 1 - for k in range(n): - psi_0 = np.kron(np.asmatrix(psi_0), np.asmatrix(psi_plus)) - - sample_total_A = [] - sample_total_B = [] - sample_total_void = [] - if n == 2: - for n1 in range(N): - for n2 in range(N): - x1 = steps*n1 - x2 = steps*n2 - phi = x1*np.kron(Z, J) + x2*np.kron(J, Z) + (np.pi-x1)*(np.pi-x2)*np.kron(Z, Z) - Uu = scipy.linalg.expm(1j*phi) - psi = np.asmatrix(Uu)*H2*np.asmatrix(Uu)*np.transpose(psi_0) - temp = np.asscalar(np.real(psi.getH()*M*psi)) - if temp > gap: - sample_Total[n1][n2] = +1 - elif temp < -gap: - sample_Total[n1][n2] = -1 - else: - sample_Total[n1][n2] = 0 - - # Now sample randomly from sample_Total a number of times training_size+testing_size - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == +1: - sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == -1: - sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - - sample_train = [sampleA, sampleB] - - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - img = plt.imshow(np.asmatrix(sample_Total).T, interpolation='nearest', - origin='lower', cmap='copper', extent=[0, 2*np.pi, 0, 2*np.pi]) - plt.show() - fig2 = plt.figure() - for k in range(0, 2): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Ad-hoc Data") - plt.show() - - elif n == 3: - for n1 in range(N): - for n2 in range(N): - for n3 in range(N): - x1 = steps*n1 - x2 = steps*n2 - x3 = steps*n3 - phi = x1*np.kron(np.kron(Z, J), J) + x2*np.kron(np.kron(J, Z), J) + x3*np.kron(np.kron(J, J), Z) + \ - (np.pi-x1)*(np.pi-x2)*np.kron(np.kron(Z, Z), J)+(np.pi-x2)*(np.pi-x3)*np.kron(np.kron(J, Z), Z) + \ - (np.pi-x1)*(np.pi-x3)*np.kron(np.kron(Z, J), Z) - Uu = scipy.linalg.expm(1j*phi) - psi = np.asmatrix(Uu)*H3*np.asmatrix(Uu)*np.transpose(psi_0) - temp = np.asscalar(np.real(psi.getH()*M*psi)) - if temp > gap: - sample_Total[n1][n2][n3] = +1 - sample_total_A.append([n1, n2, n3]) - elif temp < -gap: - sample_Total[n1][n2][n3] = -1 - sample_total_B.append([n1, n2, n3]) - else: - sample_Total[n1][n2][n3] = 0 - sample_total_void.append([n1, n2, n3]) - - # Now sample randomly from sample_Total a number of times training_size+testing_size - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - draw3 = np.random.choice(N) - if sample_Total[draw1][draw2][draw3] == +1: - sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N, 2*np.pi*draw3/N] - tr += 1 - - tr = 0 - while tr < (training_size+test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - draw3 = np.random.choice(N) - if sample_Total[draw1][draw2][draw3] == -1: - sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N, 2*np.pi*draw3/N] - tr += 1 - - sample_train = [sampleA, sampleB] - - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - - sample_total_A = np.asarray(sample_total_A) - sample_total_B = np.asarray(sample_total_B) - x1 = sample_total_A[:, 0] - y1 = sample_total_A[:, 1] - z1 = sample_total_A[:, 2] - - x2 = sample_total_B[:, 0] - y2 = sample_total_B[:, 1] - z2 = sample_total_B[:, 2] - - fig1 = plt.figure() - ax1 = fig1.add_subplot(1, 1, 1, projection='3d') - ax1.scatter(x1, y1, z1, c='#8A360F') - plt.show() - # - fig2 = plt.figure() - ax2 = fig2.add_subplot(1, 1, 1, projection='3d') - ax2.scatter(x2, y2, z2, c='#683FC8') - plt.show() - - sample_training_A = training_input['A'] - sample_training_B = training_input['B'] - - x1 = sample_training_A[:, 0] - y1 = sample_training_A[:, 1] - z1 = sample_training_A[:, 2] - - x2 = sample_training_B[:, 0] - y2 = sample_training_B[:, 1] - z2 = sample_training_B[:, 2] - - fig1 = plt.figure() - ax1 = fig1.add_subplot(1, 1, 1, projection='3d') - ax1.scatter(x1, y1, z1, c='#8A360F') - ax1.scatter(x2, y2, z2, c='#683FC8') - plt.show() - - return sample_Total, training_input, test_input, class_labels - - -def sample_ad_hoc_data(sample_Total, test_size, n): - tr = 0 - - class_labels = [r'A', r'B'] # copied from ad_hoc_data() - if n == 2: - N = 100 - elif n == 3: - N = 20 - - label_train = np.zeros(2*test_size) - sampleA = [[0 for x in range(n)] for y in range(test_size)] - sampleB = [[0 for x in range(n)] for y in range(test_size)] - while tr < (test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == +1: - sampleA[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - - tr = 0 - while tr < (test_size): - draw1 = np.random.choice(N) - draw2 = np.random.choice(N) - if sample_Total[draw1][draw2] == -1: - sampleB[tr] = [2*np.pi*draw1/N, 2*np.pi*draw2/N] - tr += 1 - sample_train = [sampleA, sampleB] - for lindex in range(test_size): - label_train[lindex] = 0 - for lindex in range(test_size): - label_train[test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2 * test_size, n)) - test_input = {key: (sample_train[label_train == k, :])[:] for k, key in enumerate(class_labels)} - return test_input - - -def Breast_cancer(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B'] - data, target = datasets.load_breast_cancer(True) - sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=0.3, random_state=12) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Now reduce number of features to number of qubits - pca = PCA(n_components=n).fit(sample_train) - sample_train = pca.transform(sample_train) - sample_test = pca.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 2): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("PCA dim. reduced Breast cancer dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Digits(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B', r'C', r'D', r'E', r'F', r'G', r'H', r'I', r'J'] - data = datasets.load_digits() - sample_train, sample_test, label_train, label_test = train_test_split( - data.data, data.target, test_size=0.3, random_state=22) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Now reduce number of features to number of qubits - pca = PCA(n_components=n).fit(sample_train) - sample_train = pca.transform(sample_train) - sample_test = pca.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 9): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("PCA dim. reduced Digits dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Iris(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B', r'C'] - data, target = datasets.load_iris(True) - sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=1, random_state=42) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 3): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Iris dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Wine(training_size, test_size, n, PLOT_DATA): - class_labels = [r'A', r'B', r'C'] - - data, target = datasets.load_wine(True) - sample_train, sample_test, label_train, label_test = train_test_split(data, target, test_size=0.1, - random_state=7) - - # Now we standarize for gaussian around 0 with unit variance - std_scale = StandardScaler().fit(sample_train) - sample_train = std_scale.transform(sample_train) - sample_test = std_scale.transform(sample_test) - - # Now reduce number of features to number of qubits - pca = PCA(n_components=n).fit(sample_train) - sample_train = pca.transform(sample_train) - sample_test = pca.transform(sample_test) - - # Scale to the range (-1,+1) - samples = np.append(sample_train, sample_test, axis=0) - minmax_scale = MinMaxScaler((-1, 1)).fit(samples) - sample_train = minmax_scale.transform(sample_train) - sample_test = minmax_scale.transform(sample_test) - # Pick training size number of samples from each distro - training_input = {key: (sample_train[label_train == k, :])[:training_size] for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - for k in range(0, 3): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("PCA dim. reduced Wine dataset") - plt.show() - - return sample_train, training_input, test_input, class_labels - - -def Gaussian(training_size, test_size, n, PLOT_DATA): - sigma = 1 - if n == 2: - class_labels = [r'A', r'B'] - label_train = np.zeros(2*(training_size+test_size)) - sample_train = [] - sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] - randomized_vector1 = np.random.randint(2, size=n) - randomized_vector2 = (randomized_vector1+1) % 2 - for tr in range(training_size+test_size): - for feat in range(n): - if randomized_vector1[feat] == 0: - sampleA[tr][feat] = np.random.normal(-1/2, sigma, None) - elif randomized_vector1[feat] == 1: - sampleA[tr][feat] = np.random.normal(1/2, sigma, None) - else: - print('Nope') - - if randomized_vector2[feat] == 0: - sampleB[tr][feat] = np.random.normal(-1/2, sigma, None) - elif randomized_vector2[feat] == 1: - sampleB[tr][feat] = np.random.normal(1/2, sigma, None) - else: - print('Nope') - - sample_train = [sampleA, sampleB] - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (2*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - fig1 = plt.figure() - for k in range(0, 2): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Gaussians") - plt.show() - - return sample_train, training_input, test_input, class_labels - elif n == 3: - class_labels = [r'A', r'B', r'C'] - label_train = np.zeros(3*(training_size+test_size)) - sample_train = [] - sampleA = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleB = [[0 for x in range(n)] for y in range(training_size+test_size)] - sampleC = [[0 for x in range(n)] for y in range(training_size+test_size)] - randomized_vector1 = np.random.randint(3, size=n) - randomized_vector2 = (randomized_vector1+1) % 3 - randomized_vector3 = (randomized_vector2+1) % 3 - for tr in range(training_size+test_size): - for feat in range(n): - if randomized_vector1[feat] == 0: - sampleA[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) - elif randomized_vector1[feat] == 1: - sampleA[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) - elif randomized_vector1[feat] == 2: - sampleA[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) - else: - print('Nope') - - if randomized_vector2[feat] == 0: - sampleB[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) - elif randomized_vector2[feat] == 1: - sampleB[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) - elif randomized_vector2[feat] == 2: - sampleB[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) - else: - print('Nope') - - if randomized_vector3[feat] == 0: - sampleC[tr][feat] = np.random.normal(2*1*np.pi/6, sigma, None) - elif randomized_vector3[feat] == 1: - sampleC[tr][feat] = np.random.normal(2*3*np.pi/6, sigma, None) - elif randomized_vector3[feat] == 2: - sampleC[tr][feat] = np.random.normal(2*5*np.pi/6, sigma, None) - else: - print('Nope') - - sample_train = [sampleA, sampleB, sampleC] - for lindex in range(training_size+test_size): - label_train[lindex] = 0 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+lindex] = 1 - for lindex in range(training_size+test_size): - label_train[training_size+test_size+training_size+test_size+lindex] = 2 - label_train = label_train.astype(int) - sample_train = np.reshape(sample_train, (3*(training_size+test_size), n)) - training_input = {key: (sample_train[label_train == k, :])[:training_size] - for k, key in enumerate(class_labels)} - test_input = {key: (sample_train[label_train == k, :])[training_size:( - training_size+test_size)] for k, key in enumerate(class_labels)} - - if PLOT_DATA: - fig1 = plt.figure() - for k in range(0, 3): - plt.scatter(sample_train[label_train == k, 0][:training_size], - sample_train[label_train == k, 1][:training_size]) - - plt.title("Gaussians") - plt.show() - - return sample_train, training_input, test_input, class_labels - else: - print("Gaussian presently only supports 2 or 3 qubits") - - -if __name__ == '__main__': - - _, train_data, test_data, label = ad_hoc_data(training_size=4, test_size=4, n=2, gap=0.3, PLOT_DATA=False) - print(train_data) - print(test_data) - print(label) diff --git a/qiskit/bernstein_vazirani.ipynb b/qiskit/bernstein_vazirani.ipynb deleted file mode 100644 index 24d5ae62f..000000000 --- a/qiskit/bernstein_vazirani.ipynb +++ /dev/null @@ -1,213 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# _*Experiment with the Bernstein-Vazirani Algorithm in Aqua*_\n", - "\n", - "This notebook demonstrates how to experiment with the `Bernstein-Vazirani` algorithm in `Qiskit Aqua`.\n", - "\n", - "We first import all necessary modules." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.algorithms import BernsteinVazirani\n", - "from qiskit.aqua.components.oracles import TruthTableOracle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The Bernstein-Vazirani algorithm is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. We can experiment with it in Aqua by feeding it oracles created using truth tables. For example, we can create a `TruthTableOracle` instance as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "bitstr = '00111100'\n", - "oracle = TruthTableOracle(bitstr)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As shown, the truthtable is specified with the `bitstr` containing values of all entries in the table. It has length $8$, so the corresponding truth table is of $3$ input bits. The truthtable represents the function mappings as follows.\n", - "\n", - "- $\\mathbf{a} \\cdot 000 \\mod 2 = 0$\n", - "- $\\mathbf{a} \\cdot 001 \\mod 2 = 0$\n", - "- $\\mathbf{a} \\cdot 010 \\mod 2 = 1$\n", - "- $\\mathbf{a} \\cdot 011 \\mod 2 = 1$\n", - "- $\\mathbf{a} \\cdot 100 \\mod 2 = 1$\n", - "- $\\mathbf{a} \\cdot 101 \\mod 2 = 1$\n", - "- $\\mathbf{a} \\cdot 110 \\mod 2 = 0$\n", - "- $\\mathbf{a} \\cdot 111 \\mod 2 = 0$\n", - "\n", - "And obviously the goal is to find the bitstring $\\mathbf{a}$ that satisfies all the inner product equations.\n", - "\n", - "We can inspect the circuit corresponding to the binary function encoded in the `TruthTableOracle` instance." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACSwAAAGZCAIAAAAG23qhAAC6/UlEQVR4nOzdd2AU1dr48Se9AyEEwqVDEASUGkAEQw2CVAURETARFSwIePWivBcEBMFLU6qACRcsARQIXUQpFqRFeg0gLRAgCSUhfff3x/zefddN2zJb8/38teyeOfOc4eQ5O3Nmz7hptVqBY0hLS3vmmWceffRRLy8ve8cCJ3P27Nno6Ojhw4fbOxAAzuGFF17Iz88PCQmxdyBwMjdv3gwLC/viiy/sHQgA5zB79uxt27bVq1fP3oHAyWRlZf311187d+709va2dyww38cff/zLL7/Url3b3oHAyWRmZiYnJ+/cudPd3d3esQAAoAI3JuEcx48//hgVFfWPf/zD19fX3rHAyVy5ciUqKmrLli32DgSAc/D19fXz86tYsaK9A4GTuX37tqenZ1pamr0DAeAcWrVqdeLEiWrVqtk7EDiZzMzMlJSUpKQkZnCdWuPGjS9dulS1alV7BwIn8+DBg9u3b9+6dSs0NNTesQAAoAJPeweA/xMcHCwi33777VNPPWXvWOBkatas2aBBA3tHAcBpBAYGjhw58uOPP7Z3IHAyr7766u+//27vKAA4jUceecTd3f3AgQP2DgROZs2aNYMGDfLx8bF3ILBIeHh45cqVd+3aZe9A4GRWrFgRHR3t4eFh70AAAFAHv+wGAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQmae9AzBffn6+RqPx9va2vKqcnBwfHx/L6yk70tLStFptuXLlvLy87B2LK9BqtWlpaSISHBzs7s7UOAD8H0YcdTHiAECRGG7UxXAD50IGUBcZAAAAfU48Fo4aNWr48OGqVFW7du1FixapUlVZsGTJkpCQkJ49e+bn59s7Fhfh5uY2ZsyYSpUqvfXWW/aOBQAcCCOO6hhxAKAwhhvVMdzAiZABVEcGAABAnxP/Eu7mzZsZGRmqVNWiRYv58+e/8cYbqtRmF5mZmcrR8Pf3DwoKKqFkdnb2vXv3RKRcuXJ+fn6m7ighIeGtt96qUaPGxo0bzdgcxVm+fHlSUtLixYtr1KjxwQcf2DscACiazYYbYcSxGkYcAI6P4cYFMNzAbGQAF0AGAABAx4l/CWeMgoKCpKSkn3/++eTJkxqNprhi0dHRZ86c+eOPP2wZm7rGjRsXFhYWFhYWFxdXcskFCxYoJXft2mXqXpKTk4cOHVpQULBs2bIqVaqYG6ztGNkBHIGPj8/KlSt9fX0nTJjw+++/2zscACiabYYbcbYRx4mGG2HEAeAMGG6KxHCDMoIMUCQyAAAATsplJ+E0Gs28efNq1qxZv379Ll26NGnSpE6dOvPnzy+ycJ8+fUJCQmJjY20cpIoOHDigvGjTpo2RJVu3bm3qXsaMGfPgwYMhQ4Z0797d1G2NMXv27IiIiIiICMv/L0zqALZXZEvr168/adIkrVY7cuRI1sEA4JhsM9yIlUecMj7cCCMOAIfnGsONqDfiMNygTCEDGCADAADg3LROq1evXh07dizyo+zs7GeffVbXRn9/f93rgQMHFhQUFN5k9OjR5cqVy8zMtHLUJTl48KCI7Nmzx9QNMzMzPT09RcTb2zs7O7vkwjVr1hSRevXqmbqXrVu3ioiHh8eFCxdM3dZInTp1Uv6bNm/ebEk9ZnQAGyuupQ8fPqxcubKI/Oc//zGpwho1aowdO1bVGAG4spCQkAkTJpi6lW2GG631RxyGG625I86IESMaNWqkaowAXNngwYMjIiJM3cplhhutSiNOGRxuVq9eLSJXr15VNUzYWp8+fYq7aFMCMoCBMpgBlF9ApqamqhomAAB245q/hJs0adK6detEZMSIEcqj444fPz5w4EARWbt27YwZMwpvEhMTc//+/e+//97Wsarh8OHDyl1FTZs29fHxKaFkSkrKlStXxPTbxDQazejRo0Vk8ODBdevWtSDYYmm12sTEROV1q1atLKnKjA5gSyW01M/Pb+zYsSLy0Ucf3b592w7BAUDxbDDciPVHHIYbBSMOAIflGsONqDfiMNygTCEDGCADAADg7FxwEu78+fOzZ88WkaFDhyrreru5uTVp0iQ+Pr5///4iMmnSpEuXLhls1bRp0+bNm5e64Lhj2r9/v/Ki1LUajC9pYNu2bUlJSSLy+uuvmx6gUQoKChISEnbv3r13715LVmM3rwPYUsktfeWVVzw9PTMzM520NwJwYTYYbsT6Iw7DjQ4jDgDH5BrDjag04jDcoKwhA+gjAwAA4AJccBJu6dKl+fn5vr6+M2fO1H/f3d19zpw5Hh4e+fn5q1atKrxhTEzM7t277fv1xTzGf/U0fml1A0uWLBGRmjVrPvnkk6YHaBRPT8/IyMjIyMgOHTpYUo/ZHcBmSm5paGhoVFSUiHzxxRdardbm0QFAsWww3Ij1RxyGGx1GHACOyTWGG1FpxGG4QVlDBtBHBgAAwAW44CTcN998IyKRkZFVq1Y1+Kh27dqRkZEi8tVXXxXe8MUXX/T29l6xYoX1Y1SZqV9Svb29mzdvbnz9mZmZO3bsEJEePXq4ubmZG6aNmN0BHEfPnj1F5OLFi8eOHbN3LADwf6w93IhTjTguMNwIIw4Ah8Rwo4/hBmUNGUAfGQAAABfgapNwFy9eTE5OFpGmTZsWWUB5//z583fu3DH4qGLFin379l2xYoVGo7F2nCq6cePG1atXRaRixYr169cvoaRWqz148KAYsbS6gd27d+fm5orFz86xAUs6gOOIiIhQXmzfvt2+kQCAjg2GG3GeEcc1hhthxAHgeBhu9DHcoKwhA+gjAwAA4BpcbRLuyJEjyovivqM0aNBAeXH06NHCn0ZHR1+5cuXnn3+2TnRWoVuBodRnEZ87d+7u3bti+loNP/74o/LCwb+hisUdwEE0bdrUy8tL9I68fWk0GueambYqjgbKLBsMN+I8I45rDDfiYCMOCVYfRwNlFsONPoYbayDB6nO0o0EG0EcGAJydo+VYO+JQoIzz1L26fv36vHnzRKRRo0bR0dFFlt66deuuXbtEZNSoUXXr1rV890uWLLlw4YKIjB8/PiQkxPIK09LSlBfh4eFFFtC9X+Sz36KioqpXrx4XF9e1a1fLg7EN3VoNpX5JNXvBdGXFAB8fn8aNGxtTPjs7+9///reIREREPP/88w8ePNiwYcMff/yRlJSUmprasmXLiRMnVqtWTX+TjIyMyZMni0i7du2Uxwubx8IOYBIzminGtdTHx+exxx5LTEy071oNN2/enDt3bkJCwoULF7Rabd26dXv37j1u3LjCjSoLOBqADYYbMXHEKSPDjVizpY4w4pBg9XE0ANcYbkSlEYfhRkUkWH0OezTIAPrIAICTctgca3scCuD/0/6v1NRU5Z3mzZtri3L37t3Q0FARiYiI0Gg0RZYxVceOHZWdJiUlmbptr169OnbsaPDmf/7zH6XCY8eOFbnVvn37lAJz5swpssCHH37o6+ubnp5uajyWU9ZS2LNnj0lbde7cWWnRli1bSi755ptvKiXPnTtn0i6UxccjIiKMLK87yOPHj//ggw/8/PwMel3jxo3v37+vv4kyuSsiCxcuNCk2A5Z3AOOZ0Uyt0S19/fXXlWJ37twxJpgaNWqMHTvW/MYUsnr16oCAgMIZw8/Pb+XKlSruyClwNOB6QkJCJkyYYNImNhhutCaOOGVkuNFauaUmjTgjRoxo1KiRRY35OxKsPo4GXM/gwYONP4lQuMZwo1VpxCmzw83q1atF5OrVqxa15+8VkmB1bHY0+vTpU/iiTcnIAPrKbAaIi4sTkdTUVIvaA9gJI44OhwLQ+b9fwlWsWDE0NPT27dvnz58v/OchIpMnT759+7abm9tnn33msI+uVZYjEBFvb+8iCyg/gReRBw8eFFkgOjp6+vTp8fHxI0eOtEKAKtNoNIcOHVJeG3mnWKlLqxu4d+/ejRs3RKRWrVpGbqK7Je3TTz/18PDo1KlT69at09LSNm7ceO3aNRE5efLk5MmTZ82apdvE+PvdSmZ5BzCeGc0Uo1tao0YN5cWZM2eefPJJC0M11Zo1a1544QWtVlv4o6ysrGHDhmm12mHDhtk4KnvhaABik+FGTB9xyshwI1ZuqR1HHBKsPo4GIC403IhKIw7DjSpIsPoc+WiQAQyQAQCn48g51sY4FIC+vz0TrmHDhiKSkZFx8+ZNg3Jnz55dsGCBiAwZMuSJJ55Qa/cTJ06Mj4+Pj4+vUqWKKhWmp6crL0r9jpKRkVFkgfDw8A4dOsTGxqoSj7WdPn36/v37IlKvXr1KlSqVUDInJ0dZJdzUr4DKc4BFpFy5ckZuor+M+6lTp3744YepU6cuXLjw2LFjui9ba9as0U/EyiY+Pj7FrXVuJMs7gPHMaKYY3dLy5csrL65fv25hnKZKSUl55ZVXihwmdUaOHGn7wOyCowEobDDciOkjThkZbsTKLbXXiEOC1cfRABQuM9yISiMOw43lSLD6HPxokAEMkAEA5+LgOdaWOBSAgSIm4UTk3LlzBuXGjh2bl5cXEBAwY8YM3Zu5ubm6G3PM06lTp0GDBg0aNCgwMNCSevRDUl4U97BH3fv5+fnFVRITE3Pw4METJ06oEpJV6W47KnUZ9CNHjigHp3DJnJycEr6x6T4ydRIuLCxs9+7d+muXBwcHL1682N3dXUSuXr2qP9erbNK8eXPdl0jzqNIBjGRGM8Xoluq+oapyR5tJ5s2bV+o3+KysrDlz5tgmHvviaAAKGww3YvqIU0aGG7FyS+014pBg9XE0AIUqw42ofYJj1a/9JWO4sRwJVp+DHw0ygAEyAOBcHDzH2hKHAjBQ9CScwYqUW7du3bZtm4h88MEHyoMTjx49GhUV5efnFxwcXKdOnS+++MJWAZdCN5mn+7JiQPe+7htAYQMHDgwMDFQWoXZwxn9JLfKpxXFxcc2aNfP39w8KCqpVq9Ynn3ySnZ1tsKHuG1IJR0xfenq60n/atGnj4+Nj8Oljjz2m+zKn++qWnJysLG5g4eJgolIHMIYZzRRTWmrHb6ibNm0yptjGjRutHYkj4GgAChsMN2LiiFNGhhuxfkvtNeKQYPVxNACFhcONWOEEx9pf+0vGcGM5Eqw+Bz8aZAADZADAuTh4jrUlDgVgwFP/H0VOwuXl5Y0bN05Eateu/e6774rI4cOHO3Xq5O7uPm7cuODg4HXr1ik/IJ0yZYoNIy9aUFCQ8sKS7ygBAQEDBw785ptvZs2aZfbT77Ra7datWx8+fGj8JhcuXJDib3EqUnFfPQszWKpbo9G8+OKLq1evjoqKiomJCQgI+O677z788MPdu3dv27ZNucVJYeptYgcPHtTfUWH16tVTfmqp+88yvhWlUqUDGMOMZoopLTX1G2pubu65c+fWrl1rTOGSFf4hbJEuXry4evVq/a5ibWfOnKlbt25xC3FYicMejTLo1KlT9evXt/DXS9DJzc3NysoyvrwNhhsxccQpI8ONWL+lJo04Dx8+vH//vmsPN9evX/f19Q0JCbHZHsWBj0YZdO3aNT8/Pxt3ABd25coV2ww3YrUTHGt/7S9ZmR1ulJ/1bN682fI/RodNsBkZGSkpKfXq1bPZHsXmRyM5OdnDw8P48mQAA2U2AyjtSkhIUGvRrDJOq9WePHmycePGZl/hhJEcc8SxSwdwzENRNmk0mlOnTpEBVGTG9UlPT8+/TcI1aNBAeaE/Cbdo0aKzZ8+KyOzZs319fbVa7SuvvJKfn79v3z5l0ed//etfPXr0mD59+qBBgxo3bqxCUyyg+zZQ3LiuPIBXSvuOkpub6+XlZUnvvHr1at++fQsKCkzdULmTyBhZWVnKmpleXl7NmjUrubDyJTU8PFw5jZk/f/533323cuXKoUOHKgVeeeWVqKioHTt2fPvtt0OGDNFtaOpB0H0Pi4iIKLJAZmam8iIsLMxgE8t/mqBWByiVGc0UU1qqWzfZyOOfnp6+ZcuWLVu2GFNYFRqN5oUXXrDZ7hwcRwPO6OTJk0aWtM1wIyaOOGVkuBHrt9SkEef06dPXrl17/vnnSy2pFhKsPo4GnFGFChWMLGnJcCNWO8Gx9tf+kpXZ4SYpKUlERo0aVWpJtZBg9al4NCpXrmxkSTJAYWU2AyiX72NiYkotCTgjRhwdDgXKjr9NwtWuXdvHxycnJ+fixYvKO/fu3Zs6daqIdOzY8dlnnxWRI0eOHD169O2339Y9dtXDw2PmzJktWrSYOXPmypUrbRu/Id3Dey9cuNC+ffvCBZRfm0mJZ4P37t1bt26d8vs/s9WsWfPGjRsm/dD++PHj/fr1q1mzppHlL1++rNwhGBYWVni5AH3Hjh1TTmOefvpp5Z1nnnnm1q1buq+nujd//PHH3377Tf8bqu7Oo3v37hkTlfI9zM3NrVWrVoU/1Wg0p0+fFpEmTZroalY2CQ4O1l923DyqdABjmNFMMaWlyvOoRe/4l6xy5cpRUVETJkwwLvyS9OzZU5l3L1ndunV//PFHy3dnvJycnJL7uTU47NEog+zSAVxYq1atikxfRbLNcCMmjjhlZLgR67fUpBGnRYsWGRkZ27dvNzr8Yjlsgs3Ly3N3dzfpzn3LOezRKIPs0gFc2JgxY3TXiEtlyXAjVjvBsfbX/pKV2eFGWaTnt99+05/YMI/DJlitVpubm2vj77c2Phqvv/56Xl6ekYXJAIWV2QzQpEkTETl8+LDl7YKCs2nbcNgRx/YdwGEPRdlEBlCXGcfT19f3b5NwHh4e9evXP3HiREpKivLOzJkzU1NTPTw8PvvsM+Ud5bJL9+7d9Tds3rx5aGjoL7/8Yn74Knn88ceVF8X97lX3HaWEH+3Fx8dnZWW9/PLLFgYTGhoaGhpqfPm0tDST6r9165byQvfNrDirVq1SXuhuXQ8PD582bZpBsdTUVCn0lci8Sbj69esHBwcX/nTv3r23b98WkaioKOUdrVarrHtg+e8SRKUOYAxTmykmtlR3tPUXtSiBm5tb+fLl69ata0zhkj3//PPK1HupxVTZnYPjaMBVmbTgg22GGzHrmojLDzdi/ZaaNOK4ubl5eXkx3KiOowFXFRgYaPyPTiwZbsRqJzjW/tpfsjI73Chq1qxZvXp1IwsXhwSrz8ZHw9/fXzf1UioyQGFlPAPUrl27YsWKRhYGHAEjjg6HAjBgeA1OuePs1q1bGo3m+vXr8+bNE5HXXntNN/bv3LlTRB577DGDDRs0aPDXX3/pP4rWLpo0aeLr6ysihw8fLrLA8ePHRSQ4OLh+/frFVRIbGxsZGWn5bfLWpltwoOQnz6WnpytfUp966qkOHToUVyw3N/frr78WkX79+um/r/uGZMy35ytXrigzuEWuYFBQUDB27FgRcXNze+2115Q3z5w5o9Rs+RN6RKUOUCozmikmtlR3tI3/hqqW0aNHl7qWRVBQkNJGl8fRAMRWw42YMuKUkeFGbNJSe404JFh9HA1A1B5uRI0THBt87S8Zw43lSLD6HPlokAEKIwMAzsWRc6yNcSgAA0VPwhUUFNy5c+fjjz/OysoKDg7Wn7tWlhOpVq2awYZ16tSRvz9Mzi58fHx69+4tInv27FHu09F37do15e6efv36FXdL5smTJw8cOOAUa08/8sgjyo8fL126VMK6lzExMSkpKd7e3p9//nlxZVJSUp577rmLFy++9NJL7dq10/9I939t/G1iUszNUHPnzj1y5IiIDBgwQPcAQhWf0CNqdABjmNHMUrcyoDvahf/WrK1SpUqrVq0q4Vcy7u7u//3vf41f3N+pcTQAsdVwI6aMOGVkuBGbtNReIw4JVh9HAxBVhxtR6QTHBl/7S8ZwYzkSrD5HPhpkgMLIAIBzceQca2McCsBA0ZNwInL8+PEVK1aIyOTJk3WPuhWRe/fuFfmYBD8/P9F7UqsdDRs2TESys7Nnzpxp8NHUqVOVh8FGR0cXt3lsbGxQUNCAAQOsGqQq/Pz8evToISK5ubnz588vssyUKVM2bNggIrNnz9Y9xk/foEGDGjduXLNmzc2bN48YMWLZsmUGBYKCgpQvSZcvXy41JN33MIPCWq125syZ48ePF5Hg4GDd6qbyv09UluIf/ysiDx8+XLx48caNG0sNQMztACbtwoxminEt1dHVrPuTtKXevXtv3LixyJUfgoODN2zY0L9/f9tHZS8cDcA2w42YMuKUkeFGrNZSfXYccUiw+jgagCrDjah6gmOlr/0MN0ZGpRYSrD6HPRpkgCKRAQDn4rA51vY4FMDfaP/u0KFDyvuRkZEi0qhRo7y8PP0CgYGB3t7e2kLeeOMNEVm7dm3hj0owcODA6tWrV69e/dKlSyZtqNVqe/Xq1bFjxyI/Ur66ubm5LV26VPfmggULlBn4vn37Fldnbm5uaGjoq6++amowqlAW1N6zZ4/xmyQmJnp5eYmIh4fHhg0b9D+6fv26brXuKVOmFFdD7969W7ZsWbFiRTc3tyFDhly8eLFwmS5duoiIt7d3dnZ2yfEo3UZEPD09ly9fnpeXV1BQcODAAeXuLaWS7du362/SsmVLEalTp04J1Sq9S0Tmz59fcgAKMzqASbswo5lGtlSnRYsWIhIaGmpMYa1WW6NGjbFjxxpZ2Ejp6enTp09v27atm5ubv79/mzZtpk6dmpaWpu5enIVyNJSFecuXL1/GjwZcQEhIyIQJE4wvb5vhRmv0iFNGhhvrtVSfSSPOiBEjGjVqZGTNRtINNz4+Pp6enmU8weqOhru7u5+fXxk/GnABgwcPjoiIML685cONVtUTHCt97We4KdXq1atF5OrVq0ZWbgxdglVWw2vVqlVZTrC6o+Hr62u9wbdPnz7FXbQpEhmgSGUwA8TFxYlIamqqkZUDjkbJsc2bNxeRoKCgsvyV3mDwbdGiRZk9FCjjDCfhDH71/8MPPxgUqFSpkru7e+GKXn31VRHZvHmzSbvv2LGjsqOkpCSTNtSWOAl37dq1qlWrKjW3aNFiwIABugWya9eufePGjeLqXLdunYjs27fP1GBUYcYknFarXbJkiW7lgfbt20+YMGHixIn9+/dXfpsYEBDw1VdflVqJRqPZs2dPpUqVQkNDjx49avDpuHHjlPoPHDhQQiUFBQXKI44bNmxYo0YNEfHy8vL29tZ1pwoVKhj0kKysLOVL9qBBg0qouVOnTkoNRl74M6MDGL8LM5ppfEsVOTk5SoVdu3Y1pr1a60zC6ZQrV27SpElWqty5KKtw7Ny5096BAJYydRJOa5PhRmvciFNGhhurtlTH1BHHGpNwOgMHDnziiSesVLnTCQsLe//99+0dBWApUyfhtCoNN1o1TnCs97Wf4aZU1piE01m6dKmI3L9/3xqVO51hw4Y1a9bMSpWbOgmnJQMUpQxmACbh4BqUH4Ca+nsVV6U8zjMlJcXegQD2YbgcZWBgYPXq1ZXXffr00d1qpD/6ajSavLw8g/dzcnKUT8UBVKtWLTExsXPnziKSmJj43XffKQ+r6969+/79+8PCworbMDY2tmHDhm3btrVdrBZ7/fXXExISlGfy/frrr9OmTZsyZcr69es1Gs2IESPOnDkzZMiQUitxc3N76qmnli1bdvv27ejoaK1Wq/9pt27dlBfKNGFxTp06lZGRISK9evU6ePBgnz59CgoKcnNzRcTb23vo0KFHjx595pln9Dc5cuSI0pdKXkb8/fffr1y5cnh4eEFBgUFsRTKjAxi/CzOaaXxLFceOHVMqLPwHCAD2YoPhRowbccrIcGPVluow4gBwNKoMN6LGCY71vvYz3ADFIQMURgYAAMDZeRZ+6+rVqyVsoEyzXb16tW7duvrvX7t2TUTKly9v0u537dplUnnjhYWF/fTTT3/++eeOHTtu375dvXr1zp07K0vJFefGjRvbtm2bMWOGlUKynt69e/fo0WPPnj379+9PTU0NCQlp0KBB9+7dlbuZTKrH398/MTHx+PHj+scqMjLS19c3Ozu75Ek43TLiERERVapUSUhIuHXr1tmzZ729vRs2bFhk32jbtq0xXzqffvrplJQUEenVq5dGoyn8SMLCTO0Axu/CjGaK0S1V6FaF7d69u5GbAIANWHu4EeNGnDIy3Ig1W6rDiAPAAak13IhlJzjW+9rPcAOUgAxQGBkAAACnVsQkXMkeeeSRQ4cOnT9/3mAS7sSJE76+vsr9So6jefPmygq8xli5cqWbm9vQoUOtGpKVeHp6dunSRVnZ3GweHh6VKlW6cuXK1atX9b/PKU9IXr9+/aZNm7Kzs319fYvcXP+rm/KicuXKlStXtiSkIoM0vrBJHcDIXdigmZs2bRKRevXqlTxtDAC2Z9XhRowbccrIcCOMOADKMFWGG7HsBIfhxtQdlYDhBiYhAxSJDAAAgJMyXI6yVH379hWRP/74Q//N8+fP37p1q3PnzgEBAaqFZnOxsbHPPPNMlSpV7B2ILehuRNKXk5Nz/fp1EWnSpInBR6NGjRKR1NRUZXX+Iilf3UJCQqw0F5uZmenv72+Nmk3ahbWbeefOnR07dojIyJEjrVE/ANiSqcONGDHilJHhRhhxAMAUqp/gMNyoheEGNkAGMHsXZAAAAKzN5Em4Hj16+Pj4xMXFZWVl6d78/PPPRaRPnz5qhmZbv/3227lz52JiYuwdiI0MGDAgPj7e4M1ly5YVFBQ0adKkVq1aBh917dq1UaNGIrJo0aIiK8zKyjp+/Ljo3Tyluq+++kqZA7aeUndhg2YuX748Pz8/MDDw5ZdfttIuAMBmTB1upLQRp4wMN8KIAwAmUvcEh+FGRQw3sAEygHm7IAMAAGADJk/CBQUFvf/++5cvX37++ecvXryYlZU1Z86chQsXNmjQYPjw4dYI0TZiY2OrVKnSs2dPewdiI5MnT37xxRcHDBjw008/PXjwIDU1dfHixe+9956np+eKFSsKl3dzc1uwYIGIHDhwoMhbzP7888/8/Hyx2le3hw8frl69etCgQdao3PhdWLuZWVlZc+fOFZGpU6dWqlTJGrsAAFsydbiR0kacMjLcCCMOAJhI3RMchhu1MNzANsgA5u2CDAAAgA2YPAknIpMmTXrzzTe3bNlSr149f3//d999t0mTJtu2bSvuUWGOLyMjY82aNcOGDfP0NPkheU5q+PDhGzZsOHz4cNeuXcuVK1epUqU33nijatWqP/30U8uWLYvcpFOnTsOGDRORadOmFf608DLi6nrnnXdGjRpl1f8gY3Zh7WbOnTv31q1bzZo1e/vtt61RPwDYmBnDjZQ44pSR4UYYcQDAROqe4DDcqIXhBrZBBjBvF2QAAABswJwh38PDY8GCBW+++eaOHTsyMjKaNWvWo0cPd3dz5vMcxNq1azMyMqKjo+0diE316dPn6aef3rNnz6FDhzw9PVu2bNm2bduSVwyfNWvWpk2bNmzYsH79+v79++t/ZNWvbkePHq1SpcrAgQNVr9nUXVi1mefOnZs6daq7u/sXX3xh0vOZAcCRmTHcSPEjThkZboQRBwBMp+IJDsONKhhuYEtkADN2QQYAAMAGzL/v5tFHH3300UdVDMWO4uLinnjiCZdpjvG8vb27devWrVs3I8uHhobGx8f36tVr1KhRrVq1qlGjhu6jL7/8ctmyZSISEBCgepxNmzZt2rSp6tWasQvrNTMrK+ull17Kzs6eM2dO69at1a0cAOzL1OFGih9xyshwI4w4AGAWtU5wGG4sx3AD2yMDmLoLMgAAADbgxD9fq1OnTp06dVSpKjk5efTo0apU5fKioqKWL1+ekpLSu3fvjIwM3ft+fn4BAQHW+IbqUKzUTK1WO3z48IMHD7777rtjx45Vt3IAcFJFjjhlZLgRRhwAsBWGG4YblGVkADIAAADW5sSPQPv888/VqiopKUmtqsqCYcOGKU/39fLysncsLsLNzW3VqlWrVq3y8fGxdywA4EAYcVTHiAMAhTHcqI7hBk6EDKA6MgAAAPqceBIOdsQXKdVxSAGgSKRH1XFIAaAwcqPqOKRwInRX1XFIAQDQceLlKAEAAAAAAAAAAADHxCQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFCZp70DgKEHDx6kp6fbOwo4GY1GY+8QADgTrVabnZ3NcANT5eTkaLVae0cBwGlotdr8/HyGG5gqMzPT3iFABWQAmIcMAABwMUzCOZDU1FQR6dWrl70DgVNKTEy0dwgAnMb9+/dnz549e/ZsewcC5xMYGGjvEAA4jaNHj54+fbpixYr2DgROKS8vz94hwCInTpy4dOkSGQDm4cYvAIDLYBLOgXTr1m3q1KmPPPKIm5ubvWOBk7l06RLTtwCMt3z58oKCgqCgIHsHAieTnp7OpTQAxouNjd23b1/16tXtHQicTF5e3vXr1+vUqWPvQGCRuLi4o0ePVq1a1d6BwMnk5ubeunUrJCTE3oEAAKAOJuEciLu7+//8z//YOwoAgOsbPny4vUMAALi+tm3btm3b1t5RALCPyMjIyMhIe0cBAABgZ+72DgAAAAAAAAAAAABwNUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDJPewcAAAAAAHBBubm5d+/e9fLysncgcD5arbZixYr2jgIWyc3NvXfvnqcn151gMjMyQEpKire3t5XigQvLzc2tUqWKvaOApW7evOnj42PvKOB88vLyKleubIMd8WUIAAAAAKC+Nm3aHDlyxN5RwFldv379H//4h72jgPkef/zxs2fP2jsKOKt79+6VK1fOyMJTpkyZNGmSVeOBC/v3v/89ZcoUe0cB87377rtz5syxdxRwVrNnzx43bpy198IkHAAAAABAfbVq1Xrw4MEnn3xi70DgZPbt2zd37lyNRmPvQGCRGjVqeHp6MjUCU+3evXvRokX5+fnGbxIWFiYisbGxgYGBVosLLujhw4cvv/xy1apV7R0ILFKtWjUR+frrr1l9ASZJT09//fXXQ0NDbbAvJuEAAAAAAOrz9/evWLHiwIED7R0InIxWq7V3CFCBv79/aGgoGQCmyszMNHUTZSHKvn37sowtTHLv3j353/4D56UsRPncc8+xIiVMkpycLCK2mbt1t8E+AAAAAAAAAAAAgDKFSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDJPewdgvvz8fI1G4+3tbXlVOTk5Pj4+ltcDAAAAAHA6aWlpWq22XLlyXl5e9o7FFWi12rS0NBEJDg52d+feXzg6MoC6yAAloLOpi84G50IGUJcTZQCHDq5ko0aNGj58uCpV1a5de9GiRapUBQAAAABwIkuWLAkJCenZs2d+fr69Y3ERbm5uY8aMqVSp0ltvvWXvWIBSkAFURwYoDp1NdXQ2OBEygOqcKAM48S/hbt68mZGRoUpVLVq0mD9//htvvKFKbQAAAAAAs2VmZirnev7+/kFBQSWUzM7OvnfvnoiUK1fOz8/PjH0lJCS89dZbNWrU2Lhxo3k1oEjLly9PSkpavHhxjRo1PvjgA3uHA2dCBnABTpQBbNbf6GxW4kSdDQ6IDODsnCUDOPEv4YxRUFCQlJT0888/nzx5UqPRFFcsOjr6zJkzf/zxhy1jAwAAAAAUNm7cuLCwsLCwsLi4uJJLLliwQCm5a9cuM3aUnJw8dOjQgoKCZcuWValSxaxgbcfI01sH4ePjs3LlSl9f3wkTJvz+++/2DgfOhAxQJDKAldimv9HZrMeJOhscEBmgMDKANbjsJJxGo5k3b17NmjXr16/fpUuXJk2a1KlTZ/78+UUW7tOnT0hISGxsrI2DBAAAAAAYOHDggPKiTZs2RpZs3bq1GTsaM2bMgwcPhgwZ0r17dzM2L9Xs2bMjIiIiIiIsPNk06fTW9oprZv369SdNmqTVakeOHMnKSzAeGcAAGcCqbNPf6GxqKbKlztLZ4IDIAPrIANbjmpNwOTk5AwcOHDt2bHJysoj4+/uLyJUrV0aPHv38888XnsL19vYeMmTI6tWrHz58aIdwAQAAAAAiIvLw4cMTJ06IiLe3d7NmzUouvH//fhGpV69epUqVTN3Rtm3b1q5d6+HhMWXKFLMiLd2WLVsOHTp06NAhS+56NvX01vZKaOY777xTuXLl48ePz5s3zx6hwfmQAQyQAazKNv2Nzqai4lrq+J0NDogMoI8MYFWuOQk3adKkdevWiciIESOUR8cdP3584MCBIrJ27doZM2YU3iQmJub+/fvff/+9rWMFAAAAAPyvw4cPKzexNm3a1MfHp4SSKSkpV65cEbNuSdZoNKNHjxaRwYMH161b19xgS6LVahMTE5XXrVq1MrseM05vbankZvr5+Y0dO1ZEPvroo9u3b9s6ODghMoABMoBV2aC/0dlUVEJLHb+zwQGRAfSRAazKBSfhzp8/P3v2bBEZOnSostCqm5tbkyZN4uPj+/fvLyKTJk26dOmSwVZNmzZt3rx5qcu/AgAAAACsR7nRWIxYF8j4koVt27YtKSlJRF5//XVTtzVSQUFBQkLC7t279+7da/aNyead3tpSqc185ZVXPD09MzMzOd2GMcgA+sgA1maD/kZnU1HJLXXwzgYHRAbQIQNYmwtOwi1dujQ/P9/X13fmzJn677u7u8+ZM8fDwyM/P3/VqlWFN4yJidm9e7fd+xMAAAAAlFnGX+Yw/jEehS1ZskREatas+eSTT5q6rZE8PT0jIyMjIyM7dOhgdiVmn97aTKnNDA0NjYqKEpEvvvhCq9XaNjo4HzKAPjKAtdmgv9HZVFRySx28s8EBkQF0yADW5oKTcN98842IREZGVq1a1eCj2rVrR0ZGishXX31VeMMXX3zR29t7xYoV1o8RAAAAAFAEUy+IeHt7N2/e3KRdZGZm7tixQ0R69Ojh5uZmVpg2YvbprUPp2bOniFy8ePHYsWP2jgWOjgygjwxgbdbub3Q2G3PkzgYHRAbQIQNYm6tNwl28eFF5eGDTpk2LLKC8f/78+Tt37hh8VLFixb59+65YscJBnjQIAAAAAGXKjRs3rl69KiIVK1asX79+CSW1Wu3BgwfFiMd4FLZ79+7c3Fyx7MkZNmDJ6a1DiYiIUF5s377dvpHAwZEB9JEBrM0G/Y3OZmMO29nggMgAOmQAG3C1SbgjR44oL4rrNA0aNFBeHD16tPCn0dHRV65c+fnnn60THeCsHPBnvHbE0QAAayC7GuCAoGzSrfZT6nPvz507d/fuXTFrJboff/xReeHg10QsPL11HE2bNvXy8hK9I29HZFd9jnY0yAD6yADWZoP+RmezMQfsbI6WZu3FAY8DGUCHDGADnrpX169fnzdvnog0atQoOjq6yNJbt27dtWuXiIwaNapu3bqW737JkiUXLlwQkfHjx4eEhFheYVpamvIiPDy8yAK694t89ltUVFT16tXj4uK6du1qeTCAU7t58+bcuXMTEhLu378/derUb7/9tnfv3uPGjatWrZq9Q7MD5WisWbNGRLp3716vXr2yfDQAQEW64ebcuXMi8sgjj5TlBKs7Gjdv3pw1a9aGDRvK8tFA2aRbF6jUCyKWPA5KWaPGx8encePGpRbOzs7+97//LSIRERHPP//8gwcPNmzY8McffyQlJaWmprZs2XLixImF/0gzMjImT54sIu3atVMeaG8GC09vTWVGS41spo+Pz2OPPZaYmGjH1YF0Cfb8+fMi0rx58759+5bZBOuwgy8ZQB8ZwNps0N/obEWyXksdpLMpOfa7774TkRdeeGHChAkOkmNtTzfcJCUlicgTTzzRr18/BzkUZAAdMoAtaP9Xamqq8k7z5s21Rbl7925oaKiIREREaDSaIsuYqmPHjspOk5KSTN22V69eHTt2NHjzP//5j1LhsWPHitxq3759SoE5c+YUWeDDDz/09fVNT083NR7AlaxevTogIKBwxvDz81u5cqW9o7M1jgYAWAkJVh9HA65n8ODBERERJm3SuXNnpedv2bKl5JJvvvmmUvLcuXOmBqY87sLI2HSnkOPHj//ggw/8/PwM/kgbN258//59g62Uu1dFZOHChaaGp2P56a1JzGip8c18/fXXlZJ37twpNZLVq1eLyNWrVy1qz98rJMHq2Oxo9OnTp/BFm5KRAfSV2QwQFxcnIqmpqcYHb8YmWpv0NzpbybVZo6UmdTbl503Lly+3qD1/x4ijY7NDsWDBAhHJzs42aSsygE6ZzQDXr18XkW+//dai9hjn/34JV7FixdDQ0Nu3byv3hRU2efLk27dvu7m5ffbZZw77LEEle4qIt7d3kQWU3ySKyIMHD4osEB0dPX369Pj4+JEjR1ohQMAJrFmz5oUXXtAW9VPxrKysYcOGabXaYcOG2T4wu+BoAICVkGD1cTQAEdFoNIcOHVJeG3lXcqmP8Sjs3r17N27cEJFatWoZU153+/Onn37q4eHRqVOn1q1bp6Wlbdy48dq1ayJy8uTJyZMnz5o1S38r42+vLoHlp7cmMaOlxjezRo0ayoszZ848+eSTlkdrPBKsPkc+GmQAA2QAq7JBf6OzFceqLbVvZ3PkHGtjDn4oyAD6yAA28LdnwjVs2FBEMjIybt68aVDu7NmzyqzykCFDnnjiCd37BQUFGRkZZu9+4sSJ8fHx8fHxVapUMbsSfenp6cqLUjtNcWGHh4d36NAhNjZWlXgAp5OSkvLKK68UOUzqjBw5UrlZwOVxNADASkiw+jgagOL06dP3798XkXr16lWqVKmEkjk5OcpDKYo8D8/JySnhLFV58ryIlCtXzpio9B8ZcurUqR9++GHq1KkLFy48duyY7tx+zZo1Bn/CylY+Pj7FPV3DGJaf3prEjJYa38zy5csrL2ycykiw+hz8aJABDJABrEqV/kZnM49VW2rHzubgOdaWHP9QkAH0kQFsoIhJOBFRlgXXN3bs2Ly8vICAgBkzZuje/Ouvvzp16vTll1+avftOnToNGjRo0KBBgYGBZleiLzc3V3mh0WiKLKB7Pz8/v7hKYmJiDh48eOLECVVCApzLvHnzSk2pWVlZc+bMsU089sXRAAArIcHq42gACt0trqU+cuPIkSPKqZ9Bybi4uGbNmvn7+wcFBdWqVeuTTz7Jzs422Fb352bSNZGwsLDdu3frPyojODh48eLF7u7uInL16lWDO1mVrZo3b667bGEGVU5vjWdGS41vpu6aiCr3UBuPBKvPwY8GGcAAGcCqLOxvdDZLWLWlduxsDp5jbcnxDwUZQB8ZwAaKnoQzWJFy69at27ZtE5EPPvigWrVqq1evfvvttzt37lyvXr1ffvnFZrEaQzeZp+s9BnTv6/5LChs4cGBgYKCyojRQ1mzatMmYYhs3brR2JI6AowEAVkKC1cfRABTGXxDR3UKrK6nRaF544YWYmJgqVarMnTt3+fLljRo1+vDDD/v27WtwQUF3Tl7CKaFOenq6cnbcpk0bHx8fg08fe+wx3bUD/SsFycnJynI6liwNJCqd3hrJjJaa1Ex7XRMhwepz8KNBBjBABrAqs/sbnc2SHYn1W2rHzubgOdaWHP9QkAH0kQFswFP/H0VOwuXl5Y0bN05Eateu/e6774rI4sWLk5KSmjRp0q5du19//dWG0ZYuKChIeWFJpwkICBg4cOA333wza9Yss59+d+vWraioKEf7/3ZqN27cCA4O9vX1tXcgLu7SpUvGFEtKSqpXr561g9F348aNihUrFk7QVuWwR6Os0Wq1N2/etH0HQNmUlpbm4eFh+ZdLlMxhE6xdOoDDHo0yKDU11cvLy8j7VVGqW7dumbTkSeEL68Up/FiI+fPnf/fddytXrhw6dKjyziuvvBIVFbVjx45vv/12yJAhum1NujH54MGDBjsyUK9ePWUhGd2pqEkNKZkqp7dGMqOlJjXTpGsiV69eFZEnn3zS09Oz1MIlc9gEm5mZmZmZWblyZVvu1MZH4+bNmyY1kAxgoMxmgL/++ktEWrZsqfwewhhKtSb9RMPs/kZns2RHYv2WmtTZCgoKROSDDz6YPn16qYVL5ZgjTn5+/q1bt6pUqeLh4WGzndr4UCgLS5a8+qUBMoC+MpsBcnJyROSdd96ZMGFCqYUVyvXJkJCQ4pbuLJK3t/ffvtE2aNBAeaE/Cbdo0aKzZ8+KyOzZs5X5j127dilTUx988IHDTsIVd6CVJyJKaZ0mNzfXy8vL7Bk4EQkMDOzSpYsqK6VCceTIkXr16un/BcIaYmNjjfnm6u7u3qVLF0v+RkyVmJj4yCOPqLV0rZEc9miUQYmJiQ0bNvT397d3IHB9Fy9e9Pb2rl69ur0DcXEOm2AvXLjg6+tbrVo1m+1RHPholEFJSUn+/v7/+Mc/7B2Ii/j555+NvyCSlZWlPBHAy8urWbNmJRdWLoiEh4eHhIQo7zzzzDO3bt3SXRDRvfnjjz/+9ttv+tdETPoj0p3zR0REFFkgMzNTeREWFlZ4KwtvTFbr9NYYZrTUpGbqeoIxx1+5XNWhQ4eAgIBSC5fMYRNsampqSkpKo0aNbLZHsfnR+OGHH4w/fSMDFFZmM4DSnMjISONvwTx37tzu3buNn2OwpL/R2SzZkVi/pSZ1NqXPPProo7rfpVjCMUecvLy8o0ePNmvWzPL7Woxn40Nx8uTJO3fuGF8PGcBAmc0AysqWjz32mPGTwVqtNjEx8dFHHzXp+qSXl9ff/vxq167t4+OTk5Nz8eJF5Z179+5NnTpVRDp27Pjss88a3wZ70T1K8cKFC+3bty9c4MKFC8qLChUqFFfJvXv31q1bp/z+z2z+/v6zZ8+2pAbALvbt23f8+PFSi9WvX3/p0qU2iMe+OBoAYCUkWH0cDbiqF198MSkpycjCly9fVq7XhIWFlXzh9dixY0q1Tz/9tO7N8PDwadOmGZRMTU0VvTV2FLp/3rt3r9SolHN+Nze3Vq1aFf5Uo9GcPn1aRJo0aaK/F2Wr4OBg/QddmEGV01sjmdFSk5qp3KUuhf47iqRc4pkxY4bl98SQYPXZ+Gj07dtX9/9eKjJAYWU2AwQHB4vInDlzKlasaGT8K1as2L17t/GXKy3pb3Q2S3Yk1m+pSZ1NMWzYsFdeecXIwiVgxNGx8aFYuHDhb7/9Znx5MoCBMpsBlN9bjxgx4oUXXjC2Aeb62y+7PTw86tevLyIpKSnKOzNnzkxNTfXw8Pjss8+sHYoqHn/8ceWF8rvFwnSdpnHjxsVVEh8fn5WV9fLLL6sdHeAE+vXrZ0yx/v37WzkQh8DRAAArIcHq42gAInLr1i3lhe5CQHFWrVqlvHj++edLKJabm/v1119LoT8xM66J1K9fX7kobGDv3r23b98WkaioKN2bWq1WWWnHwruSRaXTWyOZ2lJTm6k72jZe2oQEq8+RjwYZoDAygPWo29/obCaxdkvt2NkcOcfamIMfCjKAATKADRgur6z8/PbWrVsajeb69evz5s0Tkddee033n+HgmjRpoqyZefjw4SILKPPwwcHBynRjkWJjYyMjIy2cQwac1OjRo0v9cXFQUNDYsWNtE499cTQAwEpIsPo4GoDorW/z8OHDEoqlp6crF0SeeuqpDh06FFcsJSXlueeeu3jx4ksvvdSuXTv9j3Tn5KX+RufKlSvK/alFLphTUFCg/FW6ubm99tpruvfPnDmj1Gzh8zlEpdNbY5jRUlObqTvaNr4mQoLV58hHgwxQGBnAelTsb3Q2k9igpXbsbI6cY23MwQ8FGcAAGcAGip6EKygouHPnzscff5yVlRUcHKysSOkUfHx8evfuLSJ79uxRJk71Xbt2TZlu7devX3G/Uj958uSBAwdiYmKsHSrgmCpVqrRq1aoSHoDs7u7+3//+18aPELcXjgYAWAkJVh9HAxCRRx55RFkR6NKlSyU8Sj0mJiYlJcXb2/vzzz8vssCgQYMaN25cs2bNzZs3jxgxYtmyZQYFdA99LPXG5JKfPzF37twjR46IyIABA3SPVy91K5NYfnprJDNaamozdUfbxg/dJMHqc+SjQQYojAxgPar0NzqbGWzQUjt2NkfOsTbm4IeCDGCADGADRU/Cicjx48dXrFghIpMnT9Y96tYpDBs2TESys7Nnzpxp8NHUqVOVp/NFR0cXt3lsbGxQUNCAAQOsGiTgyHr37r1x48Yil18PDg7esGFDWfjtvA5HAwCshASrj6MB+Pn59ejRQ0Ryc3Pnz59fZJkpU6Zs2LBBRGbPnt20adMiy2RlZfn5+QUGBrq5uWVlZemeJK8TFBSknJZfvny55JB05/wGJbVa7cyZM8ePHy8iwcHBBs9u2L9/v/KiuAfOP3z4cPHixRs3bix57wrzTm9N2oWY1dJSm2lAV7PumoPNkGD1OezRIAMUiQxgJar0NzqbqbsQq7VUn307m8PmWNtz5ENBBiiMDGB12r87dOiQ8n5kZKSINGrUKC8vT1sM5dDMmzevuAKlGjhwYPXq1atXr37p0iVTt+3Vq1fHjh2L/Ej5Q3Jzc1u6dKnuzQULFigz8H379i2uztzc3NDQ0FdffdXUYADXk56ePn369LZt27q5ufn7+7dp02bq1KlpaWn2jss+lKOhLMxbvnz5Mn40AEBFuuHGx8fH09OzjCdY3dFwd3f38/Mr40cDLmDw4MERERHGl09MTPTy8hIRDw+PDRs26H90/fp13cMhpkyZUmpVGo1mz549lSpVCg0NPXr0qMGnXbp0ERFvb+/s7OwSKlFOikXE09Nz+fLleXl5BQUFBw4cUG4WVmrYvn27wVYtW7YUkTp16hRX7RtvvKFsPn/+/FIbojXr9NbUXZjR0lKbaaBFixYiEhoaakzh1atXi8jVq1eNrNwYugSrLE/UqlWrspxgdUfD19fXeoNvnz59irtoUyQyQJHKYAaIi4sTkdTUVCMrN28Ttfobnc3anc2YluozqbPdvXtXRJYvX25MYeMpObZ58+YiEhQUVJa/0hsMvi1atLDGoViwYIGIlPxXZoAMUFgZzADXr18XkW+//daYwhYynIQz+A3mDz/8UMLGlk/CdezYUdlRUlKSqduWMAl37dq1qlWrKjW3aNFiwIABuhVLa9eufePGjeLqXLdunYjs27fP1GAAF1auXLlJkybZOwqHoPwseufOnfYOBABc0MCBA5944gl7R+EowsLC3n//fXtHAVjK1Ek4rVa7ZMkS3UI37du3nzBhwsSJE/v37+/n5yciAQEBX331lfG1rV+/Xjkl1Gg0+u+PGzdO2cWBAweK27agoCAwMFBEGjZsWKNGDRHx8vLy9vbWnSxXqFBh8+bNBltlZWUp13QGDRpUXM2dOnVSamjUqJExrTDj9NakXZjRUmOaqS8nJ0epsGvXrsaUt8YknM7SpUtF5P79+9ao3OkMGzasWbNmVqrc1Ek4LRmgKGUwA9hmEk6ran+js1mpsxnZUh1TO5uVJuEUyi9y1q5da43KnY7ycLWUlBRrVG7GJJyWDFBIGcwAtpyEM1yOMjAwsHr16srrPn366CZ+nUu1atUSExM7d+4sIomJid9999358+dFpHv37vv37w8LCytuw9jY2IYNG7Zt29Z2sQIAAAAARETk9ddfT0hIqFOnjoj8+uuv06ZNmzJlyvr16zUazYgRI86cOTNkyBDja+vdu7e/v39iYqLyPHmdbt26KS8OHjxY3LanTp3KyMgQkV69eh08eLBPnz4FBQW5ubki4u3tPXTo0KNHjz7zzDMGWx05ciQvL09KfGrF+++/X7ly5fDw8IKCAq1WW2orzDi9NWkXZrTUmGbqO3bsmFKhk15hgM2QAQojA1iPiv2NzmalzmZkS3UctrPBAZEBDJABrMqz8FtXr1612e537dplpZrDwsJ++umnP//8c8eOHbdv365evXrnzp2VpeSKc+PGjW3bts2YMcNKIQEAAAAASta7d+8ePXrs2bNn//79qampISEhDRo06N69u3LzrEk8PDwqVap05cqVq1ev6p8MRkZG+vr6Zmdnl3BNRPfUioiIiCpVqiQkJNy6devs2bPe3t4NGzYsX758kVu1bdu21GsQTz/9dEpKioj06tVLo9F4eHiU2hBTT29N2oUZLTWmmfp0j73o3r278VuhbCIDFEYGsB61+hudzUqdTUzsb47c2eCAyAAGyADWU8QknCtp3ry5sgKvMVauXOnm5jZ06FCrhgQAAAAAKIGnp2eXLl2UB2kY6dChQ61atTJ4MycnR1lnpkmTJvrv+/n59ejRY/369Zs2bcrOzvb19S1cof6VAuVF5cqVK1eubHxIxjDmgoiOSae3xu/CBi3dtGmTiNSrV6/k+2IBBRmgSGQAKzG1v9HZzN4FnQ0OiAxQGBnAGgyXoyzLYmNjn3nmmSpVqtg7EAAAAACACQYMGBAfH2/w5rJlywoKCpo0aVKrVi2Dj0aNGiUiqampyuPHClOuFISEhCjrFKkuMzPT39/fGjWbugtrt/TOnTs7duwQkZEjR1qjfkDIABbsggxgKjqb2bugs8EFkAHM3kUZzwDmTMJt3bp15syZM2fO3Ldvn4js3LlT+eeePXvUDs92fvvtt3PnzsXExNg7EAAAAACAaSZPnvziiy8OGDDgp59+evDgQWpq6uLFi9977z1PT88VK1YULt+1a9dGjRqJyKJFiwp/mpWVpTzVQ3evruq++uqrvn37Wqly43dhg5YuX748Pz8/MDDw5ZdfttIuADKAebsgA5iBzmbeLuhscA1kAPN2QQYwZznKtWvX6veqzZs3b968WUTGjx8fGRmpVmQ2FhsbW6VKlZ49e9o7EAAAAACAaYYPHx4cHPzOO+907dpV92adOnVWrFjRsmXLwuXd3NwWLFjQuXPnAwcOFF5Z6M8//8zPzxerXSl4+PDh6tWrldt1rcTIXVi7pVlZWXPnzhWRqVOnVqpUyRq7AIQMYO4uyABmoLOZtws6G1wDGcC8XZABzJmEi4uLi4uLUz0UO8rIyFizZs2oUaM8PV38IXkAAAAA4JL69Onz9NNP79mz59ChQ56eni1btmzbtm0Jy+N06tRp2LBhK1eunDZt2vr16/U/KvzUCnW988471j79NHIX1m7p3Llzb9261axZs7ffftsa9QM6ZAAzdkEGMA+dzYxd0NngMsgAZuyCDMCck4jI2rVrMzIyoqOj7R0IAAAAAMBM3t7e3bp169atm5HlZ82atWnTpg0bNqxfv75///669616peDo0aNVqlQZOHCg6jWbsQurtvTcuXNTp051d3f/4osvPDw8VK8fMEAGMHUXZACz0dlM3QWdDa6EDGDqLsgA5jwTzvXExcU98cQTjz76qL0DAQAAAADYSGhoaHx8vJeX16hRo65evap7/8svv8zIyMjIyAgLC1N9p02bNv34449Vr9a8XVivpVlZWS+99FJ2dvasWbNat26tbuWAKsgAZACbobPR2VCWkQHIAE48CVenTp06deqoUlVycvLo0aNVqQoAAAAA4CyioqKWL1+ekpLSu3fvjIwM5U0/P7+AgICAgAD7xmYDVmqpVqsdPnz4wYMH33333bFjx6pbOaAiMgAZwGbobHQ2lGVkgDKeAZx4OcrPP/9craqSkpLUqgoAAAAA4ESGDRs2aNAgEfHy8rJ3LC7Czc1t1apVq1at8vHxsXcsQCnIAKojAxSHzqY6OhucCBlAdU6UAZx4Eg4AAAAAAMs5/qm70+GQwonQXVXHIS0OR0Z1HFI4Ebqr6pzlkDrxcpQAAAAAAAAAAACAY2ISDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACozNPeAQAAAAAAXNDNmzf/+uuv119/3d6BwMlcvHhRRAoKCuwdCCySkpJy9epVMgBMde7cORHRarXGb5KWliYi48aN8/HxsVZYcEW5ubkikpqaau9AYJE7d+6IyJtvvunh4WHvWOBMHj58KCJ37961wb6YhAMAAAAAqC80NDQvL2/nzp32DgROJjc3t1y5ckFBQfYOBBYJDQ09d+4cGQCmysnJqVChgr+/v/GbhIaGBgQE7N27183NzXqBwSUFBARUrlzZ3lHAIpUrVw4ICNi1a5e9A4GT0Wq1/v7+oaGhNtgXk3AAAAAAAPWtXr3a3iEAsJtNmzbZOwSUFUOHDh06dKi9owBgH6NGjRo1apS9owBKwjPhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVOZp7wDwf+7cufPMM880atTI29vb3rHAyZw+fTo6Ojo6OtregcB8169f79+//2OPPebpSWaGaU6ePPnmm28OHjzY+E0GDhyo0WgqVapkvajgkm7evBkaGrp8+XJ7BwKL9OnTx9fXNzg42N6BwMlcv369Tp068+fPt3cgAAAAAOA0uNTrQP78888DBw5cu3bN19fX3rHAyVy5ciUoKIhJOKe2f//+gwcPJicn+/j42DsWOJnLly9XrVrVpEm4TZs2+fn5VaxY0XpRwSXdvn3by8uLSThnt2XLlgoVKlSoUMHegcDJ3Lp1KzExkUk4AAAAADAek3AORLkf+dtvv33qqafsHQucTM2aNRs0aGDvKGAR5TdJGzZsaNWqlb1jgZOpVKmSqRkgMDBw5MiRH3/8sZVCgqt69dVXf//9d3tHAUt5e3u/++67H374ob0DgZN58cUXk5KS7B0FAAAAADgTngkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMk97B2C+/Px8jUbj7e1teVU5OTk+Pj6W11N2pKWlabXacuXKeXl52TsWV6DVatPS0kQkODjY3Z2pcTg6MoC6yAAlo7+pi/4G50IGUBcZAAAAAABszIlPvUaNGjV8+HBVqqpdu/aiRYtUqaosWLJkSUhISM+ePfPz8+0di4twc3MbM2ZMpUqV3nrrLXvHApSCDKA6MkAJ6G+qo7/BiZABVEcGAAAAAAAbc+Jfwt28eTMjI0OVqlq0aDF//vw33nhDldrsIjMzUzka/v7+QUFBJZTMzs6+d++eiJQrV87Pz8/UHSUkJLz11ls1atTYuHGjGZujOMuXL09KSlq8eHGNGjU++OADe4cDJ0MGcHZOlAFs1tmE/mY1TtTf4GjIAC6ADAAAAAAAtuTEv4QzRkFBQVJS0s8//3zy5EmNRlNcsejo6DNnzvzxxx+2jE1d48aNCwsLCwsLi4uLK7nkggULlJK7du0ydS/JyclDhw4tKChYtmxZlSpVzA3WdozsAI7Ax8dn5cqVvr6+EyZM+P333+0dDpwMGaAwJ/rzF6fKALbpbEJ/syYn6m9wNGSAIpEBAAAAAADFcdlJOI1GM2/evJo1a9avX79Lly5NmjSpU6fO/Pnziyzcp0+fkJCQ2NhYGwepogMHDigv2rRpY2TJ1q1bm7qXMWPGPHjwYMiQId27dzd1W2PMnj07IiIiIiLC8v8LkzqA7RXZ0vr160+aNEmr1Y4cOZJll2ASMoA+B//zFyfPALbpbGLl/lbGhxtxnv4GR0MGMEAGAAAAAACUzDUn4XJycgYOHDh27Njk5GQR8ff3F5ErV66MHj36+eefL3yDqre395AhQ1avXv3w4UM7hGuxhw8fnjhxQkS8vb2bNWtWcuH9+/eLSL169SpVqmTSXrZt27Z27VoPD48pU6aYG2kptmzZcujQoUOHDll4y7OpHcD2imvpO++8U7ly5ePHj8+bN89OocH5kAH0Of6fvzhzBrBNZxPr9zeGG3GG/gZHQwYwQAYAAAAAAJTKNSfhJk2atG7dOhEZMWKE8ui448ePDxw4UETWrl07Y8aMwpvExMTcv3//+++/t3Wsajh8+LByE2vTpk19fHxKKJmSknLlyhUx/a5kjUYzevRoERk8eHDdunUtCLZYWq02MTFRed2qVStLqjKjA9hSCS318/MbO3asiHz00Ue3b9+2Q3BwQmQAfQ7+5y9OngFs0NnE+v2N4Ubh+P0NjoYMYIAMAAAAAAAolQtOwp0/f3727NkiMnToUOUxEm5ubk2aNImPj+/fv7+ITJo06dKlSwZbNW3atHnz5qU+38IxKfcaixFLAxlf0sC2bduSkpJE5PXXXzc9QKMUFBQkJCTs3r177969ltyYbF4HsKWSW/rKK694enpmZmY6aW+E7ZEBdBz/z1+cPAPYoLOJ9fsbw42Og/c3OBoygD4yAAAAAADAGC44Cbd06dL8/HxfX9+ZM2fqv+/u7j5nzhwPD4/8/PxVq1YV3jAmJmb37t12vz5rBuOvdBj/JA8DS5YsEZGaNWs++eSTpgdoFE9Pz8jIyMjIyA4dOlhSj9kdwGZKbmloaGhUVJSIfPHFF1qt1ubRwfmQAXQc/89fnDwD2KCzifX7G8ONjoP3NzgaMoA+MgAAAAAAwBguOAn3zTffiEhkZGTVqlUNPqpdu3ZkZKSIfPXVV4U3fPHFF729vVesWGH9GFVm6jURb2/v5s2bG19/Zmbmjh07RKRHjx5ubm7mhmkjZncAx9GzZ08RuXjx4rFjx+wdC5wAGUDHBf78xbEzgLU7m9DfbM6R+xscDRlAHxkAAAAAAGAMV5uEu3jxovJo9KZNmxZZQHn//Pnzd+7cMfioYsWKffv2XbFihSM8R914N27cuHr1qohUrFixfv36JZTUarUHDx4UI57kYWD37t25ubli8ZMzbMCSDuA4IiIilBfbt2+3byRwfGQAHdf48xcHzgA26GxCf7M5h+1vcDRkAH1kAAAAAACAkVxtEu7IkSPKi+JOiRs0aKC8OHr0aOFPo6Ojr1y58vPPP1snOqvQLfjTunXrkkueO3fu7t27YvrSQD/++KPywsEviIjFHcBBNG3a1MvLS/SOPEREo9E41wS5bZABdFzjz18cOAPYoLMJ/c3mHLa/2RHDTZHIAPrIAAAsx3ADALABhhvAEXjqXl2/fn3evHki0qhRo+jo6CJLb926ddeuXSIyatSounXrWr77JUuWXLhwQUTGjx8fEhJieYVpaWnKi/Dw8CIL6N4v8tlvUVFR1atXj4uL69q1q+XB2IZuaaBSr4mY/XwOZYEaHx+fxo0bG1M+Ozv73//+t4hEREQ8//zzDx482LBhwx9//JGUlJSamtqyZcuJEydWq1ZNf5OMjIzJkyeLSLt27ZSn2ZvHwg5gEjOaKca11MfH57HHHktMTGRpIBG5efPm3LlzExISLly4oNVq69at27t373HjxhU+tmUTGUDHln/+UiYzgA06m5jY38rIcCPWbKnD9jfbY7gpGRlAHxkAgNkYbgAANsBwAziU/5uE8/PzmzVrlog0b968yEm4e/fuvfzyy7dv346IiPj0009V2f3q1at3794tIiNHjlRlEk658VZE/Pz8iiwQEBCgvHjw4EHhT93d3YcNGzZnzpy7d+9WqFDB8nhswPjncxhf0sCZM2dE5PHHH1dulS3VkSNHlL40fvz4I0eOzJs3LysrS/fp4cOHf/vtt3379gUFBenePHTokLLJwoULTYrNgIUdwCRmNFOMbmlERERiYuLt27dTU1NV+dNwUmvWrImJicnMzNS9c/78+Tlz5ixevPiLL74YOnSoHWNzEGQAHVv++UuZzAA26GxiYn8rI8ONWLmljtnfbIzhplRkAH1kAADmYbgBANgAww3gaP5vEq5ixYqhoaG3b98+f/58kUUnT558+/ZtNze3zz77zGGflK47Jfb29i6ygO6UvrhT4ujo6OnTp8fHx48cOdIKAapMo9EcOnRIeW3kjcmlPsnDwL17927cuCEitWrVMnIT3R3Qn376qYeHR6dOnVq3bp2WlrZx48Zr166JyMmTJydPnqxcGlAYf3t1ySzvAMYzo5lidEtr1KihvDhz5syTTz5pYahOas2aNS+88IJWqy38UVZW1rBhw7Ra7bBhw2wfmOMgA+iz5Z+/lL0MYIPOJqb3tzIy3IiVW+qA/c3GGG5KRQYwQAYAYAaGGwCADTDcAA7ob8+Ea9iwoYhkZGTcvHnToNzZs2cXLFggIkOGDHniiSfU2v3EiRPj4+Pj4+OrVKmiSoXp6enKi1JPiTMyMoosEB4e3qFDh9jYWFXisbbTp0/fv39fROrVq1epUqUSSubk5CgPpTD1ooPy2HkRKVeunJGb6D815NSpUz/88MPUqVMXLlx47Ngx3bn9mjVr9McDZRMfH5/iHq1hJMs7gPHMaKYY3dLy5csrL65fv25hnE4qJSXllVdeKfJLg87IkSPL7PFRkAH02fLPX8peBrBBZxPT+1sZGW7Eyi11wP5mSww3xiADGCADADAVww0AwAYYbgDHVMQknIicO3fOoNzYsWPz8vICAgJmzJihezMjI6OgoMCS3Xfq1GnQoEGDBg0KDAy0pB6d3Nxc5UVxz5zUvZ+fn19cJTExMQcPHjxx4oQqIVmV8Qv+HDlyRDk4hUvm5OSUcIFA95Gpl+DDwsJ2796t/6iM4ODgxYsXu7u7i8jVq1f153qVTZo3b27kenfFUaUDGMmMZorRLdVdEFHlBmpnNG/evFKvW2VlZc2ZM8c28TgmMoA+W/75S9nLADbobGJ6fysjw41YuaUO2N9sieHGGGQAA2QAAKZiuAEA2ADDDeCYip6EM1iRcuvWrdu2bRORDz74oFq1agUFBXPnzq1bt265cuWCgoLatWv39ddf2yzikukm83TnxgZ07+tOOAsbOHBgYGBgXFyc6uGpzvhrIrpbaPVLxsXFNWvWzN/fPygoqFatWp988kl2drbBhroT8hKOmL709HSl/7Rp08bHx8fg08cee0x37UB3pSA5OVlZS8fCpYFEpQ5gDDOaKaa0lAsimzZtMqbYxo0brR2JIyMD6LPZn7+UyQxgg84mJva3MjLciPVb6oD9zZYYboxBBjBABgBgKoYbAIANMNwAjslT/x9FTsLl5eWNGzdORGrXrv3uu++KyMsvv/z1118/99xzw4YNO3PmzMaNG1966aVdu3YtX77chpEXTfdAcktOiQMCAgYOHPjNN9/MmjXL7KffabXaLVu26D81vVQXLlyQ4u+oLVKRVzqKZPBkCI1G8+KLL65evToqKiomJiYgIOC777778MMPd+/evW3bNuWOWoWpdyUfPHhQf0eF1atXT/mppe4/y/hWlEqVDmAMM5opprTU1Asiubm5586dW7t2rTGFTZWTk3PkyBErVV6cwr/HLdLFixdXr16t32Ot6q+//hKR3bt3p6WlqV756dOnRaTkRQMMkAH02ezPXxwvA+Tn558+fdqkP9Lc3FyTRigbdDYxsb+VkeFGrN9Sk/pbZmbm/fv3rTQiXLhwIS0tjeFGkZmZeezYMSsdjYKCgiKnwYpDBjBQljOA7f9IXVhmZmZycrKpT0+E5ZRMtX79ej8/P5vt1GGHm3Pnzt2+fZu/a9u7f//+7du369WrZ+9A4Pq0Wu3x48cfe+wxs69wwjx37twRkV9//dWk6zwWctjhZt++fSKyceNGy78ewyQajebEiRNkABWdOHGiQYMGJq2t4uHh8bdJuAYNGigv9CfhFi1adPbsWRGZPXu2r6/v999//9VXX3377bcvvPCCUuDUqVPdu3f/8ssve/To8dxzz1naDsvoTj6LO41UnvcupZ0S5+bmenl5WdI7r1692q9fPzOW61RuXDVGVlaWsmaml5dXs2bNSi6snGmEh4eHhISIyPz587/77ruVK1cOHTpUKfDKK69ERUXt2LHj22+/HTJkiG5DUw+C7rQ/IiKiyAKZmZnKi7CwMINNLL8xWa0OUCozmimmtFQ3Qht5/NPT07ds2bJlyxZjCpshISEhISHBSpVbQqPR6HKRzXz88cfWqzwlJcXIkmQAAzb78xfHywAZGRnr1q1bt26dMYV1Tp48aWRJ23Q2MbG/lZHhRqzfUpP625kzZ65du/b888+XWtJsVq3cbHYZbrZv3759+3YrVU4GsESZzQDnzp27cOGCY/6RAqYaPny4vUMogl2GG3HUwRcAXMBnn3322Wef2TsKQ/Yabl599VXb7xRwBH+bhKtdu7aPj09OTs7FixeVd+7duzd16lQR6dix47PPPisi8+fPf/rpp/X/UBs1ajR79uxBgwZ9/PHHdp+E0z0r/sKFC+3bty9cQPm1mYhUqFChuEru3bu3bt065fd/ZqtZs+bdu3fz8vKM3+TPP//s0qVLzZo1jSx/+fJl5TkTYWFhhVen0Xfs2LGkpCQRefrpp5V3nnnmmVu3bukuiOje/PHHH3/77Tf9ayK69Xbu3btnTFTKab+bm1urVq0Kf6rRaJSf+zRp0kRXs7JJcHCw/lMuzKNKBzCGGc0UU1p6//595YWRj0usXLly7969p02bZlz4pqlVq9Ybb7zxr3/9yxqVF6d9+/anTp0qtVh4eLjuSpMNnDhx4qmnnlq/fn1kZKTqlf/++++9evXSn7MpGRnAgM3+/MXxMkD58uWjo6MnTJhgXPgiIuHh4UUGXyTbdDYxsb+VkeFGrN9Sk/pbixYtHj58qNzGqLqXX345OTl5x44d1qi8OI453IhIgwYNBg8e/NFHH1mj8qpVq7Zs2dLIwmSAwspsBmjWrJmfn99PP/1kdPgoRU5OTsl/VrCGlStXjhkz5sqVK2o9md4YDjvcjBo16uTJk3v37rXlTqEgA8BmcnNzvb297R1FmXPt2rXHH398xYoVffr0sdlOHXa4WbNmzciRI8+ePRsaGmrL/ULIAGoz43ga/hLOw8Ojfv36J06c0P0UY+bMmampqR4eHrpJ+7p163br1s2gol69erm7u588eTIvL8/C55xb6PHHH1deFPfzW90pcePGjYurJD4+Pisr6+WXX7YwGFO/0xu52pvOrVu3lBe6CwHFWbVqlfJCd4NbeHh44Qmb1NRUKRS2eZfg69evHxwcXPjTvXv33r59W0SioqKUd7RarbLMjuV3JYtKHcAYpjZTTGyp7mjrr2VXAjc3N19f3yKDsZxVKy/Oc889Z8z3hgEDBtgyMOWPNCgoyBo7NfL/WocMYMBmf/7iEhnApF+c2KaziVmX4F1+uBHrt9Sk/ubm5ubh4WGlxOvj4+Pl5cVwo/Dw8LDqyG58YTJAYWU5A3h6etr4bwFQnb+/v4hUqFDB1K/flnDY4cbHx4e/awCwBmXJhICAAFvmWIcdbgICAkSkQoUKjDgomwzXflUeC3fr1i2NRnP9+vV58+aJyGuvvaY71Vy4cGGvXr0MtvLz8wsICMjLy0tPT7d6yCVq0qSJr6+viBw+fLjIAsePHxeR4ODgEhbfj42NjYyMtPwmWWvTrW/z8OHDEoqlp6cr10SeeuqpDh06FFcsNzf366+/FpF+/frpv687M9HdJ1uCK1euKDO4RS6YU1BQMHbsWBFxc3N77bXXlDfPnDmj1Gz58zlEpQ5QKjOaKSa2VHe0bXlm6FBGjx5d6gpOQUFByqEum8gABmzz5y9lMgPYprOJKf2tjAw3YpOWOlp/szGGm1KRAQojAwAwFcMNAMAGGG4Ax1T0JFxBQcGdO3c+/vjjrKys4OBgZUVKhZ+fX+EztLNnzz548KBixYqVK1e2dsQl8/Hx6d27t4js2bNHuS1U37Vr15SbSfv161fcLcAnT548cOBATEyMtUO13COPPKKsXXDp0qUSHqUeExOTkpLi7e39+eefF1cmJSXlueeeu3jx4ksvvdSuXTv9j6pVq6a8MP6uZCnm3tu5c+ceOXJERAYMGKB7AKGKz+cQNTqAMcxoZqlbGdAdbd3xL2sqVaq0atWqEh4S6+7u/t///tfuOceOyAAGbPPnL2UyA9ims4kp/a2MDDdik5Y6Wn+zMYabUpEBCiMDADAVww0AwAYYbgDHVPQknIgcP358xYoVIjJ58mTlyeol2Lp1q4iMGDFC/QBNN2zYMBHJzs6eOXOmwUdTp05Vnj0eHR1d3OaxsbFBQUEDBgywapCq8PPz69Gjh4jk5ubOnz+/yDJTpkzZsGGDiMyePbtp06aFCwwaNKhx48Y1a9bcvHnziBEjli1bZlAgKChIOSe/fPlyqSHpTvsNCmu12pkzZ44fP15EgoOD9R9Jun//fuVFcU+bF5GHDx8uXrx448aNpQYg5nYAk3ZhRjPFuJbq6GrW/UmWQb179964cWPFihULfxQcHLxhw4b+/fvbPirHQQYozAZ//lImM4BtOpuY0t/s3tnEgfubSZ1NHK+/2R7DTcnIAEUiAwAwFcMNAMAGGG4AR6T9u0OHDinvR0ZGikijRo3y8vK0Jbp27VpwcHC9evXS09NLLlnYwIEDq1evXr169UuXLpm6ba9evTp27FjkR8qVAjc3t6VLl+reXLBggXIjQN++fYurMzc3NzQ09NVXXzU1GFUoz2/Ys2eP8ZskJiYqD+Hz8PDYsGGD/kfXr1/XPRxiypQpxdXQu3fvli1bVqxY0c3NbciQIRcvXixcpkuXLiLi7e2dnZ1dcjxKtxERT0/P5cuX5+XlFRQUHDhwQLlZWKlk+/bt+pu0bNlSROrUqVNCtW+88Yay+fz580sOQGFGBzBpF2Y008iW6rRo0UJEQkNDjSms1Wpr1KgxduxYIwubqly5cpMmTbJS5aVKT0+fPn16q1atRCQwMLBNmzZTp05NS0uzSzDK/eY7d+60RuV79uwRkYMHDxq/CRmgMGv/+ZvXTCNbqmNqBggJCZkwYYKRhc3bxDadTWt0f3OEzqZ11P5mUmfTmtjfRowY0ahRIyNrNtXAgQOfeOIJK1VeKmW4adu2raenp4+Pj32HG61WGxYW9v7771upcl9f32nTphlfngxQpDKYAQYPHhwREWFkzYDDWrp0qYjcv3/fLnvXDTf+/v5ubm52H26GDRvWrFkze+0dAFyYcqvT2rVr7bJ33XBToUIFEWnSpIl9hxtl4fqUlBR7BQDYl+EknMEiMz/88EPJ29+7d69p06aVK1c+c+aMGbvv2LGjsqOkpCRTty1hEu7atWtVq1ZVam7RosWAAQN0z2OoXbv2jRs3iqtz3bp1IrJv3z5Tg1GFGZNwWq12yZIluoVu2rdvP2HChIkTJ/bv39/Pz09EAgICvvrqq1Ir0Wg0e/bsqVSpUmho6NGjRw0+HTdunFL/gQMHSqikoKAgMDBQRBo2bFijRg0R8fLy8vb21nWnChUqbN68WX+TrKws5ZrOoEGDSqi5U6dOSg1GXvgzowMYvwszmml8SxU5OTlKhV27djWmvVqXnoRTKM+b/PLLL+0bhqNNwmnJAIVY9c/fvGYa31KFGRnABpNwWpt0Nq1x/c1BOpvWIfubSZ1Na3p/c+FJOJ3WrVu/8MIL9o7CsSbhtGSAopTBDMAkHFyDfSfhdP7nf/6nYsWK9o1ByyQcAFiNfSfhdPbu3Vvyt2vbYBIOZZzhcpSBgYHVq1dXXvfp00d3Z2uR7t+///TTT9+9e/fXX3/Vf/KN3VWrVi0xMbFz584ikpiY+N13350/f15Eunfvvn///rCwsOI2jI2NbdiwYdu2bW0Xq8Vef/31hISEOnXqiMivv/46bdq0KVOmrF+/XqPRjBgx4syZM0OGDCm1Ejc3t6eeemrZsmW3b9+Ojo7WarX6n3br1k15oUwTFufUqVMZGRki0qtXr4MHD/bp06egoCA3N1dEvL29hw4devTo0WeeeUZ/kyNHjuTl5UlpT614//33K1euHB4eXlBQYBBbkczoAMbvwoxmGt9SxbFjx5QKS/4DBIQMUIhV//zNa6bxLVU4bAawQWcT4/qbg3Q2ccj+ZlJnEwfub3A0ZIDCyAAAAAAAgFJ5Fn7r6tWrxmx5//797t2737lzZ+/evTVr1jRv97t27TJvw1KFhYX99NNPf/75544dO27fvl29evXOnTs//vjjJWxy48aNbdu2zZgxw0ohWU/v3r179OixZ8+e/fv3p6amhoSENGjQoHv37srNsybV4+/vn5iYePz4cf1jFRkZ6evrm52dXfIleN1TKyIiIqpUqZKQkHDr1q2zZ896e3s3bNiwfPnyhTdp27atMdc4nn766ZSUFBHp1auXRqPx8PAodRNTO4DxuzCjmWJ0SxW6VWG7d+9u5CYoy8gABqz3529eM8WFMoC1O5sY198cp7OJ4/U3kzqbOHZ/g6MhAxRGBgAAAAAAlKyISThj3Lt3r3v37hkZGb/88ksJPyyzu+bNmzdv3tzIwitXrnRzcxs6dKhVQ7IST0/PLl26KA/SMJuHh0elSpWuXLly9epV/csHfn5+PXr0WL9+/aZNm7Kzs319fYvcXP9KgfKicuXKlStXtiSkIoM0vrBJHcDIXdigmZs2bRKRevXqlTxtDOiQAQqzxp+/kAGs3NnEuP7maJ1N6G8oM8gARSIDAAAAAACKY7gcpTHu3bsXFRWVm5u7e/duR56BM1VsbOwzzzxTpUoVewdiC7r7XvXl5ORcv35dRJo0aWLw0ahRo0QkNTV19erVxdWpXCkICQlRlipSXWZmpr+/vzVqNmkX1m7mnTt3duzYISIjR460Rv2AkAEsqJ8MYCpTO5sY0d+cvbMZvwv6G5wdGcCSXZABAAAAAMAFmDwJd/fu3W7durm5uf3888+VKlWyRkx28dtvv507dy4mJsbegdjIgAED4uPjDd5ctmxZQUFBkyZNatWqZfBR165dGzVqJCKLFi0qssKsrKzjx4+L3r26qvvqq6/69u1rpcqN3IUNmrl8+fL8/PzAwMCXX37ZSrsAyADm1U8GMIOpnU1K628u0NmM3AX9DS6ADGD2LsgAAAAAAOAaTJ6Ei4mJOXjwoK+v79ChQ3v16tXj727cuGGNKG0gNja2SpUqPXv2tHcgNjJ58uQXX3xxwIABP/3004MHD1JTUxcvXvzee+95enquWLGicHk3N7cFCxaIyIEDB4q8qfnPP//Mz88Xq10pePjw4erVqwcNGmSNyo3fhbWbmZWVNXfuXBGZOnWqK01yw9GQAcyrnwxgBlM7m5TW35y9sxm/C/obXAAZwOxdkAEAAAAAwDWY/Ey427dvi8iePXuK/PThw4eWRmQPGRkZa9asGTVqlKenmQ/JczrDhw8PDg5+5513unbtqnuzTp06K1asaNmyZZGbdOrUadiwYStXrpw2bdr69esNPi381Ap1vfPOO9b+DzJmF9Zu5ty5c2/dutWsWbO3337bGvUDCjKAefWTAcxgRmeTEvubs3c243dBf4MLIAOYvQsyAAAAAAC4BpPPMH/55RdrxGFfa9euzcjIiI6OtncgNtWnT5+nn356z549hw4d8vT0bNmyZdu2bUt+QMWsWbM2bdq0YcOG9evX9+/fX/8jq14pOHr0aJUqVQYOHKh6zabuwqrNPHfu3NSpU93d3b/44gsPDw/V6wf0kQHMqJ8MYB4zOpsU39+curOZtAv6G1wDGcC8XZABAAAAAMA1lJUffpUsLi7uiSeeePTRR+0diK15e3t369atW7duRpYPDQ2Nj4/v1avXqFGjWrVqVaNGDd1HX3755bJly0QkICBA9TibNm3atGlT1as1YxfWa2ZWVtZLL72UnZ09Z86c1q1bq1s5UCQygKn1kwHMZmpnk+L7m1N3NpN2QX+DyyADmLELMgAAAAAAuAaTnwnnOOrUqVOnTh1VqkpOTh49erQqVbm8qKio5cuXp6Sk9O7dOyMjQ/e+n59fQECANS6IOBQrNVOr1Q4fPvzgwYPvvvvu2LFj1a0cUBEZgAxgS0X2tzLS2YT+hjKPDEAGAAAAAAAX4MS/hPv888/VqiopKUmtqsqCYcOGKQ+T9/LysncsLsLNzW3VqlWrVq3y8fGxdyxAKcgAqiMDlID+pjr6G5wIGUB1ZAAAAAAAsDEnnoSDHXHerjoOKZwI3VV1HNIScHBUxyGFE6G7qo5DCgAAAAC25MTLUQIAAAAAAAAAAACOiUk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyT3sHAEPJyckXL160dxRwMvn5+Vqt1t5RQAXXr1+vWLGivaOAk9FoNKZuotVq7969y3ADUz148IDhxjWkpaWRAWCqjIwMM0YcAAAAACjLmIRzIHfu3BGRwYMH2zsQOKU///zT3iHAIjdu3BCRfv362TsQOKXExESTyt+/f3/hwoULFy60UjxwYYGBgfYOAZbKzc2dPXv27Nmz7R0InE9wcLC9QwAAAAAAZ8IknAOJior65JNP6tat6+bmZu9Y4GQuX77cq1cve0cBizz33HPTpk0LDw8nA8BUly5deu6550zaZMWKFbm5ucymwFR3794NDQ21dxSw1PLly93d3f39/e0dCJxMampqzZo17R0FAAAAADgTJuEciLu7+/jx4+0dBQD78PT0/PDDD+0dBcqKIUOG2DsEAHYTHR1t7xAAAAAAACgT3O0dAAAAAAAAAAAAAOBqmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypx4Ei4/Pz83N1eVqnJyclSpBwAAAAAAAAAAABCnnoQbNWrU8OHDVamqdu3aixYtUqUqAAAAAAAAAAAAwIkn4W7evHnz5k1VqmrRosX8+fNVqQoAAAAAAAAAAABw4kk4YxQUFCQlJf38888nT57UaDTFFYuOjj5z5swff/xhy9gAAAAAAAAAAADgqjztHYC1aDSazz///D//+U9ycrLyTs2aNf/5z3++/fbbhQv36dMnJCQkNja2bdu2tg0TQClu3rx5/vz5c+fOiciuXbuqVatWu3btBg0a2DsuAIBLefjw4bFjx27evHn58uWMjIxNmzb94x//ePzxx728vOwdGgDAdWg0mhMnTly9evX333/PzMz87rvvqlat2rhx4woVKtg7NACAS/nrr78uXLiwc+dOEdmyZUtGRka9evVq1qxp77iAssg1J+FycnJefPHFdevWKf/09/d/+PDhlStXRo8e/csvv8THx7u7/+0ngN7e3kOGDFmxYsW8efP8/f3tETKAv7lz586XX36ZkJCwf/9+3c9Yv/rqq6+++kpE6tSp07dv3+HDhzdr1syeUQIAnFxeXl58fPz333+/Y8eOrKws5c2UlJQ+ffqISIUKFXr27Dlo0KDevXu7ubnZNVIAgHPbs2fP119/vXHjxpSUFN2bAwcOFBEvL6/IyMj+/fsPHz48ICDAfjECAJzehQsXYmNjExISTp48qXtz8uTJyoumTZv27ds3JiamVq1adgoQKItccznKSZMmKTNwI0aMuHnzZkZGxvHjx5Vvt2vXrp0xY0bhTWJiYu7fv//999/bOlYAf/fw4cPp06eHh4dPnDgxMDBw/vz5hw8fPnDggIgMGTLkxIkT3333XYcOHVatWtWyZcshQ4ZcunTJ3iEDAJyPVqv97rvvGjduPGzYsMuXL7///vt79+69dOlSQEBAjRo1zp8/v3PnzhEjRhw4cKBv375t27bdvXu3vUMGADilI0eOPP300x07dty6deuzzz67devW06dPP/HEE25ublevXt23b9/HH3/88OHDt99+u379+kuXLs3Pz7d3yAAA53Pr1q233367UaNGn3/++aOPPrpy5cpjx4598sknIvL5558fPXo0Li6uTp06s2bNatCgwT//+c+0tDR7hwyUFS44CXf+/PnZs2eLyNChQ5ctW1alShU3N7cmTZrEx8f3799fRCZNmlT4qn3Tpk2bN28eFxdnh4gB/K8LFy5ERET8+9//joqKOnv27I4dO954440WLVpUrlxZRLy9vRs3bvzcc8/997//vXHjxuLFi3fu3NmoUaOvv/7a3oEDAJxJdnb2sGHDBg4cGBISsnfv3j///POjjz7q0KFD7dq1RcTNzS08PLxLly7/+c9/zp8//+OPP+bk5HTq1On111/nwigAwCRLly6NiIg4efLkF198cfny5UWLFvXo0aNhw4YeHh4iUr169bZt277//vu//fbbqVOn2rdvP3LkyI4dO966dcvegQMAnMnvv//++OOPx8bGjh079tq1a2vXrh06dOhjjz0WFBQkIuXKlXv88cdffvnl9evXX7t2bcyYMYsWLWrSpMn+/fvtHThQJrjgJJxy45ivr+/MmTP133d3d58zZ46Hh0d+fv6qVasKbxgTE7N7925+VQPYy969e9u0aZORkXHw4ME1a9YoV0KL4+Xl9dprr505c6Zz585Dhw6dOnWqrcIEADi3mzdvtm/ffu3atbGxsfv27evQoUPJ5bt27Xr48OHJkycvW7asT58+mZmZtokTAODUCgoKXn311ddffz0mJub8+fOvvfaaMvFWnAYNGqxZs2bz5s0nT55s27bt6dOnbRYqAMCprVy5slOnTjVr1jxz5syMGTPKly9fQuHg4OAZM2acOHGicuXKHTt2XL16tc3iBMosF5yE++abb0QkMjKyatWqBh/Vrl07MjJSRJTHShl48cUXvb29V6xYYf0YARg6ffp0nz59wsPDDxw40KJFCyO3Cg4O3rhx45gxYyZOnLh48WKrRggAcAFZWVl9+vS5fPnyzz//HB0dbeRWHh4eEydOXLt27a5du4YNG6bVaq0aJADABfzrX//68ssvP/vssy+++MLX19fIrXr27PnHH3+4u7v37Nnz9u3bVo0QAOACtm3bFhMT069fvz179tSoUcPIrerWrfvrr79GRUUNHTp0165dVo0QgKtNwl28eDE5OVlEmjZtWmQB5f3z58/fuXPH4KOKFSv27dt3xYoVGo3G2nEC0JeWltanT59KlSpt2bKlSpUqJm3r4eExZ86c4cOHv/POOzywBwBQspiYmKNHj65fv75du3ambvvcc88tX7583bp1H330kRVCAwC4jhUrVsyePXvKlCmjR482ddsGDRps3br13r17zz33XF5enjXCAwC4htOnTw8ePDgyMvKrr77y8/MzadvAwMA1a9a0atVq4MCBFy9etFKEAMT1JuGOHDmivChuEq5BgwbKi6NHjxb+NDo6+sqVKz///LN1ogNQtI8++ig5OXnjxo0hISHm1fDFF180a9bs1Vdf5TQVAFCczZs3x8fHz58/v3379ubVMGTIkH/+85/Tpk07deqUurEBAFzGnTt33nnnneeee27ChAnm1fDII4/Ex8f/+uuvS5YsUTc2AIAreeONNypUqLBmzRovLy8zNvfx8Vm3bp23t/c777yjemwAdIqYhDt16tR7773XvHnz4ODg+vXrP//8899//72Vdr9kyZL33nvvvffeS01NVaXCtLQ05UV4eHiRBXTvF/nst6ioqOrVq8fFxakSDABjXLp06Ysvvhg7dmyjRo3MrsTHx2fBggUXLlxYunSpirEBAFxGQUHB+PHjIyIiXn31VUvqmTJlStWqVcePH69WYAAAFzN16tS8vLy5c+e6ubmZXUlUVNSAAQOmTJly7949FWMDALiMLVu27N69e+bMmWbf0S4iYWFhU6ZM2bx5Mz9KAaznb5Nw9+7dGzVqVJMmTWbNmnXkyJG7d+8mJSWtXbt2wIABgwcPzsjIUH33q1evnjVr1qxZs+7evatKhbp6ivsFbkBAgPLiwYMHhT91d3cfNmzYunXr1IoHQKlmzpxZrly59957z8J6Wrdu/eyzz06fPp0VZQEAhSUkJJw8eXLmzJmWXBIVET8/v4kTJ27atKnIZRUAAGVcWlraF198MXr0aOMfzFOc6dOn37t3b9myZaoEBgBwMdOnT2/ZsuXzzz9vYT3R0dGNGjWaMWOGKlEBKOz/JuGuXbvWrl27JUuWeHt7v/zyy6tXr965c+f8+fPr168vIvHx8R9++KH94jSWbvLM29u7yAK6H+cWOQknItHR0dnZ2fHx8VaIDoAhjUaTkJAwaNCg8uXLW17bq6++mpyc/Mcff1heFQDAxXz//ffh4eGdOnWyvKqXXnrJ399//fr1llcFAHAxmzZtysnJeeWVVyyvKjw8vGPHjuvWrbO8KgCAi0lOTt63b9+IESMsvMVQRDw8PKKjo3ft2qVbYQ6Auv7/JFxaWlpkZOSpU6fq169/+PDhuLi4559/vkuXLm+99daxY8eefPJJEVm4cOGff/6pv3Fubq6FvxibOHFifHx8fHx8lSpVLKlHJz09XXlR6iRccT/sCw8P79ChQ2xsrCrxACjZvn37bt682bdvX1Vq69y5c4UKFRISElSpDQDgMvLy8rZt29avXz9VavPz8+vWrduGDRtUqQ0A4EoSEhIee+wx5W5my/Xt23f//v03btxQpTYAgMvYuHGjiPTq1UuV2vr375+fn79161ZVagNg4P9Pwr300ksXL16sVKnSTz/91LhxY/0Svr6+n3/+uYhoNJrNmzcrbx49ejQqKsrPzy84OLhOnTpffPGFebvv1KnToEGDBg0aFBgYaEEr/k9ubq7yorj16HTv5+fnF1dJTEzMwYMHT5w4oUpIAEqQmJjo7u7+1FNPqVKbl5fXE088cfjwYVVqAwC4jIsXL6anp0dGRqpVYadOnY4fP56Xl6dWhQAA15CYmNixY0e1auvUqZNGozG4HxoAgMTExEceeaR69eqq1FavXr3q1atzPQ2wEncRSUhI2LZtm4hMmDChyFXLmzdv7u/vLyLHjx8XkcOHD3fo0OHAgQPjxo2bNm1aSEjIyJEjJ06caNvIi6abzNPNxhnQvV/C2ncDBw4MDAyMi4tTPTwABpKTkytVquTj46NWhdWrV09OTlarNgCAa7h+/bqIWP54Hp1q1appNBp+mgAA0KfVam/evKnWJVERUariBAcAYCA5OVnF4Ua4ngZYk5tWq23evPmRI0eqV69+/vx5X1/fIstVq1YtOTm5VatWBw4caN68+blz5/bt29e0aVMRKSgo6NGjx88//3z06FGDX9FZVe/evTMyMnbt2qX/5sSJE6dOnSoiR44cUcIz8Ouvv3bo0EFE5s6dO2bMmOIqj4mJ2bZtW3Jystnr6t66datbt27FLXoJM9y4cSM4OLi4LgrruXTpUkBAQOXKla1R+fXr1/Py8mrXrl1ysfz8/CtXrgQFBYWGhpZcMiUl5eHDh3Xq1FEtRD3Z2dnJycmVK1dW68e7MJJyOaNixYoqztcCxUlLS/Pw8FDlQZUwybVr1woKCmrVqmWNytPT09PT02vVquXh4VFyyUuXLnl4eNSsWbPkYg8fPrx582aVKlUCAgLUC/NvYfj5+YWFhVmjcpQgNTXVy8urXLly9g4Eru/hw4cPHjxQ67kMMF5aWtrdu3dr167t7u6ueuXKaUvFihUrVKhQcsnk5OTs7Oy6deuWWuelS5f8/f2t1FWSk5Pz8vKsNPiiBJmZmQ8fPiz19BawXEFBQUpKSpUqVUr9Ggx15eXlXb16NSQkxEqnln/99ZeXl1e1atVKLnb//v07d+6EhoYGBQWVXNKqp2N3795NS0urWbOmp6enNepHcfLz82/dukUGUItWq71x40alSpWKexRakby8vDzPnz9/5MgREenfv39x0xv3799XZsKrVKly5MiRo0ePvv3227opLg8Pj5kzZ7Zo0WLmzJkrV660tCmW0SWUBw8eFFlAd8NyyRkwNzfXy8vLkidbBgUFdevWrbgwYIYjR46Eh4cz+WF7X375Zc2aNdu3b2+Nyrdt23bnzp2uXbuWXCwjI+Obb775xz/+UepKYr/88ktSUlKpFZrn1q1bGzZsaN68Oaeptvfnn382aNBA+Vk2YFWXLl3y9vYu9WQGqtu0adPDhw+tlMBPnz79yy+/PPnkk6V+kYiLi/Px8Sk1jGvXrm3durVNmzZWmidbsWJF9erVVVzQDEZKSkoKCAioWrWqvQOB60tPT09OTrblbaxQHD16dP/+/Z06ddI9MF5Fubm5K1aseOSRRx5//PGSS27cuPHmzZvGjHrLly+vU6dOu3btVIrxb7Zt25aenm6lwRcluHPnzp07dxo2bGjvQOD68vPzjx492rRpUyY/bOzBgwfffvtt48aNrfSX/u233wYGBpaawE+ePHnnzp3GjRs/8sgjJZdcv359Xl6elUaEEydO/P7775GRkX5+ftaoH8XJzc09fvx4s2bNmIRThVarPXLkiKnXJ729vUX3OLdFixZpi7Fv3z6lzLvvvjt9+nQR2bx5s0GZ0NDQ2rVrF1eDNfTq1atjx44Gb8bGxiqhrlixositPvnkE6XAunXriqv57t27fn5+EyZMUDNcwGmVK1du0qRJVqp80qRJ5cqVK7XYX3/9JSLR0dGllhw6dGjz5s3VCK0Iyi0LO3futFL9AFCWDRw48IknnrBS5b/99puI/PHHH6WWDAgIqFmzZqnFVq1aJSIpKSlqRFeEsLCw999/30qVA0BZtnTpUhG5f/++leoPCgqaPHlyqcXat2/v5uZWarGUlBQRWbVqlRqhFWHYsGHNmjWzUuUAUJZdvnxZRNauXWul+p977rknn3yy1GILFiwo4Tq5vmbNmg0bNkyN0Ipg7bMnwMG5X716VZmUatCgQXGTdbrft/Xv33/nzp0i8thjjxmUadCgwV9//XXz5k3j5wCtQXe72blz54oscOHCBeVFCbccxsfHZ2Vlvfzyy2pHB8BQ9erV79+/n5qaqlaFFy9e5PcrAAADyvMSLl68qFaFly5d8vHxqVSpkloVAgBcQ7Vq1dQdbuR/RzEAAHSqVaumjBGq0Gg0ly9f5noaYCXuumXQi3t62fXr15Wflz322GPt2rVTlnMs/DepPIHp/PnzVgzWCE2aNFEW1Tx8+HCRBY4fPy4iwcHB9evXL66S2NjYyMjI8PBwKwUJQKdTp04isnXrVlVqS0tLU9aWUaU2AIDLqFmzZv369bdt26ZWhVu2bOnYsaM1nicEAHBqnTp12r59u0ajUaW2LVu2+Pv7t27dWpXaAAAuo1OnTsnJycqKTZb7/fff09PTuZ4GWIm77jdtxf3RfvDBBzk5OSIya9YsNze3e/fuubu7F15FVFnRNTMz04rBGsHHx6d3794ismfPntu3bxt8eu3atQMHDohIv379inve28mTJw8cOBATE2PtUAGISL169Zo0abJhwwZVatu8eXN+fn7fvn1VqQ0A4Ep69+69ZcuWvLw8y6u6cePGwYMH+/TpY3lVAAAX07dv35SUlD/++EOV2hISEqKionguMgDAQFRUlJ+fn1rX0xISEsqXLx8ZGalKbQAMuEdERCgzap9//rnBinBarXbChAnKmq3jxo2LiooSkfv37xf5JE/lzeJ+TmdLw4YNE5Hs7OyZM2cafDR16lStVisi0dHRxW0eGxsbFBQ0YMAAqwYJQGfw4MGbNm06e/ashfVoNJo5c+a0bt26Xr16qgQGAHAlL7zwQlpa2pdffml5VbNnz/b29u7fv7/lVQEAXEynTp3CwsJmzZpleVU7duw4duzY4MGDLa8KAOBi/P39+/btu2TJEsuvxitnSQMGDPD29lYlNgAG3GvVqjV69GgRSU1Nbdeu3fbt2+/fv5+enr59+/bOnTtPnz5dRAYPHvzpp58qG/j6+ubn5xeuSLmtWPk9nPGef/75GjVq1KhR46+//rKwJTq9evXq0aOHiMyZM2fZsmW69xcuXLh8+XIR6du3b4cOHYrcNi8vb9WqVS+88AI3mgE2M3r06JCQkA8//NDCelauXHn06NFp06apEhUAwMVERET069dv0qRJDx48sKSev/76a8GCBaNHj65atapasQEAXIa3t/ekSZPWr1//66+/WlKPRqMZP35806ZNuUUYAFCkyZMnp6WlWX7bx/Tp07Oysv7973+rEhWAwtxFZMqUKRERESJy7ty5Hj16lC9fvmLFij169Ni9e7e3t/dHH3309ddf69afrFChgkajKbySj7JkZYUKFUza/e3bt69du3bt2rWCggLLG6OzbNmyqlWrarXa1157rWXLlgMHDnzkkUfeeustjUZTu3btJUuWFLfh5s2bb9++zVqUgC0FBgZOnDhx/fr13377rdmVXL58+f3333/66ae7du2qYmwAAFfyySefpKenv/POO2bXkJeXFx0dHRgYOH78eBUDAwC4khEjRjRs2PC11167d++e2ZV8/PHHf/7556xZs3j+KACgSI888siIESM+/fTTgwcPml3JL7/8Mn/+/LfffrtWrVoqxgZAn7uIBAYG/v777x999FHFihV1H5QrV+7ll18+fvz4pEmT9B+fpkyzXb161aCia9euiUj58uVtEHSpqlWrlpiY2LlzZxFJTEz87rvvzp8/LyLdu3ffv39/WFhYcRvGxsY2bNiwbdu2tosVgMjrr7/et2/fV155xbzvDZmZmX379vXy8lJlkTEAgKtq2LDh3Llz4+Li5syZY14NY8aM+eWXX1atWhUcHKxubAAAl+Hp6fntt99euXJl8ODB5t1wvH79+o8++uif//wntxgCAErw6aef1q9fv1+/fsnJyWZsfvny5QEDBjRt2nTy5MmqxwZA5//fUeXp6Tlp0qTU1NS//vrrp59+OnHixK1bt+Li4h555BGDDZR3lDktfSdOnPD19a1Tp45Ju9+1a5dWq9Vqtao/wyksLOynn35KTEycMWPGu+++O3fu3KNHj27fvr1y5crFbXLjxo1t27a98sor6kYCoFTu7u6rVq2qX79+165dN2/ebNK2ycnJXbp0OXv27Lp16/7xj39YKUIAgGt48803R44c+c9//nP8+PHKo4KNlJ+fP3r06EWLFn366afKyucAABSnWbNmq1at+uGHH3r16mXq7+G++eabIUOGREVFzZgxw0rhAQBcQ2Bg4MaNG/Pz8zt06HDy5EmTtj127FjHjh09PDzWrVtn6hOmAJjEcFmDWrVqde7cuXHjxj4+PkVu0LdvXxH5448/9N88f/78rVu3OnfuHBAQYKVAzdO8efN//etfs2bNGjNmzOOPP15y4ZUrV7q5uQ0dOtQ2sQHQFxgYuHPnzqZNm/bv3/+TTz5RVrgt1fbt2yMiIi5duvTjjz+2adPG2kECAFzAggULxowZM3PmzEGDBt28edOYTc6dO9e5c+fFixfPnTt33Lhx1o4QAOAC+vfvHx8fv3fv3nbt2h06dMiYTe7du/f2228PGTKkT58+69at0z0WBACA4tSqVWv37t3u7u7t2rX76quvjLnRUKPRLF++vF27dv7+/nv37q1evboN4gTKMpPXFu/Ro4ePj09cXFxWVpbuzc8//1xE+vTpo2ZoNhcbG/vMM89UqVLF3oEAZVRoaOjOnTtfffXVCRMmNGzY8L///W9mZmaRJTUazS+//NKtW7cePXpUq1btwIED7du3t3G0AAAn5eHhMWfOnNjY2G3btoWHh0+aNKmExVuSkpLefPPNJk2anDt3bsuWLWPGjLFhpAAA5zZw4MBff/01JyendevWgwcPPnLkSHEl09LS5s2bFx4evnTp0mnTpn377bf+/v42jBQA4MQeffTR/fv3P/nkk0OHDo2IiNiyZUteXl6RJXNzcxMSEpo3b/7qq69GRUXt27cvPDzcxtECZZCnqRsEBQW9//77U6dOff755z/77LOqVasuXrx44cKFDRo0GD58uDVCtI3ffvvt3Llz//nPf+wdCFCmeXt7L1q0aMSIEf/6179efvnlkSNHdu3atU2bNsrv4pOSkubMmXPy5MktW7akpKTUrl37q6++Gjx4MM8qBwCYKjo6umfPnlOmTPnkk0+mTp0aERHRtWvX6tWr5+fnZ2Zmzp8///Lly9u3bz958mRAQMAHH3zwz3/+MygoyN5RAwCcTPPmzU+dOrV48eKPP/44Pj6+Tp06PXv2rF+//q1bt0Rk+fLl165d27t37y+//FJQUDBo0KBp06bVrVvX3lEDAJxMxYoVt27dum3btvHjx/fq1atChQo9evRo1qyZskbl77//fuPGjT///HP79u33799v2bLlzp07u3TpYu+ogbLC5Ek4EZk0aVJaWtqiRYt0j2567LHHEhISfH19VY3NpmJjY6tUqdKzZ097BwJAWrRo8eOPPx47diwhIWHjxo3Tp09Xfnr7yy+/7Nu3r0aNGs8++2y/fv06duzo7e1t72ABAM6qSpUqCxcu/J//+Z+EhIQNGzYsXrw4PT1dRHJyckaPHl25cuWnnnpq/PjxzzzzTHBwsL2DBQA4K29v73feeefVV1/dvn37hg0bNmzYcOPGDY1GIyKvvvpqYGBgy5YtZ86c2a9fP6bfAACW6NGjR/fu3X///feEhITNmzd///33ubm5IrJ06VIfH5/w8PBRo0b169evTZs2bm5u9g4WKEPMmYTz8PBYsGDBm2++uWPHjoyMjGbNmvXo0cOpf4mSkZGxZs2aUaNGeXqac0AAWMPjjz/++OOP//vf/xaR48ePP/7444MGDfrmm2+cOtsAABxN1apVR44cOXLkSBHJysoKCQkJDg6+ePFicQ9IBgDADP7+/s8+++yzzz4rIvn5+cqD4u7fvx8YGGjv0AAArsPd3b19+/bt27dX1nubMWPGBx98MH/+/LfeesveoQFll/lzTo8++uijjz6qYih2tHbt2oyMjOjoaHsHAqBo5cqVExF/f39m4AAA1uPn5+fu7u7p6ckMHADAenQDDTNwAACrUlbUZ119wL64nC0iEhcX98QTT7jMnCIAAAAAAAAAAADsy4lXX6xTp05GRoYqVSUnJ3/88ceqVAUAAAAAAAAAAAA48STc559/rlZVSUlJalUFAAAAAAAAAAAAsBwlAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTMIBAAAAAAAAAAAAKmMSDgAAAAAAAAAAAFAZk3AAAAAAAAAAAACAypiEAwAAAAAAAAAAAFTGJBwAAAAAAAAAAACgMibhAAAAAAAAAAAAAJUxCQcAAAAAAAAAAACojEk4AAAAAAAAAAAAQGVMwgEAAAAAAAAAAAAqYxIOAAAAAAAAAAAAUBmTcAAAAAAAAAAAAIDKmIQDAAAAAAAAAAAAVMYkHAAAAAAAAAAAAKAyJuEAAAAAAAAAAAAAlTEJBwAAAAAAAAAAAKiMSTgAAAAAAAAAAABAZUzCAQAAAAAAAAAAACpjEg4AAAAAAAAAAABQGZNwAAAAAAAAAAAAgMqYhAMAAAAAAAAAAABUxiQcAAAAAAAAAAAAoDIm4QAAAAAAAAAAAACVMQkHAAAAAAAAAAAAqIxJOAAAAAAAAAAAAEBlTjwJl5+fn5ubq0pVOTk5qtQDAAAAAAAAAAAAiFNPwo0aNWr48OGqVFW7du1FixapUhUAAAAAAAAAAADgxJNwN2/evHnzpipVtWjRYv78+apUBQAAAAAAAAAAADjxJJwxCgoKkpKSfv7555MnT2o0muKKRUdHnzlz5v+1d99xTV1vA8BP2EN22BsRQQHBxayACIiyBAQKaivWUapWUAS0FK0WV6s46hZE1IJSTSJqRQQVkWHLEBUEcYAyRDaRmeT9435+vBQ1jNxcDD7fv+K9z3nywEfuSe6555ycnBwiawMAAAAAAAAAAAAAAAAAAABj1ZgdhGMymTExMRoaGhMmTLC3tzc0NNTW1v7UdDc3Nzc5ObnY2FiCiwQAAAAAAAAAAAAAAAAAAABjksBoF8AVXV1d/v7+ly5dwv4pJib2/v37ysrKtWvXZmZmJiYm8vH9Z/RRSEgoICDg9OnTMTExYmJio1EyAJ8RBoORlZVFpVKLiopqampaW1t37dp1/fp1VVVVBwcHNzc3VVXV0a6ROHQ6/caNG1evXi0rK3vx4gVC6Ouvv9bT0xs/fvz8+fPnzp0rKSk52jUCAACvKi0tpVAo9+7de/PmTXFxMYvFMjY2VlNTMzMzc3d3NzExGe0CicNkMrOzs6lUakFBQXV1dV1d3f79+9PT09XU1Ozt7d3c3DQ0NEa7RgAA4FX19fVXrly5ceNGVVXVo0ePEEIzZsxQUlIyMjJyc3OzsbEREhIa7RqJU15eTqFQMjMzX79+XVxczGAwjIyM1NTUZsyY4e7uPnXqVBKJNNo1AgAAT+rs7ExLS0tJSSkpKamqqkIIrVixYt++fVpaWvPmzZs3b56MjMxo10ichoaGlJSUv//+u7Ky8vHjxwghKysrFRUVQ0NDV1dXOzs7YWHh0a4RAIKMzZlwUVFR2Ajcd999V1tb297eXlxcvHDhQoTQxYsXd+7c+WGTwMDA1tbWv/76i+haAficdHR07N69W1lZ2cbG5vTp08LCwpaWlgICAgYGBrq6upWVlatXr1ZXV7e3t8/NzR3tYrmutrb2+++/l5eX9/LySk9PJ5PJ1tbWCCELCwtFRcXs7GxfX18FBYWlS5diH60AAAAMHZVKNTY2NjAwiIqKamtrMzIyUlVVlZWVnTp1and3965du0xNTSdMmHD27Fk2K4qPDV1dXTExMaqqqtbW1idOnBAUFDQ3NxcWFtbT05s4cWJ1dfWPP/6oqak5a9ase/fujXaxAADAYx49euTm5qasrLxs2bLS0lINDQ3sCQ8rKytJSckLFy44OjoqKCj8/PPPbW1to10s1127dm3q1Kl6enqbN29uamoyNDTU0NCQkpKaPn06g8H4/fffp0+fPn78+Li4OAaDMdrFAgAAL2loaFi/fj2ZTHZ1db169aq0tDR2B2nGjBkqKioFBQWLFi1SVFT8+uuvKyoqRrtYristLfXy8lJUVPz2228fPXqkpqY2bdo0hJCVlZW0tPTly5ednZ0VFBQiIiKam5tHu1gACMHiWS4uLra2th8eLysrExAQQAgtXry4/3EGg7FgwQKEkICAwPPnzz9saGpqamdnx61yAfjs0Wg0dXV1Pj6+xYsX37p1q6enBzsuKSkZFRWFva6urj5y5Iiuri6JRPLx8WlsbCSmtpcvXyKEli5dSszbMZnMnTt3iouLjxs3LiIiorCwEDteWFiIEEpLS8P++fjx4y1btkhLS4uIiERGRvb29hJTHgAA8LTy8nIrKyuEkLm5+Z9//tnc3Iwd9/b2trS0xF7T6fRLly45ODgghExMTPLz8wkrT1xcXENDg7C3u3HjhpaWFolE8vPzS01N7e7uxo4rKSlt3LgRe11XV3fixAl9fX2EkIeHx9u3bwkrDwAAeBedTv/uu+/4+flVVVX37dv38uVL7Pjx48cRQq2trSwWi8Fg3Lt3b9WqVYKCgvLy8gkJCYSVZ21tTSKRCHu7Fy9e2NraIoSmT59+9uzZvu9xS5YsMTExwV6/f/+eRqPNmzcPIWRoaJibm0tYeQAAwNMOHTokLS0tKioaHBz84MEDJpPJ+t+NrOTkZCymrKwsOjqaTCYLCQmFhIR0dXURVhtC6PTp08S8XUdHR1BQkICAgJKS0p49e/ruwCckJCCE6urqWCwWg8HIzs5evXq1kJCQnJzcyZMniakNgFE0BgfhNmzYgBASERGprq4ecOrFixf8/PwIoa1bt37Y8ODBgyQS6aPjcwCMbUwmc8eOHXx8fLa2tkVFRQPO9h+Ew3R3dx88eFBCQmLChAklJSUEVEjkIBydTscmzi5fvry2trb/qQGDcJiGhoYff/yRRCI5Ozv33UoGAADwUbdu3ZKVldXQ0EhOTsa+nfbpPwjX58aNG/r6+uLi4hcvXiSmQiIH4fbt28fPz29lZfXPP/8MONV/EA7T09Nz7NgxGRkZLS2thw8fElMhAADwqKqqqqlTpwoLC0dHR79//77/qf6DcH3KyspcXV0RQiEhIcQ8WkfkINzdu3fl5eVVVFQSExMHdL79B+H6pKenGxoaioiInD17lpgKAQCAR3V1dQUGBiKE/P39Kysr+58aMAiHaWlpiYiI4OfnnzVrVn19PQEVEjkIV1NTY25uLigouGXLlvb29v6n+g/C9Xn+/LmXlxdC6IcffuibCQDAmDQGl6M8f/48QsjGxkZZWXnAKS0tLRsbG4TQ2bNnP2zo7+8vJCR0+vRp7tcIwOclJCQkIiJizZo1aWlpxsbGg8YLCgquXr36/v37DAbDwsIC21ZhbOjs7HR0dKTRaPHx8cePH1dUVBy0iaysbExMTHJy8t27d2fNmvUlrGMDAAAjc+XKFScnJwMDgwcPHnh5eQ1lyxlHR8fc3FwbGxsfH59Tp04RUCRhNm/eHBwc/N1332VkZGDLs7AnICCwYsWKnJwcbLHo/Px8AooEAABeVFVVZWZmVl1dnZGRERERISoqOmiTCRMmUKnUX375Zd++fQEBASwWi4A6iZGamjpnzhxtbe0HDx74+voOpfO1s7PLycmZN2/eokWLsLu3AAAAPtTb2+vu7n7mzJmDBw+eO3dOXV190CaSkpLR0dFXr159+PChhYXFu3fvCKiTGLW1tebm5s+ePbt582ZUVJS4uPigTbS1tZOTk3fv3n3kyBFvb+8xvw0B+JKNtUG458+fV1dXI4SmTJny0QDseHl5+YeXOVlZWXd399OnT8PfPPiiHD9+PCYm5tdff42JicGmig4RtkSJvLy8u7v7mPncsHz58ry8vGvXri1ZsmRYDT09PdPT0589exYQEADXEAAA+FBxcXFAQICdnd2tW7cUFBSG3lBSUpJGo/n5+QUFBWVmZnKvQiIlJCRER0f/9NNPR48eFRQUHHpDPT297OxsTU1Nd3f32tpa7lUIAAA8ik6nu7u7M5nMnJwcCwuLoTckkUiRkZEnT55MSkratm0b9yok0tOnT319fc3NzW/fvq2iojL0huLi4snJyYGBgcHBwTdv3uRehQAAwLtCQkJSU1MvXry4evXqYTV0cnK6d+9efX39woULe3p6uFQekTo7OxcsWECn0+/fv49NgBm60NDQhIQEGo22efNmLpUHwKgba4Nw2GJx6NODcBMnTsReFBUVfXh26dKllZWV6enp3KkOgM9OQUHB6tWrFy9evGnTphE0J5PJNBqtoaHhm2++wb22D3H7idSjR4+ePXv20KFDs2fPHkHzmTNnxsXFpaSk7N69G/faAACAp2HfypSVlZOSkoSFhYfbnJ+f/9SpUyYmJt7e3k1NTdyokEglJSUrVqzw9vb+5ZdfRtBcRkaGRqN1dHT4+/vjXhsAAPC6NWvWlJSUXL58WVNTcwTNAwMDN2zYsGXLlrS0NNxrI1hPT8+CBQtkZGT++uuvoUwHHIBEIh05csTCwsLX17euro4bFQIAAO9KSko6ePBgdHS0h4fHCJpPnjw5MTExMzMzMjIS79L+g5jHxDds2PDvv/8mJydPmDBhBM39/f1/+umnXbt2paSk4F4bAJ+DjwzC5eXlBQUFWVhYqKmpycrK2tjYbN++nUvD8kePHg0NDQ0NDW1oaMAlYWNjI/ZCV1f3owF9x1+8ePHhWUdHRzU1tbi4OFyKAeDzFxYWpqKigu2LMDL6+voHDhy4du0alx6QrK2tDQsLs7e3RwjFx8fr6emtX7/+zZs3uL9RW1tbVFSUl5fXihUrRpzEx8dn2bJlO3bsqK+vx7E2AADgdX/88ceLFy/+/PNPGRmZkWUQFRVNSkpqbW2Njo7GtzYM1t3o6+vT6fTKykrudTcIoYiICBkZmbi4uKGsCfZROjo6R44cycjIoNFo+NYGAAA8raioKD4+fuvWrebm5iNOsnPnThMTk9DQUG7cuOzrbrKyslgsFle7mxMnTpSWlp49e5ZMJo8sg5CQUGJiYnd398ieGgEAgLGqq6srPDzc3t4+LCxsxEnmzp0bHBwcExOD7R6Hr77uZt26dQihsLAw7nU3paWlx44d27Rp03DnwPW3detWMzOz0NDQ3t5eHGsD4HPRf4O4vLw8fX39j4bNnDmzs7MT9y3pbG1tsfzPnj0bblsXFxdbW9sBB/fs2YMl/NR+9dnZ2VjA3r17PxqwadMmERGRpqam4dYDAM/Bnu48c+YM+zBJScmoqCg2AQwGY8qUKaampgN2+eZcUlLSR1eRFhUVHbTs4YqKihIUFCwrK2MTg821TUtLYxPz5s0bMTGxtWvX4lseAADwrubmZllZWWyLHTa8vb0tLS3Zx6xfv15ERGTAnuecI7K7ycrKQggdPXqUfZiSktLGjRvZBDCZTHNzcwMDAwaDgWuBAADAw5ydnTU0NDo6OtjEYA8gtra2solJTU1FCJ09exbf8ojsbtrb2xUVFT09PdmHLVmyxMTEhH1MZGSkoKBgeXk5ftUBAABvi4mJIZFI//zzD5sYbGgtOTmZTUxjY6OsrOzixYvxLY/I7obFYnl5eSkpKbW1tbGJSUhIQAjV1dWxicG2Hjh+/DjeBQIw+v4zEy4rK6u0tNTAwCA8PDw+Pj4nJ4dCoZiamiKE8vLyYmJiPjo+91lpbm7GXggJCX00oG/Xjba2to8GLF26tLOzMzExkQvVAfB5iY2NHT9+fEBAAId5+Pj4IiMjCwoK+taDxcWFCxf8/PzodPqHpzo6OpYsWXLmzBm83ovFYsXFxX399dcjmzjfn4qKynfffZeQkDA21vUGAADOUanUxsbGn3/+mfNUERERTCbz/PnznKfqQ2R3gxCKi4tTVVVdtmwZh3mwvYtKSkpycnJwKQwAAHhddXX1jRs3QkNDRUREOEzl4OBgYWGB7xo5BHc3165dq6urw6XzDQ0NFRQUxO6fAgAAQAjFxcW5uLhMmzaNwzwyMjJr1qy5ePFie3s7LoUhwrubxsZGKpUaHBw8btw4DlNZW1vPnj07NjYWl8IA+Kz8ZxBOXl6eQqE8fvx4x44dS5YsMTMzc3d3p9FofHx8CKFLly7h/vY///xzYmJiYmKioqIiLgn7tgkZdBDuU1c3XV3dr776Cv7gwZjX09Nz/fp1T09P7A+cQ/PmzRMXF6dSqZynwtTV1S1btozFdhO4VatW4TWVPj8/v7Ky0svLC5dsXl5eTU1Nd+/exSUbAADwOgqFYmxsrKenx3kqOTk5W1tb3u1umExmSkqKh4eHgIAA59kcHBykpaVx/G0AAABPo1KpLBZrZHvzfMjT0/POnTt4bZxBcHeDEKJQKLq6ulOmTOE8lYSEhKOjI3Q3AACAefnyZVFREY53kDo7O//++29cshHf3Vy5cqW3t3fBggW4ZPPy8srLy6upqcElGwCfj//cfA8ICHB3dx+wO4Wampq6ujpCqKqqakDj7u7uvplnI2NnZ+fr6+vr68v5aHlfSdiLT63e3neczQqzgYGBDx48ePToES4lAfB5ysnJaWpqcnFxwSWbqKiovb09Xh8aEEIxMTGDPgfU0dGxd+9eXN4uNTVVRERkzpw5uGSzsrKSk5O7ceMGLtkAAICnsVis1NRUvLobhJCrq2tubm7fc1ccIri7KSgoqK2txeu3ISgo6OTkhGPnCwAAPC01NXX69Olqamq4ZHNzc+vt7U1PT8clG8HdDULoxo0brq6ueGVzdXUtKiqCu6IAAIAQun79Oh8f3/z583HJZmRkpK2tjdcdJOK7m9TU1MmTJ3O+rBTGzc2NyWRii0IDMJYMPgOGwWDU1tYihLChOExRUZGjo6OoqKiMjIy2tvaxY8e4WONw9A3m9Y3GDdB3XEpK6lNJFi5cOG7cOHyXngDgc4MtTj1p0iS8EhoYGOC4l+yVK1eGEkaj0XB5uxcvXmhra4uJieGSjZ+fX09Pjxs76wIAAM+pr6+n0+n4djdMJrOyshKXbAR3N7h3vvr6+tDdAAAA5sWLFzheYHV1dQUFBfG6xhLc3bS1tTU0NODb+aL/9WIAAPCFe/nypYKCAplMxishjvfTCO5uEN6dr5qamoSEBHQ3YOwZfCWcZ8+edXV1IYSmTp2KHfn333/t7Oz4+PhCQkJkZGQuXbqEzWP95ZdfuFvsEEhISGAvOBmEExcXX7hw4fnz53/77bcB8wKHjslkJicnczhTEPRXVlamqakpLCw82oWMETQajZ+fPz09fdD/5D09PU+ePLl48SL7sJqamrdv3x4+fBiXJbbKysqGEvb8+fOjR49yvqLmnTt3WCzWoD/jq1evsODGxkb2kZ2dndnZ2diu7wAXT58+1dHR6VtSGADuqampERQUxPE71RcOu3KWlZUNeo19/fp1U1PToGHY2inHjh0zMTHhvDyCu5u///6bRCJlZWXl5uayj+zs7Hz69OlQfhutra0HDhzgfAMkgHnz5o2IiIicnNxoFwLGPjqdXldXp6OjM9qFjB3l5eVqamqDXjn//fdfhNDly5dFRUXZR4qJiVGpVDa3DoaO4O4Gm7JWUVExlC84zc3Ng4a9e/cOIXTy5Mni4mIOawMYbKBUS0trtAsBYx+LxSopKTEwMBjxHU4wQGpqKj8//6BXzvr6eoRQdnb2p1Zr69Pe3v748WNc7iAR3N0ghJ48eSIuLj7obyMvLw8hRKPRBu1VRURErl69qqyszHltACHEZDJLS0vhCoCj0tLS8ePHD+v+pKioKGJ9oKGhgUajhYWF+fv7Ozg49G3gERsby2KxmEzmlClTREVFCwsLsfje3l4HBwd+fv5Hjx59mI17XFxcbG1tBxzcvXs3Vm1mZuZHW124cKH/j/MpAQEB6urqnJT36tUrXIYiAAAAAAAAAAAAAAAAAAAAAM/5/1Gijo6O2NjYY8eOYWNpH4bOnDkTIVRYWFhUVLRmzZq+DX75+fl37do1derUXbt2nTlzhpi6P6XvufWKigpra+sPAyoqKrAX0tLSn0rS0tJy6dKlkJAQTirR0NBobm7+1IQ8MAI9PT0wCQZHR48e/emnn7AJH+wjNTU1g4KCwsLC2Ift379/x44dNTU1uDxbYW1t/eTJk0HDdHV1sadpOLR06dKamppBt9V59OjRrFmzLl++bGNjwz7Sz8+vq6vr8uXLnNcGMN3d3UJCQqNdBfgi9Pb28vHx4fJUIEAIlZeXm5mZJSUlOTg4sI/89ttva2trB70UP3z40NbWlkqlfvXVV5yXR3B3c+bMmXXr1lVWVg66HbK+vr6fn9+WLVvYhx07dmzTpk01NTVwhcRLb28vPz8/PCgKiAEfb/BlbGzs6ur666+/sg8b+qVYT09v8eLFkZGRnNdGcHdTVVU1ZcqU+Pj4QbeFCwoKevz48Z07d9iHPXv2bObMmYmJiY6OjpyXBzBwBQCEgftp+AoODs7Ozs7JyWEfNvRL8apVq54+fZqRkcF5bQR3NwghMzMzS0vLffv2sQ+7cOEC9mPKy8uzj5wyZcr8+fOjo6NxKQ8guALgbQS/T4G+qVqPHz/29PTEpqwaGxv7+fkZGRlNmjRJSUnJ3t4+Jydn3Lhx2CLg2J0RJyen/olMTU3l5eUzMzPx+VE4YGxsjL341PTbvkG4yZMnfypJYmJiR0fHt99+y2Ex4uLi4uLiHCYBgEt0dXWZTGZ3d7eCggL7SBKJJCIiIiMjwz6sublZSUlJVlYWl/K8vLyG8rnB29t70MKGQlNTs6ioaNBUkpKSCCEJCYlBI+vr6ydPnoxLbQAAwNP09fURQm1tbYNeEoWEhAQEBAYNo9PpCKGJEyfico0luLvR1dVFCHV0dPTfa/mj+Pj4htL5trS0kMlkRUVFzmsDAABep6am1tDQMOiVE9sHWlpaum8zi4/q7u5uaGjQ1tbmxe5GXFycRCK1trYOpfPl5+cfYuerp6cHX3AAAEBLS4tCoQx6PWxtbUUIiYuLDxr57t07NTU1XuxuEELq6upD6XyxO+TS0tLsI1ks1tu3b7W0tKC7AWMMH0Koqalpzpw5ZWVlkyZNyszMLCoqioiIcHFxwXbfKSwsRAhNnz4deyQ8LS0NIWRkZDQg0cSJE1++fFlbW0v0T/BfhoaG2JYY2DrvH8JWMJeRkZkwYcKnksTGxtrY2GB3SQAYq7B9Uwd9cmfocnNzcdyLde3atYOuEy0hIREcHIzL2xkYGFRWVmJ7J3Cura3tyZMnOP42AACAd0lKSqqqqg66BdrQ5eTkiImJaWpq4pKN+O4GfcadLwAA8DQDAwMcu5u8vDwWi4VdtzlHcHcjJCQ0fvx4fDtfLCdeCQEAgHcZGBi0tLSUlpbikq2npyc/Px+vj/QEdzcIIQMDgwcPHgy6790QFRQUdHV14dX5AvD54EMI7du3Dxs8++uvvwYs4VhcXNzZ2Yn+txYl+t8Gv6qqqgMSaWtrI4TKy8u5XzM7wsLC2CTfO3fuYBtg9vf69Wtssq2Hh8enFpl5/PhxXl5eYGAgt0sFYHRNnjx5woQJVCoVl2zV1dW5ublubm64ZEMIkcnkhIQENsvB8fHxxcfHDzqNb4jc3NxYLNaVK1dwyXb9+vWuri4cfxsAAMDT3NzcqFQqXl/MKBSKk5MT9tAV5wjubnR0dAwNDfHqfBsbGzMzM6G7AQAAjJub26tXr7DHiDlHoVCkpKRmzZqFSzaCuxuEkJubW0pKSk9PDy7ZKBSKnZ0dti4IAAB84ebOnSskJITXR/rbt283Nzfj9ZF+VLqburo6vJ4ypFAoYmJic+bMwSUbAJ8PPoTQgwcPEEJ8fHwqKioDTm/duhV70TcI19LSwsfHx8/PPyBSVFQU/W+NgtG1ZMkShFBnZ+euXbsGnNq2bRu23d3SpUs/1Tw2NlZCQsLb25urRQLwOXB1dU1JSWlpaeE81Z9//okQwvc+oKurK41G++j6ljIyMhQKZcGCBXi9l4qKyvTp08+dO4dLtvPnz+vq6rJZ8xYAAL4oHh4eb9++xVZT4FBxcXFxcbG7uzvnqfoQ2d0ghDw8PG7cuPHu3TvOUyUmJvb29uL72wAAAN7l6OgoJiaGy0f67u7u5OTk+fPn47hlF/HdTXNz87Vr1zhPVV5e/uDBA+huAAAAIyUlZWtre/78eVyeMjx37pyCgoKFhQXnqTAEdze2trZSUlK4dL4MBiMpKQnrzTnPBsBnhQ8hhD0bxWQy16xZ8/TpU4RQV1dXamqqra0tjUbD4voG4VpbW/t2kusPO9je3j6st/fx8VFXV1dXV3/58uXIf4j/cnFxcXZ2Rgjt3bv3xIkTfcf/+OOPkydPIoTc3d2/+uqrj7bt6elJSEjw8/ODv3bwJVi9enVHR8eHw9XD1dLSsnPnTj8/vw/nyHJo/vz5FRUV0dHR5ubm8vLyZDLZzMxs27ZtFRUVg25sO1zBwcF37969fv06h3lyc3NpNFpISAguVQEAwBgwZ84cExOTsLAwzr+mhoeHq6qqLly4EJfC+hDZ3Xz//fcsFmv79u0c5qHT6du3b/fw8IDFwQAAACMmJrZixYpDhw5VVlZymOrw4cOVlZVr1qzBpbA+RHY31tbW5ubmERERvb29HKbatGmTnJxcQEAALoUBAMAYEBwc/PDhw8TERA7zlJSUnDt37scff/xwugsniOxuhISEfvjhhxMnTjx79ozDVKdOnSorK1u7di0uhQHweWGxWHv27Ol/RExMDFuqUVJSEts1UVFRkfU/ZDKZj4+P9YHly5cjhFJSUj48xYatrS32ps+ePRtWQxaL5eLiYmtr+9FTr1+/VlZWxjJPnTrV29u7bwc4LS2tmpqaT+W8dOkSQig7O3u4xQDAo9auXSsmJlZRUcEmRlJSMioqik1AcHCwkJAQ+ySfPyaTOW3aNENDw46Ojk/FYIvbpKWlfSqgp6fH3NxcT0+vu7ubO2UCAABPunr1KkLo9OnTbGK8vb0tLS3ZBGDPSZw6dQrv6ogWHh4uJCT05MkTNjFKSkobN25kE7B582YBAQH2SQAA4EtTX18vJSXl7+/PJub48eMIodbW1k8F1NXVkclkX19fLhRIqPT0dITQkSNH2MQsWbLExMSETcDt27dJJNLBgwfxrg4AAHjb7NmztbW12fQm2IST5OTkTwUwGAxHR0dVVVU6nc6dGgnS3NxMJpM9PDyYTOanYhISEhBCdXV1nwpoaGhQVlbGNosBYOzhQwitW7cOmzqG6ejoMDY23rp1K3ZLHfWbBocQkpaWZjKZHy4s3tXVhZ3lcFAQF6qqqvn5+bNnz0YI5efnJycnY5vVOTk55ebmKikpfaphbGysvr6+ubk5cbUCMKoiIyNlZWXd3d3b2tpGluHChQsxMTHh4eE6Ojr41kYwEol04MCBp0+fYo8UjExISEheXt6BAwcEBQVxrA0AAHjdvHnz3N3dg4KC8vPzR5ahoqJi0aJFVlZW33zzDb61EQ+bz+fh4dHU1DSyDDQabceOHevWrYNNywEAoD8ymRwdHX3+/PkDBw6MLEN3d7e3tzeTydy5cye+tRHPzs7Oz89v3bp12dnZI8tQVVXl6+s7derUlStX4lsbAADwupiYmLq6On9//xGv9rFly5abN2/u27eP19djk5KS2rNnD4VCGfFSW729vb6+vnQ6fcBMIQDGDAGEkICAwLVr1x4+fPj27VslJSV1dXUpKSns9Id7vGHDbFVVVQNuuL9+/Roh1NdwiDIyMkZa+SCUlJRu3bpVUFCQmppaX1+vpqY2e/ZsY2NjNk1qamquX78+Bj5qAzB0ZDKZQqHMmjXLx8cnOTkZm/w6dBkZGUuXLnV1dY2KiuJShUSytLQ8dOjQypUrNTQ0tm/fjs0JHrrff//94MGDu3btcnJy4lKFAADAuxISEiwsLNzd3dPS0iZOnDistm/evHFzcxMTE/vrr7/wXaplVEhJSdFoNEtLS09PTyqVKikpOazm9+/fX7Rokb29/Y4dO7hUIQAA8C7sgY/169erqKgMd6/37u7uwMDA7Ozsa9euaWlpcadAQp06derp06eenp5paWnD3bK6rq7Ozc2NRCJRKBR4xBAAAAYwMjKKi4vz8/Nbu3bt/v37h/sl5eTJk9u3bw8PD8d9pf1R8e233+bn52/evFlNTW3RokXDatvb27tq1ar09HQqlaqnp8elCgEYXXx9r4yNjefMmWNoaMh+IA37Y8AmlvX36NEjERERbW1tblQ5YqampmFhYb/99tu6devYj8AhhM6cOUMikRYvXkxMbQB8JqZNm3bu3Lnbt29bWVm9evVq6A2PHDni5ORkYmJy9uxZPj6+wRvwghUrVmzatCk6Ovrrr79+//79EFt1d3cvX758w4YNQUFBGzdu5GqFAADAoyQkJGg0moCAgLm5eWpq6tAb5ubmzpgxo6GhgUajKSoqcq9CIhkaGiYlJT148MDCwqKiomLoDePi4mbPnq2np5eUlPTRfZoBAAAcPnzY0dHRx8dn+/bt2Oo+Q1FfX+/g4JCUlHT06FEHBweuVkgYMTExKpUqISFhYWFx5cqVoTcsKCiYMWNGVVUVlUpVU1PjXoUAAMC7fHx8du3adfjwYXd399bW1iG2YjAYISEhy5cv9/f353yj6M/H3r17PTw8lixZsnnz5qHPDmxsbJw7d25cXNyBAwdcXFy4WiEAo2jY983d3d0RQjk5Of0PlpeXv337dvbs2cOdRvNZiY2NnT9//pi5uQPA0Hl4eNy/f7+xsdHQ0HDLli0dHR3s4588eeLj4xMUFOTt7Z2WliYhIUFMncT49ddfz507R6VSDQwMjh8/PuhHh7S0tBkzZsTFxe3cufOPP/4gpkgAAOBFOjo6//zzj6mpqbOzs4+PD7ZNAhsNDQ3h4eE2Njby8vI5OTkmJiZEVEkUZ2fn+/fv0+n0KVOmhIeHD/q9vbS01MfHJzAw0M3N7e7duzIyMsTUCQAAPEdISIhGo23cuDEyMtLCwuLu3bvs43t6eo4fP25sbFxYWHj58uVly5YRUycx1NXVc3NzzczM3N3dfXx8nj9/zj6+qakpPDzc0tJSVFQ0Kyur/+4kAAAABggNDb1w4cLt27cnT558/PhxBoPBPj4tLW3mzJkxMTFhYWEJCQlj5ol2hJCAgEBycvKOHTt27Nhhbm4+6Op3TCbzzJkzhoaGubm5ly5d+uGHH4ipE4BRMew/dWdnZ2Fh4bi4uP636bH11t3c3PAsjVhZWVllZWWBgYGjXQgAo8PU1DQ3N9fb23vbtm26urrr16+/e/fugE8P9fX1sbGxbm5uRkZGOTk58fHx58+fFxUVHa2aucff3z8rK0tbW3vlypWmpqbR0dGPHz8eEFNeXr5nz56ZM2c6ODiIiorevXs3LCxsVKoFAAAeIicn9/fff2/fvj01NXXSpEmLFy9OTk5ub2/vH9PZ2ZmSkrJ8+XIdHZ2DBw+uX7/+/v37Y2NZsAGMjY3z8vL8/f1///33iRMnrlu3LiMjo7e3t39MQ0NDfHz8ggULDA0Ns7KyTpw4kZSUxOv7RgAAALfx8/Pv3LmTQqE0NTXZ2NjMmTPnyJEjb9686R/DYrHy8vI2bdqkr6+/atUqKyurgoKCMfkYvoyMzPXr13fv3n3r1q1Jkyb5+/tfuHBhwMMfXV1d169fX7Vq1fjx4/fv37969ep//vlnuMtHAwDAF8jb2zs3N9fQ0HDlypVGRkZbt24tLCwcEPPixYuYmBhra2sHBwcGg3Hz5s2dO3cOdw+Uzx+JRAoLC0tJSaHT6bNnz7azszt06FBlZWX/GBaL9e+//0ZGRurr63/zzTczZ87Mz8/H5vwAMIaRhr44Q5+ff/5527ZtLi4u+/fvV1ZWPnLkyIYNG/T09AoLC0VERLhR5Ue5urq2t7fjtavcsmXLrl69+vr1a1jYB3zhiouL9+zZk5KS0tTUxM/Pr6ioWFtbKykpyWQyse9ppqamixYtCgoKIvLvfbSkpKT88ccfGRkZXV1dwsLCsrKyNTU1SkpKzc3NnZ2dgoKCNjY2K1eu9PLyGnsfngAAgKsaGhp+++23CxcuYI/kk8lkOp3OYDBkZGTq6uoQQmpqal5eXqGhoaqqqqNdLNeVlJTs3r37ypUrDQ0N/Pz8CgoKb9++FRcXJ5FILS0tCCFjY2N/f/81a9bA8BsAAAxLT09PbGzs6dOn8/LymEymuLi4qKjou3fvVFVV375929PTM27cOGdn55CQEHNz89Euluuampr27duXmJiI7TAiJyfX2dnZ3d0tJydXV1fHYrGUlZU9PT03btyooaEx2sUCAACPSU9P379//82bNzs6OoSEhMhkcnV1tYKCQnt7+/v37/n5+a2trZctWxYQEDCWJsB9FIPBiI+Pj42Nzc7OZjKZYmJi4uLi9fX1qqqq9fX13d3d4uLiTk5OwcHB1tbWo10sAEQYySAcg8H48ccfDx8+3NfWyMiISqUSvCEcjoNw7e3tysrK33///e7duznPBsAY0Nvbe+fOnYcPH75+/RrbGXXmzJnq6upz5szR1NQc7eqI1tbWlpqaWl5e/urVKxqNNnfuXB0dnQkTJjg4OMBqYAAAwKGHDx/eu3evuro6PT39/fv3zs7OKioqFhYW06ZN+9Keb2AwGJmZmYWFha9fv75y5YqmpqalpaWqqqq9vb2Ojs5oVwcAALytpqbm5s2bL1++fPToUW5urqenp5qa2qRJk+zs7L6EhwsHePLkyZ07d2pqajIyMlpaWubNm6eiomJmZjZjxowxf2sYAAC46v379zdv3nz69GllZSWFQrGzs9PT09PV1XVwcCCTyaNdHdHq6upu3rz5/PnzkpKSe/fuYZ2vgYGBvb39mFxYC4BPGckgHKakpCQ1NbW9vd3ExMTZ2Zn4D2o4DsLFxcUFBgY+efLEwMCA82wAAAAAAAAAAAAAAAAAAADgCzfypRcNDAzGzJBVXFychYXFmPlxAAAAAAAAAAAAAAAAAAAAwOji4f3PtLW129vbcUlVXV29fft2XFIBAAAAAAAAAAAAAAAAAAAA8H9XnUV2pAskwQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "oracle.circuit.draw(output='latex')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As seen, the $v_i$'s correspond to the 3 input bits; the $o_0$ is the oracle's output qubit; the $a_0$ is an ancilla qubit.\n", - "\n", - "Let us first compute the groundtruth $\\mathbf{a}$ classically:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The groundtruth result bitstring is 110.\n" - ] - } - ], - "source": [ - "a_bitstr = \"\"\n", - "num_bits = math.log2(len(bitstr))\n", - "for i in reversed(range(3)):\n", - " bit = bitstr[2 ** i]\n", - " a_bitstr += bit\n", - "print(f'The groundtruth result bitstring is {a_bitstr}.')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next we can create a `BernsteinVazirani` instance using the oracle, and run it to check the result against the groundtruth." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The result bitstring computed using Bernstein-Vazirani is 110.\n" - ] - } - ], - "source": [ - "bv = BernsteinVazirani(oracle)\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "result = bv.run(QuantumInstance(backend, shots=1024))\n", - "print('The result bitstring computed using Bernstein-Vazirani is {}.'.format(result['result']))\n", - "assert(result['result'] == a_bitstr)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The result bitstring computed using Bernstein-Vazirani is 110.\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {\n", - " 'name': 'hiddenstringfinding',\n", - " },\n", - " 'algorithm': {\n", - " 'name': 'BernsteinVazirani'\n", - " },\n", - " 'oracle': {\n", - " 'name': 'TruthTableOracle',\n", - " 'bitmaps': [bitstr]\n", - " },\n", - " 'backend': {\n", - " 'shots': 1024,\n", - " },\n", - "}\n", - "\n", - "result_dict = run_algorithm(params, backend=backend)\n", - "print('The result bitstring computed using Bernstein-Vazirani is {}.'.format(result_dict['result']))\n", - "assert(result_dict['result'] == a_bitstr)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/chemistry/H2/.ipynb_checkpoints/w8_02-checkpoint.ipynb b/qiskit/chemistry/H2/.ipynb_checkpoints/w8_02-checkpoint.ipynb deleted file mode 100644 index 3b9c29e80..000000000 --- a/qiskit/chemistry/H2/.ipynb_checkpoints/w8_02-checkpoint.ipynb +++ /dev/null @@ -1,338 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Experiment with classification problem with quantum-enhanced support vector machines*_\n", - "\n", - "This notebook is based on an official notebook by Qiskit team, available at https://github.com/qiskit/qiskit-tutorial under the [Apache License 2.0](https://github.com/Qiskit/qiskit-tutorial/blob/master/LICENSE) license. \n", - "The original notebook was developed by Vojtech Havlicek[1], Kristan Temme[1], Antonio Córcoles[1], Peng Liu[1], Richard Chen[1], Marco Pistoia[1] and Jay Gambetta[1] ([1]IBMQ)\n", - "\n", - "Your **TASK** is to execute every step of this notebook while learning to use qiskit-aqua and also understanding how this SVM implementation can be used for classifying breast cancer analysis." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "Classification algorithms and methods for machine learning are essential for pattern recognition and data mining applications. Well known techniques such as support vector machines and neural networks have blossomed over the last two decades as a result of the spectacular advances in classical hardware computational capabilities and speed. This progress in computer power made it possible to apply techniques, that were theoretically developed towards the middle of the 20th century, on classification problems that were becoming increasingly challenging.\n", - "\n", - "A key concept in classification methods is that of a kernel. Data cannot typically be separated by a hyperplane in its original space. A common technique used to find such a hyperplane consists on applying a non-linear transformation function to the data. This function is called a feature map, as it transforms the raw features, or measurable properties, of the phenomenon or subject under study. Classifying in this new feature space -and, as a matter of fact, also in any other space, including the raw original one- is nothing more than seeing how close data points are to each other. This is the same as computing the inner product for each pair of data in the set. So, in fact we do not need to compute the non-linear feature map for each datum, but only the inner product of each pair of data points in the new feature space. This collection of inner products is called the kernel and it is perfectly possible to have feature maps that are hard to compute but whose kernels are not.\n", - "\n", - "In this notebook we provide an example of a classification problem that requires a feature map for which computing the kernel is not efficient classically -this means that the required computational resources are expected to scale exponentially with the size of the problem. We show how this can be solved in a quantum processor by a direct estimation of the kernel in the feature space. The method we used falls in the category of what is called supervised learning, consisting of a training phase (where the kernel is calculated and the support vectors obtained) and a test or classification phase (where new unlabelled data is classified according to the solution found in the training phase).\n", - "\n", - "References and additional details:\n", - "\n", - "[1] Vojtech Havlicek, Antonio D. C´orcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta1, \"Supervised learning with quantum enhanced feature spaces,\" [arXiv: 1804.11326](https://arxiv.org/pdf/1804.11326.pdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from qsvm_datasets import *\n", - "from qiskit.aqua.utils import split_dataset_to_data_and_labels, map_label_to_class_name\n", - "from qiskit.aqua.input import get_input_instance\n", - "from qiskit.aqua import run_algorithm\n", - "\n", - "# setup aqua logging\n", - "import logging\n", - "from qiskit.aqua._logging import set_logging_config, build_logging_config\n", - "# set_logging_config(build_logging_config(logging.DEBUG)) # choose INFO, DEBUG to see the log" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### [Optional] Setup token to run the experiment on a real device\n", - "If you would like to run the experiement on a real device, you need to setup your account first.\n", - "\n", - "Note: If you do not store your token yet, use `IBMQ.save_accounts()` to store it first." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit import IBMQ\n", - "IBMQ.load_accounts()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we prepare the dataset, which is used for training, testing and the finally prediction.\n", - "\n", - "*Note: You can easily switch to a different dataset, such as the Breast Cancer dataset, by replacing 'ad_hoc_data' to 'Breast_cancer' below.*" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAAD8CAYAAABaQGkdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAFcVJREFUeJztnW+oZVd5xp8nk5FJZm4c8E41OjFTaRElUJNcAiWQWLU2raHphxYMGOjEOF/aELEgWijDfChtv4iBhtLrTKaRRkUSQ0qQaECTNKWO3omxJpkoEhIyHWVyK4MzVckf336456Qn23P2Xnuvv3ud5wchc2b2Wfs9a++1nne9611r0cwghKiT83IbIISIhxq4EBWjBi5ExaiBC1ExauBCVIwauBAVowYuRMWogQtRMWrgQlTM+TEKXdmx3d60ssOrjNXVlc5rNjfPDv7+7Hef3zz3un+7dHVXFJtyldenjCG0/Q6Xe7va3XxOwOJn1Vb2kPoI8axcynAt63/O/hJnf/kyu8qJ0sDftLIDB2+40quM/bdc23nN0cOPDP7+7HdvPvL6chbZ7mtTrvL6lDGEtt/hcm9Xu5vPCVj8rNrKHlIfIZ6VSxmuZR26/7hTOVEauA+pGva8lyWWTUPKE/9fT211O32Od3709XXaVscu5Q6hq9zZv0/1DmgMLkTFFKfgbfj0uC7fbarA2IntmrsQSy1D0Me26TUuyutSbqr6kIILUTFq4EJUjJOLTnI3gMMALgNgAG42s/+MaVifwEqfgEXo4FpshriRqenjvvp8f3YI1ec5dpEr6JYC1zH47QAeNLM/JfkGABdGtEkIEYjOBk7yIgDXAPhzADCzlwC8FMugeb1ds7fuEwxzmRbrM8WSi6ZNJQatYpFKCWfruJb6dRmDvwPAiwCOkvwuycMkdzYvInmA5AbJjXO/eDm4oUKI/ri46OcDuALArWZ2jOTtAD4F4G9mLzKzdQDrALBvz4r3To4uY6wSlXYZWJRc0pbI0WfqaMhzbdrkGxcI6TEN8UBCxRhcFPwkgJNmdmzy+R5sNXghROF0KriZ/YTkCyTfaWY/APB+AE+HNsSlxwo59p5X1jJ7BEMUa5GS+9JU33m2TO8ZMpreRoh3I8cY3zWKfiuAuycR9GcB7I9nkhAiFE4N3MyeALDWt/BYvavv6qU+5XVRS7S1SR+1ia3kNdI1Lg/loSiTTYiKibLY5PnNc0HVO2TGWm0LSlIwJAq8KIqdOrsrxxLNPsTOb5CCC1ExauBCVEyx68GHTIn1wdddC7E2vUSX0YVFAaDZz7mGQrECfqloDmF8F9hIwYWomOIU3DcBJWZwzWUJa8j79bVhTLRNw8WaXh2T5zQvGDlk6kwKLkTFFKPgQ5ZsploK2ke5XRiDgoSiRNUs0aZFzPN07vzotc7bJkvBhaiY7AoeS7mblKDcY6dPkkqfaPaiyLFPHbvcf0xKDgxLEpKCC1Ex2RTcR7mHlO+C66IKX8amHLUztuex/5Zrccd//NDpWim4EBWjBi5ExSR30UO45qGnxRa55kNc8rGmSMZ2U13Kz72P+Lz75torINRzkIILUTFRFdwn7bTt/O4Q93HZf70PY1Xu2Pgs/gg5XTbUhlwBuFDehBRciIqJouCXru7CwRuufO1zn56nTxLL2JV7bNMzTWLtbJp7LD6PEp7VbH1sbp51+o4UXIiKiToGDx0hnxI7Eu9C6jF3SWrmwxAlTL0HehslKHkfpOBCVEy2VNUxKvdYIuWpNp8Q7QxZnNPGkOcoBReiYpwUnORzAM4CeBXAK2bWesrJ6uqK88kYfXquIdH4Pvfpun+phBybjm2MmYs+9eSi5IviDL7vXh8X/ffMbNPrbkKIpMhFF6JiXBXcAHydpAH4ZzNbd/nSENfcd1fV2lzzMUyPpUp48d0jPAZ9jkZyGbaGfudcG/jVZnaK5G8AeIjkM2b26OwFJA8AOAAAb3/LG4MaKYQYhuvxwacm/z9N8j4AVwF4tHHNOoB1ANi3Z8VclWdRj+Wj2sA4lNsnkJVTwUKkkpZ+KOAQhgTemt8NTecYnOROkivTPwP4IIAno1gjhAiKi4K/GcB9JKfXf8HMHvS9cYj9yudR+yYNpYw955FyjFxS+moIYi2w6WzgZvYsgN8JelchRBKy74ueekucsah1iJ48529Nde8uJe9jR6idfX2ShUIruebBhaiYbAoeS7nHoNBDfnuqsWYtEe1Y9FHYEpRcCi5ExaiBC1ExyV10uYCLyZmWWkJAyOc+zaHZkCHN0LTTtnJmP/vU8bxyXZCCC1Ex2afJhhDaC0ilnIvsznlMcS6PKvZ9fYOtoVQ3JDo+WAjxOkap4KIdF/UKqTJ9lMXnvr7j0SGUuMONjg8WQgBIpOAl9X45KCWxJfZzSPmcU59+0rzPWN5pKbgQFZP9ZJNaCbVwQbQTUsn7nDsf+izxWEjBhagYmlnwQtfe9VbbOPqx4OXGJoQK+G41NSXGxhUlKkxoQnlFrvXfVucx63tt/+ewceIUu66TggtRMWrgQlSMXPQ5DHHzQrjmsY40XgbXvA99nm/IoVLI5yAXXQihVNV5uEy9SBXHS59FP0OWoQ5R/VjvkxRciIqRgrcglV4uXDZx8NlYYt610/JipcJKwYWoGCl4QmJFz8Xiug2lhIvOEpsXMR+i6rFSYaXgQlSM8zw4yW0ANgD8t5ld33bt2OfBY5F6/rtJTTEFn5TUWPXQZZPLc3Z9lofuP47nXjwbdB78NgAnelwvhMiM0xic5F4AHwLwtwA+EdWiCill7D22M7ljLaeNFbHuml/PceqOq4J/FsAnAfxq0QUkD5DcILnx4pmfBzFOCOFHZwMneT2A02Z2vO06M1s3szUzW9uz+8JgBgohhtMZZCP5dwBuAvAKgB0ALgLwFTP7yKLv7NuzYgdvuNLLsDG4kG2k3Os8hOtXUn2XsNNN7Prw/Y3Bgmxm9mkz22tm+wB8GMA32hq3EKIcik10GcueV01ynlLiQwm7hoZU7j51Pc8DSpU4E9tb6dXAzexhAA9HsUQIEZwoGz6QXFioz3ixRAV36YFjK3eq6ZdcCSJ9KDG+EYMYiS5CiJGRXMGnDOkZS1LwEGmJPuRUlhJPdy0xvtHnGQ2x38yk4EIsM8mj6KWOaVwoYbxdAiEi7iXMdcemhHdBCi5ExaiBC1ExUYJsIVJVXUgVdCvJNS95iFPjgYsluNmLUJBNiCVn1Ao+JWcCRs3TYT702Xt8zORUeCm4EEtOsYtNlpGcar1od8+hjEmpfab52uqrhPG7FFyIihm1gpeQujrtwUOeQpmSpt2hlXzKon3FcxDivQn97sVSeym4EBUzSgUvQbmblKDGJbLoWc37+zGN213o47X0fX8O3d+6ReJrSMGFqJhRKXiJyh2SPr+vdLUb8qxSjdOn5aZ+n3J4LVJwISpGDVyIihmFi16bax5rmmaIu1dycDC2y57LVU+JFFyIiilWwce+L/csNSvELLF/Z6wg1Vj34HdBCi5ExYxquWiIXjXV9FJOBcg1hVaC6sX+7aXsDR9sX3SSO0h+m+T3SD5F8lAvS4QQ2XA5XZQAdprZOZLbATwG4DYz+9ai76Te8KEkSlCxKcvgrTRJ7b3k2iPeVcE7g2y21QOcm3zcPvkvvF8vhAiOUxSd5DYAxwH8FoA7zOxYVKsCkGv55jLMrZZMqlM7p8zeJ2R+Qyj7naLoZvaqmb0HwF4AV5G8rHkNyQMkN0hunPvFy0GME0L40WuazMzOYOv44Ovm/Nu6ma2Z2dquC7YHMk8I4UOni05yD4CXzewMyQsAfADAP4Q2pIT9q5o2lJzG6UJsd1XDkPLrwGUMfjGAuybj8PMAfNnMHohrlhAiBC5R9P8CcHkCW4oj1v5kqUkdeFoGxrIXv1JVhaiY4lJVSxiLTwml3CWP03xUvcTfFdpLif0b+9jbbBs62USIJSeKgpNcWKiPKo7pBM8S1a0PYx+vl17/XfXr8q5LwYVYcpIr+JRYkencJ4yUrhw+jEHVS67/0BFyKbgQS062LZtizTGnnrMuWTFCIeUeL1JwISpGDVyIiil2V9VZfA5oj4Vcwn70CR6NPTXYB5/jqOchBReiYrIreKoD56eMIWBUAz4K1OedqNWT6vrtOj5YCJEv0WURbT1XKXtSA/Uqx5QhdRJq3LgMyu3rSQbbF10IMV6KU/ApY1HyKWNXlCk5lXvKMii4L2v7P4eNE6ek4EIsM1E3fEjVs+c6XaKNsSqMzwYEvnQp91jrNAZScCGEGrgQNRM10WWeyxUiAaJZfokHuJdoUxslJwDlSFUu+Vn1QQouRMUUs6tq7CSJPj3yMh276/Nb9czycPTwI0p0EUJEUvC1d73VNo5+rPWaELtKujCGpYc5VCGE4vk8o1CJTLljB7mSroIpOMlLSH6T5AmST5G8rYedQoiMuETRXwHwV2b2OMkVAMdJPmRmT/vceEjPN0QxxnBi6LS3LmF8F4vQ6ae5lXvKrB0lbkzSqeBm9mMze3zy57MATgB4W1SrhBBB6DUPTnIftk4aPRbDmFlcesMQig6UqeoxCK0WLtsLhVTuUlQ7BKl+i3MUneQuAPcC+LiZ/WzOvx8guUFy48UzPw9poxBiIE5RdJLbATwA4Gtm9pmu69vmwUOOM+f1giGi77XurV6SAo5xvD2PWL+jy9MMGUUngCMATrg0biFEObi46FcDuAnA+0g+MfnvjyLbJYQIQGeQzcweA9DpCriyyE0Z4qZOvzNbZoh9pWPt9JqLElzc2qYAQ7vmi95X33dQqapCVEz2fdGnNHu5Pj1kqim1VHu310RtvzGVcodCCi5ExWRX8EXjXd8UwOb4PPSZT+LXqU2tZwmh3DnOZ5OCC1Ex2RW8qazzei6fxRghlXz2O7VE2F2oWZm7SK3coZGCC1Ex2RV8iosixlBywL2HlWovDz4LYIYodqx3SwouRMWogQtRMcXsqjoEHzeyLQkh1S4wqd3gtt88Bpc8ZcptV32kcs3n2aFdVYUQADIqeLNnSn10rxZg1EHI59j2PGInr/R9F3T4oBAi/TTZop7KpQfzWZAilpM+yUmhF4eEVOyhSMGFqJgoCr66uhKlh0qt2LE3fliG/dBzMU9pfZ6nj3LnfL5ScCEqpphU1ZJo9tZDev5l3n89BakWdnSVN++ZluSRScGFqBgpeA9KXS6qsXx4hmyCWGL9S8GFqBg1cCEqRi76QIYsSAk57TYvyFS7q95ngdAQ+gRGQ6dHx3pmUnAhKmZpFXy2xwyxYMFHQfoor4uttSv5LKGOkG4SQrldnlXsZ+Ry+OCdJE+TfDKqJUKI4Lgo+L8A+EcAn49ryvJQ29lnsYm9tDfU1FcJS5CbdCq4mT0K4KcJbBFCBCbYGJzkAQAHAODtb3ljqGKzoFNQhuF7Gk0fQjybEMrtsnVTqHTW2Xttbp51+k6wKLqZrZvZmpmt7dl9YahihRAeRImib26exdHDjyxFFLcEFilGqmh6rDn50GPaIRscLmJqW5sn4bNsNNRv1zy4EBXTqeAkvwjgvQBWSZ4EcNDMjrgUvkzzsUMYezS9xKhxE5e6Da3cIcoPRWcDN7Mbg95RCJEMuehCVEyUINvzm+dw85FHfi3YA8hdD0Wbi+jj+s9zEUPuYT/Uhr7kdM2n9w6VeuyDFFyIiom62GSekowp8DYk4cUnSSaWp+NS521KkiqYJuV2o8+7JQUXomKSLBedt5dZSUo+tcGnV20qx+znrh4353TZGKa65jGkrmIo96wdPieSxnr2UnAhKiaKgl+6ugsHb7jSaaxQkpIPwaXnDbl4ZV49LSq3qQ6lqnVMu2IlmQwZb/vulT/k/ZGCC1ExUcfg85Rr0ZijZCXX8tHwxPYmfJW7a1/00Mq9KNfA952TggtRMWrgQlRMkmmyUFMAsd34PtNlfdYWT8vr4+qXPGRxYZHdpbvmTYas6V7kXrvs7BLKNZ8iBReiYkaxL3qzp21+TqVyQ9Mgm57BIiUv9XDDkgl9wsiUXModGim4EBUzCgXvYizLUUOkxA7BJR1yyFlrTWLHRnwZUu9D0k+nDPECXBe1HLr/eOd1gBRciKoZhYL3Ub4Q0edUSuuTQNMnZbUEYqhnrPu63LvPwhGXZbqxnp0UXIiKSbJlUw5KnkfONRYvidgzBqk8hrbfEVq5h9STFFyIikm+ZVMXbcq7SPnakvlLVvIpqTydeWoTInoemtSnofhkv4U6d2wR88rXlk1CCABq4EJUjZOLTvI6ALcD2AbgsJn9vcv3fNy9tuQVlyDVGI4FKiHYlrp+Yk0HpXbNh5Q3W0afvd7m/VuwRBeS2wDcAeAPAbwbwI0k3+1UuhAiKy4KfhWAH5nZswBA8ksAbgDwdEhDfII9bTuYNj/36bXbFDZV0K5PkDD2zjM+iRwlsUwBV5cx+NsAvDDz+eTk74QQhUMza7+A/DMAf2Bmt0w+3wTgKjO7tXHdAQAHJh8vA/BkeHN7swpgM7cRE0qxpRQ7ANkyD1c7LjWzPV0XubjoJwFcMvN5L4BTzYvMbB3AOgCQ3DCzNYeyo1KKHUA5tpRiByBbUtjh4qJ/B8Bvk/xNkm8A8GEA/xbKACFEPDoV3MxeIfmXAL6GrWmyO83sqeiWCSG8cZoHN7OvAvhqj3LXh5kTnFLsAMqxpRQ7ANkyj6B2dAbZhBDjRamqQlRM0AZO8jqSPyD5I5KfCll2TzvuJHmaZNapOpKXkPwmyRMknyJ5W0ZbdpD8NsnvTWw5lMuWiT3bSH6X5AOZ7XiO5PdJPkFyI7Mtu0neQ/KZyTvzu95lhnLRJymtPwTw+9iaWvsOgBvNLGjGm6Mt1wA4B+DzZnZZ6vvP2HExgIvN7HGSKwCOA/iTTHVCADvN7BzJ7QAeA3CbmX0rtS0Tez4BYA3ARWZ2fQ4bJnY8B2DNzLLPgZO8C8C/m9nhyYzVhWZ2xqfMkAr+Wkqrmb0EYJrSmhwzexTAT3Pcu2HHj83s8cmfzwI4gUxZgLbFucnH7ZP/sgRgSO4F8CEAh3Pcv0RIXgTgGgBHAMDMXvJt3EDYBq6U1hZI7gNwOYBjGW3YRvIJAKcBPGRmuWz5LIBPAvhVpvvPYgC+TvL4JBszF+8A8CKAo5Ohy2GSO30LDdnAOefvFKIHQHIXgHsBfNzMfpbLDjN71czeg61sxKtIJh++kLwewGkzc1vvGJ+rzewKbK2W/IvJ8C4H5wO4AsA/mdnlAP4XgHccK2QDd0ppXTYm4917AdxtZl/JbQ8ATFy/hwFcl+H2VwP448nY90sA3kfyXzPYAQAws1OT/58GcB+2hpo5OAng5IxXdQ+2GrwXIRu4UlobTAJbRwCcMLPPZLZlD8ndkz9fAOADAJ5JbYeZfdrM9prZPmy9I98ws4+ktgMASO6cBD8xcYc/iEyLpMzsJwBeIPnOyV+9HwGWZAfbdLGklFaSXwTwXgCrJE8COGhmRzKYcjWAmwB8fzL2BYC/nmQGpuZiAHdNZjvOA/BlM8s6RVUAbwZw31Y/jPMBfMHMHsxoz60A7p4I5LMA9vsWqEw2ISpGmWxCVIwauBAVowYuRMWogQtRMWrgQlSMGrgQFaMGLkTFqIELUTH/B0aFQF+h+KscAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAF3RJREFUeJzt3X2QXXV9x/HPx81WrzxkQVaHbILBjmaKSSTOlhlNy1BjDVaiMe2kgoLamWY6rYIPE4b4R0SmCtNMxdJaO5EHUVG7YsgIKJEBEXEU2CWYACE+UGyykWYRNoDdyhK//eOcJXc3+3Du7r33nHPv+zWzc3fPvXvzPXDvZ3/393QcEQIAlMdL8i4AAFAbghsASobgBoCSIbgBoGQIbgAoGYIbAEqG4Eah2P6A7Xumuf9Ltv+xmTUBRUNwoyls32X7adsvzbuWmaR/PA7bfi79+i/b19l+XQ3PwR8YNAzBjYazvVjSn0oKSe/MtZjsfhwRx0qaL+mtkkYkDdhemm9ZAMGN5rhA0k8kfUnS+6vvsP0K29+2/Yzt+yT9YYbnO8H2rbaftX2v7Rd/x/abbd9v+1B6++aq+05MW84H0tb/9pn+oYg4HBG/jIi/l/QDSZdWPd83bT+R/lt32359enyDpPdKujhtsd+cHr/E9i/Tuh+x/e4M5wocheBGM1wg6Yb0a7XtV1Xd93lJ/yfpZEl/k37N5FxJn5J0gqRfSPq0lASzpFslXSXpFZI+K+lW269If+8rkl4u6fWSXinpyhrPY5uSTw5jvivptelzPZCenyJia/r9P0XEsRGxJn38L9Pfn5/W/1XbJ9dYA0Bwo7Fs/4mkV0vqi4gBJeF1Xnpfh6S/lLQ5In4bEQ9Juj7D026LiPsi4gUlAXl6evwdkn4eEV+JiBci4uuSHpW0Jg3It0v6u4h4OiJGI+IHNZ7OAUknjv0QEddGxLMR8TslLfE32J4/1S9HxDcj4kBE/D4i/lPSzyWdUWMNAMGNhnu/pO9FxJPpz1/Tke6SbknzJO2revyvxr6x/YmqAcL/qHrME1Xf/6+kY9PvF1T/ftXz9UhaJOmpiHh6DufSI+mptLYO21ekXR/PSHo8fcxJU/2y7QtsP2h72PawpKXTPR6Yyry8C0Drsl2RtF5Sh+2xsH2ppC7bb5D0kKQXlITqo+n9p4z9fkR8RtJnavgnDyhp3Vc7RdJtSv44nGi7KyKGaz2X1Lsl/TD9/jxJ71IycPm4ku6PpyU5vX/ctpu2Xy3pi5JWKRn4PGz7warHA5nR4kYjrZV0WNJpSrozTpf0R0rC74KIOKyk3/hS2y+3fZomDF7W6DuSXmf7PNvzbP91+m/fEhG/VtIn/e+2T7DdafvMmZ4wbVmfavtfJZ2lpG9ako6T9DtJv1HSbz7xD8z/SHpN1c/HKAnzofR5P6ikxQ3UjOBGI71f0nUR8d8R8cTYl6R/k/Re2/MkfUhJV8cTSmadXDfbfywifiPpHEkfVxKoF0s6p6qb5nxJo0pa9wclfWSap3uT7eckPSPpLknHS/rjiNid3v9lJd0wg5IeUTJrpto1kk5Lu0W2R8Qjkv5Z0o+VhPoyST+a7bmivZkLKQBAudDiBoCSIbgBoGQIbgAoGYIbAEqmIfO4TzrppFi8eHEjnhoAWtLAwMCTEdGd5bENCe7Fixerv7+/EU8NAC3J9sRVv1PK1FViu8v2jbYftb3H9ptmXx4AYC6ytrj/RdJtEfFXtv9AyUoxAEAOZgxu28dLOlPSByQpIp6X9HxjywIATCVLV8lrlOyvcJ3tnbavtn3MxAfZ3mC733b/0NBQ3QsFACSyBPc8SW+U9IWIWCHpt5IumfigiNgaEb0R0dvdnWlgFAAwC1mCe7+k/RFxb/rzjUqCHACQgxn7uCPiCdv7bC+JiL1K9hN+pPGlYba27xzUlh17dWB4RAu6Ktq4eonWrujJuywAdZJ1VsmHJd2Qzih5TNIHG1cS5mL7zkFt2rZbI6OHJUmDwyPatC3ZiZTwBlpDpuCOiAcl9Ta4lkIoe2t1y469L4b2mJHRw9qyY2+pzgOtrezvs7xx6bIqrdBaPTA8UtNxoNla4X2WNzaZqjJda7UsFnRVajoONFsrvM/yRnBXaYXW6sbVS1Tp7Bh3rNLZoY2rl+RUETBeK7zP8kZwV2mF1uraFT26fN0y9XRVZEk9XRVdvm4ZH0FRGK3wPssbfdxVNq5eMq7vTSpna3Xtih6CGoXVKu+zPBHcVcbCjtFuoHF4n81dQ67y3tvbG03dj3tXn3THZdKh/dL8hdKqzdLy9c379wFgjmwPRESmadflb3Hv6pNuvlAaTQc2Du1LfpYIbwAtqfyDk3dcdiS0x4yOJMcBoAWVP7gP7a/tOACUXPmDe/7C2o63o1190pVLpUu7kttdfXlXBGAOyh/cqzZLnRPmf3ZWkuM4MgZwaJ+kODIGQHgDpVX+4F6+XlpzlTR/kSQnt2uuYmByDGMAQMsp/6wSKQlpgnpyjAEALaclgpstIqcxf2HaTTLJcQClVPqukrEtIgeHRxQ6skXk9p2DeZdWDIwBAC2n9MHNFpEzYAwAaDml7yphi8gMGAMAWkrpW9xsEQmg3ZS+xd3WW0SyuRYarfo1VjkhOTbyNK+3nJU+uNt2i0g210KjTXyNjTx15D5eb7lqjW1d29GVS6eY5rdI+uhDza8HrWeq11g1Xm91U8u2rqXv425bLKxBo2V5LfF6ywXBXVZsroVGy/Ja4vWWC4K7rFhYg0ab7DVWjddbbgjusmJhDRpt4muscmLyxestd5kGJ20/LulZSYclvTBTBzqDkwBQm0Zdc/LPIuLJWdYEAKgTukoAoGSyBndI+p7tAdsbJnuA7Q22+233Dw0N1a9CAMA4WbtKVkbEAduvlHS77Ucj4u7qB0TEVklbpaSPu851ApiAfejbV6YWd0QcSG8PSrpJ0hmNLArA9NiHvr3NGNy2j7F93Nj3kt4miTWuteAq66gz9qFvb1m6Sl4l6SbbY4//WkTc1tCqWgmbQaEB2Ie+vc0Y3BHxmKQ3NKGW1jTdVdYJ7sIqev/xgq6KBicJafahbw9MB2w0NoMqnTL0H29cvUSVzo5xx9pmH3qUfz/u6RSi1cRV1ktnuv7jorS623Yfekhq4eAeazWNvQHHWk2SmvviXrV5fB+3xOY8BVeW/uO1K3oI6jbVsl0lhRl1ZzOo0uE6pii6lm1x19JqaniXCldZL5W2vo4pSqFlgzvrqHthulRQGPQfo+haNriztprKMBCF5qP/GEXWssGdtdVUloEoABjTssEtZWs1sZABQNm07KySrFjIAKBsWrrFnUU9B6IKseAHQMtr++CW6jMQxewUAM3S9l0l9VKYBT8AWh7BXSfMTgHQLAR3nbBMGkCzENx1wuwUAM3C4GSdsEwaQLMQ3HXEMmkAzUBXCQCUDMENACVDcANAydDHPUcscwfQbAT3HLDMHUAe6CqZA5a5A8gDwT0HLHOv0a4+6cql0qVdye2uvrwrAkqJ4J4DlrnXYFefdPOF0qF9kiK5vflCwhuYhczBbbvD9k7btzSyoDJhmXsN7rhMGp3wSWR0JDkOoCa1DE5eJGmPpOMbVEvpsMy9Bof213YcwJQyBbfthZLeIenTkj7W0IpKhmXuGc1fmHaTTHIcQE2ydpV8TtLFkn7fwFrQylZtljon9P13VpLjAGoyY4vb9jmSDkbEgO2zpnncBkkbJOmUU06pW4EooV19Sd/1of1Ji3rVZmn5+uS+qY4DyMwRMf0D7MslnS/pBUkvU9LHvS0i3jfV7/T29kZ/f38960RZjM0eqR6I7KxIa64ipIFp2B6IiN4sj52xqyQiNkXEwohYLOk9ku6cLrTR5pg9AjQc87hRX8weARqupuCOiLsi4pxGFYMWMNUsEWaPAHVDi3uOtu8c1Mor7tSpl9yqlVfcqe07B/MuKV/MHgEajt0B54DdASfB7BGg4QjuOZhud8C2DW4pCWmCGmgYukrmgN0BAeSB4J4DdgcEJsi6dW/Rt/gteH0E9xywOyBQJevWvUXf4rfo9YngnpO1K3p0+bpl6umqyJJ6uiq6fN2y9u7fRvvKuviq6Iu0il6fGJycM3YHBFJZF18VfZFW0esTLW4A9ZJ18VXRF2kVvT4R3ADqJeviq6Iv0ip6fSK4AdTL8vXJLpDzF0lycjvZrpBZH5eXotenDNu6zgbbugJAbeq6rSsAoFgIbgAoGYIbAEqG4AaAkiG4AaBkWDkJoPC27xzUlh17dWB4RAu6Ktq4eklbr1gmuAEUGhcsORpdJQAKbboLlrQrghtAoXHBkqMR3AAKjQuWHI3gBlBoXLDkaAxOAii0sQFIZpUcQXADKDwuWDIeXSUAUDIzBrftl9m+z/ZPbT9s+1PNKAwAMLksXSW/k/SWiHjOdqeke2x/NyJ+0uDaAACTmDG4I7nSwnPpj53pV/2vvgAAyCRTH7ftDtsPSjoo6faIuLexZQEAppIpuCPicEScLmmhpDNsL534GNsbbPfb7h8aGqp3nQCAVE2zSiJiWNJdks6e5L6tEdEbEb3d3d11Kg8AMFGWWSXdtrvS7yuS3irp0UYXBgCYXJZZJSdLut52h5Kg74uIWxpbFgBgKllmleyStKIJtQAAMmDlZD3t6pOuXCpd2pXc7urLuyIALYi9SuplV59084XSaLpH8KF9yc+StHx9fnUBaDm0uOvljsuOhPaY0ZHkOADUEcFdL4f213YcAGaJ4K6X+QtrOw4As0Rw18uqzVLnhEspdVaS4wBQRwR3vSxfL625Spq/SJKT2zVXMTAJoO6YVVJPy9cT1AAajhY3AJQMLW4cZfvOQS7MChQYwY1xtu8c1KZtuzUyeliSNDg8ok3bdksS4Q0URPG7SlhG3lRbdux9MbTHjIwe1pYde3OqCMBExW5xs4y86Q4Mj9R0HEDzFbPFPdbK3va3LCNvsgVdlZqOA2i+4gX3WCv70L6pH8My8obZuHqJKp0d445VOju0cfWSnCoCMFHxukom26xpIpaRN8zYACSzSoDiKl5wz9SaZhl5w61d0UNQAwVWvK6S6VrTLCMHgAIG91SbNa37ovTRhwhtAG2veMHNZk0AMK3i9XFLbNYEANMoXosbADAtghsASobgBoCSIbgBoGQIbgAoGYIbAEpmxuC2vcj2923vsf2w7YuaURgAYHJZ5nG/IOnjEfGA7eMkDdi+PSIeaXBtAIBJzNjijohfR8QD6ffPStojiR2IACAnNfVx214saYWkeye5b4Ptftv9Q0ND9akOAHCUzMFt+1hJ35L0kYh4ZuL9EbE1Inojore7u7ueNQIAqmQKbtudSkL7hojY1tiSAADTyTKrxJKukbQnIj7b+JIAANPJ0uJeKel8SW+x/WD69RcNrgsAMIUZpwNGxD2S3IRaAAAZsHISAEqG4AaAkiG4AaBkCG4AKBmCGwBKhuAGgJIhuAGgZAhuACgZghsASobgBoCSIbgBoGQIbgAomSzXnATQZNt3DmrLjr06MDyiBV0VbVy9RGtXcMVAJAhuoGC27xzUpm27NTJ6WJI0ODyiTdt2SxLhDUl0lQCFs2XH3hdDe8zI6GFt2bE3p4pQNAQ3UDAHhkdqOo72Q3ADBbOgq1LTcbQfghsomI2rl6jS2THuWKWzQxtXL8mpIhQNg5NAwYwNQDKrBFMhuIECWruih6DGlOgqAYCSIbgBoGQIbgAoGYIbAEqmtIOT7OUAoF2VMrjZywFAO5uxq8T2tbYP2n6oGQVlwV4OKKLtOwe18oo7deolt2rlFXdq+87BvEtCi8rSx/0lSWc3uI6asJcDimbsU+Dg8IhCRz4FEt5ohBmDOyLulvRUE2rJrK33ctjVJ125VLq0K7nd1Zd3RRCfAtFcdZtVYnuD7X7b/UNDQ/V62km17V4Ou/qkmy+UDu2TFMntzRcS3gXAp0A0U92COyK2RkRvRPR2d3fX62kntXZFjy5ft0w9XRVZUk9XRZevW9b6A5N3XCaNTgiC0ZHkOHLV1p8C0XSlnFUiteleDof213YcTbNx9ZJxM52kNvkUiFyUNrgbpdDzw+cvTLtJJjmOXLGjH5ppxuC2/XVJZ0k6yfZ+SZ+MiGsaXVgeCj8/fNXmpE+7uruks5IcR+7a8lMgcjFjcEfEuc0opAimmxlQiDfk8vXJ7R2XJd0j8xcmoT12HEBboKukSilmBixfT1Cjve3qa/vGC5tMVWFmAFBwTImVRHCP07bzw4GyYEqsJLpKxmFmAFBwTImVRHAfhZkBQIExJVYSXSUAymTV5mQKbLU2nBJLixt1V+hFTCieWmaJMCVWEsGNOiv8IiYUy9gskbEBx7FZItL04d1mQT1R8btK2Ma0VNjeFDUp6CyRol8Uo9gt7tn8NUauSrGICcVRwFkiZfjUWOwWd0H/GmNqLGJCTaaaDZLjLJEyfGosdnAX8K8xpsciJtSkQLNExrpHBrN+asyxG7fYXSXM2SwdFjGhJgWZJTKxe2Qy4z415tyN64io+5P29vZGf3//3J9o4n8cKflrvOYq+rgB1M10LW0p+dQ47ipbVy6dolG5SProQ7OqwfZARPRmeWyxW9wF+WsMoLVNN3jeM9mnxpy7cYsd3BJzNtsZ23eiSRZ0VSZtcfd0VfSjS95y9C/k3I1b7MFJtC+270QT1TyonvOgKsGNYmIqKJpo7YoeXb5umXq6KrKSlva4Pu2Jlq9PxtrmL5Lk5LaJY2/F7ypBe2IqKJqs5p1Bc+zGpcWNYirgwgygKAhuFFOBFmYARUNwo5hy7kMEiow+bhQXU0GBSdHiBoCSIbgBoGQIbgAomUzBbfts23tt/8L2JY0uCgAwtRmD23aHpM9Leruk0ySda/u0RhcGAJhclhb3GZJ+ERGPRcTzkr4h6V2NLQsAMJUswd0jqXobrP3psXFsb7Ddb7t/aGioXvUBACbIEtye5NhRV1+IiK0R0RsRvd3d3XOvDAAwqSwLcPZLWlT180JJB6b7hYGBgSdt/2oW9Zwk6clZ/F7RcB7F0QrnILXGebTCOUiNO49XZ33gjJcusz1P0s8krZI0KOl+SedFxMNzqXCKf6s/66V7iozzKI5WOAepNc6jFc5BKsZ5zNjijogXbH9I0g5JHZKubURoAwCyybRXSUR8R9J3GlwLACCDoq2c3Jp3AXXCeRRHK5yD1Brn0QrnIBXgPGbs4wYAFEvRWtwAgBkQ3ABQMoUJ7lbYyMr2tbYP2n4o71pmy/Yi29+3vcf2w7Yvyrum2bD9Mtv32f5peh6fyrum2bLdYXun7VvyrmW2bD9ue7ftB233513PbNjusn2j7UfT98ebcqulCH3c6UZWP5P050oW/Nwv6dyIeCTXwmpk+0xJz0n6ckQszbue2bB9sqSTI+IB28dJGpC0toT/LyzpmIh4znanpHskXRQRP8m5tJrZ/pikXknHR8Q5edczG7Yfl9QbEaVdgGP7ekk/jIirbf+BpJdHxHAetRSlxd0SG1lFxN2Snsq7jrmIiF9HxAPp989K2qNJ9qYpukg8l/7YmX7l30qpke2Fkt4h6eq8a2lnto+XdKakayQpIp7PK7Sl4gR3po2s0Fy2F0taIenefCuZnbSL4UFJByXdHhFlPI/PSbpY0u/zLmSOQtL3bA/Y3pB3MbPwGklDkq5Lu62utn1MXsUUJbgzbWSF5rF9rKRvSfpIRDyTdz2zERGHI+J0JfvrnGG7VN1Xts+RdDAiBvKupQ5WRsQblezr/w9pt2KZzJP0RklfiIgVkn4rKbexuKIEd80bWaFx0j7hb0m6ISK25V3PXKUfae+SdHbOpdRqpaR3pv3D35D0Fttfzbek2YmIA+ntQUk3KekeLZP9kvZXfWq7UUmQ56IowX2/pNfaPjXt9H+PpG/nXFNbSgf1rpG0JyI+m3c9s2W723ZX+n1F0lslPZpvVbWJiE0RsTAiFit5T9wZEe/Luaya2T4mHehW2r3wNkmlmnkVEU9I2md7SXpolaTcBuwz7VXSaK2ykZXtr0s6S9JJtvdL+mREXJNvVTVbKel8SbvT/mFJ+kS6X02ZnCzp+nTG0ksk9UVEaafTldyrJN2UtAk0T9LXIuK2fEualQ9LuiFtXD4m6YN5FVKI6YAAgOyK0lUCAMiI4AaAkiG4AaBkCG4AKBmCGwBKhuAGgJIhuAGgZP4fa2w2P8qJYkwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1}\n" - ] - } - ], - "source": [ - "feature_dim=2 # we support feature_dim 2 or 3\n", - "sample_Total, training_input, test_input, class_labels = ad_hoc_data(\n", - " training_size=20, test_size=10, n=feature_dim, gap=0.3, PLOT_DATA=True\n", - ")\n", - "\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "print(class_to_label)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With the dataset ready we initialize the necessary inputs for the algorithm:\n", - "- the input dictionary (params) \n", - "- the input object containing the dataset info (algo_input)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "params = {\n", - " 'problem': {'name': 'classification', 'random_seed': 10598},\n", - " 'algorithm': {\n", - " 'name': 'QSVM'\n", - " },\n", - " 'backend': {'name': 'qasm_simulator', 'shots': 1024},\n", - " 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'}\n", - "}\n", - "\n", - "algo_input = get_input_instance('ClassificationInput')\n", - "algo_input.training_dataset = training_input\n", - "algo_input.test_dataset = test_input\n", - "algo_input.datapoints = datapoints[0] # 0 is data, 1 is labels" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "With everything setup, we can now run the algorithm.\n", - "\n", - "For the testing, the result includes the details and the success ratio.\n", - "\n", - "For the prediction, the result includes the predicted labels. " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 1.0\n", - "predicted classes: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], - "source": [ - "result = run_algorithm(params, algo_input)\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "print(\"predicted classes:\", result['predicted_classes'])" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4VfX17t+VOYEEkgAhJECYZAqSyGC0VAFBkaLRKqJW6/Rcrba/ap2q3g5W2vvrzwG11w5qRdCiAuKAFC0zFBFknkQGIYSQhCkECYGEJN/7R056OVnvlkjgQNzr8zw8yXlZ+5x99jkr+5y11/dd4pyDYRj+I+xs74BhGGcHS37D8CmW/IbhUyz5DcOnWPIbhk+x5DcMn2LJbxg+xZLfMHxKo5JfREaIyGYR2SYij52unTIM48wjp9rhJyLhALYAGA6gAMByADc55774hm3Ug3Xo0o3GRkdHKi0yPNzrfpWWv6OAxqZnpCktNlI/FgCUlpcrLSE2VmnVNTV0e7a/ew4cpLFtkhOVVnK4jMbGRkcpLS46msbqIwPkF+yhsUmtWigthhybsooKun3LuDilVVZV0djIiAilVVVX09jwMH2O8opl93uc7AN7zwBABHms8spKGhsbpV+H4177Rd4LYR77wI5Zpcf9Nq/3uufl5WH//v38juuhj1TDGQhgm3NuOwCIyDsAcgF4Jj/j8XF/onqXzulKa5OQQGPZG/S+Wx6lsc+N/73SerZrR2M/Wr1aaZf36aO0Q+SPBACktNDJNG7CuzT257deq7S3Fyymsb26dFRa/06daCx7gz3w+PM09sa7rlJat7YpSlu67Su6/ajsbKXl799PY9OSkpS27+uvaWw8+YNbeuQIjW3bsqXSCg/qP7heJ5Lk5s2VtjY/n8b2Ttcnkr0ez6FVvH7vxsfE0Ni8ffuUVlhaSmNzunYNuj1wwAAax2jMx/40ALtOuF0Q0AzDaAI05szPPlqoj/UicjeAuxvxOIZhnAEak/wFANqfcDsdQGH9IOfcKwBeAfh3fsMwzg6NSf7lALqJSCcAuwHcCODmb9qgQ5du6jv+vblX0lhW9Fi/axeJBApKSpR27X1jaOyKTVuV5vWdPbFZM6VtKSpSWonH98+VeXlKm/XWDBrbd0BPpX3w0jQae+jGYUqLJoUuANiwU39fjSTFVADo3KaN0sordLHronrfM+uYu3Gj0rwKyvkHDiiNFVMB/l5g9RQA+GTdWqUN7tlLaX94fgLd/jcP3qG0Dq1a0ditxbpwWuPxfGcsWKq0zN78OKaTesj8eZ/T2H4ZGUG3v00B/5ST3zlXJSI/A/AvAOEAxjvn9KtvGMY5SWPO/HDOzQQw8zTti2EYIcQ6/AzDp1jyG4ZPseQ3DJ/SqO/835bo6EjVuefV/hlFqtejxzxCY1M66i40pgHA/kLdcfbxqx/T2Lad2ypt8+r1Sis5oK8AAEBGJ90N+PJbz9LYe25+WGmT3nuJxo596mWlhXt0rEXF6hbUJx7RFW0A+PEYvQ9PvfRLpc1ZqSvqAHDd9y9S2rHjx2nsih3blcauNgDAbnI1Z+F6XlvO6dldaZt271ba0FHfo9tPmrtQabmDLqSxLeL01YmDR/iVo2YtdefghV260NhFmzcrLTk1mcbW7yj0ai9m2JnfMHyKJb9h+BRLfsPwKZb8huFTQlrwiwwPV8tyvVp2WXFv6uRnaGyHDrp989kp42ls2nl64WGzBN3GCwC9Ltb3W1OlCyoivRu8fbe2uogIAAOHD1Ka1xLm9B7tlbZg8gIa2zNHtw1jKA1Ffr5ejd0rTR+vLUXF/A4IXx89SvWcLrq1NcKjaLl+W57ShvXrS2O/IMW9y3rr12f2hg10+9TU1kqbuVwv7QaA3By9fDYynKdUYiJ/LRk9UlOVVuPhGVF/uTPzPvDCzvyG4VMs+Q3Dp1jyG4ZPseQ3DJ9iyW8YPiWk1X4RUWabzIgD4O25rKoP8Cr1+R060NjZn67Q+xXGzU6HZuoq8ao5q5TmariBQlSMbq31amdm7blesXHx2iX34tyLaey0v72ptLvv1GahAFBaqs0pWHtuaqI2yQS4qYnX69s1Rb++q4n5CQBcmpWpNNb+DfCrKczRt097fcUE4FdYVnnsFzs2Xk7O2R216WpZxTEaW3TokNK83s/1TUCt2m8Yxkmx5DcMn2LJbxg+xZLfMHzKKY/rAgARyQNwGEA1gCrnXP9vik9ISHYDBowM0rxcdkv36Akl3fvx0V6sGNLDYwrPrXf+Wmk5V+XQ2OUzlyut3xX9lFb0FV/Pn5iiC2MtWnPX2f27tZtt/4u0HwAAvPBLvc7/jt/eSWMv7dFDaU+/oIuAADA0V7cY158IAwAfLtXHBQAuv0C33LJpOwBwmLT9tvZoZ161Y4fSMtvriU4AcKhc3y9z+vUqjM0jDsQVHoVXth6/sJSPY+uVpve37Bgv+Hk5MTPqFzMHDhiAFStWnPFxXXUMcc7xmUyGYZyz2Md+w/ApjU1+B2CWiKwMjOVSiMjdIrJCRFZUVvLproZhhJ7Gfuz/nnOuUETaAJgtIl865xadGHDiuK6EhGQb12UY5wiNOvM75woDP/cCeB+1Y7sNw2gCnPKZX0SaAQhzzh0O/H45gKe+aZv0jDQ8N/73QRqbnQdwl11mxAHwll1W1QeAN8ePVdqB4nto7PBbRiht8bTFSvMyWijZr00v3pj6Io2940btnHvvj3Jp7Pz5byntnrF8EPIrb03X+1XMW273HiCVajJOLi2Fz67bSebveTnUMkfdMI8KfGx0tNJKyvh8xENHtXsum7noOUOweJ/SBmUSQxTwqwARYdyQZGuxfi/Ub3Wvo0Wcbt+ODOfHJqwmWP82H60b87E/BcD7IlJ3P2855z5pxP0ZhhFCGjOoczsA7qVkGMY5j13qMwyfYslvGD4lpOv5YyMj0bNe2+2hcj7eiI3Q8nLZZevxvVp2WXFv5kw9/goAMnrpYtXUyXrcVnq6HhEFABERuqBT41FoWrLkfaWVHvkjjc3JuVpp+dt1AQ0AWrZJVNrNP82msYtmf660FzfkKe2LJdo/AQA69tJr1otH8lFXzFG3/uipOli763Pj3qCxT/3qJ0p7c9Z8pY0eoluZASA8UhfsOiTzUVljX5yotPLD/P388AO3Ku31KXy6fUSkfr4jhulRaACwubAw6HYp8VTwws78huFTLPkNw6dY8huGT7HkNwyfYslvGD4lpNX+0vJyfLQ6eO4Za70EgLadtQsrm30HcJfdJx7lbbSsZZdV9QHgL88+qrTb/9eTSsv/ahvdPiZGP7eJU/VVDAC49FJtajLzU26aceHl31fatjVf0dixpPq9i7ThAkDWIG0esnyudivulJlBt08gRiVpifpqAwAs375daS1JWysAbNujXYXFoxU4krgg7yvQLbsHysro9vt26dg1O3fSWHaViTk2A/yqlvNoC49L0MfhSAVfEbtm4bqg2+WH+WxEhp35DcOnWPIbhk+x5DcMn2LJbxg+JaQFv4TYWFzeJ7iotKWIO99uXr1eaTVV1TSWjdBiLrsAX4/PWnYBXtyb8KrWUlN5wbBZM+3e+/cxvGX3jw//l9L+9sYfaOzdr3yotO/lXkJjJ81aoLT+mefR2MUzPlNaQrJ21F0xa53SACB7iG4bLiajpwDgst66eFtUymPZaK1Fx/5NY9ka+6RU3Z6bEBujNABo3b610rLIqC0AmEFatY+W8YIbW7sf7uHSW1Kk/RbCs7ghb/bg4IW1ca9zt2SGnfkNw6dY8huGT7HkNwyfYslvGD7lpAU/ERkPYBSAvc65zICWBGAygAwAeQBucM7xOUUnUF1Tozqd2Ex3ACg5oAuBIrqTDwBcjS68eI3QYmabXuvxWeceK+4VFfHuunbttPvljn26gwwAKit1oehrMtIKAKqqKpV2vELPigeAPTtJd1wf/nyLt+tjltRWd+i17ZhKt2/fQxfmDpbyNfqsuJe/nw9+6pmmjVsjo7n5JesSTGyjC6/xMbwwlpKoYyNI1yDAi6FenYfNY3SBMSUjhcZ+uXST0pKaN6exh+uN/IrweHxGQyInAKjfE/sYgLnOuW4A5gZuG4bRhDhp8geGcNS/9pALoM7GZCKAa07zfhmGcYY51e/8Kc65IgAI/GzjFXjiuK4SjwUlhmGEnjNe8HPOveKc6++c65/k4YVmGEboOdXk3yMiqQAQ+Ln39O2SYRih4FTbe6cDuA3AHwM/db8pITI8HCktgtd8r8zLo7EZnfTacq/1/GwN9dcHeJWZjdBiLrsAX4/PWnZZVR8ACgv11YLAhCNFdLSuUh+v5u3MFRV6bbhXW2mrdnq01sIlq0kk0OeS85UWRsZE9cjpQbePjNavQ+skfbwAYFOhdhsuOchfs2ZkXNexsmMkEjhaqa+EHNqv79drffzmL3corXsqv7oR00xX8GOa86sIzD/A670QFUue73H9vABgZ2Hw1ZyK47q92YuTnvlF5G0AnwHoLiIFInIXapN+uIhsBTA8cNswjCbESc/8zrmbPP7rstO8L4ZhhBDr8DMMn2LJbxg+JaTr+fccOIhxE94N0ma9NYPGvvyWXmPfra029QSASrKGe+KseTT2jana2NNrhBYz22Tr8b1adllB5+Ju3Wjs2vx8pV3QqTONXZOnzS+92lVbx8cr7YMVK2nstQP6K23+F3o0l9fr8NHcJUpLTtItsABwrFK3I3dNb0cigQs6dVJaqyfupLHTV2lvhzGXacPTyXO5H8B9141SWpVH4ZUV91ok6uMNAPM+X6O0kmK9bh8AhozQo+aWbdxCY3N6B7dqN4vRxUIv7MxvGD7Fkt8wfIolv2H4FEt+w/AplvyG4VNCWu1vk5yIn996bZDWd0BPGnvPzQ8rbeDwQTQ2nJgtNE/k5gd33Kjvd8mS92ksG6HFXHaZEQfAW3ZZVR8A+nbooDQvZ+O7bvi50kbc0vBV1X0G8Pbcx3/3Z6W1aK3bc6dtKaDbdx+gTUJYVR8AeqenK22Ph9NvPlkN+tzTE2jsS888orTXPpmjtFsuv5Ru/84S7WB8w0W6+g4Ae/J0q3jehjwae//dNyht8uxFNHbOjE+VdtuPr6Kx63ftCrp97Dg/3gw78xuGT7HkNwyfYslvGD7Fkt8wfIo4j9bWM0HGed3dr//vX4K0D16aRmNfefP/KK1NAm8VZe29i7fwdsgBnXXLbKmHg/DMT5cr7epLdPHHy2WXrcfv15mP9tpUsEtp53msI9+xV3uneK0NT09KUhprgQWAUdl63NaM1Xrtv9f69rff+URpfb+vfRkAgL3v6ns91HERaYkuKOGWcHNX6lFi119ysdKmzOPtvXeNHK409v4CgNem/0tpLYhTMAAc2luqtJ1f8OLv0Fxd2N5XorcHgMxOwaPEbrn6anyxbh1/M9TDzvyG4VMs+Q3Dp1jyG4ZPseQ3DJ/SEA+/8SKyV0Q2nKA9KSK7RWRN4N/IM7ubhmGcbk5a7ReRSwCUAXjjhFl9TwIoc85px41voGefPm78+8GttJ8t09VZANi2cqvS0sksOACIi9dttLP/oSvPADB//ltKy8m5msZeeLk2gVi7SFfK2ew8gLvs/nkSP2T33fyQ0t6YptttAaBTGz0j5bl/8Ksm7Ngs/WgpjR10na4y5148UGmz129QGgCkJem5fjldubNxMWnlZcYjALBih3bUbZ+sr2IAwIHD2iX3fNI67dUG+96SZUob2IMbsERHatdnrytHzIE43GOuXityHLxioyOCO/QvzsnBypUrT0+132Ncl2EYTZzGfOf/mYisC3wt0H/yDcM4pznV5P8rgC4AsgAUAXjOK/DEWX0HS+wDhGGcK5xS8jvn9jjnqp1zNQBeBaC/GP7/2P/M6ksk3WaGYZwdTmk9v4ik1k3pBXAtAF4BqkdcdDT613NirV+wqIOt0V8weQGNvThXt2/e8Vvu7nrP2LuVlr9dj44CgG1rvlLa93IvUdrxCl48YiO0vFx22Xp8r5ZdVtx76JbraOzHa9cqLeO/fkhjly7QxczVaSlKi4rkr1kkeS3DPApVic30KLSYKD3uCwAWzPlcae09ir/DsvXIsfEz9Xr+dul8sPTefN06vSlB7ysAxMfocV1J5HkBwMFyMmLNY2TY4WN6FFmBx6fmtZ9tDLpdvK/hn65PmvyBcV2DAbQSkQIAvwUwWESyADgAeQDuafAjGoZxTnCq47peOwP7YhhGCLEOP8PwKZb8huFTLPkNw6eE1L1XAITVq2Bv2MkNDaJideW3Zw53+p32tzeV9tGsf9DYV96arrSWbXiP0thf/URpk2YtUNqenXvo9q3atVKaVwsrgxlxALxll1X1AeDKvn2VtmK7nvUHAHOmfKS0+26/VmlREbqtFdCvLQBMXarbZQGgbUtt3LF+/TYae9P1lysthrTWAkAsuWJw6xWDlVZewVuyLyLtyBsKuFtxdkaG0mpqamhsizj9mnmZhMzZqC+e/SAri8YO6dUr6Pb741+gcQw78xuGT7HkNwyfYslvGD7Fkt8wfEpI3XvbtG3vxtz2QJAWGc0LN088ckeD77eMtEP++a9TaGxJsW5/vPmnvN01taV2Yi0nLZlebbgLl2jn27YZbWlsfJxuFa2q5sWjD1+eobQbPVp2WYGxP3EwBvhziyBt1l5ry6tJsYu9NgB3PD7k5YJMCmPstQGAg2Q9fVJzPbqtqJS74bLt48hafIAXB2s88ml1Xp7S+tVrda+DeR14jW7LrDf2bOgll2DNqlXm3msYhjeW/IbhUyz5DcOnWPIbhk+x5DcMnxLS9t6kVi1w411XBWmdiRMtAPx4zMNKy8//gsaWlur22lf/OZXG7j1wUGmLZmuzCADIGqTnzC2e8ZnSirfzSmyfS7SxxLUD+tPYx3+nnXqfeernNPbAdbpSzYw4AN6yy6r6AK9q5+/frzTmpgsAV/TRx2vpNt6yOywzU2kHyrTzLgB0SE5W2k6yX4BHyy2pwHtdLWCxW4uLaSwz2DhayduGmYOwV+zCTZuUdhWZowhoA5QIjysxDDvzG4ZPseQ3DJ9iyW8YPqUh47rai8h8EdkkIhtF5P6AniQis0Vka+CnefcbRhOiIeO6UgGkOudWiUg8gJUArgFwO4AS59wfReQxAInOuV9+031lZWe7WQsXBGle66r3Hz6stF5paTSWjV7yarllvPgaLw5WHtX7Fh2ni2IRkboFFgAio/Xa8szs82jssgW6FZgVHAFg0Hn6Plbv3EljszrqQlNiM93uCgDFpOW1QyvtSdC//5V0+9JS7XybmspbiX8x7lGl/Xv6Ehr76EO3Ka17Bz4GbPYqPYrslitvVNrUOXy8WSRpZ2ZjuQCgdwfdnivCz6fLt+pi9ahB/DgyT4Cp87QPBQDcO/reoNtfbl6G8vKvT9u4riLn3KrA74cBbAKQBiAXwMRA2ETU/kEwDKOJ8K2+84tIBoBsAMsApNR59wd+8mt2hmGckzQ4+UWkOYBpAB5wzn39Lbb7z7iuAwcOnMo+GoZxBmhQ8otIJGoTf5Jz7r2AvCdQD6irC+gvfAge15VMmjUMwzg7NGRij6B2SMcm59y4E/5rOoDbAPwx8PPDk91XWUUFlm4LHoHF1kQDwJyV2pBySxHvtEpN1N1aO4vo3yKkpegC1hdLeOdgp8wMpa2YtU5pbTum0u175PRQWre2fD3/tC3aJHLMaG1cCQCz12uDR68RWsxs02s9PuvcY8W9FSs+ptv363eF0rIHXURjc/v1U1qLWD7KLI6YcmZnD6OxCeQ+Bo/QJqR92vNxXzv27VNaO49uwK5dL1BaSYnXunv9eB076i5HAGjRorXeh0R+MW3kj8YE3S56cSuNYzSkvfd7AG4FsF5E1gS0J1Cb9FNE5C4A+QBGN/hRDcM46zRkXNdi1LpuMy47vbtjGEaosA4/w/AplvyG4VMs+Q3Dp4R0PX/LuDiMqrcuee7GjTT2uu/zKjGjhDiudk/lFfidpNegY6+ONDahtR4plT1Er6tu34NXjll770dzeQtr9wHdlfb2O5/Q2GEjL9aPFcFfSjZCi7nsAnw9/qOkZZdV9QFg5cp/KS0zO4fG7iKvQ2GJ9loAgITeuoIfH8+r33lknf/Rw9oVmDkCA0BqC/2as2MIALvy9br7qGg9lgsASsvLlbZ48bs09ppr7ldae4/L5FtWbAm6XXGEuyUz7MxvGD7Fkt8wfIolv2H4FEt+w/ApIS34VVZVKUNILz8BtkafjXgCuJHiwC5daOyFRC8eeSGNTSMtlWyU0sFSvs6pdZJuC01OSqCxxyob7kmQQ1qiwzxadqcuXaa0K7P60lhmtsnW43u17LLi3sS//47GRkTpt978T/ga+4SpryktJq4ZjZ3y1w+UlkHatN9dxk1bMzvo4u20aXNobPYFw5UWHs5T6r1Ptc/AD6//BY1dOF+Pmlu27V4SCVw4Kvi9+9nn/Bgy7MxvGD7Fkt8wfIolv2H4FEt+w/AplvyG4VNCWu2PjIhAWlJSkJbvYe21Ysd2peV04cYfXVNSlLaHVOUBYNPu3Uq7rHdvGrt8u96Hy3r3UlpRqcdjFerHYlV9AOidnq60jQXa4APgVxwSm/Hqd9uWul3V66oJG6F1jLjsMiMOgLfssqo+ALz2l18rrXfvQTT2uV88rbSHntf7BQAPjblbaS/e83eljXt4nNIAfvWprIy3HT/7xnNKS2zG23tvvep2pU2cPoHGDpw7UGkvPzOJxo6+L9g3NyY2hsYx7MxvGD7Fkt8wfIolv2H4lMaM63pSRHaLyJrAv5FnfncNwzhdNKTgVwXgoRPHdYnI7MD/Pe+ce7ahD1ZVXY19Xwe3wjK3VQDo3EbPAIkgo5QAYHVentL6duRr9Fkb7N6veXtuyzhdvGHFPTbDHgBKDur77ZrejsayAmUKWVsOAK3j45VWf057HevX65bdVgm8xfhAWZnS2AgtL5ddth7fq2WXFfc2blxMY3/x6xeVtnT2Chp7/vmXKm3rl3qU2fCbf0C3ryivUNri6Qto7II5ukU4Np4fm9w7blXanEXLaewHr76ttAdfeJzG5uUVBt2u9Bh/x2iIgWcRgLrJPIdFpG5cl2EYTZjGjOsCgJ+JyDoRGW9Teg2jadGYcV1/BdAFQBZqPxnoi56oN67L4+OxYRih55THdTnn9jjnqp1zNQBeBaA7E1BvXBcZ92wYxtmhIdV+Oq6rbk5fgGsB6BlShmGcszRmXNdNIpIFwAHIA3DPye4oPCwM8fUqxZUeLqq7iUHH+m15NPbSLN2WuorMnQOA2OhopUV7ON9u27NHaWzGW880Xv9sRh7rgk6daCxrc+7g4dj62VY9j41VngHgpuv1vD+v9l72eI8+dJvS2Ow8gLvsMiMOgLfssqo+ADw/VrvZriCt1wDw+FxtmtGspW59nvHae0oDgOXL9RzCqChewf/4E9027GXAMuoHP1HazJkv09jRI/QVi8cfep7GDhwZ/IHbyxyH0ZhxXTMb/CiGYZxzWIefYfgUS37D8CmW/IbhU0K6nr+quhql9UZrebWwLlyvx3gN68ddZ6NIwa5donbOBYCSMj3a67lxb9BYIa3Ai479W2mR0ZF0+2NlenRSqyfupLHPPT1BaY/88nYa2z45SWseI8NiIvW+sUIkAOwkfRiXZWtn4+zsYXR7NkLLy2WXrcf3atllxb3+nbWrMMA9BQb0HqC0SXOm0+2/PvZzpfVsx1uye/XUbsXV1byA/cbHk5U2fLgupgLA9u3rlPbk63+isU//9FdBt/cV6iK1F3bmNwyfYslvGD7Fkt8wfIolv2H4FEt+w/Ap8m3aARtLv/793dJlwbPjPlm3lsae1zZVaV+RdlsA6Na2rdK8KtolR7RhRYdkvuAokpiHVJB2ZGb6AQBHK7WxwvRVq2js6At1VX38v+bS2KzzdKXb66pJLGnF9XI27kGq2itJm7SXAUseuVrAZucBwL9JtZ0ZcQDA4cPaJGT8O9xDpj1pUd6+V79v7hitW4YBIDUtQ2k7d3xJY3/zNz2H0Ot9d/c1tyvtv//xEo0tKdGvz7IZeuYiADz2q7uCbl89/HKsX7OG9xjXw878huFTLPkNw6dY8huGT7HkNwyfEtL23uNVVSg8GFy8GdxTj78Cvt1YrUjS3utVyGRjrd6cNZ/G7ivYp7SkVF1QSmzDW4kP7dfuvWMu+z6Nfe2TOUobfen3aCxbTz9+pt4eAG69YrDSkpo3p7E15JjdcuWNShs84lq6/dHD2icgIzODxrIRWsxlF+Dr8VnLLsCLe53b6HFuf/1Qr9sHgLKDh5V2xwU309hnHtRFx+rqaho7dqL2Kpj6J+4pUHFEt4X3HZJFY7O6BudEWVkpjWPYmd8wfIolv2H4FEt+w/ApDTHwjBGRz0VkbWBc1+8CeicRWSYiW0VksohwYzfDMM5JGlLwqwAw1DlXFrDwXiwiHwN4ELXjut4Rkb8BuAu1Xv6eiIjqmvvD8xNo7NBRutg1ewM3CGammh09bMJZIXD0ED4Xno2vSiDzz+NjeMfbkQo9+mnyXO0HAAC3XK672ybNXkhjb7zsEqW1S9fjzQCgnIxvKirlRaHUlrpwOXWOHrfFjjdQW9Ctz7vLuLHouIfHKc1rhBYz2/Raj88691hx797cK+n2w4ffobStq/TIMwCY/P6flVZVwwt+GW31Mdt/UBeUAWBTYaHSBp/fj8a+MuufQbf/953cL4Jx0jO/q6UuCyID/xyAoQDeDegTAVzT4Ec1DOOs09ChHeEB2+69AGYD+ApAqXOu7k99AWx+n2E0KRqU/IHJPFkA0lE7macnC2Pb2rguwzg3+VbVfudcKYAFAHIAtBSRuppBOgD9RQU2rsswzlUaUu1vLSItA7/HAhgGYBOA+QCuD4TdBuDDM7WThmGcfhpS7U8FMFFEwlH7x2KKc26GiHwB4B0R+T2A1aid5/fNDxYWhuR6raW/eVBXVwFg0lxd6U5NbU1j2yQkKG3eRu3+CwD5xbrCGh6p1+0DwL5dOrZ1e70PKR5OwZu/1Gvh77tuFI19Z8lnSrtr5HAa++b8RUrbm7+Xxl7UtavSDh7RDsYAb+9lngY79vE3KovMAAAKf0lEQVQqdSrxFMjswK8MsKsuFeX66gjAR2gxl12Ar8dnLbusqg8As2e/rrQLDuiRZwAQGfELpUU4/l4aNOh6pbG2dAAqRwDgihG8il+wuSDoduUxfXXHi4aM61oHIJvo2+ExmdcwjHMf6/AzDJ9iyW8YPsWS3zB8SkjX85dXVmJtfn6Q1sHj8l/uIG1oOXP5ahq7Ki9PacxoEwAGZeoWBTaXHgDW7NTry7M6dlRaBCmKAUD3VG1CWuWx3vuGi/Top0qP5zCwRzelbUrgY7E2FBQoLc7DZHJrcbHSosm4r3akDRgAwshs+mnTuM9AWZk25Vw8fQGNjYrS7dNeI7SY2SZbj+/VssuKe6tWzaKxRyt1gTImki9xSe+SoTTW/g3w1yznKv3+AIC0bsG9dVExDV9iY2d+w/AplvyG4VMs+Q3Dp1jyG4ZPseQ3DJ8S0mp/bFQUeqcHVye3FvMRXC3idIU3N4c7th47flxp0R6tk+wqwNgXJ9JYCdPV6xmkLTUhWbcXA0BMM238EdOcG3/sydOV9hat+AiuKy/RV0LiY/RjAUB2RobSvMaLFZSUKK1rO92e27XrBXT7Xfmb9ONfwFuUn33jOaUtmMONPz7+RDv99urJq98vTtWxzGWXGXEAvGWXVfUBIKWFvuoREcGr7fn79Pu8bRJvV2/fXl+R+nwNN3YZnXtv0O39u3mbN8PO/IbhUyz5DcOnWPIbhk+x5DcMnxLacV3V1dj7dfAIK7aGHAAOHilXWmQ4393qmhqlHSjTa7gBICJMt+KWH9aPBfBWyaNleiSVhPG/oay41yIxnsbmbchTWodeupUYAErJevwkMoYMAGrIsfE65kcr9VpwEf3cSkqK6PZR0bqQGO7xmiU207Gx8bwYKqRtuLqatz43I63LbISWl8suW4/v1bLLintVVXw9PfNFaNmSOy5HROiW6rJjeoQXAMTFBReFw8j72ws78xuGT7HkNwyfYslvGD7Fkt8wfEpjZvVNEJEdIrIm8I8PEDcM45ykMbP6AOAR59y737BtEJHh4WgVH9wKO2PBUhrbrKV2ME1M5G202cRgo1daOo1lhhUPP3ArjT1Urq8CxBBzi+YerbVs1t+8z9fQ2PvvvkFpk2fxls5mXbso7SDZVwBoQVp5VxPzEwA4v0MHpS3f+oXSMtO5I28p2Yf3PuWv761X3a603Dv46zDqBz9R2hsfT6axd139Y6WNnfii0tjsPIC77DIjDoC37LKqPgC0Jg7ThQe1oQkAbNuj73dA7/409vV/fRB0e9PN82gcoyHuvQ4Am9VnGEYT5pRm9TnnlgX+6w8isk5EnhcR6g114riu/R5+74ZhhJ5TmtUnIpkAHgfQA8AAAEkAfumx7X/GdbVqzVcxGYYRek51Vt8I51xRYHx3BYDXYQM8DKNJcdLv/CLSGsBx51zpCbP6/kdEUp1zRVLbe3kNgA0nu68wEbXuPLO3HicFABd20UUtL8oqdOujVzskK9i9PmUmjXWkNTac+ASkZKTQ7VlbakmxXjMPAJNn6xFcO7/IJ5FA+CDta3DUwwmWOQD369SJxrL23lGDrlRax46ZdPvFi3Xt94fX6/XxADBx+gSlzVm0nMbOnPmy0oYPv43G/vc/XlLa1D+9p7T9B/lXUDZCy8tll63H92rZZcW9domJNHbIkB8pbXfhVzT2+useCrq9v7Dhk7AbM6tvXuAPgwBYA0CXZA3DOGdpzKy+oWdkjwzDCAnW4WcYPsWS3zB8iiW/YfiUkJp5VFZVIa9eo096UhKNXbR5s9J6kNl3AFB06JDSLiAtvwBvd42I5IchLkHHlhTpav2XS7VrLQBExeq+pyEjuOvsnBmfKm1o7iAa2ypeG4Ic9ri6MWejvggzoDO/krJwk34ezAykRQver3HNNffr+5w/hcYOnKuvDH/w6ts0dvSIS5W2ffs6GltSot8LFUf0sdlUWEi3T26u28rZ7DyAu+wyIw6At+yyqj4AzJ8/SWlrdo6lsfVn9UV+ZrP6DMM4CZb8huFTLPkNw6dY8huGTwltwa+6GoWlpUHa/Hl8RFNyarLSWPEJ4OvQvYgM13/vRgy7iMayts7wLN2ym0SKRABw7Lhul122cQuNve3HV+nYL3lsOHELZqO2AOAHWdpj5dMt/H6vyla9XMiYN11pXm2p7ZP1a7Zs270kEnj5GV3UevCFx2ns4w89r7QnX/8TjV08bbHS+g7Rx2Dw+f3o9leMuFNpOVfxIi0boeXVVs7W43u17LLiXv/OnWns+NnB6/dnfMBHsTHszG8YPsWS3zB8iiW/YfgUS37D8CmW/IbhU0Ja7W8eHY2crsHmHf0yMmhs/Zl+ABAfy2e51TcIAbiRBgCE1ei/d5s9Wj3XLNQtpNmD+yrNq7V2Z6Fu6czp3Z3Grt+1S2mZnXiLcjQxnFj72UYaO6RXL32/6dzZOCZKt4beO1pX60f+aAzdfssKfRXhwlEX0tjR912jtLw8/joMHKlbgZ/+6a9o7PR5U5WW1bW30l6Z9U+6fcFm3cpbv4W2jtG5+tjUn51XR32XXUAbcXzT49Wv6tdx5/BTX1lvZ37D8CmW/IbhUyz5DcOnWPIbhk+R2oE8IXowkX0AdgZutgLQcKvRpoM9r6bHd+m5dXTONWhARkiTP+iBRVY45/gAsiaMPa+mx3f5uX0T9rHfMHyKJb9h+JSzmfyvnMXHPpPY82p6fJefmydn7Tu/YRhnF/vYbxg+JeTJLyIjRGSziGwTkcdC/finExEZLyJ7RWTDCVqSiMwWka2Bn9z25hxGRNqLyHwR2SQiG0Xk/oDepJ+biMSIyOcisjbwvH4X0DuJyLLA85osIg33v27ChDT5A8M+/wzgSgC9ANwkInrlSdNhAoAR9bTHAMx1znUDMDdwu6lRBeAh51xPADkAfhp4nZr6c6sAMNQ51xdAFoARIpID4H8APB94XgcB3HUW9zFkhPrMPxDANufcdudcJYB3AOSGeB9OG865RQDqm+flApgY+H0iaseXNymcc0XOuVWB3w8D2AQgDU38ublaygI3IwP/HIChAOrmize553WqhDr50wCcuHa1IKB9l0hxzhUBtUkEgA9sbyKISAZqpzQvw3fguYlIuIisAbAXwGwAXwEodc5VBUK+i+9JSqiTny2yt8sN5ygi0hzANAAPOOe0wUITxDlX7ZzLApCO2k+ieuaWT96ToU7+AgDtT7idDoA7ODRd9ohIKgAEfu49y/tzSohIJGoTf5Jz7r2A/J14bgDgnCsFsAC1NY2WIlLnkPJdfE9SQp38ywF0C1RXowDcCEAbwzdtpgO4LfD7bQA+PIv7ckpIrQ3SawA2OefGnfBfTfq5iUhrEWkZ+D0WwDDU1jPmA7g+ENbkntepEvImHxEZCeAFAOEAxjvn/hDSHTiNiMjbAAajdlXYHgC/BfABgCkAOgDIBzDaOccnapyjiMggAP8GsB5A3aSUJ1D7vb/JPjcROR+1Bb1w1J74pjjnnhKRzqgtPicBWA3gFuecntjyHcM6/AzDp1iHn2H4FEt+w/AplvyG4VMs+Q3Dp1jyG4ZPseQ3DJ9iyW8YPsWS3zB8yv8DpSvMK75QJgYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The breast cancer dataset\n", - "Now we run our algorithm with the real-world dataset: the breast cancer dataset, we use the first two principal components as features." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAH7ZJREFUeJzt3X+4XFV97/H3J8kJHAVyEn6ZnCQGFRAELpQjYlFBA4XaR5Oi4q/aYLXUclv7Q5FQLbXofYimiperrUapos/1lmjjIYo2QBBtuaQSbjARMYKoJIcQwo+gqUcJ4Xv/2GvIZDIzZ86ZX/vM/rye5zxnZu81e39nZs93r1lrzV6KCMzMrFimdDsAMzPrPCd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAnLy70GSQtIL0u1PS/rbbsdUjaSzJG3t8D4XpNdnWif3a/vze9FdTv5tIOlnkkYl7ZK0XdLnJR1Utv5cSd+V9EtJOyR9R9JrK7ZxVvpgvK+ZWCLiXRHxoWa2USQV793jkm6QNK8LcVwo6T86vd+86lRFoRsVkm5x8m+f10TEQcBvAS8GPgAg6fXAV4AvAnOBI4HLgddUPH4J8Fj6n3s9VnsrvXezge3A/6pVUNLUjkU1ifTY8dCbIsJ/Lf4DfgacXXZ/OfANQMADwCVjPP5ZwC+BNwFPAkNjlL8E2AY8CPwREMAL0rovAB9Ot88CtgLvAx5Oj1kMvBr4MdnJ5m/G+TwvBTYCvwGmAXOAfwV2AD8F3l1Wvj/F8zjwwxT31rL1z8RdGXu6vwi4C/gF8BPgvLR8BnBNej4jwIeBqWndVOAfgEeA+4H/nvYzrcH37tXAjyti+ifgm8B/AWcDB6R9PEB2svg00J/Kz0zv/Y70vL8BzC3b3oUprl+m1+utwHHAr4E9wC5gZ41YZwGfT+/748Bwg/u8FfgQcFva743AYWXrXwb8X2AnsAW4MC2v9zzPIju2LgUeAr5UJd667wXwduCeFNP9wJ+k5c8GRoGn0+uxi+w4Ow24PcW5DfgkMD09RsBVZMf5E2TH6An1nket/XQ7n7QtT3U7gF78K08gwDzg7vRhe2E62I8a4/FvSwfzVODrwNV1yp6XDuAT0sH7Zeon/6fIvmn0AX+cEsSXgYOBF5ElneeN43nelZ5jP9k3yTvT9qcDz0sf4nNT+WXAv5MlrXnAD2gw+acP+hPAOWk/g8AL07ph4DPp+R8BfK8scbwL+FHa3yzg2zSY/MlOwtcCX6yI6QngjBTHgcAngNVp+wen9+zKVP5Q4HVpWweTfesrJelnk53Ijk33ZwMvSrcvBP5jjNf/BuA6smTfB5w51j7T+lvJTp7HpPftVmBZWjefLPm+OW3zUODktK7e8zyL7Nj6CFly7a8Sb933Avg94PlkiftM4FfAb5Vtf2vF9k4FTierdCwgO3H8ZVp3LtmxOJC2dxwwu8HnsbXe694rf10PoBf/UgLZRVYj+Tnwj+lDdkY62A8c4/E3A59It99MlqD7apT959IHN90/hvrJf5S9teKDU9mXlD3+TmDxOJ7nH5XdfwnwQEWZy4DPp9v3k2rr6f5FNJ78PwNcVSWGI8m+dfSXLXsz8O10+xbgXWXrfoexk3/pvXuKrFZ9YkVM5ScDkX0DeH7ZspcCP62x/ZOBx9PtZ6f9vI6KZMkYyZ/sRPE0MLOB9+mZfab7twIfKLt/MfBvZe/X16pso+7zTMfWk9Q5tifwXgwDf1G2/bpJGfjLUuzAq8i+zZ4OTBnn8yhE8ne7XPssjoibyxdIejTdnE32FX8/qXPxlWQfQoDrgRVktaLhKg+ZQ5awS34+RlyPRsSedHs0/d9etn4UOIjGbSm7/VxgjqSdZcumktX2S7GWlx8r1nLzyJpaKj2XrIa6TVJp2ZSy/Uxkn4sj4ubUnr8I+I6k4yPiobS+fHuHk9Ww7yzbv8ieN5KeRdb8cB5ZDR3gYElTI+K/JL0ReC9wjaTbgPdExI8aiHEe8FhEPF65Yox9lt77h8oe8iv2vufzyL4VVKr7PJMdEfHrOjHXfS8k/S7wd2QVmClpf5tqbUzSMcDHgaFUdhrpsxARt0j6JPApYL6kr5G9zgc28DwKwR2+nbWZ7OB/XZ0ybyN7X74u6SGy2vKBwB/WKL+N7ANbMr8FcY5HlN3eQlaDGij7OzgiXp3WjxXrr8g+mCXPqdj286vsfwtZzf+wsn0eEhEvanCfNUXEnohYRdb2/rLyVWW3HyE7Yb6obP8zIuswBngPcCzZt6tDgFek5Ur7WBMR55BVCH4EfLbKPqrZAsySNFBlXd19NrDdaq/zWM+zkZhrvheSDiDrK/oH4MiIGCA72ZdirrbtfyJ7zY5Oz/NvysoTEVdHxKlkzZnHkPUxjfU8xnoOPcPJv4Mi+17518DfSnq7pEMkTZH0MkkrUrE/BP6e7Kt66e91wO9JOrTKZlcCF0o6PtX4/q79z6Sm7wG/kHSppH5JUyWdIOnFaf1K4DJJMyXNBf684vF3AW9JjzuPrN235Brg7ZIWptdsUNILI2IbWYflx8pez+dLKj12JfBuSXMlzQSWNvpklFlEVnu+p1qZiHiaLGFfJemI9LhBSeemIgeTJZudkmZR9v5IOlLSayU9m+wEtovsRAPZt7G5kqbX2O824FvAP6bXs09SKcnX3GcD/jdwtqQLJE2TdKikkxt4no2o915MJ+sr2AE8lb4F/E7Z+u3AoZJmlC07mKzPZJekFwJ/Wloh6cWSXiKpj6yZ59fAngaeR7X99CQn/w6LiK8CbyQblfMg2cH2YeB6SaeTdVx9KiIeKvtbDdxH1pZdub1vkXVg3ZLK3NKqWCW9VdLdjZZPTQqvITth/ZSslvU5stE4kJ3Ufp7W3Qh8qWITf5Eev5Ns1MszzVwR8T2y0SBXkXW4foesyQeyE+Z0shFEjwNfJatJQ/ZBXwN8H/h/wKoGnsrXJe0iSyz/A1gSEfVeh0vJXvt1kn5B1mdzbFr3CbL+nkeAdcC/lT1uClkt/UGykVZnkrW/Q/Y+3g08JOmRGvt9G7CbrPb7MFmb91j7rCsiHiAb4fSeFNNdwH9r4Hk2ouZ7ERG/BN5NdoJ4HHgLWadsaf2PgP8D3C9pp6Q5ZM04byHroP4sWed3ySFp2eNkx9yjZN8q6j6PGvvpSUqdHGZmViCu+ZuZFZCTv5lZATn5m5kVkJO/mVkB5fZHXocddlgsWLCg22GYmU0qd9555yMRcfhY5XKb/BcsWMD69eu7HYaZ2aQiqaFfzrvZx8ysgJz8zcwKyMnfzKyAnPzNzArIyd/MrICc/M3MCsjJ38ysgJz8zcwKqCXJX9J5kjZLuk/SfpNlSDpA0nVp/X9KWtCK/ZpNFsMbRjhj2S0ctfQGzlh2C8MbRrodkhVc08k/zXP6KeB3geOBN0s6vqLYO8gmkH4B2WQcH2l2v2aTxfCGES5btYmRnaMEMLJzlMtWbfIJwLqqFTX/04D7IuL+iHgS+BeySa/LLQKuTbe/CixU2ezJZr1s+ZrNjO7es8+y0d17WL5mc5ciMmtN8h8km/S5ZGtaVrVMRDxFNg3ffvPRSrpI0npJ63fs2NGC0My678Gdo+NabtYJrUj+1WrwlXNDNlKGiFgREUMRMXT44WNelM5sUpgz0D+u5Wad0IrkvxWYV3Z/LtmE1FXLSJpGNqH3Yy3Yt1nuXXLusfT3Td1nWX/fVC45dzxzn5u1ViuS/x3A0ZKOkjQdeBOwuqLMamBJuv164JbwzPFWEItPGeTK809kcKAfAYMD/Vx5/oksPqWyddSsc5q+nn9EPCXpz4A1wFTgnyPibklXAOsjYjVwDfAlSfeR1fjf1Ox+zSaTxacMOtlbTcMbRli+ZjMP7hxlzkA/l5x7bNuPl5ZM5hIR3wS+WbHs8rLbvwbe0Ip9mZn1ktJQ4NKIsNJQYKCtJwD/wtfMrIu6NRTYyd/MrIu6NRTYyd/MrIu6NRTYyd/MrIu6NRS4JR2+ZmY2MaVO3Uk52sfMzCauG0OBnfzNOqwbY7rNKjn5m3VQt8Z0m1Vyh69ZB/nyzpYXTv5mHeTLO1teOPmbdZAv72x54eRv1kG+vLPlhTt8zTqoW2O6zSo5+Zt1mC/vbHngZh8zswJy8jczKyAnfzOzAnKbv5n1NF9Oozonf6vJHxqb7Hw5jdrc7GNVlT40IztHCfZ+aIY3jHQ7NLOG+XIatTn5W1X+0Fgv8OU0anPyt6r8obFe4Mtp1Obkb1X5Q2O9wJfTqM3J36ryh8Z6weJTBrny/BMZHOhHwOBAP1eef2LhO3vBo32sBl+DxnqFL6dRnZO/1eQPjVnvcrOPmVkBOfnn0caVcNUJ8MGB7P/Gld2OyMx6jJt98mbjSvj6u2F3GlL5xJbsPsBJF3QvLjPrKa75583aK/Ym/pLdo9lyM7MWcfLPmye2jm+5mdkEOPnnzYy541tuZjYBTv4T0c4O2YWXQ1/Fr2j7+rPlBTK8YYQzlt3CUUtv4Ixlt/iCcmYt5g7f8Wp3h2xpG2uvyJp6ZszNEn8vd/ZuXLnP873j+X/OZXc815fhNWsjRUS3Y6hqaGgo1q9f3+0w9nfVCVnCrzRjHvzVDzofT0XinHQnisqTKTDKAVz65DtY/fTL9ik6ONDPbUtf1ekIzSYVSXdGxNBY5dzsM1556pAtJc4ntgCx91vIZPpdQJXRTf38hvdN2/85+IqiZq3j5D9eeeqQ7YVhoTVOmnP06P7LfEVRs5Zx8h+vPHXI5ulbyETVOGlu49B97vf3TeWVLzzcncBmLdJU8pc0S9JNku5N/2dWKXOypNsl3S1po6Q3NrPPrjvpAnjN1VkbP8r+v+bq7rSz5+lbyETVOJk+eOr79rkM7+tOHeRf7xzxtJJmLdJUh6+kjwKPRcQySUuBmRFxaUWZY4CIiHslzQHuBI6LiJ31tp3bDt88qdJZSl9/905GE9VAp/UZy25hpEqbvzuBzfbVaIdvs0M9FwFnpdvXArcC+yT/iPhx2e0HJT0MHA7UTf7WgF4ZFnrSBWPG7GklzVqr2eR/ZERsA4iIbZKOqFdY0mnAdOAnNdZfBFwEMH/+/CZDK4gGEmcvmDPQX7Xm705gs4kZs81f0s2SflDlb9F4diRpNvAl4O0R8XS1MhGxIiKGImLo8MMPH8/mrcd5Wkmz1hqz5h8RZ9daJ2m7pNmp1j8beLhGuUOAG4APRMS6CUdrheVpJc1aq9lmn9XAEmBZ+n99ZQFJ04GvAV+MiK80uT8rME8radY6zSb/ZcBKSe8AHgDeACBpCHhXRLwTuAB4BXCopAvT4y6MiLua3Lfl3PCGEdfUzXLK1/axthjeMMJlqzY9c3E2yNrorzz/RJ8AzNrI1/axrlq+ZvM+iR9gdPcelq/Z3KWIzKyck7+1hcflm+Wbk7+1Ra3x9x6Xb5YPTv7WFh6Xb5ZvnsnL2sLj8s3yzcm/nsk+S1aXeVy+WX45+dfS7rl6zcy6yG3+tfTCLFlmZjU4+dfSC7NkmZnV4ORfSy/MkmVmVoOTfy15mqvXzKzFnPxrydNcvWZmLebRPvUUZJYsMyse1/zr2bgSrjoBPjiQ/d+4cnJt38ysBtf8a2n3OH//jsDMusg1/1raPc7fvyMwsy5yzb+Wdo/zz+nvCDz7llkxuOZfS7vH+efwdwSl2bdGdo4SwMjOUS5btYnhDSNdi8nM2sPJv5Z2j/PP4e8IPPuWWXE4+dfS7nH+OfwdgWffMisOt/nX0+5x/jn7HcGcgX5GqiR6z75l1ntc87dnePYts+Jwzb8ZPTbZi2ffMisOJ/+J6tEfaXn2LbNicLPPRPlHWmY2iTn5T1ROf6RlZtYIJ/+JyuGPtMzMGuXkP1ELL4cpffsum9LnyV7MbFJw8m+GVP++mVlOOflP1NorYM+T+y7b8+T4O3x9TX8z6wIP9ZyoVnT49uhwUTPLP9f8J6rRDt96NXsPFzWzLnHyn6hGrspZqtk/sQWIvTX70gnAw0XNrEuc/CeqkatyjlWz93BRM+sSt/k3Y6yrco5Vs194+b5t/tD1a/qbWTE4+bfTjLmpyafKcth74sjhxeE8naNZb3Pyb6dGavY5u6Y/7J3OsTSrV2k6R8AnALMe4Tb/dprobF1dHvvv6RzNel9TNX9Js4DrgAXAz4ALIuLxGmUPAe4BvhYRf9bMfieV8dbsczD239M5mvW+Zmv+S4G1EXE0sDbdr+VDwHea3F/vy8HY/1rTNno6R7Pe0WzyXwRcm25fCyyuVkjSqcCRwI1N7q/35WDsv6dzNOt9zSb/IyNiG0D6f0RlAUlTgI8Bl4y1MUkXSVovaf2OHTuaDK2Lmmmzz8HY/8WnDHLl+ScyONCPgMGBfq48/0R39pr1kDHb/CXdDDynyqr3N7iPi4FvRsQWjXHVy4hYAawAGBoaiga3333lc/n2z4Qnd+296Nt42+xzMvbf0zma9bYxk39EnF1rnaTtkmZHxDZJs4GHqxR7KfBySRcDBwHTJe2KiHr9A5NHZQft6GP7lym12TeS/HM89t/Mekez4/xXA0uAZen/9ZUFIuKtpduSLgSGeibxQ/UO2mrG02afw7H/ZtZbmm3zXwacI+le4Jx0H0lDkj7XbHCTQqNJ3dfrMbMcaarmHxGPAgurLF8PvLPK8i8AX2hmn7lT6xIO5Xy9HjPLGf/Ct1nVLu08pQ/6ZzGuX/WamXWQr+3TLHfQmtkk5OTfCu6gNbNJxs0+ZmYF5Jq/WRd4vgTrNid/sw7zfAmWB272Meswz5dgeeDkb9Zhni/B8sDJ36zDPF+C5YGTv1mHeb4EywN3+FrhdXrkTWnbHu1j3eTkb4XWrZE3ni/Bus3NPlZoHnljReXkb4XmkTdWVG72sa7q9i9d5wz0M1Il0XvkjfU61/yta0rt7SM7Rwn2trcPbxjpWAweeWNF5eTfbhtXwlUnwAcHsv8bV7bnMZNQHtrbF58yyJXnn8jgQD8CBgf6ufL8E90Zaz1PEdHtGKoaGhqK9evXdzuM5lRO7g7ZxC/1JneZyGMmqaOW3kCto2/Qwx/NJkTSnRExNFY51/zbqdrk7rtHs+WtfMwkVa9dvRtNQGZF4uTfauVNNrXm9q036XutdY1OFD+JVGtvL+chl2bt49E+rVStyaaaGXPrr6t20qj3mEmq/Jeu1UbcgIdcmrWLa/6tVK3JplJffzbHby3VJoQf6zGT2OJTBrlt6asY9MXOzDrKyb+V6jbNCGbMG7vj9qQLsjIz5jX+mB7gIZdmneVmn1aq2WQzD/7qB41vp4ATwvtiZ2ad5eTfSgsvh+GL4ende5dN6dvbZLNxZdY09MTW7ESx8PLCJfl6fLEzs85x8m81qfr9ys7gJ7Zk98EnADPrOCf/Vlp7Bex5ct9le57cO0a/1vh9J38z6zAn/1aayBj9Hhy/b2b559E+rVRrLP6MufXXmZl1mJN/K9Ubo1+w8ftmlm9u9mmlUtt9vRE9Hu1jZjngq3qamfUQX9XTzMxq6t3kX5AJUczMJqI32/z9gyozs7p6s+ZfoAlRzMwmojeTf4EmRDEzm4jebPYp0IQoeTC8YcRX4zSbZJqq+UuaJekmSfem/zNrlJsv6UZJ90j6oaQFzex3TP5BVccMbxjhslWbGNk5SuC5d80mi2abfZYCayPiaGBtul/NF4HlEXEccBrwcJP7ra+gE6J0w/I1mxndvWefZZ571yz/mm32WQSclW5fC9wKXFpeQNLxwLSIuAkgInY1uc/GFHBClG6oNceu5941y7dma/5HRsQ2gPT/iCpljgF2SlolaYOk5ZKmVilnk1CtOXY9965Zvo2Z/CXdLOkHVf4WNbiPacDLgfcCLwaeB1xYY18XSVovaf2OHTsa3Lx1k+feNZucxmz2iYiza62TtF3S7IjYJmk21dvytwIbIuL+9Jhh4HTgmir7WgGsgOzaPo09Besmz71rNjk12+a/GlgCLEv/r69S5g5gpqTDI2IH8CrAV2zrIZ5712zyabbNfxlwjqR7gXPSfSQNSfocQETsIWvyWStpEyDgs03u18zMmtBUzT8iHgUWVlm+Hnhn2f2bgJOa2ZeZmbVOb17ewczM6nLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAnLyNzMrICd/M7MCcvI3MysgJ38zswJy8jczKyAnfzOzAmr2ev5mVmF4w4gnt7Hcc/I3a6HhDSNctmoTo7v3ADCyc5TLVm0C8AnAcsXNPmYttHzN5mcSf8no7j0sX7O5SxGZVefkb9ZCD+4cHddys25x8jdroTkD/eNabtYtTv5mLXTJucfS3zd1n2X9fVO55NxjuxSRWXXu8DVroVKnrkf7WN45+Zu12OJTBp3sLfec/C33PG7erPWc/C3XPG7erD3c4Wu55nHzZu3h5G+55nHzZu3h5G+55nHzZu3h5G+55nHzZu3hDl/LNY+bN2sPJ3/LPY+bN2s9N/uYmRWQk7+ZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkBOfmbmRWQk7+ZWQH5R15mVpPnUuhdTv5mVpXnUuhtTTX7SJol6SZJ96b/M2uU+6ikuyXdI+lqSWpmv2bWfp5Lobc12+a/FFgbEUcDa9P9fUj6beAM4CTgBODFwJlN7tfM2sxzKfS2ZpP/IuDadPtaYHGVMgEcCEwHDgD6gO1N7tfM2mxGf1/V5Z5LoTc02+Z/ZERsA4iIbZKOqCwQEbdL+jawDRDwyYi4p9rGJF0EXAQwf/78JkMzs4ka3jDCfz351H7L+6aoq3MpuAO6dcZM/pJuBp5TZdX7G9mBpBcAxwFz06KbJL0iIr5bWTYiVgArAIaGhqKR7ZtZ6y1fs5nde/b/CB504LSuJVt3QLfWmMk/Is6utU7SdkmzU61/NvBwlWK/D6yLiF3pMd8CTgf2S/5mlg+12vV3/mp3hyPZq14HtJP/+DXb5r8aWJJuLwGur1LmAeBMSdMk9ZF19lZt9jGzfMjj3MnugG6tZpP/MuAcSfcC56T7SBqS9LlU5qvAT4BNwPeB70fE15vcr5m1UR7nTs7jCWkya6rDNyIeBRZWWb4eeGe6vQf4k2b2Y2adlce5ky8599h92vyh+yekycy/8DWzqvI2d3IeT0iTmZO/mU0aeTshTWa+qqeZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkBOfmbmRWQk7+ZWQE5+ZuZFZAi8nnlZEk7gJ+nu4cBj3QxnFoc1/jlNTbHNT6Oa3w6GddzI+LwsQrlNvmXk7Q+Ioa6HUclxzV+eY3NcY2P4xqfPMblZh8zswJy8jczK6DJkvxXdDuAGhzX+OU1Nsc1Po5rfHIX16Ro8zczs9aaLDV/MzNrISd/M7MCymXyl/QGSXdLelpSzeFRks6TtFnSfZKWdiCuWZJuknRv+j+zRrmPpvjvkXS1JOUkrvmSbkxx/VDSgnbGNZ7YUtlDJI1I+mQe4pJ0sqTb03u5UdIb2xhP3WNZ0gGSrkvr/7MT712Dcf11OpY2Slor6bl5iKus3OslRb080um4JF2QXrO7JX25E3FVFRG5+wOOA44FbgWGapSZSjYx/POA6WSTwx/f5rg+CixNt5cCH6lS5reB21J8U4HbgbO6HVdadytwTrp9EPCsDryXDcWW1v9P4MvAJ/MQF3AMcHS6PQfYBgy0IZYxj2XgYuDT6fabgOs68Bo1EtcrS8cR8Kd5iSuVOxj4LrCuVh7pwut1NLABmJnuH9HuuGr95bLmHxH3RMTmMYqdBtwXEfdHxJPAvwCL2hzaIuDadPtaYHGVMgEcSPbmHwD0Adu7HZek44FpEXETQETsiohftTmuhmJL8Z0KHAnc2IGYGoorIn4cEfem2w8CDwNj/nJyAho5lsvj/SqwsN3fKBuJKyK+XXYcrQPmtjmmhuJKPkR2kv91B2JqNK4/Bj4VEY8DRMTDHYptP7lM/g0aBLaU3d+alrXTkRGxDSD9P6KyQETcDnybrJa4DVgTEfd0Oy6yWuxOSaskbZC0XNLUNsfVUGySpgAfAy7pQDwNx1VO0mlkJ/SftCGWRo7lZ8pExFPAE8ChbYhlvHGVewfwrbZGlBkzLkmnAPMi4hsdiKfhuMg+h8dIuk3SOknndSy6Cl2bwF3SzcBzqqx6f0Rc38gmqixretxqvbgafPwLyJqtSjWgmyS9IiK+2824yN7rlwOnAA8A1wEXAtc0E1eLYrsY+GZEbGllZbYFcZW2Mxv4ErAkIp5uRWyVu6iyrPJYbsvxPoaG9ynpD4Ah4My2RpR2V2XZM3GlysRVZMd3JzXyek0ja/o5iyxH/LukEyJiZ5tj20/Xkn9EnN3kJrYC88ruzwUebHKbdeOStF3S7IjYlhJCta9svw+si4hd6THfAk4na3vsZlxbgQ0RcX96zHCKq+nk34LYXgq8XNLFZH0R0yXtioimOvFbEBeSDgFuAD4QEeuaiaeORo7lUpmtkqYBM4DH2hTPeOJC0tlkJ9QzI+I3bY6pkbgOBk4Abk2ViecAqyW9NiLWdzGuUpl1EbEb+KmkzWQngzvaGFdVk7nZ5w7gaElHSZpO1gm2us37XA0sSbeXANW+oTwAnClpmqQ+sppQu5t9GonrDmCmpFKb9auAH7Y5roZii4i3RsT8iFgAvBf4YrOJvxVxpePqaymer7QxlkaO5fJ4Xw/cEqnHsJtxpeaVzwCv7WD7dd24IuKJiDgsIhakY2pdiq+diX/MuJJhsk5yJB1G1gx0f5vjqq5bPc31/shqz1uB35B1lq5Jy+eQNQ+Uyr0a+DFZO+z7OxDXocBa4N70f1ZaPgR8Lvb2+H+GLOH/EPh4HuJK988BNgKbgC8A0/MSW1n5C+nMaJ9G3ss/AHYDd5X9ndymePY7loEryJIWZIMIvgLcB3wPeF67X6MG47o5fUZLr8/qPMRVUfZWOjDap8HXS8DHU27YBLypE3FV+/PlHczMCmgyN/uYmdkEOfmbmRWQk7+ZWQE5+ZuZFZCTv5lZATn5m5kVkJO/mVkB/X870a/jZks+DgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'A': 0, 'B': 1} {0: 'A', 1: 'B'}\n" - ] - } - ], - "source": [ - "sample_Total, training_input, test_input, class_labels = Breast_cancer(\n", - " training_size=20, test_size=10, n=2, PLOT_DATA=True\n", - ")\n", - "# n =2 is the dimension of each data point\n", - "\n", - "datapoints, class_to_label = split_dataset_to_data_and_labels(test_input)\n", - "label_to_class = {label:class_name for class_name, label in class_to_label.items()}\n", - "print(class_to_label, label_to_class)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "testing success ratio: 0.95\n", - "ground truth: ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n", - "predicted: ['A', 'B', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B']\n" - ] - } - ], - "source": [ - "algo_input = get_input_instance('ClassificationInput')\n", - "algo_input.training_dataset = training_input\n", - "algo_input.test_dataset = test_input\n", - "algo_input.datapoints = datapoints[0]\n", - "result = run_algorithm(params, algo_input)\n", - "print(\"testing success ratio: \", result['testing_accuracy'])\n", - "print(\"ground truth: {}\".format(map_label_to_class_name(datapoints[1], label_to_class)))\n", - "print(\"predicted: {}\".format(result['predicted_classes']))" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "kernel matrix during the training:\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJztnXl4FfX1xt9vQjYSIAl7QiCsASUYQBZBKIuoLO4iiLZoqVYrlbq0VVt/FK2t1rVaW7VuVFGgkU1cEAVBVIgsIUDCFgghJJAAIfue7++PXPpwc96BQCAQ53yexwfu65l7ZyZzmNwz5/seY62Foijuw+d874CiKOcHTX5FcSma/IriUjT5FcWlaPIrikvR5FcUl6LJryguRZNfUVxKvZLfGHO1MWaHMWa3MeaRs7VTiqKce8yZdvgZY3wB7AQwBkAGgB8A3GqtTT7JNuLDAgKa0tjgkOZCa9O+FY3NTD8otMDgIBpblJ8vtPA2/H39AvyEVl5WIbTi/CK6fYtWLYRmjKGxTM87nFfn2IqKShobEOQvtJLCYhrbpIk83oDgQKHZan7NsGvJ6fqqqqySn+/ny9+XfN7pXLbslPsFyPMCAGUlZULz8eE/M3ZsTj/fspJyoQWScwvwc+N0Hmt/XkF+LkpLivhO1KJJXYIcGAhgt7V2j2cn5gK4DoBj8jOionpRfdDQq4X26z/eQWNn3f+s0GL6X0Rj1365UmiTZ9xJY9tFtxVa5p4soa1ftp5uP+6ucUILdLjofMhF88k7n9NYP3/5Y8vJOExjO8d2FlrStxtpbMs28nh7DOghtIpS+Q8gAFSWS72inP+jxP5hC28XTmMryPtWOrwvw7eJ/EclsnskjU1NTBWaU5Ky/fInNwwA2Lt1r9B6DuLXfl62PDfsswCgiZ/3tbBg7qs0jlGfX/sjAew/4XWGR1MUpRFQnzs/+9VC/G5ijLkbwN31+BxFUc4B9Un+DABRJ7zuACCzdpC19g0AbwD8O7+iKOeH+iT/DwC6G2M6AzgAYDKAKSfbICCgqfiOv3v3Bho79ib5VuVVshACAH5+AULr1rcbj/WX38kuG9Cbxm7eIb//9by4i9CcClXHso8JbdywATQ2O08WIm+6+xoauyc1Q2i7N+2msZ37yO/8KQlbaeyQ64cIzce37t8MS4tKhcbqEwBQXSXvA01b8OJvcZ4sUFaUyQIaAPj6yc9j+xDUjH8WK7YFtwimsfmH5c+sRWtZqAaAyO4dhNa0Od+H3NBcoTVxOI8hYSFerz9bygvdjDNOfmttpTFmOoBlAHwBvG2t3Xam76coSsNSnzs/rLWfAvj0LO2LoigNiHb4KYpL0eRXFJeiya8oLqVe3/lPl+CQ5qJzj1X1AeCVZx4S2oTbxtDYZZ+/KbTk5O9obL9LRwutYyve3rvjgHhyiUFduwpt1459dPvmrWTlt5xUkwGgVXMZm3oom8YezToqtH+/OJPGRkR0F1pGxg4aO+Z22VU56557hRYb+xO6/dat3wht+PCbaWxkD1n9Xrl0MY2NGzBcaB3I9gBQmFsotLRk2V03cvIouj1ro33v2ddo7OQZ04T21lMv0diJ98rYdR+spbGXkacu5aQ9GABem/mM1+ucTNnq7oTe+RXFpWjyK4pL0eRXFJeiya8oLuWM1/OfCb1iY+27Cxd6aU4tuyXlssBxVZ8+NPbjjXKJamxUFIkEisrkeu19h/ly2BsGXia0BetkIbF7u3Z0ez9f2fa7eitf8ewXKJf69nB435BAucR0R5ZcagwA/aKjhZa4jxcoe0ZECK2wVLbsRoaF0e1zCgqEFuEQy667H/bsobGDu8lW7arqahrr6yPvZyz2UB73SmgeJNtjfch7AkBJubyWAv34ku3ySrkEOSyYtw1nE88Jdi0BwLYM71bvGVOmYFdycp3W8+udX1Fciia/orgUTX5FcSma/IriUjT5FcWlNGi1v0WL1nbo0Bu9NGbEAfCW3fi139LYa/r1E1rfuCtobNcecUJ7690naOz8VfLzbh15udDeXLiMbt+sZTOhjel3CY1lTz2cqvJJ30ozjtf+OovGRkTIduTExBU09u/zZHvtP/74pNCio7n5yc6dPwhtwKCxNLZdtHySkbJhM43t0FkaqER0k08mAKDgqHzisH9HutB+cssIun3+EVlpXz5vCY0dP1W2Li9+60Mae82dk4S2eSU/3r6j+wqtqoI/FftszgLv99y8EoWFuVrtVxTFGU1+RXEpmvyK4lI0+RXFpdRrPb8xJg1AAYAqAJXW2ktPFh8YHCQm6Ti57LL1+E4tu6y4tynxSxrbb4hcix7ox6esXDtEOu0G+csCpdPEnpumXy+0lUncOZdNsMnaw9dmszFiffrwNfZffvme0JyKoQmfJgittFSOIlu7lhfAysqky+6qlfNpbFiYnA40evxNNHZp/GyhRWyRhUwAyM8/IrSsLNk2PGDsQLr9D8vkGvvvv+c+A117ysJnQsInNLZXn/5CW7N6AYkEmreU3g5HMuVxAUDsAO/j2Llb/gydOBtmHiOttbw5XlGUCxb9tV9RXEp9k98C+MIYs8EzlktgjLnbGLPeGLO+pEhaLCmKcn6o76/9Q621mcaYNgCWG2O2W2tXnxhw4riuthEddVyXolwg1OvOb63N9PyZDWAhasZ2K4rSCDjj9l5jTDAAH2ttgefvywE8Ya3lQ+UBhISE2tjYEV7asHFX0th9ybK1deZz99PYmQ9Kx9QWrVrQ2Lf++bjQVqWk0Fhm/NG6mWzZvfvme+j2z773otCWLVhFY7v1ldXrtZ+so7GL5v1LaDExg2jsJYMGCy1nfw6N3b9/u9CGXiV/Psbw7tHKcmlY4TRT72DaIaEVFPCKdueeMUIrypNPIWr2TWpNm0vTjPXf8hbnVq2kK3CXi3rS2O2JiUK7uL9sNQeATz76j9CumXQnjd30rXzS5evLf0mv/TRm27Y1KCrKq1N7b31+7W8LYKHnQmgC4IOTJb6iKBcW9RnUuQcAX6WiKMoFjz7qUxSXosmvKC6lQdfzd+zSzT70l+e9tMsG8LXhbITWprQ0Gju0Rw+hObXsrt29W2g/6dWLxn6dLJ12R/WOFdrKbbxlt4Ks0W8ZEkJju7RpI7QHH36eRAK//aMc/XS0iBfABnaRa+ELiCMvAGzcK8daxXXqJLRwh2NgDrVOxcG8YtkKvJ58PgCMuugioTldt9V1vJ6ZOzQA+DWR34SbOLj3sn1g7sEAsIFcu2z0GwCUVsh9q6jibsVrdniPXnvgttvUvVdRlJOjya8oLkWTX1Fciia/orgUTX5FcSlnYz1/nfEL8EO7aG8Th807UmnsjgOZQrtrzFU09h+LpbkEM+IAeMsuq+oDwAhSZf5qq6zsdyJPJgAgr6REaFvT99PYYlJ9fnQmXSiJjCOyDXb7bulQCwDdyFOEJd9Ll10AuKK/7NlKI3MMg/z5PDo287BH+/Y0ls2pyz6SS2P9SQWePUkBAD+HanttEtP5+eraprXQQgLkbEQAOJQvDVhahsj2bwBo20K2mzs9Cck4Ks9DcAB3uT6UfdTrdUUlPy8MvfMrikvR5FcUl6LJryguRZNfUVxKgxb8yssqkLkny0vrebFsPwV46+OCdXKdMwD8pJdcb81cdgG+Hn9Qd9keDPDi3ujesh157a5ddHtW8BtxEW8lbkoKOk899w6NffD+24TWshlvuW3dXDrBTh4xlMYm7pNFsL6kvdep4Ne9nRzBVVXN21JZe22ndrI4CfC2Yaf23kpSCGQtt5d27lyv7QEgMiy8zrG7DkonZutQKO7cWhYdK6rkOQCALlHeBdUAf97WztA7v6K4FE1+RXEpmvyK4lI0+RXFpZyy4GeMeRvABADZ1treHi0cwDwA0QDSANxireXtWSdQnF8kRls18fOlsbt2SAPPscO5OfCbC5cJzWmE1rbN0hTTaT0+69xjxb3B3bvT7b8kBcNXXufjq3ZtkO+be1SaXALA6LlzhPaLPzxMY19Y/bbQeg+XngQA8NDtct78y/MXCW3j8k10+6hecpxawjJepE1Pl12VDzw/i8bOvPcJoeXn8SFRPr7yegoPl12GzZvLYh0AbN4sDVadRqFtT5GjveIGjKCxc99/RmgTJvyKxqamyvNbViaLxwAw/UlvQ9qSYu7VwKjLnf9dAFfX0h4B8JW1tjuArzyvFUVpRJwy+T1DOI7Wkq8DcHx64mwAciKloigXNGf6nb+ttTYLADx/8ge08B7XVVoqrZsURTk/nPOCn7X2DWvtpdbaSwMDm57rj1MUpY6cafIfMsa0BwDPn9lnb5cURWkI6uTea4yJBrD0hGr/swCOWGufNsY8AiDcWvu7U71Pl5497ZNvvuWlHcs+RmObt5JtqcNIGy8ArEjcIrTwcD6uq1kgX5vNYK2xB4/J/XVq6byCtALn5OfTWOYzsCMri0RyZ+LMXP6whbkgJ6fKJykA0KaNrIC3Iu3QkWFhdPuUTOnBENNetvwCQKCfbBFOPnCAxsYQT4CmDi3G5aQ9lzkFRzgcA3PqTXJY+983Olpoifv4uWXuypd07Ehj2TmvdmiTXl3Lvfe+SZOwc9u2s+Pea4z5EMD3AGKMMRnGmGkAngYwxhizC8AYz2tFURoRp3zOb6291eF/jT7L+6IoSgOiHX6K4lI0+RXFpTToen5jDAIDvAs144Zxo81yYkS4eis32hzTTxpPrkziLbvffSrbe6f8bDyNZWabbD2+U8suK+6xIiIA/Onld4WWuVsW0ACgRStZzLzmFv4tbHuaPIbxgy+lsX97frbQxtwkW1sT1m+j23eJkQWsDxYsp7FpW9KEdvmN3GdgzQrZqp2XI80zAcDPX17SoW1lce/jd/jPLCJC+kuMnDKKxv714VeENnbaOBq7PWG70DZGyXX7ALB6wQqh+fjwNvibH5jk9bq8gq/7Z+idX1Fciia/orgUTX5FcSma/IriUjT5FcWlNHi136fWiKLsPN7u2opUxf0CT6Ol8zCvBnfrK12Bu5CRVgAfocVcdpkRB8BbdllVHwD+dP8dQnv9489pbE5GjtCc2mg3b5X7VlohjwsADuyS7bXs3Hz9MTfo6NErWmjJ3/EnNAW58uc+eRiv9k96eaHQsrL4mLeQEFnZ79Stm9Am3DGRbr9szmKhZafzpSsFBbVXugOHM7nJyJFMOWItex83a2Et95WVFTR20vAhXq//4eDizNA7v6K4FE1+RXEpmvyK4lI0+RXFpTRowS/vcB4+ece7iHXT3dfQ2NRDssgSE8FnvbM11Fl75HgkADiYJvWEz/i8+kdn3i00NkLLyWWXrcd3atllxb1fXlPbN7WG3z7xqtA+37SZxublSP+BLfszaGx6mmxB3UzWsoe35863u3fK2M6xfCxWZqo8D/HrEmjsxUOkL0Ksbx8aW15GipnVsoDWLIwXxvoOu0xoZSWycAsAA66QBcqyIu6em5Mpr7thN4ygsXmHpQtywdECGjtvtXfx9WhBIY1j6J1fUVyKJr+iuBRNfkVxKZr8iuJS6uLh97YxJtsYs/UE7U/GmAPGmETPf3wRs6IoFyx1qfa/C+AfAP5TS3/RWvvc6XyYMUaYLexJ5ZXno1mydbJ/F145TvpWGnf4BUiHWwBYNO9fQvt+20Yam3FEtmQ+eP9tQmOz8wDussuMOADessuq+gDw7P/dJ7Rpv3qSxnaOjRbaDyv5rL1yMg/uEGltrSLt1ABQXior7dVV3HXWVskK/Dfx39DY4NBgoR3O4G207OfepqNsUX718afo9l279hXagKsG09hVC6VRyeiJY2lsUtJK+b5X8vdd98VqoQUGynMAADn7va+bfIe2dsaZjutSFKWRU5/v/NONMUmerwXcBF1RlAuWM03+fwHoCiAOQBaA550CT5zVV1IiBxcoinJ+OKPkt9YestZWWWurAfwbwMCTxP5vVl9QEP/eoihKw3Om47raH5/Sa4x5AMAga+3kU71PWHg7O3r07V5aVE/ZyggA/35xptA+WC1dTQHgrrE3Cq1PH+k6CwCFhbIg8sJ7vG6ZlCLXjA/te5HQvljF24Mjush25Mhw3hrL1uM7teyuni8LQm/983EaO2bMnULbsmUVjX342b8J7bVZfxXasFG8JXvD2q+FNvq6G2hscAt5I3jt6Vk0dtqDjwkttHUoja0ok+veaxfFACAohI9ta9FGvu/G5bwg3G9MP6Gt/1w6DQNA78svFlpxgSywAkBYW7kPltdN8dxjD3q9LizMRWVlRZ3GdZ2y2u8Z1zUCQCtjTAaAmQBGGGPiAFgAaQB+WZcPUxTlwuFMx3W9RTRFURoR2uGnKC5Fk19RXIomv6K4lAY18wgI8hfmDp378JbdiIjuQusXHe0QKx15v/zyPRr7yxl/EdrALnI+GwB0I861bNbeC6vfptsPHhgrNDY7D+Auu8yIA+Atu6yqDwDLl0vzkX79rqSx276VM/gKC3OF9uF/+NORqipZac/M3E1jw8Plk5CJU6fT2Dn//LvQIiOlIy8A5OfLlmy2Dw89xVtT1iyST0KWLeMlrsDgR4S2aJHcVwBo20m2Ey/44DUaO/7GnwvtiIMr8JRfPOz1Ov79l2kcQ+/8iuJSNPkVxaVo8iuKS9HkVxSX0qAFv5LCYiR9690qmZIg1+IDQEbGDqExl14ASEyUbb99466gsazVs6CUO64u+V627U4eIR1bew+XhT0ASE6V+zt+8KU0lo3QcnLZZevxnVp2WXFv48YvaOzU30ufgLWrpKtwnz4j6Pa7d8s22P4DxtDY9qT1OWV9Eo0dffUkuX1X7uRcmCvda9kYshAH995BY4cIjY3lAoCLh8qW3cE7r6WxHUgb+8jRvCO+ez9Z7I6+OJrGfvXfT7xelxQV0ziG3vkVxaVo8iuKS9HkVxSXosmvKC5Fk19RXEqdzDzOFi1btrdXjfNuQx1yvayuAkBVhXSIHT+Su51+umqd0BI+5XPfdibLSvnT70gTCwDo2rat0DKOysrv5TE96faLN0hjh5ULuUMtq0iz2XkAd9m97aF7aCxr2Y0bGUdjZ0y6Tmgvz18stIRPuXlJh5gOQtuwYi2NTUuTT3keefUZGjv7z68LrSCfV+CNj7yfhYbKNu32UZ3o9hvWfSW07t35E5p9++QxxPQaQGMXLZBtt1deyVuyDxzYKbTSUl7Fv+/Pf/B6/bffPYD01F11MvPQO7+iuBRNfkVxKZr8iuJS6jKuK8oYs9IYk2KM2WaMmeHRw40xy40xuzx/qne/ojQiTlnwM8a0B9DeWrvRGNMMwAYA1wO4A8BRa+3TxphHAIRZa39/sveK6NjZ3v2wtysvG6UEADPvkp6gy9evobG3jLlZaKWlfEbATVPl+z7++2k0Nu2wXEPds71sK31ryTK6ff+4XkI7VsT3qwvxDticnk5j2QitV/7wBI1l6/HDwmQhEwDunSXXp99/iywCOrX37twpC5zDhk2kse2iZHFw5zY+RqxDhx5Ci+rVkcbmHpTHu2+39EoYN/V6un3+kXyhxb/5Jo2dMv1XQnv3Be4TcN8T/ye0z2cvpbHDrx8ltNJi3oK+arH3tZeY+BUKCo6enYKftTbLWrvR8/cCACkAIgFcB2C2J2w2av5BUBSlkXBa3/k9/v19AawD0Pa4d7/nT34LVxTlgqTOyW+MCQHwEYDfWGvl70bO2/1vXFdxYcGZ7KOiKOeAOiW/McYPNYk/x1q7wCMf8tQDjtcF5BdReI/rahrS7Gzss6IoZ4G6TOwxqBnSkWKtfeGE/7UEwFQAT3v+lK1gtbDVFhWl0uSRERsrx21FhvEHCtHRvYW2du0SGltzON6Eh/C13UH+/nXSNi7nhaprR8ruxYT1suMOAL7++Du5X+35aK+qKtn96DRCi5ltOhXsWOcei01K+ppuHxEhTTVXrOBGqi1bRgrt/iekySUAPPXAvUJrlSALhgBQXCzHseXmHhLa4KuG0+2XzYsXGvMpAIAV8dLrID09hcZuXb1Fbu9wbhjHjsljAIAJP/P2Otizj48LY9TFzGMogJ8C2GKMSfRoj6Em6ecbY6YBSAfAy7qKolyQ1GVc1xoATo8ORp/d3VEUpaHQDj9FcSma/IriUjT5FcWlNKh7r7UWleXe1f7SIt62uHWrXPeeU8D7BHbulFXqsjK+/rmyvFJo5ZVSA4B9pL23e7t2QovqJZ1ZASAlM1NoXWJ4W2qPXtFC272Tt/eWl0qn3w1rv6axbISWU/W638iBQoufK6vHrKoP8LFYvXpdRmPbtpVj2jav3Exj2ROHyEjpcAtwp93U1EShObWVX3aFdDvemyYr9QAwcLR0ct64gbd6t+8aIbSYmEE0tv8oqedl89FtW9d4ewqUFEqvByf0zq8oLkWTX1Fciia/orgUTX5FcSkNXvCrqFVw8/PnuzB8uFyjH+HQ3jtg0FihrVo5n8ZWlMliGWv5BYAeZO1+VXW10BKWydZcALjz9glC+2DBchqb/F2y0DrHyqIYAFRXyX0Yfd0NNJYV4ZxGaDGzTbYe36ktlRX3UlK+p7F798oi2jOz59DY30yWa+SbNeOtzyUlsihcQUahpafwYuqn8fLYnLwhPv/vf4VWVc2Lx9u+k2afycnf0tigeNlunpcni88AcM/MR71ef5/wEY1j6J1fUVyKJr+iuBRNfkVxKZr8iuJSNPkVxaU0aLW/qrIKeYe9zRaqq7h7cGQPadbg5DTcLlq23Do51B5Mk6YIecW8FTgsOFhoJeWkcpwuK/UAEOgnjT/StqTR2IJc6YyWmSrbgwHAknPGRmUBQHi4fGLRvovUACBx40qhDR4mn6QwIw6At+yyqj4AlJYWCs3Hhz918SPnkVX1AaCqSlbbmzaVDlL7t++n2x8+nCG08HB5fQHAwYN7hRYWxs9tGmkRDg5u4fC+e4TmOJ5MPKmqk3EvAL3zK4pr0eRXFJeiya8oLqU+47r+ZIw5YIxJ9Pw37tzvrqIoZ4u6FPwqATx04rguY8zxHtUXrbXSHtbpw/x8Ed7Ouy2zaYumNHblUmkGPP7WK2hsyga5Dnz0+Jto7M4k6Z67fq8s3ABA9hE5+qlTO7kO/IHnZ9Htkw8cENrlN8o14AAweZjU49cl0Nhv4qXXwWtP832YOHW60FLWJ9HYR159RmhvPP6i0Jxcdtl6fKeWXVbc+/XEa2nsG59+ITT/AD8aW7t9HAAKc2VxsfY6+OM8O+cDoTkVXtt2kkXlg3sP0timzeV1HtaWt6uXFZcJzceXF/JmTPJu67ZWtn47URcDzywAxyfzFBhjjo/rUhSlEVOfcV0AMN0Yk2SMeVun9CpK46I+47r+BaArgDjU/GZAx5N6jesqkr9+KYpyfjjjcV3W2kPW2ipb8yXj3wCkARxqjesK5pNxFEVpeOpS7afjuo7P6fNwAwBeQVEU5YKkPuO6bjXGxAGwANIA/PJUb2SrLSpqufcW5/HW2rgBcpba4G7cNbZD5y5CWxo/m8Zede1tQht10UU01r+JPD3M6XfmvU/Q7d9f8KrQ1qzgs9QmvbxQaBcPkTMIASA4VLYdT3vwMRo7559/F9roqyeRSGD2n18XWocOPYTGZucB3GWXGXEAvGWXVfUB4O5x0lE3wD+IxpZXyEo5M2v55Qz+xGLmXfcIrbJStnQDQGiorPYz92AAiIuTw62+/JJfozEx8pdop/d9aa73dfPcow/SOEZ9xnV9WudPURTlgkM7/BTFpWjyK4pL0eRXFJfSwO69clwWc9MFgA5kPT9zzgWAiG5yFFLElq40tihPOrE6+QRUVFXVKTbfwVm1qb8sauXl5JFIICsrVWixvn1o7OEM+Xm9BveisZGRskjavitfc560XrrJ9hs+RGitErh3ABuhdTouu04tu6y4V1bOx1IZI+9nzNPg0L5sun1urmzP7dq1L41lzshRUT1p7JEjstXb6dzk5Ehn4ZIS3iPjH+h9jbHjd0Lv/IriUjT5FcWlaPIrikvR5FcUl6LJrygupUGr/QxfP74LzIDB14f/W1VwVFaO8/OP0Fg2lq/aodrvRz6vkjwB8PH1pduXk1in2YQhIXJFdLnDkxA/UhWvKKsgkfw8sHMLAIYcb+5BaWhSXMyfWLAW1NNx2WVGHIBTyy6/FpiZRWHhMaExcw0ACAiQOtseAIKC5EK1oiJ+btjPt8xhBiB7ClDt8KSrsla7vNOTK4be+RXFpWjyK4pL0eRXFJeiya8oLqVBC37GAL5NvItjTgWwtGTpqOvU3rt/h2yHzMqSI48AYGjz8afazZPCio6sfRTgY8BCHRxbOzGvgmpevGnTUToI5+zPobGsBfXALtlqCgChofJ99+3eJbTcXDnyDABSUxOFVlHBi5ZshJZjIZJUaZ3OOSvOsdFgraNa0+3btZPeEPv2cZ+a2NifCG3r1tV1jmWFTACIipKt2seO8XNelO99jVVX1d29V+/8iuJSNPkVxaVo8iuKS6mLgWegMSbBGLPZM65rlkfvbIxZZ4zZZYyZZ4yR61cVRblgMafqCPK49wZbaws9Ft5rAMwA8CCABdbaucaY1wBsttb+62Tv1SG6q71/5l+9tJYRLWls/hE5r37siEE09rOv1wmtuIAbg8a/9rbQvvpGjgYDgB0H5druSzvLGfS3Tvod3f6d96VJ5FWjbqWxE+6YKLRmYdzq/NXH5fted/tUGhsSJgtrIQ7vu+GLDUK7ZMQlQjt6kJtJskJkeoosxgLA/u37hRbaJpTGsnX+TuvxWeceK+69+OQMuv3AgbIgfNXkG2ns/Nel4emt9/2Kxq6I/0xofS/n1/Mn8+WIs5CQFjS270Bvo9slC17H4ZxMPturFqe889sajpdL/Tz/WQCjAMR79NkArq/LByqKcmFQ16Edvh7b7mwAywGkAjhmrT3ejJ0Bnd+nKI2KOiW/ZzJPHIAOqJnMwzyj6PeHE8d1FRXKX+UVRTk/nFa131p7DMDXAAYDCDXGHO/Q6QCAzjE+cVxXcEjz+uyroihnkbpU+1sbY0I9fw8CcAWAFAArAdzsCZsKgFfNFEW5IKlLe297ALONMb6o+cdivrV2qTEmGcBcY8yfAWxCzTy/k1JWUobURG+X2qpKueYd4OuZmG/QAAALEElEQVSSmwfxEU3sycAPy9bS2FatpPOsHxnLBQBd28gqMVvPv3nzKrp9E9IKHBEh20cBYNkc+W9n32GX8f0ibrItHCrlaxbJfRs0VjryAsCGdV8JrXOsfLqxbF680ADgsivkWK1P49+jsYcPZwjt2Tkf0Fg2Qou57AJ8PT5r2WVVfQBISPhEaE2a8KfYO3fK0Wusqg8Ahw7JdvUlH6bQ2PT0ZKFVkesOAKb+7tder5cv5z4FjLqM60oCIK42a+0eOEzmVRTlwkc7/BTFpWjyK4pL0eRXFJfSoOv5fXwMAoMDvbTgFnLWPAC89+xrQvv5JF6kWT5vidC+/54/fPjF9CeFxgpzABASECg0tp6/Tx+5VhsAktJla+vIKaNobHa6bFctK+HrvQdcNVhoG5dvpLHLlsk6rNOs9+7dLxVa/JtvCm33bv5Ze9O2CK3UwaQyPLyd0DJT6dNiVFZKTwCnEVpsPT9bj3/rr3gbLivufffdQho7YcK9Qlu6lHe4T57yiNA++fgNh/eV++bkoVD7uqlt6Hky9M6vKC5Fk19RXIomv6K4FE1+RXEpmvyK4lIatNpvrUVFrWpk/mG+0m/yjGlCKynn1e/xU28WWteevWns9kTpMOtkaHIoX45eigyTo5S2p/BW4r7Rzwjtrw+/QmNZBX7AFUNp7KqFy4U25lb+JCQwWFaZLx56MY2d+w9ZfZ4yXVaeV8R/TrcfOFru7+f//S+NPXhQtru27dSWxoaGSp25EgN8hBZzzmVGHABv2WVVfYBX9m+66UEau2nDCqF16SKNUgBg8eKXheY0nuyaad7XfhOH8XcMvfMrikvR5FcUl6LJryguRZNfUVxKA4/rMsKJtUVr7u7z1lMvCW3KhNE0dvFbHwqNrcsGgHt+8xehsZZdAGgZIp1vWWzcgBF0+8R9+4Q2dto4Gns487DQyopKaezoiWOFtv5zWagCgEWL/i60wTuvpbExvQYI7d0Xnhdaejpfh75xwzKhVVVXkkggLEyO2zq4l6/RZ8XQqKieNLaoSBZp2Qitx56T7eMAX4/v1LLLinsfffQCjb39jj8KbckCvg833/Kw0HKP8PbenAzvMW0V5fx8M/TOryguRZNfUVyKJr+iuBRNfkVxKfWZ1feuMWavMSbR81/cud9dRVHOFnWp9pcBGHXirD5jzPGS6G+ttdzKlb1RSTn2bvVu64zsLt10AWDivbK9t7ySVzKvuXOS0Hr16U9jP/noP0K7/V4+i61tCzkfbReZ3zf3fdnGCwA/fUju1/aE7TT2SOYRoeVk8up3UtJKoU17SLbxAkDbTnKuX4eeUTR21q/lOX/6Hemou3W1NO0AgPZdI4S27TtppAEAacT4g83ZA4C4OPmU58iRAzQ2JCRMaKy993RcdpkRB8BbdllVHwDef/fPQmNVfQDYslk+naiurqaxQ4JGeL328anTmD4AdXPvtQDYrD5FURoxZzSrz1p7fCzuU8aYJGPMi8aYAIdt/zeuq7y85CzttqIo9eWMZvUZY3oDeBRATwADAIQD+L3Dtv8b1+Xvz4duKIrS8JzprL6rrbVZnvHdZQDegQ7wUJRGxSm/8xtjWgOosNYeO2FW3zPGmPbW2ixjjAFwPQBe2TmBwOBA9BzkPeDXqciz7gO5Rv7XP+OFuc0rNwttzeoFNPbG2+Xop0Fdu9LYmkPzxrZqJTTmtgoAl3TsKLSNUXIEGABk75Ptm8NuGEFjB1wp3XuL84tp7IIPZAvpyNGTaeyVV94ptM9nLxXaihV8BFdMzCChJSd/S2ODg2UxNaytLNYBwJdfzhZas2bSVwEAyohbcHmF9IG4/9Hn6PZshJaTyy5bj386Lbvx8/k+9O9/ldDy82VBGJDnzPc01vPXZ1bfCs8/DAZAIgCZVYqiXLDUZ1YfN6BXFKVRoB1+iuJSNPkVxaVo8iuKS2lQM4+qyirkZXubLeSG5tLYy64fIrTsfO7023e0nNvWvCU3Cdn07XdCK62YTmMzjsp969xaVutTUzfR7Vs1k2YgqxfIllCAOwjnHeZtuOu+kO2fYyZz997xN/5caN37daex8/8p5/LddJd8AuBE/1Gy2h8UL910AeDgwT1CKyvm7swxMfIpck6OnIMI8KcAUVG9hPbJ/Dl0+/T0ZKE5Pc1hLrun07LLqvoAsIGYovj4+NLY2ufMOrQBM/TOryguRZNfUVyKJr+iuBRNfkVxKed9XFcTf74L5SXlQvPz5UWPqooqobH18QDg6ys/r6KKF0mCA+RCxYoq6SlQVsZXK7I12E6Fm8rKCqEVHC2gsYGBwUKzDnWeI8QVOPriaBpbWipbhEuLpYPwsWPcSTYv+5jU8uTnA0BBvnTk9fHla9GZe29JSSGJ5Oec7W9IiGwvBoCqKnkt5eby42UjtJxcdtl+ObXssmukulruFwD4NqkVS1rSndA7v6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pLMayt9FzRum0He+Pk+7y02OGxNPa1mdIR92/vv0Jjn7rvCaHFDuDGQhu/+0Zo//e6dFYFgEPZssrcJUrOmEtK2kW3v6i3NAnZn5VNYycNl+3M81bLVmQA+OxN6Ty7fJk0vACAKb+Q7abbfthAYyfe/1O5Dy/J9x0z6Rq6/dY10s9l0ATZ8gtwo5SHfzqRxr40d6HQ/AP9aWxluXxqUkSMTnas4y7KfUZIg47sdP4zC28vW4lrz847TkCQfHLkZF7C2pxFVd/D7+68RWjW2jqV/PXOryguRZNfUVyKJr+iuBRNfkVxKQ1a8DPG5ADY53nZCgDv/Wzc6HE1Pn5Mx9bJWsstomvRoMnv9cHGrLfWXnpePvwcosfV+PgxH9vJ0F/7FcWlaPIriks5n8nPx6A0fvS4Gh8/5mNz5Lx951cU5fyiv/Yriktp8OQ3xlxtjNlhjNltjHmkoT//bGKMedsYk22M2XqCFm6MWW6M2eX5kzdwX8AYY6KMMSuNMSnGmG3GmBkevVEfmzEm0BiTYIzZ7DmuWR69szFmnee45hlj+MKBHxkNmvyeYZ+vAhgL4CIAtxpjLmrIfTjLvAvg6lraIwC+stZ2B/CV53VjoxLAQ9baXgAGA7jP83Nq7MdWBmCUtfYSAHEArjbGDAbwDIAXPceVC2DaedzHBqOh7/wDAey21u6x1pYDmAvgugbeh7OGtXY1gNpL/64DcHwp3GzUjC9vVFhrs6y1Gz1/LwCQAiASjfzYbA3Hzf/8PP9ZAKMAxHv0RndcZ0pDJ38kgP0nvM7waD8m2lprs4CaJALQ5jzvT70wxkSjZkrzOvwIjs0Y42uMSQSQDWA5gFQAx6y1x51Zf4zXJKWhk5+tM9bHDRcoxpgQAB8B+I21ls9Ka2RYa6ustXEAOqDmN1E5y8sl12RDJ38GgBMH0HUAkNnA+3CuOWSMaQ8Anj+5E8QFjjHGDzWJP8dau8Aj/yiODQCstccAfI2amkaoMea4p/uP8ZqkNHTy/wCgu6e66g9gMoAlDbwP55olAKZ6/j4VwOLzuC9nhKmx2XkLQIq19oUT/lejPjZjTGtjTKjn70EArkBNPWMlgJs9YY3uuM6UBm/yMcaMA/ASAF8Ab1trn2rQHTiLGGM+BDACNavCDgGYCWARgPkAOgJIBzDRWiv9wC5gjDGXA/gGwBYAx6dNPIaa7/2N9tiMMX1QU9DzRc2Nb7619gljTBfUFJ/DAWwCcLu1lo8M/hGhHX6K4lK0w09RXIomv6K4FE1+RXEpmvyK4lI0+RXFpWjyK4pL0eRXFJeiya8oLuX/AYBIBVDfVG/XAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "print(\"kernel matrix during the training:\")\n", - "kernel_matrix = result['kernel_matrix_training']\n", - "img = plt.imshow(np.asmatrix(kernel_matrix),interpolation='nearest',origin='upper',cmap='bone_r')\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/chemistry/H2/.ipynb_checkpoints/w8_03-checkpoint.ipynb b/qiskit/chemistry/H2/.ipynb_checkpoints/w8_03-checkpoint.ipynb deleted file mode 100644 index 7e4bf44be..000000000 --- a/qiskit/chemistry/H2/.ipynb_checkpoints/w8_03-checkpoint.ipynb +++ /dev/null @@ -1,504 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Experimenting with Max-Cut problem with variational quantum eigensolver*_ \n", - "\n", - "\n", - "This notebook is based on an official notebook by Qiskit team, available at https://github.com/qiskit/qiskit-tutorial under the [Apache License 2.0](https://github.com/Qiskit/qiskit-tutorial/blob/master/LICENSE) license. \n", - "The original notebook was developed by Antonio Mezzacapo[1], Jay Gambetta[1], Kristan Temme[1], Ramis Movassagh[1], Albert Frisch[1], Takashi Imamichi[1], Giacomo Nannicni[1], Richard Chen[1], Marco Pistoia[1], Stephen Wood[1]([1]IBMQ)\n", - "\n", - "Your **TASK** is to execute every step of this notebook while learning to use qiskit-aqua and also how to leverage general problem modeling into know problems that qiskit-aqua can solve, namely the [Maximum Cut problem](https://en.wikipedia.org/wiki/Maximum_cut) problem." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "\n", - "Many problems in quantitative fields such as finance and engineering are optimization problems. Optimization problems lay at the core of complex decision-making and definition of strategies. \n", - "\n", - "Optimization (or combinatorial optimization) means searching for an optimal solution in a finite or countably infinite set of potential solutions. Optimality is defined with respect to some criterion function, which is to be minimized or maximized. This is typically called cost function or objective function. \n", - "\n", - "**Typical optimization problems**\n", - "\n", - "Minimization: cost, distance, length of a traversal, weight, processing time, material, energy consumption, number of objects\n", - "\n", - "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", - "\n", - "We consider here max-cut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", - "\n", - "\n", - "### Weighted Max-Cut\n", - "\n", - "Max-Cut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given Max-Cut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", - "\n", - "The formal definition of this problem is the following:\n", - "\n", - "Consider an $n$-node undirected graph *G = (V, E)* where *|V| = n* with edge weights $w_{ij}>0$, $w_{ij}=w_{ji}$, for $(i, j)\\in E$. A cut is defined as a partition of the original set V into two subsets. The cost function to be optimized is in this case the sum of weights of edges connecting points in the two different subsets, *crossing* the cut. By assigning $x_i=0$ or $x_i=1$ to each node $i$, one tries to maximize the global profit function (here and in the following summations run over indices 0,1,...n-1)\n", - "\n", - "$$\\tilde{C}(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j).$$\n", - "\n", - "In our simple marketing model, $w_{ij}$ represents the probability that the person $j$ will buy a product after $i$ gets a free one. Note that the weights $w_{ij}$ can in principle be greater than $1$, corresponding to the case where the individual $j$ will buy more than one product. Maximizing the total buying probability corresponds to maximizing the total future revenues. In the case where the profit probability will be greater than the cost of the initial free samples, the strategy is a convenient one. An extension to this model has the nodes themselves carry weights, which can be regarded, in our marketing model, as the likelihood that a person granted with a free sample of the product will buy it again in the future. With this additional information in our model, the objective function to maximize becomes \n", - "\n", - "$$C(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j)+\\sum_i w_i x_i. $$\n", - " \n", - "In order to find a solution to this problem on a quantum computer, one needs first to map it to an Ising Hamiltonian. This can be done with the assignment $x_i\\rightarrow (1-Z_i)/2$, where $Z_i$ is the Pauli Z operator that has eigenvalues $\\pm 1$. Doing this we find that \n", - "\n", - "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Generating a graph of 4 nodes \n", - "\n", - "n=4 # Number of nodes in graph\n", - "G=nx.Graph()\n", - "G.add_nodes_from(np.arange(0,n,1))\n", - "elist=[(0,1,1.0),(0,2,1.0),(0,3,1.0),(1,2,1.0),(2,3,1.0)]\n", - "# tuple is (i,j,weight) where (i,j) is the edge\n", - "G.add_weighted_edges_from(elist)\n", - "\n", - "colors = ['r' for node in G.nodes()]\n", - "pos = nx.spring_layout(G)\n", - "default_axes = plt.axes(frameon=True)\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[0. 1. 1. 1.]\n", - " [1. 0. 1. 0.]\n", - " [1. 1. 0. 1.]\n", - " [1. 0. 1. 0.]]\n" - ] - } - ], - "source": [ - "# Computing the weight matrix from the random graph\n", - "w = np.zeros([n,n])\n", - "for i in range(n):\n", - " for j in range(n):\n", - " temp = G.get_edge_data(i,j,default=0)\n", - " if temp != 0:\n", - " w[i,j] = temp['weight'] \n", - "print(w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Brute force approach\n", - "\n", - "Try all possible $2^n$ combinations. For $n = 4$, as in this example, one deals with only 16 combinations, but for n = 1000, one has 1.071509e+30 combinations, which is impractical to deal with by using a brute force approach. " - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "case = [0, 0, 0, 0] cost = 0.0\n", - "case = [1, 0, 0, 0] cost = 3.0\n", - "case = [0, 1, 0, 0] cost = 2.0\n", - "case = [1, 1, 0, 0] cost = 3.0\n", - "case = [0, 0, 1, 0] cost = 3.0\n", - "case = [1, 0, 1, 0] cost = 4.0\n", - "case = [0, 1, 1, 0] cost = 3.0\n", - "case = [1, 1, 1, 0] cost = 2.0\n", - "case = [0, 0, 0, 1] cost = 2.0\n", - "case = [1, 0, 0, 1] cost = 3.0\n", - "case = [0, 1, 0, 1] cost = 4.0\n", - "case = [1, 1, 0, 1] cost = 3.0\n", - "case = [0, 0, 1, 1] cost = 3.0\n", - "case = [1, 0, 1, 1] cost = 2.0\n", - "case = [0, 1, 1, 1] cost = 3.0\n", - "case = [1, 1, 1, 1] cost = 0.0\n", - "\n", - "Best solution = [1, 0, 1, 0] cost = 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb3IYAbCDBAh7CwqVkGGUpYY4t4oWKnWOtqqrV/8tnVVUVtHhTpoHXUgKqvfGlqrrS2/JIQ9RBIIZEASkpCE7Jzr98ed3CaYcSAn5z4n5/N8PPIg4859fwjhfd3nuq77upTWGiGEEJ7Fy+oChBBCOJ+EvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAeS8BdCCA8k4S+EEB5Iwl8IITyQj9UFtKdv3756+PDhVpchhBBuZfv27cVa636dHeey4T98+HAyMjKsLkMIIdyKUirHnuNcNvwdTmsoKIDSUuP90FAYPBi8pOdLCOF5enb419XB55/D22/Djh1QWws+Pkb422zg7Q3jxsH118MPfgCBgVZXLIQQTqFcdVXPhIQEfd7dPlrDp5/C//4vnDljfC4oyAj+lhoboarKaAj8/OCBB+DWW+XVgBDCbSmltmutEzo7ruelXGkpLF1qBHl9vdG9Exr63eAH486/Vy8ICzPef/xxSE6G/Hzn1y2EEE7Us8K/uBhSUuDLLyE8HAIC7P9ePz/je/bsgcWLIceuMRMhhHBLPSf86+rg5puN0I6IAKXO/RxKGd9bWgrXXgtlZY6vUwghXEDPCf/f/x6+/trowumqsDAoLITHHuv6uYQQwgX1jPA/dAhWrzb678/njr8tYWGwaRN89ZVjzieEEC6kZ0z1fP11Y8ZOW4O6LTyal0daVRXVNht9fXy4uU8fFoeHt32wl5fRkLz8Mlx0UTcULYQQ1nH/8C8vN6Z19urV6aG39e3Lo76++Hl5cbS2luU5OVzg78/Y9ub39+oFaWnGOMKwYQ4uXAghrOOQbh+l1BtKqUKl1N52vq6UUr9XSh1WSu1WSsU54roA7Nxp/NnJXT9AtL8/fk1z+JVRF7n19e1/Q/Pdf1qaAwoVQgjX4ag+/7XA3A6+/gNgdNPbcuAPDrou7NtnzPSx01MnTnDRwYMsyc6mr48PF4WEdPwNNhvIGkNCiB7GId0+WusvlVLDOzjkCuDP2niceJtSKlwpNVBrXdDli+/bZzygZaeHIiP52YAB7K6uZntVFX6dDRD7+8OBA10sUgghXIuzZvtEAcdbfJzb9LlWlFLLlVIZSqmMoqIi+85cXX1OM3xq6+o4dOgQ/cvKyKmo4L3i4o6/QSljTSAhhOhBXGqqp9Z6jdY6QWud0K9fp8tRGwIDjbV87OSlFFpr/AMCqKqtZffJk2RlZVFw4gTlFRU0NjaeXZTx9K8QQvQgzgr/PGBIi48HN32u68aMgYaGTg8raWjgs/Jy6r29CQoOJqOujm3A/GHDGBQVhZ+vL2VlZXxz+DDZR45wsrCQyspKGmtqYOxYh5QqhBCuwllTPTcAdyul3gOmAqcd0t8PMGGC0S/fCQWsKy3liYIC6hsbCW9s5IHBg5neNEU0MCCAPn36YNOamupqzlRVUXzqFN6VlWzOyECtXk1iYiLjx4/HT14JCCHcnEPCXyn1F2AG0FcplQusBHwBtNavAluAecBhoAq4zRHXBWDyZKNrprGxw4HfCB8f1jTN1dfA4cOHGdzG/H4vpQgKCiIoKIh+ffpgKytj6o9+xL/z83nhhRc4evQoEydOJDExkcTERMaMGYOXLAEthHAzPWM9/wcegE8+MRZls1NxcTF19fUMGjiw/YPKy2HSJPjwwxafKiczM5O0tDQyMjIoLi4mLi6OpKQkEhISGDFiBMpRS0wIIcQ5snc9/54R/vv3wxVXQEiI3dM+GxoayMrKYtTo0Xi3dedusxnh/9prMGNGu+cpLi4mIyODtLQ00tPTqaurIzEx0WwMBg0aZN/fQQghHMCzwh+MjVjefNNYk99Oubm5BAUH07utVwxlZTBnDrzyyjlNJc3LyyM9Pd18ZRAYGNiqMejdu7fd5xJCiHPleeFfXQ0LFsCxY3Yv63zmzBlOnDxJdHQ0reK9vNw4x9/+Bl0Ia6012dnZZmOQmZnJgAEDSEpKIjExkbi4OEI6e8JYCCHOgeeFP8DJk8ZOXvn5xiuATu7YNZCVlcWgQYMIan5e4PRpY0G3Dz6A0aPP/y/QhsbGRg4ePGh2Ee3du5cRI0aYjcGkSZPwt2PmkhBCtMczwx+gqAjuuQfS041N2zsJ0+JTp6itrSWqXz+orDQCf/Vqp6ziWVdXx549e8zG4JtvviE2NtZsDGJjY/GxY8E6IYRo5rnhD8Zg7fvvG+MAtbXG6pxBQd8dDLbZaDhzhhPHjjFwyBC8f/xjuPNO8PXt+l/gPFRVVbFjxw6zMcjLy2PKlCnmtNJRo0bJtFIhRIc8O/ybVVfDZ5/Bn/5kLAAHRkMA3z4bMHo0H/j6ohYt4qrbb+/a9RysrKyM7du3m41BeXk5CQkJZmMwZMgQmVYqhGhFwv9sjY3GpiylpcYrg7AwGDECfH3JzMzkiSee4MMPP3TpMD158iTp6enmm1LKbAgSExPp37+/1SUKISwm4X8OtNZcffXVPPzww8TFOW6fme6kteb48ePmq4KMjAzCw8PNaaXx8fGEOWIzeyGEW5HwP0fvvvsu+/bt4/HHH3faNR3JZrNx+PBhszHYuXMngwcPNhuDyZMnExQUZHWZQohuJuF/jsrLy1m0aBGffPIJ4efwoJiramhoYN++feYzBgcOHCAmJsZsDGSBOiF6Jgn/87By5UpGjRrFTTfd5NTrOkNNTQ27du0yG4OjR48yYcIEszGQBeqE6Bkk/M/D7t27WblyJR999FGPD8KKigoyMzPNxqCoqMhcoC4xMVEWqBPCTdkb/vIEUQsTJkzA39+fjIwMkpKSrC6nW/Xq1Yvp06czffp0AE6dOkVGRgbp6em888471NTUmK8KEhMTZYE6IXoYufM/ywcffMD27dt5+umnnX5tV5Kfn2++KkhPTycgIKDVAnV9+vSxukQhRBuk2+c8VVZWsnDhQtatWycB10RrzZEjR1otUNevXz+zMYiLi6NX045oQghrSfh3wa9//WsGDx7Mbbc5bsOxnsRms3Hw4EGzMdizZw/Dhw9vtUBdQECA1WUK4ZEk/Ltg//79PPTQQ3zyySc9fuDXEerq6ti7d6/ZGBw6dIixY8eajcG4ceNkgTohnETCv4tuvPFGVqxYwbRp0yyrwV1VVVWxc+dOc7zg+PHjTJ482WwMRo8eLY2qEN1EZvt0UXJyMuvXr5fwPw9BQUFMmzbN/NmdPn3aXKDu448/pqysjPj4eJKSkkhKSpIF6oSwgNz5t6OqqooFCxbw3nvvyYJpDlZYWGjue5yWlgZgLk6XlJQkP28hukC6fRzgySefpG/fvixbtszSOnqy5gXqmhuDjIwMQkNDzcYgISGhRyy3IYSzSPg7wKFDh/jJT37Cxo0b8T57IxjRLZoXqGtetnrHjh1ERUWZjUFcXJwsUCdEByT8HeTWW29l6dKlXHLJJVaX4pEaGhrYv3+/2Rjs27eP0aNHm11EEyZMkAXqhGhBwt9BNmzYwD/+8Q9eeOEFq0sRQG1trblAXXp6OtnZ2YwfP77VAnXyKk14Mgl/B6mpqWHevHm88847DBw40OpyxFkqKytbLVBXWFjIlClTzGml0dHRMpNIeBQJfwd65plnCAkJ4a677rK6FNGJkpISc4G6tLQ0qqurSUhIMBuDqKgoq0sUoltJ+DtQdnY2K1asYNOmTfKkqpvJz89v1Rj4+/ubjUFCQgJ9+/a1ukQhHErC38HuuOMOrr/+embOnGl1KeI8aa05evSoOV6wfft2+vbtazYGcXFxhIaGWl2mEF0i4e9gW7ZsYcuWLbz00ktWlyIcxGaz8fXXX5uvCnbv3s3w4cPNaaWTJ0+WBeqE25Hwd7C6ujrmzZvH2rVrGTx4sNXliG7QvEBd8wNnX3/9NWPHjjUbg3HjxuHr62t1mUJ0SMK/Gzz//PP4+Phwzz33WF2KcILmBeqaG4Njx44xefJkszGIiYmRBeqEy5Hw7wY5OTksW7aMzZs3yx2gByovLycjI8NsDEpKSkhISDCfMRg6dKhMKxWWk1U9u8GwYcOIjo7m888/57LLLrO6HOFkoaGhzJw50xz0LyoqMgeP165di81ma7VA3YABAyyuWIj2yZ3/Ofrss89Yv349r776qtWlCBeitSY3N9dsDNLT0+nVq1erBeoiIiKsLlN4AOn26Sb19fXMnz+fP/7xjwwbNszqcoSLstlsZGVlmQ1BZmYmgwYNarVAXXBwsNVlih5Iwr8bvfjiizQ0NHDfffdZXYpwE42Njd9ZoG7kyJFmF9HEiRNlgTrhEE4Nf6XUXOB3gDfwmtb6qbO+fivwDJDX9KmXtNavdXROVw7/3Nxcbr31VrZs2SL/YcV5qa2tZffu3WZjkJWVxfjx480HzsaOHSsL1Inz4rQBX6WUN/AyMAfIBdKVUhu01vvPOvR9rfXdXb2eKxg8eDBjxoxh69atzJs3z+pyhBvy9/c3u4AAzpw5Yy5Q9/jjj1NQUEBcXJzZGERHR8u0UuFQjpjtkwQc1lpnAyil3gOuAM4O/x4lOTmZd999V8JfOERwcDAXX3wxF198MWAsULd9+3bS09P58MMPqaysNAeOk5KSiIqKkmmlokscEf5RwPEWH+cCU9s4bolS6hLgEHCf1vp4G8e4jUsuuYTf/va3ZGdnEx0dbXU5oofp3bs3c+bMYc6cOQAUFBSYC9StWbMGHx8fc6XShIQE+vXrZ3HFwt10uc9fKZUCzNVa39H08U3A1JZdPEqpPkCl1rpWKXUncI3W+jsrpCmllgPLAYYOHRqfk5PTpdq62x/+8AcqKyv56U9/anUpwoNorcnJyTH3PM7IyKBPnz5mN1J8fLwsUOfBnDbgq5S6EHhMa31508cPA2itn2zneG+gRGsd1tF5XXnAt1lBQQE33HADW7ZskQXAhGVsNhuHDh0yG4OdO3cybNiwVgvUBQYGWl2mcBJnPuGbDoxWSo3AmM1zLXD9WcUM1FoXNH24CDjggOtabuDAgUycOJHPPvuMRYsWWV2O8FBeXl6MGTOGMWPGcPPNN1NfX8++fftIS0vjzTff5MCBA4wZM8ZsDMaPH+82y5NoDSdOQF4eNDRAQACMGAFhHd46Cns4aqrnPOAFjKmeb2itH1dK/QrI0FpvUEo9iRH6DUAJcJfW+mBH53SHO3+AL7/8kjfeeIO1a9daXYoQbaqurmbXrl2kpaWRnp5OTk4OkyZNMhuDCy64wKVmEtlskJEBa9fCv/8N1dXQcg+lujro2xd+8AO48UYYNcqyUl2SPOTlJDabjYULF/L8888TExNjdTlCdKq8vNycSZSens6pU6eIj483G4Phw4dbNpNo9264/37IyTHu+oODjeBvWY7WRgNQVWV8/vvfhyefBNli2yDh70R//OMfKS4u5uGHH7a6FCHOWXFxcas1iRoaGlpNK42MjOz2Gmw2WLUKVq8GLy/o1at14LdHazh9Gvz94emnYcGCbi/V5Un4O1FhYSHXXnstmzZtIigoyOpyhDhvWmvy8/PNLqKMjAyCgoLMPY8TEhLo3bu3Q69ps8EDD8CGDUbon8822bW1xiuBlSvh5psdWp7bkfB3sgcffJBp06aRnJxsdSlCOIzWmuzsbLMxyMzMJDIy0mwM4uPju7xA3RNPwOuvG4O4XRl6qK+HM2fglVfAk1dcl/B3sv/85z+8/PLLvP322/LkpeixGhsbOXDggNlFtHfvXqKjo83GYNKkSfj7+9t9vu3b4ZprjDt+Ryxl1Dw4/I9/QJ8+XT+fO5LwdzKbzcbixYt56qmniI2NtbocIZyirq6u1QJ1hw8fZty4cebgcWxsbLsL1DU2wowZUFhohL+jlJXB/Pnwu9857pzuRMLfAm+++Sa5ubk8+uijVpcihCWqqqrMBerS09PJz89nypQpZmMwcuRIc1rpP/8Jy5dDZw8jNzaWU1DwKyort+HjE06/fncTFja3g+OhshK++gr693fgX85NSPhb4NSpU6SkpLBx40ZCQkKsLkcIy5WVlZl7HmdkZFBRUWHue/z225ezZ08QYWEdd5Pm5T0CaAYOfJSamkMcP34vw4e/ib9/+2tqlZYag8grVjj4L+QGZA9fC/Tp04epU6eyZcsWrr76aqvLEcJy4eHhzJ49m9mzZwNw8uRJ0tPT2bYtg7/9bSo+PgWcORNEcHAwwcFB+Pi0fvLYZqumouIfREd/gJdXEEFBk+nVazqnT2+mf/972r2unx+kpnpm+NvLdR7r6yGSk5NZv349rvqKSggrDRgwgAULFnDzzY8RFTWIYcOGEBgYQEVFBdnZ2WRlZXHiRAEVFeU0NjZSV3cM8MbPb6h5Dn//0dTWZnd4nYAAOHDAmEYq2iZ3/g6WkJBAXV0de/bsYeLEiVaXI4RLys0FLy+Fn58/fn7+RET0BjQ1NbVUVZ2hrKyM/Px8vLy+oaHBl8rKSoKCAvHy8sbLKwSb7UyH5/f2Nvr+T50CWe26bXLn72BeXl5ceeWVfPTRR1aXIoTLqqszns5tTREQEEDv3n0YMmQoMTEX0Lv3IBobKzl69ChZWVlobcNmO4OXV+fPFnh5GXP/Rdsk/LvBwoUL+eKLLygvL7e6FCFckp9f+8s3NDTUU1JyipycHIqLfVDKRlSUN35+/lRUVFBbe6jDwd5mNptxHdE2Cf9uEB4ezve//302bdpkdSlCuKThw1vf+TcH/tGjR8nOzqamppa+ffsSEzOBPn3mUlX1FuHhARQVfUVFxReEhc3v8PwNDeDr67kPetlDwr+byMCvEO0bPhwaGhooLv5u4I8ePZpBgwYREhKCUl5ERj6EzVZLQcESKit/S58+D3R6519TA+PG2bc4nKeSAd9uMmXKFJRS7Nixg7i4OKvLEcIlFBYWsnXrVrZu3UpV1RLq6r5Hv359CQ4OQqm270W9vUMZMmQVAEVFRTQ0NHR6nYYGmNv+c2ACufPvNkopkpOTZeBXeLyTJ0/y7rvvsnTpUq699loOHz7MHXfcwfvvX07v3n0IDg5pN/jPFhERTnl5OTZbY7vHNDYag71XXumov0HPJHf+3Wj+/PmsXr2a0tJSIiIirC5HCKc5efIkf//739m6dStHjx5lxowZ3HHHHSQmJppbSNpsMGwYHDvW+RIPzXx8fAkKCqK8vJzw8Lb/T5WXw9VXg4NXnu5xJPy7UWhoKDNmzGDjxo3c7OmLjIserznwU1NTycnJaTPwW/LyMhZfW7zY6Kaxdx3/iIgICgsLCQ8PB1p36ldVQXg4yL5KnZPw72bJycmsXLmSG2+80aX2SRXCEdoK/GXLlrUb+GcbNw5+/GN44QX71/MPDg6msdFGdXU1gYHfbp5UV2fM6//jH+1/JeHJJPy72YQJEwgICCAjI4OkpCSryxGiy06cOGF26bQM/KSkJHzOYxuuu+82nsR96y0ICTGmaHZMERERTmlpqRn+VVVG+K9aBRdddO5/J08k4d/NWg78SvgLd9Uy8I8dO8b06dO7FPgtKWVsvzh4MPz2t0aQh4Z2PE0zPDycw4ezqK9v5MwZb3r1gldfhUsu6VIpHkWWdHaCyspKFi5cyLp16+gjT50IN9Ec+KmpqRw/fpzp06czZ84cEhMTuxz47Tl8GH7+c9i92xgQDgr67tPANpsxj//EiVP4+fly3XWh/M//gMypMMh6/i7mN7/5DYMGDWLp0qVWlyJEu84O/BkzZjB79uxuDfy2HDgAb78NX3wBBQVGV5BSRvA3NkJ0NEyZkseePY+yadNrMp7Wgqzn72KSk5N56KGHuPXWW+UXVbiUgoICs0unOfDvvPNOpwd+S2PHwuOPG+9XVkJ+vjEjKCDA6B7y8wOtB3HddVUynnaeJPydJDY2lrCwMLZt28a0adOsLkd4OFcM/PaEhEBMzHc/r5QiJSWFdevWSfifB9f6V+7hmgd+JfyFFZoDPzU1ldzcXGbMmMEPf/hDEhISXC7w7TVv3jxefvllCgsL6e+JG/Z2gXv+i7upyy+/nBdffFF+UYXTnB34l156KXfddZdbB35LQUFBXHbZZXz66acsW7bM6nLcivv/67uR5l/UTz75hOXLl1tdjuihCgoKzMXTemLgny0lJYV7772XpUuX4u3tbXU5bqPn/Sa4uOTkZH7yk59w++23yy+qcJj8/HyzDz8vL48ZM2b06MBvafTo0URGRvKvf/2LGTNmWF2O2+jZvxUuKCYmhgEDBvDVV19xiTyRIrqgOfBTU1PJz89nxowZrFixgvj4+B4f+GdrHviV8LefZ/2GuIjmgV8Jf3Guzg78Sy+9lB/96EceGfgtzZ49m+eee47jx48zZMgQq8txC57722KhOXPm8Pzzz1NQUMDAgQOtLke4uPz8fLMPXwK/bX5+fixcuJD169dz7733Wl2OW5AnfC3y7LPPEhwczF133WV1KcIFtRX4s2fPlsDvwPHjx1m6dCmbN2/Gz4N3bpcnfF1ccnIyK1asYNmyZfKfWQBtB/7dd99NfHy8TA6ww5AhQ7jgggvYunUr8+bNs7oclyepY5Ho6GiGDBnCl19+ycyZM60uR1jk7MCfOXOmBH4XLFmyhLfeekvC3w4S/hZqHviV8PcsEvjd55JLLuGZZ57hm2++YfTo0VaX49Ik/C00a9YsVq1aRW5uLoMHD7a6HNGNWgZ+QUGBdOl0E29vbxYvXsy6det4WPZy7JAM+FrshRdewNvbm3vuucfqUoSDNQd+amoqJ06caDVoK4HffQoLC7n22mvZtGkTQUFBnX9DD+PUAV+l1Fzgd4A38JrW+qmzvu4P/BmIB04B12itjzri2u4uOTmZO+64gx/+8Id27XkqXFtbgX/PPfdI4DtR//79SUhI4K9//StLliyxuhyX1eXwV0p5Ay8Dc4BcIF0ptUFrvb/FYbcDpVrrUUqpa4GngWu6eu2eYOjQoYwcOZLPP/+cyy67zOpyxHnIy8szu3Qk8F1DSkoKzz//PMnJyaiO9oP0YI64808CDmutswGUUu8BVwAtw/8K4LGm99cBLymllHbVPicnS05OZt26dRL+bkQC37UlJCRQU1PDnj17mDhxotXluCRHhH8UcLzFx7nA1PaO0Vo3KKVOA32AYgdc3+3NmDGDZ555hpycHIYNG2Z1OaIdzYGfmprKyZMnufTSS/nxj39MXFycBL6L8fLyYsmSJaxbt07Cvx0uNdtHKbUcWA5Gd4in8PX1ZdGiRaxfv5777rvP6nJECy0Dv7CwkEsvvZR7771XAt8NLFy4kCuuuIKysjLCw8OtLsflOCL884CWKykNbvpcW8fkKqV8gDCMgd9WtNZrgDVgzPZxQG1u48orr+SWW27hRz/6kUc/mu4KcnNzzS4dCXz3FRYWxvTp09m4cSM33XST1eW4HEeEfzowWik1AiPkrwWuP+uYDcAtwH+BFOAf0t/fWlRUFGPHjpVH0y0igd8zpaSk8Oijj3LDDTfg5eVldTkupcvh39SHfzfwN4ypnm9orfcppX4FZGitNwCvA28ppQ4DJRgNhDhLcnIyb7/9toS/kzQHfmpqKkVFRVx66aX85Cc/IS4uToKihxg/fjxBQUGkpaXxve99z+pyXIo85OVCGhoaWLBgAa+88grR0dFWl9MjnR34M2fOZPbs2RL4Pdj69ev5z3/+w7PPPmt1KU4hq3q6IR8fHxYvXsxHH33ET3/6U6vL6TGOHz9uduk0B/59990nge8h5s6dy0svvURhYSH9+/e3uhyXIXf+LubEiRNcf/31bNmyhYCAAKvLcVttBb7c4Xuup59+mvDwcO68806rS+l2cufvpiIjI5k4cSKfffYZixYtsroct9Ic+KmpqRQXFzNz5kzuv/9+pkyZIoHv4VJSUrj77ru5/fbbZf+MJvJTcEFLlizh9ddfl/C3w9mBP2vWLB544AEJfNHKyJEjiYqKkv0zWpDwd0EXXXQRTz31FIcOHSImJsbqclzOsWPHzC4dCXxhr+YnfiX8DRL+LsjLy4srr7ySjz76SNYkbyKBL7pq1qxZPPfccxw7dsyjVhBojwz4uqiioiKuvvpqNm/e7JFrkkPbgT9nzhwmT54sgS/Oy+9//3saGxt79DIqMuDr5vr160d8fDz/93//R3JystXlOM3ZgT979mwefPBBCXzhEEuWLOHmm29mxYoV+Pv7W12OpST8XdiSJUt46aWXuPLKK3v0muQS+MJZoqKiGDduHFu3bmX+/PlWl2MpCX8XNnXqVJ588kkOHDhAbGys1eU4VMvAP3XqFLNmzZLAF06RkpLCm2++KeFvdQGifV5eXiQnJ/PRRx/1iPBvDvzU1FRKSkok8IUlZDadQQZ8XVxJSQlLlixh48aNhISEWF3OOWsr8GfPni2BLyz12muvUVhYyCOPPGJ1KQ4nA749RO/evZk6dSpbtmzh6quvtrocu+Tk5JhdOs2B/9Of/lQCX7iMxYsXc9VVV3HvvfcSHBxsdTmWkPB3A0uWLGHVqlXMnn0Ve/Yo9u6Fb76BujoIDoYJEyA21vjTqgkMLQO/tLSUmTNnSuALl9W3b1+SkpLYsmULV111ldXlWELC3w34+CSQlnYTU6bUERjoT20t+PiAUmCzwfr14OtrvN14I9x0Ewwa1P11NQd+amoqZWVlzJw5k5/97GdMmjRJAl+4vJSUFJ599llSUlJ69Gy69kj4u7CKCnj8cVi3TnHmzMUodYp+/QbRXtd/XR2sWQNvvgm//CVcfz04OoPPDvxZs2bx85//XAJfuJ2EhATq6+vZtWsXkydPtrocp5Pwd1FHjsANN8DJkxAWBr16BXH4cAGNjY3tbivo52e81dXBypWQmgp/+AN09QHho0ePml06Eviip1BKkZKSwrp16yT8hWs4dgxSUow7/4iI5s/6EBISwunTZfTu3afD7/fzM7qA/v1vWLoU/vSncx8LkMAXnmDBggWsWbOG0tJSIr79z+YRJPwm3X5kAAAZzklEQVRdTF0d3H47nD4N4eGtvxYREUFBQQG9e/cGOu6jVMr4/rQ0eOop45VAZ5oDPzU1lfLycmbOnMlDDz3ExIkTJfBFjxQaGsqll17Khg0buOWWW6wux6kk/F3MSy8ZXT5hYd/9WlBQIEpBVVUVQUGdT09TyjjPW2/BvHmQmPjdY84O/FmzZvHwww9L4AuPkZKSwsMPP8xNN93kUb/zEv4upKgIVq+GkBAjuL9LER4eQWlpmV3hD+Dtbbw9+ij89a/GeY8cOWJ26UjgC08XGxtLaGgo27ZtY9q0aVaX4zQS/i7kww+hocGYxtmeXr0Cyct7jKqqLGy2Cnx9B9O//92EhLT/SxsSAgcP1vPYYxs4ePADCXwhWlBKmRu9SPgLS7z1FgQGdnyMtzcEBg6mV6/l9O8fS2XlV+TlPcSIEe/h59d6cn9tbS0VFeWUl5dTUxPEV18NYtWqR5gwYYIEvhAtzJ07lxdffJETJ04QGRlpdTlOIQngIkpLobCw81k5Xl6BREXdTWVlAEopevW6GF/fQdTUHASMwC8uLiI7O4tjx3JobGxk4MCBjBgRiVIXymwdIdoQGBjI3Llz+fjjj60uxWkkBVzEwYPG9Ex7HjQMDAxEKS/OnKmioaGEmpoczpwJ+07gjx49mgEDIgkMDMLfX3HkiDGbSAjxXSkpKXzyySc0NDRYXYpTSLePiygpMZZqsI8iIiKc3Nwc6uoeR6kL8fKKYuDAUAIDA2lrGqiXl9GwVFRAn44fExDCI0VHRzNs2DC++OILZs2aZXU53U7u/F3Eua6sHRYWis32CjabF35+y7DZbNTV1Xd61+KiK3gL4RKan/j1BBL+LiI01P51eLTWnDjxOEFB9UyY8EeGDYsmICCAiopysrOzyc7O4sSJE1RUVGCzNTZ9j/HKwg23BBDCaWbMmEFWVhY5OTlWl9LtpNvHRcTEGNM8te683//EiSepqzvC0KGv4OUVgL8/+Pv7ExHRG9DU1NRw5swZSktLyM/Pw8/PHz+/UCIjfVHKH/DsjauFaI+fnx+LFi3io48+4v7777e6nG4lO3m5CK1hyhTj7tzPr/3j6usLOHx4IUr5odS3C7xFRj5CWNgP2jivjerqaoqKGujffxu9e/+GcePGkZSURGJiIrGxse0uFCeEJ8rPz+emm25i8+bNBAQEWF3OOZOdvNyMUnD11fD66x2Hv6/vQMaOtb9RVMqLoKBgIiJgzZrLmTz5+2RmZpKens4TTzxBQUEBU6ZMITExkaSkJEaOHOmRa5sL0WzQoEGMHz+e1NRUFi5caHU53Ubu/F1ITg7MmnVu/f/2qKoyFnn797+/e96SkhIyMjJIT08nLS2N6upqEhISSEpKIikpiUHO2BVGCBfzr3/9i9dee40//elPVpdyzuy985fwdzEPPgiffPLdFT3Pl81mrBD64ovG4m6dyc/PNxuC9PR0AgICzIYgISGhaUVRIXo2m83GokWLePbZZxkzZozV5ZwTCX83VV4OM2dCZaVjZuaUlMDs2caCcefam6O1Jjs722wIMjMziYyMNBuC+Ph4j938WvR8b7zxBvn5+fzyl7+0upRzIuHvxjIzjV28lOraLlynT0NUFHz8cctNYc5fY2MjBw4cMBuDvXv3MmrUKHO8YOLEifh1NGAhhBs5deoUKSkpbNy4kRA3miMt4e/m0tLgttugttZYk/9c7tobG41XEMOHw1/+Av37d0+NtbW17Nq1y+wmOnLkCOPHjze7icaMGSPrCAm39vDDDzN58mSuueYaq0uxm4R/D5CTA/ffD7t2Gev+BAV13AjYbEboA1x3HTz0EDizV6aiooLMzEzzlUFRURHx8fFmN9GIESNkJpFwK9u3b+fpp5/m/fffd5vfXQn/HsJmMwaAX3nFaAwaG41lnf38jIbAZjNeHShlvF10EdxzD8THW105FBcXk56ebr7V19eTmJhodhN5ytK5wn1prbnqqqt45JFHiIuLs7ocuzgl/JVSvYH3geHAUeBqrXVpG8c1AnuaPjymtV7U2bkl/FvTGvbsgYwMo0soO9t4IjgwEMaPh4QEmDbN6ON3RVpr8vLyzFcF6enp9OrVy2wIEhISCHfUFCchHOgvf/kLe/bs4YknnrC6FLs4K/x/C5RorZ9SSj0ERGitf97GcZVa63MaMZHw79lsNhuHDx82xwt27txJVFSUOV4wefJkgroy2i2Eg1RUVJhLPrjDVGdnhf/XwAytdYFSaiDwT631BW0cJ+EvOtTQ0MC+ffvMVwYHDhwgJibGXIZiwoQJ+Pr6Wl2m8FC/+tWvGDJkCLfddpvVpXTKWeFfprUOb3pfAaXNH591XAOwE2gAntJaf9LZuSX8PVt1dTU7d+40u4hycnKYNGmS2U0UExMjM4mE0+zfv5+f//znfPrppy7/e+ewtX2UUluBtkbmftHyA621Vkq115IM01rnKaWigX8opfZorbPauNZyYDnA0KFDOytN9GCBgYFceOGFXHjhhQCUl5eby1D84he/oLS0tNUyFEOGDHGb2RjC/cTGxhIREcF///tfLrroIqvLcQindPuc9T1rgU1a6w53TJA7f9GRwsLCVstQAK2WoejfXQ83CI+1YcMGPv/8c55//nmrS+mQs7p9ngFOtRjw7a21/tlZx0QAVVrrWqVUX+C/wBVa6/0dnVvCX9hLa82xY8fMhiAjI4OIiAhzvCAhIYHQ0FCryxRurrq6mvnz5/POO+8wcOBAq8tpl7PCvw/wATAUyMGY6lmilEoAfqi1vkMpNQ1YDdgwdg57QWv9emfnlvAX58tms3Ho0CGzMdi1axfDhg0zxwsmT57sluu0C+s9++yzBAUFsWLFCqtLaZc85CVEk7q6Ovbu3Wt2Ex06dIixY8ea3USxsbH4+MjWFqJzR44c4c4772Tz5s0uO/tMwl+IdlRVVbFjxw7zlUFeXh5Tpkwxu4lGjhzp8jM6hHXuvPNOUlJSmDNnjtWltEl28hKiHUFBQVx00UXmrI3S0lK2b99OWloaH374IZWVlSQkJJjdRFFRUTKTSJhSUlJYt26dy4a/veTOX4izFBQUmM8XpKWl4efnZzYEiYmJ9OnTx+oShYXq6+tZsGABr776KiNGjLC6nO+Qbh8hHEBrzZEjR8yGIDMzk379+pnjBXFxcW611rtwjFdeeYWqqioefPBBq0v5Dgl/IbpBY2MjBw8ebLWhTXR0tLla6eTJk2VDGw9QUFDADTfcwObNmwkMDLS6nFYk/IVwgrq6Onbv3m02BllZWYwbN87sJho7dize3t5Wlym6wX333ceMGTO44oorrC6lFQl/ISxQWVlJZmam2U108uRJ4uLizG4i2dCm5/jqq69YvXo1f/7zn60upRUJfyFcQElJSatlKGpra80uosTERAYNGmR1ieI82Ww2Fi9ezFNPPUVsbKzV5Zgk/IVwQS03tMnIyCAwMNCcRZSYmEhERITVJYpzsHbtWo4dO8b//M//WF2KScJfCBentSYrK8tsDDIzMxk0aJA5XhAXFycb2ri4kpISlixZwqeffuoy60dJ+AvhZhoaGti/f7/ZTbR//35Gjx5tjheMHz9eZhK5oEceeYQJEyZw3XXXWV0KIOEvhNurqalh165d5iuDo0ePMmHCBLObaMyYMbIMhQvIzMzkiSee4MMPP3SJwXxZ3kEINxcQEMDUqVOZOnUqYGxos337dtLT01m5ciWnTp0iPj7e7CYaNmyYS4SPp5kyZQpeXl5kZmYSHx9vdTl2kzt/IdxUUVFRq2UobDab2RAkJSXJhjZO9MEHH7Bjxw6efPJJq0uRbh8hPInWmuPHj5sNQUZGBmFhYWZDEB8fT1hYmNVl9liVlZUsXLiQdevWWb72k4S/EB7MZrPxzTffmOMFO3fuZMiQIeZ4wZQpU1xuWQJ395vf/IZBgwaxdOlSS+uQ8BdCmOrr69m3b5/ZGBw8eJAxY8aY3UTjx4+XDW266ODBgzz44INs2LDB0oF4CX8hRLuqq6vZsWOH2U10/PhxJk+ebHYTjRo1SmYSnYdbbrmFO+64g4svvtiyGmS2jxCiXYGBgUybNo1p06YBcPr0aTIyMkhLS2P9+vWUl5eTkJBAUlISCQkJDBkyRGYS2aF5oxcrw99ecucvhPiOkydPtlqTyNvb21yCIikpib59+1pdokuqra1l3rx5vPXWW5at2yTdPkIIh9Bak5OTYzYE27dvp0+fPmZDEB8fT69evawu02U899xz+Pn5cffdd1tyfQl/IUS3sNlsHDx40HxlsGfPHoYPH26OF0yaNAl/f3+ry7RMTk4Oy5YtY9OmTZYsxyHhL4Rwirq6Ovbs2WO+Mvjmm2+IjY01p5WOGzfO4za0ueuuu1i8eDGXX365068t4S+EsERVVRWZmZlmY1BQUMCUKVPMbqKRI0f2+MHjv//977z//vusWbPG6deW8BdCuISSkhIyMjLMbqLq6mpzJlFSUlKP3NCmoaGBBQsW8MorrxAdHe3Ua0v4CyFcUn5+fquZRAEBAeargsTERHr37m11iQ7x6quvUl5ezs9+9jOnXlfCXwjh8rTWZGdnm41BZmYmAwYMMBuC+Ph4goODrS7zvJw8eZLrrruOTZs2OXVTHgl/IYTbaWxs5MCBA+argr179zJq1CjzlcHEiRPdakOb+++/n4svvpgrr7zSadeU8BdCuL3a2lp27dplvjI4cuQI48ePN8cLXH1Dm//85z+8/PLLvP32298OcldUQHU1+PhAeDg4uH4JfyFEj1NRUdFqJlFRURFxcXFmN9GIESNcaiaRzWbjmoULWTVnDkN37YJdu+D0aSPwtTYagNhYmDkTUlIgMrLL15TwF0L0eMXFxeaaROnp6dTX17dahiLSAWF63mpr4eWXKVu1isaaGmOd/4AA8PWF5gaqsRFqaqCuzvjc7NmwciUMHHjel5XwF0J4FK01eXl5ZkOQnp5Or169zIYgISGB8PBw5xSzbx/86Edw/DgNgYFk5eQwatSojh92s9mgvBz8/eHXv4bk5PO6tIS/EMKj2Ww2Dh8+bI4X7Ny5k6ioqFYb2nTLLJxt2+C224y7+tBQAPLy8ggIDKSPPdNYa2uhqgruuQfuvffbVwl2kvAXQogWGhoa2Ldvn9kYHDhwgJiYGLMxmDBhAr6+vl27yL59Rt+9UtCiYamqqiK/oMB4utm+Yo2B4UcfhVtvPacSJPyFEKIDNTU17Ny50+wmysnJYdKkSWY3UUxMzLnNJKqthblzIS/PvONvpoHs7GwiBwyw/7mF+npjVtDmzTB6tN1lSPgLIcQ5KC8vb7UMRWlpaatlKDrd0Ob55+GllyAios0vl5SWUnXmDIMHD7a/qNOnISYGNm60e0qohL8QQnRBYWFhq2UoALOLKDExkf79+397cFUVJCYaUzfb6TpqtNl4cf9+0oOCyK6r4/LQUB7rbF0jrY1B4HfegaQku+qWbRyFEKIL+vfvz/z585k/fz5aa44fP05aWhpffPEFq1atIiIiwmwMvpeXR1BdHQQGtns+by8vokJCGO7jw4HAQGrtufFWymgAXnvN7vC3V5fCXyl1FfAYMBZI0lq3eauulJoL/A7wBl7TWj/VlesKIYQzKaUYOnQoQ4cOJSUlBZvNxqFDh0hLS+Pjjz+m5sMPmVJVhVdtLcHBwQQFBeHVRhfRwshIjh8/Tl5YGEUNDfZdvFcv+OILY/aQA/dF6Oqd/14gGVjd3gFKKW/gZWAOkAukK6U2aK33d/HaQghhCS8vL8aMGcOYMWO4+eabsX31FTUVFZypq6O4qIia2loCAgIIDg4mODiYwIAAlFIEBATg4+tLbW2t/UHefNzRozBypMP+Dl0Kf631AaCzx6mTgMNa6+ymY98DrgAk/IUQ7q+yEq/TpwkKDydIKfr160ejzUZ1VRVnzpzhxIkT1NXVERQURHBwMCHBwVSVlBh39PZSCrKyXCf87RQFHG/xcS4w1QnXFUKI7lddbczEaXET7O3lRUhICCEhIQA0NDZSdeYMZ5re6urrUecy2cZmM5aBcKBOw18ptRVoa4GMX2itP3VkMUqp5cBygKFDhzry1EII0T18fIxB2Y4O8fYmNDSU0Kb5/wMKC+3v8wejYfFx7L16p2fTWs/u4jXygCEtPh7c9Lm2rrUGWAPGVM8uXlcIIbpfWJgxvdOOAdlGrWnUGg3YgDqbDW+l8O5sCQelICrKYSUDOGMh7HRgtFJqhFLKD7gW2OCE6wohRPfz8oKxY43un068XlzMtK+/Zu2pU2w5fZppX3/N68XFHX+T1sbTvjExDirY0NWpnlcCLwL9gM1KqZ1a68uVUoMwpnTO01o3KKXuBv6GMdXzDa31vi5XLoQQrmLWLGOt/k4s79eP5f36ndu5z5wxGpcOniE4H12689daf6y1Hqy19tdaD9BaX970+Xyt9bwWx23RWsdorUdqrR/vatFCCOFSliwxXgHYbI4/d2MjLF/u8NO67v5nQgjhLiIjjY1YTp927HmrqyEkBC67zLHnRcJfCCEcY+VKY6eu2lrHnK95eufTTxvndTAJfyGEcITISHj8cWORt3OZxtkWrY1XEfPmwZw5jqnvLBL+QgjhKIsXG7tvlZcbM3TOh80GZWXGKqHPPHPOO3nZS8JfCCEc6cc/hsceM/rrT5/u9AGwVpq/Z948WLu2W7p7mkn4CyGEo918M2zZAhdcYLwKKCszZu20RWuorDRC388PXn0VXnyxW4MfZD1/IYToHqNGGTtwpafDG2/A558bn1fK6NpRynirr4fYWFi2zJjV082h30zCXwghuotSxiYsSUlG4B89aqzOWV1tLAkRFWU8ueukwG9Jwl8IIZzBywuio403FyB9/kII4YFcdgN3pVQRkNPGl/oCnayEZClXrw9cv0ZXrw9cv0apr+tcvcb26humte50ASGXDf/2KKUy7NmZ3iquXh+4fo2uXh+4fo1SX9e5eo1drU+6fYQQwgNJ+AshhAdyx/BfY3UBnXD1+sD1a3T1+sD1a5T6us7Va+xSfW7X5y+EEKLr3PHOXwghRBe5fPgrpXorpVKVUt80/RnRznG/VUrtU0odUEr9XqluWgrv/OsbqpT6rKm+/Uqp4c6o71xqbDo2VCmVq5R6yZXqU0pNVkr9t+nfeLdS6hon1DVXKfW1UuqwUuqhNr7ur5R6v+nr/8+Z/6bnUOP9Tb9vu5VSf1dKDXOl+loct0QppZVSTp9dY0+NSqmrm36O+5RS77pSfU3Z8rlSakfTv/O8ts7zHVprl34Dfgs81PT+Q8DTbRwzDfgKY49gb+C/wAxXqa/pa/8E5jS9HwIEudLPsMWxvwPeBV5ypfqAGGB00/uDgAIgvBtr8gaygGjAD9gFxJ51zArg1ab3rwXed9bP7BxqvLT5dw24y5k12lNf03G9gC+BbUCCC/4MRwM7gIimj/u7WH1rgLua3o8Fjtpzbpe/8weuAP7U9P6fgMVtHKOBAIwfjj/gC5x0SnV21KeUigV8tNapAFrrSq11lZPqA/t+hiil4oEBwGdOqqtZp/VprQ9prb9pej8fKATOcSfsc5IEHNZaZ2ut64D3mupsqWXd64BZznrFaW+NWuvPW/yubQMGu1J9TX4NPA3UOLG2ZvbUuAx4WWtdCqC1LnSx+jQQ2vR+GJBvz4ndIfwHaK0Lmt4/gRFOrWit/wt8jnE3WAD8TWt9wFXqw7hrLVNKrW96afaMUsrbSfWBHTUqpbyAVcCDTqyrmT0/Q5NSKgmjoc/qxpqigOMtPs5t+lybx2itG4DTQJ9urOls9tTY0u3AX7u1otY6rU8pFQcM0VpvdmJdLdnzM4wBYpRSXymltiml5jqtOvvqewy4USmVC2wB7rHnxC6xsJtSaisQ2caXftHyA621Vkp9Z3qSUmoUMJZv72pSlVIXa63/5Qr1YfycLwamAMeA94FbgdcdUZ+DalwBbNFa53bHzasD6ms+z0DgLeAWrbXNsVX2XEqpG4EEYLrVtTRruuF4DuP/givzwej6mYGRMV8qpSZorcssrepb1wFrtdarlFIXAm8ppcZ39v/DJcJfaz27va8ppU4qpQZqrQua/uO39ZLrSmCb1rqy6Xv+ClwIOCT8HVBfLrBTa53d9D2fAN/DgeHvgBovBC5WSq3AGJPwU0pVaq3bHaRzcn0opUKBzcAvtNbbHFFXB/KAIS0+Htz0ubaOyVVK+WC85D7VzXW1df1mbdWIUmo2RiM7XWvtoN3F7dJZfb2A8cA/m244IoENSqlFWusMF6kRjP+//09rXQ8cUUodwmgM0l2kvtuBuWD0giilAjDW/emwe8odun02ALc0vX8L8GkbxxwDpiulfJRSvhh3N87q9rGnvnQgXCnV3Ec9E9jvhNqadVqj1voGrfVQrfVwjK6fPzsq+B1Rn1LKD/i4qa51TqgpHRitlBrRdO1rm+psqWXdKcA/dNOom5N0WqNSagqwGljk5L7qTuvTWp/WWvfVWg9v+r3b1lSns4K/0xqbfIJx149Sqi9GN1C2C9V3DJjVVN9YjPHPok7P7KxR6y6MdvcB/g58A2wFejd9PgF4TX87Ir4aI/D3A8+5Un1NH88BdgN7gLWAn6vV2OL4W3HubB97/o1vBOqBnS3eJndzXfOAQxhjC79o+tyvMAKKpv9kHwKHgTQg2lk/s3OocSvG5Ifmn9kGV6rvrGP/iZNn+9j5M1QY3VP7m/7/Xuti9cVizHbc1fRvfJk955UnfIUQwgO5Q7ePEEIIB5PwF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgP9f+ESC91ZCoRCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "best_cost_brute = 0\n", - "for b in range(2**n):\n", - " x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))]\n", - " cost = 0\n", - " for i in range(n):\n", - " for j in range(n):\n", - " cost = cost + w[i,j]*x[i]*(1-x[j])\n", - " if best_cost_brute < cost:\n", - " best_cost_brute = cost\n", - " xbest_brute = x \n", - " print('case = ' + str(x)+ ' cost = ' + str(cost))\n", - "\n", - "colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)\n", - "print('\\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute)) " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Mapping to the Ising problem" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "qubitOp, offset = max_cut.get_max_cut_qubitops(w)\n", - "algo_input = EnergyInput(qubitOp)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Checking that the full Hamiltonian gives the right cost " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -1.5\n", - "max-cut objective: -4.0\n", - "solution: [0. 1. 0. 1.]\n", - "solution objective: 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb1JCDNhBogQdhYVqyJDKUsMcW8UrFRrHW3V1i9+27qqqK2jSh20jjoQFYF+a2ittrb8khD2ECEQyIAkJCF7nuv3x53cJpBxICfnPifn83w88iDjzrk/hPC+7vu6rvu6lNYaIYQQnsXL6gKEEEI4n4S/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHkjCXwghPJCP1QV0pF+/fnrEiBFWlyGEEG5l69atxVrr/l0d57LhP2LECDIzM60uQwgh3IpSKsee41w2/B1NaygogNJS4/2wMBgyBLyk40sI4YF6dfjX18MXX8Dbb8O2bVBXBz4+RvjbbODtDePHw3XXwQ9+AIGBVlcshBDOoVx1Vc/ExER9rt0+WsOnn8L//i9UVRmfCwoygr+1piaorjYaAj8/uP9+uOUWuRsQQrgvpdRWrXViV8f1upgrLYWlS40gb2gwunfCws4MfjCu/ENDoU8f4/3HHoOUFMjPd37dQgjhTL0q/IuLITUVvvoKwsMhIMD+7/XzM75n1y5YvBhy7BoyEUII99Rrwr++Hm66yQjtiAhQ6uxfQynje0tL4ZproKzM8XUKIYQr6DXh//vfwzffGF043dWnDxQWwqOPdv+1hBDCFfWK8D9wAF591ei/P5cr/vb06QMbNsDXXzvm9YQQwpX0iqmer79uzNhpb1C3tby8R6iuTsdmq8HHpx+RkTcRHr643WO9vIyG5KWX4IILeqBoIYSwkNuHf3m5Ma0zNLTrY/v1uxVf30fw8vKjru4IOTnL8fc/j8DAce0eHxoK6enGOMLw4Q4uXAghLOSQbh+l1BtKqUKl1O4Ovq6UUr9XSh1USu1USsU74rwA27cbf3Z11Q/g7x+Dl5dfS1UopWhoyO3w+Jar//T07tcphBCuxFF9/muAuZ18/QfAmOa35cAfHHRe9uwxZvrY6/jxJ9m//wKys5fg49OPkJDO+3RsNpAlhoQQvY1Dun201l8ppUZ0csjlwJ+18TjxFqVUuFJqsNa6oLvn3rPHeEDLXoMGPcjAgT+jpmYn1dVbUcqv0+P9/WHfvm4WKYQQLsZZs32igWOtPs5t/lwbSqnlSqlMpVRmUVGRXS9cU3N2M3zq6+s4cOAAZWUDqKjIobj4vU6PV8pYE0gIIXoTl5rqqbVerbVO1Fon9u/f5XLUgLEY29ksT6SUF1prAgL8qaur5sSJnRw6dIjjxwuoqCinqanptJqMp3+FEKI3cVb45wFDW308pPlz3TZ2LDQ2dn1cY2MJ5eWf4+3dQHBwEPX1mcAWhg+fT3R0FL6+fpSVlXHw4LccPpxNYeEJKisrqa1tYlz7k4GEEMJtOWuq53rgLqXUe8A04JQj+vsBJk40+uW7pigtXUtBweM0NTXQ1BTOkCH3Exp6MQABAYFERkaitY2amlqqq6s4ebKYykpvMjM38uqriqSkJCZMmICf3AoIIdycQ8JfKfUXYAbQTymVC6wEfAG01q8Am4B5wEGgGrjVEecFmDLF6Jppaup84NfHJ4Lhw1c3f6Q5ePAggYFD2vm7eBEUFERQUBCRkf0pK7Pxox9NIz//3zz//PMcOXKESZMmkZSURFJSEmPHjsVL1oAWQriZXrGe//33wyefGIuy2au4uJiGhnoGD47q8Jjycpg8GT78sPXnysnKyiI9PZ3MzEyKi4uJj48nOTmZxMRERo4ciXLUGhNCCHGW7F3Pv1eE/969cPnlEBJi/7TPxsZGDh06xJgxo/HyOvObbDYj/F97DWbM6Ph1iouLyczMJD09nYyMDOrr60lKSjIbg6iojhsXIYRwNI8KfzA2YnnzTWNNfnvl5uYSHBxERETfM75WVgZz5sDLL5/dVNK8vDwyMjLMO4PAwMA2jUHfvmeeSwghHMXjwr+mBhYsgKNH7V/WuaqqihMnjhMTEwN8l/Dl5cZr/O1v0J2s1lqTnZ1tNgZZWVkMHDiQ5ORkkpKSiI+PJyQk5NxPIIQQp/G48Ac4ccLYySs/37gD6PqKXXPo0CGioqIIDAxCazh1yljQ7YMPYMyYcy6/XU1NTezfv9/sItq9ezcjR440G4PJkyfjb9/UJSGEaJdHhj9AURHcfTdkZBibtneVpSdPFlNXV0f//tFUVhqB/+qrzlnFs76+nl27dpmNwbfffktcXJzZGMTFxeFjz4p1QgjRzGPDH4zB2vffN8YB6uqM1TmDgs4cDLbZoKqqkaNHjzN06GB+/GNv7rgDfH0d8Bc4B9XV1Wzbts1sDPLy8pg6dao5rXT06NEyrVQI0SmPDv8WNTXw+efwpz8ZC8CB0RDAd88GjBkDvr4fsGiR4rbbruxm1Y5VVlbG1q1bzcagvLycxMREszEYOnSoTCsVQrQh4X+apiZjU5bSUuOKv08fGDnSuMrPysri8ccf58MPP3TpMD1x4gQZGRnmm1LKbAiSkpIYMGCA1SUKISwm4X8WtNZcddVVPPTQQ8THO2yfmR6ltebYsWPmXUFmZibh4eHmtNKEhAT6OGI3eyGEW5HwP0vvvvsue/bs4bHHHnPaOR3JZrNx8OBBszHYvn07Q4YMMRuDKVOmEBQUZHWZQogeJuF/lsrLy1m0aBGffPIJ4WfzpJiLamxsZM+ePeYzBvv27SM2NtZsDGSBOiF6Jwn/c7By5UpGjx7NjTfe6NTzOkNtbS07duwwG4MjR44wceJEszGQBeqE6B0k/M/Bzp07WblyJR999FGvD8KKigqysrLMxqCoqMhcoC4pKUkWqBPCTdkb/vIEUSsTJ07E39+fzMxMkpOTrS6nR4WGhnLxxRdz8cXGfgYnT54kMzOTjIwM3nnnHWpra827gqSkJFmgToheRq78T/PBBx+wdetWnnrqKaef25Xk5+ebdwUZGRkEBAS0WaAuMjLS6hKFEO2Qbp9zVFlZycKFC1m7dq0EXDOtNYcPH26zQF3//v3NxiA+Pp7Q0FCryxRCIOHfLb/+9a8ZMmQIt97qsA3HehWbzcb+/fvNxmDXrl2MGDGizQJ1AQEBVpcphEeS8O+GvXv38uCDD/LJJ5/0+oFfR6ivr2f37t1mY3DgwAHGjRtnNgbjx4+XBeqEcBIJ/2664YYbWLFiBdOnT7esBndVXV3N9u3bzfGCY8eOMWXKFLMxGDNmjDSqQvQQme3TTSkpKaxbt07C/xwEBQUxffp082d36tQpc4G6jz/+mLKyMhISEkhOTiY5OVkWqBPCAnLl34Hq6moWLFjAe++9JwumOVhhYaG573F6ejqAuThdcnKy/LyF6Abp9nGAJ554gn79+rFs2TJL6+jNWhaoa2kMMjMzCQsLMxuDxMTEXrHchhDOIuHvAAcOHOAnP/kJn332Gd6n7wQjekTLAnUty1Zv27aN6OhoszGIj4+XBeqE6ISEv4PccsstLF26lIsuusjqUjxSY2Mje/fuNRuDPXv2MGbMGLOLaOLEibJAnRCtSPg7yPr16/nHP/7B888/b3UpAqirqzMXqMvIyCA7O5sJEya0WaBO7tKEJ5Pwd5Da2lrmzZvHO++8w+DBg60uR5ymsrKyzQJ1hYWFTJ061ZxWGhMTIzOJhEeR8Hegp59+mpCQEO68806rSxFdKCkpMReoS09Pp6amhsTERLMxiI6OtrpEIXqUhL8DZWdns2LFCjZs2CBPqrqZ/Pz8No2Bv7+/2RgkJibSr18/q0sUwqEk/B3s9ttv57rrrmPmzJlWlyLOkdaaI0eOmOMFW7dupV+/fmZjEB8fT1hYmNVlCtEtEv4OtmnTJjZt2sSLL75odSnCQWw2G9988415V7Bz505GjBhhTiudMmWKLFAn3I6Ev4PV19czb9481qxZw5AhQ6wuR/SAlgXqWh44++abbxg3bpzZGIwfPx5fX1+ryxSiUxL+PeC5557Dx8eHu+++2+pShBO0LFDX0hgcPXqUKVOmmI1BbGysLFAnXI6Efw/Iyclh2bJlbNy4Ua4APVB5eTmZmZlmY1BSUkJiYqL5jMGwYcNkWqmwnKzq2QOGDx9OTEwMX3zxBZdeeqnV5QgnCwsLY+bMmeagf1FRkTl4vGbNGmw2W5sF6gYOHGhxxUJ0TK78z9Lnn3/OunXreOWVV6wuRbgQrTW5ublmY5CRkUFoaGibBeoiIiKsLlN4AOn26SENDQ3Mnz+fP/7xjwwfPtzqcoSLstlsHDp0yGwIsrKyiIqKarNAXXBwsNVlil5Iwr8HvfDCCzQ2NnLvvfdaXYpwE01NTWcsUDdq1Cizi2jSpEmyQJ1wCKeGv1JqLvA7wBt4TWv95GlfvwV4Gshr/tSLWuvXOntNVw7/3NxcbrnlFjZt2iT/YcU5qaurY+fOnWZjcOjQISZMmGA+cDZu3DhZoE6cE6cN+CqlvIGXgDlALpChlFqvtd572qHva63v6u75XMGQIUMYO3YsmzdvZt68eVaXI9yQv7+/2QUEUFVVZS5Q99hjj1FQUEB8fLzZGMTExMi0UuFQjpjtkwwc1FpnAyil3gMuB04P/14lJSWFd999V8JfOERwcDAXXnghF154IWAsULd161YyMjL48MMPqaysNAeOk5OTiY6OlmmlolscEf7RwLFWH+cC09o5bolS6iLgAHCv1vpYO8e4jYsuuojf/va3ZGdnExMTY3U5opfp27cvc+bMYc6cOQAUFBSYC9StXr0aHx8fc6XSxMRE+vfvb3HFwt10u89fKZUKzNVa39788Y3AtNZdPEqpSKBSa12nlLoDuFprfcYKaUqp5cBygGHDhiXk5OR0q7ae9oc//IHKykp++tOfWl2K8CBaa3Jycsw9jzMzM4mMjDS7kRISEmSBOg/mtAFfpdT5wKNa68uaP34IQGv9RAfHewMlWus+nb2uKw/4tigoKOD6669n06ZNsgCYsIzNZuPAgQNmY7B9+3aGDx/eZoG6wMBAq8sUTuLMJ3wzgDFKqZEYs3muAa47rZjBWuuC5g8XAfsccF7LDR48mEmTJvH555+zaNEiq8sRHsrLy4uxY8cyduxYbrrpJhoaGtizZw/p6em8+eab7Nu3j7Fjx5qNwYQJE9xneRKt4fhxyMuDxkYICICRI6FPp9eOwg6Omuo5D3geY6rnG1rrx5RSvwIytdbrlVJPYIR+I1AC3Km13t/Za7rDlT/AV199xRtvvMGaNWusLkWIdtXU1LBjxw7S09PJyMggJyeHyZMnm43Beeed51oziWw2yMyENWvg3/+GmhpovYlSfT306wc/+AHccAOMHm1Zqa5IHvJyEpvNxsKFC3nuueeIjY21uhwhulReXm7OJMrIyODkyZMkJCSYjcGIESOsm0m0cyfcdx/k5BhX/cHBRvC3rkdrowGorjY+//3vwxNPgOyxDUj4O9Uf//hHiouLeeihh6wuRYizVlxc3GZNosbGxjbTSgcNGtTzRdhssGoVvPoqeHlBaGjbwO+I1nDqFPj7w1NPwYIFPV+ri5Pwd6LCwkKuueYaNmzYQFBQkNXlCHHOtNbk5+ebXUSZmZkEBQWZex4nJibSt29fx57UZoP774f1643QP5d9suvqjDuBlSvhppscW5+bkfB3sgceeIDp06eTkpJidSlCOIzWmuzsbLMxyMrKYtCgQWZjkJCQ0P0F6h5/HF5/3RjE7c7YQ0MDVFXByy+DBy+5LuHvZP/5z3946aWXePvtt+XJS9FrNTU1sW/fPrOLaPfu3cTExJiNweTJk/H397f/BbduhauvNq74HbGWUcvg8D/+AZGR3X89NyTh72Q2m43Fixfz5JNPEhcXZ3U5QjhFfX19mwXqDh48yPjx483B47i4uI4XqGtqghkzoLDQCH9HKSuD+fPhd79z3Gu6EQl/C7z55pvk5ubyyCOPWF2KEJaorq42F6jLyMggPz+fqVOnmo3BqFGjvptW+s9/wvLl0MXTyOVNTfyqoIAtlZWE+/hwV//+zO1snn9TE1RWwtdfw4ABjvvLuQkJfwucPHmS1NRUPvvsM0JCQqwuRwjLlZWVmXseZ2ZmUlFRYe57fNnbbxO0axeqiwe2Hs7LQwOPDB7Mgdpa7jl2jDdHjCCms+6l0lJjEHnFCsf+hdyA7OFrgcjISKZNm8amTZu46qqrrC5HCMuFh4cze/ZsZs+eDcCJEyeMWURbtjDtb3+jwMeHoKoqgoODCQoOxve0mT41Nhv/qKjgg5gYgry8mBIUxMWhoWw8dYq7O7uq9/ODtDSPDH97udBjfb1DSkoK69atw1XvqISw0sCBA1mwYAGP3nQTUdHRDB0+nIDAQCoqKsjOzubQoUMUHD9OeUUFTU1NHK2vxxsY1mrTpDH+/mTX1XV+ooAA2LfPmEYq2iVX/g6WmJhIfX09u3btYtKkSVaXI4Rrys1FeXnh7+eHv58ffSMi0EBdbS1V1dWUlZWRn5/Pt15e+DY2UllZSWBQEN5eXoR4eVHVVah7ext9/ydPgix33S658ncwLy8vrrjiCj766COrSxHCddXXG0/ntqKAgIAAIvv2ZdjQoZwXG0tU375UNjVx5MgRDh06hE1rqmw2gu15HsDLy5j7L9ol4d8DFi5cyJdffkl5ebnVpQjhmvz8Oly+oaGxkZMlJeTk5OBTXIxNKbyjo/H386OiooIDdXWdD/a2sNmM84h2Sfj3gPDwcL7//e+zYcMGq0sRwjWNGNHmyr8l8I8cOUJ2djZ1tbX069ePibGxzI2M5K3qagLCw/m6qIgvKyqY39WSzo2N4OvrsQ962UPCv4fIwK8QnRgxgsbGRk4WF58R+GPGjCEqKoqQkBC8lOLBQYOos9lYUlDAbysruT8ysusr/9paGD/evsXhPJQM+PaQqVOnopRi27ZtxMfHW12OEC6hsLCQzZs3s3nzZpZUV/O9+nr69e9PUHAwXh0EdZi3N6uGDgWgqKiIxsbGrk/U2Ahz5zqy9F5Hrvx7iFKKlJQUGfgVHu/EiRO8++67LF26lGuuuYaDBw9y++23c9n77xPZty8hnQT/6cIjIigvL6eps9k+TU3GYO8VVzjob9A7yZV/D5o/fz6vvvoqpaWlREREWF2OEE5z4sQJ/v73v7N582aOHDnCjBkzuP3220lKSvpuC0mbDYYPh6NHu1zioYWvjw9BQUGUl5cTER7e/kHl5XDVVeDopad7GQn/HhQWFsaMGTP47LPPuMnD1xgXvV9L4KelpZGTk9N+4Lfm5WUsvrZ4sdFNY+c6/hERERQWFhIeHs4Z9wvV1RAeDrKxUpck/HtYSkoKK1eu5IYbbnCtfVKFcID2An/ZsmUdB/7pxo+HH/8Ynn/e7vX8g4ODsTU1UVNTQ1Bg4HdfqK835vX/8Y9230l4Mgn/HjZx4kQCAgLIzMwkOTnZ6nKE6Lbjx4+bXTqtAz85ORmfc9mF6667jCdx33oLQkKMKZqdUBh9/6Wlpd+Ff3W1Ef6rVsEFF5x9DR5Iwr+HtR74lfAX7qp14B89epSLL764e4HfmlLG9otDhsBvf2sEeVhYp9M0w8PDOXTwIE0NDXhXVRn7AbzyClx0Ufdq8SCypLMTVFZWsnDhQtauXUukPHQi3ERL4KelpXHs2DEuvvhi5syZQ1JSUvcDvyMHD8LPfw47dxoDwkFBZz4NbLNBbS0njx/H18+PsGuvhf/5H5BJFYCs5+9yfvOb3xAVFcXSpUutLkWIDp0e+DNmzGD27Nk9G/jt2bcP3n4bvvwSCgqMriCljOBvaoKYGPKmTuWRXbt4bcMGGU9rRdbzdzEpKSk8+OCD3HLLLfKLKlxKQUGB2aXTEvh33HGH8wO/tXHj4LHHjPcrKyE/35gRFBBgdA/5+RGlNdXXXivjaedIwt9J4uLi6NOnD1u2bGH69OlWlyM8nEsGfkdCQiA29oxPK6VITU1l7dq1Ev7nwMX+lXu3loFfCX9hhZbAT0tLIzc3lxkzZvDDH/6QxMRE1wt8O82bN4+XXnqJwsJCBnjgfr3d4Z7/4m7qsssu44UXXpBfVOE0pwf+JZdcwp133unWgd9aUFAQl156KZ9++inLli2zuhy34v7/+m6k5Rf1k08+Yfny5VaXI3qpgoICc/G03hj4p0tNTeWee+5h6dKleHt7W12O2+h9vwkuLiUlhZ/85Cfcdttt8osqHCY/P9/sw8/Ly2PGjBm9OvBbGzNmDIMGDeJf//oXM2bMsLoct9G7fytcUGxsLAMHDuTrr7/mInkgRXRDS+CnpaWRn5/PjBkzWLFiBQkJCb0+8E/XMvAr4W8/z/oNcREtA78S/uJsnR74l1xyCT/60Y88MvBbmz17Ns8++yzHjh1jaPPa/6JznvvbYqE5c+bw3HPPUVBQwODBg60uR7i4/Px8sw9fAr99fn5+LFy4kHXr1nHPPfdYXY5bkCd8LfLMM88QHBzMnXfeaXUpwgW1F/izZ8+WwO/EsWPHWLp0KRs3bsTPgzdulyd8XVxKSgorVqxg2bJl8p9ZAO0H/l133UVCQoJMDrDD0KFDOe+889i8eTPz5s2zuhyXJ6ljkZiYGIYOHcpXX33FzJkzrS5HWOT0wJ85c6YEfjcsWbKEt956S8LfDhL+FmoZ+JXw9ywS+D3noosu4umnn+bbb79lzJgxVpfj0iT8LTRr1ixWrVpFbm4uQ4YMsboc0YNaB35BQYF06fQQb29vFi9ezNq1a3lItnLslAz4Wuz555/H29ubu+++2+pShIO1BH5aWhrHjx9vM2grgd9zCgsLueaaa9iwYQNBQUFWl+N0Th3wVUrNBX4HeAOvaa2fPO3r/sCfgQTgJHC11vqII87t7lJSUrj99tv54Q9/aN+ep8KltRf4d999twS+Ew0YMIDExET++te/smTJEqvLcVndDn+llDfwEjAHyAUylFLrtdZ7Wx12G1CqtR6tlLoGeAq4urvn7g2GDRvGqFGj+OKLL7j00kutLkecg7y8PLNLRwLfNaSmpvLcc8+RkpKC6mQ7SE/miCv/ZOCg1jobQCn1HnA50Dr8LwcebX5/LfCiUkppV+1zcrKUlBTWrl0r4e9GJPBdW2JiIrW1tezatYtJkyZZXY5LckT4RwPHWn2cC0zr6BitdaNS6hQQCRQ74Pxub8aMGTz99NPk5OQwfPhwq8sRHWgJ/LS0NE6cOMEll1zCj3/8Y+Lj4yXwXYyXlxdLlixh7dq1Ev4dcKnZPkqp5cByMLpDPIWvry+LFi1i3bp13HvvvVaXI1ppHfiFhYVccskl3HPPPRL4bmDhwoVcfvnllJWVER4ebnU5LscR4Z8HtF5JaUjz59o7Jlcp5QP0wRj4bUNrvRpYDcZsHwfU5jauuOIKbr75Zn70ox959KPpriA3N9fs0pHAd199+vTh4osv5rPPPuPGG2+0uhyX44jwzwDGKKVGYoT8NcB1px2zHrgZ+C+QCvxD+vvbio6OZty4cfJoukUk8Hun1NRUHnnkEa6//nq8vLysLseldDv8m/vw7wL+hjHV8w2t9R6l1K+ATK31euB14C2l1EGgBKOBEKdJSUnh7bfflvB3kpbAT0tLo6ioiEsuuYSf/OQnxMfHS1D0EhMmTCAoKIj09HS+973vWV2OS5GHvFxIY2MjCxYs4OWXXyYmJsbqcnql0wN/5syZzJ49WwK/F1u3bh3/+c9/eOaZZ6wuxSlkVU835OPjw+LFi/noo4/46U9/anU5vcaxY8fMLp2WwL/33nsl8D3E3LlzefHFFyksLGTAgAFWl+My5MrfxRw/fpzrrruOTZs2ERAQYHU5bqu9wJcrfM/11FNPER4ezh133GF1KT1Orvzd1KBBg5g0aRKff/45ixYtsroct9IS+GlpaRQXFzNz5kzuu+8+pk6dKoHv4VJTU7nrrru47bbbZP+MZvJTcEFLlizh9ddfl/C3w+mBP2vWLO6//34JfNHGqFGjiI6Olv0zWpHwd0EXXHABTz75JAcOHCA2NtbqclzO0aNHzS4dCXxhr5YnfiX8DRL+LsjLy4srrriCjz76SNYkbyaBL7pr1qxZPPvssxw9etSjVhDoiAz4uqiioiKuuuoqNm7c6JFrkkP7gT9nzhymTJkigS/Oye9//3uampp69TIqMuDr5vr3709CQgL/93//R0pKitXlOM3pgT979mweeOABCXzhEEuWLOGmm25ixYoV+Pv7W12OpST8XdiSJUt48cUXueKKK3r1muQS+MJZoqOjGT9+PJs3b2b+/PlWl2MpCX8XNm3aNJ544gn27dtHXFyc1eU4VOvAP3nyJLNmzZLAF06RmprKm2++KeFvdQGiY15eXqSkpPDRRx/1ivBvCfy0tDRKSkok8IUlZDadQQZ8XVxJSQlLlizhs88+IyQkxOpyzlp7gT979mwJfGGp1157jcLCQh5++GGrS3E4GfDtJfr27cu0adPYtGkTV111ldXl2CUnJ8fs0mkJ/J/+9KcS+MJlLF68mCuvvJJ77rmH4OBgq8uxhIS/G1iyZAmrVq3iytmzUbt2we7d8O23UF8PwcEwcSLExRl/WjSDoXXgl5aWMnPmTAl84bL69etHcnIymzZt4sorr7S6HEtI+LuBRB8fbkxPp37qVPwDA6GuDnx8QCmw2WDdOvD1Nd5uuAFuvBGionq8rpbAT0tLo6ysjJkzZ/Kzn/2MyZMnS+ALl5eamsozzzxDampqr55N1xEJf1dWUQGPPYZau5YLq6o4qRRR/ftDR33/9fWwejW8+Sb88pdw3XXg4BA+PfBnzZrFz3/+cwl84XYSExNpaGhgx44dTJkyxepynE7C31UdPgzXXw8nTkCfPgSFhlJw8CBNTU0dbyvo52e81dfDypWQlgZ/+AN08wnhI0eOmF06Eviit1BKkZqaytq1ayX8hYs4ehRSU40r/4gIwPiHCgkJoezUKSL79u38+/38jC6gf/8bli6FP/3prMcCJPCFJ1iwYAGrV6+mtLSUiOb/a55Cwt/V1NfDbbfBqVMQHt7DaNuAAAAZx0lEQVTmSxERERQUFNC3b1+67KFUyvj+9HR48knjTqALLYGflpZGeXk5M2fO5MEHH2TSpEkS+KJXCgsL45JLLmH9+vXcfPPNVpfjVBL+rubFF40unz59zvhSYFAQKEV1dTXB9nTlKGW8zltvwbx5kJR0xiGnB/6sWbN46KGHJPCFx0hNTeWhhx7ixhtv9KjfeQl/V1JUBK++agzotjP7QAER4eGUlZbaF/4A3t7G2yOPwF//Ckpx+PBhs0tHAl94uri4OMLCwtiyZQvTp0+3uhynkfB3JR9+CI2NxjTODgSGhvJoXh6HqqupsNkY4uvLXQMGML2zp39DQmjYv5/1jz7KB/v3S+AL0YpSytzoRcJfWOOttyAwsPNjvL0ZEhjI8tBQ4gYM4OvKSh7My+O9kSOJ8vNrc2hdXR3lFRWUl5cTVFtL1Ndf8/CqVUycOFECX4hW5s6dywsvvMDx48cZNGiQ1eU4hSSAqygthcLCLmflBHp5cVd0NAGVlSiluDA0lChfX/bX1gJG4BcVF3MoO5uco0dpampi8ODBDBo5kvOVktk6QrQjMDCQuXPn8vHHH1tditNICriK/fuN6Zl2PGkYGBiIl1JUV1VR0thITm0tfaqqzgj8MWPGMGjgQIICA1H+/sZAcn29E/4yQrif1NRUPvnkExobG60uxSmk28dVlJQYSzXYQQHhERHk5ObyWH095ytFtJcXYYMHExgY2P40UC8vo2GpqIDISEdWLkSvEBMTw/Dhw/nyyy+ZNWuW1eX0OLnydxVnubR2WJ8+vGyz4WWzsczPD5vNRkN9fddXLS66hLcQrqDliV9PIOHvKsLC7F6HR2vNY8eP0xAUxB8nTiRm+HACAgIor6ggOzubQ9nZHD9+nIqKCppa7ia0Nu4s3HBPACGcZcaMGRw6dIicnByrS+lx0u3jKmJjjWmeWnfZ7//E8eMcrq/n5WHDCPDyAn9//P396RsRgQZqa2upqqqipLSUvPx8/P38CPPzw3fQIPyVwrO3rRaiY35+fixatIiPPvqI++67z+pyepTs5OUqtIapU42r89OmbLZW0NDAwoMH8VMK71aNxMODBvGDdp4KtmlNTU0NjUVFbBkwgN/07cv48eNJTk4mKSmJuLi4jheKE8ID5efnc+ONN7Jx40YCAgKsLuesyU5e7kYpuOoqeP31TsN/sK8vmePG2f2yXkoZTwNHRHDZ6tV8f8oUsrKyyMjI4PHHH6egoICpU6eSlJREcnIyo0aN8si1zYVoERUVxYQJE0hLS2PhwoVWl9Nj5MrfleTkwKxZZ9X/b5fqamORt3//+4zXLSkpITMzk4yMDNLT06mpqSExMZHk5GSSk5OJcsKmMEK4mn/961+89tpr/OlPf7K6lLNm75W/hL+reeAB+OSTM1b0PGc2m7FC6AsvGIu7dSE/P99sCDIyMggICDAbgsTERPp2tZy0EL2AzWZj0aJFPPPMM4wdO9bqcs6KhL+7Ki+HmTOhstIxM3NKSmD2bGPBuLPsztFak52dbTYEWVlZDBo0yGwIEhISPHbza9H7vfHGG+Tn5/PLX/7S6lLOioS/O8vKMnbxUqp7u3CdOgXR0fDxx+amMN3R1NTEvn37zMZg9+7djB492hwvmDRpEn6djFcI4U5OnjxJamoqn332GSFuNEVawt/dpafDrbcam7X36XN2V+1NTcYdxIgR8Je/wIABPVJiXV0dO3bsMLuJDh8+zIQJE8xuorFjx8o6QsKtPfTQQ0yZMoWrr77a6lLsJuHfG+TkwH33wY4dxro/zZu5dMhmM0If4Npr4cEHwYndMhUVFWRlZZl3BkVFRSQkJJjdRCNHjpSZRMKtbN26laeeeor333/fbX53Jfx7C5vNGAB++WWjMWhqMjZn8fMzGgKbzbg7UMp4u+ACuPtuSEiwunKKi4vJyMgw3xoaGkhKSjK7iTxl6VzhvrTWXHnllTz88MPEx8dbXY5dnBL+Sqm+wPvACOAIcJXWurSd45qAXc0fHtVaL+rqtSX8T6M17NoFmZlGl1B2tvFEcGAgTJgAiYkwfbrRx++CtNbk5eWZdwUZGRmEhoaaDUFiYiLhjprhJIQD/eUvf2HXrl08/vjjVpdiF2eF/2+BEq31k0qpB4EIrfXP2zmuUmt9ViMmEv69m81m4+DBg+Z4wfbt24mOjjbHC6ZMmUJQdwa7hXCQiooKc8kHd5jq7Kzw/waYobUuUEoNBv6ptT6vneMk/EWnGhsb2bNnj3lnsG/fPmJjY81lKCZOnIivr6/VZQoP9atf/YqhQ4dy6623Wl1Kl5wV/mVa6/Dm9xVQ2vLxacc1AtuBRuBJrfUnXb22hL9nq6mpYfv27WYXUU5ODpMnTza7iWJjY2UmkXCavXv38vOf/5xPP/3U5X/vHLa2j1JqM9DeyNwvWn+gtdZKqY5akuFa6zylVAzwD6XULq31oXbOtRxYDjBs2LCuShO9WGBgIOeffz7nn38+AOXl5eYyFL/4xS8oLS1tswzF0KFD3WY2hnA/cXFxRERE8N///pcLLrjA6nIcwindPqd9zxpgg9a60x0T5MpfdKawsLDNMhRAm2UoBvTQsw3Cc61fv54vvviC5557zupSOuWsbp+ngZOtBnz7aq1/dtoxEUC11rpOKdUP+C9wudZ6b2evLeEv7KW15ujRo2ZDkJmZSUREhDlekJiYSFhYmNVlCjdXU1PD/Pnzeeeddxg8eLDV5XTIWeEfCXwADANyMKZ6liilEoEfaq1vV0pNB14FbBg7hz2vtX69q9eW8BfnymazceDAAbMx2LFjB8OHDzfHC6ZMmeKW67QL6z3zzDMEBQWxYsUKq0vpkDzkJUSz+vp6du/ebXYTHThwgHHjxpndRHFxcfj4yNYWomuHDx/mjjvuYOPGjS47+0zCX4gOVFdXs23bNvPOIC8vj6lTp5rdRKNGjXL5GR3COnfccQepqanMmTPH6lLaJTt5CdGBoKAgLrjgAnPWRmlpKVu3biU9PZ0PP/yQyspKEhMTzW6i6OhomUkkTKmpqaxdu9Zlw99ecuUvxGkKCgrM5wvS09Px8/MzG4KkpCQiIyOtLlFYqKGhgQULFvDKK68wcuRIq8s5g3T7COEAWmsOHz5sNgRZWVn079/fHC+Ij493q7XehWO8/PLLVFdX88ADD1hdyhkk/IXoAU1NTezfv7/NhjYxMTHmaqVTpkyRDW08QEFBAddffz0bN24kMDDQ6nLakPAXwgnq6+vZuXOn2RgcOnSI8ePHm91E48aNw9vb2+oyRQ+49957mTFjBpdffrnVpbQh4S+EBSorK8nKyjK7iU6cOEF8fLzZTSQb2vQeX3/9Na+++ip//vOfrS6lDQl/IVxASUlJm2Uo6urqzC6ipKQkoqKirC5RnCObzcbixYt58skniYuLs7ock4S/EC6o9YY2mZmZBAYGmrOIkpKSiIiIsLpEcRbWrFnD0aNH+Z//+R+rSzFJ+Avh4rTWHDp0yGwMsrKyiIqKMscL4uPjZUMbF1dSUsKSJUv49NNPXWb9KAl/IdxMY2Mje/fuNbuJ9u7dy5gxY8zxggkTJshMIhf08MMPM3HiRK699lqrSwEk/IVwe7W1tezYscO8Mzhy5AgTJ040u4nGjh0ry1C4gKysLB5//HE+/PBDlxjMl+UdhHBzAQEBTJs2jWnTpgHGhjZbt24lIyODlStXcvLkSRISEsxuouHDh7tE+HiaqVOn4uXlRVZWFgkJCVaXYze58hfCTRUVFbVZhsJms5kNQXJysmxo40QffPAB27Zt44knnrC6FOn2EcKTaK05duyY2RBkZmbSp08fsyFISEigT58+VpfZa1VWVrJw4ULWrl1r+dpPEv5CeDCbzca3335rjhds376doUOHmuMFU6dOdbllCdzdb37zG6Kioli6dKmldUj4CyFMDQ0N7Nmzx2wM9u/fz9ixY81uogkTJsiGNt20f/9+HnjgAdavX2/pQLyEvxCiQzU1NWzbts3sJjp27BhTpkwxu4lGjx4tM4nOwc0338ztt9/OhRdeaFkNMttHCNGhwMBApk+fzvTp0wE4deoUmZmZpKens27dOsrLy0lMTCQ5OZnExESGDh0qM4ns0LLRi5Xhby+58hdCnOHEiRNt1iTy9vY2l6BITk6mX79+Vpfokurq6pg3bx5vvfWWZes2SbePEMIhtNbk5OSYDcHWrVuJjIw0G4KEhARCQ0OtLtNlPPvss/j5+XHXXXdZcn4JfyFEj7DZbOzfv9+8M9i1axcjRowwxwsmT56Mv7+/1WVaJicnh2XLlrFhwwZLluOQ8BdCOEV9fT27du0y7wy+/fZb4uLizGml48eP97gNbe68804WL17MZZdd5vRzS/gLISxRXV1NVlaW2RgUFBQwdepUs5to1KhRvX7w+O9//zvvv/8+q1evdvq5JfyFEC6hpKSEzMxMs5uopqbGnEmUnJzcKze0aWxsZMGCBbz88svExMQ49dwS/kIIl5Sfn99mJlFAQIB5V5CUlETfvn2tLtEhXnnlFcrLy/nZz37m1PNK+AshXJ7WmuzsbLMxyMrKYuDAgWZDkJCQQHBwsNVlnpMTJ05w7bXXsmHDBqduyiPhL4RwO01NTezbt8+8K9i9ezejR4827wwmTZrkVhva3HfffVx44YVcccUVTjunhL8Qwu3V1dWxY8cO887g8OHDTJgwwRwvcPUNbf7zn//w0ksv8fbbb5uD3BUVUFMDPj4QHg6OLl/CXwjR61RUVLSZSVRUVER8fLzZTTRy5EiXmklks9lYuPBq5sxZxY4dw9ixA06dMgJfa6MBiIuDmTMhNRUGDer+OSX8hRC9XnFxsbkmUUZGBg0NDW2WoRjkiDQ9R3V18NJLsGpVGbW1TURGRhIQAL6+0NI+NTVBbS3U1xufmz0bVq6EwYPP/bwS/kIIj6K1Ji8vz2wIMjIyCA0NNRuCxMREwsPDnVLLnj3wox/BsWMQGNhITs4hRo8e3enDbjYblJeDvz/8+teQknJu55bwF0J4NJvNxsGDB83xgu3btxMdHd1mQ5uemIWzZQvceqtxVR8WZnwuLy+PwMAA+vbtepevujqoroa774Z77vnuLsFeEv5CCNFKY2Mje/bsMRuDffv2ERsbazYGEydOxNfXt1vn2LPH6LtXClq3K9XV1RQU5DNq1Cig6zRvbDQGhh95BG655exqkPAXQohO1NbWsn37drObKCcnh8mTJ5vdRLGxsWc1k6iuDubOhby87674v2M8zzBw4CC7n1toaDBmBW3cCGPG2P/3kvAXQoizUF5e3mYZitLS0jbLUHS1oc1zz8GLL0JERPtfLy0toaqqmiFDhthd06lTEBsLn31m/5RQCX8hhOiGwsLCNstQAGYXUVJSEgMGDDCPra6GpCRj6mZHPUc2WxN7975AUFAG9fXZhIVdRlTUo53WoLUxCPzOO5CcbF/dso2jEEJ0w4ABA5g/fz7z589Ha82xY8dIT0/nyy+/ZNWqVURERJiNQV7e96ivDyIwsOPX8/LyJiQkGh+fEQQG7kPrui5rUMpoAF57zf7wt1e3wl8pdSXwKDAOSNZat3uprpSaC/wO8AZe01o/2Z3zCiGEMymlGDZsGMOGDSM1NRWbzcaBAwdIT0/n448/5sMPa6munkpdnRfBwcEEBQWh1Jn9NIMGLeTYsWP06ZNHY2ORXecODYUvvzRmDzlyW4TuXvnvBlKAVzs6QCnlDbwEzAFygQyl1Hqt9d5unlsIISzh5eXF2LFjGTt2LDfddBNff22joqKW+voqioqKqaurJSAggODgYIKDgwkICEQpRUBAAL6+PtTV1dkd5C3HHTkCo0Y57u/QrfDXWu8DunqcOhk4qLXObj72PeByQMJfCOH2Kivh1CkvwsODUCqI/v37Y7M1UV1dQ1VVFcePH6e+vp6goKDmxiCEkpJqzmbbY6Xg0CEXCn87RQPHWn2cC0xzwnmFEKLH1dQYM3FaXwMb/fshhISEANDU1EhVVTVVVVVUVVXR0FCP1vY/vWWzGctAOFKX4a+U2gy0t0DGL7TWnzqyGKXUcmA5wLBhwxz50kII0SN8fIxB2c54e/sQFhZGWPMDAIWFA+3u8wejYfFx8KV6ly+ntZ7dzXPkAUNbfTyk+XPtnWs1sBqMqZ7dPK8QQvS4Pn2M6Z32DMhq3YTWTYAGbNhs9SjljTE02jGlIDraYSUD4IyFsDOAMUqpkUopP+AaYL0TziuEED3OywvGjTO6f7pSXPw633wznZMn13Dq1Ca++WY6xcWvd/o9WhtP+8bGOqjgZt2d6nkF8ALQH9iolNqutb5MKRWFMaVznta6USl1F/A3jKmeb2it93S7ciGEcBGzZsGOHV0f17//cvr3X35Wr11VZTQunT1DcC66deWvtf5Yaz1Ea+2vtR6otb6s+fP5Wut5rY7bpLWO1VqP0lo/1t2ihRDClSxZYtwB2GyOf+2mJlh+du2FXVx3/zMhhHATgwYZG7GcOuXY162pgZAQuPRSx74uSPgLIYRDrFwJAQHG6p6O0DK986mnjNd1NAl/IYRwgEGD4LHHjEXeGhu791paG3cR8+bBnDmOqe90Ev5CCOEgixcbu2+VlxszdM6FzQZlZcYqoU8/ffY7edlLwl8IIRzoxz+GRx81+utPner6AbDWWr5n3jxYs6ZnuntaSPgLIYSD3XQTbNoE551n3AWUlRmzdtqjdcv6QODnB6+8Ai+80LPBD7KevxBC9IjRo40duDIy4I034IsvjM8rZXTtKGW8NTRAXBwsW2bM6unp0G8h4S+EED1EKWMTluRkI/CPHDFW56ypMZaEiI42ntx1VuC3JuEvhBBO4OUFMTHGmyuQPn8hhPBALruBu1KqCMhp50v9gGInl3M2XL0+cP0aXb0+cP0apb7uc/UaO6pvuNa6f1ff7LLh3xGlVKY9O9NbxdXrA9ev0dXrA9evUerrPlevsbv1SbePEEJ4IAl/IYTwQO4Y/qutLqALrl4fuH6Nrl4fuH6NUl/3uXqN3arP7fr8hRBCdJ87XvkLIYToJpcPf6VUX6VUmlLq2+Y/Izo47rdKqT1KqX1Kqd8r1VNr4Z1zfcOUUp8317dXKTXCGfWdTY3Nx4YppXKVUi+6Un1KqSlKqf82/xvvVEpd7YS65iqlvlFKHVRKPdjO1/2VUu83f/3/OfPf9CxqvK/5922nUurvSqnhrlRfq+OWKKW0Usrps2vsqVEpdVXzz3GPUupdV6qvOVu+UEpta/53ntfe65xBa+3Sb8BvgQeb338QeKqdY6YDX2PsEewN/BeY4Sr1NX/tn8Cc5vdDgCBX+hm2OvZ3wLvAi65UHxALjGl+PwooAMJ7sCZv4BAQA/gBO4C4045ZAbzS/P41wPvO+pmdRY2XtPyuAXc6s0Z76ms+LhT4CtgCJLrgz3AMsA2IaP54gIvVtxq4s/n9OOCIPa/t8lf+wOXAn5rf/xOwuJ1jNBCA8cPxB3yBE06pzo76lFJxgI/WOg1Aa12pta52Un1g388QpVQCMBD43El1teiyPq31Aa31t83v5wOFQJcPsnRDMnBQa52tta4H3muus7XWda8FZjnrjtPeGrXWX7T6XdsCDHGl+pr9GngKqHVibS3sqXEZ8JLWuhRAa13oYvVpIKz5/T5Avj0v7A7hP1BrXdD8/nGMcGpDa/1f4AuMq8EC4G9a632uUh/GVWuZUmpd863Z00opbyfVB3bUqJTyAlYBDzixrhb2/AxNSqlkjIb+UA/WFA0ca/VxbvPn2j1Ga90InAIie7Cm09lTY2u3AX/t0Yra6rI+pVQ8MFRrvdGJdbVmz88wFohVSn2tlNqilJrrtOrsq+9R4AalVC6wCbjbnhd2iYXdlFKbgUHtfOkXrT/QWmul1BnTk5RSo4FxfHdVk6aUulBr/S9XqA/j53whMBU4CrwP3AK87oj6HFTjCmCT1jq3Jy5eHVBfy+sMBt4CbtZa2xxbZe+llLoBSAQutrqWFs0XHM9i/F9wZT4YXT8zMDLmK6XURK11maVVfedaYI3WepVS6nzgLaXUhK7+f7hE+GutZ3f0NaXUCaXUYK11QfN//PZuua4AtmitK5u/56/A+YBDwt8B9eUC27XW2c3f8wnwPRwY/g6o8XzgQqXUCowxCT+lVKXWusNBOifXh1IqDNgI/EJrvcURdXUiDxja6uMhzZ9r75hcpZQPxi33yR6uq73zt2ivRpRSszEa2Yu11g7aXtwuXdUXCkwA/tl8wTEIWK+UWqS1znSRGsH4//v/tNYNwGGl1AGMxiDDReq7DZgLRi+IUioAY92fTrun3KHbZz1wc/P7NwOftnPMUeBipZSPUsoX4+rGWd0+9tSXAYQrpVr6qGcCe51QW4sua9RaX6+1Hqa1HoHR9fNnRwW/I+pTSvkBHzfXtdYJNWUAY5RSI5vPfU1zna21rjsV+IduHnVzki5rVEpNBV4FFjm5r7rL+rTWp7TW/bTWI5p/77Y01+ms4O+yxmafYFz1o5Tqh9ENlO1C9R0FZjXXNw5j/LOoy1d21qh1N0a7I4G/A98Cm4G+zZ9PBF7T342Iv4oR+HuBZ12pvuaP5wA7gV3AGsDP1WpsdfwtOHe2jz3/xjcADcD2Vm9TeriuecABjLGFXzR/7lcYAUXzf7IPgYNAOhDjrJ/ZWdS4GWPyQ8vPbL0r1Xfasf/EybN97PwZKozuqb3N/3+vcbH64jBmO+5o/je+1J7XlSd8hRDCA7lDt48QQggHk/AXQggPJOEvhBAeSMJfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA/1//BgL3R1ssYIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", - "\n", - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "result = run_algorithm(params,algo_input)\n", - "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('max-cut objective:', result['energy'] + offset)\n", - "print('solution:', max_cut.get_graph_solution(x))\n", - "print('solution objective:', max_cut.max_cut_value(x, w))\n", - "\n", - "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Running it on quantum computer\n", - "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -1.4995485513056617\n", - "time: 8.994375944137573\n", - "max-cut objective: -3.9995485513056614\n", - "solution: [0. 1. 0. 1.]\n", - "solution objective: 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb1JCDNhBogQdhYVqyJDKUsMcW8UrFRrHW3V1i9+27qqqK2jSh20jjoQFYF+a2ittrb8khD2ECEQyIAkJCF7nuv3x53cJpBxICfnPifn83w88iDjzrk/hPC+7vu6rvu6lNYaIYQQnsXL6gKEEEI4n4S/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA0n4CyGEB5LwF0IIDyThL4QQHkjCXwghPJCP1QV0pF+/fnrEiBFWlyGEEG5l69atxVrr/l0d57LhP2LECDIzM60uQwgh3IpSKsee41w2/B1NaygogNJS4/2wMBgyBLyk40sI4YF6dfjX18MXX8Dbb8O2bVBXBz4+RvjbbODtDePHw3XXwQ9+AIGBVlcshBDOoVx1Vc/ExER9rt0+WsOnn8L//i9UVRmfCwoygr+1piaorjYaAj8/uP9+uOUWuRsQQrgvpdRWrXViV8f1upgrLYWlS40gb2gwunfCws4MfjCu/ENDoU8f4/3HHoOUFMjPd37dQgjhTL0q/IuLITUVvvoKwsMhIMD+7/XzM75n1y5YvBhy7BoyEUII99Rrwr++Hm66yQjtiAhQ6uxfQynje0tL4ZproKzM8XUKIYQr6DXh//vfwzffGF043dWnDxQWwqOPdv+1hBDCFfWK8D9wAF591ei/P5cr/vb06QMbNsDXXzvm9YQQwpX0iqmer79uzNhpb1C3tby8R6iuTsdmq8HHpx+RkTcRHr643WO9vIyG5KWX4IILeqBoIYSwkNuHf3m5Ma0zNLTrY/v1uxVf30fw8vKjru4IOTnL8fc/j8DAce0eHxoK6enGOMLw4Q4uXAghLOSQbh+l1BtKqUKl1O4Ovq6UUr9XSh1USu1USsU74rwA27cbf3Z11Q/g7x+Dl5dfS1UopWhoyO3w+Jar//T07tcphBCuxFF9/muAuZ18/QfAmOa35cAfHHRe9uwxZvrY6/jxJ9m//wKys5fg49OPkJDO+3RsNpAlhoQQvY1Dun201l8ppUZ0csjlwJ+18TjxFqVUuFJqsNa6oLvn3rPHeEDLXoMGPcjAgT+jpmYn1dVbUcqv0+P9/WHfvm4WKYQQLsZZs32igWOtPs5t/lwbSqnlSqlMpVRmUVGRXS9cU3N2M3zq6+s4cOAAZWUDqKjIobj4vU6PV8pYE0gIIXoTl5rqqbVerbVO1Fon9u/f5XLUgLEY29ksT6SUF1prAgL8qaur5sSJnRw6dIjjxwuoqCinqanptJqMp3+FEKI3cVb45wFDW308pPlz3TZ2LDQ2dn1cY2MJ5eWf4+3dQHBwEPX1mcAWhg+fT3R0FL6+fpSVlXHw4LccPpxNYeEJKisrqa1tYlz7k4GEEMJtOWuq53rgLqXUe8A04JQj+vsBJk40+uW7pigtXUtBweM0NTXQ1BTOkCH3Exp6MQABAYFERkaitY2amlqqq6s4ebKYykpvMjM38uqriqSkJCZMmICf3AoIIdycQ8JfKfUXYAbQTymVC6wEfAG01q8Am4B5wEGgGrjVEecFmDLF6Jppaup84NfHJ4Lhw1c3f6Q5ePAggYFD2vm7eBEUFERQUBCRkf0pK7Pxox9NIz//3zz//PMcOXKESZMmkZSURFJSEmPHjsVL1oAWQriZXrGe//33wyefGIuy2au4uJiGhnoGD47q8Jjycpg8GT78sPXnysnKyiI9PZ3MzEyKi4uJj48nOTmZxMRERo4ciXLUGhNCCHGW7F3Pv1eE/969cPnlEBJi/7TPxsZGDh06xJgxo/HyOvObbDYj/F97DWbM6Ph1iouLyczMJD09nYyMDOrr60lKSjIbg6iojhsXIYRwNI8KfzA2YnnzTWNNfnvl5uYSHBxERETfM75WVgZz5sDLL5/dVNK8vDwyMjLMO4PAwMA2jUHfvmeeSwghHMXjwr+mBhYsgKNH7V/WuaqqihMnjhMTEwN8l/Dl5cZr/O1v0J2s1lqTnZ1tNgZZWVkMHDiQ5ORkkpKSiI+PJyQk5NxPIIQQp/G48Ac4ccLYySs/37gD6PqKXXPo0CGioqIIDAxCazh1yljQ7YMPYMyYcy6/XU1NTezfv9/sItq9ezcjR440G4PJkyfjb9/UJSGEaJdHhj9AURHcfTdkZBibtneVpSdPFlNXV0f//tFUVhqB/+qrzlnFs76+nl27dpmNwbfffktcXJzZGMTFxeFjz4p1QgjRzGPDH4zB2vffN8YB6uqM1TmDgs4cDLbZoKqqkaNHjzN06GB+/GNv7rgDfH0d8Bc4B9XV1Wzbts1sDPLy8pg6dao5rXT06NEyrVQI0SmPDv8WNTXw+efwpz8ZC8CB0RDAd88GjBkDvr4fsGiR4rbbruxm1Y5VVlbG1q1bzcagvLycxMREszEYOnSoTCsVQrQh4X+apiZjU5bSUuOKv08fGDnSuMrPysri8ccf58MPP3TpMD1x4gQZGRnmm1LKbAiSkpIYMGCA1SUKISwm4X8WtNZcddVVPPTQQ8THO2yfmR6ltebYsWPmXUFmZibh4eHmtNKEhAT6OGI3eyGEW5HwP0vvvvsue/bs4bHHHnPaOR3JZrNx8OBBszHYvn07Q4YMMRuDKVOmEBQUZHWZQogeJuF/lsrLy1m0aBGffPIJ4WfzpJiLamxsZM+ePeYzBvv27SM2NtZsDGSBOiF6Jwn/c7By5UpGjx7NjTfe6NTzOkNtbS07duwwG4MjR44wceJEszGQBeqE6B0k/M/Bzp07WblyJR999FGvD8KKigqysrLMxqCoqMhcoC4pKUkWqBPCTdkb/vIEUSsTJ07E39+fzMxMkpOTrS6nR4WGhnLxxRdz8cXGfgYnT54kMzOTjIwM3nnnHWpra827gqSkJFmgToheRq78T/PBBx+wdetWnnrqKaef25Xk5+ebdwUZGRkEBAS0WaAuMjLS6hKFEO2Qbp9zVFlZycKFC1m7dq0EXDOtNYcPH26zQF3//v3NxiA+Pp7Q0FCryxRCIOHfLb/+9a8ZMmQIt97qsA3HehWbzcb+/fvNxmDXrl2MGDGizQJ1AQEBVpcphEeS8O+GvXv38uCDD/LJJ5/0+oFfR6ivr2f37t1mY3DgwAHGjRtnNgbjx4+XBeqEcBIJ/2664YYbWLFiBdOnT7esBndVXV3N9u3bzfGCY8eOMWXKFLMxGDNmjDSqQvQQme3TTSkpKaxbt07C/xwEBQUxffp082d36tQpc4G6jz/+mLKyMhISEkhOTiY5OVkWqBPCAnLl34Hq6moWLFjAe++9JwumOVhhYaG573F6ejqAuThdcnKy/LyF6Abp9nGAJ554gn79+rFs2TJL6+jNWhaoa2kMMjMzCQsLMxuDxMTEXrHchhDOIuHvAAcOHOAnP/kJn332Gd6n7wQjekTLAnUty1Zv27aN6OhoszGIj4+XBeqE6ISEv4PccsstLF26lIsuusjqUjxSY2Mje/fuNRuDPXv2MGbMGLOLaOLEibJAnRCtSPg7yPr16/nHP/7B888/b3UpAqirqzMXqMvIyCA7O5sJEya0WaBO7tKEJ5Pwd5Da2lrmzZvHO++8w+DBg60uR5ymsrKyzQJ1hYWFTJ061ZxWGhMTIzOJhEeR8Hegp59+mpCQEO68806rSxFdKCkpMReoS09Pp6amhsTERLMxiI6OtrpEIXqUhL8DZWdns2LFCjZs2CBPqrqZ/Pz8No2Bv7+/2RgkJibSr18/q0sUwqEk/B3s9ttv57rrrmPmzJlWlyLOkdaaI0eOmOMFW7dupV+/fmZjEB8fT1hYmNVlCtEtEv4OtmnTJjZt2sSLL75odSnCQWw2G9988415V7Bz505GjBhhTiudMmWKLFAn3I6Ev4PV19czb9481qxZw5AhQ6wuR/SAlgXqWh44++abbxg3bpzZGIwfPx5fX1+ryxSiUxL+PeC5557Dx8eHu+++2+pShBO0LFDX0hgcPXqUKVOmmI1BbGysLFAnXI6Efw/Iyclh2bJlbNy4Ua4APVB5eTmZmZlmY1BSUkJiYqL5jMGwYcNkWqmwnKzq2QOGDx9OTEwMX3zxBZdeeqnV5QgnCwsLY+bMmeagf1FRkTl4vGbNGmw2W5sF6gYOHGhxxUJ0TK78z9Lnn3/OunXreOWVV6wuRbgQrTW5ublmY5CRkUFoaGibBeoiIiKsLlN4AOn26SENDQ3Mnz+fP/7xjwwfPtzqcoSLstlsHDp0yGwIsrKyiIqKarNAXXBwsNVlil5Iwr8HvfDCCzQ2NnLvvfdaXYpwE01NTWcsUDdq1Cizi2jSpEmyQJ1wCKeGv1JqLvA7wBt4TWv95GlfvwV4Gshr/tSLWuvXOntNVw7/3NxcbrnlFjZt2iT/YcU5qaurY+fOnWZjcOjQISZMmGA+cDZu3DhZoE6cE6cN+CqlvIGXgDlALpChlFqvtd572qHva63v6u75XMGQIUMYO3YsmzdvZt68eVaXI9yQv7+/2QUEUFVVZS5Q99hjj1FQUEB8fLzZGMTExMi0UuFQjpjtkwwc1FpnAyil3gMuB04P/14lJSWFd999V8JfOERwcDAXXnghF154IWAsULd161YyMjL48MMPqaysNAeOk5OTiY6OlmmlolscEf7RwLFWH+cC09o5bolS6iLgAHCv1vpYO8e4jYsuuojf/va3ZGdnExMTY3U5opfp27cvc+bMYc6cOQAUFBSYC9StXr0aHx8fc6XSxMRE+vfvb3HFwt10u89fKZUKzNVa39788Y3AtNZdPEqpSKBSa12nlLoDuFprfcYKaUqp5cBygGHDhiXk5OR0q7ae9oc//IHKykp++tOfWl2K8CBaa3Jycsw9jzMzM4mMjDS7kRISEmSBOg/mtAFfpdT5wKNa68uaP34IQGv9RAfHewMlWus+nb2uKw/4tigoKOD6669n06ZNsgCYsIzNZuPAgQNmY7B9+3aGDx/eZoG6wMBAq8sUTuLMJ3wzgDFKqZEYs3muAa47rZjBWuuC5g8XAfsccF7LDR48mEmTJvH555+zaNEiq8sRHsrLy4uxY8cyduxYbrrpJhoaGtizZw/p6em8+eab7Nu3j7Fjx5qNwYQJE9xneRKt4fhxyMuDxkYICICRI6FPp9eOwg6Omuo5D3geY6rnG1rrx5RSvwIytdbrlVJPYIR+I1AC3Km13t/Za7rDlT/AV199xRtvvMGaNWusLkWIdtXU1LBjxw7S09PJyMggJyeHyZMnm43Beeed51oziWw2yMyENWvg3/+GmhpovYlSfT306wc/+AHccAOMHm1Zqa5IHvJyEpvNxsKFC3nuueeIjY21uhwhulReXm7OJMrIyODkyZMkJCSYjcGIESOsm0m0cyfcdx/k5BhX/cHBRvC3rkdrowGorjY+//3vwxNPgOyxDUj4O9Uf//hHiouLeeihh6wuRYizVlxc3GZNosbGxjbTSgcNGtTzRdhssGoVvPoqeHlBaGjbwO+I1nDqFPj7w1NPwYIFPV+ri5Pwd6LCwkKuueYaNmzYQFBQkNXlCHHOtNbk5+ebXUSZmZkEBQWZex4nJibSt29fx57UZoP774f1643QP5d9suvqjDuBlSvhppscW5+bkfB3sgceeIDp06eTkpJidSlCOIzWmuzsbLMxyMrKYtCgQWZjkJCQ0P0F6h5/HF5/3RjE7c7YQ0MDVFXByy+DBy+5LuHvZP/5z3946aWXePvtt+XJS9FrNTU1sW/fPrOLaPfu3cTExJiNweTJk/H397f/BbduhauvNq74HbGWUcvg8D/+AZGR3X89NyTh72Q2m43Fixfz5JNPEhcXZ3U5QjhFfX19mwXqDh48yPjx483B47i4uI4XqGtqghkzoLDQCH9HKSuD+fPhd79z3Gu6EQl/C7z55pvk5ubyyCOPWF2KEJaorq42F6jLyMggPz+fqVOnmo3BqFGjvptW+s9/wvLl0MXTyOVNTfyqoIAtlZWE+/hwV//+zO1snn9TE1RWwtdfw4ABjvvLuQkJfwucPHmS1NRUPvvsM0JCQqwuRwjLlZWVmXseZ2ZmUlFRYe57fNnbbxO0axeqiwe2Hs7LQwOPDB7Mgdpa7jl2jDdHjCCms+6l0lJjEHnFCsf+hdyA7OFrgcjISKZNm8amTZu46qqrrC5HCMuFh4cze/ZsZs+eDcCJEyeMWURbtjDtb3+jwMeHoKoqgoODCQoOxve0mT41Nhv/qKjgg5gYgry8mBIUxMWhoWw8dYq7O7uq9/ODtDSPDH97udBjfb1DSkoK69atw1XvqISw0sCBA1mwYAGP3nQTUdHRDB0+nIDAQCoqKsjOzubQoUMUHD9OeUUFTU1NHK2vxxsY1mrTpDH+/mTX1XV+ooAA2LfPmEYq2iVX/g6WmJhIfX09u3btYtKkSVaXI4Rrys1FeXnh7+eHv58ffSMi0EBdbS1V1dWUlZWRn5/Pt15e+DY2UllZSWBQEN5eXoR4eVHVVah7ext9/ydPgix33S658ncwLy8vrrjiCj766COrSxHCddXXG0/ntqKAgIAAIvv2ZdjQoZwXG0tU375UNjVx5MgRDh06hE1rqmw2gu15HsDLy5j7L9ol4d8DFi5cyJdffkl5ebnVpQjhmvz8Oly+oaGxkZMlJeTk5OBTXIxNKbyjo/H386OiooIDdXWdD/a2sNmM84h2Sfj3gPDwcL7//e+zYcMGq0sRwjWNGNHmyr8l8I8cOUJ2djZ1tbX069ePibGxzI2M5K3qagLCw/m6qIgvKyqY39WSzo2N4OvrsQ962UPCv4fIwK8QnRgxgsbGRk4WF58R+GPGjCEqKoqQkBC8lOLBQYOos9lYUlDAbysruT8ysusr/9paGD/evsXhPJQM+PaQqVOnopRi27ZtxMfHW12OEC6hsLCQzZs3s3nzZpZUV/O9+nr69e9PUHAwXh0EdZi3N6uGDgWgqKiIxsbGrk/U2Ahz5zqy9F5Hrvx7iFKKlJQUGfgVHu/EiRO8++67LF26lGuuuYaDBw9y++23c9n77xPZty8hnQT/6cIjIigvL6eps9k+TU3GYO8VVzjob9A7yZV/D5o/fz6vvvoqpaWlREREWF2OEE5z4sQJ/v73v7N582aOHDnCjBkzuP3220lKSvpuC0mbDYYPh6NHu1zioYWvjw9BQUGUl5cTER7e/kHl5XDVVeDopad7GQn/HhQWFsaMGTP47LPPuMnD1xgXvV9L4KelpZGTk9N+4Lfm5WUsvrZ4sdFNY+c6/hERERQWFhIeHs4Z9wvV1RAeDrKxUpck/HtYSkoKK1eu5IYbbnCtfVKFcID2An/ZsmUdB/7pxo+HH/8Ynn/e7vX8g4ODsTU1UVNTQ1Bg4HdfqK835vX/8Y9230l4Mgn/HjZx4kQCAgLIzMwkOTnZ6nKE6Lbjx4+bXTqtAz85ORmfc9mF6667jCdx33oLQkKMKZqdUBh9/6Wlpd+Ff3W1Ef6rVsEFF5x9DR5Iwr+HtR74lfAX7qp14B89epSLL764e4HfmlLG9otDhsBvf2sEeVhYp9M0w8PDOXTwIE0NDXhXVRn7AbzyClx0Ufdq8SCypLMTVFZWsnDhQtauXUukPHQi3ERL4KelpXHs2DEuvvhi5syZQ1JSUvcDvyMHD8LPfw47dxoDwkFBZz4NbLNBbS0njx/H18+PsGuvhf/5H5BJFYCs5+9yfvOb3xAVFcXSpUutLkWIDp0e+DNmzGD27Nk9G/jt2bcP3n4bvvwSCgqMriCljOBvaoKYGPKmTuWRXbt4bcMGGU9rRdbzdzEpKSk8+OCD3HLLLfKLKlxKQUGB2aXTEvh33HGH8wO/tXHj4LHHjPcrKyE/35gRFBBgdA/5+RGlNdXXXivjaedIwt9J4uLi6NOnD1u2bGH69OlWlyM8nEsGfkdCQiA29oxPK6VITU1l7dq1Ev7nwMX+lXu3loFfCX9hhZbAT0tLIzc3lxkzZvDDH/6QxMRE1wt8O82bN4+XXnqJwsJCBnjgfr3d4Z7/4m7qsssu44UXXpBfVOE0pwf+JZdcwp133unWgd9aUFAQl156KZ9++inLli2zuhy34v7/+m6k5Rf1k08+Yfny5VaXI3qpgoICc/G03hj4p0tNTeWee+5h6dKleHt7W12O2+h9vwkuLiUlhZ/85Cfcdttt8osqHCY/P9/sw8/Ly2PGjBm9OvBbGzNmDIMGDeJf//oXM2bMsLoct9G7fytcUGxsLAMHDuTrr7/mInkgRXRDS+CnpaWRn5/PjBkzWLFiBQkJCb0+8E/XMvAr4W8/z/oNcREtA78S/uJsnR74l1xyCT/60Y88MvBbmz17Ns8++yzHjh1jaPPa/6JznvvbYqE5c+bw3HPPUVBQwODBg60uR7i4/Px8sw9fAr99fn5+LFy4kHXr1nHPPfdYXY5bkCd8LfLMM88QHBzMnXfeaXUpwgW1F/izZ8+WwO/EsWPHWLp0KRs3bsTPgzdulyd8XVxKSgorVqxg2bJl8p9ZAO0H/l133UVCQoJMDrDD0KFDOe+889i8eTPz5s2zuhyXJ6ljkZiYGIYOHcpXX33FzJkzrS5HWOT0wJ85c6YEfjcsWbKEt956S8LfDhL+FmoZ+JXw9ywS+D3noosu4umnn+bbb79lzJgxVpfj0iT8LTRr1ixWrVpFbm4uQ4YMsboc0YNaB35BQYF06fQQb29vFi9ezNq1a3lItnLslAz4Wuz555/H29ubu+++2+pShIO1BH5aWhrHjx9vM2grgd9zCgsLueaaa9iwYQNBQUFWl+N0Th3wVUrNBX4HeAOvaa2fPO3r/sCfgQTgJHC11vqII87t7lJSUrj99tv54Q9/aN+ep8KltRf4d999twS+Ew0YMIDExET++te/smTJEqvLcVndDn+llDfwEjAHyAUylFLrtdZ7Wx12G1CqtR6tlLoGeAq4urvn7g2GDRvGqFGj+OKLL7j00kutLkecg7y8PLNLRwLfNaSmpvLcc8+RkpKC6mQ7SE/miCv/ZOCg1jobQCn1HnA50Dr8LwcebX5/LfCiUkppV+1zcrKUlBTWrl0r4e9GJPBdW2JiIrW1tezatYtJkyZZXY5LckT4RwPHWn2cC0zr6BitdaNS6hQQCRQ74Pxub8aMGTz99NPk5OQwfPhwq8sRHWgJ/LS0NE6cOMEll1zCj3/8Y+Lj4yXwXYyXlxdLlixh7dq1Ev4dcKnZPkqp5cByMLpDPIWvry+LFi1i3bp13HvvvVaXI1ppHfiFhYVccskl3HPPPRL4bmDhwoVcfvnllJWVER4ebnU5LscR4Z8HtF5JaUjz59o7Jlcp5QP0wRj4bUNrvRpYDcZsHwfU5jauuOIKbr75Zn70ox959KPpriA3N9fs0pHAd199+vTh4osv5rPPPuPGG2+0uhyX44jwzwDGKKVGYoT8NcB1px2zHrgZ+C+QCvxD+vvbio6OZty4cfJoukUk8Hun1NRUHnnkEa6//nq8vLysLseldDv8m/vw7wL+hjHV8w2t9R6l1K+ATK31euB14C2l1EGgBKOBEKdJSUnh7bfflvB3kpbAT0tLo6ioiEsuuYSf/OQnxMfHS1D0EhMmTCAoKIj09HS+973vWV2OS5GHvFxIY2MjCxYs4OWXXyYmJsbqcnql0wN/5syZzJ49WwK/F1u3bh3/+c9/eOaZZ6wuxSlkVU835OPjw+LFi/noo4/46U9/anU5vcaxY8fMLp2WwL/33nsl8D3E3LlzefHFFyksLGTAgAFWl+My5MrfxRw/fpzrrruOTZs2ERAQYHU5bqu9wJcrfM/11FNPER4ezh133GF1KT1Orvzd1KBBg5g0aRKff/45ixYtsroct9IS+GlpaRQXFzNz5kzuu+8+pk6dKoHv4VJTU7nrrru47bbbZP+MZvJTcEFLlizh9ddfl/C3w+mBP2vWLO6//34JfNHGqFGjiI6Olv0zWpHwd0EXXHABTz75JAcOHCA2NtbqclzO0aNHzS4dCXxhr5YnfiX8DRL+LsjLy4srrriCjz76SNYkbyaBL7pr1qxZPPvssxw9etSjVhDoiAz4uqiioiKuuuoqNm7c6JFrkkP7gT9nzhymTJkigS/Oye9//3uampp69TIqMuDr5vr3709CQgL/93//R0pKitXlOM3pgT979mweeOABCXzhEEuWLOGmm25ixYoV+Pv7W12OpST8XdiSJUt48cUXueKKK3r1muQS+MJZoqOjGT9+PJs3b2b+/PlWl2MpCX8XNm3aNJ544gn27dtHXFyc1eU4VOvAP3nyJLNmzZLAF06RmprKm2++KeFvdQGiY15eXqSkpPDRRx/1ivBvCfy0tDRKSkok8IUlZDadQQZ8XVxJSQlLlizhs88+IyQkxOpyzlp7gT979mwJfGGp1157jcLCQh5++GGrS3E4GfDtJfr27cu0adPYtGkTV111ldXl2CUnJ8fs0mkJ/J/+9KcS+MJlLF68mCuvvJJ77rmH4OBgq8uxhIS/G1iyZAmrVq3iytmzUbt2we7d8O23UF8PwcEwcSLExRl/WjSDoXXgl5aWMnPmTAl84bL69etHcnIymzZt4sorr7S6HEtI+LuBRB8fbkxPp37qVPwDA6GuDnx8QCmw2WDdOvD1Nd5uuAFuvBGionq8rpbAT0tLo6ysjJkzZ/Kzn/2MyZMnS+ALl5eamsozzzxDampqr55N1xEJf1dWUQGPPYZau5YLq6o4qRRR/ftDR33/9fWwejW8+Sb88pdw3XXg4BA+PfBnzZrFz3/+cwl84XYSExNpaGhgx44dTJkyxepynE7C31UdPgzXXw8nTkCfPgSFhlJw8CBNTU0dbyvo52e81dfDypWQlgZ/+AN08wnhI0eOmF06Eviit1BKkZqaytq1ayX8hYs4ehRSU40r/4gIwPiHCgkJoezUKSL79u38+/38jC6gf/8bli6FP/3prMcCJPCFJ1iwYAGrV6+mtLSUiOb/a55Cwt/V1NfDbbfBqVMQHt7DaNuAAAAZx0lEQVTmSxERERQUFNC3b1+67KFUyvj+9HR48knjTqALLYGflpZGeXk5M2fO5MEHH2TSpEkS+KJXCgsL45JLLmH9+vXcfPPNVpfjVBL+rubFF40unz59zvhSYFAQKEV1dTXB9nTlKGW8zltvwbx5kJR0xiGnB/6sWbN46KGHJPCFx0hNTeWhhx7ixhtv9KjfeQl/V1JUBK++agzotjP7QAER4eGUlZbaF/4A3t7G2yOPwF//Ckpx+PBhs0tHAl94uri4OMLCwtiyZQvTp0+3uhynkfB3JR9+CI2NxjTODgSGhvJoXh6HqqupsNkY4uvLXQMGML2zp39DQmjYv5/1jz7KB/v3S+AL0YpSytzoRcJfWOOttyAwsPNjvL0ZEhjI8tBQ4gYM4OvKSh7My+O9kSOJ8vNrc2hdXR3lFRWUl5cTVFtL1Ndf8/CqVUycOFECX4hW5s6dywsvvMDx48cZNGiQ1eU4hSSAqygthcLCLmflBHp5cVd0NAGVlSiluDA0lChfX/bX1gJG4BcVF3MoO5uco0dpampi8ODBDBo5kvOVktk6QrQjMDCQuXPn8vHHH1tditNICriK/fuN6Zl2PGkYGBiIl1JUV1VR0thITm0tfaqqzgj8MWPGMGjgQIICA1H+/sZAcn29E/4yQrif1NRUPvnkExobG60uxSmk28dVlJQYSzXYQQHhERHk5ObyWH095ytFtJcXYYMHExgY2P40UC8vo2GpqIDISEdWLkSvEBMTw/Dhw/nyyy+ZNWuW1eX0OLnydxVnubR2WJ8+vGyz4WWzsczPD5vNRkN9fddXLS66hLcQrqDliV9PIOHvKsLC7F6HR2vNY8eP0xAUxB8nTiRm+HACAgIor6ggOzubQ9nZHD9+nIqKCppa7ia0Nu4s3HBPACGcZcaMGRw6dIicnByrS+lx0u3jKmJjjWmeWnfZ7//E8eMcrq/n5WHDCPDyAn9//P396RsRgQZqa2upqqqipLSUvPx8/P38CPPzw3fQIPyVwrO3rRaiY35+fixatIiPPvqI++67z+pyepTs5OUqtIapU42r89OmbLZW0NDAwoMH8VMK71aNxMODBvGDdp4KtmlNTU0NjUVFbBkwgN/07cv48eNJTk4mKSmJuLi4jheKE8ID5efnc+ONN7Jx40YCAgKsLuesyU5e7kYpuOoqeP31TsN/sK8vmePG2f2yXkoZTwNHRHDZ6tV8f8oUsrKyyMjI4PHHH6egoICpU6eSlJREcnIyo0aN8si1zYVoERUVxYQJE0hLS2PhwoVWl9Nj5MrfleTkwKxZZ9X/b5fqamORt3//+4zXLSkpITMzk4yMDNLT06mpqSExMZHk5GSSk5OJcsKmMEK4mn/961+89tpr/OlPf7K6lLNm75W/hL+reeAB+OSTM1b0PGc2m7FC6AsvGIu7dSE/P99sCDIyMggICDAbgsTERPp2tZy0EL2AzWZj0aJFPPPMM4wdO9bqcs6KhL+7Ki+HmTOhstIxM3NKSmD2bGPBuLPsztFak52dbTYEWVlZDBo0yGwIEhISPHbza9H7vfHGG+Tn5/PLX/7S6lLOioS/O8vKMnbxUqp7u3CdOgXR0fDxx+amMN3R1NTEvn37zMZg9+7djB492hwvmDRpEn6djFcI4U5OnjxJamoqn332GSFuNEVawt/dpafDrbcam7X36XN2V+1NTcYdxIgR8Je/wIABPVJiXV0dO3bsMLuJDh8+zIQJE8xuorFjx8o6QsKtPfTQQ0yZMoWrr77a6lLsJuHfG+TkwH33wY4dxro/zZu5dMhmM0If4Npr4cEHwYndMhUVFWRlZZl3BkVFRSQkJJjdRCNHjpSZRMKtbN26laeeeor333/fbX53Jfx7C5vNGAB++WWjMWhqMjZn8fMzGgKbzbg7UMp4u+ACuPtuSEiwunKKi4vJyMgw3xoaGkhKSjK7iTxl6VzhvrTWXHnllTz88MPEx8dbXY5dnBL+Sqm+wPvACOAIcJXWurSd45qAXc0fHtVaL+rqtSX8T6M17NoFmZlGl1B2tvFEcGAgTJgAiYkwfbrRx++CtNbk5eWZdwUZGRmEhoaaDUFiYiLhjprhJIQD/eUvf2HXrl08/vjjVpdiF2eF/2+BEq31k0qpB4EIrfXP2zmuUmt9ViMmEv69m81m4+DBg+Z4wfbt24mOjjbHC6ZMmUJQdwa7hXCQiooKc8kHd5jq7Kzw/waYobUuUEoNBv6ptT6vneMk/EWnGhsb2bNnj3lnsG/fPmJjY81lKCZOnIivr6/VZQoP9atf/YqhQ4dy6623Wl1Kl5wV/mVa6/Dm9xVQ2vLxacc1AtuBRuBJrfUnXb22hL9nq6mpYfv27WYXUU5ODpMnTza7iWJjY2UmkXCavXv38vOf/5xPP/3U5X/vHLa2j1JqM9DeyNwvWn+gtdZKqY5akuFa6zylVAzwD6XULq31oXbOtRxYDjBs2LCuShO9WGBgIOeffz7nn38+AOXl5eYyFL/4xS8oLS1tswzF0KFD3WY2hnA/cXFxRERE8N///pcLLrjA6nIcwindPqd9zxpgg9a60x0T5MpfdKawsLDNMhRAm2UoBvTQsw3Cc61fv54vvviC5557zupSOuWsbp+ngZOtBnz7aq1/dtoxEUC11rpOKdUP+C9wudZ6b2evLeEv7KW15ujRo2ZDkJmZSUREhDlekJiYSFhYmNVlCjdXU1PD/Pnzeeeddxg8eLDV5XTIWeEfCXwADANyMKZ6liilEoEfaq1vV0pNB14FbBg7hz2vtX69q9eW8BfnymazceDAAbMx2LFjB8OHDzfHC6ZMmeKW67QL6z3zzDMEBQWxYsUKq0vpkDzkJUSz+vp6du/ebXYTHThwgHHjxpndRHFxcfj4yNYWomuHDx/mjjvuYOPGjS47+0zCX4gOVFdXs23bNvPOIC8vj6lTp5rdRKNGjXL5GR3COnfccQepqanMmTPH6lLaJTt5CdGBoKAgLrjgAnPWRmlpKVu3biU9PZ0PP/yQyspKEhMTzW6i6OhomUkkTKmpqaxdu9Zlw99ecuUvxGkKCgrM5wvS09Px8/MzG4KkpCQiIyOtLlFYqKGhgQULFvDKK68wcuRIq8s5g3T7COEAWmsOHz5sNgRZWVn079/fHC+Ij493q7XehWO8/PLLVFdX88ADD1hdyhkk/IXoAU1NTezfv7/NhjYxMTHmaqVTpkyRDW08QEFBAddffz0bN24kMDDQ6nLakPAXwgnq6+vZuXOn2RgcOnSI8ePHm91E48aNw9vb2+oyRQ+49957mTFjBpdffrnVpbQh4S+EBSorK8nKyjK7iU6cOEF8fLzZTSQb2vQeX3/9Na+++ip//vOfrS6lDQl/IVxASUlJm2Uo6urqzC6ipKQkoqKirC5RnCObzcbixYt58skniYuLs7ock4S/EC6o9YY2mZmZBAYGmrOIkpKSiIiIsLpEcRbWrFnD0aNH+Z//+R+rSzFJ+Avh4rTWHDp0yGwMsrKyiIqKMscL4uPjZUMbF1dSUsKSJUv49NNPXWb9KAl/IdxMY2Mje/fuNbuJ9u7dy5gxY8zxggkTJshMIhf08MMPM3HiRK699lqrSwEk/IVwe7W1tezYscO8Mzhy5AgTJ040u4nGjh0ry1C4gKysLB5//HE+/PBDlxjMl+UdhHBzAQEBTJs2jWnTpgHGhjZbt24lIyODlStXcvLkSRISEsxuouHDh7tE+HiaqVOn4uXlRVZWFgkJCVaXYze58hfCTRUVFbVZhsJms5kNQXJysmxo40QffPAB27Zt44knnrC6FOn2EcKTaK05duyY2RBkZmbSp08fsyFISEigT58+VpfZa1VWVrJw4ULWrl1r+dpPEv5CeDCbzca3335rjhds376doUOHmuMFU6dOdbllCdzdb37zG6Kioli6dKmldUj4CyFMDQ0N7Nmzx2wM9u/fz9ixY81uogkTJsiGNt20f/9+HnjgAdavX2/pQLyEvxCiQzU1NWzbts3sJjp27BhTpkwxu4lGjx4tM4nOwc0338ztt9/OhRdeaFkNMttHCNGhwMBApk+fzvTp0wE4deoUmZmZpKens27dOsrLy0lMTCQ5OZnExESGDh0qM4ns0LLRi5Xhby+58hdCnOHEiRNt1iTy9vY2l6BITk6mX79+Vpfokurq6pg3bx5vvfWWZes2SbePEMIhtNbk5OSYDcHWrVuJjIw0G4KEhARCQ0OtLtNlPPvss/j5+XHXXXdZcn4JfyFEj7DZbOzfv9+8M9i1axcjRowwxwsmT56Mv7+/1WVaJicnh2XLlrFhwwZLluOQ8BdCOEV9fT27du0y7wy+/fZb4uLizGml48eP97gNbe68804WL17MZZdd5vRzS/gLISxRXV1NVlaW2RgUFBQwdepUs5to1KhRvX7w+O9//zvvv/8+q1evdvq5JfyFEC6hpKSEzMxMs5uopqbGnEmUnJzcKze0aWxsZMGCBbz88svExMQ49dwS/kIIl5Sfn99mJlFAQIB5V5CUlETfvn2tLtEhXnnlFcrLy/nZz37m1PNK+AshXJ7WmuzsbLMxyMrKYuDAgWZDkJCQQHBwsNVlnpMTJ05w7bXXsmHDBqduyiPhL4RwO01NTezbt8+8K9i9ezejR4827wwmTZrkVhva3HfffVx44YVcccUVTjunhL8Qwu3V1dWxY8cO887g8OHDTJgwwRwvcPUNbf7zn//w0ksv8fbbb5uD3BUVUFMDPj4QHg6OLl/CXwjR61RUVLSZSVRUVER8fLzZTTRy5EiXmklks9lYuPBq5sxZxY4dw9ixA06dMgJfa6MBiIuDmTMhNRUGDer+OSX8hRC9XnFxsbkmUUZGBg0NDW2WoRjkiDQ9R3V18NJLsGpVGbW1TURGRhIQAL6+0NI+NTVBbS3U1xufmz0bVq6EwYPP/bwS/kIIj6K1Ji8vz2wIMjIyCA0NNRuCxMREwsPDnVLLnj3wox/BsWMQGNhITs4hRo8e3enDbjYblJeDvz/8+teQknJu55bwF0J4NJvNxsGDB83xgu3btxMdHd1mQ5uemIWzZQvceqtxVR8WZnwuLy+PwMAA+vbtepevujqoroa774Z77vnuLsFeEv5CCNFKY2Mje/bsMRuDffv2ERsbazYGEydOxNfXt1vn2LPH6LtXClq3K9XV1RQU5DNq1Cig6zRvbDQGhh95BG655exqkPAXQohO1NbWsn37drObKCcnh8mTJ5vdRLGxsWc1k6iuDubOhby87674v2M8zzBw4CC7n1toaDBmBW3cCGPG2P/3kvAXQoizUF5e3mYZitLS0jbLUHS1oc1zz8GLL0JERPtfLy0toaqqmiFDhthd06lTEBsLn31m/5RQCX8hhOiGwsLCNstQAGYXUVJSEgMGDDCPra6GpCRj6mZHPUc2WxN7975AUFAG9fXZhIVdRlTUo53WoLUxCPzOO5CcbF/dso2jEEJ0w4ABA5g/fz7z589Ha82xY8dIT0/nyy+/ZNWqVURERJiNQV7e96ivDyIwsOPX8/LyJiQkGh+fEQQG7kPrui5rUMpoAF57zf7wt1e3wl8pdSXwKDAOSNZat3uprpSaC/wO8AZe01o/2Z3zCiGEMymlGDZsGMOGDSM1NRWbzcaBAwdIT0/n448/5sMPa6munkpdnRfBwcEEBQWh1Jn9NIMGLeTYsWP06ZNHY2ORXecODYUvvzRmDzlyW4TuXvnvBlKAVzs6QCnlDbwEzAFygQyl1Hqt9d5unlsIISzh5eXF2LFjGTt2LDfddBNff22joqKW+voqioqKqaurJSAggODgYIKDgwkICEQpRUBAAL6+PtTV1dkd5C3HHTkCo0Y57u/QrfDXWu8DunqcOhk4qLXObj72PeByQMJfCOH2Kivh1CkvwsODUCqI/v37Y7M1UV1dQ1VVFcePH6e+vp6goKDmxiCEkpJqzmbbY6Xg0CEXCn87RQPHWn2cC0xzwnmFEKLH1dQYM3FaXwMb/fshhISEANDU1EhVVTVVVVVUVVXR0FCP1vY/vWWzGctAOFKX4a+U2gy0t0DGL7TWnzqyGKXUcmA5wLBhwxz50kII0SN8fIxB2c54e/sQFhZGWPMDAIWFA+3u8wejYfFx8KV6ly+ntZ7dzXPkAUNbfTyk+XPtnWs1sBqMqZ7dPK8QQvS4Pn2M6Z32DMhq3YTWTYAGbNhs9SjljTE02jGlIDraYSUD4IyFsDOAMUqpkUopP+AaYL0TziuEED3OywvGjTO6f7pSXPw633wznZMn13Dq1Ca++WY6xcWvd/o9WhtP+8bGOqjgZt2d6nkF8ALQH9iolNqutb5MKRWFMaVznta6USl1F/A3jKmeb2it93S7ciGEcBGzZsGOHV0f17//cvr3X35Wr11VZTQunT1DcC66deWvtf5Yaz1Ea+2vtR6otb6s+fP5Wut5rY7bpLWO1VqP0lo/1t2ihRDClSxZYtwB2GyOf+2mJlh+du2FXVx3/zMhhHATgwYZG7GcOuXY162pgZAQuPRSx74uSPgLIYRDrFwJAQHG6p6O0DK986mnjNd1NAl/IYRwgEGD4LHHjEXeGhu791paG3cR8+bBnDmOqe90Ev5CCOEgixcbu2+VlxszdM6FzQZlZcYqoU8/ffY7edlLwl8IIRzoxz+GRx81+utPner6AbDWWr5n3jxYs6ZnuntaSPgLIYSD3XQTbNoE551n3AWUlRmzdtqjdcv6QODnB6+8Ai+80LPBD7KevxBC9IjRo40duDIy4I034IsvjM8rZXTtKGW8NTRAXBwsW2bM6unp0G8h4S+EED1EKWMTluRkI/CPHDFW56ypMZaEiI42ntx1VuC3JuEvhBBO4OUFMTHGmyuQPn8hhPBALruBu1KqCMhp50v9gGInl3M2XL0+cP0aXb0+cP0apb7uc/UaO6pvuNa6f1ff7LLh3xGlVKY9O9NbxdXrA9ev0dXrA9evUerrPlevsbv1SbePEEJ4IAl/IYTwQO4Y/qutLqALrl4fuH6Nrl4fuH6NUl/3uXqN3arP7fr8hRBCdJ87XvkLIYToJpcPf6VUX6VUmlLq2+Y/Izo47rdKqT1KqX1Kqd8r1VNr4Z1zfcOUUp8317dXKTXCGfWdTY3Nx4YppXKVUi+6Un1KqSlKqf82/xvvVEpd7YS65iqlvlFKHVRKPdjO1/2VUu83f/3/OfPf9CxqvK/5922nUurvSqnhrlRfq+OWKKW0Usrps2vsqVEpdVXzz3GPUupdV6qvOVu+UEpta/53ntfe65xBa+3Sb8BvgQeb338QeKqdY6YDX2PsEewN/BeY4Sr1NX/tn8Cc5vdDgCBX+hm2OvZ3wLvAi65UHxALjGl+PwooAMJ7sCZv4BAQA/gBO4C4045ZAbzS/P41wPvO+pmdRY2XtPyuAXc6s0Z76ms+LhT4CtgCJLrgz3AMsA2IaP54gIvVtxq4s/n9OOCIPa/t8lf+wOXAn5rf/xOwuJ1jNBCA8cPxB3yBE06pzo76lFJxgI/WOg1Aa12pta52Un1g388QpVQCMBD43El1teiyPq31Aa31t83v5wOFQJcPsnRDMnBQa52tta4H3muus7XWda8FZjnrjtPeGrXWX7T6XdsCDHGl+pr9GngKqHVibS3sqXEZ8JLWuhRAa13oYvVpIKz5/T5Avj0v7A7hP1BrXdD8/nGMcGpDa/1f4AuMq8EC4G9a632uUh/GVWuZUmpd863Z00opbyfVB3bUqJTyAlYBDzixrhb2/AxNSqlkjIb+UA/WFA0ca/VxbvPn2j1Ga90InAIie7Cm09lTY2u3AX/t0Yra6rI+pVQ8MFRrvdGJdbVmz88wFohVSn2tlNqilJrrtOrsq+9R4AalVC6wCbjbnhd2iYXdlFKbgUHtfOkXrT/QWmul1BnTk5RSo4FxfHdVk6aUulBr/S9XqA/j53whMBU4CrwP3AK87oj6HFTjCmCT1jq3Jy5eHVBfy+sMBt4CbtZa2xxbZe+llLoBSAQutrqWFs0XHM9i/F9wZT4YXT8zMDLmK6XURK11maVVfedaYI3WepVS6nzgLaXUhK7+f7hE+GutZ3f0NaXUCaXUYK11QfN//PZuua4AtmitK5u/56/A+YBDwt8B9eUC27XW2c3f8wnwPRwY/g6o8XzgQqXUCowxCT+lVKXWusNBOifXh1IqDNgI/EJrvcURdXUiDxja6uMhzZ9r75hcpZQPxi33yR6uq73zt2ivRpRSszEa2Yu11g7aXtwuXdUXCkwA/tl8wTEIWK+UWqS1znSRGsH4//v/tNYNwGGl1AGMxiDDReq7DZgLRi+IUioAY92fTrun3KHbZz1wc/P7NwOftnPMUeBipZSPUsoX4+rGWd0+9tSXAYQrpVr6qGcCe51QW4sua9RaX6+1Hqa1HoHR9fNnRwW/I+pTSvkBHzfXtdYJNWUAY5RSI5vPfU1zna21rjsV+IduHnVzki5rVEpNBV4FFjm5r7rL+rTWp7TW/bTWI5p/77Y01+ms4O+yxmafYFz1o5Tqh9ENlO1C9R0FZjXXNw5j/LOoy1d21qh1N0a7I4G/A98Cm4G+zZ9PBF7T342Iv4oR+HuBZ12pvuaP5wA7gV3AGsDP1WpsdfwtOHe2jz3/xjcADcD2Vm9TeriuecABjLGFXzR/7lcYAUXzf7IPgYNAOhDjrJ/ZWdS4GWPyQ8vPbL0r1Xfasf/EybN97PwZKozuqb3N/3+vcbH64jBmO+5o/je+1J7XlSd8hRDCA7lDt48QQggHk/AXQggPJOEvhBAeSMJfCCE8kIS/EEJ4IAl/IYTwQBL+QgjhgST8hRDCA/1//BgL3R1ssYIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'SPSA',\n", - " 'max_trials': 300\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RY',\n", - " 'depth': 5,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg,\n", - " 'backend': {'name': 'statevector_simulator'}\n", - "}\n", - "\n", - "result = run_algorithm(params, algo_input)\n", - "\n", - "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "print('max-cut objective:', result['energy'] + offset)\n", - "print('solution:', max_cut.get_graph_solution(x))\n", - "print('solution objective:', max_cut.max_cut_value(x, w))\n", - "\n", - "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -1.5\n", - "time: 18.19207787513733\n", - "max-cut objective: -4.0\n", - "solution: [1 0 1 0]\n", - "solution objective: 4.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD8CAYAAACfF6SlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8leX9//HXlb3IYAbCDBAh7CwqVkGGUpYY4t4oWKnWOtqqrV/8tnVVUVtHhTpoHXUgKqvfGlqrrS2/JIQ9RBIIZEASkpCE7Jzr98ed3CaYcSAn5z4n5/N8PPIg4859fwjhfd3nuq77upTWGiGEEJ7Fy+oChBBCOJ+EvxBCeCAJfyGE8EAS/kII4YEk/IUQwgNJ+AshhAeS8BdCCA8k4S+EEB5Iwl8IITyQj9UFtKdv3756+PDhVpchhBBuZfv27cVa636dHeey4T98+HAyMjKsLkMIIdyKUirHnuNcNvwdTmsoKIDSUuP90FAYPBi8pOdLCOF5enb419XB55/D22/Djh1QWws+Pkb422zg7Q3jxsH118MPfgCBgVZXLIQQTqFcdVXPhIQEfd7dPlrDp5/C//4vnDljfC4oyAj+lhoboarKaAj8/OCBB+DWW+XVgBDCbSmltmutEzo7ruelXGkpLF1qBHl9vdG9Exr63eAH486/Vy8ICzPef/xxSE6G/Hzn1y2EEE7Us8K/uBhSUuDLLyE8HAIC7P9ePz/je/bsgcWLIceuMRMhhHBLPSf86+rg5puN0I6IAKXO/RxKGd9bWgrXXgtlZY6vUwghXEDPCf/f/x6+/trowumqsDAoLITHHuv6uYQQwgX1jPA/dAhWrzb678/njr8tYWGwaRN89ZVjzieEEC6kZ0z1fP11Y8ZOW4O6LTyal0daVRXVNht9fXy4uU8fFoeHt32wl5fRkLz8Mlx0UTcULYQQ1nH/8C8vN6Z19urV6aG39e3Lo76++Hl5cbS2luU5OVzg78/Y9ub39+oFaWnGOMKwYQ4uXAghrOOQbh+l1BtKqUKl1N52vq6UUr9XSh1WSu1WSsU54roA7Nxp/NnJXT9AtL8/fk1z+JVRF7n19e1/Q/Pdf1qaAwoVQgjX4ag+/7XA3A6+/gNgdNPbcuAPDrou7NtnzPSx01MnTnDRwYMsyc6mr48PF4WEdPwNNhvIGkNCiB7GId0+WusvlVLDOzjkCuDP2niceJtSKlwpNVBrXdDli+/bZzygZaeHIiP52YAB7K6uZntVFX6dDRD7+8OBA10sUgghXIuzZvtEAcdbfJzb9LlWlFLLlVIZSqmMoqIi+85cXX1OM3xq6+o4dOgQ/cvKyKmo4L3i4o6/QSljTSAhhOhBXGqqp9Z6jdY6QWud0K9fp8tRGwIDjbV87OSlFFpr/AMCqKqtZffJk2RlZVFw4gTlFRU0NjaeXZTx9K8QQvQgzgr/PGBIi48HN32u68aMgYaGTg8raWjgs/Jy6r29CQoOJqOujm3A/GHDGBQVhZ+vL2VlZXxz+DDZR45wsrCQyspKGmtqYOxYh5QqhBCuwllTPTcAdyul3gOmAqcd0t8PMGGC0S/fCQWsKy3liYIC6hsbCW9s5IHBg5neNEU0MCCAPn36YNOamupqzlRVUXzqFN6VlWzOyECtXk1iYiLjx4/HT14JCCHcnEPCXyn1F2AG0FcplQusBHwBtNavAluAecBhoAq4zRHXBWDyZKNrprGxw4HfCB8f1jTN1dfA4cOHGdzG/H4vpQgKCiIoKIh+ffpgKytj6o9+xL/z83nhhRc4evQoEydOJDExkcTERMaMGYOXLAEthHAzPWM9/wcegE8+MRZls1NxcTF19fUMGjiw/YPKy2HSJPjwwxafKiczM5O0tDQyMjIoLi4mLi6OpKQkEhISGDFiBMpRS0wIIcQ5snc9/54R/vv3wxVXQEiI3dM+GxoayMrKYtTo0Xi3dedusxnh/9prMGNGu+cpLi4mIyODtLQ00tPTqaurIzEx0WwMBg0aZN/fQQghHMCzwh+MjVjefNNYk99Oubm5BAUH07utVwxlZTBnDrzyyjlNJc3LyyM9Pd18ZRAYGNiqMejdu7fd5xJCiHPleeFfXQ0LFsCxY3Yv63zmzBlOnDxJdHQ0reK9vNw4x9/+Bl0Ia6012dnZZmOQmZnJgAEDSEpKIjExkbi4OEI6e8JYCCHOgeeFP8DJk8ZOXvn5xiuATu7YNZCVlcWgQYMIan5e4PRpY0G3Dz6A0aPP/y/QhsbGRg4ePGh2Ee3du5cRI0aYjcGkSZPwt2PmkhBCtMczwx+gqAjuuQfS041N2zsJ0+JTp6itrSWqXz+orDQCf/Vqp6ziWVdXx549e8zG4JtvviE2NtZsDGJjY/GxY8E6IYRo5rnhD8Zg7fvvG+MAtbXG6pxBQd8dDLbZaDhzhhPHjjFwyBC8f/xjuPNO8PXt+l/gPFRVVbFjxw6zMcjLy2PKlCnmtNJRo0bJtFIhRIc8O/ybVVfDZ5/Bn/5kLAAHRkMA3z4bMHo0H/j6ohYt4qrbb+/a9RysrKyM7du3m41BeXk5CQkJZmMwZMgQmVYqhGhFwv9sjY3GpiylpcYrg7AwGDECfH3JzMzkiSee4MMPP3TpMD158iTp6enmm1LKbAgSExPp37+/1SUKISwm4X8OtNZcffXVPPzww8TFOW6fme6kteb48ePmq4KMjAzCw8PNaaXx8fGEOWIzeyGEW5HwP0fvvvsu+/bt4/HHH3faNR3JZrNx+PBhszHYuXMngwcPNhuDyZMnExQUZHWZQohuJuF/jsrLy1m0aBGffPIJ4efwoJiramhoYN++feYzBgcOHCAmJsZsDGSBOiF6Jgn/87By5UpGjRrFTTfd5NTrOkNNTQ27du0yG4OjR48yYcIEszGQBeqE6Bkk/M/D7t27WblyJR999FGPD8KKigoyMzPNxqCoqMhcoC4xMVEWqBPCTdkb/vIEUQsTJkzA39+fjIwMkpKSrC6nW/Xq1Yvp06czffp0AE6dOkVGRgbp6em888471NTUmK8KEhMTZYE6IXoYufM/ywcffMD27dt5+umnnX5tV5Kfn2++KkhPTycgIKDVAnV9+vSxukQhRBuk2+c8VVZWsnDhQtatWycB10RrzZEjR1otUNevXz+zMYiLi6NX045oQghrSfh3wa9//WsGDx7Mbbc5bsOxnsRms3Hw4EGzMdizZw/Dhw9vtUBdQECA1WUK4ZEk/Ltg//79PPTQQ3zyySc9fuDXEerq6ti7d6/ZGBw6dIixY8eajcG4ceNkgTohnETCv4tuvPFGVqxYwbRp0yyrwV1VVVWxc+dOc7zg+PHjTJ482WwMRo8eLY2qEN1EZvt0UXJyMuvXr5fwPw9BQUFMmzbN/NmdPn3aXKDu448/pqysjPj4eJKSkkhKSpIF6oSwgNz5t6OqqooFCxbw3nvvyYJpDlZYWGjue5yWlgZgLk6XlJQkP28hukC6fRzgySefpG/fvixbtszSOnqy5gXqmhuDjIwMQkNDzcYgISGhRyy3IYSzSPg7wKFDh/jJT37Cxo0b8T57IxjRLZoXqGtetnrHjh1ERUWZjUFcXJwsUCdEByT8HeTWW29l6dKlXHLJJVaX4pEaGhrYv3+/2Rjs27eP0aNHm11EEyZMkAXqhGhBwt9BNmzYwD/+8Q9eeOEFq0sRQG1trblAXXp6OtnZ2YwfP77VAnXyKk14Mgl/B6mpqWHevHm88847DBw40OpyxFkqKytbLVBXWFjIlClTzGml0dHRMpNIeBQJfwd65plnCAkJ4a677rK6FNGJkpISc4G6tLQ0qqurSUhIMBuDqKgoq0sUoltJ+DtQdnY2K1asYNOmTfKkqpvJz89v1Rj4+/ubjUFCQgJ9+/a1ukQhHErC38HuuOMOrr/+embOnGl1KeI8aa05evSoOV6wfft2+vbtazYGcXFxhIaGWl2mEF0i4e9gW7ZsYcuWLbz00ktWlyIcxGaz8fXXX5uvCnbv3s3w4cPNaaWTJ0+WBeqE25Hwd7C6ujrmzZvH2rVrGTx4sNXliG7QvEBd8wNnX3/9NWPHjjUbg3HjxuHr62t1mUJ0SMK/Gzz//PP4+Phwzz33WF2KcILmBeqaG4Njx44xefJkszGIiYmRBeqEy5Hw7wY5OTksW7aMzZs3yx2gByovLycjI8NsDEpKSkhISDCfMRg6dKhMKxWWk1U9u8GwYcOIjo7m888/57LLLrO6HOFkoaGhzJw50xz0LyoqMgeP165di81ma7VA3YABAyyuWIj2yZ3/Ofrss89Yv349r776qtWlCBeitSY3N9dsDNLT0+nVq1erBeoiIiKsLlN4AOn26Sb19fXMnz+fP/7xjwwbNszqcoSLstlsZGVlmQ1BZmYmgwYNarVAXXBwsNVlih5Iwr8bvfjiizQ0NHDfffdZXYpwE42Njd9ZoG7kyJFmF9HEiRNlgTrhEE4Nf6XUXOB3gDfwmtb6qbO+fivwDJDX9KmXtNavdXROVw7/3Nxcbr31VrZs2SL/YcV5qa2tZffu3WZjkJWVxfjx480HzsaOHSsL1Inz4rQBX6WUN/AyMAfIBdKVUhu01vvPOvR9rfXdXb2eKxg8eDBjxoxh69atzJs3z+pyhBvy9/c3u4AAzpw5Yy5Q9/jjj1NQUEBcXJzZGERHR8u0UuFQjpjtkwQc1lpnAyil3gOuAM4O/x4lOTmZd999V8JfOERwcDAXX3wxF198MWAsULd9+3bS09P58MMPqaysNAeOk5KSiIqKkmmlokscEf5RwPEWH+cCU9s4bolS6hLgEHCf1vp4G8e4jUsuuYTf/va3ZGdnEx0dbXU5oofp3bs3c+bMYc6cOQAUFBSYC9StWbMGHx8fc6XShIQE+vXrZ3HFwt10uc9fKZUCzNVa39H08U3A1JZdPEqpPkCl1rpWKXUncI3W+jsrpCmllgPLAYYOHRqfk5PTpdq62x/+8AcqKyv56U9/anUpwoNorcnJyTH3PM7IyKBPnz5mN1J8fLwsUOfBnDbgq5S6EHhMa31508cPA2itn2zneG+gRGsd1tF5XXnAt1lBQQE33HADW7ZskQXAhGVsNhuHDh0yG4OdO3cybNiwVgvUBQYGWl2mcBJnPuGbDoxWSo3AmM1zLXD9WcUM1FoXNH24CDjggOtabuDAgUycOJHPPvuMRYsWWV2O8FBeXl6MGTOGMWPGcPPNN1NfX8++fftIS0vjzTff5MCBA4wZM8ZsDMaPH+82y5NoDSdOQF4eNDRAQACMGAFhHd46Cns4aqrnPOAFjKmeb2itH1dK/QrI0FpvUEo9iRH6DUAJcJfW+mBH53SHO3+AL7/8kjfeeIO1a9daXYoQbaqurmbXrl2kpaWRnp5OTk4OkyZNMhuDCy64wKVmEtlskJEBa9fCv/8N1dXQcg+lujro2xd+8AO48UYYNcqyUl2SPOTlJDabjYULF/L8888TExNjdTlCdKq8vNycSZSens6pU6eIj483G4Phw4dbNpNo9264/37IyTHu+oODjeBvWY7WRgNQVWV8/vvfhyefBNli2yDh70R//OMfKS4u5uGHH7a6FCHOWXFxcas1iRoaGlpNK42MjOz2Gmw2WLUKVq8GLy/o1at14LdHazh9Gvz94emnYcGCbi/V5Un4O1FhYSHXXnstmzZtIigoyOpyhDhvWmvy8/PNLqKMjAyCgoLMPY8TEhLo3bu3Q69ps8EDD8CGDUbon8822bW1xiuBlSvh5psdWp7bkfB3sgcffJBp06aRnJxsdSlCOIzWmuzsbLMxyMzMJDIy0mwM4uPju7xA3RNPwOuvG4O4XRl6qK+HM2fglVfAk1dcl/B3sv/85z+8/PLLvP322/LkpeixGhsbOXDggNlFtHfvXqKjo83GYNKkSfj7+9t9vu3b4ZprjDt+Ryxl1Dw4/I9/QJ8+XT+fO5LwdzKbzcbixYt56qmniI2NtbocIZyirq6u1QJ1hw8fZty4cebgcWxsbLsL1DU2wowZUFhohL+jlJXB/Pnwu9857pzuRMLfAm+++Sa5ubk8+uijVpcihCWqqqrMBerS09PJz89nypQpZmMwcuRIc1rpP/8Jy5dDZw8jNzaWU1DwKyort+HjE06/fncTFja3g+OhshK++gr693fgX85NSPhb4NSpU6SkpLBx40ZCQkKsLkcIy5WVlZl7HmdkZFBRUWHue/z225ezZ08QYWEdd5Pm5T0CaAYOfJSamkMcP34vw4e/ib9/+2tqlZYag8grVjj4L+QGZA9fC/Tp04epU6eyZcsWrr76aqvLEcJy4eHhzJ49m9mzZwNw8uRJ0tPT2bYtg7/9bSo+PgWcORNEcHAwwcFB+Pi0fvLYZqumouIfREd/gJdXEEFBk+nVazqnT2+mf/972r2unx+kpnpm+NvLdR7r6yGSk5NZv349rvqKSggrDRgwgAULFnDzzY8RFTWIYcOGEBgYQEVFBdnZ2WRlZXHiRAEVFeU0NjZSV3cM8MbPb6h5Dn//0dTWZnd4nYAAOHDAmEYq2iZ3/g6WkJBAXV0de/bsYeLEiVaXI4RLys0FLy+Fn58/fn7+RET0BjQ1NbVUVZ2hrKyM/Px8vLy+oaHBl8rKSoKCAvHy8sbLKwSb7UyH5/f2Nvr+T50CWe26bXLn72BeXl5ceeWVfPTRR1aXIoTLqqszns5tTREQEEDv3n0YMmQoMTEX0Lv3IBobKzl69ChZWVlobcNmO4OXV+fPFnh5GXP/Rdsk/LvBwoUL+eKLLygvL7e6FCFckp9f+8s3NDTUU1JyipycHIqLfVDKRlSUN35+/lRUVFBbe6jDwd5mNptxHdE2Cf9uEB4ezve//302bdpkdSlCuKThw1vf+TcH/tGjR8nOzqamppa+ffsSEzOBPn3mUlX1FuHhARQVfUVFxReEhc3v8PwNDeDr67kPetlDwr+byMCvEO0bPhwaGhooLv5u4I8ePZpBgwYREhKCUl5ERj6EzVZLQcESKit/S58+D3R6519TA+PG2bc4nKeSAd9uMmXKFJRS7Nixg7i4OKvLEcIlFBYWsnXrVrZu3UpV1RLq6r5Hv359CQ4OQqm270W9vUMZMmQVAEVFRTQ0NHR6nYYGmNv+c2ACufPvNkopkpOTZeBXeLyTJ0/y7rvvsnTpUq699loOHz7MHXfcwfvvX07v3n0IDg5pN/jPFhERTnl5OTZbY7vHNDYag71XXumov0HPJHf+3Wj+/PmsXr2a0tJSIiIirC5HCKc5efIkf//739m6dStHjx5lxowZ3HHHHSQmJppbSNpsMGwYHDvW+RIPzXx8fAkKCqK8vJzw8Lb/T5WXw9VXg4NXnu5xJPy7UWhoKDNmzGDjxo3c7OmLjIserznwU1NTycnJaTPwW/LyMhZfW7zY6Kaxdx3/iIgICgsLCQ8PB1p36ldVQXg4yL5KnZPw72bJycmsXLmSG2+80aX2SRXCEdoK/GXLlrUb+GcbNw5+/GN44QX71/MPDg6msdFGdXU1gYHfbp5UV2fM6//jH+1/JeHJJPy72YQJEwgICCAjI4OkpCSryxGiy06cOGF26bQM/KSkJHzOYxuuu+82nsR96y0ICTGmaHZMERERTmlpqRn+VVVG+K9aBRdddO5/J08k4d/NWg78SvgLd9Uy8I8dO8b06dO7FPgtKWVsvzh4MPz2t0aQh4Z2PE0zPDycw4ezqK9v5MwZb3r1gldfhUsu6VIpHkWWdHaCyspKFi5cyLp16+gjT50IN9Ec+KmpqRw/fpzp06czZ84cEhMTuxz47Tl8GH7+c9i92xgQDgr67tPANpsxj//EiVP4+fly3XWh/M//gMypMMh6/i7mN7/5DYMGDWLp0qVWlyJEu84O/BkzZjB79uxuDfy2HDgAb78NX3wBBQVGV5BSRvA3NkJ0NEyZkseePY+yadNrMp7Wgqzn72KSk5N56KGHuPXWW+UXVbiUgoICs0unOfDvvPNOpwd+S2PHwuOPG+9XVkJ+vjEjKCDA6B7y8wOtB3HddVUynnaeJPydJDY2lrCwMLZt28a0adOsLkd4OFcM/PaEhEBMzHc/r5QiJSWFdevWSfifB9f6V+7hmgd+JfyFFZoDPzU1ldzcXGbMmMEPf/hDEhISXC7w7TVv3jxefvllCgsL6e+JG/Z2gXv+i7upyy+/nBdffFF+UYXTnB34l156KXfddZdbB35LQUFBXHbZZXz66acsW7bM6nLcivv/67uR5l/UTz75hOXLl1tdjuihCgoKzMXTemLgny0lJYV7772XpUuX4u3tbXU5bqPn/Sa4uOTkZH7yk59w++23yy+qcJj8/HyzDz8vL48ZM2b06MBvafTo0URGRvKvf/2LGTNmWF2O2+jZvxUuKCYmhgEDBvDVV19xiTyRIrqgOfBTU1PJz89nxowZrFixgvj4+B4f+GdrHviV8LefZ/2GuIjmgV8Jf3Guzg78Sy+9lB/96EceGfgtzZ49m+eee47jx48zZMgQq8txC57722KhOXPm8Pzzz1NQUMDAgQOtLke4uPz8fLMPXwK/bX5+fixcuJD169dz7733Wl2OW5AnfC3y7LPPEhwczF133WV1KcIFtRX4s2fPlsDvwPHjx1m6dCmbN2/Gz4N3bpcnfF1ccnIyK1asYNmyZfKfWQBtB/7dd99NfHy8TA6ww5AhQ7jgggvYunUr8+bNs7oclyepY5Ho6GiGDBnCl19+ycyZM60uR1jk7MCfOXOmBH4XLFmyhLfeekvC3w4S/hZqHviV8PcsEvjd55JLLuGZZ57hm2++YfTo0VaX49Ik/C00a9YsVq1aRW5uLoMHD7a6HNGNWgZ+QUGBdOl0E29vbxYvXsy6det4WPZy7JAM+FrshRdewNvbm3vuucfqUoSDNQd+amoqJ06caDVoK4HffQoLC7n22mvZtGkTQUFBnX9DD+PUAV+l1Fzgd4A38JrW+qmzvu4P/BmIB04B12itjzri2u4uOTmZO+64gx/+8Id27XkqXFtbgX/PPfdI4DtR//79SUhI4K9//StLliyxuhyX1eXwV0p5Ay8Dc4BcIF0ptUFrvb/FYbcDpVrrUUqpa4GngWu6eu2eYOjQoYwcOZLPP/+cyy67zOpyxHnIy8szu3Qk8F1DSkoKzz//PMnJyaiO9oP0YI64808CDmutswGUUu8BVwAtw/8K4LGm99cBLymllHbVPicnS05OZt26dRL+bkQC37UlJCRQU1PDnj17mDhxotXluCRHhH8UcLzFx7nA1PaO0Vo3KKVOA32AYgdc3+3NmDGDZ555hpycHIYNG2Z1OaIdzYGfmprKyZMnufTSS/nxj39MXFycBL6L8fLyYsmSJaxbt07Cvx0uNdtHKbUcWA5Gd4in8PX1ZdGiRaxfv5777rvP6nJECy0Dv7CwkEsvvZR7771XAt8NLFy4kCuuuIKysjLCw8OtLsflOCL884CWKykNbvpcW8fkKqV8gDCMgd9WtNZrgDVgzPZxQG1u48orr+SWW27hRz/6kUc/mu4KcnNzzS4dCXz3FRYWxvTp09m4cSM33XST1eW4HEeEfzowWik1AiPkrwWuP+uYDcAtwH+BFOAf0t/fWlRUFGPHjpVH0y0igd8zpaSk8Oijj3LDDTfg5eVldTkupcvh39SHfzfwN4ypnm9orfcppX4FZGitNwCvA28ppQ4DJRgNhDhLcnIyb7/9toS/kzQHfmpqKkVFRVx66aX85Cc/IS4uToKihxg/fjxBQUGkpaXxve99z+pyXIo85OVCGhoaWLBgAa+88grR0dFWl9MjnR34M2fOZPbs2RL4Pdj69ev5z3/+w7PPPmt1KU4hq3q6IR8fHxYvXsxHH33ET3/6U6vL6TGOHz9uduk0B/59990nge8h5s6dy0svvURhYSH9+/e3uhyXIXf+LubEiRNcf/31bNmyhYCAAKvLcVttBb7c4Xuup59+mvDwcO68806rS+l2cufvpiIjI5k4cSKfffYZixYtsroct9Ic+KmpqRQXFzNz5kzuv/9+pkyZIoHv4VJSUrj77ru5/fbbZf+MJvJTcEFLlizh9ddfl/C3w9mBP2vWLB544AEJfNHKyJEjiYqKkv0zWpDwd0EXXXQRTz31FIcOHSImJsbqclzOsWPHzC4dCXxhr+YnfiX8DRL+LsjLy4srr7ySjz76SNYkbyKBL7pq1qxZPPfccxw7dsyjVhBojwz4uqiioiKuvvpqNm/e7JFrkkPbgT9nzhwmT54sgS/Oy+9//3saGxt79DIqMuDr5vr160d8fDz/93//R3JystXlOM3ZgT979mwefPBBCXzhEEuWLOHmm29mxYoV+Pv7W12OpST8XdiSJUt46aWXuPLKK3v0muQS+MJZoqKiGDduHFu3bmX+/PlWl2MpCX8XNnXqVJ588kkOHDhAbGys1eU4VMvAP3XqFLNmzZLAF06RkpLCm2++KeFvdQGifV5eXiQnJ/PRRx/1iPBvDvzU1FRKSkok8IUlZDadQQZ8XVxJSQlLlixh48aNhISEWF3OOWsr8GfPni2BLyz12muvUVhYyCOPPGJ1KQ4nA749RO/evZk6dSpbtmzh6quvtrocu+Tk5JhdOs2B/9Of/lQCX7iMxYsXc9VVV3HvvfcSHBxsdTmWkPB3A0uWLGHVqlXMnn0Ve/Yo9u6Fb76BujoIDoYJEyA21vjTqgkMLQO/tLSUmTNnSuALl9W3b1+SkpLYsmULV111ldXlWELC3w34+CSQlnYTU6bUERjoT20t+PiAUmCzwfr14OtrvN14I9x0Ewwa1P11NQd+amoqZWVlzJw5k5/97GdMmjRJAl+4vJSUFJ599llSUlJ69Gy69kj4u7CKCnj8cVi3TnHmzMUodYp+/QbRXtd/XR2sWQNvvgm//CVcfz04OoPPDvxZs2bx85//XAJfuJ2EhATq6+vZtWsXkydPtrocp5Pwd1FHjsANN8DJkxAWBr16BXH4cAGNjY3tbivo52e81dXBypWQmgp/+AN09QHho0ePml06Eviip1BKkZKSwrp16yT8hWs4dgxSUow7/4iI5s/6EBISwunTZfTu3afD7/fzM7qA/v1vWLoU/vSncx8LkMAXnmDBggWsWbOG0tJSIr79z+YRJPwm3X5kAAAZzklEQVRdTF0d3H47nD4N4eGtvxYREUFBQQG9e/cGOu6jVMr4/rQ0eOop45VAZ5oDPzU1lfLycmbOnMlDDz3ExIkTJfBFjxQaGsqll17Khg0buOWWW6wux6kk/F3MSy8ZXT5hYd/9WlBQIEpBVVUVQUGdT09TyjjPW2/BvHmQmPjdY84O/FmzZvHwww9L4AuPkZKSwsMPP8xNN93kUb/zEv4upKgIVq+GkBAjuL9LER4eQWlpmV3hD+Dtbbw9+ij89a/GeY8cOWJ26UjgC08XGxtLaGgo27ZtY9q0aVaX4zQS/i7kww+hocGYxtmeXr0Cyct7jKqqLGy2Cnx9B9O//92EhLT/SxsSAgcP1vPYYxs4ePADCXwhWlBKmRu9SPgLS7z1FgQGdnyMtzcEBg6mV6/l9O8fS2XlV+TlPcSIEe/h59d6cn9tbS0VFeWUl5dTUxPEV18NYtWqR5gwYYIEvhAtzJ07lxdffJETJ04QGRlpdTlOIQngIkpLobCw81k5Xl6BREXdTWVlAEopevW6GF/fQdTUHASMwC8uLiI7O4tjx3JobGxk4MCBjBgRiVIXymwdIdoQGBjI3Llz+fjjj60uxWkkBVzEwYPG9Ex7HjQMDAxEKS/OnKmioaGEmpoczpwJ+07gjx49mgEDIgkMDMLfX3HkiDGbSAjxXSkpKXzyySc0NDRYXYpTSLePiygpMZZqsI8iIiKc3Nwc6uoeR6kL8fKKYuDAUAIDA2lrGqiXl9GwVFRAn44fExDCI0VHRzNs2DC++OILZs2aZXU53U7u/F3Eua6sHRYWis32CjabF35+y7DZbNTV1Xd61+KiK3gL4RKan/j1BBL+LiI01P51eLTWnDjxOEFB9UyY8EeGDYsmICCAiopysrOzyc7O4sSJE1RUVGCzNTZ9j/HKwg23BBDCaWbMmEFWVhY5OTlWl9LtpNvHRcTEGNM8te683//EiSepqzvC0KGv4OUVgL8/+Pv7ExHRG9DU1NRw5swZSktLyM/Pw8/PHz+/UCIjfVHKH/DsjauFaI+fnx+LFi3io48+4v7777e6nG4lO3m5CK1hyhTj7tzPr/3j6usLOHx4IUr5odS3C7xFRj5CWNgP2jivjerqaoqKGujffxu9e/+GcePGkZSURGJiIrGxse0uFCeEJ8rPz+emm25i8+bNBAQEWF3OOZOdvNyMUnD11fD66x2Hv6/vQMaOtb9RVMqLoKBgIiJgzZrLmTz5+2RmZpKens4TTzxBQUEBU6ZMITExkaSkJEaOHOmRa5sL0WzQoEGMHz+e1NRUFi5caHU53Ubu/F1ITg7MmnVu/f/2qKoyFnn797+/e96SkhIyMjJIT08nLS2N6upqEhISSEpKIikpiUHO2BVGCBfzr3/9i9dee40//elPVpdyzuy985fwdzEPPgiffPLdFT3Pl81mrBD64ovG4m6dyc/PNxuC9PR0AgICzIYgISGhaUVRIXo2m83GokWLePbZZxkzZozV5ZwTCX83VV4OM2dCZaVjZuaUlMDs2caCcefam6O1Jjs722wIMjMziYyMNBuC+Ph4j938WvR8b7zxBvn5+fzyl7+0upRzIuHvxjIzjV28lOraLlynT0NUFHz8cctNYc5fY2MjBw4cMBuDvXv3MmrUKHO8YOLEifh1NGAhhBs5deoUKSkpbNy4kRA3miMt4e/m0tLgttugttZYk/9c7tobG41XEMOHw1/+Av37d0+NtbW17Nq1y+wmOnLkCOPHjze7icaMGSPrCAm39vDDDzN58mSuueYaq0uxm4R/D5CTA/ffD7t2Gev+BAV13AjYbEboA1x3HTz0EDizV6aiooLMzEzzlUFRURHx8fFmN9GIESNkJpFwK9u3b+fpp5/m/fffd5vfXQn/HsJmMwaAX3nFaAwaG41lnf38jIbAZjNeHShlvF10EdxzD8THW105FBcXk56ebr7V19eTmJhodhN5ytK5wn1prbnqqqt45JFHiIuLs7ocuzgl/JVSvYH3geHAUeBqrXVpG8c1AnuaPjymtV7U2bkl/FvTGvbsgYwMo0soO9t4IjgwEMaPh4QEmDbN6ON3RVpr8vLyzFcF6enp9OrVy2wIEhISCHfUFCchHOgvf/kLe/bs4YknnrC6FLs4K/x/C5RorZ9SSj0ERGitf97GcZVa63MaMZHw79lsNhuHDx82xwt27txJVFSUOV4wefJkgroy2i2Eg1RUVJhLPrjDVGdnhf/XwAytdYFSaiDwT631BW0cJ+EvOtTQ0MC+ffvMVwYHDhwgJibGXIZiwoQJ+Pr6Wl2m8FC/+tWvGDJkCLfddpvVpXTKWeFfprUOb3pfAaXNH591XAOwE2gAntJaf9LZuSX8PVt1dTU7d+40u4hycnKYNGmS2U0UExMjM4mE0+zfv5+f//znfPrppy7/e+ewtX2UUluBtkbmftHyA621Vkq115IM01rnKaWigX8opfZorbPauNZyYDnA0KFDOytN9GCBgYFceOGFXHjhhQCUl5eby1D84he/oLS0tNUyFEOGDHGb2RjC/cTGxhIREcF///tfLrroIqvLcQindPuc9T1rgU1a6w53TJA7f9GRwsLCVstQAK2WoejfXQ83CI+1YcMGPv/8c55//nmrS+mQs7p9ngFOtRjw7a21/tlZx0QAVVrrWqVUX+C/wBVa6/0dnVvCX9hLa82xY8fMhiAjI4OIiAhzvCAhIYHQ0FCryxRurrq6mvnz5/POO+8wcOBAq8tpl7PCvw/wATAUyMGY6lmilEoAfqi1vkMpNQ1YDdgwdg57QWv9emfnlvAX58tms3Ho0CGzMdi1axfDhg0zxwsmT57sluu0C+s9++yzBAUFsWLFCqtLaZc85CVEk7q6Ovbu3Wt2Ex06dIixY8ea3USxsbH4+MjWFqJzR44c4c4772Tz5s0uO/tMwl+IdlRVVbFjxw7zlUFeXh5Tpkwxu4lGjhzp8jM6hHXuvPNOUlJSmDNnjtWltEl28hKiHUFBQVx00UXmrI3S0lK2b99OWloaH374IZWVlSQkJJjdRFFRUTKTSJhSUlJYt26dy4a/veTOX4izFBQUmM8XpKWl4efnZzYEiYmJ9OnTx+oShYXq6+tZsGABr776KiNGjLC6nO+Qbh8hHEBrzZEjR8yGIDMzk379+pnjBXFxcW611rtwjFdeeYWqqioefPBBq0v5Dgl/IbpBY2MjBw8ebLWhTXR0tLla6eTJk2VDGw9QUFDADTfcwObNmwkMDLS6nFYk/IVwgrq6Onbv3m02BllZWYwbN87sJho7dize3t5Wlym6wX333ceMGTO44oorrC6lFQl/ISxQWVlJZmam2U108uRJ4uLizG4i2dCm5/jqq69YvXo1f/7zn60upRUJfyFcQElJSatlKGpra80uosTERAYNGmR1ieI82Ww2Fi9ezFNPPUVsbKzV5Zgk/IVwQS03tMnIyCAwMNCcRZSYmEhERITVJYpzsHbtWo4dO8b//M//WF2KScJfCBentSYrK8tsDDIzMxk0aJA5XhAXFycb2ri4kpISlixZwqeffuoy60dJ+AvhZhoaGti/f7/ZTbR//35Gjx5tjheMHz9eZhK5oEceeYQJEyZw3XXXWV0KIOEvhNurqalh165d5iuDo0ePMmHCBLObaMyYMbIMhQvIzMzkiSee4MMPP3SJwXxZ3kEINxcQEMDUqVOZOnUqYGxos337dtLT01m5ciWnTp0iPj7e7CYaNmyYS4SPp5kyZQpeXl5kZmYSHx9vdTl2kzt/IdxUUVFRq2UobDab2RAkJSXJhjZO9MEHH7Bjxw6efPJJq0uRbh8hPInWmuPHj5sNQUZGBmFhYWZDEB8fT1hYmNVl9liVlZUsXLiQdevWWb72k4S/EB7MZrPxzTffmOMFO3fuZMiQIeZ4wZQpU1xuWQJ395vf/IZBgwaxdOlSS+uQ8BdCmOrr69m3b5/ZGBw8eJAxY8aY3UTjx4+XDW266ODBgzz44INs2LDB0oF4CX8hRLuqq6vZsWOH2U10/PhxJk+ebHYTjRo1SmYSnYdbbrmFO+64g4svvtiyGmS2jxCiXYGBgUybNo1p06YBcPr0aTIyMkhLS2P9+vWUl5eTkJBAUlISCQkJDBkyRGYS2aF5oxcrw99ecucvhPiOkydPtlqTyNvb21yCIikpib59+1pdokuqra1l3rx5vPXWW5at2yTdPkIIh9Bak5OTYzYE27dvp0+fPmZDEB8fT69evawu02U899xz+Pn5cffdd1tyfQl/IUS3sNlsHDx40HxlsGfPHoYPH26OF0yaNAl/f3+ry7RMTk4Oy5YtY9OmTZYsxyHhL4Rwirq6Ovbs2WO+Mvjmm2+IjY01p5WOGzfO4za0ueuuu1i8eDGXX365068t4S+EsERVVRWZmZlmY1BQUMCUKVPMbqKRI0f2+MHjv//977z//vusWbPG6deW8BdCuISSkhIyMjLMbqLq6mpzJlFSUlKP3NCmoaGBBQsW8MorrxAdHe3Ua0v4CyFcUn5+fquZRAEBAeargsTERHr37m11iQ7x6quvUl5ezs9+9jOnXlfCXwjh8rTWZGdnm41BZmYmAwYMMBuC+Ph4goODrS7zvJw8eZLrrruOTZs2OXVTHgl/IYTbaWxs5MCBA+argr179zJq1CjzlcHEiRPdakOb+++/n4svvpgrr7zSadeU8BdCuL3a2lp27dplvjI4cuQI48ePN8cLXH1Dm//85z+8/PLLvP32298OcldUQHU1+PhAeDg4uH4JfyFEj1NRUdFqJlFRURFxcXFmN9GIESNcaiaRzWbjmoULWTVnDkN37YJdu+D0aSPwtTYagNhYmDkTUlIgMrLL15TwF0L0eMXFxeaaROnp6dTX17dahiLSAWF63mpr4eWXKVu1isaaGmOd/4AA8PWF5gaqsRFqaqCuzvjc7NmwciUMHHjel5XwF0J4FK01eXl5ZkOQnp5Or169zIYgISGB8PBw5xSzbx/86Edw/DgNgYFk5eQwatSojh92s9mgvBz8/eHXv4bk5PO6tIS/EMKj2Ww2Dh8+bI4X7Ny5k6ioqFYb2nTLLJxt2+C224y7+tBQAPLy8ggIDKSPPdNYa2uhqgruuQfuvffbVwl2kvAXQogWGhoa2Ldvn9kYHDhwgJiYGLMxmDBhAr6+vl27yL59Rt+9UtCiYamqqiK/oMB4utm+Yo2B4UcfhVtvPacSJPyFEKIDNTU17Ny50+wmysnJYdKkSWY3UUxMzLnNJKqthblzIS/PvONvpoHs7GwiBwyw/7mF+npjVtDmzTB6tN1lSPgLIcQ5KC8vb7UMRWlpaatlKDrd0Ob55+GllyAios0vl5SWUnXmDIMHD7a/qNOnISYGNm60e0qohL8QQnRBYWFhq2UoALOLKDExkf79+397cFUVJCYaUzfb6TpqtNl4cf9+0oOCyK6r4/LQUB7rbF0jrY1B4HfegaQku+qWbRyFEKIL+vfvz/z585k/fz5aa44fP05aWhpffPEFq1atIiIiwmwMvpeXR1BdHQQGtns+by8vokJCGO7jw4HAQGrtufFWymgAXnvN7vC3V5fCXyl1FfAYMBZI0lq3eauulJoL/A7wBl7TWj/VlesKIYQzKaUYOnQoQ4cOJSUlBZvNxqFDh0hLS+Pjjz+m5sMPmVJVhVdtLcHBwQQFBeHVRhfRwshIjh8/Tl5YGEUNDfZdvFcv+OILY/aQA/dF6Oqd/14gGVjd3gFKKW/gZWAOkAukK6U2aK33d/HaQghhCS8vL8aMGcOYMWO4+eabsX31FTUVFZypq6O4qIia2loCAgIIDg4mODiYwIAAlFIEBATg4+tLbW2t/UHefNzRozBypMP+Dl0Kf631AaCzx6mTgMNa6+ymY98DrgAk/IUQ7q+yEq/TpwkKDydIKfr160ejzUZ1VRVnzpzhxIkT1NXVERQURHBwMCHBwVSVlBh39PZSCrKyXCf87RQFHG/xcS4w1QnXFUKI7lddbczEaXET7O3lRUhICCEhIQA0NDZSdeYMZ5re6urrUecy2cZmM5aBcKBOw18ptRVoa4GMX2itP3VkMUqp5cBygKFDhzry1EII0T18fIxB2Y4O8fYmNDSU0Kb5/wMKC+3v8wejYfFx7L16p2fTWs/u4jXygCEtPh7c9Lm2rrUGWAPGVM8uXlcIIbpfWJgxvdOOAdlGrWnUGg3YgDqbDW+l8O5sCQelICrKYSUDOGMh7HRgtFJqhFLKD7gW2OCE6wohRPfz8oKxY43un068XlzMtK+/Zu2pU2w5fZppX3/N68XFHX+T1sbTvjExDirY0NWpnlcCLwL9gM1KqZ1a68uVUoMwpnTO01o3KKXuBv6GMdXzDa31vi5XLoQQrmLWLGOt/k4s79eP5f36ndu5z5wxGpcOniE4H12689daf6y1Hqy19tdaD9BaX970+Xyt9bwWx23RWsdorUdqrR/vatFCCOFSliwxXgHYbI4/d2MjLF/u8NO67v5nQgjhLiIjjY1YTp927HmrqyEkBC67zLHnRcJfCCEcY+VKY6eu2lrHnK95eufTTxvndTAJfyGEcITISHj8cWORt3OZxtkWrY1XEfPmwZw5jqnvLBL+QgjhKIsXG7tvlZcbM3TOh80GZWXGKqHPPHPOO3nZS8JfCCEc6cc/hsceM/rrT5/u9AGwVpq/Z948WLu2W7p7mkn4CyGEo918M2zZAhdcYLwKKCszZu20RWuorDRC388PXn0VXnyxW4MfZD1/IYToHqNGGTtwpafDG2/A558bn1fK6NpRynirr4fYWFi2zJjV082h30zCXwghuotSxiYsSUlG4B89aqzOWV1tLAkRFWU8ueukwG9Jwl8IIZzBywuio403FyB9/kII4YFcdgN3pVQRkNPGl/oCnayEZClXrw9cv0ZXrw9cv0apr+tcvcb26humte50ASGXDf/2KKUy7NmZ3iquXh+4fo2uXh+4fo1SX9e5eo1drU+6fYQQwgNJ+AshhAdyx/BfY3UBnXD1+sD1a3T1+sD1a5T6us7Va+xSfW7X5y+EEKLr3PHOXwghRBe5fPgrpXorpVKVUt80/RnRznG/VUrtU0odUEr9XqluWgrv/OsbqpT6rKm+/Uqp4c6o71xqbDo2VCmVq5R6yZXqU0pNVkr9t+nfeLdS6hon1DVXKfW1UuqwUuqhNr7ur5R6v+nr/8+Z/6bnUOP9Tb9vu5VSf1dKDXOl+loct0QppZVSTp9dY0+NSqmrm36O+5RS77pSfU3Z8rlSakfTv/O8ts7zHVprl34Dfgs81PT+Q8DTbRwzDfgKY49gb+C/wAxXqa/pa/8E5jS9HwIEudLPsMWxvwPeBV5ypfqAGGB00/uDgAIgvBtr8gaygGjAD9gFxJ51zArg1ab3rwXed9bP7BxqvLT5dw24y5k12lNf03G9gC+BbUCCC/4MRwM7gIimj/u7WH1rgLua3o8Fjtpzbpe/8weuAP7U9P6fgMVtHKOBAIwfjj/gC5x0SnV21KeUigV8tNapAFrrSq11lZPqA/t+hiil4oEBwGdOqqtZp/VprQ9prb9pej8fKATOcSfsc5IEHNZaZ2ut64D3mupsqWXd64BZznrFaW+NWuvPW/yubQMGu1J9TX4NPA3UOLG2ZvbUuAx4WWtdCqC1LnSx+jQQ2vR+GJBvz4ndIfwHaK0Lmt4/gRFOrWit/wt8jnE3WAD8TWt9wFXqw7hrLVNKrW96afaMUsrbSfWBHTUqpbyAVcCDTqyrmT0/Q5NSKgmjoc/qxpqigOMtPs5t+lybx2itG4DTQJ9urOls9tTY0u3AX7u1otY6rU8pFQcM0VpvdmJdLdnzM4wBYpRSXymltiml5jqtOvvqewy4USmVC2wB7rHnxC6xsJtSaisQ2caXftHyA621Vkp9Z3qSUmoUMJZv72pSlVIXa63/5Qr1YfycLwamAMeA94FbgdcdUZ+DalwBbNFa53bHzasD6ms+z0DgLeAWrbXNsVX2XEqpG4EEYLrVtTRruuF4DuP/givzwej6mYGRMV8qpSZorcssrepb1wFrtdarlFIXAm8ppcZ39v/DJcJfaz27va8ppU4qpQZqrQua/uO39ZLrSmCb1rqy6Xv+ClwIOCT8HVBfLrBTa53d9D2fAN/DgeHvgBovBC5WSq3AGJPwU0pVaq3bHaRzcn0opUKBzcAvtNbbHFFXB/KAIS0+Htz0ubaOyVVK+WC85D7VzXW1df1mbdWIUmo2RiM7XWvtoN3F7dJZfb2A8cA/m244IoENSqlFWusMF6kRjP+//09rXQ8cUUodwmgM0l2kvtuBuWD0giilAjDW/emwe8odun02ALc0vX8L8GkbxxwDpiulfJRSvhh3N87q9rGnvnQgXCnV3Ec9E9jvhNqadVqj1voGrfVQrfVwjK6fPzsq+B1Rn1LKD/i4qa51TqgpHRitlBrRdO1rm+psqWXdKcA/dNOom5N0WqNSagqwGljk5L7qTuvTWp/WWvfVWg9v+r3b1lSns4K/0xqbfIJx149Sqi9GN1C2C9V3DJjVVN9YjPHPok7P7KxR6y6MdvcB/g58A2wFejd9PgF4TX87Ir4aI/D3A8+5Un1NH88BdgN7gLWAn6vV2OL4W3HubB97/o1vBOqBnS3eJndzXfOAQxhjC79o+tyvMAKKpv9kHwKHgTQg2lk/s3OocSvG5Ifmn9kGV6rvrGP/iZNn+9j5M1QY3VP7m/7/Xuti9cVizHbc1fRvfJk955UnfIUQwgO5Q7ePEEIIB5PwF0IIDyThL4QQHkjCXwghPJCEvxBCeCAJfyGE8EAS/kII4YEk/IUQwgP9f+ESC91ZCoRCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# run quantum algorithm with shots\n", - "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", - "params['backend']['name'] = 'qasm_simulator'\n", - "params['backend']['shots'] = 1024\n", - "\n", - "result = run_algorithm(params, algo_input)\n", - "x = max_cut.sample_most_likely(result['eigvecs'][0])\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "print('max-cut objective:', result['energy'] + offset)\n", - "print('solution:', max_cut.get_graph_solution(x))\n", - "print('solution objective:', max_cut.max_cut_value(x, w))\n", - "plot_histogram(result['eigvecs'][0])\n", - "\n", - "colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha = .8, pos=pos)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/chemistry/H2/.ipynb_checkpoints/w8_04-checkpoint.ipynb b/qiskit/chemistry/H2/.ipynb_checkpoints/w8_04-checkpoint.ipynb deleted file mode 100644 index dc0b353e9..000000000 --- a/qiskit/chemistry/H2/.ipynb_checkpoints/w8_04-checkpoint.ipynb +++ /dev/null @@ -1,478 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# _*Qiskit Aqua: Experimenting with Traveling Salesman problem with variational quantum eigensolver*_ \n", - "\n", - "\n", - "This notebook is based on an official notebook by Qiskit team, available at https://github.com/qiskit/qiskit-tutorial under the [Apache License 2.0](https://github.com/Qiskit/qiskit-tutorial/blob/master/LICENSE) license. \n", - "The original notebook was developed by Antonio Mezzacapo[1], Jay Gambetta[1], Kristan Temme[1], Ramis Movassagh[1], Albert Frisch[1], Takashi Imamichi[1], Giacomo Nannicni[1], Richard Chen[1], Marco Pistoia[1], Stephen Wood[1]([1]IBMQ)\n", - "\n", - "Your **TASK** is to execute every step of this notebook while learning to use qiskit-aqua and also how to leverage general problem modeling into know problems that qiskit-aqua can solve, namely the [Travelling salesman problem](https://en.wikipedia.org/wiki/Travelling_salesman_problem)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "\n", - "Many problems in quantitative fields such as finance and engineering are optimization problems. Optimization problems lay at the core of complex decision-making and definition of strategies. \n", - "\n", - "Optimization (or combinatorial optimization) means searching for an optimal solution in a finite or countably infinite set of potential solutions. Optimality is defined with respect to some criterion function, which is to be minimized or maximized. This is typically called cost function or objective function. \n", - "\n", - "**Typical optimization problems**\n", - "\n", - "Minimization: cost, distance, length of a traversal, weight, processing time, material, energy consumption, number of objects\n", - "\n", - "Maximization: profit, value, output, return, yield, utility, efficiency, capacity, number of objects \n", - "\n", - "We consider here max-cut problem of practical interest in many fields, and show how they can mapped on quantum computers.\n", - "\n", - "\n", - "### Weighted Max-Cut\n", - "\n", - "Max-Cut is an NP-complete problem, with applications in clustering, network science, and statistical physics. To grasp how practical applications are mapped into given Max-Cut instances, consider a system of many people that can interact and influence each other. Individuals can be represented by vertices of a graph, and their interactions seen as pairwise connections between vertices of the graph, or edges. With this representation in mind, it is easy to model typical marketing problems. For example, suppose that it is assumed that individuals will influence each other's buying decisions, and knowledge is given about how strong they will influence each other. The influence can be modeled by weights assigned on each edge of the graph. It is possible then to predict the outcome of a marketing strategy in which products are offered for free to some individuals, and then ask which is the optimal subset of individuals that should get the free products, in order to maximize revenues.\n", - "\n", - "The formal definition of this problem is the following:\n", - "\n", - "Consider an $n$-node undirected graph *G = (V, E)* where *|V| = n* with edge weights $w_{ij}>0$, $w_{ij}=w_{ji}$, for $(i, j)\\in E$. A cut is defined as a partition of the original set V into two subsets. The cost function to be optimized is in this case the sum of weights of edges connecting points in the two different subsets, *crossing* the cut. By assigning $x_i=0$ or $x_i=1$ to each node $i$, one tries to maximize the global profit function (here and in the following summations run over indices 0,1,...n-1)\n", - "\n", - "$$\\tilde{C}(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j).$$\n", - "\n", - "In our simple marketing model, $w_{ij}$ represents the probability that the person $j$ will buy a product after $i$ gets a free one. Note that the weights $w_{ij}$ can in principle be greater than $1$, corresponding to the case where the individual $j$ will buy more than one product. Maximizing the total buying probability corresponds to maximizing the total future revenues. In the case where the profit probability will be greater than the cost of the initial free samples, the strategy is a convenient one. An extension to this model has the nodes themselves carry weights, which can be regarded, in our marketing model, as the likelihood that a person granted with a free sample of the product will buy it again in the future. With this additional information in our model, the objective function to maximize becomes \n", - "\n", - "$$C(\\textbf{x}) = \\sum_{i,j} w_{ij} x_i (1-x_j)+\\sum_i w_i x_i. $$\n", - " \n", - "In order to find a solution to this problem on a quantum computer, one needs first to map it to an Ising Hamiltonian. This can be done with the assignment $x_i\\rightarrow (1-Z_i)/2$, where $Z_i$ is the Pauli Z operator that has eigenvalues $\\pm 1$. Doing this we find that \n", - "\n", - "$$C(\\textbf{Z}) = \\sum_{i,j} \\frac{w_{ij}}{4} (1-Z_i)(1+Z_j) + \\sum_i \\frac{w_i}{2} (1-Z_i) = -\\frac{1}{2}\\left( \\sum_{i0,$$ \n", - "\n", - "where it is assumed the boundary condition of the Hamiltonian cycle $(p=N)\\equiv (p=0)$. However, here it will be assumed a fully connected graph and not include this term. The distance that needs to be minimized is \n", - "\n", - "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}.$$\n", - "\n", - "Putting this all together in a single objective function to be minimized, we get the following:\n", - "\n", - "$$C(\\textbf{x})=\\sum_{i,j}w_{ij}\\sum_{p} x_{i,p}x_{j,p+1}+ A\\sum_p\\left(1- \\sum_i x_{i,p}\\right)^2+A\\sum_i\\left(1- \\sum_p x_{i,p}\\right)^2,$$\n", - "\n", - "where $A$ is a free parameter. One needs to ensure that $A$ is large enough so that these constraints are respected. One way to do this is to choose $A$ such that $A > \\mathrm{max}(w_{ij})$.\n", - "\n", - "Once again, it is easy to map the problem in this form to a quantum computer, and the solution will be found by minimizing a Ising Hamiltonian. " - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "distance\n", - " [[ 0. 91. 55.]\n", - " [91. 0. 39.]\n", - " [55. 39. 0.]]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGBdJREFUeJzt3X2QXXWd5/H3t7vTCZ0nEtIhQcggFqiUVQS2zYi46JBhEKQAq2REV40pxliWjIC6IzpbPuzCiLtxUcsqNCBMalVUGFgZdUDE56oxawciII8OBMgTNEIeyFMnfb/7x7nRNnb63tt9m9t9+v2qunX7nnvOud+cOv25J9/+nXMiM5EklVNbqwuQJI0dQ16SSsyQl6QSM+QlqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKrGOemaKiMuBvwMSuB9YDiwEvgXMBe4B3p2Z/cOtZ968eXnssceOpl5JGn+efx42bSp+bmuDiNrLZEKlAu3tsGgRTJ9+yFnXrl37XGZ2j6S0qHVZg4h4GfBL4MTM3B0R3wF+AJwD3JqZ34qIrwC/ycxrh1tXT09P9vb2jqROSRp/MmHlSvjKV4qQ7uxsfB07d8L+/fDFL8I55ww5S0SszcyekZRYb7umAzgsIjqALmAzcAZwS/X91cAFIylAkiasG28sAn7WrJEFPBRfDtOmwaWXwr//e3Pro46Qz8yNwErgKYpw3wasBbZm5v7qbBuAlw21fESsiIjeiOjt6+trTtWS1GqPPQZXXw0zZhQtl9GYOhU6OuBDH4Lt25tTX1XNkI+IOcD5wMuBo4DpwNlDzDpk3yczV2VmT2b2dHePqKUkSeNLJlx+efE8ZUpz1jl9etHb/9znmrO+qnraNX8NPJGZfZm5D7gVeD1weLV9A3A0sKmplUnSeLV2LTzySNGmGcZ3nn+edz/xBKc+/DCf3lRHRM6aBTffDC+80KRC6wv5p4DXRURXRASwFHgQ+Anwtuo8y4DvNq0qSRrPbrihGBlTYxTNvI4OLp43j/Nmz65vve3txXpvu60JRRbq6cmvofgD6z0UwyfbgFXAx4APR8TvgCOArzWtKkkaryoV+OlPYebMmrOeMWsWb5o5k9mN9Ow7OuAHPxh5fQevrp6ZMvNTwKcOmvw4sKRplUjSRLBhQzHksatrbNY/bRr89rfFl0nb6M9X9YxXSWrE+vWjH00znI4O2LcPnnuuKasz5CWpEXv2FKNqxlJ7O+zd25RVGfKS1IhmDZkcThOHZhryktSIY46p+0h+IJP+SoUKUAH6KxUGai07MFA8N+m8orr+8CpJqnr5y4vngYGavfmvPfccqwb11n+wbRsr5s1jxXABvncvnHBC0/r+hrwkNaK9HV77WlizBmqMf1/R3T18oA9l715YunQUBf4p2zWS1KiLL67vcsKNOnCC1dvf3rRVGvKS1KjTTy965i++2Nz1bt9eHMUfdVTTVmnIS1Kj2tvhmmuKk6IO/KF0tPbsKa5G+ZnPNGd9VYa8JI3EkiXwnvcUR9+jHTe/fz/s3g1XXQULFjSnvipDXpJG6h//Ed78Zti6deRH9P39xRfFRz8KFzT/3kuGvCSNVHs7fOlLsGwZ7NjRWI8+s/hy6O+HK6+ED3xgTEo05CVpNNrb4ZOfhJtuKv4Yu307bNs29JF9ZnFdmhdeKOY7+WS480545zvHrDzHyUtSM7z2tfCzn8Evf1lcb/5Xv/rTK0lGFAHf1VW0Zd77XnjNa8ZmKOYghrwkNUtbWzG88vTTi4B/6qni0sT79hUjZ447Do48csyDfTBDXpLGQlsbHHts8WhlGS39dEnSmDLkJanEDHlJKjFDXpJKrOYfXiPilcC3B006DvgkcDjwPqCvOv0Tmdm8W4xLkkatZshn5iPAYoCIaAc2ArcBy4FrMnPlmFYoSRqxRts1S4H/yMwnx6IYSVJzNRryFwE3DXp9SUTcFxE3RMScJtYlSWqCukM+IjqB84Cbq5OuBV5B0crZDHz+EMutiIjeiOjt6+sbahZJ0hhp5Ej+bOCezHwGIDOfycyBzKwA1wFLhlooM1dlZk9m9nQ36e7jkqT6NBLy72BQqyYiFg56763AA80qSpLUHHVduyYiuoAzgfcPmvw/I2IxkMD6g96TJI0DdYV8Zu4Cjjho2rvHpCJJUtN4xqsklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVmCEvSSVmyEtSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVWM2Qj4hXRsS6QY/tEXFZRMyNiLsi4rHq85yXomBJUv1qhnxmPpKZizNzMfCfgF3AbcAVwN2ZeTxwd/W1JGkcabRdsxT4j8x8EjgfWF2dvhq4oJmFSZJGr9GQvwi4qfrzkZm5GaD6PL+ZhUmSRq/ukI+ITuA84OZGPiAiVkREb0T09vX1NVqfJGkUGjmSPxu4JzOfqb5+JiIWAlSfnx1qocxclZk9mdnT3d09umolSQ1pJOTfwR9bNQC3A8uqPy8DvtusoiRJzVFXyEdEF3AmcOugyVcDZ0bEY9X3rm5+eZKk0eioZ6bM3AUccdC031OMtpEkjVOe8SpJJWbIS1KJGfKSVGKGvCSVmCEvSSVmyEtSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVmCEvSSVmyEtSiRnyklRihrwklVhdIR8Rh0fELRHxcEQ8FBGnRsSnI2JjRKyrPs4Z62IlSY3pqHO+LwJ3ZObbIqIT6ALOAq7JzJVjVp0kaVRqhnxEzAJOB94LkJn9QH9EjG1lkqRRq6ddcxzQB9wYEfdGxPURMb363iURcV9E3BARc8auTEnSSNQT8h3AKcC1mXkysBO4ArgWeAWwGNgMfH6ohSNiRUT0RkRvX19fc6qWJNWlnpDfAGzIzDXV17cAp2TmM5k5kJkV4DpgyVALZ+aqzOzJzJ7u7u7mVC1JqkvNkM/MLcDTEfHK6qSlwIMRsXDQbG8FHhiD+iRJo1Dv6Jq/B75RHVnzOLAc+FJELAYSWA+8f0wqlCSNWF0hn5nrgJ6DJr+7+eVIkprJM14lqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxAx5SSoxQ16SSsyQl6QSM+QlqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxOoK+Yg4PCJuiYiHI+KhiDg1IuZGxF0R8Vj1ec5YFytJaky9R/JfBO7IzFcBJwEPAVcAd2fm8cDd1deSpHGkZshHxCzgdOBrAJnZn5lbgfOB1dXZVgMXjFWRkqSRqedI/jigD7gxIu6NiOsjYjpwZGZuBqg+zx/DOiVJI1BPyHcApwDXZubJwE4aaM1ExIqI6I2I3r6+vhGWKUkaiXpCfgOwITPXVF/fQhH6z0TEQoDq87NDLZyZqzKzJzN7uru7m1GzJKlONUM+M7cAT0fEK6uTlgIPArcDy6rTlgHfHZMKJUkj1lHnfH8PfCMiOoHHgeUUXxDfiYiLgaeAC8emREnSSNUV8pm5DugZ4q2lzS1HktRMnvEqSSVmyEtSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJWbIS1KJGfKSVGKGvCSVWL1XoZT0Utu6FR56CB59FJ5/HiJg/nx41auKR1dXqyvUBGDIS+NJpQK/+AVcdx386lfQ0QH9/cV0gPZ2mDIFBgbg7LPhve+Fk08uvgCkIRjy0njxxBNw2WXw4IPF61mzoO0QHdWBAfj+9+Hf/g2WLoWrroIjjnjpatWEYU9eGg9uvx3e/Gb47W+LcJ89+9ABD8UR/Zw5MHMm/OhHRdCvXfvS1asJw5CXWu3WW+Hyy6GzEw4/vLHWS1tbsczevfCud0Fv79jVqQnJkJdaad06+NjHYPp0mDp15OuZPr34cli+HLZsaV59mvAMealV9uyBSy8tjsY7O0e/vq4u2L0brrgCMke/PpWCIS+1yte/Dhs2FH31Zpk9G375S/j5z5u3Tk1ojq6RWqFSgVWr4LDDhp2tv1Lh6i1b+H+7drF9YICjp0zhkvnzef2MGUMvEFE8rrsO3vjGMShcE01dR/IRsT4i7o+IdRHRW5326YjYWJ22LiLOGdtSpRJZs6Y42WnatGFnGwAWTJnCqkWL+OkJJ/CB7m6u2LiRTf39h15o5sxi/fbmRWNH8n+Vmc8dNO2azFzZzIKkSeHee2H//pqzHdbWxoru7j+8/s8zZ3LUlCk8vGcPRx2qj9/WVjzuvx8WLGhWxZqg7MlLrbBmTXE2a4Oe37+fp/r7Oa7WSJz+frjvvhEWpzKpN+QT+GFErI2IFYOmXxIR90XEDRExZ6gFI2JFRPRGRG9fX9+oC5ZKYePGhkfU7M/kv23axLmzZ3NsrZDv6IAnnxxFgSqLekP+tMw8BTgb+GBEnA5cC7wCWAxsBj4/1IKZuSozezKzp3vQfzulSe3AtWjqnT2TT27aRAfwD/W2YAYGGq9LpVNXyGfmpurzs8BtwJLMfCYzBzKzAlwHLBm7MqWSmTGj7hDOTP7H5s38fv9+/tfRR9NRzxmxlUpxJqwmvZohHxHTI2LmgZ+BvwEeiIiFg2Z7K/DA2JQoldAppxSXIqjDZ7ds4Yn+fq455himDnc9m8Ei4KSTRlGgyqKev/wcCdwWxdFDB/DNzLwjIv5PRCym6NevB94/ZlVKZXPKKfDNb9acbfO+fdy6dSudEZz12GN/mP6JBQs4e/bsQy/Y3g6vfnUzKtUEVzPkM/Nx4M8OCTLz3WNSkTQZvOENxfPAQBHIh7BwyhR6Gw3rPXuKM19PPHEUBaosHEIptcLcuXDOObBtW/PXvXs3vO99w355aPIw5KVW+eAHi6GO+/Y1b527dhXXo7/wwuatUxOaIS+1yvHHF1ehfPHF5lw1slIp/pi7cqUja/QHhrzUSu9/P/zlXxbXsRlN0FcqRevnne8s7hIlVRnyUit1dMD118OSJfDCC3Vdz+bP7N1bBPyFF8JnPtP8GjWhGfJSq3V1werVRY9+587iqL6eM2IHBv74xXDVVfBP/zT8fWE1KblHSONBZyd85CNw221w2mmwfTs8/3zx3N9fBPrAQDE8cuvWItx37oRzz4W77oKLLjLgNSRvGiKNJ695TXFU//TTcOedxdUq77sPduwozmKdM6c4kerUU+Gss4qhmNIwIl/Ce0H29PRkr3eTl6SGRMTazOwZybL+/06SSsyQl6QSM+QlqcQMeUkqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxOq6QFlErAd2AAPA/szsiYi5wLeBY4H1wN9m5gtjU6YkaSQaOZL/q8xcPOgiOVcAd2fm8cDd1deSpHFkNO2a84HV1Z9XAxeMvhxJUjPVG/IJ/DAi1kbEiuq0IzNzM0D1ef5YFChJGrl6bxpyWmZuioj5wF0R8XC9H1D9UlgBsGjRohGUKEkaqbqO5DNzU/X5WeA2YAnwTEQsBKg+P3uIZVdlZk9m9nR3dzenaklSXWqGfERMj4iZB34G/gZ4ALgdWFadbRnw3bEqUpI0MvW0a44EbouIA/N/MzPviIhfA9+JiIuBp4ALx65MSdJI1Az5zHwcOGmI6b8Hlo5FUZKk5vCMV0kqMUNekkrMkJekEjPkJanEDHlJKjFDXpJKzJCXpBIz5CWpxOq9QFnr7N0Lzz4LAwNw2GEwfz4UZ99KkmoYnyH/yCNw003w85/Dk09Ce3sR7JUKdHbCiSfC+efDeefBrFmtrlaSxq3xFfKPPgof/zj85jeQCdOmwezZ0Daoq7R/P9x/P6xbB1deCcuXw6WXFvNKkv7E+OjJVypw7bVw7rlw331FsM+ZU7Rn2g4qsaMDZswo5pk2Da67Ds46Cx54oDW1S9I41vqQr1SKo/eVK4tQnz27/p57Rwccfjhs3gwXXghr1oxtrZI0wbQ+5D/3Obj55iLcp0wZ2TpmzSq+GJYvL/r5kiSg1SH/61/D9df/ed99JLq6in79JZdAf39z6pOkCa51Id/fD5ddVhy9t7c3Z50zZ8LjjxdfHJKkFob8j39cjH+fMWPY2bYPDPDRDRt4w8MPc+7vfscd27YdeuYImD4dvvpVj+YliVaG/Fe/WleL5uotW5gSwQ9POIErjzqKz27ZwuN79x56gc5O2L0bfvSjJhYrSRNTa0L+xReLsfA1juJ3Vyr8eMcOPtDdTVdbG4u7unjjzJl8f7ijeShG7Nx5ZxMLlqSJqTUh/8gjMHVqzaGST/X30wYs6uz8w7Tjp04d/kgeivHz99zThEIlaWJrTcivX1+MhKlhV6XCjINaOjPa2thZqQy/4NSpsGFDcUQvSZNY3SEfEe0RcW9EfK/6+p8j4omIWFd9LK77U/furSuAu4YI9J2VCtNr9fIP/A/BP75KmuQauXbNpcBDwOArgv3XzLyl8U/tqOus1kWdnQxQtG0OtGwe3buX46ZOHX7BzOIx0pOrJKkk6jqSj4ijgbcAzRmAfvTRRdDXcFhbG2fMnMlX+vrYXanwm127+NmOHbxl9uzhF9y3D448snnj7yVpgqq3XfMF4B+Ag3ssV0XEfRFxTUTUOLwe5NWvLoI4s+asVyxYwN5KhTMffZRPbNzIxxcsqH0kv3s3nHRS3eVIUlnVPJyOiHOBZzNzbUS8adBbHwe2AJ3AKuBjwH8fYvkVwAqARYsWFRPnzIG/+IviwmLTpw/7+bPa2/n8McfU82/5U2ec0fgyklQy9RzJnwacFxHrgW8BZ0TE1zNzcxb2AjcCS4ZaODNXZWZPZvZ0d3f/8Y0VK+oaYdOw/fuLNs1b3tL8dUvSBFMz5DPz45l5dGYeC1wE/Dgz3xURCwEiIoALgMYu6H7uucWlhffsabzq4ezYARddVFzHRpImudGMk/9GRNwP3A/MA65saOkZM+Czny3653X05uuycyfMnQsf/nBz1idJE1xDt//LzJ8CP63+PPqm9znnwL/+K9x1V3Hzj9HcoLu/v2jVfOEL3vdVkqpaez35CLjmGujpga1bR36G6p49sGtX8T+D005rbo2SNIG1/s5Qhx0Gq1cXPfpt24qwrldm8eWQCV/+MrztbWNXpyRNQJHN6ofX82ERfcCTL9kHNt884LlWFzFOuW2G5/Y5NLfN8OYB0zOzu+acQ3hJQ36ii4jezOxpdR3jkdtmeG6fQ3PbDG+026f17RpJ0pgx5CWpxAz5xqxqdQHjmNtmeG6fQ3PbDG9U28eevCSVmEfyklRihvwQIuKYiPhJRDwUEb+NiEur0+dGxF0R8Vj1eU6ra22VIe4U9vKIWFPdNt+OiM5a6yiriDg8Im6JiIer+9Cp7juFiLi8+jv1QETcFBHTJvO+ExE3RMSzEfHAoGlD7itR+FJE/K56ifdT6vkMQ35o+4GPZOargdcBH4yIE4ErgLsz83jg7urryerAncIO+BxwTXXbvABc3JKqxocvAndk5quAkyi206TfdyLiZcCHgJ7MfA3QTnHRw8m87/wz8OaDph1qXzkbOL76WAFcW9cnZKaPGg/gu8CZwCPAwuq0hcAjra6tRdvj6OrOdwbwPSAoTmbpqL5/KnBnq+ts0baZBTxB9e9dg6ZP+n0HeBnwNDCX4rpZ3wPOmuz7DnAs8ECtfQX4KvCOoeYb7uGRfA0RcSxwMrAGODIzNwNUn+e3rrKWOvhOYUcAWzPzwA0CNlD8Qk9GxwF9wI3Vdtb1ETEd9x0ycyOwEngK2AxsA9bivnOwQ+0rB74kD6hrWxnyw4iIGcC/AJdl5vZW1zMeDL5T2ODJQ8w6WYdtdQCnANdm5snATiZha2Yo1d7y+cDLgaOA6RQtiINN1n2nlhH9nhnyhxARUygC/huZeWt18jODbpayEHi2VfW10J/dKYziyP7wiDhw6eqjgU2tKa/lNgAbMnNN9fUtFKHvvgN/DTyRmX2ZuQ+4FXg97jsHO9S+sgEYfC/UuraVIT+E6t2uvgY8lJn/e9BbtwPLqj8vo+jVTyo59J3C/gvwE+DAZUAn5bYByMwtwNMR8crqpKXAg7jvQNGmeV1EdFV/xw5sG/edP3WofeV24D3VUTavA7YdaOsMx5OhhhARbwB+QXHXqwN9509Q9OW/Ayyi2GEvzMznW1LkOFC9sftHM/PciDiO4sh+LnAv8K4s7v876UTEYuB6ipvcPw4spzigmvT7TkR8Bng7xQi2e4G/o+grT8p9JyJuAt5EcaXJZ4BPAf+XIfaV6hfjlylG4+wClmdmb83PMOQlqbxs10hSiRnyklRihrwklZghL0klZshLUokZ8pJUYoa8JJWYIS9JJfb/Ab7czTnyX6ZBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Generating a graph of 3 nodes\n", - "\n", - "n = 3\n", - "num_qubits = n ** 2\n", - "ins = tsp.random_tsp(n)\n", - "G = nx.Graph()\n", - "G.add_nodes_from(np.arange(0, n, 1))\n", - "colors = ['r' for node in G.nodes()]\n", - "pos = {k: v for k, v in enumerate(ins.coord)}\n", - "default_axes = plt.axes(frameon=True)\n", - "nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", - "print('distance\\n', ins.w)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Brute force approach" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "order = (0, 1, 2) Distance = 185.0\n", - "Best order from brute force = (0, 1, 2) with total distance = 185.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xtc1FX+x/HXEVRERPNOXvOu66YZ2xpjVpaVtVn9yhtuaTe77Jb+TBAtWwVUVPKWpeIdvACWdjG3bNdfGeIlNTPTNG8pooAiIiAMMOf3x4ysayiDzPCdGT7Px4MHzJeZ+X4Yv77nzPme7zlKa40QQgjPVM3oAoQQQjiPhLwQQngwCXkhhPBgEvJCCOHBJOSFEMKDScgLIYQHk5AXQggPJiEvhBAeTEJeCCE8mLc9d1JK/S/wEqCBn4DngQAgHqgP7AGe1Vqbb/Q8DRs21K1bt65IvUII4XoyMyE11fpztWqgVNmP0RosFvDygpYtoXbt69519+7d57TWjW6mNFXWtAZKqWZAEtBFa31ZKZUIbAQeBdZpreOVUguAH7XW82/0XIGBgXrXrl03U6cQQrgerSE6GhYssIZ0jRrlf47cXCgqgjlz4NFHS72LUmq31jrwZkq0t7vGG6illPIGfIEzQB/gI9vvVwBP3kwBQgjhtpYtswa8v//NBTxY3xx8fGDkSNi2zbH1YUfIa61PA9HASazhfhHYDWRprYtsd0sBmpX2eKXUCKXULqXUroyMDMdULYQQRvv1V4iKAj8/a5dLRdSsCd7e8OabkJ3tmPpsygx5pdQtwBPAbcCtQG2gXyl3LbXfR2sdo7UO1FoHNmp0U11KQgjhWrSG//1f6/fq1R3znLVrW/v2p01zzPPZ2NNd8yBwXGudobUuBNYBQUA9W/cNQHMg1aGVCSGEq9q9Gw4dsnbT3EBiZibPHj/O3b/8wsRUOyLS3x/WroULFxxUqH0hfxLoqZTyVUop4AHgAPB/wDO2+wwDPnVYVUII4cqWLrWOjCljFE1Db29ebNiQ/nXr2ve8Xl7W512/3gFFWtnTJ78D6wnWPViHT1YDYoCxwGil1BGgAbDEYVUJIYSrsljgm2+gTp0y79rH35/76tShbnn67L29YePGm6/v2qez505a638A/7hm8zHgLodVIoQQ7iAlxTrk0dfXOc/v4wM//2x9M6lW8etV5YpXIYQojxMnKj6a5ka8vaGwEM6dc8jTScgLIUR55OdbR9XYQQNnz57lYnmHRXp5QUFB+WsrhV3dNUIIIWzsHDKZX1BA6unT5OTk4O3vT7ki24FDMyXkhRCiPFq0uGFL3qI158+dI/PCBSxA/SZNqKUUl4qKMFsseCmF141G5RQXW7876LoiCXkhhCiP226zfi8u/l3f/OXLl0k9c4Ya1avjX6cOy7Oz+Tgzs+T3Gy9eZETDhoy4UYAXFECHDg7r95eQF0KI8vDygj/9CXbsANv4d4vFQnpGBtkXL9KkaVMUkJaeTki7dowrb1gXFMADDzisXDnxKoQQ5fXiiyUXQuXm5nL02DGKi4tp07YtPjVrcubsWZo3b453eQP+ygVWgwY5rFRpyQshRHn17k1R/fpcOHqULLOZgIAA/Pz8KLZYOJWSQpMmTajl41P+583Otrbib73VYaVKS14IIcrpm+++4y2l8LZYaNO6NX5+fmggNTWV2rVrU8/eaQyulp9vnY1y0iSH1ioteSGEsFNmZibTp0/n8OHDvPPBB9yyYQOsWAH16nH+/HmKiopo1qzUWddvrKgILl+G996Dpk0dWrO05IUQogxaazZs2MDgwYNp3rw5a9asoUePHvD22/DII+SnpXEhM5PmzZtTzZ6l/65mNlu7acaMgScdv/aStOSFEOIGUlNTmTJlCpmZmbz//vt07NjxP7/08iI1LIyvv/ySQXXrUj0/37qIiD20hosXrdMYREZCcLBT6peWvBBClMJisZCQkMCzzz5LYGAgsbGx/x3wQEFBASFhYVSPiMBn3TrrBUzZ2dbwvnJR09W0ts5Lc+GC9X533AFffeW0gAdpyQshxO8cP36ciIgIqlWrxtKlS2nVqtXv7qO1ZurUqbRq1YohQ4ZYhz5++y0kJVnnm9++/b9nklTKGvC+vtZumeHDoWvXMuekrygJeSGEsCkqKmLFihWsXr2aV199laeffppq15nu9+OPP+bgwYMsX74cdSWoq1WD3r2tXxYLnDxpnZq4sNA6cqZNG2jSxOnBfjUJeSGEAA4cOEBERASNGjVi1apVNL3BKJd9+/axcOFCli5dSq1atUq/U7Vq0Lq19ctAEvJCiCotPz+fmJgYNmzYwKhRo+jXr99/WualOH/+PGFhYbz77ru0aNGiEiu9ORLyQogqa/fu3URGRtK5c2fi4+OpX7/+De9fVFTEuHHjePLJJ7nnnnsqqcqKkZAXQlQ5OTk5zJ07l6SkJMLCwujdu7ddj5s7dy61atXipZdecnKFjiNDKIUQVcqWLVsYOHAgAImJiXYH/FdffcWWLVtKRt24izJb8kqpjkDCVZvaAO8C9YCXgQzb9vFaa8ctMS6EEA6UmZlJdHR0yQnWO++80+7HHjlyhBkzZjB//nz8/f2dWKXjlfl2pLU+pLXurrXuDtwJ5AHrbb+edeV3EvBCCFekteaf//wngwcPpmnTpsTHx5cr4C9dusSYMWN46623aN++vRMrdY7y9sk/ABzVWv92o7PPQgjhCtLS0pgyZQppaWnMnj2bLl26lOvxFouFd999l169etGvXz8nVelc5e1YGgysuer235VS+5RSS5VStziwLiGEuGkWi4W1a9cydOhQbr/9duLi4sod8ABLliwhJyeHUaNGOaHKymF3S14pVQPoD4yzbZoPRADa9v094IVSHjcCGAHQsmXLCpYrhBA39ttvvxEZGUlxcTGLFi3ititrspbT1q1bWb9+PXFxcXh7u+9AxPK05PsBe7TWaQBa6zStdbHW2gIsAu4q7UFa6xitdaDWOrCRg1YfF0KIaxUVFbF8+XJeeOEFHnzwQRYvXnzTAZ+SksKkSZOIioqiQYMGDq60cpXn7WkIV3XVKKUCtNZnbDefAvY7sjAhhLDXoUOHmDRpEvXr1ycuLo5bK7B8Xn5+PiEhIbz00kvcfvvtDqzSGHaFvFLKF+gLvHLV5ulKqe5Yu2tOXPM7IYRwuoKCAhYtWsSnn37KyJEjeeyxx244JUFZtNZERkbSoUMHBgwY4MBKjWNXyGut84AG12x71ikVCSGEHX744QciIiJo37498fHxDulWSUhI4NixYyxbtqxCbxauxH3PJgghqqTc3FzmzZvHN998Q2hoKPfff79DnveHH35g6dKlLF++nJo1azrkOV2B+1ybK4So8rZu3cqgQYMwm80kJCQ4LOAzMjIYP348kyZNqlB/viuSlrwQwuVlZWXx3nvv8eOPP/Luu+9y112lDua7KYWFhYwdO5YBAwZw9913O+x5XYW05IUQLktrzaZNmxg4cCD169cnISHBoQEPMGvWLOrVq8fw4cMd+ryuQlryQgiXlJ6eTlRUFCkpKcycOZOuXbs6fB9ffPEF27dvJzY21q1mliwPz/yrhBBuy2KxsG7dOoKDg+nUqROrVq1ySsAfOnSIWbNmER0djZ+fn8Of31VIS14I4TJOnTpFZGQk+fn5LFy4kLZt2zplPxcvXiQkJISxY8fSpk0bp+zDVUjICyEMV1xczKpVq1ixYgUvvvgigwcPdlr3icVi4Z133qFPnz707dvXKftwJRLyQghDHT58mIiICOrUqUNsbCzNmjVz6v4WLFiA2WzmjTfecOp+XIWEvBDCEGazmSVLlrBu3TreeOMNHn/8cadfZfrtt9/yxRdfEBcXh5eXl1P35Sok5IUQlW7fvn2Eh4fTunVrVq9eTWXMUHvy5EkiIyOZNWsW9evXd/r+XIWEvBCi0uTl5fHBBx/w73//m5CQEPr06VMpc8Tk5eUxZswYXnvtNaeM1HFlMoRSCFEptm3bxqBBg8jLyyMxMZEHHnigUgJea014eDh//OMfeeqpp5y+P1cjLXkhhFNlZ2czc+ZM9uzZw9tvv03Pnj0rdf+rVq0iNTWVxYsXe8zMkuUhLXkhhFNorfnXv/7FgAED8PPzIz4+vtIDfteuXcTGxjJ9+nRq1KhRqft2FdKSF0I4XEZGBtOmTePEiRPMmDHDkBWW0tLSePvtt4mMjKRp06aVvn9XIS15IYTDaK359NNPCQ4Opl27dqxevdqQgDebzYSGhjJ06FCHT2jmbqQlL4RwiNOnTxMZGUlOTg4ffvgh7du3N6yW6OhomjRpwrPPygJ2EvJCiAqxWCzEx8ezZMkShg8fTnBwsKEXGn366afs2bOH2NjYKnmi9VoS8kKIm3b06FHCw8Px8fFh+fLltGjRwtB6Dhw4wLx581i0aBG+vr6G1uIqJOSFEOVmNptZvnw5iYmJ/O1vf+OJJ54wfD72CxcuEBoayvjx42ndurWhtbiSMkNeKdURSLhqUxvgXSDWtr01cAIYqLW+4PgShRCuZP/+/YSHh9O8eXNWr15N48aNjS6J4uJi3n77bR555BGHrfvqKcoMea31IaA7gFLKCzgNrAfCgH9rraOUUmG222OdWKsQwkCXL19m/vz5fPXVV7z11lv07dvXZfq8P/jgAwBef/11gytxPeX9fPUAcFRr/RvwBLDCtn0F8KQjCxNCuI6dO3cyaNAgsrKySEhI4KGHHnKZgN+8eTNff/01U6ZMMbzLyBWVt09+MLDG9nMTrfUZAK31GaWU8Z/ZhBAOlZ2dzezZs9mxYwfjx4/HZDIZXdJ/OX78OFOmTOH999+nXr16Rpfjkux+21NK1QD6A2vLswOl1Ail1C6l1K6MjIzy1ieEMMjmzZsZNGgQPj4+rF271uUCPjc3lzFjxvDmm2/SuXNno8txWeVpyfcD9mit02y305RSAbZWfACQXtqDtNYxQAxAYGCgrlC1QginO3/+PNOmTePIkSNMmTKFO+64w+iSfkdrzcSJEwkMDKR///5Gl+PSytOBNYT/dNUAfAYMs/08DPjUUUUJISqf1prPP/+cwYMH06pVK+Lj410y4AFWrFhBRkYGb731ltGluDy7WvJKKV+gL/DKVZujgESl1IvASWCA48sTQlSG1NRUJk+eTFZWFvPmzaNjx45Gl3RdO3bsID4+ntjY2Co7s2R52BXyWus8oME1285jHW0jhHBTFouFxMREFi1axHPPPcfQoUPx9nbdayRTU1OZMGECUVFRLjE+3x247r+mEMKpjh07RmRkJF5eXixdupRWrVoZXdINFRQUEBoayvDhw+nRo4fR5bgNCXkhqpjCwkJiY2NZs2YNr776Kv/zP//j8uPLtdZERUXRsmVLhgwZYnQ5bkVCXogq5MCBA4SHh9OkSRNWrVpFkyZNjC7JLuvWrePAgQMsX77cZS7CchcS8kJUAfn5+SxcuJAvvviC0aNH8/DDD7tNWP70008sWLCAJUuWUKtWLaPLcTuu/RlNCFFhu3btYvDgwaSnp5OQkMAjjzziNgGfmZnJ2LFjeffdd2nZsqXR5bglackL4aFycnKYO3cuSUlJhIWF0bt3b6NLKpeioiLCwsJ44oknuOeee4wux21JS14ID7RlyxYGDhwIQGJiotsFPMDcuXPx8fHh5ZdfNroUtyYteSE8SGZmJtHR0Rw8eJDIyEi3HWq4adMmvv32W+Li4lx+5I+rk1dPCA+gtWbjxo0MHjyYpk2bEh8f77YBf+TIEaZPn86MGTPw9/c3uhy3Jy15Idzc2bNnmTJlChkZGcyePZsuXboYXdJNu3TpEiEhIYwePZoOHToYXY5HkJa8EG7qypQEQ4cOpXv37sTFxbl1wFssFt59912CgoJ49NFHjS7HY0hLXgg39NtvvxEREYHFYmHx4sXcdtttRpdUYUuXLuXSpUuMGjXK6FI8ioS8EG6kqKiIuLg4Vq5cySuvvMIzzzzjEScmk5OTWbduHbGxsVSvXt3ocjyKhLwQbuKXX34hPDycBg0asHLlSgICAowuySFSUlKYOHEiM2bMoGHDhkaX43Ek5IVwcQUFBcTExPD5558zcuRIHn30Ube5YrUs+fn5hIaG8tJLL9GtWzejy/FIEvJCuLA9e/YQGRlJx44diY+Pp379+kaX5DBaayZPnky7du0YMEDWHHIWCXkhXFBubi7vv/8+W7ZsITQ0lPvuu8/okhwuMTGRo0ePsnTpUo/5ZOKK3P+MjRAeJikpiYEDB1JUVERCQoJHBvzevXtZsmQJM2bMwMfHx+hyPJq05IVwERcuXOC9997jp59+4h//+Ad33XWX0SU5RUZGBuPGjWPixIk0a9bM6HI8nrTkhTCY1pqvvvqKQYMG0aBBA+Lj4z024AsLCxk7dizPPPMMQUFBRpdTJdjVkldK1QMWA10BDbwAPAy8DGTY7jZea73RGUUK4anS09OZOnUqqampzJo1iz/84Q9Gl+RUs2bNol69ejz//PNGl1Jl2NuSnwN8qbXuBHQDDtq2z9Jad7d9ScALYSeLxcLHH39McHAwXbp0YeXKlR4f8Bs3bmT79u2Eh4d7xAVc7qLMlrxSyh/oDQwH0FqbAbOcDRfi5pw8eZLIyEjMZjMxMTG0adPG6JKc7tChQ8ycOZOFCxfi5+dndDlVij1vp22wdsksU0r9oJRarJSqbfvd35VS+5RSS5VStzivTCHcX3FxMbGxsTz//PPcd999LF26tEoEfHZ2NiEhIYSGhtK2bVujy6ly7Al5b6AHMF9rfQeQC4QB84G2QHfgDPBeaQ9WSo1QSu1SSu3KyMgo7S5CeLzDhw8zbNgwtm/fTlxcHMHBwVWiy8JisfD2229z//3389BDDxldTpVkz4nXFCBFa73DdvsjIExrnXblDkqpRcCG0h6stY4BYgACAwN1xcoVwr2YzWYWL17M+vXreeONN3j88cer1IU/CxcuxGw28+abbxpdSpVVZshrrc8qpU4ppTpqrQ8BDwAHlFIBWusztrs9Bex3ZqFCuJsff/yRiIgI2rRpw5o1a6rc5Ftbtmxhw4YNxMXF4eXlZXQ5VZa9F0O9AaxSStUAjgHPA3OVUt2xDqk8AbzilAqFcDN5eXnMmzePzZs3ExoaSp8+fYwuqdKdPHmSiIgIZs2a5VHz7bgju0Jea70XCLxm87OOL0cI95acnMzUqVP505/+RGJiYpVcozQvL48xY8bw2muv0bVrV6PLqfJkWgMhHODixYvMnDmTH374gbfffpuePXsaXZIhtNZERETQtWtXnnrqKaPLEci0BkJUiNaaf/3rXwwcOBB/f3/i4+OrbMADrF69mpSUFMLCwqrUCWZXJi15IW5SRkYGUVFRnDx5khkzZnD77bcbXZKhdu/ezYoVK1ixYgU1atQwuhxhIy15IcpJa80nn3xCcHAw7du3Z9WqVVU+4NPT0xk/fjyRkZEesyyhp5CWvBDlkJKSwuTJk8nNzeXDDz+kffv2RpdkOLPZTEhICMHBwR47e6Y7k5AXwg4Wi4XVq1ezbNkynn/+eYYMGSJjv22io6Np0qQJzz33nNGliFJIyAtRhiNHjhAeHk6tWrVYvnw5LVq0MLokl/HZZ5+xZ88eVqxYISdaXZSEvBDXYTabWbZsGWvXruVvf/sbTz75pATZVQ4cOMD777/PokWLqF27dtkPEIaQkBeiFD/99BMRERE0b96c1atX07hxY6NLcilZWVmMHTuWcePG0bp1a6PLETcgIS/EVS5fvsz8+fP56quvGDNmDA8++KC03q9RXFzM+PHjeeihh6rklA3uRoZQCmGzc+dOBg0aRFZWFomJifTt21cCvhQffvghAK+//rrBlQh7SEteVHnZ2dnMnj2bnTt3Mn78eFlg+gY2b97Mpk2bZGZJNyIteVGlbd68mUGDBuHj40NiYqIE/A0cP36cKVOmMG3aNOrVq2d0OcJO0pIXVdL58+eZNm0aR48eZerUqXTv3t3oklxabm4uISEhvPnmm3Tp0sXockQ5SEteVClaaz7//HMGDx5M69atWbNmjQR8GbTWTJo0iR49etC/f3+jyxHlJC15UWWkpqYyefJkLl68yAcffECHDh2MLsktxMbGkp6eTmRkpNGliJsgIS88nsViISEhgcWLFzNs2DCGDh0qJw3ttHPnTtasWUNsbKzMLOmmJOSFRzt27BgRERFUr16dZcuW0bJlS6NLchtnzpzhnXfeYerUqXIxmBuTkBceqbCwkOXLl5OQkMBrr73GU089RbVqcgrKXmazmdDQUIYNG8add95pdDmiAiTkhcc5cOAAkyZNIiAggFWrVtGkSROjS3IrWmuioqJo0aIFwcHBRpcjKkhCXniM/Px8FixYwMaNGxk9ejQPP/ywXLF6E9avX8/+/ftZvny5vH4ewK7Pr0qpekqpj5RSvyilDiql7lZK1VdKfa2U+tX2/RZnFyvE9ezatYvBgwdz7tw5EhISeOSRRySgbsJPP/3E/PnziY6OxtfX1+hyhAPY25KfA3yptX5GKVUD8AXGA//WWkcppcKAMGCsk+oUolSXLl1izpw5bNu2jbCwMO655x6jS3JbmZmZjB07lgkTJsgJag9SZkteKeUP9AaWAGitzVrrLOAJYIXtbiuAJ51VpBCl+fbbbxk0aBBeXl4kJiZKwFdAcXExYWFh9O/fn969extdjnAge1rybYAMYJlSqhuwGxgJNNFanwHQWp9RSskYK1EpMjMzmTFjBocOHSIyMpIePXoYXZLbmzt3Lj4+PowYMcLoUoSD2dMn7w30AOZrre8AcrF2zdhFKTVCKbVLKbUrIyPjJssUwjrqY+PGjQwePJhbb72VNWvWSMA7wKZNm/jmm2+IjIyUYaYeyJ6WfAqQorXeYbv9EdaQT1NKBdha8QFAemkP1lrHADEAgYGB2gE1iyrozJkzTJ06lXPnzjFnzhw6d+5sdEke4ejRo0yfPp0PP/wQf39/o8sRTlDm27bW+ixwSinV0bbpAeAA8BkwzLZtGPCpUyoUVZrFYiExMZFnn32W7t27ExsbKwHvIJcuXSIkJITRo0fLPD4ezN7RNW8Aq2wja44Bz2N9g0hUSr0InAQGOKdEUVWdOHGCiIgIABYvXixriTqQxWLhH//4Bz179uTRRx81uhzhRHaFvNZ6LxBYyq8ecGw5QkBRURGxsbGsWrWKV155hWeeeUb6ih1s2bJlXLx4kWnTphldinAyueJVuJSDBw8SERFBw4YNWblyJQEBAUaX5HGSk5P56KOPiIuLo3r16kaXI5xMQl64hIKCAhYuXMiGDRsYNWoU/fr1kytWneD06dNMnDiR6dOn07BhQ6PLEZVAQl4Ybs+ePURGRtKxY0fi4+OpX7++0SV5pPz8fEJCQnjxxRdlNawqREJeGCY3N5e5c+fy3XffERoayn333Wd0SR5La82UKVNo164dAwcONLocUYnkbJYwxHfffcfAgQNLVm2SgHeutWvXcuTIEcaPHy/dYFWMtORFpbpw4QLR0dHs37+fiRMn8qc//cnokjze3r17Wbx4McuWLcPHx8fockQlk5a8qBRaa7788ksGDRpEo0aNSEhIkICvBOfOnWPcuHFMnDiRZs2aGV2OMIC05IXTpaWlMXXqVM6ePcvs2bPp0qWL0SVVCYWFhYwdO5ann36aoKAgo8sRBpGWvHAai8XCxx9/zNChQ+natStxcXES8JVo9uzZ1K1blxdeeMHoUoSBpCUvnOLkyZNERkZSWFhITEwMbdq0MbqkKmXjxo0kJycTGxsrVwtXcRLywqGKi4tZtWoVK1as4KWXXmLQoEESMpXs8OHDzJw5k4ULF1KnTh2jyxEGk5AXDnP48GHCw8OpW7cucXFx3HrrrUaXVOVkZ2cTEhJCaGgobdu2Nboc4QIk5EWFmc1mFi9ezPr163nzzTf5y1/+ImOxHSErCw4ehMOHITMTlILGjaFTJ+vXNQttWywW3nnnHe69914eeughg4oWrkZCXlTI3r17iYiIoG3btsTHx9OgQQOjS3JvFgt89x0sWgTbt4O3N5jN1u0AXl5QvToUF0O/fjB8ONxxByhFTEwM+fn5vPnmm4b+CcK1SMiLm5KXl8e8efPYvHkzoaGh9OnTx+iS3N/x4zBqFBw4YL3t7w/XO59RXAxffAH//Cc88ADJjz3GZ599xsqVK/H2lv/W4j/kjJgot+TkZAYOHEh+fj6JiYkS8I7w2WfwyCPw88/WcK9b9/oBD9YW/S23QJ06FH75JU2Cg5kzbJhM7iZ+R97yhd0uXrzIe++9x969e5kwYQJ//vOfjS7JM6xbByEh1j72mjXL9dBi4GR2No3q1sV/4kRo2xYCS1vfR1RV0pIXZdJas2nTJgYOHEi9evVISEiQgHeUvXth7FioXbvcAa+xLnBeq1Yt6jRtaj0x+/zzcPasc2oVbkla8uKG0tPTiYqKIiUlhejoaP74xz8aXZLnyM+HkSOt3TI1apT74ZmZmZjNZlq3bo0C6yeBrCwIC4Nly6yhL6o8acmLUmmtWb9+PcHBwXTs2JGVK1dKwDvaypWQkgI3ccFSbl4e58+do3nz5lS7Oszr1oWkJNiyxYGFCncmLXnxO6dOnWLy5Mnk5eWxYMEC2rVrZ3RJnsdigZgYqFXrhnczWyxEnT3Lzrw8souLaV69Oq82aEDT9HRubdaMGteu0aqU9WvRIrj3Xif+AcJd2NWSV0qdUEr9pJTaq5TaZds2USl12rZtr1LqUeeWKpytuLiYlStXMnz4cO655x6WL18uAe8sO3ZYu1bKmN+9GGhavToxLVvyTYcOvNKoEWNOnMDs749f7dqlP6hOHevzS9+8oHwt+fu11ueu2TZLax3tyIKEMY4cOUJ4eDi+vr6sWLGC5s2bG12SZ/vhBygqKvNutapVY0SjRiW3O+Tm0tTLi7Rateh6vQdVq2b9+uknaNrUMfUKtyXdNVWc2Wxm6dKlfPzxx/z973+nf//+MiVBZdixw3o1azlkZWVx+tIlMry9aVvWSByzGfbtg759K1Ck8AT2nnjVwCal1G6l1Iirtv9dKbVPKbVUKXVLaQ9USo1QSu1SSu3KyMix7nN+AAAWD0lEQVSocMHCcfbt28fQoUP59ddfWb16NU888YQEfGU5fdruETUauHTpEqfT0ljk7c3jdevSuqyQ9/aG336reJ3C7dnblDBprVOVUo2Br5VSvwDzgQisx2AE8B7wu9UJtNYxQAxAYGCgdkjVokLy8vKYP38+mzZtIiQkhAceeEDCvbJdmYvmOoqLi8nNzSUnJ4ecnByUlxfLa9akZrVqhNrbBVNc7IBChbuzK+S11qm27+lKqfXAXVrrkjFaSqlFwAbnlCgcafv27UyZMoU77riDxMRE6tata3RJVZOfH5w5U3JTAwX5+dZQz80lPz8fX19f/Pz8aNCwIVHnzpFdWMjc5s3xtucN2WKBevWcV79wG2WGvFKqNlBNa33J9vNDQLhSKkBrfeUofQrY78Q6RQVlZ2cza9Ysvv/+e8aPHy9rfhqtRw8s+/aRY7GUtNarVauGn58fDRs2xNfXt2T8+5QzZzhuNvNhy5bUtHcBFqWgWzcn/gHCXdjTkm8CrLd9nPcGVmutv1RKxSmlumNthJwAXnFalaJCNm/ezPTp0+nTpw+JiYn4XjMPuagcWmuOHj1KcnIyl7Zto39aGto2FLJBgwbULKWP/kxhIeuysqihFA//+mvJ9vFNm9LvRp/CvLygc2dn/BnCzZQZ8lrrY8DvmgRa62edUpFwmHPnzjF9+nSOHTvGtGnT6CYtu0qXl5fHzp072bp1K1u3bsXb25tevXrRe+RImh09SrU6dayBfB0B1auzq7xhnZ9vvfJVFk0XyBBKj6S15vPPP+f999/nqaeeIjIykho3MTeKKD+tNcePHyc5OZmtW7fy888/07VrV3r16sVf//pXWrZs+Z+T3Js2WacYdvT0wJcvW+fEucGbh6g6JOQ9zOnTp5k8eTLZ2dl88MEHdOjQweiSPN7ly5f5/vvvS4Jda43JZGLIkCEEBgZev3vsb3+DjRuhsNC62pMj5OVZ56MfMMAxzyfcnoS8h7BYLMTHx7NkyRKGDRvG0KFD8ZKWnFNorTl16hRJSUkkJyezb98+unTpgslkYs6cOdx22232DUlt397a4p450zoSpqLDWC0WKCiA99+XkTWihIS8Bzh27Bjh4eHUqFGDZcuW0bJlS6NL8jgFBQXs3r2bpKQktm7dSmFhIUFBQTz99NNMmzaN2tebR6Ysr7wCW7dar4CtSNBbLHDxIgQHwwMP3NxzCI8kIe/GCgsLWb58OQkJCbz++us8+eSTVLN3iJ0oU0pKSskJ071799KpUydMJhPR0dG0a9fOMReQeXvD4sXw4ovWoPf3L/d0BxQUWLtpBgyASZMqXpPwKBLyburnn38mPDycW2+9ldWrV9O4cWOjS3J7ZrOZPXv2lAR7bm4uJpOJJ554gsmTJ1PnJuZ9t4uvL6xYYe1mWbAAtL7xIt5XFBdDdrZ1eoTJk2HgwLIfI6ocpXXlzTQQGBiod+3aVWn780SXL19mwYIF/POf/2TMmDH07dtXpiSogNTUVLZu3UpycjK7d++mffv2mEwmTCYT7du3r/xPRvv3w4wZ1i4ci8Xaqvfx+c9ImcJC6xBJra3b+vWzrg8rs4Z6NKXUbq31TS3eKyHvRr7//nsiIyO5/fbbeeutt6gnJ9fKzWw2s3fv3pJgz8rKIigoCJPJRM+ePfH39ze6RKtTp+Crr6xdOPv2waVL1v76W26BHj3g7rvh4YcdP/xSuCQJeQ936dIl5syZw7Zt2xg3bhy9evUyuiS3kpaWVtIFs2vXLtq0aVMS7J06dZLzGMLlVSTkpU/exX3zzTdMmzaNe++9l8TExJsfxVGFFBUV8eOPP5YE+7lz5wgKCuLBBx9kwoQJ8glIVCkS8i4qMzOT6dOnc/jwYSZPnkyPHj2MLsmlZWRklFyMtHPnTlq2bInJZGLChAl06dJFWuuiypKQdzFaazZu3MicOXN4/PHHmTRpEjXLWiCiCiouLmbfvn0lwX727Fl69uzJvffeS1hYGPWlr1oIQELepaSmpjJlyhQyMzOZO3cunTp1Mrokl3L+/Pn/aq0HBARgMpkYO3YsXbt2lSt8hSiFhLwLsFgsrF27lpiYGP7617/y7LPP4l3eC2I8kMViYf/+/SV966dPn+auu+7CZDIxZswYGjZsaHSJQrg8SRKDHT9+nIiICJRSLFmyhNatWxtdkqEuXLjAtm3b2Lp1K9u2baNJkyaYTCZGjx7N7bffLm9+QpST/I8xSFFREbGxsaxatYpXX32Vp59+ukqeHLRYLBw8eLCktX7ixImS1vrIkSPlSl4hKkhC3gAHDx4kPDycRo0asWrVKprauzCzh7h48SLbtm0jOTmZ5ORk6tevj8lk4o033qBbt25Ud9S0u0IICfnKVFBQwMKFC9mwYQOjRo2iX79+VWJKAovFwqFDh0quMj1y5AiBgYGYTCZee+01AgICjC5RCI8lIV9Jdu/eTWRkJJ07dyY+Pt7jh/hlZ2ezY8eOkmD39/cnKCiIV199le7du8tKVUJUEgl5J8vJyWHu3LkkJSURFhZG7969jS7JKbTW/PrrryV964cPH6ZHjx4EBQXx8ssv06xZM6NLFKJKsivklVIngEtAMVCktQ5UStUHEoDWwAlgoNb6gnPKdE9btmwhKiqKXr16kZiYiJ+fn9ElOVROTg47d+4kKSmJbdu24ePjg8lk4oUXXuDOO++Ui7iEcAHlacnfr7U+d9XtMODfWusopVSY7fZYh1bnpi5cuEB0dHTJnO+BgTc1r5DL0Vpz9OhRkpOTSUpK4pdffqF79+4EBQUxfPhwWZFKCBdUke6aJ4D7bD+vAL6hioe81povv/ySWbNm8dhjjzFhwgR8fHyMLqtC8vLy2LlzZ0mwe3t706tXL5577jkCAwPd/u8TwtPZG/Ia2KSU0sBCrXUM0ERrfQZAa31GKVWlBzSnpaUxZcoU0tLSmD17Nl26dDG6pJuiteb48eMl0wf8/PPPdO3alV69ehEcHEyrVq2qxIggITyFvSFv0lqn2oL8a6XUL/buQCk1AhgBeOTHeYvFwrp161iwYAFDhgzhueeec7tx3pcvX+b7778vCXatNUFBQQwZMoTAwEB8fX2NLlEIcZPsCnmtdarte7pSaj1wF5CmlAqwteIDgPTrPDYGiAHroiGOKds1/Pbbb0RGRlJcXExMTAxt2rQxuiS7aK05deoUSUlJJCcns2/fPrp06YLJZGLOnDncdttt0loXwkOUGfJKqdpANa31JdvPDwHhwGfAMCDK9v1TZxbqSoqKili5ciVxcXG8/PLLDBw40OWnJCgoKGD37t0kJSWxdetWCgsLCQoK4umnn2batGmyGIkQHsqelnwTYL2tZecNrNZaf6mU+h5IVEq9CJwEBjivTNdx6NAhwsPDqVevHnFxcdx6661Gl3RdKSkpJePW9+7dS6dOnQgKCiI6Opp27dpJa12IKkDWeLWT2Wxm0aJFfPLJJ4wcOZLHHnvM5ULSbDazZ8+ekmDPzc3FZDJhMpm46667qFOnjtElCiFugqzx6mR79+4lPDyc9u3bEx8fT4MGDYwuqURqamrJCdPdu3fTvn17TCYTU6dOpX379i7fjSSEcC4J+RvIzc1l3rx5fPPNN4SGhnL//fcbXRJms5m9e/eWzAmTlZVFUFAQ/fr1Y9KkSfj7+xtdohDChUjIX8fWrVuZOnUqf/7zn0lISDA0PNPS0kq6YHbt2sVtt92GyWRi0qRJdOrUSVrrQojrkpC/RlZWFjNnzmTv3r28++673HXXXZVeQ1FRET/++GNJsJ87d467776bBx98kAkTJlCvXr1Kr0kI4Z4k5G201nz99de89957PPzwwyQkJFCrVq1K239GRsZ/LVLdsmVLTCYT77zzDn/4wx+ktS6EuCkS8kB6ejpRUVGkpKQQHR3NH//4R6fvs7i4mH379pUE+9mzZ+nZsyf33nsvYWFhHj/fvBCiclTpkLdYLHzyySd8+OGHDBw4kKioKKcuZnH+/Pn/aq0HBARgMpkYO3YsXbt2xcvLy2n7FkJUTVU25E+dOkVkZCT5+fksXLiQtm3bOnwfFouF/fv3l/Stnz59umSR6jFjxtCwYUOH71MIIa7m+iFfUADp6VBcDLVqQePGUIGLkIqLi1m1ahUrVqzgxRdfZPDgwQ7t775w4QLbtm1j69atbN++ncaNGxMUFMTo0aO5/fbb8fZ2/ZdcCOE5XDNxDh2CNWtgyxb47Tfw8rIGu8UCNWpAly7wxBPQvz+UY2jj4cOHiYiIwM/Pj9jYWIcsSWexWDh48GBJa/3EiRMlrfWRI0fSuHGVnoFZCGEw15rW4PBhGDcOfvwRtAYfH6hZE65uaRcVQX6+tWXv5QXPPw8jR1rvex1ms5klS5bw8ccf88Ybb9C/f/8KTUlw8eJFtm3bRnJyMsnJydSvX79k+oBu3bq53VTDQgjX5v7TGlgssHAhzJplDfe6da/fJePtDVfWSi0qgkWLYONG+OAD6Nr1d3fft28fERERtGrVijVr1tCoUaObKM/CoUOHSq4yPXLkCIGBgZhMJl577TUCAgLK/ZxCCFEZjA95i8Xaev/oI2t4l6cV7O0N9erBmTMwYAAsXw5//jNgXbbuww8/5F//+hchISH06dOnXK337OxsduzYURLsderUwWQy8eqrr9K9e3enjsIRQghHMT7kp02DtWutYX2zJ0D9/SEvz9p1s3492y9cYMqUKfTo0YOEhATq1q1b5lNorfn1119L+tYPHz5Mjx49CAoK4uWXX3ZI/70QQlQ2Y0P+++9h8WJr90xFR7j4+lJ84QInHn2UaZ06Me6dd7j77rtv+JCcnBx27txJUlIS27Ztw8fHB5PJxAsvvMCdd95JzZo1K1aTEEIYzLiQN5th1Chr90wFLwLSwKVLlzibkUGj6tWJ79uXmqUEvNaao0ePkpycTFJSEr/88gvdunXDZDIxfPhwj1yDVghRtRkX8ps3W8e/l9GVkl1cTPiZM2zPyaGetzd/b9SIR656TGFREWfPnsVcUEDzFi3w9fKCZcvg9dehRg3y8vLYuXNnSbB7e3tjMpl47rnnCAwMxOcGo3KEEMLdGRfyCxfa1UUTdfYs1ZViU4cOHM7PZ+SpU3Tw8eG2mjW5mJVFeno69W65hWbNmlFNKTRQeO4cSePHszY3l59//pmuXbvSq1cvgoODadWqlcut6CSEEM5iTMjn5FjHwt9yyw3vdtliYfOlSyS2aYNvtWp09/Xl3jp1+DQzk/8pLKS4uJiWLVtSo0YNcnNzycnJIScnh9qFhfglJzMkKorAwEB8fX0r6Q8TQgjXYkzIHzpkvcipjBb1SbOZakBL23BFDQQUFrLj4kWCmzTBu3p10tPTybt8mVo+Pvj5+dGyRQtqaM2tXl7Qu7fz/xYhhHBhxoT8iRPWC5nKkGex4Gfr0rmcn8+pU6coys/nMnAxOxs/Pz9rV03z5nhd3fWjNaSkWMfgyzzsQogqzO6QV0p5AbuA01rrvyillgP3Ahdtdxmutd5r15MVFFgDuAy+1aqRa7vf8ePH8fbywrtOHRoD7Vu35rqfA658QjCbbzjdgRBCeLrytORHAgeBq2cEC9Faf1T+vXrbNZNkyxo1KMbabdO5c2cUsDI1lQ7e3tcPeLC25LUu39WzQgjhgezqy1BKNQceAxY7ZK/Nm1uDvgy1qlWjT506LMjIIN9i4ce8PL69dInHyrqCtbAQmjSp8Ph7IYRwd/Z2WM8GQoFr+1gmK6X2KaVmKaXsvzy0c2drENsxA2ZY06YUWCz0PXyY8adPM65pU9qUdSXq5cvQrZvd5QghhKcqszmtlPoLkK613q2Uuu+qX40DzgI1gBhgLBBeyuNHACOA/1xResst0KqVdWKx2rVvuH9/Ly/ea9HCnr/lv/XpU/7HCCGEh7GnJW8C+iulTgDxQB+l1Eqt9RltVQAsA+4q7cFa6xitdaDWOvC/pvkdMcKuETblVlRk7aZ57DHHP7cQQriZMkNeaz1Oa91ca90aGAxs1lr/VSkVAKCsl48+Cewv157/8hfrcn75+eWv+kYuXYLBg6FOHcc+rxBCuKGKDCJfpZT6CfgJaAhEluvRfn4wdaq1/9xRq1Pl5kL9+jB6tGOeTwgh3Fy5LobSWn8DfGP7ueKd3o8+Cp9/Dl9/bZ1PviJzypjN1q6a2bPLte6rEEJ4MmMvB1XKuuRfYCBkZdl1gVSp8vOti4ZMnQomk2NrFEIIN2b8Nf+1asGKFdY++osXrWFtL62tbw5aw7x58MwzzqtTCCHckNKO6g+3Z2dKZQC/VdoOHa8hcM7oIlyUvDY3Jq/P9clrc2MNgdpa60Zl3rMUlRry7k4ptUtrHWh0Ha5IXpsbk9fn+uS1ubGKvj7Gd9cIIYRwGgl5IYTwYBLy5RNjdAEuTF6bG5PX5/rktbmxCr0+0icvhBAeTFryQgjhwSTkS6GUaqGU+j+l1EGl1M9KqZG27fWVUl8rpX61fb/xSuQeTCnlpZT6QSm1wXb7NqXUDttrk6CUqmF0jUZRStVTSn2klPrFdgzdLceOlVLqf23/p/YrpdYopXyq8rGjlFqqlEpXSu2/alupx4qymquUOmKb4r2HPfuQkC9dEfCW1roz0BP4m1KqCxAG/Ftr3R74t+12VXVlpbArpgGzbK/NBeBFQ6pyDXOAL7XWnYBuWF+nKn/sKKWaAW8CgVrrroAX1kkPq/Kxsxx45Jpt1ztW+gHtbV8jgPl27UFrLV9lfAGfAn2BQ0CAbVsAcMjo2gx6PZrbDr4+wAZAYb2Yxdv2+7uBr4yu06DXxh84ju1811Xbq/yxAzQDTgH1sc6btQF4uKofO0BrYH9ZxwqwEBhS2v1u9CUt+TIopVoDdwA7gCZa6zMAtu+NjavMUNeuFNYAyNJaX1kgIAXrf+iqqA2QASyzdWctVkrVRo4dtNangWjgJHAGuAjsRo6da13vWLnyJnmFXa+VhPwNKKX8gI+BUVrrbKPrcQVXrxR29eZS7lpVh215Az2A+VrrO4BcqmDXTGlsfctPALcBtwK1sXZBXKuqHjtluan/ZxLy16GUqo414FdprdfZNqddtVhKAJBuVH0G+t1KYVhb9vWUUlemrm4OpBpTnuFSgBSt9Q7b7Y+whr4cO/AgcFxrnaG1LgTWAUHIsXOt6x0rKcDVa6Ha9VpJyJfCttrVEuCg1nrmVb/6DBhm+3kY1r76KkWXvlLYUOD/gCvTgFbJ1wZAa30WOKWU6mjb9ABwADl2wNpN01Mp5Wv7P3bltZFj579d71j5DHjONsqmJ3DxSrfOjcjFUKVQSvUCvsO66tWVfufxWPvlE4GWWA/YAVrrTEOKdAG2hd3HaK3/opRqg7VlXx/4Afirtq7/W+UopboDi7Eucn8MeB5rg6rKHztKqUnAIKwj2H4AXsLar1wljx2l1BrgPqwzTaYB/wA+oZRjxfbGOA/raJw84Hmt9a4y9yEhL4QQnku6a4QQwoNJyAshhAeTkBdCCA8mIS+EEB5MQl4IITyYhLwQQngwCXkhhPBgEvJCCOHB/h/hWxXMyOiL5wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from itertools import permutations\n", - "\n", - "def brute_force_tsp(w, N):\n", - " a=list(permutations(range(1,N)))\n", - " last_best_distance = 1e10\n", - " for i in a:\n", - " distance = 0\n", - " pre_j = 0\n", - " for j in i:\n", - " distance = distance + w[j,pre_j]\n", - " pre_j = j\n", - " distance = distance + w[pre_j,0]\n", - " order = (0,) + i\n", - " if distance < last_best_distance:\n", - " best_order = order\n", - " last_best_distance = distance\n", - " print('order = ' + str(order) + ' Distance = ' + str(distance))\n", - " return last_best_distance, best_order\n", - " \n", - "best_distance, best_order = brute_force_tsp(ins.w, ins.dim)\n", - "print('Best order from brute force = ' + str(best_order) + ' with total distance = ' + str(best_distance))\n", - "\n", - "def draw_tsp_solution(G, order, colors, pos):\n", - " G2 = G.copy()\n", - " n = len(order)\n", - " for i in range(n):\n", - " j = (i + 1) % n\n", - " G2.add_edge(order[i], order[j])\n", - " default_axes = plt.axes(frameon=True)\n", - " nx.draw_networkx(G2, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)\n", - "\n", - "draw_tsp_solution(G, best_order, colors, pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Mapping to the Ising problem" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "qubitOp, offset = tsp.get_tsp_qubitops(ins)\n", - "algo_input = get_input_instance('EnergyInput')\n", - "algo_input.qubit_op = qubitOp" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Checking that the full Hamiltonian gives the right cost " - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -600092.5\n", - "feasible: True\n", - "solution: [0, 1, 2]\n", - "solution objective: 185.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xtc1FX+x/HXEVRERPNOXvOu66YZ2xpjVpaVtVn9yhtuaTe77Jb+TBAtWwVUVPKWpeIdvACWdjG3bNdfGeIlNTPTNG8pooAiIiAMMOf3x4ysayiDzPCdGT7Px4MHzJeZ+X4Yv77nzPme7zlKa40QQgjPVM3oAoQQQjiPhLwQQngwCXkhhPBgEvJCCOHBJOSFEMKDScgLIYQHk5AXQggPJiEvhBAeTEJeCCE8mLc9d1JK/S/wEqCBn4DngQAgHqgP7AGe1Vqbb/Q8DRs21K1bt65IvUII4XoyMyE11fpztWqgVNmP0RosFvDygpYtoXbt69519+7d57TWjW6mNFXWtAZKqWZAEtBFa31ZKZUIbAQeBdZpreOVUguAH7XW82/0XIGBgXrXrl03U6cQQrgerSE6GhYssIZ0jRrlf47cXCgqgjlz4NFHS72LUmq31jrwZkq0t7vGG6illPIGfIEzQB/gI9vvVwBP3kwBQgjhtpYtswa8v//NBTxY3xx8fGDkSNi2zbH1YUfIa61PA9HASazhfhHYDWRprYtsd0sBmpX2eKXUCKXULqXUroyMDMdULYQQRvv1V4iKAj8/a5dLRdSsCd7e8OabkJ3tmPpsygx5pdQtwBPAbcCtQG2gXyl3LbXfR2sdo7UO1FoHNmp0U11KQgjhWrSG//1f6/fq1R3znLVrW/v2p01zzPPZ2NNd8yBwXGudobUuBNYBQUA9W/cNQHMg1aGVCSGEq9q9Gw4dsnbT3EBiZibPHj/O3b/8wsRUOyLS3x/WroULFxxUqH0hfxLoqZTyVUop4AHgAPB/wDO2+wwDPnVYVUII4cqWLrWOjCljFE1Db29ebNiQ/nXr2ve8Xl7W512/3gFFWtnTJ78D6wnWPViHT1YDYoCxwGil1BGgAbDEYVUJIYSrsljgm2+gTp0y79rH35/76tShbnn67L29YePGm6/v2qez505a638A/7hm8zHgLodVIoQQ7iAlxTrk0dfXOc/v4wM//2x9M6lW8etV5YpXIYQojxMnKj6a5ka8vaGwEM6dc8jTScgLIUR55OdbR9XYQQNnz57lYnmHRXp5QUFB+WsrhV3dNUIIIWzsHDKZX1BA6unT5OTk4O3vT7ki24FDMyXkhRCiPFq0uGFL3qI158+dI/PCBSxA/SZNqKUUl4qKMFsseCmF141G5RQXW7876LoiCXkhhCiP226zfi8u/l3f/OXLl0k9c4Ya1avjX6cOy7Oz+Tgzs+T3Gy9eZETDhoy4UYAXFECHDg7r95eQF0KI8vDygj/9CXbsANv4d4vFQnpGBtkXL9KkaVMUkJaeTki7dowrb1gXFMADDzisXDnxKoQQ5fXiiyUXQuXm5nL02DGKi4tp07YtPjVrcubsWZo3b453eQP+ygVWgwY5rFRpyQshRHn17k1R/fpcOHqULLOZgIAA/Pz8KLZYOJWSQpMmTajl41P+583Otrbib73VYaVKS14IIcrpm+++4y2l8LZYaNO6NX5+fmggNTWV2rVrU8/eaQyulp9vnY1y0iSH1ioteSGEsFNmZibTp0/n8OHDvPPBB9yyYQOsWAH16nH+/HmKiopo1qzUWddvrKgILl+G996Dpk0dWrO05IUQogxaazZs2MDgwYNp3rw5a9asoUePHvD22/DII+SnpXEhM5PmzZtTzZ6l/65mNlu7acaMgScdv/aStOSFEOIGUlNTmTJlCpmZmbz//vt07NjxP7/08iI1LIyvv/ySQXXrUj0/37qIiD20hosXrdMYREZCcLBT6peWvBBClMJisZCQkMCzzz5LYGAgsbGx/x3wQEFBASFhYVSPiMBn3TrrBUzZ2dbwvnJR09W0ts5Lc+GC9X533AFffeW0gAdpyQshxO8cP36ciIgIqlWrxtKlS2nVqtXv7qO1ZurUqbRq1YohQ4ZYhz5++y0kJVnnm9++/b9nklTKGvC+vtZumeHDoWvXMuekrygJeSGEsCkqKmLFihWsXr2aV199laeffppq15nu9+OPP+bgwYMsX74cdSWoq1WD3r2tXxYLnDxpnZq4sNA6cqZNG2jSxOnBfjUJeSGEAA4cOEBERASNGjVi1apVNL3BKJd9+/axcOFCli5dSq1atUq/U7Vq0Lq19ctAEvJCiCotPz+fmJgYNmzYwKhRo+jXr99/WualOH/+PGFhYbz77ru0aNGiEiu9ORLyQogqa/fu3URGRtK5c2fi4+OpX7/+De9fVFTEuHHjePLJJ7nnnnsqqcqKkZAXQlQ5OTk5zJ07l6SkJMLCwujdu7ddj5s7dy61atXipZdecnKFjiNDKIUQVcqWLVsYOHAgAImJiXYH/FdffcWWLVtKRt24izJb8kqpjkDCVZvaAO8C9YCXgQzb9vFaa8ctMS6EEA6UmZlJdHR0yQnWO++80+7HHjlyhBkzZjB//nz8/f2dWKXjlfl2pLU+pLXurrXuDtwJ5AHrbb+edeV3EvBCCFekteaf//wngwcPpmnTpsTHx5cr4C9dusSYMWN46623aN++vRMrdY7y9sk/ABzVWv92o7PPQgjhCtLS0pgyZQppaWnMnj2bLl26lOvxFouFd999l169etGvXz8nVelc5e1YGgysuer235VS+5RSS5VStziwLiGEuGkWi4W1a9cydOhQbr/9duLi4sod8ABLliwhJyeHUaNGOaHKymF3S14pVQPoD4yzbZoPRADa9v094IVSHjcCGAHQsmXLCpYrhBA39ttvvxEZGUlxcTGLFi3ititrspbT1q1bWb9+PXFxcXh7u+9AxPK05PsBe7TWaQBa6zStdbHW2gIsAu4q7UFa6xitdaDWOrCRg1YfF0KIaxUVFbF8+XJeeOEFHnzwQRYvXnzTAZ+SksKkSZOIioqiQYMGDq60cpXn7WkIV3XVKKUCtNZnbDefAvY7sjAhhLDXoUOHmDRpEvXr1ycuLo5bK7B8Xn5+PiEhIbz00kvcfvvtDqzSGHaFvFLKF+gLvHLV5ulKqe5Yu2tOXPM7IYRwuoKCAhYtWsSnn37KyJEjeeyxx244JUFZtNZERkbSoUMHBgwY4MBKjWNXyGut84AG12x71ikVCSGEHX744QciIiJo37498fHxDulWSUhI4NixYyxbtqxCbxauxH3PJgghqqTc3FzmzZvHN998Q2hoKPfff79DnveHH35g6dKlLF++nJo1azrkOV2B+1ybK4So8rZu3cqgQYMwm80kJCQ4LOAzMjIYP348kyZNqlB/viuSlrwQwuVlZWXx3nvv8eOPP/Luu+9y112lDua7KYWFhYwdO5YBAwZw9913O+x5XYW05IUQLktrzaZNmxg4cCD169cnISHBoQEPMGvWLOrVq8fw4cMd+ryuQlryQgiXlJ6eTlRUFCkpKcycOZOuXbs6fB9ffPEF27dvJzY21q1mliwPz/yrhBBuy2KxsG7dOoKDg+nUqROrVq1ySsAfOnSIWbNmER0djZ+fn8Of31VIS14I4TJOnTpFZGQk+fn5LFy4kLZt2zplPxcvXiQkJISxY8fSpk0bp+zDVUjICyEMV1xczKpVq1ixYgUvvvgigwcPdlr3icVi4Z133qFPnz707dvXKftwJRLyQghDHT58mIiICOrUqUNsbCzNmjVz6v4WLFiA2WzmjTfecOp+XIWEvBDCEGazmSVLlrBu3TreeOMNHn/8cadfZfrtt9/yxRdfEBcXh5eXl1P35Sok5IUQlW7fvn2Eh4fTunVrVq9eTWXMUHvy5EkiIyOZNWsW9evXd/r+XIWEvBCi0uTl5fHBBx/w73//m5CQEPr06VMpc8Tk5eUxZswYXnvtNaeM1HFlMoRSCFEptm3bxqBBg8jLyyMxMZEHHnigUgJea014eDh//OMfeeqpp5y+P1cjLXkhhFNlZ2czc+ZM9uzZw9tvv03Pnj0rdf+rVq0iNTWVxYsXe8zMkuUhLXkhhFNorfnXv/7FgAED8PPzIz4+vtIDfteuXcTGxjJ9+nRq1KhRqft2FdKSF0I4XEZGBtOmTePEiRPMmDHDkBWW0tLSePvtt4mMjKRp06aVvn9XIS15IYTDaK359NNPCQ4Opl27dqxevdqQgDebzYSGhjJ06FCHT2jmbqQlL4RwiNOnTxMZGUlOTg4ffvgh7du3N6yW6OhomjRpwrPPygJ2EvJCiAqxWCzEx8ezZMkShg8fTnBwsKEXGn366afs2bOH2NjYKnmi9VoS8kKIm3b06FHCw8Px8fFh+fLltGjRwtB6Dhw4wLx581i0aBG+vr6G1uIqJOSFEOVmNptZvnw5iYmJ/O1vf+OJJ54wfD72CxcuEBoayvjx42ndurWhtbiSMkNeKdURSLhqUxvgXSDWtr01cAIYqLW+4PgShRCuZP/+/YSHh9O8eXNWr15N48aNjS6J4uJi3n77bR555BGHrfvqKcoMea31IaA7gFLKCzgNrAfCgH9rraOUUmG222OdWKsQwkCXL19m/vz5fPXVV7z11lv07dvXZfq8P/jgAwBef/11gytxPeX9fPUAcFRr/RvwBLDCtn0F8KQjCxNCuI6dO3cyaNAgsrKySEhI4KGHHnKZgN+8eTNff/01U6ZMMbzLyBWVt09+MLDG9nMTrfUZAK31GaWU8Z/ZhBAOlZ2dzezZs9mxYwfjx4/HZDIZXdJ/OX78OFOmTOH999+nXr16Rpfjkux+21NK1QD6A2vLswOl1Ail1C6l1K6MjIzy1ieEMMjmzZsZNGgQPj4+rF271uUCPjc3lzFjxvDmm2/SuXNno8txWeVpyfcD9mit02y305RSAbZWfACQXtqDtNYxQAxAYGCgrlC1QginO3/+PNOmTePIkSNMmTKFO+64w+iSfkdrzcSJEwkMDKR///5Gl+PSytOBNYT/dNUAfAYMs/08DPjUUUUJISqf1prPP/+cwYMH06pVK+Lj410y4AFWrFhBRkYGb731ltGluDy7WvJKKV+gL/DKVZujgESl1IvASWCA48sTQlSG1NRUJk+eTFZWFvPmzaNjx45Gl3RdO3bsID4+ntjY2Co7s2R52BXyWus8oME1285jHW0jhHBTFouFxMREFi1axHPPPcfQoUPx9nbdayRTU1OZMGECUVFRLjE+3x247r+mEMKpjh07RmRkJF5eXixdupRWrVoZXdINFRQUEBoayvDhw+nRo4fR5bgNCXkhqpjCwkJiY2NZs2YNr776Kv/zP//j8uPLtdZERUXRsmVLhgwZYnQ5bkVCXogq5MCBA4SHh9OkSRNWrVpFkyZNjC7JLuvWrePAgQMsX77cZS7CchcS8kJUAfn5+SxcuJAvvviC0aNH8/DDD7tNWP70008sWLCAJUuWUKtWLaPLcTuu/RlNCFFhu3btYvDgwaSnp5OQkMAjjzziNgGfmZnJ2LFjeffdd2nZsqXR5bglackL4aFycnKYO3cuSUlJhIWF0bt3b6NLKpeioiLCwsJ44oknuOeee4wux21JS14ID7RlyxYGDhwIQGJiotsFPMDcuXPx8fHh5ZdfNroUtyYteSE8SGZmJtHR0Rw8eJDIyEi3HWq4adMmvv32W+Li4lx+5I+rk1dPCA+gtWbjxo0MHjyYpk2bEh8f77YBf+TIEaZPn86MGTPw9/c3uhy3Jy15Idzc2bNnmTJlChkZGcyePZsuXboYXdJNu3TpEiEhIYwePZoOHToYXY5HkJa8EG7qypQEQ4cOpXv37sTFxbl1wFssFt59912CgoJ49NFHjS7HY0hLXgg39NtvvxEREYHFYmHx4sXcdtttRpdUYUuXLuXSpUuMGjXK6FI8ioS8EG6kqKiIuLg4Vq5cySuvvMIzzzzjEScmk5OTWbduHbGxsVSvXt3ocjyKhLwQbuKXX34hPDycBg0asHLlSgICAowuySFSUlKYOHEiM2bMoGHDhkaX43Ek5IVwcQUFBcTExPD5558zcuRIHn30Ube5YrUs+fn5hIaG8tJLL9GtWzejy/FIEvJCuLA9e/YQGRlJx44diY+Pp379+kaX5DBaayZPnky7du0YMEDWHHIWCXkhXFBubi7vv/8+W7ZsITQ0lPvuu8/okhwuMTGRo0ePsnTpUo/5ZOKK3P+MjRAeJikpiYEDB1JUVERCQoJHBvzevXtZsmQJM2bMwMfHx+hyPJq05IVwERcuXOC9997jp59+4h//+Ad33XWX0SU5RUZGBuPGjWPixIk0a9bM6HI8nrTkhTCY1pqvvvqKQYMG0aBBA+Lj4z024AsLCxk7dizPPPMMQUFBRpdTJdjVkldK1QMWA10BDbwAPAy8DGTY7jZea73RGUUK4anS09OZOnUqqampzJo1iz/84Q9Gl+RUs2bNol69ejz//PNGl1Jl2NuSnwN8qbXuBHQDDtq2z9Jad7d9ScALYSeLxcLHH39McHAwXbp0YeXKlR4f8Bs3bmT79u2Eh4d7xAVc7qLMlrxSyh/oDQwH0FqbAbOcDRfi5pw8eZLIyEjMZjMxMTG0adPG6JKc7tChQ8ycOZOFCxfi5+dndDlVij1vp22wdsksU0r9oJRarJSqbfvd35VS+5RSS5VStzivTCHcX3FxMbGxsTz//PPcd999LF26tEoEfHZ2NiEhIYSGhtK2bVujy6ly7Al5b6AHMF9rfQeQC4QB84G2QHfgDPBeaQ9WSo1QSu1SSu3KyMgo7S5CeLzDhw8zbNgwtm/fTlxcHMHBwVWiy8JisfD2229z//3389BDDxldTpVkz4nXFCBFa73DdvsjIExrnXblDkqpRcCG0h6stY4BYgACAwN1xcoVwr2YzWYWL17M+vXreeONN3j88cer1IU/CxcuxGw28+abbxpdSpVVZshrrc8qpU4ppTpqrQ8BDwAHlFIBWusztrs9Bex3ZqFCuJsff/yRiIgI2rRpw5o1a6rc5Ftbtmxhw4YNxMXF4eXlZXQ5VZa9F0O9AaxSStUAjgHPA3OVUt2xDqk8AbzilAqFcDN5eXnMmzePzZs3ExoaSp8+fYwuqdKdPHmSiIgIZs2a5VHz7bgju0Jea70XCLxm87OOL0cI95acnMzUqVP505/+RGJiYpVcozQvL48xY8bw2muv0bVrV6PLqfJkWgMhHODixYvMnDmTH374gbfffpuePXsaXZIhtNZERETQtWtXnnrqKaPLEci0BkJUiNaaf/3rXwwcOBB/f3/i4+OrbMADrF69mpSUFMLCwqrUCWZXJi15IW5SRkYGUVFRnDx5khkzZnD77bcbXZKhdu/ezYoVK1ixYgU1atQwuhxhIy15IcpJa80nn3xCcHAw7du3Z9WqVVU+4NPT0xk/fjyRkZEesyyhp5CWvBDlkJKSwuTJk8nNzeXDDz+kffv2RpdkOLPZTEhICMHBwR47e6Y7k5AXwg4Wi4XVq1ezbNkynn/+eYYMGSJjv22io6Np0qQJzz33nNGliFJIyAtRhiNHjhAeHk6tWrVYvnw5LVq0MLokl/HZZ5+xZ88eVqxYISdaXZSEvBDXYTabWbZsGWvXruVvf/sbTz75pATZVQ4cOMD777/PokWLqF27dtkPEIaQkBeiFD/99BMRERE0b96c1atX07hxY6NLcilZWVmMHTuWcePG0bp1a6PLETcgIS/EVS5fvsz8+fP56quvGDNmDA8++KC03q9RXFzM+PHjeeihh6rklA3uRoZQCmGzc+dOBg0aRFZWFomJifTt21cCvhQffvghAK+//rrBlQh7SEteVHnZ2dnMnj2bnTt3Mn78eFlg+gY2b97Mpk2bZGZJNyIteVGlbd68mUGDBuHj40NiYqIE/A0cP36cKVOmMG3aNOrVq2d0OcJO0pIXVdL58+eZNm0aR48eZerUqXTv3t3oklxabm4uISEhvPnmm3Tp0sXockQ5SEteVClaaz7//HMGDx5M69atWbNmjQR8GbTWTJo0iR49etC/f3+jyxHlJC15UWWkpqYyefJkLl68yAcffECHDh2MLsktxMbGkp6eTmRkpNGliJsgIS88nsViISEhgcWLFzNs2DCGDh0qJw3ttHPnTtasWUNsbKzMLOmmJOSFRzt27BgRERFUr16dZcuW0bJlS6NLchtnzpzhnXfeYerUqXIxmBuTkBceqbCwkOXLl5OQkMBrr73GU089RbVqcgrKXmazmdDQUIYNG8add95pdDmiAiTkhcc5cOAAkyZNIiAggFWrVtGkSROjS3IrWmuioqJo0aIFwcHBRpcjKkhCXniM/Px8FixYwMaNGxk9ejQPP/ywXLF6E9avX8/+/ftZvny5vH4ewK7Pr0qpekqpj5RSvyilDiql7lZK1VdKfa2U+tX2/RZnFyvE9ezatYvBgwdz7tw5EhISeOSRRySgbsJPP/3E/PnziY6OxtfX1+hyhAPY25KfA3yptX5GKVUD8AXGA//WWkcppcKAMGCsk+oUolSXLl1izpw5bNu2jbCwMO655x6jS3JbmZmZjB07lgkTJsgJag9SZkteKeUP9AaWAGitzVrrLOAJYIXtbiuAJ51VpBCl+fbbbxk0aBBeXl4kJiZKwFdAcXExYWFh9O/fn969extdjnAge1rybYAMYJlSqhuwGxgJNNFanwHQWp9RSskYK1EpMjMzmTFjBocOHSIyMpIePXoYXZLbmzt3Lj4+PowYMcLoUoSD2dMn7w30AOZrre8AcrF2zdhFKTVCKbVLKbUrIyPjJssUwjrqY+PGjQwePJhbb72VNWvWSMA7wKZNm/jmm2+IjIyUYaYeyJ6WfAqQorXeYbv9EdaQT1NKBdha8QFAemkP1lrHADEAgYGB2gE1iyrozJkzTJ06lXPnzjFnzhw6d+5sdEke4ejRo0yfPp0PP/wQf39/o8sRTlDm27bW+ixwSinV0bbpAeAA8BkwzLZtGPCpUyoUVZrFYiExMZFnn32W7t27ExsbKwHvIJcuXSIkJITRo0fLPD4ezN7RNW8Aq2wja44Bz2N9g0hUSr0InAQGOKdEUVWdOHGCiIgIABYvXixriTqQxWLhH//4Bz179uTRRx81uhzhRHaFvNZ6LxBYyq8ecGw5QkBRURGxsbGsWrWKV155hWeeeUb6ih1s2bJlXLx4kWnTphldinAyueJVuJSDBw8SERFBw4YNWblyJQEBAUaX5HGSk5P56KOPiIuLo3r16kaXI5xMQl64hIKCAhYuXMiGDRsYNWoU/fr1kytWneD06dNMnDiR6dOn07BhQ6PLEZVAQl4Ybs+ePURGRtKxY0fi4+OpX7++0SV5pPz8fEJCQnjxxRdlNawqREJeGCY3N5e5c+fy3XffERoayn333Wd0SR5La82UKVNo164dAwcONLocUYnkbJYwxHfffcfAgQNLVm2SgHeutWvXcuTIEcaPHy/dYFWMtORFpbpw4QLR0dHs37+fiRMn8qc//cnokjze3r17Wbx4McuWLcPHx8fockQlk5a8qBRaa7788ksGDRpEo0aNSEhIkICvBOfOnWPcuHFMnDiRZs2aGV2OMIC05IXTpaWlMXXqVM6ePcvs2bPp0qWL0SVVCYWFhYwdO5ann36aoKAgo8sRBpGWvHAai8XCxx9/zNChQ+natStxcXES8JVo9uzZ1K1blxdeeMHoUoSBpCUvnOLkyZNERkZSWFhITEwMbdq0MbqkKmXjxo0kJycTGxsrVwtXcRLywqGKi4tZtWoVK1as4KWXXmLQoEESMpXs8OHDzJw5k4ULF1KnTh2jyxEGk5AXDnP48GHCw8OpW7cucXFx3HrrrUaXVOVkZ2cTEhJCaGgobdu2Nboc4QIk5EWFmc1mFi9ezPr163nzzTf5y1/+ImOxHSErCw4ehMOHITMTlILGjaFTJ+vXNQttWywW3nnnHe69914eeughg4oWrkZCXlTI3r17iYiIoG3btsTHx9OgQQOjS3JvFgt89x0sWgTbt4O3N5jN1u0AXl5QvToUF0O/fjB8ONxxByhFTEwM+fn5vPnmm4b+CcK1SMiLm5KXl8e8efPYvHkzoaGh9OnTx+iS3N/x4zBqFBw4YL3t7w/XO59RXAxffAH//Cc88ADJjz3GZ599xsqVK/H2lv/W4j/kjJgot+TkZAYOHEh+fj6JiYkS8I7w2WfwyCPw88/WcK9b9/oBD9YW/S23QJ06FH75JU2Cg5kzbJhM7iZ+R97yhd0uXrzIe++9x969e5kwYQJ//vOfjS7JM6xbByEh1j72mjXL9dBi4GR2No3q1sV/4kRo2xYCS1vfR1RV0pIXZdJas2nTJgYOHEi9evVISEiQgHeUvXth7FioXbvcAa+xLnBeq1Yt6jRtaj0x+/zzcPasc2oVbkla8uKG0tPTiYqKIiUlhejoaP74xz8aXZLnyM+HkSOt3TI1apT74ZmZmZjNZlq3bo0C6yeBrCwIC4Nly6yhL6o8acmLUmmtWb9+PcHBwXTs2JGVK1dKwDvaypWQkgI3ccFSbl4e58+do3nz5lS7Oszr1oWkJNiyxYGFCncmLXnxO6dOnWLy5Mnk5eWxYMEC2rVrZ3RJnsdigZgYqFXrhnczWyxEnT3Lzrw8souLaV69Oq82aEDT9HRubdaMGteu0aqU9WvRIrj3Xif+AcJd2NWSV0qdUEr9pJTaq5TaZds2USl12rZtr1LqUeeWKpytuLiYlStXMnz4cO655x6WL18uAe8sO3ZYu1bKmN+9GGhavToxLVvyTYcOvNKoEWNOnMDs749f7dqlP6hOHevzS9+8oHwt+fu11ueu2TZLax3tyIKEMY4cOUJ4eDi+vr6sWLGC5s2bG12SZ/vhBygqKvNutapVY0SjRiW3O+Tm0tTLi7Rateh6vQdVq2b9+uknaNrUMfUKtyXdNVWc2Wxm6dKlfPzxx/z973+nf//+MiVBZdixw3o1azlkZWVx+tIlMry9aVvWSByzGfbtg759K1Ck8AT2nnjVwCal1G6l1Iirtv9dKbVPKbVUKXVLaQ9USo1QSu1SSu3KyMix7nN+AAAWD0lEQVSocMHCcfbt28fQoUP59ddfWb16NU888YQEfGU5fdruETUauHTpEqfT0ljk7c3jdevSuqyQ9/aG336reJ3C7dnblDBprVOVUo2Br5VSvwDzgQisx2AE8B7wu9UJtNYxQAxAYGCgdkjVokLy8vKYP38+mzZtIiQkhAceeEDCvbJdmYvmOoqLi8nNzSUnJ4ecnByUlxfLa9akZrVqhNrbBVNc7IBChbuzK+S11qm27+lKqfXAXVrrkjFaSqlFwAbnlCgcafv27UyZMoU77riDxMRE6tata3RJVZOfH5w5U3JTAwX5+dZQz80lPz8fX19f/Pz8aNCwIVHnzpFdWMjc5s3xtucN2WKBevWcV79wG2WGvFKqNlBNa33J9vNDQLhSKkBrfeUofQrY78Q6RQVlZ2cza9Ysvv/+e8aPHy9rfhqtRw8s+/aRY7GUtNarVauGn58fDRs2xNfXt2T8+5QzZzhuNvNhy5bUtHcBFqWgWzcn/gHCXdjTkm8CrLd9nPcGVmutv1RKxSmlumNthJwAXnFalaJCNm/ezPTp0+nTpw+JiYn4XjMPuagcWmuOHj1KcnIyl7Zto39aGto2FLJBgwbULKWP/kxhIeuysqihFA//+mvJ9vFNm9LvRp/CvLygc2dn/BnCzZQZ8lrrY8DvmgRa62edUpFwmHPnzjF9+nSOHTvGtGnT6CYtu0qXl5fHzp072bp1K1u3bsXb25tevXrRe+RImh09SrU6dayBfB0B1auzq7xhnZ9vvfJVFk0XyBBKj6S15vPPP+f999/nqaeeIjIykho3MTeKKD+tNcePHyc5OZmtW7fy888/07VrV3r16sVf//pXWrZs+Z+T3Js2WacYdvT0wJcvW+fEucGbh6g6JOQ9zOnTp5k8eTLZ2dl88MEHdOjQweiSPN7ly5f5/vvvS4Jda43JZGLIkCEEBgZev3vsb3+DjRuhsNC62pMj5OVZ56MfMMAxzyfcnoS8h7BYLMTHx7NkyRKGDRvG0KFD8ZKWnFNorTl16hRJSUkkJyezb98+unTpgslkYs6cOdx22232DUlt397a4p450zoSpqLDWC0WKCiA99+XkTWihIS8Bzh27Bjh4eHUqFGDZcuW0bJlS6NL8jgFBQXs3r2bpKQktm7dSmFhIUFBQTz99NNMmzaN2tebR6Ysr7wCW7dar4CtSNBbLHDxIgQHwwMP3NxzCI8kIe/GCgsLWb58OQkJCbz++us8+eSTVLN3iJ0oU0pKSskJ071799KpUydMJhPR0dG0a9fOMReQeXvD4sXw4ovWoPf3L/d0BxQUWLtpBgyASZMqXpPwKBLyburnn38mPDycW2+9ldWrV9O4cWOjS3J7ZrOZPXv2lAR7bm4uJpOJJ554gsmTJ1PnJuZ9t4uvL6xYYe1mWbAAtL7xIt5XFBdDdrZ1eoTJk2HgwLIfI6ocpXXlzTQQGBiod+3aVWn780SXL19mwYIF/POf/2TMmDH07dtXpiSogNTUVLZu3UpycjK7d++mffv2mEwmTCYT7du3r/xPRvv3w4wZ1i4ci8Xaqvfx+c9ImcJC6xBJra3b+vWzrg8rs4Z6NKXUbq31TS3eKyHvRr7//nsiIyO5/fbbeeutt6gnJ9fKzWw2s3fv3pJgz8rKIigoCJPJRM+ePfH39ze6RKtTp+Crr6xdOPv2waVL1v76W26BHj3g7rvh4YcdP/xSuCQJeQ936dIl5syZw7Zt2xg3bhy9evUyuiS3kpaWVtIFs2vXLtq0aVMS7J06dZLzGMLlVSTkpU/exX3zzTdMmzaNe++9l8TExJsfxVGFFBUV8eOPP5YE+7lz5wgKCuLBBx9kwoQJ8glIVCkS8i4qMzOT6dOnc/jwYSZPnkyPHj2MLsmlZWRklFyMtHPnTlq2bInJZGLChAl06dJFWuuiypKQdzFaazZu3MicOXN4/PHHmTRpEjXLWiCiCiouLmbfvn0lwX727Fl69uzJvffeS1hYGPWlr1oIQELepaSmpjJlyhQyMzOZO3cunTp1Mrokl3L+/Pn/aq0HBARgMpkYO3YsXbt2lSt8hSiFhLwLsFgsrF27lpiYGP7617/y7LPP4l3eC2I8kMViYf/+/SV966dPn+auu+7CZDIxZswYGjZsaHSJQrg8SRKDHT9+nIiICJRSLFmyhNatWxtdkqEuXLjAtm3b2Lp1K9u2baNJkyaYTCZGjx7N7bffLm9+QpST/I8xSFFREbGxsaxatYpXX32Vp59+ukqeHLRYLBw8eLCktX7ixImS1vrIkSPlSl4hKkhC3gAHDx4kPDycRo0asWrVKprauzCzh7h48SLbtm0jOTmZ5ORk6tevj8lk4o033qBbt25Ud9S0u0IICfnKVFBQwMKFC9mwYQOjRo2iX79+VWJKAovFwqFDh0quMj1y5AiBgYGYTCZee+01AgICjC5RCI8lIV9Jdu/eTWRkJJ07dyY+Pt7jh/hlZ2ezY8eOkmD39/cnKCiIV199le7du8tKVUJUEgl5J8vJyWHu3LkkJSURFhZG7969jS7JKbTW/PrrryV964cPH6ZHjx4EBQXx8ssv06xZM6NLFKJKsivklVIngEtAMVCktQ5UStUHEoDWwAlgoNb6gnPKdE9btmwhKiqKXr16kZiYiJ+fn9ElOVROTg47d+4kKSmJbdu24ePjg8lk4oUXXuDOO++Ui7iEcAHlacnfr7U+d9XtMODfWusopVSY7fZYh1bnpi5cuEB0dHTJnO+BgTc1r5DL0Vpz9OhRkpOTSUpK4pdffqF79+4EBQUxfPhwWZFKCBdUke6aJ4D7bD+vAL6hioe81povv/ySWbNm8dhjjzFhwgR8fHyMLqtC8vLy2LlzZ0mwe3t706tXL5577jkCAwPd/u8TwtPZG/Ia2KSU0sBCrXUM0ERrfQZAa31GKVWlBzSnpaUxZcoU0tLSmD17Nl26dDG6pJuiteb48eMl0wf8/PPPdO3alV69ehEcHEyrVq2qxIggITyFvSFv0lqn2oL8a6XUL/buQCk1AhgBeOTHeYvFwrp161iwYAFDhgzhueeec7tx3pcvX+b7778vCXatNUFBQQwZMoTAwEB8fX2NLlEIcZPsCnmtdarte7pSaj1wF5CmlAqwteIDgPTrPDYGiAHroiGOKds1/Pbbb0RGRlJcXExMTAxt2rQxuiS7aK05deoUSUlJJCcns2/fPrp06YLJZGLOnDncdttt0loXwkOUGfJKqdpANa31JdvPDwHhwGfAMCDK9v1TZxbqSoqKili5ciVxcXG8/PLLDBw40OWnJCgoKGD37t0kJSWxdetWCgsLCQoK4umnn2batGmyGIkQHsqelnwTYL2tZecNrNZaf6mU+h5IVEq9CJwEBjivTNdx6NAhwsPDqVevHnFxcdx6661Gl3RdKSkpJePW9+7dS6dOnQgKCiI6Opp27dpJa12IKkDWeLWT2Wxm0aJFfPLJJ4wcOZLHHnvM5ULSbDazZ8+ekmDPzc3FZDJhMpm46667qFOnjtElCiFugqzx6mR79+4lPDyc9u3bEx8fT4MGDYwuqURqamrJCdPdu3fTvn17TCYTU6dOpX379i7fjSSEcC4J+RvIzc1l3rx5fPPNN4SGhnL//fcbXRJms5m9e/eWzAmTlZVFUFAQ/fr1Y9KkSfj7+xtdohDChUjIX8fWrVuZOnUqf/7zn0lISDA0PNPS0kq6YHbt2sVtt92GyWRi0qRJdOrUSVrrQojrkpC/RlZWFjNnzmTv3r28++673HXXXZVeQ1FRET/++GNJsJ87d467776bBx98kAkTJlCvXr1Kr0kI4Z4k5G201nz99de89957PPzwwyQkJFCrVq1K239GRsZ/LVLdsmVLTCYT77zzDn/4wx+ktS6EuCkS8kB6ejpRUVGkpKQQHR3NH//4R6fvs7i4mH379pUE+9mzZ+nZsyf33nsvYWFhHj/fvBCiclTpkLdYLHzyySd8+OGHDBw4kKioKKcuZnH+/Pn/aq0HBARgMpkYO3YsXbt2xcvLy2n7FkJUTVU25E+dOkVkZCT5+fksXLiQtm3bOnwfFouF/fv3l/Stnz59umSR6jFjxtCwYUOH71MIIa7m+iFfUADp6VBcDLVqQePGUIGLkIqLi1m1ahUrVqzgxRdfZPDgwQ7t775w4QLbtm1j69atbN++ncaNGxMUFMTo0aO5/fbb8fZ2/ZdcCOE5XDNxDh2CNWtgyxb47Tfw8rIGu8UCNWpAly7wxBPQvz+UY2jj4cOHiYiIwM/Pj9jYWIcsSWexWDh48GBJa/3EiRMlrfWRI0fSuHGVnoFZCGEw15rW4PBhGDcOfvwRtAYfH6hZE65uaRcVQX6+tWXv5QXPPw8jR1rvex1ms5klS5bw8ccf88Ybb9C/f/8KTUlw8eJFtm3bRnJyMsnJydSvX79k+oBu3bq53VTDQgjX5v7TGlgssHAhzJplDfe6da/fJePtDVfWSi0qgkWLYONG+OAD6Nr1d3fft28fERERtGrVijVr1tCoUaObKM/CoUOHSq4yPXLkCIGBgZhMJl577TUCAgLK/ZxCCFEZjA95i8Xaev/oI2t4l6cV7O0N9erBmTMwYAAsXw5//jNgXbbuww8/5F//+hchISH06dOnXK337OxsduzYURLsderUwWQy8eqrr9K9e3enjsIRQghHMT7kp02DtWutYX2zJ0D9/SEvz9p1s3492y9cYMqUKfTo0YOEhATq1q1b5lNorfn1119L+tYPHz5Mjx49CAoK4uWXX3ZI/70QQlQ2Y0P+++9h8WJr90xFR7j4+lJ84QInHn2UaZ06Me6dd7j77rtv+JCcnBx27txJUlIS27Ztw8fHB5PJxAsvvMCdd95JzZo1K1aTEEIYzLiQN5th1Chr90wFLwLSwKVLlzibkUGj6tWJ79uXmqUEvNaao0ePkpycTFJSEr/88gvdunXDZDIxfPhwj1yDVghRtRkX8ps3W8e/l9GVkl1cTPiZM2zPyaGetzd/b9SIR656TGFREWfPnsVcUEDzFi3w9fKCZcvg9dehRg3y8vLYuXNnSbB7e3tjMpl47rnnCAwMxOcGo3KEEMLdGRfyCxfa1UUTdfYs1ZViU4cOHM7PZ+SpU3Tw8eG2mjW5mJVFeno69W65hWbNmlFNKTRQeO4cSePHszY3l59//pmuXbvSq1cvgoODadWqlcut6CSEEM5iTMjn5FjHwt9yyw3vdtliYfOlSyS2aYNvtWp09/Xl3jp1+DQzk/8pLKS4uJiWLVtSo0YNcnNzycnJIScnh9qFhfglJzMkKorAwEB8fX0r6Q8TQgjXYkzIHzpkvcipjBb1SbOZakBL23BFDQQUFrLj4kWCmzTBu3p10tPTybt8mVo+Pvj5+dGyRQtqaM2tXl7Qu7fz/xYhhHBhxoT8iRPWC5nKkGex4Gfr0rmcn8+pU6coys/nMnAxOxs/Pz9rV03z5nhd3fWjNaSkWMfgyzzsQogqzO6QV0p5AbuA01rrvyillgP3Ahdtdxmutd5r15MVFFgDuAy+1aqRa7vf8ePH8fbywrtOHRoD7Vu35rqfA658QjCbbzjdgRBCeLrytORHAgeBq2cEC9Faf1T+vXrbNZNkyxo1KMbabdO5c2cUsDI1lQ7e3tcPeLC25LUu39WzQgjhgezqy1BKNQceAxY7ZK/Nm1uDvgy1qlWjT506LMjIIN9i4ce8PL69dInHyrqCtbAQmjSp8Ph7IYRwd/Z2WM8GQoFr+1gmK6X2KaVmKaXsvzy0c2drENsxA2ZY06YUWCz0PXyY8adPM65pU9qUdSXq5cvQrZvd5QghhKcqszmtlPoLkK613q2Uuu+qX40DzgI1gBhgLBBeyuNHACOA/1xResst0KqVdWKx2rVvuH9/Ly/ea9HCnr/lv/XpU/7HCCGEh7GnJW8C+iulTgDxQB+l1Eqt9RltVQAsA+4q7cFa6xitdaDWOvC/pvkdMcKuETblVlRk7aZ57DHHP7cQQriZMkNeaz1Oa91ca90aGAxs1lr/VSkVAKCsl48+Cewv157/8hfrcn75+eWv+kYuXYLBg6FOHcc+rxBCuKGKDCJfpZT6CfgJaAhEluvRfn4wdaq1/9xRq1Pl5kL9+jB6tGOeTwgh3Fy5LobSWn8DfGP7ueKd3o8+Cp9/Dl9/bZ1PviJzypjN1q6a2bPLte6rEEJ4MmMvB1XKuuRfYCBkZdl1gVSp8vOti4ZMnQomk2NrFEIIN2b8Nf+1asGKFdY++osXrWFtL62tbw5aw7x58MwzzqtTCCHckNKO6g+3Z2dKZQC/VdoOHa8hcM7oIlyUvDY3Jq/P9clrc2MNgdpa60Zl3rMUlRry7k4ptUtrHWh0Ha5IXpsbk9fn+uS1ubGKvj7Gd9cIIYRwGgl5IYTwYBLy5RNjdAEuTF6bG5PX5/rktbmxCr0+0icvhBAeTFryQgjhwSTkS6GUaqGU+j+l1EGl1M9KqZG27fWVUl8rpX61fb/xSuQeTCnlpZT6QSm1wXb7NqXUDttrk6CUqmF0jUZRStVTSn2klPrFdgzdLceOlVLqf23/p/YrpdYopXyq8rGjlFqqlEpXSu2/alupx4qymquUOmKb4r2HPfuQkC9dEfCW1roz0BP4m1KqCxAG/Ftr3R74t+12VXVlpbArpgGzbK/NBeBFQ6pyDXOAL7XWnYBuWF+nKn/sKKWaAW8CgVrrroAX1kkPq/Kxsxx45Jpt1ztW+gHtbV8jgPl27UFrLV9lfAGfAn2BQ0CAbVsAcMjo2gx6PZrbDr4+wAZAYb2Yxdv2+7uBr4yu06DXxh84ju1811Xbq/yxAzQDTgH1sc6btQF4uKofO0BrYH9ZxwqwEBhS2v1u9CUt+TIopVoDdwA7gCZa6zMAtu+NjavMUNeuFNYAyNJaX1kgIAXrf+iqqA2QASyzdWctVkrVRo4dtNangWjgJHAGuAjsRo6da13vWLnyJnmFXa+VhPwNKKX8gI+BUVrrbKPrcQVXrxR29eZS7lpVh215Az2A+VrrO4BcqmDXTGlsfctPALcBtwK1sXZBXKuqHjtluan/ZxLy16GUqo414FdprdfZNqddtVhKAJBuVH0G+t1KYVhb9vWUUlemrm4OpBpTnuFSgBSt9Q7b7Y+whr4cO/AgcFxrnaG1LgTWAUHIsXOt6x0rKcDVa6Ha9VpJyJfCttrVEuCg1nrmVb/6DBhm+3kY1r76KkWXvlLYUOD/gCvTgFbJ1wZAa30WOKWU6mjb9ABwADl2wNpN01Mp5Wv7P3bltZFj579d71j5DHjONsqmJ3DxSrfOjcjFUKVQSvUCvsO66tWVfufxWPvlE4GWWA/YAVrrTEOKdAG2hd3HaK3/opRqg7VlXx/4Afirtq7/W+UopboDi7Eucn8MeB5rg6rKHztKqUnAIKwj2H4AXsLar1wljx2l1BrgPqwzTaYB/wA+oZRjxfbGOA/raJw84Hmt9a4y9yEhL4QQnku6a4QQwoNJyAshhAeTkBdCCA8mIS+EEB5MQl4IITyYhLwQQngwCXkhhPBgEvJCCOHB/h/hWxXMyOiL5wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector\n", - "\n", - "algorithm_cfg = {\n", - " 'name': 'ExactEigensolver',\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising'},\n", - " 'algorithm': algorithm_cfg\n", - "}\n", - "\n", - "result = run_algorithm(params,algo_input)\n", - "print('energy:', result['energy'])\n", - "#print('tsp objective:', result['energy'] + offset)\n", - "x = tsp.sample_most_likely(result['eigvecs'][0])\n", - "print('feasible:', tsp.tsp_feasible(x))\n", - "z = tsp.get_tsp_solution(x)\n", - "print('solution:', z)\n", - "print('solution objective:', tsp.tsp_value(z, ins.w))\n", - "draw_tsp_solution(G, z, colors, pos)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Running it on quantum computer\n", - "We run the optimization routine using a feedback loop with a quantum computer that uses trial functions built with Y single-qubit rotations, $U_\\mathrm{single}(\\theta) = \\prod_{i=1}^n Y(\\theta_{i})$, and entangler steps $U_\\mathrm{entangler}$." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "energy: -598732.7787240263\n", - "time: 88.01577425003052\n", - "feasible: True\n", - "solution: [1, 2, 0]\n", - "solution objective: 185.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD8CAYAAACSCdTiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xtc1FX+x/HXEVRERPNOXvOu66YZ2xpjVpaVtVn9yhtuaTe77Jb+TBAtWwVUVPKWpeIdvACWdjG3bNdfGeIlNTPTNG8pooAiIiAMMOf3x4ysayiDzPCdGT7Px4MHzJeZ+X4Yv77nzPme7zlKa40QQgjPVM3oAoQQQjiPhLwQQngwCXkhhPBgEvJCCOHBJOSFEMKDScgLIYQHk5AXQggPJiEvhBAeTEJeCCE8mLc9d1JK/S/wEqCBn4DngQAgHqgP7AGe1Vqbb/Q8DRs21K1bt65IvUII4XoyMyE11fpztWqgVNmP0RosFvDygpYtoXbt69519+7d57TWjW6mNFXWtAZKqWZAEtBFa31ZKZUIbAQeBdZpreOVUguAH7XW82/0XIGBgXrXrl03U6cQQrgerSE6GhYssIZ0jRrlf47cXCgqgjlz4NFHS72LUmq31jrwZkq0t7vGG6illPIGfIEzQB/gI9vvVwBP3kwBQgjhtpYtswa8v//NBTxY3xx8fGDkSNi2zbH1YUfIa61PA9HASazhfhHYDWRprYtsd0sBmpX2eKXUCKXULqXUroyMDMdULYQQRvv1V4iKAj8/a5dLRdSsCd7e8OabkJ3tmPpsygx5pdQtwBPAbcCtQG2gXyl3LbXfR2sdo7UO1FoHNmp0U11KQgjhWrSG//1f6/fq1R3znLVrW/v2p01zzPPZ2NNd8yBwXGudobUuBNYBQUA9W/cNQHMg1aGVCSGEq9q9Gw4dsnbT3EBiZibPHj/O3b/8wsRUOyLS3x/WroULFxxUqH0hfxLoqZTyVUop4AHgAPB/wDO2+wwDPnVYVUII4cqWLrWOjCljFE1Db29ebNiQ/nXr2ve8Xl7W512/3gFFWtnTJ78D6wnWPViHT1YDYoCxwGil1BGgAbDEYVUJIYSrsljgm2+gTp0y79rH35/76tShbnn67L29YePGm6/v2qez505a638A/7hm8zHgLodVIoQQ7iAlxTrk0dfXOc/v4wM//2x9M6lW8etV5YpXIYQojxMnKj6a5ka8vaGwEM6dc8jTScgLIUR55OdbR9XYQQNnz57lYnmHRXp5QUFB+WsrhV3dNUIIIWzsHDKZX1BA6unT5OTk4O3vT7ki24FDMyXkhRCiPFq0uGFL3qI158+dI/PCBSxA/SZNqKUUl4qKMFsseCmF141G5RQXW7876LoiCXkhhCiP226zfi8u/l3f/OXLl0k9c4Ya1avjX6cOy7Oz+Tgzs+T3Gy9eZETDhoy4UYAXFECHDg7r95eQF0KI8vDygj/9CXbsANv4d4vFQnpGBtkXL9KkaVMUkJaeTki7dowrb1gXFMADDzisXDnxKoQQ5fXiiyUXQuXm5nL02DGKi4tp07YtPjVrcubsWZo3b453eQP+ygVWgwY5rFRpyQshRHn17k1R/fpcOHqULLOZgIAA/Pz8KLZYOJWSQpMmTajl41P+583Otrbib73VYaVKS14IIcrpm+++4y2l8LZYaNO6NX5+fmggNTWV2rVrU8/eaQyulp9vnY1y0iSH1ioteSGEsFNmZibTp0/n8OHDvPPBB9yyYQOsWAH16nH+/HmKiopo1qzUWddvrKgILl+G996Dpk0dWrO05IUQogxaazZs2MDgwYNp3rw5a9asoUePHvD22/DII+SnpXEhM5PmzZtTzZ6l/65mNlu7acaMgScdv/aStOSFEOIGUlNTmTJlCpmZmbz//vt07NjxP7/08iI1LIyvv/ySQXXrUj0/37qIiD20hosXrdMYREZCcLBT6peWvBBClMJisZCQkMCzzz5LYGAgsbGx/x3wQEFBASFhYVSPiMBn3TrrBUzZ2dbwvnJR09W0ts5Lc+GC9X533AFffeW0gAdpyQshxO8cP36ciIgIqlWrxtKlS2nVqtXv7qO1ZurUqbRq1YohQ4ZYhz5++y0kJVnnm9++/b9nklTKGvC+vtZumeHDoWvXMuekrygJeSGEsCkqKmLFihWsXr2aV199laeffppq15nu9+OPP+bgwYMsX74cdSWoq1WD3r2tXxYLnDxpnZq4sNA6cqZNG2jSxOnBfjUJeSGEAA4cOEBERASNGjVi1apVNL3BKJd9+/axcOFCli5dSq1atUq/U7Vq0Lq19ctAEvJCiCotPz+fmJgYNmzYwKhRo+jXr99/WualOH/+PGFhYbz77ru0aNGiEiu9ORLyQogqa/fu3URGRtK5c2fi4+OpX7/+De9fVFTEuHHjePLJJ7nnnnsqqcqKkZAXQlQ5OTk5zJ07l6SkJMLCwujdu7ddj5s7dy61atXipZdecnKFjiNDKIUQVcqWLVsYOHAgAImJiXYH/FdffcWWLVtKRt24izJb8kqpjkDCVZvaAO8C9YCXgQzb9vFaa8ctMS6EEA6UmZlJdHR0yQnWO++80+7HHjlyhBkzZjB//nz8/f2dWKXjlfl2pLU+pLXurrXuDtwJ5AHrbb+edeV3EvBCCFekteaf//wngwcPpmnTpsTHx5cr4C9dusSYMWN46623aN++vRMrdY7y9sk/ABzVWv92o7PPQgjhCtLS0pgyZQppaWnMnj2bLl26lOvxFouFd999l169etGvXz8nVelc5e1YGgysuer235VS+5RSS5VStziwLiGEuGkWi4W1a9cydOhQbr/9duLi4sod8ABLliwhJyeHUaNGOaHKymF3S14pVQPoD4yzbZoPRADa9v094IVSHjcCGAHQsmXLCpYrhBA39ttvvxEZGUlxcTGLFi3ititrspbT1q1bWb9+PXFxcXh7u+9AxPK05PsBe7TWaQBa6zStdbHW2gIsAu4q7UFa6xitdaDWOrCRg1YfF0KIaxUVFbF8+XJeeOEFHnzwQRYvXnzTAZ+SksKkSZOIioqiQYMGDq60cpXn7WkIV3XVKKUCtNZnbDefAvY7sjAhhLDXoUOHmDRpEvXr1ycuLo5bK7B8Xn5+PiEhIbz00kvcfvvtDqzSGHaFvFLKF+gLvHLV5ulKqe5Yu2tOXPM7IYRwuoKCAhYtWsSnn37KyJEjeeyxx244JUFZtNZERkbSoUMHBgwY4MBKjWNXyGut84AG12x71ikVCSGEHX744QciIiJo37498fHxDulWSUhI4NixYyxbtqxCbxauxH3PJgghqqTc3FzmzZvHN998Q2hoKPfff79DnveHH35g6dKlLF++nJo1azrkOV2B+1ybK4So8rZu3cqgQYMwm80kJCQ4LOAzMjIYP348kyZNqlB/viuSlrwQwuVlZWXx3nvv8eOPP/Luu+9y112lDua7KYWFhYwdO5YBAwZw9913O+x5XYW05IUQLktrzaZNmxg4cCD169cnISHBoQEPMGvWLOrVq8fw4cMd+ryuQlryQgiXlJ6eTlRUFCkpKcycOZOuXbs6fB9ffPEF27dvJzY21q1mliwPz/yrhBBuy2KxsG7dOoKDg+nUqROrVq1ySsAfOnSIWbNmER0djZ+fn8Of31VIS14I4TJOnTpFZGQk+fn5LFy4kLZt2zplPxcvXiQkJISxY8fSpk0bp+zDVUjICyEMV1xczKpVq1ixYgUvvvgigwcPdlr3icVi4Z133qFPnz707dvXKftwJRLyQghDHT58mIiICOrUqUNsbCzNmjVz6v4WLFiA2WzmjTfecOp+XIWEvBDCEGazmSVLlrBu3TreeOMNHn/8cadfZfrtt9/yxRdfEBcXh5eXl1P35Sok5IUQlW7fvn2Eh4fTunVrVq9eTWXMUHvy5EkiIyOZNWsW9evXd/r+XIWEvBCi0uTl5fHBBx/w73//m5CQEPr06VMpc8Tk5eUxZswYXnvtNaeM1HFlMoRSCFEptm3bxqBBg8jLyyMxMZEHHnigUgJea014eDh//OMfeeqpp5y+P1cjLXkhhFNlZ2czc+ZM9uzZw9tvv03Pnj0rdf+rVq0iNTWVxYsXe8zMkuUhLXkhhFNorfnXv/7FgAED8PPzIz4+vtIDfteuXcTGxjJ9+nRq1KhRqft2FdKSF0I4XEZGBtOmTePEiRPMmDHDkBWW0tLSePvtt4mMjKRp06aVvn9XIS15IYTDaK359NNPCQ4Opl27dqxevdqQgDebzYSGhjJ06FCHT2jmbqQlL4RwiNOnTxMZGUlOTg4ffvgh7du3N6yW6OhomjRpwrPPygJ2EvJCiAqxWCzEx8ezZMkShg8fTnBwsKEXGn366afs2bOH2NjYKnmi9VoS8kKIm3b06FHCw8Px8fFh+fLltGjRwtB6Dhw4wLx581i0aBG+vr6G1uIqJOSFEOVmNptZvnw5iYmJ/O1vf+OJJ54wfD72CxcuEBoayvjx42ndurWhtbiSMkNeKdURSLhqUxvgXSDWtr01cAIYqLW+4PgShRCuZP/+/YSHh9O8eXNWr15N48aNjS6J4uJi3n77bR555BGHrfvqKcoMea31IaA7gFLKCzgNrAfCgH9rraOUUmG222OdWKsQwkCXL19m/vz5fPXVV7z11lv07dvXZfq8P/jgAwBef/11gytxPeX9fPUAcFRr/RvwBLDCtn0F8KQjCxNCuI6dO3cyaNAgsrKySEhI4KGHHnKZgN+8eTNff/01U6ZMMbzLyBWVt09+MLDG9nMTrfUZAK31GaWU8Z/ZhBAOlZ2dzezZs9mxYwfjx4/HZDIZXdJ/OX78OFOmTOH999+nXr16Rpfjkux+21NK1QD6A2vLswOl1Ail1C6l1K6MjIzy1ieEMMjmzZsZNGgQPj4+rF271uUCPjc3lzFjxvDmm2/SuXNno8txWeVpyfcD9mit02y305RSAbZWfACQXtqDtNYxQAxAYGCgrlC1QginO3/+PNOmTePIkSNMmTKFO+64w+iSfkdrzcSJEwkMDKR///5Gl+PSytOBNYT/dNUAfAYMs/08DPjUUUUJISqf1prPP/+cwYMH06pVK+Lj410y4AFWrFhBRkYGb731ltGluDy7WvJKKV+gL/DKVZujgESl1IvASWCA48sTQlSG1NRUJk+eTFZWFvPmzaNjx45Gl3RdO3bsID4+ntjY2Co7s2R52BXyWus8oME1285jHW0jhHBTFouFxMREFi1axHPPPcfQoUPx9nbdayRTU1OZMGECUVFRLjE+3x247r+mEMKpjh07RmRkJF5eXixdupRWrVoZXdINFRQUEBoayvDhw+nRo4fR5bgNCXkhqpjCwkJiY2NZs2YNr776Kv/zP//j8uPLtdZERUXRsmVLhgwZYnQ5bkVCXogq5MCBA4SHh9OkSRNWrVpFkyZNjC7JLuvWrePAgQMsX77cZS7CchcS8kJUAfn5+SxcuJAvvviC0aNH8/DDD7tNWP70008sWLCAJUuWUKtWLaPLcTuu/RlNCFFhu3btYvDgwaSnp5OQkMAjjzziNgGfmZnJ2LFjeffdd2nZsqXR5bglackL4aFycnKYO3cuSUlJhIWF0bt3b6NLKpeioiLCwsJ44oknuOeee4wux21JS14ID7RlyxYGDhwIQGJiotsFPMDcuXPx8fHh5ZdfNroUtyYteSE8SGZmJtHR0Rw8eJDIyEi3HWq4adMmvv32W+Li4lx+5I+rk1dPCA+gtWbjxo0MHjyYpk2bEh8f77YBf+TIEaZPn86MGTPw9/c3uhy3Jy15Idzc2bNnmTJlChkZGcyePZsuXboYXdJNu3TpEiEhIYwePZoOHToYXY5HkJa8EG7qypQEQ4cOpXv37sTFxbl1wFssFt59912CgoJ49NFHjS7HY0hLXgg39NtvvxEREYHFYmHx4sXcdtttRpdUYUuXLuXSpUuMGjXK6FI8ioS8EG6kqKiIuLg4Vq5cySuvvMIzzzzjEScmk5OTWbduHbGxsVSvXt3ocjyKhLwQbuKXX34hPDycBg0asHLlSgICAowuySFSUlKYOHEiM2bMoGHDhkaX43Ek5IVwcQUFBcTExPD5558zcuRIHn30Ube5YrUs+fn5hIaG8tJLL9GtWzejy/FIEvJCuLA9e/YQGRlJx44diY+Pp379+kaX5DBaayZPnky7du0YMEDWHHIWCXkhXFBubi7vv/8+W7ZsITQ0lPvuu8/okhwuMTGRo0ePsnTpUo/5ZOKK3P+MjRAeJikpiYEDB1JUVERCQoJHBvzevXtZsmQJM2bMwMfHx+hyPJq05IVwERcuXOC9997jp59+4h//+Ad33XWX0SU5RUZGBuPGjWPixIk0a9bM6HI8nrTkhTCY1pqvvvqKQYMG0aBBA+Lj4z024AsLCxk7dizPPPMMQUFBRpdTJdjVkldK1QMWA10BDbwAPAy8DGTY7jZea73RGUUK4anS09OZOnUqqampzJo1iz/84Q9Gl+RUs2bNol69ejz//PNGl1Jl2NuSnwN8qbXuBHQDDtq2z9Jad7d9ScALYSeLxcLHH39McHAwXbp0YeXKlR4f8Bs3bmT79u2Eh4d7xAVc7qLMlrxSyh/oDQwH0FqbAbOcDRfi5pw8eZLIyEjMZjMxMTG0adPG6JKc7tChQ8ycOZOFCxfi5+dndDlVij1vp22wdsksU0r9oJRarJSqbfvd35VS+5RSS5VStzivTCHcX3FxMbGxsTz//PPcd999LF26tEoEfHZ2NiEhIYSGhtK2bVujy6ly7Al5b6AHMF9rfQeQC4QB84G2QHfgDPBeaQ9WSo1QSu1SSu3KyMgo7S5CeLzDhw8zbNgwtm/fTlxcHMHBwVWiy8JisfD2229z//3389BDDxldTpVkz4nXFCBFa73DdvsjIExrnXblDkqpRcCG0h6stY4BYgACAwN1xcoVwr2YzWYWL17M+vXreeONN3j88cer1IU/CxcuxGw28+abbxpdSpVVZshrrc8qpU4ppTpqrQ8BDwAHlFIBWusztrs9Bex3ZqFCuJsff/yRiIgI2rRpw5o1a6rc5Ftbtmxhw4YNxMXF4eXlZXQ5VZa9F0O9AaxSStUAjgHPA3OVUt2xDqk8AbzilAqFcDN5eXnMmzePzZs3ExoaSp8+fYwuqdKdPHmSiIgIZs2a5VHz7bgju0Jea70XCLxm87OOL0cI95acnMzUqVP505/+RGJiYpVcozQvL48xY8bw2muv0bVrV6PLqfJkWgMhHODixYvMnDmTH374gbfffpuePXsaXZIhtNZERETQtWtXnnrqKaPLEci0BkJUiNaaf/3rXwwcOBB/f3/i4+OrbMADrF69mpSUFMLCwqrUCWZXJi15IW5SRkYGUVFRnDx5khkzZnD77bcbXZKhdu/ezYoVK1ixYgU1atQwuhxhIy15IcpJa80nn3xCcHAw7du3Z9WqVVU+4NPT0xk/fjyRkZEesyyhp5CWvBDlkJKSwuTJk8nNzeXDDz+kffv2RpdkOLPZTEhICMHBwR47e6Y7k5AXwg4Wi4XVq1ezbNkynn/+eYYMGSJjv22io6Np0qQJzz33nNGliFJIyAtRhiNHjhAeHk6tWrVYvnw5LVq0MLokl/HZZ5+xZ88eVqxYISdaXZSEvBDXYTabWbZsGWvXruVvf/sbTz75pATZVQ4cOMD777/PokWLqF27dtkPEIaQkBeiFD/99BMRERE0b96c1atX07hxY6NLcilZWVmMHTuWcePG0bp1a6PLETcgIS/EVS5fvsz8+fP56quvGDNmDA8++KC03q9RXFzM+PHjeeihh6rklA3uRoZQCmGzc+dOBg0aRFZWFomJifTt21cCvhQffvghAK+//rrBlQh7SEteVHnZ2dnMnj2bnTt3Mn78eFlg+gY2b97Mpk2bZGZJNyIteVGlbd68mUGDBuHj40NiYqIE/A0cP36cKVOmMG3aNOrVq2d0OcJO0pIXVdL58+eZNm0aR48eZerUqXTv3t3oklxabm4uISEhvPnmm3Tp0sXockQ5SEteVClaaz7//HMGDx5M69atWbNmjQR8GbTWTJo0iR49etC/f3+jyxHlJC15UWWkpqYyefJkLl68yAcffECHDh2MLsktxMbGkp6eTmRkpNGliJsgIS88nsViISEhgcWLFzNs2DCGDh0qJw3ttHPnTtasWUNsbKzMLOmmJOSFRzt27BgRERFUr16dZcuW0bJlS6NLchtnzpzhnXfeYerUqXIxmBuTkBceqbCwkOXLl5OQkMBrr73GU089RbVqcgrKXmazmdDQUIYNG8add95pdDmiAiTkhcc5cOAAkyZNIiAggFWrVtGkSROjS3IrWmuioqJo0aIFwcHBRpcjKkhCXniM/Px8FixYwMaNGxk9ejQPP/ywXLF6E9avX8/+/ftZvny5vH4ewK7Pr0qpekqpj5RSvyilDiql7lZK1VdKfa2U+tX2/RZnFyvE9ezatYvBgwdz7tw5EhISeOSRRySgbsJPP/3E/PnziY6OxtfX1+hyhAPY25KfA3yptX5GKVUD8AXGA//WWkcppcKAMGCsk+oUolSXLl1izpw5bNu2jbCwMO655x6jS3JbmZmZjB07lgkTJsgJag9SZkteKeUP9AaWAGitzVrrLOAJYIXtbiuAJ51VpBCl+fbbbxk0aBBeXl4kJiZKwFdAcXExYWFh9O/fn969extdjnAge1rybYAMYJlSqhuwGxgJNNFanwHQWp9RSskYK1EpMjMzmTFjBocOHSIyMpIePXoYXZLbmzt3Lj4+PowYMcLoUoSD2dMn7w30AOZrre8AcrF2zdhFKTVCKbVLKbUrIyPjJssUwjrqY+PGjQwePJhbb72VNWvWSMA7wKZNm/jmm2+IjIyUYaYeyJ6WfAqQorXeYbv9EdaQT1NKBdha8QFAemkP1lrHADEAgYGB2gE1iyrozJkzTJ06lXPnzjFnzhw6d+5sdEke4ejRo0yfPp0PP/wQf39/o8sRTlDm27bW+ixwSinV0bbpAeAA8BkwzLZtGPCpUyoUVZrFYiExMZFnn32W7t27ExsbKwHvIJcuXSIkJITRo0fLPD4ezN7RNW8Aq2wja44Bz2N9g0hUSr0InAQGOKdEUVWdOHGCiIgIABYvXixriTqQxWLhH//4Bz179uTRRx81uhzhRHaFvNZ6LxBYyq8ecGw5QkBRURGxsbGsWrWKV155hWeeeUb6ih1s2bJlXLx4kWnTphldinAyueJVuJSDBw8SERFBw4YNWblyJQEBAUaX5HGSk5P56KOPiIuLo3r16kaXI5xMQl64hIKCAhYuXMiGDRsYNWoU/fr1kytWneD06dNMnDiR6dOn07BhQ6PLEZVAQl4Ybs+ePURGRtKxY0fi4+OpX7++0SV5pPz8fEJCQnjxxRdlNawqREJeGCY3N5e5c+fy3XffERoayn333Wd0SR5La82UKVNo164dAwcONLocUYnkbJYwxHfffcfAgQNLVm2SgHeutWvXcuTIEcaPHy/dYFWMtORFpbpw4QLR0dHs37+fiRMn8qc//cnokjze3r17Wbx4McuWLcPHx8fockQlk5a8qBRaa7788ksGDRpEo0aNSEhIkICvBOfOnWPcuHFMnDiRZs2aGV2OMIC05IXTpaWlMXXqVM6ePcvs2bPp0qWL0SVVCYWFhYwdO5ann36aoKAgo8sRBpGWvHAai8XCxx9/zNChQ+natStxcXES8JVo9uzZ1K1blxdeeMHoUoSBpCUvnOLkyZNERkZSWFhITEwMbdq0MbqkKmXjxo0kJycTGxsrVwtXcRLywqGKi4tZtWoVK1as4KWXXmLQoEESMpXs8OHDzJw5k4ULF1KnTh2jyxEGk5AXDnP48GHCw8OpW7cucXFx3HrrrUaXVOVkZ2cTEhJCaGgobdu2Nboc4QIk5EWFmc1mFi9ezPr163nzzTf5y1/+ImOxHSErCw4ehMOHITMTlILGjaFTJ+vXNQttWywW3nnnHe69914eeughg4oWrkZCXlTI3r17iYiIoG3btsTHx9OgQQOjS3JvFgt89x0sWgTbt4O3N5jN1u0AXl5QvToUF0O/fjB8ONxxByhFTEwM+fn5vPnmm4b+CcK1SMiLm5KXl8e8efPYvHkzoaGh9OnTx+iS3N/x4zBqFBw4YL3t7w/XO59RXAxffAH//Cc88ADJjz3GZ599xsqVK/H2lv/W4j/kjJgot+TkZAYOHEh+fj6JiYkS8I7w2WfwyCPw88/WcK9b9/oBD9YW/S23QJ06FH75JU2Cg5kzbJhM7iZ+R97yhd0uXrzIe++9x969e5kwYQJ//vOfjS7JM6xbByEh1j72mjXL9dBi4GR2No3q1sV/4kRo2xYCS1vfR1RV0pIXZdJas2nTJgYOHEi9evVISEiQgHeUvXth7FioXbvcAa+xLnBeq1Yt6jRtaj0x+/zzcPasc2oVbkla8uKG0tPTiYqKIiUlhejoaP74xz8aXZLnyM+HkSOt3TI1apT74ZmZmZjNZlq3bo0C6yeBrCwIC4Nly6yhL6o8acmLUmmtWb9+PcHBwXTs2JGVK1dKwDvaypWQkgI3ccFSbl4e58+do3nz5lS7Oszr1oWkJNiyxYGFCncmLXnxO6dOnWLy5Mnk5eWxYMEC2rVrZ3RJnsdigZgYqFXrhnczWyxEnT3Lzrw8souLaV69Oq82aEDT9HRubdaMGteu0aqU9WvRIrj3Xif+AcJd2NWSV0qdUEr9pJTaq5TaZds2USl12rZtr1LqUeeWKpytuLiYlStXMnz4cO655x6WL18uAe8sO3ZYu1bKmN+9GGhavToxLVvyTYcOvNKoEWNOnMDs749f7dqlP6hOHevzS9+8oHwt+fu11ueu2TZLax3tyIKEMY4cOUJ4eDi+vr6sWLGC5s2bG12SZ/vhBygqKvNutapVY0SjRiW3O+Tm0tTLi7Rateh6vQdVq2b9+uknaNrUMfUKtyXdNVWc2Wxm6dKlfPzxx/z973+nf//+MiVBZdixw3o1azlkZWVx+tIlMry9aVvWSByzGfbtg759K1Ck8AT2nnjVwCal1G6l1Iirtv9dKbVPKbVUKXVLaQ9USo1QSu1SSu3KyMix7nN+AAAWD0lEQVSocMHCcfbt28fQoUP59ddfWb16NU888YQEfGU5fdruETUauHTpEqfT0ljk7c3jdevSuqyQ9/aG336reJ3C7dnblDBprVOVUo2Br5VSvwDzgQisx2AE8B7wu9UJtNYxQAxAYGCgdkjVokLy8vKYP38+mzZtIiQkhAceeEDCvbJdmYvmOoqLi8nNzSUnJ4ecnByUlxfLa9akZrVqhNrbBVNc7IBChbuzK+S11qm27+lKqfXAXVrrkjFaSqlFwAbnlCgcafv27UyZMoU77riDxMRE6tata3RJVZOfH5w5U3JTAwX5+dZQz80lPz8fX19f/Pz8aNCwIVHnzpFdWMjc5s3xtucN2WKBevWcV79wG2WGvFKqNlBNa33J9vNDQLhSKkBrfeUofQrY78Q6RQVlZ2cza9Ysvv/+e8aPHy9rfhqtRw8s+/aRY7GUtNarVauGn58fDRs2xNfXt2T8+5QzZzhuNvNhy5bUtHcBFqWgWzcn/gHCXdjTkm8CrLd9nPcGVmutv1RKxSmlumNthJwAXnFalaJCNm/ezPTp0+nTpw+JiYn4XjMPuagcWmuOHj1KcnIyl7Zto39aGto2FLJBgwbULKWP/kxhIeuysqihFA//+mvJ9vFNm9LvRp/CvLygc2dn/BnCzZQZ8lrrY8DvmgRa62edUpFwmHPnzjF9+nSOHTvGtGnT6CYtu0qXl5fHzp072bp1K1u3bsXb25tevXrRe+RImh09SrU6dayBfB0B1auzq7xhnZ9vvfJVFk0XyBBKj6S15vPPP+f999/nqaeeIjIykho3MTeKKD+tNcePHyc5OZmtW7fy888/07VrV3r16sVf//pXWrZs+Z+T3Js2WacYdvT0wJcvW+fEucGbh6g6JOQ9zOnTp5k8eTLZ2dl88MEHdOjQweiSPN7ly5f5/vvvS4Jda43JZGLIkCEEBgZev3vsb3+DjRuhsNC62pMj5OVZ56MfMMAxzyfcnoS8h7BYLMTHx7NkyRKGDRvG0KFD8ZKWnFNorTl16hRJSUkkJyezb98+unTpgslkYs6cOdx22232DUlt397a4p450zoSpqLDWC0WKCiA99+XkTWihIS8Bzh27Bjh4eHUqFGDZcuW0bJlS6NL8jgFBQXs3r2bpKQktm7dSmFhIUFBQTz99NNMmzaN2tebR6Ysr7wCW7dar4CtSNBbLHDxIgQHwwMP3NxzCI8kIe/GCgsLWb58OQkJCbz++us8+eSTVLN3iJ0oU0pKSskJ071799KpUydMJhPR0dG0a9fOMReQeXvD4sXw4ovWoPf3L/d0BxQUWLtpBgyASZMqXpPwKBLyburnn38mPDycW2+9ldWrV9O4cWOjS3J7ZrOZPXv2lAR7bm4uJpOJJ554gsmTJ1PnJuZ9t4uvL6xYYe1mWbAAtL7xIt5XFBdDdrZ1eoTJk2HgwLIfI6ocpXXlzTQQGBiod+3aVWn780SXL19mwYIF/POf/2TMmDH07dtXpiSogNTUVLZu3UpycjK7d++mffv2mEwmTCYT7du3r/xPRvv3w4wZ1i4ci8Xaqvfx+c9ImcJC6xBJra3b+vWzrg8rs4Z6NKXUbq31TS3eKyHvRr7//nsiIyO5/fbbeeutt6gnJ9fKzWw2s3fv3pJgz8rKIigoCJPJRM+ePfH39ze6RKtTp+Crr6xdOPv2waVL1v76W26BHj3g7rvh4YcdP/xSuCQJeQ936dIl5syZw7Zt2xg3bhy9evUyuiS3kpaWVtIFs2vXLtq0aVMS7J06dZLzGMLlVSTkpU/exX3zzTdMmzaNe++9l8TExJsfxVGFFBUV8eOPP5YE+7lz5wgKCuLBBx9kwoQJ8glIVCkS8i4qMzOT6dOnc/jwYSZPnkyPHj2MLsmlZWRklFyMtHPnTlq2bInJZGLChAl06dJFWuuiypKQdzFaazZu3MicOXN4/PHHmTRpEjXLWiCiCiouLmbfvn0lwX727Fl69uzJvffeS1hYGPWlr1oIQELepaSmpjJlyhQyMzOZO3cunTp1Mrokl3L+/Pn/aq0HBARgMpkYO3YsXbt2lSt8hSiFhLwLsFgsrF27lpiYGP7617/y7LPP4l3eC2I8kMViYf/+/SV966dPn+auu+7CZDIxZswYGjZsaHSJQrg8SRKDHT9+nIiICJRSLFmyhNatWxtdkqEuXLjAtm3b2Lp1K9u2baNJkyaYTCZGjx7N7bffLm9+QpST/I8xSFFREbGxsaxatYpXX32Vp59+ukqeHLRYLBw8eLCktX7ixImS1vrIkSPlSl4hKkhC3gAHDx4kPDycRo0asWrVKprauzCzh7h48SLbtm0jOTmZ5ORk6tevj8lk4o033qBbt25Ud9S0u0IICfnKVFBQwMKFC9mwYQOjRo2iX79+VWJKAovFwqFDh0quMj1y5AiBgYGYTCZee+01AgICjC5RCI8lIV9Jdu/eTWRkJJ07dyY+Pt7jh/hlZ2ezY8eOkmD39/cnKCiIV199le7du8tKVUJUEgl5J8vJyWHu3LkkJSURFhZG7969jS7JKbTW/PrrryV964cPH6ZHjx4EBQXx8ssv06xZM6NLFKJKsivklVIngEtAMVCktQ5UStUHEoDWwAlgoNb6gnPKdE9btmwhKiqKXr16kZiYiJ+fn9ElOVROTg47d+4kKSmJbdu24ePjg8lk4oUXXuDOO++Ui7iEcAHlacnfr7U+d9XtMODfWusopVSY7fZYh1bnpi5cuEB0dHTJnO+BgTc1r5DL0Vpz9OhRkpOTSUpK4pdffqF79+4EBQUxfPhwWZFKCBdUke6aJ4D7bD+vAL6hioe81povv/ySWbNm8dhjjzFhwgR8fHyMLqtC8vLy2LlzZ0mwe3t706tXL5577jkCAwPd/u8TwtPZG/Ia2KSU0sBCrXUM0ERrfQZAa31GKVWlBzSnpaUxZcoU0tLSmD17Nl26dDG6pJuiteb48eMl0wf8/PPPdO3alV69ehEcHEyrVq2qxIggITyFvSFv0lqn2oL8a6XUL/buQCk1AhgBeOTHeYvFwrp161iwYAFDhgzhueeec7tx3pcvX+b7778vCXatNUFBQQwZMoTAwEB8fX2NLlEIcZPsCnmtdarte7pSaj1wF5CmlAqwteIDgPTrPDYGiAHroiGOKds1/Pbbb0RGRlJcXExMTAxt2rQxuiS7aK05deoUSUlJJCcns2/fPrp06YLJZGLOnDncdttt0loXwkOUGfJKqdpANa31JdvPDwHhwGfAMCDK9v1TZxbqSoqKili5ciVxcXG8/PLLDBw40OWnJCgoKGD37t0kJSWxdetWCgsLCQoK4umnn2batGmyGIkQHsqelnwTYL2tZecNrNZaf6mU+h5IVEq9CJwEBjivTNdx6NAhwsPDqVevHnFxcdx6661Gl3RdKSkpJePW9+7dS6dOnQgKCiI6Opp27dpJa12IKkDWeLWT2Wxm0aJFfPLJJ4wcOZLHHnvM5ULSbDazZ8+ekmDPzc3FZDJhMpm46667qFOnjtElCiFugqzx6mR79+4lPDyc9u3bEx8fT4MGDYwuqURqamrJCdPdu3fTvn17TCYTU6dOpX379i7fjSSEcC4J+RvIzc1l3rx5fPPNN4SGhnL//fcbXRJms5m9e/eWzAmTlZVFUFAQ/fr1Y9KkSfj7+xtdohDChUjIX8fWrVuZOnUqf/7zn0lISDA0PNPS0kq6YHbt2sVtt92GyWRi0qRJdOrUSVrrQojrkpC/RlZWFjNnzmTv3r28++673HXXXZVeQ1FRET/++GNJsJ87d467776bBx98kAkTJlCvXr1Kr0kI4Z4k5G201nz99de89957PPzwwyQkJFCrVq1K239GRsZ/LVLdsmVLTCYT77zzDn/4wx+ktS6EuCkS8kB6ejpRUVGkpKQQHR3NH//4R6fvs7i4mH379pUE+9mzZ+nZsyf33nsvYWFhHj/fvBCiclTpkLdYLHzyySd8+OGHDBw4kKioKKcuZnH+/Pn/aq0HBARgMpkYO3YsXbt2xcvLy2n7FkJUTVU25E+dOkVkZCT5+fksXLiQtm3bOnwfFouF/fv3l/Stnz59umSR6jFjxtCwYUOH71MIIa7m+iFfUADp6VBcDLVqQePGUIGLkIqLi1m1ahUrVqzgxRdfZPDgwQ7t775w4QLbtm1j69atbN++ncaNGxMUFMTo0aO5/fbb8fZ2/ZdcCOE5XDNxDh2CNWtgyxb47Tfw8rIGu8UCNWpAly7wxBPQvz+UY2jj4cOHiYiIwM/Pj9jYWIcsSWexWDh48GBJa/3EiRMlrfWRI0fSuHGVnoFZCGEw15rW4PBhGDcOfvwRtAYfH6hZE65uaRcVQX6+tWXv5QXPPw8jR1rvex1ms5klS5bw8ccf88Ybb9C/f/8KTUlw8eJFtm3bRnJyMsnJydSvX79k+oBu3bq53VTDQgjX5v7TGlgssHAhzJplDfe6da/fJePtDVfWSi0qgkWLYONG+OAD6Nr1d3fft28fERERtGrVijVr1tCoUaObKM/CoUOHSq4yPXLkCIGBgZhMJl577TUCAgLK/ZxCCFEZjA95i8Xaev/oI2t4l6cV7O0N9erBmTMwYAAsXw5//jNgXbbuww8/5F//+hchISH06dOnXK337OxsduzYURLsderUwWQy8eqrr9K9e3enjsIRQghHMT7kp02DtWutYX2zJ0D9/SEvz9p1s3492y9cYMqUKfTo0YOEhATq1q1b5lNorfn1119L+tYPHz5Mjx49CAoK4uWXX3ZI/70QQlQ2Y0P+++9h8WJr90xFR7j4+lJ84QInHn2UaZ06Me6dd7j77rtv+JCcnBx27txJUlIS27Ztw8fHB5PJxAsvvMCdd95JzZo1K1aTEEIYzLiQN5th1Chr90wFLwLSwKVLlzibkUGj6tWJ79uXmqUEvNaao0ePkpycTFJSEr/88gvdunXDZDIxfPhwj1yDVghRtRkX8ps3W8e/l9GVkl1cTPiZM2zPyaGetzd/b9SIR656TGFREWfPnsVcUEDzFi3w9fKCZcvg9dehRg3y8vLYuXNnSbB7e3tjMpl47rnnCAwMxOcGo3KEEMLdGRfyCxfa1UUTdfYs1ZViU4cOHM7PZ+SpU3Tw8eG2mjW5mJVFeno69W65hWbNmlFNKTRQeO4cSePHszY3l59//pmuXbvSq1cvgoODadWqlcut6CSEEM5iTMjn5FjHwt9yyw3vdtliYfOlSyS2aYNvtWp09/Xl3jp1+DQzk/8pLKS4uJiWLVtSo0YNcnNzycnJIScnh9qFhfglJzMkKorAwEB8fX0r6Q8TQgjXYkzIHzpkvcipjBb1SbOZakBL23BFDQQUFrLj4kWCmzTBu3p10tPTybt8mVo+Pvj5+dGyRQtqaM2tXl7Qu7fz/xYhhHBhxoT8iRPWC5nKkGex4Gfr0rmcn8+pU6coys/nMnAxOxs/Pz9rV03z5nhd3fWjNaSkWMfgyzzsQogqzO6QV0p5AbuA01rrvyillgP3Ahdtdxmutd5r15MVFFgDuAy+1aqRa7vf8ePH8fbywrtOHRoD7Vu35rqfA658QjCbbzjdgRBCeLrytORHAgeBq2cEC9Faf1T+vXrbNZNkyxo1KMbabdO5c2cUsDI1lQ7e3tcPeLC25LUu39WzQgjhgezqy1BKNQceAxY7ZK/Nm1uDvgy1qlWjT506LMjIIN9i4ce8PL69dInHyrqCtbAQmjSp8Ph7IYRwd/Z2WM8GQoFr+1gmK6X2KaVmKaXsvzy0c2drENsxA2ZY06YUWCz0PXyY8adPM65pU9qUdSXq5cvQrZvd5QghhKcqszmtlPoLkK613q2Uuu+qX40DzgI1gBhgLBBeyuNHACOA/1xResst0KqVdWKx2rVvuH9/Ly/ea9HCnr/lv/XpU/7HCCGEh7GnJW8C+iulTgDxQB+l1Eqt9RltVQAsA+4q7cFa6xitdaDWOvC/pvkdMcKuETblVlRk7aZ57DHHP7cQQriZMkNeaz1Oa91ca90aGAxs1lr/VSkVAKCsl48+Cewv157/8hfrcn75+eWv+kYuXYLBg6FOHcc+rxBCuKGKDCJfpZT6CfgJaAhEluvRfn4wdaq1/9xRq1Pl5kL9+jB6tGOeTwgh3Fy5LobSWn8DfGP7ueKd3o8+Cp9/Dl9/bZ1PviJzypjN1q6a2bPLte6rEEJ4MmMvB1XKuuRfYCBkZdl1gVSp8vOti4ZMnQomk2NrFEIIN2b8Nf+1asGKFdY++osXrWFtL62tbw5aw7x58MwzzqtTCCHckNKO6g+3Z2dKZQC/VdoOHa8hcM7oIlyUvDY3Jq/P9clrc2MNgdpa60Zl3rMUlRry7k4ptUtrHWh0Ha5IXpsbk9fn+uS1ubGKvj7Gd9cIIYRwGgl5IYTwYBLy5RNjdAEuTF6bG5PX5/rktbmxCr0+0icvhBAeTFryQgjhwSTkS6GUaqGU+j+l1EGl1M9KqZG27fWVUl8rpX61fb/xSuQeTCnlpZT6QSm1wXb7NqXUDttrk6CUqmF0jUZRStVTSn2klPrFdgzdLceOlVLqf23/p/YrpdYopXyq8rGjlFqqlEpXSu2/alupx4qymquUOmKb4r2HPfuQkC9dEfCW1roz0BP4m1KqCxAG/Ftr3R74t+12VXVlpbArpgGzbK/NBeBFQ6pyDXOAL7XWnYBuWF+nKn/sKKWaAW8CgVrrroAX1kkPq/Kxsxx45Jpt1ztW+gHtbV8jgPl27UFrLV9lfAGfAn2BQ0CAbVsAcMjo2gx6PZrbDr4+wAZAYb2Yxdv2+7uBr4yu06DXxh84ju1811Xbq/yxAzQDTgH1sc6btQF4uKofO0BrYH9ZxwqwEBhS2v1u9CUt+TIopVoDdwA7gCZa6zMAtu+NjavMUNeuFNYAyNJaX1kgIAXrf+iqqA2QASyzdWctVkrVRo4dtNangWjgJHAGuAjsRo6da13vWLnyJnmFXa+VhPwNKKX8gI+BUVrrbKPrcQVXrxR29eZS7lpVh215Az2A+VrrO4BcqmDXTGlsfctPALcBtwK1sXZBXKuqHjtluan/ZxLy16GUqo414FdprdfZNqddtVhKAJBuVH0G+t1KYVhb9vWUUlemrm4OpBpTnuFSgBSt9Q7b7Y+whr4cO/AgcFxrnaG1LgTWAUHIsXOt6x0rKcDVa6Ha9VpJyJfCttrVEuCg1nrmVb/6DBhm+3kY1r76KkWXvlLYUOD/gCvTgFbJ1wZAa30WOKWU6mjb9ABwADl2wNpN01Mp5Wv7P3bltZFj579d71j5DHjONsqmJ3DxSrfOjcjFUKVQSvUCvsO66tWVfufxWPvlE4GWWA/YAVrrTEOKdAG2hd3HaK3/opRqg7VlXx/4Afirtq7/W+UopboDi7Eucn8MeB5rg6rKHztKqUnAIKwj2H4AXsLar1wljx2l1BrgPqwzTaYB/wA+oZRjxfbGOA/raJw84Hmt9a4y9yEhL4QQnku6a4QQwoNJyAshhAeTkBdCCA8mIS+EEB5MQl4IITyYhLwQQngwCXkhhPBgEvJCCOHB/h/hWxXMyOiL5wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "algorithm_cfg = {\n", - " 'name': 'VQE',\n", - " 'operator_mode': 'matrix'\n", - "}\n", - "\n", - "optimizer_cfg = {\n", - " 'name': 'SPSA',\n", - " 'max_trials': 300\n", - "}\n", - "\n", - "var_form_cfg = {\n", - " 'name': 'RY',\n", - " 'depth': 5,\n", - " 'entanglement': 'linear'\n", - "}\n", - "\n", - "params = {\n", - " 'problem': {'name': 'ising', 'random_seed': 10598},\n", - " 'algorithm': algorithm_cfg,\n", - " 'optimizer': optimizer_cfg,\n", - " 'variational_form': var_form_cfg,\n", - " 'backend': {'name': 'statevector_simulator'}\n", - "}\n", - "\n", - "result = run_algorithm(params,algo_input)\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "#print('tsp objective:', result['energy'] + offset)\n", - "x = tsp.sample_most_likely(result['eigvecs'][0])\n", - "print('feasible:', tsp.tsp_feasible(x))\n", - "z = tsp.get_tsp_solution(x)\n", - "print('solution:', z)\n", - "print('solution objective:', tsp.tsp_value(z, ins.w))\n", - "draw_tsp_solution(G, z, colors, pos)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# run quantum algorithm with shots\n", - "params['algorithm']['operator_mode'] = 'grouped_paulis'\n", - "params['backend']['name'] = 'qasm_simulator'\n", - "params['backend']['shots'] = 1024\n", - "result = run_algorithm(params,algo_input)\n", - "print('energy:', result['energy'])\n", - "print('time:', result['eval_time'])\n", - "#print('tsp objective:', result['energy'] + offset)\n", - "x = tsp.sample_most_likely(result['eigvecs'][0])\n", - "print('feasible:', tsp.tsp_feasible(x))\n", - "z = tsp.get_tsp_solution(x)\n", - "print('solution:', z)\n", - "print('solution objective:', tsp.tsp_value(z, ins.w))\n", - "plot_histogram(result['eigvecs'][0])\n", - "draw_tsp_solution(G, z, colors, pos)" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/community/chemistry/h2_0.735_sto-3g.hdf5 b/qiskit/chemistry/H2/0.7_sto-3g.hdf5 similarity index 57% rename from community/chemistry/h2_0.735_sto-3g.hdf5 rename to qiskit/chemistry/H2/0.7_sto-3g.hdf5 index ab4be2d2f7fe18940e154354a798620d07800b8d..1e7fc17d056e9acccd50532628ad72fba0683b52 100644 GIT binary patch delta 844 zcmdl`wV`T52s0G&q74f;Lx%owvwto3}scRT_B(CIo@NxhBONNUd8N8T$n?q7R z|E*LsTkb=9ky*TaIfh^M=Roe2@3Dp6!h|UdrAaui?0{OIQOUhv4 z1vXCn!mDau9?dw?liaZ9 zretn=ulQU08&Dde>cC_}b4fQ5qm&MVe<{4OH7Qn zC$AP&WClk0=JTS)OpK3V+{x!fCxW7X^96}tOpLE#!kgbq166&7aVNi*o;mq~Y!Ksb z6p;_|RZPsBlXDalKqgP_SGdinJULqtVo$%KGz*h4=j1h_VA;**RgIaLtl@l^kxb5L zLYh&G-jlVpAcpvB?Pg^3oy@HR;p*!cvoO^n+gLa`L4aeE;VnkSxsz`jK~()WN@iw~ z}isl zpOczgnv<%KVWd#arJ$f-pkN51Jb)}c12EP#&@(nOH$@W#N`Xadxwwi`OTc=Q5{om7 z6^cvpb&b=3s*97;;!7$EQWXlaxoS^6VGOsr|8c*|s;?P;IG@`y0bS+{avdYsi3nOq z({25R?uYj6-&v2l)P1%`%Kkenf=6#9s>98XI?tL;jR4xD7|?h*M8QC2dp)MJIydee(s0 zUrda5V8WZNV+eQ#Y|BaHFnfSPnoK-ma0V~_)e`b3ane-6i_bpyC e`60OPEpG#jK5Ydt Trusted Notebook\" width=\"500 px\" align=\"left\">" + "\"Note: Trusted Notebook\" width=\"500 px\" align=\"left\">" ] }, { @@ -113,6 +113,7 @@ "source": [ "# useful additional packages \n", "import matplotlib.pyplot as plt\n", + "import copy\n", "%matplotlib inline\n", "import numpy as np\n", "from qiskit import Aer\n", @@ -154,7 +155,7 @@ "\n", "In this first part of the notebook, we show the optimization of the H$_2$ Hamiltonian in the `STO-3G` basis at the bond length of 0.735 Angstrom. After mapping it to a four-qubit system with a parity transformation, two spin-parity symmetries are modded out, leading to a two-qubit Hamiltonian. The energy of the mapped Hamiltonian obtained is then minimized using the variational ansatz described in the introduction, and a stochastic perturbation simultaneous approximation (SPSA) gradient descent method. We stored the precomputed one- and two-body integrals and other molecular information in the `hdf5` file.\n", "\n", - "Here we use the [*declarative approach*](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/chemistry/declarative_approach.ipynb) to run our experiement, but the same is doable in a [fully programmatic way](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/aqua/chemistry/programmatic_approach.ipynb), especially for those users who are interested in learning the Qiskit Aqua and Qiskit Chemistry APIs as well as contributing new algorithmic components." + "Here we use the [*declarative approach*](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/chemistry/declarative_approach.ipynb) to run our experiement, but the same is doable in a [fully programmatic way](https://github.com/Qiskit/qiskit-tutorials/blob/master/qiskit/chemistry/programmatic_approach.ipynb), especially for those users who are interested in learning the Qiskit Aqua and Qiskit Chemistry APIs as well as contributing new algorithmic components." ] }, { @@ -167,27 +168,27 @@ "output_type": "stream", "text": [ "Ground state energy (classical): -1.137306035753\n", - "Ground state energy (quantum) : -1.137287121511\n", + "Ground state energy (quantum) : -1.137304610765\n", "====================================================\n", "=== GROUND STATE ENERGY ===\n", " \n", - "* Electronic ground state energy (Hartree): -1.85725611279\n", - " - computed part: -1.85725611279\n", + "* Electronic ground state energy (Hartree): -1.857273602044\n", + " - computed part: -1.857273602044\n", " - frozen energy part: 0.0\n", " - particle hole part: 0.0\n", "~ Nuclear repulsion energy (Hartree): 0.719968991279\n", - "> Total ground state energy (Hartree): -1.137287121511\n", + "> Total ground state energy (Hartree): -1.137304610765\n", " Measured:: Num particles: 2.000, S: 0.000, M: 0.00000\n", " \n", "=== DIPOLE MOMENT ===\n", " \n", - "* Electronic dipole moment (a.u.): [0.0 0.0 -0.00514828]\n", - " - computed part: [0.0 0.0 -0.00514828]\n", + "* Electronic dipole moment (a.u.): [0.0 0.0 0.00070479]\n", + " - computed part: [0.0 0.0 0.00070479]\n", " - frozen energy part: [0.0 0.0 0.0]\n", " - particle hole part: [0.0 0.0 0.0]\n", "~ Nuclear dipole moment (a.u.): [0.0 0.0 0.0]\n", - "> Dipole moment (a.u.): [0.0 0.0 -0.00514828] Total: 0.00514828\n", - " (debye): [0.0 0.0 -0.01308562] Total: 0.01308562\n" + "> Dipole moment (a.u.): [0.0 0.0 0.00070479] Total: 0.00070479\n", + " (debye): [0.0 0.0 0.0017914] Total: 0.0017914\n" ] } ], @@ -231,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -251,62 +252,69 @@ "# select H2 or LiH to experiment with\n", "molecule='H2'\n", "\n", - "qiskit_chemistry_dict = {\n", + "qiskit_chemistry_dict_ee = {\n", " 'driver': {'name': 'HDF5'},\n", " 'HDF5': {'hdf5_input': ''},\n", " 'operator': {'name':'hamiltonian', \n", " 'qubit_mapping': 'parity', \n", " 'two_qubit_reduction': True},\n", - " 'algorithm': {'name': ''},\n", - " 'optimizer': {'name': 'SPSA', 'max_trials': 350},\n", - " 'variational_form': {'name': 'RYRZ', 'depth': 3, 'entanglement':'full'}\n", + " 'algorithm': {'name': 'ExactEigensolver'}\n", "}\n", "\n", "# choose which backend want to use\n", "# backend = Aer.get_backend('statevector_simulator')\n", "backend = Aer.get_backend('qasm_simulator')\n", - "backend_cfg = {'shots': 1024}\n", - "algos = ['ExactEigensolver', 'VQE']\n", + "\n", + "qiskit_chemistry_dict_vqe = {\n", + " 'driver': {'name': 'HDF5'},\n", + " 'HDF5': {'hdf5_input': ''},\n", + " 'operator': {'name':'hamiltonian', \n", + " 'qubit_mapping': 'parity', \n", + " 'two_qubit_reduction': True},\n", + " 'algorithm': {'name': 'VQE'},\n", + " 'optimizer': {'name': 'SPSA', 'max_trials': 350},\n", + " 'variational_form': {'name': 'RYRZ', 'depth': 3, 'entanglement':'full'},\n", + " 'backend': {'shots': 1024}\n", + "}\n", "\n", "if molecule == 'LiH':\n", " mol_distances = np.arange(0.6, 5.1, 0.1)\n", - " qiskit_chemistry_dict['operator']['freeze_core'] = True\n", - " qiskit_chemistry_dict['operator']['orbital_reduction'] = [-3, -2]\n", - " qiskit_chemistry_dict['optimizer']['max_trials'] = 2500\n", - " qiskit_chemistry_dict['variational_form']['depth'] = 5\n", + " qiskit_chemistry_dict_vqe['operator']['freeze_core'] = True\n", + " qiskit_chemistry_dict_vqe['operator']['orbital_reduction'] = [-3, -2]\n", + " qiskit_chemistry_dict_vqe['optimizer']['max_trials'] = 2500\n", + " qiskit_chemistry_dict_vqe['variational_form']['depth'] = 5\n", "else:\n", " mol_distances = np.arange(0.2, 4.1, 0.1)\n", "\n", + "algos = ['ExactEigensolver', 'VQE']\n", "energy = np.zeros((len(algos), len(mol_distances)))\n", "\n", - "for j, algo in enumerate(algos):\n", - " qiskit_chemistry_dict['algorithm']['name'] = algo\n", - " if algo == 'ExactEigensolver':\n", - " qiskit_chemistry_dict.pop('backend', None)\n", - " elif algo == 'VQE':\n", - " qiskit_chemistry_dict['backend'] = backend_cfg\n", - " print(\"Using {}\".format(algo))\n", + "for j, algo in enumerate([qiskit_chemistry_dict_ee, qiskit_chemistry_dict_vqe]):\n", + " algo_name = algo['algorithm']['name']\n", + " print(\"Using {}\".format(algo_name))\n", " for i, dis in enumerate(mol_distances):\n", " print(\"Processing atomic distance: {:1.1f} Angstrom\".format(dis), end='\\r')\n", - " qiskit_chemistry_dict['HDF5']['hdf5_input'] = \"{}/{:1.1f}_sto-3g.hdf5\".format(molecule, dis)\n", - " result = solver.run(qiskit_chemistry_dict, backend=backend if algo == 'VQE' else None)\n", + " algo['HDF5']['hdf5_input'] = \"{}/{:1.1f}_sto-3g.hdf5\".format(molecule, dis)\n", + " result = solver.run(algo, backend=backend if algo_name == 'VQE' else None)\n", " energy[j][i] = result['energy']\n", " print(\"\\n\")" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcFPWd//HXp6/puYdjuE9BQQ5FGVDEC0SjJhEPFNFkJcawq0nUuMmuJr9ocM3vR6KbaDzWRUw0mgh4E48oGI+gqKByHwoICgz3NfdMd39+f1TN2Iw9J9NdDfN5Ph796Krqb1d9pnqm31PXt0RVMcYYY5rL53UBxhhjjiwWHMYYY1rEgsMYY0yLWHAYY4xpEQsOY4wxLWLBYYwxpkUsOIwxxrSIBYcxxpgWseAwxhjTIgGvC0iGzp07a79+/bwuwxhjjhgfffTRblUtbE5bT4NDRM4H7gP8wCxVnVHv9VuA64AIsAu4VlU3NzXffv36sWTJkiRUbIwxRycRafK7tZZnu6pExA88CFwADAGmiMiQes0+AYpU9QTgGeC3qa3SGGNMfV4e4xgNrFfVjapaDcwGJsY3UNU3VbXcHX0f6JXiGo0xxtTjZXD0BL6MG9/iTmvI94FXk1qRMcaYJh0RB8dF5DtAEXBWI22mAdMA+vTpk6LKjDn61NTUsGXLFiorK70uxSRBOBymV69eBIPBVs/Dy+DYCvSOG+/lTjuEiEwAfgGcpapVDc1MVWcCMwGKiorsJiPGtNKWLVvIzc2lX79+iIjX5Zg2pKrs2bOHLVu20L9//1bPx8tdVYuBY0Wkv4iEgCuBefENROQk4H+Bi1R1pwc1GtPuVFZW0qlTJwuNo5CI0KlTp8PemvQsOFQ1AvwIeA1YA8xV1VUicqeIXOQ2uxvIAZ4WkaUiMq+B2Rlj2pCFxtGrLT5bT49xqOorwCv1pt0eNzwhhcXAO3dDz5Ew8JyULdYYY4401uWIS4Hqd+5l25K/eV2KMe2e3+9nxIgRdY8ZM2Y0/aZmWrp0Ka+88tX/q4899hiFhYWHLG/16tVs27aNSZMmtdlyW2PTpk0MGzbM0xoSOSLOqkoFEWFXJIvdO7fTw+tijGnnMjMzWbp0aVLmvXTpUpYsWcKFF15YN23y5Mk88MADX2v7zDPPJKWGVItEIgQCbfd1b1sccUp9uQSqD3hdhjEmgQMHDjBo0CDWrVsHwJQpU3jkkUcAuP766ykqKmLo0KHccccdde9ZvHgxp512GieeeCKjR4/mwIED3H777cyZM4cRI0YwZ86cBpcX/99+eXk5V1xxBUOGDOGSSy7hlFNOqevW6PXXX2fMmDGcfPLJXH755ZSWlgJO10d33HEHJ598MsOHD2ft2rUAvP3223VbNieddBIlJSWoKj/72c8YNmwYw4cPT1jXqaeeyqpVq+rGzz77bJYsWUJZWRnXXnsto0eP5qSTTuLFF18EnC2piy66iPHjx3POOW27+922OOKU+3PJrbHgMKbW9L+tYvW2g206zyE98rjj20MbbVNRUcGIESPqxm+77ba6rYKpU6dy0003sW/fPn7wgx8A8Otf/5qOHTsSjUY555xzWL58OYMHD2by5MnMmTOHUaNGcfDgQbKysrjzzjtZsmRJ3RbGY489xpw5c1i4cGHd8hYtWnRIPQ899BAdOnRg9erVrFy5sq623bt3c9ddd7FgwQKys7P5zW9+w+9+9ztuv905VNu5c2c+/vhjHnroIe655x5mzZrFPffcw4MPPsjYsWMpLS0lHA7z3HPPsXTpUpYtW8bu3bsZNWoUZ5555iE1TJ48mblz5zJ9+nSKi4spLi6mqKiIn//854wfP54//vGP7N+/n9GjRzNhgnN4+OOPP2b58uV07NixNR9Vgyw44lQH8sio2eR1Gca0ew3tqjr33HN5+umn+eEPf8iyZcvqps+dO5eZM2cSiUQoLi5m9erViAjdu3dn1KhRAOTl5TW4vIZ2VdVauHAhN910EwDDhg3jhBNOAOD9999n9erVjB07FoDq6mrGjBlT975LL70UgJEjR/Lcc88BMHbsWG655RauvvpqLr30Unr16sXChQuZMmUKfr+frl27ctZZZ7F48eK65QBcccUVnHfeeUyfPp25c+fWHX95/fXXmTdvHvfccw/gnE79xRdf1K2vtg4NsOA4RHUon+yqEq/LMCZtNLVlkGqxWIw1a9aQlZXFvn376NWrF59//jn33HMPixcvpkOHDkydOjVlV72rKueeey5PPfVUwtczMjIA52B/JBIB4NZbb+Wb3/wmr7zyCmPHjuW1115r1rJ69uxJp06dWL58OXPmzOHhhx+uq+HZZ59l0KBBh7T/4IMPyM7Obu2P1ig7xhEnmlFArpY6p+YaY9LO73//e44//nj++te/8r3vfY+amhoOHjxIdnY2+fn57Nixg1dfdbq0GzRoEMXFxSxevBiAkpISIpEIubm5lJS07B/EsWPHMnfuXABWr17NihUrAOe4w7vvvsv69esBKCsr49NPP210Xhs2bGD48OH853/+J6NGjWLt2rWcccYZzJkzh2g0yq5du3jnnXcYPXr01947efJkfvvb33LgwIG6rZFvfOMb3H///aj7vfXJJ5+06GdrDdviiBMLFxAkglaXIhm5XpdjTLtV/xjH+eefz/e+9z1mzZrFhx9+SG5uLmeeeSZ33XUX06dP56STTmLw4MH07t27brdRKBRizpw5/PjHP6aiooLMzEwWLFjAuHHjmDFjBiNGjOC2224D+NoxjoceeogePb46v/KGG27gmmuuYciQIQwePJihQ4eSn59PYWEhjz32GFOmTKGqyukR6a677uK4445r8Ge79957efPNN/H5fAwdOpQLLriAUCjEokWLOPHEExERfvvb39KtWzc2bdp0yHsnTZrETTfdxC9/+cu6ab/85S+5+eabOeGEE4jFYvTv35+XXnqp9Su/GUSPwv+ui4qKtDU3cnrrqXs4e91/UfGj5WR27puEyoxJf2vWrOH444/3uoy0Eo1GqampIRwOs2HDBiZMmMC6desIhUJel9YqiT5jEflIVYua837b4ogTyHYOIpXs22XBYYypU15ezrhx46ipqUFVeeihh47Y0GgLFhxxQjlOcJQf2O1xJcaYdJKbm2u3o45jB8fjZOR1BqDyoAWHMcY0xIIjTqYbHJHSPR5XYowx6cuCI05uBzc4yvZ5XIkxxqQvC444+Xn5VGkArbDgMMaYhlhwxMkMBThADmLBYYxnxo0b97Wrqe+9916uv/56Vq1axfjx4xk0aBADBgzgjjvuIBaLAQ13j27angVHHBGhVHLwV+/3uhRj2q0pU6Ywe/bsQ6bNnj2bK6+8kosuuohbb72VdevWsWLFCj788EPuu+++unaTJ09m6dKldY8hQ4akuvx2wYKjnnJ/LsHqtu0N1BjTfJMmTeLll1+muroacLo337ZtG+vXr2fs2LGcd955AGRlZfHAAw9w9913e1luu2TXcdRT4c+jMGKn4xoDwKu3wvYVbTvPbsPhgobv6NexY0dGjx7Nq6++ysSJE5k9ezZXXHEFq1atYuTIkYe0HTBgABUVFezf7+wlSNQ9emZmZtvWb2yLo77qUD5ZUdviMMZL8burZs+ezZQpU5r1vvq7qiw0ksO2OOqJhArIKbWu1Y0BGt0ySKaJEyfyk5/8hI8//pjy8nJGjhzJJ598wjvvvHNIu40bN9KpUycKCgo8qbO9si2OejScTxaVEK3xuhRj2q2cnBzGjRvHtddeW7e1cfXVV7Nw4UIWLFgAOD3o3njjjUyfPt3LUtslT4NDRM4XkXUisl5Ebk3weoaIzHFf/0BE+iW9qMwOANSU7U36oowxDZsyZQrLli2rC47MzEzmzZvHr3/9a4477jg6d+7M2LFjufrqq+veU3sv8drHe++951X5RzXPdlWJiB94EDgX2AIsFpF5qhp/4vX3gX2qOlBErgR+A0xOZl0+t4fc0n276JDXNZmLMsY04uKLL6b+bR+GDRvGm2++CcALL7zALbfcwlVXXUXfvn2ZOnUqU6dO9aDS9sfLLY7RwHpV3aiq1cBsYGK9NhOBx93hZ4BzRESSWVRt1+pl+3clczHGmMN08cUXs3HjRvr2tVsgpJqXwdET+DJufIs7LWEbVY0AB4BOiWYmItNEZImILNm1q/Vf+uFcZ/YVJdbRoTHGJHLUHBxX1ZmqWqSqRYWFha2eT2a+09FhtQWHaceOxjuDGkdbfLZeBsdWoHfceC93WsI2IhIA8oGkfqNn59f2kGsHx037FA6H2bNnj4XHUUhV2bNnD+Fw+LDm4+V1HIuBY0WkP05AXAlcVa/NPOAaYBEwCfiHJvm3Oa+gEzEVYhYcpp3q1asXW7Zs4XB2+Zr0FQ6H6dWr12HNw7PgUNWIiPwIeA3wA39U1VUiciewRFXnAY8CT4jIemAvTrgkVW5WmBIyofJAshdlTFoKBoP079/f6zJMGvP0ynFVfQV4pd602+OGK4HLU1mT3ycclFx8lda1ujHGJHLUHBxvS2W+XILVtsVhjDGJWHAkUO7PI6PGgsMYYxKx4EigKphH2HrINcaYhCw4EoiE8smOlnpdhjHGpCULjgSiGQXkUgLuvYyNMcZ8xYIjkcwC/CixSttdZYwx9VlwJCCZbkeHB+0WssYYU58FRwKBbOeeHGX7LTiMMaY+C44EQm4PueUHLDiMMaY+C44EwnlOR4dVJRYcxhhTnwVHArU95NaUWkeHxhhTnwVHAjkFTnBEy6y/KmOMqc+CI4G83FwqNAQVFhzGGFOfBUcC4aCfA+Qg1kOuMcZ8jQVHA0p9uQSqrKNDY4ypz4KjAeW+XII1duW4McbUZ8HRgMpAHuGIbXEYY0x9FhwNqA7lkRUt8boMY4xJOxYcDYhmFJCrFhzGGFOfBUcDNNyBMNVQU+l1KcYYk1YsOBogmQUAVJbs8bgSY4xJL54Eh4h0FJH5IvKZ+9whQZsRIrJIRFaJyHIRmZzKGn3ZTtfqpft3pXKxxhiT9rza4rgVeENVjwXecMfrKwf+RVWHAucD94pIQaoKDOZYD7nGGJOIV8ExEXjcHX4cuLh+A1X9VFU/c4e3ATuBwlQVGHa7Vq+04DDGmEN4FRxdVbXYHd4OdG2ssYiMBkLAhmQXViszzwmOqjLrIdcYY+IFkjVjEVkAdEvw0i/iR1RVRUQbmU934AngGlWNNdJuGjANoE+fPq2qOV52gbNxE7XgMMaYQyQtOFR1QkOvicgOEemuqsVuMOxsoF0e8DLwC1V9v4nlzQRmAhQVFTUYRM2VX9CRiPpQ61rdGGMO4dWuqnnANe7wNcCL9RuISAh4Hvizqj6TwtoAyAkHOUA2WA+5xhhzCK+CYwZwroh8BkxwxxGRIhGZ5ba5AjgTmCoiS93HiFQVKCKUSg6+qv2pWqQxxhwRkrarqjGqugc4J8H0JcB17vCTwJMpLu0QZb5cgtXW0aExxsSzK8cbURHII2xdqxtjzCEsOBpRHcwnM2rBYYwx8Sw4GlETyic7Vup1GcYYk1YsOBoRyygghzKIRb0uxRhj0oYFR2MyC/ChRCvsALkxxtSy4GiEL8vtIXdfwusTjTGmXbLgaEQgxw2OA3ZPDmOMqWXB0YgMt4fcigN2Tw5jjKllwdGIcG0PuXYXQGOMqWPB0YjsfOsh1xhj6rPgaERuQWcAouXW0aExxtSy4GhEfk4WpRpGLTiMMaaOBUcjAn4fB7Eeco0xJp4FRxNKfbkELDiMMaaOBUcTKvy5ZNTYlePGGFPLgqMJVcE8wpESr8swxpi0YcHRhOpgPlkxCw5jjKllwdGEaEYBuVoCql6XYowxacGCowma2YEQEbS6zOtSjDEmLVhwNEGyOgBQcdC6HTHGGLDgaFLADY6S/bs9rsQYY9KDZ8EhIh1FZL6IfOY+d2ikbZ6IbBGRB1JZI0Awx+nosNx6yDXGGMDbLY5bgTdU9VjgDXe8If8FvJOSquoJ5zn9VVXZripjjAGaGRwi8pyIfFNE2jJoJgKPu8OPAxc3sOyRQFfg9TZcdrNluR0dVpdaD7nGGAPN3+J4CLgK+ExEZojIoDZYdldVLXaHt+OEwyHcoPpv4KdtsLxWya3tWr3cgsMYYwACzWmkqguABSKSD0xxh78EHgGeVNWaRO8TkQVAtwQv/aLe/FVEEl0ocQPwiqpuEZFGaxSRacA0gD59+jTxEzVfXl4+1eq3HnKNMcbVrOAAEJFOwHeA7wKfAH8BTgeuAc5O9B5VndDI/HaISHdVLRaR7sDOBM3GAGeIyA1ADhASkVJV/drxEFWdCcwEKCoqarOr9cIhP7vJQSotOIwxBpoZHCLyPDAIeAL4dtwupjkisqSVy56HEzoz3OcX6zdQ1avjapgKFCUKjWQSEUokF3+VdXRojDHQ/C2OP6jqm4leUNWiVi57BjBXRL4PbAauABCRIuDfVPW6Vs63zVX4cwhWW3AYYww0Pzg6iMil9aYdAFaoaqJdTE1S1T3AOQmmLwG+Fhqq+hjwWGuWdbgqA/l0jNjpuMYYA80Pju/jHG+o3eo4G/gI6C8id6rqE0moLW1UBfPIKv/c6zKMMSYtNDc4gsDxqroDQES6An8GTsG5MO+oDo5IqIDs0lKvyzDGmLTQ3Os4etWGhmsn0FtV9wIJT8U9mmg4nxzKIXrU/6jGGNOk5m5xvCUiLwFPu+OXudOygaP/htyZTjda1aX7COV38bgYY4zxVnOD44fApTjXbYCzm+pZVVVgXDIKSye+7I4AlO7fRUcLDmNMO9dkcIiIH1igquOAZ5NfUvoJxPWQ29HjWowxxmtNHuNQ1SgQc7sbaZfCbnDYzZyMMab5u6pKgRUiMh+ou4eqqt6YlKrSTGa+ExxVJRYcxhjT3OB4zn20SzluD7kR61rdGGOa3Tvu4yKSCfRR1XVJrint5HZw7skRs67VjTGm2Tdy+jawFPi7Oz5CROYls7B0kpuZwQHNgsqj/8xjY4xpSnMvAPwVMBr3mg1VXQock6Sa0o7PJ5RIDj4LDmOMaXZw1Khq/e5hY21dTDor8+VaD7nGGEPzg2OViFwF+EXkWBG5H3gviXWlnXJ/Hhk1FhzGGNPc4PgxMBSoAp4CDgI3J6uodFQVzCccLfG6DGOM8Vxzz6oqx7lP+C+aanu0igTzyC634DDGmObeOvY44KdAv/j3qOr45JSVfqLhAnIPlIAqiHhdjjHGeKa5FwA+DTwMzAKiySsnjYU7ECBGrPIgvsx22/uKMcY0Ozgiqvo/Sa0kzUm207V66YE95FlwGGPaseYeHP+biNwgIt1FpGPtI6mVpZlglvPjlu3f5XElxhjjreZucVzjPv8sbprSji4CDOa6PeQesOAwxrRvzT2rqn+yC0l34TwnOCqth1xjTDvX6K4qEfmPuOHL6732f1u7UHdX13wR+cx97tBAuz4i8rqIrBGR1SLSr7XLPFzZBU5HhzWl+7wqwRhj0kJTxziujBu+rd5r5x/Gcm8F3lDVY4E33PFE/gzcrarH4/SVtfMwlnlYartWj1oPucaYdq6p4JAGhhONt8RE4HF3+HHg4q8tWGQIEFDV+QCqWupeiOiJ/Lw8KjSElO32qgRjjEkLTQWHNjCcaLwluqpqsTu8HeiaoM1xwH4ReU5EPhGRu937nyckItNEZImILNm1q+0PYIcCPr6kK1mlm9t83sYYcyRp6uD4iSJyEGfrItMdxh0PN/ZGEVkAdEvw0iHdlqiqikiiEAoAZwAnAV8Ac4CpwKOJlqeqM4GZAEVFRYcTag3amdGXgWUbkzFrY4w5YjQaHKra4H/4TVHVCQ29JiI7RKS7qhaLSHcSH7vYAixV1Y3ue14ATqWB4EiFsryBFO5+D2oqIJjpVRnGGOOp5l4A2Nbm8dW1IdcALyZosxgoEJFCd3w8sDoFtTXI13UwfmKUbF3rZRnGGOMpr4JjBnCuiHwGTHDHEZEiEZkFoKpRnI4V3xCRFTi7xx7xqF4A8nsPB2DnxmVelmGMMZ5q7pXjbUpV9wDnJJi+BLgubnw+cEIKS2tUz4HDiKpQvnWV16UYY4xnvNriOCL16JTPF3TDt+dTr0sxxhjPWHC0gIiwI6Mf+aV2ZpUxpv2y4GihsvyBdItshUi116UYY4wnLDhayF84iABR9m+xM6uMMe2TBUcL5fUZBsCOjcs9rsQYY7xhwdFCPQaeSEyF8m12ZpUxpn2y4Gihrp06sE0K8e9e53UpxhjjCQuOFhIRdoT6kWdnVhlj2ikLjlYoyxtA98gWNBrxuhRjjEk5C45WkC6DyKCGvVs/87oUY4xJOQuOVsjv4/ZZtcH6rDLGtD8WHK3QY+AIAMqszypjTDtkwdEKnTp1Ygcd8dmZVcaYdsiCoxVEhO12ZpUxpp2y4GilsrwB9Ih8gcaiXpdijDEpZcHRSr4ug8miil1bN3hdijHGpJQFRyvl9h4KwI4N1meVMaZ9seBopR7HngRA+ZaVHldijDGpZcHRSh06d2MP+YjdDdAY085YcByG7aG+5JXYmVXGmPbFguMwlOUNpEfNZjQW87oUY4xJGc+CQ0Q6ish8EfnMfe7QQLvfisgqEVkjIn8QEUl1rQ2RLoPIk3KKt27yuhRjjEkZL7c4bgXeUNVjgTfc8UOIyGnAWOAEYBgwCjgrlUU2Jq+3czfAnXZmlTGmHfEyOCYCj7vDjwMXJ2ijQBgIARlAENiRkuqaobvbZ1Wp9VlljGlHvAyOrqpa7A5vB7rWb6Cqi4A3gWL38ZqqrkldiY3L69yTA+Qgu9d6XYoxxqRMIJkzF5EFQLcEL/0ifkRVVUQ0wfsHAscDvdxJ80XkDFX9Z4K204BpAH369Dnc0ptHhB2hPuTbmVXGmHYkqcGhqhMaek1EdohId1UtFpHuwM4EzS4B3lfVUvc9rwJjgK8Fh6rOBGYCFBUVfS2EkqU0byD9dr1JLKb4fGlz3N4YY5LGy11V84Br3OFrgBcTtPkCOEtEAiISxDkwnja7qgCkcBAdpYSt2770uhRjjEkJL4NjBnCuiHwGTHDHEZEiEZnltnkG2ACsAJYBy1T1b14U25Ac98yq7XZmlTGmnUjqrqrGqOoe4JwE05cA17nDUeBfU1xai3QfcCIAZVtWAt/ythhjjEkBu3L8MOV06Uc5YcTuBmiMaScsOA6XCNtDfcm1M6uMMe2EBUcbKM0bQM+azURjKTuZyxhjPGPB0QakcBBdZR9fbtvmdSnGGJN0FhxtIKdX7ZlVyzyuxBhjks+Cow10G+icWVW6xfqsMsYc/Sw42kBm4TFUEUJ2290AjTFHPwuOtuDzsyPUm9ySDV5XYowxSWfB0UZKcwfQo2YzNVG7G6Ax5uhmwdFWCgfRS3azuThRX43GGHP0sOBoI7V9VhVvWOFxJcYYk1wWHG2k6zHOmVUlX670uBJjjEkuC442ktFlIDUEKP/iE1TtCnJjzNHLs95xjzr+IDsLxzB25z9Z8eVeTujTyeuKTHuiCtFq59kfAl8z/ydUhWgNRCohUgWxmq+/Hs8XgGAmBLPAn0ZfH7EYxCKgMRBf3EOch2lTafTJH/kKxn6f7BemsuCtZznhX6Z5XY5pCVVY+lco3QHHnAXdR4DPn5xlRarg4FY4uA0ObIWDW9znbVBd6n5Z6yHPMY0RiykarUEjlVBTgUQqkWgVEqnEF61C+OpLPiZ+YhIk6gs4zxIkIs6fuz9WTSBWRSBWjV+r8dG6LeQIfqokw3ngPNcQJIqfCH6i+ImKjxoCRNVHFD8KBGpf1WjdcECjte/ARwxRxU8MIYaPmDus+IgRIEKAWF37ANFGf4aYu2Zi+FDEfVA3TNywKnXTvvLVuELdepa4lpJg+V/N+9Bx5+fQevM5dKmJ6ot//qqyQ5e735dPzzuSfz2ZBUcbyh72TUr+VkD3jc9QFfk+GYEkffGYtlWxD174Iax72Rl/AwjnQ/8z4Ziz4Zhx0PGYxv9zVYWacijd6T62Q+lOtGQ7NQeKiRzYDqXbCZRuJ1S152tvL/PlstdfSIlkEYtBRCEag6iq++x8aUTxU0kulXSkUkNUEaSSEJWEqNIQihAkQlAiBIngfJVHCBIlKBH8qPMFLyGqJUREQtT4nOeIhFBfABB8PhAEn4D4fAjgEyEoETK0mjDVZFBJhlaToVVkUEVIqwhptfNFr1FCRPFTg18r66YJSlQCRCXghluIqPiJSYAa/FSJn5j4UfG5X68+Z1h8znSEmPt+ddvG3PfHxI9TtfuVqzF32IkM1AkeUEQhLi74+te842ufuOohvwfKV1s0XwXDV/MR/So2al9TBBXhaxEkzrO4tR5al7sEVfe9iavUUA49E/1+tjELjrYUCLH/2Ms4a81jvP3JGiaMGuZ1RaYpWz+Gp6+Bg8Vw/gwYdhl8/g5sfBM2vAVr3BtO5vdxtkRyu0P5HqLle6k5uItY2R6kYi/B6v0EYlVfm31MhX3ks1ML2KUFbNcTKNZObKcj27QTO+lMWbgrwcwccsMBskMBskJ+sjICZAX9ZIX8ZNZOC/nJCPoJB3yEg346BnxkBP1kBHzuw08oIIT8foIBIeDzEfL7CAaEoN9HwCeI7bYxbcCCo431GDcN/9pH2fPe4zDqbq/LMQ1RhcWz4LWfQ05XuPbv0KvIeW34JGJDL6P4QAU7Pl9FZP1b5BUvpPey58mMlXGQHPbEcthHLvs0l33ahX3kUOrLJxLuSHVmIbHsrkheNzLyutAxJ5MO2SE6ZYcYnBVkdDhIXjhAbjhIOOizL3NzxLHgaGP+roPZmjOckXtfYufBO+mSl+l1Saa+yoPwtxth1fPEjv0GG8bew6pdftasWMOGnWVs3lPG5r3lVEdqewEYQigwjH4dwvTsEKZbQQ7d8sJ0zw/TLT/MCPc5NyNgIWDaBQuOJAiOuoaeb/6UF99+lYnfvtTrcoxrf3k1n6/6gGP+cQM5FVt5PHMqv1l9HlUrnIs2Q34f/Tpn0b9zNuMHd6Fvp2z6dcqib+dsuueF8fksFIwBC46k6HLqFCre+iUZy/+KfusS+y/UA6rKxt1lfLRpHx9t2suuz5dx/IF/cmPgefaRw08D06kqPIWpJ+QypHu/QNC4AAASnklEQVQeg7vlcUxhNkG/XdpkTFM8CQ4RuRz4FXA8MFpVlzTQ7nzgPsAPzFLVGSkr8nBk5LC15/mc8eUrrP58G0OPScV5Du1bJBpj2Zb9fPD5Xj7atI/PN29iWNUnnOFbwb8HVtCFfRCEvT3OIjTxIR7p2svrko05Ynm1xbESuBT434YaiIgfeBA4F9gCLBaReaq6OjUlHp5uZ08j+8nnWf/Wnxl6zG1el3Pkqy5zznA6uNW5CM0XYH+V8tmuStbuLGftrgrKqmGQ70tuDa3iWN0IIYhmFOAbMA4GjodjxtGxoLfXP4kxRzxPgkNV1wBN7cIZDaxX1Y1u29nAROCICI6cAWMoDvWl3xfPURX5D7umo7WKl8FHj8OKp6Hq4CEvFQCj3AcAIVBfAOl9Kgy4GgaMx9/9xORdyGdMO5XOxzh6Al/GjW8BTvGolpYToXzoFE78ZAb//PA9zjjtDK8rOnJUHoSVzziBUbyUqC+DJdlncn/5WBbX9CMzAKf2y2dsf+fRv2MGolGIRpDcrpCR6/VPYMxRLWnBISILgG4JXvqFqr6YhOVNA6YB9OnTp61n3yr9xn+fyCd3U/H+Y2DB0bhYDLYshk+eQFc+h9SUsSXUnz9Fp/J05WmEfJ04f2RXfjCkG6f070g4aFsRxnglacGhqhMOcxZbgfgd0r3caQ0tbyYwE6CoqCgtuqf153ZhXYczGLn3NXbtL6GwwP4TPkQsCl8sgtXziK2Zh6+kmCoJMy96Kn+pGU9xcAgXjOrBI8O6UdSvI347HdaYtJDOu6oWA8eKSH+cwLgSuMrbklou97Rr6fTyWyx44ykmXGYdHxKtgU3/hNXz0LUvIWW7qJEQb8dO5G81l7Aq5zTOGjmAXw7vxkm9O9i1E8akIa9Ox70EuB8oBF4WkaWq+g0R6YFz2u2FqhoRkR8Br+GcjvtHVV3lRb2Ho8fIb7H71c7krZmN6g/a7zUdezbAogdh1XNQsY9qXyYL5WSeqZ7C4sBIxp3Qn6tH9mZUvw7tdx0Zc4Tw6qyq54HnE0zfBlwYN/4K8EoKS2t7Pj/F/S9l5PpH+PTTtQwadLzXFaXWliXw7r3ompeI+YK8lzGWJ6pH8I6eyMgB3Zk0shf3DO1GViidN36NMfHsrzUF+p4zDf+GmWx961EGDbrH63KSLxaD9fPh3ftg87tU+HN5gkuZWT6BnMzuTJrQiztO7kXPAuvHy5gjkQVHCuT1OJZ1mScxqPgFqmtmEAoepas9Ug0rn0HfvQ/ZtZZd/i48VPNdnq0ezxnD+vGHU/ow5phOtivKmCPcUfoNln4iI75Dz0X/zofvzGP0OUdZx4cV++GjPxFd9DD+su18Rl8erL6BT3LHccU5/VkwqjddcsNeV2mMaSMWHCky6Oyr2L/oVxQuvJ1dw8ZQ2LW71yUdvn2b0fcfIvbRn/FHylkUG8YjkWvwHzuBq0/ty+8GdbFTaI05CllwpEggI4t933yEHi99l88fmUj2za+TlVPgdVmts+UjIu/+Ad+aecQQXoyOYW7gIk4acxZ3ndKH3h2zvK7QGJNEFhwp1H/UBSw/cC9D//kj1jx4Gcf/5GX8oSNkF04sBp++SuXb9xIu/pBysvhr5Ju82+kyvn16EY+P6GFXcxvTTlhwpNgJE77Du/t3M3blHaz6nykM/fEz6d0JX6Sa2PI5VLz1e7IPbmC3duZP0e+yb/CVTDl9CP/a1667MKa9seDwwNhJNzN//27O3XI/6x6dxqDrZkG6fflWlVCx6FGiix4kp2onm2N9+UvgZjqdcgU/OHUA3fKPkC0lY0ybs+DwyPhr/4tX/7CbC7Y+xca5nTlm8m+8LslRupMd8+8ld8XjZMVKeS86hH90vpHhZ17CHcN7EArYHfKMae8sODzi9wlnX/8Af//9Ps5f8zDFrxbS/YKfelOMKuUbF7H97Ufp+cU8CrWGBYxi/XHXcfa4C/g/PfK8qcsYk5YsODyUmRFg5PV/4h/3Xcr4D/6LvXmd6Th2asqWH93zOVve+iNZa5+lsGYr3TSDBaGzqBr1QyaceTrnhYMpq8UYc+Sw4PBYYX4Wfa57kvdmXsIp839CRayUzFOvg2CSjiFU7GfH+7Op/viv9C5ZRm8VFstQ3uo9lYFnXcmFA3rbwW5jTKNENS1uXdGmioqKdMmSJV6X0SKL1mwm9tRVjPWtpCTQiYMnTaPHOTcg4VbuJlKFkmLYs57Y7vXs/WI15VtX023vh4SoYb32ZFnH8+lw6nc47eQT7VRaY9o5EflIVYua1daCI318vHkvixY8z4jNf2KsbwUHyeGzflPoc+EtFHbp0fAby/fC1o+cx6616J716O71+CIVdU0qNMQm7cpnWSPghCs57YwJdLZuQIwxLguOIzQ4ah2srGHRO69TsOR+TqleRLlmsDD/WwROv5HevXqh21cSLP6YzJ2fkLtnGdmlmwFQhN3BHqyLdGVdTVc+124czOpHl/5DGDJoMGMGFtI933qkNcZ8nQXHER4c8b5Y+xEHF9zN4N2vEVNBETIkAsB27cDS2ECWxgawVAeyItafzJwCThvQyX10pnfHTDtmYYxpUkuCww6Op7k+g0fC4NlE93zOrgUPUBlRyruMoKrLSfg69KJv0M/goJ/vhfyEA37yMgMWFMaYpLLgOEL4O/Wn5+T/9roMY4zBLgM2xhjTIhYcxhhjWsSCwxhjTItYcBhjjGkRT4JDRC4XkVUiEhORhKd/iUhvEXlTRFa7bW9KdZ3GGGO+zqstjpXApcA7jbSJAP+uqkOAU4EfisiQVBRnjDGmYZ6cjquqa4BGrzdQ1WKg2B0uEZE1QE9gdSpqNMYYk9gRcYxDRPoBJwEfNNJmmogsEZElu3btSlVpxhjT7iRti0NEFgDdErz0C1V9sQXzyQGeBW5W1YMNtVPVmcBM9z27RGRzC0tOlc7Abq+LaITVd3isvsNj9R2ew6mvb3MbJi04VHXC4c5DRII4ofEXVX2uBcsuPNxlJ4uILGlufzBesPoOj9V3eKy+w5Oq+tJ2V5U4B0AeBdao6u+8rscYY4zDq9NxLxGRLcAY4GURec2d3kNEXnGbjQW+C4wXkaXu40Iv6jXGGPMVr86qeh54PsH0bcCF7vBC4Gjs5nWm1wU0weo7PFbf4bH6Dk9K6jsq78dhjDEmedL2GIcxxpj0ZMGRJCJyvoisE5H1InJrgtenuqcN1x6/uS6Ftf1RRHaKyMoGXhcR+YNb+3IROTlVtTWzvrNF5EDcurs9xfU12R2Ol+uwmfV5tg5FJCwiH4rIMre+6QnaZIjIHHf9feBey5VO9Xn29xtXg19EPhGRlxK8ltz1p6r2aOMH4Ac2AMcAIWAZMKRem6nAAx7VdyZwMrCygdcvBF7FOcZ0KvBBmtV3NvCSh59vd+BkdzgX+DTB5+vZOmxmfZ6tQ3ed5LjDQZwLe0+t1+YG4GF3+EpgTprV59nfb1wNtwB/TfQ5Jnv92RZHcowG1qvqRlWtBmYDEz2uqY6qvgPsbaTJRODP6ngfKBCR7qmprln1eUpVi1X1Y3e4BKjtDieeZ+uwmfV5xl0npe5o0H3UP9g6EXjcHX4GOEdSdE/kZtbnKRHpBXwTmNVAk6SuPwuO5OgJfBk3voXEf7iXubsxnhGR3qkprVmaW7+Xxri7El4VkaFeFdFIdzhpsQ6b6K7Hs3Xo7mZZCuwE5qtqg+tPVSPAAaBTGtUH3v793gv8BxBr4PWkrj8LDu/8DeinqicA8/nqvwPTtI+Bvqp6InA/8IIXRTS3OxyvNFGfp+tQVaOqOgLoBYwWkWGpXH5TmlGfZ3+/IvItYKeqfpSqZdZnwZEcW4H4/0B6udPqqOoeVa1yR2cBI1NUW3M0Wb+XVPVg7a4EVX0FCIpI51TWIE13h+PpOmyqvnRYh+6y9wNvAufXe6lu/YlIAMgH9qS2uobr8/jvdyxwkYhswtkNPl5EnqzXJqnrz4IjORYDx4pIfxEJ4RycmhffoN7+7otw9kOni3nAv7hnBp0KHFCnm/u0ICLdavfXishonN/jlH2puMtuqjscz9Zhc+rzch2KSKGIFLjDmcC5wNp6zeYB17jDk4B/qHukNx3q8/LvV1VvU9VeqtoP57vlH6r6nXrNkrr+PLly/GinqhER+RHwGs4ZVn9U1VUiciewRFXnATeKyEU4N6zai3OWRkqIyFM4Z9V0FqfrlztwDgCiqg8Dr+CcFbQeKAe+l6ramlnfJOB6EYkAFcCVqfpScdV2h7PC3Q8O8HOgT1yNXq7D5tTn5TrsDjwuIn6cwJqrqi/V+/t4FHhCRNbj/H1cmaLamlufZ3+/DUnl+rMrx40xxrSI7aoyxhjTIhYcxhhjWsSCwxhjTItYcBhjjGkRCw5jjDEtYsFhkkpELhYRFZHBcdP6ichVbbiMO0WkVfe4F5HHRGSSOzxLRIY00naqiPRobZ2HS0RuFpF/iRsPuD20zkji8rKSNO9CEfl7MuZtks+CwyTbFGCh+1yrH9BmwaGqt6vqgjaYz3WqurqRJlMBT4LDvfr3WpzeUGudi9Pz7eVJ6gDwZiBhcLjXOLSaqu4CikVk7OHMx3jDgsMkjdtX0unA9zn0AqQZwBni3MfgJ+Lc/+BPIrJCnPsLjHPfP1VEXhCR+SKySUR+JCK3uG3eF5GObrv4rYZRIvKe23nfhyKSW68mEZEHxLlXygKgS9xrb4lIkTgd3D0mIivdmn7izr8I+Itbd6aI3C4ii912M+OuxH5LRH7jLv9TETnDne4XkXvc9stF5Mfu9JEi8raIfCQir0niXnTHAx+7HdbVmgLcB3wBjIn7OTaJyHQR+ditf7A7vdBdl6vcravNItJZRLJF5GV3na0UkckiciNOSL4pIm+67y8Vkf8WkWU4HSSe434WK8S5h0pG3PL/n7uelojIye7PtUFE/i2u/heAq5v4NTLpqC37aLeHPeIfOF8Kj7rD7wEj3eGzibuHAPDvOFfXAwzG+SIM4/yHvx7nnhKFOD18/pvb7vc4nfcBPIZzJXQI2AiMcqfnAYF6NV2K0ymdH+eLcT8wyX3tLZxwGInTI2rtewriX4+b3jFu+Ang23Ht/tsdvhBY4A5fj9PFdaD2/ThXxL8HFLrTJteui3p1Twd+HDceBrYBmcA04P641zbVtsW5L8Msd/gB4DZ3+HycrsI7A5cBj8S9Pz9uPp3jpitwRdzyvwSOc8f/HPd5bAKuj/uclsd9hjvi5tcTWOH176k9Wv6wLQ6TTFNwOmHDfZ7SQLvTgScBVHUtsBk4zn3tTVUtUWfXxgGcXkkBVuDs8oo3CChW1cXuvA7qof+hg3OTqKfU6f10G/CPBPVsBI4RkftF5HygoZ5vx4lzd7UVOFsE8V2T13Ys+FFcnROA/62tSVX3ujUPA+aL0z3I/8HpELG+7sCuuPFv4aybCpzODC+ut/so0fJPx/08VPXvwD53+grgXHcr6QxVPdDAzxt1l4Vb9+eq+qk7/jjOuq1V2zfbCpybWNV+hlXi9gOF02W5Z8eMTOtZX1UmKdzdSOOB4SKiOP/hq4j8rIWzqoobjsWNx0jS76+q7hORE4FvAP8GXIFzfKGOiISBh3C2QL4UkV/h/Bdev+5oE3UKsEpVxzTSBpz+pOLnPwU4XZweUsG518J4nK2pliwfVf1UnFvbXgjcJSJvqOqdCZpWqmq0iTprxX9O9T/D2nrCOD+XOcLYFodJlknAE6raV1X7qWpv4HPgDKAEZ9dFrX/i7usWkeNwOuNb14plrgO6i8god1657kHleO8Ak93jDd2BcfVnIk734j5VfRZnC6D2fuHxddd+ie92j+VMakZ984F/ra3JDdd1QKGIjHGnBSXxTZXWAAPdNnk467GPu277AT+k4S26Wu/ihCAich7QwR3uAZSr6pPA3Q38vPWtA/qJyEB3/LvA200sv77jgIT3lTfpzYLDJMsU4Pl60551py8Hou7B2J/g/Ofuc3f5zAGm6lf3Omg2dW7TOxm43z2AO59D/0vHrekzYDXOfvlFCWbVE3jL3XX0JHCbO/0x4GF3ehXwCM4X32s4Xek3ZRbO8Zvlbn1XuTVPAn7jTlsKnJbgva/y1a6gS3C6yY5fRy8C3649QN2A6cB5IrISuBzYjhMOw4EP3Z/rDuAut/1M4O+1B8fjqWolTo+/T7ufWwx4uKkVUM844OUWvsekAesd15gjhIg8D/yHqn7WyvdnAFF1uv0fA/yPOne584SIvANMVNV9TTY2acWOcRhz5LgV5yB5q4IDZxfgXBHxAdXAD9qqsJYSkULgdxYaRybb4jDGGNMidozDGGNMi1hwGGOMaRELDmOMMS1iwWGMMaZFLDiMMca0iAWHMcaYFvn/pwyD6cmYXcsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEHCAYAAACwUAEWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deZgU5bX48e/p7unZV2ZkG2BQkUVQkBE1qBEEt0RRgyJ6E9EYE81iknuTq8lVg9fcnzHeROMSQ4jRxJuAuxh3FGNwZZFFUGQRZWDAYZt97T6/P6pmbMaehZnprmH6fJ6nn66qfqvqdPVMn66qt06JqmKMMca0xed1AMYYY3o3SxTGGGPaZYnCGGNMuyxRGGOMaZclCmOMMe2yRGGMMaZdAS9XLiJnAXcBfmC+qt7W6vUfA1cBTUAZcKWqftLRcvPz87WoqKjnAzbGmD5qxYoVu1W1INprniUKEfED9wLTgRJgmYgsUtX1Ec3eA4pVtUZErgFuB2Z1tOyioiKWL18ei7CNMaZPEpE2f4R7eehpErBJVbeoagOwAJgR2UBVl6hqjTv6NlAY5xiNMSbheZkoBgPbIsZL3Glt+SbwfEwjMsYY8wWenqPoLBH5N6AY+HI7ba4GrgYYOnRonCIzxpi+z8tEsR0YEjFe6E47gIhMA34OfFlV69tamKrOA+YBFBcXWwErY7qosbGRkpIS6urqvA7FxEBKSgqFhYUkJSV1eh4vE8UyYISIDMdJEJcAl0Y2EJEJwB+As1T1s/iHaEziKSkpITMzk6KiIkTE63BMD1JV9uzZQ0lJCcOHD+/0fJ6do1DVJuB7wIvAB8AjqrpORG4RkfPcZr8GMoBHRWSViCzyKFxjEkZdXR39+vWzJNEHiQj9+vU76L1FT89RqOpzwHOtpt0UMTwt7kEZYyxJ9GFd+WztymyXqvK7Vzby+kdlXodijDG9iiUKlwDnvn4uTa/92utQjEl4fr+f8ePHtzxuu+22jmfqpFWrVvHcc58fyHjwwQcpKCg4YH3r169nx44dzJw5s8fW2xVbt25l7NixnsYAh0j32LgQIUeqSa7d6XUkxiS81NRUVq1aFZNlr1q1iuXLl3POOee0TJs1axb33HPPF9o+9thjMYkh3pqamggEuv51b3sUEap9mSTVl3sdhjEmivLyckaOHMmGDRsAmD17Nn/84x8BuOaaayguLuboo4/m5ptvbpln2bJlfOlLX+LYY49l0qRJlJeXc9NNN7Fw4ULGjx/PwoUL21xf5K/5mpoaLr74YsaMGcMFF1zACSec0FIm6KWXXuKkk07iuOOO46KLLqKqqgpwSgndfPPNHHfccYwbN44PP/wQgH/+858tey4TJkygsrISVeUnP/kJY8eOZdy4cVHjOvHEE1m3bl3L+Gmnncby5cuprq7myiuvZNKkSUyYMIGnn34acPaUzjvvPKZOncrpp5/e5e0OtkdxgNpAFsEmSxTGNJv7zDrW76jo0WWOGZTFzece3W6b2tpaxo8f3zJ+ww03tPzqnzNnDtdddx379u3jW9/6FgC//OUvycvLIxQKcfrpp7NmzRpGjRrFrFmzWLhwIccffzwVFRWkpaVxyy23sHz58pY9iAcffJCFCxeydOnSlvW99dZbB8Rz3333kZuby/r163n//fdbYtu9eze33norixcvJj09nV/96lf85je/4aabnD45+fn5rFy5kvvuu4877riD+fPnc8cdd3DvvfcyefJkqqqqSElJ4YknnmDVqlWsXr2a3bt3c/zxx3PqqaceEMOsWbN45JFHmDt3LqWlpZSWllJcXMzPfvYzpk6dygMPPMD+/fuZNGkS06Y5/YBWrlzJmjVryMvL68pH1cISRYT6QBapdbu9DsOYhNfWoafp06fz6KOP8t3vfpfVq1e3TH/kkUeYN28eTU1NlJaWsn79ekSEgQMHcvzxxwOQlZXV5vraOvTUbOnSpVx33XUAjB07lmOOOQaAt99+m/Xr1zN58mQAGhoaOOmkk1rmu/DCCwGYOHEiTzzxBACTJ0/mxz/+MZdddhkXXnghhYWFLF26lNmzZ+P3++nfvz9f/vKXWbZsWct6AC6++GLOOOMM5s6dyyOPPNJy/uSll15i0aJF3HHHHYDTvfnTTz9t2V7dTRJgieIAjcEccmo+9joMY3qNjn75x1s4HOaDDz4gLS2Nffv2UVhYyMcff8wdd9zBsmXLyM3NZc6cOXG7qlxVmT59On//+9+jvp6cnAw4J+ebmpoAuP766/nKV77Cc889x+TJk3nxxRc7ta7BgwfTr18/1qxZw8KFC7n//vtbYnj88ccZOXLkAe3feecd0tPTu/rWDmDnKCKEUrLJ0ipUrQKIMb3Rb3/7W0aPHs3f/vY3rrjiChobG6moqCA9PZ3s7Gx27drF8887tUNHjhxJaWkpy5YtA6CyspKmpiYyMzOprKw8qPVOnjyZRx55BID169ezdu1awDlv8MYbb7Bp0yYAqqur+eijj9pd1ubNmxk3bhz/+Z//yfHHH8+HH37IKaecwsKFCwmFQpSVlfH6668zadKkL8w7a9Ysbr/9dsrLy1v2Ns4880zuvvvulu+t995776DeW2fYHkWklFyypIbqunrSU1O8jsaYhNX6HMVZZ53FFVdcwfz583n33XfJzMzk1FNP5dZbb2Xu3LlMmDCBUaNGMWTIkJbDQMFgkIULF/L973+f2tpaUlNTWbx4MVOmTOG2225j/Pjx3HDDDQBfOEdx3333MWjQoJbxa6+9lssvv5wxY8YwatQojj76aLKzsykoKODBBx9k9uzZ1Nc7pehuvfVWjjrqqDbf25133smSJUvw+XwcffTRnH322QSDQd566y2OPfZYRITbb7+dAQMGsHXr1gPmnTlzJtdddx033nhjy7Qbb7yRH/7whxxzzDGEw2GGDx/OP/7xj65v/CikL/56Li4u1q7cuGjlI/+P49bfRum31zFwoN36wiSmDz74gNGjR3sdRq8SCoVobGwkJSWFzZs3M23aNDZs2EAwGPQ6tC6J9hmLyApVLY7W3vYoIvgz+gFQta8MLFEYY1w1NTVMmTKFxsZGVJX77rvvkE0SXWGJIkLQTRS1FdbzyRjzuczMzIS+vbKdzI6QkpUPQEPFHo8jMcaY3sMSRYT0HCdRNFZbojDGmGaWKCJk5hwGQKh6n8eRGGNM72GJIkJKZq4zUGuJwhhjmlmiiCD+ABWk46uzRGGMV6ZMmfKFq5XvvPNOrrnmGtatW8fUqVMZOXIkRxxxBDfffDPhcBhou1y46T5LFK1USSZ+qyBrjGdmz57NggULDpi2YMECLrnkEs477zyuv/56NmzYwNq1a3n33Xe56667WtrNmjWLVatWtTzGjBkT7/D7JEsUrdT4Mwk2WqIwxiszZ87k2WefpaGhAXDKfe/YsYNNmzYxefJkzjjjDADS0tK45557+PWv7WZjsWbXUbRSl5RNakPPllU25pD1/PWwc23PLnPAODi77TvW5eXlMWnSJJ5//nlmzJjBggULuPjii1m3bh0TJ048oO0RRxxBbW0t+/fvB75YiuOtt94iNTW1Z+NPQLZH0UpjUjZpYUsUxngp8vDTggULmD17dqfma33oyZJEz7A9ilaakrPJLK/yOgxjeod2fvnH0owZM/jRj37EypUrqampYeLEibz33nu8/vrrB7TbsmUL/fr1Iycnx5M4E4WnexQicpaIbBCRTSJyfZTXk0Vkofv6OyJSFOuYNCWXLKpoaGyK9aqMMW3IyMhgypQpXHnllS17E5dddhlLly5l8eLFgFNh9gc/+AFz5871MtSE4FmiEBE/cC9wNjAGmC0irbsofBPYp6pHAr8FfhXruHxpufhFqdi/N9arMsa0Y/bs2axevbolUaSmprJo0SJ++ctfctRRR5Gfn8/kyZO57LLLWuZpvhd28+PNN9/0Kvw+xctDT5OATaq6BUBEFgAzgMiOzzOAX7jDjwH3iIhoDGuj+9PdCrL7PyO/4LBYrcYY04Hzzz//CzcRGzt2LEuWLAHgqaee4sc//jGXXnopw4YNY86cOcyZM8eDSPs+Lw89DQa2RYyXuNOitlHVJqAc6BdtYSJytYgsF5HlZWVlXQ4qKcO5v6xVkDWmdzv//PPZsmULw4YN8zqUPq/P9HpS1XmqWqyqxQUFBV1eTnKWk4fqrIKsMcYA3iaK7cCQiPFCd1rUNiISALKBmH6Dp2U7Saah0hKFSVx98c6XxtGVz9bLRLEMGCEiw0UkCFwCLGrVZhFwuTs8E3g1lucnADJznEQRqraT2SYxpaSksGfPHksWfZCqsmfPHlJSUg5qPs9OZqtqk4h8D3gR8AMPqOo6EbkFWK6qi4A/AX8VkU3AXpxkElMZ7j0ptMYShUlMhYWFlJSU0J1zfab3SklJobDw4G717OkFd6r6HPBcq2k3RQzXARfFMyZfUjLVpCB1++O5WmN6jaSkJIYPH+51GKYX6TMns3tSpWTir7dEYYwxYIkiqhqfVZA1xphmliiiqA1kEWys9DoMY4zpFSxRRNGQlE1ayCrIGmMMWKKIqik5hwy1PQpjjAFLFFGFU3LI0irCobDXoRhjjOcsUUSTmkuyNFFZZYefjDHGEkUU/nSnMGDVPrvgyBhjLFFEkeQmiupySxTGGGOJIorPK8haqXFjjLFEEUVqllPvqaHS6j0ZY4wliijS3QqyjdVWatwYYyxRRJGZaxVkjTGmmSWKKJJTMqjXJKi1woDGGGOJIhoRKiQDv5UaN8YYSxRtqfZlEmiwCrLGGGOJog21gSySmyxRGGOMJYo21AeySW2yEh7GGGOJog1NydlkhK2CrDHGWKJoQyg5h0yt8joMY4zxnCWKNmhqLmlST11ttdehGGOMpzxJFCKSJyIvi8hG9zk3SpvxIvKWiKwTkTUiMiueMfrSnMKAFXut3pMxJrF5tUdxPfCKqo4AXnHHW6sBvqGqRwNnAXeKSE68AgxkuKXGyz+L1yqNMaZX8ipRzAAecocfAs5v3UBVP1LVje7wDuAzoCBeASZnuBVky22PwhiT2LxKFP1VtdQd3gn0b6+xiEwCgsDmdtpcLSLLRWR5WVn37yPRUmq80goDGmMSWyBWCxaRxcCAKC/9PHJEVVVEtJ3lDAT+Clyuqm3exFpV5wHzAIqLi9tcXmc1V5BtqrLCgMaYxBazRKGq09p6TUR2ichAVS11E0HUEwEikgU8C/xcVd+OUahRZeY6iSJkFWSNMQnOq0NPi4DL3eHLgadbNxCRIPAk8BdVfSyOsQGQnpFDk/qgZl+8V22MMb2KV4niNmC6iGwEprnjiEixiMx321wMnArMEZFV7mN8vAIUn48KycBXbxVkjTGJLWaHntqjqnuA06NMXw5c5Q4/DDwc59AOUOXLJGCJwhiT4OzK7HbU+LIINloFWWNMYrNE0Y76pCyrIGuMSXiWKNrREMwmzSrIGmMSnCWKdjgVZC1RGGMSmyWKdmhKDpnU0tRQ73UoxhjjGUsU7ZBUpzBgZbmV8TDGJC5LFO1oqSC7zyrIGmMSlyWKdiS5FWRrKqyCrDEmcVmiaEeKW0G2vsIOPRljEpclinakZuUD0GgVZI0xCcwSRTsycw8DoKna9iiMMYnLEkU7MrPzCKugVkHWGJPALFG0I5CURKWkIXVWGNAYk7gsUXSgUqyCrDEmsVmi6ECNL9MqyBpjEpolig7UBbJJtkRhjElglig6UB/MIjVU5XUYxhjjGUsUHQgFrYKsMSaxWaLoQDglh0ytQsMhr0MxxhhPWKLoSFouflGqK63nkzEmMVmi6IA/zS01bhVkjTEJyrNEISJ5IvKyiGx0n3PbaZslIiUick88Y4TPK8hW7y+L96qNMaZX8HKP4nrgFVUdAbzijrflv4HX4xJVK8mZVkHWGJPYvEwUM4CH3OGHgPOjNRKRiUB/4KU4xXWAtOwCABqqLFEYYxJTpxKFiDwhIl8RkZ5MLP1VtdQd3omTDFqv1wf8L/AfPbjeg5Ke45Qab7JS48aYBBXoZLv7gCuA34nIo8CfVXVDRzOJyGJgQJSXfh45oqoqIhql3bXAc6paIiIdretq4GqAoUOHdhRap2XlOnsU4RpLFMaYxNSpRKGqi4HFIpINzHaHtwF/BB5W1cY25pvW1jJFZJeIDFTVUhEZCETrVnQScIqIXAtkAEERqVLVL5zPUNV5wDyA4uLiaEmnS1JSUqjSVKTWSo0bYxJTpw8liUg/YA5wFfAecBdwHPByF9e9CLjcHb4ceLp1A1W9TFWHqmoRzuGnv0RLErFWIRn4rIKsMSZBdfYcxZPAv4A04FxVPU9VF6rq93F+6XfFbcB0EdkITHPHEZFiEZnfxWXGRLUvk6QGKwxojElMnT1H8TtVXRLtBVUt7sqKVXUPcHqU6ctx9lpaT38QeLAr6+qu2kAWyU2WKIwxiamziSJXRC5sNa0cWKuqff6S5YakbLJrt3gdhjHGeKKzieKbOCeWm/cqTgNWAMNF5BZV/WsMYus1GoPZZFRbBVljTGLqbKJIAkar6i4AEekP/AU4AeeK6T6dKMLJ2WRpJahCB910jTGmr+lsr6fC5iTh+gwYoqp7gahdY/sSScsjSULU11Z4HYoxxsRdZ/coXhORfwCPuuNfc6elA32+36ikOfUKK/eVkZyW7XE0xhgTX51NFN8FLgROdsf/AjyuqgpMiUVgvUkg3Sk1Xr1/N/mDj/Q4GmOMia8OE4WI+IHFqjoFeDz2IfU+zRVkayt2exyJMcbEX4fnKFQ1BITd8h0JKSXLrSBrpcaNMQmos4eeqoC1IvIyUN08UVV/EJOoepn0bKeCbGO1JQpjTOLpbKJ4wn0kpAy3gmyo2irIGmMST2erxz4kIqnA0M6UF+9rMjMyqdMkqyBrjElInS0KeC6wCnjBHR8vIotiGVhv4vMJFZKB1PX5nsDGGPMFnb3g7hfAJNxrJlR1FXB4jGLqlap8WVZB1hiTkDqbKBpVtfW3ZLing+nNavyZBBstURhjEk9nE8U6EbkU8IvICBG5G3gzhnH1OvWBbFKbrISHMSbxdDZRfB84GqgH/g5UAD+MVVC9UWMwm7SwVZA1xiSezvZ6qgF+7j4SUig5m0y1RGGMSTydShQichTOPauLIudR1amxCav3CafmkkoD4foafMlpXodjjDFx09kL7h4F7gfmA6HYhdN7SapTGLBq/26y+g/1OBpjjImfziaKJlX9fUwj6eWaK8hWlZdZojDGJJTOnsx+RkSuFZGBIpLX/IhpZL1MMNN5uzX7rYKsMSaxdHaP4nL3+ScR05QEuuguJcspDFhXaYUBjTGJpbO9nob35ErdvZGFOCfHtwIXq+oXCimJyFCc8yJDcBLTOaq6tSdj6ay0bKcwYGOVJQpjTGJp99CTiPw0YviiVq/9TzfWez3wiqqOAF5xx6P5C/BrVR2NU0Lks26ss1sycpxEEbYKssaYBNPROYpLIoZvaPXaWd1Y7wzgIXf4IeD81g1EZAwQUNWXAVS1yr2ewxNZWTk0qh+tsURhjEksHSUKaWM42vjB6K+qpe7wTqB/lDZHAftF5AkReU9Efu3eljV6oCJXi8hyEVleVlbWjdCiCyb52Uk+yVXbenzZxhjTm3V0jkLbGI42fgARWQwMiPLSAVd3q6qKSLRlBYBTgAnApzjnNOYAf4oaqOo8YB5AcXFxu7F1VWlwGAOrNsdi0cYY02t1lCiOFZEKnL2HVHcYdzylvRlVdVpbr4nILhEZqKqlIjKQ6OceSoBVqrrFnecp4ETaSBTxUJV9JAN2r4RQE/g722HMGGMObe0eelJVv6pmqWqmqgbc4ebxpG6sdxGfd7m9HHg6SptlQI6IFLjjU4H13Vhnt/kKRpFEE+XbE+4mf8aYBNbZC+562m3AdBHZCExzxxGRYhGZD6CqIZz6Uq+IyFqcvZg/ehQvABlDxwGwa/MqL8Mwxpi48uT4iaruAU6PMn05cFXE+MvAMXEMrV2DjzwGXoSa7eu8DsUYY+LGqz2KQ9KA/H6U6GH4dtuhJ2NM4rBEcRBEhJ3Jw8iu2uR1KMYYEzeWKA5SVdYIBjaVOD2fjDEmAViiOEi+w0YRpIl91vPJGJMgLFEcpKzmnk+brOeTMSYxWKI4SIOPPBawnk/GmMRhieIg5ffLYzsF+PfYoSdjTGKwRHGQRIRdyUVkVW3xOhRjjIkLSxRdUJ11JIOatqHW88kYkwAsUXSBHDaaZBrZU/KR16EYY0zMWaLogqyhYwH4zGo+GWMSgCWKLhg8YjwA1dbzyRiTACxRdEG/vH6Ukk/Aaj4ZYxKAJYou2pk8nOxqu9udMabvs0TRRTXZRzKo0Xo+GWP6PksUXSSHjSZFGtm1zXo+GWP6NksUXZTt9nwqs55Pxpg+zhJFFw0eMQGAWuv5ZIzp4yxRdFFObh47ybeaT8aYPs8SRTfsSi4ix2o+GWP6OEsU3VCTfSSDmz4l3GQ9n4wxfZdniUJE8kTkZRHZ6D7nttHudhFZJyIfiMjvRETiHWtbfP3HkCKN7PzUej4ZY/ouL/corgdeUdURwCvu+AFE5EvAZOAYYCxwPPDleAbZnpaeT1us55Mxpu/yMlHMAB5yhx8Czo/SRoEUIAgkA0nArrhE1wmD3JpPdrc7Y0xf5mWi6K+qpe7wTqB/6waq+hawBCh1Hy+q6gfxC7F9WTn92EU/Anvt0JMxpu8KxHLhIrIYGBDlpZ9HjqiqiohGmf9IYDRQ6E56WUROUdV/RWl7NXA1wNChQ7sbeqd9llJEbpXVfDLG9F0xTRSqOq2t10Rkl4gMVNVSERkIfBal2QXA26pa5c7zPHAS8IVEoarzgHkAxcXFX0g6sVKTPYIjdz5BKBTC7/fHa7XGGBM3Xh56WgRc7g5fDjwdpc2nwJdFJCAiSTgnsnvNoScAX/9RpEoDO7bahXfGmL7Jy0RxGzBdRDYC09xxRKRYROa7bR4DNgNrgdXAalV9xotg25I99BgAyras9jgSY4yJjZgeemqPqu4BTo8yfTlwlTscAr4d59AOSvPd7up2vO9xJMYYExt2ZXY3pWf34zP64d+z0etQjDEmJixR9IDPUorItbvdGWP6KEsUPaAmZwSFTdtosppPxpg+yBJFDwj0H0Wa1FOy1S68M8b0PZYoekD2MOv5ZIzpuyxR9IBBRzp3u6vbYTWfjDF9jyWKHpCalUeZ5JG0xw49GWP6HksUPaTMej4ZY/ooSxQ9pCZ7BIWhbTQ0Ws8nY0zfYomihwQGjCZd6tn2sR1+Msb0LZYoekjO0HEA7P7Yej4ZY/oWSxQ9ZKBb86l2u9V8Msb0LZYoekhyZj67/ANI3f4WqnG7HYYxxsScZ9Vj+6J9w87huM0PsfqjLYwfeYTX4Zi+LNQE9RXOo64c6txnFILpEMx0n9MhmOE8B5JBpAvranTXUQ6hBvAHwRdwnv1J7iMIviRn+aFGCDdBuBHCIXfcnabqzHvAw/fFaV2Jsyd05kdeV2JTBQ23XlD0ZXr13tthiaIHDT3tcpK2PMDHr/+N8SNv9Doc01tU7IBt70LJMufLNjnz8y/w5Az3i9z9Mg+HoGYP1O51nmv2EK52HlqzB6nbj6++Al9j9UGHERI/jZJCoy+FRl+QBkmhQT5/rpcgomFSQ1WkhStJC1eRHq4iRetisFHa14ifRgI0qfuMnyYChBEChPARxkeYgPvsJ4yfED4UofnLXlu+ipunff7s8H3xDsydFlJBEcKIuyZn6YK2xOFDu7WOzgqr8472SA4Fv9ja48u3RNGD0oYcy87gMIZsf5a6xp+RkmS3Rk04TfVQugZK3oVt76Ily5CK7QCEfUEagtn4m2oINNVEfKFFF0Io1wz2aiZ7yWSfZlKuh1FBGpWa5jxHDFdoGoqQRh3pUk86taRLHWnUk+mrI8tXT7rUk6qNpIQaSJUGUmggRRpI0XJyqCcsPqolg32+gVQnZVDjy6TGl06tP5NafwZhCZIkIQI0EaCJpOZnDRGgEQHCvgBhCaDiJywBwuJ3phFABOdLXp0vdj8hfOo+E8avTfg1hF8b8dOEX5vwaYiANuLXJkSVsM+P4nPX4UPFTRU+v/uF/fkRdRXnCxyI8kv9wOmRaeWAVpGj2txKnTk07KaIsPuaouLE0bxuxRcxLO4aIj/7z4dF9SD2KPTzeZoF0yno5NwHwxJFTxKhYdQFHLf6LhavWM0ZJx7ndUQmBrS+kqqdH1Neuonasi2E9mwlULmNtOrtFNRtJYlGAHaQz4rQkbwXnsrK8AjW6zAaapIA54slTRooSG6if7CRgmAD/YKNBJOCNKXmEUrOw5eaTUpykPSgn9Sgn7RggJQkH4OS/CQHfCQH/CQn+T4fDvhICvgI+p1HUkBI8vsI+ATphYczzKHDEkUPKzz1G/jW3Mnut/8Olih6v1AjVO6EylLnUbMH6ipoqimnqnwPtZX7aKzZT7i2HF9DJVmNu8mhgkwg011ErQbZpgVs8ffnzeRzKckYy+6cYwhkDyIvPcjh6UGOTw+Smx4kJy2JrJQkMlMCpAcD+Hz2BW56P0sUPcyXfwQ700czbu9L7Cz/bwZkp3gdkgHYtxU+egnKPoCKUqjcARWlaHVZ9ENA6kNJo0Gdwzu1vnRCwcP4NGsMDZlDIHcYwfwiMgccQb/DBlOUlcpRAetEaPomSxQxEJxwMeOWzuX/3niDy875wm3BTTyEQ87J4w3Pw0cvQNmHADQEcygPFLCLXLY2HMumpkx2ah47NZfKpAKy+g2gIL+AQQX9KMrPoCg/naJ+aeSkBT1+Q8Z4xxJFDORNuoTw0ltoXPUoevZUOz4cL3UVsPkV2PACuvElpHYvYQmwMWUcz/uv4MmacXxSNwCAon5pjBqWxeiBWUwdmMnogVkU5qbaZ2VMFJ4kChG5CPgFMBqYpKrL22h3FnAX4Afmq+ptcQuyO7IGUZZXzCm7X2PVp/uYMCzP64j6LlXYvpKmZX9C3n8Cf6iWSslkSWg8LzZN4PXwMWQE85h4RC5zhuVyTGEOowZkkp5sv5GM6Syv/lveBy4E/tBWAxHxA/cC04ESYJmILFLV9fEJsXuyJ11C/xf+nXuXvsqEYTO9DqfP0Ro40AMAABIxSURBVLoKyt58GN/KB8mv2kC9JrMo9CWe0lOp6z+RCUX5nDksl58Py2VQTqrX4RpzSPMkUajqB0BHu/mTgE2qusVtuwCYARwSiSLlmAsJvfBT0jY+RV3jBXZNRQ8or21k7bLXSHrvIcbte5nDqGN9eBgPp36H2tFf48TRRTxQlGd7C8b0sN78HzUY2BYxXgKc4FEsBy8tj/LBp3JmyRu8vK6Uc8cXeh3RIWlfdQOvrvmY8mULKN79FCf7tlBLkJWZU6ka+3WOPn4KP8xL9zpMY/q0mCUKEVkMDIjy0s9V9ekYrO9q4GqAoUOH9vTiuyRn0qX4ti/hz2++yLnjv+l1OIeM3VX1vLRuF2vee4sx2x/jfN+/yJJaytIP55NjfsHgU+cwOT3X6zCNSRgxSxSqOq2bi9gODIkYL3SntbW+ecA8gOLi4l5RvtU36hwafckMK32OXRWX0T/LrqloS3lNI8+s2cGLqz8h79MXudS/mEt9H9IUSKLqiK+ip1xNwdCTemXBNGP6ut586GkZMEJEhuMkiEuAS70N6SAlZ1B/xJmc89GrPLZiK1dPGeV1RN4JNcIHz8Dezc5wqJFwUwPb91bw8a797NpXSbo28LvA++QmldOQNQyddAuBCZeRk57vdfTGJDSvusdeANwNFADPisgqVT1TRAbhdIM9R1WbROR7wIs43WMfUNV1XsTbHRkTL4GNi/j43efQ00YmXj/9hhp472F4824o/7RlckgCNKifbPUzVgKMTw6SkpxCUuEpUHwlwcOnOOWnjTGe86rX05PAk1Gm7wDOiRh/DngujqH1vCOn0RDIpLjqFVaXXMn4ITleRxQftftg2Xx4+36o2U1o8CT+ecRPuPeTIazYXk3A5+O0kYcxc2IhU0cdRtDKXxjTa/XmQ099QyAZxpzHWasf59fLNjF+SLHXEcVWRSm8fS8s/zM0VFE5ZCp/G/g17tqYT83mEKMHBrjxq0czY/wg8jOSvY7WGNMJlijiIDj+YoJr/o/KNc9Sd+6EvnlNRc1eWPJLWPkXNNzEtkFn85uas3lqYx4pST7OO3Ygl50wjGMTZY/KmD7EEkU8FJ1CQ0oB06v/xcvrd3HusYO8jqjnqMLqBfDSf6G1+1iZfy43lk1j/eY8jihI5+Zzh3HhhEKy05K8jtQY00WWKOLB5ydwzIVMffcBznxmGROHndE3ykqUbUD/8SPkkzfYFBzN9+v+nU07ijjz6AHcdOIwThiel3gn743pgyxRxIlv3EUE3/0D0xtf48oHc3n0OyeRmXKI/spuqKFuye0kvX031ZrC/zRexWtJZ3LptOHMnjSUgkw792BMX2KJIl4Ki2HQcfxsxwMM2VPCj/4a5vdXnkqS/9Dq7VPyzlOkvXI9eQ2lPB46hecGXMsFp4znv48ecMi9F2NM54hqr7iIuUcVFxfr8uVRK5d7q6EGXrkF3vk9W8P9eWHETXz73y7r9YdnGkNh3nz7LVL/9Usm1b3BZh3E4uE/ZfL0Cxk7ONvr8IwxPUBEVqhq1G6Zlii88PG/2L/gW2TV7WT10K8z4Ru/hqTeV97js4o6Fv3rXQpW3MlXQ69SL8msHf5NjrrgZ+RmZXgdnjGmB1mi6IXCtRW8ef+1nFz+DJWZR5B5yXwYfJzXYaGqvPPxXp5YuoaRG+fxb76X8QmUjriMwef9F/7MAq9DNMbEgCWKXqquMcQd997LVft+S39fOXLqf8Ap/wGB+N+feW91A8+s3sETb3/Al/c8xtVJz5JGPdWjLyLzzP+CnN5RkdcYExvtJQo7me2hlCQ/137rO3zjvsP5ds08zv3nr2Dzq3DxXyAr9tdaNDSFefXDz3hiZQlbNqxmOu/yUPB5cpLKCR31VXzTbiTzsAQuZGiMASxReC4vPcg9V0zhgvuCrEw+gZt23Yv84VS46EEoOrnH16eqrC4p58kVn/Lx6n9yUuM7XB94j8OTSpwGRafC6TfjL+zjpUaMMZ1mh556ieVb93Lp/HcYIdt5IPUuDmvcjk6bi+9L3+v2PRgamsKsLtnP2x9uY+fqFxlX+QbT/O+RL+WEJQBFk/GNPAdGng25w3roHRljDiV2juIQsW5HOQ+//SlLVm/i5vC9nO1fxob86aTP/D2FAzpxErmpHvZ/SmjvJ5R+8iFl2zZSv3srqdUlDKKMAikHoCGQgYyYTtKYr8KR0yDV6i8Zk+gsURxi6hpDvPh+KbWv/YaL9j/AJh3M/QN+wcknnMThBenUNoaoawxRWx8iad9H5O1cSv/P3mDg/hUEwvUty2lQP2X+w6hLLySYP5z8wiNILZoEw0725IS5Mab3skRxCNu95iXSn/kWocYGftTwHd4Jj2ay731O9a3hVP8aBsseADaFB/F6+Bi2p42iYMgIDh9xNOPHjOSwrDSP34Ex5lBgieJQt38b+sjXkR3vERY/Pg0RSsqkpvBkGoqmoEdOJblfESlJfiujYYzpEusee6jLGYJc8QK8cRe+cCMccTr+wmIy/YdoUUFjzCHFEsWhIikFTvtPr6MwxiQgO05hjDGmXZYojDHGtMsShTHGmHZ5kihE5CIRWSciYRGJ3h1LZIiILBGR9W7b6+IdpzHGGO/2KN4HLgReb6dNE/DvqjoGOBH4roiMiUdwxhhjPudJrydV/QBo985uqloKlLrDlSLyATAYWB+PGI0xxjgOiXMUIlIETADeaafN1SKyXESWl5WVxSs0Y4zp82K2RyEii4EBUV76uao+fRDLyQAeB36oqhVttVPVecA8cK7MPshwjTHGtCFmiUJVp3V3GSKShJMk/k9Vn+jsfCtWrNgtIp90d/0xkg/s9jqIdlh83WPxdY/F1z3dia/Newz02iuzxTmB8SfgA1X9zcHMq6q99sbOIrK8rXoqvYHF1z0WX/dYfN0Tq/i86h57gYiUACcBz4rIi+70QSLynNtsMvB1YKqIrHIf53gRrzHGJDKvej09CTwZZfoO4Bx3eCnQvVu7GWOM6bZDotdTHzPP6wA6YPF1j8XXPRZf98Qkvj55PwpjjDE9x/YojDHGtMsSRYyIyFkiskFENonI9VFenyMiZREn6q+KY2wPiMhnIvJ+G6+LiPzOjX2NiBwXr9g6Gd9pIlIese1uinN8HdYh83IbdjI+z7ahiKSIyLsistqNb26UNskistDdfu+4F932pvg8+/+NiMEvIu+JyD+ivNaz209V7dHDD8APbAYOB4LAamBMqzZzgHs8iu9U4Djg/TZePwd4HqczwYnAO70svtOAf3j4+Q4EjnOHM4GPony+nm3DTsbn2TZ0t0mGO5yEU3HhxFZtrgXud4cvARb2svg8+/+NiOHHwN+ifY49vf1sjyI2JgGbVHWLqjYAC4AZHsfUQlVfB/a202QG8Bd1vA3kiMjA+ETXqfg8paqlqrrSHa4EmuuQRfJsG3YyPs+426TKHU1yH61Pls4AHnKHHwNOl/aKw8U/Pk+JSCHwFWB+G016dPtZooiNwcC2iPESov+jfs09LPGYiAyJT2id0tn4vXSSe2jgeRE52qsg2qlD1iu2YQd10jzbhu5hk1XAZ8DLqtrm9lPVJqAc6NeL4gNv/3/vBH4KhNt4vUe3nyUK7zwDFKnqMcDLfJ79TcdWAsNU9VjgbuApL4LobB0yr3QQn6fbUFVDqjoeKAQmicjYeK6/I52Iz7P/XxH5KvCZqq6I1zotUcTGdiDyF0ahO62Fqu5R1Xp3dD4wMU6xdUaH8XtJVSuaDw2o6nNAkojkxzMG6bgOmafbsKP4esM2dNe9H1gCnNXqpZbtJyIBIBvYE9/o2o7P4//fycB5IrIV57D2VBF5uFWbHt1+lihiYxkwQkSGi0gQ52TSosgGrY5Xn4dzHLm3WAR8w+25cyJQrs79QXoFERnQfLxVRCbh/B3H7UvEXXdHdcg824adic/LbSgiBSKS4w6nAtOBD1s1WwRc7g7PBF5V98xsb4jPy/9fVb1BVQtVtQjnu+VVVf23Vs16dPv12qKAhzJVbRKR7wEv4vSAekBV14nILcByVV0E/EBEzsO5k99enF4UcSEif8fp9ZIvTs2tm3FO2KGq9wPP4fTa2QTUAFfEK7ZOxjcTuEZEmoBa4JJ4fYm4muuQrXWPYwP8DBgaEaOX27Az8Xm5DQcCD4mIHydBPaKq/2j1//En4K8isgnn/+OSOMXW2fg8+/9tSyy3n12ZbYwxpl126MkYY0y7LFEYY4xplyUKY4wx7bJEYYwxpl2WKIwxxrTLEoWJKRE5X0RUREZFTCsSkUt7cB23iMi0Ls77oIjMdIfni8iYdtrOEZFBXY2zu0TkhyLyjYjxgFvB9LYYri8tRssuEJEXYrFs0/MsUZhYmw0sdZ+bFQE9lihU9SZVXdwDy7lKVde302QO4EmicK+uvRKnWmiz6TiVYS+KUcG8HwJRE4V7jUGXqWoZUCoik7uzHBMflihMzLi1hk4GvsmBF/zcBpwiTh3/H4lT///PIrJWnPr6U9z554jIUyLysohsFZHviciP3TZvi0ie2y5yr+B4EXnTLXb3rohktopJROQece4Vshg4LOK110SkWJyCcA+KyPtuTD9yl18M/J8bd6qI3CQiy9x28yKudH5NRH7lrv8jETnFne4XkTvc9mtE5Pvu9Iki8k8RWSEiL0r0KrNTgZVugbdms4G7gE+BkyLex1YRmSsiK934R7nTC9xtuc7de/pERPJFJF1EnnW32fsiMktEfoCTFJeIyBJ3/ioR+V8RWY1TUPB097NYK849RJIj1v//3O20XESOc9/XZhH5TkT8TwGXdfBnZHqD7tQot4c92nvgfAn8yR1+E5joDp9GRA194N9xrl4HGIXzxZeC8wt+E849FQpwKmB+x233W5xidwAP4lxpHAS2AMe707OAQKuYLsQp4ubH+SLcD8x0X3sNJxlMxKkY2jxPTuTrEdPzIob/Cpwb0e5/3eFzgMXu8DU4JZ8DzfPjXHH+JlDgTpvVvC1axT0X+H7EeAqwA0gFrgbujnhta3NbnPsSzHeH7wFucIfPwimdnQ98DfhjxPzZEcvJj5iuwMUR698GHOWO/yXi89gKXBPxOa2J+Ax3RSxvMLDW679Te3T8sD0KE0uzcYqW4T7PbqPdycDDAKr6IfAJcJT72hJVrVTnUEU5TtVOgLU4h7AijQRKVXWZu6wKPfAXODg3Rfq7OtVBdwCvRolnC3C4iNwtImcBbVWGnSLO3cPW4vzijyzV3VyIb0VEnNOAPzTHpKp73ZjHAi+LU27jv3AKCLY2ECiLGP8qzrapxSn+d36rw0HR1n8y7uehqi8A+9zpa4Hp7l7QKapa3sb7Dbnrwo37Y1X9yB1/CGfbNmuubbYW56ZNzZ9hvbh1lHBKeHt2zsd0ntV6MjHhHhaaCowTEcX5Ba8i8pODXFR9xHA4YjxMjP5+VXWfiBwLnAl8B7gY5/xACxFJAe7D2cPYJiK/wPmV3TruUAdxCrBOVU9qpw049Zgilz8bOFmcCqLg3GtgKs7e0sGsH1X9SJxbtZ4D3Coir6jqLVGa1qlqqIM4m0V+Tq0/w+Z4UnDel+nlbI/CxMpM4K+qOkxVi1R1CPAxcApQiXMootm/cI9Vi8hROMXrNnRhnRuAgSJyvLusTPckcKTXgVnu+YKBwJTWCxGn3LZPVR/H+YXffL/ryLibv7R3u+diZnYivpeBbzfH5CbTDUCBiJzkTkuS6DcR+gA40m2ThbMdh7rbtgj4Lm3vsTV7AyfpISJnALnu8CCgRlUfBn7dxvttbQNQJCJHuuNfB/7ZwfpbOwqIel9007tYojCxMht4stW0x93pa4CQe/L0Rzi/zH3uIZyFwBz9vNZ/p6lz29lZwN3uCdeXOfBXOG5MG4H1OMfV34qyqMHAa+6hoIeBG9zpDwL3u9PrgT/ifNG9iFNaviPzcc6/rHHju9SNeSbwK3faKuBLUeZ9ns8P7VyAUzY6chs9DZzbfEK5DXOBM0TkfeAiYCdOMhgHvOu+r5uBW93284AXmk9mR1LVOpyKuI+6n1sYuL+jDdDKFODZg5zHeMCqxxpziBCRJ4GfqurGLs6fDITUKYN/EvB7de7i5gkReR2Yoar7OmxsPGXnKIw5dFyPc1K7S4kC55DeIyLiAxqAb/VUYAdLRAqA31iSODTYHoUxxph22TkKY4wx7bJEYYwxpl2WKIwxxrTLEoUxxph2WaIwxhjTLksUxhhj2vX/AWkcqQN5mI9tAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -330,9 +338,9 @@ "metadata": { "anaconda-cloud": {}, "kernelspec": { - "display_name": "Python 3", + "display_name": "Quantum (Stable)", "language": "python", - "name": "python3" + "name": "quantum-stable" }, "language_info": { "codemirror_mode": { @@ -344,7 +352,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/qiskit/deutsch_jozsa.ipynb b/qiskit/deutsch_jozsa.ipynb deleted file mode 100644 index 662dda185..000000000 --- a/qiskit/deutsch_jozsa.ipynb +++ /dev/null @@ -1,203 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# _*Experiment with the Deutsch-Jozsa Algorithm in Aqua*_\n", - "\n", - "This notebook demonstrates how to experiment with the `Deutsch-Jozsa` algorithm in `Qiskit Aqua`.\n", - "\n", - "We first import all necessary modules." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - ], - "source": [ - "from qiskit import BasicAer\n", - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.algorithms import DeutschJozsa\n", - "from qiskit.aqua.components.oracles import TruthTableOracle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The [Deutsch-Jozsa algorithm](https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm) is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. We can experiment with it in Aqua by feeding it oracles created using truth tables. For example, we can create a `TruthTableOracle` instance as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "bitstr = '11110000'\n", - "oracle = TruthTableOracle(bitstr)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As shown, the truthtable is specified with the `bitstr` containing values of all entries in the table. It has length $8$, so the corresponding truth table is of $3$ input bits. We can of course see that this truth table represents a `'balanced'` function as half of values are $1$ and the other half $0$.\n", - "\n", - "It might seem like a moot point running Deutsch-Jozsa on a truthtable as the function outputs are literally listed as the truthtable's values. The intention is to create an oracle circuit whose groundtruth information is readily available to us but obviously not to the quantum Deutsch-Jozsa algorithm that is to act upon the oracle circuit. In more realistic situations, the oracle circuit would be provided as a blackbox to the algorihtm.\n", - "\n", - "Above said, we can inspect the circuit corresponding to the function encoded in the `TruthTableOracle` instance." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACfsAAAGZCAIAAAC7Fu6RAADJH0lEQVR4nOzdZ2AU1f7w8ZOekFBCAgSBUANSBAJEEUVCN0gRpShIR4oozXIB/1cEREFp0hUMCMqlCYQqoAI2pDdpIQSlJIEQIJBedp8Xc5+962az2TKzu7P7/bxx3T1z5ndmT87vDGd2xkOr1Qo4h8mTJ585c6ZatWqODgQq8/Dhw/T09N27dzs6EADqsGvXrk8++aRhw4aODgQqo9Fozp49u27dutq1azs6FgAA/mHQoEGPHj2qUKGCowOByty5c6ds2bKrV692dCAA1GH58uUbN26MiIhwdCBQmdzc3CtXruzfv79UqVKOjgWAK/Ngxdd51KhRIzU1NSwszNGBQGXS09PT0tIKCgq8vLwcHQsAFRgyZMjXX39ds2ZNRwcClcnPz79x48bKlSuHDRvm6FgAAPiHoKAgb2/vkJAQRwcClUlLSyssLHz06JGjAwGgDm3atPnjjz+qVq3q6ECgMllZWSkpKcePH2/evLmjYwHgyrwdHQD+p2bNmk2aNImLi3N0IFCZzz//fPz48Y6OAoBqRERE+Pn5Xb161dGBQGUuXbpUv379ypUrOzoQAAAMhYSEvPTSS/Pnz3d0IFCZ8ePHb9u2zdFRAFCNevXqpaamXrhwwdGBQGV27drVtWvXoKAgRwcCwMV5OjoAAAAAAAAAAAAAAICVWPEFAAAAAAAAAAAAALVixRcAAAAAAAAAAAAA1IoVXwAAAAAAAAAAAABQK1Z8AQAAAAAAAAAAAECtWPEFAAAAAAAAAAAAALVixRcAAAAAAAAAAAAA1Mrb0QFYr6CgQKPR+Pr62l5Vbm6un5+f7fW4j3v37mm12jJlyvj4+Dg6Fleg1Wrv3bsnhAgODvb05DoMAPgv0o28SDcAADgc0xt5Mb0BAKNIN/Ii3QBQBRUPT6NHjx40aJAsVdWoUWPp0qWyVOUOli9fHhIS0qVLl4KCAkfH4iI8PDzGjx8fGhr65ptvOjoWAHAWpBvZkW4AAHAspjeyY3oDAEWRbmRHugGgCir+jW9KSkpGRoYsVTVr1mzRokVvvPGGLLXZX2ZmpnQoSpUqVbp0aRMlc3Jy0tPThRBlypQJCAiwYl9xcXFvvvlmtWrVtm/fbl0NMGrlypUJCQnLli2rVq3a5MmTHR0OABhBunEBpBsAAPQxvXEBTG8AOD/SjQsg3QBwfir+ja85CgsLExISfvrpp/Pnz2s0muKKDRky5NKlS3/88Yc9Y5PRxIkTw8LCwsLCVq1aZbrk4sWLpZIHDhywYkdJSUkDBgwoLCxcsWJFpUqVrArWfsz89p2En5/fmjVr/P3933///d9//93R4QCAEaQbo0g3AACoF9Mbo5jeAIC8SDdGkW4AQF4uu+Kr0WgWLFgQHh4eERHRvn37Ro0a1axZc9GiRUYLd+/ePSQkJDY21s5ByuXo0aPSi6eeesrMkk8++aQVOxo/fvyjR4/69+/fuXNnKzYv0dy5c6OioqKiomz8Liz69u2vuGZGRERMnTpVq9WOGjWKm64AcEKkGwNOnm5EMS0l3QAAoOMa0xu55jbC6ac3nE0DUCnXSDfCbc6mSTcA1EqrWl27do2Ojjb6UU5OzksvvaRrY6lSpXSve/fuXVhYWHSTsWPHlilTJjMzU+GoTYmOju7evbulW2VmZnp7ewshfH19c3JyTBcODw8XQtSuXduK8Hbv3i2E8PLyunr1qhWbm6Nt27bS17Rz506rK7Hi27czE83MysqqWLGiEOKzzz4zv8IFCxYIIQoKCmQNE4DLmjlzpr+/v6VbkW4MOH+60RbfUuvSzcWLF4UQu3btkjtMAABsFR4ePn78eEu3cpnpjSxzG60apjeyn02PGzeuevXqcoYIwKW9/vrr9evXt3Qrl0k3Wrc5m5Y93ezcuVMIcenSJVnDBABDrvkb36lTp27ZskUIMXz4cOlxv+fOnevdu7cQYtOmTbNmzSq6ydChQx8+fPjdd9/ZO1abnThxQrqkqEmTJn5+fiZK3r59+/r168Kqa8Q0Gs3YsWOFEK+++mqtWrWsDdYUrVZ78uRJ6XWLFi2srseKb9+eTDczICBgwoQJQogPP/wwNTXV3sEBQPFINwacPN0Iky0l3QAAIFxleiPX3EY4/fSGs2kAKuUa6Ua4zdk06QaAerngiu+VK1fmzp0rhBgwYID0xAIPD49GjRqtX7++Z8+eQoipU6deu3bNYKsmTZpERkaW+CgFJ3TkyBHpRYl3BTG/ZFF79uxJSEgQQowcOdLSbc1UWFgYFxd38ODBn3/+2ernTFj37dtTic0cNmyYt7d3ZmamGnsjABdGutHn/OlGlNRS0g0AAK4xvZFlbiPUML3hbBqASrlGuhFuczZNugGgXi644vvll18WFBT4+/vPnj1b/31PT8958+Z5eXkVFBSsXbu26IZDhw49ePCgw/991lLmTwXMf2JEUcuXLxdChIeHP/PMM5ZuayZvb+82bdq0adOmdevWVldi9bdvNyU2s0KFCp06dRJCfPHFF1qt1r7RAUCxSDf6nD/diJJaSroBAMA1pjeyzG2EGqY3nE0DUCnXSDfCbc6mSTcA1MsFV3zXrVsnhGjTpk3lypUNPqpRo0abNm2EEN98803RDfv16+fr67t69WrlY5STpZMGX1/fyMhIi3aRmZm5b98+IURMTIyHh4dVYdqJ1d++U+nSpYsQIjEx8ezZs46OBQD+i3Sjj3QDAIALYHqjj+kNACiEdKOPdAMAynG1Fd/ExMSkpCQhRJMmTYwWkN6/cuXK3bt3DT4qX758jx49Vq9erdFolI5TLsnJyTdu3BBClC9fPiIiwkRJrVZ77NgxYcYTI4o6ePBgXl6esPmZQEqz5dt3KlFRUdKL77//3rGRAICEdKOPdAMAgAtgeqOP6Q0AKIR0o490AwCKcrUV39OnT0sviksb9erVk16cOXOm6KdDhgy5fv36Tz/9pEx08tPd6+PJJ580XTI+Pv7BgwfCqruC7N+/X3rh5JMGG79959GkSRMfHx+hd+QdSKPRqOgaCKVxNOC2SDf6SDeA2pHQ9XE04LaY3uhjeqMEBlh9HA24LdKNPtKNEhhg9XE04Oa8pf/cunVrwYIFQogGDRoMGTLEaNHdu3cfOHBACDF69OhatWrZvu/ly5dfvXpVCDFp0qSQkBDbKxRC3Lt3T3pRp04dowV07xt9Xm+nTp2qVq26atWqDh06yBKP0nR3BSlx0mDLcyCk21P4+fk1bNiwxMI5OTn//ve/hRBRUVF9+vR59OjRtm3b/vjjj4SEhLS0tObNm3/wwQdVqlQx2CojI2PatGlCiFatWvXs2dPSCCU2fvuWsqKlZjbTz8/viSeeOHnypANvDJKSkjJ//vy4uLirV69qtdpatWp169Zt4sSJRb87d8DRAEg3+pw/3QjzWuoM6QawJxK6Po4G4BrTG1nmNkIN0xvOplWKowG4RroRbnM2TbpRKY4G8F9arVar1aalpUn/GxkZqTXmwYMHFSpUEEJERUVpNBqjZSwVHR0t7TQhIcGKzbt27RodHW3w5meffSbVefbsWaNbHT58WCowb948owWmTJni7+9///59K0KyUXR0dPfu3S3apF27dlJzdu3aZbrkmDFjpJLx8fGWBiY9ViEqKsqcwrojPGnSpMmTJwcEBBh0uYYNGz58+NBgK+liAiHEkiVLLA1Px/Zv3yJWtNT8Zo4cOVIqeffu3RIjkS7XKCgosKk9ejZs2BAYGFh0uAgICFizZo1ce1ELjgZcz8yZM/39/S3ahHSjz/nTjdbsllqUbi5evGhOHwCcEwldH0cDric8PHz8+PEWbeIa0xtZ5jZaNUxvFDqbHjduXPXq1W1piwEGWH0cDbie119/vX79+hZt4hrpRus2Z9MKpZudO3cKIS5dumRTe/QwwOrjaAA6//2Nb/ny5StUqJCamnrlypWifxtCiGnTpqWmpnp4eHz++efO/Ph36d4XQghfX1+jBaT7LQghHj16ZLTAkCFDPv744/Xr148aNUqBAOWk0WiOHz8uvTbzMrESnxhRVHp6enJyshCievXq5pTXXY/26aefenl5tW3b9sknn7x379727dtv3rwphDh//vy0adPmzJmjv5X517uZYPu3bxErWmp+M6tVqya9uHTp0jPPPGN7tObbuHHjK6+8otVqi36UnZ09cOBArVY7cOBAe4bkQBwNQJBuinD+dCPMbqkD0w1gTyR0fRwNQLjQ9EaWuY1Qw/SGs2nV4WgAwoXSjXCbs2nSjepwNAB9/3uO7+OPPy6EyMjISElJMSh0+fLlxYsXCyH69+//9NNPy7XvDz74YP369evXr69UqZJcdd6/f196UWLayMjIMFqgTp06rVu3jo2NlSsk5Vy8ePHhw4dCiNq1a4eGhpoomZubKz38wIqUnJSUJL0oU6aMOeX1n05x4cKFvXv3zpgxY8mSJWfPntUlv40bNxqMwtJWfn5+xT3FwRy2f/sWsaKl5jezbNmy0otbt27ZHqr5bt++PWzYMKM5UmfUqFF2jspROBqAhHRjwPnTjTC7pY5KN4A9kdD1cTQAictMb2SZ2wg1TG84m1YXjgYgcZl0I9zmbJp0oy4cDcCA4YqvECI+Pt6g0IQJE/Lz8wMDA2fNmqX/fl5enu7CHCu0bdu2b9++ffv2DQoKsroSA3l5edKL4h7QrXu/oKCguEqGDh167NixP//8U66oFKK75qjEpzucPn1aOjJFS+bm5prOoLpPLZo0hIWFHTx4UP+RDMHBwcuWLfP09BRC3Lhxw+DCAmmryMhIXV63gizfvvmsaKn5zdRNGmS5os18CxYsKHFGlZ2dPW/ePPvE41gcDUAiS7oRJWUc0k1xFG2po9INYE8kdH0cDUDiMmfTssxthBqmN5xNqwtHA5BwNm2AdGM7Blh9HA3AgJEVX4MbO+/evXvPnj1CiMmTJ+uedH3mzJlOnToFBAQEBwfXrFnziy++sFfAJdAtHuvyhwHd+7pBuajevXsHBQWtWrVK9vDkZf6kQXdBk37JVatWNW3atFSpUqVLl65evfonn3ySk5NTdFtd0jJxxHTu378v9Z+nnnrKz8/P4NMnnnhCl1z1U2lSUpJ0Jw0b70Mly7dvJitaalEzHTVp2LFjhznFtm/frnQkzoCjAUhsTDfCvIxDujFK6Zay4gt3QELXx9EAJK5xNi3X3EY4/fSGs2nV4WgAEs6mDZBubMcAq4+jARjw1r0yuuKbn58/ceJEIUSNGjXefvtt6c0TJ060bdvW09Nz4sSJwcHBW7ZskX4aP336dDtGblzp0qWlF7akjcDAwN69e69bt27OnDlWP7T4ypUrp0+ftmiT1NRUb2/vksv9f8VNBYoyeAKBRqPp16/fhg0bOnXqNHTo0MDAwM2bN0+ZMuXgwYN79uyRrm/SsegysWPHjunvqKjatWtLPyLXfVMWNcQ0Wb59M1nRUouaadGkITc3VwixefNmg+/OCkV/4m9UYmLihg0bbN+d+e7fv5+RkaF7QoZ9OO3RcEP37t3LzMy0cwdwYX/++Wdxl9MaZXW6EZZkHNKNUUq31Ipz1F9//TUzM9PMwjAtPj6+WrVqAQEBjg7ExTltQo+Pjw8PD/f397fbHoUTHw03dPny5Ro1ahT990dYJysrKzs72/zyrnE2LdfcRjj99Ea5s+msrKysrKxNmzaVWLJETjvAJicne3l5VaxY0W57FE58NNxQUlKSj49PhQoVHB2Ii0hMTJT+Fc5MnE0bcNt0U1hYKIT4/vvvz549W2Jh05x2gM3KykpKStL/LbUdOO3RcEOZmZnJycl27gAurKCgID4+vkGDBhZtFRwc/L/1xXr16kkv9Fd8ly5devnyZSHE3LlzpX+M0Gq1w4YNKygoOHz4sHQ7+3/9618xMTEff/xx3759GzZsaHtjbKEboIsbaqXn2IuS0kZeXp6Pj4/Vy73i/z+l2NKtzH9EQXZ2tnTfaR8fn6ZNm5ouLE0a6tSpExISIoRYtGjR5s2b16xZM2DAAKnAsGHDOnXqtG/fvv/85z/9+/fX39aig6DLi1FRUUYL6P6NOCwsrOhWNl4mJte3bw4rWmpRM3WPHzDn+F+4cEEI8corr5RYUi4ajcaeu3NyHA2okfljuy3pRliScUg3RindUovSzb1794QQn3zySYklATUioevjaECNzp8/b2ZJlzmblmtuI5x+eqPo2XRqamqfPn1KLCkXBlh9HA2oUalSpcwsydl0UW6bbq5duyaEGD9+fIkl5cIAq4+jATfh5+f3vxVf6fri3NzcxMRE6Z309PQZM2YIIaKjo1966SXpzdOnT585c+att97SPb3cy8tr9uzZzZo1mz179po1a+zbBEOhoaHSi6tXrz777LNFC1y9elV6Ua5cueIqSU9P37Jli/TjZqutWbNm5syZFm3Sr18/8y+6/Pvvv6XnGYSFhZm+MPzs2bMJCQlCiOeff15654UXXrhz545uuqB7c//+/b/99pvBOarubhvp6eklRiXlRQ8PjxYtWhT9VKPRXLx4UQjRqFEj/Yc3S1sFBwfbeA2ILN++maxoqUXNfPjwofTCnKdcR0ZGfv311/Hx8V5eXma3wLguXbpIF3mYVqtWrf3799u4L4toNJrCwkIbn01lKac9Gm6osLBQo9HYuQO4sKVLly5ZssTMwrakG2FJxiHdGKV0Sy1KN+XLlxdCfPXVV9HR0WbGD9Nyc3P5eZ8dOG1Cz8vL8/X1tecehRMfDTfkkA7gwlq3bt28eXMzC7vM2bRccxvh9NMb5c6mmzdv/tdff/38889mh18spx1gCwoKPDw8bP/nAos47dFwQw7pAC7s/fffN/+ejpxNF+W26UaqcP/+/bVq1TK3AcVw5gHW/me4znw03BD/xCEvK45nuXLl/rfi6+XlFRER8eeff96+fVt6Z/bs2WlpaV5eXp9//rmu2Pfffy+E6Ny5s35FkZGRFSpU+OWXX6wPXyaNGzeWXhT3i35d2jDxc+T169dnZ2cPHjzYlkh8fHwsHcEDAgLMvybrzp070gtdpizO2rVrpRe6q1br1KlTdDU6LS1NGEtRVkwaIiIigoODi376888/p6amCiE6deqke1Or1Uo32bD9qmRZvn0zWdpSS5upO9r6d1AxrVatWrbP4Pv06SNd51FiMdsnKM6PowFXJa3bmcmWdCMsyTikG6OUbqkV6SYsLIxBD+pCQtfH0YCr8vb2drezaRnnNsK5pzeKnk17eHh4e3vLMuIxwOrjaMBVlS5d2j7pRnA27VrpRlKtWjXbBz0GWH0cDcDAP+5dLj3K986dOxqN5tatWwsWLBBCjBgxQjcWCyF++OEHIcQTTzxhUFG9evX++usv/Se6O0SjRo2ku0+fOHHCaIFz584JIYKDgyMiIoqrJDY2tk2bNk5+z3HdrS2ysrJMFLt//740aXjuuedat25dXLG8vLxvv/1WCPHiiy8afKRLWroLl4pz/fp16XIBo/fKKCwsnDBhghDCw8NjxIgRuvcvXbok1Wz7k4dk+fbNYUVLLW2m7mibP2mQxdixY0u8a0rp0qWlBro8jgYg5E43oviMQ7opyg4tdVS6AeyJhK6PowEIVzmblnFuI5x7esPZtBpxNADB2bQxpBvbMcDq42gABoys+BYWFt69e/ejjz7Kzs4ODg42uEpCupl+lSpVDCqqWbOm+OczgB3Cz8+vW7duQohDhw5J1+nou3nzpnR1z4svvljcBVnnz58/evTo0KFDlQ7VRnXr1pV+033t2jUTz4cfOnTo7du3fX19Fy5cWFyZ27dvv/zyy4mJia+99lqrVq0MPtV91yVeJmb6UQfz58+XbnvSq1cv3UOjS9zKIrZ/+2ayoqWWNlN3tIv+rSkqNDR07dq1Jp5j7+np+fXXX5t/+3FV42gAQtZ0I0xmHNJNUXZoqaPSDWBPJHR9HA1AuMrZtIxzG+Hc0xvOptWIowEIzqaNId3YjgFWH0cDMGBkxVcIce7cudWrVwshpk2bpntcvCQ9Pd3T07PozWMDAgKE3gPPHWjgwIFCiJycnNmzZxt8NGPGDOmZ6kOGDClu89jY2NKlS/fq1UvRIG0XEBAQExMjhMjLy1u0aJHRMtOnT9+2bZsQYu7cubrnLuvr27dvw4YNw8PDd+7cOXz48BUrVhQtU7p0aSlv/f3336ZD0uVFg5JarXb27NmTJk0SQgQHB+vfJFwIceTIEemF0UuuhBBZWVnLli3bvn276b1LrPv2LdqFsKqlJTbTgK5m3V+l3XTr1m379u1Gb/oaHBy8bdu2nj172jkkB+JoALKkG2FGxiHdFKVQS/U5MN0A9kRC18fRAFzjbNqcjO8a0xvOplWKowFwNm0U6cZ2DLD6OBrAP2j1HD9+XHqzTZs2QogGDRrk5+dr/ykoKMjX11dbxBtvvCGE2LRpU9GPitO7d++qVatWrVr12rVr5m+l07Vr1+joaKMfSdnUw8Pjyy+/1L25ePFi6XKPHj16FFdnXl5ehQoVXn/9dSvisV10dHT37t3NL3/y5EkfHx8hhJeX17Zt2/Q/unXrlu4hBNOnTy+uhm7dujVv3rx8+fIeHh79+/dPTEw0Wqx9+/ZCCF9f35ycHBPxSN1GCOHt7b1y5cr8/PzCwsKjR49Kl25JNXz//fcGWzVv3lwIUbNmzeKqlbqWEGLRokUm9q5jxbdv6S6saGmJzTTQrFkzIUSFChXMKSzdgL2goMDMys1x//79jz/+uGXLloGBgR4eHk899dSMGTPu3bsn4y5URHc0fH19fX193fxowAXMnDnT39/f/PK2pxuteRmHdGOfluqzKN1cvHhRCLFr1y5zCgNOSJfQPT09AwIC3DyhS0ejadOmQogyZcq4+dGACwgPDx8/frz55V3gbNqcjO8a0xtFz6bHjRtXvXp1M2s2ky7d+Pv7e3t7u/kAqzsaXl5e/v7+bn404AJef/31+vXrm1+es2mj3DDd7Ny5Uwhx6dIlMys3h26ALVOmjBCiWbNm7jzA6o5GQECAl5cX6QZu6x8rvgb3l9i7d2/RDUJDQz09PYu+//rrrwshdu7caf6+o6OjpR0lJCRYGrfW5IrvzZs3K1euLFXerFmzXr166W79X6NGjeTk5OLq3LJlixDi8OHDVsRjO0tXfLVa7fLly3X3uHj22Wfff//9Dz74oGfPntJPrgMDA7/55psSK9FoNIcOHQoNDa1QocKZM2eKFpg4caK0i6NHjxZXSWFhYVBQkBDi8ccfr1atmhDCx8fH19dX153KlStXtHtkZ2dL856+ffsWV3Pbtm2lGho0aFBiW7RWffsW7cKKlprTTH25ublShR06dDCnvBIrvjrTpk0LCgpSomY16tixY0xMjKOjAGxl6YqvVqZ0oy0p45Bu7NNSHUvTDSu+cBmPPfbYO++84+gonIL0UJ64uDhHBwLYytIVX63Kz6bNzPguML1R+mxaiRVfncGDBzdu3FihylWndu3aY8aMcXQUgK0sXfHVcjZtjBumGyVWfHWkpzubWPJwK6NHj46IiHB0FIDD/OOuzkFBQVWrVpVed+/eXXedkb5y5cppNJr8/HyD93Nzc6VPi25if1WqVDl58mS7du2EECdPnty8ebP0bxmdO3c+cuRIWFhYcRvGxsY+/vjjLVu2tF+sthk5cmRcXJz0EOVff/115syZ06dP37p1q0ajGT58+KVLl/r3719iJR4eHs8999yKFStSU1OHDBmi1WoNCnTs2FF6cezYseIquXDhQkZGhhCia9eux44d6969e2FhYV5enhDC19d3wIABZ86ceeGFFwy2On36tNSXTDwg4b333qtYsWKdOnUKCwuLxlaUFd++RbuwoqXmNFPf2bNnpQqN/g0CgP3Jkm5ESRmHdGOfluqQbgAA7kzVZ9NmZnwXmN5wNg1A7TibLop0AwAK8Tb4/xs3bpjeQFrTvXHjRq1atfTfv3nzphCibNmy5u/7wIED5he2VFhY2I8//njq1Kl9+/alpqZWrVq1Xbt2jRs3NrFJcnLynj17Zs2apVxUSujWrVtMTMyhQ4eOHDmSlpYWEhJSr169zp07S5cyWVRPqVKlTp48ee7cOYMD1aZNG39//5ycHBOTBt3TEaKioipVqhQXF3fnzp3Lly/7+vo+/vjjxXWMli1blpikn3/++du3bwshunbtqtFoij5DuihLv32LdmFFS81ppj7d/dU7d+5s/lYAoCi50o0oPuOQbvQp11Id0g0AwM2p92zazIzvAtMbzqYBuADOposi3QCAEgxXfEtUt27d48ePX7lyxWDF988///T395euV3IekZGRkZGRZhZes2aNh4fHgAEDFA1JCd7e3u3bt5ce2GA1Ly+v0NDQ69ev37hxwyC/BgQExMTEbN26dceOHTk5Of7+/kU310+l0ouKFStWrFjRlpCMBml+YYu+ffN3YYeW7tixQwhRu3Zt09coAICdyZJuRPEZh3Sjj3QDAIAdcDZtFNMbAJAXZ9NGkW4AQF6eJRf5px49eggh/vjjD/03r1y5cufOnXbt2gUGBsoWmt3Fxsa+8MILlSpVcnQgitNdhaQvNzf31q1bQohGjRoV/XT06NFCiLS0tA0bNhitU0qlISEhCq36Z2ZmlipVSomaLd2F0i29e/fuvn37hBCjRo1Son4AsCdLMw7pRod0AwCAE+Js2pZdML0BAPNxNm31Lkg3ANyWxSu+MTExfn5+q1atys7O1r25cOFCIUT37t3lDM2+fvvtt/j4+KFDhzo6EHvo1avX+vXrDd5csWJFYWFho0aNqlevXnSTDh06NGjQQAixdOnSop9mZ2efO3dO6F05JbtvvvlGutpAOebswg4tXblyZUFBQVBQ0ODBgxXaBQDYjaUZh3QjId0AAOCcOJu2ehdMbwDAIpxNW7cL0g0Ad2bxim/p0qXfe++9v//+u0+fPomJidnZ2fPmzVuyZEm9evUGDRqkRIj2ERsbW6lSpS5dujg6EHuYNm1av379evXq9eOPPz569CgtLW3ZsmXvvvuut7f36tWrjW7i4eGxePFiIcTRo0eLXmJ26tSpgoICoVgqzcrK2rBhQ9++fZWo3KJdKN3S7Ozs+fPnCyFmzJgRGhqqxC4AwJ4szTikGwnpBgAA58TZtNW7YHoDABbhbNq6XZBuALgzi1d8hRBTp04dM2bMrl27ateuXapUqbfffrtRo0Z79uwx+oQAVcjIyNi4cePAgQO9vS1+sLEaDRo0aNu2bSdOnOjQoUOZMmVCQ0PfeOONypUr//jjj82bNy9uq7Zt2w4cOFAIMXPmTIOPij4dQV7jxo0bPXq0ot+OmbtQuqXz58+/c+dO06ZN33rrLSXqBwA7syLjkG4E6QYAAGfF2bTVu2B6AwAW4Wzaul2QbgC4M2tGYS8vr8WLF48ZM2bfvn0ZGRlNmzaNiYnx9LRm8dhJbNq0KSMjY8iQIY4OxH66d+/+/PPPHzp06Pjx497e3s2bN2/ZsmWJD0KYM2fOjh07tm3btnXr1p49e+reVzSVnjlzplKlSr1795a9Zit2oWhL4+PjZ8yY4enp+cUXX3h5eclePwA4hBUZh3RDugEAwGlxNm3dLpjeAIClOJu2YhekGwDuzPrrburXr1+/fn0ZQ3GgVatWPf300y7THDP5+vp27NixY8eO5m9SoUKF9evXd+3adfTo0S1atKhWrZr0/ldffbVixQohRGBgoOxxNmnSpEmTJrJXa90ulGtpdnb2a6+9lpOTM2/evCeffFLeygHAsSzNOKQb0g0AAM6Ms2krdsH0BgCswNm0pbsg3QBwZyr+YW7NmjVr1qwpS1VJSUljx46VpSqX16lTp5UrV96+fbtbt24ZGRnSmwEBAYGBgUrMGJyNQi3VarWDBg06duzY22+/PWHCBHkrBwA1It2QbgAAcDFMb5jeAIAdkG5INwDcloofW7tw4UK5qkpISJCrKncwcODAvn37CiF8fHwcHYuL8PDwWLt27dq1a/38/BwdCwA4C9KN7Eg3AAA4FtMb2TG9AYCiSDeyI90AUAUVr/jCgchtsuOQAkBRjI2y45ACAOBY5GLZcUgBoCjGRtlxSAE4PxXf1RkAAAAAAAAAAAAA3BwrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaeTs6APyPVqvNz8+/f/++owOBymRlZTk6BAAqo9VqSTew1MOHDx0dAgAAxmm12tzcXKY3sFRubq5Wq3V0FABUQ6vVFhYWkm5gqYyMDEeHAMAtsOLrRC5dunT79u3y5cs7OhCokoeHh6NDAKAOZ86cyc3NJd3AOn///bejQwAAwFBqauqyZcuWLVvm6ECgPv7+/o4OAYBqnDp1Kj4+nrNpWId1XwBKY8XXiaxZsyY+Pr5SpUqODgQqk52dnZGR4enJTdoBmOXTTz9t0qRJRESEowOB+ly4cGHIkCGOjgIAAENfffVVVlZW2bJlHR0IVCY9PT0wMNDRUQBQjRUrVvz444/Vq1d3dCBQmcLCwmvXrjVv3tzRgQBwcaz4OpFOnTp16tTJ0VEAAFxc9erVp0yZ4ugoAAAAZNOvXz9HhwAAcH2RkZGRkZGOjgIAAOP4USAAAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVt6ODgD/k5OTk5GR4eXl5ehAoErBwcGODgGAaqSkpPj5+Tk6CqhPQUFBhQoVLNokLS3N05NLDGGxvLy8kJAQb2/OVgCY5eHDhwUFBR4eHo4OBCqj1Wq9vb3LlCnj6EAAAAAAW/FvKE6kbt26N27ccHQUUCVPT0/+gQOAmQYPHvz11187Ogqo1Zo1awYMGGBm4T///POJJ55QNB64sGeeeebXX391dBQA1OGxxx7LzMx0dBRQpcDAwIyMDEdHAQAAANiKFV8nUrly5UqVKr333nuODgQqs3v37tWrV2s0Gn4gDsAc4eHhPj4+3377raMDgcrcunVrwoQJ5cqVM38T6QeakydPjoyMVCosuKgJEybUqFHD0VEAUI3SpUtHR0cPGjTI0YFAZVavXn3q1ClHRwEAAADIgBVfJ1KqVKkyZcr07t3b0YFAZZKSkhwdAgA18ff39/LyIt3AUpcuXZowYYIVVxc9++yzXbp0USIkuLCpU6eWKlXK0VEAUA1fX9+IiAimN7DUb7/9dv78eUdHAQAAAMiAx6oBAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAAColbejA7BeQUGBRqPx9fW1varc3Fw/Pz/b63Ef9+7d02q1ZcqU8fHxcXQsrkCr1d67d08IERwc7OnJdRgA8F+kG3mRbkygs8mLzgYAxSHjyIuMAwAAAEhUPBsePXr0oEGDZKmqRo0aS5culaUqd7B8+fKQkJAuXboUFBQ4OhYX4eHhMX78+NDQ0DfffNPRsQCAsyDdyI50Uxw6m+zobABgFBlHdmQcAAAAQKLi3/impKRkZGTIUlWzZs0WLVr0xhtvyFKb/WVmZkqHolSpUqVLlzZRMicnJz09XQhRpkyZgIAAK/YVFxf35ptvVqtWbfv27dbVAKNWrlyZkJCwbNmyatWqTZ482dHhAIARpBsXoKJ0Y7f+RmdTiIo6GwB3xvTGBZBxAAAAAKHq3/iao7CwMCEh4aeffjp//rxGoymu2JAhQy5duvTHH3/YMzYZTZw4MSwsLCwsbNWqVaZLLl68WCp54MABK3aUlJQ0YMCAwsLCFStWVKpUyapg7cfMb99J+Pn5rVmzxt/f//333//9998dHQ4AGEG6MYp0oxD79Dd1dTahqv6mos4GwJ0xvTFKRelGkHEAAAAAIYQLr/hqNJoFCxaEh4dHRES0b9++UaNGNWvWXLRokdHC3bt3DwkJiY2NtXOQcjl69Kj04qmnnjKz5JNPPmnFjsaPH//o0aP+/ft37tzZis1LNHfu3KioqKioKBu/C4u+ffsrrpkRERFTp07VarWjRo3iHl8AnBDpxoCTpxtRTEvVkm7s09/U0tmE0/c3VXc2AO7MNaY3bp5uBBkHAAAAcNUV39zc3N69e0+YMCEpKUkIUapUKSHE9evXx44d26dPn6IXqPr6+vbv33/Dhg1ZWVkOCNc2WVlZf/75pxDC19e3adOmpgsfOXJECFG7du3Q0FBLd7Rnz55NmzZ5eXlNnz7dqkhLtmvXruPHjx8/ftyWS54t/fbtz0Qzx40bV7FixXPnzi1YsMARoQFAsUg3Bpw/3YjiW+r86cY+/U0tnU2oob+pt7MBcGcuM70h3QgyDgAAANyea674Tp06dcuWLUKI4cOHS4/7PXfuXO/evYUQmzZtmjVrVtFNhg4d+vDhw++++87esdrsxIkT0hWsTZo08fPzM1Hy9u3b169fF1ZdkqzRaMaOHSuEePXVV2vVqmVtsKZotdqTJ09Kr1u0aGF1PVZ8+/ZkupkBAQETJkwQQnz44Yepqan2Dg4Aike6MeDk6UaYbKnzpxs79DcVdTbh9P1N1Z0NgDtzjekN6UZCxgEAAICbc8EV3ytXrsydO1cIMWDAAOkBOR4eHo0aNVq/fn3Pnj2FEFOnTr127ZrBVk2aNImMjCzxyT1OSLrQWJhxEyrzSxa1Z8+ehIQEIcTIkSMt3dZMhYWFcXFxBw8e/Pnnn62+MNm6b9+eSmzmsGHDvL29MzMz1dgbAbgw0o0+5083oqSWOnm6sUN/U0tnE2rob6rubADcmWtMb0g3OmQcAAAAuDMXXPH98ssvCwoK/P39Z8+erf++p6fnvHnzvLy8CgoK1q5dW3TDoUOHHjx40OH/Pmsp8888zX9AUVHLly8XQoSHhz/zzDOWbmsmb2/vNm3atGnTpnXr1lZXYvW3bzclNrNChQqdOnUSQnzxxRdarda+0QFAsUg3+pw/3YiSWurk6cYO/U0tnU2oob+purMBcGeuMb0h3eiQcQAAAODOXHDFd926dUKINm3aVK5c2eCjGjVqtGnTRgjxzTffFN2wX79+vr6+q1evVj5GOVl6jurr6xsZGWnRLjIzM/ft2yeEiImJ8fDwsCpMO7H623cqXbp0EUIkJiaePXvW0bEAwH+RbvSRbpSmdH9TUWcTLtHfnLmzAXBnTG/0uUC6EWQcAAAAuDFXW/FNTExMSkoSQjRp0sRoAen9K1eu3L171+Cj8uXL9+jRY/Xq1RqNRuk45ZKcnHzjxg0hRPny5SMiIkyU1Gq1x44dE2Y8oKiogwcP5uXlCZufCaQ0W759pxIVFSW9+P777x0bCQBISDf6SDdKs0N/U0tnE67S35y2swFwZ0xv9LlGuhFkHAAAALgxV1vxPX36tPSiuLOUevXqSS/OnDlT9NMhQ4Zcv379p59+UiY6+eluLfXkk0+aLhkfH//gwQNh1U2o9u/fL71w8nNUG79959GkSRMfHx+hd+QdiHth6dNqtRwQuCfSjT7SjdLs0N/U0tmEq/Q3J+xsJHR9HA24J6Y3+lwj3QgnyziMrgY4IACgBEZXfRwNuDlv6T+3bt1asGCBEKJBgwZDhgwxWnT37t0HDhwQQowePbpWrVq273v58uVXr14VQkyaNCkkJMT2CoUQ9+7dk17UqVPHaAHd+0af19upU6eqVauuWrWqQ4cOssSjNN1NqEo8R7XlsUPS3ZD8/PwaNmxYYuGcnJx///vfQoioqKg+ffo8evRo27Ztf/zxR0JCQlpaWvPmzT/44IMqVaoYbJWRkTFt2jQhRKtWrXr27GlphBIbv31LWdFSM5vp5+f3xBNPnDx50oH3oUpJSZk/f35cXNyVK1c0Gk3dunW7des2ceLEot+dO9Adjfj4eCGEmx8NuCfSjT7nTzfCvJY6Q7oxyg79zaLOJpRM+iWyZ39z+c6mS+hJSUnz5s3bvn27Oyd06Whs2rRJCPHSSy/Vrl3bnY8G3JNrTG/UmG6EO51Na7VaNz9/1B2NxMTEZcuW7d+/352PBgDISDfAJiQkCCGeeeaZF1980W0HWP4pG/gv6SdraWlp0v9GRkZqjXnw4EGFChWEEFFRURqNxmgZS0VHR0s7TUhIsGLzrl27RkdHG7z52WefSXWePXvW6FaHDx+WCsybN89ogSlTpvj7+9+/f9+KkGwUHR3dvXt3izZp166d1Jxdu3aZLjlmzBipZHx8vKWBSU/xiYqKMqew7ghPmjRp8uTJAQEBBl2uYcOGDx8+NNhKuphACLFkyRJLw9Ox/du3iBUtNb+ZI0eOlErevXu3xEikyzUKCgpsao+eDRs2BAYGFh0uAgIC1qxZI9de1IKjAdczc+ZMf39/izYh3ehz/nSjNbulFqWbixcvmtMHbNxEa5f+ZlFn0yqc9E2zZ39zns6m1Wrr16//+uuvW9+YIkjo+jgacD3h4eHjx4+3aBPXmN6oMd1onelsety4cdWrV7elLQYYYPVxNABAIQyw+jgagM5/f+Nbvnz5ChUqpKamXrlypejfhhBi2rRpqampHh4en3/+uYeHh9EyzkC61ZIQwtfX12gB6fY+QohHjx4ZLTBkyJCPP/54/fr1o0aNUiBAOWk0muPHj0uvzbwqucQHFBWVnp6enJwshKhevbo55XWXP3/66adeXl5t27Z98skn7927t3379ps3bwohzp8/P23atDlz5uhvZf7l1SbY/u1bxIqWmt/MatWqSS8uXbr0zDPP2B6t+TZu3PjKK69ojd0BIzs7e+DAgVqtduDAgfYMyYE4GoAg3RTh/OlGmN1SB6ab4tihv1na2YTCSd80e/Y3F+5sJHR9HA1AuND0Ro3pRnA27R44GgCgEAZYfRwNQN//nuP7+OOPCyEyMjJSUlIMCl2+fHnx4sVCiP79+z/99NP6HxUWFmZkZFi37w8++GD9+vXr16+vVKmSdTUUdf/+felFiWcpxYVdp06d1q1bx8bGyhWSci5evPjw4UMhRO3atUNDQ02UzM3NlZ61U/TUKDc31/Q3mJSUJL0oU6aMOVHpPwzpwoULe/funTFjxpIlS86ePas719q4caPBKCxt5efnV9xDg8xh+7dvEStaan4zy5YtK724deuW7aGa7/bt28OGDTOaI3VGjRpl56gchaMBSGRJN6KkjEO6KY6iLXVUujHBDtMbSzubUDjpm2bP/uaqnY2Ero+jAUhc5mxajelGcDbtBjgaAKAQBlh9HA3AgOGKrxBCelClvgkTJuTn5wcGBs6aNUv//b/++qtt27ZfffWVdftu27Zt3759+/btGxQUZF0NReXl5UkvNBqN0QK69wsKCoqrZOjQoceOHfvzzz/likohuktcS3yY0OnTp6Ujo19y1apVTZs2LVWqVOnSpatXr/7JJ5/k5OQU3VZ3OmfROWpYWNjBgwf1nwAUHBy8bNkyT09PIcSNGzcMLiyQtoqMjNSdRlpBlm/ffFa01Pxm6s5RZbmA2nwLFiwo8QQ+Ozt73rx59onHsTgagMTGdCPMyzikm+Io2lJHpRsT7DC9sbSzCYWTvmn27G+u2tlI6Po4GoDEZc6m1ZhuBGfTboCjAQAKYYDVx9EADBhZ8TW4sfPu3bv37NkjhJg8ebL0pOsNGza89dZb7dq1q1279i+//GLHaEumWzzWna4Y0L2vOwcoqnfv3kFBQatWrZI9PHmZf46qu35WKqnRaF555ZWhQ4dWqlRp/vz5K1eubNCgwZQpU3r06FH07E53jmTiiOncv39f6j9PPfWUn5+fwadPPPGE7lxO/8wtKSlJunGTjfehkuXbN5MVLbWomY46R92xY4c5xbZv3650JM6AowFIrE43wpKMQ7oxSumWqnrF1+rpjUWdTSif9E2zW39z4c5GQtfH0QAkrnE2rcZ0Izibdo8BlqMBAAphgNXH0QAMeOteGV3xzc/PnzhxohCiRo0ab7/9tvTmsmXLEhISGjVq1KpVq19//dWO0ZasdOnS0gtbzlICAwN79+69bt26OXPmWP3Q4qlTp37zzTcWbZKcnFyzZk3zyxf9h/XiGDzwZtGiRZs3b16zZs2AAQOk94cNG9apU6d9+/b95z//6d+/v/62Fl2VfOzYMf0dFVW7dm3pR+S6b8qihpgmy7dvJitaalEzLTpHTUhIEELUrVu3xJIlunbtmjnFEhISateubfvuzPfo0aO8vLyQkBB77tRpj4YbevjwYX5+vp07gAt78OBBceOkUVanG2FJxiHdGKV0Sy1KN1KZYcOGlSpVqsTCkvz8fKF3T0tz2GF6Y+kvrpRO+qbZrb85VWcTQqSkpKxfv/7HH380p7BpTpvQU1JSypUr5+/vb8+dOu3RcEPJycnBwcF27gAuLCkp6fLly+aXd42zaTWmG+FkZ9OXL1++deuWLCOe0w6w9+/f9/DwKFeunD136rRHww3du3fPy8vL9r9coETZ2dkPHz6U8emNMMppB1iHdACnPRpuKCsrKyMjo2LFio4OxEXk5eWlpaWFhYVZtEBZoUKF/6341qtXT3qhv+K7dOlS6axp7ty5unPRAwcOSLuZPHmy0674FjezT05Oll6Ynuvk5eX5+PhYvdwrhGjatGnRJyKbtnPnTvPvLpidnS3dd9rHx6dp06amC0vnqHXq1JHWS1544YU7d+7oTlAlL7zwwv79+3/77TeDc1SLDoLuNCwqKspogczMTOlFWFhY0a1svDBZrm/fHFa01KJm6h4/YM7xl87c2rdvb0uPlcTGxppzky5PT09Zdme+lJSUhw8fyrKqbT6nPRpuKDk5OTMzU/+Gb7DFqVOnTp06ZWZhW9KNsCTjkG6MUrqlFqUbaSrYtGnT8PDwEgtLHjx4cOPGDf0FQtPsM72xdMRWOumbZrf+5lSdTQgREBBQpkyZ5557zpzCpjltQj99+nStWrXMn//LwmmPhhs6ffp07dq1zR8hYdq6devMHwZd5mxajelGONnZdNmyZQMCAjp06FBiyRI57QD7119/eXp6mj9/k4XTHg03lJiY6OvrW7VqVUcHAteXnp7+999/N27c2NGBuDinHWCl0/8nnnjCbnsUTnw03ND9+/dv3brVqFEjRwfiIrKzsy9cuNCsWTOL+m1ISMj/Vnxr1Kjh5+eXm5ubmJgovZOenj5jxgwhRHR09EsvvaQr6cx/G6GhodKLq1evPvvss0ULXL16VXph4vLG9PT0LVu2SD9utlrPnj179uxp0SZt27Y1/198/v77b2k4CwsLK3ofJH1nz56VfgP6/PPPS+/UqVNn5syZBsXS0tKE3q2cdHTvpKenlxiVdBrm4eHRokWLop9qNJqLFy8KIRo1aqS/I2mr4OBgG5dzZPn2zWRFSy1q5sOHD6UX5jzlWmr4smXLvLy8zG1AMQ4fPnzu3LkSi0VERHz55Zc27sv5cTTgqj7++GNz+rbElnQjLMk4pBujlG6pRelGemzeW2+91aVLFzPjv3Tp0saNG81fz7DP9MaiziaUT/qm2a2/OVVnE0KULVv22Wef/eKLL8wL3xQSuj6OBlzV999/r389imkuczatxnQjnOxsOiwsrHz58qQb2XE0AEAhDLD6OBqAgf89x9fLyysiIkIIcfv2bemd2bNnp6WleXl5ff75546JznK6y4ikWwAVpTtLadiwYXGVrF+/Pjs7e/DgwXJHJ6c7d+5IL3QnZsVZu3at9KJPnz7FlcnLy/v222+FEC+++KLBR1aco0ZERAQHBxf99Oeff05NTRVCdOrUSfemVquV7ulk+1XJsnz7ZrK0pZY2U3e07XzVf9EOYJSlVzOoFEcDEHKnG1F8xiHdGKV0Sx2Vbopjn+mNdSu+yiV90+zW31y4s5HQ9XE0AOEqZ9MqTTeCs2n3GGA5GgCgEAZYfRwNwICn/v9Ij/K9c+eORqO5devWggULhBAjRoxQ0d0YGjVqJN1y8MSJE0YLSBd9BAcHS8vbRsXGxrZp08bJbx+qu5NSVlaWiWL379+XzlGfe+651q1bGy1z+/btl19+OTEx8bXXXmvVqpXBp7pzJN11ssW5fv26dLmA0VszFRYWTpgwQQjh4eExYsQI3fuXLl2Sarb9yUOyfPvmsKKlljZTd7TtfI46duzYEm/SVbp0aamBLo+jAQhZ040wmXFIN0XZoaWOSjfFsc/0xvzOJuyS9E2zT39z7c5GQtfH0QCEq5xNqzHdCM6m3WaA5WgAgEIYYPVxNAADRlZ8CwsL7969+9FHH2VnZwcHB0s3dlYLPz+/bt26CSEOHTokXRaq7+bNm9LFpC+++GJx96Y+f/780aNHhw4dqnSoNqpbt650+6lr164V96AdIcTQoUNv377t6+u7cOHCop/27du3YcOG4eHhO3fuHD58+IoVK4qWqVKlivSixKuSTT9ZZ/78+adPnxZC9OrVS/fQ6BK3sojt376ZrGippc3UHW3d8beP0NDQtWvXenp6FlfA09Pz66+/dpNnsHM0ACFTuhFmZBzSTVF2aKmj0k1x7DO9Mb+zCbskfdPs099cu7OR0PVxNADhKmfTakw3grNptxlgORoAoBAGWH0cDcCAkRVfIcS5c+dWr14thJg2bVpISIj9w7LFwIEDhRA5OTmzZ882+GjGjBlarVYIMWTIkOI2j42NLV26dK9evRQN0nYBAQExMTFCiLy8vEWLFhktM3369G3btgkh5s6d26RJk6IFsrOzAwICgoKCPDw8srOzk5OTi5YpXbq0dJr0999/mw5JdxpmUFKr1c6ePXvSpElCiODgYIObhB85ckR6YfQKXyFEVlbWsmXLtm/fbnrvEuu+fYt2IaxqaYnNNKCrWfdXaTfdunXbvn17+fLli34UHBy8bds2t7oPBkcDkCXdCDMyDummKIVaqs+B6cYo+0xvzO9sQrGk72z9zeU7GwldH0cDcI2zaTWmG8HZtDsNsBwNAFAIA6w+jgbwD1o9x48fl95s06aNEKJBgwb5+fna4klz8QULFpgoY0Lv3r2rVq1atWrVa9euWbF5165do6OjjX4knbx5eHh8+eWXujcXL14sXe7Ro0eP4urMy8urUKHC66+/bkU8touOju7evbv55U+ePOnj4yOE8PLy2rZtm/5Ht27d0j3zZvr06abr0Wg0hw4dCg0NrVChwpkzZ4oWaN++vRDC19c3JyfHRD1StxFCeHt7r1y5Mj8/v7Cw8OjRo9KVwlIN33//vcFWzZs3F0LUrFmzuGrfeOMNafNFixaZbojEim/f0l1Y0dISm2mgWbNmQogKFSqYU1i6AXtBQYGZlZvj/v37H3/8ccuWLQMDAz08PJ566qkZM2bcu3dPxl2oiO5o+Pr6+vr6uvnRgAuYOXOmv7+/+eXlSjfakjIO6cY+LdVnUbq5ePGiEGLXrl3mFLZ6E/tMb8zsbFrFkr6z9Tdn62xarbZ+/fqyz8l1Cd3T0zMgIMDNE7p0NJo2bSqEKFOmjJsfDbiA8PDw8ePHm1/eBc6m1ZhulGupPosyzrhx46pXr25mzWbSpRt/f39vb283H2B1R8PLy8vf39/NjwYAyEg3wJYpU0YI0axZM3ceYHVHIyAgwMvLi3QDt/WPFV+D2xnt3bvX9MY2rvhGR0dLO0pISLBicxMrvjdv3qxcubJUebNmzXr16qV70kyNGjWSk5OLq3PLli1CiMOHD1sRj+0sXfHVarXLly/X3VLp2Wefff/99z/44IOePXsGBAQIIQIDA7/55hszq9q6dat0uDQajcFHEydOlHZx9OjR4jYvLCwMCgoSQjz++OPVqlUTQvj4+Pj6+uq6U7ly5Xbu3GmwVXZ2tnSa3bdv3+Jqbtu2rVRDgwYNzGmIFd++RbuwoqXmNFNfbm6uVGGHDh3MKa/Eiq/OtGnTgoKClKhZjTp27BgTE+PoKABbWbriq5U13WiLzzikG/u0VMfSdGOfFV+tXaY35nQ2rZJJ36n6mxN2Nq0yK746jz322DvvvKNQ5epy5coVIURcXJyjAwFsZemKr1blZ9NqTDeKtlTH0oyjxIqvzuDBgxs3bqxQ5apTu3btMWPGODoKAHBB3377rRDCxJKHWxk9enRERISjowAc5h93dQ4KCqpatar0unv37rrLWlWnSpUqJ0+ebNeunRDi5MmTmzdvlv4to3PnzkeOHAkLCytuw9jY2Mcff7xly5b2i9U2I0eOjIuLq1mzphDi119/nTlz5vTp07du3arRaIYPH37p0qX+/fubWVW3bt1KlSp18uTJc+fOGXzUsWNH6cWxY8eK2/zChQsZGRlCiK5dux47dqx79+6FhYV5eXlCCF9f3wEDBpw5c+aFF14w2Or06dP5+fnC5PN43nvvvYoVK9apU6ewsFCr1ZbYECu+fYt2YUVLzWmmvrNnz0oVqvdvEICLkTHdiOIzDunGPi3Vcdp0Y4fpjTmdTSiZ9J2qv7lzZwPgzlR9Nq3GdKNoS3XIOAAAAHBb3gb/f+PGDbvt+8CBA8pVHhYW9uOPP546dWrfvn2pqalVq1Zt165d48aNTWySnJy8Z8+eWbNmKReVErp16xYTE3Po0KEjR46kpaWFhITUq1evc+fO0pWz5vPy8goNDb1+/fqNGzcMDlSbNm38/f1zcnJMnKPqHsYTFRVVqVKluLi4O3fuXL582dfX9/HHHy9btqzRrVq2bFniOeHzzz9/+/ZtIUTXrl01Go2Xl1eJbbH027doF1a01Jxm6tPdX71z587mbwUAipIr3YjiMw7pRp9yLdVx5nSj9PTGnM4mlEz6TtXf3LyzAXBn6j2bVmO6EZxNAwAAAEoyXPF1MZGRkZGRkWYWXrNmjYeHx4ABAxQNSQne3t7t27eXng9kjuPHj7do0cLgzdzc3Fu3bgkhGjVqZPBRQEBATEzM1q1bd+zYkZOT4+/vX7RO/TM36UXFihUrVqxofivMYc4Jqo5F3775u7BDS3fs2CGEqF27tulrFADAzixNN8LCjEO60Ue6UXR6Y05nE27T3+hsANwZZ9NGMb0BAAAAVMez5CJuIzY29oUXXqhUqZKjA1Fcr1691q9fb/DmihUrCgsLGzVqVL169aKbjB49WgiRlpa2YcMGo3VKZ24hISHSTbFkl5mZWapUKSVqtnQXSrf07t27+/btE0KMGjVKifoBwJ4szTikGx3SjaVk72zCbfobnQ0AzMfZtC27IOMAAAAAyrFmxXf37t2zZ8+ePXv24cOHhRA//PCD9L+HDh2SOzz7+e233+Lj44cOHeroQOxh2rRp/fr169Wr148//vjo0aO0tLRly5a9++673t7eq1evNrpJhw4dGjRoIIRYunRp0U+zs7Ol5xXpLtSV3TfffNOjRw+FKjd/F3Zo6cqVKwsKCoKCggYPHqzQLgDAbizNOKQbCenGCvJ2NuE2/Y3OBgAW4Wza6l2QcQAAAABFWXNX502bNumfyezcuXPnzp1CiEmTJrVp00auyOwsNja2UqVKXbp0cXQg9jBo0KDg4OBx48Z16NBB92bNmjVXr17dvHlzo5t4eHgsXry4Xbt2R48eLXobq1OnThUUFAjFztyysrI2bNggXaurEDN3oXRLs7Oz58+fL4SYMWNGaGioErsAAHuyNOOQbiSkGyvI29mE2/Q3OhsAWISzaat3QcYBAAAAFGXNiu+qVatWrVoleygOlJGRsXHjxtGjR3t7u/iDjXW6d+/+/PPPHzp06Pjx497e3s2bN2/ZsqXpuzC1bdt24MCBa9asmTlz5tatW/U/KvowHnmNGzdO6W/HzF0o3dL58+ffuXOnadOmb731lhL1A4D9WZpxSDeCdGMtGTubcJv+RmcDAEtxNm3dLsg4AAAAgKLcZYHTtE2bNmVkZAwZMsTRgdiVr69vx44dO3bsaP4mc+bM2bFjx7Zt27Zu3dqzZ0/d+4qeuZ05c6ZSpUq9e/eWvWYrdqFoS+Pj42fMmOHp6fnFF194eXnJXj8AOIqlGYd0Q7qxmlydTbhNf6OzAYAVOJu2YhdkHAAAAEBR1jzH1/WsWrXq6aefrl+/vqMDcXYVKlRYv369j4/P6NGjb9y4oXv/q6++ysjIyMjICAsLk32nTZo0+eijj2Sv1rpdKNfS7Ozs1157LScnZ86cOU8++aS8lQOAupBuSDd2U1xnE27T3+hsAGAfTG/IOAAAAICiVLziW7NmzZo1a8pSVVJS0tixY2WpyuV16tRp5cqVt2/f7tatW0ZGhvRmQEBAYGBgYGCgY2OzA4VaqtVqBw0adOzYsbfffnvChAnyVg4AakS6Id3YjdHOJtymv9HZAMBumN6QcQAAAADlqPiuzgsXLpSrqoSEBLmqcgcDBw7s27evEMLHx8fRsbgIDw+PtWvXrl271s/Pz9GxAICzIN3IjnRTHDqb7OhsAGAUGUd2ZBwAAABAouIVXzgQp1Ky45ACQFGMjbLjkBaHIyM7DikAGMXwKDsOKQAAACBUfVdnAAAAAAAAAAAAAHBzrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAauXt6ADwP6mpqdeuXRs5cqSjA4HK/Pnnn44OAYCa3LlzJz8/n3QDSz148EAI8ejRI/M3yc/PF0IsWrQoLi5OoajgqpKTk1NSUhwdBQDVyMjI+PHHH5newFK///57RkaGo6MAAAAAZMCKrxMJDQ1NSUn54YcfHB0IVCYnJyc0NNTLy8vRgQBQh4oVKwYEBJBuYCmNRhMYGFihQgXzNylXrlzp0qXPnz8fHx+vXGBwSVqtNjQ01NFRAFCN0NDQ27dvM72BpTIyMkg3AAAAcA2s+DqRgwcPOjoEAIDrmzJlypQpUxwdBdxCtWrVHj586OgoAACu7/Lly44OAQAAAAAcief4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqBUrvgAAAAAAAAAAAACgVqz4AgAAAAAAAAAAAIBaseILAAAAAAAAAAAAAGrFii8AAAAAAAAAAAAAqJW3owPA/7z77rt//vlneHi4owOByqSnp9+/f3/v3r2ODgQ2eeutt65du1alShVHBwKVuX//fk5Ozvbt283fJC4u7tNPP23UqJFyUcElaTSa06dPr1+/vnbt2o6OBYAK3L1794UXXmjQoIGvr6+jY4HKXLp0afDgwUOGDDF/k9deey0zM7NixYrKRQWXdOfOnaCgoLVr1zo6ENikd+/eGo0mNDTU0YFAZVJSUipUqLBy5UrzN1m6dOmmTZvq1q2rXFRwSTk5OfHx8fv37w8KCnJ0LLDenDlz9uzZU6dOHUcHApXJysq6du3aTz/9ZIdTY1Z8ncjmzZvv3LkTFhbm6ECgMunp6WlpaYWFhV5eXo6OBdb77rvvHj16xL9SwVIPHjx48OCBRZvExcUdPnw4JSVFmYjgsvLz82/cuHHo0CFWfAGY48yZM0ePHr1586a/v7+jY4HKXL9+PTAw0KIV37i4OC8vr5CQEOWigkuSTqUdHQVstWPHjoCAgPLlyzs6EKhMamqqj4+PRSu+GzduPHz48PXr15WLCi4pKysrJSUlPj6+WbNmjo4F1tu4cePZs2f/+usvRwcClcnMzLx9+/b169ftcLkAK75OpEaNGo0bN46Li3N0IFCZzz//fPz48Y6OAraqWrVqnTp11q1b5+hAoDIff/zxjBkzLNqkTp06fn5+V69eVSgkuKpLly7Vr1+fS9MAmKlcuXJCiHXr1rVp08bRsUBlqlevXq9ePYs2KV++/EsvvTR//nyFQoKrGj9+/LZt2xwdBWxVunTpESNGzJw509GBQGVef/3133//3aJN6tate+fOnQsXLigUElzVrl27unbtGhgY6OhAYJOIiAitVnvs2DFHBwKV2bRpU58+ffz8/OywL57jCwAAAAAAAAAAAABqxYovAAAAAAAAAAAAAKgVK74AAAAAAAAAAAAAoFas+AIAAAAAAAAAAACAWrHiCwAAAAAAAAAAAABqxYovAAAAAAAAAAAAAKgVK74AAAAAAAAAAAAAoFbejg7AegUFBRqNxtfX1/aqcnNz/fz8bK/Hfdy7d0+r1ZYpU8bHx8fRsbgCrVZ77949IURwcLCnJ9dhwNkxAsiLEcAEOpu86GwAYBTpRl6kG9Pob/Kiv0FdGAHkxQhgAp1NXnQ2qAsjgLxUNAI4dXCmjR49etCgQbJUVaNGjaVLl8pSlTtYvnx5SEhIly5dCgoKHB2Li/Dw8Bg/fnxoaOibb77p6FiAEjACyI4RoDh0NtnR2QCgKNKN7Eg3JtDfZEd/g4owAsiOEaA4dDbZ0dmgIowAslPRCKDi3/impKRkZGTIUlWzZs0WLVr0xhtvyFKb/WVmZkqHolSpUqVLlzZRMicnJz09XQhRpkyZgIAAK/YVFxf35ptvVqtWbfv27dbVAKNWrlyZkJCwbNmyatWqTZ482dHhQE0YAVyAWkYAOpsLUEtnA+Dm7JZxSDcKUVG6YXrjAlTU3+BsGAFcgFpGADqbC1BLZ4MTYgRwAWoZAVT8G19zFBYWJiQk/PTTT+fPn9doNMUVGzJkyKVLl/744w97xiajiRMnhoWFhYWFrVq1ynTJxYsXSyUPHDhgxY6SkpIGDBhQWFi4YsWKSpUqWRWs/Zj57TsJPz+/NWvW+Pv7v//++7///rujw4GaMAIYxQigBDqbUXQ2AJCdfTKOutKNUFXGUVG6YXpjlIo6m1BVf4OzYQQwihFACXQ2o+hscBOMAEYxAijBZVd8NRrNggULwsPDIyIi2rdv36hRo5o1ay5atMho4e7du4eEhMTGxto5SLkcPXpUevHUU0+ZWfLJJ5+0Ykfjx49/9OhR//79O3fubMXmJZo7d25UVFRUVJSN34VF3779FdfMiIiIqVOnarXaUaNGccsFmI8RwAAjgHLobAacvLOJYlqqis4GwM3ZJ+OoJd0Ip884qk43rjG9cfPOJtTT3+BsGAEMMAIoxzU6m3Cbs2lVdzY4IUYAA4wACtKqVteuXaOjo41+lJOT89JLL+naWKpUKd3r3r17FxYWFt1k7NixZcqUyczMVDhqU6Kjo7t3727pVpmZmd7e3kIIX1/fnJwc04XDw8OFELVr17YivN27dwshvLy8rl69asXm5mjbtq30Ne3cudPqSqz49u3MRDOzsrIqVqwohPjss8/Mr3DBggVCiIKCAlnD/K9p06YFBQUpUbMadezYMSYmRqHKo6KiXn31VUu3YgQw4IYjwMyZM/39/S2KwYpNtHS2Ipy/s2mLb6l1ne3ixYtCiF27dskdJmBvjz322DvvvOPoKJzClStXhBBxcXFKVH78+HEhxMGDBy3d0D4ZRy3pRquGjCNvutFqteHh4ePHj1d6E60LTW/obFpr+9u4ceOqV68uZ4h6Bg8e3LhxY4UqV53atWuPGTNGocpDQ0OnTJli6VaMAAbccAQYPnx4gwYNLIrh9ddfr1+/vkWbaF2os2nd5mxa9s62c+dOIcSlS5dkDfO/vv32WyFEcnKyEpWrzujRoyMiIhSqvF+/fi1atLB0K0YAA244AmzcuFEIcf36dVnDNM41f+M7derULVu2CCGGDx8uPe733LlzvXv3FkJs2rRp1qxZRTcZOnTow4cPv/vuO3vHarMTJ05IFxQ0adLEz8/PRMnbt29fv35dWHWFiEajGTt2rBDi1VdfrVWrlrXBmqLVak+ePCm9btGihdX1WPHt25PpZgYEBEyYMEEI8eGHH6ampto7OKgQI4ABRgDl0NkMOHlnEyZb6uSdDYCbs0PGUVG6EU6fcVSdblxjekNnkzh/f4OzYQQwwAigHNfobMJtzqZV3dnghBgBDDACKMoFV3yvXLkyd+5cIcSAAQOk+5V7eHg0atRo/fr1PXv2FEJMnTr12rVrBls1adIkMjKyxBupO6EjR45IL0q8J4D5JYvas2dPQkKCEGLkyJGWbmumwsLCuLi4gwcP/vzzz1bfZd66b9+eSmzmsGHDvL29MzMz1dgbYX+MAPoYARRFZ9Pn/J1NlNRSZ+5sANycHTKOWtKNUEPGUXW6cY3pDZ1Nx8n7G5wNI4A+RgBFuUZnE25zNq3qzgYnxAigjxFAaS644vvll18WFBT4+/vPnj1b/31PT8958+Z5eXkVFBSsXbu26IZDhw49ePCgw/991lLmDwTm3y++qOXLlwshwsPDn3nmGUu3NZO3t3ebNm3atGnTunVrqyux+tu3mxKbWaFChU6dOgkhvvjiC61Wa9/ooD6MAPoYARRFZ9Pn/J1NlNRSZ+5sANycHTKOWtKNUEPGUXW6cY3pDZ1Nx8n7G5wNI4A+RgBFuUZnE25zNq3qzgYnxAigjxFAaS644rtu3TohRJs2bSpXrmzwUY0aNdq0aSOE+Oabb4pu2K9fP19f39WrVysfo5wsHTJ8fX0jIyMt2kVmZua+ffuEEDExMR4eHlaFaSdWf/tOpUuXLkKIxMTEs2fPOjoWODtGAH2MAIqis+mjswGAcpTOOCpKN8IlMo4zpxumN/pcoLMJ5+5vcDaMAPoYARRFZ9NHZ4O7YQTQxwigNFdb8U1MTExKShJCNGnSxGgB6f0rV67cvXvX4KPy5cv36NFj9erVGo1G6TjlkpycfOPGDSFE+fLlIyIiTJTUarXHjh0TZtwvvqiDBw/m5eUJm58IojRbvn2nEhUVJb34/vvvHRsJnBwjgD5GAEXR2fTR2QBAOXbIOGpJN8JVMo7TphumN/pco7MJJ+5vcDaMAPoYARRFZ9NHZ4O7YQTQxwhgB6624nv69GnpRXGdpl69etKLM2fOFP10yJAh169f/+mnn5SJTn66X/qX+DTv+Pj4Bw8eCKvuCbB//37phZMPGTZ++86jSZMmPj4+Qu/IQ6PRqOhSDLthBNDHCKAoOps+OhsAWTC9McoOGUct6Ua4SsZx2nTD9Eafa3Q24cT9zYFIN0YxAuhjBFAUnU0fnc2FkW6MYgTQxwhgB97Sf27durVgwQIhRIMGDYYMGWK06O7duw8cOCCEGD16dK1atWzf9/Lly69evSqEmDRpUkhIiO0VCiHu3bsnvahTp47RArr3jT6vt1OnTlWrVl21alWHDh1kiUdpunsClDhk2HIXeOnH6X5+fg0bNiyxcE5Ozr///W8hRFRUVJ8+fR49erRt27Y//vgjISEhLS2tefPmH3zwQZUqVQy2ysjImDZtmhCiVatW0jO6rWDjt28pK1pqZjP9/PyeeOKJkydPOuFtAewsJSVl/vz5cXFxV69e1Wq1tWrV6tat28SJE4t2IffECKCPEUBRdDZ9zt/ZhHktdc7OBrg8pjem2SHjWJRuhJJJv0T2zDhumG5cY3qjxs4m3G8u7RCkG9MYAfQxAijKNTqbcJuzaVV3Nocg3ZjGCKCPEcAetFqtVqtNS0uT/jcyMlJrzIMHDypUqCCEiIqK0mg0RstYKjo6WtppQkKCFZt37do1Ojra4M3PPvtMqvPs2bNGtzp8+LBUYN68eUYLTJkyxd/f//79+1aEZKPo6Oju3btbtEm7du2k5uzatct0yTFjxkgl4+PjLQ1Muql6VFSUOYV1R3jSpEmTJ08OCAgw6HINGzZ8+PChwVbSxQRCiCVLllgano7t375FrGip+c0cOXKkVPLu3bslRiJdrlFQUGBTe4oxbdq0oKAgJWou0YYNGwIDA4uOWgEBAWvWrHFISB07doyJiVGo8qioqFdffdWiTRgB9LntCDBz5kx/f3+LgrdiEzqbPufvbFqzW2pRZ7t48aI5fQBwfo899tg777zjkF072/TmypUrQoi4uDglKj9+/LgQ4uDBgxZtZYeMY1G60Sqc9E2zZ8ZxnnSj1WrDw8PHjx9vUfxWbOIa0xs1djatM82lx40bV716dVvaYsLgwYMbN26sUOWmOVu60Wq1tWvXHjNmjEKVh4aGTpkyxaJNGAH0ue0IMHz48AYNGlgU/Ouvv16/fn2LNnGNzqZ1m7NphTrbzp07hRCXLl2yqT3F+Pbbb4UQycnJSlRumhOmm9GjR0dERChUeb9+/Vq0aGHRJowA+tx2BNi4caMQ4vr16za1xzz//Y1v+fLlK1SokJqaKp3zFzVt2rTU1FQPD4/PP//cmR/+LP3yXQjh6+trtID0a2shxKNHj4wWGDJkyMcff7x+/fpRo0YpEKCcNBqN9M8owuyLREq8X3xR6enpycnJQojq1aubU153Ncqnn37q5eXVtm3bJ5988t69e9u3b79586YQ4vz589OmTZszZ47+VuZf7WKC7d++RaxoqfnNrFatmvTi0qVLzzzzjO3Rqs7GjRtfeeUVrVZb9KPs7OyBAwdqtdqBAwfaPzDnwQhggBFAOXQ2A87f2YTZLXW2zga4NqY3JbJDxrE03QiFk75p9sw47pZuXGZ6o8bOJtxsLm1/pJsSMQIYYARQjst0NuE2Z9Pq7Wz2R7opESOAAUYAO/jfc3wff/xxIURGRkZKSopBocuXLy9evFgI0b9//6efflqufX/wwQfr169fv359pUqV5Krz/v370osSO01GRobRAnXq1GndunVsbKxcISnn4sWLDx8+FELUrl07NDTURMnc3Fzp1udW/EFKD9MWQpQpU8ac8vr3pr9w4cLevXtnzJixZMmSs2fP6rr+xo0bDZKBtJWfn19x93A3h+3fvkWsaKn5zSxbtqz04tatW7aHqjq3b98eNmyY0RmDzqhRo9zz4OgwAhhgBFAOnc2A83c2YXZLna2zAS6M6Y057JBxLE03QuGkb5o9M467pRuXmd6osbMJN5tL2xnpxhyMAAYYAZTjMp1NuM3ZtHo7m52RbszBCGCAEcAODFd8hRDx8fEGhSZMmJCfnx8YGDhr1iz99zMyMgoLC63ed9u2bfv27du3b9+goCCrKzGQl5cnvSjuOeG69wsKCoqrZOjQoceOHfvzzz/likohuisOSry3++nTp6UjU7Rkbm6u6b8f3acWDRlhYWEHDx7UvyF7cHDwsmXLPD09hRA3btwwuLBA2ioyMlL3V20FWb5981nRUvObqRsyZLmeRXUWLFhQ4rCenZ09b948+8TjnBgBDDACKEeWziZK6m90tuIo2lJn62yAC2N6Yw47TG8sTTdC4aRvmj0zjrulG5eZS6uxswk3m0vbGenGHIwABhgBlMPZtAE6m8sg3ZiDEcAAI4AdGFnxNbix8+7du/fs2SOEmDx5svQc48LCwvnz59eqVatMmTKlS5du1aqVdLN4Z6BbPNb1HgO693VfSVG9e/cOCgpatWqV7OHJy/whw+hzv1etWtW0adNSpUqVLl26evXqn3zySU5OTtFtdV3WxBHTuX//vtR/nnrqKT8/P4NPn3jiCd2flv4fUlJSkvQ7ehvvQiPLt28mK1pqUTOddsiwjx07dphTbPv27UpH4swYAQwwAijHxs4mzOtvdDajlG6ps3U2wIUxvTGHHaY3FqUboXzSN81uGccN041rzKXV2NmE+82l7Yx0Yw5GAAOMAMrhbNoAnc1lkG7MwQhggBHADrx1r4yu+Obn50+cOFEIUaNGjbffflt6c/Dgwd9+++3LL788cODAS5cubd++/bXXXjtw4MDKlSvtGLlxpUuXll7Y0mkCAwN79+69bt26OXPmWP3Q4suXL589e9aiTVJTU729vUsu9/8VNxAUZXD/cY1G069fvw0bNnTq1Gno0KGBgYGbN2+eMmXKwYMH9+zZI13doGPRRSLHjh3T31FRtWvXln5ErvumLGqIabJ8+2ayoqUWNdOiISM3N1cIsXnzZoPvThanTp3Ky8vbtGmT7DWbUPROA0YlJiZu2LBBiVYX5/r1615eXgodjXv37mVmZppfnhHAgNuOADk5OYWFhRZ1yz///LO4i+mMsrqzCUv6G53NKKVbasUM9ddff7VosIIJly9fDg8PDwgIcHQgbicjI+PcuXNMb8T/P7n95ZdfpPmkvBITE0Xxl28bZYfpjaWXwCud9E2zW8ZxtnSTl5d35coVi/5Is7KysrKyzC/vGnNpNXY24WRzaannKJQRLl++nJqaSrqRPHjw4MKFCwodjdzcXEYAW7jtCJCZmfnw4UOLumViYqLRBf7icDZtwG07m/SDxe+//97S9QJz/P7770KIHTt2lCtXTvbKi+O06ebChQv3799XKN1cv349Ozvb/PKMAAbcdgTIz88XQuzatSskJKTEwrpNLl++3KhRIzPL66L63/pivXr1pBf6K75Lly69fPmyEGLu3Ln+/v5CiO++++6bb775z3/+88orr0hlLly40Llz56+++iomJubll1+2KALZ6b6e4g609BRrUVKnycvL8/HxsXq5Vwgxbdq0//znP5ZuZf4/oWZnZ0v3nfbx8WnatKnpwtKQUadOHalLLVq0aPPmzWvWrBkwYIBUYNiwYZ06ddq3b99//vOf/v37629r0UHQ/VVERUUZLaBrYFhYWNGtbLxIRK5v3xxWtNSiZupuH2/O8b9w4YIQQvcnqYQ+ffooV7nVNBqNoq0ujnJHw/zbYjACFOW2I8D58+fz8/Mt7Zbmf7O2dDZhSX+jsxmldEst6mzSA1c++eSTEksCzm/v3r179+51dBRGOGR6M2fOHOUql66SNod9pjeWnuIpnfRNs1vGcap0I4S4d+/erl27du3aZU5hHem0yBwuM5dWY2cTTjaXvnDhQmpqqqInvJxN6xw4cODAgQMKVc4IYAu3HQEuXbp08+ZNS/9IAwMDzSzJ2XRRbtvZ/v77byHE+PHjSyxptREjRihXudVc7x9vzV9WZwQoym1HgKtXrwohRo8eXWJJG/n7+/9vxbdGjRp+fn65ubnStdhCiPT09BkzZgghoqOjX3rpJenNRYsWPf/88/p/qA0aNJg7d27fvn0/+ugjh6/46p6AffXq1WeffbZoAengCpN/nOnp6Vu2bJF+3Gy1NWvWLFmyxKJNunfvHhwcbGbhv//+W7o4KCwsrOjP0vWdPXs2ISFBCPH8889L77zwwgt37tzRDRa6N/fv3//bb78ZzFB1v7VPT08vMSrpr8LDw6NFixZFP9VoNBcvXhRCNGrUSP/hzdJWwcHB+rdTt4Is376ZrGipRc2UHuou9I6/CZGRkV9//XVqaqqXl5fZLTDXp59+umjRohs3bsheswnPPvusOWdrderU0Q3E9tGzZ09vb2+FLhNr37697sqbEjECFOW2I0Dz5s137dqlmxKZY968eeb/474tnU1Y0t/obEYp3VKLOps0S9mwYUPHjh3NbQBMys3NNf1nBYXUr1+/d+/e06dPt+dOnXN6k5iY2KJFi2+//TYmJkb2yk+fPt2uXbvw8HAzy9tnemNRuhHKJ33T7JZxnCrdCCEqVarUtWvXmTNnmhe+EEI0btzYaPBGucxcWo2dTTjZXLpFixbXr18/c+aM2eFbYMyYMWfOnPn111+VqLw4zpluhBDNmjXr0KHDp59+qkTlERERjAC2cNsRoFmzZllZWYcPHzY7fDF+/Hjz/3Y4my7KbTtb7dq1pfpt/4MtavPmzSNGjLh06VLFihVlr7w4Tptu3nnnnYMHDx4/flyJykeMGHHt2jUzCzMCFOW2I4B0f+Vz585Jj801U15enq+vr/nlhRB+fn7/W/H18vKKiIj4888/b9++Lb0ze/bstLQ0Ly+vzz//XFesVq1aRf+Zr2vXrp6entLPjGx5dLPtGjduLL0o7sYCuk7TsGHD4ipZv359dnb24MGDbYnE29vb/OVb3SbmX5Fx584d6YXu76Q4a9eulV7orm2pU6dO0ZPntLQ0YayDWjFkREREGG37zz//nJqaKoTo1KmT7k2tViv9xN72axJl+fbNZGlLLW2m7mjr3z/BtODgYCVWfAMCAjw8PCztzDZ6+eWXzZk09OrVy86B+fr6WvGnbSZGgBLrN82dRwBL/0gtuoWsLZ1NWNLf6GxGKd1SK9JNUFCQncdeQHZeXl7+/v5Mb8T/v3Raob9rM2+brGOf6Y11K77KJX3T7JZxnC3deHh4+Pn5WdQtLbpboGvMpVXa2YTzzaU9PT0VGnj9/PyUO38sjnOmGyGEl5eXpX/X5rPo502MAEW57Qjg4eHh5eVlUbf08/Ozzz/dCM6mXauzScqUKaPEMCj97rxs2bL2HNidNt34+flZ+ndtPl9fX0YAW7j5CGCfP9J/nBRJS8137tzRaDS3bt1asGCBEGLEiBG6b0IIsWTJkq5duxrUEhAQEBgYmJ+fL93uz4EaNWok3X36xIkTRgucO3dOCBEcHBwREVFcJbGxsW3atFHiihsZ6X7YbvpRJffv35eGjOeee65169bFFcvLy/v222+FEC+++KLBR7ouq7tsoTjXr1+XLhcw+kv5wsLCCRMmCCE8PDz07zJx6dIlqWbbnzsiy7dvDitaamkzdUfb/CHDlYwdO7bEWzeULl1aOs7uiRGgKEYAhcjb2UTx/Y3OVpQdWupUnQ1wbUxvSmSf6Y356UbYJembZp+M44bpxjXm0mrsbML95tL2R7opESNAUYwACuFsuig6m8sg3ZSIEaAoRgA7MLLiW1hYePfu3Y8++ig7Ozs4OFi6sbNOQEBA0TZcvnz50aNH5cuXt+etA4zy8/Pr1q2bEOLQoUPSKr2+mzdvSmv7L774YnGXY5w/f/7o0aNDhw5VOlQb1a1bV7obwLVr10w8HXro0KG3b9/29fVduHBhcWVu37798ssvJyYmvvbaa61atTL4VPdL8xIvEjF9o/P58+efPn1aCNGrVy/9W9fK+NwR2799M1nRUkubqTvaFv3S32WEhoauXbvWxHX6np6eX3/9tcMHHAdiBCiKEUAhMnY2YbK/0dmKskNLnaqzAa6N6U2J7DO9MT/dCLskfdPsk3HcMN24xlxajZ1NuN9c2v5INyViBCiKEUAhnE0XRWdzGaSbEjECFMUIYAdGVnyFEOfOnVu9erUQYtq0abqHRZuwe/duIcTw4cPlD9ByAwcOFELk5OTMnj3b4KMZM2ZIT1QeMmRIcZvHxsaWLl26V69eigZpu4CAAOlpW3l5eYsWLTJaZvr06du2bRNCzJ07t0mTJkUL9O3bt2HDhuHh4Tt37hw+fPiKFSuKlildurTUa6UnzJug+6swKKnVamfPnj1p0iQhRHBwsP5NwsX/fyy5KP4Z2llZWcuWLdu+fbvpvUus+/Yt2oWwqqUlNtOArmbdX6W76dat2/bt28uXL1/0o+Dg4G3btvXs2dP+UTkPRgCjGAGUIEtnE2b0NzpbUQq1VJ9TdTbA5TG9Mc0+0xvz041QLOk7W8Zxw3TjGnNpNXY24X5zaYcg3ZjGCGAUI4ASOJs2is7mMkg3pjECGMUIoDitHt0Trdu0aSOEaNCgQX5+vrYkN2/eDA4Orl279v3790ssrK93795Vq1atWrXqtWvXLNpQ0rVr1+joaKMfSX9LHh4eX375pe7NxYsXS1ed9OjRo7g68/LyKlSo8Prrr1sRj+2io6O7d+9ufvmTJ09KT0328vLatm2b/ke3bt3S3YJ8+vTpxdXQrVu35s2bly9f3sPDo3///omJiUaLtW/fXgjh6+ubk5NjIh6p2wghvL29V65cmZ+fX1hYePToUenCDamG77//3mCr5s2bCyFq1qxZXLVvvPGGtPmiRYtM7F3Him/f0l1Y0dISm2mgWbNmQogKFSqYU1i6AXtBQYGZlVtk2rRpQUFBStRsjvv373/88cctW7b09/f38vJ66qmnZsyYce/ePUfF07Fjx5iYGIUqj4qKevXVV80vzwhglBuOADNnzvT39zezZus2sb2zac3rb3Q2+7RUn0Wd7eLFi0KIXbt2mVMYcGaPPfbYO++846i9S9Mb6VZRgYGBjp3eXLlyRQgRFxenROXS2eXBgwfN38Q+0xsz041WsaTvbBnH2dKNVqsNDw8fP368mYWt28QF5tJq7GzKtVSfRf1t3Lhx1atXN7NmSw0ePLhx48YKVV4i3dm0j4+Pr6+vw8+ma9euPWbMGIUqDw0NnTJlivnlGQGMcsMRYPjw4Q0aNDCzZsnrr79ev35988tzNm2UG3a2nTt3CiEuXbpkZuUWke70m5ycrETlJdKlG+lxwg5PN6NHj46IiFCo8n79+rVo0cL88owARrnhCLBx40YhxPXr182s3Bb/WPE1+HX53r17S9w+PT29SZMmFStWtGLAio6OlnaUkJBg6bZakyu+N2/erFy5slR5s2bNevXqpbvxd40aNUwMf1u2bBFCHD582Ip4bGfpiq9Wq12+fLnuF+7PPvvs+++//8EHH/Ts2TMgIEAIERgY+M0335RYiUajOXToUGhoaIUKFc6cOVO0wMSJE6VdHD16tLhKCgsLpYeEP/7449WqVRNCSCcVuu5Urly5nTt3GmyVnZ0tjXp9+/Ytrua2bdtKNZg5CbPi27doF1a01Jxm6svNzZUq7NChgznlXXjFV2fYsGENGzZ0dBTOteKrZQQwxg1HADus+Gpl6mzakvobnc0+LdWxtLOx4guX4dgVX0leXp4QYuHChY4Nw9lWfLV2md6Yk260SiZ9p8o4TphutHZZ8dWqfC6txs6maEt1LO1vLrziq9O2bdtu3bo5OgrnWvHVMgIY44YjgB1WfLWcTRvjhp3NhVd8dT755BNfX1/HxqB1shVfLSOAMW44AjhsxVer1VatWlVqtjlLj+np6U8//XT16tXj4+Ot2LdyK75arTY5Obldu3binzp37nz79m3TdT7++ONWBCMLK1Z8tVrt9u3ba9asadBSPz+/4cOH37hxw/x6tm7dKv2NaTQag4/27NkjVbtkyZLiNpeeqi2EeOedd1JSUrp37667j7+vr++AAQP+/vvvolsdPnxYKjN37tziat6zZ0/FihXr1KlTr169orEZZem3b9EurGipOc3Ud+zYMan8p59+ak55VnztxtlWfLWMAMa42whgnxVfrXydTVt8f6Oz2aelOpZ2NlZ84TJY8dVxwhVfrfLTG3PSjVbJpO9UGccJ043WXiu+WjXPpdXY2RRtqY6l/Y0VX7txthVfLSOAMe42AthnxVfL2bQx7tbZWPG1G2db8dUyAhjjbiOAPVd8vQ0O640bN4R5Hj582Llz57t37/7888/h4eFmbqXvwIEDVmxlprCwsB9//PHUqVP79u1LTU2tWrVqu3btGjdubGKT5OTkPXv2zJo1S7molNCtW7eYmJhDhw4dOXIkLS0tJCSkXr16nTt3li5ksKieUqVKnTx58ty5cwYHqk2bNv7+/jk5ObquXJTu3uhRUVGVKlWKi4u7c+fO5cuXfX19H3/88bJlyxrdqmXLllqt1nRgzz///O3bt4UQXbt21Wg0Xl5eJbbF0m/fol1Y0VJzmqlPd3/1zp07m78V3BMjQFGMAAqRq7OJ4vsbnU2fci3VcdrOBsDNKT29MSfdCCWTvlNlHDdPN+qdS6uxswn3nkvDCTECFMUIoBDOpouis8F9MAIUxQigHMMVXzOlp6d37tw5IyPjl19+CQsLkzcmGUVGRkZGRppZeM2aNR4eHgMGDFA0JCV4e3u3b99eul271by8vEJDQ69fv37jxg2Dvy7pMeNbt27dsWNHTk6Ov79/0c31/5CkFxUrVqxYsaItIRkN0vzCFn375u/CDi3dsWOHEKJ27dqmr1EAJIwARjECKEGWziaK7290Nn1u3tkAuDlFpzfmpBvhNhmHdMNc2iimN3ATjABGMQIogbNpo+hscBOMAEYxAijB04pt0tPTO3XqlJeXd/DgQWde7rVUbGzsCy+8UKlSJUcHojjdNQj6cnNzb926JYRo1KhR0U9Hjx4thEhLS9uwYYPROqU/pJCQkKL3KJBFZmZmqVKllKjZ0l0o3dK7d+/u27dPCDFq1Cgl6gcYAWzZBSOApSztb3Q2HTobAJhP9nQj3CbjkG4sxVzall3Q36B2jAC27IIRwFKcTVu9CzobXAAjgNW7cPMRwOIV3wcPHnTs2NHDw+Onn34KDQ1VIiaH+O233+Lj44cOHeroQOyhV69e69evN3hzxYoVhYWFjRo1ql69etFNOnTo0KBBAyHE0qVLi36anZ0t3R5dd92E7L755psePXooVLn5u7BDS1euXFlQUBAUFDR48GCFdgE3xwhg9S4YAaxgaX+js0nobABgEXnTjXCbjEO6sQJzaat3QX+DC2AEsHoXjABW4Gzaul3Q2eAaGAGs2wUjgMUrvkOHDj127Ji/v/+AAQO6du0a80/JyclKRGkHsbGxlSpV6tKli6MDsYdp06b169evV69eP/7446NHj9LS0pYtW/buu+96e3uvXr3a6CYeHh6LFy8WQhw9erToBSanTp0qKCgQiv0hZWVlbdiwoW/fvkpUbtEulG5pdnb2/PnzhRAzZsxwpSsq4FQYAazeBSOAFSztb3Q2CZ0NACwib7oRbpNxSDdWYC5t9S7ob3ABjABW74IRwAqcTVu3CzobXAMjgHW7YASweMU3NTVVCHHo0KGdO3fu2rXr+3/KyspSIEjFZWRkbNy4ceDAgd7eVj7YWF0GDRq0bdu2EydOdOjQoUyZMqGhoW+88UblypV//PHH5s2bF7dV27ZtBw4cKISYOXOmwUdF740ur3Hjxo0ePVrRb8fMXSjd0vnz59+5c6dp06ZvvfWWEvUDghHAhl0wAljBiv5GZxN0NgCwkLzpRrhNxiHdWIG5tNW7oL/BBTACWL0LRgArcDZt3S7obHANjADW7YIRwOLv4JdfflEiDsfatGlTRkbGkCFDHB2I/XTv3v35558/dOjQ8ePHvb29mzdv3rJlyxJvgz5nzpwdO3Zs27Zt69atPXv21L2v6B/SmTNnKlWq1Lt3b9lrtmIXirY0Pj5+xowZnp6eX3zxhUUPOQcsxQhg3S4YAaxjRX+js9HZAMBSMqYb4TYZh3RjHebS1u2C/gbXwAhg3S4YAazD2bQVu6CzwWUwAlixC0YAoVWtrl27RkdHy1JV69atn376aVmqskV0dHT37t0dHUUJ9u7d6+PjU6lSpevXr+vezMrKysjIyMjIcGBg9qFcS7OysqRhaN68eZZuu2DBAiFEQUGB7FFptdpp06YFBQUpUbNFhg0b1rBhQ0dHoe3YsWNMTIxClUdFRb366qsKVS4XRgAnHAFmzpzp7++v9Cb2R2dzws528eJFIcSuXbtkjwqws8cee+ydd95xbAx5eXlCiIULFzo2jCtXrggh4uLilKhcupnYwYMHlahcLkbTjdZtMo5zphutVhseHj5+/HilN7E/pjdO2N/GjRtXvXp12UOSDB48uHHjxgpVbr62bdt269bN0VFoa9euPWbMGIUqDw0NnTJlikKVy4URwAlHgOHDhzdo0MCiTV5//fX69etbuiM7o7M5YWfbuXOnEOLSpUuyR6XVar/99lshRHJyshKVm++TTz7x9fV1bAxarXb06NEREREKVd6vX78WLVooVLlcGAGccATYuHGjEMLglFMhFt/V2XnUrFmzZs2aslSVlJQ0duxYWapyeZ06dVq5cuXt27e7deuWkZEhvRkQEBAYGBgYGOjY2OxAoZZqtdpBgwYdO3bs7bffnjBhgryVAzJiBGAEsBs6G50NAOzAaLoRbpNxSDd2xvSG/gZ3xgjACGA3dDY6G9wZI4CbjwAqfmztwoUL5aoqISFBrqrcwcCBA6VHZPv4+Dg6Fhfh4eGxdu3atWvX+vn5OToWoASMALJjBCgOnU12dDYAKIp0IzvSjQn0N9nR36AijACyYwQoDp1NdnQ2qAgjgOxUNAKoeMUXDuT8PVt1OKRQEbqr7DikxeHIyI5DCgBFMTbKjkNqAgdHdhxSqAjdVXYc0uJwZGTHIYWK0F1lp5ZDquK7OgMAAAAAAAAAAACAm2PFFwAAAAAAAAAAAADUihVfAAAAAAAAAAAAAFArVnwBAAAAAAAAAAAAQK1Y8QUAAAAAAAAAAAAAtWLFFwAAAAAAAAAAAADUihVfAAAAAAAAAAAAAFArb0cHgP/RaDRZWVmJiYmODgQqk5aW5ugQIAONRpORkcEIAEvdu3fP0k20Wq1Wq6WzwVI3btxwdAgA1CcpKYmMA0sVFBRotVqLNtFqtenp6XQ2WCo9Pd3SzgYnpNVqHzx4wAgASz169MiKdJOfn09ng6VSUlIcHQJkoNVqc3NzGQFgqdu3b9ttX6z4OpH4+PiUlJTatWs7OhCokoeHh6NDgE0SExNPnDixY8cORwcC9fH0tOyOHWfPns3NzSXdwDp///23o0MAoA53794VQvTr18/RgUCVTp06ZVH5O3furFq1atWqVQrFAxfm7+/v6BBgq/T09KVLly5dutTRgUB9goKCLCp/+vTphIQEzqZhnYyMDEeHAJucOXPmwoULjACwTl5enh32woqvE/nmm28uX75coUIFRwcClcnJycnOzrZ0yQfO5ptvvrl+/XpISIijA4HKZGVlaTQaizaZM2dOs2bNatWqpVBIcGGXL18eNmyYo6MAoA4dO3b85JNPatWqxYWJsNTff//dtWtXizZZs2bNo0ePypQpo1BIcFUPHz6k27iA1atX5+XlWbp0Bzx48MDSf4b96quvfvjhh2rVqikUElxVYWHhjRs3mjdv7uhAYJPVq1f/9ttvVapUcXQgUJmCggK7/dSTFV8n0r59+/bt2zs6CgCO0aVLF0eHAHdRrVq1f/3rX46OAgDg4jw9PSdNmuToKOAu+vTp4+gQADhM//79HR0C3EXjxo0bN27s6CgAOEZUVFRUVJSjowBM4UeBAAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWrPgCAAAAAAAAAAAAgFqx4gsAAAAAAAAAAAAAasWKLwAAAAAAAAAAAACoFSu+AAAAAAAAAAAAAKBWKl7xLSgoyMvLk6Wq3NxcWeoBAAAAAAAAAAAAAHtS8Yrv6NGjBw0aJEtVNWrUWLp0qSxVAQAAAAAAAAAAAIDdqHjFNyUlJSUlRZaqmjVrtmjRIlmqAgAAAAAAAAAAAAC7UfGKrzkKCwsTEhJ++umn8+fPazSa4ooNGTLk0qVLf/zxhz1jAwAAAAAAAAAAAAAbeTs6AKVoNJqFCxd+9tlnSUlJ0jvh4eHvvPPOW2+9VbRw9+7dQ0JCYmNjW7Zsad8wAZhSUFBw9uzZW7dunThxIikpaevWrWFhYY0bNw4MDHR0aAAAANZITU29dOnSjRs3hBAHDx6sU6dOjRo16tev7+i4AAAuJTs7++zZsykpKQkJCb6+vtu3b69cuXLjxo39/PwcHRoAwHVotdoLFy78/fffv/zyS0FBwcaNGx977LH69euHhIQ4OjTAHbnmim9ubm6/fv22bNki/W+pUqWysrKuX78+duzYX375Zf369Z6e//hxs6+vb//+/VevXr1gwYJSpUo5ImQA/7Br164NGzbs2rXr3r17ujdfeuklIYS/v3+HDh1eeuml/v37+/r6Oi5GAAAAc92/fz82Nnbbtm2HDx8uLCyU3tyyZYt0zhIeHt69e/dBgwa1aNHCoWECANStsLBw48aN33333ffff5+Zmal7v0ePHkKIMmXKPP/883369OnZs6fBv4wBAGCR33//fe3atdu3b9f94k4I0bdvXyGEt7d369atX3zxxSFDhpQuXdpxMQJuxzWnd1OnTpX+6WT48OEpKSkZGRnnzp3r3bu3EGLTpk2zZs0qusnQoUMfPnz43Xff2TtWAP/066+/PvPMM127dv3tt98GDRq0f//+y5cvR0RE+Pn5SdeLTZkyJTk5ediwYfXr11+/fr1Wq3V0yAAAAMXKycmZM2dOnTp1Jk2a5OfnN3/+/GPHjiUkJAghevTocf78+a1bt3bo0GHDhg1PPvlknz59rly54uiQAQCqtH379saNG/fr1y8+Pn7ChAmHDh1KTEwsV65cxYoVpUeejR49+uzZs7169WrevPm+ffscHS8AQJXOnz/fvXv3Z555Ztu2bV27dt2xY8eFCxfat28vhLh58+aRI0dmz55dWFg4ceLEOnXqLF68OD8/39EhA+7CBVd8r1y5MnfuXCHEgAEDVqxYUalSJQ8Pj0aNGq1fv75nz55CiKlTp167ds1gqyZNmkRGRq5atcoBEQMQQgih1Wo//PDD5557Li0tbePGjQkJCfPmzevQoUPdunU9PDyEEOHh4c8+++y///3v48ePHz16tEaNGq+++mrXrl0fPnzo6NgBAACMuHXr1rPPPvvee++1b9/+8uXLP/zww1tvvdWiRYvKlSsLIXx8fBo0aPDiiy9+9dVXt27dWr58+S+//PLEE098/fXXjg4cAKAmubm5Q4YM6dGjR2Bg4IEDB86ePTtjxoznnnuuZs2aHh4eHh4etWvXbtu27axZsy5evLh//35PT8/OnTuPHDmSf4UHAFhkxYoVzZo1O3HixBdffHHjxo0vvviia9eu9evX9/b2FkJUqVLlySefnDhx4qFDh65evdq5c+exY8e2bNlSeqgNAKW54Irvl19+WVBQ4O/vP3v2bP33PT09582b5+XlVVBQsHbt2qIbDh069ODBg0UXgwHYQU5Ozssvvzx9+vTJkyf/+eefvXv3llZ5i9OiRYsff/xx7dq1Bw4caN26NfMGAADgbI4cOdK8efOkpKTffvtt48aNtWrVMlHYx8dnxIgRly9ffuGFFwYPHjxlyhS7xQkAULW0tLR27dp9++23S5YsOXLkSHR0tOnyHTp0OHbs2OzZs7/66qvnn38+PT3dLmECANRNq9WOGzduxIgRffv2vXLlyogRI6RV3uJUr159zZo1P/zww/Xr11u1anX69Gl7RQq4Lxdc8V23bp0Qok2bNtKF8/pq1KjRpk0bIcQ333xTdMN+/fr5+vquXr1a+RgB/INWqx02bNiuXbu+/fbbmTNnmp4u6HvttdcOHTp0+/btbt26ZWRkKBokAACA+RITE7t27frYY48dO3bs6aefNnOrMmXKbN68+f333//kk0/mzJmjaIQAABeQl5f30ksvXbhwYe/evW+88YbpK6d1PD0933vvvbi4uCNHjrzyyiu6B8wDAFCcDz/8cOHChbNmzVqzZk2pUqXM3Kpdu3ZHjhwpXbp0ly5dbt26pWiEAFxtxTcxMVF6VHiTJk2MFpDev3Llyt27dw0+Kl++fI8ePVavXq3RaJSOE4C+WbNmrVu3bunSpa+++qql20ZFRW3fvv3y5cuDBg3imb4AAMAZPHr0qHv37gEBAbt3765SpYpF23p4eHz00UejR4+eNGnSnj17FIoQAOAaxowZ8/vvv2/cuLFt27aWbvvCCy+sXbt27969//rXv5SIDQDgMjZu3DhjxoxJkyZZkTJq1aq1Z8+ewsLCF198MScnR4nwAEhcbcVXd3OA4lZ869WrJ704c+ZM0U+HDBly/fr1n376SZnoABiRkJAwderUMWPGDBs2zLoannzyyeXLl2/ZsuW7776TNzYAAAArfPzxx1euXImLiwsLC7Ouhs8//7xVq1YjR47Mzs6WNzYAgMs4ePDgypUrZ8+e3bFjR+tq6Nmz5wcffDBv3rwTJ07IGxsAwGWkp6ePGTPm+eefnzlzpnU1VK9e/bvvvjt16tSCBQtkDQ3APxhZ8b1w4cK7774bGRkZHBwcERHRp08fhRZRli9f/u6777777rtpaWly1Xnv3j3pRZ06dYwW0L1v9Hm9nTp1qlq16qpVq+SKB0CJpkyZUrZs2Y8//tiWSgYNGtS2bdt//etfeXl5cgUGAABghVu3bi1cuPCNN96IjIy0uhIfH58lS5YkJSUtWrRIxtgAAC5Dq9VOnjy5fv36Y8eOtaWeKVOm1KpV6+2335YrMACAi5k9e3Z6evrChQs9Pa3/AeGzzz47cODAWbNmybgYBMDAP/5E09PTR48e3ahRozlz5pw+ffrBgwcJCQmbNm3q1avXq6++KvszMjds2DBnzpw5c+Y8ePBArjp1VQUEBBgtEBgYKL149OhR0U89PT0HDhy4ZcsWGUMCYEJ8fPzmzZv/7//+r0yZMjZWNXPmzMTExI0bN8oSGAAAgHXmzZvn7e39/vvv21jPE0880b9//9mzZ+fn58sSGADAlezfv/+PP/6YPXu2t7e3LfX4+vpOnz790KFDv//+u1yxAQBcRmZm5sKFC0eOHFncT+zMN3369Nzc3MWLF8sSGICi/rfie/PmzVatWi1fvtzX13fw4MEbNmz44YcfFi1aFBERIYRYv379lClTHBenuXQrtb6+vkYL+Pj4SC+MrvgKIYYMGZKTk7N+/XoFogNgaMuWLd7e3oMGDbK9qqeffrpRo0Zbt261vSoAAACrbd269aWXXgoNDbW9qtdff/3evXsHDx60vSoAgIv57rvvHnvssa5du9peVe/evYODgzmbBgAUtWfPnszMzBEjRtheVdWqVWNiYrZs2WJ7VQCM+u+K771799q0aXPhwoWIiIgTJ06sWrWqT58+7du3f/PNN8+ePfvMM88IIZYsWXLq1Cn9jfPy8mz5LewHH3ywfv369evXV6pUyYYm/MP9+/elFyWu+Bb3k+U6deq0bt06NjZWrpAAmBAXF9e2bdty5crJUtuLL774/fffZ2VlyVIbAACApU6fPn3t2rUePXrIUlurVq3CwsLi4uJkqQ0A4DI0Gs2OHTu6d+/u4eFhe20+Pj4xMTGs+AIAioqLi6tRo8YTTzwhS209evQ4e/ZsYmKiLLUBMPDfFd/XXnstMTExNDT0xx9/bNiwoX4Jf3//hQsXCiE0Gs3OnTulN8+cOdOpU6eAgIDg4OCaNWt+8cUXVuy7bdu2ffv27du3b1BQkG2t+B/dIzw1Go3RArr3CwoKiqtk6NChx44d+/PPP+WKCoBRWq321KlT0dHRclXYtm3brKysy5cvy1UhAACARU6ePCmEaNOmjSy1eXp6PvvssydOnJClNgCAy0hOTk5OTpb3bPrq1avp6elyVQgAcA0nT55s166dXLVJmYsTHEAhnkKIuLi4PXv2CCHef//9atWqFS0UGRlZqlQpIcS5c+eEECdOnGjduvXRo0cnTpw4c+bMkJCQUaNGffDBB/aN3Djd4rFu6deA7v2yZcsWV0nv3r2DgoJWrVole3gA9KWlpeXm5latWlWuCqtUqSKESEpKkqtCAAAAi9y6datUqVLBwcFyVVi1alXmNgAAA7du3RJCcDYNAFBaUlKSvOnG09OTdAMoxEOr1UZGRp4+fbpq1apXrlzx9/c3Wq5KlSpJSUktWrQ4evRoZGRkfHz84cOHmzRpIoQoLCyMiYn56aefzpw5Y/D7YEV169YtIyPjwIED+m9+8MEHM2bMEEKcPn1aCs/Ar7/+2rp1ayHE/Pnzx48fX1zlQ4cO3bNnT1JSktW3x/n3v/+9bt0667ZFUY8ePcrNzZXlcWiwyJ07dzIzM2vWrKlE5dnZ2cnJyRUrVizxh/43btwoKCgoMQyNRvPXX3+VLVs2JCREvjD/EYYQwuiVMVDUw4cP8/PzFfpaAX35+fmpqamVK1eW5f54gGkpKSlly5YNCAhwdCBu59q1awEBAWFhYUpUnpSUlJeXV6NGDdPFpElLYGBgiQ+4uXv37sOHD2vVqiVbiHry8vJu3rwZGhpapkwZJeqHCcnJycHBwcWdgAMykp5+JeOVKDBTUlJSfn5+9erVlag8PT09LS2tatWqxT3UTOevv/7y8PAoMYycnJykpKQKFSqULl1avjD/EYafn1/lypWVqBwm3Lt3z8vLy8TvXgC5ZGdnp6enKzTHhgkPHjy4d+9eeHi4t7e37JVLpy3lypUrX7686ZIpKSlZWVnmnLYoejqWnJycm5tb4ukYZJeVlfXo0SMZn9/q5vLy8u7evWvpv0+GhIR4X7ly5fTp00KInj17Fne2+fDhQ+myi0qVKp0+ffrMmTNvvfWWbj3Vy8tr9uzZzZo1mz179po1a2xtim10E9NHjx4ZLZCcnCy9MD3XycvL8/HxseVfe5s3b37nzh2rN4eBO3fuPHjwoG7duo4OxO389ttvly5d6tChgxKV37t3b/PmzY0bNy5xNrBx48ZHjx6VGEZOTs5ff/1Vv379xo0byxfm/2zZssXDw0OhowETkpOTMzMz69Sp4+hA4PpycnIuXLjQtGlTT09PR8cC13fu3Lnw8HD+Ac7+vv766ypVqrRt21aJyvfv35+UlFTibKGgoCA2NrZixYolljx8+PD58+cVmn48ePBg48aNjRs3Jsna3+nTp+vUqSPjE46A4ly/fl0IER4e7uhA3M6ePXvu37+v0AB+9erVH3/8sWXLliX+E/zXX3/t6elZYhgpKSnbt29v3ry5Ql1l7dq1lStX5mza/q5du+bj4yPj7/OA4qSnp1+/fl2up73CfBcuXPj111+fe+456S6t8tJoNF999VXt2rWbN29uuuSePXuysrLMGee/+uqratWqyfUcHAP79+9PSUkh3djf/fv3k5KS7PmLUNeWnZ198eLFyMhIi9YoQ0NDhe4RvEuXLtUW4/Dhw1KZt99+++OPPxZC7Ny506BMhQoVatSoUVwNSujatWt0dLTBm7GxsVKoq1evNrrVJ598IhXYsmVLcTU/ePAgICDg/ffflzNcQJ2mTZsWFBSkUOXSlRlffvlliSXr1q3r5+dXYjHp+pUffvhBjuiM6NixY0xMjEKVAwAA+3jsscfeeecdhSr/9NNPfXx8CgsLTRfLzMwUQvTq1avECkeNGlW3bl2ZojN05coVIURcXJxC9QOAOxs8eHDjxo0VqvzMmTNmnvwGBwdXqlSpxGJbtmwRQiQmJsoRnRG1a9ceM2aMQpUDgDv79ttvhRDJyckK1R8WFvbee++VWKxz585CiBKLSedBy5cvlyM0I0aPHh0REaFQ5YDz85RuUiqEqFevXnErw7pf7vbs2fOHH34QQhS9WqdevXp//fVXSkqK+QvOStD9sC8+Pt5ogatXr0ovTFxusH79+uzs7MGDB8sdHYB/CAoKKlu2bGJiolwVXrt2Tfz/5w8BAADYX9WqVfPz82/evClXhYmJicxtAAAGpNQg79m0p6cnd10GABioUqWKjOlGqoobDwAK8dTdtDAjI8NoiVu3bkk/nH3iiSdatWol3RW56D86SM/XlC4Sd6BGjRpJ96Y+ceKE0QLnzp0TQgQHB0dERBRXSWxsbJs2bbizGWAHbdu23bNnj1y17dq167HHHjNx/QoAAICi2rRp4+HhsXv3bllqy8jI+PnnnxW6ATUAQL1CQkIaN24s79l0q1ateLg4AMBA27Zt9+/fn5eXJ0ttu3bt8vHxadWqlSy1ATDgqfu1rnQ31KImT56cm5srhJgzZ46Hh0d6erqnp6eXl5dBsYCAACGE9Kt8B/Lz8+vWrZsQ4tChQ6mpqQaf3rx58+jRo0KIF198sbj7X58/f/7o0aNDhw5VOlQAQogePXqcOXNG+m2ujTQazc6dO7t3727LE7gBAABs8dhjjz355JPbtm2Tpba9e/fm5OT06NFDltoAAK7kxRdf3Lt3b1ZWlu1V3b9//5dffunevbvtVQEAXEyPHj3S09MPHTokS21xcXHR0dHBwcGy1AbAgGdUVJS0fLtw4cK0tDT9z7Ra7fvvv7927VohxMSJEzt16iSEePjwobe3d9GKpDeL+6GwPQ0cOFAIkZOTM3v2bIOPZsyYodVqhRBDhgwpbvPY2NjSpUv36tVL0SABSLp37x4UFPTZZ5/ZXtXatWtTUlL69etne1UAAABWe/XVV/fv3y89YdEWWq12zpw5DRs21D25BgAAnb59++bk5CxdutT2qhYsWCCE6N27t+1VAQBczNNPP12jRo05c+bYXtWvv/56+PDhV1991faqABjlWb169bFjxwoh0tLSWrVq9f333z98+PD+/fvff/99u3btPv74YyHEq6+++umnn0ob+Pv7FxQUFK0oPz9f/P9f+pqpT58+1apVq1at2l9//WV7S3S6du0aExMjhJg3b96KFSt07y9ZsmTlypVCiB49erRu3drotvn5+WvXrn3llVdKlSolY0gAilO+fPmJEyeuWLHi4sWLttSTk5PzwQcfxMTEFPfXDQAAYB8jR46sWrXqv/71Lxvr2bx58x9//CGdkQEAYKBBgwb9+vWbOXPmvXv3bKknOTl57ty5I0aMqFGjhkyhAQBch5eX1/Tp0/ft27d//34bq5o0aVK9evUGDBggS2AAivIUQkyfPj0qKkoIER8fHxMTU7Zs2fLly8fExBw8eNDX1/fDDz/89ttvdbdxLleunEajkdZ39Ul3fi5Xrpz5+05NTb158+bNmzcLCwtlaYzOihUrKleurNVqR4wY0bx58969e9etW/fNN9/UaDQ1atRYvnx5cRvu3LkzNTWVWzoD9vTOO++EhIQMHz5cGkasM2HChFu3bs2aNUvGwAAAAKzg7+8/Y8aMvXv3StebWicpKWn8+PGtW7fmHpsAgOLMmDEjJydn1KhR0g3trFBYWDhs2DAvL69///vf8sYGAHAZ/fv3b9q06ahRowzuEWuRefPm/fbbb7NmzTJ6B1kAsvAUQgQFBf3+++8ffvhh+fLldR+UKVNm8ODB586dmzp1qv5DMaU13Rs3bhhUdPPmTSFE2bJl7RB0iapUqXLy5Ml27doJIU6ePLl58+YrV64IITp37nzkyJGwsLDiNoyNjX388cdbtmxpv1gBt1e6dOl169YdO3Zs5MiR1tWwbNmy5cuXz549m3seAgAAZzBgwIB+/fqNGTPml19+sWLznJycl156KT8/f82aNbLHBgBwGdKvGjZt2jRjxgzrapg0adL333+/atWqSpUqyRsbAMBleHp6rlu3Li0trVevXkV/CmiOvXv3vvfee6NGjXrxxRfljg7A//z3egpvb++pU6dOnTr177//vnr1aqVKlerUqePn51d0g7p16x4/fvzKlSu1atXSf//PP//09/evWbOm+fs+cOCALaGbFhYW9uOPP546dWrfvn2pqalVq1Zt166d6dWg5OTkPXv28BtBwP7atWu3YMGCMWPG5ObmxsbGWnR/+C+//HLs2LEDBw58++23lYsQAADAfB4eHl999dXVq1e7dOmydu1ai/5d4+7du7179z558uS+ffu4wSYAwLRBgwZJv9ZIS0ubP3++p6enmRsWFha+//77c+bMmT59+ksvvaRokAAAtatfv/7GjRu7dOnSoUOHzZs3V6hQwfxtN23aNHjw4Keffvrzzz9XLkIAQvqNr77q1au3a9euYcOGRpd7hRA9evQQQvzxxx/6b165cuXOnTvt2rULDAxUKFDrREZG/utf/5ozZ8748eNL/PHfmjVrPDw8uI884BBvvPHGsmXLvvvuu3bt2pn5TN87d+70799/5MiRI0eO/Oqrr5SOEAAAwHz+/v579uxp2bLlyy+//OGHH2ZnZ5uz1U8//dS8efOzZ8/u2bMnOjpa4RgBAK7g008/ff/99xctWvTiiy9Kd+Ar0bVr155//vnPPvvsk08++b//+z+lIwQAuIBOnTpt3br11KlTzzzzzO+//27OJhkZGe+++27fvn07dOiwe/duX19fpYME3Jy5l/7pxMTE+Pn5rVq1Sv/fLBYuXCiEUPsjpmJjY1944QXuYwM4yqhRo/bt2/f33383btx4xIgRly9fLq5kSkrKjBkz6tSpExcXt3z58sWLF/MECAAA4GyCg4P37Nkzbty4GTNm1K1bd+XKlY8ePTJaUqvVHj58+IUXXmjfvn1wcPCRI0fat29v52gBACrl6en50UcfrVu37ueff65bt+7kyZOLPotN59q1axMmTHj88cdPnTq1bdu2SZMm6T/KDQAAE7p163b48GEvL69nnnnm5ZdfPn78eHElHzx4sHTp0oiIiAULFrz//vtbt24tXbq0PUMF3JPFaySlS5d+7733ZsyY0adPn88//7xy5crLli1bsmRJvXr1Bg0apESI9vHbb7/Fx8d/9tlnjg4EcGvR0dFXrlyZP3/+p59+umLFiscffzwmJqZmzZoPHz4sLCz84osvbty48dNPPx05csTT03PIkCEffvjhY4895uioAQAAjPP29p43b96QIUMmTZr0+uuvv/nmm23btm3VqlXFihWFENevX58/f/7Fixd37dqVlJRUtWrV2NjYgQMHenl5OTpwAIDKvPLKKx07dvzoo4/mzZs3e/bsZs2adezYsVq1anl5eYWFhYsXL75+/fq+ffvOnDkTEBAwceLEf/3rX+XKlXN01AAAlWnYsOHZs2dXrlw5bdq0qKio8PDwLl261KtXLykpSQjx1Vdf3bx589dffz106FB+fn7Pnj0/+eSTevXqOTpqwF1Y86u4qVOn3rt3b+nSpTt37pTeeeKJJ+Li4vz9/WWNza5iY2MrVarUpUsXRwcCuLvAwMD/+7//e+utt3bv3r1t27b//Oc/KSkp0kejRo0qV65cVFTUokWLevToUaVKFceGCgAAYI4nnnhi165dFy5c2LZt2/bt22fNmpWVlSWEOHr0/7V3nwFRXWvfxtcMHWwoKk0FFRRU7CiiUcByRGCwEUtii4nx2NDEhkZjYhJLYotJjCZgw2BBAfVEESuKCBFLLKhgRYq9IM1heD/Mc3g9FkDYDA65fp8mm7Xv+Ut01szce68Vd/LkSWtray8vL4VC4eHh8aa9dQAAKFatWrWWLl06c+bMiIiIsLCw1atXP3jwQP2jCRMmmJmZde7c2d/f39vbu1atWhUbFQCgvfT09MaOHTtixIjIyMjw8PBdu3atXr1apVIJIUaPHm1iYtKqVav58+f7+vra29tXdFjgn6U0HV8dHZ2VK1eOGzcuMjIyMzOzVatWvXv3lsvfeoHod0dmZuaWLVvGjh3LwrDAO6J69eqDBw8ePHiwECIvL69p06a3b99++PChsbFxRUcDAAAoDUdHR0dHx4CAACFEWlqapaWlp6dnREQEd/QCACRUp06d0aNHjx49WgiRk5NTt25dPT2927dvc1ERAEBCRkZGCoVCoVAIIZRKZffu3Q8fPvzkyRNWbwYqUOkbnA4ODg4ODhJGqUBbt27NzMwcOXJkRQcB8Br6+vp6enoymYx2LwAAqByqV68uhDA2NqbdCwAoP4aGhjo6Orq6urR7AQDlR1dXV73+K+1eoGJp8Y25EgoKCnJxcak0DWwAAAAAAAAAAAAA/xBavIixra1tZmamJKVSU1Pnz58vSSkAAAAAAAAAAAAA0Bgt7viuWLFCqlJJSUlSlQIAAAAAAAAAAAAAjWFVZwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtBUdXwAAAAAAAAAAAADQVnR8AQAAAAAAAAAAAEBb0fEFAAAAAAAAAAAAAG1FxxcAAAAAAAAAAAAAtJUWd3yVSmVeXp4kpXJzcyWpAwAAAAAAAAAAAACapMUd37Fjxw4fPlySUjY2Nj///LMkpQAAAAAAAAAAAABAY7S445uenp6eni5JqTZt2vz444+SlAIAAAAAAAAAAAAAjdHijm9J5OfnJyUlHThw4Pz58yqV6k3DRo4cmZiYGBsbq8lsAAAAAAAAAAAAAFBGlbbjq1Kpli1bVr9+fTs7Ow8Pj+bNm9va2r7pRl4fH59atWoFBgZqOCQAAAAAAAAAAAAAlIVuRQcoF7m5uUOGDNm+fbv6P42NjbOysm7evDlx4sTo6OiQkBC5/H9a3fr6+kOHDl27du2yZcuMjY0rIjLwDrl9+3ZERMS+fftu37599uzZnJycZs2aWVhYtGzZUqFQuLq66ujoVHRGzTl79mx4eHhsbGxKSsq5c+dkMlmrVq2srKxcXV0VCkWzZs0qOiAAACiGSqU6fvx4eHj4qVOn0tLS0tLSVqxYcejQIWtra3d3d4VCUb9+/YrOqDnZ2dn79u3btWtXYmLizZs3hRAjR450cHCwsbHx9PT09PSsUaNGRWcEAG115cqVsLCw6OjolJSUv//+Oz8/v0WLFlZWVu3bt/f19W3Tpo1MJqvojBqiUqni4uLCw8MTEhJu37599erV1atXx8bGWltbd+vWTaFQ2NraVnRGANBW9+/f37Vr1549e27evHn+/HkhROfOna2srJo1a+bt7e3u7m5gYFDRGTXn6tWrYWFhhw8fVk++SqWyefPmVlZWbdu29fX1bd++/T9n8gUq5z2+c+fOVbd7R48enZ6enpmZ+ffffw8cOFAIsXXr1gULFrx6yqhRo548eRIaGqrprMC7JDY21t3dvV69euPHj79582bjxo0dHR11dHQ6depkYGAQFBTUtWtXS0vLxYsX5+TkVHTY8lVQUBASEtK0adOWLVt+++232dnZrVq1qlOnTt26dVu2bJmVlfXVV181b968WbNmoaGhBQUFFZ0XAAC8Rl5e3vLly62srDp37rx69Wo9Pb0OHToYGBg0adKkSZMmqamp/v7+DRo0eO+9944ePVrRYcvdvXv3/P39zczMFArFnj17atas6erqKoTo0KGDubn5yZMnhw4dWqdOnaFDh167dq2iwwKAlvnzzz/btm1rb28fEBDw8OHD5s2bN2jQoFq1au3atVOpVEuXLm3Xrl3Dhg1///33/Pz8ig5bvp4/f/7zzz/Xr1/fxcXlp59+kslkzs7OxsbGjRo1cnBwuHPnzueff96wYcNOnTodOHCgosMCgJZJTEwcMGBA3bp1R4wYce7cOSsrq3bt2gkhXF1da9SoERYW5unpWbt27RkzZjx69Kiiw5a7qKiojh07NmrUaNq0affu3XN0dGzYsKGJiYm6y/vjjz926NChQYMGv/76q1KprOiwgEYUaC0vL69u3bq9evzy5cu6urpCiA8//PDF4/n5+X379hVC6OrqXr169dUTW7du7ebmVl5xgXfb/fv3Bw4cKJPJ7OzsVq1alZaWpj4+b968KlWqqB8/f/48Kirqgw8+kMvl9evX37lzp8bi2dvbGxgYaOzpzp4927ZtWyGEm5vbtm3bMjMz1ce7d+/u6empfvzkyZMtW7Z07txZCNGxY8eLFy9qLB4AACiJyMhIW1tbmUzm5+cXGRmZm5urPm5hYTF16lT144yMjDVr1jg4OAghFArFnTt3NJPt2bNnQogBAwZo5ukKCgqWLVtWrVo1Y2Pjzz777K+//lKpVAUFBVeuXBFChIeHq8dcunRp/vz5tWrV0tfXnzZtWl5ensbiAYD2un79upubmxCibdu2GzdufPDggfr4iBEjnJyc1I+zsrIiIiL69OkjhGjWrFlsbKzG4pmamtatW1djT3fw4EE7OzuZTNavX78///wzJydHfbxRo0bjxo1TP757925QUFCLFi2EEJ6enqmpqRqLBwDaKzs7e9y4cbq6uubm5osWLUpOTlYfDw4OFkKov8vNz8+PjY2dMGGCgYFBzZo116xZo7F4vXr10mSzKSUlRf2MLVu2XLt27b1799THx44da2dnp36cnZ29e/duX19fIUSTJk2io6M1Fg+oKJXwHt/Vq1crlUpDQ8OFCxe+eFwuly9ZskRHR0epVG7YsOHVE0eNGnXo0CGuZ8c/UGJiYseOHffu3fvjjz+eP39+zJgx5ubmrw7T1dX18PDYsGFDQkKCra2tQqFYsGBBQaW7vXXnzp2urq5PnjzZvXv3gQMH+vfvb2Ji8uqwqlWrDhw4MDo6OiwsLCMjo2PHjnv27NF8WgAA8FrLly/v3bu3ubl5XFzc5s2be/Tooa+v/+qwOnXqjB49+uzZs7/++uuRI0ecnZ3Pnj2r+bTlKjc3d/jw4f7+/r6+vpcvX/7+++/btm372pXN7O3tZ82alZyc7O/v/8MPP/Tq1ev+/fuaDwwAWuTYsWPOzs6XLl36448/4uPjhw4dampq+uowIyMjb2/vXbt2HTx4UC6Xd+vW7bVfTGm7X3/9tWfPnjVq1IiJiQkNDf3Xv/712mVFzczMRowYcfr06cDAwLi4uPbt2//111+aTwsAWiQ9Pd3NzW316tWzZs26cuXK1KlTGzZs+OowuVzeoUOHFStWJCYmuru7f/zxx//+97+fP3+u+cDlKj4+3tnZ+dSpU+vWrUtISBg+fHitWrVeHWZoaOjp6bljx46jR4+amJh4eHj89ttvmk8LaFIl7Phu2rRJCNG1a1cLC4uXfmRjY9O1a1chxMaNG189cciQIfr6+mvXri3/jMA75Ny5cy4uLiqVKiYmZty4cXp6esWe0rJly6ioqPHjx8+cOXPy5MkaCKkxwcHBvr6+HTt2PHHihKenZ0lOUSgUcXFxrVu39vLy2rp1a3knBAAAxfriiy/8/f3VF3SqVzkrmq6u7ieffBIbG2tgYODq6nry5EkNhNSM58+fe3l5/fHHH7/88su6deusrKyKPaV69eoLFy6MiIg4efKkq6vrgwcPNJATALRRVFSUh4dH/fr14+LiBg0aVJJtArt163b8+PE+ffoMGzZsxYoVGgipMd9+++2nn346ePDg6Ojojh07FjteLpePHDkyLi7O1NT0vffei4mJ0UBIANBG6enpLi4uSUlJkZGRX375ZZUqVYo9xcbGZuvWrYsXL169evWAAQNUKpUGcmrG0aNHu3btWrt27bi4uGHDhsnlxXe4XF1djx49OmDAgI8//viluwSBSqaydXyvXr2ampoqhGjZsuVrB6iPX7ly5d69ey/9qGbNmgqFYu3atZXpFRAo2r1793x8fOrUqRMbG9usWbOSn6irq7t8+fL58+cvX7589erV5ZdQk2JjY0ePHu3r6/uf//zntddlv4mZmVlkZGTv3r1HjBiRkJBQfgkBAECxgoODv/nmm4CAgNWrV7/2vt43sbe3j42NtbGx8fX1TUtLK7+EmjRx4sSDBw9u3779008/fasTPT09o6OjU1NT33//fXa9AoBXXb582c/Pz9nZ+ciRIyW5nqaQiYnJ1q1bR48ePWXKlL1795ZfQk0KDQ2dPXv25MmT161b99r7et/E1tY2JibG0dGxX79+N2/eLL+EAKClcnJy+vXr9/Tp05iYmG7dur3VuZ9//vnGjRt37tw5c+bM8kmnadevX+/Xr1+LFi2OHj3aoEGDkp9oZGS0cePG8ePHBwQEhIeHl19CoGJVto7v6dOn1Q/e1PFt0qSJ+sGZM2de/enIkSNv3rx54MCB8kkHvHM+/PDDhw8fRkREmJmZleL0WbNmDR06dPz48a/9B6Vdnjx50q9fPwcHh/Xr16v3An8renp6wcHBtra2ffv2zcrKKo+EAACgWImJiaNHj+7bt+/8+fNLcXqNGjUiIiJycnIGDx4sebZXlffuGBs3bly1atWiRYu8vLxKcbqTk1NwcPCBAwfmzZsneTYA0GpKpbJfv37Vq1cPDQ01MjJ629NlMtnPP//s6uo6aNCg9PT08khYSAM7MV27dm348OG9e/devHhxKU6vWrVqWFiYXC738/OrfPtGAUAZTZ069a+//tq2bZudnV0pTh80aNCcOXMWLVoUEREheTYNU6lU/fv319fX37FjR0ludH6JTCZbunRp9+7dP/zww1u3bpVHQqDCvabjGxcX9+9//9vFxcXa2rpmzZpdu3adP39+eaz2vmrVqqlTp06dOlXC3aEK1xxr3LjxawcUHn/tfr09e/a0trYOCgqSKg/wLouMjNyzZ8+KFSsKr4QohTVr1lhYWEyfPl3CYIXS09OnT5/etGnTK1eu5Obm2tvbf/bZZ7dv3y6P51q8ePG9e/c2b9782l17S6JatWohISG3b99eunSptNkAAEAJBQQEVK9efe3atSVZWvO1bG1tf/nll8OHD4eFhUka7f+o3960atVKCLF9+/bye3uTnZ0dEBDQq1evKVOmlLqIt7f3hAkTfvjhh5SUFAmzAYC2++23386fP79hw4batWuXroKenl5ISIhSqfzqq6+kzaZW+Gn60aNHGRkZ5fppevbs2YaGhhs3btTR0SldBWtr699+++3EiRMhISHSZgMArXbp0qVVq1bNnDnzbe/ufdHcuXM7deo0bdq08li5p3C6iYyMFEKU63SzcePGhISEoKAgS0vL0lXQ1dUNDg7W0dH54osvpM0GvCsKXhAXF9e0adPXDnN2ds7JySmQVOHrVFJSUilO9/Ly6tat20sHCy8nPHv27GvPOn78uHrAkiVLXjsgICDA0NDw4cOHpYgEaBGVStW6detWrVrl5+cXMWzevHlVqlQputS6deuEEPv375c0YMGbmq9GRkbr16+X9rnS0tJMTEzGjRtX9LDu3bt7enoWPeajjz6qVq3a3bt3pUsHAABK5Pjx4+q7pooeZmFhMXXq1CIGqFQqFxeXpk2bKpVKSQNq9O3N4sWL5XL5mTNnihhz5coVIUR4eHgRY+7evVu9evVRo0ZJGw8AtNezZ8/Mzc19fX2LHjZixAgnJ6eix8ydO1dPT+/y5cvSpSso0Ox0c+rUKblc/sMPPxQ9rFGjRsV+4nZ3d7e1tc3Ly5MuHQBotwEDBtStW/fp06dFjAkODhZCpKWlFTHm6NGjQohVq1ZJG0+T001ubm6DBg169uxZ9LCxY8fa2dkVPWbBggVyufxN/SNAq/3PPb7Hjh1LTEx0cHCYMWPGunXrYmNjw8LCWrduLYSIi4tbtmzZa5vB75RHjx6pH7xpyy49PT31g6dPn752wMiRI3NycrioEJXe6dOnT506NXv27JLsb1+0Dz74oGHDhoGBgZIEU9uyZcugQYOePXv26o+ys7OHDRu2fv16aZ8uJydn1qxZZS/1xRdfPH36NDQ0tOylAADAWwkKCjI3Nx89enQZ68hksjlz5iQmJhZeLSoJDb+9CQoK8vX1dXJyKmMdMzOzcePGhYSEsG8FAKj9+eef6enpc+bMKXupzz77TF9ff8OGDWUvVUjD083atWtNTU3HjRtX9lJz5sy5du3aoUOHyl4KACqBBw8ehIWFTZ48uRQrGL/E1dW1e/fuWv3l7f79+2/cuCHJ5Dtx4sRq1aqpb2ECKpn/6fTUrl07LCzs/Pnz33333bBhwzp06KBQKCIiItQNoe3bt0v73HPmzAkJCQkJCalbt65UNR8+fKh+UGzHNzMz87UDGjdu3KVLF2lf/oB3UFhYmLGxce/evcteSi6X9+3bd/fu3Xl5eWWvJoTIyMj46KOPCorcv+fTTz+VcIWQsLAwV1dXCwuLspdq0KBB+/btw8PDy14KAACUnEql2rlzp6+vb+Eb/rLw8PAwNTWVcELX8NubK1euXLhwoX///pJU69+/f1ZW1r59+ySpBgDaLiwszMbGRn2DRBlVrVq1Z8+e2jvdCCEiIiK8vb0NDAzKXqpLly7m5uZ8mgYAtV27dqm3jZekWv/+/ePj46Xaq6VCvry1tLTs1KlT2UsZGRn16dOnnDbxASrW/3R8hw4dqlAoXtryytraul69ekKIV7ezzsvLK7ynthTc3Nzef//9999/v+xXqbwYSf1ApVK9dkDh8SKWrR81alR8fPy5c+ekSgW8g/bu3du9e3djY2NJqnl7ez969CguLk6SasuWLXvTNRmFsrOzlyxZIsnTZWVlRUdHe3l5SVJNCOHt7X3gwAGp+t8AAKAkzpw5k5aWJtWErqen969//WvPnj2SVBMaf3vz559/6ujoeHp6SlKtdevW1tbWe/fulaQaAGi7vXv3KhQKqap5e3ufPXs2NTVVkmoanm4SExOvXbsm1eQrl8t79+4t4eQLAFotMjLS0dHRzs5Okmo+Pj4FBQVSXcSp4elGCLF3794+ffq81LoqNW9v7+Tk5KSkJEmqAe+O4ldzzc/PT09PF0Ko+75qZ86c6dmzp5GRkampqa2t7a+//lqOGd9GYfP4Tb2WwuPVq1d/U5GBAwdWqVIlKChI8njAu+PatWuOjo5SVXNwcBBCXL9+XZJqO3fuLMmwiIgISZ4uJSVFqVRK+9vIzc1NS0uTqiAAACiW+n2IhBN606ZNr127JlU1Db+9uX79uqWlZY0aNSSpJpPJHBwcpHqnBwBaLSsr6+7du3yaVpN88nVwcLhx48ab7uIAgH8Uab+8tbS0rF69+o0bNySppuHpRqlUpqSkvLOTL/Du0C12RFJSUm5urhCiTZs26iMnT550c3OTy+VTpkwxNTXdvn27+g79r776qnzDlkDVqlXVD8rS8TUxMRk4cOCmTZu+//77Ul82cvHixejo6NKdi1c9evToyZMn9evXr+gglYRKpbp7925qaurWrVuLHnn+/HmlUlnssIKCAl1d3c2bN0uywdvly5dLMuzq1aurVq0q+z7EFy9eFEKcP3++2PAZGRm6urrF/jauXLkihFi5cqVUV+HhwYMH2dnZVlZWFR0ElZ9Sqbxy5Yr6rT9Q3pKSkqysrIyMjCo6SCURGRkpk8liYmLi4+OLHpmTk3Pp0qViJ/Tbt28/e/ZsxYoVhoaGZY+n4bc3UVFRMpms2D+j+tLeY8eOqT/xFeHZs2dJSUmrV68uYzAUunz5coMGDSRZBxUoWkZGhhBCwu20/uHUv8/k5ORiX2OvX7/++PHjYofdv39fCPH7779LstSchqcb9Z67cXFxxYbPzMxMSkoq9rdx8+ZNpVK5ZMmSatWqlTEb1NLS0vT09MzMzCo6CCq/7Ozs27dvN27cuKKDVB4XLlwwNjYu9pXzxIkTQoidO3cWe7mngYHB7t27LS0ty55Nw9PNw4cP8/Pzb9y4UexvIzk5OTMzs9hhT58+FUKsXbv26tWrZcwGtWfPnmVkZDRs2LCig1QSpft+0tzcXBS84v79+xEREdOnTx8yZEiPHj3s7e3VowMDAwsKClQqVcuWLY2MjE6fPq0er1Qqe/TooaOjc+7cuVerlR8vL69u3bq9dHDRokXqtNHR0a89a8uWLS/+cd5k6NCh9erVK0u8IUOGSPg/GAAAAAAAAAAAAABeYmRk9P/v8c3Ozg4MDPz111/VjdtXRzs7OwshTp8+febMmQkTJrRs2VJ9XEdHZ+HChW3atFm4cOH69es1E/1NCq9ZS05O7ty586sDkpOT1Q+KuObl8ePH27dvnzJlSlmSrF+/fuXKlWWpgBcVFBQolUo9Pb2KDlJJFBQUWFpazpgxY9KkSUWPXLRo0Y8//vjqNt4vef78uYWFxTfffDNmzJiyx+vcufOFCxeKHda4cWNJdg7+66+/evbsuWfPHvWrXBH69u2rr6+/efPmoodFR0crFIpDhw45OTmVPR6EEAUFBfn5+bq6xa9LAZTd8+fPmW6gGXl5efr6+hWdovLYuHHjxIkTr1+/XuxdQQ4ODn5+fvPmzSt62Jo1a2bMmJGamirJXZgafnszfvz4M2fOFLvm0NWrV9u1axccHNy7d++iR3700Ue3bt2KjIwsezaoMd1AY/Lz84UQOjo6FR2kkrh9+3aLFi2CgoKK3cq3hC/FycnJ7du3/+OPP3r16lX2eBqebrZt2/bJJ58kJibWqVOn6JFt27b18PAovE/jTUo+m6OElEqlXC4v+w12QEnwAUdaHTt27Nix47Jly4oeVvKX4tatW/fq1WvBggVlz6bh6ebBgweNGzf+6aefBg8eXPTIzz///PDhw8Uu+5Samtq8efPAwEBfX9+yx4MarwDSKsUHRkNDw//79vz8+fP9+vVT34zv5OQ0aNCgFi1aODo6mpube3h4xMbGVqlSRX0H8Z49e4QQL70Nbd26de3atd+FRYwL+ytvWligsOPbrFmzNxUJCQnJzs4eMWJEWZLo6OiYmpqWpQJQrszNzR89elTs31IjIyOZTFbssFu3bqlUqsaNG0vy175///4ledMwYMAASZ6uSZMmQojMzMxiq+np6enp6RU7LDMzU12WFwEAADRGvYJcdnZ2gwYNih4pl8sNDQ2LnaYfP35cs2ZNc3NzSeJp+O2NjY1NZGRksaXUO91UqVKl2JH37t2ztrbmvQ0AVKlSRS6XP3nypNiXRH19/ZJ8NfTs2TMhhL29vTZ+mlbvZJSVlVVsNblcbmBgUJLJ19jYuNipHAD+CerVq3f//v1iXzlNTEyEENWrVy96ZEFBQUZGho2NjTZONzVq1DA0NCzJ5GtgYCCXy4sdlpSUJISws7PjAw4qGbkQ4uHDh927d798+bKjo2N0dPSZM2dmzpzp5eXVsGFDPT2906dPCyHatWunvhwsKipKCNGiRYuXCjVp0uT69evqjaAqUPPmzdX7bJ08efK1A/7++28hhKmpaRH7awYGBnbt2pVdB1C5OTg4qLd5kERsbKz476b3ZTdx4sQidtpWq1q16uTJkyV5OktLy+rVq0v42zhx4oSZmVmxF9YBAAAJqd+HSDuhOzo6SlVNw29vHBwc7t27V3i1axnl5uaePn1awt8GAGgvPT29xo0bS/tpWl1Tkmoanm6aNm0ql8vf2ckXALSag4NDfHy8SqWSpNqZM2dycnK09MtbmUzWtGlTaSdfuVyuvgsIqEzkQoilS5eqO7WhoaEvrYT8999/5+TkiP8u6SyESEtLE0JYWVm9VMjW1lYIceXKlfLPXBQDAwNvb28hxOHDh+/evfvST1NSUtTLCPj6+spkstdWOH/+fFxc3KhRo8o7KlCxfHx84uLi1P+iyy4sLKxRo0ZF3Dr/VszMzDZs2FDEokNyuXzdunVStVR1dXU9PT137NghSTUhREREhLe3N4smAQCgSTY2Nk5OTmFhYZJUe/To0ZEjR3x8fCSpJjT+9sbT01NXVzc8PFySavv373/69KmEvw0A0Go+Pj67d+/Oy8uTpFpYWJibm5tUixhreLoxNzdv3769VJNvZmZmVFQU0w0AqPn4+Ny5c+f48eOSVAsLCzMyMurRo4ck1TQ83QghfHx89u7dm5WVJUm1sLCwTp061a5dW5JqwLtDLoRQL2sul8stLS1f+nHh7laFHd/Hjx/L5fJXN4AxMjIS/12LpmINGzZMCJGTk7Nw4cKXfvT111+rtygeOXLkm04PDAysWrXqgAEDyjUkUOF8fHwKCgr++OOPspd6/Pjx7t27pd32wNvbOyIiombNmq/+yNTUNCwsrG/fvhI+na+vb1JSkiQbS0RHR1+/fr3YLZ0AAIDkfH19IyMjX73usxRCQkKeP38u7YSuybc3NWvW7NKly6ZNm9Qff8ooODjY0tKyffv2ZS8FAJWAQqFQfwoueyn151DtnW6EEL6+vgcPHkxNTS17qdDQ0JycHD5NA4Ba165da9SoERwcXPZS+fn5mzdv7tGjh3oJaEloeLpRKBTZ2dmS3LFz69at6OhophtUSnIhxPPnz4UQKpVqwoQJly5dEkLk5uZGRkZ269YtIiJCPa6w4/vkyRNdXd1XC6kPqnevLCE/P7969erVq1fv+vXrZfpD/C8vL6/evXsLIZYsWbJmzZrC4z/99NNvv/0mhFAoFF26dHntuc+fP9+wYcOgQYOMjY0ljAS8g6ysrPz8/L777rvHjx+XsdR3332XnZ09duxYSYIV6tOnT3Jy8rffftuxY8fatWubmZl16NDh66+/Tk5OVt/KLyFfX99GjRpNmzat7KVmzpxpb2/v6elZ9lIAAOCtjBkzRiaTff3112Wsk52d/c033/j4+BSxEUzpaPLtzeTJk0+ePLlt27Yy1jl79mxISIi/vz/rlwCAmqurq4uLS0BAgFKpLGOpgICAWrVqffDBB5IEK6TJ6Wb06NGGhoZz584tY528vLyvvvrKzc3NyclJkmAAoO309fXHjRv322+/lX1d1aCgoMTExEmTJkkSrJAmp5s2bdq4u7t/8cUXubm5ZSz1xRdfmJiYFHFPIKDFCgoKFi9e/OIRY2Nj9YrH1apVU1/0Ubdu3YL/MjMzk8vlBa/4+OOPhRC7du169Udv0q1bN/UzJiUllfysQl5eXt26dXvtj1JSUiwsLNTF27RpM2DAgMIva2xsbNLS0t5Uc/v27UKI48ePlyIPoHWSkpL09fU/++yzIsbMmzevSpUqRRcxMjLy9/eXOp2mqa+Y27FjRxFjunfv7unpWcQA9T3ToaGhEocDAAAlExAQoK+vf/78+SLGWFhYTJ06tYgBs2fP1tHRKbqIVnjvvfcaN2789OnTNw1Qf3kUHh7+pgH5+fnu7u7169fPzs4un4wAoJUOHTokhPjpp5+KGDNixAgnJ6ciBhw5ckQmk61YsULqdJr29ddf6+joJCQkFDGmUaNG48aNK2LAt99+K5fLT548KXU6ANBijx8/rl27tkKhUKlUbxqj/kqziJbHgwcPrKysvLy8yiej5pw4cUImky1evLiIMWPHjrWzsyu6iFwuX7BggdTpgHeCXAjh7++vvilWLTs728nJad68ecnJyQUFBeKFG3yFEDVq1FCpVOrbgl+kvraiRo0aZW9Cl52VlVVCQoK7u7sQIiEhYdu2bervMnr16nXixAlzc/M3nRgYGNi0adOOHTtqLitQcdR3tS5ZsmTLli2lq/D06VOFQmFmZjZ79mxps2neoEGD3NzcRo4cmZiYWLoK586d++STT3r37i3toiUAAKDkpk+fXq9ePYVC8eDBg9JV2Llz57fffuvv7+/o6ChtNs1btmxZSkrKsGHDVCpV6SrMmjXr4MGDy5cvNzQ0lDYbAGi1rl27DhkyZMqUKTExMaWrkJKS4ufn17p16zFjxkibTfMmT55sZ2fXt2/fO3fulK7Cvn375syZM2bMmDZt2kibDQC0WrVq1RYvXhweHr5gwYLSVVAqle+///6TJ0++//57abNpnrOz80cffRQQEHDgwIHSVUhPTx8wYICjo+PEiROlzQa8I3SFELq6uv/5z3/Onj17584dc3PzevXqVa9eXf3jV/flVfd0b9261bBhwxePp6SkCCEKTyyJgwcPliF5MczNzffv33/q1Cn1Vl7W1tbu7u5FrwyTlpb2559/lvrVE9BG8+bNO3PmzMiRI2vXru3m5vZW5z579szPz+/atWvR0dG1atUqp4QaI5fLt2zZ4uzs7OPjs2/fvgYNGrzV6VevXvXx8bGwsNi0aZN6mQQAAKB51apVCw8P79SpU79+/cLDw9/q44kQ4vjx4x988IGHh0fl+FDQunXr33///YMPPpgyZcqSJUvedlnmX375ZeHChV988YWvr2/5BAQALbZmzZrExMR+/fpFRUU1b978rc69c+eOj49PQUFBWFiYvr5+OSXUGBMTk4iIiA4dOvj6+u7ateu1ezoW4eTJk4MGDXJxcVm2bFn5BAQALTZ8+PCEhITZs2dbW1t/+OGHb3WuUqkcO3bs/v37d+zY0aRJk3JKqEkrV668cOHCwIED9+3b97YXCd2/f9/X1zcrK+vQoUNGRkbllBCoWP//M7+Tk1P37t2bN29e9Nci9vb2QohX144/d+6coaGhra1teaQstdatW0+fPv3777/39/cvdiOQ9evXy2Syt33dBLSaXC4PDg5u2bJlr169Vq1aVfITb9y44erqeujQoU2bNlWai3DNzMx27tz57NkzZ2fno0ePlvzEgwcPOjs7K5XKnTt3viNLHQAA8I/VrFmzLVu2/PXXXy4uLklJSSU/ce3atW5ubnZ2dps3b9bV1S2/hJo0ZMiQ+fPnr1ixom/fvk+fPi3hWUqlcuLEif/+97+HDx/+5ZdflmdAANBWxsbG6kuLOnXqFBERUfITT58+3b59+xs3boSHh9erV6/8EmqSnZ1daGjo+fPnO3TocPHixZKfGBIS0qVLFysrq9DQ0ErQ/AaA8vDDDz/07dt3+PDhAQEBJV+85+HDh56enoGBgcuWLfPx8SnXhBpjYGCwfft2CwuLLl26bN26teQnnjt3ztnZOTExcceOHS/dyghUJm93lbcQQqFQCCFiY2NfPHjlypU7d+64u7ur9/3VUoGBgX369Klbt25FBwE0qmrVqgcPHhw6dOjYsWN79Ohx+vTposdnZ2cvXLiwVatWd+7cOXTokPo1odJo1qxZfHy8jY2Nm5vbmDFj0tPTix5/9+7dSZMm9ezZ097ePi4uTn1NDAAAqFi9evWKiYnJzs5u1arVjBkznjx5UvT4xMREPz+/kSNH+vj4HDlyxNTUVDM5NSMgIGDz5s1RUVGOjo6rV6/Oz88venxUVJSzs/PKlSvnzp0bGBjI4iUA8CbW1tbx8fFdu3b19fX18/NLTk4uevzDhw9nzJjh4uJiaGh47NixDh06aCanZri5ucXHx+vo6LRr127GjBmPHz8uevzly5f9/PyGDBni5uYWHR1du3ZtzeQEAK2jq6u7devW7777bsGCBR07dix25VSVSrV+/frmzZsfP348NDR0woQJmsmpGXXr1o2Nje3Ro4efn5+3t/ertya+JDMzc+HChS4uLnK5PCYmpkuXLprJCVSIt+749u7d28DAICgoKDs7u/DgihUrhBBafanIsWPHLl++PGrUqIoOAlQA9T/qtWvXXrp0qW3btj4+PoGBgXfv3n1xTH5+/pEjRz777LPGjRvPmjWrb9++CQkJlewDqpqlpeWhQ4cCAgKCg4Pt7OxGjRoVHh7+4iueECIrK2vHjh0jRoywtbUNCgqaO3fuwYMHi9gjHAAAaJiTk1NcXNzQoUN/+OEHe3v7SZMmHThwQKlUvjjm/v3769ev79evX4sWLY4dO7ZmzZrNmzcbGxtXVObyM3DgwNjYWAcHhzFjxjg5OX311Vdnzpx5aczVq1eXLl3q6urao0cPmUx24MCBL7/8knYvABStWrVqO3bs+P777/fv39+sWbMhQ4Zs3rz5pSuNcnNz9+zZ8+mnnzZq1Gj58uXjxo2Lj49v2rRpRWUuP/b29jExMSNHjlyyZImdnd2ECROioqKeP3/+4piHDx8GBwcPHDiwefPmhw8fXrly5c6dO992FwYA+KeRyWTTp0/fvXt3VlaWu7t7t27dfvzxx5s3b744pqCg4OTJk3PmzHFwcBg+fHjbtm1PnjxZKfdnqVKlyvbt21esWHHixIlmzZr5+flt2rTp0aNHL47Jy8vbt2/fuHHjbG1t58yZM2rUqPj4eEdHxwqKDGiIrKCg4G3PmTNnztdff+3l5bV8+XILC4tffvnl888/t7e3P336tKGhYXmkfC1vb+/MzEypNgP+6KOPdu/enZKSUmkWcANKITs7++effw4ODj516pQQolq1anK5/PHjxxYWFhkZGfn5+aampl5eXtOmTXvbbYq0UXp6+uLFi7dt26Z+/1SnTp3Hjx/LZLKqVauq2+E2NjYDBw78/PPP69SpU9FhAQDA6yUmJi5atCgiIuL+/ftyubxu3bp37twxMTGRyWTq249atGgxdOjQ8ePHa/V6RSW0b9++FStWREVF5eTkGBgY1KpVKzU1tU6dOk+fPs3OztbR0enSpcvHH388aNCgt930FwD+4R49erRkyZKQkBD1zUY1a9bMzc3Ny8urVatWRkZGQUGBhYVF3759p02b1qBBg4oOW+6SkpIWLVoUFhZ29+5d9eR79+5dIyMjXV3dhw8fCiEcHR0HDx48adKkqlWrVnRYANAm+fn569atCwwMPH78uEqlMjY2NjExuXv3rqWl5b179/Ly8oyNjXv16uXv7//ee+9VdNhy9+TJk2XLloWEhKg3FDA1NVUqldnZ2bVr187IyFCpVHXq1FFPvqzkjH+I0nR88/PzJ02a9PPPPxee26JFi/DwcA1v4ithxzczM9PCwmLs2LGLFi0qezWgErh+/fr+/ftv3boVHx9/6dIlhUJhbW3t5OTUtWvXf+BVEQkJCTExMampqZGRkXK5vEePHpaWlq6urq1ataroaAAAoETy8/Ojo6NPnz6dkpKyc+fOBg0auLi4WFtbe3h4/AM//D979mzfvn2XLl26detWWFiYh4eHnZ1d48aNe/ToUatWrYpOBwDa7cKFC4cPH05LSzt48OCjR488PT2trKycnZ2dnZ3/aRfT5Ofnx8TEJCQk3L59e9euXebm5l26dLG0tHR3d7ezs6vodACg3e7cuRMZGXnt2rWLFy9GR0f369fP2trawcHBw8PDyMiootNp2qVLlw4dOpSamnrkyJGMjAwvLy8rK6t27dqpF3Ou6HSA5pSm46t28eLFyMjIzMzMVq1a9e7dW/P/ciTs+AYFBY0aNerChQsODg5lrwYAAAAAAAAAAAAAmlH6e/UcHBwqTX80KCjIxcWl0vxxAAAAAAAAAAAAAPxDaPHqrLa2tpmZmZKUSk1NnT9/viSlAAAAAAAAAAAAAEBj/h/9/D/RuDfc4gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "oracle.circuit.draw(output='latex')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As seen, the $v_i$'s correspond to the 3 input bits; the $o_0$ is the oracle's output qubit; the $a_0$ is an ancilla qubit.\n", - "\n", - "Next we can simply create a `DeutschJozsa` instance using the oracle, and run it to check the result." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The truth table 11110000 represents a balanced function.\n" - ] - } - ], - "source": [ - "dj = DeutschJozsa(oracle)\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "result = dj.run(QuantumInstance(backend, shots=1024))\n", - "print('The truth table {} represents a {} function.'.format(bitstr, result['result']))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The truth table 11110000 represents a balanced function.\n" - ] - } - ], - "source": [ - "bitstr = '11110000'\n", - "params = {\n", - " 'problem': {\n", - " 'name': 'functionevaluation',\n", - " },\n", - " 'algorithm': {\n", - " 'name': 'DeutschJozsa'\n", - " },\n", - " 'oracle': {\n", - " 'name': 'TruthTableOracle',\n", - " 'bitmaps': [bitstr]\n", - " },\n", - " 'backend': {\n", - " 'shots': 1024,\n", - " },\n", - "}\n", - "\n", - "result_dict = run_algorithm(params, backend=backend)\n", - "print('The truth table {} represents a {} function.'.format(bitstr, result_dict['result']))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can of course quickly put together another example for a `'constant'` function, as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The truth table 1111111111111111 represents a constant function.\n" - ] - } - ], - "source": [ - "bitstr = '1' * 16\n", - "oracle = TruthTableOracle(bitstr)\n", - "dj = DeutschJozsa(oracle)\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "result = dj.run(QuantumInstance(backend, shots=1024))\n", - "print('The truth table {} represents a {} function.'.format(bitstr, result['result']))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/shors.ipynb b/qiskit/shors.ipynb deleted file mode 100644 index a3d29375f..000000000 --- a/qiskit/shors.ipynb +++ /dev/null @@ -1,118 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# _*Experiment with the Shor's Algorithm in Aqua*_\n", - "\n", - "This notebook demonstrates how to experiment with the `Shor`'s algorithm in `Qiskit Aqua`.\n", - "\n", - "We first import all necessary modules." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "from qiskit import BasicAer\n", - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.algorithms import Shor" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The [Shor's Factoring Algorithm](https://en.wikipedia.org/wiki/Shor's_algorithm) is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. With Aqua, we can create a `Shor` instance by simply providing the target integer to be factored and run it, as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The list of factors of 15 as computed by the Shor's algorithm is [3, 5].\n" - ] - } - ], - "source": [ - "N = 15\n", - "shor = Shor(N)\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend, shots=1024)\n", - "ret = shor.run(quantum_instance)\n", - "print(\"The list of factors of {} as computed by the Shor's algorithm is {}.\".format(N, ret['factors'][0]))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The list of factors of 15 as computed by the Shor's algorithm is [3, 5].\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {\n", - " 'name': 'factoring',\n", - " },\n", - " 'algorithm': {\n", - " 'name': 'Shor',\n", - " 'N': N,\n", - " },\n", - " 'backend': {\n", - " 'shots': 1024,\n", - " },\n", - "}\n", - "result_dict = run_algorithm(params, backend=backend)\n", - "print(\"The list of factors of {} as computed by the Shor's algorithm is {}.\".format(N, result_dict['factors'][0]))" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/simon.ipynb b/qiskit/simon.ipynb deleted file mode 100644 index e5c2ac1a7..000000000 --- a/qiskit/simon.ipynb +++ /dev/null @@ -1,222 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true - }, - "source": [ - "# _*Experiment with the Simon's Algorithm in Aqua*_\n", - "\n", - "This notebook demonstrates how to experiment with the `Simon`'s algorithm in `Qiskit Aqua`.\n", - "\n", - "We first import all necessary modules." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import QuantumInstance\n", - "from qiskit.aqua import run_algorithm\n", - "from qiskit.aqua.algorithms import Simon\n", - "from qiskit.aqua.components.oracles import TruthTableOracle" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The [Simon's algorithm](https://en.wikipedia.org/wiki/Simon's_problem) is explained in more detail in the corresponding notebook located in the directory `community/algorithms`. We can experiment with it in Aqua by feeding it oracles created using truth tables. For example, we can create a `TruthTableOracle` instance as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "bitmaps = [\n", - " '01101001', \n", - " '10011001', \n", - " '01100110'\n", - "]\n", - "oracle = TruthTableOracle(bitmaps)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As shown, the truthtable is specified with three length-8 bitstrings, each containing the values of all entries for a particular output column in the table. Each bitstring has length $8$, so the truthtable has $3$ input bits; There are $3$ bitstrings, so the truthtable has $3$ output bits.\n", - "\n", - "The function $f$ represented by the truthtable is promised to be either 1-to-1 or 2-to-1. Our goal is to determine which. For the case of 2-to-1, we also need to compute the mask $\\mathbf{s}$, which satisfies $\\forall \\mathbf{x},\\mathbf{y}$: $\\mathbf{x} \\oplus \\mathbf{y} = \\mathbf{s}$ iff $f(\\mathbf{x}) = f(\\mathbf{y})$. Apparently, if $f$ is 1-to-1, the corresponding mask $\\mathbf{s} = \\mathbf{0}$.\n", - "\n", - "Let us first compute the groundtruth mask $\\mathbf{s}$ classically:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The groundtruth mask is 011.\n" - ] - } - ], - "source": [ - "def compute_mask(input_bitmaps):\n", - " vals = list(zip(*input_bitmaps))[::-1]\n", - " def find_pair():\n", - " for i in range(len(vals)):\n", - " for j in range(i + 1, len(vals)):\n", - " if vals[i] == vals[j]:\n", - " return i, j\n", - " return 0, 0\n", - "\n", - " k1, k2 = find_pair()\n", - " return np.binary_repr(k1 ^ k2, int(np.log2(len(input_bitmaps[0]))))\n", - "\n", - "mask = compute_mask(bitmaps)\n", - "print(f'The groundtruth mask is {mask}.')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Next we can create a `Simon` instance using the oracle, and run it to check the result against the groundtruth." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mask computed using Simon is 011.\n" - ] - } - ], - "source": [ - "simon = Simon(oracle)\n", - "backend = BasicAer.get_backend('qasm_simulator')\n", - "result = simon.run(QuantumInstance(backend, shots=1024))\n", - "print('The mask computed using Simon is {}.'.format(result['result']))\n", - "assert(result['result'] == mask)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The above step-by-step programatic approach can also be achieved by using a json configuration dictionary with the parameters for the algorithm and any other dependent objects it requires, as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The mask computed using Simon is 011.\n" - ] - } - ], - "source": [ - "params = {\n", - " 'problem': {\n", - " 'name': 'periodfinding',\n", - " },\n", - " 'algorithm': {\n", - " 'name': 'Simon'\n", - " },\n", - " 'oracle': {\n", - " 'name': 'TruthTableOracle',\n", - " 'bitmaps': bitmaps\n", - " },\n", - " 'backend': {\n", - " 'shots': 1024,\n", - " },\n", - "}\n", - "\n", - "result_dict = run_algorithm(params, backend=backend)\n", - "print('The mask computed using Simon is {}.'.format(result_dict['result']))\n", - "assert(result_dict['result'] == mask)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also quickly try a truthtable that represents a 1-to-1 function (i.e., the corresponding mask is $\\mathbf{0}$), as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The groundtruth mask is 000.\n", - "The mask computed using Simon is 000.\n" - ] - } - ], - "source": [ - "bitmaps = [\n", - " '00011110', \n", - " '01100110', \n", - " '10101010'\n", - "]\n", - "mask = compute_mask(bitmaps)\n", - "print(f'The groundtruth mask is {mask}.')\n", - "oracle = TruthTableOracle(bitmaps)\n", - "simon = Simon(oracle)\n", - "result = simon.run(QuantumInstance(backend, shots=1024))\n", - "print('The mask computed using Simon is {}.'.format(result['result']))\n", - "assert(result['result'] == mask)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.2" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/qiskit/simulations_with_noise.ipynb b/qiskit/simulations_with_noise.ipynb deleted file mode 100644 index 72d52d925..000000000 --- a/qiskit/simulations_with_noise.ipynb +++ /dev/null @@ -1,308 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*Running simulations with noise in Aqua*_\n", - "\n", - "This notebook demonstrates using the [Qiskit Aer](https://qiskit.org/aer) `qasm_simulator` to run a simulation with noise, based on a noise model, in Aqua. This can be useful to investigate behavior under different noise conditions. Aer not only allows you to define your own custom noise model, but also allows a noise model to be easily created based on the properties of a real quantum device. The latter is what this notebook will demonstrate since the goal is to show how to do this in Aqua not how to build custom noise models.\n", - "\n", - "Further information on Qiskit Aer noise model can be found in the online Qiskit Aer documentation [here](https://qiskit.org/documentation/aer/device_noise_simulation.html) as well as in the [Qiskit Aer tutorials](https://github.com/Qiskit/qiskit-tutorials/tree/master/qiskit/aer).\n", - "\n", - "Note: this tutorial requires Qiskit Aer if you intend to run it. This can be installed using pip if you do not have it installed using `pip install qiskit-aer`" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pylab\n", - "\n", - "from qiskit import Aer, IBMQ\n", - "from qiskit.aqua import Operator, QuantumInstance, aqua_globals\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.optimizers import SPSA\n", - "from qiskit.aqua.components.variational_forms import RY" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Noisy simulation will be demonstrated here with VQE, finding the minimum (ground state) energy of an Hamiltonian, but the technique applies to any quantum algorithm from Aqua.\n", - "\n", - "So for VQE we need a qubit operator as input. Here we will take a set of paulis that were originally computed by qiskit-chemistry, for an H2 molecule, so we can quickly create an Operator." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of qubits: 2\n" - ] - } - ], - "source": [ - "pauli_dict = {\n", - " 'paulis': [{\"coeff\": {\"imag\": 0.0, \"real\": -1.052373245772859}, \"label\": \"II\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.39793742484318045}, \"label\": \"ZI\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.39793742484318045}, \"label\": \"IZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.01128010425623538}, \"label\": \"ZZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.18093119978423156}, \"label\": \"XX\"}\n", - " ]\n", - "}\n", - "\n", - "qubit_op = Operator.load_from_dict(pauli_dict)\n", - "num_qubits = qubit_op.num_qubits\n", - "print('Number of qubits: {}'.format(num_qubits))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As the above problem is still easily tractable classically we can use ExactEigensolver to compute a reference value so we can compare later the results. \n", - "\n", - "_(A copy of the operator is used below as what is passed to ExactEigensolver will be converted to matrix form and we want the operator we use later, on the Aer qasm simuator, to be in paulis form.)_" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reference value: -1.85727503020238\n" - ] - } - ], - "source": [ - "ee = ExactEigensolver(qubit_op.copy())\n", - "result = ee.run()\n", - "ref = result['energy']\n", - "print('Reference value: {}'.format(ref))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Performance *without* noise\n", - "\n", - "First we will run on the simulator without adding noise to see the result. I have created the backend and QuantumInstance, which holds the backend as well as various other run time configuration, which are defaulted here, so it easy to compare when we get to the next section where noise is added. There is no attempt to mitigate noise or anything in this notebook so the latter setup and running of VQE is identical." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VQE on Aer qasm simulator (no noise): -1.8662346923695476\n", - "Delta from reference: -0.008959662167167703\n" - ] - } - ], - "source": [ - "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_transpiler=167) \n", - "\n", - "counts = []\n", - "values = []\n", - "def store_intermediate_result(eval_count, parameters, mean, std):\n", - " counts.append(eval_count)\n", - " values.append(mean)\n", - "\n", - "aqua_globals.random_seed = 167\n", - "optimizer = SPSA(max_trials=200)\n", - "var_form = RY(num_qubits)\n", - "vqe = VQE(qubit_op, var_form, optimizer, 'paulis', callback=store_intermediate_result)\n", - "vqe_result = vqe.run(quantum_instance)\n", - "print('VQE on Aer qasm simulator (no noise): {}'.format(vqe_result['energy']))\n", - "print('Delta from reference: {}'.format(vqe_result['energy']-ref))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We captured the energy values above during the convergence so we can see what went on in the graph below." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAEWCAYAAABVMkAmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYXFWZP/Dve28tvWfpJGQhC5CwCLJN2ERBWUQYEURRQWFcGEbHbVzGn7iDOjLjMMooOyoKA4pAlH0JkAAJBDqB7AvZ0+l0ekl679ruPb8/7j237q2luzrppar4fp4nD91Vt6pOdwN56+3veY8opUBERERERCPDGOsFEBERERGVMxbcREREREQjiAU3EREREdEIYsFNRERERDSCWHATEREREY0gFtxERERERCOIBTcRER0QEVkrIu8f4P5FInLNKC7poInI7SLyw7FeBxGVFxbcRFQ2RORKEWkQkR4R2SMiT4nIe8d6XeVKKXWsUmoRAIjIT0TkvjFe0kFTSn1RKfXTsV4HEZUXFtxEVBZE5JsAfg3gPwAcAmAWgFsBXDKW6/ITkdBYr4GIiEYfC24iKnkiMg7ADQC+rJR6RCnVq5RKKqUeU0r9u3tNVER+LSJN7p9fi0jUve/9ItIoIt8SkRa3O/45977TRKRZREzf631URFa5Hxsi8l0R2SIi7SLyoIhMdO+bIyJKRL4gIjsBvODefrWI7HCv/6GIbBeR84bwfP8kIjtFpE1Evu9blyki33Mf2y0iy0Vkpnvf0SLynIjsE5GNIvKJPN/LD4jIat/nz4nIG77PXxaRS92Pt4vIeSLyIQDfA/BJ97cLK31POVtElrjreVZEJuV53bw/A/0zFpE/iUir+737gYjk/DvM7bY/6F7f7UZf5vvuP8aNu3S4933Ed989IvIz9+NJIvK4e90+92s33Pumi8jD7nq2icjXcq2FiAhgwU1E5eEMABUAFgxwzfcBnA7gRAAnADgVwA98908FMA7ADABfAHCLiExQSi0D0AvgHN+1VwK43/34qwAuBXA2gOkA9gO4JeO1zwZwDIALRORdcDrvnwYwzfeaWiHP914ARwE4F8CPROQY9/ZvArgCwEUA6gB8HkCfiFQDeM5d8xQAnwJwq7uWTK8BmOcWm2EAxwOYLiK1IlIJYD6Al/0PUEo9Dec3C39RStUopU7I+F59zn3dCIBv53hNLefPwL3vN+59h7vfm6vd583nIwD+DGA8gEcB/BYA3K/pMQDPumv6KoD/E5GjcjzHtwA0ApgM57cm3wOg3KL7MQAr3bWeC+DfROSCAdZDRO9gLLiJqBzUA2hTSqUGuObTAG5QSrUopVoBXA/gKt/9Sff+pFLqSQA9cIpaAHgATiELEamFU9A+4N73RQDfV0o1KqXiAH4C4OMZ8ZGfuF33fgAfB/CYUuoVpVQCwI8AKN+1hTzf9UqpfqXUSjhFny5wrwHwA6XURuVYqZRqB/BhANuVUn9QSqWUUm8CeBjA5ZnfJHeNbwA4C8A/uM+/BMCZcN6wvO0+Z6H+oJTa5D7vg3De8OST82fg/nbhUwCuU0p1K6W2A7gJwZ9fpleUUk8qpSwA9yL9PTodQA2AG5VSCaXUCwAeh/vzzbGeaQBmu2t6WSmlAJwCYLJS6gb3ObYCuMtdIxFRFuYJiagctAOYJCKhAYru6QB2+D7f4d7mPUfGY/vgFGaA0xleKiJfAnAZgBVKKf1cswEsEBHb91gLTkdU25WxDu9zpVSfiPgL2EKerznPOmcC2IJsswGcJiIdvttCcArRXBYDeD+c7u5iOF32swHE3c+HIt9ac8n3M5gEIIzsn5//NwODvW6F+6ZlOoBdSin/9zffc/0SzhueZ0UEAO5USt0I5/s5PeP7aSKj809EpLHDTUTl4FU4xeClA1zTBKdQ0ma5tw1KKbUOTlF2IYJxEsApni9USo33/alQSu32P4Xv4z0ADtWfuDGN+iE+Xz67AByR5/bFGc9Zo5T6Up7n0QX3We7Hi+EU3Gcjf8Gt8tw+HNrgdJszf36FfE8yNQGYmZH/zvlcbjf9W0qpw+FEVL4pIufC+X5uy/h+1iqlLjqA9RDROwALbiIqeUqpTjjRjFtE5FIRqRKRsIhcKCL/5V72AIAfiMhkd+PejwAMZYzd/QC+DqcI/avv9tsB/FxEZgOA+/wDTUZ5CMDFIvIeEYnA6aDKQTyf390Afioi88RxvIjUw4lMHCkiV7nfl7CInOLLfmdaCidOcyqA15VSa+F2yQG8lOcxewHMybeR8WC4sZAH4Xxfat3vzTcxtJ+ftgxOx/s77vfh/QAuhpP3DhCRD4vIXHHa251wftNgA3gdQLeI/D8RqRRns+pxInLKAX2BRFT2WHATUVlQSt0Epwj7AYBWOF3IrwD4m3vJzwA0AFgFYDWAFe5thXoATof3BaVUm+/2m+FsyntWRLrhbDo8bYB1roWzUe/PcLrdPQBa4HToh/x8Gf4HTmH6LIAuAL8DUKmU6gbwQTgZ4yY4cYv/BBDNs8ZeON+ftW7OHHB+i7BDKdWS57X1m5B2EVlR4HqH4qtwNq9uBfAKnDdAvx/qk7hfz8VwflvRBmcD69VKqQ05Lp8HYCGcn9GrAG5VSr3ovgH4MJw8+jb3ee6Gs6mTiCiLOPs/iIhoLIhIDYAOAPOUUtvGej1ERDT82OEmIhplInKxG3upBvDfcDru28d2VURENFJYcBMRjb5L4EQ7muDEFj6l+OtGIqKyxUgJEREREdEIYoebiIiIiGgEleXBN5MmTVJz5swZ62UQERERURlbvnx5m1Jq8mDXlWXBPWfOHDQ0NIz1MoiIiIiojInIjsGvYqSEiIiIiGhEseAmIiIiIhpBLLiJiIiIiEYQC24iIiIiohHEgpuIiIiIaASx4CYiIiIiGkEsuImIiIiIRhAL7iL36MomdPYnx3oZRERERHSAWHAXsZbuGL72wJt4cvWegh+zfMd+7O2KjeCqiIiIiGgoWHAXsZ5YCgCQtOyCH/Ol+5bjjsVbR2pJRERERDRELLiLWH/SAgDYthrSY/TjiIiIiGjsseAuYjG3cLYKr7ehFJAaQkeciIiIiEYWC+4i1p9wCmelCq+4baVgDaEjTkREREQjiwV3EdPRkKEU0JatkGTBTURERFQ0WHAXMS/DPcRIiWUzUkJERERULMak4BaRy0VkrYjYIjI/zzUVIvK6iKx0r71+tNc51mIJXXAPLVKSHErou0hs2tuN/b2JsV4GERER0bAbqw73GgCXAXhpgGviAM5RSp0A4EQAHxKR00djccWiL+GMBRzKlBKrRDPcV//uddzxEscZEhERUfkJjcWLKqXWA4CIDHSNAtDjfhp2/5ReJXkQ+pNONKTQ+lkpBaWGNre7WHTHkuiNp8Z6GURERETDrqgz3CJiishbAFoAPKeUWjbAtdeKSIOINLS2to7eIkeQt2mywEiJLsxLscOdstWQojNEREREpWLECm4RWSgia3L8uaTQ51BKWUqpEwEcCuBUETlugGvvVErNV0rNnzx58nB8CWNOz+EudCygLlhTLLiJiIiIisaIRUqUUucN43N1iMiLAD4EJ//9jtCfGNpYQK/gLrFIiXJz5xyuQkREROWoaCMlIjJZRMa7H1cCOB/AhrFd1ega6lhAXbCWWqREd+QLjc4QERERlZKxGgv4URFpBHAGgCdE5Bn39uki8qR72TQAL4rIKgBvwMlwPz4W6x0r/QcYKSm1sYD6DQIjJURERFSOxmpKyQIAC3Lc3gTgIvfjVQBOGuWlFZUDjZSUWodbT1UZyvhDIiIiolJRtJESShfcQ42UJEssDJ3ucI/xQoiIiIhGAAvuIpbOcJd7h5sZbiIiIipfLLiLWGyIBbflTSkprcJVv0EoNKtOREREVEpYcBcx7+CboY4FLLFIic5wl1pnnoiIiKgQLLiL2FAz3LpBXKodbtbbREREVI5YcBexoY4F1IVrqZ00qTvynFJCRERE5YgFdxF7p5w0yU2TREREVM5YcBeppGV7neqhjgUstQ43IyVERERUzlhwFykdJwGGPhaw1ApuHnxDRERE5YwFd5GKJQ684LZsVVIj9ni0OxEREZUzFtxFyt/hHmqGGyitLreX4S6hNRMREREVigV3kfIX3IU2fv31aikVr+mDb8Z4IUREREQjgAV3keo/iEgJkM5Fl4Kku9uTU0qIiIioHLHgLlIHEinxX1dSHW6LGW4iIiIqX6GxXgDlFuxwF/YYf72aLIHTJtfs7sSezhgsHnxDREREZYwd7iKlO9yRkFFw57fUOty/f2Ubrn9s7ZDnjRMRERGVEhbcRUp3uKsjZtlmuJO2QiJlI8UpJURERFTGWHAXqZjb4a6OhoYwFjD9cSkUr5ZtIxE4UbP410xEREQ0VCy4i1Qs6XSoqyOhIYwF9M/hLv4Ot2UrJFM2UvqkSRbcREREVIZYcBcpPSpvKBlu/6bDUjj4xrJVRod7jBdERERENAI4paRI6eI5bMqg8ZCkZcOyVWCOdaoEppRYtkLSUl7enFNKiIiIqByxwz1KtrT2YOmWtoKvT3kFtzFopOSmZzfhirteC1w3Vh3uZVvb8fl73igoQ67fE+j4DCMlREREVI5YcI+Sc29ajCvvWlbw9ZatIAKETBn0BMbmzn40d8aCGe4xmlKyYmcHXtjQgp54atBr9fzt/oRzLU+aJCIionLEgrtIpWyFkCEwRAbt/KZs5URKiiDDrQv9RGrwgl+vt88dgVgC+zyJiIiIhmxMCm4RuVxE1oqILSLzB7nWFJE3ReTx0VrfcIv5jmkvlG0rmLrgHqR4tmwFW6lApGSsxgLqQj9RQIddF9h97veHkRIiIiIqR2PV4V4D4DIALxVw7dcBrB/Z5Yyst/f2DPkxTofbgCHB6R1tPfGsuIjucA908E17TxzH/PBpLN+xb8hrGQpd6BfS4U55kRIr8FgiIiKicjImBbdSar1SauNg14nIoQD+EcDdI7+qkbNxb/eQH2PZCoYApiGBIvYDv1yEh1c0Zl2byoiUZBavLd1x9Cct7NzXdwBfQeH0OMOCIiXuEvvcDDfrbSIiIipHxZ7h/jWA7wAYtHoTkWtFpEFEGlpbW0d+ZYO4f9lO/M9zmwAAm9yCO2IW/u22bIWQaUB8Ge54ykJ3PIXmznjg2pStYNsqULAmM8YC6gJYjwtMpGx84Z43sLapc2hf2GDrttJrHfRatzj3MtyMlBAREVEZGrGCW0QWisiaHH8uKfDxHwbQopRaXsj1Sqk7lVLzlVLzJ0+efFBrHw4vbNiLp1bvAQBsbB56hzvlZrhNES+brYvlWEYxa9k2LBWMlGR2uHXERGes23rieH5DC17fNrwRk9QQIiU69dLPgpuIiIjK2IgdfKOUOu8gn+JMAB8RkYsAVACoE5H7lFKfOfjVjbyUnT7QRXe4h3LcumXbzpQSIz0uT8c1MjdhpiwF2x74aPd0h9t2nz84IWS4pIYQKbEz1sAMNxEREZWjoo2UKKWuU0odqpSaA+BTAF4olWIbcIpgHevY2xUD4GSUVYFd3JStYIgEIiW6II1nFLP6lEl/vZp50mQio8Ot3wwcyASVgXhrLGBKibdp0l0DG9xERERUjsZqLOBHRaQRwBkAnhCRZ9zbp4vIk2OxpuGWsm3vyHVbOUe0A4V3cW1bIWQ6kRLdCfYiJZkdbj2lxC6kwx0s3oe9w20VHinRy9WbJtnhJiIionI0YpGSgSilFgBYkOP2JgAX5bh9EYBFI76wYZSyVCBWUhE2kbRSzrg/s4DHe3O404Wp7k7Hk9kdbiA4CjDz4BvdbU93uEem4M7Xhc8lxU2TRERE9A5QtJGSUpeyFZIpO1BwA4V3cS1bwRSB4RsLqPPXmRNAdBHtL7KzIyVW4DlSGceqD5fkEDZN6iZ8jAffEBERURljwT2M+hIpPL9+LwA3UmLbXie50i24Cz1yPd3hFi/3nfQiJZkd7uCGyFyvk0zpjZfB4nz4O9xDP9pdf11MlBAREVE5YsE9jJ5c3Ywv/LEBLV0xb9OkLoIrB+lwL9+xD9c/ttb7PJDhdh+Sjmvk7nAnLH+HOyPD7U0nCWa5+4dh02R3LIlLfvsK3t7b7ctwD/68mW8KmOEmIiKicsSCexj1xp14Rn/S8jYy6ixzRdj5VucbDfj8+hb8Ycl2r5vtdLiNPGMBh57hztw0mXms+sFo3N+PlY2dWLeny1f8F7JpMrvALnSKCxEREVGpYME9jHRR6+9s6w5y1O1w5xvF7X8soDPcgPgiJXmnlLi3J30xjswMd+bBN6lh3DTpn0wylINvMrvwALvcREREVH5YcA+jhG9DYmZGOp3hzl2IJjI2M6ZsGyHDgCm+TZO23jSZp8PtK1atAg++GY5ISdJOF/NWnjXmkqu2ttjhJiIiojLDgnsYxX2xDa+D7MZMdKQkXwdXd6D15kbbRvZYwAHmcDv3p4vcZOamSf38GfGT4YiUeDEVK71JdCibJv1YbxMREVG5YcE9jNKxkIE63LkrSl2sJ/0dbtMZC6gPtNEFambBrbvK/gx3ZjGrT360MuZx9w3DWECvmLfUkOZw5yq4GSkhIiKicsOCexgFMtz6UBe3OK6MDDylJNdJkIY4YwFtFexKZxazmYfZ+K/1PvfGAgaz3MMSKckRpSlk02Su+AhncRMREVG5YcE9jPyHy3hj99wOctQ9XjJzM6P32FSwS20phZAhMA3JPmkyZQemeVgZRW4kZGQV9nptmYfoJC2VVZwPlbdp01IFz+FWSuV885FvUykRERFRqWLBPYy8otn2dbjdSMlgJ00mrGDBnbKcg29E0p1gfxzF3+XOzHBHTSPQ7QbSHe6Ulf1cBzupJOlbu37+wSIl+ZIj7HATERFRuWHBPYySvs2DmWP3Bp1SkgpGPSz34BsjMBYw/dh4MjuvrV/T6XDnPvjGX9BrmZlwv6aOfqzZ3Zn3fsB3eqWlfGMBBy7i873x4JQSIiIiKjcsuIdRMMOtIyU6w+18q/N1cPVj9T91hjs4FtBXJLsFrT+a4Y+UZEZXEhnjAP2Fv7/DffPCt/Hdh1d5n//ymY348v0rBvy6vXiKbafXMkiHO1/BzQ43ERERlZvQWC+gnOgYhf/o9cxISd4Md8bBNDrDnWssIJDucPsL16S/4M4cC+iLu2Q+l39SyfKd+9G4v8/7fEd7Lzr6kgN81cGuuf54sE2T+TrZzHATERFRuWGHexjpItMf0dDF7KAZ7oyDaZwMtwHDEACA7cuFA+kOt7+w1kV02DSyoivpDnfwgB0gOIs7lrAQ832+u6MfvfHUgEeu+6M0BXe4M954mPrrZIebiIiIygw73MNI55Zjyey4xmBzuBO+qSGAe7S7ARiSLkRz5a79BXzCsmEIEDLEu/bvb+3GoRMqA7OyM9fhj5TEUpY3KjCRstHSHYdSTve+ImxCKQVbpQtkIP0mIRHIcA+twx0xDfTbFudwExERUdlhh3sY6SKzP5k/UjJYhzvpi5aYhuHr/Aa70vGMTZaA0+E2RBAyxbv9p4+vwz1LdwSy4fpazb/e/oTlrXlvV8w7+bHXPTHz9sVbceHNLwXWHtwsWtjR7pnfh0jI+VeRDW4iIiIqNyy4h5HuUvsjGv3J4NHueTvcqWDUw3Yz3G6DG7ZSgVF/uTrcScuGYQhChpPhjqcstPUk0BdPIeErijPXEVyvhXjKhm0r7O7o927vjTvX7Gjvxaa9PYHYjP8wnYI73HkKbk4pISIionLDgnsY6SIzlqPDXel1uIOFqD62PTNSkrJsmIYEIiX+IlXHVvxd72QgUmKjpSsOAOhNpAITVPTzZ67Rv/ZYysLu/emCu8ftcOv7mztj3n3pg2/SGe5BO9w5IiX66yQiIiIqJyy4h5EuZjMjGoA/UpK+fkd7L47+0dNY19SVfdKk7Rx8Y7oFt2Wr4BzuVK4OdzBS0twV89aQzBoLmHtKiS7k+xIWmvwdbvcaXUg3dabv808pyTzavamjHzc9u9F7Y6Flfh51O9yZtxMRERGVOhbcwyhXh7s3kRkpSRfNa91Ce0d7r29KSbogDkZKMuZwJ4PXA07ha4oTKbFshT1uF7o3YflOwUw/The5er1KKe/NQn/CChTVA3W40xsx0xlu/XoPvL4Tv3lhcyCeor8+Px0pYb1NRERE5YYF9zCKe5smgyP3QoYg7EYm/B3pXfucede9CcsrQHW32FZuhzswFnDgDHfKVhCB0+G2bDS7BXPuDreNyogJ0xAvUpK00rGV/qSF3R0xLwrT6xXczvPsCURK0hsl9XJ0B375jv0AgM7+4Cxv/Tr6DYWX4WbFTURERGWGBfcwSo8FDGa4Q2a6cPYXzY1uRtpfjCYzOtz+DHcyECnJ3vyYSDm575DhRErSHe5Ung66gaqw6RXcmVGY3fv7MO+QGuc5dMHtfo17ckRK9GE8Is5aUpaNt3Z1AAC68hTcFSGnoGeGm4iIiMoVC+5hlOvgm/6khbBpIGTk6HC7Jzr6i9GU7UwIUQowDEkffKOcx1ZFzMBrZE0pcSMlKUthr5vh7ktYvk2Z6QN2wqagMmJ6OfN4xrqbOmKYO0UX3MEZ43s6fJESdw26GK8Mm7CVE5nRxXy+Dnel+/WkIyUsuImIiKi8jEnBLSKXi8haEbFFZP4A120XkdUi8paINIzmGg+EN4fbN/VDKad7O5QOt57goY92B9JjAXXBHc8YI6ifW0RgmoKUbXsd7kTKzirQnZMsBVURE33J7A53R18S/UkLsyZWAUh3uHVRnitSor/uqohzntKrW9u9a7piwYJbF9Y6ssJICREREZWrsTppcg2AywDcUcC1H1BKtY3weg5aykrnl3WnV/NHSiy3OFVKoTFHh9s/Ws80DG9KiXPSpI2waSAaMrzCN9DhTtmoipoIu5GSXBsb/QfrhE0DFeF0h9tfcLd0O4+tr44gEjLQkzGlJBgpCXa49ZuCV7e0o64ihK5YCl396Uko+vUBIOpuJk1HSkBERERUVsakw62UWq+U2jgWrz1SElZwo6Rf2Nfh1kNF2noSXjyjwx8psWyvGPVnuC1beaMCK8Km17H2d8yTthMpMQ3DO5a9vjoSWIt/06TucOvDefxH0us4Sm1FGDXRkG/TpPO6+/uS3sdJr8Pt/FMX3GubOnHy7AkwZIBISZiREiIiIipvxZ7hVgCeFZHlInLtQBeKyLUi0iAiDa2traO0vDT/yYr+whVwurchXXC7ERCd3wZyRErcqtzwjQVUyslKex3ujKPa9WMNEYRNwZ7OGCxb4fDJ1d79Ium8dcpyNmVWRUz0xNOjALW97qE5dZUhVEdNX4bbwoSqMIB0rERvxNQFeHXU+cVJW08CMydUoa4ynBUpyVtws8VNREREZWbECm4RWSgia3L8uWQIT/NepdTJAC4E8GUROSvfhUqpO5VS85VS8ydPnnzQ6x8qf4fbv2kSQM4pJTq/LZJZcNuBDLfXGbcVLNtGKLPD7ZvDbdkKhgHvMQBw5CG13seVYTNwtHvYNFBXEUa3Wwz71+3vcFdHQuk53Ckbh01yingdK0lmbBbVHW4AOHRCJcZVhgfdNBnl0e5ERERUpkas4FZKnaeUOi7Hn78P4Tl2u/9sAbAAwKkjtd6D5e9w9yezIyVeh9stkPUM7kMnVAaK0ZStvI2QmUe7Jy0dKTG8LnrmJkNDxOsaX3X6bFxw7FTvvqpICLZKz/Q2DUFtRQjdsVTWulu73Q53RRjVbqRE58vn6ILbnVTidc0zutYAMGNCJeoqwlljAXV0RJ/AqTPcrLeJiIio3IzVpslBiUg1AEMp1e1+/EEAN4zxsvIarODO7HCv39OFqXUVqK+OYt2eLu/a4KZJ/1jA9KZJIH2wjH9KCQCYIrj2rMNxzjFT8J4jJmHFzv3efbrznLKVNxbQKbizO9zNXoc7hOpoCJ19Ce/+OfXBDrf/yHkgHSkBgBnj0x3ubW296E9YeNf0Ou/7UMEpJURERFTmxmos4EdFpBHAGQCeEJFn3Nuni8iT7mWHAHhFRFYCeB3AE0qpp8divYXwR0oyu7QR03DG9RkCyy12X367De+dNwmVYTNQrKcs5cVEzMBYQHhd6YE63CLAlLoKvOeISQCC8Q79sbMG3eEOI5a0kbTsrLGAAFBXGUZN1ERPPOXlxsdXhTGhKuxluJMZBXcwUlKFukpnUslPHl2Lb/zlLefr8brh7pQSbpokIiKiMjUmHW6l1AI4EZHM25sAXOR+vBXACaO8tAPmL5ozhUynajbFGde3srEDnf1JvP+oyViwYnfg2qRle0VnyJCMsYAKYVMQDZnodcf05YqU+FVH0j9inZdO2jZSto3qcAi1Fc793bGUb462c/qkIUB1xER1JITeuOV1uCtCJqaOq/QV3ME1VPly2ZNqIl6HO56y0NIVDxxT722aNE3v6yQiIiIqJ8U+paRk5Cq4dYxEx0CcDreNRRtbYRqC982djApfNxhwiteUL1IiGWMBQ4YxYIfbv2ESSBfZgC9SYvkz3M7Eke5YeszfhCpnlGBtRRgi4mW49WtGwwamj6tITynJiLVUukX+jPGVEBHUVYTR2ZdEU0cM8ZSN1p54+mj3zJMm879vISIiIipJLLiHiS64/Q1m3b3VBXfIEFg2sHhTK06eNR7jqsKBDYaAU7wGMtyBsYA2QqagrjKMzr6Ee31mpGSADnc45L2GMxbQCHS4Y0lnNnddpVOE11U699VEQ+hNpNId7rCJaeMr0lNKUsE1VLtF9IwJle7zhJHwZdN37evLf9IkO9xERERUZgoquEXkERH5RxFhgZ5H3M0xV/kK6Aqv4HYjJabT4d7e1otjp48DEJzoURk2kbRsL8OdORZQz86ur46gvTcBpVSODndwXRVhw3sTEOxwpzdNAm6kJGmhImR419VGncK7OupMN9HTVKIhA9PGVTrHvycsJO3cGe5DfQW33859fXk3TSoW3ERERFRmCi2gbwVwJYC3ReRGETlqBNdUknSHuyrqz0w7315/hztlK8RTtnekuX+DYXXURNJSXvfXNIzAWEAnBmJgYnUU8ZSNvoSV1eHOzHCLiPcmINemyTpfpKQ/aaEyYnpvAtIdbufzth5nVGAxjO7UAAAgAElEQVRF2MS0cRUAnEklqYwMtz9SAgDjchTcetPksdPrcMy0Ohzhjhq0GCkhIiKiMlNQwa2UWqiU+jSAkwFsB7BQRJaKyOdEJDzwo98Z9KSO6kiwYw0EM9wpyy24Q859FWF/xjqUfbR71lhA8Y5r39eb8E6u1DIjJUC6APY2TbqvETYzIyUWKsKmd53Od+sxf+09CW/NU92Cu7kzljWlZPr4Cpw5tx5nHzkFAFDnvkZl2MTUugrs2tfvfY2zJ1bjqa+/D1PqogAYKSEiIqLyU3BERETqAXwWwDUA3gRwM5wC/LkRWVmJ8Trcgakgzsc6UhIyDG/0nj5ZsTLQ4Q45R7u7RbSRYyxgyDQw0S2423sTWR1uM7veRnU02OHWc7hzbZqsDPs63BkF975eXXAbmD7O6V43dcZyTCkJ4f+uOR3vPtSJzehIyez6KsyaWOVkuG19fL3zGP1GgZESIiIiKjcFjQUUkQUAjgJwL4CLlVJ73Lv+IiINI7W4UqILbl3cAukZ07rDbRhAnzvOzyu4fR3u6ojpHnzjfB4yBLp+tt0TKEOGYGKN7nDHBx0L6H8N/WZATynJynAnnA63l+F279P/1Me9O2MBdYe7Hynbhkh6/ngoY1KKjpTMmliF2oowlmxu8x1f73b/fdNYiIiIiMpJoXO4/1cp9WKuO5RS84dxPSVLH3zj73BXZE0pMdAbdzvc7n26w22Ic31/0goc7a6LWEsFN00CTsQjMz9tGNkFt+5Q68I7ZdveWMCw6YwZ7I47myYrw6a3bt2Zrq924h56DGCFe83E6ojT4U7ZqAw7s7v1uv10p3x2fRVqomE80h3zrtUd7nRWPd93mIiIiKg0FVpwTxCRyzJu6wSwWinVMsxrKkmZHW7TEERM3eEW77a+zEiJb0pHyBQkY+nxeSH3ZErA6R7rSEl9jVMA7+tNZHW0c9TbXsdar01HSnR3ubYi7EZKbNRVhr03ATp7PaHaKZib3DGAeu0Tqpz52klboTYa8orozA73xOoILjj2EJz/rqnYta8PSjmjAZ1r091/IH0CJREREVG5KLTg/gKcY9h1l/v9AJYDOExEblBK3TsCaysp8YwMt+4eA8EpJf15IiUR00DIMAIH3/i71ZZXJAuqIyYiIQP7ehMY7x5SoyMduSIluuCuzBEpAZzISJe7aXJKbdSbaqI70/ognKYOp+DWHfCaaAg98RRSlh3Y/BnKmE1oGoI7rnJ+EbLfnR/eHXO+DzpK4p/GQkRERFROCt00GQZwjFLqY0qpjwF4FwAF4DQA/2+kFldK0psm3RiJId6R7v4pJV6kJGPTZCRkImwKUpbtdXlDvpMm9dHuIdO5Tc/i1hssI77XyKTfBOhCOuXO+jZ1hzsa8uZwV0b8U0r0pk8D4yrD6ZMm3bVXR0PojiVhq+Dmz8wOt59+bH/SKbh1Z9ubN86Cm4iIiMpMoQX3oUqpvb7PWwDMVErtA5Ac/mWVnoQ7ss/rZpuG72M9pUR8myaDGe6I+9ikbyyg6Tv4Rs/h1sXsxOoI9vmmlOiDY3KNBdRvAgJTStyDbwAnUtLjn1ISCWa49evp19Gd96pICB3uYTj+eeK5in5Nf936jYcXKWGGm4iIiMpUoZGSRSLyOIC/up9/zL2tGkDHiKysxCRTNsKmESiudUHr7z73JgbJcFvKl+E2YNnO9bbtbHbUcY2JXodbwRBfF32ADHeF+89Eyoat0oVxbUUIe7ti3pQSvSbd4davt62tFxWh9Hu0mqiJzr5k4OsA0m8wcqlwJ7foNx7pTZNwv05W3ERERFReCi24vwzgMgDvdT//E4CHlTM0+QMjsbBSk7BsREIGwka6qx3O2DQZMgwveqJPmvQX3GHD8CaIAM4x7brzaymFpKUQdivT+uoItrf3ul3v9ImUuTLcx80Yh+MPHecV/jpvrtdXWxFyD75xstjzZ0/EuUdPwdwpNd5z6By3P6tdHU13uIORkvy/ONEd7vQGy2AUhhluIiIiKjeDFtwiYgJYqJT6AICHR35JpSmRshHxx0gMwysmQ7453FpWpCRkIBxyTqK0vYLbgCHOx3r8n85dT6yOYl+P0+F2oifO8+aKlFxy4gxccuIMbGzuBgDEksHxfbUVYXT0J5CwnPF+s+qr8LvPnhJ4Dj2KUL9RAJxNk7obX3CkxH18vx4LKMF1cw43ERERlZtBM9xKKQuALSLjRmE9JSuRsr1YCOB2uEPBSIm/86sjJRUZU0oSGUe76+I1YVne8wJAfU0EvQkLvfGUc53o0YP516ifS592GfJFSvSGSH3EeiZ92E5FKNjh1gJTSgrYNNmbSMGQdKGt18YGNxEREZWbQiMlPQBWi8hzAHr1jUqpr43IqkpQXEdKfDO3dbxEF97+zq/ucFf5O9ym0+HOdbR7wouBpDdNAkBLdxymKd5GxlyREk0/Vne405ESZ3PkCTPH42MnH5rzsRNzREr8Xe1CM9xepCRuBd6A6K+TU0qIiIio3BRacD/i/qE8dKREF5Fhw8g5h1uL+o59DxnijgUMZrj9YwF1wa0jJROqnCK5rSeOkCHec+c6aVLTBX88ZQc+P+HQcThmWh1+e8VJ3rSTTLrAr8iIlGhVhWa4w+kOt/+1OIebiIiIylVBBbdS6o8iUglgllJq4wivqSQlUjaivg53yBTfxJLsGdlRX7FZGTadYt00AlNK/GMB4xkd7pqoU3B39idhGoV2uJ3XTHe4nWvnz5mIp77+vgG/Pi9SEs4dKan0HWk/QM3vRVJshYwOt1twM8NNREREZaagOdwicjGAtwA87X5+oog8OpILKzXpDHe6m62z25FQugjX/N3dioiJSEi8CSRxN08d8kdKrGBXWh/T3tWfRMgwfCc25l+j7oKnN00WOoY9HSmJ+jLc/g63jpSETcm5cVNz7kfWWtNTSgpeEhEREVFJKDRS8hMApwJYBABKqbdE5PARWlNJ+u6FR8NSCltaegA4k0myT5pMF7gR3+7GGeMrMbWu0ivWdUHsZLiDkRKdC9czsjv7k5g2LuQVrOYAxa7uKPdndLgLMTHHlJJAhzuc/6RLPxFBNGQglrQD13oZblbcREREVGYKLbiTSqnOjM6lPQLrKVknzBwPANjZ3gfA3TSZMZ1E17chQ7ziGgDuu+Y0hE3Bva/uAADEUukpIjoqogvuUEakJGkptxPu3D5QdznkbZoMdssL4WW4Q7k3Terj4wfKb2vRkOkW3OlrRZzONzPcREREVG4KLbjXisiVAEwRmQfgawCWjtyySle6q+07adKbUuIUmNGMjYk6mpHOWKcLYjNr02QwUqJvC3nTUfKvzcyIlBRSHGtVERPRkJF306Q+xXKgCSWa/voz12qIsOAmIiKislNoxfVVAMcCiAN4AEAXgH8bqUWVMu+wmwGmlER9Gw8DjzWzC+LMDLd+rmrfJkXT1+EubNNkcANmIUQE373waHzsH9JjA/2Rkir3axpoBremYymZBb8pAou/NyEiIqIyU1DBrZTqU0p9Xyl1ilJqvvtx7EBfVEQuF5G1ImKLyPwBrhsvIg+JyAYRWS8iZxzoa46W9DHu4ttA6XZ03fsyO9zpxwYLYv/BMJkdbsMQVPu6yvr2gSIlpuHENuKp4EmThfrcmYfh5FkTvM8DmybdtRTynHrjZWaDXQRQ7HATERFRmSkoUiIiRwL4NoA5/scopc45wNddA+AyAHcMct3NAJ5WSn1cRCIAqg7w9UaNV2SbgtMOm4jLTp6BwydXO7cZgxXcboc7ZbnFse+kyVR2V7qmIoTehAXTN6VkoEiJXoM+Vj082MWDqAg7HXhbpQvuQmIqOpaSucHTNISbJomIiKjsFJrh/iuA2wHcDcA62BdVSq0HBu7GukfJnwXgs+5jEgASB/vaIy3sm719SF0F/ucTJ3r3mV7BnSdS4har8aSV7mS73yI9h9tf0DqRjri7uRLu9QN3mEOG4W3KHGqHO5OIoDoSQnc85Y0FLCzDnbsbbopwLCARERGVnUIL7pRS6rYRXUm2wwC0AviDiJwAYDmAryulenNdLCLXArgWAGbNmjVqi8wU9nW4M6Uz3INHSjJPjtQZbn9GutaNdPgPyBm84JYDynDnUx11Cm59IE5hkZLcIwQ5pYSIiIjKUaGZgsdE5F9FZJqITNR/BnqAiCwUkTU5/lxS4GuGAJwM4Dal1EkAegF8N9/FSqk73Xz5/MmTJxf4EsNPF8S5Ck9dPEfyRDnCvk2TZsYmyPRYQN+UkAo9ik+8CSiDFtymHNCUknz0tBQ9laWgTZNewZ2xadLglBIiIiIqP4V2uP/J/ee/+25TAPIefqOUOu9AF+VqBNColFrmfv4QBii4i4U3mSRHMTtYh9s7+CZleRssM8cC+jvnelKJMz7QuW2wejdkGgc0hzsf/0jDkGEUPIfbef3g7YYww01ERETlp6CCWyl12EgvJMdrNovILhE5Sim1EcC5ANaN9jqGShfEuSIl6TncuTPc+mh3f6REN6xzRUqCHe78nfXA+gxBdyzlvN5BbpoE0qMBQ+4s8IIy3Hk2TRoGM9xERERUfgasuETkO76PL8+47z8O9EVF5KMi0gjgDABPiMgz7u3TReRJ36VfBfB/IrIKwIkADvg1R0t6DvcAGe58U0rc2/sTVtZc7XgqOwZS42W4jYJOmgSCkZLh6HDrEybDIWfueCHPWZFn06QhgM2Km4iIiMrMYC3OT/k+vi7jvg8d6IsqpRYopQ5VSkWVUocopS5wb29SSl3ku+4tN5d9vFLqUqXU/gN9zdHiTSnJ0T02Bym4dUEeT9lZWfBckZKaaK4O98DrCxkGUm5ROxybJmt0htswnC73EA6+yT2lhAU3ERERlZfBCm7J83Guzwm+OdwDdrjzREpM31hAMzgW0Cu4fc+r4xymObQpJdpwdLi9SIkpXo57MPmnlAgsFtxERERUZgarjlSej3N9TkjnsHNnuAsbC9iftLzCVcQ5HTJ98E36sbU5MtyDR0rSjx+ODLe/yx4uNMOdbw63IWC9TUREROVmsE2TJ4hIF5xudqX7MdzPK0Z0ZSVKF7SZI++c2waOlFS5pzWmbBWYNmKIeAff+IvUGt8cbv32J3MjYqZT50zA+j3Oj7GQ+MdgLj5hOmqiIYg4R9kPZQ53ZjfeEHBKCREREZWdAQtupVTu7APlpTu84QOIlEwdV+Edb+6PZpgi6Ik7k0V0hMP/ccg33WOwevdfzj4Cf3x1h/u4g+9wHzdjHI6bMQ6A8wZAjyociO7wZxb8hsFICREREZWfQudwU4GiIQMR0/DiHn666x3JN6XENDBjfCV27usLdIpF0ke7V0fSxXqtb0qJuBW3MUjFPX18JeZOqcHmlp680ZYD9d+XH5/3zYRfvlMpDREoFtxERERUZlhwD7NoyMQj//oeHD65Ouu+wcYCAsDs+irs3NcXyELrwrQybAYy2P4Ot+UdfDN4pOOxr7wX65u7vMJ3uMydUlvQdfkiJSYPviEiIqIyNLwtTgLgxCyqckQrBstwA07BDQSLUf1xTUbXXH/unDQZnGoykMqIiZNnTRj8whGiu+CZGyxFwINviIiIqOyw4B5FusCMDtBZnj3R6Yz3upltIH3aZG00o+DOOYe7+Kc15u1wG5Lz4JuX325F0j1pk4iIiKjUsOAeRYV0uGe5He7dHf1Zj8vqcPvmcBd60mQxyLdp0jSyD77Z2NyNq373Ol7Y0DJq6yMiIiIaTiy4R9FgU0oAYE690+HuS1jebV6kJKPDXRUxETYF0ZDpnTA5DIdHjjj99Wdu8HQOvgleu729FwDQHUuBiIiIqBSx4B5FunAesMM9sSrv4zILbhHBXVfPx6dPm+UVr4NNKSkG3kmTWZsmkTWlZPd+p9OvD/4hIiIiKjWcUjKK0hnu/AV3ZSS7+61r6MxICQC8/6gpznMXeNJkMdDTUTI3TRo5ppQ0udGaeMoCERERUSliwT2K9FHqg43ju/qM2Zg5Id3p9jLc0fw/Lt0tHuykyWKQ96TJHBnu3V7BzQ43ERERlSYW3KPo1MMm4roLj8aJM8cPeN0NlxwX+DxfpCRwjY6UFH+9nR4LmHXwDWBn1NVehzvJgpuIiIhKEwvuURQNmfiXs48Y8uNkgEiJ5s3hLoGKW0dqMtdqGoJUxvg/3eFOWIyUEBERUWnipskSoCMlmXO4/dId7hIouPNsmjREYPkiJbGkhbaeBAB2uImIiKh0seAuAflOmvQLlWCkxMyxadK/Z7LJN4ucGW4iIiIqVSy4S4A3pSQazntNKZ40md3hBna09+L4nzyDt/d2Bw7/4VhAIiIiKlXMcJeAgjZNltBJk4YhuOLUmXjv3EmB201D0NGXBABsaO72jrePmAbHAhIREVHJYsFdArwM90CbJo3SGQsIAL+47Pis2/xvFjr6EmjtSUAEmDGhkpESIiIiKlmMlJQAXYhWl8lYwHz8bxb29SbR1hPHxKoIqqMmIyVERERUslhwl4B0hnvwTZOlECnJx58/39+XQHtPHPU1ETdSwoKbiIiIShMjJSWgoEiJlM6myXz87xU6+hLY15vAxOoIBMIMNxEREZUsdrhLgIggZIg33SOXsoiUBDrcSbT3JFBfE0U0zA43ERERla4xKbhF5HIRWSsitojMz3PNUSLylu9Pl4j822ivtRiY4szgHiguYro/yVI4+CYfI2PTZHtvAvXVEURDBjPcREREVLLGKlKyBsBlAO7Id4FSaiOAEwFAREwAuwEsGJXVFRlDZMD8tr4GKI2j3fPRYwABoLU7js7+JOqro9jfl2SHm4iIiErWmBTcSqn1wJA2+J0LYItSaseILaqIGcbgBbdZBpGS1p44AGBidQRNnTHn45oIovsNxJPMcBMREVFpKpUM96cAPDDQBSJyrYg0iEhDa2vrKC1rdNRGQ5hcGx3wmlCJzeHOpaXLKbiPmVbr3eZFSix2uImIiKg0jViHW0QWApia467vK6X+PoTniQD4CIDrBrpOKXUngDsBYP78+WoISy16P//ou6Ew8JdUSidN5qM73EdPrcOSze0AdMFtIp5kwU1ERESlacQKbqXUecP0VBcCWKGU2jtMz1dypo6rGPSacoiU6I2RR031dbhrIoiEOKWEiIiISlcpREquwCBxEkpvlizlOdxnHTkZADDN9wajvjrqRUqUKqtfXBAREdE7xFiNBfyoiDQCOAPAEyLyjHv7dBF50nddNYDzATwyFussJcdOr8PZR07GvCm1g19cpO66+h/w1o/Ox4SqCADnzcO4yjCiYedfU3a5iYiIqBSN1ZSSBcgx4k8p1QTgIt/nvQDqR3FpJWtKbQX++PlTx3oZByUaMhENmehxxwNOqIrAMAQRM11wV4TNsVwiERER0ZCVQqSE3mF0h7u+2vln1C2yebw7ERERlSIW3FR0qiImIiEDE3XB7R5pz9MmiYiIqBSx4KaiIyKor45gkjt7XBfczHATERFRKRqro92JBvRfHz8eh9Q500q8gpuzuImIiKgEseCmovS+eZO9j6MhJ8PN0yaJiIioFDFSQkUv3eHmpkkiIiIqPSy4qehFmOEmIiKiEsaCm4qeFylhwU1EREQliAU3FT2eNElERESljAU3Fb30WEBmuImIiKj0sOCmoscMNxEREZUyFtxU9JjhJiIiolLGgpuK3kCREstW+Pw9b2DZ1vbRXhYRERFRQVhwU9Eb6KTJfb0JvLChBQ079o/2soiIiIgKwoKbil7INGBI7pMmu2NJAEB/ghsqiYiIqDix4KaSEA2ZOTdNdsdSAIB+nkJJRERERYoFN5WEaNjIebQ7C24iIiIqdiy4qSRETGPASEmMkRIiIiIqUiy4qSQ4HW5GSoiIiKj0sOCmkpA3wx1nwU1ERETFjQU3lYTKsIm+RCrrdk4pISIiomLHgptKwviqMPb3JbNu15GSGDvcREREVKRYcFNJGF8VQUdfIut2r8PNgpuIiIiKFAtuKgkTBulws+AmIiKiYjUmBbeIXC4ia0XEFpH5A1z3Dfe6NSLygIhUjOY6qXiMr4qgK5aEZavA7V7BncjeUElERERUDMaqw70GwGUAXsp3gYjMAPA1APOVUscBMAF8anSWR8VmQlUYSgGd/cEutzeHmx1uIiIiKlKhsXhRpdR6ABCRwS4NAagUkSSAKgBNI7w0KlITqiIAgP19CUysjni3M1JCRERExa5oM9xKqd0A/hvATgB7AHQqpZ7Nd72IXCsiDSLS0NraOlrLpFEyvioMAFkbJ7vcgtuyFZI5TqIkIiIiGmsj1uEWkYUApua46/tKqb8X8PgJAC4BcBiADgB/FZHPKKXuy3W9UupOAHcCwPz581Wua6h0eR3u3iTuWbINm1p6cNa8yeiJJxEyBClboT9pIWwW7XtIIiIieocasYJbKXXeQT7FeQC2KaVaAUBEHgHwHgA5C24qb7rgXrFzP25dtAUAsHRzG2JJG9PGVWBPZwyxhIW6CqcT/teGXdjQ3I0ffvhdY7ZmIiIiIqCIIyVwoiSni0iVOGHvcwGsH+M10RgZX+0U0it27gcAnHXkZGxv7wMATKmNAgjmuJ9Z24x7X92BRI7j4ImIiIhG01iNBfyoiDQCOAPAEyLyjHv7dBF5EgCUUssAPARgBYDV7lrvHIv10tirjYYQMgSrGjsBAB8+fpp33+RaZ1qkv+Bu7UkgYdnYtLd7dBdKRERElGGsppQsALAgx+1NAC7yff5jAD8exaVRkRIRjK8Ko60ngfFVYbx37iTvvil1boc7kS6427rjAIA1uztx3Ixxo7tYIiIiIp9ijpQQBYx3c9xz6qsxbVyFNx4wM1KilEJ7r1Nwr97tdMSXbm7Db194O/B8saSFXzy1Hu098VFZPxEREb0zseCmkjHBHQ142KRqiAiOnV4HAJjiRkr04Te9CQuxpJPdXuMW3A+taMSvFr6NpGVjf28CsaSF59e34I7FW/H8hpbR/lKIiIjoHWRMIiVEB8Lf4QaA42aMw8tvt6U73O7x7jpOMqkmgvXN3UhaNtp6ErBshV37+vDPf2rAkYfUIhJy3m+2drPDTURERCOHHW4qGV6He7JTcF98/HRccOwh3uc6UtLmRkTOOnIyEikbm1t6vCJ8ZWMHtrT24qk1zXh27V4AQHNnbFS/jtGyuaUH//3MRnxvwWrEU8N/Eue6pi584o5Xsw4jIiIioiAW3FQy9Czuw9wO97um1+GOq+Z7s7fTBbdTAM6fPREA0Li/3yvCn17T7D1ff9KCCLC3qzwL7hseX4ffvrgZ9y/bibVNXcP+/M+ua8br2/bhsVV7hv25aXS1dMXwm+ffhm2X15lhtq3w6pZ2KFVeXxcRlR4W3FQyZkyoRDRkYM6kqsDtlRETABBLBDvcx81wMt5NHf1o73WK8EUbWwE4YwXHVYZxyuyJ2FumkZJd+/pw9NRaAMD2tt5hf35dxD/61u5hf24aXXe8tBU3PbcJ65uH/43ZWPrzG7twxV2v4Y3t+4f1ef/3+bfx+XveGNbnJKLyxoKbSsYnT5mJ575xNmrdjrZW4WaxMyMlRx5Si5Ah2NDcBcvt3MVTNuoqQvj1J0/Eom+/H7Pqq9CSo8Pd1NGPXy/cNGIdv1hy+CMefratsLujH6cfXg9DRqbgXtfUBdMQvLF9Pxr39w3789PoSFk2/v5WEwBg2wj8ezJWUpaN2xc7p9JubukZtudNpGz8fsk2vLChBZ39yWF73rG2s70PT67eg2Vb28fk9V/a1IqTbngW//Hk+sCIVyK/Dc1duO6RVSP+d+hIYMFNJSMaMjGrvirr9pBpIGIagYJ7fFUYFWETh9RVeKMBq9xO+NHT6hAyDUyojuCQuihauuNZhfWDDbvw64VvY3Or8xd1Z38SL21qzbmuxv19eHVL8C+plGXj7pe3Yte+7EL07pe34uSfPoe3dnVk3aeUQtI6+NMx23rjSKRsHDapGjMmVGJb+/AWxPt7E9jd0Y8rTp0JALjp2U3emxoqLUu2tHtvUre1FlZwl8LP+vFVe7DT/e9ve/vwvZF4YUMLOvqcQntVY/Z/w6Xqirtew7/+3wpccddr2HmQ/79o74kP+ZTfJZvb0NGfxJ0vbcU9S7dn3W/bCku3tDEe9A734BuNeOD1XbjvtR1jvZQhY8FNZaEibKC9J44HG3ahpSuOSTXO5JJp4yqwsdk5bfLkWRMAwItZAMAhdRWwbIW23mCsZJ0bl9jc0oPVjZ246OaXcfXvX/eOlu+OJXHboi2IJS388G9r8JnfLQucarlkSzt+9sR6XHLLkkBhvbO9D798ZiP6Eha+cv+KrA7Z9Y+tw4f/95WDPpK+qcPp2s8YX4k59dXYkafgiCUtvH0Ap3HqOMmHjp2Gr507Dwve3I1v/OUtdMeS+Mmja7PenLy+bR++89BKXHLLEmxpHb5uYzGxbTWqxcCmvd3406vbD7r4fWh5I+oqQphcGy2ow/2Lp9bjvP9ZXDRdSKUU7lmyLbB2pRTuenkr5k2pwdwpNcP6G56HVzRiYnUEIsCbO8uj4G7ujGF3Rz8++545METw+yXbDvi5LFvhwptfxj//qWFIvyHc3NKDI6fUYubESqxp6sy6//kNLbjyrmV4dGXTAa+NSt/yHfsAAL99cXPJ/YaJBTeVhcqIiUdW7MZ3HlqFFze2oN49FGfquAokLed/+vPn6IK7znucnuHd0hUsuNf6Cu6fPrEOCcuGCPDK220AgD8s2Y7/fHoDfvnMRize1ArLVvjJo2u9gmvZ1naEDEHENPCLJ9d7z3vj0+sRNg3c9umTsaczhhufWh943Vc2t2Hj3m7837KDe/e+e38/ACf3Pqe+GtvaerOKwQVvNuKE65/F+b96Ca8V+Gtk21a4ffEW/KVhFwDg2Ol1+Ob5R+K7Fx6NR1c24cwbX8A9S7fjG395Cx19CfTGU/jSfcvxiTtexdNrmrFyVwcWrtub85eya7wAACAASURBVLk7+hK44bF1eYs+pRTW7+lCZ1/u/8kqpdDaHR+TXzUqpfAv9y3HpbcsKXhqS18iha7Y0P7C2NsVwxfvXY5zb1qED/7qJfzo72uxZHPbgSwZALC5pRtPrGrCJ0+ZiSMPqcGWQQrTt3Z14M6XtmJbWy/uf33nAb/ucNrS2oufPLYO3/jLW16B17BjP9Y2deFzZx6GwyZVD1uHO5a0sGhjCy49cQbmTq7J+VuqkWLZCvt6EyMSc1vpduo/cuJ0fOSE6XiwYdcBvzFev6cLLd1xLN7Uit+8sBkA8MKGvdjg2x+wrzeB7ox/9ze39mDulBocPbXOa5IE1uh+r295cXPRbu5NWjaWbW3H397czU78COhLpLCmqQsfOGoyOvqSeHh541gvaUhYcFNZqAybSLn/E05aCpNq0x1u7aJ3T8NJs8bjffPSx8If4h4L759U0tmXxO4Op2Bdv6cLqxo7cPHx03Hc9HF45e02JFK29+us372yDbYCPn/mYVi6pR1LNjuF67Jt+/DuQ8fh4hOm4c1dHYglLSQtG4s2tuKjJ83Ahe+ehs++Zw7+/MYu73CenngKW1p7YIizKWuoxZi/w7q7w/mV8IwJlZgzqRrdsRT29QYLwdsXbcWhEyoBAMt3ZG8qe2r1Hpx54wv4+G1Lvb8AX9vWjhuf2oDHVjZh+rgKTHDf2Hzx7CPw00uPg2EIvnn+kejoT+Jf7l2Oy29/Fc+sbca3P3gkln3vPMycWOn95e7X3BnDx25bit8v2ZbzV4UtXTFccssSXHjzyzjvV4tx98tbcffLW73iurkzhjN+8QJO+flCfOm+5UP6vg2Hx1ftwXPr9mJlYyf+6fevD1j0W7bCNX9swHE/fgbn/Pfign+bsaO9Fxf/5hW89HYrjjykFl89Zy4McYpLLZ6y8NPH1+HFjYUd5vQ/z21CZdjEF88+AodPqsG21p6sQmH5jn249k8N+OitS3D175ZhSm0UJ88ajzsWb0FvPFXQ6+SyfMf+rH8nD8Qi92t9a1cH/rp8F5RS+N3L2zCuMoxLT5qOOfVV2NHel1WktXTF8OjKpsDXq5TCA6/vxO2Lt3i/zfJb29SFpKVw2uETcdKs8Xhz5348vaa54D0MB/pmcNPebhz342dw8k+fw/WPrT2g59CUUkikbLy6pd37/q/c1YGQIXjXtDpce/bhSFkK5960GF+5f8WAv0Fp6YrhR39fg+sfW+vFUJZucd4AnnP0FPz6+U341XObcM0fG/CDBWsAON+Dj/z2FZx702LvDUssaWHnvj634K7FtrberO/VmqZOhAzBpr09eNb3pv3h5Y14sGEXUgcYxdvc0oNbF23GL54KZsc7+hJYurkta49PyrKz3ixo33loFT5552v4t7+8hRcyDlR7aVMrVuzcf9CFeFNHP675Y4PX/Clnr25p9/5+BJz/xi1b4eoz5mDG+Mqc/40WMxbcVBYqwk4+e7JbaE92IyVTxzkFZcgQzJ1cgwX/eiZmTkznwKe6BfleX4d77R7nP/DqiIkXN7YglrRx8uzxOHPuJKzYuR8Pr2hES3ccX/nAXADA/NkT8J0PHYXaaAiPrtyN/oSFVY0dOO2wepx+eD0SKRtv7uzAqsYO9CUsnHFEPQDga+fOw8SqCP7z6Q3O6+7uhFLAV8+Zh/19SW8jWyFsW+HTdy/Dl+9fAcDpcNdGQ6irCOMwd6qLv8u3va0XG/d248rTZmN2fVXgf2rarYu2IGXbWLW7Ew+43cyHGhpRWxHCD/7xGFx30TGB6686fTbe/OH5+Nq58/DvFxyFdXu60NGXwB1XzcdXzpmHyoiJEw4dj5W7nNdKWTbuemkrNjZ342t/fhPNnTHMmlgVKCC1+17bgdW7O/H9i47B+MowfvbEevzsifV4eIXT4Xh8VROau2K46N1T8eLGVrz8du68/YHKlcUHgN0d/fjGX97CD/62BsfNqMOtnz4ZKxs7cedLWwE4xc0LG/bis394HV+6bzkeWt6IPy7djoXr9+IDR01BW0/cK1AGc/+yndjXm8DDX3oPbvvMP+BbHzwKR0+t837FmkjZ+Jd7l+N3r2zDr57bNOBzWbbCjU9twJOrm/GF9x6G+pooDptUjS73jdnerhhuW+QU1N96cCXe2L4P1ZEQzj3mENxx1Xz8+wVHo6U7jvfc+MIB/Yp/X28Cn7rzVXzunjcCexbufGkLTvn5Qjz4xq6CC5MXN7Zg3pQanDJnAq57ZDUuvXUpnl7bjM+cPgtVkRDmTKpGPGWjOaNwuvHpDfjaA28G8sKvbd2H6x5ZjRuf2oCP37YUd720FT2+NxW6QDxp5nicOHMC9vcl8cX7luOGx9YNuMZEysYvn9mAY3/8DP725tCn+tz98lYoKBw7vQ6LfXGtnz2+Dj99fF1BHd+W7hiu+t0yzP3+Uzj++mdwxV2v4bpHVgFwOtzHTKtDRdjE0VPr8Py3zsYXzz4Cj6/agx8/uibvvpJbF23Bva/twH2v7cC3/7oSSiks3dKOuVNq8NsrT8K8KTW4+fm3AThvDHd39OOPS7ejcX8/bAVceddr6OhLYGtrL5QC5k6pwVFTa2HZKrDRVSmFNbs7cfEJ0zFtXIX3331vPIXrHlmN7zy0CpfdtrTgorupox/fW7Aa1z2yGhfd/DL+6+mNuGPxVjy52hlxuqG5C/N/thBX3r0M5960GA8vb0QsaeG6R1bjxBuewxm/eAEt3cF/n/b3JvDYyiZc/g+HYkptFPf6GgcPNuzC1b9/HZfduhSfuOPVrDcTSinctmgLPvybl3HOTYvwYMOunD/T5Tv24dJblmDh+r2BxoRSCuuaurB+T/4pQxuau/Cb598ums67bStcdPPLuOaPDTkPn0taNq69twGfuONV7++nhu37IeLEQ0+YOW5Uf8M0HFhwU1nQowG/c8FROOvIyThzrtPF1h3uSTVRGIZkPW5STTRrFrfOb19w7FTviPiTZk3A++ZNQspW+N6C1ThicjW+ef6R+N5FR+O6i45GRdjE+e86BE+vacZr29q9Ltj8ORNhCPDa1nZvY+XphzsF97jKMD516kws3dKOzr4kVjU6/1O56ozZOHpqLR5qcIqOvsTgXcQHG3bh1a3teMrttu3u6McMt3utT+bc3pYuGp9d58wj/+C7DsFx08dlZSZXN3Zi9e5OfPkDc3HWvMl4bt1edMeSeHLNHlx8wnRc877DcfEJ07PWIeJ8j7949hFY/ZMLsPS6c3H+uw7x7j/h0PHY3dGP1u44nl7bjJ8/uR4X3vwSXt+2D9dfchz+8fhpWLu7M9BpUkrh0ZVNOOPwevzzWYfjya+/D0u/ew7mTanxfqX4zNpmHDOtDr/65Ik4dEIlvvvwanzrwZWBQnmwv2g6+5NZ3TwdFXrff72Iv+cYf+gUrXswf/YE/PqTJ+Kid0/DP757Gm55cTN27evDn17dgc/f04CNzd1Y1diJb/91JW54fB3eN28Sbvn0yaiJhvDM2mYoNXj+e+H6vTj98HocMy0diZo/ZwLe3NmBlGXjwYZdWLSxFfNnT8Cqxk7vtzS53L54C25fvAVXnjYLXzlnHoD0gVJv7uzAZ+5ehv98egM+dedr2N7eh59eehzuu+Y0/OqTJ+LEmeNxxhH1eOiLZ2DmxEr8+O9rCvp31O/pNc1IWgord3UE3hz8taERHX0JfOfhVXjKNzM/U088BdtW6Imn8Pq2fTjn6Cm4++pTcMWps7ClpQfXXXg0vnn+UQB8//773nAmLRsL1+1F2BT87In13m947n99J+oqQv+/vfsOj6rMHjj+PZNMeiOdFEpCCRAISJEiCthoYgPL2l1FV91FV9e+u791l12xrF1cFVfsiLiioiIICEgNJKEmEEhCIJAQ0kmbSd7fH3MzJjQLhICez/PkycydO3femXvmzrnvPfe+rH74XEYlRTH1i630e+xr9/X70/PLiAn2ITLIhwt7RXFx3xiGJoaxbHtxiySqotbB5mbfqZcWZ/PS4h142sSdLP5YB6rq+CS9gMvOiGNCSgy5B6rZX1lHRa2DN1fkMmN5jnun/Vif16UvrWBtbgnXD+nIVQM7MK5Pe77eUkjegYNsyC8nJT7YPX98qB8Pjkli8tkJvLNqF2OfW3ZYqVdlrYOP1u3mkr6x/Hl8T9bklrB0ezFrckoYmhiGn5cn06/tz4juEUy/tn+zzyGbEd0jePOmgVTXNzBv4173yelNPdxAi7KSoso6iqvqSYkL5rweUSy3Pu/vsoupb2jk8jPi2LC7/LBe5aN59JNNzFqbz5z1uzm/VxRrHj6XmGAfd8I9f1MhDcYw/Zoz6B4dyL2zMxjyr294f80uzusRSXW9kxnLW9a5z9u4F2ej4cZhnbh6UAe+3bafvAMHSc0t4cE5GxjeNZy/jO/J2txSHvv8+x00Z0MjD8zZwLSvMvHx9CDA25P7P9rAXz7dhDGGmvoGrvzPSia8uJxJr6zE225jSEIYq3IO0NhoaGw0XPXqKsY+v4zLp684YsldTX0Dv3tnPU8v2EbG7sM7V1pLTX3DUbdrG/eUs2VvBQu3FnL59BWHDc62emcJlbVOGhoN181YzdR5W5i1Np9ukYEE+9npGx/SYoyN04EO7a5+EXw8XQn32d0imDQg3j29qQc7PNDriM+ze9gI8/du0VuxuaCCqCBvzkwI5eO0PUQGehMT7EOYvxfhAV4khLt6b2w2YfLZie7njU9pz8dpe/jL3E142IQBHdsR6GOnZ0wQq3YewNNDSIoOJNT/+7aMSorkpcU7WJa9nw17yokN8SU8wJsrBsTz2OdbOP+ZpezcX0WfuBAqah1cnBLLiO4R3PX+eh4YncT4PjGUHKzn8a8y6dE+iMx9FXyYupvdpTXEhrgS7vhQPwJ9PPn3gm2k5ZeyIvsAZTUOesUEER/qR3JsMPM27qWsup5AHztbCip4duE2fOw2LukXi4/dg4VbC3nw443UOhqZ1D/uZ6+nlPgQwHV1h5krcolr50v3qEAig3y4/IxYvtlaxPRGQ8buMgZ0bMfTVslD7oFqbj8n0b3OYkJ8ubx/HI9/mcnqnQdIzSvl7nO74e3pwbTL+zB13lY+zdiDTeDJSSns3F/FVa+u4qZhnfndiERrPZczZ90eq+a0lh37D9IlMoD/u6gXZ3UNx9nQyJRZ6czbsBdfuwdvrsjl4r6xGGMQEfaW1/DFxr3cNLQTj47v6X6Pj4zrwZKsIq56dRXFVXWM7B7Bq9cPwNMmfLZhLx+t280/Lk7Gx+7ByKRIvtq0j/V5ZXSLDuS5K/secccwt/ggO/Yf5LrBHVtMH9AplLdW5rFlbwVvLM+hT1wwT0zsw6inv+Xrzfu4aVhn5qbvYcbyHEqr6/no9qH42D34z7c7ODcpkn9e2tu9rIRwV2J6+zvrsIkwsnsEi7P2Exviy+he0Ye1aUCnUP42oReXT1/Je6t3ccvwBLL2VbKtsJLO4f70iglCRGhsNKzNLaGsxsGQxDCCfOzM21hA53B/BnUK5ZVvdzC2d3sCvD3ZXlTFo+N68MbyHGatzWds7/bUORt4e6WrN29oYjj7q+q49a1UgnzshPrbcTQYRnSPJNjPztRLe/OPS5LdO34AHa0rG+UWVzPU+rqu2nmAilonz1yZwuNfZvLPL7byn+v689WmvVw7uCNRQT68el1/VueU8MgnG3lh0XYu7BVFRn4ZfTu4YjgswJvnrurH0m37uf6NNSzfXsx5PaMor3Fw1auryNxXwazJQ0iJD+bd1XmMSoqke3Qgry3dSVl1PSF+328H6p2NbNxTTmKEPyF+XhRW1PJJ2h7CArz5LKOAemcjNw3t5C4zW5dXiqOhEWejYUhCGP9ZupN+HUIYndz+iN+76Uuy2VNWw+zbhzCwk2tAsH3ltczftI+73kujss5JSlzIYc97aEwSAzq2408fbeD+jzJ4eGwPZq/bTb/4ENLyy6iqc3LzsM50jQrg5cU7mPxWKnXORoZYnQqJEQG8edMgAPrGh/De6l2E+nvx6LgeJEYE0DUygP+t38PQRNflSzuH+7vOffG0sXBrIfsqahmTHO1O9pNjg+kY7s/bq/JYnVPC4qwiArw9mXppMit2FPP2qjwusGK1odHgcch3qWnnfVFmEY+M7cEtwzu7Y2VM7/a8vTKPiloH324rok9sMGN6t+eCXtF8mJrPm9/l8n8TenFx31gaDLyzMo/+Hdph97CBuDo9ukQG0LN9EGH+3ry0OJt/zNtKQVkN0UE+vHJtf/y9PSmqrOOVb3cwOCGMC3pGMeWDNOZvLuQP53blnvNcO7//+jKTV5fupEOoH4E+dlbnlDCoUyjXDu7Iny7sztebC7l3dgaZ+yqpqHWwOqeESf3jmL1uN7PX5XPzsM6IfN8B8sT8THKKD+JpEz5J20Pf+MPXdZM563bz2rKdlNc4uLBXNFFBPvSODebMhFDXe7U+R2Nwb6uMMZTXOFrE9J6yGi58ZindowP524ReJMcGt3idJVn7EYGnJqZw7+wMPkzd3WL7tmDLPnzsNj66fShPzs/itWU5dIkM4OFxriOrTfGakV/GuT2iOB1owq1+EUIDvOgaGUBUkE+L6c17uI+ma2QAC7YUce8Fdewrr2Xexr2MSY6mS2QAAP06hCAi+Ng9WHr/SHztHi1+0Juc1SWCED87B6rqeeLyPu7rhQ9JCGPG8hxsIlx7SMLUN74dIX52Fm0tIiO/jN7WRumSfrE8/mUmhRW1XD+kE5sLygnysfPMwm28vnwnlbVO/vhhBqF+XnyaUUBVrZNnJ/dl6hdb+WDNLg7WORnU2fXDavew8dbNg/jDB2nMWpvPkMRwKK3m+iGutjQNEPTXTzezKLOIylpXb+UdIxIJ8rFzblIkNoF5G/YyISXmmBvrH5IcG4RN4PVlOazNLeXRcT24ZXiC+/H+HV0ntq7LK2VRZpG7NMPuIYw5JJm4tF8sT3yVyW3vrMMYGJ3s+qEd1iWcL6YM589WL9bd53djygfpFFXWMe2rTEL87Hh72rhvdgaeNhu944LpHB7AuD4xfJq+h+veWM2twxPYVljJkqz9PDw2CQ+bjb9/voXJb6WyuaCCZ67sy9x014lRNwzt1KJdMSG+vD95ML+dmYqflwfTJvZx/1BNSHGdlNZkdK9od0KVVVhJmL8Xt5+TSHGV60o7TTuMC7e6alYP/WEZYH1ef567mZ3FB3nuqr4kRATQLSqATzMK6BTmz92z0ukeFUhxZT2/fz+NDqF+VNQ6uef8bi2WFRviy8BO7Wjn58Vt5yTSKyaIP7yfxqX9YvH0OPLB0P4dQxmSEMbLS1zXu35ifpa7Jn1Ax3Y8dnEys9buYqaVMHeLCuChsT1YueMAd47swi3DE/gms5BHPtnEGGv9XdAzmrJqBy8vyaawopan5mcxu9nJUZ42oYt19ZHKWiejkqLcsQ4c9t2MCfbFy9O1/v715VYwEB7ojZ+XB2OS21NT38jD/9vIFa+sxNFg+M2gDoArmRiSGMbNwzrz6CebWJxVxK6Saq45s0OL5Q9OCCPQ25OvNu+jc4Q/98xKJ7uokqhAH+6Zlc5VA+MprqrnhqGdCPG1M33JDhZuLaJ/x3a8vDgbb7uNVTtL3CUUCRH+FFXUuUtZAr09uX90d7pGBVLnbMDL08a6vBKKKusI9ffivzcNZNIrK3no441k7asiPNALH08PZq7MZVzv9gxJDOP1ZTlc0jfGnWyDqzPiopQY/pe2h5HdIxjT+/BkXUS4oFc0pdX1PDBnIxNfWQm4yptc6yqK3nGubda0iX34PKOAqCAfRiZFHrasO0d24Z1VefzjkmR3Wd+lZ8TyxFdZlFbX0yHUz10a2DUygC837ePLTft46ussYoJ9EYEe7YPwsAk+dhvfbC1kUWYRw7uG42P34OpBHfj3gm2syythbnoBH6zJJyU+mL9fkkxSdBDFVXXc8MYaNhdUkBQdyI3DOrWIlbG92zNjeQ6zU3eTnl/mPvLjYROuHtSBqwd1aPZeEpm3oYDJb7c8X+SB0UmICNHBPjw0tgd/t3qyn7uqL/7ernTr3gu6kZpbwkNzNvDSIj+yCiv560U9uWlYZ/dyHhydRH5JNdO+yiIy0Jue7YOYddtgd3ubyhJX7jxA5t4K/L08eOziZHIPHOS1ZTuZsTyHXjHBvPibfqTnl/Hf73K5YUhH9lfV8VlGAQ+NTaK4ynVSe5eIAIoq6xDrSOy9szPo2T6IXjHBvLd6F/VWmU5koDdXDoxn4dYithdWEtfOlw9vG0JkkA9/nruJd1btomtkAFcMiOeqQfFMX5JNnbOBvAPVXP3aKj65cxiJEQHu97jE2qm57IxY3luzi5cXZ3NhzyjmpheQsbuM1TklDO8aQXJsMDNvHkRlrYMAb0/3Z9A7LhgPm7RIuJs6Q05VcqrU85xIAwYMMKmpqW3dDHUSFVXW4mgw7l7dJg2Nhm6Pfsml/WJ5alLKEZ+bua+CCS9+R2JEAMVVddhtwme/Pwu7p41BUxfy4Ogkbmy2MTyW7KJK/Lw8iWnWjrLqep5duJ20XaX87eLkwxLWKR+kueu1p16azDVnuhLh9PwyIgK93e/J2dDIzTNTWZNzgNevH8hf5m5ip9XzM/nsBB4e24M1OSX89s21VNY5+cv4ntx81vftdjQ0UutoOGzgoNKD9fT7+wIAzuoSzhUD4xncOZTIZjsvt72dSmm1g7duHuT+Ufy5Lnv5O9bvKiPEz863fxpJsG/L9pz79BIKymqpcTRwzZkd6B4diIgc1rsLrtrWpduLiQr05omJfVpsbHOLDzLy6SV4edioczby/NX9mLki110+MDghlP9cO4Bgv+9fv9bRwANzNjA3vYBAH0+mnNuVW4YnUF7tYNA/F1LnbCQ8wNt9GHNi/7ijxlV5tYNaZ8NhO4HNORpcJ+COTo7mxUXZvLv6+yt/eNqEcX3akxAewBvf5RAT4suXU4Yftozfv5/G/M37iAryZtG9I7B72JixPMf9Y981MoC5dw3ji437uG92BgBXDohn2sQ+R23XT5G1r5Jb30pllzWy6RMT+5C2q4wXF2dTUeOgztnItYM7MCwxnPtmZ3CwvgEfu43Pfz+cLpEBzE3fw5QP0gHoHhXI/HvOJqf4ICOfWkJsiC97ymr4w6guXDekE++v2cXGPeU8fllvwo6xE32ot1fmsmVvJd6eNipqHHy2oYDxfWJ45sq+OBsaGfPcMkoO1vOXi3pycd/YFs+tqnNy5tSF2GxCZa2TWZMHc6bVg9vk9++n8ZlVyx7sa+epSSmEBXhx9aurqLOuh//NH89BBM6atpjiqjoaGg1enjY8RAgL8OKOkV3YX1lH2q5SfOwe3H1eNxqNoX2wT4vv7MTpKyivcVBUWcd5PaJ4+ooUsosqrSMq35+EGubv5R5hNzzAm7l3DTts+1hd76Sooo5O1tGNo2lsNFz3xmrKqh3898aBFFfVE+Jnp32wz3ElOAVlNYx6egkAt5yVwH0XusqAPkzNJyO/jOuHdOKzjAJmr8snNsSXj+8Y5pp35loWbnWVjzwxsQ9XDIhnf2Ud419Y5j4fZ3SvaFLzSgjysfPBbYO58931bNhdzl8v6sWEvjEEeLfsb2xsNFzw7FL3js+c3w11dwAcSd6Bg5RVOzC4Ej2bCD1jglr0Aj8xP4v8kmpeuLpfi8+poKyG8S8sx8vDxtRLk4/YQ1te42Dsc8vYU1bDkxP7tDhyC3DOk4sJ8bWTXVTF2N7teXJSCl9s3Msd7653nShcUk1iRAAVNQ58vTz4cspwlm0v5ra31+FhE3f5XKCPJ5W1TmwCnjab60jErWfi6WHDGFfZ1oodB3ht6U5S80pJig7knG4RvLUyj96xwQxOCOX5Rdlc2CuKkoP1rM0tJczfi8paJxMHxHHHiEQmvPgdjcZQ62ggzN+b/h3b8fmGAu4a1ZU/nt+NlTsOcM3rq2iq6Avw9qSqzslTk1KYeIwjqmOeW8aO/VV4W+Nw3H1eV/eO0skkIuuMMQN+cD5NuNUv3T8+38LQLmGMSjr6Yad3V+fxzIJtJEYE8OfxPd2HvwrKaogM9D5qD9+JsGBLIbe9ncr9o5O47eyEY/6AORsaKa12EBHoTWWtgxcWZbO5oJxXrxvg7kGpdTSQnl9GSlyIu7b9h4x+dikRgd68fsMAvD0Pf05Do8Emh/ce/hy1jgbKqh3uwYkO9WlGAQu3FNI1MoDbzknEy/Pnf/ZT521he1EV1w3uyLk9oqh3NvLttv1sKahg8tkJR/x8jDHkHqgmNsS3xWsv2FKIj93m6jlalM2QxDBX7/8RSkB+DmMMG3aXk5pXSmSgN+vySvlf2h7KaxwM7NSOaZf3IaFZD1FztY4GjKHF+/l2237eX72L+y7sRpdIV13s+l2lRAX5EHOcidKhquudfJJWwOjkaHfJVFFFLXe8ux4vTxszbx6E3cNGTvFBsvZVcEaHdi126BZlFvLy4h1cdkYcv7F6kB+cs4HtRVWM6BbBnSO7nLDPGVw7wT52D3f8VdU58RA56vflpcXZfGOd6HrHyC6HlSrsLa9h3oa91Dkbmdg/zr2TVVxVxzLrqjK9YlzblKXb9rMoswgfuwc3D+vkPtH7x66Pf3+dxfPW5fbevGkgI7q7epObThjcVVLNvvJazkwI480VuRRV1nLHiC6H7dj+VCdyG9DcwTonPnaPwz7T5ppOIGyKgax9lXyasQd/b09uHtbZvR7Lqut5+uttxIf6cuvwBFbtLOE3r6+iKc154ep+Rzz3pElhRS3Xz1hDWU093z0wqlW3+6UHXTF4rG10hnXlnUfH9TxsW/nvBdt43johtalUyBhDen4ZybHBLNhSyBvLcyircTDt8t707xiKo6GRJ77KxMNmo0OoH54eQmpuCZ3DAzhY5yRjdxlPTUo5YieBMYa95bXunaz/pe3mnlmuHfgR3SOYccNACi//nQAACJZJREFUPGxCen4Z//xiK5v3lDP/nrOJa+fH2twSnpyfRVJ0IKXVDpZv309ptYPP7jrLfYQku6iSuekFdI8O5PyeUazLK2Vw57Bjfu8XZRZa22UPfO0enNU1nKGJ4Uedv7Vowq0JtzqNVNc78fNquwqvOmcDdpvthCY16vgZYyiuqifM3+u0XTen+mHe002to4HsoipiQnxbnA+ijuzDtflk76/iwl7Rx+yxblLnbKCq1vmTjqC0lfIaB8VVdS1KNU6mppPSY0N8W2yfjDHUORuPejTU0dDI3rLaI44cfTrShFsTbqWUUkop1Yp+bMKtlwVUSimllFKqFWnCrZRSSimlVCvShFsppZRSSqlWpAm3UkoppZRSrUgTbqWUUkoppVpRmyTcIjJJRDaLSKOIHPXMThGZIiKbrHnvPpltVEoppZRS6kRoqx7uTcBlwNKjzSAiycCtwCAgBRgvIl1OTvOUUkoppZQ6Mdok4TbGbDXGZP3AbD2A1caYamOME/gWV5KulFJKKaXUaaPthrb7YZuAqSISBtQAY4GjjmYjIpOBydbdKhH5oYT+RAsHik/ya6rTg8aGOhqNDXU0GhvqWDQ+Th0df8xMrZZwi8hCIPoIDz1ijJn7Q883xmwVkWnA18BBIB1oOMb8rwKv/szmHjcRSf0xIw2pXx+NDXU0GhvqaDQ21LFofJx+Wi3hNsacdwKWMQOYASAi/wR2H+8ylVJKKaWUOplO5ZISRCTSGFMkIh1w1W8Pbus2KaWUUkop9VO01WUBLxWR3cAQYJ6IzLemx4jIF81mnSMiW4DPgDuNMWVt0Nwfq83KWdQpT2NDHY3GhjoajQ11LBofpxkxxrR1G5RSSimllPrF0pEmlVJKKaWUakWacCullFJKKdWKNOE+TiIyWkSyRCRbRB5s6/aok09E3hCRIhHZ1GxaqIgsEJHt1v921nQRkeeteNkgIme0XctVaxOReBFZLCJbRGSziEyxpmt8/MqJiI+IrBGRDCs2/mZN7ywiq60YmCUiXtZ0b+t+tvV4p7Zsv2p9IuIhImki8rl1X2PjNKYJ93EQEQ/gJWAM0BO4WkR6tm2rVBt4Exh9yLQHgW+MMV2Bb6z74IqVrtbfZGD6SWqjahtO4F5jTE9cV1m609pGaHyoOmCUMSYF6AuMFpHBwDTgGWNMF6AU+K01/2+BUmv6M9Z86pdtCrC12X2NjdOYJtzHZxCQbYzZaYypBz4ALm7jNqmTzBizFCg5ZPLFwEzr9kzgkmbT3zIuq4AQEWl/clqqTjZjzF5jzHrrdiWuH89YND5+9ax1XGXdtVt/BhgFfGRNPzQ2mmLmI+BcEZGT1Fx1kolIHDAOeN26L2hsnNY04T4+sUB+s/u7rWlKRRlj9lq39wFR1m2NmV8p6zBvP2A1Gh8Kd8lAOlAELAB2AGXGGKc1S/P1744N6/FyIOzktlidRM8C9wON1v0wNDZOa5pwK9XKjOvam3r9zV8xEQkA5gB3G2Mqmj+m8fHrZYxpMMb0BeJwHTFNauMmqVOAiIwHiowx69q6LerE0YT7+OwB4pvdj7OmKVXYVApg/S+ypmvM/MqIiB1Xsv2uMeZja7LGh3KzBnVbjGswuBARaRoFuvn6d8eG9XgwcOAkN1WdHMOACSKSi6tUdRTwHBobpzVNuI/PWqCrdeawF3AV8Gkbt0mdGj4FbrBu3wDMbTb9eutqFIOB8malBeoXxqqjnAFsNcb8u9lDGh+/ciISISIh1m1f4HxcNf6LgYnWbIfGRlPMTAQWGR257hfJGPOQMSbOGNMJV16xyBhzDRobpzUdafI4ichYXLVWHsAbxpipbdwkdZKJyPvACCAcKAT+CnwCfAh0APKAK4wxJVYC9iKuq5pUAzcZY1Lbot2q9YnIWcAyYCPf12I+jKuOW+PjV0xE+uA60c0DV+fXh8aYx0QkAVevZiiQBlxrjKkTER/gbVznAZQAVxljdrZN69XJIiIjgPuMMeM1Nk5vmnArpZRSSinVirSkRCmllFJKqVakCbdSSimllFKtSBNupZRSSimlWpEm3EoppZRSSrUiTbiVUkoppZRqRZpwK6XUKU5EGkQkvdnfgz9zOUtEZMCJbt+PeN1LRKTnyX5dpZQ6VXj+8CxKKaXaWI01BPjp6hLgc2BLWzdEKaXagvZwK6XUaUhERovI7Gb3R4jI59bt6SKSKiKbReRvP2JZA0VkhYhkiMgaEQkUER8R+a+IbBSRNBEZac17o4i82Oy5n1uDcyAiVSIy1VrOKhGJEpGhwATgSat3PvEEfxRKKXXK04RbKaVOfb6HlJRcCSwEzhQRf2ueK3GNQgfwiDFmANAHOMca1fCIRMQLmAVMMcakAOcBNcCdgDHG9AauBmZaI9odiz+wylrOUuBWY8wKXENP/8kY09cYs+NnvH+llDqtacKtlFKnvhorWW36m2WMcQJfAReJiCcwDphrzX+FiKzHNfxzL+BY9dPdgb3GmLUAxpgKa9lnAe9Y0zJxDUHf7QfaWY+rdARgHdDpJ75PpZT6RdIabqWUOn19ANwFlACpxphKEekM3AcMNMaUisibwA/1TP8UTlp21jRftsMYY6zbDehvjFJKAdrDrZRSp7NvgTOAW/m+nCQIOAiUi0gUMOYHlpEFtBeRgQBW/bYnsAy4xprWDehgzZsL9BURm4jEA4N+RDsrgcCf8L6UUuoXRRNupZQ69R1aw/04gDGmAVcJxxjrP8aYDFylJJnAe8B3x1qwMaYeV/33CyKSASzA1Wv9MmATkY24arxvNMbUWcvLwXXFkeeB9T+i/R8Af7JOvtSTJpVSvzry/dE/pZRSSiml1ImmPdxKKaWUUkq1Ik24lVJKKaWUakWacCullFJKKdWKNOFWSimllFKqFWnCrZRSSimlVCvShFsppZRSSqlWpAm3UkoppZRSrej/AZ+qXx5aI2kWAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 4)\n", - "pylab.plot(counts, values)\n", - "pylab.xlabel('Eval count')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Convergence with no noise');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Performance *with* noise\n", - "\n", - "Now we will add noise. Here we will create a noise model for Aer from an actual device. You can create custom noise models with Aer but that goes beyond the scope of this notebook. Links to further information on Aer noise model, for those that may be interested in doing this, were given in instruction above.\n", - "\n", - "First we need to get an actual device backend and from its `configuration` and `properties` we can setup a coupling map and a noise model to match the device. While we could leave the simulator with the default all to all map, this shows how to set the coupling map too. Note: We can also use this coupling map as the entanglement map for the variational form if we choose.\n", - "\n", - "Note: simulation with noise takes significantly longer than without noise." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "VQE on Aer qasm simulator (with noise): -1.6539436913665533\n", - "Delta from reference: 0.20333133883582666\n" - ] - } - ], - "source": [ - "from qiskit.providers.aer import noise\n", - "\n", - "IBMQ.load_accounts(hub=None)\n", - "device = IBMQ.get_backend('ibmqx4')\n", - "coupling_map = device.configuration().coupling_map\n", - "noise_model = noise.device.basic_device_noise_model(device.properties())\n", - "basis_gates = noise_model.basis_gates\n", - "\n", - "backend = Aer.get_backend('qasm_simulator')\n", - "quantum_instance = QuantumInstance(backend=backend, seed=167, seed_transpiler=167,\n", - " coupling_map=coupling_map,\n", - " noise_model=noise_model,\n", - " basis_gates=basis_gates)\n", - "\n", - "counts1 = []\n", - "values1 = []\n", - "def store_intermediate_result1(eval_count, parameters, mean, std):\n", - " counts1.append(eval_count)\n", - " values1.append(mean)\n", - "\n", - "aqua_globals.random_seed = 167\n", - "optimizer = SPSA(max_trials=200)\n", - "var_form = RY(num_qubits)\n", - "vqe = VQE(qubit_op, var_form, optimizer, 'paulis', callback=store_intermediate_result1)\n", - "vqe_result1 = vqe.run(quantum_instance)\n", - "print('VQE on Aer qasm simulator (with noise): {}'.format(vqe_result1['energy']))\n", - "print('Delta from reference: {}'.format(vqe_result1['energy']-ref))" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAEWCAYAAABVMkAmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYXGd5/vHvM3WbtGqrbrkXuYCNhcEBg42pjmkOToCEJPxwSEggEEgoAQIkIQkJBAKh2BAMphiMjTHYxg13y02yVS3JsorVpV2ttu9OfX9/nHOm7M7MzpbZkbz357p0sTtz5syrAjzz7P0+rznnEBERERGR2gjVewEiIiIiIi9kKrhFRERERGpIBbeIiIiISA2p4BYRERERqSEV3CIiIiIiNaSCW0RERESkhlRwi4hIzZjZRjO7uMLz95vZVVOwjj82s7tq/T4iIqWo4BaRacXM3m1mq8ysz8z2m9lvzeyV9V7XC5Vz7izn3P0AZvZ5M/txndbxE+fc6+vx3iIiKrhFZNows48CXwP+DVgALAO+Bby1nusqZGaReq9BREQmlwpuEZkWzKwV+Gfgb5xzv3TO9TvnUs653zjn/sG/Jm5mXzOzff6vr5lZ3H/uYjPbY2YfM7NDfnf8vf5zLzOzA2YWLni/t5vZOv/rkJl90sy2mdlhM7vBzOb4z51gZs7M3mdmu4B7/cf/1Mye96//rJntNLPXjuF+f2Zmu8ysw8w+XbCusJn9o//aXjNbbWbH+c+dYWZ3m1mnmW0xsz8s82d5iZmtL/j+bjN7suD7h8zsbf7XO83stWb2RuAfgT/yf7qwtuCWx5vZI/567jKzeWXet+zfQfB3bGbXmVm7/2f3GTML+c/9uZk97H9tZvZV/x49ZrbezM4u+DfwZf/P7qCZfcfMGsv9uxIRqYYKbhGZLi4EGoCbK1zzaeDlwLnAi4ELgM8UPL8QaAWWAO8Dvmlms51zjwP9wGsKrn038FP/6w8BbwNeDSwGjgDfHPberwaWA28wszPxOu9/DCwqeM9ANfd7JXA6cCnwT2a23H/8o8C7gMuAmcD/AwbMrBm421/zfOCdwLf8tQz3GHCqmc0zsyjwImCxmc3wi9MVwEOFL3DO3YH3k4WfO+danHMvHvZn9V7/fWPA35d4z0DJvwP/uW/4z53k/9n8qX/f4V4PvAo4zb/+D4HD/nP/4T9+LnCK/z7/VGE9IiKjUsEtItPFXKDDOZeucM0fA//snDvknGsHvgC8p+D5lP98yjl3O9CHV9QCXI9XyGJmM/AK2uv95/4K+LRzbo9zLgF8HnjHsPjI5/2u+yDwDuA3zrmHnXNJvILPFVxbzf2+4JwbdM6tBdbifYAAuAr4jHNui/Osdc4dBi4HdjrnrnXOpZ1zTwM3AVcO/0Py1/gkXtF6vn//R4BX4H1g2erfs1rXOuee9e97A16xW07JvwP/pwvvBD7lnOt1zu0EvkLx31/hPWYAZwDmnNvknNtvZga8H/g751ync64X70PCO8fwexERGUFZQRGZLg4D88wsUqHoXgw8X/D98/5juXsMe+0A0OJ//VNgpZl9ALgCeMo5F9zreOBmM8sWvDaDlyMP7B62jtz3zrkBMyssYKu534Ey6zwO2MZIxwMvM7OugsciwI9KXAvwAHAxsMf/+gheVznhfz8W5dZaSrm/g3lAlJF/f4U/GQDAOXevmf0v3k8FjjezX+J11RuAJmC1V3sDYEB4+D1ERMZCHW4RmS4exSsG31bhmn14hWdgmf/YqJxzz+AVeG+iOE4CXvH8JufcrIJfDc65vYW3KPh6P7A0+MaPacwd4/3K2Q2cXObxB4bds8U594Ey9wkK7lf5Xz+AV3C/mvIFtyvz+GTowOtcD//7K/ln4pz7unPufOBMvAjJP/j3GATOKvgzaHXOVfoAICIyKhXcIjItOOe68aIZ3zSzt5lZk5lFzexNZvaf/mXXA58xszZ/494/AWMZY/dT4MN4RegvCh7/DvBFMzsewL9/pckoNwJvNrPfM7MYXmTECp4f6/0KfQ/4FzM71d88+CIzmwvcCpxmZu/x/1yiZvbSguz3cCvx4jQXAE845zbid8mBB8u85iBwQrCRcTI55zJ4cZQv+lny4/Hy6iP+/vzf18v8/Hk/MARknXNZ4LvAV81svn/tEjN7w2SvV0SmFxXcIjJtOOe+gleEfQZox+vqfhD4lX/JvwKrgHXAeuAp/7FqXY/X4b3XOddR8Pj/AL8G7jKzXrxNhy+rsM6NeBsjf4bX7e4DDuF16Md8v2H+G68wvQvoAf4PaPTzyq/Hyyvvw4t5fAmIl1ljP96fz0Y/Zw7eTxGed84dKvPewYeQw2b2VJXrHYsP4RXQ24GH8T4Afb/EdTPxCusjeD+VOAz8l//cJ4DngMfMrAe4h3xOX0RkXMy5Wv6ET0REJsrMWoAu4FTn3I56r0dERMZGHW4RkaOQmb3Zj700A1/G67jvrO+qRERkPOpScJvZlWa20cyyZraiwnXf9w8m2DCV6xMROQq8FS/asQ84FXin048kRUSOSXWJlPibcLLA1cDfO+dWlbnuVXjZxeucc2dP4RJFRERERCZFXeZwO+c2ARTMOS133YNmdsIULElEREREpCZeMAffmNn78U4Io7m5+fwzzjijzisSERERkRey1atXdzjn2ka7rmYFt5ndAyws8dSnnXO3TPb7OeeuAa4BWLFihVu1qmRKRURERERkUpjZ86NfVcOC2zn32lrdW0RERETkWKGxgCIiIiIiNVSvsYBvN7M9wIXAbWZ2p//4YjO7veC66/FOLjvdzPaY2fvqsV4RERERkfGq15SSm4GbSzy+D7is4Pt3TeW6REREREQmmyIlIiIiIiI1pIJbRERERKSGVHCLiIiIiNSQCm45KjzwbDu7Dg/UexkiIiIik04FtxwVPvTTp/j+IzvqvQwRERGRSaeCW+oum3X0JtIMJjP1XoqIiIjIpFPBLXU3kMrgHCQz2XovRURERGTSqeCWuutPpAFIpNXhFhERkRceFdxSd71DfsGdUodbREREXnhUcEvd5TvcKrhFRETkhUcFt9RdnyIlIiIi8gKmglvqrm8MHe6hVIZ3XvMo6/d013pZIiIiIpNCBbfUXd8YMtwHuod4bHsnT+zsrPWyRERERCaFCm6pu6DDXc1YwP6kd233YKqmaxIRERGZLCq4pe5ykZLU6Bnu4HCc7oFkTdckIiIiMllUcEvdjSXD3R8U3Opwi4iIyDFCBbfU3VjGAg4kFCkRERGRY4sKbqm73KbJKsYCqsMtIiIixxoV3FJ3QaQklXFksq7itQP+pskuFdwiIiJyjFDBLXUXFNwAyVFiJf0Jr8Pdo4JbREREjhEquKXu+sdQcA8UjAV0rnI3XERERORooIJb6q63oOAeLccddLhTGcdAUkfBi4iIyNFPBbfUXX8iTTRswOiTSoION2jjpIiIiBwbVHBL3fUNpZndFAOq6HAXdLVVcIuIiMixQAW31FU26+hPZpjbEgdgKFW5wz1Y0OHuGlDBLSIiIkc/FdxSV/1+AT2vJehwjz6lpCUeAdThFhERkWODCm6pq2AT5Jzm6iIlA8k0i1obAI0GFBERkWODCm6pq76EVzTPbfYiJaPO4U5mWDSrEVCHW0RERI4NKrilrvr8DvfcKiMlA4k082fECYeMrsFkzdcnIiIiMlF1KbjN7Eoz22hmWTNbUeaa48zsPjN7xr/2w1O9Til2oHuo6JCaydA35N0vP6Vk9A53SzxCa2NUHW4RERE5JtSrw70BuAJ4sMI1aeBjzrkzgZcDf2NmZ07F4qS0K69eyXce2Dap90xmvA53a2MUgERq9Ax3UyzsF9yTW/yLiIiI1EKkHm/qnNsEYGaVrtkP7Pe/7jWzTcAS4JmpWKOMdLgvyZGByY1xpDPe8exN8TBQucOdTGdJZRzNfoe7a5LXIiIiIlILx0SG28xOAM4DHq9wzfvNbJWZrWpvb5+qpU0rqUyWTOXEx5hlsl7B3RzzPvsFBfdX7trCrev2FV0bnDLZFAvTNiPOwZ6hyV2MiIiISA3UrOA2s3vMbEOJX28d431agJuAjzjnespd55y7xjm3wjm3oq2tbaLLl2Gcc6QyjqxfIE+WtH+/pljQ4fYiJdc9+jx3bTxYdG1wymRzLMKSWY3sPTKIc97r79p4gBtX75nUtYmIiIhMhppFSpxzr53oPcwsilds/8Q598uJr0rGKyiMM25yC+7MsII7mc6SSGfoHkwxOCzPHZwy2RgLs3R2I/3JDD2DaVqbovxg5U46+hK84/ylk7o+ERERkYk6aiMl5gW8/w/Y5Jz773qvZ7pL+VmSWnW4o+EQsXCIRDrL4T4vmz00rOAODslpjodZ4s/i3tM1AEBnf5KBZOUNlyIiIiL1UK+xgG83sz3AhcBtZnan//hiM7vdv+wVwHuA15jZGv/XZfVYr0AqXasOt1fIh0NGPBIikcrS0ZcAYHBYAd2fy3BHWDLbK7j3HhkEoKMvOeJ6ERERkaNBvaaU3AzcXOLxfcBl/tcPA+XHmMiUSgYd7smtt3Md7kjIiEdDJNIZ2nv9gntYh3sgkc9wL57lHe++t2uQbNZxZCBJNKx/LiIiInL0qUvBLceeWkVKggy31+EOk0gXdLiHR0qCDnc8zJzmGA3REHuPDNI9mCKTdWSy3qbOUEiFt4iIiBw9jtoMtxxdgoI7M9kZ7kzQ4Q55kZJ0NtfhHhoWERkomFJiZiye1ci+7kEO9ydy1wwv0kVERETqTQW3VCVXcNdoSkk4bMQiIRKp8pGS4Fj5Rn+iSTAaMNhkCfkuuIiIiMjRQgW3VCXpb5qs1ZSSiL9pMpnJ0uEX0CML7qDD7RXcS2c3srdrkMP9+YJbGydFRETkaKMMt1Sldh3uwiklYRKpLAMJP1KSyhZlsvuTaRqiISJh73PiklmNdPQlc5NKAI0GFBERkaOOOtxSlXR24hnuqx/Yxj//5plh9/UjJZafUhJsmoT8Ue8AfYk0LfH8Z8QT5jUD8OTOztxjA4qUiIiIyFFGBbdUJRcpmUCH+5Fth7l/y6GixzJZR8ggFMzh9jdNRvyudmGspD+Rprmg4D5rcSsAK7cdzj2mDreIiIgcbVRwS1UmY0rJUCpDX6K4A53OOiIh759hPBKmezBFbyKdO9hmRMEdyxfcx89poiUeKbpnkPMWEREROVqo4Jaq5Odwj/8eiXR2RMGdyTrCfjc7Hgmxt8vLYy+b0wQUb4IcHikJhYzli2YA0DYj7l2fSnPtIzvYerB3/AsVERERmUQquKUqk7FpMpHKMJDMFHXJ0xmXi4/EIiGC25/c1gJ4XfFAfyJDczxcdM8gVnKc3xHvGkjxhd88w41P7Rn3OkVEREQmkwpuqUoyM/EMd7ABsrDLnclmCftHsh83p4mmWJiPvu40Ll0+H6ic4QY4a/HM3GuB3MSSnsHUuNcpIiIiMpk0FlCqkkpP/Gj3oFvdl0jT2hgFggy3V3B/4NUn85evOolIOMTq573JI5UiJQBnLwk63H7B7UdSulVwi4iIyFFCHW6pymRESoKCu7+ow+0ImVdwh0KWm7HdEPWiI6N1uE+d38IbzlrAxae3EY+E2HNEBbeIiIgcXdThlqrkp5SM/x5BpKR3KF9wF3a4CzX6BXdQpGezjv5kJnfKZCASDnH1e1YA0BQLq8MtIiIiRx11uKUquQz3sEjJoZ4hHni2fdTXO+eKIiWBTNblMtyFGv3COoiUDPivHd7hLtQUi9DpH/PeM6gDcEREROTooIJbqpIuEyn58eO7+Isfrhr19amMI6jV+0Z0uEf+M2wcFikJYiiVC+5891sdbhERETlaqOCWquTncBcX3AOJNMlMdtTNlIl04ebHfDGcyWZzc7gLDc9wB13x4ZsmCxUW3D1DqdyaDvYMFW2+FBEREZlKKrilKkGkZHiHO8hlp0cpuIdS+fB3X8FpkJkyGe54JIQZDCXH0uHOP+cc9Pqvefs3H+Hb9z9XcX0iIiIitaKCW6pS7mj3ZK7grrybsqjDPTQsw12i4DYzGqPhER3u4QffFGoatqGyZzBFOpNlX/cQh3oTFdcnIiIiUiuaUiJVKTeHO5kZT4c7HykpN6UEKCq4B/yueMVIif9cyCDrvBx30BEvPLFSREREZCqpwy1VKTeHO+hcZzKjFdzFB9gEynW4wctxDya99+1PVhEp8XPfS/xj3nsGU3QNJP33n8A8QxEREZEJUMEtVckf7T7s8Soz3EHWG4bN4c6UnlIC3mjA4aMEK3W4g1GCJ8xtBrwOd5c/rWRQHW4RERGpExXcUpVyU0oS1Wa4h50YGajU4S6MlFSzaTLIdxcV3LkOtwpuERERqQ8V3AJ4B9N8+/5t7OzoL/l8+UiJX3CPFinxoydNsXBRpCSdzRIpcfAN+AV3Muhw+6+PVto06RXjJ8wrLLhT/vsrUiIiIiL1oYJbAG+E3pfu2MztG/aXfL7clJKg4B7++HAJP0M9ryVeFCmpmOGOFXe4m2NhQmWuhfyUkqWzGwmHrKjgTqjDLSIiInWigluA/BHqqXTpwjlV5mj3ascCBh3uuS2xYR3uSlNKQrkoSH8iXTFOAvmCe05zjJkNEXqGlOEWERGR+lPBfZR7Zl9Prqgdi4Fkmr//xVru2LAf5yp3nyFfcJcrnEebUjLqpsmCDne1U0qGz+GutGESYMmsJiIhY+nsRlobo3QPpulWhltERETqTAX3UayzP8mb//dhbl23b8yvfWZfDzeu3sNf/fgpvnX/tlGvH/AL7mCu9nD5TZPFjyerzXD7Be+8ljj9iXTuQ4DX4S4/pWQwWX2H+xWnzOWxf7yURa1BwZ3vcGssoIiIiNRLXQpuM7vSzDaaWdbMVpS5psHMnjCztf61X5jqddZbZ3+STNblcshjUVg4b9rfM+r1QSe5XOEcRE2Gd7irHQsYbFqc1xIjlXF85OdrWLmtY/Q53LlISabiKZPgnU45ryUOwEy/4D4yoEiJiIiI1Fe9TprcAFwBXF3hmgTwGudcn5lFgYfN7LfOucemZIVHgSB6Ua7rXElhDCVVxeuDDnS5a5OjbpocbSyg9/zc5hgAt6zZh3P+lJIKBXcuw51Ms3Bmw6i/j0BrY5RdnQPgf0BIprNks67ipksRERGRWqhLh9s5t8k5t2WUa5xzrs//Nur/Gj2MfBT47fr9tPcmJnyfPn+aR2ocGe5gk6NZ/utKgkhJuWsLC/HCjZPlIiW/enov3YP5zvxQOkM0bLQ2RXOPzWuJk8mU73BHwyFSGYdzjlQmSyxS/T/Xk9ta2N05wL7uodxjCY0GFBERkTo4qjPcZhY2szXAIeBu59zjFa59v5mtMrNV7e3tU7fIYQaSaT7wk6e46ak9E75XX8IrWMfT4Q4K5OZYpKpNl4OjdLgLHy+MleSOdi8owvd3D/KRn6/h9vX5EYNDqQwNkTCvPm0+H3vdaTTFwiQzGS/DXWYOd9D5zmQd6QqFeSlnL2kl66C9N0HwMsVKREREpB5qVnCb2T1mtqHEr7dWew/nXMY5dy6wFLjAzM6ucO01zrkVzrkVbW1tk/FbGJegUxxs9puIYF71RCIlzfFwVa8fTHrvlS5bcOcL6myw4TGTzR31nioouIPMeeGfQSKdJR4NM6c5xocuPZUZDd4HgUoZ7uDxdNZVHB9YyjlLWnNft83wct2aVCIiIiL1ULMMt3PutZN4ry4zuw94I17++6g1OMq0j7HIFdzjiEIE798cj1SV4R4cJVJSuIYgrl0Y0SjMcJfKng+lMsQLIiGxSIhkOltxSkk0nO9wZ7KOSLj6z4cLZsaZ1xKnoy/BwtZGDvYkVHCLiIhIXRy1kRIzazOzWf7XjcDrgM31XdXogthCpSL533+7id9tOjjqvYLCtZqCebjg/Vvi1UVKBsYRKSm8b2GGu3coNeL5RDpLQ7Sg4Pbz2ZU73N71Xoe7/ObKUsyMs5fMBGDhTK/DrUiJiIiI1EO9xgK+3cz2ABcCt5nZnf7ji83sdv+yRcB9ZrYOeBIvw31rPdY7Frl51mWKXOccP3hkJ/dsOjTqvXKd4nFtmsxnuKuaUpKsXHAXjv0L8tqFHe7C50t15hOpDPFIfqxfLBImkc5WLKSDx9OZ7Jgz3JCPlQTTTTSLW0REROqhLmMBnXM3AzeXeHwfcJn/9TrgvCle2oQNjlJwD6YyJNJZElV0WycSKckV3PEw+7uLX5/NOnqGUsxqihWtC8rP006ls4QMsi4/pSQ5SsGdKoqUDOtwR0IkM9VluDPjyHADvGTZbABOmNcMUNWfuYiIiMhkO2ojJceaDXu7Wbu7K5cTLpfh7uz3jhqvZkRdPlIy9mmI+U2TkRGvv2HVbi760n1FmebROvPJTJaGqNehDiIlwYQSKJ3hThRFSjK51wPEwyGS6UzFQjrIcKfHkeEGuPj0Nn7zwVfmCm9FSkRERKQeVHBPki/etol/ufWZUY9IP9Lv5ZsLi9Vy+oaCa8ezadIrir3xe8WvX7O7i95Emp6COdmjdrgLCu5siUhJqlSGe1iHe/imyaFUFufyWe3hgscz48hwg5fjPmdpa27dipSIiIhIPajgniTN8Qh9ifSomyY7B8bT4R7fpslYOEQsHBqxlu0d/QD0+veHwiklI98rk3VkHTT4BXNu02ThRsqCQr2vRBRmKFXc4Y5FQrn3HG0Od2qcGe5AY67gVodbREREpp4K7knSEg/Tn0zn5lmXK7iP+JGSaoq/iWa4Y5EQsUhoRBG9vd0ruIPCGAoPvhnZ4Q5en4uUBB3u1Bg2TaaHdbjDIQZS3nXlCulIeNgc7jFGSgJBdlyREhEREakHFdyTpKUhQt9QFR3uMhnuoVSGfV2DRY9NpMOdymSJhs0/Hj3/+p6hFB19iaL7Q+HR7iPfK+hkB0er9ycyfOqX6zjUmz82PVPwut4S01UqdrhHmVIS3GeskZJAXB1uERERqSMV3JOkOR6hP5EZPcMdREqG5YmvfWQnb/jag7l8NJQ+QKZayXSWaDjkF9wud9+guw35TjTki9FSJ02m0sUd7vV7u7n+id08tLUjd01xh3tkhtubw11ccAd/VqPN4Q7y7uONlAQd7vFk4UVEREQmSgX3JGmJRUhmsnQPjjz0pVC+w13cbd3V2U/vUDpXBDvnSmahh7tlzV52HR4gkc5w7SM7cgVzsiBSApDyp4js6OjLvbavZIa7VKTEeyxfuHrXHupN5K5Jl/qgMKzDPXzTZPDTgNE63MFmx/F2uGPhECErPmpeREREZKqo4J4kLQ3eSPOOPq+gLpvhHggy3MXPt/cmi55P+MeeQ/kOd/dgig//bA0/emwnD2/t4Au/eYYndx7JvX+wabJwPYUd7mAKClSOlAzPcAf3OtRTECmpkOF2znkZ7sIOdziEv/ey7JSSIMMdFPjjzXCbGQ3RsCIlIiIiUhcquCdJc9wvuP2u7+hzuIuLvyBX3eV3yAvjHuWK9417uwE43JfMvf5wv/efXoa7oMOdyUdKFrd6Jy8WdriHKhztHjwWdKiDaEZ7QYe78HVBZz7hPxZcX9jhLvy6XOc6iJAkJtjhBu/DwlAVoxhFREREJpsK7knS4hfc7X7hW35KSenZ2rmC2+9wB8Vw3J8ysrdrkH+/fVNRJ3l9UHD3JznsF/JBQZ/KOGIRL8Ptfe+93/Od/Zy6YAaxcIi+xMiDb9IVIyVehzoogIP3hGEd7mGRksSwDDjkN2BChSklfud7aIIZbvBGAw4mleEWERGRqaeCe5LkCm6/61tug165OdyH/ShK14BXkAdd4rnNMZLpLPduOsjVD25ne3s+gx0U3J39STr91x8uiLR4U0qKJ3109iWZ1xL3pqokvPdyzuWnq1SKlET8grtEpzidzZ8+GbxXKtfh9q4fPhYwUG4Od3iSMtwA8WhIHW4RERGpCxXckySIlOQ3TY4s7pxzHOlPYuZ1hIOCtL/gwJygw93rF8Ozm2OkMvmCeG/B6MANuUhJItdtDiIlwzdNBoV012CK2U1RWuKRXFFfWNCWOmkymctwl572EQ1bbrNmX4koTNARH75pMlCucx18WEikJpbhBu/DQkIZbhEREakDFdyTJOhwB0p1ivsSadJZR1tLHMgXrkGcBPIZ7qBwneN3uIPIx74ub6Niz1CKnYcHiIatZKQkGAtYuGkykfbGFs4KCm4/+hEU8zMaIt6pksOK7mAsYLDpsbDDHTKIR8K5Qj3InkfDNiJSUrhpMhoeQ4Z7gnO4wfuwoINvREREpB6qKrjN7Jdm9vtmpgK9jGBKSSCZzrKzo5/3/N/jua53kN9e5G9aDDquRQV3EClJFBTcmWxupF1wOE7Q3X7pCXNIpLPsOTIA5CMlqYw3paQwwx3ce1ZTjJaGCL1Dab7zwDa+ctcWAGY2Rr1rs1mcc/zt9U9z35ZD+Qx3sGmyYMJKLBIiErZchjtY99zmeO5DR1CgF8ZIijvcZaaUBBlu//0mlOGOhUdMhhERERGZCtUW0N8C3g1sNbP/MLPTa7imY1JLrLjgzjpY9fwRHtrawWPbDwP5uMei1kagsMOd33zYNZBkMJlh9fPeeL85zTHA62hDvuB+/rBXYF9w4pyi7/ObJofN4S4ouGc3xZjhd7hvfmovP31iFwAzG/yCO+PYc2SQX6/dx+82HcxlvWf4zxdGSmLhEJFQKNfhDtYZdOYLr49HSxfcZedw+5GSIHsdLZP1rkZDRGMBRUREpD6qKridc/c45/4YeAmwE7jHzFaa2XvNLFrLBR4rmuPhEY8Feey1u7sYSKb5j99uJmSwfNFMYGSkZMHMOEcGUnzwp0/xk8d3cd6yWcyf4XXDgy55kOHe3zVYdK+gw3x4WKQk6HAn0tncjO9ZTVF/02SafV2DuXnYMxu9Dw3pTJa1e7oAONCdYH+3F2NZMjv4oJAvXOPRsJf9zniRlW6/qJ/bEquY4Y5XNaWkeCxguU54NRqiYUVKREREpC4io1/iMbO5wJ8A7wGeBn4CvBL4M+DiWizuWBIJh2iIhhhKZQmZ1+EOOspr93Txr7dt4smdnXz1j87NFZtBx7XDP/Tm5LYWugaSbGvv5w9XLOVLf/AifrByJwA9g15UY18YTDhiAAAgAElEQVS3X3B3D9E2I878GfHcGhqjYY4MJP0NmW5Yh9sxmAwiJV6G+2DPUFHMIuhwJzNZ1u72C+6eQQ50DxELh5g3LHsO+ZhIOuu46oerWOUfvDPXj8I453LRkngkPOJ1UE2Gu/KJlNVoiIaLojAiIiIiU6XaDPfNwENAE/Bm59xbnHM/d859CGip5QKPJcHGySAL3TXoFdLrdnfz6zX7uOIlS3nruUtyhWdhh3tWU5R5LXGeO9RHXyLN2UtaMbNcwRx0uA90D5HJOg70DLGwtZG5zfmC+5T5LTjnddaTmeJNk6l0liMFkZKWhsiITHNQcKczjrV7uv338zrcC1sbRhxEA15MJOpnuPd1Dea6yHP94jyZyeay6mOdUjKZGW5tmhQREZF6qbbD/XXn3H2lnnDOrZjE9RzTWuIROvqStDZG6RpI0e13pYODYK54yRIgX3ju6xrkc7dsoD+ZYV5LnNlNUfr9zZEnt3mfY4JISFBwpzKOjj6vCD6lrYW5LbHc+586v4X1e7s53J/0j3Y3ohF/DnfRpsloUeY8Fg6RzGRzkZKhVIb1e7oJmZc739U5UFRwF05giYVDpMiSznjHty+d3ciJ85pp8zvv3nSU4rGCMCzDXSabPTzDXe66ajTHI/QXnKwZePZgL6e0tRCaQDEvIiIiUkm1odjZZnbFsF+Xmtn8mq7uGBPM4m4NOtwD+c2Qi1sbePmJc4H8eLx1e7pZu6eb5w71Ma8lRmtTvngOCu54QYc7qAn3dnkxj0WzGmiKhXPXnLpgBuBNKsltmiyaUpIkFgnRGA0XTVW56NR5QL7DvWl/L4OpDC89YQ7OwTP7e1jU2pB7/5EZ7hDprFdYX3RqGz9638tyE00KC+5ykZLyU0qGH+0+/gx3cyxCIp3NzQsH2N05wOu/+iAPPdcx7vuKiIiIjKbaCuZ9wPeAP/Z/fRf4BPCImb2nRms75owsuFMsnNnAwpkNvPtly3Jd1KBAPtQ7lHvtgpkNzPJf1xwLs2Cm1yEOCtOeoRTL5jQB8OyBXvoSaRa1NmBmzPUnmZy2wCvSO/0Od6lNk7ObophZLv4SCRlXrlhKcyzMQn9c4ab9PQBccob3eSqZzrKwtYGQlYiUhEOEQ16kZCiVyf3eYn5xnfQ3Uxb+vr3nx57hnkikJNjU2l9wnH2wibTwg5GIiIjIZKs2UhIFljvnDgKY2QLgOuBlwIPAj2qzvGPLjOEF92CSGQ0Rbv3bVxIt6M4G0YrgGPhvvOs8zj1uFque7wTg5PktmF/cBgWzc3DK/BnsPDzAo/6YwYX+eME5LTH2dQ9x6nyvw93RlyCdHb5p0ouUzGr0ivMZfod7YWsDbzx7EZcuX8ADW9qBfCF6+sIZuTUvmtkw4iAa8DLcibR3QmUinc2N/su9b9oVTCkp6HCPIcOdmISj3YMPGH3JNK1N/uZQ//eRKXG6poiIiMhkqbbDvTQotn2HgOOcc51AavKXdWwKOtyz/IKuqz/lRz7CRRnhoPAMCu6LT2/juDlNuWI4iJNAcWHaNiPO8kUzuWPDASB/gM6c5jgN0RCLZ3nfH+jxOufDN012DaRya2uJe/+5eFZj7tqo/17BaZcnz8uvY2FrY1HHOVhXzO9wpzJZkuls7veWP1I+U3IOd3wcc7gnmuEGinLcwbpKHWcvIiIiMlmq7XDfb2a3Ar/wv/8D/7FmoKsmKzsGDY+U9CbSNMZGzucOis323gQh8/LFQK7zesr8fKFbeAR6YzTMa85oy0U+Fs70Cuzj5zRxsHuISDjErKYoB/252bGCIjqZ8SIlQTEfZLiX+AU3QNQvfHv8gntha0Nu1OGiwkhJOktzLEzYn6ISCYVyR8/HCwrx4NqSJ02G838u5TrcYZu8DHeuw11QcKvDLSIiIlOh2oL7b4Ar8OZugxcnuck554BLarGwY1EQ0wg61ZAvpgsFmyYP9yeZ1RTNdb+Pn9PErKYoL/NPj4TiDndTLMzFp7fxzfu2YeblvgE+8aYzGEh6hWRrY5R2/yCd4k2Tjq7BFLObgw63t66gKw7kivPuwRSxsBdHWTizgZ2HB1jU2pCboJJIZWlpiDA7GqYxGiYSNroHveca/N9bfNimyWjYirr8xRnu0oV0KGSELN/hnliGWx1uERERqY9RC24zCwP3OOcuAW6q/ZKOXblOdWP+8M1KHW7ITwYBb3b1mn96fdlrG2Nhzj1uFq2N0aJ8dks8kiugWxujuaiKt2ky35XuGkjS6n8YmNcSIxq2om56EO3oHkzR5G8yXDCzgT1HBpnbEmfoyKB/rwyzQ1G+eMU5LJzZwL/dvinXOc5vmswX3IVRk0BRhrtCVCQSDuUOCJrI0e75TZOFBbd330xGB+KIiIhI7YxacDvnMmaWNbNW51z3VCzqWBUUdUE0BLyu9HBFBXdj5b+C4ZGSSDjEO85fmiuqh5vZEGXzgV7AK2rNjGjY6B5Ikso4Zvtrm9UU43cfvTh3XHvhe3UNpGj2131SWzMdfQnCISNoRGedVwhfcro3xSQSMvqTZQpuf0pJ4e+58Png9eVEQpbrRE+kw52PlOSnlCTV4RYREZEpUG2kpA9Yb2Z3A/3Bg865v63Jqo5Ry+Y0EY+EcpsZAZpKREqCEyST6WxRN7yU2LAON8BnLz+z7PWtjVE6+4MOt1egxsIhDvkF+uyCWd/L5jYVvTZaMIIwOLjmk29anusKFxa8hRsYI+EQA34hG8RlgihLMp0lkcqOLLgLPkgE2fBSwiGbnDncFSIlynCLiIhILVVbcP/S/zUpzOxK4PPAcuAC59yqCteGgVXAXufc5ZO1hlp43ZkLePwfLy06QrxUhxugwS+4CyMlpRTGKMrdq9DMxihB/RgUtdFIiIP+5JLC7nu593KOXIe7tTGa+1AQLiiMC8ccRkKWO30yOPAmGi7OcAeFeKnf12gd7r4SBf9YVdo0qQ63iIiI1FJVBbdz7odm1ggsc85tmYT33YC3CfPqKq79MLAJmDkJ71tTZsasphjpvnzco1yRHI+GYSg9pg53Q3T0grvwfrGC4vdgj7em4JCcUgrjK6U686EyHe7CQjjX4R4lUmJmuSPlR8twOxesb/wFdzzijS9Uh1tERESmWlU/ozezNwNrgDv87881s1+P902dc5uqKdzNbCnw+3inXB4ziieLlP5MExSgM0cruIuK4LEV3EEB7UVKvA73nKoL7pHvVRj9iBRcW/i64PcV/Gci6HBHRv5TC/6cRutwBybS4TYzmmPhooJbHW4RERGZCtWGYj8PXIA/c9s5twY4qUZrKvQ14OPAqGMkzOz9ZrbKzFa1t7fXfmUVVFMk5wruhso/ZCjKcFfR4S7chJkruCMhUhmvqKxUcBd2rZviI9dVHCkp0+EuMaXEy3CPXHtwTaVCuig3PoEMN3ixksJNk8GUkrSmlIiIiEgNVVvBpEpMKKlYpZjZPWa2ocSvt1bzhmZ2OXDIObe6muudc9c451Y451a0tbVV85KaKSy4S40FhHw8ZNRISRX3KlQ6UuIVrSGjYma8sFPdXKrDXfCvJVImg90wbNNkKoiUREt0uMNBh7v8P8PJ6nCDd9hPqQ63IiUiIiJSS9VumtxoZu8GwmZ2KvC3wMpKL3DOvXaCa3sF8BYzuwxoAGaa2Y+dc38ywfvWXCjkjeJLZVzJg2+g+khJOGSYeRsZq+lwFxXc4eJu8+ymWFEOe7jiDZolOtwFry0szguL75Id7nSW2U3lIyWV6ujC6Eql6Ek1muOR3PhCILfRU5ESERERqaVqO9wfAs4CEsD1QA/wkVotCsA59ynn3FLn3AnAO4F7j4ViOxAUu+UjJd7jo00pCTYXevca/fNRuU2TALMrxEkKr/Pea5QMd5mox4hNk8HBN6U63JEQkZBhFcYCBu8TMip+WKiGFykp2DSZUodbREREaq+qgts5N+Cc+7Rz7qV+bOPTzrmh8b6pmb3dzPYAFwK3mdmd/uOLzez28d73aBIUnOViIEEBOlqHG/LFe1UZ7obCTZP5OdxQOb8NxUV0cNJkoXBRvCNU8vF4wUZIs2BKSZkMdzg0akwkeH6i+W3wTgItipTkOtzKcIuIiEjtVBUpMbPTgL8HTih8jXPuNeN5U+fczcDNJR7fB1xW4vH7gfvH8171EhTczSU2H0K+MG0d5aTJ3L0S0BAbvegsOaXEf685TZUL7uBUynJRmKJNk0UH34wsuHNj/9KlxwIG6xotJhJESiITGAkYaI5H6C+xaVIdbhEREamlajPcvwC+gzeeLzPKtUJBh7tMVzrYXFhVh9ufIV24gbKcwvvFxxgpAa+TnMpkSkdKiuZwl85WF84Kj0VCo44FHK3DHdx7ohsmAVri4dIH32RUcIuIiEjtVFtwp51z367pSl5goqNmuIOxgKMX3NFwiMZouGLWORAOGTPiEXoT6aI53ABzmqt5L2MwVT4vHg4ZmawbNhYwv/mxsPgODrZJpEaeNAnen0FklA8R+UjJZHW40zjnMDMdfCMiIiJTotpg7G/M7K/NbJGZzQl+1XRlx7igyC0fKQkTi4SqOj0yFglVNRIwEHS5c5smg0hJc3zU1+Y+KJTIcEM+VlJqLGA8UvyhIBYZJVJSRYY73+GehAx3PEI663KFdkIH34iIiMgUqLbD/Wf+f/5DwWOOqTn85pgUj4Qwo2ShCfD7L1rEvJbRC2DId7irNbMxyt6uwVzxHOStq+tw+x8UynS4QyEgMyxS4t9/+CSSWCTEQDJN1pX+cxhLhnsix7oHWvwPP/2JNA3RsDrcIiIiMiWqKridcyfWeiEvNLFIiKYKMZCXnzSXl580t+p7OVd9wR1sxAyK1KDYnT3KpknIF8/lojBBhzsaGtnhbhg2iSQWDtE7lPbXMPJ+DdFw0SjCkuuZxAx38NOGvkSauS3xgqPdNaVEREREaqditWNmHy/4+sphz/1brRb1QhCLhEoejz4e8XB10ZNAa2OUWDiUK/ajVY4FhNHnh4dykZLCsYDe16U63LmCu8Qc7ve/6iS+8JazKq5nMjPcLX5MJtg4mdSUEhEREZkCowVj31nw9aeGPffGSV7LC0osHCpbtI7VFS9ZwjvOX1r19a2N0aIIRrVzuCHf4S6XPQ8mlRRmuId30nPvGwnlittSkZLli2ZyyRnzK6+nBh3uYDSgMtwiIiIyFUZrwVqZr0t9LwWWzWlissq4d16wbEzXX3x6cRGb3zQ5esE92nSVoPCNljj4ZnhspCUeYXt7P5DfwDlW+Qz3xDdNLpvTRMjgV2v2csGJc3KREnW4RUREpJZGK7hdma9LfS8FPvfms+r2B3TZOYu47JxFue9XHD+b1y6fX9XGy0iu4C7T4a4wpaRhWGzkhLnNPLS1Ayid4a7GZHa4j5/bzFUXncQ1D27n8nMW5TvcmsMtIiIiNTRawf1iM+vB62Y3+l/jf99Q05Ud40KTUCBOlkuXL+DS5QuqujYWNuIVDqQJGs3RooNv/Az3sKL6lPktua/LTWsZzWRmuAE++rrTuGn1Hn6xeo863CIiIjIlKhbcbiyjMeQFIRoOlc1vQ8Ec7qJTJ0tnuIsL7vH9Uwry4aMdkFOthmiYxbMaOTKQzB3tntKUEhEREamhyali5AUjMspmz/ymyRIZ7miFgrvElJJqhCcxUhKY1RSlsz9J0NhWh1tERERqSQW3FIlHQrkDYkrJbZosynCXjpTMnxFnhn+v8UZKgntPVqQEvIOBDvUkct8rwy0iIiK1NDmDouUF429fcyq9iVTZ5/ORksIMd+lNk2bGyfNbWLO7a9yRkpp0uBujtPflC251uEVERKSWVHBLkXOWtlZ8vtQc7nC49FhA8GIlXsE93rGAxYf3TIZZTdGiIlsnTYqIiEgtKVIiY5I72r3w4JtcpGTkP6cgxz2WkzILTeZYwEBrY7Toe3W4RUREpJbU4ZYx8evtokhJ/uCbkQX3lecvJR4JsWBmfFzvF65BhntWY/4AoFg4pJMmRUREpKZUcMuYlNw0GURKSnSx57bEee8rThz3+0VLTEWZqJkFHe7GWFgdbhEREakpRUpkTPIH0VTX4Z7w+wVzuCd5LGCgORZWh1tERERqSgW3jEmpo91zGe5x5rQrqUWGu7DgVodbREREak0Ft4xJPlIyRR3uGmS4CzdNNscjpDOaUiIiIiK1o4JbxqTU0e6N/smUMyocmDNe+aPda7NpsjGqDreIiIjUlgpuGZMgul24ifHEec1c/Z7zuXT5gkl/v1KZ8YlqiIaI+etvjkeU4RYREZGaUsEtY1JqSgnAG85aSKwGkZJaZLjNjFY/x60Mt4iIiNSaCm4Zk1CJo91rqRYZbvCOd4f8lBLnVHSLiIhIbajgljEp1+GulVpkuCG/cbIp5uXO1eQWERGRWlHBLWOS2zQ5iQfRVHy/XKRkct8vGA3Y5G/4TGc1qURERERqQwW3jImVmFJSS5FQbd4vOG2y2Z+sks6oxS0iIiK1UZeC28yuNLONZpY1sxUVrttpZuvNbI2ZrZrKNUppQWM7OkUd7iArPtmRkmA0YDA7XJNKREREpFYmf3BydTYAVwBXV3HtJc65jhqvR6qUG9M3RRnuWhztDvCWcxczoyGS++CgSSUiIiJSK3XpcDvnNjnnttTjvWViQnWKlEx2hvvc42bxd687LfcBQhluERERqZWjPcPtgLvMbLWZvb/ShWb2fjNbZWar2tvbp2h500++wz21myZrVeAH91WHW0RERGqlZpESM7sHWFjiqU87526p8javdM7tNbP5wN1mttk592CpC51z1wDXAKxYsULVU42UOtq9loLIR60iLLkOtzZNioiISI3UrOB2zr12Eu6x1//PQ2Z2M3ABULLglqkRys3hfoF0uMPqcIuIiEhtHbWREjNrNrMZwdfA6/E2W0odhc0wm9yj1iupVYY7ENxXU0pERESkVuo1FvDtZrYHuBC4zczu9B9fbGa3+5ctAB42s7XAE8Btzrk76rFeyQuFjOgUHesOynCLiIjIsa8uYwGdczcDN5d4fB9wmf/1duDFU7w0GUU4NHUjAQFa/INpggNqJpumlIiIiEit1WsOtxyjmmORXBE8FY6f28xPr3oZF5w4pyb3V4dbREREak0Ft4zJ+191Em85d/GUvufvnTKvZvfOd7hVcIuIiEhtqOCWMZnbEmduS7zey5g0wdHx6nCLiIhIrRy1U0pEpoLmcIuIiEitqeCWaU1zuEVERKTWVHDLtKYpJSIiIlJrKrhlWosoUiIiIiI1poJbpjVNKREREZFaU8Et05qmlIiIiEitqeCWaU0ZbhEREak1FdwyremkSREREak1FdwyrSnDLSIiIrWmglumNc3hFhERkVpTwS3TWrUd7l2HB/jLH61iMJmZimWJiIjIC4gKbpnWclNKMpU3TT624zB3bjzI9o6+qViWiIiIvICo4JZpLYiUjNbh7htKA9AzmK75mkREROSFRQW3TGvVTinpS/gF91Cq5msSERGRFxYV3DKtBRnunYcHuO7RnThXuvDOFdyDKrhFRERkbCL1XoBIPQUZ7l+s2k0663jNGfNZOrtpxHW9QaRkSJESERERGRt1uGVa8xvcuQz3hr3dJa9Th1tERETGSwW3TGtmlstxA6wvKLizWcc3freVnR399PnZbWW4RUREZKwUKZFpLxyygg53T+7x+589xFfufhazwg63IiUiIiIyNupwy7RX2OHesLc7t3Hy+w/vBODIQKogw60Ot4iIiIyNOtwy7QWTSha1NrC/e4j93UP0JdI8/FwHAEf6k8pwi4iIyLipwy3TXiTs/dfgtcsXALBuTze/XrOPcMhYNqeJzoGCgltTSkRERGSMVHDLtBd0uF+zfD7NsTAPPHuIh7a2c+5xszhxXjOd/cmCkybV4RYREZGxUcEt016Q4T5+ThOXnDGf29cfYN3ebi46dR5zmmPs7x7KbapUwS0iIiJjpYJbpr2gw72wtYE3nb2I7sEUzsFFp7YxuylGe28CgHktMXoT6VGPgRcREREppIJbpr1IyJjREKEpFuHi09uIR0LMaIjw4qWtzG6K5q5bPKsRIBcvGa/7thxixb/eTX9CeXAREZHpoC4Ft5ldaWYbzSxrZisqXDfLzG40s81mtsnMLpzKdcr0EA4Zi1obAGiOR/jz3zuB97z8eCLhELObY7nrFrd6BfdERwNu2t9DR1+Sgz1DE7qPiIiIHBvqNRZwA3AFcPUo1/0PcIdz7h1mFgOaar4ymXai4RBtM+K57z912fLc13MKC26/w909mOK4Cbxft58D71YeXEREZFqoS8HtnNsE3rHa5ZhZK/Aq4M/91ySB5BQsT6aZT77pDGY2Rks+N7upsOD2uuAT7XB3D6jgFhERmU6O5oNvTgTagWvN7MXAauDDzrn+Uheb2fuB9wMsW7ZsyhYpx76LT59f9rlSHe6JHu+uDreIiMj0UrMMt5ndY2YbSvx6a5W3iAAvAb7tnDsP6Ac+We5i59w1zrkVzrkVbW1tk/A7EKHkpskJd7hVcIuIiEwrNetwO+deO8Fb7AH2OOce97+/kQoFt0gtzCoVKZlgoZwruAdUcIuIiEwHR+1YQOfcAWC3mZ3uP3Qp8EwdlyTTUCwSYkY8QiwSYm5znJBBZ//EthJ0KcMtIiIyrdRrLODbzWwPcCFwm5nd6T++2MxuL7j0Q8BPzGwdcC7wb1O/WpnuZjfHmBGPEA4Zp86fwab9PRO6X48iJSIiItNKvaaU3AzcXOLxfcBlBd+vAcrO6RaZCrObYwQDdc5Z2sr9Ww7hnKs4ZWdf1yBv++YjXLp8Ph9/wxm5ed7pTJZe/8AbFdwiIiLTw1EbKRE5WixubWBeizen+8VLW+noS7KvO39ozcZ93dyyZm/Ra+7ZdJBDvQl+/uRuPnHTutzjPQWnVHap4BYREZkWjuaxgCJHhS+85SySmSwA5yydBcDPntjFI8918Lk3n8Xf/XwNOw73c86SVk5qawHgwWfbOW5OI69bvpAfP/587hj3wq72RDdfioiIyLFBHW6RUcyf2cDS2d4hp2csnEEkZHzj3ud4alcXV179KNs7+gmZ8e37t3HPMwfZtL+HR7cd5tWntfG6MxeQTGf57kPbecm/3M0Nq3YDMLc5pkhJFZxz9V7ClPjn3zzDz5/cVe9liIhIjajgFhmDhmiYMxbNAODPLjwe5xyvPq2NP3nZMn6xeg9XXbeKt/zvw/QnM7zq1DZWnDCb1sYoX7tnK4l0lvs2HwLguDlNdA+mePZgL+v2dFX9/t2DKXZ0lDz76QXnnmcOcv6/3vOCL0TX7O7i+4/s4Oan945+sUgZt6zZqw/xIkcxFdwiY3T5ixZzyeltfO7NZ3HnR17Ft//kJXzg4lO45PQ2/vmtZ7F0dhOxSIgLT55LNBziktO9g5hCBlsO9gJw/NwmBpIZPn7jOj52w9qq3nfN7i7e9LUHufzrDzGUyox53Q9tbefmp/fkvh9KZTjclxjzfQA27O1m9fOd43ptNR7ddpirrltFZ3+SX6/dV7P3ORr8773PAbDr8ECdVyLHqu3tfXz4Z2v433u31nspJT22/fC0aRSIlKOCW2SM/urVJ3Ptey8gFDJOamuhKRZhYWsD1773Av70whP41d+8gls/9EpmNHinVF510Um875Un8qZzFhEkJI6f40VU1u7pYufhftJ+RrycdCbLVT9cxZGBFP3JDBv3deeec85xy5q9/Nedm3l4a0fJ16/f081VP1zFZ27eQMp/r8//eiNv/J+HSKTzxfuh3iFe/9UHeGJH+WI6k3V84Cer+YvrVo+p8B9MZvj3327ixtV76EukK1774NZ2omHjXRcs48mdR8b1AWOsdncOcMOq3dy7+WDN3yvw3KFe7tl0kDnNMfb3DBX9XTjnGEzW/vctx77NB7wP8jc9tZdkuvL/lky15w/386f/9wRfvG1TvZcybX34Z0/zX3durvcypj0V3CKTrLUxymkLZuS+P3tJK5+9/EyWL8w/ttQvuJ2DVMaxt2sQgP3dg2w+MHLO95M7j9DRl+BTl50BwFPP52Mo9205xId/toZv3reNv7thTe7/cIdSGfoTaQaSaf7qx6txDvqTGdbv7aY/kebXa/fR3pvgnmcO5e718NYOnj3Yx6dvXp8rzLPZ4hz1fZsPsbtzkM7+JLev31/1n8u1K3dw9QPb+ftfrOWPv/d47v6lrN/TzRkLZ/J6PwO/aueRqt9nPDJZx+XfeJiP37iOv/7JU0WF71g8tLWdV/3nfVX/5OCmp/YSDhl/ffHJOAe7Owdzz92wajcv/eI9tPeO76cQR5PBZIa7nzlYt9NVb123j1vX7Rv1g+3RZCxr3eyfDdDZn+TuZ8b2gTGVyXLflkNksqX3S2Szjse3H66qkB9KZbhx9Z6ie/3b7ZtIZrKs2X2k5nsyOsb5E7sXst6hFLeu2891K5+fksaFlKeCW2SKnOoX4Y3RMG0z4kXPbe/oJ5N1vPfaJ3nnNY+N+B/GOzbspyEa4h3nL+W4OY08tStfgH7nge0sbm3ge3+6gvbeBL/dsJ97Nx/kVf95H2/6n4f46t3PsrdrkK+/6zzAi2vcvn4/A8kMjdEwP/c3cgKsev4IIYOth/r48p1b+NXTeznn83dy58YDbNzXzQd+vJov37WFhTMbOGleMz967HkA/uO3m3mXv+5VOzs5Muw0zu7BFFc/sJ1LTm/jK1e+mLW7u/jvu58t+efknGPdni7OXtLKBSfOIRo2Hn6udOd+suzo6KN7MMVrl89nKJVlzS7vA83uzgF+9sQutvpRoMBzh/r4yx+t4pv3PVf0+DfufY5dnQP8bvMhyslkHRv3ddM1kOSWp/dy0anzOG/ZbAB2deZ/7B78JODWdaUjNb/bdJBLvnw/B3uGSj4/VZxz9AyNLKSf3NnJUCrDmt1dvOzf7uEvrlvFx2+qLj5VKJXJ8uu1+3Ld/qeaNMgAACAASURBVCP9ST50/dM8s6+6A6gS6Qwf/flaPvjTp3n7t1YeE0X3L5/aw3n/cjdrdle3v2PzgV5OmNvE4tYGfrhyZ9WFrXOOT9y0jvde+yQ3rt494vmOvgTv+f7j/NE1j/GTx58f9X7ffdD7QP3g1nYA1u7u4s6NBzllfgsdfUn2HPE+UB7pT476U66xWreniwu+eA+/WDXy9wHQl0jziv+4l589Ubs9IUOpDJsP9FT8vW0+0MO/375pyvL2T+7sJJN19CbSPPBse8VrnXM8tevIpP/diEcFt8gUCbrerY1RWhu9uEks4v1XcHt7Pzes2s3mA710DaS4ff1+slnHQDJN92CKOzce5NWntdEUi/CSZbN52i8IV+3s5Ikdnfy/V57Ia86Yz4nzmvnMrzbw/36wipmNUfZ3D/Ldh3bwujMX8MazF3LGwhms3NbBDat2c8LcJq666EQe2trOPr/DvnrnEV55ahtvO3cxVz+4nY/8fA39yQzXPrKDr969lTs2HmDzgV7+/BUn8J4Lj+fpXV1876HtfPeh7Ty6/TB/dM1jvOM7j/KZWzYU/d6vfWQH3YMpPvb60/mD85fyzpcex3ce2MZdGw+M+HPa1TlAz1CaFy1tpTke4bxls3loa/7/KG5dt48v/GZj0YcS5xy/23SQ5w715YqN3Z0DPLS1nd2do2ejN+z1ire/fPXJhAwe3X4YgE/ctI5P/nI9r/vqg/zhdx7lzo0H+Onju3jT/zzInRsPcu0jO3Lvt3Ffdy6Kc++m0gX3yuc6ePm//47f//rDvPJL97Gve4i3n7eE4+d6P/F43s9xH+wZYtXz3oeqXw3bTJnNOlY+18GHrn+aHR39PLCl8v+JTgbnHBv2dtMzlOKWNXu59pEduee+dMcWVvzrPfymIGt/35ZDXPmdR/nGvVv5v4d3YObFg+7ceJAH/f/TD/7cEukMP3p0Jx+/cW3uOfA2AV7z4Dbe98NV/O31T3P1g9tIZbL89U+e4jdr9/G9h7ZXtfZn9vWQzGS57JyFrN/bzW0FP5XpS6T5/K83sq29L/fYvq7BET99uWHVbj53y4aSEZ++RHpE93colcn9d2qs7ttyiE/etJ7eofSID3TlbDnYy5mLZ/JXF5/MEzs7uXNj+S53R1+C/7xjM10DSb79wDZ++dReYpEQNz01ctPu1+55lid3HGFmQ4THt1fes9E7lOJ7D3v/LoL/fbr5ae/eX3zb2QC5RsGf/N/j/OF3Hi35k6SeodSIn6pV4zsPbCPr4Kt3P1uyk3v/lkPs7Rrki7dv4geP7OCNX3uQ7z64fdw/zQLvpxBBN38wmeGt//sIb/zaQ5z/L3fnfmrpnMv9b9APHtnB73/9Ya5+cDs3P7Wn7H0n08rnDhOLhJjTHOOWNXvLfhhbv6ebd333Ma741kref92qsj/xGAvnHPduPli032ft7i5uW1f5J6O7Owf4h1+sZX/3+P47dLTSHG6RKbJsjreZsrDgXnH8bDbs7WbLgR7u3dzOS0+YzeG+JN+87zn+684t7C84YOcTZ58OwHnHzeKWNfv44cqd/PfdzzJ/Rpx3XrCMUMj4i4tO4rO3bOCDl5zChy49hV8+tZev3LWFj7/Be+3LT5rLD1buBOBzbz6TS89YwDfufY4bV+/hzy48gS0He7n8RYv44GtO4S3nLmbt7m4c8PXfbcUM/ubiU3j3y5axcGYDqWyWG1fv4V9v20RjNMwbX7yQm5/ey+ymKHdvPEjXQJJZTTEGkxl+uHInl54xn7OXtALw+becxab9PXzk52v45V//HmcsnJn7fa7d4+XTz/GvffVpbfzXnVs41DPEjo5+PvKzNaSzji0Hevn+n7+UhmiYB7d28L4frgJgyaxGZjdHc0V0LBzifRedyEWnzuPlJ84lFMqfEOqcI5nJsn5vN/FIiPOOm8XZS1pZue0wF550mJXbDvPBS05hdnOM7z20nb/80WoALjp1Hr938jy+dMdmthzs5eS2Fr5697M0RsO8Zvl87t98iEQ6QzwSzr3XI8918N4fPMkJc5v46OtO4/sP76CjL8Hrz1xIQzREcyycK7h/u34/zsG7LjiO65/Yzbb2Pk5ua2HLgV6uuu5JdncOsqi1gVgkxGM7DvOHLz0O8LP+163inCWtXLp8AR+7YQ2fetNyXnvmAra19/H2bz7Cl698Ma8/ayHdgym+dd9zvOuCZZwwrxnwfhLxnQe2EQkZH3v96bm1/+TxXXzmV8Ufok6c18wp81v4/sM7CIeMD13/NLFIiFed2sZn/Wuvf2I3A8k07zh/KZ+9/ExWbuvgqutWcdqCFp471MelZywgk3XcsfEA0bBx35Z27vv7i9l6sJeP/HwNzkE4ZCyd3cgNT+4mmc7y6PbDnDivmbs3HWQolaFrIMXC1oay/70Lir/PXn4mzx7s49v3b6Mvkeasxa08+Gw7P1i5k8e2H+aWD76Czft7ueLbK5k/I86nf385l79oMc45/ueereztGuSx7Z1cunw+bztvCactmMHuzgHe9s1HSGcdbzp7IZeds4gZDRE+9cv17OocYOUnX8OspljZtQX2HBngC795hv3dg2zY28PJbc1cdGobP1i5k+cO9XHK/BYOdA+xYGZ8xAm3/Yk0zx8e4IrzlvLuC5bx48ee5x9+sZZP3LSOK16yhE9ftpxION9b+/yvN3Lruv2s3dPFkzuPcNk5Czlz0Uy+fNez7O4c4Dg/7jaYzHDL0/u4/EWLAG9fReEJu88e7OWHK3eyaucR5s+M0zWQonswxeymKE/vOkI6k+XWdfv5/+3dd3xUVdrA8d+ZSe89IQ0SCCVUIYWOAgqsKBYEsYIg+u6u7V11XV1dbLuvq4uoa2NdiooKCLoLKL1KSSChhYQESEJI771nzvvHTAZCk10NAXm+n08+mXvnzp0zM8/Mfc65z713TE8/BnX2xNHWyP6scmLDvDli2Tvx0rdHmBwVzMBQT4wGRWp+FZPe/4FwHxdeu70PAy17fs72dUI2f998jOqGZhZOj8HN0Ya1SfkMDvdiT3opX8Rl8dDwsDaPWXekAFcHG+oaW5izKhk/V3te/y6F4poG/jCh10U/n7rGFpbEnWTSgCD2pJfw/pbjBHk4Ep9ZSnQXLxZMj+a1NcmkFlTxxJgI3tl0jA1H8nlwaBdeXpXMol2ZjO7px5bUQsb09ONEUQ0bUgrwdLZjZWIOH903CEc740XbcKlyy+uYtzGNMB8XZo8MZ3d6CYNCPYnwd+HT3Sfp+eJa7o4O4akbu+PhZEd9UwuvrE7mi7gsvJztmBIVzLJ92czdkMoz43qSUVxDgJvDJbVPa83bG9KIyyjF3tbIqdJaMopr8HezZ/dzY2hsMfHo5wnkVdSz+WgwtY3N9AlyZ+bwMBxszes/WVLDtPl7yK2ox9fVnmfH9zzneaobmlmRkM2wbt5083M95/4rlXHOnDkd3Yaf3fz58+fMnj27o5shRBsGpViblI+7ky13Dgxm/vZ0bu4XSHVjCzuPF1NV38xf7uhHoLsj/zqYi5+bPbNHdmV0Tz8m9u3EpAFBGA0KOxsjS+Ky2JpaRLCnI18+PNhaotI32PzjdX0PP2wMBvoGuTNreDg+lvuNBsU3+3N4YkwEj47qioeTHfEZpexOL6FHgCv/OpDLY2O6EerlTJiPC0O6ehPm48yCnRkYlGLe3QMI9HBEKYWNwcDgcG++2Z/DzBHh/PHmXsSEeXFPbGc+23OSkupGlsRlsetECftPlfPGnf0I8nQEwMZoYHRPP1YmZrPmUB75lfW8tT6NX/XtxOqDuSTlVvLixEiMBoWLvQ1L4rII9HA0byjd7HlsdASfx2XRxceZyEA33t10jOyyOl6aGEl9Uwt1jSZmjQjj0VFdqWs2sSQuixWJOZwoqmZc7wAMSlFZ38S0f+zhs90nKa9txMvZnntiO5NZXMPapHwOZpejlOKj+wYRE+bFg0O7MDDUkxERvvxhQi+CPB1Z8EMGoV5OzN+ewcaUQn4/vidDwr1ZkZhDU7MJd0db/N0caGox8cCCeDydbFn+yFCiw7y4OzqUe2JCcXW0RSnF6kN5mLTmhp5+vPBtEr4u9vx1cj8W7z7JlqOFlNU28fw3h1EoXr2tDy9N7E1aQRUJJ8uZaUkuliec4pMdGcRnlLLqYC4FVQ2sO5LPoFBP3tt8nJT8KlILqhjdy5/7PoljXXIBeRV1jO3lz/tbjvPk0gP8cKyY+IxSfF3tiUsv5UhuBX9dm0r/EHcmDwrhnthQUvOr2JZWxO4TJeRV1rPuyZHsSS9hY0oBqflVxGWU8tsburEtrYhmk+ZPt/QmxMuJG3r4AebEfmCoJ6sP5XKssJoXJ0by2JgIFu7MJK+ini/is7A1GFj12HBmjQgnws+VpftOsTezjDsGBjF7RDjL9mWzJbWQN9YeZUR3X/62Po3fLT/ID8eKCfZ0tJ47f+HOTCrqmnjqxu442dnwRXwWm48W8u+DuSRmlRPi5cixwmqySmr5Zn8OLSaNt7M9KxJzuDe2MydLa/lg6wluGxBIUXUDG1MK+Twui/SiauZvT6eqvpkbevqxNimfZfuyWbr3FLWNLdQ2thDq5UzfYHfKaxvZllZEkIcjtsZzdywv2pXJF/FZdPVx4cEhXXhjcj8GdvZk8e5MGppNuDnaMm7edo4XVRPs4UhZbSM+LnYopTiSW8HSvaeYMawL3f1diQx0I7WgmnAfF1Ym5nC8qJqb+wXSYjIfXP3e5uP0DHBlf1Y5jrZGFkyPpru/Kwt2ZuLmYMvgcC8Ss8pYn1zAxpRC5tzaG0c7G1YdyuO264LwdLLj64RsZi3eR0p+JT0C3Kisa0IZFPfGhhLg7siOY0X0Cfbgi7gsnr6pO90D3NhxrIjsslq8nO1Yn1zAiAgfvkvKZ/m+bI7mVTIiwofZnybQ0GyiucXEtwdymBodygP/jKfFpK2d9eTcSh7+dB+BHo6U1pjLVBJPlnGiqIbljw4hOa+StUn53Bvb2boHsaG5hT+sPMzEfp24c1AwXX1dWDA9mrSCKjalFDJjWBhGgzrnc/lw6wkSTpbxzx8yWLQrk62phaxIzMHWRlFZ34yfqwNxGaV4u9jzzqZjPDIynGfG92TVwVyKqxvJq6jng60niOrsyc4TJfTq5MaiGdGUVDey6mAuu0+UcDS/ihaTZniEz0/exqTkVTLxvR9Iyqlkx7FiVh00f7+mRIXw8Ihw/Fzt8XaxZ+neU3yflE9koDuPfp7IlqOFzBoexof3D2Jiv0DyyutZuCuTrNJaXvgmiUPZFdw2IJDKumbsbQzndPpavbU+lb9vOYGHky2NzSaCPBwZGOrJ3swyRvf0Y82hPL5PyueGHr58l5RPeW0jG1MK2X6siKlRIWgNMxfvpaCqgTAfZ47kVjJ9aJc2z5dwspQpH+1mzeE8vozPorCqHhd7W+u2pSO8/PLLeXPmzJn/Y8vJCLcQl9H/3dEPgwG8Xex5ZVJvboz0p7CynoOnyunk7sDwbj7Ehnnh6WzHhD4BONuf+xWNDHTj378dBpjLVFpHBlq5nPWYM0d0R0T4kvDHsXi7nK4hnxIVwpNLDzDn38nYGhUDQjzaPD7A3YGp0SHY2xjp5N72R62rrwtxz4/B0daIUooREeZTIPYJcmN5QjYOtgbqm0wMCPEgukvb0Sp/Nwfm3x/FlI93M3+7uTzg012ZrE8uoF+Qu3Vj2auTK53cHXhj7VHqm0x8fP8gBoZ68MmOdNYm5TOxXyfWHylgQp8A7hvcmfsGd27zPEO7+fCnWyJZsieLtzemYWs08PCIcJ5beYhD2afP9nK/5XEju/vy8fZ0CqsaeP22Ptb319Zo4IaeftblgzwcCfNxZu6GNOqbTMy5JZLpw8Koa2zB08mWj7ens2hXJmseH0F8RilZpbUsmB6Fp7N5xNPOxoCdzenRz85eThzOMZ9NJrO4hgXTo/Fzc2DJrFh+vSSRdzYdIzbMi7fu6m8dhYwN8+a7w/nEWU67NndDGgNDPfC0dKS+fHgwL3x7mHv/GYfWMKizJwknyxj39nYUMLaXP+uTC5ixKJ496aWM7eXPY6O78crqZF745vSItr2Ngbfu6k9nb/NIuJujLTMW7iWvoo5nx/Wgi48zL02M5J5P4sguy+HJsRE8PjqC75LyaDFpBoaaY6qLjzMvToy0rveuqBByyuuYPCgYgDuuC2Ll/hzsjAY+vn8QYZaRd18Xe7yd7VAKXpoYiZOdDW4ONhzJrcTOaOCxL/aTU17HsG7eZBbXMnX+HgaEeHDnoGAOnCq3xvTt1wVhZ2Mg0N2BZ74+REZxDcvvGcKG5ALmbUzDpGHe1AH0CHBlwjs7WLQr0xqHz03oRYC7A2U1jby5PpUNyQW0mDQf3DuI4RE+1DW2EJ9ZSkVdE4M6e/Lggni+3Z/DyO4+PLAgnvSiGlwdbJh/fxRDunoD5uSxq58z29OK6BvkzpezB1vfGwdbI+N7B7D6UB41Dc3YGQ18fzjPujs+3MeZnp1cySk37wXraTkoe1BnL5Y9MgQw75mauyGNpXuz+Hh7OulFNXT3d2Hlr4fy6uoUhnfzwd/NvHdgbC8/a5nOO5vMpxcM83EmJswLL0vM7s0spbKuiaeXH2RoV2/enXYdPi5tj0dZtu8UX8Zn8drqZFwdbLje0smK7uLFh9tOsCTuJN7OdiyeEUNaoTnhfXNdKutf2QDAPx6IwtHWyH3/jOOhRXtJOFnG4ZwKhnXzISmngtfWpODhZMvih2JYvCvT2tbHx0Tg5+bA0zf14PYPdrFoVyaPjAxn3sZjbEktpLqhmXG9A9p8h+8aFMK6IwVsOVrI2F7+HM6pwKAU3fxc2HzU3JlrNS0mhOX7svFwsmXFo0PxczPHwuC/bOLFb5MIcHPgybHdLe+lPwt2ZhCXXsrN/Trx92nXkZRTSYiXI052NtwY6c9H205QVttETBcv/rEjnfF9AnB1sGHhzgwKKxuYMSyMYE9H4jNKuWNg0DlJbotJs+VoIYlZZUyLCSXY05HX1iRjZ2Ng3ZMj2X+qnBUJ2fi62DOxfyDeLvbMGhEOwN3RITywIJ4pH+/Gw8mWhTOirZ1hgNdu70NeZT0rE3MI8nBkW1oR934Sx64TJQR5OHJXVDD3De5MdX0zi3Zl4mBrpK6xmcW7TzItJpQ/397H2t6ymka+PZDDZ3tOsv5IPtf38GXhjBhKaxrxdLLly/hTPP/NYTYfLaS0ppHErHLenNwPreHZFebf6P6W729WSS2zFpvLJRfNiGb1oTyW78vm8z1ZfD4z9mfptLQn9Uu8kltUVJTet29fRzdDiEvy3qZj/G1DGr+5oSvPjDt391l7q29qIfbPmzBpzV/u6MvEfoE/eZ3xGaXsSS9h5vAwfjheTHd/V2vydLaEk2W0mDTzNqaxJ70Ek+acDcDz3xzmi7gsRnb35dOHYgB4edURlsRl8dptfXj260N8+lAMI7v7XrRd7246xtsb09AaXO1tmDt1AG+uO0paQTVv3NmXqdGhaK05kltJhL9Lm5KQ83nhm8Msicti8qBg3rqrv3V+aw3vnR/uwtXBlrLaRiL8XFjxP0MvODr0l+9T+HhbOnZGA29N6c+t/U9/DrWNzdQ2tpyT3KTmVzFu3nbrtIu9DZ/NjKF/sAfVjc24OdhS3dDMvA1ppORXMv/+KCa9v5Pq+mYWzojGx8WeYW9sprHZxB9v7mXdIGeX1fLRthNMjQqltbmtI4ytsstq8XN1sCakAK+tTsbWxsCz43qglCKzuIYWrenq63LR97FVQ3MLOWV1+Ls5nNPZ3J9Vhp2Ngd6B5nZ8tjuT4upGAj0c+P2Kw4T7OvP9EyMwmWDx7kzWHMrjcI65Q/XchJ48Oqprm/WVVDeQXlxDdBcvwHxu+QOnyrk3NhSlFLMW7yXeMnrpZGdkzeMjLuk1tGotC3O2M2IwKP54cy8+2HoCo0Gx7smRbEop5NHPE/hV3wDWHSngf0Z15elxPdqsY1taEQ8uiAfgjoFBzBweRm55PcXVDaxNyudUWS32NkaiOnvy8q2923SuARqbTdz09jYyS2pxsbfhz3f05aZI/3M66WBOZm58exsNzSaGd/NhTC8/+od4MDDUE5NJM/C1DUR19qKirpGM4hq2PnPDOZ17MJ/qcuxcc0z++fa+3BMban2/x87dRlltE7f0D+Q9y0HcAGuT8knJq2RoV29iw73RWjNu3nbSCqrpG+TO8cJqGi310l19nXnzrv4MDPWkrKaRYW9sJtDDkTWPD7d+X2ct3sf2Y0WEeTuTWlDFwFAPQryceHNy/zbx2txiYvBfNmNrVCgg11LCZ2c0YDQoIvxdePnW3hRUNjC+TwD7s8pwdbClm9/peH5uxSG+2nuKuVP6c8dAc8cxznI8i4u9DZt/Nwo/t7YlTyaTZvgbm4kMdOdvd/XnV+/uoNlkwqShur4ZZ3sjFXVN2BkN1DS28Nc7+zElOgStNcXVjdjbGpi1eJ/1mBEXextGdfdlzeE8/nRLJDOGtS2nOZ/4jFK+2pvF727qQZDHuaPDtY3NbEop5MZIf6Z+vJuD2RXcHR1CfmU9W884bsTOaKBFa1pMmoeGhfHCzb3O2Vswbf4edqeX4GhrZPXjw9v8HjS1mBj11y042duQX1FPzwBXlj0yhKr6ZqJe34CXsx1uDrbYGA0cL6zCyc6Gb38zzLo9qWloZsI7O3CwNfDd4yPalE9dLkqpBK111I8uJwm3EB1r13FzXev3T4ywjiBebpnFNTjb25xz9pTLaUtqITMW7m2TVLfadbyYBxfGs+yRIdYzerRu1AwKgjwd2fK76y/pxzbhZBmrD+Xy8IhwAj0c+e5wHr/9IpH1T41qsyG9FEk5FSzYmcGrk/qcd2/EuiP5PPHVfkZ19+X343sSfpHE81RpLeuO5HNr/8BzNtAXYjJpbv9gJ35uDvx+fA9CvJx+tJNQUduE0aisydKCHzIor2viqbERF+wMXMlaTOa60Ql9A6zJOJjfm1dWJ7N4dybf/nqYdZTsUh0vrOLRzxM5XljNk2MjrKOXlyq3vI5J7+8kNsyL/72xO+G+LmxKKWDm4n2M7x3AD8eLaWwxWQ+4XPbIEGLCvNqsozUhLK5uuKQO5flsTS3k+ZWHmTt1AIPDvS+67Ge7M1m67xSLZ8S02QsG8MqqZBZYDpZ9/fY+3Bvb+TxrML/vMX/eRN8gNxZMj24TUysTs/nfZQd5667+1r0aF7Js7yl+v/IQyx8ZQlZpLdvSihjfO4Cbege0SehS8irxdrHDz/X0d6agsp55G4+xP6uM+4d0vmBbz3zNIZ5OjO3lj7O9kYSTZRzJreSVSX1+9DehsKqe7w/nc//gztYOT3OLickf7ebu6BDujgk97+OKqxtwsjPiZGdDcm4ld364C0c7I0tnD8bPzYGnlh6gxaSpbmjmWEEVT4ztzqqDuRw4VY6d0YBG8+qkPgwO9+a1NSnszyojwN2Bb349rE2n4udQUt1Abnk9fYPN36+knAp2nSjGxmDgV3070dRiIrOkxrqH82yLdmYwZ1WydVDjbP/Yns7r36UQ4efCZzNjrcdkmEt6SrExGGhobqFHgBt3DAxqc9pdMJ/F69HPE3l1Um/uH9LlZ33tl0ISbkm4xVWkxaTPW0N4LdFas3BnJuP6BFxwxMXJ7nRS22LSjHpzC052RhbOiDnvYy5VWU2jtdTj53bmgWbi8modEfxvO5Ktezu6+bmcd1T4v1nf7M8S2JpaSDc/V96c3I9p8/eggf0v3Xje+u65G9JYdTCXDU+N7JDRu1Zaa3Zbjsd4ZGT4RdtSWFmPu5PtOZ2/1tPO9Q/2+NHXorX5+gSttfi/dGkFVTjb25zzO5ZeVM1t7++ksr6ZQHcHpkaHkl9Zz8R+nRjW7couoWjV2GwiMauM2DCv8/4W1je1sHTvKSYNCLykg4zPprXmxX8lcUu/QGJ/pFPZHiThloRbiF+8iromnOyM501UhLhSndkJW5uUT2Vdk/VMM+dbFpBO2zWstrGZhibzwbPX+sDMlehSE245aFIIcdVqPb2iEFeTM5Pn8X0CLnlZcW1ysrPhvxj4FVcYGRYSQgghhBCiHUnCLYQQQgghRDuShFsIIYQQQoh2JAm3EEIIIYQQ7UgSbiGEEEIIIdqRJNxCCCGEEEK0I0m4hRBCCCGEaEeScAshhBBCCNGOfpFXmlRKFQEnL/PT+gDFl/k5xdVBYkNciMSGuBCJDXExEh9Xjs5aa98fW+gXmXB3BKXUvku5tKe49khsiAuR2BAXIrEhLkbi4+ojJSVCCCGEEEK0I0m4hRBCCCGEaEeScP985nd0A8QVS2JDXIjEhrgQiQ1xMRIfVxmp4RZCCCGEEKIdyQi3EEIIIYQQ7UgSbiGEEEIIIdqRJNw/kVJqvFIqVSl1XCn1XEe3R1x+SqkFSqlCpVTSGfO8lFIblFLHLP89LfOVUupdS7wcUkoN7LiWi/amlApRSm1RSiUrpY4opZ6wzJf4uMYppRyUUvFKqYOW2HjZMj9MKRVniYGlSik7y3x7y/Rxy/1dOrL9ov0ppYxKqf1KqdWWaYmNq5gk3D+BUsoIvA9MACKBaUqpyI5tlegAi4DxZ817DtiktY4ANlmmwRwrEZa/2cCHl6mNomM0A7/TWkcCg4HfWH4jJD5EAzBaa90fGACMV0oNBt4A3tZadwPKgJmW5WcCZZb5b1uWE79sTwApZ0xLbFzFJOH+aWKA41rrdK11I/AVMKmD2yQuM631dqD0rNmTgMWW24uB286Y/6k22wN4KKU6XZ6WistNa52ntU603K7CvPEMQuLjmmf5jKstk7aWPw2MBr62zD87Nlpj5mtgjFJKXabmistMKRUM3Ax8YplWSGxc1STh/mmCgFNnTGdb5gnhr7XOs9zOB/wttyVmrlGW3bzXAXFIfAisJQMHgEJgA3ACKNdauYzq5QAABINJREFUN1sWOfPzt8aG5f4KwPvytlhcRvOAZwGTZdobiY2rmiTcQrQzbT73ppx/8xqmlHIBVgBPaq0rz7xP4uPapbVu0VoPAIIx7zHt2cFNElcApdREoFBrndDRbRE/H0m4f5ocIOSM6WDLPCEKWksBLP8LLfMlZq4xSilbzMn2Eq31SstsiQ9hpbUuB7YAQzCXEdlY7jrz87fGhuV+d6DkMjdVXB7DgFuVUpmYS1VHA+8gsXFVk4T7p9kLRFiOHLYD7gb+3cFtEleGfwMPWm4/CPzrjPkPWM5GMRioOKO0QPzCWOoo/wmkaK3nnnGXxMc1Tinlq5TysNx2BG7EXOO/BZhsWezs2GiNmcnAZi1XrvtF0lr/QWsdrLXugjmv2Ky1vheJjauaXGnyJ1JK/QpzrZURWKC1fr2DmyQuM6XUl8D1gA9QAPwJ+BZYBoQCJ4EpWutSSwL2d8xnNakFZmit93VEu0X7U0oNB3YAhzldi/k85jpuiY9rmFKqH+YD3YyYB7+Waa1fUUqFYx7V9AL2A/dprRuUUg7AZ5iPAygF7tZap3dM68XlopS6Hnhaaz1RYuPqJgm3EEIIIYQQ7UhKSoQQQgghhGhHknALIYQQQgjRjiThFkIIIYQQoh1Jwi2EEEIIIUQ7koRbCCGEEEKIdiQJtxBCXOGUUi1KqQNn/D33X65nq1Iq6udu3yU8721KqcjL/bxCCHGlsPnxRYQQQnSwOsslwK9WtwGrgeSObogQQnQEGeEWQoirkFJqvFJq+RnT1yulVltuf6iU2qeUOqKUevkS1hWtlNqllDqolIpXSrkqpRyUUguVUoeVUvuVUjdYlp2ulPr7GY9dbbk4B0qpaqXU65b17FFK+SulhgK3Am9aRue7/sxvhRBCXPEk4RZCiCuf41klJVOBjUCsUsrZssxUzFehA3hBax0F9ANGWa5qeF5KKTtgKfCE1ro/MBaoA34DaK11X2AasNhyRbuLcQb2WNazHXhYa70L86Wnn9FaD9Ban/gvXr8QQlzVJOEWQogrX50lWW39W6q1bgbWArcopWyAm4F/WZafopRKxHz5597AxeqnewB5Wuu9AFrrSsu6hwOfW+YdxXwJ+u4/0s5GzKUjAAlAl//wdQohxC+S1HALIcTV6yvgt0ApsE9rXaWUCgOeBqK11mVKqUXAj41M/yeaaTtYc+a6m7TW2nK7BdnGCCEEICPcQghxNdsGDAQe5nQ5iRtQA1QopfyBCT+yjlSgk1IqGsBSv20D7ADutczrDoRals0EBiilDEqpECDmEtpZBbj+B69LCCF+USThFkKIK9/ZNdz/B6C1bsFcwjHB8h+t9UHMpSRHgS+AnRdbsda6EXP993tKqYPABsyj1h8ABqXUYcw13tO11g2W9WVgPuPIu0DiJbT/K+AZy8GXctCkEOKao07v/RNCCCGEEEL83GSEWwghhBBCiHYkCbcQQgghhBDtSBJuIYQQQggh2pEk3EIIIYQQQrQjSbiFEEIIIYRoR5JwCyGEEEII0Y4k4RZCCCGEEKId/T+QLCT/VCAnjwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 4)\n", - "pylab.plot(counts1, values1)\n", - "pylab.xlabel('Eval count')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Convergence with noise');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Declarative approach and noise model\n", - "\n", - "Note: if you are running an experiment using the declarative approach, with a dictionary/json, there are keywords in the `backend` section that let you define the noise model based on a device, as well as setup the coupling map too. The basis gate setup, that is shown above, will automatically be done. Here is an example of such a `backend` configuration:\n", - "```\n", - " 'backend': { \n", - "\t 'provider': 'qiskit.Aer',\n", - " 'name': 'qasm_simulator',\n", - "\t 'coupling_map_from_device': 'qiskit.IBMQ:ibmqx4',\n", - " 'noise_model': 'qiskit.IBMQ:ibmqx4',\n", - " 'shots': 1024\n", - "\t },\n", - "```\n", - "\n", - "If you call `run_algorithm` and override the `backend` section by explicity supplying a backend instance as a parameter to run_algorithm, please note that you can provide a QuantumInstance type there instead of BaseBackend. A QuantumInstance allows you to setup and define your own custom noise model and other run time configuration. \n", - "\n", - "(Note when a BaseBackend type is supplied to run_algorithm it is internally wrapped into a QuantumInstance, with default values supplied for noise, run time parameters etc., so you do not get the opportunity that way to set a noise model etc. But by explicitly providing a QuantumInstance you can setup these aspects to your choosing.)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/qiskit/vqe_convergence.ipynb b/qiskit/vqe_convergence.ipynb deleted file mode 100644 index 1f720d96a..000000000 --- a/qiskit/vqe_convergence.ipynb +++ /dev/null @@ -1,247 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## _*VQE; using its callback to monitor optimization progress*_\n", - "\n", - "This notebook demonstrates using Qiskit Aqua's VQE algorithm to plot graphs of the convergence path to ground state energy with different optimizers.\n", - "\n", - "This notebook uses the callback capability of VQE to capture information at each objective functional evaluation where it is computing the energy using the parameterized variational form. While the params themselves are also part of the callback we are only interested in the energy value here to plot the convergence. \n", - "\n", - "Note: other variational algorithms such as QAOA and QSVM have similar callbacks." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pylab\n", - "\n", - "from qiskit import BasicAer\n", - "from qiskit.aqua import Operator, QuantumInstance, aqua_globals\n", - "from qiskit.aqua.algorithms.adaptive import VQE\n", - "from qiskit.aqua.algorithms.classical import ExactEigensolver\n", - "from qiskit.aqua.components.initial_states import Zero\n", - "from qiskit.aqua.components.optimizers import COBYLA, L_BFGS_B, SLSQP\n", - "from qiskit.aqua.components.variational_forms import RY" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "First we create a qubit operator for VQE. Here we have taken a set of paulis that were originally computed by qiskit-chemistry for an H2 molecule." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "pauli_dict = {\n", - " 'paulis': [{\"coeff\": {\"imag\": 0.0, \"real\": -1.052373245772859}, \"label\": \"II\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.39793742484318045}, \"label\": \"ZI\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.39793742484318045}, \"label\": \"IZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": -0.01128010425623538}, \"label\": \"ZZ\"},\n", - " {\"coeff\": {\"imag\": 0.0, \"real\": 0.18093119978423156}, \"label\": \"XX\"}\n", - " ]\n", - "}\n", - "\n", - "qubit_op = Operator.load_from_dict(pauli_dict)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now we loop over the set of optimizers. The defaults for maxiters/evals for the respective optimizers is more than sufficient to converge the above H2 problem so we do not need to add any logic to set accordingly." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization complete \n" - ] - } - ], - "source": [ - "optimizers = [COBYLA, L_BFGS_B, SLSQP]\n", - "converge_cnts = np.empty([len(optimizers)], dtype=object)\n", - "converge_vals = np.empty([len(optimizers)], dtype=object)\n", - "num_qubits = qubit_op.num_qubits\n", - "\n", - "for i in range(len(optimizers)):\n", - " aqua_globals.random_seed = 250\n", - " optimizer = optimizers[i]()\n", - " print('\\rOptimizer: {} '.format(type(optimizer).__name__), end='')\n", - " init_state = Zero(num_qubits)\n", - " var_form = RY(num_qubits, initial_state=init_state)\n", - "\n", - " counts = []\n", - " values = []\n", - " def store_intermediate_result(eval_count, parameters, mean, std):\n", - " counts.append(eval_count)\n", - " values.append(mean)\n", - " \n", - " algo = VQE(qubit_op, var_form, optimizer, 'matrix', callback=store_intermediate_result)\n", - " backend = BasicAer.get_backend('statevector_simulator')\n", - " quantum_instance = QuantumInstance(backend=backend) \n", - " algo_result = algo.run(quantum_instance)\n", - " converge_cnts[i] = np.asarray(counts)\n", - " converge_vals[i] = np.asarray(values)\n", - "print('\\rOptimization complete ');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now from the callback data we stored we can plot the energy value at each objective function call each optimzer makes. An optimizer using a finite difference method for computing gradient has that characteristic step like plot where for a number of evaluations it is computing the value for close by points to establish a gradient (the close by points having very similiar values whose difference cannot be seen on the scale of the graph here)." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAHwCAYAAACVL7i5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYXHWZ9//PXXunlyQkISsQCBC2QIBWH9wIovwQh0FQBtRxxJnRx4VxHFccxkdUGFFmfjwu48ygjBsziOIgisyoGUAEFEwAgQBhR7ISQpJOL7V/nz/Oqerq6qru6u5zTpOu9+u6+rKr6tSpU9XN5afv3N/7a845AQAAAAhHbLovAAAAAJjJCNwAAABAiAjcAAAAQIgI3AAAAECICNwAAABAiAjcAAAAQIgI3ADQ5szzLTPbZWb3TPf11DOzvzWzb073dUyWmb3DzH4xyee+xsw2Bn1NAKJlzOEGIElm9oykhZJKNXd/2zl34fRcEaJiZq+RdK2klc65gem+nn2ZmS2X9LSkpHOuOL1XA+ClIjHdFwDgJeVM59zaMF/AzBLtEkT2ofd6kKRnJhO2w36P+9BnuM/gMwWiR0sJgHGZ2QVmdoeZ/YPfdvC0mb2x5vHZZna1mW01s81mdqmZxWuee6eZXWlmOyVdYmZxM/tHM3vBP9eFZubMLGFm55rZ+rrX/4iZ3djk2vbz2yG2+Nf245rH3mNmT5jZi2b2EzNbUvOYM7P3mdnjZrbbzP7Jb61I+7ePqTl2gZkNmdn+/u0/MrP7/ePuMrNja459xsw+aWYPSBrw39MJZnafme01sx+a2XVmdmnNc8Y738fM7AEz2+M/N1Pz+Fn+c/vM7EkzO328n0nd5/cXkr4p6SQz6zezz7b42X3QzB6X9HiDc/6XmV1Yd9/vzewc//svm9lz/jWv9yvsleMuMbPrzewaM+uTdIF/3zU1x/yxmW3wP6/bzOzIums7tOb2tyuftZnNN7Ob/Oe9aGa/NrOG/z9oZq80s9/5n/nvzOyVNY/dZmZfMLN7/Pdwo5nt5z98u/+/u/3P8yTz//upu8YP+L97e83s82a2wv/Z95nZD8ws5R+7xsw2+d+f55+z8pUzs9v8x9Lm/ff5BzPbbmb/YmYdtefwfy+3SfrWRD4LAAFwzvHFF198SdIzkl7f5LELJBUkvUdSXNL7JW3RcFvaDZL+VVKnpP0l3SPpf9c8tyjpr+T9q1qHpPdJeljSMklzJa2V5PzH05JelHRkzevfJ+ktTa7tZ5Ku88+TlHSyf//rJL0g6QT/nF+VdHvN85ykmyTNkXSgpB2STvcf+zdJl9Uc+0FJ/+1/f7yk5yW9wv8s3uV/dumaz/F+SQf47zUl6VlJf+1f3zmS8pIuncD57pG0RNJ+kh6R9D7/sZdL2iPpDfIKKEslHTHez6TJz/eOmtutfHa/9K+no8H5/kzSnTW3j5K0u+Y9/amkef7P+6OStknK+I9dIu937c3+e+rw77vGf/xwSQP+e05K+oSkJySlaq7t0JrX/nbNZ/0FSf/iPy8p6TXyf4frrn8/SbskvdO/xrf5t+f5j98mabOkY/zP90c117fcv4bEGJ+vk3SjpB5JR0vKSfofSYdImi3vv413+ceukbSpwTX2+L8Llf/OrpT0E//auyX9VNIXas5RlPRF/+fZ0epnwRdffAXzNe0XwBdffL00vuQFu34/GFW+3uM/doGkJ2qOneWHhkXy+r5zqglefkC5tea5f6h7rVtUE/4kvb42pEj6Z/mB1w8ku+SHtbrzLJZUljS3wWNXS/pSze0ueUFuuX/bSXp1zeM/kHRRzfU8WfPYnZL+rObaPl/3Whs1HPSfkfTnNY+91g9nVnPfHRoOga2c709rHvuSpH/xv/9XSVc2eO9j/kwaHH+BRgbCVj67143xu9QtLxQf5N++TNK/jXH8LknH+d9foppwX3NfJdB+WtIPah6L+Z/vmppraxa4Pycv6B7a7Fr8494p6Z66+34j6QL/+9skXV7z2FHy/oiKq/XA/aqa2+slfbLm9j9K+r/+92tUF7j993yTpH/2b5v/ea+oOeYkSU/XnCMv/4+aiXwWfPHFVzBf/PMRgFpvds7Nqfn6Rs1j2yrfOOcG/W+75PX/JiVt9f95ere8ILh/zXOfq3udJXX31T/+HUlvNzOTF35+4JzLNbjeAyS96Jzb1eCxJfIqy5Vr7pe0U14VeNR7kjTovx9JulXSLDN7hXmL4FbLqxhL3vv9aOW9+u/3AP/1Gr2fJZI2O+dck8dbOV+z6zxA0pMN3nsrP5OxtPLZ1f/Mqpxze+X9y8P5/l1vk/Tvlcf9FplH/HaN3fKquvNbOXeDayv7xy9t+oxhV8irhv/CzJ4ys4taeQ3fs2r+/p+V93nPV+u213w/1OB2l5q7TN4fNR/yby+Q90fw+pqf93/791fscM5la263+lkACACLJgFM1XPyqqnzXfOFWPXjkLbKayepOGDEwc791szy8v6Z++3+V7PX3s/M5jjndtc9tkVe8JQkmVmnvDaGzWO8l8rrl8zsB/KC4nZJN/khsvKalznnLhvrFDXfb5W01MysJnTXBuVWztfMc5JWNLl/vJ/JWFr57MYbcXWtpM+Y2e2SMvL+iKlMRPmEpFMlbXDOlc1sl7wqbSvn3iJpVc21mbzPs3Jtg/LCZ8UiSZuk6h8CH5X3B84xkm4xs9855/6nwWscVHffgfJCbMUBdY8V5LXh1P5eB87Mzpf3e/ky51zBv/sFeSH9aOdcs9/vEZ/pBD4LAAGgwg1gSpxzWyX9QtI/mlmPmcX8BWAnj/G0H0j6azNbamZzJH2ywTHflfQ1SQXn3B0NHq+89n9J+rqZzTWzpJm91n/4WknvNrPVZpaW9PeS7nbOPdPiW/sPSedJeof/fcU3JL3Pr36bmXWa2ZvMrLvJeX4jb9TiheYtoDxLXu/1ZM9X62r/PZ7qf+5LzeyISf5Mak31s5Okm+WF1s9Jus6vREteZbYor2c+YWb/R14/cqt+IOlN/ntOyguNOUl3+Y/fL+9fR+LmLSCtvmfzFqce6of0PfJ+LmWNdrOkw83s7f7P7Dx5bSM31Rzzp2Z2lJnN8t/j9c65kv++yvL6sQNlZsfL66d/s3NuR+V+/7P9hqQrbXhh71Iz+//GOFernwWAABC4AdT6ad0UhBvGf4okb5FcSt5ir12SrpfXX93MN+QFwgfkLYi8WV4Iq50B/j15i9KuGfXskd4pr7r4qLzFhx+WJOeNN/y0vAVtW+VVgs9vco5RnHN3y+uLXSIv1FfuXydv8ejX5L3XJ+T16DY7T17eQsm/kNcX/6fygltuMuerO/c9kt4tb8HcHkm/0nBldqI/k9rzTumz88+Rk/Sf8vrha/9g+bm8SvFj8loxshq7haT+vBvlfYZflVfZPVPeOMu8f8hf+/ftlvfH0o9rnn6YvAW6/fL+EPq6c+7WBq+xU9IfyQvzO+VV5P/IOfdCzWHfk9cfvk1eBf9D/nMH5bV83Om3d/yvVt9bC86Stzj4jpr/Riu/m5+U97vzW/Omu6yVtHKMc7X0WQAIBhvfAJh25o0Y/BfnXG0bQ4e8AH2Cc27U6Ll9mZndLe/9fmu6rwUTZ94ovmucc/vs7pcAokWFG0DkzKzDzM7w/7l+qaTPaHhRYsX7Jf1uJoRtMzvZzBb57/ddko7VyH5gAMAMxqJJANPBJH1W3vzsIXkTLf5P9UFvm3mTN4t5Jlgpr/e4U9JTkt7q91kDANoALSUAAABAiGgpAQAAAEJE4AYAAABCNCN7uOfPn++WL18+3ZcBAACAGWz9+vUvOOcWjHfcjAzcy5cv17p166b7MgAAADCDmdmzrRxHSwkAAAAQIgI3AAAAECICNwAAABCiGdnDDQAA0M4KhYI2bdqkbDY73ZcyI2QyGS1btkzJZHJSzydwAwAAzDCbNm1Sd3e3li9fLjOb7svZpznntHPnTm3atEkHH3zwpM5BSwkAAMAMk81mNW/ePMJ2AMxM8+bNm9K/FhC4AQAAZiDCdnCm+lkSuAEAABCKbdu26fzzz9eKFSt04okn6owzztBjjz2mDRs26HWve51Wrlypww47TJ///OflnJMkffvb39aCBQu0evVqHX300XrrW9+qwcFB/fKXv9RJJ51UPa5UKun444/XXXfdpUsuuUT/8A//0PAafvzjH8vM9Oijj0b2vusRuAEAABA455zOPvtsrVmzRk8++aTWr1+vL3zhC9q+fbv++I//WBdddJE2btyo3//+97rrrrv09a9/vfrc8847T/fff782bNigVCql6667Tm94wxt00EEH6eqrr5YkffWrX1Vvb69e+cpXjnkd1157rV796lfr2muvDfX9joXADQAAgMDdeuutSiaTet/73le977jjjtNjjz2mV73qVTrttNMkSbNmzdLXvvY1XX755aPOUSwWNTAwoLlz50qSrrzySn3hC1/Qhg0b9LWvfU1f/OIXx7yG/v5+3XHHHbr66qv1/e9/P8B3NzFMKQEAAJjBPvvTDXp4S1+g5zxqSY8+c+bRYx7z0EMP6cQTTxx1/4YNG0bdv2LFCvX396uvz7vO6667TnfccYe2bt2qww8/XGeeeaYkafHixfrwhz+sk046SV/5yle03377jXkNN954o04//XQdfvjhmjdvntavX9/wmsJGhRsAAAAvKZWWkm3btmnVqlW64oorqo998IMfVKlU0gUXXDDuea699lqdf/75kqTzzz9/2tpKqHADAADMYONVosNy9NFH6/rrrx91/1FHHaXbb799xH1PPfWUurq61NPTM+J+M9OZZ56pr371q7roooskSbFYrKWpIS+++KJuueUWPfjggzIzlUolmZmuuOKKyCe4UOEGAABA4F73utcpl8vpqquuqt73wAMPaOXKlbrjjju0du1aSdLQ0JA+9KEP6ROf+ETD89xxxx1asWLFhF//+uuv1zvf+U49++yzeuaZZ/Tcc8/p4IMP1q9//evJvaEpIHADAAAgcGamG264QWvXrtWKFSt09NFH61Of+pQWLVqkG2+8UZdeeqlWrlypVatW6WUve5kuvPDC6nOvu+46rV69Wscee6zuu+8+ffrTnx739S699FItW7as+nXttdfq7LPPHnHMW97ylmlpK7HKLMOZpLe3161bt266LwMAAGBaPPLIIzryyCOn+zJmlEafqZmtd871jvdcKtwAAABAiAjcEbv/ud067rO/0Av9uem+FAAAAESAwB2xx7fv1Z6hgjbtGpruSwEAAEAECNwRG8yXJEl7s4VpvhIAAABEgcAdsf5c0fvfbHGarwQAAABRIHBHbDDvBe29BG4AAIC2QOCO2EDObynJEbgBAADaAYE7YsMVbnq4AQDAzNXV1dXScZdccomWLl2q1atX64gjjtD73/9+lctlSdIFF1yggw8+WKtXr9bq1av1la98RZLU39+v97///VqxYoVOOOEEnXjiifrGN74hSSqXy/rQhz6kY445prqpztNPP9309ZcvX65Vq1Zp9erVWrVqlW688cYpvvPREoGfEWOqVLjp4QYAAPD8zd/8jT72sY+pXC7rta99rX71q1/plFNOkSRdccUVeutb3zri+L/8y7/UIYccoscff1yxWEw7duzQv/3bv0nydqncsmWLHnjgAcViMW3atEmdnZ1jvv6tt96q+fPna+PGjTrttNN01llnBfr+CNwRG6CHGwAAROm/LpK2PRjsORetkt54ebDnlJTP55XNZjV37tymxzz55JO655579B//8R+KxbxmjQULFuiTn/ykJGnr1q1avHhx9bFly5a1/Pp9fX1jvvZk0VISscFqDzctJQAAAJJ05ZVXavXq1Vq8eLEOP/xwrV69uvrYxz/+8WpLyYMPPqgNGzbouOOOqwbqen/yJ3+in/70p1q9erU++tGP6r777hv39U855RQdc8wxOvnkk3XppZcG9r4qqHBHrDIWkAo3AACIRAiV6KBVWkoKhYLe+ta36vvf/77OP/98SaNbSur7sS+77DL98Ic/1PPPP68tW7Zo2bJl2rhxo2655RbdcsstOvXUU/XDH/5Qp556atPXr7SUPPnkkzr11FO1Zs2alnvQW0GFO2KMBQQAAGgsmUzq9NNP1+233970mKOOOkq///3vqwsrL774Yt1///3q6+urHpNOp/XGN75RV1xxhf72b/9WP/7xj1t6/RUrVmjhwoV6+OGHp/ZG6hC4Izbg7zTZz1hAAACAEZxzuvPOO7VixYqmxxx66KHq7e3V3/3d36lU8nJVNpuVc06SdO+992rLli2SvIklDzzwgA466KCWXv/555/X008/3fLxraKlJGKDOcYCAgCAmW9wcHDEgsWPfOQj+shHPtLw2CuvvFLXXHONCoWCjj32WH3gAx8Y89zf/OY39fGPf1yHHnqo5s2bp46ODn3pS1+S5IXm97znPcrlcpKkl7/85brwwgvHPN8pp5yieDyuQqGgyy+/XAsXLpzIWx2XVf4amEl6e3vdunXrpvsyRimXnQ7525slSZ2puDZ87vRpviIAADATPfLIIzryyCOn+zJmlEafqZmtd871jvdcWkoiNFTw/tmjMxXXQL6kUnnm/bEDAACAkWgpiVBlBvfC2Rk9tWNA/bmiZnckp/mqAAAAwleZJlLr3HPP1cUXXxzJ67/iFa+otplUfO9739OqVatCf20Cd4Qqu0wu7PYC995sgcANAADawsUXXxxZuG7k7rvvnrbXpqUkQgP+gslFszOSmFQCAADQDgjcERr0RwIu7PECN7O4AQAAZj4Cd4SqFe6etCSpn8ANAAAw4xG4I1RdNOlXuPuYxQ0AAGawyy67TEcffbSOPfZYrV69WnfffbfWrFmj+vHNg4ODesc73qFVq1bpmGOO0atf/Wr19/dLkjZt2qSzzjpLhx12mA455BBdeOGF1cWPt912m2bPnq3Vq1fryCOP1Gc/+9nI32MrCNwRGqwsmpxNSwkAAJjZfvOb3+imm27SvffeqwceeEBr167VAQcc0PDYL3/5y1q4cKEefPBBPfTQQ7r66quVTCblnNM555yjN7/5zXr88cf1+OOPa2hoSJ/4xCeqz33Na16j+++/X+vWrdM111yje++9N6q32DICd4QqFe5FPSyaBAAAM9vWrVs1f/58pdNeK+38+fO1ZMmSpscuXbq0envlypVKp9O65ZZblMlk9O53v1uSFI/HdeWVV+q73/1utQJe0dnZqRNPPFFPPPFESO9o8hgLGKFKD/e8rpTiMWN7dwAAELov3vNFPfrio4Ge84j9jtAnX/7JMY857bTT9LnPfU6HH364Xv/61+u8887TySef3PDYP//zP9dpp52m66+/Xqeeeqre9a536bDDDtOGDRt04oknjji2p6dHy5cvHxWsd+7cqd/+9rf69Kc/PbU3FwICd4QG8iUl46Z0Iq7uTIJFkwAAYMbq6urS+vXr9etf/1q33nqrzjvvPF1++eUNj129erWeeuop/eIXv9DatWv1spe9TL/5zW9aep1f//rXOv744xWLxXTRRRfp6KOPDvJtBILAHaHBXFGzUt5H3pVO0MMNAABCN14lOkzxeFxr1qzRmjVrtGrVKn3nO99pemxXV5fOOeccnXPOOYrFYrr55pt13HHH6frrrx9xXF9fn7Zt26aVK1fq7rvv1mte8xrddNNNYb+VKaGHO0L9uZK60l7g7s4ktZcebgAAMENt3LhRjz/+ePX2/fffr4MOOqjhsXfeead27dolScrn83r44Yd10EEH6dRTT9Xg4KC++93vSpJKpZI++tGP6sILL1RHR0f4byIgBO4IDeaLmpWKS5K60wl6uAEAwIzV39+vd73rXTrqqKN07LHH6uGHH9Yll1wiSXrTm96kZcuWadmyZTr33HP15JNP6uSTT9aqVat0/PHHq7e3V295y1tkZrrhhht0/fXX67DDDtO8efMUi8WmdYv4yaClJEID+ZJmVSvcCW3fm53mKwIAAAjHiSeeqLvuumvU/bfddlvD4//sz/6s4f0HHHCAfvKTn0iS7rrrLr3tbW/TvffeqxNOOKHarvJSR+CO0GCuqK60V+HuyiT0xA5aSgAAAFr1yle+Us8+++x0X8aE0VISof6aRZNMKQEAAGgPBO4IDeZL6vR7uLvSSaaUAAAAtAECd4QG88URPdz5Ulm5YmmarwoAAMxEzrnpvoQZY6qfJYE7Qv25Ys1YQO9/qXIDAICgZTIZ7dy5k9AdAOecdu7cqUwmM+lzsGgyIqWyU7ZQHh4LWBO453elp/PSAADADLNs2TJt2rRJO3bsmO5LmREymYyWLVs26ecTuCMymPcq2Z3VnSaTksTCSQAAELhkMqmDDz54ui8DPlpKIjKY93q1O0e1lLD5DQAAwExG4I5Iv7+Ne2dlDrcfvNneHQAAYGYjcEdkMOdVuCtzuHsyXksJiyYBAABmNgJ3RAaqPdwjF03201ICAAAwoxG4IzJQbSnxF00yFhAAAKAtELgjMlBdNOlVuJPxmDLJWLW3GwAAADMTgTsig36wrvRwS95owD4q3AAAADMagTsiA3VjASWpJ5Ogwg0AADDDEbgjMlCtcMer93VlEszhBgAAmOEI3BEZyBeVSsSUjA9/5N2ZBIsmAQAAZjgCd0QGc6XqSMCKrnSCrd0BAABmOAJ3RAZyxRH925LUnUnSUgIAADDDEbgjMpAvqjM1MnB3pRNs7Q4AADDDEbgjMpgvaVZ6ZEtJZUpJueym6aoAAAAQNgJ3RAZyRXXVtZR0ZRJyThoslKbpqgAAABA2AndEBnKlESMBJa+HWxJ93AAAADMYgTsijXq4uzPebSaVAAAAzFwE7og06uGutJiwvTsAAMDMNS2B28zONbMNZlY2s94xjjvdzDaa2RNmdlGU1xi0/iZjASuPAQAAYGaargr3Q5LOkXR7swPMLC7pnyS9UdJRkt5mZkdFc3nBKpTKyhfLTVtK6OEGAACYuRLjHxI859wjkmRmYx32cklPOOee8o/9vqSzJD0c+gUGbDDvTSEZvWiSHm4AAICZ7qXcw71U0nM1tzf59+1zBvNeoB41FjBdqXATuAEAAGaq0CrcZrZW0qIGD13snLsxhNd7r6T3StKBBx4Y9OmnZMDv0Z5VF7g7UwmZ0VICAAAwk4UWuJ1zr5/iKTZLOqDm9jL/vmavd5WkqySpt7f3JbV140DOaynprGspicVMXSm2dwcAAJjJXsotJb+TdJiZHWxmKUnnS/rJNF/TpAz4LSWzUqP/vunOJGgpAQAAmMGmayzg2Wa2SdJJkn5mZj/3719iZjdLknOuKOlCST+X9IikHzjnNkzH9U5VpcJd38Mtedu7s2gSAABg5pquKSU3SLqhwf1bJJ1Rc/tmSTdHeGmhqCyarN/4RvJmce/N0cMNAAAwU72UW0pmjOEe7gYV7vTUK9w33LdJZ3/9Tjn3kmpdBwAAgAjckahUuDsbVrin3sO9YXOf7vvDbhZfAgAAvAQRuCNQ2bq96aLJKQbloYJXQd++Jzul8wAAACB4BO4IDOZLyiRjisdG76zZnUlOeQ53tlCWJG3rI3ADAAC81BC4IzCQKzbs35ak7nRC2UJZhVJ50ufP+hXubS1UuLOFEr3eAAAAESJwR2AgV1Rng5GAkjcWUNKUFk5WAvf2cSrcuwbyOuHzv9SvHtsx6dcCAADAxBC4IzCQL2lWavSCSclrKZGG+7wno9rD3Zcb87inXujXYL6kLbtpPQEAAIgKgTsCg/kxKtz+/X1T6OOutpSMU+GuBO1iefLtKwAAAJgYAncEBnKlpoG7x28pmcpowCF/0eR4LSVbdg9JkgolergBAACiQuCOgLdosnFLSRA93LkWF01WAndxCgs0AQAAMDEE7ggM5ksNZ3BLwz3cU9nevdLD/UJ/bswwvbnaUkKFGwAAICoE7ggM5IsNd5mUhnu4p1LhHiqUlIrHVHbSjv7mCye37qm0lFDhBgAAiAqBOwJjjQXszlQWTU5tLOCB82ZJGntSyXBLCRVuAACAqBC4Q5YvllUouaY93OlETMm4TXosoHNO2UJZy/3A3ayPezBf1K5Br22FlhIAAIDoELhDNpj3gnSzHm4zm9L27rmi1x6yfF6npOaTSmpnb7NoEgAAIDoE7pAN5L0FjV1NWkoqj022h3vIP//iOR1Kxq3pLO5KO4lEhRsAACBKBO6QDfitIrOaLJqUvD7uyc7hzha9wD0rFdf+3Rltb9JSUlkwKbFoEgAAIErNy64IRCVwdzZpKZG8CvfeSfZwVyrcHcm4Fvakm1a4N+/OKmbSfp0pFk0CAABEiAp3yAb9QNxsSokkv4d7khVuf5fJTDKuRbMzY7aULOzJKJ2Iq8DW7gAAAJEhcIesMn1kVpMpJZK3vftkF01WNr3JJGNa2JPR803GAm7ZPaTFszNKxI0KNwAAQIQI3CGrTCkZq8LdlUlMeixgZVv3jmRci3oy6s8VG55r656slszpUCJmKrFoEgAAIDIE7pAN5PyWkjEq3JVFk85NPAgPV7i9lhJp9Cxu55w27x7S0jkdSsZjLJoEAACIEIE7ZC1VuNNJlcqu2o89EZXndPhTSqTRs7h3DuSVL5a9CnfcGAsIAAAQIQJ3yPpzwy0fzVS2d59MH3e1wp1oXuGuzOBePDujRIwKNwAAQJQI3CEbzBU1KxVXLGZNj6kG7kn0cWcrgTsV06IeP3D3NQ7cS/zNcVg0CQAAEB0Cd8gG8qUx20mk2gr3FAJ3Mq6OVFw9mYSeHxW4vdtL53QoEYupyFhAAACAyBC4QzaQK465YFLyerglTWp799qNbyQ1nMW9ZfeQOpJxzZmVVCJuKlDhBgAAiAyBO2SD+aJmjbHLpDS1Hu5ssaR4zJSMez/KhT0Zbaubxb1lz5AWz8nIzJSIGRVuAACACBG4QzaQK6kzPXaFe35XWpL07IuDEz7/UL48YkHmwp6Mttctmty8O6ulczokSYl4jB5uAACACBG4QzaYL47bw72gO60jFnXrVxt3TPj82WJJmeTwj3FRT0Y7+nMjNrfZuntIS2Z7gTvJWEAAAIBIEbhD1p8rqnOclhJJWrNyf/3umRcn3FaSzZcTTV9/AAAgAElEQVSUqa1wz86oVHZ6od9rK8kVS3p+b05LKhXuWExFxgICAABEhsAdssF8SbPGWTQpSaesXKBi2enOJ16Y0PmzxdKIlpLqaEC/rWT7Hi94L57j3c+iSQAAgGgRuEM2kBu/pUSSTjxorrozCd366MTaSobqKtyVwF3ZbXKzP4O70sOdZCwgAABApAjcIXLO+XO4x69wJ+IxvfbwBbp14/NyrvUKdLZQv2jSW4BZCdxb9wxveuO9DhvfAAAARInAHaJcsaxS2Y07FrDilJX76/m9OT28ta/l1xgqlJSuWTQ5ryuteMyqs7hrt3WXpGScrd0BAACiROAO0aC/Kc14G99UnHz4AknSbROYVpItjOzhjsdM+3entc3v3d68O6t5nalq20k8xpQSAACAKBG4QzSQ83aObKWHW/LGAx67bLZuefT5ll8jWxjZwy35s7hrKtyVdhLJbykhcAMAAESGwB2igfzEArfkjQe87w+7tGsg39Lx9T3ckrdwctuIwJ2pPpZkLCAAAECkCNwhGsh5LSWtjAWsOGXlApWddPvjrbWVDBVGbnwjSYtmexVu51zDCnfZSWWq3AAAAJEgcIdo0K9wd02gwn3ssjnarzPVch93tlBSpi7Q79+T1t5sUdv7chrIl6q7TEreoklJKjAaEAAAIBIE7hBVerhbnVIieYsaTz58gX712I4R27M3Ui475YplZRKjW0ok6d4/7JKkkRXumEkSowEBAAAiQuAOUaWlpJU53LXWrFygFwfyemDT7jGPyxa983ekGgfu+6qBe7iHO+FXuAncAAAA0SBwh6jSUjKRCrckvfawBYqZdOs4bSXZgtcWkkmM/DEunF2pcHuBfWmDCjctJQAAANEgcIdowJ/DPZEebkma25nS8QfO1W0bxx4POFQYu8L94OY9SsZN87vS1ccScS9wj9euAgAAgGAQuEM0kCvKTKOmiLTilJUL9MCmPdqxN9f0mKwfuOvncHemE+pOJ5QvlrVodkYxv6oteWMBJbHbJAAAQEQI3CHaNZjX7I6kzGz8g+usWbm/JOlXjzVvKxnKNw7ckjepRNKICSXScIWbHm4AAIBoELhDtG1PrtreMVFHL+lRdyah3z/XfOFkrrJoskHgXuT3cdf2b0s1iybp4QYAAIgEgTtE2/uyWjjJwG1mmjsrpX5/tGAjQ3l/0WSDwF153cVzRr5+srJokgo3AABAJAjcIdrWl510hVvyFlvuzTYP3JUe7oYVbv91lzSrcBO4AQAAIkHgDkmhVNYL/bnqiL7J6Mok1J8rNH18qLpocvSPsdJSMjpwMxYQAAAgSgTukOzYm5NzmlKFu7vFCnejlpKjFvcoFY/p8IXdI+5np0kAAIBoTWxANFq2dU9WkrR4qhXuHZML3L3L99ODnz1N6bpt3xMxFk0CAABEiQp3SLb3eYF7sosmJa+Hu3/MCrcXmus3vqmoD9uSlGQsIAAAQKQI3CHZ5le4F02hwt2dSWrvWFNKKhXuROs/RsYCAgAARIvAHZLtfVmlEjHNnZWc9Dm6M95ukZV52/WGCiUl41YN0a1IMBYQAAAgUgTukGzry2phT3pSu0xWdKW9FvuBXOPAnS2UlGnQNjKWJGMBAQAAIkXgDsm2PVObwS0NB+5mfdzZQkmZJv3bzVS3dqelBAAAIBIE7pBMZZfJiq6MF7j7so1ncWcL5YYzuMdCSwkAAEC0CNwhcM5p657slEYCSt4cbklNt3cfypca7jI5luGdJqlwAwAARIHAHYI9QwXliuXAKtxNW0qKEw/cycrGN2Uq3AAAAFEgcIdgW9/URwJKNT3cY1S401S4AQAAXtII3CGozuCeYoW7O+ONFGw2iztbLE+ipYQKNwAAQJQI3CEIYpdJyZvDLY3RUpIvTXjRZNLf2p1FkwAAANEgcIdg256cpKkH7nQipkTM1J9rMqVkEj3c1Qo3LSUAAACRIHCHYFtfVvM6U0pNYMv1RsxMXZmE9japcA/lS8pMNHBXxgLSUgIAABAJAncItu0ZmnJ1u6IrnRh745sJBm4zUzxmVLgBAAAiQuAOwba+3JRncFd0pRPNF00WyhMO3JJX5S5R4QYAAIgEgTsE2/uyWhhQ4O7ONK5wl8pO+dLEp5RIUjIeY9EkAABARAjcAcsVS3pxID/lkYAV3Zlkwznc2UJJkiY8pUTyFk4Wy7SUAAAARIHAHbDn+7wJJUEF7q50omHgHvIDd0dqMi0lVLgBAACiMi2B28zONbMNZlY2s94mxxxgZrea2cP+sX8d9XVORmWXyaBaSppNKalWuBOTaSlh0SQAAEBUpqvC/ZCkcyTdPsYxRUkfdc4dJel/SfqgmR0VxcVNRVC7TFZ0pxPamx09h7sauCdT4Y4bO00CAABEJDEdL+qce0TyRtSNccxWSVv97/ea2SOSlkp6OIprnKygA3dXOqFcsax8sTxirne24FWoM5OY9e21lFDhBgAAiMI+0cNtZsslHS/p7um9kvFt68uqIxlXT0cwf8t0+du7D9T1cU+th9tUpIcbAAAgEqFVuM1sraRFDR662Dl34wTO0yXpR5I+7JzrG+O490p6ryQdeOCBE7za4Gzry2rR7MyY1fuJ6Ep7P6L+XFFzO1PV+ystJZMZC5iIx2gpAQAAiEhogds59/qpnsPMkvLC9r875/5znNe7StJVktTb2zttaXL7nqwW9qQDO193JilJoxZODuUrYwEnuWiSsYAAAACReMm2lJhXIr5a0iPOuf9/uq+nVdv6soH1b0vexjeSRo0GzBb9Hu5J7jRJSwkAAEA0pmss4NlmtknSSZJ+ZmY/9+9fYmY3+4e9StI7Jb3OzO73v86YjuttlXNOz/flAhsJKNW2lIycVJLNT2XjGxZNAgAARGW6ppTcIOmGBvdvkXSG//0dkoJphI7IiwN55UvlQCvclUWT9S0l2eLke7iTcatOOQEAAEC4XrItJfuirQGPBJS8OdxSsD3ciViMjW8AAAAiQuAO0PaAd5mUhivco3q4C1Pr4WZrdwAAgGgQuANU2dZ9cYCBuyMZVzxm6q+vcBdKSsVjiscm3nWTYEoJAABAZAjcAdq+J6uYSQu6ghsLaGbqSicaVLhLk1owKTGHGwAAIEoE7gBt68tqfldaiXiwH2tXOjF60WShNKl2EklKMhYQAAAgMgTuAG3ry2lRgO0kFd2ZxKixgEOF0qS2dZf8CjeLJgEAACJB4A6Qt8tk8IG7aUtJYpIV7ripQEsJAABAJAjcAQp6l8mKrszolpKhQlmZyVa4GQsIAAAQGQJ3QIbyJe0ZKoTSUtKVToyaUpItlNQxyUWTcXq4AQAAIkPgDkhlJGAYFe7uTEJ7G04pmUpLCRVuAACAKBC4A7KtsstkKIsmk00q3JNfNFmihxsAACASBO6AVHeZDGnR5FChNKLvemiKYwELJSfnCN0AAABhI3AHpNpSElIPtyQN5ErV+7KF8qQDd2VOOFVuAACA8BG4A7JtT1Zd6UQ1HAepK+Odc2/NLO5sfio7TXrbwbPbJAAAQPhsJrYV9Pb2unXr1kX6mh/717dpd3GrDpnfGfi592YL2rR7SAfP71Im4YXsR7f1ab/OtPbvnuA28rG4Ntoh+u1zg3r7yw9UMhGTyXT2YWfriP2OCPzaAQAAZiozW++c6x3vuODLsW3qBT2pxzsG9OjgCyGc3cl1S0/nX5TyXnXadTs9KckGbULnkXMqxrco2RPXL/7wsMykvlyfiuWiPn3Sp0O4dgAAgPZG4A7It//3PXLOyWwiAbg19/1hl87++l361gUv0ylH7K/+XFHHfObnuviMI/We1x7S+on6d0j/cKjuPvJTOu++Vbrl4lO1f3dGb7j+DcqVcoFfNwAAAOjhDlQYYVvyxgJKqs7iHsp7iycn3MOdSEmSks7rBa9sfpOKpZQv54O4VAAAANQhcO8Duv1Fk5VZ3NlCJXBPcEpJ3Ov3TsoL3JUpJal4SoVSoenTAAAAMHkE7n1AZfJJvz+lZPKBe2SFu+DP9U7GklS4AQAAQkLg3gfMSsVlNlzhHvID94R3mozFpFhSiUpLSU2FO18icAMAAISBwL0PMDN1pRPqq7aUeJXpSW18k0hXA3elwk3gBgAACA+Bex/RnU6oP1dX4U5N4scXTynhvHBdu2iyUKaHGwAAIAwE7n1EVyYx9UWTkpRIK15tKfF7uONJKtwAAAAhIXDvI7pqKtxTCtzxlOLlSksJYwEBAADCRuDeR3RnktU53NnJLpqUvAp3ua6lhB5uAACA0BC49xFeS4lXmR7e+GYyFe6awF0eXjTJHG4AAIBwELj3EbWLJrNFLyhPrsKdGlXhTsaSypXZ2h0AACAMBO59RFd6eNFkpcKdTkxmSklasQYVblpKAAAAwkHg3kd0ZRIayJdUKjtliyWlEzHFYjbxEyVS1cBdu2iSlhIAAIBwELj3EcPbuxeVzZcm178tNa1wF11RZVcO5FoBAAAwjMC9j+jO1ATuQnly/duSV+Eu1VW44ylJoq0EAAAgBATufUR3JilJ6s8WNVQoKZOc5I8unpaVRi+alMQsbgAAgBAQuPcRwy0lBT9wT7bCPRy4SzUtJRIVbgAAgDAQuPcRXX5Lyd5sUdmpBO54StZg0aR3m4WTAAAAQSNw7yO6axdNFkpT6OFOy0rezO1ifYWblhIAAIDAEbj3ESMr3GV1pCZf4VZxZIU7Gfd7uGkpAQAACByBex9R7eGe6qLJaoXbVRdNVlpKqHADAAAEj8C9j+hMJWQm7c1NtYc7LUlKWWlUSwk93AAAAMEjcO8jYjFTV8rb3n1KgTvhhetZseKoRZO0lAAAAASvpcBtZv9pZm8yMwL6NOrKJNSfK0xt4xu/wt0RK6lYYtEkAABA2FoN0F+X9HZJj5vZ5Wa2MsRrQhNd6YT6c1Pt4fYr3PGSimUWTQIAAIStpdTmnFvrnHuHpBMkPSNprZndZWbvNrNkmBeIYV2ZhHYNFFQquylXuGfFanq4WTQJAAAQmpbLpGY2T9IFkv5S0n2SviwvgP8ylCvDKF3phHb0ezO0p7LTpCR1xIrDU0pYNAkAABCaRCsHmdkNklZK+p6kM51zW/2HrjOzdWFdHEbqziT0wKYpBu54ZdFkiUWTAAAAEWgpcEv6inPu1kYPOOd6A7wejKErndCeIa8KPdUKdyZWrLaUVHu4aSkBAAAIXKuBe66ZnVN33x5JDzrnng/4mtBEd2a4XX7yPdxeNTtjNWMB41S4AQAAwtJq4P4LSSdJqlS510haL+lgM/ucc+57IVwb6lR2m5Q0pZ0mJanDihosjVw0WSjTww0AABC0VgN3UtKRzrntkmRmCyV9V9IrJN0ur7cbIevODP+4pjqlJB0rVscCUuEGAAAIT6tl0mWVsO17XtIBzrkXJVEWjUhthTs9xZ0mMzWBO2YxJSxB4AYAAAhBqxXu28zsJkk/9G+/xb+vU9LuUK4Mo3QFWOHOqFjdaVLyFk6yaBIAACB4rQbuD0o6R9Kr/dvflfQj55yTdEoYF4bRaivcHampVbjTNXO4Ja+thAo3AABA8MYN3GYWl7TWOXeKpB+Ff0lopraHe9KLJisVbiuqUB6ucKdiKRZNAgAAhGDc1OacK0kqm9nsCK4HYwhkLKA/pSStAhVuAACACLTaUtIv6UEz+6WkgcqdzrkPhXJVaGjkWMCpzeFOqahCbQ93LEngBgAACEGrgfs//S9Mo9pFk+nE1OZwp6xBDzeLJgEAAALXUuB2zn3HzDokHeic2xjyNaGJzpT348okYzKzyZ0klpBkSqmgUrkmcMdSKpTo4QYAAAhaS2VSMztT0v2S/tu/vdrMfhLmhWG0eMzUmYpPvn9bksykRFrpupYSKtwAAADhaLUv4RJJL5c/c9s5d7+kQ0K6JoyhK5OYfP92RTytZN2iyWScHm4AAIAwtBq4C865PXX3lRseiVB1pRNTq3BLUiKllAoq1o0FJHADAAAEr9VFkxvM7O2S4mZ2mKQPSborvMtCM92ZpHLFKf6t41e4C3WLJpnDDQAAELxWK9x/JeloSTlJ10rqk/ThsC4KzS2endH+3empnSSRUtKN3NqdCjcAAEA4Wp1SMijpYv8L0+jyc45V2bnxDxxLPK1kMa9Cua6Hm0WTAAAAgWspcJvZ4ZI+Jml57XOcc68L57LQzOxZyfEPGk8ipUShMLLCzU6TAAAAoWi1h/uHkv5F0jcllcK7HEQinlbSFVR2UrnsFIsZc7gBAABC0mrgLjrn/jnUK0F0Emkl3F5JUrHslIoZc7gBAABC0uqiyZ+a2QfMbLGZ7Vf5CvXKEJ54SgnnVbMrowGTMW8Ot5tqfzgAAABGaLXC/S7/fz9ec58Tm9/smxJpxZ1Xza6MBkzFU3JyKrqikhZAnzgAAAAktT6l5OCwLwQRiqeU8GduVxZOpuIpSVKhVFAyRuAGAAAIypgtJWb2iZrvz6177O8n+6Jmdq6ZbTCzspn1jnNs3MzuM7ObJvt6qFNT4S76owFTMS9wM6kEAAAgWOP1cJ9f8/2n6h47fQqv+5CkcyTd3sKxfy3pkSm8FurFU4r7Fe5CXYWbhZMAAADBGi9wW5PvG91umXPuEefcxvGOM7Nlkt4kbxwhgpJIK+YH66Lfw11pI6HCDQAAEKzxArdr8n2j22H4v5I+Iak83oGYgHha8XJdSwkVbgAAgFCMt2jyODPrk1fN7vC/l387M9YTzWytpEUNHrrYOXfjeBdmZn8k6Xnn3HozW9PC8e+V9F5JOvDAA8c7vL0lUoqVR44FrF00CQAAgOCMGbidc/HJntg59/rJPtf3Kkl/bGZnyAv3PWZ2jXPuT5u83lWSrpKk3t5ehkmPJZFRzBVlKldbStLxtCRaSgAAAILW6sY3kXPOfco5t8w5t1ze4s1bmoVtTJBfzU6pWF00We3hpqUEAAAgUNMSuM3sbDPbJOkkST8zs5/79y8xs5un45raSsKrZqdVGN3DTYUbAAAgUK3uNBko59wNkm5ocP8WSWc0uP82SbeFfmHtokGFuzKHu1CmhxsAACBIL9mWEoTIr3CnVKj2cFPhBgAACAeBux35CyRTVlDJbylJxpnDDQAAEAYCdztKNG8pYdEkAABAsAjc7She01LCokkAAIBQEbjb0RgVbhZNAgAABIvA3Y78CnfaWDQJAAAQNgJ3O6pOKSlWt3Zn0SQAAEA4CNztqDqHu6CCX+FOWEImY9EkAABAwAjc7ai2wu33cJuZUvGUCiV6uAEAAIJE4G5HNRXuypQSyVs4SYUbAAAgWATudlSpcFtxROBOxpP0cAMAAASMwN2Oaudw+y0lkjephMANAAAQLAJ3O0qMXjQp0VICAAAQBgJ3O/Ir3BkbHgsoiUWTAAAAISBwtyN/0WQmVqxufCNJyViSCjcAAEDACNztKBaTYkllrDiypYQebgAAgMARuNtVIt2wpYTADQAAECwCd7uKp5SuGwuYiqVUKNPDDQAAECQCd7uqVLhrxgIyhxsAACB4BO52FU95G98wFhAAACBUBO525Ve4C2UWTQIAAISJwN2u4umGO00yhxsAACBYBO52lUgppZFjAZnDDQAAEDwCd7uqVLgZCwgAABAqAne78ivcpTKLJgEAAMJE4G5XfoW7UNfDXSwXVXblMZ4IAACAiSBwt6tESkkVRo4FjKckic1vAAAAAkTgblfxtJIqjBgLmIwlJYk+bgAAgAARuNtVIq2kGz0WUCJwAwAABInA3a7iDVpKYrSUAAAABI3A3a4SaSVcQYUyFW4AAIAwEbjbVTylhBtZ4U7G6eEGAAAIGoG7XfkV7lJtD7ffUsIsbgAAgOAQuNtVPK2YnMql4X5tWkoAAACCR+BuVwkvXMdqqtksmgQAAAgegbtdxdOSJKsN3FS4AQAAAkfgbleVCndNuGbRJAAAQPAI3O3Kr3DHG7SUsGgSAAAgOATudpXwAnesnJdz3mhAWkoAAACCR+BuV364TqmoUtkP3CyaBAAACByBu135Fe6UCir6gZsebgAAgOARuNtVTYW7ErhpKQEAAAgegbtdVSrcVlDR322SRZMAAADBI3C3q3ilpaSoQmlkhbtQoocbAAAgKATudpWotJQUVCx7Fe6YxZSwBBVuAACAABG425Vf4U6rqKJf4Za8hZP0cAMAAASHwN2uKhVuK6jg93BLXlsJgRsAACA4BO52VdPDXZnDLXkLJ5nDDQAAEBwCd7uqmcNdqGkpocINAAAQLAJ3u4qPXjQpSclYkkWTAAAAASJwt6vE6LGAEhVuAACAoBG421UsIScbsfGN5PVwU+EGAAAIDoG7XZnJxVMjtnaXvAo3G98AAAAEh8DdxsrxlNIaORaQOdwAAADBInC3MRdLexXu0sixgLSUAAAABIfA3ca8lpLCqJYSKtwAAADBIXC3s0RKKSuOGAvIxjcAAADBInC3s3jaq3DXtJTQww0AABAsAnc786eU1C6apKUEAAAgWATudpZIj+7hZtEkAABAoAjc7azSw11X4WYONwAAQHAI3G3M4ml/DndND3csSYUbAAAgQATudpbw53CXR1a4y66sYrk4jRcGAAAwcxC421gs2aCHO56SJBZOAgAABITA3cYsMXosYCrmBW5mcQMAAASDwN3GLJFuuGhSosINAAAQFAJ3G6tUuAvlkYsmJbFwEgAAICAE7nYWTystKtwAAABhInC3s0TKq3CXWDQJAAAQFgJ3O4unlbSSSqXhEYAsmgQAAAjWtARuMzvXzDaYWdnMesc4bo6ZXW9mj5rZI2Z2UpTXOeMlvHCtmmp2Mu71cOdKuem4IgAAgBlnuircD0k6R9Lt4xz3ZUn/7Zw7QtJxkh4J+8LaSjwtSXLF4XBdqXDTUgIAABCMxHS8qHPuEUkys6bHmNlsSa+VdIH/nLwkUmCQEl7gVm3gjtNSAgAAEKSXcg/3wZJ2SPqWmd1nZt80s87pvqgZJT66pYRFkwAAAMEKLXCb2Voze6jB11ktniIh6QRJ/+ycO17SgKSLxni995rZOjNbt2PHjgDeQRvwK9xGSwkAAEBoQmspcc69foqn2CRpk3Pubv/29RojcDvnrpJ0lST19va6Zsehhl/NtgaLJtn4BgAAIBgv2ZYS59w2Sc+Z2Ur/rlMlPTyNlzTzVHq4a8I1FW4AAIBgTddYwLPNbJOkkyT9zMx+7t+/xMxurjn0ryT9u5k9IGm1pL+P/mpnsHiDlhIWTQIAAARquqaU3CDphgb3b5F0Rs3t+yU1ndONKfLncMdqwjWLJgEAAIL1km0pQQT8CnesNHrR5O+efV7/+qsnp+WyAAAAZhICdzurVriHq9mJmPePHg9u3qkf3btpWi4LAABgJpmWlhK8RFR6uGtaSsxMqVhKe3NZFYaK03VlAAAAMwaBu535U0ridf3ayXhK/cWc8lkWTgIAAEwVLSXtzF8gGXMjA3fckpKVNJgvqVAqT8eVAQAAzBgE7nZWqXDXbXITU0JmXjtJ3xBVbgAAgKkgcLczv8Idr5+57RJSJXBn6eMGAACYCgJ3O6tUuN3IwO3K8Wrg3jNOhXvXQF6fufEhZQulcK4RAABgH0fgbmf+lJJEXUtJqRyXmRegx2spueOJF/Sd3zyrBzfvCecaAQAA9nEE7nYWi6mkuBJ1Fe5iMaZk0lss2TfOpJLdfiB/YW9uzOMAAADaFYG7zZViKcXrppTkizHNSjtJ47eU7Bn0nvvCAFvBAwAANELgbnOlWHJEhTtXLClfiCmT9AJ33zib3+wepMINAAAwFgJ3mytZSklXkHNewN66Oyu5hBKJshIxa7mlZOcAgRsAAKARAnebK8VSSllRhZIXuDfvHpJz3hzu2R3JcRdNDle4aSkBAABohMDd5sqxlFIqqFj2Fklu3jUkOW8sYE9Hcvwe7iEvaFPhBgAAaIzA3ebK8aTSKqpY9ircm3YNSi6hkiuoJ5MYd+ObaoW7nwo3AABAIwTuNletcPstJZt2D2lWMq1CuaCeFlpKKhXwF/qpcAMAADRC4G5zLp5SSkUVS15LyaZdQ+pOZ5Qv5ccN3M457R4qKGbS3myR3SYBAAAaIHC3uXIspZQVVPBbSjbvGlJPukP5cl49meSYU0qyhbLyxbIO2G+WJOlFZnEDAACMQuBucy6e9ltKyiqWytrWl9Xsjg4Vy0V1Z2LqGypWRwbW2+0vmFyxoEsSbSUAAACNELjbXKWlpFBy2taXVansNLejQ5LU1WHKl8rKFsoNn1tZMLliQackaScLJwEAAEYhcLc5L3B7YwE37RqSJM2b5QXozpR3TLO2kkrgPnR/r8K9gwo3AADAKATudhdPK2VFFUvOm8EtaV6X15PdkfYOabZwck9dSwkVbgAAgNEI3O0uUalwu2qFe4EfuGelvd7tZpvfVO5fPKdDs1JxergBAAAaSEz3BWCaxdPexjelsjbvHtT+3WnNSnrj/TJJr3d7vJaSOR1JzetKaSeBGwAAYBQCd7vze7gLJa/CvWxuh1Ixb3fJdMqrcPcNNd5tcvdQQcm4aVYqrvldae1kLCAAAMAotJS0u0Ta3/impM27h7R07iwl40lJUjrpB+4xKtyzO5IyM83rTGvHXircAAAA9Qjcbc6SacXMqVDIa8vuSoXbG0+STHitJXsGmy+anN3hhfMF3Skq3AAAAA0QuNucxb1RJNt37VWh5LR0TodScX8eoJWUScbGrHDPmeUdO68zrRcH8iqXG2+SAwAA0K4I3G3Okl7g3vzCbknS0rnDgTtf8irYTXu4Bwua41e453elVCo77W4y0QQAAKBdEbjbXCzhBe6tO73AfUBNS0m+lFdPJjnmWMDZs7zAPa/LOw+jAQEAAEYicLe5SuDevqtPkrRkTkd10WS+nFdPR7JpS8meoYLmdHjhfD6BGwAAoCECd5urtJS8sGuv5nWmNCuVGFHhnt0kcBdKZfXnipoza7ilRJJeYKGqbMkAAB7qSURBVLdJAACAEQjcbS6WzEiSrJzX0rkdklTt4S6UC+rJJBq2lFTum13t4faCO5vfAAAAjMTGN20u5le4UyqMCtz5kt9S0mDRZHWXSb/CPbsjqXjMaCkBAACoQ4W7zSX8CndKRS2d4wXuZMzv4fYXTe7NFkaN+9sz5LWOVCrcsZhpv86UdtJSAgAAMAKBu81VK9xWqAbuaoW77PVwl53Unx9Z5R6ucKeq983vSlPhBgAAqEPgbnPx1HCFe9ncWd73/qLJQqmgng6v66ivro+70sNdmcMteQsnWTQJAAAwEoG7zQ23lAz3cMdjcSUs4Y0FzHiBur6Pu76HW6LCDQAA0AiBu81VppSkVawGbklKxpPVsYCSRo0G3D1UkJnUnRkO3PPo4QYAABiFwN3uEl77SE+qXK1mS14fd2VKiaRRowH3DHrV73jMqvfN705rqFDSQK7xVvAAAADtiMDd7uLeosmFs2zE3alYyp/DXWkpGV3hnl3Tvy15FW5JVLkBAABqELjbnb+1+/yOkXdXKtzDLSWje7hr+7clr8ItSTvo4wYAAKgicLc7fwTgirkjw3MyllS+nFdXxptSUt9S0qjCPb+T3SYBAADqEbjbnV/hfvkBXSPurlS44zFTdzoxqqWkb6gwYga3JM3v9m5PZDTg937zjP7p1icmceEAAAD7BgJ3u4slJJlUGlmVTsVSype94NzTkRw9pWQwP2IGtyTtV+3hbq3CXSiVdeXax/WtO5+Z3LW39BoF/eixH+n0H52uD6z9QGivAwAA0Exiui8A08zMq3IX6wJ3PKVCyQvZPR3JERXuctlpz9DoHu50Iq6eTKLlWdx3PvGCXhzwQv2LA/lqYA9CoVTQj5/8sb75wDe1ZWCL0vG0+gv9gZ0fAACgVeacm+5rCFxvb69bt27ddF/GvuMLB0rzD5MOe0P1rr/c/j96ttCnc7pWaMOWPjlJxyzpkSQVy06/e/pFHTS/U0tmZ0ac6r7ndqszldDhC0e2qDTyxPP92rHXC+dHLe3R7Exy7CfEk9Ki46Rkx5iH5ct5/eypn2nrwFatmr9K7zvufXps12P68r1f1m/f/lt1JjvHvTYAAIDxmNl651zveMdR4Ya08GjpD3dJm4f/SDl8vzm6e3aPvr7nQcnPp7fvqXnOfOk+Saq9T5K8TK619fc3kva/JN2X2yK1Uhh/8d4WDpKOW3CcPnPSZ/TKJa+UmWmwMChJ/6+9O4+Oq7zTPP791aa9ZEuWZJUsZIMtwDbGAbOnScDsHZaeSQI5JBOSSfqEQ5qESeiGpE9neqb7pDPhdDqdDplhSEI4JJAESFjCHkJgQrAxu4yxDbbBlmVbXiRZey3v/HFvWbJUWiyrVGXX8zlHlurWXd6r62s/evW778v27u0smr1oUvsQERERmQ4K3AKfe2zUor8FbvZ/+/H1X7/Bn97bzZ9vWQnAm9s6uPL2P3HHp1dw4eK6g7a7/p5X2NjezTM3fWTcQz7RsoPrf/EKP7vudL5836tcsSzGP1110vjt3PU2PH4zvP8iNJwCl97mfc7A7OBxxevL6wEFbhEREZl5Ctzi1XFnXOwtrywtYn9/Egt4z9h29ieBALPLiw4sS6uJlrBqy75Ry0d6tGUH1WXFnLOohua6Sjbu6p1wG+Yuheseg7d+DU/9Pdy5Ek79LDSeOeEpNvj129vXPwx7tk+4/rSrnAcL/mLmjysiIiI5p8AtE4qWhOgZTJJIpggFAwfG5B45SglAdXmEfb1x4skU4WDmAN0zkOD363byiVMbCQUDNNdV8HhLG865UT3To5jBsk9C88Xw3L/Aqv8Dr9w14TlUAZGmRravvR/23Tnh+tPOAnDLB1BUMfPHFhERkZxS4JYJDZ9tsqosQocfuCtLMwVuryh7X88gtdHiUe8DPLNuJ/3xFJefHAOgua6ce1fHae8eoLYi8zajFFfCJd+Gv/g6DHRNuHoAiD17Pdsb5sOKv5vcMabLxqe9UpjObVB74sweW0RERHJOgVsmFPVHD+nqi1NVFqGz1xvKb+RMkwA15d7Qfu3dA2MG7kfe2E59ZTErmmYDcHyd1+u7YUf3mIG7sy/OnS9s4obzFlIcDg69UVbtfUxCrLKJ7QOdULVgUutPm9hy73PHVgVuERGRAqSJb2RC0QM93F7PdkdvnNJIkKJQcNS66R7uPWPMNtnZG+ePG9r52LJ6AgGvfGRROnDv3D9mGx59czs/ePZdHm9pm/J51JfVs70nR/XbAJ1bZ/7YIiIiknMK3DKhAyUlfQkAOvriGeu3Aeb4gXusyW+eWNtGPOkOlJN420SYXRoeN3Cv3rzX275lx6GfgK+hvIG9/XvpS/RNeR9TUj4XAmEFbhERkQKlwC0TipZ4lUfphyU7euMHer1Hqi5PT++euYf7kTfaaKou5aSGygPLzIzmuooxA7dzjlWbvMD9xw3t9A0mp3QesXIv5Ld1T72XfEoCAYjGvBpuERERKTgK3DKhAzXcfklJZ9/gqGnd0yqKQkRCgYw93O37B3jxvd1ccXJs1GgkzXUVbNzZTaaZT7ft62NHVz+XLp1LfzzF8xvbp3Qe6cDd2t06pe0Py6xjvBpuERERKTgK3DKhoZKSdOCOM6skknFdM2NOWYTdGXq4H29pI+U4qJwkrXluBfsHErR19o96b5VfTvLl8xdSWRLmySmWlcTK/B7unhnu4Qavjls93CIiIgVJgVsmVBoJEgzYQSUlY/VwA8ypKBrVw+2c48FXWzm+roLmutFjUTfXlgOZH5xcvXkPs0vDnDg3ysoTa3lm3U7iydQhn0dNaQ2hQCg3PdyVjbB/OyTjM39sERERySkFbpmQmREtDtHVH8c5R0dfPOMY3GnVZRH29BwcuO9Z9QGvb+3gM2c1ZdymeZyRSlZv3stp86sIBIxLlsylqz9xoKb7UAQs4I1U0p2jkUpcCvbnoHddREREckqBWyalsiRMV1+C/niKwURqzJIS8EYq2b1/qKTk3V37+adH3+YjzTVce8YxGbeZXRahpqKIDTu7D1q+s6ufLXt6OX1BFQDnNtdQEg7yxNqxg+sTLW2sa8s8GU6sPJaboQFnNXqfVcctIiJScBS4ZVKiJWE6++J09HlBerySkuryIvb0DOCcYyCR5G/ufZ2yohDf/cSycadub64rH9XDnR4O8IwF3uQ2xeEgH2mu4am1O0mlRj9g+frWDq7/+at87+kNGY/RUN6Qox5uP3CrjltERKTgKHDLpESLw3T1x+no9ad1H2NYQPDG1Y4nHV19CW57cj3r2rr47seXTThte3qkkuFBevXmvZRFgpxYP1T3ffHSOnbtH+D1bR0HbZ9Iprj1wbdwDtZuz9zDXV9Wz+6+3QwkM48TnjXRBu+zxuIWEREpOArcMileSclQ4B5r4hsYmvzmoTda+b8vbOYzZzax8sS6CY/RXFdBXzzJtn1DE9Os3ryXU+dXEQoO/VU9/4Q6QgEbNVrJT/60mXVtXZw+v4rWjj729YweKaWh3Au+Mz4Wd6QUSucocIuIiBQgBW6ZlGhJiM6+xIGRSsZ7aDIduP/HI2+zsLacb1x24qSO0Vx38Egl+3oGWb9zP2f49dtplSVhzjqumifX7jgwbvfWvb187+mNXHBiHX+zciEAb2eo464vqwfI3YOTKikREREpOArcMinpkpLOAzXcYz80mZ5tMmDG969ZTkkkOKljLEqPVLLLC9wvb/Hqt08fEbgBLl4yly17etngT5bzDw+1YAb/eOUSlsS8WSzXbu8ctV26hztnD07qoUkREZGCo8AtkxItCTOYSLGzy6t9Hq+kZN7sEiqKQnzjshMOhN9JHaM4TH1lMRt2eIF79ea9REIBls0bvY+LFtdhBk+07OB3b7Xxh/XtfO2i42mYVUJVWYRYZTEtraN7uGtKawhZKHcPTnZugwyzaYqIiMjRK5TrBsiRIeoH7A/29hIOGqXj9FpXFId57R8uPKjuerKa6yoODA24estePtQ4i6LQ6GPVRos55ZjZPPxGK139CZY2RPnssDG+F8cqM/ZwhwIh6srqcjf5TbwH+vZB6eheexERETk6qYdbJiVa7P1s9sGeXipLIuMO7wdMKWyDV8f9bns3nX1xWlo7R9VvD3fxkjrea+9hT/cA3/6rZQcdc2lDlE27e+gZSIzaLlYey9307qAHJ0VERApMTgK3mX3CzNaaWcrMVoyz3k3+ei1mdq+ZjT+unGTN8B7u8cbgPlyL6ioYTKT4zavbSDk43R9/O5NLltQTMLju7AWcNKLsZEmsEufgnR2jy0piZbHc9HBr8hsREZGClKse7hbgPwHPj7WCmTUANwIrnHNLgSBwzcw0T0ZKj7u9o6t/3DG4D9fx/oOT96z6gFDAOKVp1pjrHlNdylM3ncs3Ljth1HtLYlEg83jcsfIY7b3txJPxaWr1JGnyGxERkYKUk8DtnFvnnFs/iVVDQImZhYBSIAdPugl4DzSmjffA5OFaWOsNDfjurm6WNlRSGhn/MYOFtRUZy1fqK4upKovQ0jq6jjtWHsPh2NGzY9R7WVVaDaESlZSIiIgUmLyt4XbOtQK3AR8AbUCnc+6p3LaqcEVLhoLveGNwH66yohCNVSUA49ZvT8TMWBKLZuzhTg8N2Nozw2UlZv5Y3ArcIiIihSRrgdvMnvFrr0d+XDnJ7WcDVwILgBhQZmafHmf9vzazNWa2pr29fXpOQg44uId77DG4p0NzrVdWkmn87UOxJFbJhp37GUykDlqenvxmxmebBE1+IyIiUoCyFridcxc455Zm+Hhokru4ANjsnGt3zsWBB4GzxzneHc65Fc65FTU1NdNxCjJMcThIUcj765LNhyYBFseihALGiqbDDdxR4kl3YObKtLqyOgIWyN2Dk3poUkREpKDkbUkJXinJmWZWat4YdCuBdTluU0FLj1SS7cD9xXOP5YHrzz7s0pWlDd7IJW+PKCsJB8LUltbmbvKbnl0Q75/5Y4uIiEhO5GpYwL8ys23AWcDvzOxJf3nMzB4DcM6tAu4HXgXe8tt6Ry7aK5706CTZHKUEvPKVkxvHHp1kspqqSikvCtGSYQKcWFksN9O7p0cq6cpB77qIiIjkRE5mmnTO/Qb4TYbl24HLhr3+FvCtGWyajCM9+U22A/d0CQSME+srxnxwcs3ONTPfqOGT31QfN/PHFxERkRmXzyUlkmeGSkqy+9DkdFoSq2RdWxfJlDtoeX15Pbt6d5FIjZ6JcqREMsWP/99mtnf0HX6DNPmNiIhIwVHglklLj1SSzXG4p9uSWJTewSSbd/cctLyhvIGkS7Kzd+eE+7j9uff4n4++zd//tuXwG1QRA0wjlYiIiBQQBW6ZtMoZemhyOqUfnFw7oo47Vh4DmPDByVc/2Mf3f7+RumgRz76zi5e37D28BoUiUFGvsbhFREQKiAK3TFpdtIiScJCK4iMncC+sLScSCoyq446VTRy4uwcSfPW+15kbLeaRL3+Y2ooivvP4OzjnxtxmUjT5jYiISEFR4JZJu+6cBfz2hnMIBizXTZm0cDDACXMrRvVwzy2bi2HjBu7//vBatu3r5XtXL6c2WsyNKxex5v19/GH9rsNrlMbiFhERKSgK3DJp5UUhjp9bketmHLL0FO/De6YjwQg1pTVjTn7zuzfbuP+Vbdxw3sIDM15efVojTdWl/K8n1pNKHUYvd+U8b1jAVGridUVEROSIp8AtR73FsUo6euO0jhhlJFYWo61n9PTu2zv6uPXBNzm5cRY3rlx0YHk4GOC/XdjMOzv288ibhzGGd2UjJAehp33q+xAREZEjhgK3HPWWxqIAo+u4y2Ojerj3dA/wtV+9QSLl+LerlxMOHnyLXL4sxon1Uf716Q3Ek1PsoU5PfqM6bhERkYKQk4lvRGbSCXOjBAzWtnZy8ZK5ADjnqCqaS2v3Yyy/+xRSzlvmHBCGyELj449nrlVPzXbEk47Tfm4EbSr17A6aGuHZL4JN/Wfe0+tP5wfn/4BQQLexiIhIPtP/1HLUK4kEWVhbzgOvtvLyln20dfbR1tnPIDWEZ58HpKgoClEbLaK2opj6WcXURYvH3qGD377eSld3nGvOaCIUPMTQnRiAl26H+efCvFOndE6dA508sPEB7lp7F1846QtT2oeIiIjMDAVuKQiXL4tx38tbGUymWNJQyYWL66ivPIHGqgs5eV4lteMF7Aw+PGcvn/jff2bjO3V85qwmzjy2elT5ybie/SGEY3DqTYd4JkO6Bru4/fXbOa/xPI6bpWniRURE8pUd9pjCeWjFihVuzZo1uW6GHOW+88Q73P3iFnoGk8wuDXPR4rlcetJczj5uDpHQBOH79rNhdhN86t4pH39P3x6ueugqGisaufvSu1VaIiIiMsPM7BXn3IqJ1tP/0CJT9HeXnMBXVi7i+Q3tPN6yg8feauOXa7ZSGglyatNszlhQxRnHVrNsXiVFoeDBG48x+U08mZp0T3l1STXfPOOb3Pz8zdz99t18funnp+O0REREZJopcIschuJwkIuWzOWiJXMZSCR5YcNuXtjYzqrNe7ntqQ0AFIUCLJtXyYI5ZTRVl9FUXcpZ4Tpm71vFn9/dTUtrJy3bu1jb2smm3T0sm1fJp89o4vKTY5REguMe/+L5F/Pklif54Ws/5JzYucwKzaOmvIjAETQ5kYiIyNFOJSUiWbKvZ5DVW/ayatNe3tzWwZY9vezuHgDgS8GHuSV8H0v6f0wPJTTMKmFpQ5QFc8p59p2dbNjZTbQ4xMdPbeTaM4/huJryUfvvGUjw+tYO/vjuJn6140YSA9V0b/4SRaEQC+aUMb+6jAU1ZTRVlVJWFKI4HKQ4HKAoFKQkHKQ2WjTpcD6YSPFWayerNu9h9ea9bGrvoaI4xOzSCLNKw8wqDTOnvIgVTVWsmD+b4vD4PyiIiIgcDSZbUqLALTKDegYSfLC3l4HXf8XyVV9jd+PFVERnHVRy4nDs7h5kU3s3rR19pBxE0iOhmJGOx4OJFOm7972qfu6p2sGnEnM5rS9K72CCnoEkffEE402KGTAoCYcoCQcoKQoStADOeW1weEMldsRDtPRUsjk5h22uhsjsRubXzaJvMEFnX5z9fXE6++N09SdwDiLBACc3VnLafC98l0ZC9Awk6B1MHmiXwxEKBAgFjFDQCAUCFIXCRCPllEfKKAqFiISMYCBA0IxAAIIBI2Dex/DRGA1w/ve2sy9OR2+cjr44nb2DJFKOcDBA2D9GOBSgOBQgWhImWhwmWhIiWhKmPBLSbwVEROSQKXArcEs+2/c+/OKTMNg77mpJ5+gdTJBIORhxqwYCRlEoQCQYwMz4ajk8G8lim2eIOUeJg7KUozgFhxODHeCwoQ9nI7+Nww6cPtbQn0PrumF/Ztw0o5Azgg6CzggCQTf2umZDx800vPuoY6cX2PjfIxv2rhuxl2G7mFCxM766b9bkNzhcLv1pqM020clOg59W3cSeUG12DyIi0+4/n9LAlcsbZvy4emhSJJ/NboIbVk24WhComOQuvx3v5bmtzxFPxQ+raaM5GOiG7l3Qswu626G/Ayb4YX0wmWJ/fwLnnNdTPayX2sxwzpHC+0Ei5SDuUnSTpIckPZakO5CgL5BKt4BhCWx4yw7wer8Z6gUPeOEdl8K5JKRS4JLgnDfJEd4ppL/GpU9p6HU63Hmh1Q/E/rKJ+iockDBHwiAZcMT915nyohvjnA7V0H7G24tlDPQTbR/AKE7tH/P7fyhGHj7TfmycFbPZTdTTP0BXcLrvIRHJtoH4FGd/niEK3CJHidJwKZcde1mumyFyRLsj1w0QkaPS1OeVFhERERGRCSlwi4iIiIhkkQK3iIiIiEgWKXCLiIiIiGSRAreIiIiISBYpcIuIiIiIZJECt4iIiIhIFilwi4iIiIhkkQK3iIiIiEgWKXCLiIiIiGSRAreIiIiISBYpcIuIiIiIZJECt4iIiIhIFilwi4iIiIhkkQK3iIiIiEgWKXCLiIiIiGSRAreIiIiISBYpcIuIiIiIZJE553LdhmlnZu3A+1k+zBxgd5aPIVOn65PfdH3ym65PftP1yW+6Pvltuq9Pk3OuZqKVjsrAPRPMbI1zbkWu2yGZ6frkN12f/Kbrk990ffKbrk9+y9X1UUmJiIiIiEgWKXCLiIiIiGSRAvfU3ZHrBsi4dH3ym65PftP1yW+6PvlN1ye/5eT6qIZbRERERCSL1MMtIiIiIpJFCtyHyMwuMbP1Zvaumd2S6/YUOjNrNLM/mNnbZrbWzL7iL68ys6fNbKP/eXau21rIzCxoZq+Z2aP+6wVmtsq/j35pZpFct7FQmdksM7vfzN4xs3Vmdpbun/xhZjf5/7a1mNm9Zlas+ye3zOwnZrbLzFqGLct4z5jn3/1r9aaZnZK7lheGMa7Pd/1/4940s9+Y2axh793qX5/1ZnZxttqlwH0IzCwI/BC4FFgMfMrMFue2VQUvAXzNObcYOBO4wb8mtwC/d84tAn7vv5bc+Qqwbtjr7wDfc84tBPYB/zUnrRKA7wNPOOdOAE7Gu066f/KAmTUANwIrnHNLgSBwDbp/cu0u4JIRy8a6Zy4FFvkffw38aIbaWMjuYvT1eRpY6pxbBmwAbgXw88I1wBJ/m9v9rDftFLgPzenAu865Tc65QeA+4Moct6mgOefanHOv+l/vxwsLDXjX5Wf+aj8DrspNC8XM5gF/CdzpvzbgfOB+fxVdnxwxs0rgXODHAM65QedcB7p/8kkIKDGzEFAKtKH7J6ecc88De0csHuueuRK423leAmaZWf3MtLQwZbo+zrmnnHMJ/+VLwDz/6yuB+5xzA865zcC7eFlv2ilwH5oGYOuw19v8ZZIHzGw+8CFgFVDnnGvz39oB1OWoWQL/BvwtkPJfVwMdw/7x032UOwuAduCnfsnPnWZWhu6fvOCcawVuAz7AC9qdwCvo/slHY90zyg355/PA4/7XM3Z9FLjlqGBm5cADwFedc13D33PeUDwajicHzOxjwC7n3Cu5botkFAJOAX7knPsQ0MOI8hHdP7nj1wFfifeDUQwoY/SvyiXP6J7JX2b2TbxS1J/P9LEVuA9NK9A47PU8f5nkkJmF8cL2z51zD/qLd6Z/bed/3pWr9hW4c4ArzGwLXgnW+Xg1w7P8X5GD7qNc2gZsc86t8l/fjxfAdf/khwuAzc65dudcHHgQ757S/ZN/xrpnlBvyhJldB3wMuNYNjYk9Y9dHgfvQvAws8p8Qj+AV2j+c4zYVNL8e+MfAOufcvw5762Hgs/7XnwUemum2CTjnbnXOzXPOzce7X551zl0L/AH4uL+ark+OOOd2AFvN7Hh/0UrgbXT/5IsPgDPNrNT/ty59fXT/5J+x7pmHgf/ij1ZyJtA5rPREZoiZXYJX2niFc6532FsPA9eYWZGZLcB7uHV1VtqgiW8OjZldhleTGgR+4pz75xw3qaCZ2YeBF4C3GKoR/gZeHfevgGOA94FPOudGPuQiM8jMPgp83Tn3MTM7Fq/Huwp4Dfi0c24gl+0rVGa2HO+B1giwCfgcXmeM7p88YGb/CFyN92vw14Av4NWY6v7JETO7F/goMAfYCXwL+C0Z7hn/B6X/wCsF6gU+55xbk4t2F4oxrs+tQBGwx1/tJefcl/z1v4lX153AK0t9fOQ+p6VdCtwiIiIiItmjkhIRERERkSxS4BYRERERySIFbhERERGRLFLgFhERERHJIgVuEREREZEsUuAWEclzZpY0s9eHfdwy8VYZ9/Ocma2Y7vZN4rhXmdnimT6uiEi+CE28ioiI5Fifc255rhtxGK4CHsWbtEVEpOCoh1tE5AhkZpeY2a+Hvf6omT3qf/0jM1tjZmv9iVMm2tdpZvaimb1hZqvNrMLMis3sp2b2lpm9Zmbn+eteZ2b/MWzbR/1JjTCzbjP7Z38/L5lZnZmdDVwBfNfvnT9umr8VIiJ5T4FbRCT/lYwoKbkaeAY4w8zK/HWuxpt9EOCbzrkVwDLgI2a2bKwdm1kE+CXwFefcycAFQB9wA+CccycBnwJ+ZmbFE7SzDG8Gt5OB54EvOudexJs++Wbn3HLn3HtTOH8RkSOaAreISP7r88Nq+uOXzrkE8ARwuZmFgL8EHvLX/6SZvYo37fcSYLz66eOBNufcywDOuS5/3x8G7vGXvYM3XXXzBO0cxCsdAXgFmH+I5ykiclRSDbeIyJHrPuDLwF5gjXNuv5ktAL4OnOac22dmdwET9UwfigQHd9YM33fcOef8r5Po/xgREUA93CIiR7I/AqcAX2SonCQK9ACdZlYHXDrBPtYD9WZ2GoBfvx0CXgCu9Zc1A8f4624BlptZwMwagdMn0c79QMUhnJeIyFFFgVtEJP+NrOH+FwDnXBKvhONS/zPOuTfwSkneAX4B/Gm8HTvnBvHqv39gZm8AT+P1Wt8OBMzsLbwa7+uccwP+/jbjjTjy78Crk2j/fcDN/sOXemhSRAqODf32T0REREREppt6uEVEREREskiBW0REREQkixS4RURERESySIFbRERERCSLFLhFRERERLJIgVtEREREJIsUuEVEREREskiBW0REREQki/4/7zJ1INev+dQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 8)\n", - "for i in range(len(optimizers)):\n", - " pylab.plot(converge_cnts[i], converge_vals[i], label=optimizers[i].__name__)\n", - "pylab.xlabel('Eval count')\n", - "pylab.ylabel('Energy')\n", - "pylab.title('Energy convergence for various optimizers')\n", - "pylab.legend(loc='upper right')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Finally since the above problem is still easily tractable classically we can use ExactEigensolver to compute a reference value for the solution. We can now plot the difference from the resultant exact solution as the energy converges with VQE towards the minimum value which should be that exact classical solution." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reference value: -1.85727503020238\n" - ] - } - ], - "source": [ - "ee = ExactEigensolver(qubit_op)\n", - "result = ee.run()\n", - "ref = result['energy']\n", - "print('Reference value: {}'.format(ref))" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAHwCAYAAAB67dOHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd8VfX9+PHXO3snJLkJGawMAgmBMBUFQRCKA/fA1q3tV1trba2jP2urrX6xar+2dbR1DxQHbtwIiIAyZYWZMENCFmTv3M/vj3sTbvbNuASS9/PxuA9yz/mcz/mcc2P7vp+8z/sjxhiUUkoppZRSruPW2wNQSimllFKqr9OgWymllFJKKRfToFsppZRSSikX06BbKaWUUkopF9OgWymllFJKKRfToFsppZRSSikX06BbKaX6ObF5WUSOicja3h5PcyLy/0Tkhd4eR1eJyM9E5KsuHjtVRHb19JiUUieeaJ1upRSAiOwHIoF6h82vGGNu750RqRNFRKYCC4EkY0x5b4/nVCYiQ4F9gKcxpq53R6OUOpl49PYAlFInlbnGmCWuPIGIePSXYOQUutYhwP6uBNyuvsZT6B6eMvSeKtU7NL1EKdUhEblBRFaKyBP2FIR9InKuw/5gEXlRRHJE5LCIPCwi7g7HrhKRJ0WkEHhQRNxF5O8iUmDv63YRMSLiISJXiMiGZuf/nYh81MbYQu2pEdn2sX3osO/nIpIhIkdF5GMRiXbYZ0TkVhHZIyJFIvKMPc3C2/5+lENbi4hUikiE/f0FIrLJ3m61iIx2aLtfRO4VkS1Auf2axonIjyJSKiLvisjbIvKwwzEd9fd7EdkiIsX2Y30c9l9kP7ZERDJFZE5Hn0mz+3cz8AIwWUTKROQhJ+/dr0RkD7CnlT4/F5Hbm23bLCKX2n/+p4gcso95g32mvaHdgyKySEQWiEgJcIN92wKHNheKSLr9fi0XkZHNxpbg8P6VhnstIuEisth+3FER+U5EWv3/QRE5Q0TW2e/5OhE5w2HfchGZLyJr7dfwkYiE2nevsP9bZL+fk8X+30+zMf7S/rtXKiJ/FZF4+2dfIiLviIiXve10Ecmy/3yVvc+GV7WILLfv8xbbf58HRSRXRP4jIr6Ofdh/L48AL3fmXiileogxRl/60pe+APYD57Sx7wagFvg54A7cBmRzPEXtA+C/gD8QAawF/sfh2Drg19j+uuYL3ApsB2KBAcASwNj3ewNHgZEO5/8RuKyNsX0KvG3vxxOYZt8+AygAxtn7fApY4XCcARYDIcBgIB+YY9/3EvCIQ9tfAV/Yfx4L5AGn2e/F9fZ75+1wHzcBg+zX6gUcAH5jH9+lQA3wcCf6WwtEA6HADuBW+75JQDEwC9skSgwwoqPPpI3Pd6XDe2fu3df28fi20t91wCqH98lAkcM1XQOE2T/vu4AjgI9934PYftcutl+Tr33bAvv+4UC5/Zo9gXuADMDLYWwJDud+xeFezwf+Yz/OE5iK/Xe42fhDgWPAtfYxXm1/H2bfvxw4DIyy39/3HMY31D4Gj3burwE+AoKAFKAa+AaIA4Kx/bdxvb3tdCCrlTEG2X8XGv47exL42D72QOATYL5DH3XA3+yfp6+z90Jf+tJXz716fQD60pe+To4XtuCuzB4cNbx+bt93A5Dh0NbPHjgMxJYHXo1D8GUPUpY5HHuw2bmW4hAAAuc4BirAv7EHvfag5Bj2gK1ZP1GAFRjQyr4Xgccc3gdgC+aG2t8bYIrD/neA+xzGk+mwbxVwncPY/trsXLs4HuzvB25y2HeWPUATh20rOR4IOtPfNQ77HgP+Y//5v8CTrVx7u59JK+1voGlQ6My9m9HO71IgtsB4iP39I8BL7bQ/Boyx//wgDgG+w7aGoPYB4B2HfW72+zvdYWxtBd1/wRbsJrQ1Fnu7a4G1zbZ9D9xg/3k58KjDvmRsX6TccT7oPtPh/QbgXof3fwf+Yf95Os2Cbvs1Lwb+bX8v9vsd79BmMrDPoY8a7F9sOnMv9KUvffXcS/+UpJRydLExJsTh9bzDviMNPxhjKuw/BmDLB/YEcux/qi7CFgxGOBx7qNl5optta77/VeCnIiLYAqB3jDHVrYx3EHDUGHOslX3R2GaYG8ZcBhRimw1ucU1Ahf16AJYBfiJymtgejEvDNnMMtuu9q+Fa7dc7yH6+1q4nGjhsjDFt7Hemv7bGOQjIbOXanflM2uPMvWv+mTUyxpRi+wvEPPumq4E3Gvbb02V22FM3irDN7oY703crY7Pa28e0ecRxj2ObFf9KRPaKyH3OnMPuAG1f/wFs9zsc5+U6/FzZyvsA2vYIti82d9jfW7B9Ed7g8Hl/Yd/eIN8YU+Xw3tl7oZTqIfogpVKquw5hm1UNN20/nNW8TFIOttSSBoOaNDbmBxGpwfYn75/aX22dO1REQowxRc32ZWMLPgEQEX9sKQ2H27mWhvPXi8g72ILFXGCxPZBsOOcjxphH2uvC4eccIEZExCHwdgyWnemvLYeA+Da2d/SZtMeZe9dR6auFwJ9FZAXgg+2LTEOllHuAmUC6McYqIsewzdY603c2kOowNsF2PxvGVoEtAG0wEMiCxi8Dd2H7kjMKWCoi64wx37RyjiHNtg3GFsg2GNRsXy22lBzH3+seJyLzsP1eTjTG1No3F2AL1FOMMW39fje5p524F0qpHqIz3UqpbjHG5ABfAX8XkSARcbM/FDatncPeAX4jIjEiEgLc20qb14CngVpjzMpW9jec+3PgWREZICKeInKWffdC4EYRSRMRb+B/gTXGmP1OXtqbwFXAz+w/N3geuNU+Cy4i4i8i54tIYBv9fI+tDOPtYnuo8iJsudhd7c/Ri/ZrnGm/7zEiMqKLn4mj7t47gM+wBa5/Ad62z0iDbYa2DlsOvYeI/AlbfrKz3gHOt1+zJ7bAsRpYbd+/CdtfSdzF9lBp4zWL7YHVBHugXoztc7HS0mfAcBH5qf0zuwpbCslihzbXiEiyiPjZr3GRMabefl1WbPnZPUpExmLLr7/YGJPfsN1+b58HnpTjD/vGiMhP2unL2XuhlOohGnQrpRx90qw6wgcdHwLYHpzzwvYA2DFgEbZ867Y8jy0o3ILtIcnPsAVijjXCX8f2oNqCFkc3dS22Wcad2B5IvBPA2EofPoDtIbccbDPC89roowVjzBpsebLR2AL7hu3rsT1Q+jS2a83AlrPbVj812B6evBlbnvw12IK36q7016zvtcCN2B6iKwa+5fgMbWc/E8d+u3Xv7H1UA+9jy493/NLyJbYZ493Y0jKqaD+dpHm/u7Ddw6ewzfDOxVbqssbe5Df2bUXYvjB96HB4IraHdsuwfRl61hizrJVzFAIXYAvoC7HNzF9gjClwaPY6tnzxI9hm8u+wH1uBLf1jlT3V43Rnr80JF2F7YHilw3+jDb+b92L73flBbFVflgBJ7fTl1L1QSvUcXRxHKdXrxFZ+8D/GGMeUBl9sQfQ4Y0yLsnSnMhFZg+16X+7tsajOE1uZvgXGmFN2lUyl1ImnM91KqRNORHxF5Dz7n+5jgD9z/EHFBrcB6/pCwC0i00RkoP16rwdG0zQ/WCmlVB+nD1IqpXqDAA9hq69dia3SxZ8ad9qWpBdstZr7giRsucj+wF7gcnvetVJKqX5C00uUUkoppZRyMU0vUUoppZRSysU06FZKKaWUUsrF+mROd3h4uBk6dGhvD0MppZRSSvVhGzZsKDDGWDpu2UeD7qFDh7J+/freHoZSSimllOrDROSAs201vUQppZRSSikX06BbKaWUUkopF9OgWymllFJKKRfrkzndSimllFL9WW1tLVlZWVRVVfX2UPoEHx8fYmNj8fT07HIfGnQrpZRSSvUxWVlZBAYGMnToUESkt4dzSjPGUFhYSFZWFsOGDetyP5peopRSSinVx1RVVREWFqYBdw8QEcLCwrr9VwMNupVSSiml+iANuHtOT9xLDbqVUkoppZRLHDlyhHnz5hEfH8/48eM577zz2L17N+np6cyYMYOkpCQSExP561//ijEGgFdeeQWLxUJaWhopKSlcfvnlVFRU8PXXXzN58uTGdvX19YwdO5bVq1fz4IMP8sQTT7Q6hg8//BARYefOnSfsulujQbdSSimllOpxxhguueQSpk+fTmZmJhs2bGD+/Pnk5uZy4YUXct9997Fr1y42b97M6tWrefbZZxuPveqqq9i0aRPp6el4eXnx9ttvM2vWLIYMGcKLL74IwFNPPcWECRM444wz2h3HwoULmTJlCgsXLnTp9XZEg26llFJKKdXjli1bhqenJ7feemvjtjFjxrB7927OPPNMZs+eDYCfnx9PP/00jz76aIs+6urqKC8vZ8CAAQA8+eSTzJ8/n/T0dJ5++mn+9re/tTuGsrIyVq5cyYsvvshbb73Vg1fXeVq9RCmllFKqD3vok3S2Z5f0aJ/J0UH8eW5Ku222bdvG+PHjW2xPT09vsT0+Pp6ysjJKSmzjfPvtt1m5ciU5OTkMHz6cuXPnAhAVFcWdd97J5MmT+de//kVoaGi7Y/joo4+YM2cOw4cPJywsjA0bNrQ6phNBZ7qVUkoppdRJpSG95MiRI6SmpvL444837vvVr35FfX09N9xwQ4f9LFy4kHnz5gEwb968Xk0x0ZlupZRSSqk+rKMZaVdJSUlh0aJFLbYnJyezYsWKJtv27t1LQEAAQUFBTbaLCHPnzuWpp57ivvvuA8DNzc2paiJHjx5l6dKlbN26FRGhvr4eEeHxxx/vlcouOtOtlFJKKaV63IwZM6iurua5555r3LZlyxaSkpJYuXIlS5YsAaCyspI77riDe+65p9V+Vq5cSXx8fKfPv2jRIq699loOHDjA/v37OXToEMOGDeO7777r2gV1kwbdSimllFKqx4kIH3zwAUuWLCE+Pp6UlBT+8Ic/MHDgQD766CMefvhhkpKSSE1NZeLEidx+++2Nx7799tukpaUxevRofvzxRx544IEOz/fwww8TGxvb+Fq4cCGXXHJJkzaXXXZZr6WYSEOtw75kwoQJZv369b09DKWUUkqpXrFjxw5GjhzZ28PoU1q7pyKywRgzwZnjdaa7F9Rb+94XHaWUUkop1TYNuk+w9OxiJj2yhN+9s4maOmtvD0cppZRSSp0AGnSfQHvzy7juxbXUWQ3vbzzM9S+tpbiytreHpZRSSimlXEyD7hPkcFEl17ywBoD3f3kG/7gqjfUHjnL5v1dzuKiyl0enlFJKKaVcSYPuEyC/tJprXlhDaXUdr908iXhLABePjeHVmyZxpKSKS55ZxbbDxV3uf0dOCRMe/po/vL+V3JKqNtvtLyjngQ+38f7GrC6fSymllFJKdZ4G3S5WXFHLdS+t5UhxFa/cOJGU6ODGfWfEh/PebWfg4SZc+d/veXHlPjYfKqK6rt7p/o0xPPLpDipq6lm04RDTHl/G41/upKTqeNpKRl4pd771IzP+vpzXfzjAy6v29+QlKqWUUkqpDuiKlC5UUFbNL15bT2ZeGS/eMIHxQ0JbtBkeGcgHvzqTX7y2nr8u3g6Ap7swPDKQ0bHB/CRlINOTIto8x4o9BazMKOCBC5KZNTKSv3+9i2eWZfLGmoP8fGoc27NL+GxbDj4e7twyNY780mq+2HYEq9Xg5nbiV2NSSimllOqPdKbbBaxWw5trDjLjieVsPVzMv65OY2qipc32kUE+fPirM1l579n855px/HxqHKH+Xny29Qg3vbKO7zMLWz2u3mqY/9kOBof6ce3pQxgc5sc/541l8a+nMDo2hMe/3MW3u/O5bVo8K+89m/933kgmDQulsrZe88iVUkop5VIBAQFOtXvwwQeJiYkhLS2NESNGcNttt2G12iq83XDDDQwbNoy0tDTS0tL417/+BUBZWRm33XYb8fHxjBs3jvHjx/P8888DYLVaueOOOxg1alTjwjv79u1r8/xDhw4lNTWVtLQ0UlNT+eijj7p55a3Tme4etutIKf/vg61sOHCM04aF8sglqSREdPxLJyLEDvAjdoAfc0ZFAVBeXcfcp1dyx1s/8tkdU7EEejc55r2NWew8UsrTPx2Ll8fx70+jYoJ57aZJ7M4tJSLQmxA/r8Z9ifax7MkrZVCoX09cslJKKaVUt/z2t7/l97//PVarlbPOOotvv/2Ws88+G4DHH3+cyy+/vEn7W265hbi4OPbs2YObmxv5+fm89NJLgG01y+zsbLZs2YKbmxtZWVn4+/u3e/5ly5YRHh7Orl27mD17NhdddFGPX6MG3T1k38G1LPzuE9bvP4a3pxv3nWYhOTqInP3ryNnf9X5vT6vmzbUHeHjBl1w6NrYxJaS23srHq/YxJ8aDoMoMvlvbeqpIbrP3VbX1DPAvY8m+cjwDohq3Dw4azJCgIV0fqFJKKaVOTp/fB0e29myfA1Ph3Ed7tk+gpqaGqqoqBgwY0GabzMxM1q5dy5tvvombm23S0WKxcO+99wKQk5NDVFRU477Y2Finz19SUtLuubtDg+4e8vryZ3nXbAD757qtBCjpoc6jYRewdFez7faMlVU7O9nfYPgkDz755vimMJ8wll25DBHN81ZKKaXUifXkk0+yYMECDhw4wLnnnktaWlrjvrvvvpuHH34YgNdff519+/YxZsyYxqC6uSuvvJIpU6bw3XffMXPmTK655hrGjh3b7vnPPvtsjDHs3buXd955p+cuzIEG3T3kxll3M3r3D8SFO5e/1BnGGN5ef4gfDxbx86lxRAb78NgXO4m3BHDDGUM719nmtyg7uImHgh7i8Stsv9DLDi3jha0vkFuRy0D/gT0+fqWUUkr1IhfMSPe0hvSS2tpaLr/8ct566y3mzZsHtEwvaZ6f/cgjj/Duu++Sl5dHdnY2sbGx7Nq1i6VLl7J06VJmzpzJu+++y8yZM9s8f0N6SWZmJjNnzmT69OlO56Q7S4PuHjIoKoVBUSku6z9xeB0XPr2K/11Vy+T4MLaVDeDvt5zlVL54E6XHYPdSKis8SQ1PRUSwGisvbH2BnUd3atCtlFJKqV7j6enJnDlzWLFiRWPQ3VxycjKbN2/GarXi5ubG/fffz/33398kSPb29ubcc8/l3HPPJTIykg8//LDdoLtBfHw8kZGRbN++nUmTJvXYdYFWLzll+Hl58MxPx1FWXcsnm7OZN3FQ5wNusOVgAXF1e8kuti2kkzggEUHYebSzeSpKKaWUUj3HGMOqVauIj49vs01CQgITJkzgj3/8I/X1trVNqqqqMMYAsHHjRrKzswFbJZMtW7YwZIhzz63l5eWxb98+p9t3hgbdp5CkgYH87bLRjIoJ4s5zhnetk4GjAEiWA+zOLQXA39OfwUGD2XW0edK4UkoppVTXVFRUEBsb2/j6v//7vzbbPvnkk6SlpTFq1Cjq6+v55S9/2W7fL7zwAoWFhY0B+KxZs3jssccAW+A8d+5cRo0axejRo/Hw8OD2229vt7+zzz6btLQ0zj77bB599FEiIyM7f8EdkIZvBX3JhAkTzPr163t7GCet+idH8/nRKHJm/ZufnxUHwF3L72J74XY+v+zzXh6dUkoppbprx44djBw5sreH0ae0dk9FZIMxZoIzx+tMdz/kHpVKqvtB9uSVNm4bETqCrLIsSmtK2zlSKaWUUkp1hT5I2R8NHM2gnZ9y6Eh+46ak0CQAdh/bzfjI8b01MqWUUkr1UQ1VRhxdccUV3H///Sfk/KeddhrV1dVNtr3++uukpqaekPNr0N0fDUzFDYN7/g6MmYmIMCJ0BAA7j+7UoFsppZRSPa6hykhvWbNmTa+dGzS9pH+yVzAZWpfJkRJbBROLr4VQn1B9mFIppZRSygU06O6PgmOp8womWQ6wJ7cMABEhaUCSlg1USimllHIBDbr7IxFMZCrJbsfLBoLtYcqMogxqrbW9ODillFJKqb5Hg+5+yjNmDCPcDrE3t6hxW1JoErXWWvYV72vnSKWUUkop5zzyyCOkpKQwevRo0tLSWLNmDdOnT6d5aeeKigp+9rOfkZqayqhRo5gyZQplZba/xmdlZXHRRReRmJhIXFwct99+e+MDkcuXLyc4OJi0tDRGjhzJQw89dMKv0VkadPdXA1PxoYaynN2NmxoeptS8bqWUUkp11/fff8/ixYvZuHEjW7ZsYcmSJQwaNKjVtv/85z+JjIxk69atbNu2jRdffBFPT0+MMVx66aVcfPHF7Nmzhz179lBZWck999zTeOzUqVPZtGkT69evZ8GCBWzcuPFEXWKnaNDdX9kfpvQtTG9cNnVI0BC83b01r1sppZRS3ZaTk0N4eDje3t4AhIeHEx0d3WbbmJiYxvdJSUl4e3uzdOlSfHx8uPHGGwFwd3fnySef5LXXXmucCW/g7+/P+PHjycjIcNEVdY+WDOyvwodTL54Mq91HXmk1kUE+eLh5kBiSyK6juyitqmXlngLOTY3q7ZEqpZRSqhv+tvZvPT6hNiJ0BPdOurfdNrNnz+Yvf/kLw4cP55xzzuGqq65i2rRprba96aabmD17NosWLWLmzJlcf/31JCYmkp6ezvjxTUsZBwUFMXTo0BbBdWFhIT/88AMPPPBA9y7ORXSmu7/y8KJywHCSZX9jBROw5XXvPLaT+Z/t4LY3NrKvoLzDrmrrrY2z5UoppZRSAAEBAWzYsIHnnnsOi8XCVVddxSuvvNJq27S0NPbu3cvdd9/N0aNHmThxIjt27HDqPN999x1jx45l9uzZ3HfffaSkpPTgVfQcnenux9yjx5BcuJhPckuYkhgOwMjQkby35z3e3bENCCYjr4xh4f5t9lFvNUz92zJumTqMW6bGnaCRK6WUUspZHc1Iu5K7uzvTp09n+vTppKam8uqrr7bZNiAggEsvvZRLL70UNzc3PvvsM8aMGcOiRYuatCspKeHIkSMkJSWxZs0apk6dyuLFi119Kd2mM939mE/sGMKlhCPZBxq3NSwH7+6dA8De/LJWj22QdayCIyVVfL7tiOsGqpRSSqlTzq5du9izZ0/j+02bNjFkyJBW265atYpjx44BUFNTw/bt2xkyZAgzZ86koqKC1157DYD6+nruuusubr/9dnx9fV1/ET1Ig+5+TKJGA2DN2dK4zdsagzHCmPhywgO82JvffnpJRp4tKN90qIiSKq3vrZRSSimbsrIyrr/+epKTkxk9ejTbt2/nwQcfBOD8888nNjaW2NhYrrjiCjIzM5k2bRqpqamMHTuWCRMmcNlllyEifPDBByxatIjExETCwsJwc3Pr1eXku0rTS/qzSFvOU8CxnRhjEBGe+/Yw1IYRFlOAsQSQ2cFMd0PQXW81/JBZyOyUgS4ftlJKKaVOfuPHj2f16tUtti9fvrzV9tddd12r2wcNGsTHH38MwOrVq7n66qvZuHEj48aNa0xdORXoTHd/5hNMiW8s8fV7KSirISOvlI82HWZIYCL7SvYQb/FnbwcPUmbklRHq74WvpzsrMwpO0MCVUkop1R+dccYZHDhwgHHjxvX2UDpNg+5+riY8hZFygD25pfxjyR58PN35ScI4ssqyiA0TjpbXcKy8ps3jM/LLGB4ZwGlxoazco0G3UkoppVRrNOju53wGpTFMjvDlj5ks3pLDDWcMZexAW9qJl28uAHsLWk8xMcaQkVdGQkQAUxLC2VtQzuGiyhM2dqWUUkqpU4UG3f2c/+A03MSwdeNqAr09+MVZcY3LwVfJIQAy81pPMckvraa0qo7EiECmJloAWKWz3UoppdRJQdfQ6Dk9cS816O7nGiqYJLsd4KYpwwjx8yLcN5xQn1Byq/fi5e5GZhsz3Q0PUSZEBDA8MgBLoDffaV63Ukop1et8fHwoLCzUwLsHGGMoLCzEx8enW/1o9ZL+LiiGCvcgxkoWs6YOA0BEGBE6gt3HdjEk7Jw2ywZm5B8PukWEKQnhfLs7H6vV4OYmTp0+PbuY9zYc5p45Sfh4uvfMNTmos9ZxqPQQe47tobKukgvjL0TEubEppZRSp6rY2FiysrLIz8/v7aH0CT4+PsTGxnarD+mL34AmTJhg1q9f39vDOGXUvzwXCjNwT7mocdv/le1gQcV+JleFU11rJTEioMVxOcVVFFXWMmJgIAIcq6wl+1glcRZ/fJ0IoGvqrewrKKeu3jAo1JcgH8+OB+sTDIEDwS8MpO0/1BRXF5NRlEFmUSY11uMPgi6au6hxASCllFJKqe4QkQ3GmAlOtT3Zg24RiQPuB4KNMZc7c4wG3Z209nlY+ldw+FVY5+XOXQP8qBXA0OrssLEfIBzfZ4wBabqtLU1+95w6xhwfowDiDm4erQbfvm6eJPiEk+gdTqJPON5uHtx9aDGPxp7P+SEjOxxbj/PwhuSLwPPUWj1LKaWUUm3rTNDt0vQSEXkJuADIM8aMctg+B/gn4A68YIx5tK0+jDF7gZtFZJErx9qvTfq57eVgIrACWLQhi9+/u5lv7ppGvKXpbPekR5Zw1nALT1wxpnHb7Ce/JTLIh9dvPq3N09XWW7nplXV8n1nIazdN4qNN2Xy6NYf1fzyn3RSTjNxSoqUQv9z1kLUODq2BnC1g6ju8xBrAfeggMre9CceKO2zvEm4ekOrU90allFJK9TGuzul+BXgaeK1hg4i4A88As4AsYJ2IfIwtAJ/f7PibjDF5Lh6jake8xR+AvfnlTYLukqpa8kqrSWiWdjIlwcIbaw5QVVvfagBtjOGBD7fx3Z4CHrt8NGckhFNTb+Xt9YdYuaeAc5IjWx1HQVk15z+1kulJFv577eXHg9eaCqg81uF1eAGDltxCZvRgOO1PTl59D6kpg2cmQVnuiT2vUkoppU4aLg26jTErRGRos82TgAz7DDYi8hZwkTFmPrZZcXUSibMH2nvzy4DjAXFj5ZJms99TE8N5adU+1u8/xpTE8Bb9/XfFXt5ad4jbz07gygmDADgjPpwgHw8+25bTZtD99rpDVNdZ+TI9l2U78zh7RIRth5ef7eWEhNAR7CnaA8ExTrXvMcbYUmEqCk/seZVSSil10uiNkoExwCGH91n2ba0SkTAR+Q8wVkT+0E67X4jIehFZr0/q9pxgX0/CA7zJzG9aNtCxXKCjScNC8XQXvsto+Rm8s+4Qj36+k7ljovndrOGN27083JiVPJCoBCOpAAAgAElEQVSvt+dSU2dtcVxdvZU3fjjApGGhxFv8+fPH6VTVdpxS0lx8SDyHSg9RXV/d6WO7RcT24KcG3UoppVS/ddLX6TbGFBpjbjXGxNtnw9tq95wxZoIxZoLFYjmRQ+zz4iz+LcoGZuaV4eXhxqDQprPM/t4ejB08oMmS8FW19dz33hbueW8LZyaE8fjlo1uUFDwvdSClVXWsymxZ5/ubnXlkF1dx05nD+OtFozh4tIJnl2e2Od4NB47x8ebsFtvjQ+KxGiv7i/c7c9k9yy9Ug26llFKqH+uNoPswMMjhfax9mzpJxVv8W53pjgv3x72VetxTE8JJzy7haHkNmfllXPzMqsaUkldvnNRqrveUxHACvD34fGtOi32vf3+A6GAfzhkZwRkJ4Vw4Jpr/fJvJvoKW9cO/TD/C1c/9wG/f3tRiNjw+JN429qKMTl1/j/ALg4qOc8+VUkop1Tf1RtC9DkgUkWEi4gXMAz7uhXEoJ8VbAjhWUcux8uP1rjPyy4hvpXY30JjL/fCn25n71ErySqt59aZJ/P4nSXi4t/4r5+3hzjkjI/hqey619cdTTDLyyliZUcBPTxvceOwfzx+Jl7sbf/44vUnZwfc2ZPHLNzbi7+1OvdWwJ7fpF4WhQUNxF3cyi9qeJXcZnelWSiml+jWXBt0ishD4HkgSkSwRudkYUwfcDnwJ7ADeMcaku3IcqnviGiqY2JeDr6qt59DRihYPUTYYHRtCkI8H7288TEp0EJ/eMYVpwztO+Tk3NYqiilp+2Hs8OF3wwwE83YWrJg5u3BYR5MPvZg1nxe58vth2BIBXVu3jrnc3c3pcKAtusZUr3J7TtDSgl7sXgwIH9VLQrTndSimlVH/m6uolV7ex/TPgM1eeW/WcuHBbcJ2ZV874IaHsKyjHalo+RNnA3U24e84IiitquHVafJuz281NG27Bz8udz7YeYWqihfLqOt7bkMV5qVFYAr2btL1u8hDe3ZDFQ59sJz27hKeXZTA7OZJ/XT0WL3c3/L3cSc8uaXGOhJAEWwWTE60h6DbG9mClUkoppfqVk/5BStX7Ygf44uXuRqZ9prutyiWOrj19CLfPSHQ64Abw8XRnxogIvko/Qr3V8MGPhymtruO6yUNatPVwd+Phi1M4UlLF08syuHRcDM/+bBw+nu64uQkjo4LY3krQ3WsVTHxDbYv4VPXSwjxKKaWU6lUadKsOebi7MSTMj8w824OLGXlluAkMC/fv8XOdnxpFYXkNa/YV8vr3B0iJDmLc4AGtth0/JJR754zgt+cM54nLxzQJ8FOig9iRU4LVapoc02sVTPzCbP9WHj2x51VKKaXUSUGDbuWUeEtAY053Rl4Zg0L92l2yvaumJ0Xg6+nO/M92siu3lOsmD0HaSce4bXo8vzknsUUJwuToIMpr6jlwtKLpddgrmJzwvO6GoLtCg26llFKqP9KgWzklzuLPwcIKauutZOSVtfkQZXf5erlz9ggLWw8XE+zryYVjurZ6ZHJUMECLFJOGCiYnvGxgY9CtD1MqpZRS/ZEG3copcZYA6qyG/QXl7Csobzefu7vOHRUFwBXjY/H16tpsemJkAB5ucvJUMPELtf2rQbdSSinVL7m0eonqO+LtZQOX78qnpt7aZo3unjArOZJfTo/nxjOHdbkPH093EiICWn2YMiEkoRdmujXoVkoppfoznelWTomzp5N8td1WF9uVM90+nu7cM2dEizKBnZUcFdRq2cD4kHgOlh48sRVMvIPAzUNzupVSSql+SoNu5ZRgX0/CA7xZf8C2lLkrg+6ekhwdRF5pNfmlTYPrXqlgIqIL5CillFL9mAbdymlxFn+Mgcggb4J8PHt7OB1Kjg4CYEdO09nurlQw+T6zkLX7ujlLrUG3Ukop1W9p0K2c1pDXfSrMcoMtvQRokWLS2QomZdV13PbGBu56dxPGmI4PaItfmKaXKKWUUv2UBt3KafH2vG5XlQvsaSF+XsSE+LK92Ux3QwWTvcV7nepnwQ8HKKqo5dDRSnbllnZ9QL4DdKZbKaWU6qc06FZOizvFZrrBlmKyPbvl0usJIQlOpZdU1tTzwnd7GRMbjAh8lZ7b9cH4hemKlEoppVQ/pUG3ctr4waFMTQxn2vCI3h6K05KjgthbUE5FTV2T7XEhcU5VMFm49iAFZTXcf34y4wYPaKze0iUN6SVWa9f7UEoppdQpSYNu5bRgP09ev/k0Bof59fZQnJYSHYQxsPNI07SQhJCEDiuYVNXW898VmZw2LJRJw0KZnRzJtsMlHC6q7Npg/MLA1EN1y5l3pZRSSvVtGnSrPq2hgknzRXKcqWCyaEMWuSXV/HpGImBbtAdgyfYuppg0LpCjKSZKKaVUf6NBt+rTYkJ8CfLxaLOCSWZx60F3bb2Vfy/PZOzgEM5MCANsCwQlRAR0PcXEz9aPBt1KKaVU/6NBt+rTRMT2MGUbFUzamun+YONhDhdV8usZCYhI4/bZyZH8sPcoxRW1nR+MLgWvlFJK9VsadKs+LyU6mJ05JdTVN32Asa0KJnX1Vp5dnkFKdBBnJzV9aHR2ykDqrYalu7qQYtI4061Bt1JKKdXfaNCt+rzkqCCq66zsLyxvsr2hgklNfU2T7Yu35LC/sKLFLDfA6JhgIoO8u1Y6UINupZRSqt/y6O0BKOVqDQ9TpmeXkBAR2Li9oYLJkgNLiAmMwVgNa/cf5cWV+xka7cZASy6b8/Na9DcusYRvd2eyLscNL49OfG81Bnz8oGgP5G/u9nUFegUSFxzX7X6UUkop5XoadKs+LyEiAC93N7Znl3BRWkzj9hGhIwC497t7mx4QDhXAtV+03ad7LNz0VRcGExUOBcvhs+VdOLilzy/9nNjA2B7pSymllFKuo0G36vM83d0YPjCgycOUxhhqq8K5OOJRPk3fS3FlLUPD/DgvNYoJQ0Nxd5M2+6urN/z6zY1MHBbKTVOGdW4wi38HgQNh2j1dvRzAVurwifVPkFWWpUG3UkopdQrQoFv1C8lRQXy9PZcPfzzMij35rMooILfEthrl1MRJ3HpxPGfEh7XI4W7L9CEBfL+ngMlXnNlugN6CdwRU1UDMlK5cRqPBgYN5Yv0T5Ffkd6sfpZRSSp0YGnSrfmFUTDDvrM/izrc3McDPkzMSwpmaEM6UxHBiB3R+hc3ZyZF8sjmbHw8eY8LQUOcP9AuDvO2dPl9z4b7hAORVtMw5V0oppdTJR4Nu1S9cOi4WdzdhdEwIKdFBuHVmdroV05MseLoLX23P7WTQHdoj1Uv8PP0I8Awgv1JnupVSSqlTgZYMVP1CgLcHPzttCKmxwd0OuAECfTyZHB/Op1tyKKuuc/5AvzCoPAZWa8dtO2Dxs2h6iVJKKXWK0KBbqS76xdQ4jpRUcduCDdTUORlE+4WBsUJVUbfPb/G16Ey3UkopdYrQoFupLpqSGM78S1P5bk8Bdy/ajNVqOj6ocYGco90+v8XPojndSiml1ClCc7qV6oYrJwyioKyax77YRXiAN388f2T7FVB87fnfFYVAQrfOHeEbQUFlAcYYp6uuKKWUUqp3aNCtVDfdNi2evJJqXly5j4hAb/5nWnzbjf3sQXdlz8x0V9dXU1JTQrB3cLf7U0oppZTraNCtVDeJCH+6IJmCsmrmf76TsABvLh/fxoI1jekl3a9gYvG1AJBfka9Bt1JKKXWS05xupXqAm5vw9yvHcGZCGPe+t4UVu9t4wLEng24/W9CdV6l53UoppdTJToNupXqIt4c7/7lmPIkRAfzyjY3sOlLaspGXP7h790jQHeEbAUBBZUG3+1JKKaWUa3UYdIuIn4g8ICLP298nisgFrh+aUqeeQB9PXr5xIv7e7tz48lrySqqaNhDpsQVywv10VUqllFLqVOHMTPfLQDUw2f7+MPCwy0ak1CkuKtiXF6+fSFFlLTe/up6KmmaL5/iFQcWxbp/H18OXQM9AXSBHKaWUOgU4E3THG2MeA2oBjDEVgNYnU6odo2KCeerqsaRnF3PHwk3UO9bwbmem+4ttOSzZnuv0eSx+ukCOUkopdSpwJuiuERFfwACISDy2mW+lVDtmjozkz3NTWLIjl4c/3X58h19Yq0H3ku253PbGRv7wwVbnFtrBviqlznQrpZRSJz1ngu4/A18Ag0TkDeAb4B6XjkqpPuL6M4Zy05nDeHnVfv7+1S6MMa0G3TuPlPCbt34kwMuD/NJq0rNLnOpfZ7qVUkqpU0OHdbqNMV+LyEbgdGxpJb8xxmi5BKWcdP/5IymvruOppRnklVQzf8AA3CqPgbUe3NwpKKvm5lfWE+Djwcs3TOL8p77jm525pMZ2XHu7YSl4XZVSKaWUOrk5U73kLCAFKAVKgGT7NqWUE9zdhEcvS+WOGQm8vf4Qb6VXAAaqiqmuq+d/Xt9AYXk1z183geToINIGhbBsp3MVSSy+FmqttZTUODczrpRSSqne4cyKlHc7/OwDTAI2ADNcMiKl+iAR4Xezk4gM9mHtx6v4qScUFR7hL98fZMOBYzzz03GMjg0BYOaICJ74ajd5pVVEBPq022/jAjkVeQR7B+uMt1JKKXWS6nCm2xgz1+E1CxgFdL/emVL90M9OG8K1M8YBcOdLS3h/42F+e85wzh8d1dhmxohIAJbv7DhXu2GBnPyKfLKOVTB5/lIWrj3ogpErpZRSqju6siJlFjCypweiVH8xfmQ8AAOklIvTorljZkKT/SOjAokK9mGpEykmFl/bTHd+ZT6v/3CAIyVV/OmjbWw4cLTnB+6gqrbe9lCoUkoppZzSYXqJiDyFvVwgtiA9DdjoykEp1af5hQHw2HmxeIxPa5EOIiKcPSKCj348THVdPd4e7m121bAqZXZZLm+v82VqYjgHj1Zw24KNLP71FCKC2k9P6YrDRZWc8/dvOT0ulIcvSSUmxLfHz6GUUkr1Nc7MdK/HlsO9AfgeuNcYc41LR6VUX2YPuj2rjrWZfz0jKYLymnrW7Ws/k8vXw5dAr0DWHdxPUUUtv5yewH+uGU9pVR2/fGMjNXXWHh/+J5uzqayt54e9R5n1f9/y8qp9TRf/UUoppVQLzuR0v+rwesMYs+pEDEypPsvTDzx82lyVEuDMhHC8Pdz4ZmfHq1NG+EawLfcQSZGBnB4XysioIB69LJX1B47xv5/t6MmRA7agO21QCF//7iwmDQvloU+2c9m/V7PziFZQUUoppdrSZtAtIltFZEsrr60isuVEDlKpPkXEvkBO23nXvl7unBEfxtKdeR3mTntLCGV1R7nujCGNM+cXpcVw85RhvLJ6P+9vzOqxoe/NLyM9u4QLRkcRO8CPl2+YyD/npXHwaAUX/Gsln23N6bFzKaWUUn1JezndF5ywUSjV3/iGtjvTDTBjRATLPkpnb0E58ZaANtsVlvjg7lnKxWkxTbbfd+4Ith0u5g/vb2WAnxfThltwc+teOcHFW2xBdUO1FRHhorQYzkq0cOEzK1m0IYvzUqPa60IppZTql9qc6TbGHGjvdSIHqVSf4xcKle1XGDl7hK0c4NIdbVcxySupIivfEzfPUvy8mj5w6enuxtM/HYcl0JsbX1nHWY8v48mvd3PoaEWXh714SzaThoYSFdz04ckB/l5MHBJKenZxl/tWSiml+jJnVqQ8XUTWiUiZiNSISL2IaPKmUt3hF9bhTHfsAD+SIgPbLR345tqD1NcGYKWO4uqWAa8l0JuvfzuNf85LY2iYP/9auoepjy3j6ud+YHVmQaeGvOtIKbtzy7hgTOsz2SkxweSWVJNXWtWpfpVSSqn+wJnqJU8DVwN7AF/gFuAZVw5KqT7PiaAbYMbICNbtP0pJVW2LfTV1Vt5Yc5DkiFgA8ipbD859vdy5KC2GBbecxsp7Z3DXrOEcKCzn1tc3UFzZst+2LN6SjZvAuaPaCLqjgwBIz9bv5EoppVRzTi2OY4zJANyNMfXGmJeBOa4dllJ9nF8YVBZBfV27zWaMiKDOavhud8tZ6S/Sj5BfWs2Fo2xrVeVXdLyCZUyIL7+emcjz10+gpKqOF77b69RwjTEs3pLD5PgwLIHerbZJtgfd2zXoVkoppVpwJuiuEBEvYJOIPCYiv3XyOKVUW/xCAQNVRe02GzsohBA/z1ZLB762ej9DwvyYNTwRgLyKjlewbJASHcz5o6N4aeU+CsuqO2yfnl3CvoJyLhgd3WabIB9PhoT5se2w5nUrpZRSzXW4IiVwLbYg+3bgt8Ag4DJXDkqpPs++QA4VR8E/vM1mHu5uTB9u4f2Nh/li2xH8vT0I8PbAz8ud9OwS/nj+SCL8bUvBF1R2Lkf7t+cM5/OtOfx7eSZ/vCC53bafbMnGw02YkzKw3XajooPZqkG3Ukop1YIzQfd44FNjTAnwkIvHo1T/4Bdq+9eJvO67ZicxLDyAsupayqrrKKuup7y6jpgQX66cOAgfD0+CvII6NdMNkBARwKXjYnnthwPcMjWOgcGtLxlvjGHx5hymJIYzwN+r3T6To4P4dGsOxZW1BPt6dmo8SimlVF/mTNA9F3hSRFYAbwNfGGPaT0RVSrWvcaa746B7UKgfvzknsd02Fl8L+ZUd53Q395uZiXy06TBPLd3DI5ekttrmx0NFHC6q5LezhnfY36iYYMCW1z05PqzT41FKKaX6KmeWgb8RSADexVbFJFNEXnD1wJTq03ydn+l2hsWva0H3oFA/5k0czNvrDnGwsPX63Ys35+Dl7sbslMgO+ztewURTTJRSSilHzsx0Y4ypFZHPAYOtbODF2EoHKqW6omGmu/gQlHUuLaQ1EZ6BrCve26W+7jgtiG/WF/PClz/wlwtHNdlntRqWbclkWlIUQT4dp4uEB3gzMMhHywYqpZRSzXQYdIvIucBVwHRgOfACcKVLR6VUX+flB16BsOJx26ubLAOCyQ8OwjyRSGcXercAqz2A3cATTfe5AV8ad75N+NLp/lKig7SCiVJKKdWMMzPd12HL5f4fY0zHtcWUUs65eiEU7OqRriyFm6jL/ZainzzMAA/fjg9opry6nv/7ejdBvh5YDY1lBIf5lHNz/TtMDzgITHSqr5SYYJbtyqOyph7fZkvTK6WUUv1Vh0G3MebqEzEQpfqdYVNtrx5g2f8V5H5LXtJsBoQmdfp4f8BSn8nTSzOYNCyUqYnhTE20EB/iBvMX4Vno/JeDlOggrAZ2HClh3OABnR6LUkop1Rc5ldOtlDq5RfhFAJBfmU8SnQ+6AW6dFs+t0+Jb7giNg7ztTvfjuBx8bwbdxhiq66z4eOpsu1JKqd6nK0sq1QeE+9oW2HFmKfhOixgJeTudbh4T4kuInyfpvZzX/ezyTEY/9BXzP99BSVVtr45FKaWUciroFhFfEena9JlSyuUsfrZVKbtSNrBDEclwNBNqq5xqLiKkRAe1WcGkqraeXUdKe3KErZ7jpZX7CPb15L/f7mX648t5dfV+auutLj2vUkop1ZYOg24RmQtsAr6wv08TkY9dPTCllPO83b0J9g7u9KqUTokYCcYKBbudPmRUdDC7jpS2GuT+4f2t/OQfK7hj4Y/klToXyHfWx5uzKSyv4R9XpbH411MYHhnAnz9O5ydPrmDJ9lyXnFMppZRqjzMz3Q8Ck4AiAGPMJmCYC8eklOoCi6/FReklybZ/83Y4fUhydBA19Vb25JY12b41q5gPfjzM+CED+GLbEWb+/Vte+34/9VbTY8M1xvDyqv0kRQZyRnwYo2KCWfjz03nhugkgcMtr61mzt2cWJVJKKaWc5UzQXWuMaZ6c2XP/D6mU6hEWXwsFlQU933FoHLh5duphyobl4Lc5rExpjOGRz7YT5u/FKzdO5Is7pzI6Npg/fZTOJc+uYmtWz+SAr9l3lB05Jdx45lBEbFXLRYRzkiP59NdTCfLx4I01B3vkXEoppZSznAm600Xkp4C7iCSKyFPAahePSynVSRY/C3mVLkgvcfeE8OGdmukeFuaPn5c72x3yur/ZkccPe49y5zmJBPp4EmcJYMHNp/HPeWlkF1Vx0TMreW5FJsZ07zv9Syv3McDPk4vHxrTY5+vlziVjY/hi2xGOldd06zxKKaVUZzgTdP8aSAGqgTeBYuBOVw5KKdV5Fl8LBRUFWI0LHhaMGNmpoNvNTUiOOr4yZV29lfmf7yDO4s+8SYMb24kIF6XF8M1d0/hJykD+97Od3Pn2Jipr6rs0zENHK/h6Ry5XTxrcZqnAeZMGU1Nv5f0fD3fpHEoppVRXdBh0G2MqjDH3G2Mm2l9/NMa45umnVojISBH5j4gsEpHbTtR5lTrVWPws1Jk6jlUd6/nOI0ZC8UGodr7qSEp0ENtzSrBaDW+tO0Rmfjn3zRmBp3vL/9kJ9vXk2Z+N4+6fJPHx5mwu/89qso5VdHqYr67ej7sI104e0mabkVFBjBkUwltrD3Z7Vl0ppZRyljPVS74WkRCH9wNE5EtnOheRl0QkT0S2Nds+R0R2iUiGiNzXXh/GmB3GmFuBK4EznTmvUv1RwwI5LsnrbniYMr8TK1PGBFNRU8+27GL+sWQ3k4aFMis5ss32IsKvzk7gxesncLCwggufXsX3mc4/8FheXcfb6w9xbmoUUcG+7ba9euIg9uSVsfGgC76gKKWUUq1wZkXKcGNMUcMbY8wxEYlwsv9XgKeB1xo2iIg78AwwC8gC1tlLELoD85sdf5MxJk9ELgRuA1538rxK9TsWX1ut7g8zPiQuJK5nO68sgEB/2LkQKvY5dUiOtRLPkAx++fFmij2qmDwmgUV7stpsH+AZwJyhc5gxIpIPbz+TX7y2nmteXMO8iYO4ecow4iwB7Z7vvY1ZlFbVceOZQzsc29wx0fx18XYWrj3E+CGhTl2PUkop1R3OBN1WERlsjDkIICJDcLJ6iTFmhYgMbbZ5EpBhjNlr7+8t4CJjzHzggjb6+Rj4WEQ+xZZXrpRqZnDQYLzcvFiwY4FrThAeBoe/sr2c5BNlewjExx9ecmKS3OJrYcLACcRbAvjwV2fyv5/t5N31Wby59iDnjIzkF2fFMWHIgMaqJA2sVluZwDGDQpxaet7f24ML06L54MfD/GluMkE+nk5fk1JKKdUVzgTd9wMrReRbQICpwC+6cc4Y4JDD+yzgtLYai8h04FLAG/isnXa/aBjX4MGD22qmVJ8V6hPKt1d9S0Vd53OhnbLgcvAOhCtedvqQ615aw968ct65dTLRIW2nfJTXlnPhhxeyMW8jEwZOACDQx5P5l6by21mJvP79AV7/4QBfb89lzKAQpg23EOrnyQB/L0L9vTh0tJJ9BeX8c16a02ObN3EwC9ce4qNN2Vx7ets54EoppVRP6DDoNsZ8ISLjgNPtm+40xrggabTN8y8HljvR7jngOYAJEybo01GqXwrwCiDAq/00jC6LGAUZS8DP2ewy+H+zT6e0qo606KgO2yaEJLAxb2PL0wb6cNfsJG6bHs97G7J4efV+/vXNnhbtIoO8OS+14/M0GB0bzMioIN5ae1CDbqWUUi7nzEw32GaZj9rbJ4sIxpgVXTznYWCQw/tY+zal1MksYiRsegPKC8E/zKlDzhpucbr7sRFj+WLfF9Rb63F3a1nuz8/Lg2snD+XayUOpq7dSXFnLsYoajpbXcrS8moSIgFYro7RFRLh60iD+9FE6W7OKSY0NdvpYpZRSqrOcqV7yN2AVtjSTu+2v33fjnOuARBEZJiJewDzg4270p5Q6ESJG2v7Nd75ed2eMjRhLaW0pGUUZHbb1cHcjLMCbhIhAJg0LZc6oKBIiAjt9zovSYvDxdGPhOl2hUimllGs5My10MZBkjDnfGDPX/rrQmc5FZCHwPZAkIlkicrMxpg64HfgS2AG8Y4xJ7+oFKKVOkIaygZ1YJKczxkWOA+DHvB9d0n9rgn09OS81io83ZVNeXXfCzquUUqr/cSbo3gt06dF+Y8zVxpgoY4ynMSbWGPOifftnxpjhxph4Y8wjXelbKXWCBUaBT7DLgu5o/2gi/CJazet2pasnDaasuo5PNmef0PMqpZTqX5zJ6a4ANonIN9iWggfAGHOHy0allDr5iNhmu10UdIsIYyPGntCZboAJQwaQFBnIq98f4KqJg1qUI3RUXFnLoaMVhAd4Exbg1akccqWUUv2bM0H3x2jOtVIKbHnd294HY2xBeA8bGzGWL/d/SU5ZDlEBzlci6Q4R4YYzh/KH97eydt9RTotr/SFRYwy3vLqOdfuPr2IZ4udJeIA3A4N8iLf4Ex8RQIIlgISIACyB3u0G8A19llXXEeDt0WFbpZRSpzZnSga+KiK+wGBjjPNrQCul+h7LSKgqgtIjENTzQfG4CFte98a8jZwfcH6P99+Wi9NiePTznbz6/f42g+6VGQWs23/MvjqmPwWlNRSUVVNQVk12USXvbTxMmUNeeIC3BwP8PQnx9SLY15NgX08CfTwoqaolr6Sa3NIq8kqqqa6zcvOUYTxwQfIJulqllFK9ocOgW0TmAk8AXsAwEUkD/uLsw5RKqT6koYJJ3naXBN2JAxLx9/Tnx7wfOT/uxAXdvl7uzJs4iBdW7uNwUSUxzRbyMcbw5Ne7iQ724Z45SXh7tCxpaIwht6SajLwyMvJK2V9YQVFFDcWVtRRV1pJdXElpVR2BPh5EBvowfvAAIoJ8WLE7n+W78jToVkqpPs6Z9JIHsS3dvhzAGLNJROJcOCal1MmqMejeAQkze7x7DzcPxljGnPCHKQGuOX0Iz3+3lwU/HODeOSOa7Fuxp4CNB4t4+OJRrQbcYEtTGRjsw8BgH6Ykhjt93hA/Tx77YhdHy2sI9ffq1jUopZQ6eTnzFFCtMaa42TarKwajlDrJ+YeDf4TLHqYEW153xrEMSmpKXHaO1gwK9WNWciRvrT1IVW194/aGWe6YEF+unDConR66ZsKQUAA2HDjWQUullFKnMmeC7nQR+SngLiKJIvIUsNrF41JKnawiRrpsgRywBd0Gw+a8zSLOjxEAACAASURBVC47R1uuP2Moxypq+XjT8fKBy3fns+lQEb86OwEvj56vVjI6NhhPd2H9gaM93rdSSqmThzP/D/JrIAVbucA3gWLgTlcOSil1EotIhrydYHXNH7xSw1NxF/cTXjoQYHJcGEmRgby8ej/GGIwx/GPJHmJCfLl8fKxLzunj6U5qTDDr9+tMt1JK9WXtBt0i4o7tocn7jTET7a8/GmOqTtD4lFInm4iRUFsOxa5ZOt3P04+RoSN7Ja+7oXzgjpwS1u0/xvJd+Ww+VMT/Z+/O4+Ouq/2Pvz6zZbLvW9t0S5e00FJKWyhrW0BZlQsqCirifkVEvXq9Xq/LXbzqvf7UqwJXENR7ZVEErmwiS1u2AqUblLZJ23RP0yZpmn2f+fz+mJk0bZPJJJmZLPN+Ph7fx3S+8535nmhJT07O53xuXxWbKnfIkuk5bD3UeFJbi4iITCxhF1Jaa33GmAvjFYyIjAOhxZR/+iQkZ8fkFmf7a/ijbaTrf/8GjxlBsps7G674wZBmiofGB/7mtcAkk5KcZG6IUZU7ZMm0bO55eQ/vVjWyZHpOTO8lIiKjI5LpJZuNMU8AjwCtoZPW2sdiFpWIjF1FC2HOFdBaC+2xaYlYbPz8r9uyvbOORdY9vA9pPgq7X4DLvgvu5MGvDwqND/zVy3sA+I8bFsZ858lzpgV+eHlr33El3SIiE1QkSbcXOAas6nPOAkq6RRKR2ws3/SGmt1jUXgd/XMnm8z7JojNvHd6HrL8XnvkadDQNKemGE+MDp2Sn8DeLJw/v/kOQm5bEzLxUNu6vB0pjfj8REYm/SHakHOa/eCIiw5OXnMe0jGlsqtnErQzzW5A3K/DY0QjphUN6a0lOCj+4fgEz89NiXuUOWTI9m+e3H8Xvtzgc2hJeRGSiGfRfE2PMHGPMi8aYd4PPFxpj/in2oYlIIluUv4gtNVuw1g7vA7yZgcfO4c37vnHpVJbGsdVjybQcjrd1s6euJW73FBGR+ImkveRe4OvArwCste8YYx4E/i2WgYlIYltcuJg/V/6Z16tfZ1LqpKF/gL8NXC44vhPSI98hMlpS3ankp+RHfP050wN93Rv2HWdWQXqswhIRkVESSdKdYq1db05e/d8To3hERAA4p/AcAD73/OeG/yElk2DTDyD+0wcBeOK6J5iROSOia2fmpZKT6uGtfcf58LKpMY5MRETiLZKku84YU0pg8STGmA8A1TGNSkQS3rSMadxz+T3Udwxzp8a24/CXr8PZH4OZl0Q3uEFUNlRy79Z7qWuvizjpNsZwzrTs4GJKERGZaCJJum8D7gHKjDFVwF7g5phGJSICLJ+0fPhv7myBP90G3kkw8+roBRWBTUc3ce/We+n2dw/pfUuDiylrmzvJT0+KUXQiIjIaBlxIaYy5I/jHYmvtZUA+UGatvdBauz8u0YmIDJcnFYxz2AspR8LtCMwW7/EPrRPvnGmBhZuRVrs7un1sOjD8WentXT4a24f2g4GIiAxPuOkloTldvwCw1rZaa5tjH5KISBQYA96MwMjAOHM7A0l3l69rSO87c3IGHpeDDfvCJ9I9Pj9/eOsAq368luvvWsdb+4bXkvLPT27jpnvfGNZ7RURkaMK1l+wwxuwCJhlj3ulz3gDWWrswtqGJiIyQNzOwOU6ceRwegCG3lyS5nCyaksWG/f0n3X6/5emt1fz0+Z3sqWvljEkZHG7s4J1DjcMab1hxtJlth5to7ugm3TvMnT9FRCQiAybd1tqPGGOKgL8C74tfSCIiUZI0SpXuYHvJUJNuCIwOvPflPbR3+Uj2OHvPv7yzlh/+pZzt1U3MLUznno+dw+XzC1n6/ReoODK8HyyqGzoA2FHdzLIZ2n5eRCSWwi6ktNYeAc4yxiQDU621FfEJS0QkCryZ46q9BGDJtGzu9lvePtTAeTNz2V3TzL89vYO1FbWU5CTzsxsXce1Zk3AGd62cW5ROxZGhd/51+/wcbQ4k3VurGpV0i4jE2KDTS4wx1wI/BjzADGPMIuBfrLWqfovI2ObNhPo9cb/tiCrd0wKb5Dy//SjPbK3mgTcPkOJ28o9XlXHL+dNJcjlPun5uYQYPrt+Pz297E/FIHGnsILTZ57aq+P9gIiKSaCIZGfg9YBmwFsBau8UYE9ngWRGR0TQOK91ZKR5mF6Rx36t7cToMNy2bypcvm01uWv8jBMuK0+no9nOgvo0ZeakR36e6MVDlTvU4efewkm4RkViLJOnuttY2nrIjpY1RPCIi0ZOUMa4WUoZ84oLprNt9jC9fNpvZheG3hC8rCrxeXt00pKT7cEM7ACvKCvjL1urTeshFRCS6wo0MDNlmjLkJcBpjZhtjfgGsi3FcIiIj582Ermbw++J625G0lwDcfO407rx58aAJN8DsgnQcBsqH2NddFUy63zO/EL+F7dXx/+FERCSRRJJ03w6cAXQCDwKNwJdjGZSISFR4MwOPcd4gx+lw4jAOun2x33gm2eNkem7qkBdTHm5oJyvF3buAcptaTEREYipse4kxxklg0eTXgG/FJyQRkSjxZgQeOxohOTuut/Y4PMOudA/V3KJ0dgyxUl3d2MGkzGSKMrzkpnp4V4spRURiKmyl21rrAy6MUywiItEVqnSP0qzueCXdZUUZ7K9vo60r8m3nDze0MykrGWMMZ0zO5N0qtZeIiMRSJO0lm40xTxhjPmaMuT50xDwyEZGRSgpVuuOfULqd7mFNLxmOuUXpWAs7j7ZE/J6qhnYmZXkBWDA5g51Hm+nojm/vu4hIIokk6fYCx4BVwLXB45pYBiUiEhUJUumeVxxYcBnpzpTNHd00d/QwKSsZgDMnZdLjt+w8OvRNdkREJDKDjgy01t4aj0BERKIu1NMd54WUEEi641XpLslOIcXjjHiCSWhGd2/SPTnww8m7VU0snJIVmyBFRBJcJJVuEZHxyRtMIEeh0u1xxm8hpcNhmF2YTnl1ZEl3aFzg5GB7yZTsZDK8LrZqMaWISMwo6RaRiWs0e7rj2F4CMK8onfIjTVg7+N5loY1xijMDlW5jDGdOztTYQBGRGFLSLSITl9MF7tTRq3THYU53yNyidI63dVPb3DnotdUNHTgdhoL0E1vLL5icSXl1M90+fyzDFBFJWIP2dBtjkoAbgOl9r7fW/kvswhIRiRJv5oRfSAmBpBsCO1MWZHjDXnu4oZ2iDC8u54m6yxmTM+ny+dl1tIX5kzJiGquISCKKpNL9Z+D9QA/Q2ucQERn7vBnQOfGT7rKiQKIcyc6UVQ3tFGeenJifGUy0tUmOiEhsDFrpBqZYa6+IeSQiIrEwWpVup5uW7sjnZo9UTqqHgvQkdkQwNrC6sYNFJSdPKZmem0pakot3DzfyIUpiFaaISMKKpNK9zhizIOaRiIjEQlJGQiykBCgrzhi00u33W6ob23vHBYY4HIb5kzJU6RYRiZFIku4LgY3GmApjzDvGmK3GmHdiHZiISFSMYk93vOZ0h5QVpbOrpoWeMIsh61o66fbZ3nGBfZ05KZPt1U1h3y8iIsMTSXvJlTGPQkQkVryZo7I5TjzndIfMLUynq8fPvmOtzCpI7/eaw8GNcULjAvs6c3IGHd1+9tS1Mqew//eLiMjwDFrpttbuB7I4sQV8VvCciMjY580IVLojmF8dTaPTXnJigslAQjO6T20vgb47U6rFREQk2gZNuo0xdwAPAAXB4/fGmNtjHZiISFR4M8HfA91tcb1tvOd0A8wqSMPpMGF3pjzcuxvl6Ul3aX4aXreDd6vi/5sBEZGJLpL2kk8B51prWwGMMT8CXgd+EcvARESiou+ulJ7UuN12NCrdSS4nM/JSw1a6qxraSfE4yUg+/du/02GYX6zFlCIisRDJQkoD+Po89wXPiYiMfd5Ay0S8F1OORtINgcWU5WHGBlY3dDApKxlj+v82HtoOXjtTiohEVyRJ92+AN40x3zPGfA94A7gvplGJiERLKOmO82JKtzMwvcTGuZe8rCidQ8fbaens6ff1w/2MC+xrZVkBrV0+HnhjbCzd8fkttz2wiTf3HBvtUERERiSShZQ/AW4F6oPHrdban8U6MBGRqBjFSrfF4rO+wS+OosF2pjzc0N7vuMCQFXPyuWh2Hj95fif1rfEdedifQ8fbeHprNc9srR7tUERERmTApNsYkxF8zAH2Ab8PHvuD50RExr5RTLqBuM/qnlsUmGCy7fDpX29Ht4+6lq5+xwWGGGP49jXzae3y8dPnd8Yszkjtrgns6llxdPDt7UVExrJwle4Hg48bgQ19jtBzEZGxr3chZXyTbo/TAxD3vu4p2clMzUnh+e1HT3vtSHBGd7j2EoA5hel87LxpPPDm/rD94fFQWRtMuo80x71VR0QkmgZMuq211wQfZ1hrZ/Y5ZlhrZ8YvRBGRERjlSne8k25jDFcvLGZd5TGOn9IecmJG98DtJSFfvmw2Gclu/uXJ7aOa7IYq3cfbuqlrGf12FxGR4YpkTveLkZwTERmT3MngcMV9IWVvpTvOs7oBrl5QjM9v+eu2Iyedrwol3WHaS0KyUjx89fI5rKs8xnP9VM3jpbK2lSRX4J+qnWoxEZFxLFxPtzfYu51njMk2xuQEj+nA5HgFKCIyIsYEqt0JUukGOGNSBtNyU3j6lMWH1cH2kqLMwSvdADctm8qcwjS+//QOOrrjuyAUwFrL7poWVs4tAAZeHCoiMh6Eq3R/jkD/dhmwKfjnjcCfgV/GPjQRkSjxZgY2x4mj0Uy6jTFcteD0FpPDDe3kpSXhdTsj+hyX08F3rz2DA/Vt3P/a3liFO6BjrV00tnezbEYOuakeVbpFZFwL19P9X9baGcDXgn3coeMsa62SbhEZP5Iy4l/pdo7O9JKQ/lpMqgYZF9ifC2bl8Z75hfxy9W5qmzujHWZYoX7uWQVpzClM1wQTERnXItkcp9EY8/FTj5hHJiISLd7M+G+OM4qVbui/xaS6sSPsuMCBfPU9c2jr8vHijvj2docml5QWpDG3KJ2dmmAiIuNYJEn30j7HRcD3gPfFMCYRkejyxr/SHVpIOVqV7r4tJvWtgZ0xDzeE341yIHML0ynMSOLV3XUxiHRgu2taSPE4Kc7wMqcwndYuX+9iUBGR8SaSHSlv73N8BlgMpMU+NBGRKEmwhZQhoRaT57YdobG9m7YuX0TjAk9ljOGCWXmsqzyG3x+/SnNlbSsz81NxOAxziwL/7KivW0TGq0gq3adqBWZEOxARkZhJSqyFlCF9W0wON0S2Mc5ALpyVR31rFzviuFlOZU0Ls/IDyfbswsBOmxVHWuJ2fxGRaIpkTveTxpgngsdTQAXweOxDExGJEm8mdLdCHGdmj+ac7pC+LSbvBreFH27SfcGsPABei1OLSVtXD1UN7ZQGk+4Mr5tJmV5VukVk3HJFcM2P+/y5B9hvrT0Uo3hERKIvtCtlZzOk5MTllmOh0g2BFpO711by29f2AZHtRtmfwgwvswvSeHX3MT57cWkUI+zfntpWILCIMmROUbpmdYvIuBVJT/dLfY7XlHCLyLjjzQg8djTE7ZahpLvLP7pbl4daTLZXN+FxOshLTRr2Z10wK4+39tbT2TPyjXJ2Hm3m+09vxzdAj3hocsmsPkn33MJ0dte20OPzj/j+IiLxFm5HymZjTFM/R7MxJr7NkSIiIxGqdMexr3sstJdAoMXk6gXFQGAnSofDDPuzLpiVR3u3j80HRv7Dy/2v7uXeV/ay5WD/n1VZ04LDwLTclN5zcwrT6erxs7++bcT3FxGJt3Cb46RbazP6OdKttRnxDFJEZESSQpXu+E0wcTkC3Xuj3V4CcFUw6R5ua0nIuTNzcDrMiPu6rbWsqagBYE15Tb/X7K5tYVpuKkmuE7tnzi0KLaZUi4mIjD8RTS8xxpxljPli8FgY66BERKKqt9Idv6R7tOd093XGpIzgkTmiz8nwujlrSuaI53Vvr27iaFMnLodh9QBJd2VNK6X5qSedm1WQhjFKukVkfIpkeskdwANAQfB4wBhze6wDExGJmlBPdxx3pRwrCykh0GLy+Bcu4FtXzRvxZ104K4+3DzbQ1DH8rytU3b7l/Olsr27iSGPHSa/3+PzsrWs9aRElgNftZHpuqiaYiMi4FEml+1PAudba71hrvwOcB3wmtmGJiETRKFS6x1LSDeBxOUbUzx1ywaw8/BbeqDw27M9YXV7DwimZfGhJCQBrK06udh863k6Xz987LrCvOYVpVCjpFpFxKJKk2wB9l6r7gudERMaH3p7u+FW6XQ4XDuMYE+0l0XT21GyS3U7WDTPprm/tYvPBBlbMLWBOYRqTs5JPazHZXROYXNJf0j23MJ19da10dI98goqISDxFMqf7N8CbxpjHCSTb7wfui2lUIiLR5HCCJ31UtoLv8ffE9Z6x5nE5WDYjZ9h93S/vrMVaWFVWgDGGFXPzeXxzFZ09vt5Fk73jAvurdBel47eBa0baoy4iEk+RzOn+CXArUA8cA2611v4s1oGJiESVNzOuPd0AHodn1Od0x8KFs/LYXdNyWi92JFaX15CX5mHh5EDCvKqsgLYuH+v31vdes7umhby0JDJT3Ke9f25wO3j1dYvIeBPJQspSYJu19ufAVuAiY0xWzCM7cf8VxphXjDH/bYxZEa/7isgE482If6Xb6R71Od2xMNwt4X1+y0s7a7lkTkFvf/n5pXkkuRwntZhU1rYwqyC138+YnpeK22moONIyzOhFREZHJD3djwI+Y8ws4L+BEuDBSD7cGHO/MabGGPPuKeevMMZUGGN2G2P+YZCPsUAL4AW0G6aIDI83M+5Jt8vhGjMLKaOprCid3FTPkJPuzQeO09jezcqy/N5zyR4ny0tzeyeaWGvZXdPSbz83gNvpoDQ/TZVuERl3Ikm6/dbaHuB64JfW2q8DxRF+/m+BK/qeMMY4gTuBK4H5wEeMMfONMQuMMU+dchQAr1hrrwS+AfxzhPcVETlZUvwr3RO1vcThMJw/K49Xd9dhbf/buPdndXkNTofhotn5J51fVVbAvmNt7K1rpa6li6aOnpO2fz/VnMJ0zeoWkXEnkqS72xjzEeDjwFPBc6c32vXDWvsygV7wvpYBu621e6y1XcDDwPuttVuttdecctRYa/3B9x0HkiK5r4jIaUah0j1R20sALijNpaa5s3fSSCRWl9ewZFo2mckn/xOycm5B7+uhRZQDVbohsDNlVUM7zSOYFS4iEm+RJN23AsuB71tr9xpjZgD/O4J7TgYO9nl+KHiuX8aY640xvwre85dhrvusMWaDMWZDbW3tCMITkQlpFBZSuh3uCdleAif6up/fcTSi66sb2yk/0szKsoLTXivJSWFWQRprymtOjAscpNINsGsICb+IyGiLZHrJdmvtl6y1DwWf77XW/ij2ofXe/zFr7eestTdaa9eGue4ea+0Sa+2S/Pz8gS4TkUTlzQjM6R5CO8RITdT2EggkyhfOyuP+V/fR3jX4zOw15YFiyKp+ku7Q+Tf3HuOdQw2keJwUZ3gH/KzeCSZqMRGRcSSSSne0VRFYjBkyJXhORCR2vJlgfdDVGrdbup1uenwTa053X1+6dDZ1LZ08uP7AoNeuLq9hclYysweoYK+cW0C3z/LE24eZmZ8advfMKdnJJLudbDsc399ciIiMxGgk3W8Bs40xM4wxHuDDwBOjEIeIJJLeXSnj19c9kSvdAMtm5LB8Zi7//VJl2B0iO3t8vLa7rndDnP4smZ5NutdFR7e/301x+nI4DBfNzuOBN/fz6EYNtRKR8SGmSbcx5iHgdWCuMeaQMeZTwUkoXwT+CuwA/mit3RbLOERE8AZ3L4xj0u1yuibsQsqQL106m9rmTh4OU+1+c0897d2+k0YFnsrtdHBxcKpJuEWUIT+9cRHLS3P5u0fe5n9e3zfUsEVE4i6SzXGWGGMeN8ZsMsa8Y4zZaox5J5IPt9Z+xFpbbK11W2unWGvvC55/xlo7x1pbaq39/ki/CBGRQXmDle44LqacyAspQ5aX5rJsRg53D1DtttbyyMZDJLkcLJ+ZF/azQosswy2iDElNcnHfLUu5bF4h3/nzNu5cs3tI4wtFROLNFcE1DwBfJ7AbpX+Qa0VExiZvcCNdtZdE3R2XzubmX7/JIxsO8rHl03vPW2v5/tM7ePLtw9y2spRkjzPs51y9oJgjje29IwQH43U7ufuji/naI2/zn3+toKmjm3+4ooxun2V7dROb9h9n88EGWjt7uPOmxYPe/2B9G4UZXjyu0ei8FJGJLpKku9Zaq55rERnfettL4ljpnsBzuvs6vzSXJdOyuWttJR9aWkKSy4m1lh89W8GvX93LJ86fztfeM3fQz0n2OPniqtlDurfb6eCnH1pEWpKLX720hxe2H+Xg8Xa6egI1ooL0JGqaO/njhoPccv70AT/nwLE2LvvJS3x8+TT+6Zr5Q4pBRCQSkfw4/11jzK+NMR8Jzsy+3hhzfcwjExGJpt6FlA1xu2UitJcAGGP40qWzqW7s4JENgYWNP31hF//9UiU3nzuV7147f8AFlNHgcBj+7boz+bvL55CXlsQty6dx982LeeObl/LmP17KOdOyueflPXT7Bv5l7Z1rdtPl8/PAmweob534v50QkfiLpNJ9K1BGYBfK0HcsCzwWq6BERKIuVOmOY0+3x+FJiKQb4KLZeSwqyeLutZXUNnfy8xd38aElU/jX958Z04Q7xBjD7ZfO5vZLT6+Uf2FFKZ/63QaefPsw1y+ectrrB+vbeHTTIS6Zk89LO2v57Wt7+WoElfnh+vOWKpZMz2FyVnLM7iEiY08kle6lwU1nbrHW3ho8PhnzyEREosntBacnrj3didJeAoGk947LZlPV0M5/vbiL68+ezA+uXxh23na8rCoroKwonbvXVuL3n77Y8s41u3EYw49uWMh7zyjkt+v2xWyL+Z1Hm7nj4S38cvWumHy+iIxdkSTd64wxanATkfHPm6mFlDG0Yk4+7z2jkA8vLeE/PrAQ5xhIuCHwA8HfrihlV00LL5yybf3B+jb+tPEQH15WQlGmly+smEVTRw8Pvjn4hj8hNc0dfPWPW7j4P9ZwrKUz7LUPrz8IwNqKWk1bEUkwkSTd5wFbjDEVQx0ZKCIypiRlxHUhpcvhSpj2Eggkt7/62BJ+eMNCXM6xNQHk6gXFlOQkc9faypOS3bvWBqrcf7uiFICzSrK4cFYe976yN+yGPwBdPX7uebmSVT9+iSffPsyB+jYeCJOsd/b4eGzzIdKTXFQ3drDzaEt0vjgRGRci+a54BTAbeA9wLXBN8FFEZHyJc6Xb7XTjt358/vDJm8Sey+ngsxeXsuVgA6/vOQbAoeNtPLLhEDcuLaE480R/9RdWllLX0skjYXa7fHlnLVf818v8+zPlLJ2ezXNfuYRL5uTzP6/vp7On//+/n9t2lIa2br59beCXx2sqaqL4FYrIWDdo0m2t3Q9kEUi0rwWygudERMYXb2bcF1ICCdViMpZ98Jwp5KUlcffaSgDuXFN5UpU7ZPnMXBaVZPGrlyrpOWXiSUNbF198cBMfv389fr/l/k8s4Te3LmNGXiqfunAGdS2dPPl2db/3/8NbB5mclcwHFk+hrCidtUq6RRJKJDtS3kFgg5yC4PF7Y8ztsQ5MRCTqvBnxrXQ73AAJ1WIylnndTj514Qxe2VXHs+8e4U8bD/KhpVOYdMoUEWMMt62cxaHj7Tz5zuHe86/uquOKn73Cs+8e4auXz+GvX7mYVWWFva9fNDuPOYVp3Pfq3tP6tQ/Wt/Hq7jpuXFqCw2FYMbeADfuOx2zBpoiMPZG0l3wKONda+x1r7XcI9Hh/JrZhiYjEgDczrj3dHmeg0p0oE0zGg4+eN5V0r4vbH9oEwBdWzOr3ukvLCphTmMbdaytp7/Lxz09u46P3vUlqkpPHv3ABX7p0Nkmuk3e4NMbwyQtmsKO6qbeFJeQPbx3EYeCDSwIjC1fOzafHb3ltd10MvkoRGYsiSboN0LdBzRc8JyIyviSp0p3o0r1uPr58Gt0+y4eWlJxW5Q5xOAxfWDGLnUdbuOQ/1/Cb1/Zxy/JpPHX7RSyYkjng51939mRyUj3c/+re3nM9Pj+PbDzIirkFvb3ji6dlk57kYm1FbXS/QBEZsyLZHOc3wJvGmMeDz68D7otdSCIiMeLNgp526OkClyfmt3M7g0m3Kt1jyqcvnMmxli7u6Gcjnb6uWVjMz1/cRUtnD7/75DIumZM/6Gd73U4+et40frF6F3vrWpmRl8pLO2s52tTJv7y/pPc6t9PBRXPyekcHxmMDIREZXZEspPwJgV0p64PHrdban8U6MBGRqPMGt4KP02JKLaQcm7JTPfzwhoUUZHjDXudyOnj8tgtY+/UVESXcIR87bxpuh4PfvBaodj/81kHy0pJYVVZw0nUr5hRwpKmD8iPNQ/8iRGTcCVvpNsY4gW3W2jJgU3xCEhGJkdBW8Ic2QObkmN/O3RRYhNddsx062ob25qypJ+KVUZOZ7B7ye/LTk3jfokk8suEQHztvGqvLa/jMRTNxnzK7/JK5gUR+bUUt84ozIvrsv2yt5qcv7OTXH1/K1NyUIcc2Egfr2/ibu9Zx78fP4eyp2XG9t8hEEDbpttb6gpviTLXWRr49l4jIWJQarFY+dGNcbudO9kJRAd1/+iR0DbHaPWUpfPqF2AQmMffJC2bwp42H+PT/bMDnt9y4tOS0awozvMwvzmBNRc1pYwv7U9fSyTcf30pDWzdffGgTf/r8+XhcA//C2ue3Ud0V9Jmt1dS1dPLsu0eUdIsMQyQ93dnANmPMeqA1dNJa+76YRSUiEgszV8BHH4Xu9rjczt24Gyrup+uyb0P6jMjfuPG3cHhLzOKS2Js/KYPzS3NZV3mMc2fkMCMvtd/rVszN51cv76Gpo5sMb/iq+vee2EZbp49vXFHGj54t50fPlvPta+b3e+2Wgw186rdvcdvKWXzyhrWo6wAAIABJREFUwiH83Qvj+e1HAU6bzCIikRkw6TbGJFlrO4FvxzEeEZHYcThh1mVxu537yAaouJ/ukmVQfF7kb6x+B3a/CH5fIGYZlz5z0UzWVR7jpnOnDnjNyrIC7lpbyau76rhqQfGA1z2//ShPvVPN310+h79dUcrRpg7ue3Uvy2fmctn8wpOu3XTgOLfct57mzh5+u24ft14wfcQLNetaOtl44DiZyW7erWqksb17WK03Ioks3ELK14OPn7bWvnTqEY/gRETGs2HP6U7NByy01Uc/KImblWUFPPOli3jfWZMGvObskiwyvK6wu1M2dXTzT/+3lbKidD53SaAN5ZtXlXHm5Ay+9qe3Odxw4jc3G/fX8/H71pOT5uHr753Lgfo23tp3fMRfy+odNVgLd1w6G7+F9Xv1d1NkqMIl3R5jzE3A+caY60894hWgiMh4FZrTPeTpJal5gcdWbRM+3s2flBG2yuxyOrhoTn7v6MD+/OCZcmqbO/nRDQt7e7iTXE5+8ZHFdPf4+dJDm+nx+XlrXyDhzk9P4g+fXc4nzp9OisfJY5sOjfjreG77ESZnJXPTuVNJcjlYV6lNfUSGKlzS/XngIiALuPaU45rYhyYiMr4Ne3Oc0ILPVm2ckghWzMmnprmT7dWnj7J8vfIYD60/wKcvmslZJVknvTYjL5V/v34BG/Yf544/bOGW+9dTmOnl4c+eR1Gml9QkF1eeWczT71TT0e077bMj1dbVwyu76rh8fiFet5NzpmXzeqX6ukWGasCebmvtq8CrxpgN1lpthiMiMkTDbi9JC85zblU1MRGERgf+7+v7ue7syeSlechNTSLJ7eCbj73DtNwUvnLZnH7f+/5Fk1m3+xh/2HCQ0vxUHvrMeSfNH7/hnMk8uukQf912hPcvGt6YzFd21dHZ4+fyYO/4+aW5/Pi5ndS3dpGTGvtNpkQmikGnlyjhFhEZHlW6JRIF6V6WTMvm4bcO8vBbB097/cHPnEuyZ+AFtd973xnMLkzj/Ysmk5+edNJr583IZXJWMo9uqhp20v389qNkeF0sm5EDwPLSXADe2HMs7OJPETlZJCMDRURkGIa9Dbw3C4xTSXcC+f2nz2XfsVaOtXRR19LJsZYujrV2Mrcog/NL88K+N9nj5NMXzez3NYfDcP3iydy5ZjdHmzoo7GcXzl+/sof1e+v55U2LT5v77fNbVpfXsLKsoHdzn4VTskjxOHm9Ukm3yFAo6RYRiZFhL6R0OAKLKVu0kDJReN1Oyooi25VyqK5fPIVfrN7N45ur+PwlJ2/Cs7aihn97egcAv1yzm69efnIby8b9x6lv7eI984t6z7mdDpZOz9G8bpEhCreQEgAT8FFjzHeCz6caY5bFPjQRkfFt2O0lAKkF6umWqJiRl8o507J5dOOhkyakHG5o5yt/2EJZUTrXLCzmzjW72Xqo8aT3Pr/9CB6no7fvPGR5aS67a1qoaeqIy9cgMhEMmnQDdwHLgY8EnzcDd8YsIhGRCWLYCykhUOlWe4lEyQ2Lp7CrpoWtVYGkutvn54sPbqKrx8+dNy/m+9ctIC/Nw989soXOnsCkE2stz20/yvLSXNKSTv7F+PKZgb5uVbtFIhdJ0n2utfY2oAPAWnsc0HJlEZFBOI0Tgxl6ewkEFlMq6ZYouXphMR6Xg8c2VQHww7+Us+lAAz+8YSGl+Wlkprj54Q0L2Xm0hZ8+vwuAXTUt7D/W1ju1pK8zJmWQ7nXxhpJukYhF0tPdbYxxAhbAGJMP+GMalYjIBGCMwe1wD7O9REm3RE9mspvL5xfy5y1VnDMtm/te3cvHl0/j2j67Za6cW8CNS0q45+VK3nNGYe8s7v6SbpfTwbkzclined0iEYuk0v1z4HGgwBjzfeBV4N9jGpWIyAThcXqG116Slg/dbdDVGv2gJCF9YPEUjrd1c8fDm1k4JZNvXT3vtGv+6Zp5FGcm87U/vs3T71Rz1pTMfieeAJw3M5f9x9pO2oZeRAY2aNJtrX0A+HvgB0A1cJ219pFYByYiMhGMqNINqnZL1Fw0O4/89CTSklzcedNiklynz/5O97r5jw8sZE9dK9urm3jPGUX9fFJAaJShdqcUiUwk00vOA6qstXdaa38JVBljzo19aCIi45/bOdKkWxNMJDpcTge/u3UZj33hfEpyUga87oJZeXzsvGkAvKef1pKQsqJ0slPcajERiVAkPd13A4v7PG/p55yIiPTD7XDT5RvOQsrghiia1S1RNH9SZLPAv3PtfD60pITZhekDXuNwGM6dkcsbe45hrcUYE60wRSakSHq6je0z2NNa60eb6oiIRGT47SUFgUe1l8gocDsdLJiSOeh158/KpaqhnYP16usWGUwkSfceY8yXjDHu4HEHsCfWgYmITAQep2dklW4l3TKGheZ1r6scvA3q3apG/vjWwViHJDJmRZJ0fx44H6gCDgHnAp+NZVAiIhPFsCvd7mTwpKunW8a0WQVpFGYk8fKuwX84/M+/VvDNx7fS3uWLQ2QiY8+gbSLW2hrgw3GIRURkwhl20g3alVLGPGMMq8oKePLtarp6/Hhc/dfy2rp6eH3PMXx+y7uHG1k6PScq9w/tntnfJBaRsSaS6SX5xph/NMbcY4y5P3TEIzgRkfFu2HO6AdIKoFULKWVsWzm3gJbOHt7aVz/gNa/tPkZXT2BfvS0HGqJ270/+9i3+9vebovZ5IrEUyYLIPwOvAC8A+p2QiMgQuB1u2nuGucgsNR/qtYRGxrYLZuXhcTl4cUcNF8zK6/ea1eVHSU9ykeZ1seVgdJLuPbUtvLb7GA4DdS2d5KUlReVzRWIlkp7uFGvtN6y1f7TWPho6Yh6ZiMgEMOw53aD2EhkXUpNcLJ+Zy+ryo/2+bq3lxR01XDwnn8XTsqOWdD+2qQoAv4XntvV/b5GxJJKk+yljzFUxj0REZAIa9pxuCFS6246BX79klLHt0nkF7DvWxp7altNe23a4iZrmTlaVFXB2SRZVDe3UNneO6H5+v+XxzVVcPCef6bkp/OXd6hF9nkg8RJJ030Eg8e4wxjQZY5qNMU2xDkxEZCIY2ULKArB+aBu4V1ZkLFg5NzBXfnX56WsQXtxRgzGwYm4+i0qyAEZc7X5j7zGqGtq5YfFkrlxQzLrKYxxvHeYPtyJxMmjSba1Nt9Y6rLVea21G8HlkW1qJiCS4Yc/pBs3qlnGjJCeFuYXpvLjj9KR7dflRzi7JIjctiTMnZ+J0GLYcPD6i+z26sYr0JBfvPaOIq84sxue3PL9DLSYytkUyvcQYYz5qjPl28HmJMWZZ7EMTERn/Rlbpzg88KumWcWDVvALe2ldPY/uJv+81zR28faiRS+cVAuB1OykrSh9Rpbu1s4e/vFvN1QuL8bqdnDk5gynZyfxlq1pMZGyLpL3kLmA5cFPweQtwZ8wiEhGZQDxOj5JuSQirygro8Vte6bNRztry2t7XQhaVZPHOwUb8fjus+zz77hHaunzccM4UIDAr/KoFxby6u+6khF9krIkk6T7XWnsb0AFgrT0OeGIalYjIBOF2uEc2pxuUdMu4cHZJFlkpblb3aTF5sfwokzK9lBWl955bVJJFc2cPlf0suozEo5sOMTUnhSXTsnvPXXlmEd0+y4tqMZExLJKku9sY4wQsBDbLAfwxjUpEZIIYUXuJNwuMU0m3jAsup4MVc/JZU1GDz2/p7PHxyq46Vs0rwBjTe93ZUwOLKTcPo8WkqqGd1/cc4/rFk0/6zEUlWUzK9PLM1iMj/0JEYiSSpPvnwONAgTHm+8CrwL/HNCoRkQnC7XTjsz58wxn753BoVreMK6vmFXK8rZstB4/z5p562rp8XFpWeNI1M/PSSB/mJjn/t7kKa+GGxVNOOm+M4Yozi3l5Vy3NHWoxkbEpkuklDwB/D/wAqAaus9Y+EuvAREQmArfDDTCyvu7WuihGJBI7l8zOx+kwrC6vYXV5DV63g+WluSdd43AYzpqSNeTt4K21PLrxEMtm5FCSk3La61ctKKKrx9/v2EKRsSBs0m2McRpjyq215dbaO621v7TW7ohXcCIi4110km5VumV8yExxs2RaNi/uqOHF8qNcOCsPr9t52nWLSrKoONpMe1fkvwHafLCBPXWtfOCUKnfI4qnZFKQn8Re1mMgYFTbpttb6gApjzNQ4xSMiMqF4nIF15yPalbJFlTsZPy6dV0D5kWYO1rez6pTWkpBFJVn4/JZ3DzdG/LmPbjyE1+3gygVF/b7ucBiuPLOINRU1tHb2DCt2kViKpKc7G9hmjHnRGPNE6Ih1YCIiE4HaSyTR9E20V5bl93vNouBiykhaTEJtJY9tquK9ZxSR7nUPeO2VC4rp7PGztkK/HZKxxxXBNd+OeRQiIhNUqNI9/KQ7D7pboasVPKlRjEwkNkrzU5mem0JqkovizOR+r8lLS2JKdvKgiynrW7v4x8e28uy2Iyydns03r5wX9vql03PIS/Pw6KZDLJySSXGmF5czkvqiSOwNmnRba18yxkwDZltrXzDGpACnN2iJiMhpeivdI57VXaekW8YFYwz//bFzcDnCJ7uLSrLYHKbSvaa8hq//6R0a27v4hyvL+MxFM3E6zIDXAzgdhqsXFPO71/ezurwGh4HizGQmZyUztyidb18zH49LSbiMjkGTbmPMZ4DPAjlAKTAZ+G/g0tiGJiIy/kWlvQQCiymzp0UpKpHYKivKGPSaRSVZPPVONTXNHRSke3vPd3T7+NentvPAmwcoK0rnfz65jPmTBv+8kG9eNY/L5xdx6HgbVQ3tVB1vZ3dtC//7xn7ee0YRF87OG9bXJDJSkbSX3AYsA94EsNbuMsYUhH+LiIhAlNpLQBNMZMI5u09f93vOCCyOPHS8jc//fiPvVjXx2Ytn8nfvmUOSa2i/XPe6nacl1i2dPZz1z8/xxp5jSrpl1ESSdHdaa7tCOz8ZY1wEd6cUEZHwXI7At9kRTS8BJd0y4ZwxKROXw7DlYCDpXldZxxcf3Ex3j5/7blnCpfP6n3wyHGlJLhZMzuSNPcei9pkiQxVJY9NLxph/BJKNMZcDjwBPxjYsEZGJweMYaaVbSbdMTF63k3nFGWw52MCvX9nDx+5bT26qhz9/8YKoJtwh583M5e1DDbR1aZygjI5Iku5/AGqBrcDngGeAf4plUCIiE4XbGejpHnal250MnnRoUdItE89ZJZmsqzzGvz29g8vnFfL4bRcwMz8tJvdaXppLt8+yaf/Qt58XiYYBk25jzIvBP/7AWnuvtfaD1toPBP+s9hIRkQiMeCElBPq6VemWCeji2fkYA19/71zu/uhi0pIi6XodniXTsnE6DK/v0dx7GR3h/nYXG2POB95njHkYOGlOj7V2U0wjExGZAEbcXgLaCl4mrPecUcTW7703psl2SGqSi4VTMnljT33M7yXSn3B/y79DYGOcKcBPTnnNAqtiFZSIyEQx4vYSCMzqrt8bpYhExpZ4JNwhy2fmcs/Le2jr6iHFE7/7ikD4nu5qa+2VwH9aa1eecijhFhGJQKi9pMc/gsVbai8RiYrzZubS47ds3H98SO/z+S1+vzprZWTCJd0/Dz5eF49AREQmohHP6YZAe0lbHfh9UYpKJDGdMy0bl8PweuXQRgd+7n838vnfb4xRVJIowv1updsYcw8w2Rjz81NftNZ+KXZhiYhMDKFK94jaS1Lzwfqh/fiJzXJEZMhO9HVHnnRXNbTzYvlRnMbQ1NFNhtcdwwhlIgtX6b4GWA10ABv7OUREZBDRmV6iWd0i0bK8NJd3DjXS2hlZy9f/ba7CWujxW17eqf8GZfgGTLqttXXW2oeB91lrf3fqEccYRUTGragspFTSLRI1Q+nrttby2KZDLJ6aRVaKm9U7auIQoUxUA7aXGGP+3lr7H8CnjTGnrR5Qe4mIyOBcJvBtNiqV7hb9gy8yUudMy8btNLy+5xgXz8kPe+3WqkYqa1v5wfULWL+3njUVNfj8FqfDhH2fSH/C9XTvCD5uiEcgIiITkTEGj8MTpfYSbeohMlIpHhdnTcmKqK/7sU1VeFwOrlpQTLrXxeObq9h84DhLpufEIVKZaAZMuq21TwYfR7WVxBhzEXAzgVjnW2vPH814RESGyu10j6y9JDkbjFPtJSJRct7MXO5+qZLWzh5SB5gT3u3z88Tbh7l8XiGZyW4unpOPy2F4YUeNkm4ZlnDbwD9pjHlioCOSDzfG3G+MqTHGvHvK+SuMMRXGmN3GmH8I9xnW2lestZ8HngLUSy4i447b4R5Zpdvh0KxukSg6b2YuPr9lQ5i+7pcqaqlv7eL6xZMByPC6WTYjh9XlR+MVpkww4aaX/Bj4f8BeoB24N3i0AJURfv5vgSv6njDGOIE7gSuB+cBHjDHzjTELjDFPnXIU9HnrTcCDEd5XRGTM8Dg8I9scB4Jbwau9RCQaevu6w8zrfmzzIXJTPSf1fa8qK2Dn0RYO1rfFI0yZYMJNL3nJWvsScIG19kZr7ZPB4ybgokg+3Fr7MlB/yullwG5r7R5rbRfwMPB+a+1Wa+01pxw1AMaYqUCjtbZ5OF+kiMhoGnF7CQQr3VpIKRINyR4ni0oG7utubOvmhe01XHvWJNzOE6nSZfMKAXhxh6rdMnThKt0hqcaYmaEnxpgZQOoI7jkZONjn+aHguXA+Bfwm3AXGmM8aYzYYYzbU1upXsCIydoy4vQQgtUDtJSJRdN7MXLZWNdLSz7zup7dW0+Xzc8PiKSedn56Xysz8VF4s1w/AMnThppeEfAVYa4zZAxhgGvDZmEZ1CmvtdyO45h7gHoAlS5acNuJQRGS0RKfSnR8YGVjxl+gEFUtTlkFq7mhHIRLWeTNz+cXq3fzkuZ18/b1zSfY4e197bNMhZhekcebkjNPed9m8Qn7z2l5aOntIG2ARpkh/Bv3bYq191hgzGygLniq31naO4J5VQEmf51OC50REJqSoVLqzp0N3Gzz04ajEFFOLbobr7hrtKETCOndGDtcvnsz9r+3l2Xer+dbV87lqQREH6tvYsP84f3/FXIw5fR73qrIC7nl5D6/srOXKBcWjELmMVxH9iBZMst+O0j3fAmYH21SqgA8TWCQpIjIhjXhON8DST8HU88D6ohNUrDz2OWgbfP6xyGhzOR385EOL+MiyqXz3z9u47cFNnDsjhynZKRgD1y3qv/N1ybRsMrwuXiyvUdItQxLT34sYYx4CVgB5xphDwHettfcZY74I/BVwAvdba7fFMg4RkdEUlfYShxOKF0YnoFhKyYWu1tGOQiRiS6fn8OTtF/LwWwf48V8reHNvPRfMymVSVnK/17ucDlbMLWBNuXanlKGJadJtrf3IAOefAZ6J5b1FRMYKj8NDc0+CDF/ypEKbRhvK+OJ0GG4+dxpXLyjmd+v2s6qsIOz1l84r4Im3D/P2oQYWT82OU5Qy3g06vcQY85gx5mpjTCSTTkRE5BRuh5su/wgr3eOFJxW6NMNYxqesFA93XDabBVMyw163Yk4BTofR6EAZkkgS6bsI9FzvMsb80BgzN8YxiYhMKG6nm27fCHu6xwtPqtpLZMLLTHGzZFo2L2yvwVoNTJPIDJp0W2tfsNbeDCwG9gEvGGPWGWNuNca4Yx2giMh4F5XpJeOFJxW6lXTLxHfNWZOoONocdlfLiaipo5vz/v1F1lWqjWyoImoZMcbkAp8APg1sBv6LQBL+fMwiExGZIBKvvURJt0x8HzxnCoUZSfzshV0JVe3eV9fKkaYOth9uGu1Qxp1IerofB14BUoBrrbXvs9b+wVp7O5AW6wBFRMa7hGovcaeCrwsS5euVhOV1O/nCilms31efUNXuI40dABxvS5BCQhRFUun+ubV2vrX2B9ba6r4vWGuXxCguEZEJIypzuscLT2rgUdVuSQA3Li1JuGr3kaZQ0p0g39OiKJKkO9sYc/0px6XGmPDzdEREBEi0nu6UwKOSbkkAiVjtDlW6G5V0D1kkSfengF8DNwePe4FvAK8ZYz4Ww9hERCYEj9OTOO0lnmDXoZJuSRCJVu1We8nwRZJ0u4F51tobrLU3APMBC5xLIPkWEZEw3A43PbYHv/WPdiixF2ov0QQTSRCDVbuttZQfaaLbNzH++w+1lzSo0j1kkSTdU6y1fae/1wAl1tp6QP+Li4gMwu0MTFdNiBYTt9pLJPEMVO0uP9LER+97kyt+9grX3fnahJj4cSLpVqV7qCJJutcaY54yxtxijLkF+HPwXCrQENvwRETGP7cjmHQnQotJb3uJdqWUxHFqtftYSyffenwrV/3XK2w73MTnLynlaFMH7/vlq/zk+Z109YzPqre1tre9pKE9Ab6fRZkrgmtuA64HLgw+/x/gURv4UW5lrAITEZkoQkl3Qszq7p1e0jK6cYjE2Y1LS7hr7W6++fhW6lu7aOvy8fHl0/nyZbPJSvHwuYtn8i9PbefnL+7iuW1H+M8PnDXodvNjTXNnD21dPjKT3TS2d9PZ4yPJ5RztsMaNsJVuY4wTWG2tfdRa+5Xg8SebCCsFRESixOP0AIlS6VZ7iSQmr9vJF1fNZv+xNhZPzeavX76I773vDLJSAv/9Z6d6+OmNi7jvliUcb+viurte4/89VzGuer1DVe6yonRAE0yGKmyl21rrM8b4jTGZ1trGeAUlIjKR9LaXJEJPd6i9pFvtJZJ4PnruVC6Znc/U3JQBr7l0XiHPTc/hX5/azi9W7+alnbX87MZFzMwf+/sNhpLuecUZvLm3nuNt3RRkeEc5qvEjkp7uFmCrMeY+Y8zPQ0esAxMRmSjUXiKSGIwxYRPukMxkNz/+4FncffNiDtS3cfXPX+XBNw+M+ZGDp1a6NTZwaCLp6X4seIiIyDAkVHuJ0wPGqfYSkQhcuaCYs6dm87VH3uYfH9/K6vKj/PCGheSlJY12aP0KTS6ZG0y6NTZwaAZNuq21vzPGJANTrbUVcYhJRGRCSaj2EmMCLSaaXiISkaJML//zyWX8dt0+fvhsOV9+eAu///S5ox1Wv6obO8hN9VAYbCnR2MChGbS9xBhzLbAFeDb4fJEx5olYByYiMlEkVNINgcWUai8RiZjDYfjkhTP4xPnTWb+3no5uX9xjePbdam79zfqwLS5HmzoozPCSlRL4nqaxgUMTSU/394BlBGdyW2u3ADNjGJOIyITSuzlOIrSXQKCvW+0lIkO2dHoOXT4/bx+M/zYoz2w9wpqKWmpbOge8prqxg+JML8luJx6XQz3dQxRJ0t3dz+SS8TPfRkRklCXUQkoIJN2aXiIyZEumZQOwYf/xuN+74kgzAHtqB/6B+WhTB4WZXowxZCW7NTJwiCJJurcZY24CnMaY2caYXwDrYhyXiMiEkVALKQHcqnSLDEd2qoc5hWms31sf1/t29fiprA20hIUeT9XR7aO+tYviYD93dopHle4hiiTpvh04A+gEHgKagC/HMigRkYkk8Xq6lXSLDNeS6Tls2n8cnz9+4wP31LXQE7xfZU3//+3WNAXaTgozA0l3Zoqb46p0D8mgSbe1ts1a+y1r7VJr7ZLgnzviEZyIyESQkO0lSrpFhmXZ9ByaO3vYUd00pPdZa3ni7cO0dPYM+Z6h1pK0JNeAle7qxnYAinor3WovGapIppfMMcbcY4x5zhizOnTEIzgRkYkg4dpLlHSLDNvSGTkAbNg3tBaTTQca+NJDm/nVS5VDvmf5kWbcTsMlc/IHTLpDM7qLg5XurGS1lwxVJO0ljwCbgX8Cvt7nEBGRCCRke0m3km6R4ZiclczkrGTe2je0xZRrymsAeHTjoSG3ppRXN1Gan8bconSqGtpp7zp9ZGFoN8pQe0lWqpuG9u4xv4vmWBJJ0t1jrb3bWrveWrsxdMQ8MhGRCSLhkm53iirdIiOwZHo26/fVDymhXV1eg9ft4HBjB69XHhvS/SqONDO3KJ2Z+alYC3vrTv/v90hTB6keJ+lJgX0Vs1M8dPX4aR+FmeLjVSRJ95PGmC8YY4qNMTmhI+aRiYhMEInXXpIGvi5IlK9XJMqWTs+htrmT/cciG715pLGD7dVNfP6SUjK8Lh7ZeDDiezW2d3O4sYO5RemU5qcB/U8wOdJ4YlwgQFZycIMc9XVHbNBt4IFbgo99W0os2iBHRCQiCbmQEgLV7uSs0Y1FZBxaFuzrXr+vnul5qYNev6Yi0Fpy5ZnF1LV08siGQzS2d5MZTIzD2Xk0sIiyrCidGXmpGDNA0t3U0dvPDZCVEigmHG/rYlJW8uBflEQ0vWRGP4cSbhGRCLkcgfpGwrSXeFICj2oxERmWWflpZKW4I15Mubq8hslZycwpTOOD55TQ2ePnqXcOR/Te8uDkkrlFGXjdTqZkJ1PZzwY5RxoDW8CHhLaC1wSTyA2YdBtj/r7Pnz94ymv/HsugREQmEmMMboc7sdpLQLtSigyTw2FYMi07osWUnT0+Xttdx8qyfIwxLJySyZzCNB7ZcCiie1UcaSLd62JSsIpdmp9GZc3JlW6f31LT3HlSpTu7t9KdIN/XoiBcpfvDff78zVNeuyIGsYiITFhuhzsB20v6Hz0mIoNbOj2HvXWt1DSH3xrlzT31tHX5WFVWAAR+yP/gOSVsOdjA7prmQe9TcaSZsqL03l7t0vw09ta14u8zAaWupROf3/bO6IYTlW6NDYxcuKTbDPDn/p6LiEgYHqcncSrdbrWXiIzUiXnd4avdq8trSHI5WD4zr/fcdWdPxukwPLIxfLXbWkt5cHJJSGl+Gu3dPqqbTiT7oXGBRZknerdD/eKN7QnyfS0KwiXddoA/9/dcRETCcDvcCdTTHWwv6VJ7ichwnTkpE6/bwVth+rqttaypqOH80lySPc7e8/npSaycm89jm6ro8fkHfP/hxg6aO3qYW5TRe640P/Cbqr4tJqGNcfpWur1uJ8luJ8dbVemOVLik+yxjTJMxphlYGPxz6PmCOMUnIjIheJyeBEq6Q5VutZdGYah2AAAWnUlEQVSIDJfH5WBRSVbYpHtPXSv7j7X1tpb09YFzSqht7uTlXbUDvr/iSGCr+bK+le6C08cGnqh0e+krOyWwQY5EZsCk21rrtNZmWGvTrbWu4J9DzwefQSMiIr0SayFln5GBIjJsy6bnsP1wE80d/X/vCO1CubKfpHtVWQE5qZ6wCypDk0vmFJ5IunNTPWQmu09Oups6cDsNuamek96fleKhQT3dEYtkcxwRERkhl8OVQAspNb1EJBqWzsjBb2HTgYZ+X19dXsOcwjSmZKec9prH5eC6RZN5YcdR6gdoAak40sykTO9J87yNMZTmp1JZc+KH5iONHRSke3E4Tl7Sl5Xi1uY4Q6CkW0QkDhKqvcSt9hKRaDh7ajZOh+l3XndzRzfr99b3W+UO+eCSKXT7LP+3uarf1ytOWUQZUpqfdlp7yamtJRAYG6jpJZFT0i0iEgcJ1V7iSgLj1EJKkRFKS3IxvziD9XtPT7pf3VVHj9+yau7ASfe84gwWT83ivlf30tVz8oLKbp+fytqWkxZRhszMT6OmuZOmYFvLkaaOkxZRhmSq0j0kSrpFROIgoeZ0GxNoMVFPt8iIXTg7jzf31nPrb9az6cCJ8YGry2vI8Lo4Z1p22Pffcdkcqhra+eOGgyed31PbSrfPMq+4v0p3au811towle7AQkprNdQuEkq6RUTiIKHaSyAwwUTtJSIj9qVVs/n6e+ey5WAD19+1jpt//QavVx5jTUUtF8/Jx+UMn8pdPDuPxVOzuHPNbjp7fL3ny4OTS/ptLwlNMKlpoam9h/ZuX7+V7qxkDz6/pbmzZyRfYsJQ0i0iEgcJ1V4CgQkmWkgpMmLJHie3rZzFq99YxbeumkfFkRY+cu8b1LV09jsq8FTGGL5y+RyqGzv441snqt3lR5pxOQwz89JOe8/UnBRcDsOeupYTM7r7qXSHdqVsVItJRJR0i4jEQcJVut0pai8RiaLUJBefuXgmr35jJd+7dj7vPaOQy+YXRvTeC2flsWRaNneuqaSjO1DtrjjSTGl+Gh7X6amg2+lgWm4KlTWtVDe2AwMl3YERglpMGRkl3SIiceByuBIr6VZPt0hMeN1OPnHBDH71sSVkeCPbNiVU7T7S1MEfgtXugSaXhIQmmBztZzfKkOxgpVuLKSOjpFtEJA7cDjddvgSqBnlSlXSLjCHnl+aybHoOd63dTW1zJ1UN7eGT7oI09h1r5dDxQKW7sL+e7jFS6d56qJFthxtHNYZIKOkWEYmDhGsv8ai9RGQsMcbw5ctnc7Spk39+chtw8vbvpyrNT6PbZ3lrXz15aZ5+21CyxkClu7Wzh9sf2sQXH9yMzz+2p6go6RYRiQO3w51gSXeaFlKKjDHnl+Zx7owcnnqnGuh/cklIaGzgpv0N/Va5AbKSRz/p/rend7C/vo0fXr8A5yk7Zo41SrpFROIgMdtLNDJQZKz5yuVzAEhPcjE5K3nA62bmB6aadPn8FPeziBLA5XSQnuQatfaSF3cc5aH1B/jsxTM5d2buqMQwFK7RDkBEJBEkXHuJppeIjEnnzcxl5dx8jDEYM3BlODPZTX56ErXNnQNWugGyUt00tsf/e1tdSyffePQd5hVn8NXgDxJjnZJuEZE4cDvc9Ph78Fs/DpMAv2T0pIGvC3zd4IxswoKIxMe9H18SNuEOKc1Ppba5c8BKN/+/vTsPsqss8zj+fdLdN0l3IB1DhMgieyIiIAMILgioIygDOiCCTAEqKpSWzIxLwTgW5R/MjIXO4sYMKoIru8IwKoNOFBWChD0sAQRCgmACZkECWTrP/HFOk07oTrpjzr23+3w/VV33nnPPPfdt3jqXX95+zvtSLJDT7JHuzOScq+9h+fNr+N7p+zG+s6Opn7+5avDNL0mt1+go7vJfs7YmK7c1inpQR7ul9tPZMW5Y9c/9JSYbHenu7mp6TfflcxZww31/4NNHzthoXXq7MXRLUhN0jStGe2tTYtLoLh4N3dKotVsZugdbGKdfb3eDpU0c6Z7/zHN87r/v45Bdp/KBN+zStM/dEgzdktQEneOKar7a3EzZKJeWdgYTadR6w+5T2W1aD6+avvWQx0zp7mJpk2q6+9Ymn7j8LjrGBV88YV/GtflsJRuypluSmqC/vKQ2I91d/SPdzmAijVYzt9uan3/isI0e09vdYNnzq+lbm5VP2XfJTY8xZ/4SvviefXnFRmZeaVeOdEtSE/SXl9RnpNuabqkOeid2kQnLKx7tfvyZFZx//TwOnzGNv95/+0o/qyqGbklqgsa4mo1095eXrLK8RBrLpvSUC+T8GaF74ZIVnHvNXJ5a9sKgr2cm5/zwbjrGBee9+zXDmnmlHRm6JakJujrqeiOl5SXSWNY7sRhQ2NxpA19Y3cdHvnMbl9w8n+MuuIlHFr/0O+OyWxfwm4ef4Zx3zByVZSX9DN2S1AQvzl7SV5fQXZaXeCOlNKb1dhffbcs2Y9rAzOSzP5rLvb9fztlHzeT51X285z9vZu4Ty1485qllL3De/9zPwbu+jJMO3GmLtbsVDN2S1AT1LS+xplsay3q7N3+k+9JbF3DFbQv5+BG7c8abd+OKMw5hQlcHJ144m5t/9wyZyT/+6B5Wr13L54/bZ9TNVrIhQ7ckNUHtykucvUSqhSnlSPdIF8i5e+FSzr3mXt60xzac9dZiGffdpk3iyjMPYbvJEzj1W7/ls9fM5Wf3L+KTfzmDV07t2eJtbzZDtyQ1Qe1mL+kcD9HhjZTSGLfVhC4iGNECOUueW8WZ372daVuN50snvna9qQanT57IFR85hFdN35rvzn6c/Xbs5f2jbBGcoThPtyQ1Qe1GuiOKum7LS6QxrWNcMHliF0uGOdLdtzY567I7WfzsSq444xCm9DRecsyUngbfP/11/NeNj3D8/jtUPv93sxi6JakJajfSDWXotrxEGuumdDeGPWXg92+Zz40PLuaf3v0a9t2xd8jjesZ38vdv23NLNbEtWF4iSU1QuxspoQjdzl4ijXmTJ3YNu7zkurufZOZ2W3HSQTtW3Kr2Y+iWpCaoXXkJFDdTWl4ijXlTuruGdSPl8hdWM2f+Et7yqpeP2gVu/hyWl0hSE/SXl9y56E4mdEwY9vuS3KzPCzb/f2hDfeZB2x3E1IlTh3+ixiRDt1QDvd0NHlq06VKyXz/0NH1rk8NnvLwJrWo/hm5JaoJJXZMY3zGeqx66iqseuqrVzdksF739ohGG7h5Y8Ux1DZLUFnq7u4a1OM6sBxYxeWIX+22klnssM3RLUhN0d3Vz/XHXs2zlsk0fTDHa/OJo9UgHrQcZqF7vfMMxyKHTe6aPrB2Nblj6+MjeI2nU6Z3Y4NmVa1jdt5aujsErl9euTX7x4GIO3XManUMcM9YZuiWpSaZOnDqykeLRrjHJGymlGpjSs26BnGlbjR/0mHt/v5zFz67k8BnTmtm0tlLPf2pIkqrX1e2UgVINTJ5YhO5lzw89g8mseYuIgEP3NHRLkrRluTiOVAtTuospUTe2QM6seYvYZ4detpk0+Eh4HbR96I6IvSLi8oi4ICKOb3V7JEnD1JgEfaugr0bTJEo11Nu9rrxkMH98bhV3Llha69ISqDh0R8RFEbEoIuZusP/IiJgXEQ9HxNmbOM1RwJcz80zglMoaK0nashrdxaOj3dKYtm6ke/DykhsfXEwmHDGznlMF9qv6RsqLga8A3+7fEREdwFeBtwELgVsj4lqgA/jnDd7/AeA7wLkRcQxQozuQJGmUa/QUj6tXwMR6ThEm1UH/SPdQ0wbOmreIbSY12PsVk5vZrLZTaejOzBsjYucNdh8EPJyZjwBExKXAsZn5z8DRQ5zqo2VYv7qqtkqStrDGpOLRkW5pTJs0vpPOcTHoSHff2uSXDy7mLTO3Zdy4+q1COVArarq3BxYM2F5Y7htUROwcERdSjJafv5HjPhwRcyJizuLFi7dYYyVJm6mrv7zEGUyksSwimN47gZ/OfYrFz65c77U7Fyxl6YrVHD6z3vXcMApupMzMxzLzw5l5cmb+eiPHXZiZB2TmAdOm2bGS1HL95SWrnKtbGuu+cPy+PLnsBd739dk8/ad1wXvWA4voGBe8aXezWStC9xPAjgO2dyj3SZLGkhdDt+Ul0lj3ul2nctFpB7JgyQre9/XZPFMG71nzFvEXO01hcln3XWetCN23AntExC4R0QBOBK5tQTskSVV6MXRbXiLVwSG7TeWiUw9k/jMrOPkbt/DAU8u59/fLOczSEqD6KQN/ANwMzIiIhRHxwcxcA3wMuB64H7g8M++tsh2SpBYYOHuJpFp4/e7b8M1TD+TRp5/j+AtuBuDwGfWeKrBf1bOXnDTE/h8DP67ysyVJLdZleYlUR2/cYxu+fsoBnP7tOWy39QRmbrdVq5vUFqqep1uSVFeWl0i1deie07j6zNezNpOIek8V2M/QLUmqRud4iA5nL5Fqau/t670YzobafspASdIoFVGMdlteIkmGbklShRo9sNrQLUmGbklSdRzpliTA0C1JqlJXt6FbkjB0S5Kq1Jhk6JYkDN2SpCo1HOmWJDB0S5KqZE23JAGGbklSlRqTXAZekjB0S5Kq1NXtipSShKFbklSlRo8rUkoShm5JUpUak6BvJfStbnVLJKmlDN2SpOo0uotHb6aUVHOGbklSdRo9xaM3U0qqOUO3JKk6XWXodqRbUs0ZuiVJ1ekf6XYGE0k1Z+iWJFXnxdBteYmkejN0S5Kq07C8RJLA0C1JqtKLN1IauiXVm6FbklQdR7olCTB0S5Kq5OwlkgQYuiVJVXKkW5IAQ7ckqUqd4yHGGbol1Z6hW5JUnQhoTDJ0S6o9Q7ckqVqNHmcvkVR7hm5JUrW6uh3pllR7hm5JUrUaPa5IKan2DN2SpGo1JsGqP7W6FZLUUoZuSVK1GpaXSFJnqxsgSRrjGj0w/2a45JhyRw7jTVE+RPE8Yv2Xs/8cuYntgacct/75MovjBz7ufwrsc8Lwfi9JGgFDtySpWnsdC88+BWteYP0wPYSBAbo/EA9qw3MNsT3wXLl23fP1An35uLZvJL+ZJA2boVuSVK29jyt+JKnGrOmWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqZuiWJEmSKmboliRJkipm6JYkSZIqFpnZ6jZscRGxGJhf8cdsAzxd8Wdo89k/7c3+aW/2T3uzf9qb/dPetnT/vDIzpw3nwDEZupshIuZk5gGtbocGZ/+0N/unvdk/7c3+aW/2T3trZf9YXiJJkiRVzNAtSZIkVczQvfkubHUDtFH2T3uzf9qb/dPe7J/2Zv+0t5b1jzXdkiRJUsUc6ZYkSZIqZujeDBFxZETMi4iHI+LsVren7iJix4iYFRH3RcS9EXFWuf9lEXFDRDxUPk5pdVvrKiI6IuKOiLiu3N4lIm4pr6HLIqLR6jbWWUT0RsSVEfFARNwfEYd4/bSPiPi78rttbkT8ICImeA21TkRcFBGLImLugH2DXi9R+FLZT3dHxP6ta3k9DNE/55ffb3dHxA8jonfAa+eU/TMvIt5eZdsM3SMUER3AV4GjgL2AkyJir9a2qvbWAJ/IzL2Ag4GPln1yNvDzzNwD+Hm5rdY4C7h/wPbngX/LzN2BJcAHW9Iq9fsP4KeZORPYl6KvvH7aQERsD3wcOCAz9wY6gBPxGmqli4EjN9g31PVyFLBH+fNh4IImtbHOLual/XMDsHdm7gM8CJwDUGaFE4FXl+/5WpnzKmHoHrmDgIcz85HMXAVcChzb4jbVWmY+mZm3l8+fpQgM21P0yyXlYZcA72pNC+stInYA3gl8o9wO4AjgyvIQ+6aFImIycCjwTYDMXJWZS/H6aSedwMSI6AS6gSfxGmqZzLwR+OMGu4e6Xo4Fvp2F2UBvRExvTkvrabD+ycz/zcw15eZsYIfy+bHApZm5MjMfBR6myHmVMHSP3PbAggHbC8t9agMRsTPwWuAWYNvMfLJ86Slg2xY1q+7+Hfg0sLbcngosHfAF6DXUWrsAi4FvlSVA34iIHrx+2kJmPgF8AXicImwvA27Da6jdDHW9mBnazweAn5TPm9o/hm6NGRExCbgK+NvMXD7wtSym6XGqniaLiKOBRZl5W6vboiF1AvsDF2Tma4Hn2KCUxOundcra4GMp/nH0CqCHl/7pXG3E66V9RcRnKEpSv9eKzzd0j9wTwI4Dtnco96mFIqKLInB/LzOvLnf/of/PeOXjola1r8beABwTEY9RlGIdQVE/3Fv+qRy8hlptIbAwM28pt6+kCOFeP+3hrcCjmbk4M1cDV1NcV15D7WWo68XM0CYi4jTgaODkXDdfdlP7x9A9crcCe5R3jjcoCvCvbXGbaq2sEf4mcH9m/uuAl64FTi2fnwpc0+y21V1mnpOZO2TmzhTXyv9l5snALOD48jD7poUy8ylgQUTMKHe9BbgPr5928ThwcER0l991/f3jNdRehrpergVOKWcxORhYNqAMRU0SEUdSlDkek5krBrx0LXBiRIyPiF0obnj9bWXtcHGckYuId1DUqXYAF2XmeS1uUq1FxBuBXwH3sK5u+B8o6rovB3YC5gMnZOaGN7+oSSLiMOCTmXl0ROxKMfL9MuAO4G8yc2Ur21dnEbEfxY2uDeAR4P0UgzJeP20gIj4HvJfiz+J3AKdT1J16DbVARPwAOAzYBvgDcC7wIwa5Xsp/KH2FoiRoBfD+zJzTinbXxRD9cw4wHnimPGx2Zp5RHv8ZijrvNRTlqT/Z8JxbrG2GbkmSJKlalpdIkiRJFTN0S5IkSRUzdEuSJEkVM3RLkiRJFTN0S5IkSRUzdEvSKBARfRFx54Cfszf9rkHP84uIOGBLt28Yn/uuiNir2Z8rSe2ic9OHSJLawPOZuV+rG/FneBdwHcXCLpJUO450S9IoFRFHRsQVA7YPi4jryucXRMSciLi3XFxlU+c6MCJuioi7IuK3EbFVREyIiG9FxD0RcUdEHF4ee1pEfGXAe68rFz8iIv4UEeeV55kdEdtGxOuBY4Dzy1H63bbwfwpJanuGbkkaHSZuUF7yXuBnwOsioqc85r0UqxQCfCYzDwD2Ad4cEfsMdeKIaACXAWdl5r7AW4HngY8CmZmvAU4CLomICZtoZw/Fam/7AjcCH8rMmyiWW/5UZu6Xmb/bjN9fkkY1Q7ckjQ7Pl4G1/+eyzFwD/BT4q4joBN4JXFMef0JE3E6xRPirgY3VU88AnszMWwEyc3l57jcC3y33PUCxvPWem2jnKooyEoDbgJ1H+HtK0phkTbckjW6XAh8D/gjMycxnI2IX4JPAgZm5JCIuBjY1Qj0Sa1h/0GbguVdnZpbP+/D/M5IEONItSaPdL4H9gQ+xrrRka+A5YFlEbAsctYlzzAOmR8SBAGU9dyfwK+Dkct+ewE7lsY8B+0XEuIjYEThoGO18FthqBL+XJI0phm5JGh02rOn+F4DM7KMo5ziqfCQz76IoK3kA+D7wm42dODNXUdSDfzki7gJuoBi9/howLiLuoaj5Pi0zV5bne5RiJpIvAbcPo/2XAp8qb8j0RkpJtRPr/gooSZIkqQqOdEuSJEkVM3RLkiRJFTN0S5IkSRUzdEuSJEkVM3RLkiRJFTN0S5IkSRUzdEuSJEkVM3RLkiRJFft/Z+59IAfGzjYAAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "pylab.rcParams['figure.figsize'] = (12, 8)\n", - "for i in range(len(optimizers)):\n", - " pylab.plot(converge_cnts[i], abs(ref - converge_vals[i]), label=optimizers[i].__name__)\n", - "pylab.xlabel('Eval count')\n", - "pylab.ylabel('Energy difference from solution reference value')\n", - "pylab.title('Energy convergence for various optimizers')\n", - "pylab.yscale('log')\n", - "pylab.legend(loc='upper right')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} From a9d72318580d78fdf08f5bd399c785e5f70135e9 Mon Sep 17 00:00:00 2001 From: stefan-woerner Date: Wed, 14 Aug 2019 13:40:10 +0200 Subject: [PATCH 116/116] updating references in finance tutorials --- qiskit/aqua/amplitude_estimation.ipynb | 10 +- qiskit/finance/index.ipynb | 6 +- .../portfolio_diversification.ipynb | 14 +- .../optimization/portfolio_optimization.ipynb | 110 +++---- .../asian_barrier_spread_pricing.ipynb | 22 +- .../simulation/basket_option_pricing.ipynb | 22 +- .../simulation/bull_spread_pricing.ipynb | 22 +- .../simulation/credit_risk_analysis.ipynb | 274 +++++++++--------- .../european_call_option_pricing.ipynb | 22 +- .../european_put_option_pricing.ipynb | 22 +- .../simulation/fixed_income_pricing.ipynb | 14 +- .../finance/simulation/option_pricing.ipynb | 17 +- 12 files changed, 287 insertions(+), 268 deletions(-) diff --git a/qiskit/aqua/amplitude_estimation.ipynb b/qiskit/aqua/amplitude_estimation.ipynb index 3cae51447..c18675aec 100644 --- a/qiskit/aqua/amplitude_estimation.ipynb +++ b/qiskit/aqua/amplitude_estimation.ipynb @@ -68,7 +68,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAF2CAYAAAB6XrNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvUmMJNd5NXpinnKsrB6qms1uNmf6mRopkaI8yIZkL/Q/7b0wDMMrGxCstRe2Fwa88cIG7K0WXr1/Y8swIIiAJcEaKYkWSVHm0M1mTzUPmRnzeO9bxL1RkVmZlZlV1SS7+h6gUFWZGRE3IiPO/e43nE+ilEJAQEBA4OxA/qgHICAgICBwuhDELiAgIHDGIIhdQEBA4IxBELuAgIDAGYMgdgEBAYEzBkHsAgICAmcM6oz3RS6kgICAwMcT0rQ3hMUuICAgcMYgiF1AQEDgjEEQu4CAgMAZgyB2AQEBgTMGQewCAgICZwyC2AUEBATOGASxCwgICJwxCGIXEBAQOGMQxC4gICBwxiCIXUBAQOCMQRC7gICAwBmDIHYBAQGBMwZB7AICAgJnDILYBQQEBM4YBLELnDn8zd/8DSRJwq1bt060nx/84AeQJAn//M//fDoDExD4kCCIXeChwr179/Cnf/qnWF1dhWEYuHr1Kv7yL/8S/X7/0GdffvllnDt3Dt/61rc+gpEKCBwfgtgFHhq8//77+MxnPoNvfvOb+NznPodvfOMbuHbtGv7xH/8RL730Evb29kY+L8syvvrVr+L73/8+hsPhRzRqAYHFIYhd4KHBn//5n2N7exv/9E//hH//93/H3//93+O73/0uvvGNb+Ddd9/FX/3VXx3a5mtf+xqyLMO3v/3tj2DEAgLHgyB2gYcCN2/exCuvvIKrV6/iL/7iL0be+9u//Vs4joN//dd/RRAEI+99+ctfhmVZwh0j8EBBELvAQ4Hvfve7AICvfOUrkOXR277ZbOLll19GGIb46U9/OvKebdv48pe/jG9/+9vIsuxDG6+AwEkgiF3gocC7774LAHjqqacmvv/kk08CAN57771D733ta1/DcDjE97///fs2PgGB04QgdoGHAjz42W63J77PXx8MBofe++pXvwpZloU7RuCBgSB2AQEAlFIAgCRJh947f/48XnzxRfzHf/zHhz0sAYFjQRC7wEMBbpFPS1t0XXfkc5Peb7Va92dwAgKnDEHsAg8Fnn76aQCTfegAcP36dQCTffA3b97EW2+9ha997Wv3b4ACAqcIQewCDwW+9KUvAQBeeeUVEEJG3vM8Dz/60Y9gWRZefPHFQ9ty37ogdoEHBYLYBR4KPP744/jKV76CW7duHdJ++eu//msEQYA//uM/huM4h7b91re+hZWVFbzwwgsf1nAFBE4E9aMegIDAh4V/+Zd/wRe+8AV8/etfx3/913/h2Wefxauvvorvfe97eOqpp/B3f/d3h7bZ39/HD3/4Q/zZn/3ZxMCqgMDHEcJiF3ho8Pjjj+MXv/gF/uRP/gSvvvoq/uEf/gHvv/8+vv71r+MnP/kJer3eoW3+8z//E0VRCDeMwAMFYbELPFS4fPkyvvnNb879+W9961toNBr4vd/7vfs4KgGB04Ww2AUEpiCOY3znO9/BH/7hH8IwjI96OAICc0MQu4DAFLzxxht44okn8Ed/9Ecf9VAEBBaCcMUICEzB5z//ebz++usf9TAEBBaGIHaBM4ff/d3fBQB0Op2PdiACAh8RJK6RMQVHvikg8KBivEhpXMo3DEPEcQxZlmEYBizL+jCHJyAwD6bm3wqLXeCBBCEEtChACQElpPy//lMUlbAXKAWl9MBKqZF6XhQH+ensdxhFCMIQiiyDorRuup0OTMuCrCiAJEGWZciqWv5mfwsIfFwgLHaBjy0IISB5DhQFCPuhRQGS55h03/LXCCEVkVNKS2IvPzD6OkpilyUJkCRIAKIkQRAEMA0DrWYTADAYDlFQil6nA0VRJg9WkiDJMhRVhaxpUBQFqqZB0bRyMhAQOH1MtdgFsQt8ZKCUoigK5HmOLEmqnyLPIQNQZBmqokCWZUiShIKQkuApLUm//sNeK4oCFAChdPJdz0lekiBRioLS0mKnFKQoMPR9aKqKhuNUlnye53B9H4qioNNqQWYkLssyZG69y3L5GlD9TylFGEXwfR+e74MAaHU6WFpextLyMkzT/JCutMAZhSB2gY8ehBAEQYAoikoCT9PKCqfMygaAghBkWYY8z5EzMucWtcbcH7quQ1UUSIxYJUk6IFxJKkmZbcMJWmL/g70vAcgJKV+jFK7nIU4SdNttyIpSjkeSQAhBGIYIowitVgsSGyMIKScbSuF5HsIwRBAE8IOg9NFHEQzDgOM4aDYaUFQVSRQhDMOK6C3HgdNqod1q4dqTT+Kxxx4T0gUC80IQu8BHh6Io4A6H8AcDFFlWFU9QQkBqf48QWo2EQQgK5kYpigIFIVAkCbquwzZNGIZxbDLMCYHMxrjX78MyTTQbjep9inJCyPMc+4MBGo4DmwVS0zTF7du3cePGDUCS0Gq34dg2HMeBZVllUZMklauI2nMmSRJkRQEpCiRxjCxNEcUxbt+7h4IQfPIzn8FvfuIT090+AgIlBLELfLgghCANQ7iDAdzBAFmeQ5VlqJoG1O45RVFKfzT/rarla8wK52ROcUD+hBBEcYwwjkHyHJIswzJNmKYJdRIZMlfLJHBi59Z6r9uFoijVjV+fMPb6/fI1SvH+zZtYX1/H6soKrl27ht7SUhV8BaUgNb8+gGpC4q4n/ndRFNX+ZUXBoN/H7Vu3EEYRnnrmGfzmJz4Bp9WCIoKzAochiF3g/oMQgiJJ4O7vY39/H2EYIstzmKYJU9ehqio0TYPGf2vaoTRDoCRwTorjaYnjSJi1myQJKABN00orXtfnsuJzlkFTt9YpXy3UP5fnuH7jBt7/4AMoKAXFrly5MlFqgFKKvCiQ5TmyNEXKAr4SUGXZ1M81z3PkRVH+5DkoIfCDANtbW/A8D48+8gieee45XFhdhdNqiWCsAIcgdoH7hzQMEfo+Qt+H57rwgwCSJKHhOGg2mzANA5qmTbama6DM3UJqxE5r7wHlnUxZwLN+cxJCEEYRojguXTWyDMe2YdUDlGwfFAdPRM62C8KwstbLA5VWfpIkeOftt3H3zh10ez30lpdx5dFH4VhW6X/nhMyDwHk+YoUDqFYjlFnykyac+msFmxSSJMFgMMDa2hr6/T6eePJJ9Ho9NNttLPV66PR6UFnMQeChhCB2gdMDpRRRFCH2fUSehzzLAABxkqAoCtiWhXO93kI+Yp7VcojM+f3JiJyyz3AirJM03yZJUwRRhCzLoGsaWs1mRayHLHFC0B8MIEkSuvVKVUpx9949vPnGG3jk8mU89dRTsC0Lm9vbAADLNEsSZysKCWU2jKqq5cqE/VZZLvz49SNHP3ejY8xz3LlzB7984w1cvXoVjWYToBSKpsFpNNDqdtFdWkKj0RB++YcLgtgFTgbKrFffdRF7HoosgwRA13XomoY4SZDleeXOmGSV5nmOPM+R5jkK5n4gzH8uSxIkRYEqy1BkuSwCqqUSHmWVjrg2auQdRhG8IACAkaBn/TNxmqI/HJbvmyYgSYjDEP/z+usIgwCf/sxn0Gm3EScJ4iTB0HVRFAWWOh2omlYRuaqq5binXDs6waV06Nmb4ToaDAb4yY9/jCtXruDylSuI+Aolz0EVBXajgeXz57G0tCRSKR8OCGIXOB7yPIfv+wg8D3kUQQFg6DoMw4Ch6yCEYHdvD2GSwNR1aJpWuSMq10SeI+OWNkshBFC5XbjvGUDlAiE1y51b6FVaI0tp5MFW0zBgGQZM0xypIqW13PQ0TaGpamW98ydi6PsIowi9pSUokoRbt2/jrbfewrXHHsOVq1eRsrRLoEy1JJQiy3OcX16uJptqouBBWpYjT8eCqQAOXq8VSo08g3X/PqWQxiaLOAzxo5/8BJ12G5/81KcgAciyDFEcw/V9xFkGzTDQ7fWwvLyMTqcj0ifPLgSxC8wPQgiiKELg+0h8H7QoYGgaLBaUTLIMQRBg6HnY3tlBTggcy4LGMjcklieucNcE8zErLONFVdUq11xRlKqwiDDLtqAURZ5XhUdcMoDLBhBGlIQQZHle5rmjvFk1VS2DtWziMSwLmqIgjmN4QQBKSJmOaJqQJQlbe3tQZBmaquJ/XnsNSZbhuWefhWEYoCiLpEzLgmkYUGQZaZZh6LrotFrQdL0833muad2tNOF6z3LN8GsKlJPtqz/9KQpK8eLnP19dd6AMJrueB8/3QRUFTrOJ5XPn0Ov1hKb82YMgdoHZSNMUQRAg9H0USQIVpS9ZkWVEcYwgDBGEITJWUJSkKUxdR7fTgaHrkJlvmacvTgNhhT3TcMiKnYEsy5AkCZIsQ5okSNMUWY3sFVkus3J0vZIjsCwLtmVhfzDA9tYW3r95E49evoxHHn20/DzL5NEZedfHvru/X+ar2/bcY6ziA1NQxRhm7YdSyCze8OYbb2BrZwe/89u/DWPCOIMgQN91keQ5dMtCd2kJ58+fR6vVmnvcAh9rCGIXmI40TeF5HuIgAE1TqLIMwog7DEMkrKhIliTYtg3TMJBkGVRVRafdnupbngTC8tIngeetjxAcrxpl/1KU7gwAVVriJFdGnueI0xRpmiJl/vE0TavzCqIInu9jY3MTDcfBc089hVanA0PToLNUyREXUW0M+4MBVFVFq1bIxGMCiqJAVhSorAhJqrlrOLFP2idQVrMuMqEBZTMQPwjwhZdeqgi/nk8vAYizDMPBAG4QQLcsLJ8/j4sXLwrFygcfgtgFDiNJEvi+jziOEbkuCqbTEqdp5cs2DQO2ZcFi7ghZluH5PqI4RqvROGTRjoOnJgLlzZQXxZGui0Wt9fo2de2YSlem5ropigJ5miIIQ2zv7uLGzZso8hxPPvkknEajCrBapglJlqt4wPh4PN9HkeeH9N7JBGKWWTBYVpQqGMz/V2qaMhw5CybX0zqPQlEU+P73v49Hr1zB448/Xln049tJbN97/T6CJEGj2UTv3Dl0u10RaH1wIYhd4ABJkpQWehwj8DxErgtCCGRJKgORzE1hmeahbJQkSTD0PFimecgVMalac8QiZcHMozDRHcEJFkCeZchYEU/dN1/3X1NKAVmGwi1oJtBFigJxHGNvbw/vvvsunn72Wbz+y1/ipZdeQspSNrnl7TQaaDoOHNuuLGF+Xn4QIIwiLC8tlRNA7fwLlulTVZayCaZghUjjz5uEsuKUV9sCgMR8/jJLleQrh2lk7/s+vve97+GLX/wi2mOTTaWNU3stjCIMhkNA19Fqt9FqtdBoNEaDzwIPAoQeu0Dpix4Oh4iY4mDoulAA6IqC1tISWkyoatrdQooCnu9DVRRYljVCdmCW4lE4ysdc7qJ0V9TdF5UYGEuP5AQuMctXURTojLwV5vpQahk0AJBmGcIoQpHn2Nndxa0PPsDLX/hCma6oKLhw/jyCMARQShyELHDsuS4gy2WhVaOBhm1XEgg8F73+AEkoi5HA4gtVIVXtd5Zl5QqiRv58hZFl2Uj8gefD82pdiZ8Tzyxivx3HwfPPP4+f/fzn+NKXvgS1FkwdKfSiFLIsw7Es6JqGoechcF3krBhK13W0220RZD0DEMT+EIAy9cF+v4/hcIg0jqFJElqmWQpXWdbM6kVKCIa+D0ppqVQ4/vlZpM5TG2tEV252QFA8y4Vb5ZUvXpKgKgpM06yIrrKijzhmnufwwxAF01xfW1vDxuYmvvSlL4ECSJMEACpL1Q8CFITg3PIyZEmCH4aIuGKj55Ukb9tlxgz3mTOFSW6JHzq3sd+appWrEk6+tfTHSgcnSZBlWZXGGMUxgMNEz78zSZJw5dFHsbW9jTffeAOf/sxnJl8QSaqyb2RVRbfTgR8ESIIAIaWgjoO9vT3Yto1WqyUqWh9gCGI/40iSBJubm9jd3UWeJLA0DUu2jXa7XQbPjnLF1XLOozhGnmVoNBojFuE84Poo9YYWXPUwYySeZxlyJoULSYKqqrAMA6qiQNO0A8ndGkb+r5FjXhQIggBZnkOWZdiWhV//+tcIfB9f+t3fhaHrGAyH1X4BwDAMKIqCoefBdV00m020Gg00Gw0QQhAz2YEgDOF6HvwwhB8EONfrodVsHpBgLaA70Uc+7v8eC9JySWJdVQHbLq38PJ+L6D/9qU/hu//1X1i7exeXLl+e8aWUR+TWu+/7SMMQhuOU5xvHB/eIwAMHQexnFIQQ3Lt3DxsbG8iTBE3DwPleD512+8BqnCN3GgDSPEcYRVV++DwYsVzLFyphrJyRVGU9MkvWYHnvSi2bpNp+fP+18dV1X6IoQpIkkJhWjKqqePXVVyHLMn7rt38bqqKUfm9CDgUNeSMN1/PgeR4ajQZ0TSt1ZxwHlm1jmckpbGxtIU0SbG5vY3t3F91OB912u5r06mPjExu/Dkdd6+p8an59XdOga1p1XY8i+t94/nm89vOfo93tVvLDdMx1M3JcWYamaWg2m2VK63CIyPfRaLVQFAVM00TnqM5RAh9LCGI/g9jY2MAHH3wAkiRo2jbOra6i1WxWpDPu6+aZFNPg+z4kSToyb7suzFVvbpHnORKWdpikKYCSQDVdr6xNLpNLWP/RmeE79hn+OS4AFicJJAA2E/+K0xT//YMfYKnbxSc/+cnKfZOxQKnGyPJgt2Wwtc3I3fd92JZVTQCyJIFKEmzHQa/XK7s7SRIGwyH29vex1++j226j2+lAr60GqrGyoC6ZkRlUxRGmnLumqlOJXtd1rF66hJ/97Gd44YUXKgG2+mRRHaPmIlIVBTYrMhu6Lvx+H3mSIJRlRFGEbrcLx3FmfTMCHxMIYj9DyPMc77zzDgY7O3B0HSuPPopOuz2ihFjv+VnvKDQNSZoiz3M0Jui/cEuwTuQSmBZ7miJOkiq9UWcyBCrL864fn08Gs4KvHPVPZVkGLwhACIHFMnpkRYHnefjRj36Eq1ev4pmnnx7x7WdZVpHZOCgLMHJyD6MIhNJKZ4YfW2KupEa7DdtxEMcxBsMh+oMB9vt9tFot9Dqd0VUBO1+l5uvmQU1+/WZWoLL9HOzysEXfdBy88sor2NvfR6PRqNJWTeZu4mMZyadnMg0aUJ676yKOIjQcB+72NsLhEOdWV4VEwQMCQexnBPv7+7j+3nsooggXz53DIxcvVuX6/AHm7pd62zjg6ABkGEWQZbmqbKwHLMcf8CRJSuucW8SKUgUbJUZmXBuGj4Eff1rV5fgKoHqdlv1Eoygqrex2uyqt930fP/jv/8Zzv/EbuHrlykFwk7kj0iyrrHU+0VV+7tpnm41GdQwAFbkDZfYLX4EAZQD2omkiTVO4rgvP9+F6HhzLwvLSEuz6amfs2leTLjC1eKuOad8Xd92YpolnnnkG2xsbWP3UpxAnCcIoQhhF0DUNpmFURVi1C1qmVxJSuWaGnocgDNFqNBAlCe7dvIlkZQXnL14UgdWPOQSxP+Dgkq6ba2swJAmPXb1ayc/Wdc05xv3SRyFly3un1th5fLssz5HEMZI0rcr3bcuCoesj1qHE3T1jBTlTwQhW5r5hHFi3OSHwPK/yATcYaVJKEccxfvCDH+C5557DlStXRoS2eJEOIQQqE/RiGx5a0fDqVtuyQClFwFQiLdbuTpKkKpe+PvHouo7lXg/dTgeD4RBD18XttTWYuo7e0hJazWZ1LuMTZOUiq53zIqhPEteuXcN7772HLE3RZv5yrlDp+j5kSYLBhNNURTn4jmQZRVFA03W0mk14ngc3CNBqNCAnCTbv3kXoebh87dohV5bAxweC2B9gDAYD3Ll1C9FwiE6jgUdWVqosBsIrODkJ4YCs5gEFEEQRJEUZbVaB0qrk1nnBCpsMttQfyZipTwbMSpXBSudrr3HirQKutXHWyRcAImZ5SrKMVrM5UvmaZxl+/OMf4+rVq7hy9eroCdV8/gBGhLNGP3aYVG3brhpa89VLpexICCTe+Lo2TlmWsdTtotPpwBsOMfB9rG1sYHt3F0udTknw9eImVhkrHQyk+h4WIXm+vaaqeOLxx/Huu+/i05/9LBRFgWPbsC0LaZYhTpIq8KoxhUzDMKrJtyAEpmFU3Zz8IEDDccrMoX4f0Vtv4dFr19Bst+cem8CHB0HsDyDyPMf6+jr2t7ZQJAkunjuHc8vLlQVVNX/gpL5AmT63JHlRkFPTME+Yxcf95pqmldZ5LVOG0gOp2XpGSB3cKuTHq6xk7hqY4MMlhMDzfeR5DkPX4TjOiDuAEIJXX30VnU4Hzzz99JHXjmu6zAsJQKPRgOu68H0fcrN5YGXTA8leWv+fn6skod3poNluI/B9DFwXWzs72NnbQ6fVQpu1uitY4Ljub+fHnrbvWXj8iSfwne98B2EYwmGpk5IklaqXuo6CkPI7ZcqXfhjC0PUyLsDuG9M0y0mepXc2Gw202214nocbb7+NR65cQe/CBeGa+ZhBEPsDBtd1cff2bdA0hakoaF24gCXegJkVu4xnlsxt9bHluCRJiKIIklQKWXlMz5yi9C03bBt6zWotd88InZMSpSCY7PKRJAmKqiLP87lcQwlTnaSUlqXv4ymXlOJ//ud/IMsyPvXJT06cGKqUyKKY2RiaxwPqe5EAtJpNDJj/3K6tjMaPMcmVIksSms0mms0mgjBEfzjE7t5eSfAsVbKu7z5pTFWwec5JWtc0PHb1Km689x4+wbTbgYPJm7vNbMtCxqx4PnlLigKD+eMt0wRlmUfccm+3Whi6Ltbu3EEaRVheXYUhNGc+NhDE/oCAW+mD3V0YkgS70YCqKCPFMZIkVQU+dRxVys8t5TopZVmGIAwhSRJcz6tkbA3WkHpk+zrJTCDDicdkk4eiKNUEMImsCPNtp2kKVVXL4qgJlvav//d/4Xkefvu3futQY4rx43K//CxMm5BazWZpuTOf+/i1rSx55oOflEHCXSJ+EGCPNf52XRcXzp0bDbKOjR2orX54SuSMDJUnn3wS33nlFTzz7LMV8VZb1K45by7u2HbVINwPAsRxXI7XtkEoRZwkUGS56pQ19Dzs7e2hyHO0ez20e70jxyPw4UCsnx4AxHGM9955B+72NpabTZxbXoaiKLDHLGc6idQnEGZdrEses+6zLMPWzg78MCzJ1LbRbberYh8AI5k2lSW5SAoc+yxXO0QtQ4YjzTIMBgOkWQbHttFutSaS+gfvv497a2t4+QtfmGiJ111BeVGAUjpX5ey081FkuSr8CXy/1K+ZtP0R+6Aor6Gu61i5eBHnl5dBKcW9jQ2sb21VcYAZAxxx0RRFAQKUk2TtY4Zh4Mqjj+K969cn74OPqRYbsEyzjAM0GiCUltW4nlc1LwnjGHlRQFNVNG0beVHA9TwM9/awcfs2MibVIPDRQRD7xxxhGOLm9euQkwSXV1bQbDQQxzEsy4JjWaM+9AlEQif8PYmIM9YZaK/fRxTHVaGNwfytwKgvfNFM5jrBjm/Lc9j5uQRhCM/zIMsyOq0WLHae49jY2MD/vvsuvvjyy9CnVMRWxUE4CJwe1QRkdOPJZ6mqKtrtNgqU5D7NNTIeM6BApfJYbzTiOA4eWV1Fu9lE4Pu4decO+oPBfGNk+5e5zDC7F6ouUyit9tu3biGvpWeOnGPtfqifi2Ga5aRuWcjyHAPXrb5D7hozdB0Ny0LKtPuzJMHmnTsIfX/+8QucOgSxf4wRhiFu3bgBJc/xyCOPwDBN+EEAXdfLFL95rGT+oEoHhUT1rfI8x9B1MWAqf5qqotlsot1qTfTpHmWJTj48nUro/H3U9sn14U3TRKdWoj+O/f19vPbaa/jCiy9OrYgcJ1weOJ070Fcb+zg0tppJmdtqGnhAlBM6GQtsc8iyjN7SElYvXoSuadjd38ftu3cruYCZqNUmjOenm5aFpaUlrK+vl6s6NgFM3L42CfHJ1rIsdNttmIaBNE2RZxn8MEQYRQB73zIMRHFcSipTir2NDbj9/nxjFzh1CGL/mML3fdy6fh1KnuPS6ip0TUPE/N6tsayMaRbjeIVp/YHPGKH3h0NkeQ7bstDtdiHLMrSaNG19JXCcisPq2DM+l+c5hsMhckLQbrXQbDRG5HvHr82Pf/ITfPazn0V3aemogx86xiICZrNWJgZLEUySBOEYuXOrOSekkhueZ6VjGAZWV1awvLSEIs9xd20Nm9vb87lnykGXvw4GAgBYXV3FxsZGOVmx3rETSX6M4PlvmckXd1mlbUEItnZ2EIQhKKWwbRuSJJVkz85/sL2N/a2tuYO9AqcHETz9GMJ1XazfvAmVUjzyyCPQNK3MHU9TmGPNLyY9MnUy5/ooPBMiy3OEYYiUldVzLRSZtcPL8vxA0e8YLpf6mObZlrIxeWyZ32o0qrRNnurHs0yoJCEJQ/zwhz/E//Pcc7h48eKR+x7JDGJVr+opao3LslypQkZxDInluHNSrwqQar+5RO8sNBsN2JaF/mAAz/PgBwGWl5bQmTdvvPbdUQAXV1bw5ptvoiDkQHK5ZhRwC72aDMfInWdWKYqCVqMBQ9OwsbWFbZa26VgWbNNEEEXI0xSaroNKEvzhEHmaYvnSJZES+SFCXOmPGQaDAdZu3IAC4JFLl6CxApxJZe100pIao5YmlQ6Er4aeh0HdQu90YNt29cAlSQIKwKgT64KoXCtzfp6X4EOS0G61JlYz8tWGTClee+01XL58GVevXeMHnOs4lX99QcnhI1cpUikRbJlmWbjjumVa6BH55ou4shRFwXKvh5WLF6EpCnZ2d3H77l3E87pn2BglSYJlGGi3WtjZ2Zk6Lq4xz6Un6hk/PA2WwzAMXDx/vlqxuL6PJMtACUHAxicBAKWIowibd+5U4msC9x+C2D9GGAwG2Lx5E6qiYHV1FZquQ0JZ6RmnaSlwVW+OXCO1cSuZW+kFz1hwXWRZNpHQ+f6SNC2LdxYkv5HjL2DlR3EM13WhyHLZFHtGUPO969eRFwV+47nnRmIHFcayPOqUf1xi59Z3XZqAdz7iJEgBNBwHqqrCC4KZ/SSrWMecBG8aBi6trqLX7SLPc9y9dw9bOztT9XUmH1TCpUuXsLa2Ntf4KOvfyvu4jrsFgs4QAAAgAElEQVT1gFIfx7GsUjvfNFEUBdI8LwXEOLmzFUqepti+exe5IPcPBYLYPyYYDAbY+OADKIqCy5culSJN7L0ojiEzt8k4xv2XdUEp3tsyy7IyADaB0Ovb5Xm+cFu0RS10vk3AOhNpmoYWC9QehX6/j/feew+fe+GF6UFj7laoT3iMjLMsq1Ir66Rfb4DNRcp4e7qCkZrEP8dIvjzhMlWUW7US80HXdWWOwqJBaABotVp4ZHW1qoL94M4duAtkn6yurmJrc7Ma/yzfd6Vnw1eGNWOCj91xHECSUBCCbruNdrOJvCiwtbs7IpIGoGxNuL6+2IQkcCwIYv8YoN/vY/2DD6DLMi5fugR1rO9oxtQIxwOmI2X4NeR5jsFggCgMYRgGup1O2ZT5CB9nmqYglI5or8wC13tZBJRSeL6PiDXumCQHPI48y/Czn/0Mn/rkJ2EdoQnPUVeO5D76ggl/Va9NGv949s/sA1XnBDCJBabwOE5qEzevjXXeAKOiKDi3vIyLFy5AlSRsbm1hc3t7LrJ0WMPqfr9fxl9Ys+xpoJNy9Pm9x8TPuI57yjphNRwHy0tLoITAZeqQ/FxBKbIowh6fXATuGwSxf8TY29vD3Q8+gK4ouMRIvQ6+9OeiVXXXwHiVJxfuGrguCKVotlplg+oxF8ekhzljbphp4ljjY+LHXITWCSGVH9pxHDgsk2LGwfDL11/HueVlrF66NNdxDp0fK+A5SRegSaOsxl4jZdOyoGoagiAoW/3N2u9YkHteWKaJlZUVtJkC451795DOMZmsrq5ibW2t+n8kYFrDtLqI8c9QQsoYgyQhYLr4XMtHU1VEcYwhU+Lk7qfY99Gf4usXOB0IYv8I4fs+1u/cQUPX8egjj0z0//KAk6qqI3718UduxErX9bK4aCwQeVRaZJKmc1nr4xPKvCiKokxnLAo0meU4D+7cvYtBv4/nP/GJ+Q82nr/OLM8TEfsEkpvUHEOSJDSZzLHv+7PJurayWPRh5Lnv55eXUeQ57ty7B2+Ga2b10iWsb2wcqk3gY6hcVHOuIPjE5DgOCkoRJUm54pRKxc9mo4GiKDBw3XIVw87X6/fhiTz3+wZB7B8R8jzHnQ8+gA7g0srKVDdJluflkpe5Z8at5ElWerPRGOlGJEtM1Go8x5kfg7th5tXXXtD9kmVZOT6U3XmmVYmOw/d9/OrNN/G5z39+MVKekL8O4CDN75gYJ/dpV0FWFDQcB6QoqmymOQ9wrEnTcRysrKxAU9UyBXF3d6prptPpAJTC9byxQx/UOozEEuaEzhpqc/E4SZYrJc5OqwVFluH5PnxWsSoBGOzuIjqiuEvg+BDE/hHh3p07kPIcq6zT0TTkaVq2k5PlKnWxem8eK539Vmf41yUc7gE6CYsST5KmGLouZADtWt/VWaCU4uc/+xmeefZZtFqtuY83iY64G+A42T5HgRdQTSJRnTWxiOMY6RHFRYeu5wLZMiPH0zSsXLyIpuNgOBzi7vo6sinHXV1dxfr6+pHjWdQ1BJTuIQogybKyw1SWlc1XWB9Z0zAQJ0nlmgGl2F1bQzRHsFlgMQhi/wiwu72NeDhEr90+KAYaB3e5yPKBYiEjEArAD8MjrXT+uaqSUJanEkbGpAQmvV/XeFkUSZLA87xKW2URYn3rrbdgmiau8Xz1E+Ck/nWO8aszi4Bt24asKPB9f2EL+Dh6PLIs49zyMnpLS8jSFHfu3p0od3Du3DkMprhB6u6+RclB1zTIslzJIEiSVGUTQZLQcJzDrhlKsX3vntCWOWUIYv+QEfk+BhsbMHQdS5PK4cfysyVWEcqzYLiVHkfRVCsdmFz9OY248zyfTrpHFNschSRN4fl+Seqt1kQ53Wk+/+2tLdy7exef/sxnFjrmNOo8LWIHJl/PabLIXP4BlMI/DnEd0zXTajaxwppfrK2vY29/f+T9druNwQSRMR6oHzm+dCDONnu4ZSFUURRVw/AqDsHSR3XummE6/34QAJRia21NkPspQhD7h4g8TbF15w4IIbh4/vzBG7UKUm5lS2MPFSFkfisdkwtgJOmwANa0wp2RVnULIh0j9UV88kkc4+evvYbPvvDCQqmX00BqPU5PBTWSqxeDTYOiKHAaDWR5vljFaO14i8Y0AKY5c/EiHNvG/mCAe+vr1XftMK2XZExe96hVRSUrMAOmYUAGECfJyL1ZJ3iwCY+7ZlzPQ5Hn2Lp7F8GY71/geBDE/iGBZBl2795FmiQ4f+5c6c8eE1+iKJfT9cdYlsrGF/15rfQZRDBO7nmel52RaumUVYXhMQgly3O4vg+F9SQ9aiyHrEBK8Ytf/AJXr17F8vLywsfm+6CElIReFEizrCo0yrMMWZoiS1OkrFsQr7hN0rRq3p3nOfKiQF4UVaESqRUrjQtkzbJmeT/RIIrmF/MaO6fjQFEUXDh/HkvtNqIowp179yo3SbvTGZEG5uc3DRLL2pk1Eq6fk2bZof3V7ycuHNZoNFCw5uRxmmLr3j0Ew+HC5yowCiEC9iGAZBnc7W24nodms4kGa9QwUkSDya4SbtG02200W62JhF7tY063CSd3QggKlnWjyHKVu3yc5T9QThKu60JhFtlR3YyAw7nSN27cQJbneO6ZZ0bK2QumREhqrxGuUMi2nUZMSZoiZpW7k64vYW6S8S15XcBRvwHA9TxkbEKQZLk8jixDYb9l9lrDtpHnObwgQKfdHhUGq+1vEuadQKah3W7DMAxs7+7i3r17WD53Dp12G8PhEBcvXDjwg88CJ/cZqzneBHtS8Lbu1uFNT9qtFvwgQBiGIIRga30d5wDRKPsEEMR+n0GyDMlggP29PahM1AlTij9G0hhZaXrM8oIbtj3VSq9IYgELm5M7l7JdRJFxEoqiwNDzyt6grEHzRFBaWsJ5Xmp3oyTlKAzxq1//Gi+88AL2B4PJJEYpJEWBjDKlUFHVketYr+SUypMEpLIFX13quF6ZysdbDxrS2vG4RsqIEiL3RbNMG4lVtlKmH1N31dDacYqiKJtRMM0ePhEApaWrKMqR3+G8vu5JME0Tl1ZWsL2zg93dXRAA/f39+Ul9bBwApt7HQPn95Mxqn+QS5GqR/HtqNhoVuQPAzvo6QAia3e5CYxMoIYj9PoKkKXLfx87ODnJCcHl19YBwUBNVGrvxCVuapnmOZrMJTdOQ5TnGS3qqx/EYLhOOoigqsbHj7qdgFaXAAalTJpSVF0XZto27NYpiRFALtGyC/fbbb+PRRx+tAq0K03VRWDaPzKzfSTiK7OI4hmaa0/31jPgXBSemNElgGAacmtQBJ0s69pswbfYoiirLnoKV7teC5SojeVlRoPC/eV9bYGqT8FngrpnhcIgwirC2uYk0y44VfzhKCiFJU5i6DllRkGYZjAnXvpr0atvbloWCTfKgFDubm2XtgyD3hSGI/T6hSBKQMMRgOEScJFheXoZuGCBMY4P708dBmOVbFAWajgNd00AJQZwkaGDxlLujkOc5IEnlMSbsexYopcjzHP1+H2mew3EceL4/agUyq1dVVaiyDE3ToDDC4kHira0tBEGAl1566fSCnGx8BevNeb8w6ZrJslwGryZMGJZlYTgcQpZltFqtyh2WEwLCWuYVhCBnEsrVcdgkpyhKOSkoSlXfsMg9IMsyOp0OFFXFr3/1K9y6exePMtG544Bb3/XG3QlTIi0IQRTHE4kdOBx8lmUZjm3Dp7TqzrS3uQkQIppkLwhB7PcBnNSzLIM7HMK2bXTa7ZFl6TTxrqHrApSixSx1QggMwygLXZKkrNrkVYInGCMnPaAsTJJry+Op51UUyJkLJctz5GkKPwxRFAUc2wYpCsiyDF3XK/LmVuf4+XJ3BiEEb7z+Oj7xyU8em9Sn+Xt56t5pFybVjzvNap0GRZZhWRaCMETKZRxUFQqlwJirrWBB4CqAm+dVULL+XSmyXE6c7OeoFQiPTzi2jXanA9/zsLaxgUsrK8cnd5QrDe5XJ4TAtiwQQsqAcVFM7zMrjbZflGUZDduG5/sIWeHS3vY2KICOIPe5IYj9lMFJHQCGrIz+3IQMj3EaSlmzAkmS0Ga9PnlFo6aqkBUFcZpCN4wTETpw8BDxDA1u9fGVBD9uludlhghT7qsIjFmPeVFA13W0221YhrFYhxxGxO+++y6arRZWZnRDOupcplmshGvE3IfOPdyVcJwVk8maUwRheGS1r8JcUuOf4JNyURTImJsrTlOAiYBJkgRVUQ7InvnuxzX8l7pdqCxofm9jA6sXLsyt4TMRkoSEVTFzeYqAGTizGojz8fE4SbPRgOf7pQQypdjf3galFN3jZks9ZBDEfoogeQ7CekDmeQ4/CCrLGygzMMbzzoGyO5IfhlAVBe1mc2Lg0TSMKvB2kvzuemAvz/MqYEcIKVP9igJpmh5kNFBaWuGaBlXTSotQluGyitJmo7GwhjsfRxAEuH7jBn7/937v2OfDs4EmgU9Q96sl26Tvch5IkgTHtjF0XURxDHPB6ydJUkXaOsrzrL7DPC9dO3lepTZSdt/ViV5RFHS7Xezs7ODatWvY3NnB2uYmVi5ehH1McuftG43aJK8oCtI0hTXHPnlTDi5HzQOqVfXszg4M04TNs8oEpkIQ+ymBEAJSEzgaum5pYXQ61WcOFRPRsuFEFMfQNW16k2qp7ATPqzm7nc6xyGqE1IsCAWuOvd/vHyzvUWpsO7Zd+nCZT7e+D9/3kWUZGsckdbYjvPHGG3j6qafKZg3HRN23O46ca8ScUtXp9EEsnqmiaVqlJaOxyfI4kIAqdVVmPVfBJn5CCPIsQ8py8+M4rlZKsiRB03X0+33IsoyVCxewtbWF9Y0NrFy4MBIMngeUUvhBAJlNWnzC1TUNEasXmGd1I0llAxM+WTm2DRoEZYUqymyZS489BnVewbqHFILYTwkkDEGLomoYPWKts5u6/vhTWirspVkG2zSrLu/V+2P7l6RSa2M4HCIMw4Nc+HnHxwp0Ul6kk+cIwhC2bUNVVWg1a248O4a7ZySUS+skTeHY9sKWZh3rGxvwfR8vfv7zx97HLN82J7v7iZOkIFqWhTRNEQYBms3m8ceAA3LnVi9BeX0UVYVVizHwOAnv1ep5HoaeVxaUtVro9/vY2NzExYsX0ViA3KM4riSZ69dcU1VESYI8z+cSmePaRNxnL8ty5ZbxgwCQJGyvrWHlypUTJQ6cdQhiPwUUSQJa05oet9YPpTOyzJe8KNBwnMnLVJYnXYemabAsC1EUQTeMmTK73L2SpmnVIQmSBE1Ryh6VhKDdbM507UgAFEmCH0WIowiWbU8XL5sDeZ7jl6+/js9++tPT893nxFEPNyFkpm/3pJi31H4SFFmGbVnwgwBJlk0vPptnHDggw6O6KSnMDWMAcGwbCvfBy3KZX88kCG7dvo2L589jqdudOTnmRYEwiqDr+mgGjCRVhk3KuoDNPpGD71PmRXMoe8r6QVAVk5m2jaW6LIfACASxnxDcr86RZdmItT5OOzzzhVKKdqMxUZt8vBFzHbZtI0lT+L6PTrt96KEjzM/J/eSEUsgotUM0TasU+JI0hRLHc1u0aZYhjiKYllUuj3H8rJx33nkHy0tLOHcfH0weYJxbY/6Y4AHn44JnPIVhCK3VOpbfvt5s+jhSu4RN8JTSUulT17G9vY276+vwogjdVgu6pkHX9UMTJXfNSay6dhyKokDX9aphzBwnc/AncJABxlasfhAg8H2s37sHw7LgnGClc5YhiP0EIISg4FrS7IEcDIeglKLX7R6Z+dJhmS/jqPvVJ4EHlYauC9d10Wq1yu7wzDIveKaLosBkVn29X2p1nAUCi0VRwGP6L03WvLjKQZ5RXj4Oz/Nw8+ZN/P7v//5cn5+GWcflqY4nXRHMBPMHH39zCY7joD8cIo7jiQ3LJ6FO4uPdkBYhd8uyEMcx2u02JFbToGsaGo6DjY0NBL4PiRDYjgM5iio/vqZpUBUFfhBMdMHUoalqpdlzrFiCJFWxlIrcgwB3bt7Ek88+C/UUxOLOGgSxnwAkDIFa1WCWZQjCEK1G4xBpJ2laimMdkfnCiWqWz1ZjD97e3h6GrgvLNCGzXGbbtmGwqj/MIr4pWTpjg4LHFPdaE5QaKwVKHB3I5Of3y9dfx7PPPgvTso7tmwYwtZE3B8/Rv++uGADSCc4DKIu3uNLhJKu4Dp6/fpQMgMxcMnOpMZrmIZVHvo+VlRXs7O0hjmNQRu5JmiKIIiCKEDENnqVOZ2oRElCmPoZxXMonHzdILMuVNc/J3R0OcffWLVx54on7Hkt50CCuxjFRxDFolo0Q3WA4BCWk1IOpIc0yeJ4HTdNK98kRpM7/noY0TeF6XpmBoCggrES/2+mg027DtqyZpA4cpMjNkhGYxyIDDgJ4fNk86Qzura0hSRJcu3btRKTOj3cUeA77fX/g57iGM3eBspyeN4QeB3ez8IKuebRdpJp/+iiYpjm1fZ8syzjX68E2TbiuCy8I0G61sNRuA5SWAnKShDCOq8YZk46pqiokSiuN9qOyiObVfW84DhRVxe72NnY2NmZu87BBWOzHQJFlIGMPQ5ZlCJhyXz29Ls9zuJ4HmbUHm3TbjpP6uOohKQpESYIkjitCtgwD3XYbBZPJ9Xz/sNDVEaCUAjNIL45jxEkC27LmC3yVBwZwkNrJH9Q0TfHmG2/g8y++WGVwnITaZ/n4C5ZRcd+zYoBKIOy4WRo8C4RXpEZJAlPXK+v8uNeJa/YcBdM0q1TCifuQZfR6PUj9PlzPAyGkCvZfZPLTSZoiTlMMPQ+yLMMyDJiGUT0HkiSN+NklWS578I5fhxkrES5BUXfLuJ6HtTt3YDebaC7QQvGsQ1jsC4IQMhIs5RgMh4AkYakmWFQQUioeShLaLDB26GbGBIJi7pg0STAcDrHX7yMKw9LH3WhgqduF4zhlYMow0Go0qqAsmeEOqcY2Y1nMC6x0lolzXHBXzY0bN3D+/Hn0WNeoRRUF66ATSGEcBZM3uO/gFvsJrHY+meuGAUWWEYRhpSF/kslvHmG3aa6YOmRZxnKvh4ZtY2d3F1vb22W6q2lCURTYloVuq4WW40CVZQRRhP3hsLTiWQ47l8fgLrJjfzM1o0dlx87yHLfffx8Zq7wVEMS+MEgYVr1HObI8RxiGaDeblZVCKD3Ifmk2KxIdz1Uff/h44dA+s5DyooBtmuh2OpWu9jhx64ZR9ZLsD4czH1Q+vmn+dcr86rIsL5wvPwlpmuLmzZt47rnnKqIfJ92TumbGQQi5/4VJNSxC6xTl9ecWKle5BKWwLAsSLZt/nAZmxVBM00QyR2cnLu9smSYylt5YB7fKW80mlpjERJHncIMAe4NBFTytKponyDHMdQ/w7di2pmHA0HUEvo97N2+eKJB9liCIfQHk3K9egwQgYM2KOyxvnQJwXRekKNButUYCqTxrYfwm5hb33v4+ojCEKstoNRpY6nQq63waKKVlL8l2uyr3933/yAeFEDI5Y4SRek4Imo3GqRSBvHf9OlYvXTpUYVpv/1cR/ViV66RzmPX4E+aLvh8aMdMw6TpVaYg4IHM+NuDgPOrbaky6IY7jU5vsjlq5mKaJeIqPHSjPIY5jeKwf6aXVVXRbLfQHg+q1ScezLQvdTgctx4GmKGWKbhBgf39/JPWx0iia5YY5PLDqXrFtG4osY3dvT/jbGQSxzwlCCOiYZcMfxziOYWgaNNawwvU8ZFxLfZKyILspuV6L63nYHwyqBgxLzDrXJ1jnh3bFx8K0QDrtNizTRBTHGAyHE1uxVW3eJuw7jGOkWYaG45yKhG4cx3j/5k088/TTMz/LH/I62R/K0+cuiimkzz8DfAipjsBI/jhh5FT/OTTWCZbqOHjK4zwrr3kxzXI3TRPxlOMUhMD3/bIgTtPQbDahqip6vR4MXcf27m6lRzMNmqaV7sN2Gw3bRpplGHoehq47f277BNSDsDLzt1NCsH737lwrkLMOQexzgkTR4Wi+JCHL87LEnhVK+L6PNE3RdJyJKWA8UEZqhJ6mKRzLQrfbhWPbcxNS1aii9tBKkoRGo1FpfQ9YfvTIuUzJYc+yDGEYwmDBr9PAe++9h8uXL8NeUHukjrplX7Wf44G0ej43+53Xzm/Eaq4RbP3/ulU9Ivsw9hodI2pK6Uiq4zh1Hne1ozGJh5j5p08FUyYUVVWrpih18EyuvChg2zYcx6nuF1mWcf7cOaiyjI2tLaRzuI24Fe84DmzTRJZlGLpuSfB15dBFz4f721mqb5pluHvr1mL7OoMQxD4HijwvJQNq4A9JGEWglKJh2/DDsMwiYYGlcVCUGS6+72N/OESSpqWF3u3Ctu2FvgyeOTONPAzmmlFVFZ7vo89WBMBB4LJuxRVFAZdphiyiEXIU4jjGrVu35rLWjwtu5QMHxEprOezVKgAHEwTq/0/Y5zjB89dGAqUTAqanqV3CrfZp1vRxMGl8kiRVYmRAeR/4vl8WJkll79pJQm+KopQNxynF+vb2XE26uTvR0HUsdTqwLQt5nmPgulVzmYXPif2mlFYFefs7Oxj0+wvv6yxBEPscmOaCAVD6w5l2ehRFsAwDzoQskiLP4fk+9gcDJEkCh7lcnJr416K22SwaUViKZbPRAKEUg+Gwar4M1Cx2XoREaSlGdUoE9c677+LKlStzSbbOjTksOy7+9SCLRHFhtuQUfe0AJjYYN0wTYRgiCAK4rlsKhFkWWrVkgEkwDAPLy8sosgwbW1szA5e84UrBU3ZNE+1mE4auVzEm3/eRL0jw9RgNX1ncev/9hzqQKoh9BoosGwmY1qkiz3PEaQpN18vUQF2HM5ZFUhACz/exxwjdMs3RgOhxHtoFcqa5RbbU6ZRL1TTFYDhExFYaQK0IacaDvAiiKMLt27fx9Cla6/MSXEHIsbXST4RTPqZtWYAkHXKlnQS8kKxySdFSAXLoumV/UsNAq9mEaZpz3WO2ZWFpaQlJmmJnb+/Iz/LCOVInbkmCbVlVbCjLc3iuC28egp8wPu5vT6MI63fvzhz/WYUoUJoBUn+oeCSe3VBRGCJLU5iGAU1VywIh/lGUErecQC3Lgm2aI/5zSZKAOSsED4ZwvEIYrm1tGgb2+30EQYCB60JRFBRZBsu25y9CmgPvvPMOHrt27fh67RMw71X6sFMd6ziWKNiU719VVRiahjhJ5ibaeSHJMpI4RhTHZUtD5nY5znVrNhrIswyu75fB1SnNp3mWEtfxqdvTMiN47haKkwRD14Wh66Wbcp5zZzEXVVVhWRa2NjfRXV4+kd7/gwphsR+BIk2Bmu9wvATf9/3KT95qtSpSz/Ic+/0+wjCEruvodbtoOM6JszROY0muKAocx0Gz0YAiSdjf3y/jBBMCaMdFEAS4e+8ennryyVPZX4U5zp+rOn5U2iHHIt8jtjEtC9IpWu3cZei6LsIogiLL0A0DRq1S9DjodruwTfPINEjeRKNgVceTXCWc4DutFkxdLwme5cEfwtj9IOEgbmSZJmRKsXb37omybx5UCIv9CJBa4Gq8kChjQR/HcdBiVaUUJamFUVRJCExSVqxjYsekCZiU83wSKKp6YMWzlLc4SaCzzj4nsd7ffucdXHvssSOFoe4XOFl8mDns9xOqosBgBHcSqz3PcyRJUmWwqKoK27LK5ioLrhqnodfrId/exvbublXMNA5ZUcp+raxxyzTIsgzHtqFrGoIggOf7pfVuWYdrHiZkq4FSOLYNfzhEv9/H+YdMu/1s3P33ASTLRqz1cfT395EXBS6cOwdFlpFmWWmlRxEs00S31YKm63M9iNVKYMrDVbW0OyVSp5QiSRJkeY52u412q4VupwOLZSm4nof+YHCsIhk/CLC+vo4nT9lan3cc97vP6UxMybQ5CUzThAQsbLVTVsHqeh481q3LME20Wi00WYMVmaWQngaxz5MGKcsy8jyf6xpJUtmoo8ms94RJbMysyqUUlAVUdVVFf3f3VOMUDwIEsU9BwavxuE+7RqpJkiDwfZimCcdx4Pt+qRUDoN1qwXEcSEzpcF7wHO1x1PuUnhYIIQhZn1Wer16vFmwwJccgDNEfDOAHQbmcnePhf/vtt/HEE0+cqOH2JCziXwcwl1vhtGUM7hdURYFhGEiSZK5MjzzPEUVR2UYxCABKYdt2pf45cm1YCuhpZZAclQbJpZbJjNVpHZIkQWECaa1arYjn++WYJ+xLkiTI7HiGrsN3XQzZ8/mwQLhiJoAkSamzjsNWckEIwjBElmVodjrYHwxAWP9Ix3GqoplFretK2Eoq1evqE8lpp+0FYVguVScFlSQJBmtxxhsgp2mKJEnKBsiaVnZjUtVDvmHP87C5sYE/+IM/ONXxUkqRpSmiKELCAmtxHCPLMpCiQF4UIEUBwlYiaZZBU1UURVEJT/Hf/IeX9lNK8W//9m9l425JgqKqUNjfsqpCkSTIrJ2cIsvV3zL7m0vXet0uDNMstUu4K2ve722Oz5mmiYR9D+OibJRS5HmOLM+Rpmml6Fh9VzPcaoqinGpqIE+D3NnZwcbWFi6trJRFebUetMUCbQs5UUOW0W61ECdJ2WM1y2DzQsAJEwV/bgxdx+7ODlqt1okE7R4kCGIfAyGkyoQ59LhRijAIEMcxCpa2JQHotNvVw3MS+dbqmJJ06u4XjjhJkCTJiKzqNKiqWoqA0bJnZZKm1W9JkqCpakUckiThf99+G08++eTc/nk+cfCfJEkQR1FF3EntN1japmkYME2zOq6q6zCY9ICiKEizrBRea7Wq1/jvipBrr/9///f/4v/9P/8HhPl9i9okMTIx1N+vvRaxVoSbW1vlta2di67r5Zin/BjsXOaRbuC+9iRJKiG4nBF5xs4Z7DvRmczy3Cmx9yHnn6dB7u3vY3tvD+d6PVBKK2InRQEsEKyV2ARLmWywrmnwggB+EFSV2+PuN35Gpq6j77ro9/unnl30cYUg9jHQLCstHnpYrzxi1o4JcPMAACAASURBVGAURcjzHJ1OBw1mpQMnJ3UOSZLKVDA6W552ERBCEPg+VEWBskhwVCqV+3RmGXEZhYwRPVBOGJubm3j++edHNuWVjK7nwRsOS+1414XreWW1ICe5Gml3u92K9EzTLH3Bc/rMXdcFwLo9zQlFlqHIMo4TLvbDEHmWodNuj7yeF0WVtsfJPk4SeK6L3Z2d6n8exzAtC81GA02mK95qNtFoNEYmSUPXy5qI/f1yMmBkXvUjZQHxRSFLs7t2HQfNRqOSDtA1rUynHEt5XAQSAMpiUbwTWZwkCNnqbVLnMn5Wlq5jf2cH7Xb7oUh/FMReA6W0qjI95IIpCgRBgCxNQQgpA1C1YqQTPxa1B4uiDH5QlmlzWuQehCEKli2QHDcFjLljNE0DbLvMtsgy/Pqtt7C8vIzr168jYKsa3/eRJgkcpl3TbDaxsrKCp556CpZpQp3TqpyVMVQHofS+t8MbwZRxycwvPM/SP8vz0m/MJrzNzU289+678H0fumHAdhzYlgXbtqGqKhRVxflz5ypr/6TGBC9Y4qmIpxmkb7fbCKMIe/0+TMuCzsZ7XNdPndx59aquaXA9D0PPQ7PRGGlgzs9FY5PiYDCAXav2PqsQxF4DzfNKF3vEWmfl+HEUodFoIE5T2LVZf5Zuy7FQ0zhZtGH0JKTMR21ZVvlQHJPY8zxHv9+Hy5ppe55XZiokSdkQmRFap9uFaZpVqz5VUaAyBUwuPDWvD3peUqfMPSafYqHVcSEtYAVrqopWqwXbttFbXkae58jzHISQ0p8cRYjDsCz7930Mh0O8JZXNW/iE2Wq1sLS0dLw0VU60p3gP81Z+EoDlXg+bW1vY3t7G6sWLVQD1OBiR32D7UBQFrVYLnu/D9X00WKHTyHass5PvuvDZNTvLEMReA2WZH+M3d38wgO95aDWbcGwb/eFwxCo4lRS3Won3NHGp45I7pRQ+c8E4tj2xr+Y0xFGEnb097O/tYW9vD67rot1ul26oZhOrly5hc3MTWZbhU5/61KHjZllWBfbiOEZUe6B5QFJV1RG/93FBaw/6h4op38mk74sSUvrqCUGR55Xfvl4+ryhK5VrpdDqHcvKHrLhIQpkh4rouNjY2MBgMYNk2er0elns99JaWYNdchdMgYzSl9qRNximlZfs69prG5KT3+/2yo1h5cY59DL5fUru+Cutf4AUB/ChCQQhsVtzFt1FUFVmSIAiCEbXKswhB7AyEkEPNqUEpXM+D67pwGg10ut2yKQGlFbGfpqvkqFu9bqkserwgCJATgk6rdfCQT3jYKaVwXRe7e3vY393F7t4e8jxHr9dDr9fDbz7/PLrd7gjREELw85//HF98+eWJY6588zjI3sjzvCT8oigDqLVCMFmSqkCnoiiQFAUyRoWepoFXzk5KG/0wQSlFwYKvPGOHF+WM9yCVFaUU/NI0KOzvWeXzlmVVcrrnzp2rXieElN/f7i7W19fx1ltvgVJafX/LvR46nc6h61PPY68bEcc5b8JXvGNoNhqI4hj9wQANx4F1wsmX3w/1cUqShKbjIIwiREmCgjVhr/T9JQkyMzZ8318oDvOgQRA7R56XLe9q1WzczWBZFnpLS5AkCQnLQDAN4+CmOoXla7W0nFGluqhrJssyRHEMq5b2VumWM7fK7s4O9vb3sb+/XwYvl5awfP48nn722ZE4wiSsra2h0WjM1UiYF5xoLH+ej6OoER9hZM873tM6UbAHVJHlUpedZXNw1cCMtV8DUPV+Palroa7ZDpQWNyGkzMVmqa95UUDGQYckjjrJKYoCTVVLIpdlyIzA+fgW8TlrmgZFlhGzWgQOWZbR6XTQ6XTwxBNPAADCMMTe3h529/Zw+/ZtBEGAbreL3tJSSfjLy1BkeWTFsCi588/NqibtdbtY39zEfr+PlQsX5j7fIzFW2MerqZU4RpgkcF23UiylABRJQpGmldX+UWkK3W8IYmfg1jqXFQ08ryxjNgx0GakDJRlKsgxFVU8tCwbAQpMDL5ia1dSZu2AkSYJt26CUYm9/H7du3cLm1haSOEar3cZyr4fHrl3DZz/72YVFu67fuHFiBUdunY9jhPCZtctJlRCCnKf5MUQslVOeVBzG3WVSrWkHSvIdsEyaujtsXlKrNEwkqdJ/l9nEU1mJM1YQi1rHEspen0EYlk3JjyAn27Zh2zYuX74MoJzo9/f3sbe3h+vXr+NnP/951f92eXkZy8vLC7ko6lb6PDLSvaUl3Flbw8B10T6hxTwix4HR1axpmmWRXRRh6HmlVhN7bgj7zjzPq9pZnjUIYgdzw6QpwEjdc12kaQpN08qUs1oKVZamME6Z1Cmlo6uFOSDhwB86zT0TRhGSLEOaJLh16xY2Njag6zq6S0t4+qmncPnRR0+kqbK/v484jnHx4sWFt6VjltYkKIwoj7pJOQkTQiDzOILjVBWJddLk/l9wIuDWdC2Pu+6TRW0C4N+NXCNuXrBFCKmqIsfHNk+Q8Dh+bd0wELKUSWeBxiiapuHChQu4wCzmX/3qV/jg5k2YloW33noLQRDg4sWLWF1dxYXz56cL11G6UAUph81UTj3PQxjHsE+o1V99N3y1WxsPT5P1WLptw3GgKgqyNEVL0xCGIRoTUiTPAs7eGR0HNd96EASVOqDGBLFGPprn5WunSerAsfc3yT2TpCnW19bwwa1b6Pf76Ha7WF1dxe/8zu/AcZxKqOykQlk33n8fj1+7dqwJTsLsFNF5XE6V/5RVgvIipnkhS9JMd9OMQR45tnmChMfxZ8uSVImDHcfIKIoCr732GqIowiOXL6PRbOKJxx9HFEXY2NjABx98gF+89hp6vR5WV1awsrJSruYoBQFzdS086hK8enR7dxePrK5CPWlMpLZ6Hb+SKpPTHjIZgnazWcYUsgyyLMN1XSwtLZ3s+B9DCGIHqkYaISs2kWUZFKgkAjgylsWgG8apCz2dFFEUYX1jA2tra9jb20O708HS8jI+97nPHcqlPmnmA1AKUm1ubOATn/jEifYzC4sQVr2y8cPCrGD2XNd6zglgHKZhHFQSL2D5JkmCn/7kJ7AdB7/1xS/il7/8ZZX7b1kWrl27hmvXriHLMmxubWHt3j28+eabaDabuMCs+ZNMhooso9NuI4oi7O/v4/zy8rH3BeCgeciUOIWiKGg4DlzPgx8EaDYa8D0Pyysr8FhLvrPma3/oiZ0QAsoyMxLmfkmzDNa4WBKAnOlwGKeUJ31Sch0Oh1jf+P/Ze7PuNo5sa3BHjhgJcJ4kSqLmwZps17VVtiRX+Vv3pbtX/4J+66f+Ff3Uz/3Sa/W/6Ke7vqrr+m7ZVaYGyxqsydYsSiLBASTGnDOjHzIimQATQGKgKLG8l70ogkBmZCLyxIlz9tlnGUvv3qGuaZiensbh+XlcuHABNV3HUDod+cAHMXr0zuh5+fIlZvftG2hzjn7huu7ubKvb7SgwgOK1FuAJ2W4Me61Ww8LCAmZnZ3H69GkAvsMS9T3Ksox9s7OYnZ2FbVlYW1/H8vIy/vGPf0CWZUxPT2NmZgYjLRprtAJhuw1JFFGp1ZBKJpHpsxqUAKCCEGg8bbsWUUQqmYSuadB0HSAEIvvedFafspfwL2/YqW37zBFdhyLL8CiFSEjkdt5iIZtBKBduM+odGDEcjuPgzZs3ePHyJQzTxOz0NM6cPYvx0dHA89vY3ERCkoKHvdmAB4lDz+spHON6Hp4/f46vL1/u+rPdoBuDyGPn770lXqfvLY433scCn0gkUK3VYNl2Y21FBNbX13Hz5k2cOnUKBw8eDF53HAdS82epL30brg3gsflz58+jtLmJpXfv8PPPP4NSikOHDuHA3FzsZ4NS6nvthoH1YhEJVe17USZszFH306MUqqLAc12YpglRFFGvViHL8u+GfS/CMQzUNQ2SKEKWZdQ1raHBdBi2bQeUvYGjg0Eql8t48fIlFhcXMTY2hlOnTmFyYmLb53TDgON5yIU5603xx076752w9O4dcrnczlfvdTE+nqTcjVBMpzN2jIH38V20oj424+3bt7h37x4+++yzIHHK4TA1zGC8jHkUHrMgCAGVlMDvmDQ8PIxTZ85gY30dL1+9wuPHjzEzPY35+fn2cWs2/4ggYGxkBIXVVawXi5jqlwJJiG/cm14O/85rADRNQ3F9HfsOHfIbeDvOnkqi7p0r6QG2aaJeKoHAj6fX6nVfDKqF12E3PQC9Ytsj3OKhdl0Xb9+9w4sXL6BpGg4ePIhvv/22pf4I51UrkhSpl8GTrEQQACZZ2wuePn2K4ydO9PTZuOh2bLxB8q5UE3YIxfDuWi3RZxUmpz62Mk6//fYbXrx4ga+++gq5JrEywA/FNEv3Ri1EUWElAmB0bAyjY2OwTBOvFxfx061bkEQRhw4dwv65uW3PDAGCeLiiqshlsygxnZwodlFchNlLzWyoMDLpNCqVCkqbmxhjnZV0Xd9TMgP/soadUopqsQgPflUc50wH3jovLglRqWzH6VvPOdJgNXls1WoVL16+xOvFRYzk8zh29Cimp6c7evW6YcCjFENt4pUBh5sliLuNs29sbMAwzZ4ojt2gW1O3Wx57LHTyyPvw2IEt6qNpWQ2G3fM83L17F6VSCd9cvYpE89xloQvTNGP14yVtEpR8HEePHsWRo0exvraGVy9f4uHDh5idncX8/PwWZ7xpHg8NDUEzDKxvbARCYb2C8EU0bNibxkwIQSabRaVaxZtXrzB76NDvhn2voFoqwTUMpDMZiJKEeqXS6K2HJx8hQVHMTmXPPc/Du6UlvHjxApVKBQcPHsSfvvkGqZgcZep50HQ90BhpB16owRX9gqrKGEUmz54/x5HDhwdXmDUg7JbHThGDudOn4e6EgPpoGKBMH8W2bdy4cQOiKOLy5cvBnOALebiq13HdWDvRuN84ATA+Po7x8XGYhoFXr17h+o0bUBQF84cOYXRsrOH5IoIQCIWtra1hdnq663vAwa8v6NTU4n2iICCTTqNar2OzWEQ2l/N35B8QGaAf/Esadtd1YVarUFUViqrCtqxGb70ZrHwc6E+HJGqS2baNp0+f4umzZxgaGsL8/DxmWMeZbqDpOiilsYpVwtx3YOuBJR2M/PuiOLIBdPn2HVDYjHfijm+Jivt2e4xOCFMfKaVYWFjAyOgozp8711DIhqaxULAYe0yDJpDulBnVRALHT5zAsePHsbqyghevXuGX+/cxOTmJs2fPBgl+WZaRHxrCZrmMWr3eM0smCBexxbRdSE+WJCRVFaViEWoyCV3XfzfsHzOq5TIESoOtqW4YbWPrQdwOvTeJbZ5gruvi+fPnePLkCSanpnD58uWet4Ke50E3DCQSiVg7iqjtavC35veAeUGU4sXLl5jdv/+9TP5uQ0RuqO3ae0eHxaRjodIAPHqRJf/X19fxyy+/4MiRIzhy9GhHeQTPdbvqoNTsFMQFIQSTU1OYnJrC5sYGnjx7hv/8z//EoUOHcOzYMSiKgkwmg0q9jvXNTV/uuc/vUyAEbodxJlQVpmWhvLmJZDKJbDb7we1Ge8EHGJDcWdi2DbNeh6KqEEQRFlOB69Qyi3sp/SoHep6HFy9e4L//5S/Y2NjA5StX8Pmnn/ZV8MF7mMYtzw7ojp3ex/7njYGfP3+OI/PzO8bL5ogTEtr2mV0y7L2MNeIg/Y8DQGlzEz/fvo2TJ0/6ImAxjtsLIaDfjkuKquL4sWP485//DNM08Ze//AWPHz+G47oYzuXgOQ6qtVpPx25Omnb6bnizDkPToOs6LMvq6bwfGv7lPPZquQyJ+i3ZKKUw2nnrYU+qKWzRDbhmyJvFRTx69AhDQ0O49OWXGA4LEPXoJbiuC8M0kUwkYiXA/FNtZw50wtrqKlKpFIZyuW2f66fQaVBwPW9XttFx7+Egqn0bztv0+/Nnz/Drr7/i/LlzGO6iRD6Swx4DzZK53YCLjiWTSVy8eBHHjh3D48eP8de//hXHjh1DOp3GZqmEdCbTtdxAEHZiObFgd9Hm+VIUBbquB70GuhXC+xDxL2XYLcuCpWkYSiRA2O+u50XH1vlkYMY9ULDrcqJRSvH23Ts8evgQCVXFZ59/7hcTDQiapoEAXbN1ujU0rxcXMccUApvvVU9bc7RmvnR7LN7Y4b0XJzHEOesgGlj4/2iKkVOKBw8eYHl5GZevXIEgCNBZviWWrHOP/G1CSFddsMKgngcSckIymQw+//xzVMplPHr8OAhPptJpTAzgWQmHFSP/Dl+cTGfdqfL5/EcfjvmXMuyVUgkyIVBVFR731kURShcrdNwvnFKKwsoKHjx4AEIIzp47h8mJidZGoIc4q+04fps+JlHaFQjxFSVjwHUcLC8v45MzZ9ocrvHKwoYo6toGGc7hBjPujmXQ5401J7r4brcV2LSpc7h16xZMw8A3V69CVhQ4juM3XbesWJ6n4zg99Yjl+iy9tLijlEbGgIdyOXzxxRfY3NjAnbt38ePCAs6dPo2DBw/Gnt+UHb+Zk8/1+Vt9RlEUVOt1lEolTE5O9k1r3m38yxh2wzDgGAZyLA5th7z1bWjeunHvBIjlFRaLRfxy/z4s28bpkycxMzPTOdaH7o2dVq/7BSo9SJ+KgtAxxs6xtLyMkeFhqF2cJ7hefr9aeKw8idugrR3T2+TwuvhudgQxzhuZQGXzjFJfMbEb4x8W8vrqq6+CRU2SJEiCADOmYbctq2eJjF7vNu2w8x0eGcHXX3+NJ0+f4snTp3j+/DlOnzmDmRg0yFa5o3ahI34d2XQa5VIJGxsbmJ2d7XwhHzD+ZQx7tVyGQkjgnXfrrcfZRjuOg4cPHuDt0hLOnD6Nffv2xTc2XXrstmXBchykU6mekoaEkKCVXCcsLi4GjRr6QdhYEwAuTzyGXg941k0/2yEw7O+bw94h7xL1bfLPBIsXjafZHka1WsW1hQXs278fJ0+e3LYIKoqCuqb5GvUd7knQ4LwXEBJ0jooLTrvs9FzIsoypqSlks1mIooj7v/yCN4uLOH/+fNsFi2J7QZI/1PahMN7G0atUsLq6iunp6Q+z2C0mPt6RdwHHceBaFhJMbtc0Tbieh2QrD7RdiXiLvxWLRfztu+9gWha+/fOfMTc315XXSbp8uDVNgwB0pT0ehiiKbasIOUzLwlqxOHgPpsVCxg09Cf3e0Jou4qfreb6x4NW0O1AMFO7SE/ybncfD1k7DC/1E0//h2dAwN7oY7/r6Ov7xww84fvw4Tp06FTnHVFWFQEgshoemaf2FHZg+S1x0038gl8uBEAJJlvGnP/8ZaiKB7777DktLSy0/07LFYIddIL+CTDKJWqXSVcP3DxH/Eh67aZoQPC9IEnF1t0gmTIsMOs+sN6/iruviwcOHePvmDc6fP4+ZmZng/TsVGLAsC5brIhOjA30r8PhoJ4/43du3mJqYgPi+BJKijH2Tp9/8c5vHHmb98M+GH2zKVADZZ8MLBz9u+LPB2cNjCxl3oc34Gi4t4rXweDvhzeIifrl/H3/4/HOMM42TKAiCAEmSYFpWxzCdxuSeewXxTxh7Me0mpCmJIrLZLMrVKkzTxNmzZzE7M4Nbt27h3bt3OHvuHNTQM9zQH7fFWFv+lX1OTSRQqtVQr9c/aomBfwmP3bIsiMTvSel6HhzXbZgQAdrQooIEXciwFzc28N1338HQNHz77beBUe8JcQ00pajX6xBZGXmv4O3gvA7hmNevX2Nubq7n87RF1ALay0JFoxtscL4+LzEPn7f5df571GfbnbcbRC3CcY5AKcWvv/6Kh48e4euvv25r1DkURhDoFG7rKxTTA4J6kJjf81A2C1EQsFEqAfAFx7799ltIkoS/ffcdlgsFANsTpq3Q6bySKIJSilq1Gmt8Hyr+NTx2XUeKcXUtywIojeY8t9uqhR5iz/Pw8OFDvHr9GufPn8e+pjDFTvK6TcuC47oYymT6omQJggBQCreN/k29XketVsNEDEMyKPSy09mtqtOuWDHYCit1mxi+e+cOSuUyrly5EtsIK7IMAX4PgWQb1kvfoRj41x871t5loZ8gCMgNDWFjcxPVWg1Zpu10ju2Ob9++jbdjYzj9ySdQZTlWL91OUCUJ5VIpVo7iQ8XHOeouYNs24DiBYhxvUr2NGtdhMvCHuFKp4G9/+xvqtRq+/fOftxv1DtvBfmGwXqXdUDSjEHjsbbycN2/eYHbfvh2jEUaZt14LwD4W3nE347QtCwsLCzBME5cvX+7KAPOevZZptnyP53l+cduAPPY4sXbP8/wdVhf3IZ1KQZYkbDJjyzE+MYE//elPoAD+9t13WFld7fjsNSfro6CqKvR6HWabe/ehY8977KZpglAKSZbhuG7rpGmHL9swTTz57Tc4to1z589j/759Ld/bi4mJ8xnbcWAxsbJ+wT2mdoZ9cXERFy5e7PtccdFzJeMuV512833HLVTSNA0LCwsYHxvD2bNne5KyUFUVlm37re8iciSGYfiEggEsioQQvzVdh2vzQu+PC4H1SF0rFlGpVpFnmvKUUgiiiAsXLmB1dRU/37qFyelpnD1zpm3RlYAWchrM2+ec9kHsZnYLe95jt0wTsiBAIL6UKYDtSdMOXrbjOLh79y7K5TI818Xy8jIWX7/eWtFDFLadhGEYAKV9xdY5uC57qxh7qVSC67oY3ckO7s1FTd3S5sKl46y6MMxWaWawBMUrYQYLfx8/bvP4Qjz85n8Hn+tQ2djumqOwubmJv//97zhw4ADOnjvXsz6RLMv+vG/BjtE0DckBOAkcsRYtVq3a7WKSSqWgKgrKlQoc5vWHQz8TExP487ffwnEcfP+Pf8Do4G23O7skSfBcF5VyuasxfkjY0x47pRSmriPL4+u2DUmSouNmLSaaYRhY+PFHZLNZHD58GGNjYyhtbqJQKODe/fvIZjKYmJjA5NQUhvP5notkiD/g1slbzwuaFg8q7ieKYkv1u9eLi9g/N9dTyXg/CNPhAhYD3ZKcDRAuaGK/NwhANTFY0PT5SI5589+ijhH6d8Ck4eeOuFcBy4b9u5OE7/LSEm7fuYMLFy70l4zHFjfbME0ksd2Y6bqO1AA9Ul6N2lZNkkZXncbBcD6PlbU1lMplDOdy25wxWZbx+Wef4fGjR/j+++/xx0uXWvYybbcIiYIASZZRZs7NTvVg2EnsacPuOA4Iozk6rgvPdbdvrdpMwlq1in/++CPm9u/HoUOHUFhZgSyKOHjwIA4ePAjX87BRLKJQKOD2zz/DMAxMTU0FTX+79qzbGFGD6Wy35N73AEEQ4ER4c5RSvHnzBl9//fXAzsUOvPVv0igdTNGUfIsygBH3h4eSemnK3S/CydN25erhf9MmgxK+5ufPn+O3X3/Fl19+2b5naBdQZBmGaUZqrmuatr2rUp/o5LW3K+3vBFVVkUgkUCqVkG0hEEYIwYlTp5BIJvH9Dz/493J4ONbxg8WXMc60eh22bf9u2D9E8C/Ktm0QIFrJLmKibRSLuHbtGk4xrQrbsgBC4IRCF6IgBJ1izpw5A61ex3KhgHdv3+Lu3bvIDg1hanISU1NTvrBQx8G2yOhT6jcBkKSBTjKRFfQ0Y219HUlV7Z3Hy71XzhdnoS6KUGyVsV+84CPdSwkAW4Z9V5KnPYTemndmBD6r58GDBygUCrh85QrS6fQ2ZlWvCWJJliEwiYEow54ZMFe7Y5Ww6/ZcE0EpRTadRr1eR71WQ25oKPI9AHDw0CEkkkksLCzg008/xXREK8fmRSg8dkkQUDOMnsb5IWDvG3ZmMEzL8id5jIdjeXkZt27dwmeffoopVrwhSRII0GDYOfjkSKXTOHz4MObn5+G6LtaLRawUCvjpp59gOw4mJycxNTmJicnJyL6OrQooTNturWvTBwTG2eUyqhyLr1/7YZhOCBlwIBTKCFMWm0IrLdFD3JWfC9idXqfdVFGGQULhCsdxcPPmTdiWhatXr24Z3+YdSyjkxBcH2umeYsv71A1j2+Kg6/qOUFkFQYhMylPPgwf01NOUMmquoqpQZBnVej3SsIefoampKVz68ktcu34dJ0+dwvzBg51OsnUNkgSb9Wr4GLGnDTv1PAjwHx7qeZATie0PYdPvL1+8wMNHj/DHS5cadK2JILQ07M0ghEAURUxOTGCKPTjVeh0rKyt4/fo1bt++jXw+jwnmzeeGhoKdRdQ21tB1CIS07vDUI0RmGDzXhcAeNtd18W5pCadPn47+UChR3Iqv35OB7voTPnbTY++FFcPfT+Hnb35cWEAmncYf/vCH9otTuGp2awBBbL/d9SvMsNu23SD4Va/XY/fU7QotdjJuL2EzSgPJBn6N6UwGpc1NaBE5gublJD8ygsuXL+PHH3+Eoeu+tg77W7MjFZ7PIqvMrtfrSPfYpm83sacNO+fVWiwME8mGCSXhfn30CK/evMGVy5cjt6iiJMF1nHjnJqTB+GXTaWTn53Fkfh6O62JtbQ2FlRVcv3YN1PMwOTWFiclJjI2NNVC1HMfxxb5Yk+JBQhBFgBC4nhdMhEKhgOF8HiprRBKe/A0eXwxvsRMaPt8jo6jbIqFBIhyT7QqEoFIuY2FhAfv27cPJEyd6T1KH5m/z64TNb0mSIIkijCYlR90wdoTO16pgiT87sSV4OfOp6fV0KoVyuYxqrbbNsEftetOZDK5cuYKFa9egaxouXLwY7FDDu4vwNyCyZ0OrVID3WKA3KOxpww6mA+LYts8mAZtsETS7O7dvo1wq4eqVKy31NURB2EYP7KQYF+XZSqKI6akpTE9NgZ47h2qthpXlZbx4/hw/3byJkdFR35ufnAxCHTvR1UWI4LIvLS9jenq6gTIYvp6dQj8c9nbJyx1FGxZTO6ytreH69eu+Aujc3M4UtDUxiRRZ9huew5+Ltm37/P8B7wIDEF/qOvy9BInuGHmibcn0EARBQDqVQrVe9/XkQ45QqzupJhK4/PXXuHHjBq5fv44vvvjCN+6c6tz0PRJCjSNcIwAAIABJREFUIBDit538CLG3DTtjwlBWdNCA0Jf59LffUC6V8NXly20LGyRJgt5lQiXQGWfnbDYDBMBQJoOho0dx9OhRGKbpe/OFAv759Ckc18XExAScuTmMj40NNHnKvRaX3SMKP79w/PjxgZ2jLQZgjD0arRPzPtBLQvP14iLu37+Pzz79FJNTU74X+x4WJUmSQLHV47Rerw+UYdWMKOqj47oQO1xrs3JmK2QyGVRrNVSq1UbWS5vFVpQkfPnll7hx4wbu3buHC+fP+2NtQdEUBQHa74b9wwOhNGj9xZNSzQmnQqGAZ8+f4+rVqx1bhAmi2JBMoS1W+8ixYIvq1u7dsqJgemYG0zMz0DUNhdVV6JqGJ7/9hps3bmB0dBRTU1OYmprqOfYXcMMphSgIft6AEJQ2N6EoynuNKYaZMb2gWV3xfaKbc1NK8duvv+LV69e4/PXXyGQyPXUf6hWSJAVFerIso1qtIstyOwBaM7L6QHNYxHXdts9YOy+9GbIsQ1VV1Op15HO5bcqeLcckCPjss8/w97//HS9evsT8oUNb56eNCqBEEGD8btg/PFDXhWPbSLIep/6LNKgcrFaruHXrFr744otYFXiiKPrJnLA4UBdGhbD3t/LeGwdPYZgmhvN5HDxwACdPnoRt21hdXUWhUMCvv/4KRVF8ps3UFMZGR1tqujQU7jQMyI+/8graQqGAqQha2I6CkFi68K3guW5PzZgHgVZFSc3wPA937txBpVLB1atXkUgktvTa39eixJLvXKO9VC5jKJxHaqoxGISRJyzOT+ETGSgQSXWM66U3I5vJYH1jA5quI9OFMyLJMr748kv88P33GMpmMTY2Frn7IvC/O9s0IX9kDa73rGH3XDcoHY8S/LJtG9cWFnD69GmMxmyYy7P5tm33FfPmngzneIenE4/LW7YNx/OQDU1YWZYxOzuL2dlZUEpRKpWwsrKCx48eoVKtYnx8PCiO4gtVp4dFFEV4bLFabseG2Sn0aUDoboZiYrzHtm1cv34dsiTh66+/7qlx9KAgy7LfZMZxUK1UWlNaQ/mVwBnp5Ii0AJ/PnE0WZsT0atA5EokEREFAuVrtyrADfijns08/xY2bN/HNN98gmUw25MM8zwsS45qmIfe7Yf9AwOLroiSBRiQ8b/30E8bHx3GwE7c1BJ4p5zHpfhDE3pkH36yMZ+g6BKBlP0pCCIaHhzE8PIwTJ07ANE2srK6isLyM+w8eIJlIBN786OhoS70RSRRB4BerVKvV2IvcwNCHd9iOcvm+0C7GHgh5jY/jk7NnGxty7EL4SJYkv1jPcVAql3E6ggceRsMuN7TT7er7Yu/3XBcILcKtGC/dQBAEZNJpVKrVoHl3N8/lxNQUDh8+jGvXr+PK5csQGKUZ8AX3iCBAFATomoZczOrVDwV72rC7rgtZknyPNBQPffToESzbxh+++KKrQ4qStK36tF/wiRQUn1C/OYLpOEglEp0NAHs4ZFnGvn37sG/fPsDzsFkqoVAo4P79+6jX676eDfPmw2Xk/JpWCgWMT0zsmERv20vo8XM8HrtrHrvnBfz/ZmxubuLatWs4duwYjhw58p5HFg1BECCKInRNg2kYXRW8NXSf4r/HMKIEfpLeZeJfnB8+KMG8TCaDcqWCSrWKsR4YPseOHUOlUsHt27dx8eLFIOFrcQkGSmHo+kDG+j6xdw2758F1XSiKErABFEXB0rt3WFxcxDd/+lPXBoG/33WcgcdHw8VJhq6DUNq+n2l4G8s9qa2BYnhkBMMjIzh56hRMw8DKygpWmKFPp9OBNz8yPAyREBQKBUz3KTrVM3r12HepiXVwfkR73kvLy7hz+zYuXLyImRZt5wi6awI9KCiyjPX1dWQymZ7vW1D5yuPSHYw8IQSu40AAAgM/KIiiiGQyibquY8TzulfCJAQXLlzAD99/j+fPn+Po0aN+QSP8ClnLtmF+hNICe9ewM49dUVXYlgXbcaDrOm7fuYOvvvqqpxi5KAgQ4G/TdiLpxY27aVmQVTV6knKDvvWhjsdVEwnMHTiAuQMHQD0PGxsbKBQKuHv3LnRdRy6fR2FlBadOnRrk5cRCP6ZtN4uT+Pmbz/3s2TM8efIEX1661FF8SiSkpbrmTkGWZWgD6ucZ9uJbOTqcKGC7LiQWyhw0spkM9LU1VOv1xoRwTIiShC++/BL/9V//haGhIWSHhgDq93Dght1znJa7sw8RH89Iu4DneUGTYlEUAUWBZZq4fecOzpw+jXw+39NxSahJ8E7Btm1QSpEIN+kFGsrH+wERBIyOjWF0bAynz5yBrml4/PgxQAh++OEHZLNZTDI6ZT6f33GjKQDoJbBFGZXVYf9zlklDQi6UBOS/b/sbpahWq4HnGVSSsusOV5YGhVDsd9u2IbHkMwDc/+UXrK6u4urVq7FK9d+/v+7nVOqahnQLOdueEarXEAhp+D744rVTDdETiQRkSUKtWu3JsANAMpXC53/4A27evIlLly75Tlxo4TJME6nfDfsuw3WD8mVRFCEQgndv38J1HBw4cKCvQyuMO7tTMJmKJE90NVSA7oCRTaZSECUJ+2Zncf7cOWxubmJldRW3bt2CZVmYYnH5iYmJvtvxRaFBq4NuNc7gPz3PC1g7lCXhuPE2TROGYUAQhLZhBc7sCH6G/s3HQNnxmxeBdtB0HS5rL/fo0SO4joNPL16E53nQNM2vXhQEEGYkBNaOMNxA+72DEOiatnMNVKiv7cIrtIkgwLPtHa8OTqfTKFUqfleoHguvxsfHkR8awuLiIo4eObJFcKAUuqYh9RFpxuxNw+55DfQqSgieP3+OEydP9j25FFkGdV1YTbobgwClFKZpBm3MoiRFA699gDH+tdVVzB08CApggqlPfvLJJ6jX61gpFLC4uIjbd+4gl8sFMsRDuVxvYl/UV+lzHQeu68Jmrdtc1hUnyphyAykQAkmWg36tIksG5vlYwh536LPtQAhp6+U1LKwhL991XTiOA0EQcO/uXWQyGZy6cAEA4z47TssEIR+7x0I5oihCEEVfX3ynw0qUolatIpVOw+HhkYEcNiRh0FTo4zBGTFR7vkEhnETt1bADwLGTJ7Hw4484evRow+v2R9b/dG8adrDO9cxbX3zzBrIk+V1X+nlwKIWaSPgVaYYxcMMecNfbCDOFaZJ8TP1ck6HrqDMJ1GaJ0nQ6jfnDhzF/+LAvQ7y+jsLyMq5fvw7P8wJ1yomJiW1a380G3GX9Zl32kAfXw4y0wnTDCfO+ozzcZrjMm99JbniDd920YJimiQf37+PgwYM4ceLEtnGGdyAepaCeBze8G7FtP1EXuh+CKAYL1k4YfN4yTlXVIJTUK/iow6GtKLhsARSZTPQgQorNEAQBqWQSmq43FhB2iWQigeHhYbx6+TIw7vz7+piwNw0786gE5hU9fPwYn3zyie9JWVbvwkeEQJZlEEJgmCbas4C7GC78UIBlmhCo39O0U+FGA00S6NnAr6ysYHJyMugy1QqiKAZ0ybOUol6robCyglcvX+LWrVvI53JB7D6RSATd6IPPSxJEQYAiy77RYr+Hi1e6BfW8XZMTWF1ZwZ3bt3H6k09wOFSWHgZflKKMDDcWwYLnefBc1+/05XlwWMcsjmaDz//vFpVKBbl8HrIowrasnvRiuGGOUzFMKYXjOMFzE5ZZHhTlkSOZSKCuadC7pHJyOI4D27Zx/MQJ3Lh2DQdYjUs/RVS7hT1p2Cl7SBRZxqtXr5BJpzE7PY1KpQJN15GT5d48BsaFV2TZbyzd7zj5ZKF+VZ/JFp1uJn1YRreXqbdcKGB6ehqSJAXNvjuN2XVdiLKMyakpjIyOwrZtlDY3UdzYwKtXr0AIaeDNK+yaosAr/HoZO6W050bP/eD169e4f/8+Tp85g7n9+3s7SCgRGxjp8K6H73jaGHxCmCQv/z8G66RSLiObzUJWFNhdeLeBMefeecz56bIKcL6rChRPufLjoAw8pUgw6RBD13sy7Drjq4+NjGB6ehrPnj7Fvv37/RDh7x777iPsAT5+/BhffvklAL/DUblc9hMs3epQhyafmkigVC77k7MHwxI26Bw2C1lwfelePJrwIx2nuw/1PKyurOD8uXNwXDfoqxo2wtyjdlgsnDctAXwvUpZlpFIpjI6O4hi7F5VKBSuFAl6/eoW7d+9idGRkS7gsxMYIN4no5eHuRV2xH1BK8fjXX/FmcRGXLl0CCOl9xxAyzpHX3sngsxi/w2i8/FiSKEKSZf8nKz4Lo1ypYHh42A+d6Tpsx2nZmzcItXCj1sN3xDnhzYbdP1yIJtlHeCZY6AQBiqpCMwx0Wz9tMkp0ivU9OHHyJP7H3/6G8clJX27gd8O++3CZ57m4uIiRkREMM3qjJElQVNWPj6tqz3E4RVECD7ubRE2Yttg8hTmFkseq+zVXzcY56qEpFotIZzJQVBWUxV55ostm21KHF2PBD6coigJZkiBLUssq1Vwuh1wuh2PHjzcIl/3222+QJMkvjpqextjoKMDjxz0YDc/z3psAmOd5uH37NqrVKq5cuQIiCKjX630vLF3vVkIGn+d4PBbuiDL0IjPw/P9yuYwDBw748XtBgNNk2IM5yn72C9u2IbHcCb/ebei0yHVA+HNJVUWpUumK3ECp31NYFAQ/DEopUskk9u/fj1evXuH82bO7UkzWD/akYbcdB57n4cmTJ7h8+XLD35LJJGzLgmEYPbcFS6gqCCHQTTOWYQ97KATRk9s0TcgsgcgxqDhkKyNfKBQwNTnp5x5sG3VNC/S6AX8hTKgqZGYUepEbaBYuq5TLvjrl48fYLJUwNjYWhG3iKGyG8b4EwCzLwo0bNyDLMi5fvgxRFLdCcf3uGHpc1MLg4UGFS1M3GXpOC6UAyuUyFEUJQpWGafrsHGzlega1C+LjaDCwvA4g4pq5AqTA530P40gkk6CVCvQuyA2GacL1PGSbuP0nTpzAX//zP1HXNIz87rHvPjzXRalUQm5oaBuVTRRFKKoK0zCgqmpPCSiJJf7MGBQonnhpZdCBrTBMc5uyXmPP7cAfWtd18e7dOxw7dgybpVKw1ZQkCdls1jfkAzaahBDk8nnk8nkcP3ECpmGgsLKC5UIBjx49gqKqDTLE7cJc70sArF6vY2FhIaCA8tBLsP3f4fP3AsKS/OHG2I7jYGNzE4lEArbjoFytwvU8mMwAcvmKQYa2XNcFZXmAMIICpqixY+u7FRBz/oeOJbMwlK7rkc2um+F5Hgxd93ehzBZwh0pRFIyNjWFtbQ2zveZSdgl7zrBT6rfCK5VKGB8f3/pDiLaWUFWYpgm9Xkcmxpcf5V0oqtpWHKjZS28HHoZRmimDnUfWFRzHgWXbsCwLpmmiVqthKJdDMpGAxDw+m+vrvIetp6wo2Ld/P/bt3w/XcXzhsuVlPHzwANVqFRMs+TrJ4pxhhOOqO4WNzU1cv3YNx48fx+HDhxvPD2zjzHcDfnffS46A8f+rtRpGx8aQzWbh2DYMy0LVtlGuVGCqKmQ2BwZFH7VZGK+X43EDHyf+3jxTE6qKuqbFSgzrug5K6XZ2ECHwXBf5fB7FYnGbQuyHjj1p2AFgo1jE3MWLke8hgoBUKgWtXo8Xi4vYOqqKAq1e9xkiTV5/4E3GMOoAYLGipOZJKJD+tUQcx4FpWbAsK+gSL0kSbMvyhcJCeiaSosDStAajzg3YTiQqm6maXIb45KlTsEwTBSZc9vDBAySTSUxNTflMnJGRYIw7RXdcWlrCnTt3cPHiRUxHCHn1zch5Dwtng3NBCIpraxgdH/dpk6oKVVUDxo3AdqCmaUIQhIEYedu2IYritvsURzgsdBFB4VncOxaX9sifDVVVG3TiAQSa7MMjI3j29OnvPPbdBqUUlmWhpmkNRisMQggURYFpGNDq9c6c4BYeOyEEhmE0tJILh17igIdhWrWj6yXO7jgODMuCHTLmsiwjmUhAVhSIgoDC0tK2snJZkoJte6skLl+wKAbgbXJPLOI4iqpibm4Oc3NzoJRiY2MDK4UC7t27B61ex9jYGIZyORyYmxtooRilFM+ePcOzp09x6dKllnOo34WOf36Qy1KzIefg/14vFnH8xImGz8iyDEopsqxVn23bsNmOzjRNv9pXUaB2aeQ5LbbVd9MuHBNxMHhgu7MY6pA876W3oT16nhdIgyRayGN7ngdVUaCoKjY2NuKN9QPBnjTsGxsbgRwtgO0TgT1QmUwGlWoVNdb/MXLb1mLyKYoCsEKldDrtexO8+KKL8VpM9Ktf48Q1pA3TDPjoiiwjmUxCUZRtnu36+npQgMEhhRoxNFeSbqvADLF7eB/ZbtQWm5Nj7TwyQghGR0cxOjqKU6dPQ9d1vHv3DktLS3j27JkvXDY5iempKeSHh3s2uB6luH/vHtbW13Glg5BXP0nGKMMbe/EO3ze6pW3TSUZB0zS4rotMU4JQEkWY1BfqEgmBqihQFSUw8o5twzZNWKYJURShqioUVmzUDg7Tamq1GHR75wgQPF/NrzffOSIIUFW1ZeN5SilqtRpc10U2k/Hvf9OYSGjhGRsbw+rKSpcj3l3sScO+ubGBsbGx8IuNxp1v40UR2WwWlUoF9VrNlzKN+bByvrBhGKA0msIYB6ZhbGPDhNHpofcohWEYMA0jeDhTySQSiUTrMAWlKBaLuMC0TcLnEkXRXxg68PxJk1EOj7XB4Mf07rvaajMq2sjoKIYyGZRYU5Gfb9+GZZoNsfm4C6bjOPjp5k24rosrV65sW9iaMcjEbatrD87RbMCb5kOcBWZjYwPDEcJffDF3HQdi6JqFkJHnu2DDsqBpGnS2440KYXDYTfz17RfdXXilAew+tKsIbUV75Ebddhxk0ukGfn3zfeUx+snJSbxZXOxlpLuGPWnYNzY2cJR3remQeBFFEel0Glq9jlqt5ns0MY17QlFQrdX8CdCD9+YwDZV2niF/sJvH5DgODMOAEeK/p2J6U9VaDZKiRBZpybIMjSWUevFItxn8CG+ewn9oGhJjfJsdEzzmKUoSxsbHMTY+jjOffAJd01BYWcHbN29w584d5HO5wMgPSUl4FQNeWQdJKpD3+/UNhq5j4do15HI5XLhwIXYlZr/dpoICIB5C8X+JfA/QX+hrfX3drxtoAjdsjuNsS96Hz6uymLxt2zBDoRpZlqEqyraF0HacQKytFYgg9Fz4E1TCtvh7K9qjpuuwWCFSp8XbY7uy8bEx3Ll9uy8NmveNPWfYa7UaLNNELpfzX2gRww1DURSAUtTqdWi6HltLW00kUKlW/SRNt5Ws8NkwlNKWlX8chGmqUOo34TBME47jgBCChKoimUh0RdssFosYayHbyh9013UHKq7VbPDDDzX1vEDULEjWor1H3MBKoRRezYRX0iGWdUyVPYyXs7BrEjbWKig+e4KXyUdwBWC4BOQ3gXwZSM4OAxPA37//HgcPHsTx48djG892C1+DMQ7/HoqBe+FYMYmnu9IPisUizp47F/k3SZKC0EkncBql63kwTROWZcG2bQiiiISiBB3LXNft2MxmEDueVl5/QHvUtID2qBsGDNNEgu02OsGj1C9aUlWkUiksLS35rSc/Auw5w764uIjhcHw9AgQIJFM5FFVFwnVhMn3vRCLRMr7Ot4DJZBKCIKBWr/dk2G3LilX443keNBZu4ZMtnUpBVdWedgrFYhEjLQw7F2uyHScw7PabTWjXXwCmg+S/HYRydLLrc25D6N5y4xw25sFVuR7cmu9lO2Ud3qYOr2ygVq7Aqmpwiw7cig64HrYvCRQZEGRAcYAQGCqwOQwUJoCnR4CEsQHqeTh48CCOHT/eGLsO5xQQYaz5otR0Lc0LUuQManI2dprwaNs2qtVqywYzsiwHDV7iLmwiU1NMJhJ+lyHThKbr0A3D12CP4xgMgNEU3H9B2Pa8JhMJ1Or1QEZZ13UokrSNOgt+jG0vbRXAjY2N4fnz578b9t1CrVbzOantDHsLNkIqlQIX1RcEIfDkw+BhBK7al0wmUa/X4Y2OdmVkKQDLcZBs4zl4ngedPSwupVBkGYlEouWWOS6KGxs42JQ45RBYZ3bHceCZDup/eQTtH8+C+2D88g4j/8cVyAe6VeNoBAVAXQ9e1YRX1uCWNNibGtySDresg5b9n27FYEY79ElKYKgUngA4OkD8lwDQrZg0Cb3fjwVBNYCpAjC5DKxMAa/nAHjAy5cv8eLFi0DqYHx8PKi+jVouPM7SiEvZi7j294nNzU3k8/mW8XAuHtbLLo2EYvG8yrVSrcKybSRUtUFOIApdsWOaQPmuhxCAPZPhIyVYU5wKD5cymvP2A20PdfJQHzfs/Dn/WLDnDHuAHr2BVCoFz3WhsS8xbETDRj38/nq97ksUdOG1cw2WqOYDlCVEeaxbVRSoyWTLB7Mb2LYNrV7fClVFQJYkVJ8WYP7HU7gbTZPZo9Bvv+lo2Knrsni2AbekwWMG22MG2ypW4VXNwMptaV5T/78w+YMfk/C4fchwE4SMOHtv1Fcfeu3NHLA2Cpx7IuHaERv//u//jmq1ipWVFTx/9gw//fQTRkdG/Nj81JRfah4yGrybU6ekZ6tw0vsWlFpfX8dIRHydQ5QkEPQffpMkCaIowrQsiKLoF8PZNhKJBFRGD96GfhbH8PHIdhmCRCIBz3X9xHE+HzBgtg0hwttvNuwg0fLLHyr2nGEnhMBFjERTiwlFCEE6k0GtWkW9WgXNZAJ99GajDqAhHNONYW9VlWeaZlA1J0sS0ixzTykdiBDRxsYGcsPDLb0oqlvQ/+MRqr+8RtoAhAjT5K7V4BbrW4a6pMEr64Hxdss6vKrRxjWl8ByXWT4CHoTxH0wE/2+jsYWPQHxPvRtQVcSzowKMBPBvyizy//tR4L/+AyAEWdbE+MjRo3BsG6tra1gpFPD02TMIghB0jgqzrdpKHjT93P4GFj54DygWi9sqZ8MQCAl2ab00eQ/DYY3ec4w+bBgGdMOAaZpBHcUgCt0i2WLsmeaeu8P17h2npVFvBd6zNdz39H0qifaLPWfYAcT6EggzlFHvEwQBmWzWN+71OhzXhaookSs2j8fX6nVMhCmWHcDbqvH4OhfhchwHoihiKJvdRtUbRPVnu8Sp+cs7VP+/u3BqBogCuCIgROTUrCcrWP+//nvnk4UfPLrlWfuVuSRkqbfi2d3Y6rBhJ6oEMZ+CmEtCGEpCzCch5JMQckmIuSTctIgbd36Gkkjgm88+a5tslmQZMzMzmJmZAShFpVLBMlOnvHHzJkZHRvziqP37u68/4Pek2bFo+j3w+LvhuEfA8zxsbGzg8z/8oe37BtWk3eIOC8vVpDMZqI4D3TBQ13WIIQMP9JZfoEDrOgIW2rFtG/V6HZIsQ+hw/6Koyjy5/TEZ8zD2pmFH5wnTqeqPEIJsNou6rkOv1+HaNlLpdKRxT6VS0DTNZ9TE9Not24asKHBdF3VNg2VZIIKADNshNE8oQnzt73599mKxiEPz8w2vUcPGxv/9P+Cu+2EXwT8hXIEifjSfsieuRTgkHC5pWYkU/bKQkCFwo51LQMwlQZMUaj6DoYlhCLkESKK1ga3XalhYWMDU9DQ+OXOmuzAdIRjK5TCUy+H48eOwLAvLS0t4t7SEf/zzn1CZcNkkEy7rlQLZvKg1UyF7Rblc9ovUOuRlJEmCwSqVew35UUphMwpkeP5KkoRsJgPbsqAbBmqaBol1b+I8+m6us52x5RK8nIqZGxpCqVLZrjIZPl7Ea7wBTNgB+JiM/J4z7A0VkgNAkhX6GLqOarWKTCazzdtLJpMQCIkdjnHY9pC6LkzTBCEEqVQKyRalzQF6jEdycI7/Z59/3vD65v/zQ2DUAYCAQPIIHKHduWiQWWx4V5wbH/ZM07JvsPNJkGwCQi4BIZeEkEtByvuGnKjbjZK5uQlFVSF2oKZubGzg+rVrOHHyJOabFrReoCgKpqamkM3lkM9mUalWUVhZweNHj1CpVjE+Nub3gZ2c7FkWOhYoDWiw7QxjsVjEaJv4OocoikGcvVfDzptqtFpEZEWBJMuwTBOGaaJaq0GRJL+P8CAYMkwmwHYcJFTVV7K0bZByGXYLw94qAd7MWW+1u/9QsecMO9CFl9PBUHKd6oSqQhJFVKtVVCoVZDKZhuIGURSRSCZRq9VihWPqmoZytYpsOo1MOh3E6TsOF/1NsEqlAoVxjcNw1yrb3it5gC0AftCE+ZPcI9/GSWwx3ozKQiMJiPkkxHwKQi4FklVB8gkIQwkQpXEKxhFb4pz+Tiykd+/e4e7du/j04kVMRQh59Qo+Y4goIj88jPzwME6cOAHLNLGysoKVlRU8fPAACSZcNjU1heGREQiC4NMoW+R2uvLOSVMnohYoFouYnOxMT+Wec7tCpU6wbNuvNm3zeUII1ETCl85mOvFWtRoUQHVCVBEX4C9INcZ+SadSwfMpiqLPQLNtRKsxRSOqGOl3w/6hoEOCqlWcPejJGHpNkiQM5XKo12qoVatIplINTTbihGM8SlGv11EulyEJAkZHRrpiIfQbjtlo4b0J2STcTa3hNdEFKKFwCIHk0m0Ec5KUIY2mQXK+wRaHfK9bDOLaCUCKDkt4rKHCNsQ0bB01aSjF06dP8ezZM/zxj39syd/uFeGGzGEoqor9c3PYPzcH6nm+DHGhgF9++QX1eh3jExO+3MH4ePetGbsEZ4isr6/j1OnTsT4jiWLsQqWo89mWBYUtEJ1ACPHZMoqCOntubNtGKpVq6+RELYAWkzoApdt21AF9t0X+IDK+Tn0Bs0RooaGU9tS7YbewZw07Tzy1Q6s4eysPSBQEZIeGUK/XoTNRpVQqBUJIEI6ptwjH2I6Daq0G1/MgiSKymUxv1LIuS+/DWC8WI2lvuf/t37D5//4DVLN9hgqlPj1YIbBF33tvRvZ/OYvEZwd6GkdLxAw1BR5zxPdLPQ/3fvkF6zGEvHpFnN0CEQSMjIxgZGTf2DOrAAAgAElEQVQEp06dgmkYWFlZwdLSEu7/8gvSqRQmuTefzw+kWKfh/ISgVCpBkqTYjZ0lWYbZZaESh+048CgNkqKxx8nySoIgQDcMVKvVQLguCg2S0owWbDAVykw2GznudpW1UVfZ0KeVF8/9HorZXWQyGbx+86bnz3OaUysQAJl0Gjrr0uI6DtLMS0gkEqhpGkLtPUDhh150XffZLpkMyn306vRrbbYXVMRBsVjEEa6hEwyQQprNY+z//J9gvliHefsNzF/egegWJI/C5jGZJlCtfwZFJOJcW5hZEoLrOLhx8yY8z8OVy5e7NjLxh9jZsDdDTSQwd+AA9u3fD+p5KDIZ4jt37kDXdUxOTGBsfBxTU1MDkyFeXl5uHYaJWESlUJy9W6fDtiwQsr1bUlzwRGpd0wJ2WJI1luYIj9bzPGj1ut8YhklSt5o3kixD1/Vt3n6r+LrjOCBghp0Vo+m67osEfiTYc4Z9//79uP7997Asq6MGC4CGCU4pje0Nc32Weq2GaqUCRVWRTKWg6To0w0AqkYDjuqjWanBYMiedTgeeQycBopbDBYKkWTdwHQearmNoaKhhMgf/IgTq4XGoh8dB/9ezsB4VgJ9fovSyAJcAYtPpxIkYnadaoN3Im6sHoxAVCjF0HQsLC8jn8zgfU8irV3i9ctB5CEkQMDY2hrGxMZw+cyYQLltaWsK9e/cwNDSEyYkJTE5NIZ/P9+wprq6u4vjx423H4g/IfwZErvTYpWHn6o9KPxx14iuLZjOZwAt3HAepVKpBgdHzPF8vSdfhwVdx7BSblyUJdUaBjHNd/H2EEHj+BWJlbQ3/8wCS7+8Le86wJxIJJLNZrK6uYn8MXQceZweaPOEYhlORZUj5PHRdh2EYvrfjeajXaiDwPXVCCIay2WCRsdtUnO4kKtUqMqyZR6crI7IE9dw+jJ2ZBllahfCkCHpnGc5SCSBA8ot5KMcneh5L221tjHBMc/ekcrmMa9eu4dChQzh+7NjAwxrb4Hl9KzuGkUylcOjQIczNzcHzPKyvr6NQKODWrVuwLMtPwE5OYnxiIrY3b1kWSqxZeEeE7qdACBzPQzdlSjxpOogdEg9ryrIMTdNQq9WCylXXdVGv1wNKZqZDPJ6DO1EW02bi1NJW/HXX84L7TACUKxUoiUTLpisfIvacYRdFEWOTkyisrMQz7KEYWi8QCPEFuRQFGqsYffPuHWZnZpBIJJBJpxvoY1z4q594HSFkSyejEygNutOnM5muEq+iKELJJoGLs8hePQmqWaAehZDpozpxALHKcIx9ZXUVt376CWfPnsX+99Rw2KO0rchcS8RYtARBwMTEBCYm/IWzXq9jZWUFrxcX8fPt28jlcpiensbU5CSyQ0Mt7+XKygrGxse73rkIogiP9/dk86zT92Xbdl9hGP9UjeeQJAmZTAa6YUDTNFSqVYiiCIFRg7vZ8cqyDDCPveGcEe+1+Y6aXQuFfy/nm0OYHzj2pGHft28fHt2+jc8//bS3g/Rg5CVJQiqdhlouY3NzExXWuCP8YFEg4Nj2A4IOIQu+A8GWEaxWq34YpkvILD5JKQVJKX3XB7Si+3HEof3xv79+/RqPHz/GF//2bxjtouq3X8RJzLf6XDtEXXs6ncb8/Dzm5+fhui7W1tawsrKCa9evw/M8X7hsasoXLgsZu5VCAVMxaI7NEEURDjeAfAfbxsDzKs9B5AWar18QBD+M4nnQTROKLGNkeLjrBYT3XeVGm8LfqUc5RlwOmzNgCIC1YhGXW0gef6jYk4Z9dHQUpVoNNU0Lwg+twDnRsZJ2beCwbWImk8GY4wCeh1qtBsMwkMlkoLDMPI3Qh+kJUewY5p1HGZBqpYKZHiRHFUWBrut+gUefqpKDAvU8vHzxwme+XL6MzHtMagUdovqIsbdCp0VNFMWAF3/27FnU63UUCgW8fPECt27dwsjIiB+bZzvWEydPdj1EURB8XSSWICZs3JxBxtUuObjcb685ozDC1++6LjRNg+04UGUZ2WwWuq4Hz1i31ENZFGGFKI+8nWMzbMeBHNpRu66L9WIRBw8e7PWydgV7zrADvvc8zPoUZjokPAI9juCF7r11hxVHgFIMZbMQCMFmuexrVVsWyqXSVsPcAcXXG9gxzKC3K16qVKs43tTvMg4kSfK9HcsaiGHvV9nQdV3cvXMHtXod33zzTd+iVd2Cj3+3df4IIchkMjhy5AiOHDkCx3GwtraGQqGAJ//8JyzLwpMnTwJvPq4hFJmEr+e6EJrmKUVot8gWOMs0QQRhIM4KgR/j5slTAr8+RJFln34oiqjVaqjVaoE4XlxIsgzDNIPz+LIXjbtH13XheR6k0JxaLxYxNj7eULPyMWBPGnZRFDEzO4ul5eW2ZeRcMTE8Wbst23ccxzfqjEcriSIy2SzK1SrqmoaJ8XHouu6zZXTdT7oNMLlHmVEHWocHqOuiVq/35NkS4ve3tNhD0S+aNVG6gWlZuHHtGgRJwsVPP33vRh0IFUf14LH3q/vSDpIkYXp6GtPT01BVFfV6Hel0Gk+fPsVPP/2EkZERTE1NYXJqqu0uVhCEgATQyjjw6/Aohe26UAex4DNmDW+MoSrKljPEnkmBcd5r9bo/n1Op2LRhSZJADQMO88j5ORt2H03xdcBnFh1txSz6gLF3DfvMDH54+BCX2nCOuQey9UJ34RjbcXwGjCD4HgTziiRRRDqVQqVWw8jwMFKs25HOqus2SiUkWUu7XtgVYXW7OFK+NU1DMpnsuXJOliSYhgHHdYNr7BVxTFuU8a/Xavjxxx8xMzODg4cOweEJvvcMfr+7jbHvpFFvRqFQwJkzZzA2NoajR4/CdhysMqmDJ0+eQJKkIDY/NjbWkAfiHrsb4/7yxV7tw5ulnL5omr7wFqXIhkMtTUQBQRCQzWR8z71eRyqdjrWTVFgClaunRn1/juP4EsahOb62vo5LV6/2fH27hT1r2JPJJJRkEm/fvsVcBFsi7K0H6KKq02INK3jlXLNw0tDQEGq1GsrVKsZGRoIxiaIIQRBQZ3z3pKrGNrrcoHeLaqXiN4voETx+6lgWpB0uhQewbddULBZx/fp1nDp5Eofm51GtVnetCjAIxXR5/jhJ4UFck8GqN8MVxrIkYXZ2FrOzswCAEpM6ePzrr6iUy35hFGv4nUqlIIaZMS1AKYVpmpDYfO4W1PNgsIbYlPrtHrl6aqTOesOvfhiqXq/7DXFSqY7JW5n1NOCNP4Jx8GPCN+zhXEGxWIRhWcF9+5iwZw07pRRffPEFHty+jZmZmW2e5jZvnf3enByKgmlZfvs8UfTLoSMeSEWWkUwmUalWMZrPB7xZvsVMJZPQDQO6aUI3DKjMg49KQvHPRjETRELgdjAY1WoV2R4YMcE5RBGSJPkPRZ+GPZbfGjLsb9++xb179/Dpp59iamoqOMZuFXd7PYZi3pe/vrq6iomJibYLTz6fRz6fx4kTJ2DbNlZWVlAoFPDo0SOoqoqR0VFkczkk0+mWtE7Ltv0CoS69dddxYFoWLNMMJAi4yB7g399A3AxoGRYlhCCTTqOmaQHNuF0cnIdsoqQFuFH3QsQGSinuP3iAS5cufVSdkzj2rGEHgJm5Obx59gwvX7zA0aNHg79HeusMnQyGZdvQNM3X4Ein2z5APJNfqVZ9zRJKg9CLKIrIpNOBgTcMAxbTkOZaGYFBD+UBmhGH0VOpVmNJt7aDwnj6fWtmxAh38cTwk6dP8eL5c3z1xz8iFxLy2k3dDm7Yu37YY4Zi+r225UIhWADjQJZl7Nu3D/v27QOlFKVSCW/fvcPzp0/x4N49X2ue6c2HjbhhmhAZHbEVwiE1x3FgGgYsRqVUFAWqqm7b6YavveMuhxBkUinUeYEgIW3zLq3yOxRbBp9fz/LSEmzLwidnz7Y+/weMPW3Yqevik08+wQ/ff4+5AweC6s+2Hl+b5KnDeqGKzFPv9PilmIEulctIJBKgwLaJLAgC0qkUUskkDNOErusoVSqQmPZMVNONxuESCPB3Gq1QrVT6pmvxnUS/nOU43jb1PNy9exfFjQ1cuXIFyQgRq90MxXQbhvE/GM+w93NdnudhpVDwm4n0AEIIhoeHkU6nMTs7C0kUsV4sYmVlBfcfPEAqncYU07SRZLmjuBiFP1+4QeeGV1XVtnkv/pPEuWeEIJ1Mok5poMfUii0jtAm1Wo4DURAgCAI8z8P9hw9x9uzZvvIHu4k9bdhdSjE0NITp6Wn89ttvOPvJJ1u89RZoFY6hgC8NCr9oJO7jN5TNYn19HZVarWFs285LCJKJBBKJhN/IWtNQrdWgCQKSyWTbh4EQ4k/YqL9Tikq1iqE+ud6SJEFgDYp7NexxCnscx8HN69fhUoorly9Hsh5202PvRQAM6CIU0yUrK4zNzU2km+SkewHfVcqKggNzczgwNwePUmxubAQyxJqmYXJyEtNTU5icnITSJHFr27av9+K6EODLJiRizBtuzLvSp2fVqNVaDZqmIRul8sh2ilFm3fO8QM8JAF6+eoVkMompycmexfp2G3vSsBPidxR3XRcgBKdOncJ3f/sbDs/PR3p/UZ9vfrg0JtObbpII6IRUOg2pXEapVPLlWduAwp9k3KuxWCy/zuhdKmuS0ap1XtRjoOk6JFHsW8eDEAJZlmEaBpBK9UTZ7OSB6bqOawsLGB4ZwdlPPmndcHs3QzGe11txUkz0QwddXl7GRBdhmFaQGGvEdV2AGTaBEIyOjiI/PIzp2VlQSlEulbC8vIy79+4hk8lgfHwcoyMjSKZS8ODnf1KsLV+DSmOLMCiAYF7FlswIPuZLe1RZn+JMOt3weV5gFUU+MDm7R1Vh2zYeP36MP1665PdL/Qjj68AeNewAK412HBDmBc/Pz+PRo0f49PPPO1cAovHhMi3LV4tU1a6LdASWwa8sLW2VakeA89HDDwDvduQ4DkzGIDAtC1VCkJBlKGw8hJCWHk6tz8RpGAoz7I7j9OTJtLvr5VIJ165dw/z8PI4dOxbkFyKP8x6pg1Hn7rV13E6CUoq3797hD01tD3sFYSGJZnAjmBsaQj6fx+y+fTANA6traygWi7h3/74vXDYxgemZGUxEtL0Lfo/4Hon/hp7GLIpi0PDGMM3InUvzGSmlMC0LsiRBFEX8+vgxJsbHkc/nP1pvHdjDhp0n+8A0nY8dPYq//PWv2NzYiNVRh8eCHdeFzpKlyR4ZIZlMBiB+T9RmTcR2BoxDkqQgWWvbNkzL8tuKWRYEQqCoKlRFgRgRW+R9WgcBLstqWtZAJ/0qUzI8e/489jHZAxIqvGrGbidPP0SPfXNzEwQYWLcoSRCCRCcHN4ICIb6TYdu+8acUExMT2Dc7C0mSoOs6VgoFvHnzBndu38ZQLhfw5vO53JbhbhHz7mfXwh0hwzAgiSIkWQ6OFyV3zSURVFWFrml4/vIl/vzNNwB6l9b+ELBnDTuvvrNdFxL8bPfJkydx/5df8PXlyx0/LxDiS/DW60EMr1dTIooiUokEdKYxHVCq0L33KcsyZJa44kbeYL0jBVYlKqtqkN0vVyoDaxBA2CJimibSfWrrcLx6+RKPHj3Cv33xRYOQVyuxsKDys+8zd49edWK67WXaS4z9zdu3A+Vbi5IEhLRVXFa9XK3VAgldSZaRVFXITaGWVCqFQ/PzODQ/D5fJEK8UCrh58yYcx/E7R01OYmJ83A8Rhq43qtS/W6SSSV/il8XbeTglyhkwTdMXG5Nl/HLvHg7MzQVdt3732D9AcO/Ssm1ITNjo4IEDePnyJX777bfWDQhC0Op1UM+LLEDqBjw2b9k2NstljI+OxqoYbQde6q8oCjLU7zdpWBY0wwAMA6IgQFVVlMtlzMzM9HWuMFRFgWkYvlhSlxO/4YopxcOHD/FuaQmXr1zZtqtoSU3rsfJzEOhVJ2anQ0ee5+Htmzf46quvBnZMQRD8Hr2aBsd1fcNerUJgzTBkSYoVfxYFwRcmm5jA2bNnUavVUFhZwatXr3D755+RHx4O6JRDLOkZiw3TDswRq9VqqNfrfnEei7GHK2pd14XjukgmEnj79i1WV1fx7X/7b8Fufac6cL0P7FnDzldh07aRUlV/wggCvvjiC/z9739HNpPBTBsPx7Jt2I4TtOzqB7wRbiaTQaVSQW5oaDAKjwzck1ZUFZlUCjorANE0DZvlMlymNCnLMiQWS+wVsiyDCAJMxrnvapxcrMx1cevnn2HoOq5eudLAqGhAxK6gky7OTqLX4qSdRrFYhKqqfe/MKCu5t1koo1qtQmVNLiRRRCqZRCqTideZrAUymQyOZDI4cvgwHMfB+toaCisrWPjxR4BSTDI9m5EuG703g8fb6+F4O2lUdOSiYLVaDXfv3sVXf/xjAy//d8P+gUJVVVTLZdAQiySZTOLLL7/Ejz/+iFQ63TImaRgGJEkaCI/V8zxQ+DIDumFgo1TCxA7phwui6MsUqCocx4HrOFscedblSZIkyJIEiYV1usn8E0KgKgoMw+haW4fC1xe5fv06Eskkvvrqq7ZaOZFMH+7N7YZh5x57F/frfaR537x5E+QmugGlFI7rwnEcv5LUdQP+uCAIUFmjmGQyiWqtBiKKA5VuliQJU9PTmJqexvlz51CpVlEoFPDs6VMUNzYwMjwcNPxuZrnEgcxyU6ZpIqGqEAA47DvkomOu4+DGjRv49OLFrSI4Fgr63bB/oFBVFVVBCDQgPFaSn8/nceHCBSwsLOCbq1e3USAt2w7CJ60a3nYDlz0wqqoik06jWq0in8229lT7BRuzbdtQVRVDQ0OglMJ1XdhsJ6KbJmjY0DMjL8XYYquq6lfKdslpr9Vq+HFhAbMzMzh9+nTnBzXi3u9qjL0HnZhuE4HdXpfneXj37h3+9Kc/xXo/98ht2/aF1Nj9FEURKsvNBHUgrusLzTHj36lYrl9ks1kMZbM4cuQITNPE6toaVpihF0TR17NhwmVxdp2EECRUFTXbhmFZgCAEGjimZcGxbdy9cwfHjh3D1PQ0AJaYZw7LoJqK7wb2tGHn3iiPB4cn5czMDOr1On5cWMDVq1eDjuQAYBqG3xaOeSdx9GNagYI9IOwY+XweWr2OtfX1HRMXIvDDBgbzVAB/knN2TRJb3ppt23Asy29Bputbhl5RIDODH9W2TBAEmKyBcRwUi0UsLCzg1KlTOHjoUM/XRnfTY2c/dzQU0+V1ra6sIJPJtGRsOY7jG3NuyLFF2UwoSjAnogw2EQRffTHE894xhGLrAiGQZBkz09N+fohSlCsVX53yt99w8+ZNjI2N+UybyUmkomSImXHm12caRsOfDcPAw0ePMDo2hsOHD4eG4d8HIgi/J08/VPASZqtWQ1RZ0tGjR1GtVnHj5k1c+vJLECB4ANKhySJ0UwUXAmX/u44TeMGiICCby6FUKvma0h06PPUCzmu3TLNlPJQQ4htuScL/z96bxUhynWeiX+xLrrVX9creu7k2SbW4iN0kJVm6Dwb8cD2+4ycDNizB8Aq/yAbuk2BA1/YINsY2MH4cQ+CdOx6/2A+jEUeyJIoiWySbS5NU781md+1bbrFv9yHOORUZFZkZmZW9kJUfUKiqzIyIE5ER3/nPv3w/NG3Lv+p58D0PlmXBIhkgAmmkIIgiREFg1h1rmdeDjO7cuYMP3n8fX3j66b4KaLJy8+l/A5X17xBUhK0fq3Wg+6aPdM7bt29j//79bEUWBAGCMETg+2ylGBHXikwm67w9d2m6L82AuavFOqnrxAOIyMQCjkOlUkGlUsHx48fheR5WlpextLyMS5cuQZYk5rKZnJgAx/NtbjxVVdFqteIOZmEI1/Nw6dIl8ByH0088kXktPsupjsDnnNgB4o5pNmOrmWTHJG+iJ0+fxuuvv46LFy/i8cceg52y1in6VRRMCngFYdgWCCqXyzAMA+vr69A17a48MBzPw7as3DECWllKb2haFu77PnySVhmSrjYgImqmZcUZCER2WEw3EaFCXjdu4EsvvIDCMPLpe2XFUL9/0v+ftPLJ61RoDNhylyR/A1sTMz3nQXRiBiH2bqQbRRHCMEQQBHBdF/OLizhw8CBq9Tr9QHx+5PukFusg9xjP8zAMA6Ik7bhPb0d0uj7p7zABSZKwd98+7N23DyDCZUtLS/joo4/QbDYxRWSIZ2dnoWoauwYe6Z1w9epV1DY38fJLL7WtvpJH+ixb68AuIfYGx8U9O2V5m8+T43l88Zln8JOf/ASapmFycpLlsSbRj689AsmgIMQehmHbg8UDGKtWsbK6inqzibFKZUfnmAUOsR9xUN2QZDolBdXUoJahRbrHB2HIHgqB5yGIIgSex0cff4xmo4GXXnwRiqZlVjL2RJKokSLKZP5zkvDp6+nvK/F68p2ow28g8bBzsTxypssiY19sTAPk+9N7NAxD+EGAkFxvn7Ruo9k5K8vLKJVK0HQ9FrAiq6lhVsY6jgNN13fcYKUjOjxXbZNstxUzx6E6Nobq2BhOnjoV++ZXVrBMiF4lmi+TU1MIowjrq6tYWljAc88+2zXGlUd65EHG557YBUGAIMtdVQllWcbzzz+PH/7oR3j41CkcO3p022fyBsGSpN62ferh1jUNqqJgc3MT5QGa8+aBk/CxDwN0OZ/83zBNlIrFLVdAGMKxbbz/wQcAgMcefRSmbcNxXYBo+HA8D4Gkn/Lkh7pdkiXltFilTVukwwN+L9IfozDM/J463RccYncC0pMRIbOQTPqUrCPym2ZrJNse8jwfryRlOZ48BQGXPvoIhw4d6qmyOCg810UYRXe332cvi518Jq8omKIo2L9vH/bv3w9EETY2N+OmIh9/jM1GA1EY4qknn9yeDZeagItDkuG4X3iwEnLvEhRNgx8EXYtbFEXB6dOncenyZVy6fDlzP3nII03q3W7GsbExcADWNzd77ncQOI4zsAxCHiikPoAKl+nEcnzvvfcwVq3i3NmzKJfLzM/veR5M0mm+aRhoNBqo1WrY2NzExsYGavU6Gs1mrNJnGHHmDSG5IAxBdfSB+5fHnselQVc2rufF0g+WBdM0WUeteq2GjVoN9VoNjWYTLdIJyCKZRhFJtdM0DaVSCVXiX6ZBUllREIYhVtfWMEeyOYaNIAjgBkFciHSf5BvaQFdLPcid9UiN/8H4+DgefvhhHDlyBDyAcqWCarW6bYJO3k88z0PrI/b13e9+FxzH4bvf/W7m+5cvX4aiKDiXo+J9WPjcW+xATEAmx7W1vkr7zD3PQ7lUwssvvYTz58+j1Wziyaee6mtZm/bfJ5E5mcgyS38sl0pD92M6jhP72IdU/p8G9as7pABks1bDm2+8gSNHjuD4sWMA8fMiihAiLkwCSZ9rs1YTFmsQhgh9P05NJcdJTo5URkEklj9V7aN+5fjPrd+93otAmhhHic491I2Gre80imK97ygM4x9sxVHYZ8n46TFo1ysAbKwCz4OXJEh0tUJWLnQFA4Bdk27f2fzCAqampoaaV56EbdvgAaiKgjCKOnZS2gnyqDymNsjUe2GbANtVIaMIH338MW7fuYNTDz8Mx3UzNZWS0IvFvmIStOL3zTffzHz/D//wDxEEAf7+7/8+9z53il1B7LIsIxIEeJ7HiD1929Amt5qu49y5c3jrrbfws5/9DM8++2xbZgltIJ3ePgLafM1JcOhsYVarVZimifW7kP5oWVbcMJuUh98NyIoC0zSxsLCAdy9cwBOnT8fnkXSnAG3Lap7n46ViF/cTtc6jIICfIP8wisD7fpyTTASo2kiWgvrzexBSEEVoNBrbXmfBVbJ9GIZwXZc1e05PGhwXN0GmKbbUvZT86Qvpz6cm59u3b+PQQw/1t8+c8IOA9Qb1PC8my7sR4O/2Xof7lWYmdbybE9fI93288/bbsB0HZ194AQtLS3HDm7SbNLWLYp8VvE899RQ0TcP58+e3vffP//zPePXVV/FHf/RHePwedmPaFcROA4G+YbS9lvyCgyCIXQuILdFnn30WH330EX707/+OF55/vq1cO4vUO7XaS/pJsyDwPMqVCjY3N4ee/ug4zt3NPUZs0V29cgWffPIJnnvuubgFX9Y59zmxcBwXW4k8Dy45YZKJoZwjwyZtUVPLO2mJ8wBr9J0ka/Y/+dsPAvA8H+uk5LGSE26joYCOCYBl26htbGD22WeHt/8ELNMEiG/dI77+oaPHPjvGLTqQejoGZlsW3njjDRTLZbxw5gxbbRUT8aBOca1in8kMkiThzJkz+OlPf4qFhQWmzWQYBv70T/8U09PT+Pa3v93XPneKXeFjBwCtUIAfRW3NbClZ0NfS2hSPPPIITp08iR//5CdYWlnZ2i51c2UFS7ehi8VWKpUgSRLW19cHyxzJQBiG8IiGPDjurvhJozDEhxcv4s6dO3jq6ae3+qpmHCvawfHbxt5t+Z4CR7blSS4+bZsmiSJkUWRujGTVrUAqLwVBaLO6acVi7uu4g/Ptmu4I4NYnn2DP3r2xJO2ANRad4Ps+/CCAQlJYAQx3gsrzrKCHNY/tWWrJa1Db3MSPf/xjzO3Zg6efegoByV0XSLtJAKxYKz0hSLI8UEX4l770JQDt7phvf/vbuHPnDv7yL/8SlbuQ+dYNu4fYNQ28KMYaJxTUGutA7ABw4MABPPvss3j7rbdw/caNrU3J725+9fitrVzpTqDpj0EQoN5s5jib3nBdFxIh9XgAwyF2mpvveR7O/+IX2NjcxNmzZ6Fq2jb97tSGwzn+UPYywHHp93gPBMC6nmMU4ebNmzh8+DC7pnzC3bNTkjdNE1QPqFvXoYExrIkx2pJPTq6yFhYW8Prrr+Oxxx9nCq4WacIuiSJTfc0y8IDBs2EosVN3zKVLl/A3f/M3eO655/Bbv/VbA+1zJ9g1xM5xHLRSCZ7nIaBfKnkIqH+9k6U0MTGBl156CdeuXcO7773Hgj4hYr96N+R9zJLpj0lp0UFh2/Y2N8zAVnsiHz+KIkT+m9oAACAASURBVNi2jZ/97GfgOA4vvPACisUieHLMjngQMit2AKozlDuotgOC7XallpaXoSgKxsbGEhu0Z3QMmjFENZJothNbrQyT2Ido/dMJhxpXly9fxvvvv4/nnn+euUNc10UQhvHqjK7aSHe1rElw0CK6559/HhzHMYv9D/7gDxAEAf7hH/7hvmRw7RpiB4BCuQxwHNO+oA9Em7+tw5eg6zpeeumlWMjq9ddh2TbQIViahTyfG5+YABdFWF1by7nXzrCz/Ot9FFklyTxMZIy0Wi385Cc/wdTUFM6cOcOITlFV+IQYOu1vYKRdMffhQem36vRurSxuXr+OQ4cP9/xckpjzjsWyrG21CtxdDLzvFPQ+8FwXb7/9Nubn5/Hiiy+ySS8MQ6bSyiQ9iDuOBt5TO4w5YgCMjY3h1KlTePvtt/HKK6/ghz/8Ib75zW/iySefHPwEd4BdRew8z0MhLgNqhYRBgChZ8t/lJpYkCc8//zzGxsfxg1dfxfUbN3ovfen7OUhBFkWUy2WYponmDl0yDsmISaOnxUkJPUHmFGtra/jpT3+K48eP4+GHH257T1UUptOeudv+ht+GpB/0frXFC6I+OidlXLthwDQMrG9s9C3RS1Mqu103x3XjegTSSjK57VBcMTl961sfz/fZO3fu4NVXX4Ugijh79mxb3YZt2wijCLqmbblbCbFTEbwkNF3fUaHgCy+8ANM08c1vfhOTk5P4i7/4i4H3tVPsKmIHAJVExSkBUVdK3pJpjuNw6tQpnD13Dndu38aPf/KTLZ2OLPR5Q1eqVSiyjNX1dXjdfNY9kGmxE2Q+3tFW5WPWQ3X7zh2cP38eX/jCF/BQRpodT4TCHNe9K6RGb9T75mPvx2K/SxPPjZs3ceDAgcHK+xOFXWlfPHWv8Ty/LS+e53kMxRHT5zXpNXkbponXX38dly5dwjPPPosnnniiLUYWBAEc1417AQsCU1ilFbw8x21bXeo7bFRC/eytVgvf+c53MD4+vqP97QS7jtglTYMsSXAdp6M1nYeYyqUSzr34Ig499BBee+01XPzww66+8bxWJg9gYnISHIDlRCZOv2DFSdsHwixPmgrI3C0d9nXp0iV89OGHOHv2LKan0+24t6CRHGE30SuTHXaQk0iig1jTvULeqlPg7kw+YRDg1q1bcdB0CEjKOLiehyAMM6UDeKqwuFP0Odl3+nQURbhy5Qp+9KMfYWJiAl9++WVMjI9v+25MywLPceycgjAETzKdOj3fO5UROETkqM+cOYPf+Z3f2dG+dopdR+yCIEDVdYQJqz2JtpLkDkje6A899BB+5atfhWkYePUHP8Dy8nL7Z9H/gy6LIsbHxuC6LjYHlBsIgqB71WzC5dL5IxEuXLiAxYUFvPTSSyj3uPFpcY6dcV2HZcVT/Zh7CRo0vquytQlknd3CwgLKpdK23rDDgG1ZEEgrybuCAb77rGuwubmJH/3oR1haWcHLL72EEydObH0niWO4rgvf96GS4jyg/XmgK6/kMURRbJPqHgR//dd/DZ7n71vANIldUaCUhqRpEA1jm/phmxBVF6RvU1VV8cwzz2BxaQkXLlzAxMQEHn/iiXaJgD6/6FKxCMuysFmrQdP1vuUGwg4+4aiDqyUN3/dx/s03wQsCzp47l7v/pKaqaJnm9gKQfgK3GeCSK4p7/NAwWYC8x92hhZuV83/jxg0cTjSEGBZs20YURSjqOniaATPM6zvod57YzvP9uPH5/DwefeQR7N+/P/O7oBk8Nmnm3qZMGgSQVZVls6WxUzfMK6+8gn/7t3/D7//+7+PMmTM72tcwsCuJnSNytKZptuWz5kG3Zenc7Cwmv/pVfPzLX+LVH/wAjz32GGu5NcgMPjExAWdxEcvLy9i/b19/vTYzgoxU44QMqE2TPAnLsvDzn/8cExMTOP3EE3096IqiwLAs2LbdbgHt1GKnE0OqtP5egK5qcl3/HpXGeZA+u0a9jpZhYM+QBb9834fjOJBlmemPU1dF8hwGWm3t9Hsi2y4uLuK999/H1OQkvvKVr8Rxo07jIavwgFSYJu//NkMjwwVbHcAf/umnn+KVV17B9evX8U//9E945JFH8Fd/9Vd97+duYFcSuyCKUHQdtm1vc8d0K/KI0LtNniRJePyxx3DwwAFcuHABN2/exJGjR1FN5h3nHSfPY3JiAssrK1jb2OirATbTgKcl9BnnlK66A4BarYY33ngDx44exdFjx/oeM8dxUCQJjutC1/UtQSwMwTdOyP1eL3NZE+s8x93hygTY/l3duHkTDx08OFRXUBRFaBkGuIQfmoJdX3qt6Uq2n+u+w+tgWRYuXLiAerOJp59+GlP03u+yz4C08ZMlKe4MRl8nnaSk1PWjZ6Pq+kD+9e9///v48z//c1SrVfzar/0a/vZv/zazl8P9wK4kdgAQVBWqoqDZauXfKG85Oxe38nrxpZdw9fJlvPPOO5ifn8fJkydR7fMG0lQVpVIJjWYTBU3L7Qek5NB1ac1x4LFlkS4tLeGdd97Bk6dPY88OBMlUVYXrunCppMGQQCeie+29ZMR+t5pNpMDK5UmF5O3bt/HVr3xlqMdwHAdRGELX9cwJg1Zz8hzXUZCrG/K4NLPQMk1cuXIFt2/dwsFDh/CFM2cgkM5n3fYXRREMwwA4bptUNc0uy1J1jACMd0kI6IZvfOMb+MY3vjHQtncbu5fYZRmypoFrtWIN7MR7Ha32nDc49ePxHIeHDh3C2Pg41tfX8fprr6E6Po6TJ09iog8LfmxsDI7jYHVtDaqq9sy1pf1Lk6XWnQcbP7jXb9zA5cuX4zz9AVYXSYhEb8XKqH7dEWjQ6z5Y7LRsvxeGlupJjnXn9m1MTk0NVVc/CAJYtg2BlNj3Ql/VrDkkNLLQaDZx+coVLC4uxgkJX/86s7rzTOaWZSEIgsyJynEccDzP4lTJhuiSoqCSbrrxOcCuJXYgttplWYZhmgh8nwUIu0nz5gVtgM0LAgRRxJEjR3D06FHcunULb775JkqlEk6eOIGpqameNy0PYGJ8HEtLS1haWcHeDr5W5hslmuG5CmqiCBcvXsTi0hJePHcuu+P7AFAUBQaJYYiiOBwrm2Tx3OubNsx7LYGhlcxzUYSI43D9+nU8+uijQ9knhUnUG/O4DdrcMoLQO/WR5/sKHm/Warh85QrW1tZw+PBhfP1rX2PZOTR9mOuxT8d145x1RYEiy9ueU8dxWBPvNMYnJ+97BsvdwK4mdlFVoRYKQK2GlmG05X3znaz2fkCXsohJVxRFHD58GA8dOoTbt2/jwoULUBQFJ0+exOzsbFfyU2QZlWoVtVoN9Xp9u1pcMtuFTEy9fMJBEODtt9+G4zh4+eWXc2e+5IGiKDAtC7bjoDAkF0ZaVvdeIezQEi8LQ8th5zhsrK8jCIKutQP9gqYCaprWf29UkmnVkdw5LhepRwDW19dx6fJlNOp1HD16FE8/9VTbNU52O0s2XUkjCAJYlgVRFFmldTJ2FBJlx6TsNitKlKT7WkR0N7GriR0AFNJujLZha1uaJgJAA3Wbx9YSMimkxHMcDh44gAP792NhcREffvQRPvzwQ5w8cQJ79+/vWFxQLZdhWxbWNzehqSqTF80KjvayMl3Hwc/feAPFQgEvvPACm8iGRUwcx0FRFFiWBZWkmQ0D96PyNIwiiPcoh50iAnD9+nUcOnRoaBZlGIZx4U4qFbAriNYMc4eQIGqmqmkOQbzl5WX88tIlOLaN48eP49lnnukYFKbH6HT2LAAMoJAI1CefW48UyyXThX3PAzgOk9PT4IdozDxI+HyeVR/gZRmarsN1XZimCYloXAPZWSN975/oUmQVAnEch7179mDP3BxWVlZw6dIlfPjxxzh5/DgOHDyYaVFNTkxgcWkJi6ur2D83Fy99M/YddbHYm80mfv7zn2P//v14+NSpdmnfISr5qYoS9/y07UzdmkFxL+11WpyUx7od5qRjtFpYXl4eqoiUZduIwhCFUqn/ySJ1j9GVE62L6La3MIqwsLCAy5cvIwpDHD9xAnv37u2uOx/17nFqWhZCktqYOTlEESzHiQOqifvPIy0yp4a4EnrQMCJ2nodSKEC2LPi+D9M0USgUtvzs5PegbhkOJBrfZXuO4zAzM4OZmRmsra3h8pUr+OjSJRw7cgT79++HngiciaKIsfFxrK6uYm1zE5MdlpIRTXdMYW11Fed/8Qs8+uijOHjw4LaxAsMjKEEQIEtSrFsjy0NJ1+OGuKrIA7rSyhuvGBYuX7mCw4cPD8095vs+XMeBrCh9a810I+CkDz4Nx3Vx584dXLt+HbIk4eSpUz1djokdd/erOw5c14Wmqm2pjWwsxG3kOA6riAbi7zMIQ0yOj0PMu2r5DGLXEzsAKKUS+PV18BzH3DGSJLEbcKeWu9iH9Onk5CQmJydRq9Vw4+ZNvPq//zeqlQoOHjyIPXv3QhZFFHQdVqGAer0OURBQzejOEmb0qbz96af44OJFnDlzpqPfdtgdeVRNY1b7UHJ8c2anDAuU2HNZ7EO6bpZpYn5hAV//lV8Zyv6Yy4LnB1s5dZlM2f1CrGs/CLC0tIRPP/0Uq6urmJ2bw+nTpzFJ9I9yH7ILqfu+D8uyIElSpr4NEKemBkEA13VRSaQYu8QNM9enQuZnDSNiR2wFi6qKyPPAcxxM02y7GXYKjudZa7W8qFareOrJJ3H6iSewtLSEW59+ivfffx8zMzPYu38/pqem4Pk+Njc2IEoSiinSjKJoy1cfRbh06RJu3bqFs2fPdtd86VKROghEQYAky7Btu027Y0e4D8R+LyeTy1ev4qEDB/L7wXuA5ayTlWg/6CmvQa7P6uoqbt26hcWFBVTGxnBg/348/YUvbLemex2P6y4THIYhDNMEx/NtK9nUTphiZVuaIwAvCFAoFPpuWP1Zw4jYCeRSCebqKrRiEaZhwLSsttzhnVjtTIOmU9CpC3iex549e7Bnzx64nodPP/0UVy5fxjtvv429e/eiUChgdXkZ4t69UJPaGCTVMgxDvPvuu2jU63jxxReh5siHpr7NYdntuqbBdhw4jjPUfOx7AWax56gdGAYcx8HtTz/Fl7/85aHsj2aNSJK0TZK3H6TPLgLQrNdx69NPcfv2bciyjH379uHhr361oxWd6zjE+u9U6WommlJ3MhLoVjbxryfH43se9qdckJ9HjIidQNM0GIKAKIogyXIseyvL4EjLvIgU8vSSFMgCLwgIXZdZwyHQdzVfFEUQBAGHDh3CoUOHYBgG7ty+jes3biDwfSwsLuKRRx5hbpmQLIt//vrrEAQB586dy6y864ghlMZTiKR5tO04cYbMZyhvOAzD/tMCd4ArV69i3/79QyvsotZtngk9Eykfum3b+PTWLdy+fRu242D//v14/vnnWfoty6zq9/5G+3OVdY/Ytg3P86BrWsfYA5eQ0XBseyu2w3HwPQ+SLGOMNl3/HGNE7ASSJIGX5fjG0XUWSC0Wi21ZI4OUVzPXBrFG+qW1rKyaQqGAEydP4sTJk1heXsbVK1fw6g9/iIlqFQ899BB818Xbb72F2dlZPP7YY303YWYaIUPS4lY1DV6zCYeQ+05wr7Ni8ly7YVjsnuvik08+wVeGZK3bto1g0Jx1Ag6AHwS4fecO5u/cwebGBubm5vDoY4/FxXUpAmarvT4MgyixHf0/Dc/3Ydk2ZFnu3EAmkSEWBEHsdikW2UTjeR6qExPDrYZ+QDEidgKO46CXSmitr0MJAmiqCsM0YyszcSMwUas+HmSO52NLnYj9031kVbem0UnAK4mZmRmUSiWsrK7CtiwsLy3BNE0omgZZlrGxuYmxsbG+/dvJlLadQpIkiILAmmwParWz1Lohrii6IQzDvv3Eg+LqtWuYm5uDpmkszXJQ+L4P07IgiWLfRBZGEeq1GlZXV7G0tISVtTVMTkzgoYMH8eyzz/Z0S/VD7mlSz0IQhjANA3yX4G96H7ZtgwOYERGGIThRxNT09D3T1b+fGBF7AsViEWarBdt1UdR1SK4Lm/gn24iIkEvex45PKOQxkKrUMAh65vPmOY6u6xgfG0ON4zAzO4tGo4GHDh+GaVl479130TJNTE5MYGZmBtPT0yiXSrmCkMPI5afQNA2NZjPWwd+h1cSTNNRuCMkqiVps9FoyVwHZnnZ8Yg2g43+AKEIQBKwQ7G7C933cuHkTL547t+N9hWHIsmDyZCJFUQTTNLG8soLVlRUsr6xAUVVMT07i4MGDOH7iBKqVStwrNOcY8hpAWR2akndlGIZotVqIAJQKhWxS7uC24RKt/lzXxdSePW0VqJ9njIg9AZ7nUSyX0djYgO/70ElKoWkYKCQ71/RpLVL53DAMkbZ1urXqytsUg6JcLsP3fTQaDXCiiFKphCNHjgCPPhqLiK2uYmVlBdeuXYPv+4zkp6amOhMAIbthuGQkWYYoirAtK45f7MDX7ochAt9HRPKSI3J9wyCIfwO5vqMIsR86/vhWwC4CEPk+WobBcsB5jotXXDwPgQhj8TzPmkXvBDdu3MDU5ORQOiQZptkzwEjvh2VC5FEQYGpqCjOzs3jssceYT95xHKaaGEb9SfdyANBDgiDrvaQyabPVQhRFKBYK2SuFDq5N2vOX53kEQYBCpYJKtTpU2YwHGbvjLPtAoVCAYRiwPA8lUYyDqq0WhJRLhvrb89AutQIzSbpDgUcE5M59T2JsbAye58EPAjSbTZavrigK9u3bxzrcG4aBlZUVLC0u4oMPPoAiy5iamcHM9DQmJyfbUu127JJJTISaqqJJFDWVHOl8EbGa/SBAEAQwTDPW3Cadf5IPNSVYQRQh8XysSkiO32aJk7/pT5mQaZSw6qlP1vd96JoWN3WOongyAeCSz0SIU/44joMgCPGPKEIgTZPzEGEQBLh27RprhrwT2I4D3/Ogqmobifm+j7X1dSwvL2N1ZQWGaWJqchJT09M4euRIbMlmjDVZWTrIRMwB2S6ZHsYRs9SjCIVCIZOQI2T39rRIRSrTjhEEVMbG7kpbwQcVI2JPgeM4lEol1DY24Po+FEWB67owms3tfSFzZsrwPA9OEOAHAbKoLJ0GOSip031NT09DlWWsr69j7759mW6PQqHAMmwQRag1GlhdXsb1Gzfwi7feQrlUwvT0NMbHx1Epl2Md+CH422VFAW9ZsaRvBrEHYcgI1SdNloGtrIkwDCGpaky2ggAe5PruwGLuZMVFUQRZUVDIsBbDMGR+8CAI4vGSsbuuyyZ8nhC8JIptFZBJfPLJJ6hWKj17yvaCT1IbeVFEGIZYWlrCxsYGVtfWsLm5iWq1iqnpaZw+fRpj4+P5iJpMXjvRot+W5st1b0EZBAFahoGQkHqnGEfW+CMA9WYTvCCgWCggDEOUyUoor5Db5wEjYs+ApmkwFAW250EWBBSLRQRBgGajgTLxNTJwHPgclrvI8wiI4H8WkhWfLINmQNDJyXYcLC0vY+/cXPdGxRyHaqWCaqWCY8ePIwgCbG5sYGV1FTdv3kSj0YDruiiXyyiXy6hWqyiXy6ikr0UHpM9EJ31RHdeFJIrwfB+e78N3XfiJgiBRFKHIMkRiCfOk4YKqqiwoNswq2TRYg40MMubJigCIJ4ZkgDIgq4sgCBCEYVwp6XlMgEsURSYjywG4cuUKnnnmmYHG6AcBGvU66vU6VldW0Gg20TIMiIKAMpksjh8/jomJif7dECQba6fpqdtWfGSFk3lI4n4JSSFRR1LP0EiKEDfVcBwHlUqFyYUoZHLeTRgRewYoMW5sbMANQ0bu9XodzUYDpUqlXW8jh89dlKS4oUeX9DkqUToMstJUNV5Gh2FM7nv25M4GEAQBk1NTmJyaYq+5rotGo4FavY6NjQ18cvMm6o0GFEWJJ4WxMVTKZZQrlZ5LXkEU41WQaUJXVWaNi6IITVEgS1I+6+ouZ8XQ9oJdg9sZr1GXTBLUqqeTmOt5QBRhaWkJqq6jlLLW0/cADXA2Gg3UCZHX63UYpolyqQRN16FrGk7t24ex8fGdp/QlCoVytQTsgTYdoi6k3jKMLVLvZIx0EL5DFKHZbILneZSKRYiSBL1YRKlU2hWZMEmMiL0DVNKEw/I8SDwPkZB7s9WC0Wptu1l6ZY8IggBwHIIg6CwBm8iX3ylpiZKE0DAwOTGBtbU1LC4vY25mZuAbXJZlpmMDbKkeGoaBer2OWr2Om598gnqjAZdYTJVKhVn3NMXRJf5/IO4czwsCCrqe2x/dhruc8hj0KE5i/ucc46ZkTwmXNpK+efMmHn74YbSaTZbFQUmcau/X6nXUazWIohivmioVzM7O4sSJEyiVSnA9D6Zptq1kdgxa6DOk65vUk8l8PwzRIo1ZdF3vusLMqiWhLjHDNNn2RRIsfVD6kN5LjIi9C8rlMtbX12EEAYqCEN8shQJarRZarRYKJOuABei6uGTostv3fdYRPg3WXIDsbycPlSzL8Hwfmq5jbGwMGxsbWFxawtzs7HBUFskYi8UiisUi9iZ6pHqexyzKlbU1XL56FYZhxD1QZRmFQoH5yDfW1jA2Pg5N06CpalxM08NlkK5QvFvumDAMO35X9Nj9IAgC2LYNi8QYbn3yCQSex/LSEm7cuAGL1E0I5F6rELfXqbm5eHLMIO2AFNKJojg8Uk8QcF/do7rtkuyXrkqTiKIILdLFTNf1zjEPtF9zJtNBxtoyDESI05bVYhEcz6M0iETx5wAjYu8CWZZRLpdRr9dhhyEUSYqXd7oO0zRhET2ZNLkD2613juMgkNSrTvjOd76DDy9exB//8R/jzJkzbeT+j//4j/jZa6/hV3/1V/F//cf/mGvsND+bCh5tbm5iYXERe+bmdkzutF1ZJ1eEpuvgBQHVsTEgiliqo+e6sG0bpmWh1WqhXq/jzp078FwXpm3DtiyIggBV02Kyp4Sv63GTbM9DFATgEAf0BJJ+OOxHl+mwd3AJRVGEIAyZLz0MAni+D5ucg2lZ2357vg9dVaFqGiRZxsrqKo4ePYpKpQJN09gqMQxDmKYJPwgQAZAlKTsrJCKqjRw3XKs0MVF2yjzpa3dIETISrhlyDr7vo6DrEAWho3HEJ1wwdJ8sNZLsRyH9FRRNQ5E00dmNGBF7DxQKBfi+D6PZZNrqsqIgCEM4tg2B5+NMD2KNdFtuipIEx3Ey34uiCL/5m7+J//ujj/DP/+N/4Kmnn47dAByH733ve/jZa6/hpZdfzkXqABiJUhSJ5bKxsYH5xUXMzc72rcudBmtbRh5anxCb47pxRoksx2l3gsCyWyRJgl4ogKrINxoN+L7Pgl2IIjieF1uvxLq1LQvr6+uwLCv2wZKergHJWQ+CIA5K0iCrIEAUBPCiGP8mKZA0BTH5AwAXL16ET8g5IPnxvu/DdhyWw58mcT8IAI6DmNwnsZo1TYNGmiTPzM5CJ6SdrLi98O67OHToUMd+ppIsw/c82K4Lx7bheh5EQYCW0EkxTTNuNNGpcKcfRKTtXereHYZWTnrSpUVJ1JVHSV2W5bgJe9rCps9WMrkgtVKjKY6FQgGFchmapu2aYqQsjIg9B2jhj2EY0MnyXFNVhEEA0zQZcdBilU5uGUEUEdk28y0nEYUhDh44gBe+9CW89tpreP3113Hu7Fn867/+K77/P/8nnnn2Wfz2b/927jHLRPcmiUKxCI7jsL6+jsXFRczNze2M3EmBjkOscHo8RVGgKsrWOXZxlRQKBdTqdVi2jYKuAxwHRZY75rivb2xA07Q2ydYwQbqUeGlGSpD6O/T9mMTJ/1EUMV1vITExRGEIx/NQLpWYHALNzBHIpDEo3dUbDczPz+Nr3fTWyWqhQFYsjm3DcRw0Wy2IJB7huW48ce5AtZEeq6NLixB+f7uLA66dvnUOsYVtmCa8BKmnLfv4wxxryZceVxKNZhM8x6FUqUAvFFCtVnelC4ZiROw5wHEcxsbGsBYEMFstFMkDXqD+dsNAiZBmEEUskyLtlqEk6vs+5DSxI77hf/0//Ae8ef48/uVf/gW2beOf//t/x+NPPIHf+73f6+tGlWU5zrxIgWpyr62tYWFhAXv27BmY3P0gQKvVgud54Li4/ZiiKH0RgSAIUBWFVQr2GkuWrgh1hQ1yHu9/8AGOHz++7XXbtmHZNsaq1b732QsXL17EiRMnukoVJM+Q5zjmqnFdFy3TRLPRgCTLwym66VT9TF7rJyumTZ66y2dMy4LneYzUk8ejyHLfZI3TcV14rgutWMT41BTGx8d3XRZMGrv77PsAz/MYGxsDZDkusSbLwWKxCIHn0SK5t0AcJAsTFju9Pak16Pt+276jRBf2ifFx/B9f/zrW19bwT//1v+LY8eP4kz/5E0iiuFU9mQOSKG6z2Ck0XcfU1BSCIMDCwkLHz3VCGIYwDAO1Wo1VZlbKZaialknqvUKbmqqyBid5cPelv+Lv8G5YfMvLy2i1Wjh8+HD3D2YQGMdxEElnL71QgKqqaBkGDOKeGghdXIf0Hs57FfJkCAVBgGarFccbiEhd9rBS++mSoVNvNOD6Pvbu2zdYvv7nECNi7wOSJGF8chIBtvRFwHGs+IESPl3WhhFRuEtAJC27kkjfrsmc5t/93d9lbglWEp8DPFlVBKlJhELVNExTcl9czE3utuOgVqvFEqqShGqlEmusd7GQemWu8IIAVVXhe17PcdyrxXXYJXAKDFYYFUYRPrh4EY8++uhAVZBhFMVpkRyH8WoVY9UqVE2L9YGIJHLf6Z9dPs+ytHL2e+1F6r7vo9VsIgwCFHV9W659ultVhN56SX4QoNFsolQqYd+BA7tCkjcPRsTeJ1RVRXlyEp7nwbYsADExFYtFBETfIvmwMEEqYm2Lohj7dpMWVuLzP3/jDbzyyiuoEBfA//r+99uO349mhyxJXYlSUVVMT00hiiLMLy7CSQRb0/CDALV6PT4/jkOpWGRNv9m4UueSHnc3qKoKXhB6W+0dlvnDMyF9nwAAIABJREFUtq6DIOjqghjkeLc++QSSJGHPnj19bxtFUVyRSYKlgiDElruqxnEAUYRl22g0m6xOoMvOch8TyHeuaQMmDce20UzcO9vy1BOTSFZwtBPW19bgBwGOnTy566pLu2FE7AOgXKlALRZZxgYQB0YLpEFHq9VqI26qPBiB6JKQQiX6HsW7772Hf/wv/wX79u3Dd77zHezZswc//vGPsbC42HZ8Su55yNIi4+sESu6IIiwsLmZm7biui3q93uZ26djBptPSvseDz3EcCpoW53p3mWC67KD/bbqgW6rjIMfyfB8ff/wxHn/88XxEmfrfoHneGYJYgiCgVCyiWCgAUYRWqwW3Q/ZVP+MPSXC5l4+9m7uGZr6Ytg2RKI4K1K2Y9qFTMieZSL1G2Wy1sNloYHJyEgd2Qbu7fjAi9gExNjMDVdPiFDxipdNgFlVWTDewDmlgFdjmZ7985Qr+7u/+DuMTE/jWt76FcqmE//PXfx1BEOD/+2//bdvxkwUfnVCuVNBsNnuei6womJ6aAgdgYWkp7hWJRBk7Wf7TCtJeyCT3HNaXrCgQRRGWYXS31roE+oYBOul2DMANcKzLly9jamYmjtPkQPJbNS0LrutCU9WufUtlSUK5UoEkijAtCyaNBQ0IppXTwyXVUcyLrGBdz4OiKNvSMpP3Lvs76q2TFCG+JisrK1BkGU+fObOrM2CyMCL2ASEIAiqTkygUCvA8L9aNJqmQNH+22WzCT7tCOA48YiuYWvG3Pv0U3/1P/wmapuHP/uzPWCbGM1/8Ig4dPox33nkHly5f3jYGJj3bYdlaLpXQaDRynY+sKJidmQEPYIl0YGo0GnEXHklCuVzuL585I20tD2ihjW3bHXbbYT9DfLC7iX8B/fvXTdPEzRs38MjDD+f6fHL/tuOwrlN5Kkt5EtBXNQ2u728ZGAMQfECs5o6CXV3e830frUYj1kInOjbpzzLFR7KCzXNdI8SxrM16HeB5HD12DGXSb3WELYyIfQcQNQ2qrsf+9cRDJAgC05JpGUZboRAAKMTlEPg+FhYW8P/85V8CHIdvfetbmCH66RS/8Ru/AQD4f195peM4OGSTUKlUQiOHxc7OR5IwMzODKIpw/eZNNFot6JqGYqHQd9CS+dwT/+eBJEmQJAmWZbGipvwHHQ65U4u9q7upD3z08cd46NChvqtDqQaMSPoC5AX1vReLReab7+l3z4BP7uUkkuTb6SrQfHvqT8/KfGH76UPvJyTnYjsOPMdBuVzGsZMnc2272zDKC9oBeJ6HVCjE/sBSCUarhWazGTcGIJZ7q9WCYRhQg4B1pZFlGYZpwvU8zM7M4O/+83/uqCL42KOP4nvf+17PsTB9GYA9KOVyGa0+iJ2eU0HXYZgmLNOEqWkDZxq0Pa59PMC6rsPzPFiWFfuNt+24c4B2GA6ZYaY6rm9sYHl5GV/72tf62s4j3ZsEUUSxWBwoG0gWRYjkHjAMo2PDikxEEcIg2Fb81KuNo2VZcFwXIok5bTM4SKZYhC0xrzyWOtVoB+Km35Ki4OSpU5ByNGvZjRhZ7DuEpKqQNA0SCQxxSSudLIsVRYkLXkyTLT0VWWaWPL35aQbNoOTEIf5C6cNXKBRYp/o8iMIw9slzHB46eBC6rmNzcxMrKysDpfclrfZ+thcEAZqqwnUcpneztdMuxS/DstjDsGOxUz9XwQ8CXHjnHTzx+OPd9fDTxycBeJ7jBlotUdCVXLFcZvdlXss9IG5CIVG81O07pH1WHSL0tk3mIKHpgiiK71PE17NXDr7n+2i2Wizg6och9u7diz379+c6l92IEbEPAXKxCFFRIIgiyqUSREGAYRhxxgzHMQErx3FYoFWWZURR1JaOyPLfh0DwtB9nqVSKl8U9QEk9DMN4+SxJmJ6aQrVSgWGamF9YgJtzgug0pn6gahoEkv6YfPC7pVQCw0l7zJJ8aDt+Tly6dAmFYhF7STvCXMcmjSYAoFQsDqyFnly98ByHcqKQrpsQHRsHzYhJyCl386c3m02WNaXr+lYuOiHykNzXHF2ZplaXneC4bjzJEWE4mrN+qoPGzggxRsQ+JEhUn51Y6TKx0mlmgqpp0AsFVoZPO/Ck09JYsIoSfIbmTB7QR7BULqPZK4AaRezBTLeBq5TLmJqcZPEAs0f6ZKexZHW86boNuY5hGMJMBVK77mWHxB4mLNWdoFar4ebNmzh9+nTuyYblqkfR4MJeieKeJGjzCZ7j2qqkO4HGN3oVUjFjBfFERN12UeK+pUFWpoKaQKcWkDTzxTTNOHhPGt0IgoAnnn565/o4n3OMiH1I4HkeSqXCLJKCrkPTNLhEm9xzXchkiRoQchdJW7heS9FBCZ4DUM1B7FQitlgsZvpgNU3D9MwMBJ7H0vIyNmu1PkdCxpOz6ISCBg1dx2Erm7ud1BZ2IbS8Yw/CEO+88w4ee/TR3EHPiOSf+ySLZOCy+G4VvoTcOcTa5d0+Swu0Oq0YaLKAaVlxHKBUgiiKzEJvG0unmosOqY2e76PZaMBxHKiqimKhAJP47o8/8siOe8PuBoyIfYjgRRFqQipUVVWWHWMYBoxWC4IgMH1013URBMF2PzIBtdyTy1rq+8xLj6VyOfZPIpsUPdeFQwW4upCJLEmYJRK0m7UalgbxuxOrrZ/tNNKQw+iV2952mMHpv2MOe4+agSSuXrkCWVFyF81QS93zPBQ0rWuueifkHZsgCNB1HWEUsXqFLFAp5KyxWraNBnHp6JqGUqHQ7otPfJaResb40tWqIambaLVaiBAH/wtkrJu1Gmb27MGBAwdynedux4jYhwxBUSAXCm2KjqVSCaqqwvN9NEhub4nIwbqui0a93nmHqZu/zQ8fRT198eVyGY1Go630nyIKQximCY7noebIfOE5DlOTk6hWKrB24Hfvx2/McRyKuh67ZEjMoifB74TYSe52VjZHHjQaDVy9dg1PPvlkLrINwxCNZpMpHSqK0vf4+10JybIMSRTjwHraJUOs6CAjzkA1aWyiE1Qul+PGIMhezXSrjqZGCoXreWg2m3HwVVVRIYVWALC5sQG9XMbJU6d2vWpjXoyu0l2AVChAShSTcBwXa8yUSnFAkCjyabqOUrEI23GwsbGxrRo1jbYc4kSlXjdXTaFQiHPCSQofl1heG6aJiGiP9GPlMr87UYc0cqgytu2fa2+c0AtUL92xbeYD7wpiKQ6CToHTPCMNowjvXLiAUzl1S2igNAwCFAsFJuPb70pokIylQqEAjqwko+T14rZa1wmJbC3DNOMivCiKC44SAdI2YyGxwux1T3EguuzkeeB4HiVipdN7tGUYCHgex44f35W9SwfFiNjvEuRSCXxiSU2DR8VSCTrxszebzdiHqOuxznar1VXbpRMZtrlqiBoe/ZRAMmPS+ey+78c9SFV1ICtI0zTMzsxA5Hksr6wM5HfvR7ed9ki1yGTUfcf55Y3T8IMgM3CaZ3/Xrl0Dz/M4fORIz8+GYYhmo4EwCKAnNcmR0822wyAxT+JAYRjG4m+J+yogLfkEQYhXlI0GXBIjoo1HshBha6XTi9SjKIJj2/G+PQ8aFTMj4mZAHDxtGAb27d+PmZmZHZ3vbsOI2O8SOI6Lg6kJvzVdmiqkeIkuhyOOgyiKkEjrPNoursOOux8XW7nBIUkzK5fL2ypQHdsGn9MF0wmiKLLWb5u1GhaXl3Ol0rWNt1teevJzPI9ioYAoijrKDewUVCJ2EEndVquFy5cu4amnnupJakEQoNloIIgiFAqF7ZWZPSzwflY73aDIMkRJgpu6nkEYwidNsmlRULFYzJQFSI4pL5kEQYBaowHDNCEIAsqlUtwjNxHHsG0b9UYDe/bvx5GjR0cumD4xulp3ETzPQ61WwaUb9BLrvUCkb0VRhEU6ytCWb61WK7ZOuzzA3R7t5ANYLpextrbG9hUGATwizMRU9nh+oLRK6ncfq1ZhWRbmFxczVx3dqI7PSVSSJMVppK7b021FEaX+jlJ/J99ngdOM7lZdjxFFuPDuuzh+4kTPjkZ0pRZGUbZ8bQ9wGMz1kokogkp85KyeIopb1tF8d01VUS6XO3enSgaVe0xoYRjCIoQdkpz3UrEYN5FJfM5xHKzX65jdtw/Hjh0bNc4YACNiv8vgeR7q2Ng2twNtnSdJEsbHxqAqCprEihFFEaIowiHL4E4klreqc3Z2FkvLy7ElH0UwbRshOTbdkosiZjENQhvlUinWuYkiLC0vY2Vtrc167zXGvG4ZXdPAI/a9tu2TuqCiCBFZrQTEJRWSH0rkyb+ThOL7fmyxJ8aS/gx9LYkbN28i8H0cPXq069hpimAEdEwt7YoBvxsgIdhFVo10ZSfJMniOg2Xb8H0f9UYDrWYTKmkGrapqVys9z4QchiEsy0Kj0YBtmrF7kCiFcqT2g8LzPKzXapiZncXRY8c6dlgaoTtGxH4PwPM8tGoVUdoqJjc0z/OYnJpCoVBAGIZwiUUqCALLbza7WO9tkqcZqFQqCIMArWYzbtJs28xKSgZeKTFSAugXqqJgbm4OpWIRrVYL8/PzbCmfKzib4zM8kRsIggCWZcUkHoYIEq4nStz9pj0GYQiO49pcMb32YJgmPv74Yzz51FNd3QWB76NB0vhKPUi9U9HOTtwvPNk+2Yc3Iv9LoshaHVKJ3Wql0jGXP5nt0u0a00ymeqMBm+ixF0uluAiONH5Pbu15HlbX1zE5O4sTp07lUrMcIRsjYr9H4EURerW6LT2RPhg0v1ggTbIVWWYWb9Li6do6LlnGnTrGzOwslpeXmVUqJdvtESuXtvPLo4nd8Ty5uPH33MwMeJ7H6uoqllZW4OVwnXTKtU9DEEUIogjTtuF4Xnw9OxBMP26LIBU47bQlPVIQBPjF+fM4cfw4qpVKx7HTNEEgJvVeLfeGWoSVWIVFiVUNXeGYth2rJbouOJ6HpqqQRJGlGraNi+O2VlZdCD0IQ5imiXqjwYyIEiF0JI2GxD78IMDa+jomZmZw4sSJEanvECNiv4fgRRGF8fHM1ESe41gzaMeyoOl63NhClpklSLMIehXrZFlRc7OzWFpagk80QDpK0qKdAJg1T97PS5SyLGNmdhaVRM57T2mDePDbdbvpWEhLwSiKUFBVCBwXN3LuErDtx2oPUjK1vbb84OJFaLqO48ePt22T9IMnBazKPUh9GGDfDs1tD8M4iyiZ9RJFsSVdr8da77KMQrEIVZbjlSLpcITEviihd7smlNAbpGqUEjp1O4VhGFvpUXt/VD8IsLq2hurkJI6fODFKaxwCRsR+jyGIIvSxsTbSBGICEgUhbq9HqlF5nmcEr2saZEVh1t/m5macUdODaOm709PTWN/YgOe6sbBTzvEy0S3q5kjmzadIPw2e41AplzE7OwtRELC2sYGFxUW4ORpnUx8wdbXQ/PUkIVBJ336qUjuBNnrIS7yf3LqFlZUVPP3005nv8xwHz/PQajbBI9bG79aJiKGPiShZuUnjJ2xSyWgtF0QRDMtCo16H7TiQJQmVUgnFQgGKJMEl8hbpgG6vlVQbobsuJJL1xeII9LtJWep0FbG6toZStYpjOYLPI+TDKNx8HyDKMrSxMZgbG7GCXkIcSVYUiETiV5Iklv+u6ToUohBpmiYc246XubKMQqHQMcjF9kuCtGtra5iYnBxo3OnS8AhgD22Uep9LFL3IkoS52VnUajXU6nXMz89jvFpFqVzu3KUIcfZO+oySHeyp5neLaMfrO2hmTN1eAlnJsAk347P1eh0ffvghzp09u81lQbe1LAuO48Rj7KcArMMEFRFLl17zCNj6H9jKbspw5QRhCNtxmOCcLMtQVbXN7SSIIgzLgigIEInFHqUs6zR834fjOGyilkkhGZ0ck9sHZNWQDEZHUYTV1VUUKxUcP3kSlVEnpKFhROz3CaIsQ69WYdZqsZwprQoFoBcKsfVj26w5B0CCsJoGVVVjfXdCHmvr65AlCYVCAXpWcwMA4DjMzsxgeWUF0zso9mAPZcZ7aaJHGG4RPcfFWRaaho2NDazXamgaBqYnJ1nFJd0uIu4DFqBDnMmSnDiohS7LMlTfh+26EB2nbV/9gBF7D5eD53l48/x5PPH445liVLSS0vd9yIqCgqbFYyZB3TRxp8kzSpAfC3CS7dpiM6nfWRNCEIawbZtpEcmKAlVRMguwREGA53kQBIGlNmaRehCGTF8oJN9vmtDZGBOTMHmBjTMIQ6ytr0MtFnH0+PHcvWBHyIcRsd9HiKoKfWwMVr3OfMc8KVZSFSVeLsvytiU8x3HQNC1WPnRd2LYd94Hc3ESj0YBOpAqElDU5MzuLy1eusGDaToJ0bWXkyE4LRIqwgDhIPDk5CcM0UavVcGd+HpVqFWOVCjiOY1otWcdLW3sUmqbBDwIYlgVBELadN/18N+uTil7RSbFTmuPb77yD6elp7M9o8uCTrkdRFEGnui+Ja0EzUkK6mkn+T8bHApuJ8952Luie+x8EAWwSWObQndAB4tLheQRhGJNzRozDdV24nsd6+AqiyJpr9yoeohNARAwYx3Wxsb6O4tgYDh89iskBV5AjdMaI2O8zREVBYXwcdr0O3/NYqptKSNs0TaYGmQVZlmM54GIRjm2jSdrzNZtNaCQXmRJMpVIBOC7OU6ZZB6nl8SBIk3yvfXFc3BlIV1Wsb25is1ZDo9FApVpFiQioMUs1mRKXCKyy1Eyyv4Kuo9FsomUYKJNOVuljdoMfBG1FOFmfvnz5Mmzbxhe/+MVtKxaHfFccwCbVKIugyfls6x3aIaMpjW6prUEQwLJtuITQVUWBQoLMaSTjFRwA33URhWGbsiR1tXieF19rnoeqqpAkaVvwvdPEySYxcrxGswnDNDG5Zw8OHzkykuC9SxgR+wMAXhShT0zAbjbhkrxvIG56bZkmPM/rWaFI/fAa0Z1pNpswTROmaTLi1zQNU5OTWFlbw+TUVLxhkjh3EIBse6Q7WZOp13lBwNTkJAzDwMb6OtZWV1Gv1TBWrbaJaLEtEm4JGuyk7h9K7vVGg3XZYdZ9wlpmY6DuERIMDoIAkiSxAGTbcQGsrqzg6rVr+PLLL29Z1ogJjfX5FAQUi8U2C7Zt0iPj5DmuoyJit1oFas2nJ1LXdeG6LjzfjwldVaEqSqaKZpQoUErCcV0WPLZsG47jxNk0HAdJkqDIctd7sOPESVclQYD1jQ1wooiDR4/i4MGDo+Kju4gRsT9AUEsliLIMq14HF0WQJQk2z8NotVCuVHLrZciyjImJCVSrVaYDv7m5iWajgUKxiIXFRZw8cSJTc5xi0HxqlkWD7X74rIc/iiIoqorZuTkYJLNiZW0Ncq2Gaorgk2PMoj8aTDUtK45PkFUJI/UkaZK/OYBV9oqkICydfWNZFt56+2188cyZtsYZYRjCaLXghyFURYHWQUuF5YAnJtEsck/615PXLE3oERmzSwKXEeLYgKaqUDoQOt1XFsIogmkYsUFAtPtFUYRMrPNBdVpo1pfjOMz1cvDQIcyQGocR7h5GxP6AIema8Vw3djHU62g0m6iUy33lZQuCgHK5jFKpBMuy0Gq1IEsSGvU6FhYWYiEyos0tiWIbsVP3wE4KZpJExAKgKWvXJz51judRLBZR0HUYpol6vY6V1VXIjQbGKxVoJLeZVcXSwGzKwlVVFT5xSQiC0G5ldrh2LHCa6O9JEYUhzp8/jyNHjmCKrnIQ56cbpAtRMUvIi5wfx/Nx3nbGcXmOQ5Aaf5v7KUXofhDAcV14rstWFtQVl5Wdkz7nZC2C7/vwyI/rOEyQSyONPjqlffaKVSQ/F4Uh6mTlOLVnDw6NXC/3DCNifwDBXDOtFtBsolAqwWi1UK/XUS6XY4usD4LnOA46adUnSRKml5dxZ34+7kZDtGkkoi4piSLExIPN/L9DcNPQfdFgYZgRKE0SfIvEC5ZWVqAoCsbGxqCpKrN2OSRyuRPjK2ga6kEAwzBQKpd79i/1iVY9TTtNEuB7778PWVFwIlGEZDsOLEKERaKxn0TS5cLcPh3A8/xWa8QkoRMERGLCdV0WWJYkKSZzSeoYXE2TbxAEMZF7Hqs+ppY5z3GQiCSv1qPisxup00mbThzr6+vgJGnkerkPGBH7Awy1WIQoSeBqNdbtyDBNJp+ai+BTwatisYhjR4/izfPn8cjDDyMixOGRH47n44ed5xnJ0/+TvulBwDJbuN4df2jThWKxyILBS0tLUFU1zhpKpyUm9snxPEqFQrxdqxUHM7vpuJCKUxa0Jdfr0qVL2NzYwNlz59j+TdOES2IehYyG09sCvl1ArwXH87E/mxB8GEVxSiEhYYC4mahrJEcwNIwieL4Pn2SyJJtTy4oSf7eiiCgMYZOiImXAVNEkoUeIJXfXNzZQrFZHrpf7hBGxP+AQFQXFiQnwooiQBOp4jouFsMhSnwc6E3zSoiWBMF3XMTU9jeWlJRw9dgyB78P1PHiuCz8I4JMgnO954F0XHOL0NmrZp0vO+3XXcABzQSQt5CzrluN5lCsVlEolNAjBb9brkCUJkiy368knJh2BBDKp1V8mvWfTiEggNl3gdfXqVdy+fRsvnjsHSZLgeV7ccSqKoKlqdpPqDgVCbcfDFgHT0fAcBz+KYLsua9yd9JvLsrxtYkoXhCGK4Hkec68EZELgyHeu0pVYaj+G48AlxE7dVrmzpMj5MjnoMEStXodp25iamxu5Xu4jRsT+GQAviihOTACCgGhlBTZpkqHIMhCGCID8BI94KX9g3z588MEHOHzkSJyTLIrQNA2B78eWousy6QBwHAJCFrT9MU8KWXieBy+K7O9e1jzPcfBT2iXJ7BWKbUFEnkelUkG5VMLKygrqjQYWl5agqSqqlUpMzGh3zYiiiGKhgEarxSz3pHRtEiJJT+Q4Dp/cvInr16/jxRdfhCTLaBlGXLzD89CJfnjbpWWD7nzu1Kql1nYURfCJe8T3fTiuC9/zwHEcFEWBLMuZGugc8cv7vo8wCBAEAXzym46F5phLxKXWLWjqOA7bps391g10Ak3k4RutFjZqNSiqioNHjoxcL/cZI2L/DKFYrUIQBKzOz8M0TeYu4YAtgqfZF11cNFTLQy8UMD8/31ZsI4gidFEEVDXOvPB9eCTHGcT9Q3PE/SBASKoagZh8BUFgRUICx2Xq0nRM6evwf1vFJbHgJUkCLwhotVpYtCxIkoRiscjUEynBi5IUu2UMA61WK06DzHAniYQA5+fn8fEvf4mzZ8+C53nUSaNxTdehksYkySyXrhMZzVlHe8DSJz/Joi1VUQBFicv5E+cdkgkg9H1G4Mwnj9iq5wUhDniSVVXeZuEO0WDnBQFqLxJOrvwShG4aBjbrdbiOg6mZGZx45JGRNMADgBGxf8aglUqY2b8fi7dvo2kYKBeLWyXgAFsaR4hJsG25TqAoCizbxsEDB3DlyhXs37dv6036WY6L/euStEXyngfP8xDSZT7PM7cMPQK1ApFot0atQUEQIOTs1MR1+DspH1spl1EuleLYg2Fgs1ZDrVaDpqqslRt4HpIso4i4OUez1UKxUGiLT1CSXl5exnvvvYfnnn8eIP50URTbctO3Za20DXqLyKk1TYmc5t0D8SRC88Jp/MInOvmO68bkTSxxFjdAvHKTiDuFTp55STx9/YA4DTEIgji1sROxp6xzipZhoF6vw/U88ByHR0+fxsFDh/oaywh3DyNi/wxCKRQw99BDWLx5E81WC+VSKTM4GIUhSzFk5Eseal1VMT4+jujqVaysrmJmerrNV57uXM9IPooQhCGChAXpJ9QaeUGIVxGJzji0FZ/rOIgAps3OcVxcFUkse4Hn48mCbJtFWsmgcUSOVyqVUCqVmJqiYZowLQuCKKKo63E6oqKgEMVytaZloaDrjIQlScL6xgbeeuutuGcp4myUQrEYl8xzXFuRUzqNk+O4+FokLHLmGuE4CDzPgp5UHiIgqYsWUeik27FtSJBTTKyC+m0csnUjRACZ5FlPUceB4/sAx0FNNzTPsM4paCoqVR+dHB/HqccfR3HkS3+gMCL2zygUVcXcoUNYIORe0PW2ZTxF0ooPAUaKsqJAchwcPHgQV65cwcz0dBtxpPVkGNET0hEEAXLivYCQGSW1kJI9+bwky+CxRYIe8RGHUYQoCFgZfFroiuq38AnSD8IQESFSjuTfc1wsRjU2Po4q6b9qGAbqjQbqzSZkWUapUNgKhFoWC7wapom3fvELPPLII3EetyzHTU9IwRI5yS3JYmJN04rVpEVOc9cFnmcTqh8ETEY36cbh6ed4HqIkscrPXumZvdDmKiLfQfp927bhOk5cpaqqW6uNDDIHANOy4g5LhNDHqlWUq1UcOnoU6kg//YHDiNg/w1BUFXsOH8bSrVtotVrQNC1OWeuQnZF8cCMubuwxPTODa9euoV6vb/ONZm5P/k4u6bmERU9zVNKk5zpOm282CMPYpUCCr1mgLg0aaAxdl1VdWqaJMNreMITlzJPzE2UZtmWh1Wig0Wgwq1kQRWiKggjAm2+8gUOHDkHVtNh6dl2s2zYi0nIv+Ts98VASZ64mal1jSwKYBZlTK5Ik6LXaCZLfRze4ngebCKaxphbR9uYvIZkAaMs8geMwVq1CLxSgahoOHT0KcRQgfSDB9cgnHrwqZYR7hiAIsLqwAKNehySK0AuFLV9wjyyVZquFq1evotFo4IUXXsi93E/mjKclBDKrE6kLhxCYZdvMCqbKlmkkLVtmgXIcgiBAq9WKBakS+uks7Y62FKSTGPlxHAemZcF1HFiOg6ZhYGl5GXOzs9g7NwdZlttcVmwSIAFKamGLosgsbWrpUuLOIu0cFxOu78cB6h6fo4Frdo17FEBt30WEzc1N1JpNlIpFVFIuFJpSa5omLMuKux7xPMqlEgrFIniOQ3ViAnN793ackEe4Z+j4xY+I/XOERq2GjaUlhEGAoq63ydcmre3k3RACaNTreP3nP8eueA0CAAAQvklEQVThQ4dw9Nix+DPU+htgHG3EzmUUIxGfcvJ12pEpDIL2zkmE+NlvQn7NVguSKObujUlTIaMogmvbWF5dxdWrVxGEIY4fPx5nvcgyNF1HQddZIVS/xDkIojBs6ypFxzqso1KXWgSg2WxifWMDiqJgfGwMPM+zxuCmZcG2bSZhrCgKq1jmiPtuz4EDXdVGR7inGBH7boHruliZn4djGEwUKgv0QaeBwsWlJZz/xS/w4rlzbUUlSQt2GERDj+kRP3n7m+0kGgFxl6BEtglIQLher4MXBNYejwYGaSwg6ZKhKwqHaNcvr6zgypUrcRPqsTFWmMVzXKyQSMZA/c+qqrLes21xh8TQ0xNn+u/0Nunrz8r8hzCJtD20iefbcV0sr6wAAMbGxuC6LgzTjIPaUdzJS1VV6JoGhUg3xIPlMD41hZk9e0YVpA8WRsS+mxCGIdbX1tBcX4cAoFAsdrwDKMH4vo9Lv/wlbs/P48tf/nLHB7gtTXAnYyR53YOi1WohDMPMysYkkYaJNMIoinD79m3MLyzgi2fOMB9zEIYwDSMmNk2D53lwbBu2bceBT8QuJ6pvrilK7pVCL0RAmw7/oPsAwKQEsr6XMIpwe34ezUYDmqbFKx8SrFU1DTrJ009DUVXsOXAA+qgX6YOIEbHvRhiGgfWlJfi2vc01kwXHcfD6G2+gWCjg9OnTXa1HplyIhFXfJ2hmySAwTROu66JarWa6SwJC6NTFIQoCfvnLX6JlGHjuuecQhSE8z2P9SD3Pi9UaEbcmpH0/Pc+D4zhxRyKS9w0AHCnqScosUFXEvA2xgXjicYmEQ16kH8pkmmpIpQWIvIDveXBcF+vr67AsC4VCAcVCIe7Apetx9XIWOA6TMzOYmp0dWekPLkbEvlvheR7WVldhNxrgiM5JOpMkiUaziX//93/HI48+igP79/ftGmjzzfew7EOabdLDWk27V8BxsIk/uFIut3VLCoIAtuPAc12A46CQgOj58+ehaRq+8IUvgBcENBsN8ILA1AwjjkNIgrJhGEInaY/U+g+Jm8T3fdiksYbrupmrDlqBK5MCJPpDFTSTvUB93+86uaV1dCiJU00YSuK+78N3XSbXQIvUeHqtHAelchkzMzOZUgVJ6KUS5vbuHaUxPvgYEftuRhiGME0TjVoNTqsFhCFU0q/y/2/v7n6jKPc4gH9ndmb2bWZ3+4IWD9iKlJe2YI9YG++MkcQLE2+P3siFFyd67b2J8c7Ev8F/ACGHyDHRmAgc9HCAUkBQSSlgELD2dd/mZWfOxTzPdLa72xaoSIfvJ2kChe5OC/129nl+z+/Xzq+//orzExMYe/lldJVKq9+xrTxW326dHMsNr2QtvIKwEZgfKyNU2j1eB47joCra8qqqGh2A8jwPkMsmos/L6dOn8bdt2zA8NBRek+9jQcyGlT/k5A+PwPdRqVTgel40PCP+efht1sF9UYffELX1nji8FT+oFP96yPYFAcJ/G1/8cJOfv1yWCQAocl6o/NqKa/BFq2F5XSlxMEyWncqDVWVxoCiTyaCnu7vj1zMAYFkWevv6kOfm6GbBYKcwvGq1Ghbm5lBfWkLgeWHAp9Mt/0POnTuHSqWCvUND4eGnNUbz3S9ZUx8AURWMuMh1VaG4rou5ubnwDliUXCqxQIeq4t7duzhz5gz27duH/v5+8cQKnHodlWoVxUKhdVlDXIMsi0yJlgJNp02V5Ta163lFI3vDyJOpjuehITo4NkQVkPyadNwLiY/bU1Vo8hVBm/mjEI+7VC6jvLSElK6jR1TArBQAMAsFbHn6aQb65sNgp2b1eh0L8/Oozs8j8DwY6XTTWLVGo4Gvv/kGW3p7sf3ZZ6M5mhtd+hdfhghEXbu8M20KTUWB7/twHQeO6DFeLpeRy2ZhiklQcm3bbzRw9epVTE9PY3x8HL29veHjI/xOqFQq8DwPxWKx6Y46+l4Qz+vYdtRsLZvLtZ1SFMi/Lyc6xZ4n/njyjjwQ9fzxX280OQS9WqmETdAsq3VeqaIgb1kM9M2NwU7tOY6Dxfl5LM3Owndd6GJDUNM0eK6Lk6dOIZvJYHBwEKqYKXo/m4NrkXe+8d/HK0Siu1zHCQ8eKUp0fbVaDel0umku6r179zAxMYFioYD9L7wQDiVBLICDAAsLC9GgDNfzwl4wWK4fl6cwFYSvDKrVKnzfh2EYyK7o295Spy+Wc1pG7MUOSkmyRcFG8UV1j+N5qNVq0DUNedNs2SA1i0X0PvUUA33zY7DT6jzPCwN+fh5uvQ6IE4cAMHnxIhqeh73Dw2FJYDq9YXfv8cCTbQhkj3En1hJYExuPhlx6QVjyGAQBLMuCbduYvHgRf8zMYHR0FFv7+lqfS3yeZdHhUdf19nfMbfYN6vU66qItwqrVJEDrD4k2AS7ftyHfYEEQNhSr1aKvXUpVkc/noYvNY1VVUSiVUOrpQW7lgHDarBjstH6O46C2tITy4iLsahUNz8NPP/+M+fl57B0agq5pYVdF0wxf4scPBMkH6RD6fhDA9zw0xKZhY+Umo+xzE6ssSaVSTWvMUl3Ums/Pz+PHy5exvb8fQ3v2tKw5y3Vx2YrXcRwUS6XocFA77dbPvUYDtUolDM5UCvl8ftWGXXJztN3BJdlM7GF/OPpis1dW5/hiScgyzbC3vmmi1NWFQqkUdZakxGCw04PxPQ/VchnVxUVcuXwZU9evY9/ISFiJ0miEszJXjG5rqnCJBXUQq/6QYaumUuHwDtmXRXY3jAderBokbm52FucnJgAABw4cQKnTgIfY8sriwgI0XUdelPI9yBq3bdthrxvfR1qcTI1vrsbnf3YiK2Hih6mkeAVMS5fN2MfborZetvmV4V7q6kJ3by+KXV0wNuggFT2WGOz08Fzbxo+Tk/jfDz/gwIsvwrQs1EU/8VQqhXQ6Ha6/x8r1VtZhRx0d5Sg9YV0BK1sD2DZ+/uUXXL9+HQMDA9i5c2dUj94itqziymWY2Hi7VZ93ldLLwPdRrdWiAeBp0ZBsPd8w7ZZm1sv3/bDlrusiCIJoQIbjODALBTw7MACLE4yeFAx22jhTU1M4fuwYeksl7Nm1C6VSCY5to+H70FIpZHK5NQ/BrCSbgHUUBLj3+++Ynp7Gnd9+wzPPPIOh4WE4jgNNbOpKh7/4AocPH8Znn32GLaIiBghPq7qui0KxGH1HrBbsV3/6CR9//DEOvfsuDh482PbvyAoUr9GAAsAwjHD49CqHwB4k2FsCXSyBBUGAnGVhS18furu7N6TXDG0aHf+x2XeT7tuOHTvwzw8+wOXLl/H9qVPIaBr27t6NLVu2wLHtsHZa3MHLAFqLqoRDmleq12q4ceMGpm/cgKZpGOjvx+joaHS4So6gk0sWANBu8k8A4Nz587g+NYXp6WncvHkT9XodL4+P4/333297Tbt37ULBsnD27FkcfP315bbEQFT5omkaCoVCeEBKnEa1HQcpVYVhGMv98WPWG+rRnFTx2AHQVHJplkro7u2FZVkcHE1NGOz0QFKpFPbv3499+/bh2rVr+M/Jk3AuXsTQrl3o27oVnuehUq2ipijQxV3sWnfx0Tq87+Pu3buYvn4d92ZmsG3bNoyNjaGrVGq5I9U0DW6sb3j4QCtObyoKXMfBt99+i2vXrkFLpdDd04Pbt293br4lNk9HR0fx3YkTKFcqy0MpgJbr0HUduq4jm8vBdZyov0ytXoeh6zDSaaRUFeuJdN/3Ydt2WOLp+9FGchAEUDUNBbGGbprmqu0h6MnF/xX0UBRFweDgIAYHB3Hr1i2cOnkSE5cuoae7G/lcDtl0Gobohpg3TeRzOaTFSVfbcVAul6O3SqWCxcVFLC0twSoU8NzAAF4aG1s1vHTDQK1Wg+M4yx0XRQtaKQgC2PU63nzzTWzt68PTfX24evUqPvnkk+jP2woCHHjpJXx34gQmJycxPj6+5lKHqihIi8Nenqi/t8WhKtk6QRVBHR+Np6pqtCnruW4Y6AD0dDrsMWMYsEoldPX0wDTNDT1LQMnDYKcNs337dvzj7bexsLCAmZkZzM7OYu6PP3B7dhYLc3OoLC2FwzHSaTiOg5SiwDTNaBh1X19fuBGay3XsY7OSnGjkuC4ymUzbTSHZu2V4eLj1BOYaRkZGYOg6zp47h1deeSUM3HWuY8uDVJlsFp7rRuvjssQz3lMmQPgqKJ3JoGBZMC0LOTGEO3qclUOniTpgsNOGKxaLKBaLeP7555veH4hTnzMzM9B1Hb7nwbNtNBwHqqJEyxmqGFitrjNADcOINjDbBV+9VkNKVe871AEgbRgYGRnB5IULaIj69fsJdwDRWrwimpXJVwiZXA6amFKki4Zjcog278jpYTDY6ZFRFAWlUinsoY7ltWTbtlGpVGBXKqjU6wjENCM5bzQVL42MzfmU0arrOgJFaV6OEeRdce4hWtAeOHAA586fx5UrVzAiavjl2nzbGnQAEBufXuzuPKXryGSzsHp6YBUK0ZINQ5w2GoOd/jKqqoYDH7JZlEqlaKiFbduoVatw63V4joPK4mLYmlbTwrtZOUxaHICSrXBrtRo0TYtOdcqh16qitCztREf645usaF/f+/fRUcD3cebMGQwPD0cj+hRVjRp5yedrNBrR0O6saUJLp2F2dSGbz4cj9tLppp7sRH8GBjs9NuRSjGmaQE8PGo0GXNdFrVJBZWkJjuOETcGCIGoKFgQBFHEHb9s2XDExKZ3JoFwuw9B1ZC2rZYN0ZeMxYDnUA1EuKQ9YZfN57N6zB5cuXUJNVODIo/uK2PxUVBWqYSCdSsEwDJiFAkzLitbHiR4l/o+jx5Zca85kMujq6QEQLt/IiUHxpmG2bSNTrWJudhY1z0PKMGB7HlTDgO26qIuZp4oIbNu2kcvloKoqlsrl5Tto0d4AihKt8Suqit/n5uB4HvJdXdANI+qCKa9RNinj5iY9DhjstKmoqhqtTbdj2zb+9eWX+P7sWWzfsQP9/f3Ld+SxTpK37t3Dfycn0TcwgGcHB8O5rTLIxa/l282bN/Hvr7/Ghx9+iP7nnntknyvRg2KwU6LIwF9YWEAul2vq1R6XyWQwNzcHz/OizdxOjh8/Dtd18dZbb2349RL9Gfi6kWgNR48exdatWzE2NvZXXwrRuvCOnZ4YR44cwZEjRwAAd+7cAQCcPn0ahw4dAgD09vbi008/bfqY2dlZnDx5Eu+99x4rWWjTYLDTE2NiYgKff/550/umpqYwNTUFAOjv728J9mPHjqHRaHAZhjYVLsXQE+Ojjz5q2kBd+TY9Pd3yMUePHoVpmnjttdce/QUTPSAGO1EH9XodX331Fd54442OVThEjyMGO1EHFy5cwM6dO/HOO+/81ZdCdF+4xk7Uwfj4OCbETFWizYTBTonz6quvAsCa9elEScWZp0REm1PH+luusRMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECcNgJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElDIOdiChhGOxERAnDYCciShgGOxFRwjDYiYgShsFORJQwDHYiooRhsBMRJQyDnYgoYRjsREQJw2AnIkoYBjsRUcIw2ImIEobBTkSUMAx2IqKEYbATESUMg52IKGEY7ERECaOt8efKI7kKIiLaMLxjJyJKGAY7EVHCMNiJiBKGwU5ElDAMdiKihGGwExElzP8BYPzNIr3eBZ4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAF2CAYAAAB6XrNlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9SYxkx3ktfOLO9+ZYQ1dVV7ObPZDN6VGcREkULUPyg/S80A/tvTAMwysbEKy1F7YXBrzxwgbsrRZevbd5kmFAsP5nmf+jTJkUJVIUp5672UNVdw053XmKfxERN29m5VhVzWZXxwEK1V2ZeW/czLwnvvjifOcjlFJISEhISBwdKA96ABISEhIShwtJ7BISEhJHDJLYJSQkJI4YJLFLSEhIHDFIYpeQkJA4YpDELiEhIXHEoE15XGohJSQkJL6YIOMekBG7hISExBGDJHYJCQmJIwZJ7BISEhJHDJLYJSQkJI4YJLFLSEhIHDFIYpeQkJA4YpDELiEhIXHEIIldQkJC4ohBEruEhITEEYMkdgkJCYkjBknsEhISEkcMktglJCQkjhgksUtISEgcMUhil5CQkDhikMQuceTwV3/1VyCE4Pr16wc6zptvvglCCP7xH//xcAYmIfE5QRK7xCOFW7du4Y//+I+xvr4O0zRx+vRp/Pmf/zlardae577++us4duwYfvzjHz+AkUpI7B+S2CUeGVy5cgWvvPIKfvjDH+IrX/kKfvCDH+Ds2bP4+7//e7z22mvY2dkZeL6iKPjud7+LN954A51O5wGNWkJifkhil3hk8Kd/+qe4d+8e/uEf/gE/+tGP8Ld/+7f42c9+hh/84Ae4cOEC/uIv/mLPa773ve8hSRL85Cc/eQAjlpDYHySxSzwSuHr1Kn7605/i9OnT+LM/+7OBx/76r/8alUoF//zP/wzP8wYe+/a3vw3btmU6RuKhgiR2iUcCP/vZzwAA3/nOd6Aog1/7Wq2G119/Hb7v47/+678GHnMcB9/+9rfxk5/8BEmSfG7jlZA4CCSxSzwSuHDhAgDg/PnzIx9/8sknAQAXL17c89j3vvc9dDodvPHGG/dtfBIShwlJ7BKPBMTmZ6PRGPm4+Hu73d7z2He/+10oiiLTMRIPDSSxS0gAoJQCAAghex5bWVnB1772NfzLv/zL5z0sCYl9QRK7xCMBEZGPky12u92B5416vF6v35/BSUgcMiSxSzwSeOqppwCMzqEDwKVLlwCMzsFfvXoVH374Ib73ve/dvwFKSBwiJLFLPBL41re+BQD46U9/ijzPBx7r9Xr4z//8T9i2ja997Wt7Xity65LYJR4WSGKXeCRw7tw5fOc738H169f3eL/85V/+JTzPwx/+4R+iUqnsee2Pf/xjHD9+HK+++urnNVwJiQNBe9ADkJD4vPBP//RP+PrXv47vf//7+Pd//3c888wzePvtt/Ef//EfOH/+PP7mb/5mz2t2d3fx85//HH/yJ38ycmNVQuKLCBmxSzwyOHfuHN5991380R/9Ed5++2383d/9Ha5cuYLvf//7+MUvfoGlpaU9r/nXf/1XZFkm0zASDxVkxC7xSOHkyZP44Q9/OPPzf/zjH6NareL3fu/37uOoJCQOFzJil5AYgzAM8W//9m/4/d//fZim+aCHIyExMySxS0iMwW9+8xs88cQT+IM/+IMHPRQJibkgUzESEmPw1a9+Fe+///6DHoaExNyQxC5x5PDNb34TANBsNh/sQCQkHhCI8MgYg4kPSkg8rMjzHKAUFMwfZtjK1/d9hGEIRVFgmiZs234wA5WQGI+x+lsZsUs8lMjTFFmWIc9zZGmKLE2RZxmyPEfO/03zHJSTN/IcFMzsi5YqTzNO8ABAFAWEEARhCD8IoCoKQAgogGajAadSgaKqUFUViqpC03X2b02DpslbSeKLAxmxS3xhkacp0jRFmiTI0hRpHCNLEqScuEe+RpA5/14XxM5/l/8O9ImdEAICIIwi+EEA0zBQ5VWoXddFnudYaDSgqipG3jOKAlVVoRsGdNOEruvQTROGaUKVpC9xfzA2YpfELvHAQClFlmVI0xRRECAKQ4RBgCSKQDjZqqoKRVFAwEg7yzLklCLP84LE8zwf+BsoRc5fT0u/AQCE9FMwAHJKi4g9z3P0XBearqMiUi+EIM8y9FwXqqqiVq1CIQREUaDwFI74Pyn9VniVqu/78DwPnu+DqCoWlpawvLKCYysrsCzrc3/PJY4UJLFLPHjkeQ7P8xD4fkHgaRwjTZJ+lM0JOklTpCLVwgmcAFA1DSoh0EUapESyhBCAEKj8N+FpFGEFIKJylP5WTtO4nocoitCo1aCUIvOcUoRBAD8IUK/VGNnzSURMLj3XZQTOSdz3PARBANM0UXEcVKtVKKqKKAjg+T481wVUFbV6HbVmEwuLi3jyySdx5swZaV0gMSsksUs8OGRZhvbODjqtFuIoYjluTuQiTZJjqKhCkDHYlzDPMlB+rJyTvK7rsE0ThmGMJcNpX+CcUhC+cmh3OjBNs0jBiNcTAGmaot3touI4sHmkHScJrl+/jitXr4IAqDcacDiJW7ZdRORi7MWlAVBVFWmWIQpDxFGEIAxx89YtKJqGL3/lK3jx5Zehquosb6/EowtJ7BKfL/I8h9frob2zg3arhSSOoSgK9KF8s9iMVHmOWhObkzylAUqR5jkoj44Jj5YjToY5//5apgnLNMeS4bgvsiB2Ea03RR6dP16+c9qdDkAIsizD9StXcGdjA2vHj+PsmTNYWl4unYxNVOV9gCzPi83dYtOX/19AVRS0Wi1cv34dQRjimWeewYtf/jKaCwvQdH3Gd17iEYIkdon7jzzPEXkedra2sLu9jSAIkGQZTNOEqevQNA26pkHTdfZb0wZlhkMbniJ/Puk7GicJwjBElCQApdA0DbZlwdD1PVH8qKPklCJPU7Q7HViWhYrjjDxPmmW4cuUKrl6/DlCKc2fO4PHTp0daDRR7B1mGOI6RcAVPkQYqjSXnz8146kmsSHzPw8bmJnq9Hh47cQLPPfccTpw8icbSklTgSAhIYpe4f/BdF71WC71OBz3XhR8EIAAqlQqqlQpMw4CuaVNTC5RveuYlSaKIyMsbnhQAoRRQlIGNzyAMEUQRy8crCiqWBdM0+0RKabF5Kn5nWVbIG5vNJpM4chAAURzj048/xo2bN7G0tIRjq6s4dfIkbNMscu2CxFMuu8yyjB2fb9pqfDUiNniJ2A8YAbEiSdIUURSh0+vh9q1baLXbeOLJJ7G0uIhms4ljq6tYXlnZOzlKPEqQxC5xeKCUIvB9RubtNpIkAcBIMM0yVCwLiwsLc+WIReQqSJcCezodiXMLeaKI6snQ43GSwA8CpFkGXdNQdZwivTJ8J2R5jnanA0IIGrUa+yM/9q2bN/HBb3+Lx06cwPknn4TjONja2QHAUj9pmg6MkSgKNE2Dpqrst6ZBUdVi8imvSPLJ990A0jTFzdu38f5vfoMzZ86gXq+zCUPXUavXsbyygsWlJVSrVZmXf7QgiV3iYKCUsgiy3YbbaiGJIgCAoevQdR1hGCLNMlh883FURJrydINITWRZhpynHhRVhQJGjoqqFnJHRVGKnwmDAxXny/Ni4zUIQ/i+DwrAsW226UkIKI+aAZbKaXc67HEucQyCAO+99x5838fLL7+MZqOBOI4RxjF6vR5yStGo1wsSVzmRjxsjBYoVSFmlMzBx8eudhHa7jbd+8QucPn0ap06dQhjHiPj7rqgqGouLWF1bw+LiopRSPhqQxC6xP6RpCtd10dvdhe95QJ7DNAyYhgHDMJBTip3dXYRhCNM0oWtaQdypyB3zalBaIi6FpykyvsFYjqYFEVL0v4CEUhBB+KrKlCWKAk3X2XhME9aQOkaoaXqehzRNoaoqqpUKtFJU2+OyxIVmE0RRcOP6dXz40Uc4c/o0zpw9i5QXRAGApmnIKUWaZVhaWOgTuahcRZ+4y2mjokCKry4ol10Wewjicf6+sIOx90cZIns/CPDWW2+h2WjgxZdeAiEEaZoijCK4nockTWFXKixVs7yMZrMp5ZNHF5LYJWZHnucIggButwu320UahtA1DbZtw9B1JEkCz/fRc11s7e6C5jksy4KuaYVWXOHFRWopqi1UL/x5AKAoCiN4LoFMeTomTVOWk+ZSwVwoYzgZCrVMmiTF3ygh0FQVRmnisUwTmqoijCJ4vo88z4vonRCCnVaLFRqpKn79q18hThI899xzxaao8IoxDQOqoiBOEvRcF41aDbph9NMs095TYOxz89IENwoiJ1+ohLIMb7/9NrIsw1e/+lXoJcVMHMdwPQ+u70PTdTQXFnBsdRVLS0vSU/7oQRK7xHTEcQzP8+B2Oog8D6CUEZqmIeRpjSAICqVKHMcwLQsL9Tp0wxgg8Em5XlF0NA5lS4BZkCQJoihiv+MYURwjyzIWEYOTs2FAUxQmnSQEtmHAsiy0u13c3djA1atXcfLxx/H4yZNQFAWWYcDgK5Dhse+223BsG84cxmBlO4NRmPae9A/ENoYppfjggw9w9+5dfPOb34RpGAM3a873QTq9HtI8h1Ot4tjKClZWVlCv12cet8QXGpLYJcYj5rljr9dD7HlQwIgmThIEvo8kTaEoClRFgWPbMC0LSZJAVRTU6/W5VBk5gDRJ9qRMCPopjAEfmFKhUvFcsQlZSmmUQQhBkqaIowhxkiDmuWhRzRrFMYIwRM91sbGxAce28dT586jX62wCUNUiQh614drpdou0ThniPVKGfsS48zzvj3dEeiQTlghz4DcffADPdfH1114DFGVQLcTPk8QxOq4Lz/dRqdWwtr6OtbU16Vj58EMSu8ReRFEE13URhiG6u7uIPA9ZliHmpK0oCmzLgs1TF4ZhQFEUuJ6HMAxRrVb3RLTDKG8WUp5GIGOIjT9pLsWIOK5wbRTkWJT75zky/niWZUiTBL7vY3tnB1euXUNGKc6eOcPSM47DJi5dH5isinw5H5cXBMjSlNkLlJ4zipQJIQNkT0aQv3h9ORVV/G0KsjzH//fGGzh18iTOnjtXnFPYK5Tf5SzL0Gq3keQ5mktLOHbsGBYWFuRG68MLadsr0UcURej1egjDEL1OB91WCzTPofIURKNWg+M4sEwTZCgaj6MIYRjCGpGmECRe/raR4ceB8aSOMemKkgQySxIk3JJXaMiH0xzC+EvluXNDUUBUFXmaIiIE3W4Xd+/exZdfeQXv/+Y3ePzECcRcshlHEeI4hm3bqFYqsC2LkW9JVmmZJoIwZBuuQ9eS5zlSPj7hdSN+4jQdsAwGfy/Kkb44nqZpAxupYnMVQ5Oiqij4yle+gjfeeANLy8toNBoDqSwCpjQS51laXGTqpp0dJFEE3/dRr9eZDQLfd5B4+CGJ/RFCkiTodDpsY5QXFZEsg2UYqFerqNVqk3PjWQbX86CqKovyJpD4yNfPkGYQrozCeTEV1r08jVKci0fCYoNWbIAKt8UySSY89ZJlGe5tbeH6tWt4/etfZ0ZihODYygpT/HDZpZBJBr4PgEklK5UKHNtmJKyqRXGSNvR+qZykAQwoYwQSrn3PS6sL8TuN42JCAJjhmc593wuiLxMvV85UKxU8//zz+OUvf4lvffObAzbBZakl0N8MXtI09FwX7Z0d5q4ZRTAMA41GQ26yHgFIYn8EQClFr9dDq9VCp9NBFIZQswxV00S9Xu9HpVOO0fU8UEpRq1TmrnYU0r6ylS6AgQgx4yqXNE2ZZLJESJqqFqsETdf3klz/RMXf0zSF7/vI8hwKIbh1+zY279zBt771LQAoCqtMwwAB4PHrW15cBFleLjaL/SCA7/sAIbAti21UCqsDkefn5y7n5Id/A1wyWXofUHpt4YMThoj5ZBZGEcBrBvYQPforoMdPncK9e/fwm9/+Fi+//PJ4BQ5/TxVFQaNeh+d56G5vg2YZKrUadnZ24DjO3HsnEl8sSGI/4oiiCJubm9je3kYcRbAUBXXbRqNWg2lZk+V6goAJYWqYNEWlUtlfdaPwKC+V0wsv9kQ00xD2vCXZosr9ZQbSEiPGidJEkWUZPN9nhTuKAsey8OFHH8F1XXzzW9+CaRjodDrQNI2lKoD+/oHrwvU8ZodQraJarSLLMkRcLhlw212Xk/3CwkJ/oiuPbYjki7cB2DOpFfp3MFM03TAK0y/KVy3JDET/0osv4mf/8R+4desWHjtxYuLHISYV27aRJAnaOzvottuoNRrI8xxhGKLRaMgN1ocUktiPKPI8x61bt7Bx5w6SKIJjGFit11Gv12Ho+kBLuGEIvbTIrydJgiAIoOs6DMOYfRDlVA1PMZRTK+XoUdM0GPy3ylUpIrc8Ku87KurPuP4+jmMQruBRVRXvvPMOVEXB737jG8yzhevhzaE9AlVVUa/V0HVduK6LiuOwyYUfy7YsULCK1nv37iHLMuzs7GC31UK9VkOjVusbdA0bkA1ZH4x8z9GPwMVmLVEU1pVpRqJ//vnn8e6772Kh0UBFbO6WLBiGP3NCmLe9QwjCKMLOvXto7+xgYXkZWZLAchzmoSOtCh4qSGI/gtjY2MC1a9eQhiEqpom1lRXUarUiHzxKdVKkDUZExi5PQ1SG5H1lCBIi7D/F6zMuL4z4piSAol+ocHgUpJFnWZ/Qi4HtpcMy+YnrCYOAkRxPl1iWhTiO8eabb2JxcREvvvhi8XyRgilv/hbHVFU0ajX0eOTuUApL5Jz5OSu2jcWFBSaLVBR0Oh10u110ul3UqlUsNBrFaqB/GSXp5IyqnwFJaIn4NW7jIN73MtFbloXHTp3Cu++9h1deeYXJN4eVS3zCLJ9H0zTYhEDXNLieh5179+B3u9AtC57nYWlpaeLnL/HFgiT2I4Q0TfHpp59i9+5dWLqOkydOsFxpKZ+b036nomlRMcBSOVmawhljZ1ueCMpEK4hcVFTqug6T+6WLatNhl8NhBc4AhtQgBUmnKVyeG7c4oauKgl6vh5//53/izJkzeOqpp/oRMNe4E0JG9yLlE1Sdk7tfqlYd0NITgizPUeebqlEco93psJx1r4dKpYJmowGrtMIRr1cUhW1o8s+lvPqgY1ZSxZUPfU6EUtZftUT0juPg//0//wetVgsVniYyeUOSwr1SkHvZuoBPsJVKBZ7nwQ8C1FQVGzduoL27i5OnTqG5sCCVMw8BJLEfEezu7uLihQtIfB+rCwtYW1uDqmmFvhvo672L6HRS3pojCEOAkL0pmKGoD5S5KkZRhKTkreI4Dtuc5BuD2Rjb2j0ywNJx90TxYOQaBAHCMISqKKiW0iCu6+L/vvkm/ttzz+HU448PeLiAMG8V8Vzh/b6HOAlBtVKBH4bsPQCKSlPRi1VIJAG2Abt67BhTHvV66PV6uOX7cEwTzWYTTkkrTlCKwMWESAa9cyZh4J3gk2R5grZME+fPn8fGrVt48eWXWUFWEBTpNJOndoZTWSphBmm6pqHiOHB9H67noVqpIPI8XPzkEzx26hSOnzghN1a/4JDE/pAjTVN89tln2Lh5ExqAMydPotlsAkBB6uUCm2FTqUmI4xhpmrINtCFpIwBW1cjL+Is0C0+FGIaxJy8ryGDWAiRhijVsECaaS2d5Dss0GeESwlIyYYj/++abePbZZ3Hq8ceL1wgCF12MLD7pofSYeG55MnFsG5RS+EEAEFL4uxMedeclZQwAaIbBPNMbDXS7XXRdFxt378LQdSw0Gv1q1fIKZETKZdZ0DXv54HEogHNnzuDShQuI4xi1ahVZniOOIkTcS4ZwmwWz9DlRsDQZzTLovKG35/vwfJ+Rexzj6uXL6LTbePLppwc8aiS+WJDE/hCj3W7jxrVrcDsd1Gwb68ePF1WEgnQUYI/EcBZQSuHzaF2QmUDGOwNFUVSQtDDdmnazK4pSmHgBYJFqniPnYy7SFGISEOPhv8MwRBAEIISgWq3CKJ0vTRL84q23cPr0aZw+fXrwxJx8y06No1COpgUEuQe+D0VRYJQqUwe06qKMn19ns9lEo9FAl0fwd7e3sd1qoVmvo+I4fa92Hm2naTqwchi12TkLCFjq6+wTT+Dip5/i5S9/GaqiwOZ9WIXdQsiLzTRNKz4/UR+Q8s5XFIDv+/B9Hw73td++dw9ur4fzzzyD5sLC3OOTuP+QxP4QIk1T3LlzB1sbG8jCECuLizi2tFRI5HLehk0pqStEA+hpEJugQrli23YxMUQ84ivy5poGxzQHlvWzTCAaIUgFYdF+G7xCuTFimS+Ko7Isg6HrcCqVgdVHTinefvttNBcW8MzTT+95vbAxSEV+fYLKY9jygBCCiuMwGaXnQalWi2ssFylRMYGWj0UIGvU66rUaPM9Dp9fDzu4udlot1ERRGCFIyw07hs4N9Fcd82S3nzh3Dj/9t39DwElZpKMMXYeh60wzz03TPN+HHwQwDIO1FeTHEMVKQs9fcRzUazW4noff/vrXOH3uHE6cOiVTM18wSGJ/yNDtdvHZjRvIggAGIagdO4aFZrPIpwOlvC3HKD31MAZULWA3MgGrpOy5bqEkUVUVtm3D5LrvgXOUc+eTIk1OrIJkJ7WKA1iZvxcEAKWo8FZ7Q4PHr3/9ayiqipdefHG01JD/Lc2y6dK90sZi/08EtWoVvV4Pruexph3gewP8eEKjPk5WKHTxfhAUSppWu41qrYZ6tdpfBQy/FoO5eLESmwbTMHD6zBlcunQJL7zwwkAuH0DfC6gUxYuVmKIoRT7eMk22IR6GzEjMcdh74bq4ce0aPNfF42fOwJaqmS8MJLE/JBBR+u7WFnRKGREQwlQvvPGESGsMU+REozfK3ADLedo0TeEHActJuy7bkOMVl6NIkZaPNQPEZp841rgNQ5rn8HwfSZJA0zRUx1S8fvzJJ3B7PXzjG98YrawprSYy3uVpKkZMNIqioMrJ3fO8/rUMvxSjo3cB0a3J9Tzs7u6i2+nAdV0sLS4WE0YZA144Qt3E/1Zu9jFqcnzyiSfw05/+FE8/9VRRkDZM8ABbfemaBpsyO2Zh0xxFEWzbZpu/nNwDPiFUKxX0XBc729uIwxCrJ05g9fjxCW+qxOcFuX56CBCGIS58+il2NzfRtG0sLS5C4emBIt87jtRHHK+8WTic9kiTBPe2t+H5PjRVhWPbaDYaLL+qaf2mF6VjE0xfERTn5puSIlUkfF2GkSYJ2t0ukiSBbduolSLaMq5dvYpbt27h66+9NjJvLqSdQH8CGZdfH/naIaiqimqtBhAC3/MG/GvKEFH2OORpCl3Xsbq6imPLy1AUBfe2t3Fve7vYB5gGkSITjUoynnIrfzaWZeHU44/j0uXLwxdXfG5lbb3CVTXNRgMVxwGltKjGNblHvVA+qaraT1H5Pu7duYPLn3yCMAhmGr/E/YMk9i84fN/HlYsXkfs+TqysoFqtIgpDZqXL89+gFJTn1Ycx7HoIQljKZUhCmKYpet0udtttRGGIeqOBhWaT5VhLBAKgSNnMk+8tJoERUSyllDkx8vP4vDuTQgjqtVrR7WgYGxsb+OTTT/H666+zaHQUSmmewlxrxirKccSs8QrVDIDnumNXRCIyLqtVsjxnPjilCadSqWB9bQ3NWg1RFOH23bvodLszjVFA4Z+J8OTJ85y1JMxzPPnkk7h+/XqRTht3rcNXa5ome/9tG2maotvrFdfq+z5EQ23btpl3fxgi8H1c/vRTdNrtucYvcbiQxP4Fhu/7uHrpEhBFOHH8OEzThOf7MEwTFccZ2Fgbh2IZPyaPLW7YTqeDNMugaRoqlQoaPCrdUxCDOQm9vDqYBH4e3/MQRREsyyoaRo/CbquFX/3qV/j6a6+hWq2OPXc5PZSJhiEzEvuwHXAZQg6YcKOxsZfFBsIMzko2CsP7CoqiYGFhAWurq3B0HZ1OB7c3NhByDf2sKB9XqHUsy8LiwgI2NjamfhbllYZwyLQ4wZumiSRJkGZZoaghYDbGpmGwhubcmvizK1ewvbk519glDg+S2L+gcF0X1y5eBIljHF9bg24YCMIQCoBapTKgQhlX3FNossvVhhxpmqLHCT1JEjjcE0T4tojqUIF5Cb04P48Ex71WnCHPc3S7XaRZhnqtVuTTRRRahuu6+MVbb+HLr76KhcXFiWMgQ9c8bLM78bV8/ONgmiZM00Qcx0znXr4unhZJhQ3vjHJT0zCwuraG5aUlEEpxd2sLWzs7A6qZmcbOV2YC6ydO4M6dO4WPvWhvCIwIDESapjQpK9wvR6ygsjTFTqsFPwxZtattgygKQv5/ALhz6xZu3bgxeY9H4r5Abp5+AdHtdnHryhUgy3Bifb2weo15JKuUyGnUBl2hUKH9/pgCaZoiCAJEccxUEbyhhqIohdui2FwctTyfBeXc+yxI0xSu6wKUolarFR4uIl2klLTeQRDg5z//OZ577jkcX1ubeUyi6tWY02t80jUQRSkKsaIwhEIITMNgzbVLn8vA79KmZdm6dxjVahU278nac10EQYBmozHQtWkqShLStbU1fPDBB8h4QxX28FBv2ZIqig8QCkpSS77hXa1UYOg6tra3mQEaH6tlmgiCAEmWweANy1vcVfTxs2dHWzhI3BfIiP0Lhna7jZuXLzNSP3680IiL0v6yamI41QCwzckB/xb+eJqmrLFCp4OEe780G42ieQQAxEkCSil07k++L1IvpQFmQRRF6HHlTb1eH9lqj5Si/l//6lc4efIkzpw5M7BJuGccQxFysXG6H5fCCTn0LMuKybbruoj4ezju+supjmlxrKppWFpcxPHVVZiGgXangzubm4h4le+sIGD2vI1GA9tbWyOfQ4HBaB79lVIhtyy9n4ZhYHlpCaauF9WsSRwXskh2UDZxuN0urly4gIi7UErcf0hi/wKh3W7jztWrUAAcP36cFYoQ5i8eRxFs0+xH63yTTGBclJzw8vu2SLkIlUuJ0NnhKOIogkLIvshPkOyozdFxCMMQbq8HlRDUarWBlcgoXLx0CWmW4blnnwXQTw+VCV5MdsP5caE0mdd+tuinWt6U5CubnOfOKaWoOA5U3g921jz2rPYOpmni+NoalhYWQPMcG3fvYmd3d+7G1yfW17Fx+/ZMslRRuZyVLCkw9NmapgnbsqCrKkzTRMarZ3uuy0aL/GYAACAASURBVEhc1CgACIMAVz/9FMmck5LE/iCJ/QuCdruN25cvg1CK9bU1VirPb3xhR2uVmh7kKJWyi2iqRBTC36Tb7RY9PIVscVg2KEgwTdO5UxUFoWMOySPAmlX4PjTDQG2Gbj2t3V1cuHABr7766h6tevncRYEQhyDjJE2LRh9lsi6aXwupIP8tUjdi8zcrPYefaCCVQhSF2dpSCm/CZurAmEsrqllQq9WwvraGRrUKz/dxa2MDLtfTz4L19XVs3r07oOufhMIRVLTvK0Xw4hiO4xRS20athlqlgizPsdNqFSZp4juaJAmuX7kyk9GZxMEgif0LgFarhZtXrkAlBCfW1wdK9AHmH67zDU2A33DcX2VUpWeapmh3u6xEvKRJHkXoALtRkyQBBQa8V6Zh3ly6eI3rugjCELZloSIkmxOQJgnefucdvPTSS2PtgwdQ2hsQKYQ8z6EOeaQPDowWqQOUCWzKeYrXgCllLMtCwsv0p75cjHVCrn0YqqZhaWkJaysrMDQNu7u72NrZmSl6r1SrMC0LrVZrphXDsFlboZfPc4D7/Yjq1YR7wjuOg4V6HXmew3XdYlNZTGS+5+HW9eszXavE/iGJ/QFjZ2cHn129Cp0QrJ84sUfel+c58izrt0rjf6N8Y6uA0IAHATq9HpDnqPNS9eH0wyjfEeHOOEvxTtnqdh5SzylFt9tFFMeoOE6hpJhyMrz33ns4duwYTkxp91Ye3/D/syzre5HvA6Mmn1GTqmVZ0DQNfhAM9Gwde1w+JmVopTENlmVhbXUVjXodQRDgzuZm8RlOwvr6Om7fvi0uYM9KT2DU/k0Z5RWOwXvmBlzbbhgGHMeBruuIogiu5w3IPLvtNjZu3ZrjaiXmhST2BwjXdXHr2jXYqorH1tdH5rZFbljnXjADNrFDUr4iSjcMNJrNIvoekEayfwwQFaUUURxDn6HtHQX2qidmQJplhVa+Vq3C4m3mpuGzzz5Dq93GCy+8MNN5RhFSNmdh0iiMul5x8wzIQgnzcVcImTnfzl/IjjdHakZo348tLQEANra2pqaB1tfXsbGxMXCe8hgG9ipmRZ7DFn4ycVx0j9J1vahM7fZ6iJOkONf23bvYvnt39nNIzAVJ7A8IaZrixrVr0AAcX1sbu3GY8jyliKSHNydHRem1IedDhedAgdGl7iIXOq2fabl6dB4kXDNPAdRrtZn7prquiw8++ABf/epX5yLl4esriP2Acrvh445Ttyi81J5mWdGkY8JBB/69n+5ElUqFKWc0DdvcOXJcaqbZbIJSim6vNzQMbvOAfoXsPNB0HaqqIuAeQ2LT3zCMwg5CdGUSk8bm7dvoDY1D4nAgif0B4dZnnyGPIqytro4nLUqZJwfPrw/f9JOi9P4hWJSucF3xKCRJAlA6UmpYHAf7K1KK4ri4eesTKkmHkec53nn7bTz97LOo1+tznnUQKe+lepBUzEhM2ITUDQOmaSIKw6Kj1KzH3A+567qOtdVV1CsVeK6LzXv3xnrOnODFSuPOP2sx1TCExW+SJFBUle3bUApVVVGrVtn7wVMzWZaBUoobly6h2+nMfS6JyZDE/gCwffcugt1dNOv1kW5+AhTo+7oARRRGKYU3JUoXr0cpEht3s6ZJAq3kwb3nGNifpj2MIriuC1VV0ajX9xLrhMj/o48+gmXbOHfmzMznG3e0g+bXBYYnNjKB2AHA5o0pPM8b2zVqrN59H8VhiqJgaWkJy0tLyNMUdzY391TEAsDy8jJardbIYwhFEAEKFdGs0HnwEEdRMXYhmQSYq2WlUkHGJbiibuK6JPdDhyT2zxm+62J3YwOqrmNpRPeZ8u0vlAvlCkERpQcTovTycUYR0cDzKB3rUX6QQvAoSeB5HnRNQ61Wm75JWsLdu3dx8+ZNvPLKK3MRy7hn5ll2X6oep3nPCw92ChQ2v3OeYF8TarVaxerqKgxNw9b2NlpDpNloNNAeYdJFKUU+JEUsd+CaPlxWeZtyX5xyYVme58iyjH0f+IZ+kZoBcPXiRWkcdoiQxP45Io1j3L1xA0maYvXYsYHHitumVG4ufkRxzExR+gTFCgH2EGw6Jv98kEg9TlN4rss81Gu1uZb1URji3Xffxatf/vLMuXiBUeQj9NcH2TgdQFm7zv80qYersLZN05TVIwxhKl3uIyUCsLTI6soKqo6DXq/HUjM8cq5UKoVFxcBYJqwqZl3xGLxqOY7jgc+dKEqh6AKAiuP0UzOuizRNcfXiRbTHrCQk5oMk9s8JeZJg67PPEIYhji0vQ9f1AQUCEb+Hc6yEIElTtNrt6VF6WTEzBsMpmSxNQdEvtafgtgTYH6mnaQq314OiKKiVWsiNwijzqXd/+UucPn0ay0MT3zSUG1OLgposz1mZe56D8iKlJElYlyD+Q8E2j+MkYc6FvCVglmXsp+xzzj+nwj1xRmsA0zRhmCaCMNzj3z7Le7zfz0LVNBw7dgyLzSaSJMHG5mbhFtlsNgeidlHINXEcM+T/RU/YeNgimA42UqeUwrYsOI6DPM+Lph5XL15Ea2dnziuVGIZ05fkckCcJuvfuodvtolKpFJ3qB6ol6WBrOoE4itDr9Yq+meMKiMr59GlQCCk68KRZBkIpVB5RAfOrXgRSLmsj3CJgWvplOEK8fPkykizDM08/XbgPFr95mkD8mw4R0R4VB98EjOMYIc/5DoyHUtbliBfSFC/DUDoM/Y3jYiIG/8z4a5M0RWLbReMQoij93/zfFdtGytNT9Xp90BiMT8hjMSXlMw31eh2GYWB7dxebW1tYbDbRbDTQ7nSwsrpa5NWnoSyLzPN8LMmLJtij/N/L+xKiX2yNtwuM4higFNcuX0ae51iac3KX6EMS+31GFseIOh1sb2+DKAoWFxdH9iDd06eUUniex3TBqgqbd0saxn5TJoLcszSFUkrD7G/hD6R5jh4n9foEi4Aios4yJElSEHcQBPjw44/x6quvDuSE9xhqcaJUFKW/4UsINNpv+TYs6VQUhaWEhh4Xz6nxPLg4H/9Hofkv29tSABDVl5pWtCXMs4w16B5HvoQg4y0HkySBVZoIKJhEUuWdsMZhngrVYViWheMrK9je2UG73QbhVatiwpwHIjUzKQWlEIKUT8TjirvK12LbNsAbZlNKcePqVYBSLK2szDU2CQZJ7PcRWRwjdV1sbW0hSVMcP358z3J01PI2z/OigXStWoWmaUzPPuTjcpA8ONDXGqs8l73f42R5jl63W+jUFUUB5WZZgsRFWkOQCC1HiYqCjz/+GKdOnmSTQjnq5SQ+Su5ZxjjCEwUz41Y6BPvTt4tCqCSKYJgmnLKPj7g22vedoXmOXNOQCW076bcELEfL4lpVRWFkzwlfrDYI+j5B80KkZnrdLsIwxNbODuIomlmCOoxiY3/o73GSFHbGSZqOt6korUQIWMOOLM8RRlFB7jmlOLa6uq/xPcqQxH6fkEURMs9Du92GHwRYXFxkXt18CTuO1LMsQ6/XQ5plqFYq0HUdWZ6zfHAp+jkoqQMolAvmPm9syo/RbreRcp8Qr6RRLkNRVaiEwLAsRlqCqBQFd+/ehed5eO211/a1yTkubhRWAuacxmZzYcRkoxAytuDMsix0u10oPAUh3CKzLEMuJj++H1BO0wiFlKppxcQnyH+ezWlFUVBvNEBUFR/89re4s7mJ9bW1fZO7WGlmpdRMHMewTLPYoJ00qQL9iUpRFObpzsmdEIKb164hz3PZJHtOSGK/DxCkniQJ2u02LNtGo14viHkcqZf7StZrNei6jjzPWduxKEKUJDAPGF0LUJQ2TjWNRYSUTlzqp3mOlLdGS/lGo+f7yNIUlUoFKS+m0nUdKm9BV6QYRr1PPIJ/7/338cILL+xfuTJmzEImeuiFSeCRMyfdedIjqqLAtm34vo84jmEYBjRRPDVEgIXzpHBXzDK2KcmtdHP+PVIIgaZp7EdVJ65AxArCsW0063UEnofNrS2sLC3NrUIqQ3TcEnbGlmGA5jmCKGKrwgmfrVjFimImy7YR+D58vtF7+8YNgFKsrq/ve3yPGiSxHzIEqQNAp9tFTimWefu2IsoeQepRHBcNnEWvT5HDFEQZhSFMLic7CMQ4hPytiPoIYaTBl9dCISJ+hDJE5IbTJIGu6zi2tATTNPdVrXjh4kXUazWszdENafBixpOqsBKY5vO+L8xZvFOGaRiIogh+EEDX9bHXoPKofBgULKefZRkSHunHXO0D9FcMmq4zouef70D6C8DCwgIUVYVCCO5ub2N1eXnf5C72L8RKw9B1tncSRax6epbPoLT/YTvOILl/9hnrBCXJfSZIYj9E5GmKzPcZKSYJPNdFtVplNy8A5PlIpUgQhvA8jykEarXiJihHgqZoO5Ykc1nrDkNsCIrNPJXnrnPePCLlksCER/PCmlUXESG3N+j1elA1Dc1qdd9k4HkeLl+6hN/77/9939cj1C+jIJQy9yNiBxiBDqtoZgEhBI5to+e6CMMQpmXNpXghYPp4VVWhA0V6L+eFQVmasobTQcBWFPxxVUT0/Ke5sIDtrS2cOXMG97a2cG9rC8tLS7AmVENPQpZliOOYBR88eFF5ADC8PzTuuijpWxrYjoMwCApyv3PzJmzHQaPZ3Nf4HiVIYj8k5HmO1PMKFUe310Oa52g2GsVzhkmdUtaUIQzDwixpoJqxpMawbRtxHLMJoNGYufvOwPmKgbBNU8/32b9bLdBSpxxV0+BYFlRNG9i4K8bseYiThPW+3CepUwC/ef99nH/qqdk81scdZwIhCsKb1sTjQJgwsUyCruswTBNhFEHT9X19nkA/N53nOdOQGwbAP5M8z/va/CxDFEUQJUkKITAMA61WC6qiYPXYMWxtbeHe9jaOLS9PtLoYBUopfN+HQlj7RoUQ5JRC49a949Qxe66HBxLis7MsC9T34Qm1zJUrePr55w+UNnoUIAuUDgmZ74PypX+SJHB7vYFoffgrTSlFr9dDGIawLGtPMc+AZpr/iIpBf4YOPcPIKUWaJPB9H+12G7u7u/A9DzTPoWkabMdBvVbDQrPJOtE7DlM28M06Ad/3EXI/9YNsSm7cuQPX8/DEE0/s+xgUk4l9Wm73wJihYGcSbN6ecD+f58AwwFYlZammyKVrmgbLslCtVNBsNIom2aqmwbYsuK6Lbq+HIAhQ434+W9vbIz1mJiHiuXS71HKREN5mkUsfZ7sYLv/kez5EUeBUKtC5x73nurh26dK+ZZ+PCmTEfgjIogiU5zcJIXui9eFbf1j5Mmrpm5esAQR0TYNl2wiDAKZpTnRjFMdIeFVlLFQ1YBG5ZVmglKJWrU73YSfMK9wLAgRBAGfMmGdFmmV4//338eLLLx84mp5ErKIA5n6iUK7sAyqPbr0gYBLBA6TYAF62zzdah7X8ApqqQlNVmGBl/UppVSaUTe12G7c3N7HcbKLRaEz9jLIsQxBFbBVSugYCZjHg+z7SNJ36fS1DGOAJAhcrCM/3ge1t3Ll5EydOnZr5eI8aJLEfEHmaIuURFyEESRz3o/URrdiE8iWnFLVarVC5lCE00qMoy7FtxNxfozEiJZNzaWTCS+TFElg3DBi6Dp0v++MkYZKyGYk1SRKEYQjbceA4TuHvvh9cvHABi0tLWLmPlYVC6nhQspyG/eTYyzANA2EcIwgCtn+xnxQb7Tfv3lPQNQU2lyXWeZFWmqbQdR1b29u4u70NLwzRqNWgC7XTcDcuypxGxb7BMBRCoOk6kiSZLb0zNEmKHraEq4kAFmDcuHYN1VoNjRFGehIyFXMgiLx6OTpqdzpI8xyLCwt7lS9Jgna3CwBo1usTSX0cCJh7X85TOTllnu1+EKDd6aDVbsP3/UK/LdIrtUoFpmEUxCE2FmeJmLM8h+t50BQFVccp8rqiaGgeYnNdF1evXMHzzz8/x6v2oux4OQpC/XFfUzFghDOpAnPq67ndAKUU0QiTsHEQcsdyi7r9wLbtwj+GgK0Kq5UKTp86hUathpAbzwVhiG6vhw73/0/SlBnTcbmrw9vjjYKuaUV6aCrGVKmK8dm2XaRlPv3445naAT6KkBH7AZB5Hihv4gAASRzD9zxUq9U9KYAojuF2u3uUL2UUOnf2n7Hn1TUNVcfBTquFbrcLi99UhfUAL3UHxuvdqWhGPC1CpBQu735UrdX23HhC+VBuuzcJ7733Hp565hnYlnUgQgQma/nnmbgOioPKT1VVLZwOjRFRcRniHRvn7TLNI34YlmWNdJ0khGBtdRXbu7sIgoBp3x2nWOmFUYSIe/A0Go2Jm5m6piEES9mQSQ3FJ4xb4RMoobSwH+h1u7jw0Ud47oUXPpfP+WGCfDf2iTQMkSfJQFTe7nSQ5Pken/U4TeG6LnRdR6PRGE/q/f+MPW+cJOi5LlyuQMi5mqVRr6PeaDBFAo+QJt1Aorhlmhbb4/nRaqUy8eYRhTLCBmAUbt26hTiK8MS5cxPPOROmjPu+atjnHMvUl4PlkBVFGdmzVHjUlAuWJg+HFAVD02CaJpNFjjnO8uIiKrYNz/fhBwFq1SrqtVrfQI7XV/Rct9jHGYbQ0adpOrVp99gqYvBCJiGFtG0oqop7d+/i5o0bU6/zUYOM2PeBLEmQ+/4AgSVxDM910eBNBARS3u9TURTW4m3EF78gdVFEMvScPM8RxjHCMGSRNiGwDAONWo2lSVwXruehLiLqGaRllN+UkyAiM9u2+1r8aSCDJlxFsVMcF/1L9ysRHLyAya8X8r/9yghnhdg8nVXON/Y4igLbspjqKIpgGsZU1c80KKo6dS/Etiy4E1Q5hBAsLi6CtNtwPY9VQpsmwElf13VEcYw4jpH4PhRFganrhVeMOIamaUWrPuExMwwKTBxveUNV5PRdz8O1K1dQq9exyJt6S8iIfW7keY6M67/LaHc6yMGq+QSyPEfXdfuOhyMiZOGhvufvYDn5bq/HvNh9H6qioFqpYKHZhFOpQNU0GIaBarWKLMvQ6fUm2qmWkeX5RNJL0xQ+74Bkj9gUmxUikr905QpWVlaKm+9AaZgZXptl2eezPOcT2UGidpHC0g2DyR+DABmvAD7Q0GYYl1XKsY89DiFYXFhArVJBq93G9s4OHMuCaZpQ+IRUr9WYykZREEQRur3eQBSvadqA1fK41eLUKy69RlVV2JaFNE1x4aOPpl7HowRJ7HMi8zxgKKpIuD68VorWc0rR7XaZ70u1WlQ/7tGqk0G73izL2EZouw2310OWZbAsi6Va6nUYI0r3DcNARZB7p4NohA/2MCiPaMc95vIJqVqtTn9TpiCOY1y9cgXPPvvsQLqmsFaYcwN2FhLN8/y+b5yWMU+0PrzxKayLQSks2wah9NA2BaetWCxeJDUNaZpC44VroHQPiRJCoOs6qpUK6rUaTO7U6Pk+ut0ukiRhFgilBtvDE8+sSqtyH2DDMKDrOjzfx8WPP57JV/5RgCT2OZCGIehw53dK4Xse0jxHg+vWKVAoVuq12oBzXnnpXs6Dp2mKbreL3VYLQRAwD/FqFY1GA47jTDR2opTC0DQ06nUoqspSM74/uXhn3MYppXBdF1meozqlA9KsuHTpEtZPnECFNxgBBomQAP3cPNnrS793iFPSMJwsP88NtVHvUiFDRInMR+TIyykxYd0grGsPA5Py2qZljc2xA2zcYRQVPVvXVlfRqNXQdd2R+wEAd2nkUbxTqUDRNCRpiiAM0el2i5QM0H/fxPszC8Q9JL5DYn9ia2sLn129OtMxjjoksc+IPM+Rj7gBCCGsZZ2mQde0gtTFhuPIogz+BRYbSr1eD51OhzVgsCw0G42i683UXHnpWJqqosGjpSiK0OFFUHuuhU8o43xroiRBxXH2beVaRhRFuHLlCp5+6qmZni+iOBHNK7yrVLn/a7nxxSgIz/fPI2Iv9OMYjMLL7fQGpJkzVKvatg0cYtQOvkoaeS7LGiuzFPYRYRiyaJz3BlhcXITF7QimpT90TUOFVzVbts2qsj0PrucVBF98rjNeTvE82ndJdbhk9Mb16/D30zj8iEES+4wYSerghTtxXESjLm+QUeG68VEgioI8y9BzXbQ7HcSc0BeaTTiOM7OSY7ipMsBukqrjMK/vLEOn292z1BZKmuGINoljeEEAi+dPDwMXLl7EyZMnD+QHU16ul50xxxUHZXyDWSl1JBJR83AaR7QILDYqS2X5A39HicSFAyav8KTimEOrkJlXO0ORqsaLgQ4zah+X09a4C2M6tBJNeMCRZRkc24bjOP33nRAsLy1B0zRs7+zs7W86AiIXb1sWTMNAmiTolQl+zsIqUvpsCdgkblkWkjTF5YsX5zjS0YQk9hmQpSnyoehJ3Ch+SePrcY9t27ZhjSHGLMvg+j4j9CiCbVlY4OmWWatAgdGkXobBpZWapsHzfbR5nhPoa9gHmlrzIiRdUVA5wGZpGWEY4sa1a3j66adHXcChnGPU9eeccFVV7a+OxHOHKxuHxlOOwAf+Xib9EUQOHO7NJKo05ylamoZR75Uw2hLnybIMnufB8zwQng4cpVFXVRXHlpehqCq2d3Zmym0L6wJD11kEbxhsxeq6RfpvP/12CVdZmYYBXdNw7+5d7GxtzX2cowRJ7DNgOFov3yA+V6vkec4sWIfapAlkaYqu66LFCd1xnCJCn4fQx41jFFRFQb1aLSwAuq7LWu5xS94iYqcUHi9CqowoQtovPr1wASdPnz6Qr8wwZolghTLo/godDxGjImlNg6FpiKLo0DYECSFFQ5UyLNOEz32Aeq6LNMtgWxaqpU3/UdA1DcsLC6B5jrtbW1PHWW4FSAiBZZpMcKBpSLMMnuuyQGkGwzA69G9xDwkTsguffPJIb6RKYp+CLEn2bphypGnKWn9xoyPdMAY2CIF+JLzb6SDhLcOaPEJXShElMLtmeR4/EEIIbH5O27IQJwk6nQ7TxPPzeb6PhO8JHJZ3eRAE+OzGDTx1/vzoa9jH5DFrLJfn+X3zYJ+IQ9bMW7YNEHKoZfMEAFHVfnqJsq5FvW6XealzGwrTNGf6jokUYp6maLXbE587qscrpRQ2J3jDMJCkKTzPK2wx5ro2nqYTHapuXLs21+uPEmSB0hTk5c2hoWrNwPcRJglUXYemacx6VzwV3OI2CJifOs8vlvPnhBBgyG51GoYdH2eF2GAyTZP1YW230e12i4bDzjxFSDPg0wsXcObMmbEpqX1hxonv85Y6DmAfxVfjJnRNVWFwP3ODa9wPAyL/H0URm+DBIt4ab0Q+L6qVCrI0RYeLABqlHgRlDBN7eVNZRPCiu1TETex0w4BtWSP3K8Sm6zA0VYVlmrh54wZW1tb2BFuPAmTEPgFZHA9E68MbUK7rIooiOLaNWq1WEG7Co5cgCKAbBhaaTVQqlbGbouXJYBIopXs09PNCVRQ4joMKlzK22m0EYciUHIe0dPV9Hzdv3sSTTz45/kmHlGPfc1g8WGLfzw01aZNVpLGiQ4raRcrQ5d2bRHesg04cjUYDFdueKIMkhNk/i+KrURG5yPnXKhUYuo4kjtHr9Yr9oTJGkbpQ/5jctfLa1asjX3vUISP2CShH68PFFKJRtSB1oRX2fZ/p0HkXesMwJi7RZzH9Yg/3I5sDgy+/VRHFWxZibuqk6zos0zxQ9P7JJ5/g7NmzE5U14xQtk4c9w4pGmH/dZyuBsTgMu4QSNFWFweWr5gHIN01TxHHMFCyUdTaybbtok3cQG2aBxcVFpFtbRVemUXsriqIUnjeT7guhotF1Hb7vF6lOi1e7AihqHsrfC4p+JG9bFna3ttBaXcXKysqBr+9hgozYxyBPkombOO3dXaR5jpVjx6AqCuI0RbvdZh2RTBONWg0G99SYBrESGFegMU0BMy8oWASYZBnq9TrqtRoaPAcvVArtoTz8rPA8D3fu3MGTUzojzU3qMz6vcHV8UKmY/WDKe2zxfPe8ChnKtfC9Xq+Q4RqGgVqtxmosdH0uw7BpmEUGSRQFKZfbznI8jdsIG7qOhPchmBqB82sR1tKbGxuPnN2AJPYxyHy/X+EGDBB0FEVwPQ+GYcBxHLieh163W1jbVqY4IY6CInTXQzfYYZM6wMgvDEPomlZE1QpvZLDQaBROjsLawPN91pB4hpv/408+wblz5w6/J+WsG8tzROz3Jxl0uJ8VwKJ20zQRxfFMSo80TREEAbq9HnzeXN12HNTrdTg8Si/GOiLqPQgmyiD5vUSzbObzEbBJ2jJNVHgthIjg8zwvpLuDL+oXZBm6jhZfRTxKkKmYEciiqCCI4bx6nmXweTPnSrXKzL+4n0u5iGNeFJuivL3ZcLHLYSLwfdA8hzNqU4mwJscG1xhHUVSkaQghMLhzn65pe1YjvV4Pm5ub+P3/8T8Od8A88gzDkFXG8k2/JElYjQFvB5dnGWK+6abyFVCWZcVjxb/zHFmaFnr1//2jH0FTFCiqCkVVoSoKVP5vhRCWrig9XjyXpxUUQtBsNllhFy/AEdHwLJjleaZpFp/DsCmbsNBNkgRpkhRpDl3TYDjO1JZ0iqYd2v4K0JdBbu3s4O7WFlaPHSuaW4trnWcfRNwXCoCq4yCOY0S8SbdlWSyIGA6IwCb3HEw6unnnDprN5oEM7R4mSGIfQp7n/dw6pYPkRSk830cYhv08IYB6vX5wRUk5Mi+VWB82qUf8prBse6okUOO+JRXHQZKmzJ41SRDFMeu2I0iek9jHn3yCJ594YmYrgjRNEZaIOioRdxSGCMUPb+FnWVZRFWvyyUfXdUa2nGgTTtiimYkgZJUvy1Xe41Ms0//n//pf+H+++11G9qVJoDxZ7JkYSr/F+O9ubhbWymEQIIpjGIZRjNkyTVii8lJcB//7LO+XyLWHUcSkiNyOIkkSds0lMrcsi7XZm3HVOMlDf78QMshWq4VWu41mowFK6YAyZp4NbuEnRMEmOU3TEIQhgiBAyiu3h69X5NsNw0BrZwetVgvWGIXNUYMkqmVlVwAAIABJREFU9iHQOC5Kxoe/KGEYIuE3b5wkaNTrqFQq/S/K8EQwz3lLEQfhkcZ+qvAmIacUrudB5bnLmUGYc5+u6wBlrfhEg+w4SUDA3pvNzU186UtfGnhpypuM9FwX3W4Xbq+HbreLnusW3t7D5CeiX0HihmnOvBna44VW9Vpt5ssTG4j7mZw9TiyNen3g72LSCsUkxSevTq+HeGur34WIe+xbto1qrYYa/6nXaqxvbmlMBncxbLXbRVWtcFUUNgT7IS2FrxLHyQf3i2qlgpQrxFRVLVJ8hJB9FQ8VTqB8Uqjw6D2MY6Rpikqlsney4Ndj6Do2bt9m6p1HQP4oib0ESilyvkE1TCRZlhWWAVmeo1GtDlraHjIJK+BFPId4XM/3kVMKp1LZf9FLieQrto00yxDHMT788EMsLy/j0qVL8IMAYRDA8zxEYQiHW7lWq1UcP34c58+fh8mjylmIKC+X809BlueHYl42M8aMS1EU2I4DewaPnCRJ2OTX7aLL01kXL1yA63kwDQNOtcr8WripnKppOLa8XESuB41AiaIU0a0wiDss1Go1BEGATrc7sDrZd1WoCJ74pCbeAy8I4Hre3noMvoeg6zo6rRZTsh0gZfqwQBJ7CZSbEYFSoBytU4pOu81ag1UqiKKIVQWWHgdwaJWHovlGkZYRG0QHOH6cJCw/a1lzVa4OI80ytHZ30e12WeTNGxxHYYh6owGFEDi8GYht2wP9WEVqR9O0A/c7HQVR8PK5978cVTwj9kpmgK5pqNVqcBwHS8vLSNOU7R0ALD0VBGzDkHuqdF0XlFI06nVUazXUq1XUGw0sLCzsa9OaAEXEPq670bwQFsWEECwsLODe1hZ2dndxbHn5QCsD4QtTDnpUVUWVezX5vj/SxE4ppWTq9Tpqc6zoHkZIYi8h58qP4dm81W6j1+uhzlMvrXYbxnBUeFBSL5lQDR9LtAPbb/ROKfNYVxQFjm0X3tqzIAgC7OzsFD+9Xg+NRgONeh21eh3rJ05gc2MDSZri5ZdeGnhtnucsD5ymLDURRQBfEQmvGrFRqfIc+ShSFqQzDblo0P15EvuEz2RUuzw6lLvP+EZu2V1RVVXohgFN09Co1fZIN3uuyzbA+efa7XaxsbGBVruNiuNgcWkJy8vLWFpchFNOFY6Bwr2OgNnrKiZBuIeK8+q6jka9jhZvr1ecY58QSp6sFKAoqopKpVK0FswpZTLRkmGbpijwXBee5+1LufYwQRI7R57noHG8Z7O02+2i2+mgUq1iodlEwLXduoiMDhhJF6cqnXNkBHiAG84LAtb0o2R5gFFfakrR6XYHiDxJUywvLmJhaQlf+tKX0FxYgFZ6bUYpfvnOO3j99df3HE5RlEJhww7P7GELBUeaIhKrpNJ1qiV1irDeLeSgEyDI6YH4xJQg+tZmfMO1IPEsG1ipELCxqnwVU57gJsE0TSRJAse2sby8PHDeTqeDnZ0d3LlzB7/98EOAUiwvL2NxcRFLS0toNpt7jj/Q9IRXh+53RTVOXVOtVhHwptcWVw4dFMrQqogQAsdxEEYR4jhGnmVF2oWAa+jjmMmVXZf1ID6ikMTOUaRhShuhIs1g2zaWFxeZIVOSIOMWoYeZ/yZg3uDTqlTnTc2ITTzTNAvZm1DbiLTKNl8mt1otmKaJxcVFLB87hqeffpp1UZpw/Nu3bqHKC5ymXmMpP2/oejGZjZIkJnGMmI5uUiEi+6IRByf+JEmY9SvfnCt7t+8XZQtfsWrK85w10eD1AGmWFXI+sfEOoGi0QQiBykv3y3LKosXbnHYOOp8EQl4pXH5/m80mms0mzp07B6C/4tre2cFnN27A9TwsNJtY4hH94tISVEUZaMhSbmoy03vEf2dZNvH9Xmw2sXnvHrrdLpYWF2e+3nEg2LsPRQhhzUM4gXue18+p84rrKAjgccO+B+YpdJ8hiZ1DROuEEORZBrfXKzavFjmpA2yjSyFkYqu6fZ1/jsh/1tSMWKoLAzAA2NndxY3r17F59y6CIECj0cDi4iLOnj3LOuPMadp16fJlPDVjd6TBixjMkaqqCgypUjKeysl5QUtBqDwaFs0uBMI4RhxFRdel8rmGW/GV/9blSpri/aR0gNAnodxfVlNVEE1j8kFO2qLAZhLmzTcTQmAZBrwgQJZlE8nJtm089thjeOyxxwCwiX53dxc7Ozu4eOkSWu+8Uzx3eXkZy8vLxWSJGd+DgQbVE6BqGhaaTfh37qDnuqgdQj/dYkItTaIAmP0CYd3NPM+DbdvF5xH4PmqNBnq9HprN5oHH8EWEJHbwNEySsLL+LEO310McRdBK7cAEkiQpZH+HtVm6HxTR+wSCF23uojDE9WvXsLGxAV3XsbS0hCfPn8fJkycH0irzYqfVQhSGWFtd3fcxJkFVFBBNA6b0exXNoInnQeMmZ/zBPkHTwW5IKP27SN2Qwe5M5Q3s8mQgiFvhK5A8z0eSlEjJTIWiAHNa1OqGASUIisYus0LTNKysrBTeKb/98ENcu3oVtm3jww8/hOd5WFtbw/H1daysrIxNa4n3ct5JyXEcOJYFNwiY/cYhePWLSWj4ftR1HURR4Ps+PN+HbVlQVRWB50FVVfi+v+f+Pio4ele0DwhSBwDX85ClKRRVhaFpsIciWGElengn55umI+wEZsEogo+TBHdu38b1Gzewu7uLhYUFHF9bw+/+7u+iWq3C8zwEYXggUgeAy5cv4+y5c/dtE2o4ChsFkZMHWOSvmObcq44D6ZonKIwKwpnhGPNCURRWsMTJcd6UU5Zl+NWvfoUwDHHy1ClUKxWce+IJBEGAjY0NXLt6Fb9+910sLi1h7fhxHD9+HJZpFoSez7ihPQq1eh1hFKHVbmN1ZeVwvj9ktDWCxjdVPc+D5/uFlj7yfeiWhW63y1bkRwyS2MGJHYDP+y8qXNfrVKsDUUCapsiyDBVdP/xo/YD5+pDfkDdv38bu9jaaCwtYWlrCq6++uieiO4xClCAMsTGiIOmwMQ95PAi73lEqpjJmea/3+00yDYPlknkDl1kRxzF+8YtfwKlU8Du/8zt4//33i9Sibds4e/Yszp49iyRJsLm5idu3b+O3H3yAaq2GtbU1rK+vH0guqCoK6o0GgiBAq9PB0sLCvo8F9FUy41ZHKvdBcl0Xvu8zZdvODs6cP1/0dT1qufZHntjzPAdNU0RhiCiOoes64jiG4zh7lqEJ9+E4NIOrA5Jrt9PB7Tt3sHnnDlzfx9raGp44exaNl16CH4aoOg7MEUtd0UbsIJYF165dw2MnThyKumEc5p18pkX3DwKz2BPv91sg1DTxHMTuui7eeustPPbYY3j22WcBsBXeqKpbXdfx2GOPYf3ECSRxjO3tbWzcuYM333wTuq7j+PHjWF9fx8LCwlzvOyEEpmFAU1V0OdkeqNk5h0IIsnHkrqqwLQsBrwAuT7hBEAwWGx4BPPLETpMEaRwjCEOYhsEqFxUF1gjCSuIYlOdVD35iuvf/M9wcWZri5s2buHr1KqIowvr6Ov7b889jaWmp6GfZarehq2pB6sOER/jPflvIpXmOK1eu4Bvf+Mbcry3GcEiFMAJiI/VBSx33hQO8D0L6mIwh5zJ2dnbwzjvv4JlnnsHp06eLv2dputcorKxI4umuldVVrKyu4gVK0W61cHtjA++++y4A4MyZM3j81ClmVT0LKEW9VkMQhmh3uzC4bv8goFwSPOouyvMcuq4j+//Ze4/mOK7se/C89GUAFIACCiBBA1L0pEhKVLcoiUZqxf+/mZiYTzC7Wc2nmN1sZzMxn2JWEzPRv251q2VAJ9FBNKInCBJVsOXT55tFvpfIKmRVZRnQQDoRjALLpH153333nnuu58G0bQiiiOLaGhLp9J+GfSfC0XXUWENqWZZh1mq+PGiEkeW6KINsIRegg1Evl0p49uwZXr16hWw2i+MnTiA3ObnldwZrfjw0NLS1OIYZeM6J79Wwvnn9GsMjI33xgGM1zejCA4/LzBg4Oh0jo6e2/U4PyVOOVtTHZiwuLuLu3bs4d+7clqYTtuMERpU2GXQ+vhoqaQlBZmwMmbExnDh+HGvr63j+/DkePHiAXbt24cDsLEbHxlqfMzfAgoCx0VGsrK6iWCohOz7e0zUIQGnQWL7hbWwae01V4TLxtkI+j2OnTqFcLsMJXYOdgJ1zJj3ANk1USyUQQpBOp1GtVn0VvRbhBXtQN7/JqLUyca7r4s3iIp4+f456vY7Zffvw7bffNsoZhLfjedDr9UAQiiNgejAvmccke/EUKYDHjx/jyNGjXf82jE4ee7dhFf4wv+1qwnCFZRTCqoStN9K7xx6H+vjo0SM8e/YMX331VeRkbNs2REkKKkbZhrfsJ/KeEYLx8XGMj4/DMk0svHyJG7/8AlEUcWB2Fnv27o2ecNh2FEXBcDqNIqMXp/tIZPMj3nKcTcecTCRQrdWwsbGBcqkEMFrkTpIZ+MMadkopyqur8Kgv8eq4LhzX3fTWOcskRKVyLCv+UrP1jre81WwWKpUKXjx7hhcLCxgbHcXhQ4cwNTUVxMZbwTAMuJQi3SZeGS7q6cWcrG9swDTNbaM4BujS2AUe+/sYionLjukRraiPlFLcvn0bxWIRly9f3kotpL7mimEYEBlhoB3axbABQFFVfHT4MD46dAirq6t4/vw57t2/j927dmH2wAGM8iRpaCUAsKpU09wiFNYTCAFp4t83J1UJIUgxbZmnjx/jyPHjfxr2nYJKsQjXNJFOp31Oa63W6K2HPRbmAbiUQtuO7DmLD79+8wbPnz1DuVzGvn378PXXX8em4lHPg24YsWKV4eYhDQY+hvF58uQJDg6C4thpX10awy2c9LeEfhLQg0IU9dFxHFy7dg2CIODChQuboRYAhFJ4YKsiVuwlxQkvckphjO9lJyaQnZjwayhevsS1a9egKAoOHDjgyyCEq0UFAWOZjC8UtrGB3MREj1disxpVIGRzBRIxjnhP1Xq9jkI+j/FsNlae4kPBH9Kwu64Ls1LxmzYriq9bEvbWm8EKTTotuzsiYoDZto3Hjx/j8ZMnGB4exv7ZWezatatrw6kbhi/JG6Pgo5keRjY/aKtHwymOp0+f7urYWhxERwGtbuB53maJ/ttGh33GMoZ9grfOM1k/gbm5OYyPj+PMmTMAQtIIIW+WH7Vt2x27LHHwrlGxj0vTcOTIERw5dAiF5WU8f/4c87/9hlwuh5MnTwZsHkmWMTw8jI1SqS+WTHNfg3YKm5IkQZVlLOfzGBoehq7rfxr2DxmVYhECpUGs2tD1trH1htBMrx5hk6FyXBdPnz7Fo0ePMMWLh3pcCnqeB13XoSlKLKmDhsYgzZ/5X2AfN37+/Plz7Nm9G8pbGPzdesKD1hGPjRhsJkII0NTucNAQmSzy2uoq7t69i48++ggfHTrUUffcdV1/lRN3XHNvuNvQkiAgNzWF3NQUihsbePLkCf75j39g//79OHL4MGRFQYr1Dy6Vy5EdkeId3mZ8vR23nUNRFFTrdayurCCRSESSDj5EvIcBye2FbdswazUoqgoiCLAtCw7rWdruwQuaJPe5f5dRBf/+979jfWMDly5dwrlPP+2LblXXdVBKY5eWkxaGO+p7/J8H4OnTpzh48OBAaYpRoJ7XtZH2PK+jJsu2IO6E0s5YDOB6UkZBvHXrFo4eO+bfp5iNr2OFYcLoM2egqCoOHz6Mb775BqZl4e//+AcePnzoN7AZHobneajV6z1tu2Fsks4icJxTXy2XobM8xU7AH85jr5RKkKiv1QxKYRgGpFZt0UIDmJfs9zSbM/rYy4UFPLh/H0PDw/ji/PmBCBBx6paWSMQ2bHENexgry8tIsk73HNyr7qUwqN23e+kc5b3tzkkMcY9yO3j7YTx7+hQPHj7E6dOnkemiktO27a4NO0/A9yrty6mUiUQCn5w9i9rhw7h//z7+/l//hSOHDiE9PIxKtYpUMtm1186vc1inp9PqT5YkVGs1lEsljIyMbGnS8SHiD2XYLcuCVa9jmCm9WcxbT6dSWz2qMI83NEi6ZV1Q+NK29+7fh6ppOPfZZ9F83R6Xf7qugwBIdCumFIMFEcarhQXs2bOn4b0wvQwIGXp0F0bZgh4qTt9ZcVJMj73vODvd7BrUbNTn5+eRz+dx6dIlCIIQ5Fvi9Il1HAdSDyudfsJL1PMaDHYqlcJnn32GcqWCB/fv49GTJ5iankaCNcTuatvhvBG7N8267VHnoqkqisUihkdGkMlkPvhwzB/KsJeLRcjE75Pohr31Lsri495uCqCQz+O3334DCMHp06cxOTnZWjAK3T/4juMEbfq69WwEIHbrNsdxsPjmDf7biRNtv0eaXsPYYuwH+OC8K6ojT0j2rfm+dcMN7wWGvMmgcyEv0zBw+fJlyLIcdKqybTuW3EPPhTmEQBDFnnqXtmpfODw0hL/+9a/Y2NjAnbt3cXVpCceOHsXevXtjNzPnHns4wUvg9zpouQVK/Z6olQqKGxvI5XJdKWa+j/jDGHbDMODoOkbYDXPC3noUmuiO6OIhXltbw/z8PCzLwvFjx7Br9+7OE0IP4Qe9VgMBulYzBNBVb8ulpSWMj431JbEaPn9e9Rpm4ITDQ92Gdvh5vM+tziKVHkMGm4f64o4ALuSVSqXw5VdfBecuSRJEQYBlWbEMu9WHWmmv01mn+zs6Ooovv/gCT5498/89fowTJ05geno61rajQkRtvXZ2b5KahtXlZUxMTmL37t2xz+d9xB/GsFdKJSiM70uB9t56BNOBNhmgKDiui3u//YbXr1/j5IkT2D0zE9vT6Ba2bcNyHCR7iEMCABFFuKE+m+3w8tWrLWGYfkCAICG75Trz98K0vA7X8F1WnQKtjy8cmvLfaOzGxH/FG0XERbVSwdyVK9izZw+OHTu25XOFVaLGCcfoTKe8J/BYezdeO7sGnY5LlmVM5XJIp9PwXBd35+exsLCAM2fOdIyBRxnwjitiJilSqdWQz+cxPT39XjsKnfDhHnkXcBwHLlPAIwAs0/SZMK2WWxGDjid8Wj3Ea2tr+O6f/4RpWfjb3/6GPV0sH4HuvR+9Xvcz+j0mekRBgBdDn8S0LKyurGDXrl097adbEGxSLsNl7BRo+BcWqeLL7nDibNBo3n94tcFrHMI6Kx73wDlNltJApC02kyYCa2tr+PHHH3HkyJFIow74hl0gBHYMhke/yorB/YqJYEKL8WwMDw1BEASomoZvvvkGWiKBf373Hd68edPyN+0mmTihOk3TUFxf76rh+/uIP4THbpomiOsGsUTDNFszYTqg2bC7rot79+7h1atXOHvmDKa5AdxGSqBlWbAcB2ney7EHcM35TonOxdevkZuaemuMk6irFnmOXO8Gm5Nuc/K0lYEPt31zQz1KKStHbz6WVteHG3EhIszSrbGLg8VXr3B3fh6fffYZJtpUZwqCAEmSYFpWx4m/puuY7oedRUijQFgHdFPoJ4oihtJplMpl2LaNU6dOYdf0NG7evIk3S0v4+NSphtqTuO0MI8HugSrLKFYqqNVqH7TEwB/CY7csC5IgQBLFoI9mt54uj9uJoU5H6+vr+O6f/0S9Xse33367adR7QVwDTSnqTI2yH90avsx0O3jtL1++HGgYpgEtqny7RSvee5iHH/7H983b3AXfjzDObWmZ/Pt9hNvinu3vv/+Oe/fv48KFC22NOgdvFt6pStTQ9d5DMQy9eOxxV7PpdNrXba9UAADj2Sy++eYbCIKAf373HfL5fLBdjzd5b3OcLScU/nyzEGWF7e9DxR/DY9d1JJnHabLlabfeevghppTi3r17ePHiBU6fOYOZASRa4j4cJpM/SKfTfbExeMPndlzkaq2GSqWC3DYJfkXFPXvhxLdiWbxviKKCdjpTSilu3bqFUqmES5cuxU5gK4qCOhcGa/Obeq3Wf5OLLmLtlOm3xL3HAiEYHhrCerEYhI1EScKZM2ewsrKCW7duYXxxESdPnvQrojuQEFrWE4SOR5YkrK+twdvGto/bjQ/zqLuAbduA4wRl8DbrkrQl3tbJU2SDtlwu47t//QvVahXffvvtVqPOY6rbBFPXIQpC352LeNiiXZz91atXmNnGBPAWvfiI9+KA68S8bcRJqDej+ZvtRopj25ibm4NpGLh48WJXrCRCCGRJgsXaPkbBoxSGafbtsQPxY+0B66mL+5VIJiFLEsqVSsPkMTExgW+++QYepfjuu+9QWF6O9ex1ul+KLKNaqcA0zdjH+L5hx3vspmmCUApRluG4LlzPix7IHW62YVl49OgRTMPA6dOnMTMzs9k89y0VMziOA5sxYfoFF8xq5bFTAAsLCzj7ySd97ys2epwQPUohvYOCkl6Otjke3eqodV3H3NwcstksTn/8cU9jTFEUWLbdkqtuGIZPlR1UM+kYFNotwnMxIBCCkZERrK6toVavY4jJb1D41/OTs2exvLyMm7/+itzUFE6dOtU2J9TWa6cUEmPH1Ov1D5bPvuM9dss0IQsCREIC72ULxbGDl+06TqBr7ToOlpaWsLCwAMM0G2f/bfTUAT/pC2AgPVcJISCi2NJjLxaLcDwP4x9AB/d2oZjIOxJi2XTijkd5osH/Q0Yq9p2Ponc2oVgs4vvvv8e+fft8Jc0eJy1FliGExn0z9AH1GuWI5Oo3g9LGXEdMJDTN13SpVoNYuue6wf4mJyfxzbffwnEc/PDjjzAMo9PBtvxIYnH2UqnU1TG+T9jRHjulFKauY4iHYWwboihuHVRtbrJpmpj76Sek02nsn53F2OgoNjY2kF9awt27d5FOpzGZy2Eql0Mmk+k5bMFLoFsdC/U8mIYBVVUHFvcT23jsCwsL2LtdSdMWoG1K1BuMcCgO7zFWS7B6avXbLW/Shs9amaOo98NcdIT/Didi0YJx1MHw5ZeWcPPWLZw9ezZWQU5bEAJFUWCaJijTaQ+jXq+3pvz2uL9OGjL9qHCOjIxgZWUF5XIZwxGMFVmS8Nm5c7j34AH+85//4MsvvmipmBqpUBkqdBNFEetra9i3b19kV6r3HTvasDuOA8LEoRzXhee6W5dWbZgN1WoVP/30E/bu2YPZ2VksFQqQJAn79+/H/v374Xke1tbWkC8U8Ouvv8IwDExPTSHHmv72GwcPwzRNUPRWZdoKgijCiYgjepRi4dWrvppVx0GzgQxzw1uhmQPdS5x7UAjvOypfEH7lIABc2tiekDc+efrkCX5/+BDnz5/f7DbUJxRZhmGacBxnC2GgrusDDzV08tq9PuSLVUVBIpFApV5HKpWKdnAIwbFjx6BpGn748Ud8/vnnGGu16mxxrDw/UWE0yz8N+3sIwjwp3og6UskuYqBtrK9j7soVnDh+HPv37w9+H6YHCoKAiYkJTExM4OSJE9BrNSzl81hcXMSt27cxPDyMqVwOU1NTGMlkOnoqLdvVUQrdMPzGxQPkk7fyrlZWV6FpWhDL7BcN1ZbN1zrkbffKiAHejZxA3MrYBoQmAQqfO++5Ln777Tfkl5Zw4dKlQOYi/L1eBbcCiYGI7kD1Wq3nHgAt0SHWTj2vZ0NJsdmvNBxrj8Ls7CwSiQTm5uZw7tNPMRWx+mmnKy8KAuo9Sge/D9j5hh0AKPW57Czm2HArIx6WfD6PX27cwKeffhoshyVJ2mLYA7DBkUilcODgQRw4eBCO4/jefD6P6zduwHYc5FjIZjKXgxJloFt4EJZt+0nfAcZDgRAzpqn0vJ8wDK/AjDJ2ze81x6Z7ZcQA78iw95hTCRs+x3Fw/do12JaFS19/3dDEJGr7YU2dWFLALBwTpfioGwYmt4HKKgCIytxQz4NHKeQe7hWF/+wpqhpQOTs5HlNTUzj/xRe4evUqjhsGZmdnt2yzFQRRhFGvd6zzeF+xow079TwIlMJxHFDPg6xpHbW+X7AGvF98+SXGQsthgRBAEODEvNGSKCI3OYnc5CQAnxOeLxTw8uVL3Lx5E5lMxo/NT01hZHg4KJ6IelBNXYdAyMA7FxHOZXddCGyicVwXr1+/xvFvv237224MeBz0mnYeRJFQ3+hy33xCMwwDP8/NIZ1K4bO//KW97HDIoHMEcgXsPjZ/ziGzcEyz4uO2sT7I1obSwGaxVDeTcFiqgY+rVDKJjWIx6PHa8P2m8x8dHcXFCxcwNzcH3TBw7OjRYDs8rNegnsk+EwUB8DxUKpXYfYffJ+xow84rCXkYRVaUxsEWTnhRigcPHuDlwgIuXbwY2dFIFsXIGTzSKDVNIOlUCh8dOICPDhyA47pYXVlBvlDA1StXQD0PuakpTOZyyGazDVQtx3VhOQ4SfcgHtIIoCEDTcjSfzyOTyURypr0mQ/4+aFYHHvs7jrF3BUJQLpUwNzeHmZkZHDt6tPeJiY2zLWOQjz9CWio+DqQ4qcUxRckMcAZWN52ueEFTGIlEAqVyGTVd32rYI7aRSqdx8eJFzF29Cr1ex9mzZzcnF0EA+DMdugc8XFQulTA1NRX7eN8X7GjDDjYoHMvyNcvhJ64ChIz6rVu3sLGxgcttqvsEQYDTrIjYbikcerjC35NEEVNTU5iamgI9fRrVahX5pSU8f/oUN65fx+jYWBCb58c4yERs+HwIp42xEvQ3S0uY3rUrvmbLgNBrWMPzvJ7ocwNBDzkBAFhdWcGVq1dx8sQJ7NmzZ3saXYe9UCAIx3Cmjm3bflhkm/rXRrG8+CQcpyEKRWtBL0EQkEomUalWY+vJq5qGi199hevXr+Pq1av4/PPPN8d/i+MlhKBSLnfc9vuInW3YXReu64JS2pb7/ejRI2xsbODixYttBwkXVgqj40PJB0qrDDyAoXQaQ4cO4dChQzAsCyvLy8jn83j8+DE8z0N2chJ79+zBRDY70OQpZ2M4ngcPvnFdWlrC4cOHB7aPjvtniKQGxkCv1aqDQFh6Ny4WXr7E/Pw8Pjt3DpO53FuL4UqSBEopHNuGJEmo67pPddyw84RPAAAgAElEQVSua8e99tCYd1y3473izKhObfeSrPF1rV7HSKhdYzuIkoTPP/8c165dw507d3D27FkAm1rtzWNQEATUqtVY237fsKMNO2HxdUmSNj0TbmDZ7FwoFPDk6VN8fflyx5lfEMXGGHtoO/EOqHMBhyzLmN61C9O7dkHXdSwvL6NWq+HRo0e4fv06xsfHfW8/l0OqB9YK51tTSgHWAJqfU7FYhCzLfTXW7gW9GnWANbF+R3oe3ZTGU0rx+8OHePHiBS5cuODrjHc7fvqAJIq+lC+jPZZLJZ8LzvbfVZFVTAiENKyQvQ6MGIro0EsUZFluSKLGHQNEEHDus8/w/fff49nz5zgwO9vy3AkhH6x874427NR14dg2Epq2pVoQhKBaqeDGjRs4f/58rCQSH5Q0rE3SQ3w1VoUqpTBNEyMjI9i7dy+OHTsGy7KwXCigsLyMhw8f+s0IWEgnOz7eMna5hSceugZiiMteyOfffjwx7vVoAep5A13FdLXvuN9zXdy8dQvlSgWXv/4amqZtKhG+rdUGIZAVJVhxlkqlzcbk4Rg9CckhD2Cf3GhSVkgWFYaJ66U3I5VKwTRNGIaBJMtBxQnpScxz//GHHzA8NIRsNhu58hMICdpPfmgNrnesYfdcN6hKjDJ4jm3jypUrOHniROyyed7013YcKM2J2G7QxpjxwWlzFcdQRl5RFMzs2YOZPXtAKUWxWEQ+n8f9e/dQqVaRzWYxxQqkkslkwCZoBz5ZeZ6HpaUlHD9+vNez6hn9NMboVlBqkIgTBrItC1evXYMsSbhw4ULDqvBth5BkSYJpmnBdF6VKJZrS2pSIDdMre5mEBEGA63mbjJjQs8j300vfVMAv1hNFETVd95PAXYyjdDqNTz/5BNeuX8fXX3+NhKZtsowI8W0HfONeLpUwwdhtHwp2rGEHM+yiKIKGwicUfojmxo0byE5MYP/+/bE3KYoiiCAMJi4aStw2vM1eDcPwKY4tcgOEEIyOjmJ0dBTHjh2DaRgoLC9jKZ/H/Pw8EokEcrkccrkcxsfHWy5V+WRVr9dRKpcxPj7e/7l1gZZFWTEQfvjeCToYu3qthrm5OUxOTODUxx83TECEGY+3CUmSQJgXWi4WMdyhOTnQOOn248l7LNfFxyEFNkNRPYInUUuVCixO5exie5NTU/jowAFcvXoVly5eDHJOgJ8PEAgJ4ux/Gvb3Ba4Ll8UTPUrhUgqRecr37t+Hbdv4y1//2tUmBVGEAP+mD6z9WoSBd10Xlm1DSyQ6J5vY72RFwczMDGZmZkA9DxvFIgr5PH6bn0e1XkduYiKgVIbVLbnHXigUMDEx0RUVbWDo8Vq+SzkBvv9WDI+NjQ1cuXIFhw8fxkcfffSWjywaAms2U6/XYVpW1/zsBiMfroptB+I3M3EZe4lXOw/q+UmlUqhUKqjV6z2J4x06fBjFchk3f/0VZz/9NGjy7jiO7xQCqH2ATTd2rGGnngfH8/yQCWMDCIqCpTdv8GphAZe//joW7SoMkRf0OM7g46Ns0iGEwDQMUEqhtRmoQdw8otScCALGxsYwNjaGY8ePwzAMFAoFFAoF3J2fRzqZ9Ktgp6cxmslAEAS/ge874Otyj70nRgw37O8weRo1BpbevMHNmzfxySeftOyq1U4yeTshyzJW1taQTqX6mhCbi6Pangkh/ip3G1YpoigikUigruvwhoa6HwuE4JOzZ/HDDz/g6ePHOHT4cLAilyQJtuN8kNICO9awc6qjoiiwbRu240DXdfx68yYufPVVT2Jagij6ujNskA4czFswWCFJ8yDlDw8NL2FjHIemadi3bx/27dsHz/Owvr6OfKGAW7duQdd1ZEZHUSgUWjZH3k70o/bHDeO7DMU07/nJkyd49OgRvvjiC4x2yN2ITayRtwFJknyNmJgUwbZoKo6K9OLZ+dnMA94OJFMp1A0DdV3vqUqU0yD//e9/YziTwcjIiL8aY4Zdr9dj8+XfF3w4R9oFPM/zY3ohepVlWbh56xZOnjyJTI/NewXiq77F6f7eKxymnc37mTaUkPehjMchCAKy2Syy2awvXKbrePjwISiAH3/4AUNDQ34CdmoKmUxm28McrXRFOsHzPDisiYQTSpRzBI2N2Wt4Mgy/D/gqnlzSAfw1/Dew+TlnjTDqoChJQYXl/N27KKys4PKlS0jGMDBv319HEIpJb0OZfDg0xv/2KPWlPQgJ8jmDhqaqkEWxZ8MO+F2aPvvsM1y/cQMXLlzw4+vs3nvw8yXDIyMDPOrtxY407NxbB/ylmkAIFl+/hus42LdvX1+bVlUVpW2sRjO5/AFLdHGjQYFtWSUkEgkIgoA9MzM4/fHH2NjYQGF5Gb/88gssy9oULpuc7Kt5diuEF+aUUd54Y2IuGsWNdvg9wO9fa5omBEFoy2Pmhji4euzvMOODU/IaJoI2oJRC13V4rgvTMHD//n04rotzn37qf1avgwgCBFaowxNxCFXJvpPcACGo12oY7dG56Qh2D3m7QgLA4eGXbTzfVCqFYqkEs0k2oRtMTE5iJJPBwqtXOHDgQEP+q1qp/GnY3zk8Lyi6EUURVBDw9MkTHDt2rO9luyzL8OCvAAbRySgMSilMw4DEyvvhbW2hRje/PLAHZXl5GftnZ0EBTDL1yVOnTqFarWK5UMDCq1e4eesWRkZGfEM/NYWRkZHexL6YhAFvU+jYNizLCox6FLhkgCAIECUJRBAghv6NDA9HatjElRoYaiNdGxaICvIazHC5rgsC4M6dO0in0zjLWCYey+m0mhyCJGIooSiKYqDds62gNBC2cl13cOERdn0awjLs/47jgMJ3VrYLyVTK14+p1fqS3zh69CiuXr2K2f37QULXpmNHpvcMO9OwY7PKjRCCxVevIMsyMgOYcVVNg0gITNMcuGF3HAcupUgwieAoBAY+zKbpwxjohuGXZWcyAdeYI51OI51O48DBg3AdByurqyjk87h27Ro81/XplFNTmJyc3KI50mzA+d9RyTPCWhdyz5sbu/BrFBzXhUzptsY+g32HPX4AxHVhmibm797Fvv37cTSkGshBWRjCC70Gf7PVh9mkPSSyayCK4rYYfG6gVE0bWNy7U0LUdRz//opiY35ogBAFAQlN85OofVQjpxIJjGYyePHiBQ4dOgTAv48fmnzvzjTslMJ1HAiiCM/zcO/+fZw6dQoepbBsu2f5WwrfYyeCAMM023p63W6Xep7f05RSyKra4CFGocGD78O4LxcKyOVyEAUBbrPAWQiiJAVVrh9Tilq1inw+j+fPn+OXX35BJpNBNpvF+Pi4X1nZdOycaicoCkT+N7s/Lq/C7Ba0NxGuQWBlZQU3b97EiRMn/GV7BHhf2SgTwyc+13Xhhv7m+SEjjsHvwSiXWUhBEkXYtt1bR66Y4Spg0yhKktQgwhel/tgXKPXZMYzKGdmwvgNc1iz+8OHDmJubw2yoxmVg9Oa3hB1p2Cl7SGRFwcsXL5BKp7Fr1y6Uy2Xo9TrkpqV7/A37jQpUWYYZ0VKu+83RhiSeaZr+xMGLdmIMpmYhrW6x9OYNpqan/Qe9jWEPH7PrupBkGVPT08hOTMB2HGysr2NtbQ3PX7wAIcTnzYdi862uN6c69lT08o4M+8KLF7g7P4+TJ09iT48NSYIwESEQCYEoCI2rHlZ70c7gE5aQlCQJoij6yckO14NrxMiyDFvXG+Ux2oE2NgCPC5dLCbCcEU+sUhaG8jfXv9H0KIWqqiCCANM0ezLs3LEay2QwPT2NR48fY9/+/UHo7UPCjjTsTugmPHjwAJ+fPw/AV4Qrl8swDKP7BgOhwadqGmobG/Efii2bog2vgE8H8yhFgoV3eqnIDD/ScX7reR4Ky8s4feYMXNeFyeLCDZMFM+S24/gMFMcJjlsgvtZ3QtMwlskES9dyuYxCPo8XL1/i1u3bGBsbC7z9sMBY0IS6y/MMfv+WBcAo9TX7Xy0s4IsvvoAgij1TNfl4aqlv0sHgu44D13XhOA50Fl4h8FdW3NhHGfpSpYJMJgNJlkF03e+F2qFeoh/D67L4OmfEEEEIKsEDFg3QsQFOHBCy2by7W9i2Ddd1g8nh2LFj+Ne//oXp6WloqvqnYX8fwCmDCy9fYnR8PGgMLEkSFEWBYRhQVLWrAqXwkFMUBSAEpmW11G5vuY0WD4plWQClA+uSFMfIr7FCFVVVYVlW0PqPV97ZzHiE+4rKsgxZkgIvMQojIyMYGRnB4SNHYNs2lpeXUcjn8ejRI7+zFIvNT2SzAUukF+PRS4/UXkFdF7/evIlKtYpLly9DIAR1Xe99/yEaZVdnzg1+yBjz++U4DlzH8b16ZtzCRl6UJJSKRezbs8cP7bBVWoNhDzkdgwg+2La9yQhCdCEafy7CCddeoakqdNa8O27uhVIKwzBABAGKLIMSgoSmYc/MDF68fOmHcf+Msb97OKyJwKPHj3Hx4sWGzxKJBCzLgmEYSPXYPUZTVYjwQydxDHuUh94MyzR9L6pJT2QQy9RWRr5QKGBqehqe58G2bVRrNZiWFXiIoihCUZRNw9BDTFeWZezevRu7d+8GpRSlUgn5fB4PHz7E1WIR2fFxTOZymJiY6KnE/W1UnYaFvC5euABRkmByL7lHw97Q0m8Anqosy8F9o8yjd5hHb3AP1vNQrlSgaJrfKlKSYDBGEsEm3XRQkyVf7YVXHAStJzO+OhCadNw7IfycqKoKAp8UELcZu2VZ8ChFkj3LvPPakaNH8c9//QsfHTz4p8f+PsDzPJSKRWSGh33N6RAEUYSqaTAMA6qq9lQ0IUnS5sPdgWkTLpRpBc6GSTV76wN46JvBH1nHdbG4uIgjR49io1gMErCiJCGdSvnJrgEbTUIIMpkMMpkMjh496ksd5PNYyufx22+/QdO0wJsfHx9vu6Li13W7PfZatYq5K1eQm5zEqVOngokkuCvvquq1DQghkGQZEh9PlMJxXaxvbEDVNDi2jbJtw/M8GIYBWZICWdpBXs9waX7D8bVJnAYxeJbPijP6w5OALMuQRRGmacYy7J7nwTTNIKEfft4UWcZENovl5eWecynvCjvOsHNdmOLGBrITE1s+J/BnddM0odfrPTNbVE2D3kZDIo6XzsFj2830yX7iz1FwXBe2ZcG0bZimiRqrptNUFTIzBA5LOm8HJa0ZgQzxzAwc1/WLowoFX4a4UsHExEQgQ9ycE3kbcgIb6+u4cvUqjhw+jINNQl59C5D1+/tuwHIh5VIJ46OjSKfTgc644zgoVyrQLAsS8/oHVSHquC4osGWlF+ecAw2hGOyZ5mdMUVXU6/VYtEfTNEEp3cIOIoIA17YxOjqKtdXVPz32dw0+26+tr+NsC0leQRACalQc+mOUiVNlGRXGWGgeuN0YdcAPw8is8KYBA3joHceBxYqAOE9dkiTYbNCOhlYcsizDtu2GOGs4sTVoI9SsFhgIlx07BtM0kc/nUVhexm+//RbIEE9NT2NsdHTbDeOb169x69YtfPLpp5ieno489r5EtPo5uLj7CN9HQrC+tobxbBaCIEBRFCiK4heJuS4EQYBlmrBM00+KcyPfR42A7TiRVcG8EjiO88CNequwZNT7CU1DnYUV27FjHNeFbdsBhTl8PDw0NZrJ4PeHDxs7p30A2JGG3bYs1Or1tmXTiqLANAzUazWIw8PtE6kRA0rVNAiMzx6O1XfLIuAFPMkWLJ1e+L6O68K0LNjMmBP4xlzTNMiyDFEQ8Ob16y3a62G97ua4KOctD9LQB8YxYjuqqjYKl21sIL+0hDt37qBer2Mim8XwyAj27d070EIxSimePHmCJ0+e4IsvvwwS71Hf62e1wOl+g5yWwmMvqhJ3dW0Nh48cafiNIsuglCKVSoF6HmzHgc0cAcuyNo28onTlyVNK4bVh3AikO3VL7n3H0UvizBajDe3R8zzo9ToopVAVJbLWwGOraFVVsb62FvtY3wfsSMO+vrGBsdHRlssw7jGk02lUKhVUymUMtTLuLQafwgaDyQx7t146By+n76cMmu/XchyYhgHbcQK9GU3T/GNtehjW1texd+/ehvf4g9ts2IEmQwFscprhJ5toi++2O95m49Pq2gmCgOz4OLLj4zgJQNd1vH7zBktv3uDJ48cYGhoKYvNchrgXUM/D3bt3sbKygksXL7YV8mol2RtrP12ce8SPAxVQoIlRgtbXvs4UCpv75IqsGpRTd7knTz3PZ0aFjbwoQlWUoNaiHZwW8fXgnOOd7eb3+TmTzv1ZOe3RakF7pJSirutwPQ+pVj0PyKZO0/j4OJaXl7s84neLHWnYN9bWkG3TCYgPCkEUkR4aQrlcRq1axdDQ0Nay8Bbb4PxiHqPrlb1imSZk1pkpEh0eII/6+jIm885FQUBS0/wVRauiIEqxurqKM2fONLzPKxptx0Enln/DdQp5ng1eIxCIlw3SM00kEtgzM4Px8XGk02kUWWz+1s2bMAwjiMtPTk7G7lXpOA5u3LgB13Fw6dKlttxuoL9QTHONQkuWCPuMU2SDZHFTyCDOBLO2vo7RsbEt90FkXHzHdSGHGVmCAFlRILN+BrZlwbQs6Lru04UVBYost2zM0sxfbwaJYaBbwQsxZ1o9d5qqwjDNLaFWLtDmui6SmrYZRm2+rowhJAgCJicnsfj6dQ9H+u6wIw372vo6DvFkV4RnFfaQRFFEOpVCrVZDrVpFKp2O/cCqqopipQKXyZJ2C9d14bQJwwD+g+thq4fDaWyWZQUCS4lkEgoLp7RDtVqFIsuRy1RZlqGzRh+9GK7m34QNfsM5hVQr21HgWoFvTxJFTExMYGJiAidPnkStVkOhUMDi4iJu3bqF4ZERTLEWgcNyAl7JgFfSQRIK5D1+qM7QdcxduYLMyAjO/uUvDeJPbQ6gd6pl2NsOnUtzTDz8nX4nx9XV1Uhnh7d7dJpoiWEQQqCoKhRV9XM2pgmT/ZMlCYqqbvHMbdv2G9O0GUO8H2q3CD+/rQw7n9BN02ww7IZhwHFdqM35g6iYP7sPExMTuH37dl8aNG8bO86wV6tVWJaFER5fj2GcZEVBklLU6nUQXY/Fb6fw4+xglaztjHMrBGyYDslbHluk1Ne6MRibgcBnAGhd0ja59xYFWZJgAIG+x6CwxeCHYqwepaChpW/TFwOjH94C/y2XNvZqFrySDqlYx1SRYrI0BKsqYH2lgrUnj/E8cR+uAGSKwOgGkCkB2swYkAW+//577J+dxZEjR2JPZh5lrRajEDLcDZo+7LOALx46x/C5b0dCeG1tDac//njL+1yWII6cBOCHViRJgsfaN1qWBbtW88M0LBYP6pfgd8x99Hue4d83GeWA9hjis5umCdu2g0LFBkRMEB78XICqKEgkEnjz5g1mZmb6O+a3hB1n2BcWFjCWyXT0oJs9UkVV4TJerygIbQuPeCIxkUhAFATUarWeDLttWZBYBWA7eJ4HXddhmqZvUAQBqUQCiqr2tFJYXVvDeAvDzo15uHLPfrWB+tVngOlA++t+qIdyXe+zGc0xeUJpZMMN6nnwKibckg6nWPM97qKOWrkCq2zAWbfglnTAbQpPMAyxf/sB6AlgIwMUJoBHBwHNXAUoxf7ZWRw+ciQIe/DjC4c9goQxP65mj7H5dxHnyU7Wf2liBG0nbNtGhUkJREGUpEg5iXYQRBGaKEJVVdi27YdpDCOo4HQ9r6Nj0PdZUxr8i5Lg0DQNlVotkFg2TBOSIMQWPqOeB8LOIZvN4unTp38a9neFarUKLZFo6w0QRD9MiUQCnuehrusQRLHl0jTwFgUByWTSHzxdsiQofDpY276mnhc8LK7nQZEkqJrWt+zA2uoq9rdoOCKwicZxHHimg9rf76P+45PAcBl3X2Psf70EeV/rHEYsUAo4LryqCa9Yh1M0YG9U4RZ1eCUdXlGHW/b/5t04KCgIBSgBTAXwRMCt86pJBPEc2nQbKABCAU0HpnRgagnI5whe7iegLvDi2TM8ffo00LOZmJiALEmbRrup1D1cQMPRTe/WLca+x/xMXKyvryMzMtIyjCCxOLvreV1z2HmiUlGUIExTrdVg2rbPNunUBKXH6uqG34SufXhLqqqiWq2iVq8HXZxaOmxNx8BXVPweJxMJVKvVro/zXWHHGXaOTp5HqwGVTCZBPQ+1ahXJVKox8QIWGw5tO5lMolKtwjDNoCQ5DrhErhRhpCmlME0TdV0HGOVKUVVIA4jvWbaNer2OkTYVs7IoovokD+P/+R3uelMRlkeh31zoaNip48Kr+N61W9ThlnwjzV+t1Sq8ihE8UB714HkUoNw40iA9QhuMNdk03n5mlr8EHzeDNL2/sBdYzQKnH4q4cgj4b//9v6NSqaCwvIynT5/ilxs3MDY2hhxLwg6l08E9p0AQFuMrN/7+5g5J4JE3e/CE/Z40fX87sbq6uoXaGoYkSRAIges4fRUncf0gm0lmW44Du1qFqqp+D9+I8wyLgnWDqOe3+WlWVRXU81AulzGUTiPZggFDBKGhqQ3A7jH/zN/htvVs3Q7sOMPOY7e9PiqEEKRSKVQqFdQqFWBoyOf6gnnqTQMjCMdUq10ZdpupJDY/SBYz6B5byiaTSUjMexyEfvX6+joybSiBXt1C/f+9j9L8S6TrFFEpO3elCne1CrfsJyKdYh202XhXjJZUDwrWuIC50pSlTxvVHgm34fzPxs0Q3wvvBp4q4MkhAWYC+Isyg5H/5SDw/f8HEIKh4WEMDQ/jo48+guM4WFleRr5QwOPHjyEKAnLMm89ms8H2Wq7QmuifYQMUeJYhDn/DJNDdKcXC+vo6ZltoxgP+mBe4Hn+f7Q+5jMDQ0BBEUYRhGH6S3zSD1WbDRDfg1UqgH0RpIHdsM4JCS2cvKr7O3mtelX0o2HGGHYhPRWv1PSIIGBoaQrVa9UM7jAsexYIgrIq12kZeIAqO4wQKe4AfB60zGpYoCEin0w0JnmDC6nNwra+tYayF92bMv0bl/74Np2aAqASOQCFHOFPWo2Ws/u9/77wzZsT9v/0Eqe+x0pCXvXk+AuIzYygBhNA8R1QRQiYJMZOAMOL/k9irMJqAkxBx/favUFUV58+dg9gm/itJEqZ37cL0rl0ApSiXy8jn8/j9999x/do1jI2NYWR0FHtnZjrSIrccNzf6pFFzPxzmierE1Ot99zwPa+vr+Oyzz9p+T5IkmANo0m4zZVXeszeVTMJxXRiGAd0wYDHhvFZhzjjgjKrIZ5cloh3HQb1eh8gSve1AIxxBvqoK9rHN4bJBY0ca9jhoFWff/IJfwFTXddRrNTi2jWQqFWnck8kkqrUa6oYR22vn2XnXcVDXddi2DSIISCWTLRtTdKt6F4XV9XUcmJ1teM8zbGz8H/+Cs+rHEEUAAgFcCZGGPQqU+kER2srv7IOuRxIyxIwGYTgBIZOEkEkASUAZTiI9kYGYSYJorQ1FtVrFlStXMDU1hVMnT3YX+iAEwyMjGOYyxJaFN0tLeLO0hJ9+/BGKpiE3OYkpJlzWKRHesTQ+IgkYjiFzxPXuS6USkolER0MqShKoacJz3Y7n0AqctSU1UW4lRim2bRuGYaCm65CY5LXE2ld2M65FQWhZtcoleE12HENDQyiWy3A8D0qUYxZFc0TIYw+Jvv3psb9DBEmsGDchzoBSNQ2EEOi6jkqlgnQ6vWXgJxIJiITEDsfwBgme5/k67IQgkUhAY/tqCUEA+tCs8Fjx1vi5cw3vb/yfPwRGPdiVR+C2COnzZORmT50w5zreSinYT1KBMJKAmNFAhjSQYc33ujMJCCNJiMNapNF2ikVfnbMDG2l9fR3Xrl7FkaNHW7aw6wayomCaNfMeZsVt+UIB9+/fR5kLlzHefKJHWehWaBipTWHBVoZ+bW2tJbU1DF6o5PZh2B3XBShtOYlw7RnLtmEaBqq1mq8syfobxEWrphyUUZZtlrjVNA2Wbfvn5ThA1Cqt1baaOOv9agO9bew4ww5gYMsmHqvn8r6VahXlSsWXtQ0NXkEUkUgmY4djarqOSrWKVCqFVDLpx//itifrY4CVKxXIqrqFw+uuVLZ8V3IBW2LGm4aWo4yW0pDMbAGSViGOcE87AWnE97bJkAaMqL7RVjaHYJCc7oQQh70dXi8u4vbt2/jk3DlMT0113m5M8NFFBAGZ0VFkRkdx9OhRWKaJQqGAwvIy7t27B03TMDU9jalcDmNjY36isMXY7Jod0ly92mzo2ThZWV3FVIxzFwVhs1Ap/lE0wGHFcu1ojoTxwhVZhmlZAbecM2s6wQu11AvDdV3UazW4nodEIhGQHviKwLFtIMrpanHNg7BnkL3/07C/P4hIdm79SnRMszlRKUoShoeHUatWUa1UkEgm/QIlhjjhGI9S1Gs1VMplCIKAsdHRroqACGGd3ntMoq6vrkby14VhDe56reE90QUgAI5AIfFFAo+JExYeGU/5MexMEtKI5nvezHgLIxqIFO35eYxVsgUxDVtYsqDFF/CYCXl9+dVXLfnbvYIzo5rHjaKq2LN3L/bs3QtKKYobG1jK53F3fh61Wg2TExOYzOUwOTHhU3JD6FtQLer3lGJtdRUnT5zo+HvCWB/tGpq33T+lfjemGJXPfH+aqkKRZei6Dt0wYNs2EolEW3pkVDjStm3o9To8AKlUqoG9IggCBEJaqjNGxtdZ4lVRlAYBvD9ZMe8Bom5YM1rG2ZtYDRyCIGBoeBi1Wm1TbyKZDEIpIiGo12qRht12HFSrVb/ASBQxyppZdI0+DMDa+jrGIgz78P/8VxT/rx9BdV+y16OAQKifQBWxadhDSP+PHyNxLpoL3ytaxTub0cAvb/7M83Dnzh2sra3h8qVLAw+H8P13Wl8RQjA6NobRsTEcP34cpmmikM/jzdIS7t65g1QqFdApo+5J3yAEG8Wiz6xKpQJNGcqLeiIgszBJL6tCh/XsbVeXEQVBEJBiuSvDMFCtVpGIkRMANmnBBpMaTnxMQd8AACAASURBVKdSkUwlUZJgRxj2VuMtEDALGfI/Y+zvGOl0Gi9evYotjtS8BI4j6JVKpWCIInRdh8sU8wRRhMY03hFinVAAdSacJAoChlIplCuVSP56HBBKI7Vj4mB1dXVLwwgAkHdlMP6//Q+wn63CuPkK5t1FUN2G5FLYLZwUWu+dQdFvApj/vvkhdhwHN65fh+t5uHjpUl/Mi07771YnRlVV7N23DzN79sDzPGysr2Mpn8et27dh6Dpyk5PIMo8+rnBZJ+SXlpBjYZgwAyecyA7fC1EUIaA3OQnbsgJ5gl6gMb2Zer2Ouq5DdhwkmnJO4WPlhYQOWyW0y09JkgSzXt8a7mph2PmqRRTFgMFkGEbPTXneBXacYd+zZw+u/Oc/vqpbD1Q0r7l4pAU0pgxXq9VQLpehahoSySRq9ToMw4CmaXBdF9VaDY7rQlMUJJJJOEz1Tu5Vh4UQv2VYl8bRcRy/YxTTzWiewAgA5UAWyoEs6P/0Mcz7eeDX5yi9yMMlgNi0O3FyuLfjR/987SDGHXqQDcPA3NwcMpkMzpw5s61iTf1I9gK+lzqezWI8m8XJkydR13Us5/NYfPMGt+/cwVA6HVTBZjKZnvdVKBRw5OjR6HPgf4SMPGezdGvYgzBMDDnfVuBc+lQq5QuMWRZcx0EymQxCIIIgwHVdv2dxqPNRp+dcliQQ+CEbWZIadHui4LDmOdyj51Lgg0i+vy3sOMOuaRqSQ0NYXl6OrevQrKrX4N20gSzLGBkZ8aVMdT2oKqzWagAhvqgYo02qzHt0HAegtC+BrV7KsCuVSqDF3SlBSSQR2se7oZycBllaAX5fBW69gfOmBBBA+/wAlCOTPR9/u9xHnAYMzaGYUqmEK3NzmGVCXttdyUkp7W3iaHFeyUQC+2dnMbNnD1zXxdraGgqFAn755RdYloXJXA7TTOpAienNm6aJImsW3vGw2CthCdRuGmAAfvN4AP2tkNg9I8Qv+5ckCXVdR7VWCypXXdf1deVZrUcimYx1H6TQsydKUlAvERWu9TwPnucFqyZKCErlMlJDQy2brryP2HGGXRRFZHM5LOXzsQw7j7P3mpAkhCCZTEJVFL/PIqVYXFrC7qkpqJqGVDLZ0MDDtm1IHeRMY+y0O10SSlEqlZDqcikpCAKUoQTopzMYunwMtG6BehRCuvdQwSBileHk6XKhgBs3buDj06ffWsNh6nnxpH2b0SmHQPxm4pO5HCZzOZyC30w7n8/j5cICbt68iZGREb8KNpfzZSFaXMvl5WVkJya6pi6KogjXdYN7FKeKmxcl9eWsNP1fYk3VDcOAruuoVioQ2MST6LLAiXvptuMgyH6FKn7DcCPi6yuFwpbOU+87dqRhn5mZwb2bN/FZE1+7FYJqwM03ut+vJCGZTkMpleCsr6Naq/mc9zAXFv7g6rdbEoC24Rhu9MOeV6VSwXCMru3NkBlrgXoeSFIZjCJfG8RJoPJJeGFhAQ8ePMBfP/+8odR/u+FhexJpUauVVDqNgx99hIMffQTXcbC6uop8Po+r167Bc12/D+zUFCYnJxvyNoVCAVO57lU4RUGAbdsN4S4+lqLOmLfT67YCNwrNK1FBECBJEnTDgGmakCQJo6OjXbNTRFGEyKicQPvqZodNavy5JQDWi0Wcv3ix29N5p9iRhn18fBylSgW1Wg2pNu3NAvTJDwd8ZbxatYqhdBpONhssG03DQCqdhsyqTIH+PJsAEcVK4bL05sFbLpexqwfJUUWW/eYEA3p4BwFKKZ4+fYrVlRVcvHQJ6R4mrH723SunuWP4rMOkJkqSz6SZmsJpSlGtVlEoFPDs+XP8+uuvGB0dDTpH5ZeWcLRFfL0dhKZWeUBjTqM5TMl13AeRqBYIgcu27bou9FByNDU+Dt0wUKvX/VVwl8ZdYoqlHK3unuM4m/F1+Ia+WCph//79vZzSO8OOM+yAbzhHJyZQKBQ6Jjw8+LFFgam59eKtu56HasUv8hlm7fXWNzb8jjO27SdXFcVfvlPae+I0BM6vBTbDLe20ZMqVCo70kNXnCbVBeWWdrm6nzz3Xxa3bt1Gv13H58uWGWoK3Ab5a6KeR9UBACNJDQ0gPDQXe/PLyMgqFAn766SfYto1Hjx5hKpfDxORkbEMosDCh63kNaqINeuchL95i+jL9qEKG4XlekDwFEOg0cR55tVZDrV5HMpHoykESJQmWYWyeC39Wmpg2zcJ8a2trmJ6ebtuf4X3EjjTsoihi1+7deJPPdzTsvFt84C3F5FJzuI7jJ0vhUy1FUcTQ8DBK5TL0eh0T2WxQgFHX9eDB6RvsGMNL91bb9VhCt1fPVmZVggNhhHcKxbT5zDJNXL16FZIs4+zZs2/dqAPRjJzYv22SfB4kxJBwmcLyPalkEo+fPMH1GzeQHR8PYvPNDa0btiOKACEdE+zcmXDbtNTrBpRNErV6HZ7nQZZlqKraEMoUBMFvY1mvo16vx+a7A2yV7HlwPA8yM9zNxp179GGBuOXlZRyLUeD1vmHnGvZdu/Cfe/fwZRsvNhwr5QnUyAq+FnBY0ZEgCEil00GSlKszFksljDqO34tUVaEzsa+NYhGapkFT1Z50ObpdWdRqtUBeuBfITPnPZTSwftArg71areLK3Bymp6exf3a2o2LfdiGYSLu9ljEokoMy+YVCASdOnEB2YgKHDh+GbVlYWVkJFColUfSlDqamkG0SLuMxdTfG9eVetaqqXTtEHJ7n+S32WHcwSumW6tHmuHsqlUK9VvNzP0CsxjOKLAOCEKiqRl1rHl8PPycbxSI+iqj9eN+xYw17IpGAmkhgcXGxJVsi8NYZCOstGge2baNWq/leRFOSFPBDMtVyGeVKBWNjYxBFMeC+E0HwvXhdh6aq/vsxl5XhykHeUq7T41Qpl/sqruD8ZNu230pZdXMSbX1tDVevXsWxY8cwe+AAqtVq742k+0WvoZg4hm8A3rxpGKhUKg2NNWRFwa7du7Fr925QxpAq5PN4+OABiqUSJrJZTLHYPeeNd/TYKYVlmn5RE9M/7wae5/laMZYF6nkQBSHQTKJNq9Dm3IRACJKpFPR6HbquA+hs3Pm4dV23USUzlBRu5u+vrq/D9Tzs3r27q3N7H7BjDTulFJ9//jl+u3kTu3bv3uKttopHx6ERWraNeq0GURSRTqcjtyPLMrRkEtVqFaOZTKCDqDDVOd6DUTcMGJYFRVGQYPzdrQdFg849zfuKMxlVKpW+DLsgCBAFAZZt9x9rjGEAwvmDxcVF3Ll9G5+eO9cgZvWuItxRDRjeJxQKBUxMTrac+AghyGQyyGQyOHL0KGzLQqFQQL5QwIMHD6CoKsbGxzEyPIykprWkddpMeiCySpZfmyg6IYuhW7YNykIuSiIRxLU9oKGjUqsJRmA0Y+4g0RD3PAqyLG+qPEYcr8sa3/AJgAL4bX4eX3711bYWu20XdqxhB4Bde/fi1ePHePb0KQ4dOtTwnSgWDIlR1Wkzoy5Jkq9x0eYBHx4ehl6vo1ytIsU0S/ixiaKIVDKJhKbBME0YhgHLsiAzaQKFdXsPG/RWujadUK5UWjbXiAsetw2zJXpBnImTEAJ4Hh4/fownT5/iq6++wkhIyOtdSqjyLlrdXoM4BWUE/Z9bPp/viuYoKwpm9uzBzJ49oJ6HYrGIxcVFPHn6FHfn5zE5MRHE5sPCZaZpBnTELQitKPl5O64bGHRCKWSm5rglPNiF50+YRhNYlybef7XNDyKdIEopHPY+n2DeLC3Bsm2cOXMm9vG8T9jRht1zXZw8dQo//PAD9u3fHyzX2rFHwt5iM1zP87uyME+9ExKaBlVVUSmXfU83omJRYEvQwMAz3XdRFINy6XYPOiEEAtC2WrBcLmNfn3QtWZIAxo7pVqqhATFizZ7n4dbt29hYX8fXly9vUUKMs43tAvW8jgJg0T+MZ7D6klrwPBQKBZw8ebKn3xNBwOjYGNLpNHbv2QNZFAPe/G/z80gmk5jK5ZBlFbCJDqs3Sikc24ZpWb5BJwSqLENR1ZYrHj7W41ZWE0L846B+gw1RFFuGCwUS0cSEwbHtoPG2Synm5+dx5vTpbRGRexvY2YadUgyPjGB6ehq/P3yIU6dObZYS92AY6oz9EosbzzA8NITC6mpAh2yVwOQDNKGqfnhG11Gp1SDW69ASiaDje+Rv0doTptRv7TY83Lu2C7DZ8Lgfwx7nujuOg2vXrsFxXVy8eLFls+93FQrpRQCsG5A2xqcT1tfXkUgmt06EXUJgTTckWcaeffuwZ98+UM/D+vo6Cvk85ufnUdd1TExMYJopVIbDILxoybSsIMmtaVqswrwGznwXxl1LJFCrVlGr1/2cV9P44LmpqC16ngfHdYNzePH8OZLJJCZzudgSDu8bdqRh55VjrusChOD4sWP453ff4cDBg0gmkx2NS9Sg4v1IU6lUVzG3ZCoFtVRCqVTywwnt9s246Jqm+d1fLAu6rqPGuLvc22luCAxCICLaa9d1HZIsD4Q7L8syLMvatlCIruuYm5vD2NgYTp061dKAvtNQTI+hqNjGukd2CdB9GKYVwlx2Pq0SJlw2OjqK3TMz8FjYZmlpCXfu3EE6lcJELofxsTEkEwm/vy3TfQlTEjvlhALVyW6PmcXca4wt09y8WiAEaLFvLomgKApsx8GDhw/xxfnzUNo4U+87dqRhB3yv3XEcEE2DlkjgwIEDuH//Ps51khmIYJqYlgXLsqD20ISXi4AVy+VALCkKNBSX5OBdZRzHgcW6zZhsSavIsv95B0W9KmvnNwgoigLTsvxqwB64y+0e1lKphCtXrmD2wAEcZvmQln0t8e60sSmleC/bLVCKV4uLHZtWxwF3jKISlxaTGxgeHkZmZAQzMzMwGZ1ydWUFd+fnfeGyiQlMT09DbZpoAsPaYgIL7movsh4sP6XrOkzWNDty2+HjoZt9WgVC8ODRI0xOTiIzNtZfyPEdY8cadp7sA1uWHj50CP/1j39gY2Ojc0ed0KBzXRd6vQ5JkjrGFFshPTQEgfhqjxMRn3cqXJEkyW+YkEzC5jFLRhUjQKB+R9gSOoxKpYLhAelIK7Lsh2NsuyfD3ip/kWdKhmdOn24UbmvzcL9LVsy2hmLQG9d/Y2MDBBhYtyhRFGE1OSKc4igQAoszWxj3fCKbxa7p6UBTvbC8jFeLi7h16xaGR0Z8TZtcbvP42hUD9rFqUWQZDgsD8ecG2HQGmlfiDmPD8E5Oz54/x9eXLwfP1YeKHWvYVVVFrVaD7bqQ4McLjx05grt37+LChQsdPT6BLUVrtVqg4NgrREFAUtNQ03U4tr0ZN+Yrgy68T1mWIcsyKDPyXJvaME1fU515+XxAl/rksEft37QsJHoJh0Q8rM+fP8f9+/dx/vPPG7jXHbfxDjz2XnVi+m0sEgevXr3CzMzMwFYyQpN8r+e6qNVqqFYqUDTNlxwQRciKsiXMl0wmMbt/P2b374freVhbXUW+UMD1GzfgOg4mQ8Jlsiw3cMl5rqifK5bQNHiui7quI82Knfg+mtcgFkuaSpKEO3fuYO/evX64FoDygckIhLFjDTtnk3CZXFCKfbOzePb8OR49euTrdndAnZU3D0UUIHUD1/OQTKVgWhZKlQrGx8b6ftg5tUtRFKRYObZl277MqWFAEgTIqopSuYzpXbv62lcYah/hmPAZU0px7/59vHn9Gpe6EPLq2O90G9GzTkw397oHb5V6HhYXF/Hll192d1xtIIoi4HnQmf65yww7YWX9XEOo43YEAZOTk5icnMTHp04FwmUvXrzATSZcNpnLIZfLYXh4OHbns3bgjhjXlUlzWjIhDRx5l52XqqpYXFzE8soK/va3vwVN1f/02N9DCILge5e2jYSqgsB/ID8/fx7ff/890qkUdkepHbIlomXbfnPdLqpCW4F6nk+RHBoKQiMDUXhkIIT44RhVRTKR8PnCpgld17FRLMLzPNTqdchsadrPJCWzcIxlWT1rhLieh19/+QW6ruPS5ctdyRi363e63eAebNcc9u04mBDW1tagKAqG+mQ+Uc+D4zgB57xWrcJmIly8cjqVTPalDZNOp5FOp3Hw4EE4IRniubk5AEAul0NuchJj4+N9PSOCIEDTtKA+RFVVPxQTGjc81FSpVHD79m18deHCZlyd0neiRTQo7FjDDvjhmEqpBCrLgSFIJhL44vx5/PTzz0imUi27ohiGAUmSBnJzXebpDQ8Po16v+51ttkk/XBCEwMg7jgPHcZBMJGCFwjUim/Q4W6bb5buiKEFrsm5/a1oWrl65gkQiga8uXOhavyYqyfy20Mu+uz3KXs5qYWGhpyYjlNH8+Djh+jCU6aUoqopEIoFEIoEqk88YZB9ZSZKCFoBnAFSqVSwtLeHx06dYu34d42Njgd58p2LAKMiSBIfpHPEVPGHPIqUUNnPerl27hk8+/RTDw8N+nYIggMLvw/qhYucbdib8IysKbNeFyEqqz37yCebm5vDN1183FiEwb5RTG/uN9wGs3RalUBUFQ0NDQdx7O5Z6hFVFci6xpij+gGVKfI7jwHYcGIYBahiB6BGPlcZZYqvMsNtd9pWtVKuY+/ln7Nq9GyeOH4+V52hmxgQ859h7HRx6CcVst7fuuS7evHmDr7/+uvOxUBoYcG7M+TGKogiFNZTm1ZeO4wTsGNdxYolt9YN0Oo3Dhw7h0KFD0HXdFy4rFPD48WOIoujr2eRyyGazsTSLBEGAqihBLooQAh6IsW0bjuvi5s2bOHToUCBXQeE7YgIhUPusB3iX2NGGXZZlCIIA23Uho/GB3D09jVq1ip9+/hmXL18OkjiAL6QkimIwkPuNh7uOE8QOM5kMatUq1tbXsWt6uq/ttgLP/puGEaw4CCEBS0ADAkNvOw5sy4JhGDBYGEoSxQaPvhk8nNNNw/C1tTX8/PPPOH78OGZnZ2OfR6t487vw2HsNxXSFLs9reXkZ6XQ6skKyYTK3bV9vHKx6ttmQR+yXEBLoowPbzBIhm63qCHx2y/T0NHbt2hUU2RUKBfz++++4dv06stksplhsPqpgkD+zoihCYl47gGAfpmXh3m+/YXx8HAcPHmw4Z/7vT7rjewoee7aq1Ugt8UOHDqFcLuP69ev44vx5v2TesuAwb50Pdq7h0Qs8SuE6TiCNKggCRjIZrPH2eV1UscYFAUBEEaZptgwlhQ19QtMCb852HDiWBd0wANaYQBJFiJIEkbEHRFGEqiibLfM6GLrFxUXcuXMHn376aYOQV09416yYVpo97X7TBbrVi3m1uIiZmRlQz4PLGjFzY84bR1Bs5pwCCmCM7RNBgMu2FzdZ2guiaIiEEIiMmUYIwcjICEZGRnD48GFYto2V5WXk83k8fPgQsiz7ejZTU8hmsxAYD59vU1UU1Or1YIViOw5+//13gFKc/vjjRoVXdiwfWmONZuxoww74XoZZLm+R6wT8h+js2bOY+/ln3J2fx8cffxzoTYSXnb2GY7i+tOt5DYmg4aEhVKtVbKyvI5lIbEt1GwGgG0bsOCEhJKBSIpHwY5COA8e2/QIp0/T169n3qeehrusAIf45sL6S4YeEUorHjx7h2fPn+Oqrr7qSYmiFjqyYMD86hiFqNqIB9S5Cs4SyJXqXB9zd99F+NUIphee6cD0PtmVhaWkJ+/ftQ6lcbtxGyJBzqehuIRDiVy6LIrRt1EyJnPwIaTnBKbKM3bt3YzeTIS4WiygUCrh/7x4qlQqyExOYYrH5BOu0JIkiarYND8CTp0+xvrGBixcuNFyX8ATzoUoJcPwhDDsIgdOiqEYUBPzlr3/Ff/7zHyQSCWSz2QZvHQBAOgttNYMve0Hp1jJ0QjA6OorC8jLK5fLAikrCIKyIpNflc1DdGrpmLjMoHvMI67qOarUaeIaCIEAkBAKr4rt//z7KpRIuXboETdM6any3BTPULTsYMc+U8O+GXzucZ7Nh4fetGVw8LthzhNFpmAho+3aFLY+JHYPruoEHHv6bS0Av5/NIDw1BZU1UuDZ6L81bog/EH0OJTGb7Sus7FCmFm2lH/9x/lkZHR3H06FGYpum3CMzncf/+fWiaFnjyHqVYW1/HwsuX+Pzzz9uGWtIDrP14F9jxhl0URYiq2lAt2SyYpSoKvjh/Ht/9+984fuwYRqMMbYTUQCt44e/RaP3uRCKBpKahWKlgKJ3um1IZBU7zGhQC5Tx2HQVRRI2FkygAz3HgeP8/e28WI8l1nol+sS+51l7V1fu+s9lkU80W2SQ1ksYPc+EX+86982LAhiXc8Tbwi2zMm2CMYHsEe+61HzyPMkYyoMEdwAYMXVOWKFEU1ybFvbvJXqu7a6/KLfbtPsQ5pyKzIjMjs7I3Vn5AobuyMk+ciIz4z3/+//u/P4Rj2/jgww8RRRFOPfEEbCrXio1ydY5ovHM8D56EN1q95U0GOoqbLEdtDPf9Ds7Q2HTrd9sOlGIb/8KxAif6/5CcT/LfMIpYOJCeZwSAR3z9JUI9FHgen66uYi8pqLkf8FwXEdATHbVntDPY2Ngl06rRMFHI1A6KomDnzp3YtWsXoijC+vo6FoiRrzcaCAGcOnFikygedUzodzQyOrrFE3u4eDwVbnqEomnxg4KN5Mim96gqnjxzBpevXMGVq1fbexFdQMMvFJ0e/fLICPgownqlkuEseofjONDvY2ZfJsnpIAwhSxJU4jm+9957KBUKeP7LX0ahUGDa8q7nwXIcGKaJhmGgWquhUqlgbX0da+vrqNRqqDYaqJPCEstx4lAQ8VajjAvr/UIYbZZdTkNEPGuqcGjbNkzThGEYqDcaqNVqqNZqaNTrqDcaMAwDpmXBtm14roswiljuI6frKBYKKBaLyOVy0FQVsiQhCAIsLy9jxwCLz5rONQjiKmnaIek+oGN4KOVZE1J2V5s/tvF8cxyH0dFRHD9+HAcOHADHcSiXSiil7EBodSoQkwOKpVLm8/jud78LjuPw3e9+N/XvV65cgaIouHjxYuYxt4ovvMcOxKu4ycVdUvg2XrvneSgWCvjKiy/ijTffRL1Ww5NnzzbRqrppRUcd/pZ2o8r3mf5o2zZUVc3U3KIfiCSh6rkuVEVBpVLB66+/joMHDsSNTTiO3WCRorCdTBCGsYdKjHVA/g1JApDqd3DEu02GcKgOCNXObk180V0BaMgkkQBvfejp33zf3wi/JBbm5PcZhSFs247nTMNs5O/0PZTWyrxN8jfqUPDARi4iMX+e7lrI734YIvT9jo7EvXv3MD4xAfE+edO2bYMTBMikTd7AjTv5XjvmSlpfAjq37aNjtuRMPvnkE8zNzeH4sWNwPK9rqKpQKvV0vs899xwA4I033kj9+x/8wR8gCAL8zd/8TeYxt4ptYdhlWUYkCCwck3YzBUEAQRSh5XK4ePEi3nn7bfziF7/A+fPnmwwu1ZtIGyPthmsbEyYol8swDOO+0B8tYti7dYXaChRVhWEYmJ+fx7vvvYczTzyB2R07moxSFEUI0dJWrkNDBPoZWtodeB7bCZmWBR4bVLzWmDb5z4ah7rLLCqMIdaKVnzIJ9vkwDGMutCCAo/RVIM6/kEVEEARILUY6+ZMFbEED2MKUDOFQzM3NYd/evZnG7BUBSZqrsgzX9+OdyqAP0i2s0uZ6dcrTtMoR+L6PS++8A9txcPHiRSwuLkJSFHZ92eda+qz2GoY5e/YsNE3Dm2++uelvP/zhD/Hyyy/jD//wD3H69Omext0KtoVhp5xUjzTKaEWE+GaWFQUg2+AvnT+Pjz/+GD/56U/x3IULG+XaxPNqNZRtJWa7GFSe51Eule4L/dG2rPtO25IlCVfv3sXNmzdx/vz5WAcH6Fudj4J637wgNOcnSDgkk7ZM0vsmxr7J+BODSZPlHJqNQ9IgB0EAnueRy+UyV18GnTzSLmALAd0BkAUEAEzLwvr6Os6fP9/n6J1h2XYcW1cUeL6/5e9yE9olTJNv6ZAsTXumWl+3LAuvv/46CsUivvz007AdB2EUxQJhZHfYzivvtY2kJEk4d+4cfv7zn+PevXssPGYYBv74j/8Yk5OT+Pa3v93TmFvFtoixA4CWyyGIIiaqz7Ws7BHQREnkOA4nT57EsaNH8crPfobFxcWNv6E5dt4aV09DpwecxqHX19a2xhxJgHKZJarXfh84yFEU4aOPPsKdO3dw9uxZjFKjnvbeLRyndWvdwwdjz5kwRWixiiiKcfEVCWNIpBBLFMWYr0/eyye8bvq99EJ3HOQVp/z2KIpw69Yt7JydjeUggIEaXt/3Efo+FEWJQxYtobCBIMN8ow7XmeM29yZO/n99fR2vvPIKZnbswFNnz8YJac+DQOQ2ADD5BA4AEuenkv4NvYIKsCXDMd/+9rdx584d/Pmf/zlKPcTsB4HtY9g1DZwowiZFNwCaYqwAUosw9uzZg/Pnz+Ptt9/GtWvX2OfoA94xrg5ke+gIZSuM4gq7QcAl+hjUK9lKy7UkKNXO9Ty88cYbWFtbw3PPPQdV02Lvru0H+z9663fyMOUE7mvVaQaEUYSbN25g3/79TWE+ttvYopG3LQtAzISh93gvNN9uyHz9uhyTxtuB5vvj3r17eO2113Dq1Cmm4GrbNqIogpDQRvKpYef5Jqen1EY7qhuoYafhmMuXL+Ov/uqv8Oyzz+K3fuu3+hpzK9g2hp3jOOiFAlOvA8Bisb7vxx5aGy9hfHwcL7zwAq5du4b33nsvrrYkf+vmzWT1MJP0x6CTgcwIp4XD3kS96xF08aKVjZZl4Re/+AU4nsdzzz/PBJqaFs0WbKlqMSPL6H6C5QcehGHvcK2WFhchK0rb2geapO3navueF8vYqmpzbmCAhr1TW7wmZGGg0bHITubylSv41fvv48KFC9gxOwsATPdJSlB0BUGIPfaUnXY7UcBuuHDhAjiOYx777//+7yMIAvzt3/7tfavY7YRtY9gBIFcsAhzHtC9Y/NT3u0qE5vN5vPDCRIFKWgAAIABJREFUC2g0GnjttddgWVZ2TybKVqQyOjoKHsDK+nq2cTvA7qHqNA3UmIfEmNNzrdfr+Nkrr2BifBxPP/00C1eoioLA95mS5eYBB2QcMl7LQaPXXqdbSVZ3Orvr16931dqhR6YGPuvVsmwbHM83FaWlCbH1jQGHsejC43geLr3zDu7duYMXX3gBZWKcI6JzQ9vegeNYIVeY0rWM4ziU++Svj4yM4NixY3jnnXfw/e9/H//6r/+Kb37zm3jyySf7Gm+r2FaGned5yLoer+LEAIWkECSLWpwsy7hw4QJGRkfx/738Mq5fu5bdYGW4qUVJQqlYhGWaaDQa2cZtAzshALYxhe7sDBrHpcY8eXYrKyt49ec/x+EjR3D8xImmsWiFr0vEljaN2/eZIL52idDXwwAtYOnl/YOGYZpYXVtrbh/YaQ6J/1PmTjt4rosoCKASeVuKZH5hy7gP12Rubg4//pd/AS+KeO7ixab4uEMSpirp+EQT74IgAFHE4uwUhS32SXjuuedgmia++c1vYnx8HH/2Z3/W91hbxbYy7ACg5fNxsQzx2unKLWYw7EC8OBw/fhwvXLyIubk5vPKzn6FarbZ9f68PeLlUgqaqWFlfZ4nefpDWzLcTmEEnP62Ym5vDm2++iafPncPeFJodz/OQRBGu49x34/swYuxUyvVh4sb169i9a1cmJ6QV9D5kYZrkdxxFMW+d5zeV2fOk+9iDRrfnhiqzXr58GV86fx5nnniiySgHQQDHdaGQSl1qxHlS8czz/CbD3m98nYLG2RuNBr7zne9g9CFWr247wy5pGkRJgkMaRTAk6GXdbqowilAoFHDx4kXs3bsXr/785/joo4823ShJZA4fcBzGx8YgAlhaXs72mRQ4jpOqhZH02hlXvINBj6IIVy5fxscff4znn38ek5OTbY+pKgpoA4NBg96oUXwSAx+/G6IO9LgHgSAMcev2bezbv39L4yQTrjyJn7uuizAMU0N3Aw3F9IB2z0sYhrh65Qp+8tOfYmx0FF956SWMjo1tCpPZpNcAzTOFhK5KF6q0M9qqjAANkZ07dw6/8zu/s6WxtoptZ9gFQYCWyyGKog2NZoB5JVkMcLKTzr69e/G1r30NpmHg5X/5FywlaJHABoukF4iShPLICHzf71tugBZctQMz5i1FPklEYYj33n0Xd+/dw4svvrhJXyNt3jyRC75v6FbYch/QD9Vx0Lh39y4KhULm3rBZQHn8tJI3lZ//kM457Y5cW1vDT37yEywuL+PFF1/EkaNHwZHdS/Ie9ogiqaoozOAHQcC+P1Z5mjg3WZZ7khFIw1/+5V+C5/mHljBNYlsUKLVC1jSIjQYcx4FGwxWEDtjt62BVgAmoqoovPfMM5hcXcenddzE+NobTp083xbh7/aILhQJs20a1WoWuaT3LDbQr16bl8DR22m5enufhrbfeAsdxuHjxYqbYI/WQLNOMF5ZEyGCgPt8Dfmh6pTpu2cNNOb/rN27gwBa99TTYrouINFsH6byVPPpWKZT9ylm0yn18/MknuDM3h1OnTmHnrl2bKbAkhxAS6QdBEJp2rAHpOwyOS2XmFLeosPr9738f//RP/4Tf+73fw7lz57Y01iCwLQ07J8uQZRkm6cDOXkd3A9T2oeU4TE9N4Wtf/So++fRTvPzyyzh56hRmSGOJfm7usbExJkM6OzvbUyigVbAqagkxcUBTM4IkLNPEL19/HWNjY3Ejgh6Oq8oybMuC47rNAmSDMnYZZAIGDWoGMl2HlIW/V7SeXbVWg9FoYGbAkhNUZ1+WZbZwczSmnham7ANb/abu3buHX/3qV5icmMBXv/pVKIrSsQjOIWGlVuntIAwhyTJ4AAGtLE58dqqPa3v79m18//vfx7Vr1/C9730PJ06cwF/8xV/0PM79wLY07IIoQsnlYNk2HMq9pjS6DoYjimJ51XZeLu1KdOrUKezetQvvvvsubty4gYMHD/aluc7zPMbGxrC0tIS1tbXeGmBHEdPAaBdqSVvIqJDXoYMHceDgwZ53GjQB57huXBTG/rB1PjSd74Pe5oY08ZblzQM4z9bv6/q1a9izd+9Ai6MixGX3yTg0A2UhbWUR3eJ1sEwTl959F7VaDU89/TQmJibYvNshDAK4jsMajFAECeZbmtxFoVDoi7/+ox/9CH/6p3+KcrmMX//1X8df//Vf3zcJ5V6xLQ07AAiqCkVR0KjXN9287Tq3ZG1ZxgEolct48cUXcfXqVVy6dAl3797F0aNHu8apW6FpGorFIirVKjRdRy7jjUMTuZ00rOn2lRqShYUFXLp0CU+eOcMKPPqBrChwHCfWg6fb4UHy2AczUg+HJIySQTWw6AJaJcwhbuN2584dfOWrXx3oMVzHQRiG0HW9/YJBi5R6HDurdnoaGoaBq1ev4vbt29i7dy/OPf00eFHsGtKhAnG0piIJ2nN4E5uILD47MtJHW/GNb3wD3/jGN/r67P3G9jXssgxZ18EZBlzXbUqItruBspimJOOE43ns3bcPo6OjMQf81VcxMjqKY0eP9uQhjJTLsG0bK6urUGW5a1MO2mcV6L4VpqyHa9eu4fKVK3j22We3TNOiuiuO4zDD3m+sNYksobL7Adp3s5fE+lZBjzQ3N4fx8fGNXNAAkIxDixkEzei5Zz23qA+jXqvXceXKFcwvLGDvnj34t1//OoREM/lu1962bQRBAF3XNy3AjuOAdgRLgkPcq2G8A9PrccW2NewAIKoqZFmGYRhxDI68znMbTXQpoiiKxYIybk2pwRR4HoIo4uDBgzh46BBu3bqFN15/HYVCAUeOHsXE+Hj3MTkOY2NjmF9YwNLKCovbt4IpGQYBO3Y3RFGEDz/6CPPz83jxhRfiJNoAoCgKDMOAT6p6B+ZlPwyPvQeq4yAXniiKcP36dZw8eXKAo4L1qtWyiF2R3QMt0OpWrNTLAgAA65UKrly5gpXlZew/cAD/9mtfgyTLTMICiJ+lTiN6rhtrIykKJEnadHyHyC3T8EzyrzOzsw+dwXI/sK0Nu6SqUHUd3Po6Go1G8xaOS2mm22u8GWBx+yAMIcsy9u/fj71792Jubg7vXboESVFw9OjR2Fh3GF+WZYyUy1hbX0e1VkMppbVXSJNedCvfxRj5vo933nkHruvipRdfzOS9ZYUsSTA4DrbrIjeotn809vugY+xhmGmRBDCwkBPHcVhdW4MfBB1rB3qFR/VgqHpjt3kk/h8hzvuw+yxlzlmMegRgdWUFly9fRrVWw6FDh/DUU0+lFl5x2Og1m4YwCGBZFgRBYM9vch5RGMLzvKZiPbo4ybKM6QEnpB8VbGvDDgBqPg9V01hMmFKkWr2EfrbYTEgpHoC9zvM89uzZg927duHe/Dw++fhjfPTxxzh65Ah27dzZ1nAVi0XYloX1tTWoirJRfEGSukl07E6DeOv6+uuvI5/P48KXvwyB57srVfYAjuehKgpsx2mvH9Pv2AMdrTvCMBzoopcFEYDPr13DIJtpRFEEy7bBc1zffUxZSI1QI1vH7/bZxYUFXL58GY5t49CRIzj/7LOpuyE6UqcwTBRFMEwTHMchp+vsfcmQned5QBTFvRYIaMx9ZseOLUkIPMr4Yp5VD+AVBZquw6tWYZhmXGSTvEG2SK+jmfg0miTH85idncXsjh1YXFqKKzw/+QRHDx/G7j17Um/4sbExuJ6HpeVl7JiZiZkvKYYzJI2X01Cv1/Haa69h9+7dOHbsWNOD04nb3itUVYXtOHBse+Bt/x4UqHcnPOBdQqNex/LSEs6eOTOwMW3H2eCs93A+yWQueQEAMoVmgPjev3f3Li5fuQJEEQ4fPozZ2dnOO8poo8FI2/OxLEZtTB2LSCVEaG7I7RO1x5179nSd++OKoWHneSj5PGTLgu/7ME0T+VyOtcCjIZl+PVmO4zr3aSTHmJqawtTUVLxFvXIFn3z6KQ4ePIhdu3Y1xUIFUcToyAgWl5exur6OsTZJ2Ha0zOXlZbz11ls4fuLEJm+QMgcGJfrE8zwUWYZt2zGHeEDG8UEmUHspThpk6f2Vq1exb9++ronyrEhy1nsas8N3RsN9aUV7QBzbvjM3h8+vXYMsSTh27Bimp6ezMcu6SBm4jgPX86Aqyiavm36O43m4rhurO5Lvj/asnZiZSZXc+KJg2xt2AFALBdRXVsCRxsyuLLMM+iBMUbIDejeMjY/jy+PjqFQquH79On788ssolcvYs2cPZnfsgChJ0HUd+VwO9XodoiiiVChsGictLnn79m188MEHOPfMM5h6QEyApNeeKVmXAQ9Ss4Ul8LIWJw0Apmni3r17+PrXvz6Q8SIQSV6O67lVYrfKU66lktMPAizMz+P23ByWV1YwPTWFM2fOYHx8PPNOkCPjtFtUAt+HZduQRHGTgimdE4/4u3N9H1qCIky7pe29D1W8jxKGhh1x5yRB0xA5Dnieh2makIpFZtRZUUOfHie9+Xuh65XLZZw9exZnnngCCwsLuD03h/fffx9TU1OY3bkTU5OT8H0flfV1SKLYXOUJwuRIUC8vX76Mmzdv4vnnn+/YpotWpA7KaxcEARIRXVNIY+3HCVEvhn1AuHr1Kvbs2ZO5t2o3MM66pvV9D6c6JkSWAhyHleVl3Lp9G3fv3kW5XMbu3bvx1FNP9XwONFnatkgwDOOG5jzf0VGIEIeeAEChc4hiqd5SuYzSFiUEHnUMDTuBUijAsCxoug7LNGFRD5N6vjzfE90xCSYRynHg2ijLtf2sIGDH7Cx2zM7CdRzMzc3h6pUreOedd7Bzdha5XA4ry8uYnp5u2lqGhEcfhCHee+891KpVvPjSS5n40JTNM6hEqqZpsB0Hbo9Swm3xABeHB9o5CbExmpubw0svvTSQ8cIwhO04EDNy1lvRrl9uFEWo12q4fesW5ubmIMsyZnfuxFf/zb/pq2coHZMds41xt0hcPd8mrh5FEdOepwquyefC933s3L27r/k9ThgadgJN02CQkIkky3BsGzJRK2RIo0BmAE8MLJcYo2dEEQRRxL59+7Bv3z40DANzc3O4duMGAt/H3fl5HD92jNEgozBEEAT45WuvQRDFzEJeFIMsBhJFETL12hXlseINZ+2cNKhF8LPPPsPszp1QVHUgY1qmCQ7YchiMzsS2LNy+fRu35+bgui527tyJZy9c2LjvKN22x7lnoRY7tg3P96Gpats8gUB594gNuyRJbFEOggCarg+UPvqoYmjYCSRJAi/L8DwPmqbB8zyYltUsk9pHeXX8sY2bLcltz3rr045GyWPnczkcO3oUR48exdLSEq5cvYp//clPUCoWsW/vXni+j3fefhvTMzM4fepUzx4n1eseSEgmirvYuJ4Xyww8RgyZTBz2LSTXk/BcFzdv3sRXvvKVLY8FxIbNDwKoqrolnZnA93Hn9m3cuXMHa+vr2LFjB06dOoWJiYlNzwOXcH56uSbdFnvf92E7DmRJaqIuJsEnjhkGAfwgiCU4OA4IQ3i+j5mdOx+r+69fDA07Acdx0ItFNFZXoUYRVEWBZVlx79Bk+KAPcSOO5+PYIZGy7dVzb5VSbRobwNTkJAqFAhYXF2GYJhYWF2EaBhRSWbu2toaR0dHsRTaJsQfVaEEURUiCED+cLe3XegGdySBDRZ0QhmH3nc4AhL8A4LPPP8fM9DR0TWtSHe0Hvu/DtiwIotjWELZFGKJSrWJ5eRkLCwtYWV3FyOgo9u7di/Pnz3ft4MSMO7rv+mhFa/K7bP1ewyCAZZrgeb5tKI9r+RyLrytKLFUdhlA0DTt6VEl9XDE07Ank83mYjQYs20Y+l4PneXBsO04AbSF8kExitr6e1lQ3iawes65pGB0dBcdxmJqcRK1Ww759+2CaJt57/30YjQbGx8cxNTmJyclJFIvFbMZ1QEYLiBkydcOA63l9F8hsTKu7YaeJT9opir2feNj0067rslgyB7CFlybbejaMfcDzfVy/cQMvXLy45bGiKIJFZAMyqQ1GEQzDwPLSEpaWl7G0uAhFUTAxMYE9e/bg8JEjKBWLEEUx82JKr2cYBB3vs3bS0WxqYQjDNBFFUVyElGKU00anTXRE4kh5YYh9u3ejkMIg+yJiaNgT4Hke+WIRtbW1OCSj66jXajAMA7mWkAyQXeyI3oxpNzAr0U5BSBrwZkWpWITv+6jV6xAEAflCgTVncBwHyysrWFpcxGfXriHwfUxNTmJichJTk5NtDcAgvXZJliFaFstfbCXWHkZRTF0LQwSk8jakP2mhEfo7PWbCsFummXqMIIpgmmZMm3Nd8BwHnufB8TwEjot3Yjwf9xHdohd44/p1TIyPs9DfVnYkpmkiDALo+XzbeTm2ze6HpaUlhEEQ3wtTUzh58iSLybuuC8Mw+lNsjKKOdRHdzjEKQzQMgxVV9cK/dywrrp0gDK/xiQmMjo5+YStNW7E9zrIH5HI5GIYB23VRkKTYuNfrEFpDMkhwfLsYKJqlTwqNNY3T5gbvRyVvhLTUi6IIjXodU0THWlEU7JydxU4ix2sYBpaWlrCwsIAPP/wQiixjknjz4xMTTR415QUPwrirmgbDMOB5XqYCESoGRWOmpmnCJbz4Jq4+YQHRgjDa35JeP6bOSPMkie+MGlNKa6XevOd5CDwPGqFpRsSDj3wfXuJaULMl8DwEQWDHFwQh0+IVBAE+//xzXLhwoet7u8FxHPi+D0VVm4yY7/tYXVnB4uIilpeXYZgmJsbGMDE5iQMHD6KQz6fOle120GcfzTYhmU5GPQIx6qbJjHqqQW5DZLBsG34UoUDuL1lRMDE1NdC2go86hoa9BRzHoVAooEK8dpkUK5mNBkSeh5g0RknPvcMDzBFPr63nQsZK3uhhEPSVqOU5DhMTE1BUFZVKpUn/JolcLscYNlEUoVqrYWlpCdeuX8fbb7+NYqGAiakpjI6MoFQqxWXbA4hry7LMchdp8wrDEL7vw/N9BL6/qUF4GAQQFSU2tqTVGfWk+0VbL45Q5XRN2xRXpruDKIrgBwEC8uN5HtxEM28ecbWwSH7S5nnz5k2US6WO9QVZEAQBbNsGT7zkhfl5rK+vY3l5Gevr6yiXy5icmMCZM2cwMjKSXYY4yqYU2hYt4bxubRnDIIjDL0HQ3qijTcKV49BoNGImkKoiAjA1O4t8Pt81N/BFwtCwp0DTNBiKAsvzIEYRcvk8/DBEvV5HsVRq3hJST7BLdR7P8/A9D2hDO0sWQ22VicJzHErFImzbxsLSEmampyF12IJyHIdyqYRyqYTDhw4hCEOsra5ieXkZN27eRLVahee6KBaLKBIDVCqV4rhrH9xoTVVhmCZcz4MoivB9P/7xPIRBgBDx9RBFEYqiQKQeONHdURUlpgMCA4v/p4E1sU4xanRHEAGbQgRhEMAnu4wgCBCEITzSqYuelyiK7Du5evUqnnnmmb7mGAQBarVanOxcWUGjXkejXgfP8yiR7+vw4cMYGxvrOQzBFEO3SE9tdVw6GfUoDGE0Ggg6eepA+jPHcXBdl7Vl5HkeoxMT0DQtbpW3jTA07CmgXvva2hq8KILM88gXCqhVKqjVaigWiz1reEiSBMOyOnv39OYfRMhDUZjXv7S0hJmZmcxVnwLPY2JigrUjAwDX81CrVlGtVrG6toabt26hVqlA0TTmbZZLJRQT3n078IIA13XRME3oifCWSErEJVEcmEbKVhAQDnvPdQuCAFkQgMSiFwTBxgJGdiQmgIX5eei6jmKrt55yD1imiUqthlqlgkq1ilqlAsOyUCgUkMvloOs6Zg8fxujo6JYpfew+7SMcmAbmuHS4/2mi1Cedndo5I6kyB+TZaTQacdJY06DqOsqjoygUCtuCCZPEw396HlGohCpoeR4knofI88jl82g0GmgYRs83C202EQRBey8ECTXJLRp3SZYRmSYmxsextLyMxaUlTE1O9l3SL0sSxsfHMT4+jv1knvRBrFQqqFaruHHrFqok/FMqFlEul1EqlVAoFmP9b46DQ7zyCAAIR1zT9czx6CQGWUSVhm4cdurRZpk3jb1TgxsEARzbxs2bN3Hs2DGWoJRFEWEUsetKDXilWoUgCMwLn5mextGjR5HP5+ERaqOSkHLeKniiGhqF4WCucZdrFIUhDMuCT7ogtZMiSB0lkf+wbBuKJEGSZUwRWd5HpQ/pg8TQsHdAsVjE6uoqTN+HTjRPcrqOhmHAaDSg5/OxnCv9od52yk1MDTvtKJQGFloYgMeuyDJc14Wu6xgbHcXK2hoWFxcxNTW1Zb0W9mmeRz6fRz6fx85E30jP81CpVlGtVLCysoIrn30Gw7LguS5kSYKWyyGnaXE4QpYxUipB03WomgatJemXPoGWCsX7FI4Jg6A5p7JpGr0VrIUkBm6SHMOtW7fAAZi/dw/Xr12DaVlwHSdeBEQRxWIRI+UyZo4eRalUSjXaNK6eXDS2iqSwV9ZOXF0GZIlOpgWTQBRFMCwrrgxNyWc0vRebjTsN8ZiGwWiRoxMTEAQBhULhsap0HhSGhr0DZFlGsVhEtVqFEEWQBQGSLEMnNDjONOMei/TGSRr4FnAcB1EQ4JNepGn4zn/5L/jwo4/wh3/0Rzj39NPxi4SV8Hf//b/j1Vdfxf/27/4d/o9//++7zl0URXiEy0u5uytra1hYWMD09PTWxbg6GFSe56HrOkRRxMjoKA4AECQJoiDAc11Ytg3LstBoNFCt13Hn3j24jsNeFwUBmqpCI9tpXVGgEsPv+z5CklAVeB4CoRwO+uHtFF8HYgMTJJKmYRDEnjM5B8uyYFsWDMuCY1kwLYuVw2uaBkmWsbS0hAMHDqBUKsWhA1WNd1phCMu24ZHzpD1kN82B8M8BNCkYbgUc0KTWuOUiMHqfJL6fZDgmopTSIIBOEuLtjpj2DbOGHIRFI4oicvk8iqUS8vn8wBRFHzcMDXsX5HI5+L4Po14HH0XgiWcUBAEc4l3JirLhuVOkeO6CJMEhSbRWRAD+z//wH/Dxf/7P+J8//CGefuopRs/7/v/4H3j11Vfx0osvZjLqQByKcROLCPVcVldXMb+wgOnJyS2xBOiZJUMRPjFsrucxzR1dUSDyPHxiLETisVM06nX4vo9iscgoha7nMcNoWRYs28ba2hos04RhWXGClWjh+MSo0lCHwPPgRTFOuJI+lzzHxQqeJAkrimL8N3L+H374IRsnCEMEvg+PMFxAwhE+OV5Aju37PsBxEElSlx5f07R4QVIUlMplTE1PQ1NVqJoW6+SQ837vV7/C/n372vYzFSUJnu/DJf08Pd9n7d+okbdIzqbJuegTrAI0pStS34tm0uFJvEa57dSo+8SoS7LMruumoVLGbqo0tW2EQYB8LoeJ6WlomrZtipHSMDTsGVAkhT+GYUALQwiSBE3TYglR04wfKiI2xNTwUjxaURRhI/b0Wo1qFIbYtWsXvvzcc3j11Vfxi1dfxfMXL+If//Ef8c///M84/6Uv4bd/+7czz1mRZfjEY6fI5/MAx2F1ZQULi4uYnpramnEn/HbX82IPk9D8FFmOJXppYVaHMWgRmG3b0DUNHBe3bVNkGUih/61XKlAVpckTC6IIge/HBpcaaN+PjTQx1E1/S/xEUQRJkqASb5EuCFEUwfM85HM5SLIMIbEg0AWkX9Tqddy5exdf/9rX2r4nAthCoSoKHGLgDdOMi6PI7kdJaTTRK6giYmonriiC1OM9whaJLu+xaEyd7lQyMHBYA46WZ6tOkqbjExPIFwool8vbMgRDMTTsGcBxHEZGRrASBDDrdeSJ56fncggbDRimiTwp8KAPSdoNSo2on2LYqbTAb/7mb+KNN97A//u//hdsx8EPf/hDnHniCfxf//E/9nSjSqIIt8WwA7F4GM9xWF5exvziIma2YNwDwjd2SEm+qqpQZHlztWOH7Tzd8ThEQ0bsYy4Cx4Ejxq1XoYIPPvgAhw8f3vS6bduwbRulUqktXzrNEGbBhx9+iKNHjmTu4MMRjRRVUeC6LkzLQqNehygIcZu7raCNpw406/JkHg7IZNTtRGhKItdhUxFT0y/xb2lFcq7jxA2rdR3Ts7MYHR3ddiyYVmzvs+8BPM/HRR2Kgkajwbi41FAajQYrpgnINpOB3JQi8fRa4+xJrvDIyAh+7dd+DSsrK/je976HQ4cO4Y/+03+Kk68cl5mhIMoyPFKB2gpd1zExOYkoijC/uAivQ9w/DWEUwbQsVGs1eJ4HXdNQKhb7VhFUVRUcYknYbrjfTBgKKtfbqZFyP1hcWkKj0cD+bh180sYnISWO4+LwjqrCMk2YltVXVTBTYWyzQPVT+dzaBL4VQRDAMAz4xKgnF7fkNW36nrnO7SlrjQYc38e+/fv74ut/ETE07D1AkiSMjo8j5HmmL8IRGiQAGI0G6zUaRRECeiMmbkhBEBC0GNLW2zUZG/zd3/3dpps/q/ckknL61spNCl3TMDUxgSgMsbC4yMIo3eC6LqrVapzkJMwNVVW7Vt528tp5noeqaRtx7U54QNvrMAw7Jk77YeJEiL31kydP9uVRRmHIkqXlchnlUgmqqsL3fTTqdTium10xlIZfumi1ZI6xk11qp6PTcGZAKkpbdyytC0wywdoOQRCg0WigWCxi775920KSNwuGhr1HqKqK0vg4PN+PFfQQG+tcPo8wimLRInIjUmpX0psSRRF+i0efvKFff/11/OAHP2Dl5T/60Y82TyKjcZNluam8Pe1cpiYnwQOYX1rq+N4gDFGr11E3DESI4/W5XI4ZKKrf3i/1UFWUuC1hm+RyEmlHGDgrpgPNr98j3bx5E5IoYseOHV3fu+kcCQMmjCLkcrk4fEbCX4V8HiJpZNJI7Bzbjh1l00tn93G3RSjDtXccBwaJg+fz+c1eNdm1ckhUqmbg0K+trcH3fZw8cWLbVZd2wtCw94FiqQStUIBtWTCJ5y6SvqO+78ehmpaHKyC0RUmSmjzp5I37/vtoa+FZAAAgAElEQVTv4+/+7u8wOzuL73znO9gxM4NXXnkF8/PzmyeR4WHSNK2tciGFqqqYnJyEAGB+YSE1Lu96XiwrQASxqIRrGniebxtG6AgSXojCkEmuPixEUYQwCNp77H0sIr7v45NPP8XpJ57IOommX6nKpE74/0kIgoB8Lhc3lUAs8NZpkU6t3ExBSO7Zjoybbl4/Yb7YZIeXJ4sSE2VLjMO1fK7bPdNoNFCtVjExOfmFb07dK4aGvU+MTE1B1TQ4to1Go4EoiiArCvK5HIIgQL3Fc6JVpbTpRmuc/erVq/i//9t/w+joKL71rW+hUCjgN37jNxCGIf7hH/4hfRJtkrQUxVIpZgt0gaIomJychCgIWFhcZMY9IrF0OkahUMi01U3V2M5gSGRFgcDzsGy7vbG4jwVJFIzD3i6R28fxr1y9ismJCZSzNlFOfK800agmEo1pkCQJxUIBoiSxQqhODSy6IQwCllxNnyIHdBLzIqEjz3WhqCr0xA4PaNn5kLlRJclOiKIIlmliZXUVoizjS88+u60ZMGkYGvY+IQgCyuPjyOVy8FwX9XodYRBAkmUWI2/U67HwVwLUU3Ech9G25ubm8N3/+l+h6Tr+5E/+hD385555Bvv37cO7776LK1eutJ9Mm9hmsVBArV7PdD6KomCKcNsXFheZQbdsGxKJpffCnmk1BlkfPC2XA6KIdcDJikE+1tSwp4ViIvRuIE3LwvUbN3D8+PFM70+O7zgOHKLQmWVR5XgeeV2Hqigbu0ei698t19EKeh3SvjsWymlj9OmxaZ/R1DwM+Z3nOPhUZqIL6A6gVquBA3D40CGMjIxkPqftgqFh3wJEUg2Zz+cRhiHz0gVBYPrWDcOA22KkVE1DQIpc7s7P4zvf+Q7AcfjWt761qdHu/04Kkn7wgx90nEsaY6ZYLKJeq2U+H1mW45g7z+PmrVuoNxrQVLWrqFfqfNBlC98GoijG8WLb3kg+t4zbS2ViP6A7rTRPtVcZAQD4+OOPsW/v3p41SzxSHyCIIrQ2LeFSQWLveV1HBKBhGHGrvR4XpDRaLovPk+OkwXHdOJ6OmF6bRuukYncc4jBlltAiTR67jgPX85DL53Eya2hrm2HIC9oCeJ6HTIx6nuNgmCYa9TpyuRxESUKhUIBhGDBME2EYQiVFNbIkweQ4uJ6Hqakp/D9/8zdxM46Um/vEiRP4+7//+0zzafXICoVCT4YdiMMPuq7DMAxYlgVNVftmGjQl6XrwFnVNQ83zYFsWixszdBpnQGGaMAzB9yFKloa19XUsLS3h61//ek+f830flmnG8XPakLlHiCQ00zAMmJYVx+cz7rqofHRTPJ/co+2ucBRFceWx40AURWi63plZhOw7oCAIYBpGLM3reRAEAcdPnBiyYNpg6LFvEZKmQdZ1iJLEipSol06pkLIsw7JtGIQxw/E8ZFmG5zhxDBNEe6SV/94PKEUMsRwC7aiTBZQ6BgB79uxBPpdjTY370YjnOA4c5UL3cF68IEBVVbgtTSuAzl75oDjuQZvEKTV2mccJQ1y6dAmnT5/uiVtNjRjHcX0bdQqe41DI5cADTJMlCyjVkeZLurFowjCESe57WVE2xdOT70vy46Mo6npNPd+PdwAkMR+EIXbt3o0Dhw5lOpftiKFhHwCUQgEiSfwVCgWIogiDMAE4jkMul4OmqnFJOOG6K7Ict19zXcYIaGq/thUDTzwrnuNQyOdRzxBnZwlf30eeLEaTk5MYKZdh2TbmFxYyc903zQW9h0lUVYXA8z0X3wgD8LKDNnK9vZ7H5cuXNylfdgM1kEC8MPfbS5XtNri4N2s+nwfP80xFsRt8KrRGqqwjpMfaASAg8XTf96HqOjQiDQEQeWdyXlGHRGs7uI4D0zDixV5R0DAM5AsFPElF8oZIxdCwDwhKsQheFAGOQ07Xm710EobRdR0+MaAc6cDjtEmuDsrAF8pl1LqEY2h+wPd95Fo4xqVSCZMTE6xK1exCn2w3j3ZJtk6f0Uki1Wrltt9HVgyN/aYxYno5aqVaxY0bN3DmzJmejm2YJgIg9ni3oOPTet/whBLJk5BhNy85THrsHd7nOA4aZCHK5/OsV25TERdN3KYY9XaLNtWSocn7fC6HWq0GXhTxpWefbavXPkSMoWEfEHieh1Yux7FZno+9dF2H53mo1WpwHQcKoUNGYYhGowFJFJlA1SYkPJ6tGPhyoRB77B0+b1oWfOKpp4UMNE3D9NQUJEHA8uoqKtVqz/PoJ5lKW+N5rst2C/eb1Oa3SZz2Um0aRhHevXQJJ0+c2NQAvR2oBG8QBKlc9UGAF4S4iIcY97axcmyodrbbMdCwnU1klvP5PARR3KArEk+9I9rIBFBGjeu6UEny3rIsuJ6H0088kZ0yuo0xNOwDBC+K0IpF9ruqKDH1kTxIRqMBnrTZAzY6yrcWBVHmRbKqk8Yiwx472hRLpdijauMxOa4Lx7ahdmlwIUkSZmZmkNN1VKtVLPYYd6dH7rU6VSO9K40EJ7vbp7eS9KTntCnJ2MOYV69ehSzL2LN3b6b3U6NO9VM69adth6znLAgCcpqGCNjE1qLjcByHwPfTdy0kQdqo1xEEAVRdRy4hgAf6kwGthV5RGMbSzIYBRBEK+Tw0VUUYBKhWq9i5ezf27tuXaeztjqFhHzAERYGSzzMjJAgCisUiNFWF5/uoE/1xWgbuuS5qtVrngpyUByAIAlYZ2OlBYswYalATSbAgCGCZJotfdgPHcZgYH8dIuQynx7h7coY8z4PLatxbQjJZSuG3gjAINldFIvtOoVav4/PPP8eTZ89mOx5p3uz7PjSi2d4TMsoDJCHJciwh7brNRXRcLIkbRRH8lAQy9aQd24ZI6jUUWe6v+XoUIUwk9T3Pi710z4MiyyiWSszRqFSrKI6N4eSpU9tetTErhlfpPkDO5SAlaHpU0rZQKEAQBJimCdM0kcvlkC8UYNs21tfXU9krNGHX+vBSamMUhrFcQZsHO5/Pw7SsWHiMGCuOMB1Yk4MemRdNcfeFBRgZ4u7tilOyQBRFyESy1s9oRPo1/UGK+Bft75rlmO9euoSjR49m4qyHLc2bqVHPPPeWhboX5DQNPMfFyWls1EEk7zPqsYdhCNOy4sR/FEHTdaad3yoSllU0LELssUckWWyaJjieRyGfh67rbCE1DAOcKOL48ePbsndpvxga9vsEtVCAkEzwcBxjzei6HrNQ6nWopNTaJdWrVksZeBJtS7uxQRujSa+Nw8Z0t0aLtEBAQkCqqvalx65pGmampyFLElZWV7FeqXR8f+ujzkTDsh6PSALbtt3VQ+y3OAogDaxbrkfWMMfnn38Onudx4MCBTMdpGAZCsrBm1WbvdU5tP0/aF9KGIsk7LiDFTALPw3VdNOp1uI4DSZaRz+fbJi6ziovR97qOg3q9zuQS8vl8UwjMtm1YjoN9Bw5gampqS+e73TA07PcJHMdBLZdjpszGi4gQl+/nCwVIogibhBdEUYQsy7BtG7V6vW2II5M3RBKudFtdLBY3SQvYjsN2Ev1CFEVMT08jp+uo1+tYWFxsS6VrWy2asZKT4/m4WCmK4PQoN5AV7cS/soh+NQwDl69cwdkMIZiQJM8jatRbDGU3w9hU9LUF0MYmrdczDEN4pPWjaZqIKGU3QWNsN68soE6NaVngRZHF0pMNahzHQd0wsPfAARw8eHAYgukRw6t1H8HzPLSREYC0WktCJFK/OdL02bSsuGkFkR5tNBow29DS0mLAae+hrINCsYiVlRWW2AqJ7rlCGlxQmdR+kIy7e56H+YUFmCkNM9qNTsNMWRJuoiRBkmU4rsvYK22RkmiNUn5YkxMSXwbAGiqzz3bZIUQA3nv3XRw5fJhp87cDZZNEAHIdvN+25zSIHEOCcUXDP9SRoCE60zTjeLeixPmgDgndrHdOFIawbTvOMwUBkz0QWsZ2HAfVeh179u/HoUOHho0z+sDQsN9n8DyP3OhoHNdOvE7/L8syRstl6KqKer0Oo9Fg3rvjOKg3Gh299yxe0szMDJYWF5k2vGnbCMKwuYHHFo1FsVjE5MQEa7u3srqaucoRAFO97AZNVcEDTbr3AImDk/MLowghNrjY9LUo5Sf5Wd/3Wa/R5Li0yCee6OZZ3rhxA77v4+DBgx3nzox6FLEFPRX3QzIhGftOjCFKEjiOg+04LLlfNwxm0Ls1UQEyqDEmDLpt2+BJLF0hGvzJ0T3PQ61ex849e3Do0KGeQ1RDxBga9gcAatyB9G02LwgYI0qRtBrVI3oYlPPeraik08NXLBbhJ4yKQ4o+gDhZGEbtk6+9QFVV7NixA+ViEZZpxolVUrzSdYeBhPfeAbwgQNE0IAxh2TbCKO5URX+SRrzXXUgQBADHNW/7E95t03ik6Mo0TXz88cc4+9RTHedOqzOBWBirkxfa9F0MggFE5rppIUxQOy2imOj6PhRZRqmNmmcv7fKoQa/V6zGThhQa5UjxVWsexPM8rFer2LFrF44dO7alMOF2x9CwPyDwoojc2Nhm0SNyc4uiGHO2STxTJjQy6k3att3We6cGhYZUWo00x3GYmZ7G4uIifFIQJZEtOCv9xkYCNtkBqldwHIfyyAimpqYgCgJW19awuLwML4v3TuUHuhhkURTBCQIs24bbrR1cD4YxCAKISaPeyXMGEPo+3nzrLRw9cqR902sQmiCpJaCFPO2nm1hA2tQe9AKqmR7Rn8QiHhIKqeO6cH0fPMdBVZRYYbNljtSgZ+m7G4UhbMtiBl0SReQJ26WdxEQQBFivVDAzO4ujQ6O+ZQwN+wOEIIrIjY/HXmWL981zXJycEgTYlgVd11EsFtl2FQDzfgzDaFutSgubWo3M9MwM5hPJzXYqf0mNDzbPllBGFiiKgunpaZRLJbi2jfn5+UyaNQA2hMMoErmBiDB/NMLmMUxzU7eqtPPJgiAImo1ul89+8OGH0HUdhxJiVK3hMd/3YZgmOIB1D+oKeo379Nbp4kCvFRuFLkhhCMuyUK/X4TgOFEmKZTAUJeavtyhb9mXQHQcSUTjVc7m4KjWKUptdB0GAtbU1TO7YgaPHjg1pjQPA0LA/YIiiiPzYWJysS1ITCTMmp2nwSXs4nlDSaIGTLEnwPA/1eh2VSqUr9S/5cE5OTGB9ZQWe67aVCG43RlJilVIqW2PW7T5bKpUwMzMDWZKwXqlkK2pKMmXCEAH5aRWi0jUNHGLVwnZGMOtCxLRREoa30zW6desWlpeW8NTZs6kLAIeN5s0AkCc1DN0Q9eKlJ3IEoLst+qcw3DQO5aPXSeNriTBS9FwOEimWC4Ngs7febRotBl2mBl3X2fVM03Cn987q2hpGp6Zw9OhR5Lskn4fIhmG6+SFAlGXkRkdhrKwgIHxhSvtTFAWO48C2LMiiCBCxMJ10oXEcB6ZlwbZt2LYNWZaRy+WaPPsk6AMlSRJGR0exvLKCsbGxnufMHkdyDKrax0C97IRRpoZRkiTMTE+jUqkw414qFlEoFDrqdad64onQkSiKsXa8acba8WmeXkYjSY+VVHVMM44AUK1W8dFHH+Hi889DTGO1kNCZ47oQBQF6L41K2i3ULYwYVgiUcAx4Lp0xEwYBbNKcAoj7AaiK0rSICYIAy7LA83xmzXbf9+G5LpPEoF2ekuMyxVK680PiXooirKytYXR8HMeOHWMN3IfYOoaG/SFBlGVoo6Mw19Zir5s8mNSIV2s12I4Td84hRoHneVZ27jgOLMuC4zhYXV2N9eBzudhLam1Lh9gQTs3MYHFpCZNbKPZIGu3WfMEm8aeWkEqhUICqqlhdW0O1VoNhmhgfHYWcKKOnSb2k6h8PgJq7ZKgIiMvjFcK5Fl03tSdolqKZpExt4oOb3ud5Ht58802cPn0ahYQuUHL+hmki8H3IstzE/U7bXTV1JEr5W4RmQ5g8JzpHWqDWiiwGnULkefhBAJnnOyd2wxCu68L1vHgx5LhUg04dFVphyhasKO5HEPg+VtfXURoZwZFjx4bt7QaMoWF/iJBVFfzoKIxKhUkD8OTBUonxlhVlk8Y4NfCqqrL2aaZhYI0YzHwuFyfpWh60makpXLlyZWAKiWycDoYz+WqImNUyPj4O0zCwvr6Oe/PzKBaLKJdK4Hgevu9v4tVT49bq7VGoqhqHPSwLBUFIbedGPd52CLJ0TYoivPPOO5icnMSuXbs2jxEEcZI0ijZXk0YbVZlJMTOOeLH0fFoZSmmzoXK69P9pMWvHtuGSaynLMlRZbi8DTFgzvu+nawZFcXWq67pM9kIgyX5JkpoUIJPxeDqvIAjAkfPiADi2jUq1itGJCRw6cgTj4+Pp8xqibwwN+0OGqKoojI/DrFbhO07cjACAputwPQ8WaSzAQIwDfYBkWYYsyyjk87HqXqOBarWKWq0GTdNQKBQgy3IsLVAogENc/KSS4iT6APZr7JOeI9A5ps0DCMhncvk8NE3D2vo66rUaa6BA+3TS68BCO0nGDDGGyeuQy+XiOgDDiPvNtu5aWuh+rQiDYCMM02YRuHL1KhzbxjPPPLPpb47jwHIc8Ii11EVRZDuxJIc8yUICjYm30BDbIQJYdWba+1oNukI96bRuUInFAQB810UYRU0FUzTU4nkee79Ccj1piwQNuzQt5onvEYjvPdtxsHPfPhw4cADFlF3PEFvH0LA/AuBJQtWu1WCTqsQoiqCqKkzThOd5Gw9cGx4xDeHouh7rzjQaMEm/VYUo8amahomJCSwtL2N8fJw9gIPw4JPeO51nt6Qb9d4NTcPq6irW19ZQr1ZRKpWamBFNxo8Y9cD3ERH9b/o3TdPiAptGI25TSD/Pcc0FWAnDTXnvPtErYXRD4uXTzy4tL+Ozq1fx0le+wtrFxUPFDSE8z2Px9KTccvKa0LBLk3FvQadENFIS1VTrxfU8tttRFAWKLLfNX/Ach7CVQ+77AMn32LYNLxlqIRW/7UI0bG6Jc6XnR18LfB+V9XVIqorDx49jz549w+Kj+4ihYX+EoBaLEGUZRqUCIYogSxJsjoNhGCgWi5n1MmRZxtjoKMrlclzc1GjEcXhRRE7XcW9+HkePHElPtmKD096P0FTSwCfHoq+1IozisvbpmRmYpolapcJi8OVicXNClBrd5L8EtIGybdtwHIeFFbiEQWytvuQQLxIANgx2tNHxhwNgWRbefvttnHvmmaYFJwxDRj1VFKVtlWarQafH5QVhU4K46bqT44c0lJR4D/OmSbUs5aDLbQx6U8wbzYs5VZl0STckDiTUouuQRLFts43kmGnfbUTOLRl62X/wIKampobaL/cZQ8P+iCEZmoFtI5fLoVqtxoauQxEMsPmBFXg+Zp/k83GbvkYDsqKgVq3i3r17KBQKkGQZkiiyHQHz4hNe5VY8+uQ2vFX9j4qVcYgNE03+moaBWrWKlbU1iPU6yqVSnEQm8+J5HiC66a3+raooCIIAtm1DEARWYduxKjSROG19XxAEePPtt3Hw4EFMTk6y15NUxnbqjGkGvfXacDzPKkCTBpLF47Fx/YMgiHVyPC/ucISYcSR386bpfBLzCoheEG30QgW51A6hFvLh5h1L+rsY9bJerw9DLw8BQ8P+CIKFZup1oFaLm2XU63HDAUIRTDMWXJvYME+UETXSJWlyagp3797Frt27AdOEKIrMuEuiCFGSWAKSw4YX3y+avHhSOEM58a2z5bm4OlPP5dCo19FoNLCyvAxJUVAuFlluoJMsl66qqJPCoEI+n9qYOgmfLBLUsCcXng8++ACyLOPw4cPs/Y7jMFXOXIo8QDeD3nq+Ps0VIM5DJHc5YRDAJaEWyqqRRBEqWZBTj5H0pAmCIIBPDDnVxAFIFS8X11AUiTZMGlhSNIWPnjwuzRv4w9DLQ8XQsD/CUAsFiLIMrK0hINt+wzRjSiMxHE0Pduv/KRMhQZcsFAo4dOgQXn/jDRw/cQIRMRye68JzXXCElcPzPDPy9Hc6ehM7pQcww8XzcRVph/fyHIdisYh8oYBGvY5avY7llRXmndLwQBMzhyQrac/ZeqOBRqMR8+W7eOwi7dcZhux6ffrpp1hbXcXFF15gBt80Tfi+zzj07cIevVwTURA2NHsQL3g+jZsnKoVVVYUoSelhDEIjpAjDkBlxz/fZroDneUiKAkkUYy2iKGJFRWlKk2zH1SlnQhP65D2WbaNaqWBkfHwYenlIGBr2RxyioqA4MQFekuJEnWnC4XmoqoowitINPLARQ054ySCema5pmJyYwOLCAg4ePBg33fB9eI4DPwjiJBzHwfc88K7LvFmRePSCIKTSEbOCI/NrCtNgg+WSRNLA12s11Ot11Go1iJIEhTCC6PkmQzOCICCfy6FhGGiQZCrT+25JQIZBAFmSmubz2Wef4c6dO3jh4sW4KtPzYjliktTeipbJpjg/MYyu68IhKotAbIRVVYUsiqmhkdYwi+/7LLxCw0vUGxeJBkwrFZTK84qJcBz9HEeSx0hcl9bjh8Sgc4gpo7VaDa7rYnbv3mHo5SFiaNgfA/CiiOL4eJxsW1yMe3/yPBRZBtV04Ymn2o73jITxlyQJu3fvxvvvv4/9+/fHiTJRhKaqCHwfjucx+hvd/gdBEMd46ZxIhSJPfkRRhMBx3b15jkttyM2ojMk5J68BF8sTFIpFLC8toVKtYnFpCaoso1AqbfCviecahSFTE6QJ5Fw+HxuhNuEquru5eeMGrl27hosXL0KSZdZomhcE6JrWlz54U2EV8WwD4lH7JN7teh44jmML1qZOTonr5wcBoiCAT76XZPGTSGLl1JC320GEYciabIhk8UhWs7ZrMEINOl2caRK5Uq0iVyjg0LFjw9DLQ8bQsD9GyI+MgBdFLM7NwTJNCCRswiE2GLT7T6uRpEhWa1LO+N27d5uKbQRRhC6KgKbFiTUSpqGfpQsIEMemw4TuC/XsBUGAIIpMKiG5Dc9SBZp8b3Le9PjFYhESMUSNRgPLy8ssNJLP5SDQXQrxVqnnbhoGcrlcqtdOY813797FJ598gucvXoQgCEy4TFVVKIrC5p8l3NJkJAmThf4EQcDOSxAEyLIMiRjz5NghbVwehvFCkPgcECdfRZ6P2TCCEC+2GcMeLmlmzfN8vGPp4J3T82k16JZloVatwvU8TO3YgZOnTw+lAR4BDA37Ywa9UMDMnj24d/Mmix8nE51RwhvmEho0ScgkpLJz925cvXo1tYoSwIZ8KzXypFglTGzzBbKwsPg7idki0W6NGnlqeLIY9iZqYNLQEY+c43kUSyUUCwUYpokGYdLUajWoioJ8LheHS8jiR9k2BjXuiXE5LpZzWFxcxHvvvYcLFy4AiNU0RUGAputN17id4WNjJrjxzJC3JCwVkiugC0oYhrAcB57nxfF2EhJLgifhMJHnIZC8R6+xa6qwCIB1ohIFIVWKgZ5Pkz4Ned0wTdQrFaYG+eTTT2Nfhl6vQzwYDA37Ywg1l8Ps/v24c+MG6o0GCsVi7Em3vC8KQ9aBnk8YMY6Le52Oj4/j82vXsLS0hKnJyY0u9QBLhFEkNbqDIGDeY0DCARQ06crx/EYREAk1RMTzp9olfGLhEYiBow0YOJ5PTXjy5Fw4wsDgBQGFQgGFQgGu58UtBQ0DK44TF21pGnKkW08EwDJNmJaFnKaBXBCIoojVtTW8/fbbOHv2bBzyCkOmy9N0TVO+D5rDSBpyek3ouUmEQkjPKIoiOJ4H23Fib55cIzqeIAixnEQi5NVPXQGbY2KuAGC7LjzS91ZOqU5NeudJGKaJerUKPwwhchzGxsdx+sknUSyX+57bEIPH0LA/plA0DTv378fd69dRJ/owabFfmqikjAsaqlFkGY4oYs/u3bhy9SqmJiebk5rABqcazeEQGm6hPh7lRQeJMEOY8DYF4hHSxUeWZUbfC4lGjmfbzROneQGeZyEdGqYIgiD2aIMAYiK3oMgy5NFRlEsl2JbFEqcNw2AiaTQRapBYNgAYhoG33noLJ06eZPTFnK5vKsyhOi803xAGQdy5KUEhpB6xQHYVAKFTAkAQNCVMqcdNF0NJliHwfDbN9g6I0FmPO0K8G7Fdl4WYyKSaQkfJZcQ0zbhXKensNVouo1Qu4+BQP/2RxNCwP8ZQVBWzBw5g/uZNNAwDqqJAoYU8Ke9vCtVwcWOPqclJfP7556hUqyi3xEY79UFNMmEY80IUQf1bGhv2icF3E6GZMAzhhyEE4qFLKUlfaiSpTjplfCCK4Pk+TMtCiM0NQ5LhFVXTIMsyLMuCaRho1OtxaIYsFgrx2t98803s378fuqaxY60RYbaQ6sEnjHJSioGnuwyaWyCGuclwk/dw2CiCavW+/TAE3xJ66RVJamIneJ4XN8IgFMpWlg5FSHuVNhrwXReCIKA8MoJcLgc9l8OBI0eGCdJHFFyXeOdW6lKGeEAIggBLd++isb4ex5NzORbG6EZFbDQa+Oyzz1Ct1/HchQuZt/vJG4PDhh5LJ1Ex6un6vg/LthmjJ2rDaaeVmawgi3j8QRjCaDSgKEoTRS+MSB9PygdP/B4CcInUMfVWG40G7s7PY3ZmBjPT05CIWBo9LgeASxhrnuwaeJIvEOiCRAw109XvMWQSAXATXPNOaBo5Ef/OesQoirBeqaBer0PP5TbREUPSS5bq/UdhCJHnUSgWmf7O6OQkZnfv7osdNMRA0fZrHxr2LxBqlQpW7t1D4PttQzOtRjcCUKtW8Ytf/hL79+7FgUOH4m18IgzTKzbJEpBtffJmau1VGgIbrdwSnnpIenWGUXM/1nq9DlmS2A6lG1hsG3Hl6NLSEj7/7DO4nocjR49CU1VIigJNVVlTE0EQunq/g0BIOOzUULPcQgbvOysiMlajXsdapQJZllEqlyHwPJNgsGwbjm2zMJiqqtA1DbquxyE0VcXu/ftTdeiHeCho+3gOl9wvEIrlMlRdx8Ldu2jU61CJMNUmcBuVhBzitm1nnngCb8a0UogAABAgSURBVLzxBiamplAsFDYVOAHZjTx7X4s3yYw78Xz9MGRFMEIUISI0ySaRr1ZEG7rePI2FJ8IvTcdt8Zxt14XrOKjX67h9+zZOnT6N8sgI0xnnOI7JBfAgzVBIDJqKazGWSFr4gs65NTfR6sHThY7scsIEfbJpzn0a9Shx7VisnCStK7VaLDGRz8M0DFiWFfPnCduIGvKmEA3HYWJqCjt27RpWkD4mGHrsX0CEYYjVlRXUlpfBAcglQjNJJL133/dx+dNPcfvOHbz0la+01VdJFkH1z9EgXiqRiu0HVFWxkNSqT4KEVMIwhEPa1EVRhLm5Ody7dw/nzp2Ly/RJXN0wjFghUdfhuS7zYClNkSNcb1VRoGoaS7wOAkkdmH5Av8d21btAfL3vLSygTuig9DOCIEDTNGi6ntpkQ9U07Nq3r7knwBCPCoahmO0IwzCwPD8P37KQ0/XOLc8Qx6B/8dpryOXzePLMmY6xYlqk01R81OP8PFJ00w8sy4LruiiVSpukCahBt22bhThEQcCnn34KwzDw7LPPxhRM34dOOO1MrTGKkMvn2bXyfR8OMfKubcOnTa85jmmUN/2kdHDqhDCK4LhuT9cuuSC3GvMwipisQPLftUoFFrkP8rkcNE2DrmlNbQmT4DgOkzt2YHrHjqGX/uhiaNi3KzzPw8ryMsxqFVwYQlVVJmWbhmqthld++lMcP3kSu3ft2uC1ZzxeWkih3WcDQh3M6q2yuXAcbMuCZVkolUpNhofGiz2icSMrCjgAb731FlRNw9NPPw1BEFCr1SAIQhyjJ4tUEARoNBoIwnCz0SPPiR8EsC0r7iXqurFHTzVVEtW5PJEM5kUREgkxURVNOl/aMCQIUpp208PSa0nGpnK9lPfuJQqgPPJv6zWzSey8UCxicmqqa7PqfKGA2b17hzTGRx9Dw76dEYYha2Jh1euIfH+jX2XK++/cuYN3f/UrnDt3DmWSYEuiydC3xOtb30ffwwFMWArk/5TDHhDD3sr4ANqHFjzXRYM2IOE4eL4Px3EQ+D7T0VEUBQ3DwOu//CV27tqF48ePx2MSsSpd18HTmD6dbxShQbRhaNil+aQ2PxIB8f6Z9kuCz+8TmmTyUyxWTz4bkV0AXRySi0TaMUOSTGbfCtmRiAnZZZn0IjUMA9VqFYqiYGxsLOVKgp17oVTC9Oxs+/DWEI8ahoZ9iNhIWpaF6vo6zFoNkefFiUFF2RSDv3TpEgzTxDFSgJIm6boV0MRiSAwZLf5ppynfCs/zsL6+3tThh+f5pkTn0uIi3nr7bZw+dQq79+whB+bg2jZM00SxWGxqJE0RAcwrp1ozaNmBRCmfaweqmEm7HlFvOyKLGpMbJvNLQ/L7odLKVEM/LcQWBAFrEyhKEkZHRtJ7nwIolUqY2rED+SHb5XHD0LAP0QzbtlFdX0ejUkFIDTypfARiw/DjH/8YYxMT2L1rV5MI1iCRVHqktEb6O99iTIMwZO3gfCIfoGoaCvl8XH5PQgxhEODTy5dx88YNfOn8eYyPj8fjk5CLSTzyYqnEPGqgufAIiGmRJhFb09rQRynSOOgsqZlYrKiqI10cOoVh+oXrujAMA6ZlQRTFuFNW68LMxc3Np3fuHCZGH18MDfsQ6XBdF9VKBbXVVYSuG3uAxAv0XBe/eO016JqGg4cOgRcE5BKCWIMA9drZ70BTH1Daws31vFimIBF2sCwLiqrGol7EeC4tLuK9X/0K5VIJTzzxBFRdbwr/RGGIaq0GWZKg5XLwiVRuK1WRhoA8z4NpmgjCMP5Mgl5J3sgMONNXaQNajJX8fStsmFYEYQjTMOB5HizbhihJyOl6k95NxHEoFYuYmp0dGvTHH0PDPkRn+L6PWqWC6vo6PMtizA8OwPsffIAgCHD8+PFY4lVRoA7Ie2dFSIgNOi3f94MAruOw5KFIpG1FSWK7ika9jjCKUCwW4fz/7d3JbxRnGgbwp6u6qtq9ut3GSwgxGNtAbBiDWMQNIZCQOHCNuIQDlwln7khociKav4E/IJGRmEGMFGUig1AUMDY7ApkGpAkE3NC4eql9DvVVud1eMQ5L8fwky2C8lFHr6a+/er/3NQzcuHEDL6emsH14GF1dXbN+TrBCtm0bujh1qarqslbMnueFA7IBLFnuGN7wFF8bPlk1PYGt1mo9GNJRq9XC/ztZkpAUvXGCPju5fB6Fjg6k0ulV+bn0wTHYaflM00RlehqVchl1XYftOLh/7x5elcsY/PrrcChDJp1GXARH8yNsweEOnt80K2gAFuw/O+Lof+PXy2IfOWj72yxoD/D69WvcvnMHPV99hS1btiw4gxQQE4NM0++LIyph5jNfz3XbcfzVu22Hh6MWm6fqwd9qCn+vhpujQTfId31yDFbpYRMy/+L9ds6ShFQ2i7b2duTy+VV9pUUfBQY7rYxj26jpOvTXr3H31i1MFosYHByELMuwbBuKosxM+5nnsRSTJARTjdx5wltqGAwR9GxvHr0Hz0PQobIxCKdKJYxfvw4A2Llz54IDHsLTop6HshirlxKlfCtZNRumiVq1Cs/zx+RpYsB2eLlAeDN4IeFNU/8Cw9/Ta3oSCK8fM686gtJMo15HXbTejcfjsC0LLoC2fB6Fzk60FQrLbrlAnyQGO707yzBwa3wcv//2G3Zs345MJgPDMOC6rl8TLm5gek1bDsDsA01hB8Sm4ctLPtjE9zUMAw8ePMCjR4/Q09OD/v7+Zc0gDbZhUul0eDNx0WBfpFeL6/mDrS3TDKtx4qoKiAqXRX+NpX7uIlxRp2+Kqpqgu6JpWcjkctjQ28ve6J8PBjutnsnJSfz7/HkUMhlsGhhAaz4Po16H47pzJg4tm+fBWeyx6Hl48eefeFQs4vmzZ+j64gsMDQ7CMM2wf3rgpx9/xE8jI/jnDz9gTUdH+PFqtQrLspDLZsPwXSxg792/j9OnT+PYt9/i4MGDsy9HXJNl26iIQ02A32te1bRFDwEFdehvoznQgzMIXiyGTC6Hzu5utBUKq161RB81NgGj1dPb24u/nziB27dv48rly1AlCVsGBrBmzRqYpgl9ejpcwSuKsqy6dDS0/W1Ur9VQfPwYj4tFyLKM9Rs2YHh4OFypBgM+5gSa2P5p/PvY9et4NDmJYrGIJ0+eoFavY/fu3Tjx3XfzXtKmgQFks1lcGxvDgQMH/G+Dma2WoNdKNpfzK3dME6ZlwTQMSGICkiYOCs1chrfsUPc8D7Zl+f3TTRMAZk4Nx2LIFQpo7+hAJpNhX3SahcFOKyLLMrZt24atW7fi4cOHuDw6iolbt7B5YADdXV2wHQeVatU/1q+qM/vwi4hJkr/v7Lp49vw5HhWLePniBdauXYvdu3ahNZ+fE+DxeDycwyoFc0lF2WGw/ePBvyH8319+wcOHDyHLMvJtbaj98ceC++DBx/82PIzR0VHouh72lQHmLpUURYGiKEi6LkwxyKJeq6Feq0FRVWhiNN5y5r26jgNDtCxwXTesCvI8D3FFCQM93dDThqgRHxX0TmKxGPr7+9Hf34+nT5+GAV9oa0OqpcWf6qSqSIjZo4111YZpoqLr0HUd07qOSqWC6Tdv8GZ6GplsFhvWr8eunTsXDS9F1LObloVEcEDJ88IbskGQ1ut1HD58GN3d3ejs7MS9e/fwj++/n/U589m5YwdGf/0VN2/exO49e5bc6oiJ/XZN0/wB4IYB07JgiZD2xLWFAzvEDWNJtAyu1WqwRdUQgidFTYOiqsi1taHQ3o50Os0KF1oUg51Wzbp16/DN0aMol8t4+fIlSqUSSlNTeF4q4XWxCH162h/HpmkwDANSLIZ0Oo1sJoN0JoOuri709/UhkUxCXWYLA1mWEY/HYYr5nfOxTBOO42BwcPCttyyGtm6Fqmm4NjaGvXv3whEr6OUIOj62uC6soC5fND6zHQdWrQY7GLsHIK4o0DQNmbY2ZLJZJFMp/6as+D6JRIKdFmlZGOy06nK5HHK5HDZu3Djr457nhaGvKApc04RRr8M2Tb8NrmheJUmSP4Rjnvr4+Siqilq1Gh7MaVar1/1uiyvod6OpKoaGhjAxMQFHbPe4bxHugL+Klz0vXMV7rgvIMlryeWiJBJKiJUKLGHIRDAsnWikGO703sVgMra2taBXleK7rwjAMGIaBiq6jpuuo1Ov+frkojZRkGXHxfk4HSRGuajyOOvx+8i1N3RiD1XoylVpxxciOHTswdu0a7ty9i61DQ5AkKayLb74xHNxUDQ5i2Y4D27L8iiFVRUsyiXxHBzK5XLhlwxCn1cZgpw9GkiR/ek9LC1pbW/3qDxH01UoFpmHAMgy80fWwAkWWZcRlGZIsh2P7XAAxWQ77o7gN2x16tYqYJEFRlJmOjOLAkus44ZF/YOYgU+PYOg/A9u3b4QG4evUqBoeG/E9u+D6O6/rtEESFjuM4cD0PyWwWWiKBXCqFVCoVNlILjvkT/VUY7PTRCCpL0uk0CoVC2ACsVqlgulz2JwJZFmzXhSsqYYJe5jH4B5csURaY0DRUdB2qoiCbzYatcQHMnPBs6OfS/L7x9GgymcSmTZtw8+ZN1KrVmaHa4olFlmXExF6/lkxCVVVkW1uRzmbD/XGi94mPOPpoBSv0RCKBvBgS4bpuOPLNFTceHVEemKpUUCqVYDoO4poG03WhJBIwxL52uH0CvyInmUxCkmXolcqsXugxSfJbBovgliQJpTdvYDkOsu3t/qpbjMULX0WI3ui8uUkfAwY7fVKkhnLC+XxpGPjXhQv4fXwc6/v60NPTM3slLt7+NzWFsdu38eXGjejdvDnc1gEQ/jl4e/LkCf7z8884efIkNvT2vrfflWilGOwUKUHgl8tlJJNJv1f7PBKJBF69egXbtsObuQu5cOECLMvCkSNHVv16if4KfN1ItIRz586hu7sbu3bt+tCXQrQsXLHTZ2NkZAQjIyMAgGfPngEArly5gmPHjgEA2tvbcebMmVlfUyqVcOnSJRw/fpyVLPTJYLDTZ2N8fBxnz56d9bHJyUlMTk4CAHp6euYE+/nz5+E4Drdh6JPCrRj6bJw6dWrWDdTmt2KxOOdrzp07h3Q6jf3797//CyZaIQY70QLq9TouXryIQ4cOLViFQ/QxYrATLWBiYgJ9fX04evToh74UorfCPXaiBezZswfj4+Mf+jKI3hqDnSJn3759ALBkfTpRVHHmKRHRp2nB+lvusRMRRQyDnYgoYhjsREQRw2AnIooYBjsRUcQw2ImIIobBTkQUMQx2IqKIYbATEUUMg52IKGIY7EREEcNgJyKKGAY7EVHEMNiJiCKGwU5EFDEMdiKiiGGwExFFDIOdiChiGOxERBHDYCciihgGOxFRxDDYiYgihsFORBQxDHYioohhsBMRRQyDnYgoYhjsREQRw2AnIooYBjsRUcQw2ImIIobBTkQUMQx2IqKIYbATEUUMg52IKGIY7EREERNf4t9j7+UqiIho1XDFTkQUMQx2IqKIYbATEUUMg52IKGIY7EREEcNgJyKKmP8D8wv538yMh2gAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -177,7 +177,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm4XFW55/Hvj0kiYQhgAjJFUMwNSntJmGyUBJAh2I0yheZy7SgkQRG0G5ApShi0CSpwr2iToMKlVcIVaFqGhCEkAbwMJgGUIcEAYRYjBEJMgCS8/cfaB4qdOqeGU7WrTvH7PM9+6tTa07tOJfWetfbaaysiMDMza7a1Wh2AmZl9MDjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnH2p6kiZKim+WYKo+xY3acTXLlY7Lj9G9O9NXF0ctjXitpVg/rH5F0Yw/rb5L0eA3n2y/7nQ2pMVT7gHPCsb7idWDPMsv0KvffETgbyH/R35wdZ3ljwqw7jma6Gthf0oD8iqxsf+A3BcZjH1DrtDoAsyqtioj7Gn3QiFgMLG70cdvM1cD5wKHAL3LrDgPWBaYWHZR98LiFYx1D0hmSFkp6U9LLkqZL2kLSCKCrS+nprDtoUbbP+7rUJA3O3h8l6QpJSyU939V1J+k7kl6UtFjSJElrlZx/iKSpkp6TtFzSo5K+3bVNT3Fk67fN9n812/9WSZ/M1XEbSbdIWiFpkaTjKv1eIuIp4AHgqDKrjwLmRMSfs+MPlXRNSR0ekXSiJPXwe/94VpcDc+W/knRfrmxnSdMkvZH9bq+RNKhk/XqSLsrO/1b2u75ekv847gD+EK3PKPelExGrsnVfAc4ETgMeBTYD9gE2AOYBpwA/Iv2V/xLwVoXTTQJ+TWoBfA34N0n/CGyXvR9GajU8yHutg62ABdl+bwCfAc4B+gH/q6c4JG0K3AO8AhxP6uI7HbhD0o4RsSL70v9/wObAscCb2fE3Bf5coT5XAz+SNDAi/pqdcxAwAvhOyXZbA48Dv8rqsAvwfWB94IcVztGjLHneA9wH/BOwHul3eAOpWxNgAjCa9Fk+DWwJjMJ/HHeGiPDipa0XYCIQ3SyDs20uBa7r4RhfLN2+pHxMVt4/ez84e39FyTYbAStJX+prl5Q/AFzTzflE+oPuTOCpKuI4j5RsNi0pG0C6dnVC9n5Utu/uJdtsB6wCZlX4HW4JrO46Vlb2TeAdYOsKdfge8ERJ+X5ZHEOy9x/P3h+Y2/9XwH0l768GHgPWLSkbksV1QPZ+OjCp1f/mvDRncQvH+orXSV90eS9mrw8Bx0o6hzQQYG5ErO7F+WZ0/RARSyUtBmbnjrkQ2LbrjaT1gTNIf71vS7o20rVunchaY93YD7gdWFrSknsDmAsMz97vBrwcEfeXxPaMpLmVKhMRL0maTWo9/DQrHg3cFRHPl8TZj5Qkjwa2KalDSForIt6pdK4e7AdMzo7VVceFwPOkOt5K+hyPy37ft0bEn3pxPmszbqZaX7EqIuaUWd7O1v+S9EV5JHA/8LKk8yStXef5Xsu9f7ubsvVL3k8idZlNIbVGdiV1GZHbrpzNSQlgZW4ZSfriB9gC+GuZfcuVlXM1sJekrSVtDfznrKzUj4BvA5eV1OECUmtnvSrP053NgLNYs47b8l4dz8nOfSLwx+xazjd7eV5rE27hWEfI/vK+GLhY0jakVsb3gRdIX2BFOAL4SURc2FUg6eAq930V+B2pay3vjez1L8DAMusHAiuqOMd1pNbNkaQEshq4NrfNEcC/RMS712skHVLhuG9mr/mEtGnu/RJSgruyzDEWA0TECtJ1nAmSdgS+AfxE0vyIuKNCHNbm3MKxjhMRz0XEBaTumqFZcVdLqFJLozf6UTIYIWtd5UeGdRfHDGAn4NEyrbgF2TZ/AAZJ2r3kHNuSLuxXFBGvkrqtjsqW2yLilSrqMLrCof9CSl7/ULLfRsDuue1mAJ8idXfm6/hMmXifAP4n6RrV0Px663vcwrG+Yh1Je5Qpfy4iXpA0mdRKuI90vWck8AnSqDVIo8cAxkuaCixvwvWB24ETJC3MYjkB+FBum+7iuAg4BrhT0k9ILbNBwN7APRFxNXAL8DDwW0mnkVoW51J9lxqkFsavs5//uZs6nCTpaVIX4jep8D0REauymQxOlvQ8sJTUtZi/mfZ7pIEWN0q6gjRIYivSjac/j4i7Jf2O1CX6YFa/I7N9766hjtauWj1qwYuXSgs9j1KbkG0zBvg96Yt+OfBH4NjccU4GniH9xbyoZL9yo9S+mNt3EfCjXNmVpHtYut4PAv4v6Qv3ZeBCYGzp8buLIyv/KHBFtu9b2Tl/BexUss22pJFcK7JjjCd1i82q8ne5AfD3bP8Ny6zfgjT0+g1Sy+UC0jDtANbPtnnfKLWS/W7M6r6INGz7faPUsu2GAtdnn9MK0si/y4CtsvWnkQZKvJ7FcF/+s/DSdxdlH3JhJH0cOBXYg9S8vjsiRlSx38bAJcCXSF2BNwEnRa5LIOtvPp/01+1TwDkRcU0j62BmZrVrxTWcnUijX57IlmpdQ7pJ7TjSX6W7km4Ye5ekvUgXRmcCB5GGx14taf/eBm1mZr3TihbOu2P5JV0LbF6phSNpT+A/gL0j4q6sbDdSX+8XIhu9IulW0k1l+5TsewuwUUTs1Yz6mJlZdQpv4UR9N44dRLrh7a6S4zxAmvriIABJHyJdKP733L5TgT2zLjkzM2uRvjIseggwv0z549k6gB1Id0Xnt3ucVM8dmxadmZlV1FeGRQ9gzbu8Id1Itn3JNpTZbklu/ftIGgeMA+jXr9+wbbbZptxmTfPOO++w1lp9Je/Xpsi6bfhEuhz4xo7F/F3RyZ8bdHb9XLfGeuKJJ/4WER+pZtu+knAgDcPMU5ny/Ht1U54KI6aQpiJh+PDhMWfOnN7EWLNZs2YxYsSIQs9ZlELr1jV7/oIFPW/XIJ38uUFn1891ayxJa9y0252+kuaXUP4JiZvwXotmSUlZfhso30IyM7OC9JWEM5/3rtWUKr228yRpIsD8dkNIU7DXMgTbzMwarK8knGnAFtl9NgBIGk66fjMNICLeIt1/c0Ru39HAvRHxekGxmplZGYVfw5H0YdKNn5DmUdpI0uHZ+1siYnk2F9XsiDgWICLuze6xuUrSKaQWyyTSHFOlM8ieB8ySdAnpptBR2fK+R9+amVnxWjFoYCDw21xZ1/uPkeZhWgfIP8fkKNL087+kZGqb0g0i4p4seZ0PfJ10n87REXFbA+O3dlTwDcxmVrvCE05ELOK9kWPdbTO4TNlrwFezpad9byA35Y2ZmbVeX7mGY2ZmfZwTjnWGYcPSYmZtqy/d+GnWvXnzWh2BmVXgFo6ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSE8Ss06w9ixrY7AzCpwwrHOMGVKqyMwswrcpWZmZoVwwrHOMHduWsysbblLzTrD8OHp1bNGm7Utt3DMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwsGjrDHPmtDoCM6vACcc6gx8vbdb23KVmZmaFcMKxzjBuXFrMrG054VhnuPzytJhZ23LCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhG/8tM6wyy6tjsDMKnDCsc7gx0ubtT13qZmZWSGccMzMrBBOONYZpLSYWdtywjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIzDVhnmDy51RGYWQVOONYZ/Hhps7ZXeJeapKGSZkhaLulFSedKWrvCPhMlRTfLGSXbXdnNNkOaXzMzM+tJoS0cSQOAO4DHgEOAHYAfkxLfhB52/TkwPVf2JeA0YFqufD7w1VzZovoitj5jypT06paOWdsqukvteKAfcGhELAVul7QRMFHShVnZGiLieeD50jJJ3wXmR8RDuc3/HhH3NSF2a2fjx6dXJxyztlV0l9pBwK25xDKVlIT2rvYgkjYFvgBc3djwzMysWYpOOENIXV7viohngeXZumodDqxLSlZ5QyUtlfSWpHskVZ3IzMyseRQRxZ1MWgmcGhGX5MqfB66KiDOrPM6dwMYRMSxX/i3gbdI1oo8AJwPDgL0i4oFujjUOGAcwaNCgYVOnlsthzbNs2TL69+9f6DmLUmTdRowcCcCsmTMLOV8nf27Q2fVz3Rpr5MiRcyNieFUbR0RhC7AS+FaZ8heA71d5jC2B1cApVWzbD3gauKGaYw8bNiyKNnPmzMLPWZRC6wZpKUgnf24RnV0/162xgDlRZQ4oukttCbBJmfKNgdeqPMaRgIBrKm0YESuAWwA/8N7MrMWKTjjzyV2rkbQNsAG5azs9OAq4JyKeq+G8xfUbmplZWUUnnGnAAZI2LCkbDawAZlfaWdJgYA+qHJ0mqR9pZNzcWgO1PqarU83M2lbRCecy4C3gekn7ZRfsJwIXRclQaUkLJf2izP5HAauAa/MrJG0s6W5J4yXtK2k0MBPYCvhBE+piZmY1KPTGz4hYImlf4FLgRtJ1m4tJSScfV7npbo4CZkTE4jLr3gIWk2YsGAi8CdwL7B0RcxpSATMzq1vhk3dGxGPAPhW2GdxN+Wd62OdN4NBeBWd917BshPxc956atSvPFm2dYd68VkdgZhX4AWxmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoXwKDXrDGPHtjoCM6vACcc6Q9cjps2sbblLzczMClFTwpFUbroZs9abO9ezDJi1uVq71F6QdBVwRUQ83oyAzOoyPHvgoGeMNmtbtXapTQYOBx6RdL+kcZI2akJcZmbWYWpKOBFxdkRsD3wBWABcBLwk6deS9mtGgGZm1hnqGjQQEXdGxFeALYATgU8Ct0paJGmipI82MkgzM+v7ejtKbTjwedJjo5cAdwPHAQslHdPLY5uZWQepOeFI2k7S2ZKeBGYAWwJfAz4aEf8MbEe61vPDhkZqZmZ9Wk2j1CTdSWrRPA9cSRqt9kzpNhGxWtJvgG81KkgzM+v7ah0W/TdgFHB7RI/jTx8CPlZ3VGa1muOniJu1u1oTzqXAvHLJRlJ/YJeIuCsiVgLPrLG3WbN0PWLazNpWrddwZgJDu1n3yWy9mZnZGmpNOOphXX9geS9iMavfuHFpMbO2VbFLTdLngRElRcdJOjC32frAwcCfGheaWQ0uvzy9etZos7ZVzTWc3Uk3dwIEcASwKrfN28B84NTGhWZmZp2kYsKJiB+S3VMj6WngyxHxULMDMzOzzlLTKLWI8FBnMzOrSzXXcEYB90TE0uznHkXELQ2JzMzMOko1LZybgD2AB7Kfg+5HqwXgh7SZmdkaqkk4HwNeKvnZrP3sskurIzCzCqoZNPBMuZ/N2oofL23W9qq5hvPhWg4YEb7508zM1lBNl9oy0rWZavkajpmZraGahPM1aks4ZsVTNo6lx0nMzayVqrmGc2UBcZiZWYfr7SOmzczMqlLNoIEHgDER8ZikP1Chey0idmtUcGZm1jmquYbzKLCi5Gd3kpuZWc2quYbz1ZKfxzQ1GjMz61h1X8NR8hFJPT2UzczMDKhxtmh4dzLPCcCwbP9VkuYC34+Imxscn1l1Jk9udQRmVkFNCUfSeOBnwAzgW8BfgYHAocDvJH0jIvw/34rnx0ubtb1aWzhnAlMi4uu58sskXQacBTjhmJnZGmq9hrMZcH03664DNq10AElDJc2QtFzSi5LOldTjdDiSBkuKMsvUMtseIulPkt6U9Jik0VXVzPq2KVPSYmZtq9YWzkxgb+D2Muv2Bu7qaWdJA4A7gMeAQ4AdgB+TEt+EKs5/CvD7kvd/yx1/L1Li+xlwEjAKuFrSkoi4rYrjW181fnx6ddeaWduq5sbPoSVv/xX4uaTNgBt47xrOl4GDgOMqHO54oB9waEQsBW6XtBEwUdKFWVlPFkTEfT2s/y5wV0SclL2fKWkn4HuAE46ZWQtV08J5hPff7ClgfLbkn/45nZ5niz4IuDWXWKYCk0gtpBuriKcsSR8CRpJaNqWmAldI2jgiXq/3+GZm1jvVJJyRDTzfEODO0oKIeFbS8mxdpYRzhaRNSS2rq4GzIqJrFoQdgHWB+bl9Hid12e0I/KF34ZuZWb2qmWlgdgPPNwB4rUz5kmxdd94CfkrqFlsKjABOIyWZQ0qOTZnjL8mtfx9J44BxAIMGDWLWrFk9xd9wy5YtK/ycRSmybiOy16LO18mfG3R2/Vy31qn5xs8uktYC1s+XV/HEz3Jzsamb8q5jvgR8s6RolqSXgZ9J+kxEPNTD8dVNedexpwBTAIYPHx4jRozoOfoGmzVrFkWfsyitqFtR5+vkzw06u36uW+vUNCw6m87mNEkLgZXAG2WWniwBNilTvjHlWz49uTZ73aXk2JQ5ftf7Wo9vZmYNVOt9OCcBpwO/ILUcvg+cCzwBLCLrmurBfNK1mndJ2gbYgDWvvVQSudcnSUlwSG67IcA7WYzWqSL8tE+zNldrwhkLnA1cmL2/ISLOAXYiJYxPVNh/GnCApA1LykaTHn9Q67Wiw7PXuQAR8RbpPqEjctuNBu71CDUzs9aq9RrOx4CHImK1pJVk3VUR8Y6knwE/J7WAunMZqZV0vaRJwPbAROCi0qHSWZfd7Ig4Nns/EdiQdNPnUuDzwKnA9RHxx5Ljn0e6vnMJ6T6hUdlyYI31NDOzBqs14bwC9M9+fhb4R94b5jyAdFNntyJiiaR9gUtJQ6BfAy4mJZ18XKX388wnzTJwXHaOZ4Efkrr0So9/j6TDgfOBrwNPA0d7lgEYfHqxE3kvuuDgQs/HsGHpde7cYs9rZlWrNeH8HtgVuAX4DWmGgE2Bt4ETSLNI9ygiHgP2qbDN4Nz7qaQbOCuKiBtIrRv7IJk3r9URmFkFtSacicBW2c8/IHWpjSG1Om4HTmxUYGZm1llqSjgRsQBYkP38FumZON9qQlxmZtZhenPj59bAlsCLEfFC40IyM7NOVOuwaCR9XdJzwDPA/cCzkp6X9I2GR2dmZh2j1pkGvkcaYTYNOBgYnr1OA/41W29mZraGWrvUTgB+EBHfzZVPz+Y2O4E084BZscaObXUEZlZBrQmnH90/1XM2HqVmreLHS5u1vVqv4dwAHNrNusOAm3oXjpmZdapqHjE9quTtNOBCSYNZ8xHTOwHfaXyIZlXommGga8YBM2s71XSp3cSaj5LeCjigzLa/Ij2J06xYw4enV88Ybda2qkk4H2t6FGZm1vGqecT0M0UEYmZmna3mmQYkrUMaILAXsCnwKnA36VEBqxobnpmZdYqaEo6kgcBtwM6kJ3y+DOxJuv/mYUn7R8TiRgdpZmZ9X63Doi8CNgN2j4jtI2LPiNge2D0rv6jRAZqZWWeoNeGMAk6LiD+UFmbvzyBNc2NmZraGWq/hfAh4o5t1bwDr9S4cszrNmdPqCKrS8U9eNetBrQnnPuA0SXdGxN+7CiVtAJyWrTcrnm/4NGt7tSack4GZwHOSbiMNGhhIuglUwIiGRmdmZh2jpms4EfEQ8AlgCvAR4AukhHMZ8ImIeLjhEZpVY9y4tJhZ26q6hSNpXWA34OmIOL15IZnV4fLL06tnjTZrW7W0cFYDdwL/0KRYzMysg1WdcCLiHeDPwKDmhWNmZp2q1vtwzgK+J+nTzQjGzMw6V62j1CaQZhR4SNILpFFq75sPPiJ2a1BsZmbWQWpNOI9ki5mZWU2qSjiS+pGmtXkE+AtwR0S83MzAzGqyyy6tjsDMKqjmEdPbA3cAg0uKl0o6MiJua1ZgZjXpesS0mbWtagYNXAi8A3wO+DCwE/AgMLmJcZmZWYepJuHsCUyIiN9HxJsR8TgwHthW0pbNDc/MzDpFNQlnS+CpXNmTpLnTtmh4RGb1kNJiZm2r2vtwovImZmZm3at2WPStklaVKZ+RL4+Igb0Py8zMOk01CeecpkdhZmYdr2LCiQgnHDMz67Va51IzMzOrixOOmZkVota51Mza02Tfh2zW7pxwrDP48dJmbc9damZmVggnHOsMU6akxczaVuEJR9JQSTMkLZf0oqRzJa1dYZ9dJV0haWG23wJJZ0taP7fdRElRZjmwubWylhs/Pi1m1rYKvYYjaQDpUQePAYcAOwA/JiW+CT3sOjrbdhLwZ2Bn4Lzs9bDctq8D+QTzeG9jNzOz3il60MDxQD/g0IhYCtwuaSNgoqQLs7JyJkXE4pL3syS9CUyWtF1EPFOyblVE3Nec8M3MrF5Fd6kdBNyaSyxTSUlo7+52yiWbLg9mr567zcysDyg64QwB5pcWRMSzwPJsXS0+S3ow3IJc+SaS/iZppaQHJR1ad7RmZtYwiijuyQOSVgKnRsQlufLngasi4swqj7MF8EfglogYU1J+DKnF8xDQn/SguFHAYRFxfTfHGgeMAxg0aNCwqVOn1lqtXlm2bBn9+/dv+nn+9MLrTT9HqU9vtXFhdQMYMXIkALNmzizkfPXWrRWfQz2K/OyK5ro11siRI+dGxPBqtm1FwjklIv4lV/4CcGVEnFXFMdYjDTzYGhgWEUt62FbAfwD9IuIzlY49fPjwmDNnTqXNGmrWrFmMGDGi6ecZfPrNTT9HqUUXHFxY3YD3Hr5W0L/neuvWis+hHoV+dgVz3RpLUtUJp+gutSXAJmXKNwZeq7RzlkCuAnYCRvWUbAAiZdPrgZ0rDb22Pi6isGRjZvUpepTafHLXaiRtA2xA7tpONy4mDaf+QkRUs30XfxOZmbVY0S2cacABkjYsKRsNrABm97SjpDOAE4FjIuKeak6WtYi+DDwcEavrC9nMzBqh6BbOZcBJwPWSJgHbAxOBi0qHSktaCMyOiGOz90cDPwCuBF6QtEfJMZ/sGjYtaTZwHam1tAEwFtgD+FJzq2UtN2xYep07t7VxmFm3Ck04EbFE0r7ApcCNpOs2F5OSTj6u0msu+2evY7Kl1FdJiQhgIfBtYEvSkOl5wMERMa0R8Vsbmzev1RGYWQWFP54gIh4D9qmwzeDc+zGsmWjK7XdsL0IzM7Mm8mzRZmZWCCccMzMrhBOOmZkVwgnHzMwKUfigAbOmGDu21RGYWQVOONYZ/Hhps7bnLjUzMyuEE451hrlzPcuAWZtzl5p1huHZ7OieMdqsbbmFY2ZmhXDCMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhIdFW2eYM6fVEZhZBU441hm6HjFtZm3LXWpmZlYIJxzrDOPGpcXM2pYTjnWGyy9Pi5m1LSccMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NC+MZP6wy77NLqCMysAicc6wx+vLRZ23OXmpmZFcIJx8zMCuGEY51BSouZtS0nHDMzK4QTjpmZFcIJx8zMCuFh0Wb2gTP49JsLPd+iCw4u9Hztyi0cMzMrhBOOmZkVwl1qDVJvE/3kT69iTI37unlexuTJrY7AzCpwwrHO4MdLm7U9d6mZmVkhnHCsM0yZkhYza1vuUrPOMH58enXXmlnbcgvHzMwKUXgLR9JQ4CfAnsBrwM+BcyJidYX9NgYuAb5ESpQ3ASdFxCu57Q4Bzgc+ATyVHfuaRtfDzKxZihz1CsWNfC20hSNpAHAHEMAhwLnAycA5Vex+DTACOA4YA+wK3JA7/l7AdcBM4CDgZuBqSfs3pAJmZla3ols4xwP9gEMjYilwu6SNgImSLszK1iBpT+AAYO+IuCsrewG4X9J+EXFHtul3gbsi4qTs/UxJOwHfA25rXrXMzKySoq/hHATcmkssU0lJaO8K+73clWwAIuIB4OlsHZI+BIwE/j2371Rgz6xLzszMWqTohDMEmF9aEBHPAsuzdVXvl3m8ZL8dgHXLbPc4qZ471hGvmZk1SNFdagNIAwXylmTr6tlv+5JtKLPdktz695E0DugaS7tM0oIe4mi4k2Bz4G+17KNJTQqmgbIYa65b709c2FM/i69bHXrxb6VP1K9OhdetqP+z9XyfQK/j267aDVtxH06UKVM35fXsl3+vbspTYcQUoGV3DEqaExHDW3X+ZnLd+q5Orp/r1jpFd6ktATYpU74x5VswlfbbpGS/JSVl+W2ocHwzM2uyohPOfHLXaiRtA2xA+Ws03e6XKb228ySwssx2Q4B3gCfqiNfMzBqk6IQzDThA0oYlZaOBFcDsCvttkd1nA4Ck4aTrN9MAIuIt0v03R+T2HQ3cGxGv9z78pujkCcBct76rk+vnurWIIipdOmngydKNn48BjwCTSAnjIuCSiJhQst1CYHZEHFtSNp000uwUUotlEvDXiPhcyTZ7AbOAS0k3hY7Ktj8wInwfjplZCxXawomIJcC+wNrAjaQZBi4Gzs5tuk62TamjSK2gXwJXAXOBL+eOfw9wOLAfcCvwX4GjnWzMzFqv0BaOmZl9cHm26CaRNFTSDEnLJb0o6VxJ+VZbuf02lnSFpCWSXpf0a0mbFRFzteqpm6Rds3otzPZbIOlsSesXFXc16v3cSvZfS9JcSSHpi82MtR69qZ+kQyX9QdIKSa9Imi5pg2bHXK1e/J8bLum2rE6vSrpD0u5FxFwtSR+XNFnSw5JWS5pV5X5t9X3i5+E0QckkpY+RJindAfgxKcFP6GFXSJOUfpI0SWnXtaobgM/1tFNRelG30dm2k4A/AzsD52WvhzUx5Kr18nPrchywVVMC7KXe1E/ScaRroxcCp5JupN6HNvkOqbdu2SjZO4B5wFey4lOB2yTtHBHPNDPuGuxEuiZ9H7BeDfu11/dJRHhp8AKcQbovaKOSsu+QpvDZqIf99iTdoPr5krLdsrL9Wl2vXtbtI2XKxmV1267V9epN3Uq2HQAsBo7N6vXFVtepQZ/d5sAbwNhW16EJdTseWA1skvscVwNfb3W9SmJaq+Tna4FZVezTdt8n7lJrjqZNUtoG6qpbRCwuU/xg9jqwceH1Sr2fW5fzgN8DM5oQWyPUW78js9d/a1ZgDVBv3dYFVgHLSsqWZWWFzZNUSUS8U8dubfd94oTTHM2cpLTV6q1bOZ8lNfMLnb+uB3XXTdLOwFdJw/DbVb312530GR0r6XlJKyXdL+mzzQu1ZvXW7bpsmx9LGihpIGnk7BLgt02KtSht933ihNMczZiktKf9itSQGCVtAZwI93L7AAACzklEQVQF/J/o5jlILdCbuv0E+GlELGx4VI1Tb/22IF0HmACcBvwX4O/AdEmDGh1kneqqW0S8SHqsyWHAy9lyKHBAN63yvqTtvk+ccJqn2ZOUtlKvYpS0Hum5RcuA/9HAuBqh5rpJOor0hXx+s4JqoHo+u7WA/sCxEfHriJhOetT7auCbjQ+xbvV8dluSronMJXUzHZT9fLOkbZsRZMHa6vvECac5mjlJaavVWzcAJIl04+5OwKhINwO3i5rrJmld4Iek0T9rSdoE2ChbvUFuGqdWq/ezezV7ndVVkLVK5wJDGxVcL9Vbt1NJI+0Oj4jpWTI9jJRM27l7tBpt933ihNMczZyktNXqrVuXi0nDVg+JiHapU5d66rYBsDVpiqYl2fJwtm4q7w2MaAf1fnaPk/4izl9EF+kaXDuot25DgEcjYmVXQUS8DTxKGlrdl7Xd94kTTnM0bZLSNlBv3ZB0BnAicEykaYjaTT11W0a6BlC6/Lds3ZnAPzUn1LrU+9ndREouI7sKske2D+O95Npq9dbtGeBTWTcv8O7j6j8FLGpCnEVqv++TVo8v78SFdEHuJeB20rxu40hfTOfntlsI/CJXNh14inTh8kuk0UF3t7pOva0bcDTpr+QrgD1yyxr36PSlupU5zmDa8z6c3vy7vCHb978DB5O+xBcDA1pdr17+uxxGeqzJzVm9vkj6Ml4J/KdW16skzg+T5ok8HLiX1ALrev/hHj63tvo+afkvslMXUt/2naS/sF4i3aOxdm6bRcCVubJNsi/l14ClwG+AzVtdn97WDbgy+xIut4xpdZ16+7nl1rdlwunlv8v+wP8GXsn2vQP4dKvr06C67QvcRbpW9SopmY5odX26+TdVbhncQ93a6vvEk3eamVkhfA3HzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIJxwzMyuEE46ZmRXi/wPargvhxia8vQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3debhcVb3m8e/LJJEwIwGZIijmBqW9JEw2SgLIEOxGmUJzuXYUkqAI2g3IqIRBm6AC94o2CSpcWiVcgaZlCHPC4GUwYVCGBAOEWYwQCDEMSfj1H2sfKHbqnFNVp/augffzPPupU2tPa51K6nfWuBURmJmZNdtKrc6AmZl1JwcYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAxM7NCOMBY25M0SVL0sh1W4zW2zq6zTi59XHadwcXkvrZ8DPCaV0ia2cf+hyVd08f+ayU9Vsf99sh+Z8PqzKp9wDjAWKd4Ddi5ynZDjedvDZwG5L/Yr8uus6Q52Ww4H0W6DNhT0rr5HVnansBvSsyPfUCs0uoMmNVoWUTc0+yLRsQCYEGzr9tmLgPOAvYHfpHbdwCwKjCt7ExZ93MNxrqGpJMkzZP0pqSXJN0gaSNJo4CeJqKnsuad+dk572sikzQ0e3+IpIslLZL0XE9TnKTvSHpB0gJJkyWtVHH/YZKmSXpW0hJJj0j6ds8xfeUj2795dv4r2fk3SvpkroybSbpe0huS5ks6or/fS0Q8CdwHHFJl9yHArIj4c3b94ZIuryjDw5KOlqQ+fu8fz8qydy79V5LuyaVtK2m6pNez3+3lkoZU7F9N0rnZ/d/KftdXSfIfwx3IH5p1jGpfMhGxLNv3FeBk4ATgEWB9YDdgDeB+4DjgR6S/4l8E3urndpOBX5P+wv8a8G+S/hHYIns/glQreID3/vrfBJibnfc68BngdGAQ8L/6yoek9YC7gJeBI0lNdicCt0jaOiLeyL7k/x+wAXA48GZ2/fWAP/dTnsuAH0naMCL+mt1zCDAK+E7FcZsCjwG/ysqwHfB9YHXgh/3co09ZsLwLuAf4J2A10u/walIzJcCpwFjSZ/kUsDEwBv8x3Jkiwpu3tt6ASUD0sg3NjrkAuLKPa3yx8viK9HFZ+uDs/dDs/cUVx6wFLCV9ia9ckX4fcHkv9xPpD7iTgSdryMeZpOCyXkXauqS+p6Oy92Oyc3esOGYLYBkws5/f4cbA8p5rZWnfBN4BNu2nDN8DHq9I3yPLx7Ds/cez93vnzv8VcE/F+8uAR4FVK9KGZfnaK3t/AzC51f/mvDVncw3GOsVrpC+2vBey1weBwyWdTuq4nx0Rywdwv1t7foiIRZIWALfnrjkP2LznjaTVgZNIf51vTurb6Nm3SmS1rV7sAdwMLKqoqb0OzAZGZu93AF6KiHsr8va0pNn9FSYiXpR0O6l28NMseSxwR0Q8V5HPQaSgeCiwWUUZQtJKEfFOf/fqwx7AlOxaPWWcBzxHKuONpM/xiOz3fWNE/GkA97MWc7XTOsWyiJhVZXs72/9L0hfjwcC9wEuSzpS0coP3ezX3/u1e0laveD+Z1AQ2lVTb2J7UBETuuGo2IH3hL81to0lf9AAbAX+tcm61tGouA3aRtKmkTYH/nKVV+hHwbeDCijKcTarNrFbjfXqzPnAKK5Zxc94r4+nZvY8G/pj1xXxzgPe1FnENxrpC9pf1ecB5kjYj1SK+DzxP+sIqw0HATyLinJ4ESfvWeO4rwO9ITWV5r2evfwE2rLJ/Q+CNGu5xJan2cjApYCwHrsgdcxDwLxHxbn+LpP36ue6b2Ws+AK2Xe7+QFNAuqXKNBQAR8QapH+ZUSVsD3wB+ImlORNzSTz6szbgGY10nIp6NiLNJzS/Ds+Semk5/NYmBGETF4IGs9pQfudVbPm4FtgEeqVJLm5sd8wdgiKQdK+6xOakjvl8R8QqpGeqQbLspIl6uoQxj+7n0X0jB6h8qzlsL2DF33K3Ap0jNl/kyPl0lv48D/5PUxzQ8v9/an2sw1ilWkbRTlfRnI+J5SVNItYB7SP01o4FPkEaVQRrdBTBR0jRgSQHt+zcDR0mal+XlKOBDuWN6y8e5wGHAbZJ+Qqp5DQF2Be6KiMuA64GHgN9KOoFUcziD2pvIINUgfp39/M+9lOEYSU+RmgS/ST/fExGxLFsp4FhJzwGLSE2F+cmr3yMNjLhG0sWkQQ2bkCZ6/jwi7pT0O1IT5wNZ+Q7Ozr2zjjJau2j1KANv3vrb6HsU2anZMeOA35O+2JcAfwQOz13nWOBp0l/E8yvOqzaK7Iu5c+cDP8qlXUKaQ9Lzfgjwf0lfsC8B5wDjK6/fWz6y9I8CF2fnvpXd81fANhXHbE4aafVGdo2JpGaumTX+LtcA/p6dv2aV/RuRhkK/TqqZnE0aNh3A6tkx7xtFVnHeNVnZ55OGUb9vFFl23HDgquxzeoM0Mu9CYJNs/wmkgQ2vZXm4J/9ZeOucTdmHWhpJHweOB3YiVZfvjIhRNZy3NnA+8CVS0961wDGRq+Jn7cVnkf56fRI4PSIub2YZzMysf63og9mGNDrl8Wyr1eWkSWFHkP7q3J40QetdknYhdWTOAPYhDVe9TNKeA820mZnVpxU1mHfH0ku6AtigvxqMpJ2B/wB2jYg7srQdSG21X4hsdImkG0mTuHarOPd6YK2I2KWI8piZWXWl12CisYla+5AmmN1RcZ37SEtJ7AMg6UOkjt1/z507Ddg5a2IzM7OSdMow5WHAnCrpj2X7ALYizTrOH/cYqZxbF5Y7MzNbQacMU16XFWdRQ5q4tWXFMVQ5bmFu//tImgBMABg0aNCIzTbbrNphhXnnnXdYaaVOifP1KbNsaz6euvNe37qcvyO6+XOD7i6fy9Zcjz/++N8i4iPV9nVKgIE0LDJPVdLz79VLekqMmEpa2oORI0fGrFmzBpLHus2cOZNRo0aVes+ylFq2ntXk587t+7gm6ebPDbq7fC5bc0laYZJsj04J4wup/gTAdXivxrKwIi1/DFSvAZmZWUE6JcDM4b2+lkqVfTNPkBbOyx83jLQkeT1Dos3MbIA6JcBMBzbK5rkAIGkkqf9lOkBEvEWa/3JQ7tyxwN0R8VpJeTUzM1rQByPpw6SJlpDWIVpL0oHZ++sjYkm2ltPtEXE4QETcnc1xuVTScaQayWTSGk2VK6yeCcyUdD5pEuaYbHvfo1zNzKx4rejk3xD4bS6t5/3HSOsYrQLkn+NxCGk59l9SsVRM5QERcVcWrM4Cvk6aJ3NoRNzUxPxbOyp5wrCZ9a/0ABMR83lvZFdvxwytkvYq8NVs6+vcq8ktIWNmZuXrlD4YMzPrMA4w1h1GjEibmbWNTppoada7++9vdQ7MLMc1GDMzK4QDjJmZFcIBxszMCuEAY2ZmhXCAMTOzQngUmXWH8eNbnQMzy3GAse4wdWqrc2BmOW4iMzOzQjjAWHeYPTttZtY23ERm3WHkyPTqVZXN2oZrMGZmVggHGDMzK4QDjJmZFcIBxszMCuEAY2ZmhXCAMTOzQniYsnWHWbNanQMzy3GAse7gxyWbtR03kZmZWSEcYKw7TJiQNjNrGw4w1h0uuihtZtY2HGDMzKwQDjBmZlYIBxgzMyuEA4yZmRXCAcbMzArhiZbWHbbbrtU5MLMcBxjrDn5cslnbcROZmZkVwgHGzMwK4QBj3UFKm5m1DQcYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAxM7NCOMCYmVkhPJPfusOUKa3OgZnlOMBYd/Djks3aTulNZJKGS7pV0hJJL0g6Q9LK/ZwzSVL0sp1UcdwlvRwzrPiSmZlZpVJrMJLWBW4BHgX2A7YCfkwKdKf2cerPgRtyaV8CTgCm59LnAF/Npc1vLMfWMaZOTa+uyZi1jbKbyI4EBgH7R8Qi4GZJawGTJJ2Tpa0gIp4DnqtMk/RdYE5EPJg7/O8RcU8Bebd2NnFienWAMWsbZTeR7QPcmAsk00hBZ9daLyJpPeALwGXNzZ6ZmTVL2QFmGKkJ610R8QywJNtXqwOBVUnBKW+4pEWS3pJ0l6SaA5eZmTWPIqK8m0lLgeMj4vxc+nPApRFxco3XuQ1YOyJG5NK/BbxN6uP5CHAsMALYJSLu6+VaE4AJAEOGDBkxbVq1mFWcxYsXM3jw4FLvWZYyyzZq9GgAZs6YUcr9uvlzg+4un8vWXKNHj54dESOr7oyI0jZgKfCtKunPA9+v8RobA8uB42o4dhDwFHB1LdceMWJElG3GjBml37MspZYN0laSbv7cIrq7fC5bcwGzopfv1LKbyBYC61RJXxt4tcZrHAwIuLy/AyPiDeB6wA9sNzMrWdkBZg65vhZJmwFrkOub6cMhwF0R8Wwd9y2vHdDMzIDyA8x0YC9Ja1akjQXeAG7v72RJQ4GdqHH0mKRBpJFrs+vNqHWYnkYyM2sbZQeYC4G3gKsk7ZF1sE8Czo2KocuS5kn6RZXzDwGWAVfkd0haW9KdkiZK2l3SWGAGsAnwgwLKYmZmfSh1omVELJS0O3ABcA2p3+U8UpDJ56va8jGHALdGxIIq+94CFpBWBNgQeBO4G9g1ImY1pQBmZlaz0he7jIhHgd36OWZoL+mf6eOcN4H9B5Q561wjshHrs90aatYuvJqydYf77291Dswsxw8cMzOzQjjAmJlZIRxgzMysEA4wZmZWCAcYMzMrhEeRWXcYP77VOTCzHAcY6w49j0w2s7bhJjIzMytEXQFGUrXlW8xab/Zsz+I3azP1NpE9L+lS4OKIeKyIDJk1ZGT2QD2vqGzWNuptIpsCHAg8LOleSRMkrVVAvszMrMPVFWAi4rSI2BL4AjAXOBd4UdKvJe1RRAbNzKwzNdTJHxG3RcRXgI2Ao4FPAjdKmi9pkqSPNjOTZmbWeQY6imwk8HnSY5AXAncCRwDzJB02wGubmVkHqzvASNpC0mmSngBuBTYGvgZ8NCL+GdiC1Ffzw6bm1MzMOkpdo8gk3UaqsTwHXEIaTfZ05TERsVzSb4BvNSuTZmbWeeodpvw3YAxwc0Sf40EfBD7WcK7M6jXLT8U2azf1BpgLgPurBRdJg4HtIuKOiFgKPL3C2WZF6Xlkspm1jXr7YGYAw3vZ98lsv5mZWd0BRn3sGwwsGUBezBo3YULazKxt9NtEJunzwKiKpCMk7Z07bHVgX+BPzcuaWR0uuii9elVls7ZRSx/MjqTJlAABHAQsyx3zNjAHOL55WTMzs07Wb4CJiB+SzWmR9BTw5Yh4sOiMmZlZZ6trFFlEeOixmZnVpJY+mDHAXRGxKPu5TxFxfVNyZmZmHa2WGsy1wE7AfdnPQe+jyQLwQ8nMzKymAPMx4MWKn83az3bbtToHZpZTSyf/09V+NmsrflyyWduppQ/mw/VcMCI82dLMzGpqIltM6luplftgzMyspgDzNeoLMGblUzbupM9Fvs2sTLX0wVxSQj7MzKzLDPSRyWZmZlXV0sl/HzAuIh6V9Af6aS6LiB2alTkzM+tctfTBPAK8UfGzG7nNzKxftfTBfLXi53GF5sbMzLpGw30wSj4iqa+HkJmZ2QdUXaspw7uLX54KjMjOXyZpNvD9iLiuyfkzq82UKa3OgZnl1BVgJE0EfgbcCnwL+CuwIbA/8DtJ34gI/0+38vlxyWZtp94azMnA1Ij4ei79QkkXAqcADjBmZlZ3H8z6wFW97LsSWK+/C0gaLulWSUskvSDpDEl9Li8jaaikqLJNq3LsfpL+JOlNSY9KGltTyayzTZ2aNjNrG/XWYGYAuwI3V9m3K3BHXydLWhe4BXgU2A/YCvgxKdCdWsP9jwN+X/H+b7nr70IKdD8DjgHGAJdJWhgRN9VwfetUEyemVzeVmbWNWiZaDq94+6/AzyWtD1zNe30wXwb2AY7o53JHAoOA/SNiEXCzpLWASZLOydL6Mjci7ulj/3eBOyLimOz9DEnbAN8DHGDMzEpUSw3mYd4/uVLAxGzLP93yBvpeTXkf4MZcIJkGTCbVgK6pIT9VSfoQMJpUc6k0DbhY0toR8Vqj1zczs/rUEmBGN/F+w4DbKhMi4hlJS7J9/QWYiyWtR6o5XQacEhE9qwxsBawKzMmd8xipCW5r4A8Dy76ZmdWqlpn8tzfxfusCr1ZJX5jt681bwE9JzVyLgFHACaSgsl/Ftaly/YW5/e8jaQIwAWDIkCHMnDmzr/w33eLFi0u/Z1nKLNuo7LWs+3Xz5wbdXT6XrTx1T7TsIWklYPV8eg1PtKy2lpl6Se+55ovANyuSZkp6CfiZpM9ExIN9XF+9pPdceyowFWDkyJExatSovnPfZDNnzqTse5alFWUr637d/LlBd5fPZStPXcOUs+VhTpA0D1gKvF5l68tCYJ0q6WtTvWbTlyuy1+0qrk2V6/e8r/f6ZmY2APXOgzkGOBH4Balm8H3gDOBxYD5ZU1Mf5pD6Wt4laTNgDVbsO+lP5F6fIAW9YbnjhgHvZHm0bhXhp1matZl6A8x44DTgnOz91RFxOrANKUB8op/zpwN7SVqzIm0s6XEA9fb1HJi9zgaIiLdI83QOyh03FrjbI8jMzMpVbx/Mx4AHI2K5pKVkzU8R8Y6knwE/J9VwenMhqRZ0laTJwJbAJODcyqHLWRPc7RFxePZ+ErAmaZLlIuDzwPHAVRHxx4rrn0nqnzmfNE9nTLbtXWc5zcxsgOoNMC8Dg7OfnwH+kfeGHa9LmkTZq4hYKGl34ALSkORXgfNIQSafr8r5NHNIs/iPyO7xDPBDUhNd5fXvknQgcBbwdeAp4FDP4oehJ5a70PX8s/ct9X6MGJFeZ88u975m1qt6A8zvge2B64HfkGbgrwe8DRxFWmW5TxHxKLBbP8cMzb2fRpow2a+IuJpUe7EPkvvvb3UOzCyn3gAzCdgk+/kHpCaycaRaxc3A0c3KmJmZdba6AkxEzAXmZj+/RXomzLcKyJeZmXW4gUy03BTYGHghIp5vXpbMzKwb1DtMGUlfl/Qs8DRwL/CMpOckfaPpuTMzs45V70z+75FGgE0H9gVGZq/TgX/N9puZmdXdRHYU8IOI+G4u/YZsbbCjSDP7zco1fnyrc2BmOfUGmEH0/tTK2/EoMmsVPy7ZrO3U2wdzNbB/L/sOAK4dWHbMzKxb1PLI5DEVb6cD50gayoqPTN4G+E7zs2hWg54Z/D0z+s2s5WppIruWFR+NvAmwV5Vjf0V60qRZuUaOTK9eUdmsbdQSYD5WeC7MzKzr1PLI5KfLyIiZmXWXumfyS1qF1KG/C7Ae8ApwJ2np/GXNzZ6ZmXWqugKMpA2Bm4BtSU+wfAnYmTT/5SFJe0bEgmZn0szMOk+9w5TPBdYHdoyILSNi54jYEtgxSz+32Rk0M7POVG+AGQOcEBF/qEzM3p9EWjbGzMys7j6YDwGv97LvdWC1gWXHrEGzZrU6BzXp+ieLmlWoN8DcA5wg6baI+HtPoqQ1gBOy/Wbl8wRLs7ZTb4A5FpgBPCvpJlIn/4akSZcCRjU1d2Zm1rHq6oOJiAeBTwBTgY8AXyAFmAuBT0TEQ03PoVktJkxIm5m1jZprMJJWBXYAnoqIE4vLklkDLroovXpVZbO2UU8NZjlwG/APBeXFzMy6SM0BJiLeAf4MDCkuO2Zm1i3qnQdzCvA9SZ8uIjNmZtY96h1Fdippxv6Dkp4njSJ73/roEbFDk/JmZmYdrN4A83C2mZmZ9ammACNpEGmZmIeBvwC3RMRLRWbMrC7bbdfqHJhZTi2PTN4SuAUYWpG8SNLBEXFTURkzq0vPI5PNrG3U0sl/DvAO8Dngw8A2wAPAlALzZWZmHa6WALMzcGpE/D4i3oyIx4CJwOaSNi42e2Zm1qlqCTAbA0/m0p4grT22UdNzZNYIKW1m1jZqnQcT/R9iZmb2nlqHKd8oaVmV9Fvz6RGx4cCzZWZmna6WAHN64bkwM7Ou02+AiQgHGDMzq1u9a5GZmZnVxAHGzMwKUe9aZGbtaYrn/Zq1GwcY6w5+XLJZ23ETmZmZFcIBxrrD1KlpM7O2UXqAkTRc0q2Slkh6QdIZklbu55ztJV0saV523lxJp0laPXfcJElRZdu72FJZy02cmDYzaxul9sFIWpe09P+jwH7AVsCPSYHu1D5OHZsdOxn4M7AtcGb2ekDu2NeAfEB5bKB5NzOz+pTdyX8kMAjYPyIWATdLWguYJOmcLK2ayRGxoOL9TElvAlMkbRERT1fsWxYR9xSTfTMzq1XZTWT7ADfmAsk0UtDZtbeTcsGlxwPZq9c+MzNrQ2UHmGHAnMqEiHgGWJLtq8dnSQ9Cm5tLX0fS3yQtlfSApP0bzq2ZmTVMEeWtxC9pKXB8RJyfS38OuDQiTq7xOhsBfwSuj4hxFemHkWo0DwKDSQ9GGwMcEBFX9XKtCcAEgCFDhoyYNm1avcUakMWLFzN48ODC7/On518r/B6VPr3J2qWVDWDU6NEAzJwxo5T7NVq2VnwOjSjzsyuby9Zco0ePnh0RI6vta0WAOS4i/iWX/jxwSUScUsM1ViMNFNgUGBERC/s4VsB/AIMi4jP9XXvkyJExa9as/g5rqpkzZzJq1KjC7zP0xOsKv0el+WfvW1rZgPceNlbSv+dGy9aKz6ERpX52JXPZmktSrwGm7CayhcA6VdLXBl7t7+QsYFwKbAOM6Su4AESKnlcB2/Y3FNo6XERpwcXMalP2KLI55PpaJG0GrEGub6YX55GGN38hImo5voe/eczMSlZ2DWY6sJekNSvSxgJvALf3daKkk4CjgcMi4q5abpbVeL4MPBQRyxvLspmZNaLsGsyFwDHAVZImA1sCk4BzK4cuS5oH3B4Rh2fvDwV+AFwCPC9pp4prPtEzjFnS7cCVpNrQGsB4YCfgS8UWy1puxIj0Ont2a/NhZu8qNcBExEJJuwMXANeQ+l3OIwWZfL4q+0z2zF7HZVulr5ICD8A84NvAxqQhzPcD+0bE9Gbk39rY/fe3OgdmllP6cv0R8SiwWz/HDM29H8eKgaXaeYcPIGtmZtZEXk3ZzMwK4QBjZmaFcIAxM7NCOMCYmVkhSu/kNyvE+PGtzoGZ5TjAWHfw45LN2o6byMzMrBAOMNYdZs/2LH6zNuMmMusOI7PVwr2islnbcA3GzMwK4QBjZmaFcIAxM7NCOMCYmVkhHGDMzKwQDjBmZlYID1O27jBrVqtzYGY5DjDWHXoemWxmbcNNZGZmVggHGOsOEyakzczahgOMdYeLLkqbmbUNBxgzMyuEA4yZmRXCAcbMzArhAGNmZoVwgDEzs0J4oqV1h+22a3UOzCzHAca6gx+XbNZ23ERmZmaFcIAxM7NCOMBYd5DSZmZtwwHGzMwK4QBjZmaFcIAxM7NCeJiymX3gDD3xulLvN//sfUu9X7twDcbMzArhAGNmZoVwE1mTNFrlPvbTyxhX57kf1Op2n6ZMaXUOzCzHAca6gx+XbNZ23ERmZmaFcICx7jB1atrMrG24icy6w8SJ6dVNZWZtwzUYMzMrROk1GEnDgZ8AOwOvAj8HTo+I5f2ctzZwPvAlUmC8FjgmIl7OHbcfcBbwCeDJ7NqXN7scZmZFKXNUKhQ3MrXUGoykdYFbgAD2A84AjgVOr+H0y4FRwBHAOGB74Orc9XcBrgRmAPsA1wGXSdqzKQUwM7OalV2DORIYBOwfEYuAmyWtBUySdE6WtgJJOwN7AbtGxB1Z2vPAvZL2iIhbskO/C9wREcdk72dI2gb4HnBTccUyM7O8svtg9gFuzAWSaaSgs2s/573UE1wAIuI+4KlsH5I+BIwG/j137jRg56yJzczMSlJ2gBkGzKlMiIhngCXZvprPyzxWcd5WwKpVjnuMVM6tG8ivmZk1qOwmsnVJHft5C7N9jZy3ZcUxVDluYW7/+0iaAPSMbV0saW4f+Wi6Y2AD4G/1nKPJBWWmibI81l22gd+4tKdall+2Bgzg30pHlK9BpZetrP+zjXyfwIDzt0VvO1oxDyaqpKmX9EbOy79XL+kpMWIq0LIZepJmRcTIVt2/SC5b5+rm8rls5Sm7iWwhsE6V9LWpXkPp77x1Ks5bWJGWP4Z+rm9mZk1WdoCZQ66vRdJmwBpU72Pp9bxMZd/ME8DSKscNA94BHm8gv2Zm1qCyA8x0YC9Ja1akjQXeAG7v57yNsnkuAEgaSep/mQ4QEW+R5r8clDt3LHB3RLw28OwXopsX0HLZOlc3l89lK4ki+uv6aOLN0kTLR4GHgcmkAHEucH5EnFpx3Dzg9og4vCLtBtJIsONINZLJwF8j4nMVx+wCzAQuIE3CHJMdv3dEeB6MmVmJSq3BRMRCYHdgZeAa0gz+84DTcoeukh1T6RBSLeeXwKXAbODLuevfBRwI7AHcCPxX4FAHFzOz8pVagzEzsw8Or6ZcEEnDJd0qaYmkFySdISlfK6t23tqSLpa0UNJrkn4taf0y8lyrRsomafusXPOy8+ZKOk3S6mXluxaNfm4V568kabakkPTFIvPaiIGUT9L+kv4g6Q1JL0u6QdIaRee5VgP4PzdS0k1ZmV6RdIukHcvIc60kfVzSFEkPSVouaWaN57X0+8TPgylAxaKej5IW9dwK+DEpoJ/ax6mQFvX8JGlRz56+pquBz/V1UlkGULax2bGTgT8D2wJnZq8HFJjlmg3wc+txBLBJIRkcoIGUT9IRpL7Nc4DjSROXd6NNvkMaLVs2ivUW4H7gK1ny8cBNkraNiKeLzHcdtiH1Kd8DrFbHea39PokIb03egJNI83LWqkj7DmlJnLX6OG9n0oTQz1ek7ZCl7dHqcg2wbB+pkjYhK9sWrS7XQMpWcey6wALg8KxcX2x1mZr02W0AvA6Mb3UZCijbkcByYJ3c57gc+Hqry1WRp5Uqfr4CmFnDOS3/PnETWTEKW9SzDTRUtohYUCX5gex1w+Zlb0Aa/dx6nAn8Hri1gLw1Q6PlOzh7/beiMtYEjZZtVWAZsLgibXGWVtq6Q/2JiHcaOK3l3ycOMMUoclHPVmu0bNV8llRtL3X9tz40XDZJ2wJfJQ2Lb1eNlm9H0md0uKTnJC2VdK+kzxaX1bo1WrYrs2N+LGlDSRuSRrYuBH5bUF7L0vLvEweYYhSxqGdf55WpKXmUtBFwCvB/opfnALXAQMr2E+CnETGv6ZRSC64AAAK5SURBVLlqnkbLtxGpHf9U4ATgvwB/B26QNKTZmWxQQ2WLiBdIj/k4AHgp2/YH9uql1t1JWv594gBTnKIX9WylAeVR0mqk5/YsBv5HE/PVDHWXTdIhpC/gs4rKVBM18tmtBAwGDo+IX0fEDaRHly8Hvtn8LDaskc9uY1KfxmxSs9E+2c/XSdq8iEyWrKXfJw4wxShyUc9Wa7RsAEgSaaLsNsCYSJNv20XdZZO0KvBD0uiclSStA6yV7V4jtyxSqzX62b2Svc7sSchqnbOB4c3K3AA1WrbjSSPhDoyIG7LgeQApeLZzc2ctWv594gBTjCIX9Wy1RsvW4zzSMNL9IqJdytSjkbKtAWxKWvJoYbY9lO2bxnsDGdpBo5/dY6S/ePOd3iL1obWDRss2DHgkIpb2JETE28AjpKHOnazl3ycOMMUobFHPNtBo2ZB0EnA0cFikZX3aTSNlW0xqw6/c/lu272Tgn4rJakMa/eyuJQWT0T0J2SPIR/BeMG21Rsv2NPCprNkWePfx658C5heQzzK1/vuk1eO7u3EjdaC9CNxMWhdtAumL6KzccfOAX+TSbgCeJHU0fok0eufOVpdpoGUDDiX9FXwxsFNuW2GOTCeVrcp1htKe82AG8u/y6uzc/w7sS/rSXgCs2+pyDfDf5QjSYz6uy8r1RdKX71LgP7W6XBX5/DBpncUDgbtJNaye9x/u43Nr6fdJy39x3bqR2qZvI/0F9SJpjsTKuWPmA5fk0tbJvoRfBRYBvwE2aHV5Blo24JLsS7faNq7VZRro55bb35YBZoD/LgcD/xt4OTv3FuDTrS5Pk8q2O3AHqa/pFVLwHNXq8vTyb6raNrSPsrX0+8SLXZqZWSHcB2NmZoVwgDEzs0I4wJiZWSEcYMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxszMCvH/AVGExBrIY4RWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -208,9 +208,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABCMAAAG1CAYAAADDSD4xAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdYFOf6N/DvLqhYgMVyYgWPGisqiCgoCmKvWKJBc4wl0WMXY8NojikGsYSDMfEQY8GIHmMSEjhqsPcoHbEkxoIFJSICLjYQ9nn/4GV/2QALyO7Osvv9XNdel8w888w9w+3szM3MMzIhhAARERERERERkYHIpQ6AiIiIiIiIiMwLixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQbEYQUREREREREQGxWIEERERERERERkUixFEREREREREZFAsRhARERERERGRQVlKHQAZlp+fH5KSkqQOw2Q4OTkhODhY6jCIiIiIiIiqFN4ZYWaSkpJYjNAR7ksiIiIiIqJXwzsjzJCTkxNOnDghdRhVnpeXl9QhEBERERERVUm8M4KIiIiIiIiIDIrFCCIiIiIiIiIyKBYjSFLp6emQyWTFxl64ffs2ZDIZfv31V4kiIyIiIiIiIn1hMYIkFRsbCysrKzg6OmpMj4mJgbW1Ndq0aSNRZERERERERKQvLEaQpOLi4uDs7AxLS82xVGNiYuDi4gK5nClKRERERERkanilR5KKi4uDq6trsekxMTElTiciIiIiIqKqj8UIklR8fHyxooNKpUJCQgJcXV0RHx+Pnj17onfv3vD29sbNmzclipSIiIiIiIh0xWyKEaGhofDy8qrQMi4uLjh06JB+AiLcu3cPaWlpcHFx0ZielJSEJ0+ewM3NDY0bN0ZUVBROnTqFRYsWYeXKlRJFS6YsPz8fP/74IyZMmIDhw4dj9uzZSEhIkDosMiKXLl2Cn58fhg8fDl9fX+zZswd5eXlSh0VERERUZVmW3cR0FRQUwN/fH6GhoXjx4gUGDBiAr776CvXr1wcA+Pj4ICIiAgMGDJA4UtOUmpoKAFAoFBrTd+/eDTc3NzRr1kxjevXq1YuNLUFUWbdv38bAgQNx9epVWFhYQAgBANi0aRPGjx+P0NBQVK9eXeIoSSoFBQWYPXs2vvrqK8hkMvXn22+/hb29PQ4ePIi2bdtKHSYRERFRlWM2d0aUJDAwEBEREYiOjlZfGE+cOFE938fHB5GRkVKFZ/LatWsHW1tbBAYGIjs7G5mZmQgJCcGmTZsQGBio0fbp06fw9/fHokWLJIqWTNHz58/Rt29fXLt2DUDhhadKpYJKpQIA/Pe//8XcuXOlDJEktnz5cnz11VcAACEEVCoVCgoKABQWVL29vZGVlSVliERERERVkuTFCJVKhbfffhsODg6oU6cOWrVqhT179hhk3Zs3b8bSpUvRokUL2NraYu3atYiKisKtW7cAAJ07d4alpSXi4+MNEo+5sbGxwb59+xAXF4emTZuibdu2CA8PR1RUFDw9PdXt8vLyMHbsWKxYsQIdOnSQMGIyNXv27MGNGzfUxYeSbNmyBffu3TNgVGQssrKyEBwcXOp8lUqFtLQ0hIaGGi4oIiIiIhMheTHi8ePHGDx4MJKTk6FUKrFgwQJMnjy5ws/iBgYGolOnThVa7507dzTGK2jZsiVsbGyQnJysnjZixAhERERUKBYqPw8PD5w9exZPnjxBeno6Dh06hN69e6vnFxQUYMKECRg9ejRGjhwpYaRkisLCwsp8faxKpcK3335roIjImPz444/Izc3V2kYmk+Gbb74xUERERERExsHPzw9+fn7lalcqYWRycnIEAJGZmSl27twp3NzchJubmzhy5Eil+t2+fbvw9PRU/3znzh0BQNy8eVOjnb29vdi5c6f654MHD4ouXbpUat3lAcBgnz/vB2P33//+V9SuXVt4enoKT09PMWfOHKlDUvP09DTo740ffvjhhx9++OGHH3744aeqfUoj+WiAhw8fRlBQEC5evIicnByoVCo0atQIMpkMQUFBOHfuHJ48eYI+ffogMTERFhYWOlmvtbU1gMI7JP4sOzsbNjY26p9v374Ne3t7naxTG/H/B83Tt4q+UURqvr6+8PX1lTqMUnl6euLEiRNSh0GvaODAgThy5IjWxzQAYMOGDZg3b56BoiJjsXPnTrz99tta28jlcnTp0gWxsbEGioqIiIhIekXXlWVdC2m7/pT0MY3o6Gj4+vpi3rx5+P333/H48WMsXboUXbt2RXR0NHr16oUaNWqgXr16aN68OW7cuKGzdSsUCtjb22u8vu/mzZtQKpUaj3tERkbCx8dHZ+slIuMxadKkMgsRlpaWRl0QI/0ZOXIkatWqpbWNSqXClClTDBQRERERkemQtBiRmJgIOzs79OjRAxYWFggNDcXq1avRtWtXPHr0CHZ2duq2dnZ2ePTokU7XP336dKxZswYpKSlQKpVYunQpBg4ciObNmwMAnj17huPHj2PYsGE6XS8RGYcxY8agY8eOWseNmDdvHv72t78ZMCoyFtbW1li2bFmp8+VyOVq0aKHxFiYiIiIiKh9JixG+vr5o1aoVGjdujPbt2yMrKwt2dnbo2rUr6tWrp/G6tKysLNSrV6/UvgICAir8pgV/f38MHz4crq6uaNKkCQoKChAWFqaef/DgQTg7O6N+/foV3zgiMno1atTA4cOH0bVrVwBQFyVkMhlkMhlmz56NtWvXShkiSWz58uVYtmyZOjf+/Khg+/btcezYMfVjf0RERERUfpIWIxQKBaKiovD06VPcuHEDCxYsQGpqKoYMGYLu3bvj9OnTyM3NRWZmJlJSUtCyZctS+3r//fdx+fLlCq3fwsIC69evR0ZGBnJychAeHq5ReOAjGrqzYMEC9OrVC/Pnzy+1zaFDh+Dh4QF3d3csX7682PxZs2ahQYMG2LJli8b0+/fvw8rKCtevX9d53GT6XnvtNZw/fx4nT57ErFmzABRegF67dg1ffPGFzsapoapJJpMhICAAt27dwkcffYS33noLQOHx6sKFC3BwcJA4QiIiIqKqSfJXe5ZGoVDAz88PXl5eGDp0KIKCggx+UeDg4ICxY8cadJ2mKCEhAU+fPsXp06eRl5dX6kBvffr0wZkzZ3Du3Dn88ssvePjwocb8Dz74AOvWrSu2XHBwMNzc3PQSO5kHmUyG3r17Y+PGjQCATz75RGvxk8xPs2bN8K9//Qs7duwAAPTv37/M18ISERERUekkf5uGNm+//XaZI5mXl5OTEyZPnlyhZT788EOdrNvcnTt3Dv369QMA9OvXD+fPn4erq2uxdtWqVQMAFBQUoGHDhhpvNQGARo0aFVvm4cOHyMnJUY/zQURERERERMbPbP6s8yrFCNKNP78u1dbWVmMskL/avHkz2rRpg3r16qFGjRpl9h0cHIw5c+boLFYiIiIiIiLSP7MpRpB0FAoFlEolAECpVEKhUJTadvr06bh69SpSU1ORmJiotd/s7GzcvXu3wgOXEhERERERkbRYjCC9c3d3x9GjRwEAR44cgZubG/Lz8/HgwQONdrm5uQAKBxatXbs2atasqbXfq1ev4tq1axg0aBAOHz6MGTNm6GcDiIiIiIiISKdYjCC969KlC6ysrNCrVy/I5XJ069YNt27dwooVKzTabd++HV5eXvDw8ECLFi3Qtm1bJCUlYevWrQCATz/9FOvWrUNQUBA+/vhjdO/eHefOnUNUVBT69++PkJAQKTaPiIiIiIiIKkgmhBBSB0GG4+XlBQA4ceKEpHH88MMPsLOzg7e3t6RxVIax7EvSLZlMBh4WSRvmCBEREZm78l4LeXl5ldrGqN+mQaZrzJgxUodAREREREREEmExwgwlJSWpK1n06pKSkuDk5CR1GERERERERFUOixFmhhfPuuPk5MT9SURERERE9ApYjDAzwcHBUodAREREREREZo5v0yAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig7KUOgAyLD8/PyQlJUkdhslwcnJCcHCw1GEQERERERFVKbwzwswkJSWxGKEj3JdERERERESvhndGmCEnJyecOHFC6jCqPC8vL6lDICIiIiIiqpJ4ZwQRERERERERGRSLEURERERERERkUCxGkKTS09Mhk8mKjb1w+/ZtyGQy/PrrrxJFRkRERERERPrCYgRJKjY2FlZWVnB0dNSYHhMTA2tra7Rp00aiyIiIiIiIiEhfWIwgScXFxcHZ2RmWlppjqcbExMDFxQVyOVOUiIiIiIjI1PBKjyQVFxcHV1fXYtNjYmJKnE5ERERERERVH4sRJKn4+PhiRQeVSoWEhAS4uroiPj4ePXv2RO/eveHt7Y2bN29KFCkRERERERHpitkUI0JDQ+Hl5VWhZVxcXHDo0CH9BES4d+8e0tLS4OLiojE9KSkJT548gZubGxo3boyoqCicOnUKixYtwsqVKyWKloiIqHRPnjzB2bNncfr0aWRmZkodDhkZIQQuXLiAEydO4Nq1a1KHQ0RkFMymGFGSgoICLF68GA0aNIC1tTXGjBmDjIwM9XwfHx9ERERIGKFpS01NBQAoFAqN6bt374abmxuaNWuGRo0awdraGgBQvXr1YmNLEBERSenJkyfw8/NDo0aN4OHhgd69e6NRo0aYMmUK0tPTpQ6PjEBYWBjatWsHJycn9OnTB61bt4a7uzuOHTsmdWhERJIy62JEYGAgIiIiEB0drb4wnjhxonq+j48PIiMjpQrP5LVr1w62trYIDAxEdnY2MjMzERISgk2bNiEwMFCj7dOnT+Hv749FixZJFC0REZGmZ8+eoV+/ftiwYQOePHminp6Xl4dvvvkGbm5uLEiYubVr12LixIn4/fffNabHxMSgf//+/KMXEZk1yYsRKpUKb7/9NhwcHFCnTh20atUKe/bsMci6N2/ejKVLl6JFixawtbXF2rVrERUVhVu3bgEAOnfuDEtLS8THxxskHnNjY2ODffv2IS4uDk2bNkXbtm0RHh6OqKgoeHp6qtvl5eVh7NixWLFiBTp06CBhxERERP8nKCgI0dHRJc5TqVS4desWli1bZuCoyFhcv34dS5cuBVD4mMafqVQqCCEwadIkPH/+XIrwiIgkJ3kx4vHjxxg8eDCSk5OhVCqxYMECTJ48GXl5eRXqJzAwEJ06darQeu/cuaMxXkHLli1hY2OD5ORk9bQRI0awaq1HHh4eOHv2LJ48eYL09HQcOnQIvXv3Vs8vKCjAhAkTMHr0aIwcOVLCSImIiP5PQUEBNm3aBJlMVmobIQR27dqF7OxsA0ZGxuKrr74qMz8eP36Mb7/91oBREREZD8mLEXZ2dhg/fjxsbW0hl8sxadIk5Obm4unTp+jXrx/q16+PVatWldmPv7+/RhGhLEqlEgBga2urMV2hUKjnAcDQoUOxf//+cvdLuvXdd98hKioKYWFh8PLywty5c6UOiYiICOnp6UhLSyv2F++/ys3NxW+//WagqMiYxMfHl5kfcrkcCQkJBoqIiMi4SD4a4OHDhxEUFISLFy8iJycHKpUKjRo1gp2dHUJDQ3HkyBH1eA66VDQo4uPHjzWmZ2dnw8bGRv3z7du3YW9vr/P1/5W2yrmu/fkRCGPn6+sLX19fqcMo1cmTJw36uyPD4O+UysIcoYpwd3eXOgQyUiqVChs3bsTGjRulDoWI6JVU5pxI0mJEdHQ0fH19ERYWBk9PT9SqVQurVq1CTEwMAKBp06Z6W7dCoYC9vT0SEhLg5OQEALh58yaUSqXG4x6RkZEYM2aM3uIoUlblXFcq+npT0s7T0xMnTpyQOgzSIZlMZrD/j1Q1MUcIKPzebt++PX7//XeoVKpS2ykUCqSlpcHKysqA0ZExCAgIwPLly8tsFxERgREjRhggIiIi3Sm6rizrWkjb9aekj2kkJibCzs4OPXr0gIWFBUJDQ7F69Wp07drVIOufPn061qxZg5SUFCiVSixduhQDBw5E8+bNARSOkn38+HEMGzbMIPEQERFR1SCTyTB//nythQig8FyDhQjz9M4776B69eql/tVQLpejadOmGDp0qIEjIyIyDpIWI3x9fdGqVSs0btwY7du3R1ZWFuzs7F6pGBEQEFDhNy34+/tj+PDhcHV1RZMmTVBQUICwsDD1/IMHD8LZ2Rn169evcDxERERk2qZPn44JEyYAKLywLFJ08dm7d298+OGHUoRGRuC1117D7t27IZfLNfIDKMyXOnXq4KeffoKFhYVEERIRSUvSYoRCoUBUVBSePn2KGzduYMGCBUhNTcWQIUMq3Nf777+Py5cvV2gZCwsLrF+/HhkZGcjJyUF4eLhG4SEyMhI+Pj4VjoWKW7BgAXr16oX58+eX2ubQoUPw8PCAu7t7ibc1zpo1Cw0aNMCWLVs0pt+/fx9WVla4fv26zuMmIiIqjVwux86dO7F582a0a9dOPd3e3h7r1q3DoUOHULNmTQkjJKmNGTMGZ8+exahRo9RFBysrK7zzzjuIj4/XeKsbEZG5kXwAS22mTp2K6Oho5ObmIjo6Gv/73/8Mun4HBweMHTvWoOs0RQkJCXj69ClOnz6NmTNnIjY2Fq6ursXa9enTBwMGDFD/++HDh2jQoIF6/gcffIBu3bohPz9fY7ng4GC4ubnpdyOIiIhKIJfLMW3aNLz77rt4/Pgx7OzscPPmzWJ/CSfz1b17d3z//fd4/vw5atWqhcePH6N69epSh0VEJDmjLkZs27ZNZ305OTlh8uTJFVqGt1bqxrlz59CvXz8AQL9+/XD+/PkSixHVqlUDUPju9oYNG2q81QQAGjVqVGyZhw8fIicnRz3OBxERkRRkMhkUCgUAsBBBJSq6S4aFCCKiQmbzbfkqxQjSjT+/LtXW1hZZWVmltt28eTPatGmDevXqoUaNGmX2HRwcjDlz5ugsViIiIiIiItI/sylGkHQUCgWUSiUAQKlUqv9yVJLp06fj6tWrSE1NRWJiotZ+s7Ozcffu3QoPXEpERERERETSYjGC9M7d3R1Hjx4FABw5cgRubm7Iz8/HgwcPNNrl5uYCKBxYtHbt2mUO+nX16lVcu3YNgwYNwuHDhzFjxgz9bAARERERERHpFIsRpHddunSBlZUVevXqBblcjm7duuHWrVtYsWKFRrvt27fDy8sLHh4eaNGiBdq2bYukpCRs3boVAPDpp59i3bp1CAoKwscff4zu3bvj3LlziIqKQv/+/RESEiLF5hEREREREVEFyYQQQuogyHC8vLwAACdOnJA0jh9++AF2dnbw9vaWNI7KMJZ9Sbolk8nAwyJpwxwhbZgfpA3zg4hMRXmvhby8vEptY9Rv0yDTNWbMGKlDICIiIiIiIonwMQ0iIiIiIiIiMijeGWGGkpKS1LfV0KtLSkqCk5OT1GEQERERERFVOSxGmBlePOuOk5MT9ycREREREdErYDHCzAQHB0sdAhEREREREZk5jhlBRERERERERAbFYgQRERERERERGRSLEURERERERERkUCxGEBEREREREZFBsRhBRERERERERAbFYgQRERERERERGRSLEURERERERERkUCxGEBEREREREZFBsRhBRERERERERAbFYgQRERERERERGRSLEURERERERERkUCxGEBEREREREZFBsRhBRERERERERAZlKXUAZFh+fn5ISkqSOgyT4eTkhODgYKnDICIiIiIiqlJ4Z4SZSUpKYjFCR7gviYiIiIiIXg3vjDBDTk5OOHHihNRhVHleXl5Sh0BERERERFQl8c4IIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCBJpaenQyaTFRt74fbt25DJZPj1118lioyIiIiIiIj0hcUIklRsbCysrKzg6OioMT0mJgbW1tZo06aNRJERERERERGRvrAYQZKKi4uDs7MzLC01x1KNiYmBi4sL5HKmKBERERERkanhlR5JKi4uDq6ursWmx8TElDidiIiIiIiIqj6zKUaEhoZW+FWMLi4uOHTokH4CIgBAfHx8saKDSqVCQkICXF1dER8fj549e6J3797w9vbGzZs3JYqUiIiIiIiIdMVsihElKSgowOLFi9GgQQNYW1tjzJgxyMjIUM/38fFBRESEhBGatnv37iEtLQ0uLi4a05OSkvDkyRO4ubmhcePGiIqKwqlTp7Bo0SKsXLlSomiJiIiIiHRLCIFTp07hrbfeQpcuXdCzZ0+sWbMGDx8+lDo0MhJ3797FBx98ADc3N7i4uGDatGlISEiQOiydMOtiRGBgICIiIhAdHY3U1FQAwMSJE9XzfXx8EBkZKVV4Jq9onysUCo3pu3fvhpubG5o1a4ZGjRrB2toaAFC9evViY0sQEREREVVF+fn5mDhxIjw9PbFnzx4kJibi3Llz8Pf3R4sWLXDixAmpQySJfffdd2jZsiVWrVqF6OhoJCQkYNu2bXBxccHixYshhJA6xEqRvBihUqnw9ttvw8HBAXXq1EGrVq2wZ88eg6x78+bNWLp0KVq0aAFbW1usXbsWUVFRuHXrFgCgc+fOsLS0RHx8vEHiMTft2rWDra0tAgMDkZ2djczMTISEhGDTpk0IDAzUaPv06VP4+/tj0aJFEkVLRERERKQ777//Pnbt2gWg8JoIgPri8tmzZxg6dKj6uoTMT2xsLMaPH4/8/HyN6UW5sn79enzxxRdShKYzkhcjHj9+jMGDByM5ORlKpRILFizA5MmTkZeXV6F+AgMD0alTpwqt986dOxqPCLRs2RI2NjZITk5WTxsxYgQf1dATGxsb7Nu3D3FxcWjatCnatm2L8PBwREVFwdPTU90uLy8PY8eOxYoVK9ChQwcJIyYiIiIiqrzHjx9rvZBUqVR4/vw5Nm3aZMCoyJgEBQVBCKH17ofAwMBixYqqRPJihJ2dHcaPHw9bW1vI5XJMmjQJubm5uHjxYoUGLvT399coIpRFqVQCAGxtbTWmKxQK9TwAGDp0KPbv31+BLaKK8PDwwNmzZ/HkyROkp6fj0KFD6N27t3p+QUEBJkyYgNGjR2PkyJESRkpEREREpBtRUVF4/vy51jZCCOzevdtAEZExKSgowPfff6++C6I09+/fR3R0tIGi0j3JH8A/fPgwgoKCcPHiReTk5EClUqFRo0bqgQutra1x4MABrFy5Ejt37tTZeovGIXj8+LHG9OzsbNjY2Kh/vn37Nuzt7XW23tLIZDK9r6PIn+86MHbfffcdoqKikJGRgbCwMHTs2BEbN26UOiy1kydPGvR3R4bB3ymVhTlC2jA/SBvmB1XEvXv3mDOklYeHh6Trr0x+SlqMiI6Ohq+vL8LCwuDp6YlatWph1apViImJQaNGjdTt9DFwoUKhgL29PRISEuDk5AQAuHnzJpRKpcbjHpGRkRgzZoxO110SQw0+UtHXm0rN19cXvr6+UodRKk9PTw4uZGJkMlmVHwyI9Is5QtowP0gb5gcViYqKwuDBg7W2kclkaNeuHS5fvmygqMhYCCFQt25dZGdnl9n24sWLcHR0NEBUmoquK8u6FtJ2/SnpYxqJiYmws7NDjx49YGFhgdDQUKxevRpdu3ZVt9HnwIXTp0/HmjVrkJKSAqVSiaVLl2LgwIFo3rw5gMKBY44fP45hw4bpfN1ERERERGSe+vXrh0aNGmn9q7IQAtOnTzdgVGQsZDIZ3nnnHa35IZfL0bVrV0kKEboiaTHC19cXrVq1QuPGjdG+fXtkZWXBzs5OXYyoyMCFAQEBFR7c0N/fH8OHD4erqyuaNGmCgoIChIWFqecfPHgQzs7OqF+/fsU3joiIiIiIqASWlpZYt24dhBAlXnDK5XK0adMGU6ZMkSA6MgbvvfceGjRoALm8+CW7XC6HTCYr9gbCqkbSYoRCoUBUVBSePn2KGzduYMGCBUhNTcWQIUMqPHDh+++/X+FbmCwsLLB+/XpkZGQgJycH4eHhGoWHyMhI+Pj4VHi7iIiIiIiItHnrrbewdetW1KlTB4Dms/fu7u44duyYxlh2ZF4aN26M06dPo3379sXm1a1bFz/++CP69u0rQWS6I/nbNEpTNHBhWFgYvLy8MHfuXIPH4ODggLFjxxp8vaZowYIF6NWrF+bPn19qm0OHDsHDwwPu7u5Yvnx5sfmzZs1CgwYNsGXLFo3p9+/fh5WVFa5fv67zuImIiIiI9GXq1KlIS0vDtm3bsGTJEgBAXFwczpw5g8aNG0scHUmtdevWSE5OxsmTJ/HBBx8AAPbs2YN79+5h+PDhEkdXeTJhJqPoJCUlISkpCZMnT5Y6FEmVd6ARXUpISEBISAg2b96MmTNnYurUqXB1dS3W7uXLl6hWrRoAoE+fPti7dy8aNGignp+WloaDBw8iPz8f7777rnr6kiVLEBMTgy1btqBVq1b636D/T4p9SfrHwcWoLMwR0ob5QdowP6gszBHSxpjyoyIDWJbWxmjvjNA1Jycnsy9ESOXcuXPo168fgMLBes6fP19iu6JCREFBARo2bFjstrQ/v2GlyMOHD5GTk6MedJSIiIiIiIiMn9kUI0g62dnZ6sKCra0tsrKySm27efNmtGnTBvXq1UONGjXK7Ds4OBhz5szRWaxERERERESkfyxGkN4pFAoolUoAgFKphEKhKLXt9OnTcfXqVaSmpiIxMVFrv9nZ2bh7926F36JCRERERERE0mJJf8QXAAAgAElEQVQxgvTO3d0dR48eBQAcOXIEbm5uyM/Px4MHDzTa5ebmAih8y0nt2rVRs2ZNrf1evXoV165dw6BBg3D48GHMmDFDPxtAREREREREOsViBOldly5dYGVlhV69ekEul6Nbt264desWVqxYodFu+/bt8PLygoeHB1q0aIG2bdsiKSkJW7duBQB8+umnWLduHYKCgvDxxx+je/fuOHfuHKKiotC/f3+EhIRIsXlERERERERUQWbzNg0qZCxvgPjhhx9gZ2cHb29vSeOoDGPZl6RbxjRKMRkn5ghpw/wgbZgfVBbmCGljTPmhi7dpWOo2JKLyGTNmjNQhEBERERERkURYjDBDSUlJ6koWvbqkpCQ4OTlJHQYREREREVGVw2KEmeHFs+44OTlxfxIREREREb0CFiPMTHBwsNQhEBERERERkZnj2zSIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKBYjCAiIiIiIiIig2IxgoiIiIiIiIgMisUIIiIiIiIiIjIoFiOIiIiIiIiIyKAspQ6ATJefnx+SkpIMvl4nJycEBwcbfL1/JdX2mypj+b3qCvNDt0wtPwDmiC4xP6gsppYjzA/dMrX8AJgjumSK+WEovDOC9CYpKcngBzkp1lkaY4qlqjPFfWmK2yQVU92Xprpdhmaq+9FUt0sKprgvTXGbpGKq+9JUt8vQuB8rh3dGkF45OTnhxIkTBlufl5eXwdZVHobeflNlbL9XXWF+6Iap5gfAHNEF5geVxVRzhPmhG6aaHwBzRBdMOT8MgXdGEBEREREREZFB8c4IIiIADx48wNWrVwEAMTEx6NChA2rXri1xVGQsnj9/jsuXL+Px48cAgPv376Nx48YSR0XGQqVS4fr167h37x4A4PLly2jTpg0sLXmaRYUyMjLw22+/AQDOnz+PDh06wNraWuKoyFjk5ubi8uXLyMrKAgDcvXsXTZs2hUwmkzgyMgZCCNy8eRN37twBACQnJ6Ndu3aoVq2axJFVHu+MIMk1btwYNWvWRJ06dWBra4tBgwbh7t27UodlctLT0yGTyYo913b79m3IZDL8+uuvEkUmnWvXrmHhwoWwt7dHw4YN4enpCQDo3r07bGxs4OTkhA0bNiA7O1viSPWP+VFcTk4OQkJC4OrqCmtra7i6uqJfv34AgCZNmqBx48aYM2cOLl++LHGkhsEc0SSEwLFjx/DGG2/Azs4Obdq0gbe3NwDA0dERNjY2GDx4MCIiIpCfny9xtPrH/Cju1q1bWLZsGf7+97+jQYMG6NWrFwDA3d0dtra2cHR0xLp165CRkSFxpPrH/Cju2bNn2L59O3r06AFra2u4uLiov2OKzkumT59uNuMRMEc0CSFw5swZTJgwAfXq1UOrVq3U3zGdO3eGjY0N+vbti7179+Lly5cSR/vqWIwgSd27dw9paWlISEjAkydPcPPmTaSnp8Pf31/q0ExObGwsrKys4OjoqDE9JiYG1tbWaNOmjUSRGd7Tp08xf/58tGnTBp9//jm6du2Kzz77DAcPHgQA/Pjjj1ixYgWsrKzg5+eH5s2bIzQ0FEIIiSPXH+aHpu+++w4tWrTAzJkzkZ+fD39/f/zwww84efIkACA4OBi9evXCli1b4OjoiHfffVd914SpYo78n+vXr8PT0xN9+/bFiRMnMH78eGzZsgXHjx8HAHzzzTeYNm0aLl26hJEjR6JLly5ISEiQOGr9Yn78nxcvXmDZsmVo2bIl1q5dC0dHR6xduxY///wzACAyMhIffvgh6tatiyVLlqB58+bYtGkTVCqVxJHrD/ND0/79+/H6669j6tSpUCqVWLhwIfbu3av+jtm4cSP69++PsLAwODs7Y8KECXj06JHEUesXc+T/3LlzB4MGDUKvXr1w4MABjB49Gl999RWOHTsGANi1axdmzZqFlJQUvPnmm3B0dMQvv/wicdSvhvcPkqRiY2NhY2ODtm3bAgDq1auHLl264NatW9IGZoLi4uLg7Oxc7LbhmJgYuLi4QC43j9rkrVu3MGjQIFy9ehVz5szB8uXL0bBhQ402I0eOxMiRI/HRRx8hISEBfn5+mDJlCqKiorBjxw7UqFFDouj1h/lRqKCgADNnzsTXX3+Nrl27IjIyEm5ubsVulZ0/fz7mz5+PjIwMrFu3DuvXr8fhw4dx8OBB9fHM1DBHCkVGRmL8+PGoVq0aQkJCMGnSJFhZWWm0mThxIiZOnIjPPvsM4eHhWLBgAbp164YvvvgCM2bMkChy/WJ+FEpLS8PgwYNx4cIFTJ06FR9++CGaNWum0Wb48OEYPnw4/vWvf+HSpUtYuHAhZs+ejQMHDmDv3r2oVauWRNHrD/OjkEqlwuLFixEUFISOHTti165d8PT0LPYdM2fOHMyZMwfZ2dkIDg5GQEAAjh8/jgMHDsDZ2Vmi6PWLOVLo6NGjGD16NAoKCvDvf/8b06ZNK/bY8IQJEzBhwgSsXbsW+/fvx/z58+Hh4YE1a9Zg8eLFEkX+aszjt0pGKzY2Fq6urpDJZMjPz0dUVBS+/fZbTJgwQerQTE5cXBxcXV2LTY+JiSlxuim6f/8+vLy88ODBAxw9ehQbN24sVoj4qy5duuDEiRMICAhQ56Yp/vWK+VF4S+S0adPw9ddfY9myZTh37hzc3d21PrNbv359rFmzBr/88gtyc3Ph5eWFGzduGDBqw2GOAD///DPGjBmDDh064PLly/jnP/9ZrBDxZ5aWlhg3bhwuXbqEQYMGYebMmdiyZYsBIzYc5gfw6NEjeHt74/r16/jf//6HrVu3FitE/JWjoyOioqLw+eef48CBAxg5cmSVvuW6NMyPQgsXLkRQUBDmzJmDuLg4eHl5af2OUSgU+PDDDxEbG4tq1aqhb9++JvtoIHMEOHXqFIYNGwZ7e3skJyfDz89P6/hlFhYWGDFiBJKTkzF27FgsWbIEn332mQEjrjyzKkaEhoZW6PUrLi4uOHTokP4CIsTGxuLMmTNQKBSwsrLCuHHjsHXrVkydOlXq0ExOfHx8sYO5SqVCQkICXF1dkZGRAXd3d3h6esLV1RWHDx+WKFL9EEJg6tSpyMjIwJEjR9TP3ZWHXC7HsmXLEBQUhPDwcGzcuFGPkUrD3PMDAHbu3Int27fjgw8+QEBAQIUGH+zevTuOHz+OvLw8TJw4EQUFBXqMVBrmniN//PEH/vGPf8DR0RFHjhxBkyZNyr2snZ0dwsPDMWjQIMyePdskLybMPT8AYObMmbh58yYOHDiAYcOGlXs5mUyGuXPnYsuWLTh8+DBWr16txyilwfwAIiIiEBwcjHnz5uHzzz9H9erVy71s586dcfLkSdSoUQPjx49HXl6eHiOVhrnnSFZWFsaPHw8HBwccP34cLVq0KPey1tbW2L17N9544w0sWbIEMTExeoxUx4QZ2b59u/D09FT/nJ+fLxYtWiTq168v6tSpI0aPHi0ePnyonv/RRx+JWbNmSRCpafD09NTY3yWxs7MT4eHhQggh7t+/L9q1ayc++ugjva7TUIwpltTUVAFAXLlyRWN6fHy8ACDu3Lkj8vPzRX5+vhBCiGvXromuXbtKEWqJdLEvd+zYIQCIL7/8Ums7bYdFlUolhg4dKmrWrClu3bpVqXiYH7qji32Znp4uFAqF8PDwEAUFBVrbasuRXbt2CQAiODi4UvEIwRzRFV3tx3HjxokaNWqIX3/9VWs7bfnx4MEDUb9+fdG9e3ehUqkqFQ/zQ3d0sS9/+uknAUAEBARobVfWqfeECROEpaVlsX1ZUcwP3dHFvlQqleK1114TTk5OIi8vT2tbbTmyb98+AaBS58pFmCO6oav9OG3aNGFhYSHi4uK0ttOWH9nZ2aJp06aiffv26n2lT+Xddm1tzOrOiL8KDAxEREQEoqOjkZqaCqDwOc8iPj4+iIyMlCo8k3f9+nVkZWWhS5cuAIBGjRph4cKFCAkJUd8Gf+bMGY27JN58803Ex8dLEm9VVpTfCoVCY/ru3bvh5uaGZs2awcLCAhYWFgAK3yLQuXNng8epL0IIrFu3Dk5OTpV6Xlsmk2HTpk3Iy8vDpk2bdBihtMw9PwBg69atyM7ORkhISKWeSx0/fjy8vLwQFBRkUndHmHuOpKSk4LvvvsPChQsrNSbI3/72NwQEBCA6OhpnzpzRYYTSMvf8AIB169ahZcuWlX5eOzg4GJaWltiwYYOOIpMe8wMICwvDgwcP8OWXX1bqdYxDhw6Fj48PNm7ciBcvXugwQmmZe46kp6cjNDQUM2bMgIuLyyv3Y2tri88++wxXrlxRD5hr7IyiGLF371507NgRderUwYABA/Dee+9h7Nixel/v5s2bsXTpUrRo0QK2trZYu3YtoqKi1IMndu7cGZaWlrz41ZPY2FjUrVsXDg4O6mk+Pj548OCB+iSta9euSExMBAAcP34ctra2lfpPaq7atWsHW1tbBAYGIjs7G5mZmQgJCcGmTZsQGBiobpeSkgIPDw8MGDAAI0eOlDBi3Tp//jwuXbqEOXPmVHoAJHt7e/j4+GDr1q0mc7Fp7vkhhMDmzZvh7e2NDh06VKqvotut79y5Y1KP+Zl7jmzduhVyuRwzZ86sdF9vvfUWFAoFNm/erIPIjIO558eVK1dw9uxZzJo1q0KPd5WkQYMGGD9+PMLCwvDs2TMdRSgtc88PoPCaw8XFBe7u7pXua+7cucjIyMBPP/2kg8iMg7nnyI4dO/Dy5UvMnTu30n2NGjUKjRs3rjLfMZIXI3bs2IGFCxdi06ZNePz4MYYNG4bPP/+8wiPFBgYGolOnTuVu//jxY9y5c0fjwrZly5awsbFBcnKyetqIESMQERFRoViofGJjY4v9nuvXr48ePXrg+++/BwBYWVnBysoKWVlZWLlyJT799FMpQq3ybGxssG/fPsTFxaFp06Zo27YtwsPDERUVBU9PT3W7v//97zhz5gxiY2MxZ84cCSPWraLilo+Pj0768/HxwaNHj/Dbb7/ppD+pmXt+3L9/HykpKTrLjyFDhsDS0tKk/vJt7jly+vRpdO3aFU2bNq10X7Vq1cKAAQNw+vRpHURmHMw9P4r+r+vq4mjkyJF4+vQpkpKSdNKf1Mw9P5RKJZKSkuDj46N1sMry6tOnD6ytrXkMMaEcOXPmDNq2bauT15dWq1YNQ4cOxZkzZ6rEK+klfbXns2fP8N577yEsLAy9evUCALz77ruYP3+++iI1LCwMX375JQBg1apV6Nu3b4l9+fv7w9/fv9zrViqVAApvZ/kzhUKhngcU3g61bNkyfPzxx+XfMCqXoKCgEqf/9eDavXt3TJs2DWPGjEGDBg0MEZpJ8vDwwNmzZ0udn5ubq35lpY2NDaytrQ0Vmt4lJibCwcEB9evX10l/RUXMhISESv8l3ViYe34A0NldV1ZWVujQoQMSEhJ00p+xMNccEUIgMTFR4zHOynJxccHevXuRmZmJunXr6qxfKZlrfgCFxxCFQoG///3vOunvz98xPXr00EmfUjPn/Lhw4QIA3X3HyOVyODs78zvGhHIkMTERvXv31ll/Li4u+Prrr3Hr1i2dHZf0RdJixMmTJ6FSqTB48GD1tIcPHwIAnJ2dkZ2djaCgIJw7dw5PnjxBnz59kJiYqH5eqDKKEvjx48ca07Ozs2FjY6P++fbt27C3t6/0+ujVubm54ZNPPsGePXukDsWkJSQkYOnSpbCwsEB+fj6Cg4OlDklnMjIy0KhRI531V9TXo0ePdNansTPl/Cj6Peo6R8wpPwDTzZH8/Hzk5OTo5RhiSsWIsphqfgCF3zENGzbUyV+9AahfOW1OxxBTzg99fccUFdLNhSnniL7OUzMzM42+GCHp2zRCQ0NF69atNaYFBASIhg0bCiGEiIqKEvPmzVPPGz58uLh69eorr++vb9Owt7cXW7duVf9848YNAUCkpKSopw0bNkxs3779lddZXgBM8qOL0WVnz54tjhw5Uq62np6ekm+zrrefjO/3yvwwLqaaH8wR3WB+UFlMNUeYH7phqvnBHNENXeSHXC6XPBf0/SmNpGNGdOjQAdevX8fJkyeRl5eH3bt3IzAwEE5OTgAKK4l2dnbq9nZ2djqtEk+fPh1r1qxBSkoKlEolli5dioEDB6J58+YACh8jOX78eIXeFf2qhBAm9/nzM16vIjU1FT4+PrC1tS318ZySeHp6Sr7tuth+0lSZ3+vMmTNhY2ODgoKCMtsCZf9/PHXqFADgf//7H/PDSFQmP4qe946MjCxXe6DsHGnWrBnGjx/PY4iRqOz3gr29PXx9fXWWH0uXLkW1atXw4sUL5oeRqEyO+Pv7w9LSsly/T6Ds/CgauywsLIz5YSQqkx8XL14EAOzcuVNnxxBHR0cMGTKkUsc15ojuVPY7pkOHDhg8eLDO8iMgIABA4Z0RlYlLl5/SSFqM6Nq1K5YvX47Ro0ejadOmiI6ORvfu3dXjRdSrVw9ZWVnq9llZWahXr16JfQUEBFT42W1/f38MHz4crq6uaNKkCQoKChAWFqaef/DgQTg7O+vsOXOqmKZNmyIiIoKDVlKlubi4QKlU6mzAyejoaHW/VPU5OTlBLperf6+VlZaWhrt37zI/TIiLiwuio6O1nlBVRHR0NDp27Kh+/pmqNhcXF+Tn5+vsGX5+x5iWtm3bombNmjr7jlEqlbhy5Qrzw4S4uLggNjZWZ29pi46ORsuWLTX+qG+sJH+bxscff4xHjx4hPT0dGzZswO+//64uRnTv3h2nT59Gbm4uMjMzkZKSgpYtW5bYz/vvv4/Lly9XaN0WFhZYv349MjIykJOTg/DwcI3CQ2RkpM5GVyci6QwaNAgWFhbYsWNHpfsSQmDHjh1wdnbW6fN9JJ3atWujT58+2Llzp05OBIrybOjQoZXui4zDsGHDkJKSopM3pKSkpODkyZPMDxPi7e0NKysrnXzHAEBoaChatWqF1q1b66Q/kpalpSUGDx6MPXv24MWLF5Xub9euXVCpVDyGmJBhw4YhIyMDP//8c6X7Sk9Px4EDB6pMfkhejPgzpVKJ27dvq4sRCoUCfn5+8PLywtChQxEUFKSTwSvLy8HBAWPHjjXY+szJ/fv30aVLF1hZWSE/P19j3qefforGjRtjxYoV6mmZmZkYN24cvL29eafE/6dtHwKV24/Hjh2Du7s7+vTpg9TU1FLb7dq1Cz169MCwYcM03kJjbJo0aQIfHx98/fXX6kFyX9X+/ftx6dIlzJ49W0fRkTGYNWsW7ty5g//+97+V6icnJwdffPEFvL290bZtWx1Fp3vR0dHo0aMHevXqhQULFhSbv3r1avTu3Ruurq748ccfAQAfffQR3N3d4e7ujqNHj5ba9/379+Ht7Y0ePXrgyJEjpba7dOkSPDw80LNnT41XahsjX19fKBQKrF69utJ3R6xduxZyuRzTp0/XUXQktbp162L8+PHYuXMn7t69W6m+Tp8+jbNnz2LmzJmQy43qNL1EQUFB8PDwKDa9tPON58+fo2HDhlqPDaZ2DgIUfsdkZGRg69atlernxYsX+Pe//w0XFxd069ZNR9GR1EaMGIHGjRsjMDAQKpWqUn0FBQXh5cuXmDVrlo6i0zNhRM6ePSusra2FSqXSS/+JiYkGGYySCnl6epY6MM7z589FZmam8PT0FC9fvtSY98cff4hjx46J5cuXq6fNmzdP/Prrr5Vap6HpOxZt+1CIyu1HLy8voVQqxfnz58WsWbNKbJOXlyc8PDzEy5cvxZ49e8TatWtffWPKoIt9mZycLKpVqybGjRun9Rij7bCYlZUlmjRpItq3by+eP39eqXgMlav37t0Tzs7OokaNGiXmSWnzd+zYIby9vYWnp6dITU0ttX8/Pz/h4eGhMdhwZdq9Cl3sy/z8fNG9e3dRt25dkZaWprWtthz55z//KWQymfjll18qFY8Q+s2RtLQ0dQ5PmDBBJCcna8zPy8sTQgiRk5MjunfvLoQQ4ubNm0KIwv8HvXr1KrXvuXPnirNnz4qcnByt8Y8cOVLcuXNHpKamihEjRlRmc7TS1X4MCgoSAMSOHTu0ttOWH8ePHxcAdPL/wFDHkPPnzwt3d3fh4eEh/Pz8is2/ePGiev7kyZOFSqUqc5k/M5VjyI0bN0StWrXEoEGDXvk75unTp+L1118XDg4OQqlUVioeQ+THixcvxNtvvy169uxZbF5p5xvBwcGib9++4vDhw6X2a4rnICqVSvTr10/UqVNHY6D8kmjLkSVLlggA4uDBg5WKRwjDnzN/9tlnJeaKEKWfc2hbpojUxxBd7cetW7cKAOLzzz/X2k5bfsTGxgoLCwsxadKkSsdjKEZVcu3RoweUSqXOXo30V05OTpg8ebJe+qaKsbKyKvU5ptdee61YDly6dAkBAQHo06cPzp07Z4gQjZ62fQi8+n589uwZatasCWtra3Tv3h1Xrlwpsd3vv/+Ojh07wtLSEv369cP58+dffWMMoGPHjli5ciX27t2LTz75pMLLP336FKNHj8Yff/yB0NBQWFlZ6SFK3atbty6OHj0KNze3cs+/d+8eTp48iaNHj+LEiRNo0qRJicsmJCTg6dOnOH36NPLy8hAbG1updlKysLDA9u3b8ezZM4wYMaLYa5/L4/PPP8dXX32F9957D+7u7nqIUncaNmyozmFLS8tidx1Wq1YNQOFfMR0dHQFA/XqwGjVqaP2eTk5Ohru7O+rUqQNra2vk5OSU2C4zMxPNmjVDkyZNXml/G9q8efPQs2dPzJgxQz2IbUVcuXIF48aNQ6tWrdSDi1UFDg4OOHbsGE6fPo309HT1YHxF2rRpg19++QWnT58GAMTFxZW5TBFTOoa0aNECa9asQVRUFBYtWlThO2hyc3Px5ptv4tq1a9i6dav6FfTGbMuWLZg0aVKJ80o638jLy0N0dHSJd1IUMdVzEJlMhi1btkAmk2H48OGvdJdmaGgo1q5di3fffRcDBgzQQ5T6k5ubiwsXLpQ4r7RzDm3LFDGlY8iUKVMwePBgLFy48JUe10hJScGoUaPQsGFD/Pvf/9ZDhPphVMUIotL88ssvWLZsGfbs2YPFixdLHU6VVZ79mJWVBRsbG/XPpT1Dn52drW5na2urMdissVq2bBkmTZqElStX4t133y33bZ2//fYbvLy8cPLkSezYsQOurq56jlR3yipalTT/4MGDKCgoQN++fTF37txSc+DcuXPo168fAGg9GSxvO6m1a9cO3377LZKSktCzZ08kJSWVa7lnz57Bz88P8+fPx6hRoxAYGKjnSHUnOTkZGRkZaN++fbF5s2bNQqdOneDt7a0x/cMPP8Q///nPUvssKChQFyu0HRv+fCtqZW9LNQQLCwuEh4fDwcEBgwYNQkhISLkvOMPDw9G7d29YWFhg//79qF27tp6j1Z3yFq6AwkJVs2bNylymiKkdQ2bPno25c+ciKCgIEyZMQGZmZrmWu3nzJvr164d9+/bhP//5T4XeICaVly9f4uTJk8WOD0VKOt/Yvn07Jk6cqLVfUz4HcXBwwE8//YTr16+jR48e5c7j3NxcLF++HFOmTEH//v2xceNGPUeqe9oKV6Wdc2hbpogpHUNkMhl2794NR0dH+Pj4ICgoqNzjWP3888/o0aMHnj17hv3791eJgSuLsBhBVULr1q3Rrl07vPbaa1XiGUpjVZ79aGdnp3GRXlo7hUKhbqdUKqFQKHQfsI7J5XJs27YNy5Ytw/bt2+Ho6IgNGzYgOzu7xPa///473nvvPTg5OeHmzZsIDw/HW2+9ZeCoDe/BgwfIy8vD0aNHUatWLURERJTYrrwng1XppHHEiBE4cOAAHj16BFdXV8yaNQuXLl0qsW1OTg5CQkLQqVMnbNiwAXPmzMG3334LS0tLA0f9ajIzMzFnzpxSn2HetGkTfvvtN43nvX/88Uc8evQIEyZMKLXfP194ajs2/PnYUlWO63/7299w6tQp9OjRAzNnzkTv3r3x008/lThujxACR48exYgRIzBmzBg4ODjg9OnTVXZQQm2Fq8jISDg6OiI9PV3jrWfalgFM7xgik8mwYcMGrFq1Ct9//z06dOiAdevWISMjo8T2t27dwrJly9CpUyckJydj165dmDFjhoGjfjU7d+7Uehz46/lGfn4+Dh48iMGDB2vt15TPQYDCwU6PHDmCvLw89OzZE++88w4SExNLbPvs2TNs27YNzs7OCAgIwJQpUxAZGVll7swsUlbhqqRzjrKWKWJqxxCFQoFjx45h0KBBWLhwIdzd3bF3717k5eUVayuEwOnTpzFu3DgMGTIE9erVw6lTp9C5c2cJIn91VeOMicxe69atkZaWBhsbmxJP+qh8StqP6enpsLOzU/91q1atWnj+/DmePHmCK1euqE8i7927p3G7fuvWrXHp0iUUFBTgyJEjpT4GYGzkcjkCAgIwYsQIvPfee/Dz88OiRYvg6Oiovh39jTfeQEJCAlJSUmBpaQlfX1+sX78er732msTRl+6PP/6Ar6+vxrSGDRtiz549Fe7L1tZW/f5xb29vxMXFldiuvCeDVe2ksV+/frh8+TL8/f2xbds2/Oc//4G9vT26dOmCBg0aAABcXV2RnJyMvLw8ODs749ixY+jTp4/EkZdffn4+/vGPf2DdunVo2LBhsfm5ubmoUaMGatasqT6BS05Oxpdffon9+/er2+Xk5EAIofGXzE6dOuHcuXPo1KkTlEolbGxskJmZiZo1a6JmzZrqdnXr1kVqairkcjlsbW31uLW61aBBAxw+fBhff/01PvnkE4waNQrW1tbo0qWL+o1fAwcORHx8PB49eoR69eohICAAixYt0riLwNhoO4YUFa727t1b4rIjRozAiBEjMHfuXOzbtw+jRieu2XsAACAASURBVI0qcxnANI8hMpkMy5cvx9ChQ+Hn54clS5Zg2bJlaN++PTp16gQAGDduHJKSknDt2jXI5XKMHj0aQUFBaNasmcTRl9/Vq1eRlJSEkJAQXL58GRs3bsTcuXPV8/96vvHgwQPcvXsXgwYNwvXr17F//364uLjg5cuXZnUOAgA9e/bExYsXsWLFCmzduhXbtm1DkyZN4OLioj7PcHNzw4ULF/DixQt06NAB+/fvx5AhQySOXLvSjiEDBgzQWrgq6ZwjOztb6zJFTPEYolAoEBERgV27duFf//oX3nzzTdSuXRvOzs54/fXXAQCDBw9GfHw8Hj58CFtbW3zwwQdYvnx51XxdtKQjVpBJ0zagS15enujbt69QKBTC29tbnDhxQqxatUoIIcSWLVtEly5dRPPmzdUDF12+fFl4enqKbt26if3797/SOg1N37H8dR+eP39epKWlVXg/vvXWW8UGKDx8+LBwc3MTXl5e4vbt20IIIby9vUVBQYFGu2+++Ua4u7uLIUOGiOzsbL1tqz73ZUJCgli2bJkYMGCAsLe3FwDE66+/Lt544w2xfv36MgczfFWGztXSBjotaX5iYqI6ZwIDA8WuXbvEy5cvxR9//KGxTHx8vJg+fboQQoiZM2eK6OjocrfTJX3uy4cPH4oNGzYIX19f0aZNG9GwYUMBQHh7e4vFixeL8+fP623QZX1u1+7du0X9+vXV6ygacHPOnDlCiMKBOD09PYW7u7v44YcfhBBCDBgwQDg6OgpPT0/1gJNff/21CAsL0+j77t27ok+fPsLNzU09yNry5cvFmTNnNNpduHBB9OzZU/To0UMkJibqZTuF0O9+fPnypfjpp5/ErFmzRLdu3USTJk0EAOHk5CTeeecdERYWVunBbktjqGPIy5cvxeDBg8X58+dLnP/ixQv1v99//33x888/l7iMuR5DLl26JD744AMxePBg4eDgIACIli1bilGjRonVq1eLO3fu6GW9hvyOKRpg8M/nINrO21auXKkewNLcz0GysrLEpk2b/l97dx4XVb3/cfw9oOIuhCYomm3uC4kLpAS4a7lkyY+ya6ilppVS3spQu5WmLdeLSy65cW9el0zN1CLFQC1JBB0Lr5lKel2TVDTRMGR+f/hzfhLKIsM5MLyej8d5+PDMmTPv+cx3hjmfOYtt4MCBtiZNmtj/xgQFBdleeukl25YtW0rl35gbvfLKK7Zu3brZunfvbnN3d891gsabfee42X1K6mdIcdbx6tWrti+++ML2wgsv2AICAux/Y1q2bGkLDw+3LV682JaRkVEsj20UmhEoNmY0BspSM8JRnnvuuXyXuXr1qn0jxQylpZaFYdRzyq9pdbPbbTab7eWXX7YFBQXZHnvsMVtmZqbtwIEDtmeeeSbX+l988UVbx44dbaNGjbLZbLYCL+dIzjg+bLbS8bxee+21Am0EPP/887k2JIxSGup4O4x6XjdrXN34GfLZZ5/ZHnroIdtDDz1kGzp0qO3q1as3vQ+fIcYqLc+J7yDmMeN53axxZbPl/s5xs/uU1M8QZx0fRrHYbEW8YDZwC8HBwZKk+Ph4p37MWylJWUo7Z6xlaXtOq1atkoeHR77HbxZ0OUcqbbUsKGd9XkZz1jqWtufFZ4ixnPE5mcVZa1nanldJ/QwpbXUsaThnBAAgX4899phDlwNQtvAZAqAo+AxxTjQjUKysVqu9Y2jU4/n6+hr2ePkx+vk7q5L2ujoK48MxnHV8SIwRR2B8ID/OOkYYH47hrONDYow4gjOPDyPQjECxMeON6evrW2I+EEpKDmdQkl5XR3G252MmZxwfEmPEURgfyI8zjhFnez5mcsbxITFGHMVZx4dROGcEAAAAAAAwlIvZAQAAAAAAQNlCMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ9GMAAAAAAAAhqIZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ9GMAAAAAAAAhqIZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYqpzZAQAAAEqKMWPGyGq1mvLYvr6+ioqKMuWxzUCtjUOtjVNaam1mTmdT1sa4I7FnBAAAwP+xWq2mfEE363HNRK2NQ62NU1pqXRZfm+JAHYuGPSMAAABu4Ovrq/j4eEMfMzg42NDHKymotXGotXFKS63NyOlsyuoYdxT2jAAAAAAAAIZizwgAAPJgs9l09OhR7dmzR+fPn1e5cuV0//33q3nz5nJzczM7HnBbsrOz9dNPP2nv3r26dOmSKlWqpGbNmqlhw4ZydXU1O55TycrK0r59+/Tjjz/q999/V9WqVdWiRQvde++9slgsZsdzKleuXFFKSooOHDigP/74Q9WrV1erVq1Uv359ag2UQOwZAQDATRw/flxvvPGG6tWrp7vuukt9+vTRX/7yFz3xxBNq06aNqlWrpv79+ys2NlY2m83suDDY6dOnZbFYch0rfOTIEVksFu3bt8+kZHlLSUnRc889Jw8PDzVp0kSPP/64Bg0apAEDBqhp06by8PDQ8OHD9f3335sd1a601joxMVFPP/20atSooZYtWyo0NFSDBg1S//79df/996tmzZqKiIjQgQMHzI5qVxprbbPZFBcXpwEDBqhatWry8/NTWFiY/vKXv6hv375q0KCB6tatq8jISB09etTsuHalsdbFiXqUTTQjAAC4QXZ2tmbMmKH7779fb7/9tlq1aqVZs2Zp+/bt+umnnyRJK1as0MiRI7V161Z17dpVvXv31vHjx01ODiPt3LlTFStWVPPmzXPMT0xMVLVq1dSoUSOTkt3cpUuXFBERoZYtW2rx4sXq06ePFi1apOTkZPvG8OLFi9W/f3/961//UqtWrfTCCy/o4sWLJicvfbU+d+6cwsPD1b59e61evVoDBw7Uxx9/bN/I2rlzpz766CN16dJFs2bNUpMmTTRhwgRduXLF5OSlr9YnT55Uv3791KlTJ3399dcaPny4li9frh9++EGSlJCQoA8//FB+fn6aMmWKGjZsqGnTpunq1asmJy99tS5u1KNs4jANAAD+z++//67Q0FCtW7dOvXr10owZM3TvvffmWi40NFShoaGaOnWq5s6dq9dff10tW7bUhg0b5O/vb0JyGC0pKUkPPPCAypXL+VUqMTFRfn5+cnEpOb/3nDx5Ut26dVNKSopGjRqlN998U56enrmWCw8PV3h4uKZNm6a33npLM2bMUGxsrDZt2iQfHx8Tkl9Tmmp94MABde3aVceOHVNkZKReffVVVatWLccybdq0UZs2bfTss8/q1KlTeu211zRp0iRt2rRJX3zxhe644w6T0peuWicnJ6tHjx66ePGi3n//fY0aNUqVKlXKsYy/v7/8/f01cuRIHT58WKNHj9bLL7+sTZs2adWqVapcubJJ6UtXrY1APcomXlUAAHRtj4jQ0FCtX79e06dP1/r162/aiLhRxYoVNWbMGO3Zs0ceHh7q3r279uzZY1BimCkpKUlt27bNNT8xMfGm881y7tw5de7cWT///LNiYmI0a9asmzYibnTHHXcoKipKsbGxOnHihDp16qRff/3VoMS5lZZaHzt2TCEhIcrIyNC3336rSZMm5WpE/JmXl5eio6O1cuVK7d69W927d9elS5cMSpxbaan1f/7zH3Xp0kVVq1bVrl27NHbs2FyNiD9r0KCBPvvsM82ZM0cbN25U//79lZWVZVDi3EpLrY1CPcommhEAAEiaOXOm1q1bp+nTp+vFF18s1MnO7r//fsXHx6tq1aoaOHCgMjMzizEpSoLk5ORcX5Czs7O1a9cu+/wuXbqoZs2amjRpkhkRJUmjR4/WTz/9pA0bNqh79+6Fum+nTp305Zdf6vDhw3r++eeLKWH+SkOtbTabhgwZovT0dG3evFnt27cv1P0ff/xxrVy5UklJSYqMjCymlPkrDbX+448/NHDgQFWoUEFxcXFq0qRJge9rsVg0YsQIzZkzR1999ZWmTZtWjEnzVhpqbaT86pGcnKwOHTrooYceUqdOnZSammpSUjhSmW1GZGdna9CgQbrrrrtUtWpV3XfffVq+fLnZsQAAJjh27JjGjRunhx9++LY3unx8fDR//nzt3btX7733noMToiQ5fvy4Tp48KT8/vxzzrVarLl68aD9UJzo6Wh988IEZESVJmzZt0scff6zXX39dQUFBt7WOBx98UBMnTtSKFSu0YcMGByfMX2mp9ZIlS7Rp0ya9//77atmy5W2to0+fPho5cqSmT5+upKQkByfMX2mp9T/+8Q9ZrVbNmzdPDRo0uK11PPvss3r00Uc1ceJE/fzzz44NWAClpdZGKUg96tSpo5iYGG3dulVjx47VG2+8YVJaOFKZbUacP39ePXv21Pfff68LFy4oIiJC4eHhJeLkQQAAY82bN0+///67ZsyYUaTLv/Xq1UuPPPKIZs2axd8TJ3bs2DFJkru7e475S5culb+/v+rVqydJpp5nQbq20ebl5VXkX9pfffVV1a9fX//4xz8clKzgSkOtbTabpk2bphYtWmj48OFFWteUKVNUtWpVTZ8+3UHpCq401PqPP/7Q9OnT1bVrV/Xr1++212OxWDRjxgxlZWVpzpw5DkxYMKWh1kYqSD28vb3thz1VqFAh17klUDqV2WaEh4eHnnjiCdWoUUMuLi56+umnlZmZqYyMDC1ZskQBAQEKCAjQ5s2bzY4KAChGNptNCxcuVK9evXTPPfcUeX2jRo3S6dOnTfkVGcZo0qSJatSooalTpyo9PV1nz57V3LlzNXv2bE2dOtXseJKu/dIYExOjZ599Vm5ubkVaV/ny5TV8+HBt3rzZ8F+RS0Otd+/eLavVqpEjRxb5JHvVq1fX008/rU8++UQXLlxwUMKCKQ213rhxo06cOKFRo0YVeV0+Pj7q27evFi1apOzsbAekK7jSUGsjFaYeGRkZeu211zR27FiT0sKRymwzYtOmTerZs6d8fHxUo0YNeXt7y9vbWxaLRdOmTVN8fLzWr1+viIiIEnH5HwBA8Thy5IhOnjyphx9+2CHr69SpkypUqKCEhASHrA8lT/Xq1bV+/XolJSXJx8dHjRs31urVqxUTE3Pbh0M42o4dO2Sz2Rw2rnv16mVfr5FKQ62vv9cdWesrV65o9+7dDllfQZWWWru6uqpbt24OWV+vXr105swZHTx40CHrK6jSUGsjFbQeV65c0YABAzR+/Hg1a9bMxMRwlDK5f8uOHTsUFhamJUuWKCgoSJUrV9akSZOUmJioHTt2KDAwUG5ubnJzc1ODBg106NAhNWzY0OzYAIBiYLVaJUmtW7d2yPoqVKigli1b2tcL59SxY0d9++23Zse4JavVKhcXl9s+f8GfNWvWTBUqVJDValVYWJhD1llQpaHWNWvWdNgu9dc/i6xWq+EbpqWh1k2bNs33yhkFdf0cBVar1fDv+iW91kbLrx5Xr17Vk08+qf79+xfpEB2ULGWyGbF79255eHjowQcflKurq6KjozVlyhS9+uqrOnPmjDw8POzLenh46MyZM8WaZ8yYMZKkqKioIi0DACi88+fPS5Jq1arlsHXWqlVLaWlpDlsfSqchQ4Zox44dyszM1I4dO7Ru3TrDHjs9PV3VqlVz2EZb+fLl5eHhoXPnzjlkfY5mdq1r1qxZpPPN3KhmzZqSRK1vIj093eGf1RK1Lg1WrlypmJgY/frrr1qyZIlatGihmTNnmh0LRWUrg86dO2fr3r27rXLlyrZ77rnHNm3aNFvdunVtGzZssMXExNhefPFF+7K9e/e27d+/v1jzBAUF2SQxMTExMTExlYApKCioWP/u812AWlNr555KS63NyOlsyuoYL+x0K2XynBHu7u6KiYlRRkaGDh06pIiICB07dky9evVS+/bttW3bNmVmZurs2bP6+eefde+99xZ7pqCgINlstltOQUFB+S7DxMTExFT46fox8KtWrSrQ8pLyXcbLy0uDBg0y/bkxFX4y83htR/6dnz17tiTp559/LtDy+Y3rEydOSLq2hya1zjlNmDBBLi4uysjIKHKdbTabkpOTJUkrVqyg1n+annnmGd1xxx3Kzs52SK2v72mwdevWMlfrsnhuiuLCNlr+062UyWZEXtzd3TVmzBgFBwfr4Ycf1rRp0+Tq6mp2LABAMWnZsqXKlSun7du3O2R9hw8f1qlTp3JdLx0w0vXx56hxff0kjYzr3Pz8/JSdna3ExESHrI9a35qfn5/Onj2rn376ySHrS0hIkMVika+vr0PWB6BwaEbcxKBBg5SQkKCEhAR17drV7DgAgGJUsWJF9ezZUx9//LGuXLlS5PUtXLhQFotFffr0cUA64Pa0bt1a9erV06JFixyyvgULFsjLy0vt27d3yPqcSadOnVStWjUtXLiwyOuy2WxasGCBWrRo4ZBLDTubRx55RK6urg6p9R9//KHo6Gh17dpV1apVc0A6AIVFMwIAUOaNHDlSp0+f1vz584u0nrS0NM2ZM0cPP/ywGjRo4JhwKHEiIiIUGBio0aNH55g/evRoBQUFqX379vazwm/atEn+/v4KCQnRjz/+aFjGcuXKafjw4dq8eXOR947YuXOnYmJiNGzYMJUvX95BCZ1HtWrVNGjQIH3yySfav39/kda1YcMGWa1WjRw50mEnxCyIW43psLAwBQcHKyAgwL73gNVqVYcOHRQYGKht27YZllGSfHx81LdvX82fP1+nTp0q0rqio6N14sQJjRw50kHpkJ9bjbMbbdy4UR07dlRAQIAiIyNz3T5y5EjVqlVLCxYsyDH/xIkTqlixouGXaUXR0IwAAJR53bt3V9euXfXqq68qNTX1ttZhs9k0atQoXbhwQVOmTHFwQpQUu3btUkZGhrZt26YrV65o586d9ts++OADbdmyRZ988oneeecdSdJbb72lzZs3a+nSpXrjjTcMzfriiy+qfv36Gjx4sC5dunRb6/j9998VHh6uOnXqKCIiwsEJCy6vjZiUlBQ9+OCDCgwM1ODBg2Wz2ZSVlaWwsDCFhITolVdeKfZ8kZGRqlKligYPHqysrKzbWse5c+c0fPhwNWvWTIMHD3ZwwlvLa0wvX75c8fHxeuWVV/TII49IkiZOnKgVK1boq6++0uTJkw3Led3kyZN1+fJljRgxIs9j0fPy3//+V2PHjlVQUJB69+7t4IQFl9e4jomJUXBwsIKDg+Xt7a3PPvvM8HHtSHmNsxuFhITom2++UUJCgrZv357rylQTJkzQ+++/n+t+UVFR8vf3L5bsKD40IwAAZZ7FYtGCBQtUrlw59erVy36yvoKy2WyKjIzUypUr9eabb6p58+bFlBRmS0hIUJcuXSRJXbp00XfffWe/7fpeAxcvXlSrVq3s86tUqSJvb28dOnTI0KzVqlXTokWLdODAAT322GO6fPlyoe6fmZmp0NBQ/ec//9H8+fPl7u5eTEnzlt9GTKNGjbR9+3b7r/RJSUlas2aNWrVqpbi4OF2+fFl79uwp1oze3t6aNWuWEhISbqshceHCBT3yyCNKS0tTdHS03NzciilpbnmN6evWrFmj/v37S7rWNPHx8VHlypWVkZFR6HFVVI0bN9Y777yjtWvX6q9//WuhGxK//PKLevbsqezsbC1cuFAuLuZsDuU3rnv06KH4+HjFx8erfv366tKli+Hj2pEKMs6k//8cvXr1qry8vFS9evUct3t7e+e6T1pamn777Tf2SCyFaEYAACCpfv36Wr9+vY4fP6727dtr48aNBbpfWlqawsLCNGXKFA0fPlyvvfZaMSeFmdLT0+1fjmvUqKFz587luP3RRx9Vt27d7F+6pWsbPz/++KP27dtnaFZJ6ty5s+bPn6+vvvpKDz30kPbu3Vug+/34448KCgrSunXrNHv2bPXs2bOYk95afhsxNx464ubmpnr16ik1NVUtW7aUJPn6+tpPClmcnnzySb3zzjtasmSJunfvrsOHDxfofklJSQoICFBiYqKWLVumNm3aFG/QP8lvTGdlZemHH35Q69atJUm1atVSSkqK0tLSlJKSovT0dEPzStf2KHjhhRf097//XY899ph++eWXAt3v66+/Vvv27XX48GF9/vnnhlwx71YKunGempqq2rVrq2rVqqaMa0fJb5zd6KOPPlKjRo3k6elZoMZcVFSUnn/+eYdlhXFoRgAA8H86duyoLVu2qGrVqurevbv69eun2NjYm/7K+d///lcTJ05U06ZNtWbNGr3zzjuaM2eOocd5w3ju7u66cOGCpGu/Zv95b4E1a9bou+++0+uvvy5Jeu+99xQWFqapU6eqQ4cOhueVpKFDh2r16tU6fPiwWrdurWHDhmn37t25flG22Wzas2ePnnvuOfn6+urAgQP65JNP9Nxzz5mS+7qCbMR8/vnnat68uU6fPi1PT081atRIW7ZskSTFxcXlueHjSOPGjdPChQuVmJio5s2bKyIiQvv27ctV6+zsbH333Xd6+umn5e/vr/T0dH355Zd67LHHDMl5o/zGdFxcnIKDg+3/nzp1ql566SWNGDFCLVu2VM2aNY2MK+na3mzTp0/X+++/rw0bNqhp06aKjIy8aQMoKytLX3/9tR5//HF17txZFSpUUFxcnEJCQgzPfaOCbpyvXr1ajz76qCSZNq4dIb9xdqNhw4Zp//79OnbsmHbv3p3netPT03X06FE1a9bMoXlhDJoRAADcoHXr1tq1a5cmTpyob7/9Vl27dlX16tXl7+9vP7bYx8dHd911lyZNmqR27dopOTlZ48aNoxFRBgQEBGjz5s2SpNjY2BzHKGdmZkq6dnhElSpV7MvHxcUpMjJSTZo0MT7w/+nXr5/27t2rQYMG6eOPP1br1q11xx13KDg42D6uPT095evrq8WLF+vJJ5/U3r17NWDAAMMynjp1yn6M/PUpLCysQBsxffr0UUpKiurWrav169erd+/eunz5sjp37iw3NzfVrl3bsOcxZMgQpaSkqHfv3po1a5aaNm2qO++8U507d5YkBQYGyt3dXQEBAVq9erVGjhypvXv35tibxkh5jWnpWoPt+sawJDVs2FAbN27UvHnzVL9+fdNOamqxWDR27Fjt3r1bHTp00JQpU3T33XerTp069qvhBQQEqHr16urcubPi4uL0+uuvy2q1ql27doblLMq4lqR169bZr85k5rguqpuNs6ysrFx7tVz/HHV1dVWVKlVUqVKlPNe7f/9+HThwQD169NCmTZs0YsSI4nkCKBblzA4AAEBJU6lSJb355psaN26c1q1bp4SEBFmtVh0/flzStRNs+fn5qW/fvrr77rtNTgsjtW7dWhUrVlRgYKBatWql+vXra/LkyYqMjNT//M//6Pz588rKyrKfxHTy5MmKjY2Vp6en5s2bZ2r2O++8U/Pnz9e7776rNWvWaOfOnUpJSbGP6wEDBqhNmzbq37+/PD09Dc/n5eWl+Pj4XPN37dqlefPmKTQ0VLGxsQoPD89xe2Zmpn1X7urVq6tSpUpydXXVzJkzJV37lbVbt27FHT+Hu+66S8uWLdM//vEPrVmzRklJSfbDdCwWiwYNGqS2bduqf//+pl9WMq8xbbPZlJCQoFmzZtmXX7hwoZYsWaLKlSvnmG+Wpk2b6vPPP9eRI0f02WefKTk5WT/99JOka5duHj58uPz9/dWnT598N2yLw+2Oa+laI6NChQr296PZ47oo/jzO2rVrp4MHD+rdd9/NcSWrxYsXa/ny5crKylJISIgaN24sq9Wq5ORkDR06VJMnT9bSpUtls9l04sQJTZw40X64Snh4uMaPH2/WU8RtsNhu9zS0cJjru77d7IOqMMsAAIqfxWK57TO4o+Qz6++t2X/nzRjXhXnOo0eP1q5du9SqVSvNmjVLp06d0sKFCxUZGam1a9dq2rRpkqT7779fH330kU6ePKmBAwfKxcVFgwYNyrGhZ2atzfr8KIvjujTUOq9xLUnz5s3TH3/8YT8fwvHjxx02rs3+zJGkVatWycPDQ506dTItQ1GVhDqWZuwZAQAAgBJt+vTpOf7v5eVl32Dr27ev+vbtm+P2unXrsnGAEi+vcS1Jw4cPz3G7s41rM86RgpKFZgQAAMANrFZrjhP2GfWYvr6+hj5mSUCtjUOtjVNaam1GTmdTVse4o9CMAAAA+D9mfan09fUtc19oqbVxqLVxSkuty9rrUlzK4hh3JM4ZUQJwzggAKD04ZwScEePaGNTZONQaKPm4tCcAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ5UzOwAAONqYMWNktVoNJVBZkgAAIABJREFUf1xfX19FRUUZ/rhmMavOUtmotZn1dTaFGS+MawAAjMGeEQCcjtVqNXxjwozHNJtZz7ms1LqsPM/iVtg6Mq4BADAGe0YAcEq+vr6Kj4837PGCg4MNe6ySxOg6S2Wr1mbU19ncznhhXAMAUPzYMwIAAAAAABiKZgQAAAAAADAUzQgADnHp0iVFR0crPDxcLVq0kJeXl7y9vdWuXTs999xzWrt2rbKyssyOaXf69GlZLJZcx2gfOXJEFotF+/btMylZ/s6fP685c+Zo4MCBatKkiWrXrq06deqoQ4cOevHFF7Vp0yZlZ2ebHdOuNNca/4/XMSfqAQBA0dCMAFAkmZmZ+tvf/qa6detq8ODBiomJUf369dW3b1+dOnVKVapU0dKlS9WvXz/dc889WrhwoWw2m9mxtXPnTlWsWFHNmzfPMT8xMVHVqlVTo0aNTEp2axcvXlRERITq1KmjkSNHauvWrWrYsKEeffRRnTx5UhaLRQsXLlS3bt3UuHFjrVq1yuzIkkpnrZEbr2NO1AMAgKKhGQHgtu3bt09t2rTRm2++qc6dO2vbtm06efKkNmzYoHnz5kmS4uLidObMGa1evVr16tXTM888o549e+rMmTOmZk9KStIDDzygcuVynsc3MTFRfn5+cnEpWR+PO3bsUMuWLTV9+nSFhoYqKSlJR48e1dq1azV37lxJ0jfffKOzZ89qyZIlqly5sh5//HGFhYUpIyPD1Oylrda4OV7HnKgHAABFw19KALclJSVFgYGBOn36tDZs2KBPP/1UHTt2lMViybVsuXLl9Oijj2rbtm2aNWuW4uPjFRQUpF9//dWE5NckJSWpbdu2ueYnJibedL6ZvvnmG3Xu3FmStHXrVi1evFh+fn43XdbNzU0DBw7Uzp079fbbb2vlypXq0aOHqQ2J0lRr3BqvY07UAwCAoqEZAaDQzp8/r169esnNzU3ffvutevXqVaD7ubi4aNSoUfriiy908OBBhYaGmnZug+Tk5FwbDNnZ2dq1a5d9fpcuXVSzZk1NmjTJjIiSpBMnTqh3797y8fHR9u3b1bFjxwLdr3z58ho/fryWLVum7du369lnny3mpLdWWmqNvOX3OiYnJ6tDhw566KGH1KlTJ6WmppqU1BiMawAAioZmBIBC++tf/6rjx49r1apVuu+++wp9/06dOmnmzJmKi4uzH2JgpOPHj+vkyZO59i6wWq26ePGi/P39JUnR0dH64IMPDM93nc1m0/Dhw5WZmal169bJy8ur0OsIDQ3VG2+8oWXLlmnNmjXFkDJvpaXWyFtBXsc6deooJiZGW7du1dixY/XGG2+YlLb4Ma4BACi6MtuMyM7O1qBBg3TXXXepatWquu+++7R8+XKzYwEl3qFDhzR//nyNGTPG/oX7djzzzDPq1KmT/va3vykzM9OBCfN37NgxSZK7u3uO+UuXLpW/v7/q1asnSfLx8TE0158lJCRo/fr1euutt3T//fff9nrGjRunFi1a6PXXXzf85KGlpdbIW0FeR29vb1WrVk2SVKFChVznUnAmjGsUxk8//aRRo0bZx4u3t7fGjx+vX375xeRkzsdqtSo8PFxVq1aVJN11112aMmWK0tPTTU4G4GbKbDPi/Pnz6tmzp77//ntduHBBERERCg8P15UrV8yOBpRoc+fOlaurq15++eUircdisejVV19VWlqaPv30UwelK5gmTZqoRo0amjp1qtLT03X27FnNnTtXs2fP1tSpUw3NkpfZs2erevXqGjFiRJHWU758eb388sv68ccfFRcX56B0BVNaao28FeZ1zMjI0GuvvaaxY8ealLb4Ma5RUF9//bV8fX01Z84cnT9/XpJ06tQpTZ48Wa1atdL+/ftNTug8Vq5cqbZt2+rjjz+2nyfp6NGjev3119W2bVudOHHC5IQA/qzMNiM8PDz0xBNPqEaNGnJxcdHTTz+tzMxMZWRkcIwnkIf169erW7duqlOnTpHX1aVLF9WpU0cbNmxwQLKCq169utavX6+kpCT5+PiocePGWr16tWJiYhQUFGRollux2WzasGGDHn/8cfsvPEURGhqqihUrUmvcloK+jleuXNGAAQM0fvx4NWvWzMTExYtxjYI4d+6c+vbtq8zMzJvulZaWlqa+ffuadu4kZ5KamqqBAwfq6tWrOep5ve6pqal68sknzYoH4Bacdx/KfGzatEnTpk3TDz/8oN9++03Z2dny9vaWh4eHoqOjFRsba98NE8A1v/32m/bv36+wsDCHrM/FxUXt2rVTcnKyQ9ZXGB07dtS3335r+OMWVGpqqtLT09W+fXuHrK9SpUpq1aoVtcZty+91vHr1qp588kn1799f/fr1MzCZORjXyE90dLQuXrx4y9uzs7O1f/9+bd68WV27djUwmfOZO3eusrKybnkoYnZ2trZs2aIffvhBLVq0MDgdgFspk82IHTt2KCwsTEuWLFFQUJAqV66sSZMmKTExURLHeAK3cvToUdlsNjVq1Mhh62zYsKHhv9YX1JAhQ7Rjxw5lZmZqx44dWrdunWGPffjwYUlyeK23bNnisPU5kpm1hmOsXLlSMTEx+vXXX7VkyRK1aNFCM2fONDuWqRjXZVtMTIwsFkue5+pxcXFRTEwMzYgi2rBhQ4HOifTVV1/RjABKElsZNGfOHNu9995rS09Pt/3++++2xYsX2ypXrmx788037cssXrzY9vbbbxuSJygoyCaJiYnJgVNQUJAh79+y/j42us5lrdZm1NfZ3M54YVwzMTExMTE5brqVMnnOiLCwMN13332qU6eOmjZtqnPnzsnDw0Nt2rQxLVNQUJBsNtstp6CgoHyXYWIq7un48eOSpBkzZhRoeUn5LjN48GDVqlXLoTnNOmbbke/RpKQkSdd+bXZUrXv06KGWLVuW+jo7utaFnQpS69JeX2dTmPHCuGZy1PT888/LYrHk+7rPmTPH9Kylferfv79cXPLfrPnss89Mz8rEVBanWymTzQh3d3fFxMQoIyNDhw4dUkREhI4dO6ZevXqZHQ0o0by9vVW7dm2HnncgOTlZfn5+Dlufs2jevLnKly/vsFrbbDZqDQAGGj58eJ5fwi0WiypXrqyBAwcamMo5jRgxIs8Tgbq4uMjb21sPP/ywgakA5KdMNiPyM2TIEL3//vuKjo5W7969zY4DlBgWi0WBgYH64osvlJmZWeT1HTp0SN9//70CAwMdkM65uLm5qV27dvZfcYoqISFBaWlp1BoADNK8efNbXuL2+rkkZs2apWrVqhmczPl06dJFTz311E1vu77HxPz581WuXJk8XR5QYtGMuIlFixZp7969OnjwICebAv5k2LBhSktL04oVK4q8rg8//FDlypVTeHh40YM5oWHDhunHH39UbGxskdc1c+ZMVa9eXaGhoQ5IBgAoiPfee09///vfVbNmzRzz7777bn3yyScaPHiwScmci8ViUXR0tCZMmKDq1avnuK1p06b68ssv2SsCKIFoRgAolM6dO8vX11evvvqqzp49e9vr2bNnj2bOnKmnnnpKderUcWDC/EVERCgwMFCjR4/OMT8sLEzBwcEKCAiQr6+vJMlqtapDhw4KDAzUtm3bDM0ZGhqq+vXr64UXXtDly5dvez2xsbFavny5Ro0apSpVqjgwIZzNrd4bN9q4caM6duyogIAARUZG5rp95MiRqlWrlhYsWJBj/okTJ1SxYkUdPHjQ4bmBkspiseill17S8ePH9dVXX2n58uXatm2bDhw4oAEDBpgdz6m4urrqrbfe0smTJ7VhwwatWLFCiYmJ+v7779WtWzez4wG4CZoRAArFxcVFixcv1q+//qrw8HBlZWUVeh1nz57Vk08+KU9PT33wwQfFkPLWdu3apYyMDG3btk1XrlzRzp077bctX75c8fHxeuWVV/TII49IkiZOnKgVK1boq6++0uTJkw3NWrFiRS1YsED79+/X888/f1uHaxw9elSDBw9Wo0aNNGHChGJIWTB5beTGxMQoODhYwcHB8vb21meffaasrCyFhYUpJCREr7zyigmJy5683hs3CgkJ0TfffKOEhARt375daWlpOW6fMGGC3n///Vz3i4qKkr+/f7FkNwvjGgVVoUIFdevWTf/zP/+jjh07Fuhki7g9lStXVq9evRQaGqq2bdsW6CSiAMzBJyGAQvP19VVUVJTWrVunxx9/XOnp6QW+7+HDh9WpUycdPHhQy5Ytk6enZzEmzS0hIUFdunSRdO0Y0++++y7XMmvWrFH//v0lSefOnZOPj48qV66sjIyMIu2hcDu6du2q8ePHa9GiRXrmmWcK9fgpKSkKCgrShQsXtHz5clWqVKkYk95afhu5PXr0UHx8vOLj41W/fn116dJFa9asUatWrRQXF6fLly9rz549pmQvSwry3pCk8uXLS5KuXr0qLy+vXLtEe3t757pPWlqafvvtNzVo0MCxoU3EuAYAoGhoRgC4LaNGjdKMGTO0bt06NW/eXJ9++mmee0lcunRJM2bMUPPmzZWamqrPP/9cISEhBia+Jj093b7xVKNGDZ07dy7H7VlZWfrhhx/UunVrSVKtWrWUkpKitLQ0paSkFKrx4ihvvfWWJkyYoEWLFsnX11cxMTF5njU8PT1db7/9tvz8/HTx4kXFxsbaDzsxQ0E3clNTU1W7dm1VrVpVqampatmypaRrza+EhATD8pZV+b03bvTRRx+pUaNG8vT0lJubW77rjoqK0vPPP++wrCUB4xoAgKKhGQHgtr3wwgv67rvv5O7urgEDBuiee+7R6NGj9a9//UtxcXGSpHnz5mno0KGqU6eORo8erQcffFApKSnq3r27KZnd3d114cIFSdKFCxfk7u6e4/a4uDgFBwfb/z916lS99NJLGjFihFq2bJnrJGRGsFgseuuttxQbG6vMzEz17NlTjRs31tixY7Vs2TJ7rWfNmqWnnnpKdevW1cSJE9W3b1/t3btXbdu2NTzzjQq6kbt69Wo9+uijkqRGjRppy5Ytkq69JnltGMMx8ntv3GjYsGHav3+/jh07pt27d+e53vT0dB09elTNmjVzaF6zMa4BACgarm8DoEjatm0rq9Wq9evXa+7cuVqwYIFmzJhhv33EiBHy8PBQr169NHLkSHXo0MHU4zcDAgI0b948hYaGKjY2NteVPNasWaOwsDD7/xs2bKiNGzfq119/VUREhH0XdTN07txZ+/fv16effqr58+dr1qxZOS6x+sILL+jOO+9UWFiYRo4cKT8/P0PznTp1KkftJMnLy0uBgYEF2shdt26dVq9eLUnq3bu3Nm/erM6dO6tBgwaqXbt28YbHTd8bWVlZOnPmTI76Z2Zmys3NTa6urqpSpUq+h//s379fBw4cUI8ePfTDDz/o2LFjDrlCjFEY1wAAFA+aEQCKrFy5curXr5/69eunq1evav/+/Tp9+rRCQkKUmpqqBg0alJgTSLVu3VoVK1ZUYGCgWrVqpfr162vy5MmKjIyUzWZTQkKCZs2aZV9+4cKFWrJkiSpXrpxjvlnc3Nw0cOBADRw4UH/88Yf27duns2fPKiQkREePHlXdunVNq7WXl5fi4+Nzzd+1a1eeDSDp2gZfhQoV7OcQcXV11cyZMyVd+xWeM6EXvz+/N9q1a6eDBw/q3Xff1fz58+3LLV68WMuXL1dWVpZCQkLUuHFjWa1WJScna+jQoZo8ebKWLl0qm82mEydOaOLEifbDEcLDwzV+/HiznuJtYVwDAFA8aEYAcChXV1c1bdpUTZs2lXTtWuolzfTp03P8//rlCS0WS65dzocOHaqhQ4calq0wypcvbz/+XJJ8fHxMTHNrN9vIPXXqlBYuXGiv/dq1a9W3b1/7fY4fP66BAwfKxcVFgwYNKrHPzdn8+b2xZ88ePfHEEznmjRgxQiNGjMgxz9fX135eksjIyJte8lOSoqOjHRfWZIxrAACKhmYEAKDY/Xkj18vLK8cG6/Dhw3PcXrdu3Zv+Gg1jPfbYY2ZHKNEY1wAA3D6aEQCcktVqzXEiSiMez8wrVpjF6Dpff8yyUmsz6utsbme8MK4BACh+NCMAOB0zvtDfuJt6WWHW8y0rtS4Lz9EIhR0vjGsAAIxhsdlsNrNDlHXXf33Ja9fNgiwDlDQWi0V8xBiDWhuHWsMZMa4BAEZzMTsAAAAAAAAoW2hGAAAAAAAAQ9GMAAAAAAAAhqIZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiqnNkBYKwxY8bIarWaHcNp+Pr6KioqqkDLmlX7wmQECsPMzxPGNQAAQOnGnhFljNVqpRnhIIWtpRm15/VGcTJrfDGuAQAASj/2jCiDfH19FR8fb3aMUi84OLjQ9zG69reTESgMMz5PGNcAAAClH3tGAAAAAAAAQ9GMAAAAAAAAhqIZAVOdPn1aFosl1/HfR44ckcVi0b59+0xKZg7qAWfEuAYAAMCf0YyAqXbu3KmKFSuqefPmOeYnJiaqWrVqatSokUnJzEE94IwY1wAAAPgzmhEwVVJSkh544AGVK5fzXKqJiYny8/OTi0vZGqLUA86IcQ0AAIA/4xsgTJWUlKS2bdvmmp+YmHjT+c6OesAZMa4BAADwZzQjYKrk5ORcGyPZ2dnatWuX2rZtq+TkZHXo0EEPPfSQOnXqpNTUVJOSGiO/ekhSly5dVLNmTU2aNMmMiEChMa4BAADwZ+XyX8R5ZWdnKzw8XFu2bNGZM2fk5eWlSZMmKSwszOxoZcLx48d18uRJ+fn55ZhvtVp18eJF+fv7q1y5coqJiVG1atX0xRdf6I033tDHH39sUuLiVZB6SFJ0dLRiY2N17NgxM2Lm68qVK1qzZo127dolSYqNjVWnTp3YFb8YXLp0SZ988on+85//SJK2b9+ugIAAWSwWk5P9P2cZ1+fPn9eyZct06NAhSdfy+/r6mpwKKJpjx45p2bJlOn36tCTpv//9r+rXr29yKgBAWVGmmxHnz59Xz549NXPmTFWrVk1z5sxReHi4+vfvrwoVKpgdz+ld3+hwd3fPMX/p0qXy9/dXvXr1csyvUKFCrmPOnUlB6+Hj42N4toL68ssv9fTTTystLc2+Qdy1a1c1bNhQq1evVrNmzUxO6DyWLFmiUaNG6cKFC/Zad+jQQX5+flq1apXuuusukxNe4wzjOioqSuPGjdPvv/9ur/UDDzygkJAQrVixQrVq1TI5IVA4f/zxh0aPHq158+YpOzvb3iy+++67NWTIEH344Yd8DwIAFLsy/VOlh4eHnnjiCdWoUUMuLi56+umnlZmZqR9++KFMHRpgliZNmqhGjRqaOnWq0tPTdfbsWc2dO1ezZ8/W1KlTcyybkZGh1157TWPHjjUpbfErTD1Koq1bt6p37946c+aMJMlms9lvO3TokB566CEdOXLErHhO5dNPP9Vf/vIX/fbbb5Jy1nr37t0KCgrS2bNnzYqXQ2kf1x9++KEiIiL0+++/S8pZ6y1btqhr1666fPmyWfGA2zJixAjNmTNH2dnZkpTj3wULFmjIkCFmxgMAlBFluhmxadMm9ezZUz4+PqpRo4a8vb3l7e2tOnXqKCYmRlu3btXYsWP1xhtvmB3VKVWvXl3r169XUlKSfHx81LhxY61evVoxMTEKCgqyL3flyhUNGDBA48ePd+pf1gtaj5Jq3Lhxstls9i+1N7p69arOnTunv//97yYkcy7Z2dn661//KovFkmPD+Mbbjxw5onnz5pmQLrfSPK4vX76syMjIW96enZ2tPXv2aMWKFQamAopm3759WrRoUZ7L/Pvf/9aePXsMSgQAKKucd5/3fOzYsUNhYWFasmSJgoKCVLlyZU2aNEmJiYny9va2L+fshwaYrWPHjvr2229vefvVq1f15JNPqn///urXr5+BycyRXz1Kqp9++knbt2/PcxmbzabFixdr2rRpvKeKYNu2bTp8+HCey1gsFn300UcaN26cMaHyUVrH9dq1a3X+/Pk8l3FxcdH8+fMVHh5uTCigiBYvXnzLZuZ1Li4uWrRokaZPn25gMgBAWVNmtwh2794tDw8PPfjgg3J1dVV0dLSmTJmiV1991b7M9UMD/vnPf5qYtGxbuXKlYmJi9Ouvv2rJkiVq0aKFZs6caXYsUw0ZMkQ7duxQZmamduzYoXXr1pkdSUePHi3QchcvXtT58+fl6elZzImcV0FqbbPZSuyJIG+ltI7r63uiAKXF0aNH5eLioqtXr95yGYvFUuDPdQAAbputjDp37pyte/futsqVK9vuuece27Rp02x169a1bdiwwWaz2WyZmZm2nj172tasWVPsWYKCgmySDJuCgoKK/TmVBbfzuhlde6PHFlPZm8z4PGFcMzExMTExMTGVnulWyuyeEe7u7oqJickxLyIiQpI5hwYEBQUpPj7+lrcHBwdLUp7LFMT19cAx8nvdbmRW7QuT8XZlZ2fr3nvv1ZEjR26566+Li4v69eunVatWFWsWZ3fp0iXVqVMnz8MHLBaLRo4cqVmzZhVrFjM/T4wY17/88ot8fHyUlZWV53KTJk3K89wSQEny9ddfq3Pnzvku98UXX6hnz54GJAIAlFVl+gSWt3L90IAlS5YoODhYL7zwgtmRgBLNxcVFkZGRt2xEXL8cojNfDcUolStX1ksvvXTL211cXOTm5qYXX3zRwFTOqXbt2nrmmWduebuLi4s8PDz07LPPGpgKKJqQkBC1adPGfjnPP3NxcVGrVq3UvXt3g5MBAMoamhE3ERYWposXLyo+Pl7x8fFl/hwFQEEMHTpUEyZMkPT/zYfrXF1d9e9//1sBAQFmRHM648eP17BhwyTJvkFxveZubm5au3atGjZsaFo+ZxIVFWXfQ+7PtXZ3d9dXX32lO++807R8QGFZLBatW7dOzZs3l/T/4/r6v40bN9aGDRtu2awAAMBR+EsDQ0RERCgwMFCjR4++5TIbN25Ux44dFRAQcNNdnkeOHKlatWppwYIFOeafOHFCFStW1MGDBx2eGwVnsVj01ltv6fvvv9eIESPUrl07BQQEaPz48UpNTVVYWJjZEZ2Gi4uL5s6dq++++06DBg1Su3bt1KFDB02ZMkWHDx9Wt27dzI7oNNzc3LR69Wp9/fXXCg0NlZ+fn4KCgjR9+nSlpqaqbdu2ZkcECs3Ly0s7d+7UihUr1LNnT/n5+al79+5aunSpdu/erbp165odEQBQBpTZc0bAOLt27VJGRoa2bdum5557Tjt37rzpF/iQkBD7RlRISIjS0tJUq1Yt++0TJkxQu3btch2/HRUVJX9//+J9EgaKiIhQUlKSWrduneuyajExMZo6daokaf/+/ZozZ44eeeQRPfXUU/rll1/Utm1bvffee2bEtmvRooVmz55taoaywGKxqH379mrfvr3ZUQokr3GdkpKiYcOGydXVVffdd58WLVqkq1evlphxbbFYFBISopCQENMyAI5WoUIFhYaGKjQ01OwoAIAyij0jUOwSEhLUpUsXSVKXLl303Xff3XS58uXLS7p2AlEvLy9Vr149x+3e3t657pOWlqbffvtNDRo0cGxok9zYuLly5Yp27tyZ4/YePXrYDx+qX7++unTpojVr1qhVq1aKi4vT5cuXtWfPHpPSAzeX37hu1KiRtm/frm3btkmSkpKSGNcAAABOjmYEil16erq9sVCjRg2dO3fulst+9NFHatSokTw9PeXm5pbvuqOiovT88887LKvZCtq4SU1NVe3atVW1alWlpqaqZcuWkiRfX18lJCQYlhcoiPzG9fVGpHTtsIh69eoxrgEAAJwczQgUO3d3d124cEGSdOHCBbm7u99y2WHDhmn//v06duyYdu/ened609PTdfToUTVr1syhec1U0MbN6tWr9eijj0q69qvyli1bJElxcXF5NnsAMxRkXH/++edq3ry5Tp8+LU9PT8Y1AACAk6MZgWIXEBCgzZs3S5JiY2Pl7++vrKws/fLLLzmWy8zMlHTtygtVqlRRpUqV8lzv/v37deDAAfXo0UObNm3SiBEjiucJFINTp04pODg4xxQWFlbgxs26devUp08fSVLv3r11+fJlde7cWW5ubqpdu7ZhzwO4UVHGdZ8+fZSSkqK6detq/fr1jGsAAAAnxwksUexat26tihUrKjAwUK1atVK7du108OBBvfvuu5o/f759ucWLF2v58uXKyspSSEiIGjduLKvVquTkZA0dOlSTJ0/W0qVLZbPZdOLECU2cONG+63Z4eLjGjx9v1lMsNC8vL8XHx+eav2vXLs2bN0+hoaGKjY1VeHh4rmVOnTqlChUqyNPTU9K15s31y88OGzaMKynANLc7rjMzM+2HZVWvXl2VKlViXAMAADg5mhEwxJ/Pnr9nzx498cQTOeaNGDEi194Nvr6+8vX1lSRFRkbe9JKfkhQdHe24sCa6WePm1KlTWrhwof25r127Vn379rXf5/jx4xo4cKBcXFw0aNAg+fj4mBUfuKn8xnVMTIymTZsmSbr//vvVrVs3xjUAAICTs9hsNpvZIcq64OBgSbrpL4qFWcZRj4WCKWwtzag9rzeKk1nji3ENAABQ+rFnRBlktVrtX+Zx+6xWq32vjcLcx8ja305GoDDM+DxhXAMAAJR+NCPKGL7AO86Nh5AUdHmjFTYjUBhmjS3GNQAAQOnHYRolgJGHaQAAAAAAYDYu7QkAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ9GMAAAAAAAAhqIZAQDq1H3qAAADI0lEQVQAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIYq082ITz75RC1atFDVqlXVrVs3vfTSSxowYIDZsQAAAAAAcGplthnxz3/+Uy+//LJmz56t8+fP65FHHtGMGTP0wAMPmB0NAAAAAACnViabEZcuXdJLL72kjz76SIGBgXJ1ddUzzzyjq1ev2psRS5YsUUBAgAICArR582aTEwMAAAAA4DzKmR3ADFu2bFF2drZ69uxpn5eWliZJeuCBB5Senq5p06YpISFBFy9eVEhIiHbv3i1XV1ezIgMAAAAA4DTK5J4Rp0+f1p133plj3tKlS+Xl5SUvLy/t2LFDgYGBcnNzk6enpxo0aKBDhw6ZlBYAAAAAAOdSJveMaNasmQ4ePKgtW7YoICBAn376qaZOnaoHH3xQknTmzBl5eHjYl/fw8NCZM2eKLY+vr6+mT58ui8WS77IFWQYAAAAAgJLAZrPddH6ZbEa0adNGkZGR6t+/v1xdXfXEE0+offv29vNFeHp66ty5c/blz507J09Pz2LLExUVpaioqGJbPwAAAAAAJYnFdqs2RRnToEEDvf/++xowYIDS09PVqVMnJSQkKCMjQ0FBQbJarZwzAgAAAAAAByiTe0b82YULF3TkyBH7nhHu7u4aM2aMgoODJUnTpk2jEQEAAAAAgIOwZ4Sk7du3q0ePHjp//jznZAAAAAAAoJjRjAAAAAAAAIYqk5f2BAAAAAAA5qEZAQAAAAAADEUzAgAAAAAAGIpmBAAAAAAAMBTNCAAAAAAAYCiaEQAAAAAAwFA0IwAAAAAAgKFoRgAAAAAAAEPRjAAAAAAAAIaiGQEAAAAAAAxFMwIAAAAAABiKZgQAAAAAADAUzQgAAAAAAGAomhEAAAAAAMBQNCMAAAAAAIChaEYAAAAAAABD0YwAAAAAAACGohkBAAAAAAAMRTMCAAAAAAAYimYEAAAAAAAwFM0IAAAAAABgKJoRAAAAAADAUDQjAAAAAACAoWhGAAAAAAAAQ/0vAbpKoqtpMU0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABA0AAAG1CAYAAACS3A1SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd0DU9f8H8OcdqMBxDAUNHCDgYgkizlTMPVH5aY4cWZqalZoKTlwZjszx1cq+JZaZ5gosA62cZbhAkHIxRXGgzEPWHb8/7usFcuyDz3E8H/9kn/H+vO7uxfvuXvf+vN+iwsLCQhARERERERERvUQsdABEREREREREpJ1YNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK1WDQgIiIiIiIiIrVYNCAiIiIiIiIitVg0ICIiIiIiIiK19IUOgEqaN28eIiIihA5DZ7i5uWHr1q1Ch0FERERERFTnsGighSIiIhB++QKcbCVCh1LnRcfLhA6BiIiIiIiozmLRQEs52UpwdLWL0GHUeWP8o4QOgYiIiIiIqM7inAZEREREREREpBaLBkRERERERESkFosGVK6U9DxYjf0DN+Kyim2/9yQHVmP/wO2kbIEiIyIiIiIioprEogGVK+JuFgwaiNG+laTEdmNDPThYGwoUGREREREREdUkFg2oXNdjs+DcWgJ9PVGx7eF3MuFqJ4FYLCrlTCIiIiIiIqrLWDSgcl2PyUJHe+MS28PvZsHNXipARERERERERFQbuOQilSsyNgsje1gU26ZQFCIqLgvTh1jhekwWVuyJhVgsgr5YhE9mO8CmmYFA0RIREREREZGm1JuRBoGBgfDy8qrUOR4eHjh58mTNBFRHJD/NxaPUfLjaFR9pcCNeBlmOAp3aSPFK44bYv8wRP65xweyR1th0MFGgaEnXXblyBXPmzMGIESMwadIkBAUFoaCgQOiwSEs8fvwYAQEBGDVqFEaPHo1Nmzbh6dOnQodFREREVKfVm6KBOnK5HIsWLYKlpSWkUil8fHyQkpKi2u/t7Y2goCABIxRe8rM8AICppPiglGMXnsCjjRTNLRqhmXlDGBsq9zfQF5eY+4CounJzczF+/Hh4enriiy++wIkTJ3Dw4EGMGjUKLi4uSExkoaq+27dvH1q2bIklS5bg+PHjCA4OxuLFi9G8eXMcOnRI6PCIiIiI6qx6XTQICAhAUFAQwsLCkJSUBACYPHmyar+3tzeCg4OFCk8rtGluCBMjPew4loR0WQFSM/Ox92QyAkMfYukkm2LHZufI8dF38Zg9srlA0ZKumjNnDg4ePAgAUCgUUCgUkMvlAIDbt2+jf//+yMnJETJEEtCvv/6KqVOnIj8/H8C/OQIAeXl5GD9+PM6dOydkiERERER1luBFA4VCgSlTpsDGxgbGxsZwcHDAgQMHauXau3fvhq+vL+zs7GBqaoqNGzciJCQE8fHxAICOHTtCX18fV69erZV4tJHUSB/f+DkiMjYLnd65jF7zwnEi7Bn2L3NEDydT1XF5+QrM2HIL83xaol1LIwEjJl2TmJiIwMDAUvcrFArcuXOHvybXY2vXrgUAFBYWltj3Ytv69etrNSYiIiIiXSF40SA9PR1DhgxBZGQkMjIyMH/+fEybNg15eXmVaicgIACurq6Vum5iYiI8PDxU2+zt7WFiYoLIyEjVtpEjR9b7WxS6djBB8DpXxOzrjhtfdcHBFU7o7vhvwUAuL8ScbbcxtGtjDOnSRMBISRcdOHBA9atxacRiMfbt21dLEZE2SUpKwrlz58rMEYVCgdDQUDx58qQWIyMiIiLSDYKvnmBubo4JEyao/n/q1KmYO3cuZDIZfvjhB+zcuRMAsG7dOvTr16/Udvz8/ODn51fh62ZkZAAATE1Ni203MzNT7QOAYcOGYcmSJVizZk2F264Kkaj4PADdHU1q9HqadPyvFJyOSMWzzHwcOfcEHVpJ8NFbdkKHpXL27NkSzy/pFoVCgZMnT/J1pjI1bdpU6BCIiIiItJK6EZsvCF40OHXqFLZs2YKoqChkZmZCoVDAysoKIpEIW7ZswcWLF5GVlYW+ffsiPDwcenp6GrmuVCoFoBxxUFRaWhpMTP79wp6QkIBWrVpp5JplKfoieXl5Ie9JeI1fU1NG9bTEqJ6WQodRqj59+uDMmTNCh0FV9Omnn2LBggVlHiMWizF48GD8/PPPtRQVaYvk5GRYW1uXe5xYLMaTJ0/QuHHjWoiKiIiISHcIentCWFgYxo8fj/fffx+3b99Geno6fH190blzZ4SFhaFXr15o1KgRmjRpAltbW8TExGjs2mZmZmjVqhWuXbum2hYbG4uMjIxitzkEBwfD29tbY9closoZP358ucVChUKBqVOn1lJEpE2srKwwYMAAiMWlv52JxWIMHz6cBQMiIiKiKhC0aBAeHg5zc3P06NEDenp6CAwMxMcff4zOnTvj6dOnMDc3Vx1rbm6u8fW2Z86ciQ0bNiAuLg4ZGRnw9fXFoEGDYGtrCwDIzs7G6dOnMXz4cI1el4gqzsrKCnPnzi11v1gsRseOHTFq1KhajIq0ib+/P8RisdrCgVgshr6+PpYvXy5AZERERER1n6BFg/Hjx8PBwQHW1tZwdHREamoqzM3N0blzZzRp0gSpqamqY1NTU9GkSemT7K1fvx5OTk6Vur6fnx9GjBgBT09PNG/eHHK5vNhkaqGhoXB3d4eFhUXlHxwRaczmzZsxe/ZsAMr5P4qOPOjSpQtOnjyJhg0bChUeCaxnz544evQojIyUK7cUzQ+pVIrg4GB4enoKFR4RERFRnSYqLGvGAwGlpaXhtddew8WLFyGTydCnTx9ERERUeU6DwMBABAYGVure9jfffBNOTk5YuHBhla5ZVS/mNDi62qVWr1vUZ8H38aqLKVxaG2NlYCyux8jg0lqCddMrPsFhdLwMZ6+nYo53ixqMtGxj/KPQ0NKdcxroiLt37yIwMBCJiYn49ttvce7cObz66qucAJEAAFlZWdi/fz/++usv7NmzB//9738xYcIEVTGBiIiIiCpP8CUXS2NmZoZ58+bBy8sLw4YNw5YtWzQ2CWJF2djYYOzYsbV6TW2gUBTi0s0MuLQ2RmRsFrJzFAha64L8gkJE3M2scDtOthJcvpUJhUIr61JUBzk4OGDdunX45ptvAAC9evViwYBUjI2NMXPmTHz99dcAgLfeeosFAyIiIqJqEnz1hLJMmTIFU6ZM0Uhbbm5umDZtWqXOWbVqlUauXddEJ8hg3aQRAODq7Uz0djUDAPRyNcXVO5lwc5CWOOfP6HRM3/QPHG0kSHycC+fWEgQu7gA7K0PciJfB1c64Vh8DERERERERVZ/WjjTQtKoUDeqruOQctGyqLBqkywpgbKgc4WFipI/0rAK153TrYAI3BymOrnZBd0cTfPyW8jaGVs0a4e7957UTOBEREREREWlUvSkaUMUVnebCVKKPrOdyAEDmczlMJOoHpyQ8yoFNUwMAwIOnubD630gFFAIcPU5ERERERFQ3sWhAJdhZG+Le41wAgEdbKc5HpQEAzkemwaONFAXyQjxJyyt2zq2kbLRraQS5vBDiIlWCxMe5sLc2rL3giYiIiIiISGNYNKASnGwkuP9UWTRwtTNGowZieK+IglgEuLeR4t7jHAQcSCx2zq172WjX0hC5BQqkpOfjUaqyqBDz4DmcbSW1/hiIiIiIiIio+rR6IkQShlgsQtf2JoiKy4JLa+MSyyxGJ8gwuqdFsW0fjGmp+vfpLe7K4+Jl6NxOCrGY9ycQERERERHVRSwakFqzRzYvdd/wbhal7ivKyVYCJ44yICIiIiIiqrNYNNBS0fEyjPGPEjqMOi86XgZ3S6GjICIiIiIiqptYNNBCbm5uQoegM9wt+XwSERERERFVlaiw6Pp6RER1hEgkArsvKg3zg4iIiEgzuHoCEREREREREanFogERERERERERqcWiARERERERERGpxaIBEREREREREanFogERERERERERqcWiARERERERERGpxaIBEREREREREanFogERERERERERqcWiARERERERERGpxaIBEREREREREanFogERERERERERqcWiARERERERERGpxaIBEREREREREamlL3QAVNK8efMQEREhdBg6w83NDVu3bhU6DCIiIiIiojqHRQMtFBERgfDLF+BkKxE6lDovOl4mdAhERERERER1FosGWsrJVoKjq12EDqPOG+MfJXQIREREREREdRbnNCAiIiIiIiIitVg0ICIiIiIiIiK1WDSgcqWk58Fq7B+4EZdVbPu9JzmwGvsHbidlCxQZERERERER1SQWDahcEXezYNBAjPatJCW2GxvqwcHaUKDIiIiIiIiIqCaxaEDluh6bBefWEujriYptD7+TCVc7CcRiUSlnEhERERERUV3GogGV63pMFjraG5fYHn43C272UgEiIiIiIiIiotrAJRepXJGxWRjZw6LYNoWiEFFxWZg+xArXY7KwYk8sxGIR9MUifDLbATbNDASKloiIiIiIiDSl3ow0CAwMhJeXV6XO8fDwwMmTJ2smoDoi+WkuHqXmw9Wu+EiDG/EyyHIU6NRGilcaN8T+ZY74cY0LZo+0xqaDiQJFS0REVDqFQoGrV6/izJkziIuLEzoc0kLx8fE4c+YMrly5ArlcLnQ4RERaod4UDdSRy+VYtGgRLC0tIZVK4ePjg5SUFNV+b29vBAUFCRih8JKf5QEATCXFB6Ucu/AEHm2kaG7RCM3MG8LYULm/gb64xNwHREREQiosLMRnn30GOzs7dO7cGX379oWdnR1ee+01hIWFCR0eaYErV65gwIABaN26Nfr27QtPT0/Y2tpix44dKCwsFDo8IiJB1euiQUBAAIKCghAWFoakpCQAwOTJk1X7vb29ERwcLFR4WqFNc0OYGOlhx7EkpMsKkJqZj70nkxEY+hBLJ9kUOzY7R46PvovH7JHNBYqWiIioJF9fX8yZMweJicVHwp09exa9e/fGmTNnhAmMtMIff/yBXr164ffffy+2/f79+3j//fcxb948Fg6IqF4TvGigUCgwZcoU2NjYwNjYGA4ODjhw4ECtXHv37t3w9fWFnZ0dTE1NsXHjRoSEhCA+Ph4A0LFjR+jr6+Pq1au1Eo82khrp4xs/R0TGZqHTO5fRa144ToQ9w/5ljujhZKo6Li9fgRlbbmGeT0u0a2kkYMRERET/unTpEjZt2gQAJb74KRQKFBQUYPLkyRyKXk8pFApMnjwZeXl5UCgUxfa9yJft27fjwoULQoRHRKQVBC8apKenY8iQIYiMjERGRgbmz5+PadOmIS8vr1LtBAQEwNXVtVLXTUxMhIeHh2qbvb09TExMEBkZqdo2cuTIen+LQtcOJghe54qYfd1x46suOLjCCd0d/y0YyOWFmLPtNoZ2bYwhXZoIGCkREVFxu3btglhc+scdhUKBpKQk/PLLL7UYFWmL3377DXFxcSUKBkWJxWJ89tlntRgVEZF2EbxoYG5ujgkTJsDU1BRisRhTp05Fbm4uZDIZ+vfvDwsLC6xbt67cdvz8/Ip92S9PRkYGAMDU1LTYdjMzM9U+ABg2bBh+/vnnCrdbHx3/KwWnI1Jx5NwTjPGPwrKvYoUOiYiICABw+fLlMr8QvnDt2rVaiIa0TUVGkyoUCly6dKkWoiEi0k6CL7l46tQpbNmyBVFRUcjMzIRCoYCVlRXMzc0RGBiIX3/9VTXfgCZJpVIAyhEHRaWlpcHExET1/wkJCWjVqpXGr/8ykaj45IHdHU1KOVL7jOppiVE9LYUOo1Rnz54t8fySbuDrSmVhflBl+Pv7w9/fX+gwSEvFxMSwTyEinVbW3C2CFg3CwsIwfvx47Nu3D3369IGRkRHWrVunqua2aNGixq5tZmaGVq1a4dq1a3BzcwMAxMbGIiMjo9htDsHBwfDx8amxOF4o+iJ5eXkh70l4jV+zvujTpw8nudJBIpGIE1NRqZgf9ML8+fOxbdu2cvPhjz/+QI8ePWopKtIWV65cgaenZ5nHiEQizJ49Gzt37qylqIiItIugtyeEh4fD3NwcPXr0gJ6eHgIDA/Hxxx+jc+fOtXL9mTNnYsOGDYiLi0NGRgZ8fX0xaNAg2NraAgCys7Nx+vRpDB8+vFbiISIiIs2aPXt2mb8Qi8VidOzYEd27d6/FqEhbdO7cGZ6enmXOewEo84iIqL4StGgwfvx4ODg4wNraGo6OjkhNTYW5uXmVigbr16+Hk5NTpc7x8/PDiBEj4OnpiebNm0Mul2Pfvn2q/aGhoXB3d4eFhUWl4yEiIiLhtW3bFrt374ZIJCrxxVAkEqFJkyY4ePAgh57XY99//z2aNm1aIgde5MvOnTvh7OwsRGhERFpB0KKBmZkZQkJCIJPJEBMTg/nz5yMpKQlDhw6tdFtLly5FdHR0pc7R09PD5s2bkZKSgszMTBw9erRYgSA4OBje3t6VjoWIiIi0x1tvvYXff/8dgwcPVn0xNDY2xnvvvYerV6+iXbt2AkdIQrK3t8fVq1fxwQcfqOa8AoABAwbg1KlTHGVARPWe4BMhlmX69OkICwtDbm4uwsLCcPz48Vq9vo2NDcaOHVur19QWnwXfx6supnBpbYyVgbG4HiODS2sJ1k23q3Ab0fEynL2eijneNTc3BRERUUV4eXnBy8sLMpkMxsbGePbsGRo0aCB0WKQlrK2t8emnn2Ljxo1IS0tD06ZNERISInRYRERaQfAlF8vy9ddfIzo6Gnfv3q12wcDNzQ3Tpk2r1DmrVq2CjY1Nta5bFykUhbh0MwMurY0RGZuF7BwFgta6IL+gEBF3MyvcjpOtBJdvZUKh4GRkRESkHSQSCQCwYEBqNWjQAJaW2rsiFBGRELR6pIEmubm5qVZJoLJFJ8hg3aQRAODq7Uz0djUDAPRyNcXVO5lwc5CWOOfP6HRM3/QPHG0kSHycC+fWEgQu7gA7K0PciJfB1c64Vh8DERERERERVZ9WjzQgYcQl56BlU2XRIF1WAGNDPQCAiZE+0rMK1J7TrYMJ3BykOLraBd0dTfDxW8rbGFo1a4S795/XTuBERERERESkUSwaUAlF17I2legj67kcAJD5XA4TifrBKQmPcmDT1AAA8OBpLqz+N1IBhQAnpCYiIiIiIqqbWDSgEuysDXHvcS4AwKOtFOej0gAA5yPT4NFGigJ5IZ6k5RU751ZSNtq1NIJcXghxkSpB4uNc2Fsb1l7wREREREREpDEsGlAJTjYS3H+qLBq42hmjUQMxvFdEQSwC3NtIce9xDgIOJBY759a9bLRraYjcAgVS0vPxKFVZVIh58BzOtpJafwxERERERERUffVmIkSqOLFYhK7tTRAVlwWX1sYlllmMTpBhdE+LYts+GNNS9e/TW9yVx8XL0LmdFGIx708gIiIiIiKqi1g0ILVmj2xe6r7h3SxK3VeUk60EThxlQEREREREVGexaKClouNlGOMfJXQYdV50vAzuXG6ZiIiIiIioSlg00EJubm5Ch6Az3C35fBIREREREVWVqLDo+npERHWESCQCuy8qDfODysL8oPIwR4iI/sXVE4iIiIiIiIhILRYNiIiIiIiIiEgtFg2IiIiIiIiISC0WDYiIiIiIiIhILRYNiIiIiIiIiEgtFg2IiIiIiIiISC0WDYiIiIiIiIhILRYNiIiIiIiIiEgtFg2IiIiIiIiISC0WDYiIiIiIiIhILRYNiIiIiIiIiEgtFg2IiIiIiIiISC0WDYiIiIiIiIhILX2hA6CS5s2bh4iICKHD0Blubm7YunWr0GEQERERERHVOSwaaKGIiAiEX74AJ1uJ0KHUedHxMqFDICIiIiIiqrNYNNBSTrYSHF3tInQYdd4Y/yihQyAiIiIiIqqzOKcBEREREREREanFogERERERERERqcWiAZUrJT0PVmP/wI24rGLb7z3JgdXYP3A7KVugyIiIiIiIiKgmsWhA5Yq4mwWDBmK0byUpsd3YUA8O1oYCRUZEREREREQ1iUUDKtf12Cw4t5ZAX09UbHv4nUy42kkgFotKOZOIiIiIiIjqMhYNqFzXY7LQ0d64xPbwu1lws5cKEBERERERERHVhnpTNAgMDISXl1elzvHw8MDJkydrJqA6JDI2C24OxYsGCkUhouKU26/HZGHk8kiMWhmF/1t1AwmPcgSKlIiIiIiIiDSp3hQN1JHL5Vi0aBEsLS0hlUrh4+ODlJQU1X5vb28EBQUJGKHwkp/m4lFqPlztihcNbsTLIMtRoFMbKV5p3BD7lznixzUumD3SGpsOJgoULRERERGR5sXExGDRokXo0qULOnfujLlz5yI6OlrosEhLyGQy7N69G/369YO7u7vqe2RBQYHQoWlEvS4aBAQEICgoCGFhYUhKSgIATJ48WbXf29sbwcHBQoWnFZKf5QEATCX6xbYfu/AEHm2kaG7RCM3MG8LYULm/gb64xNwHRERERER11Zdffom2bdvik08+weXLl3H16lXs2rULzs7OCAgIEDo8EtitW7fQrl07vPPOOzhz5gwiIiLw008/YdSoUejTpw/S09OFDrHaBC8aKBQKTJkyBTY2NjA2NoaDgwMOHDhQK9fevXs3fH19YWdnB1NTU2zcuBEhISGIj48HAHTs2BH6+vq4evVqrcSjjdo0N4SJkR52HEtCuqwAqZn52HsyGYGhD7F0kk2xY7Nz5Pjou3jMHtlcoGiJiIiIiDTn1KlTmDlzJhQKBQoLC1XbX/x7yZIl+P7774UKjwSWnZ2N/v37Izk5GYDyu23R/168eBETJ04ULD5NEbxokJ6ejiFDhiAyMhIZGRmYP38+pk2bhry8vEq1ExAQAFdX10pdNzExER4eHqpt9vb2MDExQWRkpGrbyJEj6/UtClIjfXzj54jI2Cx0eucyes0Lx4mwZ9i/zBE9nExVx+XlKzBjyy3M82mJdi2NBIyYiIiIiEgzNmzYALG49K9MYrEY69evL1ZQoPrj4MGDSEpKUhUJXlZYWIgTJ07gxo0btRyZZgleNDA3N8eECRNgamoKsViMqVOnIjc3F1FRUejZsyd69+6N1157DbGxsWW24+fnV+zLfnkyMjIAAKampsW2m5mZqfYBwLBhw/Dzzz9X4hHpnq4dTBC8zhUx+7rjxlddcHCFE7o7/vu8yeWFmLPtNoZ2bYwhXZoIGCkRERERkWY8e/YMv/32W6lfCAHlL8o3btzA7du3azEy0haHDh0qs6hU9Li6TL/8Q2rWqVOnsGXLFkRFRSEzMxMKhQJWVlawtrZGSEgIpFIpTpw4AX9/f3z77bcau65Uqlwq8OV7TNLS0mBiYqL6/4SEBLRq1Upj1y2NSFR8HoDujialHKl9jv+VgtMRqXiWmY8j556gQysJPnrLTuiwVM6ePVvi+SXdwNeVysL8oLIwP6g8zBGqjPbt2wsdAmmxNWvWYM2aNUKHUaayRssIWjQICwvD+PHjsW/fPvTp0wdGRkZYt24dLl26BCsrK9VxDRs2hL6+ZkM1MzNDq1atcO3aNbi5uQEAYmNjkZGRUew2h+DgYPj4+Gj02uoUfZG8vLyQ9yS8xq+pKaN6WmJUT0uhwyhVnz59cObMGaHDIA0TiUQcCkilYn5QWZgfVB7mCAHKGfEbN25c7m3TIpEISUlJsLa2rqXISFtMmDABP/zwQ5mjUQDgk08+wYIFC2opKs0T9PaE8PBwmJubo0ePHtDT00NgYCA+/vhjdO7cWXWMTCaDn58fFi5cqPHrz5w5Exs2bEBcXBwyMjLg6+uLQYMGwdbWFoByYovTp09j+PDhGr82ERERERFpL4lEggkTJpQ7p8HgwYNZMKinpk+fXm7BQF9fH2+88UYtRVQzBC0ajB8/Hg4ODrC2toajoyNSU1Nhbm6uKhrk5eVh7NixWL58OZycnMpsa/369eUe8zI/Pz+MGDECnp6eaN68OeRyOfbt26faHxoaCnd3d1hYWFT+wRERERERUZ22bNkyGBsbqy0ciMViNGjQQOuHnVPN6devHwYOHFjmMb6+vmjatGktRVQzBC0amJmZISQkBDKZDDExMZg/fz6SkpIwdOhQyOVyTJw4EWPGjMGoUaPKbWvp0qWIjo6u1PX19PSwefNmpKSkIDMzE0ePHi1WIAgODoa3t3elHxcREREREdV9bdq0wZkzZ1QjkYtq1qwZQkNDi42SpvpFLBbj6NGjGDduXIl9DRs2xIoVK3SiqCT46gmlOXToEEJCQrBv3z54eXnhvffeq/UYbGxsMHbs2Fq/rjb4LPg+ouKyAAArA2PhvSIKy78uewWLl0XHy7ArKKkmwiMiIiIiqhXu7u64c+cOQkJCsGzZMgDAsWPHkJiYiD59+ggcHQlNIpHg4MGDuHPnDtavXw8A2L59O+7fv481a9ZUaHUFbScqrCezvERERCAiIgLTpk0TOpRyvZgI8ehqF0Gur1AU4q3NN7FncQdExmbhm5MPsXmWA3x3x2DCa03h5iCtcFtvbvwHXy1sD7FYmBmIx/hHoaGlOydC1EGcpIrKwvygsjA/qDzMESoL84PKoov5IfiSi7XFzc1NtUoClS06QQbrJo0AAFdvZ6K3qxkAoJerKa7eyVRbNPgzOh3TN/0DRxsJEh/nwrm1BIGLO8DOyhA34mVwtTOu1cdARERERERE1Vf3x0qQxsUl56BlU2XRIF1WAGNDPQCAiZE+0rMK1J7TrYMJ3BykOLraBd0dTfDxW3YAgFbNGuHu/ee1EzgRERERERFpFIsGVELR4TSmEn1kPZcDADKfy2EiUT84JeFRDmyaGgAAHjzNhdX/RvMWdgcAACAASURBVCqgEBAJc2cCERERERERVROLBlSCnbUh7j3OBQB4tJXifFQaAOB8ZBo82khRIC/Ek7S8YufcSspGu5ZGkMsLIS5SJUh8nAt7a8PaC56IiIiIiIg0hkUDKsHJRoL7T5VFA1c7YzRqIIb3iiiIRYB7GynuPc5BwIHEYufcupeNdi0NkVugQEp6Ph6lKosKMQ+ew9lWUuuPgYiIiIiIiKqv3kyESBUnFovQtb0JouKy4NLaGOum2xXbH50gw+ieFsW2fTCmperfp7e4K4+Ll6FzO6lgKycQERERERFR9bBoQGrNHtm81H3Du1mUuq8oJ1sJnDjKgIiIiIiIqM5i0UBLRcfLMMY/Sugw6rzoeBncLYWOgoiIiIiIqG5i0UALubm5CR2CznC35PNJRERERERUVaLCouvrERHVESKRCOy+qDTMDyoL84PKwxyhsjA/qCy6mB9cPYGIiIiIiIiI1GLRgIiIiIiIiIjUYtGAiIiIiIiIiNRi0YCIiIiIiIiI1GLRgIiIiIiIiIjUYtGAiIiIiIiIiNRi0YCIiIiIiIiI1GLRgIiIiIiIiIjUYtGAiIiIiIiIiNRi0YCIiIiIiIiI1GLRgIiIiIiIiIjUYtGAiIiIiIiIiNRi0YCIiIiIiIiI1NIXOgAS1rx58xAREVHr13Vzc8PWrVtr/bovE+rx6ypteV01hfmhWbqWHwBzRNN0LUeYH5qla/kBMEc0iflB5dHFHKktLBrUcxEREYiIiICbm1utXlNbREREIPzyBTjZSoQOpc6LjpcJHYLGMT80RxfzA2COaJIu5gjzQ3N0MT8A5oimMD+oPLqaI7WFRQOCm5sbzpw5U2vX8/LyqrVrVYSTrQRHV7sIHUadN8Y/SugQagTzQzN0NT8A5oim6GqOMD80Q1fzA2COaALzg8qjyzlSGzinARERERERERGpxZEGRFRnZGVlITo6GpmZmQCAx48fo2nTpgJHRdpCLpfj9u3bSE5OBgDcvHkTbdu2hVjM+jgpPXz4ELdv3wYAXLp0Cc7OzjAyMhI4KtIW2dnZiI6ORkZGBgAgOTkZVlZWAkdF2kKhUODOnTt48OABACA6Ohrt27eHnp6ewJGRtnjy5Alu3rwJAPjrr7/g7OwMY2NjgaPSDH6SogqxtraGoaEhjI2NYWpqisGDB+PevXtCh6VzUtLzYDX2D9yIyyq2/d6THFiN/QO3k7IFikw4qamp2Lp1K1w7usHU1BTdunXDgAEDAADNmjVDi5atsHDhQty9e1fgSGsHc6Q4uVyOn3/+GcNHjICJqSkcHR3Rr18/AECHDh1gYmoK71GjEBoaCoVCIXC0NY/5UdKtW7cwf/58NG/RElZWVujTpw8AoGvXrpBKpXB374QdO3YgPT1d4EhrHvOjpIyMDOzatQseHp1hYmKCLl26oH///gCUn32srJvj/fffxz///CNwpLWDOVKcQqHAr7/+Ch8fH5iamaF9+/Z47bXXAADOzs6QmphgyNChOH78OORyucDR1jzmR0mxsbHw9fVFKxtbNG3aFL179wYAdO/eHSYmJnB2dsEnn3yCZ8+eCRxp9bBoQOW6f/8+kpOTce3aNWRlZSE2NhaPHz+Gn5+f0KHpnIi7WTBoIEb7VpIS240N9eBgbShQZLWvsLAQX331FWxsbTF//nyk5DeA54QPMWLlN/i/jUEAgF5vr4ZBSxd8unUb2rZti/nz5yM7W7ffsJgj/4qKikKXLl0xfPhwnP3zMtq8Nh4DF+yAz4YfAQAD5m+DfZ+x+O3cnxg8eDC6d++h+gVAVzE//pWVlYV3330X7du3x47/7ISRrRt6z1yL0et+AAAMX7EXnq/Px8Ns4P3334eNrS2+/fZbFBYWChx5zWF+/KuwsBAHDhxA69Z2ePfdd3E/Ix8e4z7A8OWBqveY3jPXQurQGbs+/wKOjo545513VKMQdBVz5F+3b99Gr169MWDAAIT8dhate/lgwLytqveYgR/+B+36T8Qfl8MxcuRIdOrkoVWTfdcE5se/nj9/jkWLFqFNmzbY/MknaGDdAb3eWoVR6w4CAEb4f4uukxYhDUZYuHAhWtnY4Isvvqiz7zG8PYHKdfnyZZiYmKB9+/YAgCZNmqBTp06Ij48XNjAddD02C86tJdDXExXbHn4nE652EojFolLO1C25ubmY9MYbOHL4MFq49MCImWvR1MG1xHEePnPg4TMHsmcPEfb9FmzduhW//BKCkydD0apVKwEir3nMEaVvvvkGb7/9NhpKTDFo4U607TMaevoNih3jNHAinAZORJ931uHmmSO48F9/dHRzwzd79+L1118XKPKaxfxQio2NxcCBgxAbGwM375nwfP0DSMyL38rk0GMoHHoMRfcpfnh0OwJnv1iKKVOmIDQ0FHv27EGDBg1Kab3uYn4oFRQUYMaMGQgMDIRVew+8vuI7WLX3KHFcp9GzgNGzkJ2WgiuHduDL/36O0NCTOHkyFG3bthUg8prHHFE6evQoJk6aBJF+I/R7fws69BsH/YaNih3j2P91OPZ/Hb1mrMGdC8dx4cuV8PT0xGeffYa3335boMhrFvND6f79+xg0aDCio2/AefBkdJu0CMYWxW9lsu82GPbdBqPbpEV4EheN87tXYtasWTjxyy848P33MDSsWwUWjjSgcl2+fBmenp4QiUQoKChASEgIDh48iIkTJwodms65HpOFjvYl730Kv5sFN3upABHVPrlcjnGvv44jhw/j1ekr4RNwTG3BoChJ41fw2rsbMWb9YSTcf4A+Xn3x8OHDWoq4djFHgP3792Pq1KmwcuqGSZ+dR4d+40oUDIrSa9AQTgMm4I3PL6BpG3dMnDgRR44cqcWIaw/zA0hKSkKfPl548OQpfDb8CK9ZH5UoGLysWVs3/N/G4+g+2Q/fffcd3njjDZ28nYX5oRxh8OabbyIwMBBdJ3yIsZt/VlswKMrIzAK9Z6zG2E3HkZKeBS+vvjr7wwlzBDh+/DjGjRuHxq2d8cbnF+AyZHKJgkFRevoN0N5rDN74/Dyad+ylKkjpIuaHct4CL6++uBsXj1FrD6D/B1tKFAxeZtnaCaPXH0bvmWtxPDgYY3x8UFBQUEsRa0a9KhoEBgZWark/Dw8PnDx5suYCqiMuX76MCxcuwMzMDAYGBhg3bhy++uorTJ8+XejQdE5kbBbcHIp3xgpFIaLilNufZuRj+NJIjF4ZhcF+13H2eppAkdacbdu2ITgoCH1mfYTOY9+DqBKT2LVy74NR6w7j/oNkTH/rrTo7BKws9T1HYmJi8PaMGWjh0h0jV++HkZlFhc+VmDeF99oDaNauE6a9+SYSExNrMFJh1Pf8UCgUmDJ1Kp48TcXo9UfQwqVHhc8V6+mh68QP8er0lfjhhx/w+eef12Ckwqjv+QEAX3/9Nfbt24fuk/3QfYofxJWYxM7asQtGf3wUqZlZmDxlik4Wlup7jjx48ACTp0yBpb0LRq87BOMmr1T4XAOpOUas/Bat3Ptg1uzZuHXrVg1GKoz6nh+FhYWYMXMm4hMT4b32IGw796vwuSKRCJ1Gz0LfuZsQ8ssv2LRpUw1Gqnn1qmjwMrlcjkWLFsHS0hJSqRQ+Pj5ISUlR7ff29kZQUJCAEWqHK1eu4Pvvv0daWhru3buHFi1a6Px9wUJIfpqLR6n5cLUr3hnfiJdBlqNApzZSmEn0EbTWBcfWuOCzD9ri4+8TBIq2ZsTFxWHpsmWw6zYYbiNnVKmNV9q5o8eby/HLiRPYv3+/hiMUFnMEmDFzJgrF+hi8+AvoNzSo9PkNDCQYvPhz5BUoMGvW7BqIUDjMD2DPnj04/fvveHXGGjS1r9q65h7/Nxc2nbywaPFiJCUlaThC4TA/gEePHmH+ggVo6doTXcbPr1IbFrYd0HvmR7hw/rzOFZaYI8C7c+ci+3kuBvt+gYZGlZ/1Xr9hIwxauBPihoaYPl23frxgfgBHjhxB0I8/ovvkJbB27FKlNlyHTkWbXiPhv2qVajWfuqBeFw0CAgIQFBSEsLAw1QeDyZMnq/Z7e3sjODhYqPC0wt27d5GamopOnToBAKysrPDhhx/i888/V1XYL1y4UGzUweuvv46rV68KEm9dlvwsDwBgKik+1cixC0/g0UaK5haNoKcngt7/7iPLypHDyUa3lgr7z3/+g/z8AvSdswEiUdXvi3Mb8TYsWzti06bNuvWGXc9z5OrVqzj9++/oMrHkvYOVYfqKDTq/Pg+//HICf//9twYjFFZ9z4/CwkJs3LgJr7R1g/PgN6rcjkgkwmtzN+F5drZOfSms7/kBALt370ZmRgb6vre5UqPYXtah/+uwduyCzZs/0anRBvU9R+7cuYMfjx1Dp/+bCzNruyq3I2ncDN0m++HPP/9AWFiYBiMUVn3PDwDYuHETGrd0gPvoWdVqx2vWeigKgR07dmgospqnFUWDH374AS4uLjA2NsbAgQOxYMECjB07tsavu3v3bvj6+sLOzg6mpqbYuHEjQkJCVPepdezYEfr6+vX6C/Dly5fRuHFj2NjYqLZ5e3vj0aNHuHDhAgCgc+fOCA8PBwCcPn0apqam8PAo+/5AKqlNc0OYGOlhx7EkpMsKkJqZj70nkxEY+hBLJ/37/Cc+ysHI5ZEYvzYag7s0ETBizcrPz8fXe/bAvucwSC2tq9WWSCyGy/DpuH49AleuXNFQhMKr7zny5ZdfoqGBEZwGVn8+FZfByntUv/zySw1Eph3qe36cP38et2/fguuIt6tVdAQAUytbtO4yELu//FJnvhTW9/woLCzE7t1fwsajLxq3cKhWWyKRCB1Hvo24uFj8/vvvGopQePU9R/773/9CrKcP16FTq91Wh37j0MjIGLt379ZAZNqhvufH9evXcfnyJbgOm16p25rUkTRuhja9vBG4dy9ycnI0FGHNErxosHfvXnz44YfYtWsX0tPTMXz4cGzfvh3u7u6VaicgIACurmVPllZUeno6EhMTi325tbe3h4mJCSIjI1XbRo4cWa9vUbh8+XKJ18LCwgI9evTA4cOHAQAGBgYwMDBAamoq/P398dFHHwkRap0nNdLHN36OiIzNQqd3LqPXvHCcCHuG/csc0cPJVHVcq2YGCF7nipCAjlj6VayAEWvW33//jbTUVNh3G6KR9uy7K9t5UdzSBfU9R86dO4/mrj3RSGJS7bYMTZvAyrELzp0/r4HItEN9z48Xf+t23QZrpD277oPx5PFj3L17VyPtCa2+50dCQgKSku7BTkPvMXZdB0IkFvM9Rody5Nz587Bq7wFJ42bVbquhoTFauPXB2XN8j9EVL/7W7XsM1Uh79t2HICszE1FRURppr6YJuuRidnY2FixYgH379qFXr14AgLfffhsffPCB6ovqvn37sHPnTgDAunXr0K+f+gkn/Pz84OfnV+Frv1hn19TUtNh2MzOzYmvwDhs2DEuWLMGaNWsq/sB0yJYtW9RuP//SB+2uXbtixowZ8PHxgaWlZW2EppO6djBB8LrSi1+5+Qo0aqCs9Rkb6sHYoHqVTm3yYrRK0zYdNdKexLwpTCyscO3aNY20py3qa448f/4ct27dhOd4zbxZA0BTh46IDPoC+fn5OrO8Xn3ND0DZhzRu3hoGxqblH1wBTR2UfdG1a9d0Znm9+p4fANBMQ+8xDQwkaNKyDd9jdCRHFAoFIiIi0H7g5PIPrqBmDq7488+fkZGRAROT6he7tUF9zQ9A2YcYmTaBsUX1RsO+8OLz7rVr1+Dp6amRNmuSoEWDs2fPQqFQYMiQf6u+T548AQC4u7sjLS0NW7ZswcWLF5GVlYW+ffsiPDwcetUcEgIAUqlyWZD09PRi29PS0or9YSckJOjseu+a1K1bN6xduxYHDhwQOhSdFhWbhXXfJUBPDBTIgTVvthY6JI15MQmpxLz6Ff4XjBo3w9OnTzXWXl2gqzmSlpYGhUKhkV+AXpA0bob8/HzIZDKYmZlprF1tpqv5ASj7EEMN9h8vcq0+9SG6nB8vXkdN9iGG5s2QUo/yA9DdHMnJyUHO8+caf48BgNTUVJ0pGpRHV/MDUL7HSBo3q/btby+8WAq4rrzHiAoFnCVs7969WL9+fbElST7++GNs374dycnJCA0NxYkTJ7Bt2zYAylsFNm/eXOWKf2BgIAIDA3HmzBkAgI2NDfz9/VWT+MXGxsLe3h5xcXGwtbUFAIwYMQI+Pj6YNm1alR9nRWgqAauiT58+quekqubOnYvRo0eXOhKkKC8vL5w9e7Za19Ok7o4mOLq6arNs07/G+Efh4t8Z5R9YxzA/NENX8wNgjmiKruYI80MzdDU/AOaIJjA/qDy6nCOaUlZZQNCRBk5OTrh79y7Onj2L7t274/DhwwgICECPHsp1lZ8+fQpzc3PV8ebm5hqtxsycORMbNmxA37590aRJE/j6+mLQoEGqgkF2djZOnz6NPXv2aOyapRGqduPl5VWt85OSkvDuu+/C2dm5QgWDFzRRqNAELy8v5D0JFzoMnVGd1/XHH3/E6NGjMW7LCVh3KH+Y1tYhlpj3y5NS9yvkcnw+1h7vvD0d27dvr1JMzA/Nqk5+yOVymJqZwaHv6+g7J6Dc48vLDwA4tXUeki+HICXlSZULt8wRzapOjsyYMQPf/XAEMw/cKvf1rEh+3Is4jyNLxiAkJASDBg2qUkzMD82qTn6cOXMGffv2xai1Byq0tnpFcuS/k5wxZvgg7N27t0oxAcwRTaruZ8tXrKzR2KkXBi3cWe6xFcmPc1+uRPSJPcjMyKjyLXDMD82qTo4sXLgQ23b8B7OPxEFPv+zXsyL58fjudex/rz8OHjyIcePGVSmm2iToRIidO3fGsmXLMGbMGLRo0QJhYWHo2rWraj6DJk2aIDU1VXV8amoqmjRRPwvn+vXr4eTkVKnr+/n5YcSIEfD09ETz5s0hl8uxb98+1f7Q0FC4u7vDwsKiCo+ufmjRogWCgoI4+SFV24tJSR/e1MxqJc8SbyHvuYwreegIPT09uLu749Etzd0//OjWNXh09hB0pBdpjoeHB55npCLtgWYm3kq+dVXVLtV9Lz5bPtRQH5LxOAlZzx4xP3SIZ2cPPLp1VWM/5D28eRUdXTvqzJw59Z2HhwcK8nKREhutkfaSb15TtVsXCL56wpo1a/D06VM8fvwY27Ztw+3bt1Ude9euXXH+/Hnk5ubi2bNniIuLg729vdp2li5diujoyr2Ienp62Lx5M1JSUpCZmYmjR48WKxAEBwfD29u76g+OiCqsRYsWcHFxxc3fftDIG/bfvx6Avr4+Bg4cqIHoSBuMGD4cD2+H42nCrfIPLsejO9eREv8Phg8bpoHISBsMGTIEIpEI//x6sNptFRYW4uZvB+Hp2YU/HOgIU1NT9OrdW/keo4FlNF/k2dChmpuclYQ1fPhwPEuK0ciPF6n3Y/Dg70sYPpzvMbqif//+aNiwIf7+VTPzt9389QDatWsPOzs7jbRX0wQvGhSVkZGBhIQEVdHAzMwM8+bNg5eXF4YNG4YtW7ZoZBLEirKxscHYsWNr7XpCuHfvHtLT09GpUycYGBigoKCgxDEfffQRrK2tsXz5ctW2adOmoWvXrvDy8sL+/fsBABEREejZsyd69eqlWl1h79696N27N7p06YJdu3YBUN7SUHSFirrus+D7iIrLwsNnuRiwOAK2E/9Egbzkl96tR+7BbeYlBHyfoNr2wX/uYOiS6xjjH4Wj55XDmG7EZWHk8kh4r4jCX/8oJ+r84cxjjFoZhSF+1xEYmlxqLA+f5eL/Vt3AiGWROBeZVupxNxNlGLk8EiOXR+LvBBkAYOHnd5GdI6/Sc6AJIpEIc+e+i8cxUUi4Wr11r2Wpj/H3ye8wZswYWFlZaShCEtr06dPRsFEjXDlUtdtNirrywzYYGhlh6tTqr8ddHS/6j2t3MjFimfLvfmVgyV/Ktx9LwqiVURjsdx0nwpS36X3/+yN0mXMF726/rTruz+h0DF1yHcOWXsfek8q+IidPgQW77uD/Vt3AsjKWv1LXL6hzISoNw5dGwmdVFB48zQUAzN1+W7Db7F6wsbHBsOHDceOXb5CTmVr+CWWI+fMEnt27i7lz39VQdKQN3p0zB2nJ8bh9vnpLaefKMhD18x4MHDQIDg4Omgmuil70IS98fvw+Ri6PLHFcamY+Zm65if9bdQNbj9wDACz/OhajV0Zh6JLruHRT+bls1qe3MMY/CsOXRqL/wggA6vsadep6HzJp0iQYS6W4/MO2asdy5dAO6OvrY8aMGRqKjoRmaWmJcePG4eavB5H19GG12roXcR7Jt67h3Xfn1JnRjlpVNLhx4wakUmmx0QRTpkzBxYsXcfHiRQwYMKBa7bu5uVVqQsNVq1bBxsamWtfUZgqFAunp6ZBKpfjtt9/QrVs3tce9/fbb+O6770ps/+6773DmzBlMnDgRALBy5UocPHgQoaGhqtsVJk6ciHPnzuHixYv44osvAADNmjXDgwcPauhR1S6FohCXbmbApbUxzIwb4NBKZ3RqI1V77KR+zbDz/ZKTeO58vy2OrnbBmF7KpSo3HUzE5/Pb4fvljth2JAkAMPpVC/y4xgU/feSKb0+V3lH958f78J3QCgeWO6k+FKiz4UAiPpvXDl/Mb4eNBxIBAIM8G+PYH2Xff1XTpkyZgnbt2uP3HR8iV1a1wlJhYSFO7/SFPC8H/v7+Go6wYl7+EPey8gpM6vbfe5wDl7cvYYx/FF5fqxxVVSAvxKxPb8FnVRTWfhsPQPmh7cWXz3k775T5wWdlYCy8V0Rh+dflD+d++djoeBl2BSWVe54mWVhYYOGHH+Kf335A3KVTVW7n7h8/4c6F41ji51di2d3aVLT/aGHRCIf8nRG01gUp6fn456UP3LNHWOPHNS444u+Mnf973gd2boyDK4rflvfF8fvYvaA9jq9zxcHTjwEAX/3yAKN7WeLwKmd89Fbpv2io6xfU+fTIPRxY4Yhlk2yx45gylk5tpDgflV7qObVl7Zo1yJOl48xnS6vcRk5mKs7s8oWLiyvGjx+vwegqprz+o7wCk7o+QF2fkp0rxxvr/8YY/yhM2/APcvOVv77/cPYxxq6+gTH+UUj+3xc6depa/wEAPj4+6NTJA+c+X4rstJQqt3Nu9wpkpz3BWoGX4y7ahwDK5e5K+7L+yaF7WPR6Kxxe5Yx5Pi0BAP5TbHFsjQu+WNAO248qX4/P57fD0dUumOPdHP09lPOKqetr1KnrfYixsTFWLF+O2L9CcOvssSq3kxh+FtGh3+GDDz7AK6+8osEIK6a8PuSF0gpMQMl+QF2/8nt4Ksb4R2GMfxQ6zriEXy49LffzTVF1sQ9ZsWIFUFiA33d8WOXCUt7zLPy2fT7s7OxVk/HXBVpVNOjRowcyMjJqrOJS2aKBrrt+/ToaNWoEsVhcbMLJlzVrVnJ5EZFIhClTpmDEiBFISFD+cp6amooWLVrAyMgIMpkMz58/V93HlZeXhw4dOgAAGjRogLy8PMErypoQnSCDdZNGAACDhmKYGZc+t6ilWUM1zyPw/n/uYErA37j3JAcAkCaTw7pJIxg10kN2rgLPc+VooK/8U80rUKBNc6NSr/F3ggyd20ohMdSDsaEesp6XHDkCAGlZBWhu0QhWTRohI1t5TA9HU/x6tXq/zlWXgYEBAgP3ICslGT+vexP5OdmVOr+wsBB/7duIu3/8hDWrV8PR0bGGIi3dyx/i1CmvwFTa/t6uZji62kX14e2XS0/haCvBkVUuyMlTIDpeBntrQxz/yBVBa5UzLV+PUf/BITI2C9k5CgStdUF+QSEi7maWGq+6Y51sJbh8KxMKRe3+Ha9cuRJOTs4I3TQbj++q/7BTloe3ruHUlvfg7t4Jfn5+NRBhxRXtP5qaN4RBQ+Xfub6eCGJx8b7iRR/wPE+B9i2VfUATkwbQ1yt+XNuWRsjMLkBuvgJGjZQj8/6MzkDo5WcY4x+F0MulTyasrl94WXauHAYN9WBsqI9ObaS4naT8G+3pbIqTV55V9inQODc3Nyxbtgw3Tx/GpYNbK31+3vMs/LR2KnIynmLv3kA0bNiwBqIsXUX6j/IKTOr6AHV9yumINHRqY4yjq13g5mCM0xGpSH6ai7+i03HI3xlHV7vA6n/5+bK62n/o6+tj795A5Gdn4Kc1U5ArKz3u0lw9sgvRJ/dj8eLF6NKlSw1EWXFF+xAA2P/bI4zr01TtsbfuZWP70ST4rIrClVvKovyLfiU7RwFHW0mx43+59BRDuyrnEVPX16ijC33IggUL0KVLV/y+fQEe/H2p0uenxP+DkA0z0aZtO6xdu7YGIixbRfoQoOwCk7p+QF2/8pq7OY6udsHR1S5obtEIvV3Myv1880Jd7UPatm2Lj9evR2zYSfyxZ22lv8sU5OXgxMdvI/1hIvbs+RoSiaT8k7SEVhUNqHbduXMHBgYGVTr3k08+wZ9//glfX198+OGHAJTDdm7cuIEnT57gxo0bSEtTDo9fs2YN2rRpU2yiD319fSQnlz7Mvq6IS85By6bqP1RVhP8UWxz/yBXverfA6r3xAIAmJvq4mShDSno+bt2TISNbecvAlkOJ6Pn+Nbjald7ByBX/Lt8pNdJHWpb62w2K9rEv/i0x1ENqlvo3+drUrVs37NmzB/eun8dRv9F4lnS3QuflyjJw6tMPELZ/M6ZPn47FixfXcKTqvfwhTp3yCkyl7f/zRjq8V0Thi5/uAwASHuXAsZXyC6STrQRXbmeoPgQCQMMGolJjuXo7E71dzQAAvVxNcfVO6W/YpR1rZ2WIG/GlD0GtCY0aNcJPPx2HhZkJjviNws3fD1foTbuwsBDRp77HsSU+sGpqiePHgwWfnEpd//F3ggzPMgrQrmXJ4qDflzHotzAcPZ3NSm1zSJcmmBzwD3rNC1eNXkp4+Bz9Pcyxb4kjPj2SVOqvP+r6hZelZxVAavjvbYLy/90akLRchwAAIABJREFUbtPMAHfuPy81rtq0YsUKTJo0CX8GfoRft3+IvOzyf3EDgKcJN3F48Ugk/30J+/btU90qWZsq0n9UtMAE/NsHqOtTbJsZIDdf+UJnyApgbtwAZ66nQa4Axq5W3soiLyVX6mr/AQDOzs44cOAAHt8Jx+HFI/AkrmLzYeXnyHB6lx/O/9cf/zd2rCBfCF9WtA/JL1Dg4t/peNVFff9w5VYm3hvdAp/Pa4c1/xuZBgBvbvwH49dGo7fLv6OuCuSFuJmYDVe7sr94vkwX+hB9fX38+OMxtGpujR+XjUXUL99W+Ivh7fNBOLJ4JEyNDPDLiZ9haGhYw9GWVJE+BCi7wKSuHyjrs0XCoxxYmjaAxFCv3M83L9TlPmTevHmYNWsWrhzagdDN7yIns/TbgYtKexCLo0vGIP7yb9i9ezd69+5dw5FqFosG9Vh1fulv3LgxAODVV1/Fw4fK4fIBAQFYsGABZs2aBVdXV9XkUStXrkRMTAwOHTpUbMnMunIPT1mqO1rCXKr80tK1gwkep+UBAJZNsoX/3nj4fhmDDq0kaCxVdr4LxrbCxf944PjFp3iWma+2Pb0if9FZ2QUwlaifA6ToZ0yxFr4MU6ZMweHDh/H8cRy+f7cvzn25stQZ0XMy03Dt2Of4f/buPC6K+v8D+GuX+wYVFTw4vBAEUTRFVFDzW2iCkLd5pPVL1EzMLK/Qoqwsjyw1E9NS88y78MY7Ty4xLw7vAwU5lpvd3x+bBDJcsuywy+v5T49mZ2bfvOftZ3ffM/OZDUE9cPXwZsyePRs///wzpFJxhrfqNpLK0tBKH6e+74jt89rhREwartxSXlXw/JnDp+LSkCZTNon2n38Kn2mReJKWDysz4Q/vNFkBTP/94mZurIu0chpGZa3bvJEBborwJc/e3h6nTp2EezsXhC8Mws45Q5B04bDg5GbywkIknjuAP2a9iYOLpqBzpw44deokmjRpova4X/Ti+JGakY9ZYQlYFCR8j/RX77bAiSUdsfSPsm89+uy3JOz63BWnv++IrcceIyu3EGbGuvB0toCxoQ4cGhsi+d+x5kWVGRcsTHWRkV0ouF5tGdJ1dHSwbt06fPTRR4gL/w0bJvZE1K6fy7zlKeXuTUSsnIXf3++DwmcPsHPnTgwdOlTNUStVZfwor8FUmTHAwcYQkTcz4B18CdEJmejcxgzJafnIL5Bja0g7GBlIEV7GmV9NHj8AICAgAHv27AEykrFpSl8cXf4JUm4L36+fK8tA9N412DDRG9F7wjB16lT8vnEjdHVFfWo5gJJjyLbjyQjobl3muo62hmjd1BjWlvolGk2/zGiLvV+6YUGx+ZZOXU6Dp4t5lePRljHExsYGJ0+egGfXV3D4+2nY/vFAxP8dDnlh6RMxCrkcty5FYNenw/Hnl+/ApU0rnDp1ssyJ22taZcaQihpMZY0DZY0rf559Ct8uwk+3K4smjyESiQTLly/HvHnzcOPYH1gf1B0Xty9HdnoZ4+WDJJwIm48NE32Qee86Nm/ejHfeeUe9QauA+CMeiaZ169bIycl5qW3T09Nhbm6Oa9euwdLSsmh/Bw4cwJMnTxAcHAw9PT3k5ubCwMAA+vr6MDY2hoHBvx3x/Hw0atRIZX+LWBxtjXDuatUvb3wuI6sAZsa6uHkvCxYmyn+OLWyNsHmuC56m5yNkbSL0dKXIzZfDQE8KfV0JjAykMNCVIjO7AAqF8oqC55ztTHDhWjqc7UyQka38sZCakQ9DfSmMDP5rIFia6uL+01xIJcoBGABk2YWV6g6rS2BgIDw9PTF9+nRs2fIzLv2xAlY29qjv2A6GZsrbaTZO7o0nSf9AXlgAT89uWLJ3h+iXixb/Evc4NQ8TlpSc6b+hpT5WBrep8n4N9KTAvyfG+3pY4ertLPh3a4CTsWkYPP8ymlkbwNpCucJrnevjtc71MTssAQcvphZdYlqchYkuMv/94paRXQhzk7KPfZnrKsT7kte8eXOcOnUSS5cuxVdffY2dc4fByMwS1i3cYNZIeb/u9pmBSL4ZjZzMdDRubIPvv/8ekyZNEq2h9KLi40dBoQKTl93Ap6Ps0dCq9CXxz8cAQ30pzIzKPlY6UsDCRAf6elJIpUBBgQKd2pjhn1syuDqY4s7jXNQ316v0uPAkLQ8WJrpFZ5mMDXSQk1cIWXYhrt/NQuumyh+stx7loKWt+s+qlUVHRwfffPMN/P39ERw8DRErZ+HE6hA0sHdCPTvlrXJ7Q8fiSXwsnj28DT09PYwYPhwLFy5Ew4bCZ9/UobLjx/MG06oyxpLKjAFbIx7Dp70lJvo3xYrd97DtRDLMjXXQ1UV5xtmrnYXy9iYtHD8A4PXXX8c//1zBjBkz8Nv63xC9JwwWjZqhQQs3GJkrT4z8PuVVPEm8gsKCfHTs6IHFm36tVWcHi48h8fezcTlJhl8PPMT1u1kI++s+xvva/reujREepebBzEin6AqS5+OKqZFO0e1MgPLWBH+v8p8aou1jSKNGjXDk8GH89NNPCA39Anvmj4KhiRkatHCDRWPlfGd/zBqM5PhoZKenokEDa3z99deYNm2aqA2lyowh3u0ty20wlTUOlDWuHLiQgrCPnKoUp6aPIRKJBCEhIXjjjTcwNTgYJ1aH4NQvn6G+nRPq//sZs+/L8XiaEIuUe4nQ0dHBoEGD8N1339WKkxYvo/b8QiC1a9++PXJzcyGXy/Hqq68iOjoar732Gr788kvY2dkhLCwMs2fPRlhYGJYvX46UlBSkpqbixx9/xMiRI5GamgqJRIIVK1YAAMLCwrB+/XoYGxvjhx9+AAAsWLAAERERyMvLw6hRo2Bqaor8/PyiuRQ0nYudCe79O1FUfoEcI7+8giu3ZBgeGoeZI+zQtIEBNh55hKlvNsPGw4+wdv8DPMssQJqsAAveaYFJ31/Hs8wCSCQSfP2ucoKyjYcfYfuJxzDS18GX/05atmzHXZyOS0N+gQKDelrDxEgHGw4/hKG+FG/2+O8L7kT/Jpiy7AZy8uSYPlT5w+mnvffRu4MVXnH676zBR0ObY8Ji5QfJ8/c4FZeGPh3KnttCDDY2NtiwYQO+/fZbbNiwAWfPnkVkVDQe/3vvm3sLG3QaOgCDBw+Gu7u7yNEqFf8S19BKH3/Md1XJfjOzC2D674/Fc9cyMN7XBjo6kqKJ7aavvAnv9pZFXwIBwPTfSwULChVIzciHteV/P0Y9Wpvht4MP4detAU7EPMNQn4aC65W1LgDcfpwLf6/y71usSTo6Opg2bRomT56MHTt24MiRIzh//gLuRyufvtFQNxv9Rg7Hq6++Cn9/f9FvR3hR8fFjz5kniLqZgdD1SQCAWSPs0KmNOWaHJeCL8Y6Y+0sCbt7LRn6BAkH+yi8cBy+mYNmOu7j1KAfjv72KsOlOmOTfFEM+i4NUIkHvDpYwN9HF5IFNMeWHG8jMLsDIPo2hryfFom13KjUuhKxLwpyRdiXubf8gsBmGfh4HA30Jlk5STu568vKzoknTahMvLy+cO3cWFy9exLZt23Dh4kVcvfq38sXHN9C3Rxd07foBRo4cWSsa2ZUZPyrbYAL+GwOEKKCcPwUA6pnpIiOrAF2czLHh8CMAyonGmjc01NrxAwDq16+PsLAwfPXVV9i4cSPOnDmDS5FReByvnJCvXfMG8AgIxqBBg9C5c2dRYxVSfAyZ85Z90XK/OTEY72uLx6l5Rd9Bpg9pjqAl15CTJ8eHg5XfD95bfA0ZWQUoKFSOOYDyR+fF6xlFYwAgPNZU9ruFJo8hUqkUQUFBePfdd7Fnzx4cPHgQ589fwL3LxwAA9RRp+N+QN9G7d28EBgYWnRgTU2XGkND1SeU2mDq1Nis1DpQ1rjxOzYO+rgT1zMr+fNXmMcTDwwMnjh9HbGwsNm/ejIsXLyLuynkAQOH9K/Dp0gFdukzAyJEjNbZZ8BybBnWYVCqFhYUFZDIZjh8/Xur12bNnAwDGjx+P8ePHl3htz549pdYXWm/evHml1nv06BFsbW1LLddEUqkEXZzMEZuYCVcHU2z5tF2pdZ7PUjyiTyOM6FPyS+mvn5SeqE9ovelDmpdaL+lhDt4f2LTEMtv6Btg2r2QMGVmF6NS65KDqbGeC3aFuJZYduJCCz8Y6lHqf2sDGxgbTp08XO4xKKf4lriwVNZiEXk/NyMfXm27DQE+KV5zM0bGVGR48zcWk769DKpFgsLc1bOsbIPz8U/y0R/l0EkcbQ/i0t8StRzn4Ydc9fDfhv8ve3RxNYaAnhf/cWLjYGaNDKzMkPsgutV5Z6wLKM1vt7MWfxEdfXx9Dhw4V7ZLyl1V8/Ajobi145ud5U+ib/yt9y0Jfj3ro61GvxLLeHazQ+4XmXyMr/VIzn1d2XDAz0ik1GV5PN8ui+0ufu3QjE2+/Vnsfb+rh4VFiXp3aqjLjh1CDqXlDw6Lx42hUaqkxQGhMCehujfcWX8O244+hpyPByuA2sDLTg6F+MgJDYlHPTA//198Wdx5r9/gBKOdk+uCDD/DBBx+IHUqVvPgd5Lnn/44bWukXfQdp08y41A/ItTPaltqnRCLBwYUlm/BCY01dGkN0dXUREBCAgIAAsUOpUGXGkIoaTO0cTEuNA0cExhUACL+Qgtc6/3c1ktBYY2Wqq/VjiKurK1xdVXOSqLaSKLRhCnt6aT4+PgCAiIgIrX7Psvj4+CAvOVJlZ4PrssCQWOhbd6gVx1VVXrY+Vuy+h+6uFhXOXqwue/9+AksT3TLvX6zqeoDy7MPRqFRMfqFxVRZtrA+AY4gqaWONvEx9cPwQpo31AXAMURXWx384hgjT1hpRF15pQESkYkF+tesStDe6ln9valXXA5RPa3CpJR1+Im3C8YOIqoNjCNUENg0IUVFRRWf/1fV+teX+c0DZrQwMiRU7DI0XlyRDh7Ln1dFYrA/V0Nb6AFgjqqKtNcL6UA1trQ+ANaIKrA+qiDbXiDqwaVDHifHj3d3dvdY0DWpLHNqgg7X25VPb/h4xaWN9ANr5N4lFG2tE2/4eMWljfQDa+TeJgfVBFdHWGlEXzmlARERERERERII0/5l3RERERERERFQj2DQgIiIiIiIiIkFsGhARERERERGRIDYNiIiIiIiIiEgQmwZEREREREREJIhNAyIiIiIiIiISxKYBEREREREREQli04CIiIiIiIiIBLFpQERERERERESC2DQgIiIiIiIiIkFsGhARERERERGRIDYNiIiIiIiIiEgQmwZEREREREREJIhNAyIiIiIiIiISxKYBEREREREREQli04CIiIiIiIiIBLFpQERERERERESC2DQgIiIiIiIiIkFsGhARERERERGRIDYNiIiIiIiIiEgQmwZEREREREREJIhNAyIiIiIiIiISxKYBEREREREREQli04CIiIiIiIiIBLFpQERERERERESC2DQgIiIiIiIiIkFsGhARERERERGRIDYNiIiIiIiIiEgQmwZEREREREREJIhNAyIiIiIiIiISxKYBEREREREREQli04CIiIiIiIiIBLFpQERERERERESC2DQgIiIiIiIiIkFsGhARERERERGRIDYNiIiIiIiIiEgQmwZEREREREREJIhNAyIiIiIiIiISxKYBEREREREREQli04CIiIiIiIiIBLFpQERERERERESC2DQgIiIiIiIiIkFsGhARERERERGRIDYNiIiIiIiIiEgQmwZEREREREREJIhNAyIiIiIiIiISxKYBEREREREREQli04CIiIiIiIiIBLFpQERERERERESC2DQgIiIiIiIiIkFsGhARERERERGRIDYNiIiIiIiIiEgQmwZEREREREREJIhNAyIiIiIiIiISxKYBEREREREREQli04CIiIiIiIiIBLFpQERERERERESC2DQgIiIiIiIiIkG6YgdAREREVFVTp05FVFSU2t/X3d0dS5YsUfv7ikWsPAPMtTox1+pTlVyLGac2qmt1rkpsGhAREZHGiYqKQuT5k3CxN1Hbe8YlydT2XrWFGHkGmGt1Yq7Vp6q5FitObVQX61yV2DQgIiIijeRib4I/5ruq7f0CQ2LV9l61ibrzDDDX6sRcq8/L5FqMOLVRXa1zVeGcBkREREREREQkiFcaEBGRVkhNTUVkZCQePHgAiUQCGxsbdOzYERYWFmKHRvTS7t+/j6ioKKSkpEBHRweOjo5wc3ODkZGR2KFpFYVCgdu3byM6Ohrp6enQ09NDq1at0K5dO+jr64sdnlZRKBSIj49HbGwsMjMzYWhoCCcnJ7Rt2xa6uvxpQlQb8UoDIiLSWFlZWVi9ejU6dvRAvXr10KdPH7z11lsYOXIkevfuDUtLS3Tu/Ap++eUX5OTkiB0uqdmTtDzYDD6Fy4mZJZbfSc6BzeBTuH43S6TIypecnIwFCxbAwcERTZo0Qf/+/TFq1CiMGDECXbt2hZmZGV739cXevXshl8vFDheA5ub67t27mDt3Lpo0aQp7e3v4+/tj1KhRGDZsGDw8PGBmZoZBgwbhyJEjUCgUYocLQHNzfePGDUybNg0NrK3RqlUrBAYGYvTo0RgyZAjc3NxgZm6O0aNH49y5c2KHWkRTc11TmI+6i00DIiLSSEePHoWLSzu8++67uPssB93GzEJA6BaM/vkMAGDg55vgOeoTJCWnY9y4cXB1dcPJkydFjprUKepmJgz1pHBqblJquamRDlra1q6z9QqFAr/88gtatmqFWbNmodCiCbzfC8XghbsxZvXfAIA35vwC94AgnDofiQEDBsCnVy/Ex8eLHLnm5bqwsBCLFy9Gy1at8MUXX8CwWTv0mvQ1hi76qyjXvp+sgrPvGPx58Aj69OkDP39/PHjwQOTINS/XeXl5+PTTT9G2bVss/X4Z6jt7oc+URRi25EBRrl/7aDlaeg/C5m070KVLF4wZMwapqakiR655ua5pzEfdxWuAiIhI4yxcuBAzZsyAVRMHBH65Dc3ce0IikZRYx75TH9h36oNXhk/DrUtHcfSHj9CzZ08sWbIEU6ZMESlyUqfohEy0czCBrk7J2oi8kQE3RxNIpZIytlS/goICjBs3Dr/99huaunrCf9I3qG/nVGq9ll5voKXXG+g2Zhb+ObQJJ1aHwK19e+zcsQN9+/YVIXIlTcp1VlYWBg0ajL/++hOOXV6D94QvYNHYrtR6bbwD0MY7AN3fnovovb9g/68L0M7VFeF//YXOnTuLELmSJuU6JSUF/fr1x9mzf6NtnyHoPm4uTOo1LrVe296D0bb3YPR89zNc2LYM6zcsxdGjETh06CBat24tQuRKmpRrdWA+6i5eaUBERBrl+++/x4wZM9C6pz9G/BCB5h28SzUMipNIJLD36I2Ry4/BsasvPvjgA6xatUqNEZNYouMz0b6FaanlkTcz4d7CTISIhCkUCrzzzjv47bff0PWtGXjzq52CDYPidHT10O71UXhrxQmYNnLAAD8/Ua+k0ZRcFxYW4s03ByE8/C/0mvQNBoT8JtgwKE7XwAgeb07E8B+OQK5vir7/+x/i4uLUFHFpmpLr7OxsvP66Ly5euoR+M3/Ga9N/FGwYFKdvbIpuo2diyHd/IiUjCz4+vXDnzh01RVyapuRaXZiPuotNAyIi0hjR0dH48MMP0cLTF6/P+Al6hsaV3lbfyBT9Zq2GfafeeH/KFPzzzz81GCnVBjEJmXBvWfILrlyuQGzif8uHfHYZzuPOYvF28X6YbNy4EevWrUOXEdPRdeRHkEgr//XMzLoJAr7cBpP6thgxYiTS09NrMNKyaUquFy9eXNQwaP/G2+U2HF9Ur1krBC7YgUKJPkaMGIm8vLwajLRsmpLrOXPm4Pz5c3j9k5/RuufAKm3buE1HBHy5HSnP0vH22+NEm09CU3KtLhXlIzo+E35zYjDw01gMmncZtx5xLiFtUWebBnK5HKNHj4adnR1MTU3RsmVLbNq0SeywiIioDAqFAuPHvwNDs3p4deoSSHV0qrwPHV099J22DDoGxnj33f+rgSiptnjwNBePUvPh5ljyC+7lJBlkOXJ0bKU8K7ZkUiuEjLIXIUKlZ8+eYfL778O2bWd0GTH9pfZhZFEffT/8EXfvKSf1UzdNyfWtW7cwe84ctPDsB9d+Y15qH+aNmqHXlO8QExONRYsWqTjCimlKri9duoTFixfDrf/baNmt30vto4GDM7zGh+Dw4UP49ddfVRxhxTQl1+pSmXw0rqePjbOdsfMzVwT52WLh5tsiRUuqVmebBmlpafD19UVMTAzS09MRHByMsWPHitY1JiKi8p08eRIXL15Al1GfwMi83kvvx8SqIbqM+AinTp3E+fPnVRgh1SYPUpSf5xYmJadv2nEyGR6tzNCkgQEAwLa+gdpjK27dunV4lpoK76AFL9UIe86mbSe07TMEq8PCkJaWpsIIK6YpuV6xYgXy8/PhPeGLKl1h8KIWXV+HnUcvfP/9MuTn56swwoppSq6XLl0KPUMTeL09p1r7ce03BtaOLvjuu0Vqv9pAU3KtLpXJRyMrfZgaKV/X05WWmvuANFedbRpYWVlh+PDhsLCwgFQqxZgxY5CbmwuZTIb169fD09MTnp6eOHz4sNihEhERgLCwMBiamsOp15vV3lfbV4dC38gEa9asUUFkVBu1amIEc2MdLNtxF2myAqRm5GPdgQdYu/8hZo0s/x52dVq9Ogw2Th5o1Kp9tffV/o3xyJLJsGXLFhVEVnmakGu5XI6wsDVw7PI6zBs2rfb+2r8xHg8e3Mf+/ftVEF3laUKuMzIysGnzZjj1HgwDE/Nq7UsikcCt/zjExsbg0qVLKoqwcjQh1+pUlXxk5RTiiw1JCPJrIlK0pGp1tmlw8OBB+Pr6omnTprCwsICNjQ1sbGwgkUiwaNEiREREYO/evQgODkZhYaHY4RIR1XknT51GE9fuVZrHoCwGJuawcX4Fp06dVkFkVBuZGevi10+cEZOQiY7vnUePqZH482wKNs52RjcXC7HDAwCkp6fj8uVY2HdWzVMPGrZqDxPLBjh9Wr11rQm5jo+Px5MnyXB45VWV7K95R29IdXRx5swZleyvsjQh15GRkcjLzVVZru07K/fDXIursvnIy5fj3UXXMPXNZmjTrPqf11Q71MlHLp49exbDhg3D+vXr4e3tDWNjY4SGhuLcuXM4e/YsevToAQMDAxgYGMDe3h7x8fGiPu6FiKiuy8zMRPzNG/D0rP5VBs81bNkel7YtQ15eHvT19VW2X6o9urQ1x+5QN7HDKFNMTAwAoGFLV5XsTyKRwLqlGyIjo1Syv6qo7bmOilLmpGFL1cSoq2+IBnZORftVp7qWa9MGNjCxsmaua4GK8lFYqMDEpdfRr0s9+L5SX42RUU2rk02DyMhIWFlZoVu3btDR0cHatWuxYMECfPzxx3j69CmsrKyK1rWyssLTp09rNJ6pU6cCAJYsWVKtdYiItFVGRgYA5YRvqmJkUR+FhYWQyWRsGtRhwctv4NKNDOTlKxB5IwO/fuKstvd+PveAkUUDle3TyKIBUm8mqGx/qqRtuTa0qI+U1FSV7U+VtCnXEokExhb1kcpc13p7/n6Co1GpSMnIx/bjyWjb3ARfjHcUOyxSAYlCrGeYiOjZs2cYNmwYTpw4gcaNG2Py5Mn47rvvsGrVKujo6ODPP//E0qVLAQB+fn749ttva/RKAx8fHxw7dqzG9k9ERKSNPJ3N8cd81Zylr4zAkFicuSLOIw3FpO48A8y1OjHX6vMyuRYjTm1UV+u8KsprC9TJKw0sLS0RHh5eYllwcDAAZUNh5syZRZMiJiYmokWLFjUek7e3NyIiIsp83cfHBwDKXYeISFspFApYWlnBzmsg+rz/bYXrL/G1xtS/kstdZ/+3k/D08nE8fHC/WjOpkzh8fHyQlxyp9vet6PO6KhISEtCiRQv0ef87uPYbXeH6lanrDUE90dnZAfv27VNJjGLlGVBtrk+dOoXu3bvDL2Q9HLu+VuH6FeVaoVDg5+FOGD4oAKtXr1ZJjNqS661bt2LIkCEYvvQgGrV2r3D9inJdkJuN5W86YNbMmfj8889VEqOm5FrMOLWRKuu8rqmzEyGWxdLSElOnToWPjw/69++PRYsWQacaj0AiIqLqk0gk6OThgYf/qOYRiQqFAo+uXkDnTh5sGJBoHBwcYGllhfv/nFPJ/nIy0/Dk9jV4eHioZH/axN3dHVKpVGW5fnY/AVlpKcy1gOc5UVWuH16PhLywkLkmEhGbBgJGjx6NM2fO4MyZM+jbVzUzGhMRUfUEBAQgOfEKHl6r/lmX+3F/I+VeAgICAlQQGdHLkUgkCBg4EPGn9iJXVv3LZv85tAkKuRwDBw5UQXTaxcTEBH3/9z9cO7IFhQX51d5f3P4N0NHRwYABA1QQnXZxcHCAq6sbrhzYWO7lzpUVt38DTExN0adPHxVER0Qvg00DIiLSCKNGjYKxiQnObVpUrS+iCoUC535fBAtLSwwfPlyFERJV3cSJE5GXLUPkzp+qtZ+87ExE7fwJXbp0RceOHVUUnXaZNHEiMp48xJUDv1drP7LUx4gL/w1+fn5o2rSpiqLTHhKJBJMnT0JyQhwSzx6o1r5S7t7EjeM7MWb0aJiZmakoQiKqKjYNiIhII1hYWGD+vHlI+Dsc145uf+n9xO1fj1uXIvBFaCiMjfkMaW20Yvc9xCZmCr724Gku5v6SgKzcQrz15RUEhsRi7Nf/IDdfjrgkGZbvuqvWWDt16oThw4fj/KbFeBwf+9L7ORn2GdIf38W33y5UYXTCystvecTOff/+/eHTqxdOhoUg/dGdl9qHQqHA0R9moDAvG1988YWKIyxfZer6uZV77sFvjvKRnmLU9dixY9GunSuO/PAhcjJe7qkH8sICHFo8BSYmxpgzZ46KIyytunX9nNi5V7Xiefl0bQL858ZizpqqPaFFG/JQ17FpQEREGiM4OBient1weGkw7kSdqPJezakdAAAgAElEQVT2SRcOI2L5J/Dp1QtBQUE1ECGJTS5X4NzVdLg6mAq+fjzmGbzdLHE06hk6tjLFH/Nd4d7SFEejUuFib4Lz1zIgl6v3wVLLli2DdYMG2Dv/LTy7n1jl7S9uX46Yfb8gODgY3bt3r4EI/1NRfssjdu6lUinWhIVBT0eC3SHDIUt5VKXtFQoFTobNx83T+/BFaCjatm1bQ5GWVtm6BoDcfDmu3JIVvSZGXevr62PdurXITU/B7pCRyJVlVGl7eWEBDi7+APevnMePP/wAGxubGor03/dTQV0DtSP3qlQ8LzEJmcjKkWPX567IL1Ag6mblj6mm54HYNCAiIg2io6ODXbt2olXLFtj16TBc3PYj5IWFFW4nLyzAuc1LsGf+KLg4O+OP7dshlfIjUBvF3ZLBtr4BAOB0XBqcxv6NwJBYdAq6gLHf/IPTcenwdLaAfSND5OYrv8CmywpgZaoHAHC0McLlJFmZ+68J9evXR3j4X9AtzMXWD/vh5qm9ldouV5aOQ0uDcWJ1CAYNHoyvv/66hiMtmd+yCOVduVz83Ds4OGDvnj2QJd/BluDXK918zHqWjH1fjMPF7T9i0qRJ+PDDD2s0zhdVtq4BYOPhRxji3bDE9mLUdceOHbFp0yY8vhGJLdNer/R8NOmP7mDnnKH45/AWhIaGYuTIkTUcqWrqGqg9uVeV4nm5eD0DPf9tjvRws8DFG8JNg7LypMl5IDYNiIhIw1hbW+P48WPw9X0dJ8LmYdOUPog7sBF52aUvK83LykTsX79h4+TeOL32CwQM9EdExFFYWVmJEDmpQ+KDHDRrqPyS27WtOdxbmuGP+a7wdDbHgvGOyM4rhImRDhxsDBF5MwPewZcQnZCJzm2U90s3b2SAm/ey1R53+/btcerUSbSyb4a9oW9jx+zBSDh7AIX5eaXWlaU8xLlNi7F+gheuHNiIGTNm4PeNG6GrW/NP0i6e37II5V2hUNSa3Ht7e+NYRASszY2wfWYg9oaOxZ2oE5AXFpRaN+3RbZxe9yV+e88Lt84fwFdffYVly5ap/akrla3r/AI5zlxJQ3dXyxLbi1XXgYGBCA8Ph0GBDFs+9MX+byfh/j/noZDLS6ynUCiQcucGjq2aiw1BPfH05iWsXr0as2fPVkucqqjr2pZ7VSielzRZAUyNlE+UMzfWRVpm6X8vgHCeAM3OAwE1/+lCRESkYvXr18eunTuxadMmfP55KA4u/gCHlgajfrNWMG3YDADw23teSLlzAwqFAu3auWLF1q0YNGiQyJFTTSs+SeatRzmwa2gIALj/NBdP0/PhbGcCANga8Rg+7S0x0b8pVuy+h20nkpVnCBWAWE/hdHJywrlzZ7F48WIsXrwEu+eNhI6ePqwdnGFkqTx7+cvYjkj79378Xr1748svdqBr165qi7F4fh+n5mHCkmslXm9oqY+PhzUvkXeb+ga4nJhZq3LfuXNnREdH4csvv8TyFSuw/dQ+6BkYoYGjCwzN6gEAwka5IuPJQ0gkEvTr3x9ff/UVXFxc1BPgCypb19uOJyOgu7XADsSr6z59+iAu7jJCQkIQtmYN/jm8BQbGpmjg4AJ9E+UZ+tUjnCF79gS6urp488038dVXX8He3l5tMaqirmtj7qureF4sTHSRma28si8juxDmJsI/I1+sT5vnV3BocB6ITQMiItJQEokEw4cPx7Bhw3DixAkcOXIEFy9exP37D5AEwMvdCR7jR6JPnz7o1q2b2s8MkjgcbY1w7qrystlrd7PQppkxCgsVkEokOFbs3mMFAMt/L4uvZ6aLjCzlWbPbj3Ph7yXeLO16enqYMWMGgoOD8eeff+LUqVO4FBmJlKdPAAC+vbzg4eGBN954A05OTmqPr3h+G1rp44/5rqXWCT//tETeAdTK3BsbGyM0NBSzZ8/Gnj17cObMGURHRyM1NRkAMNC3Lzw8PODv76/WH7BCKlvX8fezcTlJhl8PPMT1u1kI++s+xvvail7XlpaWWLp0KUJDQ7Fjxw6cO3cO0TExyMxQ5npooB88PDwQGBiIxo0bqz0+VdR1bc19dRTPi0drM/x28CH8ujXAiZhnGOrTEAWFCqRm5MPaUr9omxfr8zlNzgOxaUBERBpOIpGgZ8+e6NmzZ4llu3btEjEqEouLnQnuPc0FAFy7k4VOrc2QWyDHk7R8nIhNQ9CAJgCAgO7WeG/xNWw7/hh6OhKsDG4DQPnFv529iWjxP6enpwd/f3/4+/sXLZNIJPj99+o9LrC6iue3LC/m/VFqHmLiM2tt7o2MjDBkyBAMGTKkaJlEIsGvv/6q9ljKUtm6nvOWfdE2fnNiMN7XFkDtqWszMzOMHj0ao0ePLlomkUgQFhYmYlSqqevanvuXUTwvbo6mMNCTwn9uLFzsjNGhlRkSH2Tjh1338N2ElkXbCOWpkZW+RueB2DQgIiIiLSKVStDFyRyxiZn4ILBZ0fKjizpg9+knkEqVZ74sTHSxaU7JS83jkmTo1MasaB0qrXh+y5pp/sW8A0D/rg2Y+2qobF0XtzvUDQBzWxmqqOvitCX3L+YldJxjidfjbskQ4NWgxDKhPGl6HohNAyIiItJQcUkyBIbECr528GKK4PK1+x9UuN8jkcLPlY9LkqGDwC3L2k4oz2XltzxVyT1zLYx1rTqaUtcV1YQ6VJSXRdvuVGo/ZdWgOtTVOlcVNg2IiIhI47i7u6v9PTtYi/O+YhLr72Wu1Ye5Vp+q5rquHZeaVBfrXJUkiuLTYpIofHx8AAARERHVWoeIiJQkEgn48UbahnWtPsy1+jDXRLWfVOwAiIiIiIiIiKh2YtOAiIiIiIiIiASxaUBEREREREREgtg0ICIiIiIiIiJBbBoQERERERERkSA2DYiIiIiIiIhIEJsGRERERERERCSITQMiIiIiIiIiEsSmAREREREREREJYtOAiIiIiIiIiASxaUBEREREREREgtg0ICIiIiIiIiJBbBoQERERERERkSBdsQMgorpp6tSpiIqKUvv7uru7Y8mSJWp/XzEx1zVHrNxqq6rUDOuaiIhIPdg0ICJRREVFIfL8SbjYm6jtPeOSZGp7r9qEua45YuRWW1W1ZljXRERE6sGmARGJxsXeBH/Md1Xb+wWGxKrtvWob5rrmqDu32uplaoZ1TUREVPM4pwERERERERERCWLTgIiIiIiIiIgEsWlAVIfI5XIcOHAAU6ZMQTcvLzS2sYV1w0ZwauuMkSNHYuXKlUhLSxM7zCJP0vJgM/gULidmllh+JzkHNoNP4frdLJEiq1hBQQF27tyJoKAgdOrcGY0a26Bho8ZwdXXD2LFjsW7dOmRl1Z74NTnX9B8ex5KYDyIioupj04Cojti6dStat26D1157DT+tXoPbaYVo0L43niQ/Rr6lHfYeOIqgoCDYNmmCDz/8EDKZ+BN+Rd3MhKGeFE7NTUotNzXSQUtbI5EiK5tCocDPP/8MO3sHBAQEYO36jXicb4iGHV5F8uNHyDRsiG27/8TYsWNh26QJ5s+fj7y8PLHD1shcU2k8jiUxH0RERNXHiRCJtFxmZibGjRuHrVu3omGLdnj945/Qslt/6OobAADi9m+AX8hvAIBH16MQtftnLF68GDt27MTmzZvQuXNn0WKPTshEOwcT6OpISiyPvJEBN0cTSKWSMrYUx5MnTzB8+AgcOnQQTVy6YMD4L+HwSl9IdZRD7eXw9Rj4+SYoFArcu3wGUbtWYd68edi+/Q9s3boFbdq0ES12Tcs1CeNxLIn5ICIiqj42DYi0WGZmJv73v9dw9txZdBszC50Gv1/0A1ZIo9bueG36j3B5bSQOfjcZvXr3xoH9+9GtWzc1Rv2f6PhMtG9hWmp55M1MdGxlJkJEZUtOToa3tw9uxieg9+SFcO03BhKJ8A8SiUSCpq7d0NS1GxL+3o/DS6eie/ceOHYsAs7OzmqOXEmTck1l43EsifkgIiKqPt6eQKTFxo8fj7PnzsL3k5/xyrDgchsGxTV17YYhi/6EgUVDvDFgAB4+fFjDkQqLSciEe8uSX/jlcgViE/9bPuSzy3AedxaLt98RI8R/Y5LjzUGDcDM+AX6fb4Jb/7FlNgxe5Nj1NQxauBc5cin69euPjIyMGo5WmKbkmspX0XGMjs+E35wYDPw0FoPmXcatRzkiRaoerGsiIqLqY9OASEtt3boVW7ZsQde3Pkar7gOqvL1JvcZ4I2Q9MjJleG/CBCgUihqIsmwPnubiUWo+3BxLfuG/nCSDLEdedJZwyaRWCBllr9bYXvTjjz/ixPHj8Jn0NZq5eVV5e6umLdBv9hrcvn0LM2bMqIEIy6dJuaayVeY4Nq6nj42znbHzM1cE+dli4ebbIkVb81jX9LLU/XlXlzHXRJqhzjYN5HI5Ro8eDTs7O5iamqJly5bYtGmT2GERqYRcLsesWbPRsEU7dBr8/kvvp16zVugy8iPs3rUL58+fV2GEFXuQopwc0MKk5NURO04mw6OVGZo0UM7JYFvfQK1xvSg7Oxsh8+bBrqMPnPsOf+n92Dq/gvZ+7+Cnn35CUlKS6gKsBE3JNZWvMsexkZU+TI2Ur+vpSkvd669NWNdUFc+ePcNXX30Fe3t76OjoAADGjBmDyMhIkSPTPo8ePcLcuXNhY2MDqVT5U2TixIm4du2ayJERUVnqbNMgLS0Nvr6+iImJQXp6OoKDgzF27NhaMYs5UXUdPnwYN2/eQMfASZW+JaEsbv3HQd/IFD/++KOKoqucVk2MYG6sg2U77iJNVoDUjHysO/AAa/c/xKyRdmqNpTxbt25FakoKOg2eUulbEsri8eYkQCLBypUrVRRd5WhKrql8VTmOWTmF+GJDEoL8mogUbc1jXVNlPXjwAK+88gpmzpyJ27dvF539Xr9+PTp37ozNmzeLHKH2uH79Otzd3REaGlri1seVK1fC3d0dhw4dEjE6IipLnW0aWFlZYfjw4bCwsIBUKsWYMWOQm5sLmUyGV199FQ0aNEBoaKjYYRK9lL1790Lf0BgtX+K2hBcZmJihRbd+2Lt3n1ovIzQz1sWvnzgjJiETHd87jx5TI/Hn2RRsnO2Mbi4WaoujInv37oV5wyZo2r57tfdlZt0Ezdr3xN69+1QQWRXeV0NyTeWr7HHMy5fj3UXXMPXNZmjTzFjEiGsW65oqa+TIkYiPjwdQ8nJ5uVwOuVyOt956q+h1enlyuRz+/v54/PhxqdcUCgXy8vIwcOBApKSkiBAdEZWnzj494eDBg1i0aBFiY2ORkZEBuVwOGxsbWFlZYe3atTh06BDu3r0rdphEL+XCxYto4OhS9FjF6mrs1An/HN6C27dvw85OfWfourQ1x+5QN7W938s4f+EiGrbqUO2rDJ6zcfLA+c2LkZWVBWNj9f2g04RcU8UqOo6FhQpMXHod/brUg+8r9dUYmThY11SRy5cv4+jRo2W+rlAoUFhYiJUrV2LhwoVqjEz7HDlyBFevXi3zdblcDplMhrVr12LatGlqjIyIKlInrzQ4e/Yshg0bhilTpuD69etIS0vDxx9/jE6dOgEAmjZtKnKERNWTmJgEyyYtVbY/qyYt/t1vosr2qSrBy29g+e572HL0MUZ/dUWt761QKHD7VhKsmqou15ZNW0Aul+POndo3k7uYuSbV2PP3ExyNSsX248kIDInF7LAEsUMSHeu6btu/f3+F6ygUCuzdu1cN0Wi38PDwChvsEokEf/31l5oiIqLKqpNXGkRGRsLKygrdunWDjo4O1q5diwULFuDjjz8WLaZjx45V6kylqs5mknaTSHXw4P7vuHLw90qtv8TXulLr9erVqzphleLpbF7tfSye2KpK61f231pVnN+8BOc3L6nUupXNtZOTU3VCKkVbcl0V6npvVeRWXQZ6WWOgV+VqUAxVrRnWNanL1atXmXs1UCgUOHToEHNNJILybkOuk02DYcOGYefOnbC1tUXjxo0xefJkWFlZFV1pIAZvb29ERESU+bqPjw8AlLsO0XMuLu2QbdoE/vM3VLjuEl9rTP0rudx1rkXswF9f/x8iIyPh7u6ukhh9fHyQl6z+Wakr+rdWVfXq1UeTLv3x6geLKly3Mrm+tGMljq+ai4cPH6JRo0YqiVFbcl0VEolELXNwiJVbbVWVmmFdkyrs2bMHfn5+5a4jlUrh5+eHHTt2qCkq7bRq1Sq899575a4jkUgwYcIELF++XE1REVFl1MnbEywtLREeHg6ZTIb4+HgEBwfj7t276Nevn9ihEamEh0dHPImPVtmXy8c3o6FvYABnZ2eV7E+bdPToiOSb0Srb3+Mb0bCxbaKyhgEREZXN19cXtra2RY/+EyKXyxEUFKTGqLTT8OHDYWJiUu5VBAqFgrkmqoXqZNOgIuPGjcPChQuxdu1aDBhQ/dnnidStR48eyHj6CI+uV/8snEIuR+Lff6Fr167Q19dXQXTapWePHngcH4u0R7erva+C3GzcungY3j17qCAyIiKqiK6uLlavXg2JRFJm42DEiBHo27evmiPTPmZmZvjxxx+hUCjKbBxMmzYNrq6uao6MiCrCpoGANWvWIC4uDjdv3sSePXvEDoeoyoYNGwYTU1NE7fq52vu6dekoUu4l4L3/+z8VRKZ9xo0bB6lUipg9a6q9r2vHdiA7PRX/x1wTEamNr68vwsPDS11NZ25ujtmzZ2PdunW8x15FxowZg61bt8LR0bHE8vr162PhwoX49ttvRYqMiMrDpgGRFjIzM8PEoCBcPboNd2JOvfR+8nOycHzlLNjZ2ePNN99UYYQVW7H7HmITMwVfe/A0F3N/+W/W95V77sFvTgwAIC5JhuW71Pe41KZNm2L48OGI2rUKT5L+een9ZKc9xem1oejY0aNoDpOaUl5uy1Ob8k7/KX48P12bAP+5sZizpmpPRdCG48e6pup49dVXERMTg3PnzmHz5s3Yt28fHjx4gNDQUOjq1skpwGrMoEGDcP36dZw8eRKbNm3C/v37cf/+fUyfPp3NGaJaik0DIi01b948tGjREoe+m4zMJw+qvL1CocDR5R8j5V4CfvllDQwMDGogSmFyuQLnrqbD1cFU8PXjMc/g7WYJAMjNl+PKLVnRay72Jjh/LQNyufomC1u0aBGsLC2x/+v3kJPxrMrbFxbk48B3k5GX+Qxr1/5So1+aKspteWpb3qnk8YxJyERWjhy7PndFfoECUTczKr0fTT9+rGtSBYlEgs6dO2PIkCHo168fjI2NxQ5Ja0mlUnh5eWHo0KH43//+x9sfiWo5Ng2ItJSxsTG2bNmMwuw0bP/YH09vXav0tvk5WTiw6H1cObgJISEhKn/UYkXibslgW1/ZpDgdlwansX8jMCQWnYIuYOw3/+B0XDo8nS0AABsPP8IQ74Yltne0McLlJFmp/dYUa2tr/P77Rjy7H48dswKR/uhOpbfNyUzDvtC3kXj+EJYtW1bj93IWz21ZhHKuXF678k4lj+fF6xno+e+P3x5uFrh4Q7hpUNbx1eTjx7omIiKqOWwaEGmxjh074tDBg5DmZeD3KX1w7vdFyJWll7m+Qi5H4vlD+H1yL/xzaDNCQkIQEhKixoiVEh/koFlD5Q+Arm3N4d7SDH/Md4WnszkWjHdEdl4hTIx0kF8gx5kraejualli++aNDHDzXrZaY3711Vexe9cuZD5MxIaJPRG1ezXyc7LKXF9eWIDrx3diQ1B33LpwCD/++GOFj6JSheK5LYtQzhUKRa3Me11X/HimyQpgaqQDADA31kVaZoHgNkLHF9Ds48e6JiIiqjm8SYtIy3Xp0gVxly8jaOJE7Ph1AS5s/R6Onv3QuE1HWDVtCQC4enQ7Ht+MRuLZcKTeS4S9vQO2HTmi9isMniv+qMhbj3Jg19AQAHD/aS6epufD2c4EALDteDICulsL7AAQ47bI119/HZdjYzH+nXdwZMVM/P3bV2jh9QYate4ASxsHAMCVg5vw+GY04k/vQ8aTB3BxaYd14Xvh4eGhlhiL5/Zxah4mLCl5BUpDS318PKx5iZzb1DfA5cTMWpv3uqz48bQw0UVmdiEAICO7EOYmwh/xL/6bsnl+hl6Djx/rmoiIqOawaUBUBzRq1Ah/bN+OCxcuYPny5dizdx+uHtla9Hr4NxOgb2AAT09PvLfwCwQGBqp1DoMXOdoa4dxV5aXV1+5moU0zYxQWKiCVSHCs2P3H8fezcTlJhl8PPMT1u1kI++s+xvva4vbjXPh7mYkSu729PQ4dPIgTJ05gxYoVCN//J+L2byh6/cCi92FkbIyePXoiKGgF+vfvr9ZJtorntqGVPv6YX/p2iPDzT0vkHECtz3tdVfx4erQ2w28HH8KvWwOciHmGoT4NUVCoQGpGPqwt/7tf+MV/U89p8vFjXRMREdUcNg2I6pBOnTphzZo1UCgUuHv3LhITE+Ht7Y3o6Gi0bdsWenp6YocIAHCxM8G9p7kAgGt3stCptRlyC+R4kpaPE7FpCBrQBAAw5y37om385sRgvK8tAOWX/3b2JmqP+zmJRIKePXuiZ8+eUCgUSExMxN27d+Ht7Y24uDi0adMGOjo6osRWPLdleTHnj1LzEBOfWevzXhcVP55ujqYw0JPCf24sXOyM0aGVGRIfZOOHXffw3YSWRdsIHd9GVvoaffxY10RERDWHTQOiOkgikaBZs2Zo1qwZAMDNzU3kiEqSSiXo4mSO2MRMfBDYrGj50UUdsPv0E0ilpa8V3h2q/BvikmTo1MZMcB0xSCQSODo6Fj2T+sXngKtb8dyWNdP8izkHgP5dG2hU3uuKF49n6LiSzz6PuyVDgFeDEsuEjq+mHz/WNRERUc1h04CIaqUgvyaCy/26NRBc/pyLvQlceFawXGXltjzMe+1V3vF8o2v5x+05bTh+rGsiIqKawaYBEYkmLkmGwJBYtb5fB4F5zuoC5rrmqDu32uplaoZ1TUREVPPYNCAiUbi7u6v9PTtYi/O+YmOua05d+BvVpao1w7omIiJSD4mi+HOKSBQ+Pj4AgIiIiGqtQ/QyJBIJOAyoB3OtPsw1aSPWNRERiUEqdgBEREREREREVDuxaUBEREREREREgtg0ICIiIiIiIiJBbBoQERERERERkSA2DYiIiIiIiIhIEJsGRERERERERCSITQMiIiIiIiIiEsSmAREREREREREJYtOAiIiIiIiIiASxaUBEREREREREgtg0ICIiIiIiIiJBbBoQERERERERkSA2DYiIiIiIiIhIkK7YAVBpU6dORVRUVIllz//fx8dHhIg0m7u7O5YsWVKpdYVyry5ViZOoKsSqa9Y0ERERkeZj06AWioqKQuT5k3CxNyla5txE+d+85EiRotJMcUmyKq0vlHt1qGqcRFUhRl2zpomIiIi0A5sGtZSLvQn+mO8qdhgaLzAktsrbiJH7l4mTqCrUXdesaSIiIiLtwDkNiIiIiIiIiEgQmwZEREREREREJIhNA6rQk7Q82Aw+hcuJmSWW30nOgc3gU7h+N0ukyMTBfJA2Yl0TERERkRA2DahCUTczYagnhVNzk1LLTY100NLWSKTIxMF8kDZiXRMRERGREDYNqELRCZlo52ACXR1JieWRNzLg5mgCqVRSxpbaifkgbcS6JiIiIiIhbBpQhaLjM9G+hWmp5ZE3M+HewkyEiMTFfJA2Yl0TERERkRA2DahCMQmZcG9Z8seEXK5AbKJyeXR8JvzmxGDgp7EYNO8ybj3KESlS9agoHwAw5LPLcB53Fou33xEjRKIqY10TERERkZA63TSQy+UYPXo07OzsYGpqipYtW2LTpk1ih1WrPHiai0ep+XBzLPlj4nKSDLIcOTq2MkPjevrYONsZOz9zRZCfLRZuvi1StDWvMvkAgCWTWiFklL0IEVaOQqHAqVOnMHfuXADAunXrkJXFie5qglwux4EDBzBr1iwAwJYtW5CXlydyVCVpS10XFBRg586d+OSTTwAAe/fuRWFhochREVWPTCbDmjVrMGPGDADA33//DYVCIXJURERUl9TppkFaWhp8fX0RExOD9PR0BAcHY+zYsbXuC72YHqQoc2Fholti+Y6TyfBoZYYmDQzQyEofpkbK1/V0paXuidYmlckHANjWN1B7bJWVlJQEDw8PdO/eHaGhoQCAsWPHwtbWFhs3bhQ5Ou0SGxsLJycnvPbaa1iwYAEAYOjQoWjatCnCw8NFju4/2lDXJ0+ehJ2dHQICAvDNN98AAAYMGAAHBwecPXtW5OiIXs7atWthY2OD8ePH49tvvwUAeHp6omvXrrhzh1f8EBGRetTppoGVlRWGDx8OCwsLSKVSjBkzBrm5uYiNjYWXlxd69uyJ3r17IyEhQexQRdOqiRHMjXWwbMddpMkKkJqRj3UHHmDt/oeYNdKuxLpZOYX4YkMSgvyaiBRtzatKPmqjJ0+eoGfPnoiOji71Wnp6Ot566y3s2LFDhMi0T1JSEry9vREfH1/qtadPn2LAgAE4efKkCJGVpul1HRUVhb59++Lhw4cAUOIs7L1799CnTx9cuXJFrPCIXsqmTZvw9ttvIzNT+RjU4nV94cIF+Pj44NmzZ2KFR0REdUidbhocPHgQvr6+aNq0KSwsLGBjYwMbGxvY2toiPDwcx48fx/Tp0xESEiJ2qKIxM9bFr584IyYhEx3fO48eUyPx59kUbJztjG4uFkXr5eXL8e6ia5j6ZjO0aWYsYsQ1q7L5qK1WrFiBO3fuQC6Xl3rt+RfSjz76iJe+qsA333yDtLQ0wVzL5XLI5XLMnj1bhMhK0/S6nj9/PvLy8srMdXZ2dtFVNUSaoLCwEB999BEkEongeCyXy5GQkIDVq1eLEB0REdU1uhWvop3Onj2LYcOGYf369fD29oaxsTFCQ0Nx7tw52NjYFK2nr68PXd06myYAQJe25tgd6lbm64WFCkxceh39utSD7yv11RiZOCrKR222atWqMr+EAsrGQXx8PE6fPg0vLy81R7WAOr0AAAuvSURBVKc98vLysG7dOsEfsc/J5XIcP34c8fHxaNGihRqjE6apdZ2cnIzdu3dXmOutW7di+fLlsLS0VGN0RC/n6NGjuHv3brnrSCQSrFq1CtOnT1dTVEREVFfV2V/DkZGRsLKyQrdu3aCjo4O1a9diwYIF+Pjjj4vWkclk+OSTT7Bu3ToRI6399vz9BEejUpGSkY/tx5PRtrkJvhjvKHZYogpefgOXbmQgL1+ByBsZ+PUTZ7FDgkKhwP379yt1FcHt27fZNKiGZ8+eVXpiyTt37tSKpkFl1Ma6vn//frkNg+cKCgrw6NEjNg1II1RmvgKFQsF5DYiISC3qbNNg2LBh2LlzJ2xtbdG4cWNMnjwZVlZW6NSpEwDlmcLBgwdjzpw5cHFxqfF4jh07BonkvwkEPZ3Na/w9VWWglzUGelmLHUaZXsxtRVSR+8UTW1V5m6rGWZNGjBiBESNGiB1GndCrVy+1vI8YdV2bahoAnJycxA6BSKVycnJq1b8xIiLSXOWdWKyzTQNLS8tSs5cHBwcDUN5LOGLECAQGBmLgwIFqicfb2xsREREAAB8fH+QlR6rlfeuC4rmtiJi5r0qcL2vChAlYtWpVuYOClZUV7t+/D0NDwxqNRdv5+flh3759ZZ4Fl0gkcHR0xPXr1yGV1uz0MmLVtTpqGgA6deqEyMjIMnMtlUrh5eWF48eP13gsRKqQmZkJGxubokkQhUgkEnzwwQdYvHixGiMjIqK6qE5PhFiWrVu3Ijw8HOvXr4ePjw/ef/99sUMiUompU6dCX1+/3B+pH374IRsGKvD8VqeyzgIqFArMnj27xhsGdcHs2bMrnNNg5syZaoyIqHpMTU0xderUMl+XSqUwNDTE5MmT1RgVERHVVfy2KmDYsGHIzMxEREQEIiIisGzZMrFDIlIJJycn7Ny5EwYGBgD++0H7/IdrUFAQf1ypiJeXF3799Vfo6OiUWP485/PmzcPbb78tRmhaJyAgAIsXL4ZEIinRpJFIJJBKpVi+fDl8fX1FjJCo6oqPEc/H6Of1bWRkhL1792rMfChERKTZ6uztCUR11euvv47ExESsWbMG+/btQ35+PlxcXBAUFITOnTuLHZ5WGTlyJHr06IFVq1bhyJEjKCwsRKdOnRAUFIR27dqJHZ5WmTp1Kvr164cVK1bgzJkzRbckTJgwgT+sSCPp6OggLCwM7777LlauXIkrV67AyMgIb7zxBsaNG4cGDRqIHSIREdURbBqQoBW776G7qwVcHUzx6doERMfL4OpggtBxlX8qQlySDMeiUzHRv2kNRlqziuehKh48zcXy3ffw+dvKfK3ccw9/nn2K3aFutSIvjRo1wsyZM3lVgRo0b94coaGhYodRQnXreuYIO/zfd9eQlVsIc2Nd/DStDW7eyxa9rlu3bs37u0mrSCQSeHp6wtPTU+xQiIioDuPtCVSKXK7AuavpcHUwRUxCJrJy5Nj1uSvyCxSIuplR6f242Jvg/LUMyOUVP+KvNiqeh6o6HvMM3m7KR7vl5stx5Zas6DVNzwtpNlXU9dGoZ+jYyhR/zHeFe0tTHI1KZV0TERERaSk2DaiUuFsy2NZX3vN+8XoGev7747eHmwUu3hBuGpyOS4PT2L8RGBKLTkEXMPabfwAAjjZGuJwkE9ymtiueh7KU9XefjkuHp7MFAGDj4UcY4t2wxHaanBfSbKqoa/tGhsjNVzYH0mUFsDLVA8C6JiIiItJGbBpQKYkPctCsofJHRZqsAKZGyonczI11kZZZILhN17bmcG9phj/mu8LT2RwLxisvy2/eyAA372WrJ3AVK56Hsgj93QqFAtl5hTAx0kF+gRxnrqShu6tlie00OS+k2VRR1w42hoi8mQHv4EuITshE5zZmAFjX/9/e/YR2fR5wHP8kcUqrtslSg5N2zTpWxzLbhAkuttLoQZTJxEDYhN3aw9hlYg871FEGOwhCiB4cCIO5SVc66aGX/SluZkJDN4qhVphDqfbf2qRZEpuktW3MDnFZbB7rn0VjktfrJL/f9/fj+T48l7x9fs8XAGAucqYBU4yN/W978d2LF2Tow9EkyQcfjuauxeUlc+69j3J/3fhj+t7pu5Av/fd/MseSKzxx7rY3eR56+j/ODztOXfZ+XfXC/OT7X55y36+9PpRv3L84SXL4r73Z9uiywpfP3nlhdpuOdf27oz1pebg6P9p6b37xwts5fKx3fDeNdQ0AMOeIBkzxwIo78rd/jP8M4VsPLs1vXnw33117T469OpDvtdTl09Gx9H/wSZZVL5z4zKm3RrLyvjszOjqWykl/NbzRcyFbH1l6y+9hOkyeh7qahXn+Z6umXPOHv/dNue/OSecZnHnnw7x2dji//tO7+edbI/nl79/J45tXzOp5YXabjnU9lqT60k8Svrh0QT4YGd+BZF0DAMw9fp7AFA33L87bfReSJA89sCSLvlCZrT89kcqKpOlrS/Nmz0fZ/ewbl33m1JsjWXnfHbnw6cW8P/hJ3uv/OMn4H83frF98y+9hOkyehysp3ferZ4by8FfHD5nb9YP6PLurIb/d1ZAH770zj29ekWR2zwuz23Ss622PLssLXe+n9ekTef5Yb1ov7aaxrgEA5h47DZiisrIia75+V068PpRVX1ky5TGLJ88NZ9sjlz8f+set9038+y/tTePXnR3O6pVLU1k5O/crf3YeSkr3/Z1v31O85xd+/lCS2T8vzG7Tsa7vXrwgz+5quOwz1jUAwNwkGtymTp4dTuvTJ2Z0DC++8u/Pfb/98JvX9D1/Pt4/HcO5ISfPDqepcKTA1T4zee6vNg8lv/rjv656zeR5uZFxwvW41evamgYAmBtEg9tQY2PjlNe6u7uv+B5X1rTs+uZspub3escJ12Mm1pY1DQAwN1SMTT5KmxnR0tKSJDl69Oj/dQ0AAABMJwchAgAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARaIBAAAAUCQaAAAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARaIBAAAAUCQaAAAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARaIBAAAAUCQaAAAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARaIBAAAAUDSvo8Fzzz2XVatWZcmSJdm4cWN27tyZtra2mR4WAAAA3BbmbTQ4ePBgnnzyyezfvz+Dg4PZsmVL9u3bl6amppkeGgAAANwW5mU0GBkZyc6dO3PgwIGsW7cuVVVVeeKJJzI6OjoRDQ4dOpTm5uY0NzfnyJEjMzxiAAAAuPUWzPQAZkJnZ2cuXryYzZs3T7zW29ubJGlqasrAwEDa29vT1dWVoaGhrF+/PsePH09VVdVMDRkAAABuuXm506Cnpyd1dXWXvfbMM89k+fLlWb58eV5++eWsW7cuixYtSm1tberr63PmzJkZGi0AAADMjHm506ChoSGnT59OZ2dnmpubc/jw4ezevTtr165NkvT19aWmpmbi+pqamvT19d208TQ2Nmbv3r2pqKi46rXXcg0AAABcq7GxsSu+Ny+jwerVq/PUU0+ltbU1VVVV2b59e9asWTNxnkFtbW36+/snru/v709tbe1NG09HR0c6Ojpu2vcDAADAjagY+7ykMI/U19dnz549aWtry8DAQDZs2JCurq4MDw/nscceS3d3tzMNAAAAmFfm5U6Dzzp//nzOnTs3sdOguro6O3bsSEtLS5Kkvb1dMAAAAGDesdMgyUsvvZRNmzZlcHDQmQEAAABwiWgAAAAAFM3LRy4CAAAAVycaAAAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARaIBAAAAUCQaAAAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARaIBAAAAUCQaAAAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARaIBAAAAUCQaAAAAAEWiAQAAAFAkGgAAAABFogEAAABQJBoAAAAARf8B5BqKM/Q1SsAAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "execution_count": 8, @@ -247,7 +247,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/index.ipynb b/qiskit/finance/index.ipynb index 5ee05e65e..f11cd4a9d 100644 --- a/qiskit/finance/index.ipynb +++ b/qiskit/finance/index.ipynb @@ -55,9 +55,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -69,7 +69,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/optimization/portfolio_diversification.ipynb b/qiskit/finance/optimization/portfolio_diversification.ipynb index 1a117ea3b..8a287e782 100644 --- a/qiskit/finance/optimization/portfolio_diversification.ipynb +++ b/qiskit/finance/optimization/portfolio_diversification.ipynb @@ -612,8 +612,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "[0 1 0 1 0 1]\n", - "VQE produces the same solution as the exact eigensolver.\n" + "[1 0 1 0 1 0]\n", + "VQE does not produce the same solution as the exact eigensolver, but that is to be expected.\n" ] } ], @@ -644,7 +644,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4FfX59/H3nYSwJKyCgIBsghRBFlFxw7ihuOFWRa0bKiog/mp9ntpfrbZYq62tNWwCRao+VlHciharVJoWqiiYsG8GhBIWQbYYCFnv549zxEMM5AAnOUnm87quXDkz85059x30k8ksZ8zdERGRYEiIdwEiIlJ1FPoiIgGi0BcRCRCFvohIgCj0RUQCRKEvIhIgCn2pVGb2SzN7uRK3v8zM0o5yG5Vao0h1otCXo2ZmN5nZAjPLM7PNZva+mZ1dFe/t7ie5e0ZVvFcsmFkHM3MzS6qC90o2szfMbF34PdMqGN/MzN42sz1mtt7MbqrsGqXqKfTlqJjZg8CzwG+AlsDxwARgcDzrkv3mAj8CtkQxdjxQSOjf8WbgOTM7qRJrkzhQ6MsRM7PGwGhghLu/5e573L3I3d919/9zkHWmm9kWM9ttZv+ODBUzu9TMlpvZN2a20cweCs9vbmbvmdkuM9thZnPMLCG8bJ2ZXRh+nWhm/2tma8Lb+NzM2oWXpZvZBjPLDc8/5zD6HGxmC8PrrjGzS8LzjzOzGeGass3s7oh1Tgv/9ZNrZl+Z2TPhRf8Of98V/svojGjrOFzuXujuz7r7XKDkUGPNLAW4FviFu+eF15kB3FJZ9Ul8KPTlaJwB1APePox13ge6AMcCmcBfIpY9D9zj7g2BHsDs8PyfADlAC0J7of8LlPf5IQ8CNwKXAo2AocDe8LL5QG+gGfAKMN3M6lVUrJmdBrwE/B+gCTAAWBde/Gq4ruOA64DfmNkF4WXpQLq7NwI6A6+H5w8If2/i7qnu/kk573lT+Bfcwb6Or6juI9AVKHH31RHzFgHa069lKv24otRqxwBfu3txtCu4+9RvX5vZL4GdZtbY3XcDRUB3M1vk7juBneGhRUBroL27ZwNzDrL5u4D/6+6rwtOLIt438kTtH8zsEeDEyDEHcScw1d1nhac3hmtvB5wNXO7u+4CFZjaF0J7xR+GaTzCz5u7+NTCvgvfZz91fIfSLqSqlArvLzNsNNKziOqSSaU9fjsZ2oHm0JyXDh1+eCh8iyeW7Pebm4e/XEtpLX29m/4o49PE0kA18aGZrzezhg7xFO2DNQd77J2a2InxYaRfQOOJ9D+Vg2zwO2OHu30TMWw+0Cb++k9De80ozm29ml0fxXkfMzI4PHy7KM7O8I9hEHqG/jiI1Ar4pZ6zUYAp9ORqfAPuAq6IcfxOhE7wXEgrdDuH5BuDu8919MKFDP+8QPiTi7t+4+0/cvRNwBfBgxGGUSBsIHUo5QPj4/U+B64Gm7t6E0F6sRVFzudsENgHNzCxyT/h4wn8JuPsX7n5juJffAm+Ej5tX+LG2ZnZzZICX8/W9wzvu/t/w4aJUd0+Noq+yVgNJZtYlYl4vYNkRbEuqMYW+HLHwIZlHgfFmdpWZNTCzOmY2yMx+V84qDYECQn8hNCB0xQ+w//LCm8OHeoqAXMInH83scjM7wcwsYn55JyanAI+bWRcLOdnMjgm/bzGwjVCwPcr392oP5nngDjO7wMwSzKyNmXVz9w3Ax8CTZlbPzE4mtHf/l3DNPzKzFu5eCuwKb6skXEMp0Olgb+juf4kM8HK+/htl7ZhZ3YhzF8nhWr/3y87d9wBvAaPNLMXMziL0C/r/RfteUjMo9OWouPszhE6gPkIo0DYAIwntqZf1EqFDIBuB5Xz/OPctwLrwoZ97CV1qCKETv/8gdAjiE2DCQa7Nf4bQXwcfEvrl8DxQH/iA0Ank1eH33xeuM5r+PgPuAP5I6K+DfwHtw4tvJPTXyiZCJ7Mfizj2fwmwLHyoJR0Y4u773H0v8ATwn/BJ2f7R1HEUVgH5hA47fRB+3R4gfKXT+xFjhxP6eW0ldJL6PnfXnn4tY3qIiohIcGhPX0QkQBT6IiIBotAXEQkQhb6ISIBUuztymzdv7h06dIjpNvfs2UNKSkpMt1mTBLn/IPcOwe4/aL1//vnnX7t7i4rGVbvQ79ChAwsWLIjpNjMyMkhLS4vpNmuSIPcf5N4h2P0HrXczWx/NOB3eEREJEIW+iEiAKPRFRAJEoS8iEiAKfRGRAIkq9M3sEjNbFX4k3Pc+y9zMbjezbeFHyi00s7silt1mZl+Ev26LZfEiInJ4Krxk08wSCT0w+SJCj4abb2Yz3H15maGvufvIMus2Ax4D+hH6HPHPw+vuREREqlw0e/qnAdnuvtbdC4FphD5nOxoXA7PcfUc46GcR+shZERGJg2huzmrDgZ89ngOcXs64a81sAKHPLP9x+CET5a3bpuyKZjYMGAbQsmVLMjIyoio+Wnl5eTHfZk0S5P6D3DsEu/8g934o0YR+eY+UK/sh/O8Cr7p7gZndC7wInB/lurj7ZGAyQL9+/TzWd9EF7c68soLcf5B7h2D3H+TeDyWawzs5hB4O/a22hJ4UtJ+7b3f3gvDkn4BTol1XRESqTjShPx/oYmYdzSwZGALMiBxgZq0jJq8EVoRffwAMNLOmZtYUGBieJyIicVDh4R13LzazkYTCOhGY6u7LzGw0sMDdZwCjzOxKQg+f3gHcHl53h5k9TugXB8Bod99RCX2IiEgUovqUTXefCcwsM+/RiNc/A352kHWnAlOPokYREYkR3ZErIhIgCn0RkQBR6IuIBIhCX0QkQBT6IiIBotAXEQkQhb6ISIAo9EVEAkShLyISIAp9EZF4y8mB+++HM86ABg3ADNatq5S3UuiLiMRaXh5cf33oezSys+H116FpUzjnnEotTaEvIhJrH30E06fD7NnRjR8wAL76CmbOhB/+sFJLU+iLiMRY6Vtv4eHvUUmouihW6IuIxEBBcQlvZ+Uw8JkMdr/+Ngbsev0tLn4mg7ezcigoLol3iUCUH60sIiIHt3DDLm6f+hlFJaUct3EtdUsKAahXXEjJ8hU8smsfv5qxnBeHnkavdk3iWqv29EVEjsKiDbu4cfI8duUXsaewhPPWLiChtBSAhNJSzlsznz2FJezKL2LI5Hks2rArrvUq9EVEjlBBcQm3Tf2M/KLvDt1cvnIO9UqKAKhXUsTlK+fuX5ZfFBofz0M9OrwjInI4rr0Wwido6wILyywuTDwwVrtt+5J1v738wEG/jHh9zTXw5puxrvKgtKcvInI4nnoKeveGlJRyFyeXFFNq303XLSkufzspKdCnT2h7VUihLyJyOLp0gQULKP3lL8lPqkuxfRejDnzUtyHXPn4C809sUO7qxZZAflJdSn/1K1iwILQ9gDfeCH19/nlo+v33Q9P/+ldMy9fhHRGRw5WYSN7IB7hmTWPS33qKjjs3suSEJMZc15LFnRvQYXMBpQn2vdX21qnL2qZt+J9rHuatEbfTKPL6/LI3ZQ0fHvp+7rmQkRGz0hX6IiJHICU5iTVNjmPwPT+hU72X2dzmG1ptL2T08zlc8Z9dJJUeOH5fYh3G97+eCWf8EBISSEkuE7/uVVK3Ql9E5Aisy13LMZ1epSB5EdsKknngta+55R9fUbeo/PAuSqzDqhYdcEvgxGNTSSznL4GqoGP6IiKHYWPeRn4+9+dcM+MaqLea0h0DeWhiI4a+f/DAB0gpzOfi1R+TkpzIfWknVGHFB1Loi4hE4ev8r3ny0ye5/O3L+fuXf+eWH9zC366eSZ3dA7l0xeck8F3gh07WJh9wkjcB54I1n1EnwRjUs1U8WgB0eEdE5JByC3N5YekLvLziZQpLCrm6y9Xcc/I9tEoJBfe0sxtR9zeF+8d/e7L2qbQ7eDjjz3TauZEGRQVA6GMZpp3TmLpJiXHpBRT6IiLlyi/O59WVr/L8kufJLcxlUIdBjOgzgvaN2h8wrlvWXEoNSiyBwsQ6/OHsHzH11MG4JXBl+5MZuuCv/GTOX0guKaJeQmg8F/SPU1c6vCMicoCi0iJeW/kal711GX/8/I/0atGL6VdM53fn/u57gQ/A66+TUFyE9TqZuW/MYu4Vt0BCAnUSDU9MZM4VtzH3jVnYyT1JKCoKPSwljrSnLyIClHopM7+cyfis8eTk5dD32L48fe7TnNLylEOv2KoVPP00Cf/zP1yUkMBFQEmps6ewmJTkpO+u0rn8c3j22Zhec38kFPoiEmjuzr9y/sWYrDF8sfMLTmx6IuMvGM85bc7BLIrLKt9993uzEhOMRvXqlJmZCD/5SegrjqIKfTO7BEgHEoEp7l7uh0WY2XXAdOBUd19gZh2AFcCq8JB57n7v0RYtIhIL87fMZ0zmGBZuW0j7Ru15esDTDOwwkASrvUe+Kwx9M0sExgMXATnAfDOb4e7Ly4xrCIwCPi2ziTXu3jtG9YqIHLXl25czJnMM/9n0H45tcCyPnfEYg08YTJ2EOhWvXMNFs6d/GpDt7msBzGwaMBhYXmbc48DvgIdiWqGISIx8uftLxmWN48P1H9KkbhMe6vcQN5x4A/WS6sW7tCoTTei3ATZETOcAp0cOMLM+QDt3f8/MyoZ+RzPLAnKBR9x9ztEULCJyuLbs2cJzi57jr9l/pW5iXe7tdS+3db+N1OTUeJdW5aIJ/fLOZOy/9czMEoA/AreXM24zcLy7bzezU4B3zOwkd8894A3MhgHDAFq2bElGjM9u5+XlxXybNUmQ+w9y7xDs/vPy8nj3o3f5cPeHzP0m9PSqcxqew8DGA2m4qyELPl4Q5wrjI5rQzwHaRUy3BTZFTDcEegAZ4TPdrYAZZnaluy8ACgDc/XMzWwN0BQ74abv7ZGAyQL9+/TwtLe2ImjmYjIwMYr3NmiTI/Qe5dwhu/3mFefxq5q/495Z/s69kH4NPGMx9ve6jdWrreJcWd9GE/nygi5l1BDYCQ4Cbvl3o7ruB5t9Om1kG8FD46p0WwA53LzGzTkAXYG0M6xcR2W9f8T5eW/UaU5ZMYVfBLi5qfxEj+4ykU+NO8S6t2qgw9N292MxGAh8QumRzqrsvM7PRwAJ3n3GI1QcAo82sGCgB7nX3HbEoXETkW8WlxbyT/Q7PLXqOrXu3ctZxZ3Fm6ZncmnZrvEurdqK6Tt/dZwIzy8x79CBj0yJevwlU3RN/RSRQSr2UD9d9yLiF41ifu55eLXrx1DlPcWqrUwN7LqMiuiNXRGocd2fOxjmMzRrLyh0r6dK0C2PPH8u5bc+N7i7aAFPoi0iNkvlVJumZ6WRuzaRtaluePOdJBnUYRGJC/D6uuCZR6ItIjbByx0rGZI5hzsY5tKjfgkdOf4RrulxDncTafxdtLCn0RaRaW5+7nvFZ43l/3fs0Sm7Ej0/5MTd2u5H6SfXjXVqNpNAXkWrpqz1fMXHxRN7+4m2SE5O5u+fd3N7jdholN4p3aTWaQl9EqpVd+3bx/NLneXXlq5R4CTeceAN3n3w3zes3r3hlqZBCX0SqhT1Fe3hp+Uu8uOxF8ovzubzT5QzvPZw2qW3iXVqtotAXkbgqKCng9VWvM2XJFHbs28EFx1/A/X3up3OTzvEurVZS6ItIXBSXFvPumneZsGgCW/ZsoX/r/ozqM4qeLXrGu7RaTaEvIlXK3Zm1fhbjFo7jy91f0rN5Tx4/63H6t+4f79ICQaEvIlXC3flk0yekZ6WzfPtyOjfuzLNpz3L+8efrLtoqpNAXkUq3aNsi0jPTmb9lPm1S2/DE2U9wWcfLdBdtHCj0RaTSrN65mrFZY8nYkMEx9Y7hZ6f9jOu6XkdyYnK8Swsshb6IxNyGbzYwfuF4Zq6dSWqdVEb1GcXNP7iZBnUaxLu0wFPoi0jMbNu7jUmLJ/Hm6jdJSkjijh53MLTHUBrXbRzv0iRMoS8iR213wW6mLp3KKyteobi0mGu7Xss9J99DiwYt4l2alKHQF5EjtrdoL39Z8Rf+vPTP5BXlcVmnyxjeezjtGrareGWJC4W+iBy2wpJC3lj9BpMXT2b7vu2ktUvj/j7307Vp13iXJhVQ6ItI1EpKS/jbl39jwsIJbMzbyKmtTuXZPs/S+9je8S5NoqTQF5EKuTuzN8xmXNY4sndl0/2Y7jza/1HOOO4M3VhVwyj0ReSQ5m2ex5jMMSz5egkdGnXgD+f+gYvaX6Swr6EU+iJSriXblpCelc6nmz+ldUprRp85mis6X0FSgmKjJtO/nogcYM2uNYzNGstH//2IZvWa8dNTf8r1J16vu2hrCYW+iACwMW8jExZO4L2179EgqQEjeo/glu63kFInJd6lSQwp9EUC7uv8r/nT4j/x+urXSbREbu1+K3f2uJMm9ZrEuzSpBAp9kYDKLczlhaUv8PKKlyksKeTqLldz78n30jKlZbxLk0qk0BcJmPzifF5Z8QpTl04ltzCXQR0GMaLPCNo3ah/v0qQKKPRFAqKotIi3Vr/FpMWT2Ja/jXPanMOovqPo1qxbvEuTKqTQF6nlSr2UmV/OZHzWeHLycuh7bF9+f+7v6duyb7xLkzhQ6IvUUu7Okr1LGPPuGL7Y+QXdmnVjwgUTOLvN2bqxKsAU+iK10Pwt80nPTGfRtkW0b9Sepwc8zcAOA0mwhHiXJnEW1X8BZnaJma0ys2wze/gQ464zMzezfhHzfhZeb5WZXRyLokWkfMu2L+OeWfcw9IOhbN6zmSHNhvD24Le5pOMlCnwBotjTN7NEYDxwEZADzDezGe6+vMy4hsAo4NOIed2BIcBJwHHAP8ysq7uXxK4FEVm7ey3jssYxa/0smtRtwkP9HuKGE29g3tx51EmoE+/ypBqJ5vDOaUC2u68FMLNpwGBgeZlxjwO/Ax6KmDcYmObuBcCXZpYd3t4nR1u4iMDmvM08t+g5/rrmr9RLrMd9ve7j1u63kpqcGu/SpJqKJvTbABsipnOA0yMHmFkfoJ27v2dmD5VZd16ZdduUfQMzGwYMA2jZsiUZGRlRFR+tvLy8mG+zJgly/7W1929KvuHD3R8y95u5AJzb8FwuanwRDXc1ZMHHC/aPq639RyPIvR9KNKFf3ml+37/QLAH4I3D74a67f4b7ZGAyQL9+/TwtLS2KsqKXkZFBrLdZkwS5/9rWe15hHi8uf5GXlr3EvpJ9XNXlKu49+V5ap7Yud3xt6/9wBLn3Q4km9HOAyAdetgU2RUw3BHoAGeHLwFoBM8zsyijWFZEo7Cvex2urXmPKkinsKtjFwPYDGdlnJB0bd4x3aVLDRBP684EuZtYR2EjoxOxN3y50991A82+nzSwDeMjdF5hZPvCKmT1D6ERuF+Cz2JUvUrsVlRbxTvY7TFw0ka17t3LWcWdxf9/7OemYk+JdmtRQFYa+uxeb2UjgAyARmOruy8xsNLDA3WccYt1lZvY6oZO+xcAIXbkjUrFSL+WDdR8wfuF41ueup1eLXjx1zlOc2urUeJcmNVxUN2e5+0xgZpl5jx5kbFqZ6SeAJ46wPpFAcXfmbJzD2KyxrNyxki5NuzDu/HEMaDtAd9FKTOiOXJFqIvOrTNIz08ncmknb1LY8ec6TXNrxUt1UJTGl0BeJs5U7VjImcwxzNs6hRf0W/KL/L7i6y9W6qUoqhUJfJE7W565nfNZ43l/3Po2SG/HjU37Mjd1upH5S/XiXJrWYQl+kim3Zs4WJiybyTvY7JCcmc3fPu7m9x+00Sm4U79IkABT6IlVk175dTFkyhVdXvkoppdxw4g3cffLdNK/fvOKVRWJEoS9SyfYU7eGl5S/x4rIXyS/O5/JOlzO893DapH7vE0lEKp1CX6SSFJQU8Pqq15myZAo79u3gwuMvZGSfkXRu0jnepUmAKfRFYqy4tJh317zLhEUT2LJnC/1b9+eBvg/Qo3mPeJcmotAXiRV3Z9b6WYzNGsu63HX0bN6TX5/1a05vfXrFK4tUEYW+yFFydz7Z9AnpWeks376czo078+x5z3J+u/N1F61UOwp9kaOwcOtC0jPTWfDVAtqktuGJs5/gso6XkZiQGO/SRMql0Bc5Aqt3rmZs5lgycjI4pt4x/Oy0n/HDrj+kTqLuopXqTaEvchg2fLOB8QvHM3PtTFLrpDKqzyhu/sHNNKjTIN6liURFoS8ShW17tzFp8STeXP0mSQlJDO0xlDt63EHjuo3jXZrIYVHoixzC7oLdTF06lVdWvEJxaTHXdr2We06+hxYNWsS7NJEjotAXKcfeor28vOJlXlj6AnlFeVzW6TKG9x5Ou4btKl5ZpBpT6ItEKCwpZPrq6UxePJkd+3aQ1i6N+/vcT9emXeNdmkhMKPRFgJLSEt5b+x4TFk5g055NnNrqVNL7pNP72N7xLk0kphT6Emjuzuz/zmZs1ljW7F5D92O689iZj3FG6zN0Y5XUSgp9Cax5m+cxJnMMS75eQsfGHXkm7RkuPP5Chb3Uagp9CZwl25aQnpXOp5s/pXVKa0afOZorOl9BUoL+d5DaT/+VS2Bk78xmbNZYZm+YTbN6zfjpqT/l+hOvJzkxOd6liVQZhb7UehvzNjJh4QTeW/seDZIaMKL3CG7pfgspdVLiXZpIlVPoS631df7XTN8xnY/f/phES+S27rcxtMdQmtRrEu/SROJGoS+1Tm5hLi8sfYGXV7xMQXHB/rtoW6a0jHdpInGn0JdaI784n1dWvMLUpVPJLcxlUMdB9Cvox/VnXB/v0kSqDYW+1HhFJUW89cVbTFo8iW352xjQdgCj+ozixGYnkpGREe/yRKoVhb7UWCWlJcz8ciYTFk4gJy+Hvsf25ffn/p6+LfvGuzSRakuhLzWOu5OxIYMxWWPI3pVNt2bdmHDBBM5uc7ZurBKpgEJfapT5W+aTnpnOom2LaN+oPU8PeJqBHQaSYAnxLk2kRogq9M3sEiAdSASmuPtTZZbfC4wASoA8YJi7LzezDsAKYFV46Dx3vzc2pUuQLNu+jDGZY/h408cc2+BYHjvjMQafMJg6CXo8ocjhqDD0zSwRGA9cBOQA881shrsvjxj2irtPDI+/EngGuCS8bI2766MK5Yis3b2WcVnjmLV+Fk3qNuGhfg8xpNsQ6ibWjXdpIjVSNHv6pwHZ7r4WwMymAYOB/aHv7rkR41MAj2WREjyb8zbz3KLn+Ouav1IvsR739bqPW7vfSmpyarxLE6nRogn9NsCGiOkc4PSyg8xsBPAgkAycH7Goo5llAbnAI+4+58jLldpue/52piyZwmurXsMwbv7BzdzV8y6a1WsW79JEagVzP/ROuZn9ELjY3e8KT98CnObu9x9k/E3h8beZWV0g1d23m9kpwDvASWX+MsDMhgHDAFq2bHnKtGnTjravA+Tl5ZGaGtw9xJrQf35pPrNzZ/PP3H9S6IX0T+3PoMaDaJrU9Ki2WxN6r0xB7j9ovZ933nmfu3u/isZFs6efA0Q+GLQtsOkQ46cBzwG4ewFQEH79uZmtAboCCyJXcPfJwGSAfv36eVpaWhRlRS8jI4NYb7Mmqc797yvex7SV05iydAq7C3YzsP1ARvYZScfGHWOy/erce1UIcv9B7v1Qogn9+UAXM+sIbASGADdFDjCzLu7+RXjyMuCL8PwWwA53LzGzTkAXYG2sipeaq6i0iHey32Hiools3buVs9qcxag+o+h+TPd4lyZSq1UY+u5ebGYjgQ8IXbI51d2XmdloYIG7zwBGmtmFQBGwE7gtvPoAYLSZFRO6nPNed99RGY1IzVDqpXyw7gPGZY3jv9/8l94tevPbc35Lv1YV/lUqIjEQ1XX67j4TmFlm3qMRrx84yHpvAm8eTYFSO7g7czbOYUzmGFbtXEXXpl0Zd/44BrQdoLtoRaqQ7siVSpf5VSbpmelkbs2kXcN2PHXOUwzqOEh30YrEgUJfKs3KHStJz0xn7sa5tKjfgl/0/wVXd7lad9GKxJFCX2Jufe56xmWN4+/r/k6j5Eb8+JQfc2O3G6mfVD/epYkEnkJfYmbLni1MXDSRd7LfITkxmbt73s3tPW6nUXKjeJcmImEKfTlqO/ft5Pklz/PqyldxnCHdhnBXz7toXr95vEsTkTIU+nLE9hTt4aXlL/HishfJL87nik5XMLz3cI5LPS7epYnIQSj05bAVlBTw2srXmLJkCjsLdnLh8Rcyss9IOjfpHO/SRKQCCn2JWnFpMTPWzOC5Rc+xZc8W+rfuzwN9H6BH8x7xLk1EoqTQlwqVeimz1s9iXNY41uWuo2fznvz6rF9zeuvvfdiqiFRzCn05KHfn400fk56ZzoodKzihyQmkn5fOee3O0120IjWUQl/KtXDrQtIz01nw1QLapLbhN2f/hks7XkpiQmK8SxORo6DQlwOs2rGKcVnjyMjJ4Jh6x/C/p/8v13W5jjqJuotWpDZQ6AsAG3I3MG7hON7/8n1Sk1N5oO8D3NTtJhrUaRDv0kQkhhT6Abd171YmLZrEW1+8RVJCEkN7DOWOHnfQuG7jeJcmIpVAoR9Quwt28/zS53l1xasUezHXdb2OYScPo0WDFvEuTUQqkUI/YPYW7eXlFS/zwtIXyCvK47JOlzG893DaNWxX8coiUuMp9AOisKSQ6aunM3nxZHbs28F57c5jZJ+RdG3aNd6liUgVUujXciWlJXya9ylPvv0km/Zs4rRWpzGq7yh6tegV79JEJA4U+rWUu/PRfz9ibNZY1u5ey0nHnMRjZz7GGa3P0I1VIgGm0K+FPtn0CWMyx7B0+1I6Nu7Inc3v5IFLH1DYi4hCvzZZsm0J6ZnpfLrlU1qntGb0maO5ovMVzP33XAW+iAAK/Vohe2c2Y7PGMnvDbJrVa8ZPT/0p1594PcmJyfEuTUSqGYV+DbYxbyMTFk7g3TXvklInhZG9R3JL91t0F62IHJRCvwb6Ov9rJi+ezPTV00m0RG4/6XaG9hhKk3pN4l2aiFRzCv0aJLcwlxeWvsDLK16msKSQa7pcwz0n30PLlJbxLk1EagiFfg2QX5zPKyteYerSqeQW5jKo4yBG9h7J8Y2Oj3dpIlLDKPSrsaKSIt784k0mLZ7E1/lfM6DtAEb1GcWJzU6Md2kiUkMp9KuhktISZn45kwkLJ5CTl0PfY/vyTNoz9Dm2T7xLE5EaTqGXSkSaAAALyUlEQVRfjbg7GRsyGJM1huxd2XRr1o0JF0zg7DZn6zp7EYkJhX41MX/LfJ7NfJbF2xbToVEHnj73aQa2H0iCJcS7NBGpRRT6cbZs+zLGZI7h400f07JBS355xi8ZfMJgkhL0TyMisRdVspjZJUA6kAhMcfenyiy/FxgBlAB5wDB3Xx5e9jPgzvCyUe7+QezKr7nW7l7LuKxxzFo/iyZ1m/BQv4cY0m0IdRPrxrs0EanFKgx9M0sExgMXATnAfDOb8W2oh73i7hPD468EngEuMbPuwBDgJOA44B9m1tXdS2LcR42xOW8zExZNYMaaGdRLrMd9ve7j1u63kpqcGu/SRCQAotnTPw3Idve1AGY2DRgM7A99d8+NGJ8CePj1YGCauxcAX5pZdnh7n8Sg9hple/52piyZwmurXsMwbv7BzdzV8y6a1WsW79JEJECiCf02wIaI6Rzg9LKDzGwE8CCQDJwfse68Muu2KWfdYcAwgJYtW5KRkRFFWdHLy8uL+TajlV+az+zc2fwz958UeRGnp57OoMaDaLqnKYvnLa6SGuLZf7wFuXcIdv9B7v1Qogn98q4V9O/NcB8PjDezm4BHgNsOY93JwGSAfv36eVpaWhRlRS8jI4NYb7Mi+4r3MW3lNKYsncLugt1c3OFiRvQeQcfGHau0DohP/9VFkHuHYPcf5N4PJZrQzwEin5rdFth0iPHTgOeOcN0ar6i0iLe/eJtJiyaxNX8rZ7U5i1F9RtH9mO7xLk1EhGguAp8PdDGzjmaWTOjE7IzIAWbWJWLyMuCL8OsZwBAzq2tmHYEuwGdHX3acbdgA110HjRtDo0ZwzTWUrl/HzLUzueqdq3h83uMcl3ocf774z0y8cKICX0SqjQr39N292MxGAh8QumRzqrsvM7PRwAJ3nwGMNLMLgSJgJ6FDO4THvU7opG8xMKLGX7mzdy+cfz7UrQsvvogDex9+kG/69+CXv2pPu1bdGHf+OAa0HaC7aEWk2onqOn13nwnMLDPv0YjXDxxi3SeAJ460wGrnT3+CtWth1So+b7ibMZlj+OquOvztp3t5cf2ZnHj3JN1FKyLVVuBv+ywuKWVvUQkpyUkkJkSxZz5jBnv79eIn6/7A3I1zaVG/Bfde8Tj27jh+MHc1KPBFpBoLZOgXFJcwc8lmnstYwxdb80hKMIpLna7HpnJvWmcu7dmaukmJ31tvfe56mmXN4++96rJ4W30ePOVBhnQbQv2k+nBSBkyfXvXNiIgchsCF/sINu7h96mcUlZSypzB0eqGoJHQV6aqv8njk7aX8asZyXhx6Gr3ahR4/uGXPFiYumsg72e8wPzefTh3O5O/XvkXD5IbfbbhZM9i5s8r7ERE5HIEK/UUbdnHj5HnkFx38XHLoF0EJQybP40+3d+OTHdOZtnIajjOk2xCSEpZzSqt+EBn4AP692w9ERKqdwIR+QXEJt0397JCBv19CASWN53Dfvx8hIbGIKzpdwfDewzku9Tho+kfYseP76+zcCU2bxr5wEZEYCkzoz1yymaKS0kMPsiLqNJ1H8jEZJCTtwfN6MKLv/Qw748zvxpx0Eixb9v11ly+H7roeX0Sqt8BcavJcxpr9x/C/r4Q6jeeT0vn31Gv5N0r3HceeL0eQt+FHvDmv6MChV14J8+aFLtv81rp18J//hJaJiFRjgdnT/2JrXrnzkxouIbnFhyTW3UZJfjv2brqekr2d9y9fvTWPklL/7nLOu++GceNg8GD49a/BDH7xC2jXDu65pypaERE5YoHY0y91J+kg1+AnNVwOnkD+hlvYu274AYEPkJRg7Cks/m5GSgrMng1du8Itt8DNN0PHjqF5qfpMfBGp3gKxp59goevwy7Nvy2AoTeZgv/+KS52U5DI/puOPhzffjHGVIiKVLxB7+gBdjj3IXnhpPQ71Y+h6bGp0d+qKiNQAgQn9+9I6k5L8/btsDyUlOZH70k6opIpERKpeYEL/0p6tqZN4eO3WSUxgUM9WlVSRiEjVC0zo101K5MWhp1G/TnR7+/XrhMaX9xk8IiI1VWBCH6BXuyZMG9afJvXrHPRQT0pyIk3q12HasP77P3tHRKS2CMTVO5F6tWvCpz+/gPeXbOG5jGxWH/Apmw25L60zg3q20h6+iNRKgQt9CB3quapPG67q04aSUmdPYXH0n6cvIlKDBTL0IyUmGI3q1Yl3GSIiVSJQx/RFRIJOoS8iEiAKfRGRAFHoi4gEiEJfRCRAFPoiIgGi0BcRCRCFvohIgCj0RUQCRKEvIhIgCn0RkQBR6IuIBEhUoW9ml5jZKjPLNrOHy1n+oJktN7PFZvaRmbWPWFZiZgvDXzNiWbyIiByeCj9l08wSgfHARUAOMN/MZrj78ohhWUA/d99rZvcBvwNuCC/Ld/feMa5bRESOQDR7+qcB2e6+1t0LgWnA4MgB7v5Pd98bnpwHtI1tmSIiEgvRhH4bYEPEdE543sHcCbwfMV3PzBaY2Twzu+oIahQRkRiJ5iEq5T1OyssdaPYjoB9wbsTs4919k5l1Amab2RJ3X1NmvWHAMICWLVuSkZERTe1Ry8vLi/k2a5Ig9x/k3iHY/Qe590OJJvRzgHYR022BTWUHmdmFwM+Bc9294Nv57r4p/H2tmWUAfYADQt/dJwOTAfr16+dpaWmH1URFMjIyiPU2a5Ig9x/k3iHY/Qe590OJ5vDOfKCLmXU0s2RgCHDAVThm1geYBFzp7lsj5jc1s7rh182Bs4DIE8AiIlKFKtzTd/diMxsJfAAkAlPdfZmZjQYWuPsM4GkgFZhuZgD/dfcrgR8Ak8yslNAvmKfKXPUjIiJVKKoHo7v7TGBmmXmPRry+8CDrfQz0PJoCRUQkdnRHrohIgCj0RUQCRKEvIhIgCn0RkQBR6IuIBIi5l3tzbdyY2TZgfYw32xz4OsbbrEmC3H+Qe4dg9x+03tu7e4uKBlW70K8MZrbA3fvFu454CXL/Qe4dgt1/kHs/FB3eEREJEIW+iEiABCX0J8e7gDgLcv9B7h2C3X+Qez+oQBzTFxGRkKDs6YuICAp9EZFAqZWhb2bNzGyWmX0R/t70IOP+bma7zOy9qq6xMpjZJWa2ysyyzezhcpbXNbPXwss/NbMOVV9l5Yii9wFmlmlmxWZ2XTxqrCxR9P6gmS03s8Vm9pGZtY9HnZUliv7vNbMlZrbQzOaaWfd41FltuHut+wJ+Bzwcfv0w8NuDjLsAuAJ4L941x6DnREJPJOsEJAOLgO5lxgwHJoZfDwFei3fdVdh7B+Bk4CXgunjXXMW9nwc0CL++r7b8ux9G/40iXl8J/D3edcfzq1bu6QODgRfDr18Eyn0gu7t/BHxTVUVVstOAbHdf6+6FwDRCP4dIkT+XN4ALLPzUmxquwt7dfZ27LwZK41FgJYqm93+6+97w5DxCjzytLaLpPzdiMoWDPOM7KGpr6Ld0980A4e/HxrmeqtAG2BAxnROeV+4Ydy8GdgPHVEl1lSua3murw+39TuD9Sq2oakXVv5mNMLM1hI4CjKqi2qqlqJ6cVR2Z2T+AVuUs+nlV11JNlLfHXnaPJpoxNVFt7SsaUfduZj8C+gHnVmpFVSuq/t19PDDezG4CHgFuq+zCqqsaG/p+kEc0ApjZV2bW2t03m1lrYOvBxtYiOUC7iOm2wKaDjMkxsySgMbCjasqrVNH0XltF1buZXUhoh+hcdy+ootqqwuH+208DnqvUiqq52np4Zwbf/Sa/DfhrHGupKvOBLmbW0cySCZ2onVFmTOTP5TpgtofPbtVw0fReW1XYu5n1ASYBV7p7bdsBiqb/LhGTlwFfVGF91U+8zyRXxheh49QfEfrH/QhoFp7fD5gSMW4OsA3IJ7THcHG8az/Kvi8FVhO6muHn4XmjCf3PDlAPmA5kA58BneJdcxX2fmr433gPsB1YFu+aq7D3fwBfAQvDXzPiXXMV958OLAv3/k/gpHjXHM8vfQyDiEiA1NbDOyIiUg6FvohIgCj0RUQCRKEvIhIgCn0RkQBR6IuIBIhCX0QkQP4/1MjN9npAkKsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU9dn38c+VhD3sSGSTpeACKtCkSlUoiIALFisodaGgpdy0trbV+pSn2t7SPrXY29vSqtVab2nAVlQWQSkiIqj0RhEU1FBWBVEQFQkYQMhyPX/MiY5hQkImmYXzfb9e85qz/M453wzMXHOWOT9zd0REJLwykh1ARESSS4VARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIJKHM7HYze6QO119gZgPjXEedZhRJNSoEUuvM7GozW2VmRWa208wWmtl5idi2u/dy92WJ2FZtMLMuZuZmlpWAbdU3s1lmtjXY5sAq2rcys7lmtt/MtpnZ1VHz2pnZfDPbEayrSx3HlzqkQiC1ysxuAqYCdwA5wEnAn4ERycwln1sOXAt8UI229wGHifw7XgPcb2a9gnllwDPAyLoIKYmlQiC1xsyaA78GbnD3Oe6+392L3f0pd7+lkmWeMLMPzGyvmb0Y9UGDmV1sZuvM7FMze9/MfhZMb2NmT5tZoZl9YmYvmVlGMG+rmV0QDGea2S/MbEuwjtVm1imY90cz225m+4Lp/Y/h7xxhZmuCZbeY2YXB9PbBt+RPzGyzmX0vapmzgr2kfWa2y8zuDma9GDwXBntQX69ujmPl7ofdfaq7LwdKj9bWzJoQ+ZD/pbsXBcvMB8YE69rl7n8GXq2rvJI4KgRSm74ONATmHsMyC4EeQFvgNeDvUfP+B/gPd28KnA48H0y/GXgPOIHIt9VfALHulXITcBVwMdAMuB44EMx7FegDtAL+ATxhZg2rCmtmZwHTgVuAFsAAYGsw+9EgV3tgFHCHmQ0O5v0R+KO7NwO+AjweTB8QPLdw92x3XxFjm1cHRa+yx0lV5a6Bk4FSd98YNW0t0KuS9pLG6vy4pIRKa+Bjdy+p7gLu/nD5sJndDuwxs+buvhcoBnqa2Vp33wPsCZoWA+2Azu6+GXipktWPB/6Pu28IxtdGbTf6ZPB/m9ltwCnRbSrxXeBhd18cjL8fZO8EnAcMd/fPgDVm9hCRb9BLgszdzayNu38MvFzFdj7n7v8gUqwSKRvYW2HaXqBpgnNIAmiPQGrTbqBNdU98BodupgSHV/bxxTfrNsHzSCLf5reZ2QtRh03+C9gMPGtmb5vZpEo20QnYUsm2bzazfweHpAqB5lHbPZrK1tke+MTdP42atg3oEAx/l8i37PVm9qqZDa/GtmrMzE4KDjUVmVlRDVZRRGQvKloz4NMYbSXNqRBIbVoBfAZcVs32VxM5iXwBkQ/iLsF0A3D3V919BJHDRk8SHE5x90/d/WZ37wZcCtwUdQgm2nYih2G+JDgf8HPgSqClu7cg8m3XqpE55jqBHUArM4v+xnwSwR6Du29y96uCv+VOYFZwHL7K2/+a2TXRH+oxHkccGnL3d4NDTdnunl2Nv6uijUCWmfWImtYbKKjBuiTFqRBIrQkO5/wKuM/MLjOzxmZWz8wuMrPfx1ikKXCIyJ5EYyJXGgGfX+p4TXCYqBjYR3CC08yGm1l3M7Oo6bFOfj4E/MbMeljEmWbWOthuCfARkQ+7X3Hkt9/K/A9wnZkNNrMMM+tgZqe6+3bgf4HfmVlDMzuTyF7A34PM15rZCe5eBhQG6yoNMpQB3SrboLv/PfpDPcbj3Wpmx8waRJ0LqR9kPaIAuvt+YA7wazNrYmbnEinaM6LW1RBoEIxGr1fSjAqB1Cp3v5vISdrbiHzIbQd+SOQbfUXTiRw+eR9Yx5HHzccAW4PDRhOJXPYIkZPLzxE5fLEC+HMlvx24m8hexLNECsb/AI2ARUROUm8Mtv9ZkLM6f99K4DrgD0T2Il4AOgezryKyV7ODyAnz/4w6l3AhUBAcpvkj8G13/8zdDwC/Bf4VnPjtV50ccdgAHCRyyGpRMNwZILjCamFU2x8Qeb0+JHIi/PvuHr1HcJDIvwHA+mBc0pCpYxoRkXDTHoGISMipEIiIhFxchcAi9yJZbGabgueWMdr0MbMVFrkZ2BtmNjpqnpnZb81sY3Ap343x5BERkWMX7x7BJGCJu/cg8qOZWNdzHwC+4+69iJwwm2pmLYJ544hcl32qu58GzIwzj4iIHKO4Thab2QZgoLvvNLN2wDJ3P6WKZdYCo9x9k5mtBK4Ofh1abW3atPEuXbrUOHc89u/fT5MmTZKy7ZpS5sRJx9zKnDjJzr169eqP3f2EitPjvcVEjrvvBAiKQdujNQ7u01KfL36Z+RVgtJl9i8ilhje6+6ZKlp0ATADIycnhrrvuijN6zRQVFZGdXZPf5ySPMidOOuZW5sRJdu5BgwZtiznD3Y/6IHK99lsxHiOAwgpt9xxlPe2IXMPcL2paEXBzMHw58FJVedyd3NxcT5alS5cmbds1pcyJk465lTlxkp0bWOUxPlOr3CNw9wsqm2eR2+m28y8ODX1YSbtmwALgNneP/tHQe8DsYHguMK2qPCIiUrviPVk8HxgbDI8F5lVsYGb1iXzIT3f3JyrMfhI4Pxj+BpFfeoqISALFWwimAEPMbBMwJBjHzPKCW/BC5MZeA4BxFunMY42Z9YlafqSZvQn8jshtg0VEJIHiOlns7ruBI+766O6rCD7UPXLf95gdgbt7IXBJPBlERCQ++mWxiEjIqRCIiIScCoGISMipEIiIhJwKgYhIyKkQiIiEnAqBiEjIqRCIiIScCoGISMipEIiIhJwKgYhIyKkQiIiEnAqBiEjIqRCIiIScCoGISMipEIiIhJwKgYhIyKkQiIiEnAqBiEjIqRCIiIScCoGISMipEIiIhJwKgYhIyMVVCMyslZktNrNNwXPLGG36mNkKMyswszfMbHTUvMFm9pqZrTGz5WbWPZ48IiJy7OLdI5gELHH3HsCSYLyiA8B33L0XcCEw1cxaBPPuB65x9z7AP4Db4swjIiLHKN5CMALID4bzgcsqNnD3je6+KRjeAXwInFA+G2gWDDcHdsSZR0REjpG5e80XNit09xZR43vc/YjDQ1HzzyJSMHq5e5mZ9QeeBA4C+4B+7r6vkmUnABMAcnJycmfOnFnj3PEoKioiOzs7KduuKWVOnHTMrcyJk+zcgwYNWu3ueUfMcPejPoDngLdiPEYAhRXa7jnKetoBG4h82JdPmwOcHQzfAjxUVR53Jzc315Nl6dKlSdt2TSlz4qRjbmVOnGTnBlZ5jM/UrKoqiLtfUNk8M9tlZu3cfaeZtSNy2CdWu2bAAuA2d385mHYC0NvdXwmaPQY8U1UeERGpXfGeI5gPjA2GxwLzKjYws/rAXGC6uz8RNWsP0NzMTg7GhwD/jjOPiIgcoyr3CKowBXjczL4LvAtcAWBmecBEdx8PXAkMAFqb2bhguXHuvsbMvgfMNrMyIoXh+jjziIjIMYqrELj7bmBwjOmrgPHB8CPAI5UsP5fI3oKIiCSJflksIhJyKgQiIiGnQiAiEnIqBCIiIadCICIScioEIiIhp0IgIhJyKgQiIiGnQiAiEnIqBCIiIadCICIScioEEp/33oMf/Qi+/nVo3BjMYOvWZKcSkWOgQpBOiorgyisjz6li82Z4/HFo2RL69092GhGpARWCdLJkCTzxBDz/fLKTfGHAANi1C/75T7jiimSnEZEaUCFII2Vz5uDBc8rI0H8hkXSnd3GKO1RSytzX32Po3cvY+/hcDCh8fA7D7l7G3Nff41BJabIjikiai7eHMqlDa7YXMu7hlRSXltH+/bdpUHoYgIYlhyld929uK/yMyfPXkX/9WfTu1CLJaUUkXWmPIEWt3V7IVQ++TOHBYvYfLmXQ26vIKCsDIKOsjEFbXmX/4VIKDxbz7QdfZu32wiQnFpF0pUKQgg6VlDL24ZUcLP7isM/w9S/RsLQYgIalxQxfv/zzeQeLI+11mEhEakKHhlLFyJEQnARuAKypMPtw5pf/qU796B223jn8y41ujxq+/HKYPbu2U4rIcUh7BKliyhTo0weaNIk5u35pyZfGG1QY/1yTJtC3b2R9IiLVoEKQKnr0gFWrKLv9dg5mNaDEjvyneTavGZs6NIi5eIllcDCrAWWTJ8OqVZH1JcqsWZHH6tWR8YULI+MvvJC4DCJSY3EfGjKzVsBjQBdgK3Clu++p0KYzMAfIBOoB97j7A8G8XOBvQCPgn8CP3d3jzZWWMjMp+uGPuXxLc/44Zwpd97xP4+JDAJRkwJ3XtOPDlvU4b+2nXLfwY762fj8GHKjXgLdbduAnl09izg3jaJboa/sr/pDsBz+IPH/jG7BsWWKziMgxq41PjEnAEnfvASwJxivaCZzj7n2As4FJZtY+mHc/MAHoETwurIVMaatJ/Sy2tGjPpWP/wH39ruSzzHoAZJXB7Ns2c8OcXazr2ojvTurKVb/qxlNnt+Ker1/BpeOmsqVFe5rUT8JpH/fYDxUBkbRQG4VgBJAfDOcDl1Vs4O6H3f1QMNqgfLtm1g5o5u4rgr2A6bGWD5PMDKNH22zKMjLZeEJnioNCANBifykT53/Eops38Mu/vU9R40x+8f32PDF6I1mtXqZ723pkZlgS04tIOrJ4j8KYWaG7t4ga3+PuLWO06wQsALoDt7j7fWaWB0xx9wuCNv2Bn7v78BjLTyCy50BOTk7uzJkz48pdU0VFRWRnZ9fpNgoPFvP+noOc/8BUTnlpGRnE/jcqNXi+bzMeGN2NjTklNLLGfKPZAAY0HUDTzKYJzVzb0jEzpGduZU6cZOceNGjQanfPO2KGu1f5AJ4D3orxGAEUVmi7p4p1tQdWAjnA14Dnoub1B56qKk9ubq4ny9KlS+t8G58Vl3jv/3zGP2nY9EsHW4otww9k1fdiy/jS9N2NmvqZd9zvNzz3Qz/jb2d47oxcn/y/k33r3q0Jy1zb0jGze3rmVubESXZuYJXH+Eyt1gFlD76xx2Jmu8ysnbvvDA71fFjFunaYWUHwof8voGPU7I7AjupkOp41yMpk5nnNaHDH4c+nlZ8QnjLwOiYtm0a3qBPJDUsO89hZfTh18ETe2fsO+QX5zNs8j1kbZ3H+SefT+3BvBjIwSX+NiKS62jhHMB8YGwyPBeZVbGBmHc2sUTDcEjgX2ODuO4FPzayfmRnwnVjLh9Gpry+noUFpcFnof593LZeOm8ryrn355tg/cPd513AwqwGllkHDjEh7gK7Nu3L7ObezaNQixp8xnlc/eJW7P7ib7yz8Ds+/+zxlXpbkv0xEUk1tFIIpwBAz2wQMCcYxszwzeyhocxrwipmtBV4A7nL3N4N53wceAjYDW4CFtZAp/T3+OBklxVjvM1k+azHLLx0DGRnUyzQ8M5OXLh3L8lmLsTPPIKO4ONI5TJQ2jdpw41dvZPGoxYxsOZJd+3fx46U/ZsSTI5i1cRaHSg9VsmERCZu4rzV0993A4BjTVwHjg+HFwJmVLL8KOD3eHMedE0+E//ovMn7yE4ZkZDAEKC1z9h8uoUn9rC+uDhq+GqZOrfRSzcb1GjOw2UBuG3Abi7ctZtpb05i8YjL3vn4vV592NaNPGU3zBs0T9meJSOrRvYZS1VNPHTEpM8No1rBehYmZcPPNkcdRZGVkcVHXi7iwy4Ws/GAl0wqmcc/r9/DQmw9xeY/LGdNzDB2yO9TmXyAiaUKFIGTMjLPbnc3Z7c5m456N5Bfk89j6x5i5fiZDOw9l3Onj6Nm6Z7JjikgC6V5DIXZyy5P57Xm/ZeHIhYzpOYYX33+R0U+PZvyi8Sx/f3n5Jb0icpxTIRBObHIiN+fdzOJRi7kp9ybe2fsO33/u+4x8aiTzt8ynOOgHQUSOTyoE8rmm9Zty3enX8czIZ/jNub/B3bl1+a1cOOdC8gvyKTpclOyIIlIHVAjkCPUy63FZ98uY88053Df4Pjo368xdq+5iyKwh3L36bj48cNTfDIpImtHJYqmUmTGg4wAGdBxAwccFTCuYRn5BPjPWzeCSrpcwrtc4urfsnuyYIhInFQKpll5tenHXN+5i+6fbmbFuBk9ufpJ5W+bRv0N/rjv9OvJy8oj8OFxE0o0ODckx6dS0E784+xc8O/JZbuhzAwW7C7h+0fVcteAqntn6DCVllXShKSIpS4VAaqRFwxZM7D2RRSMX8ct+v6SouIhbXriF4XOH849//4MDxQeSHVFEqkmFQOLSMKshV55yJfNGzGPqwKm0adSG3638HUNnD+Xe1+9l98HdyY4oIlVQIZBakZmRyeDOg3nk4keYftF0vtr2qzz4xoMMmz2MX6/4Ndv2bUt2RBGphE4WS63r27Yvfc/vG7NvhHG9xtGnbZ9kRxSRKNojkDoTq2+EMQvHqG8EkRSjQiB1LrpvhElnTVLfCCIpRoVAEqZxvcZcc9o1LLh8Ab8f8HsaZTVi8orJDJs1jAffeJC9h/YmO6JIKKkQSMKV943w2PDHeGjoQ5za+lTuef0ehswawpSVU3i/6P1kRxQJFZ0slqQ5Wt8IfRr1IWd3Dqe1Pi3ZMUWOe9ojkJRQsW+EgoMFXPn0lYx/djz/ev9f6htBpA5pj0BSSnnfCD339eSDth/wyLpHmPjcRE5ueTLjeo3jwq4XUi+jXtUrEpFq0x6BpKRGGY2+1DdCmZfxi+W/4KLZF6lvBJFapkIgKa1i3wgnNTtJfSOI1DIdGpK0oL4RROpOXHsEZtbKzBab2abguWWMNp3NbLWZrTGzAjObGExvbGYLzGx9MH1KPFkkPMr7Rnj6W09zxclX8Oy2Z/nW/G/xg+d+wKsfvKoTyyLHKN5DQ5OAJe7eA1gSjFe0EzjH3fsAZwOTzKx9MO8udz8V6Auca2YXxZlHQkR9I4jUjngLwQggPxjOBy6r2MDdD7t7+T0EGpRv090PuPvS8jbAa0DHOPNICKlvBJH4WDy70WZW6O4tosb3uHusw0OdgAVAd+AWd7+vwvwWRArBBe7+diXbmgBMAMjJycmdOXNmjXPHo6ioiOzs7KRsu6bClrnMy3jz4Jss2beEdw69Q+OMxgxoOoABTQfQNLNpLSf9srC91smSjpkh+bkHDRq02t3zjpjh7kd9AM8Bb8V4jAAKK7TdU8W62gMrgZyoaVnAQuAnVWUpf+Tm5nqyLF26NGnbrqkwZ35t12v+oyU/8jP+dobnzsj1yf872bfu3Vor644lzK91IqVjZvfk5wZWeYzP1CqvGnL3CyqbZ2a7zKydu+80s3bAUa/lc/cdZlYA9AdmBZMfBDa5+9SqsogcK/WNIFK1eM8RzAfGBsNjgXkVG5hZRzNrFAy3BM4FNgTj/w9oDvwkzhwiR6W+EUQqF28hmAIMMbNNwJBgHDPLM7OHgjanAa+Y2VrgBSJXCr1pZh2BW4GewGvB5aXj48wjclTqG0HkSHH9oMzddwODY0xfBYwPhhcDZ8Zo8x5g8WxfpKbK+0YYfcpoFm9bzLS3pjF5xWTuff1erj7takafMprmDZonO6ZIQugWExJq6htBRLeYEAGO3jfC0C5Dua7XdeobQY5b2iMQqaBi3wgvvvei+kaQ45oKgUglyvtGWDxqMTfl3sQ7he8w8bmJjHpqFE9teYrisuJkRxSpFSoEIlVoWr+p+kaQ45oKgUg1qW8EOV7pZLHIMTpa3wi5jXLpuKej+kaQtKI9ApE4VOwb4bUDr6lvBEk72iMQqQXlfSP0LurN9jbbeXT9o1y/6Hp6te7FuNPHccFJF5CVobebpCbtEYjUoiaZTdQ3gqQdFQKROtAwqyFXnnIl80bMY+rAqbRp1IbfrfwdQ2cP5d7X72X3wd3JjijyORUCkTqUmZHJ4M6DeeTiR5h+0XS+2var/OWNvzBs9jB+veLXbNu3LdkRRXSOQCRRyvtGeHvv20wvmM6Tm59U3wiSErRHIJJg3Zp34/ZzbufZUc+qbwRJCSoEIkkS3TfCz7/2c/WNIEmjQiCSZI3rNebantey4PIF3Nn/ThplNWLyiskMmzWMB994kL2H9iY7ohznVAhEUkRWRhYXd7uYx4Y/xl+H/pVTW6lvBEkMnSwWSTFmRr92/ejXrh8bPtmgvhGkzmmPQCSFndLqFO7ofwcLRy7k2tOuVd8IUidUCETSwIlNTuRnX/sZi0ct5qe5P1XfCFKrVAhE0kjT+k25/vTr1TeC1CoVApE0pL4RpDbFXQjMrJWZLTazTcFzyxhtOpvZajNbY2YFZjYxRpv5ZvZWvHlEwqS8b4SHhz3MzEtmcm6Hc8kvyGfY7GHctvw2Nu/ZnOyIkgZqY49gErDE3XsAS4LxinYC57h7H+BsYJKZtS+faWaXA9qnFYlDxb4RFm1dpL4RpFpqoxCMAPKD4XzgsooN3P2wu5f/TLJB9HbNLBu4Cfh/tZBFJPTK+0ZYPGoxN/S5gYLdBVy/6HquWnAVz2x9hpKykmRHlBRj8X5LMLNCd28RNb7H3WMdHuoELAC6A7e4+33B9D8ALwKvA0+7++mVbGcCMAEgJycnd+bMmXHlrqmioiKys7OTsu2aUubEScXch8sOs3L/Sp7f9zwflXxE66zWDGo6iH7Z/WiQ0SAlM1clHTND8nMPGjRotbvnVZxerUJgZs8BJ8aYdSuQX51CEDW/PfAkcCnQDviNu19qZl04SiGIlpeX56tWraoyd11YtmwZAwcOTMq2a0qZEyeVc5eWlbJs+zKmFUxj7Udrad6gOd8+5dt0/qQzlw6+NNnxjkkqv85Hk+zcZhazEFTrl8XufsFRVrzLzNq5+04zawcc9XIFd99hZgVAf+AEINfMtgZZ2prZMncfWJ1cIlJ95X0jDO48mNc/fJ1pb03jL2/8hXpWjzUr1vCdXt+hc7POyY4pSVAb5wjmA2OD4bHAvIoNzKyjmTUKhlsC5wIb3P1+d2/v7l2A84CNKgIida9v27786fw/Me+yeeQ1yWPu5rlcOvdSfrr0p6z9aG2y40mC1UYhmAIMMbNNwJBgHDPLM7OHgjanAa+Y2VrgBeAud3+zFrYtInHo1rwbV7e++vO+EVZ+sJJr/3ktYxeOZem7S9U3QkjEfdM5d98NDI4xfRUwPhheDJxZxXq2AlWeHxCR2lfeN8L4M8YzZ9McZqybwY1Lb6Rr866M7TmW4V8ZToPMBsmOKXVEvywWkc9V7BuhYWZDbl9xO8NmDeOvb/xVfSMcp1QIROQIsfpG+NPrf2LIrCHcufJOdhTtSHZEqUXqj0BEKhWrb4SZ62fy6PpH1TfCcUR7BCJSLeob4filQiAix0R9Ixx/VAhEpEbUN8LxQ4VAROJSWd8IQ2cNVd8IaUIni0WkVpT3jTCg4wAKPi5gWsE08gvymbFuBpd0vYRxvcbRvWX3ZMeUGFQIRKTWlfeNsP3T7cxYN4O5m+Yyb8s8+nfoz3WnX0deTh5mluyYEtChIRGpM5X1jXD1gqvVN0IKUSEQkTrXomELJvaeyKKRi/hlv1/yafGn3PLCLQyfO5xH1z/KwZKDyY4YaioEIpIwDbMacuUpVzJvxDymDpxKm0ZtuOOVOxg6ayj3rbmPTz77JNkRQ0mFQEQSrrxvhEcufoTpF02nb9u+PLD2AYbOGspvVvyGbfu2JTtiqKgQiEhSRfeNMLzb8PD1jbB9O4waBc2bQ7NmcPnl8O67CY2gQiAiKaFb827cfs7t4eob4cABOP98WL8e8vNhxgzYtAkGDYL9+xMWQ5ePikhKqU7fCMeNv/4V3n4bNmyA7sFvLM48E3r0gL/8BW66KSExtEcgIinpaH0jLNq7qEZ9I5SUlrHvs2JKy1LkBnnz50O/fl8UAYCuXeHcc2HeEb3+1hntEYhISivvG+Girhfxygev8Le3/sbTO55myawljOwxkjE9x9A+u32lyx8qKeWfb+7k/mVb2PRhEVkZRkmZc3LbbCYO/AoXn9GOBlmZCfyLohQUwIgRR07v1QueeCJhMVQIRCQtRPeN8Pdn/05Bo4Iq+0ZYs72QcQ+vpLi0jP2HSwEoLo3sDWzYVcRtc99i8vx15F9/Fr07tUj438Qnn0DLlkdOb9UK9uxJWAwdGhKRtNOhfocq+0ZYu72Qqx58mcKDxZ8XgYr2Hy6l8GAx337wZdZuL0zwXxGIdauNBPftoEIgImmrsr4RRs4fxZjH/szB4sPVWs/B4lLGPrySQyWxC0adadkysldQ0Z49sfcU6ogKgYikvYp9I+w9eAg/4VGadP899Vq9CBmfVbmO4tIyFr75QQLSRunVK3KeoKJ166Bnz4TFiKsQmFkrM1tsZpuC5yNKmJl1NrPVZrbGzArMbGLUvPpm9qCZbTSz9WY2Mp48IhJu5X0jZOz8GQfeHUfZ4dY0zPkn2d2nUP+EhVjWvkqX3X+4lPuXbU5gWuCb34SXX45cQlpu61b4178i8xIk3j2CScASd+8BLAnGK9oJnOPufYCzgUlmVn6K/1bgQ3c/GegJvBBnHhEJudIyZ/OH+yndfyoH353A/nd+SMn+k6nf+kWadL+TrKZvVbrsxg+LEntp6fe+B126RK4cmjcvcjnpiBHQqRP8x38kLEa8hWAEkB8M5wOXVWzg7ofd/VAw2qDCNq8Hfhe0K3P3j+PMIyIht/9wCVkZX5yALfusI5+9fzX7t/yM4j1nU3qgS6XLZmUY+w8n8NbYTZrA88/DySfDmDFwzTWR3xE8/zxkZycsRryXj+a4+04Ad99pZm1jNTKzTsACoDtwi7vvMLPya7V+Y2YDgS3AD919V5yZRCTEmtTPoiTGt3ovbs2hXUc/3FJS5jSpn+Cr6k86CWbPTuw2KzCv4jIlM3sOODHGrFuBfHdvEdV2j7tXeqo7OCT0JHApUAp8BIxy99lmdhPQ193HVLLsBGACQE5OTu7MmTOPmruuFBUVkZ3ASl0blDlx0jH38Zh504dFfFZ87FcANayXSY+2dfdaJPu1HjRo0Gp3z6s4vcpCcDRmtgEYGOwNtAOWufspVSwzjcjewWygCGjq7mXBXsMz7t6rqu3m5eX5qlWrapw7HsuWLWPgwIFJ2XZNKXPipGPu4zHz3Nff4ziN0VAAAAfHSURBVLa5b1X6+4FYmtTP5LffOoPL+naohYSxJfu1NrOYhSDecwTzgbHB8FjgiJtjmFlHM2sUDLcEzgU2eKQCPQUMDJoOBtbFmUdEhIvPaEe9zGP7eKuXmcFFZ8Q6+HH8i7cQTAGGmNkmYEgwjpnlmdlDQZvTgFfMbC2Rq4Lucvc3g3k/B243szeAMcDNceYREaFBVib5159Fo3rVu4dQo3qR9km751CSxXVWxN13E/kmX3H6KmB8MLwYOLOS5bcBA+LJICISS+9OLZg5oR9jK9xrKFqT+pnUy8xI3r2GUoRuOicix63enVrwyq2DWfjmB9y/bDMbv3T30aZ8f+BXuOiME0O7J1BOhUBEjmsNsjK5rG8HLuvbgdIyZ//hEprUzyIzI8bN3kJKhUBEQiMzw2jWsF6yY6Qc3XRORCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhEREIu7kJgZq3MbLGZbQqeW8Zo09nMVpvZGjMrMLOJUfOuMrM3zewNM3vGzNrEm0lERKqvNvYIJgFL3L0HsCQYr2gncI679wHOBiaZWXszywL+CAxy9zOBN4Af1kImERGpptooBCOA/GA4H7isYgN3P+zuh4LRBlHbteDRxMwMaAbsqIVMIiJSTebu8a3ArNDdW0SN73H3WIeHOgELgO7ALe5+XzB9FPAwsB/YRGTvoDTG8hOACQA5OTm5M2fOjCt3TRUVFZGdnZ2UbdeUMidOOuZW5sRJdu5Bgwatdve8I2a4e5UP4DngrRiPEUBhhbZ7qlhXe2AlkAPUI3I46StE9gzuBW6rKk9ubq4ny9KlS5O27ZpS5sRJx9zKnDjJzg2s8hifqVnVqSLufkFl88xsl5m1c/edZtYO+LCKde0wswKgP7AtmLYlWNfjxD7HICIidaQ2zhHMB8YGw2OBeRUbmFlHM2sUDLcEzgU2AO8DPc3shKDpEODftZBJRESqqVp7BFWYAjxuZt8F3gWuADCzPGCiu48HTgP+28ycyCGgu9z9zaDdZOBFMysmsocwrhYyiYhINcVdCNx9NzA4xvRVwPhgeDFwZiXLPwA8EG8OERGpGf2yWEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhERELO3D3ZGY6ZmX0EbEvS5tsAHydp2zWlzImTjrmVOXGSnbuzu59QcWJaFoJkMrNV7p6X7BzHQpkTJx1zK3PipGpuHRoSEQk5FQIRkZBTITh2DyY7QA0oc+KkY25lTpyUzK1zBCIiIac9AhGRkFMhEBEJORWCGMyslZktNrNNwXPLGG36mNkKMyswszfMbHTUvMFm9pqZrTGz5WbWPQ0ym5n91sw2mtm/zezGVM8c1eYeMyuq67xR24v3tf67mW0ws7fM7GEzq5cGmbua2SvB8o+ZWf1UyBy0e8bMCs3s6QrTU/J9WEXmhL8PAXB3PSo8gN8Dk4LhScCdMdqcDPQIhtsDO4EWwfhG4LRg+AfA39Ig83XAdCAjGG+b6pmDaXnADKAojf5/XAxY8HgU+H4aZH4c+HYw/ECqZA7mDQYuBZ6uMD0l34dVZE74+9DdVQgq+UfaALQLhtsBG6qxzNqoN9EG4Oxg+P8Cd6RB5pVA9zR7nTOBpcGyiSwEceWuMP2nwG9TOXNQsD4GsoLpXwcWpVJmYGCMD9WUfh9Wkjnh70N3JwuJJcfddwK4+04za3u0xmZ2FlAf2BJMGg/808wOAvuAfnUZNhBv5q8Ao83sW8BHwI3uvqkuAxN/5h8C84Nl6zbpl8Wbu3x6PWAM8OO6CholnsytgUJ3Lwlmvwd0qMuwgWPKHEPKvw9jSMb7MLyFwMyeA06MMevWY1xPOyKHJsa6e1kw+afAxe7+ipndAtxN5D9lXOo4cwPgM3fPM7PLgYeB/vHkDbZVJ5nNrD1wBZFvVbWujl/rcn8GXnT3l2qW8oht1dVrHavK1sp157WVuRIp/T6sRJ28D6uU6F2QdHhQzd07oBnwGnBF1LQTgC1R4ycB61I5czB9PdAlGDZgbypnBi4BPgC2Bo8yYHOq//+ImvefwJMEx4JTOTNpeGgo1d+HsTIH0xL+PnR3XTVUifnA2GB4LDCvYoPgqom5wHR3fyJq1h6guZmdHIwPAf5dh1nLxZMZIh9K5wfD3yByoq2u1Tizuy9w9xPdvYu7dwEOuHudXxUSiOu1NrPxwDDgKj9yL6GuxPNaO5FzMaOOtnwdqDLzUaTs+7AKyXgfao+gkkrdGlgCbAqeWwXT84CHguFrgWJgTdSjTzDvW8CbRE62LQO6pUHmFsCCIPcKoHeqZ66wrkSeLI73tS4hcuy9fPqv0iBzNyInMjcDTwANUiFzMP4SkePpB4mcvxgWTE/J92EVmRP+PnR33WJCRCTsdGhIRCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTk/j8tYhZnjypKFwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -656,7 +656,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4FfX5///nnR0SdjCssglSBFmMihvGDcUNtypqUUoVERA/tv6u6qfWBWtra2tNCAgUqfizClIV0eJCpekHqiiYsK8BoYRdthgIWd/fP85BDzGQA5xkkszrcV1z5czMeyb3HfSVyZyZM+acQ0RE/CHK6wJERKT6KPRFRHxEoS8i4iMKfRERH1Hoi4j4iEJfRMRHFPoiIj6i0BcR8RGFvlQrM/vYzMZWsHyQme0ws5jg/IVmNs/MvjWzA2Y228y6hYxPNbMyM8svN11QTX1kmtl91fS9RpvZYjMrNLNXwxj/SPBnecDMpppZfDWUKbWEQl+q26vAEDOzcsuHAH9zzpUEg/sT4D2gNdARWAb8x8w6hGyzzTmXVG76vMo7qH7bgN8AUysbaGZXA48BVwAdgE7AM1VZnNQuCn2pbrOApsAlRxaYWRPgeuC14KI/AK8559Kcc9865/Y6554AvgSeOplvambtzOwdM9ttZnvMLCO4PMrMnjCzzWa2y8xeM7NGwXUJZvZ6cPx+M1tkZslm9lyw/ozgXxcZJ/vDCIdz7h3n3CxgTxjD7wVecc6tdM7tA54FhlZlfVK7KPSlWjnnCoC3gHtCFt8OrHHOLTWz+sCFwMwKNn8LGHCi39PMooEPgM0Ejn7bANODq4cGp8sIHBUnAUdC/F6gEdAOaAaMAAqcc78C5gOjg39djD7G991/nOmxE+0jTGcBS0PmlwLJZtasir6f1DIxXhcgvjQN+IeZPRT8JXBPcBkE/gqIArZXsN12oEXIfGsz219uTBvn3MFyy84jcJro/3POlQSXLQh+vRt40Tm3EcDMHgdWmNlPgWICYX+Gc24Z8NWJNOmca3wi4yMkCTgQMn/kdQPC+0tB6jgd6Uu1c84tAHYDg8ysE3Au8EZw9T6gDGhVwaatgtsdsc0517jcVD7wIXCkvjkk8EO1JvAXwBGbCRwMJQP/P/AxMN3MtpnZH8wsNvxOT5yZfRjypvTdJ7GLfKBhyPyR19+eenVSFyj0xSuvETjCHwJ84pzbCRAM7c+BH1ewze3Av0/ie20BTj9yZVA524D2IfOnAyXATudcsXPuGedcdwKnnK7n+9NSlX4meQVXFoVO/1vRNs65gSFvSv/tRJoMWgn0CpnvFexFR/kC6PSOeOc14AngbOCRcuseAz42szXAXwn8d/oLoD/Q7yS+15cETg09b2ZPAaXAOc65/wBvAr80sw8J/BXxW2BG8Cqiy4BvgFVAHoHTPaXBfe4k8B7AMTnnkk6i1h8I/rKKAaKBaDNLAEqO8ZfLa8CrZvY3Aj0/QeCKKZEA55wmTZ5MQCaB0znxFay7OLg+n8BR9Rbg/JD1qQROA+WXm249xvc6ncCVQ3sIBHl6cHkU8GRw/7uB14EmwXV3AmuBgwRCPh2ICa67AFgXrD+9in9OTwd/BqHT0yF95QOnh4z/ebDePAK/NH/w89Xk38mc05OzpGYzs17APOAu59zHXtcjUpvpnL7UeM65pcBNQM9jnJcXkTDpSF9ExEd0pC8i4iM17k/l5s2buw4dOkR0nwcPHiQxMTGi+6xN/Ny/n3sHf/fvt96/+uqrb5xzLSobV+NCv0OHDixevDii+8zMzCQ1NTWi+6xN/Ny/n3sHf/fvt97NbHPlo3R6R0TEVxT6IiI+otAXEfERhb6IiI8o9EVEfCSs0Deza8xsrZnlVPTwBzMbGnwi0ZLgdF/IunvNbH1wujeSxYuIyImp9JLN4FOHxgNXAbnAIjOb7ZxbVW7oDFfuCUJm1pTA4+1SCHxI1FfBbfdFpHoRETkh4RzpnwfkOOc2OueKCDxmblCY+78amOsCzzjdB8wFrjm5UkVE5FSFc3NWGwIfO3tELnB+BeNuNbP+BD5u9hHn3JZjbNum/IZmNhwYDpCcnExmZmZYxYcrPz8/4vusTfzcv597B3/37+fejyec0LcKlpX/lLb3gTedc4VmNoLA804vD3NbnHOTgckAKSkpLtJ30fntzrzy/Ny/n3sHf/fv596PJ5zTO7kEnjF6RFsCj5j7jnNuj3OuMDj7F+CccLcVEZHqE07oLwK6mFlHM4sDBgOzQweYWehDrG8EVgdffwwMMLMmZtYEGBBcJiIiHqj09I4LPCt0NIGwjgamOudWmtlYYLFzbjYwxsxuJPBA6b3A0OC2e83sWQK/OADGOuf2VkEfIiIShrA+ZdM5NweYU27ZkyGvHwceP8a2U4Gpp1CjiIhEiO7IFRHxEYW+iIiPKPRFRHxEoS8i4iMKfRERH1Hoi4j4iEJfRMRHFPoiIj6i0BcR8RGFvoiI13Jz4aGH4IILoH59MINNm6rkWyn0RUQiLT8fbr898DUcOTnw1lvQpAlcckmVlqbQFxGJtE8/hZkzYd688Mb37w87d8KcOfDjH1dpaQp9EZEIK3vnHVzwa1iiqi+KFfoiIhFQWFLKu9m5DHgxkwNvvYsB+996h6tfzOTd7FwKS0q9LhEI86OVRUTk2JZs2c/QqV9SXFpG660biS8tAiChpIjSVat5Yv9hnpm9imnDzqNXu8ae1qojfRGRU7B0y37unLyQ/QXFHCwq5bKNi4kqKwMgqqyMyzYs4mBRKfsLihk8eSFLt+z3tF6FvojISSosKeXeqV9SUPz9qZvr18wnobQYgITSYq5fs+C7dQXFgfFenurR6R0RkRNx660QfIM2HlhSbnVR9NGx2m3312z6/fVHD3o65PUtt8Dbb0e6ymPSkb6IyIl4/nno3RsSEytcHVdaQpl9Px9fWlLxfhIToU+fwP6qkUJfROREdOkCixdT9vTTFMTEU2Lfx6gDPu3bgFufPYNFZ9avcPMSi6IgJp6yZ56BxYsD+wP4+98D01dfBeY//DAw/+9/R7R8nd4RETlR0dHkj36YWzY0Iu2d5+m4byvLz4gh/bZklnWuT4fthZRF2Q82OxQbz8YmbfifWx7jnVFDaRh6fX75m7JGjgx8vfRSyMyMWOkKfRGRk5AYF8OGxq0Z9MAv6JTwOtvbfEvLPUWMfSWXG/6zn5iyo8cfjo5lfL/bmXDBjyEqisS4cvHrXLXUrdAXETkJm/I20qzTmxTGLWV3YRwPz/iGIf/cSXxxxeFdHB3L2hYdcBbFmaclEV3BXwLVQef0RUROwNb8rfxqwa+4ZfYtkLCOsr0DeHRiQ4Z9eOzAB0gsKuDqdZ+RGBfNg6lnVGPFR1Poi4iE4ZuCb/jdF7/j+nev56OvP2LIj4bwj5vnEHtgANeu/ooovg/8wJu1cUe9yRuF44oNXxIbZQzs2dKLFgCd3hEROa68ojxeXfEqr69+naLSIm7ucjMPnP0ALRMDwT394obE/7bou/FH3qx9PvWnPJb5Vzrt20r94kIg8LEM0y9pRHxMtCe9gEJfRKRCBSUFvLnmTV5Z/gp5RXkM7DCQUX1G0b5h+6PGdcteQJlBqUVRFB3Lny7+CVPPHYSzKG5sfzbDFr/HL+b/jbjSYhKiAuO5op9HXen0jojIUYrLipmxZgbXvXMdf/7qz/Rq0YuZN8zkD5f+4QeBD8BbbxFVUoz1OpsFf5/LghuGQFQUsdGGi45m/g33suDvc7GzexJVXBx4WIqHdKQvIgKUuTLmfD2H8dnjyc3Ppe9pfXnh0hc4J/mc42/YsiW88AJR//M/XBUVxVVAaZnjYFEJiXEx31+lc/1X8NJLEb3m/mQo9EXE15xz/Dv336Rnp7N+33rObHIm468YzyVtLsEsjMsq33//B4uio4yGCbHlFkbDL34RmDwUVuib2TVAGhANTHHOVfhhEWZ2GzATONc5t9jMOgCrgbXBIQudcyNOtWgRkUhYtGMR6VnpLNm9hPYN2/NC/xcY0GEAUVZ3z3xXGvpmFg2MB64CcoFFZjbbObeq3LgGwBjgi3K72OCc6x2hekVETtmqPatIz0rnP9v+w2n1T+OpC55i0BmDiI2KrXzjWi6cI/3zgBzn3EYAM5sODAJWlRv3LPAH4NGIVigiEiFfH/iajOwMPtn8CY3jG/NoyqPcceYdJMQkeF1atQkn9NsAW0Lmc4HzQweYWR+gnXPuAzMrH/odzSwbyAOecM7NP5WCRURO1I6DO3h56cu8l/Me8dHxjOg1gnu730tSXJLXpVW7cEK/oncyvrv1zMyigD8DQysYtx043Tm3x8zOAWaZ2VnOubyjvoHZcGA4QHJyMpkRfnc7Pz8/4vusTfzcv597B3/3n5+fz/ufvs8nBz5hwbeBp1dd0uASBjQaQIP9DVj82WKPK/RGOKGfC7QLmW8LbAuZbwD0ADKD73S3BGab2Y3OucVAIYBz7isz2wB0BY76aTvnJgOTAVJSUlxqaupJNXMsmZmZRHqftYmf+/dz7+Df/vOL8nlmzjP8347/43DpYQadMYgHez1Iq6RWXpfmuXBCfxHQxcw6AluBwcBdR1Y65w4AzY/Mm1km8Gjw6p0WwF7nXKmZdQK6ABsjWL+IyHcOlxxmxtoZTFk+hf2F+7mq/VWM7jOaTo06eV1ajVFp6DvnSsxsNPAxgUs2pzrnVprZWGCxc272cTbvD4w1sxKgFBjhnNsbicJFRI4oKSthVs4sXl76MrsO7eKi1hdxYdmF3JN6j9el1ThhXafvnJsDzCm37MljjE0Nef02UH1P/BURXylzZXyy6RMylmSwOW8zvVr04vlLnufcluf69r2MyuiOXBGpdZxzzN86n3HZ41izdw1dmnRh3OXjuLTtpeHdRetjCn0RqVWydmaRlpVG1q4s2ia15XeX/I6BHQYSHeXdxxXXJgp9EakV1uxdQ3pWOvO3zqdFvRY8cf4T3NLlFmKj6/5dtJGk0BeRGm1z3mbGZ4/nw00f0jCuIY+c8wh3druTejH1vC6tVlLoi0iNtPPgTiYum8i7698lLjqO+3vez9AeQ2kY19Dr0mo1hb6I1Cj7D+/nlRWv8OaaNyl1pdxx5h3cf/b9NK/XvPKNpVIKfRGpEQ4WH+S1Va8xbeU0CkoKuL7T9YzsPZI2SW28Lq1OUeiLiKcKSwt5a+1bTFk+hb2H93LF6VfwUJ+H6Ny4s9el1UkKfRHxRElZCe9veJ8JSyew4+AO+rXqx5g+Y+jZoqfXpdVpCn0RqVbOOeZunkvGkgy+PvA1PZv35NmLnqVfq35el+YLCn0RqRbOOT7f9jlp2Wms2rOKzo0681LqS1x++uW6i7YaKfRFpMot3b2UtKw0Fu1YRJukNjx38XNc1/E63UXrAYW+iFSZdfvWMS57HJlbMmmW0IzHz3uc27reRlx0nNel+ZZCX0Qibsu3Wxi/ZDxzNs4hKTaJMX3GcPeP7qZ+bH2vS/M9hb6IRMzuQ7uZtGwSb697m5ioGH7a46cM6zGMRvGNvC5NghT6InLKDhQeYOqKqbyx+g1Kykq4teutPHD2A7So38Lr0qQchb6InLRDxYf42+q/8dcVfyW/OJ/rOl3HyN4jadegXeUbiycU+iJywopKi/j7ur8zedlk9hzeQ2q7VB7q8xBdm3T1ujSphEJfRMJWWlbKP77+BxOWTGBr/lbObXkuL/V5id6n9fa6NAmTQl9EKuWcY96WeWRkZ5CzP4fuzbrzZL8nuaD1BbqxqpZR6IvIcS3cvpD0rHSWf7OcDg078KdL/8RV7a9S2NdSCn0RqdDy3ctJy07ji+1f0CqxFWMvHMsNnW8gJkqxUZvpX09EjrJh/wbGZY/j0/9+StOEpvzy3F9y+5m36y7aOkKhLyIAbM3fyoQlE/hg4wfUj6nPqN6jGNJ9CImxiV6XJhGk0BfxuW8KvuEvy/7CW+veItqiuaf7Pfysx89onNDY69KkCij0RXwqryiPV1e8yuurX6eotIibu9zMiLNHkJyY7HVpUoUU+iI+U1BSwBur32DqiqnkFeUxsMNARvUZRfuG7b0uTaqBQl/EJ4rLinln3TtMWjaJ3QW7uaTNJYzpO4ZuTbt5XZpUI4W+SB1X5sqY8/UcxmePJzc/l76n9eWPl/6Rvsl9vS5NPKDQF6mjnHMsP7Sc9PfTWb9vPd2admPCFRO4uM3FurHKxxT6InXQoh2LSMtKY+nupbRv2J4X+r/AgA4DiLIor0sTj4X1X4CZXWNma80sx8weO86428zMmVlKyLLHg9utNbOrI1G0iFRs5Z6VPDD3AYZ9PIztB7czuOlg3h30Ltd0vEaBL0AYR/pmFg2MB64CcoFFZjbbObeq3LgGwBjgi5Bl3YHBwFlAa+CfZtbVOVcauRZEZOOBjWRkZzB381waxzfm0ZRHuePMO1i4YCGxUbFelyc1SDind84DcpxzGwHMbDowCFhVbtyzwB+AR0OWDQKmO+cKga/NLCe4v89PtXARge3523l56cu8t+E9EqITeLDXg9zT/R6S4pK8Lk1qqHBCvw2wJWQ+Fzg/dICZ9QHaOec+MLNHy227sNy2bcp/AzMbDgwHSE5OJjMzM6ziw5Wfnx/xfdYmfu6/rvb+bem3fHLgExZ8uwCASxtcylWNrqLB/gYs/mzxd+Pqav/h8HPvxxNO6Ff0Nr/7bqVZFPBnYOiJbvvdAucmA5MBUlJSXGpqahhlhS8zM5NI77M28XP/da33/KJ8pq2axmsrX+Nw6WFu6nITI84eQaukVhWOr2v9nwg/93484YR+LhD6wMu2wLaQ+QZADyAzeBlYS2C2md0YxrYiEobDJYeZsXYGU5ZPYX/hfga0H8DoPqPp2Kij16VJLRNO6C8CuphZR2ArgTdm7zqy0jl3AGh+ZN7MMoFHnXOLzawAeMPMXiTwRm4X4MvIlS9StxWXFTMrZxYTl05k16FdXNT6Ih7q+xBnNTvL69Kklqo09J1zJWY2GvgYiAamOudWmtlYYLFzbvZxtl1pZm8ReNO3BBilK3dEKlfmyvh408eMXzKezXmb6dWiF89f8jzntjzX69Kklgvr5izn3BxgTrllTx5jbGq5+eeA506yPhFfcc4xf+t8xmWPY83eNXRp0oWMyzPo37a/7qKViNAduSI1RNbOLNKy0sjalUXbpLb87pLfcW3Ha3VTlUSUQl/EY2v2riE9K535W+fTol4Lft3v19zc5WbdVCVVQqEv4pHNeZsZnz2eDzd9SMO4hjxyziPc2e1O6sXU87o0qcMU+iLVbMfBHUxcOpFZObOIi47j/p73M7THUBrGNfS6NPEBhb5INdl/eD9Tlk/hzTVvUkYZd5x5B/effT/N6zWvfGORCFHoi1Sxg8UHeW3Va0xbOY2CkgKu73Q9I3uPpE3SDz6RRKTKKfRFqkhhaSFvrX2LKcunsPfwXq48/UpG9xlN58advS5NfEyhLxJhJWUlvL/hfSYsncCOgzvo16ofD/d9mB7Ne3hdmohCXyRSnHPM3TyXcdnj2JS3iZ7Ne/Kbi37D+a3Or3xjkWqi0Bc5Rc45Pt/2OWnZaazas4rOjTrz0mUvcXm7y3UXrdQ4Cn2RU7Bk1xLSstJYvHMxbZLa8NzFz3Fdx+uIjor2ujSRCin0RU7Cun3rGJc1jszcTJolNOPx8x7nx11/TGy07qKVmk2hL3ICtny7hfFLxjNn4xySYpMY02cMd//oburH1ve6NJGwKPRFwrD70G4mLZvE2+veJiYqhmE9hvHTHj+lUXwjr0sTOSEKfZHjOFB4gKkrpvLG6jcoKSvh1q638sDZD9CifguvSxM5KQp9kQocKj7E66tf59UVr5JfnM91na5jZO+RtGvQrvKNRWowhb5IiKLSImaum8nkZZPZe3gvqe1SeajPQ3Rt0tXr0kQiQqEvApSWlfLBxg+YsGQC2w5u49yW55LWJ43ep/X2ujSRiFLoi68555j333mMyx7HhgMb6N6sO09d+BQXtLpAN1ZJnaTQF99auH0h6VnpLP9mOR0bdeTF1Be58vQrFfZSpyn0xXeW715OWnYaX2z/glaJrRh74Vhu6HwDMVH630HqPv1XLr6Rsy+HcdnjmLdlHk0TmvLLc3/J7WfeTlx0nNeliVQbhb7UeVvztzJhyQQ+2PgB9WPqM6r3KIZ0H0JibKLXpYlUO4W+1FnfFHzDzL0z+ezdz4i2aO7tfi/DegyjcUJjr0sT8YxCX+qcvKI8Xl3xKq+vfp3CksLv7qJNTkz2ujQRzyn0pc4oKCngjdVvMHXFVPKK8hjYcSAphSncfsHtXpcmUmMo9KXWKy4t5p317zBp2SR2F+ymf9v+jOkzhjObnklmZqbX5YnUKAp9qbVKy0qZ8/UcJiyZQG5+Ln1P68sfL/0jfZP7el2aSI2l0JdaxzlH5pZM0rPTydmfQ7em3ZhwxQQubnOxbqwSqYRCX2qVRTsWkZaVxtLdS2nfsD0v9H+BAR0GEGVRXpcmUiuEFfpmdg2QBkQDU5xzz5dbPwIYBZQC+cBw59wqM+sArAbWBocudM6NiEzp4icr96wkPSudz7Z9xmn1T+OpC55i0BmDiI3S4wlFTkSloW9m0cB44CogF1hkZrOdc6tChr3hnJsYHH8j8CJwTXDdBuecPqpQTsrGAxvJyM5g7ua5NI5vzKMpjzK422Dio+O9Lk2kVgrnSP88IMc5txHAzKYDg4DvQt85lxcyPhFwkSxS/Gd7/nZeXvoy7214j4ToBB7s9SD3dL+HpLgkr0sTqdXCCf02wJaQ+Vzg/PKDzGwU8HMgDrg8ZFVHM8sG8oAnnHPzT75cqev2FOxhyvIpzFg7A8O4+0d3c1/P+2ia0NTr0kTqBHPu+AflZvZj4Grn3H3B+SHAec65h44x/q7g+HvNLB5Ics7tMbNzgFnAWeX+MsDMhgPDAZKTk8+ZPn36qfZ1lPz8fJKS/HuEWBv6LygrYF7ePP6V9y+KXBH9kvoxsNFAmsQ0OaX91obeq5Kf+/db75dddtlXzrmUysaFc6SfC4Q+GLQtsO0446cDLwM45wqBwuDrr8xsA9AVWBy6gXNuMjAZICUlxaWmpoZRVvgyMzOJ9D5rk5rc/+GSw0xfM50pK6ZwoPAAA9oPYHSf0XRs1DEi+6/JvVcHP/fv596PJ5zQXwR0MbOOwFZgMHBX6AAz6+KcWx+cvQ5YH1zeAtjrnCs1s05AF2BjpIqX2qu4rJhZObOYuHQiuw7t4qI2FzGmzxi6N+vudWkidVqloe+cKzGz0cDHBC7ZnOqcW2lmY4HFzrnZwGgzuxIoBvYB9wY37w+MNbMSApdzjnDO7a2KRqR2KHNlfLzpYzKyM/jvt/+ld4ve/P6S35PSstK/SkUkAsK6Tt85NweYU27ZkyGvHz7Gdm8Db59KgVI3OOeYv3U+6VnprN23lq5NupJxeQb92/bXXbQi1Uh35EqVy9qZRVpWGlm7smjXoB3PX/I8AzsO1F20Ih5Q6EuVWbN3DWlZaSzYuoAW9Vrw636/5uYuN+suWhEPKfQl4jbnbSYjO4OPNn1Ew7iGPHLOI9zZ7U7qxdTzujQR31PoS8TsOLiDiUsnMitnFnHRcdzf836G9hhKw7iGXpcmIkEKfTll+w7v45Xlr/DmmjdxOAZ3G8x9Pe+jeb3mXpcmIuUo9OWkHSw+yGurXmPaymkUlBRwQ6cbGNl7JK2TWntdmogcg0JfTlhhaSEz1sxgyvIp7Cvcx5WnX8noPqPp3Liz16WJSCUU+hK2krISZm+YzctLX2bHwR30a9WPh/s+TI/mPbwuTUTCpNCXSpW5MuZunktGdgab8jbRs3lPfnPRbzi/1Q8+bFVEajiFvhyTc47Ptn1GWlYaq/eu5ozGZ5B2WRqXtbtMd9GK1FIKfanQkl1LSMtKY/HOxbRJasNvL/4t13a8luioaK9LE5FToNCXo6zdu5aM7AwyczNpltCM/z3/f7mty23ERusuWpG6QKEvAGzJ20LGkgw+/PpDkuKSeLjvw9zV7S7qx9b3ujQRiSCFvs/tOrSLSUsn8c76d4iJimFYj2H8tMdPaRTfyOvSRKQKKPR96kDhAV5Z8Qpvrn6TElfCbV1vY/jZw2lRv4XXpYlIFVLo+8yh4kO8vvp1Xl3xKvnF+VzX6TpG9h5JuwbtKt9YRGo9hb5PFJUWMXPdTCYvm8zew3u5rN1ljO4zmq5NunpdmohUI4V+HVdaVsoX+V/wu3d/x7aD2ziv5XmM6TuGXi16eV2aiHhAoV9HOef49L+fMi57HBsPbOSsZmfx1IVPcUGrC3RjlYiPKfTroM+3fU56Vjor9qygY6OO/Kz5z3j42ocV9iKi0K9Llu9eTlpWGl/s+IJWia0Ye+FYbuh8Awv+b4ECX0QAhX6dkLMvh3HZ45i3ZR5NE5ryy3N/ye1n3k5cdJzXpYlIDaPQr8W25m9lwpIJvL/hfRJjExndezRDug/RXbQickwK/Vrom4JvmLxsMjPXzSTaohl61lCG9RhG44TGXpcmIjWcQr8WySvK49UVr/L66tcpKi3ili638MDZD5CcmOx1aSJSSyj0a4GCkgLeWP0GU1dMJa8oj4EdBzK692hOb3i616WJSC2j0K/BikuLeXv920xaNolvCr6hf9v+jOkzhjObnul1aSJSSyn0a6DSslLmfD2HCUsmkJufS9/T+vJi6ov0Oa2P16WJSC2n0K9BnHNkbskkPTudnP05dGvajQlXTODiNhfrOnsRiQiFfg2xaMciXsp6iWW7l9GhYQdeuPQFBrQfQJRFeV2aiNQhCn2PrdyzkvSsdD7b9hnJ9ZN5+oKnGXTGIGKi9E8jIpEXVrKY2TVAGhANTHHOPV9u/QhgFFAK5APDnXOrguseB34WXDfGOfdx5MqvvTYe2EhGdgZzN8+lcXxjHk15lMHdBhMfHe91aSJSh1Ua+mYWDYwHrgJygUVmNvtIqAe94ZybGBx/I/AicI2ZdQcGA2cBrYF/mllX51xphPuoNbbnb2fC0gnM3jCbhOgEHuz1IPd0v4ekuCSvSxMRHwjnSP88IMc5txHAzKYDg4DvQt85lxcyPhFwwdeDgOnOuULgazPLCe7v8whTfzRAAAAKpElEQVTUXqvsKdjDlOVTmLF2BoZx94/u5r6e99E0oanXpYmIj4QT+m2ALSHzucD55QeZ2Sjg50AccHnItgvLbdumgm2HA8MBkpOTyczMDKOs8OXn50d8n+EqKCtgXt48/pX3L4pdMecnnc/ARgNpcrAJyxYuq5YavOzfa37uHfzdv597P55wQr+iawXdDxY4Nx4Yb2Z3AU8A957AtpOByQApKSkuNTU1jLLCl5mZSaT3WZnDJYeZvmY6U1ZM4UDhAa7ucDWjeo+iY6OO1VoHeNN/TeHn3sHf/fu59+MJJ/RzgdCnZrcFth1n/HTg5ZPcttYrLivm3fXvMmnpJHYV7OKiNhcxps8Yujfr7nVpIiKEcxH4IqCLmXU0szgCb8zODh1gZl1CZq8D1gdfzwYGm1m8mXUEugBfnnrZHtuyBW67DRo1goYN4ZZbKNu8iTkb53DTrJt4duGztE5qzV+v/isTr5yowBeRGqPSI33nXImZjQY+JnDJ5lTn3EozGwssds7NBkab2ZVAMbCPwKkdguPeIvCmbwkwqtZfuXPoEFx+OcTHw7RpOODQYz/n2349ePqZ9rRr2Y2MyzPo37a/7qIVkRonrOv0nXNzgDnllj0Z8vrh42z7HPDcyRZY4/zlL7BxI6xdy1cNDpCelc7O+2L5xy8PMW3zhZx5/yTdRSsiNZbvb/ssKS3jUHEpiXExREeFcWQ+ezaHUnrxi01/YsHWBbSo14IRNzyLvZ/BjxasAwW+iNRgvgz9wpJS5izfzsuZG1i/K5+YKKOkzNH1tCRGpHbm2p6tiI+J/sF2m/M20zR7IR/1imfZ7nr8/JyfM7jbYOrF1IOzMmHmzOpvRkTkBPgu9Jds2c/QqV9SXFrGwaLA2wvFpYGrSNfuzOeJd1fwzOxVTBt2Hr3aBR4/uOPgDiYuncisnFksyiugU4cL+ejWd2gQ1+D7HTdtCvv2VXs/IiInwlehv3TLfu6cvJCC4mO/lxz4RVDK4MkL+cvQbny+dybT10zH4RjcbTAxUas4p2UKhAY+gPvB7QciIjWOb0K/sKSUe6d+edzA/05UIaWN5vPg/z1BVHQxN3S6gZG9R9I6qTU0+TPs3fvDbfbtgyZNIl+4iEgE+Sb05yzfTnFp2fEHWTGxTRYS1yyTqJiDuPwejOr7EMMvuPD7MWedBStX/nDbVaugu67HF5GazTeXmrycueG7c/g/VEpso0Ukdv4jCcn/oOxwaw5+PYr8LT/h7YXFRw+98UZYuDBw2eYRmzbBf/4TWCciUoP55kh//a78CpfHNFhOXItPiI7fTWlBOw5tu53SQ52/W79uVz6lZe77yznvvx8yMmDQIPjNb8AMfv1raNcOHnigOloRETlpvjjSL3OOmGNcgx/TYBW4KAq2DOHQppFHBT5ATJRxsKjk+wWJiTBvHnTtCkOGwN13Q8eOgWVJ+kx8EanZfHGkH2WB6/ArcnjHICiL41i//0rKHIlx5X5Mp58Ob78d4SpFRKqeL470Abqcdoyj8LIEjvdj6HpaUnh36oqI1AK+Cf0HUzuTGPfDu2yPJzEumgdTz6iiikREqp9vQv/anq2IjT6xdmOjoxjYs2UVVSQiUv18E/rxMdFMG3Ye9WLDO9qvFxsYX9Fn8IiI1Fa+CX2AXu0aM314PxrXiz3mqZ7EuGga14tl+vB+3332johIXeGLq3dC9WrXmC9+dQUfLt/By5k5rDvqUzYb8GBqZwb2bKkjfBGpk3wX+hA41XNTnzbc1KcNpWWOg0Ul4X+evohILebL0A8VHWU0TIj1ugwRkWrhq3P6IiJ+p9AXEfERhb6IiI8o9EVEfEShLyLiIwp9EREfUeiLiPiIQl9ExEcU+iIiPqLQFxHxEYW+iIiPKPRFRHwkrNA3s2vMbK2Z5ZjZYxWs/7mZrTKzZWb2qZm1D1lXamZLgtPsSBYvIiInptJP2TSzaGA8cBWQCywys9nOuVUhw7KBFOfcITN7EPgDcEdwXYFzrneE6xYRkZMQzpH+eUCOc26jc64ImA4MCh3gnPuXc+5QcHYh0DayZYqISCSEE/ptgC0h87nBZcfyM+DDkPkEM1tsZgvN7KaTqFFERCIknIeoVPQ4KVfhQLOfACnApSGLT3fObTOzTsA8M1vunNtQbrvhwHCA5ORkMjMzw6k9bPn5+RHfZ23i5/793Dv4u38/93484YR+LtAuZL4tsK38IDO7EvgVcKlzrvDIcufctuDXjWaWCfQBjgp959xkYDJASkqKS01NPaEmKpOZmUmk91mb+Ll/P/cO/u7fz70fTzindxYBXcyso5nFAYOBo67CMbM+wCTgRufcrpDlTcwsPvi6OXAREPoGsIiIVKNKj/SdcyVmNhr4GIgGpjrnVprZWGCxc2428AKQBMw0M4D/OuduBH4ETDKzMgK/YJ4vd9WPiIhUo7AejO6cmwPMKbfsyZDXVx5ju8+AnqdSoIiIRI7uyBUR8RGFvoiIjyj0RUR8RKEvIuIjCn0RER8x5yq8udYzZrYb2Bzh3TYHvonwPmsTP/fv597B3/37rff2zrkWlQ2qcaFfFcxssXMuxes6vOLn/v3cO/i7fz/3fjw6vSMi4iMKfRERH/FL6E/2ugCP+bl/P/cO/u7fz70fky/O6YuISIBfjvRFRASFvoiIr9TJ0DezpmY218zWB782Oca4j8xsv5l9UN01VgUzu8bM1ppZjpk9VsH6eDObEVz/hZl1qP4qq0YYvfc3sywzKzGz27yosaqE0fvPzWyVmS0zs0/NrL0XdVaVMPofYWbLzWyJmS0ws+5e1FljOOfq3AT8AXgs+Pox4PfHGHcFcAPwgdc1R6DnaAJPJOsExAFLge7lxowEJgZfDwZmeF13NfbeATgbeA24zeuaq7n3y4D6wdcP1pV/9xPov2HI6xuBj7yu28upTh7pA4OAacHX04AKH8junPsU+La6iqpi5wE5zrmNzrkiYDqBn0Oo0J/L34ErLPjUm1qu0t6dc5ucc8uAMi8KrELh9P4v59yh4OxCAo88rSvC6T8vZDaRYzzj2y/qaugnO+e2AwS/nuZxPdWhDbAlZD43uKzCMc65EuAA0Kxaqqta4fReV51o7z8DPqzSiqpXWP2b2Sgz20DgLMCYaqqtRgrryVk1kZn9E2hZwapfVXctNURFR+zlj2jCGVMb1dW+whF272b2EyAFuLRKK6peYfXvnBsPjDezu4AngHururCaqtaGvjvGIxoBzGynmbVyzm03s1bArmONrUNygXYh822BbccYk2tmMUAjYG/1lFelwum9rgqrdzO7ksAB0aXOucJqqq06nOi//XTg5SqtqIarq6d3ZvP9b/J7gfc8rKW6LAK6mFlHM4sj8Ebt7HJjQn8utwHzXPDdrVounN7rqkp7N7M+wCTgRudcXTsACqf/LiGz1wHrq7G+msfrd5KrYiJwnvpTAv+4nwJNg8tTgCkh4+YDu4ECAkcMV3td+yn2fS2wjsDVDL8KLhtL4H92gARgJpADfAl08rrmauz93OC/8UFgD7DS65qrsfd/AjuBJcFpttc1V3P/acDKYO//As7yumYvJ30Mg4iIj9TV0zsiIlIBhb6IiI8o9EVEfEShLyLiIwp9EREfUeiLiPiIQl9ExEf+H3ukTZhfe0KCAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZhU5Zn+8e/TC82+KNKCIGhwAxVMd5RoQBABNRhQEOKCIEMYspkYx59MNBOIY0IyjOMkOkmIP02DiS1BWZQgtgiJZlACKmATVoWgICrSagNCL8/8Uae1UlTTTVd3LZz7c13nqrO855y7CqqePkvVa+6OiIiEV1aqA4iISGqpEIiIhJwKgYhIyKkQiIiEnAqBiEjIqRCIiIScCoGISMipEIiIhJwKgaScmS01sx/FmT/CzN4xs5xg+mIze97MPjazD81skZmdHdV+oJlVm1l5zPDFJD2PFWY2KUn7+paZrTazQ2b223q0vy14LT80s4fNLC9q2T1mtt7MKs1sWlPmlvSkQiDp4LfAODOzmPnjgN+5e2XwYf4ssBDoApwGrAP+YmY9otbZ5e6tY4aVTf4Mkm8X8O/Aw3U1NLNhwFRgMNADOB2YHtVkK/D/gMWNnlIyggqBpIMFwAlA/5oZZtYBGA7MDmb9DJjt7v/t7h+7+wfufjewCvhhQ3ZqZt3M7Ekze8/M9prZA8H8LDO728x2mNm7ZjbbzNoFy5qb2aNB+zIz+6uZ5ZvZvUH+B4KjkAca+mLUh7s/6e4LgL31aD4e+P/uXuru+4B7gAlR2ypy9yXAx00SVtKeCoGknLsfBOYCN0fNHgNsdPe1ZtYSuBj4Q5zV5wJDj3WfZpYNPA3sIPJX8ilAcbB4QjAMIvLXc2ug5oN9PNAO6AacCEwBDrr7XcALwLeCo5Bv1bLfsqMMU4/1edRTb2Bt1PRaIN/MTmyi/UmGyUl1AJFAEbDYzL4dFIabg3kQOVrIAnbHWW83cFLUdBczK4tpc4q774+ZdyGRU0x3uHtlMO/F4PFG4D53fwPAzP4VeN3MbgEqiBSAnu6+DlhzLE/S3dsfS/tG0hr4MGq6ZrwN9TuikOOcjggkLbj7i8B7wAgzOx34AvD7YPE+oBroHGfVzsF6NXa5e/uYIbYIQOQv+h1RRSBaFyJHCjV2EPmjKR+YAywFis1sl5n9zMxy6/9Mj52ZLYm68H1jAzZRDrSNmq4Z16kgAVQIJL3MJnIkMA541t33AAQf5CuB6+KsMwb4UwP2tRM4teaOpBi7gO5R06cClcAed69w9+nu3ovI6arhfHZKq87fdI9zR1P08P1467j7lVEXvn93LE8yUAr0iZruEzwXHQ0IoFNDkl5mA3cD5wO3xSybCiw1s43AI0T+794ODAD6NWBfq4icVpphZj8EqoACd/8L8Bhwp5ktIXK08WPg8eDupUHA+8AG4CMip4qqgm3uIXJNoVbu3roBWY8QFLAcIBvINrPmQGUtRzizgd+a2e+IPOe7idypVbOt3GA7WUBOsK0Kd6+Ksy05Hrm7Bg1pMwAriJwKyouz7EvB8nIif33vBC6KWj6QyCmk8phhVC37OpXIHUt7iXy4/zyYnwX8W7D994BHgQ7BsuuBTcB+Ih/8PwdygmVfBDYH+X/exK/TtOA1iB6mRT2vcuDUqPbfC/J+RKSQ5kUt+22cbU1I9f8FDckbLPiPIJJRzKwP8Dxwg7svTXUekUymawSSkdx9LTASOK+W8/wiUk8JFQIzO8HMSsxsS/DYIU6bvma20sxKzWydmY2NWmZmdq+ZbTazv5nZrYnkkXBx9xfcfabHPy8uIvWU6BHBVGCZu58BLAumYx0Abnb33sAVwP1mVnMv9QQit/Gd7e7n8NkXekREJEkSukZgZpuAge6+28w6Ayvc/aw61lkLjHb3LWa2isg53q3Hst+OHTt6jx49Gpw7Efv376dVq1Yp2XdDKXPyZGJuZU6eVOdes2bN++5+Uuz8RM+t5rv7boCgGHQ6WmMzuxBoBmwLZn0OGGtm1xC5O+NWd99Sy7qTgckA+fn5zJw5M8HoDVNeXk7r1o1yB2DSKHPyZGJuZU6eVOceNGjQjrgL6rqtCHgOeD3OMAIoi2m77yjb6Uzktrt+UfPKgduD8WuBF+pzq1NBQYGnyvLly1O274ZS5uTJxNzKnDypzg2s9jifqXUeEbj75bUtM7M9ZtbZPzs19G4t7doS+Ynbu939pahFbwFPBOPzidzfLCIiSZToxeJFRH6NkeBxYWwDM2tG5EN+trvH/nrkAuCyYPxSIl/GERGRJEq0EMwAhpjZFmBIMI2ZFZrZQ0GbMUR+BmCCmb0WDH2j1h9lZuuBnwBJ6d1JREQ+k9DFYo/8aNXgOPNXE3you/ujRL6iH2/9MuDLiWQQEZHE6JvFIiIhp0IgIhJyKgQiIiGnQiAiEnIqBCIiIadCICIScioEIiIhp0IgIhJyKgQiIiGnQiAiEnIqBCIiIadCICIScioEIiIhp0IgIhJyKgQiIiGnQiAiEnIqBCIiIadCICIScioEIiIhp0IgIhJyKgQiIiGnQiAiEnIqBCIiIZdQITCzE8ysxMy2BI8d4rTpa2YrzazUzNaZ2dioZYPN7BUze83MXjSznonkERGRY5foEcFUYJm7nwEsC6ZjHQBudvfewBXA/WbWPlj2S+BGd+8L/B64O8E8IiJyjBItBCOAomC8CBgZ28DdN7v7lmB8F/AucFLNYqBtMN4O2JVgHhEROUbm7g1f2azM3dtHTe9z9yNOD0Utv5BIwejt7tVm1h9YABwEPgL6uftHtaw7GZgMkJ+fX1BcXNzg3IkoLy+ndevWKdl3Qylz8mRibmVOnlTnHjRo0Bp3LzxigbsfdQCeA16PM4wAymLa7jvKdjoDm4h82NfMexK4KBi/A3iorjzuTkFBgafK8uXLU7bvhlLm5MnE3MqcPKnODaz2OJ+pOXVVEHe/vLZlZrbHzDq7+24z60zktE+8dm2BxcDd7v5SMO8koI+7vxw0exx4pq48IiLSuBK9RrAIGB+MjwcWxjYws2bAfGC2u/8hatE+oJ2ZnRlMDwH+lmAeERE5RnUeEdRhBjDXzP4J+DtwHYCZFQJT3H0SMAYYAJxoZhOC9Sa4+2tm9jXgCTOrJlIYJiaYR0REjlFChcDd9wKD48xfDUwKxh8FHq1l/flEjhZERCRF9M1iEZGQUyEQEQk5FQIRkZBTIRARCTkVAhGRkFMhEBEJORUCEZGQUyEQEQk5FQIRkZBTIRARCTkVAhGRkFMhkMS89RZ8+9vwxS9Cy5ZgBtu3pzqViBwDFQJJzNatMHcudOgA/funOo2INIAKgSRmwADYswf++Ee47rpUpxGRBlAhyCCVVdV89EkFVdUN72e60WXpv5BIpku0YxppYocqq/jj+t38csU2trxbTk6WUVntnNmpNVMGfo6rzutMXk52qmOKSAZTIUhjr+0sY8LDq6ioqmb/4SoAKqoiRwOb9pRz9/zXmb5oA0UTL6RPt/apjCoiGUzH9Wlq7c4yrp/1EmUHKz4tArH2H66i7GAFX531Emt3liU5oYgcL1QI0tChyirGP7yKgxXxC0CsgxWR9ocq69deRCSaCkEa+uP63VRUVR/TOhVV1SxZ/04TJRKR45kKQRr65YpttZ4Oqs3+w1X8csXWJkokIsczXSxOM1XVzpZ3y+Muy2mznurDJ1F96OS4yze/W05VtZOdZU0Z8Ujz5kUe16yJPC5ZAiedFBkuvTS5WUTkmCVcCMzsBOBxoAewHRjj7vti2nQHngSygVzgF+7+q2BZAfBboAXwR+A77p5GN8on1/7DleRk2ad3B32mirz8p8jK/YjK8rM4vHcAVQdOBz770M/JMvYfrqRt89ykZj7ii2Tf+Ebk8dJLYcWK5GYRkWPWGKeGpgLL3P0MYFkwHWs3cLG79wUuAqaaWZdg2S+BycAZwXBFI2TKWK2a5VAZ9wtj2ex/8zscem8IWc3fomX339Cyx4PktFkHRE4jVVY7rZql4CDPPf6gIiCSERqjEIwAioLxImBkbAN3P+zuh4LJvJr9mllnoK27rwyOAmbHWz9MsrOMMzq1jr+wqhWH3x/M/q1T+WT3NVjWJ7To+ntafe4/ye3wv/TslJv800IikvEs0bMwZlbm7u2jpve5e4c47boBi4GewB3u/qCZFQIz3P3yoE1/4E53Hx5n/clEjhzIz88vKC4uTih3Q5WXl9O6dS0f1I2k7GAFb+87SHUd/zbVXs0O38i66hfYw05aWEsubTuAAW0G0Ca7TVIzN7ZMzAyZmVuZkyfVuQcNGrTG3Qtj59frPIKZPQfEu0J5V30DuPtO4PzglNACM5tH9AnuqKa1rD8LmAVQWFjoAwcOrO+uG9WKFSto6n0fqqzionuXUXawoh6tzwfOp137t7jwC6+z9K2lLC9fzlc+9xXG9x5P97bdk5K5sWViZsjM3MqcPOmau16FoOYv9njMbI+ZdXb33cGpnnfr2NYuMysF+gN/AbpGLe4K7KpPpuNZXk42RRMv5KuzXqrXl8pa5GYz+8ax9On2z7z54ZsUlRaxcOtC5m2ex2WnXkafw30YyMCmDy4iGakxrhEsAsYH4+OBhbENzKyrmbUIxjsAlwCb3H038LGZ9TMzA26Ot34Y9enWnuLJ/WjfIpdWzeL/qFyrZtm0b5FL8eR+n/7W0GntTmPaxdNYOnopk86bxF/f+Sv3vXMfNy+5mef//jzVfmxfVBOR419jFIIZwBAz2wIMCaYxs0Izeyhocw7wspmtBf4EzHT39cGyrwMPAVuBbcCSRsh0XOjTrT0v3zWYe685j7PyW2MGudmGGZyV34Z7rzmPl+8aHPcH5zq26Mitn7+VktEljOowij379/Cd5d9hxIIRzNs8j0NVh+LsUUTCKOF7Dd19LzA4zvzVwKRgvITIyex4668Gzk00x/EqLyebkRecwsgLTqGq2tl/uJJWzXLqfXdQy9yWDGw7kLsH3E3JjhIeef0Rpq+czgOvPsAN59zA2LPG0i6vXRM/CxFJZ/qJiQySnWW0bd6wW0RzsnK48rQreXz44zw09CHOPvFsfvHqLxgybwgzVs3g7fK3myCxiGQC/cREyJgZF3W+iIs6X8TmfZspKi3i8Y2PU7yxmKHdhzLh3An0OrFXqmOKSBLpiCDEzuxwJvd+6V6WjFrCuF7j+PPbf2bs02OZtHQSL779IiH+pQ+RUFEhEE5udTK3F95OyegSvlfwPd788E2+/tzXGfXUKBZtW0RFVX2+zyAimUqFQD7Vplkbbjn3Fp4Z9Qz3XHIP7s5dL97FFU9eQVFpEeWH4/8qqohkNhUCOUJudi4je47kya88yYODH6R72+7MXD2TIfOGcN+a+3j3wFG/MygiGUYXi6VWZsaArgMY0HUApe+X8kjpIxSVFjFnwxy+fNqXmdB7Aj079Ex1TBFJkAqB1Evvjr2ZeelMdn68kzkb5rBg6wIWbltI/1P6c8u5t1CYX0jky+Eikml0akiOSbc23fj+Rd/n2VHP8s2+36R0bykTl07k+sXX88z2Z6isrkx1RBE5RioE0iDtm7dnSp8pLB21lB/0+wHlFeXc8ac7GD5/OL//2+85UHEg1RFFpJ5UCCQhzXOaM+asMSwcsZD7B95PxxYd+cmqnzD0iaE88OoD7D24N9URRaQOKgTSKLKzshncfTCPXvUos6+czec7fZ5Z62Yx7Ilh/Gjlj9jx0Y5URxSRWuhisTS6CzpdwAWXXRC3b4QJvSfQt1PfVEcUkSg6IpAmE69vhHFLxqlvBJE0o0IgTS66b4SpF05V3wgiaUaFQJKmZW5LbjznRhZfu5ifDfgZLXJaMH3ldIbNG8asdbP48NCHqY4oEkoqBJJ06htBJL3oYrGkzNH6Rujboi/5e/M558RzUh1T5LinIwJJC7F9I5QeLGXM02OY9Owk/vL2X9Q3gkgT0hGBpJWavhF6fdSLdzq9w6MbHmXKc1M4s8OZTOg9gStOu4LcrNxUxxQ5ruiIQNJSi6wW/9A3QrVX8/0Xv8+VT1ypvhFEGpkKgaS12L4RTm17qvpGEGlkOjUkGUF9I4g0nYSOCMzsBDMrMbMtwWOHOG26m9kaM3vNzErNbEowv6WZLTazjcH8GYlkkfCo6Rvh6Wue5rozr+PZHc9yzaJr+MZz3+Cv7/xVF5ZFjlGip4amAsvc/QxgWTAdazdwsbv3BS4CpppZl2DZTHc/G7gAuMTMrkwwj4SI+kYQaRyJFoIRQFEwXgSMjG3g7ofdveY3BPJq9unuB9x9eU0b4BWga4J5JITUN4JIYiyRw2gzK3P39lHT+9w93umhbsBioCdwh7s/GLO8PZFCcLm7v1HLviYDkwHy8/MLiouLG5w7EeXl5bRu3Tol+26osGWu9mrWH1zPso+W8eahN2mZ1ZIBbQYwoM0A2mS3aeSk/yhsr3WqZGJmSH3uQYMGrXH3wiMWuPtRB+A54PU4wwigLKbtvjq21QVYBeRHzcsBlgDfrStLzVBQUOCpsnz58pTtu6HCnPmVPa/4t5d928/77XleMKfAp//vdN/+4fZG2XY8YX6tkykTM7unPjew2uN8ptZ515C7X17bMjPbY2ad3X23mXUGjnovn7vvMrNSoD8wL5g9C9ji7vfXlUXkWKlvBJG6JXqNYBEwPhgfDyyMbWBmXc2sRTDeAbgE2BRM/zvQDvhugjlEjkp9I4jULtFCMAMYYmZbgCHBNGZWaGYPBW3OAV42s7XAn4jcKbTezLoCdwG9gFeC20snJZhH5KjUN4LIkRL6Qpm77wUGx5m/GpgUjJcA58dp8xZgiexfpKFq+kYYe9ZYSnaU8MjrjzB95XQeePUBbjjnBsaeNZZ2ee1SHVMkKfQTExJq6htBRD8xIQIcvW+EoT2GckvvW9Q3ghy3dEQgEiO2b4Q/v/Vn9Y0gxzUVApFa1PSNUDK6hO8VfI83y95kynNTGP3UaJ7a9hQV1RWpjijSKFQIROrQplkb9Y0gxzUVApF6Ut8IcrzSxWKRY3S0vhEKWhTQdV9X9Y0gGUVHBCIJiO0b4ZUDr6hvBMk4OiIQaQQ1fSP0Ke/Dzo47eWzjY0xcOpHeJ/ZmwrkTuPzUy8nJ0ttN0pOOCEQaUavsVuobQTKOCoFIE2ie05wxZ41h4YiF3D/wfjq26MhPVv2EoU8M5YFXH2Dvwb2pjijyKRUCkSaUnZXN4O6DefSqR5l95Ww+3+nz/Hrdrxn2xDB+tPJH7PhoR6ojiugagUiy1PSN8MaHbzC7dDYLti5Q3wiSFnREIJJkp7c7nWkXT+PZ0c+qbwRJCyoEIikS3TfCnV+4U30jSMqoEIikWMvcltzU6yYWX7uYn/b/KS1yWjB95XSGzRvGrHWz+PDQh6mOKMc5FQKRNJGTlcNVp1/F48Mf5zdDf8PZJ6hvBEkOXSwWSTNmRr/O/ejXuR+bPtikvhGkyemIQCSNnXXCWfy4/49ZMmoJN51zk/pGkCahQiCSAU5udTL/8oV/oWR0CbcV3Ka+EaRRqRCIZJA2zdow8dyJ6htBGpUKgUgGUt8I0pgSLgRmdoKZlZjZluCxQ5w23c1sjZm9ZmalZjYlTptFZvZ6onlEwqSmb4SHhz1M8ZeLueSUSygqLWLYE8O4+8W72bpva6ojSgZojCOCqcAydz8DWBZMx9oNXOzufYGLgKlm1qVmoZldC+iYViQBsX0jLN2+VH0jSL00RiEYARQF40XAyNgG7n7Y3Wu+JpkXvV8zaw18D/j3RsgiEno1fSOUjC7hm32/SeneUiYuncj1i6/nme3PUFldmeqIkmYs0b8SzKzM3dtHTe9z93inh7oBi4GewB3u/mAw/7+APwOvAk+7+7m17GcyMBkgPz+/oLi4OKHcDVVeXk7r1q1Tsu+GUubkScfch6sPs2r/Kp7/6Hneq3yPE3NOZFCbQfRr3Y+8rLy0zFyXTMwMqc89aNCgNe5eGDu/XoXAzJ4DTo6z6C6gqD6FIGp5F2ABcDXQGbjH3a82sx4cpRBEKyws9NWrV9eZuymsWLGCgQMHpmTfDaXMyZPOuauqq1ixcwWPlD7C2vfW0i6vHV8966t0/6A7Vw++OtXxjkk6v85Hk+rcZha3ENTrm8XufvlRNrzHzDq7+24z6wwc9XYFd99lZqVAf+AkoMDMtgdZOpnZCncfWJ9cIlJ/NX0jDO4+mFfffZVHXn+EX6/7NbmWy2srX+Pm3jfTvW33VMeUFGiMawSLgPHB+HhgYWwDM+tqZi2C8Q7AJcAmd/+lu3dx9x7Al4DNKgIiTe+CThfw88t+zsKRCylsVcj8rfO5ev7V3Lb8Nta+tzbV8STJGqMQzACGmNkWYEgwjZkVmtlDQZtzgJfNbC3wJ2Cmu69vhH2LSAJOb3c6N5x4w6d9I6x6ZxU3/fEmxi8Zz/K/L1ffCCGR8I/OufteYHCc+auBScF4CXB+HdvZDtR5fUBEGl9N3wiTzpvEk1ueZM6GOdy6/FZOa3ca43uNZ/jnhpOXnZfqmNJE9M1iEflUbN8IzbObM23lNIbNG8Zv1v1GfSMcp1QIROQI8fpG+PmrP2fIvCH8dNVP2VW+K9URpRGpPwIRqVW8vhGKNxbz2MbH1DfCcURHBCJSL+ob4filQiAix0R9Ixx/VAhEpEHUN8LxQ4VARBJSW98IQ+cNVd8IGUIXi0WkUdT0jTCg6wBK3y/lkdJHKCotYs6GOXz5tC8zofcEenbomeqYEocKgYg0upq+EXZ+vJM5G+Ywf8t8Fm5bSP9T+nPLubdQmF+ImaU6pgR0akhEmkxtfSPcsPgG9Y2QRlQIRKTJtW/enil9prB01FJ+0O8HfFzxMXf86Q6Gzx/OYxsf42DlwVRHDDUVAhFJmuY5zRlz1hgWjljI/QPvp2OLjvz45R8zdN5QHnztQT745INURwwlFQIRSbqavhEevepRZl85mws6XcCv1v6KofOGcs/Ke9jx0Y5URwwVFQIRSanovhGGnz48fH0j7NwJo0dDu3bQti1cey38/e9JjaBCICJp4fR2pzPt4mlN2zdCeTmMGRN5TAcHDsBll8HGjVBUBHPmwJYtMGgQ7N+ftBgqBCKSVmr6RigZXcKdX7iTd/a/w63Lb2XkwpE8sfkJDlUdavjGly2DP/wBnn++8QIn4je/gTfegAULYORIGDECFi2CHTvg179OWgwVAhFJS0frG2Hph0sb1DdC9ZNP4sFjWli0CPr1g55RX7Q77TS45BJYeESvv01GhUBE0lq8vhGeLnu63n0jHKqsYv6rbzH0vhV8OHc+BpTNfZJh961g/qtvcaiyKjlPJJ7SUjg3TseMvXvDhg1Ji6FvFotIRojuG+F3z/6O0haldfaN8NrOMiY8vIqKqmq6vP0GeVWHAWheeZiqDX/j7rJPmL5oA0UTL6RPt/bJf1IffAAdOhw5/4QTYN++pMXQEYGIZJxTmp1SZ98Ia3eWcf2slyg7WMH+w1UMemM1WdWRC85Z1dUM2vZX9h+uouxgBV+d9RJrd5al5snE+6mNJPftoEIgIhmrtr4RRi0azbjH/4eDFYc/bTt84ws0r4r0ldC8qoLhG1/8dNnBiirGP7wq+aeJOnSIHBXE2rcv/pFCE9GpIRHJeG2atWHiDxczbuFyFn+xHUVXfIJ33UzPrArGlbzPqBX7aFbxj3/3nv3em2z/6fB/3NC0qPFrr4Unnmja4L17R64TxNqwAXr1atp9R0noiMDMTjCzEjPbEjweUcLMrLuZrTGz18ys1MymRC1rZmazzGyzmW00s1GJ5BGREJsxg9zz+jDy1QqevHsrD963nVPfPcTMr3Zm6H1n8cC1J/Ju+8/+9s2rquUH71q1ggsugBkzmj7zV74CL70UuYW0xvbt8Je/RJYlSaKnhqYCy9z9DGBZMB1rN3Cxu/cFLgKmmlmXYNldwLvufibQC/hTgnlEJKzOOANWr6Z62jQ+ycnj4vUHePin2ymetpWL15dTdGVHhs08k2WfbxN39UrL4mBOHtXTp8Pq1ZHtNbWvfQ169Ih8f2DhwsjtpCNGQLdu8M//3PT7DyRaCEYARcF4ETAytoG7H3b3mm+A5MXscyLwk6Bdtbu/n2AeEQmz7GzKv/Udrp70Czad1IMDuXn03v4JM3+5k6fv3MzY5z+g75YDR6x2IDePjSf14OpJv6D8m7dCVpIun7ZqFfly25lnwrhxcOONke8RPP88tG6dnAwkfo0g3913A7j7bjPrFK+RmXUDFgM9gTvcfZeZ1dyrdY+ZDQS2Ad9y9z0JZhKREGvVLIdt7btw9fj/4usvzePb/1tM86oKur1XwdTfv3NE+0+yc3mw3xj+54vXQVYWrZol+dLpqac2/bWIOpjXcZuSmT0HnBxn0V1Akbu3j2q7z91rvdQdnBJaAFwNVAHvAaPd/Qkz+x5wgbuPq2XdycBkgPz8/ILi4uKj5m4q5eXltE5ipW4Mypw8mZj7eMy85d1yPqmo4rQ1LzPkV/eTd7D2/g4OtWhByZTbeLPgQprnZnNGp6Z7LVL9Wg8aNGiNuxcescDdGzwAm4DOwXhnYFM91nkEGA0YsB/ICuZ3A0rrs9+CggJPleXLl6ds3w2lzMmTibmPx8xPvrLTe/1gif/h3Mu8CnOP3Jkfd6jCfO65g73XD5b4/FfeSmnupgas9jifqYmeCFsEjA/GxwNH/DiGmXU1sxbBeAfgkqBgOPAUMDBoOhhI3neqReS4ddV5ncnNMgZv/StZfHbWI3JBuBmV9tlHXxbO4G2ryM0yrjwv3smP41+ihWAGMMTMtgBDgmnMrNDMHgranAO8bGZridwVNNPd1wfL7gSmmdk6YBxwe4J5RETIy8mm+EttP/1JCfjsgvDXrv0BG4MLyTWaVx6muH878nKyUxE35RK6KuLue4n8JR87fzUwKRgvAc6vZf0dwIBEMoiIxHP2qy9SbVBlWRzOzuU/v3QTD39hBG5ZfKX7+UxcvZDbX/gdzaoqaJ4Vac/gfqmOnRL6iQkROT7NnUtWZQXW53xenFfCi1ePg6wscrMNz87mhavH8+K8Euz888iqqIC5c1OdOGX0ExMicnw6+WT4j/8g67vfZUhWFkOAqicVt+EAAAbESURBVGpn/+FKWjXLITsr+LG34Wvg/vthxYpUpk0pFQIROT499dQRs7KzjLbNc2NmZsPtt0eGkNKpIRGRkFMhEBEJORUCEZGQUyEQEQk5FQIRkZBTIRARCTkVAhGRkFMhEBEJORUCEZGQUyEQEQk5FQIRkZBTIRARCTkVAhGRkFMhEBEJORUCEZGQUyEQEQk5FQIRkZBTIRARCTkVAhGRkFMhEBEJuYQLgZmdYGYlZrYleOwQp013M1tjZq+ZWamZTYladr2ZrTezdWb2jJl1TDSTiIjUX2McEUwFlrn7GcCyYDrWbuBid+8LXARMNbMuZpYD/DcwyN3PB9YB32qETCIiUk+NUQhGAEXBeBEwMraBux9290PBZF7Ufi0YWpmZAW2BXY2QSURE6sncPbENmJW5e/uo6X3uHu/0UDdgMdATuMPdHwzmjwYeBvYDW4gcHVTFWX8yMBkgPz+/oLi4OKHcDVVeXk7r1q1Tsu+GUubkycTcypw8qc49aNCgNe5eeMQCd69zAJ4DXo8zjADKYtruq2NbXYBVQD6QS+R00ueIHBk8ANxdV56CggJPleXLl6ds3w2lzMmTibmVOXlSnRtY7XE+U3PqU0Xc/fLalpnZHjPr7O67zawz8G4d29plZqVAf2BHMG9bsK25xL/GICIiTaQxrhEsAsYH4+OBhbENzKyrmbUIxjsAlwCbgLeBXmZ2UtB0CPC3RsgkIiL1VK8jgjrMAOaa2T8BfweuAzCzQmCKu08CzgH+08ycyCmgme6+Pmg3HfizmVUQOUKY0AiZRESknhIuBO6+FxgcZ/5qYFIwXgKcX8v6vwJ+lWgOERFpGH2zWEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhEREJOhUBEJORUCEREQk6FQEQk5FQIRERCToVARCTkVAhERELO3D3VGY6Zmb0H7EjR7jsC76do3w2lzMmTibmVOXlSnbu7u58UOzMjC0Eqmdlqdy9MdY5joczJk4m5lTl50jW3Tg2JiIScCoGISMipEBy7WakO0ADKnDyZmFuZkyctc+sagYhIyOmIQEQk5FQIRERCToUgDjM7wcxKzGxL8NghTpu+ZrbSzErNbJ2ZjY1aNtjMXjGz18zsRTPrmQGZzczuNbPNZvY3M7s13TNHtfmFmZU3dd6o/SX6Wv/OzDaZ2etm9rCZ5WZA5tPM7OVg/cfNrFk6ZA7aPWNmZWb2dMz8tHwf1pE56e9DANxdQ8wA/AyYGoxPBX4ap82ZwBnBeBdgN9A+mN4MnBOMfwP4bQZkvgWYDWQF053SPXMwrxCYA5Rn0P+PqwALhseAr2dA5rnAV4PxX6VL5mDZYOBq4OmY+Wn5Pqwjc9Lfh+6uQlDLP9ImoHMw3hnYVI911ka9iTYBFwXj/wr8OAMyrwJ6ZtjrnA0sD9ZNZiFIKHfM/NuAe9M5c1Cw3gdygvlfBJamU2ZgYJwP1bR+H9aSOenvQ3cnB4kn3913A7j7bjPrdLTGZnYh0AzYFsyaBPzRzA4CHwH9mjJsINHMnwPGmtk1wHvAre6+pSkDk3jmbwGLgnWbNuk/SjR3zfxcYBzwnaYKGiWRzCcCZe5eGSx+CzilKcMGjilzHGn/PowjFe/D8BYCM3sOODnOoruOcTudiZyaGO/u1cHs24Cr3P1lM7sDuI/If8qENHHmPOATdy80s2uBh4H+ieQN9tUkmc2sC3Adkb+qGl0Tv9Y1/gf4s7u/0LCUR+yrqV7reFW2Ue47b6zMtUjr92EtmuR9WKdkH4JkwkA9D++AtsArwHVR804CtkVNnwpsSOfMwfyNQI9g3IAP0zkz8GXgHWB7MFQDW9P9/0fUsh8CCwjOBadzZjLw1FC6vw/jZQ7mJf196O66a6gWi4Dxwfh4YGFsg+CuifnAbHf/Q9SifUA7MzszmB4C/K0Js9ZIJDNEPpQuC8YvJXKhrak1OLO7L3b3k929h7v3AA64e5PfFRJI6LU2s0nAMOB6P/Iooakk8lo7kWsxo4+2fhOoM/NRpO37sA6peB/qiKCWSn0isAzYEjyeEMwvBB4Kxm8CKoDXooa+wbJrgPVELratAE7PgMztgcVB7pVAn3TPHLOtZF4sTvS1riRy7r1m/r9lQObTiVzI3Ar8AchLh8zB9AtEzqcfJHL9YlgwPy3fh3VkTvr70N31ExMiImGnU0MiIiGnQiAiEnIqBCIiIadCICIScioEIiIhp0IgIhJyKgQiIiH3f1lCwQYDUfMjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -683,9 +683,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -697,7 +697,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/optimization/portfolio_optimization.ipynb b/qiskit/finance/optimization/portfolio_optimization.ipynb index f63e9521b..caa1c7c51 100644 --- a/qiskit/finance/optimization/portfolio_optimization.ipynb +++ b/qiskit/finance/optimization/portfolio_optimization.ipynb @@ -51,7 +51,11 @@ "\n", "The equality constraint $1^T x = B$ is mapped to a penalty term $(1^T x - B)^2$ which is scaled by a parameter and subtracted from the objective function. \n", "The resulting problem can be mapped to a Hamiltonian whose groundstate corresponds to the optimal solution.\n", - "This notebook shows how to use the Variational Quantum Eigensolver (VQE) or the Quantum Approximate Optimization Algorithm (QAOA) to find the optimal solution for a given set of parameters." + "This notebook shows how to use the Variational Quantum Eigensolver (VQE) or the Quantum Approximate Optimization Algorithm (QAOA) to find the optimal solution for a given set of parameters.\n", + "\n", + "Experiments on real quantum hardware for this problem are reported for instance in the following paper:\n", + "
\n", + "Improving Variational Quantum Optimization using CVaR. Barkoutsos et al. 2019." ] }, { @@ -190,26 +194,26 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 0 1 1], value -0.0026\n", + "Optimal: selection [1 1 0 0], value -0.0068\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 0 1 1]\t-0.0026\t\t1.0000\n", - " [1 1 1 1]\t15.9996\t\t0.0000\n", - " [0 1 1 1]\t3.9984\t\t0.0000\n", - " [1 0 1 1]\t3.9985\t\t0.0000\n", - " [1 1 0 1]\t4.0000\t\t0.0000\n", - " [0 1 0 1]\t-0.0011\t\t0.0000\n", - " [1 0 0 1]\t-0.0011\t\t0.0000\n", - " [0 0 0 1]\t3.9978\t\t0.0000\n", - " [1 1 1 0]\t4.0017\t\t0.0000\n", - " [0 1 1 0]\t0.0006\t\t0.0000\n", - " [1 0 1 0]\t0.0006\t\t0.0000\n", - " [0 0 1 0]\t3.9995\t\t0.0000\n", - " [1 1 0 0]\t0.0021\t\t0.0000\n", - " [0 1 0 0]\t4.0010\t\t0.0000\n", - " [1 0 0 0]\t4.0011\t\t0.0000\n", + " [1 1 0 0]\t-0.0068\t\t1.0000\n", + " [1 1 1 1]\t15.9945\t\t0.0000\n", + " [0 1 1 1]\t3.9954\t\t0.0000\n", + " [1 0 1 1]\t4.0000\t\t0.0000\n", + " [0 0 1 1]\t0.0010\t\t0.0000\n", + " [1 1 0 1]\t3.9926\t\t0.0000\n", + " [0 1 0 1]\t-0.0065\t\t0.0000\n", + " [1 0 0 1]\t-0.0017\t\t0.0000\n", + " [0 0 0 1]\t3.9993\t\t0.0000\n", + " [1 1 1 0]\t3.9951\t\t0.0000\n", + " [0 1 1 0]\t-0.0039\t\t0.0000\n", + " [1 0 1 0]\t0.0007\t\t0.0000\n", + " [0 0 1 0]\t4.0017\t\t0.0000\n", + " [0 1 0 0]\t3.9942\t\t0.0000\n", + " [1 0 0 0]\t3.9990\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } @@ -252,27 +256,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [0 1 1 0], value 0.0006\n", + "Optimal: selection [0 1 1 0], value -0.0039\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [0 1 1 0]\t0.0006\t\t0.7038\n", - " [1 0 0 1]\t-0.0011\t\t0.2120\n", - " [1 0 1 0]\t0.0006\t\t0.0272\n", - " [0 1 0 1]\t-0.0011\t\t0.0251\n", - " [1 1 0 0]\t0.0021\t\t0.0167\n", - " [0 0 1 1]\t-0.0026\t\t0.0151\n", - " [1 0 0 0]\t4.0011\t\t0.0000\n", - " [0 1 1 1]\t3.9984\t\t0.0000\n", - " [0 0 0 1]\t3.9978\t\t0.0000\n", - " [1 0 1 1]\t3.9985\t\t0.0000\n", - " [0 1 0 0]\t4.0010\t\t0.0000\n", - " [1 1 1 0]\t4.0017\t\t0.0000\n", - " [1 1 0 1]\t4.0000\t\t0.0000\n", + " [0 1 1 0]\t-0.0039\t\t0.8805\n", + " [0 0 1 1]\t0.0010\t\t0.1186\n", + " [1 1 0 0]\t-0.0068\t\t0.0008\n", + " [1 0 0 1]\t-0.0017\t\t0.0001\n", + " [1 0 1 0]\t0.0007\t\t0.0001\n", + " [0 1 0 1]\t-0.0065\t\t0.0000\n", + " [0 0 0 1]\t3.9993\t\t0.0000\n", + " [1 1 0 1]\t3.9926\t\t0.0000\n", + " [0 1 0 0]\t3.9942\t\t0.0000\n", + " [1 0 1 1]\t4.0000\t\t0.0000\n", + " [1 1 1 1]\t15.9945\t\t0.0000\n", + " [1 0 0 0]\t3.9990\t\t0.0000\n", + " [0 0 1 0]\t4.0017\t\t0.0000\n", + " [0 1 1 1]\t3.9954\t\t0.0000\n", " [0 0 0 0]\t16.0000\t\t0.0000\n", - " [0 0 1 0]\t3.9995\t\t0.0000\n", - " [1 1 1 1]\t15.9996\t\t0.0000\n" + " [1 1 1 0]\t3.9951\t\t0.0000\n" ] } ], @@ -336,27 +340,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "Optimal: selection [1 1 0 0], value 0.0021\n", + "Optimal: selection [0 0 1 1], value 0.0010\n", "\n", "----------------- Full result ---------------------\n", "selection\tvalue\t\tprobability\n", "---------------------------------------------------\n", - " [1 1 0 0]\t0.0021\t\t0.1667\n", - " [1 0 1 0]\t0.0006\t\t0.1667\n", - " [0 1 1 0]\t0.0006\t\t0.1667\n", - " [1 0 0 1]\t-0.0011\t\t0.1666\n", - " [0 1 0 1]\t-0.0011\t\t0.1666\n", - " [0 0 1 1]\t-0.0026\t\t0.1666\n", - " [0 0 0 0]\t16.0000\t\t0.0000\n", - " [1 1 1 1]\t15.9996\t\t0.0000\n", - " [1 1 1 0]\t4.0017\t\t0.0000\n", - " [1 0 0 0]\t4.0011\t\t0.0000\n", - " [0 1 0 0]\t4.0010\t\t0.0000\n", - " [1 1 0 1]\t4.0000\t\t0.0000\n", - " [0 0 1 0]\t3.9995\t\t0.0000\n", - " [1 0 1 1]\t3.9985\t\t0.0000\n", - " [0 1 1 1]\t3.9984\t\t0.0000\n", - " [0 0 0 1]\t3.9978\t\t0.0000\n" + " [0 0 1 1]\t0.0010\t\t0.1668\n", + " [1 0 1 0]\t0.0007\t\t0.1668\n", + " [1 0 0 1]\t-0.0017\t\t0.1667\n", + " [0 1 1 0]\t-0.0039\t\t0.1666\n", + " [0 1 0 1]\t-0.0065\t\t0.1665\n", + " [1 1 0 0]\t-0.0068\t\t0.1665\n", + " [0 0 1 0]\t4.0017\t\t0.0000\n", + " [1 0 1 1]\t4.0000\t\t0.0000\n", + " [1 1 1 1]\t15.9945\t\t0.0000\n", + " [0 0 0 1]\t3.9993\t\t0.0000\n", + " [1 0 0 0]\t3.9990\t\t0.0000\n", + " [0 1 0 0]\t3.9942\t\t0.0000\n", + " [1 1 0 1]\t3.9926\t\t0.0000\n", + " [0 1 1 1]\t3.9954\t\t0.0000\n", + " [1 1 1 0]\t3.9951\t\t0.0000\n", + " [0 0 0 0]\t16.0000\t\t0.0000\n" ] } ], @@ -406,9 +410,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -420,7 +424,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb index 0442e31aa..023ab7735 100644 --- a/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb +++ b/qiskit/finance/simulation/asian_barrier_spread_pricing.ipynb @@ -52,8 +52,10 @@ "
\n", "$$\\mathbb{E}\\left[ P(S_1, S_2) \\right].$$\n", "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." + "The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:\n", + "\n", + "- Quantum Risk Analysis. Woerner, Egger. 2018.\n", + "- Option Pricing using Quantum Computers. Stamatopoulos et al. 2019." ] }, { @@ -140,7 +142,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUaf//7Wb3fSekEAIgSSUhBBa6CVBLAgiFs7uUVQ4VKR5igW/gg0bFhA4BIEfnIqHngUFvINQpBqkpjdCGpC2m2zKJlvm90duR0IKSXY3m4R5/cfO7MwzYXf2Pc/neZ63JQWPSehc34HVFDUH/2ORc1sSx6H9bB1Cp0WvNWLI6FwD9Noco0DeSXv63mbrQCyPzFjNhLcG8uMjh2wdSqvxnDwEtzm3kO9pR8Hp01RWVhIREYGXl5fFz1VTU8PSpUtRqVQcOHBAcklvJtKSlpUxGAxoNBry8/MZNmwYAQEBNhc7YDnBY5orcfHiRTQaDXDjTJRRU4z2j2Szz21p7PsF2jqETktZohahRppvZC6F+5OormpZZrij4OmSS+i9HS9L4ejvxbgdrzJp5xuMui0GFxcXDAYD/v7+ZGZmcvz4ceLj48nNzaW8vLxZlkRNceXKFaZNm0ZISAg7duyQxE4LkDI8reRGP+qCIHD58mUuXryIUqlk8ODBFju3JSZzmit4rp2rM2jQIFQqFTk5OWg0GhwcHPDy8sLLywt3d/d67ZP6Y7tB3/6WjpTdPQDLFIVL1KXg5BVbh9ApEHR6ck+7EDq2ytahWIURc7zJ3CVDMHSMWrqeD09gyPtzcfB2Q6vVcuHCBfz8/Ojfv794jzYajWg0GkpLS8nMzKSiogJHR0c8PT3x9PTE3d292X5aJ0+eZOHChbz//vvceeed1ry0TokkeKyAVqslISEBBwcHRowYQVxcnMWObSoStqXgub5Wx9nZGWdnZ7HVsqqqCrVaTX5+PsnJySiVSry8vMQvt/bgUbNitxYKTwWS4LEOZafbj1lkR+fqf1IIGt4VpX3ny5jZGwoZtWwEx1ectHUoTeLo78Ww1c/S/a6RAKhUKpKTk+nXrx/e3t519pXL5Xh4eODh4UFQUBCCIKDValGpVFy+fJmUlBTs7Ozw9PTEw8MDT0/PesXNgiCwdetWtm3bxg8//EBIiDQvrDVIgseCCIJAbm4u2dnZhIWF4ePjY/FzmLq+zK32t4QHVmO1Ok5OTjg5OdGtWzcAqqurUalUXL16lcsHf6VbXjucKWKvRK6stnUUnRKDzkhNsiR4LIWxQkv+BS96RnXOmqjgqDLOdnOm6nKlrUNpkF6PTmTwu0/h4O2GIAhkZ2dTUFDAkCFDmtUlJZPJxHtkQEAAUNvQolarKS0tJTs7G71ez4kTJ7Czs2Ps2LFs3rwZrVZLbGxss7t6JeojCZ5Wcv0PfWVlJQkJCbi6ujJy5Mh68xAsZRBnKXsJcz2wWnItDg4O+HfpgsfJo1Tt+rE14Vodh4F9kMk6Rhq9o1GWVI2xuh2bRHZALu9Np/sgTxSK9rc0bC5Kahi7YiD75ravsRWOXb0ZvuZZAiaPAGrrMxMTE1EoFERFRbXK/8qEUqmkS5cudOnSBfhzzs6PP/7I3LlzUavVjBw5kg0bNjB27FiLtrjfTEiCxwxMvihZWVlcvnyZ8PDwBivyTSLFEkOhLGUv0VzB0tysTlMY8nIp3/gZhsz2NVX5Whwieto6hE5L6emO3WrcHtGrNFxJ6UNgROecbRTQtYget/YiZ3+WrUMBoNdjExny7hzsvWoLhE0WET169BCzNJbE9EB68OBBVq9eza233kp6ejpHjhxh48aNdOnShZUrV1r8vJ0dSfCYgUajIT4+Hh8fH0aNGtWowjeJFEsJHkvPz2kMc7I6AILRiPbXX6j69mvQte96A3mg5VtHJWopPSMtZ1mDrJ/SCAhzR968etcOhQyB4c/62VzwOHXzZtia+QTcOVx8rbCwkPT0dCIiIqxi5WA0Gvniiy/YsWMHu3btomfP2oexPn360KdPH2bPnm3xc94sSILHDLKzs+nfv/8NP/SWtISwpGN6Y1gkq1NwlYqNa9GnJFkjRItjdJcmNFgDo96I5pw0cNAqFGvITw8msF87rImzAG6KYqKej+KPVX/Y5Py9Hr+VIe8+hb1nbVZHEAQyMjLMsoi4EVVVVSxZsgRBEIiNjW3xcFqJppHu8mYwYMCAZil8S3tgWepYDXHtEEGTI29LxI4gCGhj/0vpq893GLED4OYrrYdbg7LUGoyV5nu2STTM1X2FZs91ac/0v9WAg1fb2iU4Bfgw/rvXGfmPRaLY0el0nDlzBrCsRcS15ObmMnXqVKKioti6daskdqyAlOFpAyyZlbHkkpapBsnU6m5uVsdYUkzFF+vRXThnkfjaCkVwADKZ1I5uDaT6HetSdfEyxbmD8e1RaOtQrIJcr2HCuyP49W+H2+R8wTNuZ/A7T4hCB2pLFxISEqxmEQFw+PBhXnzxRVavXs2ECROscg4JSfC0CZbMylg6W2QwGJDJZObV6ggCNcd+o3L7ZoTKCovE1pY4DOpj6xA6LaVnLts6hE5P7n41vrNsHYX18A+4QtdRAVw5kW+1c9j5utFj2V8InDIKg4OdeC/Mz88nJyeHyMhIq7SDG41G/vGPf/DDDz/wyy+/0KNHD4ufQ+JPJMFjBq0xEDUXOzs7qqstMy/Gzs6Ompo/24VbldUpK6Viy+fo/vjdIjHZAvveXW0dQqfEaDCiOZNp6zA6PeXxWagLIvH0K7F1KFZBJhgY/1IoO++1juAJnnE7g96eTZXMgFqtJiUlhaqqKrGztl+/fjg7O1v8vJWVlSxYsAAnJyf27dsnOZ23AZLgaQPa45KWIAgolUpSUlLw9fXF29u7xWvGNXEnqdi6AeF/HlodFa2rDGmUl+UpT9dhKG+fw+M6GzmHtHg+YOsorIezPJ+BfxvI+Q3nLXZMp+6+DP9sPt1ujwLAAfD09ESr1XL+/Hl8fHxwdnYmLy+PlJQU7O3tRTsIDw+PZttBNMSlS5eYNWsWM2fO5Omnn24X/oo3A5LgaQOuz6SYg7ni6dpanX79+lFeXo5arSY5ORmtVoubm5vog+Xk5NTgF9FYUU7l9s3UHPvNnEtpN3gGuAHSlGVLoz6ttnUINw2lJ9PQ3NYfN69SW4diNQbeoyTxnwr0FeZny0Nm3cGgt5/A3qPuo05DFhGBgbWmwlqtltLSUgoKCkhPTwfAw8NDtM1pbiHzwYMHeemll1i7di3jx483+1okmo8keMzAVktarT3W9XN1FAqF+MTSq1cvBEFAo9FQUlJCSkqKKIA8PT3FDJDuwlkqvliPoOocxagydxfkCknsWAOpfqdtyT0K4VNtHYX1sNOriX5nFLELj7T6GM6Bvgz77Dm63Ta0zuvNsYhwdHTE0dERf39/APR6PaWlpajVanJyctDpdOL90tPTE2dn5zq/EUajkTVr1rBnzx727t1rlYGFEk0jCZ42wBqFxi2huR1YMpkMd3d33N3d6wgglUpFWvwF3GJ/xTPxgkWuo73gOKQfUjLZ8ghGgTKpfqdNKT6cROWEvji7lts6FKsRGFqEd4QvJQlFLX5vyKxJDHp7dr2sjsFgICEhAaVS2SKLCIVCgY+Pj+iZaHJFV6vVpKenU1lZyf79+xEEgZEjR7J9+3a6dOnCf//7XxwcHFocv4T5SHN4zKC5GR5LtpK3dEnLnLk6JgEUUFVOzx3/r9OJHQD7cKkrwhqo06owlHbeH952iVEgJbZ9TzQ3F5lRx4Tl/Vv0HudAX2J+XMHwz+bXEzsVFRWcOnUKX19fwsPDzfLDMrmi9+zZk0GDBjFq1Cjuu+8+5HI5r7/+OnFxcaSnp7Ny5Ur27duHxozax5ycHG655RbCw8OJiIjg008/rbdPaWkpd999N4MGDSIiIoItW7a0+nydBUnwtAG2WNIyCR29Xt/6dvOaaiq+3Ipm5QqMRZ1zzoeyh7etQ+iUFMd1zum/7Z2K49lUV3Xubh83hzz6PRrerH1DZk/izt/X0vXWofW2FRYWcv78ecLDw62yvCSTybh8+TK7du1iw4YNZGdn8+WXXzJo0CD27NljlheWQqFg1apVJCUlceLECdauXUtiYmKdfdauXUv//v05d+4cBw8e5Pnnn7dYLWlHRVrSagPa2lrCXA8sAH1GGuWff4bxsvVmX7QHlN5KoG28yW4mtImdo8arw6HTk3fGjZAxnXu6ddRjbqR9K8dY07BbvHOPLgxft4Cutwyut60tLCKMRiMff/wx+/fv5z//+Q9du9aOvvD39+e+++7jvvvuM+v43bp1o1u3bgC4ubkRHh5OXl4e/fv/mf2SyWRoNBoEQaC8vBxvb2+L+Dl2ZKQMjxm0pGjZ0tORG8IiWR29jspvd1D25rJOL3aQy5Hb39xPPNZAEATKTkv1O7bi6q8p6GqUtg7DqigNxYx7Y1SD20KfnMydv3/WoNhpC4sIjUbDjBkzuHr1ah2xYy2ysrI4c+YMI0eOrPP6/PnzSUpKIiAggMjISD799FOzluw6Azf31bcRcrm8UZHSUhoTMOZ6YAHosy9RtvxltD99BxaKtz1jHxGMTNb5r7OtqbikQ19SZuswbloMFVXkx3vZOgyr0yuyFPdeHuK/nYP8mLDrLYZ9+gxKt/qDAsvKyvjjjz8IDAykd+/eVpl9k5aWxpQpU5g2bRpr1qyxiqC6lvLycqZPn84nn3xSz9fx119/ZfDgweTn53P27Fnmz59PWdnN/b2UBE8HxyJZHYOBql3fU/b6UgzZl6wUafvDYUCIrUPolKjPdN5ZMB2Fy3szMOg79+1dZtAy+vXaWp7QpyZz58k1+N8yqMF98/PzSUpKIjIy0ip+WIIgsHfvXmbMmME//vEPZs2aZfVhgjqdjunTp/PYY49x//3319u+ZcsW7r//fmQyGb179yY4OJjk5GSrxtTeubkX9MzE1tMxLVGrY7icR/nnazFkpFkhwvaNfYh1jABvdkpPX7V1CDc9+pIyrqSG0r1/ga1DsSo+flWEbJyDrlcX4tNT8PT0xMvLC3d3dzGznpKSgk6nIyoqyio1LAaDgQ8++ICjR4/y3//+12oGo9ciCAJPPvkk4eHhLFmypMF9goKC2L9/P+PHj+fq1aukpKQQEnJzP+RJgqcNMQkTS2DK6EDrPLAEo5HqfXup/NeXcJNW7iv8nJEmLFsWQRAoO3PR1mFIAHl7s+nWzxF56x0Q2jUG7zAM/R9nuH2ts3lVVRVqtZr8/HySk5ORy+VotVqx5dwaYqesrIy5c+cSGhrK3r17USrbpnbq6NGjbN++ncjISAYPrq1Veuedd8jOzgZg3rx5vPbaa8yaNYvIyEgEQeC9997D19e3TeJrr0iCx0xkMpkoPJrC9LRhjv8K/OmBlZqaio+PD15eXi0uRDMUFlCxaR36pASzYuno2LlI9TuWpjJPj65A6tBqD9TkF5MZ34fegzqXn5kgk6MPuQtD0C0g+/Pe5+TkhJOTE926dUOlUpGUlERgYCB6vZ4zZ84gCEIdKwhzh/8lJyczZ84cFi9ezGOPPdamGf9x48bd8HcnICCA//znP20UUcdAEjxthGn4YGsFz7XTkiMiIlCr1RQXF5ORkYFcLhf9rzw9PRs9hyAIVB+KpfKrraDt3G2rN8Kumw9yeece0mYL1Gdu7qLI9kbpsQqEgbZffrcUgoMnNQNmIngEN7z9GouIoUOH1rGIMBgMlJaWolKpyM3NpaamBnd390atIBqNQRD4+eefeeedd9iyZQtDh9af8SPRPpEEj5k0N8NjmsXTmqr9azuw5HI5Dg4O+Pv7i54uOp0OlUpFUVER6enpDQogo6qEis3/QHfuTIvP3xlxGNzP1iF0SqT6nfZFVUY+xXmD8A1suRVDe8PgG4Eu/FFQujS8/QYWEXZ2dnh7e4umoA1ZQTg7O4t1QK6urvWOYTAYWLlyJadOnWL//v03/RJRR0MSPG1Ea4YPXu+B1ViruVKpxM/PTyyWq6mpQa1W1wqgtDTcM1Locmg/cm2V+RfSSZBLBctWoex0lq1DkLiOvNgyfGfYOorWI8js0IfejaFHDDSSgamoqCA+Pp4ePXo0e2qyyQrCZAchCAKVlZWo1Wqys7MpLy/H3t6e//znP2KtzKJFi4iIiGD37t03/RC/jkjn7ltsR7TWA8tgMLR4ro69vT1+fn706daV/nFH8f/1Z0nsXE+X+nM6JMyj8rKOmssdP5PQ2dCcv4i6sGPO5TE6elMTtQBD0IRGxU5hYSEXLlww2yJCJpPh4uJC9+7dGTBgAKNGjaJ///74+/vz5ZdfEhMTQ0ZGBoIgsGfPHkpKSlp9LmieHxbAwYMHGTx4MBEREcTExJh1zpsdSaKaSUsMRJvrgdWcrM6NqPkjjootGxDKpJkoDeHWzRW4ueuYLI36TOvNECWsS+6hGjz/YusoWoahy0B0YQ+DsuGHk2stIoYOHWqVIX8ODg54enpy6dIl9u7dS8+ePTl27BhHjhxh1apVPPbYY8yZM6dVxzb5YQ0dOhSNRkNUVBS33357HXsItVrNM888w969ewkKCqKgoHOPGbA2kuBpI5qzpHV9rU5rhI6xooLKf26h5uih1oba+XG0R66U2tEtjfqPK7YOQaIR1CdS0dzWHzfP9v8AJMjs0Pe5F0P3cY1mdXQ6HRcuXMDd3Z0hQ4ZYpShbr9fz5ptvkpCQwP79+8Xan8mTJzN58mSzj98cP6yvvvqK+++/n6CgIIA2mfHTmZGWtNqIppa0rp+W3Fqxo4s/R9mrz0ti5wY4DO6HjBsXmku0jKKTN9/wyo5E7jFbR3BjjE6+1AxbhCFwfKNipy0sIkpKSnjggQdQKpXs2rVLFDvWojE/rNTUVFQqFRMmTCAqKopt27ZZNY7OjpThMZOWLGnpdPXboC2R1RG0VVTu+CfVsdLMhebg0L+nrUPodJTlV0FB+88e3MwUH0qmKro3Tq4Vtg6lQQx+Q9CFPQQKx0b3yc/PJycnh8jISFxcGu7WMpf4+Hjmzp3LsmXLmD59utVb+pvyw9Lr9fzxxx/s37+fqqoqRo8ezahRo+jbt69VY+qsSIKnjVAoFFRV/Vk4bKlaHV1KEhUb12IskNqBm4t9T+s+rd2MVMRLS4TtHoOR3DhH+tzSvgSPIFOg73s/hoDRjWZ12sIiQhAEvv32Wz799FO+/PJLIiIiLH6O67mRH1ZgYCC+vr64uLjg4uJCdHQ0586dkwRPK5EETxtxbQ2PJTywhJoaqr7bgXbvz9CMOUASf6LwdUQqWLYspaelYsqOQMG+JIJG98DBsX0IVK3CkwTlaCryFHhWpImzw661aNBqtVy4cAE/Pz+CgoKsVq/z+uuvk56eTmxsLJ6enhY/x/U0xw/rnnvuYf78+ej1empqajh58iSLFy+2emydFUnwmElzv3wmwWNavjK9tzVfXn1mBuWfr8GYn9fi90qAnWPL5iFJ3Jiy05dsHYJEMxCqdeSdcSdkdKGtQ8HgPwz6PUCEwgGdTidOQc7KysJoNOLu7o69vT1XrlwhPDzcanU0RUVFPPHEE4wdO5YffvjBbPuf5tIcP6zw8HDuvPNOBg4ciFwu56mnnmLAgAFtEl9nRHaDKcFS6uAGGI3GBmtzrkej0ZCQkEB4eDjOzs4t9r8yYcjPo3z9pxguSQaNrUHZJwj/lyfYOoxORXWxnpOTv7J1GBLNxM7NmWGv+KFU2sZaRZAr0ff9C4ZuIxpdwtLr9aSlpVFUVISTkxM6nQ43NzcxA9RcG4gbcfbsWZ5++mneeOMNpk2b1uEsOK5evSpO3JcQafQ/UcrwWBlTrY6DgwN+fn6kp6dTVVUlfnm9vb1xcnJq9vHsArrj8eb7FF+6xOWjh/HTlOKQk4UhJ1ta2moGsvAetg6h06E6275qQiSaxqCp5HK8F0FD2n4Z0ujSFV3ETATXbo3uYzAYSExMRKlUMnbsWNF4uby8HJVKVccGwmSh4+rq2iKxIggCO3bsYP369XzzzTeEhYVZ4vLalLfeeouffvqJ5557jjvuuEMSPs1AyvCYiSAI1NTUNLqtoVodQRDQaDSUlJSgUqnQarW4u7uLAuhaw7vr0ev1pKamUl1dTf/+/UXHX2O5Bn1KMrrkBPTJiRiysyQB1AAOz95Nl6iOOXW2vZLyYTpX/9UBep4l/sTDmdEve2OnaLt7hL7bSPR9p4Nd4wMCm2sRIQgCFRUVqNVq1Go1Go0GR0dH0QfL3d290Sy6Tqfj1VdfJT8/ny1btuDh4WH2tdmCs2fPcvToUT7++GNCQkJYtGgRU6ZMsXVY7YFGla8keMykIcFzfQfWjWp1TCZ2JgFkcvE1CSCTqCkpKSE1NZWgoCC6devW9DErKtCnJqFPTkSXnIghK1MSQIDfR09h79mwQJVoHXGP7qcqXaon62gEPzmU7uHW7+4U7OzR9X0AY7fhTe5XWFhIRkYG/fv3r9ee3RyqqqpQq9WoVCrKyspQKBR4enoil8vx9vbG09OTgoICnnjiCSZOnMgrr7zS6tICW2J6gDZx5MgRtm/fztatW1m9ejUPPPCA1ecGtXOkJa22ojUdWNea2AUHB2M0GikrK0OlUhEfH09NTY14vIiIiGbdDOQuLtgPGYb9kGEAGCsr0KeloE9K+FMA/U+Q3Uwo3DrWGn17p0ZtkMROByX/1xy69bPHmr/5RteA2iUsl8aXW661iIiKiqrTodUSnJyccHJyEqcXm0yU9+7dy5o1azAYDFRUVDBjxgzmzZvX4cTO9bPaDAYDdnZ2jBs3jmHDhuHj48OCBQtQqVTMmzevTTrNOhp2y5cvb2p7kxslarM3JoFjNBrFacqt7cAyvdfR0REvLy+cnZ0pKirC19cXNzc38vLyRCdfg8GAvb19s7oKZEp77Lp2QzlgEI4TbsNx0lQUYeHIvbwRjMZaz61OngGSebrhMbmPrcPoVBSdLKf4v8m2DkOiFRjKKnHq2xsXL+vUYOkDxqAbMAscGl8y0ul0nDt3DgcHB/r372/RDik7OztcXFwYOHAgjo6OJCcn8/zzz1NaWsqqVatYs2YNp0+fZtKkSa0+b05ODvfeey/vvfce69evR6/XM2rUqAb3jYuLIygoiIiIiDr2ETdCp9Nx9uxZunfvDkBGRgbu7u4oFArxQVihUHDrrbeSn5/PP//5T7y9vRk6dGiHK8K2ECsa2yBleCyEaQnLHKFzLQaDgYyMDDQaDYMHD65T2GwwGMQWzpycHAwGg7h27eXl1awnJJmTE/YDh2A/cAhQO61Zn5Yq1gDpM9OhBe7uHQHHof1sHUKno/S07dubJVpP+k/ZdFngYNEfRsHOAV3YQxj9hza5X1lZGYmJiYSEhFjNI6qmpoalS5eiUqnYt28frq6u4rbq6mrOnj1rlulocwxAofaevXTpUiZNmtTic5w6dYr169fzzDPPsGLFClxdXXn88ce555576mV71q9fT1paGuvXr2f06NEMGjSo1dfWGZEEj5lcuHCBlStXEh0dTUxMjGjyZg6lpaUkJSXRvXt3+vTpU+9mZGdnh7e3t7hOazAYxLXrS5cuIQgCHh4e4rp1swSQoxPKyEEoI2u/IEK19n8CKBF9cgL6jLQOL4DkvRvvDJFoHWWnc2wdgoQZGHOKKcjuj39Py9iCGN0Ca5ewnLs0uV9bWERcuXKF2bNnM2XKFF544YV6S1gODg71vKtaSnMMQAHWrFnD9OnTiYuLa/E5Ro8ezZ49e5g4cSJDhgzhr3/9KyNGjKizj52dnSh6tm3bRlhYGN9++y2DBg0Sl8IkJMFjNv3792fBggXExsaycOFCrly5wtChQxk/fjwTJkyga9euzX56MhqNZGRkUFpaysCBA3F2dm7W++zs7PDx8cHHxweo7eQyCaCLF2vn9ZiyP56ens0ayy5zcEQ5YCDKAQNrY6uuJu/ob2jjz+NbWoKQlQnNmD/UrvBr3t9TonnoNAYqUyXB09G58psWfwvYy+kDx6PvfQ/IG7+/XGsRMWzYMKsN+Tt58iQLFy7k/fff584777TKOa6nMQPQvLw8vv/+e2JjY1skeEzLVfHx8Wzfvp2IiAjuuOMOpk2bVidTZdrXzs4OvV5PQEAAy5cv5/XXX2fevHniUpiEJHjMxs7OjlGjRjFq1CheeeUVcfx3bGwsc+bMoaSkhOHDhxMdHc348ePp0qVLgwKorKyMpKQkunbtSlRUlFkpZoVCga+vL76+vkCtAFKpVJSUlJCZmYlMJsPT01PMAN3oplNVVUVCQgIePXoSOmEicrkcoaYGfWYa+qTE2mWw9NR2L4Dcu3sgWUpYDvW5yk5f93UzoDmbSemdA/DwVbXq/YLCEV3YIxj9ml4+aQuLCEEQ2Lp1K9u2beP7778nNDTU4udoiKYMQBctWsR7773XLHGn1Wq5dOkS/fr1E/8+iYmJVFVVsX79enbs2MHevXuJjo6msrKStLQ0evfuTXBwMID4MDt58mS+//57du3axbx58yx8tR0XSfBYGHt7e8aPH8/48eOB2g/wsWPHiI2NZePGjZSXlzNy5EhRADk5OfHqq68SGRnJgw8+aJX0rkKhoEuXLnTpUptm1ul0qFQqioqKSE9PRy6Xiy3wHh4e4hdTEAQx9RwWFlan6l9mb48yLAJlWAROPICg06HPTK9tg09KQJ+eAo3MJ7IJdnLk9u0onk6A+kyxrUOQsBC5h3V41PeuvCFlcm+yPe/AxeCHl1bb6AyxkpISUlJSCAsLw8vLOnOwqqureeGFF6ioqCA2NtZqS2XXcyMD0FOnTvHwww8DtTYWu3fvRqFQcO+994r7CIKAIAg89NBDjBkzhqVLl6LX61EoFGJt6OXLl1mxYgV33HEH27Zt48yZM5SWlqJUKtm5cycTJ04Ul7VM9+vz58+Lx79JC5jrIM3haWPKy8s5evQosbGx7N27lytXrjBs2DBmzpxJpacUUQAAIABJREFUdHQ0bm5ubf7BrKmpQaVSoVKpUKvVKBQK3N3dUavVuLq60rdv3xa7Ewt6HfrMjP/NAUpAn5oCNbYzLHQY0o8uz5m3Xi9Rl7iZB6lKyrZ1GBIWYvBr4bh6lDV7f32PCdQET6GsvFK8f1RXV9exgHByciInJ4eCggIiIyObHKpqDpcvX2bmzJncd999LF68uM1qVgRBYObMmXh7e/PJJ5/ccP9Zs2YxdepU/vKXvzS4/c033+TAgQP8+uuvYu1lVlYWc+fOJS4uDj8/P/Lz8wkICODRRx9l+vTpvPzyy6Snp5OUlAT8WcC8c+dO3nnnHQ4cOHCztahLc3jaC66urkycOJG4uDhcXFz48ccfKSoqIjY2llWrViGTyRg3bhzR0dGMHj26TZ5S7O3t8ff3F0eT5+XlkZmZiaurK2VlZZw7d07MADU1wfRaZAolyr5hKPuG4TTtfgS9Hv3FWgGkT0lEl5oM2rZbXrKP6NVm57oZqNEYqEqR6nc6E7nH5IRNvvF+gsIZXf9HMfoOQA54etrj6elJcHCwOEVepVKRmpqKWq1GqVTSo0cPdDodDg6W7QgDOHbsGEuWLOGjjz7itttus+ixb0RzDEBbQp8+ffj111/Jy8ujV69eGAwGevXqxerVq7lw4QIJCQk88sgj7Nu3j4KCAoKCgrj77rt5+eWXycjIIDQ0VMzQh4WFMXfuXLO60DobUobHBixfvhyFQsHSpUvrdFAJgoBKpeLQoUPExsZy/PhxHB0dGTduHDExMYwYMaJFvlstRafTkZxcO1MlLCxMjK26ulqcAl1WVoa9vb0ogNzc3Fr1NCUYDBiyMsUuMF1KMmirLHo91+Lz2l9xCpZSupai6EQ5iQv+beswJCyIzM6OqP8LwdGlstF9jO69qBkwExybXpYyWUQEBgbi4eEhZo/Ly8txcnISx2i09v4BtQXQmzdv5uuvv2bHjh307GmBymsbU1JSQmhoKK+//jqLFi0Sl7UaYvny5Xh4eJCUlERiYiK7d++uVz9UWFgoljLcREjWEu2J5q6nCoJAYWEhBw4c4MCBA5w8eRIPDw+x/mfYsGGi7YS5FBcXk5qaSkhIyA1N6LRarVgErdFocHBwqCOAWvMEJxgMGC5l/TkHKDUJobLxG29L8V89B6Wr7ZbUOhvp6y+Rv+WQrcOQsDBd7x5I75iGa7P0QbeiD5kC8qaLb5uyiBAEoY4FhEajwd7evo4HVnOKe6uqqliyZAlGo5HPP//cqg+CbYWpffzVV19ly5YtHD9+nJ49e4pLVNeTlpbGPffcQ3Z2Nj/++CO33nqrDaJul0iCpzNgKiKOjY3l4MGDnDp1Cj8/P8aPH090dDRDhgxp8Vh2g8FAamoqWq22jhlpS6iqqqojgJycnEQB1FIXYxOC0YD+UhYlv5+gOuECrlcvQ1XrBVDAF08il7XvLrKOxOk5Ryg/l2nrMCQsjNzRgWHLumPv+OfDgaB0Qdf/MYw+TU8HvtYiIjIystn3Iq1WKwqg0tJS0QPLy8sLDw+PehmO3NxcZs6cySOPPML8+fM73YyZAwcO8PzzzzN06FA+//xz0S3edJ2mZbTU1FSKiooICwvj9ddfJyIiwsaRtxskwdMZEQSBS5cuERsby4EDBzh79iyBgYHiEMTIyMgmn5bUajXJycmiM7El1tZNT3CmJbDy8nKcnZ1FAeTi4tKs89TU1JCUlIRSqaRv377YyWUYcrJFM1R9ciJCRXmzYrLr4Ue3FW0zi+NmQK81cnzi1wj6jj2IUqJhuj8whOCRBQAYPUKoGTADHJouetXpdFy4cAF3d3dCQ0PNupeYPLBMAqiwsJCff/5ZbOp46623WL16NRMmTGj1Odo7S5cuZdeuXcydO5dFixYBf64MpKSksGvXLlxdXZk3bx4nTpzgX//6Fy+//PLNuHzVEJLguRkwDS40CaD4+HhCQkJEARQeHo5cLqeqqorNmzczcuRIIiIirJoOFgSByspKMQNUUVGBi4uLKICcnZ3r3RyLiopIS0sjNDS00ZHzgtGIIS+ndg5QSu0ymKDRNLivy9RxeN0fYvFru1kpjqsg4dnvbB2GhJWwc3dh+CtdoPct6HtNuuESlskiIjQ01Co/uBqNhr1797Jz507i4uLo2rUr0dHR4tJ+165dzTp+Tk4OM2bM4MqVK8jlcubOncvChQvr7PPll1/y3nvvAbWNJ+vXr7eKbYMpk1NYWMjcuXNJT09nwYIFzJkzB/hT9Fxf23P+/Hl69erVKpf5TogkeG5GjEYjycnJ4hJYUlISAQEBXLx4kUmTJrFy5coWt5ubiyAIVFRUiAKosrISV1dXMX2dk5NDdXV1i5fXBKMRQ35erQ3G/7JAQlntuHyvxQ/iEmmddtibkYyNOeRtPGDrMCSshNzJgfCNL+PU/8ZLJKY5XQMGDLBaR2llZSULFizA0dGRdevWIQgCJ0+e5PDhwxw+fJg33niDMWPGtPr4ly9f5vLly3X8sH744Yc69hDHjh0jPDwcLy8v9uzZw/Llyzl58qQlLq8eJtETHx/Pe++9xy+//MKHH37I7Nmz6z0cSrYRDSIJnpsdg8HABx98wNdff83kyZNJTEwkMzOTAQMGiE9LwcHBbT4DSBAEysvLyc/PJz8/Hzs7OzH74+3t3erskyAIGPPz0KUk4hThjqNPKTKkwYOW4My842hOp9k6DAkrYOfuQp/Vr+A6sG+T+5ksIvR6vcVdzq8lOzubmTNnMnPmTJ5++uk2uT/dc889zJ8/n9tvv73B7SqVigEDBpCXl9fsYzZWeHwjLl68yObNm3n33Xd59tlnefDBB80SdzcJkuC5mdFqtdx5553ExMSwbNkysZhQr9dz9uxZcQksNzeXwYMHiz5g3bt3t/oNxmg0kpWVRXFxMf3798fZ2Vmc41FSUoJWq8Xd3V30Amv18psgIKMcO6EIuVCMnVCEDKmIuaUYqo0cu/UbhBrpb9fZUPp60mftMpz7NN3e3RYWEQAHDx7kpZdeYu3ateLkemuTlZVFdHQ08fHxjS4PffjhhyQnJ7Np06Ymj7VhwwYqKipYsmRJndev7dJtbobmm2++4ccff+Snn35izZo13HXXXVZzmO8ESILnZicrK4tevXo1uY9OpyMuLk5cAissLCQqKorx48cTExODv7+/RW9ulZWVJCQk4O3tTXBwcINffKPRWEcAVVdX4+7ujre3N15eXq2f3CoIyND8TwAVYSeUSAKoGZScriR+3re2DkPCwtgHdKHvutdwDOrW5H5tYRFhNBr57LPP2L17N19//XWbmV+Wl5cTExPDq6++2qBFBNR2UD3zzDMcOXJENGu+nqtXrzJ9+nSuXr2Kg4MDO3fuJCwsDJlMVkfg/Pzzzxw9epRhw4YxbNiwZs0R2rVrF3q9npiYGLy9vVt/sZ0bSfBItJzq6mqOHz/OgQMHOHToEKWlpYwYMUIsFvTx8Wldy/k1Hl3h4eF4eHg0+71Go5GysjJRAOl0ujoCqNVziQQBGaXYCcWgL0AuFKOwkz7+13Pxi1xyNsTaOgwJC+IY3J2+61/D3q/hH3Co/c5mZ2db3SKioqKCZ599Fi8vL1avXm2xOWM3QqfTMXXqVCZNmlQvI2Pi/Pnz3HfffezZs4e+fRte8vvjjz+4++67GTRoEM8//zwDBgxosKh6xYoV/PDDDzz++OMcPHiQsWPHsnjx4mZdr+SLdUMkwSNhPlVVVaIP2OHDh9FqtYwcOZKYmBjGjRuHh4fHDb+INTU1JCYm4uDgUNtububav9FopLS0VPTy0el0eHh4iAKopWPVr169SmZmJv369cXXSy4uf8mFEmRIbdhn55+k7PcUW4chYSl6dkX3zH24+PuKy8bXj47Q6/UkJiZib29P3759rVYke/HiRWbNmsXcuXN56qmn2uxHvTl+WNnZ2UycOJFt27Y1WEMjCAIGg4Gnn36a8vJyPvzwQzEzdf2y1aFDh3j77bf5+uuv8fHx4YcffuDdd9/l8OHDkg2EZZAEj4Tl0Wg0HDlyhNjYWI4cOYLBYGDMmDHExMQwZswY3Nzc6uyfmZnJ1atX6d27t9XmRRgMhjoCyGAw1BFAjQ1D0+v1pKSkYDAYCA8Pr7+fYESO+joBZLTKNbRXDDojxyf+C2O1VPzdGXCN6k+fj5cid3ESOydVKhUVFRXi7CxHR0cyMzMJCgoiICDAarHs27ePZcuW8fnnnzNq1Cirnachjhw5wvjx44mMjBSFyfV+WE899RTfffeduOykUCg4depUneMUFBQwZMgQlixZwvPPP99oJqasrIy8vDzCw8PF1yZOnMjmzZvp2bOnlL0xH0nwSFgXQRAoLS3l8OHDxMbGcvToURQKBePGjWPEiBF8/fXXyOVyNm3a1KZPMQaDQRxiplKpMBqNeHp64u3tjaenJ0qlktLSUpKSkggKCqJbt27Nu+EIhusEkKrTCyDVeS0XnvqXrcOQsAAe46MIfW8xcsf6Syim2VnZ2dlcuXIFe3t7UQCZ6391PUajkY8//pj9+/ezY8cOs2fq2JKkpCRGjhzJnj17GDt2LFD7UHjw4EGKiopwc3Nj+vTp9e4vBQUFTJkyhV9//RUfHx9xVplEq5EEj7V54okn+Pnnn/Hz8yM+Pr7e9rYaXNVeEASB4uJiNm7cyMcff0xoaCgKhUK0wRgxYoTV6gCawiSATJOgtf9zbA8NDcXf37/1c4kEA3JBJXaByVEh62Rfn6z/l0/22n22DkPCTLwnj6PX8meRKxv+rJssIjQaDQMGDEChUNTxvyorKxP980z+V60RQOXl5Tz99NN069aNjz76qMMv55SWlhIdHY1cLuett97i0qVLrFmzhvT0dAyG2uXwZcuWsXTpUlHQmKx9XnjhBX7++We++uorzp07x8svv4ynZ9PTrSUaRRI81ubw4cO4uroyY8aMBgVPWw6uag/o9Xrefvtt9u/fz5YtWwgJCeHq1auiEervv/+Ot7e3KICioqLa9IZXVVVFQkICHh4eeHh4oFarUavVyGSyOhmgVtcYCfrrBJC6wwug08+dpPykVL/TkenywB0ELX0SWSMCpbkWESYDYZMAUiqVdfyvbvS9SUtL48knn2T+/PnMnDmzUyzjGI1GPv30U95++21KSkqQyWRERkYyYcIExowZw3fffcf3339PXFwcgwYNEpe8MjMzeeGFF+jZsyeHDh1i69atREZG2vpyOjKS4GkLsrKymDp1aoOC51paM7iqo1FUVMSWLVtYvHhxg1kTQRDIy8sjNjaW2NhYzpw5Q9euXcUW+EGDBlltCvSVK1fIysoiLCys3lOUTqcTM0BqtRq5XC4OQmzOjbxRBD1yoeQ6AdRxMOqMHLn1X6CV6nc6Kl1n30f3+Y80Ki7MsYiorq4WBdD1BqDXPzjs3buXFStWsGnTJoYPH27WNbUXTOJFrVZz9uxZ9u7dy6RJk+jZsychIbW2NufOnSMmJoZXXnmFF198UXzvwYMHmThxIrNnz2bNmjU4OztLE5TNQxI8bUFzBU9zB1fdTAiCwMWLF8UZQOfOnSMoKEgcghgREWF2R5deryc5ORlBEAgLC2uWm7NOpxNb4EtLS8VJ0KYbeatvSoJOFEC1QxDL2rUAUidqOT9Lqt/pqHRf8DjdZt3T6HZLW0RcawB65swZPv74Y4YNGyZ+z3fu3HnTDc4rLCwkMDCQTz/9lHnz5oki6cqVK/z000/MnTsXaP1UZgkRSfC0Bc0RPM0ZXCVRmx5OS0sTp0AnJibSu3dv0QYjLCysRWLD5Azfs2dPunVrerhaU9TU1NQRQEqlUswAtbaWQRAE8nIvUlOZS0hPNxwVpchp2AjVViRuSKfoi2O2DkOipchk9HxlDl2mN2yT0FYWERcvXmTp0qUUFxcjk8kQBIExY8YQHR3NxIkT63V0toTmmH8KgsDChQvZvXs3zs7ObN26laFDh5p7WU1yrXDR6XRs376dTz75hJ07d9KvX78bvkei1TQqeNrWOfIm5/z58zz11FPs2bNHEjs3QC6X069fP/r168fTTz+N0WgkMTGR2NhY3nnnHVJTUwkPDxcFUGhoaKOTmi9evIhKpWLQoEFmO8Pb29vj7++Pv78/8GcqPz8/n+TkZOzt7UUB1JxuFtNcIkdHR/r0GQt2dmgBhGrshOI/u8AoNytuc6lKKLLp+SVajkxhR/Cbz+E9aWyD200WEf7+/vTo0cNqdTTJycnMmTOHxYsX89hjjyGTySgvL+fYsWMcOnSI0NBQBgwY0OrjKxQKVq1aVcf88/bbb69j/rlnzx7S0tJIS0vj5MmTPP300y2uoWxIjDQ1BNC0r0aj4ejRo7z11ltMmDCB0NDQRs8hiR3rImV4LEhTGZ4bDa6SaBkGg4Hz58+LS2AXL15k4MCBogDq2bMnKSkpfPjhh7zyyiv06tWrTdbETcWcJSUlaDQa7O3txRlA7u7udW6OpjH9zZpLJGivE0AVVr6SPzHqjRy/498Yyivb7JwS5iFzUBL6wd/xHNdwFqMtLCIEQeCXX37hnXfeYfPmzVbPqJhoyPzzb3/7GxMmTOCRRx4BoF+/fhw8eLBZ2V5BEBAEAblcjkql4sSJE/j4+BAaGtrkg6tKpWLLli3Ex8fz448/cv/997Nx40bxmJ2hULudImV4rM0jjzwizlsIDAxkxYoV6HS13kzz5s3jjTfeoLi4mGeeeQZoeHBVS7lRK7yJuLg4Ro0axTfffMNf/vIXs87ZXrCzs2PIkCEMGTKE559/Hr1ez+nTp4mNjWXx4sVirc7MmTNxdHRss5uLo6Mj3bp1E2+kVVVVqFQqcnJy0Gg0ODo64uXlRUVFBVVVVQwZMqR57fkyRwyy7hjojg6QCVX/Ez/FyIUi5FhPjJRn6iSx04Gwc3Wi9ycv4zY0vN62ay0imv3ZawUGg4GVK1dy6tQp9u3bh6+vr1XOcz1ZWVmcOXOGkSNH1nk9Ly+PHj16iP8ODAwkLy+vWYJHJpMhk8nYt28fM2bMQKlUUl5ejpeXFxs3bmTMmDE4ODjUEzHHjx9n69atdOvWjfXr1/Pggw8C0rKVLZEEj4X4+uuvm9y+adMmixcpz5o1i/nz5zNjxoxG9zEYDCxdupRJkyZZ9NztDYVCwYgRI+jbty8XLlwgJiaGxx57jN9//52//e1vFBcXM2zYMNEHzM/Pr01EkJOTE05OTgQEBCAIAmq1moSEBBQKBYIgkJycLGaAXF1dmx2TIHPCIAvEQCAAMqHymiGIxcipstg1qE+rLXYsCeui8HSjz9pluISH1Nt2rUVEVFSU1TKearWaOXPmEBERwe7du63WbXk95eXlTJ8+nU8++aSe03lDKxkt+f7HxcXx17/+lUcffZRHH30UOzs7Vq1axcMPP8wbb7zBnDlz6v09p0yZQkhICF26dBEzQUajURI7NkQSPB2Y6OhosrKymtxnzZo1TJ8+nbi4uLYJyobodDomT57MokWLeOihhwCYNGkSr732GlqtlhMnTrB//342bdpEeXk5I0aMICYmhvHjx+Pl5WV1AXT16lWysrKIjIzEw8NDnGirUqm4ePGiONLfJICu9zRqCkHmjEHmjIEe/zNCvV4AaVsdd+mZy61+r0TbofT3oe+613AKru8uXlFRQXx8PD169LCqRURiYiJz587lxRdf5KGHHmqzzKpOp2P69Ok89thjDTqdBwYGkpOTI/47Nze3RX+HuLg4/P39ee655+jVqxcA06ZN48svv6S6uhq9Xl9njpgp2xMWFlbn31KruW2RBE8nJi8vj++//57Y2NibQvAolUoOHDjQYJre0dGRCRMmMGHCBKD2B+DYsWPs37+fzz77jJqaGkaPHk10dDRjx46tV29jDiafLqPRSFRUlNgOL5PJcHFxwcXFhcDAQARBED2NMjIyqKysxMXFRRRAzs7OzYtJJkPABYPMBQNB/xNAFaIAshOKkVHdrNgFo4DmdKY5ly/RFvh54fHW0xi6eNRbWikoKCAzM5OIiAizuqGaQhAEfvzxRz744AO2bt3aplPkBUHgySefJDw8vFGn82nTpvHZZ5/x8MMPc/LkSTw8PBpczjJlgkydZKa/Y2JiIjU1NaLYefbZZ9mwYQMrV65kwYIFQN2lquu/p1K9TvtAEjydmEWLFvHee+/dVCnU5tYkuLi4cPvtt4uFjWVlZfz222/Exsby4YcfIggC48aNIzo6mtGjR+Pq6tqqeEzD3Jrj0yWTyXB1dcXV1ZUePXqIAqikpIT09HQqKytxdXUVBZCTk1MLBJArBpkrBnr+TwCVYycUo6/OR0EJ9sqG+xPKL9agL7Vth5hE0zj16Un39xejkRvJzMwUM4Wenp5UVFSg1WrrCG1Lo9frefPNN4mPj2f//v14e3tb5TyNcfToUbZv305kZCSDBw8G6pt/Tpkyhd27d9O7d2+cnZ3ZsmVLveNcO+zvyJEjHD9+nNtuu40hQ4bg7e2NUqnk1KlTLFmyhJSUFH744QemTp2KVqvlzTffZOrUqYwePbrtLlyixUhdWh2cpjrDgoODxSeWoqIinJ2d+fzzz7n33nvbOswOhanW5tChQ8TGxnL8+HHs7e0ZN24cMTExjBw58obt7abi0KtXrxIREWGRYW6CIFBeXk5JSQklJSVotVrc3NzqCKDmYjTW/jiWlpYSEdEfJweduPxVmwGqLbjP2VnAxQ/2mh27hHVwGdiXPqtfRuH+pyA3GfkmJiYCtULaycmpjvmnpTIOJSUlPPnkk0RFRfHmm292qIerxjqlVq5cybvvvsutt97K7Nmzufvuu0lOTmbQoEHodDpGjBjBV199RUhICIIg8Ntvv/H3v/+dhQsX8thjj9ngSiSuQxo82Flp7nTnWbNmMXXq1E7TpdWWCIJAUVGR6AN28uRJ3NzcxALo4cOH4+Dwp+t0fn4+ubm5eHp60rt3b6ut2wuCgEajqWOE6u7uLgqgxrJdWq2W+Ph4vL29CQ4Orn/TFwRklGEnFJH7/05yecteDOWWK4KWsAzuowYSuuoF7Jzq/j9fbxEhCAJVVVWiXYqpW9D0OWmtAIqPj2fu3LksW7asQRfw9k5D3VIbN27kpZde4uOPP2bSpEnivC2AL774gjlz5vDqq6/y3HPPYTQaRbEzZswYtm3bZrUsmkSLkARPZ+TaVnh/f/96rfDXIgkeyyEIAleuXBGnQJ86dQpfX1/Gjx+Po6Mjn3/+ORs2bGjzeUtGo7GOAKqpqakjgBwcHCgsLCQ9Pb1F81cEvYGK5Ew0pxLQ/B5P+dlkjNrm1QBJWAfPiSMJeWchcvu6P7Ami4jIyEicnZ0bfK9JAJm8r64dl2ASQE2JdEEQ+O677/jkk0/Ytm2bWUMDbYEgCDz++OP06tWLt99+u862hx56iIqKCr755hsxK3vtUtcrr7zCt99+S0FBAb179yYnJ4dHH32Ujz/+uN6+EjZDEjwSlqE5s38OHjzIokWL0Ol0+Pr6cujQoTaOsm0RBIH09HQWLlxIYmIivr6++Pr6Eh0dTUxMDAMHDrRJqt9oNFJWViYKII1Gg52dndgq21p3eqNOR0V8Opq4eDSnEig/l4Kg01s4eonG8Jl2C72W/Q2Z4s/PlLkWEdcKoLKyMhwcHEQBdK1lil6v5/XXXyc9PZ3t27fXM9/tCJSXl7N27VqmT59O7969xderqqoYMWIEo0aNEgcEmrhWyGRkZHD06FF8fHzw9PRk7NjaSdbSfJ12gyR4JCzD4cOHcXV1ZcaMGQ0KHrVazZgxY9i7dy9BQUEUFBR0epPA9PR0Zs6cyX333ceSJUuQyWRkZGSIU6DPnz9PcHCwKID69+/fpk+BlZWVxMfH06VLFzw8PMQfNoPBgIeHh5gBam063qitpvx8Kpq4eMpOJVCZkI6gN1j4KiQA/B69ix5LZiC75vNjDYuIawXQ1q1biYuLY9iwYZw+fZrbbruNFStWdMgf9+szMFu3biUgIIA77rgDjUbDtGnTUCgUbN++na5du9ap87l48SJqtZohQ4bc8LgSNkUSPBKWo6m6oXXr1pGfn89bb71lg8hsw08//URAQADDhg1rcLvRaCQ1NZX9+/dz8OBBkpKS6NevH+PHjyc6Opq+ffta7WZ55coVsrKyCA8Px8PDo842g8FAaWmpmAEyGo14enqKT/atFUCGyirKzyRTFhePJi6eyuSL0PR9RqIZBMx7kG5z/tKgPYk1LSIA9u7dy6pVq3BxcaGoqAgfHx8mTJhATEwMY8aMMfvze6PMcWlpKY8//jjZ2dno9Xr+/ve/M3v27Baf59osTFpaGvfeey8ODg589913BAcHs2nTJubOncvmzZt54IEHxGUtjUbDG2+8gZ+fHwsXLmx1dlSiTZAEj4TlaErwmJayEhIS0Gg0LFy4sMlJ0DcjRqOR+Ph4MQOUnp5ORESE6AMWHBxs9g+IwWAgJSUFnU5H//79myVeDAYDarVaLG4VBKGOAGrtxFx9WTma00m1S2Bx8VSlZ7fqODczPV6Yjf8jU8R/X2sRERkZaTWLCEEQ2LFjB+vWreOf//wn4eG1dhWXL1/m0KFDHD9+nI8//tjsz+uNMsfvvPMOpaWlvPfeexQWFtKvXz+uXLnSKuFx8eJFKisriYiI4KuvvuLDDz+kZ8+e7Ny5E4VCwYMPPsh///tfli5dypw5c8jLy2P37t18+OGHfPDBB60SWhJtiiR4JCxHU4Jn/vz5nDp1iv3791NVVcXo0aP55Zdf6Nu3rw0i7RgYDAbOnj0rCqDs7GwGDRrE+PHjmTBhAoGBgS1apjBN1Q0ICGjxe69Fr9fXEUCAKH68vLxavaRRfrmApB9/xelSAUJyNtWX8lt1nJsCuYxey5/Fd2qM+NK1FhHWzA7qdDqWLVtGbm4uW7durZchtDRN3VdWrlxJTk4Oa9euJSsri9tvv53U1NRmXfu1y015NrjyAAAgAElEQVTHjh1j3LhxLFu2jFdffRUHBwdWrlzJF198wb333suHH34IwH333cexY8coLCykV69eqNVq1q1bx8MPP2zZi5awBpJ5qETbEBgYiK+vrzhBODo6mnPnzkmCpwns7OyIiooiKiqKF154AZ1Oxx9//EFsbCzz58+noKCAoUOHigLI39+/URGTn59Pdna2RabqKhQKsQAban8A1Wo1xcXFZGZmIpPJRPHj6enZLAFUWFhIelYGYQ9NFZdgagpL0MQloIm7QNmpBGryCsyKu7MgUyoIWbkIr4l/GmG2lUVEQUEBTzzxBLfccguffvqpzetT5s+fz7Rp0wgICECj0fDNN980KyaTyznAH3/8wblz51i0aBELFiwQM5bPPPMMubm5/Pvf/yYkJIRnnnmGf/3rXyQnJ3P27FmcnZ0ZPnw4QUFB4jE7Wgu+RC1ShkeixTT1JJaUlMT8+fP59ddfqampYcSIEezYsaPDta62J2pqajhx4gSxsbEcOnQItVrN8OHDiYmJYdy4cfj6+lJaWsr//d//8cQTTzBgwIA2MWzU6XSoVCpKSkooLS3Fzs5OFEAeHh51BJDRaCQjIwONRsOAAQOaXIqozi9AE5dAWdwFNHHx6ApVVr+W9obcyYHeH72I+8iB4mttYREBcPr0aZ599lnefvttpk6darXzXE9T95Vvv/2Wo0eP8tFHH5GRkcHtt9/OuXPn6pmEAuzbtw87Ozt8fX2JjIwEaj0Fly9fjkwm49NPPxUHBJqyP6mpqbz88sskJiaybt06brnllnrHlbqwOgxShkfCMlw7+ycwMLDe7J/w8HDuvPNOBg4ciFwu56mnnjJb7LRVQWN7xd7eXqzvgdoOmuPHj7N//37+8Y9/UFxcTEVFBXfffTc9e/Zss5uyUqnEz89P7MKrqalBpVJRUFBAamoqSqVSNEHNzs7Gx8eHIUOG3PDp2CHAD4d7/PC95xYEQaA6+7JYAK05lYBeVdYWl2cz7Nxc6LPmFVwH1mZFBUEQxaI1LSIEQeCf//wnmzZtYufOne0qK7tlyxZeeuklZDIZvXv3Jjg4mOTkZEaMGCHuU1lZyfTp00lISKCwsBCj0cjrr7/O4sWLGT58OEOHDuXw4cMEBgYCtYLd9Lfs27cv8+fP580332TRokXs2rVLzOiYkMROx0fK8Ei0e9qyoLEjIQgC69evZ8uWLcydO5e0tDSOHDmCXq9nzJgxREdHM2bMGItaCbSE6upqsrOzyc3NRalU4uTkJLbAXzvbpSUIgoA2I6dWAJ2KR3MqEYOmwgrR2waFjyd91y3DuU9PoFZExsfH4+HhQUhIiNX+H2tqanjppZcoLi5my5YtrfaOM4emMjxPP/00/v7+LF++nKtXrzJ06FDOnTsnLrf+8ccfTJ48mX79+rFixQrs7e359ttvWb16NevWrWPevHn8+9//ZvHixQQEBHDw4EEcHBzqZW02bNjApk2b2LBhA0OHDm2za5ewKFLRskTHxloFjR2ZuXPnolAoWLVqleijJQgCZWVlHD58mNjYWI4ePYqdnZ1ohDpq1CiL+HrdCFNWorS0lAEDBuDg4IBWq60z3M7e3r6OvUGrBJDBQGXqpdoZQHHxlJ9JwliptcIVtQE+Hujm349baJA4FiAzM1O0iLAWV65cYfbs2UyePJkXX3zRJt+bG02Nz8/PZ9asWVy+fBlBEHjppZd4/PHHATh16hTjxo1j3Lhx7Nu3r06NzZQpU8jNzeX8+fMAfPTRR6xbt46pU6fyySefAHUd0qE2Y2ztAm0JqyIJHgnLU1RUxIULFwgKCiI0NNSq52pK8JgGhiUnJ4sFjXfddZdV42kPXLlyha5duza5jyAIlJSUiEaoJ06cwMnJSTRCHTFihMVbmqurq4mPj8fT07PJrIRWqxVnAJWVlVnE38mo01OZmIHmVEKtADqXjFCtM/eSrI5jcHf6rn8NZRdvNBoNWVlZFBcXY29vX2c4ZEsMYpvD77//zoIFC3j//fe58847LXrstuL48eMsW7aMS5cuceTIEbp27UplZSXOzs589NFHvPbaa5w+fZp+/fpRXl7OsmXL+Omnn1iyZAnz588Xj3OtUJIKkzs0kuCRsCybN28Wn5Cys7NxcXHhnnvu4YknniAqKsriNwtLFTTe7AiCQEFBAQcOHODgwYOcPHkSLy8vcQhiVFSUWUuBpkF4ffv2xcfHp0XvNRlcmmwwrl0Cc3V1bZ0AqtFRcSGVst9r638qLqS2uynQzuEh9PnsVZRe7vUsIuRyeT2DWDc3N7MFkCAIbN26lW3btvHVV19Z/YHF2uzdu5cXXngBHx8fDh48KL7+1FNPceTIEY4ePYqXlxdyuZzMzExefvllEhISeP/995kyZUrjB5boiEiCR8J8TE89cXFx3HXXXYwePZoXX3wRFxcXjh49yrfffoter+e3336z+LmbEjx33XUXL730EuPHjwdg4sSJvPvuu3UKGiUaRhAE8vPziY2NJTY2ltOnT+Pv7y8WSQ8ePLhZHV+CIJCZmYlarSYiIsLsrNG1Dt8qlYry8nKcnZ3FH3oXF5cWC6Di4mJSLyQQpLNDSM5CE5dARWI6GP9/e3ce1dS97QH8m4CizAQEB0BARZkpTgiCcxUftSpqpU6IiK1yi9eWSq206qtafbXl2jre4kjVOrTaqvCqTAoiKioWUEAFAwEENEIAGZLs9wcv5xoZBGVQ/H3WYi1NTs75nRBO9vkNe3fcZU5zsDUG/LASKprqzSoRoSgQqxgarKqqgra2Nrc6rjkBUHV1NYKCglBRUYGff/65XYY424rimiSXy7F3716sXr0aM2fOxNatW7Fq1Sr8z//8D44ePYpp06YpvS4hIQFLly6Fnp4eIiMj2yxxI9MhWMDDvDrFEs41a9bgwIEDOHfuHPr16wcigkwmQ0JCAi5cuICQkBDIZDLweDzu51W9yoRGpvmICA8ePOAqwd+8eRMmJiZcHTBbW9t6q1WePn2K27dvQ1tbGxYWFm0yB4SIUFlZyQVAFRUV0NDQgJ6eHgQCAdTV1Rv9nBERsrOzIRaLuflECrLySkhu3OZWgFVm5LRbGQydkU7ot3kF+N3UXrpEREsDoIKCAq7u2z//+c9OMc9NEfSUlpbiX//6F7Zs2YIePXpAIpFg165dmDp1aoNDVJGRkXB0dHzhsDDzxmEBD9N6goKCEBYWhvDw8GZ3B8vlcsjlcqioqLQ4AHqVCY3Mq1Hkz4mKikJMTAzS0tLQv39/uLm5YdSoUcjOzsa6detw8uRJ9OrVq93aRUSoqKjgAqDKykpoampyAVD37t3B4/FQU1ODtLQ0aGpqol+/fi/8gpc+kUCSnA7JtbpJ0FX389qk/QKPkTBbsww8VRUIhUIUFxfD1tb2lXsang+ARCIRwsPD4e7ujp49e2Lz5s34/vvvMX78+FY6k/Yll8sBoN7vURHQ5OTkYOPGjdi/fz927NiBhQsX1luJ9XyhT5Zfp9NhAQ/TetLS0jBs2DBYWloiJCQE06ZNA4/Hg1QqBY/Hg4qKCg4fPgyRSAQ/P7+XXoLckXJzczF//nwUFhaCz+fD398fgYGBStsQEQIDA3H27Fmoq6tj3759nX4pq1wux507d3Du3Dns3r0bT548gbOzM0aNGgV3d3f079+/Q37XRITy8nIuAHr69CnU1NRQUVEBc3NzLvdKS9WWiCFJTufyAFXnFr5yW3vMmADTYD/I5PI2LxFRU1ODhIQE7N+/H5cuXYK2tjZGjBiB0aNHY/To0TAxMXnlY7woTxYAxMbGcnX2DAwMEBcX1+z9K3qP+/Tpw801Ki4uhqamZoNDeFeuXMHq1atx7949JCUlwcDAAFKptF2ScTKvBRbwMK0rIiICa9aswdWrVzFkyBB8/fXXSiujfHx88McffyAgIACxsbF49OgRPvroI3z00UcNJk4jIsjlcvB4vNciOCooKEBBQQGcnJy4hG8nT56EtbU1t83Zs2fx448/4uzZs0hKSkJgYCCSkpI6sNXto6SkBPPnz4e9vT3WrFmDjIwMrhJ8dnY2bG1tuSGwvn37tvtqFyJCbm4uRCIRDAwMUF5erjTUIxAIXronpaawBGXX6spgSK6moqbwUYte33PhNPQJ8EZlZSVSU1Nhamrapj1jVVVVWLFiBWQyGXbv3o0uXbrg+vXriI2NRWxsLObMmcNlHX5ZL8qT9eTJE7i4uCAyMhKmpqYoKiriklU2x/379xESEoKysjL8+eefOHDgAL777jvs3r0bzs7ODb7mzJkz+Pzzz9G7d2+cO3cOQP2eHabTYgEP0/pu376N8PBw7Ny5E+rq6jhw4ADGjBmDwsJCeHt74/r163B2doa/vz+io6Nx5MgR7Nu3D++9916z9q/opk5OTkZ+fj7c3Nygq6vbxmfVsPfffx8BAQGYMGEC99iSJUswevRoeHt7AwAGDhyI2NjYdh3a6QgBAQHw8PBocOm/VCrFjRs3uEKoIpEIjo6OXB2w3r17t2kAJJPJkJ6eDhUVFQwcOJAbqlAM9Sh6gGpqapQCoGfn9TQXEaE67yEkigDoWhpqS540un2fT+agl8/UdisRkZeXBx8fH8yePRsBAQFt+mXf1By77du3Iz8/H998881L7z80NBS7d++GmpoaUlNTsXnzZnz88cf1AlfFNUMmk3GTmMePH4/w8PCXPjbzxmEBD9N6np8AePnyZYwbNw7z5s3Dzp07ER0dDW9vb0yePBl79+4FUHeX5+XlhYqKCly+fJm723ry5An+/PNPREREoF+/fpg5cybs7e2VkoEFBAQgLS0NBw8efOmhiVeRk5MDd3d3pKamKi119/T0RHBwMEaOHAkAGDduHDZt2oQhQ4a0extfV7W1tbhy5Qq3DL6kpASDBw/mVoEZGhq2WgDUksKacrkcZWVlXC2w2tpa6OjocAHQyyzNJyJUZYu4AKjsWhpkpeUAj4e+XyyGgdd4pXpibVUiAgAuXryIoKAgbN26FaNHj26z4yg0FfAohrLS0tIgkUgQGBiI+fPnN2u/imuNRCKBvb09Hjx4AH9/f+zcufOFrxGLxfjmm29QVVWFbdu2sdw6bw9WS4t5dXK5HGlpaVxBPqDujtrZ2RmmpqbcpOHbt2+Dz+dj3rx5AOrmEejq6mL48OH4448/kJ2dDXNzc2RlZSE4OBhnzpzB+PHj8ddffyE8PBzr16/Hhx9+iOrqaqSnp+Pu3bvQ1dV9YbDz999/g4hgb2/f5HYtUV5eDi8vL4SGhtbL69PQzQK7oCrr0qULXF1d4erqitWrV6O6uhqJiYmIiYnBnj17IJFIMGzYMLi7u8PNzQ0CgeCl3sOHDx8iOzu72b0mfD4furq60NXVhbm5OeRyOUpLS/H48WPk5eVBKpVCV1eXW+3UnACIx+Ohu4UxulsYw3DWRJBcjqd3hZBJKqBmNwA3btyAjo4OHB0d2+xzIpfLsWvXLvz+++84c+ZMq8zReVVSqRTJycmIiorC06dPMWLECDg7OzdZq0txQ6R4n9LS0jBhwgQIhUIkJCTg9OnT8PT0bHCYisfjgYigp6eHr7/+mvu7ZX+bDAt4mGZLSkrCuHHjsGXLFkyfPh09evSAiooKioqKkJOTg0mTJoHH4yElJQVdunTB8OHDAfyn6J5YLIa+vj4XKKxZswbXr1/HkSNH4OnpibKyMvj6+uKrr76Cq6srampq4Ovri5SUFPTt2xffffcdJk2a1GAxUqlUil27dmH79u1QUVGBjY0NvL294e3tXa8IYHPV1tbCy8sLc+bMwfTp0+s9b2xsjNzcXO7/eXl5L+xZeNupqalxE2aBuoKPly5dQlRUFLZt24aamho4OzvD3d0drq6u0NHRafKLSi6XIysrC1VVVa9UWJPP53PBDVAXyJeWlkIsFiM3NxcymUwpAGrOcXh8PtQtzVBWVobr16+3eYmIyspKBAYGQk1NDefPn39tcssYGxvDwMAAGhoa0NDQgLu7O1JSUhoNeJ5dNVVSUgIDAwM4OzvD2dkZly5dwhdffIENGzbAzMwMtra2jQY9ALhgh83fYQCAfQKYZjM3N8fHH3+MrVu3YurUqVi5ciWWL18OW1tbCAQC+Pn54fHjx7hx4wa6desGDQ0NEBFUVFRQVVWF+/fvQ0tLC2ZmZqipqcHJkyfh5+eH9957D6qqqhAIBFi5ciVX+2bAgAHw8vJCz5494eDggD179sDf3x/JyclcmxTBU3FxMYRCIUaOHInExERMmjQJR44cweLFiyEWi1t8rkSERYsWwcrKCitWrGhwmylTpuDAgQMgIly+fBk6Ojqdfv5Oa1NXV8f48eOxceNGJCQkIDo6GpMnT0ZSUhK8vLwwduxYrF69Gn/99RfKy8uVXnv//n0kJCRATU0N9vb2rTpEpKKiAoFAgH79+mHIkCEYMmQIDAwMUFZWhps3b+LKlSvIzMxEcXExpFJpo/vJz8/H7du3YW9v36bBjlAohKenJ1xdXREWFvbaBDtA3fy3ixcvQiqVorKyEklJSbCysmpwW0XqCgAIDg7GlClTYGdnh5kzZyI7OxsuLi5Yvnw5ysvLERISAolEwgUyjx8/brQNLNhhANbDw7RAz549sWXLFvj6+uLEiRO4cOECiAjLli2Dh4cHbGxsEBkZiYqKCkgkEly4cAHu7u4A6uYUpKam4rPPPgOfz8fVq1dRU1OD0aNHQ0VFhRtfVwRDigtUXl4ejIyMsH37dvTq1QtFRUUNJmbLyclBamoqFi9ejCFDhuCdd96Bq6srZs2ahY0bN2Lz5s0tustLSEjAwYMHYWdnB0dHRwB1VdmFQiGAuvw/kydPxtmzZ9G/f3+oq6tz85WYl6elpQUPDw94eHiAiPDkyROuEOqGDRu4ITJtbW3s3bsXP//8M8zMzNq8XSoqKtDX1+fKZUilUjx58gRisRjZ2dkAwPX+6Orqgs/ncyUihgwZ0qZ5XmJjYxEcHIxt27Zx2cbb07N5soyNjevlybKyssKkSZNgb28PPp8PPz+/BntpgbrApKamBlOnTkVqaioWLlyIvLw8xMXFYdSoUQgLC8O0adOQnZ2NXbt2ITg4GBs2bMDp06dx5MgRfPvtt7CxsWnP02feICzgYZpNEZTY2Ng0elG5desWiAhOTk74+eefUVtbi5s3b+Lbb7/F0KFDMXXqVABASkoK9PX1oampCaCuG1tVVRWpqang8XjQ0dFBWVkZsrKy0LdvX26oyMjISOl4iq7rjIwMlJSUcAnV+Hw+3nvvPTg6OkIkEtVLLvb8MnihUIj4+HiMGzcORkZGGDlyZINzdJ4/9rZt217inWxcc/L//PLLL9i0aRMAQFNTEzt27ICDg0OrtuN1wOPxoKenh/fffx/vv/8+iAjFxcX45JNPkJiYiF69emHNmjVwc3ODm5sbhg0b9lKrrV6GqqoqDAwMuGzeUqmUmwB99+5dVFZWQkdHB3379m2zNsjlcmzbtg1nzpxBREQE+vTp02bHasrhw4dfuE1QUBCCgoKatb/4+Hikp6dj165d8PDwAAAUFRXh3XffxYoVK3Dq1CkEBARAJBJh3759OH/+PB48eICvv/6aBTtMk1jAwzTbs5WEFRlPnw8i7ty5A3V1de7uy8PDA1paWpg8eTI2btzITTzu06cPZDIZ1w2tSAoWHh6OQYMGwcrKChkZGSgsLOR6iRrLiKpYAaKlpYWhQ4dy7VNRUUFmZiYGDx4MFRUVZGVlwcDAAHp6elyCRIXi4mLs3bsXT58+xaJFizpszF9VVRVbtmxRyv8zYcIEpfw/5ubmiIuLg56eHiIiIuDv7/9W5P8Ri8Xw9fWFnZ0dwsPDoaKigocPHyI6OhonTpzAypUroa+vz2WBdnJyatOVUM9SVVXl5rQ9evQIdnZ2ICI8evQI9+7dg4qKCtcDpKOj88o9PhUVFQgICICuri7OnTvXboFee8jMzER+fj5cXV0B1AWThoaGOHnyJGxtbREWFob169dj5cqVGDduHK5duwYPDw8MHToUAKt0zjSOBTxMiz0fLCguMNnZ2bh//z4GDRoEY2NjhIeHY9++fbh37x4GDhyotI9Ro0ZBX18foaGhMDExgZaWFvbu3YsjR45g06ZN0NfXx6+//oqamhruQvY8xXELCgpw584dCAQCrn1SqRShoaEQi8UYN24c5HI5li9fjgcPHmDPnj04c+YM+vfvj+nTp0NDQwODBw/GuXPnuPkYHTXm36tXL24ekJaWFqysrCASiZQCHhcXF+7fzs7OyMtrm/IHr5v09HT4+/tjypQp3GM9e/bEhx9+iA8//JBLOBgTE4P9+/cjMDAQvXr14rJA29vbt1m2XUUNspKSEjg5OXEBiCLBXk1NDcRiMYqKipCVlcUFQAKBADo6Oi36vGVnZ8PHxweLFy/G4sWL39gv92dvKp5NQ6GjowMDAwPcuHEDo0aNgqqqKmpra2FmZgYfHx8cO3YMQUFBMDQ0xOTJk7nyNooe2zf1/WDaHgt4mFemuMDk5uYiJyeHG1aqrq6GmppavWAHAHR1dfGvf/0LH330EVxdXWFqaorMzEzMnz8fH3/8MYC6YSo1NTUum2pjd8UPHjzA3bt3cffuXXTp0gW9e/eGhoYGhEIhZs+ejWnTpuH+/fsoKyuDUCjE559/Di0tLZw4cQLDhw+HmZkZDh06BCsrK25l2bMUdcD4fH67BkI5OTm4ceNGg21SCAsL47r9OztFvqPG8Hg8mJqaYsGCBViwYAFXNDQ6Oho7duzArVu3YGZmxvUAWVtbt8rcGqlUypWIcHJyavAz0rVrVxgZGXFDsjU1NXj8+DEKCwuRkZGBLl26cJXgmyrFcv78eaxevRq7du3CiBEjXrntHUXx91RTU8P1xip640aOHInKykocO3YMdnZ2EAgE3HO1tbXo0qVLgyUl2MRk5kVYwMO0mlGjRiElJYW7W3tR7pKJEyciNTUV586dQ0ZGBleTCai7sGlra6OoqAhVVVUNvl4RaGVmZkIkEiE6Ohr6+vpISEjAvXv3uOEgAEhNTUVycjJmzpyJkJAQ9OnTB48ePUKfPn1w+/ZtrFu3DkOHDsWvv/7K7b+qqoq7ELf3xbSp/D8KMTExCAsLQ3x8fLu27U3B4/FgYWEBCwsL+Pn5cUvYo6Oj8d133+H27duwtLSEm5sb3N3dMXDgwBb/nhXJDltaIqJr167o2bMnV6m7qqoKYrEY+fn5uHPnDrp27QpdXV2IRCIMHz4cqqqqCA0Nxfnz5/HXX3+9sRW+Fb2yfD4fCQkJ+Mc//oHa2lqoqalh9erVcHFxgYmJCb799lssXboUJiYmWLx4MQQCAQoLCyESiTB48GCoqqqyoSum5YioqR+GaTNyubzJx5OSksjS0pJMTU0pICCAcnJy6m1bXV1Ny5cvpz59+jS5r3Xr1pGBgQFdu3at3jZHjx6lQYMG0b59+4iIqLa2lk6dOkXz5s0jc3Nzsra2puDgYMrKymrwGFKplKRS6YtPuJlqamro3XffpS1btjS6TUpKCllYWFBGRkarHfdtI5PJ6O+//6bQ0FCaOnUq2dra0syZM+nHH3+klJQUkkgkVFFR0ehPdnY2RUVFUWFhYZPbvczPo0eP6O+//6b33nuPLCwsaMCAAeTi4kKXL19u1c8aEdHChQupR48eZGNj0+R2V65cIT6fT8eOHWvxMeRyOclkMu7/d+7cIYFAQHPnzqVVq1bR+PHjqVevXrRixQqqrKwkIqLPP/+ctLW1ydramry9vWn48OFkYGBA169fb/HxmbdKozENKy3BdDjFBOiG7q7FYjF+++03ZGZmYt68ebC1tVUa7xcKhVi8eDG6d++OkydPchObn53gXF1dDR8fH+Tk5CAxMRGA8pyBkJAQHDlyBKdOnYK1tTVCQ0Px9ddfw9LSErNnz+ZyBk2YMAFffPEFNDQ0AAClpaXQ0dFp8flSE3emRIQFCxZAIBAgNDS0wW2EQiHGjh2LAwcOKM3nYV6NTCZDSkoKVwdMKBTCzs4Obm5uGDNmDIyNjbn5YT///DOGDRsGOzu7Np0YfffuXfj6+uKDDz6Avr4+4uLicPPmTZiZmXE5rF7Vi4p/AnXvzYQJE9CtWzf4+vpixowZzdr37du3YWFhoTSp+scff0RFRQUyMzPx008/QV1dHQCwYsUKREREYO7cufjyyy8BAEePHsW5c+dQXFwMgUCA7777DgKBgPXuME1p/IPRVDTUzlEZw7RYVFQUdenShTZu3EhEpHT3q+jdSU9Pp+HDh9OiRYuIiJTuNCsqKmjGjBnk6upKRERVVVWkra1Ns2bN4raRyWSUlJREJ0+epIqKCiIiCg0NpcmTJ5ORkRE5OTnR3r17qaamptntvnLlSoN36xcvXiQAZGdnRw4ODuTg4EBnzpyhHTt20I4dO4iIaNGiRaSrq8s9P3jw4GYftzFCoZBGjx5NgwYNImtrawoNDW2y7S97p/8mqa2tpcuXL9OGDRvo3XffJXt7e/rggw/I0dGRfH19qaysrNV7dp79+e2338je3p6uXLmi1C65XE53796lv//+u9XONTs7u8kenh9++IF++uknWrBgQbN/74GBgWRtbU1TpkzhHouIiCATExPS0dGhTz/9lIiI+7spKysjLy8vcnV1pdTUVKV9VVdXc/+ura1t9nkxb6VGYxoW8DCvPalU2ujwV0VFBR06dIjy8vKISHmYTBHYHD9+nAYNGkR79uypt7+UlBQaMmQIffzxx0REdOTIEVJTU6P4+PhG2/OPf/yDVFRUyM/Pj3755RcKDAwkU1NTioqKeuG5REZG0tixY8ne3p5MTEyoW7du5O7uTmFhYfT48eNmvBttIz8/n5KTk4mo7otnwIABlJaWVm87qVRKY8aMIQ8Pj04f8Dzv8uXLNGDAAJo3bx6NGTOGHB0dyc/Pjw4ePEg5OTlUXl7eKnSOR4UAAA/GSURBVIGORCKhr776isaOHUsPHz5sl3NrKuDJy8sjd3d3kkqlzQp4cnNzyc7Ojuzt7en777+n06dPKz2/fv160tXVJU9PT+4xRUBz5coV4vF4dOHCBSKqP+z97M0KwzSi0ZiGTVpmXntNraRRV1eHt7c39/9nu7kVQ2Tx8fEoLi7mVjvx+XyuSzw1NRVisZh7LiEhAf369eMSxim2UwyRxcXFISwsDHv27MH8+fMhl8sxbtw4ZGRkYN26dRg7dmyjbU1OToavry8cHBwQFBSEd955B9nZ2Th+/Di+/PJLCAQCLjFje2vOcnigbjjCy8sLV69e7Yhmdpj9+/dj+/btiIiIQL9+/QDUTTROTExEdHQ0du/ejfLycq4OmJubG3R1dVs87FJWVoYlS5bA3NwckZGR7ZZHqCnLly/Hpk2bmrWi7dGjR/D19UXfvn2xZcsWWFhYcKkAampq0LVrVyxduhS5ubn45ZdfsHv3bvj7+3Pn2atXL6ipqSErKwtubm713j+2Eot5FSzgYd54L0oS6OHhAVVVVe7L+9lcHWlpaVBTU+OSnD158qSu6vUzy17pmXluZ86cwdOnT5GTk4Pc3FyYmJjAyMgI/v7+WLp0KXdRb6iNBw8eREFBAe7du8fVOrKxscHgwYNhaWnJVaGnDp6f0NhyeJFIhN9//x3R0dFvXcBjZGSEmJgYbr4JAHTr1g1jxozBmDFjANStrLt06RKio6OxdetWSKVSjBgxgiuEqqWl1eTvNSMjA4sWLcKKFSswZ86c12aOyrVr1zB79mwAdcU8z549C1VV1QaDc6FQiLS0NISFhcHS0hIymYx7rmvXriAi6OrqIjAwECKRCGvXroWJiQk8PDxQXV2N2NhYdO3aFYMGDWq382PeIk11/7R3PxTDtCeJREJjx44la2tr7rHff/+deDwexcTENPgaBwcHMjMzowEDBhCfzycdHR2aPXs2DR06lJycnKiwsLDB15WXl9OCBQtIS0uLGzpqLY0N970MiURCTk5OdOLEiXrPzZgxgxITE4mIWjSX420kl8uptLSUTp8+Tf/85z9p+PDh5OzsTJ9++imdOnWKioqKuCGs8vJyOnr0KDk4OLT6Z6O5XjSHR+FFv/cTJ06Qvr4+Xb58Wenx/fv305o1a8jb25v++usvqq2tpaSkJLK1tSU1NTVyc3OjhQsXkqamJi1btuyVz4d5q7FVWszbq7GSFACQlZWF3Nxcbijq8ePH8PHxgUgkwurVq9G/f3+IxWLY2NhAX18fNjY2mD59OtauXYv79+8jMTERkZGRuHXrFkaMGIH169c3WhX73//+N5YsWQJLS0usWbMGnp6e0NTURG1tLVRVVV/qjp7+vzfo/PnzcHR05Go7vYza2lp4enpi4sSJDVaINzc353q7SkpKoK6ujt27d3fYMNybhIggFosRFxeH6OhoXL58Gd26dYOLiwsKCwtRUFCAQ4cOvdLv72U9W/zTyMioXvHPZ/n4+MDT07PRVVrp6ekYNmwY5s6di4kTJ4LH42HdunVISUmBmpoaVyh4xYoVWLt2LY4dO4a1a9eiuroamzdvhr6+PpeLq6PKuzBvPLZKi2GaKy0tjTw9Pal79+7Uu3dvmjt3Lpf7Y9WqVdS/f3969OiRUs9KTU0NFRcXN7pPxba///47OTo6Eo/Ho6lTp5JIJKq3bUvy+sjlcoqLiyNNTU06cuRIS06z3n7mzZtHgYGBzdqe9fC8GrlcTg8fPqT9+/eTl5dXp1h5pPiMb9u2jTQ1NYnH4xGPxyN7e3tauXIlpaenU0FBAc2YMYN0dHQoKSmJ5HI5ffXVVzRw4EBavXo1t6+WrHhkmOewHh6GaQi9ICfO1atXwefz4ejoyFVz9/f3h7m5ORYtWgQLCwsUFRWhR48eMDc3f+FxiAg3b97Etm3bsG/fPri4uCAiIoLL7dNcirvfS5cuISQkBDY2Nti6dWu98yktLcWhQ4cwb948rjJ9Q+Lj4+Hm5gY7OzvurnrDhg0QCoUAWn6nz7zdFNnODQ0NYW9vDyMjI66X9enTp9DQ0MBPP/2EpUuXoqSkBKtWrUJcXBxWrlwJX1/fDm4984ZrtIeHBTwM8xy5XA4ianQYLDo6Gl999RWuXbsGExMTCAQCzJo1C8uXL29RbaYpU6YgNjYWmZmZXKmAtWvXorS0FB4eHlxZjKZMmjQJmpqa+OGHH2BiYgKpVApVVVVu8vTNmzdx+PBhbNq0qdntak+5ubmYP38+CgsLwefz4e/vj8DAwHrbxcbGYvny5aitrYWBgQHi4uI6oLXMizR1A6F4/vz58/D29saxY8e4Cd9paWkICAhAQUEBLl682OiwMMM0AxvSYpiX0dSE4IqKCoqKiqKjR49Sfn6+0nOKIamwsDD68ccfSSwWKz1fWlpKs2bNooEDB9L9+/eJiOjRo0d0+PBh8vT0pG7dur3w+MePH6cuXbpQQkKC0rb5+fkUHBxM9vb2ZGhoSCNGjKA//viDy3Wi2O7GjRu0cOFCSkpKavb70dqak/9HLBaTlZUVPXjwgIio3XLTMK1D8XmTy+UkEonIx8eHXF1dKTc3V+nzHRMT02DuJ4ZpIZaHh2FeRkN3qzKZDDweD+rq6o3m3VH09Dx8+BB79uxBVlYW5syZg969e0MikeDAgQM4ceIEgoODuaEwLS0tzJ49G3l5eUrHUuQxedaTJ09w+PBhDBkyhCsvoWjr+vXrERYWhpCQEERERIDP52PZsmVYsmQJVqxYge7du0Mmk8HR0RG3b9/GpUuXMGzYsA6ZJNqc/D+HDh3C9OnTYWpqCgAwNDRs1zYyr4bH4+HWrVtIT0/Hjh07kJOTg7Nnz8LY2BjAf3qFRo8eDYBNVmbaDgt4GKaFnh22ksvlSnl9nufr6wsNDQ3s27cPO3fuhLGxMbS0tJCTk4Pg4GB8/vnn3LaKi/zBgwe5YZ3n96v4Mrh+/ToyMjLwwQcfAAA3lCUSiZCQkABfX18EBQUhMzMTX375Je7cuYP8/Hwuv5DiHDQ1NVFZWal0/I7SWP6fzMxM1NbWYvTo0ZBIJAgMDMT8+fM7qJVMSyUkJGDChAmwsrKCpaUlIiMj0b17d+6zzJILMu2FBTwM8wpedHE2MjLCJ598gk8++QSFhYW4ePEiqqqquGKUz1IEIenp6fD09FR67HlJSUkgIowcOVKpHXp6ejA2NsbDhw+RkpICY2NjDBgwAAMGDKi3D6lUCkdHR1y4cAGrVq1q2Ym3svLycnh5eSE0NBTa2tpKz0mlUiQnJyMqKgpPnz7FiBEj4OzsDEtLyw5q7evD19cXp0+fhqGhYYOFP3/55Rdu/pampiZ27NgBBweHdm2jq6srjh8/Dh0dHS7BpyJAZ5j2xEJphmlDRASZTAYiQs+ePTFz5kzMmzevXrBD/7944NKlS9DW1oahoSFXRf5ZisCmoKAA3bt3h42NjdLj6urq8PHxQXx8PMaMGQORSISCgoIG26aqqgqZTAaxWAwADR6vPdTW1sLLywtz5szB9OnT6z1vbGyMSZMmQUNDAwYGBnB3d0dKSkoHtPT14+Pjg8jIyEafNzc3R1xcHG7duoWQkBD4+/u3Y+v+87mePHkyF+zI5XIW7DAdggU8DNOGeDweVFRUuG57xQowBcW/nz59CgC4cOECJk6cCABKafmfVVVVxe3n+dUscrkcXl5euHTpEmxtbZGYmIhPP/0UIpFIaTupVAqgbhjJ0NAQMpmsQ4YSiAiLFi2ClZVVg8kOAeD999/HxYsXIZVKUVlZiaSkJFhZWbVzS19P7u7uEAgEjT7v4uICPT09AICzs7PS/LD20NBQLxuyYjoK++QxTDt6fs6C4t/bt2/HyJEjsWrVKujo6ABAo4Uju3XrhoqKCujq6gL4T/Ci2D8A6OjoYODAgQgODuaW0T/r2eGz3r17o7q6upXOsGUSEhJw8OBBREdHw9HREY6Ojjh79ix27tyJnTt3AgCsrKwwadIk2NvbY9iwYfDz84OtrW2HtPdNFhYWBg8Pj45uBsN0GNavyDCvgc8++wxjx45FbGws/vzzT8yePRv//ve/oaWlpbSdokxGVVUVjIyMlPKenD59GiKRCEuWLMH169dhamoKHx8fpKWl4bfffgPwnxUxPB4PJSUlePz4MczNzZWKYrankSNHKvV4NSYoKAhBQUGteuzm5AAqLS3F3LlzIRQKIZVK8dlnn2HhwoWt2o72EBMTg7CwMMTHx3d0Uximw7CAh2FeE05OTnBycmp0aAf4T8+Mra0trl69isrKSi5LM5/Px6lTp1BSUoKioiI4ODggJiYGERERGDp0KIC6HiVF0BQVFQW5XK60BPxtoqqqii1btsDJyQkSiQSDBw/GhAkTlN6Pbdu2wdraGn/++SeKi4sxcOBAzJkzB127du3AlrfMrVu34Ofnh4iICOjr63d0cximw7CAh2FeE4oJznw+/4XzHMaPH4/NmzejW7du3GNjx46FRCJBWFgYYmJioKenh+7du0MgEGDlypXcMRRBU3h4OOzs7ODk5NR2J/Uaa04OIB6PB4lEAiJCeXk5BALBGzXhVigUYvr06Th48CBb1ca89VhpCYZ5A2VnZ2PPnj1YtmwZV5ZCgYjg5+cHLy8vVFZWYvz48dx8H4WrV6/CxcUFhw4dwsyZM9uz6a+lnJwcuLu7IzU1VWlZvEQiwZQpU3Dnzh1IJBL8+uuv+K//+q8ObKmyF1U69/Pzw4kTJ9C3b18Adb1a165d68gmM0xbY7W0GKazefz4MVRVVbkvaEUit//93//FxYsX8c033yhtr5i/8+TJE3zyySfIyspCYmJiRzT9tVJeXo5Ro0bhyy+/rLcs/vjx40hISMD333+Pe/fuYcKECUhJSamXK4hhmNdGowEPW6XFMG8ogUCg9MWrGAbr1asXvLy86k0GVkxu3r17N1JSUvDf//3fANCsScOd1YtyAO3duxfTp08Hj8dD//79YW5ujjt37nRASxmGeVUs4GGYTsbe3h7vvPNOgzlQYmJicPbsWXz66acYP348gIZzpbwNmpMDyNTUFFFRUQDq6qJlZGTAwsKiPZvJMEwrYUNaDPMWSU5OBp/Ph52d3Rs1+bYtxMfHw83NDXZ2dlzv2IYNGyAUCgHUzYHJz8+Hj48PCgoKQEQIDg7G3LlzO7LZDMM0jc3hYRiGYRim02NzeBiGYRiGeXuxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCdHgt4GIZhGIbp9FjAwzAMwzBMp8cCHoZhGIZhOr0XpVp9O3POMwzDMAzTqbAeHoZhGIZhOj0W8DAMwzAM0+mxgIdhGIZhmE6PBTwMwzAMw3R6LOBhGIZhGKbTYwEPwzAMwzCd3v8BOdq7m+geacUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9aXQc5Z32fVXv6m61ZK22rMWWZcmSvIIlmx3MYuMTDG8mJGabmZeHLUNmOA/nkCEQHEIChCwkEDJJCAnJDHFgGEgMITExhCVh84IxNkjd2vd9632rqueD5y6qpd67qquX+3dOTnCru+ru7uqqq/7bxfA8DwqFQqFQKJRcRqX0AigUCoVCoVDkhgoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzaGL8nfasUygUCoVCyRaYSH+gER4KhUKhUCg5DxU8FAqFQqFQch4qeCgUCoVCoeQ8VPBQKBQKhULJeajgoVAoFAqFkvNQwUOhUCgUCiXnoYKHQqFQKBRKzkMFD4VCoVAolJyHCh4KhUKhUCg5DxU8FAqFQqFQch4qeCgUCoVCoeQ8VPBQKBQKhULJeajgoVAoFAqFkvNQwUOhUCgUCiXnoYKHQqFQKBRKzkMFD4VCoVAolJyHCh4KhUKhUCg5DxU8FAqFQqFQch4qeCgUCoVCoeQ8VPBQKBQKhULJeajgoVAoFAqFkvNQwUOhUCgUCiXnoYKHQqFQKBRKzkMFD4VCoVAolJyHCh4KhUKhUCg5DxU8FAqFQqFQch4qeCiULIPneXAcB57nlV4KhUKhZA0apRdAoVDih+M4BAIBeDweMAwDjUYDtVot/I9hGDAMo/QyKRQKJeNgYtwl0ltICiUD4HkegUAALMsCAPx+PxiGEaI9ROQwDAO1Wh0ihKgIolAoeUTEkx0VPBRKBsPzPILBIILBIAAIwoUInnDPJ/8j/1apVCEiSKVSQaVSURFEoVBykYgnNprSolAyEJ7nwbIsgsEgeJ4PidJEu0kJF80RbwsA+vv7UVdXB41GA61WS0UQhULJC6jgoVAyDFKnQ1JVKlVqvQWLRdDs7CxWr14NjuPg9XpDnksiQRqNhoogCoWSU1DBQ6FkCBzHIRgMgmVZQaTIITbINhcLKVIP5PP54PV6heeRWiBxSoyKIAqFkm1QwUOhKAzP83A6nfB4PCgsLJS9yJgUO4d7PFw6jOM4sCwLv98vPK5SqYRIEBVBFAolG6CCh0JRCHFtzdzcHBYWFlBUVKT0skKIJIJ4noff748ogkihNBVBFAolU6CCh0JJM0QwiOt01Gp12gYJRorwJPL6RETQ4pQYFUEUCkUJqOChUNJIpILkeEVIMBhEb28vxsfHUVBQgMLCQuF/er0+bjEhtbiKJIKA00XSY2NjaGxsBM/zYWuCUi3MplAolFhQwUOhpIFw83TEAiGW4OF5HqOjo+jv70dNTQ3a2toQCATgcDjgcDgwOjoKn88HnU4XIoIMBsMSIZKuCMvi4mhxFCsQCITMEhJPjSYpMTowkUKhSAkVPBSKjJA6nUAgACB8JIQ8HknwzM3NwWq1ori4GO3t7dBoNPD7/TAYDDAYDCgvLxee6/P5BBE0Pj4Or9cLrVaLwsJCWCwWmM1mYV3pYrGwA06LHwJZSzAYjCiC6NRoCoWSKlTwUCgyQLqbAoHAksGB4VCpVEtEiMfjgdVqBcdx2LBhA0wmk7DtSOj1euj1epSVlQmP+f1+OBwO2O12TExMwG634+TJkygqKhIiQQUFBYoJCbHAIdGgaCKIWmdQKJRkoIKHQpGYZAYHiiM8wWAQfX19mJ6extq1a0PESzLodDqUlpaitLQUAHDixAmsWbNGiAZNTk7C4/FAo9GEpMOMRmNGiSBg6dRoap1BoVDihQoeCkUiYtXpRINhGLAsi9HRUfT19aGmpgbbtm2TpZiXpIrMZrMgggCE1ARNT0/D7XZDrVaHiCCTyaSokIjHOgOAMEG6uLiYiiAKhQKACh4KJWXirdOJBhEZOp0O7e3t0Gq1ciw1KlqtFiUlJSgpKREeCwQCcDqdcDgc6O/vDyuCjEajol1W4T5vp9MJt9sNg8EQ8ji1zqBQ8hcqeCiUJCF1OiMjIzCbzUmlgDweD2w2G3w+H4qKitDc3BzX61K5SCcyh0er1WLZsmVYtmyZ8FgwGBQiQQMDA3C73VCpVDCbzSGRoMWpqHRDUl3iNVDrDAolf6GCh0JJAnGdzszMDLRarVBUHA8sy6Kvrw+Tk5NYu3YtTCYTrFarjCsOJRUBotFowoogEgkaGhqCy+UCwzAwm83Q6XTCZ5VpkSBqnUGh5A9U8FAoCRCuTidch1W014+NjaGvrw/V1dXYvn07VCoVPB5PWictS41Go0FxcTGKi4uFx1iWhdPpFOqBjh07JoggcSRIHIWRing/S2qdQaHkD1TwUChxEK0gWaVSgeO4mNuYn5+H1WqFxWJBW1sbdDqd8LdE7R5Iq3sypGotES9qtRpFRUVQq9Xw+XxoaWkRRJDD4cDIyAicTicAhIggs9ksiQhK5fNJVAQtnhVEoVAyDyp4KJQoiDuAIs3TiSUgvF4vbDYbAoEAWltbheF/YhKJEmUzRASJTVI5jhNE0NjYGJxOJ3ieh8lkChmYKEckKF6iWWcQAeT1ejE3N4eVK1dS6wwKJQOhgodCiUC883QiRXgW1+mIJyIvJl1Rl3TvixBtfyqVChaLBRaLRXiM4zi4XC5hYrTD4QgRQSQSpNEodwpbPDWa4zg4HA4A1DqDQslEqOChUBZBnMxZlgUQu818sYDgeR7j4+Po7e3FypUrhTqdaDAME1dabPE6k7lgplvwJLNGlUolCBuCWARNTEygp6cHLMuGiKDCwkJoNBpFomXiCCC1zqBQMg8qeCiU/yXZwYHiCM/CwgI6OztRWFi4pE4nGomIELKufEiBiYkkgtxuNxwOB6amptDb2wuWZaFSqaDT6YTaoHTMNYokQKl1BoWSGVDBQ8l74qnTiQbDMPD7/fj444/h9/vR0tISclGOdxu5nNKSCzL/x2w2Y8WKFQBOf58DAwNwuVyYmZlBf38/gsEgjEZjSCRIDhGUyGRt8v/UOoNCSQ9U8FDymmR8r8SwLIvp6Wk4HA60tLSgvLw849NMuX6hZBgGer0earUaNTU1AE4LBxIJEouggoKCEBEUb0QuHFJ8f/FaZwCna4e0Wi0VQRRKnFDBQ8lLeJ6Hy+XC5OQkqqqqEo7qiOt0TCYTVq1ahYqKiqTXk+4LVa5EeCKx+P0xDAOTyQSTyYTly5cLz/F4PHA4HJibm8Pg4CACgQAMBoMggCwWS9wiKJVRAdGINjDR6/Wis7MTa9euDZkYTa0zKJSlUMFDySvEdTp+vx8TExNYuXJlQttYWFiA1WqFyWRCW1sbpqamBB+tbCDTurTkItaFnmEYGI1GGI1GVFZWAji9Tq/XC4fDgYWFBQwNDS0RQYWFhdDr9Uu2J5fgibR2si+PxyNEeah1BoUSGSp4KHlBuDodtVqd0IXY6/Wiq6sLXq8Xzc3NQp1OvIMH85VsurgyDIOCggIUFBQIEbvFImh4eBh+vx96vT5EBCl1DJA6n0SsM6gIouQjVPBQcp5IdTrxChWWZdHf34+JiQk0NDQsqdPJtiLgbFtvMkj5/iKJIJ/PJ5iojo6OwuVyCc8nIshgMKRFSETaR7L+YdQ6g5KLUMFDyVk4jkMwGATLssKJX3wCjzXdmOd5Yd5LVVVVxHk62RbhyQfBA8gbWWIYBgaDAQaDQRgoOT09jdnZWRQVFcFut2N8fBxerxdarRYWiyXtIija2ql1BiUfoYKHknPEO08n2rA/u92Ozs5OmEwmbN26NWzNhng7+SAgKNHheR4ajQZlZWUoKysTHhdHgsQiSJwOKygoyEgRBCBEAPE8L6TAFhdHUyiZDhU8lJwh0Xk64SIzPp8PXV1d8Hg8IXU60VBC8KSyTyrQ5CPc8abX66HX60NEkN/vF0TQ5OQkPB4PNBpNiAgyGo2KiyAAYadG+3w+HD16FJs3bxaeS60zKJkOFTyUrIeE4xOdpyM+GbMsi4GBAYyPj2PNmjWoqKiI+2SdbSktIP1dU0rsT4lW/3j3qdPpUFpaitLSUuGxQCAAh8MBu92O6elpuN3ujBVB5DcmLvyn1hmUTIcKHkpWk+rgQDJPJ1adTjSyLWKS7guOUhe4TBY84dBqtSgpKUFJSYnwGBFBDodDEEFqtTpEBClx7HEcJ/xOqHUGJVuggoeSlSTreyXGbrfD7XZjeno6Zp1ONLItwpNtAi1bkCOqFE4EBYNBQQQNDAzA7Xbj2LFjgm9YYWEhTCaTrHU1pBU+EvFaZ5DnUOsMSjqggoeSVRChMzo6KqSdEj0xiut0DAYD1q9fn9KaqICgpBONRoNly5Zh2bJlAIAjR45g06ZNcDqdcDgcGBwchNvtDmmPl1oEkYhqolDrDIqSUMFDyQrI7BCSvurt7RUsAuKF4zgMDAxgdHQUa9asQWVlJd57772U10YjPJmHEu9PibohgkajQXFxMYqLi4XHWJYVIkFDQ0NwuVxgGCYkEmQ2m5MSQeKUVqrEss4QQ0ZJGI1GKoIoCUMFDyXjWVynI+4aiQee5zE5OYmenh4sX74c27dvT3gb0ZBSQKTropnrggfIvhoeqVGr1WFFEIkEjYyMwOl0AsASERTr9yH3e40kgoLBIE6cOIHNmzdT6wxKwlDBQ8lYpKjTcTgc6OzsREFBAc4888yk63SiIZXgIduR+2StxMUgHwRWNrxHtVqNoqIiFBUVCY+xLAuXyxUyMZrneZhMJmFg4mIRJGWEJ17EAkejOX3potYZlESggoeScZCcPjHkTEbo+P1+dHV1weVyoampKeQELzVSpbTSlWpKd0orny402eh6r1arYbFYYLFYBCNdjuOESNDY2BicTqcgguKZTSUXHMeFCC9qnUFJBCp4KBmDuE4nnsGB4Vhcp9PS0hJ1G1JEVaSO8KSDbIhGpIJSNTzpjnrIFRFUqVSCCCJwHCdEgqampoSZQUajMaQ4mkRf5IBl2ZifMbXOoESCCh5KRiDFPJ2pqSl0d3ejsrIy7jodYi+RSk1PuiM8c3NzsFqt4Hk+xKMp3qF0+XJCz8ZoSzL7TNf7VKlUwrGm0+lgt9uxatUquN1uQQT19vaCZVkhEiS1CEo2lZaodUa4NnlK9kMFD0VRpKzTMRgMOOOMM2AwGOJ+LRErqQiedEV4vF4vbDYbAoEAWlpaoFar4XQ6l0zmFYugcB5N+dClpRT5UihNolkqlQpmsxlmsxkrVqwQ/iaOBBERtDgSpNVqE96v1N1hQHjrjEAgsGRgYjAYhNFohFarpdYZWQoVPBRFkELo+Hw+dHd3w+l0Yt26dUnV6cRyTI93G1JEeCKtheM49Pf3Y3x8HA0NDaioqBBc4MXzWIDTJ2q73R7i0SR267ZYLIr4fuUDSogPJYqHyX4jvVfS+r5YBJFI0MzMDPr7+xEMBlFQUBAignQ6Xcz9yvl+o4mgU6dOoaWlRRBq1Doj+6CCh5JWEjX4DAfHcfD7/Thy5EhcdTrRICmtVJAzwjM1NYWuri6hnT7WyV6r1S7xaPL7/YIIGh8fh8PhgEajgdfrFUSQHN1rYnLdu4vsM18iPIkKD4ZhYDKZYDKZhPlZPM/D4/HA4XBgbm4OAwMDgggym82CSBeLICW7wziOg06nC7kxodYZ2QUVPJS0wbIsvF6vEA5OpU6HYRhs3bo1ofRVOKSIzkh1MhOLL7fbjc7OTqjV6ohpungvdjqdDmVlZYJb98jICPx+P8xmszCPxe/3w2AwCAIonrvtTIfW8MiHFMKDYRgYjUYYjUZUVlYCWCqCBgcHEQgEhGOTNDYogbgonVpnZCdU8FBkhziZz8/PY2BgABs2bEiqTsdqtUKn0+GMM87AqVOnJDlhZNKUZFInYLPZMDMzg6amphAPJSn3o9VqUV5ejvLycgCnvyOv1wuHw4H5+XnhQkNSDkQEJVN3kU/kS4RHro60SCKIHJvj4+NwuVw4fPgw9Hp9SDpMr9crLiKodUZmQwUPRTYW1+mo1eqEPXj8fj+6u7vhcDhC6nTkrptJN+SkfuLECdTV1WHbtm2yhe7Dpc4YhkFBQQEKCgpQUVEhrIncbYvrLkjxKRFBcrYhJ0u+RFuUjPCk63sXH5ukbq26uho+n0+wzhgdHYXP54Nerw9Jh2WyCApnnUEiQWRWEBVB0pJ5ZypK1hOpTkej0cQtUjiOw+DgIEZGRrB69Wo0NzeH/PClbAVXOsJDusz8fj/Wr18vS1QnGSLdbUdqQxZ3h0lp3ZEs+SA+lCxaVnK/DMPAYDDAYDCERCnF9WpEBOl0upBIkMFgUFxERBNBPp8PXq83JG3GcRxMJhOdGp0iVPBQJCXaPB2VSgWWZWNugxTqVlRURJynI2WERynBEwgE0NXVBYfDgebmZgwMDKTlrjmVIutwxaccxwkiaGJiAt3d3SHWBAaDQXFRmasomdLKtMgSwzDQ6/UhqVoAIZGg8fFxeL1eaLXaEBEUbnxDuokkglwuF/r6+tDS0iI8Tq0zkoMKHookkDodlmWFH+7iH2AsceF0OtHZ2SnU6UQrSM5mwcPzPIaHhzE4OBgSvUpEiGTCZGhCuFksZCqv3W7H5OQk7HY7jhw5EpJuSNapOx5oSktelI7wJIJer4derxeK9oHTqXIigsj4BjLDihyjYhGUaCpeKshvlQgbgFpnpAIVPJSUSGSeTiRxIa7TaWpqCnF3jkS2prTIlORly5Zh27ZtIXermVJPJAXiqbzl5eXw+/3YsGGDIIKIUzfDMCF32iaTSfLBcukinwRPtgstnU4XdnwDEUFTU1OCCCJTzAFl3jfLsnH5h1HrjNhQwUNJimTm6Sy+oHMch6GhIQwPD4et04m1rWwqWvb5fLBarUKdjtlsXvKcdE1AVmrSstikksCyrDAtemhoCC6XK0QsWSyWuC0zlCZfokpAdkV44iWcCAoEAkKLvNfrxZEjR6BWq0NEutFolPWzWCx4wpGIdYZKpcJjjz2Gffv2Sb/YDIcKHkrCpOp7BXxWp1NeXr4k0hEPpOMrVeROaYnNTNeuXYvy8vKoE2rTEW3KJGsJtVqNoqKikCnZwWBQuNPu7++Hy+US7rSJCMqEmotw0KLl3NqvVqtFSUkJDAYDPB4P1q9fj0AgIDjJDwwMwOVyySqC4hE84Yg0NdrlcuHPf/4zFTwUSjQ4jhMsDSLV6cSCZVkcO3YMGo0GW7ZsQUFBQVJrycQansV329PT07DZbHGbmWaSEJGaRN6XRqMJa5lBRFBPT09IzQURQeLum3yJtuTaHJ5YZILQ0mq1S45PsUgfGBiA2+2WLF0bDAYla2ZgGAZOpzNshDkfoIKHEhMpfK8CgQC6u7vh9Xqxfv36kJNFMqTboTze7TAMI0xJVqlUCYm6XE1pSXFBJnfa4pZ9cc3FxMSE0H1jsVjgdrthMBjSKgjySfAoVcSbbLRD7v2GE+nBYFCIBJF0LcOc9hkjIiiewn2WZSXt3nQ6nSFp5XyCCh5KREidzsDAAMrKypIa4sVxHIaHhzE0NIRVq1bBaDSmLHYA6dI/UgqnYDCIgYEBTE9PJzUlOZcjPHIQruaCtCAvLCxgZGQEw8PDwkRe8TC6XIHW8KRvv4kKLY1Gg+Li4pAmDFKz5nA4MDw8LIgg8RwrMm9H/Bopj1mHw4HCwkLJtpdNUMFDWQKp+Cd1OjMzMyguLk7Yt2p6ehpdXV0oKysT6nQGBgYkOUmr1eq4ZvrEIt7ZQNEgn9Xhw4dRU1OT9JTkdBVQ57KwIi3IdrsdFosFpaWlISJoeHhYNt+wfIrw5FtKi2VZSfYbrmZNLIJI9yIAIRLkdrthMplS3jfB4XDQlBaFAoQvSE5UXLhcLsH4cvPmzSEpHXHqJxVUKhUCgUBK25BiO2RKcjAYRFtbW0onklxNaSkBeX+RJvISbyaxQWWqvmH5Nmk5nyJLcqbSwokgjuMEEeRwOGC329Hf3w+TyRRSF5TMmmiEh5L3RKvTiVfwkDqdhYUFNDU1hU1dkRRSqictqaIhyV78yXu12+1Yt24durq6UjbWTCRNl4kdStFQQmBF64aL5Btmt9uX+IaJLTOi1VLkU4QnH1Na6dyvSqUSRjjY7XZUV1fDZDLB5XItmWguPkbNZnPMeh+n00kFDyU/IXU6JMoRaUJyNMGzuE5n3bp1EU/CRDylWoSnVJcWz/MYGRnBwMBAyHuVYj25GuHJBnEm9g0jlhnEN8xutwu+YRzHLRFBSvqG0cGD6UGpYmnxvsXzqQhkojkRQT09PYK3nTgSJD7fOhwOWrRMyS/IePJAIBBzcGC0mTczMzOw2WwoLS2Na55OprWTJ7Kd+fl5dHZ2ori4eMl7lUJEpFOI5HpKSwrEvmFiywwighb7hrlcLrhcLhQUFKTt4phvwiMTPbzkJprYiiSCwhn8vvDCCygoKIDb7cbGjRtj7vfgwYO44447wLIsbrrpJtx9990hf//Zz36Gn/zkJ1Cr1TCbzXjyyScFv6+HH34Yv/zlL6FWq/H4449j586dKXwC0kEFTx6S6ODAcCktl8sFq9UKlUqFTZs2CaPXYyGlUJGqaDnWxd/n88Fms8Hn80WdkpxNEZ5cR67PUewbRiB32Z2dnZiamsLQ0BB4nhc8mSwWi6SWGWKUKh4GlDmOlBI8mRDhiZdw3nY8z8NgMOC9997DK6+8grfffhs///nPsXbtWpx55plob2/Hjh07QvZ5++2349ChQ6iurkZbWxv27NkTYmB67bXX4rbbbgMAvPTSS7jzzjtx8OBBfPrpp3j22WfxySefYHR0FJdccglsNpuikVACFTx5RLLzdMQiJRAIoKenB/Pz82hsbEy49VrK7iq5vbTEU5IbGhpQUVER1ScsWyI8+VC0DKTvgkzusg0GA+rr62E0GsGyrOAbNjw8vMQ3jFhmpCpWlBIA+UY2CZ5wMAyDjRs3YuPGjejr68O9996LHTt2oKurCx9++CFOnDgRIngOHz6MhoYG1NfXAwD27t2LAwcOhAgecVqMtNcDwIEDB7B3717o9XqsXr0aDQ0NOHz4MM4666yU3oMUUMGTB8RTpxMNtVqNYDCIoaEhDA4Ooq6uDk1NTUmdaLMlpUWmJFdUVKRtSnI6rSUo8iAu9A/nG7Z4Gm+qvmFKdUsphVLvNZk5PFIhtaglRcsqlQpNTU1oampa8pyRkRHU1NQI/66ursYHH3yw5Hk/+clP8Oijj8Lv9+Ovf/2r8Nrt27eHvHZkZESy9acCFTw5TCJ1OtHweDwYGRlBVVVVUr5XYjJd8LjdblitVjAMk9CUZCnWo1KphOib3KQ7wpMPEaVYFya1Wr1kEJ3YkqCvrw9utzsh3zAlU1r5hFRzeDKBeIqWw/1ewx2Dt99+O26//Xbs378f3/72t/Gb3/wm7tcqARU8OYoUBp/k4u/z+VBRUYHGxsaU15WJKS0SAevt7cX09DQaGxtDpvcmsh0p1iI3+dCllS1eWtF8w0h3mMfjgVarDZkRRHzD8i2lpZRwVjLCIzXxWEtUV1djaGhI+Pfw8DCqqqoiPn/v3r348pe/nNRr0wkVPDkGqdPp6+uDwWCIWncSiWAwiJ6eHszOzqKpqUmYtiwFmRbhId5X77//PlauXJnSlGQpipbTkdLKF7JVCETzDbPb7RgfH4fX64VOpwPLsuA4TrDMyNb3HA9KijulIjxyCLx4BE9bWxu6urrQ19eHlStX4tlnn8X+/ftDntPV1YW1a9cCAF555RXhv/fs2YNrr70Wd955J0ZHR9HV1YX29nbJ30cyUMGTIywuSCZ2B4mcIHiex/DwsFCn09jYCIZhMDc3J0lUBsisCI/T6cQnn3wCr9eLs846KyW/GiUiPMme/POlaDndyHlBjuQbZrPZ4PV6hUhsLvuGKdUKDyhXtCxHZMntdsfsqtVoNHjiiSewc+dOsCyLG2+8Ea2trdi3bx+2bt2KPXv24IknnsBrr70muMf/5je/AQC0trbii1/8IlpaWqDRaITW9UyACp4sh6RjgsFgSJ2ORqNJSBDMzs7CarWipKRkSZ2OVNEUKbeVynbEU5Lr6+sxODiY8oWBDh6kpDsCodfrYTAYUFpaipKSEvA8nxbfMCXTSkoJnlwbeBjPe9m9ezd2794d8tgDDzwg/Pdjjz0W8bX33nsv7r333uQXKBNU8GQx0ep01Gp1XB5RpE4HQMR5OlJFZQBlBY94SnJdXR3WrVsnfH6pkk01PPlAvtg8iIuWE/UNE0+LTsQWJd+GHSq5b6kFT76fX6jgyUJIuoqIkHDdV6SVPBLiOp1YRbpSCh61Wg2fz5fydhIVPOIpye3t7cIJXuri53RuI9kLjxLCKt9PtHIR6xiQwzdMqc4wpTulcmXgYbLdurkAFTxZRCKDAyPZQYijHLW1tUKdTjQyMcIT7w9WXOcQbkpyJqTYCOmq4Uk32bLOVMmWqFK8vmHEk4nMEzKbzcJ5RakIT6bUgqQLqQVPIBDIu89QDBU8WUCkOp1ohBMp4jodcZQjFplYwxMLjuMwODiIkZGRqFOSpYp2SLGdRKY1+/1+TE1NwWKxCC3K8ZIPqbNsER+Zss9IvmHEmHJ8fBwOhwM8z6OgoAB+vx92ux0mkyltF1AlU1pKIbXgcTgcYa1x8gUqeDKcZOfpiFNabrcbNpsNHMdh48aNMJlMCa1B6pSWVNuKxMzMDKxWa1xTkqW6QKUrwiMWciUlJZiYmIDX6w3pzrFYLFELU/NB8CiBEp+pnNGWSMaUs7Oz6O3txcjICJxOJwCEDEqUyzeMCp7UcTgcId9nvkEFT4YirtMhEZ1E7SACgQBsNhtmZmaSGqZHkPKEKmeEx+PxoLOzEwASmpIsBemwlpibm0NnZyfKy8uxbds24dhY3J0zNDQUUphK6jKUcnvOJ5QsWk4HKpVKSIc1NzcDOH1RdjqdcDgcGBoaEnyVpPYNU9KhXSmCwaCkgofYSuQr9AyYYSRr8Ll4G5OTk5idnRUujplyZySH4GFZFn19fZicnERjYyPKysok3Ug9sGkAACAASURBVH48MAyTcuQqkmjy+XywWq0IBAJCJx05TsjxEa47Z3FNBsdxMJlMMBqNQtQwU46LXCFbU1qJsPi4UavVKCoqQlFRkfBYMBgURNDAwABcLhfUanXKvmFKHK9K1g5JHeGhgoeSEUghdIDTUQCr1SoUGdbW1kq91JSQMqXF8zwmJibQ3d2NlStXYvv27YpdwOVwS+d5HkNDQxgaGgpbhxSrOydcTYbT6cTc3By8Xi+OHTsm3ImTSFCiF6F4UaIrLB+KpTO1bkij0STkG0aikNF8w5RsDVeyHT7VuUliaEqLojikTufUqVOorq4OOUnEi8fjgdVqBcdx2LBhA4xGI9577z0ZVpsaUkV4nE4n3G43JicnsXXrVsUnykrdlk7a6EtKSuJya48HlUolFDnPzc1h8+bNES9CRABZLJaULQvyQXgoRSZEeOIllm/Y5ORkVN+wXJmFkwhkXIBUxGMcmstQwaMgHMchGAwKtRjJRD+Ib9bU1JRi6ZxESFXwBINBdHd3Y35+HgaDAa2trRmRlpGqaJllWZw6dQoejydsG70UiIVVuIsQ6cBxOBwYGxuD1+tFQUFBSCQokUF1FPnIJsETjkR8wwDAYDDA5/NBp9Ol7X3nkqWF0+mkXVqU9BIpfaXRaOIWPDzPY3R0FP39/aipqZE9nSPVHVayKS3x+62rq0NTUxMOHz6cMXUoqUZ4eJ7H+Pg4Zmdn0draiuXLlysWGdHpdCgrKxPE8+JpvQMDAyGD6sideCbN98iXLjQljn+5RVYk37De3l74fD50dnYKvmHk2IvVmZgKSkZ45OjSInV++QgVPGkk1jydeAUPqdMpKipKaJ5OKpCBY6meXJOJhCwsLKCzsxMWi0WWKclA6ifxVNZC3p/ZbEZxcbFQcyMXyQw4DDetl8xoIXVUPM/DbDYLIkiu9uRE1p3rZHuEJ170ej2MRiNKSkpQWVkpdCba7faQzkSDwRAyLVoKEZRLgsfpdKK+vl6y7WUbVPCkAZ7nhTbzaPN0YkU/PB4PbDYbgsGgbOmOSKhUKrAsm3JrcyLCwO/3w2azwePxoKWlZUmxXaRp0olCBECqdSqJRhUCgQC6urrgdDrR0tICnU6HU6dOJb2GeJGq3shsNsNsNgsCjWVZuFwu2O12oT2ZzHIJBAJwu91Ri1IpiZMvgmfxfsWdiWIR7vV6Ybfbl0QiiQBK1Dds8X7TDe3SkhYqeGQmkcGBkQw/xXU6a9euTSgkKdUJUaruqnjWIh6ut2bNGlRWVoZ9ndS2EKmc1BJZizg9t3r1ajQ3N4NhGPj9/rRMoZYLtVotRHcIwWBQKEjt6ekRilIXF0VTkiNTu7TkINZvVByJrKysBPDZeAaHw4GZmRn09fUJlhliERTtRi6XIjy0S4siC8m0mWs0Gni93pBtjI2Noa+vD9XV1QnX6RCRIsXAuXRMSAZOT0m22WwoKyuL2Z0kpeBJl/Gnw+FAR0cHCgsLl6QjyTb803/H8HQ5VjfF9jmTc61SoNFoUFJSAr1ejw0bNgCAMCTRbrdjZGQEPp9vyZDEVNO0+VLDA6Q/dZcJEZ54EY9nEPuGkXSs2DfMbDYL9UDENyzZ/UoFjfBICxU8EpOM7xVBbAcxPz8vzNNpa2tLKhctVcoHkN8Di7TV8zwvDNdL15piTTiOdxvRLrLBYBBdXV2w2+1obm4O2xrKMAz0nnmYDA6sWj6FJ7//CRpbV2DbBZtgNEnXmgooKwj0ej30en1IUbTH4wl7F77YuDIRaOpMHrJJ8IQjXDpW7Bs2NjYGp9Mp1KSxLAuDwaBYgbiU+3Q6nSEDIvMNKngkgud5IX1FhE6iB6parYbP58OJEycQCATQ2tqaUp0OEVBSFO7JFeFhWRb9/f2YmJhIuK2e1BWlihTCKdI2xFG6uro6rFu3LuKFmGEYLB85CWZbPQq0DG6/HXjyyWG8+OwQzjq3CBdcth4rV61MaZ1kP5mE2L2bpCI4jhMmRY+NjcHhcAgXKnFRdKa9l3wg3XYWBDkFh9g3rKqqStif0+nEwMAA7Ha7MKhTHAlSujA/UWiEh5IyyRp8imFZFqOjo5iamsLGjRslaR3MZNNPYn/R3d2NqqqqpNrqpa7hSYVwER6n04mOjg4Yjcb4onQcBzO7IFzE1WoGt92mwauvcvjd/gW8+fo7aGzS4cLLVmFTe2tKa810VCqVcBdOLkDEs8lutwt2BeJJvck4x1MSh+M4RXzZ0h1hIYM6CwsLYTQaUVFREXIMLvYNEz83U0UQFTyUpJHK94pEACoqKrBs2TLJ5iRIKVKkTGmxLItjx45Bp9OlNCU5k2p4xGsJBoPo6enB3Nwcmpub4w4hcx3vQV8VmupiGAa7dqmxejWDhx8Kwmb1w2a1oaioC+deWIqzLlqP4tLEJ3NnI+E8m8STeolzvE6ng8/nw9zcHHQ6nWzzWfKVfLN4ENfRRPMNEwtx4hsmFkGZIMRZls3roaFU8CQBqdNxu904deoUzjjjjKQOZlKnU1hYiLa2NvA8j5MnT0q2zkyL8JApyV6vFy0tLUm7txOkECqAdDU8HMdhfHwcPT09qKmpQWNjYkXH3jdfhWX3mrB/a2pS4Yc/0uK+rwfgcAALCzxeOTCNP7/8JjafUYDzLlmDhpY1GXFSTSfhJvX6fD6cOnUKLpcLn3zyCXWOlxglu7SU6JaKJfCi+YbZ7XZMT08n7BtG9ivl55xPhfyRoL/6BFhcp6PRaOD3+xM+KL1eL2w2G/x+f8h8GZZlJU0bZYrgEbdh19bWLmldTpZMquHxeDxYWFiATqdLqsics8/Ae8yKkhs2RXzOsmUMHv2hFt/7bgA22/++jgM+POrBh0dPYcWKT3H+xSuw9dxWFEhc5JxN6PV6GAwG1NTUwGQyCUXR4ZzjxUXRmZqGyDSyvWg5UZLplIrkG0YsW8S+YeJBieKUrFwRrXy7KRJDBU+cRKrTSUQ1syyLvr4+TE5OoqGhAeXl5SEHn1QXcILUKa1kthVuSvLk5KQkodVMSGmxLIve3l5MTU3BYDAIrdeJ4v/bywDLgSmI/pnodAy+do8Wv/0ti9cOhb73sTEOzz0zgj88P4JtZ1tw3iXNWFEr79TmTEX8fYqLoklrMunKIa3xTqczbc7x2U4uFi3H2q8UkSWtVrvEMkPsWyf2DZOjHk3qiFE2QgVPDKSq0xkfH0dvby9WrlwZsUBX6oNR6giP3++P+/nRpiRnUrExkHxKa3JyEl1dXaiursaZZ56JEydOJLV/nufheevv0K2tiOsYUKkYXH+9GvWrGTz55NLv1+cD3n7Djrff+ABrG7U4/5JabNjaDI02v37u0T5LcVfOypWnO9/EtRjhnOMX34HnK0pdOJVKpclZOxTOt46IoJmZGbhcLhw+fBgGg0E4XpP1DXO5XDCZTFK/hawiv86ACSCF0AE+i3CQOp10FlAqkdLiOA5DQ0MYHh5GfX19WBNMKQWPEiktt9uNjo4OaLVaoeiaZdmk3xPbdRTBkVlYvrAl7tcwDINzzlWjppbB/d8IItLH0GULoMvWA0tRL867oBRn7cifIudECVeLIXbuJs7xxK+JiKB8K4pWchCfUoInXbVDDMNAr9ejvLxcaOZoamoSzHvFvmEFBQUhIihWxNzhcOS1UzpABU9YWJYNmacT60cW7s7D6/Wiq6tLKNBVohUw0ahMNOIRBbOzs7BarSgrK8O2bdsiFoZKJcRUKlVYK45kthOPWCEpyampKTQ1NYUUyqYyvdj71z8DAPT1iXfn1daq8PiPtfjGvgCmpyM/z77A45WXpvHnP76JTVsKsLpJp9gdczax2LlbbFq52K/J7/djfn4+45zjpUaplJZSKF07FMm8lwzrnJ2dXeIbFq44P99b0gEqeMJCLlzxHOTkYklOcOJBeuHqdOLdfyb5X8XaltfrRWdnJziOi2tKcqaltOKp4ZmamkJXVxdWrFiBbdu2LTk2khU8nGsB3g9OG4ZqlidXyG02M3jku1o89lgAH8fIqnEccPyYB8ePefDuGy/jghwtcparIyWSaaXT6cTJkyfT6hyvVNdNvtWCKOWlFW2/4YZ1in3DxJYZJ0+exPj4OJYvXx7XBPuDBw/ijjvuAMuyuOmmm3D33XeH/P3RRx/FU089BY1Gg/LycvzqV79CXV0dgNPXCVLHWFtbi5deeimVj0ByqOAJQyLpK41Gg2AwCJVKJdTpJDtID/jMDkKKH5jcgkcs7hIxNc00wROthsfj8aCzsxMMw+CMM86AwWCIuI1k8L/3J/D+02lTVWH4bceDRsPgzju1ePFFFi8diO8zGf/fIuff//cItp9jwbkXr0NVXVXSa8g00nVRJn5NOp0OTU1NAD6b0hvOOV6q2SxKCQ+lIh5KtlVnQyotnG8Yx3GwWCx4/fXXcejQIXz00UfYunUrWltbsXXrVmzduhVtbW1CJIhlWdx+++04dOgQqqur0dbWhj179qClpUXYz5YtW3D06FEYjUb89Kc/xVe/+lU899xzAICCggJ89NFHEn4K0kIFTxgSObg1Gg3m5+cxMDAAk8mUcp0OsYPINMEjrpfheV6IeCQj7qRMacklnDiOQ39/P8bHxxO2vEgE75tvn15DiRGMOrWLCMMw+Pzn1aivZ/CjH8b/+fr9pMj58Oki54trsaEt/4qcU2FxVJZM6V3sHE/qgaamplJ2jlcqtZRvKS2lkCKypFKpsG7dOqxbtw61tbXYsmULvvGNb+DUqVM4evQofv3rX2Pz5s2C4Dl8+DAaGhpQX18PANi7dy8OHDgQInguuugi4b+3b9+OZ555JqU1phN6RksBksv3eDxYv369JPnRTJmdE25bpJW3s7MTWq0WZ555ZsSIRzQyLcKzeDszMzOwWq2orKxMOlIXD8G+kwj0TQAACrbUSrJNhmGwZYsa3/seg/vuC8LrTez1QpHz/v8tcr6oBcVlJbFfmOfEk4YON5uFdOQk4xyv5ADAdO83H+vNWJaVdECmw+EQjqctW7Zgy5YtuPnmm0OeMzIygpqaGuHf1dXV+OCDDyJu85e//CUuv/xy4d9erxdbt26FRqPB3Xffjauuukqy9UsBFTxJQFI54+PjMJlMWLVqlWTFYBqNJiMFD8/zsNvt+Pjjj7Fu3bqQk3aiZJrgISktUovE8zy2bNmCgoKClLcdDd+brwj/rW+qlHTbFZUqPPaYFt/+dgBDQ4m/nhQ5/+nlt09Pcr54Ddauz55JzulOfyS7v3BtyV6vV2hL7u/vRzAYDOscr6TgSXeER8nOMKUIBoNJ2+6EI56i5XDHcaRj7JlnnsHRo0fx1ltvCY8NDg6iqqoKvb292LFjBzZs2IA1az6bHs/zvKIRQip4whDpC+Z5HhMTE+jp6UFVVRXOOuss9PT0SD4skLTCS7GtVNdGvL56e3uhUqmwffv2lE+ymZbSYhgG09PTGBkZSagWKRV4nxuedz/LdWurpW8VNxQw+OYDWvziFyzeeze5z4nnSZHzKSxf8SkuuHgFzjynFUZz5hc5p1sMSLE/cUdOJOd4p9MJnudhNBrh8/ngcDjS6tqthNDKx7ohqYulnU6nUNsTierqagyJ7pCGh4cF814xr732Gh588EG89dZbIaKMPLe+vh4XXnghjh8/Lggecdfz/Pw8uru7MT09DZVKBaPRiLKyMpSWlqK4uFg2vy8qeOLEbrejs7MTRqMxxPBSyogMkFkpLbvdjo6ODmGG0LFjxyQ50WWSJcTs7Cx6enpgMBiwbdu2tHVj+A+/Ct792cgA9TJ5BoKp1QxuvfW0+ej+36b2mS8tcm5CVd1KiVaa3cgpAiI5x8/MzMDpdGJwcFAwrCRpMIvFEtOrKVnyKcKjZDRCrpRWNNra2tDV1YW+vj6sXLkSzz77LPbv3x/ynOPHj+PWW2/FwYMHhU5FAJibm4PRaIRer8f09DTeeecdfPWrXxX+zjAMXn75Zbz66quC153dbofT6UQgEIDZbMbq1atx3nnn4ZprrhEaAKSECp4Y+Hw+dHV1wePxYN26dUs8oKSMyACZkdLy+/3o6uqCy+WSZYaQWq1O6/yccPh8PlitVgQCAaxevRperzetrafeN9747B9aFRidfPtmGAY7d54WPQ89GESqN62fFTkfQcPaj3DBJbTIOd1RD7VaDbPZDJPJhNbWVgChzvHEq0mv14fUA0mVIsmXCI9SDu1k31JHeGKdyzUaDZ544gns3LkTLMvixhtvRGtrK/bt24etW7diz549uOuuu+B0OnH11VcD+Kz9vKOjA7feeqtwXr777ruFYuexsTF84QtfECaXb968GTU1NaiqqoLBYEAgEMDIyAhOnDiBX//61/jOd76DK664Ag888ACam5sl+wzy9wwVBVLT0d/fj7GxMaxZswaVlZVhf+QajQY+n0+yfUspoJKZ/zM0NIShoSHU19ejpaVFlhObkhEenucxODiI4eFhNDQ0oKKiAtPT0/B4PCmvJ17YkS74rcPCvw0bVqblAtLYeNpxfd99Adjt0myzuyuA7q4eWH7bi3MvLMXZGVLknA9FrovfYyTneLvdvmRCrzgSlA3O8UoP/1MCJQQPAOzevRu7d+8OeeyBBx4Q/vu1114L+7qzzz4bJ0+ejLjdc889F3v27MHmzZtjWlwcP34cjz/+OHbt2oWf/vSnS9aTLJl/pCsAz/M4cuQIysvLsX379qgHnUajgcvlkmzfUqa0EoFMSS4tLY06JVkKlCpanp+fR0dHB0pLS0O+V6nWEy++t/4Y8m9Da/pm3yxbxuAHj4Y6rkuB3c7jTy9N488vv41zN6lw1ZcvgT6OIWe5ghICK559EpsCUpcmdo6fnp5GX18fWJYNGZKYic7x+ebQDsgjeBZnKNLFihUr8Mgjjwj/ZllWOHZ5ng95n6Rp5Omnn8bo6CicTqdk66CCJwwMw6C9vT2uE5jUAkWj0cCbaC9xCni9XlitVgSDQWzcuDEt5nLpLlomRqZerzfse5RS8MS6CPEBPzx/OxrymG5VaYRny0M0x/VU4Xngbx9xsH71j7jh/7Ri9ZZWSbefqWSq4FlMMs7xhYWFMJlMikbMMnHacbbtW0nBQyACcvH7YlkWdrtdGOBJCFcwnQpU8EQgHrsB4LNJy1IhdU1QJMSD9RLpTJLixJ6uCA/P8xgeHsbg4GDUtGS833UsiL1EtM8n8OHr4Oyh6TN1efr9bQTH9XoGT/5c+oji5IIOj/7QhsvO6cGuf94p+fYzjWwRPOEI5xzPsqxQD9Tf3x/iHB8IBODxeNLqHK9khEcpwSP1e3Y4HIoKnkjv5/3338fBgwexsLCAysrKJZOdpYQKngjE640kh+CROqW1+MRIpiQvX748ocF68VzQ4yEdHlgLCwvo6OhAcXFxzBRdNGuJRNcT6yTlffP1pa8zKuO2zTAMzjlHjZoaBg98MwgJ6shD4HkGr/6dw6mOP+CcS4qk3XjMfedHDY9cIkCtVi9xjg8EArDb7RgfHxcipsQ5nkSD5HKOz8eiZUDa4nCfz5fUoFipIJ8jOdeqVCq8++67+NrXvgaDwYDt27fj+eefx69//Wv853/+J9rb2yX/HVPBkyJypLTkEFCk1qizsxMajSaqL1SsbaV6ApCzTikQCKCrqwtOpxOtra1xFelJOc8nmkhmp4fhO9kX8pimdhkYlbIX5tpaFX70mBbfvD+AyUnptz8yo8cL/+2Gd/oVXHz9TqizoEg2UZSaTZPOfWq1WpSWlkKv12PTpk0hzvHz8/MYHBwUHLuJCFrs2J0s+Vi0LAdK3QQ8/fTT6O7uxoMPPgiVSgWfzwe9Xo+XXnoJjY2N+MUvfgEA2LdvHy6//HI8//zzaG9vlzzClntnnjST6REetVoNn8+H3t5ezMzMpDQlmawt1aFQchQJ8zyP0dFR9Pf3Y/Xq1Whubo77x50uweN/8wAW94QXbKqJ8Oz0YjYzePg7Wjz+WAAnYjiuJwPLq/DS6wF8fOoF3PDldlSuWS39ThQkm1Naie6TEMk5ngxJnJycRE9Pj+AcT6JAyRRF52NKS0rI96aU4GloaMD+/ftxzTXX4M4770RbWxsAoKamBh0dHXjnnXdQX1+Pjo4OzM/Ph8z3kRIqeCIQ74EhR4RHSjsIv9+PDz/8EHV1dSlPSZZKGBBfLqlwOBz49NNPYbFY0N7enrAgk6qGJ9rnw7NBeN5e6kmjXyv/VOd40WgY/N87tfjDH1j84ffydK31T+jx8LeO46qdNpz/xUuhStEwNRLZYi2R6j4zTWSJHbtXrFgBINQ5fnh4GC6XCwzDhKTCYjnH51tKS8kJz3Jw3nnn4bHHHsNTTz2Fe+65B5deeim+8pWv4LbbbsOJEyfwla98BWvWrME777yD8847D9deey0ASP7ZU8GTIlKfcKQSUGQydDAYxPr160Nmcyi9Nqnm8ASDQXi9Xnz66adobm5OuiBPyhqeSCeqwMm/gZ1Z2l6pWZHe2pZYMAyDq65So341g0cflSftGGRV+J8/efDxx8/jui+fg9Laaln2k43WEomglOBJ9CIUyzm+t7c3xDmeiCC9Xi+8v3yL8Ej9fkkKSUlaWlrwyCOP4Omnn8aBAwfQ0dGBm2++GU8++SROnTqFjz76CPfccw+2bNkifO9SH99U8GQYqXZp+f1+dHd3w+FwoLm5GUNDQ5L9cKSKzKQaKSL+Xn19fVCpVHGPEJBrPYRowsn3xl/CPq4uktegNBkYhsGmzWp87/sM7vt64o7r8WIb1uOhb3yAf7jCirP+vx1ZXWScidEWOZCqbiiWc/zY2Bi8Xi8KCgpQWFgIn88n+cT3eJAihZ/sfqWchWa322E2myXbXqKQY1Wr1eKWW27BNddcg7vuugtf//rX8fnPfx7XX3891q9fLzxXLqjgiYBSJ99k0yviKcniGhYpU25STkhO9qB2Op3o6OiA0WhEW1sbjh49KknXmJRt6Yvh5ifhPd61dL9mHSBTSkcKKipUeOxxLb79reQc1+PBF1Rj/+8dOHH8eVx7+4UoWi5N7l6JlFY+2C3Iuc9YzvELCwsYGRkRnONJUbScERilipaDwaAiU5blgPw2PvroIxw6dAgulwvt7e342c9+hgMHDuChhx7Ce++9h6985SvYtm2brMc0FTwSQO7slWpfnJubQ2dnJ0pKSpa0YGeSGWkqBINB9PT0YG5uDs3NzSgqOp0KkuKzl7otfTH+t18C2KWPGzbXZnxUw2Bg8MC3tPjFkyzeTdJxPR4+6dfhwXvfxhf/oQJnXn6eZM7juUy2pLSSRewc73Q6UVxcjJKSEmFI4sTEBLq7u4WiaJI2k9I5Ple6w+IxDpULhmHw4osv4nvf+x5WrFgBi8WCP/3pT/j73/+Ohx56CFdccQXuuOMO3HLLLbj11ltx3XXXJd1YEwsqeCKQyIlEqnbtRPF6vbDZbAgEAhGnJGe74OF5HhMTE+jp6UFtbS0aGxtDvpt4Zt/EIt6ZS8lsh+d5eN56N+zz9c2VKe8zHahUDG65VY36NQye+S/5vn+3X4Nf/24WHx/7H1z95YtRmAGeXPFCU1ry71elUoFhGME5nsCyrFAULbVzfK5MeFZS8ACnvbh27NiBf/3Xf0VRURGOHDmCK664AldeeSW2bduGH//4xzh69ChuueUWvPDCC3jhhRckqTtdDBU8EkBa09OV6xVPSSYGmJGQOqWVTs8pl8uFjo4OGAwGtLW1hR1qJsWapDqBh1tLsPN9BMfnwz5fV5teS4lUYBgGl16qRl2dNI7r0fjQpkXX117HtddUY8OOs+TbkYTkk+DJNE8rtVqNoqIiIeoLhDrHT01Nwe12Q6/XCwKIFEXHIlcEj5IpLQDweDwwmUxYvfr0OIqzzz4bwWBQuDaxLIutW7fiww8/xP333y+blyMVPBIgZSs5ED1NQ6YkV1ZWxjUlORsjPCzLore3F9PT0zHnBqVbhEUjXITH98bBiM9Xl8rvWyY1jY0qPPqoDvf9uwtOv3wC3+HV4udPT6D9g//G52+7DOZlxbFfJCIfanjyZZ9A4kIrmnM88Qzz+XwwGo0hImjxhZamtKThkUcewT333IMPPvgAVVVVsNlsuPjii7F582YAEN4rz/O4//77ZVsHFTwRSDSlJcfwQfEPze12o7OzE2q1OqEpyWq1Gn6/X7J1BaT2H1jE5OQkurq6UF1dHdfcoEwWPJxzHt4jn4Z/sooBo8/On19JKfDwPSy+/6MABubldUQ//KkOtq/9BTt2GFCzpVm4MMXj45TrNTwcx8l2Jxxtn5kW4YmXaM7xMzMzgnM8KYq2WCySFw/HS65FeK666ioYDAa89dZbmJqawmWXXYZbbrkFRuPp8wcR0nL/ZrPzjJthSD1tmUSMtFotgsGgMCW5qakp4bxmpqa0Fkex3G43Ojo6oNVqsXXr1rhnRmSS4Fm8Fv87fwTvD//Z69ctz+oLsqXegq8/4MPTP1zAu33yzhKad+nw4ssczh36CGdcvgETExMhPk6kVkOJ9mFCvkRbslnwLCaWc/zo6CgWFhbw8ccfh9QDpcM5Xo4Ij9TO44mya9cu7Nq1K+zfyOfJsix8Ph9UKpUsvl9U8EiAHPYSgUAAc3Nz6O3tRU1NTdLtepma0iLigOd59PX1YWpqKilBl0mCRxzh4TgO7jfeivhcwwZlTz5SoCvW4+b7SlH35AR+97789Uh//0gLa+/HuOHGZmxoawtpWSZ356Rbh2XZtA6NyxfBo2RKKx3f5WLneJfLhU2bNgkiaGBgAC6XCxqNJiQVJrVzvNTzf1wul6IRHo7jEAwGhVk8YsbHxzE9PY3p6WkcOXIEf/vb3/DJJ5+gp6dH8nVQwROBZLq0pILjOJw8eRJFRUURi3WVWJvUgmdqagp9fX1YsWJF0oIukwQPWcvMzAwmjvwV5UMzEZ+rqy9L48rkQ6VRYde/rEBNzTgefaEYQU7eu/8p0q0lHwAAIABJREFUuw4//FE3LjmrB7tvvByVlZWorDzd7UbuzhcWFuDz+XD8+HGhW0euCxMhX6wl8tHiQavVRnSOJ+3xHo8HBoMhRASlct6WI8KT7CR6KVCpVMLnMT09jZMnT6KnpwddXV0YGBiAzWZDX18fVq9ejZ07d+LOO++UZR1U8EiAVBEe4vQ9Pz+PhoYG1NSkbiyZiSktj8cDp9OJ0dHRpFzb5ViTFLAsi4GBAWi1WqwdsiLagGJNhXInHzlovWI5Hlo5g4d/rsOcR94R9jwYHHoPONX5B/zjLZtQs34dgNC78/HxcZxxxhlgWVbo1hFfmCwWC4qKiiRNheVDtCWXUlqpQJzjS0tPRzbFzvELCwsYGhpCIBAIKYpOxDk+l4qW/X4/3nnnHbz77rv4+OOPMTU1BeD09GeTyYStW7fi+uuvx4UXXij7NGgqeKIQ73wWjUYDn8+X9H54nsfw8DAGBwexevVqaDQayXxPMinCI26nNxqNWLduXcp5WikFT7IXEPL9jYyMYPny5Vi3qgYz//FI1NeoCpX1tZGDyjNK8eA+Jx5/1InOKfnH2I/N6fG973bg8gu6cOkNu6DRLRUui7t1Fk/v7evrA8dxIYWqybh554v4UCqlpdR+4yWWc/zU1JTgHB/PsZZLk5Y//fRT3HDDDWhra4PFYsGOHTuwfv16tLe3L6krkvuYpoJHAlIRAnNzc7BarVi2bJkwJbm3tzdjRIpU25qZmYHVasXy5cuxfft2nDp1KiN8ucTbSeakSpzai4qKsGrVKmi1Wvg/OAjeE7mbTVNhBpNBd6tSYlppxl0PBLD/R7N43SrPtFQxHM/glTdZnPzkRdxwWxtWNNZHfb54em+4VBhx8xYbXsaTCqMpLfnJZMETjljO8SMjI3A6nWAYJiQVZjQaZenSUiql1dDQgGeffRZVVVWorw/9fZJzN+nQkvvYooInColEeBJNafl8PlitVvj9fqxfvz4klCflXB+lU1perxednZ3geR5btmxBQUGBsK5MEjyJWlSIrS5aWlpgsVgwODh4OoLw5ptRX2vYXJvyejMZjUmLG75WgVW/GcMv30hPrdLglB6PPPgR9lxqxYXXXJaQABGnwgjBYDBsjUakVFi+FBBnWmop24jmHO9wONDX1we32w2v1wutVotly5YtcY5PBqfTGTKYMZ0MDw8jEAiEiB2O4xQ5lqjgkYBEBA/HcRgYGMDo6CjWrl2L8vLyJQeylPNulIrwkPc5NjYmvE8xUhqRpls4kVlBNTU1IVYXKpUKqok++LtGo75e3ySNQWYmw6gYnP//V6GqZgLf+60FXlb+Dpsgp8KLr/pw4uP/QdvFJSldIDQaTcxUmLgrLBAI5EV6KZ1eWkqTLhuNcM7xR48exbJly+ByuZY4xxPBlEjtmcvlCms9lA7Gx8dx++23o6WlBXv37sX555+PioqKsMeRz+cDwzDo6OjAX//6V5x99tnYtm2bZGuhgkcC4hUC09PTsNlswpTkSCFLtVoNrzdayWv8SPmDjfd9zs7Owmq1ory8HNu2bQv7PpUQKqlux+v1oqOjAwzDhJ0VxDAMCo6/jVjSV7NS/lRPptBwSSUeXjmPR36swrhT+rka4egZ02Pod3bw9tdwzucvhkoCR/pYqbDZ2Vl4vV5MT0+npSsMUC7Ck+5hh0qhZDSL53mUlZWF1AN5vV44HA7Mzc1hYGAAwWAQRqMxZBZVpGsKz/OKDFAEgPb2dnz/+9/H888/j+985zt47LHHsHHjRrS0tKCyshIWiwU8z2N0dBQdHR14/fXXYbPZcNNNN+Gf/umfJF1Lfhy5SRLvySRWhIdMSVapVCFpnWjbU8qVPBqxRAFJ0wUCAWzatEmYohkOqSJPUtfwhIPneSEq19jYiLKy8GkaFRcAe+RUzH2pi6N//7lGSXMxvvlND372AzuOj6anjsDPqvHcSy58/NHzuPZfzseylSsk34c4FUaOw+XLlyeUCksFJS7I+ZTSUspHC1gaSRMLbrEIiuYcT4YqJtIef/DgQdxxxx1gWRY33XQT7r777pC/P/roo3jqqaeg0WhQXl6OX/3qV6irqwMA/OY3v8G3v/1tAMDXv/51QawYjUbs3r0bF1xwAQ4dOoTXX38dhw8fxu9//3sEAgF4vV6wLAu9Xo81a9Zg7969uO6662QZlEgFjwREEjxiT6jGxkahhTEWUltVSEUkAcjzPAYHBzE8PBwxTbcYKYWKFOk/UsOzmIWFBXR0dKC0tDRitIpgsH6AoDNGt55eA0arzElUSQzlBfjXb+rwh59M4aWP0ueC3jGox0P73sHVV5Wh7XMXyD+6PsFUWLJdYWTb+VA3pERBOJD54i6ac7zD4cAHH3yAe++9FwaDAR6PB/v370d7ezsaGhrCfocsy+L222/HoUOHUF1djba2NuzZswctLS3Cc7Zs2YKjR4/CaDTipz/9Kb761a/iueeew+zsLL75zW/i6NGjYBgGZ555Jvbs2SOk6Uh32lVXXYWrrroKDocDAwMDmJmZAcdxKC0tRUtLi+zRQyp4JGBxdIDneUxMTKCnpwfV1dUJD9VLl0mnFMzPzwuCIFqabjGZntIKBoOw2WxwOp1Lisojwbz/bsznFGxcmXXdJlKh1qvxD3cuR91zY3jiT6WyOq6L8fg1+M//nseJD5/Hl/5lByzl0hdSRxIC0VJhdrs96a6waPuUk3yKKikZ4UkWsXN8dXU1du3ahcnJSVx55ZUYHh7Giy++iO7ublRWVuK73/2uYN4JAIcPH0ZDQ4NQXLx3714cOHAgRPBcdNFFwn9v374dzzzzDADg1VdfxaWXXioI/UsvvRQHDx7ENddcA+Czm2VSF1VYWIj169cvWb/cxzQVPFFI5oN3OBzo7OxEQUFB0lOS5UhpSX0g+f1+2Gw2eL1ebNy4MeGCOKlEndTdXmKxumrVKjQ3N8f1ubETfQh0DMV8nr41+y0lUmXrl1bgWzVT+N4zhVhwpu9CdqJbh+6vvYlrvrQCmy89R9JtJ1LMu9i+AEi8K4zsMx+KlpUcdqiE4JE6okVmUf37v/+78BiZhSZmZGQkZNhtdXU1Pvjgg4jb/eUvf4nLL7884mtHRkaWvEb8PYrfJzmOqXlolsDzPDo6OmC327Fu3bqUWgDlcl+XIlzI8zyGhoYwODiINWvWoLKyMqmDVO5UVDLr8Xg86O7uhk6nS1is+t76Y1zP09WlL52TydScXY6Hal147OcB2AbSN4TR5dPgqf+cQtvR5/GF2y6DaZk0rbqpXqSSSYWlq4tIjFL7zDc7Cyn3G27KMjFLXbzfxUT6rp955hkcPXoUb731VsKvjffvckAFT4rwPI+RkRG4XC7U1dVh3bp1KX+RUqe0pBI8CwsLcLvdcLlcwpDEVNaUynRqghQpLY7jhAtLa2trwgamfDAIz9uH43quukz+CcTZgrnahK/dF8TvnnbgL++kt2X2yKda2O7+C667bhVazm+TZJtSnsDjSYXNzc3h1KlTKC4uTktXGFlDvkR4lEppyTF0MJ4py9XV1Rga+ixKPTw8HLZw+LXXXsODDz6It956S+hUra6uxpui+WPDw8O48MILl7yWnKuVqo2igicKsU4c8/Pz6OzsRHFxMQoLC7FixQpJTjZyCZ5kCQQCsNlscLlcKCgoQGNjY8oHbKbM4Zmbm0NHRwfUanVSbu0AEDzxBrg5V1zPVRmTNxTMRVQ6Da69uQir6+bw8/3pHX2/4NbiP34xgnOPDOLKW3aioDB5MZqO9NLiVNiJEyewdu1aIRI0MTEBr9cLvV4fUg8kpet2PgkepfYrh61EPDWIbW1t6OrqQl9fH1auXIlnn30W+/fvD3nO8ePHceutt+LgwYNCtxgA7Ny5E/fccw/m5uYAAH/5y1/w8MMPh7x2ceSKDh7MEnw+H2w2G3w+n1DQevToUckOVKlPnMkKHhK9GhgYwOrVq9HS0oIjR45IEupVumhZXIO0efNmjIyMJP25e958La7naetL87ZgORqMSoWzd5WitmYW9//AhEAwvZ/R3z9So+Pf/4Tr/7kRa9s3x35BGJToJOI4DlqtFkajMWwqbHZ2Fv39/ZJ1hZHt51NKKxciPPE6pWs0GjzxxBPYuXMnWJbFjTfeiNbWVuzbtw9bt27Fnj17cNddd8HpdOLqq68GANTW1uKll15CSUkJ7rvvPrS1nY6W7tu3L+TmkRw3999/P8455xxceumlinynVPAkgHhKckNDAyoqKoQff6bOzgGSEzzEI8pisaC9vV24SyTbSvWuUapi40S3QwZc9ff3h9QgJVsLxM6OwfdRd1zPLdhYE/tJeUx1awl+9LAd3/yOGpMz0kUl4mHGocNjP+7HjvZ+fO7/7ILOmNiQxExpEZezK4xsS4kIjxLCQ8n9StmenYhT+u7du7F79+6Qxx544AHhv197LfLN3Y033ogbb7wx7N/IsfXaa6/hmWeewfnnn48rr7wSZ5999pIp/HJCBU8UxCcAMiW5oqIibPt1ps7OARITPMFgEF1dXbDb7Whubl5yZyBlZCbdKS2n04mOjg6YTKYQEZfodsT4334Z4OK7u9c1pMdXKpsxV1rw8Le9eOJxD453pH9A418PA5/YDuAfb9qAuk0tsV8gIhMETzgS7QqLlgpToktLqeJhlmWT6rJNlVxySl/ML37xC/zxj3/Eiy++iDfffBMbNmzAddddh23btqGmpoaahyqN2+2G1WoFwzBRpyQnYyAaC6nuGuMRPDzPY2xsDH19fVGLrzNxQnKs7YgHQLa0tITtoEtmPTzPw/NW7Nk7BM0KZcz7sg2NyYA77tLgwO/s+P2h9Bd5T8zr8f0fWLHz3G7s/Ked0Opjd5FlSoQnXqJ1hc3OzgrWBYtTYfnWpZUrKS2ljEMX09zcjObmZtx888148cUX8dxzz+HOO+/Ehg0bcPXVV+Nzn/scSktLZfvcqeCJQjAYxMmTJ9HQ0BBzSrLUgodcgKX44mOJFBL5MBqNSyIfiW5LqjXFSyyhQiJzVVVVUQdARrOWiETwk3fATtrjfr66ML8sJVKB0Whw5fXLUF83ix88lf67U55ncPBvHE51/AH/eOuZqFrXEOP52SV4FhNvKsztdqOvr0/oDJO7K4ysI5+KluXo0hLPyFESYrJbXFwspMCeeuopfOtb38JNN92EiooK/PM//zP+7d/+jVpLpButVov29va4ftBS1/CQ7ckpeILBIHp6ejA3N4fm5ua47gIypbsq1np8Ph86OzvBcRzOOOMMGAzRazKSqeHxvvFq/OssMoDRZO6Y+kyEYRhsPL8U3185h/seKYDHm/7Pb3haj0ce/hif22HDjusugzrDjDPlFBvhUmFHjx5FaWkpnE5nQqmwVMgV4aHUfp1OZ1xFy+mAHBvHjx/H8ePH8f7778Nms0Gj0eCiiy7C5s2b8V//9V948skn8dvf/lYYbCgVmfXrzUDivfOXY1hgMBiUJIe8WPCIpwnX1taisbEx7hOn1JONpd4OGYw4NDSEtWvXhrROxtpOIoMQOccsvEc74n5+wZbMuMPKRsrXLMOPvuPEQ98FBkbTX1PBcioceM2PEydfwA3/sg2V9auWPEeJCI8S8DyP0tJSwUBX7OIdLRWWimDJR8EjZe1QIkXLcuJwOPAf//EfOH78OKxWK+x2O1asWIFdu3bhi1/8IhobGwEADz/8MK6//np84xvfoIInU9FoNJIM0iNIOYtHrVbD7/cDAFwuFzo6OmAwGJKyvsi0lBbDMIIgtdvt6OjoQHFxccKDERNNafn/9jIQjF+w6ZuWTjalxI+hxIz77/fhqZ958M6HyqQG+yf0+M4DH+KqXTacd/UlUKlDx+Tng+ABQqNK4Vy8xamwkZEROJ1OoSussLAQRUVFCaXCaEorNTKlaHl4eBg//vGPceaZZ+JLX/oSdu/ejY0bNwp/J5+3TqfDxRdfjG9961uSr4EKHonQaDRwu92Sbk+qiJFarRaGB87MzKC5uRnFxcVJbyuTIjxE8HR2dmJhYQEtLS1J/bgTSWnxPA/Pm39LaPvammUJr4kSisqgx83/qkH9gQX81x+UmVgdYFV4/hU3Tpx4Htf9y7korVmpyDoymVhdYZOTkwkNSJS6TTteaEpLWkpKSvDEE0/gqquuEh4TT14Wi8vrrrsOu3btknwNVPDEQBxBiIZc/ldSQO601qxZg+3bt6d0JypVDY9Ud8OTk5NwuVyora1FU1NT0ttNRICxXR8iODKb0PbVJem1TshVGLUal3y+BKvqZvDg42ZwvDJRFduwHg994318Yc8ybL/yoryK8CRDuK4wn88X14BEpYSHUnN4ci3CQ96PzWbD+++/j8suuww6nQ4Mw0ClUgm/m+PHj2N+fh4XXXQRzGZzXNOhE4UKHomQuktLiiJot9uNjo4O8DyPsrIy1NXVpbwuEi1SGo/Hg46ODmg0GhiNxpS7EBIRPN7/x96Zx7dR33n/M7oP2/J9J3ZiJ46dw05ix+EoEEoI0JJtgS0stGWX0paF3dK+ustme4QuZbfsU7rbZ2EL6T5taSlsaClHOBpCyQ0hCblMbNmWb0u+LVn3MRrN84c7Qj41kn6jkex5v168SOLRb36yNKOPvsfne+Tt2BaXy0CppUuNJNVb8/DTf7Vj74+UmHKK87v103K88AcHLl34Pa78zCpQSTRQS3coioJGo4FGo4maCguFQmExlIyuMA4x/X+WUoSHey4XL17ECy+8gCeeeGLe45599ll0dnZix44dCAaDgkT1pLswIVIpwsMwDHp7ezE+Po6amhoolUr09vYS25fP5yOyVjxwbtfDw8OoqalBXl4ePviAvxfOQvAVPCGPE77TH8e0tno9mRlrEjMxlBvw5BMePPkTP9p7kjdxfTaXe1To+Xk/Pn+rHdt3f1p6reNkoVSY0WgETdMwmUyCzwqLZKnU8NA0HR7ymWycTidaWlqg0+nQ2tqKvLw8XLhwAZmZmVAoFFCpVNBqtXC5XBgbG0NVVZWg+5EETxT43rxIt6XHK6DGx8dhMplQUlIS9p3xeDzE9kaq9iYepqamYDQakZ+fj+bmZqI3Bb6py8Cpt8D6Y3tdNBvI+0lITKPM1GHPd2n8769ceOekeGlDj1+BF152wfjxy/jLv/00MvNiH0IrMRfuQ7G4uBgGg2FOKkyIrrBIxBCvJKMbYsx4i6S3txePPvoozp07B4qiEAgE8MUvfhFarRZqtRparRaZmZmwWCwYHR3Fv/7rvwIQ7vcuCR5CCJHSiiWS4vV60d7eDoqi5vjOkO74SvbMMK7g2uPxYNOmTdDryX+w8RVyvqPHY15bVbm4aaVEYlBKJf7qqwasrrDhmRfE7UY536FE1z+/h7v/agU27Ngu6l6WCpGRllhSYZmZmcjKyoq5K0xshEilifXcV61ahe9+97ugaRqPPvoorFYrdu/eDafTCYfDAafTCbfbjfz8fDz88MP4whe+AACC1U5JgocQpIUA3whPKBRCX18fRkZGwikeIfdGqkuLY7FiT5ZlMTIygp6envC09sWOTbQYO+qIiv5W0D0jMa+tKBK/Q2KpQ1EybN+Vh/JyK/7lJzoEguKZPDq8Sjz7yxFccfZlfP6BG6FLgQ4ZEogVLYiWWiLdFSY2JFNpYkd4MjMzsWPHDgAIezdt2bJFtP1IgicKfD9ESStoPiJlcnISHR0dKC4uxvbt2xe8SEgKHlJdWsAnaaT5fncejwdtbW28/IJIjOHg05buO/JmXGvL9OLVlyw3ytfn4qdPOPGDH8mSPnF9Nqc+VqD9nw7ii1+uRs0VZG/yYnyQidWJFo8AWKwrzGazCZ4KSxRSv2ev1wudTkdkrXgYGhqCRqNBdnY2tmzZAr/fD5vNBplMBrlcHm5H5/4udFecJHhSlMVqgnw+H9rb28Gy7KIDTTlI3qSESI9F3mRCoRB6e3sxNjaGdevWIScnun8NCcETzXiQ9Xvh/eBCzOsqSg2gZOkRSl8q6Asz8a/fc+KVZ3sx4svEqF2LMacWQSb5H2Y2lwpP/WwA157pw+77d0FNKB0r1uyudDUAjCcVFgqF0t5uwOFwCNLezZcvfvGLuOGGG/Cd73wHX/va13Dy5ElUVFSEa3cyMzORkZGB7OxssCyLL3/5y+EonRBIgicKYr3Z50tpRXYorVmzBgUitMGSjhZFRlWsViva29tRXFy86KDPaOuQ2MtsAmcPgXUHYl5X01CeyLYk4sR9eQTbfW1YuXM6nRQKAVa3GqMOLUbtWow6NH/+vxbjTg2YkLAf5Mc+ksFoegtfvK8Wq7dsTHg9MT6IxZiUDghnALhYKsxut8Pv9+PMmTOCzwoTErE9eB588EGsXLkSALBhwwa43W4Eg0FMTU1hZGQELpcLHo8HgUAAZrMZO3bsQFlZmWDvb0nwEGSxFE2szBYWVqsVHR0dKCgoIN6hFAsku7S45xgIBNDe3g6aptHQ0BBzCDYZgsd35HBc66rXFMW7JYkEsJ+1YOiEG2XXZECulkEmA/Iz/cjP9GN92dSMYxlODP1ZAH3yfw0mnBowLBkxNGZX4T//sws3XNmDW/7mJig18ac6xRI86Rrh4QuXCsvIyIDdbkd9fX1SU2GkX1ex52jdcccdAKZF6ze+8Y0FjwsGgwgEAuFshdSllQZwURkS3wC4lJbf70dHRwdomkZ9fb2o+ViAbISHoigMDQ1hdHQUVVVVKCoqiuuNTkrwLJTSYoZ7EGgfjGtdZWn0CfQS5LG3TCLoCWH0jAeln1o8pC+XAQWZfhRk+rEBM8VQMERh0qmeKYT+HB2acGnAxuj0zILCux+waG1/DV/+WgPK19fE/NyA5SV4xHqucrk8rlRYVlYWtFptXHsWwnRQzJQWR7TnpFAokjI+RBI8UYjlTcu1ppMQPBRFwe1246OPPopp6vdikLhxkIrwuFwuWK1WUBQV86BPIfa0WNGy/8iBuNeVZ4srUJcjjJ+Gs3t6rp3lmAvFV+ohk8f3vlfIWBQZfCgy+IAVthk/CzIUxp0ajDk0syJDWky61GCx8DmHrGr8n39vwy3XmbDzS7sgj/GeIUY9jZj1LMk+72Kt4Xy6wrxeb1ypMNKCx+l0iuqyfM0114CmaeTl5YUHx2ZnZyM7Ozv8Z+7/Op0O9fX1gr7WkuAhCKnoB2ewFwqFsH37diIXALe3RFV0om9GhmHQ3d0Nq9WK3NxcrFy5MuE9CZnSYukAvCfPxreoVgkoUqPrYznh/GgAIXo6WuefYjB+3oOiJvLeTQo5i5JsL0qyvQBmiiGaoTA+Wwj9OU1mdU97ZIVYCm8eCaKl9RV86YEmlKxZzfvcyynCIwaxNkGQ6goTQvCImdKqra2F1WqFx+PB0NAQTCYT3G43vF4vvF4v/H4/AoEAgsEggsEg3G531CacRJAED0ESNR8MBALo7OyEz+fDpk2bcOnSJWJvflKCJxHGx8fR2dmJ8vJyNDc3o6OjI2Umry/04UFfOIyQ3RvXmtr68rTu8EhX7GcsM/5uPuJC4VZdUrvllHIWpTlelObMfe8EgjKMOTQYi0iPvf7LY2je3or6z9wEmSJ6JECMAuJ071iKhUTN/+JNhQWDwSU1OPTHP/4xgOnfp8/nCwsbmqZB0zQCgQACgQD8fj98Pp+gYgeQBE9U4klpxQrLshgcHMTg4GBCtSyLIYZDMgfXRg8AW7duDbtAk0qPCTnuwnf0T3E/Vl1bQnAnEnyxt0zM+Lt3LAhrmw95G4S9mfJFpQihPNeD8lzPnJ/5Px5DcPNXoq4hRXiERYjOMD6pMJfLBWB6JAOJrjCXy0VkaHS8iJlOmw9J8BAknnladrsdRqMROTk5CdeyLIYYgodlWQwMDMBsNmPt2rVz2uhJ7UkowcNMmOFviX/oqqpCmqeUbBg6CIfJPeffzYedyF2f+uMFVPY2eEcHoSxasehxkuARlmQ919mpsPHxcVitVuj1+hmpML1eD4PBEHNXmJgRHrvdjkceeQRPPPEE1Go1fvKTn6CgoAB6vR4ZGRkz/tPpdMjMzCRSq7oYkuDhAd/BkrEM/IycD7Vhw4Z5K+m5QloSFx5pwRPthssJudzc3AXrkEgJFdLjLjgCx94AEnC0VeSL3x2x3HBfMCMUmPuaOQdo2LsDyK5ObddrigJUH78AtmjPoseJZTwoxjnFQCjvn2iEQiGo1WoUFhYS6QpzuVyiRVkcDgfa2tpAURQcDgeeffZZZGdnIxAIhE0dgenPgUAggKqqKhw5ckTQ95kkeAjCJ6XFsiwsFgv6+/ujzoeaz4k4XoQwDJzvhhAMBmEymeB0OrF+/fpFv12kckqLZRh4j38Y/wIUQGnTx6BsqWA/bV7wZ+YjzpQXPACgU45j7Oxx6JuuWfCY5RLhESuqJJbgma/OcqFUmNPphN1un3dWmEKhgMFg4F20fPDgQTz88MNgGAb3338/9uyZKbiPHz+Ob37zm2hpacH+/fvD/jrA9GfLxo3TZporV67EgQPTXa0lJSX4zW9+A4PBAK1Wi9/+9regaRoulytcsOx2u+Hz+eBwOOadA0kaSfDwgG+ER6FQwO/3L/hzh8MBo9GIrKwsXukrTqSQaHMXWvCwLIvR0VF0d3ejoqIC69ati3pDJrUnPnOwYiV4+QSYCWfcj1etKUz59MlSZOrS+MI/6/DDZQkgo2zhuWypQubEQTDMlaDk898jlov4ENPsUIwGD76NJQqFAjk5OeHRO7O7wh5++GEMDw9Dp9OFBUhDQ8O8MwkZhsFDDz2Ed999F+Xl5WhqasLu3btRV1cXPmblypV47rnn8OSTT855vFarxcWLF+fd46pVqwAAarU6PEQ0GlJbepqw0Ac4TdPo6uqCw+FAXV0d75xqol1ffPaWyFqcEPN6vWhra4NSqYw66DMSmUwGmqYT3g/pCA/DMHC9+3ZCa2g2CjcPRmJ+QkEGjk7Xose0ZmEUAAAgAElEQVSYD7uw7kupX1ul1flhfP4pyG74SxgMBuj1+hkf/MtllpaYER61OvnRwHjPO7sr7K233kIgEMAdd9yBzMxM7Nu3D5cuXYJarcaDDz6Ie+65J/zYM2fOoLq6GqtXT9si3HXXXXj99ddnCJ7KykoASPi1aG1txfHjx+FwOKBWq1FTU4Pa2lpUVFQk5f0sCR6CzBYoLMtieHgYvb29vKMekQghUkiuFTnbq6amJuaQJMkaHhLCCQAmJibQ9/E5VLT0JLSOqir5c86WO+6WITC+xSOxEy1eeMeD0Bak/q2vusyCbpsVgw4HXC4XFAoFsrKyYDAYls0sLTEjPGKltEidV6VSwefz4cEHHwx/yXb8+b0UicViwYoVnxTJl5eX4/Tp07zP4/P50NjYCIVCgT179uBzn/vcnGNomsZvf/tbPPnkk5icnIROpwtHpDZt2oS9e/di165dcT5T/qT+VZ8C8L3IIwWPy+WC0WiEXq/Htm3b4kpLpargkclkmJqaQktLCwoLC7F9+/a4bkoku7QSLW4MBALwer3o7+9HrWMAHiYxIaYsTq12zOWA/fRA9INYwHLMieo7coTfUIIoVSwMFw9gxZe+B2D6Q8Nut8PhcGBychI+nw9+vz/cvZOZmSmoOFhOKS1StZPxnJek0PJ6vTPGEXE1PpHMd++MRdgODAygtLQUPT09uP7667Fx40ZUVVUB+OT1O3bsGB599FHU19fj5z//OcrKyhAKhWA0GvH444/j/vvvx/79+3HVVVdJRcvpAhdp6OjogM1mQ21tLQyG+GcpxdPmvtjeAoHYp33Phrvput1ubNq0CXp9/A62qVC0HBmFUyqV2LRpE1z7f5b4njI1Ca8hERtTFxeu34lk9KwHK3ZmQW0QZwBvLBSX2zB28SwyGpqgVCqRn5+P/Px8GAwG2Gw2lJSUwG63Y2hoKNy9w32oGQwGqNVqYh8eyymltRQiPBzRfn/l5eUYHPxkVqDZbEZpaSnv9bljV69ejeuuuw4XLlyYI3hOnDiB7Oxs/OpXv0J+fn74satXr0ZDQwN27tyJAwcO4KqrrhL0dy8JHkKwLAur1Qqr1YrCwkKsXbs24RtNLG3ufNZKRDxFCgOtVovKysqExA63JzEFj8fjQVtbGzQaDbZt24YLFy6A6TyL4JAt+oMX20+uDpR8efiVpApsiIWjY/H6nfCxDDB0woVVn039wa6UDFC2/g6ob5zuWf8z3IeCXq+HXq8Pf+hwRnZ2ux0jIyPw+XzQ6XRhAZSZmRn3h4kYhbxShCd++Ea9m5qaYDKZ0Nvbi7KyMuzfvx8vvvgir8fabDbodDqo1WpMTEzg/fffxyOPPBL+OfcZqFQqUVJSEn5u3N4oioLBYEBJSYk0PDRViCZcXC4X2tvboVarodPpZuRDEyFVUlputxttbW3Q6XTYtm0bent7ifhjyGQyYimtWNaJrD1at25d2PRLJpOBPvZOwvvRbibz+kvwx906hKCHv+gdOeXGiuszodClvjDNLQ/B8saLyN79SaHpQmH/+WY6eb1eOBwOjI6OoqurCwDCHi5cyzCfL2fLLaW1VCI80V5bhUKBp59+Grt27QLDMLjvvvuwfv167N27F42Njdi9ezfOnj2Lz3/+87DZbHjjjTfw6KOPorW1FUajEV//+tfDXzr37NkTLnamaToszO+55x50dHTg2WefxQMPPIDs7GwA06UEL730EvR6Pa6//npe+00ESfAkADcIc3JyErW1tcjOzsYHH3xAbH2FQkGsGDcewcMwDHp7ezE+Ph5+fvGuNR9ipLQ4M6y8vDw0NzfPuLkog174zxoT3o+6pjjhNSRiw/7hYPSDImD8LIY/cGPFDeLNGYqFXHyEgP0zUBimr0G+dQ4URUGn00Gn06G4ePp9yTBM2MOlu7sbXq837OHC1QPN921bjEJpMQ0A013wBAIB3lGTW265BbfccsuMf3vsscfCf25qaoLZPNfj6sorr8THH38875rf+ta38NJLL2HFihXIz8/HRx99hBdeeAGHDh3C+vXrodPpYDKZcPDgQdx+++3YvHkzgMQ7wRZDEjxxwLIsxsbG0NXVhfLycmzfvl2QG4FcLofP5yO2ViwiZXJyEh0dHSgpKUFzc/OMNyEpwZPMlBbDMDCZTLDb7QsaIhb2XwIbSDyFqCzPTngNidiYujAW82OGTrhQeo0eclXqR3m0Bhlsrz8Lw5enDeESER9yuRzZ2dnhLzCch4vdbsfk5CR6e3sRCoWQkZERFkB6vX7ZRXjSPbIk9qT0a6+9FkqlMlzusXv3bni9XoyOjuLkyZPweDxgWRarVq3Ciy++iDvvvBO33nqroK+5JHh4EHlj8Xg8MBqNUCqVaGxsFNSrQYyUlt/vR0dHB4LBIDZv3jzv9FqxUlGLrbOY4JmYmEBHRwdWrFiBmpqaBT8o1BdbQOK3Lc9JrLZJIjZYloWj3RHz42h3CKNnPSi9Kj1GgBSVjcFq/Bi62o1Eoy2RHi5FRUUApoWG0+mEw+FAX18fPB4PaJqG3+8Hy7IwGAxEDFGjsdwED0AupSO24PnLv/xL3HHHHWBZNiyqaZoO/52bmu73++H3+8NDTqUITwoQmd6pqakJ58jng9TNKJnGgyzLwmw2Y2BgANXV1eEb30JrpZJh4ELrBAIBtLe3g2GYGVPa5yPYcwnMwMSCP+eNUgZKlfrdP0sJT/sIaFd87yPLUReKt+shk6e+K7ZcQQFnfwuse0JwISCTyWAwGGAwGMI1iUajEVqtFlNTUxgYGEAwGERGRkY4FTbbHJEEYg4sTfdBqS6Xa94ZjcmEoqjwZ2Fke7xYSIKHBx6PB2fPnkVpaemc9M5sFpszFSvJivA4nU60tbXBYDDwHnlBItUmVC0Qy7IYGhpCX18fqqqqwrULi+E/8lbC+wAAzYYyaaREkrGf4uG/swB+G4OJi14UbhX/ZsyHgooght59DWxdU9I/kCmKQm5ubtjHhRtqabfbMTg4OMccMSsrK+EI+HKa0E4aMSelR8IFAEwmEw4dOoRgMAiZTIaMjAwUFhbCYDBALpejsbFR8KihJHh4oNVqsWXLlkUjBBxcVIaE4CHtwzN7rWAwiO7ubkxNTaG2tpb3VF1SkRm+M8pi2Q/Xaq7VankbPrI+D7ynWhLeBwCo15cQWUeCP/HU70RiPuxEwWYtKFl6CNUs53HYfesh1yf3w2y2+IgcaslB03S4Ld5sNoOmaeh0urjNEcWaaSUGpCfDi53S4qAoCq2trfjqV7+KQCCA8+fPQ6PRgKIoeL3e8HFDQ0O8vpwmwvJ4JyWITCbjJXYA4UVKvMyOOoyNjcFkMmHFihUxewaRHPpJAq4WqLe3F8PDw6itrQ0P1eND4PTbYL2JmzICgLpS+Im/Ep8Qb/1OJJ7RIGztPuTWza1XS0Uy8mVQHf0D8Nm/Sep5+aTqlUol8vLywmNmWJaFx+OB3W7H8PAwOjs7YzJHXE4RHtLP1el0JmR8S5If/vCHUKvVeOaZZ3D11Vfj6aefRkVFBV577TUcOnQIjzzyCAoLCwXfhyR4CEPaLJDUWhw+nw9GoxEymSzuomuSQowELpcLDocDeXl5cY258B09Rmwv8kJppEQycbVbEbAn/l4cPOxCTq0mbdKRFSvH0GsZAAT+RhxJPB/IFEUtaI7ocDgwMjICv98PrVYbFkFZWVnhCLkYgod0pIUvpFvwU6GGh+PQoUN44YUXUF9fD5/Ph9raWmzbtg3XXXcdvva1r+H48eO49957Bd+HJHh4EMtNMFUnnIdCIfj9fpw/fx5r166dYe8t5r4SIRgMoqurC3a7HRqNBtXV1TGvwVhMCHRaiO1JpuM3KV6CDMOvdhJZx9kXgKM3AMPq5E/IjgeFWoaMS68AW7cl7ZykRkssZo44NjaG7u5uANPmiF6vF1qtNqkeQGL4DQHkBY/T6UxK1CQaXGdWfn4+AoEANBoNpqamwj+/6667cNttt+GXv/yl4HuRBA9P+NabkExpkbro7HY7jEYjWJadY7YXD6RqeBJhfHwcnZ2d4VbzU6dOxbWO78gBYntSrMhJmzqQpcLU2WFia5kPO9NG8ABASRWN4WPvIOta4adMA8JNS1/MHLGrqwvDw8MYHBzkZY5IgqXisux2u1Oihsfv96OyshJtbW1oaGjAhg0b8Pzzz6O+vh4Mw+DgwYO860cTRRI8hBEiDRUvNE3DZDLB5XJhw4YNaGlpIfINTcwITyAQgNFoRCgUitpqHg2W9sN38hyxvWkbyomtJcEP34ib2Fq2dj9cQzQySoX3lyGFfvQdhAI7IFMJH1lMZnqJM0fU6/UoLy9HRkYGL3NEEoJsKbgsA6lTtKxUKvF3f/d3kMlkUCqVeOihh/D3f//3GBkZAcMwOHfuHL797W8DED66JgkewpBMacULy7IYHR1Fd3c3KisrUVtbC4qiwkIl0W9GpBySOfi8ySNbzaP5BPGFPvcnhJxknKwBQF0tfvh4OWG/OAowZOstLEecqLlnYY+tVCOriILl1f+H7DsfFPxcYqR6OJG1kDmiy+WC3W4PmyMqlcqwAIrXHHEpuCwD04InWZGTxVCr1bjnnnvCaay7774bDMPg1Vdfhc/nwxNPPIG//du/BSDsHC1AEjy8iSWl5ff7iZ47lhsN5wStUqnQ1NQEVcQ3P1KCh5RDMrenaN+oPB4PWltbodfrefkE8cV35D0i63AoSlOjI2K5MPp2D/E1xy96UXFTEJq89Lk1FmSZ4Bo2Q10ibIQx1UZLRHZ7ceaIfr8fDocjIXPEpRLhSRUfHgDQaDThdKVMJsO99947o0g5WWI6fa7qNIF0uoevkWEoFEJvby9GR0dnTAAXYm8ka3g48TTf8wuFQujr68PIyEjMrebRYMYH4G/tI7YeAMgN6dHWvFSwnxshvygLmI+6UH17+sxDU+lk8L/zP1D/9b8Ifi6xIjx8UavVKCgoQEFBQfjxbrcbDoeDtzmiWBEeUv5tHC6XKyUiPByHDx/GsWPHMD4+DplMhrq6Omzfvh0bNmyY8cVcSCTBQxjSKS2uCHqxC8Fms8FoNKKoqGjRtuxU888BFhZPdrsdbW1tKCgoiKvVPBr+owcAgtkQWYYKkC8Pv5BUwTfkEmTd0bNurNyZCVVW+owIKVnlwsjpE8hs/pTYWyFKolGlSHPEsrIyADPNES0WCwKBwAxzRJqmpQgPQTweD/77v/8bP/3pT6FWq1FUVAS/34/9+/dDp9Nh7969uP/++5OyF0nw8ITvhzxpwcMVQc+ngAOBADo7O+H3+9HQ0BB1VkmqtJNHMrseKBgMwmQywel0YuPGjTH5SPANi7JMEL7jZ+La70Ko61ekjYfLUsBpnARLuH6Hgw0CQyddqLwlvVKU6u7XwDZdCUqWPkItGkKk0aKZI9psNoRCIbAsG06Zcc7AQsIwDNFh1GILHu61O3LkCP7jP/4Dt956K/75n/8ZxcXFoCgKPT09ePzxx/HII48gNzcXt912m1S0nG6QFhXzrTd7VlRRURGvN0kqCp7IeiCu1XzlypVYt25dTG98rsaKz2OCl46BsZKNDmhqk2cAJwGMvNEl6PrDH7hRviMTCm36RO1yygDLa79G9m33ib0VYiSjbmi2OeLo6Cg8Hg8MBgMvc0RSkKivnL1eMibaL3Z+mUyGc+fOoaioCD/+8Y9hMBjC9+m6ujo888wzuPnmm/GnP/0Jt912m+D1U5LgIYxQKS0Ol8sFo9EIvV7Pe1YUR6oKHr/fj+7ubrAsG3erOZca43Nz9B59N56tLopqZfp09iwF7B8JUL8TAeNjMXzKjRXXi58SiIU81cfwTYxDmV8g9laIkezIKScU+JojcvVAWq02ob2STGmJZZ4YCffZVFRUhLy8PLhcLhgMhhn74qJo2dnJqZmTBA9PxE5pMQyDnp4eTE5Oora2Nq4ZKaQFT6IXFXcTaWtrw7p16xJyBeVbSB2yjcB/0RT3eRZCnpcaFu7LBa/ZKfg5hk64UPqpDMiV6ZOq1GTKYH1rHwz3fk/sraQt831xWswc0W63o7u7Gx6PBxqNJm5zRCEMD8USPWNjY7DZbMjMzMSVV16J48eP49///d/x0EMPhTMSDMPgl7/8JVQqFT7zmc8AgODRPEnwEEaIlJbNZkNnZydKS0uxbdu2uN8UJPfGt3tsIdxuN9ra2kDTNGpqahK2QOcrePzH3yDu3QIKoDTSpZQsXCYb2KDwTt+0M4Sxsx6UXKkX/FwkKV5hxUTLOeg3bRV7K2kJ31QQZ47IRSdYlg23xcdjjkhS8Ajlis2XRx99FPv27UNZWRlycnLQ3d0Nr9eLAwcOYMOGDdBqtWhvb0draytuuOGGcEG55MOTZpB8wfx+P8bGxgAAW7ZsSchVGCAreLi1Yr1AI9vn6+rqMD4+TuR3xscMkWVZeI99kPC5ZqNaVyx6+Hg5MfqmsPU7kZiPOlHcrAMlT5/XVyanIL+0H9i4BSD0vhRroKYYxPtFLtIckfsCF2mO2N/fD7fbPcMcMSsrK9yQQlLwuN1u6PXiCfV7770X9fX1oGkak5OTCAaD8Hq9GB4exuTkJGw2W9hX7ciRI7h06RIqKysFr9mSBA9PkvmBxrIsBgcHMTg4iJycHGRkZCQsdoBpURAIBAjsMD4vnqmpKRiNRhQWFoZbza1WKxFPHz77CbZ9AGbUnvC5ZqPdWEZ8TYmFsZ0hNz8rGn4rg4kWLwo2L94BmWrkrQzB8uZLyL71LiLrpUJNSLIg6cMTaY7IwUWB7Hb7DHNEt9sNr9cLlUqV8PkdDoeoHVrbt2/H9u3box4XCoVmCEwppbXMcDgcMBqNyM7ORnNzM8bGxog5NwsR4eFDZKv5pk2bZnzzIOXazEfw+I+8k/B55kO1Ov7J8xKx4x10JPV8g4edyG9IrCBVDHKY06AdN0ORlXh7vRguy2JFlYTuFFrIHHFqagpDQ0MwmUxRzRGjIXZLeiRc5MrlcqGjowNerxdZWVkoLy9Hbm5uUt9XkuDhiVAt0hzBYBBdXV2w2+2oq6sLv1kVCgXcbjIDEkkONuU7T2tsbAwmkwkVFRXztpqTcm2Otk7IZYX3I2PC55kPRVHquJkudTwDDrAB4et3ZpxzOAhbux+5tYlHWZOJLkcGy+v7kP2lRxJeS4wIj1hRpWQ7LXPmiAqFAuvXrwcQ3RwxMzNz0T26XK6YPMyEgmVZyOVyPP/883juuedgNpshl8uhUqmwZs0aPPDAA7j++uuT9jpLgkcAOGHBt2V8dHQUXV1dWLlyJWpqama8+KSjMqRHQiyE3++H0TgtMBobGxf8hiKXy0HTtOD7CZx8E6CFacmXZZAzC5NYnJED5Dvs+GA+7Ew7wQMAxSUjsHW0QVtTl9A6qTZHS0iE6JaKlWjmiJ2dnaAoakYUKNIcMVUmpVMUhZdffhkPPvggrrjiCtx1113Q6XQYGhrCyZMncdNNN+Gtt97CjTfemJT9SIJHADjvnGiCx+v1wmg0QqFQLCgKxEpDxbsWy7KwWCzo7+/HmjVronZfJSPCw7IsvEdPJHyO+ZAXZICSRkokDduHQ6Kc19EbgKPXj6xV6SVu5UoK7Ie/AWqeSGgdMcSHWMJDrOGhizHbHBGYzgo4HI6wOaLP58OHH34Iq9WKzMxMXmmwgwcP4uGHHwbDMLj//vuxZ8+eGT8/fvw4vvnNb6KlpQX79+/HHXfcEf7Zr3/9azz++OMAgO9973szhoECn0ToHn/8cezevRv79u2bEXViWRaf/exn8b3vfQ9XXXVVUoqsJcHDk1hCbtFSR6FQCP39/RgeHkZNTU1Yxc/HbOPBRBBa8LjdbrS2tiIzM5P3VHNSUSeZTLZgzp/pvoDg4GTC55gP7eaVgqwrMT/e/uTW70QyeNiF9V9JL8EDAAWVNIbefR2GnX8R9xpipJfEjPCIcd5Yf78KhWKOOWJubi4OHz6MQ4cOoaOjA8eOHcPWrVuxfft2XHHFFVizZk348QzD4KGHHsK7776L8vJyNDU1Yffu3air+yQauHLlSjz33HN48sknZ5zbarXiX/7lX/DRRx+Boihs3boVu3fvnjHgmXs+nZ2d+MlPfoKMjAwEAoFwyYdKpcJ3vvMd7Ny5M2kCU/pqKgCLmQ9OTU3h9OnTYBgGzc3Ni4odgHzdDWkfHmD6xtTd3Y2WlhasXbsWtbW1vA23klG07D/ydsLrL4R6bWL+QRL88Q25EPKL5xRuM/rgHk48/SoGWfajYLyeuB8vpbSEhYRvDkVRWLNmDb7+9a/jxhtvxJ49e3DkyBHcfffdGBsbw759+2Ycf+bMGVRXV2P16tVQqVS466678Prrr884prKyEps2bZrzOrzzzjvYuXMncnNzkZOTg507d+LgwYNz9sSyLIqKinDo0CEAgEqlglKpDLfit7a2QqVSEelC5oMU4YkBTplGYz7BQ9M0Ojs74fF45nQqLUaqp7QiW82bm5tjvkGRTGnNm2LzuuA91ZLw+guhKM+JfpAEEYSen8UH8xEnau5OvzEiGQUyWF75ObLv+WZcj19OER4xnqsQk9JLSkqg0+lw9dVX4+qrr55zjMViwYoVK8J/Ly8vx+nTp3mtP99jLRbLvMd+85vfxLe+9S2o1Wpcc801KCgoCHfufv/738edd94Z47OLH0nwCECksGBZFsPDw+jt7cWqVatQV1cX08VEclQFaRdos9kMmUwWk4Cbb09C1vAETr0N1k9u1Mds5NlawdaWmIn1g/lvqMlk/KIXFbuC0OSl362zKL8f9r4eaCpXx/zY5RThAcSZ30Va8EQrWp7vyzvf5833sRRF4atf/SomJibwm9/8Bq+++ipUKhUCgQD6+/uxY8cOPPFEYvVlsZB+V20awIkUt9sNo9EIjUYT86BPjsVqU2KF1EU8NjaGvr4+ZGdno76+PqF1Saa05lvHe/RYwmsviEoBSplaxY1LGU8fedPImAkBlmMuVN2WnGGHJFFoZPC/9z+gvviDmH1dlpvgSTZiCJ7y8nIMDg6G/242m8MF0dEoLy/H0aNHZzz2uuuum3NcIBAAwzD4wQ9+gF27duHSpUsYGhqCwWBAY2Mjrr/+el7nI4UkeGKAb0pLJpNhZGQEAwMDWLdu3YxCrnTG5/Ohvb0dFEWhqqoqXICWCCRTWrPb25kBI+hu4Vx5tZvK0s6MLl3xT3gQ8goXqYuF0TNurNiZCVVm+ond0uoAzr36v3Csrgv7uhgMBmRkZCwqLliWlQSPgJAWPE6nc4a783w0NTXBZDKht7cXZWVl2L9/P1588UVe6+/atQvf+c53YLPZAACHDh3Cj370oznHtbe3Y8+ePdi3b9+8qbVkpw8lwUMYbmgcNydkKVywLMvCbDZjYGAAa9euRUFBAcbHx+H1ehNeW8iUlu/IGwmvuxjq9SWCri/xCSMHxK/f4QgFgeGTblTcnJ6Gk9VogWzzX8Hjnza3s1gscLlckMvlYV8Xg8EQLiwFxBlGKQme+HG5XFEFj0KhwNNPP41du3aBYRjcd999WL9+Pfbu3YvGxkbs3r0bZ8+exec//3nYbDa88cYbePTRR9Ha2orc3Fx8//vfR1NTEwBg79694W4x4BMhMzIygpMnT4YDBV6vF3K5HBRFQSaTJf31lQRPDCx2wQcCAbS3t4OmaVRVVcHj8SyJi9XlcqGtrW1Oq7nQqah41okUPGzAD+/7FxJedzFUFYt32EmQw/q+WewtzGDofRfKdmRAoUm/a9xQQsHy6q+Q/YUHkJGREU5j0DQNu90Ou90Os9kMmqaRkZGBrKwsMAyT9nUtfBBrnIUYKS0AuOWWW3DLLbfM+LfHHnss/OempiaYzfNfe/fddx/uu+++eX/GvVc2b96Me++9Fy+99BL+8R//EVqtuDWPkuBJkEijvaqqKhQVFWFqagoOBzm/kHhGVSwGn7VCoRB6enowPj6Ouro6GAwz5/EIXWyc6Dr02YNg3WRmkC2EvEB86/blgqd7SuwtzIDxsRg55Ub5DvHdbOOhIKMD7pEhqIo/qdlQKpXIz89Hfv70bDhuxpPdbsfExAS8Xi+mpqbCEaCsrKy46hL5spzMDsVIaQkJ9xkzNDSEs2fP4pVXXsHk5CTWrVuH3NxcZGRkhM0RS0tLw+85oZEETwI4nU4YjcY50Q+SZoHAJ91VfL1tEl3LZrPBaDSiuLh4wbQcqY4voYST9+iRhNeMek6dKvpBEgkTsPnAeFKjficSy3EXSq/OgEyZfnVcKr0Mkwd/DtVf/2DBY7gZT5mZmWE/sKKiItjtdthsNvT394NhGGRkZIRFkE6nI/bFTKxC6aUgePx+f9K8beaDEzydnZ0YGhpCRkYGnnnmmfAg1FAoBIVCgbGxMXzjG9/AY489lhSxKQmeGOAuZIZh0N3dDavVitra2nmjH6RaySPXIyF4uA6y+dYKBoPo7OyE2+1GQ0MDdDrdguuQiszwLQSPRuR+mNFeBNoGEl5zMZSr8qSC5SQx+mbq1O9EQjtDGDvnQfF24S3xhaC4woGxsx8go+nKqMdy4kOlUs2Z9O1yuWC329Hb2wuPxwOVSjUjChTvfYv7UEwmYrksk/pCG0kq3J9uvvlmVFdXw+/3w+Vywe12w+PxwOv1wufzYXR0FNdccw0AJOX3LgmeGBkfH0dnZyfKy8vR3Nw875uKpHcOIJxDciTcANPKykrU1tZGvVhIe/okCve8GIbB1NsvCX4+bX254OeQmGbyRGrV70RiPuJE0TYdKJn4Hy6xQskoqEx/ALu1GZRs8W/WC3VpyWQyZGVlISsrK2xE5/P54HA4wg0coVAofIzBYIBWq+X1YbycUlrBYDBmq4CF4KIrYgoemUwGl8uF7u5uZGVloaqqKupjkrFfSfDEwMjICCwWC7Zu3bpouJC04BHSfNDn88FoNEImky061TzaOmIjk8ng8/lw+tQHqDl7WfDzqXmb3n8AACAASURBVKoLBD+HxDTuLpvYW1gQ3ySDiRYvChoWjoamMjllgOX155H9+b9e9LhYoi0ajQYajSY8OJhhGDidTtjtdnR1dcHr9UKr1YYjQFlZWfOKjOXk/UNSaIlVeB3Jz372M/zXf/0XhoeHoVarUV9fjz179mDHjh1zjk3m71sSPDFQXFzMq7iKpFkgQFZccOKJZVkMDg5icHAw3Gou1p4SJRgMoqenB06nE9u1Xrjt8c8M4oui2BD9IImECToDYFypPb/KfNiF/Hp+UYtUJE9xCT6bFcqchUdmJCIE5HI5srOzkZ09bdbIsix8Ph/sdjvGxsbQ3d0NADNa4rk6j+US4SGZ0vL7/cSiRfHwhz/8AT/84Q/R2NiIf/iHf4DD4cDTTz+Nb3/72/jd736HtWvXijK+A5AET0yIdUMjWQQtk8ngdrthMpmQlZXFe6r5bEjV3iTKxMQEOjo6UFpaikAggOCRPyblvPIsaaREMhh9u1vsLUTFPURjqtOPnBrxikQTQZMlg/XAMzDc+90FjyH5AUVRFLRaLbRaLYqLiwFMf2nhokAjIyPw+XwIhULhIuLMzMykiJ+lULTscDiQkSFeB+nvfvc7XHXVVfjpT3+K8vLp1P91112Ha6+9FufPn8fatWtF25skeNIAUkXQoVAIdrsd4+Pj2LRp05xi61ggLf5ivaHSNB32Pdq6det0zniwC/5LPUT3NR+yLA0oRfr5r6QjE8cGox+UApgPO9NW8ABA8YpJTHx8HvqNW+b9udDRFoVCgZycnLArPcuyuHz5MhQKBYaHh9HZ2RmuF4qMApFGzKJlUoKHj+mgkLS2tuKee+5BWVkZaJoGTdPYsmULSktLMT4+DmD69RWj1kgSPDEQ6wtD6lsRifQR12quVqtRXl6ekNghTaw+Q1yB9erVq1FcXAyKohAMBlHQfR5IQtRJu3lF9IMkiODusIq9BV7YuwNw9AeQVZGeVgUyOQXZxf8FNmwG5rkOk51e4px4i4qKwoOJaXraGdput8NisYCmaej1+nAtULTxGHxYCj48TqeTl+mgUDgcDqxatQoURUGpVIa9mhiGQV7etFmrWKa8kuARCK5riMSbOJGiZZqm0dnZCa/Xi4aGBoyPj6dEKioS7ncV7SLw+/0wGo2gKApNTU0zrO8ploXyQisSb5SPjnpdcRLOIhH00gg6A2Jvgzfmw07U/U36um/nrwzB8vbvkf2ZL8z5mRg1F7PvCUqlEnl5eeEPTZZlw8aIZrMZLpcLCoViRkt85D0innMmC9KCR8yUlt/vx549e/Diiy8iIyMj7Obd29uLP/7xj+GuPa5jb8uWLUmzH5AEj0BwIoXEm1gul8Pn88X8uMhW87q6OlAURdwjiATRzBBZlsXQ0BD6+vqwZs2acPdHJKH2UwhNuoTeKgBAuWJpDINNdcb+KHx6kiTWVh88IzR0xcK5DwtNTuAUaOfNUMyKEKRixxRFUeEP1LKyMgDTI364KNDAwACCweAMY0S9Xr+ocGMYJmaRRAKSqTS+YyWE4s4778TAwAB8Ph/MZjN8Ph9OnTqFhoYGnDp1Cu+99x5omgbLsrBarRgdHY25aSZeJMETA7F8wyHZxRTrWlyruVwunxMJUSgU8PvJjVwg8c1vMRNDr9eLtrY2aDSaRQusfYffSWgPsSDPTU+juXRj4mh61O9EYj7ixNq/WrjbKdXR5cpgee1ZZH/pH2f8eyoKnvlQqVRzxmO4XC44HA709/fD7XZDqVQuOB5DrKJlgFxdpNgprccffzxcu0PTNAKBAPx+PzweT/jvPp8PPp8Pbrd7xtBRoZEET4zw7U4i6Z3Dt0srstW8pqZm3hZ6UqMcAHJpu/kED/dczGYzampqwmHs+Qg5JuA735HQHngjo0CppcsmGbja06N+J5LxC16s3BWEJjd93yPFxcOwdRqhXVsb/rdUSGnFQ6QxItcx5Pf7YbfbYbVa0dfXh1AohMzMTGRlZcHn84maDiKB2EXLYp47Gul7VaY4pM0Co63lcrnQ2tqK7OzsRSMhMpmMuIlhooJndgTL7XajtbU13DYfbf3AiTeAYDKqdwD1+pK09VtJJ0LBEELpU74Thg1Nz9iq+ly22FuJG7mKQujUr4G1T4T/LV0iPHxQq9UoLCwMp8ZDoVC4Jd5ms8FqtcJisYSjQJmZmUkfcZEITqczLO4kZpI+r2KaQdI7Z7GUVigUQnd3NyYnJ1FXVxdVXZPeF8nBn6FQCP39/RgZGUFtbW3YqGwxWJaF9+jJhPfAF82G0ugHSSSMo8OPkCf2urVUYPS0Byt3ZkKpFyc1QoLCShrD772BrE/fCmDh0RJCk4wvFzKZLCxuPB4PSkpKoFarwxYenDFiZmZm+DiNRkNsb6SjZ263O+2jVEIhCZ4Y4ZvSIlkcvJBIsVqtaG9vR0lJCbZt28brhkR6LheJtWQyGZxOJ9rb25GXl7fghPb5YDo/QnAoeaMHVKuiO21LJM7UhSmxtxA3IZrF0Ak3Km5K3dA+HzKshxHy3QCZRotQKLQsIptc8wQ3HqOoqCj87w6HAw6HAyaTacZ4DC4KFG+km7T3j9gprVRGEjwCIWRKi6ZpdHR0wOfzRZ1qPhtSU865fSUqeDgzxImJCTQ0NMRcbOc78nZC548VRaF0I0kGjvNDYm8hIYbfd6HsugwoNOlrUJlZKIPllf9B9t3fEK1dO9ks9DzlcvkcY0Sv1wu73Y7R0VGYTCZQFBUuhOaiQHwgPSld7KLlVEYSPAKhUCgQCJApQuCEBcuyGB0dRXd3N1atWoWSktjrSYQcRBorU1NTaGtrg1KpRGVlZcwXachth+90a9znjwdZRnoay6UTISYE54X0akmfTdDLYvS0G2XXpvcHT2FeL5wDfaKltJIN35pEiqKg0+mg0+lQUlICYHo8BtcSz43H4IwRDQbDgsaIpM0OnU6nFOFZAEnwxAhfgUEypUVRFEKhEC5cuACFQjGn1TwWSKe04okWBYNBmEwmOJ1O1NfXY2xsLK51AqfeBhtInqeQotQAahnc9MXG1UWDcXvF3kbCWI65UHJVBmSK9E0FKTUyBA7/P4TW/8WySWnFKz4UCgVyc3PDbdYsy8Lj8YSdoV0uF+Ry+YzxGCqVirjgkVJaCyMJHoEgFUlhWRYDAwPweDxYt24dr2ntiyF2SmtychLt7e1YsWIF1q1bF7aQj2dPvqPHY35MImjqpc6HZDB1Pn3rdyIJOEIYO+dBcXN6+zYVr/Ki3/QxqKampJ1TLDd4kqk7iqKg1+uh1+tRWjrd7BA5HsNsNoOmaahUqnCnmF6vT/j8kuBZGEnwCAQJweN0OtHW1obs7Gzo9fqExQ5Atushli4tru7I7/djy5Yt0Go/mTYej+AJ9n4Munc0psckinrtXIdnCfLYLwyLvQViWI66UNSkAyVL7+jIWrSADQZAKZKT0hXD94dDyPPONx7DYrFgYmICg4ODcLlcUCqVM6JAkcaIfHC73eH5YxIzkQRPjMSS0oo3dcQwDLq7u2G1WsOt5pOTk6LeBOaDb5fW2NgYTCbTgnVHcrk8Zvdn/5E3YzqeBMrS9PVWSRfYEAvbRyaxt0EM73gQkx/7kF+vjX5wCpNTJofllV8h+wtfT8r5lkuRNEVRUKlUyM7ORmVlJYDp8Rh2ux1TU1Ph8RhcS3xWVlbU8Rgsy4rmFp3qSIJHIOKN8HCt5qWlpWhubg6/sUkOIyVFNFEXCARgNBrBsiwaGxuhVqvnPS7WCA/r98B76lLM+00UeTb/bjiJ+HD2BABX+tfvRDJ4zIe8TeR8W8QiX98Oz9gIVIXCD89NtXudkMyu4VGpVCgoKAjPl+LGY9jtdvT19cHj8UClUs0Yj8F1eaXaYOhUY+lLaJGIVfDQNI3Lly+jt7cXmzdvRmVl5YwbJMliY1IstCdu2OfZs2dRXFyMhoaGBcUOELvgCZw+CNaTZBtejQJQSJeL0ExdsIu9BeK4BzywDqXvFHUOdYYMvrf3JeVcpL1pUploRcvceIwVK1Zgw4YN2LZtG2pra6HX6zE5OYlLly7hrbfewr333ouf/exnvFrcDx48iJqaGlRXV+OJJ56Y83O/348777wT1dXVaG5uRl9fHwCgr68PWq0WDQ0NaGhowAMPPBD38xYDKcITI6RTWizLYmRkBD09PYu2mnMCisQkX67ri8ScmtlCxefzobW1FWq1Gtu2beOVf455OOrRo7FuNWG0DSvS/ht6OuA4PyL2FgRh8LATeV8SexeJU1xhx9i5U8jYeoWg5xEjpSVWdIRhmJjrdGaPx/B6vdBoNDhx4gSGh4dRX1+PiooKXHnllbjyyiuxffv28JdOhmHw0EMP4d1330V5eTmampqwe/du1NXVhdf/xS9+gZycHHR1dWH//v34p3/6J7z00ksAgKqqKly8eJHQs08uy0NCiwCfD0ev14vz589jYmICTU1NKC0tXfBxqdBOPpvIPXHDPs+dO4fKykps2LCB90Ucy34YiwmBDnPce44Xda3wYfzlDsuycKS5/85CuC71YWoiR+xtJAwlo6Bs/wPYkLDR5qU0uysaJNrStVotPv3pT+Phhx9GdXU1Ll26hKeeegoVFRV4+eWXMTExET72zJkzqK6uxurVq6FSqXDXXXfh9ddfn7He66+/jnvvvRcAcMcdd+C9995bEukySfCIAMuy6O/vx4ULF1BZWYmNGzdGjdyQnIFFqmWeEzwejwcfffQRXC4XmpubF51sPh+xCB7/0Tfi2WrCqCrSPyWR6rj7aQStDrG3IRiWE8nzjBKS3HIW9gMvCnoOSfDEh8PhQGZmJiiKQmVlJe6++2489dRTKCsrCx9jsViwYsWK8N/Ly8thsVhmrBN5jEKhgMFgwOTkJACEyy6uvfZanDhxgsi+k4WU0oqRRNMaXKt5Tk4Or0ngHCQjPKTWoigKdrsdFy9eRG1tbdh2Xaj9sHQA3pPn4jpHoijypWF8QrMU63cisX3QAdena5CR5RR7KwmTKzsPv+0zUObkCrK+GOKDtAEgX4LBILHREnw8eOaL1Mz+XFvomJKSEgwMDCAvLw/nzp3D5z73ObS2tqaN748U4REY7o3DMAw6OzvR2tqKuro6rF27NqaLi6RzMwnB43Q6YTQaEQwGsX379rjFDsA/wkOf+xNCDnE6eChtbDl2idiZOD0o9haEhWVh+WBpdB5pDTJ4Djwr2PrLSfCQPK/L5Yo6Kb28vByDg59ca2azOWyMON8xwWAQdrsdubm5UKvV4Qj+1q1bUVVVhc7OTiJ7TwaS4ImRWCI8XOpocnISp0+fhkqlQnNzc1yD3VIlwhMKhdDV1YXLly+jurqaiDMoXwND37H3EjpPvKiqC6SCZYFhWRbOC31ib0NwJo62w+dZGvYGxeUT8LQKYw8hpbTig8/g0KamJphMJvT29iIQCGD//v3YvXv3jGN2796NX//61wCAl19+Gddffz0oisL4+Hj4s6OnpwcmkwmrV68msvdkIKW0BEQmk6G1tRUMw2Dz5s0z3IVjJRWGftrtdrS1taGoqAjNzc0IBAIzvinECx8DQ2bCDP/HvQmfKx6kkRLC4+z3g7W5xN6G4LBBBuaPdKi+xiP2VhJGpqBAnXsBqNsEEP5CIEa0ZalEeKIJHoVCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3vvKVr+BLX/oSqqurkZubi/379wMAjh8/jr1790KhUEAul+PZZ58Nzw5LByTBEwcURS1asc61mk9NTaGqqmqOp048xONGvNhasQgehmHQ1dWFqakpbNy4MRwyJRV14pPSChx5HRCpSUBVVSDOiZcRzha32FtIGmPvtmNlcxlUajLXs5jkVzAYOvgHGG6+g+i6YkV40l3w8InwAMAtt9yCW265Zca/PfbYY+E/azQa/P73v5/zuNtvvx2333574hsVCSmlRRiu1XxychJFRUXIyckhkg4h2aUVi1CxWq04ffo0NBoNtm3bNiM/nCzBwzJBeE+cTvg88aIsSo+CvHTGfj65c9HEJOT1Y+iSQextEMPgfR+Mi2whtlg1PGKktEiODHI6nWlTQCwGkuAhBMuy6OvrC7eab9iwASqViqhISWZKKxgMorW1FT09Pdi8eTMqKirmXJTRIl18iXax0x+fADMpXrpDlqUR7dzLBccyqN+JZPhgJ4L00ihg1ufJ4HyNrAPzcipaJok0KX1xJMETB7M/oB0OB06fPo1AIDDDhybVOqv4rjU+Po7Tp08jOzsbW7duXbD2KFmFvP4jh5JynvmQ5epAyaXLREg8wzQCwxPRD1xCMA43zJfT34iQo7hoCN6uDmLrLaeiZZLwqeFZzkg1PAkQWduyfv36OW80koXGpFNaPp9vzr8HAgG0t7eDYZhFh30mk9DUGHwXxGt71G5eEf0giYQYfn9M7C2IguXtbpRvNICQBYuoyFUUQiefA6p/RGQ9sSI8pPxw+ELavVgSPIuT3nJWRLhWc662Zb43GenOKqGiRVyR9dmzZ1FYWIjNmzenhNgBgMDxAwAjnqW5uqZItHMvFzyXbWJvQRRYmwtjPYVib4MYhasCcBx+m8hay6VomWVZos+Tb9HycmUJfLdIPj09PbBarVFbzeVyOQIBMlO9hUpp+Xw+GI1GyOVyNDU1ERlOSgqWZeE99oGoe5CXSxEeofG0JH82WqpgOWhBSbUClGxp+Dxl2g/D57waSp0eFEXF/WG+XIqWSdcNuVwuGAxLpyCeNJLgiYOVK1fOW8Q7m1ROaQWDQZjNZvT392Pt2rUoKIi/9ZpUl8HsdYLtHyI4MpXwuomgyNUDmJv+kyCDdywIv3l5prQAwD8wBkt3HcrXLI2xGhm5LJxHXkLneTWKbtyCnC3VoOTysPjhKyiWiw9PMBgkLnikCM/CSIInDlQqFS8hQ1LwUBRFZMI5ANA0jYmJCcjlcjQ3NyeUt+ZckhO9aLnW9Mh1/EcOJrRmwijlkCnJROgk5mfqQvrPlUqU8WNOlFWTa00Wm+KcHpx5cwSd//kKVHlZKL5hMwp3bkHhjnooDXoA0/cz7r/5RNByKVoWIsIjdWktjCR4BIRkVIZUBKW/vx9msxlarRZ1dXUJr8m5JCd60c4WTiHXFHxn2xLeXyIoaleBosiITIn5sZ9fvtEdDnf7IGwjm5BbMin2VohAhQK47vFNeO3OYwhMOjDw0jEMvHQMlFyG/CvqUHTjFhTt3Ap9dQkoigLDMGBZFvKISNBSEB98z0myUJqm6ZQqS0g1pKJlASFZaJwoLpcLZ86cgd/vx9atW4ld2CTNByPXCbz/BtgAGbEYL6HqElHPvxxwXBgQewspgfnI0nKaNmjNqL597Yx/Y5kQxk9exuW9v8F7VzyM97Z9A63ffQ6Txy8DwRBYlgXDMAgEAqBpGqFQKPxfMhCjaJmkyCLd8bUUkSI8ccA32kIypRUvoVAIvb29GBsbQ11dHQwGAxiGIRZ54jMHi+863I2NZVl4j55IeM1EyVlfIfYWljT+ySB8fcNibyMlcJzvhmPXBmTlLZ2OtW335aD7NQrsAl2W7t4RdO17C1373oJCr0HRjgYU7twM1yoDNAVZM4xbGYaJmgZLlKVQtAwkzx8tHZEEj4CQTGlxxFIg7HA40NraisLCQjQ3N4cvZj6zq/jCd9J5LOswPZcQHBDfiE5RoINUsCwctotLK6qRKOaTQdT9hdi7IIeSmcAVe5vxwaMfRj026PbB8uaHsLw5fWxOQxWwqxEluxqRs6UaIZYFy7Kf3CPmSYMlSroXSpMcUbFUkQSPgJAUFsAnAipazpdhGHR3d8Nms80Y9slB8qIQIqXlP/JWwuuRQKalxd7CksZ+flzsLaQU1pMdcO+ogT5r6RRyVzW60FKeCZc5tudku9gN28VutP37S1AXZKNk11aU7mpC8ac3Q56hCae6OBHE3TsixU+sIijd64Y8Hg90Oh2RtZYqkuCJA7FUNFcTtJjgsdlsMBqNKC0txbZt2wTfK6kIDycOWa8L3lMtBHaWGFRZAeRycWuIljqO8/1ibyG1YFmYP1Sg5kaxN0IOGePFdf+2BW9++Vjca/jHp9D32/fQ99v3QCnkKLhqPUpvbkLpriZkrimbIXy4OiAg9jQYaRNAPjAMQ6zI2Ol0zvlyKzETSfCkEYtFU4LBIDo7O+F2u9HQ0JA0pU+qhocTToHTfwTrEz+yottSI/YWljSBKQbebovY20g5Jg4bUXH1Kmh0XrG3QozcbAsqblyF/kO9Ca/FBhmMHWvB2LEWXNzzC2RUl6J0VyNKbmpCwVXrIVep5qS9hEyDJQrJCI/kshwdSfAkAVK51YVqgiYmJtDR0YGKigrU1tYmNQJFOqXlOxr/N0GSqKpLxd7CksZ20SX2FlISNsjAfE6P6k8tHcFDgcUVf19CRPDMxtU1hM6uA+j87wNQZGpRvKMBJTdvQ+mNW6Ep+mQ4a2TH10JpMDG6nEgKHsmDJzqS4ImDWATFfIZ68TK7zZ2mabS3t4OmaWzduhUajYb3WpyRYaLfckh2aVEj3QiYhhJeiwTKsiwAkumgUNgviF+UnqqMvduBldtKoFIvnfefmh3F5m9vxoWfXBDsHEGnF+YDp2A+cAoAkLt1DUp2NaH05ibk1K+eUQowOw1mt087XdM0LXg3WCSkIzxSSmtxJMETJxRF8fpGwEVlSAkeTlyMjo6iq6sLq1evRnFxccxRHW6tRC9okl1ayrNHIH4yaxp5ltTtICT285L/zkKEPD4MfZyNysalZcq47poAPv6FCsGp5Ag56zkTrOdMaP23F6EpykHJTY0o3dWEoh31UGZOp/xlMhksFgssFgs2btwIuVye1DQYydESUkorOpLgERguKkOiME2hUMDn8+HChQuQyWQJDfvkBI9SqUxoT3K5HH6/P6E1AEAWCiJ45nLC65CAytBCpkj8OUnMj3+KhqdzEJKkXJiRgyaUN+RCoVg6hfMqyofrnmjCnx54P+nn9o3a0Pvrd9H763chUylQcPUGFO9qhKcqG+oV+WhsbJwjPCKLoEl2g0Ui1fAkF0nwCAwp80GWZeFyuWC1WlFXV4fCwsKE1iNVe0MqwqM3nUHIlRqeN+qGtdKHsYA4LvtASaawixKccsFyuQoVDUsr9VdaNo7iK8owckq8gvVQIIjRwxcxevgiACBzTRnom5tQsqsJBVfWQaac/ljkhEx43M0i3WDc8bFGgUiOlpAGh0ZHEjxxEmtKKxG8Xi/a2toQDAaxcuXKhMUOINxIiFjhbiDyj84gVaZWqWtXir2FJc2UVL/DC/Mfe1C2MQuK5HrhCQrFMvjUP63C7z+XOh16TpMFHSYLOv7rNSizdCj+9GaU3LwNJTu3QlNgCB83nwACEusGI120vGrVKiJrLVUkwSMwiczTYlkWg4ODMJvNqKmpAU3TcLvJuNOSjPDEuw73LYkZ7QPdljo1HcqVeUDKyK+lh+P8oNhbSAvYSScmeqpRvGZp1fLoZMOof7ABl352UeytzIF2eDD46vsYfPV9gKKQ17Q2XPicvXHVjFrJ+VJasabBSLojSxGe6EiCR2DiTWm53W60trYiKysLzc3NkMvlGB8fJzaqQkzBw90IuG9EwROp4azMochTQRopIQy0OwR3e+qI21TH/M4wiqpkoGRLK8m68bMytD2vAu1M4U40lsXkmQ5MnunA5R/+FtrSPJTsakTpTU0ouq4eCv3crthY02Dsn0dmkBA9kuCJjiR44kSoAaKhUAh9fX0YHR1FbW0tsrOzwz8jJVJIrhXr+IzIbz8URQEMA9/JjxLeBzEoQK5OlV6xpYe9xQMwUvSML76+EUxYGlCwYmmN4ZAH7bj235rxp78Xf0gwX7xDk+j51Tvo+dU7kKmVKLxmI0r/HP3RVxTN+5jZAogTOMFgEGazGUqlMjzMOdFuMKloOTqS4BEYhUKBQIDftxin04nW1lbk5eXNGPYZuVaqCR6+68yO6nA+F8GWowjZUmeIpHLdKlDU0umMSTWmLk6KvYW0w/yuFfl/s/QGQ5ZWjiF/UwEmWtJPzIX8NEbePY+Rd8/j/D/sQ9a6FSi9eRtKdjUif3stZAsUXnH+Zx0dHVAoFNiyZQsAEOkGkyI80ZEEj8DwqeEJhULo7u7G5OQk1q9fv+CbNpF6oPnWSlaX1uyoTuSN23/svYT3QBL1xtVib2FJI9XvxI67bQC20U3ILV5aYpFig7hmby1euSP9BM9sHO2DcLQPov0//wBlth4lN2xFyc1NKLlhC9R5n7gfu91uXL58GeXl5SgrK5uxRqLdYE6nEwaDARILI/4wkTSFVEpramoKH374IRQKBZqbmxdV6Kma0lpoHe5iDQaD84qdkG0E/kvdCe+BJKrV84emJRIn6AvB3SoNDI0H0x+XltjhyFRZUPvF9WJvgyj0lBsDLx/H6a/8BK+v+hJM+6ZrFMfHx9HS0oLa2to5YicSmUw2bcSqVEKlUkGj0UClUkEul4dLCBiGAU3TCAQCYBgGoVBIGi3BAynCIzALpaGCwSBMJhOcTifq6+uh1+t5rUUywuPzJV6Yu5BwWiyqw0GfeAMIpZYhC5WvBiCltITA/rEXbFD63cYD3WqB07YemTlTYm+FOFv+SoeO38kQCiyt2i5NYTa2/vRBlN26HV1dXXA4HNi6dWtcZrEymWzRbrCxsTF0dnYS8/RZqkgRHoGZLw01OTmJ06dPQ6/Xo6mpiZfY4dZKxQhPpB9RtKhO+DiGge/4hwmfnzTyjNQSYEuJiTOjYm8hrRk8sbQEAYeCseJTj28XextEWfmFa3HT2f9G0c2NuHhxuv1+8+bNRBz3gU+iQCqVCpcvX8Ydd9yBp556KqZ5issRSQ7GSTwpLZqm0dHRAb/fjy1btkCr1QpyTj6QFE8cfKI6HEz7h2DGHETPnyiy/GyoVEvzQyUVmDxDflr2csJ6sh3uDZOgjgAAIABJREFUHWuhz1x6k+Yr6qZgqMqBvdsm9lYSQl2Yjcb/+yDKb71iugnl3DmsXr2aiFnsbFiWxfPPP49f/OIXePnll7F27Vri51hqSIJHYDjBMzY2BpPJhFWrVqGkpET0jov/z955B0ZRp///tZvd9J6QQAiBJJSEEFroJUEsCCIWzu5RVDhUpHmKBb+CDRsWEDgEgR+cioeeBQW8g1CkGqSmN0IakLabbMomW+b3R25HQgpJdjebhHn9x87szDNhd/Y9z+d5nrclBY9J6FzfgdUUNQf/Y5FzWxLHof1sHUKnRa81YsjoXAP02hyjQN5Je/reZutALI/MWM2Etwby4yOHbB1Kq/GcPAS3ObeQ72lHwenTVFZWEhERgZeXl8XPVVNTw9KlS1GpVBw4cEBySW8m0pKWlTEYDGg0GvLz8xk2bBgBAQE2FztgOcFjmitx8eJFNBoNcONMlFFTjPaPZLPPbWns+wXaOoROS1miFqFGmm9kLoX7k6iuallmuKPg6ZJL6L0dL0vh6O/FuB2vMmnnG4y6LQYXFxcMBgP+/v5kZmZy/Phx4uPjyc3Npby8vFmWRE1x5coVpk2bRkhICDt27JDETguQMjyt5EY/6oIgcPnyZS5evIhSqWTw4MEWO7clJnOaK3iunaszaNAgVCoVOTk5aDQaHBwc8PLywsvLC3d393rtk/pju0Hf/paOlN09AMsUhUvUpeDkFVuH0CkQdHpyT7sQOrbK1qFYhRFzvMncJUMwdIxaup4PT2DI+3Nx8HZDq9Vy4cIF/Pz86N+/v3iPNhqNaDQaSktLyczMpKKiAkdHRzw9PfH09MTd3b3ZflonT55k4cKFvP/++9x5553WvLROiSR4rIBWqyUhIQEHBwdGjBhBXFycxY5tKhK2peC5vlbH2dkZZ2dnsdWyqqoKtVpNfn4+ycnJKJVKvLy8xC+39uBRs2K3FgpPBZLgsQ5lp9uPWWRH5+p/Ugga3hWlfefLmNkbChm1bATHV5y0dShN4ujvxbDVz9L9rpEAqFQqkpOT6devH97e3nX2lcvleHh44OHhQVBQEIIgoNVqUalUXL58mZSUFOzs7PD09MTDwwNPT896xc2CILB161a2bdvGDz/8QEiINC+sNUiCx4IIgkBubi7Z2dmEhYXh4+Nj8XOYur7Mrfa3hAdWY7U6Tk5OODk50a1bNwCqq6tRqVRcvXqVywd/pVteO5wpYq9Erqy2dRSdEoPOSE2yJHgshbFCS/4FL3pGdc6aqOCoMs52c6bqcqWtQ2mQXo9OZPC7T+Hg7YYgCGRnZ1NQUMCQIUOa1SUlk8nEe2RAQABQ29CiVqspLS0lOzsbvV7PiRMnsLOzY+zYsWzevBmtVktsbGyzu3ol6iMJnlZy/Q99ZWUlCQkJuLq6MnLkyHrzECxlEGcpewlzPbBaci0ODg74d+mCx8mjVO36sTXhWh2HgX2QyTpGGr2jUZZUjbG6HZtEdkAu702n+yBPFIr2tzRsLkpqGLtiIPvmtq+xFY5dvRm+5lkCJo8AauszExMTUSgUREVFtcr/yoRSqaRLly506dIF+HPOzo8//sjcuXNRq9WMHDmSDRs2MHbsWIu2uN9MSILHDEy+KFlZWVy+fJnw8PAGK/JNIsUSQ6EsZS/RXMHS3KxOUxjycinf+BmGzPY1VflaHCJ62jqETkvp6Y7datwe0as0XEnpQ2BE55xtFNC1iB639iJnf5atQwGg12MTGfLuHOy9aguETRYRPXr0ELM0lsT0QHrw4EFWr17NrbfeSnp6OkeOHGHjxo106dKFlStXWvy8nR1J8JiBRqMhPj4eHx8fRo0a1ajCN4kUSwkeS8/PaQxzsjoAgtGI9tdfqPr2a9C173oDeaDlW0claik9Iy1nWYOsn9IICHNH3rx61w6FDIHhz/rZXPA4dfNm2Jr5BNw5XHytsLCQ9PR0IiIirGLlYDQa+eKLL9ixYwe7du2iZ8/ah7E+ffrQp08fZs+ebfFz3ixIgscMsrOz6d+//w0/9Ja0hLCkY3pjWCSrU3CVio1r0ackWSNEi2N0lyY0WAOj3ojmnDRw0CoUa8hPDyawXzusibMAbopiop6P4o9Vf9jk/L0ev5Uh7z6FvWdtVkcQBDIyMsyyiLgRVVVVLFmyBEEQiI2NbfFwWommke7yZjBgwIBmKXxLe2BZ6lgNce0QQZMjb0vEjiAIaGP/S+mrz3cYsQPg5iuth1uDstQajJXme7ZJNMzVfYVmz3Vpz/S/1YCDV9vaJTgF+DD+u9cZ+Y9FotjR6XScOXMGsKxFxLXk5uYydepUoqKi2Lp1qyR2rICU4WkDLJmVseSSlqkGydTqbm5Wx1hSTMUX69FdOGeR+NoKRXAAMpnUjm4NpPod61J18TLFuYPx7VFo61CsglyvYcK7I/j1b4fb5HzBM25n8DtPiEIHaksXEhISrGYRAXD48GFefPFFVq9ezYQJE6xyDglJ8LQJlszKWDpbZDAYkMlk5tXqCAI1x36jcvtmhMoKi8TWljgM6mPrEDotpWcu2zqETk/ufjW+s2wdhfXwD7hC11EBXDmRb7Vz2Pm60WPZXwicMgqDg514L8zPzycnJ4fIyEirtIMbjUb+8Y9/8MMPP/DLL7/Qo0cPi59D4k8kwWMGrTEQNRc7Ozuqqy0zL8bOzo6amj/bhVuV1SkrpWLL5+j++N0iMdkC+95dbR1Cp8RoMKI5k2nrMDo95fFZqAsi8fQrsXUoVkEmGBj/Uig777WO4AmecTuD3p5NlcyAWq0mJSWFqqoqsbO2X79+ODs7W/y8lZWVLFiwACcnJ/bt2yc5nbcBkuBpA9rjkpYgCCiVSlJSUvD19cXb27vFa8Y1cSep2LoB4X8eWh0VrasMaZSX5SlP12Eob5/D4zobOYe0eD5g6yish7M8n4F/G8j5Dectdkyn7r4M/2w+3W6PAsAB8PT0RKvVcv78eXx8fHB2diYvL4+UlBTs7e1FOwgPD49m20E0xKVLl5g1axYzZ87k6aefbhf+ijcDkuBpA67PpJiDueLp2lqdfv36UV5ejlqtJjk5Ga1Wi5ubm+iD5eTk1OAX0VhRTuX2zdQc+82cS2k3eAa4AdKUZUujPq22dQg3DaUn09Dc1h83r1Jbh2I1Bt6jJPGfCvQV5mfLQ2bdwaC3n8Deo+6jTkMWEYGBtabCWq2W0tJSCgoKSE9PB8DDw0O0zWluIfPBgwd56aWXWLt2LePHjzf7WiSajyR4zMBWS1qtPdb1c3UUCoX4xNKrVy8EQUCj0VBSUkJKSooogDw9PcUMkO7CWSq+WI+g6hzFqDJ3F+QKSexYA6l+p23JPQrhU20dhfWw06uJfmcUsQuPtPoYzoG+DPvsObrdNrTO682xiHB0dMTR0RF/f38A9Ho9paWlqNVqcnJy0Ol04v3S09MTZ2fnOr8RRqORNWvWsGfPHvbu3WuVgYUSTSMJnjbAGoXGLaG5HVgymQx3d3fc3d3rCCCVSkVa/AXcYn/FM/GCRa6jveA4pB9SMtnyCEaBMql+p00pPpxE5YS+OLuW2zoUqxEYWoR3hC8lCUUtfm/IrEkMent2vayOwWAgISEBpVLZIosIhUKBj4+P6JlockVXq9Wkp6dTWVnJ/v37EQSBkSNHsn37drp06cJ///tfHBwcWhy/hPlIc3jMoLkZHku2krd0ScucuTomARRQVU7PHf+v04kdAPtwqSvCGqjTqjCUdt4f3naJUSAltn1PNDcXmVHHhOX9W/Qe50BfYn5cwfDP5tcTOxUVFZw6dQpfX1/Cw8PN8sMyuaL37NmTQYMGMWrUKO677z7kcjmvv/46cXFxpKens3LlSvbt24fGjNrHnJwcbrnlFsLDw4mIiODTTz+tt09paSl33303gwYNIiIigi1btrT6fJ0FSfC0AbZY0jIJHb1e3/p285pqKr7cimblCoxFnXPOh7KHt61D6JQUx3XO6b/tnYrj2VRXde5uHzeHPPo9Gt6sfUNmT+LO39fS9dah9bYVFhZy/vx5wsPDrbK8JJPJuHz5Mrt27WLDhg1kZ2fz5ZdfMmjQIPbs2WOWF5ZCoWDVqlUkJSVx4sQJ1q5dS2JiYp191q5dS//+/Tl37hwHDx7k+eeft1gtaUdFWtJqA9raWsJcDywAfUYa5Z9/hvGy9WZftAeU3kqgbbzJbia0iZ2jxqvDodOTd8aNkDGde7p11GNupH0rx1jTsFu8c48uDF+3gK63DK63rS0sIoxGIx9//DH79+/nP//5D1271o6+8Pf357777uO+++4z6/jdunWjW7duALi5uREeHk5eXh79+/+Z/ZLJZGg0GgRBoLy8HG9vb4v4OXZkpAyPGbSkaNnS05EbwiJZHb2Oym93UPbmsk4vdpDLkdvf3E881kAQBMpOS/U7tuLqrynoapS2DsOqKA3FjHtjVIPbQp+czJ2/f9ag2GkLiwiNRsOMGTO4evVqHbFjLbKysjhz5gwjR46s8/r8+fNJSkoiICCAyMhIPv30U7OW7DoDN/fVtxFyubxRkdJSGhMw5npgAeizL1G2/GW0P30HFoq3PWMfEYxM1vmvs62puKRDX1Jm6zBuWgwVVeTHe9k6DKvTK7IU914e4r+dg/yYsOsthn36DEq3+oMCy8rK+OOPPwgMDKR3795WmX2TlpbGlClTmDZtGmvWrLGKoLqW8vJypk+fzieffFLP1/HXX39l8ODB5Ofnc/bsWebPn09Z2c39vZQETwfHIlkdg4GqXd9T9vpSDNmXrBRp+8NhQIitQ+iUqM903lkwHYXLezMw6Dv37V1m0DL69dpantCnJnPnyTX43zKowX3z8/NJSkoiMjLSKn5YgiCwd+9eZsyYwT/+8Q9mzZpl9WGCOp2O6dOn89hjj3H//ffX275lyxbuv/9+ZDIZvXv3Jjg4mOTkZKvG1N65uRf0zMTW0zEtUatjuJxH+edrMWSkWSHC9o19iHWMAG92Sk9ftXUINz36kjKupIbSvX+BrUOxKj5+VYRsnIOuVxfi01Pw9PTEy8sLd3d3MbOekpKCTqcjKirKKjUsBoOBDz74gKNHj/Lf//7Xagaj1yIIAk8++STh4eEsWbKkwX2CgoLYv38/48eP5+rVq6SkpBAScnM/5EmCpw0xCRNLYMroQOs8sASjkep9e6n815dwk1buK/yckSYsWxZBECg7c9HWYUgAeXuz6dbPEXnrHRDaNQbvMAz9H2e4fa2zeVVVFWq1mvz8fJKTk5HL5Wi1WrHl3Bpip6ysjLlz5xIaGsrevXtRKtumduro0aNs376dyMhIBg+urVV65513yM7OBmDevHm89tprzJo1i8jISARB4L333sPX17dN4muvSILHTGQymSg8msL0tGGO/wr86YGVmpqKj48PXl5eLS5EMxQWULFpHfqkBLNi6ejYuUj1O5amMk+PrkDq0GoP1OQXkxnfh96DOpefmSCTow+5C0PQLSD7897n5OSEk5MT3bp1Q6VSkZSURGBgIHq9njNnziAIQh0rCHOH/yUnJzNnzhwWL17MY4891qYZ/3Hjxt3wdycgIID//Oc/bRRRx0ASPG2EafhgawXPtdOSIyIiUKvVFBcXk5GRgVwuF/2vPD09Gz2HIAhUH4ql8qutoO3cbas3wq6bD3J55x7SZgvUZ27uosj2RumxCoSBtl9+txSCgyc1A2YieAQ3vP0ai4ihQ4fWsYgwGAyUlpaiUqnIzc2lpqYGd3f3Rq0gGo1BEPj5559555132LJlC0OH1p/xI9E+kQSPmTQ3w2OaxdOaqv1rO7DkcjkODg74+/uLni46nQ6VSkVRURHp6ekNCiCjqoSKzf9Ad+5Mi8/fGXEY3M/WIXRKpPqd9kVVRj7FeYPwDWy5FUN7w+AbgS78UVC6NLz9BhYRdnZ2eHt7i6agDVlBODs7i3VArq6u9Y5hMBhYuXIlp06dYv/+/Tf9ElFHQxI8bURrhg9e74HVWKu5UqnEz89PLJarqalBrVbXCqC0NNwzUuhyaD9ybZX5F9JJkEsFy1ah7HSWrUOQuI682DJ8Z9g6itYjyOzQh96NoUcMNJKBqaioID4+nh49ejR7arLJCsJkByEIApWVlajVarKzsykvL8fe3p7//Oc/Yq3MokWLiIiIYPfu3Tf9EL+OSOfuW2xHtNYDy2AwtHiujr29PX5+fvTp1pX+cUfx//VnSexcT5f6czokzKPyso6ayx0/k9DZ0Jy/iLqwY87lMTp6UxO1AEPQhEbFTmFhIRcuXDDbIkImk+Hi4kL37t0ZMGAAo0aNon///vj7+/Pll18SExNDRkYGgiCwZ88eSkpKWn0uaJ4fFsDBgwcZPHgwERERxMTEmHXOmx1JoppJSwxEm+uB1Zyszo2o+SOOii0bEMqkmSgN4dbNFbi565gsjfpM680QJaxL7qEaPP9i6yhahqHLQHRhD4Oy4YeTay0ihg4dapUhfw4ODnh6enLp0iX27t1Lz549OXbsGEeOHGHVqlU89thjzJkzp1XHNvlhDR06FI1GQ1RUFLfffnsdewi1Ws0zzzzD3r17CQoKoqCgc48ZsDaS4GkjmrOkdX2tTmuEjrGigsp/bqHm6KHWhtr5cbRHrpTa0S2N+o8rtg5BohHUJ1LR3NYfN8/2/wAkyOzQ97kXQ/dxjWZ1dDodFy5cwN3dnSFDhlilKFuv1/Pmm2+SkJDA/v37xdqfyZMnM3nyZLOP3xw/rK+++or777+foKAggDaZ8dOZkZa02oimlrSun5bcWrGjiz9H2avPS2LnBjgM7oeMGxeaS7SMopM33/DKjkTuMVtHcGOMTr7UDFuEIXB8o2KnLSwiSkpKeOCBB1AqlezatUsUO9aiMT+s1NRUVCoVEyZMICoqim3btlk1js6OlOExk5Ysael09dugLZHVEbRVVO74J9Wx0syF5uDQv6etQ+h0lOVXQUH7zx7czBQfSqYqujdOrhW2DqVBDH5D0IU9BArHRvfJz88nJyeHyMhIXFwa7tYyl/j4eObOncuyZcuYPn261Vv6m/LD0uv1/PHHH+zfv5+qqipGjx7NqFGj6Nu3r1Vj6qxIgqeNUCgUVFX9WThsqVodXUoSFRvXYiyQ2oGbi31P6z6t3YxUxEtLhO0eg5HcOEf63NK+BI8gU6Dvez+GgNGNZnXawiJCEAS+/fZbPv30U7788ksiIiIsfo7ruZEfVmBgIL6+vri4uODi4kJ0dDTnzp2TBE8rkQRPG3FtDY8lPLCEmhqqvtuBdu/P0Iw5QBJ/ovB1RCpYtiylp6Viyo5Awb4kgkb3wMGxfQhUrcKTBOVoKvIUeFakibPDrrVo0Gq1XLhwAT8/P4KCgqxWr/P666+Tnp5ObGwsnp6eFj/H9TTHD+uee+5h/vz56PV6ampqOHnyJIsXL7Z6bJ0VSfCYSXO/fCbBY1q+Mr23NV9efWYG5Z+vwZif1+L3SoCdY8vmIUncmLLTl2wdgkQzEKp15J1xJ2R0oa1DweA/DPo9QITCAZ1OJ05BzsrKwmg04u7ujr29PVeuXCE8PNxqdTRFRUU88cQTjB07lh9++MFs+5/m0hw/rPDwcO68804GDhyIXC7nqaeeYsCAAW0SX2dEdoMpwVLq4AYYjcYGa3OuR6PRkJCQQHh4OM7Ozi32vzJhyM+jfP2nGC5JBo2tQdknCP+XJ9g6jE5FdbGek5O/snUYEs3Ezs2ZYa/4oVTaxlpFkCvR9/0Lhm4jGl3C0uv1pKWlUVRUhJOTEzqdDjc3NzED1FwbiBtx9uxZnn76ad544w2mTZvW4Sw4rl69Kk7clxBp9D9RyvBYGVOtjoODA35+fqSnp1NVVSV+eb29vXFycmr28ewCuuPx5vsUX7rE5aOH8dOU4pCThSEnW1raagay8B62DqHToTrbvmpCJJrGoKnkcrwXQUPafhnS6NIVXcRMBNduje5jMBhITExEqVQyduxY0Xi5vLwclUpVxwbCZKHj6uraIrEiCAI7duxg/fr1fPPNN4SFhVni8tqUt956i59++onnnnuOO+64QxI+zUDK8JiJIAjU1NQ0uq2hWh1BENBoNJSUlKBSqdBqtbi7u4sC6FrDu+vR6/WkpqZSXV1N//79RcdfY7kGfUoyuuQE9MmJGLKzJAHUAA7P3k2XqI45dba9kvJhOlf/1QF6niX+xMOZ0S97Y6dou3uEvttI9H2ng13jAwKbaxEhCAIVFRWo1WrUajUajQZHR0fRB8vd3b3RLLpOp+PVV18lPz+fLVu24OHhYfa12YKzZ89y9OhRPv74Y0JCQli0aBFTpkyxdVjtgUaVryR4zKQhwXN9B9aNanVMJnYmAWRy8TUJIJOoKSkpITU1laCgILp169b0MSsq0KcmoU9ORJeciCErUxJAgN9HT2Hv2bBAlWgdcY/upypdqifraAQ/OZTu4dbv7hTs7NH1fQBjt+FN7ldYWEhGRgb9+/ev157dHKqqqlCr1ahUKsrKylAoFHh6eiKXy/H29sbT05OCggKeeOIJJk6cyCuvvNLq0gJbYnqANnHkyBG2b9/O1q1bWb16NQ888IDV5wa1c6QlrbaiNR1Y15rYBQcHYzQaKSsrQ6VSER8fT01NjXi8iIiIZt0M5C4u2A8Zhv2QYQAYKyvQp6WgT0r4UwD9T5DdTCjcOtYafXunRm2QxE4HJf/XHLr1s8eav/lG14DaJSyXxpdbrrWIiIqKqtOh1RKcnJxwcnISpxebTJT37t3LmjVrMBgMVFRUMGPGDObNm9fhxM71s9oMBgN2dnaMGzeOYcOG4ePjw4IFC1CpVMybN69NOs06GnbLly9vanuTGyVqszcmgWM0GsVpyq3twDK919HRES8vL5ydnSkqKsLX1xc3Nzfy8vJEJ1+DwYC9vX2zugpkSnvsunZDOWAQjhNuw3HSVBRh4ci9vBGMxlrPrU6eAZJ5uuExuY+tw+hUFJ0sp/i/ybYOQ6IVGMoqcerbGxcv69Rg6QPGoBswCxwaXzLS6XScO3cOBwcH+vfvb9EOKTs7O1xcXBg4cCCOjo4kJyfz/PPPU1payqpVq1izZg2nT59m0qRJrT5vTk4O9957L++99x7r169Hr9czatSoBveNi4sjKCiIiIiIOvYRN0Kn03H27Fm6d+8OQEZGBu7u7igUCvFBWKFQcOutt5Kfn88///lPvL29GTp0aIcrwrYQKxrbIGV4LIRpCcscoXMtBoOBjIwMNBoNgwcPrlPYbDAYxBbOnJwcDAaDuHbt5eXVrCckmZMT9gOHYD9wCFA7rVmflirWAOkz06EF7u4dAceh/WwdQqej9LTt25slWk/6T9l0WeBg0R9Gwc4BXdhDGP2HNrlfWVkZiYmJhISEWM0jqqamhqVLl6JSqdi3bx+urq7iturqas6ePWuW6WhzDECh9p69dOlSJk2a1OJznDp1ivXr1/PMM8+wYsUKXF1defzxx7nnnnvqZXvWr19PWloa69evZ/To0QwaNKjV19YZkQSPmVy4cIGVK1cSHR1NTEyMaPJmDqWlpSQlJdG9e3f69OlT72ZkZ2eHt7e3uE5rMBjEtetLly4hCAIeHh7iunWzBJCjE8rIQSgja78gQrX2fwIoEX1yAvqMtA4vgOS9G+8MkWgdZadzbB2ChBkYc4opyO6Pf0/L2IIY3QJrl7CcuzS5X1tYRFy5coXZs2czZcoUXnjhhXpLWA4ODvW8q1pKcwxAAdasWcP06dOJi4tr8TlGjx7Nnj17mDhxIkOGDOGvf/0rI0aMqLOPnZ2dKHq2bdtGWFgY3377LYMGDRKXwiQkwWM2/fv3Z8GCBcTGxrJw4UKuXLnC0KFDGT9+PBMmTKBr167NfnoyGo1kZGRQWlrKwIEDcXZ2btb77Ozs8PHxwcfHB6jt5DIJoIsXa+f1mLI/np6ezRrLLnNwRDlgIMoBA2tjq64m7+hvaOPP41tagpCVCc2YP9Su8Gve31Oieeg0BipTJcHT0bnymxZ/C9jL6QPHo+99D8gbv79caxExbNgwqw35O3nyJAsXLuT999/nzjvvtMo5rqcxA9C8vDy+//57YmNjWyR4TMtV8fHxbN++nYiICO644w6mTZtWJ1Nl2tfOzg69Xk9AQADLly/n9ddfZ968eeJSmIQkeMzGzs6OUaNGMWrUKF555RVx/HdsbCxz5syhpKSE4cOHEx0dzfjx4+nSpUuDAqisrIykpCS6du1KVFSUWSlmhUKBr68vvr6+QK0AUqlUlJSUkJmZiUwmw9PTU8wA3eimU1VVRUJCAh49ehI6YSJyuRyhpgZ9Zhr6pMTaZbD01HYvgNy7eyBZSlgO9bnKTl/3dTOgOZtJ6Z0D8PBVter9gsIRXdgjGP2aXj5pC4sIQRDYunUr27Zt4/vvvyc0NNTi52iIpgxAFy1axHvvvdcscafVarl06RL9+vUT/z6JiYlUVVWxfv16duzYwd69e4mOjqayspK0tDR69+5NcHAwgPgwO3nyZL7//nt27drFvHnzLHy1HRdJ8FgYe3t7xo8fz/jx44HaD/CxY8eIjY1l48aNlJeXM3LkSFEAOTk58eqrrxIZGcmDDz5olfSuQqGgS5cudOlSm2bW6XSoVCqKiopIT09HLpeLLfAeHh7iF1MQBDH1HBYWVqfqX2ZvjzIsAmVYBE48gKDToc9Mr22DT0pAn54Cjcwnsgl2cuT27SieToD6TLGtQ5CwELmHdXjU9668IWVyb7I978DF4IeXVtvoDLGSkhJSUlIICwvDy8s6c7Cqq6t54YUXqKioIDY21mpLZddzIwPQU6dO8fDDDwO1Nha7d+9GoVBw7733ivsIgoAgCDz00EOMGTOGpUuXotfrUSgUYm3o5cuXWbFiBXfccQfbtm3jzJkzlJaWolQq2blzJxMnThSXtUz36/Pnz4vHv0kLmOsgzeFpY8rLyzl69CixsbHs3buXK1euMGzYMGbOnEmlpxRRAAAgAElEQVR0dDRubm5t/sGsqalBpVKhUqlQq9UoFArc3d1Rq9W4urrSt2/fFrsTC3od+syM/80BSkCfmgI1tjMsdBjSjy7PmbdeL1GXuJkHqUrKtnUYEhZi8GvhuHqUNXt/fY8J1ARPoay8Urx/VFdX17GAcHJyIicnh4KCAiIjI5scqmoOly9fZubMmdx3330sXry4zWpWBEFg5syZeHt788knn9xw/1mzZjF16lT+8pe/NLj9zTff5MCBA/z6669i7WVWVhZz584lLi4OPz8/8vPzCQgI4NFHH2X69Om8/PLLpKenk5SUBPxZwLxz507eeecdDhw4cLO1qEtzeNoLrq6uTJw4kbi4OFxcXPjxxx8pKioiNjaWVatWIZPJGDduHNHR0YwePbpNnlLs7e3x9/cXR5Pn5eWRmZmJq6srZWVlnDt3TswANTXB9FpkCiXKvmEo+4bhNO1+BL0e/cVaAaRPSUSXmgzatlteso/o1Wbnuhmo0RioSpHqdzoTucfkhE2+8X6Cwhld/0cx+g5ADnh62uPp6UlwcLA4RV6lUpGamoparUapVNKjRw90Oh0ODpbtCAM4duwYS5Ys4aOPPuK2226z6LFvRHMMQFtCnz59+PXXX8nLy6NXr14YDAZ69erF6tWruXDhAgkJCTzyyCPs27ePgoICgoKCuPvuu3n55ZfJyMggNDRUzNCHhYUxd+5cs7rQOhtShscGLF++HIVCwdKlS+t0UAmCgEql4tChQ8TGxnL8+HEcHR0ZN24cMTExjBgxokW+Wy1Fp9ORnFw7UyUsLEyMrbq6WpwCXVZWhr29vSiA3NzcWvU0JRgMGLIyxS4wXUoyaKssej3X4vPaX3EKllK6lqLoRDmJC/5t6zAkLIjMzo6o/wvB0aWy0X2M7r2oGTATHJteljJZRAQGBuLh4SFmj8vLy3FychLHaLT2/gG1BdCbN2/m66+/ZseOHfTsaYHKaxtTUlJCaGgor7/+OosWLRKXtRpi+fLleHh4kJSURGJiIrt3765XP1RYWCiWMtxESNYS7YnmrqcKgkBhYSEHDhzgwIEDnDx5Eg8PD7H+Z9iwYaLthLkUFxeTmppKSEjIDU3otFqtWASt0WhwcHCoI4Ba8wQnGAwYLmX9OQcoNQmhsvEbb0vxXz0HpavtltQ6G+nrL5G/5ZCtw5CwMF3vHkjvmIZrs/RBt6IPmQLypotvm7KIEAShjgWERqPB3t6+jgdWc4p7q6qqWLJkCUajkc8//9yqD4Jthal9/NVXX2XLli0cP36cnj17iktU15OWlsY999xDdnY2P/74I7feeqsNom6XSIKnM2AqIo6NjeXgwYOcOnUKPz8/xo8fT3R0NEOGDGnxWHaDwUBqaiparbaOGWlLqKqqqiOAnJycRAHUUhdjE4LRgP5SFiW/n6A64QKuVy9DVesFUMAXTyKXte8uso7E6TlHKD+XaeswJCyM3NGBYcu6Y+/458OBoHRB1/8xjD5NTwe+1iIiMjKy2fcirVYrCqDS0lLRA8vLywsPD496GY7c3FxmzpzJI488wvz58zvdjJkDBw7w/PPPM3ToUD7//HPRLd50naZltNTUVIqKiggLC+P1118nIiLCxpG3GyTB0xkRBIFLly4RGxvLgQMHOHv2LIGBgeIQxMjIyCafltRqNcnJyaIzsSXW1k1PcKYlsPLycpydnUUB5OLi0qzz1NTUkJSUhFKppG/fvtjJZRhyskUzVH1yIkJFebNisuvhR7cVbTOL42ZArzVyfOLXCPqOPYhSomG6PzCE4JEFABg9QqgZMAMcmi561el0XLhwAXd3d0JDQ826l5g8sEwCqLCwkJ9//lls6njrrbdYvXo1EyZMaPU52jtLly5l165dzJ07l0WLFgF/rgykpKSwa9cuXF1dmTdvHidOnOBf//oXL7/88s24fNUQkuC5GTANLjQJoPj4eEJCQkQBFB4ejlwup6qqis2bNzNy5EgiIiKsmg4WBIHKykoxA1RRUYGLi4sogJydnevdHIuKikhLSyM0NLTRkfOC0YghL6d2DlBK7TKYoNE0uK/L1HF43R9i8Wu7WSmOqyDh2e9sHYaElbBzd2H4K12g9y3oe0264RKWySIiNDTUKj+4Go2GvXv3snPnTuLi4ujatSvR0dHi0n7Xrl3NOn5OTg4zZszgypUryOVy5s6dy8KFC+vs8+WXX/Lee+8BtY0n69evt4ptgymTU1hYyNy5c0lPT2fBggXMmTMH+FP0XF/bc/78eXr16tUql/lOiCR4bkaMRiPJycniElhSUhIBAQFcvHiRSZMmsXLlyha3m5uLIAhUVFSIAqiyshJXV1cxfZ2Tk0N1dXWLl9cEoxFDfl6tDcb/skBCWe24fK/FD+ISaZ122JuRjI055G08YOswJKyE3MmB8I0v49T/xkskpjldAwYMsFpHaWVlJQsWLMDR0ZF169YhCAInT57k8OHDHD58mDfeeIMxY8a0+viXL1/m8uXLdfywfvjhhzr2EMeOHSM8PBwvLy/27NnD8uXLOXnypCUurx4m0RMfH897773HL7/8wocffsjs2bPrPRxKthENIgmemx2DwcAHH3zA119/zeTJk0lMTCQzM5MBAwaIT0vBwcFtPgNIEATKy8vJz88nPz8fOzs7Mfvj7e3d6uyTIAgY8/PQpSTiFOGOo08pMqTBg5bgzLzjaE6n2ToMCStg5+5Cn9Wv4Dqwb5P7mSwi9Hq9xV3OryU7O5uZM2cyc+ZMnn766Ta5P91zzz3Mnz+f22+/vcHtKpWKAQMGkJeX1+xjNlZ4fCMuXrzI5s2beffdd3n22Wd58MEHzRJ3NwmS4LmZ0Wq13HnnncTExLBs2TKxmFCv13P27FlxCSw3N5fBgweLPmDdu3e3+g3GaDSSlZVFcXEx/fv3x9nZWZzjUVJSglarxd3dXfQCa/XymyAgoxw7oQi5UIydUIQMqYi5pRiqjRy79RuEGulv19lQ+nrSZ+0ynPs03d7dFhYRAAcPHuSll15i7dq14uR6a5OVlUV0dDTx8fGNLg99+OGHJCcns2nTpiaPtWHDBioqKliyZEmd16/t0m1uhuabb77hxx9/5KeffmLNmjXcddddVnOY7wRIgudmJysri169ejW5j06nIy4uTlwCKywsJCoqivHjxxMTE4O/v79Fb26VlZUkJCTg7e1NcHBwg198o9FYRwBVV1fj7u6Ot7c3Xl5erZ/cKgjI0PxPABVhJ5RIAqgZlJyuJH7et7YOQ8LC2Ad0oe+613AM6tbkfm1hEWE0Gvnss8/YvXs3X3/9dZuZX5aXlxMTE8Orr77aoEUE1HZQPfPMMxw5ckQ0a76eq1evMn36dK5evYqDgwM7d+4kLCwMmUxWR+D8/PPPHD16lGHDhjFs2LBmzRHatWsXer2emJgYvL29W3+xnRtJ8Ei0nOrqao4fP86BAwc4dOgQpaWljBgxQiwW9PHxaV3L+TUeXeHh4Xh4eDT7vUajkbKyMlEA6XS6OgKo1XOJBAEZpdgJxaAvQC4Uo7CTPv7Xc/GLXHI2xNo6DAkL4hjcnb7rX8Per+EfcKj9zmZnZ1vdIqKiooJnn30WLy8vVq9ebbE5YzdCp9MxdepUJk2aVC8jY+L8+fPcd9997Nmzh759G17y++OPP7j77rsZNGgQzz//PAMGDGiwqHrFihX88MMPPP744xw8eJCxY8eyePHiZl2v5It1QyTBI2E+VVVVog/Y4cOH0Wq1jBw5kpiYGMaNG4eHh8cNv4g1NTUkJibi4OBQ225u5tq/0WiktLRU9PLR6XR4eHiIAqilY9WvXr1KZmYm/fr1xddLLi5/yYUSZEht2Gfnn6Ts9xRbhyFhKXp2RffMfbj4+4rLxtePjtDr9SQmJmJvb0/fvn2tViR78eJFZs2axdy5c3nqqafa7Ee9OX5Y2dnZTJw4kW3btjVYQyMIAgaDgaeffpry8nI+/PBDMTN1/bLVoUOHePvtt/n666/x8fHhhx9+4N133+Xw4cOSDYRlkASPhOXRaDQcOXKE2NhYjhw5gsFgYMyYMcTExDBmzBjc3Nzq7J+ZmcnVq1fp3bu31eZFGAyGOgLIYDDUEUCNDUPT6/WkpKRgMBgIDw+vv59gRI76OgFktMo1tFcMOiPHJ/4LY7VU/N0ZcI3qT5+PlyJ3cRI7J1UqFRUVFeLsLEdHRzIzMwkKCiIgIMBqsezbt49ly5bx+eefM2rUKKudpyGOHDnC+PHjiYyMFIXJ9X5YTz31FN9995247KRQKDh16lSd4xQUFDBkyBCWLFnC888/32gmpqysjLy8PMLDw8XXJk6cyObNm+nZs6eUvTEfSfBIWBdBECgtLeXw4cPExsZy9OhRFAoF48aNY8SIEXz99dfI5XI2bdrUpk8xBoNBHGKmUqkwGo14enri7e2Np6cnSqWS0tJSkpKSCAoKolu3bs274QiG6wSQqtMLINV5LRee+petw5CwAB7jowh9bzFyx/pLKKbZWdnZ2Vy5cgV7e3tRAJnrf3U9RqORjz/+mP3797Njxw6zZ+rYkqSkJEaOHMmePXsYO3YsUPtQePDgQYqKinBzc2P69On17i8FBQVMmTKFX3/9FR8fH3FWmUSrkQSPtXniiSf4+eef8fPzIz4+vt72thpc1V4QBIHi4mI2btzIxx9/TGhoKAqFQrTBGDFihNXqAJrCJIBMk6C1/3NsDw0Nxd/fv/VziQQDckEldoHJUSHrZF+frP+XT/bafbYOQ8JMvCePo9fyZ5ErG/6smywiNBoNAwYMQKFQ1PG/KisrE/3zTP5XrRFA5eXlPP3003Tr1o2PPvqowy/nlJaWEh0djVwu56233uLSpUusWbOG9PR0DIba5fBly5axdOlSUdCYrH1eeOEFfv75Z7766ivOnTvHyy+/jKdn09OtJRpFEjzW5vDhw7i6ujJjxowGBU9bDq5qD+j1et5++23279/Pli1bCAkJ4erVq6IR6u+//463t7cogKKiotr0hldVVUVCQgIeHh54eHigVqtRq9XIZLI6GaBW1xgJ+usEkLrDC6DTz52k/KRUv9OR6fLAHQQtfRJZIwKluRYRJgNhkwBSKpV1/K9u9L1JS0vjySefZP78+cycObNTLOMYjUY+/fRT3n77bUpKSpDJZERGRjJhwgTGjBnDd999x/fff09cXByDBg0Sl7wyMzN54YUX6NmzJ4cOHWLr1q1ERkba+nI6MpLgaQuysrKYOnVqg4LnWlozuKqjUVRUxJYtW1i8eHGDWRNBEMjLyyM2NpbY2FjOnDlD165dxRb4QYMGWW0K9JUrV8jKyiIsLKzeU5ROpxMzQGq1GrlcLg5CbM6NvFEEPXKh5DoB1HEw6owcufVfoJXqdzoqXWffR/f5jzQqLsyxiKiurhYF0PUGoNc/OOzdu5cVK1awadMmhg8fbtY1tRdM4kWtVnP27Fn27t3LpEmT6NmzJyEhtbY2586dIyYmhldeeYUXX3xRfO/BgweZOHEis2fPZs2aNTg7O0sTlM1DEjxtQXMFT3MHV91MCILAxYsXxRlA586dIygoSByCGBERYXZHl16vJzk5GUEQCAsLa5abs06nE1vgS0tLxUnQpht5q29Kgk4UQLVDEMvatQBSJ2o5P0uq3+modF/wON1m3dPodktbRFxrAHrmzBk+/vhjhg0bJn7Pd+7cedMNzissLCQwMJBPP/2UefPmiSLpypUr/PTTT8ydOxdo/VRmCRFJ8LQFzRE8zRlcJVGbHk5LSxOnQCcmJtK7d2/RBiMsLKxFYsPkDN+zZ0+6dWt6uFpT1NTU1BFASqVSzAC1tpZBEATyci9SU5lLSE83HBWlyGnYCNVWJG5Ip+iLY7YOQ6KlyGT0fGUOXaY3bJPQVhYRFy9eZOnSpRQXFyOTyRAEgTFjxhAdHc3EiRPrdXS2hOaYfwqCwMKFC9m9ezfOzs5s3bqVoUOHmntZTXKtcNHpdGzfvp1PPvmEnTt30q9fvxu+R6LVNCp42tY58ibn/PnzPPXUU+zZs0cSOzdALpfTr18/+vXrx9NPP43RaCQxMZHY2FjeeecdUlNTCQ8PFwVQaGhoo5OaL168iEqlYtCgQWY7w9vb2+Pv74+/vz/wZyo/Pz+f5ORk7O3tRQHUnG4W01wiR0dH+vQZC3Z2aAGEauyE4j+7wCg3K25zqUoosun5JVqOTGFH8JvP4T1pbIPbTRYR/v7+9OjRw2p1NMnJycyZM4fFixfz2GOPIZPJKC8v59ixYxw6dIjQ0FAGDBjQ6uMrFApWrVpVx/zz9ttvr2P+uWfPHtLS0khLS+PkyZM8/fTTLa6hbEiMNDUE0LSvRqPh6NGjvPXWW0yYMIHQ0NBGzyGJHesiZXgsSFMZnhsNrpJoGQaDgfPnz4tLYBcvXmTgwIGiAOrZsycpKSl8+OGHvPLKK/Tq1atN1sRNxZwlJSVoNBrs7e3FGUDu7u51bo6mMf3NmkskaK8TQBVWvpI/MeqNHL/j3xjKK9vsnBLmIXNQEvrB3/Ec13AWoy0sIgRB4JdffuGdd95h8+bNVs+omGjI/PNvf/sbEyZM4JFHHgGgX79+HDx4sFnZXkEQEAQBuVyOSqXixIkT+Pj4EBoa2uSDq0qlYsuWLcTHx/Pjjz9y//33s3HjRvGYnaFQu50iZXiszSOPPCLOWwgMDGTFihXodLXeTPPmzeONN96guLiYZ555Bmh4cFVLuVErvIm4uDhGjRrFN998w1/+8hezztlesLOzY8iQIQwZMoTnn38evV7P6dOniY2NZfHixWKtzsyZM3F0dGyzm4ujoyPdunUTb6RVVVWoVCpycnLQaDQ4Ojri5eVFRUUFVVVVDBkypHnt+TJHDLLuGOiODpAJVf8TP8XIhSLkWE+MlGfqJLHTgbBzdaL3Jy/jNjS83rZrLSKa/dlrBQaDgZUrV3Lq1Cn27duHr6+vVc5zPVlZWZw5c4aRI0fWeT0vL48ePXqI/w4MDCQvL69ZgkcmkyGTydi3bx8zZsxAqVRSXl6Ol5cXGzduZMyYMTg4ONQTMcePH2fr1q1069aN9evX8+CDDwLSspUtkQSPhfj666+b3L5p0yaLFynPmjWL+fPnM2PGjEb3MRgMLF26lEmTJln03O0NhULBiBEj6Nu3LxcuXCAmJobHHnuM33//nb/97W8UFxczbNgw0QfMz8+vTUSQk5MTTk5OBAQEIAgCarWahIQEFAoFgiCQnJwsZoBcXV2bHZMgc8IgC8RAIAAyofKaIYjFyKmy2DWoT6stdiwJ66LwdKPP2mW4hIfU23atRURUVJTVMp5qtZo5c+YQERHB7t27rdZteT3l5eVMnz6dTz75pJ7TeUMrGS35/sfFxfHXv/6VRx99lEcffRQ7OztWrVrFww8/zBtvvMGcOXPq/T2nTJlCSEgIXbp0ETNBRqNREjs2RBI8HZjo6GiysrKa3GfNmjVMnz6duLi4tgnKhuh0OiZPnsyiRYt46KGHAJg0aRKvvfYaWq2WEydOsH//fjZt2kR5eTkjRowgJiaG8ePH4+XlZXUBdPXqVbKysoiMjMTDw0OcaKtSqbh48aI40t8kgK73NGoKQeaMQeaMgR7/M0K9XgBpWx136ZnLrX6vRNuh9Peh77rXcAqu7y5eUVFBfHw8PXr0sKpFRGJiInPnzuXFF1/koYcearPMqk6nY/r06Tz22GMNOp0HBgaSk5Mj/js3N7dFf4e4uDj8/f157rnn6NWrFwDTpk3jyy+/pLq6Gr1eX2eOmCnbExYWVuffUqu5bZEETycmLy+P77//ntjY2JtC8CiVSg4cONBgmt7R0ZEJEyYwYcIEoPYH4NixY+zfv5/PPvuMmpoaRo8eTXR0NGPHjq1Xb2MOJp8uo9FIVFSU2A4vk8lwcXHBxcWFwMBABEEQPY0yMjKorKzExcVFFEDOzs7Ni0kmQ8AFg8wFA0H/E0AVogCyE4qRUd2s2AWjgOZ0pjmXL9EW+Hnh8dbTGLp41FtaKSgoIDMzk4iICLO6oZpCEAR+/PFHPvjgA7Zu3dqmU+QFQeDJJ58kPDy8UafzadOm8dlnn/Hwww9z8uRJPDw8GlzOMmWCTJ1kpr9jYmIiNTU1oth59tln2bBhAytXrmTBggVA3aWq67+nUr1O+0ASPJ2YRYsW8d57791UKdTm1iS4uLhw++23i4WNZWVl/Pbbb8TGxvLhhx8iCALjxo0jOjqa0aNH4+rq2qp4TMPcmuPTJZPJcHV1xdXVlR49eogCqKSkhPT0dCorK3F1dRUFkJOTUwsEkCsGmSsGev5PAJVjJxSjr85HQQn2yob7E8ov1qAvtW2HmETTOPXpSff3F6ORG8nMzBQzhZ6enlRUVKDVausIbUuj1+t58803iY+PZ//+/Xh7e1vlPI1x9OhRtm/fTmRkJIMHDwbqm39OmTKF3bt307t3b5ydndmyZUu941w77O/IkSMcP36c2267jSFDhuDt7Y1SqeTUqVMsWbKElJQUfvjhB6ZOnYpWq+XNN99k6tSpjB49uu0uXKLFSF1aHZymOsOCg4PFJ5aioiKcnZ35/PPPuffee9s6zA6Fqdbm0KFDxMbGcvz4cezt7Rk3bhwxMTGMHDnyhu3tpuLQq1evEhERYZFhboIgUF5eTklJCSUlJWi1Wtzc3OoIoOZiNNb+OJaWlhIR0R8nB524/FWbAaotuM/ZWcDFD/aaHbuEdXAZ2Jc+q19G4f6nIDcZ+SYmJgK1QtrJyamO+aelMg4lJSU8+eSTREVF8eabb3aoh6vGOqVWrlzJu+++y6233srs2bO5++67SU5OZtCgQeh0OkaMGMFXX31FSEgIgiDw22+/8fe//52FCxfy2GOP2eBKJK5DGjzYWWnudOdZs2YxderUTtOl1ZYIgkBRUZHoA3by5Enc3NzEAujhw4fj4PCn63R+fj65ubl4enrSu3dvq63bC4KARqOpY4Tq7u4uCqDGsl1arZb4+Hi8vb0JDg6uf9MXBGSUYScUkfv/TnJ5y14M5ZYrgpawDO6jBhK66gXsnOr+P19vESEIAlVVVaJdiqlb0PQ5aa0Aio+PZ+7cuSxbtqxBF/D2TkPdUhs3buSll17i448/ZtKkSeK8LYAvvviCOXPm8Oqrr/Lcc89hNBpFsTNmzBi2bdtmtSyaRIuQBE9n5NpWeH9//3qt8NciCR7LIQgCV65cEadAnzp1Cl9fX8aPH4+joyOff/45GzZsaPN5S0ajsY4AqqmpqSOAHBwcKCwsJD09vUXzVwS9gYrkTDSnEtD8Hk/52WSM2ubVAElYB8+JIwl5ZyFy+7o/sCaLiMjISJydnRt8r0kAmbyvrh2XYBJATYl0QRD47rvv+OSTT9i2bZtZQwNtgSAIPP744/Tq1Yu33367zraHHnqIiooKvvnmGzEre+1S1yuvvMK3335LQUEBvXv3Jicnh0cffZSPP/643r4SNkMSPBKWoTmzfw4ePMiiRYvQ6XT4+vpy6NChNo6ybREEgfT0dBYuXEhiYiK+vr74+voSHR1NTEwMAwcOtEmq32g0UlZWJgogjUaDnZ2d2CrbWnd6o05HRXw6mrh4NKcSKD+XgqDTWzh6icbwmXYLvZb9DZniz8+UuRYR1wqgsrIyHBwcRAF0rWWKXq/n9ddfJz09ne3bt9cz3+0IlJeXs3btWqZPn07v3r3F16uqqhgxYgSjRo0SBwSauFbIZGRkcPToUXx8fPD09GTs2NpJ1tJ8nXaDJHgkLMPhw4dxdXVlxowZDQoetVrNmDFj2Lt3L0FBQRQUFHR6k8D09HRmzpzJfffdx5IlS5DJZGRkZIhToM+fP09wcLAogPr379+mT4GVlZXEx8fTpUsXPDw8xB82g8GAh4eHmAFqbTreqK2m/Hwqmrh4yk4lUJmQjqA3WPgqJAD8Hr2LHktmILvm82MNi4hrBdDWrVuJi4tj2LBhnD59mttuu40VK1Z0yB/36zMwW7duJSAggDvuuAONRsO0adNQKBRs376drl271qnzuXjxImq1miFDhtzwuBI2RRI8EpajqbqhdevWkZ+fz1tvvWWDyGzDTz/9REBAAMOGDWtwu9FoJDU1lf3793Pw4EGSkpLo168f48ePJzo6mr59+1rtZnnlyhWysrIIDw/Hw8OjzjaDwUBpaamYATIajXh6eopP9q0VQIbKKsrPJFMWF48mLp7K5IvQ9H1GohkEzHuQbnP+0qA9iTUtIgD27t3LqlWrcHFxoaioCB8fHyZMmEBMTAxjxowx+/N7o8xxaWkpjz/+ONnZ2ej1ev7+978ze/bsFp/n2ixMWloa9957Lw4ODnz33XcEBwezadMm5s6dy+bNm3nggQfEZS2NRsMbb7yBn58fCxcubHV2VKJNkASPhOVoSvCYlrISEhLQaDQsXLiwyUnQNyNGo5H4+HgxA5Senk5ERIToAxYcHGz2D4jBYCAlJQWdTkf//v2bJV4MBgNqtVosbhUEoY4Aau3EXH1ZOZrTSbVLYHHxVKVnt+o4NzM9XpiN/yNTxH9faxERGRlpNYsIQRDYsWMH69at45///Cfh4bV2FZcvX+bQoUMcP36cjz/+2OzP640yx++88w6lpaW89957FBYW0q9fP65cudIq4XHx4kUqKyuJiIjgq6++4sMPP6Rnz57s3LkThULBgw8+yH//+1+WLl3KnDlzyMvLY/fu3Xz44Yd88MEHrRJaEm2KJHgkLEdTgmf+/PmcOnWK/fv3U1VVxejRo/nll1/o27evDSLtGBgMBs6ePSsKoOzsbAYNGsT48eOZMGECgYGBLVqmME3VDQgIaPF7r0Wv19cRQIAofry8vFq9pFF+uYCkH3/F6VIBQnI21ZfyW3WcmwK5jF7Ln8V3aoz40rUWEdbMDup0OpYtW0Zubi5bt26tlyG0NE3dV1auXElOTg5r164lKyuL22+/ndTU1GZd+7XLTXk2uPIAACAASURBVMeOHWPcuHEsW7aMV199FQcHB1auXMkXX3zBvffey4cffgjAfffdx7FjxygsLKRXr16o1WrWrVvHww8/bNmLlrAGknmoRNsQGBiIr6+vOEE4Ojqac+fOSYKnCezs7IiKiiIqKooXXngBnU7HH3/8QWxsLPPnz6egoIChQ4eKAsjf379REZOfn092drZFpuoqFAqxABtqfwDVajXFxcVkZmYik8lE8ePp6dksAVRYWEh6VgZhD00Vl2BqCkvQxCWgibtA2akEavIKzIq7syBTKghZuQiviX8aYbaVRURBQQFPPPEEt9xyC59++qnN61Pmz5/PtGnTCAgIQKPR8M033zQrJpPLOcAff/zBuXPnWLRoEQsWLBAzls888wy5ubn8+9//JiQkhGeeeYZ//etfJCcnc/bsWZydnRk+fDhBQUHiMTtaC75ELVKGR6LFNPUklpSUxPz58/n111+pqalhxIgR7Nixo8O1rrYnampqOHHiBLGxsRw6dAi1Ws3w4cOJiYlh3Lhx+Pr6Ulpayv/93//xxBNPMGDAgDYxbNTpdKhUKkpKSigtLcXOzk4UQB4eHnUEkNFoJCMjA41Gw4ABA5pciqjOL0ATl0BZ3AU0cfHoClVWv5b2htzJgd4fvYj7yIHia21hEQFw+vRpnn32Wd5++22mTp1qtfNcT1P3lW+//ZajR4/y0UcfkZGRwe233865c+fqmYQC7Nu3Dzs7O3x9fYmMjARqPQWXL1+OTCbj008/FQcEmrI/qampvPzyyyQmJrJu3TpuueWWeseVurA6DFKGR8IyXDv7JzAwsN7sn/DwcO68804GDhyIXC7nqaeeMlvstFVBY3vF3t5erO+B2g6a48ePs3//fv7xj39QXFxMRUUFd999Nz179myzm7JSqcTPz0/swqupqUGlUlFQUEBqaipKpVI0Qc3OzsbHx4chQ4bc8OnYIcAPh3v88L3nFgRBoDr7slgArTmVgF5V1haXZzPs3Fzos+YVXAfWZkUFQRDFojUtIgRB4J///CebNm1i586d7Soru2XLFl566SVkMhm9e/cmODiY5ORkRowYIe5TWVnJ9OnTSUhIoLCwEKPRyOuvv87ixYsZPnw4Q4cO5fDhwwQGBgK1gt30t+zbty/z58/nzTffZNGiRezatUvM6JiQxE7HR8rwSLR72rKgsSMhCALr169ny5YtzJ07l7S0NI4cOYJer2fMmDFER0czZswYi1oJtITq6mqys7PJzc1FqVTi5OQktsBfO9ulJQiCgDYjp1YAnYpHcyoRg6bCCtHbBoWPJ33XLcO5T0+gVkTGx8fj4eFBSEiI1f4fa2pqeOmllyguLmbLli2t9o4zh6YyPE8//TT+/v4sX76cq1evMnToUM6dOycut/7xxx9MnjyZfv36sWLFCuzt7fn2229ZvXo169atY968efz73/9m8eLFBAQEcPDgQRwcHOplbTZs2MCmTZvYsGEDQ4cObbNrl7AoUtGyRMfGWgWNHZm5c+eiUChYtWqV6KMlCAJlZWUcPnyY2NhYjh49ip2dnWiEOmrUKIv4et0IU1aitLSUAQMG4ODggFarrTPczt7evo69QasEkMFAZeql2hlAcfGUn0nCWKm1whW1AT4e6Obfj1tokDgWIDMzU7SIsBZXrlxh9uzZTJ48mRdffNEm35sbTY3Pz89n1qxZXL58GUEQeOmll3j88ccBOHXqFOPGjWPcuHHs27evTo3NlClTyM3N5fz58wB89NFHrFu3jqlTp/LJJ58AdR3SoTZjbO0CbQmrIgkeCctTVFTEhQsXCAoKIjQ01KrnakrwmAaGJScniwWNd911l1XjaQ9cuXKFrl27NrmPIAiUlJSIRqgnTpzAyclJNEIdMWKExVuaq6uriY+Px9PTs8mshFarFWcAlZWVWcTfyajTU5mYgeZUQq0AOpeMUK0z95KsjmNwd/qufw1lF280Gg1ZWVkUFxdjb29fZzhkSwxim8Pvv//OggULeP/997nzzjsteuy24vjx4yxbtoxLly5x5MgRunbtSmVlJc7Oznz00Ue89tprnD59mn79+lFeXs6yZcv46aefWLJkCfPnzxePc61QkgqTOzSS4JGwLJs3bxafkLKzs3FxceGee+7hiSeeICoqyuI3C0sVNN7sCIJAQUEBBw4c4ODBg5w8eRIvLy9xCGJUVJRZS4GmQXh9+/bFx8enRe81GVyabDCuXQJzdXVtnQCq0VFxIZWy32vrfyoupLa7KdDO4SH0+exVlF7u9Swi5HJ5PYNYNzc3swWQIAhs3bqVbdu28dVXX1n9gcXa7N27lxdeeAEfHx8OHjwovv7UU09x5MgRjh49ipeXF3K5nMzMTF5++WUSEhJ4//33mTJlSuMHluiISIJHwnxMTz1xcXHcddddjB49mhdffBEXFxeOHj3Kt99+i16v57fffrP4uZsSPHfddRcvvfQS48ePB2DixIm8++67dQoaJRpGEATy8/OJjY0lNjaW06dP4+/vLxZJDx48uFkdX4IgkJmZiVqtJiIiwuys0bUO3yqVivLycpydncUfehcXlxYLoOLiYlIvJBCks0NIzkITl0BFYjoY/397dx7V1L3tAfybgKLMBAQHQEBFmSlOCIJzFR+1KmqlToiIrXKL15ZKrbTqq1p9teXaOt7iSNU6tNqq8KpMCiIqKhZQQAUDAQQ0QgAZkuz3By/nGhkEZVD8fdZiLU1OzvmdEE72+Q17d9xlTnOwNQb8sBIqmurNKhGhKBCrGBqsqqqCtrY2tzquOQFQdXU1goKCUFFRgZ9//rldhjjbiuKaJJfLsXfvXqxevRozZ87E1q1bsWrVKvzP//wPjh49imnTpim9LiEhAUuXLoWenh4iIyPbLHEj0yFYwMO8OsUSzjVr1uDAgQM4d+4c+vXrByKCTCZDQkICLly4gJCQEMhkMvB4PO7nVb3KhEam+YgIDx484CrB37x5EyYmJlwdMFtb23qrVZ4+fYrbt29DW1sbFhYWbTIHhIhQWVnJBUAVFRXQ0NCAnp4eBAIB1NXVG/2cERGys7MhFou5+UQKsvJKSG7c5laAVWbktFsZDJ2RTui3eQX43dReukRESwOggoICru7bP//5z04xz00R9JSWluJf//oXtmzZgh49ekAikWDXrl2YOnVqg0NUkZGRcHR0fOGwMPPGYQEP03qCgoIQFhaG8PDwZncHy+VyyOVyqKiotDgAepUJjcyrUeTPiYqKQkxMDNLS0tC/f3+4ublh1KhRyM7Oxrp163Dy5En06tWr3dpFRKioqOACoMrKSmhqanIBUPfu3cHj8VBTU4O0tDRoamqiX79+L/yClz6RQJKcDsm1uknQVffz2qT9Ao+RMFuzDDxVFQiFQhQXF8PW1vaVexqeD4BEIhHCw8Ph7u6Onj17YvPmzfj+++8xfvz4VjqT9iWXywGg3u9REdDk5ORg48aN2L9/P3bs2IGFCxfWW4n1fKFPll+n02EBD9N60tLSMGzYMFhaWiIkJATTpk0Dj8eDVCoFj8eDiooKDh8+DJFIBD8/v5degtyRcnNzMX/+fBQWFoLP58Pf3x+BgYFK2xARAgMDcfbsWairq2Pfvn2dfimrXC7HnTt3cO7cOezevRtPnjyBs7MzRo0aBXd3d/Tv379DftdEhPLyci4Aevr0KdTU1FBRUQFzc3Mu90pL1ZaIIUlO5/IAVecWvnJbe8yYANNgP8jk8jYvEVFTU4OEhATs378fly5dgra2NkaMGIHRo0dj9OjRMDExeeVjvChPFgDExsZydfYMDAwQFxfX7P0reo/79OnDzTUqLi6GpqZmg0N4V65cwerVq3Hv3j0kJSXBwMAAUqm0XZJxMq8FFvAwrSsiIgJr1qzB1atXMWTIEHz99ddKK6N8fHzwxx9/ICAgALGxsXj06BE++ugjfPTRRw0mTiMiyOVy8Hi81yI4KigoQEFBAZycnLiEbydPnoS1tTW3zdmzZ/Hjjz/i7NmzSEpKQmBgIJKSkjqw1e2jpKQE8+fPh729PdasWYOMjAyuEnx2djZsbW25IbC+ffu2+2oXIkJubi5EIhEMDAxQXl6uNNQjEAheuielprAEZdfqymBIrqaipvBRi17fc+E09AnwRmVlJVJTU2FqatqmPWNVVVVYsWIFZDIZdu/ejS5duuD69euIjY1FbGws5syZw2UdflkvypP15MkTuLi4IDIyEqampigqKuKSVTbH/fv3ERISgrKyMvz55584cOAAvvvuO+zevRvOzs4NvubMmTP4/PPP0bt3b5w7dw5A/Z4dptNiAQ/T+m7fvo3w8HDs3LkT6urqOHDgAMaMGYPCwkJ4e3vj+vXrcHZ2hr+/P6Kjo3HkyBHs27cP7733XrP2r+imTk5ORn5+Ptzc3KCrq9vGZ9Ww999/HwEBAZgwYQL32JIlSzB69Gh4e3sDAAYOHIjY2Nh2HdrpCAEBAfDw8Ghw6b9UKsWNGze4QqgikQiOjo5cHbDevXu3aQAkk8mQnp4OFRUVDBw4kBuqUAz1KHqAampqlAKgZ+f1NBcRoTrvISSKAOhaGmpLnjS6fZ9P5qCXz9R2KxGRl5cHHx8fzJ49GwEBAW36Zd/UHLvt27cjPz8f33zzzUvvPzQ0FLt374aamhpSU1OxefNmfPzxx/UCV8U1QyaTcZOYx48fj/Dw8Jc+NvPGYQEP03qenwB4+fJljBs3DvPmzcPOnTsRHR0Nb29vTJ48GXv37gVQd5fn5eWFiooKXL58mbvbevLkCf78809ERESgX79+mDlzJuzt7ZWSgQUEBCAtLQ0HDx586aGJV5GTkwN3d3ekpqYqLXX39PREcHAwRo4cCQAYN24cNm3ahCFDhrR7G19XtbW1uHLlCrcMvqSkBIMHD+ZWgRkaGrZaANSSwppyuRxlZWVcLbDa2lro6OhwAdDLLM0nIlRli7gAqOxaGmSl5QCPh75fLIaB13ilemJtVSICAC5evIigoCBs3boVo0ePbrPjKDQV8CiGstLS0iCRSBAYGIj58+c3a7+Ka41EIoG9vT0ePHgAf39/7Ny584WvEYvF+Oabb1BVVYVt27ax3DpvD1ZLi3l1crkcaWlpXEE+oO6O2tnZGaamptyk4du3b4PP52PevHkA6uYR6OrqYvjw4fjjjz+QnZ0Nc3NzZGVlITg4GGfOnMH48ePx119/ITw8HOvXr8eHH36I6upqpKen4+7du9DV1X1hsPP333+DiGBvb9/kdi1RXl4OLy8vhIaG1svr09DNArugKuvSpQtcXV3h6uqK1atXo7q6GomJiYiJicGePXsgkUgwbNgwuLu7w83NDQKB4KXew4cPHyI7O7vZvSZ8Ph+6urrQ1dWFubk55HI5SktL8fjxY+Tl5UEqlUJXV5db7dScAIjH46G7hTG6WxjDcNZEkFyOp3eFkEkqoGY3ADdu3ICOjg4cHR3b7HMil8uxa9cu/P777zhz5kyrzNF5VVKpFMnJyYiKisLTp08xYsQIODs7N1mrS3FDpHif0tLSMGHCBAiFQiQkJOD06dPw9PRscJiKx+OBiKCnp4evv/6a+7tlf5sMC3iYZktKSsK4ceOwZcsWTJ8+HT169ICKigqKioqQk5ODSZMmgcfjISUlBV26dMHw4cMB/Kfonlgshr6+PhcorFmzBtevX8eRI0fg6emJsrIy+Pr64quvvoKrqytqamrg6+uLlJQU9O3bF9999x0mTZrUYDFSqVSKXbt2Yfv27VBRUYGNjQ28vb3h7e1drwhgc9XW1sLLywtz5szB9OnT6z1vbGyM3Nxc7v95eXkv7Fl426mpqXETZoG6go+XLl1CVFQUtm3bhpqaGjg7O8Pd3R2urq7Q0dFp8otKLpcjKysLVVVVr1RYk8/nc8ENUBfIl5aWQiwWIzc3FzKZTCkAas5xeHw+1C3NUFZWhuvXr7d5iYjKykoEBgZCTU0N58+ff21yyxgbG8PAwAAaGhrQ0NCAu7s7UlJSGg14nl01VVJSAgMDAzg7O8PZ2RmXLl3CF198gQ0bNsDMzAy2traNBj0AuGCHzd9hAIB9AphmMzc3x8cff4ytW7di6tSpWLlyJZYvXw5bW1sIBAL4+fnh8ePHuHHjBrp16wYNDQ0QEVRUVFBVVYX79+9DS0sLZmZmqKmpwcmTJ+Hn54f33nsPqqqqEAgEWLlyJVf7ZsCAAfDy8kLPnj3h4OCAPXv2wN/fH8nJyVybFMFTcXExhEIhRo4cicTEREyaNAlHjhzB4sWLIRaLW3yuRIRFixbBysoKK1asaHCbKVOm4MCBAyAiXL58GTo6Op1+/k5rU1dXx/jx47Fx40YkJCQgOjoakydPRlJSEry8vDB27FisXr0af/31F8rLy5Vee//+fSQkJEBNTQ329vatOkSkoqICgUCAfv36YciQIRgyZAgMDAxQVlaGmzdv4sqVK8jMzERxcTGkUmmj+8nPz8ft27dhb2/fpsGOUCiEp6cnXF1dERYW9toEO0Dd/LeLFy9CKpWisrISSUlJsLKyanBbReoKAAgODsaUKVNgZ2eHmTNnIjs7Gy4uLli+fDnKy8sREhICiUTCBTKPHz9utA0s2GEA1sPDtEDPnj2xZcsW+Pr64sSJE7hw4QKICMuWLYOHhwdsbGwQGRmJiooKSCQSXLhwAe7u7gDq5hSkpqbis88+A5/Px9WrV1FTU4PRo0dDRUWFG19XBEOKC1ReXh6MjIywfft29OrVC0VFRQ0mZsvJyUFqaioWL16MIUOG4J133oGrqytmzZqFjRs3YvPmzS26y0tISMDBgwdhZ2cHR0dHAHVV2YVCIYC6/D+TJ0/G2bNn0b9/f6irq3PzlZiXp6WlBQ8PD3h4eICI8OTJE64Q6oYNG7ghMm1tbezduxc///wzzMzM2rxdKioq0NfX58plSKVSPHnyBGKxGNnZ2QDA9f7o6uqCz+dzJSKGDBnSpnleYmNjERwcjG3btnHZxtvTs3myjI2N6+XJsrKywqRJk2Bvbw8+nw8/P78Ge2mBusCkpqYGU6dORWpqKhYuXIi8vDzExcVh1KhRCAsLw7Rp05CdnY1du3YhODgYGzZswOnTp3HkyBF8++23sLGxac/TZ94gLOBhmk0RlNjY2DR6Ubl16xaICE5OTvj5559RW1uLmzdv4ttvv8XQoUMxdepUAEBKSgr09fWhqakJoK4bW1VVFampqeDxeNDR0UFZWRmysrLQt29fbqjIyMhI6XiKruuMjAyUlJRwCdX4fD7ee+89ODo6QiQS1Usu9vwyeKFQiPj4eIwbNw5GRkYYOXJkg3N0nj/2tm3bXuKdbFxz8v/88ssv2LRpEwBAU1MTO3bsgIODQ6u243XA4/Ggp6eH999/H++//z6ICMXFxfjkk0+QmJiIXr16Yc2aNXBzc4ObmxuGDRv2UqutXoaqqioMDAy4bN5SqZSbAH337l1UVlZCR0cHffv2bbM2yOVybNu2DWfOnEFERAT69OnTZsdqyuHDh1+4TVBQEIKCgpq1v/j4eKSnp2PXrl3w8PAAABQVFeHdd9/FihUrcOrUKQQEBEAkEmHfvn04f/48Hjx4gK+//poFO0yTWMDDNNuzlYQVGU+fDyLu3LkDdXV17u7Lw8MDWlpamDx5MjZu3MhNPO7Tpw9kMhnXDa1IChYeHo5BgwbBysoKGRkZKCws5HqJGsuIqlgBoqWlhaFDh3LtU1FRQWZmJgYPHgwVFRVkZWXBwMAAenp6XIJEheLiYuzduxdPnz7FokWLOmzMX1VVFVu2bFHK/zNhwgSl/D/m5uaIi4uDnp4eIiIi4O/v/1bk/xGLxfD19YWdnR3Cw8OhoqKChw8fIjo6GidOnMDKlSuhr6/PZYF2cnJq05VQz1JVVeXmtD169Ah2dnYgIjx69Aj37t2DiooK1wOko6Pzyj0+FRUVCAgIgK6uLs6dO9dugV57yMzMRH5+PlxdXQHUBZOGhoY4efIkbG1tERYWhvXr12PlypUYN24crl27Bg8PDwwdOhQAq3TONI4FPEyLPR8sKC4w2dnZuH//PgYNGgRjY2OEh4dj3759uHfvHgYOHKi0j1GjRkFfXx+hoaEwMTGBlpYW9u7diyNHjmDTpk3Q19fHr7/+ipqaGu5C9jzFcQsKCnDnzh0IBAKufVKpFKGhoRCLxRg3bhzkcjmWL1+OBw8eYM+ePThz5gz69++P6dOnQ0NDA4MHD8a5c+e4+RgdNebfq1cvbh6QlpYWrKysIBKJlAIeFxcX7t/Ozs7Iy2ub8gevm/T0dPj7+2PKlCncYz179sSHH36IDz/8kEs4GBMTg/379yMwMBC9evXiskDb29u3WbZdRQ2ykpISODk5cQGIIsFeTU0NxGIxioqKkJWVxQVAAoEAOjo6Lfq8ZWdnw8fHB4sXL8bixYvf2C/3Z28qnk1DoaOjAwMDA9y4cQOjRo2CqqoqamtrYWZmBh8fHxw7dgxBQUEwNDTE5MmTufI2ih7bN/X9YNoeC3iYV6a4wOTm5iInJ4cbVqquroaamlq9YAcAdHV18a9//QsfffQRXF1dYWpqiszMTMyfPx8ff/wxgLphKjU1NS6bamN3xQ8ePMDdu3dx9+5ddOnSBb1794aGhgaEQiFmz56NadOm4f79+ygrK4NQKMTnn38OLS0tnDhxAsOHD4eZmRkOHToEKysrbmXZsxR1wPh8frsGQjk5Obhx40aDbVIICwvjuv07O0W+o8bweDyYmppiwYIFWLBgAVc0NDo6Gjt27MCtW7dgZmbG9QBZW1u3ytwaqVTKlYhwcnJq8DPStWtXGBkZcUOyNTU1ePz4MQoLC5GRkYEuXbpwleCbKsVy/vx5rF69Grt27cKIESNeue0dRfH3VFNTw/XGKnrjRo4cicrKShw7dgx2dnYQCATcc7W1tejSpUuDJSXYxGTmRVjAw7SaUaNGISUlhbtbe1HukokTJyI1NRXnzp1DRkYGV5MJqLuwaWtro6ioCFVVVQ2+XhFoZWZmQiQSITo6Gvr6+khISMC9e/e44SAASE1NRXJyMmbOnImQkBD06dMHjx49Qp8+fXD79m2sW7cOQ4cOxa+//srtv6qqirsQt/fFtKn8PwoxMTEICwtDfHx8u7btTcHj8WBhYQELCwv4+flxS9ijo6Px3Xff4fbt27C0tISbmxvc3d0xcODAFv+eFckOW1oiomvXrujZsydXqbuqqgpisRj5+fm4c+cOunbtCl1dXYhEIgwfPhyqqqoIDQ3F+fPn8ddff72xFb4VvbJ8Ph8JCQn4xz/+gdraWqipqWH16tVwcXGBiYkJvv32WyxduhQmJiZYvHgxBAIBCgsLIRKJMHjwYKiqqrKhK6bliKipH4ZpM3K5vMnHk5KSyNLSkkxNTSkgIIBycnLqbVtdXU3Lly+nPn36NLmvdevWkYGBAV27dq3eNkePHqVBgwbRvn37iIiotraWTp06RfPmzSNzc3Oytram4OBgysrKavAYUqmUpFLpi0+4mWpqaujdd9+lLVu2NLpNSkoKWVhYUEZGRqsd920jk8no77//ptDQUJo6dSrZ2trSzJkz6ccff6SUlBSSSCRUUVHR6E92djZFRUVRYWFhk9u9zM+jR4/o77//pvfee48sLCxowIAB5OLiQpcvX27VzxoR0cKFC6lHjx5kY2PT5HZXrlwhPp9Px44da/Ex5HI5yWQy7v937twhgUBAc+fOpVWrVtH48eOpV69etGLFCqqsrCQios8//5y0tbXJ2tqavL29afjw4WRgYEDXr19v8fGZt0qjMQ0rLcF0OMUE6IbursViMX777TdkZmZi3rx5sLW1VRrvFwqFWLx4Mbp3746TJ09yE5ufneBcXV0NHx8f5OTkIDExEYDynIGQkBAcOXIEp06dgrW1NUJDQ/H111/D0tISs2fP5nIGTZgwAV988QU0NDQAAKWlpdDR0Wnx+VITd6ZEhAULFkAgECA0NLTBbYRCIcaOHYsDBw4ozedhXo1MJkNKSgpXB0woFMLOzg5ubm4YM2YMjI2NuflhP//8M4YNGwY7O7s2nRh99+5d+Pr64oMPPoC+vj7i4uJw8+ZNmJmZcTmsXtWLin8Cde/NhAkT0K1bN/j6+mLGjBnN2vft27dhYWGhNKn6xx9/REVFBTIzM/HTTz9BXV0dALBixQpERERg7ty5+PLLLwEAR48exblz51BcXAyBQIDvvvsOAoGA9e4wTWn8g9FUNNTOURnDtFhUVBR16dKFNm7cSESkdPer6N1JT0+n4cOH06JFi4iIlO40KyoqaMaMGeTq6kpERFVVVaStrU2zZs3itpHJZJSUlEQnT56kiooKIiIKDQ2lyZMnk5GRETk5OdHevXuppqam2e2+cuVKg3frFy9eJABkZ2dHDg4O5ODgQGfOnKEdO3bQjh07iIho0aJFpKuryz0/ePDgZh+3MUKhkEaPHk2DBg0ia2trCg0NbbLtL3un/yapra2ly5cv04YNG+jdd98le3t7+uCDD8jR0ZF8fX2prKys1Xt2nv357bffyN7enq5cuaLULrlcTnfv3qW///671c41Ozu7yR6eH374gX766SdasGBBs3/vgYGBZG1tTVOmTOEei4iIIBMTE9LR0aFPP/2UiIj7uykrKyMvLy9ydXWl1NRUpX1VV1dz/66trW32eTFvpUZjGhbwMK89qVTa6PBXRUUFHTp0iPLy8ohIeZhMEdgcP36cBg0aRHv27Km3v5SUFBoyZAh9/PHHRER05MgRUlNTo/j4+Ebb849//INUVFTIz8+PfvnlFwoMDCRTU1OKiop64blERkbS2LFjyd7enkxMTKhbt27k7u5OYWFh9Pjx42a8G20jPz+fkpOTiajui2fAgAGUlpZWbzupVEpjxowhDw+PTh/wPO/y5cs0YMAAmjdvHo0ZM4YcHR3Jz8+PDh48SDk5OVReXt4qdI5HhQAAD8ZJREFUgY5EIqGvvvqKxo4dSw8fPmyXc2sq4MnLyyN3d3eSSqXNCnhyc3PJzs6O7O3t6fvvv6fTp08rPb9+/XrS1dUlT09P7jFFQHPlyhXi8Xh04cIFIqo/7P3szQrDNKLRmIZNWmZee02tpFFXV4e3tzf3/2e7uRVDZPHx8SguLuZWO/H5fK5LPDU1FWKxmHsuISEB/fr14xLGKbZTDJHFxcUhLCwMe/bswfz58yGXyzFu3DhkZGRg3bp1GDt2bKNtTU5Ohq+vLxwcHBAUFIR33nkH2dnZOH78OL788ksIBAIuMWN7a85yeKBuOMLLywtXr17tiGZ2mP3792P79u2IiIhAv379ANRNNE5MTER0dDR2796N8vJyrg6Ym5sbdHV1WzzsUlZWhiVLlsDc3ByRkZHtlkeoKcuXL8emTZuataLt0aNH8PX1Rd++fbFlyxZYWFhwqQBqamrQtWtXLF26FLm5ufjll1+we/du+Pv7c+fZq1cvqKmpISsrC25ubvXeP7YSi3kVLOBh3ngvShLo4eEBVVVV7sv72VwdaWlpUFNT45KcPXnypK7q9TPLXumZeW5nzpzB06dPkZOTg9zcXJiYmMDIyAj+/v5YunQpd1FvqI0HDx5EQUEB7t27x9U6srGxweDBg2FpaclVoacOnp/Q2HJ4kUiE33//HdHR0W9dwGNkZISYmBhuvgkAdOvWDWPGjMGYMWMA1K2su3TpEqKjo7F161ZIpVKMGDGCK4SqpaXV5O81IyMDixYtwooVKzBnzpzXZo7KtWvXMHv2bAB1xTzPnj0LVVXVBoNzoVCItLQ0hIWFwdLSEjKZjHuua9euICLo6uoiMDAQIpEIa9euhYmJCTw8PFBdXY3Y2Fh07doVgwYNarfzY94iTXX/tHc/FMO0J4lEQmPHjiVra2vusd9//514PB7FxMQ0+BoHBwcyMzOjAQMGEJ/PJx0dHZo9ezYNHTqUnJycqLCwsMHXlZeX04IFC0hLS4sbOmotjQ33vQyJREJOTk504sSJes/NmDGDEhMTiYhaNJfjbSSXy6m0tJROnz5N//znP2n48OHk7OxMn376KZ06dYqKioq4Iazy8nI6evQoOTg4tPpno7leNIdH4UW/9xMnTpC+vj5dvnxZ6fH9+/fTmjVryNvbm/766y+qra2lpKQksrW1JTU1NXJzc6OFCxeSpqYmLVu27JXPh3mrsVVazNursZIUAJCVlYXc3FxuKOrx48fw8fGBSCTC6tWr0b9/f4jFYtjY2EBfXx82NjaYPn061q5di/v37yMxMRGRkZG4desWRowYgfXr1zdaFfvf//43lixZAktLS6xZswaenp7Q1NREbW0tVFVVX+qOnv6/N+j8+fNwdHTkaju9jNraWnh6emLixIkNVog3NzfnertKSkqgrq6O3bt3d9gw3JuEiCAWixEXF4fo6GhcvnwZ3bp1g4uLCwoLC1FQUIBDhw690u/vZT1b/NPIyKhe8c9n+fj4wNPTs9FVWunp6Rg2bBjmzp2LiRMngsfjYd26dUhJSYGamhpXKHjFihVYu3Ytjh07hrVr16K6uhqbN2+Gvr4+l4uro8q7MG88tkqLYZorLS2NPD09qXv37tS7d2+aO3cul/tj1apV1L9/f3r06JFSz0pNTQ0VFxc3uk/Ftr///js5OjoSj8ejqVOnkkgkqrdtS/L6yOVyiouLI01NTTpy5EhLTrPefubNm0eBgYHN2p718LwauVxODx8+pP3795OXl1enWHmk+Ixv27aNNDU1icfjEY/HI3t7e1q5ciWlp6dTQUEBzZgxg3R0dCgpKYnkcjl99dVXNHDgQFq9ejW3r5aseGSY57AeHoZpCL0gJ87Vq1fB5/Ph6OjIVXP39/eHubk5Fi1aBAsLCxQVFaFHjx4wNzd/4XGICDdv3sS2bduwb98+uLi4ICIigsvt01yKu99Lly4hJCQENjY22Lp1a73zKS0txaFDhzBv3jyuMn1D4uPj4ebmBjs7O+6uesOGDRAKhQBafqfPvN0U2c4NDQ1hb28PIyMjrpf16dOn0NDQwE8//YSlS5eipKQEq1atQlxcHFauXAlfX98Obj3zhmu0h4cFPAzzHLlcDiJqdBgsOjoaX331Fa5duwYTExMIBALMmjULy5cvb1FtpilTpiA2NhaZmZlcqYC1a9eitLQUHh4eXFmMpkyaNAmampr44YcfYGJiAqlUClVVVW7y9M2bN3H48GFs2rSp2e1qT7m5uZg/fz4KCwvB5/Ph7++PwMDAetvFxsZi+fLlqK2thYGBAeLi4jqgtcyLNHUDoXj+/Pnz8Pb2xrFjx7gJ32lpaQgICEBBQQEuXrzY6LAwwzQDG9JimJfR1ITgiooKioqKoqNHj1J+fr7Sc4ohqbCwMPrxxx9JLBYrPV9aWkqzZs2igQMH0v3794mI6NGjR3T48GHy9PSkbt26vfD4x48fpy5dulBCQoLStvn5+RQcHEz29vZkaGhII0aMoD/++IPLdaLY7saNG7Rw4UJKSkpq9vvR2pqT/0csFpOVlRU9ePCAiKjdctMwrUPxeZPL5SQSicjHx4dcXV0pNzdX6fMdExPTYO4nhmkhloeHYV5GQ3erMpkMPB4P6urqjebdUfT0PHz4EHv27EFWVhbmzJmD3r17QyKR4MCBAzhx4gSCg4O5oTAtLS3Mnj0beXl5SsdS5DF51pMnT3D48GEMGTKEKy+haOv69esRFhaGkJAQREREgM/nY9myZViyZAlWrFiB7t27QyaTwdHREbdv38alS5cwbNiwDpkk2pz8P4cOHcL06dNhamoKADA0NGzXNjKvhsfj4datW0hPT8eOHTuQk5ODs2fPwtjYGMB/eoVGjx4NgE1WZtoOC3gYpoWeHbaSy+VKeX2e5+vrCw0NDezbtw87d+6EsbExtLS0kJOTg+DgYHz++efctoqL/MGDB7lhnef3q/gyuH79OjIyMvDBBx8AADeUJRKJkJCQAF9fXwQFBSEzMxNffvkl7ty5g/z8fC6/kOIcNDU1UVlZqXT8jtJY/p/MzEzU1tZi9OjRkEgkCAwMxPz58zuolUxLJSQkYMKECbCysoKlpSUiIyPRvXt37rPMkgsy7YUFPAzzCl50cTYyMsInn3yCTz75BIWFhbh48SKqqqq4YpTPUgQh6enp8PT0VHrseUlJSSAijBw5Uqkdenp6MDY2xsOHD5GSkgJjY2MMGDAAAwYMqLcPqVQKR0dHXLhwAatWrWrZibey8vJyeHl5ITQ0FNra2krPSaVSJCcnIyoqCk+fPsWIESPg7OwMS0vLDmrt68PX1xenT5+GoaFhg4U/f/nlF27+lqamJnbs2AEHB4d2baOrqyuOHz8OHR0dLsGnIkBnmPbEQmmGaUNEBJlMBiJCz549MXPmTMybN69esEP/v3jg0qVL0NbWhqGhIVdF/lmKwKagoADdu3eHjY2N0uPq6urw8fFBfHw8xowZA5FIhIKCggbbpqqqCplMBrFYDAANHq891NbWwsvLC3PmzMH06dPrPW9sbIxJkyZBQ0MDBgYGcHd3R0pKSge09PXj4+ODyMjIRp83NzdHXFwcbt26hZCQEPj7+7dj6/7zuZ48eTIX7MjlchbsMB2CBTwM04Z4PB5UVFS4bnvFCjAFxb+fPn0KALhw4QImTpwIAEpp+Z9VVVXF7ef51SxyuRxeXl64dOkSbG1tkZiYiE8//RQikUhpO6lUCqBuGMnQ0BAymaxDhhKICIsWLYKVlVWDyQ4B4P3338fFixchlUpRWVmJpKQkWFlZtXNLX0/u7u4QCASNPu/i4gI9PT0AgLOzs9L8sPbQ0FAvG7JiOgr75DFMO3p+zoLi39u3b8fIkSOxatUq6OjoAECjhSO7deuGiooK6OrqAvhP8KLYPwDo6Ohg4MCBCA4O5pbRP+vZ4bPevXujurq6lc6wZRISEnDw4EFER0fD0dERjo6OOHv2LHbu3ImdO3cCAKysrDBp0iTY29tj2LBh8PPzg62tbYe0900WFhYGDw+Pjm4Gw3QY1q/IMK+Bzz77DGPHjkVsbCz+/PNPzJ49G//+97+hpaWltJ2iTEZVVRWMjIyU8p6cPn0aIpEIS5YswfXr12FqagofHx+kpaXht99+A/CfFTE8Hg8lJSV4/PgxzM3NlYpitqeRI0cq9Xg1JigoCEFBQa167ObkACotLcXcuXMhFAohlUrx2WefYeHCha3ajvYQExODsLAwxMfHd3RTGKbDsICHYV4TTk5OcHJyanRoB/hPz4ytrS2uXr2KyspKLkszn8/HqVOnUFJSgqKiIjg4OCAmJgYREREYOnQogLoeJUXQFBUVBblcrrQE/G2iqqqKLVu2wMnJCRKJBIMHD8aECROU3o9t27bB2toaf/75J4qLizFw4EDMmTMHXbt27cCWt8ytW7fg5+eHiIgI6Ovrd3RzGKbDsICHYV4TignOfD7/hfMcxo8fj82bN6Nbt27cY2PHjoVEIkFYWBhiYmKgp6eH7t27QyAQYOXKldwxFEFTeHg47Ozs4OTk1HYn9RprTg4gHo8HiUQCIkJ5eTkEAsEbNeFWKBRi+vTpOHjwIFvVxrz1WGkJhnkDZWdnY8+ePVi2bBlXlkKBiODn5wcvLy9UVlZi/Pjx3HwfhatXr8LFxQWHDh3CzJkz27Ppr6WcnBy4u7sjNTVVaVm8RCLBlClTcOfOHUgkEvz666/4r//6rw5sqbIXVTr38/PDiRMn0LdvXwB1vVrXrl3ryCYzTFtjtbQYprN5/PgxVFVVuS9oRSK3//3f/8XFixfxzTffKG2vmL/z5MkTfPLJJ8jKykJiYmJHNP21Ul5ejlGjRuHLL7+styz++PHjSEhIwPfff4979+5hwoQJSElJqZcriGGY10ajAQ9bpcUwbyiBQKD0xasYBuvVqxe8vLzqTQZWTG7evXs3UlJS8N///d8A0KxJw53Vi3IA7d27F9OnTwePx0P//v1hbm6OO3fudEBLGYZ5VSzgYZhOxt7eHu+8806DOVBiYmJw9uxZfPrppxg/fjyAhnOlvA2akwPI1NQUUVFRAOrqomVkZMDCwqI9m8kwTCthQ1oM8xZJTk4Gn8+HnZ3dGzX5ti3Ex8fDzc0NdnZ2XO/Yhg0bIBQKAdTNgcnPz4ePjw8KCgpARAgODsbcuXM7stkMwzSNzeFhGIZhGKbTY3N4GIZhGIZ5e7GAh2EYhmGYTo8FPAzDMAzDdHos4GEYhmEYptNjAQ/DMAzDMJ0eC3gYhmEYhun0WMDDMAzDMEynxwIehmEYhmE6vRelWn07c84zDMMwDNOpsB4ehmEYhmE6PRbwMAzDMAzT6bGAh2EYhmGYTo8FPAzDMAzDdHos4GEYhmEYptNjAQ/DMAzDMJ3e/wE52rub6B5pxQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -299,7 +301,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFoCAYAAAD0LAJxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xe4XGW5/vHvnYQkEAKEDgKGjjRbpB4lCIQmIE3KoYM5qDQVf8ejHkDQo2JL6ESFKFKkCCLSAxuUJgGkE+khCYgkISEQEpI8vz/eNTBMZu89s/fMrJnZ9+e61jV73tWetbMza571NkUEZmZmZmZm1tr65R2AmZmZmZmZ9Z6TOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07uzMzMzMzM2oCTOzMzMzMzszbg5M7MzMzMzKwNOLkzMzMzMzNrA07urFcknSYpipZpkq6RtG6OMZ0iaaqkRZLGd1ZWZr/Saykstzcy/qJ4viTpiDLl4yVNbHAskvSopMOLyrr9ndbo3P0kHSfpEUlzJc2W9KSksySpXuetdSySzpX0m0bFambNrUnvn9tKeljSu5IiKxsi6QpJ07M4j+hk3/Gd3EN/3dCL+CCe0ZK+WKb8JUk/yyMms0YYkHcA1hZmAbtkP68DnAFMkLRJRLzdyEAkjQC+D3wH6ABeL1fWxSGKr6W4LA9fAlYExpeUnwEsmUMsw4DLoPzvuY7nvgIYBfwcuB9YGtgG2D4ioo7nrXUsPwWekfSjiHiuvmGaWYtomvtn5kLS5/nOwLys7CvAHsBhwFTg+S72fwY4sqSsnveHrowGngCuKynfG5je+HDMGsPJndXCgoi4P/v5fkmTgb8CuwFXNTiWjbLXcyNiNoCkQ0rLulB8LU0pIrq6sdbLCcAlEfFe9n6x33NPSeoP9I+I+WXW7QrsD+wWETcVrbo2h1q7XsUSES9J+hvpi9I36xSmmbWWZrp/QvpsHxcRd5WUTYqIayrY/+0WuIc+kncMZvXkZplWDw9lr8MBJG0t6fqsycnbkv4h6T8LG0vaPWvat3bxQSStnZXvWVT2JUmPS5on6RVJP5Q0IFs3Hrgk23RW1hzkpTJlI3t6YZI6JF1dUjYyO+6mhTgkTZS0k6THsmv+m6RNyhzvc5LulDRH0qzs+J/MrmVfYLuipi2nFR+/5Did/l6qjalMjOuRaqeuLhyLLn6nVcTyRUlPAu8CW3Zy+u2y1ztKV+RQa1eLWK4B/lOSP3vNrJxq75/LZ00oDy8+iJIXJf2iqOzzkh7Itv+XpPMkLZ2tG6nUDLM/MDb7XB+f3UOPBj5ZuBf19MJK75VF5R+6r1Z6v5LUX9L/SPpndr+Zog+6YnQAnwYOL7qHHpGtW6xZZgX3rSOyY2wm6bYspmck7dPT34dZvfgLhtXD8Oz1tez1o8A9wDGkph3XABdLOihbfzMwDfjQzQk4Avg3cCOApFHAH4CHgb2As4GTgXOy7c8AfpD9/Hlg62y70rKHuwpe0oCSpSc1RGuRmuH9EDgIWBm4svhYWUI0AXiPdO0HkJ7YfiS7ljuBR7KYtwbK9luo4PdScUyd2AF4G3g0e1/u9/xwlbEMB84EfkR6Qv1iJ+cuNEv6qaSPdhNnl7IvO6X/tostXRyiFrHcC6wCbNbD/c2svQ3PXiu6f0bEDOBaFm8KOTI71sUAkjYm3WvfID04PBU4mOyhHekze+vs559nP59BasJ4I6m55dZF23Sqis/UrlRyv7qQ1D3gSuALpBYRQ7J1X81ivrEo7r90Em+l9y1IXROuJ/1engWukLRGD6/RrD4iwouXHi/AaaSbxYBs2YCUlMwGViuzvbLtLgTuKCr/AekLvoq2ewn4WdE29wN3lhzv/wELgTWy90cAASxdtM1iZV1cS5RZdizapgO4umS/kdl2m2bvxwMLgPWLtvlits1GRWX3ARML11wmnquBjjLl44GJVf5eKoqpkzjGAQ+WlJX9nVYRSwCfqODva1XgsaJ/iydI/fy6/Lfs5FhHUP7f90NLPWMh/e0vAL5cr/+TXrx4aY2F2t0/dwQWAesUlf2u5D5xBSkZ6V9U9qXss2zrorIAjis574fuOV1cT+GzvXRZL1s/kqJ7ZdF+HRTdVyu5X5GaigZwQhfxTATGlyl/iZ5/tziqaJsVsjiPzftvyYuX4sU1d1YLK5Bqn94DJpE6hR8QEa8CSBqmNJrgy0XbjSbdyAouIj2hHJm93z57X3jq2B/4FIv3QfgDqQa626eJFZoFfKZkeaAHx3kpIp4tev9U9roGpNHHSE0RfxsRvWnmUs3vpcuYurAq6QtILWOZGhH/6O6YEfEa8ElS5/7zgeVIT3LvlTQwO+/5SqN2dvd7/DOL/9uWW3oUi6Q1JU2Q9LTSCJpnltaKRsQC4E3S79TMrBb3zwnAy2StXyQNBfYhu39mtgCujYiFRWXXkJKT/6jh9TzN4p+pr/TgON3dr7bPXsf34Njv68F3i1sLP0TEdNJgMa65s6biAVWsFmaRnhwGqSnJtJKEZTywFamJx1Okp5JfITV/ACAiXsjayB9JenJ5JPD3iHgy22RFYAngXyXnLrxfvkbXsiAiajHNwJsl7wuDhQzOXoeRnsK+2svzVPN76S6mzgwG3qlxLKXbdCr7MnIrcKuk40jNU48k3XTvAi4nPQF/rbNjZGbQy5FPu4nln8B/R8TELPG8jfQFq3QQgnl0/zs3s76hFvfPkHQxcJRS3+wvkb7fXVZ0nNUo+dyNiIWSplO7+yfAOw26h65AGrylVwN6Uf13i3Jx+fPcmopr7qwWFkTExIh4KCKmFt+YJA0GdgdOjYhzIuKO7IO/3N/er4F9JX2ExZ86vkF6YrlyyT6rZK8zanUx3XgXGFhS1pMb40xSM5rVehlPI34vM0i1VLWMpUe1lRGxiA+enA7Oyu6OiEqSxcP54Ml3V0uPYomIVwtfaiKN/PkYsGaZXZejcX+vZtbcanX/vJj0ebM9qQnhdRExs2j9q5R8Nme1VivQ2Psn1OYeOh0YImmZ3oXUNN8tzGrGyZ3V2yDS6FuF+XIKTUb2LLPtH0lPwa4g/W1eUViR1Zg8RBqKvtiXSEnSfTWNunNT+GAagIKdqj1IpPmLHgAO62JAk26fCDbo9zIJWLu7jWodi6RVOlm1J6kmsdrmsj1ullltLJJWIPURuaWkfCVgKVItn5lZVyq+f0bEK6SHTd8nNbO8uGSTB4C9s4SuYB9SDd/faht2p6Zkrx8rFEhaE9iwB8cqjFp8WBfbNMs91Kyh3CzT6ioiZkl6EDhF0mzSh+W3SU1RlinZ9l1JlwJfAy6PiNLmD6cCt2TNT64gjTh4BvCriJhCY1wLHC3pl6SRt7Yn9cHqiW8DtwM3SRpHGo1xa1LH9RtII33tJemLpJvitIiYVuY49f693EP691spIv7dzba1jOVKSW+RRkJ7ifRk9T9JzZG+XObvo0tZ/4ieTlxbcSySBpEGwxkTEU+XHGcEqdby3h7GYWZ9RDX3z8xvSH3HppCahRf7AWn05esknU/qJ/YT4JaIaEgCExFTsus5Q9I7pIe436EHtWMRMSm7b/5c0srA3aRWEftFxIHZZs8AO0vamfTZ/2J2HyjVDN8tzGrGNXfWCAeTRsL8HTCW1Afpd51se132elHpioi4FTiQ9AX5z8BJpCGbj6txvJ2KiL+Qbkb7kRK9j2Zx9ORYd5Nq/ZYCfk/qwL0dHzzdPI/0JPYi4EFSJ/pyx6n376WDdPPdpbsNaxzLb0kPoP6PlASPIzXn+XxE/KYHx+uNimLJnopfCjwSET8vc5xdgLs6+YJhZlaqmvvnDaQBUn6bNRt/X9Z/fVfSg6k/kpK9y0n3skY6GJhMuuf9H3A6qXVIT3yVVFN5CGnKgzHA3KL1PyAN8HIl6R66R7mDNMN3C7NaKgw7b9YUJJ1Jmu9t7dKbk+VH0ljScNa75x1LZyRFRPRkTsJaxvBrUjOqo0pHQc0Sv5eBb0fE7/OIz8zal6TdSAneBhHxXN7xmFk+XHNnTUHShpL2Jo0CdrYTu6bzU2CkpA263bLBJP1a0pTs5ylZgpVHHNsCR5Oe/j4i6R+STijaZH/SU+Uryu1vZtYTklaXtB3wY+BGJ3ZmfZuTO2sWF5KGbb4ROCvnWKxE1u/gaHo/umfNRcQxEbFGRCh7PSanOO7JYtgsIj6RLcV/ywKOzua6M1uMpP0lXZ/N2zhH0kOSDqpgv/UlXSPpX5JmS7pXUrfNqK1tjCbNdfcucHzOsZhZCUkXSXpd0hOdrFc2n+Vzkh6T9KmidQuzh8X/kHR9Redzs0wzM7P8SbqP1L/qOtIQ7bsB3wROiIizO9lnKPA4aXqVM4A5pC/7ewHbRsTfGxC6mZl1QtLnSJ/Nv4uITcus3430YGY3YEtgbERsma2bExFLV3M+j5ZpZmbWHPaIiDeK3t8haXXgG0DZ5A7YljSw0x4R8TiApDuAqcC+gJM7M7McRcTdkoZ3sclepMQvgPslLSdptYh4tSfnc7NMMzOzJlCS2BU8wuITLBdbInudVXScBaSpVXIdYMjMzCryEeCVovdTsjKAwZImSro/mxqrW32i5m7FFVeM4cOH1/08b7/9NkOGDKn7eRrN19VafF2txddVew899NAbEbFSLievvW2Ap7pYP4E09+LPJH2TlNQdS0oIx1dygoH9lowlB5SbNs3MrLnNfu/1mn3ebztycLw5o/rx/J56/L0nSX1eC8ZFxLgqDlHuQVyh39xaETFN0jqk1hyPR8TzXR2sTyR3w4cPZ+LEiXU/T0dHByNHjqz7eRrN19VafF2txddVe5JezuXENSZpB1JznaM62yYi3pE0kjQY1eSseDawV0R0lRS+b8kBy7DNygf0Mlozs8a7eerZNfu8f3PGIi67YZWq9/vER6e8GxEjenHqKcCaRe/XAKYBRETh9QVJHcAngS6TOzfLNDMzazJZ/4zLgD9FxPguthsCXEUaUGUvYCfSJNXXSPpkF/uNzpr6TJy/aG5nm5mZWf1dDxyWjZq5FTArIl6VNEzSIABJK5L6WHf70K5P1NyZmZm1CknLAzeRauIO6Wbzo4GNgTUi4s2s7HZJGwLfB/Yst1PWZGgcwLIDV/Gw2WZmdSLpcmAksGI2L++pZP2lI+ICUsuL3YDngHeAI7NdPwZcKGkRqULux5W0yHByZ2Zm1iQkLQXcAAwEdo+It7vZZSPg5aLEruAfwHZ1CNHMzKoQEV3OV5qNkvm1MuX3AptVez43yzQzM2sCkgaQmliuD+waEa9XsNvLwHBJw0rKP00aaMXMzPoQ19yZmZk1h/NITXNOBJbP+l4UPBIR8yRNAIiIHbLyy4DvADdKOpPUpOcQYAvgCw2L3MzMmkLDa+4krSfpQkmPSlqYjfxSyX7LSrpY0kxJsyRdKmmFOodrZmbWKKOy17HAfSXLatm6/tkCQES8AmwPvAlcSKr52xDYLyL+0piwzcysWeRRc7cJ6cnk/aQ+BZX6A+mGdQywCPgJcB3w2VoHaGZm1mgRMbyCbUaWKXsY2LUOIZmZWYvJI7n7c0T8CUDS1cCK3e0gaWtgZ2C7iLg7K5sKPCBpx4i4vZ4Bm5mZmZmZNbuGN8uMiOqnfk9PJP9VSOyy4/wdeBE/rTQzMzMzM2uZAVU2Ap4pU/50ts7MOhMBjz8O//pX3pH0yrBHH4X33ss7jN4bOBC22QaWWCLvSMzMzKzNtEpyN4zUWbzUTGCdcjtIGg2MBlhllVXo6OioW3AFc+bMach5Gs3X1VoK17XEjBmscvvtrHrzzSz94ot5h9VrH887gBp6+jvf4V877QS0/9+hmZmZNU6rJHcAUaZMnZQTEeOAcQAjRoyIkSNH1i+yTEdHB404T6P5ulrI/Pk8ceaZbPrgg3DjjbBgAWy5JXzrW7D55nlH1ysPP/wwn/rUp/IOo3dmz4bdduNjq6zCx7K/vbb8O6R9r8vMzKyZtUpyNxNYqUz5cpSv0TPre374Qxgzhk3feANWXRW+8Q04/HDYeOO8I6uJ2e+9B9tum3cYvTNnTnp999184zAzM7O21CrJ3TOUn/JgI9J0CGZ924MPwve+B6NG8dj227P5ySfDgFb5792HDB6cXufNyzcOMzMza0sNHy2zh24CVpX0H4UCSSNI/e1uyi0qs2YxdiwMHQpXXcWMrbZyYtesBgyAfv2c3JmZmVldNPwboKSlSJOYA3wEWEbSftn7GyPiHUnPAXdFxNEAEXGfpFuA30k6mQ8mMf+b57izPm/aNPjDH+C442CZZfKOxrozaJCbZZqZmVld5PF4f2XgqpKywvu1gZdIcfUv2eZA4JfARaQaxxuAE+oWpVmrOP98WLgQjj8+70isEoMHu+bOzMzM6qLhyV1EvEQa5bKrbYaXKXsTODJbzAxg7ly44ALYc09Yp+ysINZsBg1ycmdmZmZ10Sp97sysnMsugzfegJNOyjsSq5SbZZqZmVmdOLkza1URaSCVzTeH7bbLOxqrlJtlmpmZWZ14SD2zVnXnnfD443DRRaAuWzpbM3GzTDMzM6sT19yZtaqxY2GlleCgg/KOxKrhZplmZmZWJ07uzFrRc8/Bn/8Mxx77wcTY1hrcLNPMzMzqxMmdWSs6++w0IfZXvpJ3JFYtN8s0MzOzOnFyZ9ZqZs+Giy+GAw6A1VbLOxqrlptlmpmZWZ04uTNrNRddBG+95ekPWpWbZZqZmVmdOLkzayULF8JZZ8F//Ad8+tN5R2M94WaZZmZmVidO7sxayQ03wIsvwokn5h2J9ZSTOzMzM6sTJ3dmrWTMGFhrLfjiF/OOxHrKfe6sE5L2l3S9pKmS5kh6SFJFc51I+pykuyS9LenN7Oe16h2zmZk1Fyd3Zq3i0UehowOOOy6NlGmtyX3urHPfAOYAXwf2BO4ELpN0fFc7SdoFuB14NNvvEOA+wPOkmJn1Mf6GaNYqxo6FpZaCY47JOxLrDTfLtM7tERFvFL2/Q9LqpKTv7HI7SFoC+BXw04j4btGqG+oXppmZNSvX3Jm1gtdfh0svhSOOgGHD8o7GemPQIJg/HxYtyjsSazIliV3BI8DKXey2E7AGcG5dgjIzs5bi5M6sFVx4YUoITjgh70istwZnLeXmz883DmsV2wBPdbF+S2A6sJWkZyUtkPSEpD0aE56ZmTUTJ3dmzW7ePDjvPNh1V9hww7yjsd4aNCi9ummmdUPSDsBedF0rtyowBBgH/AzYhZQMXitps7oHaWZmXZK0i6RJkp6T9O0y6z8qaYKkxyR1SFqjaN3h2YO7ZyUdXsn5nNyZNbsrr4TXXvP0B+2ikNx5xEzrgqThwGXAnyJifBeb9iMNnPK9iLgwIm4HDgJeBP5fF8cfLWmipInzF82tWdxmZvYBSf1JD+h2BTYGDpK0cclmPwN+FxGbA6cDP8r2XR44ldRCYwvgVEnd9s1xcmfWzCLS9Acf+xiMGpV3NFYLhWaZrrmzTmQ39JuAyaSRL7syI3u9s1AQEQuBu0hfJMqKiHERMSIiRgzst2QvIzYzs05sATwXES9ExHzgClKLjGIbAxOyn+8sWr8zcFtEzIiImcBtpNYZXXJyZ9bM7rkHHn441dpJeUdjteBmmdYFSUuRRrocCOweEW93s8vTnR0K8Kg9Zmb5+gjwStH7KVlZsUeBfbOf9waGSlqhwn0X46kQzJrZmDFpdMxDD807EqsVN8u0TkgaAFwFrA9sGxGvV7DbLcACYAdgUnac/sB2QEd9IjUzaz/TFy7NJTO36cGeV64oaWJRwbiIGJf9XO7JfJS8Pxk4R9IRwN3AVNLneiX7LsbJnVmzevlluPZa+Na30vx21h7cLNM6dx6wG3AisLykrYrWPRIR8yRNAIiIHbLXVyWdC/xYkoDngNGk6RF+1NDozcz6pjciYkQn66YAaxa9XwOYVrxBREwD9gGQtDSwb0TMkjQFGFmyb0d3wTi5M2tW55yTmmJ+7Wt5R2K15GaZ1rlCx9qxZdatDbwE9C+z7lvA28D3gOVJc+PtHBHP1yFGMzOr3IPA+pLWJtXIHQgcXLyBpBWBGRGxCPgf4KJs1S3A/xUNojIqW98lJ3dmzWjOHPjVr2DffWHNNbvf3lqHkzvrREQMr2CbkWXK3gO+my1mZtYkImKBpONIiVp/4KKIeFLS6cDEiLieVDv3I0lBapb5tWzfGZLOICWIAKdHxIzFTlLCyZ1ZM/rtb2HWLDjppLwjsVorNMt0nzszM7O2FxE3AjeWlJ1S9PPVwNWd7HsRH9TkVcSjZZo1m0WL4KyzYIstYKutut/eWotr7szMzKxOXHNn1mxuvhn++U+49FJPf9COnNyZmZlZnbjmzqzZjB0Lq68O++2XdyRWD26WaWZmZnXi5M6smTz5JNx6K3z1qzBwYN7RWD245s7MzMzqxMmdWTM566xUszN6dN6RWL04uTMzM7M6cXJn1iymT4dLLoFDDoGVVso7GquXQnLnZplmZmZWY07uzJrFr34Fc+fCCSfkHYnVU6HPnWvuzMzMrMac3Jk1g/feg3POgR12gM02yzsaq6cBA6BfPyd3ZmZmVnOeCsGsGfzxjzB1KlxwQd6RWCMMGuRmmWZmZlZzTu7MmsGYMbDeerDbbnlHYo0weLBr7sxqaO6mH8k7BLOaWfKJqXmHYC3MyZ1Z3h54AO6/P42U2c8tpfuEQYOc3FnTc8Jklo+5m37ECZ71mJM7s7yNHQvLLANHHJF3JNYobpZpTWTRkks4kTNrMk7wrKcantxJ2hg4G9gaeBP4NfD9iFjYzX4jgP8DPg0IeBj4bkQ8UN+IzepoyhS46io4/ngYOjTvaKxR3CzTrNdmbjgw7xDM6mLYpPmAEzzrmYYmd5KGAbcDTwF7AesCPyeN2vm9LvZbM9vvYeCwrPhbwK2SNo+Il+sZt1ndnHceLFqUkjvrO9ws0/oAJ19mPTNzw4FO8KzHGl1zdyywJLBPRMwGbpO0DHCapDOzsnJ2B4Zm+70JIOle4A1gN+D8+oduVmPvvAPjxsFee8Haa+cdjTWSkztrYn09KXtr3UV5h2B93NDn+znBsx5rdHK3K3BLSRJ3BfATYDvgz53stwSwAJhTVDYnK1Md4jSrv0svhenT4cQT847EGm3wYPe5s6axcLBaLqFzAmbt7K11F72f4EFqpukEzyrV6ORuI+CO4oKImCzpnWxdZ8ndNcDpwM8l/TArOwWYCVxVp1jN6iciDaTyiU/A5z6XdzTWaIMGwdtv5x2FWW6cnJl1rZDgwQfNNAsDHznJs640OrkbRhpEpdTMbF1ZETFN0vbADcAJWfGrwM4R8e+aR2lWbxMmwJNPwvjxIFc+9zmDBsGMGXlHYdZrrZikLb32rLxDMOvSnBeXBconeOBmmta1PKZCiDJl6qQ8rZRWA64GHgKOyYq/BvxF0jYRMbnMPqOB0QCrrLIKHR0dvQy7e3PmzGnIeRrN11V7m/3v/zJ02DDuW201osYx+N+r+W3y1lssNX06D3Z0tNV1FWvX6+oLmj1hc3Jm7W7ptWc5wbMea3RyNxNYrkz5spSv0Sv4FinW/SLiPQBJdwDPAifzQW3e+yJiHDAOYMSIETFy5MheBV6Jjo4OGnGeRvN11dizz6ZJy089le1Gjar54f3v1QLWWAOmTmXkyJHtdV1F2vW62tHCQfkmdK2QrI1aa1LeIVgfcevkDQEneNZzjU7uniH1rXtfNs3BkGxdZzYCniwkdgARMV/Sk6TpFMxax1lnwcCBcOyxeUdiefFomVaGpP2BQ0nzuS4LTAJ+FhGXV3GM60hTDR0fEefUJdAKNEvC5qTMWk3hb/bWyRs6wbMeaXRydxPwLUlDI+KtrOwAYC5wVxf7vQzsJmlgRMwHkDQI2JTOB2Exaz5vvgkXXwwHHgirrpp3NJaXQYM8WqaV8w3gReDrfDDVz2WSVoyIs7vbWdIoYKv6hph/4uaEzfqCUWtNej/Bg9QPzwmeVaLRyd0FpCaUf5T0E2Ad4DTgF8XTI0h6DrgrIo7Oin5N6mt3raTzSH30vgasRtb00qwlXHRRGiXR0x/0bYMHu+bOytkjIt4oen+HpNVJSV+XyZ2kJYCxwHdJ98weyyt5yztpO3TYvbme36zgkpnbAB8kePBBM81CE2rPhWedaWhyFxEzJe0AnEOqcXsT+CUpwSuNq3/Rfg9J2gU4FbgkK34c2CkiHq133GY1sWBBapL5uc/Bpz6VdzSWJzfLtDJKEruCR0jNLLtzIqkVzMVUmdz1H7Sw7gldoxM3J2rWyg4ddm+XCR54LjzrXMNHy4yIp4DPd7PN8DJlE4AJdQrLrP6uvx5efhl+8Yu8I7G8DRoE8+fDouYeldCawjbAU11tIGlV4H9JNX+L1GTTqzixM2scJ3jWL+8AzPqMsWNh+HDYq5KH8NbWBg9Or/Pn5xuHNbWspctewLndbHomcEtE3F3/qKpXqHVolEKNh5lZX+TkzqwRHn4Y7r4bjj8e+vfvfntrb4MGpVc3zbROSBoOXAb8KSLGd7Hd1sB+pCmDqjn+aEkTJU1cMOudXkRaGSd4ZmaN4eTOrBHGjoUhQ+Coo/KOxJqBkzvrgqTlSaNLTwYO6WbzMcCFwCxJy0kqzCW7pKRlO9spIsZFxIiIGDFg2aVqEnd3nOCZmdWfkzuzenvtNbjiCjjySFhuue63t/ZXaJbp6RCshKSlgBuAgcDuEfF2N7tsCJwEzCxaIDXVnF6vOHsqjwTPSZ6Z9SVO7szq7YILUt+qE07IOxJrFq65szIkDQCuAtYHdo2I1yvY7QvA9iULwFnADpWcd+G8xjYVb3SCB67FM7O+w8mdWT3Nmwfnnw+77w7rr593NNYsnNxZeeeRJi4/A1he0lZFyyAASRMkvT9ydET8LSI6ipds1bMRcVelJy4Mr94oTvDMrK+QtIukSZKek/TtMut/Kekf2fJPSW8WrVtYtO76Ss7X8KkQzPqUK66A11+Hk07KOxJrJm6WaeWNyl7Hllm3NvASRXPA1tqcF5dt6ATmt07esOHTJFwycxtPlWBmDSOpP2nE452AKcCDkq7PpoYDICK+XrT98cAniw4xNyI+Uc05XXNnVi8RMGYMbLIJ7FBR6yjrK1yR3JeIAAAgAElEQVRzZ2VExPCIUCfLS9k2IyNiZDfHUUSc05MY8qjB80ArZtbGtgCei4gXImI+cAVpipvOHARc3psTOrkzq5e774Z//ANOPBGabFJhy5mTO2tijU7wwCNpmlnb+gjwStH7KVnZYiR9lNRK446i4sHZtDX3S/piJSd0s0yzehk7FlZYAQ7pbiRz63OKm2Uu1Zhh6M2q0egmmtD4ZppuomlmxWbPH9zTB00rSppY9H5cRIzLfi73dD86Oc6BwNURsbCobK2ImCZpHeAOSY9HxPNdBeOaO7N6ePFF+NOfYPRoWHLJvKOxZuOaO2sBc15ctu0HWnENnpnVwBuFeUOzZVzRuinAmkXv1wCmdXKcAylpkhkR07LXF4AOPtwfrywnd2b1cPbZ0K8ffPWreUdizcjJnbWQvpDgOckzszp5EFhf0tqSBpISuMVGvZS0ITAMuK+obFjRSMkrAtsCT5XuW8rJnVmtvfUW/OY3sP/+sMYaeUdjzcijZVqLafcED1yLZ2a1FxELgOOAW4CngSsj4klJp0vas2jTg4ArIqK4yebHgImSHgXuBH5cPMpmZ9znzqzWxo+H2bPTQCpm5bjmzlqQp0owM6teRNwI3FhSdkrJ+9PK7HcvsFm153PNnVktLVoEZ50FW20FW26ZdzTWrJzcWYtyDZ6ZWXNzcmdWSzfeCM8950nLrWuF5M7NMq0FeS48M7Pm5eTOrJbGjIGPfAT22SfvSKyZFfrcuebOWpTnwjMza05O7sxq5YknYMIEOO44WGKJvKOxZjZgQBpN1cmdtTAneGZmzcfJnVmtjB2b5rT78pfzjsRawaBBTu6s5TnBMzNrLk7uzGrhjTfg97+HQw+FFVbIOxprBYMHu8+dtQVPdm5m1jyc3JnVwrhx6Yu6pz+wSrnmru1I2lvSCdlktMXlx+UVUyP1hQTPSZ6ZNTsnd2a9NX8+nHsujBoFG2+cdzTWKpzctRVJPwZOBNYDbpNUPGTuUflE1XjtnuCBa/HMrLk5uTPrrauvhmnTXGtn1XGzzHazO7BjRJwAfBLYU9JPs3XKL6zGc4JnZpYfJ3dmvRGRpj/YYAPYZZe8o7FW4pq7dtMvIhYARMR0YBdguKTf0AfvtZ4Lz8wsH33uhmNWU/ffDw8+mGrt+vm/k1XByV27eVXSpwpvImI+cAAQwKa5RZUjj6RpZtZ4/jZq1htjx8Kyy8Jhh+UdibUaN8tsN0cA04oLImJRRBwDfDaXiJqAEzwzs8ZycmfWU6+8kvrbffnLsPTSeUdjrcY1d20lIqZExGudrLu30fE0Eyd4ZmaN4+TOrKfOPTf1ufva1/KOxFqRk7uWJGmspL+XKR8g6bOSdpK0TB6xNTPPhWdm1hhO7sx64p130tx2e+8Nw4fnHY21IjfLbFU7AHcWF0gaAkwEOoCbgamSjmh4ZC2gLyR4TvLMLE9O7sx64pJLYOZMOOmk7rc1K8c1d61qTaC0meUJwObAeOBg4M/AryVV1ddO0v6Srpc0VdIcSQ9JOqibfTaUdK6kpyW9I+mFrHZxuWrO3UjtnuCBa/HMLD9O7syqFZEGUvn0p2HbbfOOxlqVk7tWtQQwp6TsYGBKRBwdEX+IiEKC9/+qPPY3smN/HdiTVEN4maTju9hnJ2Bb4HxgN+AHwP7ArZIqusf3z+HP0AmemVl9OLkzq9Ztt8HTT6fpD9Sn5ia2WnJy16qeAbYsvJG0FrAJcH3Jdr8Htq7y2HtExMERcWVE3BERJwOXk5K+zlwOfDIizoqIjoi4iDRy52eoYpTOoc/3Y+jzjf1K4ATPzKz2nNyZVWvMGFh1VfjSl/KOxFqZ+9y1qouAkyWNkrQE8E3SXHbXlWz3OlDVMLoR8UaZ4keAlbvYZ3pERJl96Gq/zvSFBM8DrZhZO3NyZ1aNZ56Bm26Cr3411byY9ZRr7lrVucDtpIFT3gWOBx4HJpRsN5yU4PXWNsBTPdiHHuwHtH+CBx5J08zal5M7s2qcfTYMHAj/9V95R2KtbtAgmD8/9eG0lhHJl4DdgTOBU4Cdy9SefQl4ojfnkrQDsBcpoax0n6WAHwN3RcSTPT23E7zac4JnZo3g5M6sUjNnwvjx8J//CStX3drJ7MMGDwag33vv5RyI9URE3BQR/xMRP4iIfxWvk7QyMBS4sqfHlzQcuAz4U0SMr3AfAb8hNcc8qpttR0uaKGnigrlvl93GCV7tOcEzs3preHInaWNJE7Ihm6dJOl1S/wr33UfSg5LmSpou6eZsfiGz+vv1r9P8dieemHck1g6yZr2aPz/nQKzWIuL1iBhZaVJWStLywE3AZOCQKnb9CbA38MWIeKGbGMdFxIiIGDFgyc5vo3kkeO0+0IrnwjOzemrop7akYaS+CkFqanI6qTP69yvY9xjSU8ybgF2BY4BngQH1itfsfQsWwDnnwMiR8PGP5x2NtYMsuXPNnRXLmlXeAAwEdo+I8tVqi+/3deBk4LCI+GstY2p0ggceSdPMrKca/Yl9LLAksE9E3BYRF5ASu29IWqaznSStCPwSOD4iTsmGe742Io6PiFmNCd36tOuug8mTPWm51U6hWaZr7iwjaQBwFbA+sGtEVDQgi6SDgZ8D34yIHjcF7YoTvPpwgmdmtdboT+tdgVsiYnZR2RWkhG+7LvYrjDn/23oFZtalMWNg7bXhC1/IOxJrF665s8WdR5qI/AxgeUlbFS2DALJuDe+PzClpO2A8cCtwX8k+a9QyOM+FVx9O8Myslhqd3G1EmgD2fRExGXgnW9eZLYFJwNGSpkh6T9IDkvyJaPU3cSLccw+ccAL0r6h7qFn3nNzZ4kZlr2OB+0qW1bJ1/bOlYHtgCWDnMvscU48g+0KC54FWzKxVNTq5Gwa8WaZ8ZrauM6sCGwLfA/4b2AN4G7hZ0iq1DtLsQ8aOhaFD4aguB58zq46bZbaNbKCwQyV9R9KqWdl6koZWc5yIGB4R6mR5KdtmZESMLNrntC72Oa2Gl/kh7Z7ggUfSNLPWlMdgJOUmdVIn5QX9gKWB/SPiZgBJ9wIvA8cB/7vYAaXRwGiAVVZZhY6Ojt5FXYE5c+Y05DyN1peva+D06Wx1xRVM23NPnnv44cYE1kt9+d+rlQx75hk+Drw7a1ZbXVdBu/17lSNpaeAiYF9gAemeejPwGvB/pNEuT84twDob+nw/3lp3UcPON+fFZVl67cZ2s7918oaMWmtSw853ycxtOHTYvQ07n5m1n0YndzOB5cqUL0v5Gr2CGdlrR6EgImZLegjYuNwOETEOGAcwYsSIGDlyZA/CrU5HRweNOE+j9enrOuUUWLiQNX7yE9ZYb72GxNVbffrfq5VIAAwZMIBPtNN1Zdru36u8XwDbADsC9wDvFq27kZTYtW1yB07w6sEJnpn1RqObZT5DSd86SWsCQyjpi1fiaVLNnkrKBTTurmJ9y7vvwgUXwB57QIskdtZC3CyzHewD/HdE3AksLFn3MvDRxofUeJ4Lr/bcRNOsfUjaRdIkSc9J+nYn23xJ0lOSnpR0WVH54ZKezZbDKzlfo5O7m4CdS/ohHADMBe7qYr8bSInc9oUCScsCnwYerUOcZnD55fDvf3vScqsPD6jSDpYEpneybiiLJ3xty1Ml1J4nOzdrfZL6A+eSZgzYGDhI0sYl26wP/A+wbURsApyUlS8PnEoaWHIL4NRszvAudftpLOkwSStUeS2duQCYB/xR0o5Zv7jTgF8UT4+QZba/KbyPiInAn4DfZBns7sD1wHukX5hZbUWk6Q822wy237777c2q5eSuHTwIHNbJuv2APtW2zglefTjBM2tpWwDPRcQLETGfNAXcXiXbfBk4NyJmAhTNcbozcFtEzMjW3Qbs0t0JK/kkvhhYF0DSQklbVHQpZWSB7UAaxvnPpAnMf0nKSosN4MNDPQMcAlxH6uNwNSmx+3zhF2FWUx0d8NhjadJylbYGNquBrFmm3CyzlX0P2EfS7aRpBwLYTdIlwP4sfm9re07w6sMJnlnL+gjwStH7KVlZsQ2ADSTdI+l+SbtUse9iKhlQZSawevZzd6NadisingI+3802w8uUzQG+ki1m9TV2LKy4Ihx8cN6RWLsq1Nw5uWtZEfE3STsAPwbOId0jvw/cD+wYEQ/mGV9eCgleOw+0UkjwPNCKWftYOK9/Tx8WrShpYtH7cdnAjrD4eCGweC41AFgfGAmsAfxV0qYV7ruYSpK724FLJE3KDjhe0tudbRwRPa7ZM2sKzz8P118P3/3u+7UrZjXnZpltISLuAT4raUmyuVwj4p2cw2oKHkmz9pzgmTWlNyJiRCfrpgBrFr1fA5hWZpv7I+I94MUs51o/Kx9Zsm9Hd8FU0n7iKNKTyEdIGeSLwJNdLGat7eyzoX9/+Ioria2OnNy1PEkfl7QbQETMjYhphcRO0m6SNs83wvx5svPacxNNs5byILC+pLUlDQQOJI0bUuw6skEjJa1Iaqb5AnALMErSsGwglVFZWZe6rbnLblQ/y064I/DdiPAIldaeZs+Giy6CAw6A1VfvfnuznvJUCO3gl8BfSXPalfoM8E1SP/M+zTV4tecaPLPWEBELJB1HSsr6AxdFxJOSTgcmRsT1fJDEPUUaZflbETEdQNIZpAQR4PSImLH4WT6sktEyF0r6TPa2A5jdxeZmre3ii+Gtt9JAKmb1NGAA9OvnmrvW9inS5OXl3Ad8soGxNDXPhVd7rsEzaw0RcWNEbBAR60bED7OyU7LEjki+EREbR8RmEXFF0b4XRcR62XJxJeer5NN2PjAo+/kwYKXqLsmsRSxcCGedBdtsAyM6azptVkODBiEnd62sPzCkk3VDgIENjKXpeSTN2vNceGZWqpIBVZ4CTpN0HanP3X6SOvvmGxFxfs2iM2ukv/wFXngBfvzjvCOxvmLwYDfLbG0PAqOBa8usGw1MLFPepzW6iSbkM5JmI5togptpmtkHKknujgcuJPUtCODkLrYNwMmdtaYxY2DNNWHvvfOOxPqKQYOc3LW204DbJT0A/BZ4DViN1Mrl48BO+YVWuf7v9mqGo6o5wasPJ3hmBhU0y4yIe7P2n0uQau62ioh+nSylE4+btYbHHoM774Tjjkt9ocwaYdAg97lrYRFxN2n0skXA2cDVwFhgAbBTRPw1x/CqMmxSYx8yDH2+X9uPpOnJzs0sD9V+sm5PaqZp1l7GjoWlloJjjsk7EutL3Cyz5UVER0RsDQwlzWW0TERs20qJXUGjEzxo/6kSbp28oQdaMbOGqupTNSLuiog5kraU9E1JP8xet6xXgGZ19/rrcOmlcPjhsPzyeUdjfYlr7tpGRLwTEVNbfQJzJ3j14QTPzBqlqvZnkoYAVwE7k+ZhmA6sAPSXdDOwf6vf2KwPuvBCmDcPjj8+70isr/FomS1H0t+BIyLiKUkPkvqadyoitmhMZLUzbNJ8Zm7Y2IE+PRde7bkPnlnfVO3jsjOBrUmzqw+OiNWAwdn7rYGf1DY8szqbPx/OOw922QU+9rG8o7G+ZvBg19y1nieBuUU/d7e0pGGT5ufSD6+RXINnZu2o2pEj9gX+OyKuKhRExCLgKknDgNNJo2uatYYrr4TXXoMTT8w7EuuLBg2i34wZeUdhVYiII4t+PiLHUBqi0bV4edTgAW09kmYhwXMtnlnfUO1jsmWBVzpZ9wqwTO/CMWugiDT9wUYbwahReUdjfZGnQmhZkpaQtK2k1fOOpd7avQYPPJKmmbWPaj9BHwW+IknFhdn7r2TrzVrCMk88AQ89lGrt+jX+y4SZm2W2tIXAHUDN2nNL2l/S9ZKmSpoj6SFJB1Ww3yBJP5f0uqS3Jf1F0vBaxQVO8OrBCZ6Z1UO1n57fIQ2m8oykH0v6uqQfAU+T5vr5Tq0DNKuXNa65BpZbDg49NO9QrK9yzV3LyrokPAusUsPDfgOYA3wd2BO4E7hMUnfdHc4CjgBOBvYDVgRukzS4hrF5Lrw6cIJnZrVW7VQIdwCfBB4B9gd+CHwJeBj4VETcWfMIzerh5ZdZ6a9/hdGjYciQvKOxvsqjZba67wKnSNqsRsfbIyIOjogrI+KOiDgZuJyU9JUlaQ3gaODrEfG7iLgJ2Af4KHBIjeJ6n6dKqD3PhWdmtVT1J2ZEPBURB0bEuhGxVPZ6cER4cnNrHeeem16/9rV847C+zfPctbrvkaYD+oekyZIelPT34qWag0XEG2WKHwFW7mK3QofhPxYdZyrwN2DXas5fKSd49eEEz8xqoapPS0k/k7RxvYIxa4g5c+BXv+Lfn/0srLVW3tFYXzZ4sJtltrYngRuA3wETgCeo/VQI2wBdPTzdCJgSEXNKyp/O1tWFE7z6cIJnZr3Vk6kQvi7pIeAi4PKIaOwsoGa99bvfwZtvMmW//bp8HG5Wd665a2n1ngpB0g7AXsBRXWw2DHizTPnMbF3dFBK8dp8qwZOdm1krqbbP3drAjsAzwE+BVyVdJmnHegRnVnOLFsFZZ8FnPsPsTTbJOxrr6wrJXUTekVgVJC0paV9J35R0sKRaDqpSOMdw4DLgTxExvpvNy/0BqZPywvFHS5ooaeJ789/uaZhA+4+kOefFZdt+oBXX4Jm1j570ubszIg4DViNNWL4GcIuklyV9X9I6tQ7SrGZuuQUmTUrTH3x4Rg+zxhucDWY4b16+cVjFsnvck8BVpIecvwcmSarZZJmSlgduAibT/aAoM4HlypQvR/kaPQAiYlxEjIiIEUsM7P2gUu2e4EH7j6R5ycxtnOSZtYEefzpGxJyI+A1wKnAPsCbwP8A/Jf1J0kdrFKNZ7YwZA6utBvvvn3ckZjBoUHp1ctdKzgQWAZ8FlgI2IQ16cmEtDi5pKVI/voHA7hHRXbXaM8CakkoztI2ydQ3jBK/2PFWCmVWrR5+MkoZLOlXSC8CtpHl59geGkubmGQ5cUasgzWriqafg1lvTCJkDG9dHxKxTTu5a0dbA9yLinoh4NyKeBv4LWEvSar05sKQBpBrB9YFdI+L1Cna7NXvdu+g4q5OSz5t6E09POMGrPSd4ZlaNqgZUkXQocCTwOVJzkYuBiyNiStFmN0p6G7i9ZlGa1cJZZ6Uv06NH5x2JWVJolvnuu/nGYdVYDXihpOx5Uh+3VYFXe3Hs84DdgBOB5SVtVbTukYiYJ2kCQETskL1OkfQbYIwkAf8GTgNeJjUZbbhhk+Y3fJAVoK0HWikkeB5oxcy6U+0jr3HAa8DOEbFORJxRktgV/BP4Qa+jM6uVGTPSKJmHHAIrrZR3NGaJa+5aVb1GwCn02xsL3FeyFGoF+2dLsRNI0zH8ArgGmAGMiojcnhp4qoT68EArZtadaj8JV88mLJ/Q1UYR8WpEfL8XcZnV1q9+BXPnpoFUzJqFk7tWdYuk1wsLH9TWTSguz9ZVLCKGR4Q6WV7KthkZESNL9psXEd+IiJUiYkhE7BYRL9biQnvDCV59OMEzs65U1SwzImbWKxCzunnvPTjnHPj852GzzfKOxuwDHi2zFfnBZRU8F159eC48M+tMtZOYI+kA4MvABsDg0vUR4Xmhrblcey1MmQLnnZd3JGYfVqi5c5+7luFWKT2TRz+8Rid4QMP74TnBM7NSVbVfkHQw8FvgOdL8dteThmzuB8wGzql1gGa9NmYMrLsu7L573pGYfZibZVof4pE0a89z4ZlZqWo/+b4FnAF8LXt/XkQcBawNvAG8U8PYzHrv73+H++6DE06Afo2/0Zt1yc0yrY9xgld7nirBzIpV+6m3PnBPRCwEFgLLAETEW8BPgONqG55ZL40dC8ssA0cemXckZotzs0xrAv3mvtfQ8znBqz0neGZWUO0n3iwg+zbCVOBjResErFCLoMxqYupUuPJKOPpoGDo072jMFudmmdYklnxiakPPl0eC1+4jaTrBMzOoPrmbCGye/Xw9cIqkL0s6HPgp8EAtgzPrlfPOg4UL4ThXKFuTcrPMlibpFEmrd7JuNUmnNDqm3mj3BA/af6qEWydv6KkSzPq4aj/lfgRMzn4+Bfg7cB5wManP3ejahWbWC3PnwoUXwl57wTrr5B2NWXlultnqTiUNLlbO6tn6luIEr/Y8F55Z3yZpF0mTJD0n6dtdbLefpJA0Ins/XNJcSf/IlgsqOV9Fn3CSlpS0L7AtMEDSKhHxZkTsBSwNLBcRW0bEC5Ucz6zuLr0Upk+Hk07KOxKzzrlZZqsTEJ2sWwNoyblhneDVnhM8s75JUn/gXGBXYGPgIEkbl9luKHACi7eCfD4iPpEtx1Zyzm4/3SStAzwJXEVqenkJMEnSKICImBcRsys5mVlDRKSBVD7+cfjc5/KOxqxzTu5ajqTDJd0h6Q5SYnd+4X3Rci/we+CufKPtuTwSvHYfaMUJnlmftAXwXES8EBHzgSuAvcpsdwZwJtDrpjyVfLKdCSwCPgssBWwCPAJc2JMTStpY0gRJ70iaJun0LKutdP9+kh7Kqi2/0JMYrM3dcQc88USqtZPyjsasc4U+d26W2UreAaZni0gDjU0vWV4k3TtbuqtCoxM8aP+RNOe8uGzbD7TiufCsD1pR0sSipfiz/yPAK0Xvp2Rl75P0SWDNiLihzLHXlvSIpLskfbaSYAZUsM3WwDcj4p7s/dOS/it7XS0iXq3kRACShgG3A0+RstZ1gZ+TkszvVXiYYyj5pZh9yJgxsPLKcOCBeUdi1rUBA4h+/ZBr7lpGRFxFasmCpIuBM9q5S8KST0xl7qaNveUOmzSfmRsObNj5hj7fj7fWXdSw80FK8pZee1bDznfr5A0Ztdakhp0PUpJ36LB7G3pOs97oP6/HD3zeiIgRnawrV8vwfnN+Sf2AXwJHlNnuVWCtiJgu6dPAdZI26a7FZCVXsBpQeuN6Pgt21Qr2L3YssCSwT0TcFhEXAN8HviFpme52zpLDHwLfrfK81lc8+yz85S9w7LEf1IqYNbFFSyzhZpktKiKOjIgXJK0uad9s9Oh9OhtBs1Ut+cTUtu+H57nw6sM1eGZMAdYser8GMK3o/VBgU6BD0kvAVsD1kkZkXd+mA0TEQ6T8a4PuTljpp1lnHcartStwS0nGeQUp4duugv3PAO4BJtQoHms3Z58NAwbAV76SdyRmFVk0cKCTuxaVdRM4D3iZVJt3IXA18LKkc7Mnsm2jLyR47d4PzwmeWcM9CKwvaW1JA4EDSdPJARARsyJixYgYHhHDgfuBPSNioqSVCl3XsjFQ1mfxCrfFVPopdouk1wsLqZoQYEJxebauKxsBzxQXRMRkUh+GjbraUdLmwJHAyRXGbH3NrFlw8cVw0EGwarWVymb5WLTEEu5z17pOB44CvgMMJz2oHJ69Pwo4Lae46qbdEzxo/4FWPBeeWeNExALgOOAW4Gngyoh4MhtzZM9udv8c8JikR0kPDo+NiBndnbOSPnffr2CbSg0D3ixTPjNb15WzgXMj4jlJw2sYk7WLiy6COXPgxBPzjsSsYuFmma3sMOB7EfGzorLJwE8lBWlY65aayLwSje6H1+g+eND4fniN7oMHje+H5z541ldFxI3AjSVlZe8NETGy6OdrgGuqPV+3yV1E1DK5g/JNPLuaKwhJBwIbAntUepJspJrRAKussgodHR3VRdkDc+bMach5Gq0lrmvhQrY880zmbbYZ/5g9GyqItyWuqwd8Xa1lxIABvP7KKzzVZtfWrv9eJVYGHutk3WPZ+rbkBK/2nOCZWS1UUnNXSzOB5cqUL0v5Gj0kLUGaX+8nQD9JywGFwVeGSBoaEW+V7hcR44BxACNGjIiRI0f2PvpudHR00IjzNFpLXNe118Jrr7HkOedUHGtLXFcP+Lpay5xBg1h5mWVYuc2urV3/vUr8k9R/4tYy6w4EGjs8YYPlkeABbT2SphM8M+utRnf2foaSvnWS1gSGUNIXr8gQ0sgyvyAlhzOBR7N1V5Dm3LO+buxY+OhHYa9y80KaNS8PqNLSfgAcIel2ScdK2lvSf0m6HTg8W9/WPBde7fWVufDMrD4andzdBOwsaWhR2QHAXOCuTvaZA2xfshyUrfsO8J/1CdVaxiOPwF13wfHHp5EyzVqIk7vWFRFXAruQHkKOJfWNOAtYCtglmxOv7TnBq4++kOA5yTOrvUZ/Wl0AzAP+KGnHrF/cacAviqdHkPScpN9AGmUmIjqKF9IwoQCPR8QDjb0Eazpjx8KQIXD00XlHYlY1j5bZ2iLi1ojYmjRS5qrAkhGxTUTclnNoDeUErz7aPcED1+KZ1VpDP6kiYiawA9Af+DNpJM5fAqeWbDog28asa//6F1x+ORxxBCxXrjunWXPzaJntISIWRcTrEdGrDlqS1pN0oaRHJS2U1FHhfiMk3SppuqQZWVPRLXsTS7U82Xl9OMEzs2o0vA1bRDwFfL6bbYZ3s/4l0gib1tddcAHMnw8nnJB3JGY9smjgQHhrsTGhrEVkk9IeAWwBrEaaB/YB4LcR0ZPMYxNgN1ILlYpGDsn6rt8OPEyangHgW8CtkjaPiJd7EEePtftImoUEr50HWikkeB5oxaz1NP4RlFmtzJsH558Pu+0GG2yQdzRmPeJmma1L0seAZ4FzgU2BhdnrucBzkjbuwWH/HBFrRsT+wJMV7rM7MBTYJyL+EhF/AfYGliYlig3X7jV40P6TnYMHWjFrRU7urHX94Q+pWeZJJ+UdiVmPLXKzzFY2DpgFrBsRW0XEnhGxFbBeVn5BtQfsYbPOJYAFpAHICuZkZbm1cnGCV3tO8MysO07urDVFwJgxsPHGsOOOeUdj1mMeLbOljQBOiYjJxYXZ+1OAzzQojmuAd4CfS1pZ0sqk/uwzgVxH7MwjwWv3fnhO8MysK07urDX97W9pCoQTTwS5+6W1rkUDB7pZZut6CRjcybrBwORO1tVUREwjTRO0L/CvbNkH2Dki/t2IGLrikTRrz3PhmVlnnNxZaxozBpZfHg45JO9IzHrl/7d35+FyVNX6x79vEpIwE2ZEkCciruMAACAASURBVDAIAvLTawQZrgRUZgGRSUUB4SIKiNcJnBHkKiIYAgFkUATEiCgKyAwGZRAhIkKEaJgDqEDCEBIIJOv3x66GptPnnO7T1V3ddd7P89TT3dW7ulad09PqvWsvz5bZ044GvlM7K6Wk9wDHAkd1IghJqwGXAFOBHbNlKvA7SWv2sc0hku6UdOf8hfPaHqMTvPYYCgmekzyz5ji5s97z8MPwm9/Apz4FSyxRdDRmLVm42GJpxteIokOx5n0dWAa4VdKTWfmCJ4FbgGWBr0r6c2VpYxxfIs1+vWdEXB0RV5N68RYAX6y3QUScFRHjImLcyGGLtzG01znBa4+yJ3jgXjyzZnS8FIJZy047LQ3F/Mxnio7ErGULR2ZTuM+fD6NGFRuMNevebCnaBsC0iHilsiIi5kuaBqxTXFiLqiR4ZS+V0MkyCVBMqYROlkkAl0owa5STO+stL7wA55wDe+0Fb35z0dGYtWzhYoulKy+95OSux0TEgUXHkHkE2EnSyEptPUmjSGUZLi80sj64Fl7+nOCZGXhYpvWan/4UnnvO5Q+sNF5L7nzeXU+TtISkIyRNkvQNSW9p4XH2lLQnsDqwUuW2pCWyNjMknVu12TnAm4BLJe0saRfgN6Si6me1dmTt41IJ+StiiKYnWjHrLk7urHcsXAgTJ8Jmm6XFrAReG5bp5K4nSDpJ0j9q1i0N/AWYAOxDKoNwt6S3DmIXK5PKF/wSeA+wYdXtlbM2I4DhlQ0iYiqwA6mQ+QXA+cASwAci4u5BxNAxTvDy51IJZkObkzvrHVddBf/8p3vtrFSikty5HEKv2Aa4sGbdF4G3Av8TESuSetEeBr7R7INHxMMRoT6Wh7M2a0XEATXb3RAR742I5bNl64iY0vTRFcAJXv6c4JkNXU7urHdMmACrrw4f/nDRkZjlxsMye85apDID1T4M/D0ifgyQ1ZY7Cdiys6H1Lhc7z58TPLOhycmd9YZp0+D66+Gww6DyZdisBDwss+eMAF7rZpW0PPA24Maadg8Dq3YurN7nUgn5GyrFzp3kmb3OyZ31hlNOgdGj4ZBDio7ELFdvmC3TesE/gPFVt3fJLq+pabcyMKsTAZWJE7z2KHuCB+7FM6twcmfd7+mn4YIL4OMfhxVWKDoas1x5WGbPOQ04WtJESV8DTgQeAq6tabcd3VEDr+c4wWsPJ3hmQ4OTO+t+Z5+dejWOPLLoSMxy52GZvSUiziPNhrkH8BVgOvCh6gLiklYCdgN+W0SMZbD4vY+XfqKVpR8YVvrz8JzgmXWekzvrbq+8AqedBh/4AGy0UdHRmOXOs2X2noj4bkS8OSKWymaovKfm/qciYtWIOKOoGMui7AkelH+iFdfCM+ssJ3fW3S65BJ54wr12VloelmnWPyd4+fNMmmbl5eTOutspp8B668GOOxYdiVlbeFim2cCc4OXPCZ5ZOTm5s+71pz/B7benXrthfqpaObnnzqwxroWXPyd4ZuXjb8zWvSZMgGWXhf33LzoSs7ZxKQSzxnkmzfwNlVp4ZkOFkzvrTjNnpvPtDj4Yllqq6GjM2iY8LNOsKU7w2mMoJHhO8mwocHJn3WnSJIiAww8vOhKztvI5d2bNc4LXHmVP8MC9eNZ5knaQNF3SDElH17n/UEn3SPqrpJslbVh131ey7aZL2r6R/Tm5s+4zdy786Eew++6w1lpFR2PWVjF8eDqn1MMyzZoyVGrhdZoTPLP8SBoOTAJ2BDYEPlKdvGUuioi3R8Q7gO8DJ2fbbgjsC2wE7ACcnj1ev5zcWfe58EKYPRs+97miIzHrjFGj3HNnNkhDIcEr+0QrTvCsxDYFZkTEgxExH5gM7FbdICKer7q5JBDZ9d2AyRHxckQ8BMzIHq9fTu6su0SkiVTe+U7YaquiozHrjNGjndyZtaDsCR6UfyZNFzu3klodeKzq9sxs3RtIOkzSA6Seu882s20tJ3fWXa67Du67L/XaSUVHY9YZo0Z5WKZZi5zg5c+lEswasqKkO6uWQ6ruq/dlNhZZETEpItYBjgK+3sy2tUY0ErFZx5xyCqyyCuyzT9GRmHWOh2Wa5WLxex9n3sYD/rCdm0qCN3v9kR3b59IPDOOFdRZ2bH9zHlqWpcY+17H9QUrwtltzesf2d8HsLfj4mFs7tj/rTsNfisH+aPN0RIzr476ZwBpVt98MPNHPY00GzhjktoB77qybTJ8OV14Jn/50+rJrNlR4WKZZbjyTZv5cC89s0O4A1pM0VtJI0gQpl1U3kLRe1c2dgX9m1y8D9pU0StJYYD3gzwPt0MmddY+JE2HkSDj00KIjMessD8s0y5UTvPYYCgmekzzLU0S8ChwOXAPcB1wcEdMkHStp16zZ4ZKmSfor8Hlg/2zbacDFwN+Bq4HDImLBQPt0cmfdYfZsOO88+OhH07BMs6HEwzLNcucErz3KnuCBe/EsXxFxZUS8NSLWiYjjs3XfjIjLsutHRsRGEfGOiNgmS+oq2x6fbbd+RFzVyP6c3Fl3OPfcVN/uyCOLjsSs8zws06wtXAuvPZzgmXUvJ3dWvFdfhdNOg623hne8o+hozDrPwzItI2ldST+SdLekBZKmNLHtHpLukDRP0jOSrpa0ZBvD7RlDIcEr+0yaTvDMGuPkzor329/CI4+4aLkNXR6Waa/bCNgJ+Ee2NETSwcBFwFXAjsDBpJPyPSt2puwJHpS/VIJr4ZkNzMmdFW/CBBg7Fj74waIjMSuGh2Xa6y6PiDUiYi9g2oCtAUkrAj8EjsjO45gSEZdGxBER0dk57LucE7z8uRaeWXdxcmfFmjoVbr4ZjjgChg8vOhqzYrjnzjIRMZgCZntnlz/NM5aycoKXPyd4Zt2j48mdpA0l3SBprqQnsqlA+/1WL+ndkn4iaUa23XRJ35I0ulNxW5uccgostRR88pNFR2JWHJ9zZ63ZDJgOHCRppqRXJN0uyd9G+1BEglf2iVac4Jl1h46+8iWNAa4HAtgNOBb4AvDtATbdB1gHOIF0LsIkUh2In7UtWGu/J5+EyZPhwANh2c5/KJh1DffcWWtWBdYHvg4cBXwQeBG4WpJry/TBpRLy52LnZsXrdM/docDiwB4RcV1EnElK7D4vaZl+tjshIt4bEWdn5xJMBL4E7CHpLR2I29rhzDPTTJlHHFF0JGbF8jl31pphwFLAQRHxs4i4GtgdWEAqnrsISYdIulPSnfMXzutgqN3FCV57DIUEz0medatOv+J3BK6JiOer1k0mJXxb97VRRDxVZ/Vd2eXK+YVnHfPSS3DGGbDLLrDeekVHY1YsD8u01szKLqdUVmSfs1OBDettEBFnRcS4iBg3ctji7Y+wiznBa4+yJ3jgXjzrTp1+tW8A3F+9IiIeBeZm9zVjC2Ah6TwD6zU//zk89ZSLlptBSu7mz4eIoiOx3nQf6XQH1awX6XPSBjBUip2X/Tw8J3jF/Fhh3aXTyd0Y4Nk662dn9zVE0qrA14ALanoBrRdEpIlUNt4Ytt226GjMijc6mxtqfudn1bNSuIKUyG1TWSFpWeBdwN1FBdWLyp7gQfknWnEtPBvqiihuWu+nafWxftGG0kjgYmAO8L/9tDsEOARglVVWYcqUKU0H2qw5c+Z0ZD+dlvdxLffXv/KOu+/m/i9+kX/ddFNuj9ss/796S5mPa8Zjj7Eu8MfrrmPBUksVHVIuyvr/ajdJS5AmDgNYHVhG0p7Z7SsjYq6kGcBNEXEQQETcKem3wLmSjgaeBr4MvEKagMyasPi9jzNv49U7tr8x0+cze/2RHdsfpATvhXU616k756FlWWpsZ0suXvvo+my3ZucGd10wews+PubWju3PrC+dTu5mA8vVWb8s9Xv03kCSgPOBjYAtI2J2X20j4izgLIBx48bF+PHjBxNvU6ZMmUIn9tNpuR/XhAmwwgpscOyxbLB4ced6+P/VW8p8XOtutBEA/73pprByOU4jLuv/qwNWBn5Zs65yeyzwMOmzu7aE0H7AicDJwBLALcC2/X1OWt+c4OXPCV77FNEDbN2r08My76fm3DpJawBLUnMuXh9+SCqhsFtENNLeus2DD8Jll8Ghh0KBiZ1ZV6kMy/SMmUNeRDwcEepjeThrs1ZEHFCz3ZyI+HRErBARi0fE+yPiniKOoSxcCy9/roWXnyImybHe0OlnxlXA9pKWrlq3DzAP6Hd8nqSvAEcA+0XEze0L0drq1FNh+HD4zGeKjsSse4walS49Y6ZZV/FMmvlzLbzmtq+OvYjk2HpPp5O7M4GXgV9Len92XtwxwMnVE6NImiHp3KrbHwX+jzQk83FJ76laVursIdigPf88nHsu7L03vOlNRUdj1j0qyZ177sy6jhO89hgKCZ4nWrEidPTVnI39fx/pXIHLSQXMfwh8q6Zp7fkE22WXBwC31Sw7ty9iy9V558ELL7j8gVktD8s062pO8Nqj7AkeeCZN67yOv5Ij4u8RsW12TsBqEfGNiFhQ0+YN5xNExAH9nINwXqePwQZhwQKYOBE23xw23bToaMy6i3vuzLreUKmF12lO8Mzy5bMxrTOuvBIeeAA+97miIzHrPj7nzqxnDIUEr+wTrTjBszJzcmedMWECrLEG7LFH0ZGYdR8PyzTrKWVP8KD8M2m62LmVlZM7a7+//Q1uvBEOOwxGdLq0olkP8LBMs57jBC9/LpVg1jond9Z+Eyemmnb/8z9FR2LWnTws06wnuRZe/pzgmbXGyZ2111NPwYUXwv77w/LLFx2NWXfysEyznuWZNPPnWnhmg+fkztrrRz9KX1g/+9miIzHrXh6WadbTnOC1x1BI8JzkWd6c3Fn7zJ8Pp58O228Pb3tb0dGYdS8PyzTreU7w2qPsCR64F8/y5eTO2ueXv4Qnn3T5A7OBuOfOrBRcC689hlKC50TPWuXkztojAk45BdZfH7bbruhozLqbz7kzK5WhkOCVfaKVbujBKyIG631O7qw9brsN7rgDjjwShvlpZtavESPS68TDMs1Ko+wJHpR/Js0iauGZtcrfuq09JkyA5ZaDT3yi6EjMesOoUe65MysZJ3j5GwqlEuop4ritNzm5s/w9+ij8+teprt2SSxYdjVlvGD3ayZ1ZCTnBy99QTfDMGuHkzvI3aVK6PPzwYuMw6yWjRnlYpllJudh5/pzgWa+QtIOk6ZJmSDq6zv3vlfQXSa9K2rPmvgWS/potlzWyPyd3lq8XX4SzzoI99oA11yw6GrPe4WGZZqXmUgn5GwrFzq23SRoOTAJ2BDYEPiJpw5pmjwIHABfVeYh5EfGObNm1kX06ubN8XXABPPtsmkjFzBrnYZlmpecErz2GWoJXxN/YBm1TYEZEPBgR84HJwG7VDSLi4Yj4G7Awjx362WH5WbgwlT8YNw62cJ0Ws6a4585sSHCC1x5DLcGznrE68FjV7ZnZukaNlnSnpD9J2r2RDZzcWX6uvRbuvz8VLZeKjsast/icO7MhY6gUOy/7eXhO8CyzYpaAVZZDqu6r94U4mnjsNSNiHPBRYIKkdQbaYEQTD27Wv1NOgdVWg732KjoSs97jYZkGSFoX+BLwHmBj4I8RMb6J7YcBdwD/BXwwIq5oR5yWj8XvfZx5GzfzI35rxkyfz+z1R3Zsf5CSvBfWyWW0WUPmPLQsS419rmP7qyR42605vS2Pa50zbN4rg/3R5eksAatnJrBG1e03A080+sAR8UR2+aCkKcA7gQf628Y9d5aP++6Dq6+Gz3wGRnb2g8OsFDws05KNgJ2Af2RLsw6muSE/VrCy9+CBZ9K0Ie0OYD1JYyWNBPYFGpr1UtIYSaOy6ysCWwJ/H2g7J3eWj4kT05fTT32q6EjMepOHZVpyeUSsERF7AdOa2VDSGOB44Gtticzaxgle/pzgWTeIiFeBw4FrgPuAiyNimqRjJe0KIOndkmYCewE/klR5738bcKeku4HfA9+LiAGTOw/LtNbNmgXnnw8f+xistFLR0Zj1Jg/LNCAiWhm/dhxwC3BDTuFYBxUxRBPo6DDNsg/RhJTg5T1Esz9FJOrWnIi4EriyZt03q67fQRquWbvdrcDbm92fe+6sdeecA3PnuvyBWSs8LNNaIGkT4EDgi0XHYoPnmTTzV4ZaeEX0QlrvcnJnrXn1VTjtNNh2W9hkk6KjMetdHpZprTkVmBQRM4oOxFrjBK89ej3BM2uUkztrzaWXwmOPudfOrFXuubNBkrQvsD7wnSa2OaQybff8hfPaF5wNihO89nCCZ0OBkztrzYQJsM46sPPORUdi1tt8zp0NgqTFgBOBE4BhkpYDlsnuXlLS0vW2i4izImJcRIwbOWzxDkVrzRgqtfA6zQmelZ2TOxu8O+6AW2+FI46A4cOLjsast3lYpg3OkqQT8U8GZmfL3dl9k4G7CorLcjIUEryyz6TZbILnhNBa4eTOBu+UU2DppeHAA4uOxKz3jRoF8+dDRNGRWG+ZA2xTs3wku++rwMcKistyVPYED8pfKuHaR9d30mYd4eTOBueJJ+AXv4CDDoJllhm4vZn1b/TodDnf01oPZZKWkLSnpD1JxchXqtyWtETWZoakcyHVUIqIKdUL8Kfs4e6JiNsLORDLnRO8/PViLbwihrJab/EzxAbnjDNgwYI0JNPMWjdqVLr0eXdD3crAL7PlPcCGVbdXztqMADwWfghygpe/XkzwzPrj5M6aN28enHkm7LorrL120dGYlUMlufN5d0NaRDwcEepjeThrs1ZEHNDAY1zRqbitc4pI8Mo+0UoZauGZVTi5s+ZddBE8/TR87nNFR2JWHpVhme65M7MBuFRCe3RjgucC5tYsJ3fWnIg0kcomm8DWWxcdjVl5eFimmTXBCV57dGOCZ9YMJ3fWnN//Hu65J/XaSUVHY1YeHpZpZk1yLbz2cIJnvWxE0QFYj5kwAVZaCT7ykYHbmlnjPCzTzAZp8XsfZ97Gq3dsf2Omz2f2+iM7tr9KgvfCOgs7ts85Dy3LUmOf69j+nOBZXtxzZ42bMQOuuAIOPfT1L6Jmlg8PyzSzFpS9Bw+GxkyaZq1ycmeNO/VUGDECPv3poiMxKx8PyzSzFjnBy58TPOs1Tu6sMc8/Dz/5CeyzD6y2WtHRmJWPh2WaWQ6c4OWvVxK8IibZse7T8eRO0oaSbpA0V9ITko6VNGAxVknLSvqJpNmSnpP0M0krdCJmA378Y3jhBZc/MGsXD8s0s5y4Fl7+eiXBM+voK0PSGOB6IIDdgGOBLwDfbmDzXwDjgYOBA4B3A79pR5xWY8ECmDgRttoK3vWuoqMxKycPyzSzHLlUQv6KKHbenyJ6Ta37dbrn7lBgcWCPiLguIs4kJXafl7RMXxtJ2hzYHtg/In4VEZcC+wFbSXp/JwIfyla47TZ46CE48siiQzErLw/LNLOcOcFrj04leLX7KeJYrfd0+lmyI3BNRDxftW4yKeHrryL2jsC/I+IPlRUR8Wfgoew+y9usWXD55XDUUax32mmw5pqw++5FR2VWXh6WaWZt4ASvPbqpB8+sWqfr3G0A3Fi9IiIelTQ3u+/yfra7v876+7L72mvWLJg5c8BmSz7wACy/fNvDaYuFC+Hee+Hmm9MybVpav9hivPzWtzL65JPTTJlm1h6V5O7BB+Fvfys2lhwM+v1wk03yD8ZsiKskeK6Fl69O18Iza0Snv62PAZ6ts352dt9gtls7h7j695vfwEEHDdjs3W0PpAOWWQa23BI++tF0jt27381dt9/O+PHji47MrNyWXDL9gHLCCWnpcYN6Pxw+HF59Ne9QzCxT9mLnkJI8J3g2lBXRFRN11qmP9YPeTtIhwCEAq6yyClOmTGkixDcavcQSLPXtged8eemllxjdw8W9X3rTm5gzdmz6ggWpN+/225kzZ05Lf79u5ePqLUPhuJaeOJFRTz1VbEA5GdT7ocTTJfwfm3UTJ3j5c4Jn3aTTyd1sYLk665elfs9c9XYr1Vm/XF/bRcRZwFkA48aNi070PE2ZMoVxJezhmjJlSil77nxcvWVIHFeJjq+s74dmZeAEL39O8KxbdPoM1PupOUdO0hrAktQ/p67P7TJ9nYtnZmZmZn1wLbz85TnJiidsscHqdHJ3FbC9pKWr1u0DzANuGmC7VSVtVVkhaRzpfLur2hGomZmZWZl5Js38dVstPBt6Op3cnQm8DPxa0vuz8+KOAU6uLo8gaYakcyu3I+I24BrgfEl7SNod+Blwc0Rc39EjMDMzMysJJ3jtkXeC5xp31qiOPlMiYjbwPmA4qezBt4EfAt+qaToia1NtX1Lv3o+B84GpwIfaGa+ZmZlZ2TnBaw/34FkROj5bZkT8Hdh2gDZr1Vn3LHBgtpiZmZlZToZKLbxOTrICnmjFOs99vGZmZmYGFDPRSict/cCwnp5oxWwgTu7MzMzM7DVlT/Cgt2fShGL+ZjY4knaQND2bU+ToOvePkvSL7P7bJa1Vdd9XsvXTJW3fyP6c3JmZmZnZGzjBy1+jCZ57+spD0nBgErAjsCHwEUkb1jQ7CJgdEeuS5iI5Idt2Q9KcIxsBOwCnZ4/XLyd3ZmZmZrYIJ3j5c+I25GwKzIiIByNiPjAZ2K2mzW7AT7PrlwDvk6Rs/eSIeDkiHgJmZI/XLyd3ZmZmZlaXi53nz7XwhpTVgceqbs/M1tVtExGvAs8BKzS47SI6PltmEaZOnfq0pEc6sKsVgac7sJ9O83H1Fh9Xb/Fx5e8tBe23Jz3/yn+evvrxUzvxGdmobn1NDN24BpfftRbXNYPeciBD9/84ON0YV3VMub3fP//Kf665+vFTVxzEpqMl3Vl1+6yIOCu7rjrto+Z2X20a2XYRQyK5i4iVOrEfSXdGxLhO7KuTfFy9xcfVW3xcVrROfUY2qlufO46rOY6rOY6rce2KKSJ2yPsxSb1ta1TdfjPwRB9tZkoaASwLzGpw20V4WKaZmZmZmVn+7gDWkzRW0kjSBCmX1bS5DNg/u74ncGNERLZ+32w2zbHAesCfB9rhkOi5MzMzMzMz66SIeFXS4aSBxsOBH0fENEnHAndGxGXAucAFkmaQeuz2zbadJuli4O/Aq8BhEbFgoH06ucvXWQM36Uk+rt7i4+otPi6zN+rW547jao7jao7jalw3xtSniLgSuLJm3Terrr8E7NXHtscDxzezP6VePzMzMzMzM+tlPufOzMzMzMysBJzcmZmZWdtJWlfSjyTdLWmBpClNbj9M0lRJIWmXbohL0h6S7pA0T9Izkq6WtGSRcUkaJ+naLJ5Zkq6XtFlOMe0l6TJJj0uak/0/PtLAdqMknSTpP5JelPQ7SWvlEdNg45K0vqRJku6TNFfSg5JOkbRckXHVeYzfZM/5w7shLknvlXRT9n98Nru+ZpFxSVpP0q8k/VvS85JuldSOmS97gpM7MzMz64SNgJ2Af2RLsw6mgQK+gzCouCQdDFwEXAXsmMX3T/Kbz6DpuCStAVyfxfAJ4OPZ9Wsl5VEP7PPAHOB/gV2B3wMXSTpigO0mAgcAXyTNBrgicJ2k0TnENNi4PgBsCZxB+jt/h3Te07WS8vp+PNi/FwCStgPek1MsLceVJUzXA3dn2+0H3AYU9n+UtDRwHbA28GnS8+sJ4HJJm+YUV0/xOXdmZmbWdpKGRcTC7PolwIoRMb7BbceQEpyjgXOAD0bEFUXFJWlF4CHg8xFxdh5x5BTXocAkYIWIeDZbN4ZU8PnwiDijxZhWjIina9ZdBGweEWP72ObNwMPAJyPi/Gzd6qS/32ci4pxWYmohrhWAWVH1RThLpq4BxkfETUXEVdVuMeBvwA9Iz/kjIuK0VmMabFxZPA8C50fE1/KII6e4diD9wLJJRNyTrRsBPA6cFxFHtSPWbuaeO7MeJWlbSSdKulzSzZL+mF0/UdI2RceXF0mbSDpA0v6SNi46HjMbnEqiMkjHAbcAN+QUzmsGGdfe2eVP84yl2iDjWow0ZfqcqnVzsnXKIaan66y+C1i5n822yy5/XfU4jwM3k3o8WzaYuCLimerErmob+tuu3XFVORKYB/wkj1iqDTKuD5CKaE/KO56KQca1WHb5XNXjvAq8SA7P+V7kUgg5kCTgg8B/AQHcCVxZ502j60nalvRmuwEwhnQ8zwL3k47p9wWGlxtJm/D6/2tqRNxbcEgNk7Q8cCnw36RfPu/LLgUsB3wI+IKkPwB7RMSsomJtRvbr3Ncj4sHs9mjg56ShGZU36JD0K+BjEfFKMZEOjl9bZoOTPacOBP5f0bFU2QyYDhwk6WvAKsBfgP+NiFsLjOtXwLHASZIq06d/E5gN/LJN+9yCVIerLxsAMyNiTs36+4DxbYoJBo6rr20YxHbN7qPfx5e0KvANUg/1wvQ1s+0Gimsz4BngPZJOAMaSPr++EhGXFxjXDaSe4R9I+gIpqTuUlBCe18a4upZ77pqUnaT5tqrbY0jV4n9DGiv8BeBy4JZsHHBPkLS8pJtIY6n3IH2Zfgh4JLv+IeAGSVOy5KInSLpI0tpVt0dLupT0S9CPSb+I3S3p4mzIQS+YCKwKbBYR60TELhHx8YjYL7u+LrBp1uaUQiNtzr6k8zAqjge2Bw4jvUmvlF3fBfhqx6MbJL+2euq1Zd3pVGBSRMwoOpAqqwLrA18HjiL9wPsicLWkVYoKKiKeALYBPgz8O1v2ALaPiKfy3p+k9wG70X9vzhjSD1m1Zmf35a7BuGq3WQL4HnBTREwrOK7vA9dExB/aEUetBuNaFViSVGPuB8AOpKTrUklvLyquiJhL+pFgI+BRUgJ6FLBbRLQzSe9eEeGliQVYCGxadftcUjX5HarW7UB60/ph0fE2cVwXkn6FfHc/bcaRfqW5oOh4W/h/nQTMJf2qsyKwQnZ9LvCtouNt8JieJb1pDdRud+DZouNt4X/1BPDNOu2OBf5RdLxNHJdfWz3y2vLSuQW4BJjSQLt9gX8By2S31yL1Cu9ScFzXZXFUf/Yvk332H1dgXKsBM4DfZt9FApnCYAAAFDtJREFUdiD94DwTWDPnmNYiJY+XDtDubOCuOuuPBx5vw9+qobhqthFppMgzwNptem41+vfaPHvffEvVuiCdM1lkXGdncRxatW44aRKh3D+7mohrSVIny82kkT7vJ/24+Czwznb8zbp9cc9d63YFjo2IqysrsuvHk34t6xW7AF+OiDv6ahARd5JOZv9gx6LK30eA70XEmRHxdKQx92eSfoX6WMGxNWohjY0jV9a2V60MTKmz/iYgl2mXO8Svrd55bVkXyXp8TwROAIYpTVG/THb3kgWPjqkMd59SWRERzwNTgQ2LCCjzJdIpN3tGxNXZ95EPAwtIM1XmIhtlcBWpp2S/AZrPJp0yUGs56vfodSquaieQRlHsHtmpAQXGNQH4EfCcpOX0emmGxSUtW2Bclef8a6cQRMQC0mdyrs/5JuM6KNv/LhFxWURcHxEHknoVv51nXL3CyV3rliOdY1drKqkLu1c4YeidhOG3pPMptuyrgaQtSF+KLu1YVPnYQtJOknYi/YK6TJ02y5BOMu8Vfm31zmvLusuSpAkcTiYlCLNJU7ADTOb1yS+KcB+pF6P2tV3063gDYFpUnZMcEfOBacA6eewgG754BTAS2DkiXhxgk/uBNbRo/b8NsvtyMYi4Ktv9Lynx/URE/DGveFqIa33gc7z+nJ+drf8+6XOxqLju6+uhyPE5P4i4NgAeiWx22Cp/JafnfK/xhCqD82FJ47Lrs0nnAtVaEXi+cyG1rJIwPBURt9Rr0OMJQ+VcrjIkDEcCFwN/lPQv0ofjs6QvGsuR3uhWBa4l1YrpJSfX3N6O9CZfbUvSMJBe4ddW77y2rLvMIZ0/Vm1V0vC5rwI3djyi110BfIsU35UAWa/Ku0i91UV5BNhJ0sgsqUPSKGBj0vDMlmRTzP8SWA/YMiL+08Bm12aXHyINU0fSm0iTgn2m1ZhaiAtJHyUNKf9CRFycRyw5xLULi34//z3pfPtfL9q8Y3FdQ5p19X2kUw2QNBzYmvo/7HUqrkeAtSSNiYjZVevfRZpoZchxcjc4X6q5/UEW/VL2fnL8RaoDnDD0SMKQDf3ZQdLmpPMpKrMvQqpldA5wVUT8qaAQB6teDZuX66x7gfRh3Cv82uqR15a1V/aL/E7ZzdWBZSTtmd2+MiLmSppBmtDioEjTmU+peYy1sqv3RMTtRcQFaSi1pN8C50o6mvTe+2XgFXKaKn4wcZHe/w8mTXJxOqlX5TDSuXhn5RDW6VlMRwLLS6ousH1XRLws6QaAiHhfdjlT0rnAhGx28aeAY0hfyi/MIaZBxSVpa9JsitcCt9VsMzMiZhYRV0TcXPsg2WyZ/4wcau+1ENeTkiYB38v+jzOAQ0i9698tKi7gItKPPVdK+j7pfMX9SBPL7ZJTXD3FyV2TIqLRoax3Ar9oZyx5csLQcwkDEXEbcFvRceQlIh5psF1PjaH3a6v3XlvWNiuz6HT8ldtjSb+yjyBN0tBJg41rP1KP+8nAEqQ6fNvW9B50NK6ImKpU1PlbwAXZ6nuAD0TE3bSuUrOu3kzMlZjq/f8+S5pNtPK3ugn4SES8lENMg41rG1KNtO2zpdq3SQloEXF1wmDj+hLp//h1YHnS0OjtI+KBouKKiMeUavseTzpXcTTpR9Q9I+J3OcXVUxTRc6XYzMzMzMzMrIYnVDErKUlnZ0NhSqWsx2VmZmbWKg/LbBNJ15N6Rt83YOMeIulsYFjV+P5SKOlxbUM5f8Ap5XGV9DlY2uMyMzPrRk7u2keU8AsoJf1iTQmPKyLWLTqGdijrcVHC52CmrMdlZmbWdXzOnVmJSBpNmi75xIgozQyFZT0uMzMzszw5uWsTSYsBq0XEo0XH0ipJY0mzFD0UEQ8VHU9eevW4sumx+7Ic8BiwI3AzQETM7URcrSrrcfUnm9Y9Gp0ptFeU9bjMzMy6nYfKDIKkwyQ9IOkFSbdL+nidZv8F9FLCsJikiZJmSZqT1Qohq2kyA7gemCHpZ1nRyp5Q0uN6oZ/lMdKQ4Kuq1vWKUh6XpEOqCn1X1h0p6SngAeBBSf+WlEsx304p63GZmZn1Mp9z1yRJ+wKnAj8n1ffYEjhP0m7AxyNiXpHxteDLpMKnJwOzgCMkrQTsDhwA/AXYCvgB8ClSocleUMbjmgc8T4r5mZr7lgROA75PqvPSS8p6XGcAfyXVtEPSIcAPSYXNL8na7AmcKunZiLiokCibV9bjMjMz61keltkkSXcCN0bEl6vWvQ/4Gam44s4R8YykzYBbI6IneoMk3Q+cGxEnZre3Av4AfD4iJlS1+zbpGMcVE2lzynhckt5ESoC2IxVaPT0iFmT3LQvMBsZHxB+Ki7J5JT6uhcB7IuLP2e37gT9FxAE17S4ANoiId3c+yuaV9bjMzMx6mYdlNm994MrqFRFxA/AeYFngNknrFBFYi94C/Lnq9tTs8s817W4G1u5IRPko3XFFxBMR8VHgQ8AngXskbV9wWC0r63HVsQ6p57/WZGDDDseSp7Iel1lXkHSApKnZKSGzJd0l6eQ27WtvSQc00O4YSVG1PCHpV41+D5J0XvajedtJGibp8OzvNk/S85KmZaduqBMxmHWCk7vmPQesWLsyIh4GtiANUboV6LVfqV8kTVpR8XK21E5aMZzeGs5b1uMiIv4IvAuYBFwk6QrSjw89raTHNVrSEtmkMc8AC+q0WQD02lCKsh6XWVeR9BXgHOAaYA/gE8BvgV3btMu9SacuNOI5YPNs+SLwDuAGSUs2sO1xTeynVZOB7wC/Jv3d9if9WL9FeBiblUhPfZntElNJ52tdUntHRMzOhmheQpq2vZfeLKYD40gfFkTEQmDxOu02Ig0/7RVlPS7gteOZJGkycDzwR3rreVdXCY/r91XXBWxKmsyn2iakiWN6SVmPy6zbHA78KCK+WrXu8uyUgqK9GhF/yq7/SdKjpPfsnYBf1jbOJi8bHhHzI+KBTgQoaUdgL2CniLiq6q5L3WtnZeOeu+ZdCKwtafl6d2YTquxK+oWtl8ognExjX8DeD1za5ljyVNbjeoOIeCYiDgXeSfpV996CQ8pFSY7rQNIw08pyIFBvGNKmwK86GFerynpcZt1oOeBftSure5wqQxwl7S7pfkkvSbpZ0iLDorNhl/dIelnSY5KOlzSi8jjAh4Gtq4ZbHtNErJXTH9aqE9c04CVgs+r7amJ7r6TfZzNcPydpiqR3Vt2/laSbJM2V9IyksyUtPUBMW2eXN9be4V47Kxv33DUpIn5JnV+iatosAA7pTET5iIiGvnxFxI7tjiVPZT2uvkTE34G/Fx1H3nr5uCLipw2227PdseSprMdl1qX+Qprt+VHgioionVG44i2kHzW/QZqB+NvANZLWi4iXACRtB/wCOB/4Eql3/ThgBeDQ7PqapISyUspkZhOxrpVd/qtm3feBY4F/00epKEnjgetIowL2J51asSWwOnCXpC2BG4DfkGbjXQH4HjAmu92XF7PLEyWd5BqcVmZO7szMzMy622GkhOY8ICTdR+oR/0FEPF/VbkVgt4i4FUDSVFLdyQOAM7M2xwJTImL/7PbV2cjE70r6TkQ8IGkWMKxquGW/Kr1+pInJTifVIq0eor0C8P6I+OsAD/Vd4G5g+6oetaur7v8eaSbyfar2/TjpHL+NI6Kv0R1nk4ZlHkFKkqcBFwETI2LOgAdo1kM8LNPMzMysi0XE34C3kU77OJ10jus3gDslLVXV9D+VxC7b7hHSMMlN4bXz3f6LRUcg/YL0nXDzQYS3AvBKtkwnJXj7RMSTVW0eHyixyyZg2Qz4ab2hktnETZsDF0saUVlIs12/QpqIq66I+BdpeP/2pBqdy5HO575V0siqfZwh6XFJHqppPcvJnZmZmVmXi4iXI+LyiDg8IjYEDgbWAw6qavafOpv+B1gtu74isBhpaGS1yu268wkM4DnSDOHjgDcDa9VMWlL9+P0ZQ0pan+zn/uGk5PaVquVl0jGt0d+DR8SCiLg2Ij5DGnb6E+DtvDGh/Tkp+TXrWR6WaWZmZtZjIuJcSd8HNqhavXKdpisD07LrT5MSotp2q2SXswYRyqsRMVCtukZ6wmYDC3k9Ea31bPY4x1BTbzjzRAP7SMFELJR0LWkiqNFV6/8A4Ak0rZe5585a1snCqnmT9M1sCMbCbIawvtp1XfHYrO2gC8h2snjsQJTcLWn/mvVdU3S21VgkTZJ0bidiNbNykbRI0iZpJWBZ3tgrtrKkLararEnqifozvDbh21TS+WfV9iYlVrdlt+dTlfR0QkS8CNwOfKLee2p2/5+A9SPizjpL3eRO0ir11pOGuM7N9mlWGu65s5YoFVY9jjQL1tGkD4N3AfsBny8wtAFJGkeaSeyrwBTqD2cp4hj3Jg2dOa/B9s8BO2TX1ybFeoOkjbIPw74cR/2af0XYmzTk5qKa9ZOB7YCTSB/qSwFbANsUMH11q7GcCNwv6bsRMaN9YZpZCd0j6bfAtaTPqreQCobPBapnrn0auEBSZbbMY7P251W1+RZpBs2fkN7X3k76PDg7IiqzYt4P7CZpd9JMmU/0lTzl7GjSRCxXSTqLNMvl5sCdEXEF8GXS59tCUk3hF0hDLHcGvhYR/6jzmBdLegG4mFTPdmXgY8BuwP9ExLPtPSSzDosIL14GvQCPA5PqrFfRsTUQ+36kIR7LdNMxkj6wpjTY9hjg6Zp1W2XHtVcf2wwHRhb996+J6Rbg+Jp1O2bHsWM7/vbAeLISRw20zSUW0peWk4r+e3vx4qW3FtJsmdeShh6+REpSLgI2qGpzHqnW5B7AP0jnot0CbFzn8fYB7iH10M0kTS4your+FUm1X2dl733H9BHXIp9BddqcR0rOGrqPVJPuD6TE9VlSWYR3VN2/GWkGzedJyd/fSeUflu1jH5/M2s/MjncW8DtgfD8xR9H/cy9eBrsUHoCX3l6yN9ZvDNBmCnBJzbrx2QfGxlXrKh9MO2dv1nOzN+DlgXWzN/gXszabNBDb3tmH18ukQuavfXhl+4qaZfxgj7Em/t1Jv3q+RJrFa8MW4zqmn30u8sFK6o0L4Et14ppGOt/iv/v4UH1v9neeQ+oRnAK8s6bNVsBN2f/nGdIU00tX3b9R9kE6K/vb3Qcc1s8xrJvFW7uf72XrR7XpuTu+0Q/wvGIBPk2q/TSsHcfkxYuXobvUe0/3Mui/ZRQdgxcvg118zp21qlJYdX9JK+TweGuShpF8nVQIfgvgLNLQkcmkIqUjgMn9nedUVaT1L6ShF6eShrCcljU5DvhOdn1b0rCPv/TxcM0cY6WA7HHAR0nnQ1wjaXQTcf0euCuLaXPgnAH2WWut7LJeAdnvAjtRp4BsVjz2BlLytz/pl90/korHVtpUCsj+i/S/+Fz2eD+peqjLgAWkntFds2Ncup9430dKAu+uWV9ddPYt/WzfCXnFcitp4oK3tx6SmZnlSdI5kmZm12dKavbz16xwPufOWtVoYdVGLQ9sHhEPAEjaBPgSsH9EnJ+tE6lHbwNSr1A9jRRpfSC7747ov4hpM8c4UAHZ3IvHZvtpuoBsndx4oOKxMEABWVLStzawe0TckzW5YYDw3wXcFxELa9bnWnQ2e94Mr1o1PFv/hvfBiHi1zuZ5xTKNlPhuyqLJrJmZFSgiDi46BrNWuefOWhKNF1Zt1MOVxC5TmXjixjrrVqeOvIu0NnmMfRaQbVPxWMihgOxAxWOzNo0UkJ1FGmp6pqR96s3wVseqpEkA3iDyLzq7P2+sjVRJfl+pWRbRSCyS1pB0g6T7slk0v1/bu5wljs9mx2xmlpuIOCAixhUdh5kVy8mdtSwaK6zaqNpZq+bXWV9Z19c0zbkXaW3iGPsrINuO4rGQTwHZgYrHVtr0W0A2633bjtSD92PgX5L+KOmd/Tzu6OwxFhH5Fp29nPR3qiyHZuvfXbPU1UAsrwJHRcTbSIngZqSJDWq9TIenGDczM7OhwcMyLXexaGHVl4CRNc0Gm8g0oh1FWt+gzjFW9FdAtl1x5VFAdqDisdBgAdmIuB/4sKTFSBO3nAD8TtKb6wy9hHTcA/ZkRYtFZyPiGdIEMGTtl8rWN13rr14sWU/pk9n1+ZL+BqxRZ/PlyOE5aGZmZlbLPXfWkgYLq85k0SToA+2KKRov0tqQJorHQj8FZJuIq+uKx1a1abiAbES8EhE3kiaYWY2U1NQzHRhbvaKbis4OJpZs4p3dgWtq1q8ELEGaptzMzMwsV+65s1Y1Ulj1UuAgST8kTYSyDencpXZqpEhroxotHgsDF5Dt5eKxMEABWVJS+gPSeYQPkoZyHgXcHRF99VbdAnxT0koR8VS2rpuKzjYVi6RRpL/NhIionfBnHKn381bMzMzMcuaeO2vVsaRp9ieSkp/jSEMQN42IhwAi4nfAV0lT519KSo4+186gIuJaYF/Sl+nLs/2dBBw+iIcb8BirPEKa3fMYUvL2PGn2yZeaiOv0bD8/Bu4glYRou2x44wdIPUsXkhK0rUkJZqXNzaRaeCsBF5CO4cukSVT+TTrX7t+kRO+q7FjuI/Vy9WUKaZjiDlXrfkr68en/SAnnWaShvdtGxLktHWjzGo4lmzTnZ8BdEXFSncfaAbgpGyJqZmZmliv1MTGemTVJ0nmkouyeraxJkk4B1o2InVt4jIiI/k+8a7OsJtJw4JO1s45mid8jwNERcWER8ZmZmVm5uefOzLrBicB4SW9tdsNuKTqbFXg/iNQre5ekv0r6bFWTvUhDdScXEZ+ZmZmVn8+5M7PCRcRMSQeRJl5parKRbik6GxG3kMpJ9EXAQX0USTczMzNrmYdlmpmZmZmZlYCHZZqZmZmZmZWAkzszMzMzM7MScHJnZmZmZmZWAk7uzMzMzMzMSsDJnZmZmZmZWQk4uTMzMzMzMysBJ3dmZmZmZmYl4OTOzMzMzMysBP4/mfLGt2UT228AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAFoCAYAAAD0LAJxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd7hcZbn+8e+dhCQQAoQOAoaONFukHiUIhCYgTcqhgzmoNBV/x6MeQNCjYkvoRIUoUqQIItIDG5QmAaQT6SEJiCQhIRASkjy/P941MExm7z2z98ysmdn357rWNXve1Z61szNrnvU2RQRmZmZmZmbW2vrlHYCZmZmZmZn1npM7MzMzMzOzNuDkzszMzMzMrA04uTMzMzMzM2sDTu7MzMzMzMzagJM7MzMzMzOzNuDkzszMzMzMrA04uTMzMzMzM2sDTu6sVySdJimKlmmSrpG0bo4xnSJpqqRFksZ3VlZmv9JrKSy3NzL+oni+JOmIMuXjJU1scCyS9Kikw4vKuv2d1ujc/SQdJ+kRSXMlzZb0pKSzJKle5611LJLOlfSbRsVqZs2tSe+f20p6WNK7kiIrGyLpCknTsziP6GTf8Z3cQ3/d0Iv4IJ7Rkr5YpvwlST/LIyazRhiQdwDWFmYBu2Q/rwOcAUyQtElEvN3IQCSNAL4PfAfoAF4vV9bFIYqvpbgsD18CVgTGl5SfASyZQyzDgMug/O+5jue+AhgF/By4H1ga2AbYPiKijuetdSw/BZ6R9KOIeK6+YZpZi2ia+2fmQtLn+c7AvKzsK8AewGHAVOD5LvZ/BjiypKye94eujAaeAK4rKd8bmN74cMwaw8md1cKCiLg/+/l+SZOBvwK7AVc1OJaNstdzI2I2gKRDSsu6UHwtTSkiurqx1ssJwCUR8V72frHfc09J6g/0j4j5ZdbtCuwP7BYRNxWtujaHWrtexRIRL0n6G+mL0jfrFKaZtZZmun9C+mwfFxF3lZRNiohrKtj/7Ra4hz6Sdwxm9eRmmVYPD2WvwwEkbS3p+qzJyduS/iHpPwsbS9o9a9q3dvFBJK2dle9ZVPYlSY9LmifpFUk/lDQgWzceuCTbdFbWHOSlMmUje3phkjokXV1SNjI77qaFOCRNlLSTpMeya/6bpE3KHO9zku6UNEfSrOz4n8yuZV9gu6KmLacVH7/kOJ3+XqqNqUyM65Fqp64uHIsufqdVxPJFSU8C7wJbdnL67bLXO0pX5FBrV4tYrgH+U5I/e82snGrvn8tnTSgPLz6Ikhcl/aKo7POSHsi2/5ek8yQtna0bqdQMsz8wNvtcH5/dQ48GPlm4F/X0wkrvlUXlH7qvVnq/ktRf0v9I+md2v5miD7pidACfBg4vuoceka1brFlmBfetI7JjbCbptiymZyTt09Pfh1m9+AuG1cPw7PW17PWjwD3AMaSmHdcAF0s6KFt/MzAN+NDNCTgC+DdwI4CkUcAfgIeBvYCzgZOBc7LtzwB+kP38eWDrbLvSsoe7Cl7SgJKlJzVEa5Ga4f0QOAhYGbiy+FhZQjQBeI907QeQnth+JLuWO4FHspi3Bsr2W6jg91JxTJ3YAXgbeDR7X+73/HCVsQwHzgR+RHpC/WIn5y40S/qppI92E2eXsi87pf+2iy1dHKIWsdwLrAJs1sP9zay9Dc9eK7p/RsQM4FoWbwo5MjvWxQCSNibda98gPTg8FTiY7KEd6TN76+znn2c/n0Fqwngjqbnl1kXbdKqKz9SuVHK/upDUPeBK4AukFhFDsnVfzWK+sSjuv3QSb6X3LUhdE64n/V6eBa6QtEYPr9GsPiLCi5ceL8BppJvFgGzZgJSUzAZWK7O9su0uBO4oKv8B6Qu+irZ7CfhZ0Tb3A3eWHO//AQuBNbL3RwABLF20zWJlXVxLlFl2LNqmA7i6ZL+R2XabZu/HAwuA9Yu2+WK2zUZFZfcBEwvXXCaeq4GOMuXjgYlV/l4qiqmTOMYBD5aUlf2dVhFLAJ+o4O9rVeCxon+LJ0j9/Lr8t+zkWEdQ/t/3Q0s9YyH97S8Avlyv/5NevHhpjYXa3T93BBYB6xSV/a7kPnEFKRnpX1T2peyzbOuisgCOKznvh+45XVxP4bO9dFkvWz+Sontl0X4dFN1XK7lfkZqKBnBCF/FMBMaXKX+Jnn+3OKpomxWyOI/N+2/Ji5fixTV3VgsrkGqf3gMmkTqFHxARrwJIGqY0muDLRduNJt3ICi4iPaEcmb3fPntfeOrYH/gUi/dB+AOpBrrbp4kVmgV8pmR5oAfHeSkini16/1T2ugak0cdITRF/GxG9aeZSze+ly5i6sCrpC0gtY5kaEf/o7pgR8RrwSVLn/vOB5UhPcu+VNDA77/lKo3Z293v8M4v/25ZbehSLpDUlTZD0tNIImmeW1opGxALgTdLv1MysFvfPCcDLZK1fJA0F9iG7f2a2AK6NiIVFZdeQkpP/qOH1PM3in6mv9OA43d2vts9ex/fg2O/rwXeLWws/RMR00mAxrrmzpuIBVawWZpGeHAapKcm0koRlPLAVqYnHU6Snkl8hNX8AICJeyNrIH0l6cnkk8PeIeDLbZEVgCeBfJecuvF++RteyICJqMc3AmyXvC4OFDM5eh5Gewr7ay/NU83vpLqbODAbeqXEspdt0Kvsycitwq6TjSM1TjyTddO8CLic9AX+ts2NkZtDLkU+7ieWfwH9HxMQs8byN9AWrdBCCeXT/OzezvqEW98+QdDFwlFLf7C+Rvt9dVnSc1Sj53I2IhZKmU7v7J8A7DbqHrkAavKVXA3pR/XeLcnH589yaimvurBYWRMTEiHgoIqYW35gkDQZ2B06NiHMi4o7sg7/c396vgX0lfYTFnzq+QXpiuXLJPqtkrzNqdTHdeBcYWFLWkxvjTFIzmtV6GU8jfi8zSLVUtYylR7WVEbGID56cDs7K7o6ISpLFw/ngyXdXS49iiYhXC19qIo38+RiwZpldl6Nxf69m1txqdf+8mPR5sz2pCeF1ETGzaP2rlHw2Z7VWK9DY+yfU5h46HRgiaZnehdQ03y3MasbJndXbINLoW4X5cgpNRvYss+0fSU/BriD9bV5RWJHVmDxEGoq+2JdISdJ9NY26c1P4YBqAgp2qPUik+YseAA7rYkCTbp8INuj3MglYu7uNah2LpFU6WbUnqSax2uayPW6WWW0sklYg9RG5paR8JWApUi2fmVlXKr5/RsQrpIdN3yc1s7y4ZJMHgL2zhK5gH1IN399qG3anpmSvHysUSFoT2LAHxyqMWnxYF9s0yz3UrKHcLNPqKiJmSXoQOEXSbNKH5bdJTVGWKdn2XUmXAl8DLo+I0uYPpwK3ZM1PriCNOHgG8KuImEJjXAscLemXpJG3tif1weqJbwO3AzdJGkcajXFrUsf1G0gjfe0l6Yukm+K0iJhW5jj1/r3cQ/r3Wyki/t3NtrWM5UpJb5FGQnuJ9GT1P0nNkb5c5u+jS1n/iJ5OXFtxLJIGkQbDGRMRT5ccZwSp1vLeHsZhZn1ENffPzG9IfcemkJqFF/sBafTl6ySdT+on9hPglohoSAITEVOy6zlD0jukh7jfoQe1YxExKbtv/lzSysDdpFYR+0XEgdlmzwA7S9qZ9Nn/YnYfKNUM3y3MasY1d9YIB5NGwvwdMJbUB+l3nWx7XfZ6UemKiLgVOJD0BfnPwEmkIZuPq3G8nYqIv5BuRvuREr2PZnH05Fh3k2r9lgJ+T+rAvR0fPN08j/Qk9iLgQVIn+nLHqffvpYN0892luw1rHMtvSQ+g/o+UBI8jNef5fET8pgfH642KYsmeil8KPBIRPy9znF2Auzr5gmFmVqqa++cNpAFSfps1G39f1n99V9KDqT+Skr3LSfeyRjoYmEy65/0fcDqpdUhPfJVUU3kIacqDMcDcovU/IA3wciXpHrpHuYM0w3cLs1oqDDtv1hQknUma723t0puT5UfSWNJw1rvnHUtnJEVE9GROwlrG8GtSM6qjSkdBzRK/l4FvR8Tv84jPzNqXpN1ICd4GEfFc3vGYWT5cc2dNQdKGkvYmjQJ2thO7pvNTYKSkDbrdssEk/VrSlOznKVmClUcc2wJHk57+PiLpH5JOKNpkf9JT5SvK7W9m1hOSVpe0HfBj4EYndmZ9m5M7axYXkoZtvhE4K+dYrETW7+Boej+6Z81FxDERsUZEKHs9Jqc47sli2CwiPpEtxX/LAo7O5rozW4yk/SVdn83bOEfSQ5IOqmC/9SVdI+lfkmZLuldSt82orW2MJs119y5wfM6xmFkJSRdJel3SE52sVzaf5XOSHpP0qaJ1C7OHxf+QdH1F53OzTDMzs/xJuo/Uv+o60hDtuwHfBE6IiLM72Wco8DhpepUzgDmkL/t7AdtGxN8bELqZmXVC0udIn82/i4hNy6zfjfRgZjdgS2BsRGyZrZsTEUtXcz6PlmlmZtYc9oiIN4re3yFpdeAbQNnkDtiWNLDTHhHxOICkO4CpwL6AkzszsxxFxN2ShnexyV6kxC+A+yUtJ2m1iHi1J+dzs0wzM7MmUJLYFTzC4hMsF1sie51VdJwFpKlVch1gyMzMKvIR4JWi91OyMoDBkiZKuj+bGqtbfaLmbsUVV4zhw4fX/Txvv/02Q4YMqft5Gs3X1Vp8Xa3F11V7Dz300BsRsVIuJ6+9bYCnulg/gTT34s8kfZOU1B1LSgjHV3KCgf2WjCUHlJs2zcysuc1+7/Wafd5vO3JwvDmj+vH8nnr8vSdJfV4LxkXEuCoOUe5BXKHf3FoRMU3SOqTWHI9HxPNdHaxPJHfDhw9n4sSJdT9PR0cHI0eOrPt5Gs3X1Vp8Xa3F11V7kl7O5cQ1JmkHUnOdozrbJiLekTSSNBjV5Kx4NrBXRHSVFL5vyQHLsM3KB/QyWjOzxrt56tk1+7x/c8YiLrthlar3+8RHp7wbESN6ceopwJpF79cApgFEROH1BUkdwCeBLpM7N8s0MzNrMln/jMuAP0XE+C62GwJcRRpQZS9gJ9Ik1ddI+mQX+43OmvpMnL9obmebmZlZ/V0PHJaNmrkVMCsiXpU0TNIgAEkrkvpYd/vQrk/U3JmZmbUKScsDN5Fq4g7pZvOjgY2BNSLizazsdkkbAt8H9iy3U9ZkaBzAsgNX8bDZZmZ1IulyYCSwYjYv76lk/aUj4gJSy4vdgOeAd4Ajs10/BlwoaRGpQu7HlbTIcHJnZmbWJCQtBdwADAR2j4i3u9llI+DlosSu4B/AdnUI0czMqhARXc5Xmo2S+bUy5fcCm1V7PjfLNDMzawKSBpCaWK4P7BoRr1ew28vAcEnDSso/TRpoxczM+hDX3JmZmTWH80hNc04Els/6XhQ8EhHzJE0AiIgdsvLLgO8AN0o6k9Sk5xBgC+ALDYvczMyaQsNr7iStJ+lCSY9KWpiN/FLJfstKuljSTEmzJF0qaYU6h2tmZtYoo7LXscB9Jctq2br+2QJARLwCbA+8CVxIqvnbENgvIv7SmLDNzKxZ5FFztwnpyeT9pD4FlfoD6YZ1DLAI+AlwHfDZWgdoZmbWaBExvIJtRpYpexjYtQ4hmZlZi8kjuftzRPwJQNLVwIrd7SBpa2BnYLuIuDsrmwo8IGnHiLi9ngGbmZmZmZk1u4Y3y4yI6qd+T08k/1VI7LLj/B14ET+tNDMzMzMza5kBVTYCnilT/nS2zsw6EwGPPw7/+lfekfTKsEcfhffeyzuM3hs4ELbZBpZYIu9IzMzMrM20SnI3jNRZvNRMYJ1yO0gaDYwGWGWVVejo6KhbcAVz5sxpyHkazdfVWgrXtcSMGaxy++2sevPNLP3ii3mH1WsfzzuAGnr6O9/hXzvtBLT/36GZmZk1TqskdwBRpkydlBMR44BxACNGjIiRI0fWL7JMR0cHjThPo/m6Wsj8+Txx5pls+uCDcOONsGABbLklfOtbsPnmeUfXKw8//DCf+tSn8g6jd2bPht1242OrrMLHsr+9tvw7pH2vy8zMrJm1SnI3E1ipTPlylK/RM+t7fvhDGDOGTd94A1ZdFb7xDTj8cNh447wjq4nZ770H226bdxi9M2dOen333XzjMDMzs7bUKsndM5Sf8mAj0nQIZn3bgw/C974Ho0bx2Pbbs/nJJ8OAVvnv3YcMHpxe583LNw4zMzNrSw0fLbOHbgJWlfQfhQJJI0j97W7KLSqzZjF2LAwdClddxYyttnJi16wGDIB+/ZzcmZmZWV00/BugpKVIk5gDfARYRtJ+2fsbI+IdSc8Bd0XE0QARcZ+kW4DfSTqZDyYx/5vnuLM+b9o0+MMf4LjjYJll8o7GujNokJtlmpmZWV3k8Xh/ZeCqkrLC+7WBl0hx9S/Z5kDgl8BFpBrHG4AT6halWas4/3xYuBCOPz7vSKwSgwe75s7MzMzqouHJXUS8RBrlsqtthpcpexM4MlvMDGDuXLjgAthzT1in7Kwg1mwGDXJyZ2ZmZnXRKn3uzKycyy6DN96Ak07KOxKrlJtlmpmZWZ04uTNrVRFpIJXNN4fttss7GquUm2WamZlZnXhIPbNWdeed8PjjcNFFoC5bOlszcbNMMzMzqxPX3Jm1qrFjYaWV4KCD8o7EquFmmWZmZlYnTu7MWtFzz8Gf/wzHHvvBxNjWGtws08zMzOrEyZ1ZKzr77DQh9le+knckVi03yzQzM7M6cXJn1mpmz4aLL4YDDoDVVss7GquWm2WamZlZnTi5M2s1F10Eb73l6Q9alZtlmpmZWZ04uTNrJQsXwllnwX/8B3z603lHYz3hZplmZmZWJ07uzFrJDTfAiy/CiSfmHYn1lJM7MzMzqxMnd2atZMwYWGst+OIX847Eesp97qwTkvaXdL2kqZLmSHpIUkVznUj6nKS7JL0t6c3s57XqHbOZmTUXJ3dmreLRR6GjA447Lo2Uaa3Jfe6sc98A5gBfB/YE7gQuk3R8VztJ2gW4HXg02+8Q4D7A86SYmfUx/oZo1irGjoWlloJjjsk7EusNN8u0zu0REW8Uvb9D0uqkpO/scjtIWgL4FfDTiPhu0aob6hemmZk1K9fcmbWC11+HSy+FI46AYcPyjsZ6Y9AgmD8fFi3KOxJrMiWJXcEjwMpd7LYTsAZwbl2CMjOzluLkzqwVXHhhSghOOCHvSKy3Bmct5ebPzzcOaxXbAE91sX5LYDqwlaRnJS2Q9ISkPRoTnpmZNRMnd2bNbt48OO882HVX2HDDvKOx3ho0KL26aaZ1Q9IOwF50XSu3KjAEGAf8DNiFlAxeK2mzugdpZmZdkrSLpEmSnpP07TLrPyppgqTHJHVIWqNo3eHZg7tnJR1eyfmc3Jk1uyuvhNde8/QH7aKQ3HnETOuCpOHAZcCfImJ8F5v2Iw2c8r2IuDAibgcOAl4E/l8Xxx8taaKkifMXza1Z3GZm9gFJ/UkP6HYFNgYOkrRxyWY/A34XEZsDpwM/yvZdHjiV1EJjC+BUSd32zXFyZ9bMItL0Bx/7GIwalXc0VguFZpmuubNOZDf0m4DJpJEvuzIje72zUBARC4G7SF8kyoqIcRExIiJGDOy3ZC8jNjOzTmwBPBcRL0TEfOAKUouMYhsDE7Kf7yxavzNwW0TMiIiZwG2k1hldcnJn1szuuQcefjjV2kl5R2O14GaZ1gVJS5FGuhwI7B4Rb3ezy9OdHQrwqD1mZvn6CPBK0fspWVmxR4F9s5/3BoZKWqHCfRfjqRDMmtmYMWl0zEMPzTsSqxU3y7ROSBoAXAWsD2wbEa9XsNstwAJgB2BSdpz+wHZAR30iNTNrP9MXLs0lM7fpwZ5XrihpYlHBuIgYl/1c7sl8lLw/GThH0hHA3cBU0ud6JfsuxsmdWbN6+WW49lr41rfS/HbWHtws0zp3HrAbcCKwvKStitY9EhHzJE0AiIgdstdXJZ0L/FiSgOeA0aTpEX7U0OjNzPqmNyJiRCfrpgBrFr1fA5hWvEFETAP2AZC0NLBvRMySNAUYWbJvR3fBOLkza1bnnJOaYn7ta3lHYrXkZpnWuULH2rFl1q0NvAT0L7PuW8DbwPeA5Ulz4+0cEc/XIUYzM6vcg8D6ktYm1cgdCBxcvIGkFYEZEbEI+B/gomzVLcD/FQ2iMipb3yUnd2bNaM4c+NWvYN99Yc01u9/eWoeTO+tERAyvYJuRZcreA76bLWZm1iQiYoGk40iJWn/gooh4UtLpwMSIuJ5UO/cjSUFqlvm1bN8Zks4gJYgAp0fEjMVOUsLJnVkz+u1vYdYsOOmkvCOxWis0y3SfOzMzs7YXETcCN5aUnVL089XA1Z3sexEf1ORVxKNlmjWbRYvgrLNgiy1gq626395ai2vuzMzMrE5cc2fWbG6+Gf75T7j0Uk9/0I6c3JmZmVmduObOrNmMHQurrw777Zd3JFYPbpZpZmZmdeLkzqyZPPkk3HorfPWrMHBg3tFYPbjmzszMzOrEyZ1ZMznrrFSzM3p03pFYvTi5MzMzszpxcmfWLKZPh0sugUMOgZVWyjsaq5dCcudmmWZmZlZjTu7MmsWvfgVz58IJJ+QdidVToc+da+7MzMysxpzcmTWD996Dc86BHXaAzTbLOxqrpwEDoF8/J3dmZmZWc54KwawZ/PGPMHUqXHBB3pFYIwwa5GaZZmZmVnNO7syawZgxsN56sNtueUdijTB4sGvuzGpo7qYfyTsEs5pZ8ompeYdgLczJnVneHngA7r8/jZTZzy2l+4RBg5zcWdNzwmSWj7mbfsQJnvWYkzuzvI0dC8ssA0cckXck1ihulmlNZNGSSziRM2syTvCspxqe3EnaGDgb2Bp4E/g18P2IWNjNfiOA/wM+DQh4GPhuRDxQ34jN6mjKFLjqKjj+eBg6NO9orFHcLNOs12ZuODDvEMzqYtik+YATPOuZhiZ3koYBtwNPAXsB6wI/J43a+b0u9lsz2+9h4LCs+FvArZI2j4iX6xm3Wd2cdx4sWpSSO+s73CzT+gAnX2Y9M3PDgU7wrMcaXXN3LLAksE9EzAZuk7QMcJqkM7OycnYHhmb7vQkg6V7gDWA34Pz6h25WY++8A+PGwV57wdpr5x2NNZKTO2tifT0pe2vdRXmHYH3c0Of7OcGzHmt0crcrcEtJEncF8BNgO+DPney3BLAAmFNUNicrUx3iNKu/Sy+F6dPhxBPzjsQabfBg97mzprFwsFouoXMCZu3srXUXvZ/gQWqm6QTPKtXo5G4j4I7igoiYLOmdbF1nyd01wOnAzyX9MCs7BZgJXFWnWM3qJyINpPKJT8DnPpd3NNZogwbB22/nHYVZbpycmXWtkODBB800CwMfOcmzrjQ6uRtGGkSl1MxsXVkRMU3S9sANwAlZ8avAzhHx75pHaVZvEybAk0/C+PEgVz73OYMGwYwZeUdh1mutmKQtvfasvEMw69KcF5cFyid44Gaa1rU8pkKIMmXqpDytlFYDrgYeAo7Jir8G/EXSNhExucw+o4HRAKussgodHR29DLt7c+bMach5Gs3XVXub/e//MnTYMO5bbTWixjH436v5bfLWWyw1fToPdnS01XUVa9fr6guaPWFzcmbtbum1ZznBsx5rdHI3E1iuTPmylK/RK/gWKdb9IuI9AEl3AM8CJ/NBbd77ImIcMA5gxIgRMXLkyF4FXomOjg4acZ5G83XV2LPPpknLTz2V7UaNqvnh/e/VAtZYA6ZOZeTIke11XUXa9bra0cJB+SZ0rZCsjVprUt4hWB9x6+QNASd41nONTu6eIfWte182zcGQbF1nNgKeLCR2ABExX9KTpOkUzFrHWWfBwIFw7LF5R2J58WiZVoak/YFDSfO5LgtMAn4WEZdXcYzrSFMNHR8R59Ql0Ao0S8LmpMxaTeFv9tbJGzrBsx5pdHJ3E/AtSUMj4q2s7ABgLnBXF/u9DOwmaWBEzAeQNAjYlM4HYTFrPm++CRdfDAceCKuumnc0lpdBgzxappXzDeBF4Ot8MNXPZZJWjIizu9tZ0ihgq/qGmH/i5oTN+oJRa016P8GD1A/PCZ5VotHJ3QWkJpR/lPQTYB3gNOAXxdMjSHoOuCsijs6Kfk3qa3etpPNIffS+BqxG1vTSrCVcdFEaJdHTH/Rtgwe75s7K2SMi3ih6f4ek1UlJX5fJnaQlgLHAd0n3zB7LK3nLO2k7dNi9uZ7frOCSmdsAHyR48EEzzUITas+FZ51paHIXETMl7QCcQ6pxexP4JSnBK42rf9F+D0naBTgVuCQrfhzYKSIerXfcZjWxYEFqkvm5z8GnPpV3NJYnN8u0MkoSu4JHSM0su3MiqRXMxVSZ3PUftLDuCV2jEzcnatbKDh12b5cJHnguPOtcw0fLjIingM93s83wMmUTgAl1Csus/q6/Hl5+GX7xi7wjsbwNGgTz58Oi5h6V0JrCNsBTXW0gaVXgf0k1f4vUZNOrOLEzaxwneNYv7wDM+oyxY2H4cNirkofw1tYGD06v8+fnG4c1tayly17Aud1seiZwS0TcXf+oqleodWiUQo2HmVlf5OTOrBEefhjuvhuOPx769+9+e2tvgwalVzfNtE5IGg5cBvwpIsZ3sd3WwH6kKYOqOf5oSRMlTVww651eRFoZJ3hmZo3h5M6sEcaOhSFD4Kij8o7EmoGTO+uCpOVJo0tPBg7pZvMxwIXALEnLSSrMJbukpGU72ykixkXEiIgYMWDZpWoSd3ec4JmZ1Z+TO7N6e+01uOIKOPJIWG657re39ldolunpEKyEpKWAG4CBwO4R8XY3u2wInATMLFogNdWcXq84eyqPBM9Jnpn1JU7uzOrtggtS36oTTsg7EmsWrrmzMiQNAK4C1gd2jYjXK9jtC8D2JQvAWcAOlZx34bzGNhVvdIIHrsUzs77DyZ1ZPc2bB+efD7vvDuuvn3c01iyc3Fl555EmLj8DWF7SVkXLIABJEyS9P3J0RPwtIjqKl2zVsxFxV6UnLgyv3ihO8Mysr5C0i6RJkp6T9O0y638p6R/Z8k9JbxatW1i07vpKztfwqRDM+pQrroDXX4eTTso7EmsmbpZp5Y3KXseWWbc28BJFc8DW2pwXl23oBOa3Tt6w4dMkXDJzG0+VYGYNI6k/acTjnYApwIOSrs+mhgMgIr5etP3xwCeLDjE3Ij5RzTldc2dWLxEwZgxssgnsUFHrKOsrXJHcl4gAACAASURBVHNnZUTE8IhQJ8tL2TYjI2JkN8dRRJzTkxjyqMHzQCtm1sa2AJ6LiBciYj5wBWmKm84cBFzemxM6uTOrl7vvhn/8A048EZpsUmHLmZM7a2KNTvDAI2maWdv6CPBK0fspWdliJH2U1ErjjqLiwdm0NfdL+mIlJ3SzTLN6GTsWVlgBDuluJHPrc4qbZS7VmGHozarR6Caa0Phmmm6iaWbFZs8f3NMHTStKmlj0flxEjMt+Lvd0Pzo5zoHA1RGxsKhsrYiYJmkd4A5Jj0fE810F45o7s3p48UX4059g9GhYcsm8o7Fm45o7awFzXly27QdacQ2emdXAG4V5Q7NlXNG6KcCaRe/XAKZ1cpwDKWmSGRHTstcXgA4+3B+vLCd3ZvVw9tnQrx989at5R2LNyMmdtZC+kOA5yTOzOnkQWF/S2pIGkhK4xUa9lLQhMAy4r6hsWNFIySsC2wJPle5bysmdWa299Rb85jew//6wxhp5R2PNyKNlWotp9wQPXItnZrUXEQuA44BbgKeBKyPiSUmnS9qzaNODgCsiorjJ5seAiZIeBe4Eflw8ymZn3OfOrNbGj4fZs9NAKmbluObOWpCnSjAzq15E3AjcWFJ2Ssn708rsdy+wWbXnc82dWS0tWgRnnQVbbQVbbpl3NNasnNxZi3INnplZc3NyZ1ZLN94Izz3nScuta4Xkzs0yrQV5Ljwzs+bl5M6slsaMgY98BPbZJ+9IrJkV+ty55s5alOfCMzNrTk7uzGrliSdgwgQ47jhYYom8o7FmNmBAGk3VyZ21MCd4ZmbNx8mdWa2MHZvmtPvyl/OOxFrBoEFO7qzlOcEzM2suTu7MauGNN+D3v4dDD4UVVsg7GmsFgwe7z521BU92bmbWPJzcmdXCuHHpi7qnP7BKueau7UjaW9IJ2WS0xeXH5RVTI/WFBM9Jnpk1Oyd3Zr01fz6cey6MGgUbb5x3NNYqnNy1FUk/Bk4E1gNuk1Q8ZO5R+UTVeO2e4IFr8cysuTm5M+utq6+GadNca2fVcbPMdrM7sGNEnAB8EthT0k+zdcovrMZzgmdmlh8nd2a9EZGmP9hgA9hll7yjsVbimrt20y8iFgBExHRgF2C4pN/QB++1ngvPzCwffe6GY1ZT998PDz6Yau36+b+TVcHJXbt5VdKnCm8iYj5wABDAprlFlSOPpGlm1nj+NmrWG2PHwrLLwmGH5R2JtRo3y2w3RwDTigsiYlFEHAN8NpeImoATPDOzxnJyZ9ZTr7yS+tt9+cuw9NJ5R2OtxjV3bSUipkTEa52su7fR8TQTJ3hmZo3j5M6sp849N/W5+9rX8o7EWpGTu5Ykaaykv5cpHyDps5J2krRMHrE1M8+FZ2bWGE7uzHrinXfS3HZ77w3Dh+cdjbUiN8tsVTsAdxYXSBoCTAQ6gJuBqZKOaHhkLaAvJHhO8swsT07uzHrikktg5kw46aTutzUrxzV3rWpNoLSZ5QnA5sB44GDgz8CvJVXV107S/pKulzRV0hxJD0k6qJt9NpR0rqSnJb0j6YWsdnG5as7dSO2e4IFr8cwsP07uzKoVkQZS+fSnYdtt847GWpWTu1a1BDCnpOxgYEpEHB0Rf4iIQoL3/6o89jeyY38d2JNUQ3iZpOO72GcnYFvgfGA34AfA/sCtkiq6x/fP4c/QCZ6ZWX04uTOr1m23wdNPp+kP1KfmJrZacnLXqp4Btiy8kbQWsAlwfcl2vwe2rvLYe0TEwRFxZUTcEREnA5eTkr7OXA58MiLOioiOiLiINHLnZ6hilM6hz/dj6PON/UrgBM/MrPac3JlVa8wYWHVV+NKX8o7EWpn73LWqi4CTJY2StATwTdJcdteVbPc6UNUwuhHxRpniR4CVu9hnekREmX3oar/O9IUEzwOtmFk7c3JnVo1nnoGbboKvfjXVvJj1lGvuWtW5wO2kgVPeBY4HHgcmlGw3nJTg9dY2wFM92Ice7Ae0f4IHHknTzNqXkzuzapx9NgwcCP/1X3lHYq1u0CCYPz/14bSWEcmXgN2BM4FTgJ3L1J59CXiiN+eStAOwFymhrHSfpYAfA3dFxJM9PbcTvNpzgmdmjeDkzqxSM2fC+PHwn/8JK1fd2snswwYPBqDfe+/lHIj1RETcFBH/ExE/iIh/Fa+TtDIwFLiyp8eXNBy4DPhTRIyvcB8BvyE1xzyqm21HS5ooaeKCuW+X3cYJXu05wTOzemt4cidpY0kTsiGbp0k6XVL/CvfdR9KDkuZKmi7p5mx+IbP6+/Wv0/x2J56YdyTWDrJmvZo/P+dArNYi4vWIGFlpUlZK0vLATcBk4JAqdv0JsDfwxYh4oZsYx0XEiIgYMWDJzm+jeSR47T7QiufCM7N6auintqRhpL4KQWpqcjqpM/r3K9j3GNJTzJuAXYFjgGeBAfWK1+x9CxbAOefAyJHw8Y/nHY21gyy5c82dFcuaVd4ADAR2j4jy1WqL7/d14GTgsIj4ay1janSCBx5J08yspxr9iX0ssCSwT0TcFhEXkBK7b0haprOdJK0I/BI4PiJOyYZ7vjYijo+IWY0J3fq0666DyZM9abnVTqFZpmvuLCNpAHAVsD6wa0RUNCCLpIOBnwPfjIgeNwXtihO8+nCCZ2a11uhP612BWyJidlHZFaSEb7su9iuMOf/begVm1qUxY2DtteELX8g7EmsXrrmzxZ1Hmoj8DGB5SVsVLYMAsm4N74/MKWk7YDxwK3BfyT5r1DI4z4VXH07wzKyWGp3cbUSaAPZ9ETEZeCdb15ktgUnA0ZKmSHpP0gOS/Ilo9TdxItxzD5xwAvSvqHuoWfec3NniRmWvY4H7SpbVsnX9s6Vge2AJYOcy+xxTjyD7QoLngVbMrFU1OrkbBrxZpnxmtq4zqwIbAt8D/hvYA3gbuFnSKrUO0uxDxo6FoUPhqC4HnzOrjptlto1soLBDJX1H0qpZ2XqShlZznIgYHhHqZHkp22ZkRIws2ue0LvY5rYaX+SHtnuCBR9I0s9aUx2Ak5SZ1UiflBf2ApYH9I+JmAEn3Ai8DxwH/u9gBpdHAaIBVVlmFjo6O3kVdgTlz5jTkPI3Wl69r4PTpbHXFFUzbc0+ee/jhxgTWS33536uVDHvmGT4OvDtrVltdV0G7/XuVI2lp4CJgX2AB6Z56M/Aa8H+k0S5Pzi3AOhv6fD/eWndRw84358VlWXrtxnazv3Xyhoxaa1LDznfJzG04dNi9DTufmbWfRid3M4HlypQvS/kavYIZ2WtHoSAiZkt6CNi43A4RMQ4YBzBixIgYOXJkD8KtTkdHB404T6P16es65RRYuJA1fvIT1lhvvYbE1Vt9+t+rlUgADBkwgE+003Vl2u7fq7xfANsAOwL3AO8WrbuRlNi1bXIHTvDqwQmemfVGo5tlPkNJ3zpJawJDKOmLV+JpUs2eSsoFNO6uYn3Lu+/CBRfAHntAiyR21kLcLLMd7AP8d0TcCSwsWfcy8NHGh9R4nguv9txE06x9SNpF0iRJz0n6difbfEnSU5KelHRZUfnhkp7NlsMrOV+jk7ubgJ1L+iEcAMwF7upivxtIidz2hQJJywKfBh6tQ5xmcPnl8O9/e9Jyqw8PqNIOlgSmd7JuKIsnfG3LUyXUnic7N2t9kvoD55JmDNgYOEjSxiXbrA/8D7BtRGwCnJSVLw+cShpYcgvg1GzO8C51+2ks6TBJK1R5LZ25AJgH/FHSjlm/uNOAXxRPj5Bltr8pvI+IicCfgN9kGezuwPXAe6RfmFltRaTpDzbbDLbfvvvtzarl5K4dPAgc1sm6/YA+1bbOCV59OMEza2lbAM9FxAsRMZ80BdxeJdt8GTg3ImYCFM1xujNwW0TMyNbdBuzS3Qkr+SS+GFgXQNJCSVtUdCllZIHtQBrG+c+kCcx/ScpKiw3gw0M9AxwCXEfq43A1KbH7fOEXYVZTHR3w2GNp0nKVtgY2q4GsWabcLLOVfQ/YR9LtpGkHAthN0iXA/ix+b2t7TvDqwwmeWcv6CPBK0fspWVmxDYANJN0j6X5Ju1Sx72IqGVBlJrB69nN3o1p2KyKeAj7fzTbDy5TNAb6SLWb1NXYsrLgiHHxw3pFYuyrU3Dm5a1kR8TdJOwA/Bs4h3SO/D9wP7BgRD+YZX14KCV47D7RSSPA80IpZ+1g4r39PHxatKGli0ftx2cCOsPh4IbB4LjUAWB8YCawB/FXSphXuu5hKkrvbgUskTcoOOF7S251tHBE9rtkzawrPPw/XXw/f/e77tStmNedmmW0hIu4BPitpSbK5XCPinZzDagoeSbP2nOCZNaU3ImJEJ+umAGsWvV8DmFZmm/sj4j3gxSznWj8rH1myb0d3wVTSfuIo0pPIR0gZ5IvAk10sZq3t7LOhf3/4iiuJrY6c3LU8SR+XtBtARMyNiGmFxE7SbpI2zzfC/Hmy89pzE02zlvIgsL6ktSUNBA4kjRtS7DqyQSMlrUhqpvkCcAswStKwbCCVUVlZl7qtuctuVD/LTrgj8N2I8AiV1p5mz4aLLoIDDoDVV+9+e7Oe8lQI7eCXwF9Jc9qV+gzwTVI/8z7NNXi15xo8s9YQEQskHUdKyvoDF0XEk5JOByZGxPV8kMQ9RRpl+VsRMR1A0hmkBBHg9IiYsfhZPqyS0TIXSvpM9rYDmN3F5mat7eKL4a230kAqZvU0YAD06+eau9b2KdLk5eXcB3yygbE0Nc+FV3uuwTNrDRFxY0RsEBHrRsQPs7JTssSOSL4RERtHxGYRcUXRvhdFxHrZcnEl56vk03Y+MCj7+TBgpeouyaxFLFwIZ50F22wDIzprOm1WQ4MGISd3raw/MKSTdUOAgQ2Mpel5JM3a81x4ZlaqkgFVngJOk3Qdqc/dfpI6++YbEXF+zaIza6S//AVeeAF+/OO8I7G+YvBgN8tsbQ8Co4Fry6wbDUwsU96nNbqJJuQzkmYjm2iCm2ma2QcqSe6OBy4k9S0I4OQutg3AyZ21pjFjYM01Ye+9847E+opBg5zctbbTgNslPQD8FngNWI3UyuXjwE75hVa5/u/2aoajqjnBqw8neGYGFTTLjIh7s/afS5Bq7raKiH6dLKUTj5u1hscegzvvhOOOS32hzBph0CD3uWthEXE3afSyRcDZwNXAWGABsFNE/DXH8KoybFJjHzIMfb5f24+k6cnOzSwP1X6ybk9qpmnWXsaOhaWWgmOOyTsS60vcLLPlRURHRGwNDCXNZbRMRGzbSoldQaMTPGj/qRJunbyhB1oxs4aq6lM1Iu6KiDmStpT0TUk/zF63rFeAZnX3+utw6aVw+OGw/PJ5R2N9iWvu2kZEvBMRU1t9AnMnePXhBM/MGqWq9meShgBXATuT5mGYDqwA9Jd0M7B/q9/YrA+68EKYNw+OPz7vSKyv8WiZLUfS34EjIuIpSQ+S+pp3KiK2aExktTNs0nxmbtjYgT49F17tuQ+eWd9U7eOyM4GtSbOrD46I1YDB2futgZ/UNjyzOps/H847D3bZBT72sbyjsb5m8GDX3LWeJ4G5RT93t7SkYZPm59IPr5Fcg2dm7ajakSP2Bf47Iq4qFETEIuAqScOA00mja5q1hiuvhNdegxNPzDsS64sGDaLfjBl5R2FViIgji34+IsdQGqLRtXh51OABbT2SZiHBcy2eWd9Q7WOyZYFXOln3CrBM78Ixa6CINP3BRhvBqFF5R2N9kadCaFmSlpC0raTV846l3tq9Bg88kqaZtY9qP0EfBb4iScWF2fuvZOvNWsIyTzwBDz2Uau36Nf7LhJmbZba0hcAdQM3ac0vaX9L1kqZKmiPpIUkHVbDfIEk/l/S6pLcl/UXS8FrFBU7w6sEJnpnVQ7Wfnt8hDabyjKQfS/q6pB8BT5Pm+vlOrQM0q5c1rrkGllsODj0071Csr3LNXcvKuiQ8C6xSw8N+A5gDfB3YE7gTuExSd90dzgKOAE4G9gNWBG6TNLiGsXkuvDpwgmdmtVbtVAh3AJ8EHgH2B34IfAl4GPhURNxZ8wjN6uHll1npr3+F0aNhyJC8o7G+yqNltrrvAqdI2qxGx9sjIg6OiCsj4o6IOBm4nJT0lSVpDeBo4OsR8buIuAnYB/gocEiN4nqfp0qoPc+FZ2a1VPUnZkQ8FREHRsS6EbFU9npwRHhyc2sd556bXr/2tXzjsL7N89y1uu+RpgP6h6TJkh6U9PfipZqDRcQbZYofAVbuYrdCh+E/Fh1nKvA3YNdqzl8pJ3j14QTPzGqhqk9LST+TtHG9gjFriDlz4Fe/4t+f/SystVbe0VhfNniwm2W2tieBG4DfAROAJ6j9VAjbAF09PN0ImBIRc0rKn87W1YUTvPpwgmdmvdWTqRC+Lukh4CLg8oho7CygZr31u9/Bm28yZb/9unwcblZ3rrlrafWeCkHSDsBewFFdbDYMeLNM+cxsXd0UErx2nyrBk52bWSupts/d2sCOwDPAT4FXJV0macd6BGdWc4sWwVlnwWc+w+xNNsk7GuvrCsldRN6RWBUkLSlpX0nflHSwpFoOqlI4x3DgMuBPETG+m83L/QGpk/LC8UdLmihp4nvz3+5pmED7j6Q558Vl236gFdfgmbWPnvS5uzMiDgNWI01YvgZwi6SXJX1f0jq1DtKsZm65BSZNStMffHhGD7PGG5wNZjhvXr5xWMWye9yTwFWkh5y/ByZJqtlkmZKWB24CJtP9oCgzgeXKlC9H+Ro9ACJiXESMiIgRSwzs/aBS7Z7gQfuPpHnJzG2c5Jm1gR5/OkbEnIj4DXAqcA+wJvA/wD8l/UnSR2sUo1ntjBkDq60G+++fdyRmMGhQenVy10rOBBYBnwWWAjYhDXpyYS0OLmkpUj++gcDuEdFdtdozwJqSSjO0jbJ1DeMEr/Y8VYKZVatHn4yShks6VdILwK2keXn2B4aS5uYZDlxRqyDNauKpp+DWW9MImQMb10fErFNO7lrR1sD3IuKeiHg3Ip4G/gtYS9JqvTmwpAGkGsH1gV0j4vUKdrs1e9276Dirk5LPm3oTT084was9J3hmVo2qBlSRdChwJPA5UnORi4GLI2JK0WY3SnobuL1mUZrVwllnpS/To0fnHYlZUmiW+e67+cZh1VgNeKGk7HlSH7dVgVd7cezzgN2AE4HlJW1VtO6RiJgnaQJAROyQvU6R9BtgjCQB/wZOA14mNRltuGGT5jd8kBWgrQdaKSR4HmjFzLpT7SOvccBrwM4RsU5EnFGS2BX8E/hBr6Mzq5UZM9IomYccAiutlHc0Zolr7lpVvUbAKfTbGwvcV7IUagX7Z0uxE0jTMfwCuAaYAYyKiNyeGniqhPrwQCtm1p1qPwlXzyYsn9DVRhHxakR8vxdxmdXWr34Fc+emgVTMmoWTu1Z1i6TXCwsf1NZNKC7P1lUsIoZHhDpZXsq2GRkRI0v2mxcR34iIlSJiSETsFhEv1uJCe8MJXn04wTOzrlTVLDMiZtYrELO6ee89OOcc+PznYbPN8o7G7AMeLbMV+cFlFTwXXn14Ljwz60y1k5gj6QDgy8AGwODS9RHheaGtuVx7LUyZAuedl3ckZh9WqLlzn7uW4VYpPZNHP7xGJ3hAw/vhOcEzs1JVtV+QdDDwW+A50vx215OGbO4HzAbOqXWAZr02Zgysuy7svnvekZh9mJtlWh/ikTRrz3PhmVmpaj/5vgWcAXwte39eRBwFrA28AbxTw9jMeu/vf4f77oMTToB+jb/Rm3XJzTKtj3GCV3ueKsHMilX7qbc+cE9ELAQWAssARMRbwE+A42obnlkvjR0LyywDRx6ZdyRmi3OzTGsC/ea+19DzOcGrPSd4ZlZQ7SfeLCD7NsJU4GNF6wSsUIugzGpi6lS48ko4+mgYOjTvaMwW52aZ1iSWfGJqQ8+XR4LX7iNpOsEzM6g+uZsIbJ79fD1wiqQvSzoc+CnwQC2DM+uV886DhQvhOFcoW5Nys8yWJukUSat3sm41Sac0OqbeaPcED9p/qoRbJ2/oqRLM+rhqP+V+BEzOfj4F+DtwHnAxqc/d6NqFZtYLc+fChRfCXnvBOuvkHY1ZeW6W2epOJQ0uVs7q2fqW4gSv9jwXnlnfJmkXSZMkPSfp211st5+kkDQiez9c0lxJ/8iWCyo5X0WfcJKWlLQvsC0wQNIqEfFmROwFLA0sFxFbRsQLlRzPrO4uvRSmT4eTTso7ErPOuVlmqxMQnaxbA2jJuWGd4NWeEzyzvklSf+BcYFdgY+AgSRuX2W4ocAKLt4J8PiI+kS3HVnLObj/dJK0DPAlcRWp6eQkwSdIogIiYFxGzKzmZWUNEpIFUPv5x+Nzn8o7GrHNO7lqOpMMl3SHpDlJid37hfdFyL/B74K58o+25PBK8dh9oxQmeWZ+0BfBcRLwQEfOBK4C9ymx3BnAm0OumPJV8sp0JLAI+CywFbAI8AlzYkxNK2ljSBEnvSJom6fQsq610/36SHsqqLb/Qkxiszd1xBzzxRKq1k/KOxqxzhT53bpbZSt4BpmeLSAONTS9ZXiTdO1u6q0KjEzxo/5E057y4bNsPtOK58KwPWlHSxKKl+LP/I8ArRe+nZGXvk/RJYM2IuKHMsdeW9IikuyR9tpJgBlSwzdbANyPinuz905L+K3tdLSJereREAJKGAbcDT5Gy1nWBn5OSzO9VeJhjKPmlmH3ImDGw8spw4IF5R2LWtQEDiH79kGvuWkZEXEVqyYKki4Ez2rlLwpJPTGXupo295Q6bNJ+ZGw5s2PmGPt+Pt9Zd1LDzQUryll57VsPOd+vkDRm11qSGnQ9SknfosHsbek6z3ug/r8cPfN6IiBGdrCtXy/B+c35J/YBfAkeU2e5VYK2ImC7p08B1kjbprsVkJVewGlB643o+C3bVCvYvdiywJLBPRNwWERcA3we+IWmZ7nbOksMfAt+t8rzWVzz7LPzlL3DssR/Uipg1sUVLLOFmmS0qIo6MiBckrS5p32z06H06G0GzVS35xNS274fnufDqwzV4ZkwB1ix6vwYwrej9UGBToEPSS8BWwPWSRmRd36YDRMRDpPxrg+5OWOmnWWcdxqu1K3BLScZ5BSnh266C/c8A7gEm1Cgeazdnnw0DBsBXvpJ3JGYVWTRwoJO7FpV1EzgPeJlUm3chcDXwsqRzsyeybaMvJHjt3g/PCZ5Zwz0IrC9pbUkDgQNJ08kBEBGzImLFiBgeEcOB+4E9I2KipJUKXdeyMVDWZ/EKt8VU+il2i6TXCwupmhBgQnF5tq4rGwHPFBdExGRSH4aNutpR0ubAkcDJFcZsfc2sWXDxxXDQQbBqtZXKZvlYtMQS7nPXuk4HjgK+AwwnPagcnr0/Cjgtp7jqpt0TPGj/gVY8F55Z40TEAuA44BbgaeDKiHgyG3Nkz252/xzwmKRHSQ8Oj42IGd2ds5I+d9+vYJtKDQPeLFM+M1vXlbOBcyPiOUnDaxiTtYuLLoI5c+DEE/OOxKxi4WaZreww4HsR8bOissnATyUFaVjrlprIvBKN7ofX6D540Ph+eI3ugweN74fnPnjWV0XEjcCNJWVl7w0RMbLo52uAa6o9X7fJXUTUMrmD8k08u5orCEkHAhsCe1R6kmykmtEAq6yyCh0dHdVF2QNz5sxpyHkarSWua+FCtjzzTOZtthn/mD0bKoi3Ja6rB3xdrWXEgAG8/sorPNVm19au/14lVgYe62TdY9n6tuQEr/ac4JlZLVRSc1dLM4HlypQvS/kaPSQtQZpf7ydAP0nLAYXBV4ZIGhoRb5XuFxHjgHEAI0aMiJEjR/Y++m50dHTQiPM0Wktc17XXwmuvseQ551Qca0tcVw/4ulrLnEGDWHmZZVi5za6tXf+9SvyT1H/i1jLrDgQaOzxhg+WR4AFtPZKmEzwz661Gd/Z+hpK+dZLWBIZQ0hevyBDSyDK/ICWHM4FHs3VXkObcs75u7Fj46Edhr3LzQpo1Lw+o0tJ+ABwh6XZJx0raW9J/SbodODxb39Y8F17t9ZW58MysPhqd3N0E7CxpaFHZAcBc4K5O9pkDbF+yHJSt+w7wn/UJ1VrGI4/AXXfB8cenkTLNWoiTu9YVEVcCu5AeQo4l9Y04C1gK2CWbE6/tOcGrj76Q4DnJM6u9Rn9aXQDMA/4oacesX9xpwC+Kp0eQ9Jyk30AaZSYiOooX0jChAI9HxAONvQRrOmPHwpAhcPTReUdiVjWPltnaIuLWiNiaNFLmqsCSEbFNRNyWc2gN5QSvPto9wQPX4pnVWkM/qSJiJrAD0B/4M2kkzl8Cp5ZsOiDbxqxr//oXXH45HHEELFeuO6dZc/Nome0hIhZFxOsR0asOWpLWk3ShpEclLZTUUeF+IyTdKmm6pBlZU9EtexNLtTzZeX04wTOzajS8DVtEPAV8vptthnez/iXSCJvW111wAcyfDyeckHckZj2yaOBAeGuxMaGsRWST0h4BbAGsRpoH9gHgtxHRk8xjE2A3UguVikYOyfqu3w48TJqeAeBbwK2SNo+Il3sQR4+1+0iahQSvnQdaKSR4HmjFrPU0/hGUWa3Mmwfnnw+77QYbbJB3NGY94maZrUvSx4BngXOBTYGF2eu5wHOSNu7BYf8cEWtGxP7AkxXuszswFNgnIv4SEX8B9gaWJiWKDdfuNXjQ/pOdgwdaMWtFTu6sdf3hD6lZ5kkn5R2JWY8tcrPMVjYOmAWsGxFbRcSeEbEVsF5WfkG1B+xhs84lgAWkAcgK5mRlubVycYJXe07wzKw7Tu6sNUXAmDGw8caw4455R2PWYx4ts6WNAE6JiMnFhdn7U4DPNCiOa4B3gJ9LWlnSyqT+7DOBXEfszCPBa/d+eE7wzKwrTu6sNf3tb2kKhBNPBLn7pbWuRQMHullm63oJGNzJusHA5E7W1VRETCNNE7Qv8K9s2QfYOSL+3YgYuuKRNGvPc+GZWWec3FlrGjMGll8eDjkk70jMeuX/t3fn4XJU1frHv28SkjATZkSQJyKu4wAAIABJREFUMAgC8tNrBBmuBFRmAZFJRQHhIgqI1wmcEeQqIhgCAWRQBMSIKArIDAZlECEiQoRomAOoQMIQEggk6/fHroam0+ec7tPVXd113s/z1NPd1bu6Vp3T0+q9ay/PltnTjga+UzsrpaT3AMcCR3UiCEmrAZcAU4Eds2Uq8DtJa/axzSGS7pR05/yF89oeoxO89hgKCZ6TPLPmOLmz3vPww/Cb38CnPgVLLFF0NGYtWbjYYmnG14iiQ7HmfR1YBrhV0pNZ+YIngVuAZYGvSvpzZWljHF8izX69Z0RcHRFXk3rxFgBfrLdBRJwVEeMiYtzIYYu3MbTXOcFrj7IneOBePLNmdLwUglnLTjstDcX8zGeKjsSsZQtHZlO4z58Po0YVG4w1695sKdoGwLSIeKWyIiLmS5oGrFNcWIuqJHhlL5XQyTIJUEyphE6WSQCXSjBrlJM76y0vvADnnAN77QVvfnPR0Zi1bOFii6UrL73k5K7HRMSBRceQeQTYSdLISm09SaNIZRkuLzSyPrgWXv6c4JkZeFim9Zqf/hSee87lD6w0XkvufN5dT5O0hKQjJE2S9A1Jb2nhcfaUtCewOrBS5bakJbI2MySdW7XZOcCbgEsl7SxpF+A3pKLqZ7V2ZO3jUgn5K2KIpidaMesuTu6sdyxcCBMnwmabpcWsBF4blunkridIOknSP2rWLQ38BZgA7EMqg3C3pLcOYhcrk8oX/BJ4D7Bh1e2VszYjgOGVDSJiKrADqZD5BcD5wBLAByLi7kHE0DFO8PLnUglmQ5uTO+sdV10F//yne+2sVKKS3LkcQq/YBriwZt0XgbcC/xMRK5J60R4GvtHsg0fEwxGhPpaHszZrRcQBNdvdEBHvjYjls2XriJjS9NEVwAle/pzgmQ1dTu6sd0yYAKuvDh/+cNGRmOXGwzJ7zlqkMgPVPgz8PSJ+DJDVljsJ2LKzofUuFzvPnxM8s6HJyZ31hmnT4Prr4bDDoPJl2KwEPCyz54wAXutmlbQ88Dbgxpp2DwOrdi6s3udSCfkbKsXOneSZvc7JnfWGU06B0aPhkEOKjsQsV2+YLdN6wT+A8VW3d8kur6lptzIwqxMBlYkTvPYoe4IH7sUzq3ByZ93v6afhggvg4x+HFVYoOhqzXHlYZs85DTha0kRJXwNOBB4Crq1ptx3dUQOv5zjBaw8neGZDg5M7635nn516NY48suhIzHLnYZm9JSLOI82GuQfwFWA68KHqAuKSVgJ2A35bRIxlsPi9j5d+opWlHxhW+vPwnOCZdZ6TO+tur7wCp50GH/gAbLRR0dGY5c6zZfaeiPhuRLw5IpbKZqi8p+b+pyJi1Yg4o6gYy6LsCR6Uf6IV18Iz6ywnd9bdLrkEnnjCvXZWWh6WadY/J3j580yaZuXl5M662ymnwHrrwY47Fh2JWVt4WKbZwJzg5c8Jnlk5Obmz7vWnP8Htt6deu2F+qlo5uefOrDGuhZc/J3hm5eNvzNa9JkyAZZeF/fcvOhKztnEpBLPGeSbN/A2VWnhmQ4WTO+tOM2em8+0OPhiWWqroaMzaJjws06wpTvDaYygkeE7ybChwcmfdadIkiIDDDy86ErO28jl3Zs1zgtceZU/wwL141nmSdpA0XdIMSUfXuf9QSfdI+qukmyVtWHXfV7LtpkvavpH9Obmz7jN3LvzoR7D77rDWWkVHY9ZWMXx4OqfUwzLNmjJUauF1mhM8s/xIGg5MAnYENgQ+Up28ZS6KiLdHxDuA7wMnZ9tuCOwLbATsAJyePV6/nNxZ97nwQpg9Gz73uaIjMeuMUaPcc2c2SEMhwSv7RCtO8KzENgVmRMSDETEfmAzsVt0gIp6vurkkENn13YDJEfFyRDwEzMger19O7qy7RKSJVN75Tthqq6KjMeuM0aOd3Jm1oOwJHpR/Jk0XO7eSWh14rOr2zGzdG0g6TNIDpJ67zzazbS0nd9ZdrrsO7rsv9dpJRUdj1hmjRnlYplmLnODlz6USzBqyoqQ7q5ZDqu6r92U2FlkRMSki1gGOAr7ezLa1RjQSsVnHnHIKrLIK7LNP0ZGYdY6HZZrlYvF7H2fexgP+sJ2bSoI3e/2RHdvn0g8M44V1FnZsf3MeWpalxj7Xsf1BSvC2W3N6x/Z3wewt+PiYWzu2P+tOw1+Kwf5o83REjOvjvpnAGlW33ww80c9jTQbOGOS2gHvurJtMnw5XXgmf/nT6sms2VHhYplluPJNm/lwLz2zQ7gDWkzRW0kjSBCmXVTeQtF7VzZ2Bf2bXLwP2lTRK0lhgPeDPA+3QyZ11j4kTYeRIOPTQoiMx6ywPyzTLlRO89hgKCZ6TPMtTRLwKHA5cA9wHXBwR0yQdK2nXrNnhkqZJ+ivweWD/bNtpwMXA34GrgcMiYsFA+3RyZ91h9mw47zz46EfTsEyzocTDMs1y5wSvPcqe4IF78SxfEXFlRLw1ItaJiOOzdd+MiMuy60dGxEYR8Y6I2CZL6irbHp9tt35EXNXI/pzcWXc499xU3+7II4uOxKzzPCzTrC1cC689nOCZdS8nd1a8V1+F006DrbeGd7yj6GjMOs/DMi0jaV1JP5J0t6QFkqY0se0eku6QNE/SM5KulrRkG8PtGUMhwSv7TJpO8Mwa4+TOivfb38Ijj7houQ1dHpZpr9sI2An4R7Y0RNLBwEXAVcCOwMGkk/I9K3am7AkelL9UgmvhmQ3MyZ0Vb8IEGDsWPvjBoiMxK4aHZdrrLo+INSJiL2DagK0BSSsCPwSOyM7jmBIRl0bEERHR2Tnsu5wTvPy5Fp5Zd3FyZ8WaOhVuvhmOOAKGDy86GrNiuOfOMhExmAJme2eXP80zlrJygpc/J3hm3aPjyZ2kDSXdIGmupCeyqUD7/VYv6d2SfiJpRrbddEnfkjS6U3Fbm5xyCiy1FHzyk0VHYlYcn3NnrdkMmA4cJGmmpFck3S7J30b7UESCV/aJVpzgmXWHjr7yJY0BrgcC2A04FvgC8O0BNt0HWAc4gXQuwiRSHYiftS1Ya78nn4TJk+HAA2HZzn8omHUN99xZa1YF1ge+DhwFfBB4EbhakmvL9MGlEvLnYudmxet0z92hwOLAHhFxXUScSUrsPi9pmX62OyEi3hsRZ2fnEkwEvgTsIektHYjb2uHMM9NMmUccUXQkZsXyOXfWmmHAUsBBEfGziLga2B1YQCqeuwhJh0i6U9Kd8xfO62Co3cUJXnsMhQTPSZ51q06/4ncEromI56vWTSYlfFv3tVFEPFVn9V3Z5cr5hWcd89JLcMYZsMsusN56RUdjViwPy7TWzMoup1RWZJ+zU4EN620QEWdFxLiIGDdy2OLtj7CLOcFrj7IneOBePOtOnX61bwDcX70iIh4F5mb3NWMLYCHpPAPrNT//OTz1lIuWm0FK7ubPh4iiI7HedB/pdAfVrBfpc9IGMFSKnZf9PDwneMX8WGHdpdPJ3Rjg2TrrZ2f3NUTSqsDXgAtqegGtF0SkiVQ23hi23bboaMyKNzqbG2p+52fVs1K4gpTIbVNZIWlZ4F3A3UUF1YvKnuBB+SdacS08G+qKKG5a76dp9bF+0YbSSOBiYA7wv/20OwQ4BGCVVVZhypQpTQfarDlz5nRkP52W93Et99e/8o677+b+L36Rf910U26P2yz/v3pLmY9rxmOPsS7wx+uuY8FSSxUdUi7K+v9qN0lLkCYOA1gdWEbSntntKyNirqQZwE0RcRBARNwp6bfAuZKOBp4Gvgy8QpqAzJqw+L2PM2/j1Tu2vzHT5zN7/ZEd2x+kBO+FdTrXqTvnoWVZamxnSy5e++j6bLdm5wZ3XTB7Cz4+5taO7c+sL51O7mYDy9VZvyz1e/TeQJKA84GNgC0jYnZfbSPiLOAsgHHjxsX48eMHE29TpkyZQif202m5H9eECbDCCmxw7LFssHhx53r4/9Vbynxc6260EQD/vemmsHI5TiMu6/+rA1YGflmzrnJ7LPAw6bO7toTQfsCJwMnAEsAtwLb9fU5a35zg5c8JXvsU0QNs3avTwzLvp+bcOklrAEtScy5eH35IKqGwW0Q00t66zYMPwmWXwaGHQoGJnVlXqQzL9IyZQ15EPBwR6mN5OGuzVkQcULPdnIj4dESsEBGLR8T7I+KeIo6hLFwLL3+uhZefIibJsd7Q6WfGVcD2kpauWrcPMA/od3yepK8ARwD7RcTN7QvR2urUU2H4cPjMZ4qOxKx7jBqVLj1jpllX8Uya+XMtvOa2r469iOTYek+nk7szgZeBX0t6f3Ze3DHAydUTo0iaIencqtsfBf6PNCTzcUnvqVpW6uwh2KA9/zycey7svTe86U1FR2PWPSrJnXvuzLqOE7z2GAoJnidasSJ09NWcjf1/H+lcgctJBcx/CHyrpmnt+QTbZZcHALfVLDu3L2LL1XnnwQsvuPyBWS0PyzTrak7w2qPsCR54Jk3rvI6/kiPi7xGxbXZOwGoR8Y2IWFDT5g3nE0TEAf2cg3Bep4/BBmHBApg4ETbfHDbdtOhozLqLe+7Mut5QqYXXaU7wzPLlszGtM668Eh54AD73uaIjMes+PufOrGcMhQSv7BOtOMGzMnNyZ50xYQKssQbssUfRkZh1Hw/LNOspZU/woPwzabrYuZWVkztrv7/9DW68EQ47DEZ0urSiWQ/wsEyznuMEL38ulWDWOid31n4TJ6aadv/zP0VHYtadPCzTrCe5Fl7+nOCZtcbJnbXXU0/BhRfC/vvD8ssXHY1Zd/KwTLOe5Zk08+daeGaD5+TO2utHP0pfWD/72aIjMeteHpZp1tOc4LXHUEjwnORZ3pzcWfvMnw+nnw7bbw9ve1vR0Zh1Lw/LNOt5TvDao+wJHrgXz/Ll5M7a55e/hCefdPkDs4G4586sFFwLrz2GUoLnRM9a5eTO2iMCTjkF1l8fttuu6GjMupvPuTMrlaGQ4JV9opVu6MErIgbrfU7urD1uuw3uuAOOPBKG+Wlm1q8RI9LrxMMyzUqj7AkelH8mzSJq4Zm1yt+6rT0mTIDlloNPfKLoSMx6w6hR7rkzKxknePkbCqUS6iniuK03Obmz/D36KPz616mu3ZJLFh2NWW8YPdrJnVkJOcHL31BN8Mwa4eTO8jdpUro8/PBi4zDrJaNGeVimWUm52Hn+nOBZr5C0g6TpkmZIOrrO/e+V9BdJr0ras+a+BZL+mi2XNbI/J3eWrxdfhLPOgj32gDXXLDoas97hYZlmpeZSCfkbCsXOrbdJGg5MAnYENgQ+ImnDmmaPAgcAF9V5iHkR8Y5s2bWRfTq5s3xdcAE8+2yaSMXMGudhmWal5wSvPYZaglfE39gGbVNgRkQ8GBHzgcnAbtUNIuLhiPgbsDCPHfrZYflZuDCVPxg3DrZwnRazprjnzmxIcILXHkMtwbOesTrwWNXtmdm6Ro2WdKekP0navZENnNxZfq69Fu6/PxUtl4qOxqy3+Jw7syFjqBQ7L/t5eE7wLLNiloBVlkOq7qv3hTiaeOw1I2Ic8FFggqR1BtpgRBMPbta/U06B1VaDvfYqOhKz3uNhmQZIWhf4EvAeYGPgjxExvonthwF3AP8FfDAirmhHnJaPxe99nHkbN/MjfmvGTJ/P7PVHdmx/kJK8F9bJZbRZQ+Y8tCxLjX2uY/urJHjbrTm9LY9rnTNs3iuD/dHl6SwBq2cmsEbV7TcDTzT6wBHxRHb5oKQpwDuBB/rbxj13lo/77oOrr4bPfAZGdvaDw6wUPCzTko2AnYB/ZEuzDqa5IT9WsLL34IFn0rQh7Q5gPUljJY0E9gUamvVS0hhJo7LrKwJbAn8faDsnd5aPiRPTl9NPfaroSMx6k4dlWnJ5RKwREXsB05rZUNIY4Hjga22JzNrGCV7+nOBZN4iIV4HDgWuA+4CLI2KapGMl7Qog6d2SZgJ7AT+SVHnvfxtwp6S7gd8D34uIAZM7D8u01s2aBeefDx/7GKy0UtHRmPUmD8s0ICJaGb92HHALcENO4VgHFTFEE+joMM2yD9GElODlPUSzP0Uk6taciLgSuLJm3Terrt9BGq5Zu92twNub3Z977qx155wDc+e6/IFZKzws01ogaRPgQOCLRcdig+eZNPNXhlp4RfRCWu9ycmetefVVOO002HZb2GSToqMx610elmmtORWYFBEzig7EWuMErz16PcEza5STO2vNpZfCY4+5186sVe65s0GStC+wPvCdJrY5pDJt9/yF89oXnA2KE7z2cIJnQ4GTO2vNhAmwzjqw885FR2LW23zOnQ2CpMWAE4ETgGGSlgOWye5eUtLS9baLiLMiYlxEjBs5bPEORWvNGCq18DrNCZ6VnZM7G7w77oBbb4UjjoDhw4uOxqy3eVimDc6SpBPxTwZmZ8vd2X2TgbsKistyMhQSvLLPpNlsgueE0Frh5M4G75RTYOml4cADi47ErPeNGgXz50NE0ZFYb5kDbFOzfCS776vAxwqKy3JU9gQPyl8q4dpH13fSZh3h5M4G54kn4Be/gIMOgmWWGbi9mfVv9Oh0Od/TWg9lkpaQtKekPUnFyFeq3Ja0RNZmhqRzIdVQiogp1Qvwp+zh7omI2ws5EMudE7z89WItvCKGslpv8TPEBueMM2DBgjQk08xaN2pUuvR5d0PdysAvs+U9wIZVt1fO2owAPBZ+CHKCl79eTPDM+uPkzpo3bx6ceSbsuiusvXbR0ZiVQyW583l3Q1pEPBwR6mN5OGuzVkQc0MBjXNGpuK1zikjwyj7RShlq4ZlVOLmz5l10ETz9NHzuc0VHYlYelWGZ7rkzswG4VEJ7dGOC5wLm1iwnd9aciDSRyiabwNZbFx2NWXl4WKaZNcEJXnt0Y4Jn1gwnd9ac3/8e7rkn9dpJRUdjVh4elmlmTXItvPZwgme9bETRAViPmTABVloJPvKRgduaWeM8LNPMBmnxex9n3sard2x/Y6bPZ/b6Izu2v0qC98I6Czu2zzkPLctSY5/r2P6c4Fle3HNnjZsxA664Ag499PUvomaWDw/LNLMWlL0HD4bGTJpmrXJyZ4079VQYMQI+/emiIzErHw/LNLMWOcHLnxM86zVO7qwxzz8PP/kJ7LMPrLZa0dGYlY+HZZpZDpzg5a9XErwiJtmx7tPx5E7ShpJukDRX0hOSjpU0YDFWSctK+omk2ZKek/QzSSt0ImYDfvxjeOEFlz8waxcPyzSznLgWXv56JcEz6+grQ9IY4HoggN2AY4EvAN9uYPNfAOOBg4EDgHcDv2lHnFZjwQKYOBG22gre9a6iozErJw/LNLMcuVRC/ooodt6fInpNrft1uufuUGBxYI+IuC4iziQldp+XtExfG0naHNge2D8ifhURlwL7AVtJen8nAh/KVrjtNnjoITjyyKJDMSsvD8s0s5w5wWuPTiV4tfsp4lit93T6WbIjcE1EPF+1bjIp4euvIvaOwL8j4g+VFRHxZ+Ch7D7L26xZcPnlcNRRrHfaabDmmrD77kVHZVZeHpZpZm3gBK89uqkHz6xap+vcbQDcWL0iIh6VNDe77/J+tru/zvr7svvaa9YsmDlzwGZLPvAALL9828Npi4UL4d574eab0zJtWlq/2GK8/Na3Mvrkk9NMmWbWHpXk7sEH4W9/KzaWHAz6/XCTTfIPxmyIqyR4roWXr07XwjNrRKe/rY8Bnq2zfnZ232C2WzuHuPr3m9/AQQcN2OzdbQ+kA5ZZBrbcEj760XSO3bvfzV2338748eOLjsys3JZcMv2AcsIJaelxg3o/HD4cXn0171DMLFP2YueQkjwneDaUFdEVE3XWqY/1g95O0iHAIQCrrLIKU6ZMaSLENxq9xBIs9e2B53x56aWXGN3Dxb1fetObmDN2bPqCBak37/bbmTNnTkt/v27l4+otQ+G4lp44kVFPPVVsQDkZ1PuhxNMl/B+bdRMnePlzgmfdpNPJ3WxguTrrl6V+z1z1divVWb9cX9tFxFnAWQDjxo2LTvQ8TZkyhXEl7OGaMmVKKXvufFy9ZUgcV4mOr6zvh2Zl4AQvf07wrFt0+gzU+6k5R07SGsCS1D+nrs/tMn2di2dmZmZmfXAtvPzlOcmKJ2yxwep0cncVsL2kpavW7QPMA24aYLtVJW1VWSFpHOl8u6vaEaiZmZlZmXkmzfx1Wy08G3o6ndydCbwM/FrS+7Pz4o4BTq4ujyBphqRzK7cj4jbgGuB8SXtI2h34GXBzRFzf0SMwMzMzKwkneO2Rd4LnGnfWqI4+UyJiNvA+YDip7MG3gR8C36ppOiJrU21fUu/ej4HzganAh9oZr5mZmVnZOcFrD/fgWRE6PltmRPwd2HaANmvVWfcscGC2mJmZmVlOhkotvE5OsgKeaMU6z328ZmZmZgYUM9FKJy39wLCenmjFbCBO7szMzMzsNWVP8KC3Z9KEYv5mNjiSdpA0PZtT5Og694+S9Ivs/tslrVV131ey9dMlbd/I/pzcmZmZmdkbOMHLX6MJnnv6ykPScGASsCOwIfARSRvWNDsImB0R65LmIjkh23ZD0pwjGwE7AKdnj9cvJ3dmZmZmtggnePlz4jbkbArMiIgHI2I+MBnYrabNbsBPs+uXAO+TpGz95Ih4OSIeAmZkj9cvJ3dmZmZmVpeLnefPtfCGlNWBx6puz8zW1W0TEa8CzwErNLjtIjo+W2YRpk6d+rSkRzqwqxWBpzuwn07zcfUWH1dv8XHl7y0F7bcnPf/Kf56++vFTO/EZ2ahufU0M3bgGl9+1Ftc1g95yIEP3/zg43RhXdUy5vd8//8p/rrn68VNXHMSmoyXdWXX7rIg4K7uuOu2j5nZfbRrZdhFDIrmLiJU6sR9Jd0bEuE7sq5N8XL3Fx9VbfFxWtE59RjaqW587jqs5jqs5jqtx7YopInbI+zFJvW1rVN1+M/BEH21mShoBLAvManDbRXhYppmZmZmZWf7uANaTNFbSSNIEKZfVtLkM2D+7vidwY0REtn7fbDbNscB6wJ8H2uGQ6LkzMzMzMzPrpIh4VdLhpIHGw4EfR8Q0SccCd0bEZcC5wAWSZpB67PbNtp0m6WLg78CrwGERsWCgfTq5y9dZAzfpST6u3uLj6i0+LrM36tbnjuNqjuNqjuNqXDfG1KeIuBK4smbdN6uuvwTs1ce2xwPHN7M/pV4/MzMzMzMz62U+587MzMzMzKwEnNyZmZlZ20laV9KPJN0taYGkKU1uP0zSVEkhaZduiEvSHpLukDRP0jOSrpa0ZJFxSRon6dosnlmSrpe0WU4x7SXpMkmPS5qT/T8+0sB2oySdJOk/kl6U9DtJa+UR02DjkrS+pEmS7pM0V9KDkk6RtFyRcdV5jN9kz/nDuyEuSe+VdFP2f3w2u75mkXFJWk/SryT9W9Lzkm6V1I6ZL3uCkzszMzPrhI2AnYB/ZEuzDqaBAr6DMKi4JB0MXARcBeyYxfdP8pvPoOm4JK0BXJ/F8Ang49n1ayXlUQ/s88Ac4H+BXYHfAxdJOmKA7SYCBwBfJM0GuCJwnaTROcQ02Lg+AGwJnEH6O3+HdN7TtZLy+n482L8XAJK2A96TUywtx5UlTNcDd2fb7QfcBhT2f5S0NHAdsDbwadLz6wngckmb5hRXT/E5d2ZmZtZ2koZFxMLs+iXAihExvsFtx5ASnKOBc4APRsQVRcUlaUXgIeDzEXF2HnHkFNehwCRghYh4Nls3hlTw+fCIOKPFmFaMiKdr1l0EbB4RY/vY5s3Aw8AnI+L8bN3qpL/fZyLinFZiaiGuFYBZUfVFOEumrgHGR8RNRcRV1W4x4G/AD0jP+SMi4rRWYxpsXFk8DwLnR8TX8ogjp7h2IP3AsklE3JOtGwE8DpwXEUe1I9Zu5p47sx4laVtJJ0q6XNLNkv6YXT9R0jZFx5cXSZtIOkDS/pI2LjoeMxucSqIySMcBtwA35BTOawYZ197Z5U/zjKXaIONajDRl+pyqdXOydcohpqfrrL4LWLmfzbbLLn9d9TiPAzeTejxbNpi4IuKZ6sSuahv6267dcVU5EpgH/CSPWKoNMq4PkIpoT8o7nopBxrVYdvlc1eO8CrxIDs/5XuRSCDmQJOCDwH8BAdwJXFnnTaPrSdqW9Ga7ATCGdDzPAveTjun3BYaXG0mb8Pr/a2pE3FtwSA2TtDxwKfDfpF8+78suBSwHfAj4gqQ/AHtExKyiYm1G9uvc1yPiwez2aODnpKEZlTfokPQr4GMR8UoxkQ6OX1tmg5M9pw4E/l/RsVTZDJgOHCTpa8AqwF+A/42IWwuM61fAscBJkirTp38TmA38sk373IJUh6svGwAzI2JOzfr7gPFtigkGjquvbRjEds3uo9/Hl7Qq8A1SD/XC9DWz7QaKazPgGeA9kk4AxpI+v74SEZcXGNcNpJ7hH0j6AimpO5SUEJ7Xxri6lnvumpSdpPm2qttjSNXif0MaK/wF4HLglmwccE+QtLykm0hjqfcgfZl+CHgku/4h4AZJU7LkoidIukjS2lW3R0u6lPRL0I9Jv4jdLenibMhBL5gIrApsFhHrRMQuEfHxiNgvu74usGnW5pRCI23OvqTzMCqOB7YHDiO9Sa+UXd8F+GrHoxskv7Z66rVl3elUYFJEzCg6kCqrAusDXweOIv3A+yJwtaRVigoqIp4AtgE+DPw7W/YAto+Ip/Len6T3AbvRf2/OGNIPWbVmZ/flrsG4ardZAvgecFNETCs4ru8D10TEH9oRR60G41oVWJJUY+4HwA6kpOtSSW8vKq6ImEv6kWAj4FFSAnoUsFtEtDNJ714R4aWJBVgIbFp1+1xSNfkdqtbtQHrT+mHR8TZxXBeSfoV8dz9txpF+pbmg6Hhb+H+dBMwl/aqzIrBCdn0u8K2i423wmJ4lvWkN1G534Nmi423hf/UE8M067Y4F/lF0vE0cl19bPfLa8tK5BbgEmNJAu32BfwHLZLfXIvUK71JwXNdlcVR/9i+TffYfV2BcqwEzgN9m30UCmcJgAAAUO0lEQVR2IP3gPBNYM+eY1iIlj5cO0O5s4K46648HHm/D36qhuGq2EWmkyDPA2m16bjX699o8e998S9W6IJ0zWWRcZ2dxHFq1bjhpEqHcP7uaiGtJUifLzaSRPu8n/bj4LPDOdvzNun1xz13rdgWOjYirKyuy68eTfi3rFbsAX46IO/pqEBF3kk5m/2DHosrfR4DvRcSZEfF0pDH3Z5J+hfpYwbE1aiGNjSNX1rZXrQxMqbP+JiCXaZc7xK+t3nltWRfJenxPBE4AhilNUb9MdveSBY+OqQx3n1JZERHPA1OBDYsIKPMl0ik3e0bE1dn3kQ8DC0gzVeYiG2VwFamnZL8Bms8mnTJQaznq9+h1Kq5qJ5BGUewe2akBBcY1AfgR8Jyk5fR6aYbFJS1bYFyV5/xrpxBExALSZ3Kuz/km4zoo2/8uEXFZRFwfEQeSehW/nWdcvcLJXeuWI51jV2sqqQu7Vzhh6J2E4bek8ym27KuBpC1IX4ou7VhU+dhC0k6SdiL9grpMnTbLkE4y7xV+bfXOa8u6y5KkCRxOJiUIs0lTsANM5vXJL4pwH6kXo/a1XfTreANgWlSdkxwR84FpwDp57CAbvngFMBLYOSJeHGCT+4E1tGj9vw2y+3IxiLgq2/0vKfH9RET8Ma94WohrfeBzvP6cn52t/z7pc7GouO7r66HI8Tk/iLg2AB6JbHbYKn8lp+d8r/GEKoPzYUnjsuuzSecC1VoReL5zIbWskjA8FRG31GvQ4wlD5VyuMiQMRwIXA3+U9C/Sh+OzpC8ay5He6FYFriXViuklJ9fc3o70Jl9tS9IwkF7h11bvvLasu8whnT9WbVXS8LmvAjd2PKLXXQF8ixTflQBZr8q7SL3VRXkE2EnSyCypQ9IoYGPS8MyWZFPM/xJYD9gyIv7TwGbXZpcfIg1TR9KbSJOCfabVmFqIC0kfJQ0p/0JEXJxHLDnEtQuLfj//Pel8+18v2rxjcV1DmnX1faRTDZA0HNia+j/sdSquR4C1JI2JiNlV699FmmhlyHFyNzhfqrn9QRb9UvZ+cvxFqgOcMPRIwpAN/dlB0uak8ykqsy9CqmV0DnBVRPypoBAHq14Nm5frrHuB9GHcK/za6pHXlrVX9ov8TtnN1YFlJO2Z3b4yIuZKmkGa0OKgSNOZT6l5jLWyq/dExO1FxAVpKLWk3wLnSjqa9N77ZeAVcpoqfjBxkd7/DyZNcnE6qVflMNK5eGflENbpWUxHAstLqi6wfVdEvCzpBoCIeF92OVPSucCEbHbxp4BjSF/KL8whpkHFJWlr0myK1wK31WwzMyJmFhFXRNxc+yDZbJn/jBxq77UQ15OSJgHfy/6PM4BDSL3r3y0qLuAi0o89V0r6Pul8xf1IE8vtklNcPcXJXZMiotGhrHcCv2hnLHlywtBzCQMRcRtwW9Fx5CUiHmmwXU+Nofdrq/deW9Y2K7PodPyV22NJv7KPIE3S0EmDjWs/Uo/7ycASpDp829b0HnQ0roiYqlTU+VvABdnqe4APRMTdtK5Ss67eTMyVmOr9/z5Lmk208re6CfhIRLyUQ0yDjWsbUo207bOl2rdJCWgRcXXCYOP6Eun/+HVgedLQ6O0j4oGi4oqIx5Rq+x5POldxNOlH1D0j4nc5xdVTFNFzpdjMzMzMzMyshidUMSspSWdnQ2FKpazHZWZmZtYqD8tsE0nXk3pG3zdg4x4i6WxgWNX4/lIo6XFtQzl/wCnlcZX0OVja4zIzM+tGTu7aR5TwCygl/WJNCY8rItYtOoZ2KOtxUcLnYKasx2VmZtZ1fM6dWYlIGk2aLvnEiCjNDIVlPS4zMzOzPDm5axNJiwGrRcSjRcfSKkljSbMUPRQRDxUdT1569biy6bH7shzwGLAjcDNARMztRFytKutx9Seb1j0anSm0V5T1uMzMzLqdh8oMgqTDJD0g6QVJt0v6eJ1m/wX0UsKwmKSJkmZJmpPVCiGraTIDuB6YIelnWdHKnlDS43qhn+Ux0pDgq6rW9YpSHpekQ6oKfVfWHSnpKeAB4EFJ/5aUSzHfTinrcZmZmfUyn3PXJEn7AqcCPyfV99gSOE/SbsDHI2JekfG14MukwqcnA7OAIyStBOwOHAD8BdgK+AHwKVKhyV5QxuOaBzxPivmZmvuWBE4Dvk+q89JLynpcZwB/JdW0Q9IhwA9Jhc0vydrsCZwq6dmIuKiQKJtX1uMyMzPrWR6W2SRJdwI3RsSXq9a9D/gZqbjizhHxjKTNgFsjoid6gyTdD5wbESdmt7cC/gB8PiImVLX7NukYxxUTaXPKeFyS3kRKgLYjFVo9PSIWZPctC8wGxkfEH4qLsnklPq6FwHsi4s/Z7fuBP0XEATXtLgA2iIh3dz7K5pX1uMzMzHqZh2U2b33gyuoVEXED8B5gWeA2SesUEViL3gL8uer21OzyzzXtbgbW7khE+SjdcUXEExHxUeBDwCeBeyRtX3BYLSvrcdWxDqnnv9ZkYMMOx5Knsh6XWVeQdICkqdkpIbMl3SXp5Dbta29JBzTQ7hhJUbU8IelXjX4PknRe9qN520kaJunw7O82T9LzkqZlp26oEzGYdYKTu+Y9B6xYuzIiHga2IA1RuhXotV+pXyRNWlHxcrbUTloxnN4azlvW4yIi/gi8C5gEXCTpCtKPDz2tpMc1WtIS2aQxzwAL6rRZAPTaUIqyHpdZV5H0FeAc4BpgD+ATwG+BXdu0y71Jpy404jlg82z5IvAO4AZJSzaw7XFN7KdVk4HvAL8m/d32J/1Yv0V4GJuVSE99me0SU0nna11Se0dEzM6GaF5Cmra9l94spgPjSB8WRMRCYPE67TYiDT/tFWU9LuC145kkaTJwPPBHeut5V1cJj+v3VdcFbEqazKfaJqSJY3pJWY/LrNscDvwoIr5ate7y7JSCor0aEX/Krv9J0qOk9+ydgF/WNs4mLxseEfMj4oFOBChpR2AvYKeIuKrqrkvda2dl45675l0IrC1p+Xp3ZhOq7Er6ha2XyiCcTGNfwN4PXNrmWPJU1uN6g4h4JiIOBd5J+lX33oJDykVJjutA0jDTynIgUG8Y0qbArzoYV6vKelxm3Wg54F+1K6t7nCpDHCXtLul+SS9JulnSIsOis2GX90h6WdJjko6XNKLyOMCHga2rhlse00SsldMf1qoT1zTgJWCz6vtqYnuvpN9nM1w/J2mKpHdW3b+VpJskzZX0jKSzJS09QExbZ5c31t7hXjsrG/fcNSkifkmdX6Jq2iwADulMRPmIiIa+fEXEju2OJU9lPa6+RMTfgb8XHUfeevm4IuKnDbbbs92x5Kmsx2XWpf5Cmu35UeCKiKidUbjiLaQfNb9BmoH428A1ktaLiJcAJG0H/AI4H/gSqXf9OGAF4NDs+pqkhLJSymRmE7GulV3+q2bd94FjgX/TR6koSeOB60ijAvYnnVqxJbA6cJekLYEbgN+QZuNdAfgeMCa73ZcXs8sTJZ3kGpxWZk7uzMzMzLrbYaSE5jwgJN1H6hH/QUQ8X9VuRWC3iLgVQNJUUt3JA4AzszbHAlMiYv/s9tXZyMTvSvpORDwgaRYwrGq4Zb8qvX6kiclOJ9UirR6ivQLw/oj46wAP9V3gbmD7qh61q6vu/x5pJvJ9qvb9OOkcv40joq/RHWeThmUeQUqSpwEXARMjYs6AB2jWQzws08zMzKyLRcTfgLeRTvs4nXSO6zeAOyUtVdX0P5XELtvuEdIwyU3htfPd/otFRyD9gvSdcPNBhLcC8Eq2TCclePtExJNVbR4fKLHLJmDZDPhpvaGS2cRNmwMXSxpRWUizXb9Cmoirroj4F2l4//akGp3Lkc7nvlXSyKp9nCHpcUkeqmk9y8mdmZmZWZeLiJcj4vKIODwiNgQOBtYDDqpq9p86m/4HWC27viKwGGloZLXK7brzCQzgOdIM4eOANwNr1UxaUv34/RlDSlqf7Of+4aTk9pWq5WXSMa3R34NHxIKIuDYiPkMadvoT4O28MaH9OSn5NetZHpZpZmZm1mMi4lxJ3wc2qFq9cp2mKwPTsutPkxKi2narZJezBhHKqxExUK26RnrCZgMLeT0RrfVs9jjHUFNvOPNEA/tIwUQslHQtaSKo0VXr/wDgCTStl7nnzlrWycKqeZP0zWwIxsJshrC+2nVd8dis7aALyHayeOxAlNwtaf+a9V1TdLbVWCRNknRuJ2I1s3KRtEjSJmklYFne2Cu2sqQtqtqsSeqJ+jO8NuHbVNL5Z9X2JiVWt2W351OV9HRCRLwI3A58ot57anb/n4D1I+LOOkvd5E7SKvXWk4a4zs32aVYa7rmzligVVj2ONAvW0aQPg3cB+wGfLzC0AUkaR5pJ7KvAFOoPZyniGPcmDZ05r8H2zwE7ZNfXJsV6g6SNsg/DvhxH/Zp/RdibNOTmopr1k4HtgJNIH+pLAVsA2xQwfXWrsZwI3C/puxExo31hmlkJ3SPpt8C1pM+qt5AKhs8FqmeufRq4QFJltsxjs/bnVbX5FmkGzZ+Q3tfeTvo8ODsiKrNi3g/sJml30kyZT/SVPOXsaNJELFdJOos0y+XmwJ0RcQXwZdLn20JSTeEXSEMsdwa+FhH/qPOYF0t6AbiYVM92ZeBjwG7A/0TEs+09JLMOiwgvXga9AI8Dk+qsV9GxNRD7fqQhHst00zGSPrCmNNj2GODpmnVbZce1Vx/bDAdGFv33r4npFuD4mnU7ZsexYzv+9sB4shJHDbTNJRbSl5aTiv57e/HipbcW0myZ15KGHr5ESlIuAjaoanMeqdbkHsA/SOei3QJsXOfx9gHuIfXQzSRNLjKi6v4VSbVfZ2Xvfcf0Edcin0F12pxHSs4auo9Uk+4PpMT1WVJZhHdU3b8ZaQbN50nJ399J5R+W7WMfn8zaz8yOdxbwO2B8PzFH0f9zL14GuxQegJfeXrI31m8M0GYKcEnNuvHZB8bGVesqH0w7Z2/Wc7M34OWBdbM3+BezNps0ENve2YfXy6RC5q99eGX7ippl/GCPsSb+3Um/er5EmsVrwxbjOqaffS7ywUrqjQvgS3XimkY63+K/+/hQfW/2d55D6hGcAryzps1WwE3Z/+cZ0hTTS1fdv1H2QTor+9vdBxzWzzGsm8Vbu5/vZetHtem5O77RD/C8YgE+Tar9NKwdx+TFi5ehu9R7T/cy6L9lFB2DFy+DXXzOnbWqUlh1f0kr5PB4a5KGkXydVAh+C+As0tCRyaQipSOAyf2d51RVpPUvpKEXp5KGsJyWNTkO+E52fVvSsI+/9PFwzRxjpYDsccBHSedDXCNpdBNx/R64K4tpc+CcAfZZa63ssl4B2e8CO1GngGxWPPYGUvK3P+mX3T+SisdW2lQKyP6L9L/4XPZ4P6l6qMuABaSe0V2zY1y6n3jfR0oC765ZX1109i39bN8JecVyK2nigre3HpKZmeVJ0jmSZmbXZ0pq9vPXrHA+585a1Whh1UYtD2weEQ8ASNoE+BKwf0Scn60TqUdvA1KvUD2NFGl9ILvvjui/iGkzxzhQAdnci8dm+2m6gGyd3Hig4rEwQAFZUtK3NrB7RNyTNblhgPDfBdwXEQtr1udadDZ73gyvWjU8W/+G98GIeLXO5nnFMo2U+G7KosmsmZkVKCIOLjoGs1a5585aEo0XVm3Uw5XELlOZeOLGOutWp468i7Q2eYx9FpBtU/FYyKGA7EDFY7M2jRSQnUUaanqmpH3qzfBWx6qkSQDeIPIvOrs/b6yNVEl+X6lZFtFILJLWkHSDpPuyWTS/X9u7nCWOz2bHbGaWm4g4ICLGFR2HmRXLyZ21LBorrNqo2lmr5tdZX1nX1zTNuRdpbeIY+ysg247isZBPAdmBisdW2vRbQDbrfduO1IP3Y+Bfkv4o6Z39PO7o7DEWEfkWnb2c9HeqLIdm699ds9TVQCyvAkdFxNtIieBmpIkNar1Mh6cYNzMzs6HBwzItd7FoYdWXgJE1zQabyDSiHUVa36DOMVb0V0C2XXHlUUB2oOKx0GAB2Yi4H/iwpMVIE7ecAPxO0pvrDL2EdNwD9mRFi0VnI+IZ0gQwZO2XytY3XeuvXixZT+mT2fX5kv4GrFFn8+XI4TloZmZmVss9d9aSBgurzmTRJOgD7YopGi/S2pAmisdCPwVkm4ir64rHVrVpuIBsRLwSETeSJphZjZTU1DMdGFu9opuKzg4mlmzind2Ba2rWrwQsQZqm3MzMzCxX7rmzVjVSWPVS4CBJPyRNhLIN6dyldmqkSGujGi0eCwMXkO3l4rEwQAFZUlL6A9J5hA+ShnIeBdwdEX31Vt0CfFPSShHxVLaum4rONhWLpFGkv82EiKid8GccqffzVszMzMxy5p47a9WxpGn2J5KSn+NIQxA3jYiHACLid8BXSVPnX0pKjj7XzqAi4lpgX9KX6cuz/Z0EHD6IhxvwGKs8Qprd8xhS8vY8afbJl5qI6/RsPz8G7iCVhGi7bHjjB0g9SxeSErStSQlmpc3NpFp4KwEXkI7hy6RJVP5NOtfu36RE76rsWO4j9XL1ZQppmOIOVet+Svrx6f9ICedZpKG920bEuS0daPMajiWbNOdnwF0RcVKdx9oBuCkbImpmZmaWK/UxMZ6ZNUnSeaSi7J6trEmSTgHWjYidW3iMiIj+T7xrs6wm0nDgk7WzjmaJ3yPA0RFxYRHxmZmZWbm5587MusGJwHhJb212w24pOpsVeD+I1Ct7l6S/SvpsVZO9SEN1JxcRn5mZmZWfz7kzs8JFxExJB5EmXmlqspFuKTobEbeQykn0RcBBfRRJNzMzM2uZh2WamZmZmZmVgIdlmpmZmZmZlYCTOzMzMzMzsxJwcmdmZmZmZlYCTu7MzMzMzMxKwMmdmZmZmZlZCTi5MzMzMzMzKwEnd2ZmZmZmZiXg5M7MzMzMzKwE/j+Z8sa3ZRPbbwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -387,7 +389,7 @@ "text": [ "state qubits: 5\n", "circuit width: 15\n", - "circuit depth: 1441\n" + "circuit depth: 1068\n" ] } ], @@ -507,7 +509,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdRJREFUeJzt3XvQHVWd7vHvw0UItxAEAoMMEbxEGCiPRoQ5jIQ7hHNEEE0KPVNx0KhHxZmKDqgIAR1KcLhoMRZQOnA8owkzwHCGSwjh8oa7GiSIkwQMGu6iOC/EmBAJ+Z0/Vgc7vff77vt633fzfKp27b1Xr169eqWzf293r7VaEYGZmVmvbTbSFTAzs9cHBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx2wYkuZIGig+D0ia0+L6UyVFtawh8t4o6ZFhll8qaVDSVk1u+y2SQtKxrdTZrFcccMxGj7nAX0jar7pA0ubAycB1EbEue83MusABx2z0+H/AGmBGnWWHARNJQclsTHLAMWuTpIMl/YekZyX9QdISSR9pt7yIWA3cCEyvs3gG8DxwZ7HtPSRdKelXktZKekzSOZK2HKa+WxSX2D5VSf+6pF9X0vaSdHVxCW+NpPmS3truvpkBbDHSFTAbzSJiTunz1MrivYB7gcuAl4H/DlwpaUNEzC3WGQBULWsYc4EPS3p3RDwIUASRE4EfRMSrRb5dgBeAvwVeBCYDZwM7A59pcTc3IWnnYr+eB2YV+/ZlYKGkt/uSnrXLAcesTRExb+NnSQLuAt4EfIL2L33NJwWQGcCDRdoxwE7lMiNiCbCktP17gbXAZZI+HxHr29w+wGxgK+CIiHixKP8+YCUwE7i8g7LtdcyX1MzaJGmCpG9LegJ4pXjNAt7WbpnF2cO/k85yVCRPB54AHihtezNJsyUtk7S22Pb/AcaRgl4njgQWAKuLy3BbAC8BPwWmdFi2vY454Ji17ypSMPgmcDTwHuCfga07LHcu8OfAwZK2Bk4A5samU7vPBs4H/g14P3AgcFqxrNPt7wx8hD8F0Y2v9wF7dli2vY75kppZG4pAcDzw2Yi4rJTejT/i7iDdP5kB7A5sT+0lug8B8yLirNK2D2hQ7qvAeuANlfSdKt//C3gIOK9OGasabMNsSA44Zu3ZCtgceO0GuqTtSWcbHT1kKiJelfRvpKCyB7AsIn5WyTauvO3CsD3kIiIkPQO8o1TnzYHDK1lvJ51VPeIOAtZNDjhmbYiIlyT9BDhL0ipgA3AG6V7HDl3YxFzgs6TeaWfVWb4Q+LSkxcAvgb8GJjVR7r8DsyQ9TLov9Algm0qefwROAe6QdCnwLLAbcCgwEBH/2vLemOGAY9aJU4ArgO8DvwMuJf14f7YLZd9P6hU2CZhXZ/nZwBtJl70CuAb4O+D6BuWeRbpHcx7wR+DbwFLg4xszRMRvJB0E/ANwCbAj8BxwNzDk1DtmjSj3I6YlvQX4InAQ8BfA3XXGN9Rbbzzp4P8AqbPDjcBpEfG7Sr4TgK8DbyX95XdORFzdzX0wM7PWjUQvtf2AacBjxatZVwNTSX+JzST1CNrkrzlJhwDXkkZjHwfcBMyVdHSnlTYzs86MxBnOZhGxofh8DbBzozMcSQcD9wGHRsRdRdqBwI+AoyLitiJtAbBlRBxeWvdmYIeIOKQX+2NmZs3JfoazMdi06Djg+Y3Bpijnx8CvimUUU7YfBlRvaM4jjWcY316NzcysG8bKwM/JwPI66cuKZQD7AFvWybeMtJ9tj/42M7POjZVeahNI80tVDQJ7l/JQJ99gZfkmJM0iTUfCuHHj3r3nnnkHUm/YsIHNNhsrcT8Pt0ktt0ktt0mtkWiTxx577IWI2KWZvGMl4ED9wXSqk179riHSU2LEFaSurUyZMiUWL17cSR1bNjAwwNSpU7Nuc7Rzm9Rym9Rym9QaiTYp5hJsylj582CQNBagakf+dEYzWEqr5oH6Z0hmZpbJWAk4y/nTvZqy8r2dx0kTDFbzTSaNAm+lC7aZmXXZWAk484HdinE2AEiaQrp/Mx9em9b9TtL8U2XTgfsj4qVMdTUzszqy38ORtA1p4CekiQl3kHRy8f3miFgjaQWwKCJOBYiI+4sxNt+X9AXSGcv5wD0bx+AUvgYMSLqENCh0WvE6tuc7ZmZmwxqJTgO7kp7hUbbx+5tJ80dtQZqJt2wGcDHpeSOvTW1TzhAR9xTB6+vAp0njdE6JiFu7WH8zM2tD9oATESv5U8+xofJMqpP2IvCx4jXcutfTeAJDMzPLbKzcwzEzszHOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCTtK+l2SWskPSvpXEmbN1hnjqQY4vWlUr6rhsgzufd7ZmZmw9ki58YkTQBuA5YCJwD7ABeSAt+Zw6z6XeCWStoHgNOB+ZX05cDHKmkr26uxmZl1S9aAA3wKGAecFBGrgIWSdgDmSLqgSKsREU8DT5fTJH0VWB4RSyrZ/xARD/Sg7mZm1oHcl9SOAxZUAss8UhA6tNlCJO0EHAXM7W71zMysV3IHnMmkS16viYgngTXFsmadDGxJClZV+0paJWmdpHskNR3IzMysd3JfUpsAvFgnfbBY1qwZwE8j4rFK+kPAj0j3iHYBZpMu2x0SET+uV5CkWcAsgIkTJzIwMNBCNTq3evXq7Nsc7dwmtdwmtdwmtUZ7m+QOOABRJ01DpNdmlHYnXX47vabgiG9V8t5ECj5fJnUyqK1MxBXAFQBTpkyJqVOnNlONrhkYGCD3Nkc7t0ktt0ktt0mt0d4muS+pDQI71kkfT/0zn3o+TApQVzfKGBFrgZuBdzVbQTMz643cAWc5lXs1kvYEtqVyb2cYM4B7IuKpFrbb1NmTmZn1Tu6AMx84RtL2pbTpwFpgUaOVJU0CDqLJ3mmSxpF6xj3YakXNzKy7cgecy4B1wHWSjixu2M8BLip3lZa0QtL36qw/A1gPXFNdIGm8pLslfVLSEZKmA3cCewDn9WBfzMysBVk7DUTEoKQjgEuBG0j3bS4mBZ1qvepNdzMDuD0ifltn2Trgt6QZC3YFXgbuBw6NiMVd2QEzM2tb9l5qEbEUOLxBnklDpL9zmHVeBk7qqHJmZtYzni3azMyycMAxM7MsHHDMzCyLkZhpwOx1a9IZN7W13uz91zOzjXVXfuP4trZn1gs+wzEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLFoKOJLqTTdjZmbWUKtnOM9IukDSO3pSGzMz61utBpzLgZOBn0v6kaRZknboQb3MzKzPtBRwIuLsiNgbOAp4FLgIeE7SDyQd2YsKmplZf2ir00BE3BERfw3sBnwOeDuwQNJKSXMk/Vk3K2lmZmNfp73UpgDvIz02ehC4G/g4sELSRzss28zM+kjLAUfSXpLOlvQ4cDuwO/A3wJ9FxP8C9iLd6/lmV2tqZmZjWkuTd0q6g3RG8zRwFXBlRDxRzhMRr0r6IfD5blXSzMzGvlZni34BmAYsjIgYJt8S4M1t18rMzPpOq5fULgXuqxdsJG0n6X0AEfFK9czHzMxe31oNOHcC+w6x7O3FcjMzsxqtBhwNs2w7YE0HdTEzsz7W8B5OcZlsainp45KOrWTbGjgeeKR7VTMzs37STKeB95IGdwIE8CFgfSXPH4HlwBe7VzUzM+snDQNORHyTYkyNpF8BJ0bEkl5XzMzM+ktL3aIjwl2dzcysLc3cw5kG3BMRq4rPw4qIm7tSMzMz6yvNnOHcCBwE/Lj4HAzdWy0AP6TNzMxqNBNw3gw8V/psZmbWsmY6DTxR77OZmVkrmrmHs00rBUaEB3+amVmNZi6prSbdm2mW7+GYmVmNZgLO39BawDEzM6vRzD2cqzLUw8zM+lynj5g2MzNrSjOdBn4MzIyIpZJ+QoPLaxFxYLcqZ2Zm/aOZezj/Cawtffb9HDMza1kz93A+Vvo8s6e1MTOzvtX2PRwlu0ga7qFsZmZmQBsBR9I0SfcBLwO/Bl6WdJ+k47teOzMz6xstBRxJnwRuIA0G/TzpYWyfL77/R7HczMysRkvPwwG+DFwREZ+upF8m6TLgK8DlXamZmZn1lVYvqb0RuG6IZdcCOzUqQNK+km6XtEbSs5LOlTTsdDiSJkmKOq95dfKeIOkRSS9LWippelN7ZmZmPdXqGc6dwKHAwjrLDgXuGm5lSROA24ClwAnAPsCFpMB3ZhPb/wJwb+n7C5XyDyEFvu8ApwHTgLmSBiPi1ibKNzOzHmlm4Oe+pa/fBr4r6Y3A9cBvgF2BE4HjgI83KO5TwDjgpIhYBSyUtAMwR9IFRdpwHo2IB4ZZ/lXgrog4rfh+p6T9gLMABxwzsxHUzBnOz9l0sKeATxav6tM/b2H42aKPAxZUAss84HzSGdINTdSnLklbAYeRzmzK5gFXShofES+1W76ZmXWmmYBzWBe3Nxm4o5wQEU9KWlMsaxRwrpS0E+nMai7wlYjYOAvCPsCWwPLKOstIl+zeBvyks+qbmVm7mplpYFEXtzcBeLFO+mCxbCjrgH8iXRZbBUwFTicFmRNKZVOn/MHK8k1ImgXMApg4cSIDAwPD1b/rVq9enX2bo10/t8ns/de3td7Ece2t26/tCP19nLRrtLdJq50GXiNpM2DranoTT/ysNxebhkjfWOZzwGdLSQOSnge+I+mdEbFkmPI1RPrGsq8ArgCYMmVKTJ06dfjad9nAwAC5tzna9XObzDzjprbWm73/ei58pPX/ris/MrWt7Y0F/XyctGu0t0mrAz8l6XRJK4BXgN/XeQ1nENixTvp46p/5DOea4v1dpbKpU/7G762Wb2ZmXdTqOJzTgDOA75HOHP4BOBd4DFhJcWlqGMtJ92peI2lPYFtq7700EpX3x0lBcHIl32RgQ1FHMzMbIa0GnE8AZwMXFN+vj4hzgP1IAeOtDdafDxwjaftS2nTS4w9avVd0cvH+IEBErCONE/pQJd904H73UDMzG1mtXhR+M7AkIl6V9ArF5aqI2CDpO8B3SWdAQ7mMdJZ0naTzgb2BOcBF5a7SxSW7RRFxavF9DrA9adDnKuB9wBeB6yLiZ6Xyv0a6v3MJaZzQtOJ1bIv7aWZmXdbqGc7vgO2Kz08C/620bAJpUOeQImIQOII0VucG4BzgYtJZU9kWbDqeZzlpnM6VwM3AKcA3i/dy+feQznyOBBYA7wdO8SwDZmYjr9UznHuB95B+9H9ImiFgJ+CPwGeA2xsVEBFLgcMb5JlU+T6PNICzoYi4nnR2Y2Zmo0irAWcOsEfx+TzSJbWZpDObhcDnulUxMzPrLy0FnIh4FHi0+LyO9Cycz/egXmZm1mc6Gfj5JmB34NmIeKZ7VTIzs37UziOmPy3pKeAJ4EfAk5KelvS/u147MzPrG63ONHAWcClpPM3xwJTifT7w7WK5mZlZjVYvqX0GOC8ivlpJv6WY2+wzpJkHzMzMNtHqJbVxDP1Uz0XUmczTzMwMWg841wMnDbHsg8CNnVXHzMz6VTOPmJ5W+jofuEDSJGofMb0f8Pfdr6KZmfWDZu7h3Ejto6T3AI6pk/dfSE/iNDMz20QzAefNPa+FmZn1vWYeMf1EjoqYmVl/a3mmAUlbkDoIHALsBPwXcDfpUQHtPbDdzMz6XksBR9KuwK3AAaQnfD4PHEwaf/OwpKMj4rfdrqSZmY19rXaLvgh4I/DeiNg7Ig6OiL2B9xbpF3W7gmZm1h9aDTjTgNMj4iflxOL7l0jT3JiZmdVoNeBsBfx+iGW/B97QWXXMzKxftRpwHgBOl7RtObH4fnqx3MzMrEarvdRmA3cCT0m6ldRpYFfSIFABU7taOzMz6xstneFExBLgrcAVwC7AUaSAcxnw1oh4uOs1NDOzvtD0GY6kLYEDgV9FxBm9q5KZmfWjVs5wXgXuAN7Ro7qYmVkfazrgRMQG4BfAxN5Vx8zM+lWrvdS+Apwlaf9eVMbMzPpXq73UziTNKLBE0jOkXmpRzhARB3apbmZm1kdaDTg/L15mZmYtaSrgSBpHmtbm58Cvgdsi4vleVszMzPpLM4+Y3hu4DZhUSl4l6cMRcWuvKmZmZv2lmU4DFwAbgL8CtgH2Ax4CLu9hvczMrM80E3AOBs6MiHsj4uWIWAZ8EvhzSbv3tnpmZtYvmgk4uwO/rKQ9Tpo7bbeu18jMzPpSs+NwonEWMzOzoTXbLXqBpPV10m+vpkfErp1Xy8zM+k0zAeecntfCzMz6XsOAExEOOGZm1rFW51IzMzNriwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lfS7ZLWSHpW0rmSNm+wznskXSlpRbHeo5LOlrR1Jd8cSVHndWxv98rMzBpp9QFsHZE0gfSog6XACcA+wIWkwHfmMKtOL/KeD/wCOAD4WvH+wUrel4BqgFnWad3NzKwzWQMO8ClgHHBSRKwCFkraAZgj6YIirZ7zI+K3pe8Dkl4GLpe0V0Q8UVq2PiIe6E31zcysXbkvqR0HLKgElnmkIHToUCtVgs1GDxXvnrvNzGwMyB1wJgPLywkR8SSwpljWir8kPRju0Ur6jpJekPSKpIckndR2bc3MrGsUke/JA5JeAb4YEZdU0p8Gvh8RX26ynN2AnwE3R8TMUvpHSWc8S4DtSA+KmwZ8MCKuG6KsWcAsgIkTJ7573rx5re5WR1avXs12222XdZujXT+3ySPPvNTWehPHwfNrW19v/z3Gt7W9saCfj5N2jUSbHHbYYQ9GxJRm8o5EwPlCRHyrkv4McFVEfKWJMt5A6njwJuDdETE4TF4B9wHjIuKdjcqeMmVKLF68uFG2rhoYGGDq1KlZtzna9XObTDrjprbWm73/ei58pPVbriu/cXxb2xsL+vk4addItImkpgNO7ktqg8COddLHAy82WrkIIN8H9gOmDRdsACJF0+uAAxp1vTYzs97K3UttOZV7NZL2BLalcm9nCBeTulMfFRHN5N/ITyw1Mxthuc9w5gPHSNq+lDYdWAssGm5FSV8CPgd8NCLuaWZjxRnRicDDEfFqe1U2M7NuyH2GcxlwGnCdpPOBvYE5wEXlrtKSVgCLIuLU4vspwHnAVcAzkg4qlfn4xm7TkhYB15LOlrYFPgEcBHygt7tlZmaNZA04ETEo6QjgUuAG0n2bi0lBp1qv8j2Xo4v3mcWr7GOkQASwAvhbYHdSl+mfAsdHxPxu1N/MzNqX+wyHiFgKHN4gz6TK95nUBpp6653aQdXMzKyHPFu0mZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRvZeamdlIa3dOu3b185x2rfAZjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWxRYjXQHLY9IZN2Xd3spvHJ91e2Y2+vkMx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycC81M7NRpt1epbP3X8/MNtbN1avUZzhmZpZF9oAjaV9Jt0taI+lZSedK2ryJ9cZLulLSoKSXJP1A0hvr5DtB0iOSXpa0VNL03uyJmZm1IuslNUkTgNuApcAJwD7AhaTAd2aD1a8G3g58HNgAnA9cD/xVqfxDgGuB7wCnAdOAuZIGI+LWru5MRc5TYA+qNLOxKPc9nE8B44CTImIVsFDSDsAcSRcUaTUkHQwcAxwaEXcVac8AP5J0ZETcVmT9KnBXRJxWfL9T0n7AWUBPA46ZmQ0v9yW144AFlcAyjxSEDm2w3vMbgw1ARPwY+FWxDElbAYcB/1pZdx5wsKTxnVffzMzalTvgTAaWlxMi4klgTbGs6fUKy0rr7QNsWSffMtJ+vq2N+pqZWZfkvqQ2AXixTvpgsayd9fYu5aFOvsHK8k1ImgXMKr6ulvToMPXoutNgZ+CFVtbR+T2qTBd1WMeW26TftXOcwNg4VjowZo6TXP8OI3Sc7NVsxpEYhxN10jREejvrVb9rmPWJiCuAKxpsu2ckLY6IKSO1/dHIbVLLbVLLbVJrtLdJ7ktqg8COddLHU/8MptF6O5bWGyylVfPQoHwzM+ux3AFnOZV7NZL2BLal/j2aIdcrlO/tPA68UiffZFI36sfaqK+ZmXVJ7oAzHzhG0valtOnAWmBRg/V2K8bZACBpCun+zXyAiFgH3Al8qLLudOD+iHip8+r3xIhdzhvF3Ca13Ca13Ca1RnWbKKLRrZMubiwN/FwK/Jw0cHNv4CLgkog4s5RvBbAoIk4tpd1C6mn2Bf408PM3EVEd+DkAXEoaFDqtyH9srwd+mpnZ8LKe4UTEIHAEsDlwA3AOcDFwdiXrFkWeshmks6B/Br4PPAicWCn/HuBk4EhgAfB+4BQHGzOzkZf1DMfMzF6/PFt0F3hC0lrttImk9xTtsaJY71FJZ0vaupJvjqSo8zq2t3vVmTbbZNIQ+zqvTt4xd5xA2+0y1DEQkr5UynfVEHmGG2g+oiS9RdLlkh6W9KqkgSbXG/W/J34eTof6eULSdnXQJtOLvOcDvwAOAL5WvH+wkvcloBpglnVa917p8DiBdC/y3tL3TQb3jcXjBDpql+8Ct1TSPgCcTtGRqGQ58LFK2sr2apzFfqR/vweAN7Sw3uj/PYkIvzp4AV8ijQHaoZT296TpenYYZr2DSYNR31dKO7BIO7KUtgC4o7LuzcA9I73vPWiTXeqkzSraZK9S2hzghZHez0xtMqnY///RoPwxd5x00i5DlHUTsKySdhWweKT3s8X92Kz0+RpgoIl1xsTviS+pdc4TktZqq00i4rd1kh8q3nftXvVGRLvHSUNj+DiBLrWLpJ2Ao4C53a1efhGxoY3VxsTviQNO5zwhaa1226SevyRdHqjOcbejpBckvSLpIUkntV3bPDptkyuL6/nPSbpI0rjSsrF6nED3jpWTSW1Qc28L2FfSKknrJN0jqaMAP0qNid8TB5zO9WJC0gmlPNTJN+yEpKNAu22yCUm7AV8B/m/lL+AVpMsuHybd23kWuHaUB51222Qd8E/AqaQhBZcDn2bTH9axepxAl44V0rCJn0ZEdUaRh4DZwP8EPkIabrFQ0oFt1HU0GxO/J+400B2jakLSUaLdNkkZpTeQTv1XA3+3ScER/1LJewNwH+lBe9e1U9lMWm6TiHgO+GwpaUDS88B3JL0zIpYMU/5YOE6g82Nld9Llt9NrCo74ViXvTaQOCl8mdTLoJ6P+98RnOJ3zhKS12m0TACSJNLh3P2BapAHDQ4p05/M64IBmuqOPkI7apOKa4v1dpbKpU/5oP06gO+3yYdKP5tWNMkbEWtJN8nc1yjvGjInfEwecznlC0lrttslGF5O6yJ4QEc3k32g0/yXfaZuUReV9rB4n0J12mUHqZfVUC9sdzcdKO8bE74kDTuc8IWmtdtuEYtDe54CPRpqqqKHijOhE4OGIeLW9Kvdc221Sx8nF+4Mwpo8T6LBdJE0CDqLJ3mlFZ4vjKNquj4yN35OR7nM+1l+kG23PAQtJc7jNIt13+Hol3wrge5W0W4BfAieRric/CtxdyXMIsB64BJgKXED6a+Tokd73brcJcArpL88rST8i5dcupXyLSIPWjiYFmpuLNnn/SO97D9pkDmkg5EnFeueSfoyvHevHSSftUko/g/RXe70xXOOBu4FPkjpcTCcNplwHTBnpfR+mTbYh/VFxMnA/8J+l79sM1R5j4fdkxBu3H17AvsAdxQ/Bc6TR8ZtX8qwErqqk7Vj8uL4IrAJ+COxcp/wPkGbYXkc6PZ4x0vvcizYhDdKLIV4zS/m+V/zHWgv8ofhROW6k97lHbTIDWEyaWeGPxQ/NucBW/XCctNsupfQlwC1DlLs16d7eU0WbvFT8KB800vvcoD0mDfP/YNJQ7TEWfk88eaeZmWXhezhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFv8fsuyGxQkHuroAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAdyklEQVR4nO3dedQdVZ3u8e/DIIQpCVOgkSaCaCQNy6sRoS8tQeZwrwwiyUJvr9hg0KtC94o2gwgBbZbBZtBFsyBLGy63NaEbaG4zhBCGN8xikCB0EjBoAAFR7JfEmBAJ+d0/dgUq9Z73zHXec948n7XOOufs2lW1a6dyfu+uXXuXIgIzM7N222yoC2BmZsOTA4yZmZXCAcbMzErhAGNmZqVwgDEzs1I4wJiZWSkcYMyqkDRDUl/2uU/SjAbXnygpitsaJO/tkp6usvwqSf2Stqpz3++XFJKOaaTMZu3iAGPWPWYDfyFpfHGBpM2Bk4FbImJtx0tm1gQHGLPu8f+A1cCUCssOA8aQgpBZT3CAMWuSpIMl/YekVyT9UdIiSZ9tdnsRsQq4HZhcYfEU4DXg/mzfe0i6TtKvJK2R9JykiyRtWaW8W2SXzL5YSP+2pN8U0vaSdGN2SW61pLmS9m322GzTtMVQF8Csm0XEjNzniYXFewEPA9cAbwL/HbhO0vqImJ2t0weouK0qZgOnSPpoRDwBkAWNE4EfRcTbWb5dgNeBvwXeAMYBFwI7A19u8DA3Imnn7LheA6Zlx3YeMF/SB32JzurlAGPWpIiYs+GzJAEPAO8FvkDzl7LmkgLGFOCJLO1oYMf8NiNiEbAot/+HgTXANZLOioh1Te4fYDqwFXB4RLyRbf8RYDkwFbi2hW3bJsSXyMyaJGm0pO9LegF4K3tNAz7Q7Daz1sG/k1oxypInAy8Aj+X2vZmk6ZKWSFqT7fv/ACNIQa4VRwDzgFXZZbUtgBXAz4AJLW7bNiEOMGbNu5704/9d4CjgY8A/A1u3uN3ZwJ8DB0vaGjgemB0bT30+HZgJ/BvwKeBA4MxsWav73xn4LO8GzQ2vTwB7trht24T4EplZE7If/uOAr0TENbn0dvzRdh+p/2MKsDuwPQMvuX0GmBMRF+T2fUCN7b4NrAPeU0jfsfD9v4AngUsqbGNljX2YvcMBxqw5WwGbA+90eEvantSaaOkhSxHxtqR/IwWRPYAlEfHzQrYR+X1nqt7BFhEh6WXgQ7kybw58spD1XlKr6Wl36FsrHGDMmhARKyT9FLhA0kpgPXAOqa9ihzbsYjbwFdLdYxdUWD4f+JKkhcAvgb8Gxtax3X8Hpkl6itSv8wVgm0KefwROBe6TdBXwCrAbcCjQFxH/2vDR2CbJAcaseacCs4AbgN8DV5F+rL/Shm0/Srpraywwp8LyC4GdSJexArgJ+Dvg1hrbvYDUx3IJ8Cfg+8Bi4PQNGSLit5IOAv4BuBIYBbwKPAgMOpWNWZE6/chkSe8Hvg4cBPwF8GCF8QWV1htJOtlPIN2ccDtwZkT8vpDveODbwL6kv+wuiogb23kMZmZW21DcRTYemAQ8l73qdSMwkfSX1lTSHTsb/bUm6RDgZtJo52OBO4DZko5qtdBmZtaYoWjBbBYR67PPNwE712rBSDoYeAQ4NCIeyNIOBH4CHBkR92Rp84AtI+KTuXXvBHaIiEPKOB4zM6us4y2YDcGlQccCr20ILtl2Hgd+lS0jm8L8MKDYATmHNJ5gZHMlNjOzZvTKQMtxwNIK6UuyZQD7AFtWyLeEdJxNj642M7PG9cpdZKNJ8zMV9QN75/JQIV9/YflGJE0jTe/BiBEjPrrnnp0dqLx+/Xo226xX4nxnuE4Gcp0M5DoZaCjq5Lnnnns9InaptKxXAgxUHrymCunF7xokPSVGzCLdasqECRNi4cKFrZSxYX19fUycOLGj++x2rpOBXCcDuU4GGoo6yebiq6hXwn8/6V78olG822Lpz6UV80DlFpCZmZWkVwLMUt7ta8nL9808T5qQr5hvHGmUdSO3RJuZWYt6JcDMBXbLxrkAIGkCqf9lLrwzzfn9pPmb8iYDj0bEig6V1czMGII+GEnbkAZaQprIbwdJJ2ff74yI1ZKWAQsi4jSAiHg0G+Nyg6SvkVokM4GHNoyByXwL6JN0JWkQ5qTsdUzpB2ZmZhsZik7+XUnPsMjb8P19pPmXtiDNVJs3BbiC9LyNd6aKyWeIiIeyYPVt4EukcTKnRsTdbSy/mZnVoeMBJiKW8+6dXYPlGVsh7Q3g89mr2rq3UnvCPzMzK1mv9MGYmVmPcYAxM7NSOMCYmVkpHGDMzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErhAGNmZqVwgDEzs1I4wJiZWSkcYMzMrBQOMGZmVgoHGDMzK4UDjJmZlcIBxszMSuEAY2ZmpXCAMTOzUjjAmJlZKRxgzMysFA4wZmZWCgcYMzMrhQOMmZmVwgHGzMxK4QBjZmalcIAxM7NSOMCYmVkpHGDMzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErhAGNmZqVwgDEzs1I4wJiZWSkcYMzMrBQOMGZmVgoHGDMzK4UDjJmZlcIBxszMSuEAY2ZmpXCAMTOzUnQ8wEjaT9K9klZLekXSxZI2r7HODEkxyOvcXL7rB8kzrvwjMzOzvC06uTNJo4F7gMXA8cA+wGWkQHd+lVV/ANxVSDsBOBuYW0hfCny+kLa8uRKbmVmzOhpggC8CI4CTImIlMF/SDsAMSZdmaQNExK+BX+fTJH0TWBoRiwrZ/xgRj5VQdjMza0CnL5EdC8wrBJI5pKBzaL0bkbQjcCQwu73FMzOzdul0gBlHuoT1joh4EVidLavXycCWpOBUtJ+klZLWSnpIUt2By8zM2qfTl8hGA29USO/PltVrCvCziHiukP4k8BNSH88uwHTSZbhDIuLxShuSNA2YBjBmzBj6+voaKEbrVq1a1fF9djvXyUCuk4FcJwN1W510OsAARIU0DZI+MKO0O+ly2tkDNhzxvULeO0jB5jzSTQEDCxMxC5gFMGHChJg4cWI9xWibvr4+Or3Pbuc6Gch1MpDrZKBuq5NOXyLrB0ZVSB9J5ZZNJaeQAtKNtTJGxBrgTuAj9RbQzMzao9MBZimFvhZJewLbUuibqWIK8FBEvNTAfutqHZmZWft0OsDMBY6WtH0ubTKwBlhQa2VJY4GDqPPuMUkjSHeuPdFoQc3MrDWdDjDXAGuBWyQdkXWwzwAuz9+6LGmZpB9WWH8KsA64qbhA0khJD0o6Q9LhkiYD9wN7AJeUcCxmZlZFRzv5I6Jf0uHAVcBtpH6XK0hBpliuStPHTAHujYjfVVi2FvgdaUaAXYE3gUeBQyNiYVsOwMzM6tbxu8giYjHwyRp5xg6S/uEq67wJnNRS4czMrG08m7KZmZXCAcbMzErhAGNmZqUYipH8Zpussefc0dR60/dfx9Qm1l3+neOa2p9ZO7gFY2ZmpXCAMTOzUjjAmJlZKRxgzMysFA4wZmZWioYCjKRK07eYmZkN0GgL5mVJl0r6UCmlMTOzYaPRAHMtcDLwjKSfSJomaYcSymVmZj2uoQATERdGxN7AkcCzwOXAq5J+JOmIMgpoZma9qalO/oi4LyL+GtgN+CrwQWCepOWSZkj6s3YW0szMek+rd5FNAD5BegxyP/AgcDqwTNLnWty2mZn1sIYDjKS9JF0o6XngXmB34G+AP4uI/wXsReqr+W5bS2pmZj2lockuJd1HarH8GrgeuC4iXsjniYi3Jf0YOKtdhTQzs97T6GzKrwOTgPkREVXyLQLe13SpzMys5zV6iewq4JFKwUXSdpI+ARARbxVbNmZmtmlpNMDcD+w3yLIPZsvNzMwaDjCqsmw7YHULZTEzs2GkZh9MdtlrYi7pdEnHFLJtDRwHPN2+opmZWS+rp5P/46TBlAABfAZYV8jzJ2Ap8PX2Fc3MzHpZzQATEd8lG9Mi6VfAiRGxqOyCmZlZb2voNuWI8K3HZmZWl3r6YCYBD0XEyuxzVRFxZ1tKZmZmPa2eFsztwEHA49nnYPC7yQLwQ8nMzKyuAPM+4NXcZzMzs5rq6eR/odJnMzOzaurpg9mmkQ1GhAdbmplZXZfIVpH6VurlPhgzM6srwPwNjQUYMzOzuvpgru9AOczMbJhp9ZHJZmZmFdXTyf84MDUiFkv6KTUul0XEge0qnJmZ9a56+mD+E1iT++z+GDMzq6mePpjP5z5PLbU0ZmY2bDTdB6NkF0nVHkJmZmabqIYDjKRJkh4B3gR+A7wp6RFJx7W9dGZm1rMaCjCSzgBuIw2+PIv08LGzsu//kS03MzNr7HkwwHnArIj4UiH9GknXAN8Arm1LyczMrKc1eolsJ+CWQZbdDOxYawOS9pN0r6TVkl6RdLGkqtPLSBorKSq85lTIe7ykpyW9KWmxpMl1HZmZmbVVoy2Y+4FDgfkVlh0KPFBtZUmjgXuAxcDxwD7AZaRAd34d+/8a8HDu++uF7R9CCnRXA2cCk4DZkvoj4u46tm9mZm1Sz0DL/XJfvw/8QNJOwK3Ab4FdgROBY4HTa2zui8AI4KSIWAnMl7QDMEPSpVlaNc9GxGNVln8TeCAizsy+3y9pPHAB4ABjZtZB9bRgnmHjwZUCzshexadb3kX12ZSPBeYVAskcYCapBXRbHeWpSNJWwGGklkveHOA6SSMjYkWz2zczs8bUE2AOa+P+xgH35RMi4kVJq7NltQLMdZJ2JLWcZgPfiIgNswzsA2wJLC2ss4R0Ce4DwE9bK76ZmdWrnpH8C9q4v9HAGxXS+7Nlg1kL/BPpMtdKYCJwNimoHJ/bNhW2319YvhFJ04BpAGPGjKGvr69a+dtu1apVHd9ntxvOdTJ9/3VNrTdmRHPrDtd6hOF9njSr2+qk0U7+d0jaDNi6mF7HEy0rzWWmQdI3bPNV4Cu5pD5JrwFXS/pwRCyqsn0Nkr5h27OAWQATJkyIiRMnVi99m/X19dHpfXa74VwnU8+5o6n1pu+/jsuebvy/6/LPTmxqf71gOJ8nzeq2Oml0oKUknS1pGfAW8IcKr2r6gVEV0kdSuWVTzU3Z+0dy26bC9jd8b3T7ZmbWgkbHwZwJnAP8kNQy+AfgYuA5YDnZpaYqlpL6Wt4haU9gWwb2ndQShffnSUFvXCHfOGB9VkYzM+uQRgPMF4ALgUuz77dGxEXAeFKA2LfG+nOBoyVtn0ubTHocQKN9PSdn708ARMRa0jidzxTyTQYe9R1kZmad1ehF3fcBiyLibUlvkV1+ioj1kq4GfkBq4QzmGlIr6BZJM4G9gRnA5flbl7NLcAsi4rTs+wxge9Igy5XAJ4CvA7dExM9z2/8WqX/mStI4nUnZ65gGj9PMzFrUaAvm98B22ecXgf+WWzaaNIhyUBHRDxxOGitzG3ARcAWpVZS3BRuPp1lKGidzHXAncCrw3ew9v/2HSC2bI4B5wKeAUz2K38ys8xptwTwMfIz0I/9j0gj8HYE/AV8G7q21gYhYDHyyRp6xhe9zSAMma4qIW0mtFzMzG0KNBpgZwB7Z50tIl8imklou84GvtqtgZmbW2xoKMBHxLPBs9nkt6VkwZ5VQLjMz63GtDLR8L7A78EpEvNy+IpmZ2XDQzCOTvyTpJeAF4CfAi5J+Lel/t710ZmbWsxodyX8BcBVpPMtxwITsfS7w/Wy5mZlZw5fIvgxcEhHfLKTflc0N9mXSyH4zM9vENXqJbASDP7VyARUmvzQzs01TowHmVuCkQZZ9Gri9teKYmdlwUc8jkyflvs4FLpU0loGPTB4P/H37i2hmZr2onj6Y2xn4aOQ9gKMr5P0X0pMmzcxsE1dPgHlf6aUwM7Nhp55HJr/QiYKYmdnw0vBIfklbkDr0DwF2BP4LeJA0dX5zDxw3M7Nhp6EAI2lX4G7gANITLF8DDiaNf3lK0lER8bt2F9LMzHpPo7cpXw7sBHw8IvaOiIMjYm/g41n65e0uoJmZ9aZGA8wk4OyI+Gk+Mft+LmnaGDMzs4YDzFbAHwZZ9gfgPa0Vx8zMhotGA8xjwNmSts0nZt/PzpabmZk1fBfZdOB+4CVJd5M6+XclDboUMLGtpTMzs57VUAsmIhYB+wKzgF2AI0kB5hpg34h4qu0lNDOznlR3C0bSlsCBwK8i4pzyimRmZsNBIy2Yt4H7gA+VVBYzMxtG6g4wEbEe+AUwprzimJnZcNHoXWTfAC6QtH8ZhTEzs+Gj0bvIzieN2F8k6WXSXWSRzxARB7apbGZm1sMaDTDPZC8zM7Oq6gowkkaQpol5BvgNcE9EvFZmwczMrLfV88jkvYF7gLG55JWSTomIu8sqmJmZ9bZ6OvkvBdYDfwVsA4wHngSuLbFcZmbW4+oJMAcD50fEwxHxZkQsAc4A/lzS7uUWz8zMelU9AWZ34JeFtOdJc4/t1vYSmZnZsFDvOJioncXMzOxd9d6mPE/Sugrp9xbTI2LX1otlZma9rp4Ac1HppTAzs2GnZoCJCAcYMzNrWKNzkZmZmdXFAcbMzErhAGNmZqVwgDEzs1I4wJiZWSkcYMzMrBQdDzCS9pN0r6TVkl6RdLGkzWus8zFJ10lalq33rKQLJW1dyDdDUlR4HVPuUZmZWVGjDxxriaTRpKn/FwPHA/sAl5EC3flVVp2c5Z0J/AI4APhW9v7pQt4VQDGgLGm17GZm1piOBhjgi8AI4KSIWAnMl7QDMEPSpVlaJTMj4ne5732S3gSulbRXRLyQW7YuIh4rp/hmZlavTl8iOxaYVwgkc0hB59DBVioElw2ezN4995mZWRfqdIAZByzNJ0TEi8DqbFkj/pL0ILRnC+mjJL0u6S1JT0o6qenSmplZ0xTRuZn4Jb0FfD0iriyk/xq4ISLOq3M7uwE/B+6MiKm59M+RWjSLgO1ID0abBHw6Im4ZZFvTgGkAY8aM+eicOXMaPayWrFq1iu22266j++x2w7lOnn55RVPrjRkBr61pfL399xjZ1P56wXA+T5o1FHVy2GGHPREREyotG4oA87WI+F4h/WXg+oj4Rh3beA/pRoH3Ah+NiP4qeQU8AoyIiA/X2vaECRNi4cKFtbK1VV9fHxMnTuzoPrvdcK6Tsefc0dR60/dfx2VPN95luvw7xzW1v14wnM+TZg1FnUgaNMB0+hJZPzCqQvpI4I1aK2cB4wZgPDCpWnABiBQ9bwEOqHUrtJmZtVen7yJbSqGvRdKewLYU+mYGcQXp9uYjI6Ke/Bv4iZxmZh3W6RbMXOBoSdvn0iYDa4AF1VaUdC7wVeBzEfFQPTvLWjwnAk9FxNvNFdnMzJrR6RbMNcCZwC2SZgJ7AzOAy/O3LktaBiyIiNOy76cClwDXAy9LOii3zec33MYsaQFwM6k1tC3wBeAg4IRyD8vMzIo6GmAiol/S4cBVwG2kfpcrSEGmWK58n8lR2fvU7JX3eVLgAVgG/C2wO+kW5p8Bx0XE3HaU38zM6tfpFgwRsRj4ZI08YwvfpzIwsFRa77QWimZmZm3k2ZTNzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErR8bvIzMyGWrNzwjVrOM8JV41bMGZmVgoHGDMzK4UDjJmZlcIBxszMSuEAY2ZmpXCAMTOzUjjAmJlZKRxgzMysFA4wZmZWCgcYMzMrhQOMmZmVwgHGzMxK4QBjZmalcIAxM7NSOMCYmVkpHGDMzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErhAGNmZqVwgDEzs1I4wJiZWSkcYMzMrBQOMGZmVgoHGDMzK4UDjJmZlcIBxszMSrHFUBfAOmPsOXd0dH/Lv3NcR/dnZt3HLRgzMyuFA4yZmZXCAcbMzErhAGNmZqVwgDEzs1L4LjIzsy7T7F2f0/dfx9Qm1i3rrk+3YMzMrBQdDzCS9pN0r6TVkl6RdLGkzetYb6Sk6yT1S1oh6UeSdqqQ73hJT0t6U9JiSZPLORIzM6umo5fIJI0G7gEWA8cD+wCXkQLd+TVWvxH4IHA6sB6YCdwK/FVu+4cANwNXA2cCk4DZkvoj4u62HkxBJ5u0HsRoZr2g030wXwRGACdFxEpgvqQdgBmSLs3SBpB0MHA0cGhEPJClvQz8RNIREXFPlvWbwAMRcWb2/X5J44ELgFIDjJmZbazTl8iOBeYVAskcUtA5tMZ6r20ILgAR8Tjwq2wZkrYCDgP+tbDuHOBgSSNbL76ZmdWr0wFmHLA0nxARLwKrs2V1r5dZkltvH2DLCvmWkI7zA02U18zMmtTpS2SjgTcqpPdny5pZb+9cHirk6y8s34ikacC07OsqSc9WKUfbnQk7A683so5mllSYNmqxjA3XyXDXzHkCvXGutKBnzpNO/TsM0Xmy12ALhmIcTFRI0yDpzaxX/K4q6xMRs4BZNfZdGkkLI2LCUO2/G7lOBnKdDOQ6Gajb6qTTl8j6gVEV0kdSuYVSa71RufX6c2nFPNTYvpmZtVmnA8xSCn0tkvYEtqVyH8ug62XyfTPPA29VyDeOdFvzc02U18zMmtTpADMXOFrS9rm0ycAaYEGN9XbLxrkAIGkCqf9lLkBErAXuBz5TWHcy8GhErGi9+KUYsstzXcx1MpDrZCDXyUBdVSeKqNX10cadpYGWi4FnSAMl9wYuB66MiPNz+ZYBCyLitFzaXaQ7wb7GuwMtfxsRxYGWfcBVpEGYk7L8x5Q90NLMzDbW0RZMRPQDhwObA7cBFwFXABcWsm6R5cmbQmrl/DNwA/AEcGJh+w8BJwNHAPOATwGnOriYmXVeR1swZma26fBsym3gCTwHaqZOJH0sq49l2XrPSrpQ0taFfDMkRYXXMeUeVWuarJOxgxzrnAp5e+48gabrZbBzICSdm8t3/SB5qg3sHlKS3i/pWklPSXpbUl+d63Xd74mfB9Oi4TyBZ7NaqJPJWd6ZwC+AA4BvZe+fLuRdARQDypJWy16WFs8TSH2JD+e+bzSYrhfPE2ipXn4A3FVIOwE4m+zGn5ylwOcLacubK3FHjCf9+z0GvKeB9brv9yQi/GrhBZxLGoOzQy7t70nT3+xQZb2DSYM/P5FLOzBLOyKXNg+4r7DuncBDQ33sJdTJLhXSpmV1slcubQbw+lAfZ4fqZGx2/P+jxvZ77jxppV4G2dYdwJJC2vXAwqE+zgaPY7Pc55uAvjrW6crfE18ia50n8ByoqTqJiN9VSH4ye9+1fcUbEs2eJzX18HkCbaoXSTsCRwKz21u8zouI9U2s1pW/Jw4wrfMEngM1WyeV/CWpuV+cI26UpNclvSXpSUknNV3azmi1Tq7Lrse/KulySSNyy3r1PIH2nSsnk+pgQN8UsJ+klZLWSnpIUksBvUt15e+JA0zrypjAc3QuDxXyVZ3Asws0WycbkbQb8A3g/xb+wl1GuoxyCqlv5hXg5i4PMs3WyVrgn4DTSLf4Xwt8iY1/SHv1PIE2nSukYQw/i4jijB1PAtOB/wl8ljT8Yb6kA5soazfryt8Td/K3R1dN4Nklmq2TlFF6D6kpvwr4u402HPEvhby3AY+QHix3SzOF7ZCG6yQiXgW+kkvqk/QacLWkD0fEoirb74XzBFo/V3YnXU47e8CGI75XyHsH6YaC80g3BQwnXfd74hZM6zyB50DN1gkAkkQaTDsemBRpgO6gIvVU3gIcUM/t4UOkpTopuCl7/0hu21TYfrefJ9CeejmF9CN5Y62MEbGG1Kn9kVp5e0xX/p44wLTOE3gO1GydbHAF6ZbV4yOinvwbdPNf6q3WSV4U3nv1PIH21MsU0l1QLzWw324+V5rRlb8nDjCt8wSeAzVbJ2SD5L4KfC7S1D81ZS2eE4GnIuLt5opcuqbrpIKTs/cnoKfPE2ixXiSNBQ6izrvHspsjjiWru2GkO39Phvqe715/kTrGXgXmk+ZAm0bqN/h2Id8y4IeFtLuAXwInka4HPws8WMhzCLAOuBKYCFxK+mvjqKE+9nbXCXAq6S/L60g/GvnXLrl8C0iDxI4iBZY7szr51FAfewl1MoM08PCkbL2LST++N/f6edJKveTSzyH9VV5pDNVI4EHgDNINEpNJgxfXAhOG+tir1Mk2pD8iTgYeBf4z932bweqjG39Phrwyh8ML2A+4L/uP/ypp9PnmhTzLgesLaaOyH9M3gJXAj4GdK2z/BNIM1GtJzd0pQ33MZdQJaVBcDPKamsv3w+w/0hrgj9mPyLFDfcwl1ckUYCFp5oI/ZT8sFwNbDYfzpNl6yaUvAu4aZLtbk/rmXsrqZEX2I3zQUB9zjfoYW+X/wdjB6qMbf0882aWZmZXCfTBmZlYKBxgzMyuFA4yZmZXCAcbMzErhAGNmZqVwgDEzs1I4wJiZWSkcYMzMrBT/H5ECYukA/OkPAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -519,7 +521,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEPCAYAAADvS6thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXVV9//H3h4sQCPdLQIoEUKQgfSxEhP6oTAQVQh+jCIaq9YkCia0V6w8roKgBL22Qi1XKjwQValWCBUrLXW4TwAqYBCgaAgYJd7k5EIaEQMj398faA5udM+cyc/bZM2c+r+fZz5mz9lr7rHX2ZL7Za6+1tiICMzOzKq1TdQXMzMwcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudgZG0laZakGGT7RJPH2C07zuaF9OnZccaXU/vm6jHMY14sqbeJfOtJ+gdJd0taKalP0lWSDhji546U73R64XfiKUnXStq7ibI9WZl3dKKu1lkORlaG54H9a2zXNFl+N+DrQDEIXJkdZ0V7qjnkepRK0rrAZcC3gf8GpgDTgVeBXkkfG8JhR8p3OuC92efOBLYBbpL05gZlFmVlHii5blaB9aqugHWl1RFxW7sPGhFPA0+3+7gj0OeAw4BDIyIfwP9L0jxgrqT5EfHYcD+owu/01xHRDyBpAfAQ8HHgO8WMkgRsEBHLgbb/XtnI4Csjq4SkkyQtlfSSpCclXSNpO0k9wOVZtgezbpllWZk3dClJmpi9P0rS+ZKWS3p0oDtQ0pckPS7paUmzJa2T+/zdJc2T9IikFZJ+m3WLrZPtH7Qe2f63ZOX/mJW/VtLbC23cMetaWylpmaRjmvx6Pg/cVAhEA74CbAgcnfucZZJOl/RVSX+Q1C/pp5I2a9SWWt10kraW9G+Sns3a1itpUqFtA5/5hew778u+j5avIiPiEVJAnJgde5akZyQdIOnXwEvAkbW66SStm/0u3S9pVVaXCwp1nSppQfa79gdJp0lav9V6Wrl8ZWSlkLTW71ZErM72fRL4MnAC8FtgK1K3zcakrpgvAqcDhwNPAKsafNxs4KfAR4BPA/8m6c+BnbL3+wDfBO4E5mVldgDuy8q9ALwTOAUYB/xTvXpI2hK4FXgW+Aypi+tE4HpJu0XEyux/8/8FbE0KHC9lx98S+F2d721H0h/ls2rtj4gHJN0DvKew66+BpcCxwPbAacAPgCPrtWUQlwFvzco8A/wjqRvtzyNiaS7fR4H/BWYAfwKcSepa/Ls6x16LpE1I38sfcskbAf+WteN+4PGsXUVzgE9m+eZnxzkid+yPAhdm+b4M7Eo6v+tk7bORIiK8eWvbBswCYpBtYpbnbOCSOsf4q3z+XPr0LH189n5i9v78XJ5NgVdIf/DXzaXfAVw0yOeJ9B+zLwO/b6Ie3yAFoi1zaVuQ7pV9Nns/JSv77lyenYDVQG+dtu+XlZtaJ89lwL2598uAPw58L1nax4E1wJ+2+J0ekr0/MJdnY9KVy5zCZz4ArJdL+y7whwa/HwOft1n2ne8IXJR9L+8s/A5NLZTtydLfkb3fPXt/XJ3z+lD+9yNL/zSwEtiq6n8v3l7ffGVkZXgeOLhG+uPZ613A0ZJOId1AXxgRrw7j824Y+CEilkt6GphfOOZS4C0DbyRtCJxE+qP9FmD93L71IruKG8TBwHXA8twV4AvAQmCgO2tf4MmIuD1Xt4ckLRxC+5pxXWT3YDKXAj8B3gXc28Jx9gWejoj5AwkR8aKkK4DiSL6bCt/TYmBbSW+KiJcbfM5zuZ+fAT4dEXfl0gK4usExJmevFwyyfzfSuf154Ur9RlJX5ztIV1M2AjgYWRlWR8SCOvt/BGxC6t75GvCspP8HzBpiUHqu8P7lQdI2zL2fDRxD6jpblOWfCpyc5etncFuTrmCm1dg3EBi3A56qsf8pUtsHMzAoYac6eXbK5csf9zWRugr7qd21Vc/2wJM10p8kdYHl1fqOBbwp+7me95C6N58BHomINYX9fU0EtK2AFyMNbKhl6+z1qkH279jg+NZBDkbWcdkfnrOAs7J7JB8HvkX6A3tuh6pxJPD9iDhtIEHSYU2W/SNpyPU3aux7IXv9A7Btjf3bkrqIaoqIR7LBBR8EvlfcL2ln0v/oi5+9bSHfOGA86f5QK54oHiszgdTudrmzcCVX1MyzbZ4FNpa06SABaaC+M0j3C4sebOIzrEM8ms4qFRGPRMQ/k7rR9siSB/5HvGHtUm0xjtxNfKW5PUcV8gxWjxuAPYHfRsSCwnZflufXwARJ7859xluAhpM7gX8BDpL0/hr7vpnV+4eF9PfpjRNXDyf9QR+4Qm32O72d1NX22gAJSRuRhprf2kTdO+nG7PWTg+y/j/QfnIk1ztOCiHi2M9W0ZvjKyMqwnqT9aqQ/EhGPSZpD+l/rbaT7S5OBt5FG10H6IwIwU2lezYqIuKfNdbwO+KykpVldPgtsUMgzWD3OBD4B3Cjp+6Q/eBOAA4FbI+JCUtfQ3cB/SDqBNJruVGp33RV9n3Rf6j8lnQ70krr2jiYNRPibWHuO0UrgSknfIXW1fQf4z4hY3KAtbxAR10r6JXCRpBNJVx9fJAXvteYAVSki7pM0FzhD0rbAzaRJvUdExFERsUbS8cC/S9qUdA/qZWAX4ENZvk5P9rXBVD2Cwlt3bdQfTXdylmc68EtSEFhBGh58dOE4x5NGQq0GluXK1RpN91eFssuA0wtpFwALcu8nAP8JLCfdDzmNNCz6teMPVo8s/c3A+VnZVdln/gTYM5fnLaRVJ1Zmx5gJXEyd0XS5susBX8i+m5VAH+mP6QE18i4Dzsi++yeBF0nDmTdv9TvN0rYBfpx95krSTf53NfEdr3WsGnVtJs8s4Jka6T3kRtNlaeuSjYIkBZpHWXv03KHALdn3spw0gOab5EYCeqt+U3ayOkbSW0nzFvYj9X3fEhE9TZTbjDR09EOk7sUrSEM6ny3km0r6RXsb6Rf0lIi4qJ1tMBtJsntMF0eE583YqFXFPaM9SXMw7s+2Zl1E+p/RMaT/Xb2LNN/iNUqLSF4C3ET639CVwIWD9L2bmdkIUcWV0TqRDeOUdDGwdaMrI0n7A/9Dmoh3c5a2L+lm6/si4vos7Vpg/Yh4b67sVcCmETGk1Y7NRjpfGVk36PiVUaw9n6AZh5ImEN6cO84dpKGZhwJI2oB0I/znhbLzgP0H1uky6zYRMdGByEa70TK0e3dgSY30e7N9kNacWr9GvntJ7dyttNqZmdmwjJah3Vuw9mxvSKN9dsnloUa+vsL+N5A0gzQpjnHjxu2zww47sM46oyVGt2bNmjVd2zbo7vZV3bZN7k+3d1/Yrf3/p6u6bWXr5vatWbOGpUuXPhMR2wz3WKMlGEHtGdmqkV58rzrliYi5wFyASZMmxemnn05PT88wqjly9fb2dm3boLvbV3nblP0zuu+++vmGoPK2layb29fb28vkyZMfasexRku47qP20zY35/Urob5cWjEP1L6yMjOzEWC0BKMlvH5vKC9/L+kB0qMDivl2Jy2l38owcjMz66DREoyuBrbL5hEBkD15cpdsHxGxijS/6MhC2WnAryLi+Q7V1czMWtTxe0bZootTsrc7AJtKGngy41URsSJbL2x+RBwNEBG/yuYQ/VjSF0lXOrNJ64Bdnzv8N4BeSd8lTYidkm2HlN4wMzMbsioGMGwL/EchbeD9zqQ1r9YjrTmVdxTpsQM/IrccUD5DRNyaBbZvAn9Lmof0sYj4RRvrbzb2dHhyvI09HQ9GEbGM10e4DZZnYo2054BPZVu9spdRWCbIzMxGttFyz8jMzLqYg5GZNbbPPmkzK8lomvRqZlVZtKjqGliX85WRmZlVzsHIzMwq52BkZmaVczAyM7PKORiZmVnlPJrOzBo79tiqa2BdzsHIzBqbO7fqGliXczedmZlVzsHIzBpbuDBtZiVxN52ZNTZpUnr16t1WEl8ZmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq56HdZtbYggVV18C6nIORmTXmR45bydxNZ2ZmlXMwMrPGZsxIm1lJHIzMrLHzzkubWUkcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKudJr2bW2N57V10D63IORmbWmB85biVzN52ZmVXOwcjMzCrnYGRmjUlpMyuJg5GZmVXOwcjMzCrnYGRmZpVzMDIzs8o5GJmZWeUcjMzMrHJegcHMGpszp+oaWJdzMDKzxvzIcStZx7vpJO0h6QZJKyQ9LulUSes2KDNLUgyynZTLd8EgeXYvv2VmZjZUHb0ykrQFcD2wGJgK7AqcQQqKJ9cp+gPgmkLah4ATgKsL6UuATxXSlg2txmYGwNy56dVXSFaSTnfTfQYYBxweEcuB6yRtCsySdFqWtpaIeBR4NJ8m6avAkoi4q5D9xYi4rYS6m41dM2emVwcjK0mnu+kOBa4tBJ15pAB1YLMHkbQl8D7gwvZWz8zMqtDpYLQ7qRvtNRHxMLAi29esI4D1SYGsaA9JyyWtknSrpKaDnJmZVaPT3XRbAM/VSO/L9jXrKGBRRNxfSL8TuJ10T2ob4HhSV+ABEXFHrQNJmgHMAJgwYQL9/f309va2UJXRo5vbBt3dvqrb1pO9llGHqttWtm5uX39/f9uOVcXQ7qiRpkHS184obU/q0jthrQNH/Esh75WkwPRl0oCHtSsTMReYCzBp0qQYP348PT09zVRl1Ont7e3atkF3t2+ktK2MOoyUtpWlm9vXziDb6W66PmDzGumbUfuKqZaPkoLXRY0yRsRK4Cpg72YraGZmndfpYLSEwr0hSTsCG1O4l1THUcCtEfFIC5/b1FWXmZlVo9PB6GrgA5I2yaVNA1YC8xsVljQR2I8mR9FJGkcawbew1YqaWU5E2sxK0ulgdC6wCrhU0sHZ4IFZwJn54d6Slkr6YY3yRwGrgYuLOyRtJukWSTMlHSRpGnATsAPw7RLaYmZmbdLRAQwR0SfpIOBs4HLSfaKzSAGpWK9aSwQdBdwQEU/X2LcKeJq0ksO2wEvAr4ADI2JBWxpgZmal6PhouohYDLy3QZ6Jg6S/s06Zl4DDh1U5M6ttn33S60L3eFs5vGq3mTW2aFHVNbAu54frmZlZ5RyMzMyscu6mM6vIxBOvbDrv8XutZnqT+Zf982FDrZJZZXxlZGZmlXMwMjOzyrmbzswaO/bYqmtgXc7ByMwaG3jsuFlJ3E1nZmaVaykYSaq1RI+ZdbuFC736gpWq1W66xyT9GDg/Iu4to0JmNgJNmpRevXK3laTVbro5wBHAbyTdLmmGpE1LqJeZmY0hLQWjiPh6ROwCvA+4DzgTeELSTyUdXEYFzcys+w1pAENE3BgRnwS2Az4HvB24VtIySbMkvbmdlTQzs+423NF0k4D3kB4l3gfcAhwDLJX0iWEe28zMxoiWg5GknSR9XdIDwA3A9sCngTdHxN8AO5HuLX2nrTU1M7Ou1dJoOkk3kq6EHgUuII2qeyifJyJelfQz4PPtqqSZmXW3Vod2PwNMAa6LqDvG8y5g5yHXysxGlgULqq6BdblWg9HZwKJagUjSeGDviLg5Il4BHlqrtJmNTgOPHTcrSav3jG4C9hhk39uz/WZmZi1pNRipzr7xwIph1MXMRqoZM9JmVpKG3XSS3gP05JKOkXRIIduGwGHAPe2rmpmNGOedl169ereVpJl7Ru8mTWwFCOBIYHUhz8vAEuAf21c1MzMbKxoGo4j4DtmcIUkPAh+OiLvKrpiZmY0dLY2miwgP1zYzs7Zr5p7RFODWiFie/VxXRFzVlpqZmdmY0cyV0RXAfsAd2c/B4KPqAvAD+MzMrCXNBKOdgSdyP5vZWLP33lXXwLpcMwMYHqr1s5mNIX7kuJWsmXtGG7VywIjwxFczM2tJM910/aR7Qc3yPSMzM2tJM8Ho07QWjMys2ygbs1R3sX6zoWvmntEFHaiHmZmNYcN97LiZmdmwNTOA4Q5gekQslvRrGnTZRcS+7aqcmZmNDc3cM/otsDL3szuNzcysrZq5Z/Sp3M/TS62NmZmNSUO+Z6RkG0n1HrhnZmbWUEurdsNrC6eeDOyTlV8taSHwrYi4ss31M7ORYM6cqmtgXa6lYCRpJnAOcAPweeApYFvgcOC/Jf1dRPi31qzb+JHjVrJWr4y+DMyNiL8tpJ8r6VzgK4CDkZmZtaTVe0ZbAZcOsu8SYMtGB5C0h6QbJK2Q9LikUyXVXUJI0kRJUWObVyPvVEn3SHpJ0mJJ05pqmZkNbu7ctJmVpNUro5uAA4Hrauw7ELi5XmFJWwDXA4uBqcCuwBmkoHhyE5//ReCXuffPFI5/ACkongMcB0wBLpTUFxG/aOL4ZlbLzJnp1d11VpJmJr3ukXv7PeAHkrYCLuP1e0YfBg4FjmlwuM8A44DDI2I5cJ2kTYFZkk7L0uq5LyJuq7P/q8DNEXFc9v4mSXsCXwMcjMzMRqhmrox+wxsnugqYmW3Fp75eQ/1Vuw8Fri0EnXnAbNKV1eVN1KcmSRsAk0lXRHnzgPMlbRYRzw/1+GZmVp5mgtHkNn7e7sCN+YSIeFjSimxfo2B0vqQtSVdkFwJfiYiB1SF2BdYHlhTK3EvqBtwN+PXwqm9mZmVoZgWG+W38vC2A52qk92X7BrMK+FdSV9tyoAc4gRSApuaOTY3j9xX2v4GkGcAMgAkTJtDf309vb2+9Noxa3dw2GH3tO36v1U3nnTCu+fxlfAc9JR57tJ23VnVz+/r7+9t2rJYnvQ6QtA6wYTG9iSe91lrbToOkDxzzCeDvc0m9kp4EzpH0zoi4q87xNUj6wLHnAnMBJk2aFOPHj6enp6d+C0ap3t7erm0bjL72TT+x+Tnix++1mjPuae6f67KP9wyxRo2V8f2OtvPWqm5uXzuDbEtDu7MlgE6QtBR4BXihxlZPH7B5jfTNqH3FVM/F2eveuWNT4/gD71s9vpmZdUir84yOA04Efki64vgWcCpwP7CMrLurjiWke0OvkbQjsDFr3+tpJAqvD5AC5O6FfLsDa7I6mtlQRPgpr1aqVoPRscDXgdOy95dFxCnAnqRg8rYG5a8GPiBpk1zaNNIjKlq9N3VE9roQICJWkeZBHVnINw34lUfSmZmNXK3eM9oZuCsiXpX0ClkXWESskXQO8APSldNgziVdXV0qaTawCzALODM/3DvrBpwfEUdn72cBm5AmvC4H3gP8I3BpRPxv7vjfIN1P+i5pHtSUbDukxXaamVkHtXpl9CwwPvv5YeDPc/u2IE1oHVRE9AEHkeYiXQ6cApxFutrKW483zldaQpqHdD5wFfAx4DvZa/74t5KumA4GrgU+CHzMqy+YDdM++6TNrCStXhn9EngXKSD8jLRywpbAy8BnSat51xURi4H3NsgzsfB+HmnyakMRcRnpqsjM2mXRoqprYF2u1WA0C9gh+/nbpG666aQrouuAz7WrYmZmNna0FIwi4j7gvuznVaRnGn2+hHqZmdkYMpxJr38CbA88HhGPta9KZmY21rQ6gAFJfyvpEeAh4HbgYUmPSvq7ttfOzMzGhFZXYPgacDZpvtBhwKTs9Wrge9l+MzOzlrTaTfdZ4NsR8dVC+jXZWnGfJa3IYGbd5Nhjq66BdblWg9E4Bn+a63w8ms6sO/mR41ayVu8ZXQYcPsi+jwBXDK86ZmY2FjXz2PEpubdXA6dJmsjajx3fE/hS+6toZpVbuDC9ehUGK0kz3XRXsPbjxXcAPlAj709IT2A1s24yaVJ69crdVpJmgtHOpdfCzMzGtGYeO/5QJypiZmZjV8srMEhajzRY4QBgS+CPwC2kxzmsbm/1zMxsLGgpGEnaFvgF8GekJ7s+CexPml90t6T3R8TT7a6kmZl1t1aHdp8JbAW8OyJ2iYj9I2IX4N1Z+pntrqCZmXW/VoPRFOCEiPh1PjF7fxJpaSAzM7OWtHrPaAPghUH2vQC8aXjVMbMRacGCqmtgXa7VYHQbcIKkGyPixYFESRsDJ2T7zazbeLKrlazVYHQ8cBPwiKRfkAYwbEuaACugp621MzOzMaGle0YRcRfwNmAusA3wPlIwOhd4W0Tc3fYamln1ZsxIm1lJmr4ykrQ+sC/wYEScWF6VzGzEOe+89OrVu60krVwZvQrcCPxpSXUxM7MxqulgFBFrgN8BE8qrjpmZjUWtzjP6CvA1SXuVURkzMxubWh1NdzJppYW7JD1GGk33hjXlI2LfNtXNzMzGiFaD0W+yzczMrG2aCkaSxpGWAvoN8Afg+oh4ssyKmdkIsvfeVdfAulwzjx3fBbgemJhLXi7poxHxi7IqZmYjyMBjx81K0swAhtOANcBfAhsBewJ3AnNKrJeZmY0hzQSj/YGTI+KXEfFSRNwLzATeImn7cqtnZmZjQTPBaHvg94W0B0hr0W3X9hqZ2cgjpc2sJM3OM4rGWczMzIam2aHd10paXSP9hmJ6RGw7/GqZmdlY0kwwOqX0WpiZ2ZjWMBhFhIORmZmVqtW16czMzNrOwcjMzCrX6tp0ZjYWzfEcdyuXg5GZNeZHjlvJ3E1nZmaVczAys8bmzk2bWUk6Howk7SHpBkkrJD0u6VRJ6zYo8y5J50tampW7T9LXJW1YyDdLUtTYDim3VWZdbubMtJmVpKP3jCRtQXocxWJgKrArcAYpKJ5cp+i0LO9s4HfAnwHfyF4/Usj7PFAMPvcOt+5mZlaeTg9g+AwwDjg8IpYD10naFJgl6bQsrZbZEfF07n2vpJeAOZJ2ioiHcvtWR8Rt5VTfzMzK0OluukOBawtBZx4pQB04WKFCIBpwZ/bqtfDMzEa5Tgej3YEl+YSIeBhYke1rxV+QHvp3XyF9c0nPSHpF0p2SDh9ybc3MrCM63U23BfBcjfS+bF9TJG0HfAX498JV1lLgS8BdwHjSQwAvkfSRiLh0kGPNAGYATJgwgf7+fnp7e5utyqjSzW2D0de+4/eqtRB+bRPGNZ+/jO+gp8Rjj7bz1qpubl9/f3/bjlXFpNdaz0bSIOlrZ5TeBPwc6Ae+8IYDR/ykkPdy4H+ArwE1g1FEzAXmAkyaNCnGjx9PT09PM1UZdXp7e7u2bTD62jf9xCubznv8Xqs5457m/rku+3jPEGvUWBnf72g7b63q5va1M8h2upuuD9i8Rvpm1L5iegNJAn4M7AlMiYi+evkjIkhB6M8aDR83szoi0mZWkk5fGS2hcG9I0o7AxhTuJQ3iLNKQ8PdFRDP5B/hfkZnZCNbpK6OrgQ9I2iSXNg1YCcyvV1DSScDngE9ExK3NfFh2JfVh4O6IeHVoVTYzs7J1+sroXOA44FJJs4FdgFnAmfmBCJKWAvMj4ujs/ceAbwMXAI9J2i93zAcGhn5Lmg9cQrrK2hg4FtgP+FC5zTLrcvvsk14XLqy2Hta1OhqMIqJP0kHA2cDlpPtEZ5ECUrFe+Xs8789ep2db3qdIQQrSaLp/ALYnDfteBBwWEVe3o/5mY9aiRVXXwLpcx0fTRcRi4L0N8kwsvJ/O2kGoVrmjh1E1MzOriFftNjOzyjkYmZlZ5RyMzMyscg5GZmZWuSqWAzKz0ebYY6uugXU5ByMza2wMPHJ8YgtrBbbigkM2LuW43cbddGZmVjkHIzNrbOFCr75gpXI3nZk1NmlSevXK3VYSXxmZmVnlHIzMzKxyDkZmZlY5ByMzM6ucg5GZmVXOwcjMzCrnod1m1tiCBVXXwLqcg5GZNTbw2HGzkribzszMKudgZGaNzZiRNrOSOBiZWWPnnZc2s5I4GJmZWeUcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc6TXs2ssb33rroG1uUcjMysMT9y3ErmbjozM6ucg5GZmVXOwcjMGpPSZlYSByMzM6ucg5GZmVXOwcjMzCrnYGRmZpXzPKMx5J7Hnmf6iVe2/bjL/vmwth/TzMYWXxmZmVnlfGVkZo3NmVN1DazLORiZWWN+5LiVzN10ZmZWOQcjM2ts7ty0mZXE3XRm1tjMmenV3XWVmljCaFgYGSNifWVkZmaV63gwkrSHpBskrZD0uKRTJa3bRLnNJJ0vqU/S85J+KmmrGvmmSrpH0kuSFkuaVk5LzMysXTraTSdpC+B6YDEwFdgVOIMUFE9uUPwi4O3AMcAaYDZwGfCXueMfAFwCnAMcB0wBLpTUFxG/aGtjCrr58tnMrGydvmf0GWAccHhELAeuk7QpMEvSaVnaWiTtD3wAODAibs7SHgNul3RwRFyfZf0qcHNEHJe9v0nSnsDXgFKDkZmZDV2nu+kOBa4tBJ15pAB1YINyTw4EIoCIuAN4MNuHpA2AycDPC2XnAftL2mz41TczszJ0OhjtDizJJ0TEw8CKbF/T5TL35srtCqxfI9+9pHbuNoT6mplZB3S6m24L4Lka6X3ZvqGU2yWXhxr5+gr730DSDGBgvGr/5MmTnwWeqVOXjtLsth5ua0poW5vrOByltG8kOK6FtpV6Psp52mvXnjeAybNHfvuG8TuzNbBTO+pQxTyjqJGmQdKHUq74XoOkp8SIucBrs/kkLYiISQ3qMip1c9ugu9vnto1e3dy+rG0T23GsTnfT9QGb10jfjNpXPo3KbZ4r15dLK+ahwfHNzKxCnQ5GSyjcG5K0I7Axte8JDVouk7+X9ADwSo18u5OGgt8/hPqamVkHdDoYXQ18QNImubRpwEpgfoNy22XziACQNIl0v+hqgIhYBdwEHFkoOw34VUQ832Qdu3kBrm5uG3R3+9y20aub29e2timi0a2a9skmvS4GfkOatLoLcCbw3Yg4OZdvKTA/Io7OpV1DGhH3RV6f9PpURBQnvfYCZ5MmxE7J8h9S9qRXMzMbuo5eGUVEH3AQsC5wOXAKcBbw9ULW9bI8eUeRrp5+BPwYWAh8uHD8W4EjgIOBa4EPAh9zIDIzG9k6emVkZmZWy5hetVvSNEmXSnpCUkia3kLZ/yPpdkkrJT0o6bjGpTpP0rGSfpctHLtQ0kFNlJmVfR/F7ZBO1LlGfUpdXLdKQ2mbpImDnJ95nap3MyS9VdIcSXdLelVSb5PlRvx5g6G1bzScO0lHSvpvSY9J6s/+bvx1E+U2kHSGpKckvSjpSkkTm/3csf48oyOkxBHQAAAFP0lEQVSAicAVpAVYmyLpraRuwCuAk4B9gTMlrYiIH5RQzyGRdBRwLjALuBX4FHCFpHdFxG8aFH8eKAafe9teyQbKXly3SsNsG6T7ob/MvR9pEyv3JN23vQ14UwvlRvR5yxlq+2Bkn7v/S1pq7Qukek0BfiZp64j4fp1y3yP9Tf0C8DTp7851kvaKiJcafmpEjNkNWCd7HU+aFDu9yXJzSEPF18ulnQM8Qtb1ORI24D7gR/n2AvcAP2lQbhbwTNX1z+pyEmkO2aa5tC+RlpDatE65/bNz+p5c2r5Z2sFVt2uYbZuYteOvqm5Dg/atk/v5YqC3iTIj/rwNs30j/twBW9dI+xnwYJ0yfwKsBj6ZS9sBeBk4ppnPHdPddBGxZohFDwUujYjVubR5pBPyjmFXrA0k7UIaffjawrFZe/+DbHHZUaK0xXVHgKG2bVQY4r+v0XDegGH9/RjRIqLWVdqdwLZ1ir0/e700d5zHSD0yTZ23MR2MhkLSxsCO1F6QFeov+NpJA/WoVc8tJW3ToPzmkp6R9IqkOyUd3v4qNqXMxXWrNtS2DTg/u1fxhKQzJY0ro5IdNhrOWzuMtnP3F6Tu5MHsDjwaEf2F9KbP21i/ZzQUgy0vVHdB1go0s3Ds04OUXUrqLrqL1IU5E7hE0kci4tJBypSlzMV1qzbUtq0C/pX0jK7lQA9wAume09T2VrHjRsN5G45Rd+6yQU9TgU/XyTbU3+XXdFUwyp5ZtH2jfBFRb+mhZg02Jr60sfJDbF9LC8dm5X9S+NzLgf8hPaSw08EIyl9ct0ot1zEingD+PpfUK+lJ4BxJ74yIu9pcx04bDedtSEbbuctGw/0M+K+IuKBB9mGdt64KRqSlgM5rIt9w1sEfiP7FBVkHuxJpp1bal184Nr8UUssLx0ZESLoUmC1p3Yh4tdmybTCcxXVrdUXmF9et2lDbVsvFpEE0e5OuaEer0XDe2m1EnjtJW5KWW3sY+ESD7M0sZl1XV90ziogfRIQabcP8jBdJo+ZqLcgK9Rd8HZYW2zdQj1r1/GNEDNZFV7cKQ6780JW5uG7Vhtq2WqLwOlqNhvPWbiPu3EnaiDR15U3AYdnfvXqWADtm99Tzmj5vXRWMOuhq4MOFyYnTSEGq0fydjoiI35OGn7+2cKykdbL3V7dyLEkiLb10d4eviqDExXVHgKG2rZYjsteF7ahYhUbDeWu3EXXuJK1HGnX7NuDQiHiqiWIDS669tkSbpDeT5oY1d96qHtNe5QbsQfpF+ATpfyVnZ+8PzOU5kDR+Pp/2VqCf1Jc6mXSz/xWaHE/fwfb9NfAqaQLlZOAC0h+6dzRo33zgONJwzQ8DV5EmH36wgjZsATwBXEdac3BG9t1/s5BvKfDDQto1wO+Bw4EPkeZd3VL1eRlu20jzwM7I2nUwcGp2Xi+puk2Fem+U/Xs6AvgV8Nvc+41G63kbTvtGw7kjrcQd2d+A/QrbBlmeG4AbCuXmkCbJ/g1pwvxtwO+ADZv63KobXvGXPiv70otbby5PT5bWUyh7AHAH8BKwDDiu6vYM0sZjs38Qq4BFwEGF/Wu1D/hh9sdgJfAicAvpf0hVtWEP4MasPk8A3wDWLeRZBlxQSNscOJ/UZ72c9J+HtSb0VXx+Wm4badHgBaR7gS9n5/fUgT8UI2Xj9QmetbaJo/m8DbV9o+HcZXVu1K5eCpN8gQ1IT2F4Ovu7cRWwc7Of64VSzcyscr5nZGZmlXMwMjOzyjkYmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq9/8BvfWTGtFF1N8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEPCAYAAADvS6thAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5hdVX3/8feHixAI90tAigRQpCB9LESE/qhMBBVCH6MIhqr1iQKJrRXrDyugqAEvbZCLVcqPBBVqVYIFSstdbhPACpgEKBoCBgl3uTkQhoRAyPf3x9oDm50z5zJz9tkzZz6v59nPmbP2WvusdfZkvtlrr7W2IgIzM7MqrVN1BczMzByMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq52BkbSVplqQYZPtEk8fYLTvO5oX06dlxxpdT++bqMcxjXiypt4l860n6B0l3S1opqU/SVZIOGOLnjpTvdHrhd+IpSddK2ruJsj1ZmXd0oq7WWQ5GVobngf1rbNc0WX434OtAMQhcmR1nRXuqOeR6lErSusBlwLeB/wamANOBV4FeSR8bwmFHync64L3Z584EtgFukvTmBmUWZWUeKLluVoH1qq6AdaXVEXFbuw8aEU8DT7f7uCPQ54DDgEMjIh/A/0vSPGCupPkR8dhwP6jC7/TXEdEPIGkB8BDwceA7xYySBGwQEcuBtv9e2cjgKyOrhKSTJC2V9JKkJyVdI2k7ST3A5Vm2B7NumWVZmTd0KUmamL0/StL5kpZLenSgO1DSlyQ9LulpSbMlrZP7/N0lzZP0iKQVkn6bdYutk+0ftB7Z/rdk5f+Ylb9W0tsLbdwx61pbKWmZpGOa/Ho+D9xUCEQDvgJsCByd+5xlkk6X9FVJf5DUL+mnkjZr1JZa3XSStpb0b5KezdrWK2lSoW0Dn/mF7Dvvy76Plq8iI+IRUkCcmB17lqRnJB0g6dfAS8CRtbrpJK2b/S7dL2lVVpcLCnWdKmlB9rv2B0mnSVq/1XpauXxlZKWQtNbvVkSszvZ9EvgycALwW2ArUrfNxqSumC8CpwOHA08Aqxp83Gzgp8BHgE8D/ybpz4Gdsvf7AN8E7gTmZWV2AO7Lyr0AvBM4BRgH/FO9ekjaErgVeBb4DKmL60Tgekm7RcTK7H/z/wVsTQocL2XH3xL4XZ3vbUfSH+Wzau2PiAck3QO8p7Drr4GlwLHA9sBpwA+AI+u1ZRCXAW/NyjwD/COpG+3PI2JpLt9Hgf8FZgB/ApxJ6lr8uzrHXoukTUjfyx9yyRsB/5a1437g8axdRXOAT2b55mfHOSJ37I8CF2b5vgzsSjq/62Tts5EiIrx5a9sGzAJikG1iluds4JI6x/irfP5c+vQsfXz2fmL2/vxcnk2BV0h/8NfNpd8BXDTI54n0H7MvA79voh7fIAWiLXNpW5DulX02ez8lK/vuXJ6dgNVAb52275eVm1onz2XAvbn3y4A/DnwvWdrHgTXAn7b4nR6SvT8wl2dj0pXLnMJnPgCsl0v7LvCHBr8fA5+3Wfad7whclH0v7yz8Dk0tlO3J0t+Rvd89e39cnfP6UP73I0v/NLAS2Krqfy/eXt98ZWRleB44uEb649nrXcDRkk4h3UBfGBGvDuPzbhj4ISKWS3oamF845lLgLQNvJG0InET6o/0WYP3cvvUiu4obxMHAdcDy3BXgC8BCYKA7a1/gyYi4PVe3hyQtHEL7mnFdZPdgMpcCPwHeBdzbwnH2BZ6OiPkDCRHxoqQrgOJIvpsK39NiYFtJb4qIlxt8znO5n58BPh0Rd+XSAri6wTEmZ68XDLJ/N9K5/XnhSv1GUlfnO0hXUzYCOBhZGVZHxII6+38EbELq3vka8Kyk/wfMGmJQeq7w/uVB0jbMvZ8NHEPqOluU5Z8KnJzl62dwW5OuYKbV2DcQGLcDnqqx/ylS2wczMChhpzp5dsrlyx/3NZG6Cvup3bVVz/bAkzXSnyR1geXV+o4FvCn7uZ73kLo3nwEeiYg1hf19TQS0rYAXIw1sqGXr7PWqQfbv2OD41kEORtZx2R+es4CzsnskHwe+RfoDe26HqnEk8P2IOG0gQdJhTZb9I2nI9Tdq7Hshe/0DsG2N/duSuohqiohHssEFHwS+V9wvaWfS/+iLn71tId84YDzp/lArnigeKzOB1O52ubNwJVfUzLNtngU2lrTpIAFpoL4zSPcLix5s4jOsQzyazioVEY9ExD+TutH2yJIH/ke8Ye1SbTGO3E18pbk9RxXyDFaPG4A9gd9GxILCdl+W59fABEnvzn3GW4CGkzuBfwEOkvT+Gvu+mdX7h4X09+mNE1cPJ/1BH7hCbfY7vZ3U1fbaAAlJG5GGmt/aRN076cbs9ZOD7L+P9B+ciTXO04KIeLYz1bRm+MrIyrCepP1qpD8SEY9JmkP6X+ttpPtLk4G3kUbXQfojAjBTaV7Nioi4p811vA74rKSlWV0+C2xQyDNYPc4EPgHcKOn7pD94E4ADgVsj4kJS19DdwH9IOoE0mu5UanfdFX2fdF/qPyWdDvSSuvaOJg1E+JtYe47RSuBKSd8hdbV9B/jPiFjcoC1vEBHXSvolcJGkE0lXH18kBe+15gBVKSLukzQXOEPStsDNpEm9R0TEURGxRtLxwL9L2pR0D+plYBfgQ1m+Tk/2tcFUPYLCW3dt1B9Nd3KWZzrwS1IQWEEaHnx04TjHk0ZCrQaW5crVGk33V4Wyy4DTC2kXAAty7ycA/wksJ90POY00LPq14w9Wjyz9zcD5WdlV2Wf+BNgzl+ctpFUnVmbHmAlcTJ3RdLmy6wFfyL6blUAf6Y/pATXyLgPOyL77J4EXScOZN2/1O83StgF+nH3mStJN/nc18R2vdawadW0mzyzgmRrpPeRG02Vp65KNgiQFmkdZe/TcocAt2feynDSA5pvkRgJ6q35TdrI6RtJbSfMW9iP1fd8SET1NlNuMNHT0Q6TuxStIQzqfLeSbSvpFexvpF/SUiLionW0wG0mye0wXR4TnzdioVcU9oz1JczDuz7ZmXUT6n9ExpP9dvYs03+I1SotIXgLcRPrf0JXAhYP0vZuZ2QhRxZXROpEN45R0MbB1oysjSfsD/0OaiHdzlrYv6Wbr+yLi+iztWmD9iHhvruxVwKYRMaTVjs1GOl8ZWTfo+JVRrD2foBmHkiYQ3pw7zh2koZmHAkjagHQj/OeFsvOA/QfW6TLrNhEx0YHIRrvRMrR7d2BJjfR7s32Q1pxav0a+e0nt3K202pmZ2bCMlqHdW7D2bG9Io312yeWhRr6+wv43kDSDNCmOcePG7bPDDjuwzjqjJUa3Zs2aNV3bNuju9lXdtk3uT7d3X9it/f+nq7ptZevm9q1Zs4alS5c+ExHbDPdYoyUYQe0Z2aqRXnyvOuWJiLnAXIBJkybF6aefTk9PzzCqOXL19vZ2bdugu9tXeduU/TO67776+Yag8raVrJvb19vby+TJkx9qx7FGS7juo/bTNjfn9SuhvlxaMQ/UvrIyM7MRYLQEoyW8fm8oL38v6QHSowOK+XYnLaXfyjByMzProNESjK4GtsvmEQGQPXlyl2wfEbGKNL/oyELZacCvIuL5DtXVzMxa1PF7Rtmii1OytzsAm0oaeDLjVRGxIlsvbH5EHA0QEb/K5hD9WNIXSVc6s0nrgF2fO/w3gF5J3yVNiJ2SbYeU3jAzMxuyKgYwbAv8RyFt4P3OpDWv1iOtOZV3FOmxAz8itxxQPkNE3JoFtm8Cf0uah/SxiPhFG+tvNvZ0eHK8jT0dD0YRsYzXR7gNlmdijbTngE9lW72yl1FYJsjMzEa20XLPyMzMupiDkZk1ts8+aTMryWia9GpmVVm0qOoaWJfzlZGZmVXOwcjMzCrnYGRmZpVzMDIzs8o5GJmZWeU8ms7MGjv22KprYF3OwcjMGps7t+oaWJdzN52ZmVXOwcjMGlu4MG1mJXE3nZk1NmlSevXq3VYSXxmZmVnlHIzMzKxyDkZmZlY5ByMzM6ucg5GZmVXOwcjMzCrnod1m1tiCBVXXwLqcg5GZNeZHjlvJ3E1nZmaVczAys8ZmzEibWUkcjMyssfPOS5tZSRyMzMyscg5GZmZWOQcjMzOrnIORmZlVzsHIzMwq50mvZtbY3ntXXQPrcg5GZtaYHzluJXM3nZmZVc7ByMzMKudgZGaNSWkzK4mDkZmZVc7ByMzMKudgZGZmlXMwMjOzyjkYmZlZ5RyMzMyscl6BwcwamzOn6hpYl3MwMrPG/MhxK1nHu+kk7SHpBkkrJD0u6VRJ6zYoM0tSDLKdlMt3wSB5di+/ZWZmNlQdvTKStAVwPbAYmArsCpxBCoon1yn6A+CaQtqHgBOAqwvpS4BPFdKWDa3GZgbA3Lnp1VdIVpJOd9N9BhgHHB4Ry4HrJG0KzJJ0Wpa2loh4FHg0nybpq8CSiLirkP3FiLithLqbjV0zZ6ZXByMrSae76Q4Fri0EnXmkAHVgsweRtCXwPuDC9lbPzMyq0OlgtDupG+01EfEwsCLb16wjgPVJgaxoD0nLJa2SdKukpoOcmZlVo9PddFsAz9VI78v2NesoYFFE3F9IvxO4nXRPahvgeFJX4AERcUetA0maAcwAmDBhAv39/fT29rZQldGjm9sG3d2+qtvWk72WUYeq21a2bm5ff39/245VxdDuqJGmQdLXzihtT+rSO2GtA0f8SyHvlaTA9GXSgIe1KxMxF5gLMGnSpBg/fjw9PT3NVGXU6e3t7dq2QXe3b6S0rYw6jJS2laWb29fOINvpbro+YPMa6ZtR+4qplo+SgtdFjTJGxErgKmDvZitoZmad1+lgtITCvSFJOwIbU7iXVMdRwK0R8UgLn9vUVZeZmVWj08HoauADkjbJpU0DVgLzGxWWNBHYjyZH0UkaRxrBt7DVippZTkTazErS6WB0LrAKuFTSwdnggVnAmfnh3pKWSvphjfJHAauBi4s7JG0m6RZJMyUdJGkacBOwA/DtEtpiZmZt0tEBDBHRJ+kg4GzgctJ9orNIAalYr1pLBB0F3BART9fYtwp4mrSSw7bAS8CvgAMjYkFbGmBmZqXo+Gi6iFgMvLdBnomDpL+zTpmXgMOHVTkzq22ffdLrQvd4Wzm8areZNbZoUdU1sC7nh+uZmVnlHIzMzKxy7qYzq8jEE69sOu/xe61mepP5l/3zYUOtklllfGVkZmaVczAyM7PKuZvOzBo79tiqa2BdzsHIzBobeOy4WUncTWdmZpVrKRhJqrVEj5l1u4ULvfqClarVbrrHJP0YOD8i7i2jQmY2Ak2alF69creVpNVuujnAEcBvJN0uaYakTUuol5mZjSEtBaOI+HpE7AK8D7gPOBN4QtJPJR1cRgXNzKz7DWkAQ0TcGBGfBLYDPge8HbhW0jJJsyS9uZ2VNDOz7jbc0XSTgPeQHiXeB9wCHAMslfSJYR7bzMzGiJaDkaSdJH1d0gPADcD2wKeBN0fE3wA7ke4tfaetNTUzs67V0mg6STeSroQeBS4gjap7KJ8nIl6V9DPg8+2qpJmZdbdWh3Y/A0wBrouoO8bzLmDnIdfKzEaWBQuqroF1uVaD0dnAolqBSNJ4YO+IuDkiXgEeWqu0mY1OA48dNytJq/eMbgL2GGTf27P9ZmZmLWk1GKnOvvHAimHUxcxGqhkz0mZWkobddJLeA/Tkko6RdEgh24bAYcA97auamY0Y552XXr16t5WkmXtG7yZNbAUI4EhgdSHPy8AS4B/bVzUzMxsrGgajiPgO2ZwhSQ8CH46Iu8qumJmZjR0tjaaLCA/XNjOztmvmntEU4NaIWJ79XFdEXNWWmpmZ2ZjRzJXRFcB+wB3Zz8Hgo+oC8AP4zMysJc0Eo52BJ3I/m9lYs/feVdfAulwzAxgeqvWzmY0hfuS4layZe0YbtXLAiPDEVzMza0kz3XT9pHtBzfI9IzMza0kzwejTtBaMzKzbKBuzVHexfrOha+ae0QUdqIeZmY1hw33suJmZ2bA1M4DhDmB6RCyW9GsadNlFxL7tqpyZmY0Nzdwz+i2wMvezO43NzKytmrln9Kncz9NLrY2ZmY1JQ75npGQbSfUeuGdmZtZQS6t2w2sLp54M7JOVXy1pIfCtiLiyzfUzs5Fgzpyqa2BdrqVgJGkmcA5wA/B54ClgW+Bw4L8l/V1E+LfWrNv4keNWslavjL4MzI2Ivy2knyvpXOArgIORmZm1pNV7RlsBlw6y7xJgy0YHkLSHpBskrZD0uKRTJdVdQkjSRElRY5tXI+9USfdIeknSYknTmmqZmQ1u7ty0mZWk1Sujm4ADgetq7DsQuLleYUlbANcDi4GpwK7AGaSgeHITn/9F4Je5988Ujn8AKSieAxwHTAEulNQXEb9o4vhmVsvMmenV3XVWkmYmve6Re/s94AeStgIu4/V7Rh8GDgWOaXC4zwDjgMMjYjlwnaRNgVmSTsvS6rkvIm6rs/+rwM0RcVz2/iZJewJfAxyMzMxGqGaujH7DGye6CpiZbcWnvl5D/VW7DwWuLQSdecBs0pXV5U3UpyZJGwCTSVdEefOA8yVtFhHPD/X4ZmZWnmaC0eQ2ft7uwI35hIh4WNKKbF+jYHS+pC1JV2QXAl+JiIHVIXYF1geWFMrcS+oG3A349fCqb2ZmZWhmBYb5bfy8LYDnaqT3ZfsGswr4V1JX23KgBziBFICm5o5NjeP3Ffa/gaQZwAyACRMm0N/fT29vb702jFrd3DYYfe07fq/VTeedMK75/GV8Bz0lHnu0nbdWdXP7+vv723aslie9DpC0DrBhMb2JJ73WWttOg6QPHPMJ4O9zSb2SngTOkfTOiLirzvE1SPrAsecCcwEmTZoU48ePp6enp34LRqne3t6ubRuMvvZNP7H5OeLH77WaM+5p7p/rso/3DLFGjZXx/Y6289aqbm5fO4NsS0O7syWATpC0FHgFeKHGVk8fsHmN9M2ofcVUz8XZ6965Y1Pj+APvWz2+mZl1SKvzjI4DTgR+SLri+BZwKnA/sIysu6uOJaR7Q6+RtCOwMWvf62kkCq8PkALk7oV8uwNrsjqa2VBE+CmvVqpWg9GxwNeB07L3l0XEKcCepGDytgblrwY+IGmTXNo00iMqWr03dUT2uhAgIlaR5kEdWcg3DfiVR9KZmY1crd4z2hm4KyJelfQKWRdYRKyRdA7wA9KV02DOJV1dXSppNrALMAs4Mz/cO+sGnB8RR2fvZwGbkCa8LgfeA/wjcGlE/G/u+N8g3U/6Lmke1JRsO6TFdpqZWQe1emX0LDA++/lh4M9z+7YgTWgdVET0AQeR5iJdDpwCnEW62spbjzfOV1pCmod0PnAV8DHgO9lr/vi3kq6YDgauBT4IfMyrL5gN0z77pM2sJK1eGf0SeBcpIPyMtHLClsDLwGdJq3nXFRGLgfc2yDOx8H4eafJqQxFxGemqyMzaZdGiqmtgXa7VYDQL2CH7+dukbrrppCui64DPtatiZmY2drQUjCLiPuC+7OdVpGcafb6EepmZ2RgynEmvfwJsDzweEY+1r0pmZjbWtDqAAUl/K+kR4CHgduBhSY9K+ru2187MzMaEVldg+BpwNmm+0GHApOz1auB72X4zM7OWtNpN91ng2xHx1UL6NdlacZ8lrchgZt3k2GOrroF1uVaD0TgGf5rrfDyazqw7+ZHjVrJW7xldBhw+yL6PAFcMrzpmZjYWNfPY8Sm5t1cDp0mayNqPHd8T+FL7q2hmlVu4ML16FQYrSTPddFew9uPFdwA+UCPvT0hPYDWzbjJpUnr1yt1WkmaC0c6l18LMzMa0Zh47/lAnKmJmZmNXyyswSFqPNFjhAGBL4I/ALaTHOaxub/XMzGwsaCkYSdoW+AXwZ6Qnuz4J7E+aX3S3pPdHxNPtrqSZmXW3Vod2nwlsBbw7InaJiP0jYhfg3Vn6me2uoJmZdb9Wg9EU4ISI+HU+MXt/EmlpIDMzs5a0es9oA+CFQfa9ALxpeNUxsxFpwYKqa2BdrtVgdBtwgqQbI+LFgURJGwMnZPvNrNt4squVrNVgdDxwE/CIpF+QBjBsS5oAK6CnrbUzM7MxoaV7RhFxF/A2YC6wDfA+UjA6F3hbRNzd9hqaWfVmzEibWUmavjKStD6wL/BgRJxYXpXMbMQ577z06tW7rSStXBm9CtwI/GlJdTEzszGq6WAUEWuA3wETyquOmZmNRa3OM/oK8DVJe5VRGTMzG5taHU13MmmlhbskPUYaTfeGNeUjYt821c3MzMaIVoPRb7LNzMysbZoKRpLGkZYC+g3wB+D6iHiyzIqZ2Qiy995V18C6XDOPHd8FuB6YmEteLumjEfGLsipmZiPIwGPHzUrSzACG04A1wF8CGwF7AncCc0qsl5mZjSHNBKP9gZMj4pcR8VJE3AvMBN4iaftyq2dmZmNBM8Foe+D3hbQHSGvRbdf2GpnZyCOlzawkzc4zisZZzMzMhqbZod3XSlpdI/2GYnpEbDv8apmZ2VjSTDA6pfRamJnZmNYwGEWEg5GZmZWq1bXpzMzM2s7ByMzMKtfq2nRmNhbN8Rx3K5eDkZk15keOW8ncTWdmZpVzMDKzxubOTZtZSToejCTtIekGSSskPS7pVEnrNijzLknnS1qalbtP0tclbVjIN0tS1NgOKbdVZl1u5sy0mZWko/eMJG1BehzFYmAqsCtwBikonlyn6LQs72zgd8CfAd/IXj9SyPs8UAw+9w637mZmVp5OD2D4DDAOODwilgPXSdoUmCXptCytltkR8XTufa+kl4A5knaKiIdy+1ZHxG3lVN/MzMrQ6W66Q4FrC0FnHilAHThYoUIgGnBn9uq18MzMRrlOB6PdgSX5hIh4GFiR7WvFX5Ae+ndfIX1zSc9IekXSnZIOH3JtzcysIzrdTbcF8FyN9L5sX1MkbQd8Bfj3wlXWUuBLwF3AeNJDAC+R9JGIuHSQY80AZgBMmDCB/v5+ent7m63KqNLNbYPR177j96q1EH5tE8Y1n7+M76CnxGOPtvPWqm5uX39/f9uOVcWk11rPRtIg6WtnlN4E/BzoB77whgNH/KSQ93Lgf4CvATWDUUTMBeYCTJo0KcaPH09PT08zVRl1ent7u7ZtMPraN/3EK5vOe/xeqznjnub+uS77eM8Qa9RYGd/vaDtvrerm9rUzyHa6m64P2LxG+mbUvmJ6A0kCfgzsCUyJiL56+SMiSEHozxoNHzezOiLSZlaSTl8ZLaFwb0jSjsDGFO4lDeIs0pDw90VEM/kH+F+RmdkI1ukro6uBD0jaJJc2DVgJzK9XUNJJwOeAT0TErc18WHYl9WHg7oh4dWhVNjOzsnX6yuhc4DjgUkmzgV2AWcCZ+YEIkpYC8yPi6Oz9x4BvAxcAj0naL3fMBwaGfkuaD1xCusraGDgW2A/4ULnNMuty++yTXhcurLYe1rU6Gowiok/SQcDZwOWk+0RnkQJSsV75ezzvz16nZ1vep0hBCtJoun8AticN+14EHBYRV7ej/mZj1qJFVdfAulzHR9NFxGLgvQ3yTCy8n87aQahWuaOHUTUzM6uIV+02M7PKORiZmVnlHIzMzKxyDkZmZla5KpYDMrPR5thjq66BdTkHIzNrbAw8cnxiC2sFtuKCQzYu5bjdxt10ZmZWOQcjM2ts4UKvvmClcjedmTU2aVJ69crdVhJfGZmZWeUcjMzMrHIORmZmVjkHIzMzq5yDkZmZVc7ByMzMKueh3WbW2IIFVdfAupyDkZk1NvDYcbOSuJvOzMwq52BkZo3NmJE2s5I4GJlZY+edlzazkjgYmZlZ5RyMzMyscg5GZmZWOQcjMzOrnIORmZlVzpNezayxvfeuugbW5RyMzKwxP3LcSuZuOjMzq5yDkZmZVc7ByMwak9JmVhIHIzMzq5yDkZmZVc7ByMzMKudgZGZmlfM8ozHknseeZ/qJV7b9uMv++bC2H9PMxhZfGZmZWeV8ZWRmjc2ZU3UNrMs5GJlZY37kuJXM3XRmZlY5ByMza2zu3LSZlcTddGbW2MyZ6dXddZWaWMJoWBgZI2J9ZWRmZpXreDCStIekGyStkPS4pFMlrdtEuc0knS+pT9Lzkn4qaasa+aZKukfSS5IWS5pWTkvMzKxdOtpNJ2kL4HpgMTAV2BU4gxQUT25Q/CLg7cAxwBpgNnAZ8Je54x8AXAKcAxwHTAEulNQXEb9oa2MKuvny2cysbJ2+Z/QZYBxweEQsB66TtCkwS9JpWdpaJO0PfAA4MCJuztIeA26XdHBEXJ9l/Spwc0Qcl72/SdKewNeAUoORmZkNXae76Q4Fri0EnXmkAHVgg3JPDgQigIi4A3gw24ekDYDJwM8LZecB+0vabPjVNzOzMnQ6GO0OLMknRMTDwIpsX9PlMvfmyu0KrF8j372kdu42hPqamVkHdLqbbgvguRrpfdm+oZTbJZeHGvn6CvvfQNIMYGC8av/kyZOfBZ6pU5eO0uy2Hm5rSmhbm+s4HKW0byQ4roW2lXo+ynnaa9eeN4DJs0d++4bxO7M1sFM76lDFPKOokaZB0odSrvheg6SnxIi5wGuz+SQtiIhJDeoyKnVz26C72+e2jV7d3L6sbRPbcaxOd9P1AZvXSN+M2lc+jcptnivXl0sr5qHB8c3MrEKdDkZLKNwbkrQjsDG17wkNWi6Tv5f0APBKjXy7k4aC3z+E+pqZWQd0OhhdDXxA0ia5tGnASmB+g3LbZfOIAJA0iXS/6GqAiFgF3AQcWSg7DfhVRDzfZB27eQGubm4bdHf73LbRq5vb17a2KaLRrZr2ySa9LgZ+Q5q0ugtwJvDdiDg5l28pMD8ijs6lXUMaEfdFXp/0+lREFCe99gJnkybETsnyH1L2pFczMxu6jl4ZRUQfcBCwLnA5cApwFvD1Qtb1sjx5R5Gunn4E/BhYCHy4cPxbgSOAg4FrgQ8CH3MgMjMb2Tp6ZWRmZlbLmF61W9I0SZdKekJSSJreQtn/I+l2SSslPSjpuMalOk/SsZJ+ly0cu1DSQU2UmZV9H8XtkE7UuUZ9Sl1ct0pDaZukiYOcn3mdqnczJL1V0hxJd0t6VVJvk+VG/HmDobVvNJw7SUdK+m9Jj0nqz/5u/HUT5TaQdIakpyS9KOlKSROb/dyx/jyjI6TEEdAAAAU/SURBVICJwBWkBVibIumtpG7AK4CTgH2BMyWtiIgflFDPIZF0FHAuMAu4FfgUcIWkd0XEbxoUfx4oBp97217JBspeXLdKw2wbpPuhv8y9H2kTK/ck3be9DXhTC+VG9HnLGWr7YGSfu/9LWmrtC6R6TQF+JmnriPh+nXLfI/1N/QLwNOnvznWS9oqIlxp+akSM2Q1YJ3sdT5oUO73JcnNIQ8XXy6WdAzxC1vU5EjbgPuBH+fYC9wA/aVBuFvBM1fXP6nISaQ7Zprm0L5GWkNq0Trn9s3P6nlzavlnawVW3a5htm5i146+qbkOD9q2T+/lioLeJMiP+vA2zfSP+3AFb10j7GfBgnTJ/AqwGPplL2wF4GTimmc8d0910EbFmiEUPBS6NiNW5tHmkE/KOYVesDSTtQhp9+NrCsVl7/4NscdlRorTFdUeAobZtVBjiv6/RcN6AYf39GNEiotZV2p3AtnWKvT97vTR3nMdIPTJNnbcxHYyGQtLGwI7UXpAV6i/42kkD9ahVzy0lbdOg/OaSnpH0iqQ7JR3e/io2pczFdas21LYNOD+7V/GEpDMljSujkh02Gs5bO4y2c/cXpO7kwewOPBoR/YX0ps/bWL9nNBSDLS9Ud0HWCjSzcOzTg5RdSuouuovUhTkTuETSRyLi0kHKlKXMxXWrNtS2rQL+lfSMruVAD3AC6Z7T1PZWseNGw3kbjlF37rJBT1OBT9fJNtTf5dd0VTDKnlm0faN8EVFv6aFmDTYmvrSx8kNsX0sLx2blf1L43MuB/yE9pLDTwQjKX1y3Si3XMSKeAP4+l9Qr6UngHEnvjIi72lzHThsN521IRtu5y0bD/Qz4r4i4oEH2YZ23rgpGpKWAzmsi33DWwR+I/sUFWQe7EmmnVtqXXzg2vxRSywvHRkRIuhSYLWndiHi12bJtMJzFdWt1ReYX163aUNtWy8WkQTR7k65oR6vRcN7abUSeO0lbkpZbexj4RIPszSxmXVdX3TOKiB9EhBptw/yMF0mj5motyAr1F3wdlhbbN1CPWvX8Y0QM1kVXtwpDrvzQlbm4btWG2rZaovA6Wo2G89ZuI+7cSdqINHXlTcBh2d+9epYAO2b31POaPm9dFYw66Grgw4XJidNIQarR/J2OiIjfk4afv7ZwrKR1svdXt3IsSSItvXR3h6+KoMTFdUeAobatliOy14XtqFiFRsN5a7cRde4krUcadfs24NCIeKqJYgNLrr22RJukN5PmhjV33qoe017lBuxB+kX4BOl/JWdn7w/M5TmQNH4+n/ZWoJ/UlzqZdLP/FZocT9/B9v018CppAuVk4ALSH7p3NGjffOA40nDNDwNXkSYffrCCNmwBPAFcR1pzcEb23X+zkG8p8MNC2jXA74HDgQ+R5l3dUvV5GW7bSPPAzsjadTBwanZeL6m6TYV6b5T9ezoC+BXw29z7jUbreRtO+0bDuSOtxB3Z34D9CtsGWZ4bgBsK5eaQJsn+DWnC/G3A74ANm/rcqhte8Zc+K/vSi1tvLk9PltZTKHsAcAfwErAMOK7q9gzSxmOzfxCrgEXAQYX9a7UP+GH2x2Al8CJwC+l/SFW1YQ/gxqw+TwDfANYt5FkGXFBI2xw4n9RnvZz0n4e1JvRVfH5abhtp0eAFpHuBL2fn99SBPxQjZeP1CZ61tomj+bwNtX2j4dxldW7Url4Kk3yBDUhPYXg6+7txFbBzs5/rhVLNzKxyvmdkZmaVczAyM7PKORiZmVnlHIzMzKxyDkZmZlY5ByMzM6ucg5GZmVXOwcjMzCr3/wG99ZMa0UXU3wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -564,9 +566,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -578,7 +580,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/basket_option_pricing.ipynb b/qiskit/finance/simulation/basket_option_pricing.ipynb index c3c05cb3a..243d19887 100644 --- a/qiskit/finance/simulation/basket_option_pricing.ipynb +++ b/qiskit/finance/simulation/basket_option_pricing.ipynb @@ -39,8 +39,10 @@ "
\n", "$$\\mathbb{E}\\left[ \\max\\{S_T^1 + S_T^2 - K, 0\\} \\right].$$\n", "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." + "The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:\n", + "\n", + "- Quantum Risk Analysis. Woerner, Egger. 2018.\n", + "- Option Pricing using Quantum Computers. Stamatopoulos et al. 2019." ] }, { @@ -127,7 +129,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvWl0HOWd9n1V7+putWSttqzFlmXJkryCJZsdzGLjEwxvJiRmm5mXhy1DZjgP55AhEBxCAoQsJBAySQgJyQxxYBhIDCExMYQlYfOCMTZI3dr3fet9q6rng+cuqqXeu6qrl/t3Tk5wq7vq7u7qqqv+28XwPA8KhUKhUCiUXEal9AIoFAqFQqFQ5IYKHgqFQqFQKDkPFTwUCoVCoVByHip4KBQKhUKh5DxU8FAoFAqFQsl5qOChUCgUCoWS82hi/J32rFMoFAqFQskWmEh/oBEeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzUMFDoVAoFAol56GCh0KhUCgUSs5DBQ+FQqFQKJSchwoeCoVCoVAoOQ8VPBQKhUKhUHIeKngolCyD53lwHAee55VeCoVCoWQNGqUXQKFQ4ofjOAQCAXg8HjAMA41GA7VaLfyPYRgwDKP0MikUCiXjYGLcJdJbSAolA+B5HoFAACzLAgD8fj8YhhGiPUTkMAwDtVodIoSoCKJQKHlExJMdFTwUSgbD8zyCwSCCwSAACMKFCJ5wzyf/I/9WqVQhIkilUkGlUlERRKFQcpGIJzaa0qJQMhCe58GyLILBIHieD4nSRLtJCRfNEW8LAPr7+1FXVweNRgOtVktFEIVCyQuo4KFQMgxSp0NSVSpVar0Fi0XQ7OwsVq9eDY7j4PV6Q55LIkEajYaKIAqFklNQwUOhZAgcxyEYDIJlWUGkyCE2yDYXCylSD+Tz+eD1eoXnkVogcUqMiiAKhZJtUMFDoSgMz/NwOp3weDwoLCyUvciYFDuHezxcOozjOLAsC7/fLzyuUqmESBAVQRQKJRuggodCUQhxbc3c3BwWFhZQVFSk9LJCiCSCeJ6H3++PKIJIoTQVQRQKJVOggodCSTNEMIjrdNRqddoGCUaK8CTy+kRE0OKUGBVBFApFCajgoVDSSKSC5HhFSDAYRG9vL8bHx1FQUIDCwkLhf3q9Pm4xIbW4iiSCgNNF0mNjY2hsbATP82FrglItzKZQKJRYUMFDoaSBcPN0xAIhluDheR6jo6Po7+9HTU0N2traEAgE4HA44HA4MDo6Cp/PB51OFyKCDAbDEiGSrgjL4uJocRQrEAiEzBIST40mKTE6MJFCoUgJFTwUioyQOp1AIAAgfCSEPB5J8MzNzcFqtaK4uBjt7e3QaDTw+/0wGAwwGAwoLy8Xnuvz+QQRND4+Dq/XC61Wi8LCQlgsFpjNZmFd6WKxsANOix8CWUswGIwogujUaAqFkipU8FAoMkC6mwKBwJLBgeFQqVRLRIjH44HVagXHcdiwYQNMJpOw7Ujo9Xro9XqUlZUJj/n9fjgcDtjtdkxMTMBut+PkyZMoKioSIkEFBQWKCQmxwCHRoGgiiFpnUCiUZKCCh0KRmGQGB4ojPMFgEH19fZiensbatWtDxEsy6HQ6lJaWorS0FABw4sQJrFmzRogGTU5OwuPxQKPRhKTDjEZjRokgYOnUaGqdQaFQ4oUKHgpFImLV6USDYRiwLIvR0VH09fWhpqYG27Ztk6WYl6SKzGazIIIAhNQETU9Pw+12Q61Wh4ggk8mkqJCIxzoDgDBBuri4mIogCoUCgAoeCiVl4q3TiQYRGTqdDu3t7dBqtXIsNSparRYlJSUoKSkRHgsEAnA6nXA4HOjv7w8rgoxGo6JdVuE+b6fTCbfbDYPBEPI4tc6gUPIXKngolCQhdTojIyMwm81JpYA8Hg9sNht8Ph+KiorQ3Nwc1+tSuUgnModHq9Vi2bJlWLZsmfBYMBgUIkEDAwNwu91QqVQwm80hkaDFqah0Q1Jd4jVQ6wwKJX+hgodCSQJxnc7MzAy0Wq1QVBwPLMuir68Pk5OTWLt2LUwmE6xWq4wrDiUVAaLRaMKKIBIJGhoagsvlAsMwMJvN0Ol0wmeVaZEgap1BoeQPVPBQKAkQrk4nXIdVtNePjY2hr68P1dXV2L59O1QqFTweT1onLUuNRqNBcXExiouLhcdYloXT6RTqgY4dOyaIIHEkSByFkYp4P0tqnUGh5A9U8FAocRCtIFmlUoHjuJjbmJ+fh9VqhcViQVtbG3Q6nfC3RO0eSKt7MqRqLREvarUaRUVFUKvV8Pl8aGlpEUSQw+HAyMgInE4nAISIILPZLIkISuXzSVQELZ4VRKFQMg8qeCiUKIg7gCLN04klILxeL2w2GwKBAFpbW4Xhf2ISiRJlM0QEiU1SOY4TRNDY2BicTid4nofJZAoZmChHJCheollnEAHk9XoxNzeHlStXUusMCiUDoYKHQolAvPN0IkV4FtfpiCciLyZdUZd074sQbX8qlQoWiwUWi0V4jOM4uFwuYWK0w+EIEUEkEqTRKHcKWzw1muM4OBwOANQ6g0LJRKjgoVAWQZzMWZYFELvNfLGA4Hke4+Pj6O3txcqVK4U6nWgwDBNXWmzxOpO5YKZb8CSzRpVKJQgbglgETUxMoKenByzLhoigwsJCaDQaRaJl4gggtc6gUDIPKngolP8l2cGB4gjPwsICOjs7UVhYuKROJxqJiBCyrnxIgYmJJILcbjccDgempqbQ29sLlmWhUqmg0+mE2qB0zDWKJECpdQaFkhlQwUPJe+Kp04kGwzDw+/34+OOP4ff70dLSEnJRjncbuZzSkgsy/8dsNmPFihUATn+fAwMDcLlcmJmZQX9/P4LBIIxGY0gkSA4RlMhkbfL/1DqDQkkPVPBQ8ppkfK/EsCyL6elpOBwOtLS0oLy8POPTTLl+oWQYBnq9Hmq1GjU1NQBOCwcSCRKLoIKCghARFG9ELhxSfH/xWmcAp2uHtFotFUEUSpxQwUPJS3ieh8vlwuTkJKqqqhKO6ojrdEwmE1atWoWKioqk15PuC1WuRHgisfj9MQwDk8kEk8mE5cuXC8/xeDxwOByYm5vD4OAgAoEADAaDIIAsFkvcIiiVUQHRiDYw0ev1orOzE2vXrg2ZGE2tMyiUpVDBQ8krxHU6fr8fExMTWLlyZULbWFhYgNVqhclkQltbG6ampgQfrWwg07q05CLWhZ5hGBiNRhiNRlRWVgI4vU6v1wuHw4GFhQUMDQ0tEUGFhYXQ6/VLtieX4Im0drIvj8cjRHmodQaFEhkqeCh5Qbg6HbVandCF2Ov1oqurC16vF83NzUKdTryDB/OVbLq4MgyDgoICFBQUCBG7xSJoeHgYfr8fer0+RAQpdQyQOp9ErDOoCKLkI1TwUHKeSHU68QoVlmXR39+PiYkJNDQ0LKnTybYi4GxbbzJI+f4iiSCfzyeYqI6OjsLlcgnPJyLIYDCkRUhE2key/mHUOoOSi1DBQ8lZOI5DMBgEy7LCiV98Ao813ZjneWHeS1VVVcR5OtkW4ckHwQPIG1liGAYGgwEGg0EYKDk9PY3Z2VkUFRXBbrdjfHwcXq8XWq0WFosl7SIo2tqpdQYlH6GCh5JzxDtPJ9qwP7vdjs7OTphMJmzdujVszYZ4O/kgICjR4XkeGo0GZWVlKCsrEx4XR4LEIkicDisoKMhIEQQgRADxPC+kwBYXR1MomQ4VPJScIdF5OuEiMz6fD11dXfB4PCF1OtFQQvCksk8q0OQj3PGm1+uh1+tDRJDf7xdE0OTkJDweDzQaTYgIMhqNiosgAGGnRvt8Phw9ehSbN28WnkutMyiZDhU8lKyHhOMTnacjPhmzLIuBgQGMj49jzZo1qKioiPtknW0pLSD9XVNK7E+JVv9496nT6VBaWorS0lLhsUAgAIfDAbvdjunpabjd7owVQeQ3Ji78p9YZlEyHCh5KVpPq4EAyTydWnU40si1iku4LjlIXuEwWPOHQarUoKSlBSUmJ8BgRQQ6HQxBBarU6RAQpcexxHCf8Tqh1BiVboIKHkpUk63slxm63w+12Y3p6OmadTjSyLcKTbQItW5AjqhROBAWDQUEEDQwMwO1249ixY4JvWGFhIUwmk6x1NaQVPhLxWmeQ51DrDEo6oIKHklUQoTM6OiqknRI9MYrrdAwGA9avX5/SmqiAoKQTjUaDZcuWYdmyZQCAI0eOYNOmTXA6nXA4HBgcHITb7Q5pj5daBJGIaqJQ6wyKklDBQ8kKyOwQkr7q7e0VLALiheM4DAwMYHR0FGvWrEFlZSXee++9lNdGIzyZhxLvT4m6IYJGo0FxcTGKi4uFx1iWFSJBQ0NDcLlcYBgmJBJkNpuTEkHilFaqxLLOEENGSRiNRiqCKAlDBQ8l41lcpyPuGokHnucxOTmJnp4eLF++HNu3b094G9GQUkCk66KZ64IHyL4aHqlRq9VhRRCJBI2MjMDpdALAEhEU6/ch93uNJIKCwSBOnDiBzZs3U+sMSsJQwUPJWKSo03E4HOjs7ERBQQHOPPPMpOt0oiGV4CHbkftkrcTFIB8EVja8R7VajaKiIhQVFQmPsSwLl8sVMjGa53mYTCZhYOJiESRlhCdexAJHozl96aLWGZREoIKHknGQnD4x5ExG6Pj9fnR1dcHlcqGpqSnkBC81UqW00pVqSndKK58uNNnoeq9Wq2GxWGCxWAQjXY7jhEjQ2NgYnE6nIILimU0lFxzHhQgvap1BSQQqeCgZg7hOJ57BgeFYXKfT0tISdRtSRFWkjvCkg2yIRqSCUjU86Y56yBURVKlUgggicBwnRIKmpqaEmUFGozGkOJpEX+SAZdmYnzG1zqBEggoeSkYgxTydqakpdHd3o7KyMu46HWIvkUpNT7ojPHNzc7BareB5PsSjKd6hdPlyQs/GaEsy+0zX+1SpVMKxptPpYLfbsWrVKrjdbkEE9fb2gmVZIRIktQhKNpWWqHVGuDZ5SvZDBQ9FUaSs0zEYDDjjjDNgMBjifi0RK6kInnRFeLxeL2w2GwKBAFpaWqBWq+F0OpdM5hWLoHAeTfnQpaUU+VIoTaJZKpUKZrMZZrMZK1asEP4mjgQREbQ4EqTVahPer9TdYUB464xAILBkYGIwGITRaIRWq6XWGVkKFTwURZBC6Ph8PnR3d8PpdGLdunVJ1enEckyPdxtSRHgirYXjOPT392N8fBwNDQ2oqKgQXODF81iA0ydqu90e4tEkduu2WCyK+H7lA0qIDyWKh8l+I71X0vq+WASRSNDMzAz6+/sRDAZRUFAQIoJ0Ol3M/cr5fqOJoFOnTqGlpUUQatQ6I/uggoeSVhI1+AwHx3Hw+/04cuRIXHU60SAprVSQM8IzNTWFrq4uoZ0+1sleq9Uu8Wjy+/2CCBofH4fD4YBGo4HX6xVEkBzda2Jy3buL7DNfIjyJCg+GYWAymWAymYT5WTzPw+PxwOFwYG5uDgMDA4IIMpvNgkgXiyAlu8M4joNOpwu5MaHWGdkFFTyUtMGyLLxerxAOTqVOh2EYbN26NaH0VTikiM5IdTITiy+3243Ozk6o1eqIabp4L3Y6nQ5lZWWCW/fIyAj8fj/MZrMwj8Xv98NgMAgCKJ677UyH1vDIhxTCg2EYGI1GGI1GVFZWAlgqggYHBxEIBIRjkzQ2KIG4KJ1aZ2QnVPBQZIc4mc/Pz2NgYAAbNmxIqk7HarVCp9PhjDPOwKlTpyQ5YWTSlGRSJ2Cz2TAzM4OmpqYQDyUp96PValFeXo7y8nIAp78jr9cLh8OB+fl54UJDUg5EBCVTd5FP5EuER66OtEgiiByb4+PjcLlcOHz4MPR6fUg6TK/XKy4iqHVGZkMFD0U2FtfpqNXqhD14/H4/uru74XA4Qup05K6bSTfkpH7ixAnU1dVh27ZtsoXuw6XOGIZBQUEBCgoKUFFRIayJ3G2L6y5I8SkRQXK2ISdLvkRblIzwpOt7Fx+bpG6turoaPp9PsM4YHR2Fz+eDXq8PSYdlsggKZ51BIkFkVhAVQdKSeWcqStYTqU5Ho9HELVI4jsPg4CBGRkawevVqNDc3h/zwpWwFVzrCQ7rM/H4/1q9fL0tUJxki3W1HakMWd4dJad2RLPkgPpQsWlZyvwzDwGAwwGAwhEQpxfVqRATpdLqQSJDBYFBcREQTQT6fD16vNyRtxnEcTCYTnRqdIlTwUCQl2jwdlUoFlmVjboMU6lZUVEScpyNlhEcpwRMIBNDV1QWHw4Hm5mYMDAyk5a45lSLrcMWnHMcJImhiYgLd3d0h1gQGg0FxUZmrKJnSyrTIEsMw0Ov1IalaACGRoPHxcXi9Xmi12hARFG58Q7qJJIJcLhf6+vrQ0tIiPE6tM5KDCh6KJJA6HZZlhR/u4h9gLHHhdDrR2dkp1OlEK0jOZsHD8zyGh4cxODgYEr1KRIhkwmRoQrhZLGQqr91ux+TkJOx2O44cORKSbkjWqTseaEpLXpSO8CSCXq+HXq8XivaB06lyIoLI+AYyw4oco2IRlGgqXirIb5UIG4BaZ6QCFTyUlEhknk4kcSGu02lqagpxd45Etqa0yJTkZcuWYdu2bSF3q5lSTyQF4qm85eXl8Pv92LBhgyCCiFM3wzAhd9omk0nywXLpIp8ET7YLLZ1OF3Z8AxFBU1NTgggiU8wBZd43y7Jx+YdR64zYUMFDSYpk5uksvqBzHIehoSEMDw+HrdOJta1sKlr2+XywWq1CnY7ZbF7ynHRNQFZq0rLYpJLAsqwwLXpoaAgulytELFkslrgtM5QmX6JKQHZFeOIlnAgKBAJCi7zX68WRI0egVqtDRLrRaJT1s1gseMKRiHWGSqXCY489hn379km/2AyHCh5KwqTqewV8VqdTXl6+JNIRD6TjK1XkTmmJzUzXrl2L8vLyqBNq0xFtyiRrCbVajaKiopAp2cFgULjT7u/vh8vlEu60iQjKhJqLcNCi5dzar1arRUlJCQwGAzweD9avX49AICA4yQ8MDMDlcskqguIRPOGINDXa5XLhz3/+MxU8FEo0OI4TLA0i1enEgmVZHDt2DBqNBlu2bEFBQUFSa8nEGp7Fd9vT09Ow2Wxxm5lmkhCRmkTel0ajCWuZQURQT09PSM0FEUHi7pt8ibbk2hyeWGSC0NJqtUuOT7FIHxgYgNvtlixdGwwGJWtmYBgGTqczbIQ5H6CChxITKXyvAoEAuru74fV6sX79+pCTRTKk26E83u0wDCNMSVapVAmJulxNaUlxQSZ32uKWfXHNxcTEhNB9Y7FY4Ha7YTAY0ioI8knwKFXEm2y0Q+79hhPpwWBQiASRdC3DnPYZIyIonsJ9lmUl7d50Op0haeV8ggoeSkRInc7AwADKysqSGuLFcRyGh4cxNDSEVatWwWg0pix2AOnSP1IKp2AwiIGBAUxPTyc1JTmXIzxyEK7mgrQgLywsYGRkBMPDw8JEXvEwulyB1vCkb7+JCi2NRoPi4uKQJgxSs+ZwODA8PCyIIPEcKzJvR/waKY9Zh8OBwsJCybaXTVDBQ1kCqfgndTozMzMoLi5O2LdqenoaXV1dKCsrE+p0BgYGJDlJq9XquGb6xCLe2UDRIJ/V4cOHUVNTk/SU5HQVUOeysCItyHa7HRaLBaWlpSEiaHh4WDbfsHyK8ORbSotlWUn2G65mTSyCSPciACES5Ha7YTKZUt43weFw0JQWhQKEL0hOVFy4XC7B+HLz5s0hKR1x6icVVCoVAoFAStuQYjtkSnIwGERbW1tKJ5JcTWkpAXl/kSbyEm8msUFlqr5h+TZpOZ8iS3Km0sKJII7jBBHkcDhgt9vR398Pk8kUUheUzJpohIeS90Sr04lX8JA6nYWFBTQ1NYVNXZEUUqonLamiIcle/Ml7tdvtWLduHbq6ulI21kwkTZeJHUrRUEJgReuGi+QbZrfbl/iGiS0zotVS5FOEJx9TWuncr0qlEkY42O12VFdXw2QyweVyLZloLj5GzWZzzHofp9NJBQ8lPyF1OiTKEWlCcjTBs7hOZ926dRFPwkQ8pVqEp1SXFs/zGBkZwcDAQMh7lWI9uRrhyQZxJvYNI5YZxDfMbrcLvmEcxy0RQUr6htHBg+lBqWJp8b7F86kIZKI5EUE9PT2Ct504EiQ+3zocDlq0TMkvyHjyQCAQc3BgtJk3MzMzsNlsKC0tjWueTqa1kyeynfn5eXR2dqK4uHjJe5VCRKRTiOR6SksKxL5hYssMIoIW+4a5XC64XC4UFBSk7eKYb8IjEz285Caa2IokgsIZ/L7wwgsoKCiA2+3Gxo0bY+734MGDuOOOO8CyLG666SbcfffdIX//2c9+hp/85CdQq9Uwm8148sknBb+vhx9+GL/85S+hVqvx+OOPY+fOnSl8AtJBBU8ekujgwHApLZfLBavVCpVKhU2bNgmj12MhpVCRqmg51sXf5/PBZrPB5/NFnZKcTRGeXEeuz1HsG0Ygd9mdnZ2YmprC0NAQeJ4XPJksFouklhlilCoeBpQ5jpQSPJkQ4YmXcN52PM/DYDDgvffewyuvvIK3334bP//5z7F27VqceeaZaG9vx44dO0L2efvtt+PQoUOorq5GW1sb9uzZE2Jgeu211+K2224DALz00ku48847cfDgQXz66ad49tln8cknn2B0dBSXXHIJbDabopFQAhU8eUSy83TEIiUQCKCnpwfz8/NobGxMuPVayu4qub20xFOSGxoaUFFREdUnLFsiPPlQtAyk74JM7rINBgPq6+thNBrBsqzgGzY8PLzEN4xYZqQqVpQSAPlGNgmecDAMg40bN2Ljxo3o6+vDvffeix07dqCrqwsffvghTpw4ESJ4Dh8+jIaGBtTX1wMA9u7diwMHDoQIHnFajLTXA8CBAwewd+9e6PV6rF69Gg0NDTh8+DDOOuuslN6DFFDBkwfEU6cTDbVajWAwiKGhIQwODqKurg5NTU1JnWizJaVFpiRXVFSkbUpyOq0lKPIgLvQP5xu2eBpvqr5hSnVLKYVS7zWZOTxSIbWoJUXLKpUKTU1NaGpqWvKckZER1NTUCP+urq7GBx98sOR5P/nJT/Doo4/C7/fjr3/9q/Da7du3h7x2ZGREsvWnAhU8OUwidTrR8Hg8GBkZQVVVVVK+V2IyXfC43W5YrVYwDJPQlGQp1qNSqYTom9ykO8KTDxGlWBcmtVq9ZBCd2JKgr68Pbrc7Id8wJVNa+YRUc3gygXiKlsP9XsMdg7fffjtuv/127N+/H9/+9rfxm9/8Ju7XKgEVPDmKFAaf5OLv8/lQUVGBxsbGlNeViSktEgHr7e3F9PQ0GhsbQ6b3JrIdKdYiN/nQpZUtXlrRfMNId5jH44FWqw2ZEUR8w/ItpaWUcFYywiM18VhLVFdXY2hoSPj38PAwqqqqIj5/7969+PKXv5zUa9MJFTw5BqnT6evrg8FgiFp3EolgMIienh7Mzs6iqalJmLYsBZkW4SHeV++//z5WrlyZ0pRkKYqW05HSyheyVQhE8w2z2+0YHx+H1+uFTqcDy7LgOE6wzMjW9xwPSoo7pSI8cgi8eARPW1sburq60NfXh5UrV+LZZ5/F/v37Q57T1dWFtWvXAgBeeeUV4b/37NmDa6+9FnfeeSdGR0fR1dWF9vZ2yd9HMlDBkyMsLkgmdgeJnCB4nsfw8LBQp9PY2AiGYTA3NydJVAbIrAiP0+nEJ598Aq/Xi7POOislvxolIjzJnvzzpWg53ch5QY7kG2az2eD1eoVIbC77hinVCg8oV7QsR2TJ7XbH7KrVaDR44oknsHPnTrAsixtvvBGtra3Yt28ftm7dij179uCJJ57Aa6+9JrjH/+Y3vwEAtLa24otf/CJaWlqg0WiE1vVMgAqeLIekY4LBYEidjkajSUgQzM7Owmq1oqSkZEmdjlTRFCm3lcp2xFOS6+vrMTg4mPKFgQ4epKQ7AqHX62EwGFBaWoqSkhLwPJ8W3zAl00pKCZ5cG3gYz3vZvXs3du/eHfLYAw88IPz3Y489FvG19957L+69997kFygTVPBkMdHqdNRqdVweUaROB0DEeTpSRWUAZQWPeEpyXV0d1q1bJ3x+qZJNNTz5QL7YPIiLlhP1DRNPi07EFiXfhh0quW+pBU++n1+o4MlCSLqKiJBw3VeklTwS4jqdWEW6UgoetVoNn8+X8nYSFTziKcnt7e3CCV7q4ud0biPZC48SwirfT7RyEesYkMM3TKnOMKU7pXJl4GGy3bq5ABU8WUQigwMj2UGIoxy1tbVCnU40MjHCE+8PVlznEG5Kciak2AjpquFJN9myzlTJlqhSvL5hxJOJzBMym83CeUWpCE+m1IKkC6kFTyAQyLvPUAwVPFlApDqdaIQTKeI6HXGUIxaZWMMTC47jMDg4iJGRkahTkqWKdkixnUSmNfv9fkxNTcFisQgtyvGSD6mzbBEfmbLPSL5hxJhyfHwcDocDPM+joKAAfr8fdrsdJpMpbRdQJVNaSiG14HE4HGGtcfIFKngynGTn6YhTWm63GzabDRzHYePGjTCZTAmtQeqUllTbisTMzAysVmtcU5KlukClK8IjFnIlJSWYmJiA1+sN6c6xWCxRC1PzQfAogRKfqZzRlkjGlLOzs+jt7cXIyAicTicAhAxKlMs3jAqe1HE4HCHfZ75BBU+GIq7TIRGdRO0gAoEAbDYbZmZmkhqmR5DyhCpnhMfj8aCzsxMAEpqSLAXpsJaYm5tDZ2cnysvLsW3bNuHYWNydMzQ0FFKYSuoylHJ7zieULFpOByqVSkiHNTc3Azh9UXY6nXA4HBgaGhJ8laT2DVPSoV0pgsGgpIKH2ErkK/QMmGEka/C5eBuTk5OYnZ0VLo6Zcmckh+BhWRZ9fX2YnJxEY2MjysrKJN1IPbBpAAAgAElEQVR+PDAMk3LkKpJo8vl8sFqtCAQCQicdOU7I8RGuO2dxTQbHcTCZTDAajULUMFOOi1whW1NaibD4uFGr1SgqKkJRUZHwWDAYFETQwMAAXC4X1Gp1yr5hShyvStYOSR3hoYKHkhFIIXSA01EAq9UqFBnW1tZKvdSUkDKlxfM8JiYm0N3djZUrV2L79u2KXcDlcEvneR5DQ0MYGhoKW4cUqzsnXE2G0+nE3NwcvF4vjh07JtyJk0hQoheheFGiKywfiqUztW5Io9Ek5BtGopDRfMOUbA1Xsh0+1blJYmhKi6I4pE7n1KlTqK6uDjlJxIvH44HVagXHcdiwYQOMRiPee+89GVabGlJFeJxOJ9xuNyYnJ7F161bFJ8pK3ZZO2uhLSkricmuPB5VKJRQ5z83NYfPmzREvQkQAWSyWlC0L8kF4KEUmRHjiJZZv2OTkZFTfsFyZhZMIZFyAVMRjHJrLUMGjIBzHIRgMCrUYyUQ/iG/W1NSUYumcREhV8ASDQXR3d2N+fh4GgwGtra0ZkZaRqmiZZVmcOnUKHo8nbBu9FIiFVbiLEOnAcTgcGBsbg9frRUFBQUgkKJFBdRT5yCbBE45EfMMAwGAwwOfzQafTpe1955KlhdPppF1alPQSKX2l0WjiFjw8z2N0dBT9/f2oqamRPZ0j1R1Wsikt8futq6tDU1MTDh8+nDF1KKlGeHiex/j4OGZnZ9Ha2orly5crFhnR6XQoKysTxPPiab0DAwMhg+rInXgmzffIly40JY5/uUVWJN+w3t5e+Hw+dHZ2Cr5h5NiL1ZmYCkpGeOTo0iJ1fvkIFTxpJNY8nXgFD6nTKSoqSmieTiqQgWOpnlyTiYQsLCygs7MTFotFlinJQOon8VTWQt6f2WxGcXGxUHMjF8kMOAw3rZfMaCF1VDzPw2w2CyJIrvbkRNad62R7hCde9Ho9jEYjSkpKUFlZKXQm2u32kM5Eg8EQMi1aChGUS4LH6XSivr5esu1lG1TwpAGe54U282jzdGJFPzweD2w2G4LBoGzpjkioVCqwLJtya3MiwsDv98Nms8Hj8aClpWVJsV2kadKJQgRAqnUqiUYVAoEAurq64HQ60dLSAp1Oh1OnTiW9hniRqt7IbDbDbDYLAo1lWbhcLtjtdqE9mcxyCQQCcLvdUYtSKYmTL4Jn8X7FnYliEe71emG325dEIokAStQ3bPF+0w3t0pIWKnhkJpHBgZEMP8V1OmvXrk0oJCnVCVGq7qp41iIerrdmzRpUVlaGfZ3UthCpnNQSWYs4Pbd69Wo0NzeDYRj4/f60TKGWC7VaLUR3CMFgUChI7enpEYpSFxdFU5IjU7u05CDWb1QciaysrATw2XgGh8OBmZkZ9PX1CZYZYhEU7UYulyI8tEuLIgvJtJlrNBp4vd6QbYyNjaGvrw/V1dUJ1+kQkSLFwLl0TEgGTk9JttlsKCsri9mdJKXgSZfxp8PhQEdHBwoLC5ekI8k2/NN/x/B0OVY3xfY5k3OtUqDRaFBSUgK9Xo8NGzYAgDAk0W63Y2RkBD6fb8mQxFTTtPlSwwOkP3WXCRGeeBGPZxD7hpF0rNg3zGw2C/VAxDcs2f1KBY3wSAsVPBKTjO8VQWwHMT8/L8zTaWtrSyoXLVXKB5DfA4u01fM8LwzXS9eaYk04jncb0S6ywWAQXV1dsNvtaG5uDtsayjAM9J55mAwOrFo+hSe//wkaW1dg2wWbYDRJ15oKKCsI9Ho99Hp9SFG0x+MJexe+2LgyEWjqTB6ySfCEI1w6VuwbNjY2BqfTKdSksSwLg8GgWIG4lPt0Op0hAyLzDSp4JILneSF9RYROogeqWq2Gz+fDiRMnEAgE0NramlKdDhFQUhTuyRXhYVkW/f39mJiYSLitntQVpYoUwinSNsRRurq6Oqxbty7ihZhhGCwfOQlmWz0KtAxuvx148slhvPjsEM46twgXXLYeK1etTGmdZD+ZhNi9m6QiOI4TJkWPjY3B4XAIFypxUXSmvZd8IN12FgQ5BYfYN6yqqkrYn9PpxMDAAOx2uzCoUxwJUrowP1FohIeSMskafIphWRajo6OYmprCxo0bJWkdzGTTT2J/0d3djaqqqqTa6qWu4UmFcBEep9OJjo4OGI3G+KJ0HAczuyBcxNVqBrfdpsGrr3L43f4FvPn6O2hs0uHCy1ZhU3trSmvNdFQqlXAXTi5AxLPJbrcLdgXiSb3JOMdTEofjOEV82dIdYSGDOgsLC2E0GlFRURFyDC72DRM/N1NFEBU8lKSRyveKRAAqKiqwbNkyyeYkSClSpExpsSyLY8eOQafTpTQlOZNqeMRrCQaD6OnpwdzcHJqbm+MOIXMd70FfFZrqYhgGu3apsXo1g4cfCsJm9cNmtaGoqAvnXliKsy5aj+LSxCdzZyPhPJvEk3qJc7xOp4PP58Pc3Bx0Op1s81nylXyzeBDX0UTzDRMLceIbJhZBmSDEWZbN66GhVPAkAanTcbvdOHXqFM4444ykDmZSp1NYWIi2tjbwPI+TJ09Kts5Mi/CQKclerxctLS1Ju7cTpBAqgHQ1PBzHYXx8HD09PaipqUFjY2JFx943X4Vl95qwf2tqUuGHP9Livq8H4HAACws8XjkwjT+//CY2n1GA8y5Zg4aWNRlxUk0n4Sb1+nw+nDp1Ci6XC5988gl1jpcYJbu0lOiWiiXwovmG2e12TE9PJ+wbRvYr5eecT4X8kaC/+gRYXKej0Wjg9/sTPii9Xi9sNhv8fn/IfBmWZSVNG2WK4BG3YdfW1i5pXU6WTKrh8Xg8WFhYgE6nS6rInLPPwHvMipIbNkV8zrJlDB79oRbf+24ANtv/vo4DPjzqwYdHT2HFik9x/sUrsPXcVhRIXOScTej1ehgMBtTU1MBkMglF0eGc48VF0Zmahsg0sr1oOVGS6ZSK5BtGLFvEvmHiQYnilKxcEa18uykSQwVPnESq00lENbMsi76+PkxOTqKhoQHl5eUhB59UF3CC1CmtZLYVbkry5OSkJKHVTEhpsSyL3t5eTE1NwWAwCK3XieL/28sAy4EpiP6Z6HQMvnaPFr/9LYvXDoW+97ExDs89M4I/PD+CbWdbcN4lzVhRK+/U5kxF/H2Ki6JJazLpyiGt8U6nM23O8dlOLhYtx9qvFJElrVa7xDJD7Fsn9g2Tox5N6ohRNkIFTwykqtMZHx9Hb28vVq5cGbFAV+qDUeoIj9/vj/v50aYkZ1KxMZB8SmtychJdXV2orq7GmWeeiRMnTiS1f57n4Xnr79CtrYjrGFCpGFx/vRr1qxk8+eTS79fnA95+w4633/gAaxu1OP+SWmzY2gyNNr9+7tE+S3FXzsqVpzvfxLUY4ZzjF9+B5ytKXTiVSqXJWTsUzreOiKCZmRm4XC4cPnwYBoNBOF6T9Q1zuVwwmUxSv4WsIr/OgAkghdABPotwkDqddBZQKpHS4jgOQ0NDGB4eRn19fVgTTCkFjxIpLbfbjY6ODmi1WqHommXZpN8T23UUwZFZWL6wJe7XMAyDc85Vo6aWwf3fCCLSx9BlC6DL1gNLUS/Ou6AUZ+3InyLnRAlXiyF27ibO8cSviYigfCuKVnIQn1KCJ121QwzDQK/Xo7y8XGjmaGpqEsx7xb5hBQUFISIoVsTc4XDktVM6QAVPWFiWDZmnE+tHFu7Ow+v1oqurSyjQVaIVMNGoTDTiEQWzs7OwWq0oKyvDtm3bIhaGSiXEVCpVWCuOZLYTj1ghKcmpqSk0NTWFFMqmMr3Y+9c/AwD09Yl359XWqvD4j7X4xr4ApqcjP8++wOOVl6bx5z++iU1bCrC6SafYHXM2sdi5W2xaudivye/3Y35+PuOc46VGqZSWUihdOxTJvJcM65ydnV3iGxauOD/fW9IBKnjCQi5c8Rzk5GJJTnDiQXrh6nTi3X8m+V/F2pbX60VnZyc4jotrSnKmpbTiqeGZmppCV1cXVqxYgW3bti05NpIVPJxrAd4PThuGapYnV8htNjN45LtaPPZYAB/HyKpxHHD8mAfHj3nw7hsv44IcLXKWqyMlkmml0+nEyZMn0+ocr1TXTb7VgijlpRVtv+GGdYp9w8SWGSdPnsT4+DiWL18e1wT7gwcP4o477gDLsrjppptw9913h/z90UcfxVNPPQWNRoPy8nL86le/Ql1dHYDT1wlSx1hbW4uXXnoplY9AcqjgCUMi6SuNRoNgMAiVSiXU6SQ7SA/4zA5Cih+Y3IJHLO4SMTXNNMETrYbH4/Ggs7MTDMPgjDPOgMFgiLiNZPC/9yfw/tNpU1Vh+G3Hg0bD4M47tXjxRRYvHYjvMxn/3yLn3//3CLafY8G5F69DVV1V0mvINNJ1USZ+TTqdDk1NTQA+m9IbzjleqtksSgkPpSIeSrZVZ0MqLZxvGMdxsFgseP3113Ho0CF89NFH2Lp1K1pbW7F161Zs3boVbW1tQiSIZVncfvvtOHToEKqrq9HW1oY9e/agpaVF2M+WLVtw9OhRGI1G/PSnP8VXv/pVPPfccwCAgoICfPTRRxJ+CtJCBU8YEjm4NRoN5ufnMTAwAJPJlHKdDrGDyDTBI66X4XleiHgkI+6kTGnJJZw4jkN/fz/Gx8cTtrxIBO+bb59eQ4kRjDq1iwjDMPj859Wor2fwox/G//n6/aTI+fDpIueLa7GhLf+KnFNhcVSWTOld7BxP6oGmpqZSdo5XKrWUbyktpZAisqRSqbBu3TqsW7cOtbW12LJlC77xjW/g1KlTOHr0KH79619j8+bNguA5fPgwGhoaUF9fDwDYu3cvDhw4ECJ4LrroIuG/t2/fjmeeeSalNaYTekZLAZLL93g8WL9+vST50UyZnRNuW6SVt7OzE1qtFmeeeWbEiEc0Mi3Cs3g7MzMzsFqtqKysTDpSFw/BvpMI9E0AAAq21EqyTYZhsGWLGt/7HoP77gvC603s9UKR8/7/LXK+qAXFZSWxX5jnxJOGDjebhXTkJOMcr+QAwHTvNx/rzViWlXRApsPhEI6nLVu2YMuWLbj55ptDnjMyMoKamhrh39XV1fjggw8ibvOXv/wlLr/8cuHfXq8XW7duhUajwd13342rrrpKsvVLARU8SUBSOePj4zCZTFi1apVkxWAajSYjBQ/P87Db7fj444+xbt26kJN2omSa4CEpLVKLxPM8tmzZgoKCgpS3HQ3fm68I/61vqpR02xWVKjz2mBbf/nYAQ0OJv54UOf/p5bdPT3K+eA3Wrs+eSc7pTn8ku79wbcler1doS+7v70cwGAzrHK+k4El3hEfJzjClCAaDSdvuhCOeouVwx3GkY+yZZ57B0aNH8dZbbwmPDQ4OoqqqCr29vdixYwc2bNiANWs+mx7P87yiEUIqeMIQ6QvmeR4TExPo6elBVVUVzjrrLPT09Eg+LJC0wkuxrVTXRry+ent7oVKpsH379pRPspmW0mIYBtPT0xgZGUmoFikVeJ8bnnc/y3Vrq6VvFTcUMPjmA1r84hcs3ns3uc+J50mR8yksX/EpLrh4Bc48pxVGc+YXOadbDEixP3FHTiTneKfTCZ7nYTQa4fP54HA40urarYTQyse6IamLpZ1Op1DbE4nq6moMie6QhoeHBfNeMa+99hoefPBBvPXWWyGijDy3vr4eF154IY4fPy4IHnHX8/z8PLq7uzE9PQ2VSgWj0YiysjKUlpaiuLhYNr8vKnjixG63o7OzE0ajMcTwUsqIDJBZKS273Y6Ojg5hhtCxY8ckOdFlkiXE7Owsenp6YDAYsG3btrR1Y/gPvwre/dnIAPUyeQaCqdUMbr31tPno/t+m9pkvLXJuQlXdSolWmt3IKQIiOcfPzMzA6XRicHBQMKwkaTCLxRLTqylZ8inCo2Q0Qq6UVjTa2trQ1dWFvr4+rFy5Es8++yz2798f8pzjx4/j1ltvxcGDB4VORQCYm5uD0WiEXq/H9PQ03nnnHXz1q18V/s4wDF5++WW8+uqrgted3W6H0+lEIBCA2WzG6tWrcd555+Gaa64RGgCkhAqeGPh8PnR1dcHj8WDdunVLPKCkjMgAmZHS8vv96OrqgsvlkmWGkFqtTuv8nHD4fD5YrVYEAgGsXr0aXq83ra2n3jfe+OwfWhUYnXz7ZhgGO3eeFj0PPRhEqjetnxU5H0HD2o9wwSW0yDndUQ+1Wg2z2QyTyYTW1lYAoc7xxKtJr9eH1ANJlSLJlwiPUg7tZN9SR3hincs1Gg2eeOIJ7Ny5EyzL4sYbb0Rrayv27duHrVu3Ys+ePbjrrrvgdDpx9dVXA/is/byjowO33nqrcF6+++67hWLnsbExfOELXxAml2/evBk1NTWoqqqCwWBAIBDAyMgITpw4gV//+tf4zne+gyuuuAIPPPAAmpubJfsM8vcMFQVS09Hf34+xsTGsWbMGlZWVYX/kGo0GPp9Psn1LKaCSmf8zNDSEoaEh1NfXo6WlRZYTm5IRHp7nMTg4iOHhYTQ0NKCiogLT09PweDwpryde2JEu+K3Dwr8NG1am5QLS2HjacX3ffQHY7dJss7srgO6uHlh+24tzLyzF2RlS5JwPRa6L32Mk53i73b5kQq84EpQNzvFKD/9TAiUEDwDs3r0bu3fvDnnsgQceEP77tddeC/u6s88+GydPnoy43XPPPRd79uzB5s2bY1pcHD9+HI8//jh27dqFn/70p0vWkyyZf6QrAM/zOHLkCMrLy7F9+/aoB51Go4HL5ZJs31KmtBKBTEkuLS2NOiVZCpQqWp6fn0dHRwdKS0tDvlep1hMvvrf+GPJvQ2v6Zt8sW8bgB4+GOq5Lgd3O408vTePPL7+NczepcNWXL4E+jiFnuYISAiuefRKbAlKXJnaOn56eRl9fH1iWDRmSmInO8fnm0A7II3gWZyjSxYoVK/DII48I/2ZZVjh2eZ4PeZ+kaeTpp5/G6OgonE6nZOuggicMDMOgvb09rhOY1AJFo9HAm2gvcQp4vV5YrVYEg0Fs3LgxLeZy6S5aJkamXq837HuUUvDEugjxAT88fzsa8phuVWmEZ8tDNMf1VOF54G8fcbB+9Y+44f+0YvWWVkm3n6lkquBZTDLO8YWFhTCZTIpGzDJx2nG27VtJwUMgAnLx+2JZFna7XRjgSQhXMJ0KVPBEIB67AeCzSctSIXVNUCTEg/US6UyS4sSerggPz/MYHh7G4OBg1LRkvN91LIi9RLTPJ/Dh6+DsoekzdXn6/W0Ex/V6Bk/+XPqI4uSCDo/+0IbLzunBrn/eKfn2M41sETzhCOccz7KsUA/U398f4hwfCATg8XjS6hyvZIRHKcEj9Xt2OByKCp5I7+f999/HwYMHsbCwgMrKyiWTnaWECp4IxOuNJIfgkTqltfjESKYkL1++PKHBevFc0OMhHR5YCwsL6OjoQHFxccwUXTRriUTXE+sk5X3z9aWvMyrjts0wDM45R42aGgYPfDMICerIQ+B5Bq/+ncOpjj/gnEuKpN14zH3nRw2PXCJArVYvcY4PBAKw2+0YHx8XIqbEOZ5Eg+Ryjs/HomVA2uJwn8+X1KBYqSCfIznXqlQqvPvuu/ja174Gg8GA7du34/nnn8evf/1r/Od//ifa29sl/x1TwZMicqS05BBQpNaos7MTGo0mqi9UrG2legKQs04pEAigq6sLTqcTra2tcRXpSTnPJ5pIZqeH4TvZF/KYpnYZGJWyF+baWhV+9JgW37w/gMlJ6bc/MqPHC//thnf6FVx8/U6os6BINlGUmk2Tzn1qtVqUlpZCr9dj06ZNIc7x8/PzGBwcFBy7iQha7NidLPlYtCwHSt0EPP300+ju7saDDz4IlUoFn88HvV6Pl156CY2NjfjFL34BANi3bx8uv/xyPP/882hvb5c8wpZ7Z540k+kRHrVaDZ/Ph97eXszMzKQ0JZmsLdWhUHIUCfM8j9HRUfT392P16tVobm6O+8edLsHjf/MAFveEF2yqifDs9GI2M3j4O1o8/lgAJ2I4ricDy6vw0usBfHzqBdzw5XZUrlkt/U4UJJtTWonukxDJOZ4MSZycnERPT4/gHE+iQMkURedjSktKyPemlOBpaGjA/v37cc011+DOO+9EW1sbAKCmpgYdHR145513UF9fj46ODszPz4fM95ESKngiEO+BIUeER0o7CL/fjw8//BB1dXUpT0mWShgQXy6pcDgc+PTTT2GxWNDe3p6wIJOqhifa58OzQXjeXupJo18r/1TneNFoGPzfO7X4wx9Y/OH38nSt9U/o8fC3juOqnTac/8VLoUrRMDUS2WItkeo+M01kiR27V6xYASDUOX54eBgulwsMw4SkwmI5x+dbSkvJCc9ycN555+Gxxx7DU089hXvuuQeXXnopvvKVr+C2227DiRMn8JWvfAVr1qzBO++8g/POOw/XXnstAEj+2VPBkyJSn3CkElBkMnQwGMT69etDZnMovTap5vAEg0F4vV58+umnaG5uTrogT8oankgnqsDJv4GdWdpeqVmR3tqWWDAMg6uuUqN+NYNHH5Un7RhkVfifP3nw8cfP47ovn4PS2mpZ9pON1hKJoJTgSfQiFMs5vre3N8Q5noggvV4vvL98i/BI/X5JCklJWlpa8Mgjj+Dpp5/GgQMH0NHRgZtvvhlPPvkkTp06hY8++gj33HMPtmzZInzvUh/fVPBkGKl2afn9fnR3d8PhcKC5uRlDQ0OS/XCkisykGiki/l59fX1QqVRxjxCQaz2EaMLJ98Zfwj6uLpLXoDQZGIbBps1qfO/7DO77euKO6/FiG9bjoW98gH+4woqz/r8dWV1knInRFjmQqm4olnP82NgYvF4vCgoKUFhYCJ/PJ/nE93iQIoWf7H6lnIVmt9thNpsl216ikGNVq9XilltuwTXXXIO77roLX//61/H5z38e119/PdavXy88Vy6o4ImAUiffZNMr4inJ4hoWKVNuUk5ITvagdjqd6OjogNFoRFtbG44ePSpJ15iUbemL4eYn4T3etXS/Zh0gU0pHCioqVHjscS2+/a3kHNfjwRdUY//vHThx/Hlce/uFKFouTe5eiZRWPtgtyLnPWM7xCwsLGBkZEZzjSVG0nBEYpYqWg8GgIlOW5YD8Nj766CMcOnQILpcL7e3t+NnPfoYDBw7goYcewnvvvYevfOUr2LZtm6zHNBU8EkDu7JVqX5ybm0NnZydKSkqWtGBnkhlpKgSDQfT09GBubg7Nzc0oKjqdCpLis5e6LX0x/rdfAtiljxs212Z8VMNgYPDAt7T4xZMs3k3ScT0ePunX4cF738YX/6ECZ15+nmTO47lMtqS0kkXsHO90OlFcXIySkhJhSOLExAS6u7uFomiSNpPSOT5XusPiMQ6VC4Zh8OKLL+J73/seVqxYAYvFgj/96U/4+9//joceeghXXHEF7rjjDtxyyy249dZbcd111yXdWBMLKngikMiJRKp27UTxer2w2WwIBAIRpyRnu+DheR4TExPo6elBbW0tGhsbQ76beGbfxCLemUvJbIfneXjeejfs8/XNlSnvMx2oVAxuuVWN+jUMnvkv+b5/t1+DX/9uFh8f+x9c/eWLUZgBnlzxQlNa8u9XpVKBYRjBOZ7AsqxQFC21c3yuTHhWUvAAp724duzYgX/9139FUVERjhw5giuuuAJXXnkltm3bhh//+Mc4evQobrnlFrzwwgt44YUXJKk7XQwVPBJAWtPTlesVT0kmBpiRkDqllU7PKZfLhY6ODhgMBrS1tYUdaibFmqQ6gYdbS7DzfQTH58M+X1ebXkuJVGAYBpdeqkZdnTSO69H40KZF19dex7XXVGPDjrPk25GE5JPgyTRPK7VajaKiIiHqC4Q6x09NTcHtdkOv1wsCiBRFxyJXBI+SKS0A8Hg8MJlMWL369DiKs88+G8FgULg2sSyLrVu34sMPP8T9998vm5cjFTwSIGUrORA9TUOmJFdWVsY1JTkbIzwsy6K3txfT09Mx5walW4RFI1yEx/fGwYjPV5fK71smNY2NKjz6qA73/bsLTr98At/h1eLnT0+g/YP/xudvuwzmZcWxXyQiH2p48mWfQOJCK5pzPPEM8/l8MBqNISJo8YWWprSk4ZFHHsE999yDDz74AFVVVbDZbLj44ouxefNmABDeK8/zuP/++2VbBxU8EUg0pSXH8EHxD83tdqOzsxNqtTqhKclqtRp+v1+ydQWk9h9YxOTkJLq6ulBdXR3X3KBMFjyccx7eI5+Gf7KKAaPPzp9fSSnw8D0svv+jAAbm5XVEP/ypDrav/QU7dhhQs6VZuDDF4+OU6zU8HMfJdiccbZ+ZFuGJl2jO8TMzM4JzPCmKtlgskhcPx0uuRXiuuuoqGAwGvPXWW5iamsJll12GW265BUbj6fMHEdJy/2az84ybYUg9bZlEjLRaLYLBoDAluampKeG8ZqamtBZHsdxuNzo6OqDVarF169a4Z0ZkkuBZvBb/O38E7w//2evXLc/qC7Kl3oKvP+DD0z9cwLt98s4Smnfp8OLLHM4d+ghnXL4BExMTIT5OpFZDifZhQr5EW7JZ8CwmlnP86OgoFhYW8PHHH4fUA6XDOV6OCI/UzuOJsmvXLuzatSvs38jnybIsfD4fVCqVLL5fVPBIgBz2EoFAAHNzc+jt7UVNTU3S7XqZmtIi4oDnefT19WFqaiopQZdJgkcc4eE4Du433or4XMMGZU8+UqAr1uPm+0pR9+QEfve+/PVIf/9IC2vvx7jhxmZsaGsLaVkmd+ekW4dl2bQOjcsXwaNkSisd3+Vi53iXy4VNmzYJImhgYAAulwsajSYkFSa1c7zU839cLpeiER6O4xAMBoVZPGLGx8cxPT2N6elpHDlyBH/729/wySefoKenR/J1UMETgWS6tKSC4zicPHkSRUVFEYt1lVib1IJnamoKfX19WLFiRdKCLpMED1nLzMwMJo78FeVDMxGfq6svS+PK5EOlUWHXv6xATc04Hn2hGEFO3rv/KdKtJR8AACAASURBVLsOP/xRNy45qwe7b7wclZWVqKw83e1G7s4XFhbg8/lw/PhxoVtHrgsTIV+sJfLR4kGr1UZ0jift8R6PBwaDIUQEpXLeliPCk+wkeilQqVTC5zE9PY2TJ0+ip6cHXV1dGBgYgM1mQ19fH1avXo2dO3fizjvvlGUdVPBIgFQRHuL0PT8/j4aGBtTUpG4smYkpLY/HA6fTidHR0aRc2+VYkxSwLIuBgQFotVqsHbIi2oBiTYVyJx85aL1iOR5aOYOHf67DnEfeEfY8GBx6DzjV+Qf84y2bULN+HYDQu/Px8XGcccYZYFlW6NYRX5gsFguKiookTYXlQ7Qll1JaqUCc40tLT0c2xc7xCwsLGBoaQiAQCCmKTsQ5PpeKlv1+P9555x28++67+PjjjzE1NQXg9PRnk8mErVu34vrrr8eFF14o+zRoKniiEO98Fo1GA5/Pl/R+eJ7H8PAwBgcHsXr1amg0Gsl8TzIpwiNupzcajVi3bl3KeVopBU+yFxDy/Y2MjGD58uVYt6oGM//xSNTXqAqV9bWRg8ozSvHgPicef9SJzin5x9iPzenxve924PILunDpDbug0S0VLou7dRZP7+3r6wPHcSGFqsm4eeeL+FAqpaXUfuMllnP81NSU4Bwfz7GWS5OWP/30U9xwww1oa2uDxWLBjh07sH79erS3ty+pK5L7mKaCRwJSEQJzc3OwWq1YtmyZMCW5t7c3Y0SKVNuamZmB1WrF8uXLsX37dpw6dSojfLnE20nmpEqc2ouKirBq1SpotVr4PzgI3hO5m01TYQaTQXerUmJaacZdDwSw/0ezeN0qz7RUMRzP4JU3WZz85EXccFsbVjTWR32+eHpvuFQYcfMWG17GkwqjKS35yWTBE45YzvEjIyNwOp1gGCYkFWY0GmXp0lIqpdXQ0IBnn30WVVVVqK8P/X2Sczfp0JL72KKCJwqJRHgSTWn5fD5YrVb4/X6sX78+JJQn5VwfpVNaXq8XnZ2d4HkeW7ZsQUFBgbCuTBI8iVpUiK0uWlpaYLFYMDg4eDqC8OabUV9r2Fyb8nozGY1Jixu+VoFVvxnDL99IT63S4JQejzz4EfZcasWF11yWkAARp8IIwWAwbI1GpFRYvhQQZ1pqKduI5hzvcDjQ19cHt9sNr9cLrVaLZcuWLXGOTwan0xkymDGdDA8PIxAIhIgdjuMUOZao4JGARAQPx3EYGBjA6Ogo1q5di/Ly8iUHspTzbpSK8JD3OTY2JrxPMVIakaZbOJFZQTU1NSFWFyqVCqqJPvi7RqO+Xt8kjUFmJsOoGJz//1ehqmYC3/utBV5W/g6bIKfCi6/6cOLj/0HbxSUpXSA0Gk3MVJi4KywQCORFeimdXlpKky4bjXDO8UePHsWyZcvgcrmWOMcTwZRI7ZnL5QprPZQOxsfHcfvtt6OlpQV79+7F+eefj4qKirDHkc/nA8Mw6OjowF//+lecffbZ2LZtm2RroYJHAuIVAtPT07DZbMKU5EghS7VaDa83Wslr/Ej5g433fc7OzsJqtaK8vBzbtm0L+z6VECqpbsfr9aKjowMMw4SdFcQwDAqOv41Y0lezUv5UT6bQcEklHl45j0d+rMK4U/q5GuHoGdNj6Hd28PbXcM7nL4ZKAkf6WKmw2dlZeL1eTE9Pp6UrDFAuwpPuYYdKoWQ0i+d5lJWVhdQDeb1eOBwOzM3NYWBgAMFgEEajMWQWVaRrCs/zigxQBID29nZ8//vfx/PPP4/vfOc7eOyxx7Bx40a0tLSgsrISFosFPM9jdHQUHR0deP3112Gz2XDTTTfhn/7pnyRdS34cuUkS78kkVoSHTElWqVQhaZ1o21PKlTwasUQBSdMFAgFs2rRJmKIZDqkiT1LX8ISD53khKtfY2IiysvBpGhUXAHvkVMx9qYujf/+5RklzMb75TQ9+9gM7jo+mp47Az6rx3EsufPzR87j2X87HspUrJN+HOBVGjsPly5cnlApLBSUuyPmU0lLKRwtYGkkTC26xCIrmHE+GKibSHn/w4EHccccdYFkWN910E+6+++6Qvz/66KN46qmnoNFoUF5ejl/96leoq6sDAPzmN7/Bt7/9bQDA17/+dUGsGI1G7N69GxdccAEOHTqE119/HYcPH8bvf/97BAIBeL1esCwLvV6PNWvWYO/evbjuuutkGZRIBY8ERBI8Yk+oxsZGoYUxFlJbVUhFJAHI8zwGBwcxPDwcMU23GCmFihTpP1LDs5iFhQV0dHSgtLQ0YrSKYLB+gKAzRreeXgNGq8xJVEkM5QX412/q8IefTOGlj9Lngt4xqMdD+97B1VeVoe1zF8g/uj7BVFiyXWFk2/lQN6REQTiQ+eIumnO8w+HABx98gHvvvRcGgwEejwf79+9He3s7Ghoawn6HLMvi9ttvx6FDh1BdXY22tjbs2bMHLS0twnO2bNmCo0ePwmg04qc//Sm++tWv4rnnnsPs7Cy++c1v4ujRo2AYBmeeeSb27NkjpOlId9pVV12Fq666Cg6HAwMDA5iZmQHHcSgtLUVLS4vs0UMqeCRgcXSA53lMTEygp6cH1dXVCQ/VS5dJpxTMz88LgiBamm4xmZ7SCgaDsNlscDqdS4rKI8G8/27M5xRsXJl13SZSodar8Q93Lkfdc2N44k+lsjqui/H4NfjP/57HiQ+fx5f+ZQcs5dIXUkcSAtFSYXa7PemusGj7lJN8iiopGeFJFrFzfHV1NXbt2oXJyUlceeWVGB4exosvvoju7m5UVlbiu9/9rmDeCQCHDx9GQ0ODUFy8d+9eHDhwIETwXHTRRcJ/b9++Hc888wwA4NVXX8Wll14qCP1LL70UBw8exDXXXAPgs5tlUhdVWFiI9evXL1m/3Mc0FTxRSOaDdzgc6OzsREFBQdJTkuVIaUl9IPn9fthsNni9XmzcuDHhgjipRJ3U3V5isbpq1So0NzfH9bmxE30IdAzFfJ6+NfstJVJl65dW4Fs1U/jeM4VYcKbvQnaiW4fur72Ja760ApsvPUfSbSdSzLvYvgBIvCuM7DMfipaVHHaohOCROqJFZlH9+7//u/AYmYUmZmRkJGTYbXV1NT744IOI2/3lL3+Jyy+/POJrR0ZGlrxG/D2K3yc5jql5aJbA8zw6Ojpgt9uxbt26lFoA5XJflyJcyPM8hoaGMDg4iDVr1qCysjKpg1TuVFQy6/F4POju7oZOp0tYrPre+mNcz9PVpS+dk8nUnF2Oh2pdeOznAdgG0jeE0eXT4Kn/nELb0efxhdsug2mZNK26qV6kkkmFpauLSIxS+8w3Owsp9xtuyjIxS12838VE+q6feeYZHD16FG+99VbCr43373JABU+K8DyPkZERuFwu1NXVYd26dSl/kVKntKQSPAsLC3C73XC5XMKQxFTWlMp0aoIUKS2O44QLS2tra8IGpnwwCM/bh+N6rrpM/gnE2YK52oSv3RfE75524C/vpLdl9sinWtju/guuu24VWs5vk2SbUp7A40mFzc3N4dSpUyguLk5LVxhZQ75EeJRKackxdDCeKcvV1dUYGvosSj08PBy2cPi1117Dgw8+iLfeekvoVK2ursabovljw8PDuPDCC5e8lpyrlaqNooInCrFOHPPz8+js7ERxcTEKCwuxYsUKSU42cgmeZAkEArDZbHC5XCgoKEBjY2PKB2ymzOGZm5tDR0cH1Gp1Um7tABA88Qa4OVdcz1UZkzcUzEVUOg2uvbkIq+vm8PP96R19v+DW4j9+MYJzjwziylt2oqAweTGajvTS4lTYiRMnsHbtWiESNDExAa/XC71eH1IPJKXrdj4JHqX2K4etRDw1iG1tbejq6kJfXx9WrlyJZ599Fvv37w95zvHjx3Hrrbfi4MGDQrcYAOzcuRP33HMP5ubmAAB/+ctf8PDDD4e8dnHkig4ezBJ8Ph9sNht8Pp9Q0Hr06FHJDlSpT5zJCh4SvRoYGMDq1avR0tKCI0eOSBLqVbpoWVyDtHnzZoyMjCT9uXvefC2u52nrS/O2YDkajEqFs3eVorZmFvf/wIRAML2f0d8/UqPj3/+E6/+5EWvbN8d+QRiU6CTiOA5arRZGozFsKmx2dhb9/f2SdYWR7edTSisXIjzxOqVrNBo88cQT2LlzJ1iWxY033ojW1lbs27cPW7duxZ49e3DXXXfB6XTi6quvBgDU1tbipZdeQklJCe677z60tZ2Olu7bty/k5pEcN/fffz/OOeccXHrppYp8p1TwJIB4SnJDQwMqKiqEH3+mzs4BkhM8xCPKYrGgvb1duEsk20r1rlGqYuNEt0MGXPX394fUICVbC8TOjsH3UXdczy3YWBP7SXlMdWsJfvSwHd/8jhqTM9JFJeJhxqHDYz/ux472fnzu/+yCzpjYkMRMaRGXsyuMbEuJCI8SwkPJ/UrZnp2IU/ru3buxe/fukMceeOAB4b9fey3yzd2NN96IG2+8MezfyLH12muv4ZlnnsH555+PK6+8EmefffaSKfxyQgVPFMQnADIluaKiImz7dabOzgESEzzBYBBdXV2w2+1obm5ecmcgZWQm3Sktp9OJjo4OmEymEBGX6HbE+N9+GeDiu7vXNaTHVyqbMVda8PC3vXjicQ+Od6R/QONfDwOf2A7gH2/agLpNLbFfICITBE84Eu0Ki5YKU6JLS6niYZZlk+qyTZVcckpfzC9+8Qv88Y9/xIsvvog333wTGzZswHXXXYdt27ahpqaGmocqjdvthtVqBcMwUackJ2MgGgup7hrjETw8z2NsbAx9fX1Ri68zcUJyrO2IB0C2tLSE7aBLZj08z8PzVuzZOwTNCmXM+7INjcmAO+7S4MDv7Pj9ofQXeU/M6/H9H1ix89xu7PynndDqY3eRZUqEJ16idYXNzs4K1gWLU2H51qWVKyktpYxDF9Pc3Izm5mbcfPPNePHFF/Hcc8/hzjvvxIYNG3D11Vfjc5/7HEpLS2X73KngiUIwGMTJkyfR0NAQc0qy1IKHXICl+OJjiRQS+TAajUsiH4luS6o1xUssoUIic1VVVVEHQEazlohE8JN3wE7a436+ujC/LCVSgdFocOX1y1BfN4sfPJX+u1OeZ3DwbxxOdfwB/3jrmaha1xDj+dkleBYTbyrM7Xajr69P6AyTuyuMrCOfipbl6NISz8hREmKyW1xcLKTAnnrqKXzrW9/CTTfdhIqKCvzzP/8z/u3f/o1aS6QbrVaL9vb2uH7QUtfwkO3JKXiCwSB6enowNzeH5ubmuO4CMqW7KtZ6fD4fOjs7wXEczjjjDBgM0Wsykqnh8b7xavzrLDKA0WTumPpMhGEYbDy/FN9fOYf7HimAx5v+z294Wo9HHv4Yn9thw47rLoM6w4wz5RQb4VJhR48eRWlpKZxOZ0KpsFTIFeGh1H6dTmdcRcvpgBwbx48fx/Hjx/H+++/DZrNBo9HgoosuwubNm/Ff//VfePLJJ/Hb3/5WGGwoFZn1681A4r3zl2NYYDAYlCSHvFjwiKcJ19bWorGxMe4Tp9STjaXeDhmMODQ0hLVr14a0TsbaTiKDEDnHLLxHO+J+fsGWzLjDykbK1yzDj77jxEPfBQZG019TwXIqHHjNjxMnX8AN/7INlfWrljxHiQiPEvA8j9LSUsFAV+ziHS0VlopgyUfBI2XtUCJFy3LicDjwH//xHzh+/DisVivsdjtWrFiBXbt24Ytf/CIaGxsBAA8//DCuv/56fOMb36CCJ1PRaDSSDNIjSDmLR61Ww+/3AwBcLhc6OjpgMBiSsr7ItJQWwzCCILXb7ejo6EBxcXHCgxETTWn5//YyEIxfsOmblk42pcSPocSM++/34amfefDOh8qkBvsn9PjOAx/iql02nHf1JVCpQ8fk54PgAUKjSuFcvMWpsJGRETidTqErrLCwEEVFRQmlwmhKKzUypWh5eHgYP/7xj3HmmWfiS1/6Enbv3o2NGzcKfyeft06nw8UXX4xvfetbkq+BCh6J0Gg0cLvdkm5PqoiRWq0WhgfOzMygubkZxcXFSW8rkyI8RPB0dnZiYWEBLS0tSf24E0lp8TwPz5t/S2j72pplCa+JEorKoMfN/6pB/YEF/NcflJlYHWBVeP4VN06ceB7X/cu5KK1Zqcg6MplYXWGTk5MJDUiUuk07XmhKS1pKSkrwxBNP4KqrrhIeE09eFovL6667Drt27ZJ8DVTwxEAcQYiGXP5XUkDutNasWYPt27endCcqVQ2PVHfDk5OTcLlcqK2tRVNTU9LbTUSAsV0fIjgym9D21SXptU7IVRi1Gpd8vgSr6mbw4ONmcLwyURXbsB4PfeN9fGHPMmy/8qK8ivAkQ7iuMJ/PF9eARKWEh1JzeHItwkPej81mw/vvv4/LLrsMOp0ODMNApVIJv5vjx49jfn4eF110Ecxmc1zToROFCh6JkLpLS4oiaLfbjY6ODvA8j7KyMtTV1aW8LhItUhqPx4OOjg5oNBoYjcaUuxASETze/8femce3Ud95/zO6D9vyfSd2YieOncNOYsfhKBBKCNCSbYEtLLRll9KWhd3SvrrLZnuELmW37FO622dhC+k+bWkpbGgpRzgaQskNIQm5TGzZlm9Lvi1Z9zEazfOHO0I+NZJ+o5Hseb9evEji0W9+sjSjj77H53vk7dgWl8tAqaVLjSTVW/Pw03+1Y++PlJhyivO79dNyvPAHBy5d+D2u/MwqUEk0UEt3KIqCRqOBRqOJmgoLhUJhMZSMrjAOMf1/llKEh3suFy9exAsvvIAnnnhi3uOeffZZdHZ2YseOHQgGg4JE9aS7MCFSKcLDMAx6e3sxPj6OmpoaKJVK9Pb2EtuXz+cjslY8cG7Xw8PDqKmpQV5eHj74gL8XzkLwFTwhjxO+0x/HtLZ6PZkZaxIzMZQb8OQTHjz5Ez/ae5I3cX02l3tU6Pl5Pz5/qx3bd39aeq3jZKFUmNFoBE3TMJlMgs8Ki2Sp1PDQNB0e8plsnE4nWlpaoNPp0Nrairy8PFy4cAGZmZlQKBRQqVTQarVwuVwYGxtDVVWVoPuRBE8U+N68SLelxyugxsfHYTKZUFJSEvad8Xg8xPZGqvYmHqampmA0GpGfn4/m5maiNwW+qcvAqbfA+mN7XTQbyPtJSEyjzNRhz3dp/O+vXHjnpHhpQ49fgRdedsH48cv4y7/9NDLzYh9CKzEX7kOxuLgYBoNhTipMiK6wSMQQrySjG2LMeIukt7cXjz76KM6dOweKohAIBPDFL34RWq0WarUaWq0WmZmZsFgsGB0dxb/+678CEO73LgkeQgiR0oolkuL1etHe3g6Koub4zpDu+Er2zDCu4Nrj8WDTpk3Q68l/sPEVcr6jx2NeW1W5uGmlRGJQSiX+6qsGrK6w4ZkXxO1GOd+hRNc/v4e7/2oFNuzYLupelgqRkZZYUmGZmZnIysqKuStMbIRIpYn13FetWoXvfve7oGkajz76KKxWK3bv3g2n0wmHwwGn0wm32438/Hw8/PDD+MIXvgAAgtVOSYKHEKSFAN8ITygUQl9fH0ZGRsIpHiH3RqpLi2OxYk+WZTEyMoKenp7wtPbFjk20GDvqiIr+VtA9IzGvrSgSv0NiqUNRMmzflYfyciv+5Sc6BILimTw6vEo8+8sRXHH2ZXz+gRuhS4EOGRKIFS2Illoi3RUmNiRTaWJHeDIzM7Fjxw4ACHs3bdmyRbT9SIInCnw/REkraD4iZXJyEh0dHSguLsb27dsXvEhICh5SXVrAJ2mk+X53Ho8HbW1tvPyCSIzh4NOW7jvyZlxry/Ti1ZcsN8rX5+KnTzjxgx/Jkj5xfTanPlag/Z8O4otfrkbNFWRv8mJ8kInViRaPAFisK8xmswmeCksUUr9nr9cLnU5HZK14GBoagkajQXZ2NrZs2QK/3w+bzQaZTAa5XB5uR+f+LnRXnCR4UpTFaoJ8Ph/a29vBsuyiA005SN6khEiPRd5kQqEQent7MTY2hnXr1iEnJ7p/DQnBE814kPV74f3gQszrKkoNoGTpEUpfKugLM/Gv33PilWd7MeLLxKhdizGnFkEm+R9mNpcKT/1sANee6cPu+3dBTSgdK9bsrnQ1AIwnFRYKhdLebsDhcAjS3s2XL37xi7jhhhvwne98B1/72tdw8uRJVFRUhGt3MjMzkZGRgezsbLAsiy9/+cvhKJ0QSIInCmK92edLaUV2KK1ZswYFIrTBko4WRUZVrFYr2tvbUVxcvOigz2jrkNjLbAJnD4F1B2JeV9NQnsi2JOLEfXkE231tWLlzOp0UCgFWtxqjDi1G7VqMOjR//r8W404NmJCwH+THPpLBaHoLX7yvFqu3bEx4PTE+iMWYlA4IZwC4WCrMbrfD7/fjzJkzgs8KExKxPXgefPBBrFy5EgCwYcMGuN1uBINBTE1NYWRkBC6XCx6PB4FAAGazGTt27EBZWZlg729J8BBksRRNrMwWFlarFR0dHSgoKCDeoRQLJLu0uOcYCATQ3t4OmqbR0NAQcwg2GYLHd+RwXOuq1xTFuyWJBLCftWDohBtl12RArpZBJgPyM/3Iz/RjfdnUjGMZTgz9WQB98n8NJpwaMCwZMTRmV+E//7MLN1zZg1v+5iYoNfGnOsUSPOka4eELlwrLyMiA3W5HfX19UlNhpF9Xsedo3XHHHQCmRes3vvGNBY8LBoMIBALhbIXUpZUGcFEZEt8AuJSW3+9HR0cHaJpGfX29qPlYgGyEh6IoDA0NYXR0FFVVVSgqKorrjU5K8CyU0mKGexBoH4xrXWVp9An0EuSxt0wi6Alh9IwHpZ9aPKQvlwEFmX4UZPqxATPFUDBEYdKpnimE/hwdmnBpwMbo9MyCwrsfsGhtfw1f/loDytfXxPzcgOUleMR6rnK5PK5UWFZWFrRabVx7FsJ0UMyUFke056RQKJIyPkQSPFGI5U3LtaaTEDwURcHtduOjjz6Kaer3YpC4cZCK8LhcLlitVlAUFfOgTyH2tFjRsv/IgbjXlWeLK1CXI4yfhrN7eq6d5ZgLxVfqIZPH975XyFgUGXwoMviAFbYZPwsyFMadGow5NLMiQ1pMutRgsfA5h6xq/J9/b8Mt15mw80u7II/xniFGPY2Y9SzJPu9ireF8usK8Xm9cqTDSgsfpdIrqsnzNNdeApmnk5eWFB8dmZ2cjOzs7/Gfu/zqdDvX19YK+1pLgIQip6AdnsBcKhbB9+3YiFwC3t0RVdKJvRoZh0N3dDavVitzcXKxcuTLhPQmZ0mLpALwnz8a3qFYJKFKj62M54fxoACF6Olrnn2Iwft6Doiby3k0KOYuSbC9Ksr0AZoohmqEwPlsI/TlNZnVPe2SFWApvHgmipfUVfOmBJpSsWc373MspwiMGsTZBkOoKE0LwiJnSqq2thdVqhcfjwdDQEEwmE9xuN7xeL7xeL/x+PwKBAILBIILBINxud9QmnESQBA9BEjUfDAQC6OzshM/nw6ZNm3Dp0iVib35SgicRxsfH0dnZifLycjQ3N6OjoyNlJq8v9OFBXziMkN0b15ra+vK07vBIV+xnLDP+bj7iQuFWXVK75ZRyFqU5XpTmzH3vBIIyjDk0GItIj73+y2No3t6K+s/cBJkieiRAjALidO9YioVEzf/iTYUFg8ElNTj0xz/+MYDp36fP5wsLG5qmQdM0AoEAAoEA/H4/fD6foGIHkARPVOJJacUKy7IYHBzE4OBgQrUsiyGGQzIH10YPAFu3bg27QJNKjwk57sJ39E9xP1ZdW0JwJxJ8sbdMzPi7dywIa5sPeRuEvZnyRaUIoTzXg/Jcz5yf+T8eQ3DzV6KuIUV4hEWIzjA+qTCXywVgeiQDia4wl8tFZGh0vIiZTpsPSfAQJJ55Wna7HUajETk5OQnXsiyGGIKHZVkMDAzAbDZj7dq1c9roSe1JKMHDTJjhb4l/6KqqQpqnlGwYOgiHyT3n382Hnchdn/rjBVT2NnhHB6EsWrHocZLgEZZkPdfZqbDx8XFYrVbo9foZqTC9Xg+DwRBzV5iYER673Y5HHnkETzzxBNRqNX7yk5+goKAAer0eGRkZM/7T6XTIzMwkUqu6GJLg4QHfwZKxDPyMnA+1YcOGeSvpuUJaEhceacET7YbLCbnc3NwF65BICRXS4y44AsfeABJwtFXki98dsdxwXzAjFJj7mjkHaNi7A8iuTm3Xa4oCVB+/ALZoz6LHiWU8KMY5xUAo759ohEIhqNVqFBYWEukKc7lcokVZHA4H2traQFEUHA4Hnn32WWRnZyMQCIRNHYHpz4FAIICqqiocOXJE0PeZJHgIwielxbIsLBYL+vv7o86Hms+JOF6EMAyc74YQDAZhMpngdDqxfv36Rb9dpHJKi2UYeI9/GP8CFEBp08egbKlgP21e8GfmI86UFzwAoFOOY+zsceibrlnwmOUS4RErqiSW4JmvznKhVJjT6YTdbp93VphCoYDBYOBdtHzw4EE8/PDDYBgG999/P/bsmSm4jx8/jm9+85toaWnB/v37w/46wPRny8aN02aaK1euxIED012tJSUl+M1vfgODwQCtVovf/va3oGkaLpcrXLDsdrvh8/ngcDjmnQNJGknw8IBvhEehUMDv9y/4c4fDAaPRiKysLF7pK06kkGhzF1rwsCyL0dFRdHd3o6KiAuvWrYt6Qya1Jz5zsGIlePkEmAln3I9XrSlM+fTJUmTq0vjCP+vww2UJIKNs4blsqULmxEEwzJWg5PPfI5aL+BDT7FCMBg++jSUKhQI5OTnh0Tuzu8IefvhhDA8PQ6fThQVIQ0PDvDMJGYbBQw89hHfffRfl5eVoamrC7t27UVdXFz5m5cqVeO655/Dkk0/OebxWq8XFixfn3eOqVasAAGq1OjxENBpSW3qasNAHOE3T6OrqgsPhQF1dHe+caqJdX3z2lshanBDzer1oa2uDUqmMOugzEplMBpqmE94P6QgPwzBwvft2QmtoNgo3D0ZifkJBBo5O16LHtGZhFAAAIABJREFUmA+7sO5LqV9bpdX5YXz+Kchu+EsYDAbo9foZH/zLZZaWmBEetTr50cB4zzu7K+ytt95CIBDAHXfcgczMTOzbtw+XLl2CWq3Ggw8+iHvuuSf82DNnzqC6uhqrV0/bItx11114/fXXZwieyspKAEj4tWhtbcXx48fhcDigVqtRU1OD2tpaVFRUJOX9LAkegswWKCzLYnh4GL29vbyjHpEIIVJIrhU526umpibmkCTJGh4SwgkAJiYm0PfxOVS09CS0jqoq+XPOljvuliEwvsUjsRMtXnjHg9AWpP6tr7rMgm6bFYMOB1wuFxQKBbKysmAwGJbNLC0xIzxipbRInVelUsHn8+HBBx8Mf8l2/Pm9FInFYsGKFZ8UyZeXl+P06dO8z+Pz+dDY2AiFQoE9e/bgc5/73JxjaJrGb3/7Wzz55JOYnJyETqcLR6Q2bdqEvXv3YteuXXE+U/6k/lWfAvC9yCMFj8vlgtFohF6vx7Zt2+JKS6Wq4JHJZJiamkJLSwsKCwuxffv2uG5KJLu0Ei1uDAQC8Hq96O/vR61jAB4mMSGmLE6tdszlgP30QPSDWMByzInqO3KE31CCKFUsDBcPYMWXvgdg+kPDbrfD4XBgcnISPp8Pfr8/3L2TmZkpqDhYTiktUrWT8ZyXpNDyer0zxhFxNT6RzHfvjEXYDgwMoLS0FD09Pbj++uuxceNGVFVVAfjk9Tt27BgeffRR1NfX4+c//znKysoQCoVgNBrx+OOP4/7778f+/ftx1VVXSUXL6QIXaejo6IDNZkNtbS0MhvhnKcXT5r7Y3gKB2Kd9z4a76brdbmzatAl6ffwOtqlQtBwZhVMqldi0aRNc+3+W+J4yNQmvIREbUxcXrt+JZPSsByt2ZkFtEGcAbywUl9swdvEsMhqaoFQqkZ+fj/z8fBgMBthsNpSUlMBut2NoaCjcvcN9qBkMBqjVamIfHssppbUUIjwc0X5/5eXlGBz8ZFag2WxGaWkp7/W5Y1evXo3rrrsOFy5cmCN4Tpw4gezsbPzqV79Cfn5++LGrV69GQ0MDdu7ciQMHDuCqq64S9HcvCR5CsCwLq9UKq9WKwsJCrF27NuEbTSxt7nzWSkQ8RQoDrVaLysrKhMQOtycxBY/H40FbWxs0Gg22bduGCxcugOk8i+CQLfqDF9tPrg6UfHn4laQKbIiFo2Px+p3wsQwwdMKFVZ9N/cGulAxQtv4OqG+c7ln/M9yHgl6vh16vD3/ocEZ2drsdIyMj8Pl80Ol0YQGUmZkZ94eJGIW8UoQnfvhGvZuammAymdDb24uysjLs378fL774Iq/H2mw26HQ6qNVqTExM4P3338cjjzwS/jn3GahUKlFSUhJ+btzeKIqCwWBASUmJNDw0VYgmXFwuF9rb26FWq6HT6WbkQxMhVVJabrcbbW1t0Ol02LZtG3p7e4n4Y8hkMmIprVjWiaw9WrduXdj0SyaTgT72TsL70W4m8/pL8MfdOoSgh7/oHTnlxorrM6HQpb4wzS0PwfLGi8je/Umh6UJh//lmOnm9XjgcDoyOjqKrqwsAwh4uXMswny9nyy2ltVQiPNFeW4VCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3zp49i89//vOw2Wx444038Oijj6K1tRVGoxFf//rXw1869+zZEy52pmk6LMzvuecedHR04Nlnn8UDDzyA7OxsANOlBC+99BL0ej2uv/56XvtNBEnwJAA3CHNychK1tbXIzs7GBx98QGx9hUJBrBg3HsHDMAx6e3sxPj4efn7xrjUfYqS0ODOsvLw8NDc3z7i5KINe+M8aE96PuqY44TUkYsP+4WD0gyJg/CyGP3BjxQ3izRmKhVx8hID9M1AYpq9BvnUOFEVBp9NBp9OhuHj6fckwTNjDpbu7G16vN+zhwtUDzfdtW4xCaTENANNd8AQCAd5Rk1tuuQW33HLLjH977LHHwn9uamqC2TzX4+rKK6/Exx9/PO+a3/rWt/DSSy9hxYoVyM/Px0cffYQXXngBhw4dwvr166HT6WAymXDw4EHcfvvt2Lx5M4DEO8EWQxI8ccCyLMbGxtDV1YXy8nJs375dkBuBXC6Hz+cjtlYsImVychIdHR0oKSlBc3PzjDchKcGTzJQWwzAwmUyw2+0LGiIW9l8CG0g8hagsz054DYnYmLowFvNjhk64UHqNHnJV6kd5tAYZbK8/C8OXpw3hEhEfcrkc2dnZ4S8wnIeL3W7H5OQkent7EQqFkJGRERZAer1+2UV40j2yJPak9GuvvRZKpTJc7rF79254vV6Mjo7i5MmT8Hg8YFkWq1atwosvvog777wTt956q6CvuSR4eBB5Y/F4PDAajVAqlWhsbBTUq0GMlJbf70dHRweCwSA2b9487/RasVJRi62zmOCZmJhAR0cHVqxYgZqamgU/KNQXW0Dity3PSay2SSI2WJaFo90R8+NodwijZz0ovSo9RoAUlY3BavwYutqNRKMtkR4uRUVFAKaFhtPphMPhQF9fHzweD2iaht/vB8uyMBgMRAxRo7HcBA9ALqUjtuD5y7/8S9xxxx1gWTYsqmmaDv+dm5ru9/vh9/vDQ06lCE8KEJneqampCefI54PUzSiZxoMsy8JsNmNgYADV1dXhG99Ca6WSYeBC6wQCAbS3t4NhmBlT2ucj2HMJzMDEgj/njVIGSpX63T9LCU/7CGhXfO8jy1EXirfrIZOnviu2XEEBZ38LrHtCcCEgk8lgMBhgMBjCNYlGoxFarRZTU1MYGBhAMBhERkZGOBU22xyRBGIOLE33Qakul2veGY3JhKKo8GdhZHu8WEiChwcejwdnz55FaWnpnPTObBabMxUryYrwOJ1OtLW1wWAw8B55QSLVJlQtEMuyGBoaQl9fH6qqqsK1C4vhP/JWwvsAAM2GMmmkRJKxn+Lhv7MAfhuDiYteFG4V/2bMh4KKIIbefQ1sXVPSP5ApikJubm7Yx4Ubamm32zE4ODjHHDErKyvhCPhymtBOGjEnpUfCBQBMJhMOHTqEYDAImUyGjIwMFBYWwmAwQC6Xo7GxUfCooSR4eKDVarFly5ZFIwQcXFSGhOAh7cMze61gMIju7m5MTU2htraW91RdUpEZvjPKYtkP12qu1Wp5Gz6yPg+8p1oS3gcAqNeXEFlHgj/x1O9EYj7sRMFmLShZegjVLOdx2H3rIdcn98NstviIHGrJQdN0uC3ebDaDpmnodLq4zRHFmmklBqQnw4ud0uKgKAqtra346le/ikAggPPnz0Oj0YCiKHi93vBxQ0NDvL6cJsLyeCcliEwm4yV2AOFFSrzMjjqMjY3BZDJhxYoVMXsGkRz6SQKuFqi3txfDw8Oora0ND9XjQ+D022C9iZsyAoC6UviJvxKfEG/9TiSe0SBs7T7k1s2tV0tFMvJlUB39A/DZv0nqefmk6pVKJfLy8sJjZliWhcfjgd1ux/DwMDo7O2MyR1xOER7Sz9XpdCZkfEuSH/7wh1Cr1XjmmWdw9dVX4+mnn0ZFRQVee+01HDp0CI888ggKCwsF34ckeAhD2iyQ1FocPp8PRqMRMpks7qJrkkKMBC6XCw6HA3l5eXGNufAdPUZsL/JCaaREMnG1WxGwJ/5eHDzsQk6tJm3SkRUrx9BrGQAE/kYcSTwfyBRFLWiO6HA4MDIyAr/fD61WGxZBWVlZ4Qi5GIKHdKSFL6Rb8FOhhofj0KFDeOGFF1BfXw+fz4fa2lps27YN1113Hb72ta/h+PHjuPfeewXfhyR4eBDLTTBVJ5yHQiH4/X6cP38ea9eunWHvLea+EiEYDKKrqwt2ux0ajQbV1dUxr8FYTAh0WojtSabjNyleggzDr3YSWcfZF4CjNwDD6uRPyI4HhVqGjEuvAFu3Je2cpEZLLGaOODY2hu7ubgDT5oherxdarTapHkBi+A0B5AWP0+lMStQkGlxnVn5+PgKBADQaDaampsI/v+uuu3Dbbbfhl7/8peB7kQQPT/jWm5BMaZG66Ox2O4xGI1iWnWO2Fw+kangSYXx8HJ2dneFW81OnTsW1ju/IAWJ7UqzISZs6kKXC1NlhYmuZDzvTRvAAQEkVjeFj7yDrWuGnTAPCTUtfzByxq6sLw8PDGBwc5GWOSIKl4rLsdrtToobH7/ejsrISbW1taGhowIYNG/D888+jvr4eDMPg4MGDvOtHE0USPIQRIg0VLzRNw2QyweVyYcOGDWhpaSHyDU3MCE8gEIDRaEQoFIraah4NlvbDd/Icsb1pG8qJrSXBD9+Im9hatnY/XEM0MkqF95chhX70HYQCOyBTCR9ZTGZ6iTNH1Ov1KC8vR0ZGBi9zRBKCbCm4LAOpU7SsVCrxd3/3d5DJZFAqlXjooYfw93//9xgZGQHDMDh37hy+/e1vAxA+uiYJHsKQTGnFC8uyGB0dRXd3NyorK1FbWwuKosJCJdFvRqQckjn4vMkjW82j+QTxhT73J4ScZJysAUBdLX74eDlhvzgKMGTrLSxHnKi5Z2GPrVQjq4iC5dX/h+w7HxT8XGKkejiRtZA5osvlgt1uD5sjKpXKsACK1xxxKbgsA9OCJ1mRk8VQq9W45557wmmsu+++GwzD4NVXX4XP58MTTzyBv/3bvwUg7BwtQBI8vIklpeX3+4meO5YbDecErVKp0NTUBFXENz9SgoeUQzK3p2jfqDweD1pbW6HX63n5BPHFd+Q9IutwKEpToyNiuTD6dg/xNccvelFxUxCavPS5NRZkmeAaNkNdImyEMdVGS0R2e3HmiH6/Hw6HIyFzxKUS4UkVHx4A0Gg04XSlTCbDvffeO6NIOVliOn2u6jSBdLqHr5FhKBRCb28vRkdHZ0wAF2JvJGt4OPE03/MLhULo6+vDyMhIzK3m0WDGB+Bv7SO2HgDIDenR1rxUsJ8bIb8oC5iPulB9e/rMQ1PpZPC/8z9Q//W/CH4usSI8fFGr1SgoKEBBQUH48W63Gw6Hg7c5olgRHlL+bRwulyslIjwchw8fxrFjxzA+Pg6ZTIa6ujps374dGzZsmPHFXEgkwUMY0iktrgh6sQvBZrPBaDSiqKho0bbsVPPPARYWT3a7HW1tbSgoKIir1Twa/qMHAILZEFmGCpAvD7+QVME35BJk3dGzbqzcmQlVVvqMCClZ5cLI6RPIbP6U2FshSqJRpUhzxLKyMgAzzREtFgsCgcAMc0SapqUID0E8Hg/++7//Gz/96U+hVqtRVFQEv9+P/fv3Q6fTYe/evbj//vuTshdJ8PCE74c8acHDFUHPp4ADgQA6Ozvh9/vR0NAQdVZJqrSTRzK7HigYDMJkMsHpdGLjxo0x+UjwDYuyTBC+42fi2u9CqOtXpI2Hy1LAaZwES7h+h4MNAkMnXai8Jb1SlOru18A2XQlKlj5CLRpCpNGimSPabDaEQiGwLBtOmXHOwELCMAzRYdRiCx7utTty5Aj+4z/+A7feeiv++Z//GcXFxaAoCj09PXj88cfxyCOPIDc3F7fddptUtJxukBYV8603e1ZUUVERrzdJKgqeyHogrtV85cqVWLduXUxvfK7Gis9jgpeOgbGSjQ5oapNnACcBjLzRJej6wx+4Ub4jEwpt+kTtcsoAy2u/RvZt94m9FWIko25otjni6OgoPB4PDAYDL3NEUpCor5y9XjIm2i92fplMhnPnzqGoqAg//vGPYTAYwvfpuro6PPPMM7j55pvxpz/9Cbfddpvg9VOS4CGMUCktDpfLBaPRCL1ez3tWFEeqCh6/34/u7m6wLBt3qzmXGuNzc/QefTeerS6KamX6dPYsBewfCVC/EwHjYzF8yo0V14ufEoiFPNXH8E2MQ5lfIPZWiJHsyCknFPiaI3L1QFqtNqG9kkxpiWWeGAn32VRUVIS8vDy4XC4YDIYZ++KiaNnZyamZkwQPT8ROaTEMg56eHkxOTqK2tjauGSmkBU+iFxV3E2lra8O6desScgXlW0gdso3Af9EU93kWQp6XGhbuywWv2Sn4OYZOuFD6qQzIlemTqtRkymB9ax8M935P7K2kLfN9cVrMHNFut6O7uxsejwcajSZuc0QhDA/FEj1jY2Ow2WzIzMzElVdeiePHj+Pf//3f8dBDD4UzEgzD4Je//CVUKhU+85nPAIDg0TxJ8BBGiJSWzWZDZ2cnSktLsW3btrjfFCT3xrd7bCHcbjfa2tpA0zRqamoStkDnK3j8x98g7t0CCqA00qWULFwmG9ig8E7ftDOEsbMelFypF/xcJCleYcVEyznoN20VeytpCd9UEGeOyEUnWJYNt8XHY45IUvAI5YrNl0cffRT79u1DWVkZcnJy0N3dDa/XiwMHDmDDhg3QarVob29Ha2srbrjhhnBBueTDk2aQfMH8fj/GxsYAAFu2bEnIVRggK3i4tWK9QCPb5+vq6jA+Pk7kd8bHDJFlWXiPfZDwuWajWlcsevh4OTH6prD1O5GYjzpR3KwDJU+f11cmpyC/tB/YuAUg9L4Ua6CmGMT7RS7SHJH7Ahdpjtjf3w+32z3DHDErKyvckEJS8Ljdbuj14gn1e++9F/X19aBpGpOTkwgGg/B6vRgeHsbk5CRsNlvYV+3IkSO4dOkSKisrBa/ZkgQPT5L5gcayLAYHBzE4OIicnBxkZGQkLHaAaVEQCAQI7DA+L56pqSkYjUYUFhaGW82tVisRTx8++wm2fQBm1J7wuWaj3VhGfE2JhbGdITc/Kxp+K4OJFi8KNi/eAZlq5K0MwfLmS8i+9S4i66VCTUiyIOnDE2mOyMFFgex2+wxzRLfbDa/XC5VKlfD5HQ6HqB1a27dvx/bt26MeFwqFZghMKaW1zHA4HDAajcjOzkZzczPGxsaIOTcLEeHhQ2Sr+aZNm2Z88yDl2sxH8PiPvJPweeZDtTr+yfMSseMddCT1fIOHnchvSKwgVQxymNOgHTdDkZV4e70YLstiRZWE7hRayBxxamoKQ0NDMJlMUc0RoyF2S3okXOTK5XKho6MDXq8XWVlZKC8vR25ublLfV5Lg4YlQLdIcwWAQXV1dsNvtqKurC79ZFQoF3G4yAxJJDjblO09rbGwMJpMJFRUV87aak3JtjrZOyGWF9yNjwueZD0VR6riZLnU8Aw6wAeHrd2acczgIW7sfubWJR1mTiS5HBsvr+5D9pUcSXkuMCI9YUaVkOy1z5ogKhQLr168HEN0cMTMzc9E9ulyumDzMhIJlWcjlcjz//PN47rnnYDabIZfLoVKpsGbNGjzwwAO4/vrrk/Y6S4JHADhhwbdlfHR0FF1dXVi5ciVqampmvPikozKkR0IshN/vh9E4LTAaGxsX/IYil8tB07Tg+wmcfBOghWnJl2WQMwuTWJyRA+Q77PhgPuxMO8EDAMUlI7B1tEFbU5fQOqk2R0tIhOiWipVo5oidnZ2gKGpGFCjSHDFVJqVTFIWXX34ZDz74IK644grcdddd0Ol0GBoawsmTJ3HTTTfhrbfewo033piU/UiCRwA475xogsfr9cJoNEKhUCwoCsRKQ8W7FsuysFgs6O/vx5o1a6J2XyUjwsOyLLxHTyR8jvmQF2SAkkZKJA3bh0OinNfRG4Cj14+sVeklbuVKCuyHvwFqnkhoHTHEh1jCQ6zhoYsx2xwRmM4KOByOsDmiz+fDhx9+CKvViszMTF5psIMHD+Lhhx8GwzC4//77sWfPnhk/P378OL75zW+ipaUF+/fvxx133BH+2a9//Ws8/vjjAIDvfe97M4aBAp9E6B5//HHs3r0b+/btmxF1YlkWn/3sZ/G9730PV111VVKKrCXBw5NYQm7RUkehUAj9/f0YHh5GTU1NWMXPx2zjwUQQWvC43W60trYiMzOT91RzUlEnmUy2YM6f6b6A4OBkwueYD+3mlYKsKzE/3v7k1u9EMnjYhfVfSS/BAwAFlTSG3n0dhp1/EfcaYqSXxIzwiHHeWH+/CoVijjlibm4uDh8+jEOHDqGjowPHjh3D1q1bsX37dlxxxRVYs2ZN+PEMw+Chhx7Cu+++i/LycjQ1NWH37t2oq/skGrhy5Uo899xzePLJJ2ec22q14l/+5V/w0UcfgaIobN26Fbt3754x4Jl7Pp2dnfjJT36CjIwMBAKBcMmHSqXCd77zHezcuTNpAlP6aioAi5kPTk1N4fTp02AYBs3NzYuKHYB83Q1pHx5g+sbU3d2NlpYWrF27FrW1tbwNt5JRtOw/8nbC6y+Eem1i/kES/PENuRDyi+cUbjP64B5OPP0qBln2o2C8nrgfL6W0hIWEbw5FUVizZg2+/vWv48Ybb8SePXtw5MgR3H333RgbG8O+fftmHH/mzBlUV1dj9erVUKlUuOuuu/D666/POKayshKbNm2a8zq888472LlzJ3Jzc5GTk4OdO3fi4MGDc/bEsiyKiopw6NAhAIBKpYJSqQy34re2tkKlUhHpQuaDFOGJAU6ZRmM+wUPTNDo7O+HxeOZ0Ki1Gqqe0IlvNm5ubY75BkUxpzZti87rgPdWS8PoLoSjPiX6QBBGEnp/FB/MRJ2ruTr8xIhkFMlhe+Tmy7/lmXI9fThEeMZ6rEJPSS0pKoNPpcPXVV+Pqq6+ec4zFYsGKFSvCfy8vL8fp06d5rT/fYy0Wy7zHfvOb38S3vvUtqNVqXHPNNSgoKAh37n7/+9/HnXfeGeOzix9J8AhApLBgWRbDw8Po7e3FqlWrUFdXF9PFRHJUBWkXaLPZDJlMFpOAm29PQtbwBE69DdZPbtTHbOTZWsHWlpiJ9YP5b6jJZPyiFxW7gtDkpd+tsyi/H/a+HmgqV8f82OUU4QHEmd9FWvBEK1qe78s73+fN97EUReGrX/0qJiYm8Jvf/AavvvoqVCoVAoEA+vv7sWPHDjzxRGL1ZbGQfldtGsCJFLfbDaPRCI1GE/OgT47FalNihdRFPDY2hr6+PmRnZ6O+vj6hdUmmtOZbx3v0WMJrL4hKAUqZWsWNSxlPH3nTyJgJAZZjLlTdlpxhhyRRaGTwv/c/oL74g5h9XZab4Ek2Ygie8vJyDA4Ohv9uNpvDBdHRKC8vx9GjR2c89rrrrptzXCAQAMMw+MEPfoBdu3bh0qVLGBoagsFgQGNjI66//npe5yOFJHhigG9KSyaTYWRkBAMDA1i3bt2MQq50xufzob29HRRFoaqqKlyAlggkU1qz29uZASPobuFcebWbytLOjC5d8U94EPIKF6mLhdEzbqzYmQlVZvqJ3dLqAM69+r9wrK4L+7oYDAZkZGQsKi5YlpUEj4CQFjxOp3OGu/N8NDU1wWQyobe3F2VlZdi/fz9efPFFXuvv2rUL3/nOd2Cz2QAAhw4dwo9+9KM5x7W3t2PPnj3Yt2/fvKm1ZKcPJcFDGG5oHDcnZClcsCzLwmw2Y2BgAGvXrkVBQQHGx8fh9XoTXlvIlJbvyBsJr7sY6vUlgq4v8QkjB8Sv3+EIBYHhk25U3JyehpPVaIFs81/B4582t7NYLHC5XJDL5WFfF4PBEC4sBcQZRikJnvhxuVxRBY9CocDTTz+NXbt2gWEY3HfffVi/fj327t2LxsZG7N69G2fPnsXnP/952Gw2vPHGG3j00UfR2tqK3NxcfP/730dTUxMAYO/eveFuMeATITMyMoKTJ0+GAwVerxdyuRwURUEmkyX99ZUETwwsdsEHAgG0t7eDpmlUVVXB4/EsiYvV5XKhra1tTqu50KmoeNaJFDxswA/v+xcSXncxVBWLd9hJkMP6vlnsLcxg6H0XynZkQKFJv2vcUELB8uqvkP2FB5CRkRFOY9A0DbvdDrvdDrPZDJqmkZGRgaysLDAMk/Z1LXwQa5yFGCktALjllltwyy23zPi3xx57LPznpqYmmM3zX3v33Xcf7rvvvnl/xr1XNm/ejHvvvRcvvfQS/vEf/xFarbg1j5LgSZBIo72qqioUFRVhamoKDgc5v5B4RlUsBp+1QqEQenp6MD4+jrq6OhgMM+fxCF1snOg69NmDYN1kZpAthLxAfOv25YKne0rsLcyA8bEYOeVG+Q7x3WzjoSCjA+6RIaiKP6nZUCqVyM/PR37+9Gw4bsaT3W7HxMQEvF4vpqamwhGgrKysuOoS+bKczA7FSGkJCfcZMzQ0hLNnz+KVV17B5OQk1q1bh9zcXGRkZITNEUtLS8PvOaGRBE8COJ1OGI3GOdEPkmaBwCfdVXy9bRJdy2azwWg0ori4eMG0HKmOL6GEk/fokYTXjHpOnSr6QRIJE7D5wHhSo34nEstxF0qvzoBMmX51XCq9DJMHfw7VX/9gwWO4GU+ZmZlhP7CioiLY7XbYbDb09/eDYRhkZGSERZBOpyP2xUysQumlIHj8fn/SvG3mgxM8nZ2dGBoaQkZGBp555pnwINRQKASFQoGxsTF84xvfwGOPPZYUsSkJnhjgLmSGYdDd3Q2r1Yra2tp5ox+kWskj1yMheLgOsvnWCgaD6OzshNvtRkNDA3Q63YLrkIrM8C0Ej0bkfpjRXgTaBhJeczGUq/KkguUkMfpm6tTvREI7Qxg750HxduEt8YWguMKBsbMfIKPpyqjHcuJDpVLNmfTtcrlgt9vR29sLj8cDlUo1IwoU732L+1BMJmK5LJP6QhtJKtyfbr75ZlRXV8Pv98PlcsHtdsPj8cDr9cLn82F0dBTXXHMNACTl9y4JnhgZHx9HZ2cnysvL0dzcPO+biqR3DiCcQ3Ik3ADTyspK1NbWRr1YSHv6JAr3vBiGwdTbLwl+Pm19ueDnkJhm8kRq1e9EYj7iRNE2HSiZ+B8usULJKKhMfwC7tRmUbPFv1gt1aclkMmRlZSErKytsROfz+eBwOMINHKFQKHyMwWCAVqvl9WG8nFJawWAwZquAheCiK2IKHplMBpfLhe7ubmRlZaGqqirqY5KxX0nwxMDIyAgsFgu2bt26aLiQtOAR0nzQ5/PBaDRCJpMtOtU82jpiI5PJ4PP5cPrUB6g5e1nw86l5m95/AAAgAElEQVSqCwQ/h8Q07i6b2FtYEN8kg4kWLwoaFo6GpjI5ZYDl9eeR/fm/XvS4WKItGo0GGo0mPDiYYRg4nU7Y7XZ0dXXB6/VCq9WGI0BZWVnziozl5P1DUmiJVXgdyc9+9jP813/9F4aHh6FWq1FfX489e/Zgx44dc45N5u9bEjwxUFxczKu4iqRZIEBWXHDiiWVZDA4OYnBwMNxqLtaeEiUYDKKnpwdOpxPbtV647fHPDOKLotgQ/SCJhAk6A2BcqT2/ynzYhfx6flGLVCRPcQk+mxXKnIVHZiQiBORyObKzs5GdPW3WyLIsfD4f7HY7xsbG0N3dDQAzWuK5Oo/lEuEhmdLy+/3EokXx8Ic//AE//OEP0djYiH/4h3+Aw+HA008/jW9/+9v43e9+h7Vr14oyvgOQBE9MiHVDI1kELZPJ4Ha7YTKZkJWVxXuq+WxI1d4kysTEBDo6OlBaWopAIIDgkT8m5bzyLGmkRDIYfbtb7C1ExT1EY6rTj5wa8YpEE0GTJYP1wDMw3PvdBY8h+QFFURS0Wi20Wi2Ki4sBTH9p4aJAIyMj8Pl8CIVC4SLizMzMpIifpVC07HA4kJEhXgfp7373O1x11VX46U9/ivLy6dT/ddddh2uvvRbnz5/H2rVrRdubJHjSAFJF0KFQCHa7HePj49i0adOcYutYIC3+Yr2h0jQd9j3aunXrdM54sAv+Sz1E9zUfsiwNKEX6+a+kIxPHBqMflAKYDzvTVvAAQPGKSUx8fB76jVvm/bnQ0RaFQoGcnJywKz3Lsrh8+TIUCgWGh4fR2dkZrheKjAKRRsyiZVKCh4/poJC0trbinnvuQVlZGWiaBk3T2LJlC0pLSzE+Pg5g+vUVo9ZIEjwxEOsLQ+pbEYn0EddqrlarUV5enpDYIU2sPkNcgfXq1atRXFwMiqIQDAZR0H0eSELUSbt5RfSDJIjg7rCKvQVe2LsDcPQHkFWRnlYFMjkF2cX/BTZsBua5DpOdXuKceIuKisKDiWl62hnabrfDYrGApmno9fpwLVC08Rh8WAo+PE6nk5fpoFA4HA6sWrUKFEVBqVSGvZoYhkFe3rRZq1imvJLgEQiua4jEmziRomWaptHZ2Qmv14uGhgaMj4+nRCoqEu53Fe0i8Pv9MBqNoCgKTU1NM6zvKZaF8kIrEm+Uj456XXESziIR9NIIOgNib4M35sNO1P1N+rpv568MwfL275H9mS/M+ZkYNRez7wlKpRJ5eXnhD02WZcPGiGazGS6XCwqFYkZLfOQ9Ip5zJgvSgkfMlJbf78eePXvw4osvIiMjI+zm3dvbiz/+8Y/hrj2uY2/Lli1Jsx+QBI9AcCKFxJtYLpfD5/PF/LjIVvO6ujpQFEXcI4gE0cwQWZbF0NAQ+vr6sGbNmnD3RySh9lMITbqE3ioAQLliaQyDTXXG/ih8epIk1lYfPCM0dMXCuQ8LTU7gFGjnzVDMihCkYscURVHhD9SysjIA0yN+uCjQwMAAgsHgDGNEvV6/qHBjGCZmkUQCkqk0vmMlhOLOO+/EwMAAfD4fzGYzfD4fTp06hYaGBpw6dQrvvfceaJoGy7KwWq0YHR2NuWkmXiTBEwOxfMMh2cUU61pcq7lcLp8TCVEoFPD7yY1cIPHNbzETQ6/Xi7a2Nmg0mkULrH2H30loD7Egz01Po7l0Y+JoetTvRGI+4sTav1q42ynV0eXKYHntWWR/6R9n/HsqCp75UKlUc8ZjuFwuOBwO9Pf3w+12Q6lULjgeQ6yiZYBcXaTYKa3HH388XLtD0zQCgQD8fj88Hk/47z6fDz6fD263e8bQUaGRBE+M8O1OIumdw7dLK7LVvKamZt4WelKjHAByabv5BA/3XMxmM2pqasJh7PkIOSbgO9+R0B54I6NAqaXLJhm42tOjfieS8QterNwVhCY3fd8jxcXDsHUaoV1bG/63VEhpxUOkMSLXMeT3+2G322G1WtHX14dQKITMzExkZWXB5/OJmg4igdhFy2KeOxrpe1WmOKTNAqOt5XK50Nraiuzs7EUjITKZjLiJYaKCZ3YEy+12o7W1Ndw2H239wIk3gGAyqncA9fqStPVbSSdCwRBC6VO+E4YNTc/YqvpctthbiRu5ikLo1K+BtU+E/y1dIjx8UKvVKCwsDKfGQ6FQuCXeZrPBarXCYrGEo0CZmZlJH3GRCE6nMyzuJGaSPq9imkHSO2exlFYoFEJ3dzcmJydRV1cXVV2T3hfJwZ+hUAj9/f0YGRlBbW1t2KhsMViWhffoyYT3wBfNhtLoB0kkjKPDj5An9rq1VGD0tAcrd2ZCqRcnNUKCwkoaw++9gaxP3wpg4dESQpOMLxcymSwsbjweD0pKSqBWq8MWHpwxYmZmZvg4jUZDbG+ko2dutzvto1RCIQmeGOGb0iJZHLyQSLFarWhvb0dJSQm2bdvG64ZEei4XibVkMhmcTifa29uRl5e34IT2+WA6P0JwKHmjB1SrojttSyTO1IUpsbcQNyGaxdAJNypuSt3QPh8yrIcR8t0AmUaLUCi0LCKbXPMENx6jqKgo/O8OhwMOhwMmk2nGeAwuChRvpJu094/YKa1URhI8AiFkSoumaXR0dMDn80Wdaj4bUlPOuX0lKng4M8SJiQk0NDTEXGznO/J2QuePFUWhdCNJBo7zQ2JvISGG33eh7LoMKDTpa1CZWSiD5ZX/Qfbd3xCtXTvZLPQ85XL5HGNEr9cLu92O0dFRmEwmUBQVLoTmokB8ID0pXeyi5VRGEjwCoVAoEAiQKULghAXLshgdHUV3dzdWrVqFkpLY60mEHEQaK1NTU2hra4NSqURlZWXMF2nIbYfvdGvc548HWUZ6GsulEyEmBOeF9GpJn03Qy2L0tBtl16b3B09hXi+cA32ipbSSDd+aRIqioNPpoNPpUFJSAmB6PAbXEs+Nx+CMEQ0Gw4LGiKTNDp1OpxThWQBJ8MQIX4FBMqVFURRCoRAuXLgAhUIxp9U8FkintOKJFgWDQZhMJjidTtTX12NsbCyudQKn3gYbSJ6nkKLUAGoZ3PTFxtVFg3F7xd5GwliOuVByVQZkivRNBSk1MgQO/z+E1v/FsklpxSs+FAoFcnNzw23WLMvC4/GEnaFdLhfkcvmM8RgqlYq44JFSWgsjCR6BIBVJYVkWAwMD8Hg8WLduHa9p7YshdkprcnIS7e3tWLFiBdatWxe2kI9nT76jx2N+TCJo6qXOh2QwdT5963ciCThCGDvnQXFzevs2Fa/yot/0MaimpqSdUyw3eJKpO4qioNfrodfrUVo63ewQOR7DbDaDpmmoVKpwp5her0/4/JLgWRhJ8AgECcHjdDrR1taG7Oxs6PX6hMUOQLbrIZYuLa7uyO/3Y8uWLdBqP5k2Ho/gCfZ+DLp3NKbHJIp67VyHZwny2C8Mi70FYliOulDUpAMlS+/oyFq0gA0GQCmSk9IVw/eHQ8jzzjcew2KxYGJiAoODg3C5XFAqlTOiQJHGiHxwu93h+WMSM5EET4zEktKKN3XEMAy6u7thtVrDreaTk5Oi3gTmg2+X1tjYGEwm04J1R3K5PGb3Z/+RN2M6ngTK0vT1VkkX2BAL20cmsbdBDO94EJMf+5Bfr41+cAqTUyaH5ZVfIfsLX0/K+ZZLkTRFUVCpVMjOzkZlZSWA6fEYdrsdU1NT4fEYXEt8VlZW1PEYLMuK5had6kiCRyDijfBwrealpaVobm4Ov7FJDiMlRTRRFwgEYDQawbIsGhsboVar5z0u1ggP6/fAe+pSzPtNFHk2/244ifhw9gQAV/rX70QyeMyHvE3kfFvEIl/fDs/YCFSFwg/PTbV7nZDMruFRqVQoKCgIz5fixmPY7Xb09fXB4/FApVLNGI/BdXml2mDoVGPpS2iRiFXw0DSNy5cvo7e3F5s3b0ZlZeWMGyTJYmNSLLQnbtjn2bNnUVxcjIaGhgXFDhC74AmcPgjWk2QbXo0CUEiXi9BMXbCLvQXiuAc8sA6l7xR1DnWGDL639yXlXKS9aVKZaEXL3HiMFStWYMOGDdi2bRtqa2uh1+sxOTmJS5cu4a233sK9996Ln/3sZ7xa3A8ePIiamhpUV1fjiSeemPNzv9+PO++8E9XV1WhubkZfXx8AoK+vD1qtFg0NDWhoaMADDzwQ9/MWAynCEyOkU1osy2JkZAQ9PT2LtppzAorEJF+u64vEnJrZQsXn86G1tRVqtRrbtm3jlX+OeTjq0aOxbjVhtA0r0v4bejrgOD8i9hYEYfCwE3lfEnsXiVNcYcfYuVPI2HqFoOcRI6UlVnSEYZiY63Rmj8fwer3QaDQ4ceIEhoeHUV9fj4qKClx55ZW48sorsX379vCXToZh8NBDD+Hdd99FeXk5mpqasHv3btTV1YXX/8UvfoGcnBx0dXVh//79+Kd/+ie89NJLAICqqipcvHiR0LNPLstDQosAnw9Hr9eL8+fPY2JiAk1NTSgtLV3wcanQTj6byD1xwz7PnTuHyspKbNiwgfdFHMt+GIsJgQ5z3HuOF3Wt8GH85Q7LsnCkuf/OQrgu9WFqIkfsbSQMJaOgbP8D2JCw0ealNLsrGiTa0rVaLT796U/j4YcfRnV1NS5duoSnnnoKFRUVePnllzExMRE+9syZM6iursbq1auhUqlw11134fXXX5+x3uuvv457770XAHDHHXfgvffeWxLpMknwiADLsujv78eFCxdQWVmJjRs3Ro3ckJyBRaplnhM8Ho8HH330EVwuF5qbmxedbD4fsQge/9E34tlqwqgq0j8lkeq4+2kErQ6xtyEYlhPJ84wSktxyFvYDLwp6DknwxIfD4UBmZiYoikJlZSXuvvtuPPXUUygrKwsfY7FYsGLFivDfy8vLYbFYZqwTeYxCoYDBYMDk5CQAhMsurr32Wpw4cYLIvpOFlNKKkUTTGlyreU5ODq9J4BwkIzyk1qIoCna7HRcvXkRtbW3Ydl2o/bB0AN6T5+I6R6Io8qVhfEKzFOt3IrF90AHXp2uQkeUUeysJkys7D7/tM1Dm5Aqyvhjig7QBIF+CwSCx0RJ8PHjmi9TM/lxb6JiSkhIMDAwgLy8P586dw+c+9zm0tramje+PFOERGO6NwzAMOjs70drairq6Oqxduzami4ukczMJweN0OmE0GhEMBrF9+/a4xQ7AP8JDn/sTQg5xOngobWw5donYmTg9KPYWhIVlYflgaXQeaQ0yeA48K9j6y0nwkDyvy+WKOim9vLwcg4OfXGtmszlsjDjfMcFgEHa7Hbm5uVCr1eEI/tatW1FVVYXOzk4ie08GkuCJkVgiPFzqaHJyEqdPn4ZKpUJzc3Ncg91SJcITCoXQ1dWFy5cvo7q6mogzKF8DQ9+x9xI6T7yoqgukgmWBYVkWzgt9Ym9DcCaOtsPnWRr2BsXlE/C0CmMPIaW04oPP4NCmpiaYTCb09vYiEAhg//792L1794xjdu/ejV//+tcAgJdffhnXX389KIrC+Ph4+LOjp6cHJpMJq1evJrL3ZCCltAREJpOhtbUVDMNg8+bNM9yFYyUVhn7a7Xa0tbWhqKgIzc3NCAQCM74pxAsfA0Nmwgz/x70JnysepJESwuPs94O1ucTehuCwQQbmj3SovsYj9lYSRqagQJ17AajbBBD+QiBGtGWpRHiiCR6FQoGnn34au3btAsMwuO+++7B+/Xrs3bsXjY2N2L17N77yla/gS1/6Eqqrq5Gbm4v9+/cDAI4fP469e/dCoVBALpfj2WefDc8OSwckwRMHFEUtWrHOtZpPTU2hqqpqjqdOPMTjRrzYWrEIHoZh0NXVhampKWzcuDEcMiUVdeKT0goceR0QqUlAVVUgzomXEc4Wt9hbSBpj77ZjZXMZVGoy17OY5FcwGDr4BxhuvoPoumJFeNJd8PCJ8ADALbfcgltuuWXGvz322GPhP2s0Gvz+97+f87jbb78dt99+e+IbFQkppUUYrtV8cnISRUVFyMnJIZIOIdmlFYtQsVqtOH36NDQaDbZt2zYjP5wswcMyQXhPnE74PPGiLEqPgrx0xn4+uXPRxCTk9WPokkHsbRDD4H0fjItsIbZYNTxipLRIjgxyOp1pU0AsBpLgIQTLsujr6wu3mm/YsAEqlYqoSElmSisYDKK1tRU9PT3YvHkzKioq5lyU0SJdfIl2sdMfnwAzKV66Q5alEe3cywXHMqjfiWT4YCeC9NIoYNbnyeB8jawD83IqWiaJNCl9cSTBEwezP6AdDgdOnz6NQCAww4cm1Tqr+K41Pj6O06dPIzs7G1u3bl2w9ihZhbz+I4eScp75kOXqQMmly0RIPMM0AsMT0Q9cQjAON8yX09+IkKO4aAjerg5i6y2nomWS8KnhWc5INTwJEFnbsn79+jlvNJKFxqRTWj6fb86/BwIBtLe3g2GYRYd9JpPQ1Bh8F8Rre9RuXhH9IImEGH5/TOwtiILl7W6UbzSAkAWLqMhVFEInnwOqf0RkPbEiPKT8cPhC2r1YEjyLk95yVkS4VnOutmW+NxnpziqhokVckfXZs2dRWFiIzZs3p4TYAYDA8QMAI56lubqmSLRzLxc8l21ib0EUWJsLYz2FYm+DGIWrAnAcfpvIWsulaJllWaLPk2/R8nJlCXy3SD49PT2wWq1RW83lcjkCATJTvYVKafl8PhiNRsjlcjQ1NREZTkoKlmXhPfaBqHuQl0sRHqHxtCR/NlqqYDloQUm1ApRsafg8ZdoPw+e8GkqdHhRFxf1hvlyKlknXDblcLhgMS6cgnjSS4ImDlStXzlvEO5tUTmkFg0GYzWb09/dj7dq1KCiIv/WaVJfB7HWC7R8iODKV8LqJoMjVA5ib/pMgg3csCL95eaa0AMA/MAZLdx3K1yyNsRoZuSycR15C53k1im7cgpwt1aDk8rD44SsolosPTzAYJC54pAjPwkiCJw5UKhUvIUNS8FAURWTCOQDQNI2JiQnI5XI0NzcnlLfmXJITvWi51vTIdfxHDia0ZsIo5ZApyUToJOZn6kL6z5VKlPFjTpRVk2tNFpvinB6ceXMEnf/5ClR5WSi+YTMKd25B4Y56KA16ANP3M+6/+UTQcilaFiLCI3VpLYwkeASEZFSGVASlv78fZrMZWq0WdXV1Ca/JuSQnetHOFk4h1xR8Z9sS3l8iKGpXgaLIiEyJ+bGfX77RHQ53+yBsI5uQWzIp9laIQIUCuO7xTXjtzmMITDow8NIxDLx0DJRchvwr6lB04xYU7dwKfXUJKIoCwzBgWRbyiEjQUhAffM9JslCapumUKktINaSiZQEhWWicKC6XC2fOnIHf78fWrVuJXdgkzQcj1wm8/wbYABmxGC+h6hJRz78ccFwYEHsLKYH5yNJymjZozai+fe2Mf2OZEMZPXsblvb/Be1c8jPe2fQOt330Ok8cvA8EQWJYFwzAIBAKgaRqhUCj8XzIQo2iZpMgi3fG1FJEiPHHAN9pCMqUVL6FQCL29vRgbG0NdXR0MBgMYhiEWeeIzB4vvOtyNjWVZeI+eSHjNRMlZXyH2FpY0/skgfH3DYm8jJXCc74Zj1wZk5S2djrVt9+Wg+zUK7AJdlu7eEXTtewtd+96CQq9B0Y4GFO7cDNcqAzQFWTOMWxmGiZoGS5SlULQMJM8fLR2RBI+AkExpccRSIOxwONDa2orCwkI0NzeHL2Y+s6v4wnfSeSzrMD2XEBwQ34hOUaCDVLAsHLaLSyuqkSjmk0HU/YXYuyCHkpnAFXub8cGjH0Y9Nuj2wfLmh7C8OX1sTkMVsKsRJbsakbOlGiGWBcuyn9wj5kmDJUq6F0qTHFGxVJEEj4CQFBbAJwIqWs6XYRh0d3fDZrPNGPbJQfKiECKl5T/yVsLrkUCmpcXewpLGfn5c7C2kFNaTHXDvqIE+a+kUclc1utBSngmXObbnZLvYDdvFbrT9+0tQF2SjZNdWlO5qQvGnN0OeoQmnujgRxN07IsVPrCIo3euGPB4PdDodkbWWKpLgiQOxVDRXE7SY4LHZbDAajSgtLcW2bdsE3yupCA8nDlmvC95TLQR2lhhUWQHkcnFriJY6jvP9Ym8htWBZmD9UoOZGsTdCDhnjxXX/tgVvfvlY3Gv4x6fQ99v30Pfb90Ap5Ci4aj1Kb25C6a4mZK4pmyF8uDogIPY0GGkTQD4wDEOsyNjpdM75cisxE0nwpBGLRVOCwSA6OzvhdrvR0NCQNKVPqoaHE06B038E6xM/sqLbUiP2FpY0gSkG3m6L2NtIOSYOG1Fx9SpodF6xt0KM3GwLKm5chf5DvQmvxQYZjB1rwdixFlzc8wtkVJeidFcjSm5qQsFV6yFXqeakvYRMgyUKyQiP5LIcHUnwJAFSudWFaoImJibQ0dGBiooK1NbWJjUCRTql5Tsa/zdBkqiqS8XewpLGdtEl9hZSEjbIwHxOj+pPLR3BQ4HFFX9fQkTwzMbVNYTOrgPo/O8DUGRqUbyjASU3b0PpjVuhKfpkOGtkx9dCaTAxupxICh7Jgyc6kuCJg1gExXyGevEyu82dpmm0t7eDpmls3boVGo2G91qckWGi33JIdmlRI90ImIYSXosEyrIsAJLpoFDYL4hflJ6qjL3bgZXbSqBSL533n5odxeZvb8aFn1wQ7BxBpxfmA6dgPnAKAJC7dQ1KdjWh9OYm5NSvnlEKMDsNZrdPO13TNC14N1gkpCM8UkprcSTBEycURfH6RsBFZUgJHk5cjI6OoqurC6tXr0ZxcXHMUR1urUQvaJJdWsqzRyB+MmsaeZbU7SAk9vOS/85ChDw+DH2cjcrGpWXKuO6aAD7+hQrBqeQIOes5E6znTGj9txehKcpByU2NKN3VhKId9VBmTqf8ZTIZLBYLLBYLNm7cCLlcntQ0GMnRElJKKzqS4BEYLipDojBNoVDA5/PhwoULkMlkCQ375ASPUqlMaE9yuRx+vz+hNQBAFgoieOZywuuQgMrQQqZI/DlJzI9/ioancxCSpFyYkYMmlDfkQqFYOoXzKsqH655owp8eeD/p5/aN2tD763fR++t3IVMpUHD1BhTvaoSnKhvqFflobGycIzwii6BJdoNFItXwJBdJ8AgMKfNBlmXhcrlgtVpRV1eHwsLChNYjVXtDKsKjN51ByJUanjfqhrXSh7GAOC77QEmmsIsSnHLBcrkKFQ1LK/VXWjaO4ivKMHJKvIL1UCCI0cMXMXr4IgAgc00Z6JubULKrCQVX1kGmnP5Y5IRMeNzNIt1g3PGxRoFIjpaQBodGRxI8cRJrSisRvF4v2traEAwGsXLlyoTFDiDcSIhY4W4g8o/OIFWmVqlrV4q9hSXNlFS/wwvzH3tQtjELiuR64QkKxTL41D+twu8/lzodek6TBR0mCzr+6zUos3Qo/vRmlNy8DSU7t0JTYAgfN58AAhLrBiNdtLxq1Soiay1VJMEjMInM02JZFoODgzCbzaipqQFN03C7ybjTkozwxLsO9y2JGe0D3ZY6NR3KlXlAysivpYfj/KDYW0gL2EknJnqqUbxmadXy6GTDqH+wAZd+dlHsrcyBdngw+Or7GHz1fYCikNe0Nlz4nL1x1YxayflSWrGmwUi6I0sRnuhIgkdg4k1pud1utLa2IisrC83NzZDL5RgfHyc2qkJMwcPdCLhvRMETqeGszKHIU0EaKSEMtDsEd3vqiNtUx/zOMIqqZKBkSyvJuvGzMrQ9rwLtTOFONJbF5JkOTJ7pwOUf/hba0jyU7GpE6U1NKLquHgr93K7YWNNg7J9HZpAQPZLgiY4keOJEqAGioVAIfX19GB0dRW1tLbKzs8M/IyVSSK4V6/iMyG8/FEUBDAPfyY8S3gcxKECuTpVesaWHvcUDMFL0jC++vhFMWBpQsGJpjeGQB+249t+a8ae/F39IMF+8Q5Po+dU76PnVO5CplSi8ZiNK/xz90VcUzfuY2QKIEzjBYBBmsxlKpTI8zDnRbjCpaDk6kuARGIVCgUCA37cYp9OJ1tZW5OXlzRj2GblWqgkevuvMjupwPhfBlqMI2VJniKRy3SpQ1NLpjEk1pi5Oir2FtMP8rhX5f7P0BkOWVo4hf1MBJlrST8yF/DRG3j2PkXfP4/w/7EPWuhUovXkbSnY1In97LWQLFF5x/mcdHR1QKBTYsmULABDpBpMiPNGRBI/A8KnhCYVC6O7uxuTkJNavX7/gmzaReqD51kpWl9bsqE7kjdt/7L2E90AS9cbVYm9hSSPV78SOu20AttFNyC1eWmKRYoO4Zm8tXrkj/QTPbBztg3C0D6L9P/8AZbYeJTdsRcnNTSi5YQvUeZ+4H7vdbly+fBnl5eUoKyubsUai3WBOpxMGgwESCyP+MJE0hVRKa2pqCh9++CEUCgWam5sXVeipmtJaaB3uYg0Gg/OKnZBtBP5L3QnvgSSq1fOHpiUSJ+gLwd0qDQyNB9Mfl5bY4chUWVD7xfVib4Mo9JQbAy8fx+mv/ASvr/oSTPumaxTHx8fR0tKC2traOWInEplMNm3EqlRCpVJBo9FApVJBLpeHSwgYhgFN0wgEAmAYBqFQSBotwQMpwiMwC6WhgsEgTCYTnE4n6uvrodfrea1FMsLj8yVemLuQcFosqsNBn3gDCKWWIQuVrwYgpbSEwP6xF2xQ+t3GA91qgdO2Hpk5U2JvhThb/kqHjt/JEAosrdouTWE2tv70QZTduh1dXV1wOBzYunVrXGaxMpls0W6wsbExdHZ2EvP0WapIER6BmS8NNTk5idOnT0Ov16OpqYmX2OHWSsUIT6QfUbSoTvg4hoHv+IcJn5808ozUEmBLiYkzo2JvIa0ZPLG0BAGHgrHiU49vF3sbRFn5hWtx09n/RtHNjbh4cbr9fvPmzUQc94FPokAqlQqXL1/GHXfcgaeeeiqmeYrLEUkOxkk8KS2aptHR0QG/348tW7ZAq9UKck4+kBRPHHyiOhxM+4dgxhxEz58osvxsqFRL80MlFZg8Q35a9nLCerId7g2ToI4AACAASURBVB1roc9cepPmK+qmYKjKgb3bJvZWEkJdmI3G//sgym+9YroJ5dw5rF69mohZ7GxYlsXzzz+PX/ziF3j55Zexdu1a4udYakiCR2A4wTM2NgaTyYRVq1ahpKRE9I6L/8/eeQdGUadv/LOb3jcdQiihJyG00ARCEPUAD/UQ6+EPEAEFUUTFAnjYERsqCIhoODhPkPMsKKJHAkSqVCGdEEI6IcludjfJJlvm90fcMSGFlN1NYT7/KJnZmXcgO/PM+33f97Gk4DELnWs7sBqj6sAvFjm3JXEePqCtQ+i0GHQmjBc71wA9m2MSyD3uSP9b2zoQyyMzVTLx9cF89+DBtg6lxSimDsNj/s3kKewoPH2a8vJywsPD8fb2tvi5qqqqeP7551Eqlezfv19ySW8i0pKWlTEajWg0GvLy8hgxYgRBQUFtLnbAcoLHPFfi0qVLaDQa4PqZKJOmGN2plFaf29I4Dghu6xA6LeokHUKVNN+otVyNTaayonmZ4Y6Cwi2HPn/reFkK50Bvxu9YweRdrzLm1mjc3NwwGo0EBgaSkZHB0aNHSUhIICcnB61W2yRLosYoKCjgzjvvpHfv3uzYsUMSO81AyvC0kOs91AVBID8/n0uXLuHg4MDQoUMtdm5LTOZsreCpOVdnyJAhKJVKsrOz0Wg0ODk54e3tjbe3N56ennXaJw1H9oCh/S0dOXTzAixTFC5Rm8LjBW0dQqdA0BvIOe1Gn3EVbR2KVRg134eM3TIEY8eopev5wESGvb0AJx8PdDod58+fJyAggLCwMPEebTKZ0Gg0lJaWkpGRQVlZGc7OzigUChQKBZ6enk320zp+/DhLlizh7bffZsqUKda8tE6JJHisgE6nIzExEScnJ0aNGsWJEycsdmxzkXBbCp5ra3VcXV1xdXUVWy0rKipQqVTk5eWRkpKCg4MD3t7e4pdbd+Bwq2K3FvYKeyTBYx3Up9uPWWRH58ovqfQY2QUHx86XMXM0XmXMylEcfeV4W4fSKM6B3oz46HG6/XU0AEqlkpSUFAYMGICPj0+tfeVyOV5eXnh5edGjRw8EQUCn06FUKsnPzyc1NRU7OzsUCgVeXl4oFIo6xc2CILB161a2bdvGt99+S+/e0rywliAJHgsiCAI5OTlkZWUxcOBAfH19LX4Oc9dXa6v9LeGB1VCtjouLCy4uLnTt2hWAyspKlEolV65cIf/Az3TNbYczRRwdkDtUtnUUnRKj3kRViiR4LIWpTEfeeW96RnbOmqiQSDVnu7pSkV/e1qHUS6+/T2LoW/Nw8vFAEASysrIoLCxk2LBhTeqSkslk4j0yKCgIqG5oUalUlJaWkpWVhcFg4NixY9jZ2TFu3Dg+//xzdDodcXFxTe7qlaiLJHhayLUP+vLychITE3F3d2f06NF15iFYyiDOUvYSrfXAas61ODk5Eejvj9fxw1Ts/q4l4Vodp8H9kMk6Rhq9o6FOrsRU2Y5NIjsg+XvT6TZEgb19+1sabi0OVDHulcHsW9C+xlY4d/Fh5LrHCZo6Cqiuz0xKSsLe3p7IyMgW+V+ZcXBwwN/fH39/f+DPOTvfffcdCxYsQKVSMXr0aD755BPGjRtn0Rb3GwlJ8LQCsy9KZmYm+fn5hIaG1luRbxYplhgKZSl7iaYKlqZmdRrDmJuD9tP1GDPa11TlmjiF92zrEDotpac7dqtxe8Sg1FCQ2o/g8M452yioSxHdb+lFdmxmW4cCQK+Zkxj21nwcvasLhM0WEd27dxezNJbE/EJ64MABPvroI2655RbS09M5dOgQn376Kf7+/qxevdri5+3sSIKnFWg0GhISEvD19WXMmDENKnyzSLGU4LH0/JyGaE1WB0AwmdD9/CMV//kS9O273kAebPnWUYlqSs9Iy1nWIPP7CwQN9ETetHrXDoUMgZGPB7S54HHp6sOIdYsJmjJS/NnVq1dJT08nPDzcKlYOJpOJzz77jB07drB792569qx+GevXrx/9+vXj4Ycftvg5bxQkwdMKsrKyCAsLu+4vvSUtISzpmN4QFsnqFF6h7NOPMaQmWyNEi2PylCY0WAOTwYTmd2ngoFUo1pCXHkLwgHZYE2cBPOyLiXwmklPvnWqT8/d66BaGvTUPR0V1VkcQBC5evNgqi4jrUVFRwdNPP40gCMTFxTV7OK1E40h3+VYwaNCgJil8S3tgWepY9VFziKDZkbc5YkcQBHRx/6N0xTMdRuwAePhJ6+HWQJ1Wham89Z5tEvVzZd/VVs91ac+E3WLEydu2dgkuQb5Efb2K0ZueEsWOXq/nzJkzgGUtImqSk5PDtGnTiIyMZOvWrZLYsQJShscGWDIrY8klLXMNkrnVvbVZHVNJMWWfbUR//neLxGcr7EOCkMmkdnRrINXvWJeKS/kU5wzFr/vVtg7FKsgNGia+NYqfH423yflCZt3G0DfnikIHqksXEhMTrWYRARAfH89zzz3HRx99xMSJE61yDglJ8NgES2ZlLJ0tMhqNyGSy1tXqCAJVR36lfPvnCOVlFonNljgN6dfWIXRaSs/kt3UInZ6cWBV+c9o6CusRGFRAlzFBFBzLs9o57Pw86L7yHoJvH4PRyU68F+bl5ZGdnU1ERIRV2sFNJhObNm3i22+/5ccff6R79+4WP4fEn0iCpxW0xEC0tdjZ2VFZaZl5MXZ2dlRV/dku3KKsjrqUspjN6E/9ZpGY2gLHvl3aOoROicloQnMmo63D6PRoEzJRFUagCChp61CsgkwwEvVCH3b9zTqCJ2TWbQx542EqZEZUKhWpqalUVFSInbUDBgzA1dXV4uctLy/nySefxMXFhX379klO5zZAEjw2oD0uaQmCgIODA6mpqfj5+eHj49PsNeOqE8cp2/oJwh8eWh0VnbsMaZSX5dGm6zFq2+fwuM5G9kEdinvbOgrr4SrPY/Cjgzn3yTmLHdOlmx8j1y+m622RADgBCoUCnU7HuXPn8PX1xdXVldzcXFJTU3F0dBTtILy8vJpsB1Efly9fZs6cOcyePZuFCxe2C3/FGwFJ8NiAazMpraG14qlmrc6AAQPQarWoVCpSUlLQ6XR4eHiIPlguLi71fhFNZVrKt39O1ZFfW3Mp7QZFkAcgTVm2NKrTqrYO4Yah9PgFNLeG4eFd2tahWI3BdzmQ9C97DGWtz5b3nvMXhrwxF0ev2q869VlEBAdXmwrrdDpKS0spLCwkPT0dAC8vL9E2p6mFzAcOHOCFF17g448/JioqqtXXItF0JMHTCtpqSaulx7p2ro69vb34xtKrVy8EQUCj0VBSUkJqaqoogBQKhZgB0p8/S9lnGxGUnaMYVebphtxeEjvWQKrfsS05hyF0WltHYT3sDComvDmGuCWHWnwM12A/Rqx/gq63Dq/186ZYRDg7O+Ps7ExgYCAABoOB0tJSVCoV2dnZ6PV68X6pUChwdXWt9YwwmUysW7eOn376ib1791plYKFE40iCxwZYo9C4OTS1A0smk+Hp6Ymnp2ctAaRUKrmQcB6PuJ9RJJ23yHW0F5yHDUBKJlsewSSglup3bEpxfDLlE/vj6q5t61CsRnCfInzC/ShJLGr2Z3vPmcyQNx6uk9UxGo0kJibi4ODQLIsIe3t7fH19Rc9Esyu6SqUiPT2d8vJyYmNjEQSB0aNHs337dvz9/fnf//6Hk5NTs+OXaD3SHJ5W0NQMjyVbyZu7pNWauTpmARRUoaXnjn92OrED4BgqdUVYA9WFCoylnffB2y4xCaTGte+J5q1FZtIz8eWwZn3GNdiP6O9eYeT6xXXETllZGSdPnsTPz4/Q0NBW+WGZXdF79uzJkCFDGDNmDNOnT0cul7Nq1SpOnDhBeno6q1evZt++fWhaUfuYnZ3NzTffTGhoKOHh4Xz44Yd19iktLeWOO+5gyJAhhIeHExMT0+LzdRYkwWMD2mJJyyx0DAZDy9vNqyop+2IrmtWvYCrqnHM+HLr7tHUInZLiE51z+m97p+xoFpUVnbvbx8MplwF/D23Svr0fnsyU3z6myy3D62y7evUq586dIzQ01CrLSzKZjPz8fHbv3s0nn3xCVlYWX3zxBUOGDOGnn35qlReWvb097733HsnJyRw7doyPP/6YpKSkWvt8/PHHhIWF8fvvv3PgwAGeeeYZi9WSdlSkJS0bYGtridZ6YAEYLl5Au3k9pnzrzb5oDzj4OAC28Sa7kdAldY4arw6H3kDuGQ96j+3c060jZ3pw4T9yTFX1u8W7dvdn5IYn6XLz0DrbbGERYTKZWLt2LbGxsfzyyy906VI9+iIwMJDp06czffr0Vh2/a9eudO3aFQAPDw9CQ0PJzc0lLOzP7JdMJkOj0SAIAlqtFh8fH4v4OXZkpAxPK2hO0bKlpyPXh0WyOgY95f/Zgfq1lZ1e7CCXI3e8sd94rIEgCKhPS/U7bcWVn1PRVzm0dRhWxcFYzPhXx9S7rc8jU5ny2/p6xY4tLCI0Gg2zZs3iypUrtcSOtcjMzOTMmTOMHj261s8XL15McnIyQUFBRERE8OGHH7Zqya4zcGNfvY2Qy+UNipTm0pCAaa0HFoAh6zLql19E9/3XYKF42zOO4SHIZJ3/Om1N2WU9hhJ1W4dxw2IsqyAvwbutw7A6vSJK8ezlJf7ZtUcAE3e/zogPF+HgUXdQoFqt5tSpUwQHB9O3b1+rzL65cOECt99+O3feeSfr1q2ziqCqiVarZcaMGXzwwQd1fB1//vlnhg4dSl5eHmfPnmXx4sWo1Tf291ISPB0ci2R1jEYqdn+DetXzGLMuWynS9ofToN5tHUKnRHWm886C6Sjk772I0dC5b+8yo46bVlXX8vSZN5Upx9cRePOQevfNy8sjOTmZiIgIq/hhCYLA3r17mTVrFps2bWLOnDlWHyao1+uZMWMGM2fO5O67766zPSYmhrvvvhuZTEbfvn0JCQkhJSXFqjG1d27sBb1W0tbTMS1Rq2PMz0W7+WOMFy9YIcL2jWNv6xgB3uiUnr7S1iHc8BhK1BSk9aFbWGFbh2JVfAMq6P3pfPS9/ElIT0WhUODt7Y2np6eYWU9NTUWv1xMZGWmVGhaj0cg777zD4cOH+d///mc1g9GaCILAI488QmhoKE8//XS9+/To0YPY2FiioqK4cuUKqamp9O59Y7/kSYLHhpiFiSUwZ3SgZR5YgslE5b69lH/1Bdyglfv2Aa5IE5YtiyAIqM9causwJIDcvVl0HeCMvOUOCO0ao89AjGEPMdKx2tm8oqIClUpFXl4eKSkpyOVydDqd2HJuDbGjVqtZsGABffr0Ye/evTg42KZ26vDhw2zfvp2IiAiGDq2uVXrzzTfJysoC4LHHHuOll15izpw5REREIAgCa9aswc/PzybxtVckwdNKZDKZKDwaw/y20Rr/FfjTAystLQ1fX1+8vb2bXYhmvFpI2ZYNGJITWxVLR8fOTarfsTTluQb0hVKHVnugKq+YjIR+9B3SufzMBJkcQ++/YuxxM8j+vPe5uLjg4uJC165dUSqVJCcnExwcjMFg4MyZMwiCUMsKorXD/1JSUpg/fz5Lly5l5syZNs34jx8//rrPnaCgIH755RcbRdQxkASPjTAPH2yp4Kk5LTk8PByVSkVxcTEXL15ELpeL/lcKhaLBcwiCQOXBOMr/vRV0nbtt9XrYdfVFLu/cQ9raAtWZG7sosr1ReqQMYXDbL79bCsFJQdWg2QheIfVvr2ERMXz48FoWEUajkdLSUpRKJTk5OVRVVeHp6dmgFUSDMQgCP/zwA2+++SYxMTEMH153xo9E+0QSPK2kqRke8yyellTt1+zAksvlODk5ERgYKHq66PV6lEolRUVFpKen1yuATMoSyj7fhP73M80+f2fEaeiAtg6hUyLV77QvKi7mUZw7BL/g5lsxtDeMfuHoQ/8ODm71b7+ORYSdnR0+Pj6iKWh9VhCurq5iHZC7u3udYxiNRlavXs3JkyeJjY294ZeIOhqS4LERLRk+eK0HVkOt5g4ODgQEBIjFclVVVahUqmoBdOECnhdT8T8Yi1xX0foL6STIpYJlq6A+ndnWIUhcQ26cGr9ZbR1FyxFkdhj63IGxezQ0kIEpKysjISGB7t27N3lqstkKwmwHIQgC5eXlqFQqsrKy0Gq1ODo68ssvv4i1Mk899RTh4eHs2bPnhh/i1xHp3H2L7YiWemAZjcZmz9VxdHQkICCAfl27EHbiMIE//yCJnWvxrzunQ6J1lOfrqcrv+JmEzobm3CVUVzvmXB6Tsw9VkU9i7DGxQbFz9epVzp8/32qLCJlMhpubG926dWPQoEGMGTOGsLAwAgMD+eKLL4iOjubixYsIgsBPP/1ESUlJi88FTfPDAjhw4ABDhw4lPDyc6OjoVp3zRkeSqK2kOQaiTfXAakpW53pUnTpBWcwnCGppJkp9eHR1B27sOiZLozrTcjNECeuSc7AKxT1tHUXzMPoPRj/wAXCo/+WkpkXE8OHDrTLkz8nJCYVCweXLl9m7dy89e/bkyJEjHDp0iPfee4+ZM2cyf/78Fh3b7Ic1fPhwNBoNkZGR3HbbbbXsIVQqFYsWLWLv3r306NGDwsLOPWbA2kiCx0Y0ZUnr2lqdlggdU1kZ5f+KoerwwZaG2vlxdkTuILWjWxrVqYK2DkGiAVTH0tDcGoaHov2/AAkyOwz9/oax2/gGszp6vZ7z58/j6enJsGHDrFKUbTAYeO2110hMTCQ2Nlas/Zk6dSpTp05t9fGb4of173//m7vvvpsePXoA2GTGT2dGWtKyEY0taV07LbmlYkef8DvqFc9IYuc6OA0dgIzrF5pLNI+i4zfe8MqORM6Rto7g+phc/Kga8RTG4KgGxY4tLCJKSkq49957cXBwYPfu3aLYsRYN+WGlpaWhVCqZOHEikZGRbNu2zapxdHakDE8rac6Sll5ftw3aElkdQVdB+Y5/URknzVxoCk5hPds6hE6HOq8CCtt/9uBGpvhgChUT+uLiXtbWodSLMWAY+oH3g71zg/vk5eWRnZ1NREQEbm71d2u1loSEBBYsWMDKlSuZMWOG1Vv6G/PDMhgMnDp1itjYWCoqKrjpppsYM2YM/fv3t2pMnRVJ8NgIe3t7Kir+LBy2VK2OPjWZsk8/xlQotQM3Fcee1n1buxEpS5CWCNs9RhM5J5zpd3P7EjyCzB5D/7sxBt3UYFbHFhYRgiDwn//8hw8//JAvvviC8PBwi5/jWq7nhxUcHIyfnx9ubm64ubkxYcIEfv/9d0nwtBBJ8NiImjU8lvDAEqqqqPh6B7q9P0AT5gBJ/Im9nzNSwbJlKT0tFVN2BAr3JdPjpu44ObcPgaqzV5DocBNlufYoyi6Is8NqWjTodDrOnz9PQEAAPXr0sFq9zqpVq0hPTycuLg6FQmHxc1xLU/yw7rrrLhYvXozBYKCqqorjx4+zdOlScUVAonlIgqeVNPXLZxY85uUr82db8uU1ZFxEu3kdprzcZn9WAuycmzcPSeL6qE9fbusQJJqAUKkn94wnvW+62tahYAwcAQPuJdzeCb1eL05BzszMxGQy4enpiaOjIwUFBYSGhlqtjqaoqIi5c+cybtw4vv3221bb/zSVpvhhhYaGMmXKFAYPHoxcLmfevHkMGjRIPEZJSQk+Pj4W9WnszMiuMyVYSh1cB5PJVG9tzrVoNBoSExMJDQ3F1dW1xercmJeLduOHGC9LBo0twaFfDwJfnNjWYXQqKosNHJ/677YOQ6KJ2Hm4MmJ5AA4ObWOtIsgdMPS/B2PXUQ0uYRkMBi5cuEBRUREuLi7o9Xo8PDzEDFBTbSCux9mzZ1m4cCGvvvoqd955Z4cRDUajkVWrVrF//35WrVrFiBEj8PHxkTI/1TT4jyhleKyMuVbHycmJgIAA0tPTqaioEL+8Pj4+uLi4NPl4dkHd8HrtbYovXyb/cDwBmlKcsjMxZmdJS1tNQBbava1D6HQoz7avmhCJxjFqyslP8KbHMNsvQ5rcuqAPn43g3rXBfYxGI0lJSTg4ODBu3DjReFmr1aJUKmvZQJgtdNzd3ZslVgRBYMeOHWzcuJGdO3cycOBAS1yezbCzs2PatGnI5XKeeOIJ+vXrx8svv8yIESPaOrR2jZThaSWCIFBVVdXgtvpqdQRBQKPRUFJSglKpRKfT4enpKQqgmoZ312IwGEhLS6OyspKwsDDR8dek1WBITUGfkoghJQljVqYkgOrB6fE78I/smFNn2yup76Zz5asO0PMs8Sdertz0og929ra7Rxi6jsbQfwbYNTwgsKkWEYIgUFZWhkqlQqVSodFocHZ2Fn2wPD09G8x06PV6VqxYQV5eHjExMXh5ebX62mzJtctXP/30EzExMfz888989tlnTJ48GQ8Pjxt5mavBi5YETyupT/Bc24F1vVods4mdWQCZXXzNAsgsakpKSkhLS6NHjx507dq18WOWlWFIS8aQkoQ+JQljZoYkgICA9+fhqKhfoEq0jBN/j6UiXaon62iEPDKcbqHW7+4U7BzR978XU9eRje539epVLl68SFhYWJ327KZQUVGBSqVCqVSiVquxt7dHoVAgl8vx8fFBoVBQWFjI3LlzmTRpEsuXL2/3yz81l6iuXa4yGo1ivZFarWbJkiV8/fXXvPXWW8ydOxdnZ+cbVfRIgsdaXCt4LNGBZTKZUKvVKJVKSkpKqKqqEo8XHh7eopuBqbwMw4VUDMmJfwqgPwTZjUTQp/OR27WPDpXOQJXKyLG/fNHWYUi0AKdgfyKfdMSaz3yTe1D1EpZbYIP71LSIiIiIqNWh1RrMJsp79+5l3bp1GI1GysrKmDVrFkuXLu0wTucVFRVcunRJnMB8+fJlevasniV2raCZPn06CQkJvPrqqzz44INtEm87QBI81qSysrLZWZ2molKpSE5OxtfXFzs7O5RKJQaDQUzdent7t8hDRqioQH8hpbYAaoa5aUdEpvCg2/vT2zqMTsWVg2pSl33b1mFItJD+jw8jIMQ6tTyGoLEY+v2t0SWsmhYRffr0sUo2QhAEtm/fztatW5k/fz6ZmZkcOnQItVrNiBEjWLduXYt9uLKzs5k1axYFBQXI5XIWLFjAkiVL6t33xIkTjBkzhp07d3LPPU03NtuzZw/fffcdCxYsYPny5QQGBjJr1ixuvfVWcR9ztken03HTTTfh6enJZ599Rt++fVt0XR0cqWjZ2pjFjqWEjtFo5OLFi2g0GoYOHVqrsNloNIotnNnZ2RiNxloCqClvSDIXFxwHD8Nx8DCgelqz4UKaWANkyEjvdALIefiAtg6h01F6uu3bmyVaTvr3Wfg/6WRRoSHYOaEfeD+mwOGN7qdWq0lKSqJ3795W84iqqqri+eefR6lUsm/fPtzd3cVtlZWVnD17tlWmo00xAIXqe/bzzz/P5MmTGz1ezYyN+f9vv/12fvrpJ8aNG8fYsWOZMmUKQ4YMqfU5Ozs7jEYjzs7OxMTEMHLkSH755Rf69u1ba+nrRkcSPK3k/PnzrF69mgkTJhAdHS2avLWG0tJSkpOT6datG/369atzM7Kzs8PHx0ecS2E0GsW168uXLyMIAl5eXuK6dZMEkLMLDhFDcIio/iIJlbo/BFAShpREDBcvdHgBJO/bcGeIRMtQn85u6xAkWoEpu5jCrDACe1rGFsTkEVy9hOXq3+h+trCIKCgo4OGHH+b2229n2bJldep1nJyc6nhXNZemGIACrFu3jhkzZnDixIkGj1VT7BgMBnGa9G+//cbXX39NREQEd9xxB/fcc08dkSYIgih6hg4dypIlS3jjjTeYM2cOrq71u83fiEiCp5WEhYXx5JNPEhcXx5IlSygoKGD48OFERUUxceJEunTp0uS3J5PJxMWLFyktLWXw4MFN/kW1s7PD19cXX19foPrLYhZAly5Vz+sxZ38UCkWTxrLLnJxxGDQYh0GDq2OrrCT38K/oEs7hV1qCkJkBTZg/1K4IkL74lkSvMVKeJgmejk7BrzoCLWAvZwiOwtD3LpA3fH+paRExYsQIq2Uejh8/zpIlS3j77beZMmWKVc5xLQ0ZgObm5vLNN98QFxfXqOCB6nqdF154gYULF4qt8idPnsTZ2ZlNmzaxZcsW4uPjGTp0KOXl5WRkZBAeHo6/f7XANP993n///cTHx/PDDz9w3333WeFqOyaS4GkldnZ2jBkzhjFjxrB8+XJx/HdcXBzz58+npKSEkSNHMmHCBKKiovD3969XAKnVapKTk+nSpQuRkZGtSjHb29vj5+cnFuUZDAaxADojIwOZTIZCoRAzQNe76VRUVJCYmIhX9570mTgJuVyOUFWFIeMChuSk6mWw9LR2L4A8u3khWUpYDtXv5VLnXydAczaD0imD8PJTtujzgr0z+oEPYgoY0uh+trCIEASBrVu3sm3bNr755hv69Olj8XPUR2MGoE899RRr1qy57n1WJpPh6OjIrl27GD9+fK3ZQDqdDoPBwIoVK3jggQcICAjgyJEj6HQ6FAoF3333HUOGDBGXr8LDw3F0dCQ1NRWoW9x8oyIVLVsZnU7HkSNHiIuLIz4+Hq1Wy+jRo0UB5OLiwooVK4iIiOC+++6zWnq3Jnq9HqVSiVKpRKVSIZfLxRZ4Ly8v8YspCIKYeh44cGCj/jKCXo8hI726DT45EUN6KjQwn6hNsJPTbfMsZLIbrzPNWlxYl0n+9vi2DkPCAniPHUD43dpmf04t9yHL5y+4+ffE29u7wRliJSUlpKamMnDgQLy9rTMHq7KykmXLllFWVsaWLVtsci+F6vvptGnTmDx5cr2eWCEhIZifs0VFRbi6urJ582b+9re/1drPLFYeffRR3NzcWL16NU5OTpw7d47HHnuMtLQ0/P39ycvLo0uXLsydO5dbbrmFxYsX4+joSHx8fK3jfPTRR3z11VfExsaKo01uEKQurfaCVqvl8OHDxMXFsXfvXgoKChgxYgSzZ89mwoQJeHh42FyJV1VV1RJA9vb2TsvH3AAAIABJREFUeHp6olKpcHd3p3///s12JxYMegwZF/+YA5SIIS0VqtquHdxp2AD8n2jder1EbU7MPkBFclZbhyFhIYa+FIq7l7rJ+xu6T6Qq5HbU2nLx/lFZWVnLAsLFxYXs7GwKCwuJiIhodKhqa8jPz2f27NlMnz6dpUuX2my+jiAIzJ49Gx8fHz744IPr7j9nzhymTZvWaJfWq6++ys6dOzlz5oxYq3P69GnOnDlDZmYmDzzwAN999x3Ozs4sWrSI999/n48//phTp07RpUsX8ThHjx4lISGBWbNmSYLHvEESPLZHr9ezZs0a9uzZw/vvv09RURFxcXEcPnwYmUzG+PHjmTBhAjfddJPN3lJqkpubS0ZGBu7u7lRWVuLg4CBmgBqbYNoYgsGA4VK1ADKkJqFPSwGd7ZaXPB6ajNekhmeBSDSPKo2RY7f9G0zSLaKz4HdLOAOnqq67n2Dvij7s75j8BtXd9scUefMSukqlwsHBge7du+Pj49NsC4imcOTIEZ5++mnef//9Wq3atuDQoUNERUUREREh3hevNQA1IwgCDz/8cIOCx7zsVFxcTN++fVm2bBnLly9v8NzPPvssAwcOJDY2ltLSUv773//WEpSCIFBcXNxh5g1ZEEnwtCdefvll7O3tef7552t1UAmCgFKp5ODBg8TFxXH06FGcnZ0ZP3480dHRjBo1qlm+W81Fr9eTkpICwMCBA8XYKisrxSnQarUaR0dHUQB5eHi0TAAZjRgzM8QuMH1qCugqLHo9NfF96f9wCZHWsC1F0TEtSU/+t63DkLAgMjs7Iv/RG2e38gb3MXn2omrQbHBufFnKbBERHByMl5eXmD3WarW4uLiIYzRaev+A6gLozz//nC+//JIdO3aIw/jaKxqNBg8Pj+vuV1lZyYoVK/jxxx/Ztm0bI0eOrNcU9NSpUzzwwANcvXqVvXv3MmbMGGuF3tGQBE97oqkFZIIgcPXqVfbv38/+/fs5fvw4Xl5eYv3PiBEjLJaqLC4uJi0tjd69exMY2HgmRKfTiW9wGo0GJyenWgKoJW9wgtGI8XLmn3OA0pIRyhu+8TaXwI/m4+AuTVi2FOkbL5MXc7Ctw5CwMF3uGEzf6OJ6txl63IKh9+0gb7z4tjGLCEEQallAaDQaHB0da3lgNaVzq6KigqeffhqTycTmzZut+iJoCZYtW8bly5cZNmwYU6ZMYdiwYY3uHxsby4svvkhISAgbNmzA19dXrM3Zt28f33//PWfOnEGtVhMeHs4777xDt27dbHQ17R5J8HQGzEXEcXFxHDhwgJMnTxIQEEBUVBQTJkxg2LBhzR7LbjQaSUtLQ6fT1TIjbQ4VFRW1BJCLi4sogFqawhZMRgyXMyn57RiViedxv5IPFS0XQEGfPYJc1r67yDoSp+cfQvt7RluHIWFh5M5OjFjZDUfnP18OBAc39GEzMfmGNfLJlltE6HQ6UQCVlpaKHlje3t54eXnVqR/Myclh9uzZPPjggyxevLhd+2Gp1WoeeOAB/P39WbBgAZ9++in9+/fnxRdfBGj03rh69Wq2bdvGrbfeyrp168Sfm7uAFQoFCxcuZPfu3Rw7doznn3++RbZDnRBJ8HRGBEHg8uXLxMXFsX//fs6ePUtwcLA4BDEiIqLRtyWVSkVKSoroTGyJtXXzG5x5CUyr1eLq6ioKIDc3tyadp6qqiuTkZBwcHOjfvz92chnG7CzRDNWQkoRQ1rSuErvuAXR9xTazOG4EDDoTRyd9iWDo2IMoJeqn273DCBldbTdh8upN1aBZ4NRwhyZY1iLC7IFlFkBXr17lhx9+EJs6Xn/9dT766CMmTpzY4nPYitjYWL7//ns+/PBDoNomYtmyZZw6darBAm7z8pXJZOK5557j+++/Z+LEiWzevFncR6fT1fr8yZMnCQ0NbZOaz3aIJHhuBMyDC80CKCEhgd69e4sCKDQ0FLlcTkVFBZ9//jmjR48mPDzcqulgQRAoLy8XM0BlZWW4ubmJAsjV1bXOzbGoqIgLFy7Qp0+fBkfOCyYTxtzs6jlAqdXLYIJGU+++btPG4313b4tf241K8YkyEh//uq3DkLASdp5ujFzuD31vxtBr8nWXsMwWEX369BEH4FkSjUbD3r172bVrFydOnKBLly5MmDBBXNqv2ZnUEprih/XFF1+wZs0aANzd3dm4cWMde4f6KCsrQ6PR0KVLFwwGA2VlZdx///188cUX4qBYqFvmYBY9SqWS7du389JLLzF16lSefvppRo0aJe5XcyKzhIgkeG5ETCYTKSkp4hJYcnIyQUFBXLp0icmTJ7N69Wqbf1kEQaCsrEwUQOXl5bi7u4vp6+zsbCorK5u9vCaYTBjzcqttMP7IAgnq6nH53kvvwy3COu2wNyIXP80m99P9bR2GhJWQuzgR+umLuISFX3df85yuQYMGWS27UF5ezpNPPomzszMbNmxAEASOHz9OfHw88fHxvPrqq4wdO7bFx8/Pzyc/P7+WH9a3335byx7iyJEjhIaG4u3tzU8//cTLL7/M8ePH6z1efQXGZnJycrj//vs5dOgQMpmMS5cuERISUu++ZhFkNBo5e/Ys8+fPx93dnaFDh/Lmm2/W8gWTqIUkeG50jEYj77zzDl9++SVTp04lKSmJjIwMBg0aJL4thYSE2HwGkCAIaLVa8vLyyMvLw87OTsz++Pj4tDj7JAgCprxc9KlJuIR74uxbiox2NAixA3PmsaNoTl9o6zAkrICdpxv9PlqO++D+je5ntogwGAyEhYVZzSIiKyuL2bNnM3v2bBYuXGiT+9Ndd93F4sWLue222+rdrlQqGTRoELm5uXW21TTqLCwsJCAgoJYA+vXXX9m8eTPbt29n0aJFeHt7s2rVqkYNTM2fz8nJISEhgddee43FixczderURofB3sBIbuk3MjqdjilTphAdHc3JkyfFYkKDwcDZs2eJi4tj2bJl5OTkMHToUNEHrFu3bla/wZg70dRqNaNGjcLV1VWc45GSkoJOp8PT01P0AmuqAJLJZNh1C8auWzACUCEIyNBiJxQhF4qxE4qQIRUxNxdjpQltQmZbhyFhBRz8FPT7eCWu/Rpv77aFRQTAgQMHeOGFF/j444+JioqyyjmupSE/rJp89tlnTJ06tdbPzIkDOzs7cnJyePHFF8nMzGTbtm21MjgODg5cvnyZKVOm4O/vz4YNG64bk1ksBQcHExwczLhx47Czs5NMQVuAlOG5QcjMzKRXr16N7qPX6zlx4oS4BHb16lUiIyOJiooiOjqawMBAi97cysvLSUxMxMfHh5CQkHrTwCaTqdYgs8rKSjw9PfHx8Wl0lP11EQRkaP4QQEXYCSWSAGoCJafLSXjsP20dhoSFcQzyp/+Gl3Du0bXR/WxhEWEymVi/fj179uzhyy+/tFm7tVarJTo6mhUrVnD33XfXu8/+/ftZtGgRhw4dqlWDY2b37t3MmTOHwYMH07dvX1auXFlrPtCPP/7IHXfcwYYNG2oNJTQajeTm5tKjRw/LX9iNh7SkJdF8KisrOXr0KPv37+fgwYOUlpYyatQosVjQ19e3ZS3nNTy6QkND8fLyavJnTSYTarVaFEB6vb6WAGrxXCJBQEYpdkIxGAqRC8XY20m//tdy6bMcsj+Ja+swJCyIc0g3+m98CceAug9wM4IgkJWVZXWLiLKyMh5//HG8vb356KOPbGaJcD0/LIBz584xffp0fvrpJ/r3r7vk9/333zNv3jzmzZvHggUL6NmzJzKZrFZB8tWrV8nLy6tV8JyWlsaDDz7IPffcI7arS7QKSfBItJ6KigrRByw+Ph6dTsfo0aOJjo5m/PjxeHl5XVcAVVVVkZSUhJOTU3W7eSvX/k0mE6WlpaKXj16vx8vLSxRAja2N18eVK1fIyMhgwID++HnLxeUvuVCCDKkN++zi46h/S23rMCQsRc8u6BdNxy3QT1w2vnZ0hMFgICkpCUdHR/r372+1uTeXLl1izpw5LFiwgHnz5tmsnrApflhZWVlMmjSJbdu2NVggPW/ePMrKytiwYYOY/TLX9DRUyPz999/zwgsvsGLFCmbOnGm5i7qxkQSPhOXRaDQcOnSIuLg4Dh06hNFoZOzYsURHRzN27Ng6Y9QzMjK4cuUKffv2tUr7KlTfYGoKIKPRWEsANTQMzWAwkJqaitFoJDQ0tO5+ggk5qmsE0I3lvG7Umzg66StMlVLxd2fAPTKMfmufR+7mInZOKpVKysrKxNlZzs7OZGRk0KNHD4KCgqwWy759+1i5ciWbN2+2uUVCU/yw5s2bx9dffy0uT9nb23Py5Emg+qWrqKiIkSNHsnjxYpYtWyYKnMYEzyuvvMLatWvx8/MjPT0dqM40NXd4rEQdJMEjYV0EQaC0tJT4+HjRCNXe3p7x48czatQovvzyS+RyOVu2bGl21qU1GI1GcYiZUqnEZDKhUCjw8fFBoVDg4OBAaWkpycnJ9OjRg65duzbtzVIwXiOAlJ1eACnP6Tg/76u2DkPCAnhFRdJnzVLkznWXjMyzs7KysigoKMDR0VEUQK31v7oWk8nE2rVriY2NZceOHa2eqdNWVFZWMmDAAB566CFef/11oHoi8q5du7h48SIGg4E333xT7Gh79913+fXXX9m5cycTJkzgrrvuYsWKFW18FZ0GSfBYm7lz5/LDDz8QEBBAQkJCne0tHVzVUTE79X766aesXbuWPn36YG9vL9pgjBo1ymp1AI1hFkDmSdC6Pxzb+/TpQ2BgYMvnEglG5IJS7AKTo0TWyb4+mf/MI+vjfW0dhkQr8Zk6nl4vP47cof7fdbNFhEajYdCgQdjb29fyv1Kr1aJ/ntn/qiUCSKvVsnDhQrp27cr7779v0xchSyIIAnq9nqVLl7Jx40b+/ve/o1Qq+emnnwDo0qULBQUFjBgxgl27dtGzZ08SEhIYNKjabX737t2sW7eOd955p1M/E2yIJHisTXx8PO7u7syaNatewdOcwVWdAYPBwBtvvEFsbCwxMTH07t2bK1euiEaov/32Gz4+PqIAioyMtOkNr6KigsTERLy8vPDy8kKlUqFSqZDJZLUyQC2uMRIM1wggVYcXQKefOI72uFS/05Hxv/cv9Hj+EWQNCJSmWkSYDYTNAsjBwaGW/9X1vjcXLlzgkUceYfHixcyePdvm87+swa+//sqaNWvYs2cPISEh3H777fzlL3/hlltu4b///S+zZ89m9erVPPfcc7U+d/nyZd5//31CQkJYtGhRhxV+7QhJ8NiCzMxMpk2bVq/gqUljg6s6C0VFRcTExLB06dJ6syaCIJCbm0tcXBxxcXGcOXOGLl26iC3wQ4YMsdoU6IKCAjIzMxk4cGCdwV16vV7MAKlUKuRyuTgIsSk38gYRDMiFkmsEUMfBpDdx6JavQCfV73RUujw8nW6LH2xQXLTGIqKyslIUQNcagF774rB3715eeeUVtmzZwsiRI1t1Te2NsrIyEhISGDx4MHK5XOwyU6vVjBs3jltuuYW1a9fW+TfYuHEj8fHxrF27li5dutSxmpBoFpLgsQVNFTzvvvsuKSkpbNmyxUaRtX8EQeDSpUviDKDff/+dHj16iEMQw8PDW93RZTAYSElJQRAEBg4c2KTiQL1eL7bAl5aWipOgzTfyFtcyCHpRAFUPQVS3awGkStJxbo5Uv9NR6fbkQ3Sdc1eD2y1tEVHTAPTMmTOsXbuWESNGiN/zXbt2NeiT11moWah89epVwsLCeO6551i2bJm4T01hM27cOMaOHcs777zTJvF2IiTBYwuaIniuN7hKohqTycSFCxdEI9SkpCT69u0r2mAMHDiwWWLD7Azfs2dPunZtfLhaY1RVVdUSQA4ODmIGqKW1DIIgkJtziaryHHr39MDZvhQ59RuhthVJn6RT9NmRtg5DornIZPRcPh//GfXbJNjKIuLSpUs8//zzFBcXi7Npxo4dy4QJE5g0aVKdjs7m0BTzT0EQWLJkCXv27MHV1ZWtW7cyfPjwZp+rqZmXmhYTVVVVfPrpp2zatInt27czdOjQevf99ddfeffdd/n2228BpAxPy5EEjy24nuC53uAqiYYxmUwkJSWJGaC0tDRCQ0NFAdSnT58GJzVfunQJpVJpFWd4cyq/pKQEtVqNo6OjKICa0s1inkvk7OxMv379/nzgCJXYCcV/doGhtWjczeXUk8coO5bWpjFINA+ZvR0hrz2Bz+Rx9W43W0QEBgbSvXt3qz1gU1JSmD9/PkuXLmXmzJnIZDK0Wi1Hjhzh4MGDPPjgg2IBb0toivnnnj17WLduHXv27OH48eMsWbKkyTWU5mfktUMEm0JSUhK7d+/mlVde4cUXX+Sll15q8BySwLEYkuCxBY0JnqYMrpJoOkajkXPnzokC6NKlSwwePFgUQD179iQ1NZV3332X5cuX06tXL6sNTKuJuZizpKQEjUaDo6OjOAPI09Oz1k3NPKa/SXOJBN01AqjMylfyJyaDiaN/+S9GbbnNzinROmRODvR551kU4+vPYtjCIkIQBH788UfefPNNPv/88xZlVFpCfeafjz76KBMnTuTBBx8EYMCAARw4cOC62d6ay1KxsbF88803uLm5MWjQIP7v//6vwc+lpqby3HPPkZeXR35+PqtXrxb3v564acxtXaJJSOah1ubBBx/kwIEDFBUVERwczCuvvIJeX+3N9Nhjj/Hqq69SXFzMokWLgNqDq1rK9VrhzZw4cYIxY8awc+dO7rnnnlads71gZ2fHsGHDGDZsGM888wwGg4HTp08TFxfH0qVLxVqd2bNn4+zsbLO3J2dnZ7p27SreSCsqKlAqlWRnZ6PRaHB2dsbb25uysjIqKioYNmxY09rzZc4YZd0w0g09IBMq/hA/xciFIuRYT4xoM/SS2OlA2Lm70PeDF/EYHlpnW02LiCb/7rUAo9HI6tWrOXnyJPv27cPPz88q57mWhsw/c3Nz6d69u/jn4OBgcnNzryt4zMJj9erVvPLKK0RHR1NSUsLatWs5fPgwS5cuZcCAAXU+5+vrS1BQEIMHD2bu3LmigWhTxIwkdqyHJHgsxJdfftno9i1btli8SHnOnDksXryYWbNmNbiP0Wjk+eefZ/LkyRY9d3vD3t6eUaNG0b9/f86fP090dDQzZ87kt99+49FHH6W4uJgRI0aIPmABAQE2EUEuLi64uLgQFBSEIAioVCoSExOxt7dHEARSUlLEDJC7u3uTYxJkLhhlwRgJBkAmlNcYgliMnAqLXYPqtMpix5KwLvYKD/p9vBK30N51ttW0iIiMjLTag1WlUjF//nzCw8PZs2eP1botr0Wr1TJjxgw++OADPD09a22rbyWjqd+1M2fOsGXLFtauXcvMmTPx9PTk1KlTYofZm2++iY+Pj7i/yWTCz8+P999/X1xCNwsdScy0LZLg6cBMmDCBzMzMRvdZt24dM2bM4MSJE7YJqg3R6/VMnTqVp556ivvvvx+AyZMn89JLL6HT6Th27BixsbFs2bIFrVbLqFGjiI6OJioqCm9vb6sLoCtXrpCZmUlERAReXl7iRFulUsmlS5fEkf5mAXStp1FjCDJXjDJXjHT/wwj1WgGka3HcpWfyW/xZCdvhEOhL/w0v4RJS113c3C7dvXt3q1pEJCUlsWDBAp577jnuv/9+m2VW9Xo9M2bMYObMmfU6nQcHB5OdnS3+OScnp96/h/qWm44fP45Wq2X69OmikPrqq6+QyWSMHz++ltiBPzM0ZrEjCIIkdNoJkuDpxOTm5vLNN98QFxd3QwgeBwcH9u/fX2+a3tnZmYkTJzJx4kSg+gFw5MgRYmNjWb9+PVVVVdx0001MmDCBcePG1am3aQ1mny6TyURkZKTYDi+TyXBzc8PNzY3g4GAEQRA9jS5evEh5eTlubm6iAHJ1dW1aTDIZAm4YZW4Y6fGHACoTBZCdUIyMyibFLpgENKczWnP5ErYgwBuv1xdi9Peq89AuLCwkIyOD8PDwVnVDNYYgCHz33Xe88847bN261aYTgwVB4JFHHiE0NLRBp/M777yT9evX88ADD3D8+HG8vLzqLGfV7KwqKirC3d0dZ2dncZ5Oly5d0Ol0REVFkZ+fzy+//MItt9wiWtY01HUrFSO3HyTB04l56qmnWLNmjdVaTdsjTa1JcHNz47bbbhMLG9VqNb/++itxcXG8++67CILA+PHjmTBhAjfddBPu7u4tisc8zK0pPl0ymQx3d3fc3d3p3r27KIBKSkpIT0+nvLwcd3d3UQC5uLg0QwC5Y5S5Y6TnHwJIi51QjKEyD3tKcHSovz9Be6kKQ2nbdohJNI5Lv550e3spGrmJjIwMMVOoUCgoKytDp9PVEtqWxmAw8Nprr5GQkEBsbGydjIe1OXz4MNu3byciIkJs+b7W/PP2229nz5499O3bF1dXV2JiYmodo6bYeeutt4iPj2fWrFnce++9KBQK1Go1b7zxBh988AFhYWHExcXRv39/1Go1S5cuZcyYMTz22GM2vW6J5iN1aXVwGusMCwkJEdeui4qKcHV1ZfPmzfztb3+zdZgdCnOtzcGDB4mLi+Po0aM4Ojoyfvx4oqOjGT169HXb283FoVeuXCE8PNwiw9wEQUCr1VJSUkJJSQk6nQ4PD49aAqipmEzVD8fS0lLCw8NwcdKLy1/VGaDqgvvsXYVcemdvq2OXsA5ug/vT76MXsff8U5CbjXyTkpKAaiHt4uJSy/zTUlmHkpISHnnkESIjI3nttdfa/ctVTWFTH3fffTfHjh1jwYIF/OUvfxE7aqdMmcIvv/zCAw88wOeff46zszOVlZV8/fXXrF69mmeffZbZs2fb6jIkGkdqS++sNHW685w5c5g2bVqn6dKyJYIgUFRUJPqAHT9+HA8PD7EAeuTIkeIIeaieWpuTk4NCoaBv375WW78XBAGNRlPLCNXT01MUQA1lu3Q6HQkJCfj4+BASElL34ScIyFBjJxSR88/j5Mfsxai1XBG0hGXwHDOYPu8tw86l9r/ztRYRgiBQUVEh2qWYuwXNvyctFUAJCQksWLCAlStXMmPGjA6zdFNRUcG5c+fqdHLFxMSwatUqYmJiiI6OrlVsnZOTw/jx4wkKCmL27Nn4+/tz+PBhNmzYwPLlyxucryPRJkiCpzNSsxU+MDCwTit8TSTBYzkEQaCgoECcAn3y5En8/PyIiorC2dmZzZs388knn9h83pLJZKolgKqqqmoJICcnJ65evUp6enqz5q8IBiNlKRloTiai+S0B7dkUTLqm1QBJWAfFpNH0fnMJcsfay1Rmi4iIiAhcXV3r/axZAJm9r2qOSzALoMZEuiAIfP3113zwwQds27atVUMDbY1Wq2XmzJn4+vqyefPmWqLmvvvuIzs7m6NHj4o/EwRBLDpOTU1l1apVxMfH4+fnh6OjIytWrGD69OmAND+nHSEJHgnL0JTZPwcOHOCpp55Cr9fj5+fHwYMHbRylbREEgfT0dJYsWUJSUhJ+fn74+fkxYcIEoqOjGTx4cJuk+k0mE2q1WhRAGo0GOzs7evfujb+/f4tdmU16PWUJ6WhOJKA5mYj291QEvcHC0Us0hO+dN9Nr5aPI7P/8nWqtRURNAaRWq3FychIFUE3LFIPBwKpVq0hPT2f79u11zHc7AsePHycyMhJ7e3tRpBgMBmbOnMmVK1c4cOAA0PCAwCtXruDg4IC9vT2enp61RJFEu0ASPBKWIT4+Hnd3d2bNmlWv4FGpVIwdO5a9e/fSo0cPCgsLO71JYHp6OrNnz2b69Ok8/fTTyGQyLl68KE6BPnfuHCEhIaIACgsLs+nNsby8nISEBPz9/fHy8hIfbEajES8vLzED1NKiVpOuEu25NDQnElCfTKQ8MR3BYLTwVUgABPz9r3R/ehayGr8/1rCIqCmAtm7dyokTJxgxYgSnT5/m1ltv5ZVXXmn39TrXcm0GZvHixVRUVPDZZ58BsGjRIr799lt2795NZGRkrc8eO3aM7Oxs7rjjjlpLxVJWp10iCR4Jy9FY3dCGDRvIy8vj9ddfb4PI2obvv/+eoKAgRowYUe92k8lEWloasbGxHDhwgOTkZAYMGEBUVBQTJkygf//+VrtpFhQUkJmZSWhoKF5eXrW2GY1GSktLxQyQyWRCoVCIb/YtFUDG8gq0Z1JQn0hAcyKB8pRL0Ph9RqIJBD12H13n31OvPYk1LSIA9u7dy3vvvYebmxtFRUX4+voyceJEoqOjGTt2bKt/f6+XOS4tLeWhhx4iKysLg8HAs88+y8MPP9zk49fM1hgMBqqqqnjsscc4fPgwzzzzDIsWLaK4uJj+/fszadIk3njjDdHvsKSkhGeeeQZ7e3vWrl3b4o5NCZshCR4Jy9GY4DEvZSUmJqLRaFiyZEmjk6BvREwmEwkJCWIGKD09nfDwcNEHLCQkpNUPEKPRSGpqKnq9nrCwsCaJF6PRiEqlEotbBUGoJYBaOjHXoNaiOZ1cvQR2IoGK9KwWHedGpvuyhwl88HbxzzUtIiIiIqxmESEIAjt27GDDhg3861//IjS02q4iPz+fgwcPcvToUdauXdvq39frZY7ffPNNSktLWbNmDVevXmXAgAEUFBQ0aVm2ptjZunUrKpWKp556SnRwP3fuHB9++CGTJ09m9+7dTJ8+nVGjRjF9+nRcXFz45ZdfOHr0KLt27RLneEm0ayTBI2E5GhM8ixcv5uTJk8TGxlJRUcFNN93Ejz/+KLnDN4LRaOTs2bOiAMrKymLIkCFERUUxceJEgoODm7VMYZ6qGxQU1OzP1sRgMNQSQIAofry9vVu8pKHNLyT5u59xuVyIkJJF5eW8Fh3nhkAuo9fLj+M3LVr8UU2LCGtmB/V6PStXriQnJ4etW7fWyRBamsbuK6tXryY7O5uPP/6YzMxMbrvtNtLS0mpde301NzWXnOLj45k0aRKvv/46CxcuxMvLi4MHD/KPf/yDyspK/v3vf9PpVs6kAAAgAElEQVS7d2+++eYb/vnPf7Jv3z569eqFn58fW7dupVevXpKrecdAEjwSlqOxG9Nbb72FTqfj5ZdfBuCRRx5hypQp3HvvvTaOsuOi1+s5deqU2AVWWFjI8OHDRQEUGBjY4E03Ly+PrKwsq0zV1ev1ogAqLS1FJpOJ4kehUDRJANXXJVZ1tQTNiUQ0J86jPplIVW6hRePuqMgc7Om9+im8J/3ZPm0ri4jCwkLmzp3LzTffzIoVK2xSp9LYfUWj0XDnnXeSkpKCRqNh586d/PWvfxW3NzZfp6qqinfeeYeysjIA/vGPf9TKiH3xxResWbOGPn36sGvXLuzt7dHpdBQXFyOXy8WJzNeb4SPRbpAEj4TlaOzGlJyczOLFi/n555+pqqpi1KhR7Nixo0O1rrY3qqqqOHbsGHFxcRw8eBCVSsXIkSOJjo5m/Pjx+Pn5UVpayj/+8Q/mzp3LoEGDbGLYqNfrUSqVogCys7MTBZCXl1eth4PJZOLixYtoNBoGDRrU6FJEZV4hmhOJqE+cR3MiAf1VpdWvpb0hd3Gi7/vP4Tl6sPgzW1hEAJw+fZrHH3+cN954g2nTplntPNfS2H3lP//5D4cPH+b999/n4sWL3Hbbbfz+++94eHiIHVKlpaWsXr0ajUaDu7s7S5YsISgoiO3bt/Pss89SUVHB+vXrmTVrVp3OqtWrV/P5558zffp03n777Trnl8ROh6JBwSNZS0g0i5qzf4KDg+vM/gkNDWXKlCkMHjwYuVzOvHnzWi12rF3Q2N5xdHQU63uguoPm6NGjxMbGsmnTJoqLiykrK+OOO+6gZ8+eNrsxOzg4EBAQIHbhVVVVoVQqKSwsJC0tDQcHB9EENSsrC19fX4YNG3bdJQGnoACc7grA766bEQSByqx8sQBaczIRg1Jti8trM+w83Oi3bjnug6uXgQVBEMWiNS0iBEHgX//6F1u2bGHXrl3tahk6JiaGF154AZlMRt++fQkJCSE5OZnRo0cjk8k4ePAg999/Pz179hSX/A4cOMDGjRu57777SEhI4N133+Xs2bPMmjULmUyGTCYTl7wWLVpEfn4+mzZtIiwsjDlz5tQ6vyR2OgdShkeiRVy7lm00Vrchy+Vyi69xW7OgsSMjCAIbN24kJiaGBQsWcOHCBQ4dOoTBYGDs2LFMmDCBsWPHWtRKoDlUVlaSlZVFTk4ODg4OuLi4iC3wNWe7NAdBENBdzK4WQCcT0JxMwqgps0L0bYO9r4L+G1bi2q8nUC0iExIS8PLyonfv3lb7d6yqquKFF16guLiYmJiYNulEaizDs3DhQgIDA3n55Ze5cuUKw4cP5/fff8fPz49NmzaxaNEinn32WZ566ikUCgUXLlxg3Lhx3H777Xz11VdcvnyZ5557jgMHDhATE8Ptt98uih3zf5OSkvjnP//Js88+i7+/v82vX8JiSEtaEpanoKCAoqIiwsPDrf5AbW1BY2dkwYIF2Nvb895774k+WoIgoFariY+PJy4ujsOHD2NnZycaoY4ZM8Yivl7Xw5yVKC0tZdCgQTg5OaHT6WoNt3N0dKxlb9AiAWQ0Up52uXoG0IkEtGeSMZXrrHBFNsDXC/3iu/Ho00McC5CRkSFaRFiLgoICHn74YaZOncpzzz3XJt+b602Nz8vLY86cOeTn5yMIAi+88AIPPfQQx44dY9q0afTs2ZNTp04Bf76Mbdy4kccff1wcA3HkyBFWrlyJVqvliy++oF+/fg0uVUnzdTo0kuCRsBxqtZrPPvuMnTt3UlRURGFhIUOGDOGhhx7i7rvvtsrNuTUFjZ2VgoICunTp0ug+giBQUlIiGqEeO3YMFxcX0Qh11KhRFm9prqysJCEhAYVC0WhWQqfTiTOA1Gq1RfydTHoD5UkX0ZxMrBZAv6cgVOpbe0lWxzmkG/03voSDvw8ajYbMzEyKi4txdHSsNRyyOQaxTeG3337jySef5O2332bKlCkWPbYtUKlUrF+/nrVr1/Lyyy/zxBNPUFlZiZOTEzt27ODRRx9l//79DB8+HICdO3fy1ltv0b17d3bt2oWTk1Md0SN1YnV4JMEj0XrMbz3r16/n9ddfZ9KkSSxcuBCtVsvevXvZs2cP9913H2+88YbFz92SgkZPT0+Lx9HREQSBwsJC9u/fz4EDBzh+/Dje3t7iEMTIyMhWLQWaB+H1798fX1/fZn3WbHBptsGouQTm7u7eMgFUpafsfBrq36rrf8rOp7W7KdCuob3pt34FDt6edSwi5HJ5HYNYDw+PVgsgQRDYunUr27Zt49///jd9+vSx8FVZH7MwycrK4rXXXmPXrl3s2rWL2267DYB77rmHs2fPcuzYMXx9fcXfn/fee48tW7YwZswYYmJi2vISJKyDJHgkWo9Z8ERFReHj48POnTtxdnYWXbs3bdqEQqFgwYIF6PV67OzsLJYWbkzw/PWvf+WFF14gKioKgEmTJvHWW28xatQoi5y7MyMIAnl5ecTFxREXF8fp06cJDAwUi6SHDh3apI4vQRDIyMhApVIRHh7e6qxRTYdvpVKJVqvF1dVVfNC7ubk1WwAVFxeTdj6RHno7hJRMNCcSKUtKB1Pb3ebcI8Pot/Z57Nxdm2QRYTaINS8N6nQ6PD09xe64pgigyspKli1bRllZGVu2bLHJEqe1OX36NMuXLyc9PZ3//e9/PPbYY5w/f559+/YRFhYG/Hn/0mq1PPHEE6jVav71r3/h7OwsZXQ6F5LgkbAco0aNQi6Xs2vXLrp3796kFLDBYEAmk7W426GlBY0SzUMQBC5f/v/27j2u5vuPA/jrnEqpKBUVKVG6qLQala6S2xgmdxstMTbTGMvGz/Dr5zdmmyGGGdZm8zN3qg2VKddidFuF7jfS7ZxOl3N5//5o57uOruhi+TwfD48H53zP93yPTt/v+/v5vD/vdxZXA+iPP/5A//79uT5gNjY2DX6GVVVVSElJQc+ePTFw4MB2yX0gIohEIi4AqqyshIaGBnr16gUdHR2oq6s3+R0kImRkZKC0tJTLJ5KTCkUQ3E7hVoCJUjM7rA2GlpsDBm1ZAb6a6jO3iHjaAKigoIDr+7Z8+fIulacSHh6O1atXIyEhAS4uLvjhhx9gamqqkI8j/3txcTE7P3RdLOBh2s7evXuxePFiLFy4EKtXr4apqSmAuros8iWzhw4dgr6+PsaMGfPcJ9VnTWhknp+8fs7FixcRFRWFpKQkmJmZwd3dHZ6ensjIyMDGjRtx8uRJrkBbRyAiVFZWcgGQSCSCpqYmFwB1794dPB4PtbW1SEpKgqamJgYNGtTid1FSJoAgPhmCuLok6OoHue1y/Drj3TBg/XvgKSshOzsbjx49go2NzXOPjD0ZAOXl5eGHH36Ah4cHDAwMsGXLFnz55Zfw8fFpo0/S/urn2DSWTCy/4ZLJZNi/fz/+85//wMvLCwcPHlR4vqV9M10GC3iYtlNZWYnPPvsMISEhEAqFmDdvHtasWcMFPgUFBZg2bRoKCwuxZs0a7NixA5aWlnj//fcxYsSIRvcplUrB4/FemDvOnJwczJs3D4WFheDz+Vi0aBECAwMVtiEiBAYGIiwsDOrq6jh48CCXHNlVyWQy/Pnnnzh//jz27t2LsrIyODs7w9PTEx4eHjAzM+uUnyERQSgUcgFQVVUVVFVVUVlZCVNTUxgZGT3TfsXFpRDEJ3N1gGpyCp/7WHtPGw3j1QGQymTt3iKitrYWsbGxOHToEK5cuYKePXvCxcUFXl5e8PLyQv/+/Z/7PVqqkwUA0dHRXJ89PT09XLp0qVX7FgqFOH78OKRSKVdbKzw8HH379sXQoUO57eRBTVlZGbZv346tW7di8+bNWLJkCVtx9fJhAQ/T9sLDw7Fr1y6EhYVhwoQJ2LdvH/T19REbGwt/f388evQIPj4+GDlyJA4ePAiJRILTp0+jX79+T/U+MTExUFFRwauvvtphd2MFBQUoKCiAg4MDV/Dt5MmTXD4AAISFhWHHjh0ICwvD9evXERgYiOvXr3fI8XWm4uJizJs3D3Z2dli/fj1SU1O5TvAZGRmwsbHhpsBMTEw6PD+CiJCTk4O8vDzo6elBKBQqTPXo6Og880hKbWExKuLq2mAIbiaitvDxU73e4O030G/pbIhEIiQmJsLY2LhdR8aqq6uxYsUKSKVS7N27FyoqKrh16xaio6MRHR2NuXPnYu7cuc/1Hi3VySorK8OIESMQEREBY2NjPHz4kCtW2ZKKigp89NFHiIyMxNdff42jR4/ixIkTOHfuXIObJ3nQk5mZiX//+984ffo0Tpw4ATc3Nxb0vFxYwMO0nSeHgbds2YLVq1fj+PHjmDJlCnbt2oWlS5ciJCQES5YsAQDEx8fD09MTq1evxtq1a7l9FBYWIjw8HAkJCXB3d8e4cePQvXt3SCQSKCsrQyQSYe7cudDT08O+fftadXwymYw7wbXVSW7y5MlYunQptwIEAN555x14eXlh9uzZAAALCwtER0d36NROZ1i6dCnGjx/f6NJ/iUSC27dvc41Q8/LyYG9vz/UB69u3b7sGQFKpFMnJyVBSUoKFhYXCVEj91U61tbUKAVD9vJ7WIiLU5BZBIA+A4pIgLi5rcvt+y+bC0G9Kh7WIyM3NhZ+fH2bNmoWlS5e26wW/uRy7Xbt2IT8/H8HBwc+079TUVCxcuBC3b99Gr169cOzYMTg4ODR78xMfH4/ly5fj7t27yM3N7ZRCikynYa0lmOdXWloKJSUlbrm3PKiYM2cO1q9fj6SkJEyZMgUJCQkwNjbGnDlzANRdGBwdHWFlZYX79+9DJBJBXV0d8fHxWLx4MXJzczFw4ED8/PPPMDMzw549e2BlZYWamhrcunULmZmZCsPXjSEipKWlwdDQ8Jmr+DYlMzMTt2/fhpOTk8LjeXl5ClMCRkZGyMvL6/IBz86dO5t8TllZGcOGDcOwYcMQFBQEsViMGzduICoqCkuWLEFxcTEcHR25VWB9+vRpswCoucaafD4fWlpa0NLS4hJZKyoqUFpaisTERIjFYmhpaXEBUGuW5vN4PKj1N4BafwP0fmNUXRXojDwuAKqIS4K0XAjweDD5eCH0fH1w7969dm8RAQCXL1/GqlWrsH37dnh5ebXb+7RGWloaxGIxvLy8IBAIEBgYiHnz5rX69fr6+nj48CGkUikGDx6MwYMHQ0lJqdlRG0dHR6xatQq1tbUs2GE4LOBhWiQfKt65cyd+/PFHfPPNN3BycuKmBZKTkyEWi2FkZAShUIjExESYm5tDS0uLOymJxWKulor8bvqdd96BWCzG8ePHYWNjg/T0dEyePBmbNm1CaGgoTp48icDAQDx69AiGhob4/fff4eTk1OjdeH5+Pt59911ERUWhb9++GDVqFN58802MHDnyuRppCoVC+Pr6Ytu2bQ3q+jQ2OsqWtypSUVGBq6srXF1dsXbtWtTU1ODq1auIiorCd999B4FAgOHDh8PDw4Mrd/As/4dFRUXIyMho9agJn8+HtrY2tLW1uQCovLwcJSUlyM3NhUQigba2NrfaqbUBUPeBRug+0Ah9ZowFyWSoupcNqaASqrbmuH37NrS0tGBvb99u3xOZTIY9e/Zw0z5tkaPzvCQSCeLj43Hx4kVUVVXBxcUFzs7OTfbqenIEWV5NPD4+HocPH8batWuxY8cOhbYQ9cnPV6+//nqDx5iXGwt4mBbJTxQ+Pj64du0ali1bhqFDh8LV1RXJycnYs2cPRowYgddeew2pqalITEzEtGnTANSt3FJVVUVKSgrKy8u5LtrXr1/H7du3cfjwYbi4uAAAHBwcsGzZMvznP/9BcXExZs6ciaNHjyI2NhaVlZUYO3YsJk+ejJ07d3JLSuUnsvz8fBQUFMDf3x9eXl44evQoAgIC4O/vj08//bRVJ7wntxGLxfD19cXcuXMxderUBtsbGRkhJyeH+3dubm6DkQVGkaqqKpcwCwAikQhXrlzBxYsXERISgtraWjg7O8PDwwOurq7Q0tJq9ucmk8mQnp6O6urq5xo14fP5XHAD1F10y8vLUVpaipycHEilUoUAqDXvw+PzoT54ACoqKnDr1q12bxEhEokQGBgIVVVVXLhwoc0raD8rIyMj6OnpQUNDAxoaGvDw8MCdO3caDXjkU9kAEBkZCVVVVejq6mLChAkYPXo0SkpKcO7cOXz11VdNLqtv7PvCgh0GYAEP8xRcXFxw+PBhhIeH48iRIwgJCYGOjg5WrVqF+fPno3fv3vjhhx+gpKSEjIwMPH78mKu2e+rUKVRXV3MXurNnz8LU1BTOzs4A/j7RGRsbo6amBkBdF/SKigq8+uqrOHPmDIqKilBdXa1QP0N+IktNTUVeXh4WLFgAFxcXvPHGGwgODsaGDRvg6uoKHx+fFoOe+s8RERYsWAArKyusWLGi0e0nTZqEnTt3YtasWbh+/Tq0tLS6/HRWW1NXV4ePjw+3TFogECAmJgYXL17El19+CZlMBldXV64Rav3piQcPHnDTioMHD27Ti5qSkhJ0dHSgo6MDoC4AKisrQ2lpKbKyskBECgFQU6OI+fn5yMnJgZ2dHdTV1dvs+J6UnZ0NPz8/zJs3D0uWLHmhLvDy/DeJRILa2lpcv34dy5cvb3RbZWVlPH78GBMnTkRhYSHy8/OhqamJwMBAfPLJJ/j444+Rl5eH/fv3w8LCAq+99hqXN9a/f/8WW60wLzcW8DBPRUtLC7NmzcKsWbMA1F2g6k8hJCcnQ19fH1VVVdizZw8mTJiAX3/9FRs2bEBgYCDc3NwAAImJiTAxMeGqvMpkMgB1yYYGBgaQyWS4d+8eCgoKMHnyZABoMt9DKpUiKSkJampqXACloaGBoKAgbN++HdnZ2QAUAxqZTAYejwciAp/PR0JCAkQiEZycnEBEiI2NRWhoKGxtbWFvbw+griu7fF+LFy/Ga6+9hrCwMJiZmUFdXZ2VqW8DPXr0wPjx4zF+/HgQEcrKyrhGqJs2beKmyHr27IkDBw7g22+/xYABA9r9uJSUlKCrq8sF8BKJhAuAMjIyAIALfrS1tcHn87kWEe29ujA6OhqrV69GSEgIV228I9Wvk2VkZNSgTpaVlRXGjRsHOzs78Pl8BAQEwMbGptF9FRcX47XXXoOGhgYOHToEkUiEmJgYrF+/HmVlZfj888/x8ccfY8WKFVx397i4OPzyyy84c+YMC3iY5hFRc38YpgGJREJisZj7t1QqJSKi7OxsGjlyJM2YMYNSU1Np4MCBpKqqSvr6+jR//nyFfaxcuZIGDx5MVVVV3GNisZisra1p1qxZRET07bffkpmZGZ06dYp73/pkMhkREeXl5dG4ceNo9OjRREQkEomIiOjevXvE4/Hou+++IyKi/Pz8Jj/Td999R0OGDKE7d+489f9HW8rOziYvLy+ytLQka2tr2rZtW4NtfvjhB7K1tSVbW1tycXGhP/74oxOOtOPJZDIqKiqimTNnkrGxMTk5OZGHhwetWbOGIiIiqKSkhCorKzvlT3l5OWVmZtLt27fp4sWLdObMGfr9998pKyuLKioq2uU9BQIBffbZZ+Tu7k65ubmd/eNpE1euXKE+ffpQRESEwuOff/458fl8+umnn4iI6MSJE+Tp6Um9e/cmS0tLunTpUmccLvNiajKmYSM8zFNr6m41OTkZjx49wsSJEzF48GDcv38f6enpEAgEXEE++mtaafLkyfjqq6+wc+dOBAQEQCgU4ptvvkFKSgp2794NAIiLi4OmpiYcHR0BoMkVGRkZGcjMzMTYsWMBAN27d0dpaSm2bt2K3r17Y9iwYcjKysKkSZPwyiuv4MMPP8SlS5fg7e0NS0tL8Pl8vP3225gxY0an9xWSJ2jWr/8zevRohfo/pqamuHTpEnr16oXw8HAsWrTopaj/U1paCn9/f9ja2nJTp0VFRYiMjMSxY8cQFBQEXV1drgq0g4NDu66Eqk9ZWRm9e/eGkpISHj9+DFtbWxARHj9+jPv370NJSYkbAZLnsT2PyspKLF26FNra2jh//vwzLat/EVVVVaG0tJQbqZEnMK9cuRK//vortmzZglmzZmHKlClwc3Pj6j51796d1dphWsQCHua5yU8ySUlJyMrK4oIbqVQKc3NzhW3l00rOzs5Yt24dgoODceTIESgpKSElJQUfffQRPDw8UFJSgszMTPTv358rVPjkdJb832lpaSgqKsL27dvx/fffw87ODuXl5UhMTMS6detgY2ODX3/9FWKxGCdPnoRIJEJcXBxOnDiBsLAwlJaWIi4uDiNGjGg04HnePmBPw9DQkMsD6tGjB6ysrJCXl6cQ8NQvuObs7Izc3PZpf/CiSU5OxqJFizBp0iTuMQMDA8yZMwdz5szhCg5GRUXh0KFDCAwMhKGhIVcF2s7O7rlW7DWH/upBVlxcDAcHBy4AkRfYq62tRWlpKR4+fIj09HQuANLR0YGWltZTXagzMjLg5+eHhQsXYuHChS9Uvk5r0F+rGxs7blVVVWhqaiImJgZWVlbo1q0bl983Y8YMfPLJJ0hKSsKQIUOgp6fH5fOxFhFMa7CAh2kzK1aswJgxY2BlZQWgbiSImkgUVlZWxrp16/D666/j9OnTqKmpwY4dOzBs2DAAdRcIsVjM5QI0RSwWc+X509LSEBcXh1u3bqGoqAjBwcHw9vYGANy+fRt//vkn1q9fjxkzZqBPnz4oKSmBqqoqoqOjERAQgM2bN+O9997j9l1bW4tu3bq120WyJU3V/6lv//79GD9+fAceVeeR5381hcfjwdjYGPPnz8f8+fO5pqGRkZHYvXs37t69iwEDBnAjQNbW1m1ykZRIJNx30MHBodHgpVu3btDX14e+vj6Auu9WSUkJCgsLkZqaChUVFa4TfHN1pC5cuIC1a9diz5493OrGf5L654OEhASUlJRATU2N+47LSxhs374dzs7OcHBw4H7/8vPz0aNHD5iYmDTYLwt2mNZglZaZF458aHr79u3473//CwsLC/j7+8PX15cbgZGfOHNzc+Hv7w8+n4+IiIhG9ycWi/H2228jJiaGm16o79///jcOHz6MX375BUOGDOFGgs6cOYP4+HhYWlpi9uzZmDBhQoPu00QEqVTaplWdgbr6P56enlizZk2jS+IBICoqCu+++y5iYmK4ZFqmafIl7JGRkYiMjERKSgoGDx4Md3d3eHh4wMLC4ql/hvJih8/bIqK6uppr+FlRUYFu3bpBW1sbeXl5cHJygrKyMrZt24YLFy7g559//kcm59afcvrss8+wceNGqKqqory8HNOnT8fChQvh4+ODhw8fwsHBASYmJli+fDlGjRqFtLQ0LFu2DGZmZti/fz9UVVX/cSNbTIdp8ovBJjyZTiUPGOoH3vKT4rJly3DixAlYWloiISEBVVVVDV6flZWFBw8ecMuapVIp11pCvs+MjAxkZGTAy8sLSkpKkEgk3HPV1dVISkqCtrY2hgwZAgDYsGEDZs6cidzcXEyfPh0aGhpYt24dTp8+za0mA4CamhrweDwoKys/1YWy/mclIkgkEoX9tlT/BwDu3r2LgIAAnDp1igU7rcTn82FhYYElS5bg6NGjuHv3LjZu3Ag+n4/g4GC4uLjAz88P3333He7du6fwM2nMw4cPkZCQAGtr6+cuR6CmpgZDQ0NYW1vD2dmZm8IMCQmBo6MjHBwcEB4ejs2bN7d5LR9/f3/06dOnyZVTcjdv3oSSkhJ++eWXZreTSqWNPib/HcnIyMDRo0exc+dOhIeH48SJE7h16xaCg4Nx4cIF9OnTB5GRkRCJRFiwYAEsLS0xadIkdOvWDfv27YOamhoLdphnwqa0mE7VUm6Ms7Mzt9T8ydcBwK1bt/DgwQOMGjWKe1x+YpUvPU9KSsKjR4+4cvb1T5b3799HRkYG7OzsAACxsbHYsmULVqxYga1bt0IikaC6uhoRERHQ1NQEn8+HQCDAgQMHcPbsWWRmZsLNzQ3vv/8+XnnllVZ9ZtlfXbINDAzQu3dvhSkz+qv+j4WFBebPn9/o67OzszF16lSEhoY2Wa2WaRmfz4eNjQ1sbGwQGBgIqVSKO3fuIDIyEp988gmys7Nha2sLd3d3jBw5EkZGRuDxeJBIJPj2228xfPjwdmsRoaamhoEDByI4OBj+/v6YOXMmdHV1sWvXLvzxxx8YMGAAAgICFKoJPys/Pz8sXbq02XYPUqkUQUFB3MKA5raT/z6HhobC0NAQPj4+UFJSgkAgQEBAAFefa/r06VxJCzU1Naxbtw779u2DtbU1Bg8ejLCwMKSnpyM9PR09e/bE9OnTG7wHwzyV5pZwdcDyMYZpllQqbbAcvb7U1FTasGFDo8/Jl60HBweTubk53b17l3tcvpT+yJEjNGjQIG7p+uLFi8nS0pLS09Mb3WdhYSHNnj2beDweLVu2jLZu3UpeXl7k5uZGJSUlLX6e0NBQGj16NDk4OJCWlhb179+fli5dSteuXSOpVEq///47ASAzMzPS1NQkPp9PCxcupN27d9Pu3buJiGjBggWkra1NQ4cOpaFDh5Kjo2OL79uS1iyHl7tx4wbx+Xw6evToc7/vi0wsFtO1a9do06ZNNGbMGLKzs6OZM2eSvb09+fv7t9tyc/mf48ePk52dHd24cUPhuGQyGd27d48SEhLa7LNmZGTQkCFDmnz+q6++op07d9L8+fNb/LmnpqaSs7MzWVpakoWFBZWVlRERUVpaGo0aNYr09fXJz8+PiIhqa2u5133xxRdkaGhIFy9eJKK/f3/ra+5cwDB/aTKmYQEP06VVVVXRuHHjaOjQoY0+v3btWjIzM6OkpCQiIrKxsSE/Pz8SCoVEVHfSlclkXN2hDRs2kLGxMZ0/f56I6i6Kly9fJiMjI1q3bl2zx3Lu3DlSV1enN954g3766Se6fPkyff755+Tm5kbW1taUlZXFbZudnU1ERPb29vSvf/2Le6/2kp+fT/Hx8UREVMNbngEAAA/XSURBVFFRQebm5tz/SX0SiYRGjhxJ48eP7/IBz5OuXbtG5ubm9NZbb9HIkSPJ3t6eAgICKDQ0lDIzM0koFLZZfZ1169aRt7c3FRUVdchnay7gyc3NJQ8PD5JIJC0GPOHh4dSrVy+aOXMmXbp0qcHxR0dHk4ODA2lra3Pf9/q1uLS1tWnTpk1t8ImYlxirw8N0TfJpq6bm9CUSCby8vFBeXs5tL5/yEolESE9PR79+/bicCXlejjw5Wl6NWT6EHhERAWVlZUgkEgB1q83c3Ny4vmKA4koU+d8LCgqwbds29O3bF8ePH+eOz8nJCW5ubjhw4ACMjY25x+VNH7Ozs+Hr6wugfVeitGY5PADs2LEDvr6+uHnzZrsdy4vo0KFD2LVrF8LDwzFo0CAAdflfV69eRWRkJPbu3QuhUMj1AXN3d4e2tvZT55pUVFTgnXfegampKSIiIjqsjlBzPvjgA2zevLnF719ZWRl27NiBOXPmYMOGDVxuGf2Vp6esrAxPT0988MEHWL9+PZYtW4aTJ09yPb8yMzOhpqbW6bWwmK6LBTzMP1pLycKampoICgpqdPvU1FRcvXoVnp6eAOqCnXHjxuH48eOoqanhaqnIL1pVVVWIi4uDiYkJfH19IRaLYW1tjblz5yImJgaTJ0+GWCxWuEjJXysUClFUVAQ9PT2FfauoqDTIU5IHSbm5uRAKhRg6dKjCvpojv5N5nhVjTS2Hz8vLw4kTJxAZGfnSBTz6+vqIiopS6IelpqaGkSNHYuTIkQDqfsZXrlxBZGQktm/fDolEAhcXF64Rao8ePZr9GaampmLBggVYsWIF5s6d+8Ik5sbFxXGtZIqLixEWFgZlZWVMmTJFYbuCggJER0djzpw50NXV5ern8Hg8yGQyPHz4EH369MFbb72FvLw8fP7555g5cyY2bdoEkUiE8PBwlJeXc2UtGKbNNTf807GjUAzT9mQyWZPz/lVVVXTq1CmKjY3lHouNjaUBAwbQW2+9RQkJCZSSkkKJiYlERJSUlES6urp0/PhxKi0tpYiICProo4/I0dGR+vXrR+vXr28070Bu+vTpxOPxaO7cuZSSksI9Xj+PgejvqauQkBAaPny4wmPtTSAQkIODAx07dqzBc9OmTaOrV68SEbUql+NlJpPJqLy8nM6ePUvLly8nJycncnZ2pg8//JBOnTpFDx8+5KawhEIh/e9//6OhQ4dy04odraUcHrnmfu5XrlwhAwMDOnjwIPdYWloaLVy4kIYPH04aGho0b948unnzJtXU1NC7775LPB6PtLS0aOLEiWRiYqLwWoZ5Rk3GNKwOD8M84aeffsKaNWvw6NEjGBsb44033sDixYuhq6uLcePGwdzcHN9++63CawoLCwGg2fooAoEA//3vf7Fjxw4AQFBQENauXdvk9qNHj4a7uzvWrVvH3S035+7du/jiiy+wevXqZ7pLFovFmDhxIsaOHdtoh3hTU1NuSX1xcTHU1dWxd+/eBnf6TENEhNLSUly6dAmRkZG4du0a1NTUMGLECBQWFqKgoACHDx/mKgd3pPrNP/X19Rs0/6zPz88PEydOxLRp0xrdl5ubGwoKCuDp6QklJSV8//334PF4sLW1xaBBg3Du3DnY29vj0KFD4PP5WLFiBZKTkxEcHKywT9YmgnkOTQ+NNhcNdXxgxjAdS75aqzFpaWn0008/0Z07d7jt9u7dS5aWlvTZZ59RamoqFRUVUUJCgkLiZXMqKirof//7H9nZ2VG3bt0aTXT+9ddfqaioiHr27Nniyi/5cSUnJ9P48eNp5syZJBAIiOjvFS15eXmUk5PT7D5kMhm99dZbFBgY2KrPwUZ4no+8EeqhQ4fI19e3w0bw2ov8e1hcXEw+Pj5kaGhIOjo69O6779Lx48e57c6dO0c8Ho/2799PRHVJzm5ubuTm5kYPHz4kooYjngzzlNgID8O0VnN1PogIW7ZswbZt2yASiWBnZweZTIa1a9c+VYuHzMxMuLi4wNzcHL///jt3R1tdXY1Nmzbh8OHDePDgAWbMmIEFCxZg9OjRze5vypQp4PF42Lp1K5dUS3/lAh08eBClpaVYvnx5k60+YmJi4O7uDltbW+7OetOmTcjOzgbw9Hf6zMtH/h2urKyEQCBA9+7doaWl1WA7XV1dzJkzhxvpPHDgAL7++msYGRnh7NmzHX3YTNfT5AgPS1pmmCfIgx35zUD9AIHH4yEoKAhBQUG4c+cObt68CVVVVbi7uyvsQx5YbNu2Da+++ipcXV0V9iOVSqGtrY2+ffuioqICPXv2hEwmg5qaGjZu3IiNGzciLy8Pv/32GyorKxX2+aTz58/j9OnTiImJ4YKd2tpahIaGIj4+HqmpqVwRQ/nr5RenCxcuoLq6GmPGjEELNz8KDh482Optm5OTk4N58+ahsLAQfD4fixYtQmBgYIPtoqOj8cEHH0AsFkNPTw+XLl1qk/dn2o48UNbQ0OBWWj05FXv+/HloaWkpFEz08/NDcnIyrl+/jsLCwn9k2wzmH6K54Z8OHYRimH+A5pKgn1RdXU1Tpkwhe3t72rdvH2VlZVFRURHdv3+fFi9eTDwej06cOMHt92mPg4goMzOTXn/9dXJ3d+eeKysro0WLFpG6ujqNGTOGdHR0SE1NjZycnLikY7mrV6+SmZlZk4UW21tr6v+UlpaSlZUVV7elo2rTMG1HKBTSjRs3yMXFhcaOHUuPHz8mor+nwsrLy6mmpqYzD5HpOlgdHoZpC/VbYch/iZpKrlRRUcHatWvxzTffYM2aNQgKCoKFhQXKysqQl5eHzZs3Y8qUKSAifP/99/jxxx/h6OiIsWPHwsXFhVu63hj6a7Tn8uXLuHfvHlauXMk9d/PmTURFReHTTz+Fq6srfv75Z0yePBnnzp3D/fv34ezszL3e1tYWxcXFqK2tbdv/qFZqTf2fw4cPY+rUqVydoj59+nTKsTJPTyqV4ssvv0RRURGOHTsGKysrnD17Fnw+X+F3p2fPngBYsjLTvljAwzDPqLmCh0DdEL+joyP27duHPXv2ICoqCjdu3EC/fv3g5eXFXcB5PB7mzZsHR0dH7NmzB97e3rCxsYG+vj68vb3x8ccfN/reAHD58mVoampytYSAukCrtLQUrq6uEAqFGDJkCHx8fDB8+HCIRCIAfwdMjx8/hqOjIy5cuNCgyGBHa6r+T1paGsRiMby8vCAQCBAYGNhs3yfmxSEQCHDw4EEMGDAAK1euxHvvvQeg6Tw5Fuww7YkFPAzTjuQdt/l8PkaNGsU1OX0Sj8eDjY0N+vfvj+nTp+PIkSOIjo5GQUEBt5/6FwMejweRSIQHDx7AxMSEy90BAHd3dwwZMgSzZ8+GgYEBPvzwQwB1d9HyO+n6d9YVFRUoLS0F0HmNGYVCIXx9fbFt2zbuGOUkEgni4+Nx8eJFVFVVwcXFBc7OzqxxKuo6nZ89exZ9+vRBYmJig+d//PFHbN68GUBdEc7du3dzhSzbm0wmg7a2Ni5fvgyZTMYtuWfNP5nOwsJphmlHfD5foXu7PABqTGpqKsLCwriqtl5eXpg9eza3nycVFBSguroa+vr63P7l20ZERGD27NnIycnBjz/+iNjY2AavJyJoa2sjJycHvXv3BtC+7SuaIhaL4evri7lz52Lq1KkNnjcyMsK4ceOgoaEBPT09eHh44M6dOx1+nC8iPz8/RERENPm8qakpLl26hLt37+Jf//oXFi1a1GHHJv/O6ujocMEO1WvTwjAdjQU8DNNB6gc/jYmIiEC/fv24JehSqbTZ/SkrK6O4uBgmJiYNtldTU+NygSoqKjBx4kRERkYqvJ7H46GqqgolJSXo1q3bs36s50JEWLBgAaysrBotdggAkydPxuXLlyGRSCASiXD9+nXWfuAvHh4e0NHRafL5ESNGoFevXgAAZ2dn5ObmdtShNepFaZfBvJzYlBbDdCJ5Lk1aWhquXLmCCRMmQFNTE0Dzoy1EBBMTExQWFnLTWSoqKrh27RoGDBgAAwMDJCcnY9asWZg4cSJeeeUVhIWFwdvbW2EkKDY2Fj169Gj2otmeYmNjERoaCltbW9jb2wNoWP/HysoK48aNg52dHfh8PgICAmBjY9Mpx/tPtn///qeqFcUwXQ0LeBimE8lkMigpKeHkyZNQUVHB2LFjW/U6Ho+H6upq9O3bl8u/AYDQ0FDweDwsX74caWlpeOWVV5Cbm4vy8nJudROfz4dEIuGmvgwMDLgEamqi1k97cXNza1X9n1WrVmHVqlVt+t6tqQFUXl6ON998E9nZ2ZBIJFi5ciXefvvtNj2OjhAVFYX9+/cjJiamsw+FYToNm9JimE4kH8X54osv4O3tzeXjtIaysjJcXV0RHx8PoG5Ky8/PD1lZWRgxYgR+/vln7N27F76+vqipqcGcOXMavO/Jkyfh5OQEc3NzAC/XlIOysjK++OILpKSk4Nq1awgJCUFycrLCNiEhIbC2tsadO3cQHR2NDz/8sNOW8D+ru3fvIiAgAKdOnYKurm5nHw7DdBoW8DDMCyAyMhJ+fn6t3p6IoKysDF1dXW6puZKSEoYNG4YzZ87g66+/ho2NDYRCIcaPH4+YmBgYGRlx01k8Hg+RkZF48OAB3nzzzUZbAHR1hoaGcHBwAKBYA6g+Ho8HgUAAIoJQKISOjk6LTVxfJNnZ2Zg6dSpCQ0PZqjbmpcd6aTHMC+JZppPS09Nx7949eHl5oXv37hCLxVBRUcH27dvRu3dvbpWXnHx5+4MHDxAUFITHjx83SGZ+GWVmZsLDwwOJiYkKy+IFAgEmTZqEP//8EwKBAEeOHMGECRM68UgVtdTpPCAgAMeOHeMS25WVlREXF9eZh8ww7a3JkygLeBimCzp06BDs7e0VmoHWt3LlSty8eROffvopvL29X+raKEKhEJ6enlizZk2DZfG//PILYmNj8eWXX+L+/fsYPXo07ty506BWEMMwL4wmAx42pcUwXZCvry9sbGwaDXZ+++03fP/99/joo4/g7e0NoHPq77wIWqoBdODAAUydOhU8Hg9mZmYwNTXFn3/+2QlHyjDM82IBD8N0QZqamo0GMdXV1SgqKsJXX331Qk3NdIbW1AAyNjbGxYsXAQBFRUVITU3FwIEDO/IwGYZpI2xKi2FeMvLf+ZdpRVZjYmJi4O7urjDt92QNoPz8fPj5+aGgoABEhNWrV+PNN9/szMNmGKZ5LIeHYRiGYZguj+XwMAzDMAzz8mIBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbo8FvAwDMMwDNPlsYCHYRiGYZgujwU8DMMwDMN0ecotPP9yl2JlGIZhGKZLYCM8DMMwDMN0eSzgYRiGYRimy2MBD8MwDMMwXR4LeBiGYRiG6fJYwMMwDMMwTJfHAh6GYRiGYbq8/wOXqHpe+0QqrwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHBCAYAAABt62HAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9aXQc5Z32fVXv6m61ZK22rMWWZcmSvIIlmx3MYuMTDG8mJGabmZeHLUNmOA/nkCEQHEIChCwkEDJJCAnJDHFgGEgMITExhCVh84IxNkjd2vd9632rqueD5y6qpd67qquX+3dOTnCru+ru7uqqq/7bxfA8DwqFQqFQKJRcRqX0AigUCoVCoVDkhgoeCoVCoVAoOQ8VPBQKhUKhUHIeKngoFAqFQqHkPFTwUCgUCoVCyXmo4KFQKBQKhZLzaGL8nfasUygUCoVCyRaYSH+gER4KhUKhUCg5DxU8FAqFQqFQch4qeCgUCoVCoeQ8VPBQKBQKhULJeajgoVAoFAqFkvNQwUOhUCgUCiXnoYKHQqFQKBRKzkMFD4VCoVAolJyHCh4KhUKhUCg5DxU8FAqFQqFQch4qeCgUCoVCoeQ8VPBQKBQKhULJeajgoVAoFAqFkvNQwUOhUCgUCiXnoYKHQqFQKBRKzkMFD4VCoVAolJyHCh4KhUKhUCg5DxU8FAqFQqFQch4qeCgUCoVCoeQ8VPBQKBQKhULJeajgoVAoFAqFkvNQwUOhUCgUCiXnoYKHQqFQKBRKzkMFD4VCoVAolJyHCh4KhUKhUCg5DxU8FAqFQqFQch4qeCiULIPneXAcB57nlV4KhUKhZA0apRdAoVDih+M4BAIBeDweMAwDjUYDtVot/I9hGDAMo/QyKRQKJeNgYtwl0ltICiUD4HkegUAALMsCAPx+PxiGEaI9ROQwDAO1Wh0ihKgIolAoeUTEkx0VPBRKBsPzPILBIILBIAAIwoUInnDPJ/8j/1apVCEiSKVSQaVSURFEoVBykYgnNprSolAyEJ7nwbIsgsEgeJ4PidJEu0kJF80RbwsA+vv7UVdXB41GA61WS0UQhULJC6jgoVAyDFKnQ1JVKlVqvQWLRdDs7CxWr14NjuPg9XpDnksiQRqNhoogCoWSU1DBQ6FkCBzHIRgMgmVZQaTIITbINhcLKVIP5PP54PV6heeRWiBxSoyKIAqFkm1QwUOhKAzP83A6nfB4PCgsLJS9yJgUO4d7PFw6jOM4sCwLv98vPK5SqYRIEBVBFAolG6CCh0JRCHFtzdzcHBYWFlBUVKT0skKIJIJ4noff748ogkihNBVBFAolU6CCh0JJM0QwiOt01Gp12gYJRorwJPL6RETQ4pQYFUEUCkUJqOChUNJIpILkeEVIMBhEb28vxsfHUVBQgMLCQuF/er0+bjEhtbiKJIKA00XSY2NjaGxsBM/zYWuCUi3MplAolFhQwUOhpIFw83TEAiGW4OF5HqOjo+jv70dNTQ3a2toQCATgcDjgcDgwOjoKn88HnU4XIoIMBsMSIZKuCMvi4mhxFCsQCITMEhJPjSYpMTowkUKhSAkVPBSKjJA6nUAgACB8JIQ8HknwzM3NwWq1ori4GO3t7dBoNPD7/TAYDDAYDCgvLxee6/P5BBE0Pj4Or9cLrVaLwsJCWCwWmM1mYV3pYrGwA06LHwJZSzAYjCiC6NRoCoWSKlTwUCgyQLqbAoHAksGB4VCpVEtEiMfjgdVqBcdx2LBhA0wmk7DtSOj1euj1epSVlQmP+f1+OBwO2O12TExMwG634+TJkygqKhIiQQUFBYoJCbHAIdGgaCKIWmdQKJRkoIKHQpGYZAYHiiM8wWAQfX19mJ6extq1a0PESzLodDqUlpaitLQUAHDixAmsWbNGiAZNTk7C4/FAo9GEpMOMRmNGiSBg6dRoap1BoVDihQoeCkUiYtXpRINhGLAsi9HRUfT19aGmpgbbtm2TpZiXpIrMZrMgggCE1ARNT0/D7XZDrVaHiCCTyaSokIjHOgOAMEG6uLiYiiAKhQKACh4KJWXirdOJBhEZOp0O7e3t0Gq1ciw1KlqtFiUlJSgpKREeCwQCcDqdcDgc6O/vDyuCjEajol1W4T5vp9MJt9sNg8EQ8ji1zqBQ8hcqeCiUJCF1OiMjIzCbzUmlgDweD2w2G3w+H4qKitDc3BzX61K5SCcyh0er1WLZsmVYtmyZ8FgwGBQiQQMDA3C73VCpVDCbzSGRoMWpqHRDUl3iNVDrDAolf6GCh0JJAnGdzszMDLRarVBUHA8sy6Kvrw+Tk5NYu3YtTCYTrFarjCsOJRUBotFowoogEgkaGhqCy+UCwzAwm83Q6XTCZ5VpkSBqnUGh5A9U8FAoCRCuTidch1W014+NjaGvrw/V1dXYvn07VCoVPB5PWictS41Go0FxcTGKi4uFx1iWhdPpFOqBjh07JoggcSRIHIWRing/S2qdQaHkD1TwUChxEK0gWaVSgeO4mNuYn5+H1WqFxWJBW1sbdDqd8LdE7R5Iq3sypGotES9qtRpFRUVQq9Xw+XxoaWkRRJDD4cDIyAicTicAhIggs9ksiQhK5fNJVAQtnhVEoVAyDyp4KJQoiDuAIs3TiSUgvF4vbDYbAoEAWltbheF/YhKJEmUzRASJTVI5jhNE0NjYGJxOJ3ieh8lkChmYKEckKF6iWWcQAeT1ejE3N4eVK1dS6wwKJQOhgodCiUC883QiRXgW1+mIJyIvJl1Rl3TvixBtfyqVChaLBRaLRXiM4zi4XC5hYrTD4QgRQSQSpNEodwpbPDWa4zg4HA4A1DqDQslEqOChUBZBnMxZlgUQu818sYDgeR7j4+Po7e3FypUrhTqdaDAME1dabPE6k7lgplvwJLNGlUolCBuCWARNTEygp6cHLMuGiKDCwkJoNBpFomXiCCC1zqBQMg8qeCiU/yXZwYHiCM/CwgI6OztRWFi4pE4nGomIELKufEiBiYkkgtxuNxwOB6amptDb2wuWZaFSqaDT6YTaoHTMNYokQKl1BoWSGVDBQ8l74qnTiQbDMPD7/fj444/h9/vR0tISclGOdxu5nNKSCzL/x2w2Y8WKFQBOf58DAwNwuVyYmZlBf38/gsEgjEZjSCRIDhGUyGRt8v/UOoNCSQ9U8FDymmR8r8SwLIvp6Wk4HA60tLSgvLw849NMuX6hZBgGer0earUaNTU1AE4LBxIJEouggoKCEBEUb0QuHFJ8f/FaZwCna4e0Wi0VQRRKnFDBQ8lLeJ6Hy+XC5OQkqqqqEo7qiOt0TCYTVq1ahYqKiqTXk+4LVa5EeCKx+P0xDAOTyQSTyYTly5cLz/F4PHA4HJibm8Pg4CACgQAMBoMggCwWS9wiKJVRAdGINjDR6/Wis7MTa9euDZkYTa0zKJSlUMFDySvEdTp+vx8TExNYuXJlQttYWFiA1WqFyWRCW1sbpqamBB+tbCDTurTkItaFnmEYGI1GGI1GVFZWAji9Tq/XC4fDgYWFBQwNDS0RQYWFhdDr9Uu2J5fgibR2si+PxyNEeah1BoUSGSp4KHlBuDodtVqd0IXY6/Wiq6sLXq8Xzc3NQp1OvIMH85VsurgyDIOCggIUFBQIEbvFImh4eBh+vx96vT5EBCl1DJA6n0SsM6gIouQjVPBQcp5IdTrxChWWZdHf34+JiQk0NDQsqdPJtiLgbFtvMkj5/iKJIJ/PJ5iojo6OwuVyCc8nIshgMKRFSETaR7L+YdQ6g5KLUMFDyVk4jkMwGATLssKJX3wCjzXdmOd5Yd5LVVVVxHk62RbhyQfBA8gbWWIYBgaDAQaDQRgoOT09jdnZWRQVFcFut2N8fBxerxdarRYWiyXtIija2ql1BiUfoYKHknPEO08n2rA/u92Ozs5OmEwmbN26NWzNhng7+SAgKNHheR4ajQZlZWUoKysTHhdHgsQiSJwOKygoyEgRBCBEAPE8L6TAFhdHUyiZDhU8lJwh0Xk64SIzPp8PXV1d8Hg8IXU60VBC8KSyTyrQ5CPc8abX66HX60NEkN/vF0TQ5OQkPB4PNBpNiAgyGo2KiyAAYadG+3w+HD16FJs3bxaeS60zKJkOFTyUrIeE4xOdpyM+GbMsi4GBAYyPj2PNmjWoqKiI+2SdbSktIP1dU0rsT4lW/3j3qdPpUFpaitLSUuGxQCAAh8MBu92O6elpuN3ujBVB5DcmLvyn1hmUTIcKHkpWk+rgQDJPJ1adTjSyLWKS7guOUhe4TBY84dBqtSgpKUFJSYnwGBFBDodDEEFqtTpEBClx7HEcJ/xOqHUGJVuggoeSlSTreyXGbrfD7XZjeno6Zp1ONLItwpNtAi1bkCOqFE4EBYNBQQQNDAzA7Xbj2LFjgm9YYWEhTCaTrHU1pBU+EvFaZ5DnUOsMSjqggoeSVRChMzo6KqSdEj0xiut0DAYD1q9fn9KaqICgpBONRoNly5Zh2bJlAIAjR45g06ZNcDqdcDgcGBwchNvtDmmPl1oEkYhqolDrDIqSUMFDyQrI7BCSvurt7RUsAuKF4zgMDAxgdHQUa9asQWVlJd57772U10YjPJmHEu9PibohgkajQXFxMYqLi4XHWJYVIkFDQ0NwuVxgGCYkEmQ2m5MSQeKUVqrEss4QQ0ZJGI1GKoIoCUMFDyXjWVynI+4aiQee5zE5OYmenh4sX74c27dvT3gb0ZBSQKTropnrggfIvhoeqVGr1WFFEIkEjYyMwOl0AsASERTr9yH3e40kgoLBIE6cOIHNmzdT6wxKwlDBQ8lYpKjTcTgc6OzsREFBAc4888yk63SiIZXgIduR+2StxMUgHwRWNrxHtVqNoqIiFBUVCY+xLAuXyxUyMZrneZhMJmFg4mIRJGWEJ17EAkejOX3potYZlESggoeScZCcPjHkTEbo+P1+dHV1weVyoampKeQELzVSpbTSlWpKd0orny402eh6r1arYbFYYLFYBCNdjuOESNDY2BicTqcgguKZTSUXHMeFCC9qnUFJBCp4KBmDuE4nnsGB4Vhcp9PS0hJ1G1JEVaSO8KSDbIhGpIJSNTzpjnrIFRFUqVSCCCJwHCdEgqampoSZQUajMaQ4mkRf5IBl2ZifMbXOoESCCh5KRiDFPJ2pqSl0d3ejsrIy7jodYi+RSk1PuiM8c3NzsFqt4Hk+xKMp3qF0+XJCz8ZoSzL7TNf7VKlUwrGm0+lgt9uxatUquN1uQQT19vaCZVkhEiS1CEo2lZaodUa4NnlK9kMFD0VRpKzTMRgMOOOMM2AwGOJ+LRErqQiedEV4vF4vbDYbAoEAWlpaoFar4XQ6l0zmFYugcB5N+dClpRT5UihNolkqlQpmsxlmsxkrVqwQ/iaOBBERtDgSpNVqE96v1N1hQHjrjEAgsGRgYjAYhNFohFarpdYZWQoVPBRFkELo+Hw+dHd3w+l0Yt26dUnV6cRyTI93G1JEeCKtheM49Pf3Y3x8HA0NDaioqBBc4MXzWIDTJ2q73R7i0SR267ZYLIr4fuUDSogPJYqHyX4jvVfS+r5YBJFI0MzMDPr7+xEMBlFQUBAignQ6Xcz9yvl+o4mgU6dOoaWlRRBq1Doj+6CCh5JWEjX4DAfHcfD7/Thy5EhcdTrRICmtVJAzwjM1NYWuri6hnT7WyV6r1S7xaPL7/YIIGh8fh8PhgEajgdfrFUSQHN1rYnLdu4vsM18iPIkKD4ZhYDKZYDKZhPlZPM/D4/HA4XBgbm4OAwMDgggym82CSBeLICW7wziOg06nC7kxodYZ2QUVPJS0wbIsvF6vEA5OpU6HYRhs3bo1ofRVOKSIzkh1MhOLL7fbjc7OTqjV6ohpungvdjqdDmVlZYJb98jICPx+P8xmszCPxe/3w2AwCAIonrvtTIfW8MiHFMKDYRgYjUYYjUZUVlYCWCqCBgcHEQgEhGOTNDYogbgonVpnZCdU8FBkhziZz8/PY2BgABs2bEiqTsdqtUKn0+GMM87AqVOnJDlhZNKUZFInYLPZMDMzg6amphAPJSn3o9VqUV5ejvLycgCnvyOv1wuHw4H5+XnhQkNSDkQEJVN3kU/kS4RHro60SCKIHJvj4+NwuVw4fPgw9Hp9SDpMr9crLiKodUZmQwUPRTYW1+mo1eqEPXj8fj+6u7vhcDhC6nTkrptJN+SkfuLECdTV1WHbtm2yhe7Dpc4YhkFBQQEKCgpQUVEhrIncbYvrLkjxKRFBcrYhJ0u+RFuUjPCk63sXH5ukbq26uho+n0+wzhgdHYXP54Nerw9Jh2WyCApnnUEiQWRWEBVB0pJ5ZypK1hOpTkej0cQtUjiOw+DgIEZGRrB69Wo0NzeH/PClbAVXOsJDusz8fj/Wr18vS1QnGSLdbUdqQxZ3h0lp3ZEs+SA+lCxaVnK/DMPAYDDAYDCERCnF9WpEBOl0upBIkMFgUFxERBNBPp8PXq83JG3GcRxMJhOdGp0iVPBQJCXaPB2VSgWWZWNugxTqVlRURJynI2WERynBEwgE0NXVBYfDgebmZgwMDKTlrjmVIutwxaccxwkiaGJiAt3d3SHWBAaDQXFRmasomdLKtMgSwzDQ6/UhqVoAIZGg8fFxeL1eaLXaEBEUbnxDuokkglwuF/r6+tDS0iI8Tq0zkoMKHookkDodlmWFH+7iH2AsceF0OtHZ2SnU6UQrSM5mwcPzPIaHhzE4OBgSvUpEiGTCZGhCuFksZCqv3W7H5OQk7HY7jhw5EpJuSNapOx5oSktelI7wJIJer4derxeK9oHTqXIigsj4BjLDihyjYhGUaCpeKshvlQgbgFpnpAIVPJSUSGSeTiRxIa7TaWpqCnF3jkS2prTIlORly5Zh27ZtIXermVJPJAXiqbzl5eXw+/3YsGGDIIKIUzfDMCF32iaTSfLBcukinwRPtgstnU4XdnwDEUFTU1OCCCJTzAFl3jfLsnH5h1HrjNhQwUNJimTm6Sy+oHMch6GhIQwPD4et04m1rWwqWvb5fLBarUKdjtlsXvKcdE1AVmrSstikksCyrDAtemhoCC6XK0QsWSyWuC0zlCZfokpAdkV44iWcCAoEAkKLvNfrxZEjR6BWq0NEutFolPWzWCx4wpGIdYZKpcJjjz2Gffv2Sb/YDIcKHkrCpOp7BXxWp1NeXr4k0hEPpOMrVeROaYnNTNeuXYvy8vKoE2rTEW3KJGsJtVqNoqKikCnZwWBQuNPu7++Hy+US7rSJCMqEmotw0KLl3NqvVqtFSUkJDAYDPB4P1q9fj0AgIDjJDwwMwOVyySqC4hE84Yg0NdrlcuHPf/4zFTwUSjQ4jhMsDSLV6cSCZVkcO3YMGo0GW7ZsQUFBQVJrycQansV329PT07DZbHGbmWaSEJGaRN6XRqMJa5lBRFBPT09IzQURQeLum3yJtuTaHJ5YZILQ0mq1S45PsUgfGBiA2+2WLF0bDAYla2ZgGAZOpzNshDkfoIKHEhMpfK8CgQC6u7vh9Xqxfv36kJNFMqTboTze7TAMI0xJVqlUCYm6XE1pSXFBJnfa4pZ9cc3FxMSE0H1jsVjgdrthMBjSKgjySfAoVcSbbLRD7v2GE+nBYFCIBJF0LcOc9hkjIiiewn2WZSXt3nQ6nSFp5XyCCh5KREidzsDAAMrKypIa4sVxHIaHhzE0NIRVq1bBaDSmLHYA6dI/UgqnYDCIgYEBTE9PJzUlOZcjPHIQruaCtCAvLCxgZGQEw8PDwkRe8TC6XIHW8KRvv4kKLY1Gg+Li4pAmDFKz5nA4MDw8LIgg8RwrMm9H/Bopj1mHw4HCwkLJtpdNUMFDWQKp+Cd1OjMzMyguLk7Yt2p6ehpdXV0oKysT6nQGBgYkOUmr1eq4ZvrEIt7ZQNEgn9Xhw4dRU1OT9JTkdBVQ57KwIi3IdrsdFosFpaWlISJoeHhYNt+wfIrw5FtKi2VZSfYbrmZNLIJI9yIAIRLkdrthMplS3jfB4XDQlBaFAoQvSE5UXLhcLsH4cvPmzSEpHXHqJxVUKhUCgUBK25BiO2RKcjAYRFtbW0onklxNaSkBeX+RJvISbyaxQWWqvmH5Nmk5nyJLcqbSwokgjuMEEeRwOGC329Hf3w+TyRRSF5TMmmiEh5L3RKvTiVfwkDqdhYUFNDU1hU1dkRRSqictqaIhyV78yXu12+1Yt24durq6UjbWTCRNl4kdStFQQmBF64aL5Btmt9uX+IaJLTOi1VLkU4QnH1Na6dyvSqUSRjjY7XZUV1fDZDLB5XItmWguPkbNZnPMeh+n00kFDyU/IXU6JMoRaUJyNMGzuE5n3bp1EU/CRDylWoSnVJcWz/MYGRnBwMBAyHuVYj25GuHJBnEm9g0jlhnEN8xutwu+YRzHLRFBSvqG0cGD6UGpYmnxvsXzqQhkojkRQT09PYK3nTgSJD7fOhwOWrRMyS/IePJAIBBzcGC0mTczMzOw2WwoLS2Na55OprWTJ7Kd+fl5dHZ2ori4eMl7lUJEpFOI5HpKSwrEvmFiywwighb7hrlcLrhcLhQUFKTt4phvwiMTPbzkJprYiiSCwhn8vvDCCygoKIDb7cbGjRtj7vfgwYO44447wLIsbrrpJtx9990hf//Zz36Gn/zkJ1Cr1TCbzXjyyScFv6+HH34Yv/zlL6FWq/H4449j586dKXwC0kEFTx6S6ODAcCktl8sFq9UKlUqFTZs2CaPXYyGlUJGqaDnWxd/n88Fms8Hn80WdkpxNEZ5cR67PUewbRiB32Z2dnZiamsLQ0BB4nhc8mSwWi6SWGWKUKh4GlDmOlBI8mRDhiZdw3nY8z8NgMOC9997DK6+8grfffhs///nPsXbtWpx55plob2/Hjh07QvZ5++2349ChQ6iurkZbWxv27NkTYmB67bXX4rbbbgMAvPTSS7jzzjtx8OBBfPrpp3j22WfxySefYHR0FJdccglsNpuikVACFTx5RLLzdMQiJRAIoKenB/Pz82hsbEy49VrK7iq5vbTEU5IbGhpQUVER1ScsWyI8+VC0DKTvgkzusg0GA+rr62E0GsGyrOAbNjw8vMQ3jFhmpCpWlBIA+UY2CZ5wMAyDjRs3YuPGjejr68O9996LHTt2oKurCx9++CFOnDgRIngOHz6MhoYG1NfXAwD27t2LAwcOhAgecVqMtNcDwIEDB7B3717o9XqsXr0aDQ0NOHz4MM4666yU3oMUUMGTB8RTpxMNtVqNYDCIoaEhDA4Ooq6uDk1NTUmdaLMlpUWmJFdUVKRtSnI6rSUo8iAu9A/nG7Z4Gm+qvmFKdUsphVLvNZk5PFIhtaglRcsqlQpNTU1oampa8pyRkRHU1NQI/66ursYHH3yw5Hk/+clP8Oijj8Lv9+Ovf/2r8Nrt27eHvHZkZESy9acCFTw5TCJ1OtHweDwYGRlBVVVVUr5XYjJd8LjdblitVjAMk9CUZCnWo1KphOib3KQ7wpMPEaVYFya1Wr1kEJ3YkqCvrw9utzsh3zAlU1r5hFRzeDKBeIqWw/1ewx2Dt99+O26//Xbs378f3/72t/Gb3/wm7tcqARU8OYoUBp/k4u/z+VBRUYHGxsaU15WJKS0SAevt7cX09DQaGxtDpvcmsh0p1iI3+dCllS1eWtF8w0h3mMfjgVarDZkRRHzD8i2lpZRwVjLCIzXxWEtUV1djaGhI+Pfw8DCqqqoiPn/v3r348pe/nNRr0wkVPDkGqdPp6+uDwWCIWncSiWAwiJ6eHszOzqKpqUmYtiwFmRbhId5X77//PlauXJnSlGQpipbTkdLKF7JVCETzDbPb7RgfH4fX64VOpwPLsuA4TrDMyNb3HA9KijulIjxyCLx4BE9bWxu6urrQ19eHlStX4tlnn8X+/ftDntPV1YW1a9cCAF555RXhv/fs2YNrr70Wd955J0ZHR9HV1YX29nbJ30cyUMGTIywuSCZ2B4mcIHiex/DwsFCn09jYCIZhMDc3J0lUBsisCI/T6cQnn3wCr9eLs846KyW/GiUiPMme/POlaDndyHlBjuQbZrPZ4PV6hUhsLvuGKdUKDyhXtCxHZMntdsfsqtVoNHjiiSewc+dOsCyLG2+8Ea2trdi3bx+2bt2KPXv24IknnsBrr70muMf/5je/AQC0trbii1/8IlpaWqDRaITW9UyACp4sh6RjgsFgSJ2ORqNJSBDMzs7CarWipKRkSZ2OVNEUKbeVynbEU5Lr6+sxODiY8oWBDh6kpDsCodfrYTAYUFpaipKSEvA8nxbfMCXTSkoJnlwbeBjPe9m9ezd2794d8tgDDzwg/Pdjjz0W8bX33nsv7r333uQXKBNU8GQx0ep01Gp1XB5RpE4HQMR5OlJFZQBlBY94SnJdXR3WrVsnfH6pkk01PPlAvtg8iIuWE/UNE0+LTsQWJd+GHSq5b6kFT76fX6jgyUJIuoqIkHDdV6SVPBLiOp1YRbpSCh61Wg2fz5fydhIVPOIpye3t7cIJXuri53RuI9kLjxLCKt9PtHIR6xiQwzdMqc4wpTulcmXgYbLdurkAFTxZRCKDAyPZQYijHLW1tUKdTjQyMcIT7w9WXOcQbkpyJqTYCOmq4Uk32bLOVMmWqFK8vmHEk4nMEzKbzcJ5RakIT6bUgqQLqQVPIBDIu89QDBU8WUCkOp1ohBMp4jodcZQjFplYwxMLjuMwODiIkZGRqFOSpYp2SLGdRKY1+/1+TE1NwWKxCC3K8ZIPqbNsER+Zss9IvmHEmHJ8fBwOhwM8z6OgoAB+vx92ux0mkyltF1AlU1pKIbXgcTgcYa1x8gUqeDKcZOfpiFNabrcbNpsNHMdh48aNMJlMCa1B6pSWVNuKxMzMDKxWa1xTkqW6QKUrwiMWciUlJZiYmIDX6w3pzrFYLFELU/NB8CiBEp+pnNGWSMaUs7Oz6O3txcjICJxOJwCEDEqUyzeMCp7UcTgcId9nvkEFT4YirtMhEZ1E7SACgQBsNhtmZmaSGqZHkPKEKmeEx+PxoLOzEwASmpIsBemwlpibm0NnZyfKy8uxbds24dhY3J0zNDQUUphK6jKUcnvOJ5QsWk4HKpVKSIc1NzcDOH1RdjqdcDgcGBoaEnyVpPYNU9KhXSmCwaCkgofYSuQr9AyYYSRr8Ll4G5OTk5idnRUujplyZySH4GFZFn19fZicnERjYyPKysok3Ug9sGkAACAASURBVH48MAyTcuQqkmjy+XywWq0IBAJCJx05TsjxEa47Z3FNBsdxMJlMMBqNQtQwU46LXCFbU1qJsPi4UavVKCoqQlFRkfBYMBgURNDAwABcLhfUanXKvmFKHK9K1g5JHeGhgoeSEUghdIDTUQCr1SoUGdbW1kq91JSQMqXF8zwmJibQ3d2NlStXYvv27YpdwOVwS+d5HkNDQxgaGgpbhxSrOydcTYbT6cTc3By8Xi+OHTsm3ImTSFCiF6F4UaIrLB+KpTO1bkij0STkG0aikNF8w5RsDVeyHT7VuUliaEqLojikTufUqVOorq4OOUnEi8fjgdVqBcdx2LBhA4xGI9577z0ZVpsaUkV4nE4n3G43JicnsXXrVsUnykrdlk7a6EtKSuJya48HlUolFDnPzc1h8+bNES9CRABZLJaULQvyQXgoRSZEeOIllm/Y5ORkVN+wXJmFkwhkXIBUxGMcmstQwaMgHMchGAwKtRjJRD+Ib9bU1JRi6ZxESFXwBINBdHd3Y35+HgaDAa2trRmRlpGqaJllWZw6dQoejydsG70UiIVVuIsQ6cBxOBwYGxuD1+tFQUFBSCQokUF1FPnIJsETjkR8wwDAYDDA5/NBp9Ol7X3nkqWF0+mkXVqU9BIpfaXRaOIWPDzPY3R0FP39/aipqZE9nSPVHVayKS3x+62rq0NTUxMOHz6cMXUoqUZ4eJ7H+Pg4Zmdn0draiuXLlysWGdHpdCgrKxPE8+JpvQMDAyGD6sideCbN98iXLjQljn+5RVYk37De3l74fD50dnYKvmHk2IvVmZgKSkZ45OjSInV++QgVPGkk1jydeAUPqdMpKipKaJ5OKpCBY6meXJOJhCwsLKCzsxMWi0WWKclA6ifxVNZC3p/ZbEZxcbFQcyMXyQw4DDetl8xoIXVUPM/DbDYLIkiu9uRE1p3rZHuEJ170ej2MRiNKSkpQWVkpdCba7faQzkSDwRAyLVoKEZRLgsfpdKK+vl6y7WUbVPCkAZ7nhTbzaPN0YkU/PB4PbDYbgsGgbOmOSKhUKrAsm3JrcyLCwO/3w2azwePxoKWlZUmxXaRp0olCBECqdSqJRhUCgQC6urrgdDrR0tICnU6HU6dOJb2GeJGq3shsNsNsNgsCjWVZuFwu2O12oT2ZzHIJBAJwu91Ri1IpiZMvgmfxfsWdiWIR7vV6Ybfbl0QiiQBK1Dds8X7TDe3SkhYqeGQmkcGBkQw/xXU6a9euTSgkKdUJUaruqnjWIh6ut2bNGlRWVoZ9ndS2EKmc1BJZizg9t3r1ajQ3N4NhGPj9/rRMoZYLtVotRHcIwWBQKEjt6ekRilIXF0VTkiNTu7TkINZvVByJrKysBPDZeAaHw4GZmRn09fUJlhliERTtRi6XIjy0S4siC8m0mWs0Gni93pBtjI2Noa+vD9XV1QnX6RCRIsXAuXRMSAZOT0m22WwoKyuL2Z0kpeBJl/Gnw+FAR0cHCgsLl6QjyTb803/H8HQ5VjfF9jmTc61SoNFoUFJSAr1ejw0bNgCAMCTRbrdjZGQEPp9vyZDEVNO0+VLDA6Q/dZcJEZ54EY9nEPuGkXSs2DfMbDYL9UDENyzZ/UoFjfBICxU8EpOM7xVBbAcxPz8vzNNpa2tLKhctVcoHkN8Di7TV8zwvDNdL15piTTiOdxvRLrLBYBBdXV2w2+1obm4O2xrKMAz0nnmYDA6sWj6FJ7//CRpbV2DbBZtgNEnXmgooKwj0ej30en1IUbTH4wl7F77YuDIRaOpMHrJJ8IQjXDpW7Bs2NjYGp9Mp1KSxLAuDwaBYgbiU+3Q6nSEDIvMNKngkgud5IX1FhE6iB6parYbP58OJEycQCATQ2tqaUp0OEVBSFO7JFeFhWRb9/f2YmJhIuK2e1BWlihTCKdI2xFG6uro6rFu3LuKFmGEYLB85CWZbPQq0DG6/HXjyyWG8+OwQzjq3CBdcth4rV61MaZ1kP5mE2L2bpCI4jhMmRY+NjcHhcAgXKnFRdKa9l3wg3XYWBDkFh9g3rKqqStif0+nEwMAA7Ha7MKhTHAlSujA/UWiEh5IyyRp8imFZFqOjo5iamsLGjRslaR3MZNNPYn/R3d2NqqqqpNrqpa7hSYVwER6n04mOjg4Yjcb4onQcBzO7IFzE1WoGt92mwauvcvjd/gW8+fo7aGzS4cLLVmFTe2tKa810VCqVcBdOLkDEs8lutwt2BeJJvck4x1MSh+M4RXzZ0h1hIYM6CwsLYTQaUVFREXIMLvYNEz83U0UQFTyUpJHK94pEACoqKrBs2TLJ5iRIKVKkTGmxLItjx45Bp9OlNCU5k2p4xGsJBoPo6enB3Nwcmpub4w4hcx3vQV8VmupiGAa7dqmxejWDhx8Kwmb1w2a1oaioC+deWIqzLlqP4tLEJ3NnI+E8m8STeolzvE6ng8/nw9zcHHQ6nWzzWfKVfLN4ENfRRPMNEwtx4hsmFkGZIMRZls3roaFU8CQBqdNxu904deoUzjjjjKQOZlKnU1hYiLa2NvA8j5MnT0q2zkyL8JApyV6vFy0tLUm7txOkECqAdDU8HMdhfHwcPT09qKmpQWNjYkXH3jdfhWX3mrB/a2pS4Yc/0uK+rwfgcAALCzxeOTCNP7/8JjafUYDzLlmDhpY1GXFSTSfhJvX6fD6cOnUKLpcLn3zyCXWOlxglu7SU6JaKJfCi+YbZ7XZMT08n7BtG9ivl55xPhfyRoL/6BFhcp6PRaOD3+xM+KL1eL2w2G/x+f8h8GZZlJU0bZYrgEbdh19bWLmldTpZMquHxeDxYWFiATqdLqsics8/Ae8yKkhs2RXzOsmUMHv2hFt/7bgA22/++jgM+POrBh0dPYcWKT3H+xSuw9dxWFEhc5JxN6PV6GAwG1NTUwGQyCUXR4ZzjxUXRmZqGyDSyvWg5UZLplIrkG0YsW8S+YeJBieKUrFwRrXy7KRJDBU+cRKrTSUQ1syyLvr4+TE5OoqGhAeXl5SEHn1QXcILUKa1kthVuSvLk5KQkodVMSGmxLIve3l5MTU3BYDAIrdeJ4v/bywDLgSmI/pnodAy+do8Wv/0ti9cOhb73sTEOzz0zgj88P4JtZ1tw3iXNWFEr79TmTEX8fYqLoklrMunKIa3xTqczbc7x2U4uFi3H2q8UkSWtVrvEMkPsWyf2DZOjHk3qiFE2QgVPDKSq0xkfH0dvby9WrlwZsUBX6oNR6giP3++P+/nRpiRnUrExkHxKa3JyEl1dXaiursaZZ56JEydOJLV/nufheevv0K2tiOsYUKkYXH+9GvWrGTz55NLv1+cD3n7Djrff+ABrG7U4/5JabNjaDI02v37u0T5LcVfOypWnO9/EtRjhnOMX34HnK0pdOJVKpclZOxTOt46IoJmZGbhcLhw+fBgGg0E4XpP1DXO5XDCZTFK/hawiv86ACSCF0AE+i3CQOp10FlAqkdLiOA5DQ0MYHh5GfX19WBNMKQWPEiktt9uNjo4OaLVaoeiaZdmk3xPbdRTBkVlYvrAl7tcwDINzzlWjppbB/d8IItLH0GULoMvWA0tRL867oBRn7cifIudECVeLIXbuJs7xxK+JiKB8K4pWchCfUoInXbVDDMNAr9ejvLxcaOZoamoSzHvFvmEFBQUhIihWxNzhcOS1UzpABU9YWJYNmacT60cW7s7D6/Wiq6tLKNBVohUw0ahMNOIRBbOzs7BarSgrK8O2bdsiFoZKJcRUKlVYK45kthOPWCEpyampKTQ1NYUUyqYyvdj71z8DAPT1iXfn1daq8PiPtfjGvgCmpyM/z77A45WXpvHnP76JTVsKsLpJp9gdczax2LlbbFq52K/J7/djfn4+45zjpUaplJZSKF07FMm8lwzrnJ2dXeIbFq44P99b0gEqeMJCLlzxHOTkYklOcOJBeuHqdOLdfyb5X8XaltfrRWdnJziOi2tKcqaltOKp4ZmamkJXVxdWrFiBbdu2LTk2khU8nGsB3g9OG4ZqlidXyG02M3jku1o89lgAH8fIqnEccPyYB8ePefDuGy/jghwtcparIyWSaaXT6cTJkyfT6hyvVNdNvtWCKOWlFW2/4YZ1in3DxJYZJ0+exPj4OJYvXx7XBPuDBw/ijjvuAMuyuOmmm3D33XeH/P3RRx/FU089BY1Gg/LycvzqV79CXV0dgNPXCVLHWFtbi5deeimVj0ByqOAJQyLpK41Gg2AwCJVKJdTpJDtID/jMDkKKH5jcgkcs7hIxNc00wROthsfj8aCzsxMMw+CMM86AwWCIuI1k8L/3J/D+02lTVWH4bceDRsPgzju1ePFFFi8diO8zGf/fIuff//cItp9jwbkXr0NVXVXSa8g00nVRJn5NOp0OTU1NAD6b0hvOOV6q2SxKCQ+lIh5KtlVnQyotnG8Yx3GwWCx4/fXXcejQIXz00UfYunUrWltbsXXrVmzduhVtbW1CJIhlWdx+++04dOgQqqur0dbWhj179qClpUXYz5YtW3D06FEYjUb89Kc/xVe/+lU899xzAICCggJ89NFHEn4K0kIFTxgSObg1Gg3m5+cxMDAAk8mUcp0OsYPINMEjrpfheV6IeCQj7qRMacklnDiOQ39/P8bHxxO2vEgE75tvn15DiRGMOrWLCMMw+Pzn1aivZ/CjH8b/+fr9pMj58Oki54trsaEt/4qcU2FxVJZM6V3sHE/qgaamplJ2jlcqtZRvKS2lkCKypFKpsG7dOqxbtw61tbXYsmULvvGNb+DUqVM4evQofv3rX2Pz5s2C4Dl8+DAaGhpQX18PANi7dy8OHDgQInguuugi4b+3b9+OZ555JqU1phN6RksBksv3eDxYv369JPnRTJmdE25bpJW3s7MTWq0WZ555ZsSIRzQyLcKzeDszMzOwWq2orKxMOlIXD8G+kwj0TQAACrbUSrJNhmGwZYsa3/seg/vuC8LrTez1QpHz/v8tcr6oBcVlJbFfmOfEk4YON5uFdOQk4xyv5ADAdO83H+vNWJaVdECmw+EQjqctW7Zgy5YtuPnmm0OeMzIygpqaGuHf1dXV+OCDDyJu85e//CUuv/xy4d9erxdbt26FRqPB3Xffjauuukqy9UsBFTxJQFI54+PjMJlMWLVqlWTFYBqNJiMFD8/zsNvt+Pjjj7Fu3bqQk3aiZJrgISktUovE8zy2bNmCgoKClLcdDd+brwj/rW+qlHTbFZUqPPaYFt/+dgBDQ4m/nhQ5/+nlt09Pcr54Ddauz55JzulOfyS7v3BtyV6vV2hL7u/vRzAYDOscr6TgSXeER8nOMKUIBoNJ2+6EI56i5XDHcaRj7JlnnsHRo0fx1ltvCY8NDg6iqqoKvb292LFjBzZs2IA1az6bHs/zvKIRQip4whDpC+Z5HhMTE+jp6UFVVRXOOuss9PT0SD4skLTCS7GtVNdGvL56e3uhUqmwffv2lE+ymZbSYhgG09PTGBkZSagWKRV4nxuedz/LdWurpW8VNxQw+OYDWvziFyzeeze5z4nnSZHzKSxf8SkuuHgFzjynFUZz5hc5p1sMSLE/cUdOJOd4p9MJnudhNBrh8/ngcDjS6tqthNDKx7ohqYulnU6nUNsTierqagyJ7pCGh4cF814xr732Gh588EG89dZbIaKMPLe+vh4XXnghjh8/Lggecdfz/Pw8uru7MT09DZVKBaPRiLKyMpSWlqK4uFg2vy8qeOLEbrejs7MTRqMxxPBSyogMkFkpLbvdjo6ODmGG0LFjxyQ50WWSJcTs7Cx6enpgMBiwbdu2tHVj+A+/Ct792cgA9TJ5BoKp1QxuvfW0+ej+36b2mS8tcm5CVd1KiVaa3cgpAiI5x8/MzMDpdGJwcFAwrCRpMIvFEtOrKVnyKcKjZDRCrpRWNNra2tDV1YW+vj6sXLkSzz77LPbv3x/ynOPHj+PWW2/FwYMHhU5FAJibm4PRaIRer8f09DTeeecdfPWrXxX+zjAMXn75Zbz66quC153dbofT6UQgEIDZbMbq1atx3nnn4ZprrhEaAKSECp4Y+Hw+dHV1wePxYN26dUs8oKSMyACZkdLy+/3o6uqCy+WSZYaQWq1O6/yccPh8PlitVgQCAaxevRperzetrafeN9747B9aFRidfPtmGAY7d54WPQ89GESqN62fFTkfQcPaj3DBJbTIOd1RD7VaDbPZDJPJhNbWVgChzvHEq0mv14fUA0mVIsmXCI9SDu1k31JHeGKdyzUaDZ544gns3LkTLMvixhtvRGtrK/bt24etW7diz549uOuuu+B0OnH11VcD+Kz9vKOjA7feeqtwXr777ruFYuexsTF84QtfECaXb968GTU1NaiqqoLBYEAgEMDIyAhOnDiBX//61/jOd76DK664Ag888ACam5sl+wzy9wwVBVLT0d/fj7GxMaxZswaVlZVhf+QajQY+n0+yfUspoJKZ/zM0NIShoSHU19ejpaVFlhObkhEenucxODiI4eFhNDQ0oKKiAtPT0/B4PCmvJ17YkS74rcPCvw0bVqblAtLYeNpxfd99Adjt0myzuyuA7q4eWH7bi3MvLMXZGVLknA9FrovfYyTneLvdvmRCrzgSlA3O8UoP/1MCJQQPAOzevRu7d+8OeeyBBx4Q/vu1114L+7qzzz4bJ0+ejLjdc889F3v27MHmzZtjWlwcP34cjz/+OHbt2oWf/vSnS9aTLJl/pCsAz/M4cuQIysvLsX379qgHnUajgcvlkmzfUqa0EoFMSS4tLY06JVkKlCpanp+fR0dHB0pLS0O+V6nWEy++t/4Y8m9Da/pm3yxbxuAHj4Y6rkuB3c7jTy9N488vv41zN6lw1ZcvgT6OIWe5ghICK559EpsCUpcmdo6fnp5GX18fWJYNGZKYic7x+ebQDsgjeBZnKNLFihUr8Mgjjwj/ZllWOHZ5ng95n6Rp5Omnn8bo6CicTqdk66CCJwwMw6C9vT2uE5jUAkWj0cCbaC9xCni9XlitVgSDQWzcuDEt5nLpLlomRqZerzfse5RS8MS6CPEBPzx/OxrymG5VaYRny0M0x/VU4Xngbx9xsH71j7jh/7Ri9ZZWSbefqWSq4FlMMs7xhYWFMJlMikbMMnHacbbtW0nBQyACcvH7YlkWdrtdGOBJCFcwnQpU8EQgHrsB4LNJy1IhdU1QJMSD9RLpTJLixJ6uCA/P8xgeHsbg4GDUtGS833UsiL1EtM8n8OHr4Oyh6TN1efr9bQTH9XoGT/5c+oji5IIOj/7QhsvO6cGuf94p+fYzjWwRPOEI5xzPsqxQD9Tf3x/iHB8IBODxeNLqHK9khEcpwSP1e3Y4HIoKnkjv5/3338fBgwexsLCAysrKJZOdpYQKngjE640kh+CROqW1+MRIpiQvX748ocF68VzQ4yEdHlgLCwvo6OhAcXFxzBRdNGuJRNcT6yTlffP1pa8zKuO2zTAMzjlHjZoaBg98MwgJ6shD4HkGr/6dw6mOP+CcS4qk3XjMfedHDY9cIkCtVi9xjg8EArDb7RgfHxcipsQ5nkSD5HKOz8eiZUDa4nCfz5fUoFipIJ8jOdeqVCq8++67+NrXvgaDwYDt27fj+eefx69//Wv853/+J9rb2yX/HVPBkyJypLTkEFCk1qizsxMajSaqL1SsbaV6ApCzTikQCKCrqwtOpxOtra1xFelJOc8nmkhmp4fhO9kX8pimdhkYlbIX5tpaFX70mBbfvD+AyUnptz8yo8cL/+2Gd/oVXHz9TqizoEg2UZSaTZPOfWq1WpSWlkKv12PTpk0hzvHz8/MYHBwUHLuJCFrs2J0s+Vi0LAdK3QQ8/fTT6O7uxoMPPgiVSgWfzwe9Xo+XXnoJjY2N+MUvfgEA2LdvHy6//HI8//zzaG9vlzzClntnnjST6REetVoNn8+H3t5ezMzMpDQlmawt1aFQchQJ8zyP0dFR9Pf3Y/Xq1Whubo77x50uweN/8wAW94QXbKqJ8Oz0YjYzePg7Wjz+WAAnYjiuJwPLq/DS6wF8fOoF3PDldlSuWS39ThQkm1Naie6TEMk5ngxJnJycRE9Pj+AcT6JAyRRF52NKS0rI96aU4GloaMD+/ftxzTXX4M4770RbWxsAoKamBh0dHXjnnXdQX1+Pjo4OzM/Ph8z3kRIqeCIQ74EhR4RHSjsIv9+PDz/8EHV1dSlPSZZKGBBfLqlwOBz49NNPYbFY0N7enrAgk6qGJ9rnw7NBeN5e6kmjXyv/VOd40WgY/N87tfjDH1j84ffydK31T+jx8LeO46qdNpz/xUuhStEwNRLZYi2R6j4zTWSJHbtXrFgBINQ5fnh4GC6XCwzDhKTCYjnH51tKS8kJz3Jw3nnn4bHHHsNTTz2Fe+65B5deeim+8pWv4LbbbsOJEyfwla98BWvWrME777yD8847D9deey0ASP7ZU8GTIlKfcKQSUGQydDAYxPr160Nmcyi9Nqnm8ASDQXi9Xnz66adobm5OuiBPyhqeSCeqwMm/gZ1Z2l6pWZHe2pZYMAyDq65So341g0cflSftGGRV+J8/efDxx8/jui+fg9Laaln2k43WEomglOBJ9CIUyzm+t7c3xDmeiCC9Xi+8v3yL8Ej9fkkKSUlaWlrwyCOP4Omnn8aBAwfQ0dGBm2++GU8++SROnTqFjz76CPfccw+2bNkifO9SH99U8GQYqXZp+f1+dHd3w+FwoLm5GUNDQ5L9cKSKzKQaKSL+Xn19fVCpVHGPEJBrPYRowsn3xl/CPq4uktegNBkYhsGmzWp87/sM7vt64o7r8WIb1uOhb3yAf7jCirP+vx1ZXWScidEWOZCqbiiWc/zY2Bi8Xi8KCgpQWFgIn88n+cT3eJAihZ/sfqWchWa322E2myXbXqKQY1Wr1eKWW27BNddcg7vuugtf//rX8fnPfx7XX3891q9fLzxXLqjgiYBSJ99k0yviKcniGhYpU25STkhO9qB2Op3o6OiA0WhEW1sbjh49KknXmJRt6Yvh5ifhPd61dL9mHSBTSkcKKipUeOxxLb79reQc1+PBF1Rj/+8dOHH8eVx7+4UoWi5N7l6JlFY+2C3Iuc9YzvELCwsYGRkRnONJUbScERilipaDwaAiU5blgPw2PvroIxw6dAgulwvt7e342c9+hgMHDuChhx7Ce++9h6985SvYtm2brMc0FTwSQO7slWpfnJubQ2dnJ0pKSpa0YGeSGWkqBINB9PT0YG5uDs3NzSgqOp0KkuKzl7otfTH+t18C2KWPGzbXZnxUw2Bg8MC3tPjFkyzeTdJxPR4+6dfhwXvfxhf/oQJnXn6eZM7juUy2pLSSRewc73Q6UVxcjJKSEmFI4sTEBLq7u4WiaJI2k9I5Ple6w+IxDpULhmHw4osv4nvf+x5WrFgBi8WCP/3pT/j73/+Ohx56CFdccQXuuOMO3HLLLbj11ltx3XXXJd1YEwsqeCKQyIlEqnbtRPF6vbDZbAgEAhGnJGe74OF5HhMTE+jp6UFtbS0aGxtDvpt4Zt/EIt6ZS8lsh+d5eN56N+zz9c2VKe8zHahUDG65VY36NQye+S/5vn+3X4Nf/24WHx/7H1z95YtRmAGeXPFCU1ry71elUoFhGME5nsCyrFAULbVzfK5MeFZS8ACnvbh27NiBf/3Xf0VRURGOHDmCK664AldeeSW2bduGH//4xzh69ChuueUWvPDCC3jhhRckqTtdDBU8EkBa09OV6xVPSSYGmJGQOqWVTs8pl8uFjo4OGAwGtLW1hR1qJsWapDqBh1tLsPN9BMfnwz5fV5teS4lUYBgGl16qRl2dNI7r0fjQpkXX117HtddUY8OOs+TbkYTkk+DJNE8rtVqNoqIiIeoLhDrHT01Nwe12Q6/XCwKIFEXHIlcEj5IpLQDweDwwmUxYvfr0OIqzzz4bwWBQuDaxLIutW7fiww8/xP333y+blyMVPBIgZSs5ED1NQ6YkV1ZWxjUlORsjPCzLore3F9PT0zHnBqVbhEUjXITH98bBiM9Xl8rvWyY1jY0qPPqoDvf9uwtOv3wC3+HV4udPT6D9g//G52+7DOZlxbFfJCIfanjyZZ9A4kIrmnM88Qzz+XwwGo0hImjxhZamtKThkUcewT333IMPPvgAVVVVsNlsuPjii7F582YAEN4rz/O4//77ZVsHFTwRSDSlJcfwQfEPze12o7OzE2q1OqEpyWq1Gn6/X7J1BaT2H1jE5OQkurq6UF1dHdfcoEwWPJxzHt4jn4Z/sooBo8/On19JKfDwPSy+/6MABubldUQ//KkOtq/9BTt2GFCzpVm4MMXj45TrNTwcx8l2Jxxtn5kW4YmXaM7xMzMzgnM8KYq2WCySFw/HS65FeK666ioYDAa89dZbmJqawmWXXYZbbrkFRuPp8wcR0nL/ZrPzjJthSD1tmUSMtFotgsGgMCW5qakp4bxmpqa0Fkex3G43Ojo6oNVqsXXr1rhnRmSS4Fm8Fv87fwTvD//Z69ctz+oLsqXegq8/4MPTP1zAu33yzhKad+nw4ssczh36CGdcvgETExMhPk6kVkOJ9mFCvkRbslnwLCaWc/zo6CgWFhbw8ccfh9QDpcM5Xo4Ij9TO44mya9cu7Nq1K+zfyOfJsix8Ph9UKpUsvl9U8EiAHPYSgUAAc3Nz6O3tRU1NTdLtepma0iLigOd59PX1YWpqKilBl0mCRxzh4TgO7jfeivhcwwZlTz5SoCvW4+b7SlH35AR+97789Uh//0gLa+/HuOHGZmxoawtpWSZ356Rbh2XZtA6NyxfBo2RKKx3f5WLneJfLhU2bNgkiaGBgAC6XCxqNJiQVJrVzvNTzf1wul6IRHo7jEAwGhVk8YsbHxzE9PY3p6WkcOXIEf/vb3/DJJ5+gp6dH8nVQwROBZLq0pILjOJw8eRJFRUURi3WVWJvUgmdqagp9fX1YsWJF0oIukwQPWcvMzAwmjvwV5UMzEZ+rqy9L48rkQ6VRYde/rEBNzTgefaEYQU7eu/8p0q0lHwAAIABJREFUuw4//FE3LjmrB7tvvByVlZWorDzd7UbuzhcWFuDz+XD8+HGhW0euCxMhX6wl8tHiQavVRnSOJ+3xHo8HBoMhRASlct6WI8KT7CR6KVCpVMLnMT09jZMnT6KnpwddXV0YGBiAzWZDX18fVq9ejZ07d+LOO++UZR1U8EiAVBEe4vQ9Pz+PhoYG1NSkbiyZiSktj8cDp9OJ0dHRpFzb5ViTFLAsi4GBAWi1WqwdsiLagGJNhXInHzlovWI5Hlo5g4d/rsOcR94R9jwYHHoPONX5B/zjLZtQs34dgNC78/HxcZxxxhlgWVbo1hFfmCwWC4qKiiRNheVDtCWXUlqpQJzjS0tPRzbFzvELCwsYGhpCIBAIKYpOxDk+l4qW/X4/3nnnHbz77rv4+OOPMTU1BeD09GeTyYStW7fi+uuvx4UXXij7NGgqeKIQ73wWjUYDn8+X9H54nsfw8DAGBwexevVqaDQayXxPMinCI26nNxqNWLduXcp5WikFT7IXEPL9jYyMYPny5Vi3qgYz//FI1NeoCpX1tZGDyjNK8eA+Jx5/1InOKfnH2I/N6fG973bg8gu6cOkNu6DRLRUui7t1Fk/v7evrA8dxIYWqybh554v4UCqlpdR+4yWWc/zU1JTgHB/PsZZLk5Y//fRT3HDDDWhra4PFYsGOHTuwfv16tLe3L6krkvuYpoJHAlIRAnNzc7BarVi2bJkwJbm3tzdjRIpU25qZmYHVasXy5cuxfft2nDp1KiN8ucTbSeakSpzai4qKsGrVKmi1Wvg/OAjeE7mbTVNhBpNBd6tSYlppxl0PBLD/R7N43SrPtFQxHM/glTdZnPzkRdxwWxtWNNZHfb54em+4VBhx8xYbXsaTCqMpLfnJZMETjljO8SMjI3A6nWAYJiQVZjQaZenSUiql1dDQgGeffRZVVVWorw/9fZJzN+nQkvvYooInColEeBJNafl8PlitVvj9fqxfvz4klCflXB+lU1perxednZ3geR5btmxBQUGBsK5MEjyJWlSIrS5aWlpgsVgwODh4OoLw5ptRX2vYXJvyejMZjUmLG75WgVW/GcMv30hPrdLglB6PPPgR9lxqxYXXXJaQABGnwgjBYDBsjUakVFi+FBBnWmop24jmHO9wONDX1we32w2v1wutVotly5YtcY5PBqfTGTKYMZ0MDw8jEAiEiB2O4xQ5lqjgkYBEBA/HcRgYGMDo6CjWrl2L8vLyJQeylPNulIrwkPc5NjYmvE8xUhqRpls4kVlBNTU1IVYXKpUKqok++LtGo75e3ySNQWYmw6gYnP//V6GqZgLf+60FXlb+Dpsgp8KLr/pw4uP/QdvFJSldIDQaTcxUmLgrLBAI5EV6KZ1eWkqTLhuNcM7xR48exbJly+ByuZY4xxPBlEjtmcvlCms9lA7Gx8dx++23o6WlBXv37sX555+PioqKsMeRz+cDwzDo6OjAX//6V5x99tnYtm2bZGuhgkcC4hUC09PTsNlswpTkSCFLtVoNrzdayWv8SPmDjfd9zs7Owmq1ory8HNu2bQv7PpUQKqlux+v1oqOjAwzDhJ0VxDAMCo6/jVjSV7NS/lRPptBwSSUeXjmPR36swrhT+rka4egZ02Pod3bw9tdwzucvhkoCR/pYqbDZ2Vl4vV5MT0+npSsMUC7Ck+5hh0qhZDSL53mUlZWF1AN5vV44HA7Mzc1hYGAAwWAQRqMxZBZVpGsKz/OKDFAEgPb2dnz/+9/H888/j+985zt47LHHsHHjRrS0tKCyshIWiwU8z2N0dBQdHR14/fXXYbPZcNNNN+Gf/umfJF1Lfhy5SRLvySRWhIdMSVapVCFpnWjbU8qVPBqxRAFJ0wUCAWzatEmYohkOqSJPUtfwhIPneSEq19jYiLKy8GkaFRcAe+RUzH2pi6N//7lGSXMxvvlND372AzuOj6anjsDPqvHcSy58/NHzuPZfzseylSsk34c4FUaOw+XLlyeUCksFJS7I+ZTSUspHC1gaSRMLbrEIiuYcT4YqJtIef/DgQdxxxx1gWRY33XQT7r777pC/P/roo3jqqaeg0WhQXl6OX/3qV6irqwMA/OY3v8G3v/1tAMDXv/51QawYjUbs3r0bF1xwAQ4dOoTXX38dhw8fxu9//3sEAgF4vV6wLAu9Xo81a9Zg7969uO6662QZlEgFjwREEjxiT6jGxkahhTEWUltVSEUkAcjzPAYHBzE8PBwxTbcYKYWKFOk/UsOzmIWFBXR0dKC0tDRitIpgsH6AoDNGt55eA0arzElUSQzlBfjXb+rwh59M4aWP0ueC3jGox0P73sHVV5Wh7XMXyD+6PsFUWLJdYWTb+VA3pERBOJD54i6ac7zD4cAHH3yAe++9FwaDAR6PB/v370d7ezsaGhrCfocsy+L222/HoUOHUF1djba2NuzZswctLS3Cc7Zs2YKjR4/CaDTipz/9Kb761a/iueeew+zsLL75zW/i6NGjYBgGZ555Jvbs2SOk6Uh32lVXXYWrrroKDocDAwMDmJmZAcdxKC0tRUtLi+zRQyp4JGBxdIDneUxMTKCnpwfV1dUJD9VLl0mnFMzPzwuCIFqabjGZntIKBoOw2WxwOp1Lisojwbz/bsznFGxcmXXdJlKh1qvxD3cuR91zY3jiT6WyOq6L8fg1+M//nseJD5/Hl/5lByzl0hdSRxIC0VJhdrs96a6waPuUk3yKKikZ4UkWsXN8dXU1du3ahcnJSVx55ZUYHh7Giy++iO7ublRWVuK73/2uYN4JAIcPH0ZDQ4NQXLx3714cOHAgRPBcdNFFwn9v374dzzzzDADg1VdfxaWXXioI/UsvvRQHDx7ENddcA+Czm2VSF1VYWIj169cvWb/cxzQVPFFI5oN3OBzo7OxEQUFB0lOS5UhpSX0g+f1+2Gw2eL1ebNy4MeGCOKlEndTdXmKxumrVKjQ3N8f1ubETfQh0DMV8nr41+y0lUmXrl1bgWzVT+N4zhVhwpu9CdqJbh+6vvYlrvrQCmy89R9JtJ1LMu9i+AEi8K4zsMx+KlpUcdqiE4JE6okVmUf37v/+78BiZhSZmZGQkZNhtdXU1Pvjgg4jb/eUvf4nLL7884mtHRkaWvEb8PYrfJzmOqXlolsDzPDo6OmC327Fu3bqUWgDlcl+XIlzI8zyGhoYwODiINWvWoLKyMqmDVO5UVDLr8Xg86O7uhk6nS1is+t76Y1zP09WlL52TydScXY6Hal147OcB2AbSN4TR5dPgqf+cQtvR5/GF2y6DaZk0rbqpXqSSSYWlq4tIjFL7zDc7Cyn3G27KMjFLXbzfxUT6rp955hkcPXoUb731VsKvjffvckAFT4rwPI+RkRG4XC7U1dVh3bp1KX+RUqe0pBI8CwsLcLvdcLlcwpDEVNaUynRqghQpLY7jhAtLa2trwgamfDAIz9uH43quukz+CcTZgrnahK/dF8TvnnbgL++kt2X2yKda2O7+C667bhVazm+TZJtSnsDjSYXNzc3h1KlTKC4uTktXGFlDvkR4lEppyTF0MJ4py9XV1Rga+ixKPTw8HLZw+LXXXsODDz6It956S+hUra6uxpui+WPDw8O48MILl7yWnKuVqo2igicKsU4c8/Pz6OzsRHFxMQoLC7FixQpJTjZyCZ5kCQQCsNlscLlcKCgoQGNjY8oHbKbM4Zmbm0NHRwfUanVSbu0AEDzxBrg5V1zPVRmTNxTMRVQ6Da69uQir6+bw8/3pHX2/4NbiP34xgnOPDOLKW3aioDB5MZqO9NLiVNiJEyewdu1aIRI0MTEBr9cLvV4fUg8kpet2PgkepfYrh61EPDWIbW1t6OrqQl9fH1auXIlnn30W+/fvD3nO8ePHceutt+LgwYNCtxgA7Ny5E/fccw/m5uYAAH/5y1/w8MMPh7x2ceSKDh7MEnw+H2w2G3w+n1DQevToUckOVKlPnMkKHhK9GhgYwOrVq9HS0oIjR45IEupVumhZXIO0efNmjIyMJP25e958La7naetL87ZgORqMSoWzd5WitmYW9//AhEAwvZ/R3z9So+Pf/4Tr/7kRa9s3x35BGJToJOI4DlqtFkajMWwqbHZ2Fv39/ZJ1hZHt51NKKxciPPE6pWs0GjzxxBPYuXMnWJbFjTfeiNbWVuzbtw9bt27Fnj17cNddd8HpdOLqq68GANTW1uKll15CSUkJ7rvvPrS1nY6W7tu3L+TmkRw3999/P8455xxceumlinynVPAkgHhKckNDAyoqKoQff6bOzgGSEzzEI8pisaC9vV24SyTbSvWuUapi40S3QwZc9ff3h9QgJVsLxM6OwfdRd1zPLdhYE/tJeUx1awl+9LAd3/yOGpMz0kUl4mHGocNjP+7HjvZ+fO7/7ILOmNiQxExpEZezK4xsS4kIjxLCQ8n9StmenYhT+u7du7F79+6Qxx544AHhv197LfLN3Y033ogbb7wx7N/IsfXaa6/hmWeewfnnn48rr7wSZ5999pIp/HJCBU8UxCcAMiW5oqIibPt1ps7OARITPMFgEF1dXbDb7Whubl5yZyBlZCbdKS2n04mOjg6YTKYQEZfodsT4334Z4OK7u9c1pMdXKpsxV1rw8Le9eOJxD453pH9A418PA5/YDuAfb9qAuk0tsV8gIhMETzgS7QqLlgpToktLqeJhlmWT6rJNlVxySl/ML37xC/zxj3/Eiy++iDfffBMbNmzAddddh23btqGmpoaahyqN2+2G1WoFwzBRpyQnYyAaC6nuGuMRPDzPY2xsDH19fVGLrzNxQnKs7YgHQLa0tITtoEtmPTzPw/NW7Nk7BM0KZcz7sg2NyYA77tLgwO/s+P2h9Bd5T8zr8f0fWLHz3G7s/Ked0Opjd5FlSoQnXqJ1hc3OzgrWBYtTYfnWpZUrKS2ljEMX09zcjObmZtx888148cUX8dxzz+HOO+/Ehg0bcPXVV+Nzn/scSktLZfvcqeCJQjAYxMmTJ9HQ0BBzSrLUgodcgKX44mOJFBL5MBqNSyIfiW5LqjXFSyyhQiJzVVVVUQdARrOWiETwk3fATtrjfr66ML8sJVKB0Whw5fXLUF83ix88lf67U55ncPBvHE51/AH/eOuZqFrXEOP52SV4FhNvKsztdqOvr0/oDJO7K4ysI5+KluXo0hLPyFESYrJbXFwspMCeeuopfOtb38JNN92EiooK/PM//zP+7d/+jVpLpButVov29va4ftBS1/CQ7ckpeILBIHp6ejA3N4fm5ua47gIypbsq1np8Ph86OzvBcRzOOOMMGAzRazKSqeHxvvFq/OssMoDRZO6Y+kyEYRhsPL8U3185h/seKYDHm/7Pb3haj0ce/hif22HDjusugzrDjDPlFBvhUmFHjx5FaWkpnE5nQqmwVMgV4aHUfp1OZ1xFy+mAHBvHjx/H8ePH8f7778Nms0Gj0eCiiy7C5s2b8V//9V948skn8dvf/lYYbCgVmfXrzUDivfOXY1hgMBiUJIe8WPCIpwnX1taisbEx7hOn1JONpd4OGYw4NDSEtWvXhrROxtpOIoMQOccsvEc74n5+wZbMuMPKRsrXLMOPvuPEQ98FBkbTX1PBcioceM2PEydfwA3/sg2V9auWPEeJCI8S8DyP0tJSwUBX7OIdLRWWimDJR8EjZe1QIkXLcuJwOPAf//EfOH78OKxWK+x2O1asWIFdu3bhi1/8IhobGwEADz/8MK6//np84xvfoIInU9FoNJIM0iNIOYtHrVbD7/cDAFwuFzo6OmAwGJKyvsi0lBbDMIIgtdvt6OjoQHFxccKDERNNafn/9jIQjF+w6ZuWTjalxI+hxIz77/fhqZ958M6HyqQG+yf0+M4DH+KqXTacd/UlUKlDx+Tng+ABQqNK4Vy8xamwkZEROJ1OoSussLAQRUVFCaXCaEorNTKlaHl4eBg//vGPceaZZ+JLX/oSdu/ejY0bNwp/J5+3TqfDxRdfjG9961uSr4EKHonQaDRwu92Sbk+qiJFarRaGB87MzKC5uRnFxcVJbyuTIjxE8HR2dmJhYQEtLS1J/bgTSWnxPA/Pm39LaPvammUJr4kSisqgx83/qkH9gQX81x+UmVgdYFV4/hU3Tpx4Htf9y7korVmpyDoymVhdYZOTkwkNSJS6TTteaEpLWkpKSvDEE0/gqquuEh4TT14Wi8vrrrsOu3btknwNVPDEQBxBiIZc/ldSQO601qxZg+3bt6d0JypVDY9Ud8OTk5NwuVyora1FU1NT0ttNRICxXR8iODKb0PbVJem1TshVGLUal3y+BKvqZvDg42ZwvDJRFduwHg994318Yc8ybL/yoryK8CRDuK4wn88X14BEpYSHUnN4ci3CQ96PzWbD+++/j8suuww6nQ4Mw0ClUgm/m+PHj2N+fh4XXXQRzGZzXNOhE4UKHomQuktLiiJot9uNjo4O8DyPsrIy1NXVpbwuEi1SGo/Hg46ODmg0GhiNxpS7EBIRPN7/x96Zx7dR33n/M7oP2/J9J3ZiJ46dw05ix+EoEEoI0JJtgS0stGWX0paF3dK+ustme4QuZbfsU7rbZ2EL6T5taSlsaClHOBpCyQ0hCblMbNmWb0u+LVn3MRrN84c7Qj41kn6jkex5v168SOLRb36yNKOPvsfne+Tt2BaXy0CppUuNJNVb8/DTf7Vj74+UmHKK87v103K88AcHLl34Pa78zCpQSTRQS3coioJGo4FGo4maCguFQmExlIyuMA4x/X+WUoSHey4XL17ECy+8gCeeeGLe45599ll0dnZix44dCAaDgkT1pLswIVIpwsMwDHp7ezE+Po6amhoolUr09vYS25fP5yOyVjxwbtfDw8OoqalBXl4ePviAvxfOQvAVPCGPE77TH8e0tno9mRlrEjMxlBvw5BMePPkTP9p7kjdxfTaXe1To+Xk/Pn+rHdt3f1p6reNkoVSY0WgETdMwmUyCzwqLZKnU8NA0HR7ymWycTidaWlqg0+nQ2tqKvLw8XLhwAZmZmVAoFFCpVNBqtXC5XBgbG0NVVZWg+5EETxT43rxIt6XHK6DGx8dhMplQUlIS9p3xeDzE9kaq9iYepqamYDQakZ+fj+bmZqI3Bb6py8Cpt8D6Y3tdNBvI+0lITKPM1GHPd2n8769ceOekeGlDj1+BF152wfjxy/jLv/00MvNiH0IrMRfuQ7G4uBgGg2FOKkyIrrBIxBCvJKMbYsx4i6S3txePPvoozp07B4qiEAgE8MUvfhFarRZqtRparRaZmZmwWCwYHR3Fv/7rvwIQ7vcuCR5CCJHSiiWS4vV60d7eDoqi5vjOkO74SvbMMK7g2uPxYNOmTdDryX+w8RVyvqPHY15bVbm4aaVEYlBKJf7qqwasrrDhmRfE7UY536FE1z+/h7v/agU27Ngu6l6WCpGRllhSYZmZmcjKyoq5K0xshEilifXcV61ahe9+97ugaRqPPvoorFYrdu/eDafTCYfDAafTCbfbjfz8fDz88MP4whe+AACC1U5JgocQpIUA3whPKBRCX18fRkZGwikeIfdGqkuLY7FiT5ZlMTIygp6envC09sWOTbQYO+qIiv5W0D0jMa+tKBK/Q2KpQ1EybN+Vh/JyK/7lJzoEguKZPDq8Sjz7yxFccfZlfP6BG6FLgQ4ZEogVLYiWWiLdFSY2JFNpYkd4MjMzsWPHDgAIezdt2bJFtP1IgicKfD9ESStoPiJlcnISHR0dKC4uxvbt2xe8SEgKHlJdWsAnaaT5fncejwdtbW28/IJIjOHg05buO/JmXGvL9OLVlyw3ytfn4qdPOPGDH8mSPnF9Nqc+VqD9nw7ii1+uRs0VZG/yYnyQidWJFo8AWKwrzGazCZ4KSxRSv2ev1wudTkdkrXgYGhqCRqNBdnY2tmzZAr/fD5vNBplMBrlcHm5H5/4udFecJHhSlMVqgnw+H9rb28Gy7KIDTTlI3qSESI9F3mRCoRB6e3sxNjaGdevWIScnun8NCcETzXiQ9Xvh/eBCzOsqSg2gZOkRSl8q6Asz8a/fc+KVZ3sx4svEqF2LMacWQSb5H2Y2lwpP/WwA157pw+77d0FNKB0r1uyudDUAjCcVFgqF0t5uwOFwCNLezZcvfvGLuOGGG/Cd73wHX/va13Dy5ElUVFSEa3cyMzORkZGB7OxssCyLL3/5y+EonRBIgicKYr3Z50tpRXYorVmzBgUitMGSjhZFRlWsViva29tRXFy86KDPaOuQ2MtsAmcPgXUHYl5X01CeyLYk4sR9eQTbfW1YuXM6nRQKAVa3GqMOLUbtWow6NH/+vxbjTg2YkLAf5Mc+ksFoegtfvK8Wq7dsTHg9MT6IxZiUDghnALhYKsxut8Pv9+PMmTOCzwoTErE9eB588EGsXLkSALBhwwa43W4Eg0FMTU1hZGQELpcLHo8HgUAAZrMZO3bsQFlZmWDvb0nwEGSxFE2szBYWVqsVHR0dKCgoIN6hFAsku7S45xgIBNDe3g6aptHQ0BBzCDYZgsd35HBc66rXFMW7JYkEsJ+1YOiEG2XXZECulkEmA/Iz/cjP9GN92dSMYxlODP1ZAH3yfw0mnBowLBkxNGZX4T//sws3XNmDW/7mJig18ac6xRI86Rrh4QuXCsvIyIDdbkd9fX1SU2GkX1ex52jdcccdAKZF6ze+8Y0FjwsGgwgEAuFshdSllQZwURkS3wC4lJbf70dHRwdomkZ9fb2o+ViAbISHoigMDQ1hdHQUVVVVKCoqiuuNTkrwLJTSYoZ7EGgfjGtdZWn0CfQS5LG3TCLoCWH0jAeln1o8pC+XAQWZfhRk+rEBM8VQMERh0qmeKYT+HB2acGnAxuj0zILCux+waG1/DV/+WgPK19fE/NyA5SV4xHqucrk8rlRYVlYWtFptXHsWwnRQzJQWR7TnpFAokjI+RBI8UYjlTcu1ppMQPBRFwe1246OPPopp6vdikLhxkIrwuFwuWK1WUBQV86BPIfa0WNGy/8iBuNeVZ4srUJcjjJ+Gs3t6rp3lmAvFV+ohk8f3vlfIWBQZfCgy+IAVthk/CzIUxp0ajDk0syJDWky61GCx8DmHrGr8n39vwy3XmbDzS7sgj/GeIUY9jZj1LMk+72Kt4Xy6wrxeb1ypMNKCx+l0iuqyfM0114CmaeTl5YUHx2ZnZyM7Ozv8Z+7/Op0O9fX1gr7WkuAhCKnoB2ewFwqFsH37diIXALe3RFV0om9GhmHQ3d0Nq9WK3NxcrFy5MuE9CZnSYukAvCfPxreoVgkoUqPrYznh/GgAIXo6WuefYjB+3oOiJvLeTQo5i5JsL0qyvQBmiiGaoTA+Wwj9OU1mdU97ZIVYCm8eCaKl9RV86YEmlKxZzfvcyynCIwaxNkGQ6goTQvCImdKqra2F1WqFx+PB0NAQTCYT3G43vF4vvF4v/H4/AoEAgsEggsEg3G531CacRJAED0ESNR8MBALo7OyEz+fDpk2bcOnSJWJvflKCJxHGx8fR2dmJ8vJyNDc3o6OjI2Umry/04UFfOIyQ3RvXmtr68rTu8EhX7GcsM/5uPuJC4VZdUrvllHIWpTlelObMfe8EgjKMOTQYi0iPvf7LY2je3or6z9wEmSJ6JECMAuJ071iKhUTN/+JNhQWDwSU1OPTHP/4xgOnfp8/nCwsbmqZB0zQCgQACgQD8fj98Pp+gYgeQBE9U4klpxQrLshgcHMTg4GBCtSyLIYZDMgfXRg8AW7duDbtAk0qPCTnuwnf0T3E/Vl1bQnAnEnyxt0zM+Lt3LAhrmw95G4S9mfJFpQihPNeD8lzPnJ/5Px5DcPNXoq4hRXiERYjOMD6pMJfLBWB6JAOJrjCXy0VkaHS8iJlOmw9J8BAknnladrsdRqMROTk5CdeyLIYYgodlWQwMDMBsNmPt2rVz2uhJ7UkowcNMmOFviX/oqqpCmqeUbBg6CIfJPeffzYedyF2f+uMFVPY2eEcHoSxasehxkuARlmQ919mpsPHxcVitVuj1+hmpML1eD4PBEHNXmJgRHrvdjkceeQRPPPEE1Go1fvKTn6CgoAB6vR4ZGRkz/tPpdMjMzCRSq7oYkuDhAd/BkrEM/IycD7Vhw4Z5K+m5QloSFx5pwRPthssJudzc3AXrkEgJFdLjLjgCx94AEnC0VeSL3x2x3HBfMCMUmPuaOQdo2LsDyK5ObddrigJUH78AtmjPoseJZTwoxjnFQCjvn2iEQiGo1WoUFhYS6QpzuVyiRVkcDgfa2tpAURQcDgeeffZZZGdnIxAIhE0dgenPgUAggKqqKhw5ckTQ95kkeAjCJ6XFsiwsFgv6+/ujzoeaz4k4XoQwDJzvhhAMBmEymeB0OrF+/fpFv12kckqLZRh4j38Y/wIUQGnTx6BsqWA/bV7wZ+YjzpQXPACgU45j7Oxx6JuuWfCY5RLhESuqJJbgma/OcqFUmNPphN1un3dWmEKhgMFg4F20fPDgQTz88MNgGAb3338/9uyZKbiPHz+Ob37zm2hpacH+/fvD/jrA9GfLxo3TZporV67EgQPTXa0lJSX4zW9+A4PBAK1Wi9/+9regaRoulytcsOx2u+Hz+eBwOOadA0kaSfDwgG+ER6FQwO/3L/hzh8MBo9GIrKwsXukrTqSQaHMXWvCwLIvR0VF0d3ejoqIC69ati3pDJrUnPnOwYiV4+QSYCWfcj1etKUz59MlSZOrS+MI/6/DDZQkgo2zhuWypQubEQTDMlaDk898jlov4ENPsUIwGD76NJQqFAjk5OeHRO7O7wh5++GEMDw9Dp9OFBUhDQ8O8MwkZhsFDDz2Ed999F+Xl5WhqasLu3btRV1cXPmblypV47rnn8OSTT855vFarxcWLF+fd46pVqwAAarU6PEQ0GlJbepqw0Ac4TdPo6uqCw+FAXV0d75xqol1ffPaWyFqcEPN6vWhra4NSqYw66DMSmUwGmqYT3g/pCA/DMHC9+3ZCa2g2CjcPRmJ+QkEGjk7Xose0ZmEUAAAgAElEQVSYD7uw7kupX1ul1flhfP4pyG74SxgMBuj1+hkf/MtllpaYER61OvnRwHjPO7sr7K233kIgEMAdd9yBzMxM7Nu3D5cuXYJarcaDDz6Ie+65J/zYM2fOoLq6GqtXT9si3HXXXXj99ddnCJ7KykoASPi1aG1txfHjx+FwOKBWq1FTU4Pa2lpUVFQk5f0sCR6CzBYoLMtieHgYvb29vKMekQghUkiuFTnbq6amJuaQJMkaHhLCCQAmJibQ9/E5VLT0JLSOqir5c86WO+6WITC+xSOxEy1eeMeD0Bak/q2vusyCbpsVgw4HXC4XFAoFsrKyYDAYls0sLTEjPGKltEidV6VSwefz4cEHHwx/yXb8+b0UicViwYoVnxTJl5eX4/Tp07zP4/P50NjYCIVCgT179uBzn/vcnGNomsZvf/tbPPnkk5icnIROpwtHpDZt2oS9e/di165dcT5T/qT+VZ8C8L3IIwWPy+WC0WiEXq/Htm3b4kpLpargkclkmJqaQktLCwoLC7F9+/a4bkoku7QSLW4MBALwer3o7+9HrWMAHiYxIaYsTq12zOWA/fRA9INYwHLMieo7coTfUIIoVSwMFw9gxZe+B2D6Q8Nut8PhcGBychI+nw9+vz/cvZOZmSmoOFhOKS1StZPxnJek0PJ6vTPGEXE1PpHMd++MRdgODAygtLQUPT09uP7667Fx40ZUVVUB+OT1O3bsGB599FHU19fj5z//OcrKyhAKhWA0GvH444/j/vvvx/79+3HVVVdJRcvpAhdp6OjogM1mQ21tLQyG+GcpxdPmvtjeAoHYp33Phrvput1ubNq0CXp9/A62qVC0HBmFUyqV2LRpE1z7f5b4njI1Ca8hERtTFxeu34lk9KwHK3ZmQW0QZwBvLBSX2zB28SwyGpqgVCqRn5+P/Px8GAwG2Gw2lJSUwG63Y2hoKNy9w32oGQwGqNVqYh8eyymltRQiPBzRfn/l5eUYHPxkVqDZbEZpaSnv9bljV69ejeuuuw4XLlyYI3hOnDiB7Oxs/OpXv0J+fn74satXr0ZDQwN27tyJAwcO4KqrrhL0dy8JHkKwLAur1Qqr1YrCwkKsXbs24RtNLG3ufNZKRDxFCgOtVovKysqExA63JzEFj8fjQVtbGzQaDbZt24YLFy6A6TyL4JAt+oMX20+uDpR8efiVpApsiIWjY/H6nfCxDDB0woVVn039wa6UDFC2/g6ob5zuWf8z3IeCXq+HXq8Pf+hwRnZ2ux0jIyPw+XzQ6XRhAZSZmRn3h4kYhbxShCd++Ea9m5qaYDKZ0Nvbi7KyMuzfvx8vvvgir8fabDbodDqo1WpMTEzg/fffxyOPPBL+OfcZqFQqUVJSEn5u3N4oioLBYEBJSYk0PDRViCZcXC4X2tvboVarodPpZuRDEyFVUlputxttbW3Q6XTYtm0bent7ifhjyGQyYimtWNaJrD1at25d2PRLJpOBPvZOwvvRbibz+kvwx906hKCHv+gdOeXGiuszodClvjDNLQ/B8saLyN79SaHpQmH/+WY6eb1eOBwOjI6OoqurCwDCHi5cyzCfL2fLLaW1VCI80V5bhUKBp59+Grt27QLDMLjvvvuwfv167N27F42Njdi9ezfOnj2Lz3/+87DZbHjjjTfw6KOPorW1FUajEV//+tfDXzr37NkTLnamaToszO+55x50dHTg2WefxQMPPIDs7GwA06UEL730EvR6Pa6//npe+00ESfAkADcIc3JyErW1tcjOzsYHH3xAbH2FQkGsGDcewcMwDHp7ezE+Ph5+fvGuNR9ipLQ4M6y8vDw0NzfPuLkog174zxoT3o+6pjjhNSRiw/7hYPSDImD8LIY/cGPFDeLNGYqFXHyEgP0zUBimr0G+dQ4URUGn00Gn06G4ePp9yTBM2MOlu7sbXq837OHC1QPN921bjEJpMQ0A013wBAIB3lGTW265BbfccsuMf3vsscfCf25qaoLZPNfj6sorr8THH38875rf+ta38NJLL2HFihXIz8/HRx99hBdeeAGHDh3C+vXrodPpYDKZcPDgQdx+++3YvHkzgMQ7wRZDEjxxwLIsxsbG0NXVhfLycmzfvl2QG4FcLofP5yO2ViwiZXJyEh0dHSgpKUFzc/OMNyEpwZPMlBbDMDCZTLDb7QsaIhb2XwIbSDyFqCzPTngNidiYujAW82OGTrhQeo0eclXqR3m0Bhlsrz8Lw5enDeESER9yuRzZ2dnhLzCch4vdbsfk5CR6e3sRCoWQkZERFkB6vX7ZRXjSPbIk9qT0a6+9FkqlMlzusXv3bni9XoyOjuLkyZPweDxgWRarVq3Ciy++iDvvvBO33nqroK+5JHh4EHlj8Xg8MBqNUCqVaGxsFNSrQYyUlt/vR0dHB4LBIDZv3jzv9FqxUlGLrbOY4JmYmEBHRwdWrFiBmpqaBT8o1BdbQOK3Lc9JrLZJIjZYloWj3RHz42h3CKNnPSi9Kj1GgBSVjcFq/Bi62o1Eoy2RHi5FRUUApoWG0+mEw+FAX18fPB4PaJqG3+8Hy7IwGAxEDFGjsdwED0AupSO24PnLv/xL3HHHHWBZNiyqaZoO/52bmu73++H3+8NDTqUITwoQmd6pqakJ58jng9TNKJnGgyzLwmw2Y2BgANXV1eEb30JrpZJh4ELrBAIBtLe3g2GYGVPa5yPYcwnMwMSCP+eNUgZKlfrdP0sJT/sIaFd87yPLUReKt+shk6e+K7ZcQQFnfwuse0JwISCTyWAwGGAwGMI1iUajEVqtFlNTUxgYGEAwGERGRkY4FTbbHJEEYg4sTfdBqS6Xa94ZjcmEoqjwZ2Fke7xYSIKHBx6PB2fPnkVpaemc9M5sFpszFSvJivA4nU60tbXBYDDwHnlBItUmVC0Qy7IYGhpCX18fqqqqwrULi+E/8lbC+wAAzYYyaaREkrGf4uG/swB+G4OJi14UbhX/ZsyHgooght59DWxdU9I/kCmKQm5ubtjHhRtqabfbMTg4OMccMSsrK+EI+HKa0E4aMSelR8IFAEwmEw4dOoRgMAiZTIaMjAwUFhbCYDBALpejsbFR8KihJHh4oNVqsWXLlkUjBBxcVIaE4CHtwzN7rWAwiO7ubkxNTaG2tpb3VF1SkRm+M8pi2Q/Xaq7VankbPrI+D7ynWhLeBwCo15cQWUeCP/HU70RiPuxEwWYtKFl6CNUs53HYfesh1yf3w2y2+IgcaslB03S4Ld5sNoOmaeh0urjNEcWaaSUGpCfDi53S4qAoCq2trfjqV7+KQCCA8+fPQ6PRgKIoeL3e8HFDQ0O8vpwmwvJ4JyWITCbjJXYA4UVKvMyOOoyNjcFkMmHFihUxewaRHPpJAq4WqLe3F8PDw6itrQ0P1eND4PTbYL2JmzICgLpS+Im/Ep8Qb/1OJJ7RIGztPuTWza1XS0Uy8mVQHf0D8Nm/Sep5+aTqlUol8vLywmNmWJaFx+OB3W7H8PAwOjs7YzJHXE4RHtLP1el0JmR8S5If/vCHUKvVeOaZZ3D11Vfj6aefRkVFBV577TUcOnQIjzzyCAoLCwXfhyR4CEPaLJDUWhw+nw9GoxEymSzuomuSQowELpcLDocDeXl5cY258B09Rmwv8kJppEQycbVbEbAn/l4cPOxCTq0mbdKRFSvH0GsZAAT+RhxJPB/IFEUtaI7ocDgwMjICv98PrVYbFkFZWVnhCLkYgod0pIUvpFvwU6GGh+PQoUN44YUXUF9fD5/Ph9raWmzbtg3XXXcdvva1r+H48eO49957Bd+HJHh4EMtNMFUnnIdCIfj9fpw/fx5r166dYe8t5r4SIRgMoqurC3a7HRqNBtXV1TGvwVhMCHRaiO1JpuM3KV6CDMOvdhJZx9kXgKM3AMPq5E/IjgeFWoaMS68AW7cl7ZykRkssZo44NjaG7u5uANPmiF6vF1qtNqkeQGL4DQHkBY/T6UxK1CQaXGdWfn4+AoEANBoNpqamwj+/6667cNttt+GXv/yl4HuRBA9P+NabkExpkbro7HY7jEYjWJadY7YXD6RqeBJhfHwcnZ2d4VbzU6dOxbWO78gBYntSrMhJmzqQpcLU2WFia5kPO9NG8ABASRWN4WPvIOta4adMA8JNS1/MHLGrqwvDw8MYHBzkZY5IgqXisux2u1Oihsfv96OyshJtbW1oaGjAhg0b8Pzzz6O+vh4Mw+DgwYO860cTRRI8hBEiDRUvNE3DZDLB5XJhw4YNaGlpIfINTcwITyAQgNFoRCgUitpqHg2W9sN38hyxvWkbyomtJcEP34ib2Fq2dj9cQzQySoX3lyGFfvQdhAI7IFMJH1lMZnqJM0fU6/UoLy9HRkYGL3NEEoJsKbgsA6lTtKxUKvF3f/d3kMlkUCqVeOihh/D3f//3GBkZAcMwOHfuHL797W8DED66JgkewpBMacULy7IYHR1Fd3c3KisrUVtbC4qiwkIl0W9GpBySOfi8ySNbzaP5BPGFPvcnhJxknKwBQF0tfvh4OWG/OAowZOstLEecqLlnYY+tVCOriILl1f+H7DsfFPxcYqR6OJG1kDmiy+WC3W4PmyMqlcqwAIrXHHEpuCwD04InWZGTxVCr1bjnnnvCaay7774bDMPg1Vdfhc/nwxNPPIG//du/BSDsHC1AEjy8iSWl5ff7iZ47lhsN5wStUqnQ1NQEVcQ3P1KCh5RDMrenaN+oPB4PWltbodfrefkE8cV35D0i63AoSlOjI2K5MPp2D/E1xy96UXFTEJq89Lk1FmSZ4Bo2Q10ibIQx1UZLRHZ7ceaIfr8fDocjIXPEpRLhSRUfHgDQaDThdKVMJsO99947o0g5WWI6fa7qNIF0uoevkWEoFEJvby9GR0dnTAAXYm8ka3g48TTf8wuFQujr68PIyEjMrebRYMYH4G/tI7YeAMgN6dHWvFSwnxshvygLmI+6UH17+sxDU+lk8L/zP1D/9b8Ifi6xIjx8UavVKCgoQEFBQfjxbrcbDoeDtzmiWBEeUv5tHC6XKyUiPByHDx/GsWPHMD4+DplMhrq6Omzfvh0bNmyY8cVcSCTBQxjSKS2uCHqxC8Fms8FoNKKoqGjRtuxU888BFhZPdrsdbW1tKCgoiKvVPBr+owcAgtkQWYYKkC8Pv5BUwTfkEmTd0bNurNyZCVVW+owIKVnlwsjpE8hs/pTYWyFKolGlSHPEsrIyADPNES0WCwKBwAxzRJqmpQgPQTweD/77v/8bP/3pT6FWq1FUVAS/34/9+/dDp9Nh7969uP/++5OyF0nw8ITvhzxpwcMVQc+ngAOBADo7O+H3+9HQ0BB1VkmqtJNHMrseKBgMwmQywel0YuPGjTH5SPANi7JMEL7jZ+La70Ko61ekjYfLUsBpnARLuH6Hgw0CQyddqLwlvVKU6u7XwDZdCUqWPkItGkKk0aKZI9psNoRCIbAsG06Zcc7AQsIwDNFh1GILHu61O3LkCP7jP/4Dt956K/75n/8ZxcXFoCgKPT09ePzxx/HII48gNzcXt912m1S0nG6QFhXzrTd7VlRRURGvN0kqCp7IeiCu1XzlypVYt25dTG98rsaKz2OCl46BsZKNDmhqk2cAJwGMvNEl6PrDH7hRviMTCm36RO1yygDLa79G9m33ib0VYiSjbmi2OeLo6Cg8Hg8MBgMvc0RSkKivnL1eMibaL3Z+mUyGc+fOoaioCD/+8Y9hMBjC9+m6ujo888wzuPnmm/GnP/0Jt912m+D1U5LgIYxQKS0Ol8sFo9EIvV7Pe1YUR6oKHr/fj+7ubrAsG3erOZca43Nz9B59N56tLopqZfp09iwF7B8JUL8TAeNjMXzKjRXXi58SiIU81cfwTYxDmV8g9laIkezIKScU+JojcvVAWq02ob2STGmJZZ4YCffZVFRUhLy8PLhcLhgMhhn74qJo2dnJqZmTBA9PxE5pMQyDnp4eTE5Oora2Nq4ZKaQFT6IXFXcTaWtrw7p16xJyBeVbSB2yjcB/0RT3eRZCnpcaFu7LBa/ZKfg5hk64UPqpDMiV6ZOq1GTKYH1rHwz3fk/sraQt831xWswc0W63o7u7Gx6PBxqNJm5zRCEMD8USPWNjY7DZbMjMzMSVV16J48eP49///d/x0EMPhTMSDMPgl7/8JVQqFT7zmc8AgODRPEnwEEaIlJbNZkNnZydKS0uxbdu2uN8UJPfGt3tsIdxuN9ra2kDTNGpqahK2QOcrePzH3yDu3QIKoDTSpZQsXCYb2KDwTt+0M4Sxsx6UXKkX/FwkKV5hxUTLOeg3bRV7K2kJ31QQZ47IRSdYlg23xcdjjkhS8Ajlis2XRx99FPv27UNZWRlycnLQ3d0Nr9eLAwcOYMOGDdBqtWhvb0draytuuOGGcEG55MOTZpB8wfx+P8bGxgAAW7ZsSchVGCAreLi1Yr1AI9vn6+rqMD4+TuR3xscMkWVZeI99kPC5ZqNaVyx6+Hg5MfqmsPU7kZiPOlHcrAMlT5/XVyanIL+0H9i4BSD0vhRroKYYxPtFLtIckfsCF2mO2N/fD7fbPcMcMSsrK9yQQlLwuN1u6PXiCfV7770X9fX1oGkak5OTCAaD8Hq9GB4exuTkJGw2W9hX7ciRI7h06RIqKysFr9mSBA9PkvmBxrIsBgcHMTg4iJycHGRkZCQsdoBpURAIBAjsMD4vnqmpKRiNRhQWFoZbza1WKxFPHz77CbZ9AGbUnvC5ZqPdWEZ8TYmFsZ0hNz8rGn4rg4kWLwo2L94BmWrkrQzB8uZLyL71LiLrpUJNSLIg6cMTaY7IwUWB7Hb7DHNEt9sNr9cLlUqV8PkdDoeoHVrbt2/H9u3box4XCoVmCEwppbXMcDgcMBqNyM7ORnNzM8bGxog5NwsR4eFDZKv5pk2bZnzzIOXazEfw+I+8k/B55kO1Ov7J8xKx4x10JPV8g4edyG9IrCBVDHKY06AdN0ORlXh7vRguy2JFlYTuFFrIHHFqagpDQ0MwmUxRzRGjIXZLeiRc5MrlcqGjowNerxdZWVkoLy9Hbm5uUt9XkuDhiVAt0hzBYBBdXV2w2+2oq6sLv1kVCgXcbjIDEkkONuU7T2tsbAwmkwkVFRXztpqTcm2Otk7IZYX3I2PC55kPRVHquJkudTwDDrAB4et3ZpxzOAhbux+5tYlHWZOJLkcGy+v7kP2lRxJeS4wIj1hRpWQ7LXPmiAqFAuvXrwcQ3RwxMzNz0T26XK6YPMyEgmVZyOVyPP/883juuedgNpshl8uhUqmwZs0aPPDAA7j++uuT9jpLgkcAOGHBt2V8dHQUXV1dWLlyJWpqama8+KSjMqRHQiyE3++H0TgtMBobGxf8hiKXy0HTtOD7CZx8E6CFacmXZZAzC5NYnJED5Dvs+GA+7Ew7wQMAxSUjsHW0QVtTl9A6qTZHS0iE6JaKlWjmiJ2dnaAoakYUKNIcMVUmpVMUhZdffhkPPvggrrjiCtx1113Q6XQYGhrCyZMncdNNN+Gtt97CjTfemJT9SIJHADjvnGiCx+v1wmg0QqFQLCgKxEpDxbsWy7KwWCzo7+/HmjVronZfJSPCw7IsvEdPJHyO+ZAXZICSRkokDduHQ6Kc19EbgKPXj6xV6SVu5UoK7Ie/AWqeSGgdMcSHWMJDrOGhizHbHBGYzgo4HI6wOaLP58OHH34Iq9WKzMxMXmmwgwcP4uGHHwbDMLj//vuxZ8+eGT8/fvw4vvnNb6KlpQX79+/HHXfcEf7Zr3/9azz++OMAgO9973szhoECn0ToHn/8cezevRv79u2bEXViWRaf/exn8b3vfQ9XXXVVUoqsJcHDk1hCbtFSR6FQCP39/RgeHkZNTU1Yxc/HbOPBRBBa8LjdbrS2tiIzM5P3VHNSUSeZTLZgzp/pvoDg4GTC55gP7eaVgqwrMT/e/uTW70QyeNiF9V9JL8EDAAWVNIbefR2GnX8R9xpipJfEjPCIcd5Yf78KhWKOOWJubi4OHz6MQ4cOoaOjA8eOHcPWrVuxfft2XHHFFVizZk348QzD4KGHHsK7776L8vJyNDU1Yffu3air+yQauHLlSjz33HN48sknZ5zbarXiX/7lX/DRRx+Boihs3boVu3fvnjHgmXs+nZ2d+MlPfoKMjAwEAoFwyYdKpcJ3vvMd7Ny5M2kCU/pqKgCLmQ9OTU3h9OnTYBgGzc3Ni4odgHzdDWkfHmD6xtTd3Y2WlhasXbsWtbW1vA23klG07D/ydsLrL4R6bWL+QRL88Q25EPKL5xRuM/rgHk48/SoGWfajYLyeuB8vpbSEhYRvDkVRWLNmDb7+9a/jxhtvxJ49e3DkyBHcfffdGBsbw759+2Ycf+bMGVRXV2P16tVQqVS466678Prrr884prKyEps2bZrzOrzzzjvYuXMncnNzkZOTg507d+LgwYNz9sSyLIqKinDo0CEAgEqlglKpDLfit7a2QqVSEelC5oMU4YkBTplGYz7BQ9M0Ojs74fF45nQqLUaqp7QiW82bm5tjvkGRTGnNm2LzuuA91ZLw+guhKM+JfpAEEYSen8UH8xEnau5OvzEiGQUyWF75ObLv+WZcj19OER4xnqsQk9JLSkqg0+lw9dVX4+qrr55zjMViwYoVK8J/Ly8vx+nTp3mtP99jLRbLvMd+85vfxLe+9S2o1Wpcc801KCgoCHfufv/738edd94Z47OLH0nwCECksGBZFsPDw+jt7cWqVatQV1cX08VEclQFaRdos9kMmUwWk4Cbb09C1vAETr0N1k9u1Mds5NlawdaWmIn1g/lvqMlk/KIXFbuC0OSl362zKL8f9r4eaCpXx/zY5RThAcSZ30Va8EQrWp7vyzvf5833sRRF4atf/SomJibwm9/8Bq+++ipUKhUCgQD6+/uxY8cOPPFEYvVlsZB+V20awIkUt9sNo9EIjUYT86BPjsVqU2KF1EU8NjaGvr4+ZGdno76+PqF1Saa05lvHe/RYwmsviEoBSplaxY1LGU8fedPImAkBlmMuVN2WnGGHJFFoZPC/9z+gvviDmH1dlpvgSTZiCJ7y8nIMDg6G/242m8MF0dEoLy/H0aNHZzz2uuuum3NcIBAAwzD4wQ9+gF27duHSpUsYGhqCwWBAY2Mjrr/+el7nI4UkeGKAb0pLJpNhZGQEAwMDWLdu3YxCrnTG5/Ohvb0dFEWhqqoqXICWCCRTWrPb25kBI+hu4Vx5tZvK0s6MLl3xT3gQ8goXqYuF0TNurNiZCVVm+ond0uoAzr36v3Csrgv7uhgMBmRkZCwqLliWlQSPgJAWPE6nc4a783w0NTXBZDKht7cXZWVl2L9/P1588UVe6+/atQvf+c53YLPZAACHDh3Cj370oznHtbe3Y8+ePdi3b9+8qbVkpw8lwUMYbmgcNydkKVywLMvCbDZjYGAAa9euRUFBAcbHx+H1ehNeW8iUlu/IGwmvuxjq9SWCri/xCSMHxK/f4QgFgeGTblTcnJ6Gk9VogWzzX8Hjnza3s1gscLlckMvlYV8Xg8EQLiwFxBlGKQme+HG5XFEFj0KhwNNPP41du3aBYRjcd999WL9+Pfbu3YvGxkbs3r0bZ8+exec//3nYbDa88cYbePTRR9Ha2orc3Fx8//vfR1NTEwBg79694W4x4BMhMzIygpMnT4YDBV6vF3K5HBRFQSaTJf31lQRPDCx2wQcCAbS3t4OmaVRVVcHj8SyJi9XlcqGtrW1Oq7nQqah41okUPGzAD+/7FxJedzFUFYt32EmQw/q+WewtzGDofRfKdmRAoUm/a9xQQsHy6q+Q/YUHkJGREU5j0DQNu90Ou90Os9kMmqaRkZGBrKwsMAyT9nUtfBBrnIUYKS0AuOWWW3DLLbfM+LfHHnss/OempiaYzfNfe/fddx/uu+++eX/GvVc2b96Me++9Fy+99BL+8R//EVqtuDWPkuBJkEijvaqqKhQVFWFqagoOBzm/kHhGVSwGn7VCoRB6enowPj6Ouro6GAwz5/EIXWyc6Dr02YNg3WRmkC2EvEB86/blgqd7SuwtzIDxsRg55Ub5DvHdbOOhIKMD7pEhqIo/qdlQKpXIz89Hfv70bDhuxpPdbsfExAS8Xi+mpqbCEaCsrKy46hL5spzMDsVIaQkJ9xkzNDSEs2fP4pVXXsHk5CTWrVuH3NxcZGRkhM0RS0tLw+85oZEETwI4nU4YjcY50Q+SZoHAJ91VfL1tEl3LZrPBaDSiuLh4wbQcqY4voYST9+iRhNeMek6dKvpBEgkTsPnAeFKjficSy3EXSq/OgEyZfnVcKr0Mkwd/DtVf/2DBY7gZT5mZmWE/sKKiItjtdthsNvT394NhGGRkZIRFkE6nI/bFTKxC6aUgePx+f9K8beaDEzydnZ0YGhpCRkYGnnnmmfAg1FAoBIVCgbGxMXzjG9/AY489lhSxKQmeGOAuZIZh0N3dDavVitra2nmjH6RaySPXIyF4uA6y+dYKBoPo7OyE2+1GQ0MDdDrdguuQiszwLQSPRuR+mNFeBNoGEl5zMZSr8qSC5SQx+mbq1O9EQjtDGDvnQfF24S3xhaC4woGxsx8go+nKqMdy4kOlUs2Z9O1yuWC329Hb2wuPxwOVSjUjChTvfYv7UEwmYrksk/pCG0kq3J9uvvlmVFdXw+/3w+Vywe12w+PxwOv1wufzYXR0FNdccw0AJOX3LgmeGBkfH0dnZyfKy8vR3Nw875uKpHcOIJxDciTcANPKykrU1tZGvVhIe/okCve8GIbB1NsvCX4+bX254OeQmGbyRGrV70RiPuJE0TYdKJn4Hy6xQskoqEx/ALu1GZRs8W/WC3VpyWQyZGVlISsrK2xE5/P54HA4wg0coVAofIzBYIBWq+X1YbycUlrBYDBmq4CF4KIrYgoemUwGl8uF7u5uZGVloaqqKupjkrFfSfDEwMjICCwWC7Zu3bpouJC04BHSfNDn88FoNEImky061TzaOmIjk8ng8/lw+tQHqDl7WfDzqXmb3n8AACAASURBVKoLBD+HxDTuLpvYW1gQ3ySDiRYvChoWjoamMjllgOX155H9+b9e9LhYoi0ajQYajSY8OJhhGDidTtjtdnR1dcHr9UKr1YYjQFlZWfOKjOXk/UNSaIlVeB3Jz372M/zXf/0XhoeHoVarUV9fjz179mDHjh1zjk3m71sSPDFQXFzMq7iKpFkgQFZccOKJZVkMDg5icHAw3Gou1p4SJRgMoqenB06nE9u1Xrjt8c8M4oui2BD9IImECToDYFypPb/KfNiF/Hp+UYtUJE9xCT6bFcqchUdmJCIE5HI5srOzkZ09bdbIsix8Ph/sdjvGxsbQ3d0NADNa4rk6j+US4SGZ0vL7/cSiRfHwhz/8AT/84Q/R2NiIf/iHf4DD4cDTTz+Nb3/72/jd736HtWvXijK+A5AET0yIdUMjWQQtk8ngdrthMpmQlZXFe6r5bEjV3iTKxMQEOjo6UFpaikAggOCRPyblvPIsaaREMhh9u1vsLUTFPURjqtOPnBrxikQTQZMlg/XAMzDc+90FjyH5AUVRFLRaLbRaLYqLiwFMf2nhokAjIyPw+XwIhULhIuLMzMykiJ+lULTscDiQkSFeB+nvfvc7XHXVVfjpT3+K8vLp1P91112Ha6+9FufPn8fatWtF25skeNIAUkXQoVAIdrsd4+Pj2LRp05xi61ggLf5ivaHSNB32Pdq6det0zniwC/5LPUT3NR+yLA0oRfr5r6QjE8cGox+UApgPO9NW8ABA8YpJTHx8HvqNW+b9udDRFoVCgZycnLArPcuyuHz5MhQKBYaHh9HZ2RmuF4qMApFGzKJlUoKHj+mgkLS2tuKee+5BWVkZaJoGTdPYsmULSktLMT4+DmD69RWj1kgSPDEQ6wtD6lsRifQR12quVqtRXl6ekNghTaw+Q1yB9erVq1FcXAyKohAMBlHQfR5IQtRJu3lF9IMkiODusIq9BV7YuwNw9AeQVZGeVgUyOQXZxf8FNmwG5rkOk51e4px4i4qKwoOJaXraGdput8NisYCmaej1+nAtULTxGHxYCj48TqeTl+mgUDgcDqxatQoURUGpVIa9mhiGQV7etFmrWKa8kuARCK5riMSbOJGiZZqm0dnZCa/Xi4aGBoyPj6dEKioS7ncV7SLw+/0wGo2gKApNTU0zrO8ploXyQisSb5SPjnpdcRLOIhH00gg6A2Jvgzfmw07U/U36um/nrwzB8vbvkf2ZL8z5mRg1F7PvCUqlEnl5eeEPTZZlw8aIZrMZLpcLCoViRkt85D0innMmC9KCR8yUlt/vx549e/Diiy8iIyMj7Obd29uLP/7xj+GuPa5jb8uWLUmzH5AEj0BwIoXEm1gul8Pn88X8uMhW87q6OlAURdwjiATRzBBZlsXQ0BD6+vqwZs2acPdHJKH2UwhNuoTeKgBAuWJpDINNdcb+KHx6kiTWVh88IzR0xcK5DwtNTuAUaOfNUMyKEKRixxRFUeEP1LKyMgDTI364KNDAwACCweAMY0S9Xr+ocGMYJmaRRAKSqTS+YyWE4s4778TAwAB8Ph/MZjN8Ph9OnTqFhoYGnDp1Cu+99x5omgbLsrBarRgdHY25aSZeJMETA7F8wyHZxRTrWlyruVwunxMJUSgU8PvJjVwg8c1vMRNDr9eLtrY2aDSaRQusfYffSWgPsSDPTU+juXRj4mh61O9EYj7ixNq/WrjbKdXR5cpgee1ZZH/pH2f8eyoKnvlQqVRzxmO4XC44HA709/fD7XZDqVQuOB5DrKJlgFxdpNgprccffzxcu0PTNAKBAPx+PzweT/jvPp8PPp8Pbrd7xtBRoZEET4zw7U4i6Z3Dt0srstW8pqZm3hZ6UqMcAHJpu/kED/dczGYzampqwmHs+Qg5JuA735HQHngjo0CppcsmGbja06N+J5LxC16s3BWEJjd93yPFxcOwdRqhXVsb/rdUSGnFQ6QxItcx5Pf7YbfbYbVa0dfXh1AohMzMTGRlZcHn84maDiKB2EXLYp47Gul7VaY4pM0Co63lcrnQ2tqK7OzsRSMhMpmMuIlhooJndgTL7XajtbU13DYfbf3AiTeAYDKqdwD1+pK09VtJJ0LBEELpU74Thg1Nz9iq+ly22FuJG7mKQujUr4G1T4T/LV0iPHxQq9UoLCwMp8ZDoVC4Jd5ms8FqtcJisYSjQJmZmUkfcZEITqczLO4kZpI+r2KaQdI7Z7GUVigUQnd3NyYnJ1FXVxdVXZPeF8nBn6FQCP39/RgZGUFtbW3YqGwxWJaF9+jJhPfAF82G0ugHSSSMo8OPkCf2urVUYPS0Byt3ZkKpFyc1QoLCShrD772BrE/fCmDh0RJCk4wvFzKZLCxuPB4PSkpKoFarwxYenDFiZmZm+DiNRkNsb6SjZ263O+2jVEIhCZ4Y4ZvSIlkcvJBIsVqtaG9vR0lJCbZt28brhkR6LheJtWQyGZxOJ9rb25GXl7fghPb5YDo/QnAoeaMHVKuiO21LJM7UhSmxtxA3IZrF0Ak3Km5K3dA+HzKshxHy3QCZRotQKLQsIptc8wQ3HqOoqCj87w6HAw6HAyaTacZ4DC4KFG+km7T3j9gprVRGEjwCIWRKi6ZpdHR0wOfzRZ1qPhtSU865fSUqeDgzxImJCTQ0NMRcbOc78nZC548VRaF0I0kGjvNDYm8hIYbfd6HsugwoNOlrUJlZKIPllf9B9t3fEK1dO9ks9DzlcvkcY0Sv1wu73Y7R0VGYTCZQFBUuhOaiQHwgPSld7KLlVEYSPAKhUCgQCJApQuCEBcuyGB0dRXd3N1atWoWSktjrSYQcRBorU1NTaGtrg1KpRGVlZcwXachth+90a9znjwdZRnoay6UTISYE54X0akmfTdDLYvS0G2XXpvcHT2FeL5wDfaKltJIN35pEiqKg0+mg0+lQUlICYHo8BtcSz43H4IwRDQbDgsaIpM0OnU6nFOFZAEnwxAhfgUEypUVRFEKhEC5cuACFQjGn1TwWSKe04okWBYNBmEwmOJ1O1NfXY2xsLK51AqfeBhtInqeQotQAahnc9MXG1UWDcXvF3kbCWI65UHJVBmSK9E0FKTUyBA7/P4TW/8WySWnFKz4UCgVyc3PDbdYsy8Lj8YSdoV0uF+Ry+YzxGCqVirjgkVJaCyMJHoEgFUlhWRYDAwPweDxYt24dr2ntiyF2SmtychLt7e1YsWIF1q1bF7aQj2dPvqPHY35MImjqpc6HZDB1Pn3rdyIJOEIYO+dBcXN6+zYVr/Ki3/QxqKampJ1TLDd4kqk7iqKg1+uh1+tRWjrd7BA5HsNsNoOmaahUqnCnmF6vT/j8kuBZGEnwCAQJweN0OtHW1obs7Gzo9fqExQ5Atushli4tru7I7/djy5Yt0Go/mTYej+AJ9n4Munc0psckinrtXIdnCfLYLwyLvQViWI66UNSkAyVL7+jIWrSADQZAKZKT0hXD94dDyPPONx7DYrFgYmICg4ODcLlcUCqVM6JAkcaIfHC73eH5YxIzkQRPjMSS0oo3dcQwDLq7u2G1WsOt5pOTk6LeBOaDb5fW2NgYTCbTgnVHcrk8Zvdn/5E3YzqeBMrS9PVWSRfYEAvbRyaxt0EM73gQkx/7kF+vjX5wCpNTJofllV8h+wtfT8r5lkuRNEVRUKlUyM7ORmVlJYDp8Rh2ux1TU1Ph8RhcS3xWVlbU8Rgsy4rmFp3qSIJHIOKN8HCt5qWlpWhubg6/sUkOIyVFNFEXCARgNBrBsiwaGxuhVqvnPS7WCA/r98B76lLM+00UeTb/bjiJ+HD2BABX+tfvRDJ4zIe8TeR8W8QiX98Oz9gIVIXCD89NtXudkMyu4VGpVCgoKAjPl+LGY9jtdvT19cHj8UClUs0Yj8F1eaXaYOhUY+lLaJGIVfDQNI3Lly+jt7cXmzdvRmVl5YwbJMliY1IstCdu2OfZs2dRXFyMhoaGBcUOELvgCZw+CNaTZBtejQJQSJeL0ExdsIu9BeK4BzywDqXvFHUOdYYMvrf3JeVcpL1pUploRcvceIwVK1Zgw4YN2LZtG2pra6HX6zE5OYlLly7hrbfewr333ouf/exnvFrcDx48iJqaGlRXV+OJJ56Y83O/348777wT1dXVaG5uRl9fHwCgr68PWq0WDQ0NaGhowAMPPBD38xYDKcITI6RTWizLYmRkBD09PYu2mnMCisQkX67ri8ScmtlCxefzobW1FWq1Gtu2beOVf455OOrRo7FuNWG0DSvS/ht6OuA4PyL2FgRh8LATeV8SexeJU1xhx9i5U8jYeoWg5xEjpSVWdIRhmJjrdGaPx/B6vdBoNDhx4gSGh4dRX1+PiooKXHnllbjyyiuxffv28JdOhmHw0EMP4d1330V5eTmampqwe/du1NXVhdf/xS9+gZycHHR1dWH//v34p3/6J7z00ksAgKqqKly8eJHQs08uy0NCiwCfD0ev14vz589jYmICTU1NKC0tXfBxqdBOPpvIPXHDPs+dO4fKykps2LCB90Ucy34YiwmBDnPce44Xda3wYfzlDsuycKS5/85CuC71YWoiR+xtJAwlo6Bs/wPYkLDR5qU0uysaJNrStVotPv3pT+Phhx9GdXU1Ll26hKeeegoVFRV4+eWXMTExET72zJkzqK6uxurVq6FSqXDXXXfh9ddfn7He66+/jnvvvRcAcMcdd+C9995bEukySfCIAMuy6O/vx4ULF1BZWYmNGzdGjdyQnIFFqmWeEzwejwcfffQRXC4XmpubF51sPh+xCB7/0Tfi2WrCqCrSPyWR6rj7aQStDrG3IRiWE8nzjBKS3HIW9gMvCnoOSfDEh8PhQGZmJiiKQmVlJe6++2489dRTKCsrCx9jsViwYsWK8N/Ly8thsVhmrBN5jEKhgMFgwOTkJACEyy6uvfZanDhxgsi+k4WU0oqRRNMaXKt5Tk4Or0ngHCQjPKTWoigKdrsdFy9eRG1tbdh2Xaj9sHQA3pPn4jpHoijypWF8QrMU63cisX3QAdena5CR5RR7KwmTKzsPv+0zUObkCrK+GOKDtAEgX4LBILHREnw8eOaL1Mz+XFvomJKSEgwMDCAvLw/nzp3D5z73ObS2tqaN748U4REY7o3DMAw6OzvR2tqKuro6rF27NqaLi6RzMwnB43Q6YTQaEQwGsX379rjFDsA/wkOf+xNCDnE6eChtbDl2idiZOD0o9haEhWVh+WBpdB5pDTJ4Djwr2PrLSfCQPK/L5Yo6Kb28vByDg59ca2azOWyMON8xwWAQdrsdubm5UKvV4Qj+1q1bUVVVhc7OTiJ7TwaS4ImRWCI8XOpocnISp0+fhkqlQnNzc1yD3VIlwhMKhdDV1YXLly+jurqaiDMoXwND37H3EjpPvKiqC6SCZYFhWRbOC31ib0NwJo62w+dZGvYGxeUT8LQKYw8hpbTig8/g0KamJphMJvT29iIQCGD//v3YvXv3jGN2796NX//61wCAl19+Gddffz0oisL4+Hj4s6OnpwcmkwmrV68msvdkIKW0BEQmk6G1tRUMw2Dz5s0z3IVjJRWGftrtdrS1taGoqAjNzc0IBAIzvinECx8DQ2bCDP/HvQmfKx6kkRLC4+z3g7W5xN6G4LBBBuaPdKi+xiP2VhJGpqBAnXsBqNsEEP5CIEa0ZalEeKIJHoVCgaeffhq7du0CwzC47777sH79euzduxeNjY3YvXs3vvKVr+BLX/oSqqurkZubi/379wMAjh8/jr1790KhUEAul+PZZ58Nzw5LByTBEwcURS1asc61mk9NTaGqqmqOp048xONGvNhasQgehmHQ1dWFqakpbNy4MRwyJRV14pPSChx5HRCpSUBVVSDOiZcRzha32FtIGmPvtmNlcxlUajLXs5jkVzAYOvgHGG6+g+i6YkV40l3w8InwAMAtt9yCW265Zca/PfbYY+E/azQa/P73v5/zuNtvvx2333574hsVCSmlRRiu1XxychJFRUXIyckhkg4h2aUVi1CxWq04ffo0NBoNtm3bNiM/nCzBwzJBeE+cTvg88aIsSo+CvHTGfj65c9HEJOT1Y+iSQextEMPgfR+Mi2whtlg1PGKktEiODHI6nWlTQCwGkuAhBMuy6OvrC7eab9iwASqViqhISWZKKxgMorW1FT09Pdi8eTMqKirmXJTRIl18iXax0x+fADMpXrpDlqUR7dzLBccyqN+JZPhgJ4L00ihg1ufJ4HyNrAPzcipaJok0KX1xJMETB7M/oB0OB06fPo1AIDDDhybVOqv4rjU+Po7Tp08jOzsbW7duXbD2KFmFvP4jh5JynvmQ5epAyaXLREg8wzQCwxPRD1xCMA43zJfT34iQo7hoCN6uDmLrLaeiZZLwqeFZzkg1PAkQWduyfv36OW80koXGpFNaPp9vzr8HAgG0t7eDYZhFh30mk9DUGHwXxGt71G5eEf0giYQYfn9M7C2IguXtbpRvNICQBYuoyFUUQiefA6p/RGQ9sSI8pPxw+ELavVgSPIuT3nJWRLhWc662Zb43GenOKqGiRVyR9dmzZ1FYWIjNmzenhNgBgMDxAwAjnqW5uqZItHMvFzyXbWJvQRRYmwtjPYVib4MYhasCcBx+m8hay6VomWVZos+Tb9HycmUJfLdIPj09PbBarVFbzeVyOQIBMlO9hUpp+Xw+GI1GyOVyNDU1ERlOSgqWZeE99oGoe5CXSxEeofG0JH82WqpgOWhBSbUClGxp+Dxl2g/D57waSp0eFEXF/WG+XIqWSdcNuVwuGAxLpyCeNJLgiYOVK1fOW8Q7m1ROaQWDQZjNZvT392Pt2rUoKIi/9ZpUl8HsdYLtHyI4MpXwuomgyNUDmJv+kyCDdywIv3l5prQAwD8wBkt3HcrXLI2xGhm5LJxHXkLneTWKbtyCnC3VoOTysPjhKyiWiw9PMBgkLnikCM/CSIInDlQqFS8hQ1LwUBRFZMI5ANA0jYmJCcjlcjQ3NyeUt+ZckhO9aLnW9Mh1/EcOJrRmwijlkCnJROgk5mfqQvrPlUqU8WNOlFWTa00Wm+KcHpx5cwSd//kKVHlZKL5hMwp3bkHhjnooDXoA0/cz7r/5RNByKVoWIsIjdWktjCR4BIRkVIZUBKW/vx9msxlarRZ1dXUJr8m5JCd60c4WTiHXFHxn2xLeXyIoaleBosiITIn5sZ9fvtEdDnf7IGwjm5BbMin2VohAhQK47vFNeO3OYwhMOjDw0jEMvHQMlFyG/CvqUHTjFhTt3Ap9dQkoigLDMGBZFvKISNBSEB98z0myUJqm6ZQqS0g1pKJlASFZaJwoLpcLZ86cgd/vx9atW4ld2CTNByPXCbz/BtgAGbEYL6HqElHPvxxwXBgQewspgfnI0nKaNmjNqL597Yx/Y5kQxk9exuW9v8F7VzyM97Z9A63ffQ6Txy8DwRBYlgXDMAgEAqBpGqFQKPxfMhCjaJmkyCLd8bUUkSI8ccA32kIypRUvoVAIvb29GBsbQ11dHQwGAxiGIRZ54jMHi+863I2NZVl4j55IeM1EyVlfIfYWljT+ySB8fcNibyMlcJzvhmPXBmTlLZ2OtW335aD7NQrsAl2W7t4RdO17C1373oJCr0HRjgYU7twM1yoDNAVZM4xbGYaJmgZLlKVQtAwkzx8tHZEEj4CQTGlxxFIg7HA40NraisLCQjQ3N4cvZj6zq/jCd9J5LOswPZcQHBDfiE5RoINUsCwctotLK6qRKOaTQdT9hdi7IIeSmcAVe5vxwaMfRj026PbB8uaHsLw5fWxOQxWwqxEluxqRs6UaIZYFy7Kf3CPmSYMlSroXSpMcUbFUkQSPgJAUFsAnAipazpdhGHR3d8Nms80Y9slB8qIQIqXlP/JWwuuRQKalxd7CksZ+flzsLaQU1pMdcO+ogT5r6RRyVzW60FKeCZc5tudku9gN28VutP37S1AXZKNk11aU7mpC8ac3Q56hCae6OBHE3TsixU+sIijd64Y8Hg90Oh2RtZYqkuCJA7FUNFcTtJjgsdlsMBqNKC0txbZt2wTfK6kIDycOWa8L3lMtBHaWGFRZAeRycWuIljqO8/1ibyG1YFmYP1Sg5kaxN0IOGePFdf+2BW9++Vjca/jHp9D32/fQ99v3QCnkKLhqPUpvbkLpriZkrimbIXy4OiAg9jQYaRNAPjAMQ6zI2Ol0zvlyKzETSfCkEYtFU4LBIDo7O+F2u9HQ0JA0pU+qhocTToHTfwTrEz+yottSI/YWljSBKQbebovY20g5Jg4bUXH1Kmh0XrG3QozcbAsqblyF/kO9Ca/FBhmMHWvB2LEWXNzzC2RUl6J0VyNKbmpCwVXrIVep5qS9hEyDJQrJCI/kshwdSfAkAVK51YVqgiYmJtDR0YGKigrU1tYmNQJFOqXlOxr/N0GSqKpLxd7CksZ20SX2FlISNsjAfE6P6k8tHcFDgcUVf19CRPDMxtU1hM6uA+j87wNQZGpRvKMBJTdvQ+mNW6Ep+mQ4a2TH10JpMDG6nEgKHsmDJzqS4ImDWATFfIZ68TK7zZ2mabS3t4OmaWzduhUajYb3WpyRYaLfckh2aVEj3QiYhhJeiwTKsiwAkumgUNgviF+UnqqMvduBldtKoFIvnfefmh3F5m9vxoWfXBDsHEGnF+YDp2A+cAoAkLt1DUp2NaH05ibk1K+eUQowOw1mt087XdM0LXg3WCSkIzxSSmtxJMETJxRF8fpGwEVlSAkeTlyMjo6iq6sLq1evRnFxccxRHW6tRC9okl1ayrNHIH4yaxp5ltTtICT285L/zkKEPD4MfZyNysalZcq47poAPv6FCsGp5Ag56zkTrOdMaP23F6EpykHJTY0o3dWEoh31UGZOp/xlMhksFgssFgs2btwIuVye1DQYydESUkorOpLgERguKkOiME2hUMDn8+HChQuQyWQJDfvkBI9SqUxoT3K5HH6/P6E1AEAWCiJ45nLC65CAytBCpkj8OUnMj3+KhqdzEJKkXJiRgyaUN+RCoVg6hfMqyofrnmjCnx54P+nn9o3a0Pvrd9H763chUylQcPUGFO9qhKcqG+oV+WhsbJwjPCKLoEl2g0Ui1fAkF0nwCAwp80GWZeFyuWC1WlFXV4fCwsKE1iNVe0MqwqM3nUHIlRqeN+qGtdKHsYA4LvtASaawixKccsFyuQoVDUsr9VdaNo7iK8owckq8gvVQIIjRwxcxevgiACBzTRnom5tQsqsJBVfWQaac/ljkhEx43M0i3WDc8bFGgUiOlpAGh0ZHEjxxEmtKKxG8Xi/a2toQDAaxcuXKhMUOINxIiFjhbiDyj84gVaZWqWtXir2FJc2UVL/DC/Mfe1C2MQuK5HrhCQrFMvjUP63C7z+XOh16TpMFHSYLOv7rNSizdCj+9GaU3LwNJTu3QlNgCB83nwACEusGI120vGrVKiJrLVUkwSMwiczTYlkWg4ODMJvNqKmpAU3TcLvJuNOSjPDEuw73LYkZ7QPdljo1HcqVeUDKyK+lh+P8oNhbSAvYSScmeqpRvGZp1fLoZMOof7ABl352UeytzIF2eDD46vsYfPV9gKKQ17Q2XPicvXHVjFrJ+VJasabBSLojSxGe6EiCR2DiTWm53W60trYiKysLzc3NkMvlGB8fJzaqQkzBw90IuG9EwROp4azMochTQRopIQy0OwR3e+qI21TH/M4wiqpkoGRLK8m68bMytD2vAu1M4U40lsXkmQ5MnunA5R/+FtrSPJTsakTpTU0ouq4eCv3crthY02Dsn0dmkBA9kuCJjiR44kSoAaKhUAh9fX0YHR1FbW0tsrOzwz8jJVJIrhXr+IzIbz8URQEMA9/JjxLeBzEoQK5OlV6xpYe9xQMwUvSML76+EUxYGlCwYmmN4ZAH7bj235rxp78Xf0gwX7xDk+j51Tvo+dU7kKmVKLxmI0r/HP3RVxTN+5jZAogTOMFgEGazGUqlMjzMOdFuMKloOTqS4BEYhUKBQIDftxin04nW1lbk5eXNGPYZuVaqCR6+68yO6nA+F8GWowjZUmeIpHLdKlDU0umMSTWmLk6KvYW0w/yuFfl/s/QGQ5ZWjiF/UwEmWtJPzIX8NEbePY+Rd8/j/D/sQ9a6FSi9eRtKdjUif3stZAsUXnH+Zx0dHVAoFNiyZQsAEOkGkyI80ZEEj8DwqeEJhULo7u7G5OQk1q9fv+CbNpF6oPnWSlaX1uyoTuSN23/svYT3QBL1xtVib2FJI9XvxI67bQC20U3ILV5aYpFig7hmby1euSP9BM9sHO2DcLQPov0//wBlth4lN2xFyc1NKLlhC9R5n7gfu91uXL58GeXl5SgrK5uxRqLdYE6nEwaDARILI/4wkTSFVEpramoKH374IRQKBZqbmxdV6Kma0lpoHe5iDQaD84qdkG0E/kvdCe+BJKrV84emJRIn6AvB3SoNDI0H0x+XltjhyFRZUPvF9WJvgyj0lBsDLx/H6a/8BK+v+hJM+6ZrFMfHx9HS0oLa2to5YicSmUw2bcSqVEKlUkGj0UClUkEul4dLCBiGAU3TCAQCYBgGoVBIGi3BAynCIzALpaGCwSBMJhOcTifq6+uh1+t5rUUywuPzJV6Yu5BwWiyqw0GfeAMIpZYhC5WvBiCltITA/rEXbFD63cYD3WqB07YemTlTYm+FOFv+SoeO38kQCiyt2i5NYTa2/vRBlN26HV1dXXA4HNi6dWtcZrEymWzRbrCxsTF0dnYS8/RZqkgRHoGZLw01OTmJ06dPQ6/Xo6mpiZfY4dZKxQhPpB9RtKhO+DiGge/4hwmfnzTyjNQSYEuJiTOjYm8hrRk8sbQEAYeCseJTj28XextEWfmFa3HT2f9G0c2NuHhxuv1+8+bNRBz3gU+iQCqVCpcvX8Ydd9yBp556KqZ5issRSQ7GSTwpLZqm0dHRAb/fjy1btkCr1QpyTj6QFE8cfKI6HEz7h2DGHETPnyiy/GyoVEvzQyUVmDxDflr2csJ6sh3uDZOgjgAAIABJREFUHWuhz1x6k+Yr6qZgqMqBvdsm9lYSQl2Yjcb/+yDKb71iugnl3DmsXr2aiFnsbFiWxfPPP49f/OIXePnll7F27Vri51hqSIJHYDjBMzY2BpPJhFWrVqGkpET0jov/z955B0ZRp2/8s5veNx1CKKEnIbTQBEIQ9QAP9RDr4Q8QAQVRRMUCeNgRGyoIiGg4OE+Q8ywookcCRKpUIZ0QQjohyW52N8kmW+b3R9wxIYWU3U1hPv8omdmZdyA788z7fd/3saTgMQudazuwGqPqwC8WObclcR4+oK1D6LQYdCaMFzvXAD2bYxLIPe5I/1vbOhDLIzNVMvH1wXz34MG2DqXFKKYOw2P+zeQp7Cg8fZry8nLCw8Px9va2+Lmqqqp4/vnnUSqV7N+/X3JJbyLSkpaVMRqNaDQa8vLyGDFiBEFBQW0udsBygsc8V+LSpUtoNBrg+pkok6YY3amUVp/b0jgOCG7rEDot6iQdQpU036i1XI1NprKieZnhjoLCLYc+f+t4WQrnQG/G71jB5F2vMubWaNzc3DAajQQGBpKRkcHRo0dJSEggJycHrVbbJEuixigoKODOO++kd+/e7NixQxI7zUDK8LSQ6z3UBUEgPz+fS5cu4eDgwNChQy12bktM5myt4Kk5V2fIkCEolUqys7PRaDQ4OTnh7e2Nt7c3np6eddonDUf2gKH9LR05dPMCLFMULlGbwuMFbR1Cp0DQG8g57UafcRVtHYpVGDXfh4zdMgRjx6il6/nARIa9vQAnHw90Oh3nz58nICCAsLAw8R5tMpnQaDSUlpaSkZFBWVkZzs7OKBQKFAoFnp6eTfbTOn78OEuWLOHtt99mypQp1ry0TokkeKyATqcjMTERJycnRo0axYkTJyx2bHORcFsKnmtrdVxdXXF1dRVbLSsqKlCpVOTl5ZGSkoKDgwPe3t7il1t34HCrYrcW9gp7JMFjHdSn249ZZEfnyi+p9BjZBQfHzpcxczReZczKURx95Xhbh9IozoHejPjocbr9dTQASqWSlJQUBgwYgI+PT6195XI5Xl5eeHl50aNHDwRBQKfToVQqyc/PJzU1FTs7OxQKBV5eXigUijrFzYIgsHXrVrZt28a3335L797SvLCWIAkeCyIIAjk5OWRlZTFw4EB8fX0tfg5z11drq/0t4YHVUK2Oi4sLLi4udO3aFYDKykqUSiVXrlwh/8DPdM1thzNFHB2QO1S2dRSdEqPeRFWKJHgshalMR955b3pGds6aqJBINWe7ulKRX97WodRLr79PYuhb83Dy8UAQBLKysigsLGTYsGFN6pKSyWTiPTIoKAiobmhRqVSUlpaSlZWFwWDg2LFj2NnZMW7cOD7//HN0Oh1xcXFN7uqVqIskeFrItQ/68vJyEhMTcXd3Z/To0XXmIVjKIM5S9hKt9cBqzrU4OTkR6O+P1/HDVOz+riXhWh2nwf2QyTpGGr2joU6uxFTZjk0iOyD5e9PpNkSBvX37WxpuLQ5UMe6Vwexb0L7GVjh38WHkuscJmjoKqK7PTEpKwt7ensjIyBb5X5lxcHDA398ff39/4M85O9999x0LFixApVIxevRoPvnkE8aNG2fRFvcbCUnwtAKzL0pmZib5+fmEhobWW5FvFimWGAplKXuJpgqWpmZ1GsOYm4P20/UYM9rXVOWaOIX3bOsQOi2lpzt2q3F7xKDUUJDaj+DwzjnbKKhLEd1v6UV2bGZbhwJAr5mTGPbWfBy9qwuEzRYR3bt3F7M0lsT8QnrgwAE++ugjbrnlFtLT0zl06BCffvop/v7+rF692uLn7exIgqcVaDQaEhIS8PX1ZcyYMQ0qfLNIsZTgsfT8nIZoTVYHQDCZ0P38IxX/+RL07bveQB5s+dZRiWpKz0jLWdYg8/sLBA30RN60etcOhQyBkY8HtLngcenqw4h1iwmaMlL82dWrV0lPTyc8PNwqVg4mk4nPPvuMHTt2sHv3bnr2rH4Z69evH/369ePhhx+2+DlvFCTB0wqysrIICwu77i+9JS0hLOmY3hAWyeoUXqHs048xpCZbI0SLY/KUJjRYA5PBhOZ3aeCgVSjWkJceQvCAdlgTZwE87IuJfCaSU++dapPz93roFoa9NQ9HRXVWRxAELl682CqLiOtRUVHB008/jSAIxMXFNXs4rUTjSHf5VjBo0KAmKXxLe2BZ6lj1UXOIoNmRtzliRxAEdHH/o3TFMx1G7AB4+Enr4dZAnVaFqbz1nm0S9XNl39VWz3Vpz4TdYsTJ27Z2CS5BvkR9vYrRm54SxY5er+fMmTOAZS0iapKTk8O0adOIjIxk69atktixAlKGxwZYMitjySUtcw2SudW9tVkdU0kxZZ9tRH/+d4vEZyvsQ4KQyaR2dGsg1e9Yl4pL+RTnDMWv+9W2DsUqyA0aJr41ip8fjbfJ+UJm3cbQN+eKQgeqSxcSExOtZhEBEB8fz3PPPcdHH33ExIkTrXIOCUnw2ARLZmUsnS0yGo3IZLLW1eoIAlVHfqV8++cI5WUWic2WOA3p19YhdFpKz+S3dQidnpxYFX5z2joK6xEYVECXMUEUHMuz2jns/DzovvIegm8fg9HJTrwX5uXlkZ2dTUREhFXawU0mE5s2beLbb7/lxx9/pHv37hY/h8SfSIKnFbTEQLS12NnZUVlpmXkxdnZ2VFX92S7coqyOupSymM3oT/1mkZjaAse+Xdo6hE6JyWhCcyajrcPo9GgTMlEVRqAIKGnrUKyCTDAS9UIfdv3NOoInZNZtDHnjYSpkRlQqFampqVRUVIidtQMGDMDV1dXi5y0vL+fJJ5/ExcWFffv2SU7nNkASPDagPS5pCYKAg4MDqamp+Pn54ePj0+w146oTxynb+gnCHx5aHRWduwxplJfl0abrMWrb5/C4zkb2QR2Ke9s6CuvhKs9j8KODOffJOYsd06WbHyPXL6brbZEAOAEKhQKdTse5c+fw9fXF1dWV3NxcUlNTcXR0FO0gvLy8mmwHUR+XL19mzpw5zJ49m4ULF7YLf8UbAUnw2IBrMymtobXiqWatzoABA9BqtahUKlJSUtDpdHh4eIg+WC4uLvV+EU1lWsq3f07VkV9bcyntBkWQByBNWbY0qtOqtg7hhqH0+AU0t4bh4V3a1qFYjcF3OZD0L3sMZa3Plvee8xeGvDEXR6/arzr1WUQEB1ebCut0OkpLSyksLCQ9PR0ALy8v0TanqYXMBw4c4IUXXuDjjz8mKiqq1dci0XQkwdMK2mpJq6XHunaujr29vfjG0qtXLwRBQKPRUFJSQmpqqiiAFAqFmAHSnz9L2WcbEZSdoxhV5umG3F4SO9ZAqt+xLTmHIXRaW0dhPewMKia8OYa4JYdafAzXYD9GrH+CrrcOr/XzplhEODs74+zsTGBgIAAGg4HS0lJUKhXZ2dno9XrxfqlQKHB1da31jDCZTKxbt46ffvqJvXv3WmVgoUTjSILHBlij0Lg5NLUDSyaT4enpiaenZy0BpFQquZBwHo+4n1EknbfIdbQXnIcNQEomWx7BJKCW6ndsSnF8MuUT++Pqrm3rUKxGcJ8ifML9KEksavZne8+ZzJA3Hq6T1TEajSQmJuLg4NAsiwh7e3t8fX1Fz0SzK7pKpSI9PZ3y8nJiY2MRBIHRo0ezfft2/P39+d///oeTk1Oz45doPdIcnlbQ1AyPJVvJm7uk1Zq5OmYBFFShpeeOf3Y6sQPgGCp1RVgD1YUKjKWd98HbLjEJpMa174nmrUVm0jPx5bBmfcY12I/o715h5PrFdcROWVkZJ0+exM/Pj9DQ0Fb5YZld0Xv27MmQIUMYM2YM06dPRy6Xs2rVKk6cOEF6ejqrV69m3759aFpR+5idnc3NN99MaGgo4eHhfPjhh3X2KS0t5Y477mDIkCGEh4cTExPT4vN1FiTBYwPaYknLLHQMBkPL282rKin7Yiua1a9gKuqccz4cuvu0dQidkuITnXP6b3un7GgWlRWdu9vHwymXAX8PbdK+vR+ezJTfPqbLLcPrbLt69Srnzp0jNDTUKstLMpmM/Px8du/ezSeffEJWVhZffPEFQ4YM4aeffmqVF5a9vT3vvfceycnJHDt2jI8//pikpKRa+3z88ceEhYXx+++/c+DAAZ555hmL1ZJ2VKQlLRtga2uJ1npgARguXkC7eT2mfOvNvmgPOPg4ALbxJruR0CV1jhqvDofeQO4ZD3qP7dzTrSNnenDhP3JMVfW7xbt292fkhifpcvPQOttsYRFhMplYu3YtsbGx/PLLL3TpUj36IjAwkOnTpzN9+vRWHb9r16507doVAA8PD0JDQ8nNzSUs7M/sl0wmQ6PRIAgCWq0WHx8fi/g5dmSkDE8raE7RsqWnI9eHRbI6Bj3l/9mB+rWVnV7sIJcjd7yx33isgSAIqE9L9TttxZWfU9FXObR1GFbFwVjM+FfH1LutzyNTmfLb+nrFji0sIjQaDbNmzeLKlSu1xI61yMzM5MyZM4wePbrWzxcvXkxycjJBQUFERETw4YcftmrJrjNwY1+9jZDL5Q2KlObSkIBprQcWgCHrMuqXX0T3/ddgoXjbM47hIchknf86bU3ZZT2GEnVbh3HDYiyrIC/Bu63DsDq9Ikrx7OUl/tm1RwATd7/OiA8X4eBRd1CgWq3m1KlTBAcH07dvX6vMvrlw4QK33347d955J+vWrbOKoKqJVqtlxowZfPDBB3V8HX/++WeGDh1KXl4eZ8+eZfHixajVN/b3UhI8HRyLZHWMRip2f4N61fMYsy5bKdL2h9Og3m0dQqdEdabzzoLpKOTvvYjR0Llv7zKjjptWVdfy9Jk3lSnH1xF485B6983LyyM5OZmIiAir+GEJgsDevXuZNWsWmzZtYs6cOVYfJqjX65kxYwYzZ87k7rvvrrM9JiaGu+++G5lMRt++fQkJCSElJcWqMbV3buwFvVbS1tMxLVGrY8zPRbv5Y4wXL1ghwvaNY2/rGAHe6JSevtLWIdzwGErUFKT1oVtYYVuHYlV8Ayro/el89L38SUhPRaFQ4O3tjaenp5hZT01NRa/XExkZaZUaFqPRyDvvvMPhw4f53//+ZzWD0ZoIgsAjjzxCaGgoTz/9dL379OjRg9jYWKKiorhy5Qqpqan07n1jv+RJgseGmIWJJTBndKBlHliCyUTlvr2Uf/UF3KCV+/YBrkgTli2LIAioz1xq6zAkgNy9WXQd4Iy85Q4I7Rqjz0CMYQ8x0rHa2byiogKVSkVeXh4pKSnI5XJ0Op3Ycm4NsaNWq1mwYAF9+vRh7969ODjYpnbq8OHDbN++nYiICIYOra5VevPNN8nKygLgscce46WXXmLOnDlEREQgCAJr1qzBz8/PJvG1VyTB00pkMpkoPBrD/LbRGv8V+NMDKy0tDV9fX7y9vZtdiGa8WkjZlg0YkhNbFUtHx85Nqt+xNOW5BvSFUodWe6Aqr5iMhH70HdK5/MwEmRxD779i7HEzyP6897m4uODi4kLXrl1RKpUkJycTHByMwWDgzJkzCIJQywqitcP/UlJSmD9/PkuXLmXmzJk2zfiPHz/+us+doKAgfvnlFxtF1DGQBI+NMA8fbKngqTktOTw8HJVKRXFxMRcvXkQul4v+VwqFosFzCIJA5cE4yv+9FXSdu231eth19UUu79xD2toC1ZkbuyiyvVF6pAxhcNsvv1sKwUlB1aDZCF4h9W+vYRExfPjwWhYRRqOR0tJSlEolOTk5VFVV4enp2aAVRIMxCAI//PADb775JjExMQwfXnfGj0T7RBI8raSpGR7zLJ6WVO3X7MCSy+U4OTkRGBgoerro9XqUSiVFRUWkp6fXK4BMyhLKPt+E/vczzT5/Z8Rp6IC2DqFTItXvtC8qLuZRnDsEv+DmWzG0N4x+4ehD/w4ObvVvv45FhJ2dHT4+PqIpaH1WEK6urmIdkLu7e51jGI1GVq9ezcmTJ4mNjb3hl4g6GpLgsREtGT54rQdWQ63mDg4OBAQEiMVyVVVVqFSqagF04QKeF1PxPxiLXFfR+gvpJMilgmWroD6d2dYhSFxDbpwav1ltHUXLEWR2GPrcgbF7NDSQgSkrKyMhIYHu3bs3eWqy2QrCbAchCALl5eWoVCqysrLQarU4Ojryyy+/iLUyTz31FOHh4ezZs+eGH+LXEencfYvtiJZ6YBmNxmbP1XF0dCQgIIB+XbsQduIwgT//IImda/GvO6dDonWU5+upyu/4mYTOhubcJVRXO+ZcHpOzD1WRT2LsMbFBsXP16lXOnz/faosImUyGm5sb3bp1Y9CgQYwZM4awsDACAwP54osviI6O5uLFiwiCwE8//URJSUmLzwVN88MCOHDgAEOHDiU8PJzo6OhWnfNGR5KoraQ5BqJN9cBqSlbnelSdOkFZzCcIamkmSn14dHUHbuw6JkujOtNyM0QJ65JzsArFPW0dRfMw+g9GP/ABcKj/5aSmRcTw4cOtMuTPyckJhULB5cuX2bt3Lz179uTIkSMcOnSI9957j5kzZzJ//vwWHdvshzV8+HA0Gg2RkZHcdttttewhVCoVixYtYu/evfTo0YPCws49ZsDaSILHRjRlSevaWp2WCB1TWRnl/4qh6vDBloba+XF2RO4gtaNbGtWpgrYOQaIBVMfS0Nwahoei/b8ACTI7DP3+hrHb+AazOnq9nvPnz+Pp6cmwYcOsUpRtMBh47bXXSExMJDY2Vqz9mTp1KlOnTm318Zvih/Xvf/+bu+++mx49egDYZMZPZ0Za0rIRjS1pXTstuaViR5/wO+oVz0hi5zo4DR2AjOsXmks0j6LjN97wyo5EzpG2juD6mFz8qBrxFMbgqAbFji0sIkpKSrj33ntxcHBg9+7dotixFg35YaWlpaFUKpk4cSKRkZFs27bNqnF0dqQMTytpzpKWXl+3DdoSWR1BV0H5jn9RGSfNXGgKTmE92zqEToc6rwIK23/24Eam+GAKFRP64uJe1tah1IsxYBj6gfeDvXOD++Tl5ZGdnU1ERARubvV3a7WWhIQEFixYwMqVK5kxY4bVW/ob88MyGAycOnWK2NhYKioquOmmmxgzZgz9+/e3akydFUnw2Ah7e3sqKv4sHLZUrY4+NZmyTz/GVCi1AzcVx57WfVu7ESlLkJYI2z1GEzknnOl3c/sSPILMHkP/uzEG3dRgVscWFhGCIPCf//yHDz/8kC+++ILw8HCLn+NarueHFRwcjJ+fH25ubri5uTFhwgR+//13SfC0EEnw2IiaNTyW8MASqqqo+HoHur0/QBPmAEn8ib2fM1LBsmUpPS0VU3YECvcl0+Om7jg5tw+BqrNXkOhwE2W59ijKLoizw2paNOh0Os6fP09AQAA9evSwWr3OqlWrSE9PJy4uDoVCYfFzXEtT/LDuuusuFi9ejMFgoKqqiuPHj7N06VJxRUCieUiCp5U09ctnFjzm5SvzZ1vy5TVkXES7eR2mvNxmf1YC7JybNw9J4vqoT19u6xAkmoBQqSf3jCe9b7ra1qFgDBwBA+4l3N4JvV4vTkHOzMzEZDLh6emJo6MjBQUFhIaGWq2OpqioiLlz5zJu3Di+/fbbVtv/NJWm+GGFhoYyZcoUBg8ejFwuZ968eQwaNEg8RklJCT4+Phb1aezMyK4zJVhKHVwHk8lUb23OtWg0GhITEwkNDcXV1bXF6tyYl4t244cYL0sGjS3BoV8PAl+c2NZhdCoqiw0cn/rvtg5DoonYebgyYnkADg5tY60iyB0w9L8HY9dRDS5hGQwGLly4QFFRES4uLuj1ejw8PMQMUFNtIK7H2bNnWbhwIa+++ip33nlnhxENRqORVatWsX//flatWsWIESPw8fGRMj/VNPiPKGV4rIy5VsfJyYmAgADS09OpqKgQv7w+Pj64uLg0+Xh2Qd3weu1tii9fJv9wPAGaUpyyMzFmZ0lLW01AFtq9rUPodCjPtq+aEInGMWrKyU/wpscw2y9Dmty6oA+fjeDetcF9jEYjSUlJODg4MG7cONF4WavVolQqa9lAmC103N3dmyVWBEFgx44dbNy4kZ07dzJw4EBLXJ7NsLOzY9q0acjlcp544gn69evHyy+/zIgRI9o6tHaNlOFpJYIgUFVV1eC2+mp1BEFAo9FQUlKCUqlEp9Ph6ekpCqCahnfXYjAYSEtLo7KykrCwMNHx16TVYEhNQZ+SiCElCWNWpiSA6sHp8Tvwj+yYU2fbK6nvpnPlqw7Q8yzxJ16u3PSiD3b2trtHGLqOxtB/Btg1PCCwqRYRgiBQVlaGSqVCpVKh0WhwdnYWfbA8PT0bzHTo9XpWrFhBXl4eMTExeHl5tfrabMm1y1c//fQTMTEx/Pzzz3z22WdMnjwZDw+PG3mZq8GLlgRPK6lP8FzbgXW9Wh2ziZ1ZAJldfM0CyCxqSkpKSEtLo0ePHnTt2rXxY5aVYUhLxpCShD4lCWNmhiSAgID35+GoqF+gSrSME3+PpSJdqifraIQ8Mpxuodbv7hTsHNH3vxdT15GN7nf16lUuXrxIWFhYnfbsplBRUYFKpUKpVKJWq7G3t0ehUCCXy/Hx8UGhUFBYWMjcuXOZNGkSy5cvb/fLPzWXqK5drjIajWK9kVqtZsmSJXz99de89dZbzJ07F2dn5xtV9EiCx1pcK3gs0YFlMplQq9UolUpKSkqoqqoSjxceHt6im4GpvAzDhVQMyYl/CqA/BNmNRNCn85HbtY8Olc5AlcrIsb980dZhSLQAp2B/Ip90xJrPfJN7UPUSlltgg/vUtIiIiIio1aHVGswmynv37mXdunUYjUbKysqYNWsWS5cu7TBO5xUVFVy6dEmcwHz58mV69qyeJXatoJk+fToJCQm8+uqrPPjgg20SbztAEjzWpLKystlZnaaiUqlITk7G19cXOzs7lEolBoNBTN16e3u3yENGqKhAfyGltgBqhrlpR0Sm8KDb+9PbOoxOxZWDalKXfdvWYUi0kP6PDyMgxDq1PIagsRj6/a3RJayaFhF9+vSxSjZCEAS2b9/O1q1bmT9/PpmZmRw6dAi1Ws2IESNYt25di324srOzmTVrFgUFBcjlchYsWMCSJUvq3ffEiROMGTOGnTt3cs89TTc227NnD9999x0LFixg+fLlBAYGMmvWLG699VZxH3O2R6fTcdNNN+Hp6clnn31G3759W3RdHRypaNnamMWOpYSO0Wjk4sWLaDQahg4dWquw2Wg0ii2c2dnZGI3GWgKoKW9IMhcXHAcPw3HwMKB6WrPhQppYA2TISO90Ash5+IC2DqHTUXq67dubJVpO+vdZ+D/pZFGhIdg5oR94P6bA4Y3up1arSUpKonfv3lbziKqqquL5559HqVSyb98+3N3dxW2VlZWcPXu2VaajTTEAhep79vPPP8/kyZMbPV7NjI35/2+//XZ++uknxo0bx9ixY5kyZQpDhgyp9Tk7OzuMRiPOzs7ExMQwcuRIfvnlF/r27Vtr6etGRxI8reT8+fOsXr2aCRMmEB0dLZq8tYbS0lKSk5Pp1q0b/fr1q3MzsrOzw8fHR5xLYTQaxbXry5cvIwgCXl5e4rp1kwSQswsOEUNwiKj+IgmVuj8EUBKGlEQMFy90eAEk79twZ4hEy1Cfzm7rECRagSm7mMKsMAJ7WsYWxOQRXL2E5erf6H62sIgoKCjg4Ycf5vbbb2fZsmV16nWcnJzqeFc1l6YYgAKsW7eOGTNmcOLEiQaPVVPsGAwGcZr0b7/9xtdff01ERAR33HEH99xzTx2RJgiCKHqGDh3KkiVLeOONN5gzZw6urvW7zd+ISIKnlYSFhfHkk08SFxfHkiVLKCgoYPjw4URFRTFx4kS6dOnS5Lcnk8nExYsXKS0tZfDgwU3+RbWzs8PX1xdfX1+g+stiFkCXLlXP6zFnfxQKRZPGssucnHEYNBiHQYOrY6usJPfwr+gSzuFXWoKQmQFNmD/UrgiQvviWRK8xUp4mCZ6OTsGvOgItYC9nCI7C0PcukDd8f6lpETFixAirZR6OHz/OkiVLePvtt5kyZYpVznEtDRmA5ubm8s033xAXF9eo4IHqep0XXniBhQsXiq3yJ0+exNnZmU2bNrFlyxbi4+MZOnQo5eXlZGRkEB4ejr9/tcA0/33ef//9xMfH88MPP3DfffdZ4Wo7JpLgaSV2dnaMGTOGMWPGsHz5cnH8d1xcHPPnz6ekpISRI0cyYcIEoqKi8Pf3r1cAqdVqkpOT6dKlC5GRka1KMdvb2+Pn5ycW5RkMBrEAOiMjA5lMhkKhEDNA17vpVFRUkJiYiFf3nvSZOAm5XI5QVYUh4wKG5KTqZbD0tHYvgDy7eSFZSlgO1e/lUudfJ0BzNoPSKYPw8lO26POCvTP6gQ9iChjS6H62sIgQBIGtW7eybds2vvnmG/r06WPxc9RHYwagTz31FGvWrLnufVYmk+Ho6MiuXbsYP358rdlAOp0Og8HAihUreOCBBwgICODIkSPodDoUCgXfffcdQ4YMEZevwsPDcXR0JDU1Fahb3HyjIhUtWxmdTseRI0eIi4sjPj4erVbL6NGjRQHk4uLCihUriIiI4L777rNaercmer0epVKJUqlEpVIhl8vFFngvLy/xiykIgph6HjhwYKP+MoJejyEjvboNPjkRQ3oqNDCfqE2wk9Nt8yxkshuvM81aXFiXSf72+LYOQ8ICeI8dQPjd2mZ/Ti33IcvnL7j598Tb27vBGWIlJSWkpqYycOBAvL2tMwersrKSZcuWUVZWxpYtW2xyL4Xq++m0adOYPHlyvZ5YISEhmJ+zRUVFuLq6snnzZv72t7/V2s8sVh599FHc3NxYvXo1Tk5OnDt3jscee4y0tDT8/f3Jy8ujS5cuzJ07l1tuuYXFixfj6OhIfHx8reN89NFHfPXVV8TGxoqjTW4QpC6t9oJWq+Xw4cPExcWxd+9eCgoKGDFiBLNnz2bChAl4eHjYXIlXVVXVEkD29vZOy8fcAAAgAElEQVR4enqiUqlwd3enf//+zXYnFgx6DBkX/5gDlIghLRWq2q4d3GnYAPyfaN16vURtTsw+QEVyVluHIWEhhr4UiruXusn7G7pPpCrkdtTacvH+UVlZWcsCwsXFhezsbAoLC4mIiGh0qGpryM/PZ/bs2UyfPp2lS5fabL6OIAjMnj0bHx8fPvjgg+vuP2fOHKZNm9Zol9arr77Kzp07OXPmjFirc/r0ac6cOUNmZiYPPPAA3333Hc7OzixatIj333+fjz/+mFOnTtGlSxfxOEePHiUhIYFZs2ZJgse8QRI8tkev17NmzRr27NnD+++/T1FREXFxcRw+fBiZTMb48eOZMGECN910k83eUmqSm5tLRkYG7u7uVFZW4uDgIGaAGptg2hiCwYDhUrUAMqQmoU9LAZ3tlpc8HpqM16SGZ4FINI8qjZFjt/0bTNItorPgd0s4A6eqrrufYO+KPuzvmPwG1d32xxR58xK6SqXCwcGB7t274+Pj02wLiKZw5MgRnn76ad5///1ardq24NChQ0RFRRERESHeF681ADUjCAIPP/xwg4LHvOxUXFxM3759WbZsGcuXL2/w3M8++ywDBw4kNjaW0tJS/vvf/9YSlIIgUFxc3GHmDVkQSfC0J15++WXs7e15/vnna3VQCYKAUqnk4MGDxMXFcfToUZydnRk/fjzR0dGMGjWqWb5bzUWv15OSkgLAwIEDxdgqKyvFKdBqtRpHR0dRAHl4eLRMABmNGDMzxC4wfWoK6Cosej018X3p/3AJkdawLUXRMS1JT/63rcOQsCAyOzsi/9EbZ7fyBvcxefaiatBscG58WcpsEREcHIyXl5eYPdZqtbi4uIhjNFp6/4DqAujPP/+cL7/8kh07dojD+NorGo0GDw+P6+5XWVnJihUr+PHHH9m2bRsjR46s1xT01KlTPPDAA1y9epW9e/cyZswYa4Xe0ZAET3uiqQVkgiBw9epV9u/fz/79+zl+/DheXl5i/c+IESMslqosLi4mLS2N3r17ExjYeCZEp9OJb3AajQYnJ6daAqglb3CC0Yjxcuafc4DSkhHKG77xNpfAj+bj4C5NWLYU6RsvkxdzsK3DkLAwXe4YTN/o4nq3GXrcgqH37SBvvPi2MYsIQRBqWUBoNBocHR1reWA1pXOroqKCp59+GpPJxObNm636ImgJli1bxuXLlxk2bBhTpkxh2LBhje4fGxvLiy++SEhICBs2bMDX11eszdm3bx/ff/89Z86cQa1WEx4ezjvvvEO3bt1sdDXtHknwdAbMRcRxcXEcOHCAkydPEhAQQFRUFBMmTGDYsGHNHstuNBpJS0tDp9PVMiNtDhUVFbUEkIuLiyiAWprCFkxGDJczKfntGJWJ53G/kg8VLRdAQZ89glzWvrvIOhKn5x9C+3tGW4chYWHkzk6MWNkNR+c/Xw4EBzf0YTMx+YY18smWW0TodDpRAJWWlooeWN7e3nh5edWpH8zJyWH27Nk8+OCDLF68uF37YanVah544AH8/f1ZsGABn376Kf379+fFF18EaPTeuHr1arZt28att97KunXrxJ+bu4AVCgULFy5k9+7dHDt2jOeff75FtkOdEEnwdEYEQeDy5cvExcWxf/9+zp49S3BwsDgEMSIiotG3JZVKRUpKiuhMbIm1dfMbnHkJTKvV4urqKgogNze3Jp2nqqqK5ORkHBwc6N+/P3ZyGcbsLNEM1ZCShFDWtK4Su+4BdH3FNrM4bgQMOhNHJ32JYOjYgygl6qfbvcMIGV1tN2Hy6k3VoFng1HCHJljWIsLsgWUWQFevXuWHH34Qmzpef/11PvroIyZOnNjic9iK2NhYvv/+ez788EOg2iZi2bJlnDp1qsECbvPylclk4rnnnuP7779n4sSJbN68WdxHp9PV+vzJkycJDQ1tk5rPdogkeG4EzIMLzQIoISGB3r17iwIoNDQUuVxORUUFn3/+OaNHjyY8PNyq6WBBECgvLxczQGVlZbi5uYkCyNXVtc7NsaioiAsXLtCnT58GR84LJhPG3OzqOUCp1ctggkZT775u08bjfXdvi1/bjUrxiTISH/+6rcOQsBJ2nm6MXO4PfW/G0GvydZewzBYRffr0EQfgWRKNRsPevXvZtWsXJ06coEuXLkyYMEFc2q/ZmdQSmuKH9cUXX7BmzRoA3N3d2bhxYx17h/ooKytDo9HQpUsXDAYDZWVl3H///XzxxRfioFioW+ZgFj1KpZLt27fz0ksvMXXqVJ5++mlGjRol7ldzIrOEiCR4bkRMJhMpKSniElhycjJBQUFcunSJyZMns3r1apt/WQRBoKysTBRA5eXluLu7i+nr7OxsKisrm728JphMGPNyq20w/sgCCerqcfneS+/DLcI67bA3Ihc/zSb30/1tHYaElZC7OBH66Yu4hIVfd1/znK5BgwZZLbtQXl7Ok08+ibOzMxs2bEAQBI4fP058fDzx8fG8+uqrjB07tsXHz8/PJz8/v5Yf1rffflvLHuLIkSOEhobi7e3NTz/9xMsvv8zx48frPV59BcZmcnJyuP/++zl06BAymYxLly4REhJS775mEWQ0Gjl79izz58/H3d2doUOH8uabb9byBZOohSR4bnSMRiPvvPMOX375JVOnTiUpKYmMjAwGDRokvi2FhITYfAaQIAhotVry8vLIy8vDzs5OzP74+Pi0OPskCAKmvFz0qUm4hHvi7FuKjHY0CLEDc+axo2hOX2jrMCSsgJ2nG/0+Wo774P6N7me2iDAYDISFhVnNIiIrK4vZs2cze/ZsFi5caJP701133cXixYu57bbb6t2uVCoZNGgQubm5dbbVNOosLCwkICCglgD69ddf2bx5M9u3b2fRokV4e3uzatWqRg1MzZ/PyckhISGB1157jcWLFzN16tRGh8HewEhu6TcyOp2OKVOmEB0dzcmTJ8ViQoPBwNmzZ4mLi2PZsmXk5OQwdOhQ0QesW7duVr/BmDvR1Go1o0aNwtXVVZzjkZKSgk6nw9PTU/QCa6oAkslk2HULxq5bMAJQIQjI0GInFCEXirETipAhFTE3F2OlCW1CZluHIWEFHPwU9Pt4Ja79Gm/vtoVFBMCBAwd44YUX+Pjjj4mKirLKOa6lIT+smnz22WdMnTq11s/MiQM7OztycnJ48cUXyczMZNu2bbUyOA4ODly+fJkpU6bg7+/Phg0brhuTWSwFBwcTHBzMuHHjsLOzk0xBW4CU4blByMzMpFevXo3uo9frOXHihLgEdvXqVSIjI4mKiiI6OprAwECL3tzKy8tJTEzEx8eHkJCQetPAJpOp1iCzyspKPD098fHxaXSU/XURBGRo/hBARdgJJZIAagIlp8tJeOw/bR2GhIVxDPKn/4aXcO7RtdH9bGERYTKZWL9+PXv27OHLL7+0Wbu1VqslOjqaFStWcPfdd9e7z/79+1m0aBGHDh2qVYNjZvfu3cyZM4fBgwfTt29fVq5cWWs+0I8//sgdd9zBhg0bag0lNBqN5Obm0qNHD8tf2I2HtKQl0XwqKys5evQo+/fv5+DBg5SWljJq1CixWNDX17dlLec1PLpCQ0Px8vJq8mdNJhNqtVoUQHq9vpYAavFcIkFARil2QjEYCpELxdjbSb/+13LpsxyyP4lr6zAkLIhzSDf6b3wJx4C6D3AzgiCQlZVldYuIsrIyHn/8cby9vfnoo49sZolwPT8sgHPnzjF9+nR++ukn+vevu+T3/fffM2/ePObNm8eCBQvo2bMnMpmsVkHy1atXycvLq1XwnJaWxoMPPsg999wjtqtLtApJ8Ei0noqKCtEHLD4+Hp1Ox+jRo4mOjmb8+PF4eXldVwBVVVWRlJSEk5NTdbt5K9f+TSYTpaWlopePXq/Hy8tLFECNrY3Xx5UrV8jIyGDAgP74ecvF5S+5UIIMqQ377OLjqH9LbeswJCxFzy7oF03HLdBPXDa+dnSEwWAgKSkJR0dH+vfvb7W5N5cuXWLOnDksWLCAefPm2ayesCl+WFlZWUyaNIlt27Y1WCA9b948ysrK2LBhg5j9Mtf0NFTI/P333/PCCy+wYsUKZs6cabmLurGRBI+E5dFoNBw6dIi4uDgOHTqE0Whk7NixREdHM3bs2Dpj1DMyMrhy5Qp9+/a1SvsqVN9gagogo9FYSwA1NAzNYDCQmpqK0WgkNDS07n6CCTmqawTQjeW8btSbODrpK0yVUvF3Z8A9Mox+a59H7uYidk4qlUrKysrE2VnOzs5kZGTQo0cPgoKCrBbLvn37WLlyJZs3b7a5RUJT/LDmzZvH119/LS5P2dvbc/LkSaD6pauoqIiRI0eyePFili1bJgqcxgTPK6+8wtq1a/Hz8yM9PR2ozjQ1d3isRB0kwSNhXQRBoLS0lPj4eNEI1d7envHjxzNq1Ci+/PJL5HI5W7ZsaXbWpTUYjUZxiJlSqcRkMqFQKPDx8UGhUODg4EBpaSnJycn06NGDrl27Nu3NUjBeI4CUnV4AKc/pOD/vq7YOQ8ICeEVF0mfNUuTOdZeMzLOzsrKyKCgowNHRURRArfW/uhaTycTatWuJjY1lx44drZ6p01ZUVlYyYMAAHnroIV5//XWgeiLyrl27uHjxIgaDgTfffFPsaHv33Xf59ddf2blzJxMmTOCuu+5ixYoVbXwVnQZJ8FibuXPn8sMPPxAQEEBCQkKd7S0dXNVRMTv1fvrpp6xdu5Y+ffpgb28v2mCMGjXKanUAjWEWQOZJ0Lo/HNv79OlDYGBgy+cSCUbkglLsApOjRNbJvj6Z/8wj6+N9bR2GRCvxmTqeXi8/jtyh/t91s0WERqNh0KBB2Nvb1/K/UqvVon+e2f+qJQJIq9WycOFCunbtyvvvv2/TFyFLIggCer2epUuXsnHjRv7+97+jVCr56aefAOjSpQsFBQWMGDGCXbt20bNnTxISEhg0qNptfvfu3axbt4533nmnUz8TbIgkeKxNfHw87u7uzJo1q17B05zBVZ0Bg8HAG2+8QWxsLDExMfTu3ZsrV66IRqi//fYbPj4+ogCKjIy06Q2voqKCxMREvLy88PLyQqVSoVKpkMlktTJALa4xEgzXCCBVhxdAp584jva4VL/TkfG/9y/0eP4RZA0IlKZaRJgNhM0CyMHBoZb/1fW+NxcuXOCRRx5h8eLFzJ492+bzv6zBr7/+ypo1a9izZw8hISHcfvvt/OUvf+GWW27hv//9L7Nnz2b16tU899xztT53+fJl3n//fUJCQli0aFGHFX7tCEnw2ILMzEymTZtWr+CpSWODqzoLRUVFxMTEsHTp0nqzJoIgkJubS1xcHHFxcZw5c4YuXbqILfBDhgyx2hTogoICMjMzGThwYJ3BXXq9XswAqVQq5HK5OAixKTfyBhEMyIWSawRQx8GkN3Holq9AJ9XvdFS6PDydbosfbFBctMYiorKyUhRA1xqAXvvisHfvXl555RW2bNnCyJEjW3VN7Y2ysjISEhIYPHgwcrlc7DJTq9WMGzeOW265hbVr19b5N9i4cSPx8fGsXbuWLl261LGakGgWkuCxBU0VPO+++y4pKSls2bLFRpG1fwRB4NKlS+IMoN9//50ePXqIQxDDw8Nb3dFlMBhISUlBEAQGDhzYpOJAvV4vtsCXlpaKk6DNN/IW1zIIelEAVQ9BVLdrAaRK0nFujlS/01Hp9uRDdJ1zV4PbLW0RUdMA9MyZM6xdu5YRI0aI3/Ndu3Y16JPXWahZqHz16lXCwsJ47rnnWLZsmbhPTWEzbtw4xo4dyzvvvNMm8XYiJMFjC5oieK43uEqiGpPJxIULF0Qj1KSkJPr27SvaYAwcOLBZYsPsDN+zZ0+6dm18uFpjVFVV1RJADg4OYgaopbUMgiCQm3OJqvIcevf0wNm+FDn1G6G2FUmfpFP02ZG2DkOiuchk9Fw+H/8Z9dsk2Moi4tKlSzz//PMUFxeLs2nGjh3LhAkTmDRpUp2OzubQFPNPQRBYsmQJe/bswdXVla1btzJ8+PBmn6upmZeaFhNVVVV8+umnbNq0ie3btzN06NB69/3111959913+fbbbwGkDE/LkQSPLbie4Lne4CqJhjGZTCQlJYkZoLS0NEJDQ0UB1KdPnwYnNV+6dAmlUmkVZ3hzKr+kpAS1Wo2jo6MogJrSzWKeS+Ts7Ey/fv3+fOAIldgJxX92gaG1aNzN5dSTxyg7ltamMUg0D5m9HSGvPYHP5HH1bjdbRAQGBtK9e3erPWBTUlKYP38+S5cuZebMmchkMrRaLUeOHOHgwYM8+OCDYgFvS2iK+eeePXtYt24de/bs4fjx4yxZsqTJNZTmZ+S1QwSbQlJSErt37+aVV17hxRdf5KWXXmrwHJLAsRiS4LEFjQmepgyukmg6RqORc+fOiQLo0qVLDB48WBRAPXv2JDU1lXfffZfly5fTq1cvqw1Mq4m5mLOkpASNRoOjo6M4A8jT07PWTc08pr9Jc4kE3TUCqMzKV/InJoOJo3/5L0Ztuc3OKdE6ZE4O9HnnWRTj689i2MIiQhAEfvzxR958800+//zzFmVUWkJ95p+PPvooEydO5MEHHwRgwIABHDhw4LrZ3prLUrGxsXzzzTe4ubkxaNAg/u///q/Bz6WmpvLcc8+Rl5dHfn4+q1evFve/nrhpzG1doklI5qHW5sEHH+TAgQMUFRURHBzMK6+8gl5f7c302GOP8eqrr1JcXMyiRYuA2oOrWsr1WuHNnDhxgjFjxrBz507uueeeVp2zvWBnZ8ewYcMYNmwYzzzzDAaDgdOnTxMXF8fSpUvFWp3Zs2fj7Oxss7cnZ2dnunbtKt5IKyoqUCqVZGdno9FocHZ2xtvbm7KyMioqKhg2bFjT2vNlzhhl3TDSDT0gEyr+ED/FyIUi5FhPjGgz9JLY6UDYubvQ94MX8RgeWmdbTYuIJv/utQCj0cjq1as5efIk+/btw8/PzyrnuZaGzD9zc3Pp3r27+Ofg4GByc3OvK3jMwmP16tW88sorREdHU1JSwtq1azl8+DBLly5lwIABdT7n6+tLUFAQgwcPZu7cuaKBaFPEjCR2rIckeCzEl19+2ej2LVu2WLxIec6cOSxevJhZs2Y1uI/RaOT5559n8uTJFj13e8Pe3p5Ro0bRv39/zp8/T3R0NDNnzuS3337j0Ucfpbi4mBEjRog+YAEBATYRQS4uLri4uBAUFIQgCKhUKhITE7G3t0cQBFJSUsQMkLu7e5NjEmQuGGXBGAkGQCaU1xiCWIycCotdg+q0ymLHkrAu9goP+n28ErfQ3nW21bSIiIyMtNqDVaVSMX/+fMLDw9mzZ4/Vui2vRavVMmPGDD744AM8PT1rbatvJaOp37UzZ86wZcsW1q5dy8yZM/H09OTUqVNih9mbb76Jj4+PuL/JZMLPz4/3339fXEI3Cx1JzLQtkuDpwEyYMIHMzMxG91m3bh0zZszgxIkTtgmqDdHr9UydOpWnnnqK+++/H4DJkyfz0ksvodPpOHbsGLGxsWzZsgWtVsuoUaOIjo4mKioKb29vqwugK1eukJmZSUREBF5eXuJEW6VSyaVLl8SR/mYBdK2nUWMIMleMMleMdP/DCPVaAaRrcdylZ/Jb/FkJ2+EQ6Ev/DS/hElLXXdzcLt29e3erWkQkJSWxYMECnnvuOe6//36bZVb1ej0zZsxg5syZ9TqdBwcHk52dLf45Jyen3r+H+pabjh8/jlarZfr06aKQ+uqrr5DJZIwfP76W2IE/MzRmsSMIgiR02gmS4OnE5Obm8s033xAXF3dDCB4HBwf2799fb5re2dmZiRMnMnHiRKD6AXDkyBFiY2NZv349VVVV3HTTTUyYMIFx48bVqbdpDWafLpPJRGRkpNgOL5PJcHNzw83NjeDgYARBED2NLl68SHl5OW5ubqIAcnV1bVpMMhkCbhhlbhjp8YcAKhMFkJ1QjIzKJsUumAQ0pzNac/kStiDAG6/XF2L096rz0C4sLCQjI4Pw8PBWdUM1hiAIfPfdd7zzzjts3brVphODBUHgkUceITQ0tEGn8zvvvJP169fzwAMPcPz4cby8vOosZ9XsrCoqKsLd3R1nZ2dxnk6XLl3Q6XRERUWRn5/PL7/8wi233CJa1jTUdSsVI7cfJMHTiXnqqadYs2aN1VpN2yNNrUlwc3PjtttuEwsb1Wo1v/76K3Fxcbz77rsIgsD48eOZMGECN910E+7u7i2KxzzMrSk+XTKZDHd3d9zd3enevbsogEpKSkhPT6e8vBx3d3dRALm4uDRDALljlLljpOcfAkiLnVCMoTIPe0pwdKi/P0F7qQpDadt2iEk0jku/nnR7eykauYmMjAwxU6hQKCgrK0On09US2pbGYDDw2muvkZCQQGxsbJ2Mh7U5fPgw27dvJyIiQmz5vtb88/bbb2fPnj307dsXV1dXYmJiah2jpth56623iI+PZ9asWdx7770oFArUajVvvPEGH3zwAWFhYcTFxdG/f3/UajVLly5lzJgxPPbYYza9bonmI3VpdXAa6wwLCQkR166LiopwdXVl8+bN/O1vf7N1mB0Kc63NwYMHiYuL4+jRozg6OjJ+/Hiio6MZPXr0ddvbzcWhV65cITw83CLD3ARBQKvVUlJSQklJCTqdDg8Pj1oCqKmYTNUPx9LSUsLDw3Bx0ovLX9UZoOqC++xdhVx6Z2+rY5ewDm6D+9Pvoxex9/xTkJuNfJOSkoBqIe3i4lLL/NNSWYeSkhIeeeQRIiMjee2119r9y1VNYVMfd999N8eOHWPBggX85S9/ETtqp0yZwi+//MIDDzzA559/jrOzM5WVlXz99desXr2aZ599ltmzZ9vqMiQaR2pL76w0dbrznDlzmDZtWqfp0rIlgiBQVFQk+oAdP34cDw8PsQB65MiR4gh5qJ5am5OTg0KhoG/fvlZbvxcEAY1GU8sI1dPTUxRADWW7dDodCQkJ+Pj4EBISUvfhJwjIUGMnFJHzz+Pkx+zFqLVcEbSEZfAcM5g+7y3DzqX2v/O1FhGCIFBRUSHapZi7Bc2/Jy0VQAkJCSxYsICVK1cyY8aMDrN0U1FRwblz5+p0csXExLBq1SpiYmKIjo6uVWydk5PD+PHjCQoKYvbs2fj7+3P48GE2bNjA8uXLG5yvI9EmSIKnM1KzFT4wMLBOK3xNJMFjOQRBoKCgQJwCffLkSfz8/IiKisLZ2ZnNmzfzySef2HzekslkqiWAqqqqagkgJycnrl69Snp6erPmrwgGI2UpGWhOJqL5LQHt2RRMuqbVAElYB8Wk0fR+cwlyx9rLVGaLiIiICFxdXev9rFkAmb2vao5LMAugxkS6IAh8/fXXfPDBB2zbtq1VQwNtjVarZebMmfj6+rJ58+Zaoua+++4jOzubo0ePij8TBEEsOk5NTWXVqlXEx8fj5+eHo6MjK1asYPr06YA0P6cdIQkeCcvQlNk/Bw4c4KmnnkKv1+Pn58fBgwdtHKVtEQSB9PR0lixZQlJSEn5+fvj5+TFhwgSio6MZPHhwm6T6TSYTarVaFEAajQY7Ozt69+6Nv79/i12ZTXo9ZQnpaE4koDmZiPb3VAS9wcLRSzSE750302vlo8js//ydaq1FRE0BpFarcXJyEgVQTcsUg8HAqlWrSE9PZ/v27XXMdzsCx48fJzIyEnt7e1GkGAwGZs6cyZUrVzhw4ADQ8IDAK1eu4ODggL29PZ6enrVEkUS7QBI8EpYhPj4ed3d3Zs2aVa/gUalUjB07lr1799KjRw8KCws7vUlgeno6s2fPZvr06Tz99NPIZDIuXrwoToE+d+4cISEhogAKCwuz6c2xvLychIQE/P398fLyEh9sRqMRLy8vMQPU0qJWk64S7bk0NCcSUJ9MpDwxHcFgtPBVSAAE/P2vdH96FrIavz/WsIioKYC2bt3KiRMnGDFiBKdPn+bWW2/llVdeaff1OtdybQZm8eLFVFRU8NlnnwGwaNEivv32W3bv3k1kZGStzx47dozs7GzuuOOOWkvFUlanXSIJHgnL0Vjd0IYNG8jLy+P1119vg8jahu+//56goCBGjBhR73aTyURaWhqxsbEcOHCA5ORkBgwYQFRUFBMmTKB///5Wu2kWFBSQmZlJaGgoXl5etbYZjUZKS0vFDJDJZEKhUIhv9i0VQMbyCrRnUlCfSEBzIoHylEvQ+H1GogkEPXYfXeffU689iTUtIgD27t3Le++9h5ubG0VFRfj6+jJx4kSio6MZO3Zsq39/r5c5Li0t5aGHHiIrKwuDwcCzzz7Lww8/3OTj18zWGAwGqqqqeOyxxzh8+DDPPPMMixYtori4mP79+zNp0iTeeOMN0e+wpKSEZ555Bnt7e9auXdvijk0JmyEJHgnL0ZjgMS9lJSYmotFoWLJkSaOToG9ETCYTCQkJYgYoPT2d8PBw0QcsJCSk1Q8Qo9FIamoqer2esLCwJokXo9GISqUSi1sFQaglgFo6Mdeg1qI5nVy9BHYigYr0rBYd50am+7KHCXzwdvHPNS0iIiIirGYRIQgCO3bsYMOGDfzrX/8iNLTariI/P5+DBw9y9OhR1q5d2+rf1+tljt98801KS0tZs2YNV69eZcCAARQUFDRpWbam2Nm6dSsqlYqnnnpKdHA/d+4cH374IZMnT2b37t1Mnz6dUaNGMX36dFxcXPjll184evQou3btEud4SbRrJMEjYTkaEzyLFy/m5MmTxMbGUlFRwU033cSPP/4oucM3gtFo5OzZs6IAysrKYsiQIURFRTFx4kSCg4ObtUxhnqobFBTU7M/WxGAw1BJAgCh+vL29W7ykoc0vJPm7n3G5XIiQkkXl5bwWHeeGQC6j18uP4zctWvxRTYsIa2YH9Xo9K1euJCcnh61bt9bJEFqaxu4rq1evJjs7m48//pjMzExuu+020tLSal17fTU3NZec4uPjmTRpEq+//joLFy7Ey8uLgwcP8o9//IPKykr+/e9/0+lWzqQAACAASURBVLt3b7755hv++c9/sm/fPnr16oWfnx9bt26lV69ekqt5x0ASPBKWo7Eb01tvvYVOp+Pll18G4JFHHmHKlCnce++9No6y46LX6zl16pTYBVZYWMjw4cNFARQYGNjgTTcvL4+srCyrTNXV6/WiACotLUUmk4niR6FQNEkA1dclVnW1BM2JRDQnzqM+mUhVbqFF4+6oyBzs6b36Kbwn/dk+bSuLiMLCQubOncvNN9/MihUrbFKn0th9RaPRcOedd5KSkoJGo2Hnzp389a9/Fbc3Nl+nqqqKd955h7KyMgD+8Y9/1MqIffHFF6xZs4Y+ffqwa9cu7O3t0el0FBcXI5fLxYnM15vhI9FukASPhOVo7MaUnJzM4sWL+fnnn6mqqmLUqFHs2LGjQ7Wutjeqqqo4duwYcXFxHDx4EJVKxciRI4mOjmb8+PH4+flRWlrKP/7xD+bOncugQYNsYtio1+tRKpWiALKzsxMFkJeXV62Hg8lk4uLFi2g0GgYNGtToUkRlXiGaE4moT5xHcyIB/VWl1a+lvSF3caLv+8/hOXqw+DNbWEQAnD59mscff5w33niDadOmWe0819LYfeU///kPhw8f5v333+fixYvcdttt/P7773h4eIgdUqWlpaxevRqNRoO7uztLliwhKCiI7du38+yzz1JRUcH69euZNWtWnc6q1atX8/nnnzN9+nTefvvtOueXxE6HokHBI1lLSDSLmrN/goOD68z+CQ0NZcqUKQwePBi5XM68efNaLXasXdDY3nF0dBTre6C6g+bo0aPExsayadMmiouLKSsr44477qBnz542uzE7ODgQEBAgduFVVVWhVCopLCwkLS0NBwcH0QQ1KysLX19fhg0bdt0lAaegAJzuCsDvrpsRBIHKrHyxAFpzMhGDUm2Ly2sz7Dzc6LduOe6Dq5eBBUEQxaI1LSIEQeBf//oXW7ZsYdeuXe1qGTomJoYXXngBmUxG3759CQkJITk5mdGjRyOTyTh48CD3338/PXv2FJf8Dhw4wMaNG7nvvvtISEjg3Xff5ezZs8yaNQuZTIZMJhOXvBYtWkR+fj6bNm0iLCyMOXPm1Dq/JHY6B1KGR6JFXLuWbTRWtyHL5XKLr3Fbs6CxIyMIAhs3biQmJoYFCxZw4cIFDh06hMFgYOzYsUyYMIGxY8da1EqgOVRWVpKVlUVOTg4ODg64uLiILfA1Z7s0B0EQ0F3MrhZAJxPQnEzCqCmzQvRtg72vgv4bVuLarydQLSITEhLw8vKid+/eVvt3rKqq4oUXXqC4uJiYmJg26URqLMOzcOFCAgMDefnll7ly5QrDhw/n999/x8/Pj02bNrFo0SKeffZZnnrqKRQKBRcuXGDcuHHcfvvtfPXVV1y+fJnnnnuOAwcOEBMTw+233y6KHfN/k5KS+Oc//8mzzz6Lv7+/za9fwmJIS1oSlqegoICioiLCw8Ot/kBtbUFjZ2TBggXY29vz3nvviT5agiCgVquJj48nLi6Ow4cPY2dnJxqhjhkzxiK+XtfDnJUoLS1l0KBBODk5odPpag23c3R0rGVv0CIBZDRSnna5egbQiQS0Z5IxleuscEU2wNcL/eK78ejTQxwLkJGRIVpEWIuCggIefvhhpk6dynPPPdcm35vrTY3Py8tjzpw55OfnIwgCL7zwAg899BDHjh1j2rRp9OzZk1OnTgF/voxt3LiRxx9/XBwDceTIEVauXIlWq+WLL76gX79+DS5VSfN1OjSS4JGwHGq1ms8++4ydO3dSVFREYWEhQ4YM4aGHHuLuu++2ys25NQWNnZWCggK6dOnS6D6CIFBSUiIaoR47dgwXFxfRCHXUqFEWb2murKwkISEBhULRaFZCp9OJM4DUarVF/J1MegPlSRfRnEysFkC/pyBU6lt7SVbHOaQb/Te+hIO/DxqNhszMTIqLi3F0dKw1HLI5BrFN4bfffuPJJ5/k7bffZsqUKRY9ti1QqVSsX7+etWvX8vLLL/PEE09QWVmJk5MTO3bs4NFHH2X//v0MHz4cgJ07d/LWW2/RvXt3du3ahZOTUx3RI3VidXgkwSPResxvPevXr+f1119n0qRJLFy4EK1Wy969e9mzZw/33Xcfb7zxhsXP3ZKCRk9PT4vH0dERBIHCwkL279/PgQMHOH78ON7e3uIQxMjIyFYtBZoH4fXv3x9fX99mfdZscGm2wai5BObu7t4yAVSlp+x8Gurfqut/ys6ntbsp0K6hvem3fgUO3p51LCLkcnkdg1gPD49WCyBBENi6dSvbtm3j3//+N3369LHwVVkfszDJysritddeY9euXezatYvbbrsNgHvuuYezZ89y7NgxfH19xd+f9957jy1btjBmzBhiYmLa8hIkrIMkeCRaj1nwREVF4ePjw86dO3F2dhZduzdt2oRCoWDBggXo9Xrs7OwslhZuTPD89a9/5YUXXiAqKgqASZMm8dZbbzFq1CiLnLszIwgCeXl5xMXFERcXx+nTpwkMDBSLpIcOHdqkji9BEMjIyEClUhEeHt7qrFFNh2+lUolWq8XV1VV80Lu5uTVbABUXF5N2PpEeejuElEw0JxIpS0oHU9vd5twjw+i39nns3F2bZBFhNog1Lw3qdDo8PT3F7rimCKDKykqWLVtGWVkZW7ZssckSp7U5ffo0y5cvJz09nf/973889thjnD9/nn379hEWFgb8ef/SarU88cQTqNVq/vWvf+Hs7CxldDoXkuCRsByjRo1CLpeza9cuunfv3qQUsMFgQCaTtbjboaUFjRLNQxAELl/+//buPa7m+48D+OucSqkoFRUpUbqotBqVrpLbGCZ3Gy0xNtMYy8bP8OvnN2abIYYZ1mbzM3eqDZUp12J0W4XuN9LtnE6Xc3n//mjnu46u6GL5PB8PjwfnfM/3fI9O3+/7+/m8P+93FlcD6I8//kD//v25PmA2NjYNfoZVVVVISUlBz549MXDgwHbJfSAiiEQiLgCqrKyEhoYGevXqBR0dHairqzf5HSQiZGRkoLS0lMsnkpMKRRDcTuFWgIlSMzusDYaWmwMGbVkBvprqM7eIeNoAqKCggOv7tnz58i6VpxIeHo7Vq1cjISEBLi4u+OGHH2BqaqqQjyP/e3FxMTs/dF0s4GHazt69e7F48WIsXLgQq1evhqmpKYC6uizyJbOHDh2Cvr4+xowZ89wn1WdNaGSen7x+zsWLFxEVFYWkpCSYmZnB3d0dnp6eyMjIwMaNG3Hy5EmuQFtHICJUVlZyAZBIJIKmpiYXAHXv3h08Hg+1tbVISkqCpqYmBg0a1OJ3UVImgCA+GYK4uiTo6ge57XL8OuPdMGD9e+ApKyE7OxuPHj2CjY3Nc4+MPRkA5eXl4YcffoCHhwcMDAywZcsWfPnll/Dx8WmjT9L+6ufYNJZMLL/hkslk2L9/P/7zn//Ay8sLBw8eVHi+pX0zXQYLeJi2U1lZic8++wwhISEQCoWYN28e1qxZwwU+BQUFmDZtGgoLC7FmzRrs2LEDlpaWeP/99zFixIhG9ymVSsHj8V6YO86cnBzMmzcPhYWF4PP5WLRoEQIDAxW2ISIEBgYiLCwM6urqOHjwIJcc2VXJZDL8+eefOH/+PPbu3YuysjI4OzvD09MTHh4eMDMz65SfIRFBKBRyAVBVVRVUVVVRWVkJU1NTGBkZPdN+xcWlEMQnc3WAanIKn/tYe08bDePVAZDKZO3eIqK2thaxsbE4dOgQrly5gp49e8LFxQVeXl7w8vJC//79n/s9WqqTBQDR0dFcnz09PT1cunSpVfsWCoU4fvw4pFIpV1srPDwcffv2xdChQ7nt5EFNWVkZtm/fjq1bt2Lz5s1YsmQJW3H18mEBD9P2wsPDsWvXLoSFhWHChAnYt28f9PX1ERsbC39/fzx69Ag+Pj4YOXIkDh48CIlEgtOnT6Nfv35P9T4xMTFQUVHBq6++2mF3YwUFBSgoKICDgwNX8O3kyZNcPgAAhIWFYceOHQgLC8P169cRGBiI69evd8jxdabi4mLMmzcPdnZ2WL9+PVJTU7lO8BkZGbCxseGmwExMTDo8P4KIkJOTg7y8POjp6UEoFCpM9ejo6DzzSEptYTEq4uraYAhuJqK28PFTvd7g7TfQb+lsiEQiJCYmwtjYuF1Hxqqrq7FixQpIpVLs3bsXKioquHXrFqKjoxEdHY25c+di7ty5z/UeLdXJKisrw4gRIxAREQFjY2M8fPiQK1bZkoqKCnz00UeIjIzE119/jaNHj+LEiRM4d+5cg5snedCTmZmJf//73zh9+jROnDgBNzc3FvS8XFjAw7SdJ4eBt2zZgtWrV+P48eOYMmUKdu3ahaVLlyIkJARLliwBAMTHx8PT0xOrV6/G2rVruX0UFhYiPDwcCQkJcHd3x7hx49C9e3dIJBIoKytDJBJh7ty50NPTw759+1p1fDKZjDvBtdVJbvLkyVi6dCm3AgQA3nnnHXh5eWH27NkAAAsLC0RHR3fo1E5nWLp0KcaPH9/o0n+JRILbt29zjVDz8vJgb2/P9QHr27dvuwZAUqkUycnJUFJSgoWFhcJUSP3VTrW1tQoBUP28ntYiItTkFkEgD4DikiAuLmty+37L5sLQb0qHtYjIzc2Fn58fZs2ahaVLl7brBb+5HLtdu3YhPz8fwcHBz7Tv1NRULFy4ELdv30avXr1w7NgxODg4NHvzEx8fj+XLl+Pu3bvIzc3tlEKKTKdhrSWY51daWgolJSVuubc8qJgzZw7Wr1+PpKQkTJkyBQkJCTA2NsacOXMA1F0YHB0dYWVlhfv370MkEkFdXR3x8fFYvHgxcnNzMXDgQPz8888wMzPDnj17YGVlhZqaGty6dQuZmZkKw9eNISKkpaXB0NDwmav4NiUzMxO3b9+Gk5OTwuN5eXkKUwJGRkbIy8vr8gHPzp07m3xOWVkZw4YNw7BhwxAUFASxWIwbN24gKioKS5YsQXFxMRwdHblVYH369GmzAKi5xpp8Ph9aWlrQ0tLiElkrKipQWlqKxMREiMViaGlpcQFQa5bm83g8qPU3gFp/A/R+Y1RdFeiMPC4AqohLgrRcCPB4MPl4IfR8fXDv3r12bxEBAJcvX8aqVauwfft2eHl5tdv7tEZaWhrEYjG8vLwgEAgQGBiIefPmtfr1+vr6ePjwIaRSKQYPHozBgwdDSUmp2VEbR0dHrFq1CrW1tSzYYTgs4GFaJB8q3rlzJ3788Ud88803cHJy4qYFkpOTIRaLYWRkBKFQiMTERJibm0NLS4s7KYnFYq6Wivxu+p133oFYLMbx48dhY2OD9PR0TJ48GZs2bUJoaChOnjyJwMBAPHr0CIaGhvj999/h5OTU6N14fn4+3n33XURFRaFv374YNWoU3nzzTYwcOfK5GmkKhUL4+vpi27ZtDer6NDY6ypa3KlJRUYGrqytcXV2xdu1a1NTU4OrVq4iKisJ3330HgUCA4cOHw8PDgyt38Cz/h0VFRcjIyGj1qAmfz4e2tja0tbW5AKi8vBwlJSXIzc2FRCKBtrY2t9qptQFQ94FG6D7QCH1mjAXJZKi6lw2poBKqtua4ffs2tLS0YG9v327fE5lMhj179nDTPm2Ro/O8JBIJ4uPjcfHiRVRVVcHFxQXOzs5N9up6cgRZXk08Pj4ehw8fxtq1a7Fjxw6FthD1yc9Xr7/+eoPHmJcbC3iYFslPFD4+Prh27RqWLVuGoUOHwtXVFcnJydizZw9GjBiB1157DampqUhMTMS0adMA1K3cUlVVRUpKCsrLy7ku2tevX8ft27dx+PBhuLi4AAAcHBywbNky/Oc//0FxcTFmzpyJo0ePIjY2FpWVlRg7diwmT56MnTt3cktK5Sey/Px8FBQUwN/fH15eXjh69CgCAgLg7++PTz/9tFUnvCe3EYvF8PX1xdy5czF16tQG2xsZGSEnJ4f7d25uboORBUaRqqoqlzALACKRCFeuXMHFixcREhKC2tpaODs7w8PDA66urtDS0mr25yaTyZCeno7q6urnGjXh8/lccAPUXXTLy8tRWlqKnJwcSKVShQCoNe/D4/OhPngAKioqcOvWrXZvESESiRAYGAhVVVVcuHChzStoPysjIyPo6elBQ0MDGhoa8PDwwJ07dxoNeORT2QAQGRkJVVVV6OrqYsKECRg9ejRKSkpw7tw5fPXVV00uq2/s+8KCHQZgAQ/zFFxcXHD48GGEh4fjyJEjCAkJgY6ODlatWoX58+ejd+/e+OGHH6CkpISMjAw8fvyYq7Z76tQpVFdXcxe6s2fPwtTUFM7OzgD+PtEZGxujpqYGQF0X9IqKCrz66qs4c+YMioqKUF1drVA/Q34iS01NRV5eHhYsWAAXFxe88cYbCA4OxoYNG+Dq6gofH58Wg576zxERFixYACsrK6xYsaLR7SdNmoSdO3di1qxZuH79OrS0tLr8dFZbU1dXh4+PD7dMWiAQICYmBhcvXsSXX34JmUwGV1dXrhFq/emJBw8ecNOKgwcPbtOLmpKSEnR0dKCjowOgLgAqKytDaWkpsrKyQEQKAVBTo4j5+fnIycmBnZ0d1NXV2+z4npSdnQ0/Pz/MmzcPS5YseaEu8PL8N4lEgtraWly/fh3Lly9vdFtlZWU8fvwYEydORGFhIfLz86GpqYnAwEB88skn+Pjjj5GXl4f9+/fDwsICr732Gpc31r9//xZbrTAvNxbwME9FS0sLs2bNwqxZswDUXaDqTyEkJydDX18fVVVV2LNnDyZMmIBff/0VGzZsQGBgINzc3AAAiYmJMDEx4aq8ymQyAHXJhgYGBpDJZLh37x4KCgowefJkAGgy30MqlSIpKQlqampcAKWhoYGgoCBs374d2dnZABQDGplMBh6PByICn89HQkICRCIRnJycQESIjY1FaGgobG1tYW9vD6CuK7t8X4sXL8Zrr72GsLAwmJmZQV1dnZWpbwM9evTA+PHjMX78eBARysrKuEaomzZt4qbIevbsiQMHDuDbb7/FgAED2v24lJSUoKurywXwEomEC4AyMjIAgAt+tLW1wefzuRYR7b26MDo6GqtXr0ZISAhXbbwj1a+TZWRk1KBOlpWVFcaNGwc7Ozvw+XwEBATAxsam0X0VFxfjtddeg4aGBg4dOgSRSISYmBisX78eZWVl+Pzzz/Hxxx9jxYoVXHf3uLg4/PLLLzhz5gwLeJjmEVFzfximAYlEQmKxmPu3VColIqLs7GwaOXIkzZgxg1JTU2ngwIGkqqpK+vr6NH/+fIV9rFy5kgYPHkxVVVXcY2KxmKytrWnWrFlERPTtt9+SmZkZnTp1invf+mQyGRER5eXl0bhx42j06NFERCQSiYiI6N69e8Tj8ei7774jIqL8/PwmP9N3331HQ4YMoTt37jz1/0dbys7OJi8vL7K0tCRra2vatm1bg21++OEHsrW1JVtbW3JxcaE//vijE46048lkMioqKqKZM2eSsbExOTk5kYeHB61Zs4YiIiKopKSEKisrO+VPeXk5ZWZm0u3bt+nixYt05swZ+v333ykrK4sqKira5T0FAgF99tln5O7uTrm5uZ3942kTV65coT59+lBERITC459//jnx+Xz66aefiIjoxIkT5OnpSb179yZLS0u6dOlSZxwu82JqMqZhIzzMU2vqbjU5ORmPHj3CxIkTMXjwYNy/fx/p6ekQCARcQT76a1pp8uTJ+Oqrr7Bz504EBARAKBTim2++QUpKCnbv3g0AiIuLg6amJhwdHQGgyRUZGRkZyMzMxNixYwEA3bt3R2lpKbZu3YrevXtj2LBhyMrKwqRJk/DKK6/gww8/xKVLl+Dt7Q1LS0vw+Xy8/fbbmDFjRqf3FZInaNav/zN69GiF+j+mpqa4dOkSevXqhfDwcCxatOilqP9TWloKf39/2NraclOnRUVFiIyMxLFjxxAUFARdXV2uCrSDg0O7roSqT1lZGb1794aSkhIeP34MW1tbEBEeP36M+/fvQ0lJiRsBkuexPY/KykosXboU2traOH/+/DMtq38RVVVVobS0lBupkScwr1y5Er/++iu2bNmCWbNmYcqUKXBzc+PqPnXv3p3V2mFaxAIe5rnJTzJJSUnIysrighupVApzc3OFbeXTSs7Ozli3bh2Cg4Nx5MgRKCkpISUlBR999BE8PDxQUlKCzMxM9O/fnytU+OR0lvzfaWlpKCoqwvbt2/H999/Dzs4O5eXlSExMxLp162BjY4Nff/0VYrEYJ0+ehEgkQlxcHE6cOIGwsDCUlpYiLi4OI0aMaDTged4+YE/D0NCQywPq0aMHrKyskJeXpxDw1C+45uzsjNzc9ml/8KJJTk7GokWLMGnSJO4xAwMDzJkzB3PmzOEKDkZFReHQoUMIDAyEoaEhVwXazs7uuVbsNYf+6kFWXFwMBwcHLgCRF9irra1FaWkpHj58iPT0dC4A0tHRgZaW1lNdqDMyMuDn54eFCxdi4cKFL1S+TmvQX6sbGztuVVVVaGpqIiYmBlZWVujWrRuX3zdjxgx88sknSEpKwpAhQ6Cnp8fl87EWEUxrsICHaTMrVqzAmDFjYGVlBaBuJIiaSBRWVlbGunXr8Prrr+P06dOoqanBjh07MGzYMAB1FwixWMzlAjRFLBZz5fnT0tIQFxeHW7duoaioCMHBwfD29gYA3L59G3/++SfWr1+PGTNmoE+fPigpKYGqqiqio6MREBCAzZs347333uP2XVtbi27durXbRbIlTdX/qW///v0YP358Bx5V55HnfzWFx+PB2NgY8+fPx/z587mmoZGRkdi9ezfu3r2LAQMGcCNA1tbWbXKRlEgk3HfQwcGh0eClW7du0NfXh76+PoC671ZJSQkKCwuRmpoKFRUVrhN8c3WkLly4gLVr12LPnj3c6sZ/kvrng4SEBJSUlEBNTY37jstLGGzfvh3Ozs5wcHDgfv/y8/PRo0cPmJiYNNgvC3aY1mCVlpkXjnxoevv27fjvf/8LCwsL+Pv7w9fXlxuBkZ84c3Nz4e/vDz6fj4iIiEb3JxaL8fbbbyMmJoabXqjv3//+Nw4fPoxffvkFQ4YM4UaCzpw5g/j4eFhaWmL27NmYMGFCg+7TRASpVNqmVZ2Buvo/np6eWLNmTaNL4gEgKioK7777LmJiYrhkWqZp8iXskZGRiIyMREpKCgYPHgx3d3d4eHjAwsLiqX+G8mKHz9siorq6mmv4WVFRgW7dukFbWxt5eXlwcnKCsrIytm3bhgsXLuDnn3/+Rybn1p9y+uyzz7Bx40aoqqqivLwc06dPx8KFC+Hj44OHDx/CwcEBJiYmWL58OUaNGoW0tDQsW7YMZmZm2L9/P1RVVf9xI1tMh2nyi8EmPJlOJQ8Y6gfe8pPismXLcOLECVhaWiIhIQFVVVUNXp+VlYUHDx5wy5qlUinXWkK+z4yMDGRkZMDLywtKSkqQSCTcc9XV1UhKSoK2tjaGDBkCANiwYQNmzpyJ3NxcTJ8+HRoaGli3bh1Onz7NrSYDgJqaGvB4PCgrKz/VhbL+ZyUiSCQShf22VP8HAO7evYuAgACcOnWKBTutxOfzYWFhgSVLluDo0aO4e/cuNm7cCD6fj+DgYLi4uMDPzw/fffcd7t27p/AzaczDhw+RkJAAa2vr5y5HoKamBkNDQ1hbW8PZ2ZmbwgwJCYGjoyMcHBwQHh6OzZs3t3ktH39/f/Tp06fJlVNyN2/ehJKSEn755Zdmt5NKpY0+Jv8dycjIwNGjR7Fz506Eh4fjxIkTuHXrFoKDg3HhwgX06dMHkZGREIlEWLBgASwtLTFp0iR069YN+/btg5qaGgt2mGfCprSYTtVSboyzszO31PzJ1wHArVu38ODBA4waNYp7XH5ilS89T0pKwqNHj7hy9vVPlvfv30dGRgbs7OwAALGxsdiyZQtWrFiBrVu3QiKRoLq6GhEREdDU1ASfz4dAIMCBAwdw9uxZZGZmws3NDe+//z5eeeWVVn1m2V9dsg0MDNC7d2+FKTP6q/6PhYUF5s+f3+jrs7OzMXXqVISGhjZZrZZpGZ/Ph42NDWxsbBAYGAipVIo7d+4gMjISn3zyCbKzs2Frawt3d3eMHDkSRkZG4PF4kEgk+PbbbzF8+PB2axGhpqaGgQMHIjg4GP7+/pg5cyZ0dXWxa9cu/PHHHxgwYAACAgIUqgk/Kz8/PyxdurTZdg9SqRRBQUHcwoDmtpP/PoeGhsLQ0BA+Pj5QUlKCQCBAQEAAV59r+vTpXEkLNTU1rFu3Dvv27YO1tTUGDx6MsLAwpKenIz09HT179sT06dMbvAfDPJXmlnB1wPIxhmmWVCptsBy9vtTUVNqwYUOjz8mXrQcHB5O5uTndvXuXe1y+lP7IkSM0aNAgbun64sWLydLSktLT0xvdZ2FhIc2ePZt4PB4tW7aMtm7dSl5eXuTm5kYlJSUtfp7Q0FAaPXo0OTg4kJaWFvXv35+WLl1K165dI6lUSr///jsBIDMzM9LU1CQ+n08LFy6k3bt30+7du4mIaMGCBaStrU1Dhw6loUOHkqOjY4vv25LWLIeXu3HjBvH5fDp69Ohzv++LTCwW07Vr12jTpk00ZswYsrOzo5kzZ5K9vT35+/u323Jz+Z/jx4+TnZ0d3bhxQ+G4ZDIZ3bt3jxISEtrss2ZkZNCQIUOafP6rr76inTt30vz581v8uaemppKzszNZWlqShYUFlZWVERFRWloajRo1ivT19cnPz4+IiGpra7nXffHFF2RoaEgXL14kor9/f+tr7lzAMH9pMqZhAQ/TpVVVVdG4ceNo6NChjT6/du1aMjMzo6SkJCIisrGxIT8/PxIKhURUd9KVyWRc3aENGzaQsbExnT9/nojqLoqXL18mIyMjWrduXbPHcu7cOVJXV6c33niDfvrpJ7p8+TJ9/vnn5ObmRtbW1pSVlcVtm52dTURE9vb29K9//Yt7r/aSn59P8fHxRERUw1ueAQAAD9dJREFUUVFB5ubm3P9JfRKJhEaOHEnjx4/v8gHPk65du0bm5ub01ltv0ciRI8ne3p4CAgIoNDSUMjMzSSgUtll9nXXr1pG3tzcVFRV1yGdrLuDJzc0lDw8PkkgkLQY84eHh1KtXL5o5cyZdunSpwfFHR0eTg4MDaWtrc9/3+rW4tLW1adOmTW3wiZiXGKvDw3RN8mmrpub0JRIJvLy8UF5ezm0vn/ISiURIT09Hv379uJwJeV6OPDlaXo1ZPoQeEREBZWVlSCQSAHWrzdzc3Li+YoDiShT53wsKCrBt2zb07dsXx48f547PyckJbm5uOHDgAIyNjbnH5U0fs7Oz4evrC6B9V6K0Zjk8AOzYsQO+vr64efNmux3Li+jQoUPYtWsXwsPDMWjQIAB1+V9Xr15FZGQk9u7dC6FQyPUBc3d3h7a29lPnmlRUVOCdd96BqakpIiIiOqyOUHM++OADbN68ucXvX1lZGXbs2IE5c+Zgw4YNXG4Z/ZWnp6ysDE9PT3zwwQdYv349li1bhpMnT3I9vzIzM6GmptbptbCYrosFPMw/WkvJwpqamggKCmp0+9TUVFy9ehWenp4A6oKdcePG4fjx46ipqeFqqcgvWlVVVYiLi4OJiQl8fX0hFothbW2NuXPnIiYmBpMnT4ZYLFa4SMlfKxQKUVRUBD09PYV9q6ioNMhTkgdJubm5EAqFGDp0qMK+miO/k3meFWNNLYfPy8vDiRMnEBkZ+dIFPPr6+oiKilLoh6WmpoaRI0di5MiRAOp+xleuXEFkZCS2b98OiUQCFxcXrhFqjx49mv0ZpqamYsGCBVixYgXmzp37wiTmxsXFca1kiouLERYWBmVlZUyZMkVhu4KCAkRHR2POnDnQ1dXl6ufweDzIZDI8fPgQffr0wVtvvYW8vDx8/vnnmDlzJjZt2gSRSITw8HCUl5dzZS0Yps01N/zTsaNQDNP2ZDJZk/P+VVVVdOrUKYqNjeUei42NpQEDBtBbb71FCQkJlJKSQomJiURElJSURLq6unT8+HEqLS2liIgI+uijj8jR0ZH69etH69evbzTvQG769OnE4/Fo7ty5lJKSwj1eP4+B6O+pq5CQEBo+fLjCY+1NIBCQg4MDHTt2rMFz06ZNo6tXrxIRtSqX42Umk8movLyczp49S8uXLycnJydydnamDz/8kE6dOkUPHz7kprCEQiH973//o6FDh3LTih2tpRweueZ+7leuXCEDAwM6ePAg91haWhotXLiQhg8fThoaGjRv3jy6efMm1dTU0Lvvvks8Ho+0tLRo4sSJZGJiovBahnlGTcY0rA4Pwzzhp59+wpo1a/Do0SMYGxvjjTfewOLFi6Grq4tx48bB3Nwc3377rcJrCgsLAaDZ+igCgQD//e9/sWPHDgBAUFAQ1q5d2+T2o0ePhru7O9atW8fdLTfn7t27+OKLL7B69epnuksWi8WYOHEixo4d22iHeFNTU25JfXFxMdTV1bF3794Gd/pMQ0SE0tJSXLp0CZGRkbh27RrU1NQwYsQIFBYWoqCgAIcPH+YqB3ek+s0/9fX1GzT/rM/Pzw8TJ07EtGnTGt2Xm5sbCgoK4OnpCSUlJXz//ffg8XiwtbXFoEGDcO7cOdjb2+PQoUPg8/lYsWIFkpOTERwcrLBP1iaCeQ5ND402Fw11fGDGMB1LvlqrMWlpafTTTz/RnTt3uO327t1LlpaW9Nlnn1FqaioVFRVRQkKCQuJlcyoqKuh///sf2dnZUbdu3RpNdP7111+pqKiIevbs2eLKL/lxJScn0/jx42nmzJkkEAiI6O8VLXl5eZSTk9PsPmQyGb311lsUGBjYqs/BRniej7wR6qFDh8jX17fDRvDai/x7WFxcTD4+PmRoaEg6Ojr07rvv0vHjx7ntzp07Rzwej/bv309EdUnObm5u5ObmRg8fPiSihiOeDPOU2AgPw7RWc3U+iAhbtmzBtm3bIBKJYGdnB5lMhrVr1z5Vi4fMzEy4uLjA3Nwcv//+O3dHW11djU2bNuHw4cN48OABZsyYgQULFmD06NHN7m/KlCng8XjYunUrl1RLf+UCHTx4EKWlpVi+fHmTrT5iYmLg7u4OW1tb7s5606ZNyM7OBvD0d/rMy0f+Ha6srIRAIED37t2hpaXVYDtdXV3MmTOHG+k8cOAAvv76axgZGeHs2bMdfdhM19PkCA9LWmaYJ8iDHfnNQP0AgcfjISgoCEFBQbhz5w5u3rwJVVVVuLu7K+xDHlhs27YNr776KlxdXRX2I5VKoa2tjb59+6KiogI9e/aETCaDmpoaNm7ciI0bNyIvLw+//fYbKisrFfb5pPPnz+P06dOIiYnhgp3a2lqEhoYiPj4eqampXBFD+evlF6cLFy6guroaY8aMQQs3PwoOHjzY6m2bk5OTg3nz5qGwsBB8Ph+LFi1CYGBgg+2io6PxwQcfQCwWQ09PD5cuXWqT92fajjxQ1tDQ4FZaPTkVe/78eWhpaSkUTPTz80NycjKuX7+OwsLCf2TbDOYfornhnw4dhGKYf4DmkqCfVF1dTVOmTCF7e3vat28fZWVlUVFREd2/f58WL15MPB6PTpw4we33aY+DiCgzM5Nef/11cnd3554rKyujRYsWkbq6Oo0ZM4Z0dHRITU2NnJycuKRjuatXr5KZmVmThRbbW2vq/5SWlpKVlRVXt6WjatMwbUcoFNKNGzfIxcWFxo4dS48fPyaiv6fCysvLqaampjMPkek6WB0ehmkL9VthyH+JmkquVFFRwdq1a/HNN99gzZo1CAoKgoWFBcrKypCXl4fNmzdjypQpICJ8//33+PHHH+Ho6IixY8fCxcWFW7reGPprtOfy5cu4d+8eVq5cyT138+ZNREVF4dNPP4Wrqyt+/vlnTJ48GefOncP9+/fh7OzMvd7W1hbFxcWora1t2/+oVmpN/Z/Dhw9j6tSpXJ2iPn36dMqxMk9PKpXiyy+/RFFREY4dOwYrKyucPXsWfD5f4XenZ8+eAFiyMtO+WMDDMM+ouYKHQN0Qv6OjI/bt24c9e/YgKioKN27cQL9+/eDl5cVdwHk8HubNmwdHR0fs2bMH3t7esLGxgb6+Pry9vfHxxx83+t4AcPnyZWhqanK1hIC6QKu0tBSurq4QCoUYMmQIfHx8MHz4cIhEIgB/B0yPHz+Go6MjLly40KDIYEdrqv5PWloaxGIxvLy8IBAIEBgY2GzfJ+bFIRAIcPDgQQwYMAArV67Ee++9B6DpPDkW7DDtiQU8DNOO5B23+Xw+Ro0axTU5fRKPx4ONjQ369++P6dOn48iRI4iOjkZBQQG3n/oXAx6PB5FIhAcPHsDExITL3QEAd3d3DBkyBLNnz4aBgQE+/PBDAHV30fI76fp31hUVFSgtLQXQeY0ZhUIhfH19sW3bNu4Y5SQSCeLj43Hx4kVUVVXBxcUFzs7OrHEq6jqdnz17Fn369EFiYmKD53/88Uds3rwZQF0Rzt27d3OFLNubTCaDtrY2Ll++DJlMxi25Z80/mc7CwmmGaUd8Pl+he7s8AGpMamoqwsLCuKq2Xl5emD17NrefJxUUFKC6uhr6+vrc/uXbRkREYPbs2cjJycGPP/6I2NjYBq8nImhrayMnJwe9e/cG0L7tK5oiFovh6+uLuXPnYurUqQ2eNzIywrhx46ChoQE9PT14eHjgzp07HX6cLyI/Pz9EREQ0+bypqSkuXbqEu3fv4l//+hcWLVrUYccm/87q6OhwwQ7Va9PCMB2NBTwM00HqBz+NiYiIQL9+/bgl6FKptNn9KSsro7i4GCYmJg22V1NT43KBKioqMHHiRERGRiq8nsfjoaqqCiUlJejWrduzfqznQkRYsGABrKysGi12CACTJ0/G5cuXIZFIIBKJcP36ddZ+4C8eHh7Q0dFp8vkRI0agV69eAABnZ2fk5uZ21KE16kVpl8G8nNiUFsN0InkuTVpaGq5cuYIJEyZAU1MTQPOjLUQEExMTFBYWctNZKioquHbtGgYMGAADAwMkJydj1qxZmDhxIl555RWEhYXB29tbYSQoNjYWPXr0aPai2Z5iY2MRGhoKW1tb2NvbA2hY/8fKygrjxo2DnZ0d+Hw+AgICYGNj0ynH+0+2f//+p6oVxTBdDQt4GKYTyWQyKCkp4eTJk1BRUcHYsWNb9Toej4fq6mr07duXy78BgNDQUPB4PCxfvhxpaWl45ZVXkJubi/Lycm51E5/Ph0Qi4aa+DAwMuARqaqLWT3txc3NrVf2fVatWYdWqVW363q2pAVReXo4333wT2dnZkEgkWLlyJd5+++02PY6OEBUVhf379yMmJqazD4VhOg2b0mKYTiQfxfniiy/g7e3N5eO0hrKyMlxdXREfHw+gbkrLz88PWVlZGDFiBH7++Wfs3bsXvr6+qKmpwZw5cxq878mTJ+Hk5ARzc3MAL9eUg7KyMr744gukpKTg2rVrCAkJQXJyssI2ISEhsLa2xp07dxAdHY0PP/yw05bwP6u7d+8iICAAp06dgq6ubmcfDsN0GhbwMMwLIDIyEn5+fq3enoigrKwMXV1dbqm5kpIShg0bhjNnzuDrr7+GjY0NhEIhxo8fj5iYGBgZGXHTWTweD5GRkXjw4AHefPPNRlsAdHWGhoZwcHAAoFgDqD4ejweBQAAiglAohI6OTotNXF8k2dnZmDp1KkJDQ9mqNualx3ppMcwL4lmmk9LT03Hv3j14eXmhe/fuEIvFUFFRwfbt29G7d29ulZecfHn7gwcPEBQUhMePHzdIZn4ZZWZmwsPDA4mJiQrL4gUCASZNmoQ///wTAoEAR44cwYQJEzrxSBW11Ok8ICAAx44d4xLblZWVERcX15mHzDDtrcmTKAt4GKYLOnToEOzt7RWagda3cuVK3Lx5E59++im8vb1f6tooQqEQnp6eWLNmTYNl8b/88gtiY2Px5Zdf4v79+xg9ejTu3LnToFYQwzAvjCYDHjalxTBdkK+vL2xsbBoNdn777Td8//33+Oijj+Dt7Q2gc+rvvAhaqgF04MABTJ06FTweD2ZmZjA1NcWff/7ZCUfKMMzzYgEPw3RBmpqajQYx1dXVKCoqwldfffVCTc10htbUADI2NsbFixcBAEVFRUhNTcXAgQM78jAZhmkjbEqLYV4y8t/5l2lFVmNiYmLg7u6uMO33ZA2g/Px8+Pn5oaCgAESE1atX48033+zMw2YYpnksh4dhGIZhmC6P5fAwDMMwDPPyYgEPwzAMwzBdHgt4GIZhGIbp8ljAwzAMwzBMl8cCHoZhGIZhujwW8DAMwzAM0+WxgIdhGIZhmC6PBTwMwzAMw3R5yi08/3KXYmUYhmEYpktgIzwMwzAMw3R5LOBhGIZhGKbLYwEPwzAMwzBdHgt4GIZhGIbp8ljAwzAMwzBMl8cCHoZhGIZhurz/A5eoel77RCqvAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -252,7 +254,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEzCAYAAAAbwoWxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecFPX9x/HXR4oooIAIFlRssWsi2DUcYkUFRayxF6LRqBiNieanWDCxl9gbqKggdhEBwTvsCtgVNEYRsSG9I+Xz++M7F9dl72737nZnZ+/9fDz2sbezM7PvXZb57HznO98xd0dERKS2Vok7gIiIJJsKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiYiI1IkKiRQtM+tnZp5y+87MnjSzTWPMtIeZvWtmi83Mo2nNzWywmc2Icp5UxbID095P5e2+gr6JX/L0MbNDM0yfbGbXx5FJkqlx3AFEajAHOCD6exPgSmCMmW3j7gtiyHM3MA3YH1gSTTsTOAQ4AfgW+G81y08CTk6bNq2eM2arD/Ax8Eza9MOAGYWPI0mlQiLFbpm7vxX9/ZaZTQFeBboDQ2PIsyVwj7uPTZv2mbs/mcXyC1LeT1Fy9/fiziDJoqYtSZoJ0X1HADPbzcyei5q9FpjZ+2b2h8qZzaxN1Ax1YupKLPjKzG5Mmba3mb0dzf+jmd1hZi2i58qipqxGwC1Rk9RAM5sMnAr8rrKpqrZvrPI1zGzbtOkVZvZEyuOBZjbezPY1sw+j9/2amW2TtlwjM/u7mX1uZkvMbKqZDaxcJ9AJODGlie2k6LmVmrbM7Egz+yhazzdm1t/MGqc8f1K0ju3M7KUo0yQz61Xbz0OSQ4VEkqZjdP9DdL8R8DpwGqF56UlggJkdA+DuM4GnWbk5qSxa1wAAM9saGAFMBw4HLgOOBSo34O8Cu0V/3xD9fSWhGWg4oclqt5R5qmRmjVNvWb3rlW0IXAf0B44B2gGPm5mlzHM3cDnwOHAw8BegefTcn6LMw1Nyv1BF3v2AIYTPoCfwb+AC4LYMsz8KPEf4XP4DDDazDrV8j5IQatqSopeysd0EuAOYB4wGcPfBKfMZ8ArQATgdeCx66n5glJlt4u5fRtNOBia4+0fR40uBr4Ee7r48Wt9MYIiZ7ebubxKa1gAmpzZPmdlPQPssm6w6AUvT3t/m7v5FFsumagPs4e7/idaxCqFgbgFMMrMtCXtK57r7rSnLDQFw90/NbAHwUxa5rwAq3L1yr25E9Dn808yucvepKfPe5O4PRJkmAD8SithdOb4/SRDtkUixW4uw4V0KfEYoJke5+/cAZtbazG41s69T5usD/CZlHWMIReLEaJmWQC+ivZHIzsDTlUUk8iSwDNizHt/PRGCntNs3tVjP5MoiEvk0uq/89d81uh9Yi3X/j5k1AnZk5eNRQwjbj/Q9sFGVf7j7DEJHAu2RlDjtkUixmwPsAzihOes7//WQ1QOBXQnNTJ8Ccwm9qHpWzuDubmYDgFPMrB9wJOG7/2jKetYl/HomZbnlZjaD8Ou/vix09/H1sJ7ZaY9/ju6bRfdrEQ7sz63j67QFmpD22aQ8Tv9sMuVqhpQ0FRIpdsuq2vCaWTPgIOBsd78rZXqmPe0BhOMeXYGTgGfcfVbK898TjjOkrr8RYYM8sy5vIAeLo/umadPbEI7d5GIG0NzM1qhjMZlO2Mtrlza9fXRfqM9GipiatiTJViX0oqo8n6Oy2apH+ozu/g2h2eVyQlPVgLRZ3gYOi4pHpV6EH1uv1W/sKlUea9iqcoKZbUA47pGrl6P7E6qZp8a9haipbwJwRNpTRwIrgDdrkU1KjPZIJLHcfY6ZjQMuNbO5hA3b3wjNYWtkWOR+Qlv/VOCltOeuAt4DnjGzOwnt+tcAI6MD7Xnn7lOj93OlmS0k/NC7mFr86nf3z8zsHuAGM2tH6ITQCujt7kdHs00C9jez/Ql7MF9FxzXSXQaMjJoHBwPbEZoS70070C4NlPZIJOmOBb4CHgJuIRwgf6iKeYcRDp4/6O4rUp9w90+AAwlNOE8RCstjQO/8xK7SscAUYBBwNaHH1Ge1XNefCHtgxxG6+d4MLEp5/irCwf/HgXGE7tMrcfdRwNFAZ+B54DxCF+iza5lLSozpUrvSUJhZd0Ix+U0tutuKSBVUSKTkmdl6wOaEE+mmuPvBMUcSKSlq2pKGoA/hXJLFwJ9jziJScrRHIiIidaI9EhERqZMG0f23bdu23rFjx7yse8GCBTRv3rzmGYtUkvMre3ySnD/J2aGw+SdMmDDd3deuab4GUUg6duzI+PH1MSrFyioqKigrK8vLugshyfmVPT5Jzp/k7FDY/NEYdjVS05aIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComIiNSJComISClavBhOOQU+q+1VCLKnQiIiUmoWLYKePWHAAHj77by/XIM4s11EpMFYsAB69IDycnjgATihuqst1w8VEhGRUjF/Phx0ELz2Gjz4IBx/fEFeVoVERKQUzJ0L3bvDW2/BoEFwzDEFe2kVEhGRpJszBw44AMaPh8cegyOOKOjLq5CIiCTZrFmw337wwQcwdCgcemjBI6iQiIgk1YwZsM8+8Omn8NRTcPDBscQoaPdfMzvCzJ4zs2/NbL6ZTTCzGhvyzGxVM7vBzKaZ2QIze8HMOuY/sYhIkfrpJ+jaFSZOhGeeia2IQOHPIzkfmA/0BXoA5cCjZvbnGpa7FTgJuADoDbQFXjKzZvmLKiJSpH78MRSRL76AYcPgwANjjVPopq1D3H16yuOXzWw9QoH5d6YFzKwDcCpwirs/FE37EPgKOA64L7+RRUSKR9Pp06GsDKZMgeHDw98xK+geSVoRqfQe0K6axfaL7p9KWc+3wGtAvGVYRKSQpk7lt337wtSpMGJEURQRKI4hUnYHPq3m+S2Bqe4+P236xOg5EZHS9/XX0KULTWfOhJEjYa+94k70P+bu8b24WTfgJUKz1cAq5rkX2Mndf5s2/apoufWqWK4P0Aegffv2nQYPHlyf0f9n/vz5tGjRIi/rLoQk51f2+CQ5fxKzN/v+e37bty+N58/nrSuuYNmOOxbkdbt27TrB3TvXOKO7x3IDOgI/Ak/XMN+9wHsZpvcHvs3mtTp16uT5Ul5enrd1F0KS8yt7fJKcP3HZ//Mf9w02cG/d2n38+ILmB8Z7FtvYWJq2zKwN8CIwhXDAvDqzgFYZprcCZtdzNBGR4vH559ClCyxcGAZh7NQp7kQZFbyQmNnqwDCgKXCQuy+oYZFJwAZm1jxt+pbRcyIipWfixFBEli4NRWSHHeJOVKVCn5DYGBgKbA4c6O7TslhsVHR/WMp61gP2IuzViIiUlo8//qVHVkUFbLddnGlqVOjzSO4AugPnAm3MbNeU595z9yVmNgbA3btF91PN7H7gZjMz4CegH/A1MKiQ4UVE8u6DD8KwJ02bwssvwxZbxJ2oRoUuJJXnhNyS4bmNgclAowzPnQMsAG4EVgfGAse4++I8ZBQRice778K++0Lz5qGIbLZZ3ImyUtBC4u4ds5inLMO0JYSz38+v/1QiIkVg3Lgwiu+aa4ZjIhtvHHeirBXDCYkiIg3bm2+G5qw2bWDs2EQVEVAhERGJ16uvhj2R9u1DEdloo7gT5UyFREQkLhUV4cqGHTqEvzt0iDtRraiQiIjEYfTocI31jh1DEVkv42hPiaBCIiJSaCNGhAtRbbZZKCLt28edqE5USERECmnYMOjZE7baKnTxXXvtuBPVmQqJiEihPPMM9OoVzlQfMwbato07Ub1QIRERKYQnnoAjjoAddwzHR9q0iTtRvVEhERHJtyFD4OijYeedYdQoaJVpQPPkUiEREcmnQYPg2GNhjz3ClQ3XWCPuRPVOhUREJF8GDoQTTggj+Q4fDgm7MmO2VEhERPLh3nvhlFPC0CfPPx8GYixRKiQiIvXtjjugT59w1vpzz8Hqq8edKK9USERE6tOtt8JZZ8Ehh8DTT0OzZnEnyjsVEhGR+nLDDXDuuXDYYaG776qrxp2oIFRIRETqw7/+BRdcEM4VGTIkXOGwgVAhERGpqyuvhL//HY45Bh59FJo0iTtRQamQiIjUljtcemm4HX88PPwwNC70Fczjp0IiIlIb7nDxxWFv5JRTYMAAaNQo7lSxaHilU0SkrtzhwgvDwfU//jF0912l4f4uVyEREcmFO/TtC7fcErr5/vvfYBZ3qlg13BIqIpKrFSvg7LNDETnvPBWRiAqJiEg2VqyAM88MzVh//SvceKOKSERNWyIiNVm+HE47LQzCePHFcNVVKiIpVEhERKqzbBmcfHIYDr5fv9DVV0XkV1RIRESqsmxZOD9k8OCwF3LJJXEnKkoqJCIimSxdGs5Uf/JJuPba0N1XMlIhERFJt2QJHHUUPPtsOKjet2/ciYqaComISKrFi6F3b3jhhdC99+yz405U9FRIREQqLVoUhoAfORLuuiuctS41UiEREQFYuBB69oQxY+D++8P4WZIVFRIRkfnzwxUNX3klnCtywglxJ0oUFRIRadjmzYPu3eGNN8Iw8MceG3eixCn4EClmtpmZ3W1mH5jZcjOryGKZjmbmGW6DCxBZRErVnDmw337w5pvhXBEVkVqJY49kG6A78BaQ67UoLwBeT3k8vb5CiUgDM2sW7L8/vP8+DB0aDrJLrcRRSJ5392cBzOwJoG0Oy37m7m/lJ5aINBgzZsC++8Inn4QTDg85JO5EiVbwQuLuKwr9miIilZrMng177w2ffQbPPAMHHhh3pMRL2jDyA6LjKt+b2Y1mtlrcgUQkQX78kd/27Quffw7PPaciUk/M3eN78ahpy93LaphvXeASYBQwFygDLgJGuXvPKpbpA/QBaN++fafBg/NzXH7+/Pm0aNEiL+suhCTnV/b4JDF/0xkz2OH881n1xx/5+Oqrmb3jjnFHqpVCfvZdu3ad4O6da5zR3WO7AU8AFbVc9kzAgd/WNG+nTp08X8rLy/O27kJIcn5lj0/i8n/zjfvmm7s3b+7v3nxz3GnqpJCfPTDes9geJ61pK9UT0X0yf1aISGFMmQJlZfDDDzByJHN22CHuRCUnyYXE0+5FRH5t8mTo0gWmT4dRo2CPPeJOVJKSfGZ77+h+QqwpRKQ4/fe/0LVrGP5k9GjoXHNTv9ROwQuJma1OOCERYH1gDTOrLArD3X2hmX0BjHX3U6Nl+gEtCScjzgV+D1wIPOXuHxYyv4gkwOefhy6+ixeHQRh/97u4E5W0OPZI2gFD06ZVPt4YmEzI1Sjl+UmEs9pPA1YDpgDXAf3zGVREEmjSpFBEli6Fl1+G7bePO1HJi+OExMmA1TBPx7THgwGNqyUi1fvkk1BEzKCiArbZJu5EDUKSD7aLiPziww9D76xGjVRECkyFRESS7913w4H1VVeFsWNhyy3jTtSgqJCISLKNGwfdukGLFuHCVJtvHneiBkeFRESS6623YJ99oHXrsCeyySZxJ2qQVEhEJJleey1clGrttUMR6dgx7kQNlgqJiCTP2LFwwAGw7rrh7w02iDtRg6ZCIiLJMmZMGP59ww1DEVl//bgTNXgqJCKSHCNHwsEHw6abhi6+66wTdyJBhUREkmL4cOjRA7bYAsrLoV27uBNJRIVERIrfc8/BoYfCttuGYU/ato07kaRQIRGR4vbUU3D44WHgxTFjoE2buBNJGhUSESleQ4bAkUfCTjuF64m0ahV3IsmgxkJiZieY2VqFCCMi8j+PPgrHHgu77x4Osq+5ZtyJpArZ7JEMADYFMLPlZrZzfiOJSIP34INw3HHw+9/Diy9Cy5ZxJ5JqZFNIZgHrRX8burStiOTT/ffDySeH8bNeeAGaN487kdQgm+uRjAYeNrPPCEVkoJktqGpmd9cei4jUzl13wZlnhrPWn3oKVlst7kSShWwKySnAn4AtgB2Br4Cf8hlKRBqg226DP/85nHA4dCg0axZ3IslSjYXE3RcC1wOY2T7AJe7+Qb6DiUgDctNNcP754VyRIUOgadO4E0kOsum1tdzMdooeVgBz85pIRBqWa68NRaR3b3j8cRWRBMrmYPvPwKrR3ycAa+cvjog0KP37w0UXwdFHw2OPQZMmcSeSWsjmGMmnQD8ze4bQa6u3mXWuYl539zvrLZ2IlCZ3uPzycDvuOBgwABpnszmSYpTNv9yfgbuBmwi9ti6oZl4HVEhEpGru8I9/wNVXh26+994LjRrFnUrqoMamLXd/w923c/cmhD2SXd19lSpu+jaISNXcQ1PW1VdDnz5w330qIiUg17G2uhKaukREcuMeDqpfdx2cdRbceSesouH+SkFOjZLuPhbAzHYB9gTaADOB19z97fqPJyIlwR3OOSecK3LeeXDjjWAWdyqpJzkVEjNrDgwF9geWAzOAtYBGZjYCOCI670REJFixIpytfs89cOGFcM01KiIlJtf9ymuB3YCjgWbuvi7QLHq8G3BN/cYTkURbvhxOPz0UkYsvVhEpUbkWksOBi9x9qLuvAHD3Fe4+FPgbcER9BxSRhFq+PPTKeuABuOwyuOoqFZESlWvH7TWBb6p47htgjbrFEZGSsGwZHH88DB4cCsgll8SdSPIo1z2SD4AzzX79syJ6fGb0vIg0ZEuXwjHHhCJyzTUqIg1ArnskFwMvApPM7GngR6AdcBjQETiwXtOJSLL8/HMY7uTpp0PPrL59404kBZBr99+Xzex3wKWE4yHrAt8DbwO93F3nmIg0VEuWhIEXhw2DW28NQ8JLg5Dz4DZRsTg6D1lEJKkWLYJevWDECLjjjtDdVxqMnI6RmNn1ZrZ1vsKISAItXAg9esDIkWHcLBWRBqc23X8/MrN3zOwMM1sz1xc0s83M7G4z+yC61klFlsutaWYDzGyWmc0xs0fMbK1cX19E6tGCBeGKhmPGhBF8Tzst7kQSg5wKibtvDOwDTAKuA743s0ejKydmaxugO/B5dMvWEKAMOA04CdgJeCaH5UWkPs2bBwceCGPHwqBBcOKJcSeSmNTmGEk5UG5mLYCjgBOBkWY2FRgIPOjuX1aziufd/VkAM3sCaFvTa5rZboRhWbq4+yvRtG+Bt81sH3cfnev7EJHaazR/Puy/P7zzTrgg1ZFHxh1JYlTroTfdfb673w9cBrwObAD8HfjczJ41s42qWG5FLV7uQODHyiISrecd4CvU5ViksGbPZocLL4Rx48L11VVEGrxaFRIz62hml5nZl8AoYD6hO3BLoAfhnJLB9RUS2JLQnJZuYvSciBTCzJnQrRstvvgCnnwSDj887kRSBMzds5/Z7HjgZOD3wBRgADDA3aemzdcFGB1dDKu69T0BtHX3shrmewlY4O6Hpk0fBGzi7rtnWKYP0Aegffv2nQYPrs+69ov58+fTokWLvKy7EJKcX9kLq8mcOezwl7+w+pQpjL/4YhaWlcUdqVaS+NmnKmT+rl27TnD3qi6t/j+5HiO5B3ga2N/dx1Qz3+fAVTmuuyaZKp5VMR13v4eQl86dO3tZnr70FRUV5GvdhZDk/MpeQNOmwT77wLffwrBhLGzaNFn5UyTus09TjPlzLSTrufusmmZy9++By2sXKaNZwNoZprcCZtfj64hIuh9+gG7d4Kuvwlnr3bpBRUXcqaSI5Nr9t8YikieTyHwspKpjJyJSH777DsrK4Ouv4cUXQxERSZPzwXYzO8rMRpvZFDObln7LR0jCQJHrmNmeKTk6A5tEz4lIffvmG+jSJTRnjRgR/hbJINchUo4FHgS+ADoAzwHDovXMBW7LYh2rm1lvM+sNrA+sXfnYzFaP5vnCzO6vXMbd3wRGAg+ZWS8zOxR4hHCteJ1DIlLfJk8OhWPaNBg1Cvbcs8ZFpOHK9RjJhcCVwL8IPaLucPd3zawl8BKQzfXa2xGu+56q8vHGwOQoV6O0eY4GbgIeIBSuYcA5OeYXkZp8+SV07Qpz58Lo0bDTTnEnkiKXayHZHHjd3Zeb2XKiKyK6+zwzu4awob++uhW4+2RCb6vq5umYYdpsQtfjk3PMLCLZ+s9/YO+9w0CMY8bAjjvGnUgSINdjJHOAVaO/vwW2SnnOAA2iKJJUkyaF5qzFi+Hll1VEJGu57pGMB7YnHK94DrjUzJYBPxMudvV2/cYTkYL45JPQI8sdysth223jTiQJkmsh+SdQOYbWpdHfdxCOZ4wjOpNcRBLko49CEWncOOyJbKlRhyQ3WRUSM1uNMPR7R+AHM2vv7j8CPc1sVWBVd5+bv5gikhfvvx/OWG/WLBSR3/wm7kSSQDUWEjPbBBhNKCKV5prZke4+yt2XAEvylE9E8mXCBNh3X2jZMhSRTTeNO5EkVDYH268FVgB7AasTLkz1HnB3HnOJSD69/XZozlpzzXBhKhURqYNsCsluwD/c/XV3X+zuE4E/Ahua2br5jSci9e6NN8KeSNu2oYh07Bh3Ikm4bArJukD6FQ//S+juu069JxKR/Hn11XBlw3XWCUVkww3jTiQlINvzSLK/aImIFKfycjjgAOjQIRSR9dePO5GUiGy7/46MzhdJNyZ9uru3q3ssEalXL70EPXqEYyFjxkD79nEnkhKSTSGpz+uKiEihvfgiHHYYbLFFGDtr7UyX9hGpvRoLiburkIgk1fPPQ+/esM02Ya9kLY1iJPUv5+uRiEhCPP00HH44bL99aM5SEZE8USERKUVDh8IRR0CnTqE5q3XruBNJCVMhESk1jz0GxxwDu+4KI0eGkw5F8kiFRKSUPPwwHHcc7LFHuDzuGmvEnUgaABUSkVLxwANw4olQVgbDh0OLFnEnkgZChUSkFNxzD5x6ahj6ZNgwaN487kTSgKiQiCTd7bfDH/8IBx0Ezz4Lq60WdyJpYFRIRJLs5pvh7LOhZ0948slwXRGRAlMhEUmq66+Hvn3DuSJDh8Kqq8adSBooFRKRJLr6arjwQjjqqNDdt0mTuBNJA6ZCIpIk7nD55XDJJfCHP8CgQSoiErtsR/8Vkbi5w//9H/TvDyedBPfdB40axZ1KRIVEJBHc4W9/g2uvhdNPh7vuglXUoCDFQYVEpNi5w/nnhx5aZ54Jt92mIiJFRd9GkWLmDuecE4rIOeeEc0ZURKTI6BspUqxWrPhlD6Ryj8Qs7lQiK1EhESlGK1ZAnz5w993h2Mj116uISNFSIREpNsuXw8knw/33h15aV1+tIiJFTQfbRYrJsmVwwgnhJMMrrgiFRKTIqZCIFIulS8NJhkOHwj//GZq0RBJAhUSkGPz8c7iq4VNPheMhf/lL3IlEslbwYyRmtrWZjTGzhWb2nZldYWbVnp5rZh3NzDPcBhcqt0jeLFkCvXuHInLzzSoikjgF3SMxs9bAaOBToCewKXADoaD9I4tVXAC8nvJ4en1nFCmoxYvD6L3Dh4dzRP70p7gTieSs0E1bZwCrAb3cfS7wkpmtAfQzs2ujadX5zN3fyntKkUJYuBAOPRRGjw5XODz99LgTidRKoZu2DgRGphWMwYTi0qXAWURis8qiRXDwwaGIPPCAiogkWqELyZbApNQJ7j4FWBg9V5MBZrbczL43sxvNTNcUleSZN4/t//Y3GDsWHnoojOQrkmDm7oV7MbOlwIXufnPa9KnAQ+5+cRXLrQtcAowC5gJlwEXAKHfvWcUyfYA+AO3bt+80eHB+jsvPnz+fFi1a5GXdhZDk/EnM3mjBAra/6CJaTpzIpEsuYdree8cdqVaS+NlXSnJ2KGz+rl27TnD3zjXO6O4FuwFLgXMzTP8W6J/jus4EHPhtTfN26tTJ86W8vDxv6y6EJOdPXPZZs9x32cW9cWP/uF+/uNPUSeI++xRJzu5e2PzAeM9ie1zopq1ZQKsM09cEZue4riei+x3rlEikEGbOhH33hXffhaFD+amLDglK6Sh0IZlE2rEQM9sAaE7asZMseNq9SHGaPh26dYMPPwznihx6aNyJROpVoQvJi8D+ZtYyZdpRwCJgbI7r6h3dT6iPYCJ5MW0a7L03TJwIzz4bemqJlJhCn0dyF3AO8JSZXQNsAvQDbvSULsFm9gUw1t1PjR73A1oSTkacC/weuBB4yt0/LOQbEMnaDz+EPZGvvoJhw2CffeJOJJIXBS0k7j7LzLoBtwHPE46L3EQoJum5UodNmUQ4q/00wjknU4DrgP55jixSO999F/ZEvvkmnLVeVhZ3IpG8Kfigje7+KVBtn0d375j2eDDhxEWR4jd1aigi338PI0bAXnvFnUgkrzT6r0h9+vrrUESmT4dRo2C33eJOJJJ3KiQi9eWrr6BrV5gzB156CXbeOe5EIgWhQiJSH774IuyJzJ8PY8bAjjq9SRoOFRKRuvr887AnsmQJlJfDDjvEnUikoFRIROpi4sSwJ7J8eSgi220XdyKRgiv4FRJFSsbHH4duve5QUaEiIg2WColIbXzwQSgijRuH4eC33jruRCKxUSERydW774bmrNVXD0Vkiy3iTiQSKxUSkVyMGxeGPWnZMhSRzTaLO5FI7FRIRLL15pthvKw2bUIR2XjjuBOJFAUVEpFsvPoq7LcftG8fishGG8WdSKRoqJCI1KSiAg44ADp0CH936BB3IpGiokIiUp3Ro6F799CMVVEB660XdyKRoqNCIlKVkSPhkENg883DyYbt28edSKQoqZCIZPLCC9CjB2y1Fbz8Mqy9dtyJRIqWColIumefhcMOg+23DwMwrrVW3IlEipoKiUiqJ5+E3r3D6L0vvQStW8edSKToqZCIVBoyBI46CnbZJVyUqlWruBOJJIIKiQjAoEFw7LGwxx7h8rhrrBF3IpHEUCERGTgQTjghDMI4fDi0aBF3IpFEUSGRhu3ee+Hkk2HffWHYMGjePO5EIomjQiIN1x13QJ8+4YTDZ5+F1VaLO5FIIqmQSMN0yy1w1lnhXJGnnoJmzeJOJJJYKiTS8NxwA5x3HvTqBUOHwqqrxp1IJNFUSKRh+ec/4YIL4MgjYfBgaNo07kQiiadCIg3HFVfAxReHbr6PPAJNmsSdSKQkqJBI6XOHSy+Fyy6DE0+Ehx4K11oXkXqh/01S2tzDXsi//gWnngr33AOr6PeTSH1SIZHS5R6Oh9x4I5xxBtx+u4qISB6okEhpcg89s269Fc5y9osrAAAStUlEQVQ+O9ybxZ1KpCTp55mUnhUrwjkit94KffuqiIjkmQqJlJYVK+CPf4Q774S//jWcM6IiIpJXKiRSOpYvDwfU77sP/vGPcIBdRUQk73SMRErDsmVh8MVBg+Dyy0N3XxEpiILvkZjZ1mY2xswWmtl3ZnaFmTXKYrk1zWyAmc0yszlm9oiZ6RqoAkuXwvHHhyLSv7+KiEiBFbSQmFlrYDTgQE/gCuAvwOVZLD4EKANOA04CdgKeyUdOSZBx4+Cgg8JwJ9ddF84ZEZGCKnTT1hnAakAvd58LvGRmawD9zOzaaNpKzGw3YH+gi7u/Ek37FnjbzPZx99EFyi/FwB1GjGCHiy+G99+HNdcMQ8KfeWbcyUQapEI3bR0IjEwrGIMJxaVLDcv9WFlEANz9HeCr6DlpCH7+OQxvsv320L07q0+dCtdfD1OmqIiIxKjQeyRbAi+nTnD3KWa2MHru+WqWm5Rh+sToufy4/fYw0F81dl+6NNGD/yUq/6JFMG8ebLMNPPggb627Ll323TfuVCINXqELSWtgdobps6LnarPcJpkWMLM+QB+A9u3bU1FRkVNQgNYLF9J2112rnWfp0qU0ScqGOINE5Tdjxq67MnOXXcCM+fPn1+rftRgkOTskO3+Ss0OR5nf3gt2ApcC5GaZ/C/SvZrmXgKczTH8EeL2m1+3UqZPnS3l5ed7WXQhJzq/s8Uly/iRndy9sfmC8Z7FtL/QxkllAqwzT1yTzHkdNy7WqYTkREcmzQheSSaQd0zCzDYDmZD4GUuVykaqOnYiISIEUupC8COxvZi1Tph0FLALG1rDcOma2Z+UEM+tMOD7yYj6CiohIdgpdSO4ClgBPmdk+0QHxfsCNntIl2My+MLP7Kx+7+5vASOAhM+tlZocSjo+85jqHREQkVgUtJO4+C+gGNCJ09b0cuAm4LG3WxtE8qY4m7LU8ADwETAAOy2deERGpWcEHbXT3T4G9a5inY4Zps4GTo5uIiBQJDSMvIiJ1okIiIiJ1YuGck9JmZj8BX+dp9W2B6XladyEkOb+yxyfJ+ZOcHQqbfyN3X7ummRpEIcknMxvv7p3jzlFbSc6v7PFJcv4kZ4fizK+mLRERqRMVEhERqRMVkrq7J+4AdZTk/MoenyTnT3J2KML8OkYiIiJ1oj0SERGpExUSERGpExUSERGpExUSERGpk4IP2ijS0JjZ3sCBhAuxtQaccGXPScBwdy+PMV5OzGx7YEfCe5jg7h/HHEmKgHptNRCltDGDZGzQzKwN8DSwF/AVMJFw2WgjXCZ6S8LF2V4Bern7zJiirsTMHgX+4e5fRo+bAY8BPQj5IXz2TwJ/cPelsQStQSl974v5O69CUktmZsAh/PIPO57wxSyqDzTJGzNI9gbNzAYBOwHHufu4KubpDAwCxrn78YXMVx0zWwHs6u7vRI9vAM4EzgeeIHzmRwA3Ate4++VxZc0kyd/7RH7n3V23Gm7AG8BWKY9bA+OAFcDc6LYimq9l3HnTsg8CPgN2qmaezoRfaA/HnTdDthXAzimPbwAWAmcQBq9bK/p7IXBZ3HnTss8GemYx36HA7Ljz1vC5fwdcmmG+K4DP486bIVdiv/dJ/M7HHiAJtwz/sPcDM4EDUqYdQPjFc1PcedOyJ3ZjVsVnn5gNWvQdOTSL+Q4DZsadt4bPfRnw+wzzdQMWx503Q67Efu+T+J1Xr63a6QFc4e4jKidEf/cHesWWKrMV/LI7XB2L5i127YCKDNPHAhsWNkqNngVuMLM9qprBzHYHriM0wxSb3c2su5l1B2YAa2SYZw1gUWFjZaWUvvdF/51Xr63aaUU4JpJuArBOgbPUpHJj9pO7v55phiLfmEHYoLWN/k7SBu1c4HHgVTP7gdCMMpvQvl3ZTr8OMAroG1fIatyY9ng/YFjatD2A/xQmTk6S/r1P1HdehSR7h0cHRiE0YWW62EtbwvGSYpL0jRkkdIPm7nOBA8xsN0LTZ2XPIQgXJroPeNHd34opYnU2zjBtSYZp8wht+MUm6d/7RH3n1WsrC1EPlnQD3f2UtPnuBrZ2970Kkyx7VWzMZhH+gxXrxgwz2yjD5CXu/kPafJcBk9x9SGGSSRIk8XufxO+8Ckk9MrPTgf+6+8txZxERKRQVEpGYmdm9wCrufmrcWXKV5OxSf3SMRIDkbxASnr8ryR33LsnZE/29Kabs2iOpR2Y2mvCZdos7S67M7AvCl3KTuLPURtLzSzyS/L0ppuyJ/SVRpIyEfqbuvlkxfCFrK2n5zayZmd1jZpvHnSVXSc6eLmnfm1TFlF17JA2YmW1M6Ob5lbt/FXeeXBV7fjNbvZqnWwHfEAYUfA3A3RcWIlc2kpy9JmbWEXB3/zrmKDkr1uyJ/PVcrMysiZkVxZmmlaJMt5rZTDObb2bXRtNvB74ARgNfmNkjZtYo1rAZJDz/vGpu3xD2YF9MmVZMkpwdM+uTckJf5bRzzewn4L/Al2b2o5n9KZ6EVUtidh1sz5KZnUUY+bQd8Clwm7s/nDbbjoSBG4tpg/ZX4DTCCU4zgT+b2dqEMYZOAt4F9gSuB/4I3BFPzColOf8iwgmq1xPOTk7VHLgNuJZwTkOxSXJ2gDuB9wknfmJmfYCbCCcpPhHN0xv4t5nNdvdHY0mZWfKyxz3YVxJuwNGE8XgeAS4gDKmwnPCPulrKfLsAy+POm5Z9EnBhyuM9o/dyXtp8lwPj485bSvmB9YBHCRuEPwONUp5bM3ofKw2EWAy3JGePMqYPfDiJcBJx+nwPE4bwjz1zkrOraSs7FwDXu/sf3P16dz+MMGTBnkC5ma0Vb7xqbQS8k/J4QnT/Ttp8rxGuz1BsEpvf3b9z92MJo/ueAnxkZvvHHCsrSc5ehU0J1/RINxjYusBZclX02VVIsrMFMDx1gruPAXYl/Dp708w2jSNYFhYQDo5WWhLd0g+ONqI4mzqTnh93fxXoBNwOPGpmwwjfqaKX5OxAMzNbPeo4MIPQipBuOWH8rWKTqOwqJNmZQxiQ8VfcfTKwO2H3/w3C1fCKzWeEC/gA4O4r3H01d38/bb5tgMmFDJalpOcH/pf7duA3wFTgVYpkI1CTBGcv55fOAO2AnTPMsz2h80CxSVT2ovwFV4QmEA7uPpH+hLvPMrNu0XO3Unz/wW4kXFGtJvtQnMNpJz3/r7j7DOAMM7sV2Bwomutu1yRh2U/OMO37DNN2JlyytpgkLrvOI8mCmR1BGGr6YK/i2s5R19M7gX3dPdMQ3CIiJUmFRERE6kTHSEREpE5USEREpE5USEREpE5USEQk78zsTjP71sxiPyhrZhuY2Rgzm2hmn5jZtWZmcedKMhUSESmExwhj0RWDZcBF7r4V8DvC0Ea94o2UbCokDYCZnWRmE8xsnpnNMrP3zOzGuHNlw8wujX7JrjCzgdXMV7D3aGZHmtlJWc7bz8w85fadmT2ZzUgIZjbQzMbXOXA9sOADMzsxbfoqZnZ29HkvMrO50a/8W1N/5bv7K+7+Y4GyVpvJ3b939/FRrp+BD4ENUpa/3czuL0TWUqHuvyXOzP4OXEkYqbUcaEYY8uI4d98szmw1MbPOwDjgYqACmObu/80wX0Hfo5k9AbR197Is5u0HnAccEE3aJMraCNjG3RdUs+ymhEFBYz/xz8yOAq4DNnX3pSnTHyeMO3cD8BbQgjDaQ1d375xhPe7ueW1GyiVTNE7e+8B+7j4xmtaRMFDitu7+RT6zloy4R43ULb834Fvg9gzTLe5sWWQ/jjBSwBrF9B4JoxhUZDlvP2B62rQ9o/d1RBXLNAKaxv35p2V6HeifNu3A6H0cmO1nHzY5Ob1uWS7L5JIJWJXww+MvGeYdDdwQ9+eelJuatkpfK+CH9Ike/W8BMLOK6Fc2KdPKoqaYbVOmDTSz8WZ2kJl9amYLzewFM2tjZpuZWbmZLYjm2b6mYFET0UdmtsTMvjGz/mbWuPK1CMNkA8yJspTV9j2m5T/UzCaZ2WIze83Mtk6br6ZchwNdUpqr+tX0XtNUjmDcMUOuT4DFwC6ZmrbM7PfR5zzfzOZE/3a/S5tnTzMbG/37zDCze82sZcrz25jZCAsXC1tg4aDzWVWFNbPNCL/o04cI6hLdv5y+TPpnX0BZZbIwEsUjwHvufkOG9TwJ/MHMtI3Mgj6k0vcu4WJQJ1r9DHe/IXAF8A+gD2EDcw9hSOvBhAvuNAYGp7aRpzOz/YAhUb6ewL8Jw/XfFs1yJXBV9PfewG7RvJnk8h43IozfdSVwLGH05pFm1iyHXOXAe1Gm3YD7anjNdB2j+x/Spl0L/BPoDqx06eCokI4BlgInAkcRBlBcP2WePaJ5fiD8W5wXrW9AyqqeI4wcexzQI3qPLalaN8IozB+kTa9slrvOzDaqZvlCyjbT3YQBEf9SxfNvAO2B7eoxW+mKe5dIt/zeCCOEfknY3V8BfEIoBGukzFMBPJG2XFm0zLYp0wYSerxsmjLt2mi+E1KmdY+mbVVNrreA8rRpfyVs4DpEj0+K1tOiru8xJb8Du6dM2yh6T2fkkCvnpi1CcW1MGEG3nHD1wXXTcv02Q97xKY/fBMZTTZMdobCk59+78t+SMIq1A9vl8B26hwwXUALWIRyo9uj2MeF41kr/XoRiOzWabypwXxWvZSmfVWNCEfO0aY2ryVpjJmCP6LmPCMdH3gfOSVtP4+h7cXoc/2+TdtMeSYlz9w+BrQi/PO8g/Ef9P2C8mbWoxSon+68PeFcejHw5w7T1ySBqVtgRGJr21BDCXvJuuQTK8T1Oc/c3Upb9mtDUtHN950qxFmEvYilhWPxNgKPcPXVE12995aHx/8fMmhO6qT7o0ZYuwzyrRxkfN7PGlTfCRb+WEjogzCQMPX6XmR1lZu2yyL8O0WVfU7n7D4Tus/sTBixtBfQH3jCzpmnznubuHdzdovvTqnitE/nls1pKOFZB2rSlmRfNLpO7vx7l2M7dfxvdbk1bzzJgdvTepQYqJA2Auy9x9+fd/Wx335pwDfTNgVNrsbrZaY9/zjC9clqzKtbRFmgCpHcHrXzcJtdQObzHaRkWnwasm49ckTmEa9V0BjoAHd39xSpeoyqtCQUy03DiqfM0IhTT1I3uEsL72sDdVxB6NP0APAD8YGavph9nSdMsWsdK3H25u49y9z8Rmj0HEJqDalt0nyd8VpW3M6LpO6XdqlSPmZZQ9XdYUuh6JA2Qu99vZtcCW0aTFgNN02ar7UYzG9MJG7j0X8Pto/uMQ/XnIsN7rJTpF3g7QnNYvnIt8+i8hWrUdHB6FqHZbt1q5pkdracfaVf0jHwH4O6TgMPNrAmwF3AN8IKZdYgKTbqZZPHL3N1XmNkowvU0arUB9nDNkxmVjyv3KLP4/PKRqRX18F1sCLRHUuIyNV2Y2dqEg8yVv4KnsvIGd998ZXL35YTmpCPSnjqSsLF8M5f1ZfkeK7Uzs91T5tuQ0Jz1Tg65fqbAv1Q9nG/yNnBCVZ0YonneArZw9/EZbt+lzb/U3V8mdD5Yl19f0jjVZ8CvrrFjZu2rmLcH4TLIb0fznWRm70e3JVFvufctnDzaJLt3n51sMmWbJ/r+rA58Xp8ZS5X2SErfR2b2LDCK0ISzEaEX0kLgwWiep4FTzewm4AWgK6GNOZ8uI/SWGkDo7bUdoUfUve4+Ncd1ZfMeK00HHjaz/wMWEQ7KTyMc2M421ySgp5kdSijC36VvpPPkb4RjBi+a2T2EHkq7EQ7ID4vm+SswxsxWEDoFzCM07xwEXEIogNcTjvt8SWgOuwj4wKu4aBvhHJJLzWxtd/8pmva4mc0DHidc4rgd8AdCT7fT3X02gLsPBAZG3WjnAXtEex35kE2mbPN0JuzdvZHhOUkX99F+3fJ7A84ibGC/IzRhTQYeBbZMm+/vhIOw84BBhF9xmXptjU9b7iTSelYRurI64YqS1WU7itBz5mfCBrk/KT1yMq27ju9xIKHXUy/CL80lhI3ktjnmaksovjOjfP2qydaPtBMSM8yz0udazefdBXiFUCRnE3qApff22gUYQegZtgD4lLDXsSZh4/owoYgsJhwreQzYsJp8TQnNTcenTDsleo2p0ec0k/AjpKyKdWwBTK3F97eMLE9IzCVTTXmAW0jr/aZb1TcNkSINRnQy4baeYegOqZ6Z3QJs5u4H1XL5I4ETa7t8fasuT9R772vgb+4+qODhEkjHSEQkG9cBZWb2m1ouvwPh/I5iUV2eIwjNnoMLFyfZVEhEpEYejg+dSvW9xqqzPSufGR+n6vIYcKqHc0kkC2raEpG8M7MpwP4ejbAbt2LLk3QqJCKSV2bWmtARooWHLtbKU2JUSEREpE50jEREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROpEhUREROrk/wEcnLjB7dtalgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEzCAYAAADJko/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5wTdf7H8ddHiiiggAgWVGxnLyfY9VjEigqKWM9eUE9PxXJ6ej/Fgnf2cvYGKiqIXURAcBe7AnYFPU8RsSG9I+Xz++M7e8aQ3U2WTSaTfT8fjzyymcxM3glhPpnvfOc75u6IiIjkYqW4A4iISPKoeIiISM5UPEREJGcqHiIikjMVDxERyZmKh4iI5EzFQ4qWmfUxM0+5/WBmT5vZxjFm2t3M3jezhWbm0bSmZjbQzKZFOU+sYtn+ae+n8vZAQd/Eb3l6mdkhGaZPNLMb48gkydEw7gAiNZgF7B/9vRFwNTDKzLZy93kx5LkXmALsByyKpp0JHAwcD3wP/Lea5ScAJ6VNm1LHGbPVC/gUeC5t+qHAtMLHkSRR8ZBit8Td34n+fsfMJgGvA12BwTHk2Ry4z91Hp037wt2fzmL5eSnvpyi5+wdxZ5Dip2YrSZpx0X17ADPb1cxeiJq05pnZh2b258qZzaxV1MR0QupKLPjGzG5OmbaXmb0bzf+zmd1lZs2i58qiZqoGwG1Rc1N/M5sInAL8sbIZqrZvrPI1zGzrtOkVZvZUyuP+ZjbWzPYxs4+j9/2GmW2VtlwDM/u7mX1pZovMbLKZ9a9cJ9ABOCGl+ezE6Lnlmq3M7Agz+yRaz3dm1tfMGqY8f2K0jm3M7JUo0wQz61Hbz0OKm4qHJE376P6n6H4D4E3gVELT0dNAPzM7GsDdpwPPsnxTUVm0rn4AZrYlMAyYChwGXAEcA1RutN8Hdo3+vin6+2pCE89QQnPUrinzVMnMGqbesnrXy1sfuAHoCxwNtAGeNDNLmede4ErgSeAg4AKgafTcX6LMQ1Nyv1RF3n2BQYTPoDvwb+BC4I4Msz8OvED4XP4DDDSzdrV8j1LE1GwlRS9lA7sRcBcwBxgJ4O4DU+Yz4DWgHXAa8ET01IPACDPbyN2/jqadBIxz90+ix5cD3wLd3H1ptL7pwCAz29Xd3yY0mwFMTG16MrNfgLZZNkd1ABanvb9N3f2rLJZN1QrY3d3/E61jJUKR3AyYYGabE/aIznX321OWGwTg7p+b2TzglyxyXwVUuHvl3tuw6HP4p5ld4+6TU+a9xd0fijKNA34mFK57cnx/UuS05yHFbg3CxnYx8AWhgBzp7j8CmFlLM7vdzL5Nma8X8IeUdYwiFIYTomWaAz2I9joiOwHPVhaOyNPAEmCPOnw/44Ed027f1WI9EysLR+Tz6L7yV37n6L5/Ldb9P2bWANiB5Y8vDSJsP9L3tEZU/uHu0widAbTnUYK05yHFbhawN+CEpqof/PdDQfcHdiE0IX0OzCb0fupeOYO7u5n1A042sz7AEYTv/uMp61mb8CuZlOWWmtk0wq/8ujLf3cfWwXpmpj3+NbpvEt2vQTg4P3sFX6c10Ii0zyblcfpnkylXE6TkqHhIsVtS1cbWzJoABwJnu/s9KdMz7VH3IxzH6AycCDzn7jNSnv+RcNwgdf0NCBvh6SvyBnKwMLpvnDa9FeFYTC6mAU3NbLUVLCBTCXtzbdKmt43uC/XZSJFRs5Uk2cqE3k+V51tUNkl1S5/R3b8jNKlcSWiG6pc2y7vAoVHBqNSD8APrjbqNXaXKYwdbVE4ws/UIxzFy9Wp0f3w189S4VxA1440DDk976ghgGfB2LbJJCdCehySWu88yszHA5WY2m7Axu4TQ1LVahkUeJLTdTwZeSXvuGuAD4Dkzu5vQTn8dMDw6WJ537j45ej9Xm9l8wo+7S6nFr3t3/8LM7gNuMrM2hI4ELYCe7n5UNNsEYD8z24+wp/JNdJwi3RXA8KjpbyCwDaGZ8P60g+VSj2jPQ5LuGOAb4BHgNsJB7keqmHcI4QD4w+6+LPUJd/8MOIDQPPMMoZg8AfTMT+wqHQNMAgYA1xJ6On1Ry3X9hbCndSyhS+6twIKU568hHMB/EhhD6Oq8HHcfARwFdAReBM4jdFc+u5a5pASYLkMr9YWZdSUUkD/UomusiKRQ8ZCSZ2brAJsSTm6b5O4HxRxJJPHUbCX1QS/CuR4Lgb/GnEWkJGjPQ0REcqY9DxERyVm96KrbunVrb9++fV7WPW/ePJo2bVrzjEUqyfmVPT5Jzp/k7FDY/OPGjZvq7mtmeq5eFI/27dszdmxdjAixvIqKCsrKyvKy7kJIcn5lj0+S8yc5OxQ2fzRmXEZqthIRkZypeIiISM5UPEREJGcqHiIikjMVDxERyZmKh4iI5EzFQ0REcqbiISJSihYuhJNPhi9qO6J/9VQ8RERKzYIF0L079OsH776bl5eoF2eYi4jUG/PmQbduUF4ODz0Ex1d3JeLaU/EQESkVc+fCgQfCG2/Aww/Dccfl7aVUPERESsHs2dC1K7zzDgwYAEcfndeXU/EQEUm6WbNg//1h7Fh44gk4/PC8v6SKh4hIks2YAfvuCx99BIMHwyGHFORlVTxERJJq2jTYe2/4/HN45hk46KCCvXRBu+qa2eFm9oKZfW9mc81snJnV2DBnZiub2U1mNsXM5pnZS2bWPv+JRUSK1C+/QOfOMH48PPdcQQsHFP48j/OBuUBvoBtQDjxuZn+tYbnbgROBC4GeQGvgFTNrkr+oIiJF6uefQ+H46isYMgQOOKDgEQrdbHWwu09Nefyqma1DKCr/zrSAmbUDTgFOdvdHomkfA98AxwIP5DeyiEjxaDx1KpSVwaRJMHRo+DsGBd3zSCsclT4A2lSz2L7R/TMp6/keeAMofLkVEYnL5Mls37s3TJ4Mw4bFVjigOIYn2Q34vJrnNwcmu/vctOnjo+dERErft99Cp040nj4dhg+HPfeMNY65e3wvbtYFeIXQJNW/innuB3Z09+3Tpl8TLbdOFcv1AnoBtG3btsPAgQPrMvr/zJ07l2bNmuVl3YWQ5PzKHp8k509i9iY//sj2vXvTcO5c3rnqKpbssENBXrdz587j3L1jxifdPZYb0B74GXi2hvnuBz7IML0v8H02r9WhQwfPl/Ly8rytuxCSnF/Z45Pk/InL/p//uK+3nnvLlu5jxxY0PzDWq9iuxtJsZWatgJeBSYSD3tWZAbTIML0FMLOOo4mIFI8vv4ROnWD+/DDQYYcOcSf6n4IXDzNbFRgCNAYOdPd5NSwyAVjPzJqmTd88ek5EpPSMHx8Kx+LFoXBst13ciX6n0CcJNgQGA5sCB7j7lCwWGxHdH5qynnWAPQl7LyIipeXTT3/rSVVRAdtsE2eajAp9nsddQFfgXKCVme2S8twH7r7IzEYBuHuX6H6ymT0I3GpmBvwC9AG+BQYUMryISN599FEYcqRxY3j1Vdhss7gTZVTo4lF5zsZtGZ7bEJgINMjw3DnAPOBmYFVgNHC0uy/MQ0YRkXi8/z7ssw80bRoKxyabxJ2oSgUtHu7ePot5yjJMW0Q4C/38uk8lIlIExowJo+Ouvno4xrHhhnEnqlYxnCQoIlK/vf12aKpq1QpGjy76wgEqHiIi8Xr99bDH0bZtKBwbbBB3oqyoeIiIxKWiIlwBsF278He7dnEnypqKh4hIHEaODNccb98+FI51Mo60VLRUPERECm3YsHDxpk02CYWjbdu4E+VMxUNEpJCGDIHu3WGLLUJ33DXXjDtRrah4iIgUynPPQY8e4YzxUaOgdeu4E9WaioeISCE89RQcfjjssEM43tGqVdyJVoiKh4hIvg0aBEcdBTvtBCNGQItMA4Uni4qHiEg+DRgAxxwDu+8ergC42mpxJ6oTKh4iIvnSvz8cf3wYIXfoUEjYFQyro+IhIpIP998PJ58chh158cUw2GEJUfEQEalrd90FvXqFs8dfeAFWXTXuRHVOxUNEpC7dfjucdRYcfDA8+yw0aRJ3orxQ8RARqSs33QTnnguHHhq65q68ctyJ8kbFQ0SkLvzrX3DhheFcjkGDwpUAS5iKh4jIirr6avj73+Hoo+Hxx6FRo7gT5Z2Kh4hIbbnD5ZeH23HHwaOPQsNCX907HioeIiK14Q6XXhr2Ok4+Gfr1gwYN4k5VMPWjRIqI1CV3uOiicID89NND19yV6tdvcRUPEZFcuEPv3nDbbaFL7r//DWZxpyq4+lUqRURWxLJlcPbZoXCcd169LRyg4iEikp1ly+DMM0MT1d/+BjffXG8LB6jZSkSkZkuXwqmnhoEOL70UrrmmXhcOUPEQEanekiVw0klhaPU+fUK33HpeOEDFQ0SkakuWhPM3Bg4MexuXXRZ3oqKh4iEiksnixeGM8aefhuuvD11z5X9UPERE0i1aBEceCc8/Hw6M9+4dd6Kio+IhIpJq4ULo2RNeeil0xT377LgTFSUVDxGRSgsWhOHUhw+He+4JZ49LRioeIiIA8+dD9+4wahQ8+GAYr0qqpOIhIjJ3brjy32uvhXM5jj8+7kRFT8VDROq3OXOga1d4660wpPoxx8SdKBEKPjyJmW1iZvea2UdmttTMKrJYpr2ZeYbbwAJEFpFSNWsW7LsvvP12OJdDhSNrcex5bAV0Bd4Bcr1O44XAmymPp9ZVKBGpZ2bMgP32gw8/hMGDw4FyyVocxeNFd38ewMyeAlrnsOwX7v5OfmKJSL0xbRrssw989lk4CfDgg+NOlDgFLx7uvqzQrykiUqnRzJmw117wxRfw3HNwwAFxR0qkpA3J3i86TvKjmd1sZqvEHUhEEuTnn9m+d2/48kt44QUVjhVg7h7fi0fNVu5eVsN8awOXASOA2UAZcDEwwt27V7FML6AXQNu2bTsMHJifY+tz586lWbNmeVl3ISQ5v7LHJ4n5G0+bxnbnn8/KP//Mp9dey8wddog7Uq0U8rPv3LnzOHfvmPFJd4/tBjwFVNRy2TMBB7avad4OHTp4vpSXl+dt3YWQ5PzKHp/E5f/uO/dNN3Vv2tTfv/XWuNOskEJ+9sBYr2K7mrRmq1RPRffJ/PkgIoUxaRKUlcFPP8Hw4czabru4E5WEJBcPT7sXEfm9iROhUyeYOhVGjIDdd487UclI8hnmPaP7cbGmEJHi9N//QufOYeiRkSOhY+ame6mdghcPM1uVcJIgwLrAamZWWQiGuvt8M/sKGO3up0TL9AGaE04QnA38CbgIeMbdPy5kfhFJgC+/DN1xFy4MAx3+8Y9xJyo5cex5tAEGp02rfLwhMJGQq0HK8xMIZ5efCqwCTAJuAPrmM6iIJNCECaFwLF4Mr74K224bd6KSFMdJghOBaq8e7+7t0x4PBDSOlYhU77PPQuEwg4oK2GqruBOVrCQfMBcR+c3HH4deVQ0aqHAUgIqHiCTf+++Hg+MrrwyjR8Pmm8edqOSpeIhIso0ZA126QLNm4WJOm24ad6J6QcVDRJLrnXdg772hZcuwx7HRRnEnqjdUPEQkmd54I1zIac01Q+Fo3z7uRPWKioeIJM/o0bD//rD22uHv9daLO1G9o+IhIskyalQYSn399UPhWHfduBPVSyoeIpIcw4fDQQfBxhuH7rhrrRV3onpLxUNEkmHoUOjWDTbbDMrLoU2buBPVayoeIlL8XngBDjkEtt46DDnSunXcieo9FQ8RKW7PPAOHHRYGNxw1Clq1ijuRoOIhIsVs0CA44gjYccdwPY4WLeJOJJEai4eZHW9maxQijIjI/zz+OBxzDOy2WzhQvvrqcSeSFNnsefQDNgYws6VmtlN+I4lIvffww3DssfCnP8HLL0Pz5nEnkjTZFI8ZwDrR34Yu+yoi+fTgg3DSSWG8qpdegqZN404kGWRzPY+RwKNm9gWhcPQ3s3lVzezu2jMRkdq55x4488xw9vgzz8Aqq8SdSKqQTfE4GfgLsBmwA/AN8Es+Q4lIPXTHHfDXv4aTAAcPhiZN4k4k1aixeLj7fOBGADPbG7jM3T/KdzARqUduuQXOPz+cyzFoEDRuHHciqUE2va2WmtmO0cMKYHZeE4lI/XL99aFw9OwJTz6pwpEQ2Rww/xVYOfr7eGDN/MURkXqlb1+4+GI46ih44glo1CjuRJKlbI55fA70MbPnCL2teppZxyrmdXe/u87SiUhpcocrrwy3Y4+Ffv2gYTabIykW2fxr/RW4F7iF0NvqwmrmdUDFQ0Sq5g7/+Adce23oknv//dCgQdypJEc1Nlu5+1vuvo27NyLseezi7itVcdM3QESq5h6aqa69Fnr1ggceUOFIqFzHtupMaMYSEcmNezgwfsMNcNZZcPfdsJKG10uqnBoZ3X00gJntDOwBtAKmA2+4+7t1H09ESoI7nHNOOJfjvPPg5pvBLO5UsgJyKh5m1hQYDOwHLAWmAWsADcxsGHB4dF6IiEiwbFk4a/y+++Cii+C661Q4SkCu+4zXA7sCRwFN3H1toEn0eFfgurqNJyKJtnQpnHZaKByXXqrCUUJyLR6HARe7+2B3Xwbg7svcfTBwCXB4XQcUkYRaujT0pnroIbjiCrjmGhWOEpJrx+rVge+qeO47YLUViyMiJWHJEjjuOBg4MBSNyy6LO5HUsVz3PD4CzjT7/c+H6PGZ0fMiUp8tXgxHHx0Kx3XXqXCUqFz3PC4FXgYmmNmzwM9AG+BQoD1wQJ2mE5Fk+fXXMNTIs8+GHlW9e8edSPIk1666r5rZH4HLCcc31gZ+BN4Feri7zgERqa8WLQqDGw4ZArffHoZXl5KV82AyUYE4Kg9ZRCSpFiyAHj1g2DC4667QNVdKWk7HPMzsRjPbMl9hRCSB5s+Hbt1g+PAwTpUKR71Qm666n5jZe2Z2hpmtnusLmtkmZnavmX0UXSukIsvlVjezfmY2w8xmmdljZrZGrq8vInVo3rxw5b9Ro8LIuKeeGnciKZCcioe7bwjsDUwAbgB+NLPHoysMZmsroCvwZXTL1iCgDDgVOBHYEXguh+VFpC7NmQMHHACjR8OAAXDCCXEnkgKqzTGPcqDczJoBRwInAMPNbDLQH3jY3b+uZhUvuvvzAGb2FNC6ptc0s10JQ6J0cvfXomnfA++a2d7uPjLX9yEitddg7lzYbz94771wEacjjog7khRYrYe0dPe57v4gcAXwJrAe8HfgSzN73sw2qGK5ZbV4uQOAnysLR7Se94BvUPdgkcKaOZPtLroIxowJ1xtX4aiXalU8zKy9mV1hZl8DI4C5hK67zYFuhHM+BtZVSGBzQlNZuvHRcyJSCNOnQ5cuNPvqK3j6aTjssLgTSUzM3bOf2ew44CTgT8AkoB/Qz90np83XCRgZXUCquvU9BbR297Ia5nsFmOfuh6RNHwBs5O67ZVimF9ALoG3bth0GDqzLWvabuXPn0qxZs7ysuxCSnF/ZC6vRrFlsd8EFrDppEmMvvZT5ZWVxR6qVJH72qQqZv3PnzuPcPeNlx3M95nEf8Cywn7uPqma+L4Frclx3TTJVOatiOu5+HyEvHTt29LI8fdErKirI17oLIcn5lb2ApkyBvfeG77+HIUOY37hxsvKnSNxnn6ZY8udaPNZx9xk1zeTuPwJX1i5SRjOANTNMbwHMrMPXEZF0P/0EXbrAN9+Es8e7dIGKirhTScxy7apbY+HIkwlkPrZR1bEQEakLP/wAZWXw7bfw8suhcIhQiwPmZnakmY00s0lmNiX9lo+QhMEY1zKzPVJydAQ2ip4Tkbr23XfQqVNoqho2LPwtEsl1eJJjgIeBr4B2wAvAkGg9s4E7sljHqmbW08x6AusCa1Y+NrNVo3m+MrMHK5dx97eB4cAjZtbDzA4BHiNcO13neIjUtYkTQ7GYMgVGjIA99qhxEalfcj3mcRFwNfAvQk+mu9z9fTNrDrwCZHP98jaE66Cnqny8ITAxytUgbZ6jgFuAhwjFaghwTo75RaQmX38NnTvD7NkwciTsuGPciaQI5Vo8NgXedPelZraU6MqB7j7HzK4jbNxvrG4F7j6R0EuqunnaZ5g2k9BN+KQcM4tItv7zH9hrrzDY4ahRsMMOcSeSIpXrMY9ZwMrR398DW6Q8Z4AGKhRJqgkTQlPVwoXw6qsqHFKtXPc8xgLbEo4/vABcbmZLgF8JF4h6t27jiUhBfPZZ6EnlDuXlsPXWcSeSIpdr8fgnUDlm1eXR33cRjk+MITqjW0QS5JNPQuFo2DDscWyuEX+kZlkVDzNbhTCMenvgJzNr6+4/A93NbGVgZXefnb+YIpIXH34Yzhxv0iQUjj/8Ie5EkhA1Fg8z2wgYSSgclWab2RHuPsLdFwGL8pRPRPJl3DjYZx9o3jwUjo03jjuRJEg2B8yvB5YBewKrEi7m9AFwbx5ziUg+vftuaKpaffVwMScVDslRNsVjV+Af7v6muy909/HA6cD6ZrZ2fuOJSJ17662wx9G6dSgc7dvHnUgSKJvisTaQfmXA/xK65q5V54lEJH9efz1cAXCttULhWH/9uBNJQmV7nkf2F/0QkeJUXg777w/t2oXCse66cSeSBMu2q+7w6HyOdKPSp7t7mxWPJSJ16pVXoFu3cGxj1Cho2zbuRJJw2RSPurwuh4gU2ssvw6GHwmabhbGq1sx0aRyR3NRYPNxdxUMkqV58EXr2hK22Cnsfa2gEIakbOV/PQ0QS4tln4bDDYNttQ1OVCofUIRUPkVI0eDAcfjh06BCaqlq2jDuRlBgVD5FS88QTcPTRsMsuMHx4OBFQpI6peIiUkkcfhWOPhd13D5eOXW21uBNJiVLxECkVDz0EJ5wAZWUwdCg0axZ3IilhKh4ipeC+++CUU8KwI0OGQNOmcSeSEqfiIZJ0d94Jp58OBx4Izz8Pq6wSdyKpB1Q8RJLs1lvh7LOhe3d4+ulwXQ6RAlDxEEmqG2+E3r3DuRyDB8PKK8edSOoRFQ+RJLr2WrjoIjjyyNA1t1GjuBNJPaPiIZIk7nDllXDZZfDnP8OAASocEotsR9UVkbi5w//9H/TtCyeeCA88AA0axJ1K6ikVD5EkcIdLLoHrr4fTToN77oGV1HAg8VHxECl27nD++aFn1Zlnwh13qHBI7PQNFClm7nDOOaFwnHNOOKdDhUOKgL6FIsVq2bLf9jQq9zzM4k4lAqh4iBSnZcugVy+4995wrOPGG1U4pKioeIgUm6VL4aST4MEHQ++qa69V4ZCiowPmIsVkyRI4/vhw4t9VV4XiIVKEVDxEisXixeHEv8GD4Z//DM1VIkVKxUOkGPz6a7j63zPPhOMbF1wQdyKRahX8mIeZbWlmo8xsvpn9YGZXmVm1p8maWXsz8wy3gYXKLZI3ixZBz56hcNx6qwqHJEJB9zzMrCUwEvgc6A5sDNxEKGL/yGIVFwJvpjyeWtcZRQpq4cIwKu7QoeEcjr/8Je5EIlkpdLPVGcAqQA93nw28YmarAX3M7PpoWnW+cPd38p5SpBDmz4dDDoGRI8OVAE87Le5EIlkrdLPVAcDwtCIxkFBQOhU4i0hsVlqwAA46KBSOhx5S4ZDEKXTx2ByYkDrB3ScB86PnatLPzJaa2Y9mdrOZ6Xqbkjxz5rDtJZfA6NHwyCNhhFyRhDF3L9yLmS0GLnL3W9OmTwYecfdLq1hubeAyYAQwGygDLgZGuHv3KpbpBfQCaNu2bYeBA/NzbH3u3Lk0a9YsL+suhCTnT2L2BvPmse3FF9N8/HgmXHYZU/baK+5ItZLEz75SkrNDYfN37tx5nLt3zPikuxfsBiwGzs0w/Xugb47rOhNwYPua5u3QoYPnS3l5ed7WXQhJzp+47DNmuO+8s3vDhv5pnz5xp1khifvsUyQ5u3th8wNjvYrtaqGbrWYALTJMXx2YmeO6norud1ihRCKFMH067LMPvP8+DB7ML510iE+SrdDFYwJpxzbMbD2gKWnHQrLgafcixWnqVOjSBT7+OJzLccghcScSWWGFLh4vA/uZWfOUaUcCC4DROa6rZ3Q/ri6CieTFlCmw114wfjw8/3zoYSVSAgp9nsc9wDnAM2Z2HbAR0Ae42VO675rZV8Bodz8letwHaE44QXA28CfgIuAZd/+4kG9AJGs//RT2OL75BoYMgb33jjuRSJ0paPFw9xlm1gW4A3iRcJzjFkIBSc+VOmTJBMLZ5acSzgmZBNwA9M1zZJHa+eGHsMfx3Xfh7PGysrgTidSpgg+M6O6fA9X2T3T39mmPBxJOJhQpfpMnh8Lx448wbBjsuWfciUTqnEbVFalL334bCsfUqTBiBOy6a9yJRPJCxUOkrnzzDXTuDLNmwSuvwE47xZ1IJG9UPETqwldfhT2OuXNh1CjYQacfSWlT8RBZUV9+GfY4Fi2C8nLYbru4E4nknYqHyIoYPz7scSxdGgrHNtvEnUikIAp+JUGRkvHpp6ELrjtUVKhwSL2i4iFSGx99FApHw4ZhaPUtt4w7kUhBqXiI5Or990NT1aqrhsKx2WZxJxIpOBUPkVyMGROGHGnePBSOTTaJO5FILFQ8RLL19tthfKpWrULh2HDDuBOJxEbFQyQbr78O++4LbduGwrHBBnEnEomViodITSoqYP/9oV278He7dnEnEomdiodIdUaOhK5dQxNVRQWss07ciUSKgoqHSFWGD4eDD4ZNNw0nALZtG3cikaKh4iGSyUsvQbdusMUW8OqrsOaacScSKSoqHiLpnn8eDj0Utt02DHK4xhpxJxIpOioeIqmefhp69gyj4r7yCrRsGXcikaKk4iFSadAgOPJI2HnncCGnFi3iTiRStFQ8RAAGDIBjjoHddw+Xjl1ttbgTiRQ1FQ+R/v3h+OPDQIdDh0KzZnEnEil6Kh5Sv91/P5x0EuyzDwwZAk2bxp1IJBFUPKT+uusu6NUrnAT4/POwyipxJxJJDBUPqZ9uuw3OOiucy/HMM9CkSdyJRBJFxUPqn5tugvPOgx49YPBgWHnluBOJJI6Kh9Qv//wnXHghHHEEDBwIjRvHnUgkkVQ8pP646iq49NLQJfexx6BRo7gTiSSWioeUPne4/HK44go44QR45JFw7XERqTX9D5LS5h72Nv71LzjlFLjvPlhJv5lEVpSKh5Qu93B84+ab4Ywz4M47VThE6oiKh5Qm99Cj6vbb4eyzw71Z3JI2LxcAABKoSURBVKlESoZ+hknpWbYsnMNx++3Qu7cKh0geqHhIaVm2DE4/He6+G/72t3BOhwqHSJ1T8ZDSsXRpOCj+wAPwj3+Eg+QqHCJ5oWMeUhqWLAkDHA4YAFdeGbrmikjeFHzPw8y2NLNRZjbfzH4ws6vMrEEWy61uZv3MbIaZzTKzx8xM1wcVWLwYjjsuFI6+fVU4RAqgoMXDzFoCIwEHugNXARcAV2ax+CCgDDgVOBHYEXguHzklQcaMgQMPDEON3HBDOKdDRPKu0M1WZwCrAD3cfTbwipmtBvQxs+ujacsxs12B/YBO7v5aNO174F0z29vdRxYovxQDdxg2jO0uvRQ+/BBWXz0Mr37mmXEnE6k3Ct1sdQAwPK1IDCQUlE41LPdzZeEAcPf3gG+i56Q++PXXMLTItttC166sOnky3HgjTJqkwiFSYIXe89gceDV1grtPMrP50XMvVrPchAzTx0fP5cedd4bB9Kqx2+LFiR5gL1H5FyyAOXNgq63g4Yd5Z+216bTPPnGnEqmXCl08WgIzM0yfET1Xm+U2yrSAmfUCegG0bduWioqKnIICtJw/n9a77FLtPIsXL6ZRUja+GSQqvxnTdtmF6TvvDGbMnTu3Vv+uxSDJ2SHZ+ZOcHYoov7sX7AYsBs7NMP17oG81y70CPJth+mPAmzW9bocOHTxfysvL87buQkhyfmWPT5LzJzm7e2HzA2O9iu1qoY95zABaZJi+Opn3LGparkUNy4mISB4UunhMIO0YhZmtBzQl8zGNKpeLVHUsRERE8qjQxeNlYD8za54y7UhgATC6huXWMrM9KieYWUfC8Y6X8xFURESqVujicQ+wCHjGzPaODmr3AW72lO67ZvaVmT1Y+djd3waGA4+YWQ8zO4RwvOMN1zkeIiIFV9Di4e4zgC5AA0K33CuBW4Ar0mZtGM2T6ijC3slDwCPAOODQfOYVEZHMCj4wort/DuxVwzztM0ybCZwU3UREJEYakl1ERHKm4iEiIjmzcB5IaTOzX4Bv87T61sDUPK27EJKcX9njk+T8Sc4Ohc2/gbuvmemJelE88snMxrp7x7hz1FaS8yt7fJKcP8nZoXjyq9lKRERypuIhIiI5U/FYcffFHWAFJTm/sscnyfmTnB2KJL+OeYiISM605yEiIjlT8RARkZypeIiISM5UPEREJGcFHxhRpL4xs72AAwgXL2sJOOEKmBOAoe5eHmO8nJjZtsAOhPcwzt0/jTmSxES9reqJUtqAQTI2YmbWCngW2BP4BhhPuKSyES6hvDnhgmavAT3cfXpMUZdjZo8D/3D3r6PHTYAngG6E/BA++6eBP7v74liC1qCUvvfF9p1X8aglMzPgYH77xxxL+DIW1Qea5A0YJHsjZmYDgB2BY919TBXzdAQGAGPc/bhC5quOmS0DdnH396LHNwFnAucDTxE+88OBm4Hr3P3KuLJmkuTvfWK+8+6uWw034C1gi5THLYExwDJgdnRbFs3XPO68adkHAF8AO1YzT0fCL7FH486bIdsyYKeUxzcB84EzCAPErRH9PR+4Iu68adlnAt2zmO8QYGbceWv43H8ALs8w31XAl3HnzZArsd/7pHznY/+gknDL8I/5IDAd2D9l2v6EXza3xJ03LXtiN2BVfPaJ2YhF35FDspjvUGB63Hlr+NyXAH/KMF8XYGHceTPkSuz3PinfefW2qp1uwFXuPqxyQvR3X6BHbKkyW8Zvu7rVsWjeYtcGqMgwfTSwfmGj1Oh54CYz272qGcxsN+AGQhNLsdnNzLqaWVdgGrBahnlWAxYUNlZWSul7X5TfefW2qp0WhGMc6cYBaxU4S00qN2C/uPubmWYo8g0YhI1Y6+jvJG3EzgWeBF43s58ITSQzCe3Vle3uawEjgN5xhazGzWmP9wWGpE3bHfhPYeLkJOnf+6L/zqt4ZO+w6OAmhOapTBdIaU04/lFMkr4Bg4RuxNx9NrC/me1KaNas7PED4WI+DwAvu/s7MUWszoYZpi3KMG0OoU2+2CT9e1/033n1tspC1PMkXX93PzltvnuBLd19z8Iky14VG7AZhP9UxboBw8w2yDB5kbv/lDbfFcAEdx9UmGSSBEn83iflO6/iUYfM7DTgv+7+atxZRETyScVDJGZmdj+wkrufEneWXCU5u6wYHfMQIPkbgYTn70xyx5lLcvZEf2/izq49jzpkZiMJn2mXuLPkysy+InwRN4o7S20kPb/EI8nfm7izJ/YXQ5EyEvqZuvsmSfwPVClp+c2siZndZ2abxp0lV0nOni5p35tUcWfXnkc9ZmYbErpkfuPu38SdJ1fFnt/MVq3m6RbAd4RB+94AcPf5hciVjSRnr4mZtQfc3b+NOUrOiil7In8lFysza2RmRXWWc5TpdjObbmZzzez6aPqdwFfASOArM3vMzBrEGjaDhOefU83tO8Ke6ssp04pJkrNjZr1STrKrnHaumf0C/Bf42sx+NrO/xJOwaknJrgPmWTKzswgjirYBPgfucPdH02bbgTA4YjFtxP4GnEo46Wg68FczW5Mwps+JwPvAHsCNwOnAXfHErFKS8y8gnDR6I+Es4VRNgTuA6wnnHBSbJGcHuBv4kHAyJmbWC7iFcOLgU9E8PYF/m9lMd388lpSZJSN73IOAJeEGHEUY/+Yx4ELCcAZLCf+Qq6TMtzOwNO68adknABelPN4jei/npc13JTA27ryllB9YB3icsBH4K9Ag5bnVo/ex3GCDxXBLcvYoY/rgghMIJ/amz/coYTj82DMnLbuarbJzIXCju//Z3W9090MJwwXsAZSb2RrxxqvWBsB7KY/HRffvpc33BuH6BsUmsfnd/Qd3P4Ywau7JwCdmtl/MsbKS5OxV2JhwTYx0A4EtC5wlV0WZXcUjO5sBQ1MnuPsoYBfCr7C3zWzjOIJlYR7hAGelRdEt/QBnA4qzGTPp+XH314EOwJ3A42Y2hPCdKnpJzg40MbNVo4P/0witBemWEsa7KjZFn13FIzuzCIMe/o67TwR2I+zav0W4alyx+YJw0RsA3H2Zu6/i7h+mzbcVMLGQwbKU9PzA/3LfCfwBmAy8TnFutJaT4Ozl/HZAvw2wU4Z5tiV0ACg2RZ+9KH+pFaFxhAO0T6U/4e4zzKxL9NztFN9/qpsJVx6ryd4U59DUSc//O+4+DTjDzG4HNgWK7trrVUlY9pMyTPsxw7SdCJdzLSaJyK7zPLJgZocThm0+yKu41nHUTfRuYB93zzSctYhIyVDxEBGRnOmYh4iI5EzFQ0REcqbiISIiOVPxEJG8M7O7zex7M4v9IKuZrWdmo8xsvJl9ZmbXm5nFnStpVDxEpBCeIIz9VgyWABe7+xbAHwnDCvWIN1LyqHjUA2Z2opmNM7M5ZjbDzD4ws5vjzpUNM7s8+sW6zMz6VzNfwd6jmR1hZidmOW8fM/OU2w9m9nQ2IxKYWX8zG7vCgeuABR+Z2Qlp01cys7Ojz3uBmc2Ofs3fnvpr3t1fc/efC5S12kzu/qO7j41y/Qp8DKyXsvydZvZgIbImmbrqljgz+ztwNWEE1HKgCWG4iWPdfZM4s9XEzDoCY4BLgQpgirv/N8N8BX2PZvYU0Nrdy7KYtw9wHrB/NGmjKGsDYCt3n1fNshsTBt6M/WQ8MzsSuAHY2N0Xp0x/kjDO203AO0AzwqgLnd29Y4b1uLvntYkol0zRuHQfAvu6+/hoWnvCYIRbu/tX+cyaaHGPIKlbfm/A98CdGaZb3NmyyH4s4Yz91YrpPRJGE6jIct4+wNS0aXtE7+vwKpZpADSO+/NPy/Qm0Ddt2gHR+zgg288+bHJyet2yXJbJJROwMuHHxgUZ5h0J3BT3517MNzVblb4WwE/pEz36HwJgZhXRr2lSppVFzSxbp0zrb2ZjzexAM/vczOab2Utm1srMNjGzcjObF82zbU3BouafT8xskZl9Z2Z9zaxh5WsRhpwGmBVlKavte0zLf4iZTTCzhWb2hpltmTZfTbkOAzqlNEX1qem9pqkcGbh9hlyfAQuBnTM1W5nZn6LPea6ZzYr+7f6YNs8eZjY6+veZZmb3m1nzlOe3MrNhFi6wNc/CgeOzqgprZpsQfrmnD8/TKbp/NX2Z9M++gLLKZGFEiMeAD9z9pgzreRr4s5lpG1kFfTCl733CBZROsLoZOn594CrgH0AvwkblPsLw0AMJF6lpCAxMbfNOZ2b7AoOifN2BfxOGvr8jmuVq4Jro772AXaN5M8nlPW5AGC/rauAYwqjIw82sSQ65yoEPoky7Ag/U8Jrp2kf3P6VNux74J9AVWO6yulHxHAUsBk4AjiQMUrhuyjy7R/P8RPi3OC9aX7+UVb1AGJH1WKBb9B6bU7UuhNGNP0qbXtnkdoOZbVDN8oWUbaZ7CYMOXlDF828BbYFt6jBbaYl710e3/N4II29+TdiVXwZ8Rtj4r5YyTwXwVNpyZdEyW6dM60/oqbJxyrTro/mOT5nWNZq2RTW53gHK06b9jbBRaxc9PjFaT7MVfY8p+R3YLWXaBtF7OiOHXDk3WxEKakPCyLTlhKv0rZ2Wa/sMecemPH4bGEs1zXGEYpKef6/Kf0vC6NAObJPDd+g+Mlx0CFiLcLDZo9unhONTy/17EQrs5Gi+ycADVbyWpXxWDQmFy9OmNawma42ZgN2j5z4hHO/4EDgnbT0No+/FaXH8v03CTXseJc7dPwa2IPzCvIvwn/P/gLFm1qwWq5zovz9oXXlA8dUM09Ylg6jJYAdgcNpTgwh7w7vmEijH9zjF3d9KWfZbQjPSTnWdK8UahL2FxYQh5jcCjnT31JFSv/flh5n/HzNrSuhS+rBHW7cM86waZXzSzBpW3ggXylpM6EQwnTCM9z1mdqSZtcki/1pEl0RN5e4/Ebq67kcYFLQF0Bd4y8wap817qru3c3eL7k+t4rVO4LfPajHh2ANp0xZnXjS7TO7+ZpRjG3ffPrrdnraeJcDM6L1LBioe9YC7L3L3F939bHffknBN8E2BU2qxuplpj3/NML1yWpMq1tEaaASkd92sfNwq11A5vMcpGRafAqydj1yRWYRrvXQE2gHt3f3lKl6jKi0JRTHT0Nyp8zQgFNDUDe0iwvtaz92XEXoi/QQ8BPxkZq+nHzdJ0yRax3Lcfam7j3D3vxCaNPsRmnpqW2hfJHxWlbczouk7pt2qVIeZFlH1d7je0/U86iF3f9DMrgc2jyYtBBqnzVbbDWU2phI2aum/ettG9xmHvc9FhvdYKdMv7TaEpq585Vri0XkF1ajpAPMMQpPc2tXMMzNaTx/SrnwZ+QHA3ScAh5lZI2BP4DrgJTNrFxWXdNPJ4he4uy8zsxGE61HUaqPr4Zoh0yofV+45ZvH55SNTC+rgu1iqtOdR4jI1S5jZmoQDxZW/diez/EZ2n3xlcvelhKaiw9OeOoKwgXw7l/Vl+R4rtTGz3VLmW5/QVPVeDrl+pcC/SD2cD/IucHxVHRGied4BNnP3sRluP6TNv9jdXyV0IFib31/uN9UXwO+uUWNmbauYtxvhEsHvRvOdaGYfRrdFUS+3Dy2c0Nkou3efnWwyZZsn+v6sCnxZlxlLifY8St8nZvY8MILQPLMBoffQfODhaJ5ngVPM7BbgJaAzoc04n64g9HLqR+iltQ2hJ9P97j45x3Vl8x4rTQUeNbP/AxYQDqxPIRyczjbXBKC7mR1CKLw/pG+Y8+QSwjGAl83sPkLPol0JB9WHRPP8DRhlZssIB/bnEJpuDgQuIxS9GwnHcb4mNHVdDHzkVVzojHCOx+Vmtqa7/xJNe9LM5gBPEi7/2wb4M6GH2mnuPhPA3fsD/aMur3OA3aO9i3zIJlO2eToS9uLeyvCcgHpblfoNOIuwUf2B0Dw1EXgc2Dxtvr8TDqTOAQYQfq1l6m01Nm25E0nrEUXoduqEKy9Wl+1IQo+XXwkb4b6k9KTJtO4VfI/9Cb2VehB+US4ibBi3zjFXa0LBnR7l61NNtj6knSSYYZ7lPtdqPu9OwGuEwjiT0HMrvZfWzsAwQo+uecDnhL2L1Qkb1EcJhWMh4djHE8D61eRrTGhKOi5l2snRa0yOPqfphB8eZVWsYzNgci2+v2VkeZJgLplqygPcRlqvNd1+f9PwJFJvRCf4be0Zhs2Q6pnZbcAm7n5gLZc/AjihtsvXteryRL3uvgUucfcBBQ+XEDrmISLZuAEoM7M/1HL57QjnXxSL6vIcTmjSHFi4OMmj4iEiNfJwvOcUqu/tVZ1tWf4M9ThVl8eAUzyc6yFVULOViOSdmU0C9vNo5Nq4FVueJFLxEJG8MrOWhM4MzTx0h1aeEqDiISIiOdMxDxERyZmKh4iI5EzFQ0REcqbiISIiOVPxEBGRnKl4iIhIzlQ8REQkZyoeIiKSs/8HeWdfG5FOq/QAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -317,7 +319,7 @@ "text": [ "state qubits: 5\n", "circuit width: 11\n", - "circuit depth: 184\n" + "circuit depth: 398\n" ] } ], @@ -435,7 +437,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHjRJREFUeJzt3Xm0XGWd7vHvwyCEKcyBRpoIDhFalleOCH1pOZE53CuDaLLQ2ys2GvWq0L3QBhEhoM0y2AK6aBewtMPltiZ0A81thhDCcAJhUIMEsZOAQQMyiGIfEmMgAvndP94d3NmnTtWuOlW7UsXzWatWVb373W+9+02lfmfvd9iKCMzMzDpts25XwMzM3hgccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY1aHpJmShrLXQ5JmNrn/oKQoljVK3pslPVpn++WShiVtVfKz3yopJB3bTJ3NOsUBx2zTMQf4C0kHFDdI2hw4BbghItZVXjOzNnDAMdt0/D9gLTCtxrbJwARSUDLrSQ44Zi2SdKik/5D0rKQ/SFoi6aOtlhcRa4Cbgak1Nk8Dngfuzj57L0mzJf1S0kuSHpd0gaQt69R3i+wS26cL6V+T9OtC2j6Srs0u4a2VNE/S21o9NjOALbpdAbNNWUTMzL0eLGzeB7gPuAJ4GfjvwGxJ6yNiTrbPEKBiWXXMAT4i6aCIeAggCyInAd+PiNeyfLsBLwB/C7wITALOB3YFPtvkYW5E0q7ZcT0PzMiO7RxggaR3+JKetcoBx6xFETF3w2tJAu4B3gx8ktYvfc0jBZBpwENZ2jHAzvkyI2IJsCT3+fcBLwFXSDojIl5t8fMBzgS2Ao6IiBez8u8HVgLTgSvHULa9gfmSmlmLJO0k6duSngReyR4zgLe3WmZ29vDvpLMcZclTgSeBB3OfvZmkMyUtk/RS9tn/BxhHCnpjcSQwH1iTXYbbAlgF/AQYGGPZ9gbmgGPWuqtJweAbwNHAe4F/BrYeY7lzgD8HDpW0NXACMCc2Xtr9TGAW8G/AB4GDgdOzbWP9/F2Bj/KnILrh8X5g7zGWbW9gvqRm1oIsEBwPfC4irsilt+OPuLtI/SfTgD2B7Rl5ie7DwNyIOC/32Qc2KPc14FXgTYX0nQvv/wt4GLioRhmrG3yG2agccMxasxWwOfB6B7qk7UlnG2O6yVREvCbp30hBZS9gWUT8tJBtXP6zM3VHyEVESHoGeGeuzpsDHyhkvZN0VvWoBwhYOzngmLUgIlZJ+jFwnqTVwHrgbFJfxw5t+Ig5wOdIo9POq7F9AfAZSYuBXwB/DUwsUe6/AzMkPULqF/oksE0hzz8CpwJ3SboceBbYAzgcGIqIf236aMxwwDEbi1OBq4BrgN8Bl5N+vD/XhrIfII0KmwjMrbH9fGAX0mWvAK4D/g64sUG555H6aC4C/gh8G1gKfGJDhoj4jaRDgH8ALgN2BJ4D7gVGXXrHrBFVfYtpSW8FvggcAvwFcG+N+Q219htP+vKfSBrscDNwekT8rpDvBOBrwNtIf/ldEBHXtvMYzMysed0YpXYAMAV4PHuUdS0wSPpLbDppRNBGf81JOgy4njQb+zjgFmCOpKPHWmkzMxubbpzhbBYR67PX1wG7NjrDkXQocD9weETck6UdDPwQOCoi7sjS5gNbRsQHcvveCuwQEYd14njMzKycys9wNgSbJh0HPL8h2GTl/Aj4ZbaNbMn2yUCxQ3MuaT7D+NZqbGZm7dArEz8nActrpC/LtgHsB2xZI98y0nG2PPvbzMzGrldGqe1EWl+qaBjYN5eHGvmGC9s3ImkGaTkSxo0bd9Dee7dnIvX69evZbLNeiefd43Yqx+1UjtupnHa20+OPP/5CROxWJm+vBByoPZlONdKL7zVKekqMuIo0tJWBgYFYvHjxWOr4uqGhIQYHB9tSVj9zO5XjdirH7VROO9spW0uwlF75U2CYNBegaEf+dEYznEsr5oHaZ0hmZlaRXgk4y/lTX01evm/nCdICg8V8k0izwJsZgm1mZm3WK5fU5gFfkXRYRCwCkDRA6r+ZB2lZd0l3k9afyt+vYyrwQESsqrjO1icmnn1L3e0rv358RTUx622VBxxJ25AmfkJamHAHSadk72+NiLWSVgALI+I0gIh4IJtjc42kL5DOWGYBizbMwcl8FRiSdBlpUuiU7HFsxw/MzMzq6sYZzu6ke3jkbXj/FtL6UVuQVuLNmwZcSrrfyOtL2+QzRMSiLHh9DfgMaZ7OqRFxexvrb2ZmLag84ETESv40cmy0PBNrpL0IfDx71Nv3RhovYGhmZhXrlUEDZmbW4xxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJ+0u6U9JaSc9KulDS5g32mSkpRnl8KZfv6lHyTOr8kZmZWT1bVPlhknYC7gCWAicA+wHfJAW+c+vs+l3gtkLaicBZwLxC+nLg44W0la3V2MzM2qXSgAN8GhgHnBwRq4EFknYAZkq6OEsbISKeBp7Op0n6CrA8IpYUsv8hIh7sQN3NzGwMqr6kdhwwvxBY5pKC0OFlC5G0M3AUMKe91TMzs06pOuBMIl3yel1EPAWszbaVdQqwJSlYFe0vabWkdZIWSSodyMzMrHMUEdV9mPQK8MWIuKyQ/jRwTUScU7Kcu4DxEXFQIf0M4I+kPqLdgDOBg4DDIuJHo5Q1A5gBMGHChIPmzq0Vw5q3Zs0atttuu7aU1c96oZ0efWZV3e3v2mt8x+vQC+20KXA7ldPOdpo8efJDETFQJm/VfTgAtSKcRkkfmVHak3T57awRBUd8q5D3FlLwOYc0yGBkZSKuAq4CGBgYiMHBwTLVaGhoaIh2ldXPeqGdpp99S93tKz862PE69EI7bQrcTuV0q52qvqQ2DOxYI3088GLJMj5CClDXNsoYES8BtwLvKVtBMzPrjKoDznIKfTWS9ga2pdC3U8c0YFFE/KqJz63uuqGZmdVUdcCZBxwjaftc2lTgJWBho50lTQQOoeToNEnjSCPjHmq2omZm1l5VB5wrgHXADZKOzDrsZwKX5IdKS1oh6Xs19p8GvApcV9wgabykeyV9StIRkqYCdwN7ARd14FjMzKwJlQ4aiIhhSUcAlwM3kfptLiUFnWK9ai13Mw24MyJ+W2PbOuC3pBULdgdeBh4ADo+IxW05ADMza1nlo9QiYinwgQZ5Jo6S/u46+7wMnDymypmZWcd4tWgzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq0RTAUdSreVmzMzMGmr2DOcZSRdLemdHamNmZn2r2YBzJXAK8DNJP5Q0Q9IOHaiXmZn1maYCTkScHxH7AkcBjwGXAM9J+r6kIztRQTMz6w8tDRqIiLsi4q+BPYDPA+8A5ktaKWmmpD9rZyXNzKz3jXWU2gDwftJto4eBe4FPACskfWyMZZuZWR9pOuBI2kfS+ZKeAO4E9gT+BviziPhfwD6kvp5vtLWmZmbW05q6AZuku0hnNE8DVwOzI+LJfJ6IeE3SD4Az2lVJMzPrfc3e8fMFYAqwICKiTr4lwFtarpWZmfWdZi+pXQ7cXyvYSNpO0vsBIuKV4pmPmZm9sTUbcO4G9h9l2zuy7WZmZiM0G3BUZ9t2wNox1MXMzPpYwz6c7DLZYC7pE5KOLWTbGjgeeLR9VTMzs35SZtDA+0iTOwEC+DDwaiHPH4HlwBfbVzUzM+snDQNORHyDbE6NpF8CJ0XEkk5XzMzM+ktTw6IjwkOdzcysJWX6cKYAiyJidfa6roi4tS01MzOzvlLmDOdm4BDgR9nrYPTRagH4Jm1mZjZCmYDzFuC53GszM7OmlRk08GSt12ZmZs0o04ezTTMFRoQnf5qZ2QhlLqmtIfXNlOU+HDMzG6FMwPkbmgs4ZmZmI5Tpw7m6gnqYmVmfG+stps3MzEopM2jgR8D0iFgq6cc0uLwWEQe3q3JmZtY/yvTh/CfwUu61+3PMzKxpZfpwPp57Pb2jtTEzs77Vch+Okt0k1bspm5mZGdBCwJE0RdL9wMvAr4GXJd0v6fi2187MzPpGUwFH0qeAm0iTQc8g3YztjOz9f2TbzczMRmjqfjjAOcBVEfGZQvoVkq4Avgxc2ZaamZlZX2n2ktouwA2jbLse2LlRAZL2l3SnpLWSnpV0oaS6y+FImigpajzm1sh7gqRHJb0saamkqaWOzMzMOqrZM5y7gcOBBTW2HQ7cU29nSTsBdwBLgROA/YBvkgLfuSU+/wvAfbn3LxTKP4wU+L4DnA5MAeZIGo6I20uUb2ZmHVJm4uf+ubffBr4raRfgRuA3wO7AScBxwCcaFPdpYBxwckSsBhZI2gGYKeniLK2exyLiwTrbvwLcExGnZ+/vlnQAcB7ggGNm1kVlznB+xsaTPQV8KnsU7/55G/VXiz4OmF8ILHOBWaQzpJtK1KcmSVsBk0lnNnlzgdmSxkfEqlbLNzOzsSkTcCa38fMmAXflEyLiKUlrs22NAs5sSTuTzqzmAF+OiA2rIOwHbAksL+yzjHTJ7u3Aj8dWfTMza1WZlQYWtvHzdgJerJE+nG0bzTrgn0iXxVYDg8BZpCBzQq5sapQ/XNi+EUkzgBkAEyZMYGhoqF79S1uzZk3byupnvdBOZ77r1brbq6h/L7TTpsDtVE632qnZQQOvk7QZsHUxvcQdP2utxaZR0jeU+RzwuVzSkKTnge9IendELKlTvkZJ31D2VcBVAAMDAzE4OFi/9iUNDQ3RrrL6WS+00/Szb6m7feVHBzteh15op02B26mcbrVTsxM/JeksSSuAV4Df13jUMwzsWCN9PLXPfOq5Lnt+T65sapS/4X2z5ZuZWRs1Ow/ndOBs4HukM4d/AC4EHgdWkl2aqmM5qa/mdZL2BrZlZN9LI1F4foIUBCcV8k0C1md1NDOzLmk24HwSOB+4OHt/Y0RcABxAChhva7D/POAYSdvn0qaSbn/QbF/RKdnzQwARsY40T+jDhXxTgQc8Qs3MrLua7cN5C7AkIl6T9ArZ5aqIWC/pO8B3SWdAo7mCdJZ0g6RZwL7ATOCS/FDp7JLdwog4LXs/E9ieNOlzNfB+4IvADRHx01z5XyX171xGmic0JXsc2+RxmplZmzV7hvM7YLvs9VPAf8tt24k0qXNUETEMHEGaq3MTcAFwKemsKW8LNp7Ps5w0T2c2cCtwKvCN7Dlf/iLSmc+RwHzgg8CpXmXAzKz7mj3DuQ94L+lH/wekFQJ2Bv4IfBa4s1EBEbEU+ECDPBML7+eSJnA2FBE3ks5uzMxsE9JswJkJ7JW9voh0SW066cxmAfD5dlXMzMz6S1MBJyIeAx7LXq8j3QvnjA7Uy8zM+sxYJn6+GdgTeDYinmlflczMrB+1covpz0j6FfAk8EPgKUlPS/rfba+dmZn1jWZXGjgPuJw0n+Z4YCB7ngd8O9tuZmY2QrOX1D4LXBQRXymk35atbfZZ0soDZmZmG2n2kto4Rr+r50JqLOZpZmYGzQecG4GTR9n2IeDmsVXHzMz6VZlbTE/JvZ0HXCxpIiNvMX0A8Pftr6KZmfWDMn04NzPyVtJ7AcfUyPsvpDtxmpmZbaRMwHlLx2thZmZ9r8wtpp+soiJmZtbfml5pQNIWpAEChwE7A/8F3Eu6VUD9m7+bmdkbVlMBR9LuwO3AgaQ7fD4PHEqaf/OIpKMj4rftrqSZmfW+ZodFXwLsArwvIvaNiEMjYl/gfVn6Je2uoJmZ9YdmA84U4KyI+HE+MXv/JdIyN2ZmZiM0G3C2An4/yrbfA28aW3XMzKxfNRtwHgTOkrRtPjF7f1a23czMbIRmR6mdCdwN/ErS7aRBA7uTJoEKGGxr7czMrG80dYYTEUuAtwFXAbsBR5ECzhXA2yLikbbX0MzM+kLpMxxJWwIHA7+MiLM7VyUzM+tHzZzhvAbcBbyzQ3UxM7M+VjrgRMR64OfAhM5Vx8zM+lWzo9S+DJwn6V2dqIyZmfWvZkepnUtaUWCJpGdIo9QinyEiDm5T3czMrI80G3B+lj3MzMyaUirgSBpHWtbmZ8CvgTsi4vlOVszMzPpLmVtM7wvcAUzMJa+W9JGIuL1TFTMzs/5SZtDAxcB64K+AbYADgIeBKztYLzMz6zNlAs6hwLkRcV9EvBwRy4BPAX8uac/OVs/MzPpFmYCzJ/CLQtoTpLXT9mh7jczMrC+VnYcTjbOYmZmNruyw6PmSXq2RfmcxPSJ2H3u1zMys35QJOBd0vBZmZtb3GgaciHDAMTOzMWt2LTUzM7OWOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzBPu+VNFvSimy/xySdL2nrQr6ZkqLG49jOHpWZmTXS7A3YxkTSTqRbHSwFTgD2A75JCnzn1tl1apZ3FvBz4EDgq9nzhwp5VwHFALNsrHU3M7OxqTTgAJ8GxgEnR8RqYIGkHYCZki7O0mqZFRG/zb0fkvQycKWkfSLiydy2VyPiwc5U38zMWlX1JbXjgPmFwDKXFIQOH22nQrDZ4OHs2Wu3mZn1gKoDziRgeT4hIp4C1mbbmvGXpBvDPVZI31HSC5JekfSwpJNbrq2ZmbWNIqq784CkV4AvRsRlhfSngWsi4pyS5ewB/BS4NSKm59I/RjrjWQJsR7pR3BTgQxFxwyhlzQBmAEyYMOGguXPnNntYNa1Zs4btttuuLWX1s15op0efWVV3+7v2Gt/xOvRCO20K3E7ltLOdJk+e/FBEDJTJ242A84WI+FYh/Rng6oj4coky3kQaePBm4KCIGK6TV8D9wLiIeHejsgcGBmLx4sWNspUyNDTE4OBgW8rqZ73QThPPvqXu9pVfP77jdeiFdtoUuJ3KaWc7SSodcKq+pDYM7FgjfTzwYqOdswByDXAAMKVesAGIFE1vAA5sNPTazMw6q+pRassp9NVI2hvYlkLfziguJQ2nPioiyuTfwHcsNTPrsqrPcOYBx0jaPpc2FXgJWFhvR0lfAj4PfCwiFpX5sOyM6CTgkYh4rbUqm5lZO1R9hnMFcDpwg6RZwL7ATOCS/FBpSSuAhRFxWvb+VOAi4GrgGUmH5Mp8YsOwaUkLgetJZ0vbAp8EDgFO7OxhmZlZI5UGnIgYlnQEcDlwE6nf5lJS0CnWK9/ncnT2PD175H2cFIgAVgB/C+xJGjL9E+D4iJjXjvqbmVnrqj7DISKWAh9okGdi4f10RgaaWvudNoaqmZlZB3m1aDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaX9Jd0paK+lZSRdK2rzEfuMlzZY0LGmVpO9L2qVGvhMkPSrpZUlLJU3tzJGYmVkzKg04knYC7gACOAG4EDgTuKDE7tcCg8AngOnAe4EbC+UfBlwP3A0cB9wCzJF0dFsOwMzMWrZFxZ/3aWAccHJErAYWSNoBmCnp4ixtBEmHAscAh0fEPVnaM8APJR0ZEXdkWb8C3BMRp2fv75Z0AHAecHvnDsvMzBqpOuAcB8wvBJa5wCzgcOCmOvs9vyHYAETEjyT9Mtt2h6StgMnA6YV95wKzJY2PiFVtOg7rooln39Iwz8qvH19BTcysGVUHnEnAXfmEiHhK0tps22gBZxKwvEb6smwbwH7AljXyLSNdOnw78OPWqm1lOBC0T7Etz3zXq0zPpbkdrRdVHXB2Al6skT6cbWtlv31zeaiRb7iwfSOSZgAzsrdrJD1Wpx7N2BV4oU1l9Q3NGpHUkXaq8TkdU8VnnV5opyqPr8f4/1057WynfcpmrDrgQBowUKRR0lvZr/hedfYnIq4Crmrw2U2TtDgiBtpdbr9xO5XjdirH7VROt9qp6mHRw8CONdLHU/sMptF+O+b2G86lFfPQoHwzM+uwqgPOcv7U5wKApL2BbandRzPqfpl8384TwCs18k0C1gOPt1BfMzNrk6oDzjzgGEnb59KmAi8BCxvst0c2zwYASQOk/pt5ABGxjjT/5sOFfacCD3RhhFrbL9P1KbdTOW6nctxO5XSlnRTRqOukjR+WJn4uBX5GGgq9L3AJcFlEnJvLtwJYGBGn5dJuI400+wLpjGUW8JuI+KtcnsOAIeBy0qTQKVn+YyPC83DMzLqo0jOciBgGjgA2Jw2BvgC4FDi/kHWLLE/eNNJZ0D8D1wAPAScVyl8EnAIcCcwHPgic6mBjZtZ9lZ7hmJnZG5dXi27Ai4021kobSXpv1j4rsv0ek3S+pK0L+WZKihqPYzt7VO3XYjtNHOX459bI2/PfJWi5nUb7noSkL+XyXT1KnlqDkjZpkt4q6UpJj0h6TdJQyf269tvUjXk4PSO32OhS0mKj+wHfJAXqc+vsCmmx0XeQFhvd0Od0I1Dsc7oe+A5pSZ4ppMVGh3vlMuAY2mhqlncW8HPgQOCr2fOHCnlXAcUAs2ysda/SGL9LkPoi78u932jSXj98l2BM7fRd4LZC2onAWWQDi3KWAx8vpK1srcZddQDp3/lB4E1N7Ne936aI8GOUB/Al0vyeHXJpfw+szafV2O9Q0kTT9+fSDs7SjsylzQfuKux7K7Co28deQRvtViNtRtZG++TSZgIvdPs4u9hOE7M2+R8Nyu/579JY2mmUsm4BlhXSrgYWd/s429RWm+VeXwcMldinq79NvqRW32iLjY4jLTZab78Ri40CGxYbJbfY6L8W9p0LHCpp/NirX4mW2igiflsj+eHseff2VW+T0ep3qaE++i5Bm9pJ0s7AUcCc9lZv0xER61vYrau/TQ449Y1YNDQiniL9tVXvmm+7FhvtBa22US1/STrFL65nt6OkFyS9IulhSSe3XNvuGWs7zc6u0z8n6RJJ43Lb+uW7BO37Pp1CapMRfV3A/pJWS1onaZGkMQX8HtPV3yYHnPo6sdjoTrk81MhXd7HRTVCrbbQRSXsAXwb+b+Gv2xWkSyofIfXtPAtc34NBp9V2Wgf8E3AaaUrBlcBn2PiHtF++S9Cm7xNpGsVPIqK4wsjDpJs+/k/go6TpFwskHdxCXXtRV3+bPGigsU1qsdFNVKttlDJKbyKdvq8B/m6jgiP+pZD3JuB+0k31bmilsl3UdDtFxHPA53JJQ5KeB74j6d0RsaRO+b34XYKxf5/2JF1+O2tEwRHfKuS9hTRA4RzSIIM3gq79NvkMpz4vNtpYq20EgCSRJvIeAEyJNDl4VJF6L28ADiwzPH0TMqZ2Krgue35PrmxqlN9r3yVoTzt9hPTjeG2jjBHxEqkz/D2N8vaJrv42OeDU58VGG2u1jTa4lDT89YSIKJN/g177q32s7ZQXhed++S5Be9ppGmk01a+a+Nxe+z61qqu/TQ449b2RFhttVattRDYh7/PAxyItS9RQdkZ0EvBIRLzWWpW7ouV2quGU7Pkh6KvvEoyxnSRNBA6h5Oi0bPDFcWRt+QbQ3d+mbo8l35QfpM6x54AFpPXZZpD6Gb5WyLcC+F4h7TbgF8DJpGvDjwH3FvIcBrwKXAYMAheT/oI4utvH3uk2Ak4l/VU5m/QDkX/slsu3kDTx7GhSoLk1a6MPdvvYK2qnmaSJjydn+11I+vG9vt++S2Npp1z62aS/zmvN8xoP3At8ijQAYypp0uQ6YKDbx95CW21D+uPjFOAB4D9z77cZrZ26+dvU9Ubb1B/A/sBd2X/y50iz4Tcv5FkJXF1I2zH7MX0RWA38ANi1RvknklbPXkc6pZ3W7WOuoo1IE/BilMf0XL7vZf85XgL+kP1gHNftY66wnaYBi0mrLfwx+wG5ENiqH79LrbZTLn0JcNso5W5N6v/7VdZGq7If30O6fcwtttPEOv+HJo7WTt38bfLinWZmVgn34ZiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSvx/kIORc9agYsAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAeJUlEQVR4nO3de7QcZZ3u8e/DRQi3AAKBQYYAohEGlke2CHMY2eFOOMdARJMFnllx0ABHhZmFDlchoMMyOAK6GBawdMLhjCbMAMMZLiGEyw6EixokCJMEDBqQiyjOJjEmRCC/88dbgUqld3d1767e6Z3ns1av7n7rrbffetPp3656L6WIwMzMrN02GeoKmJnZ8OQAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYszokTZXUl73ukzS1yf17JUWxrAHy3inp6Trbr5HUL2mLkp/9QUkh6bhm6mzWLg4wZhuOGcBfSNq/uEHSpsDJwG0RsbrjNTNrgQOM2Ybj/wErgUk1to0FRpGCkFlXcIAxa5GkQyX9h6RXJP1R0gJJp7ZaXkSsAO4EJtbYPAl4DXgw++zdJU2X9CtJqyQ9J+lSSZvXqe9m2SWzMwrp35T0m0LanpJuzi7JrZQ0S9K+rR6bbZw2G+oKmG3IImJq7nVvYfOewCPAdcCbwH8HpktaExEzsn36ABXLqmMG8FlJB0XEEwBZ0DgJ+GFEvJPl2xl4Hfhb4A1gDHAJsBPwpSYPcx2SdsqO6zVgSnZsFwBzJH3Yl+isLAcYsxZFxMy1ryUJeAj4APBFWr+UNYsUMCYBT2RpxwI75suMiAXAgtznPwKsAq6TdHZEvN3i5wOcA2wBHBkRb2TlPwosBSYD1w+ibNuI+BKZWYsk7SDpe5JeAN7KHlOAD7VaZnZ28O+ksxhlyROBF4DHc5+9iaRzJC2StCr77P8DjCAFucE4CpgNrMguq20GLAN+BvQMsmzbiDjAmLXuRtKP/7eBY4CPA/8MbDnIcmcAfw4cKmlLYDwwI9Zd+vwcYBrwb8CngIOBs7Jtg/38nYBTeS9orn18EthjkGXbRsSXyMxakP3wnwB8OSKuy6W344+2B0j9H5OA3YBtWf+S22eAmRFxce6zD2xQ7jvA28D7Cuk7Ft7/F/AkcHmNMpY3+AyzdznAmLVmC2BT4N0Ob0nbks4mBnWTpYh4R9K/kYLI7sCiiPh5IduI/Gdn6o5gi4iQ9DLwkVydNwWOKGS9n3TW9LQ79G0wHGDMWhARyyT9FLhY0nJgDXAeqa9iuzZ8xAzgy6TRYxfX2D4HOFPSfOCXwF8Do0uU++/AFElPkfp1vghsVcjzj8ApwAOSrgFeAXYFDgf6IuJfmz4a2yg5wJi17hTgBuAm4PfANaQf6y+3oezHSKO2RgMza2y/BHg/6TJWALcAfwfc3qDci0l9LJcDfwK+BywEvrA2Q0T8VtIhwD8AVwPbA68CDwMDLmVjVqRO3zJZ0geBrwGHAH8BPFxjfkGt/UaSvuwnkgYn3AmcFRG/L+QbD3wT2Jf0l92lEXFzO4/BzMwaG4pRZPsD44DnskdZNwO9pL+0JpNG7Kzz15qkw4BbSbOdjwfuAmZIOmawlTYzs+YMxRnMJhGxJnt9C7BTozMYSYcCjwKHR8RDWdrBwI+BoyPivixtNrB5RByR2/duYLuIOKyK4zEzs9o6fgazNrg06XjgtbXBJSvnJ8Cvsm1kS5iPBYodkDNJ8wlGtlZjMzNrRbdMtBwDLK6RvijbBrAPsHmNfItIx9ny7GozM2tet4wi24G0PlNRP7B3Lg818vUXtq9D0hTS8h6MGDHioD32aM9E5TVr1rDJJt0Sv4eO26kct1M5bqdy2tlOzz333OsRsXOtbd0SYKD25DXVSC++1wDpKTHiBtJQU3p6emL+/PmDqeO7+vr66O3tbUtZw5nbqRy3Uzlup3La2U7ZWnw1dUuo7yeNxS/anvfOWPpzacU8UPsMyMzMKtItAWYx7/W15OX7Zp4nLchXzDeGNMu6mSHRZmY2SN1yiWwW8HVJh0XEPABJPaT+l1mQljmX9CBp/ab8/SomAo9FxLIO19mGidHn3VV3+9JvndChmph1l44HGElbkSZaQlrIbztJJ2fv746IlZKWAHMj4jSAiHgsm+Nyk6Svks5IpgHz1s6ByXwD6JN0NWkS5rjscVzlB2ZmZusYijOYXUj3sMhb+34v0vpLm5FWqs2bBFxFut/Gu0vF5DNExLwsWH0TOJM0T+aUiLi3jfU3M7MSOh5gImIp743sGijP6BppbwCfzx719r2dxgv+mZlZxbqlk9/MzLqMA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVouMBRtJ+ku6XtFLSK5Iuk7Rpg32mSooBHufn8t04QJ4x1R+ZmZnlbdbJD5O0A3AfsBAYD+wDfIcU6C6qs+v3gXsKaScC5wKzCumLgc8X0pa2VmMzM2tVRwMMcAYwApgQEcuBOZK2A6ZKuiJLW09EvAS8lE+T9HVgcUQsKGT/Y0Q8XkHdzcysCZ2+RHY8MLsQSGaSgs7hZQuRtCNwNDCjvdUzM7N26XSAGUO6hPWuiHgRWJltK+tkYHNScCraT9JySaslzZNUOnCZmVn7KCI692HSW8DXIuLqQvpLwE0RcUHJch4ARkbEQYX0s4E/kfp4dgbOAQ4CDouInwxQ1hRgCsCoUaMOmjmzVsxq3ooVK9hmm23aUtZw1g3t9PTLy+puP2D3kZXXoRvaaUPgdiqnne00duzYJyKip9a2TvfBANSKaBogff2M0m6ky2nnrldwxHcLee8iBZsLSIMC1q9MxA3ADQA9PT3R29tbphoN9fX10a6yhrNuaKfJ591Vd/vSU3srr0M3tNOGwO1UTqfaqdOXyPqB7WukjwTeKFnGZ0kB6eZGGSNiFXA38LGyFTQzs/bodIBZTKGvRdIewNYU+mbqmATMi4hfN/G5nbsOaGZmQOcDzCzgWEnb5tImAquAuY12ljQaOISSo8ckjSCNXHui2YqamdngdDrAXAesBm6TdFTWwT4VuDI/dFnSEkk/qLH/JOBt4JbiBkkjJT0s6XRJR0qaCDwI7A5cXsGxmJlZHR3t5I+IfklHAtcAd5D6Xa4iBZlivWotHzMJuD8ifldj22rgd6QVAXYB3gQeAw6PiPltOQAzMyut46PIImIhcESDPKMHSP9onX3eBCYMqnJmZtY2Xk3ZzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrRVICRVGv5FjMzs/U0ewbzsqQrJH2kktqYmdmw0WyAuR44GXhG0o8lTZG0XQX1MjOzLtdUgImISyJib+Bo4FngSuBVST+UdFQVFTQzs+7UUid/RDwQEX8N7Ap8BfgwMFvSUklTJf1ZOytpZmbdZ7CjyHqAT5Jug9wPPAx8AVgi6XODLNvMzLpY0wFG0p6SLpH0PHA/sBvwN8CfRcT/AvYk9dV8u601NTOzrtLUDcckPUA6Y3kJuBGYHhEv5PNExDuSfgSc3a5KmplZ92n2jpavA+OAORERdfItAPZquVZmZtb1mr1Edg3waK3gImkbSZ8EiIi3imc2Zma2cWk2wDwI7DfAtg9n283MzJoOMKqzbRtg5SDqYmZmw0jDPpjssldvLukLko4rZNsSOAF4un1VMzOzblamk/8TpMmUAAF8Bni7kOdPwGLga+2rmpmZdbOGASYivk02p0XSr4CTImJB1RUzM7Pu1tQw5Yjw0GMzMyulTB/MOGBeRCzPXtcVEXe3pWZmZtbVypzB3AkcAvwkex0MPJosAN+UzMzMSgWYvYBXc6/NzMwaKtPJ/0Kt12ZmZvWU6YPZqpkCI8KTLc3MrNQlshWkvpWy3AdjZmalAszf0FyAMTMzK9UHc2MH6mFmZsPMYG+ZbGZmVlOZTv6fAJMjYqGkn9LgcllEHNyuypmZWfcq0wfzn8Cq3Gv3x5iZWUNl+mA+n3s9udLamJnZsNFyH4ySnSXVuwmZmZltpJoOMJLGSXoUeBP4DfCmpEclndD22pmZWddqKsBIOh24gzT58mzSzcfOzt7/R7bdzMysufvBABcAN0TEmYX06yRdB1wIXN+WmpmZWVdr9hLZ+4HbBth2K7BjowIk7SfpfkkrJb0i6TJJdZeXkTRaUtR4zKyRd7ykpyW9KWmhpImljszMzNqq2TOYB4HDgTk1th0OPFRvZ0k7APcBC4HxwD7Ad0iB7qISn/9V4JHc+9cL5R9GCnTXAmcB44AZkvoj4t4S5ZuZWZuUmWi5X+7t94DvS3o/cDvwW2AX4CTgeOALDYo7AxgBTIiI5cAcSdsBUyVdkaXV82xEPF5n+9eBhyLirOz9g5L2By4GHGDMzDqozBnMM6w7uVLA6dmjeHfLe6i/mvLxwOxCIJkJTCOdAd1Roj41SdoCGEs6c8mbCUyXNDIilrVavpmZNadMgBnbxs8bAzyQT4iIFyWtzLY1CjDTJe1IOnOaAVwYEWtXGdgH2BxYXNhnEekS3IeAnw6u+mZmVlaZmfxz2/h5OwBv1Ejvz7YNZDXwT6TLXMuBXuBcUlAZnyubGuX3F7avQ9IUYArAqFGj6Ovrq1f/0lasWNG2soazbmincw54u+72TtS/G9ppQ+B2KqdT7dRsJ/+7JG0CbFlML3FHy1prmWmA9LVlvgp8OZfUJ+k14FpJH42IBXXK1wDpa8u+AbgBoKenJ3p7e+vXvqS+vj7aVdZw1g3tNPm8u+puX3pqb+V16IZ22hC4ncrpVDs1O9FSks6VtAR4C/hDjUc9/cD2NdJHUvvMpp5bsueP5cqmRvlr3zdbvpmZDUKz82DOAs4DfkA6M/gH4DLgOWAp2aWmOhaT+lreJWkPYGvW7ztpJArPz5OC3phCvjHAmqyOZmbWIc0GmC8ClwBXZO9vj4hLgf1JAWLfBvvPAo6VtG0ubSLpdgDN9vWcnD0/ARARq0nzdD5TyDcReMwjyMzMOqvZPpi9gAUR8Y6kt8guP0XEGknXAt8nneEM5DrSWdBtkqYBewNTgSvzQ5ezS3BzI+K07P1UYFvSJMvlwCeBrwG3RcTPc+V/g9Q/czVpns647HFck8dpZmaD1OwZzO+BbbLXLwL/LbdtB9IkygFFRD9wJGmuzB3ApcBVpLOivM1Ydz7NYtI8menA3cApwLez53z580hnNkcBs4FPAad4Fr+ZWec1ewbzCPBx0o/8j0gz8HcE/gR8Cbi/UQERsRA4okGe0YX3M0kTJhuKiNtJZy9mZjaEmg0wU4Hds9eXky6RTSaducwBvtKuipmZWXdrKsBExLPAs9nr1aR7wZxdQb3MzKzLDWai5QeA3YBXIuLl9lXJzMyGg1ZumXympF8DLwA/Bl6U9JKk/9322pmZWddqdib/xcA1pPksJwA92fMs4HvZdjMzs6YvkX0JuDwivl5IvydbG+xLpJn9Zma2kWv2EtkIBr5r5VxqLH5pZmYbp2YDzO3AhAG2fRq4c3DVMTOz4aLMLZPH5d7OAq6QNJr1b5m8P/D37a+imZl1ozJ9MHey/q2RdweOrZH3X0h3mjQzs41cmQCzV+W1MDOzYafMLZNf6ERFzMxseGl6Jr+kzUgd+ocBOwL/BTxMWjq//s3Lzcxso9FUgJG0C3AvcCDpDpavAYeS5r88JemYiPhduytpZmbdp9lhylcC7wc+ERF7R8ShEbE38Iks/cp2V9DMzLpTswFmHHBuRPw0n5i9P5+0bIyZmVnTAWYL4A8DbPsD8L7BVcfMzIaLZgPM48C5krbOJ2bvz822m5mZNT2K7BzgQeDXku4ldfLvQpp0KaC3rbUzM7Ou1dQZTEQsAPYFbgB2Bo4mBZjrgH0j4qm219DMzLpS6TMYSZsDBwO/iojzqquSmZkNB82cwbwDPAB8pKK6mJnZMFI6wETEGuAXwKjqqmNmZsNFs6PILgQulnRAFZUxM7Pho9lRZBeRZuwvkPQyaRRZ5DNExMFtqpuZmXWxZgPMM9nDzMysrlIBRtII0jIxzwC/Ae6LiNeqrJiZmXW3MrdM3hu4DxidS14u6bMRcW9VFTMzs+5WppP/CmAN8FfAVsD+wJPA9RXWy8zMulyZAHMocFFEPBIRb0bEIuB04M8l7VZt9czMrFuVCTC7Ab8spD1PWnts17bXyMzMhoWy82CicRYzM7P3lB2mPFvS2zXS7y+mR8Qug6+WmZl1uzIB5tLKa2FmZsNOwwATEQ4wZmbWtGbXIjMzMyvFAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIdDzCS9pN0v6SVkl6RdJmkTRvs83FJ0yUtyfZ7VtIlkrYs5JsqKWo8jqv2qMzMrKjZG44NiqQdSEv/LwTGA/sA3yEFuovq7DoxyzsN+AVwIPCN7PnThbzLgGJAWTTYupuZWXM6GmCAM4ARwISIWA7MkbQdMFXSFVlaLdMi4ne5932S3gSul7RnRLyQ2/Z2RDxeTfXNzKysTl8iOx6YXQgkM0lB5/CBdioEl7WezJ699pmZ2Qao0wFmDLA4nxARLwIrs23N+EvSjdCeLaRvL+l1SW9JelLShJZra2ZmLVNE51bil/QW8LWIuLqQ/hJwU0RcULKcXYGfA3dHxORc+udIZzQLgG1IN0YbB3w6Im4boKwpwBSAUaNGHTRz5sxmD6umFStWsM0227SlrOGsG9rp6ZeX1d1+wO4jK69DN7TThsDtVE4722ns2LFPRERPrW1DEWC+GhHfLaS/DNwYEReWKON9pIECHwAOioj+OnkFPAqMiIiPNiq7p6cn5s+f3yhbKX19ffT29ralrOGsG9pp9Hl31d2+9FsnVF6HbminDYHbqZx2tpOkAQNMpy+R9QPb10gfCbzRaOcsYNwE7A+MqxdcACJFz9uAAxsNhTYzs/bq9CiyxRT6WiTtAWxNoW9mAFeRhjcfHRFl8q/lO3KamXVYp89gZgHHSto2lzYRWAXMrbejpPOBrwCfi4h5ZT4sO+M5CXgqIt5prcpmZtaKTp/BXAecBdwmaRqwNzAVuDI/dFnSEmBuRJyWvT8FuBy4EXhZ0iG5Mp9fO4xZ0lzgVtLZ0NbAF4FDgBOrPSwzMyvqaICJiH5JRwLXAHeQ+l2uIgWZYr3yfSbHZM+Ts0fe50mBB2AJ8LfAbqQhzD8DToiIWe2ov5mZldfpMxgiYiFwRIM8owvvJ7N+YKm132mDqJqZmbWRV1M2M7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJToeYCTtJ+l+SSslvSLpMkmblthvpKTpkvolLZP0Q0nvr5FvvKSnJb0paaGkidUciZmZ1dPRACNpB+A+IIDxwGXAOcClJXa/GegFvgBMBj4O3F4o/zDgVuBB4HjgLmCGpGPacgBmZlbaZh3+vDOAEcCEiFgOzJG0HTBV0hVZ2nokHQocCxweEQ9laS8DP5Z0VETcl2X9OvBQRJyVvX9Q0v7AxcC91R2WmZkVdTrAHA/MLgSSmcA04HDgjjr7vbY2uABExE8k/Srbdp+kLYCxwFmFfWcC0yWNjIhlbToOG0Kjz7urYZ6l3zqhAzUxs3o6HWDGAA/kEyLiRUkrs20DBZgxwOIa6YuybQD7AJvXyLeIdCnwQ8BPW6u2leEf/vYptuU5B7zN5Fya29G6QacDzA7AGzXS+7Ntrey3dy4PNfL1F7avQ9IUYEr2doWkZ+vUoxk7Aa+3qaxhQ9PWS6qknWp8TmU68VlnFdqpk8fXZfz/rpx2ttOeA23odICB1MFfpAHSW9mv+F519icibgBuaPDZTZM0PyJ62l3ucON2KsftVI7bqZxOtVOnhyn3A9vXSB9J7TOURvttn9uvP5dWzEOD8s3MrM06HWAW816fCQCS9gC2pnYfy4D7ZfJ9M88Db9XINwZYAzzXQn3NzKxFnQ4ws4BjJW2bS5sIrALmNthv12yeCwCSekj9L7MAImI1af7LZwr7TgQeG4IRZG2/7DZMuZ3KcTuV43YqpyPtpIhGXR9t/LA00XIh8AxpaPLewJXA1RFxUS7fEmBuRJyWS7uHNBLsq6QzkmnAbyPir3J5DgP6gGtIkzDHZfmPiwjPgzEz66COnsFERD9wJLApaUjypcBVwCWFrJtlefImkc5y/hm4CXgCOKlQ/jzgZOAoYDbwKeAUBxczs87r6BmMmZltPLyacgNenLOxVtpI0sez9lmS7fespEskbVnIN1VS1HgcV+1RtV+L7TR6gOOfWSNv13+XoOV2Guh7EpLOz+W7cYA8tQYRbdAkfVDS9ZKekvSOpL6S+3Xst2ko5sF0jdzinAtJi3PuA3yHFJgvqrMrpMU5P0xanHNtn9HtQLHP6FbgWtISN+NIi3P2d8tlvUG00cQs7zTgF8CBwDey508X8i4DigFl0WDr3kmD/C5B6kt8JPd+nUlyw+G7BINqp+8D9xTSTgTOJRsIlLMY+HwhbWlrNR5S+5P+nR8H3tfEfp37bYoIPwZ4AOeT5tdsl0v7e2BlPq3GfoeSJnZ+Mpd2cJZ2VC5tNvBAYd+7gXlDfewdaKOda6RNydpoz1zaVOD1oT7OIWyn0Vmb/I8G5Xf9d2kw7TRAWXcBiwppNwLzh/o429RWm+Re3wL0ldino79NvkRW30CLc44gLc5Zb7/1FucE1i7OSW5xzn8t7DsTOFTSyMFXvyNaaqOI+F2N5Cez513aV70NRqvfpYaG0XcJ2tROknYEjgZmtLd6G46IWNPCbh39bXKAqW+9RTYj4kXSX1P1rtm2a3HObtBqG9Xyl6RT9uJ6cNtLel3SW5KelDSh5doOncG20/TsOvurkq6UNCK3bbh8l6B936eTSW2yXl8VsJ+k5ZJWS5onaVABvst09LfJAaa+Khbn3CGXhxr56i7OuQFqtY3WIWlX4ELg/xb+el1CukTyWVLfzCvArV0YZFptp9XAPwGnkYb4Xw+cybo/nMPluwRt+j6RpjX8LCKKK3g8SbrJ4f8ETiVNh5gj6eAW6tqNOvrb5E7+xjaoxTk3UK22UcoovY90Or4C+Lt1Co74l0LeO4BHSTeRu62Vyg6hptspIl4FvpxL6pP0GnCtpI9GxII65XfjdwkG/33ajXQ57dz1Co74biHvXaQBBReQBgVsDDr22+QzmPq8OGdjrbYRAJJEmji7PzAu0mTcAUXqbbwNOLDMcPENyKDaqeCW7PljubKpUX63fZegPe30WdKP4c2NMkbEKlLn9cca5R0mOvrb5ABTnxfnbKzVNlrrKtJw1PERUSb/Wt32V/lg2ykvCs/D5bsE7WmnSaTRTr9u4nO77fvUqo7+NjnA1LcxLc7ZqlbbiGwC3FeAz0Va5qeh7IznJOCpiHintSoPiZbbqYaTs+cnYFh9l2CQ7SRpNHAIJUePZYMljidry41AZ3+bhnos94b8IHVmvQrMIa1vNoXUT/DNQr4lwA8KafcAvwQmkK7tPgs8XMhzGPA2cDXQC1xB+gvhmKE+9qrbCDiF9FfjdNIPQv6xcy7fXNJEr2NIgeXurI0+NdTH3qF2mkqaaDgh2+8y0o/trcPtuzSYdsqln0f667vWPKuRwMPA6aQBExNJkxRXAz1DfewttNVWpD82TgYeA/4z936rgdqpk79NQ95IG/oD2A94IPtP/SpptvmmhTxLgRsLadtnP55vAMuBHwE71Sj/RNLq0qtJp6iThvqYO9FGpAlvMcBjci7fD7L/DKuAP2Y/EMcP9TF3sJ0mAfNJqxn8KfvBuAzYYjh+l1ptp1z6AuCeAcrdktR/9+usjZZlP7aHDPUxt9hOo+v8Hxo9UDt18rfJi12amVkl3AdjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrx/wFvdm2XztxDCwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -447,7 +449,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3X20XFV9//H3hwchPAUCEpAiASqlULssuSC0VC4CCqGrqQiGKnVFHhJbKtYfalARA1R/BQRspZYELehPJShSLASMPN0gKkgSsGhIKGh4BgkGQkxAAt/fH3vfMJw7987MnZkzmcnntdZZM7PPPme+Z+698717n332UURgZmbWbht1OgAzM9swOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcdaStJMSTHMckKd+9gr72fbQvnUvJ+t2hN9fXE0uc+rJQ3UUW8TSf8k6eeS1khaIekGSQeP8n3Xl890auF34jeS5knar45t+/M2f1JGrNZ6TjjWDs8DB1VZflDn9nsBnwOKX/Rz835WtybMUcfRVpI2Bq4FvgD8NzAJmAq8AgxIev8odru+fKaD3pnfdzrwRuA2SW+qsc2ivM1DbY7N2mSTTgdgPWltRNzZ6p1GxDPAM63e73roI8DRwFERUZmkvy9pDjBb0vyIeLzZN+rgZ3p3RKwCkLQAeBj4AHBBsaIkAZtFxEqg5b9XVh63cKwjJH1K0oOSXpT0tKQfSNpJUj9wXa7269yFsixv87ruH0kT8uvjJV0uaaWkxwa77iR9UtITkp6RdJ6kjSref29JcyQ9Kmm1pF/mLqyN8vph48jr35y3/23efp6kPyoc4665G2yNpGWSTq7z4/kocFsh2Qz6DLA5cFLF+yyT9EVJn5X0lKRVkr4laWytY6nWpSZpB0lfl/RsPrYBSX2FYxt8z4/lz3xF/jwabg1GxKOkpDch73umpOWSDpZ0N/AicFy1LjVJG+ffpQckvZRjuaIQ62RJC/Lv2lOSzpe0aaNxWvPcwrG2kDTkdysi1uZ1HwQ+DcwAfglsT+pi2ZLUbfJx4IvAMcCTwEs13u484FvAe4ETga9L+jNgt/x6IvDPwD3AnLzNLsDSvN0LwNuAs4ExwP8dKQ5J44A7gGeBD5O6o84Abpa0V0Ssyf+Vfx/YgZQcXsz7Hwf87wif266kL96Lq62PiIck3Qe8o7Dqb4EHgVOAnYHzga8Cx410LMO4FvjDvM1y4BOkLq8/i4gHK+q9D/gfYBrwB8BFpG7Afxhh30NI2pr0uTxVUbwF8PV8HA8AT+TjKpoFfDDXm5/3c2zFvt8HXJnrfRrYk/Tz3Sgfn5UpIrx4adkCzARimGVCrnMJ8L0R9vFXlfUryqfm8q3y6wn59eUVdbYBXiZ9qW9cUf4z4Kph3k+kf74+DfyqjjjOJSWbcRVl25HOXZ2aX0/K2769os5uwFpgYIRjPzBvN3mEOtcC91e8Xgb8dvBzyWUfAF4F/rjBz/TI/PqQijpbklogswrv+RCwSUXZl4Cnavx+DL7f2PyZ7wpclT+XtxV+hyYXtu3P5X+SX++dX582ws/14crfj1x+IrAG2L7Tfy8b2uIWjrXD88DhVcqfyI/3AidJOpt00nphRLzSxPvdMvgkIlZKegaYX9jng8CbB19I2hz4FOmL+c3AphXrNoncGhvG4cBNwMqKltwLwEJgsOvpAODpiLirIraHJS0cxfHV46bI50Sya4BvAvsD9zewnwOAZyJi/mBBRPxO0vVAcYTcbYXPaTGwo6Q3RMTva7zPcxXPlwMnRsS9FWUB3FhjH4fmxyuGWb8X6Wf7nUKL+1ZSt+SfkFpFVhInHGuHtRGxYIT1/wlsTeqKOQt4VtJ/ADNHmXieK7z+/TBlm1e8Pg84mdTNtSjXnwycmeutYng7kFoiU6qsG0x+OwG/qbL+N6RjH87gQIDdRqizW0W9yv2uE6lbbxXVu6FGsjPwdJXyp0ndVZWqfcYC3pCfj+QdpK7I5cCjEfFqYf2KOpLW9sDvIg0mqGaH/HjDMOt3rbF/azEnHCtd/nK5GLg4n7P4APB50pfopSWFcRzw5Yg4f7BA0tF1bvtb0nDlc6useyE/PgXsWGX9jqTunKoi4tF8Qv+vgX8rrpe0O+k/8+J771ioNwbYinS+phFPFveVjScdd6vcU2iRFdVz35RngS0lbTNM0hmMdxrp/F3Rr+t4D2shj1KzjoqIRyPiX0hdXvvk4sH/bDevvlVLjKHixLnStS/HF+oMF8ctwL7ALyNiQWFZmuvcDYyX9PaK93gzUPMCR+BfgcMkvavKun/OcX+tUH6EXn/x5jGkL+3Blma9n+ldpG6xdYMSJG1BGqZ9Rx2xl+nW/PjBYdYvJf0TM6HKz2lBRDxbTpg2yC0ca4dNJB1YpfzRiHhc0izSf593ks73HAq8hTRqDdIXBcB0petOVkfEfS2O8SbgVEkP5lhOBTYr1BkujouAE4BbJX2Z9KU2HjgEuCMiriR14/wc+K6kGaRRaudQvZut6Muk80T/JemLwACpG+4k0sn/v4uh1+CsAeZKuoDULXYB8F8RsbjGsbxORMyT9GPgKklnkFoRHycl6CHXyHRSRCyVNBu4UNKOwO2kC1uPjYjjI+JVSacD/0/SNqRzQr8H9gD+Jtcr+4LXDVunRy146a2FkUepnZnrTAV+TPqiX00aWntSYT+nk0YYrQWWVWxXbZTaXxW2XQZ8sVB2BbCg4vV44L+AlaTzE+eThhSv2/9wceTyNwGX521fyu/5TWDfijpvJs2usCbvYzpwNSOMUqvYdhPgY/mzWQOsIH1hHlyl7jLgwvzZPw38jjQUeNtGP9Nc9kbgG/k915BOrO9fx2c8ZF9VYq2nzkxgeZXyfipGqeWyjcmjC0nJ5DGGjko7CvhR/lxWkgat/DMVI+y8lLMo/0BKI+kPSeP6DyT1Rf8oIvrr2G4sadjl35C6Aq8nDYd8tlBvMumX6S2kX8KzI+KqVh6D2fokn/O5OiJ8XYmt1zpxDmdf0jUKD+SlXleR/sM5mfRf0v6k6xHWUZrY8HvAbaT/auYCVw7TF25mZiXqRAtno8hDICVdDexQq4Uj6SDgJ6SL0W7PZQeQTnAeERE357J5wKYR8c6KbW8AtomIUc2ya7a+cwvHukXpLZwYOt6+HkeRLqK7vWI/PyMNazwKQNJmpJPP3ylsOwc4aHBeKbNeExETnGysG3TLsOi9gSVVyu/P6yDNkbRplXr3k45zr7ZFZ2ZmNXXLsOjtGHpVM6RRNHtU1KFKvRWF9a8jaRrpwjDGjBkzcddde+fi41dffZWNNuqW/ykaV9bxbf1AOtX4wl7l/c/in1136+XjKx7bAw88sDwi3ljPtt2ScKD6lceqUl58rRG2JyJmA7MB+vr6YsGCkWZk6S4DAwP09/d3Ooy2Ke34lH+Fli4duV4L+WfX3Xr5+IrHJunherftlhS8gup3XdyW11o0KyrKinWgegvJzMxK0i0JZwmvnaupVHlu5yHStPTFenuTpmlvZAi2mZm1WLcknBuBnfJ1NgDkOxDukdcRES+Rrr85rrDtFOCnEfF8SbFaj5pwxtx1i5k1rvRzOHkiwEn55S7ANpIG79B3Q0SszvNbzY+IkwAi4qf5GptvSPo4qcVyHmneqpsrdn8uMCDpS6SLQifl5ci2H5iZmY2oEy2cHYHv5uVA0gzBg68Hp0XfhDRHUqXjSXM6/SdpnqeFwHsqK0TEHaTbyx4OzCNN8f7+iPhhOw7ENhARaTGzppTewomIZbw2cmy4OhOqlD0HfCgvI217LYUpb8zMrPO65RyOmZl1OSccs1omTkyLmTWlmy78NOuMRYvS4xGdDcOs27mFY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCo9SM6vllFM6HYFZT3DCMatl9uz06Ek7zZriLjUzMyuFWzhmtSxc2OkIzHqCWzhmtfT1pcXMmuKEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOWS0LFqTFzJrihGNWi28xbdYSTjhmZlYKT21jVsu0aelx3OTOxmHW5ZxwzGq57LL0OMMJx6wZ7lIzM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFR6mZ1bLffp2OwKwnuIVjVsvChb7NtFkLOOGYmVkpnHDMzKwUTjhmtUhpMbOmOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhqW3Mapk1Kz3+qrNhmHU7JxyzWgZvMX3G3M7GYdblSu9Sk7SPpFskrZb0hKRzJG1cY5uZkmKY5VMV9a4Yps7e7T8yMzMbSaktHEnbATcDi4HJwJ7AhaTEd+YIm34V+EGh7G+AGcCNhfIlwIcKZctGF7EZMHt2frJLR8Mw63Zld6l9GBgDHBMRK4GbJG0DzJR0fi4bIiIeAx6rLJP0WWBJRNxbqP67iLizDbHbhmr69PQ44/rOxmHW5cruUjsKmFdILHNISeiQenciaRxwBHBla8MzM7N2KTvh7E3q8lonIh4BVud19ToW2JSUrIr2kbRS0kuS7pBUdyIzM7P2KbtLbTvguSrlK/K6eh0PLIqIBwrl9wB3kc4RvRE4ndRtd3BE/KzajiRNA6YBjB8/noGBgQbCWL+tWrWqp46nqKzj68+Pp7917bqydr+vf3bdrZePr5lj68Sw6KhSpmHKh1aUdiZ1v80YsuOIfy3UnUtKPp8mDTIYGkzEbGA2QF9fX/T399cTRlcYGBigl46nqOzju/C+1/5cln2gve/rn1136+Xja+bYyu5SWwFsW6V8LNVbPtW8j5SgrqpVMSLWADcAvim9mVmHlZ1wllA4VyNpV2BLCud2RnA8cEdEPNrA+9bVejIzs/YpO+HcCLxb0tYVZVOANcD8WhtLmgAcSJ2j0ySNIY2MW9hooGbrRKTFzJpSdsK5FHgJuEbS4fmE/Uzgosqh0pIelPS1KtsfD6wFri6ukDRW0o8kTZd0mKQpwG2kq/W+0IZjMTOzBpQ6aCAiVkg6DLgEuI503uZiUtIpxlVtupvjgVsi4pkq614CniHNWLAj8CLwU+CQiFjQkgMwM7NRK32UWkQsBt5Zo86EYcrfNsI2LwLHNBWcWTUTJ6bHI87pbBxmXc6zRZvVsmhRejyis2GYdTvfgM3MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZWyymndDoCs57ghGNWy+Atps+Y29k4zLqcu9TMzKwUDbVwJG0cEa+0Kxiz9dJCz/1q1gqNtnAel3S+pD9uSzRm66O+vrSYWVMaTTizgGOBX0i6S9I0Sdu0IS4zM+sxDSWciPhcROxBmlVqKXAR8KSkb0k6vB0BmplZbxjVoIGIuDUiPgjsBHwE+CNgnqRlkmZKelMrgzQzs+7X7Ci1PuAdpNtGrwB+BJwMPCjphCb3bWZmPaThhCNpN0mfk/QQcAuwM3Ai8KaI+DtgN9K5ngtaGqmZmXW1RodF30pq0TwGXAFcHhEPV9aJiFckfRv4aKuCNDOz7tfoTAPLgUnATRERI9S7F9h91FGZrU8W5DuUf/epzsZh1uUa7VK7BPhJtWQjaStJ7wCIiJeLLR+zrjVx4mu3mTazUWs04dwG7DPMuj/K683MzIZotEtNI6zbCljdRCxm66dp09LjuMmdjcOsy9VMOLmbrL+i6GRJRxaqbQ4cDdzXutDM1hOXXZYeZzjhmDWjnhbO20kXdwIEcBywtlDn98AS4BOtC83MzHpJzYQTEReQr6mR9GvgPRFxb7sDMzOz3tLQOZyI8FBnMzMblXrO4UwC7oiIlfn5iCLihpZEZmZmPaWeFs71wIHAz/LzYPjRagFs3JrQzMysl9STcHYHnqx4brZh2W+/Tkdg1hPqGTTwcLXnZhuMwVtMnzG3s3GYdbl6zuFs0cgOI8IXf5qZ2RD1dKmtIp2bqZfP4ZiZ2RD1JJwTaSzhmPUW5TEyM67vbBxmXa6eczhXlBCHmZn1uGZvMW1mZlaXegYN/AyYGhGLJd1Nje61iDigVcGZmVnvqOcczi+BNRXPfT7HzMwaVs85nA9VPJ/a1mjMzKxnjfocjpI3ShrppmxmZmbAKBKOpEmSfgK8CDwFvCjpJ5KObnl0ZuuDWbPSYmZNaSjhSJoOXEe6GPSjpJuxfTS//u+83qy3TJv22m2mzWzUGrofDvBpYHZE/H2h/FJJlwKfAfyvoJmZDdFol9r2wDXDrPseMK7WDiTtI+kWSaslPSHpHEkjTocjaYKkqLLMqVJ3sqT7JL0oabGkKXUdmdlwZs9Oi5k1pdEWzm3AIcBNVdYdAtw+0saStgNuBhYDk4E9gQtJie/MOt7/48CPK14vL+z/YFLi+wpwGjAJuFLSioj4YR37Nxtqeu4p9tQ2Zk2p58LPfSpe/hvwVUnbA9cCvwF2BN4DHAWcXGN3HwbGAMdExErgJknbADMlnZ/LRrI0Iu4cYf1ngdsj4rT8+jZJ+wJnAU44ZmYdVE8L5xe8/mJPAdPzUrz75w8Yebboo4B5hcQyBziP1EK6ro54qpK0GXAoqWVTaQ5wuaSxEfH8aPdvZmbNqSfhHNrC99sbuLWyICIekbQ6r6uVcC6XNI7UsroS+ExEDM6CsCewKbCksM39pC67vYC7mwvfzMxGq56ZBua38P22A56rUr4irxvOS8C/k7rFVgL9wAxSkplcsW+q7H9FYf3rSJoGTAMYP348AwMDI8XfVVatWtVTx1NU1vH158fT37p2XVm739c/u+7Wy8fXzLE1OmhgHUkbAZsXy+u442e1udg0TPngPp8E/rGiaEDS08BXJL0tIu4dYf8apnxw37OB2QB9fX3R398/cvRdZGBggF46nqKyj+/C+177c1n2gfa+r3923a2Xj6+ZY2v0wk9JmiHpQeBl4IUqy0hWANtWKR9L9ZbPSK7Oj/tV7Jsq+x983ej+zcyshRq9Duc04Azga6SWw+eBc4AHgGXkrqkRLCGdq1lH0q7Algw991JLFB4fIiXBvQv19gZezTGaNS4iLWbWlEYTzinA54Dz8+trI+JsYF9SwnhLje1vBN4taeuKsimk2x80eq7o2Py4ECAiXiJdJ3Rcod4U4KceoWZm1lmNnsPZHbg3Il6R9DK5uyoiXpX0FeCrpBbQcC4ltZKukXQesAcwE7iocqh07rKbHxEn5dczga1JF32uBN4BfAK4JiL+p2L/55LO73yJdJ3QpLwc2eBxmplZizXawnkW2Co/fwT4s4p125Eu6hxWRKwADiNdq3MdcDZwManVVGkTXn89zxLSdTqXAzcA7wcuyI+V+7+D1PI5HJgH/DXwfs8yYE2ZODEtZtaURls4Pwb2J33pf5s0Q8A44PfAqcAttXYQEYuBd9aoM6Hweg7pAs6aIuJaUuvGrDUWLUqPR3Q2DLNu12jCmQnskp9/gdSlNpXUsrkJ+EirAjMzs97SUMKJiKXA0vz8JdK9cD7ahrjMzKzHNHPh5x8AOwNPRMTjrQvJzMx60WhuMf33kh4FHgbuAh6R9Jikf2h5dGZm1jManWngLOAS0vU0RwN9+fFG4N/yejMzsyEa7VI7FfhCRHy2UP6DPLfZqaSZB8x6xymndDoCs57QaJfaGIa/q+d8qkzmadb1fItps5ZoNOFcCxwzzLr3Ar4Hr5mZVVXPLaYnVby8EThf0gSG3mJ6X+CTrQ/RrMMWLux0BGY9oZ5zONcz9FbSuwDvrlL3m6Q7cZr1jr6+9DjDDXizZtSTcHZvexRmZtbz6rnF9MNlBGJmZr2t4ZkGJG1CGiBwMDAO+C3wI9KtAtaOtK2ZmW24Gko4knYEfgj8KekOn08DB5Guv/m5pHdFxDOtDtLMzLpfo8OiLwK2B94eEXtExEERsQfw9lx+UasDNDOz3tBowpkEzIiIuysL8+tPkaa5MTMzG6LRhLMZ8MIw614A3tBcOGbroQUL0mJmTWk04dwJzJC0ZWVhfj0jrzfrLb7FtFlLNDpK7XTgNuBRST8kDRrYkXQRqID+lkZnZmY9o9E7ft4r6S3Ax4H9SaPVngQuBS6KiOWtD9Gsw6ZNS4/jJnc2DrMuV3fCkbQpcADw64g4o30hma1nLrssPc5wwjFrRiPncF4BbgX+uE2xmJlZD6s74UTEq8D/AuPbF46ZmfWqRkepfQY4S9Jb2xGMmZn1rkZHqZ1JmlHgXkmPk0apRWWFiDigRbGZmVkPaTTh/CIvZmZmDakr4UgaQ5rW5hfAU8DNEfF0OwMzW2/st1+nIzDrCfXcYnoP4GZgQkXxSknvi4gftisws/XG4C2mz5jb2TjMulw9gwbOB14F/hLYAtgXuAeY1ca4zMysx9STcA4CzoyIH0fEixFxPzAdeLOkndsbnpmZ9Yp6Es7OwK8KZQ+R5k7bqeURma1vpLSYWVPqvQ4nalcxMzMbXr3DoudJWlul/JZieUTs2HxYZmbWa+pJOGe3PQozM+t5NRNORDjhmJlZ0xqdS83MzGxUnHDMzKwUjc6lZrbhmZWvcS5eHGBmDXHCMatl8BbTntrGrCnuUjMzs1K4hWNWy+zZ+ckuHQ3DrNuV3sKRtI+kWyStlvSEpHMkbVxjm/0lXS7pwbzdUkmfk7R5od5MSVFlObK9R2U9bfr0tJhZU0pt4UjajnSrg8XAZGBP4EJS4jtzhE2n5LrnAf8L/Clwbn58b6Hu80AxwdzfbOxmZtacsrvUPgyMAY6JiJXATZK2AWZKOj+XVXNeRDxT8XpA0ovALEm7RcTDFevWRsSd7QnfzMxGq+wutaOAeYXEMoeUhA4ZbqNCshl0T3703G1mZl2g7ISzN7CksiAiHgFW53WN+HPSjeGWFsq3lbRc0suS7pF0zKijNTOzllFEeXcekPQy8ImI+FKh/DHgGxHx6Tr3sxPwP8ANETG1ovwEUovnXmAr0o3iJgHvjYhrhtnXNGAawPjx4yfOmTOn0cNab61atYqtttqq02G0TVnH13/ooQB8+ZvXrit76y5j2/qe/tl1t14+vuKxHXrooQsjoq+ebTsxLLpahtMw5UMrSm8AvgOsAj72uh1HfLNQ9zrgJ8BZQNWEExGzgdkAfX190d/fX08YXWFgYIBeOp6iso/vwvte+3NZ9oH2vq9/dt2tl4+vmWMru0ttBbBtlfKxwHO1NpYk4BvAvsCkiFgxUv1IzbdrgD+tNfTabFgRaTGzppTdwllC4VyNpF2BLSmc2xnGxaTh1EdERD31B/nbwsysw8pu4dwIvFvS1hVlU4A1wPyRNpT0KeAjwAkRcUc9b5ZbRO8Bfh4Rr4wuZDMza4WyE86lwEvANZIOzyfsZwIXVQ6VzjMKfK3i9fuBL5C60x6XdGDF8saKevMlnSbpXZLeA8wFDszvYTY6EyemxcyaUmqXWkSskHQYcAlwHem8zcUMTQibAJXnXN6VH6fmpdKHgCvy8weBfwJ2Jg2ZXgQcHRE3tiJ+20AtWpQej+hsGGbdrvRRahGxGHhnjToTCq+nMjTRVNvupCZCMzOzNvLtCczMrBROOGZmVgonHDMzK4UTjpmZlcJ3/DSr5ZRTOh2BWU9wwjGrZfAW02fM7WwcZl3OXWpmZlYKt3DMalm4sNMRmPUEt3DMaunrS4uZNcUJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccs1oWLEiLmTXFCcesFt9i2qwlnHDMzKwUntrGrJZp09LjuMmdjcOsyznhmNVy2WXpcYYTjlkz3KVmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1Izq2W//TodgVlPcAvHrJaFC32babMWcMIxM7NSOOGYmVkpnHDMapHSYmZNccIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCU9uY1TJrVnr8VWfDMOt2TjhmtQzeYvqMuZ2Nw6zLuUvNzMxK4RaOWS2zZ+cnu3Q0DLNu54RjVsv06elxxvWdjcOsy7lLzczMSlF6wpG0j6RbJK2W9ISkcyRtXMd2YyVdLmmFpOclfUvS9lXqTZZ0n6QXJS2WNKU9R2JmZo0oNeFI2g64GQhgMnAOcDpwdh2bXwX0AycDU4H9gWsL+z8Y+B5wG3AUMBe4UtK7WnIAZmY2amWfw/kwMAY4JiJWAjdJ2gaYKen8XDaEpIOAdwOHRMTtuexx4C5Jh0fEzbnqZ4HbI+K0/Po2SfsCZwE/bN9hmZlZLWV3qR0FzCskljmkJHRIje2eHkw2ABHxM+DXeR2SNgMOBb5T2HYOcJCksc2Hb+uT+x5/nglnzGWCr48x6wplt3D2Bm6tLIiIRyStzuuuG2G7JVXK78/rAPYENq1S735SYt0LuHt0YVsjKhPAsn85uoORdL9iMvXnad2s7ISzHfBclfIVed1ottujog5V6q0orH8dSdOAfCk5qyQtHSGObrMDsLyTAei8tu5+3fG1+X2S8/5q3dMS3q/qz66U4yxHx38326yXj694bLvVu2EnrsOJKmUapnw02xVfa5jyVBgxG5hdbV23k7QgIvo6HUe79PLx9fKxgY+vmzVzbGWfw1kBbFulfCzVWzC1ttu2YrsVFWXFOtTYv5mZtVnZCWcJr51zAUDSrsCWVD9HM+x2WeW5nYeAl6vU2xt4FXhgFPGamVmLlJ1wbgTeLWnrirIpwBpgfo3tdsrX2QAgqY90/uZGgIh4iXT9zXGFbacAP42I55sPv+v0ZFdhhV4+vl4+NvDxdbNRH5siap06aZ184edi4BfAeaSEcRHwpYg4s6Leg8D8iDipouwHpJFmHye1WM4DfhMRf1lR52BgALiEdFHopFz/yIjwdThmZh1UagsnIlYAhwEbk4ZAnw1cDHyuUHWTXKfS8aRW0H8C3wAWAu8p7P8O4FjgcGAe8NfA+51szMw6r9QWjpmZbbg8W/QGQtIUSddIelJSSJra6ZhGY7STv3YDSX8oaZakn0t6RdJAp2NqFUnHSfpvSY9LWiVpoaS/7XRcrSLpWEk/kfRsnjh4qaQzJb2h07G1mqRd8s8wJG3VyLa+H86G41hgAnA9aQLUrlMx+eti0uSvewIXkv5xOnOETbvFvqTzjncCvfZF9X9rUEebAAADJElEQVRIU1F9jHTR4CTg25J2iIgvdzSy1tieNGjpAtIlGAcAM4GdgH/sXFhtcQGwijS6uCHuUttASNooIl7N/5G8AHwoIq7ocFgNkfQp4JPAboPz8Un6JPkPe7jJX7vF4M8oP78a2CEi+jsbVWvkxLK8UPZt4KCI2L1DYbWVpM8DpwLbRY980Ur6S+D7wBdIiWfriFhV7/buUttADH6RdbnRTv7aFXrkZ1RVMdlk9wA7lh1LiZ6lh1qquev6y6Tbyoxq2h4nHOsmQyZxjYhHgMHJX627/Dmpe7RnSNpY0hb5Eo3TgP/oldYN6fYymwP/Ptod+ByOdZPRTv5q6xlJh5HOw53Y6Vha7HfAZvn5N4BPdDCWlsl3Vz4XOCEiXpZUa5OqnHC6VL6/z8616kXESFMGdaPRTv5q6wlJE4BvA9/vtvOIdfhzYAvSoIGzSBeh/0NHI2qNzwN3RcQNzezECad7HQdcVke90f0rsn4a7eSvtp6QNI40HdUjwAkdDqflImJRfnqHpOXA1yVdGBEPdTKuZuS7Jp8IvEPS4N/fFvlxrKRXImJNPfvyOZwuFRFfjQjVWjodZ4uNdvJXWw9I2oI0LP8NwNER8bsOh9Rug8mn20fhvYV0c8ufkv7pW8Fr53EeIw0kqItbONZNbgQ+IWnriHghl9Uz+at1mKRNgO+Svrz+IiJ+0+GQyvAX+fHXHY2ieXcAhxbKjgRmkK6n+lW9O3LC2UBI2gfYhzTKBKBP0irgmYjoli/rS0kjf66RNDj560zgom6/BgfWtQAm5Ze7ANtIOja/viEiVncmspb4CunYPgqMk3Rgxbp78mzvXStPLnwz8EvgFVKyOR24qpu702DdkPaByrJ8Hg7gR41ch+MLPzcQkmYydJJUSLNy95cbzejlxHkJcBDpvM1XgZkR8UpHA2uB/Ec83H/Du0fEstKCaTFJyxj+VsRdfWwAks4lTSY8AVhL+q//cuDSiHi5g6G1RZ4a63IavPDTCcfMzErhQQNmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBT/H1PMymNpY69NAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEPCAYAAACQmrmQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dfbRcVX3/8feHByE8BQISkCIBKqVQuyy5ILRULgIKoaupCIYqdUUeElsq1h9qUBEDVH8FBGyllgQt6E8lKFIsBIw83SAqSBKwaEgoaHgGCV4IMQEJfH9/7HPDcDJzZ87NnJl7Jp/XWmfNzD77nPmeuffO9+69z9lHEYGZmVkZNup2AGZm1rucZMzMrDROMmZmVhonGTMzK42TjJmZlcZJxszMSuMkY20laaakaLCc0OI+9sr2s22ufGq2n63Kib61ONZzn1dLGmih3iaS/knSzyWtljQo6QZJB4/wfUfLZzo19zvxG0nzJO3Xwrb92TZ/0olYrT2cZKwMzwMH1Vl+0OL2ewGfA/Jf7nOz/axqT5gjjqNUkjYGrgW+APw3MAmYCrwCDEh6/wh2O1o+0yHvzN53OvBG4DZJb2qyzaJsm4dKjs3aaJNuB2A9aU1E3NnunUbEM8Az7d7vKPQR4GjgqIioTczflzQHmC1pfkQ8vr5v1MXP9O6IWAkgaQHwMPAB4IJ8RUkCNouIFUDbf6+sXG7JWFdI+pSkByW9KOlpST+QtJOkfuC6rNqvs+6RZdk2r+vakTQhe328pMslrZD02FC3nKRPSnpC0jOSzpO0Uc377y1pjqRHJa2S9Muse2qjbH3DOLL1b862/222/TxJf5Q7xl2zLq7VkpZJOrnFj+ejwG25BDPkM8DmwEk177NM0hclfVbSU5JWSvqWpLHNjqVed5mkHSR9XdKz2bENSOrLHdvQe34s+8wHs8+jcKsvIh4lJboJ2b5nSlou6WBJdwMvAsfV6y6TtHH2u/SApJeyWK7IxTpZ0oLsd+0pSedL2rRonDYybslYKSSt87sVEWuydR8EPg3MAH4JbE/qPtmS1CXyceCLwDHAk8BLTd7uPOBbwHuBE4GvS/ozYLfs9UTgn4F7gDnZNrsAS7PtXgDeBpwNjAH+73BxSBoH3AE8C3yY1NV0BnCzpL0iYnX23/f3gR1ICeHFbP/jgP8d5nPblfRle3G99RHxkKT7gHfkVv0t8CBwCrAzcD7wVeC44Y6lgWuBP8y2WQ58gtSd9WcR8WBNvfcB/wNMA/4AuIjUxfcPw+x7HZK2Jn0uT9UUbwF8PTuOB4AnsuPKmwV8MKs3P9vPsTX7fh9wZVbv08CepJ/vRtnxWdkiwouXti3ATCAaLBOyOpcA3xtmH39VW7+mfGpWvlX2ekL2+vKaOtsAL5O+yDeuKf8ZcFWD9xPpH65PA79qIY5zSQlmXE3ZdqSxqFOz15Oybd9eU2c3YA0wMMyxH5htN3mYOtcC99e8Xgb8duhzyco+ALwK/HHBz/TI7PUhNXW2JLU0ZuXe8yFgk5qyLwFPNfn9GHq/sdlnvitwVfa5vC33OzQ5t21/Vv4n2eu9s9enDfNzfbj29yMrPxFYDWzf7b+XDWFxS8bK8DxweJ3yJ7LHe4GTJJ1NGnheGBGvrMf73TL0JCJWSHoGmJ/b54PAm4deSNoc+BTpy/jNwKY16zaJrNXVwOHATcCKmhbbC8BCYKhb6QDg6Yi4qya2hyUtHMHxteKmyMY4MtcA3wT2B+4vsJ8DgGciYv5QQUT8TtL1QP7Mtttyn9NiYEdJb4iI3zd5n+dqni8HToyIe2vKArixyT4OzR6vaLB+L9LP9ju5lvWtpC7HPyG1fqxETjJWhjURsWCY9f8JbE3qZjkLeFbSfwAzR5hsnsu9/n2Dss1rXp8HnEzqwlqU1Z8MnJnVW0ljO5BaHFPqrBtKeDsBv6mz/jekY29kaDB/t2Hq7FZTr3a/a0XqsltJ/S6m4ewMPF2n/GlSV1Step+xgDdkz4fzDlI343Lg0Yh4Nbd+sIVEtT3wu0gnBNSzQ/Z4Q4P1uzbZv7WBk4x1XPaFcjFwcTYG8QHg86Qvzks7FMZxwJcj4vyhAklHt7jtb0mnFp9bZ90L2eNTwI511u9I6qqpKyIezQbl/xr4t/x6SbuT/gPPv/eOuXpjgK1I4y9FPJnfV2Y86bjb5Z5cyyuvlXuQPAtsKWmbBolmKN5ppPG4vF+38B62nnx2mXVVRDwaEf9C6s7aJyse+g928/pbtcUYaga/la5NOT5Xp1EctwD7Ar+MiAW5ZWlW525gvKS317zHm4GmFx0C/wocJuldddb9cxb313LlR+j1F1QeQ/qiHmpRtvqZ3kXq8lp7YoGkLUinVN/RQuyddGv2+MEG65eS/nGZUOfntCAinu1MmBs2t2SsDJtIOrBO+aMR8bikWaT/Mu8kjd8cCryFdLYZpC8HgOlK14Wsioj72hzjTcCpkh7MYjkV2CxXp1EcFwEnALdK+jLpi2w8cAhwR0RcSeqi+TnwXUkzSGeXnUP9LrS8L5PGff5L0heBAVIX20mkAfy/i3WvkVkNzJV0AanL6wLgvyJicZNjeZ2ImCfpx8BVks4gtRY+TkrK61zD0k0RsVTSbOBCSTsCt5MuNj02Io6PiFclnQ78P0nbkMZ4fg/sAfxNVq/TF6FueLp95oGX3loY/uyyM7M6U4Efk77cV5FOgz0pt5/TSWcGrQGW1WxX7+yyv8ptuwz4Yq7sCmBBzevxwH8BK0jjDeeTTv9du/9GcWTlbwIuz7Z9KXvPbwL71tR5M2mWg9XZPqYDVzPM2WU1224CfCz7bFYDg6QvyYPr1F0GXJh99k8DvyOdtrtt0c80K3sj8I3sPVeTBsf3b+EzXmdfdWJtpc5MYHmd8n5qzi7LyjYmOyuQlEAeY92zyY4CfpR9LitIJ578MzVnxnkpb1H2Q+gYSX9IOu/+QFLf8o8ior+F7caSTpH8G1I33/WkUxefzdWbTPoFegvpF+/siLiqncdgNppkYzhXR4Sv+7BRpxtjMvuSriF4IFtadRXpP5mTSf8N7U+6XmAtpckDvwfcRvrvZS5wZYO+bTMzK1k3WjIbRXa6oqSrgR2atWQkHQT8hHSB2O1Z2QGkQcojIuLmrGwesGlEvLNm2xuAbSJiRLPXmo12bsnYaNbxlkysez58K44iXdh2e81+fkY6BfEoAEmbkQaQv5Pbdg5w0NA8Tma9JiImOMHYaFWVU5j3BpbUKb8/WwdpTqJN69S7n3Sce5UWnZmZ1VWVU5i3Y92riyGd/bJHTR3q1BvMrX8dSdNIF2sxZsyYibvu2jsXAb/66qtstFFV/o8orlPHt/UDaejwhb0693+Kf3bV1svHlz+2Bx54YHlEvLFR/aokGah/BbDqlOdfa5jtiYjZwGyAvr6+WLBguNlQqmVgYID+/v5uh1Gajh2fsl+hpUuHr9dG/tlVWy8fX/7YJD08XP2qpNpB6t+dcFtea7kM1pTl60D9lpCZmZWoKklmCa+NvdSqHat5iDTFe77e3qQpz4ucLm1mZm1QlSRzI7BTdh0MANmd+vbI1hERL5Gujzkut+0U4KcR8XyHYrUeNeGMuWsXM2tNx8dkssn2JmUvdwG2kTR0J7sbImJVNp/U/Ig4CSAifppdA/MNSR8ntUzOI80TdXPN7s8FBiR9iXSh5qRsObL0AzMzs3V0oyWzI/DdbDmQNPPu0OuhKcY3Ic1JVOt40hxK/0maV2kh8J7aChFxB+nWq4cD80jTpb8/In5YxoHYBiIiLWZWWMdbMhGxjNfO+GpUZ0KdsueAD2XLcNteS266GTMz646qjMmYmVkFOcmYNTNxYlrMrLAqXYxp1h2LFqXHI7obhlkVuSVjZmalcZIxM7PSOMmYmVlpnGTMzKw0TjJmZlYan11m1swpp3Q7ArPKcpIxa2b27PToiTHNCnN3mZmZlcYtGbNmFi7sdgRmleWWjFkzfX1pMbPCnGTMzKw0TjJmZlYaJxkzMyuNk4yZmZXGScbMzErjJGNmZqVxkjFrZsGCtJhZYU4yZs349stmI+YkY2ZmpfG0MmbNTJuWHsdN7m4cZhXkJGPWzGWXpccZTjJmRbm7zMzMSuMkY2ZmpXGSMTOz0jjJmJlZaZxkzMysND67zKyZ/fbrdgRmleWWjFkzCxf6FsxmI+QkY2ZmpXGSMTOz0jjJmDUjpcXMCnOSMTOz0jjJmJlZaZxkzMysNE4yZmZWGicZMzMrjZOMmZmVxtPKmDUza1Z6/FV3wzCrIicZs2aGbr98xtzuxmFWQR3vLpO0j6RbJK2S9ISkcyRt3GSbmZKiwfKpmnpXNKizd/lHZmZmeR1tyUjaDrgZWAxMBvYELiQluzOH2fSrwA9yZX8DzABuzJUvAT6UK1s2sojNgNmzsye7dDUMsyrqdHfZh4ExwDERsQK4SdI2wExJ52dl64iIx4DHasskfRZYEhH35qr/LiLuLCF221BNn54eZ1zf3TjMKqjT3WVHAfNyyWQOKfEc0upOJI0DjgCubG94ZmbWTp1OMnuTurPWiohHgFXZulYdC2xKSlB5+0haIeklSXdIajl5mZlZe3W6u2w74Lk65YPZulYdDyyKiAdy5fcAd5HGfN4InE7qkjs4In5Wb0eSpgHTAMaPH8/AwECBMEa3lStX9tTx5HXq+Pqzx9PfumZtWdnv659dtfXy8RU9tm6cwhx1ytSgfN2K0s6krrUZ6+w44l9zdeeSEs6nSScKrBtMxGxgNkBfX1/09/e3EkYlDAwM0EvHk9fp47vwvtf+XJZ9oNz39c+u2nr5+IoeW6e7ywaBbeuUj6V+C6ee95GS0lXNKkbEauAGwDdpNzPrgk4nmSXkxl4k7QpsSW6sZhjHA3dExKMF3relVpKZmbVXp5PMjcC7JW1dUzYFWA3Mb7axpAnAgbR4VpmkMaQz2hYWDdRsrYi0mFlhnU4ylwIvAddIOjwbdJ8JXFR7WrOkByV9rc72xwNrgKvzKySNlfQjSdMlHSZpCnAb6Qq6L5RwLGZm1kRHB/4jYlDSYcAlwHWkcZiLSYkmH1e9qWaOB26JiGfqrHsJeIY0c8COwIvAT4FDImJBWw7AzMwK6fjZZRGxGHhnkzoTGpS/bZhtXgSOWa/gzOqZODE9HnFOd+MwqyDPwmzWzKJF6fGI7oZhVkW+aZmZmZXGScbMzErjJGNmZqVxkjEzs9I4yZiZWWl8dplZM6ec0u0IzCrLScasmaHbL58xt7txmFWQu8vMzKw0hVoykjaOiFfKCsZsVFro+VXNRqpoS+ZxSedL+uNSojEbjfr60mJmhRVNMrOAY4FfSLpL0jRJ25QQl5mZ9YBCSSYiPhcRe5BmcVoKXAQ8Kelbkg4vI0AzM6uuEQ38R8StEfFBYCfgI8AfAfMkLZM0U9Kb2hmkmZlV0/qeXdYHvIN0S+VB4EfAycCDkk5Yz32bmVnFFU4yknaT9DlJDwG3ADsDJwJvioi/A3Yjjd1c0NZIzcyscoqewnwrqeXyGHAFcHlEPFxbJyJekfRt4KPtCtLMzKqp6BX/y4FJwE0REcPUuxfYfcRRmY0mC7K7d3/3qe7GYVZBRbvLLgF+Ui/BSNpK0jsAIuLlfAvHrLImTnztFsxmVkjRJHMbsE+DdX+UrTczMwOKd5dpmHVbAavWIxaz0WnatPQ4bnJ34zCroKZJJusC668pOlnSkblqmwNHA/e1LzSzUeKyy9LjDCcZs6Jaacm8nXTBJUAAxwFrcnV+DywBPtG+0MzMrOqaJpmIuIDsmhdJvwbeExH3lh2YmZlVX6ExmYjwaclmZtayVsZkJgF3RMSK7PmwIuKGtkRmZmaV10pL5nrgQOBn2fOg8VlmAWzcntDMzKzqWkkyuwNP1jw327Dst1+3IzCrrFYG/h+u99xsgzF0++Uz5nY3DrMKamVMZosiO4wIX5BpZmZAa91lK0ljLa3ymIyZmQGtJZkTKZZkzHqLsvNcZlzf3TjMKqiVMZkrOhCHmZn1oPW9/bKZmVlDrQz8/wyYGhGLJd1Nk66ziDigXcGZmVm1tTIm80tgdc1zj8+YmVlLWhmT+VDN86mlRmNmZj1lxGMySt4oabgbmZmZ2QascJKRNEnST4AXgaeAFyX9RNLRbY/ObDSYNSstZlZYoSQjaTpwHekCzY+SbmD20ez1f2frzXrLtGmv3YLZzAopdD8Z4NPA7Ij4+1z5pZIuBT4D+F8+MzMDineXbQ9c02Dd94BxzXYgaR9Jt0haJekJSedIGnYqGkkTJEWdZU6dupMl3SfpRUmLJU1p6cjMGpk9Oy1mVljRlsxtwCHATXXWHQLcPtzGkrYDbgYWA5OBPYELScnuzBbe/+PAj2teL8/t/2BSsvsKcBowCbhS0mBE/LCF/Zuta3rWC+xpZcwKa+VizH1qXv4b8FVJ2wPXAr8BdgTeAxwFnNxkdx8GxgDHRMQK4CZJ2wAzJZ2flQ1naUTcOcz6zwK3R8Rp2evbJO0LnAU4yZiZdVgrLZlf8PoLMAVMz5b8XTJ/wPCzMB8FzMslkznAeaSW0HUtxFOXpM2AQ0ktmFpzgMsljY2I50e6fzMzK66VJHNoG99vb+DW2oKIeETSqmxdsyRzuaRxpBbUlcBnImJoNoI9gU2BJblt7id1x+0F3L1+4ZuZWRGtXPE/v43vtx3wXJ3ywWxdIy8B/07q8loB9AMzSIllcs2+qbP/wdz615E0DZgGMH78eAYGBoaLv1JWrlzZU8eT16nj688eT3/rmrVlZb+vf3bV1svHV/TYig78ryVpI2DzfHkLd8asN/eZGpQP7fNJ4B9rigYkPQ18RdLbIuLeYfavBuVD+54NzAbo6+uL/v7+4aOvkIGBAXrpePI6fXwX3vfan8uyD5T7vv7ZVVsvH1/RYyt6MaYkzZD0IPAy8EKdZTiDwLZ1ysdSv4UznKuzx/1q9k2d/Q+9Lrp/MzNbT0WvkzkNOAP4GqmF8HngHOABYBlZt9MwlpDGXtaStCuwJeuOpTQTuceHSIlv71y9vYFXsxjNiotIi5kVVjTJnAJ8Djg/e31tRJwN7EtKEm9psv2NwLslbV1TNoV0K4GiYz/HZo8LASLiJdJ1PMfl6k0Bfuozy8zMOq/omMzuwL0R8Yqkl8m6oiLiVUlfAb5Kauk0cimpNXSNpPOAPYCZwEW1pzVn3XHzI+Kk7PVMYGvShZgrgHcAnwCuiYj/qdn/uaTxmi+RruOZlC1HFjxOMzNrg6ItmWeBrbLnjwB/VrNuO9KFlg1FxCBwGOlamuuAs4GLSa2jWpvw+uttlpCuo7kcuAF4P3BB9li7/ztILZzDgXnAXwPv99X+tl4mTkyLmRVWtCXzY2B/0hf9t0lX6o8Dfg+cCtzSbAcRsRh4Z5M6E3Kv55AuqmwqIq4ltWLM2mPRovR4RHfDMKuioklmJrBL9vwLpO6yqaQWzE3AR9oVmJmZVV+hJBMRS4Gl2fOXSPeS+WgJcZmZWQ9Yn4sx/wDYGXgiIh5vX0hmZtYrRnL75b+X9CjwMHAX8IikxyT9Q9ujMzOzSit6xf9ZwCWk612OBvqyxxuBf8vWm5mZAcW7y04FvhARn82V/yCbS+xU0gwAZr3jlFO6HYFZZRXtLhtD47tfzqfOhJlmlefbL5uNWNEkcy1wTIN17wV8f1ozM1urldsvT6p5eSNwvqQJrHv75X2BT7Y/RLMuW7iw2xGYVVYrYzLXs+5tlncB3l2n7jdJd6w06x19felxhhvqZkW1kmR2Lz0KMzPrSa3cfvnhTgRiZma9p/AV/5I2IQ3yHwyMA34L/Ig07f6a4bY1M7MNS6EkI2lH4IfAn5LuhPk0cBDp+pifS3pXRDzT7iDNzKyaip7CfBGwPfD2iNgjIg6KiD2At2flF7U7QDMzq66iSWYSMCMi7q4tzF5/ijTFjJmZGVA8yWwGvNBg3QvAG9YvHLNRaMGCtJhZYUWTzJ3ADElb1hZmr2dk6816i2+/bDZiRc8uOx24DXhU0g9JA/87ki7MFNDf1ujMzKzSit4Z815JbwE+DuxPOsvsSeBS4KKIWN7+EM26bNq09DhucnfjMKuglpOMpE2BA4BfR8QZ5YVkNspcdll6nOEkY1ZUkTGZV4BbgT8uKRYzM+sxLSeZiHgV+F9gfHnhmJlZLyl6dtlngLMkvbWMYMzMrLcUPbvsTNKV/fdKepx0dlnUVoiIA9oUm5mZVVzRJPOLbDEzM2uqpSQjaQxpSplfAE8BN0fE02UGZjZq7LdftyMwq6xWbr+8B3AzMKGmeIWk90XED8sKzGzUGLr98hlzuxuHWQW1MvB/PvAq8JfAFsC+wD3ArBLjMjOzHtBKkjkIODMifhwRL0bE/cB04M2Sdi43PDMzq7JWkszOwK9yZQ+R5irbqe0RmY02UlrMrLBWr5OJ5lXMzMxer9VTmOdJWlOn/JZ8eUTsuP5hmZlZL2glyZxdehRmZtaTmiaZiHCSMTOzESk6d5mZmVnLnGTMzKw0RecuM9vwzMquO86fyG9mTTnJmDUzdPtlTytjVpi7y8zMrDRuyZg1M3t29mSXroZhVkUdb8lI2kfSLZJWSXpC0jmSNm6yzf6SLpf0YLbdUkmfk7R5rt5MSVFnObLco7KeNn16WsyssI62ZCRtR7ptwGJgMrAncCEp2Z05zKZTsrrnAf8L/Clwbvb43lzd54F8Url/fWM3M7PiOt1d9mFgDHBMRKwAbpK0DTBT0vlZWT3nRcQzNa8HJL0IzJK0W0Q8XLNuTUTcWU74ZmZWRKe7y44C5uWSyRxS4jmk0Ua5BDPknuzRc6WZmY1SnU4yewNLagsi4hFgVbauiD8n3Uxtaa58W0nLJb0s6R5Jx4w4WjMzWy+K6Nws/pJeBj4REV/KlT8GfCMiPt3ifnYC/ge4ISKm1pSfQGrZ3AtsRbq52iTgvRFxTYN9TQOmAYwfP37inDlzih7WqLVy5Uq22mqrbodRmk4dX/+hhwLw5W9eu7bsrbuMLfU9/bOrtl4+vvyxHXrooQsjoq9R/W6cwlwvq6lB+boVpTcA3wFWAh973Y4jvpmrex3wE+AsoG6SiYjZwGyAvr6+6O/vbyWMShgYGKCXjiev08d34X2v/bks+0C57+ufXbX18vEVPbZOd5cNAtvWKR8LPNdsY0kCvgHsC0yKiMHh6kdqpl0D/Gmz06TNGopIi5kV1umWzBJyYy+SdgW2JDdW08DFpFOfj4iIVuoP8TeEmVkXdLolcyPwbklb15RNAVYD84fbUNKngI8AJ0TEHa28WdbyeQ/w84h4ZWQhm5nZSHU6yVwKvARcI+nwbNB9JnBR7WnN2ZX9X6t5/X7gC6SussclHVizvLGm3nxJp0l6l6T3AHOBA7P3MBuZiRPTYmaFdbS7LCIGJR0GXAJcRxqHuZh1k8AmQO0Yyruyx6nZUutDwBXZ8weBfwJ2Jp3evAg4OiJubEf8toFatCg9HtHdMMyqqONnl0XEYuCdTepMyL2eyrrJpd52J61HaGZm1mae6t/MzErjJGNmZqVxkjEzs9I4yZiZWWl8Z0yzZk45pdsRmFWWk4xZM0O3Xz5jbnfjMKsgd5eZmVlp3JIxa2bhwm5HYFZZbsmYNdPXlxYzK8xJxszMSuMkY2ZmpXGSMTOz0jjJmJlZaZxkzMysNE4yZmZWGicZs2YWLEiLmRXmJGPWjG+/bDZiTjJmZlYaTytj1sy0aelx3OTuxmFWQU4yZs1cdll6nOEkY1aUu8vMzKw0TjJmZlYaJxkzMyuNk4yZmZXGScbMzErjs8vMmtlvv25HYFZZbsmYNbNwoW/BbDZCTjJmZlYaJxkzMyuNk4xZM1JazKwwJxkzMyuNk4yZmZXGScbMzErjJGNmZqVxkjEzs9I4yZiZWWk8rYxZM7NmpcdfdTcMsypykjFrZuj2y2fM7W4cZhXk7jIzMyuNWzJmzcyenT3ZpathmFWRk4xZM9Onp8cZ13c3DrMKcneZmZmVpuNJRtI+km6RtErSE5LOkbRxC9uNlXS5pEFJz0v6lqTt69SbLOk+SS9KWixpSjlHYmZmzXQ0yUjaDrgZCGAycA5wOnB2C5tfBfQDJwNTgf2Ba3P7Pxj4HnAbcBQwF7hS0rvacgBmZlZIp8dkPgyMAY6JiBXATZK2AWZKOj8rW4ekg4B3A4dExO1Z2ePAXZIOj4ibs6qfBW6PiNOy17dJ2hc4C/hheYdlZmb1dLq77ChgXi6ZzCElnkOabPf0UIIBiIifAb/O1iFpM+BQ4Du5becAB0kau/7h22hy3+PPM+GMuUzw9Stmo1anWzJ7A7fWFkTEI5JWZeuuG2a7JXXK78/WAewJbFqn3v2kZLoXcPfIwrYiar/0l/3L0V2MpPryCdSfp1VNp5PMdsBzdcoHs3Uj2W6PmjrUqTeYW/86kqYB2SXdrJS0dJg4qmYHYHk3A9B5pe5+7fGV/D7JeX+19mkH3q/uz64jx9kZXf/dLFkvH1/+2HYbrnI3rpOJOmVqUD6S7fKv1aA8FUbMBmbXW1d1khZERF+34yhLLx9fLx8b+PiqrOixdXpMZhDYtk75WOq3VJptt23NdoM1Zfk6NNm/mZmVoNNJZgmvjaEAIGlXYEvqj7k03C5TO1bzEPBynXp7A68CD4wgXjMzWw+dTjI3Au+WtHVN2RRgNTC/yXY7ZdfBACCpjzQecyNARLxEuj7muNy2U4CfRsTz6x9+5fRkN2CNXj6+Xj428PFVWaFjU0SzoZD2yS7GXAz8AjiPlCQuAr4UEWfW1HsQmB8RJ9WU/YB0htjHSS2T84DfRMRf1tQ5GBgALiFdqDkpq39kRPg6GTOzDutoSyYiBoHDgI1JpyufDVwMfC5XdZOsTq3jSa2d/wS+ASwE3pPb/x3AscDhwDzgr4H3O8GYmXVHR1syZma2YfEszBsISVMkXSPpSUkhaWq3YxqJkU6wWgWS/lDSLEk/l/SKpIFux9Quko6T9N+SHpe0UtJCSX/b7bjaRdKxkn4i6dlsct6lks6U9IZux9ZuknbJfoYhaatm9X0/mQ3HscAE4HrSJKOVUzPB6mLSBKt7AheS/lk6c5hNq2Jf0jjinUCvfTn9H9I0UB8jXcg3CUWQM38AAAMaSURBVPi2pB0i4stdjaw9tiedeHQB6XKJA4CZwE7AP3YvrFJcAKwknRXclLvLNhCSNoqIV7P/PF4APhQRV3Q5rEIkfQr4JLDb0Px3kj5J9sfcaILVqhj6GWXPrwZ2iIj+7kbVHlkyWZ4r+zZwUETs3qWwSiXp88CpwHbRI1+0kv4S+D7wBVKy2ToiVg63jbvLNhBDX14VN9IJViuhR35GdeUTTOYeYMdOx9JBz9JDLdKsW/rLpFu0tDxljpOMVck6E6VGxCPA0ASrVi1/Tur67BmSNpa0RXY5xWnAf/RKK4Z0q5bNgX8vspHHZKxKRjrBqo0ykg4jjaud2O1Y2ux3wGbZ828An+hiLG2T3YX4XOCEiHhZUrNN1nKSqajs/jg7N6sXEcNN11NFI51g1UYJSROAbwPfr9q4YAv+HNiCNPB/FunC8H/oakTt8Xngroi4oeiGTjLVdRxwWQv1Wv+XY/Qb6QSrNkpIGkeaCuoR4IQuh9N2EbEoe3qHpOXA1yVdGBEPdTOu9ZHdXfhE4B2Shv7+tsgex0p6JSJWN9reYzIVFRFfjQg1W7odZ5uNdIJVGwUkbUE6hf4NwNER8bsuh1S2oYRT9bPn3kK6IeRPSf/oDfLauMxjpJMBGnJLxqrkRuATkraOiBeyslYmWLUuk7QJ8F3SF9ZfRMRvuhxSJ/xF9vjrrkax/u4g3dq+1pHADNL1Tr8abmMnmQ2EpH2AfUhnhwD0SVoJPBMRVfmCvpR0xs41koYmWJ0JXFT1a2Rg7X/6k7KXuwDbSDo2e31DRKzqTmRt8RXSsX0UGCfpwJp192SzqFdWNoHvzcAvgVdICeZ04Koqd5XB2tPPB2rLsnE1gB81u07GF2NuICTNZN2JSCHNdt3f2WhGLkuWlwAHkcZhvgrMjIhXuhpYG2R/uI3+6909IpZ1LJg2k7SMxrfprfSxAUg6lzRh7wRgDem/+8uBSyPi5S6GVopsWqrLaeFiTCcZMzMrjQf+zcysNE4yZmZWGicZMzMrjZOMmZmVxknGzMxK4yRjZmalcZIxM7PSOMmYmVlp/j+xCrh1LYKoQgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -492,9 +494,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -506,7 +508,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/bull_spread_pricing.ipynb b/qiskit/finance/simulation/bull_spread_pricing.ipynb index 5a0969519..ec90b93b5 100644 --- a/qiskit/finance/simulation/bull_spread_pricing.ipynb +++ b/qiskit/finance/simulation/bull_spread_pricing.ipynb @@ -46,8 +46,10 @@ "\\Delta = \\mathbb{P}\\left[K_1 \\leq S \\leq K_2\\right]\n", "$$\n", "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." + "The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:\n", + "\n", + "- Quantum Risk Analysis. Woerner, Egger. 2018.\n", + "- Option Pricing using Quantum Computers. Stamatopoulos et al. 2019." ] }, { @@ -118,7 +120,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEyCAYAAADOV2anAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVdn+8e8tCMQEArIERCSACqJRMFEIoCSgsr0KghAVfQ0iERXwpwgiIgRwAZTtBRUjasQtuCDKLgQCskMQCYQgAUIkKAgkwawk5Pn9cWqgUume6Z7uqWqS+3Ndfc3UqVNVT/f09NNV59Q5igjMzMz62quqDsDMzFYNTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqWoPOFI2lbSREkLJD0p6RRJq/WwzVslXZ3VXyxppqQLJW1SqDdeUtR4bNO3z8rMzIpWr/LgktYDrgOmAvsCWwFnkhLhCd1sOhB4DLgIeBLYAjgJGCrpXRGxNFd3GnBIYfsZjcS3wQYbxODBgxup2ifmz59P//79Kzt+PZ0aFzi23ujUuMCx9UbVcU2ePPmZiNiw5sqIqOwBfA2YDayTKzsWWJAva3Bf7wcCeGeubDxwd2/jGzp0aFTphhtuqPT49XRqXBGOrTc6Na4Ix9YbVcfV3Wdu1ZfU9gKuiYjnc2UTgH7Ark3u69ns5xrtCMzMzNqr6oSzDemS10siYibpDKfHdhZJr5K0hqStgdOAu4A7C9W2lfR81tZzs6RmE5mZmbWBosKx1CQtAY6JiHMK5U8AF0XE8T1sfzWwR7Y4Gdg7Ip7Orf8i8AKpjWhD4GhgKLBLRBQTU9c2Y4AxAIMGDRo6YcKE3jy1tpg3bx4DBgyo7Pj1dGpc4Nh6o1PjAsfWG1XHNXLkyMkRMazmynrX2sp4AEuAL9YonwV8q4Ht3wTsAHyCdKY0GVirm/r9SJ0NLm0kPrfh1NapcUU4tt7o1LgiHFtvVB0XHdyGMxtYt0b5QGBOTxtHxMMRcUdE/JJ0prM98PFu6i8ErgTe2btwzcyst6pOONMotNVI2gzoT6FtpycR8TjwHLBlI9Wb2beZmbWu6oRzFbCHpLVzZaOAhcCNzewo6ziwPumSWb06/Ug94yY3H6qZmbWi0hs/gQuAo4BLJJ1OOjsZC5wVua7SkqYDN0bEodny94ClwB2kS29vId2/8wipWzWSBgKXA78EpgMbAF8CNgUOKuG5mZlZTqUJJyJmS9odOB+4jJQ8ziYlnbzVgfxwN3cDR5J6k60FzAT+AHwnIuZndRYD/yGNWLARsAi4Ddg1Iu7ui+djZmb1VX2GQ0RMBXbroc7gwvIEsjOZbrZZBOzfanxmAIOPu6LlfRw9ZCmjW9zPjNP2aTkOs6pU3YZjZmarCCccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK0XlCUfStpImSlog6UlJp0harYdt3irp6qz+YkkzJV0oaZMadfeVNEXSIklTJY3qu2djZmb1rF7lwSWtB1wHTAX2BbYCziQlwhO62XQg8BhwEfAksAVwEjBU0rsiYmm2/12APwA/AI4C9gZ+I2l2RPylT56UmZnVVGnCAQ4H+gH7R8TzwLWS1gHGSjojK1tBRNwK3JormiTpCeAvwNuBe7LybwA3RcRR2fINkt4KnJjVNTOzklR9SW0v4JpCYplASkK7NrmvZ7OfawBIWhMYCfy2UG8CMFzSwObDNTOz3qo64WwDTMsXRMRMYEG2rluSXiVpDUlbA6cBdwF3Zqu3Al5d3D/wIOl5v7m10M3MrBmKiOoOLi0BjomIcwrlTwAXRcTxPWx/NbBHtjgZ2Dsins7W7QzcDGwfEffmtnkj8DCwR612HEljgDEAgwYNGjphwoTePr2WzZs3jwEDBlR2/Ho6NS7ou9imzJrb8j4G9YOnFra2jyGbtv/EfFX8e7ZDp8ZWdVwjR46cHBHDaq2rug0HoFbGU53yoiOB1wJvInUyuErSzhGxqJv9q5vjEhHjgHEAw4YNixEjRjQQRt+YNGkSVR6/nk6NC/outtHHXdHyPo4espQzp7T2Lzfj4BEtx1G0Kv4926FTY+vUuKD6hDMbWLdG+UBgTk8bR8TD2a93SPorqefax4GfZvumxv67lnvcv5mZtU/VbTjTKLTVSNoM6M+KbS/diojHgeeALbOiR4Alxf1ny8uAf/QiXjMz66WqE85VwB6S1s6VjQIWAjc2s6Os48D6pLMcImIxcANwYKHqKOC2iGj9oryZmTWs6ktqF5BuyLxE0umks5OxwFn5rtKSpgM3RsSh2fL3gKXAHaRLY28BjiWd1eRb+U8l3aNzDnAp6cbPvYE9+/ZpmZlZUaUJJyJmS9odOB+4jJQ8ziYlnbzVgfxwN3eTOgyMAdYCZpJGFPhORMzP7f9mSR8Bvgl8jqyNx6MM2MpicJs6M7TaKWLGafu0HIet/Ko+wyEipgK79VBncGF5AsufyXS37aWksxszM6tQ1W04Zma2inDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaKpkeLljQEeDewMWlqgOdIs2feGhGzu9vWzMxWXQ0lHElbkuaTORgYRJqieQ6wGFgXeA2wTNKNwIXAxRGxrE8iNjOzV6QeL6lJuhB4ANgOOAXYHlgrIjaMiNdHxABgI+CDwBTgDOBBSbv0XdhmZvZK08gZziJgm4h4vF6FiHgGuAq4StKXgQOBTdsTopmZrQx6PMOJiCO6SzY16i+LiIsj4uJG6kvaVtJESQskPSnpFEmr9bDNuyT9TNL0bLuHJJ0kaa1CvbGSosZjz0afj5mZtUdLU0xLehuwKyDgxoiY0uT26wHXAVOBfYGtgDNJifCEbjYdldU9HXgYeDtwavbzgELduUAxwTzYTJxmZta6XiccSZ8DvgVMBPoD35V0dET8oIndHA70A/aPiOeBayWtA4yVdEZWVsvpEfGf3PIkSYuAH0navHBGtjQibm8iJjMz6wONdBp4TZ1VXwWGR8SBEbE38AXg600efy/gmkJimUBKQrvW26iQbLr8Lfu5UZMxmJlZCRq58fMfkg6uUS5S9+gu0YvjbwNMyxdExExgQbauGTtl8TxUKF9X0jOSlkj6m6T9exGnmZm1SBHd5wlJ7wXOBl4AjoqIu7LyL5C6SU8k3YezO3BsRJzX8MGlJcAxEXFOofwJ4KKIOL7B/WwM3AdcGRGjc+WfIJ3x3AsMAD4L7A0cEBGX1NnXGGAMwKBBg4ZOmDCh0afTdvPmzWPAgAGVHb+eTo0L+i62KbPmtryPQf3gqYWt7WPIpgOXW+7UuNplVXyvtarquEaOHDk5IobVWtdjwgGQJOAzpARzLfDViPiXpHfw8qWvmyLi3mYCyxLOVyLi3EL5LGB8RPR4iU7SGqSOB68HhnY32kH2PG4F+kXEdj3te9iwYXH33Xf3VK3PTJo0iREjRlR2/Ho6NS7ou9gGH3dFy/s4eshSzpzSUj8dZpy2z3LLnRpXu6yK77VWVR2XpLoJp6Gx1CL5MbA18BQwRdLxwLSI+L/s0VSyycwmjVRQNJA0kkG3sgRyEfBWYO+ehtaJlF0vAd7eU9drMzNrr6YG74yI5yPiGGBHYAdgmqSPtHD8aRTaaiRtRur1Nq3mFss7m9Sdet+IaKR+l960N5mZWQsa6qUm6ZuS7sga3ccBiyJiX+Aw4CRJN2aX15p1FbCHpLVzZaOAhcCNPcT1NeBI4BMRcXMjB8vOiD4M/D0iXuxFvGZm1kuNXLj9CbAt6Z6bBaQG9WslbRsR10najjSw57WSLo2IMU0c/wLgKOASSacDWwJjgbPyXaUlTSfdWHpotvxx4NvAeGCWpB1z+3ykq9t0NpjoH0hnS/1JCXJHYL8mYjQzszZoJOHsBRwYEdcCSLoFeJZ0p//07EzhfEm/IiWLhkXEbEm7A+cDl5Habc6usZ/VgXybyweyn6OzR94hpEQEMB34f8AmpC7T9wD7RMRVzcRpZmatayThTAM+KWkyaSDPzwLzgSfylbIG+y82G0BETAV266HO4MLyaFZMNLW2O7TZeMzMrG80knA+RTpjeIbU2P4Y6YxnUR/GZWZmK5keE05EPAQMl9QfWMOzepqZWW80fLdXRMwnXUozMzNrWiPdoj/Z7E2Skt4o6T29D8vMzFY2jdz4eTTwiKRTu7vXRtL6kg6WdBlp5OZN2hWkmZm98jXShrOdpFGkmyy/LmkeaQKzZ4DFpKFptgDeQBqq5pfA4RExq8+iNjOzV5yG2nCy6aIvlrQV8D7gncDGpJspnwJuAm4BJkXEkj6K1czMXsGaGiI2Ih4BHumjWMzMbCXW1OCdZmZmveWEY2ZmpXDCMTOzUjjhmJlZKZpKOJL+R5KTlJmZNa3Z5PEn0vwzp0t6S18EZGZmK6dmE85WwDjgIOB+SbdJOkzSOu0PzczMViZNJZyImBERJ0XEFsD7SROcnQ38S9IvJI3siyDNzOyVr9ftMRFxfUR8EngzMBk4GLhO0mOSviSpqZtKzcxs5dbrhCNpV0njgYeAtwHfJ039/DvgZOCidgRoZmYrh2Z7qW0u6URJjwDXA5sBY4BNIuLIiJgYEceSZgndt8F9bitpoqQFkp6UdEpP0yFIepekn0manm33kKSTJK1Vo+7Oku6QtDA7+zqqmedsZmbt0exlr0eBJ0lTTv80Ih6rU+8B4M6ediZpPeA6YCopQW0FnElKhCd0s+morO7pwMPA24FTs58H5Pb/RuAa4HLga8C7gbMkLYiIC3uKz8zM2qfZhPNB4OqIWNZdpYj4B9BIB4LDgX7A/hHxPHBt1uNtrKQzsrJaTo+I/+SWJ0laBPxI0uYR8XhWfgwpQX4iIpYC10t6A3CSpJ9ERDQQo5mZtUGzbTjDSNMSrEDSJpJObHJ/ewHXFBLLBFIS2rXeRoVk0+Vv2c+NCvu/JEs2+f2/ntTuZGZmJWk24ZxE+rCu5XXZ+mZsA0zLF0TETGBBtq4ZOwHLSJ0YkNSf1MY0rVDvwdyxzcysJGrmqpKkZcAOEXFXjXX7Aj+JiA2a2N8S4JiIOKdQ/gRwUUQc3+B+NgbuA66MiNFZ2abAE8CHI+LSXN3VgSXAZyNiXI19jSF1hGDQoEFDJ0yY0OjTabt58+YxYMCAyo5fT6fGBX0X25RZc1vex6B+8NTC1vYxZNOByy13alztsiq+11pVdVwjR46cHBHDaq3rsQ1H0qdIvc4AAvihpGLbylrAEOAvvYivVsZTnfJa8a0B/BaYB3ypwf3XLc+S0DiAYcOGxYgRIxoJo09MmjSJKo9fT6fGBX0X2+jjrmh5H0cPWcqZU1q7PW3GwSOWW+7UuNplVXyvtapT44LGOg0sAJ7NfhcwF3iuUOcF4CrgB00efzawbo3ygcCcnjaWJNL9Pm8Fdo6I2bnVXdsX979eYb2ZmZWgx4QTEb8j3cyJpJ8Bp3TTHbpZ0yi0pUjaDOjPim0vtZxN6k79/ogotgXNl/TP4v5zy43s38zM2qTZsdQOaWOygXRWtIektXNlo4CFwI3dbSjpa8CRpC7PN3ez/w8XbiQdBfwTuL/XUZuZWdOqntvmAmAxcImk92UN9mOBs/JdpbMRBX6SW/448G3S5bRZknbMPTbM7f+7pF51v5A0UtKxwGdJZ2m+B8fMrESNdBq4ExgdEVMl3UUPjfkR8e5GDx4RsyXtDpwPXEZqVzmblHSKcebPUj6Q/RydPfIOIY2EQERMl7QncBbpbOffwNEeZcDMrHyNdBp4gHSJq+v3tp4ZRMRUYLce6gwuLI9mxURTb9ubSUPamJlZhRrpNHBI7vfRfRqNmZmttKpuwzEzs1VEI204Pbbb5DXThmNmZquORttw3KPLzMxa0kgbzugS4jAzs5Wc23DMzKwUld6HY2Zmq47K78MxM7NVg+/DMTOzUjQ9CUY2/8xo0t37mwD/Au4Afh4RL7Q1OjMzW2k01WlA0luAh4HvA28DXsx+fh+YLmnbtkdoZmYrhWbPcMaRJmB7T0TM7CqU9AbgCtLoz+9tX3hmZrayaDbhDAM+lk82ABExU9KJwK/bFpmtcga3abrkVqddnnHaPi3HYWYravY+nBnAWnXWrQXMrLPOzMxWcc0mnOOAb0raIV8oaUfgFOCr7QrMzMxWLr0ZvHMd4FZJTwNPAxtlj2eB44FL+yBOMzN7hevN4J0P9FEsZma2Eqt88M6sK/V5wHDSFNMXAidHxIvdbLMG8C1gR1JHhrUiQjXqjQc+VWMXb4mIaa1Hb2ZmjWr6xs92krQecB0wFdgX2Ao4k9S2dEI3m74G+AxwJ3Ar3U9RPQ04pFA2o3cRm5lZb1WacIDDgX7A/hHxPHCtpHWAsZLOyMpWEBFzJL02IkLSEXSfcOZHxO3tD93MzJrR9PQEkkZJuk7STElPFx9N7m4v4JpCYplASkK7drdhRHgQUTOzV5Bmh7b5OPBzYDrweuDPwOXZfp4Hzm/y+NuQLnm9JLupdEG2rh22lfS8pMWSbpbUbSIzM7O+oWZOFCT9Dfg9cBqwBBgWEfdIWhu4Fvh9RHyvif0tAY6JiHMK5U8AF0XE8Q3s4wjgvDqdBr4IvEBqI9oQOBoYCuwSEXfW2d8YYAzAoEGDhk6YMKHRp9N28+bNY8CAAZUdv56+imvKrLkt72NQP3hqYc/1ujNk04ErlHVqbJ0aV7t06v8AdG5sVcc1cuTIyRExrNa6Zttw3gTcEhEvSnqRdE8OEfFfSacDZwMNJ5xMrYynOuXN7Tji3OV2Kl1BSj7HA/vV2WYcacw4hg0bFiNGjGg1jF6bNGkSVR6/nr6Kq9UhaSANbXPmlNaaJmccPGKFsk6NrVPjapdO/R+Azo2tU+OC5ttw5gJrZr/PAt6SWydg/Sb3NxtYt0b5QFIX6baKiIXAlcA7271vMzPrXrNfa+4G3g5cQ2q/OVHSUtJlqxNJ8+I0YxqFthpJmwH9KbTttJk7HJiZlazZhPMdYPPs9xOz338ArAbcRdb20YSrgGMkrR0R/83KRpGmtL6xyX31SFI/Us+4ye3et5mZda+phJPdz3J79vscYF9JawJr1rtnpgcXAEcBl2RtQFsCY4Gz8vuTNB24MSIOzZXtRToT2i5b/ki26q6IeFzSQFIPul+SetVtAHwJ2BQ4qBexmplZC9o2xbSkpqeYjojZknYndae+jNRuczYp6RTjXK1Q9kNePtsC+F328xBgPLAY+A9pxIKNgEXAbcCuEXF3M3GamVnrmko42RTTVwOvI12Wepo0xfT/At+QtGdETG1mn1n97kYKICIGN1JWWL8I2L+ZWMzMrO94imkzMytFs92ihwEn1ppimtSJ4F3tCszMzFYunmLazMxK0ewlteOAMyU9FhEv3XOTm2L6mHYGZ2avXIPbNApCq6MpzDhtn5bjsPbwFNNmZlYKTzFtZmalqHyKaTMzWzX0aohYSa8DhgOvJV1Kuz0inmxnYGZmtnJp9sbP1YDzgMNY/s7/FyWNA46MiGVtjM/MzFYSzXaLPhn4NKlzwGDSVNCDs+VPs+KQNGZmZkDzl9T+FzihMKvnTOC7koI0EOeJ7QrOzMxWHs2e4WwE3Fdn3X3ZejMzsxU0m3D+AXy0zrqPAg+1Fo6Zma2smr2k9k1gQjZY5++Bp0hnNQcCI6mfjMzMbBXX7ARsv5U0h9R54Fzg1cAS0lQFe0bEte0P0czMVgYNJxxJryZNunZ/RAyX9CrSLJrPuCu0mZn1pJk2nBeB64G3AETEsoh42snGzMwa0XDCyRLLw8CgvgvHzMxWVs32Uvs6cKKkIe0KQNK2kiZKWiDpSUmnZCMadLfNGpK+K+mvkhZm9wDVq7uvpCmSFkmaKmlUu2I3M7PGNdtL7QRgfeBeSbNIvdSW+7CPiHc3ujNJ6wHXAVOBfYGtgDNJifCEbjZ9DfAZ4E7gVmC3OvvfBfgD8APSTal7A7+RNDsi/tJonGZm1rpmE84DwP1tPP7hpOFx9o+I54FrJa0DjJV0Rla2goiYI+m1ERGSjqBOwgG+AdwUEUdlyzdIeitpNAQnHDOzEjXbLXp0m4+/F3BNIbFMAE4HdgUu6yaWupfRACStSbo36KjCqgnAzyQNjIi5vYrazMya1lAbjqR+kg6QdLSkj0tqV8eBbYBp+YKImAksyNa1YivSfULTCuUPkp73m1vcv5mZNUE9nCggaUtSO8vgXPHzwEGttoNIWgIcExHnFMqfAC6KiOMb2McRwHkRoUL5zsDNwPYRcW+u/I2k3nZ71Ipf0hhgDMCgQYOGTpgwofkn1ibz5s1jwIABlR2/nr6Ka8qs1k84B/WDpxa2to8hmw5coaxTY+vUuKCzY2uHVe3/s1EjR46cHBHDaq1r5JLaGcAy4D2kEQW2IDXC/yj7vVW1Mp7qlLdj/6pTngojxgHjAIYNGxYjRoxoUxjNmzRpElUev56+imv0cVe0vI+jhyzlzCm9mlfwJTMOHrFCWafG1qlxQWfH1g6r2v9nOzRySW04aUqCWyJiUUQ8CHwWeIOkTVo8/mxg3RrlA4E5bdg3Nfbftdzq/s3MrAmNJJxNgEcLZY+QzhQ2bvH40yi01UjaDOjPim0vzXqENM5bsS1oG9IZ2z9a3L+ZmTWh0Rs/23V5q+gqYA9Ja+fKRgELgRtb2XFELAZuII1knTcKuM091MzMytXoxdFrJC2tUT6xWB4RzUzCdgGp2/Ilkk4HtiRNU31Wvqu0pOnAjRFxaK5sL9KZ0HbZ8keyVXdFxOPZ76cCkySdA1xKuvFzb2DPJmI0M7M2aCThnNxXB4+I2ZJ2B84n3XMzBziblHTyVgeKw938ENg8t/y77OchwPhs/zdnieibwOeAx4CPe5QBM7Py9ZhwIqLPEk62/6nUHymgq87gRsrqbHsp6ezGzMwq1OzgnWZmZr3ihGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVwgnHzMxKUXnCkbStpImSFkh6UtIpkorTSdfabqCkn0maLWmupF9JWr9QZ7ykqPHYpu+ekZmZ1dLjFNN9SdJ6wHXAVGBfYCvgTFIiPKGHzS8GtgY+AywDTidNJf2eQr1pwCGFshmtxG1mZs2rNOEAhwP9gP0j4nngWknrAGMlnZGVrUDScGAPYNeIuCkrmwXcIel9EXFdrvr8iLi9b5+GmZn1pOpLansB1xQSywRSEtq1h+2e6ko2ABFxJ/BYts7MzDpM1QlnG9Ilr5dExExgQbau4e0yD9bYbltJz0taLOlmSd0lMjMz6yOKiOoOLi0BjomIcwrlTwAXRcTxdba7lnSpbL9C+S+BLSNip2z5i8ALpDaiDYGjgaHALtkZUa19jwHGAAwaNGjohAkTWniGrZk3bx4DBgyo7Pj19FVcU2bNbXkfg/rBUwtb28eQTQeuUNapsXVqXNDZsbXDqvb/2aiRI0dOjohhtdZV3YYDUCvjqU55U9tFxLnLrZSuICWf44H9qCEixgHjAIYNGxYjRozoIYy+M2nSJKo8fj19Fdfo465oeR9HD1nKmVNae1vPOHjECmWdGlunxgWdHVs7rGr/n+1Q9SW12cC6NcoHAnN6sd263W0XEQuBK4F3NhGjmZm1QdUJZxqFNhdJmwH9qd1GU3e7TL22naLqriOama2iqk44VwF7SFo7VzYKWAjc2MN2G0vapatA0jBgy2xdTZL6kXqxTW4laDMza17VCecCYDFwiaT3ZQ32Y4Gz8l2lJU2X9JOu5Yi4DbgGuEjS/pL2A34F3Nx1D042EsFfJX1W0u6SRgE3AJsC3y7rCZqZWVJpp4GImC1pd+B84DJS+8vZpKSTtzpQHO7mo1ndn5IS5+XAUbn1i4H/kEYs2AhYBNxGuln07rY+ETMz61HlvdQiYiqwWw91Btcom0MasqY4bE3X+kXA/m0I0cxWMoPb1IOulZ54M07bp+UYXmmqvqRmZmarCCccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaKykcasHJ1wh3WsGreZW22qvMZjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrReU3fkraFjgPGA7MAS4ETo6IF3vYbiBwDrAfKXFeDhwVEc8W6u0LfBN4E/Botu+L2/08zMxatbLfmF3pGY6k9YDrgAD2BU4BjgZObmDzi4ERwGeA0cC7gEsL+98F+ANwA7AXcAXwG0kfaMsTMDOzhlV9hnM40A/YPyKeB66VtA4wVtIZWdkKJA0H9gB2jYibsrJZwB2S3hcR12VVvwHcFBFHZcs3SHorcCLwl757WmZmVlR1G85ewDWFxDKBlIR27WG7p7qSDUBE3Ak8lq1D0prASOC3hW0nAMOzS3JmZlaSqhPONsC0fEFEzAQWZOsa3i7zYG67rYBX16j3IOl5v7kX8ZqZWS8pIqo7uLQEOCYizimUPwFcFBHH19nuWmB+ROxXKP8lsGVE7CRpZ+BmYPuIuDdX543Aw8AeEbHCZTVJY4Ax2eLWwEO9foKt2wB4psLj19OpcYFj641OjQscW29UHdfmEbFhrRVVt+FA6jBQpDrlvdmuuKxuticixgHjejh2KSTdHRHDqo6jqFPjAsfWG50aFzi23ujUuKD6S2qzgXVrlA8kdZFudrt1c9vNzpUV69DD/s3MrM2qTjjTKLTVSNoM6E/tNpq622XybTuPAEtq1NsGWAb8oxfxmplZL1WdcK4C9pC0dq5sFLAQuLGH7TbO7rMBQNIwYMtsHRGxmHT/zYGFbUcBt0XE3NbD73MdcWmvhk6NCxxbb3RqXODYeqNT46q808B6wFTgfuB0UsI4CzgnIk7I1ZsO3BgRh+bKrib1NPsK6YzldODpiHhPrs4uwBFDC3IAABl+SURBVCTgfNJNoXtn9fes1WHAzMz6TqVnOBExG9gdWA24jDTCwNnASYWqq2d18j5KOgv6KXARMBn4cGH/NwMfAd4HXAN8CPi4k42ZWfkqPcMxM7NVR9VtOGZmtopwwjEzs1I44ZiZWSk6YaSBVZ4kkTo87AO8BXgt8CLwFHA7MD4iKrlvKLsvam/SCA2/i4hnJb2e1NtvK2AGMC4ippQY01eBK8s8ZqMk9QNWj4j/5so2BI4AtiX1qLwX+MErpGt+JbL/iQ8C7ySNCnI36W/eEY3O2aj2zwC7ZZ2TqophN2AN4IqImJ+9175A6vH7KOl/88kq4qvFnQYqlr1BrgSGkhLMYmBT0j/ZVaQ3ztbAqRFxasmxvZs0jcMAYCnwHGlaiCtJCfEB4G3AxsD7IuKvJcW1jPT6TAN+DVwcEdPLOHZPJF0JPBwRX8yWh5P+jstIPSlF+lu/QPqweqCkuLYH+kXErbmyPYGv8XIi/DswNl+npNhuBQ6NiAez5fVI77uhwLys2gDSl6898sm8j+P6fDer+wHfBc4ljc1IRPygjLjgpTEhJwKbZUWPAR8AriWNpvII6XNjITA0Ip4oK7ZuRYQfFT6A35DesENyZa8Drgb+kC3vSvrH+3TJsV1Lunl2XdLI2+cDTwB/Al6d1VmT9IF6Q4lxLQO+Q5rldTEp+d0FfAnYtOK/5zPAvrnl20kfDGvnygaSuvRfU2JctwNfzy1/OnsdJwJfB07I/tZL8/GX+Pd8d275J6QvN3vmyvYkDVd1dslxvZj9rPXIr3ux5Nfst6QvCG8kXRH5RfY5cmvXe400iOffgR+VGVu3cVcdwKr+II3pdkCN8sHZG3qTbPl44O8lx/YssFdueaPsn+sDhXr7AM+UGNdLH1DAeqTRvSdmH5ZLSTf7jgHWr+DvuQB4b275heLrlXvN5pcY1/P5OIDpwHk16l1QwfusmHD+A/y/GvW+AjxeYlyXAv8CDiG7GpRbt24W93vLiqdw/CeBg3LLm2fx7F+odwjwjypirPVwp4HqiZRYil7M1nVNFHcH5c/hEyw/qnYUfhbLSxcRsyNiXETsDryeNEX5GqQPzicltT5JfHPuJ0381+Up0jfQovVJyaksywrLmwO/r1Hv96RLMVVal9RmUzSZdPm2FJGmP/kUcAxwVzblyUury4qjjvWAf+eWZ2U/Hy/Ue5T0f9ERnHCqdx3wTUlbdhVk17D/j/SG6uosMAAou5F5MvAVSWtLehXpLGsW8DlJq2Wxrg58nvRBW6mI+HdEnBsROwFbkEaseF3JYZwGHCfp09lr8y3gu5LeL2kNSWtmbSffYcXZaPvSX4GDc8sPALWGsH8XL394lekASZ/P2k1mA7XmU9mAdKZWmkijkrydNFPwFZImZJ1mqvY06UtDlxeBH5G+4ORtBJTS5tWQqk+xVvUH6dvH/aSRraeTxpZbSLrUlr+cdQapcbzM2IaR/vmXZDE9C7yDdK34UdJwRI+R2lFGlhjXcpdgOu0BfIb0wTgXuDP7/cXssTT7+UfgNSXGNCSL4xfAu0lTsT9NSojvzx6nAYuocTmrhL9n8fHTGvV+BPy1wr/rxqRhtOYBZ2Z/x6ouqV1a6zWqUe884LqqXrPiw73UOkB2tnAQ6cN8LVLi+XVEPFdpYED2be5/SF3o/xAR/5K0MXAs6dLL48CFEXFPiTGdBPw4Oqi7Z5Gk9Ukjk7+b9EH1KlJD+IPA5RExuYKYtgN+COxAuiSUn4xQpC8Xp0TEuWXH1ghJhwGPRMT1FccxnDTm49bAPlFyr74shkGkLyyP9VDvy6Q2uYnlRNY9JxyzVYykt5CSTjER3hoRS6qMzVZuTjgdRNJbSRPErUf61jkHmBYl3avRLEmrRUStDg+VkLQW6WbUZcD0qj88szacLcndyBsRM6uM6ZUmuwGUqPCDKruZVxGxIFe2HdmNz1Wcrb5SudNAB8gamB8H7gN+R5pA6cfZ7/dJmiHpkIpi21/SpZKulPTBrGyUpBnAC5Iezy51lBnTJyR9Ore8uqTTSN/U7yO1iT0n6bgy48rFM1TSn0mNtQ8Ct5Dug3lM0ixJp0h6TRWxdSJJHyhMwoik/STdQ2o/fEHS3ZL2KTmugZL+SGr7el7SjyWtJunnwD2k/887Jd0iaYMyY2uUpAMkdcyXQiecikk6ktQYejkwgtSr5NXZYyPSTZ+XAxdI+kLJsR1E6ia7Aekf/+IsufyCdN/LUaQbzS6QtEeJoR1PuuG0y+lZLN8B3kt6zc4ETpJ0fIlxIekDpNfkdcA5wKmku+ZfBMaSJhg8ALg1641YZmz/I2mipCmSLpb03hp1dqjgA+oq0pBOXTF8GLiE1IHhONJoCC8Af8pe37KcCrwH+DLpRtmdSD0LdyPdiDqI1L45OKtrPfAltYpJehS4ICLO6KHescDhEbFld/XaSdJdwOSIODxbPpg04d35EXF0rt7PgM0i4n0lxbWA1IPvxmz5aeBbxcZuSV8BjoyIzWvspq9imwzcHxGfKpQfSbpHaEvSfUK3ArdHRHfDp7QzrveTRq+4HfgbMBzYjpQUv9J1yUrSDqS2nOKEh30Z2zJgx4i4M1u+B5gVER8s1LsS6B8Ru5YU12PAtyPix9ny9qRbBQ6JiJ/n6h0GHB8RW5QRV3bMnzZYdXNgRJl/z+74DKd6G5O6zvbkTkq86S2zNcvfHHg56cyreDPlJaTxuMoyl3TW1WUgaQiPor+TzhLLtC3wyxrlvwTeAGwdEYtIH/QfrlGvr5wEXBQRO0fEERExFDgM+CxwSdb+1SneRjrrLxpHGsyzLBvx8n1wkI2ZRhqnLG86te8b6kufIo2dNqSHR2lfthrhhFO9+4DDshsra8oaTg/L6pYpWH5q766BFOcU6s0j3R1elj+TbkhdI1u+DvhYjXofI93gWKanSd3bi95Bej27bt59nJdHkSjD2ygkwoj4Keny447A9ZJqjYhQlvyllrm8/F7Lm0+5n1mPkV6fLu8hdUjZqVBvZ6DsziAPA9dHxLu6e5AuSXYMT09QvaNJlzqmSrqENALyHNI/4LqkXmsfJt0gumfJsT1O+sZ+DUBEvJjdg/Bgod6WLD/MRl/7GunO+fslXUi6AfV0SW8jjaMG6Tr79qQh7ss0DjhVUn9SO9cLpLv3v04a4LTr3qEtKfdDahHQv1gYEZOzIVuuIV3mG1tiTHnXSFqa/T6QdLlvUqHONqSxzcpyAXCupCGkJHgQ6b13oqQBpDPod5IGjS27Ded2Vkx8teTvt6qcE07FIuKWrIvlsaShRzYrVPknqVH1uxFRPJXva5dQGIcpIu6oUe/jQGlzgkTEc5J2JH2If5mXL5sNzx4vkEa6fk9E3FVWXFls38raJI4jXcaC9E//G+D/5aouAb5dYmj3kUYX+HNxRUQ8miWdK4HxJcbU5eQaZU/XKDuANKJ1KSLi/OzKw8dIQyUdGxEXSHqCNPRU13h4FwDfKyuuzHmknnI9uZHlx/arlDsNdJisu2zX5ak5+b7/nUrSG0ixljrOVe74g1n+JsZHOuAenFeT7tNYC3i0qtcmF89nSb37tq83gkV2VvZH0txGvtzejewy9wYR8Z+qY3klccIxM7NS+JJah1Caynkj4KGIWKHBNLuxbO+IuKj04GrIrmHfAxxc9mUrdfg0zurAabk7nV4h0yVnZzb5qa8nk+It/Zu7pGGky4wiTUM/TdI7SJcou95n34+Iq8uOrR6f4VRM0pqk3kP7Z0XLSCPSfjn/YVnR/RF7d7O6P3Axqa3ifoCIuLKkuDpyGucslo6clrtRSuOsHRgRp5R4zI6cLlkdOvV1FssepM4yz5F6720I7Etqd51K+sI1lNRh5YCIuLSs2LpVxpDUfnQ7fPiJpF5ph5GmA/giaU6Lh4E35ertQPnT2HbkFLt06DTO2XE7clruJuI/oIL3WUdOl0yHTn2dHfcW0tA6q2XLx2dx/KRQ7xekG4wrf29FeIrpyh+kbtBHFMo2Bm4iTbU7PCurIuFM5uUpdjcvPN6e/UMe1FVWYlwdOY1zdsxOnZb7DQ0+Dq/gfdaR0yXXSDgdMfV1dsy5pDPkruX1snh3K9T7AKlDT2mxdfdwG071NqNwQ2dE/FvS7qRvJ9dlQ8qUef9Bl2GkM6/TSfe9fCWy+Tckdd20+O+IKE5r29e6pnG+KVvulGmcoXOn5Z7R4DHVYL12eqVMl9wRU19nFrL8fVVdv/cr1HsN6R6sjuCEU70ngTfx8ocnAJG69X5U0jmkU+fSOwtE+oo0TtJvgW+SRq4+P/u9SqcBv5L0T9Lr0jWN87Oky2giJaSyp3GGl6flvoV0bT0/Lff1kW6erWJa7v8C1wMX9lBvF9I9YWXq5OmSD8ga56GDpr4mXVI7UdLD2bG/R2q7+aqkmyLiv9mXwmNJ78nOUPUp1qr+IA2GOamHOl+j5HaSOnG8nXT395OktqYqp9jtuGmcs7g6dVrua0lDofRUr4o2nI6cLpkOnvqa1N41I/eef4R0SbTrf2EKKTnPBrYrM7buHj7Dqd4PgFGS1o+IZ2tViIjvKM2X8/5yQ1shjvuAEZI+CpxBhUNmRMSF2VwlXdM4P0cHTOMcEXdnQ6EUp+V+Dy9Py30VJU/LTTqDHtNAvf9QONsuwWdJl3568hgpOZUiGr/59W5Sj83SRMT0bCinnUmdUyZGxEJJI0hfxrYmXZL/dZTUq68R7hZtvZJdFuoPzIsOmvXTzDqXE46ZmZXC4yW9QmTT2/6k6jhq6dTYOjUu6OzYOpWk6yRNrDqOok6NCzovNrfhvHKMpHO/IHRqbJ0aF3RobJKuI1352L3qWGoQHfia0blxQYfF5ktqZvaS7NvwqyKiY4a0t5VHx2Q+656ktbJpADpOp8bWqXFB58YWEbt3arKR9OpOfM06NS7ovNiccF459iF1C+1EnRpbp8YFHRpbVR9Qkr4g6RFJ/5V0h6RP1qj2Tkp+zTo1rk6PrR4nHLNVRKd+QGX3dZ1HGoT1ZNKNxeMl/T6biqISnRpXp8fWHbfhVEzS9Q1W3RDYNsqdnqAjY+vUuKBzY8s+oH5Nmur6b6QbBj9EGo3hkxGxMKtXxTQYd5NGQTg2V7Y78CvS3fT7RJpTqNTYOjWuTo+tO044FZO0FHiINA5SdzYFdij5Td2RsXVqXNC5sXXyB5Sk/wIfjIhJhfLBpFEZVgP2Io1ZVmbC6ci4Oj227rhbdPXuJ83yOaq7SpI+QsnDZ9C5sXVqXNC5sW1NGkb/JRExUdKOpA+o2yTtVWI8eXNJH4zLiYgZknYCriDNjXOq43pJJ8dWl9twqncHsGMD9YLyxy7r1Ng6NS7o3NjqfkABO5EmtbuVNENk2SYD+9VaERGzgd1J45X9X5lB0blxQWfHVpcTTvXOAI5soN6VwBZ9HEtRp8bWqXFB58bWyR9QvwS2lFRrTiOy9qUPkaZWmOm4gM6OrS634ZitAiQdCHwJ+J+IeK5OndWAHwLvj4iyE7WtApxwzMysFL6kZmZmpXDCMTOzUjjhmJlZKZxwzMysFE441i1JoyVNzsbfmi3pb5LO6qNjHSRpdAP1xkqK3ONJSX+QtFWDxxmf3XlfuUafc1a363k/XGf99Gz92L6Kocn9Lvc6t/s4kl4l6YjsPblQ0vOSHpD0f5J6dY+Tkr9L+lSd9eOzu/lrrfu+PKlet5xwrC5JXyP1478G2B/4X+BPpP79feEgYHSDdecCw7PHV4DtgImS+jew7alNHKevNfOcARYBW0gali+U9C5g82x9X8fQqOLr3O7jTAC+CVxCek9+inR/007R++63BwHrkcada9Z3gYMlvbGXx17peWgb684RwI8i4vhc2WWSTq4qoJylEXF79vvtkmYCfwX2Bn5XrJzdY7JaRLwQEY+UGGe7zQfuAT5KulGzy0eB64GhVQTVpazXORuG50Bg74i4Krfqj709u8kcBfwiIpbkjrU6KXl+Engd8DFJjwAnR8RLwxNlw8rcDHwOOLqFGFZaPsOx7qwL/LtYmP/22HXZRNJ+kqZJWiTpZknbFrfLLqlMkbRY0j8lfSv7Z0bSeOAAYNfcpbKxTcQ6Ofs5uEZcD5C++e+QX1eI7b2SbpA0T9JcSZMkbZ9bv4ukGyUtkPSspB9LWru7gCQNl/Tn7JLffEn3Sjo4/9r18jlPAA7q+mDNfh6Ulbcthuw1+H1hfyOyOm/Lv5Y9vc71jiNpH0nLJG1ROM4WWXm9s+lds58rjM7d27Ob7MxkJ+D3hVVfBI4ljcJwJfBp4KfA+jV28wfSWY4/W2vwGY515x7gyOzs4fKIeLZOvc2Bs4BvAAtJ83NcI+lNEbEIQNIHSINVXgQcA7yd9K1xfeDw7Pc3kJLc57P9PtFErIOzn/8ulJ0BnAI8RZ15XiSNAK4FbiBdlplPGr5/U+BvknYGJgKXAh/JYj6NdOnlI93EtDlwC3AB6YN4Z+BnkpZFxG/o/XO+hDQiwC6ks7r3kKY7+CPpsk4ZMeQNpufXud5x/kWay+VTwNhc/dHAf0gf8LXMz35+V9KZEfF4kzHXsnu2378XyncljbR9RvZF6pZsDLpabgUGAUNq7Mciwg8/aj5ISeFR0kCTy4AHSB8q6+TqjM/W75Qr2xxYChyeK7sduKGw/2OBF4HXZ8u/ByY1ENdY0mCTq2ePN5OSxfPAJoW4tqux/Xjg7tzybaTLU6pzvL/WiH23bP9va/C1VBbrj0gfXl3lDT3n/PPOfv8T8P3s9x8Al2a/PwOMbUcMwCTg94WyEfnn3eTrXO843yQlKeXinAF8r5vXYmPgvuzYQRql+3hgQAvv93HAXTXKfwT8MzvmeGBwN/tYPXvvH9bbOFbmh0/7rK6IuA94C6lB9gekD4JvAHdLGpCr+nRE3Jrb7nHSJa53w0vX9d/Jim0rF5Mu6w7vRXjrA0uyx0PAlsCoiPhXrs6siLi3u51knQx2AH4e2SdGYf1rsvh+K2n1rgdwc3bsum0mktZT6jH1eC7WMaQE2aoJwEckrUk6y1rhcloJMXTp8XXuwU9JX1JGZMsjs+Wf1dsgIv4NbA/sQTrbWxf4FnCrpDXgpR6W92aPxdkl33uVel2+usZuNyYl7KJvkc58HiP9L3wlO+utFddSYE62LytwwrFuRcTiiLgsIo6IiG2BzwBvAg7NVXu6xqZPA5tkv28AvJp0uSWva7nmiLc9mEsaSn8Y8HrSt86rCnWKx6tlPVIi/Vc361cjJdwlucdi0nParJt9jwdGkS5zfSCL96fAWg3E1ZM/AwNIH4b9gcsqiKFLI69zXRHxKOls6pCs6BDgzoh4oIftXoyIv0TE50mX635GupQ1PFs/PiK2I33ZWQrsHBHbRcTQyHUKyFmL9HctHmdmtt8Pk874dwFuVv3bAxbT3td3peE2HGtKRPxE0hnANrnijWpU3Yh0CQ7St8YlNeoNyn7WHL24B0sjoqd7aRppPJ5Nuly4SZ31c7L9jKV2e8KTtTaStBawD3BERFyQK2/Ll7yImC/pctII0L+LiPnFOm2IYRGwRqGs1peDdowAfCHwY6Wu+PvTZC+viFgm6S+kZFX8sH8TMDvqt0F2eY46ZyZZgrpaaarusaSpHs6WdE6WkPLWpXfv6ZWez3CsLkkrJBJJGwIDWf5b7UZKswx21XkD6VvlnZC+iZIusR1Y2N1BpA/727LlFyj5m2H2QX0H8L9dvb5qrL8d2Doi7q7xqJlwgDVJZ0YvfWPOerUVe1218px/SDqzuaDO+lZjeILlv1gAvL9XkXZ/HEgdIV4gXRp8FXUuEQJIGlRn1YeABaS/Z947aKwB/yFqzFFU630B3JX9fG2h7obAa4B/NHC8VY7PcKw7UyT9CfgL6RLZ5qSbLBcAP8/Vewb4haSuXmqnZPXH5+qcROq59jPSh8kQUs+lH0dEV6+oacC+kvYjfdg92c0HejsdB1wHXCVpHOl6/XBSg/flpM4NEyUtIzV8/5d0CWcf4OsRscKHS0TMlXQXcKKk50mJ9TjSpcB1clV7/ZwjzWc/qZv1rcbwR+BQSWeTpiweSWoz6a26zzUiFkn6FfAF4DcRMaeb/fxW0n+B35I6F2wEHAzsS2qsL277DlIHg57cQnqtNoyI/+TKfy3pb8BNpMuXQ0lnlrOABwv7GEY647sVW1HVvRb86NwH6Z//L6TLRotI/9y/BrbJ1RlP6uG1P+lb3WLSP+4KvbdIbQlTSN9knyC1P6yeW78B6UPuObLLWHXiGkvWW6ub2MeT6yHV0zpS19ebSMl0DqnX23a59TsAV5N6ws0HppK6gg/sJoY3ku4TmU+adfHYYuyNPucmnvdyvdRajQH4GqmH1n9Js0x+iBV7qTX0Ovf0XIH3ZeXv6+E5fjr7WzyRvZeeIyXEEXXqXwZ8tIH3+xrAs8AnC+Ufzo73b1LSfp6U6LevsY9zKfRo9OPlhydgs5ZkN/S9LSKG9VTXrDtZ2+AoYIuIWNbG/c4E9oiI4tlIrbrnAm+MiH3qrB9PSpQzaqxbDXgcOC4iftlS0CspX1Izs0pJ2hrYljQkzMltTjbrkW6KbbRN5bvAQ5LeHDUulfbgQNIl5brtT6s6dxows6r9iHSp9krS8DFtExGzI6JfpI4rjdR/gtTlv16vxUtJl1xrEXBopHtxrAZfUjMzs1L4DMfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK8X/B7qsNRkALQemAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -215,7 +217,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XecVNX9//HXW7BQFLFhZYkaf7YkGkwMaiLYELBiF6PYsMSWryUqiWDB2GLHgqJogsFeoyLdqLGAsUREJVIioFhAxEWE5fP745yRYZjdnS0zd+7u5/l4zGP33rl39j3DMJ+599xzjswM55xzrr5WSTqAc865dPNC4pxzrkG8kDjnnGsQLyTOOecaxAuJc865BvFC4pxzrkG8kLiyJWmgJMu6zZb0qKQtEsy0q6Q3JX0nyeK6NpJGSPoy5uxbzb7Dcp5P5nZ3SZ/E8jz9JB2UZ/10SdclkcmlU8ukAzhXi6+BfePvmwOXA2MkbWdm3yaQ505gLtAdWBzXnQbsDxwLzAL+W8P+U4Djc9bNbeSMheoH/Ad4Imf9wcCXpY/j0soLiSt3S83s1fj7q5JmAv8EegIPJ5Bna2CImU3IWfeBmT1awP7fZj2fsmRm/046g0sXP7Xl0mZS/NkJQFIXSU/F017fSnpLUp/MxpLWiaehjst+EAXTJF2ftW4PSa/F7T+TdJuktvG+rvFUVgvgpnhKapik6cCJwI6ZU1X1fWKZvyFp+5z14yU9krU8TNJESXtLeic+75ckbZezXwtJF0n6UNJiSZ9IGpZ5TKAzcFzWKba+8b6VTm1JOlzSu/Fx/idpkKSWWff3jY/xE0mjYqYpknrX9/Vw6eGFxKVNp/jz0/izAngZOIlweulR4F5JRwGY2VfA46x8OqlrfKx7ASRtCzwPfAEcAgwAjgYyH+BvAl3i73+Jv19OOA30LOGUVZesbaolqWX2raBnvbKOwLXAIOAoYAPgIUnK2uZO4FLgIWA/4FygTbzv9Jj52azc/6gm7z7Ag4TX4EDgFuA84NY8mz8APEV4XT4CRkjatJ7P0aWEn9pyZS/rw3Zz4DbgG2A0gJmNyNpOwIvApsDJwN/jXUOBFyRtbmYfx3XHA5PM7N24fAkwAzjAzKri430FPCipi5n9i3BqDWB69ukpSZ8DHQo8ZdUZWJLz/H5sZlML2DfbOsCuZvZRfIxVCAXz/wFTJG1NOFI628xuztrvQQAzmyzpW+DzAnJfBow3s8xR3fPxdfizpCvM7JOsbW8ws3tipknAZ4Qidkcdn59LET8iceVuXcIH7xLgA0IxOcLM5gBIai/pZkkzsrbrB2yV9RhjCEXiuLjPmkBv4tFI9Evg8UwRiR4FlgK7NeLzeR/4Rc7tf/V4nOmZIhJNjj8z3/67xZ/D6vHYP5DUAvg5K7dHPUj4/Mg9Ansh84uZfUm4kMCPSJo4PyJx5e5rYC/ACKezZtuKQ1YPA35FOM00GVhAuIrqwMwGZmaS7gVOkDQQOJzw3n8g63E2Inx7Jmu/KklfEr79N5ZKM5vYCI8zP2f5+/hzjfhzXULD/oIG/p31gFXJeW2ylnNfm3y51sA1aV5IXLlbWt0Hr6Q1gF7AGWZ2R9b6fEfa9xLaPboBfYEnzGxe1v1zCO0M2Y/fgvCB/FVDnkAdfBd/rpazfh1C201dfAm0kbRWA4vJF4SjvA1y1neIP0v12rgy5qe2XJqtTriKKtOfI3Pa6oDcDc3sf4TTLpcSTlXdm7PJa8DBsXhk9CZ82XqpcWNXK9PWsE1mhaTNCO0edTU2/jy2hm1qPVqIp/omAYfl3HU4sAz4Vz2yuSbGj0hcapnZ15LeAC6RtIDwwXYh4XTYWnl2GUo41/8JMCrnviuAfwNPSLqdcF7/amBkbGgvOjP7JD6fyyVVEr7oXUw9vvWb2QeShgB/kbQB4SKEtYFDzezIuNkUoLuk7oQjmGmxXSPXAGBkPD04AvgJ4VTiXTkN7a6Z8iMSl3ZHA9OA+4GbCA3k91ez7TOExvP7zGxZ9h1m9h7Qg3AK5zFCYfk7cGhxYlfraGAm8DfgSsIVUx/U87FOJxyBHUO4zPdGYFHW/VcQGv8fAt4gXD69EjN7ATgS2Al4GjiHcAn0GfXM5ZoY+VS7rrmQ1JNQTLaqx+W2zrlqlPyIRNKWku6U9LakqtjDtrZ9fiHpXklTJVVK+kDSgNjY6lyNJG0saXfgKuBZLyLONa4kTm1tRxgn6cN4K8QRwBaEc9Y9gcHA/wHDixHQNTn9CH1JvgPOTDiLc01OyU9tSVolc346jh+0npl1rWWf9c3s85x1/QhDQHQysxnFyuucc65mJT8iyW3kLHCfz/OszoxQmnt9u3POuRJK8+W/uxAu96z1ipb11lvPOnXqVK8/8u2339KmTZvaNywTacqbpqyQrrxpygrpypumrNCwvJMmTfrCzNavbbtUFhJJGwL9gb9W12s3nvrqB9ChQweuu65+E74tXLiQtm3b1jdqyaUpb5qyQrrypikrpCtvmrJCw/J269atsGYDM0vsRhiie3wd91mN0LnqY6B9Ift07tzZ6mvcuHH13jcJacqbpqxm6cqbpqxm6cqbpqxmDcsLTLQCPmNTdUQShwm/n3Dl16624lhJzjnnEpCqQgLcQBjVdW8zm5J0GOeccykqJJIuIvQBONzMSjWInnPOuVqUvJBIak3oVAiwCbCWpMx4Rs+aWaWkqcAEMzsx7nM0YdyhYcAsSb/Kesj/Wv7Lg51zzpVAEj3bNyCMwPowYUKibbOWM31CWhKGB8/YJ/7sSxi2OvvWq+iJnXNu+HDo1Ind99gDOnUKy+WshHlLfkRiZtMB1bJNp5zlvoQi4pxzpTd8OPTrB5WV4cNrxoywDNCnT5LJ8itx3tS0kTjnXGL694fKyhXXVVbC734HH9R3lP8iuvnm/Hn79/dC4pxziZg5M//6r7+GK64obZZCVDeGYnXPo4F8YivnnKvNuuvmX19RAcuWld+toiJ/3o4di/LyeCFxzrma3HQTfPEFrJLzcdm6NQwalEym2gwaFPJlK2JeLyTOOZePGVx8MZxzDvTuDUOHQkUFJoVv/EOGlGdDO4RcQ4aULK+3kTjnXK6lS+GUU+Cee8LPwYOhRQvo25cJ48fTtWvXpBPWrk8f6NOnJHn9iMQ557ItWgSHHBKKyCWXwO23hyLiquVHJM45lzFvHhxwALz8cjgKOf30pBOlghcS55wDmDUL9t0XPvwQHnwQDjss6USp4YXEOec++AD22ScckTz3HOyxR9KJUsULiXOueXv9dejZM7SDjB8PP/950olSxxvbnXPN1wsvhKOPdu1Cu4gXkXrxQuKca54eeAB69YIttwxFZMstk06UWl5InHPNz003hX4Wu+0GEybAhhsmnSjVvJA455oPM7joouW91Z97LpzWcg3ije3Oueahut7qrsH8iMQ51/RVVoYjkHvugQEDvLd6I/MjEudc0zZvHuy/P7zyivdWLxIvJM65pst7q5eEFxLnXNPkvdVLxguJc67p8d7qJVXyxnZJW0q6U9LbkqokjS9wv3aS7pU0T9LXkoZLqmb+S+dcszVypPdWL7EkrtraDugJfBhvhXoQ6AqcBPQFfgE80cjZnHNp9sADsN9+3lu9xJI4tfW0mT0JIOkRYL3adpDUBegO7G5mL8Z1s4DXJO1lZqOLGdg5lwI33RQ6GnbtCk884R0NS6jkRyRmtqweu/UAPssUkfg4rwPT4n3OuebKe6snLi2N7VsDU/Ksfz/e55xrjry3elmQmSX3x+OpLTPrWst2o4BvzeygnPV/AzY3s13y7NMP6AfQoUOHziNGjKhXxoULF9K2bdt67ZuENOVNU1ZIV940ZYX65V3lu+/Y9vLLWe+VV5h+3HFMP+44kIqUcLnm8NpmdOvWbZKZ7VTrhmaW2A14BBhfwHajgMfzrB8OvFzb/p07d7b6GjduXL33TUKa8qYpq1m68qYpq1k98n71ldmuu5pJZoMHFyVTdZr8a5sFmGgFfJan5dTWPGD9POvXBuaXOItzLkmzZkH37vDRR/DQQ3DooUknavbSMmjjFPK3hVTXduKca4qmTIFddoGZM0OjuheRspCWQvIcsKGk3TIrJO0EbB7vc841da+/Hiai+u670FvdhzwpGyU/tSWpNaFDIsAmwFqSMl8rnjWzSklTgQlmdiKAmf1L0kjgfknnAcuAq4GXzPuQONf0jRwJhxwCHTqE372jYVlJoo1kA+DhnHWZ5R8B0wm5cq/hOxK4AbiHcCT1DHBW0VI658rD8OHQty9sv304neXT4padkhcSM5sO1HiNnpl1yrNuPnB8vDnnmoMbb4Tf/957q5e5tLSROOeak0xv9d//PpzS8t7qZS0tl/8655qLpUuhXz+491449VS49VbvrV7m/IjEOVc+MnOr33tvmFv9ttu8iKSAH5E458pD9tzqt90Gp52WdCJXIC8kzrnkDB8O/fuz+8yZ0LIlLFvmvdVTyAuJcy4Zw4eHtpDKynAZ55IlsPrqsHhx0slcHXkbiXMuGf37hzaRbIsXh/UuVbyQOOeSMXNm3da7suWFxDlXesOHh74i+XTsWNosrsG8kDjnSuvGG+GYY2CbbaBVqxXva90aBg1KJperNy8kzrnSyO6t3rs3vPkm3HUXVFRgElRUwJAh0KdP0kldHXkhcc4V39KlcNJJcNVVYW71hx6CNdYIRWP6dCaMHQvTp3sRSSkvJM654sr0Vr/nntBb/fbbvbd6E+P9SJxzxZPdW33wYDj99KQTuSLwQuKcK45Zs2DffeHDD+HBB+Gww5JO5IrEC4lzrvF98AHss084InnuOZ8Wt4nzQuKca1yvvw49e4Z2kPHj4ec/TzqRKzJvbHfONZ4XXghHH+3awcsvexFpJryQOOcaxwMPQK9esOWWoYhsuWXSiVyJeCFxzjXcTTeFPiC77goTJsCGGyadyJWQFxLnXP2ZwcUXwznnhL4izz/vc6s3Q97Y7pyrn6VLw5zqQ4eGeUV8Wtxmq+RHJJK2lTRGUqWk2ZIuk1Tru0/STpJekPSlpK8kjZa0cykyO+dyLFoEhxwSisgll8Add3gRacZKWkgktQdGAwYcCFwGnAtcWst+m8X9WgLHAr+Nv78gqaKYmZ1zOebNC31Enn4abr0VLr0UpKRTuQSV+tTWqUAroLeZLQBGSVoLGCjpmrgun17AmnG/+QCSXgG+AHoCtxc/unOO2bOhe/fQ4XDECDj88KQTuTJQ6lNbPYCROQVjBKG47F7DfqsCS4GFWesWxnX+Vci5UvjwQ9hllzBK73PPeRFxPyh1IdkamJK9wsxmApXxvuo8Grf5i6QNJG0A3ADMAx4uUlbnXMYbb4RLeysrQ2/1PfdMOpErI7Lqprssxh+TlgDnm9mNOes/Ae43s4tr2HcH4Blgk7hqDtDDzN6uZvt+QD+ADh06dB4xYkS9Mi9cuJC2bdvWa98kpClvmrJCuvI2Ztb2Eyey/Z/+xPft2/PONdewaNNNG+VxszXX17YUGpK3W7duk8xsp1o3NLOS3YAlwNl51s8CBtWw30bAVOBJYN94exr4BOhY29/t3Lmz1de4cePqvW8S0pQ3TVnN0pW30bI+8IDZqqua/exnZrNnN85j5tEsX9sSaUheYKIV8Nle6lNb84C186xvB8yvYb/zCRcGHGpmz5vZ88AhQBVwXqOndM7BzTfD0UeHdpEJE2CjjZJO5MpUqQvJFHLaQuKlvW3IaTvJsTXwnpktyawws++B94AtipDTuebLDPr3h7PPhoMP9t7qrlalLiTPAd0lrZm17ghgETChhv1mANtLWi2zQtLqwPbA9CLkdK55WroUTj4Zrrwy9FZ/+OEwt7pzNSh1IbkDWAw8Jmmv2CA+ELjesi4JljRV0tCs/e4GNgYel9RL0n7AE4S2kyElS+9cU7ZoERx6aOit/qc/eW91V7CSdkg0s3mS9gRuJTSWzydcxjswT64WWftNkrQvMAD4a1z9LrC3VXPVlnOuDubPhwMOgJdegltugTPOSDqRS5GSD9poZpOBGufdNLNOedaNAcYUKZZzzdfs2WFu9SlTvLe6qxcf/de55uzDD8OQJ198Ac8+C3vtlXQil0JeSJxrriZOhB49woCL48dD585JJ3Ip5RNbOdccjRoF3bpB27ZhWlwvIq4BvJA419yMGBHmVt98c3jlFfjxj5NO5FLOC4lzzcktt4Te6l26eG9112i8kDjXHJjBH/8IZ50FBx4II0fC2vlGK3Ku7ryx3bmmbulSOO00uPvu0Gv9ttugpf/Xd43Hj0ica8oWLYLDDgtF5I9/hDvv9CLiGp2/o5xrSoYPh/792X3mTNhkE2jTJvQVuflmOPPMpNO5JsoLiXNNxfDhYaDFysow//Qnn4T1Z5zhRcQVVa2ntiQdK2ndUoRxzjVA//5hKtxcTz9d+iyuWSmkjeRe4pwfkqok/bK4kZxz9TJzZt3WO9dICikk8whDuAMIKN0k7865wq2/fv71HTuWNodrdgppIxkN/FXSB4QiMkzSt9VtbGZ+xOJcqT34YBh4UQp9RjJat4ZBg5LL5ZqFQo5ITgAuBf5NOCKZRpjitrqbc66Ubr0VjjoKdt01XN5bUYFJUFEBQ4ZAnz5JJ3RNXK1HJGZWCVwHIGkvoL9PJuVcGTCDSy6BK64IvdX//ndo1QpOPpkJ48fTtWvXpBO6ZqKQq7aqJP0iLo4HFtSwuXOuFJYuhVNOCUXkxBPhkUdCEXEuAYWc2voeWD3+fixQTYuec64kvvsu9Fa/665wye9dd3lvdZeoQt59k4GBkp4gtJEcKmmnarY1M7u90dI551Y0f344jfXii95b3ZWNQgrJmcCdwA2Eq7bOq2FbA7yQOFcMc+aEudXffz+0hxx5ZNKJnAMKa2x/BfgJgKRlwK/M7PViB3POZfnoozC3+ty58I9/wN57J53IuR/UdfTfboRTXfUmaVtJYyRVSpot6TJJLQrct7ekNyQtkvSlpOcltWlIHufK3qRJ4dLeb76BceO8iLiyU6cWOjObACBpZ2A3YB3gK+AlM3uttv0ltSd0cJwMHEgYeuUvhIL2x1r2PQm4FbgGOB9oD+xR1+fgXKqMHg0HHwzrrgsvvABbbZV0IudWUqcP4fjt/2GgO1AFfAmsC7SQ9DxwWOx3Up1TgVZAbzNbAIyStBahMf+auC7f312P0EZzppndlXXX43XJ71yqPPQQHHMMbL01PP88bLxx7fs4l4C6ntq6BugCHAmsYWYbAWvE5S7A1bXs3wMYmVMwRhCKy+417Hd4/HlfHfM6l06DB4fG9J13DldoeRFxZayuheQQ4A9m9rCZLQMws2Vm9jBwIXBYLftvDUzJXmFmM4HKeF91dgY+AE6U9ImkJZJek7RLHfM7V94yvdXPOAP23z+czvK51V2Zk1nhg/lKWkQ4LfVcnvt6AI+aWesa9l8CnG9mN+as/wS438wurma/kcAuhF71FxBOqV0A7AT82Mw+y7NPP6AfQIcOHTqPGDGisCeZY+HChbRt27Ze+yYhTXnTlBVKkLeqiq1uvJGNn3mGOT168OG552ItCroOZSX+2hZPmrJCw/J269ZtkplV129wOTMr+Aa8CjxFLEBZ6xXX/6uW/ZcAZ+dZPwsYVMN+owh9VPbNWrcWYYj7y2vL3blzZ6uvcePG1XvfJKQpb5qymhU576JFZgcfbAZmF11ktmxZgx7OX9viSVNWs4blBSZaAbWhrlc8XQw8B0yR9DjwGbABcDDQidAGUpN5QL7j9HbA/Br2+yr+HJ9ZYWYLJE0Cti0kuHNl6+uvQ2/1CRPgxhvh7LOTTuRcndT18t+xknYELiG0h2wEzAFeI5zyqq2PyRRy2kIkbQa0IaftJMf7hCMS5awXsKzgJ+BcuZkzB3r0gPfeC3OuH3100omcq7O6NrZjZpPN7Egz28LMWsefRxdQRCAczXSXtGbWuiOARcCEGvZ7hlA0umVWSGoHdAZ8SHuXTlOnho6GU6eG3upeRFxK1amQSLpOUkNOJd0BLAYek7RXbBAfCFxvWZcES5oqaWhm2cwmAk8CQyUdJ6kXoU1mCTC4AXmcS8abb8Iuu8CCBTB2LOyzT9KJnKu3+lz++66k1yWdGo8KCmZm84A9gRbA04SZF28ABuRs2jJuk+0Y4AngeuARQhHZIz6mc+kxZgzsvnuYP+Tll+GXPju1S7e6tpH8SFI34HjgWuD6OLz8PWY2usDHmEwY2qSmbTrlWbcQOC3enEunhx8OvdW32ir0Vt9kk6QTOddg9WkjGWdmxxIa2s8ENgVGSpoh6VJJmzd2SOeahNtugyOOgF/8IvRW9yLimog6F5IMM1toZkMJp6VeBjYDLgI+lPSkpIpGyuhcupnBgAHwu9/BfvvBqFHQvn3SqZxrNPUqJJI6SRog6WPgBWAh4XLgNYEDCH1K6teV3LmmpKoKTjsNLrsMTjgBHnvM51Z3TU5dR//9LaF95DfATOBe4F4z+yRrs2clfUsYLt655uu776BPn1A8LrwQrrwSlNsVyrn0q2vP9iGEodu7m9mYGrb7ELii3qmcS7uvv4aDDoLx4+GGG+Ccc5JO5FzR1LWQbFzI5bZmNodwaa9zzc+nn4a51d97D/72t3BU4lwTVtfLf73PhnM1mTo1zK3+6afw9NOhoDjXxNV5mlpJRwAnA1sRJrVagZlt0Ai5nEufN98M42ZVVYXe6jvvnHQi50qirkOkHE2YpXAqof/IU4RxsFYhzBVya2MHdC4Vxo6Frl1hjTXgpZe8iLhmpa6X/54PXA78Li7fZmYnAD8CviDMdOhc8/LII+FIpGPHMOTJ1jVN9ulc01PXQvJj4GUzqwKqCJNLYWbfEOZrP6Nx4zlX5m6/HQ4/HHbaKfRW33TTpBM5V3J1LSRfA6vH32cB22TdJ2DdxgjlXNkzg4ED4fTToVev0Ft9nXWSTuVcIura2D4R+CkwktA+comkpcD3hMmuXmvceM6VoaoqOOMMuOMO6NsX7roLWtb5uhXnmoy6vvv/DGTG0Lok/n4bYcj3N4B+jRfNuTL03Xdh9N5HH4U//AH+/Gfvre6avYIKiaRWQE/CGFqfSupgZp8BB0paHVg9e2Iq55qU4cOhf392nzkTVlsNFi+G66+H3/8+6WTOlYVaC0kcFn40oYhkLJB0uJm9YGaLCbMeOtf0DB8O/fpBZSWCUERWWw028O5SzmUU0th+DbAM+DXQGtgO+DdwZxFzOVce+veHypyr2r//Pqx3zgGFFZIuwB/N7GUz+87M3gdOATpK2qi48ZxL2MyZdVvvXDNUSCHZCPg4Z91/CZf7btjoiZwrF+PGVX9fx46ly+FcmSu0H4kVNYVz5eaRR8KAixtttPJEVK1bw6BByeRyrgwVWkhGSpqbuQFz4vox2evjfc6l2x13LO+t/u67oZ9IRQUmQUUFDBniQ8M7l6WQy399XhHXPJiFKXEHDgy91R96KBx99OkDffowYfx4unbtmnRK58pOrYXEzBq1kEjaFriF0Ig/H7gbuDSO31XI/qsQOj/+HNjfzJ5pzHyumaqqgjPPDGNnHXdcOApZddWkUzmXCiUd10FSe0KflMnAgcAWwF8Ip9j+WODDnARsUpSArnlavDj0Vn/kEbjgArjqKu+t7lwdlHqAoFOBVkDv2BN+lKS1gIGSrqmtd3wsRIOACwlHMs41zIIFYW71cePguuvg3HOTTuRc6tR19N+G6gGMzCkYIwjFZfcC9r8ceBkYU4Rsrrn57LMwGdU//wn33+9FxLl6KvURydbA2OwVZjZTUmW87+nqdpT0U+B44GdFTeiah48/hn32gTlz4KmnwsRUzrl6kVnpuohIWgKcb2Y35qz/BLjfzC6uYd8JwGtmdoGkTsA0amhsl9SPOBpxhw4dOo8YMaJemRcuXEjbtm3rtW8S0pQ3qaxtp07lpxdcgKqqePfPf2bBttsWtJ+/tsWTprxpygoNy9utW7dJZrZTrRuaWcluwBLg7DzrZwGDatjvSOBTYK243InQSXK/Qv5u586drb7GjRtX732TkKa8iWQdN85szTXNNtvMbPLkOu46riiRiiFNWc3SlTdNWc0alheYaAV8xpa6jWQesHae9e0IlwKvRNKqwLWEqXxXkbQ2cYpfoI2kNYsR1DVBjz0G3buH6XBffhm22ab2fZxztSp1IZlCaAv5gaTNgDbxvnzaAJsC1xMK0Tzg7XjfCMJIxM7V7M474bDDoHNneOkl2GyzpBM512SUurH9OeB8SWua2Tdx3RHAImBCNfssBLrlrNsQ+DtwMTmN986twAwuvxwGDICePeHhh0Nvdedcoyl1IbkDOAt4TNLVwObAQOB6y7okWNJUYIKZnWhmS4Hx2Q8SG9sB3jUznyfe5VdVBWefDYMHw7HHwt13e29154qgpKe2zGwesCdhjvenCeN43QAMyNm0ZdzGufpZvBiOOioUkfPPh2HDvIg4VySlPiLBzCYDe9SyTada7p9OmA/FuZUtWAAHHwxjx8K118J55yWdyLkmreSFxLmi+uyz0Bby9ttw333hlJZzrqi8kLim4+OPw+W9s2aF3uo9eyadyLlmwQuJaxrefjvMaLh4MYwZA126JJ3IuWaj1P1InGt8EybAb34DLVuGPiJeRJwrKS8kLt0yvdU32QReeQUKHDfLOdd4vJC49BoyJPRW33HHMBS891Z3LhFeSFz6ZHqrn3JKOBoZPRrWXTfpVM41W97Y7tJl2TI466zQ0fC3v4WhQ72joXMJ8yMSlx7ZvdXPO897qztXJvyIxKXDN9+E3upjxnhvdefKjBcSV/7mzg2dC996y3urO1eGvJC48jZtWphbfdYsePJJ6NUr6UTOuRxeSFz58t7qzqWCN7a78vTii95b3bmU8ELiys8TT4TTWRtv7L3VnUsBLySuvNx9NxxyCOywg8+t7lxKeCFx5cEMBg2Ck08OvdXHjPHe6s6lhDe2u+QtWxbmVr/1VjjmGLjnHu9o6FyKeCFxpTd8OPTvz+4zZ4ZTVxtvDK++CueeC9dcA6v4gbJzaeKFxJXW8OHQrx9UViKAmTPD7cgj4brrkk7nnKsH/+rnSqt/f6isXHn9v/6yPJh5AAAcYklEQVRV+izOuUZR8kIiaVtJYyRVSpot6TJJLWrZ5xeS7pU0Ne73gaQBktYoVW7XSGbOrNt651zZK+mpLUntgdHAZOBAYAvgL4SC9scadj0ibns18BHwU+Dy+POQIkZ2jW3DDWHOnJXXd+xY+izOuUZR6jaSU4FWQG8zWwCMkrQWMFDSNXFdPleb2edZy+MlfQfcKanCzGYUObdrDC++CPPngxQu981o3Tpc+uucS6VSn9rqAYzMKRgjCMVl9+p2yikiGf+OPzdovHiuaDK91Ssq4MYboaICk8LykCHQp0/SCZ1z9VTqQrI1MCV7hZnNBCrjfXWxC7AM+KBxormiye2tftZZMH06E8aOhenTvYg4l3Ky7FMMxf5j0hLgfDO7MWf9J8D9ZnZxgY+zIfAO8KyZ9a1mm35AP4AOHTp0HjFiRL0yL1y4kLZt29Zr3ySUVV4zOg4fzuZDh/Llzjvz3oABLGvV6oe7yyprAdKUN01ZIV1505QVGpa3W7duk8xsp1o3NLOS3YAlwNl51s8CBhX4GKsBLwIfA+0L2adz585WX+PGjav3vkkom7xVVWZnnmkGZsccY/b99yttUjZZC5SmvGnKapauvGnKatawvMBEK+AzttSN7fOAtfOsbwfMr21nSQLuB7YDdjWzeY0bzzWKxYvhuOPgwQe9t7pzzUCpC8kUctpCJG0GtCGn7aQaNxAuG97bzArZ3pXaN99A794wenQoIOefn3Qi51yRlbqQPAecL2lNM/smrjsCWARMqGlHSRcBZwKHm9lLxY3p6mXu3DAV7r//DcOGhaMS51yTV+rzDXcAi4HHJO0VG8QHAtdb1iXBsQf70Kzlo4ErCae1Zkn6VdZt/dI+BZfXtGmw227w3nthbnUvIs41GyU9IjGzeZL2BG4Fnia0i9xAKCa5ubKHTdkn/uwbb9mOB4Y1blJXJ++8E+YQWbw4nNLaZZekEznnSqjko/+a2WRgj1q26ZSz3JeVC4grBy++CAccAGuuGSaj8mlxnWt2/FIaV3+Z3uobbeRzqzvXjHkhcfXjc6s75yIvJK5ufG5151wOnyHRFS57bvXf/haGDvW51Z1zfkTiCrR4MRx9dCgi554b+ol4EXHO4UckrhDZvdWvvRbOOy/pRM65MuKFxNVs7lzo2RPeegvuuw+OPTbpRM65MuOFxFVv2rRwee+sWaG3eq9eSSdyzpUhLyQuv7ffhn33DW0jY8ZAly5JJ3LOlSlvbHcrmzABfvMbaNky9BHxIuKcq4EXEreixx8P/UM22cR7qzvnCuKFxC13111w6KGw447wz396b3XnXEG8kLjQW/2KK6Bfv3A0Mnq091Z3zhXMG9ubu2XL4KyzYPBg763unKsXPyJpzhYvhqOOCkXkvPO8t7pzrl78iKS5+uYbOPjgcGmv91Z3zjWAF5LmaO5c6NEj9BXx3urOuQbyQtLcZPdWf+qpMPyJc841gBeS5sR7qzvnisAb25sL763unCsSLyTNgfdWd84VkReSpm7IEO+t7pwrqpIXEknbShojqVLSbEmXSWpRwH7tJN0raZ6kryUNl+Tdr6tjBpdfDqecEtpFvLe6c65IStrYLqk9MBqYDBwIbAH8hVDQ/ljL7g8C/w84CVgGXA08Afy6WHlTq6oqzK0+eHC4tPfuu72joXOuaEp9RHIq0ArobWajzOwO4FLg/yStVd1OkroA3YHjzOxRM3scOAbYTdJeRUk6fDh06sTue+wBnTqF5XKWnXettZb3Vr/3Xi8izrmiKnUh6QGMNLMFWetGEIrL7rXs95mZvZhZYWavA9PifY1r+PAwgOGMGcgMZswIy+VaTHLzVlaG4rHDDrCKN4M554qr1P1ItgbGZq8ws5mSKuN9T9ew35Q869+P9zWu/v3Dh3G2ykro2xeuvLLR/1yDffghLF264rolS8Lz6NMnmUzOuWaj1IWkPTA/z/p58b767Ld5vh0k9QP6AXTo0IHx48cXHHL3mTNRnvW2dCmfr79+wY9TKutPnpw/78yZTKjD8y61hQsX1unfJWlpypumrJCuvGnKCqXJm0TPdsuzTtWsr/d+ZjYEGAKw0047WdeuXQtP2LFjOJ2V+8cqKtigHN9AnTrlz9uxI3V63iU2fvz4ss6XK01505QV0pU3TVmhNHlLfQJ9HrB2nvXtyH/EUdt+a9eyX/0MGgStW6+4rnXrsL4cpS2vc65JKXUhmUJOm4akzYA25G8DqXa/qLq2k4bp0yd05KuowCSoqAjL5drekLa8zrkmpdSF5Dmgu6Q1s9YdASwCJtSy34aSdsuskLQToX3kuWIEpU8fmD6dCWPHwvTp5f+hnLa8zrkmo9SF5A5gMfCYpL1ig/hA4PrsS4IlTZU0NLNsZv8CRgL3S+ot6SBgOPCSmY0u6TNwzjm3gpIWEjObB+wJtCBc6nspcAMwIGfTlnGbbEcSjlruAe4HJgEHFzOvc8652pX8qi0zmwzsUcs2nfKsmw8cH2/OOefKhHd7ds451yBeSJxzzjWIzGrrB5h+kj4HVu6xV5j1gC8aMU6xpSlvmrJCuvKmKSukK2+askLD8laYWa3DeTSLQtIQkiaa2U5J5yhUmvKmKSukK2+askK68qYpK5Qmr5/acs451yBeSJxzzjWIF5LaDUk6QB2lKW+askK68qYpK6Qrb5qyQgnyehuJc865BvEjEueccw3ihcQ551yDeCFxzjnXIF5InHPONYgXEueccw2SxJztrhHEmSV7Euatf9jMvpS0KXAesAUwHRhiZu8mlxIk/QF4NukchZLUCmhpZt9krVsfOAPYFlgGvAXcZmZfJ5PSufLil/9GkkSY36QXsA2wDlAFfAa8Cgwzsw+TS7icpF8CLwBtgaXAV0B34FlC5veA7YENgb3M7J8JRUXSMsAIUyI/ADxoZlOTylMbSc8CH5nZ2XG5C2EWzmWEOXAEdAa+B/Yws/cSzLoj0MrMXslaty9wEcuL3tvAwOxtykX8P7c/8HPCe2Qi4UtHWX8oSVqLMHbVHmb2UtJ54IdMewCrAf8ws2/jF6DfEWaS/ZjwxXJ2Uf5+mf+blUR8wZ8lfEB8RpjFcRPCm/s5wj/E/wMuN7PLk8qZIWkU4WjyYOBbwuRgBxE+6A41syWSVgeeANYws24JZl0GXA38BNibkPtNQlF5yMxmJZUtH0lfACea2ZNx+VXCa3xQ5ihFUjvgKeA7M+ueYNZXgafNbFBcPgG4GxgHjCUUvT2BXwOHZJ5TQllfIbyu78fl9oQvQ52BhXGztoQvbd2zjwiTIOn0Gu5uBVwL3AR8BGBmt5UiVz6StgTGAJvFVdOAfYBRwNrAfwmfX4uAzmb2SaOHMLNmfwP+TnhD/CRr3cbA88CjcXl3whv+hDLI+yXQI2t5A8K3z31ytusFfJFw1mXAL+Pv7YF+8U2/NN7Gx3XrJv26xoyVwG+ylr/PfV2zXttvE866IDsbMBW4Jc92dwBvl8v7IC4PJRxJ75u1bl9gHnBDGbwPlhGO7pdVc8u+ryrhrA8Rjjy3JJxJ+Wv8PHsFWDNus17c5s5iZPDG9qAHcKFlnce3cAh4KnCQpI3MbAJwJXB2QhmzWbxlL5OzLt9yosxsnpkNMbM9gU2BcwmH4ncAsyX9I9GAwX+A7CO4zwj/OXOtSyg6SVqWs1wBPJJnu0cI30jLyQHAZWb2fGZF/H0Q0DuxVMs9BcwFTgRamNkqmRvh/SCga1yXOy14qe0GDDKzqWb2FfBHQjvpdRaP7MzsC+BGVnxvNxovJIEI3zByVcX72sXl14CtShWqBpOA8yStKWkV4GJgFnCapBYAkloCpxM+GMuOmX1qZjeZ2S7Aj4ABhKPApF0FXCjphPgaDgKulbS3pNUkrR7bIf5M+CaYpH8CfbKW3wPyDRf+C8L7o5ysTWgTyTWJ0LaXKDM7CDgOOB94Q9Ku2Xcnk6pa7YFPs5Yz/9a5czB9TPgC1+j8qq1gNHCFpHfM7GP44RzuzYR/oEwje1ugHK7U6U84//kV4fRQJaGh7RHgI0mZxvaNCacLypqZzSB8gF9VBlkek3Qm4dvbDcAHhC8SmW/ORvhy8RThQyZJFwMvxy8TtxAa2e+TtA7hlCGENpJzgAsTSbiiQyRlCt08IN+ESesRTtklzsxekPRTwuv3D0nPE66KTLT9Jo+5hKPRjCrgTsLRdLYNKFJ2b2wH4mWzzxMO/2cQzov/iNDofpSZPRe3u4YwY9gRSWXNiJn3I3wZeNTM5kjaELiA5c/jbjN7M8GYSBoA3GVFulqkWCStCxwB/JLwDXkVQuF+H3jGzCYlGO8HknYAbgd2ZnmRI+v3eYRTSDclkzCIF13kGmZmJ+RsdyewrZn9ujTJChP/b11DOO12J6G4dDOzFxMNBkh6Avgq97XMs90twDZmtlejZ/BCEsRTQocDPwPWIDRcPhDPOTpX1iRtQygmuUXvFTNbkmS2upB0MvBfMxubdJZ84uXgNxC+rPWyMrisWlIHoLWZTatlu/8jXHQxptEzeCFpeiS1MLN8bT5lQ9IahAbBZcDUcvywi20km5PVp8jMZiabyrny443tOSRtJ+kQSSdJOjH+vl3SuXJJ6i3pCUnPSto/rjtC0nTge0kz4re7REk6JvZvyCy3lHQV4RvzO4SLAb6SVA7n8AGQ1FnSU4Tzye8DLxP6N0yTNEvSZZJaJxqyCVGUdI58JLXK/beWtEP8XOicVK6yk+T1z+V0A04gtCvku3a8ijDkyPFJ54xZD4+5XgKeJDS2n0xo2xlK6M3695i7e8JZJwOnZS3/Jeb9E7Ar4dLFgYTOUheXwWu7D6FtbCLhyqyBhE6p38fM5xKujnoLaF8Gefcj9Mt5F3iQrD4wWdvsTPJ9HfYh9mnIWncQoXPqUmBJfM17Jf2axmztgMdjrqXAXUAL4L6cz4WXgfWSzlvgczqkWO+DxJ9cOdyAM+MbZjChF/B68U3TIv6+G3Br/ID5XRnkfQO4I2u5T8z2l5zt7gVGJ5y1Etg9a3kucHae7c4DZpTBazsJuK+a98h0wlH8GvED8LaEs+6d9WF2a8xeFYu1srYrh0JSxYodEg+OH8avxH/78+LvS8nTATSBvDcThkE5Ezg2fnl4FPhfLIrrE/qfzQJuTzpvgc+paIXE20gASR8TPpivqWW7C4BTzWzz0iSrNscCoLeZjY7L7QhX5+xlWY2U8ZTXnWaWWP8MSXOAM8zs0bi8mHCUND5nu72Bp8ysVelTrpBjEXCAmY3KWd+eMKLAdmb2vqRjgavNbKMkcsZMLxHGBTs+a90JhA/BUYQrDr+TtDOh0T2xjnPxqq1fmdnrcflNYJaZ7Z+z3bNAGzPbPYGY2TmmAVea2V1xeUdCoT7ezO7L2u5kwpH0j5JJCpLuKXDTCkInykZ/H3gbSbAh8HoB271OGXSWIlzamf1myIxVND9nu4WEjl9JeorQeXK1uDwaOCrPdkcRvvUlbS7hyr1cPyO87pl+RDNY3lE1KdsDf8teYWb3EIbz+RUwNvYpKUfbEy6jzTWEMIhj0jZgef8xiGNqEcatyjaV/P1hSuk4wlHST2q5VVT3AA3lHRKDd4CTJb1oZvmud8+MVHpy3DZpMwiju44EMLOqeFni+znbbc6KPV6TcBGhB/Z/JN0NPA1cLWl7lnea2wPYkTASbNKGAJdLakNoe/ie0DO8PzDOlveH2RxI+gqu74A2uSvNbFLsiT2ScLpoYIlzVSf79MfXLP8ClO1byuML7jRCQZ4Ql39NOBW3C6FtMmNXkn8ffAS8bmbH1rSRpEMJ7WiNzgtJcC6hQ+JkSY8RhjyfT3jjrw1sTTinuynl0VP8MXKGOjCz1/JsdzQrvulLzsy+kvQrwgfx/xG+6QF0ibfvCadhfm1mbySTcjkzGxRPw1xIGLYFwvvg74ROaBlLCGOvJekdwnn6p3LvMLOPYzF5FhhW4lzVGSlpafy9HbADy79MZGwNzCllqGrcAdwk6SeEonc44UvRJZLaEgZA/DnweyDpEcFfJRS42mR3WG1U3kYSSdqC0Ct8X5YPx5zxP8KVO9eaWe6hbdmS1BGYb2ZlMeQEgKROrNhp7r9Wnn1IViX0c1kD+LicXsMMSacQhknZ0arpOBuPrB4ntJ8l9k0/jnCQ6yMzeyBnu/FxfTlcun4W4ZTrqoRRIu6QdBShDSozaOcQ4A9JvofjZci7mtnNtWy3HqGNb0JN29UrgxeSlcXrxjNtC/PNLOlRXp1zZSKe5l7PzD5POku58ELSxMTD7jeBPuVwqkgpnLpWKZnG2Lly4YUkS/wA2QD4wMxWagiMh4Y9zez+kodbMUfPGu5uQ2hQu5A4hLyZPVuKXPkoRVPXQrqmMS5UHIfrMDO7LOEciU4H21DxSCR7auBJhOeR+IeowqjKhxD+Pw0zsymSfgZcyvIvP4Mta/6XRpV0J5lyuAGrAw8TPiiqCA2pQ4F2Odsl3rEr5kjT7G1fAAdmLb9KuBpqzax17QhXx4wsg9d2FGGq2rUJ58ZvBT4hjCCwatb75TnCVVyJv38LeE5F64hWhwxbEq42zLwv/0v4gPuYUKzfIAwf/xmwaRm8Zq8QRsrNLLePGZfFnAtY3qFyzaRyxmzdCV/EPo2v6wLCBFbzCJ1VB8f/d1WEKaMbP0PS/2DlcAMuIVyldTJhYqCz4xv6I+DHWduVSyGZRLiy5XjCteHZt5/GN/jhmXUJZ03N1LUxR5qmMe5Y4O3UpN+3lMF0sHXMm5qpgWOxeJgwkyOECzDmAUNztvsr8GpRMiT9D1YON8LlvmfkrNsQeBH4HOgS15VLIRFhnvO5hGEbfpR1X7v4n2ClMZcSyvo6MCBr+X/AkXm2Oxb4vAzyfpHzYbF+fD33ztmuZxkUkszRZ223cjgynQ0cnrVcEXP1ztnueODDMngf5BaSz4Fz8myX+NA+hMuT98pabh/z75Gz3T6Ei4caPYP3Iwk2I6ejoZl9KmlPQhUfLakP5XF9OxbeFUMkPQRcAbwj6db4e7m5Chgu6X/A/SyfuvZLwuksEQ7Dy2HqWlg+jfHLhM5x2dMYj7XQ+bNcpjH+BhgL3F3LdrsRLm1PUuLTwTZQOU8NvIgVO6Zmfs8dbqg1oRNro/NCEswGfkw4AvmBhWvDj5R0I+HQMdFG9lxmNh84Q9IQwrXtHwFXU0ZzSlu6pq6FdE1j/DqhHe8fNW0U535JWuLTwdZDWqYGfpnQUfKjmOU6wqjbf4ijdXwTx+O7gFD4Gp1ftcUPg55tbmZda9jmIsK3abMEB7+riaQjCdOBbkoYnC3xaUAzlJKpayFV0xj/CehnZrkdaHO3+w1wqZl1K02yvBkSnw62LpSiqYElbUkYwy7zPphOOMp/hDBSwAygE+GLUTcze6vRM3gh+eHSuSOAq8zsyxq2O5pwrvz46rZJWjzt0gZYaGU+S6JrPlQG08EWg8pkauDYf2xXwpWGY8xsUexYfRLLv/w8YGafFOXveyFxzjnXEOUwyqYrEkl3SRqadI5CpCkrpC+vc8Xkje11IOkuYBUzOzHpLAXqRnq+LKQpK6Qor6TRhLMPeyadpTZpygrpylvMrF5I6iY1Hx4AZrZl0hkKlaaskLq8Ij3v2zRlhXTlLVpWbyNpwuJlnxuYWdIT79QqTVkhfXmdK6a0VNKyIGmNOMdHWvQizPSWBmnKCinKK2nVtLxv05QV0pW3mFm9kNRNaj48XPMg6XeS/ivpG0mvSfptns1+Thm8b9OUFdKVN+ms3kaSQpIKvWY9X0/ckkpTVkhX3tgB9RbCNMD/JvQjGCbpQOC3ZrYoyXzZ0pQV0pW3HLJ6Gwl1/vDYNume7QrzXn9AGAahJpsAOyeZN01ZIV15JU0ExprZBVnr9gSGE3o397IwKdfOwCuetXBpylsOWb2QkK4PDwBJbxEm3zqilu0OBR5M+E2emqwxR2rySvoG2N/Mxues70SYL6UF0IMwHlTSH3apyQrpylsOWb2NJPgP8B8zO6ymG3B90kGj14BfFbBdZkDEJKUpK6Qr79eED4cVmNl0YBfCkPivAL8obay80pQV0pU38ax+RMIPA6/ta2YVtWx3CGEO70QLsKQtgO3M7KlatmtFuEQ1d6jukklT1pgjNXklPQl8Y2bHVHN/K8LAfT1IeLDRNGWNeVKTtxyyeiEhXR8ezmVIOgz4PbCfmX1VzTYtgNsJg43+qJT5cnKkJmvMkpq85ZDVC4lzzrkG8TYS55xzDeKFxDnnXIN4IXHNiqS+kibFHsDzJP1bUlGuxpO0laSBktYuYNuBkizrNlvSo7H9rrZ9+8Z92jZOcufqxguJazYUpku+GxgJ9AaOBZ4EDijSn9wKGADUWkiir4Eu8XYesAMwRlKbWvb7R9ynsp45nWsQHyLFNSdnAHea2cVZ656WdGlSgXIsNbNX4++vSpoJ/BPoCTycu3G8EqeFmX0OfF66mM6tyI9IXHOyNvBp7krLunRRUqd4muhoSX+Np8DmShqQu5+kPeIAed9J+kzSbZnTS5K6Ak/HTafFx5xex7yT4s9O8TGHSZoo6SBJ7wHfATvnO7UlqZWkayTNkLRY0jRJf87Jf5Kk9+L9MyRdgHP14Eckrjl5EzgzftN/xsy+rGHba4FngEOB3wADJH1hZoMBJG0LPA+MAg4BNgOuAjYH9o1/6zzgOsJptDnA4jrm7RR/fpqz7hrgMuAzwmiuK7SjSBLhlF0X4HJCQdoE+HXWNucDV8bHGg90Bi6XVGlmt9Yxp2vuzMxvfmsWN+CnwMeE4U2WAe8RPpDXytqmU7z/hZx97wJmEaZaBhgBfEQ4tZTZ5vC4b5e4vF9c7lRAtoGEoSxaxttWwDhgAbBR3GZYfLwdcvbtG9e3jcvd4/IB1fyttYCFwICc9ZcRilaL2vL6zW/ZNz+15ZoNM3sH2IbQuH4bYaysPwET81zx9HjO8mPAxsCmcfmXwONmVpW1zaPAUmC3ekZcF1gSbx8Qjm6OMLM5WdvMMrO3anmcPYCvrPqRGroAbYCHJbXM3ICxQAeWP0fnCuKntlyzYmaLCW0XTwNIOpFwJdeJwE1Zm87N2TWzvBEwM/78LOexqyR9CaxTz3hfA3sRjiY+BWabWe7QE5+ttNfK1iWcSqtOZoC/96q5fzPAhwFyBfNC4po1Mxsq6Rpg65y7NqhmeU7WzxW2iVdRrQvkHe+oAEvNbGIt2xQyptGXhEJXnUy+/chfmD4o4G849wM/teWaDUm5xQFJ6wPtWPkD9eCc5UyD+Sdx+TXg4Fg8srdpCbwUl7+PP9doQOz6GAOsI2m/au7/F7AI2NjMJua5fVO6qK4p8CMS15y8G4fcfoFwqqqCcGVVJXBfzrbbxekFHiVctXUicLaZLYv3X0GY1vQJSbcT2hWuBkaa2b/iNplv9qdIGgFUmtm7xXlqKxhF6HT5gKTLCFeQbQT8xsxOMbP5kgYCN0mqAF4kfKncCuhmZrlF1LkaeSFxzcllwIHAzYR2jE8JE/4cYWbTcra9gHDq51FCf43LgR8uizWz9yT1IFxC+xjh6qq/x/0y28yQdB5wFnAm4WimUzGeWDYzM0kHx8znEKaIng08kLXNNZJmE4YfP5fwHD8EHix2Ptf0+DDyzmWJ05NOI0xd+kyyaZxLB28jcc451yBeSJxzzjWIn9pyzjnXIH5E4pxzrkG8kDjnnGsQLyTOOecaxAuJc865BvFC4pxzrkH+P9FYor+QsHtTAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAE+CAYAAAB1DJw3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5xU1f3/8ddbsFAUsWFliRp/tiQaTAxqImBBwAZ2MYoNS2z5ikbFCBaMvaOIImiCwV6jIt2osYCxREQlUiIgWEDEBYTl8/vj3JFhmN2d2Z2dO3fn83w85rF779w7+55hmM/ce+45R2aGc845l4+14g7gnHMuebx4OOecy5sXD+ecc3nz4uGccy5vXjycc87lzYuHc865vHnxcCVL0gBJlnabI+kJSdvFmGlvSe9IWirJonUtJI2U9HWUs3c1+w7PeD6p2/1FfRKr8vSRdHiW9TMk3RRHJpccTeMO4FwtvgUOin7fFrgaGCtpFzP7PoY89wLzgS7AsmjdWcAhwInAbOC/New/FTg5Y938AmfMVR/gP8DTGet7AF8XP45LEi8ertStMLM3ot/fkDQL+CfQDXgshjw7AkPMbGLGuo/N7Ikc9v8+7fmUJDP7d9wZXOnz01YuaSZHP9sBSOog6dnolNb3kt6V1Cu1saSNolNMJ6U/iILpkm5JW9dZ0pvR9vMk3S2pZXRfx+g0VRPg9uh003BJM4BTgd1Tp6Hq+sRSf0PSrhnrJ0h6PG15uKRJkg6Q9H70vF+VtEvGfk0kXSrpE0nLJH0uaXjqMYH2wElpp896R/etcdpK0tGSPoge53+SBkpqmnZ/7+gxfiZpdJRpqqSedX09XGnz4uGSpl3084voZwXwGnAa4dTRE8AwSccBmNk3wFOseaqoY/RYwwAk7Qy8BHwFHAH0B44HUh/a7wAdot9vjn6/mnCK5wXC6agOadtUS1LT9FtOz3pNbYEbgYHAccBmwKOSlLbNvcCVwKPAwcCFQIvovrOjzC+k5f5HNXkPBB4hvAaHAXcCfYG7smz+MPAs4XX5FBgpaes6PkdXwvy0lSt5aR+w2wJ3A98BYwDMbGTadgJeAbYGTgf+Ht01FHhZ0rZm9lm07mRgspl9EC1fAcwEDjWzqujxvgEekdTBzP5FOG0GMCP91JOkL4E2OZ6Oag8sz3h+PzWzaTnsm24jYG8z+zR6jLUIRfL/AVMl7Ug4IjrfzO5I2+8RADObIul74Msccl8FTDCz1NHbS9Hr8BdJ15jZ52nb3mpmD0SZJgPzCIVrcJ7Pz5U4P/JwpW5jwoftcuBjQgE5xszmAkhqLekOSTPTtusD7JD2GGMJheGkaJ/1gZ5ERx2RXwNPpQpH5AlgBbBPAZ/PR8CvMm7/q8PjzEgVjsiU6GfqW36n6OfwOjz2jyQ1AX7Jmu1LjxA+PzKPtF5O/WJmXxMuBvAjj0bIjzxcqfsW2B8wwqmqObb6UNDDgd8QTiFNARYRrn46LLWBmZmkYcApkgYARxPe+w+nPc4WhG/JpO1XJelrwrf8Qqk0s0kFeJyFGcs/RD/Xi35uTGicX1TPv7MJsDYZr03acuZrky3XerhGx4uHK3UrqvuwlbQe0B04x8wGp63PdkQ9jNCO0QnoDTxtZgvS7p9LaDdIf/wmhA/hb+rzBPKwNPq5Tsb6jQhtMfn4GmghaYN6FpCvCEdzm2WsbxP9LNZr40qMn7ZySbYu4eqnVH+L1CmpQzM3NLP/EU6pXEk4DTUsY5M3gR5RwUjpSfiC9WphY1cr1XawU2qFpG0I7Rj5Ghf9PLGGbWo9KohO400Gjsq462hgJfCvOmRzjYAfebjEMrNvJb0NXCFpEeHD7BLCqa4NsuwylHDu/nNgdMZ91wD/Bp6WdA/hPP31wKiosbzBmdnn0fO5WlIl4cvdZdTh272ZfSxpCHCzpM0IFxJsCBxpZsdGm00FukjqQjhSmR61U2TqD4yKTv2NBH5GOE14X0ZjuSsjfuThku54YDrwEHA7oZH7oWq2fZ7QAP6gma1Mv8PMPgS6Ek7PPEkoJn8HjmyY2NU6HpgF/A24lnCl08d1fKyzCUdaJxAuyb0NWJJ2/zWEBvxHgbcJlzqvwcxeBo4F9gCeAy4gXK58Th1zuUZAPg2tKxeSuhEKyA51uDTWOZem6EcekraXdK+k9yRVRT1da9vnV5KGSZomqVLSx5L6Rw2mztVI0paS9gWuA17wwuFc/cVx2moXwrhEn0S3XBwDbEc4B90NGAT8HzCiIQK6RqcPoa/HUuDcmLM41ygU/bSVpLVS55uj8Xo2MbOOteyzqZl9mbGuD2H4hXZmNrOh8jrnnFtT0Y88Mhsqc9znyyyrUyN/Zl5/7pxzroEl+VLdvQiXZtZ6Jcomm2xi7dq1q9Mf+f7772nRokXtG5aIJOVNUlZIVt4kZYVk5U1SVqhf3smTJ39lZptmuy+RxUPS5kA/4K/V9Z6NTmv1AWjTpg033VS3idEWL15My5Yt6xq16JKUN0lZIVl5k5QVkpU3SVmhfnk7depUfZOAmcV2Iwx3PSHPfdYhdHj6DGidyz7t27e3uho/fnyd941DkvImKatZsvImKatZsvImKatZ/fICk6yaz9VEHXlEQ24/RLhia29bfWwi55xzRZKo4gHcShgt9QAzmxp3GOecK1eJKR6SLiVco3+0mRVroDrnnHNZFL14SGpO6OgHsBWwgaTU+EEvmFmlpGnARDM7NdrneMI4P8OB2ZJ+k/aQ/7Xsl/I655xrIHH0MN+MMLLpY4RJfHZOW0712WhKGGo75cDoZ2/CENDpt+4Nntg550aMgHbt2LdzZ2jXLiyXsgbOW/QjDzObAaiWbdplLPcmFA7nnCu+ESOgTx+orAwfXjNnhmWAXr3iTJZdEfImps3DOedi068fVFauvq6yEv7wB/i4riPmN6A77siet18/Lx7OOVc0s2ZlX//tt3DNNcXNkovqxiys7nnUgU8G5Zxztdl44+zrKypg5crSu1VUZM/btm3BXhIvHs45V5Pbb4evvoK1Mj4umzeHgQPjyVSbgQNDvnQFzuvFwznnsjGDyy6DCy6Anj1h6FCoqMCk8M1+yJDSbCyHkGvIkAbN620ezjmXacUKOOMMeOCB8HPQIGjSBHr3ZuKECXTs2DHuhLXr1Qt69WqwvH7k4Zxz6ZYsgSOOCIXjiivgnntC4XCr8SMP55xLWbAADj0UXnstHG2cfXbciUqWFw/nnAOYPRsOOgg++QQeeQSOOiruRCXNi4dzzn38MRx4YDjyePFF6Nw57kQlz4uHc668vfUWdOsW2jUmTIBf/jLuRIngDebOufL18svhKKNVq9DO4YUjZ148nHPl6eGHoXt32H77UDi23z7uRInixcM5V35uvz30g9hnH5g4ETbfPO5EiePFwzlXPszg0ktX9Rp/8cVwysrlzRvMnXPlobpe465O/MjDOdf4VVaGI40HHoD+/b3XeAH4kYdzrnFbsAAOOQRef917jReQFw/nXOPlvcYbjBcP51zj5L3GG5QXD+dc4+O9xhtc0RvMJW0v6V5J70mqkjQhx/1aSRomaYGkbyWNkFTN3JDOubI1apT3Gi+COK622gXoBnwS3XL1CNAROA3oDfwKeLrA2ZxzSfbww3Dwwd5rvAjiOG31nJk9AyDpcWCT2naQ1AHoAuxrZq9E62YDb0ra38zGNGRg51wC3H576PzXsSM8/bR3/mtgRT/yMLOVdditKzAvVTiix3kLmB7d55wrV95rPBZJaTDfEZiaZf1H0X3OuXLkvcZjIzOL749Hp63MrGMt240GvjezwzPW/w3Y1sz2yrJPH6APQJs2bdqPHDmyThkXL15My5Yt67RvHJKUN0lZIVl5k5QV6pZ3raVL2fnqq9nk9deZcdJJzDjpJJAaKOEq5fDapnTq1Gmyme2R9U4zi+0GPA5MyGG70cBTWdaPAF6rbf/27dtbXY0fP77O+8YhSXmTlNUsWXmTlNWsDnm/+cZs773NJLNBgxokU3Ua/WubBphk1XyuJuW01QJg0yzrNwQWFjmLcy5Os2dDly7w6afw6KNw5JFxJypLSRkYcSrZ2zaqawtxzjVGU6fCXnvBrFmhYdwLR2ySUjxeBDaXtE9qhaQ9gG2j+5xzjd1bb4XJm5YuDb3GfbiRWBX9tJWk5oROggBbARtISn19eMHMKiVNAyaa2akAZvYvSaOAhyT1BVYC1wOvmvfxcK7xGzUKjjgC2rQJv3vnv9jF0eaxGfBYxrrU8k+AGYRcmdfbHQvcCjxAOGJ6HjivwVI650rDiBHQuzfsums4VeVTxpaEohcPM5sB1Hg9nZm1y7JuIXBydHPOlYPbboM//tF7jZegpLR5OOfKSarX+B//GE5Xea/xkpOUS3Wdc+VixQro0weGDYMzz4S77vJe4yXIjzycc6UjNdf4sGFhrvG77/bCUaL8yMM5VxrS5xq/+24466y4E7kaePFwzsVnxAjo1499Z82Cpk1h5UrvNZ4QXjycc/EYMSK0bVRWhssvly+HddeFZcviTuZy4G0ezrl49OsX2jjSLVsW1ruS58XDORePWbPyW+9KihcP51zxjRgR+nJk07ZtcbO4OvHi4ZwrrttugxNOgJ12gmbNVr+veXMYODCeXC4vXjycc8WR3mu8Z0945x247z6oqMAkqKiAIUOgV6+4k7ocePFwzjW8FSvgtNPguuvCXOOPPgrrrRcKxYwZTBw3DmbM8MKRIF48nHMNK9Vr/IEHQq/xe+7xXuONgPfzcM41nPRe44MGwdlnx53IFYgXD+dcw5g9Gw46CD75BB55BI46Ku5EroC8eDjnCu/jj+HAA8ORx4sv+pSxjZAXD+dcYb31FnTrFto1JkyAX/4y7kSuAXiDuXOucF5+ORxltGoFr73mhaMR8+LhnCuMhx+G7t1h++1D4dh++7gTuQbkxcM5V3+33x76aOy9N0ycCJtvHnci18C8eDjn6s4MLrsMLrgg9OV46SWfa7xMeIO5c65uVqwIc4wPHRrm5fApY8tK0Y88JO0saaykSklzJF0lqdZ3nKQ9JL0s6WtJ30gaI2nPYmR2zmVYsgSOOCIUjiuugMGDvXCUmaIWD0mtgTGAAYcBVwEXAlfWst820X5NgROB30e/vyypoiEzO+cyLFgQ+nA89xzcdRdceSVIcadyRVbs01ZnAs2Anma2CBgtaQNggKQbonXZdAfWj/ZbCCDpdeAroBtwT8NHd84xZw506RI6AY4cCUcfHXciF5Nin7bqCozKKBIjCQVl3xr2WxtYASxOW7c4WudfeZwrhk8+gb32CqPfvviiF44yV+zisSMwNX2Fmc0CKqP7qvNEtM3NkjaTtBlwK7AAeKyBsjrnUt5+O1yGW1kZeo3vt1/ciVzMZNVNBdkQf0xaDlxkZrdlrP8ceMjMLqth392A54GtolVzga5m9l412/cB+gC0adOm/ciRI+uUefHixbRs2bJO+8YhSXmTlBWSlbeQWVtPmsSuf/4zP7Ruzfs33MCSrbcuyOOmK9fXthjqk7dTp06TzWyPrHeaWdFuwHLg/CzrZwMDa9hvC2Aa8AxwUHR7DvgcaFvb323fvr3V1fjx4+u8bxySlDdJWc2SlbdgWR9+2Gzttc1+8QuzOXMK85hZlOVrWyT1yQtMsmo+V4t92moBsGGW9a2AhTXsdxGhcf9IM3vJzF4CjgCqgL4FT+mcgzvugOOPD+0cEyfCFlvEnciVkGIXj6lktG1El+G2IKMtJMOOwIdmtjy1wsx+AD4EtmuAnM6VLzPo1w/OPx969PBe4y6rYhePF4EuktZPW3cMsASYWMN+M4FdJa2TWiFpXWBXYEYD5HSuPK1YAaefDtdeG3qNP/ZYmGvcuQzFLh6DgWXAk5L2jxq1BwC3WNrlu5KmSRqatt/9wJbAU5K6SzoYeJrQFjKkaOmda8yWLIEjjwy9xv/8Z+817mpU1E6CZrZA0n7AXYQG74WES24HZMnVJG2/yZIOAvoDf41WfwAcYNVcbeWcy8PChXDoofDqq3DnnXDOOXEnciWu6AMjmtkUoMY5Kc2sXZZ1Y4GxDRTLufI1Z06Ya3zqVO817nLmo+o6V84++SQMN/LVV/DCC7D//nEncgnhxcO5cjVpEnTtGgY1nDAB2rePO5FLEJ8MyrlyNHo0dOoELVuGKWO9cLg8efFwrtyMHBnmGt92W3j9dfjpT+NO5BLIi4dz5eTOO0Ov8Q4dvNe4qxcvHs6VAzO4/HI47zw47DAYNQo2zDZSkHO58QZz5xq7FSvgrLPg/vtD7/G774am/l/f1Y8feTjXmC1ZAkcdFQrH5ZfDvfd64XAF4e8i5xqTESOgXz/2nTULttoKWrQIfTnuuAPOPTfudK4R8eLhXGMxYkQYzLCyMszN/PnnYf0553jhcAVX62krSSdK2rgYYZxz9dCvX5gmNtNzzxU/i2v0cmnzGEY0Z4akKkm/bthIzrk6mTUrv/XO1UMuxWMBYTh0AAHFm/TcOZe7TTfNvr5t2+LmcGUhlzaPMcBfJX1MKBzDJX1f3cZm5kcmzhXbI4+EwQ2l0KcjpXlzGDgwvlyu0crlyOMU4Erg34Qjj+mE6V+ruznniumuu+C442DvvcOluBUVmAQVFTBkCPTqFXdC1wjVeuRhZpXATQCS9gf6+QRMzpUAM7jiCrjmmtBr/O9/h2bN4PTTmThhAh07dow7oWvEcrnaqkrSr6LFCcCiGjZ3zhXDihVwxhmhcJx6Kjz+eCgczhVJLqetfgDWjX4/EaimVc45VxRLl4Ze4/fdFy7Pve8+7zXuii6Xd9wUYICkpwltHkdK2qOabc3M7ilYOufc6hYuDKeoXnnFe427WOVSPM4F7gVuJVxt1beGbQ3w4uFcQ5g7N8w1/tFHoX3j2GPjTuTKWC4N5q8DPwOQtBL4jZm91dDBnHNpPv00zDU+fz784x9wwAFxJ3JlLt9RdTsRTmPVmaSdJY2VVClpjqSrJDXJcd+ekt6WtETS15JektSiPnmcK3mTJ4fLcL/7DsaP98LhSkJerWxmNhFA0p7APsBGwDfAq2b2Zm37S2pN6HQ4BTiMMOzJzYQidnkt+54G3AXcAFwEtAY65/scnEuUMWOgRw/YeGN4+WXYYYe4EzkH5PnBG33LfwzoAlQBXwMbA00kvQQcFfULqc6ZQDOgp5ktAkZL2oDQIH9DtC7b392E0OZyrpndl3bXU/nkdy5RHn0UTjgBdtwRXnoJttyy9n2cK5J8T1vdAHQAjgXWM7MtgPWi5Q7A9bXs3xUYlVEkRhIKyr417Hd09PPBPPM6l0yDBoUG8T33DFdWeeFwJSbf4nEE8Ccze8zMVgKY2Uozewy4BDiqlv13BKamrzCzWUBldF919gQ+Bk6V9Lmk5ZLelLRXnvmdK22pXuPnnAOHHBJOVflc464EySz3QXIlLSGccnoxy31dgSfMrHkN+y8HLjKz2zLWfw48ZGaXVbPfKGAvQu/2iwmnyy4G9gB+ambzsuzTB+gD0KZNm/YjR47M7UlmWLx4MS1btqzTvnFIUt4kZYUi5K2qYofbbmPL559nbteufHLhhViTnK4lWYO/tg0nSVmhfnk7deo02cyy9+szs5xvwBvAs0RFJ229ovX/qmX/5cD5WdbPBgbWsN9oQh+Sg9LWbUAYLv7q2nK3b9/e6mr8+PF13jcOScqbpKxmDZx3yRKzHj3MwOzSS81WrqzXw/lr23CSlNWsfnmBSVbN52q+VypdBrwITJX0FDAP2AzoAbQjtGnUZAGQ7Ri8FbCwhv2+iX5OSK0ws0WSJgM75xLcuZL17beh1/jEiXDbbXD++XEncq5W+V6qO07S7sAVhPaNLYC5wJuE01m19QGZSkbbhqRtgBZktIVk+Ihw5KGM9QJW5vwEnCs1c+dC167w4YdhDvLjj487kXM5ybfBHDObYmbHmtl2ZtY8+nl8DoUDwlFLF0nrp607BlgCTKxhv+cJhaJTaoWkVkB7wIeHd8k0bVro/DdtWug17oXDJUhexUPSTZLqc5poMLAMeFLS/lGj9gDgFku7fFfSNElDU8tmNgl4Bhgq6SRJ3QltLMuBQfXI41w83nkH9toLFi2CcePgwAPjTuRcXupyqe4Hkt6SdGb07T9nZrYA2A9oAjxHmKHwVqB/xqZNo23SnQA8DdwCPE4oHJ2jx3QuOcaOhX33DfNvvPYa/NpnbnbJk2+bx08kdQJOBm4EbomGan/AzMbk+BhTCMOK1LRNuyzrFgNnRTfnkumxx0Kv8R12CL3Gt9oq7kTO1Uld2jzGm9mJhMbyc4GtgVGSZkq6UtK2hQ7pXKNw991wzDHwq1+FXuNeOFyC5V08UsxssZkNJZxyeg3YBrgU+ETSM5IqCpTRuWQzg/794Q9/gIMPhtGjoXXruFM5Vy91Kh6S2knqL+kz4GVgMeHS3fWBQwl9PurWpdu5xqSqCs46C666Ck45BZ580ucad41CvqPq/p7Q3vE7YBYwDBhmZp+nbfaCpO8JQ687V76WLoVevULBuOQSuPZaUGZXJeeSKd8e5kMIw6B3MbOxNWz3CXBNnVM5l3TffguHHw4TJsCtt8IFF8SdyLmCyrd4bJnLpbFmNpdwGa5z5eeLL8Jc4x9+CH/7Wzj6cK6RyfdSXe9T4VxNpk0Lc41/8QU891woIs41QnlP4SrpGOB0YAfCRFCrMbPNCpDLueR5550wTlVVVeg1vueecSdyrsHkOzzJ8YTZ/KYR+nc8Sxh3ai3CXBt3FTqgc4kwbhx07AjrrQevvuqFwzV6+V6qexFwNfCHaPluMzsF+AnwFWFGQOfKy+OPhyOOtm3DcCM71jQppnONQ77F46fAa2ZWBVQRJmTCzL4jzF9+TmHjOVfi7rkHjj4a9tgj9Brfeuu4EzlXFPkWj2+BdaPfZwM7pd0nYONChHKu5JnBgAFw9tnQvXvoNb7RRnGncq5o8m0wnwT8HBhFaO+4QtIK4AfCBFFvFjaecyWoqgrOOQcGD4beveG++6Bp3teeOJdo+b7j/wKkxqy6Ivr9bsLw6W8DfQoXzbkStHRpGBX3iSfgT3+Cv/zFe427spRT8ZDUDOhGGLPqC0ltzGwecJikdYF10ydzcq5RGTEC+vVj31mzYJ11YNkyuOUW+OMf407mXGxqLR7REOtjCIUjZZGko83sZTNbRpgd0LnGZ8QI6NMHKisRhMKxzjqwmXdncuUtlwbzG4CVwG+B5sAuwL+Bexswl3OloV8/qMy4Av2HH8J658pYLsWjA3C5mb1mZkvN7CPgDKCtpC0aNp5zMZs1K7/1zpWJXIrHFsBnGev+S7g0d/OCJ3KuVIwfX/19bdsWL4dzJSjXfh7WoCmcKzWPPx4GNdxiizUnb2reHAYOjCeXcyUi1+IxStL81A2YG60fm74+us+5ZBs8eFWv8Q8+CP04KiowCSoqYMgQH2bdlb1cLtX1eTlceTAL08UOGBB6jT/6aDjK6NULevVi4oQJdOzYMe6UzpWEWouHmRW0eEjaGbiT0BC/ELgfuDIaLyuX/dcidEj8JXCImT1fyHyuTFVVwbnnhrGqTjopHG2svXbcqZwrWUUdU0FSa0KfkSnAYcB2wM2E02eX5/gwpwFbNUhAV56WLQu9xh9/HC6+GK67znuNO1eLYg/IcybQDOgZ9UgfLWkDYICkG2rrpR4Vn4HAJYQjFufqZ9GiMNf4+PFw001w4YVxJ3IuEfIdVbe+ugKjMorESEJB2TeH/a8GXgPGNkA2V27mzQsTOP3zn/DQQ144nMtDsY88dgTGpa8ws1mSKqP7nqtuR0k/B04GftGgCV15+OwzOPBAmDsXnn02TObknMuZzIrXhUPScuAiM7stY/3nwENmdlkN+04E3jSziyW1A6ZTQ4O5pD5Eo/y2adOm/ciRI+uUefHixbRs2bJO+8YhSXnjytpy2jR+fvHFqKqKD/7yFxbtvHNO+/lr23CSlDdJWaF+eTt16jTZzPbIeqeZFe0GLAfOz7J+NjCwhv2OBb4ANoiW2xE6Lh6cy99t37691dX48ePrvG8ckpQ3lqzjx5utv77ZNtuYTZmS567jGyRSQ0hSVrNk5U1SVrP65QUmWTWfq8Vu81gAbJhlfSvCZbtrkLQ2cCNhmtu1JG1INP0t0ELS+g0R1DVCTz4JXbqEqWJfew122qn2fZxzWRW7eEwltG38SNI2QIvovmxaAFsDtxCKzwLgvei+kYQRfp2r2b33wlFHQfv28OqrsM02cSdyLtGK3WD+InCRpPXN7Lto3THAEmBiNfssBjplrNsc+DtwGRkN8M6txgyuvhr694du3eCxx0KvcedcvRS7eAwGzgOelHQ9sC0wALjF0i7flTQNmGhmp5rZCmBC+oNEDeYAH5iZz5vusquqgvPPh0GD4MQT4f77vde4cwVS1NNWZrYA2I8w5/lzhHGzbgX6Z2zaNNrGubpZtgyOOy4UjosuguHDvXA4V0DFPvLAzKYAnWvZpl0t988gzCfi3JoWLYIePWDcOLjxRujbN+5EzjU6RS8ezjWoefNC28Z778GDD4bTVc65gvPi4RqPzz4Ll+LOnh16jXfrFnci5xotLx6ucXjvvTDz37JlMHYsdOgQdyLnGrVi9/NwrvAmToTf/Q6aNg19OLxwONfgvHi4ZEv1Gt9qK3j9dchxnCrnXP148XDJNWRI6DW+++5hWHXvNe5c0XjxcMmT6jV+xhnhqGPMGNh447hTOVdWvMHcJcvKlXDeeaHz3+9/D0OHeuc/52LgRx4uOdJ7jfft673GnYuRH3m4ZPjuu9BrfOxY7zXuXAnw4uFK3/z5ocPfu+96r3HnSoQXD1fapk8Pc43Png3PPAPdu8edyDmHFw9XyrzXuHMlyxvMXWl65RXvNe5cCfPi4UrP00+HU1Vbbum9xp0rUV48XGm5/3444gjYbTefa9y5EubFw5UGMxg4EE4/PfQaHzvWe407V8K8wdzFb+XKMNf4XXfBCSfAAw945z/nSpwXD1d8I0ZAv37sO2tWOC215Zbwxhtw4YVwww2wlh8QO1fqvHi44hoxAvr0gcrKMAn9rFnhduyxcNNNcadzzuXIv+K54urXDyor11z/r38VP4tzrs6KXivrLfkAABxdSURBVDwk7SxprKRKSXMkXSWpSS37/ErSMEnTov0+ltRf0nrFyu0KZNas/NY750pSUU9bSWoNjAGmAIcB2wE3E4rY5TXseky07fXAp8DPgaujn0c0YGRXaJtvDnPnrrm+bdviZ3HO1Vmx2zzOBJoBPc1sETBa0gbAAEk3ROuyud7MvkxbniBpKXCvpAozm9nAuV0hvPIKLFwIUrg0N6V583CZrnMuMYp92qorMCqjSIwkFJR9q9spo3Ck/Dv6uVnh4rkGk+o1XlEBt90GFRWYFJaHDIFeveJO6JzLQ7GLx47A1PQVZjYLqIzuy8dewErg48JEcw0ms9f4eefBjBlMHDcOZszwwuFcAsnSTx809B+TlgMXmdltGes/Bx4ys8tyfJzNgfeBF8ysdzXb9AH6ALRp06b9yJEj65R58eLFtGzZsk77xqGk8prRdsQIth06lK/33JMP+/dnZbNmP95dUllzkKS8ScoKycqbpKxQv7ydOnWabGZ7ZL3TzIp2A5YD52dZPxsYmONjrAO8AnwGtM5ln/bt21tdjR8/vs77xqFk8lZVmZ17rhmYnXCC2Q8/rLFJyWTNUZLyJimrWbLyJimrWf3yApOsms/VYjeYLwA2zLK+FbCwtp0lCXgI2AXY28wWFDaeK4hly+Ckk+CRR7zXuHONVLGLx1Qy2jYkbQO0IKMtpBq3Ei7xPcDMctneFdt330HPnjBmTCgaF10UdyLnXAModvF4EbhI0vpm9l207hhgCTCxph0lXQqcCxxtZq82bExXJ/Pnh2li//1vGD48HH045xqlYp9LGAwsA56UtH/UqD0AuMXSLt+NepIPTVs+HriWcMpqtqTfpN02Le5TcFlNnw777AMffhjmGvfC4VyjVtQjDzNbIGk/4C7gOUI7x62EApKZK33IkgOjn72jW7qTgeGFTery8v77YQ6OZcvC6aq99oo7kXOugRV9VF0zmwJ0rmWbdhnLvVmzaLhS8MorcOihsP76YQInnzLWubLgl8C4ukv1Gt9iC59r3Lky48XD1Y3PNe5cWfPi4fLjc4075/CZBF0+0uca//3vYehQn2vcuTLlRx4uN8uWwfHHh8Jx4YWhH4cXDufKlh95uNql9xq/8Ubo2zfuRM65mHnxcDWbPx+6dYN334UHH4QTT4w7kXOuBHjxcNWbPj1cijt7dug13r173ImccyXCi4fL7r334KCDQlvH2LHQoUPciZxzJcQbzN2aJk6E3/0OmjYNfTi8cDjnMnjxcKt76qnQf2OrrbzXuHOuWl483Cr33QdHHgm77w7//Kf3GnfOVcuLhwu9xq+5Bvr0CUcdY8Z4r3HnXI28wbzcrVwJ550HgwZ5r3HnXM78yKOcLVsGxx0XCkffvt5r3DmXMz/yKFfffQc9eoTLcL3XuHMuT148ytH8+dC1a+jL4b3GnXN14MWj3KT3Gn/22TD0iHPO5cmLRznxXuPOuQLxBvNy4b3GnXMF5MWjHHivcedcgXnxaOyGDPFe4865git68ZC0s6SxkiolzZF0laQmOezXStIwSQskfStphCTvBl0dM7j6ajjjjNDO4b3GnXMFVNQGc0mtgTHAFOAwYDvgZkIRu7yW3R8B/h9wGrASuB54GvhtQ+VNrKqqMNf4oEHhMtz77/fOf865gir2kceZQDOgp5mNNrPBwJXA/0naoLqdJHUAugAnmdkTZvYUcAKwj6T9GyTpiBHQrh37du4M7dqF5VKWnneDDVb1Gh82zAuHc67gil08ugKjzGxR2rqRhIKyby37zTOzV1IrzOwtYHp0X2GNGBEGCZw5E5nBzJlhuVQLSGbeyspQMHbbDdbyZi3nXOEVu5/HjsC49BVmNktSZXTfczXsNzXL+o+i+wqrX7/wAZyushJ694Zrry34n6u3Tz6BFStWX7d8eXgevXrFk8k516gVu3i0BhZmWb8guq8u+22bbQdJfYA+AG3atGHChAk5h9x31iyUZb2tWMGXm26a8+MUy6ZTpmTPO2sWE/N43sW2ePHivP5d4pakvEnKCsnKm6Ss0HB54+hhblnWqZr1dd7PzIYAQwD22GMP69ixY+4J27YNp6oy/1hFBZuV4pumXbvsedu2Ja/nXWQTJkwo6XyZkpQ3SVkhWXmTlBUaLm+xT4gvADbMsr4V2Y8sattvw1r2q5uBA6F589XXNW8e1peipOV1ziVesYvHVDLaKCRtA7Qge5tGtftFqmsLqZ9evULnuooKTIKKirBcqu0HScvrnEu8YhePF4EuktZPW3cMsASYWMt+m0vaJ7VC0h6E9o4XGyIovXrBjBlMHDcOZswo/Q/ipOV1ziVasYvHYGAZ8KSk/aNG7QHALemX70qaJmloatnM/gWMAh6S1FPS4cAI4FUzG1PUZ+Ccc664xcPMFgD7AU0Il+VeCdwK9M/YtGm0TbpjCUcnDwAPAZOBHg2Z1znnXHZFv9rKzKYAnWvZpl2WdQuBk6Obc865GHn3Y+ecc3nz4uGccy5vMqutb17ySfoSWLMXXW42Ab4qYJyGlqS8ScoKycqbpKyQrLxJygr1y1thZlmH1SiL4lEfkiaZ2R5x58hVkvImKSskK2+SskKy8iYpKzRcXj9t5ZxzLm9ePJxzzuXNi0fthsQdIE9JypukrJCsvEnKCsnKm6Ss0EB5vc3DOedc3vzIwznnXN68eDjnnMubFw/nnHN58+LhnHMub148nHPO5S2OOcxdAUQzMHYjzOP+mJl9LWlroC+wHTADGGJmH8SXEiT9CXgh7hy5ktQMaGpm36Wt2xQ4B9gZWAm8C9xtZt/Gk9K5+PmluhFJIswP0h3YCdgIqALmAW8Aw83sk/gSriLp18DLQEtgBfAN0AV4gZD5Q2BXYHNgfzP7Z0xRkbQSMMJ0wQ8Dj5jZtLjy1EbSC8CnZnZ+tNyBMFvlSsIcMgLaAz8Anc3swxiz7g40M7PX09YdBFzKqkL3HjAgfZtSEf2fOwT4JeE9MonwRaOkP5QkbUAYK6qzmb0adx74MVNnYB3gH2b2ffSl5w+EGVc/I3yZnFOwv1ni/05FEb3ILxA+FOYRZjvcivCGfpHw4v8/4GozuzqunCmSRhOOGnsA3xMm1Dqc8OF2pJktl7Qu8DSwnpl1ijHrSuB64GfAAYTc7xAKyaNmNjuubNlI+go41cyeiZbfILzGh6eORiS1Ap4FlppZlxizvgE8Z2YDo+VTgPuB8cA4QqHbD/gtcETqOcWU9XXC6/pRtNya8AWoPbA42qwl4Ytal/QjvzhIOruGu5sBNwK3A58CmNndxciVjaTtgbHANtGq6cCBwGhgQ+C/hM+vJUB7M/u8IH/YzMr+Bvyd8Cb4Wdq6LYGXgCei5X0Jb/JTSiDv10DXtOXNCN8yD8zYrjvwVcxZVwK/jn5vDfSJ3ugrotuEaN3Gcb+uUcZK4Hdpyz9kvq5pr+33MWddlJ4NmAbcmWW7wcB7pfI+iJaHEo6YD0pbdxCwALi1BN4HKwlH8SuruaXfVxVz1kcJR5jbE86Y/DX6PHsdWD/aZpNom3sL9Xe9wTzoClxiaeflLRzenQkcLmkLM5sIXAucH1PGdBbd0pfJWJdtOVZmtsDMhpjZfsDWwIWEw+zBwBxJ/4g1YPAfIP1IbR7hP2SmjQmFJk4rM5YrgMezbPc44ZtnKTkUuMrMXkqtiH4fCPSMLdUqzwLzgVOBJma2VupGeD8I6Bity5wyu9j2AQaa2TQz+wa4nNDueZNFR3Bm9hVwG6u/t+vFi0cgwjeJTFXRfa2i5TeBHYoVqgaTgb6S1pe0FnAZMBs4S1ITAElNgbMJH4Ylx8y+MLPbzWwv4CeEeey3jDkWwHXAJZJOiV7DgcCNkg6QtI6kdaN2hb8QvvHF6Z9Ar7TlD4FsQ2//ivD+KCUbEto4Mk0mtNXFyswOB04CLgLelrR3+t3xpKpWa+CLtOXUv3XmHEafEb60FYRfbRWMAa6R9L6ZfQY/npO9g/CPkmoobwmUwhU2/QjnM78hnPqpJDSWPQ58KinVYL4l4VRASTOzmYQP7etKIMuTks4lfEu7FfiY8OUh9Q3ZCF8oniV8sMTpMuC16AvEnYSG8gclbUQ4HQihzeMC4JJYEq7uCEmp4rYAyDbJ0CaE03GxM7OXJf2c8Pr9Q9JLhKsZY22PyWI+4agzpQq4l3DUnG4zCpjdG8yB6BLXlwiH9jMJ57l/Qmg4P87MXoy2u4Ews9YxcWVNiTIfTPgC8ISZzZW0OXAxq57H/Wb2TowxkdQfuM8KeJVHMUjaGDgG+DXhm/BahGL9EfC8mU2OMd6PJO0G3APsyarCRtrvCwinh26PJ2EQXTiRabiZnZKx3b3Azmb22+Iky030f+sGwim1ewkFpZOZvRJrMEDS08A3ma9llu3uBHYys/0L8ne9eATR6Z6jgV8A6xEaHx+OziE6V9Ik7UQoIJmF7nUzWx5ntnxIOh34r5mNiztLNtGl27cSvqB1txK4BFpSG6C5mU2vZbv/I1w4MbYgf9eLR+MjqYmZZWvDKRmS1iM06q0EppXiB1zU5rEtaX1+zGxWvKmcKw3eYJ5B0i6SjpB0mqRTo993iTtXJkk9JT0t6QVJh0TrjpE0A/hB0szoW1ysJJ0Q9T9ILTeVdB3hm/H7hAb9bySVwjl5ACS1l/Qs4fzwR8BrhP4H0yXNlnSVpOaxhmxEFIk7RzaSmmX+W0vaLfpcaB9XrpIQ5/XJpXQDTiG0E2S7truKMNzHyXHnjLIeHeV6FXiG0GB+OqGtZiihV+nfo9xdYs46BTgrbfnmKO+fgb0JlxkOIHRguqwEXtsDCW1dkwhXVA0gdBT9Icp8IeGqpneB1iWQ92BCv5kPgEdI66OSts2exN8X4UCiPgdp6w4ndBhdASyPXvPucb+mUbZWwFNRrhXAfUAT4MGMz4XXgE3izpvjczqikO+D2J9QKdyAc6M3ySBCb9xNojdKk+j3fYC7og+VP5RA3reBwWnLvaJsN2dsNwwYE3PWSmDftOX5wPlZtusLzCyB13Yy8GA175EZhKP19aIPvbtjznpA2gfYXVH2qqhAK227UigeVazeSbBH9AH8evRv3zf6fQVZOmXGkPcOwhAk5wInRl8YngD+FxXCTQn9w2YD98SdN8fnVNDi4W0egKTPCB/GN9Sy3cXAmWa2bXGSVZtjEdDTzMZEy60IV9Xsb2kNjdHprHvNLLb+E5LmAueY2RPR8jLC0dCEjO0OAJ41s2bFT7lajiXAoWY2OmN9a0LP/l3M7CNJJwLXm9kWceSMMr1KGIfr5LR1pxA++EYTrhRcKmlPQsN5bJ3ZoqutfmNmb0XL7wCzzeyQjO1eAFqY2b4xxEzPMR241szui5Z3JxTnk83swbTtTiccMf8knqQg6YEcN60gdGwsyPvA2zyCzYG3ctjuLUqgAxPhMsz0N0BqbKCFGdstJnTGitOzhA6N60TLY4Djsmx3HOHbXdzmE664y/QLwuue6uczk1WdR+OyK/C39BVm9gBhKJ3fAOOiPh+laFfCJa+ZhhAGSozbZqzq3wXRGFaEcaLSTSN7f5ViOolwNPSzWm4V1T1AXXgnweB94HRJr5hZtuvRUyOAnh5tG7eZhFFTRwGYWVV0CeFHGdtty+o9T+NwKaEn9H8k3Q88B1wvaVdWdWTrDOxOGGE1bkOAqyW1ILQl/EDood0PGG+r+qtsC8R95dVSoEXmSjObHPWIHkU4FTSgyLmqk36a41tWfelJ9z2l8aV2OqEIT4yWf0s4zbYXoa0xZW/ifx98CrxlZifWtJGkIwntYgXhxSO4kNBJcIqkJwnDhy8kvNk3BHYknKPdmtLosf0kGcMMmNmbWbY7ntXf6EVnZt9I+g3hw/f/CN/oADpEtx8Ip1h+a2Zvx5NyFTMbGJ1iuYQwZAqE98HfCR3DUpYTxjqL0/uE8+7PZt5hZp9FBeQFYHiRc1VnlKQV0e+tgN1Y9QUiZUdgbjFDVWMwcLuknxEK3dGEL0JXSGpJGGTwl8AfgbhH2n6DUNRqk96JtN68zSMiaTtC7+yDWDW0ccr/CFfc3GhmmYetJUtSW2ChmZXEcA8Aktqxeke2/1pp9vFYm9APZT3gs1J6DVMknUEYomR3q6Yza3QE9RShPSy2b/TRSAOZPjWzhzO2mxCtL4XLzM8jnE5dmzBaw2BJxxHalFIDYw4B/hTnezi6ZHhvM7ujlu02IbTZTaxpu5z/rhePNUXXdafaChaaWdyjpzrnSkR0CnsTM/sy7ixx8uLRyESH1O8AvUrhNJASOK2rEjLFr3Nx8uKRJvrQ2Az42MzWaMyLDvu6mdlDRQ+3eo5uNdzdgtAodgnRcOxm9kIxcmWjBE3rCsma4jdX0bhXR5nZVTHnKPpUqYUUHXGkT5s7mfA8Yv8QVRit+AjC/6fhZjZV0i+AK1n1hWeQpc2fUm9xd1wphRuwLvAY4cOhitAYOhRolbFd7J2tohxJmuXsK+CwtOU3CFcxrZ+2rhXhqpZRJfDajiZM47oh4Vz3XcDnhJ78a6e9X14kXH0V+/s3h+dU0M5hdcywPeEqwdT78r+ED7XPCAX6bcJQ7POArUvgNXudMAJtarl1lHFllHMRqzo5rh9XzihbF8KXry+i13URYdKnBYQOpIOi/3dVhOmUC/N34/5HKoUbcAXh6qrTCZPpnB+9iT8Ffpq2XakUj8mEK1JOJly7nX77efSmPjq1LuasiZnWNcqRpCl+2+Z4OzPu9y0xTZVaj7yJmTY3KhCPEWY8hHARxQJgaMZ2fwXeKNjfjfsfqRRuhEtzz8lYtznwCvAl0CFaVyrFQ4R5v+cThkz4Sdp9raI3/hpjHMWU9S2gf9ry/4Bjs2x3IvBlCeT9KuMDYtPo9TwgY7tuJVA8UkeZtd1K4Qh0DnB02nJFlKtnxnYnA5+UwPsgs3h8CVyQZbvYh9UhXEq8f9py6yh/54ztDiRcAFSQv+v9PIJtyOj8Z2ZfSNqPUK3HSOpFaVx/joV3whBJjwLXAO9Luiv6vdRcB4yQ9D/gIVZN6/o14VSVCIfYpTCtK6ya4vc1Qoe19Cl+x1nokFkqU/x+B4wD7q9lu30Il6HHKZapUguolKfNXcLqnUVTv2cO9dOc0LG0ILx4BHOAnxKONH5k4drtYyXdRjgsjLWhPJOZLQTOkTSEcO35p8D1lNAcy5asaV0hWVP8vkVol/tHTRtFc6fELZapUuspKdPmvkbovPhplOUmwmjWf4pGzfguGv/uYkKxKwi/2oofBxbb1sw61rDNpYRvzWYxDjBXE0nHEqbK3JowAFrsU2SmKCHTukKipvj9M9DHzDI7tWZu9zvgSjPrVJxkWTPEMlVqXSlB0+ZK2p4wZlzqfTCDcDT/OKHH/kygHeHLUCcze7cgf9eLx4+XuR0DXGdmX9ew3fGEc98nV7dN3KJTKi2AxVbiswm68qGYpkptaCqRaXOj/l17E64QHGtmS6LOzqex6gvPw2b2ecH+phcP55xz+SqF0StdA5F0n6ShcefIRZKyQvLyOldo3mCeB0n3AWuZ2alxZ8lRJ5LzBSFJWSFBeSWNIZxl2C/uLLVJUlZIVt5CZ/XikZ/EfGAAmNn2cWfIVZKyQuLyiuS8b5OUFZKVt6BZvc2jEYsu0dzMzOKerKZWScoKycvrXKElpWKWBEnrRXNkJEV3woxoSZCkrJCgvJLWTsr7NklZIVl5C53Vi0d+EvOB4cqDpD9I+q+k7yS9Ken3WTb7JSXwvk1SVkhW3jiyeptHAknK9ZrybD1iiypJWSFZeaNOoXcSpsj9N+E6/+GSDgN+b2ZL4syXLklZIVl548rqbR7k/YGxc9w9zBXmgf6YMARBTbYC9owzb5KyQrLySpoEjDOzi9PW7QeMIPQy7m5hIqs9gdc9a+6SlDeurF48SNYHBoCkdwkTVh1Ty3ZHAo/E/MZOTNYoR2LySvoOOMTMJmSsb0eYb6QJ0JUw/lLcH3CJyQrJyhtXVm/zCP4D/MfMjqrpBtwSd9DIm8BvctguNehgnJKUFZKV91vCB8JqzGwGsBdhePnXgV8VN1ZWScoKycobS1Y/8uDHwc0OMrOKWrY7gjCndaxFV9J2wC5m9mwt2zUjXE6aOex10SQpa5QjMXklPQN8Z2YnVHN/M8LgeF2JeUDPJGWN8iQmb1xZvXiQrA8M51IkHQX8ETjYzL6pZpsmwD2EAT1/Usx8GTkSkzXKkpi8cWX14uGccy5v3ubhnHMub148nHPO5c2LhysrknpLmhz1xF0g6d+SGuQqOkk7SBogacMcth0gydJucyQ9EbXH1bZv72ifloVJ7lztvHi4sqEwlfD9wCigJ3Ai8AxwaAP9yR2A/kCtxSPyLdAhuvUFdgPGSmpRy37/iPaprGNO5/Lmw5O4cnIOcK+ZXZa27jlJV8YVKMMKM3sj+v0NSbOAfwLdgMcyN46uoGliZl8CXxYvpnN+5OHKy4bAF5krLe2SQ0ntolNAx0v6a3R6a76k/pn7SeocDUK3VNI8SXenTh1J6gg8F206PXrMGXnmnRz9bBc95nBJkyQdLulDYCmwZ7bTVpKaSbpB0kxJyyRNl/SXjPynSfowun+mpItxLkd+5OHKyTvAudE3+ufN7Osatr0ReB44Evgd0F/SV2Y2CEDSzsBLwGjgCGAb4DpgW+Cg6G/1BW4inCKbCyzLM2+76OcXGetuAK4C5hFGSV2tXUSSCKfjOgBXE4rQVsBv07a5CLg2eqwJQHvgakmVZnZXnjldOTIzv/mtLG7Az4HPCEOLrAQ+JHwIb5C2Tbvo/pcz9r0PmE2YhhhgJPAp4bRRapujo307RMsHR8vtcsg2gDCMRNPotgMwHlgEbBFtMzx6vN0y9u0drW8ZLXeJlg+t5m9tACwG+mesv4pQqJrUltdvfvPTVq5smNn7wE6EBvK7CWNT/RmYlOVKpacylp8EtgS2jpZ/DTxlZlVp2zwBrAD2qWPEjYHl0e1jwlHMMWY2N22b2Wb2bi2P0xn4xqofMaED0AJ4TFLT1A0YB7Rh1XN0rlp+2sqVFTNbRmiLeA5A0qmEK7BOBW5P23R+xq6p5S2AWdHPeRmPXSXpa2CjOsb7FtifcNTwBTDHzDKHgJi3xl5r2phwmqw6qUH0Pqzm/m0AH4LH1ciLhytrZjZU0g3Ajhl3bVbN8ty0n6ttE139tDGQdXyhHKwws0m1bJPLeEJfE4pbdVL5DiZ7Mfo4h7/hypyftnJlQ1JmQUDSpkAr1vwQ7ZGxnGr0/jxafhPoERWM9G2aAq9Gyz9EP9erR+y6GAtsJOngau7/F7AE2NLMJmW5fVe8qC6p/MjDlZMPouGrXyachqogXBFVCTyYse0u0VD9TxCutjoVON/MVkb3X0OY8vNpSfcQ2gmuB0aZ2b+ibVLf4M+QNBKoNLMPGuaprWY0oSPkw5KuIlz5tQXwOzM7w8wWShoA3C6pAniF8EVyB6CTmWUWTufW4MXDlZOrgMOAOwjtEl8QJsk5xsymZ2x7MeG0zhOE/hRXAz9ewmpmH0rqSrjc9UnCVVF/j/ZLbTNTUl/gPOBcwlFLu4Z4YunMzCT1iDJfQJg+eQ7wcNo2N0iaQxjK+0LCc/wEeKSh87nGwYdkdy5NNHXndMK0ns/Hm8a50uVtHs455/LmxcM551ze/LSVc865vPmRh3POubx58XDOOZc3Lx7OOefy5sXDOedc3rx4OOecy9v/B9wVLjQKafueAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -320,7 +322,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHb1JREFUeJzt3Xm0XFWd9vHvA0EIU5gDjTQRHCI0LF+JCP3SciNzeFsG0WShb6/YaNRXhe6FNogIAW1WB5tBF+0Clja8dGtCN9C8zRBCGG6Y1SDB2EnAoAEZRLEviTEhEvJ7/9gnWDm37q1Tw92Ve+/zWatWVe2zz659dir1u+fs4SgiMDMzG2pbdLsCZmY2OjjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmg5A0U1Jv8bpX0swm9++RFOWyBsh7u6TFg2y/SlKfpK0rfvbbJYWk45ups9lQccAx23zMBv5M0oHlDZK2BE4DbomIddlrZtYBDjhmm4//B6wBptXZNhkYTwpKZsOSA45ZiyQdLuk/Jb0o6feSFkn6WKvlRcRq4HZgap3N04CXgfuLz95b0nWSfiFpraSnJV0kaatB6jumuMT2mVL61yX9qpS2r6Qbi0t4ayTNlfSOVo/NDGBMtytgtjmLiJk1r3tKm/cFHgauBl4D/idwnaQNETG72KcXULmsQcwGPirpkIh4HKAIIqcA34uIN4p8uwOvAH8DvApMBC4EdgM+1+RhbkLSbsVxvQzMKI7tPGC+pHf5kp61ygHHrEURMWfja0kCHgDeCnyK1i99zSUFkGnA40XaccAutWVGxCJgUc3nPwysBa6WdFZErG/x8wHOBrYGjoqIV4vyHwFWANOBa9oo20YxX1Iza5GknSV9S9KzwOvFYwbwzlbLLM4e/oN0lqMieSrwLPBYzWdvIelsSUslrS0++/8CY0lBrx1HA/OA1cVluDHASuDHwKQ2y7ZRzAHHrHXXk4LBN4BjgfcB/wxs02a5s4E/BQ6XtA1wEjA7Nl3a/WxgFvDvwIeAQ4Ezi23tfv5uwMf4YxDd+PgAsE+bZdso5ktqZi0oAsGJwOcj4uqa9E78EXcfqf9kGrAXsAP9L9F9BJgTERfUfPbBDcp9A1gPvKWUvkvp/X8DTwCX1CljVYPPMBuQA45Za7YGtgTe7ECXtAPpbKOtm0xFxBuS/p0UVPYGlkbET0rZxtZ+dmHQEXIREZJeAN5dU+ctgQ+Wst5LOqta7AEC1kkOOGYtiIiVkn4EXCBpFbABOJfU17FjBz5iNvB50ui0C+psnw98VtJC4OfAXwETKpT7H8AMSU+S+oU+BWxbyvOPwOnAfZKuAl4E9gSOBHoj4t+aPhozHHDM2nE6cC1wA/Bb4CrSj/fnO1D2o6RRYROAOXW2XwjsSrrsFcBNwN8CtzYo9wJSH80lwB+AbwFLgE9uzBARv5Z0GPD3wJXATsBLwIPAgEvvmDWi3LeYlvR24EvAYcCfAQ/Wmd9Qb79xpC//yaTBDrcDZ0bEb0v5TgK+DryD9JffRRFxYyePwczMmteNUWoHAlOAp4tHVTcCPaS/xKaTRgRt8tecpCOAm0mzsU8A7gBmSzq23UqbmVl7unGGs0VEbChe3wTs1ugMR9LhwCPAkRHxQJF2KPAD4JiIuKdImwdsFREfrNn3TmDHiDhiKI7HzMyqyX6GszHYNOkE4OWNwaYo54fAL4ptFEu2TwbKHZpzSPMZxrVWYzMz64ThMvFzIrCsTvrSYhvA/sBWdfItJR1ny7O/zcysfcNllNrOpPWlyvqA/WryUCdfX2n7JiTNIC1HwtixYw/ZZ5/2JlJv2LCBLbYYLnG8u9xW1bmtqnNbVdeJtnr66adfiYjdq+QdLgEH6k+mU5308nsNkJ4SI64lDW1l0qRJsXDhwnbqSG9vLz09PW2VMVq4rRqbcO4dAJx90HouWzyGFf9wYpdrtPnz96q6TrRVsZZgJcPlz4A+0lyAsp344xlNX01aOQ/UP0MyM7NMhkvAWcYf+2pq1fbtPENaYLCcbyJpFngzQ7DNzKzDhkvAmQvsWcyzAUDSJFL/zVx4c1n3+0nrT9WaCjwaESsz1dXMzOrI3ocjaVvSxE9ICxPuKOm04v2dEbFG0nJgQUScARARjxZzbG6Q9EXSGcss4KGNc3AKXwN6JV1JmhQ6pXgcP+QHZmZmg+rGoIE9SPfwqLXx/dtI60eNIa3EW2sacAXpfiNvLm1TmyEiHiqC19eBz5Lm6ZweEXd3sP5mZtaC7AEnIlbwx5FjA+WZUCftVeATxWOwfW+l8QKGZmaW2XDpwzEzs2HOAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsywccMzMLAsHHDMzy8IBx8zMssgecCQdIOleSWskvSjpYklbNthnpqQY4PHlmnzXD5Bn4tAfmZmZDWZMzg+TtDNwD7AEOAnYH7iMFPjOH2TX7wB3ldJOBs4B5pbSlwGfKKWtaK3GZmbWKVkDDvAZYCxwakSsAuZL2hGYKenSIq2fiHgeeL42TdJXgWURsaiU/fcR8dgQ1N3MzNqQ+5LaCcC8UmCZQwpCR1YtRNIuwDHA7M5Wz8zMhkrugDORdMnrTRHxHLCm2FbVacBWpGBVdoCkVZLWSXpIUuVAZmZmQ0cRke/DpNeBL0XElaX054EbIuK8iuXcB4yLiENK6WcBfyD1Ee0OnA0cAhwRET8coKwZwAyA8ePHHzJnTr0YVt3q1avZfvvt2ypjtHBbNbb4hZUAjB8LL6+Fg/Ye1+Uabf78vaquE201efLkxyNiUpW8uftwAOpFOA2Q3j+jtBfp8ts5/QqO+GYp7x2k4HMeaZBB/8pEXAtcCzBp0qTo6empUo0B9fb20m4Zo4XbqrHp594BwNkHreeyxWNY8bGe7lZoGPD3qrrcbZX7klofsFOd9HHAqxXL+CgpQN3YKGNErAXuBN5btYJmZjY0cgecZZT6aiTtA2xHqW9nENOAhyLil018br7rhmZmVlfugDMXOE7SDjVpU4G1wIJGO0uaABxGxdFpksaSRsY93mxFzcyss3IHnKuBdcAtko4uOuxnApfXDpWWtFzSd+vsPw1YD9xU3iBpnKQHJX1a0lGSpgL3A3sDlwzBsZiZWROyDhqIiD5JRwFXAbeR+m2uIAWdcr3qLXczDbg3In5TZ9s64DekFQv2AF4DHgWOjIiFHTkAMzNrWfZRahGxBPhggzwTBkh/zyD7vAac2lblzMxsyHi1aDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8uiqYAjqd5yM2ZmZg01e4bzgqRLJb17SGpjZmYjVrMB5xrgNOCnkn4gaYakHYegXmZmNsI0FXAi4sKI2A84BngKuBx4SdL3JB09FBU0M7ORoaVBAxFxX0T8FbAn8AXgXcA8SSskzZT0J52spJmZDX/tjlKbBHyAdNvoPuBB4JPAckkfb7NsMzMbQZoOOJL2lXShpGeAe4G9gL8G/iQi/jewL6mv5xsdramZmQ1rTd2ATdJ9pDOa54Hrgesi4tnaPBHxhqTvA2d1qpJmZjb8NXvHz1eAKcD8iIhB8i0C3tZyrczMbMRp9pLaVcAj9YKNpO0lfQAgIl4vn/mYmdno1mzAuR84YIBt7yq2m5mZ9dNswNEg27YH1rRRFzMzG8Ea9uEUl8l6apI+Ken4UrZtgBOBxZ2rmpmZjSRVBg28nzS5EyCAjwDrS3n+ACwDvtS5qpmZ2UjSMOBExDco5tRI+gVwSkQsGuqKmZnZyNLUsOiI8FBnMzNrSZU+nCnAQxGxqng9qIi4syM1MzOzEaXKGc7twGHAD4vXwcCj1QLwTdrMzKyfKgHnbcBLNa/NzMyaVmXQwLP1XpuZmTWjSh/Ots0UGBGe/GlmZv1UuaS2mtQ3U5X7cMzMrJ8qAeevaS7gmJmZ9VOlD+f6DPUwM7MRrt1bTJuZmVVSZdDAD4HpEbFE0o9ocHktIg7tVOXMzGzkqNKH81/A2prX7s8xM7OmVenD+UTN6+lDWhszMxuxWu7DUbK7pMFuymZmZga0EHAkTZH0CPAa8CvgNUmPSDqx47UzM7MRo6mAI+nTwG2kyaBnkW7Gdlbx/j+L7WZmZv00dT8c4Dzg2oj4bCn9aklXA18BrulIzczMbERp9pLarsAtA2y7GdilUQGSDpB0r6Q1kl6UdLGkQZfDkTRBUtR5zKmT9yRJiyW9JmmJpKmVjszMzIZUs2c49wNHAvPrbDsSeGCwnSXtDNwDLAFOAvYHLiMFvvMrfP4XgYdr3r9SKv8IUuD7NnAmMAWYLakvIu6uUL6ZmQ2RKhM/D6h5+y3gO5J2BW4Ffg3sAZwCnAB8skFxnwHGAqdGxCpgvqQdgZmSLi3SBvNURDw2yPavAg9ExJnF+/slHQhcADjgmJl1UZUznJ+y6WRPAZ8uHuW7f97F4KtFnwDMKwWWOcAs0hnSbRXqU5ekrYHJpDObWnOA6ySNi4iVrZZvZmbtqRJwJnfw8yYC99UmRMRzktYU2xoFnOsk7UI6s5oNfCUiNq6CsD+wFbCstM9S0iW7dwI/aq/6ZmbWqiorDSzo4OftDLxaJ72v2DaQdcA/kS6LrQJ6gHNIQeakmrKpU35fafsmJM0AZgCMHz+e3t7ewerf0OrVq9suY7RwWzV29kHrARg/Nr12ezXm71V1uduq2UEDb5K0BbBNOb3CHT/rrcWmAdI3lvkS8PmapF5JLwPflvSeiFg0SPkaIH1j2dcC1wJMmjQpenp6Bq99A729vbRbxmjhtmps+rl3ACnYXLZ4DCs+1tPdCg0D/l5Vl7utmp34KUnnSFoOvA78rs5jMH3ATnXSx1H/zGcwNxXP760pmzrlb3zfbPlmZtZBzc7DORM4F/gu6czh74GLgaeBFRSXpgaxjNRX8yZJ+wDb0b/vpZEoPT9DCoITS/kmAhuKOpqZWZc0G3A+BVwIXFq8vzUiLgIOJAWMdzTYfy5wnKQdatKmkm5/0Gxf0WnF8+MAEbGONE/oI6V8U4FHPULNzKy7mu3DeRuwKCLekPQ6xeWqiNgg6dvAd0hnQAO5mnSWdIukWcB+wEzg8tqh0sUluwURcUbxfiawA2nS5yrgA8CXgFsi4ic15X+N1L9zJWme0JTicXyTx2lmZh3W7BnOb4Hti9fPAf+jZtvOpEmdA4qIPuAo0lyd24CLgCtIZ021xrDpfJ5lpHk61wF3AqcD3yiea8t/iHTmczQwD/gQcLpXGTAz675mz3AeBt5H+tH/PmmFgF2APwCfA+5tVEBELAE+2CDPhNL7OaQJnA1FxK2ksxszM9uMNBtwZgJ7F68vIV1Sm046s5kPfKFTFTMzs5GlqYATEU8BTxWv15HuhXPWENTLzMxGmHYmfr4V2At4MSJe6FyVzMxsJGrlFtOflfRL4FngB8Bzkp6X9H86XjszMxsxml1p4ALgKtJ8mhOBScXzXOBbxXYzM7N+mr2k9jngkoj4ain9rmJts8+RVh4wMzPbRLOX1MYy8F09F1BnMU8zMzNoPuDcCpw6wLYPA7e3Vx0zMxupqtxiekrN27nApZIm0P8W0wcCf9f5KpqZ2UhQpQ/ndvrfSnpv4Lg6ef+VdCdOMzOzTVQJOG8b8lqYmdmIV+UW08/mqIiZmY1sTa80IGkMaYDAEcAuwH8DD5JuFbC+s9UzM7ORoqmAI2kP4G7gYNIdPl8GDifNv3lS0rER8ZtOV9LMzIa/ZodFXw7sCrw/IvaLiMMjYj/g/UX65Z2uoJmZjQzNBpwpwDkR8aPaxOL9l0nL3JiZmfXTbMDZGvjdANt+B7ylveqYmdlI1WzAeQw4R9J2tYnF+3OK7WZmZv00O0rtbOB+4JeS7iYNGtiDNAlUQE9Ha2dmZiNGU2c4EbEIeAdwLbA7cAwp4FwNvCMinux4Dc3MbESofIYjaSvgUOAXEXHu0FXJzMxGombOcN4A7gPePUR1MTOzEaxywImIDcDPgPFDVx0zMxupmh2l9hXgAkkHDUVlzMxs5Gp2lNr5pBUFFkl6gTRKLWozRMShHaqbmZmNIM0GnJ8WDzMzs6ZUCjiSxpKWtfkp8Cvgnoh4eSgrZmZmI0uVW0zvB9wDTKhJXiXpoxFx91BVzMzMRpYqgwYuBTYAfwFsCxwIPAFcM4T1MjOzEaZKwDkcOD8iHo6I1yJiKfBp4E8l7TW01TMzs5GiSsDZC/h5Ke0Z0tppe3a8RmZmNiJVnYcTjbOYmZkNrOqw6HmS1tdJv7ecHhF7tF8tMzMbaaoEnIuGvBZmZjbiNQw4EeGAY2ZmbWt2LTUzM7OWOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRbZA46kAyTdK2mNpBclXSxpywb7vE/SdZKWF/s9JelCSduU8s2UFHUexw/tUZmZWSPN3oCtLZJ2Jt3qYAlwErA/cBkp8J0/yK5Ti7yzgJ8BBwNfK54/XMq7EigHmKXt1t3MzNqTNeAAnwHGAqdGxCpgvqQdgZmSLi3S6pkVEb+ped8r6TXgGkn7RsSzNdvWR8RjQ1N9MzNrVe5LaicA80qBZQ4pCB050E6lYLPRE8Wz124zMxsGcgecicCy2oSIeA5YU2xrxp+Tbgz3VCl9J0mvSHpd0hOSTm25tmZm1jGKyHfnAUmvA1+KiCtL6c8DN0TEeRXL2RP4CXBnREyvSf846YxnEbA96UZxU4APR8QtA5Q1A5gBMH78+EPmzJnT7GFtYvXq1Wy//fZtlTFauK0aW/zCSgDGj4WX18JBe4/rco02f/5eVdeJtpo8efLjETGpSt5uBJwvRsQ3S+kvANdHxFcqlPEW0sCDtwKHRETfIHkFPAKMjYj3NCp70qRJsXDhwkbZBtXb20tPT09bZYwWbqvGJpx7BwBnH7SeyxaPYcU/nNjlGm3+/L2qrhNtJalywMl9Sa0P2KlO+jjg1UY7FwHkBuBAYMpgwQYgUjS9BTi40dBrMzMbWrlHqS2j1FcjaR9gO0p9OwO4gjSc+piIqJJ/I9+x1Mysy3Kf4cwFjpO0Q03aVGAtsGCwHSV9GfgC8PGIeKjKhxVnRKcAT0bEG61V2czMOiH3Gc7VwJnALZJmAfsBM4HLa4dKS1oOLIiIM4r3pwOXANcDL0g6rKbMZzYOm5a0ALiZdLa0HfAp4DDg5KE9LDMzayRrwImIPklHAVcBt5H6ba4gBZ1yvWr7XI4tnqcXj1qfIAUigOXA3wB7kYZM/xg4MSLmdqL+ZmbWutxnOETEEuCDDfJMKL2fTv9AU2+/M9qompmZDSGvFm1mZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFtkDjqQDJN0raY2kFyVdLGnLCvuNk3SdpD5JKyV9T9KudfKdJGmxpNckLZE0dWiOxMzMmpE14EjaGbgHCOAk4GLgbOCiCrvfCPQAnwSmA+8Dbi2VfwRwM3A/cAJwBzBb0rEdOQAzM2vZmMyf9xlgLHBqRKwC5kvaEZgp6dIirR9JhwPHAUdGxANF2gvADyQdHRH3FFm/CjwQEWcW7++XdCBwAXD30B2WmZk1kvuS2gnAvFJgmUMKQkc22O/ljcEGICJ+CPyi2IakrYHJwL+V9p0DHC5pXPvVNzOzVuUOOBOBZbUJEfEcsKbYVnm/wtKa/fYHtqqTbynpON/ZQn3NzKxDcl9S2xl4tU56X7Gtlf32q8lDnXx9pe2bkDQDmFG8XS3pqUHqUcVuwCttljFauK0qOrNoK83qdk2GBX+vqutEW+1bNWPugANpwECZBkhvZb/yew2yPxFxLXBtg8+uTNLCiJjUqfJGMrdVdW6r6txW1eVuq9yX1PqAneqkj6P+GUyj/Xaq2a+vJq2chwblm5nZEMsdcJZR6quRtA+wHfX7aAbcr1Dbt/MM8HqdfBOBDcDTLdTXzMw6JHfAmQscJ2mHmrSpwFpgQYP99izm2QAgaRKp/2YuQESsI82/+Uhp36nAoxGxsv3qV9Kxy3OjgNuqOrdVdW6r6rK2lSIadZ108MPSxM8lwE+BWaSAcTlwZUScX5NvObAgIs6oSbuLNNLsi6QzllnAryPiL2ryHAH0AleRJoVOKfIfHxGeh2Nm1kVZz3Aiog84CtgSuI20wsAVwIWlrGOKPLWmkc6C/hm4AXgcOKVU/kPAacDRwDzgQ8DpDjZmZt2X9QzHzMxGL68WXYcXGK2ulbaS9L6inZYX+z0l6UJJ25TyzZQUdR7HD+1RDY0W22rCAG0wp07e0f69Guj7EpK+XJPv+gHyDDb5fLMl6e2SrpH0pKQ3JPVW3C/771U35uFs1moWGF1CWmB0f+AyUnA+f5BdIS0w+i7SAqMb+5luBcr9TDcD3wbOJPUzzZbUN9wu/bXRVlOLvLOAnwEHA18rnj9cyrsSKAeYpe3WPbc2v1eQ+iIfrnm/yWQ9f68A+A5wVyntZOAcisFFNZYBnyilrWitxl13IOnf+zHgLU3sl//3KiL8qHkAXybN6dmxJu3vSMvv7DjIfoeTJpd+oCbt0CLt6Jq0ecB9pX3vBB7q9rFnbKvd66TNKNpq35q0mcAr3T7OLrfVhKJd/leD8kf992qAsu4AlpbSrgcWdvs4O9heW9S8vgnorbBPV36vfEmtPy8wWl1LbRURv6mT/ETxvEfnqrdZafV71ZC/V/VJ2gU4Bpjd2eptXiJiQwu7deX3ygGnPy8wWl2rbVXPn5NO68tr2e0k6RVJr0t6QtKpLde2u9ptq+uK6/MvSbpc0tiabf5e1XcaqV369XcBB0haJWmdpIcktRX0h6Gu/F454PQ3FAuM7lyThzr5Bl1gdDPWalttQtKewFeAfyn9VbucdCnlo6S+nReBm4dp0Gm1rdYB/wScQZpScA3wWTb9EfX3qr5pwI8jorzKyBOkGz/+JfAx0hSM+ZIObaGuw1VXfq88aKC+zWqB0c1cq22VMkpvIZ2yrwb+dpOCI/61lPc24BHSDfVuaaWyXdZ0W0XES8Dna5J6Jb0MfFvSeyJi0SDlj+bv1V6ky2/n9Cs44pulvHeQBiicRxpkMFpk/73yGU5/XmC0ulbbCgBJIk3iPRCYEmli8IAi9VjeAhxcZZj6Zqattiq5qXh+b03Z1Cl/VH6vCh8l/TDe2ChjRKwldYS/t1HeEaQrv1cOOP15gdHqWm2rja4gDXs9KSKq5N9oOP7F3m5b1YrSs79X/U0jjaT6ZROfOxy/V63qyu+VA05/o2GB0U5pta0oJuJ9Afh4pCWJGirOiE4BnoyIN1qrcte03FZ1nFY8Pw7+XpVJmgAcRsXRacUAjBMo2nOU6M7vVbfHkG9uD1JH2EvAfNKabDNI/QtfL+VbDny3lHYX8HPgVNK14KeAB0t5jgDWA1cCPcClpL8Wju32sedqK+B00l+T15F+GGofu9fkW0CabHYsKdDcWbTVh7p97BnbaiZp0uOpxX4Xk354b/b3qv//wSL9XNJf5vXme40DHgQ+TRqEMZU0YXIdMKnbx95ie21L+iPkNOBR4L9q3m87UFt14/eq6421OT6AA4D7iv/YL5FmwW9ZyrMCuL6UtlPxI/oqsAr4PrBbnfJPJq2YvY50+jqt28ecs61IE+9igMf0mnzfLf5DrAV+X/xQnNDtY87cVtOAhaQVF/5Q/HBcDGzt71X//4NF+iLgrgHK3YbUD/jLop1WFj+8h3X7mNtoqwmD/H+aMFBbdeP3yot3mplZFu7DMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLL4//KrchOXdrcZAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAdrklEQVR4nO3de7QcVZ328e8DQQi3cA8MMkTwEmFg+coRYV5GTuQe3pGLaLLQd1YcNOqrwsxCB0SEgA5rgsNFF+MClg68zGjCDDC8wyWEcDnhrgYJxkkCBg3IRRTnkBgTIiG/949dwUqdPt3Vl+qTznk+a/Xq7l27du/aqdTvVO3auxQRmJmZddoWI10BMzPbPDnAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGrA5JMyQNZJ8HJM1ocv1+SVEsa5i8t0taVGf5VZIGJW1d8rffLikkHd9Mnc06xQHGbNMxC/gzSQcWF0jaEjgNuCUi1na9ZmYtcIAx23T8P2A1MLXGsknAeFIQMusJDjBmLZJ0uKT/lPSipN9LWijpY62WFxGrgNuBKTUWTwVeBu7PfntvSddJ+oWkNZKelnSRpK3q1HdMdsnsM4X0r0v6VSFtX0k3ZpfkVkuaI+kdrW6bjU5jRroCZpuyiJiR+9xfWLwv8DBwNfAa8D+B6yStj4hZ2ToDgIpl1TEL+KikQyLicYAsaJwCfC8i3sjy7Q68AvwN8CowEbgQ2A34XJObuRFJu2Xb9TIwPdu284B5kt7lS3RWlgOMWYsiYvaGz5IEPAC8FfgUrV/KmkMKGFOBx7O044Bd8mVGxEJgYe73HwbWAFdLOisi1rX4+wBnA1sDR0XEq1n5jwDLgWnANW2UbaOIL5GZtUjSzpK+JelZ4PXsNR14Z6tlZmcH/0E6i1GWPAV4Fngs99tbSDpb0hJJa7Lf/r/AWFKQa8fRwFxgVXZZbQywAvgx0Ndm2TaKOMCYte560sH/G8CxwPuAfwa2abPcWcCfAodL2gY4CZgVG099fjYwE/h34EPAocCZ2bJ2f3834GP8MWhueH0A2KfNsm0U8SUysxZkB/4Tgc9HxNW59E780XYfqf9jKrAXsANDL7l9BJgdERfkfvvgBuW+AawD3lJI36Xw/b+BJ4BLapSxssFvmL3JAcasNVsDWwJvdnhL2oF0NtHWQ5Yi4g1J/04KInsDSyLiJ4VsY/O/nal7B1tEhKQXgHfn6rwl8MFC1ntJZ02L3KFv7XCAMWtBRKyQ9CPgAkkrgfXAuaS+ih078BOzgM+T7h67oMbyecBnJS0Afg78FTChRLn/AUyX9CSpX+dTwLaFPP8InA7cJ+kq4EVgT+BIYCAi/q3prbFRyQHGrHWnA9cCNwC/Ba4iHaw/34GyHyXdtTUBmF1j+YXArqTLWAHcBPwtcGuDci8g9bFcAvwB+BawGPjkhgwR8WtJhwF/D1wJ7AS8BDwIDDuVjVmRuv3IZElvB74EHAb8GfBgjfEFtdYbR9rZTybdnHA7cGZE/LaQ7yTg68A7SH/ZXRQRN3ZyG8zMrLGRuIvsQGAy8HT2KutGoJ/0l9Y00h07G/21JukI4GbSaOcTgDuAWZKObbfSZmbWnJE4g9kiItZnn28Cdmt0BiPpcOAR4MiIeCBLOxT4AXBMRNyTpc0FtoqID+bWvRPYMSKOqGJ7zMystq6fwWwILk06AXh5Q3DJyvkh8ItsGdkU5pOAYgfkbNJ4gnGt1djMzFrRKwMtJwJLa6QvyZYB7A9sVSPfEtJ2tjy62szMmtcrd5HtTJqfqWgQ2C+Xhxr5BgvLNyJpOml6D8aOHXvIPvu0N1B5/fr1bLFFr8TtkeW2Ks9tVZ7bqrxOtNXTTz/9SkTsXmtZrwQYqD14TTXSi981THpKjLiWdKspfX19sWDBgnbqyMDAAP39/W2VMVq4rRqbcO4dAJx90DouWzSG5f9w4gjXaNPn/aq8TrRVNhdfTb0S5gdJ9+IX7cQfz1gGc2nFPFD7DMjMzCrSKwFmKX/sa8nL9808Q5qQr5hvImmUdTO3RJuZWZt6JcDMAfbMxrkAIKmP1P8yB96c5vx+0vxNeVOARyNiRZfqamZmjEAfjKRtSQMtIU3kt6Ok07Lvd0bEaknLgPkRcQZARDyajXG5QdIXSWckM4GHNoyByXwNGJB0JWkQ5uTsdXzlG2ZmZhsZiU7+PUjPsMjb8P1tpPmXxpBmqs2bClxBet7Gm1PF5DNExENZsPo68FnSOJnTI+LuDtbfzMxK6HqAiYjl/PHOruHyTKiR9irwiexVb91baTzhn5mZVaxX+mDMzKzHOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJboeYCQdIOleSaslvSjpYklbNlhnhqQY5vXlXL7rh8kzsfotMzOzvDHd/DFJOwP3AIuBk4D9gctIge78Oqt+B7irkHYycA4wp5C+FPhEIW15azU2M7NWdTXAAJ8BxgKnRsRKYJ6kHYEZki7N0oaIiOeB5/Npkr4KLI2IhYXsv4+Ixyqou5mZNaHbl8hOAOYWAslsUtA5smwhknYBjgFmdbZ6ZmbWKd0OMBNJl7DeFBHPAauzZWWdBmxFCk5FB0haKWmtpIcklQ5cZmbWOYqI7v2Y9DrwpYi4spD+PHBDRJxXspz7gHERcUgh/SzgD6Q+nt2Bs4FDgCMi4ofDlDUdmA4wfvz4Q2bPrhWzylu1ahXbb799W2WMFm6rxha9sAKA8WPh5TVw0N7jRrhGmz7vV+V1oq0mTZr0eET01VrW7T4YgFoRTcOkD80o7UW6nHbOkIIjvlnIewcp2JxHuilgaGUirgWuBejr64v+/v4y1RjWwMAA7ZYxWritGpt27h0AnH3QOi5bNIblH+sf2Qr1AO9X5VXdVt2+RDYI7FQjfRzwaskyPkoKSDc2yhgRa4A7gfeWraCZmXVGtwPMUgp9LZL2Abaj0DdTx1TgoYj4ZRO/273rgGZmBnQ/wMwBjpO0Qy5tCrAGmN9oZUkTgMMoefeYpLGkO9ceb7aiZmbWnm4HmKuBtcAtko7OOthnAJfnb12WtEzSd2usPxVYB9xUXCBpnKQHJX1a0lGSpgD3A3sDl1SwLWZmVkdXO/kjYlDSUcBVwG2kfpcrSEGmWK9a08dMBe6NiN/UWLYW+A1pRoA9gNeAR4EjI2JBRzbAzMxK6/pdZBGxGPhggzwThkl/T511XgNObatyZmbWMZ5N2czMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq0VSAkVRr+hYzM7Mhmj2DeUHSpZLeXUltzMxss9FsgLkGOA34qaQfSJouaccK6mVmZj2uqQATERdGxH7AMcBTwOXAS5K+J+noKipoZma9qaVO/oi4LyL+CtgT+ALwLmCupOWSZkj6k05W0szMek+7d5H1AR8gPQZ5EHgQ+CSwTNLH2yzbzMx6WNMBRtK+ki6U9AxwL7AX8NfAn0TE/wb2JfXVfKOjNTUzs57S1APHJN1HOmN5HrgeuC4ins3niYg3JH0fOKtTlTQzs97T7BMtXwEmA/MiIurkWwi8reVamZlZz2v2EtlVwCO1gouk7SV9ACAiXi+e2ZiZ2ejSbIC5HzhgmGXvypabmZk1HWBUZ9n2wOo26mJmZpuRhn0w2WWv/lzSJyUdX8i2DXAisKhzVTMzs15WppP//aTBlAABfARYV8jzB2Ap8KXOVc3MzHpZwwATEd8gG9Mi6RfAKRGxsOqKmZlZb2vqNuWI8K3HZmZWSpk+mMnAQxGxMvtcV0Tc2ZGamZlZTytzBnM7cBjww+xzMPzdZAH4oWRmZlYqwLwNeCn32czMrKEynfzP1vpsZmZWT5k+mG2bKTAiPNjSzMxKXSJbRepbKct9MGZmVirA/DXNBRgzM7NSfTDXd6EeZma2mWn3kclmZmY1lenk/yEwLSIWS/oRDS6XRcShnaqcmZn1rjJ9MP8FrMl9dn+MmZk1VKYP5hO5z9MqrY2ZmW02Wu6DUbK7pHoPITMzs1Gq6QAjabKkR4DXgF8Br0l6RNKJHa+dmZn1rKYCjKRPA7eRBl+eRXr42FnZ9//MlpuZmTX3PBjgPODaiPhsIf1qSVcDXwGu6UjNzMyspzV7iWxX4JZhlt0M7NKoAEkHSLpX0mpJL0q6WFLd6WUkTZAUNV6za+Q9SdIiSa9JWixpSqktMzOzjmr2DOZ+4EhgXo1lRwIP1FtZ0s7APcBi4CRgf+AyUqA7v8TvfxF4OPf9lUL5R5AC3beBM4HJwCxJgxFxd4nyzcysQ8oMtDwg9/VbwHck7QrcCvwa2AM4BTgB+GSD4j4DjAVOjYiVwDxJOwIzJF2apdXzVEQ8Vmf5V4EHIuLM7Pv9kg4ELgAcYMzMuqjMGcxP2XhwpYBPZ6/i0y3vov5syicAcwuBZDYwk3QGdFuJ+tQkaWtgEunMJW82cJ2kcRGxotXyzcysOWUCzKQO/t5E4L58QkQ8J2l1tqxRgLlO0i6kM6dZwFciYsMsA/sDWwFLC+ssIV2Ceyfwo/aqb2ZmZZUZyT+/g7+3M/BqjfTBbNlw1gL/RLrMtRLoB84hBZWTcmVTo/zBwvKNSJoOTAcYP348AwMD9erf0KpVq9ouY7RwWzV29kHrABg/Nn12ezXm/aq8qtuq2U7+N0naAtimmF7iiZa15jLTMOkbynwJ+HwuaUDSy8C3Jb0nIhbWKV/DpG8o+1rgWoC+vr7o7++vX/sGBgYGaLeM0cJt1di0c+8AUnC5bNEYln+sf2Qr1AO8X5VXdVs1O9BSks6RtAx4HfhdjVc9g8BONdLHUfvMpp6bsvf35sqmRvkbvjdbvpmZtaHZcTBnAucC3yWdGfw9cDHwNLCc7FJTHUtJfS1vkrQPsB1D+04aicL7M6SgN7GQbyKwPqujmZl1SbMB5lPAhcCl2fdbI+Ii4EBSgHhHg/XnAMdJ2iGXNoX0OIBm+3pOy94fB4iItaRxOh8p5JsCPOo7yMzMuqvZPpi3AQsj4g1Jr5NdfoqI9ZK+DXyHdIYznKtJZ0G3SJoJ7AfMAC7P37qcXYKbHxFnZN9nADuQBlmuBD4AfAm4JSJ+kiv/a6T+mStJ43QmZ6/jm9xOMzNrU7NnML8Fts8+Pwf8j9yynUmDKIcVEYPAUaSxMrcBFwFXkM6K8saw8XiapaRxMtcBdwKnA9/I3vPlP0Q6szkamAt8CDjdo/jNzLqv2TOYh4H3kQ7y3yeNwN8F+APwOeDeRgVExGLggw3yTCh8n00aMNlQRNxKOnsxM7MR1GyAmQHsnX2+hHSJbBrpzGUe8IVOVczMzHpbUwEmIp4Cnso+ryU9C+asCuplZmY9rp2Blm8F9gJejIgXOlclMzPbHLTyyOTPSvol8CzwA+A5Sc9L+j8dr52ZmfWsZkfyXwBcRRrPciLQl73PAb6VLTczM2v6EtnngEsi4quF9LuyucE+RxrZb2Zmo1yzl8jGMvxTK+dTY/JLMzMbnZoNMLcCpw6z7MPA7e1Vx8zMNhdlHpk8Ofd1DnCppAkMfWTygcDfdb6KZmbWi8r0wdzO0Ecj7w0cVyPvv5KeNGlmZqNcmQDztsprYWZmm50yj0x+thsVMTOzzUvTI/kljSF16B8B7AL8N/Agaer8dZ2tnpmZ9aqmAoykPYC7gYNJT7B8GTicNP7lSUnHRsRvOl1JMzPrPc3epnw5sCvw/ojYLyIOj4j9gPdn6Zd3uoJmZtabmg0wk4FzIuJH+cTs+5dJ08aYmZk1HWC2Bn43zLLfAW9przpmZra5aDbAPAacI2m7fGL2/ZxsuZmZWdN3kZ0N3A/8UtLdpE7+PUiDLgX0d7R2ZmbWs5o6g4mIhcA7gGuB3YFjSAHmauAdEfFkx2toZmY9qfQZjKStgEOBX0TEudVVyczMNgfNnMG8AdwHvLuiupiZ2WakdICJiPXAz4Dx1VXHzMw2F83eRfYV4AJJB1VRGTMz23w0exfZ+aQR+wslvUC6iyzyGSLi0A7VzczMelizAean2cvMzKyuUgFG0ljSNDE/BX4F3BMRL1dZMTMz621lHpm8H3APMCGXvFLSRyPi7qoqZmZmva1MJ/+lwHrgL4BtgQOBJ4BrKqyXmZn1uDIB5nDg/Ih4OCJei4glwKeBP5W0V7XVMzOzXlUmwOwF/LyQ9gxp7rE9O14jMzPbLJQdBxONs5iZmf1R2duU50paVyP93mJ6ROzRfrXMzKzXlQkwF1VeCzMz2+w0DDAR4QBjZmZNa3YuMjMzs1IcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKtH1ACPpAEn3Slot6UVJF0vassE675N0naRl2XpPSbpQ0jaFfDMkRY3X8dVulZmZFTX7wLG2SNqZNPX/YuAkYH/gMlKgO7/OqlOyvDOBnwEHA1/L3j9cyLsCKAaUJe3W3czMmtPVAAN8BhgLnBoRK4F5knYEZki6NEurZWZE/Cb3fUDSa8A1kvaNiGdzy9ZFxGPVVN/MzMrq9iWyE4C5hUAymxR0jhxupUJw2eCJ7N1zn5mZbYK6HWAmAkvzCRHxHLA6W9aMPyc9CO2pQvpOkl6R9LqkJySd2nJtzcysZYro3kz8kl4HvhQRVxbSnwduiIjzSpazJ/AT4M6ImJZL/zjpjGYhsD3pwWiTgQ9HxC3DlDUdmA4wfvz4Q2bPnt3sZm1k1apVbL/99m2VMVq4rRpb9MIKAMaPhZfXwEF7jxvhGm36vF+V14m2mjRp0uMR0Vdr2UgEmC9GxDcL6S8A10fEV0qU8RbSjQJvBQ6JiME6eQU8AoyNiPc0Kruvry8WLFjQKFtdAwMD9Pf3t1XGaOG2amzCuXcAcPZB67hs0RiW/8OJI1yjTZ/3q/I60VaShg0w3b5ENgjsVCN9HPBqo5WzgHEDcCAwuV5wAYgUPW8BDm50K7SZmXVWt+8iW0qhr0XSPsB2FPpmhnEF6fbmYyKiTP4N/EROM7Mu6/YZzBzgOEk75NKmAGuA+fVWlPRl4AvAxyPioTI/lp3xnAI8GRFvtFZlMzNrRbfPYK4GzgRukTQT2A+YAVyev3VZ0jJgfkSckX0/HbgEuB54QdJhuTKf2XAbs6T5wM2ks6HtgE8BhwEnV7tZZmZW1NUAExGDko4CrgJuI/W7XEEKMsV65ftMjs3ep2WvvE+QAg/AMuBvgL1ItzD/GDgxIuZ0ov5mZlZet89giIjFwAcb5JlQ+D6NoYGl1npntFE1MzPrIM+mbGZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0p0PcBIOkDSvZJWS3pR0sWStiyx3jhJ10kalLRC0vck7Voj30mSFkl6TdJiSVOq2RIzM6unqwFG0s7APUAAJwEXA2cDF5VY/UagH/gkMA14H3BrofwjgJuB+4ETgDuAWZKO7cgGmJlZaWO6/HufAcYCp0bESmCepB2BGZIuzdKGkHQ4cBxwZEQ8kKW9APxA0tERcU+W9avAAxFxZvb9fkkHAhcAd1e3WWZmVtTtS2QnAHMLgWQ2Kegc2WC9lzcEF4CI+CHwi2wZkrYGJgH/Vlh3NnC4pHHtV9/MzMrqdoCZCCzNJ0TEc8DqbFnp9TJLcuvtD2xVI98S0na+s4X6mplZi7p9iWxn4NUa6YPZslbW2y+Xhxr5BgvLNyJpOjA9+7pK0lN16lHGbsArbZYxWritSjozayvNHOma9ATvV+V1oq32HW5BtwMMpA7+Ig2T3sp6xe+qsz4RcS1wbYPfLk3Sgojo61R5mzO3VXluq/LcVuVV3VbdvkQ2COxUI30ctc9QGq23U269wVxaMQ8Nyjczsw7rdoBZSqGvRdI+wHbU7mMZdr1Mvm/mGeD1GvkmAuuBp1uor5mZtajbAWYOcJykHXJpU4A1wPwG6+2ZjXMBQFIfqf9lDkBErCWNf/lIYd0pwKMRsaL96pfSsctto4Dbqjy3VXluq/IqbStFNOr66OCPpYGWi4GfAjNJAeJy4MqIOD+XbxkwPyLOyKXdRboT7IukM5KZwK8j4i9yeY4ABoCrSIMwJ2f5j48Ij4MxM+uirp7BRMQgcBSwJXAbaQT/FcCFhaxjsjx5U0lnOf8M3AA8DpxSKP8h4DTgaGAu8CHgdAcXM7Pu6+oZjJmZjR6eTbkGT8hZXittJel9WTsty9Z7StKFkrYp5JshKWq8jq92q6rRYltNGKYNZtfIO9r3q+H2l5D05Vy+64fJU2+w9yZL0tslXSPpSUlvSBoouV7lx6uRGAezSctNyLmYNCHn/sBlpGB8fp1VIU3I+S7ShJwb+oluBYr9RDcD3wbOJPUTzZI02GuX8tpoqylZ3pnAz4CDga9l7x8u5F0BFAPKknbr3m1t7leQ+hIfzn3faHCc9ysAvgPcVUg7GTiH7GagnKXAJwppy1ur8Yg7kPTv/RjwlibWq/54FRF+5V7Al0ljanbMpf0daTqbHeusdzhpMOcHcmmHZmlH59LmAvcV1r0TeGikt72LbbV7jbTpWVvtm0ubAbwy0ts5wm01IWuX/9Wg/FG/Xw1T1h3AkkLa9cCCkd7ODrbXFrnPNwEDJdbpyvHKl8iG8oSc5bXUVhHxmxrJT2Tve3SuepuUVverhrxf1SZpF+AYYFZnq7dpiYj1LazWleOVA8xQnpCzvFbbqpY/J52mF+eC20nSK5Jel/SEpFNbru3Iaretrsuur78k6XJJY3PLvF/VdhqpXYb0VwEHSFopaa2khyS1FeR7UFeOVw4wQ1UxIefOuTzUyFd3Qs5NWKtttRFJewJfAf6l8FfrMtKlkY+S+mZeBG7u0SDTalutBf4JOIN0i/81wGfZ+KDp/aq2qcCPI6I4i8cTpAcd/iXwMdKQiHmSDm2hrr2qK8crd/LXtklNyLmJa7WtUkbpLaRT8FXA325UcMS/FvLeBjxCeoDcLa1UdoQ13VYR8RLw+VzSgKSXgW9Lek9ELKxT/mjer/YiXU47Z0jBEd8s5L2DdEPBeaSbAkaLyo9XPoMZyhNyltdqWwEgSaRBswcCkyMNxB1WpB7GW4CDy9w2volpq60Kbsre35srmxrlj8r9KvNR0oHwxkYZI2INqeP6vY3ybka6crxygBnKE3KW12pbbXAF6TbUkyKiTP4NevEv8nbbKi8K796vhppKutPpl038bi/uV63qyvHKAWao0TAhZ6e02lZkA9++AHw80hQ/DWVnPKcAT0bEG61VecS03FY1nJa9Pw7er4okTQAOo+TdY9kNEyeQteco0Z3j1Ujfw72pvUgdVy8B80hzmk0n9Q98vZBvGfDdQtpdwM+BU0nXcp8CHizkOQJYB1wJ9AOXkv4aOHakt71bbQWcTvpr8TrSgSD/2j2Xbz5pcNexpMByZ9ZWHxrpbe9iW80gDTI8NVvvYtKB9mbvV0P/D2bp55L+8q413moc8CDwadJNE1NIAxTXAn0jve0ttte2pD86TgMeBf4r933b4dqqG8erEW+cTfEFHADcl/1Hfok0ynzLQp7lwPWFtJ2yg+arwErg+8BuNco/mTSj9FrS6ejUkd7mbrYVaaBbDPOalsv33ew/wBrg99mB4YSR3uYut9VUYAFpRoM/ZAeKi4GtvV8N/T+YpS8E7hqm3G1I/Xi/zNppRXagPWykt7mNtppQ5//ThOHaqhvHK092aWZmlXAfjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrxP8HTw9ON17ApzsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -332,7 +334,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcXFWd9/HPlz0QCHtABgmrGZaRMYAww0gQkMVoAMEAw2gUBDcWH3UiiBpQ4wRlM4wP8KgEH4QwAjJDgESWJIADYpAwYAgYJCwBwmIghIQl8Js/zm28uV3VXdVddau6+L5fr3p117nn3Pqdut3963vuuacUEZiZmTXbKq0OwMzM3h2ccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEYw0labykqPI4tsZ97JDtZ/1C+dhsP4ObE31tcfRzn1dLmllDvdUknSrpfknLJS2WdKOkvfv4uu3yno4t/Ew8J2m6pA/U0HZk1mbnMmK1xnPCsWZ4GdirwmNaje13AL4DFP/Q35DtZ1ljwuxzHE0laVXgOmAC8F/AIcBY4C1gpqRj+rDbdnlPu3w4e90TgU2AGZLe00ubP2RtHm1ybNYkq7U6AOtIKyLi7kbvNCKeB55v9H7b0EnAR4GDIyKfpP9T0hTgEkmzImJhf1+ohe/p7yNiKYCk2cDjwD8DPyxWlCRgzYhYAjT858rK4zMcawlJp0maL+k1SYskTZO0maSRwPVZtceyIZQFWZuVhn8kDcueHyXpUklLJD3VNXQn6V8lPS3peUkTJa2Se/3hkqZIelLSMkl/zIawVsm2V40j2/7erP1fsvbTJb2v0Mcts2Gw5ZIWSDq+xrfnFGBGIdl0+SawFnBc7nUWSPqRpG9JelbSUkm/lDSkt75UGlKTtLGkyyS9mPVtpqTdCn3res2vZO/54uz9qPtsMCKeJCW9Ydm+x0t6QdLekn4PvAYcWWlITdKq2c/SI5Jez2KZXIh1tKTZ2c/as5LOlrR6vXFa//kMx5pCUrefrYhYkW37FHA6MA74I7ARaYhlHdKwydeAHwGHA88Ar/fychOBXwKfAD4LXCbp74GtsucjgO8B9wFTsjZbAA9n7V4BdgXOBAYBP+gpDkkbAncCLwKfJw1HfQO4RdIOEbE8+6/8P4GNScnhtWz/GwJ/6uF925L0h/e8Stsj4lFJDwAfKmw6GpgPfA7YHDgb+ClwZE99qeI6YLuszQvA10lDXn8fEfNz9T4J/A9wAvA3wLmkYcAv9rDvbiStS3pfns0Vrw1clvXjEeDprF9FFwOfyurNyvZzRG7fnwSuzOqdDmxLOr6rZP2zMkWEH3407AGMB6LKY1hW50Lgmh72MSpfP1c+NisfnD0flj2/NFdnPeBN0h/1VXPl9wBXVXk9kf75Oh34cw1xfJeUbDbMlW1Aunb1pez5IVnbD+bqbAWsAGb20Pc9s3aje6hzHfBQ7vkC4C9d70tW9s/A28Df1vmeHpQ93ydXZx3SGcjFhdd8FFgtV3Y+8GwvPx9drzcke8+3BK7K3pddCz9DowttR2blO2fPh2fPT+7huD6e//nIyj8LLAc2avXvy7vt4TMca4aXgf0rlD+dfZ0DHCfpTNJF63sj4q1+vN6tXd9ExBJJzwOzCvucD7y364mktYDTSH+Y3wusntu2WmRnY1XsD9wMLMmdyb0C3At0DT3tASyKiN/lYntc0r196F8tbo7smkjmWuByYHfgoTr2swfwfETM6iqIiFclTQWKM+RmFN6nucCmktaIiDd6eZ2Xct+/AHw2IubkygK4qZd97Jt9nVxl+w6kY/sfhTPu20jDkjuTzoqsJE441gwrImJ2D9t/DqxLGor5NvCipP8LjO9j4nmp8PyNKmVr5Z5PBI4nDXP9Ias/Gjgjq7eU6jYmnYmMqbCtK/ltBjxXYftzpL5X0zURYKse6myVq5ff7zsiDestpfIwVE82BxZVKF9EGq7Kq/QeC1gj+74nHyINRb4APBkRbxe2L64haW0EvBppMkElG2dfb6yyfcte9m8N5oRjpcv+uJwHnJdds/hn4PukP6IXlRTGkcCkiDi7q0DSR2ts+xfSdOXvVtj2Svb1WWDTCts3JQ3nVBQRT2YX9D8O/Li4XdLWpP/Mi6+9aaHeIGAw6XpNPZ4p7iszlNTvRrmvcEZWVMvnprwIrCNpvSpJpyveE0jX74oeq+E1rIE8S81aKiKejIh/Iw157ZgVd/1nu1blVg0xiNyFc6V7X44q1KkWx63ATsAfI2J24fFwVuf3wFBJH8y9xnuBXm9wBC4A9pP0kQrbvpfF/bNC+QFa+ebNw0l/tLvONGt9T39HGhZ7Z1KCpLVJ07TvrCH2Mt2Wff1Ule0Pk/6JGVbhOM2OiBfLCdO6+AzHmmE1SXtWKH8yIhZKupj03+fdpOs9+wLbk2atQfpDAXCi0n0nyyLigQbHeDPwJUnzs1i+BKxZqFMtjnOBY4HbJE0i/VEbCuwD3BkRV5KGce4HfiVpHGmW2llUHmYrmkS6TvRrST8CZpKG4Y4jXfz/l+h+D85y4AZJPyQNi/0Q+HVEzO2lLyuJiOmSfgtcJekbpLOIr5ESdLd7ZFopIh6WdAlwjqRNgdtJN7YeERFHRcTbkr4K/H9J65GuCb0BbAMcmtUr+4bXd7dWz1rwo7Me9DxL7Yyszljgt6Q/9MtIU2uPK+znq6QZRiuABbl2lWapjSq0XQD8qFA2GZidez4U+DWwhHR94mzSlOJ39l8tjqz8PcClWdvXs9e8HNgpV+e9pNUVlmf7OBG4mh5mqeXargZ8JXtvlgOLSX8w965QdwFwTvbeLwJeJU0FXr/e9zQr2wT4Rfaay0kX1nev4T3utq8KsdZSZzzwQoXykeRmqWVlq5LNLiQlk6foPivtYOCO7H1ZQpq08j1yM+z8KOeh7ICURtJ2pHn9e5LGou+IiJE1tBtCmnZ5KGkocCppOuSLhXqjST9M25N+CM+MiKsa2QezdpJd87k6InxfibW1VlzD2Yl0j8Ij2aNWV5H+wzme9F/S7qT7Ed6htLDhNcAM0n81NwBXVhkLNzOzErXiDGeVyKZASroa2Li3MxxJewH/TboZ7fasbA/SBc4DIuKWrGw6sHpEfDjX9kZgvYjo0yq7Zu3OZzg2UJR+hhPd59vX4mDSTXS35/ZzD2la48EAktYkXXz+j0LbKcBeXetKmXWaiBjmZGMDwUCZFj0cmFeh/KFsG6Q1klavUO8hUj93aFp0ZmbWq4EyLXoDut/VDGkWzTa5OlSot7iwfSWSTiDdGMagQYNGbLnlyjcfv/3226yyykDJyz3rpL5AZ/Wnp76s+0i61PnKDgPnf6ZOOjbQWf1pdF8eeeSRFyJik1rqDpSEA5XvPFaF8uJz9dCeiLgEuARgt912i9mzV16RZebMmYwcObLeWNtSJ/UFOqs/1foy7Bs38PDEUen7w85lwb/VuhhCa3XSsYHO6k+j+yLp8VrrDpSUvZjKn7q4Pn89o1mcKyvWgcpnSGZmVpKBknDm8ddrNXn5azuPkpalL9YbTlqmvZ4p2GZm1mADJeHcBGyW3WcDQPYJhNtk24iI10n33xxZaDsGuCsiXi4pVjMzq6D0azjZQoCHZE+3ANaT1PUJfTdGxLJsfatZEXEcQETcld1j8wtJXyOdsUwkrVt1S2733wVmSjqfdFPoIdnjoKZ3zMzMetSKSQObAr8qlHU935q0RtNqpDWS8o4iLWn/c3JL2+QrRMSdWfL6HvAF0n06x0TEbxoYv1mpho2b2uoQzBqi9IQTEQv468yxanWGVSh7CfhM9uip7XUUlrwxM7PWGyjXcMzMbIBzwjFrc9dPPoXrJ5/S6jDM+m0g3fhp9q60y6JHWx2CWUP4DMfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBSepWbW5q54/4GtDsGsIZxwzNrc6Qed1OoQzBrCQ2pmZlYKJxyzNrfzs/PZ+dn5rQ7DrN88pGbW5qZedirgVaNt4PMZjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFJ4WbdbmRn36/FaHYNYQTjhmbe7BzbZrdQhmDeEhNTMzK4UTjlmbmzBtEhOmTWp1GGb95oRj1uaOuX86x9w/vdVhmPWbE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSl846dZm3tg6LatDsGsIZxwzNrcx8Ze0OoQzBrCQ2pmZlYKJxwzMyuFE45Zm1swcRQLJo5qdRhm/eaEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhVcaMGtzpx345VaHYNYQTjhmbe7KXQ9qdQhmDVH6kJqkHSXdKmmZpKclnSVp1V7ajJcUVR6n5epNrlJnePN7ZmZmPSn1DEfSBsAtwFxgNLAtcA4p8Z3RQ9OfAtMKZYcC44CbCuXzgM8Uyhb0LWKz1jt6TvrR95mODXRlD6l9HhgEHB4RS4CbJa0HjJd0dlbWTUQ8BTyVL5P0LWBeRMwpVH81Iu5uQuxmLfGD6RcCTjg28JU9pHYwML2QWKaQktA+te5E0obAAcCVjQ3PzMyapeyEM5w05PWOiHgCWJZtq9URwOqkZFW0o6Qlkl6XdKekmhOZmZk1jyKivBeT3gS+HhHnF8qfAn4REafXuJ/bgCERMaJQfgrwBuka0SbAV4ERwN4RcU+VfZ0AnAAwdOjQEVOmrJzDli5dyuDBg2sJq+11Ul+gs/pTrS8PLHyZk449FIBJl1/HLlsMKTu0PumkYwOd1Z9G92Xfffe9NyJ2q6lyRJT2AN4ETqlQvhD4fo372Bx4C/haDXUHAY8B19Wy7xEjRkTRjBkzupUNVJ3Ul4jO6k+1vmw1bmoERED6foDopGMT0Vn9aXRfgNlRYw4oe0htMbB+hfIhwEs17uOTgICreqsYEcuBG4EP1BqgmZk1R9kJZx6FazWStgTWoXBtpwdHAXdGxJN1vG5544ZmZlZR2dOibwK+LmndiHglKxsDLAdm9dZY0jBgT+CLtbyYpEGkmXH39iVYs3YwbNzUVodg1hBln+FcBLwOXCtp/+yC/Xjg3MhNlZY0X9LPKrQ/ClgBXF3cIGmIpDsknShpP0ljgBnAFsCEJvTFzMzqUOoZTkQslrQfcCFwPem6zXmkpFOMq9JyN0cBt0bE8xW2vQ48T1qxYFPgNeAuYJ+ImN2QDpiZWZ+VvnhnRMwFPtxLnWFVynftoc1rwOH9Cs6sDV0/+RQAPjb2ghZHYtY/Xi3arM3tsujRVodg1hD+ADYzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lppZm7vi/Qe2OgSzhnDCMWtzpx90UqtDMGsID6mZmVkp6ko4kiotN2NmTbTzs/PZ+dn5rQ7DrN/qPcNZKOlsSX/blGjMrJupl53K1MtObXUYZv1Wb8K5GDgCeFDS7ySdIGm9JsRlZmYdpq6EExHfiYhtgAOAh4FzgWck/VLS/s0I0MzMOkOfJg1ExG0R8SlgM+Ak4H3AdEkLJI2X9J5GBmlmZgNff2ep7QZ8iPSx0YuBO4DjgfmSju3nvs3MrIPUnXAkbSXpO5IeBW4FNgc+C7wnIv4F2Ip0reeHDY3UzMwGtLpu/JR0G+mM5ilgMnBpRDyerxMRb0m6AjilUUGamdnAV+9KAy8AhwA3R0T0UG8OsHWfozKzd4z69PmtDsGsIepNOBcCf6iUbCQNBj4QEbdHxJvA491am1ndHtxsu1aHYNYQ9V7DmQHsWGXb+7LtZmZm3dSbcNTDtsHAsn7EYmYVTJg2iQnTJrU6DLN+63VITdKHgJG5ouMlHVSothbwUeCBxoVmZgDH3D8d8KrRNvDVcg3ng6SbOwECOBJYUajzBjAP+HrjQjMzs07Sa8KJiB+S3VMj6THgsIiY0+zAzMyss9Q1Sy0iPNXZzMz6pJZrOIcAd0bEkuz7HkXEjQ2JzMzMOkotZzhTgT2Be7Lvg+qz1QLwh7SZmVk3tSScrYFnct+bWYkeGLptq0Mwa4haJg08Xul7MyvHx8Ze0OoQzBqilms4a9ezw4jwzZ9mZtZNLUNqS0nXZmrlazhmZtZNLQnns9SXcMysgRZMHAXAsHFTWxyJWf/Ucg1ncglxmJlZh+vvR0ybmZnVpJZJA/cAYyNirqTf08vwWkTs0ajgzMysc9RyDeePwPLc976eY2ZmdavlGs5nct+PbWo0ZmbWsfp8DUfJJpJ6+lA2MzMzoM7VouGdxTzPAEZk7VdIuhf4fkTc0OD4zN71Tjvwy60Owawh6ko4kk4EfgLcCpwCPAdsChwO/JekL0bExQ2P0uxd7Mpdix+wazYw1XuGczpwSUR8oVB+kaSLgG8CTjhmZtZNvddwNgKurbLtGmDD3nYgaUdJt0paJulpSWdJ6nE5HEnDJEWFx5QKdUdLekDSa5LmShpTU8/M2tTRc6Zx9JxprQ7DrN/qPcOZAewD3Fxh2z7A7T01lrQBcAswFxgNbAucQ0p8Z9Tw+l8Dfpt7/kJh/3uTEt9PgJOBQ4ArJS2OiN/UsH+ztvOD6RcCHlqzga+WGz93zD39MfBTSRsB1/HXaziHAQcDx/eyu88Dg4DDI2IJcLOk9YDxks7OynrycETc3cP2bwG3R8TJ2fMZknYCvg044ZiZtVAtZzgPsvLNngJOzB7FT/+cRs+rRR8MTC8klinARNIZ0vU1xFORpDWBfUlnNnlTgEslDYmIl/u6fzMz659aEs6+DXy94cBt+YKIeELSsmxbbwnnUkkbks6srgS+GRFdqyBsC6wOzCu0eYg0ZLcD8Pv+hW9mZn1Vy0oDsxr4ehsAL1UoX5xtq+Z14N9Jw2JLgJHAOFKSGZ3bNxX2v7iwfSWSTgBOABg6dCgzZ85cafvSpUu7lQ1UndQX6Kz+VOvLV3dZsdL3A6W/nXRsoLP609K+RESfHqSzhrWLj17avAmcUqF8IenG0Xpe/wukIb1ds+f/mD1/f6He9ln5Ab3tc8SIEVE0Y8aMbmUDVSf1JaKz+lOtL1uNmxoBEZC+HyA66dhEdFZ/Gt0XYHbU+He7rmnR2XI24yTNz5LHKxUePVkMrF+hfAiVz3x6cnX29QO5fVNh/13P692/mZk1UL3Tok8GvgGcDXwf+B7wFnAUsAYwoZf280jXat4haUtgHbpfe+lNFL4+SkqCw4H8MOBw4G3gkTr3b9YW/Emf1inqvfHzc8B3SAkH4LqIOBPYiZQwtu+l/U3AgZLWzZWNIX38Qb3Xio7Ivt4LEBGvk+4TOrJQbwxwV3iGmplZS9V7hrM1MCci3pL0JtlwVUS8LeknwE9JZ0DVXEQ6S7pW0kRgG2A8cG7kpkpnQ3azIuK47Pl4YF3STZ9LgA8BXweujYj/ye3/u8BMSeeT7hM6JHv4jjkzsxar9wznRWBw9v0TwN/ntm1AuqmzqohYDOxHulfneuBM4DzSWVPeaqx8P8880n06lwI3AscAP8y+5vd/J+nMZ39gOvBx4JjwKgM2gF0/+RSun3xKq8Mw67d6z3B+C+xO+qN/BWmFgA2BN4AvkVaR7lFEzAU+3EudYYXnU0g3cPYqIq4jnd2YdYRdFj3a6hDMGqLehDMe2CL7fgJpSG0s6czmZuCkRgVmZmadpa6EExEPAw9n379O+kwcn+ubmVmv6v7Ezy6S/gbYHHg6IhY2LiQzM+tE9U4aQNIXJD0JPA78DnhC0lOSvtjw6MzMrGPUu9LAt4ELSffTfBTYLft6E/DjbLuZmVk39Q6pfQmYEBHfKpRPk7Qo235WQyIzMwCueP+BrQ7BrCHqTTiDqP6pnrPwLDWzhjv9IP9aWWeo9xrOdcDhVbZ9AvCiT2ZmVlEtHzF9SO7pTcDZkobR/SOmdwL+tfEhmr277fzsfAAe3Gy7Fkdi1j+1DKlNpftHSW8BVBpYvpz0SZxm1iBTLzsV8KrRNvDVknC2bnoUZmbW8Wr5iOnHywjEzMw6W90rDUhajTRBYG9gQ+AvwB2kjwpY0VNbMzN796or4UjaFPgN8HfAAmARsBfp/pv7JX0kIp5vdJBmZjbw1Tst+lxgI+CDEbFNROwVEdsAH8zKz210gGZm1hnqTTiHAOMi4vf5wuz5aaRlbszMzLqp9xrOmsArVba9AqzRv3DMrGjUp89vdQhmDVFvwrkbGCfptoh4tatQ0jrAuGy7mTWQb/i0TlFvwvkqMAN4UtJvSJMGNiXdBCpgZEOjMzOzjlHXNZyImANsD1wCbAIcQEo4FwHbR8T9DY/Q7F1uwrRJTJg2qdVhmPVbzWc4klYH9gAei4hvNC8kM8s75v7pgFeNtoGvnjOct4DbgL9tUixmZtbBak44EfE28CdgaPPCMTOzTlXvfTjfBL4taZdmBGNmZp2r3llqZ5BWFJgjaSFpllrkK0TEHg2KzczMOki9CefB7GFmZlaXmhKOpEGkZW0eBJ4FbomIRc0MzMySB4Zu2+oQzBqilo+Y3ga4BRiWK14i6ZMR8ZtmBWZmycfGXtDqEMwaopZJA2cDbwP/BKwN7ATcB1zcxLjMzKzD1JJw9gLOiIjfRsRrEfEQcCLwXkmbNzc8MzPrFLUknM2BPxfKHiWtnbZZwyMys5UsmDiKBRNHtToMs36r9T6c6L2KmZlZdbVOi54uaUWF8luL5RGxaf/DMjOzTlNLwjmz6VGYmVnH6zXhRIQTjpmZ9Vu9a6mZmZn1iROOmZmVot611MysZKcd+OVWh2DWEE44Zm3uyl0PanUIZg3hITUzMyuFE45Zmzt6zjSOnjOt1WGY9VvpCUfSjpJulbRM0tOSzpK0ai9tdpd0qaT5WbuHJX1H0lqFeuMlRYWHxyRswPrB9Av5wfQLWx2GWb+Veg1H0gakjzqYC4wGtgXOISW+M3poOiarOxH4E/B3wHezr58o1H0ZKCaYh/obu5mZ9U/ZkwY+DwwCDo+IJcDNktYDxks6OyurZGJEPJ97PlPSa8DFkraKiMdz21ZExN3NCd/MzPqq7CG1g4HphcQyhZSE9qnWqJBsutyXffXabWZmA0DZCWc4MC9fEBFPAMuybfX4B9IHwz1cKF9f0guS3pR0n6TD+xytmZk1jCLK++QBSW8CX4+I8wvlTwG/iIjTa9zPZsD/ADdGxNhc+bGkM545wGDSB8UdAnwiIq6tsq8TgBMAhg4dOmLKlCkrbV+6dCmDBw+uqX/trpP6Ap3Vn2p9eWDhy5x07KEATLr8OnbZYkjZofVJJx0b6Kz+NLov++67770RsVtNlSOitAfwJnBKhfKFwPdr3McawO2kD4XboJe6Au4C5tSy7xEjRkTRjBkzupUNVJ3Ul4jO6k+1vmw1bmoERED6foDopGMT0Vn9aXRfgNlRYw4oe9LAYmD9CuVDgJd6ayxJwC+AnYB/jIjFPdWPiJB0LTBR0qoR8VYfYjZrqWHjprY6BLOGKDvhzKNwrUbSlsA6FK7tVHEeaTr1ARFRS/0u/sRSM7MWK3vSwE3AgZLWzZWNAZYDs3pqKOk04CTg2Ii4s5YXy86IDgPu99mNmVlrlX2GcxFwMnCtpInANsB44NzITZWWNB+YFRHHZc+PASYAk4GFkvbM7fPRyKZNS5oFXEM6W1oH+BywJ3Boc7tl1jzXTz4FgI+NvaDFkZj1T6kJJyIWS9oPuBC4nnTd5jxS0inGlV/u5iPZ17HZI+8zpEQEMB84FdicNGX6D8BHI+KmRsRv1gq7LHq01SGYNUTpH08QEXOBD/dSZ1jh+Vi6J5pK7Y7rR2hmZtZEXi3azMxK4YRjZmalcMIxM7NSOOGYmVkpSp80YGb1ueL9B7Y6BLOGcMIxa3OnH3RSq0MwawgPqZmZWSmccMza3M7PzmfnZ+e3OgyzfvOQmlmbm3rZqYBXjbaBz2c4ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSeFq0WZsb9enzWx2CWUM44Zi1uQc3267VIZg1hIfUzMysFE44Zm1uwrRJTJg2qdVhmPWbE45Zmzvm/ukcc//0Vodh1m9OOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfCNn2Zt7oGh27Y6BLOGcMIxa3MfG3tBq0MwawgPqZmZWSmccMzMrBROOGZtbsHEUSyYOKrVYZj1mxOOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUXmnArM2dduCXWx2CWUM44Zi1uSt3PajVIZg1hIfUzMysFE44Zm3u6DnTOHrOtFaHYdZvHlIza3M/mH4h4KE1G/h8hmNmZqUoPeFI2lHSrZKWSXpa0lmSVq2h3RBJl0paLOllSb+UtFGFeqMlPSDpNUlzJY1pTk/MzKwepSYcSRsAtwABjAbOAr4KnFlD86uAkcDxwFhgd+C6wv73Bq4BZgAHAzcAV0r6SEM6YGZmfVb2NZzPA4OAwyNiCXCzpPWA8ZLOzsq6kbQXcCCwT0TcnpUtBH4naf+IuCWr+i3g9og4OXs+Q9JOwLeB3zSvW2Zm1puyh9QOBqYXEssUUhLap5d2i7qSDUBE3AM8lm1D0prAvsB/FNpOAfaSNKT/4ZuZWV+VnXCGA/PyBRHxBLAs21Zzu8xDuXbbAqtXqPcQqZ879CFeMzNrkLKH1DYAXqpQvjjb1pd22+TqUKHe4sL2lUg6ATghe7pU0sOFKhsDL/QQ20DSSX2BzupP1b6o65uJo9DE0uLpr046NtBZ/Wl0X7aqtWIr7sOJCmWqUt6XdsXnqlKeCiMuAS6p9qKSZkfEbr3ENiB0Ul+gs/rTSX0B96edtbIvZQ+pLQbWr1A+hMpnML21Wz/XbnGurFiHXvZvZmZNVnbCmUfhWo2kLYF1qHyNpmq7TP7azqPAmxXqDQfeBh7pQ7xmZtYgZSecm4ADJa2bKxsDLAdm9dJus+w+GwAk7Ua6fnMTQES8Trr/5shC2zHAXRHxch9jrjrcNgB1Ul+gs/rTSX0B96edtawviujt0kkDXyzd+DkXeBCYSEoY5wLnR8QZuXrzgVkRcVyubBppptnXSGcsE4HnIuKfcnX2BmYCF5JuCj0kq39QRPg+HDOzFir1DCciFgP7AasC15NWGDgP+E6h6mpZnbyjSGdBPwfgAXmMAAAF90lEQVR+AdwLHFbY/53AEcD+wHTg48AxTjZmZq1X6hmOmZm9e3m16BxJYyRdK+kZSSFpbB1t/1HS7yQtl/SYpJN7b9V8kj4n6U/ZYqb3Stqvhjbjs/4XH6Wsj9/sBV7L1pf+SBpW5RhMKSvuKnFtJ+liSfdLekvSzBrbtd2x6Utf2vi4HCnpvyQtlLQ0+10/uoZ2a0o6R9Jzkl6VdIOkYc2K05+Hs7IjgGHAVNIioTWRtB1pCG8qcBqwB3CupGUR8dMmxFlrXEcBFwHjgTuBzwBTJe0eEQ/20vxloJhgHmp4kAW5BV7nkhZ43RY4h/TP0Rk9NIW0wOv7SMeu6zrfdcA/9dSomfrZH0jXIH+be97qmw93Il0bvRtYo452bXds6HtfoP2Oy/8hLfX1lSyWQ4ArJG0cEZN6aPdj0t+9rwDPk/5W3Cxpl4h4reFRRoQf2QNYJfs6mHSj6Nga211Mmna9Wq7sJ8CTZMOWLerPw8DP8/0DHgAu76XdeOCFFsV8GumeqvVyZf9KWv5ovR7a7ZUdsw/lyvbIyvZv4THoa3+GZbGPalXsVeJaJff91cDMGtq067HpS1/a9bhsXKHsCuCxHtr8DbAC+FSubAvgDeD4ZsTpIbWciHi7j00PBq6NiBW5simkA7pzvwPrA0nbkGb1vbOYada/X5EteNqmmrbAa4v0tT9tqY+/I215bPrx+952IqLSGdZ9wKY9NOv62JZrc/tZSBoNacpxccLpJ0nrAFtSedFQ6HlR0mbqet1KcW0oaZNe2q8v6QVJb0q6T9LhjQ+xomYu8NoKfe1Pl0uz6wvPSDpX0qBmBNlk7Xps+mMgHJd/IA3lVjMceCoilhbKm3ZcfA2n/6otndPjoqElqGUx0+ertJ1PGvaZQxpePBG4RtInIuLaKm0apZkLvLZCX/vzOvDvpM9xWkL68MFxpGtAoxsbYtO167HpiwFxXLLJQaOBz/ZQra8/m33W0Qkn+wyczXurFxE9LatTq2rzyxs277yP/alrMdOs/eWF170e+G/SB9k1O+FA8xd4LVvdcUXEM8CXc0UzJS0CfiJp14iY0+AYm61dj01dBsJxyWaZXQH8Z0RM7qV6qceloxMOaZmb/1dDPfVepaqu/xCKi4ZWO8Poj3r6k1/MNL+sT92LmUZESLoWmChp1Yh4q9a2fdCfBV4rDRPmF3hthb72p5KrSZNRPkA6+xwo2vXYNErbHBdJG5KW+3oCOLaX6rUsitxQHX0NJyJ+GhHq7dHP13iVNBut0qKh0POipPW+Vj396XrdSnH9JSKqDaf1GEKfg69dMxd4bYW+9qeSKHwdKNr12DRKWxwXSWuTbs1YA/ho9repJ/OALbPr0HlNOy4dnXBKdBNwWOFmvjGkRNTb/S5NERF/Jk3VfmcxU0mrZM9vqmdfkkRaRuj+Jp/dQBMXeG2RvvankiOyr/c2IrASteuxaZSWHxdJq5FmoG4PHBwRz9XQrGvJr3eWCJP0HtK9Uc05Lq2eP95OD2BH0g/PsaT/Vi7Mnu+Tq7MPae56vmw7YClp3HRf0gX3N2nSXPY6+nM08BbpBsN9gcmkP3Q799KfWcDJpGmThwE3km7W+3gJMW8APAPcTFoT74Tsvf1eod584GeFsmnAn4HDgUNJ9yHd0eJj0Kf+kO6FOifry/7AWdmxu6bF/Vk7+504ArgL+GPu+doD7NjU3Zc2Pi6XZH+zTgb2LDzWzOrcCtxaaHcx6UbRfyHd6H038CdgrabE2co3qd0e2Q9TVHjMzNUZmZWNLLTdG7gHeA1YAJzc6v5kcX0u+6V5HfgDsF9he7f+AD/L/jgsB14F7iD911RWzDsCt2Wv/wzwXWDVQp0FwORC2frApaTx5yWkfwC63RDXgmNQd39Ii9XOJl1/eyM7hmd1/fFoYV+GVfkdCWDYQDo2felLGx+XBTX0ZSaFm1uBNUkr9j+f/a7fCGzdrDi9eKeZmZXC13DMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSn+Fw6Dp9fZPLb/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZxcVZ338c+XPRAIe0AGCasMy8gYQJhhBARkMcoiGGAYjYLgxuKjTgRRA2qcoGyG8QEeleCDEGaAYYYAiSxJAAfEIGFANoOEJUBYjISQsAR+88e5jTc3Vd1V1XVr4/t+verVXeeec+t3+nbXr+85955SRGBmZtZsK7Q7ADMz601OMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCsaaSNE5SVHkcU+M+tsn2s3ahfEy2n6HlRF9bHIPc51WSZtRQbyVJp0i6T9ISSQsk3SBpjwZft1N+pmMKvxPPS5om6QM1tN0ra7NDK2K1wXOCsTK8DOxe4TG1xvbbAN8Bim/s12f7WdycMBuOo1SSVgSuBcYD/wUcBIwB3gJmSDq6gd12ys+0z4ez1z0B2ACYLuk9A7T5XdbmsZJjsyZZqd0BWE9aGhF3NXunEfEC8EKz99uBTgQ+ChwYEfmk/J+SJgMXS5oZEfMG+0Jt/Jn+NiIWAUiaBTwB/CPww2JFSQJWjYiFQNN/r6w8PoOxtpB0qqQ5kl6TNF/SVEkbSdoLuC6r9ng2JDI3a7PMcI6kEdnzIyVdImmhpKf7huIk/bOkZyS9IGmCpBVyr7+tpMmSnpK0WNLvsyGpFbLtVePItr83a/+nrP00Se8r9HHTbFhriaS5ko6r8cdzMjC9kFz6fBNYDTg29zpzJf1I0rckPSdpkaRfSho2UF8qDZFJWl/SpZJeyvo2Q9LOhb71veZXsp/5guznUffZXkQ8RUpyI7J9j5P0oqQ9JP0WeA04otIQmaQVs9+lRyW9nsUyqRDrwZJmZb9rz0k6S9LK9cZp9fMZjJVC0nK/WxGxNNv2KeA0YCzwe2A90pDJGqRhkK8BPwIOA54FXh/g5SYAvwQ+AXwWuFTS3wKbZc9HAt8D7gUmZ202AR7J2r0C7AScAQwBftBfHJLWBe4AXgI+Txpe+gZws6RtImJJ9l/3fwLrk5LBa9n+1wX+0M/PbVPSG+25lbZHxGOS7gc+VNh0FDAH+BywMXAW8FPgiP76UsW1wFZZmxeBr5OGsP42Iubk6n0S+B/geOCvgHNIw3pf7Gffy5G0Junn8lyueHXg0qwfjwLPZP0qugj4VFZvZrafw3P7/iRwRVbvNGBL0vFdIeuflSki/PCjaQ9gHBBVHiOyOhcAV/ezj1H5+rnyMVn50Oz5iOz5Jbk6awFvkt7EV8yV3w1cWeX1RPpn6zTgjzXE8V1Sclk3V7YOae7pS9nzg7K2H8zV2QxYCszop++7Ze0O7qfOtcBDuedzgT/1/Vyysn8E3gb+us6f6QHZ8z1zddYgnWFcVHjNx4CVcmXnAc8N8PvR93rDsp/5psCV2c9lp8Lv0MGFtntl5Ttkz7fNnp/Uz3F9Iv/7kZV/FlgCrNfuv5def/gMxsrwMrBvhfJnsq+zgWMlnUGaZL4nIt4axOvd0vdNRCyU9AIws7DPOcB7+55IWg04lfRG/F5g5dy2lSI726piX+AmYGHuTO0V4B6gbyhpV2B+RPwmF9sTku5poH+1uCmyOY3MNcBlwC7AQ3XsZ1fghYiY2VcQEa9KmgIUr2CbXvg5PQhsKGmViHhjgNf5c+77F4HPRsTsXFkANw6wj72zr5OqbN+GdGz/rXBGfStpmHEH0lmPlcQJxsqwNCJm9bP958CapKGVbwMvSfq/wLgGE82fC8/fqFK2Wu75BOA40rDV77L6BwOnZ/UWUd36pDON0RW29SW7jYDnK2x/ntT3avom7jfrp85muXr5/b4j0jDdIioPK/VnY2B+hfL5pOGnvEo/YwGrZN/350OkocUXgaci4u3C9gU1JKn1gFcjTf5Xsn729YYq2zcdYP82SE4w1nLZm8m5wLnZnMM/At8nvWle2KIwjgAmRsRZfQWSPlpj2z+RLh/+boVtr2RfnwM2rLB9Q9LwTEUR8VQ2Af9x4MfF7ZI2J/3nXXztDQv1hgBDSfMt9Xi2uK/McFK/m+XewhlXUS2fI/ISsIaktaokmb54jyfNvxU9XsNr2CD4KjJrq4h4KiL+hTSEtV1W3Pef62qVWzXFEHIT3Ur3nhxZqFMtjluA7YHfR8SswuORrM5vgeGSPph7jfcCA95QCJwP7CPpIxW2fS+L+2eF8v207M2Sh5HepPvOJGv9mf6GNMz1zkUEklYnXTZ9Rw2xt9Kt2ddPVdn+COmflhEVjtOsiHipNWG+e/kMxsqwkqTdKpQ/FRHzJF1E+u/yLtJ8zd7A1qSryiC9MQCcoHTfx+KIuL/JMd4EfEnSnCyWLwGrFupUi+Mc4BjgVkkTSW9iw4E9gTsi4grSsMx9wL9LGku6iuxMKg+bFU0kzfP8h6QfATNIw2rHkibr/ymWvwdmCXC9pB+Shrl+CPxHRDw4QF+WERHTJP0auFLSN0hnCV8jJeTl7lFpp4h4RNLFwNmSNgRuI91IenhEHBkRb0v6KvD/Ja1FmtN5A9gCOCSr1+obTN9d2n2VgR+99aD/q8hOz+qMAX5NemNfTLrU9djCfr5KugJoKTA3167SVWSjCm3nAj8qlE0CZuWeDwf+A1hIml84i3SJ7zv7rxZHVv4e4JKs7evZa14GbJ+r817S6gVLsn2cAFxFP1eR5dquBHwl+9ksARaQ3iD3qFB3LnB29rOfD7xKujR37Xp/plnZBsAvstdcQpoI36WGn/Fy+6oQay11xgEvVijfi9xVZFnZimRX/5GSx9Msf9XYgcDt2c9lIekik++RuwLOj3Ieyg5Ay0jainRd/W6kseTbI2KvGtoNI10GeQhpaG8K6fLElwr1Dib98mxN+qU7IyKubGYfzDpJNmdzVUT4vg7rKO2Yg9medI/Ao9mjVleS/oM5jvRf0C6k+wHeobQQ4NXAdNJ/LdcDV1QZyzYzsxK14wxmhcguSZR0FbD+QGcwknYH/pt089dtWdmupAnJ/SLi5qxsGrByRHw41/YGYK2IaGgVWrNO5zMY61QtP4OJ5a93r8WBpJvWbsvt527SZYYHAkhalTRZ/G+FtpOB3fvWZTLrNRExwsnFOlG3XKa8LfBwhfKHsm2Q1hhauUK9h0j93Ka06MzMbDndcpnyOix/1zCkq1y2yNWhQr0Fhe3LkHQ86UYshgwZMnLTTZe9ufftt99mhRW6JQ/3r5f6Ar3Vn/76suajaarylW2653+kXjo20Fv9aXZfHn300RcjYoNK27olwUDlO3tVobz4XP20JyIuBi4G2HnnnWPWrGVXOJkxYwZ77bVXvbF2pF7qC/RWf6r1ZcQ3rueRCaPS94eew9x/qXWxgfbqpWMDvdWfZvdF0hPVtnVLSl5A5U8VXJu/nLEsyJUV60DlMyAzMytJtySYh/nLXEtefm7mMdIy7cV625KWLa/nkmgzMxukbkkwNwIbZfe5AJB9wt4W2TYi4nXS/S9HFNqOBu6MiJdbFKuZmdGGOZhs4byDsqebAGtJ6vsEuhsiYnG2PtTMiDgWICLuzO5x+YWkr5HOSCaQ1n26Obf77wIzJJ1HugnzoOxxQOkdMzOzZbRjkn9D4N8LZX3PNyetcbQSaY2hvCNJS7z/nNxSMfkKEXFHlqy+B3yBdJ/M0RHxqybGb9ZSI8ZOaXcIZg1peYKJiLn85cquanVGVCj7M/CZ7NFf22spLCFjZmat1y1zMGZm1mWcYMw63HWTTua6SSe3OwyzunXTjZZm70o7zn+s3SGYNcRnMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpfBVZGYd7vL379/uEMwa4gRj1uFOO+DEdodg1hAPkZmZWSmcYMw63A7PzWGH5+a0OwyzunmIzKzDTbn0FMCrKlv38RmMmZmVwgnGzMxK4QRjZmalcIIxM7NSOMGYmVkpnGDMzKwUvkzZrMON+vR57Q7BrCFOMGYd7oGNtmp3CGYN8RCZmZmVwgnGrMONnzqR8VMntjsMs7o5wZh1uKPvm8bR901rdxhmdXOCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrhW+0NOtw9w/fst0hmDXECcasw31szPntDsGsIR4iMzOzUjjBmJlZKZxgzDrc3AmjmDthVLvDMKubE4yZmZXCCcbMzErhBGNmZqVwgjEzs1I4wZiZWSmcYMzMrBS+k9+sw526/5fbHYJZQ5xgzDrcFTsd0O4QzBrS8iEySdtJukXSYknPSDpT0ooDtBknKao8Ts3Vm1Slzrbl98zMzPJaegYjaR3gZuBB4GBgS+BsUqI7vZ+mPwWmFsoOAcYCNxbKHwY+Uyib21jEZu131Oz0q+8zGes2rR4i+zwwBDgsIhYCN0laCxgn6aysbDkR8TTwdL5M0reAhyNidqH6qxFxVwmxm7XFD6ZdADjBWPdp9RDZgcC0QiKZTEo6e9a6E0nrAvsBVzQ3PDMza5ZWJ5htSUNY74iIJ4HF2bZaHQ6sTEpORdtJWijpdUl3SKo5cZmZWfMoIlr3YtKbwNcj4rxC+dPALyLitBr3cyswLCJGFspPBt4gzfFsAHwVGAnsERF3V9nX8cDxAMOHDx85efKyOWvRokUMHTq0lrA6Xi/1BXqrP9X6cv+8lznxmEMAmHjZtey4ybBWh9aQXjo20Fv9aXZf9t5773siYueKGyOiZQ/gTeDkCuXzgO/XuI+NgbeAr9VQdwjwOHBtLfseOXJkFE2fPn25sm7VS32J6K3+VOvLZmOnREAEpO+7RC8dm4je6k+z+wLMiirvqa0eIlsArF2hfBjw5xr38UlAwJUDVYyIJcANwAdqDdDMzJqj1QnmYQpzLZI2BdagMDfTjyOBOyLiqTpet3XjgGZmBrT+MuUbga9LWjMiXsnKRgNLgJkDNZY0AtgN+GItLyZpCOnKtXsaCdasE4wYO6XdIZg1pNVnMBcCrwPXSNo3m2AfB5wTuUuXJc2R9LMK7Y8ElgJXFTdIGibpdkknSNpH0mhgOrAJML6EvpiZWT9aegYTEQsk7QNcAFxHmnc5l5RkinFVWj7mSOCWiHihwrbXgRdIKwJsCLwG3AnsGRGzmtIBMzOrWcsXu4yIB4EPD1BnRJXynfpp8xpw2KCCM+tA1006GYCPjTm/zZGY1cerKZt1uB3nP9buEMwa4g8cMzOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrha8iM+twl79//3aHYNYQJxizDnfaASe2OwSzhniIzMzMSlFXgpFUafkWMyvRDs/NYYfn5rQ7DLO61XsGM0/SWZL+upRozGw5Uy49hSmXntLuMMzqVm+CuQg4HHhA0m8kHS9prRLiMjOzLldXgomI70TEFsB+wCPAOcCzkn4pad8yAjQzs+7U0CR/RNwaEZ8CNgJOBN4HTJM0V9I4Se9pZpBmZtZ9BnsV2c7Ah0gfg7wAuB04Dpgj6ZhB7tvMzLpY3QlG0maSviPpMeAWYGPgs8B7IuKfgM1IczU/bGqkZmbWVeq60VLSraQzlqeBScAlEfFEvk5EvCXpcuDkZgVpZmbdp947+V8EDgJuiojop95sYPOGozKzd4z69HntDsGsIfUmmAuA31VKLpKGAh+IiNsi4k3gieVam1ndHthoq3aHYNaQeudgpgPbVdn2vmy7mZlZ3QlG/WwbCiweRCxmVsH4qRMZP3Viu8Mwq9uAQ2SSPgTslSs6TtIBhWqrAR8F7m9eaGYGcPR90wCvqmzdp5Y5mA+SbqYECOAIYGmhzhvAw8DXmxeamZl1swETTET8kOyeFkmPA4dGxOyyAzMzs+5W11VkEeFLj83MrCa1zMEcBNwREQuz7/sVETc0JTIzM+tqtZzBTAF2A+7Ovg+qX00WgD+UzMzMakowmwPP5r43sxa6f/iW7Q7BrCG1TPI/Uel7M2uNj405v90hmDWkljmY1evZYUT4ZkszM6tpiGwRaW6lVp6DMTOzmhLMZ6kvwZhZE82dMAqAEWOntDkSs/rUMgczqQVxmJlZjxnsRyabmZlVVMsk/93AmIh4UNJvGWC4LCJ2bVZwZmbWvWqZg/k9sCT3vedjzMxsQLXMwXwm9/2YUqMxM7Oe0fAcjJINJPX3IWRmZvYuVddqyvDO4penAyOz9ksl3QN8PyKub3J8Zu96p+7/5XaHYNaQuhKMpBOAnwC3ACcDzwMbAocB/yXpixFxUdOjNHsXu2Kn4gfImnWHes9gTgMujogvFMovlHQh8E3ACcbMzOqeg1kPuKbKtquBdQfagaTtJN0iabGkZySdKanf5WUkjZAUFR6TK9Q9WNL9kl6T9KCk0TX1zKxDHTV7KkfNntruMMzqVu8ZzHRgT+CmCtv2BG7rr7GkdYCbgQeBg4EtgbNJie70Gl7/a8Cvc89fLOx/D1Ki+wlwEnAQcIWkBRHxqxr2b9ZxfjDtAsBDZdZ9arnRcrvc0x8DP5W0HnAtf5mDORQ4EDhugN19HhgCHBYRC4GbJK0FjJN0VlbWn0ci4q5+tn8LuC0iTsqeT5e0PfBtwAnGzKyFajmDeYBlb64UcEL2KH665VT6X035QGBaIZFMBiaQzoCuqyGeiiStCuxNOnPJmwxcImlYRLzc6P7NzKw+tSSYvZv4etsCt+YLIuJJSYuzbQMlmEskrUs6c7oC+GZE9K0ysCWwMvBwoc1DpCG4bYDfDi58MzOrVS138s9s4uutA/y5QvmCbFs1rwP/ShrmWgjsBYwlJZWDc/umwv4XFLYvQ9LxwPEAw4cPZ8aMGctsX7Ro0XJl3aqX+gK91Z9qffnqjkuX+b5b+ttLxwZ6qz8t7UtENPQgnRWsXnwM0OZN4OQK5fNIN2rW8/pfIA3R7ZQ9//vs+fsL9bbOyvcbaJ8jR46MounTpy9X1q16qS8RvdWfan3ZbOyUCIiA9H2X6KVjE9Fb/Wl2X4BZUeU9ta7LlLPlYcZKmpMli1cqPPqzAFi7QvkwKp/Z9Oeq7OsHcvumwv77nte7fzMzG4R6L1M+CfgGcBbwfeB7wFvAkcAqwPgB2j9Mmmt5h6RNgTVYfu5kIFH4+hgp6W0L5If1tgXeBh6tc/9mHcGfZGndqt4bLT8HfIeUYACujYgzgO1JCWLrAdrfCOwvac1c2WjSxwHUO9dzePb1HoCIeJ10n84RhXqjgTvDV5CZmbVUvWcwmwOzI+ItSW+SDT9FxNuSfgL8lHSGU82FpLOgayRNALYAxgHnRO7S5WwIbmZEHJs9HwesSbrJciHwIeDrwDUR8T+5/X8XmCHpPNJ9OgdlD9+hZmbWYvWewbwEDM2+fxL429y2dUg3UVYVEQuAfUj3ylwHnAGcSzoryluJZe+neZh0n8wlwA3A0cAPs6/5/d9BOrPZF5gGfBw4OnwXv3Wx6yadzHWTTm53GGZ1q/cM5tfALqQ3+ctJd+CvC7wBfIm0ynK/IuJB4MMD1BlReD6ZdMPkgCLiWtLZi1lP2HH+Y+0Owawh9SaYccAm2ffjSUNkY0hnLjcBJzYrMDMz6251JZiIeAR4JPv+ddJnwvjc3czMllP3J1r2kfRXwMbAMxExr3khmZlZL6h3kh9JX5D0FPAE8BvgSUlPS/pi06MzM7OuVe+d/N8GLiDdz/JRYOfs643Aj7PtZmZmdQ+RfQkYHxHfKpRPlTQ/235mUyIzMwAuf//+7Q7BrCH1JpghVP/Uypn4KjKzpjvtAP9ZWXeqdw7mWuCwKts+AXjRJDMzA2r7yOSDck9vBM6SNILlPzJ5e+Cfmx+i2bvbDs/NAeCBjbZqcyRm9alliGwKy3808iZApYHhy0ifNGlmTTLl0lMAr6ps3aeWBLN56VGYmVnPqeUjk59oRSBmZtZb6r6TX9JKpAn9PYB1gT8Bt5OWzl/aX1szM3v3qCvBSNoQ+BXwN8BcYD6wO+n+l/skfSQiXmh2kGZm1n3qvUz5HGA94IMRsUVE7B4RWwAfzMrPaXaAZmbWnepNMAcBYyPit/nC7PmppGVjzMzM6p6DWRV4pcq2V4BVBheOmRWN+vR57Q7BrCH1Jpi7gLGSbo2IV/sKJa0BjM22m1kT+QZL61b1JpivAtOBpyT9ijTJvyHppksBezU1OjMz61p1zcFExGxga+BiYANgP1KCuRDYOiLua3qEZu9y46dOZPzUie0Ow6xuNZ/BSFoZ2BV4PCK+UV5IZpZ39H3TAK+qbN2nnjOYt4Bbgb8uKRYzM+shNSeYiHgb+AMwvLxwzMysV9R7H8w3gW9L2rGMYMzMrHfUexXZ6aQ79mdLmke6iizyFSJi1ybFZmZmXazeBPNA9jAzM+tXTQlG0hDSMjEPAM8BN0fE/DIDM7Pk/uFbtjsEs4bU8pHJWwA3AyNyxQslfTIiflVWYGaWfGzM+e0OwawhtUzynwW8DfwDsDqwPXAvcFGJcZmZWZerJcHsDpweEb+OiNci4iHgBOC9kjYuNzwzM+tWtSSYjYE/FsoeI609tlHTIzKzZcydMIq5E0a1OwyzutV6H0wMXMXMzOwvar1MeZqkpRXKbymWR8SGgw/LzMy6XS0J5ozSozAzs54zYIKJCCcYMzOrW71rkZmZmdXECcbMzEpR71pkZtZip+7/5XaHYNYQJxizDnfFTge0OwSzhniIzMzMSuEEY9bhjpo9laNmT213GGZ1a3mCkbSdpFskLZb0jKQzJa04QJtdJF0iaU7W7hFJ35G0WqHeOElR4eExButaP5h2AT+YdkG7wzCrW0vnYCStQ1r6/0HgYGBL4GxSoju9n6ajs7oTgD8AfwN8N/v6iULdl4FiQnlosLGbmVl9Wj3J/3lgCHBYRCwEbpK0FjBO0llZWSUTIuKF3PMZkl4DLpK0WUQ8kdu2NCLuKid8MzOrVauHyA4EphUSyWRS0tmzWqNCculzb/bVa5+ZmXWgVieYbYGH8wUR8SSwONtWj78jfRDaI4XytSW9KOlNSfdKOqzhaM3MrGGKaN1K/JLeBL4eEecVyp8GfhERp9W4n42A/wFuiIgxufJjSGc0s4GhpA9GOwj4RERcU2VfxwPHAwwfPnzk5MmTl9m+aNEihg4dWlP/Ol0v9QV6qz/V+nL/vJc58ZhDAJh42bXsuMmwVofWkF46NtBb/Wl2X/bee+97ImLnihsjomUP4E3g5Arl84Dv17iPVYDbSB+Cts4AdQXcCcyuZd8jR46MounTpy9X1q16qS8RvdWfan3ZbOyUCIiA9H2X6KVjE9Fb/Wl2X4BZUeU9tdWT/AuAtSuUDwP+PFBjSQJ+AWwP/H1ELOivfkSEpGuACZJWjIi3GojZrK1GjJ3S7hDMGtLqBPMwhbkWSZsCa1CYm6niXNLlzftFRC31+/gTOc3MWqzVk/w3AvtLWjNXNhpYAszsr6GkU4ETgWMi4o5aXiw74zkUuM9nL2ZmrdXqM5gLgZOAayRNALYAxgHnRO7SZUlzgJkRcWz2/GhgPDAJmCdpt9w+H4vsMmZJM4GrSWdDawCfA3YDDim3W2bluW7SyQB8bMz5bY7ErD4tTTARsUDSPsAFwHWkeZdzSUmmGFd++ZiPZF/HZI+8z5ASD8Ac4BRgY9IlzL8DPhoRNzYjfrN22HH+Y+0OwawhLV+uPyIeBD48QJ0RhedjWD6xVGp37CBCMzOzJvJqymZmVgonGDMzK4UTjJmZlcIJxszMStHySX4zq8/l79+/3SGYNcQJxqzDnXbAie0OwawhHiIzM7NSOMGYdbgdnpvDDs/NaXcYZnXzEJlZh5ty6SmAV1W27uMzGDMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKXyZslmHG/Xp89odgllDnGDMOtwDG23V7hDMGuIhMjMzK4UTjFmHGz91IuOnTmx3GGZ1c4Ix63BH3zeNo++b1u4wzOrmBGNmZqVwgjEzs1I4wZiZWSmcYMzMrBROMGZmVgrfaGnW4e4fvmW7QzBriBOMWYf72Jjz2x2CWUM8RGZmZqVwgjEzs1I4wZh1uLkTRjF3wqh2h2FWNycYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSOMGYmVkpfCe/WYc7df8vtzsEs4Y4wZh1uCt2OqDdIZg1xENkZmZWCicYsw531OypHDV7arvDMKubh8jMOtwPpl0AeKjMuo/PYMzMrBQtTzCStpN0i6TFkp6RdKakFWtoN0zSJZIWSHpZ0i8lrVeh3sGS7pf0mqQHJY0upydmZtafliYYSesANwMBHAycCXwVOKOG5lcCewHHAWOAXYBrC/vfA7gamA4cCFwPXCHpI03pgJmZ1azVczCfB4YAh0XEQuAmSWsB4ySdlZUtR9LuwP7AnhFxW1Y2D/iNpH0j4uas6reA2yLipOz5dEnbA98GflVet8zMrKjVQ2QHAtMKiWQyKensOUC7+X3JBSAi7gYez7YhaVVgb+DfCm0nA7tLGjb48M3MrFatTjDbAg/nCyLiSWBxtq3mdpmHcu22BFauUO8hUj+3aSBeMzNrUKuHyNYB/lyhfEG2rZF2W+TqUKHegsL2ZUg6Hjg+e7pI0iOFKusDL/YTWzfppb5Ab/Wnal/U982EUWhCy+IZrF46NtBb/Wl2XzartqEd98FEhTJVKW+kXfG5qpSnwoiLgYurvaikWRGx8wCxdYVe6gv0Vn96qS/g/nSyVval1UNkC4C1K5QPo/IZykDt1s61W5ArK9ZhgP2bmVmTtTrBPExhrkXSpsAaVJ5jqdouk5+beQx4s0K9bYG3gUcbiNfMzBrU6gRzI7C/pDVzZaOBJcDMAdptlN3nAoCknUnzLzcCRMTrpPtfjii0HQ3cGREvNxhz1eGzLtRLfYHe6k8v9QXcn07Wsr4oYqCpjya+WLrR8kHgAWACKUGcA5wXEafn6s0BZkbEsbmyqaQrwb5GOiOZADwfEf+Qq7MHMAO4gHQT5kFZ/QMiwvfBmJm1UEvPYCJiAbAPsCJwHekO/nOB7xSqrpTVyTuSdJbzc+AXwD3AoYX93wEcDuwLTAM+DsDoCtMAAAXhSURBVBzt5GJm1notPYMxM7N3D6+mnCNptKRrJD0rKSSNqaPt30v6jaQlkh6XdNLArcon6XOS/pAt/nmPpH1qaDMu63/x0ZL14steELXVGumPpBFVjsHkVsVdJa6tJF0k6T5Jb0maUWO7jjs2jfSlg4/LEZL+S9I8SYuyv/Wjami3qqSzJT0v6VVJ10sa0ay4/HkwyzocGAFMIS2qWRNJW5GG5KYApwK7AudIWhwRPy0hzlrjOhK4EBgH3AF8BpgiaZeIeGCA5i8DxYTyUNODLMgtiPogaUHULYGzSf8Mnd5PU0gLor6PdOz65umuBf6hv0ZlGmR/IM0h/jr3vN03+21Pmtu8C1iljnYdd2xovC/Qecfl/5CWzvpKFstBwOWS1o+Iif20+zHpfe8rwAuk94qbJO0YEa8NOqqI8CN7ACtkX4eSbswcU2O7i0iXQa+UK/sJ8BTZMGSb+vMI8PN8/4D7gcsGaDcOeLFNMZ9KuqdprVzZP5OWE1qrn3a7Z8fsQ7myXbOyfdt4DBrtz4gs9lHtir1KXCvkvr8KmFFDm049No30pVOPy/oVyi4HHu+nzV8BS4FP5co2Ad4AjmtGXB4iy4mItxtseiBwTUQszZVNJh3AHQYdWAMkbUG66u6dxT+z/v072QKhHaq0BVHbpNH+dKQG/0Y68tgM4u+940REpTOoe4EN+2nW9zEm1+T2M4802tGU4+IEM0iS1gA2pfIim9D/Ip5l6nvdSnGtK2mDAdqvLelFSW9KulfSYc0PsaIyF0Rth0b70+eSbH7gWUnnSBpSRpAl69RjMxjdcFz+jjQ0W822wNMRsahQ3rTj4jmYwau2FE2/i2y2QC2Lf75Qpe0c0jDObNJw4QnA1ZI+ERHXVGnTLGUuiNoOjfbndeBfSZ9jtJD0YXtjSXM4Bzc3xNJ16rFpRFccl+xinoOBz/ZTrdHfzZr1dILJPgNm44HqRUR/y9TUqtr13k27DrzB/tS1+GfW/rLC614H/Dfpg9vKTjBQ/oKorVZ3XBHxLPDlXNEMSfOBn0jaKSJmNznGsnXqsalLNxyX7Cqwy4H/jIhJA1Qv9bj0dIIhLRvz/2qop4GrVNX3H0Bxkc1qZxCDUU9/8ot/5pfJqXvxz4gISdcAEyStGBFv1dq2AYNZELXSsF9+QdR2aLQ/lVxFunjkA6Szy27RqcemWTrmuEhal7R81pPAMQNUr2UR4UHp6TmYiPhpRGigxyBf41XS1WKVFtmE/hfxrPe16ulP3+tWiutPEVFteKzfEBoOvnZlLojaDo32p5IofO0WnXpsmqUjjouk1Um3SqwCfDR7b+rPw8Cm2TxyXtOOS08nmBa6ETi0cPPcaFLiGeh+k1JExB9Jl06/s/inpBWy5zfWsy9JIi3Lc1/JZy9Q4oKobdJofyo5PPt6TzMCa6FOPTbN0vbjImkl0hWiWwMHRsTzNTTrW0LrnSW3JL2HdG9Sc45Lu6/f7qQHsB3pl+UY0n8jF2TP98zV2ZN07Xi+bCtgEWncc2/SBPmbNOla8kH05yjgLdINfXsDk0hvbDsM0J+ZwEmkyxgPBW4g3Rz38RbEvA7wLHATaU2547Of7fcK9eYAPyuUTQX+CBwGHEK6D+j2Nh+DhvpDuhfp7Kwv+wJnZsfu6jb3Z/Xsb+Jw4E7g97nnq3fZsam7Lx18XC7O3rNOAnYrPFbN6twC3FJodxHpxsx/It1YfRfwB2C1psTVzh9Kpz2yX56o8JiRq7NXVrZXoe0ewN3Aa8Bc4KR29yeL63PZH8nrwO+AfQrbl+sP8LPszWAJ8CpwO+m/olbFvB1wa/b6zwLfBVYs1JkLTCqUrQ1cQho/XkhK+MvdgNaGY1B3f0iLu84izZ+9kR3DM/veLNrYlxFV/kYCGNFNx6aRvnTwcZlbQ19mULiZFFiVtKL9C9nf+g3A5s2Ky4tdmplZKTwHY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK8b/J3kg3KaxcNAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -460,7 +462,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu4HFWZ7/Hvj4sSCSRBSGAYIIJiBkbPSMLNcSSRmwTPRAEF0dE4QKKj4vgIchEhgHoE5HIGxyFBheGoxBnEzHC/ZgdxQEkQRSBgkHAXAwRCSMBA3vPHqi2V3r337kt19YXf53nq6e5Vq6rf1Z30u2vVqlWKCMzMzFptvXYHYGZmrw9OOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCscJImiUpBlk+XuM+dsz2M7qifHq2n5Gtib62OJrc52WS+mqot4Gkf5b0a0mrJS2XdLWk9zT4vp3ymU7P/XtYK+l5Sb+RdJ6kHRrcZ5+ky3Kv95P0z8VFbUVywrGiPQ/sWWW5tsbtdwROASp/6K/K9rOqmDAbjqOlJK0PzAO+Afw3MBWYDrwK9Ek6vIHddspn2u99wLuBg4HvAfsBv5F0QAH73g9wwulQG7Q7AOs5r0TE7UXvNCKWAcuK3m8H+jxwIHBAROST9H9JmgvMkbQgIh5v9o3a+JneERErs+c3SroAuBL4kaTxEfF8G2KyEvgIx0on6QRJSyS9JOkpSddK2lLSZOCKrNpDWdfL0mybdbp/JI3PXh8m6SJJKyQ91t91J+nLkp6QtEzSGZLWy73/BElzJT0qaZWke7IurPWy9YPGka3fNtv+2Wz76yS9vaKN22TdYKslLZV0ZI0fzxeA+RXJpt9XgI2AI3Lvs1TStyR9VdIfJK2U9ENJo4ZrS7UuNUmbS/p3Sc9kbeuTNKmibf3v+cXsM1+efR4NHQ1GxMukRDsa+GjufdaTdHz2b+VlSQ9I+uRg+5E0C/gSsF2u6+7ibN2ekv47+zfxoqS7JH2skXitcT7CscJJGvDvKiJeydZ9AjgROA64B3gzqYtlY+BO4BjgW8BBwJPAy8O83RnAD0ndM/8I/LukdwHbZa8nAl8DfgXMzbbZGrg/2+4F4G+AU4ERwP8ZKg5JmwG3As8AnyZ1Rx1P+kt9x4hYLUnAfwGbk5LDS9n+NwN+N8Tntg0wHji32vqIeFDS3cB7K1Z9FFgCHAVsBZwJfBf48FBtGcQ84K3ZNk8DxwLzJb0rIpbk6n0E+A0wA/hL4BxSN+A/DbHvQUXEYkmPAXsAF2TF5wOfBE7L2rEv8H1Jz0TElVV2813gbaR/Tx/KyvqP4LYDfp7t+yXgb4GLJK2NiEsbidkaEBFevBSyALOAGGQZn9X5NvCTIfbxgXz9XPn0rHxk9np89vqiXJ1NgTWkH/X1c+W/BH48yPuJ9IfXicDva4jjdFKy2SxXNoZ07uqz2eup2ba75+psB7wC9A3R9j2y7aYNUWcecF/u9VLg2f7PJSv7GLAW+Ks6P9P3Z6/3ytXZmPSjPbviPR8ENsiVnQf8YZh/H+u8X5X1twHXZM/fmrXhkxV1LiF1yfW/7gMuy73+FrB0mDj6v/PZwM3t/n/zelp8hGNFex7Yp0r5E9njXcARkk4lnbReFBGvNvF+N/U/iYgVkpYBCyr2uQTYtv+FpI2AE0g/zNsCG+bWbRDZ0dgg9gFuAFbkjuReABYB/V1PuwFPRcQvcrE9LGlRA+2rxQ3x2jkRgMuBHwC7AvfVsZ/dgGURsaC/ICJelHQlUDlCbn7F53QvMFbSGyLiT/WF/2fKPd+blHB+WnHEfBPwUUnr1/PvRtIY0lHmNNIR7vrZqqbPhVntnHCsaK9ExMIh1n8f2ITUFXMy8IykfwNmNZh4nqt4/adByjbKvT4DOJL0A3RnVn8acFJWbyWD25x0JHJolXX9yW9L4I9V1v+R1PbB9P/4bTdEne0Y+CO5zntF6tZbSepeq8dWwFNVyp8idQfmVfuMBbwhe96IrYHF2fPNSUlhsAEEWwGP1bHvi0nf2+mk5LgC+Azpe7eSOOFYqSJiLekcxbnZOYuPAV8n/YheMNS2BfowcH5EnNlfIOnAGrd9ljRc+fQq617IHv8AjK2yfiywerAdR8Sj2Qn9vwf+pXK9pLcAf13lvcdW1BsBjCSdr6nHk5X7yowjtbtlJP0V6VzQbVnRs6QuyL8lHelUqpbQB9v3RqSRf5+LiAty5R40VTJ/4NY2EfFoRHyT1OW1U1bc/9fxRtW3KsQIcifOla59OayizmBx3ATsDNwTEQsrlvuzOncA4yTtnnuPbYFdaojt/wJ7S9qvyrqvZXF/r6J8X6178eZBpHMl/UeatX6mvyB1i/15UIKkN5F+rG+tIfaGSHojKcE+x2sDO24mHeGMqvI5Lxyi267yaBbgjdm+8t/5JqTEbiXyEY4VbQNJe1QpfzQiHpc0m/TX6+2k7pIppJFFx2X1+n+0Zypdd7IqIu4uOMYbgM9KWpLF8lnSj1LeYHGcA3wcuFnS+aQjs3HAXsCtkUY8XQ38GvhPSceRRkWdRm1/lZ9POk/0U0nfIp0U34Q02u0DwD/EwGtwVgNXSTqL1NV0FvDTiLh3mLasIyKuk/Rz4MeSjicNjjiGlKDPqiH2Wu0qaTXwJtIR20zSIJBDIrsGJyLuV7o+Z66kM0nJcyNSst8xIgYbZr6YlOynA78Fno6IpZLuAE6WtIJ0xHQ86d/fpgW2y4bT7lELXnpnYehRaidldaaThqc+SxpS/BvgiIr9fAl4mNSlsjS3XbVRah+o2HYp8K2KsouBhbnX44CfkvrxnyINIz6KihFU1eLIyv8CuCjb9uXsPX8A7Jyrsy1pdoXV2T5mApcxxCi13LYbAF/MPpvVwHLgGuA9VeouBc7OPvungBeBS4HR9X6mWdkWpJFgy7P3XgDsWsNnPGBfVWLtr9O/vADcTTqq26FKfZFmDbgn+5yXZfF8Ilenj3VHqW2UfTd/zN7j4qz8raSjpheBR4AvZ5/Z0+3+f/N6WpR9GaWR9FbS2P49SH/d/CwiJtew3SjS0MsPkroCrwSOjohnKupNI3U9vA34PXBqRPy4yDaYdYrsnM9lEXFMu2MxG047zuHsTLpO4YFsqdWPgcmk0UXTSUM+5+UrKE1u+BNgPnAAadjtpYP0h5uZWYnacYSzXqSRSijN8rr5cEc4kvYE/od0QdotWdlupJOc+0bEjVnZdcCGEfG+3LZXA5tGREMz7Zp1Mh/hWDcp/QinP9nU6QDShXS35PbzS+ChbF3/SJcpwH9UbDsX2LN/bimzXhIR451srFt0y7DoCbx2QVjefdk6gB1IV4xX1ruP1M4dWxadmZkNq1uGRY9h4JXNkEbSbJ+rQ5V6yyvWr0PSDNJV74wYMWLiNtts01Sga9euZb31uiWPN8/t7W1ub2fY5IF0uvuFHYv9u7mI9j7wwANPR8QWtdTtloQDaYhjJVUpr3ytQcpTYcQcYA7ApEmTYuHCoWZlGV5fXx+TJ09uah/dxO3tbW5vh1D2M3b//UPXq1MR7ZX0cK11Oy+VV7ec6ndeHM1rRzTLc2WVdaD6EZKZmZWkWxLOYl47V5OXP7fzIGlq+sp6E0hXFtczBNvMzArWLQnnGmDL7DobALK7EG6frSPSXQPnkyZmzDsUuC1821ozs7Yq/RxONhng1Ozl1sCmkg7JXl8dEauyOa4WRMQRABFxW3aNzSWSjiEdsZxBmrvqxtzuTwf6JJ1Huih0ara8v+UNMzOzIbVj0MBY4D8ryvpfv4U0T9MGvHaDpH6Hkaa1/z65qW3yFSLi1ix5fY10r4uHgMMj4voC4zczK1fJF+i3SukJJyKWsu6d/arVGV+l7DngU9ky1LbzqJjyxszM2q9bzuGYmVmXc8IxM+t0Eyempct104WfZmavT3fe2e4ICuEjHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUniUmplZpzvqqHZHUAgnHDOzTjdnTrsjKIS71MzMrBROOGZmnW7RorR0OXepmZl1ukmT0mOXzxrtIxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8LNrMrNMtXNjuCArhhGNm1ul64PbS4C41MzMriROOmVmnmzEjLV3OCcfMrNNdeGFaupwTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKXzhp5lZp9tll3ZHUAgnHDOzTtcDt5cGd6mZmVlJnHDMzKwUTjhmZp1OSkuXc8IxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YmXW62bPbHUEhnHDMzDpdD9xeGtrQpSZpJ0k3SVol6QlJp0laf5htZkmKQZYTcvUuHqTOhNa3zMzMhlLqEY6kMcCNwL3ANGAH4GxS4jtpiE2/C1xbUfZB4DjgmoryxcCnKsqWNhaxmVkHmDMnPXb5kU7ZXWqfBkYAB0XECuAGSZsCsySdmZUNEBGPAY/lyyR9FVgcEXdVVH8xIm5vQexmZu0xc2Z67PKEU3aX2gHAdRWJZS4pCe1V604kbQbsC1xabHhmZtYqZSecCaQurz+LiEeAVdm6Wh0CbEhKVpV2krRC0suSbpVUcyIzM7PWUUSU92bSGuDYiDivovwx4JKIOLHG/dwMjIqIiRXlXwD+RDpHtAXwJWAi8J6I+OUg+5oBzAAYN27cxLlzq+Ww2q1cuZKRI0c2tY9u4vb2Nre3M0yeMgWAvvnzC91vEe2dMmXKooiYVFPliChtAdYAX6hS/jjw9Rr3sRXwKnBMDXVHAA8B82rZ98SJE6NZ8+fPb3of3cTt7W1ub4eAtBSsiPYCC6PGHFB2l9pyYHSV8lHAczXu4yOAgB8PVzEiVgNXA71xQ3Azsy5WdsJZTMW5GknbABtTcW5nCIcBt0bEo3W8b3n9hmZmVlXZCecaYH9Jm+TKDgVWAwuG21jSeGAPahydJmkEaWTconoDNTPrGP2dal2u7IRzAfAycLmkfbIT9rOAcyI3VFrSEknfq7L9YcArwGWVKySNkvQzSTMl7S3pUGA+sDXwjRa0xczM6lDqhZ8RsVzS3sC3gStI523OJSWdyriqTXdzGHBTRCyrsu5lYBlpxoKxwEvAbcBeEbGwkAaYmVnDSp+8MyLuBd43TJ3xg5T/zRDbvAQc1FRwZmadaGJ2Bcii7j474Nmizcw63Z13tjuCQvgGbGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpfAoNTOzTnfUUe2OoBBOOGZmna7/FtNdzl1qZmZWiroSjqRq082YmVkrLVrU9bMMQP1dao9LugS4KCLua0VAZmZWYVJ2Q80unzG63i612cAhwG8l/ULSDEmbtiAuMzPrMXUlnIg4JSK2B/YF7gfOAZ6U9ENJ+7QiQDMz6w0NDRqIiJsj4hPAlsDngbcD10laKmmWpL8oMkgzM+t+zY5SmwS8l3Tb6OXAz4AjgSWSPt7kvs3MrIfUnXAkbSfpFEkPAjcBWwH/CPxFRPwDsB3pXM9ZhUZqZmZdra5RapJuJh3RPAZcTBqt9nC+TkS8KulHwBeKCtLMzLpfvcOinwamAjdEDDk+7y7gLQ1HZWZmr1m4sN0RFKLehPNt4M5qyUbSSGCXiLglItYADw/Y2szM6td/i+kuV+85nPnAToOse3u23szMbIB6E46GWDcSWNVELGZmVs2MGWnpcsN2qUl6LzA5V3SkpPdXVNsIOBC4u7jQzMwMgAsvTI9dPmt0Ledwdidd3AkQwIeBVyrq/AlYDBxbXGhmZtZLhk04EXEW2TU1kh4CPhQRd7U6MDMz6y11jVKLCA91NjOzhtRyDmcqcGtErMieDykiri4kMjMz6ym1HOFcCewB/DJ7Hgw+Wi0A36TNzMwGqCXhvAV4MvfczMzKtMsu7Y6gELUMGni42nMzMytJD9xeGmo7h/OmenYYEb7408zMBqilS20l6dxMrXwOx8zMBqgl4fwj9SUcMzMrkrJxWkNO0t/5ajmHc3EJcZiZWY9r9hbTZmZmNall0MAvgekRca+kOximey0idisqODMz6x21nMO5B1ide97dnYhmZtYWtZzD+VTu+fSWRmNmZj2r4XM4SraQNNRN2czMzIA6Z4uGP0/meRIwMdv+FUmLgK9HxFUFx2dmZrNntzuCQtSVcCTNBL4D3AR8AfgjMBY4CPhvSf8UEb3xyZiZdYoeuL001H+EcyIwJyI+U1F+gaQLgK8ATjhmZjZAvedw3gxcPsi6nwCbDbcDSTtJuknSKklPSDpN0pDT4UgaLymqLHOr1J0m6W5JL0m6V9KhNbXMzKxTzZmTli5X7xHOfGAv4IYq6/YCbhlqY0ljgBuBe4FpwA7A2aTEd1IN738M8PPc66cr9v8eUuL7DnA0MBW4VNLyiLi+hv2bmXWemTPTY5d3rdVy4edOuZf/AnxX0puBebx2DudDwAHAkcPs7tPACOCgiFgB3CBpU2CWpDOzsqHcHxG3D7H+q8AtEXF09nq+pJ2BkwEnHDOzNqrlCOe3rHuxp4CZ2VJ5989rGXq26AOA6yoSy1zgDNIR0hU1xFOVpDcCU0hHNnlzgYskjYqI5xvdv5mZNaeWhDOlwPebANycL4iIRyStytYNl3AukrQZ6cjqUuArEdE/C8IOwIbA4opt7iN12e0I3NFc+GZm1qhaZhpYUOD7jQGeq1K+PFs3mJeBfyV1i60AJgPHkZLMtNy+qbL/5RXr1yFpBjADYNy4cfT19Q0V/7BWrlzZ9D66idvb29zezjA5eyw6trLbW/eFn/0krQdsVFlewx0/q83FpkHK+/f5JPC5XFGfpKeA70j6m4i4a4j9a5Dy/n3PAeYATJo0KSZPnjx09MPo6+uj2X10E7e3t7m9naXo2Mpub13DorPpbI6TtARYA7xQZRnKcmB0lfJRVD/yGcpl2eMuuX1TZf/9r+vdv5mZFaje63COBo4Hvkc6cvg6cBrwALCUrGtqCItJ52r+TNI2wMYMPPcynKh4fJCUBCdU1JsArM1iNDPrPhFdf7dPqD/hHAWcApyZvZ4XEacCO5MSxtuG2f4aYH9Jm+TKDiXd/qDec0WHZI+LACLiZdJ1Qh+uqHcocJtHqJmZtVe953DeAtwVEa9KWkPWXRURayV9B/gu6QhoMBeQjpIul3QGsD0wCzgnP1Q667JbEBFHZK9nAZuQLvpcAbwXOBa4PCJ+k9v/6aTzO+eRrhOami3vr7OdZmZWsHqPcJ4BRmbPHwHelVs3hnRR56AiYjmwN+lanSuAU4FzSUdNeRuw7vU8i0nX6VwEXA0cDpyVPeb3fyvpyGcf4Drg74HDPcuAmXW1iRPT0uXqPcL5ObAr6Uf/R6QZAjYD/gR8ljSL9JAi4l7gfcPUGV/xei7pAs5hRcQ80tGNmVlvuPPOdkdQiHoTzixg6+z5N0hdatNJRzY3AJ8vKjAzM+stdSWciLgfuD97/jLpnjhfaEFcZmbWY5q58PMvga2AJyLi8eJCMjOzXlTvoAEkfUbSo8DDwC+ARyQ9JumfCo/OzMx6Rr0zDZwMfJt0Pc2BwKTs8RrgX7L1ZmZmA9TbpfZZ4BsR8dWK8muzuc0+S5p5wMzMinLUUe2OoBD1JpwRDH5XzwV4lJqZWfF64PbSUP85nHnAQYOsOxi4srlwzMysV9Vyi+mpuZfXAGdKGs/AW0zvDHy5+BDNzF7nFi1Kj10+20AtXWpXMvBW0lsD+1ep+wPSnTjNzKwokyalxy6fMbqWhPOWlkdhZmbDGn/8Veu8XvrNA9sUSWNqucX0w2UEYmZmva3umQYkbUAaIPAeYDPgWeBnpFsFvFJseGZm1ivqSjiSxgLXA+8k3eHzKWBP0vU3v5a0X0QsKzpIMzPrfvUOiz4HeDOwe0RsHxF7RsT2wO5Z+TlFB2hmZr2h3i61qcDnIuKOfGFE3CHpBOD8wiIzM3udqRwUAN03MGAo9R7hvBF4YZB1LwBvaC4cMzMbYOHCtHS5ehPO7cBxkjbOF2avj8vWm5lZkV6nt5j+EjAfeFTS9aRBA2NJF4EKmFxodGZm1jPqvePnXZLeBhwD7EoarfYkcAFwTkQ8XXyIZmavczNmpMfNprU3jibVnHAkbQjsBjwUEce3LiQzM1vHhRemx+O6O+HUcw7nVeBm4K9aFIuZmfWwmhNORKwFfgeMa104ZmbWq+odpfYV4GRJ72hFMGZm1rvqHaV2EmlGgbskPU4apbbOfNkRsVtBsZmZWQ+pN+H8NlvMzMzqUlPCkTSCNK3Nb4E/ADdGxFOtDMzMzDK77NLuCApRyy2mtwduBMbnildI+khEXN+qwMzMLNN/i+kqc611k1oGDZwJrAX+DngTsDPwK2B2C+MyM7MeU0vC2RM4KSJ+HhEvRcR9wExgW0lbtTY8MzPrFbUknK2A31eUPUiaO23LwiMyM7N1SWnpcrVehxPDVzEzMxtcrcOir5P0SpXymyrLI2Js82GZmVmvqSXhnNryKMzMrOcNm3AiwgnHzMyaVu9camZmZg1xwjEzs1LUO5eamZmVbXZ2nX3lBSpdxgnHzKzT9d9i+nUwtY2ZmVnTfIRjZtbp5szJnmzd1jCaVfoRjqSdJN0kaZWkJySdJmn9YbbZVdJFkpZk290v6RRJG1XUmyUpqizvb22rzMxaaObMtHS5Uo9wJI0h3ergXmAasANwNinxnTTEpodmdc8Afge8Ezg9ezy4ou7zQGWCua/Z2M3MrDlld6l9GhgBHBQRK4AbJG0KzJJ0ZlZWzRkRsSz3uk/SS8BsSdtFxMO5da9ExO2tCd/MzBpVdpfaAcB1FYllLikJ7TXYRhXJpt+vskfP3WZm1gXKTjgTgMX5goh4BFiVravHu0k3hru/ony0pKclrZH0K0kHNRytmZkVRhHl3XlA0hrg2Ig4r6L8MeCSiDixxv1sCfwGuDoipufKP0464rkLGEm6UdxU4OCIuHyQfc0AZgCMGzdu4ty5c+tt1jpWrlzJyJEjm9pHN3F7e5vbW667H39+QNk7th7F5ClTADj/B/MGrGtGEe2dMmXKooiYVEvddgyLrpbhNEj5wIrSG4D/AFYCX1xnxxE/qKh7BfA/wMlA1YQTEXOAOQCTJk2KyZMn1xLGoPr6+mh2H93E7e1tbm+5ple5sHPpxyb/+fnZd28w6LpGlN3esrvUlgOjq5SPAp4bbmNJAi4BdgamRsTyoepHOny7HHjncEOvzcw6VkRaulzZRziLqThXI2kbYGMqzu0M4lzScOp9I6KW+v26/5syM+tyZR/hXAPsL2mTXNmhwGpgwVAbSjoB+Dzw8Yi4tZY3y46IPgT8OiJebSxkMzMrQtkJ5wLgZeBySftkJ+xnAefkh0pnMwp8L/f6cOAbpO60xyXtkVu2yNVbIOloSftJ+hBwFbBH9h5mZt1p4sS0dLlSu9QiYrmkvYFvA1eQztucy8CEsAGQP+eyX/Y4PVvyPgVcnD1fAvwzsBVpyPSdwIERcU0R8ZuZtcWdd6bHfdsbRrNKH6UWEfcC7xumzviK19MZmGiqbXdEE6GZmVkL+fYEZmZWCiccMzMrhROOmZmVwgnHzMxK4Tt+mpl1uqOOancEhXDCMTPrdP23mK4y11o3cZeamZmVwkc4ZmadbtGidkdQCB/hmJl1ukmT0tLlnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEz63QLF6alyznhmJl1uh65xbQTjpmZlcJT25iZdboZM9LjZtPaG0eTnHDMzDrdhRemx+O6O+G4S83MzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBQepWZm1ul22aXdERTCRzhmZp1u0aKeuM20E46ZmZXCCcfMzErhhGNm1umktHQ5JxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSk8tY2ZWaebPTs9/r69YTTLCcfMrCTjj79qnddLv3lgbRv232K6YvvB9lvXvkvkLjUzMyuFj3DMzDrdnDnZk63bGkaznHDMzDrdzJnp8bgr2xtHk9ylZmZmpSg94UjaSdJNklZJekLSaZLWr2G7UZIukrRc0vOSfijpzVXqTZN0t6SXJN0r6dDWtMTMzOpRapeapDHAjcC9wDRgB+BsUuI7aZjNfwy8HTgSWAucAcwD/i63//cAPwG+AxwNTAUulbQ8Iq4vtDFmZpmGR5+1UCeOXCv7HM6ngRHAQRGxArhB0qbALElnZmUDSNoT2B/YKyJuycoeB34haZ+IuDGr+lXglog4Ons9X9LOwMmAE46ZWRuVnXAOAK6rSCxzSUcrewFXDLHdU/3JBiAifinpoWzdjZLeCEwhHdnkzQUukjQqIp4vqB1m1uM68ailWZVt+tI7XmFyie9fdsKZANycL4iIRyStytYNlnAmAIurlN+XrYPUPbdhlXr3kbrsdgTuaCxss+7STHdKftt6fpAafc9Gtitrm9eD8cdfVdrnoIgo5Y0AJK0Bjo2I8yrKHwMuiYgTB9nuBuDFiPhgRfkPgO0j4t2S/ha4FXhXRNyVq/NW4HfA/tXO40iaAWSX8fJ24P6GG5hsDjzd5D66idvb29ze3lZEe7eLiC1qqdiO63CqZTgNUt7IdpWvNUh5KoyYA8yptq4RkhZGxKSi9tfp3N7e5vb2trLbW/aw6OXA6Crlo4DnGthudG675bmyyjoMs38zM2uxshPOYl475wKApG2Ajal+jmbQ7TL5czsPAmuq1JtAGkb9QAPxmplZQcpOONcA+0vaJFd2KLAaWDDMdltm19kAIGkSsH22joh4GZgPfLhi20OB20ocoVZY91yXcHt7m9vb20ptb9mDBsaQLvr8LWko9PbAOcB5EXFSrt4SYEFEHJEru5Y00uwYXrvw848RUXnhZx/wbdJFoVOz+u/3hZ9mZu1V6hFORCwH9gbWJw2BPhU4FzilouoGWZ28w0hHQd8HLgEWAR+q2P+twCHAPsB1wN8DhzvZmJm1X6lHOGZm9vrl2aJr1OpJRztNI+2VtGvW1iXZdvdLOkXSRmXF3ahGv9/c9utJWiQpJH2glbEWoZn2SjpI0h2SVkt6RtK1kjZudczNaOKzaIoDAAAEj0lEQVT/7yRJ12ftfFbSjZJ2LyPmZkh6q6TZkn4t6VVJfTVu19LfK98PpwatnnS00zTR3kOzumeQLrZ9J3B69nhwC0NuSpPfb78j6ZK7YzXTXklHks6RngkcC4wB3kcH/5Y02t5sBO2NwJ3AJ7LiY4HrJb0zIh5uZdxN2pl0Dvt24A11bNfa36uI8DLMApxAus5n01zZl4FV+bIq2+1JuuD0vbmy3bKyfdrdrha0d4sqZTOy9m7X7nYV3d5c3THAMuCIrK0faHebWvT9bg68ABzV7jaU1N5PA68Coyu+61eBz7S7XcO0eb3c88uAvhq2afnvlbvUajPYpKMjSJOODrXdgElHgf5JRztVQ+2NiGVVin+VPY4tLrzCNfr99jsd+DlwUwtia4VG2/uR7PHfWxVYizTa3g2BV4CVubKVWZmqbtEhImJtA5u1/PfKCac2AyYPjYhHSH8hVbsgddDtMvlJRztRo+2t5t2kQ/Nm56hrpYbbK+mdwKdIw++7RaPt3Z30PR4h6TFJayT9QtK7WxdqIRpt70+yOmdLGitpLGlU7XLgP1sUazu1/PfKCac2Y6g+Nc7ybF3R27VbIXFL2hL4CvD/YpB7HXWIZtp7PvCvEbGk8Khap9H2bknq3z8JOA7438CLwLWSxhUdZIEaam9EPEG65cnBwFPZchBpIuBqR/PdruW/V044tWv1pKOdpqm4Jb0B+A9SF8QXC4yrVepur6TDSD/AX2tVUC3UyPe7HjASOCIifhgR1wIfJJ3T+FzxIRaqke93K9L5j0WkLqUDsudXSdq2FUF2gJb+Xjnh1KaVk452okbbC4AkkS7O3RmYGumC305Wd3slbQicRRrFs56k0cCm2eqNK6Zv6jSNfr/PZo99/QXZkesiYKeigmuBRtt7LGn03SERcW2WYA8mJdhu6kKtVct/r5xwatPKSUc7UaPt7XcuafjptIjo5Hb2a6S9GwN/SZqaaXm2/DpbN5fXBkt0oka/3/tIf+lWnjAX6Txdp2q0vROAeyJiTX9BRPwJuIc0tLrXtPz3ygmnNi2bdLRDNdpeJJ0AfB74eKSphrpBI+1dSerfzy8fzdadCHysNaEWotHv90pScpnSXyBpFDCR15JtJ2q0vQ8Df511DwOgdCv7vwaWtiDOdmv971W7x4t3w0I6YfYkcANpnrYZpB+cr1XUWwJ8r6LsWuD3pJONHySN8vlZu9vUivYCh5P+Ar4I2KNiGXCNTqcszXy/FevH0x3X4TTz73letu0ngQNJP9jLgDHtblfR7SUl0jXAVVlbP0D64V0D/K92t2uYNr+JNK/kIcBtpKOy/tdvGuL7benvVds/mG5ZSH3UN5P+KnqSdO3F+hV1lgIXV5SNzn6AnwNWAD8CNm93e1rRXuDi7Ae32jK93W1qxfdbsb4rEk4z7SUNGvg34Jls2xuBd7S7PS1s797ALaTzV8+SEuzkdrenhvb2/1ustowfor0t/b3y5J1mZlYKn8MxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqX4/1KdOlmYTp5uAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7xcVX338c+XixIJJEFIoBSIoJhC9akk3KyVRG4SfBoFNIhWY4FEq2J9CXIRIYD6CMjlKdaSoEJ5VGKLmJY7BHKCWFCSiCKQYJBwFwMcCCEBA/yeP9Y+Zmdn5pyZObPncvi+X6/9mpm1196z1kwyv7NueysiMDMza7aN2l0AMzMbmhxgzMysFA4wZmZWCgcYMzMrhQOMmZmVwgHGzMxK4QBjTSNppqSosn28xnPsmp1nZCF9Wnae4eWUvrZyDPKcV0rqqSHfJpL+WdKvJa2R1CvpOknvafB9O+UznZb79/CapOcl/UbShZJ2afCcPZKuzL0+SNI/N6/UNhgOMNZszwP7VthuqPH4XYHTgeIP+7XZeVY3p5gNl6NUkjYG5gLfAP4bmAxMA14FeiQd1cBpO+Uz7fM+4N3A4cD3gIOA30g6pAnnPghwgOkQm7S7ADbkvBIRdzb7pBGxAljR7PN2oM8DhwKHREQ+KP+XpDnAbEkLIuLxwb5RGz/TuyJiVfZ8nqSLgWuAH0kaGxHPt6FMVgK3YKzlJJ0saZmklyQ9JekGSdtKmghcnWV7KOtKWZ4ds153jqSx2esjJV0qaaWkx/q64iR9WdITklZIOlvSRrn3HydpjqRHJa2WdG/WJbVRtr9qObL9O2bHP5sdf6OktxfquEPWrbVG0nJJx9T48XwBmF8ILn2+AmwGHJ17n+WSviXpq5L+IGmVpB9KGjFQXSp1kUnaWtK/S3omq1uPpAmFuvW95xezz7w3+zwaau1FxMukwDoS+GjufTaSdFL2b+VlSQ9I+mS180iaCXwJ2CnXFXdZtm9fSf+d/Zt4UdLdkj7WSHmtdm7BWNNJ2uDfVUS8ku37BHAKcCJwL/BmUpfJ5sBi4HjgW8BhwJPAywO83dnAD0ndLf8I/LukdwE7Za/HA18DfgXMyY7ZHliaHfcC8DfAGcAw4P/0Vw5JWwG3A88AnyZ1L51E+kt814hYI0nAfwFbk4LBS9n5twJ+18/ntgMwFrig0v6IeFDSPcB7C7s+CiwDjgW2A84Bvgt8uL+6VDEXeGt2zNPACcB8Se+KiGW5fB8BfgNMB/4SOJ/UrfdP/Zy7qohYIukxYB/g4iz5IuCTwJlZPQ4Evi/pmYi4psJpvgu8jfTv6UNZWl8LbSfg59m5XwL+FrhU0msRcUUjZbYaRIQ3b03ZgJlAVNnGZnm+Dfykn3N8IJ8/lz4tSx+evR6bvb40l2dLYC3pR3zjXPovgR9XeT+R/tA6Bfh9DeU4ixRctsqljSKNPX02ez05O3bvXJ6dgFeAnn7qvk923JR+8swF7s+9Xg482/e5ZGkfA14D/qrOz/T92ev9cnk2J/1Izyq854PAJrm0C4E/DPDvY733q7D/DuD67Plbszp8spDnclIXW9/rHuDK3OtvAcsHKEffdz4LuLXd/2+G8uYWjDXb88ABFdKfyB7vBo6WdAZpkHlRRLw6iPe7pe9JRKyUtAJYUDjnMmDHvheSNgNOJv0Q7whsmtu3SWStrSoOAG4GVuZaai8Ai4C+rqS9gKci4he5sj0saVED9avFzbFuTAPgKuAHwJ7A/XWcZy9gRUQs6EuIiBclXQMUZ7DNL3xO9wGjJb0hIv5UX/H/TLnn+5MCzE8LLeJbgI9K2riefzeSRpFakVNILdiNs12DHsuy6hxgrNleiYiF/ez/PrAFqWvlNOAZSf8GzGww0DxXeP2nKmmb5V6fDRxD+sFZnOWfApya5VtFdVuTWhpTK+zrC3bbAn+ssP+PpLpX0/djt1M/eXZiwx/F9d4rUjfdKlJ3WT22A56qkP4UqXsvr9JnLOAN2fNGbA8syZ5vTQoC1Qb8twMeq+Pcl5G+t7NIwXAl8BnS924lcYCxloqI10hjDBdkYw4fA75O+tG8uL9jm+jDwEURcU5fgqRDazz2WdL04bMq7Hshe/wDMLrC/tHAmmonjohHswH4vwf+pbhf0luAv67w3qML+YYBw0njLfV4sniuzBhSvUsj6a9IYzl3ZEnPkroU/5bUkimqFMCrnXsz0sy8z0XExbl0T3IqmT9ga5uIeDQivknqwtotS+7763ezykc1xTByA91Ka0+OLOSpVo5bgN2BeyNiYWFbmuW5Cxgjae/ce+wI7FFD2f4vsL+kgyrs+1pW7u8V0g/U+oslDyONdfS1JGv9TH9B6ub68yQCSW8i/TjfXkPZGyLpjaSA+hzrJmLcSmrBjKjwOS/spxuu2FoFeGN2rvx3vgUpkFuJ3IKxZttE0j4V0h+NiMclzSL9dXonqftjEmnmz4lZvr4f6RlK6z5WR8Q9TS7jzcBnJS3LyvJZ0o9QXrVynA98HLhV0kWkltcYYD/g9kgzkq4Dfg38p6QTSbOWzqS2v7ovIo3z/FTSt0iD2FuQZqN9APiH2HANzBrgWknnkrqOzgV+GhH3DVCX9UTEjZJ+DvxY0kmkyQzHkwLyuTWUvVZ7SloDvInUIptBmrRxRGRrYCJiqdL6mDmSziEFy81IwX3XiKg27XsJKbhPA34LPB0RyyXdBZwmaSWpRXQS6d/flk2slxW1e5aBt6Gz0f8sslOzPNNI00WfJU3x/Q1wdOE8XwIeJnWRLM8dV2kW2QcKxy4HvlVIuwxYmHs9BvgpqR/+KdK03mMpzHCqVI4s/S+AS7NjX87e8wfA7rk8O5KuXrAmO8cM4Er6mUWWO3YT4IvZZ7MG6AWuB95TIe9y4Lzss38KeBG4AhhZ72eapW1DmqnVm733AmDPGj7jDc5Voax9efq2F4B7SK22XSrkF2lV/r3Z57wiK88ncnl6WH8W2WbZd/PH7D0uy9LfSmoVvQg8Anw5+8yebvf/m6G8KfvwW0bSW0lz6/ch/fXys4iYWMNxI0hTIT9I6tq7BjguIp4p5JtC6kp4G/B74IyI+HEz62DWKbIxmysj4vh2l8WsqB1jMLuT1gk8kG21+jEwkTT7ZxppCubcfAaliwH+BJgPHEKaBntFlf5sMzMrUTtaMBtFmkmE0lVQtx6oBSNpX+B/SAvAbsvS9iINSh4YEfOytBuBTSPifbljrwO2jIiGrkRr1sncgrFO1vIWTF9wqdMhpIVrt+XO80vgoWxf30yUScB/FI6dA+zbd20ms6EkIsY6uFin6pZpyuNYtwAr7/5sH8AupBXZxXz3k+q5a2mlMzOzDXTLNOVRbLhyGNJMl51zeaiQr7ewfz2SppNWlTNs2LDxO+yww6AK+tprr7HRRt0StwfP9R3aXN/OsMUDabj6hV2b+3dyM+r7wAMPPB0R21Ta1y0BBtKUwyJVSC++VpX0lBgxG5gNMGHChFi4sL+rnAysp6eHiRMnDuoc3cT1Hdpc3w6h7Gds6dL+89WpGfWV9HC1fZ0XqivrpfKdBUeyrsXSm0sr5oHKLSAzMytJtwSYJawba8nLj808SLpUezHfONLK3XqmRJuZ2SB1S4C5Htg2W+cCQHaXvZ2zfUS6K9580oUM86YCd4Rvw2pm1lItH4PJLp43OXu5PbClpCOy19dFxOrsGlELIuJogIi4I1vjcrmk40ktkrNJ136alzv9WUCPpAtJizAnZ9v7S6+YmZmtpx2D/KOB/yyk9b1+C+k6R5uw7oZAfY4kXeb9++QuFZPPEBG3Z8Hqa6R7PTwEHBURNzWx/GZmrdXiBfHN0vIAExHLWf/OdZXyjK2Q9hzwqWzr79i5FC4hY2ZmrdctYzBmZtZlHGDMzDrd+PFp6zLdtNDSzOz1afHidpegIW7BmJlZKRxgzMysFA4wZmZWCgcYMzMrhQOMmZmVwrPIzMw63bHHtrsEDXGAMTPrdLNnt7sEDXEXmZmZlcIBxsys0y1alLYu4y4yM7NON2FCeuyyqyq7BWNmZqVwgDEzs1I4wJiZWSkcYMzMrBQOMGZmVgoHGDMzK4WnKZuZdbqFC9tdgoY4wJiZdbouvF0yuIvMzMxK4gBjZtbppk9PW5dxgDEz63SXXJK2LuMAY2ZmpXCAMTOzUjjAmJlZKRxgzMysFA4wZmZWCi+0NDPrdHvs0e4SNMQBxsys03Xh7ZLBXWRmZlYSBxgzMyuFA4yZWaeT0tZlHGDMzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErhAGNmZqXwSn4zs043a1a7S9AQBxgzs07XhbdLhjZ0kUnaTdItklZLekLSmZI2HuCYmZKiynZyLt9lVfKMK79mZmaW19IWjKRRwDzgPmAKsAtwHinQndrPod8FbiikfRA4Ebi+kL4E+FQhbXljJTYz6wCzZ6fHLmvJtLqL7NPAMOCwiFgJ3CxpS2CmpHOytA1ExGPAY/k0SV8FlkTE3YXsL0bEnSWU3cysPWbMSI9dFmBa3UV2CHBjIZDMIQWd/Wo9iaStgAOBK5pbPDMza5ZWB5hxpC6sP4uIR4DV2b5aHQFsSgpORbtJWinpZUm3S6o5cJmZWfMoIlr3ZtJa4ISIuLCQ/hhweUScUuN5bgVGRMT4QvoXgD+Rxni2Ab4EjAfeExG/rHKu6cB0gDFjxoyfM6dSzKrdqlWrGD58+KDO0U1c36HN9e0MEydNAqBn/vymnrcZ9Z00adKiiJhQcWdEtGwD1gJfqJD+OPD1Gs+xHfAqcHwNeYcBDwFzazn3+PHjY7Dmz58/6HN0E9d3aHN9OwSkrcmaUV9gYVT5TW11F1kvMLJC+gjguRrP8RFAwI8HyhgRa4DrgO68obWZWRdrdYBZQmGsRdIOwOYUxmb6cSRwe0Q8Wsf7tq4f0MzMgNYHmOuBgyVtkUubCqwBFgx0sKSxwD7UOHtM0jDSzLVF9RbUzKxj9HWSdZlWB5iLgZeBqyQdkA2wzwTOj9zUZUnLJH2vwvFHAq8AVxZ3SBoh6WeSZkjaX9JUYD6wPfCNEupiZmb9aOlCy4jolbQ/8G3gatK4ywWkIFMsV6XLxxwJ3BIRKyrsexlYQboiwGjgJeAOYL+IWNiUCpiZWc1afrHLiLgPeN8AecZWSf+bfo55CThsUIUzM+tE47MVGYu6q7ffV1M2M+t0ixe3uwQN8Q3HzMysFA4wZmZWCgcYMzMrhQOMmZmVwgHGzMxK4VlkZmad7thj212ChjjAmJl1ur5bJncZd5GZmVkp6gowkipdvsXMzMq0aFHXreKH+rvIHpd0OXBpRNxfRoHMzKxgQnbDyC67onK9XWSzgCOA30r6haTpkrYsoVxmZtbl6gowEXF6ROwMHAgsBc4HnpT0Q0kHlFFAMzPrTg0N8kfErRHxCWBb4PPA24EbJS2XNFPSXzSzkGZm1n0GO4tsAvBe0m2Qe4GfAccAyyR9fJDnNjOzLlZ3gJG0k6TTJT0I3AJsB/wj8BcR8Q/ATqSxmnObWlIzM+sqdc0ik3QrqcXyGHAZaTbZw/k8EfGqpB8BX2hWIc3MrPvUO035aWAycHNEv/Pl7gbe0nCpzMxsnYXdedf3egPMt4HFlYKLpOHAHhFxW0SsBR7e4GgzM6tf3y2Tu0y9YzDzgd2q7Ht7tt/MzKzuAKN+9g0HVg+iLGZmVsn06WnrMgN2kUl6LzAxl3SMpPcXsm0GHArc07yimZkZAJdckh677KrKtYzB7E1aTAkQwIeBVwp5/gQsAU5oXtHMzKybDRhgIuJcsjUtkh4CPhQRd5ddMDMz6251zSKLCE89NjOzmtQyBjMZuD0iVmbP+xUR1zWlZGZm1tVqacFcA+wD/DJ7HlSfTRaAb0pmZmY1BZi3AE/mnpuZWSvtsUe7S9CQWgb5H6703MzMWqQLb5cMtY3BvKmeE0aEF1uamVlNXWSrSGMrtfIYjJmZ1RRg/pH6AoyZmTWTsnlV/V7EvvPUMgZzWQvKYWZmQ8xgb5lsZmZWUS2D/L8EpkXEfZLuYoDusojYq1mFMzOz7lXLGMy9wJrc8+7qBDQzs7aoZQzmU7nn00otjZmZDRkNj8Eo2UZSfzchMzOz16m6rqYMf7745anA+Oz4VyQtAr4eEdc2uXxmZjZrVrtL0JC6AoykGcB3gFuALwB/BEYDhwH/LemfIqI7Pwkzs07VhbdLhvpbMKcAsyPiM4X0iyVdDHwFcIAxM7O6x2DeDFxVZd9PgK0GOoGk3STdImm1pCcknSmp38vLSBorKSpscyrknSLpHkkvSbpP0tSaamZm1qlmz05bl6m3BTMf2A+4ucK+/YDb+jtY0ihgHnAfMAXYBTiPFOhOreH9jwd+nnv9dOH87yEFuu8AxwGTgSsk9UbETTWc38ys88yYkR67rKusloWWu+Ve/gvwXUlvBuaybgzmQ8AhwDEDnO7TwDDgsIhYCdwsaUtgpqRzsrT+LI2IO/vZ/1Xgtog4Lns9X9LuwGmAA4yZWQvV0oL5LesvrhQwI9uKd7e8gf6vpnwIcGMhkMwBzia1gK6uoTwVSXojMInUcsmbA1wqaUREPN/o+c3MrD61BJhJTXy/ccCt+YSIeETS6mzfQAHmUklbkVpOVwBfiYi+qwzsAmwKLCkccz+pC25X4K7BFd/MzGpVy0r+BU18v1HAcxXSe7N91bwM/Cupm2slMBE4kRRUpuTOTYXz9xb2r0fSdGA6wJgxY+jp6emv/ANatWrVoM/RTVzfoc317QwTs8dml63s+ta90LKPpI2AzYrpNdzRstK1zFQlve+cTwKfyyX1SHoK+I6kv4mIu/s5v6qk9517NjAbYMKECTFx4sT+Sz+Anp4eBnuObuL6Dm2ub2dpdtnKrm9d05Szy8OcKGkZsBZ4ocLWn15gZIX0EVRu2fTnyuxxj9y5qXD+vtf1nt/MzAah3nUwxwEnAd8jtQy+DpwJPAAsJ+tq6scS0ljLn0naAdicDcdOBhKFxwdJQW9cId844LWsjGZm3Sei6+5mCfUHmGOB04FzstdzI+IMYHdSgHjbAMdfDxwsaYtc2lTS7QDqHes5IntcBBARL5PW6Xy4kG8qcIdnkJmZtVa9YzBvAe6OiFclrSXrfoqI1yR9B/guqYVTzcWkVtBVks4GdgZmAufnpy5nXXALIuLo7PVMYAvSIsuVwHuBE4CrIuI3ufOfRRqfuZC0Tmdytr2/znqamdkg1duCeQYYnj1/BHhXbt8o0iLKqiKiF9iftFbmauAM4AJSqyhvE9ZfT7OEtE7mUuA64Cjg3Owxf/7bSS2bA4Abgb8HjvIqfjPrauPHp63L1NuC+TmwJ+lH/kekFfhbAX8CPku6ynK/IuI+4H0D5BlbeD2HtGByQBExl9R6MTMbGhYvbncJGlJvgJkJbJ89/wapi2waqeVyM/D5ZhXMzMy6W10BJiKWAkuz5y+T7gnzhRLKZWZmXW4wCy3/EtgOeCIiHm9ekczMbCiod5AfSZ+R9CjwMPAL4BFJj0n6p6aXzszMula9K/lPA75NWs9yKDAhe7we+Jdsv5mZWd1dZJ8FvhERXy2k35BdG+yzpJX9ZmbWLMce2+4SNKTeADOM6netXIBnkZmZNV8X3i4Z6h+DmQscVmXf4cA1gyuOmZkNFbXcMnly7uX1wDmSxrLhLZN3B77c/CKamb3OLVqUHrtsNX8tXWTXsOGtkbcHDq6Q9wekO02amVmzTJiQHrvsisq1BJi3lF4KMzMb0NiTrl3v9fJvHtqmktSmllsmP9yKgpiZ2dBS90p+SZuQBvTfA2wFPAv8jHTp/FeaWzwzM+tWdQUYSaOBm4B3ku5g+RSwL2n9y68lHRQRK5pdSDMz6z71TlM+H3gzsHdE7BwR+0bEzsDeWfr5zS6gmZl1p3q7yCYDn4uIu/KJEXGXpJOBi5pWMjOz15niID50/kB+f+ptwbwReKHKvheANwyuOGZmtoGFC9PWZeoNMHcCJ0raPJ+YvT4x229mZs30Orll8peA+cCjkm4iDfKPJi26FDCxqaUzM7OuVe8dLe+W9DbgeGBP0myyJ4GLgfMj4unmF9HM7HVu+vT0uNWU9pajTjUHGEmbAnsBD0XESeUVyczM1nPJJenxxO4KMPWMwbwK3Ar8VUllMTOzIaTmABMRrwG/A8aUVxwzMxsq6p1F9hXgNEnvKKMwZmY2dNQ7i+xU0or9uyU9TppFtt71oyNiryaVzczMuli9Aea32WZmZtavmgKMpGGky8T8FvgDMC8iniqzYGZmltljj3aXoCG13DJ5Z2AeMDaXvFLSRyLiprIKZmZmmb5bJle4Vlknq2WQ/xzgNeDvgDcBuwO/AmaVWC4zM+tytQSYfYFTI+LnEfFSRNwPzAB2lLRducUzM7NuVUuA2Q74fSHtQdK1x7ZteonMzGx9Utq6TK3rYGLgLGZmZuvUOk35RkmvVEi/pZgeEaMHXywzM+t2tQSYM0ovhZmZDTkDBpiIcIAxM7O61XstMjMzs5o4wJiZWSnqvRaZmZm12qxsXXtxwUiHc4AxM+t0fbdMHoKXijEzM6ubWzBmZp1u9uzsyfZtLUa9Wt6CkbSbpFskrZb0hKQzJW08wDF7SrpU0rLsuKWSTpe0WSHfTElRYXt/ubUyMyvRjBlp6zItbcFIGkW69P99wBRgF+A8UqA7tZ9Dp2Z5zwZ+B7wTOCt7PLyQ93mgGFDuH2zZzcysPq3uIvs0MAw4LCJWAjdL2hKYKemcLK2SsyNiRe51j6SXgFmSdoqIh3P7XomIO8spvpmZ1arVXWSHADcWAskcUtDZr9pBheDS51fZo699ZmbWgVodYMYBS/IJEfEIsDrbV493k26EtrSQPlLS05LWSvqVpMMaLq2ZmTVMEa27Er+ktcAJEXFhIf0x4PKIOKXG82wL/Aa4LiKm5dI/TmrR3A0MJ90YbTJweERcVeVc04HpAGPGjBk/Z86cequ1nlWrVjF8+PBBnaObuL5Dm+vbWvc8/vwGae/YfgQTJ00C4KIfzN1g32A0o76TJk1aFBETKu1rxzTlShFNVdI3zCi9AfgPYBXwxfVOHPGDQt6rgf8BTgMqBpiImA3MBpgwYUJMnDixlmJU1dPTw2DP0U1c36HN9W2taRUWUi7/2MQ/Pz/vnk2q7mtE2fVtdRdZLzCyQvoI4LmBDpYk4HJgd2ByRPT2lz9S8+wq4J0DTYU2M+tYEWnrMq1uwSyhMNYiaQdgcwpjM1VcQJrefGBE1JK/T/d9M2ZmXa7VLZjrgYMlbZFLmwqsARb0d6Ckk4HPAx+PiNtrebOsxfMh4NcR8WpjRTYzs0a0OsBcDLwMXCXpgGyAfSZwfn7qcrZi/3u510cB3yB1jz0uaZ/ctk0u3wJJx0k6SNKHgGuBfbL3MDPrTuPHp63LtLSLLCJ6Je0PfBu4mjTucgEbBoBNgPyYyUHZ47Rsy/sUcFn2fBnwz8B2pCnMi4FDI+L6ZpTfzKwtFi9Ojwe2txj1avkssoi4D3jfAHnGFl5PY8PAUum4owdRNDMzayJfrt/MzErhAGNmZqVwgDEzs1I4wJiZWSl8R0szs0537LHtLkFDHGDMzDpd3y2TK1yrrJO5i8zMzErhFoyZWadbtKjdJWiIWzBmZp1uwoS0dRkHGDMzK4UDjJmZlcIBxszMSuEAY2ZmpXCAMTOzUjjAmJlZKRxgzMw63cKFaesyDjBmZp2uS2+Z7ABjZmal8KVizMw63fTp6XGrKe0tR50cYMzMOt0ll6THE7srwLiLzMzMSuEAY2ZmpXCAMTOzUjjAmJlZKRxgzMysFJ5FZmbW6fbYo90laIhbMGZmnW7Roq68bbIDjJmZlcIBxszMSuEAY2bW6aS0dRkHGDMzK4UDjJmZlcIBxszMSuEAY2ZmpXCAMTOzUjjAmJlZKXypGDOzTjdrVnr8fXuLUS8HGDOzFhl70rXrvV7+zUNrO7DvlsmF46udt65zl8hdZGZmVgq3YMzMOt3s2dmT7dtajHo5wJiZdboZM9Ljide0txx1cheZmZmVouUBRtJukm6RtFrSE5LOlLRxDceNkHSppF5Jz0v6oaQ3V8g3RdI9kl6SdJ+kqeXUxMzM+tPSLjJJo4B5wH3AFGAX4DxSoDt1gMN/DLwdOAZ4DTgbmAv8Xe787wF+AnwHOA6YDFwhqTcibmpqZczMMg3PDitRJ8wsa/UYzKeBYcBhEbESuFnSlsBMSedkaRuQtC9wMLBfRNyWpT0O/ELSARExL8v6VeC2iDguez1f0u7AaYADjJlZC7U6wBwC3FgIJHNIrZH9gKv7Oe6pvuACEBG/lPRQtm+epDcCk0gtl7w5wKWSRkTE802qh5kNcZ3YKhmsYp2+9I5XmFji+7U6wIwDbs0nRMQjklZn+6oFmHHAkgrp92f7IHW3bVoh3/2kLrhdgbsaK7ZZdxlM90j+2Hp+gBp9z0aOa9UxrwdjT7q2tM9BEVHKiSu+mbQWOCEiLiykPwZcHhGnVDnuZuDFiPhgIf0HwM4R8W5JfwvcDrwrIu7O5Xkr8Dvg4ErjMJKmA9kyWd4OLG24gsnWwNODPEc3cX2HNtd3aGtGfXeKiG0q7WjHOphKEU1V0hs5rvhaVdJTYsRsYHalfY2QtDAiJjTrfJ3O9R3aXN+hrez6tnqaci8wskL6COC5Bo4bmTuuN5dWzMMA5zczsyZrdYBZwroxEwAk7QBsTuUxlqrHZfJjMw8CayvkG0ea1vxAA+U1M7MGtTrAXA8cLGmLXNpUYA2wYIDjts3WuQAgaQKwc7aPiHgZmA98uHDsVOCOFs4ga1p3W5dwfYc213doK7W+rR7kH0VaZPlb0tTknYHzgQsj4tRcvmXAgog4Opd2A2km2PGsW2j5x4goLrTsAb5NWoQ5Ocv/fi+0NDNrrZa2YCKiF9gf2Jg0JfkM4ALg9ELWTbI8eUeSWjnfBy4HFgEfKpz/duAI4ADgRuDvgaMcXMzMWq+lLRgzM3v98NWUa1T2RTo7TSP1lbRnVtdl2XFLJZ0uabNWlbtRjX6/ueM3krRIUkj6QJllbYbB1FfSYZLukrRG0jOSbpC0edllHoxB/P+dIOmmrJ7PSponae9WlHkwJJ16vfQAAAR9SURBVL1V0ixJv5b0qqSeGo9r6u+V7wdTg7Iv0tlpBlHfqVnes0mLW98JnJU9Hl5ikQdlkN9vn2PokrtBDaa+ko4hjXGeA5wAjALeRwf/ljRa32yG6zxgMfCJLPkE4CZJ74yIh8ss9yDtThqDvhN4Qx3HNff3KiK8DbABJ5PW2WyZS/sysDqfVuG4fUkLPN+bS9srSzug3fUqob7bVEibntV3p3bXq9n1zeUdBawAjs7q+oF216mk73dr4AXg2HbXoUX1/TTwKjCy8F2/Cnym3fUaoM4b5Z5fCfTUcEzTf6/cRVabahfpHEa6SGd/x21wkU6g7yKdnaqh+kbEigrJv8oeRzeveE3X6Pfb5yzg58AtJZStDI3W9yPZ47+XVbCSNFrfTYFXgFW5tFVZmioe0SEi4rUGDmv675UDTG02uNhmRDxC+guo0gLQqsdl8hfp7ESN1reSd5Oa2oO9xluZGq6vpHcCnyJNh+8WjdZ3b9L3eLSkxyStlfQLSe8ur6hN0Wh9f5LlOU/SaEmjSbNee4H/LKms7dT03ysHmNqMovKlZnqzfc0+rt2aUm5J2wJfAf5fVLnXT4cYTH0vAv41IpY1vVTlabS+25L6508FTgT+N/AicIOkMc0uZBM1VN+IeIJ0C5DDgaey7TDShXMrtda7XdN/rxxgalf2RTo7zaDKLekNwH+QuhS+2MRylaXu+ko6kvSD+7WyClWiRr7fjYDhwNER8cOIuAH4IGlM4nPNL2JTNfL9bkcav1hE6iI6JHt+raQdyyhkB2jq75UDTG3KvEhnJ2q0vgBIEmkx7O7A5EgLbDtZ3fWVtClwLmmWzUaSRgJbZrs3L1wOqdM0+v0+mz329CVkLdNFwG7NKlwJGq3vCaTZcUdExA1ZQD2cFFC7qUu0Vk3/vXKAqU2ZF+nsRI3Wt88FpOmgUyKik+vZp5H6bg78JelSR73Z9uts3xzWTW7oRI1+v/eT/pItDnCLNM7WqRqt7zjg3ohY25cQEX8C7iVNdR5qmv575QBTm9Iu0tmhGq0vkk4GPg98PNKle7pBI/VdReqfz28fzfadAnysnKI2RaPf7zWkYDKpL0HSCGA864JrJ2q0vg8Df5119wKgdGv2vwaWl1DOdmv+71W752t3w0Ya4HoSuJl0nbPppB+YrxXyLQO+V0i7Afg9aXDwg6RZOD9rd53KqC9wFOkv3EuBfQrbBmtkOmUbzPdb2D+W7lgHM5h/z3OzYz8JHEr6gV4BjGp3vZpdX1LgXAtcm9X1A6Qf2rXA/2p3vQao85tI12U8AriD1Orqe/2mfr7fpv5etf2D6JaN1Md8K+mvnidJax82LuRZDlxWSBuZ/eA+B6wEfgRs3e76lFFf4LLsB7bSNq3ddSrj+y3s74oAM5j6kgb5/w14Jjt2HvCOdtenxPruD9xGGn96lhRQJ7a7PjXUt+/fYqVtbD/1bervlS92aWZmpfAYjJmZlcIBxszMSuEAY2ZmpXCAMTOzUjjAmJlZKRxgzMysFA4wZmZWCgcYMzMrxf8HHnvykp4UK7MAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -494,9 +496,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -508,7 +510,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/credit_risk_analysis.ipynb b/qiskit/finance/simulation/credit_risk_analysis.ipynb index 7a842f4cb..a90318cee 100644 --- a/qiskit/finance/simulation/credit_risk_analysis.ipynb +++ b/qiskit/finance/simulation/credit_risk_analysis.ipynb @@ -30,8 +30,9 @@ "### Introduction\n", "This tutorial shows how quantum algorithms can be used for credit risk analysis.\n", "More precisecly, how Quantum Amplitude Estimation (QAE) can be used to estimate risk measures with a quadratic speed-up over classical Monte Carlo simulation.\n", - "The tutorial is based on the following paper:\n", - "Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger. [Woerner2019]\n", + "The tutorial is based on the following papers:\n", + "- Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger. [Woerner2019]\n", + "- Credit Risk Analysis using Quantum Computers. Egger et al. (2019) [Egger2019]\n", "\n", "A general introduction to QAE can be found in the following paper and tutorial:\n", "- Quantum Amplitude Amplification and Estimation. Gilles Brassard et al.\n", @@ -101,7 +102,8 @@ "$$ \\text{CVaR}_{\\alpha}(L) = \\mathbb{E}[ L \\mid L \\geq \\text{VaR}_{\\alpha}(L) ].$$\n", "\n", "For more details on the considered model, see, e.g.,
\n", - "Regulatory Capital Modelling for Credit Risk. Marek Rutkowski, Silvio Tarca.\n", + "Regulatory Capital Modelling for Credit Risk. Marek Rutkowski, Silvio Tarca\n", + "\n", "\n", "\n", "The problem is defined by the following parameters:\n", @@ -141,7 +143,7 @@ "$$ |\\Psi\\rangle = \\sum_{i=0}^{2^{n_z}-1} \\sqrt{p_z^i} |z_i \\rangle \\bigotimes_{k=1}^K \n", "\\left( \\sqrt{1 - p_k(z_i)}|0\\rangle + \\sqrt{p_k(z_i)}|1\\rangle\\right),$$\n", "\n", - "where we denote by $z_i$ the $i$-th value of the discretized and trucated $Z$." + "where we denote by $z_i$ the $i$-th value of the discretized and trucated $Z$ [Egger2019]." ] }, { @@ -255,7 +257,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAElCAYAAAAhjw8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmcFMX5+PHPw3KuyC2iCCwYAfEiisoRBQEPCHxVbjziqgke0QTjbVAXNPFEjLcEI0bxt4DBW1ExAQ3gAUriAahR5JBbkBs5nt8f1bsOs7MzPcd27+w879erX7NT3dX9TPcwRXV1VYmqYowxxqSjWtgBGGOMyX5WmBhjjEmbFSbGGGPSZoWJMcaYtFlhYowxJm1WmBhjjEmbFSbGpEFEeoiIikhRSMcv8I4/MSp9opdeEEZcXgyhnhsTLCtMTMq8H4qs76gkIkUln8Vb9orIJhH5VkReE5HrRaR5BR270DtmYUXsvyKVV5CZ3FQ97ACMqURmATO9v/cDDgK6AX2A0SJSpKp3RuX5ADgcWBdUkFFWeMf/IaTjxxP2uTEBssLEmJ/MVNWiyAQREWAAMB64Q0SILFBUdRuwKNAoI6jqrjCPH0/Y58YEy25zmcCISC8RmS4i34vIDhH5QkTuFJH6MbZtIyLjReQrEdnu5flERB4TkcYR29UUkd+JyEciskFEtonIEhF5UUR6pxuzOv8ABnlJt4rIQRHHj9ku4Cd+EZkJPOlleTLqVluBt03JLbgeInKOiLwvIltEZIm3PtGtpmoi8gcRWeSd8+UiMk5E6kVv6O1nZqydRLfBeJ/3G2/1BVGxF8Y7N966w0Tk7yKyQkR+FJHvvPeHxdg28hwMEpEPvOv8vYgUV9QtSJMcq5mYQIjIJcCjwFZgKrAG6AFcD/QXkW6qutHb9iDgQ6Ae8BrwD6A20Bo4H3gIWO/teiIwHPgU+DuwHTgY+AVwBjAjE/Gr6r9E5N/efgcAD8f5rH7jnwhsBM4EXgQWROxmY9RurwZOBV4G/gWUKYDLMQ44GZjiHeN0YCRwkoj8QlV3+NxPtJlAA+D3wH+AFyLWLYiVoYSIHI+7LvsDLwGfA+2Bc4EzRaSXqs6LkfVy4P+8PLOAE4GhwDEi0lFVd6b4WUwmqKottqS0AOq+Qgm3awXsBDYB7aPWPeLtZ3xE2pVe2u9j7Gs/oI73d31gLzAPyIuxbWOfn6PIO15Rgu1u87Z7KiKtR3Rev/F77wu9bQsTxLYV+HmM9QXe+olR6RO99HVAq4j0arjCTYGbY1zPmeXEUbK/gkTHTnBuBFjopZ8btf1QL30RUC3GOdgEHBWV51lv3ZCw/z3k+mK3uUwQzgNqAg+pavQ99D8Cm4HzRaRW1Lrt0TtS1a2qWpKuuB+nnbhCJXrb9dFpaVrhvR7gc/tE8SdjvKp+nEK+v6jqtxHH3wtciztfF6Wwv3R1xdVC5qrqpMgVqjoZ+DfQDlcDjPaAqn4SlfZX7/WETAdqkmOFiQnCsd7rP6NXqOoG4GPcbaD2XvJLwBbgYRH5h4iMEJEjvMbwyLybcLd9ugILROQWETlFRPIr6HOUHD/R49C+4k/SBynmmxWdoKpfA8uAAhFpkEZMqSj3uxCV/vMY62Ld+lrmvTZMJyiTPitMTBBK7u+vLGd9SXoDAO9/0icA04DewOO4NpFvReR3UXmHAqOBOt7rP4H1IvK0iByYsU/gHOy9ro23UZLx+7UqxXyrE+zPb9tLpiT1XYgS3Y4EsNt7zUsnKJM+K0xMEEr6QDQrZ/1BUduhqgtVdSjQGOgE3ID7vv5FRC6O2G67qhapalugJe6W2r+91+cy+ingFO/1/UQb+o0/Cal2Di2vQC25FpH9U5TyH8rJVA0m6e+CyQ5WmJgglNzr7xG9wrvN0hHYgWuY3Yeq7lbV+ap6F+6pLYCzYh1EVZd59+FPB74EfhH5GHE6RKQnrgPjduB5v/l8xL/He62o/1l3j04QkTZAC2CJek/QeTZ46dHb5+GuUbRUYi/3uxCV/lES+zSVgBUmJgjPALuAK0XkZ1HrbsM9QvuMeo92isgJ5dyiKknb5m13gIicGGO7/XCPne4GfkwncHEG4B5nBrhVVePecvIbv6fkIYGW6cQZx+9FpFVEbNWAe3D/9p+M2vYDoKWInBaVPgr3RF60DbjaTDKxzwYW4wr6QZErvPcnA1/gapcmi1g/E5O2OB3mAC5X1SUiMhLXN+MjEZmCa3foDnTBPQp6fUSec4Dfisgs4Cvcj9ahQH/ck1v3e9s1B94TkYW4/8kuwxVM/XC3UR5Q1c1JfJQeER3s6uDaSLrh+ofsBK5X1Xt87Mdv/ABzcYXLSBFpxE9tHA+qaiZu9czGPZwwGXfr6HTgGGA+cHfUtvd661/0tv8e93BDa1y/kh6RG6vqFhF5H9dnZRKuENgDvKSq/40VjKqqiFwAvAVMFpEXcde/Ha7Gthn4lffUmckmYT+bbEv2Lnj9TBIsDSK2Pw14E/fjuhP3Q3t35DbedifiOjj+B/eDtt3b9kngyIjtGgC34BrdV3j7XIn74RsOiM/PURQV817cj9q3uE6H1wPNy8nbg7J9KXzFH7H9GbhCZUtEDAVRsfUo5/gFxO9n0gbX4XER7lbiClxhVq+c/f0f7qmpHbhaUzGuVjIxMq6I7X+Ge6JuvXfeSvvMxDo3EfnaAU9712uX9/oM0C7O9SlzDsr7/LYEv4h3QYwxxpiUWZuJMcaYtFlhYowxJm1WmBhjjEmbFSbGGGPSlhOPBjdp0kQLCgrCDiPnLV6/GIB2jduFHInxbZO7ZtSza5aSxd75a5ed52/+/PnrVNXXwKY5UZgUFBQwb16sMeJMkHpM7AHAzMKZocZhkjCjh3vtPTPMKLJXjx7udebMMKNImYh8m3grx25zGWOMSVtO1ExM5TDq5FFhh2CSdaRds7SMyp3zZ4WJCUzvNmlPyW6C1syuWVp65875s9tcJjALVi1gwaq404ObymbDAreY1CxY4JYcYDUTE5iR00cC1gCfVea7a2YN8Cka6Z2/LG2AT4bVTIwxxqTNaibGmJRs2rSJNWvWsGvXrrBDqbxuvdW9Liwz71uoatSoQdOmTalXr17G9mmFiTEmaZs2bWL16tU0b96cOnXqICJhh1Q5VfNu/lSiTouqyvbt21mxYgVAxgoUu81ljEnamjVraN68Ofn5+VaQZBkRIT8/n+bNm7NmzZqM7ddqJgkU3PBq2CGEasmdv8zYvv7c688Z25cJyDGxr9muXbuoU6dOwMFkoebNw46gXHXq1MnoLUorTExgurboGnYIJlkHlH/NrEbiQ926YUdQrkxfP7vNZQIzZ9kc5iybE3YYJhlr57jFpGbLFrfkAKuZmMDc9PZNgPUzySr/cdfM+pmkyGvkrkwN8BXFaibGmJxVVFSEiMRcnnnmGWbOnFn6vkGDBqX5lixZgojwyiuvlLvvHj16IO3bI+3b89BDDwXxcUJlNRNjTE6rX78+06dPL5P+s5/9jE8//RSASZMm0bZt26T2+8gjj7Dpk0/oMmxYRuKs7KwwMcbktOrVq9O5c+e42xx99NEceeSRSe23Q4cOkJeXTmhZxW5zGWOMSZvVTExg7j/j/rBDMMk6Ljeu2e7du8ukVa+egZ/HFi3S30eWsMLEBKZjs45hh2CS1TC5a1YyNXOkIUcM4fLjL2fbrm30ndS3zPrCjoUUdixk3bZ1DJoyqMz6yzpdxtAjh7Lsh2Wc//z5ZdZf3eVq+rfrn1SckdavX0+NGjXKpH/zzTcp77NUfn76+8gSgRcmItIBeBDoAmwEJgCjVXWPj7wDgBuBI4FtwIfAQFXdWnERm0yZ8fUMwCbJyiqr3DWrypNk1a9fnxkzZpRJP/jgg1myZEl6O9+0Kb38WSTQwkREGgIzgM+BM4FDgbG4tpu481uKyK+Bh4C7gWuBhkBPrHaVNW5/53bACpOs8qm7Zn4Lk3h9iPJr5Mdd3yS/Sdz1Leq3qJA+StWrV6dTp04Z3y8AK1dWzH4roaB/iC8F6gADVHUT8JaI1AOKRORuL60MEWkCjAOuVNW/Rqx6vsIjNsYYk1DQT3P1Ad6IKjSKcQVM9zj5hnivT1VUYMYYY1IXdM2kPfDPyARVXSoi27x1L5eT70RgMXCxiPwROBD4CLhKVW3gIGNMynbv3s17771XJr2FjyexZs+ezY4dO/ZJKygoqLjbZpVY0IVJQ1yje7QN3rryNAPa4dpVrgPWe6/TReQwVV0dnUFERgAjAFq2bJlm2MaYquqHH36gS5cuZdJvu+02fvGLX8TNe+edd5ZJu+CCC5g4cWKmwssaYTRea4w0KSe9RDWgLjBYVacDiMgc4FvgCuDmMgdRHQ+MB+jUqVO8fZuAPN7v8bBDMMk6oWpfs6KiIoqKispdP3PmTAD27NnDnj17yPN6tBcUFKAa/2dlz549aCWezyTTgm4z2QA0iJFen9g1lhLfe68zSxK8dpf5QIdMBWcqVrsm7WjXpOqPnlql1GvnlhzXsWNHGjdunFSeXr16UWP//Ssooson6JrJIlzbSCkRaQHs560rz0JczSV6NhcB9mYyQFNxXl7smsTS6WBmArbca8Y8JDev2XHHHceHH34IJN8j/vHHH2fzd98B0CrJcb2yUdCFyevAtSKyv6pu9tKGAtuBWXHyvQLcCpwCvAYgIvWB44B7Ky5ck0lj544FrDDJKovcNcvVwmT//fdPuTG9XeQcJgcckKGIKq+gb3M9BuwEpolIb6+RvAi4L/JxYRH5SkSeKHmvqvOAF4EnROQCEfkl8BKwC3g4yA9gjDGmrEALE1XdAPQC8nCPAY/GdUa8NWrT6t42kc4DXgDuA57DFSQ9vX0aY4wJUeBPc6nq57hhUOJtUxAjbQtwmbcYY4ypRGw+E2OMMWmzQRJNYJ4+++mwQzDJ6mLXLC2tW4cdQWCsMDGBaVE/dyYKqjL2s2uWlpo1w44gMHabywRm8qeTmfzp5LDDMMn4drJbTGq+/94tOcAKExOYR+c9yqPzHg07DJOMLx91SxXTr18/jjrqqHLXX3HFFTRs2JCdO3cm3Nfu3bsRkdKlTp06dOjQgXvuuYfdK1fC2rX7bL9lyxaaNm3K7NmzS9MOOeQQbrjhhnKPcckll3DJJZf4+GThscLEGJNzhg8fzqeffspnn31WZt2ePXt47rnnGDBgALVq1fK9z+uuu465c+fy6quvctppp3Hddddx79/+Vma7v/zlL7Rr145u3bolte+nnnoqM1MJVxArTIwxOefMM88kPz+f4uLiMuv+9a9/sXr1aoYPH57UPlu3bk3nzp3p2bMn999/P7169eLvL764zzZ79uzhkUce4aKLLkpq34ceeiidO3fmscceSypfkKwwMcbknLp169KvXz8mTy7bHlRcXMyBBx7IKaecwooVK7jwwgtp3bo1derUoW3bttx6663s2rUr4TGOOeYYlkVN2/vWW2+xevVqzj777KRjHjhwIE8//XTC0YrDYk9zGWMyZ0aPsmkth0Dby2H3NpjZt+z6NoVu2bEO/j2o7PrDLoNWQ2HrMph7ftn17a9Oaeyw4cOHM2XKFObPn89xxx0HwK5du3j++ec599xzycvLY+3atTRp0oT777+fBg0asGjRIkaPHs26det4+OH4IzktXbqU1occsk/a22+/zeGHH06DBrEGT4+va9eurFy5ks8//5wjjjgi6fwVzQoTE5jnhjwXdggmWb+outesT58+NGjQgOLi4tLC5I033uD7778vvcXVsWNHOnbsWJqnW7du1KlTh0svvZS//OUv+4wkvHfvXnbv3s22bdt46aWXePHFF5n01FPQpk3pNvPnz+fIFEcQPuqooxARPvjgAytMTG5rkt8k7BBMsmonec16zyx/XfX8+OtrN4m/fr8W8dcnqVatWpx99tlMmTKFu+++GxFh8uTJtGrVis6dOwOugBg3bhwTJkxgyZIl+0zRu3z5cgoKCkrf//a3v+W3v/1t6ftrr72WwVHtLqtWrUq5IKhZsyb16tVj1apVKeWvaNZmYgIzccFEJi6YGHYYJhlfT3RLFTV8+HCWLl3K3Llz2bFjBy+++CLDhw9HxE2dNHbsWK6//noGDx7MSy+9xAcffMADDzwAUGbu9xtvvJEPP/yQt956i759+3Lvvffy5tSpsG5d6TY7duxI6gmxaLVq1Spz3MrCaiYmMCUFSWHHwlDjMEkoKUjaFIYZRYXp2bMnBx54IMXFxaxcuZLNmzfv8xTX1KlTGTZsGGPGjClN++9//xtzXy1btiyd++Tkk0/miCOO4Nqbb+bUF15AmrgaXqNGjdi4Md6ksvFt3LiRRo0apZy/IlnNxBiTs/Ly8hg8eDBTp07l2Wef5fDDD+foo48uXb99+/YyNYlJkyYl3G/NmjUZM2YM/128mNffeac0vV27din3FVm5ciU//vgjbdu2TSl/RbPCxBiT04YPH86qVat4/vnnOeecc/ZZd+qpp/Lss8/y6KOP8sYbb3DuueeyZMkSX/sdMmQIh7VqxT1PlM7zR7du3fjoo49iPt67ePFinnvuuX2W6dOnl66fN28e1apVo0uXLql90Apmt7mMMTmtS5cuFBQUsGTJEoYNG7bPutGjR7N+/XpuuukmRIRBgwYxbtw4zjrrrIT7zcvL44YRI7j4j3/kww8/5Pjjj+ess87id7/7He+9916ZQuGFF17ghRde2Cft0EMP5auvvgJg+vTp9OzZM6XHioNghYkxJqeJSLm3nvbff3+eeuqpMumRNYvq1auX25HwooEDuWjgQPDmgz/44IM5/fTTKS4u3qcwWb58edwYd+/ezbRp0xg3blzCzxMWK0xMYF4797WwQzDJ6mHXLC0/+1mZpJtvvpnTTz+dMWPGUL9+fV+7KS4upn79+gwePDjTEWaMtZmYwOTXyCe/Rn7YYZhkVM93i0lNXp5bInTu3Jk77riDpUuX+t6NiDBhwgTyovZVmQReMxGRDsCDQBdgIzABGK2qe+LkKQBi1UMnq+qwGOmmEnrkw0cAuPz4y0OOxPj2hbtmtLVrlpI1a9xr06b7JF9+eXLn89xzz81URBUm0MJERBoCM4DPgTOBQ4GxuBrSKB+7uAaYHfF+XXkbmspnymdTACtMsspSd82sMEnRhg3uNaowqYqCrplcCtQBBqjqJuAtEakHFInI3V5aPItV9b0Kj9IYY0xSfBcmInIUcALQDKgNfA98AcxR1Q0+d9MHeCOq0CgG7gK6Ay/7jccYY0zlEbcwEZE2wGXAucCBwF5cO8dOoAGQD+wVkVm4to/Jqro3zi7bA/+MTFDVpSKyzVuXqDB5UkQaAWuA/wf8UVW3J8hjjDGmgpX7NJeITAA+AzoCY4CfA7VV9QBVPURV6wJNgf7AJ8DdwEIR+UWc4zXEFUbRNnjryrMTeBi4GOgFPI4r5MpOk/ZT/CNEZJ6IzFsbNQezMcaYzIpXM9kBtFfVb8vbQFXXAa8Dr4vIH4DBQPMEx4zVu0fKSS85zkrgioikmSKyGnhERDqq6oIYecYD4wE6depUOacmyzEzC2eGHYJJVgaHfM9JXmfFXFBuzURVr4hXkMTYfq+qTlbVsvNg/mQD7vZYtPrErrHEUzJrz7FJ5jPGmH1MmzatdKiSWrVq0bZtW0aNGsW8efMQEf7xj3/EzLd69WqqV6/O3Xff7ftYo0aNQkRKl2bNmtG/f38+/fTTmNvfddddnHrqqaXvJ0yYgIiUOxT9smXLqFu3Lt9+6/vnOyNS7rQoInVFpG6S2Rbh2kYi99MC2M9blwyNejWV3L1z7uXeOfeGHYZJxsJ73VKFXX311QwePJg2bdrw9NNP8+abb3LVVVfx8ssv86c//YnDDjuM4uLYd9SnTp3K3r17GTp0aOydr1rlliiNGjVi7ty5zJ07l3HjxrFw4UJOPfXUMsPTb968mXvuuYcbbrjB9+dp0aIFAwcO5LbbbvOdJxOSLkxE5HAR+RDYBPzgtUt08Jn9deB0Edk/Im0osB2YlWQoJZNFz08ynwnJK1+8witfvBJ2GCYZK15xSxX18ssvc9999/HXv/6VCRMm0L9/f7p3785ll13GRx99xIgRIxg2bBivvvoqW7ZsKZO/uLiYrl270qpVq9gH+OEHt0SpUaMGnTt3pnPnzgwfPpyJEyeyatUq3nzzzX22e+aZZ6hbty69evVK6nNdeOGFPPPMM2zY4PdB2/SlUjOZAEwF9gcOBhYDE33mfQzXmD5NRHqLyAigCLgv8nFhEflKRJ6IeF8kImNFZICXbwwwDpimqrFnqjHGmATGjRvHsccey0UXXVRmXV5eHn369GH48OFs376dF198cZ/1y5YtY86cOftMpvXkk0/SrVs3GjVqRKNGjehVWMhHn32WMI5jjjmmdJ+RnnrqKQYOHJj05zr55JOpV68eU6ZMSTpvquI9zTXO61AYrT3woKpuVdXVwFOAr9lavP4ovYA83GPAo3GFwq1Rm1b3timxCNcP5UngNeAc4B7v1RhjkrZr1y7mzJnDGWecEXe7ww8/nGOOOabMra7JkydTrVq1fQZf/PbbbyksLGTq1KlMmjSJZk2acNJ55yVsvygZp6t169alaZs3b+bDDz+ka9euyX40qlWrxoknnsiMGTOSzpuqeE9z1Qe+FJFbgcf1pzGW3waeFpG/4fqZ3Oil+aKqnwM9E2xTEPW+mDiPARtjKokePcqmDRkCl18O27ZB375l1xcWumXdOhg0qOz6yy6DoUNh2TI4//yy66++Gvr3TzrU9evXs3PnTlq2bJlw2+HDh3PLLbewYcMGGjZ0vRiKi4vp1asXTSOGSikqKir9e+/evZzasiXt+/Zl0qRJ3HTTTfvsc/fu3QB88803XHnllRx77LH069evdP3HH3/M3r17OfLII5P+bOBqO08//XRKeVMR72mui4C+uP/9/0dETvFW/QZYCtwO3AS8g+v/YUxcdWrUoU6NOmGHYZKRV8ctVZiIJNxm2LBh7Nq1i+effx6A//3vf8yfP3+fW1wAn332GWeddRYHHnggeXl51DjySP63dClffPHFPtutXr2aGjVqUKNGDdq2bcsnn3zCtGnTqFmzZuk2q7yG+ybe/PHJatKkCatXr04pbyri9oBX1fnAySIyDNf7/GPgD6r6h0CiM1XK6+e+HnYIJlmnJHnNZs4sf11+fvz1TZrEX9+iRfz1SWrcuDG1atXyNRR8q1at6NKlC8XFxVx00UUUFxdTq1Ytzj777NJtfvjhB0477TSaN2/OuHHjaNmyJbVr1+bCCy8s8xhv48aNmT59Onv27OHjjz/mmmuu4dxzz+Xdd98tLdxK8kTPQe9XrVq1+PHHH9m7dy/VqlX8bCO+xuZS1WIReQG4HpgvIo8Dt6vq1gqNzhhjKkiNGjXo1q0bb7zxBrfffnvC7YcPH87IkSNZs2YNxcXF9O3bd5/JrWbPns13333HrFmz+FnEpFjRj/uCm52xU6dOAJx44onUqlWLiy66iGnTppU2uDdq1Kg0f926yfbCcPnq168fSEECCZ7mEpF2InKZiPweOFZVRwNHAy2AL0SkMIAYTRVx26zbuG1WsM++mzR9cptbqqiRI0cyb968mFPz7t27l+nTp5e+HzJkCABjxozh008/LXOLa/t2N0xgZE3inWnTEk7JC3DBBRfQvn177rrrrtK0dl7v+fKmFE5kyZIltG3r69mojCi3ZiIivwYewg3MuA0YLSLPqurlwHki0gW4X0SuAH6vqrPL25cxAG9/457TuLn7zSFHYnxb7T1bc1TVvGb9+/fnD3/4AxdffDGzZ8/mzDPPpG7duixatIjHHnuMgoKC0qe9mjZtSs+ePXnkkUeoW7fuPo3lAF27diU/P59f//rXXHPNNSxdupTRN9/MwT7mMqlWrRo33ngjF1xwAbNmzaJ79+4cdthhHHDAAcyfP5+TTjqpTJ7nn3+eGjVq7JN2wgknlD5QMG/ePLp3757qqUlavJrJrcBvVbWvqg7CPZp7iYg0A1DVuap6Im7WRHvSyhiTlcaOHcvkyZP58ssvOeecczj11FMZO3YsvXr14tFHH91n2+HDh6OqnHnmmdSps++DCQcddBBTp05l2bJl9O/fnwceeIDxY8bQ+pBDfMVxzjnn0KZNm32GZhkwYACvvx673eqcc85h8ODB+yzvvPMO4Br4FyxYkFIflVTJT0/8Rq0QWQ7crKpPeu+PAv4DNPcGXozcdr/K3H7SqVMnnTdvXkp5C254NcPRZJcld/4yY/vqMbEHYAM+ZpUZPdxr1ICPCxcu5PDDDw88nKyzeLF7TXHAx5J+Jt999x0HHHCA73wPP/wwDz74IIsWxR+lKtF1FJH5qtrJzzHj1Uxux43K+7KITMENd/JEdEECUJkLEmOMyVbHH388PXv25OGHH/adZ+/evTzwwAOMGuVnJvTMidfP5DHciLzTgbnAWar6m6ACM1VP4/zGNM5vHHYYJhm1GrvFpCYvzy1pGDduHI0b+78GK1eupLCwkHPOCXaAkET9TBYCCwOKxVRx/xgSexhvU4mdZNcsLRGPCKeqQ4cOdOjgdyxdaN68OTfeeGPax01WvLG5yj4+kICI1PfaVowxxuSQeG0mU0RktohcJCLxptRFRLqJyIPAt0CXjEZoqowbZ9zIjTOC/x+TScOCG90SQ3kP75gIy5e7pRLK9PWLd5urDfA73CPCj4vIF8CnwDrcMPINgNa4ueHr4Ebz7a2qqT02Zaq8ucvnhh2CSda62NesRo0abN++nfz8/IADyjJbK++zSdu3by/TTyUd5RYmqroduEtE7sYNG98TOA43BH1t4HvcXCbPAi+q6pqMRWWMqdSaNm3KihUraN68OXXq1PE1WKKpHFSV7du3s2LFCg488MCM7Tfh2Fze0PMzvMUYY6hXz0119N1337Fr166Qo6nESqbs3bs33Dii1KhRgwMPPLD0OmaCr4EejTEmWr169TL6Y1QlXXaZe83gaMeVlRUmJjCH1PM3rISpRPLtmqXF51AqVYEVJiYwzwx4JuwQTLK62jVLyzO5c/6CGejeGGNMlRZ4YSIiHUTkbRHZJiLficgYEfE93oCIVBPH/gXAAAAfEUlEQVSR+SKiItIvcQ5TWYycPpKR00eGHYZJxvyRbjGpGTnSLTnA120uEbkX+Juqfp7OwbzOjzOAz4EzgUOBsbhCze+oZL8GmqcThwnHglULwg7BJGuDXbO0LMid8+e3ZjIQ+EREPhCRS0WkfsIcsV2K6+A4QFXf8gaTHA38QUQSPhbiFUZ/Av6Y4vGNMcZUAF+Fiaq2BnoDi4B7gJUi8qyI9E7yeH2AN1R1U0RaMa6A8TMl2G3AbODtJI9rjDGmAvluM1HVf6nqr4CDgCuBQ4A3RORbERktIm187KY9rkCK3O9S3LTA7eNlFJGjgQuBa/zGbIwxJhhJN8Cr6hZVfQI3ZtdsoAVwI/CFiLwoIq3iZG8IbIyRvsFbF8+DwMOq+pWfOEVkhIjME5F5a9eu9ZPFVLC2jdvStnHbsMMwydi/rVtMatq2dUsOSKqfiYgUABd4SwvgLWAw8Apu/K47cLet4o0cHGuoSiknveS4w4B2QH+/sarqeGA8uGl7/eYzFWd8//Fhh2CSdaJds7SMz53z5/dprvNxt5hOBpYCTwJPqmrk2MqvichW4o/htQE32nC0+sSusSAiNXDtNHcB1USkAVDSWL+fiOyvqpv9fA5jjDEVw2/NZDzwPHC6qsZr/P4CN3d8eRYR1TYiIi2A/YhqS4mwH6595j5viVQM/A9IfzozU+FGvDwCsBpKVnnfXTOroaRohHf+cqCG4rcwOVhVNyTaSFVX4h71Lc/rwLVRtYmhwHZgVjl5tgCnRKU1A/4fcBPwz0Rxmcrhi/VfhB2CSdZmu2Zp+SJ3zp/fBvj5InJMrBUicqSIfO1zP4/hJtaaJiK9RWQEUATcF/m4sIh8JSJPAKjqblWdGbkA73mbfqKq7/s8tjHGmArit2ZSANQqZ10+7jZUQqq6QUR6AQ8BL+PaScbhCpTouHwPsWKMMSZc5RYmXo/0yMbyZiLSMmqz2sAwYIXfA3pDsvRMsE1BgvVLcE+AGWOMqQTi1UyuwvUlUW95vpztBLg6w3GZKqhjs45hh2CS1dCuWVo65s75i1eYPAvMwxUWL+F6ni+O2uZHYLHXi92YuO4/4/6wQzDJOs6uWVruz53zV25hoqpfAl8CiMgpwEfWn8MYY0wsvhrgVbW8x3aN8e28aecBNuNiVpnjrpnNuJii87zzlwMzLsZrgF+D66T4sYisJc5wJwCq2jTTwZmqZfmm5Yk3MpXLNrtmaVmeO+cvXs3kYWB1xN82vpUxxpiY4rWZjI74uyiQaIwxxmSlwOeAN8YYU/XEazOZksyOVHVI+uGYqqzLIfFmJjCVUhO7ZmnpkjvnL16byQGBRWFywh297wg7BJOsjnbN0nJH7py/eG0m0SP1GmOMMTFZm4kJzMApAxk4ZWDYYZhkvDvQLSY1Awe6JQfEazO5HJiqqmu9v+NS1UcyGpmpctZvWx92CCZZO+2apWV97py/eG0mD+HG5lrr/R2PAlaYGGNMjorXZlIt1t/GGGNMNCskjDHGpM3vTIuISE2gEDgBOAhYCbwPPKWqP1ZIdKZK6dW6V9ghmGQdaNcsLb1y5/yJauIht0TkcGA6cDAwH1gDNAWOBVYBZ3gzKFZKnTp10nnz5qWUt+CGVzMcTXZZcucvww7BGBMSEZmvqp38bOu3ZjIe+AE4KXIiLG8a31eBx4CTkw3UGGNM1eC3zaQTcEv0jIre+1uA4/0eUEQ6iMjbIrJNRL4TkTEikpcgzxEiMt3bfqeILBWRCSJykN/jmvD1mdSHPpP6hB2GSca/+rjFpKZPH7fkAL81kyVA7XLW1QZ8TdsrIg2BGcDnwJnAocBYXKE2Kk7W+sA3wN+B74DWuPnpjxOR41V1t5/jm3Bt37U97BBMsvbYNUvL9tw5f34LkxuAsSLyjaq+X5IoIp2BMcC1PvdzKVAHGKCqm4C3RKQeUCQid3tpZajqHGBORNJMEVkOvAkcDXzk8/jGGGMqQLwe8B+y74RY9YA53gyMJQ3wTYH1wE3ACz6O1wd4I6rQKAbuAroDLycRe0nX0ppJ5DHGGFMB4tVMPmPfwuSzDByvPfDPyARVXSoi27x1cQsTEamGi7k1cCfwIfBBBuIyxhiThng94Asr4HgNgY0x0jd46xJ5DTjd+3s+0FdV98baUERGACMAWrZsmXykJuP6te0XdggmWc3tmqWlX+6cP9+dFjMoVscWKSc92pVAI+AwXIP96yLSTVV3lDmI6njcI8106tTJ5q+vBK7pek3YIZhkHW7XLC3X5M75S6YHfAFwHtCWGE92+ZxpcQPQIEZ6fWLXWKKP8aX35/si8i7uCa9zgL/5OLYxxpgK4qswEZHjgFnAMlxh8l9cAVAALAe+8nm8Rbi2kch9twD289b5pqrfisj3QJtk8pnw9JjYA4CZhTNDjcMkYUYP99p7ZphRZK8ePdzrzJlhRhEIv50W7wH+ARyJuyV1saq2AX6Buz11t8/9vA6cLiL7R6QNBbbjCivfRKQd0BhXOzHGGBMiv4VJR+BZoKSxuzaU9v8YjXuyyo/HgJ3ANBHp7TWSFwH3RT4uLCJficgTEe/vFZE7ReRsETnFm6zrDeB/uEeLjTHGhMhvYaLAj+pGhVwDtIpYtwzXIJ54J6obgF5AHu4x4NHAOFxv9kjVvW1KzANOAp7AjQX2O1xNqbOqbvX5GYwxxlQQvw3wn+OGPvkXMBe4SkTmAT8C1+FqCL54owv3TLBNQdT7YqwGYowxlVYyowaX1EZuwg1jUtJgvhUYlOG4TBU05Ag/D/yZSqWlXbO0DMmd8+erMFHVpyP+XujNb9IV13bynqquqaD4TBVy+fGXhx2CSVZbu2ZpuTx3zl9KnRZVdQuudmKMb9t2bQMgv0Z+yJEY33a7a0Z1u2Yp2eadv/yqf/6S6bTYFBhJ2Wl7H1DV1RUTnqlK+k7qC1g/k6wy010z62eSor7e+bN+Jo6IdAO+BC4B1gFve6+XAl96640xxuQovzWTh3ADK/aPfBRXROoCrwAP4uaDN8YYk4P89jNpD4yN7tPhtZ3cCxye6cCMMcZkD7+FyedAs3LWHUSS42oZY4ypWvze5roSeFpEtgAvqOpOEakFnI2b0vdXFRWgqToKOxaGHYJJVpvCsCPIboWFYUcQmHjT9q5l3zlG9sONz4VXqNT10ncAz+Om8DWmXFaYZCErTNJjhQkAD+NvwipjfFm3bR0ATfKbhByJ8W2Hu2bUtmuWknXe+WtS9c9fvGl7iwKMw+SAQVPcqDvWzySL/NsbKcn6maRmkHf+cqCfSVI94EWkJnAUburc74FPVPXHigjMGGNM9vD7NBcich2wGvgAN5fIh8BqEbm2gmIzxhiTJfxO2zsSuAM3udVkXKFyIG6WxDtEZKeqPlBhURpjjKnU/N7m+i1wp6r+MSJtMfCOiGzETVZlhYkxxuQov4VJC9zEWLHMBK7OSDSmSrus02Vhh2CSdZhds7Rcljvnz29hshQ4DZgRY92p3npj4hp65NCwQzDJamXXLC1Dc+f8+S1MHgAeEJFGwHO4NpOmwGCgEHeby5i4lv2wDIAW9VuEHInxbau7Zuxn1ywly7zz16Lqnz+/My0+JCI7gVuBi3CdGQX4DrhUVSf4PaCIdMCNMtwF2AhMAEar6p44eY4HLgdOAg4GluF649+lqjv8HtuE6/znzwesn0lWmeuumfUzSdH53vmzfiY/UdW/isgE4BB+mhxruar67iUvIg1xt8o+B84EDgXG4h5RHhUn61Bv27tw86ocDdzmvQ70e3xjjDEVI2FhIiK1gf8Cv1PV6bhawbIUj3cpUAcYoKqbgLdEpB5QJCJ3e2mx3KWqayPezxSRHcDjItJKVb9NMR5jjDEZkLAwUdUdItIA2JuB4/UB3ogqNIpxNY7uwMvlxLA2RvLH3mtTwAoTUyUV3PBqqMcvbrMegGEhxrHkzl+Gdmzjn98e8JOACzNwvPZEzX2iqkuBbd66ZHTFFXCLMxCXMcaYNCTzaPAQEZkHvIZ7miuyrURV9VEf+2mIa3SPtsFb54uINAP+CDxd3q0xERkBjABo2bKl312bCnR1F+uOlG3+uvbssEPIblfnznfeb2Ey1ns9iNhzvSvgpzAp2TaalJNedkM32OQUYAtwVbkHUR0PjAfo1KmTDaVfCfRv1z/sEEyS3t58YtghZLf+ufOd9/tosO8BIRPYADSIkV6f2DWWfYiIAH8HjgC6qeqGDMVlArB4nbsj2a5Ju5AjMX61qbUcgK93HhJyJFlqsXcXvl3V/84nNQR9Biwiqm1ERFrgZnH0M4/8ONwjxaeqqs07n2UueeUSwPqZZJM/N38IgGFf3xlyJFnqEvedt34mEbzbS4XACfzUz+R94Kkk5jR5HbhWRPZX1c1e2lBgOzArwfFvxM1FP0RV/+03bmOMMRXP1+0rETkc11nwYeBIYI/3+jDwlder3Y/HgJ3ANBHp7TWSFwH3RTaki8hXIvJExPtzgD/jbnGtEJHOEcsBPo9tjDGmgvitmYwHfgBO8h7lBUBEWgKv4gqJkxPtRFU3iEgv4CFcn5KNuFtXRTHiyot4f5r3WugtkS4EJvr6FMYYYyqE38KkEzA8siAB10dERG7BjZPli6p+DvRMsE1B1PtCyhYixhhjKgm/hckSoHY562pjQ9AbH0adHG/4NVMZPbhmWNghZLdRufOd91uY3ACMFZFvVPX9kkQR6QyMAWweeJNQ7za9ww7BJGn2lo5hh5DdeufOd95vYTIKqAfMEZE1wBrcmFhNgfXATSJyU8nGqnpCpgM12W/BqgUAdGxmP1DZokPtrwH4fEebkCPJUgvcd56OVf8777cw+dRbjEnZyOkjAetnkk1uOXg8YP1MUjbSfeetn4lHVTMxyKMxxpgqKlPDpBhjjMlhVpgYY4xJmxUmxhhj0hb0QI8mh/2515/DDsEk6e5VF4QdQnb7c+58560wMYHp2qJr2CGYJH207fCwQ8huXXPnO2+3uUxg5iybw5xlc8IOwyTh2PyFHJu/MOwwstecOW7JAVYzMYG56W3Xr9X6mWSP65o9BVg/k5Td5PXlzoF+JlYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gTm/jPuDzsEk6Qx340IO4Tsdn/ufOetMDGBsaHns48NPZ+mHBh6voTd5jKBmfH1DGZ8PSPsMEwSutVdQLe6C8IOI3vNmOGWHBB4zUREOgAPAl2AjcAEYLSq7omTpybwJ6Azbj762qoqAYRrMuj2d24HbMbFbHJl02LAZlxM2e3uO58LMy4GWjMRkYbADECBM3FT/l4NjE6QNR/4NbANyI3upMYYk0WCrplcCtQBBqjqJuAtEakHFInI3V5aGaq6UUQaqaqKyBVAzwBjNsYYk0DQbSZ9gDeiCo1iXAHTPV5GVdWKDMwYY0zqgq6ZtAf+GZmgqktFZJu37uWA4zEVrOCGV0v/XlVzfZm0qm7Jnb8MOwRjAhF0YdIQ1+gebYO3LmNEZAQwAqBly5aZ3LVJUeNdV4QdgknSTSvsmqXl8cfDjiAwYfQziXW7SspJT/0gquOB8QCdOnWyW2SVQA09JOwQTJK+3mnXLC3t2oUdQWCCbjPZADSIkV6f2DUWU4Vsq/Y+26q9H3YYJgm99n+fXvvbNUvZyy+7JQcEXTNZhGsbKSUiLYD9vHWmCttU/XkA8n88MeRIjF+/OcBds7c32zVLydix7rV//3DjCEDQNZPXgdNFZP+ItKHAdmBWwLEYY4zJkKALk8eAncA0EentNZIXAfdFPi4sIl+JyBORGUWkj4gMAjp67wd5S6vgwjfGGBNLoLe5VHWDiPQCHsI9BrwRGIcrUKLjyotKexSILDimeq8XAhMzHasxxhj/An+aS1U/J0EPdlUt8JNmjDGmcrAh6E1gmuy6OuwQTJKuWmbXLC1PPx12BIGxwsQEproeEHYIJkkrd9k1S0uLFmFHEBibz8QEZmveO2zNeyfsMEwS+tV/h3717ZqlbPJkt+QAq5mYwGzOew2A/facHHIkxq/zGrtr9soPds1S8uij7nXo0HDjCIDVTIwxxqTNChNjjDFps8LEGGNM2qwwMcYYkzZrgDeBOeDHG8MOwSTpsm/tmqXluefCjiAwVpiYwORRP+wQTJI27LFrlpYmTcKOIDB2m8sEZkveDLbkzQg7DJOEQQ1nMKihXbOUTZzolhxgNRMTmJKCpO6e3iFHYvwqKUie25C916zghldDO3bxs24+k2GLwhtJYMmdvwzkOFYzMcYYkzYrTIwxxqTNChNjjDFps8LEGGNM2qwB3gSm6Y9FYYdgklT4TVHYIWS1wsFFYYcQGCtMTGCqUTvsEEySdqhds3TsqJE7589uc5nAbM57lc154T2maZJ3XuNXOa+xXbNUnffRq5z3UW6cv8ALExHpICJvi8g2EflORMaISJ6PfPVF5EkR2SAiP4jIJBFpHETMJjO25r3L1rx3ww7DJKFf/XfpV9+uWar6LXqXfoty4/wFeptLRBoCM4DPgTOBQ4GxuEJtVILsk4F2wK+BvcBdwAvASRUVrzHGGH+CbjO5FKgDDFDVTcBbIlIPKBKRu720MkSkC3A60F1V3/HSVgDvi0hvVbXxHowxJkRB3+bqA7wRVWgU4wqY7gnyrS4pSABU9QPgG2+dMcaYEAVdmLQHFkUmqOpSYJu3znc+z8IE+YwxxgRAVDW4g4nsAq5V1fuj0pcDf1fVm8rJ9xawVVXPikp/Bmijql1j5BkBjPDetgMWlxNWE2BdUh8kWBZfeiy+9FX2GC2+9MSLr5Wq+hqlMox+JrFKLyknPeV8qjoeGJ8oGBGZp6qdEm0XFosvPRZf+ip7jBZfejIVX9C3uTYADWKk1wc2ppCvQYJ8xhhjAhB0YbKIqDYOEWkB7EfsNpFy83nKa0sxxhgToKALk9eB00Vk/4i0ocB2YFaCfM1E5BclCSLSCWjjrUtHwlthIbP40mPxpa+yx2jxpScj8QXdAN8Q12HxU1ynwzbAfcD9qjoqYruvgFmqenFE2nSgLXANP3VaXKOq1mnRGGNCFmjNRFU3AL2APOBlYDQwDrg1atPq3jaRhuFqL38D/g7MB86uyHiNMcb4E2jNxBhjTNWUk6MGi8hvRORLEdkhIvNFpJePPEUiojGWM1KModIPeJlKjCJSUM55Ks5wbD8TkcdF5D8iskdEZvrMF8j5SyW+oM6dd6zBIvKSiKwQkS3ev4PhPvLVEpGxIrJGRLaKyKsiUlCJ4ot1/t6rgPgGicgcEVnv/Y4sFpFRIlIzQb6gvn9Jx5fu9y/n5jMRkWHAY0AR8G/gQuAVETleVT9NkP0HILrwWJhCDJV+wMs0YwTXtjU74n2mO20dAfQF3gPi/gOOEtSAoanGBxV/7gD+gBuO6Cpv/32BZ0Wkiao+GCffA8AgL99a3L+jt0TkKFXdUQniA/c9fS7i/eYMxlWiMfAv4B5c94QTcOeiGXBFnHxBff9SjQ9S/f6pak4tuJ7wf4t4Xw34BHgmQb4iYF2GYrgR13emXkTadbhhZerFydcF10nz5Ii0E7y03hk+T6nGWODF06+Cr2O1iL+fA2b6yBPk+UslvkDOnXesJjHSngW+iZPnEGA38KuItObAj8Cvw47P20aBKyr6/JVz7D/hfrilnPWBff9SjC+t719O3eYSkTa4J8KmlKSp6l5gKsEOGJkNA16mGmMgvOuWrMDOX4rxBUZVY/1v82OgaZxsp3mv0yL2swJXw8/0+UslvrCtJ34tNOwBaxPFl5acKkz4qeNjdEfHhUAjEUk0Bk0DEVknIrtE5GMRGZBGHJV9wMtUYyzxpNdWsFJE7hOROhmOLxXZMmBoWOeuK+62ZnnaA8tVdUtUelDnL1F8JYpEZLf3b/VvItKoogISkTwRyRfXB+53wKPq/Tc/hsC/f0nGVyKl71+utZk09F6jh2DZELF+bTl5v8Ld5lkA1AUuAf4hIgNVdVo5eeLFEWsYmA0RMSabr02SMSSSaow7gYeBN4FNQA/gelyby5mZDTFpQZ6/VIR27sQ9hHImcFGczVL9TqTNZ3wAT+G6HawFOgE3A8eIyAmquqcCQtsK1PL+/jtwbZxtw/j+JRNfWt+/rC9MRKQ+cFCi7VQ18n8E0SWzlJMemf+ZqOO+DMwBbiGi2p+EQAa8TFPSx1LVlezbwDdTRFYDj4hIR1VdkOEYkxXk+UtKWOfOexrrWeBFVZ2YKMxYuygnPSOSiU9VCyPeviMiC4HXgP64hu5M6wrk49o+bgEeAi6PF2KMtIo8f77jS/f7VxVucw3GVRMTLfBTDSR60MiS974HjfSqitOAo8XHI71RsmHAy1RjjKXkyZpj04oofdk4YGiFnjvvFtDrwFLgvASbB37+kowvlunAFiro/KnqR6r6b1W9D3cb6TIRObSczQM/f0nGF4vv71/WFyaqOkFVJdHibV5SO4m+P9ke+F5Vy7vFFTeEFPJkw4CXqcYYi0a9hiUbBwytsHMnIvnAK7hG2V+q6tYEWRYBLURkv6j0Cjl/KcRXRkT7QBDfvY+819blrA/7+5covlh8n7+sL0ySoapfA1/gajMAiEg1731SA0aKiOCGc/lPCvdiK+OAl5mKMZZB3uv8TASWhiDPX6ZUyLkTkeq4pxgPA/qo6hof2d70XkuHMRKRg3F9JDJ6/lKML9Z+zsC1cQbx3evmvX5Tzvqwv3+J4ovF//evop9trmwLMBzYg+t4dwowEfcDeWTENt1xz9N3j0ibhasmnob7x/QartPR/6UQQ0NgJfAW0Bs3I+QW4Pao7b4CnohKmw58DQwAzsL1m3m3As5TSjHi+uOM9eLrDYzxzu8/MhxfvvdFHwTMBT6LeJ9fCc5f0vEFde68Y43H/W/zd0DnqKWWt83bwNtR+R7HdWI7H9eB9z3gS6B22PF539HxwBCgJ67z3UbgfSAvw/FN9/bfx/tNGO39+ygu799GwN+/pONL9/uX0Q+QLQvwG+9E7sRV/XpFre/hfZF7RKQ94X0JtuOekHgX9z+mVGPoAPzT299K4LboLzywBJgYldYAeNL7R7IJ1zBZpoNXhs5T0jHiBuSchxst4EfvPI8p+QHIYGwF3jWKtRSEff5SiS+ocxdx7ETxzSSqsyXuyaD7cE9LbcX9p6p1ZYgPN4jsbFx/il3AMlyP/foVEN9tuNHPt3jfpY+AK4Ea5f3bCPj7l3R86X7/bKBHY4wxacupNhNjjDEVwwoTY4wxabPCxBhjTNqsMDHGGJM2K0yMMcakzQoTY4wxabPCxOQccVMwV8TshWkRkUJvmtS6KeR9UESeLGfdxFhT64pIc29K3MowYrLJclaYGJPlvDHTfo2bAtY3dRNbTcaNJmtMWqwwMSb7XQp8pBHTLIhIdRG5Q0SWA78CFovI5yIyNCrvk8BwEWkcYLymCrLCxJgYRKS1iLwgIptEZLOIvCwiP4va5mIR+UxEtnuz+s0SkSMi1t8oIl+JyA4RWS0i00WkWQWE+yt+Giq8xO9xk7k9gBvy5CLgb0B0oTEb+B43lIYxKcv6ybGMyTQRqYUbRHAXbhy33biB8maJyFGq+r2InAw8hrtFNBeoB3TBzfeCiPwKuAk3U91nuB/xnrgh/DMZazvgENxEbZG6A/9U1btFpAMwW1WXROdXVRWR93AD+z2cydhMbrHCxJiyLgRaAm3VTVuAiLyPG+jzEuAO3Mx1/1XVOyLyvRTx9wnAm6r6SERaKjNyJnKc9/ppVPpKoK/PmtB/cIWmMSmz21zGlHUCrg3i65IEVV2OuyVUMhfFAuDnIjJORE4WkZpR+1iA+zEfLSInpDAbp1/NgB1aduKoP+FG9f0G+D/gGhHpFp3Zsw5o6s3RY0xKrDAxpqyDgNUx0lcDjQBUdQauBnMybij0dSLySMQshH/D3eYagptPY7WI3FYBhUpt3FQK+1DVpcBRuLl3vsYVgv8Wkfti7GMn7i6F3akwKbPCxJiyVgJNY6QfiGusBkBVn1LV47z0a4FC4GZv3V5VHaeqh+Numd2LK1wyfTvpe6CeN2PoPlR1l6pOx90COwu4CrhKRFpGbdoA2KKquzIcm8khVpgYU9b7wHEiUjpXtog0B7oC/47eWFXXqurjuAnTOsRYv0xV78RNNlRmfZoWAwK0ikws55bVh95ro6j0Atx01sakzKq1JlfVFJFBMdJn4aZyvh54XURuwU3zXIRrW3gcQERG436UZ3rpP8c9QXWDt/5xXK3hPdzMdafg5jO/3kdsZ4nIjqi0D1X12xjbfoB72uw49p3b+1kR+Rh4B/cE2XG4mskKYGHUPjrh2oOMSV2mp4u0xZbKvuAKhvKmhO3hbdMGeAHYjJv69BXgsIh99MM9PrwW2IGrIdwApbOXFvJTH45twH+BixPEVRgnrsI4+V6h7FzjZ+PmAV8F7MVNETsT+HnUdk1whVH3sK+LLdm92LS9xmQ5ETkbmAAcrKplGuNFZCJQpDH6mYjIJcA1uMeg7cfApMzaTIzJfi/gbl+dn0wmr13l98CfrCAx6bLCxJgs5xUEI3A99mN5AdgYI70ZMAl4uoJCMznEbnMZY4xJm9VMjDHGpM0KE2OMMWmzwsQYY0zarDAxxhiTNitMjDHGpO3/Ax1gWfeCPolOAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAElCAYAAAAhjw8JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZwUxfn48c/Dcq7ILaIILBgB8SKKyhEFAQ8IfFVuPOKqCR7RBONtUBc08USMtwQjRvG3gMFbUTEBDeABSuIBqFHkkFuQGzme3x/Vuw6zszM9x3bv7Dzv16tfs1Pd1f1M9zBFdXVViapijDHGpKNa2AEYY4zJflaYGGOMSZsVJsYYY9JmhYkxxpi0WWFijDEmbVaYGGOMSZsVJsakQUR6iIiKSFFIxy/wjj8xKn2il14QRlxeDKGeGxMsK0xMyrwfiqzvqCQiRSWfxVv2isgmEflWRF4TketFpHkFHbvQO2ZhRey/IpVXkJncVD3sAIypRGYBM72/9wMOAroBfYDRIlKkqndG5fkAOBxYF1SQUVZ4x/8hpOPHE/a5MQGywsSYn8xU1aLIBBERYAAwHrhDRIgsUFR1G7Ao0CgjqOquMI8fT9jnxgTLbnOZwIhILxGZLiLfi8gOEflCRO4Ukfoxtm0jIuNF5CsR2e7l+UREHhORxhHb1RSR34nIRyKyQUS2icgSEXlRRHqnG7M6/wAGeUm3ishBEceP2S7gJ34RmQk86WV5MupWW4G3TcktuB4ico6IvC8iW0Rkibc+0a2maiLyBxFZ5J3z5SIyTkTqRW/o7WdmrJ1Et8F4n/cbb/UFUbEXxjs33rrDROTvIrJCRH4Uke+894fF2DbyHAwSkQ+86/y9iBRX1C1IkxyrmZhAiMglwKPAVmAqsAboAVwP9BeRbqq60dv2IOBDoB7wGvAPoDbQGjgfeAhY7+16IjAc+BT4O7AdOBj4BXAGMCMT8avqv0Tk395+BwAPx/msfuOfCGwEzgReBBZE7GZj1G6vBk4FXgb+BZQpgMsxDjgZmOId43RgJHCSiPxCVXf43E+0mUAD4PfAf4AXItYtiJWhhIgcj7su+wMvAZ8D7YFzgTNFpJeqzouR9XLg/7w8s4ATgaHAMSLSUVV3pvhZTCaoqi22pLQA6r5CCbdrBewENgHto9Y94u1nfETalV7a72Psaz+gjvd3fWAvMA/Ii7FtY5+fo8g7XlGC7W7ztnsqIq1HdF6/8XvvC71tCxPEthX4eYz1Bd76iVHpE730dUCriPRquMJNgZtjXM+Z5cRRsr+CRMdOcG4EWOilnxu1/VAvfRFQLcY52AQcFZXnWW/dkLD/PeT6Yre5TBDOA2oCD6lq9D30PwKbgfNFpFbUuu3RO1LVrapakq64H6eduEIletv10WlpWuG9HuBz+0TxJ2O8qn6cQr6/qOq3EcffC1yLO18XpbC/dHXF1ULmquqkyBWqOhn4N9AOVwOM9oCqfhKV9lfv9YRMB2qSY4WJCcKx3us/o1eo6gbgY9xtoPZe8kvAFuBhEfmHiIwQkSO8xvDIvJtwt326AgtE5BYROUVE8ivoc5QcP9Hj0L7iT9IHKeabFZ2gql8Dy4ACEWmQRkypKPe7EJX+8xjrYt36Wua9NkwnKJM+K0xMEEru768sZ31JegMA73/SJwDTgN7A47g2kW9F5HdReYcCo4E63us/gfUi8rSIHJixT+Ac7L2ujbdRkvH7tSrFfKsT7M9v20umJPVdiBLdjgSw23vNSycokz4rTEwQSvpANCtn/UFR26GqC1V1KNAY6ATcgPu+/kVELo7YbruqFqlqW6Al7pbav73X5zL6KeAU7/X9RBv6jT8JqXYOLa9ALbkWkf1TlPIfyslUDSbp74LJDlaYmCCU3OvvEb3Cu83SEdiBa5jdh6ruVtX5qnoX7qktgLNiHURVl3n34U8HvgR+EfkYcTpEpCeuA+N24Hm/+XzEv8d7raj/WXePThCRNkALYIl6T9B5Nnjp0dvn4a5RtFRiL/e7EJX+URL7NJWAFSYmCM8Au4ArReRnUetuwz1C+4x6j3aKyAnl3KIqSdvmbXeAiJwYY7v9cI+d7gZ+TCdwcQbgHmcGuFVV495y8hu/p+QhgZbpxBnH70WkVURs1YB7cP/2n4za9gOgpYicFpU+CvdEXrQNuNpMMrHPBhbjCvpBkSu89ycDX+BqlyaLWD8Tk7Y4HeYALlfVJSIyEtc34yMRmYJrd+gOdME9Cnp9RJ5zgN+KyCzgK9yP1qFAf9yTW/d72zUH3hORhbj/yS7DFUz9cLdRHlDVzUl8lB4RHezq4NpIuuH6h+wErlfVe3zsx2/8AHNxhctIEWnET20cD6pqJm71zMY9nDAZd+vodOAYYD5wd9S293rrX/S2/x73cENrXL+SHpEbq+oWEXkf12dlEq4Q2AO8pKr/jRWMqqqIXAC8BUwWkRdx178drsa2GfiV99SZySZhP5tsS/YueP1MEiwNIrY/DXgT9+O6E/dDe3fkNt52J+I6OP4H94O23dv2SeDIiO0aALfgGt1XePtcifvhGw6Iz89RFBXzXtyP2re4TofXA83LyduDsn0pfMUfsf0ZuEJlS0QMBVGx9Sjn+AXE72fSBtfhcRHuVuIKXGFWr5z9/R/uqakduFpTMa5WMjEyrojtf4Z7om69d95K+8zEOjcR+doBT3vXa5f3+gzQLs71KXMOyvv8tgS/iHdBjDHGmJRZm4kxxpi0WWFijDEmbVaYGGOMSZsVJsYYY9KWE48GN2nSRAsKCsIOI+ctXr8YgHaN24UcifFtk7tm1LNrlpLF3vlrl53nb/78+etU1dfApjlRmBQUFDBvXqwx4kyQekzsAcDMwpmhxmGSMKOHe+09M8woslePHu515swwo0iZiHybeCvHbnMZY4xJW07UTEzlMOrkUWGHYJJ1pF2ztIzKnfNnhYkJTO82aU/JboLWzK5ZWnrnzvmz21wmMAtWLWDBqrjTg5vKZsMCt5jULFjglhxgNRMTmJHTRwLWAJ9V5rtrZg3wKRrpnb8sbYBPhtVMjDHGpM1qJsaYlGzatIk1a9awa9eusEOpvG691b0uLDPvW6hq1KhB06ZNqVevXsb2aYWJMSZpmzZtYvXq1TRv3pw6deogImGHVDlV827+VKJOi6rK9u3bWbFiBUDGChS7zWWMSdqaNWto3rw5+fn5VpBkGREhPz+f5s2bs2bNmozt12omCRTc8GrYIYRqyZ2/zNi+/tzrzxnblwnIMbGv2a5du6hTp07AwWSh5s3DjqBcderUyegtSitMTGC6tugadggmWQeUf82sRuJD3bphR1CuTF8/u81lAjNn2RzmLJsTdhgmGWvnuMWkZssWt+QAq5mYwNz09k2A9TPJKv9x18z6maTIa+SuTA3wFcVqJsaYnFVUVISIxFyeeeYZZs6cWfq+QYMGpfmWLFmCiPDKK6+Uu+8ePXog7dsj7dvz0EMPBfFxQmU1E2NMTqtfvz7Tp08vk/6zn/2MTz/9FIBJkybRtm3bpPb7yCOPsOmTT+gybFhG4qzsrDAxxuS06tWr07lz57jbHH300Rx55JFJ7bdDhw6Ql5dOaFnFbnMZY4xJm9VMTGDuP+P+sEMwyTouN67Z7t27y6RVr56Bn8cWLdLfR5awwsQEpmOzjmGHYJLVMLlrVjI1c6QhRwzh8uMvZ9uubfSd1LfM+sKOhRR2LGTdtnUMmjKozPrLOl3G0COHsuyHZZz//Pll1l/d5Wr6t+ufVJyR1q9fT40aNcqkf/PNNynvs1R+fvr7yBKBFyYi0gF4EOgCbAQmAKNVdY+PvAOAG4EjgW3Ah8BAVd1acRGbTJnx9QzAJsnKKqvcNavKk2TVr1+fGTNmlEk/+OCDWbJkSXo737QpvfxZJNDCREQaAjOAz4EzgUOBsbi2m7jzW4rIr4GHgLuBa4GGQE+sdpU1bn/ndsAKk6zyqbtmfguTeH2I8mvkx13fJL9J3PUt6reokD5K1atXp1OnThnfLwArV1bMfiuhoH+ILwXqAANUdRPwlojUA4pE5G4vrQwRaQKMA65U1b9GrHq+wiM2xhiTUNBPc/UB3ogqNIpxBUz3OPmGeK9PVVRgxhhjUhd0zaQ98M/IBFVdKiLbvHUvl5PvRGAxcLGI/BE4EPgIuEpVbeAgY0zKdu/ezXvvvVcmvYWPJ7Fmz57Njh079kkrKCiouNtmlVjQhUlDXKN7tA3euvI0A9rh2lWuA9Z7r9NF5DBVXR2dQURGACMAWrZsmWbYxpiq6ocffqBLly5l0m+77TZ+8YtfxM175513lkm74IILmDhxYqbCyxphNF5rjDQpJ71ENaAuMFhVpwOIyBzgW+AK4OYyB1EdD4wH6NSpU7x9m4A83u/xsEMwyTqhal+zoqIiioqKyl0/c+ZMAPbs2cOePXvI83q0FxQUoBr/Z2XPnj1oJZ7PJNOCbjPZADSIkV6f2DWWEt97rzNLErx2l/lAh0wFZypWuybtaNek6o+eWqXUa+eWHNexY0caN26cVJ5evXpRY//9KyiiyifomskiXNtIKRFpAeznrSvPQlzNJXo2FwH2ZjJAU3FeXuyaxNLpYGYCttxrxjwkN6/Zcccdx4cffggk3yP+8ccfZ/N33wHQKslxvbJR0IXJ68C1IrK/qm720oYC24FZcfK9AtwKnAK8BiAi9YHjgHsrLlyTSWPnjgWsMMkqi9w1y9XCZP/990+5Mb1d5BwmBxyQoYgqr6Bvcz0G7ASmiUhvr5G8CLgv8nFhEflKRJ4oea+q84AXgSdE5AIR+SXwErALeDjID2CMMaasQAsTVd0A9ALycI8Bj8Z1Rrw1atPq3jaRzgNeAO4DnsMVJD29fRpjjAlR4E9zqernuGFQ4m1TECNtC3CZtxhjjKlEbD4TY4wxabNBEk1gnj776bBDMMnqYtcsLa1bhx1BYKwwMYFpUT93JgqqMvaza5aWmjXDjiAwdpvLBGbyp5OZ/OnksMMwyfh2sltMar7/3i05wAoTE5hH5z3Ko/MeDTsMk4wvH3VLFdOvXz+OOuqoctdfccUVNGzYkJ07dybc1+7duxGR0qVOnTp06NCBe+65h90rV8Latftsv2XLFpo2bcrs2bNL0w455BBuuOGGco9xySWXcMkll/j4ZOGxwsQYk3OGDx/Op59+ymeffVZm3Z49e3juuecYMGAAtWrV8r3P6667jrlz5/Lqq69y2mmncd1113Hv3/5WZru//OUvtGvXjm7duiW176eeeiozUwlXECtMjDE558wzzyQ/P5/i4uIy6/71r3+xevVqhg8fntQ+W7duTefOnenZsyf3338/vXr14u8vvrjPNnv27OGRRx7hoosuSmrfhx56KJ07d+axxx5LKl+QrDAxxuScunXr0q9fPyZPLtseVFxczIEHHsgpp5zCihUruPDCC2ndujV16tShbdu23HrrrezatSvhMY455hiWRU3b+9Zbb7F69WrOPvvspGMeOHAgTz/9dMLRisNiT3MZYzJnRo+yaS2HQNvLYfc2mNm37Po2hW7ZsQ7+Pajs+sMug1ZDYesymHt+2fXtr05p7LDhw4czZcoU5s+fz3HHHQfArl27eP755zn33HPJy8tj7dq1NGnShPvvv58GDRqwaNEiRo8ezbp163j44fgjOS1dupTWhxyyT9rbb7/N4YcfToMGsQZPj69r166sXLmSzz//nCOOOCLp/BXNChMTmOeGPBd2CCZZv6i616xPnz40aNCA4uLi0sLkjTfe4Pvvvy+9xdWxY0c6duxYmqdbt27UqVOHSy+9lL/85S/7jCS8d+9edu/ezbZt23jppZd48cUXmfTUU9CmTek28+fP58gURxA+6qijEBE++OADK0xMbmuS3yTsEEyyaid5zXrPLH9d9fz462s3ib9+vxbx1yepVq1anH322UyZMoW7774bEWHy5Mm0atWKzp07A66AGDduHBMmTGDJkiX7TNG7fPlyCgoKSt//9re/5be//W3p+2uvvZbBUe0uq1atSrkgqFmzJvXq1WPVqlUp5a9o1mZiAjNxwUQmLpgYdhgmGV9PdEsVNXz4cJYuXcrcuXPZsWMHL774IsOHD0fETZ00duxYrr/+egYPHsxLL73EBx98wAMPPABQZu73G2+8kQ8//JC33nqLvn37cu+99/Lm1Kmwbl3pNjt27EjqCbFotWrVKnPcysJqJiYwJQVJYcfCUOMwSSgpSNoUhhlFhenZsycHHnggxcXFrFy5ks2bN+/zFNfUqVMZNmwYY8aMKU3773//G3NfLVu2LJ375OSTT+aII47g2ptv5tQXXkCauBpeo0aN2Lgx3qSy8W3cuJFGjRqlnL8iWc3EGJOz8vLyGDx4MFOnTuXZZ5/l8MMP5+ijjy5dv3379jI1iUmTJiXcb82aNRkzZgz/XbyY1995pzS9Xbt2KfcVWblyJT/++CNt27ZNKX9Fs8LEGJPThg8fzqpVq3j++ec555xz9ll36qmn8uyzz/Loo4/yxhtvcO6557JkyRJf+x0yZAiHtWrFPU+UzvNHt27d+Oijj2I+3rt48WKee+65fZbp06eXrp83bx7VqlWjS5cuqX3QCma3uYwxOa1Lly4UFBSwZMkShg0bts+60aNHs379em666SZEhEGDBjFu3DjOOuushPvNy8vjhhEjuPiPf+TDDz/k+OOP56yzzuJ3v/sd7733XplC4YUXXuCFF17YJ+3QQw/lq6++AmD69On07NkzpceKg2CFiTEmp4lIubee9t9/f5566qky6ZE1i+rVq5fbkfCigQO5aOBA8OaDP/jggzn99NMpLi7epzBZvnx53Bh3797NtGnTGDduXMLPExYrTExgXjv3tbBDMMnqYdcsLT/7WZmkm2++mdNPP50xY8ZQv359X7spLi6mfv36DB48ONMRZoy1mZjA5NfIJ79GfthhmGRUz3eLSU1enlsidO7cmTvuuIOlS5f63o2IMGHCBPKi9lWZBF4zEZEOwINAF2AjMAEYrap74uQpAGLVQyer6rAY6aYSeuTDRwC4/PjLQ47E+PaFu2a0tWuWkjVr3GvTpvskX355cufz3HPPzVREFSbQwkREGgIzgM+BM4FDgbG4GtIoH7u4Bpgd8X5deRuaymfKZ1MAK0yyylJ3zawwSdGGDe41qjCpioKumVwK1AEGqOom4C0RqQcUicjdXlo8i1X1vQqP0hhjTFJ8FyYichRwAtAMqA18D3wBzFHVDT530wd4I6rQKAbuAroDL/uNxxhjTOURtzARkTbAZcC5wIHAXlw7x06gAZAP7BWRWbi2j8mqujfOLtsD/4xMUNWlIrLNW5eoMHlSRBoBa4D/B/xRVbcnyGOMMaaClfs0l4hMAD4DOgJjgJ8DtVX1AFU9RFXrAk2B/sAnwN3AQhH5RZzjNcQVRtE2eOvKsxN4GLgY6AU8jivkyk6T9lP8I0RknojMWxs1B7MxxpjMilcz2QG0V9Vvy9tAVdcBrwOvi8gfgMFA8wTHjNW7R8pJLznOSuCKiKSZIrIaeEREOqrqghh5xgPjATp16lQ5pybLMTMLZ4YdgklWBod8z0leZ8VcUG7NRFWviFeQxNh+r6pOVtWy82D+ZAPu9li0+sSuscRTMmvPsUnmM8aYfUybNq10qJJatWrRtm1bRo0axbx58xAR/vGPf8TMt3r1aqpXr87dd9/t+1ijRo1CREqXZs2a0b9/fz799NOY2991112ceuqppe8nTJiAiJQ7FP2yZcuoW7cu337r++c7I1LutCgidUWkbpLZFuHaRiL30wLYz1uXDI16NZXcvXPu5d4594YdhknGwnvdUoVdffXVDB48mDZt2vD000/z5ptvctVVV/Hyyy/zpz/9icMOO4zi4th31KdOncrevXsZOnRo7J2vWuWWKI0aNWLu3LnMnTuXcePGsXDhQk499dQyw9Nv3ryZe+65hxtuuMH352nRogUDBw7ktttu850nE5IuTETkcBH5ENgE/OC1S3Twmf114HQR2T8ibSiwHZiVZCglk0XPTzKfCckrX7zCK1+8EnYYJhkrXnFLFfXyyy9z33338de//pUJEybQv39/unfvzmWXXcZHH33EiBEjGDZsGK+++ipbtmwpk7+4uJiuXbvSqlWr2Af44Qe3RKlRowadO3emc+fODB8+nIkTJ7Jq1SrefPPNfbZ75plnqFu3Lr169Urqc1144YU888wzbNjg90Hb9KVSM5kATAX2Bw4GFgMTfeZ9DNeYPk1EeovICKAIuC/ycWER+UpEnoh4XyQiY0VkgJdvDDAOmKaqsWeqMcaYBMaNG8exxx7LRRddVGZdXl4effr0Yfjw4Wzfvp0XX3xxn/XLli1jzpw5+0ym9eSTT9KtWzcaNWpEo0aN6FVYyEeffZYwjmOOOaZ0n5GeeuopBg4cmPTnOvnkk6lXrx5TpkxJOm+q4j3NNc7rUBitPfCgqm5V1dXAU4Cv2Vq8/ii9gDzcY8CjcYXCrVGbVve2KbEI1w/lSeA14BzgHu/VGGOStmvXLubMmcMZZ5wRd7vDDz+cY445psytrsmTJ1OtWrV9Bl/89ttvKSwsZOrUqUyaNIlmTZpw0nnnJWy/KBmnq3Xr1qVpmzdv5sMPP6Rr167JfjSqVavGiSeeyIwZM5LOm6p4T3PVB74UkVuBx/WnMZbfBp4Wkb/h+pnc6KX5oqqfAz0TbFMQ9b6YOI8BG2MqiR49yqYNGQKXXw7btkHfvmXXFxa6Zd06GDSo7PrLLoOhQ2HZMjj//LLrr74a+vdPOtT169ezc+dOWrZsmXDb4cOHc8stt7BhwwYaNnS9GIqLi+nVqxdNI4ZKKSoqKv177969nNqyJe379mXSpEncdNNN++xz9+7dAHzzzTdceeWVHHvssfTr1690/ccff8zevXs58sgjk/5s4Go7Tz/9dEp5UxHvaa6LgL64//3/R0RO8Vb9BlgK3A7cBLyD6/9hTFx1atShTo06YYdhkpFXxy1VmIgk3GbYsGHs2rWL559/HoD//e9/zJ8/f59bXACfffYZZ511FgceeCB5eXnUOPJI/rd0KV988cU+261evZoaNWpQo0YN2rZtyyeffMK0adOoWbNm6TarvIb7Jt788clq0qQJq1evTilvKuL2gFfV+cDJIjIM1/v8Y+APqvqHQKIzVcrr574edggmWackec1mzix/XX5+/PVNmsRf36JF/PVJaty4MbVq1fI1FHyrVq3o0qULxcXFXHTRRRQXF1OrVi3OPvvs0m1++OEHTjvtNJo3b864ceNo2bIltWvX5sILLyzzGG/jxo2ZPn06e/bs4eOPP+aaa67h3HPP5d133y0t3EryRM9B71etWrX48ccf2bt3L9WqVfxsI77G5lLVYhF5AbgemC8ijwO3q+rWCo3OGGMqSI0aNejWrRtvvPEGt99+e8Lthw8fzsiRI1mzZg3FxcX07dt3n8mtZs+ezXfffcesWbP4WcSkWNGP+4KbnbFTp04AnHjiidSqVYuLLrqIadOmlTa4N2rUqDR/3brJ9sJw+erXrx9IQQIJnuYSkXYicpmI/B44VlVHA0cDLYAvRKQwgBhNFXHbrNu4bVawz76bNH1ym1uqqJEjRzJv3ryYU/Pu3buX6dOnl74fMmQIAGPGjOHTTz8tc4tr+3Y3TGBkTeKdadMSTskLcMEFF9C+fXvuuuuu0rR2Xu/58qYUTmTJkiW0bevr2aiMKLdmIiK/Bh7CDcy4DRgtIs+q6uXAeSLSBbhfRK4Afq+qs8vblzEAb3/jntO4ufvNIUdifFvtPVtzVNW8Zv379+cPf/gDF198MbNnz+bMM8+kbt26LFq0iMcee4yCgoLSp72aNm1Kz549eeSRR6hbt+4+jeUAXbt2JT8/n1//+tdcc801LF26lNE338zBPuYyqVatGjfeeCMXXHABs2bNonv37hx22GEccMABzJ8/n5NOOqlMnueff54aNWrsk3bCCSeUPlAwb948unfvnuqpSVq8msmtwG9Vta+qDsI9mnuJiDQDUNW5qnoibtZEe9LKGJOVxo4dy+TJk/nyyy8555xzOPXUUxk7diy9evXi0Ucf3Wfb4cOHo6qceeaZ1Kmz74MJBx10EFOnTmXZsmX079+fBx54gPFjxtD6kEN8xXHOOefQpk2bfYZmGTBgAK+/Hrvd6pxzzmHw4MH7LO+88w7gGvgXLFiQUh+VVMlPT/xGrRBZDtysqk96748C/gM09wZejNx2v8rcftKpUyedN29eSnkLbng1w9FklyV3/jJj++oxsQdgAz5mlRk93GvUgI8LFy7k8MMPDzycrLN4sXtNccDHkn4m3333HQcccIDvfA8//DAPPvggixbFH6Uq0XUUkfmq2snPMePVTG7Hjcr7sohMwQ138kR0QQJQmQsSY4zJVscffzw9e/bk4Ycf9p1n7969PPDAA4wa5Wcm9MyJ18/kMdyIvNOBucBZqvqboAIzVU/j/MY0zm8cdhgmGbUau8WkJi/PLWkYN24cjRv7vwYrV66ksLCQc84JdoCQRP1MFgILA4rFVHH/GBJ7GG9TiZ1k1ywtEY8Ip6pDhw506OB3LF1o3rw5N954Y9rHTVa8sbnKPj6QgIjU99pWjDHG5JB4bSZTRGS2iFwkIvGm1EVEuonIg8C3QJeMRmiqjBtn3MiNM4L/H5NJw4Ib3RJDeQ/vmAjLl7ulEsr09Yt3m6sN8DvcI8KPi8gXwKfAOtww8g2A1ri54evgRvPtraqpPTZlqry5y+eGHYJJ1rrY16xGjRps376d/Pz8gAPKMlsr77NJ27dvL9NPJR3lFiaquh24S0Tuxg0b3xM4DjcEfW3ge9xcJs8CL6rqmoxFZYyp1Jo2bcqKFSto3rw5derU8TVYoqkcVJXt27ezYsUKDjzwwIztN+HYXN7Q8zO8xRhjqFfPTXX03XffsWvXrpCjqcRKpuzduzfcOKLUqFGDAw88sPQ6ZoKvgR6NMSZavXr1MvpjVCVddpl7zeBox5WVFSYmMIfU8zeshKlE8u2apcXnUCpVgRUmJjDPDHgm7BBMsrraNUvLM7lz/oIZ6N4YY0yVFnhhIiIdRORtEdkmIt+JyBgR8T3egIhUE8f+BcAAAB8RSURBVJH5IqIi0i9xDlNZjJw+kpHTR4YdhknG/JFuMakZOdItOcDXbS4RuRf4m6p+ns7BvM6PM4DPgTOBQ4GxuELN76hkvwaapxOHCceCVQvCDsEka4Nds7QsyJ3z57dmMhD4REQ+EJFLRaR+whyxXYrr4DhAVd/yBpMcDfxBRBI+FuIVRn8C/pji8Y0xxlQAX4WJqrYGegOLgHuAlSLyrIj0TvJ4fYA3VHVTRFoxroDxMyXYbcBs4O0kj2uMMaYC+W4zUdV/qeqvgIOAK4FDgDdE5FsRGS0ibXzspj2uQIrc71LctMDt42UUkaOBC4Fr/MZsjDEmGEk3wKvqFlV9Ajdm12ygBXAj8IWIvCgireJkbwhsjJG+wVsXz4PAw6r6lZ84RWSEiMwTkXlr1671k8VUsLaN29K2cduwwzDJ2L+tW0xq2rZ1Sw5Iqp+JiBQAF3hLC+AtYDDwCm78rjtwt63ijRwca6hKKSe95LjDgHZAf7+xqup4YDy4aXv95jMVZ3z/8WGHYJJ1ol2ztIzPnfPn92mu83G3mE4GlgJPAk+qauTYyq+JyFbij+G1ATfacLT6xK6xICI1cO00dwHVRKQBUNJYv5+I7K+qm/18DmOMMRXDb81kPPA8cLqqxmv8/gI3d3x5FhHVNiIiLYD9iGpLibAfrn3mPm+JVAz8D0h/OjNT4Ua8PAKwGkpWed9dM6uhpGiEd/5yoIbitzA5WFU3JNpIVVfiHvUtz+vAtVG1iaHAdmBWOXm2AKdEpTUD/h9wE/DPRHGZyuGL9V+EHYJJ1ma7Zmn5InfOn98G+PkickysFSJypIh87XM/j+Em1pomIr1FZARQBNwX+biwiHwlIk8AqOpuVZ0ZuQDveZt+oqrv+zy2McaYCuK3ZlIA1CpnXT7uNlRCqrpBRHoBDwEv49pJxuEKlOi4fA+xYowxJlzlFiZej/TIxvJmItIyarPawDBghd8DekOy9EywTUGC9UtwT4AZY4ypBOLVTK7C9SVRb3m+nO0EuDrDcZkqqGOzjmGHYJLV0K5ZWjrmzvmLV5g8C8zDFRYv4XqeL47a5kdgsdeL3Zi47j/j/rBDMMk6zq5ZWu7PnfNXbmGiql8CXwKIyCnAR9afwxhjTCy+GuBVtbzHdo3x7bxp5wE242JWmeOumc24mKLzvPOXAzMuxmuAX4PrpPixiKwlznAnAKraNNPBmapl+abliTcylcs2u2ZpWZ475y9ezeRhYHXE3za+lTHGmJjitZmMjvi7KJBojDHGZKXA54A3xhhT9cRrM5mSzI5UdUj64ZiqrMsh8WYmMJVSE7tmaemSO+cvXpvJAYFFYXLCHb3vCDsEk6yOds3SckfunL94bSbRI/UaY4wxMVmbiQnMwCkDGThlYNhhmGS8O9AtJjUDB7olB8RrM7kcmKqqa72/41LVRzIamaly1m9bH3YIJlk77ZqlZX3unL94bSYP4cbmWuv9HY8CVpgYY0yOitdmUi3W38YYY0w0KySMMcakze9Mi4hITaAQOAE4CFgJvA88pao/Vkh0pkrp1bpX2CGYZB1o1ywtvXLn/Ilq4iG3RORwYDpwMDAfWAM0BY4FVgFneDMoVkqdOnXSefPmpZS34IZXMxxNdlly5y/DDsEYExIRma+qnfxs67dmMh74ATgpciIsbxrfV4HHgJOTDdQYY0zV4LfNpBNwS/SMit77W4Dj/R5QRDqIyNsisk1EvhORMSKSlyDPESIy3dt+p4gsFZEJInKQ3+Oa8PWZ1Ic+k/qEHYZJxr/6uMWkpk8ft+QAvzWTJUDtctbVBnxN2ysiDYEZwOfAmcChwFhcoTYqTtb6wDfA34HvgNa4+emPE5HjVXW3n+ObcG3ftT3sEEyy9tg1S8v23Dl/fguTG4CxIvKNqr5fkiginYExwLU+93MpUAcYoKqbgLdEpB5QJCJ3e2llqOocYE5E0kwRWQ68CRwNfOTz+MYYYypAvB7wH7LvhFj1gDneDIwlDfBNgfXATcALPo7XB3gjqtAoBu4CugMvJxF7SdfSmknkMcYYUwHi1Uw+Y9/C5LMMHK898M/IBFVdKiLbvHVxCxMRqYaLuTVwJ/Ah8EEG4jLGGJOGeD3gCyvgeA2BjTHSN3jrEnkNON37ez7QV1X3xtpQREYAIwBatmyZfKQm4/q17Rd2CCZZze2apaVf7pw/350WMyhWxxYpJz3alUAj4DBcg/3rItJNVXeUOYjqeNwjzXTq1Mnmr68Erul6TdghmGQdbtcsLdfkzvlLpgd8AXAe0JYYT3b5nGlxA9AgRnp9YtdYoo/xpffn+yLyLu4Jr3OAv/k4tjHGmAriqzARkeOAWcAyXGHyX1wBUAAsB77yebxFuLaRyH23APbz1vmmqt+KyPdAm2TymfD0mNgDgJmFM0ONwyRhRg/32ntmmFFkrx493OvMmWFGEQi/nRbvAf4BHIm7JXWxqrYBfoG7PXW3z/28DpwuIvtHpA0FtuMKK99EpB3QGFc7McYYEyK/hUlH4FmgpLG7NpT2/xiNe7LKj8eAncA0EentNZIXAfdFPi4sIl+JyBMR7+8VkTtF5GwROcWbrOsN4H+4R4uNMcaEyG9hosCP6kaFXAO0ili3DNcgnngnqhuAXkAe7jHg0cA4XG/2SNW9bUrMA04CnsCNBfY7XE2ps6pu9fkZjDHGVBC/DfCf44Y++RcwF7hKROYBPwLX4WoIvnijC/dMsE1B1PtirAZijDGVVjKjBpfURm7CDWNS0mC+FRiU4bhMFTTkCD8P/JlKpaVds7QMyZ3z56swUdWnI/5e6M1v0hXXdvKeqq6poPhMFXL58ZeHHYJJVlu7Zmm5PHfOX0qdFlV1C652Yoxv23ZtAyC/Rn7IkRjfdrtrRnW7ZinZ5p2//Kp//pLptNgUGEnZaXsfUNXVFROeqUr6TuoLWD+TrDLTXTPrZ5Kivt75s34mjoh0A74ELgHWAW97r5cCX3rrjTHG5Ci/NZOHcAMr9o98FFdE6gKvAA/i5oM3xhiTg/z2M2kPjI3u0+G1ndwLHJ7pwIwxxmQPv4XJ50CzctYdRJLjahljjKla/N7muhJ4WkS2AC+o6k4RqQWcjZvS91cVFaCpOgo7FoYdgklWm8KwI8huhYVhRxCYeNP2rmXfOUb2w43PhVeo1PXSdwDP46bwNaZcVphkIStM0mOFCQAP42/CKmN8WbdtHQBN8puEHInxbYe7ZtS2a5aSdd75a1L1z1+8aXuLAozD5IBBU9yoO9bPJIv82xspyfqZpGaQd/5yoJ9JUj3gRaQmcBRu6tzvgU9U9ceKCMwYY0z28Ps0FyJyHbAa+AA3l8iHwGoRubaCYjPGGJMl/E7bOxK4Aze51WRcoXIgbpbEO0Rkp6o+UGFRGmOMqdT83ub6LXCnqv4xIm0x8I6IbMRNVmWFiTHG5Ci/hUkL3MRYscwErs5INKZKu6zTZWGHYJJ1mF2ztFyWO+fPb2GyFDgNmBFj3aneemPiGnrk0LBDMMlqZdcsLUNz5/z5LUweAB4QkUbAc7g2k6bAYKAQd5vLmLiW/bAMgBb1W4QcifFtq7tm7GfXLCXLvPPXouqfP78zLT4kIjuBW4GLcJ0ZBfgOuFRVJ/g9oIh0wI0y3AXYCEwARqvqnjh5jgcuB04CDgaW4Xrj36WqO/we24Tr/OfPB6yfSVaZ666Z9TNJ0fne+bN+Jj9R1b+KyATgEH6aHGu5qvruJS8iDXG3yj4HzgQOBcbiHlEeFSfrUG/bu3DzqhwN3Oa9DvR7fGOMMRUjYWEiIrWB/wK/U9XpuFrBshSPdylQBxigqpuAt0SkHlAkInd7abHcpaprI97PFJEdwOMi0kpVv00xHmOMMRmQsDBR1R0i0gDYm4Hj9QHeiCo0inE1ju7Ay+XEsDZG8sfea1PAChNTJRXc8Gqoxy9usx6AYSHGseTOX4Z2bOOf3x7wk4ALM3C89kTNfaKqS4Ft3rpkdMUVcIszEJcxxpg0JPNo8BARmQe8hnuaK7KtRFX1UR/7aYhrdI+2wVvni4g0A/4IPF3erTERGQGMAGjZsqXfXZsKdHUX646Ubf669uywQ8huV+fOd95vYTLWez2I2HO9K+CnMCnZNpqUk152QzfY5BRgC3BVuQdRHQ+MB+jUqZMNpV8J9G/XP+wQTJLe3nxi2CFkt/658533+2iw7wEhE9gANIiRXp/YNZZ9iIgAfweOALqp6oYMxWUCsHiduyPZrkm7kCMxfrWptRyAr3ceEnIkWWqxdxe+XdX/zic1BH0GLCKqbUREWuBmcfQzj/w43CPFp6qqzTufZS555RLA+plkkz83fwiAYV/fGXIkWeoS9523fiYRvNtLhcAJ/NTP5H3gqSTmNHkduFZE9lfVzV7aUGA7MCvB8W/EzUU/RFX/7TduY4wxFc/X7SsRORzXWfBh4Ehgj/f6MPCV16vdj8eAncA0EentNZIXAfdFNqSLyFci8kTE+3OAP+Nuca0Qkc4RywE+j22MMaaC+K2ZjAd+AE7yHuUFQERaAq/iComTE+1EVTeISC/gIVyfko24W1dFMeLKi3h/mvda6C2RLgQm+voUxhhjKoTfwqQTMDyyIAHXR0REbsGNk+WLqn4O9EywTUHU+0LKFiLGGGMqCb+FyRKgdjnramND0BsfRp0cb/g1Uxk9uGZY2CFkt1G58533W5jcAIwVkW9U9f2SRBHpDIwBbB54k1DvNr3DDsEkafaWjmGHkN1658533m9hMgqoB8wRkTXAGtyYWE2B9cBNInJTycaqekKmAzXZb8GqBQB0bGY/UNmiQ+2vAfh8R5uQI8lSC9x3no5V/zvvtzD51FuMSdnI6SMB62eSTW45eDxg/UxSNtJ9562fiUdVMzHIozHGmCoqU8OkGGOMyWFWmBhjjEmbFSbGGGPSFvRAjyaH/bnXn8MOwSTp7lUXhB1Cdvtz7nznrTAxgenaomvYIZgkfbTt8LBDyG5dc+c7b7e5TGDmLJvDnGVzwg7DJOHY/IUcm78w7DCy15w5bskBVjMxgbnpbdev1fqZZI/rmj0FWD+TlN3k9eXOgX4mVjMxxhiTNitMjDHGpM0KE2OMMWmzwsQYY0zarAHeBOb+M+4POwSTpDHfjQg7hOx2f+58560wMYGxoeezjw09n6YcGHq+hN3mMoGZ8fUMZnw9I+wwTBK61V1At7oLwg4je82Y4ZYcEHjNREQ6AA8CXYCNwARgtKruiZOnJvAnoDNuPvraqioBhGsy6PZ3bgdsxsVscmXTYsBmXEzZ7e47nwszLgZaMxGRhsAMQIEzcVP+Xg2MTpA1H/g1sA3Ije6kxhiTRYKumVwK1AEGqOom4C0RqQcUicjdXloZqrpRRBqpqorIFUDPAGM2xhiTQNBtJn2AN6IKjWJcAdM9XkZV1YoMzBhjTOqCrpm0B/4ZmaCqS0Vkm7fu5YDjMRWs4IZXS/9eVXN9mbSqbsmdvww7BGMCEXRh0hDX6B5tg7cuY0RkBDACoGXLlpnctUlR411XhB2CSdJNK+yapeXxx8OOIDBh9DOJdbtKyklP/SCq44HxAJ06dbJbZJVADT0k7BBMkr7eadcsLe3ahR1BYIJuM9kANIiRXp/YNRZThWyr9j7bqr0fdhgmCb32f59e+9s1S9nLL7slBwRdM1mEaxspJSItgP28daYK21T9eQDyfzwx5EiMX785wF2ztzfbNUvJ2LHutX//cOMIQNA1k9eB00Vk/4i0ocB2YFbAsRhjjMmQoAuTx4CdwDQR6e01khcB90U+LiwiX4nIE5EZRaSPiAwCOnrvB3lLq+DCN8YYE0ugt7lUdYOI9AIewj0GvBEYhytQouPKi0p7FIgsOKZ6rxcCEzMdqzHGGP8Cf5pLVT8nQQ92VS3wk2aMMaZysCHoTWCa7Lo67BBMkq5aZtcsLU8/HXYEgbHCxASmuh4QdggmSSt32TVLS4sWYUcQGJvPxARma947bM17J+wwTBL61X+HfvXtmqVs8mS35ACrmZjAbM57DYD99pwcciTGr/Mau2v2yg92zVLy6KPudejQcOMIgNVMjDHGpM0KE2OMMWmzwsQYY0zarDAxxhiTNmuAN4E54Mcbww7BJOmyb+2apeW558KOIDBWmJjA5FE/7BBMkjbssWuWliZNwo4gMHabywRmS94MtuTNCDsMk4RBDWcwqKFds5RNnOiWHGA1ExOYkoKk7p7eIUdi/CopSJ7bkL3XrOCGV0M7dvGzbj6TYYvCG0lgyZ2/DOQ4VjMxxhiTNitMjDHGpM0KE2OMMWmzwsQYY0zarAHeBKbpj0Vhh2CSVPhNUdghZLXCwUVhhxAYK0xMYKpRO+wQTJJ2qF2zdOyokTvnz25zmcBsznuVzXnhPaZpknde41c5r7Fds1Sd99GrnPdRbpy/wAsTEekgIm+LyDYR+U5ExohIno989UXkSRHZICI/iMgkEWkcRMwmM7bmvcvWvHfDDsMkoV/9d+lX365Zqvotepd+i3Lj/AV6m0tEGgIzgM+BM4FDgbG4Qm1UguyTgXbAr4G9wF3AC8BJFRWvMcYYf4JuM7kUqAMMUNVNwFsiUg8oEpG7vbQyRKQLcDrQXVXf8dJWAO+LSG9VtfEejDEmREHf5uoDvBFVaBTjCpjuCfKtLilIAFT1A+Abb50xxpgQBV2YtAcWRSao6lJgm7fOdz7PwgT5jDHGBEBUNbiDiewCrlXV+6PSlwN/V9Wbysn3FrBVVc+KSn8GaKOqXWPkGQGM8N62AxaXE1YTYF1SHyRYFl96LL70VfYYLb70xIuvlar6GqUyjH4msUovKSc95XyqOh4YnygYEZmnqp0SbRcWiy89Fl/6KnuMFl96MhVf0Le5NgANYqTXBzamkK9BgnzGGGMCEHRhsoioNg4RaQHsR+w2kXLzecprSzHGGBOgoAuT14HTRWT/iLShwHZgVoJ8zUTkFyUJItIJaOOtS0fCW2Ehs/jSY/Glr7LHaPGlJyPxBd0A3xDXYfFTXKfDNsB9wP2qOipiu6+AWap6cUTadKAtcA0/dVpco6rWadEYY0IWaM1EVTcAvYA84GVgNDAOuDVq0+reNpGG4WovfwP+DswHzq7IeI0xxvgTaM3EGGNM1ZSTowaLyG9E5EsR2SEi80Wkl488RSKiMZYzUoyh0g94mUqMIlJQznkqznBsPxORx0XkPyKyR0Rm+swXyPlLJb6gzp13rMEi8pKIrBCRLd6/g+E+8tUSkbEiskZEtorIqyJSUInii3X+3quA+AaJyBwRWe/9jiwWkVEiUjNBvqC+f0nHl+73L+fmMxGRYcBjQBHwb+BC4BUROV5VP02Q/QcguvBYmEIMlX7AyzRjBNe2NTvifaY7bR0B9AXeA+L+A44S1IChqcYHFX/uAP6AG47oKm//fYFnRaSJqj4YJ98DwCAv31rcv6O3ROQoVd1RCeID9z19LuL95gzGVaIx8C/gHlz3hBNw56IZcEWcfEF9/1KND1L9/qlqTi24nvB/i3hfDfgEeCZBviJgXYZiuBHXd6ZeRNp1uGFl6sXJ1wXXSfPkiLQTvLTeGT5PqcZY4MXTr4KvY7WIv58DZvrIE+T5SyW+QM6dd6wmMdKeBb6Jk+cQYDfwq4i05sCPwK/Djs/bRoErKvr8lXPsP+F+uKWc9YF9/1KML63vX07d5hKRNrgnwqaUpKnqXmAqwQ4YmQ0DXqYaYyC865aswM5fivEFRlVj/W/zY6BpnGynea/TIvazAlfDz/T5SyW+sK0nfi007AFrE8WXlpwqTPip42N0R8eFQCMRSTQGTQMRWSciu0TkYxEZkEYclX3Ay1RjLPGk11awUkTuE5E6GY4vFdkyYGhY564r7rZmedoDy1V1S1R6UOcvUXwlikRkt/dv9W8i0qiiAhKRPBHJF9cH7nfAo+r9Nz+GwL9/ScZXIqXvX661mTT0XqOHYNkQsX5tOXm/wt3mWQDUBS4B/iEiA1V1Wjl54sURaxiYDRExJpuvTZIxJJJqjDuBh4E3gU1AD+B6XJvLmZkNMWlBnr9UhHbuxD2EciZwUZzNUv1OpM1nfABP4bodrAU6ATcDx4jICaq6pwJC2wrU8v7+O3BtnG3D+P4lE19a37+sL0xEpD5wUKLtVDXyfwTRJbOUkx6Z/5mo474MzAFuIaLan4RABrxMU9LHUtWV7NvAN1NEVgOPiEhHVV2Q4RiTFeT5S0pY5857GutZ4EVVnZgozFi7KCc9I5KJT1ULI96+IyILgdeA/riG7kzrCuTj2j5uAR4CLo8XYoy0ijx/vuNL9/tXFW5zDcZVExMt8FMNJHrQyJL3vgeN9KqK04CjxccjvVGyYcDLVGOMpeTJmmPTiih92ThgaIWeO+8W0OvAUuC8BJsHfv6SjC+W6cAWKuj8qepHqvpvVb0PdxvpMhE5tJzNAz9/ScYXi+/vX9YXJqo6QVUl0eJtXlI7ib4/2R74XlXLu8UVN4QU8mTDgJepxhiLRr2GJRsHDK2wcyci+cAruEbZX6rq1gRZFgEtRGS/qPQKOX8pxFdGRPtAEN+9j7zX1uWsD/v7lyi+WHyfv6wvTJKhql8DX+BqMwCISDXvfVIDRoqI4IZz+U8K92Ir44CXmYoxlkHe6/xMBJaGIM9fplTIuROR6rinGA8D+qjqGh/Z3vReS4cxEpGDcX0kMnr+Uowv1n7OwLVxBvHd6+a9flPO+rC/f4nii8X/96+in22ubAswHNiD63h3CjAR9wN5ZMQ23XHP03ePSJuFqyaehvvH9Bqu09H/pRBDQ2Al8BbQGzcj5Bbg9qjtvgKeiEqbDnwNDADOwvWbebcCzlNKMeL644z14usNjPHO7z8yHF++90UfBMwFPot4n18Jzl/S8QV17rxjjcf9b/N3QOeopZa3zdvA21H5Hsd1Yjsf14H3PeBLoHbY8Xnf0fHAEKAnrvPdRuB9IC/D8U339t/H+00Y7f37KC7v30bA37+k40v3+5fRD5AtC/Ab70TuxFX9ekWt7+F9kXtEpD3hfQm2456QeBf3P6ZUY+gA/NPb30rgtugvPLAEmBiV1gB40vtHsgnXMFmmg1eGzlPSMeIG5JyHGy3gR+88jyn5AchgbAXeNYq1FIR9/lKJL6hzF3HsRPHNJKqzJe7JoPtwT0ttxf2nqnVliA83iOxsXH+KXcAyXI/9+hUQ32240c+3eN+lj4ArgRrl/dsI+PuXdHzpfv9soEdjjDFpy6k2E2OMMRXDChNjjDFps8LEGGNM2qwwMcYYkzYrTIwxxqTNChNjjDFps8LE5BxxUzBXxOyFaRGRQm+a1Lop5H1QRJ4sZ93EWFPrikhzb0rcyjBisslyVpgYk+W8MdN+jZsC1jd1E1tNxo0ma0xarDAxJvtdCnykEdMsiEh1EblDRJYDvwIWi8jnIjI0Ku+TwHARaRxgvKYKssLEmBhEpLWIvCAim0Rks4i8LCI/i9rmYhH5TES2e7P6zRKRIyLW3ygiX4nIDhFZLSLTRaRZBYT7K34aKrzE73GTuT2AG/LkIuBvQHShMRv4HjeUhjEpy/rJsYzJNBGphRtEcBduHLfduIHyZonIUar6vYicDDyGu0U0F6gHdMHN94KI/Aq4CTdT3We4H/GeuCH8MxlrO+AQ3ERtkboD/1TVu0WkAzBbVZdE51dVFZH3cAP7PZzJ2ExuscLEmLIuBFoCbdVNW4CIvI8b6PMS4A7czHX/VdU7IvK9FPH3CcCbqvpIRFoqM3Imcpz3+mlU+kqgr8+a0H9whaYxKbPbXMaUdQKuDeLrkgRVXY67JVQyF8UC4OciMk5EThaRmlH7WID7MR8tIiekMBunX82AHVp24qg/4Ub1/Qb4P+AaEekWndmzDmjqzdFjTEqsMDGmrIOA1THSVwONAFR1Bq4GczJuKPR1IvJIxCyEf8Pd5hqCm09jtYjcVgGFSm3cVAr7UNWlwFG4uXe+xhWC/xaR+2LsYyfuLoXdqTAps8LEmLJWAk1jpB+Ia6wGQFWfUtXjvPRrgULgZm/dXlUdp6qH426Z3YsrXDJ9O+l7oJ43Y+g+VHWXqk7H3QI7C7gKuEpEWkZt2gDYoqq7MhybySFWmBhT1vvAcSJSOle2iDQHugL/jt5YVdeq6uO4CdM6xFi/TFXvxE02VGZ9mhYDArSKTCznltWH3mujqPQC3HTWxqTMqrUmV9UUkUEx0mfhpnK+HnhdRG7BTfNchGtbeBxAREbjfpRneuk/xz1BdYO3/nFcreE93Mx1p+DmM7/eR2xniciOqLQPVfXbGNt+gHva7Dj2ndv7WRH5GHgH9wTZcbiayQpgYdQ+OuHag4xJXaani7TFlsq+4AqG8qaE7eFt0wZ4AdiMm/r0FeCwiH30wz0+vBbYgash3ACls5cW8lMfjm3Af4GLE8RVGCeuwjj5XqHsXONn4+YBXwXsxU0ROxP4edR2TXCFUfewr4st2b3YtL3GZDkRORuYABysqmUa40VkIlCkMfqZiMglwDW4x6Dtx8CkzNpMjMl+L+BuX52fTCavXeX3wJ+sIDHpssLEmCznFQQjcD32Y3kB2BgjvRkwCXi6gkIzOcRucxljjEmb1UyMMcakzQoTY4wxabPCxBhjTNqsMDHGGJM2K0yMMcak7f8DHWBZ94I+iU4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -267,7 +269,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xd4VGXa+PHvnYQEEnrvhI7YBRWkBSmWLZZXxXVdV9eCawfXfd91m7r72y7YFdZedlF3Leta6AGliGAXaYHQewmE9OT+/XFOJsMwmcwkM3Mmyf25rrkm58x5nrlnksw9zzlPEVXFGGOMibUkrwMwxhjTOFjCMcYYExeWcIwxxsSFJRxjjDFxYQnHGGNMXFjCMcYYExeWcIwJk4hki4hn4whE5HkRURHJ9NuX6e573qu43Dg8fW9M/WAJxyQsEcl1P0zDuT0fZp2B5YpFZK+IfCoiT4vIBSKSHMPXkxuLumMtWLIzJlIpXgdgTAgPAa1DPJ4OTAWSga8jrPt+9z7ZfY4TgR8B1wMrReSHqrouoMw17nN65RfAn4DtHsZQHa/fG1MPWMIxCUtVH6ruMRER4DWchPFv4MEI674vSJ2dgEeBy4F5IjJUVff4ldkSyXNEm6ruBHZ6GUN1vH5vTP1gp9RMffUAcBnwGXCNRmGOJlXdDVwJZAM9gHv9Hw92nUIcPxaRpe6puSIR2Sois0VkkntMlluuF9CrulOB7na2iHR2T+9tF5FyEbnWfTzkaS0RGSQib4nIARE5KiIficjEIMfd59aTFeSx464JubH/2N3c5Bd7bqj3xt2fJCI3i8gnIpLvxvWJiPxURI77/PF7D9qLyEwR2eme9vxGRK4L9rpN/WEtHFPviMiVwK+AXcD3VbUgWnWraoWI/B7IAn4gIlNqSGb/D+dU1yacFlce0AU4E6el9CqQi3MK7y63jH/L7fOA+toCy4F84A2gAtgdRui9gWU4pxZnuDFMAt4XkatU9dUw6qjO/cDFwKnAw8Ahd/+haktUeQm4CtgKPA0ocAnwBDAS+GGQMq2BJUAJ8C+gKc6Xi2dFpEJVX6j1KzHeUlW72a3e3ICzgEL3dnYtyqvzZx/ymDSg1D22t9/+7MCywH5gG5AepJ72Adu5QG5NsQEvAilBHn/efTzTb1+mX7m/Bhw/1H0dB4GWfvvvc4/PCvIclfU9X9NzBzwe7L35gVvmU6C53/4MYKX72FXVvAdPA8l++wcDZcBqr/8G7Vb7m51SM/WGiHQD3sL5xnuDqn4ci+dR1WKcRALQIYwipUB5kHr21eLpS4CfqWpZhOXycE4z+j//SuAVnBbDJbWIpa5+4t7/n6rm+8V1FPhfd/OGIOUKgKmqWu5XZjVOq+cEEWkRo3hNjFnCMfWCiKQD/8E5VfRHVX0l1k/p3td0begVnFbBNyLyRxE5X0Ra1eF5c9Wvo0IEPlXVI0H2Z7v3p9c+pFo7A+eUYHaQxxbhJOlgca1X1cNB9m9170P1XDQJzBKOSXhuj7QXcD7A3gZ+GePna4pzLQVgbw2HT8G5NnMU+D/gfWCfiLwtIv1q8fS7alEGqr/OU1lfXZJgbbUCDqhqSeADbgtuH8Hjqu7aUGWrLybjpEzsWcIx9cH9OBeNvwSuVvekfgyNxOlQs1tVc0MdqKrlqvqwqp4KdAL+B3gT+D7wgYikRfjctX1tnarZ39m9z/PbV+HeB+s0FM3WQx7QVkSaBD4gIilAeyBYS8Y0UJZwTEJze6T9GtiD0yMtv4YidX2+JKpaUP+IpKyq7lHVN1T1CmAB0Bc4ye+QcmL37fyMaq5tZLn3n/ntO+je9why/NBq6q+8nhJJ/J/hfMaMDvLYaLeuTyOoz9RzlnBMwhKRM4HncC6kX6qqm2P8fB2BWTgf0luAP9RwfJqIjHNP+fnvb0LVKTn/Ltv7gQ4i0ixqQVdpBfwmII6hON2O83BaXZVWuPfXuS2NyuN7BNbhp7ITRc8IYnrWvf+jew2u8nnScWZMAHgmgvpMPWfjcExCcr+tv43TI+0TYIKITAhRJFdVn4+g/vvcH5OomtpmJJCK84H8wzB6mTUD5gG5IvIxsNmNdwJwAvAfVf3W7/j5OONzPhCRxUAx8IWqvhNu3CEsBm4QkbNxenNVjsNJAib7X4RX1Y/d5x8NrBCRBTin5L4HzCZ4y2c+cA/wdxH5F844oUOq+lh1AanqP0TkIuAKnE4Vb+GcMrwYZ9zQa3Ho/GESidf9su1mt2A3jh1fEs4tO8x6A8sV41y8XgX8HTgfSKqmbDZ+Y02AJsDPcToKbAGKcDoZLAduBlIDymcAT+KM2ykjYLxLTa+D0ONwnsdJcm/jnDIrwEk851VTV2v39e5x34OvgZuoZhyOW2Yq8K17vOI3pijwvfHbnwTcgjPupsC9rQJuDfY+h3oPgr1+u9Wvm7i/SGOMMSam7BqOMcaYuLCEY4wxJi4s4RhjjIkLSzjGGGPiwrpF+2nfvr1mZmbWquzRo0fJyMiIbkBRYHFFxuKKjMUVmYYY16pVq/apajiT3Fq3aP/bkCFDtLYWLlxY67KxZHFFxuKKjMUVmYYYF7BSw/yMtVNqxhhj4sISjjHGmLiwhGOMMSYuLOEYY4yJC+ulZhqUo8VlzFicw8vLNnOwoJQ26U24engvJo/uS0aa/bl7xX4vBizhmAbkaHEZlzyxhM37Cyguc9YYO1BQyoxFG/ng6128ecsI+3DzgP1eTCX7LZsGY8binGM+1CoVl1Wwad9Rfv3W11w2pHvIOlbvLyd1Q02rEsRffY7rX6u2sWnfUUrLj50ouLisgs37C5ixOIepEwbGMkyTICzhmAbj5WWbj0s2lUrLlTc+284bn22vuaJPPo5yZFHSAOMqLqvg5eVbLOE0EtZpwDQYBwtKvQ7B1MLBghKvQzBxYi0c02C0SW/CgRBJJyVJODOzbbWPAxw6dJDWrdtEO7Q6q89xfZJ7gLKK6tfdapOeGu2wTIKyhGMajKuH9+LxBTmUB1lUMC0liclj+tR46iY7O5usrGGxCrHW6nNc0+auZcaijUFPd6alJHH1sJ6xCs8kGDulZhqMC0/qUm2y6dUuncmj+3oQlZk8ui+92qWTlnL8x0231s3s99KIWMIxDcbfP9zk+zklSRCBthmpTB7Tx7reeigjLYU3bxnB5DF9aJtx7Omz4X3b2e+lEbHftGkQcvbm8+Zn23zb/7xpWI3Xa0z8ZKSlMHXCQKZOGMjCNXu47vlPAHh95TZuHduPrq2beRyhiQdr4ZgG4aF566m8Lj2qf3tLNgksa2AHTu/ZGoCS8goeXbDB44hMvFjCMfXeml2H+e+XO3zbd0+0MR2JTET4md/v6PWVW9myv8DDiEy8WMIx9d70ueuo7Csw/oSOnNajtbcBmRqd07cdZ/d2WqFlFcrD89d7HJGJB0s4pl77enses7/Z7dueMmGAh9GYcInIMS3RNz/bRs7efA8jMvEQ94QjIoNFZL6IFIjIDhF5QESSIyifJCKrRERF5LtBHr9IRL4SkSIRWS0ik6L7CkwimTZ3ne/nC0/uzIldW3kYjYnEWb3bMqp/ewAqFB6eZ62chi6uCUdE2gDzAAUuAh4A7gbuj6CaG4Bu1dQ/Evg3sBC4AHgX+KeITKxD2CZBrdp8kAVr9gAgAneNt9ZNfePfynnnyx2s3XXEw2hMrMW7hXMz0Ay4VFXnqupTOMlmqoi0rKmwm7D+H/DLag75NbBYVe9Q1YWqeg/wAfCb6IRvEsl0v9bNRad2ZUCnFh5GY2rjtB6tGX9CRwBUj/2dmoYn3gnnAmC2qh722zcLJwmNCaP874AlwPzAB0QkDRgLvBbw0CxguIjYuZYGZPnG/XzkToufnCTcaa2besv/utsH3+zi6+15HkZjYineCWcQsMZ/h6puAQrcx6olIqcA1wE/q+aQvkCTwPqBb3Fep30iNRCqyrQ5Vd+ELz29G73bZ3gYkamLE7u24oKTOvu2p1krp8GKd8JpAxwKsv+g+1gojwKPq2p1o8QqywfWfzDgcVPPfbRhHytyDwDQJFm4Y1x/jyMydTVlwgBEnJ8XrNnDp1sOhi5g6iUvprYJNk+5VLPfeVDkSmAg8L1a1C8hnhcRuQm4CaBTp05kZ2eH8RTHy8/Pr3XZWGpocakqv1te5Nse2TWZnC9XkONxXLHWGOI6u3Myy3eWA/DrV5dzz5m1n+6mMbxf0RSvuOKdcA4CwUbltSJ4ywcRaQL8FfgzkCQirYHKDgYZItJCVY9Q1ZIJrL9yO2j9qjoTmAkwdOhQzcrKCu+VBHCmaa9d2VhqaHHN/3Y3G/NWApCaksQfrh5Nl1bRm4erob1fsRbNuHqemM+E6Yspr1C+2V9B054nM6xPO8/jiqbGHle8T6mtIeBajYj0ADI4/tpLpQygOzANJ6kcBL5wH5sFfOb+nAOUBtbvblcAdmK4nquoUB70u3bzw7N7RjXZGG/16dCcS0+vGvEwbc46NMhyE6b+infCeR84T0T8+69OAgqBRdWUycfpfeZ/+4H72L3ADwFUtRhn/M3lAeUnActU1bq+1HOzv9nF6p1OB8emTZL4aZato9LQ3DGuPylJzlnwFbkHfD0RTcMQ74TzFFAMvCEi493rJ/cB0/y7SovIBhF5BkBVy1Q12/8GLHcP/UpVP/ar/3dAlog8JCJZIvIX4EKcAaamHiuvUKbPq2rd/PicTDq2aOphRCYWerRNZ9KZPXzbD1orp0GJa8JR1YPAOCAZeAdn0Od04LcBh6a4x0Ra/0fAZcB4YDbwfeAqVZ1Th7BNAvjvlztYt9uZaysjNdlWiWzAbju3H6nu6qCfbz3km03C1H9x76WmqquBc2s4JrOGx3Op6n0W+NhbwFu1DM8koLLyCh7ym2fr+pG9j1s50jQcXVo144dn9+S5JbmAMy5n7MCOJCUF/Zc39YjNFm0S3hufbWfTvqMAtGyawvWj+ngckYm1n2b1pWkT5+Ppmx2Hmf3NLo8jMtFgCccktJKyCh7xWyvlxlF9aNWsiYcRmXjo2KIpPx6e6duePm8d5RV2Lae+s4RjEtrrq7ay7WAhAG3Sm3DdyN4eR2TiZfKYvmSkOpdy1+3OP2ZVV1M/WcIxCauotJxH51fNZHTzmL40T/NicgzjhbYZqfzE7wvGQ/PWU1Ze4WFEpq4s4ZiE9c8VW9h12JnGpn3zNK7xO8ViGocbRvWhZVPnS8amfUd587PtHkdk6sISjklIhSXlPL6waoa0W8f2pVlqxD3lTT3XqlkTbvTrJPLIgvWUlFkrp76yhGMS0ovLctmXXwxAl1ZN+cFZPb0NyHjmupG9aZPudBTZeqCQ11dt9TgiU1uWcEzCyS8u46lFVa2b287tR9Mm1rpprJqnpXDzmKqBvo8t2EBRabmHEZnasoRjEs5zH23iYEEpAN3bNOPyIT1qKGEaumuGZ9K+eRoAO/OK+OeKLR5HZGrDEo5JKHmFpfz9w42+7TvG9fdNc2Iar2apydziN1nr4wtzKCyxVk59Y//JJqE88+FGDheVAdC7fcYx09Wbxu2qs3vSuaUzYeu+/GJeWp7rbUAmYpZwTMI4cLSEZz7a5Nu+a3x/UpLtT9Q4mjZJ5rZz+/m2n8zOIb+4zMOITKTsv9kkjBmLczjqniYZ0Kk53z2lq8cRmURzxdAedG/jLLp3sKCU55dsqqGESSSWcExC2HOkiBeW5vq2p4wfQLLNDmwCpKYkcce4/r7tmYs3kldY6mFEJhKWcExCeDI7h6JSZ0Df4C4tOe/Ezh5HZBLVpad3o3f7DAAOF5XxjF8nE5PY4p5wRGSwiMwXkQIR2SEiD4hIyEEWInKiiHzgHl8sIltE5GkR6RJw3PMiokFug2L7qkxd7Mwr5JWPq7q53j1xgK19YqqVkpzEXeOrWjnPLsnlwNESDyMy4YprwhGRNsA8QIGLcJZ+vhtn5c9QWgGbgJ8B5+GsEDoeeE9EAmdzXAMMD7jlRucVmFh4bMEG33Qlp/VozbmDOnockUl03z2lK/07NgecgcIzFufUUMIkgnhPvXsz0Ay4VFUPA3NFpCVwn4j8xd13HFVdCiz125UtItuAOcApwKd+jx1V1eWxCd9E29YDBby2smqqkrsnDkDEWjcmtOQkYeqEAfz0Fedf/4WluVw/sjcdWzT1ODITSrxPqV0AzA5ILLNwktCYCOva797bWsP12CPz11Na7iysdVZmW0b2a+9xRKa+OO/Ezgzu0hKAotIKnsy2Vk6ii3fCGYRzystHVbcABe5jIYlIkoikishA4E/AJ8CKgMMGi8hh91rPRyISaSIzcbJp31He8Jtufqq1bkwEktxWTqVXPt7CzrxCDyMyNRHV+C3bKiKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCrhQVff4PX4nUAKsBjrgXB8aAoxU1cDEVFnmJuAmgE6dOg2ZNWtWbV4a+fn5NG/evFZlYymR43olJ4VlO51xNye2S+KeM5t5HFViv18W1/FUld8tL2JjnnMN8NweKVxzYprncVWnIcY1duzYVao6NJxjvVg+MViGk2r2B7odaAv0B34FvC8iI1S1CEBVHz6mUpF3cZLPvcDFQYNRnQnMBBg6dKhmZWWF9yoCZGdnU9uysZSocb3yzgKW76r6Nvq7ScM4o2cbDyNyJOr7ZXFVL7nbXq551vk++eGOcu7/wVnkfLnC87iCSYT3K5h4xRXvU2oHgdZB9rcCDtVUWFXXq+rHqvoyTkvndOCqEMcXAu8BZ9QuXBMrb24oobJxfe6gjgmRbEz9NKp/e87KbAtAabny6IL1HkdkqhN2C0dETgbOAjoDTYEDwDpgqaoeDLOaNQRcqxGRHkAGAdd2aqKqm0XkANCnxoPDaz2ZOPlmRx4rd1fN9Ot/Ht6YSIkIUycO4MqZTufUf3+6nTNGWG+1RBQy4YhIH+CnwA+BTkAFTkukGKelkg5UiMgi4GngVVUNtf7r+8A9ItJCVY+4+yYBhcCiSAJ3Ow60wxmfU90xzXB6xq2KpG4TW9PnrvP9fN6JnTipWysPozENwbA+7RjRrx1LNuynvEJ5e0MJV3odlDlOtafURORp4BvgNJwBmqcDTVW1g6p2V9XmQEfge8BXwF+Ab0VkZIjnewonWb0hIuPdC/b3AdP8u0qLyAYRecZv+28i8icRuURExorILcBsIAenWzUi0kpEPhSRySIyTkQmAQuBbsAfIn1jTGx8vvUQ8751+nmIwBRr3ZgomTphoO/n5TvLWb/7SIijjRdCXcMpAgap6gRVfUpVv1TVY1Y8UtV9qvq+qt4F9AJ+g/MBH5R76m0ckAy8gzPDwHScmQP8pbjHVFoJjAKeAd4F7gD+DQxT1aPuMcXAXpzOBO/hdAQ4BIxR1ZUhXqeJowfnrPX9/N1TujKoc0sPozENyZBebRg7sAPgnEOfPm9d6AIm7qo9paaqt0VSkXsq7dUwjlsNnFvDMZkB27NwWzIhyhQBl9YYqPHMJ7kH+HD9PsDplug/H5Yx0TB1wkAWrt0LwHtf7eKbHXmc2NVO2SaKWvdSE5HmIpJ4HcpNQlJV/ja7qnVzTtcU+nawPx8TXSd3b8V5J3bybU+faz3WEknECUdEThCRT4DDQJ6IrBSRwdEPzTQkS3P28/GmAwCkJAkX9WvicUSmoZoyYQCV81XM+3Y3n2+tccSFiZPatHCeBl4HWgBdgbXA81GMyTQwqnrMtZvLh/agY7otxWRiY1DnlpzVueoS8LS5di0nUYTqpTbdnck50CDgUVU9qqq7gRcA62pkqpW9di+fbnG+ZaYmJ3G737r0xsTCxf1SqVxSafG6vXySe8DbgAwQuoXTClgvIjfLsTMqzgdeEpELReQy4I/uPmOOo6rHfMP8wVk96Nra+znTTMPWpXkSF59e1WHWv4VtvFNtwlHVnwAX4kwd84WIjHUfuhHYAvweZ46yxcD1MY7T1FNzVu/mq+15AKSlJHHrWGvdmPi4c1x/UtxmzvKNB1i6YZ/HEZmQJ9JVdZWqjsYZOPmciLwJtFXVqap6hnuboqp2Vc4cp6JCmTanqnVzzfBedGxpU46Y+OjVLoPLh3b3bf9tzlriOTu+OV5YV27dcTCDgM+BVSLyRxHJiGlkpt5796udrHVHe6enJnPzmL4eR2Qam9vO7U9qsvMx9+mWQ2Sv2+txRI1byIQjIgNF5KfuOjNnqOr9OEs69wDWici1cYjR1ENl5RXHjPS+bkQm7ZqneRiRaYy6tW7GD87q4dueNmedtXI8FKqX2g3AFzhzpY0C3hORJ1R1m6peDVwG/NQdhzMiPuGa+uLtz3ewca8z61CLtBRuHBXOpN7GRN+tY/uRluJ81H21PY85q3d7HFHjFaqF81vgVlW9UFUvA8YAk0WkM4CqLlPVs4FHqWHaGdO4lJZX8PD8qhHeN4zqQ+v0VA8jMo1Zx5ZNuWZ4L9/29LnrqKiwVo4XQiUcwVmOoFKFu++YRedV9QUC1rgxjdu/Vm1jy4ECAFqnN+EnIzO9Dcg0ejeP6Ut6qjMYdM2uI7z71U6PI2qcQiWc3wNPiMg7IvIazno1z6jqcb8pvxmbTSNXXFbOo36tm8mj+9KiqU1jY7zVrnka143I9G1Pn7eOsvJQS3eZWAg1DucpnKWZPwCWARer6o3xCszUT7NWbGVHXhEA7Zun8uNzetVQwpj4uHFUH1qkORPkb9x7lLc/3+FxRI1PTeNwvlXVx1V1uqoujldQpn4qKi3n8YUbfNvOaYywVzE3JqZap6dy/ajevu2H56+n1Fo5cRWql9qoSCtzV908uYZjBovIfBEpEJEdIvKAiCTXUOZEEfnAPb5YRLaIyNMi0iXIsReJyFciUiQiq92VP00cvLx8M3uOFAPQqWUaVw+z1o1JLD8Z2ZvW6c4p3i0HCvj3qm0eR9S4hGrhvCYiS0TkJyLSJlQlIjJCRB4FNgPDQxzXBpiHsyDfRThLV9+Ns/JnKK2ATcDPgPNwetCNx+mq7fsK7S5v/W+cpaUvwFkd9J8iMrGG+k0dHS0u44nsHN/2bWP70bRJyO8RxsRdy6ZNuGl0VRf9R+avp7isPEQJE02hznf0wVnK+bfADBFZB3wN7MNZzrk10Bs4HWiGs6zz+BqWc77ZPfZSVT0MzHVnpL5PRP7i7juOqi4FlvrtyhaRbcAcnIGon7r7fw0sVtU73O2FInIiztLXc0LEZero+aW5HDhaAjiD7a44s0cNJYzxxrXnZPLsR5vYl1/CjrwiXv1kK9cMz/Q6rEYhVKeBQlX9M5CJ01p4GyfJjAS+A5yA06K5B+ihqpfUkGxw65kdkFhm4SShMRHGvt+9TwUQkTRgLPBawHGzgOEiYuvMxsjholJmLt7o275jXD/SUqx1YxJTemrKMdMsPbZgA0Wl1sqJhxrnUlPHPFW9V1XPU9VTVXWgqg5X1WtV9e+quifM5xsErAmofwtQQBhjeUQkSURSRWQg8CfgE2CF+3BfoElg/cC3OK/T1uyJkWc+3EReYSkAvdqlc+kZ3WsoYYy3rh7Wi04tnamW9hwp5uXlmz2OqHGQeM4rJCKlwD2q+lDA/m3Ai6p6bw3lP8C5hgOwCriwMtm50+t8BJyuqp/7lekHrAfOU9XjTquJyE3ATQCdOnUaMmtW7SZNyM/Pp3nz5rUqG0uxjiu/RLlncQGFZc72TaekcU7XmnumNdb3q7YsrsiEE9f8LaW8tNo5DdwiFf46Op2mKRKyTDzi8kJd4ho7duwqVR0azrFe9FkNluGkmv2BbgfaAv2BXwHvi8gIVS0KUb9Us9/ZqToTmAkwdOhQzcrKCiOM42VnZ1PbsrEU67j+/MEaCsuczgL9Ojbnf68cTXJSzf+0jfX9qi2LKzLhxDW8rJwFf1vE9kOFHCmBnOQe3JoV2/Wa6vP7FQ3xXlj+IM51oECtgBrX1FHV9ar6saq+jNPSOR1ngbjKuglSf+W2rdkTZfvyi3l+Sa5v+67x/cNKNsYkgrSU5GOWO5+5eCOHi0o9jKjhi3fCWUPAtRoR6QFkcPy1l5BUdTNwAKc3HUAOUBpYv7tdAazDRNVT2TkUuhdbB3VuwYUnHTcsypiE9j9DutOrXToAeYWlPPvRJo8jatjinXDeB84TkRZ++yYBhThztYXN7TjQDmd8DqpajDP+5vKAQycBy1Q1r7ZBm+PtPlzES34XWqdOGECStW5MPdMkOYk7x/X3bT/z4SYOFZR4GFHDFlbCEZG/icjgKDzfUzhjeN4QkfHuBfv7gGn+XaVFZIOIPBPw/H8SkUtEZKyI3ALMxmnV+F/l/x2QJSIPiUiWiPwFuBBngKmJoscXbqC4zJkW5JTurZgwuJPHERlTOxed1o2+HZwFjI8Ulx3Txd9EV7gtnP8BvhKRFSJyc23HtKjqQWAckAy8gzPDwHScwaX+UtxjKq3EWQTuGZzZA+7AmVFgmP9M1ar6Ec7CcONxEtL3gauC9U4ztbftYAH/XLHFtz11wgBErHVj6qfkJGHKhKpRE88tyWVffrGHETVcYfVSU9XeIjIWuA74KzBNRN4CnlXVeZE8oaquBs6t4ZjMgO1ZhLnIm6q+BbwVSUwmMo8t2EBpudPpb0ivNowZ0MHjiIypmwtP6sKgzhtYs+sIhaXlPJWdw6++G42TOsZf2NdwVHWhql4DdMHpntwdmC0im0XkfhGxNYQbgdx9R3ndb8LDuyda68bUf0lJwlS/Vs5Lyzez+3BRiBKmNiLuNKCq+ar6DM5psCVAD+AXwDoReVtEbIrgBuyR+espd5fnHd6nHef0be9xRMZEx4TBnTilu3O1oLis4pilNkx0RJRwRCRTRH4rIhtxJsPMx+kV1gLnekkmYZ76MvXPhj1HeOvz7b7tuyfabEGm4RA5tpXzzxVb2HawwMOIGp5we6n9SEQWABuAHwPPAb1V9UJV/beqFqvqezgX88Oa4sDUP9Pnrcdt3DBmQAeGZrb1NiBjomzMgA4M6eWsxlJarjy2wFo50RRuC2cmsAtnPrI+qvo7VQ22ctE64PdRi84kjG93HubdL3f6tv2/CRrTUIgId/v9bb++ahub9x8NUcJEItyE01VVr1LV+aEOUtWdqlrTYmqmHpo+t2qihgmDO3FI9tmwAAAgAElEQVRqj2AzFBlT/53Trz3D+7QDoLxCeXj+eo8jajjCTTirROTUYA+IyEnuNR3TQH257RBzVu/2bVvrxjR0/tcn3/psOxv25HsYTcMRbsLJBNKqeSwdp4u0aaCm+bVuvnNKF07o0tLDaIyJvaGZbX3jyyoUHppnUzFGQ7UJR0RaikhPEenp7upcue13GwBcCWyvrh5Tv63afIDstXsBSBKYMr5/DSWMaRj8W/L//XIn3+48HOJoE45QLZwpQC7O5JgKvOn+7H/7FrgLeCSmURrPPDin6pvdRad1o1/HFiGONqbhOLVHa8afUDVHoP91TFM7oaa2+QfOHGYC/Af4GbA24JgSYK27TLRpYJbm7GNpzn7AmW/Kf1ZdYxqDqRMGMO9b5/rlnNW7+WpbHid3r9VUkoYQCUdV1+MszYw7j9qnqnokXoEZb6kq0/xaN5ed0Z3M9hkeRmRM/A3u2pLvnNyFd79yhgQ8OHctz193lsdR1V9hdRpQ1UWWbBqXxev3sXKzs4hqk2Th9nGxXXrXmEQ1ZUJ/Kpd6yl67l1WbD3gbUD0WqtPAHhE53f15r7td7S1+IZtYU1UenFN19vTKM3vSvU26hxEZ451+HVtw0WndfNv+1zVNZEJdw3kc2O33s8Y+HJMI5n27hy+3OQukpqYkcetYa92Yxu3Ocf35zxc7KK9QlubsZ1nOfob3bed1WPVOqGs49/v9fF+0ntBdOfRRYDhwCHgauF9Vy0OUORO4BWcRtq7AVpxODX9W1SK/4+7j+MXcAC5Q1Q+i9RoasooKPWbczY+G9aJzq6YeRmSM9zLbZ3DZGd15deVWAKbNXctrfYbb0hwRinh5groQkTbAPJzW0kU4Sz/fjbPyZyiTgL7An3GWjH4cmAq8EuTYPJxk5n9bFoXwG4X3v97lG2/QrEkyP83q63FExiSG28f1o0myk2A+yT3I4vX7PI6o/qm2hSMir0VSkapeEcZhNwPNgEtV9TAwV0RaAveJyF/cfcH8WVX3+m1ni0gRMENEeqnqZr/HylR1eSSxG0d5hTLdb0T1j8/JpH3z6iaYMKZx6d4mnUln9uDl5c4okGlz1jK6f3tr5UQgVAunQ4S3cFwAzA5ILLNwktCY6goFJJtKn7n3HcN8blOD/3xRNWdU87QUJo+2RVyN8Xfb2P6kpjgfm19sy2Pet9ZfKhKhruGMjcHzDQIWBDzPFhEpcB97J4K6zgEqOH4wamsR2Qe0Ar4Gfqeqb9Q+5MahrLyCh+dVzYr7k5G9aZOR6mFExiSezq2acvXZvXh2ySbAmWdw3KCOJCVZKyccohq/zmciUgrco6oPBezfBryoqveGWU9n4EvgPVW91m//1Tgtns+B5sBknGs+/1Nd0hGRm4CbADp16jRk1qzaLVian59P8+bNa1U2lsKNa/G2Up79ugSAjCbwl9HpZDSJ3T9RfX+/4s3iikws48orVu5ZXECJ283p1tPSOLNzqA6/8YmrLuoS19ixY1epalgLb4a6hnML8Lqq7nV/DklVnwgzvmAZTqrZHyyuVOA1nOWtpwTE8HLAse8AS4HfAEETjqrOxFlgjqFDh2pWVlY4YRwnOzub2paNpXDiKimr4Jd/y/Zt33LuQL4T467Q9fn98oLFFZlYx/VtxRqeWpQDwOwdTZh6xWiSw2jlNNb3q1KotPwYzlxqe92fQ1EgnIRzEAi2clcrnC7SIYlzde5F4ERghKoeDBmUqorIG8CfRSQ5VNfrxuzVlVvZfqgQgLYZqVx7Tqa3ARmT4CaP7sPLyzeTX1zGhj35vPPFDi4+vVvNBRu5ajsNqGqSqq7w+znULTnM51uDc63GR0R6ABnuYzWZjtOd+iJVDed438uJ4NhGpai0nMcWVF27+emYvmSkhXd6wJjGqk1GKj8Z2du3/dC8dZSVV3gYUf0Q13E4wPvAeSLiP8f9JKAQWBSqoIj8ArgduFpVPwrnydwW0SXAF9a6Ce6Vj7ew+3AxAB1apHH1sF4eR2RM/XD9yN60bOp8OcvdX8Abn9qyYDUJO+GISKqI3CQiT4vIu+79je41lXA9BRQDb4jIePeC/X3ANP+u0iKyQUSe8du+CvgDzum07SIyzO/Wwe+4RSJyh4hMFJFLgHeBYe5zmAAFJWU8mb3Bt33b2H40Sw23sWpM49aqWRMmj6kaGP3w/PWUlFkrJ5SwEo6InICzVMHjwElAuXv/OLDBna6mRu41l3FAMk4X6PtxTpMFTkeT4h5TaaJ7fy3OrAH+t+/4HbcBZ0G4t4GXgRbAd1T1P+HE19i8sHQz+/KdnmldWzXlyrN6eByRMfXLtedk0tYdPrD9UKFv6hsTXLgn62fiTBkzyn+xNXf56XdxWi6jw6lIVVcD59ZwTGbA9rU4yaamuq8PJwYDR4pKmbE4x7d927n9SUux1o0xkchIS+HmMX34w3vOJeXHF2zg8iHdadrE/peCCfeU2lDgN4Ere7rbvwHOjHZgJraeW5LLoYJSAHq2Tefyod09jsiY+ulHwzLp0MKZAmrX4SL+8bEtgFydcBNOLlDdlMFNAXuH65G8glL+/uFG3/Yd4/rTJDne/UeMaRiapSZzq98kt09kb6CgpMzDiBJXuJ8y/wf8XkTO9t8pIsNwZnz+32gHZmLn7x9u5EiR8w/Rp0MGF5/W1eOIjKnffnB2T7q6y3jsyy/hxWWbayjROIVa8fMTEVkhIiuAXwItgaUislNEvhCRncASnEGbYU1JY7y3P7/YNw8UwF3jB5BirRtj6iQtJZnbzu3v235qUQ5Hiko9jCgxheo08A3HDpj8JsaxmDiYsXgjBe4kUAM7teC7J3fxOCJjGobLh3bnyUUb2HqgkEMFpTy3JJc7xvWvuWAjEmq26GvjGIeJgz2Hi3hxWa5ve8qEATbLrTFR0iQ5iTvHDeBnr38BOKeufzw8k1bpTTyOLHHYuZRG5InsHIpKnYFpJ3VryXkndvI4ImMalotP60qf9hkAHCkqO6Zzjgl/HA4ikglcDQwgSI+1MFf8NB7ZcajwmO6ad08YaCsVGhNlKclJ3DVhAHf801kf8rklm7huRCbtbOVcIPyZBobgLGb2Q/fWH2dszmU4U8e0j1WAJjoeXbCBEndywdN7tiZrYLiLtBpjIvHdk7swsJMzXeTRknJmLLZWTqVwT6n9Ffg3znQ2Alyvqn2AkTgdC/4Sm/BMNGzZX8DrflNuWOvGmNhJShKmTKjqLPDislz2HCnyLqAEEm7COQ34B86SzuCeUlPVpTjzof0p+qGZaHlkwXrKKpwOh2f3bsuIfu08jsiYhu28EztzYteWABSVVvDEwpwaSjQO4SYcBUrUWY96D+A/h/1WnFNsJgHtzK/gjU+3+bbvnmitG2NiTUS4e+IA3/Y/Pt7CDneRw8Ys3ISzGqicu2EZMEVE+otIL+DngKXvBPV2Tglu44ZR/dtzVu+23gZkTCMxdmBHTuvhLHBcUl7BYws31FCi4Qs34cwEOrs/3wt0wVmhcyNwNvCz6Idm6mrtriN8vLNq3bmpEwaEONoYE00iws8mDvRtv/bJVvYUNO71csLqFq2qL/n9/K27Ps45ONdylqvqnhjFZ+pg+tx1vqkixg3qyOk923gajzGNzYh+7Tird1tWbDpAWYXyn5xSGvP4kVoN/FTVfFWdo6r/iTTZiMhgEZkvIgUiskNEHhCRkItHiMiZIvKcuxJogYisFZHfishx44FEZISIfCwihSKySUTuiPT1NQRfb8/jg292+banWOvGmLgTEe72+99bsr2MjXvzPYzIW5EsMd1RRP4gIvNE5Bv3/v+JSNjD1UWkDTAPpxPCRTgzTd+N09MtlEk415D+DFyIs9LoVOCVgPr7AbOBTTgrgc4AponIDeHG2FBMm7vO9/MFJ3XmpG6tPIzGmMbr7D7tGNXfGaqowEPz1nsbkIfCOqUmIiOA94AyYC5OJ4KOwM3A7SJygaouCaOqm4FmwKWqehiYKyItgftE5C/uvmD+rKp7/bazRaQImCEivVS1ci7we4AdwNWqWgYscFcl/a2IPOP2smvwPt1ykAVrnIanYK0bY7w2dcIAPly/D4B3vtzBrWP7MbBzC4+jir9wWziPAauAnqp6pareoapX4nSP/hR4NMx6LgBmBySWWThJaEx1hQKSTaXP3PuOAfW/4SYb//q74wxabRSm+7Vuzu6SzIBOje8P25hEcnrPNowb5HxUqcJD89bVUKJhCjfhDAIeVNWj/jtVNR/4G3BCBPWsCahjC1DgPhaJc3AGoq4FEJEMoEdg/cC3fs/d4H28cb/vm1SSwMX9Uj2OyBgDx55peP/rXXy9Pc/DaLwR7uSdq6nqFh2osot0ONoAh4LsP+g+FhYR6YyzKNxLfq2l1u59YP0H/Z47WF03ATcBdOrUiezs7HDDOEZ+fn6ty0aLqvLHFVVTaIzomkJzLfA8rmAS4f0KxuKKjMUVmdPaKZ/vdwZe/3LWMqYMOa7fkyfi9X6Fm3BuB14SkXzgLVUtFpE04BKc5aevieA5g11HkWr2H3+gSCrwGpAPTAmz/mr3q+pMnHFGDB06VLOyssIJ4zjZ2dnUtmy0fLh+L+tmrwAgJUn4ww9HkfPlCs/jCiYR3q9gLK7IWFyR2X5kAV8sLUQVvthbTss+p3JGAgxXiNf7FWqJ6b0iskdE9gBv4bRw/gEUiEgezmmwV9z9b4b5fAepaon4a0Xwlk9gTAK8CJwIXKiqB/0eriwfWH+bgMcbJFXlwTlV54WvOLMHPdqmexiRMSZQtxZJfO+Urr5t/+utjUGoFs7jhNnqiMAaAq6liEgPIIPwTstNx+lOPUFVA68FHRWRrYH1+22He9qvXlq4dg+fb3VyampKEref28/jiIwxwdw1vj///XIHFQofrt/Hxxv3c3afxjGhbqglpu+LwfO9D9wjIi1U9Yi7bxJQCCwKVVBEfoFzau8KVf0oRP2XiMivVLVyTpdJOBOMfl3n6BNUYOvmqrN60qVVMw8jMsZUp0+H5lx6Rnf+tcqZVPfBuet49aZhjWJS3YhmGhCRVBEZIiIT3PtIu0A9BRQDb4jIePeC/X3ANP+u0u6MAs/4bV8F/AHndNp2ERnmd/NfSeyvOF2gXxKRsSLyc2Ay8EBDHoMz+5tdfLPDefuaNknilrF9ayhhjPHSneP6k5LkJJgVmw6wZMN+jyOKj0hmGvg5sBtYgTOa/xNgt4jcE24d7jWXcUAy8A7ODAPTgd8GHJriHlNpont/Lc5s1f637/jVvwE4H+iH09q5BbhbVZ8ON8b6prxCj5lV4MfDM+nYIjF6vhhjguvRNp0rzuzh2/7bnLU04O/EPuHONHAX8EecFsqrOImnE87pqj+KSLGqPhJOXaq6Gji3hmMyA7avxUk24dT/EXBWOMc2BP/9cgfrdjtzM2WkJjN5jLVujKkPbhvbj3+t3EZJeQWfbz3EwrV7OHdQ2DOF1UvhtnBuBf6kqreq6mJVXeve34ozv1mjnCDTa2XlFTzsNy/TT0b2pm2GDfQ0pj7o2roZV53d07f94Jx1Db6VE27C6QEsrOaxbJzrJibO3vxsOxv3OZM/tGiawg0j+3gckTEmEreM7UvTJs7H8Dc7DjPbb4b3hijchLOFqusogSa4j5s4Kimr4JEFVa2bG0f1oVV6Ew8jMsZEqmOLplwzPNO3PW3uOsorGm4rJ9yE8wjwMxF5WkTOF5HTReQ8EXkaZ5mAh2IXognm9VVb2XrAWSO9TXoTrhuR6W1AxphamTy6DxmpTh+pdbvz+e+XOzyOKHbCSjiq+hhO9+LzcZYpWInTC+x84GZVfSJmEZrjFJWW89iCqvXRJ4/pS4um1roxpj5q1zyN60b09m0/PG89ZeUNcynqsLtFq+rfca7l9AKGu/c9GnKX40Q1a8UWduY5k3S2b57GNcN7eRyRMaYubhzVhxZNnU7DG/cd5a3PG2Yrp8aEIyJNRWSdiJyvjq2qusK9b7gnGxNUYUk5jy3M8W3fktWX9NRw52A1xiSiVulNuHFUVaefh+evo7QBtnJqTDiqWoQzIWbDe/X10EvLc9mXXwxA55ZNj+lWaYypv64bkUlrt+PP1gOFvL5ym8cRRV+4p9ReAa6LZSCmZvnFZTyZXdW6ue3cfjRtkhyihDGmvmjRtAk3+w3cfnTBeopKy0OUqH/CPRezBbhCRFbidBrYzbEzSauqPhnt4Myxnl+yiYMFpQB0b9OMK4b2qKGEMaY+uWZ4L57+cCP78kvYmVfErBVbuNavQ0F9F27CedC97wKcEeRxBSzhxFBeYSkzF2/0bd8xrj+pKRHNvWqMSXDpqSncktWPB/67GoDHs3OYdGZPmqU2jDMZ4XaLTqrh1jDejQT2zIcbOVxUBkDv9hlceno3jyMyxsTCVWf3pHNLZwLevUeKeWl5rrcBRZF9Ra4HDh4t4dklub7tO8f1JyXZfnXGNERNmyRzq98Cik8t2kh+cZmHEUVPJMsTpIrITe5sA++69zfWYk0cE6EZi6v+4Pp3bM73Tu1aQwljTH02aWgPurV2FlE8cLSEF5bmehtQlISVcETkBGA9zrLTJwHl7v3jwAYRGRyzCBu5vUeKj/ljmzJhAMlJDX9lQGMas9SUJO4c19+3PWNRDnmFpR5GFB3htnBmAnlAX1UdpqrfV9VhOAud5eGskxMWERksIvNFpEBEdojIAyIS8hqQ27r6q4h8KCKFIhJ0wKmIPC8iGuQ2KNz4Es2T2TkUul0jB3dpyfkndvY4ImNMPFx6Rjcy26UDcLiojGc+2uRxRHUXbsIZCvxGVY+ZFdrd/g1wZjiViEgbYB5Or7aLgAeAu3FW/gwlHbgBKACW1nDsGpypd/xvueHEl2h25hXy8sebfdtTJwwgyVo3xjQKKclJ3DV+gG/72Y82cfBoiYcR1V24CScXqG7d4qaEvzzBzUAz4FJVnauqT+Ekm6ki0rK6Qqp6CGirqucBb9bwHEdVdXnArSjM+BLK4ws3UFLmTPBwao/WjDuho8cRGWPi6XundqV/x+aAM/B7ht/QiPoo3ITzf8DvReRs/50iMgynlfK/YdZzATBbVQ/77ZuFk4TGhCrY2OZt23qggFc/2erbvnvCAESsdWNMY5KcJEyZUNXKeWFpLnuPFHsYUd2Em3B+BbQElorIThH5QkR2AkuAVsC9IrKi8hainkE4p7x83NNyBe5j0TBYRA6LSLGIfCQiIRNZonp0wXpKy50ce2ZmG0b1b+9xRMYYL5x/YmdO6OKcACosLT9meqv6RsJpOIjIc5FUqqpB510TkVLgHlV9KGD/NuBFVb03jFhuAx5V1eO+7ovInUAJsBrogHN9aAgwUlWDJkIRuQm4CaBTp05DZs2aVVMIQeXn59O8efNalQ2062gF935USOXCf/93VlMGta3d2NpoxhVNFldkLK7INLS4PttTxsOfOi2blCT46+hmtGkavbF4dXm/xo4du0pVh4ZzbFhT21SXQGopWIaTavZHVrHqw8dUKvIuTvK5F7i4mjIzcXrhMXToUM3KyqrVc2dnZ1PbsoHumvUZFeqs5jmiXztuvnRYreuKZlzRZHFFxuKKTEOLa4wq2XuX8sXWQ5RVwKqiDvz+/JM9jytS8R6ufhBnqYNArYBD0X4yVS3EmWw02PxvCWn97iO8/UXV4ktTJwz0MBpjTCIQEab6Xct59ZOtbDtY4GFEtRPvhLOGgGs1ItIDyCDg2k6U1ZsOBw/NW0/lWc6xAzswpFcbbwMyxiSE0f3bc2am83lQWq48On9DDSUST7wTzvvAeSLSwm/fJKAQWBTtJxORZjg941ZFu+5Y+GZHHu9+tdO3ba0bY0wlp5VT9Znwr0+3kbvvqIcRRS7eCecpoBh4Q0TGuxfs7wOm+XeVFpENIvKMf0ERuUBELgNOc7cvc2+93O1W7kwEk0VknIhMAhYC3YA/xOXV1dH0uet9P08c3ImTu7fyMBpjTKIZ3rcd5/RtB0B5hfLw/PU1lEgscU04qnoQGAckA+/gDPqcDvw24NAU9xh/TwKvA9e726+7t7HudjGwF6cL93s4HQEOAWNUdWVUX0gMfL71EPO+3Q2ACEydOKCGEsaYxuhuv8+Gtz7fzvrdRzyMJjLhLsAWNaq6Gji3hmMyw9kX8HgRcGldYvPStLnrfD9/5+QuDOpc7cQLxphGbEivtmQN7ED22r2oOtd9H/9h/egXZYuqJIBPcg+weN1eAJKEY+ZPMsaYQHf7Xct596udrN5xOMTRicMSTgJ4cM5a388Xn96Nfh0Tb8CaMSZxnNy9FRMHd/Jt+58hSWSWcDy2dMM+lm88ADjzJvmvgWGMMdXxn2Nt3re7+WJr1IcyRp0lHA+pKn/za91cMbQ7vdpleBiRMaa+OKFLS757Shff9oP1oJVjCcdD2ev28ukW51tJanISt51rrRtjTPjuGj+AyiWyFq/by8rcA94GVANLOB5RVabNqfpG8oOzqtYwN8aYcPTr2JyLT+/m235wTmK3cizheGTO6t18tT0PgLSUJG4d28/jiIwx9dGd4/qT7DZzlm3cz9IN+zyOqHqWcDxQUaFM9zvf+qNhvejYsroFVY0xpnq92mVw+ZDuvu0H564jUdertITjgfe+3smaXc7o4PTUZG7O6utxRMaY+uz2cf1JTXY+zldtPsgid1xforGEE2flAa2ba8/JpH3zNA8jMsbUd91aN+PKs3r4tqclaCvHEk6cvf35dnL2OjO8tkhL4abRfTyOyBjTENw6th9pKc5H+pfb8pi7erfHER3PEk4clZZX8NC8qtldrx/Vm9bpqR5GZIxpKDq1bMqPhvXybU+bu46KisRq5VjCiaN/r9rGlgPOKn2tmjXhJyN7exyRMaYhuTmrL+mpzkT7a3Yd4b2vd9ZQIr4s4cRJcVk5jy6oWqFv8pg+tGzaxMOIjDENTfvmaVx7TqZve/rcdZQnUCsn7glHRAaLyHwRKRCRHSLygIgErn0TWCZVRP7qLrBWKCLVvoMicpGIfCUiRSKy2l2IzXOvfrKV7YcKAWiXkcqPh2d6G5AxpkG6aXQfWqQ5K8/k7D3K259v9ziiKnFNOCLSBpgHKHAR8ABwN85CbKGkAzcABcDSEPWPBP6Ns9LnBcC7wD9FZGKdg6+DotJyHvNr3fw0qy8ZaXFfisgY0wi0Tk/l+lFVp+sfnr+e0vIKDyOqEu8Wzs1AM+BSVZ2rqk/hJJupIlLtimOqeghoq6rnAW+GqP/XwGJVvUNVF6rqPcAHwG+i9xIi9/Lyzew5UgxAp5ZpXO13Yc8YY6LtJyN706qZc8p+8/4C/r1qm8cROeKdcC4AZquq/2pBs3CS0JhQBbWGTuUikoaz3PRrAQ/NAoaLSKvIw627o8VlPJmd49u+dWw/mjYJeQbRGGPqpGXTJscMuXh0wQaKy8o9jMgR74QzCFjjv0NVt+CcKhtUx7r7Ak0C6we+xXmdniyj+cKyXPYfLQGcwVmTzuwRuoAxxkTBtedk0i7DGXax/VAhr32y1eOI4p9w2gDBVgk66D5W17oJUv/BgMfj5nBRKTMWbfRt335uP9JSrHVjjIm9jLQUfuo3bdajCzZQVOptK8eLK9fBTo1JNfujUb+EeF5E5CbgJoBOnTqRnZ1dqyfNz88/ruxbG0rIKywFoEMzoX1+DtnZG4OUjp1gcSUCiysyFldkLC5Hz3KldZpwqFjZc6SY+19ZwHmZxw/HiFdc8U44B4HWQfa3InjLJ9K6CVJ/5XbQ+lV1JjATYOjQoZqVlVWrJ8/Ozsa/7KGCEm5fuNC3/YvvncL4M7oHKRlbgXElCosrMhZXZCyuKrvSc/nN298AMGcr/OoHI4/rJRuvuOJ9Sm0NAddqRKQHkMHx114ilQOUBtbvblcAcV2ZaObijRwpLgOgb4cMLjqtWw0ljDEm+iad2YOurZzlT/YfLeGFZbmexRLvhPM+cJ6ItPDbNwkoBBbVpWJVLcYZf3N5wEOTgGWqmleX+iOxL7+Y55fm+ranTBjgWyDJGGPiKS0lmTvGVS1fP2PRRg4XlXoSS7wTzlNAMfCGiIx3r5/cB0zz7yotIhtE5Bn/giJygYhcBpzmbl/m3vwHtfwOyBKRh0QkS0T+AlyIM8A0bp7KzqGgxLk4N6hzCy48qUs8n94YY47xP0O607NtOgB5haU8+9EmT+KIa8JR1YPAOCAZeAdn0Od04LcBh6a4x/h7EngduN7dft29jfWr/yPgMmA8MBv4PnCVqs6J6gsJYffhIl5avtm3PWXCAJKsdWOM8VCT5CTu9GvlPPPhJg4VlMQ9jrj3UlPV1cC5NRyTGc6+asq+BbxVm9ii4fGFGyguc6aROLlbKyYO7uRVKMYY43Px6d14InsDOXuPcqS4jJmLN/Lz8+s6/DEyNlt0FG0/VMisFVWDq6ZOHICItW6MMd5LThLuGl81/v35pbnszy+OawyWcKLosQXrKXEnyRvSqw1ZAzp4HJExxlT5zsldGNTZ6bNVUFLOU4tyaigRXZZwomRPQQWvrayaIO/uCda6McYklqQkYcqEqlbOi8s2s/twUfyeP27P1MC9vaHUt9DRsD5tOadfe48jMsaY400c3ImTuzlzGReXVfDEwg01lIgeSzh1cLS4jGlz13Lq/XNYsqPMt/+Wsf08jMoYY6onIkydWNXKeWHZZq794ChnPDCHaXPXcrS4LETpurGEU0tHi8u45IklzFi00TdfGkCSwO//uzqmvzRjjKmLM3u1oWmTYz/+DxQ4kw1f8sSSmH1+WcKppRmLc9i8v8DXBbpShToLHs1YHN+LccYYE66ZH270XQLwV1xWEdPPL0s4tfTyss3HJZtKxWUVvLx8S5wjMsaY8Ly8bDOl5cEn6I/l55clnFo6WBB6LqKDHoziNcaYcHj1+WUJp5bapB+/psSxj6fGKRJjjImMV59flnBq6erhvUhLCf72paUkcVjREjcAAAuZSURBVPWwnnGOyBhjwuPV55clnFqaPLovvdqlH/dLS0tJole7dCaP7ltNSWOM8ZZXn1+WcGopIy2FN28ZweQxfWibkYoAbTNSmTymD2/eMuK4FfWMMSZRePX5ZZ+KdZCRlsLUCQOZOmFgwi5pa4wxwXjx+WUtHGOMMXFhCccYY0xcWMIxxhgTF5ZwjDHGxIWoBp/eoDESkb3A5loWbw/si2I40WJxRcbiiozFFZmGGFcvVQ1rtUlLOFEiIitVdajXcQSyuCJjcUXG4opMY4/LTqkZY4yJC0s4xhhj4sISTvTM9DqAalhckbG4ImNxRaZRx2XXcIwxxsSFtXCMMcbEhSUcY4wxcWEJJ0Ii0lJE7heRFSKSJyK7RORNERkQZvnBIjJfRApEZIeIPCAiyVGKbZKIvCEiO0VEReTaMMvd5x4feDvfy7jcsiNE5GMRKRSRTSJyRzRi8qv/RhFZLyJFIrJKRMaFUSZq71dt/x5EpJWIPCciB92/w1dEpF2kzx/NuEQks5r3ZVYU4+onIjNE5AsRKReR7DDLxfr9ijiuWL9fInK5iPxHRLaLSL779/2DMMqliciDIrJHRI6KyLsikhmNmGy26Mj1BG4EngF+CaQDvwA+FpFTVHVrdQVFpA0wD1gNXAT0BR7ESfy/ikJslwGZwH+BGyIsmwcEfmB+G4WYoJZxiUg/YLZb7hfAWcA0ESlQ1afrGpSIXAk8BdwHfARcB/xXRM5U1a9rKF7n96uOfw+vAgNx3s8K4M/AW8CoSGKIQVwAPwOW+G1Hc6DjicCFwHIgkmUpY/Z+1TEuiN37NRXYBExx67wQ+IeItFfVR0OUewTnf3YKsBfn/2OuiJysqkV1ikhV7RbBDcgAmgXsawvkA7+toewvgINAS799PwcK/PfVIbYk9745oMC1YZa7D9gXw/estnHNANYBKX77ngC24nZ4qWNca4Fn/eMEvgJejsf7Vdu/B2C4+z6O9tt3lrtvvIdxZboxfDfWf0vuz/8CssMoE9P3qw5xxfT9AtoH2fcPYFOIMt2BMuAav33dgBLghrrGZKfUIqSqR1W1MGDfAZwpcTrWUPwCYLaqHvbbNwtoBoyJQmwVda0jFuoQ1wXAG6pa5rdvFs4/xUl1iUlE+gADgNcq97lxvu4+bzzU9u/hAmC3qi6u3KGqK3C+zUYj9pj+ndZFLf+WYv1+JeT/nqoGayl9RujPqYnu/Rt+9WzHOQNQ5/fKEk4UiEgHoB/OKYhQBgFr/Heo6hacb46DYhNd2FqLyD4RKRWRz0TkUi+DEZEM4P+3d+6xdlRVHP5+gpY2FlpCwkNvKIqgaKIxkpQGw60ihljBWrAKaHxg1YQYY1QSNVpa/ENIUeMDFIHGGCwoj8ZoGxpsaRtaDRAwaaixVIWSWsWWEBuo2iz/2PvAOHfOa86cuUR+XzKZO/vuvWaddfaZNfu5JijZixe6rUa1V6d8lfxj83faiybsVbc+TCmXebRPuXHr1eGWPI6xV9J1kmY2oNMojNteo9KmvRbQ+zn1emBPRPyzlN6IrTyG0wyrSF1q/Qb75gJPV6QfyP+bLnaRukweJnV7fQq4Q9KSiLizZ8nxMSefy/Y6kM+j2qtTvpf8v3cp25S96taHXuVeM8T9m9brEPB94B7gGWASuJI0BnRhA3rVZdz2qkur9soTYi4EPt4j21ifUXY4pBkswIn98kXElLckSZ8BLgOWRMQ/Brhd1UpbVaWPotcwRMRPS/f9JXA/8DUKTeu29eqIGTS9pl5lOepz36Ht1U+dirTK+tBQuUEZWn5E7AWuKCRtkrQP+IGkt0TEww3pVodx22to2rRXnmV2K7A2Ilb3U61KRJf0obDDSVwM3DhAPv3PhXQB8F3gyoi4a4DyB3jhzb3IMVS/VdTSa1QiIiTdCXxT0hERcXga9OrYo2yvbi0TGE6vTktmDmnGGYXrbvIrGcBe3Ri2PhTLVXX5zelTblDq6lXFL0gTPd5KahFOB+O2V5M0bi9JxwLrgMdJL8e96PbdN2Irj+EAEfHjiFC/o1hG0gJSF9oNEXHtgLfaSakfVNIEaebblNZAHb0apvKNpg29IuIgaTZaud+429jLsHrtLMkryt8fEd2603qqPWT+oepDr3KZbmMVw1JXryqidJ4Oxm2vJmnUXpJmkZYVvAJ4T/5d9WInMJHHUIs0Yis7nBpIeiPpS1wPDLMQcR3wbkmzC2lLgWeB+5rTcDQkCVgMPDLE2/o4WAcsLi04XEpyRP3WyfQkInaTplxf3EmT9LJ8vW4YWSPYq259WAecIOnsgg5vI41HDKV7w3pVcVE+P9iAXnUZt72apDF7STqSNOvydcD5EfG3AYrdk8+LC3JOIq1XGt1Wo86rfqkdpCmFT5Cap5PA/MJxRiHfyUydzz4X2AtsAM4FlpEmG1zdkG5nkCrsZaQ3pO/l63MKec7JehXT7iM5zvNyRfs1aXHcBdOs16nZPrcCC0kD9f+mgfUAWf6HgMOkxYwLgdWkh+qb2rDXoPWBNEnhplLaemA38H7gfaQ1RVsaskstvUjrk1Zlnc4FVmR73tGEXvkes3LduQjYBuwoXM+aDnvV1Wvc9iLtAB25rs4vHTNynnuBe0vlfkhaKPph0uLm7cAfgaNG1qkpg79UDpKTiS7HpkK+eVQsciQ9fH+TK9ZeYCVwREO6LR9Ar47+k4W0m/KP8VngILCF9EbUlM1q6ZXTzwZ+BzwH/Bn4bMPf5yfzg+AQ8BDwzi7f91jsNUh9yJ97dSltDnALqV/9GZJTnrLQbwS7DK0X8EHgAdKY2L+yXVeQH24N6dX5XVUd86bRXkPrNW575fv102kTpUWqwAzgOtIszYOkF6pTmtDJ4QmMMca0gsdwjDHGtIIdjjHGmFawwzHGGNMKdjjGGGNawQ7HGGNMK9jhGGOMaQU7HGNqIGmyS3jg4vHRFvRYLemBcd/HmCbw5p3G1OMhUiTJKm4gbTG/pT11jHnxY4djTA0iRcPcXk6XtAx4M/CxiHisdcWMeRHjLjVjGkLS6cC3gNuiR8wRSVdJ+mveLLSYvih3xZ2arz8iaauk/ZIOSNqYN53spcNySVNCC2e5V5TSLpe0Q9IhSX+R9KUhPq4xQ2OHY0wDSHo5aX+up4BP98m+BjietDFokQ8AD0bErnw9D/gJaQfrS4A9wGZJI0eplPRF4HrgbmBR/ntl2SkZ0yTuUjOmGa4mdaVNRkTPQFUR8aik35O2/N8IIGkGKfzvykK+FZ2/c2toA3AmadftFdRE0tHA10m7P1+Vkzfk2ClflXR9TG9YCvN/ils4xoyIpIXAF4BvRMTWAYvdBizJMUsAzgdmA7cX5L5B0l057PBhUmiG04HTRlT5LFIwtZ9LOrJzkHaHPh549YjyjanEDseYEZA0l9Tt9VsKrZMBWAMcB7wjXy8FtkXE41nubFIwrAng86QAWGcCjwBHjaj2cfm8g+TEOsfGnD4xonxjKnGXmjGj8SPgaODSiPjPoIUiYndeP7NU0lbgvcCXC1nOIrU03hURz4f2lXRMH9HPkcIJP092ikX25/MiYF+FjD/0/wTGDI8djjE1kfQJciTTiPhTDRFrgK+QurJmksIBd5iZz4cK91tAmkjQK/zwHmC2pFdFxJM57bxSnm2kwGonRcSvauhtTC3scIypgaTXAt8mrcV5TNL8imx7ImJPDzG3A9fmY3NE7C38bzsprPONkq4htXaWA0+WhZRYT3ImN0taBZxCadZcRDwtaTnwHUknA5tJ3eunAQsjYjHGjAGP4RhTj7cDryTFh9/W5bi8l4CIeAK4HziR1Nop/m8faTr0CcBa4HMkx7GLHkTEU8ASkoO6mzSj7ZKKfNcAy0iTFdYCPwMuxbsjmDHiENPGGGNawS0cY4wxrWCHY4wxphXscIwxxrSCHY4xxphWsMMxxhjTCnY4xhhjWsEOxxhjTCvY4RhjjGmF/wIUWjkwfA87egAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAElCAYAAADZb/T+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3wc1bXA8d9RtSX33i13Yzo2YIMrLpQUygNMCCEQigkQwCbkJaQByUvHhlDt0EtiIKGEEHCXDS4Ym45xky333mV16bw/ZrRar1erXWl3Z7U6389nP6sp987RSNqrO7eJqmKMMcZEW4rXARhjjElOVsAYY4yJCStgjDHGxIQVMMYYY2LCChhjjDExYQWMMcaYmLACxpgwiUiuiHjWr19EnhMRFZEcv3057r7nvIrLjcPTe2MSkxUwJmGJSL774RnO67kw8wxMVyIie0TkYxF5SkQuFJHUGH4/+bHIO9aCFW7G1CbN6wCMCeEhoFWI41nAFCAV+DLCvO9331Pda5wIfA+4AVghIt9V1bUBaa51r+mVnwF/ALZ5GENNvL43JgFZAWMSlqo+VNMxERHgVZwC4l/AgxHmfV+QPDsCjwBXAHNFZIiq7vZLszmSa0Sbqu4AdngZQ028vjcmMdkjMtNQPQBcDnwCXKtRmPNIVXcBVwG5QHfgXv/jwdoZxPF9EVniPmorFpEtIjJLRCa654x20/UEetb0aM/dzhWRTu7jum0iUiEi17nHQz6mEpGBIvKmiOwXkaMi8oGITAhy3n1uPqODHDuuTceN/fvu5ka/2PND3Rt3f4qI3CIiH4lIgRvXRyLyQxE57vPH7x60E5EZIrLDfYz5lYhcH+z7NonLajCmwRGRq4BfADuBb6tqYbTyVtVKEfktMBr4johMrqXw+j+cR1cbcWpUh4DOwJk4NaFXgHycR3J3uWn8a2afBuTXBlgGFACvA5XArjBC7wUsxXlUON2NYSLwrohcraqvhJFHTe4HLgFOBR4GDrr7D9aYotqLwNXAFuApQIFLgceB4cB3g6RpBSwGSoF/Ak1w/pl4RkQqVfX5On8nJr5U1V72ajAv4CygyH2dXYf06vzahzwnEyhzz+3ltz83MC2wD9gKZAXJp13Adj6QX1tswAtAWpDjz7nHc/z25fil+3PA+UPc7+MA0MJv/33u+aODXKMqv+dqu3bA8WD35jtumo+BZn77s4EV7rGra7gHTwGpfvsHAeXAKq9/B+0V/ssekZkGQ0S6Am/i/Ed7o6p+GIvrqGoJTsEB0D6MJGVARZB89tbh8qXAj1W1PMJ0h3AeG/pffwXwMk6N4NI6xFJfP3Dff6qqBX5xHQX+1928MUi6QmCKqlb4pVmFU6s5QUSaxyheE2VWwJgGQUSygH/jPPr5vaq+HOtLuu+1te28jPNf/1ci8nsRuUBEWtbjuvnq17EgAh+r6pEg+3Pd99PrHlKdnYHziC83yLGFOIVysLjWqerhIPu3uO+hehaaBGIFjEl4bo+x53E+sN4Cfh7j6zXBaQsB2FPL6ZNx2laOAj8F3gX2ishbItK3DpffWYc0UHM7TVV+9Sn06qolsF9VSwMPuDW0vQSPq6a2napaXUzGKZnoswLGNAT34zTyfg5co+5D+RgajtMBZpeq5oc6UVUrVPVhVT0V6Aj8D/AG8G3gPRHJjPDadf3eOtawv5P7fshvX6X7HqyTTzRrB4eANiKSHnhARNKAdkCwmopJElbAmITm9hj7JbAbp8dYQS1J6nu9FKprSH+PJK2q7lbV11X1SmA+0Ac4ye+UCmL33/cZNbRNjHbfP/Hbd8B97x7k/CE15F/VHhJJ/J/gfMaMDHJspJvXxxHkZxoYK2BMwhKRM4FncRq+L1PVTTG+XgdgJs6H8mbgd7WcnykiY91HeP7706l+xObfhXof0F5EmkYt6GotgV8FxDEEpxvwIZxaVZXl7vv1bk2i6vzugXn4qer00COCmJ5x33/vtqFVXScLZ0YCgKcjyM80MDYOxiQk97/xt3B6jH0EjBeR8SGS5KvqcxHkf5/7ZQrVU8UMBzJwPoC/G0YvsKbAXCBfRD4ENrnxjgdOAP6tql/7nT8PZ3zMeyKyCCgBPlPVt8ONO4RFwI0icjZOb6uqcTApwCT/RnNV/dC9/khguYjMx3nE9i1gFsFrNvOAe4C/icg/ccbpHFTVR2sKSFX/LiIXA1fidIJ4E+cR4CU443ZejUNnDeMlr/tJ28tewV4cO74jnFdumPkGpivBaWxeCfwNuABIqSFtLn5jPYB04Cc4DfubgWKcTgHLgFuAjID02cATOONmygkYb1Lb90HocTDP4RRqb+E8AivEKWjOryGvVu73u9u9B18CN1PDOBg3zRTga/d8xW9MT+C98dufAtyKM+6l0H2tBG4Ldp9D3YNg37+9Evsl7g/OGGOMiSprgzHGGBMTVsAYY4yJCStgjDHGxIQVMMYYY2LCuin7adeunebk5NQp7dGjR8nOzo5uQFFgcUXG4oqMxRWZZIxr5cqVe1U1+KSwXndjS6TX4MGDta4WLFhQ57SxZHFFxuKKjMUVmWSMC1ihNXym2iMyY4wxMWEFjDHGmJiwAsYYY0xMWAFjjDEmJqwXmUkqR0vKmb4oj5eWbuJAYRmts9K5ZlhPJo3sQ3am/bp7xX4ujZP9ZE3SOFpSzqWPL2bTvkJKyp01tfYXljF94Qbe+3Inb9x6rn2YecB+Lo2X/VRN0pi+KO+YD7EqJeWVbNx7lF+++SWXD+4WMo9V+yrIWF/bLP3x15Dj+ufKrWzce5SyimMn1i0pr2TTvkKmL8pjyvgBsQzTeMQKGJM0Xlq66bjCpUpZhfL6J9t4/ZNttWf00YdRjixKkjCukvJKXlq22QqYJGWN/CZpHCgs8zoEUwcHCku9DsHEiNVgTNJonZXO/hCFTFqKcGZOmxqPAxw8eIBWrVpHO7R6a8hxfZS/n/LKmtedap2VEe2wTIKwAsYkjWuG9eSx+XlUBFlELzMthUmjetf6KCY3N5fRo4fGKsQ6a8hxTZ2zhukLNwR9fJmZlsI1Q3vEKjzjMXtEZpLGRSd1rrFw6dk2i0kj+3gQlZk0sg8922aRmXb8x03XVk3t55LErIAxSeNv72/0fZ2WIohAm+wMJo3qbV1hPZSdmcYbt57LpFG9aZN97OOwYX3a2s8lidlP1iSFvD0FvPHJVt/2P24eWmt7i4mf7Mw0powfwJTxA1iwejfXP/cRAK+t2MptY/rSpVVTjyM0sWA1GJMUHpq7jqp25BH92lnhksBGD2jP6T1aAVBaUckj89d7HJGJFStgTIO3eudh/vP5dt/23RNsTEUiExF+7Pczem3FFjbvK/QwIhMrVsCYBm/anLVUte2PO6EDp3Vv5W1Aplbn9GnL2b2cWmZ5pfLwvHUeR2RiwQoY06B9ue0Qs77a5duePL6/h9GYcInIMTXNNz7ZSt6eAg8jMrEQ9wJGRAaJyDwRKRSR7SLygIikRpA+RURWioiKyDeDHL9YRL4QkWIRWSUiE6P7HZhEMnXOWt/XF53ciRO7tPQwGhOJs3q1YUS/dgBUKjw812oxySauBYyItAbmAgpcDDwA3A3cH0E2NwJda8h/OPAvYAFwIfAO8A8RmVCPsE2CWrnpAPNX7wZABO4aZ7WXhsa/FvP259tZs/OIh9GYaIt3DeYWoClwmarOUdUncQqXKSLSorbEbgH1f8DPazjll8AiVb1DVReo6j3Ae8CvohO+SSTT/GovF5/ahf4dm3sYjamL07q3YtwJHQBQPfZnahq+eBcwFwKzVPWw376ZOIXOqDDS/wZYDMwLPCAimcAY4NWAQzOBYSJiz06SyLIN+/jAnSY+NUW402ovDZZ/u9l7X+3ky22HPIzGRFO8C5iBwGr/Haq6GSh0j9VIRE4Brgd+XMMpfYD0wPyBr3G+T/sEShKqytTZ1f/pXnZ6V3q1y/YwIlMfJ3ZpyYUndfJtT7VaTNKIdwHTGjgYZP8B91gojwCPqWpNo7Kq0gfmfyDguGngPli/l+X5+wFITxXuGNvP44hMfU0e3x8R5+v5q3fz8eYDoROYBsGLqWKCzdstNex3DopcBQwAvlWH/CXEdRGRm4GbATp27Ehubm4YlzheQUFBndPGUrLFpar8Zlmxb3t4l1TyPl9OnsdxxVpjiOvsTqks21EBwC9fWcY9Z9Z9+pjGcL+iKVZxxbuAOQAEGwXXkuA1G0QkHfgz8EcgRURaAVUdArJFpLmqHqG6phKYf9V20PxVdQYwA2DIkCE6evTo8L6TAM605XVLG0vJFte8r3ex4dAKADLSUvjdNSPp3DJ681gl2/2KtWjG1ePEAsZPW0RFpfLVvkqa9DiZob3beh5XNDW2uOL9iGw1AW0tItIdyOb4tpMq2UA3YCpOIXIA+Mw9NhP4xP06DygLzN/drgTswW4DV1mpPOjX9vLds3tEtXAx3urdvhmXnV49AmHq7LVokOUXTMMR7wLmXeB8EfHvTzoRKAIW1pCmAKd3mP/rO+6xe4HvAqhqCc74lysC0k8ElqqqdU1p4GZ9tZNVO5wOiE3SU/jhaFtHJNncMbYfaSnOU+3l+ft9PQVNwxTvAuZJoAR4XUTGue0f9wFT/bsui8h6EXkaQFXLVTXX/wUsc0/9QlU/9Mv/N8BoEXlIREaLyJ+Ai3AGdJoGrKJSmTa3uvby/XNy6NC8iYcRmVjo3iaLiWd2920/aLWYBi2uBYyqHgDGAqnA2ziDLKcBvw44Nc09J9L8PwAuB8YBs4BvA1er6ux6hG0SwH8+387aXc5cVdkZqbYKYhK7/by+ZLirX3665aBvtgbT8MS9F5mqrgLOq+WcnFqO51PdOyzw2JvAm3UMzySg8opKHvKbp+qG4b2OWxnRJI/OLZvy3bN78OzifMAZFzNmQAdSUoL+yZsEZrMpm4T3+ifb2Lj3KAAtmqRxw4jeHkdkYu2Ho/vQJN35ePpq+2FmfbXT44hMXVgBYxJaaXklf/VbK+SmEb1p2TTdw4hMPHRo3oTvD8vxbU+bu5aKSmuLaWisgDEJ7bWVW9h6oAiA1lnpXD+8l8cRmXiZNKoP2RlOU+zaXQXHrFpqGgYrYEzCKi6r4JF51TMD3TKqD80yvZh8wnihTXYGP/D7h+Khuesor6j0MCITKStgTML6x/LN7DzsTAvTrlkm1/o9MjGNw40jetOiifNPxca9R3njk20eR2QiYQWMSUhFpRU8tqB6hrHbxvShaUbEPddNA9eyaTo3+XXq+Ov8dZSWWy2mobACxiSkF5bms7egBIDOLZvwnbN6eBuQ8cz1w3vROsvp2LFlfxGvrdzicUQmXFbAmIRTUFLOkwuray+3n9eXJulWe2msmmWmccuo6oG1j85fT3FZhYcRmXBZAWMSzrMfbORAYRkA3Vo35YrB3WtJYZLdtcNyaNcsE4Adh4r5x/LNHkdkwmEFjEkoh4rK+Nv7G3zbd4zt55s2xDReTTNSudVvctPHFuRRVGq1mERnf7kmoTz9/gYOF5cD0Ktd9jHTt5vG7eqze9CphTPB6d6CEl5clu9tQKZWVsCYhLH/aClPf7DRt33XuH6kpdqvqHE0SU/l9vP6+rafyM2joKTcw4hMbeyv1ySM6YvyOOo+9ujfsRnfPKWLxxGZRHPlkO50a+0sMnegsIznFm+sJYXxkhUwJiHsPlLM80vyfduTx/Un1WbPNQEy0lK4Y2w/3/aMRRs4VFTmYUQmFCtgTEJ4IjeP4jJnAN2gzi04/8ROHkdkEtVlp3elV7tsAA4Xl/O0X6cQk1jiXsCIyCARmScihSKyXUQeEJGQgxxE5EQRec89v0RENovIUyLSOeC850REg7wGxva7MvWx41ARL39Y3e307gn9be0PU6O01BTuGlddi3lmcT77j5Z6GJGpSVwLGBFpDcwFFLgYZynju3FWtgylJbAR+DFwPs4KmOOA/4pI4OyHq4FhAa/86HwHJhYenb/eN/3Had1bcd7ADh5HZBLdN0/pQr8OzQBnYO70RXm1pDBeiPfUtLcATYHLVPUwMEdEWgD3icif3H3HUdUlwBK/XbkishWYDZwCfOx37KiqLotN+Cbatuwv5NUV1VN/3D2hPyJWezGhpaYIU8b354cvO3/6zy/J54bhvejQvInHkRl/8X5EdiEwK6AgmYlT6IyKMK997rutnduA/XXeOsoqnIWkzsppw/C+7TyOyDQU55/YiUGdWwBQXFbJE7lWi0k08S5gBuI8wvJR1c1AoXssJBFJEZEMERkA/AH4CFgecNogETnsttV8ICKRFlwmTjbuPcrrftOvT7Hai4lAiluLqfLyh5vZcajIw4hMIFGN3zKkIlIG3KOqDwXs3wq8oKr31pL+PZw2GICVwEWqutvv+J1AKbAKaI/TvjMYGK6qgQVRVZqbgZsBOnbsOHjmzJl1+dYoKCigWbNmdUobS4kc18t5aSzd4Yx7ObFtCvec2dTjqBL7fllcx1NVfrOsmA2HnDa887qnce2JmZ7HVZNkjGvMmDErVXVI0IOqGrcXUAbcGWT/NuD/wkjfDzgbuAanJrQSaBLi/KY4nQPeDCe+wYMHa10tWLCgzmljKVHjeunf8zTnp//Rnv/rvFZu2u91SKqauPfL4qrZwjW7fb9Hfe99RzfvO5oQcQWTjHEBK7SGz9R4PyI7ALQKsr8lcLC2xKq6TlU/VNWXcGoypwNXhzi/CPgvcEbdwjWx8sb6Uqoqz+cN7MAZPVp7G5BpsEb0a8dZOW0AKKtQHpm/zuOITJWwe5GJyMnAWUAnoAmwH1gLLFHVA2Fms5qAthYR6Q5kE9A2UxtV3SQi+4HetZ7sdIs2CeKr7YdYsat6Jlz/5+jGREpEmDKhP1fNcDqP/uvjbZxxrvUmSwQhCxgR6Q38EPgu0BGoxKlplODURLKAShFZCDwFvKKqodYzfRe4R0Saq+oRd99EoAhYGEngbkN/W5xHYDWd0xSn59rKSPI2sTVtzlrf1+ef2JGTurb0MBqTDIb2bsu5fduyeP0+KiqVt9aXcpXXQZmaH5GJyFPAV8BpOAMiT8dp72ivqt1UtRnQAfgW8AXwJ+BrERke4npP4hROr4vIOLeB/T5gqvp1XRaR9SLytN/2X0TkDyJyqYiMEZFbgVlAHk43Z0SkpYi8LyKTRGSsiEwEFgBdgd9FemNMbHy65SBzv3b6ZYjAZKu9mCiZMn6A7+tlOypYt+tIiLNNPIRqgykGBqrqeFV9UlU/V9VjVvhR1b2q+q6q3gX0BH6F84EelPsobSyQCryNM4J/Gs7IfH9p7jlVVgAjgKeBd4A7gH8BQ1X1qHtOCbAH+AVOu8sMnNrWKFVdEeL7NHH04Ow1vq+/eUoXBnZq4WE0JpkM7tmaMQPaA84z8Wlz14ZOYGKuxkdkqnp7JBm5j8ZeCeO8VcB5tZyTE7A9E7emEiJNMXBZrYEaz3yUv5/31+0FQOCY+aSMiYYp4wewYM0eAP77xU6+2n6IE7vYI1iv1LkXmYg0E5HE69BtEpKq8pdZ1bWXc7qk0ae9/fqY6Dq5W0vOP7Gjb3vaHOtR5qWICxgROUFEPgIOA4dEZIWIDIp+aCaZLMnbx4cb9wOQliJc3Dfd44hMspo8vj9V80HM/XoXn26pdQSEiZG61GCeAl4DmgNdgDXAc1GMySQZVT2m7eWKId3pkGVLEZnYGNipBWd1qm7CnTrH2mK8EqoX2TR3puNAA4FHVPWoqu4CngesK5CpUe6aPXy82fkvMiM1hR/5ratuTCxc0jeDqiWFFq3dw0f5+70NqJEK9W9kS2CdiNwix85AOA94UUQuEpHLgd+7+4w5jqoe8x/kd87qTpdW3s85ZpJb52YpXHJ6dYdW/xq0iZ8aCxhV/QFwEc5ULJ+JyBj30E3AZuC3wL3AIuCGGMdpGqjZq3bxxbZDAGSmpXDbGKu9mPi4c2w/0txqzLIN+1myfq/HETU+IR+Eq+pKVR2JM1DxWRF5A2ijqlNU9Qz3NVlVrRXNHKeyUpk6u7r2cu2wnnRoYVN4mPjo2TabK4Z0823/ZfaaqklwTZyE1dLqjkMZCHwKrBSR34tIdkwjMw3eO1/sYI07mjorI5VbRvXxOCLT2Nx+Xj8yUp2PuY83HyR37R6PI2pcQhYwIjJARH7orrNyhqrej7NEcXdgrYhcF4cYTQNUXlF5zEjq68/NoW2zTA8jMo1R11ZN+c5Z3X3bU2evtVpMHIXqRXYj8BnOXGMjgP+KyOOqulVVrwEuB37ojoM5Nz7hmobirU+3s2GPM4tP88w0bhoRzqTXxkTfbWP6kpnmfNR9se0Qs1ft8jiixiNUDebXwG2qepGqXg6MAiaJSCcAVV2qqmcDj1DLNC6mcSmrqOThedUjqG8c0ZtWWRkeRmQasw4tmnDtsJ6+7Wlz1lJZabWYeAhVwAjO9PxVKt19xyyarqrPE7DGi2nc/rlyK5v3FwLQKiudHwzP8TYg0+jdMqoPWRnO4MvVO4/wzhc7PI6ocQhVwPwWeFxE3haRV3HWa3laVY/7yfjNaGwauZLyCh7xq71MGtmH5k1sWhjjrbbNMrn+3Bzf9rS5aymvCLV0lYmGUONgnsRZavg9YClwiareFK/ATMM0c/kWth8qBqBdswy+f07PWlIYEx83jehN80xnAvkNe47y1qfbPY4o+dU2DuZrVX1MVaep6qJ4BWUapuKyCh5bsN637TyWCHtVbmNiqlVWBjeM6OXbfnjeOsqsFhNToXqRjYg0M3dVyZNrOWeQiMwTkUIR2S4iD4hIai1pThSR99zzS0Rks4g8JSKdg5x7sYh8ISLFIrLKXdnSxMFLyzax+0gJAB1bZHLNUKu9mMTyg+G9aJXlPLLdvL+Qf63c6nFEyS1UDeZVEVksIj8QkdahMhGRc0XkEWATMCzEea2BuTgLzl2MsxTz3TgrW4bSEtgI/Bg4H6eH2zicrtO+f5Hd5Zr/hbNU8oU4q1/+Q0Qm1JK/qaejJeU8npvn2759TF+apIf8v8GYuGvRJJ2bR1Z3mf/rvHWUlFeESGHqI9Tzi944SxP/GpguImuBL4G9OMsTtwJ6AacDTXGWKR5Xy/LEt7jnXqaqh4E57ozN94nIn9x9x1HVJcASv125IrIVmI0z8PNjd/8vgUWqeoe7vUBETsRZynl2iLhMPT23JJ/9R0sBZ3DblWd2ryWFMd647pwcnvlgI3sLStl+qJhXPtrCtcNyvA4rKYVq5C9S1T8COTi1gbdwCpXhwDeAE3BqLPcA3VX10loKF9x8ZgUUJDNxCp1REca+z33PABCRTGAM8GrAeTOBYSJi66bGyOHiMmYs2uDbvmNsXzLTrPZiElNWRtox0xY9On89xWVWi4mFWuciU8dcVb1XVc9X1VNVdYCqDlPV61T1b6q6O8zrDQRWB+S/GSgkjLE0IpIiIhkiMgD4A/ARsNw93AdID8wf+Brn+7Q1a2Lk6fc3cqioDICebbO47IxutaQwxlvXDO1JxxbO1EW7j5Tw0rJNHkeUnCSe8/KISBlwj6o+FLB/K/CCqt5bS/r3cNpgAFYCF1UVbu50NR8Ap6vqp35p+gLrgPNV9bjHZCJyM3AzQMeOHQfPnFm3SQkKCgpo1izx1piPdVwFpco9iwopKne2bz4lk3O61N5zrLHer7qyuCITTlzzNpfx4irnsW7zDPjzyCyapEnINPGIywv1iWvMmDErVXVIsGNe9CENVqJJDfsD/QhoA/QDfgG8KyLnqmpxiPylhv3OTtUZwAyAIUOG6OjRo8MI43i5ubnUNW0sxTquP763mqJyp3G/b4dm/O9VI0lNqf2PtLHer7qyuCITTlzDyiuY/5eFbDtYxJFSyEvtzm2jY7teUUO+X3UR74XRD+C04wRqCdS6poyqrlPVD1X1JZyazOk4C6JV5U2Q/Ku2bc2aKNtbUMJzi/N923eN6xdW4WJMIshMSz1m+e4ZizZwuLjMw4iST7wLmNUEtLWISHcgm+PbTkJS1U3AfpzebgB5QFlg/u52JbAWE1VP5uZR5DaODuzUnItOOm5YkjEJ7X8Gd6Nn2ywADhWV8cwHGz2OKLnEu4B5FzhfRJr77ZsIFOHMdRY2t6G/Lc74GFS1BGf8yxUBp04ElqrqoboGbY6363AxL/o1jE4Z358Uq72YBiY9NYU7x/bzbT/9/kYOFpZ6GFFyCauAEZG/iMigKFzvSZwxNK+LyDi3gf0+YKp/12URWS8iTwdc/w8icqmIjBGRW4FZOLUW/1b53wCjReQhERktIn8CLsIZ0Gmi6LEF6ykpd6bZOKVbS8YP6uhxRMbUzcWndaVPe2eB3iMl5cd0uTf1E24N5n+AL0RkuYjcUtcxJap6ABgLpAJv44zgn4YzmNNfmntOlRU4i549jTM6/w6cEftD/WdyVtUPcBZCG4dTAH0buDpY7zFTd1sPFPKP5Zt921PG90fEai+mYUpNESaPrx7F8OzifPYWlHgYUfIIqxeZqvYSkTHA9cCfgaki8ibwjKrOjeSCqroKOK+Wc3ICtmcS5qJmqvom8GYkMZnIPDp/PWUVTqe8wT1bM6p/e48jMqZ+LjqpMwM7rWf1ziMUlVXwZG4ev/hmNB7aNG5ht8Go6gJVvRbojNNduBswS0Q2icj9ImJr4jYC+XuP8prfBIF3T7Dai2n4UlKEKX61mBeXbWLX4eIQKUw4Im7kV9UCVX0a57HWYqA78DNgrYi8JSI2hW4S++u8dVS4y80O692Wc/q08zgiY6Jj/KCOnNLNefpfUl55zNITpm4iKmBEJEdEfi0iG3AmjyzA6bXVHKe9I4cwH2WZhmf97iO8+ek23/bdE2z2HZM8RI6txfxj+Wa2Hij0MKKGL9xeZN8TkfnAeuD7wLNAL1W9SFX/paolqvpfnMb3oFMGmIZv2tx1uJUXRvVvz5CcNt4GZEyUjerfnsE9ndVJyiqUR+dbLaY+wq3BzAB24szn1VtVf6OqwVbqWQv8NmrRmYTx9Y7DvPP5Dt+2/396xiQLEeFuv9/t11ZuZdO+oyFSmFDCLWC6qOrVqjov1EmqukNVa1s8zDRA0+ZUT4QwflBHTu0ebMYfYxq+c/q2Y1jvtgBUVCoPz1vncUQNV3Xn5ZYAACAASURBVLgFzEoROTXYARE5yW2TMUnq860Hmb1ql2/bai8m2fm3L775yTbW7y7wMJqGK9wCJgfIrOFYFk6XZZOkpvrVXr5xSmdO6NzCw2iMib0hOW1847sqFR6aa1MZ1kWNBYyItBCRHiLSw93VqWrb79UfuArYVlM+pmFbuWk/uWv2AJAiMHlcv1pSGJMc/Gvq//l8B1/vCLqiuwkhVA1mMpCPM5mkAm+4X/u/vgbuAv4a0yiNZx6cXf2f28WndaVvh+YhzjYmeZzavRXjTqieY8+/HdKEJ9RUMX/HmQNMgH8DPwbWBJxTCqxxlz02SWZJ3l6W5O0DnPma/GedNaYxmDK+P3O/dtofZ6/axRdbD3FytzpNxdgo1VjAqOo6nKWGcech+1hVj8QrMOMtVWWqX+3l8jO6kdMu28OIjIm/QV1a8I2TO/POF04X/QfnrOG568/yOKqGI6xGflVdaIVL47Jo3V5WbHIWCU1PFX40NrZLyRqTqCaP70fVUke5a/awctN+bwNqQEI18u8WkdPdr/e42zW+4heyiTVV5cHZ1U9DrzqzB91aZ3kYkTHe6duhORef1tW37d8uaUIL1QbzGLDL72uNfTgmEcz9ejefb3UWAM1IS+G2MVZ7MY3bnWP78e/PtlNRqSzJ28fSvH0M69PW67ASXqg2mPv9vr4vWhd0V8Z8BBgGHASeAu5X1YoQac4EbsVZdKwLsAWnE8IfVbXY77z7OH7xMoALVfW9aH0PyayyUo8Z9/K9oT3p1LKJhxEZ472cdtlcfkY3XlmxBYCpc9bwau9htlRFLSKerr8+RKQ1MBenNnQxzlLGd+OsbBnKRKAP8EecJZAfA6YALwc59xBO4eX/WhqF8BuFd7/c6evv3zQ9lR+O7uNxRMYkhh+N7Ut6qlOgfJR/gEXr9nocUeKrsQYjIq9GkpGqXhnGabcATYHLVPUwMEdEWgD3icif3H3B/FFV9/ht54pIMTBdRHqq6ia/Y+WquiyS2I2jolKZ5jdi+fvn5NCuWU0TOBjTuHRrncXEM7vz0jJnVMbU2WsY2a+d1WJCCFWDaR/hKxwXArMCCpKZOIXOqJoSBRQuVT5x3zuEeW1Ti39/Vj3nUrPMNCaNtEVKjfF3+5h+ZKQ5H5ufbT3E3K+tf1MoodpgxsTgegOB+QHX2Swihe6xtyPI6xygkuMHf7YSkb1AS+BL4Deq+nrdQ24cyisqeXhu9ayxPxjei9bZGR5GZEzi6dSyCdec3ZNnFm8EnHn6xg7sQEqK1WKCEdX4dQ4TkTLgHlV9KGD/VuAFVb03zHw6AZ8D/1XV6/z2X4NTo/kUaAZMwmmz+Z+aChkRuRm4GaBjx46DZ86s24KcBQUFNGvWrE5pYyncuBZtLeOZL0sByE6HP43MIjs9dn80Df1+xZvFFZlYxnWoRLlnUSGlbrek207L5MxOoTrkxieu+qhPXGPGjFmpqkEXmgzVBnMr8Jqq7nG/DklVHw8znmAlmtSwP1hcGcCrOMs1Tw6I4aWAc98GlgC/AoIWMKo6A2dBNYYMGaKjR48OJ4zj5ObmUte0sRROXKXllfz8L7m+7VvPG8A3Ytw1uSHfLy9YXJGJdVxfV67myYV5AMzans6UK0eSGkYtprHdr1DF7qM4c5Htcb8ORYFwCpgDQLCVqlridFkOSZzWtBeAE4FzVfVAyKBUVUReB/4oIqmhukI3Zq+s2MK2g0UAtMnO4LpzcrwNyJgEN2lkb15atomCknLW7y7g7c+2c8npXWtP2MjU2Mivqimqutzv61Cv1DCvtxqnrcVHRLoD2e6x2kzD6d58saqGc77v24ng3EaluKyCR+dXt738cFQfsjPDq+4b01i1zs7gB8N7+bYfmruW8opKDyNKTHEdBwO8C5wvIv5zvk8EioCFoRKKyM+AHwHXqOoH4VzMrfFcCnxmtZfgXv5wM7sOlwDQvnkm1wzt6XFExjQMNwzvRYsmzj9j+fsKef1jWxYrUNgFjIhkiMjNIvKUiLzjvt/ktomE60mgBHhdRMa5Dez3AVP9uy6LyHoRedpv+2rgdziPx7aJyFC/V3u/8xaKyB0iMkFELgXeAYa61zABCkvLeSJ3vW/79jF9aZoRbmXUmMatZdN0Jo2qHoj88Lx1lJZbLcZfWAWMiJyAM3X/Y8BJQIX7/hiw3p3+pVZum8lYIBWnS/L9OI+9Aqd3SXPPqTLBfb8OZ1S+/+sbfuetx1kA7S3gJaA58A1V/Xc48TU2zy/ZxN4Cp+dYl5ZNuOqs7h5HZEzDct05ObRxu/NvO1jkm0rGOMJ92D4DZwqWEf6Li7nLKb+DUzMZGU5GqroKOK+Wc3ICtq/DKVxqy/uGcGIwcKS4jOmL8nzbt5/Xj8w0q70YE4nszDRuGdWb3/3XaRJ+bP56rhjcjSbp9rcE4T8iGwL8KnDlSnf7V8CZ0Q7MxNazi/M5WFgGQI82WVwxpJvHERnTMH1vaA7tmztTKu08XMzfP7QFfquEW8DkAzVNqdsEsDvagBwqLONv72/wbd8xth/pqfHu72FMcmiakcptfpPCPp67nsLScg8jShzhfqr8FPitiJztv1NEhuLMiPy/0Q7MxM7f3t/AkWLnD6B3+2wuOa2LxxEZ07B95+wedHGXtdhbUMoLSzfVkqJxCLWi5UcislxElgM/B1oAS0Rkh4h8JiI7gMU4gyTDmuLFeG9fQYlvHiWAu8b1J81qL8bUS2ZaKref18+3/eTCPI4Ul3kYUWII1cj/FccOUPwqxrGYOJi+aAOF7iRKAzo255snd/Y4ImOSwxVDuvHEwvVs2V/EwcIynl2czx1j+9WeMImFmk35ujjGYeJg9+FiXlia79uePL6/zQJrTJSkp6Zw59j+/Pi1zwDnUfT3h+XQMivd48i8Y89GGpHHc/MoLnMGgp3UtQXnn9jR44iMSS6XnNaF3u2yAThSXH5MZ5rGKOxJp0QkB7gG6E+QHmVhrmhpPLL9YNEx3SfvHj/AVuIzJsrSUlO4a3x/7viHsx7is4s3cv25ObRtpCvDhjuSfzDO4l3fdV/9cMbGXI4zFUu7WAVoouOR+espdSfjO71HK0YPCHcRUmNMJL55cmcGdHSmWzxaWsH0RY23FhPuI7I/A//CmR5GgBtUtTcwHKcjwJ9iE56Jhs37CnnNbwoLq70YEzspKcLk8dWN+y8szWf3kWLvAvJQuAXMacDfcZYoBvcRmaouwZlP7A/RD81Ey1/nr6O80ukQeHavNpzbt63HERmT3M4/sRMndmkBQHFZJY8vyKslRXIKt4BRoFSd9ZV3A/5zum/BeWRmEtCOgkpe/3irb/vuCVZ7MSbWRIS7J/T3bf/9w81sdxf1a0zCLWBWAVVzISwFJotIPxHpCfwEaJzFcwPwVl4pbuWFEf3acVavNt4GZEwjMWZAB07r7izgW1pRyaML1teSIvmEW8DMADq5X98LdMZZgXIDcDbw4+iHZuprzc4jfLijep21KeP7hzjbGBNNIsKPJwzwbb/60RZ2Fzau9WLC6qasqi/6ff21uz7MOThtMctUdXeM4jP1MG3OWt9UDGMHduD0Hq09jceYxubcvm05q1cblm/cT3ml8u+8MhrTeI46DbRU1QJVna2q/460cBGRQSIyT0QKRWS7iDwgIiEXTxCRM0XkWXely0IRWSMivxaR48bjiMi5IvKhiBSJyEYRuSPS7y8ZfLntEO99tdO3PdlqL8bEnYhwt9/f3uJt5WzYU+BhRPEVyZLJHUTkdyIyV0S+ct//T0TCHg4uIq2BuTidBi7GmYn5bpyeaKFMxGkD+iNwEc5KmlOAlwPy7wvMAjbirHQ5HZgqIjeGG2OymDpnre/rC0/qxEldW3oYjTGN19m92zKinzNUUIGH5q7zNqA4CusRmYicC/wXKAfm4DT6dwBuAX4kIheq6uIwsroFaApcpqqHgTki0gK4T0T+5O4L5o+qusdvO1dEioHpItJTVavmxr4H2A5co6rlwHx31c1fi8jTbi+4pPfx5gPMX+1ULAWrvRjjtSnj+/P+ur0AvP35dm4b05cBnZp7HFXshVuDeRRYCfRQ1atU9Q5VvQqnu/LHwCNh5nMhMCugIJmJU+iMqilRQOFS5RP3vUNA/q+7hYt//t1wBok2CtP8ai9nd06lf8fk/0U2JpGd3qM1Ywc6H1Wq8NDctbWkSA7hFjADgQdV9aj/TlUtAP4CnBBBPqsD8tgMFLrHInEOzsDPNQAikg10D8wf+Nrv2knvww37fP8ppQhc0jfD44iMMXDsk4R3v9zJl9sOeRhNfIQ72eUqqrspB6rqshyO1sDBIPsPuMfCIiKdcBZBe9GvNtTKfQ/M/4DftYPldTNwM0DHjh3Jzc0NN4xjFBQU1DlttKgqv19ePSXFuV3SaKaFnscVTCLcr2AsrshYXJE5ra3y6T5noPPPZy5l8uCaVqKPr1jdr3ALmB8BL4pIAfCmqpaISCZwKc5yytdGcM1g7SBSw/7jTxTJAF4FCoDJYeZf435VnYEzzochQ4bo6NGjwwnjOLm5udQ1bbS8v24Pa2ctByAtRfjdd0eQ9/lyz+MKJhHuVzAWV2QsrshsOzKfz5YUoQqf7amgRe9TOSMBhg/E6n6FWjJ5j4jsFpHdwJs4NZi/A4UicgjnsdbL7v43wrzeAaprGv5aErxmExiTAC8AJwIXqeoBv8NV6QPzbx1wPCmpKg/Orn6ue+WZ3eneJsvDiIwxgbo2T+Fbp3Txbfu3lyajUDWYxwizVhGB1QS0hYhIdyCb8B6zTcPp3jxeVQPbco6KyJbA/P22w32M1yAtWLObT7c4ZWhGWgo/Oq+vxxEZY4K5a1w//vP5dioV3l+3lw837OPs3sk5AW2oJZPvi8H13gXuEZHmqnrE3TcRKAIWhkooIj/DeVR3pap+ECL/S0XkF6paNUfKRJwJOb+sd/QJKrD2cvVZPejcsqmHERljatK7fTMuO6Mb/1zpTEL74Jy1vHLz0KSchDaikfwikiEig0VkvPseaRelJ4ES4HURGec2sN8HTPXvuuyO2H/ab/tq4Hc4j8e2ichQv5f/yll/xumS/KKIjBGRnwCTgAeSeQzMrK928tV25/Y1SU/h1jF9aklhjPHSnWP7kZbiFCjLN+5n8fp9HkcUG5GM5P8JsAtYjjNa/iNgl4jcE24ebpvJWCAVeBtnBP804NcBp6a551SZ4L5fhzObs//rG375rwcuAPri1GZuBe5W1afCjbGhqajUY0btf39YDh2aJ0bPFGNMcN3bZHHlmd1923+ZvYZk/B843JH8dwG/x6mBvIJT0HTEefz0exEpUdW/hpOXqq4CzqvlnJyA7etwCpdw8v8AOCucc5PBfz7fztpdztxG2RmpTBpltRdjGoLbx/Tlnyu2UlpRyadbDrJgzW7OGxj2zFsNQrg1mNuAP6jqbaq6SFXXuO+34cwP1ignlPRaeUUlD/vNa/SD4b1ok20DK41pCLq0asrVZ/fwbT84e23S1WLCLWC6AwtqOJaL0+5h4uyNT7axYa8zuULzJmncOLy3xxEZYyJx65g+NEl3Poa/2n6YWX4zoCeDcAuYzVS3gwQa7x43cVRaXslf51fXXm4a0ZuWWekeRmSMiVSH5k24dliOb3vqnLVUVCZPLSbcAuavwI9F5CkRuUBETheR80XkKZxp8x+KXYgmmNdWbmHLfmeN79ZZ6Vx/bo63ARlj6mTSyN5kZzh9mtbuKuA/n2/3OKLoCauAUdVHcbr7XoAzbf8KnF5aFwC3qOrjMYvQHKe4rIJH51ev7z1pVB+aN7HaizENUdtmmVx/bi/f9sNz11FekRxLK4fdTVlV/4bTFtMTGOa+d0/mLsCJaubyzew45Exq2a5ZJtcO6+lxRMaY+rhpRG+aN3E69W7Ye5Q3P02OWkytBYyINBGRtSJygTq2qOpy9z15HhY2EEWlFTy6IM+3fevoPmRlhDtnqTEmEbXMSuemEdWddB6et5ayJKjF1FrAqGoxzgSSDf+7TQIvLstnb0EJAJ1aNDmmm6MxpuG6/twcWrkddbbsL+K1FVs9jqj+wn1E9jJwfSwDMbUrKCnnidzq2svt5/WlSXpqiBTGmIaieZN0bvEbKP3I/HUUl1WESJH4wn22shm4UkRW4DTy7+LYmZZVVZ+IdnDmWM8t3siBwjIAurVuypVDuteSwhjTkFw7rCdPvb+BvQWl7DhUzMzlm7nOrwNAQxNuAfOg+94ZOCPIcQWsgImhQ0VlzFi0wbd9x9h+ZKRFNFepMSbBZWWkcevovjzwn1UAPJabx8Qze9A0o2E+qQi3m3JKLa+G+d03IE+/v4HDxeUA9GqXzWWnd/U4ImNMLFx9dg86tXAmrN1zpIQXl+V7G1A92L/ADcCBo6U8szjft33n2H6kpdqPzphk1CQ9ldv8Fgx8cuEGCkrKPYyo7iKZrj9DRG52R/O/477fVIc1YUyEpi+q/gXr16EZ3zq1Sy0pjDEN2cQh3enaylk0cP/RUp5fku9tQHUUVgEjIicA63CWUT4JqHDfHwPWi8igmEXYyO05UnLML9fk8f1JTUm+le+MMdUy0lK4c2w/3/b0hXkcKirzMKK6CbcGMwM4BPRR1aGq+m1VHYqzsNchnHViwiIig0RknogUish2EXlAREK24bi1pz+LyPsiUiQiQQd4ishzIqJBXgPDjS/RPJGbR5HbVXFQ5xZccGInjyMyxsTDZWd0JadtFgCHi8t5+oONHkcUuXALmCHAr1T1mFmT3e1fAWeGk4mItAbm4vQ6uxh4ALgbZ2XLULKAG4FCYEkt567GmcrG/5UfTnyJZsehIl76cJNve8r4/qRY7cWYRiEtNYW7xvX3bT/zwUYOHC31MKLIhVvA5AM1rcPbhPCn678FaApcpqpzVPVJnMJlioi0qCmRqh4E2qjq+cAbtVzjqKouC3gVhxlfQnlswXpKy50JFE7t3oqxJ3TwOCJjTDx969Qu9OvQDHAGWk/3G6rQEIRbwPwU+K2InO2/U0SG4tRC/jfMfC4EZqnqYb99M3EKnVGhEja2ec+27C/klY+2+LbvHt8fEau9GNOYpKYIk8dX12KeX5LPniMlHkYUmXALmF8ALYAlIrJDRD4TkR3AYqAlcK+ILK96hchnIM4jLB/3MVuheywaBonIYREpEZEPRCRkwZWoHpm/jrIKp0w9M6c1I/q18zgiY4wXLjixEyd0dh7wFJVVHDNdVKKTcCoGIvJsJJmqatB5y0SkDLhHVR8K2L8VeEFV7w0jltuBR1T1uH/nReROoBRYBbTHad8ZDAxX1aAFn4jcDNwM0LFjx8EzZ86sLYSgCgoKaNasWZ3SBtp5tJJ7PyiiamG7n57VhIFt6jaWNZpxRZPFFRmLKzLJFtcnu8t5+GOn5pKWAn8e2ZTWTaI3Fq4+92vMmDErVXVIsGNhTRVTU4FRR8FKNKlhf2QZqz58TKYi7+AUNvcCl9SQZgZOLzmGDBmio0ePrtO1c3NzqWvaQHfN/IRKdVarPLdvW265bGid84pmXNFkcUXG4opMssU1SpXcPUv4bMtByithZXF7fnvByZ7HVZt4Dwc/gDP1f6CWwMFoX0xVi3Am5ww2f1pCWrfrCG99Vr3Y0JTxAzyMxhiTCESEKX5tMa98tIWtBwo9jCg88S5gVhPQ1iIi3YFsAtpmoqzBdBB4aO46qp5ajhnQnsE9W3sbkDEmIYzs144zc5zPg7IK5ZF562tJ4b14FzDvAueLSHO/fROBImBhtC8mIk1xeq6tjHbesfDV9kO888UO37bVXowxVZxaTPVnwj8/3kr+3qMeRlS7eBcwTwIlwOsiMs5tYL8PmOrfdVlE1ovI0/4JReRCEbkcOM3dvtx99XS3W7oj/SeJyFgRmQgsALoCv4vLd1dP0+as8309YVBHTu7W0sNojDGJZliftpzTpy0AFZXKw/PW1ZLCW3EtYFT1ADAWSAXexhlkOQ34dcCpae45/p4AXgNucLdfc19j3O0SYA9Ol+r/4jTcHwRGqeqKqH4jMfDploPM/XoXACIwZUL/WlIYYxqju/0+G978dBvrdh3xMJrQwl1wLGpUdRVwXi3n5ISzL+B4MXBZfWLz0tQ5a31ff+PkzgzsVOPEBsaYRmxwzzaMHtCe3DV7UHXabR/7bmL2Y7JFRRLAR/n7WbR2DwApwjHzDxljTKC7/dpi3vliB6u2Hw5xtnesgEkAD85e4/v6ktO70rdD4g0QM8YkjpO7tWTCoI6+bf8nIInEChiPLVm/l2Ub9gPOvEP+a0AYY0xN/Ocom/v1Lj7bEvWhhPVmBYyHVJW/+NVerhzSjZ5tsz2MyBjTUJzQuQXfPKWzb/vBBKzFWAHjody1e/h4s/NfR0ZqCrefZ7UXY0z47hrXn6olohat3cOK/P3eBhTAChiPqCpTZ1f/x/Gds6rX4DbGmHD07dCMS07v6tt+cHZi1WKsgPHI7FW7+GLbIQAy01K4bUxfjyMyxjREd47tR6pbjVm6YR9L1u/1OKJqVsB4oLJSmeb3vPR7Q3vSoUVNC4YaY0zNerbN5orB3XzbD85ZS6Ksz2gFjAf+++UOVu90Rt9mZaRyy+g+HkdkjGnIfjS2Hxmpzsf5yk0HWOiOq/OaFTBxVhFQe7nunBzaNcv0MCJjTEPXtVVTrjqru297aoLUYqyAibO3Pt1G3h5nBtTmmWncPLK3xxEZY5LBbWP6kpnmfKR/vvUQc1bt8jgiK2DiqqyikofmVs9+esOIXrTKyvAwImNMsujYognfG9rTtz11zloqK72txVgBE0f/WrmVzfudVehaNk3nB8N7eRyRMSaZ3DK6D1kZzkT0q3ce4b9f7qglRWxZARMnJeUVPDK/egW6SaN606JJuocRGWOSTbtmmVx3To5ve9qctVR4WIuJewEjIoNEZJ6IFIrIdhF5QEQC134JTJMhIn92FxQrEpEa75iIXCwiX4hIsYischce89wrH21h28EiANpmZ/D9YTneBmSMSUo3j+xN80xnJZa8PUd569NtnsUS1wJGRFoDcwEFLgYeAO7GWXgslCzgRqAQWBIi/+HAv3BWsrwQeAf4h4hMqHfw9VBcVsGjfrWXH47uQ3Zm3JfiMcY0Aq2yMrhhRPXj94fnraOsotKTWOJdg7kFaApcpqpzVPVJnMJliojUuMKWqh4E2qjq+cAbIfL/JbBIVe9Q1QWqeg/wHvCr6H0LkXtp2SZ2HykBoGOLTK7xa4gzxpho+8HwXrRs6jyC37SvkH+t3OpJHPEuYC4EZqmq/+o4M3EKnVGhEmotnbpFJBNn+eRXAw7NBIaJiCcL3B8tKeeJ3Dzf9m1j+tIkPeQTQWOMqZcWTdKPGQLxyPz1lJRXxD2OeBcwA4HV/jtUdTPOo6+B9cy7D5AemD/wNc736ckykc8vzWff0VLAGQw18czuoRMYY0wUXHdODm2znWEQ2w4W8epHW+IeQ7wLmNZAsFVxDrjH6ps3QfI/EHA8bg4XlzF94Qbf9o/O60tmmtVejDGxl52Zxg/9pqF6ZP56isviW4vxoqU52KMuqWF/NPKXENdFRG4Gbgbo2LEjubm5dbpoQUHBcWnfXF/KoaIyANo3FdoV5JGbuyFI6tgJFlcisLgiY3FFxuJy9KhQWmUKB0uU3UdKuP/l+Zyfc/zwiFjFFe8C5gDQKsj+lgSv2USaN0Hyr9oOmr+qzgBmAAwZMkRHjx5dp4vn5ubin/ZgYSk/WrDAt/2zb53CuDO6BUkZW4FxJQqLKzIWV2Qsrmo7s/L51VtfATB7C/ziO8OP68Uaq7ji/YhsNQFtLSLSHcjm+LaTSOUBZYH5u9uVQFxX4pmxaANHSsoB6NM+m4tP61pLCmOMib6JZ3anS0tnOZB9R0t5fml+3K4d7wLmXeB8EWnut28iUAQsrE/GqlqCM/7lioBDE4GlqnqoPvlHYm9BCc8tyfdtTx7f37cgkDHGxFNmWip3jK1ejn36wg0cLi6Ly7XjXcA8CZQAr4vIOLf94z5gqn/XZRFZLyJP+ycUkQtF5HLgNHf7cvflP6jkN8BoEXlIREaLyJ+Ai3AGdMbNk7l5FJY6jWkDOzXnopM6x/PyxhhzjP8Z3I0ebbIAOFRUxjMfbIzLdeNawKjqAWAskAq8jTPIchrw64BT09xz/D0BvAbc4G6/5r7G+OX/AXA5MA6YBXwbuFpVZ0f1Gwlh1+FiXly2ybc9eXx/Uqz2YozxUHpqCnf61WKefn8jBwtLY37duPciU9VVwHm1nJMTzr4a0r4JvFmX2KLhsQXrKSl3pmU4uWtLJgzq6FUoxhjjc8npXXk8dz15e45ypKScGYs28JML6jv8MDSbTTmKth0sYuby6sFMUyb0R8RqL8YY76WmCHeNqx5v/tySfPYVlMT0mlbARNGj89dR6k4qN7hna0b3b+9xRMYYU+0bJ3dmYCenj1VhaQVPLsyrJUX9WAETJbsLK3l1RfWEcnePt9qLMSaxpKQIk8dX12JeWLqJXYeLY3e9mOXcyLy1vsy3sM/Q3m04p287jyMyxpjjTRjUkZO7OnP/lpRX8viC9bWkqDsrYOrhaEk5U+es4dT7Z7N4e7lv/61j+noYlTHG1ExEmDKhuhbz/NJNXPfeUc54YDZT56zhaEl5iNSRsQKmjo6WlHPp44uZvnCDb74xgBSB3/5nVVR/SMYYE01n9mxNk/RjP/73FzqT8176+OKofX5ZAVNH0xflsWlfoa9LcpVKdRb4mb4oto1nxhhTVzPe3+B7pO+vpLwyqp9fVsDU0UtLNx1XuFQpKa/kpWWb4xyRMcaE56WlmyirCD6BfTQ/v6yAqaMDhaHn8jkQh1GyxhhTF/H6/LICpo5aZx2/psKxxzPiFIkxxkQmXp9fVsDU0TXDepKZFvz2ZaalcM3QHnGOyBhjwhOvzy8rYOpo0sg+9GybddwPKTMthZ5ts5g0sk8NDdL7EgAAC3RJREFUKY0xxlvx+vyyAqaOsjPTeOPWc5k0qjdtsjMQoE12BpNG9eaNW889bsU4Y4xJFPH6/LJPwXrIzkxjyvgBTBk/IGGXaDXGmGDi8fllNRhjjDExYQWMMcaYmLACxhhjTExYAWOMMSYmRDX4dAGNkYjsATbVMXk7YG8Uw4kWiysyFldkLK7IJGNcPVU16OqKVsBEiYisUNUhXscRyOKKjMUVGYsrMo0tLntEZowxJiasgDHGGBMTVsBEzwyvA6iBxRUZiysyFldkGlVc1gZjjDEmJqwGY4wxJiasgDHGGBMTVsBESERaiMj9IrJcRA6JyE4ReUNE+oeZfpCIzBORQhHZLiIPiEhqlGKbKCKvi8gOEVERuS7MdPe55we+LvAyLjftuSLyoYgUichGEbkjGjH55X+TiKwTkWIRWSkiY8NIE7X7VdffBxFpKSLPisgB9/fwZRFpG+n1oxmXiOTUcF9mRjGuviIyXUQ+E5EKEckNM12s71fEccX6fonIFSLybxHZJiIF7u/3d8JIlykiD4rIbhE5KiLviEhOXWKw2ZQj1wO4CXga+DmQBfwM+FBETlHVLTUlFJHWwFxgFXAx0Ad4EKeg/0UUYrscyAH+A9wYYdpDQOAH5NdRiAnqGJeI9AVmuel+BpwFTBWRQlV9qr5BichVwJPAfcAHwPXAf0TkTFX9spbk9b5f9fx9eAUYgHM/K4E/Am8CIyKJIQZxAfwYWOy3Hc2BhScCFwHLgEiWXYzZ/apnXBC7+zUF2AhMdvO8CPi7iLRT1UdCpPsrzt/sZGAPzt/HHBE5WVWLI4pAVe0VwQvIBpoG7GsDFAC/riXtz4ADQAu/fT8BCv331SO2FPe9GaDAdWGmuw/YG8N7Vte4pgNrgTS/fY8DW3A7qNQzrjXAM/5xAl8AL8XjftX19wEY5t7HkX77znL3jfMwrhw3hm/G+nfJ/fqfQG4YaWJ6v+oRV0zvF9AuyL6/AxtDpOkGlAPX+u3rCpQCN0Yagz0ii5CqHlXVooB9+3GmmOlQS/ILgVmqethv30ygKTAqCrFV1jePWKhHXBcCr6tqud++mTh/BCfVJyYR6Q30B16t2ufG+Zp73Xio6+/DhcAuVV1UtUNVl+P8txqN2GP6e1ofdfxdivX9Ssi/PVUNVhP6hNCfUxPc99f98tmGU8OP+F5ZARMFItIe6IvzSCGUgcBq/x2quhnnP8OBsYkubK1EZK+IlInIJyJymZfBiEg20J2A+0X1Y6j63q+q9MHyb+P+TEOJxv2q6+/DcelcX9eSLtZxVXnWbYfYISJTRaRpFGKqj1jfr/qK5/06h9CfUwOB/2/vXGPtqMow/LyCFhoLrSHhog1FuUQ00RhJCsHQKmKIFawFq4DGC1ZNiDFGJVGjpcUfQuolXkARbIzBAnJpjJ6GBlvahlYDBEwaayxV4ZBaxZYQG6jafP5Ya+M4Z/ZlZs+cQ+R9ksnsWXutNe/+9uz9zazbNxkR/yilN7KV+2DaYQ2piWxY59w84OmK9AP5vZliN6kJ5BFSM9bHgTslLYuIuwaW7I65eV+214G8H9devfKD6v9bn7Jt2avp9TCo3KtrnL9tXYeA7wL3As8Ai4CrSX04F7egqyld26sp02qvPIDlYuAjA7K1+h9lB0MaYQKcOCxfREy5C5L0SeAKYFlE/H2E01XNbFVV+ji66hARPymd9+fAA8CXKTwqT7euXjWjpjfUVa5HQ85b217D5FSkVV4PLZUbldr1R8Re4KpC0mZJ+4DvSXpjRDzSkrYmdG2v2kynvfIosFuB9RGxdpi0qir6pA/EDiZxKXDTCPn0PwfSRcC3gasj4u4Ryh/gv3fmRY6l+q6hka5xiYiQdBfwNUlHRMThGdDVs0fZXv2ePKCert6TylzSiDAKx/3qr2QEe/Wj7vVQLFfVhDd3SLlRaaqrip+RBma8ifTENxN0ba82ad1ekl4BTACPk26GB9Hvu29kK/fBABHxw4jQsK1YRtI5pCaxGyPi+hFPtYtSO6ak+aSRaVPu9pvoapnKO5bp0BURB0mjxcrtvv36Turq2lWqr1j//ojo1zw2UHbN/LWuh0HlMv36GurSVFcVUdrPBF3bq01atZek2aRh/i8D3pl/V4PYBczPfaBFGtnKDqYBkl5H+tI2AHUm/k0A75A0p5C2HHgWuL89heMhScBS4NEad+NdMAEsLU3wW05yPMPmqQwkIvaQhkBf2kuT9JJ8PFGnrjHs1fR6mABOkHRuQcObSf0JtbS3rKuKS/L+oRZ0NaVre7VJa/aSdCRpVORpwIUR8dcRit2b90sL9ZxEmi9U31Z1xzW/2DfSEL8nSI+bi4CFhe3MQr6TmTqefB6wF9gInA+sIA0OuLYlbWeSLtArSHdA38nH5xXynJd1FdPuJznKC/KF9UvSZLSLZljXqdk+twKLSR3r/6LBePw+ut4PHCZNHlwMrCX9ib5+Ouw16vVAGlRwcyltA7AHeA/wbtKcnq0t2aWRLtL8oDVZ0/nAqmzPO9vQlc8xO187lwDbgZ2F49kzYa+murq2F2mF5MjX6sLSNivnuQ+4r1Tu+6SJmR8gTSbeAfwBOKq2hrYM/GLZSE4l+mybC/kWUDGpkPRn+6t8Ie0FVgNHtKRt5Qi6evoXFdJuzj++Z4GDwFbSHU9bNmukK6efC/wGeA74E/Cplr/Pj+Uf/iHgYeBtfb7vTuw1yvWQP/faUtpc4EekdvFnSE54ysS6MexSWxfwPuBBUp/WP7NdV5H/zFrS1ftdVW0LZtBetXV1ba98vmGaNlOaFArMAr5OGkV5kHQDdUoTDV6u3xhjTCe4D8YYY0wn2MEYY4zpBDsYY4wxnWAHY4wxphPsYIwxxnSCHYwxxphOsIMxpgGSFvUJd1vcPjQNOtZKerDr8xjTBC92aUwzHiZFSqziRtKS61unT44xLzzsYIxpQKRojzvK6ZJWAG8APhwRj027MGNeQLiJzJiWkHQG8A3gthgQc0PSNZL+khfXLKYvyU1rp+bjD0raJmm/pAOSNuVFGgdpWClpSqjcXO9VpbQrJe2UdEjSnyV9vsbHNWYodjDGtICkl5LWt3oK+MSQ7OuA45ka3/69wEMRsTsfLwB+TFrh+TJgEtgiaewojJI+B9wA3AMsya9Xl52QMePgJjJj2uFaUtPYoogYGJgpIn4n6bekJfA3AUiaRQpnu7qQb1XvdX7a2QicRVqVehUNkXQM8BXS6sjX5OSNOXbIlyTdEDMbpsH8n+AnGGPGRNJi4LPAVyNi24jFbgOW5ZgdABcCc4DbC/W+VtLdOYzuYVKogjOA08eUfDYpeNgdko7sbaTVk48HXjVm/cYAdjDGjIWkeaRmrF9TePoYgXXAccBb8/FyYHtEPJ7rnUMK/jQf+Awp4NNZwKPAUWPKPi7vd5KcVm/blNPnj1m/MYCbyIwZlx8AxwCXR8S/Ry0UEXvy/JXlkrYB7wK+UMhyNulJ4u0R8XyoWknHDqn6OVJ43OfJTrDI/rxfAuyrqOP3wz+BMcOxgzGmIZI+So7UGRF/bFDFOuCLpKapo0nhbXscnfeHCuc7h9TxPyic7iQwR9IrI+LJnHZBKc92UiCxkyLiFw10GzMSdjDGNEDSa4BvkubCPCZpYUW2yYiYHFDN7cD1edsSEXsL7+0ghSm+SdJ1pKeZlcCT5UpKbCA5j1skrQFOoTSqLSKelrQS+Jakk4EtpOby04HFEbEUY1rAfTDGNOMtwMtJ8c2399muHFRBRDwBPACcSHqaKb63jzQ8+QRgPfBpkqPYzQAi4ilgGckh3UMacXZZRb7rgBWkwQXrgZ8Cl+PVB0yLOGSyMcaYTvATjDHGmE6wgzHGGNMJdjDGGGM6wQ7GGGNMJ9jBGGOM6QQ7GGOMMZ1gB2OMMaYT7GCMMcZ0wn8ACWCRf6qmln0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -279,7 +281,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAElCAYAAADQhFSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHFW9//H3h30PASTsRPAqBONGQJBtWBRBvSjiDQhegyjivYhCFAERAvJTgxdQwQVECXJVQFkUEwyLTDCyCQIXDAGChF0WSYCQBQLf3x/nNHQq3T01M901YfJ5PU8/PX2qzqlTPdX97Trn1ClFBGZmZp22zEBXwMzMlg4OOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAeQORNFxSSJpQSJ+Q04f3o+yuXMa4XuQZl/N09XW7fSVppqSZVW+3LEnLSzpJ0v2SFuT36aMVbj8kdVe1vU5rxzFeYhu9Pp4ldUuKQlrDz1KjdUuUPyaXNaY3+ZZUDjhtkg8KX9S0hMoBKuoeL0v6l6S7JF0g6ROSVmjjJscCJwCPA/8DnARMb2P5vdbXHwh1P3TqHwslPSlpoqS9OlTlQa8vP/TeyJYb6ApYWxwLfAd4rB9l3AJsCTzTlhotub4PzCb92FoDeBvwMeAg4H5Jn4qIm9uwnQ8Dc4D3R8RLbShvSfAc8L3890rAO4G9gb0lfSkifjBgNRs4/wms0oF1ay4DbgKe6GW+JZIDziAQEU/QzwMyIuYywL/AK/K9iJhZnyBpCPBN4IvAZEnbRUR/34sNgH8NomADMDsixtUnSDoY+DnwLUnn5uNoqRERD3di3bo8z5EC/aDgJrUOqu9zyX9fKOkZSfMl3Srpw03yrS7pdEmP5nWnSzqKJv+vYvu2pO3z60tb1O2e3LewVn7d9NRe0taS/ijpBUnPS7pG0vY97XOT5Y3avFeQdLikSZIeyvV6Nm+n4801EfFcRBwB/AIYQjpbLNZ7FUnHSrpD0ouS5ki6UdIBhfUm5P17M7BpXRPUzLp1xki6RNI/JM3L7+lfJB3UqH6t+qvKNpPl/Cfml9fVN4+1ylfCBOBFYFVgq7yt144lSdvmZrdnVeiDycfVJZKeyv/zhyT9SNL6Lba3jKSj8mdifv6MnCFpjQb7vKukcyRNy+/xPEl3SzpR0kqtdkrSpyXdnvM8JennktZrsF7pfpniuvkzcl1+eaIWbbLsyus07cORtJGks/JxtECpifj3krZpsO7qkr6R9//5/Fl+QNJFkrYuU/928BlONTYlNVn9A7gAWAsYDfxO0h4RUTvokLQicC2wDXAn8EtgTeAbwC5lNhYRN0q6F/iwpLUj4l/1yyVtC2wBXBIRz7YqS9L7gGuAFYBLgRnAu4Bu4E9l6lPCWqSmrhuAq4GngfWBjwCTJH0uIs5t07ZaOYnU7PFhSWtExPMAktYk7eu7gb+RftEvA+wJ/ErSVhFxfC7jcmAm8OX8utYENbtuOz8GpgHXk85M1yY1TV0g6W0R8Y0O7Nv3gI+SjqHzcx3brfjFuz2puXcq6T1bB3gJQOnH1iWAgN8CDwFbA18A9pG0Q/FMNDsD2Bm4GPgd6X/wZWAnSTtGxPy6db9GOs5vACaSmgF3AMYBXfmz90qDbRwJfAC4CPgjsCNwcM7z3oh4uuT70ZPL8/OngSmkz1TNzFYZJb0HuIr02ZlM+myuQ/ofT5X0sYiYlNdV3o/3ATcC5wILgY2BLuDPwG1t2J+eRYQfbXiQPmxRSBteSwdOLCzbM6dPKqQfl9MvAZapS38z8GxeNqGQZ0JOH16XdmxOO7xBXX+Yl32kLq0rp42rSxOpmS2AfQplfKlu37oa7POE4nbz8u4G79OKwEYN1h0C3J33e+XCspnAzF78f2YW36Mm6z2S19u1wft7dGHdlUgf5FeBd5WtH7B5g7QVSD80XgY27EVZ44r/g7rjsbvMuiXeu9r/dLE6AJ/Jy+bU/kd1x1IAn2+QZzVSX+ErwE6FZV/L+a5qcow/A2xal74M6bMSwDcKeTYD1GD738zrj27y/rwEvLuw7Iy87Gcljufa/o/r67p1y8fk5WPq0pYj/fCbD+xSWH8DUl/uE8CKOW1kLuOyBuUvAwztzfHQn4eb1KrxEHBKfUJETAYeBrYtrHsw6Qvs6Ih4tW79B4HedMpekMv5dH2i0kis/YGngCt7KON9pE716yPid4VlZwEP9KI+TUXEgoh4tEH6c6RfxkNJZ3xVqA28eBOApLVJAwpujYhTC/WbT/qCFPDJshuIiMXet0h9PT8kfZns3qead96auZlsnKTvSJoE/CwvOy4i5hXWvyMizm5Qzj6ks7qLIuLPhWWnkQLs+yVt0iDv9yPiodqL/Bn5KulY/0z9ihHxj8jfqgW1s849GywDuCAibi+kjSP1pXwyt0IMpA8BmwNnRsSU+gUR8ThwKrAeix9Hxf8PEfFqRMzqVEWL3KRWjTui8an7I6RmByC1swJvAR5p9KVE+oV0YoP0xUTEo5KuJX1wR0TEtLzoI6TT8DMiYmEPxbwnP08pLoiIVyRNJR34/SZpK9IXx86k5rRiG/uG7dhOmark59oX1TbAskCzoavL5+ctS28gfZF+jfSFsAmwcmGVqva1t4bw+vH3CunM80rgrMjNNwW3NCmndlwt1iQbEQslXU86q3o36UdZvUbH4j8kPQIMl7RmRMwGkLQq6Uz8Y8BbgdV5/f8Lzd/nRtt4TtIdpCbJLYE7muStQu07Y9Mmx+S/5ectgUmk5ts7gAMkbUpqipxK+hFV6aAWB5xqzG6SvpBFBwIMyc9PNln/n73c7gTg/aSznK/ltNoZz/kl8re7Pg1J2o705bMcqVnp98Dz5KYq0i/iqn5VbpCfa+30a+fnbWh9lrVamcIlbUb6Ih5Kaju/ivTL+RXSl+ynqW5fe+uhiBjei/WbHR+146rZyMpa+poNlrU6FjfNZc+WtDzpmNqW1Cx7Eel/+nJe/0Sav889He9DmiyvSu2Y/EQP660Gr/043I10Xdh+wPi8/AVJ5wPHRsScjtS0wAFnyVIb/jisyfLFRsn04DLSF/dBko4jndnsBdwZEXd2qD61ZsBmx1ajL5HjSb/yd42I7voFko4lBZyOk/QWYCPSD4FaJ2rtPTgjIo5qw2aOIn1hHBwREwrbP4BCE2j2KqmPp5FG7+eSotnordp72ux4Xr+wXr1hwL0N0mtl1fLsQwo250fEmPoV8yi4Vi0FPR3vAz1M+bV9jIjfl8mQm82OBI7Mx/kuwOeBw0nH0Kc6UdEi9+EsQSLiBVJn4IaSGjVVdfWyvHmk0TwbAHsAB5ICQZmzG0gjsqDB6DhJy5JG7xTV2oM3bpBnDVLTRtFbgGeLwabZtjvohPx8Rf5fQDobeRXYqU3beEt+vqTBsmb7OgsYln+1F43qxbZrzbrL9iJPJ9T6R7qKCyQtx+vH1d+Ky2l8LG5GOt5m1prT6Nv73GobQ0hn2/OBe3rI3xt9+Z/clJ/7dExGxIyI+BlpP+dQ0Q86cMBZEp1H+r+Ml/Ta/0fSm4Ej+lDehPz8n/mxkDTUuowbSL8md5ZUPCgPp0H/Tf6ing7sIGlELT0HqNNZvL8CUifxWpLeUZ8o6RCad+y2jaQ1JP2A9CtvNnBMbVlEPEV6v0bl6xgWO3OTtHn+/5QxMz93FcrYE/hskzy3kH4oHFzIM4Y0zLes2vD4Rp3xVbqc1P9zQG5Orfdl0uiya6LxhZJfyv0QAOTPyHdJn5nz6tabmZ+76jPn4DSe1j4l6d2FtHGkprRfR8SCHvL3Rl/+J78jDdj5b0l7N1pB6Vq8VfLfb859pEVDSc2Kiw0m6BQ3qS15TiONpf848DdJk0kH+mjSdRv/3pvCIuIvkmaQ2nuXJ/16f6pk3shf+lcDlyhdSDqDNKXJHqQhwR9skPW7pNFLf5H0G9Kvwl3z9u/M+et9jxRYpkq6mNRkMIr0S/e3pHbndvmypNmkzuPa1DY7ky5cvA84KCLuK+Q5nNQRezLpy2gqqZ1/A1LH7DbAAcCDJbb/I1Lg+I2kS0ij4t5Oeh8vJv2fi87MeX4saXfSYJN3kkYR/oE0jU4Z15HO1r4t6e3ks9GIOKVlrjaLiDmSPgP8BpiSj5GHSdfhfIDUV/L5Jtn/Atwh6SLScbIn6b24jTQ6q+YK0rF6lKSRpLOqTUjv1URaf8FfSTp2Lyb1J+2YHzOp+zHSJveSjoH9Jb1Eeh+CNFLuoUYZIuJlSfuSrr+ZKOkG0qCAuaQzvW1IQXv9nPZO4DJJt5H6sx4njcLch/SZ7CkAt09V468H+4PW1+FMaJKnu5gnp69BOht4jPRlPZ00GeRmjcqjwXU4heXH1+oHfLzJOl00uR6A9EXwR+CF/LiGNFJmHE2u6wAOAf4OLCB9gZxN6rtots8fJjUVvEA6y7iKFAjGULgOIa8/k75dh1N7vEz6lX0XaQj5fsAKLfKvQAo8N5C+6BaQvhyuJf0qX7ts/UiB4k+kL/wXSCOGPtrD/2BH0g+OuaR+uYnAO5r9D2hwHU5OP4j05TSv0THbpL6147jU+91qPwrrbUPqZ3yadO3Lw6SLYjdosG7tGN+M9FmYTvpsPEb6wbJGgzwbk85OH8v7+3fgaNIP7ZbXKeXjrvY+PU06e1q/zGe42f43Wrfufbg2H1ev1v8/aXL852XrkmbFuDsfF3OA+0k/0g4ClsvrbQR8ixSs/0k6dh8lBda9yn6G2vFQrpCZmVlHuQ/HzMwq4YBjZmaVcMAxM7NKOOCYmVklPCy6zjrrrBPDhw8f6Gq84b344ousuuqqA10Ns5Z8nLbHbbfd9kxEvKnMug44dYYPH86tt9460NV4w+vu7qarq2ugq2HWko/T9pDU8HqhRtykZmZmlXDAMTOzSlQecCSNkHStpLmSHpd0cp5nq1WebSSdJ2lGznevGtyXXK/f3734aDT9ipmZVajSPhxJQ0nTokwjzeOzOWnusGVI0680MzqvO540dcM7SLeJfQdpzrF6z7H4/F7tnN3VzMz6oOpBA4eRZgveNyKeB67OU9aPk3RqTmtkfEQ8Xfe6W9J84GxJm8aik9wtjIibMDOzJUrVTWp7AZMLgeVCUhBqeo+KQrCpqd1TY932Vc/MzDql6oCzBWmW19dEuufF3LysN95Hmlm1ePe/NSU9I+llSbfnabzNzGyAVd2kNpQ09XzRrLysFEnrAV8n3TOi/mxpBmn68TtI9/P+POk+Lh+PiEublHUocCjAsGHD6O7uLlsNa2LOnDl+H22J5+O0epXenkDSy8BXIuL7hfTHSPd4+XqJMlYgDTzYCNg60r26m60r0v1LVo6Id/VU9qhRo8IXfvafL6izNwIfp+0h6baIKHWr86rPcGYBazZIH0LjM59F5ADyC2ArYIdWwQZeu2PlpaTbNS8bEa+0Wt9sMBt+zMSBrsISZezIhYzxewLAzO98qJLtVB1wplPoq5G0Men2vtMb5ljUGaTh1O+PiDLr1/guc2ZmA6zqQQNXAntKWr0ubTTpNq5TWmWUdCzwRdI956eW2Vg+I/oYcKfPbszMBlbVZzg/AY4ALpU0nnR/8nHA6fWd/5JmAFMi4pD8+pOke3JPAB6TtF1dmQ/Uhk1LmgJcQjpbWhX4HLAd6X7xZmY2gCoNOBExS9LuwFnAFaR+mzNIQadYr/rpbj6Qn8fkR72DSYEI0ii1LwPrk4ZM/w34UERc2Y76m5lZ31V+e4KImAbs1sM6wwuvx7B4oGmU75B+VM3MzDrIs0WbmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWi8oAjaYSkayXNlfS4pJMlLdtDnm0knSdpRs53r6QTJa3UYN0dJN0saZ6kByUd0bm9MTOzsparcmOShgLXANOAfYDNgdNIge/4FllH53XHA/cD7wC+mZ8/Xlf+W4DJwB+AY4FtgdMlzY2Ic9u9P2ZmVl6lAQc4DFgZ2DcingeulrQGME7SqTmtkfER8XTd625J84GzJW0aEQ/l9K8CjwMHRcRC4E+SNgFOlPSziIjO7JaZmfWk6ia1vYDJhcByISkI7dIsUyHY1Nyen9ctlH9pDjb15W8EvL1PNTYzs7aoOuBsAUyvT4iIh4G5eVlvvA94FbgXQNKqwMbF8oF76rZtZmYDpOomtaHA7Abps/KyUiStB3wduKDubGnN/Fwsf1bdthuVdShwKMCwYcPo7u4uWw1rYs6cOX4fl0BjRy7seaWlyLCV/Z7UVPV5rTrgADTqR1GT9MVXlFYALgbmAEeWLL9pekScA5wDMGrUqOjq6ipTDWuhu7sbv49LnjHHTBzoKixRxo5cyGl3DcRX4JJn5oFdlWyn6nd7Fq+fidQbQuMzn0VIEvALYCtgh4iYVbe4lr9Y/tDCcjMzGwBVB5zpFPpSJG0MrMrifS+NnEEaTv3+iCj2Bb0o6ZFi+XWvy5RvZmYdUvWggSuBPSWtXpc2GpgHTGmVUdKxwBdJQ56ntij/Y4ULSUcDjwB397nWZmbWb6XPcCSNJF1IuR6wEvAscB9wQ6Fpq5WfAEcAl0oaD2wGjANOrx8qLWkGMCUiDsmvPwl8C5gAPCZpu7oyH6gbNv1d4EDgAkk/BbYBPg98wdfgmJkNrJYBR9JmwBdIX+LDSMOQZwMLSH0lqwCvSpoCnAtcFBGvNisvImZJ2h04C7gil3UGKegU61V/lvKB/DwmP+odTApERMQMSR8ETied7fwTGOtZBszMBl7TgCPpXFKgmQqcDNwA/D0iXqlbZx3SWcSewKmkGQMOadHkRURMA3ZrVamIGF54PYbFA02zvFNJZ2JmZrYEaXWGMx/Yom7amMVExDOkM4krJR0FfALYsL1VNDOzwaBpwImIw3tTUG5Ku6jfNTIzs0Gpz6PUJK0mabV2VsbMzAavXgccSVtK+ivwPPCcpFsljWh/1czMbDDpyxnOucBvgNWBDUiTZ05oY53MzGwQahpwJJ2R71VTtAVwZkS8GBFPAucDb+1UBc3MbHBodYYzBLhf0mF5DrOaa0kXVu4taT/g2znNzMysqaYBJyI+A+wNfBK4U9KuedHngIeBU4DjgOuBQzpcTzMze4NrOdNARNwG7Cxpf+A8SbcDR0XEUZXUzszMBo1SgwYi4kJS380dwG2Svp3vsGlmZlZKy4Aj6W2SviDpS8B7IuIk4B2kWznfJ2lMBXU0M7NBoNUotc8CdwIfAXYCJkn6UUQ8GhEHAfsBX8jX4exQTXXNzOyNqtUZzonAf0fE3hGxH7AL8HlJ6wFExI0R8V7gTODCzlfVzMzeyFoFHJFuR1Dzak6rHyJNRJzP4nfZNDMzW0SrUWqnAD+StC/pjpx7AD+LiCeKK0bEix2qn5mZDRKtZov+Sb6x2m7ACsBZEXF9ZTUzM7NBpafrcO4B7qmoLmZmNoi1GqW2U28LkzRE0sj+VcnMzAajVoMGLpb0F0mfkTS0VSGSdpB0JvAQsH1ba2hmZoNCqya1zYAjSMOjz5Z0H3A38AywAFgTeDPwbmBlYBKwR0Tc2tEam5nZG1KrQQPzgPGSTgV2Jw0e2Jo0BHol4FnSvXB+BfwuIp7qfHXNzOyNquWgAYCICOCa/DAzM+uTvtzx08zMrNcccMzMrBIOOGZmVgkHHDMzq4QDjpmZVaJUwJH0P5JGdLoyZmY2eJU9w/k4cJekWyQdJmlIXzcoaYSkayXNlfS4pJMlLdtDnhUkfVfSnyXNkxRN1psgKRo8fPsEM7MBVirgRMSbSbcnmA58F3hC0q8k7dGbjeUpcq4BAtgHOBkYC5zUQ9ZVgM8Cc4Ebelh3Oml6nfrHzN7U08zM2q/HCz9rIuI64DpJqwGjgU8DkyU9CkwAzo+If/RQzGGkaXD2jYjngaslrQGMk3RqTmu07dmS1oqIkHQ4adaDZl6MiJvK7peZmVWj14MGImJORPyMNMfaX4CNgWOB+yT9TtKmLbLvBUwuBJYLSUFolx6227AZzczM3hh6FXAkDZd0oqR/AFcBc4BPAKsD/w4MJwWQZrYgNXm9JiIeJjWVtaufZYSk5yUtkDRVUstAZmZm1SjVpCbpU8DBwM7Aw8B5wHkR8WjdapMkvUjrOdeGArMbpM/Ky/rrduBmYBrwJlL/0NWSdoyIWxplkHQocCjAsGHD6O7ubkM1lm5z5szx+7gEGjty4UBXYYkybGW/JzVVfV7L9uGcA1wG7BkR17ZY7z7glB7KatQ0pibpvRIR31+kUGkiKfgcB3y0SZ5zSPvHqFGjoqurq7/VWOp1d3fj93HJM+aYiQNdhSXK2JELOe2u0t3Yg9rMA7sq2U7Zd3uDiJjV00oR8QStR5zNIt1Hp2gIjc98+iUi5kmaBHyk3WWbmVnvlO3DuU3SOxstkPT23KdTxnQKfTWSNgZWpdC302YecGBmNsDKBpzhwIpNlq0CbFSynCuBPSWtXpc2GpgHTClZRmmSViaNjLut3WWbmVnvNG1Sy9fH1Dd/rSdpk8JqKwH7A4+V3N5PSLetvlTSeNJtrMcBp9cPlZY0A5gSEYfUpe1FOhN6V369X17014h4KM9+8Afgf4EZwDrAkcCGwH+UrF+fDXf7+GvGjlzo/oI6M7/zoYGugtkSoVUfzpGka20iPy5rsp5Io8F6FBGzJO0OnAVcQeq3OYMUdIr1Kk5382Og/hqf3+Tng0kXni4AngaOB9YF5gM3ArtExK1l6mdmZp3TKuD8CriVFFB+D3wFuLewzkvAvflamlIiYhqtZwogIoaXSSssnw/sW7YeZmZWraYBJyLuB+4HkLQr8LeIeKGqipmZ2eBSalh0RLS9Q9/MzJYurQYNPEW60PN2SU/Tw9DiiFi33ZUzM7PBo9UZzg+BJ+v+9rUsZmbWZ636cE6q+3tcJbUxM7NBq9e3JzAzM+uLVn04F/emoIjo+MWVZmb2xtWqD+dNldXCzMwGvVZ9OLtWWREzMxvc3IdjZmaVaNWH81/AbyLi6fx3SxHxo7bWzMzMBpVWfThnkeZSezr/3UoADjhmZtZUqz6cZRr9bWZm1hcOJGZmVolSk3cCSFoBGANsC6wPPAHcDJwfES91pHZmZjZolDrDkbQl6VYFPwTeDrySn38IzJA0omM1NDOzQaHsGc45wHPATvU3W8u3nJ5IunX0zu2vnpmZDRZl+3BGAScU7+yZX58AbNPuipmZ2eBSNuDMBFZqsmwloPQtps3MbOlUNuAcA5wi6b31iZK2A04GvtbuipmZ2eDSaqaBv7LoTdfWAG7IdwJ9Clg3P/4FHAdc3sF6mpnZG1yrQQN/Z9GA8/cO18XMzAaxVjMNjKmwHmZmNsh5pgEzM6tEb2YaGA4cBLyVBiPWfMdPMzNrpVTAkbQ1MAV4hBRw/g8YAgwHHgVmdKh+ZmY2SJRtUvsucAlpOhsBh0TEZsCOpIEFp3amemZmNliUDTjvAn4FvJpfrwQQETcAJwHfaX/VzMxsMCkbcAJ4KSKCdA3OpnXLHgH+rd0VMzOzwaVswJkGbJ7/vhE4UtK/SdoUOBp4oOwGJY2QdK2kuZIel3SypGV7yLOCpO9K+rOkeZKixbr7SLpL0nxJ0ySNLls3MzPrnLIB5xxgvfz3caT74UwH/gG8F/hKmUIkDQWuIZ0x7UOaFmcsqVmulVWAzwJzgRtalL8jqa/pOmAv0kzWv5b0gTL1MzOzzik1Si0iLqj7+558f5z3kfpyboqIp0pu7zBgZWDfiHgeuFrSGsA4SafmtEbbny1prYgISYcDuzUp/xvA9RFxRH59naStSDNaX1WyjmZm1gF9uvAzIuZExFUR8fteBBtIZx2TC4HlQlIQ2qWHbTZtRgOQtCKwK3BxYdGFwPaShvSinmZm1malA46kdSV9S9I1kv6en/+fpGG92N4WpKa41+R76szNy/pjc2D5YvnAPaT9fGs/yzczs34oe+HnDsAkYCFwNWkQwbqkJrIvStorIv5SoqihwOwG6bPysv6o5S+WP6uwfBGSDgUOBRg2bBjd3d192vjYkQv7lG8wGray3496fT2m2s3/k0X5OH1dVcdo2altzgJuAz4SES/WEiWtBvwBOBN4T8myGjWNqUl6XxTLUYvtEhHnkAZFMGrUqOjq6urTRsccM7FP+QajsSMXctpdpWdNGvRmHtg10FUAfIwW+Th9XVXHaNkmtS2A0+qDDaS+HOB/gC1LljMLWLNB+hAan/n0Ru1Mplh+7XV/yzczs37ozXU46zVZVhsiXcZ0Cn01kjYGVu1FGc08ALxcLD+/fhW4r5/lm5lZP5QNOF8EjpM0Oo8GQ9KKkvYn3X768JLlXAnsKWn1urTRwDzS5KB9FhELSNfffKKwaDRwY0Q815/yzcysf1rdYvppFu33WJU0nxqS5gCr5fT5wGWkQQQ9+QlwBHCppPHAZsA44PT6odKSZgBTIuKQurS9ch3elV/vlxf9NSIeyn9/E+iW9D3SLa/3zo8PlqibmZl1UKsesx/Svo58ACJilqTdSYMQriD1q5xBCjrFehWnu/kxi87h9pv8fDAwIZc/NQeiU4AvAA8Cn4wIX/RpZjbAWt1ielwnNhgR02g+U0BtneFl0prkvZx0dmNmZkuQXo0JlLQCMBJYC3gWuCsiXupExczMbHDpzUwDRwNPArcAk4G/Ak9K+mqH6mZmZoNI2ZkGvgx8m9TpfxEp8AwjjQD7tqQFEfGDjtXSzMze8Mo2qf038J2I+Hpd2r3A9ZJmk0aeOeCYmVlTZZvUNiZd49JIN7BRW2pjZmaDVtmA8zDQ7CZm78/LzczMmirbpPYD4AeS1gJ+S+rDWZd0Vf8YUpOamZlZU2Xv+HmWpAXAicBnSBeECngcOCwizu1cFc3MbDAofR1ORPxU0rmk/pr1gSeAR3u6E6eZmRmU6MORtJKk+yR9MJJHIuKW/OxgY2ZmpfQYcCJiPukk5YaKAAALG0lEQVSeMq92vjpmZjZYlR2l9kvSJJlmZmZ9UrYP52HgPyTdCkwijVKrb06LiPhxuytnZmaDR9mAc1p+Xh94T4PlQbp9gJmZWUNlh0WXnuTTzMysEQcSMzOrROnrcPK9cMYA2/L6dTg3A+f7njhmZtaTUmc4krYE7ifddvrtwCv5+YfADEkjOlZDMzMbFMqe4ZwDPAfsFBGvTdQpaRNgIuk+OTu3v3pmZjZYlO3DGQWcUB9sAPLrE4Bt2l0xMzMbXMoGnJnASk2WrYRvT2BmZj0oG3COAU6R9N76REnbAScDX2t3xczMbHAp24dzPLAGcIOkp4CnSPfDWRf4F3CcpONqK0fEtu2uqJmZvbGVDTh354eZmVmflJ1pwBN3mplZv3imATMzq4QDjpmZVcIBx8zMKuGAY2Zmlag84EgaIelaSXMlPS7pZEnLlsg3RNJ5kmZJek7SLyWtXVhngqRo8Niic3tkZmZllJ4tuh0kDQWuAaYB+wCbk27utgzpWp9WLgLeBnwWeBUYD1wO7FRYbzqL3w57Zn/qbWZm/VdpwAEOA1YG9o2I54GrJa0BjJN0ak5bjKTtgT2BXSLi+pz2GHCzpD0i4pq61V+MiJs6uxtmZtZbVTep7QVMLgSWC0lBaJce8j1ZCzYAEXEL8GBeZmZmS7iqA84WpCav1+QZp+fmZaXzZfc0yDdC0vOSFkiaKqlVIDMzs4pU3aQ2FJjdIH1WXtaXfJvVvb6ddBfSacCbgLGkZrsd8xnRYiQdChwKMGzYMLq7u3vYhcbGjlzYp3yD0bCV/X7U6+sx1W7+nyzKx+nrqjpGqw44ANEgTU3Se5UvIr6/yEJpIin4HAd8tGGhEeeQbjDHqFGjoqurq4dqNDbmmIl9yjcYjR25kNPuGohDa8k088Cuga4C4GO0yMfp66o6RqtuUpsFrNkgfQiNz2B6yrdmq3wRMQ+YBLynF3U0M7MOqDrgTKfQ5yJpY2BVGvfRNM2XNevbKerp7MnMzDqs6oBzJbCnpNXr0kYD84ApPeRbT9KOtQRJo0j9N1c2yyRpZdIottv6U2kzM+u/qgPOT4AFwKWS9sgd9uOA0+uHSkuaIelntdcRcSMwGfiFpH0lfRT4JTC1dg1Onongz5I+L2l3SaOB64ANgW9VtYNmZtZYpT1mETFL0u7AWcAVpP6XM0hBp1iv4nQ3++d1f04KlH8AjqhbvgB4mjRjwbrAfOBG0sWit7Z1R8zMrNcqH6IREdOA3XpYZ3iDtNmkKWsa3gwuIuYD+7ahimZm1gGeLdrMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBKVBxxJIyRdK2mupMclnSxp2RL5hkg6T9IsSc9J+qWktRust4+kuyTNlzRN0ujO7ImZmfVGpQFH0lDgGiCAfYCTgbHASSWyXwR0AZ8FxgDbAJcXyt8RuAS4DtgLmAj8WtIH2rIDZmbWZ8tVvL3DgJWBfSPieeBqSWsA4ySdmtMWI2l7YE9gl4i4Pqc9BtwsaY+IuCav+g3g+og4Ir++TtJWwAnAVZ3bLTMz60nVTWp7AZMLgeVCUhDapYd8T9aCDUBE3AI8mJchaUVgV+DiQt4Lge0lDel/9c3MrK+qDjhbANPrEyLiYWBuXlY6X3ZPXb7NgeUbrHcPaT/f2of6mplZm1TdpDYUmN0gfVZe1pd8m9WtQ4P1ZhWWL0LSocCh+eUcSfe2qIeVcASsAzwz0PVYUmj8QNfAGvFx+rp+HqObll2x6oADacBAkZqk9yVf8bVa5CcizgHO6WHb1guSbo2IUQNdD7NWfJxWr+omtVnAmg3Sh9D4DKanfGvW5ZtVl1Zchx7KNzOzDqs64Eyn0FcjaWNgVRr30TTNl9X37TwAvNxgvS2AV4H7+lBfMzNrk6oDzpXAnpJWr0sbDcwDpvSQb718nQ0AkkaR+m+uBIiIBaTrbz5RyDsauDEinut/9a0kN1HaG4GP04opoqeukzZuLF34OQ24GxhPChinA9+LiOPr1psBTImIQ+rS/kgaafYV0hnLeOCpiNipbp0dgW7gLNJFoXvn9T8YEb4Ox8xsAFV6hhMRs4DdgWWBK0gzDJwBnFhYdbm8Tr39SWdBPwd+AdwGfKxQ/lRgP2APYDLw78AnHWzMzAZepWc4Zma29PJs0dY2fZ2Y1awKkt4i6WxJd0p6RVL3QNdpaTMQ1+HYIFQ3Mes00sSsmwOnkX7UHN8iq1lVtiL1694ErDDAdVkquUnN2kLSscDRwKa1ufIkHQ2MA9ZrNjGrWVUkLRMRr+a/fwusExFdA1urpYub1Kxd+joxq1klasHGBo4DjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461U18nZjWzpYADjrVLXydmNbOlhAOOtUtfJ2Y1s6WEA461S18nZjWzpYQv/LR2+QlwBHCppNrErOOA030Nji0JJK1CuvATYENgDUn75deTImLuwNRs6eELP61tJI0gzdS9Panf5lxgXES8MqAVMwMkDQcebLL4zRExs7LKLKUccMzMrBLuwzEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx6zDlDwoKSS9ZQC2v62kcVVv16zIAces87YHhue/9x+A7W8LnDgA2zVbhAOOWecdALwI3Jz/NlsqOeCYdZCkZYFPAL8Hfg6MkPSOuuVrSjpX0uOS5kt6WNJP65ZvJOliSU9JmifpAUnfLGxjR0lTJM2V9C9JP61NoippDHBm/jvyo7vjO27WgCfvNOus3YBhwIXAVNJccwcA/5eXnw68DzgS+CewMbBzXf5fACsDh5Lmp9uMuttASNoBuBa4HNgPWBv4Dukuq/sBE4HTgLGkpj0AT6ZqA8JzqZl1kKSfAx8DhkXES5ImAiOAzSIiJN0NnB0RZzbJPwc4ICKuaLL8z8DCiNi1Lm03UhAaGRF3SzocODMi1N69M+sdN6mZdYikFUnB5rKIeCkn/5o0gGC7/PoO4KuS/kvSWxsUcwfwbUljJG1SKH8V0lnLxZKWqz1IZ1IvA1u3fafM+sEBx6xz9iLddntS7qtZE+gGFvD64IHDSc1hJwD3SrpfUv1IttHArcAZwEOS7pC0e142FFgW+BEpwNQeC4DlSc1zZksMN6mZdYiki4D/aLL4SWDD+nsF5cEER5OC0ciImFa3bBnS8OZxwE7AJsB84IWcNqnBNh6PiMfdpGZLCgccsw6QtBopqPwOOKew+N2kwQLvj4hrCvnWBx4HPh4RlzYod3vgBmDriPibpBuAByPiwBZ1ORQ4G1g5Iub3Y7fM+sUBx6wDJB0I/C+wXUTcXFi2PPAEKRi9DbgMuBsI4HOkprgtSGcvk0kj1e4DViSNNtuSNOhgnqQdSQMELgZ+m/NsAnwI+HpE3CdpZ2AKcAzwJ+D5iLi3c3tv1pgDjlkHSPoD8NaIaDQQAEk/IjWdTQD2IA0keAW4HTghIv6cBx2cRRomvTEwF7gJODYi7qor673ASaTh1csCDwF/BE6KiOckCRgPHASsB1wfEV1t3mWzHjngmJlZJTxKzczMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlV4v8DdUqlmkdTpu0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAElCAYAAADZb/T+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVb3/8feHPWwhgISdCF6FYNwICLINiyKoF0W8AcFrEEW8F1GIIiBCQH5q8AIquIAoQa4KKItiQDaZILIJAhcMAYKEXRZJgJAFQr6/P87p0Kl099RMunoyw+f1PP309Kk6p071VPe365xTpxQRmJmZtdsy/V0BMzMbnBxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QAzgEgaISkkTSykT8zpI5ag7K5cxvhe5Bmf83T1dbt9JWm6pOmd3m5ZkpaXdKKkByXNy+/TRzu4/ZDU3antVa0dx3iJbfT6eJbULSkKaQ0/S43WLVH+2FzW2N7kW1o4wLRJPgh8UdFSKgekqHu8Kulfku6RdL6kT0haoY2bHAccDzwJ/A9wIjC1jeX3Wl9/ENT9sKl/zJf0tKRJkvasqMqDXl9+2A0ky/V3BawtjgG+AzyxBGXcBmwBPNeWGi29vg/MJP24Wh14G/Ax4EDgQUmfiohb27CdDwOzgPdHxCttKG9p8ALwvfz3SsA7gb2AvSR9KSJ+0G816z//Caxcwbo1lwK3AE/1Mt9SwQFmEIiIp1jCAzAiZtPPv7A75HsRMb0+QdJQ4JvAF4GrJG0bEUv6XqwP/GsQBReAmRExvj5B0kHAz4FvSTonH0dvGBHxaBXr1uV5gRTYByQ3kVWovs8k/32BpOckzZV0u6QPN8m3mqTTJD2e150q6Uia/L+K7dOStsuvL2lRt/ty38Ca+XXTU3VJW0n6o6SXJL0o6VpJ2/W0z02WN2qzXkHSYZKukPRIrtfzeTuVN79ExAsRcTjwC2Ao6WywWO+VJR0j6S5JL0uaJelmSfsX1puY9+/NwCZ1TUrT69YZK+liSf+QNCe/p3+RdGCj+rXqbyrb7JXzn5BfXl/f3NUqXwkTgZeBVYAt87YWHkuStsnNaM+r0IeSj6uLJT2T/+ePSPqRpPVabG8ZSUfmz8Tc/Bk5XdLqDfZ5F0lnS5qS3+M5ku6VdIKklVrtlKRPS7oz53lG0s8lrdtgvdL9KsV182fk+vzyBC3aBNmV12naByNpQ0ln5uNonlKT7+8lbd1g3dUkfSPv/4v5s/yQpAslbVWm/n3hM5jO2ITUBPUP4HxgTWAM8DtJu0dE7SBD0orAdcDWwN3AL4E1gG8AO5fZWETcLOl+4MOS1oqIf9Uvl7QNsDlwcUQ836osSe8DrgVWAC4BpgHvArqBP5WpTwlrkpqubgKuAZ4F1gM+Alwh6XMRcU6bttXKiaRmjA9LWj0iXgSQtAZpX98N/I30i30ZYA/gV5K2jIjjchmXAdOBL+fXtSalmXXb+TEwBbiBdOa5Fqmp6XxJb4uIb1Swb98DPko6hs7LdWy34hftdqTm2xtJ79nawCsASj+uLgYE/BZ4BNgK+AKwt6Tti2ea2enATsBFwO9I/4MvAztK2iEi5tat+zXScX4TMInUrLc9MB7oyp+91xps4wjgA8CFwB+BHYCDcp73RsSzJd+PnlyWnz8NTCZ9pmqmt8oo6T3A1aTPzlWkz+bapP/xjZI+FhFX5HWV9+N9wM3AOcB8YCOgC/gzcEcb9mdxEeFHGx6kD1cU0kbU0oETCsv2yOlXFNKPzekXA8vUpb8ZeD4vm1jIMzGnj6hLOyanHdagrj/Myz5Sl9aV08bXpYnUbBbA3oUyvlS3b10N9nlicbt5eXeD92lFYMMG6w4F7s37PaSwbDowvRf/n+nF96jJeo/l9XZp8P4eVVh3JdIHdwHwrrL1AzZrkLYC6YfFq8AGvShrfPF/UHc8dpdZt8R7V/ufLlYH4DN52aza/6juWArg8w3yrErq63sN2LGw7Gs539VNjvHngE3q0pchfVYC+EYhz6aAGmz/m3n9MU3en1eAdxeWnZ6X/azE8Vzb//F9Xbdu+di8fGxd2nKkH3pzgZ0L669P6ot9Clgxp43KZVzaoPxlgGG9OR5683ATWWc8ApxcnxARVwGPAtsU1j2I9IV1VEQsqFv/YaA3najn53I+XZ+oNFJqP+AZ4MoeyngfqRP8hoj4XWHZmcBDvahPUxExLyIeb5D+AumX7zDSGV0n1AZKvAlA0lqkAQC3R8QphfrNJX0hCvhk2Q1ExGLvW6S+mh+Svjx261PNq7dGbvYaL+k7kq4AfpaXHRsRcwrr3xURZzUoZ2/SWduFEfHnwrJTSQH1/ZI2bpD3+xHxSO1F/ox8lXSsf6Z+xYj4R+Rv0YLaWeUeDZYBnB8RdxbSxpP6Qj6ZWxn604eAzYAzImJy/YKIeBI4BViXxY+j4v+HiFgQETOqqqibyDrjrmh8Kv4YqRkBSO2kwFuAxxp9CZF+AZ3QIH0xEfG4pOtIH9SRETElL/oI6bT69IiY30Mx78nPk4sLIuI1STeSDvQlJmlL0hfFTqTmsWIb+Qbt2E6ZquTn2hfT1sCyQLOhpMvn5y1KbyB9cX6N9AWwMTCksEqn9rW3hvL68fca6czySuDMyM0xBbc1Kad2XC3WxBoR8yXdQDprejfpR1i9RsfiPyQ9BoyQtEZEzASQtArpTPtjwFuB1Xj9/wvN3+dG23hB0l2kJsYtgLua5O2E2nfGJk2OyX/Lz1sAV5CaY+8C9pe0Calp8UbSj6ZKB6E4wHTGzCbp81m0435ofn66yfr/7OV2JwLvJ53FfC2n1c5oziuRv931aUjStqQvm+VIzUS/B14kNz2RfvF26lfj+vm51s6+Vn7emtZnUauWKVzSpqQv3mGktu+rSb+MXyN9qX6azu1rbz0SESN6sX6z46N2XDUb+VhLX6PBslbH4ia57JmSlicdU9uQmlkvJP1PX83rn0Dz97mn431ok+WdUjsmP9HDeqvCwh+Du5Kuy9oXmJCXvyTpPOCYiJhVRUUdYJYuteGIw5ssX2wUSw8uJX1RHyjpWNKZy57A3RFxd0X1qTXrNTu2Gn1pHEf6Fb9LRHTXL5B0DCnAVE7SW4ANSYG/1ulZew9Oj4gj27CZI0lfEAdFxMTC9ven0KSZLSD10TTS6P1cWjQbXVV7T5sdz+sV1qs3HLi/QXqtrFqevUnB5byIGFu/Yh6l1qoloKfjvb+HDS/cx4j4fZkMuRnsCOCIfJzvDHweOIx0DH2qioq6D2YpEhEvkTrvNpDUqOmpq5flzSGNtlkf2B04gPTFX+bsBdKIKWgwek3SsqTRNUW19tyNGuRZndRUUfQW4PlicGm27Qodn58vz/8LSGcbC4Ad27SNt+Tnixssa7avM4Dh+Vd50ehebLvWTLtsL/JUoda/0VVcIGk5Xj+u/lZcTuNjcVPS8Ta91jxG397nVtsYSjqbngvc10P+3ujL/+SW/NynYzIipkXEz0j7OYsKf8A5wCx9ziX9XyZIWvj/kfRm4PA+lDcxP/9nfswnDX0u4ybSr8WdJBUPwsNo0P+Sv5inAttLGllLzwHpNBbvb4DUqbumpHfUJ0o6mOYdsW0jaXVJPyD9ipsJHF1bFhHPkN6v0fk6gsXOzCRtlv8/ZUzPz12FMvYAPtskz22kHwYHFfKMJQ27Las2XL1R53knXUbqv9k/N4/W+zJp9Ne10fjCxC/lfgQA8mfku6TPzLl1603Pz131mXMwmkBrn5L07kLaeFLT2K8jYl4P+XujL/+T35EG2Py3pL0araB0LdzK+e835z7OomGkZsLFOv/bxU1kS59TSWPZPw78TdJVpAN7DOm6iX/vTWER8RdJ00jttcuTfp0/UzJv5C/5a4CLlS7cnEaaImR30hDdDzbI+l3S6KK/SPoN6VffLnn7d+f89b5HCiQ3SrqI1AQwmvRL9rekduN2+bKkmaTO3tpUMTuRLhR8ADgwIh4o5DmM1HF6EunL50ZSO/36pI7UrYH9gYdLbP9HpEDxG0kXk0atvZ30Pl5E+j8XnZHz/FjSbqTBIe8kjfL7A2lamjKuJ52NfVvS28lnmxFxcstcbRYRsyR9BvgNMDkfI4+SroP5AKmv4/NNsv8FuEvShaTjZA/Se3EHafRUzeWkY/VISaNIZ00bk96rSbT+Qr+SdOxeROoP2iE/plP346NN7icdA/tJeoX0PgRpJNsjjTJExKuS9iFd/zJJ0k2kTvzZpDO5rUlBer2c9k7gUkl3kPqjniSNktyb9JnsKeD2XVXjn99oD1pfBzOxSZ7uYp6cvjrp1/4TpC/nqaTJEzdtVB4NroMpLD+uVj/g403W6aLJeHzSB/+PwEv5cS1pJMt4mlxXARwM/B2YR/rCOIvU99Bsnz9MOvV/iXQWcTXpi38shesA8vrT6dt1MLXHq6Rf0feQhnTvC6zQIv8KpEBzE+mLbR7py+A60q/utcrWjxQY/kT6gn+JNKLnoz38D3Yg/cCYTepXmwS8o9n/gAbXweT0A0lfRnMaHbNN6ls7jku93632o7De1qR+wmdJ1548SroIdf0G69aO8U1Jn4WppM/GE6QfKKs3yLMR6ezziby/fweOIv2wbnmdUD7uau/Ts6Szo/XKfIab7X+jdeveh+vycbWg/v9Jk+M/L1uHNOvEvfm4mAU8SPpRdiCwXF5vQ+BbpOD8T9Kx+zgpkO5Z9jPUl4dyBczMzNrKfTBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhYcp11l577RgxYkR/V2PAe/nll1lllVX6uxpmLfk4bY877rjjuYh4U6NlDjB1RowYwe23397f1Rjwuru76erq6u9qmLXk47Q9JDW8XgfcRGZmZhVxgDEzs0p0PMBIGinpOkmzJT0p6aQ8T1WrPFtLOlfStJzvfjW4r7Zevz958dFoOhMzM6tQR/tgJA0jTTMyhTQPzmakubeWIU1n0syYvO4E0lQI7yDd9vQdpDm76r3A4vNjtXP2UzMzK6HTnfyHkmbT3SciXgSuyVO4j5d0Sk5rZEJEPFv3ulvSXOAsSZvEopPCzY+IWzAzs37V6SayPYGrCoHkAlLQaXqPhkJwqandU2Kd9lXPzMzapdMBZnPSLKgLRbrnw+y8rDfeR5p5tHh3uzUkPSfpVUl35mmtzcyswzrdRDaMxvenn5GXlSJpXeDrpHsm1J8NTSNNx30X6X7Unyfdx+TjEXFJk7IOAQ4BGD58ON3d3WWrYU3MmjXL76Mt9XycVq+j0/VLehX4SkR8v5D+BOkeJ18vUcYKpIECGwJbRbrXdLN1Rbp/x5CIeFdPZY8ePTp8oeWS8wVsNhD4OG0PSXdERMNbd3f6DGYGsEaD9KE0PrNZRA4YvwC2BLZvFVxg4R0ZLyHdfnjZiHit1fpmg9mIoyf1dxWWKuNGzWes3xMApn/nQ5WU2+kAM5VCX4ukjUi3q53aMMeiTicNb35/RJRZv8Z3VTMz67BOd/JfCewhabW6tDGk25JObpVR0jHAF0n3TL+xzMbyGc/HgLt99mJm1lmdPoP5CXA4cImkCaT7a48HTqvvrJc0DZgcEQfn158k3VN6IvCEpG3rynyoNoxZ0mTgYtLZ0CrA54BtSfc7NzOzDupogImIGZJ2A84ELif1u5xOCjLFetVPH/OB/Dw2P+odRAo8kEaRfRlYjzSE+W/AhyLiynbU38zMyuv4dP0RMQXYtYd1RhRej2XxwNIo38FLUDUzM2sjz6ZsZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlaJjgcYSSMlXSdptqQnJZ0kadke8mwt6VxJ03K++yWdIGmlButuL+lWSXMkPSzp8Or2xszMmlmukxuTNAy4FpgC7A1sBpxKCnTHtcg6Jq87AXgQeAfwzfz88bry3wJcBfwBOAbYBjhN0uyIOKfd+2NmZs11NMAAhwJDgH0i4kXgGkmrA+MlnZLTGpkQEc/Wve6WNBc4S9ImEfFITv8q8CRwYETMB/4kaWPgBEk/i4ioZrfMzKyo001kewJXFQLJBaSgs3OzTIXgUnNnfl6nUP4lObjUl78h8PY+1djMzPqk0wFmc2BqfUJEPArMzst6433AAuB+AEmrABsVywfuq9u2mZl1SKebyIYBMxukz8jLSpG0LvB14Py6s6E18nOx/Bl1225U1iHAIQDDhw+nu7u7bDWsiVmzZvl9XAqNGzW/55XeQIYP8XtSU9XntdMBBqBRP4iapC++orQCcBEwCziiZPlN0yPibOBsgNGjR0dXV1eZalgL3d3d+H1c+ow9elJ/V2GpMm7UfE69pz++Apc+0w/oqqTcTr+7M3j9TKPeUBqf2SxCkoBfAFsC20fEjLrFtfzF8ocVlpuZWQd0OsBMpdAXImkjYBUW7ztp5HTS8Ob3R0SxL+dlSY8Vy697XaZ8MzNrk0538l8J7CFptbq0McAcYHKrjJKOAb5IGoJ8Y4vyP1a4cHMM8Bhwb59rbWZmvVb6DEbSKNKFi+sCKwHPAw8ANxWaqlr5CXA4cImkCcCmwHjgtPqhy5KmAZMj4uD8+pPAt4CJwBOStq0r86G6YczfBQ4Azpf0U2Br4PPAF3wNjJlZZ7UMMJI2Bb5A+tIeThoWPBOYR+rrWBlYIGkycA5wYUQsaFZeRMyQtBtwJnB5Lut0UpAp1qv+LOQD+XlsftQ7iBR4iIhpkj4InEY6m/knMM5X8ZuZdV7TACPpHFJguRE4CbgJ+HtEvFa3ztqks4Q9gFNIV+Qf3KIJi4iYAuzaqlIRMaLweiyLB5ZmeW8knWmZmVk/anUGMxfYvG4alsVExHOkM4UrJR0JfALYoL1VNDOzgahpgImIw3pTUG4au3CJa2RmZoNCn0eRSVpV0qrtrIyZmQ0evQ4wkraQ9FfgReAFSbdLGtn+qpmZ2UDWlzOYc4DfAKsB65Mmm5zYxjqZmdkg0DTASDo936ulaHPgjIh4OSKeBs4D3lpVBc3MbGBqdQYzFHhQ0qF5DrCa60gXMu4laV/g2znNzMxsoaYBJiI+A+wFfBK4W9IuedHngEeBk4FjgRuAgyuup5mZDTAtr+SPiDuAnSTtB5wr6U7gyIg4siO1MzOzAatUJ39EXEDqe7kLuEPSt/MdJM3MzBpqGWAkvU3SFyR9CXhPRJwIvIN0a+IHJI3tQB3NzGwAajWK7LPA3cBHgB2BKyT9KCIej4gDgX2BL+TrYLbvTHXNzGygaHUGcwLw3xGxV0TsC+wMfF7SugARcXNEvBc4A7ig+qqamdlA0irAiDQ9f82CnFY/ZJmIOI/F7yJpZmZvcK1GkZ0M/EjSPqQ7Tu4O/CwiniquGBEvV1Q/MzMboFrNpvyTfCOxXYEVgDMj4oaO1czMzAa0nq6DuQ+4r0N1MTOzQaTVKLIde1uYpKGSRi1ZlczMbDBo1cl/kaS/SPqMpGGtCpG0vaQzgEeA7dpaQzMzG5BaNZFtChxOGq58lqQHgHuB54B5wBrAm4F3A0OAK4DdI+L2SmtsZmYDQqtO/jnABEmnALuROvu3Ig1JXgl4nnQvmF8Bv4uIZ6qvrpmZDRQtO/kBIiKAa/PDzMyslL7c0dLMzKxHDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCpRKsBI+h9JI6uujJmZDR5lz2A+Dtwj6TZJh0oa2tcNShop6TpJsyU9KekkScv2kGcFSd+V9GdJcyRFk/UmSooGD99OwMysw0oFmIh4M2m6/qnAd4GnJP1K0u692ViecuZaIIC9gZOAccCJPWRdGfgsMBu4qYd1p5Kmq6l/TO9NPc3MbMn1eKFlTURcD1wvaVVgDPBp4CpJjwMTgfMi4h89FHMoaVqZfSLiReAaSasD4yWdktMabXumpDUjIiQdRppVoJmXI+KWsvtlZmbV6HUnf0TMioifkeYo+wuwEXAM8ICk30napEX2PYGrCoHkAlLQ2bmH7TZsFjMzs6VTrwKMpBGSTpD0D+BqYBbwCWA14N+BEaSA0czmpCashSLiUVLTV7v6SUZKelHSPEk3SmoZuMzMrBqlmsgkfQo4CNgJeBQ4Fzg3Ih6vW+0KSS/Tes6yYcDMBukz8rIldSdwKzAFeBOpf+caSTtExG2NMkg6BDgEYPjw4XR3d7ehGm9ss2bN8vu4FBo3an5/V2GpMnyI35Oaqj6vZftgzgYuBfaIiOtarPcAcHIPZTVq6lKT9F6JiO8vUqg0iRRsjgU+2iTP2aT9Y/To0dHV1bWk1XjD6+7uxu/j0mfs0ZP6uwpLlXGj5nPqPaW7oQe16Qd0VVJu2Xd3/YiY0dNKEfEUrUeEzSDdR6ZoKI3PbJZIRMyRdAXwkXaXbWZmrZXtg7lD0jsbLZD09twnU8ZUCn0tkjYCVqHQN9NmHiBgZtZhZQPMCGDFJstWBjYsWc6VwB6SVqtLGwPMASaXLKM0SUNII9fuaHfZZmbWWtMmsnx9Sn1z1rqSNi6sthKwH/BEye39hHQb5kskTSDdlnk8cFr90GVJ04DJEXFwXdqepDOdd+XX++ZFf42IR/LsAn8A/heYBqwNHAFsAPxHyfr12Qi3by80btR8t/fXmf6dD/V3Fcz6Ras+mCNI17pEflzaZD2RRmv1KCJmSNoNOBO4nNTvcjopyBTrVZw+5sdA/TU2v8nPB5Eu9JwHPAscB6wDzAVuBnaOiNvL1M/MzNqnVYD5FXA7KYD8HvgKcH9hnVeA+/O1LKVExBRaX4lPRIwok1ZYPhfYp2w9zMysWk0DTEQ8CDwIIGkX4G8R8VKnKmZmZgNbqWHKEdH2DngzMxvcWnXyP0O6sPJOSc/Sw1DfiFin3ZUzM7OBq9UZzA+Bp+v+9rUkZmZWWqs+mBPr/h7fkdqYmdmg0evp+s3MzMpo1QdzUW8KiojKL2Y0M7OBo1UfzJs6VgszMxt0WvXB7NLJipiZ2eDiPhgzM6tEqz6Y/wJ+ExHP5r9biogftbVmZmY2oLXqgzmTNBfZs/nvVgJwgDEzs4Va9cEs0+hvMzOzMhw4zMysEqUmuwSQtAIwFtgGWA94CrgVOC8iXqmkdmZmNmCVOoORtAVp6v4fAm8HXsvPPwSmSRpZWQ3NzGxAKnsGczbwArBj/c3F8i2UJ5FuhbxT+6tnZmYDVdk+mNHA8cU7V+bXxwNbt7tiZmY2sJUNMNOBlZosWwkofctkMzN7YygbYI4GTpb03vpESdsCJwFfa3fFzMxsYGt1Jf9fWfQmY6sDN+U7XT4DrJMf/wKOBS6rsJ5mZjbAtOrk/zuLBpi/V1wXMzMbRFpdyT+2g/UwM7NBxlfym5lZJXpzJf8I4EDgrTQYUeY7WpqZWb1SAUbSVsBk4DFSgPk/YCgwAngcmFZR/czMbIAq20T2XeBi0vQwAg6OiE2BHUgDAU6ppnpmZjZQlQ0w7wJ+BSzIr1cCiIibgBOB77S/amZmNpCVDTABvBIRQboGZpO6ZY8B/9buipmZ2cBWNsBMATbLf98MHCHp3yRtAhwFPFR2g5JGSrpO0mxJT0o6SdKyPeRZQdJ3Jf1Z0hxJ0WLdvSXdI2mupCmSxpStm5mZtU/ZAHM2sG7++1jS/WCmAv8A3gt8pUwhkoYB15LOiPYmTTMzjtTM1srKwGeB2cBNLcrfgdRXdD2wJ2mm519L+kCZ+pmZWfuUGkUWEefX/X1fvj/M+0h9MbdExDMlt3coMATYJyJeBK6RtDowXtIpOa3R9mdKWjMiQtJhwK5Nyv8GcENEHJ5fXy9pS9KMz1eXrKOZmbVBny60jIhZEXF1RPy+F8EF0lnFVYVAcgEp6OzcwzabNosBSFoR2AW4qLDoAmA7SUN7UU8zM1tCpQOMpHUkfUvStZL+np//n6Thvdje5qSmtYXyPWVm52VLYjNg+WL5wH2k/XzrEpZvZma9UPZCy+2BK4D5wDWkTv91SE1eX5S0Z0T8pURRw4CZDdJn5GVLopa/WP6MwvJFSDoEOARg+PDhdHd392nj40bN71O+wWj4EL8f9fp6TLWb/yeL8nH6uqqO0bJTxZwJ3AF8JCJeriVKWhX4A3AG8J6SZTVq6lKT9L4olqMW2yUiziYNYmD06NHR1dXVp42OPXpSn/INRuNGzefUe0rPQjToTT+gq7+rAPgYLfJx+rqqjtGyTWSbA6fWBxdIfTHA/wBblCxnBrBGg/ShND6z6Y3amUqx/NrrJS3fzMx6oTfXwazbZFltyHIZUyn0tUjaCFilF2U08xDwarH8/HoB8MASlm9mZr1QNsB8EThW0pg8WgtJK0raj3Q75cNKlnMlsIek1erSxgBzSJNp9llEzCNd//KJwqIxwM0R8cKSlG9mZr3T6pbJz7Jov8UqpPnIkDQLWDWnzwUuJXX69+QnwOHAJZImAJsC44HT6ocuS5oGTI6Ig+vS9sx1eFd+vW9e9NeIeCT//U2gW9L3SLdw3is/PliibmZm1katerh+SPs63gGIiBmSdiMNGric1C9yOinIFOtVnD7mxyw6B9pv8vNBwMRc/o058JwMfAF4GPhkRPgiSzOzDmt1y+TxVWwwIqbQ/Er82jojyqQ1yXsZ6ezFzMz6Ua/G6ElaARgFrAk8D9wTEa9UUTEzMxvYenMl/1HA08BtwFXAX4GnJX21orqZmdkAVvZK/i8D3yZ10l9ICjTDSSO0vi1pXkT8oLJampnZgFO2iey/ge9ExNfr0u4HbpA0kzQyzAHGzMwWKttEthHpGpNGuoEN21IbMzMbNMoGmEeBZjften9ebmZmtlDZJrIfAD+QtCbwW1IfzDqkq+bHkprIzMzMFip7R8szJc0DTgA+Q7oAU8CTwKERcU51VTQzs4Go9HUwEfFTSeeQ+lvWA54CHu/pTpNmZvbG1GMfjKSVJD0g6YORPBYRt+VnBxczM2uoxwATEXNJ91RZUH11zMxssCb0Es4AAAsLSURBVCg7iuyXpEklzczMSinbB/Mo8B+SbgeuII0iq28ei4j4cbsrZ2ZmA1fZAHNqfl4PeE+D5UGaTt/MzAwoP0y59KSYZmZm0IvZlM3MzHqj9HUw+V4wY4FteP06mFuB83xPGDMzKyp1BiNpC+BB0m2U3w68lp9/CEyTNLKyGpqZ2YBU9gzmbOAFYMeIWDixpaSNgUmk+8Ts1P7qmZnZQFW2D2Y0cHx9cAHIr48Htm53xczMbGArG2CmAys1WbYSnq7fzMwKygaYo4GTJb23PlHStsBJwNfaXTEzMxvYyvbBHAesDtwk6RngGdL9YNYB/gUcK+nY2soRsU27K2pmZgNL2QBzb36YmZmVUvZKfk90aWZmveIr+c3MrBIOMGZmVgkHGDMzq4QDjJmZVaLjAUbSSEnXSZot6UlJJ0latkS+oZLOlTRD0guSfilprcI6EyVFg8fm1e2RmZk1Uno25XaQNAy4FpgC7A1sRrqZ2TKka21auRB4G/BZYAEwAbgM2LGw3lQWv73z9CWpt5mZ9V5HAwxwKDAE2CciXgSukbQ6MF7SKTltMZK2A/YAdo6IG3LaE8CtknaPiGvrVn85Im6pdjfMzKwnnW4i2xO4qhBILiAFnZ17yPd0LbgARMRtwMN5mZmZLWU6HWA2JzVhLZRnZJ6dl5XOl93XIN9ISS9KmifpRkmtApeZmVWk001kw4CZDdJn5GV9ybdp3es7SXfZnAK8CRhHaobbIZ/xLEbSIcAhAMOHD6e7u7uHXWhs3Kj5fco3GA0f4vejXl+PqXbz/2RRPk5fV9Ux2ukAAxAN0tQkvVf5IuL7iyyUJpGCzbHARxsWGnE26YZqjB49Orq6unqoRmNjj57Up3yD0bhR8zn1nv44tJZO0w/o6u8qAD5Gi3ycvq6qY7TTTWQzgDUapA+l8RlKT/nWaJUvIuYAVwDv6UUdzcysDTodYKZS6DORtBGwCo37WJrmy5r1zRT1dHZkZmZt1ukAcyWwh6TV6tLGAHOAyT3kW1fSDrUESaNJ/S9XNsskaQhplNkdS1JpMzPrvU4HmJ8A84BLJO2eO9jHA6fVD12WNE3Sz2qvI+Jm4CrgF5L2kfRR4JfAjbVrYPKV/n+W9HlJu0kaA1wPbAB8q1M7aGZmSUd7uCJihqTdgDOBy0n9J6eTgkyxXsXpY/bL6/6cFBj/ABxet3we8CxpRoB1gLnAzaSLM29v646YmVmPOj6EIiKmALv2sM6IBmkzSVPANLz5WUTMBfZpQxXNzKwNPJuymZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklOh5gJI2UdJ2k2ZKelHSSpGVL5Bsq6VxJMyS9IOmXktZqsN7eku6RNFfSFEljqtkTMzNrpaMBRtIw4FoggL2Bk4BxwIklsl8IdAGfBcYCWwOXFcrfAbgYuB7YE5gE/FrSB9qyA2ZmVtpyHd7eocAQYJ+IeBG4RtLqwHhJp+S0xUjaDtgD2DkibshpTwC3Sto9Iq7Nq34DuCEiDs+vr5e0JXA8cHV1u2VmZkWdbiLbE7iqEEguIAWdnXvI93QtuABExG3Aw3kZklYEdgEuKuS9ANhO0tAlr76ZmZXV6QCzOTC1PiEiHgVm52Wl82X31eXbDFi+wXr3kfbzrX2or5mZ9VGnm8iGATMbpM/Iy/qSb9O6dWiw3ozC8kVIOgQ4JL+cJen+FvWwEg6HtYHn+rseSwtN6O8aWCM+Tl+3hMfoJs0WdDrAQOrgL1KT9L7kK75Wi/xExNnA2T1s23pB0u0RMbq/62HWio/T6nW6iWwGsEaD9KE0PkPpKd8adflm1KUV16GH8s3MrM06HWCmUuhrkbQRsAqN+1ia5svq+2YeAl5tsN7mwALggT7U18zM+qjTAeZKYA9Jq9WljQHmAJN7yLduvs4FAEmjSf0vVwJExDzS9S+fKOQdA9wcES8sefWtJDc52kDg47Riiuip66ONG0sXWk4B7gUmkALEacD3IuK4uvWmAZMj4uC6tD+SRoJ9hXRGMgF4JiJ2rFtnB6AbOJN0EeZeef0PRoSvgzEz66COnsFExAxgN2BZ4HLSFfynAycUVl0ur1NvP9JZzs+BXwB3AB8rlH8jsC+wO3AV8O/AJx1czMw6r6NnMGZm9sbh2ZStbfo6kalZJ0h6i6SzJN0t6TVJ3f1dp8GuP66DsUGobiLTKaSJTDcDTiX9iDmuRVazTtmS1C97C7BCP9flDcFNZNYWko4BjgI2qc01J+koYDywbrOJTM06RdIyEbEg//1bYO2I6OrfWg1ubiKzdunrRKZmHVELLtY5DjDWLn2dyNTMBikHGGuXvk5kamaDlAOMtVNfJzI1s0HIAcbapa8TmZrZIOUAY+3S14lMzWyQcoCxdunrRKZmNkj5Qktrl58AhwOXSKpNZDoeOM3XwNjSQNLKpAstATYAVpe0b359RUTM7p+aDV6+0NLaRtJI0kzW25H6Xc4BxkfEa/1aMTNA0gjg4SaL3xwR0ztWmTcIBxgzM6uE+2DMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDGrmJKHJYWkt/TD9reRNL7T2zVzgDGr3nbAiPz3fv2w/W2AE/phu/YG5wBjVr39gZeBW/PfZm8IDjBmFZK0LPAJ4PfAz4GRkt5Rt3wNSedIelLSXEmPSvpp3fINJV0k6RlJcyQ9JOmbhW3sIGmypNmS/iXpp7VJRyWNBc7If0d+dFe+42Z4skuzqu0KDAcuAG4kzdW2P/B/eflpwPuAI4B/AhsBO9Xl/wUwBDiENL/bptTdFkHS9sB1wGXAvsBawHdIdxHdF5gEnAqMIzXVAXjyUesIz0VmViFJPwc+BgyPiFckTQJGAptGREi6FzgrIs5okn8WsH9EXN5k+Z+B+RGxS13arqSgMyoi7pV0GHBGRKi9e2fWmpvIzCoiaUVScLk0Il7Jyb8mdfhvm1/fBXxV0n9JemuDYu4Cvi1prKSNC+WvTDoruUjScrUH6UzpVWCrtu+UWS84wJhVZ0/SbaSvyH0tawDdwDxe7+w/jNS8dTxwv6QHJdWPNBsD3A6cDjwi6S5Ju+Vlw4BlgR+RAkrtMQ9YntTcZtZv3ERmVhFJFwL/0WTx08AG9ffKyZ3/R5GCz6iImFK3bBnScOPxwI7AxsBc4KWcdkWDbTwZEU+6icz6iwOMWQUkrUoKIr8Dzi4sfjepc//9EXFtId96wJPAxyPikgblbgfcBGwVEX+TdBPwcEQc0KIuhwBnAUMiYu4S7JZZrzjAmFVA0gHA/wLbRsSthWXLA0+Rgs/bgEuBe4EAPkdqWtucdHZyFWkk2QPAiqTRYFuQBgnMkbQDqUP/IuC3Oc/GwIeAr0fEA5J2AiYDRwN/Al6MiPur23uzxAHGrAKS/gC8NSIaddwj6UekprCJwO6kjv/XgDuB4yPiz3mQwJmkYcsbAbOBW4BjIuKeurLeC5xIGu68LPAI8EfgxIh4QZKACcCBwLrADRHR1eZdNluMA4yZmVXCo8jMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSX+P4iXjbIr6hpEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -428,40 +430,40 @@ { "data": { "text/html": [ - "
                                                ┌───┐┌────────────────┐┌───┐»\n",
-       "  q_0: |0>──────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
-       "          ┌────────────────┐     ┌───────┐      └─┬─┘└────────────────┘└─┬─┘»\n",
-       "  q_1: |0>┤ U3(1.5708,0,0) ├─────┤ U1(0) ├────────■──────────────────────■──»\n",
-       "          └─┬────────────┬─┘┌────┴───────┴─────┐                            »\n",
-       "  q_2: |0>──┤ Ry(1.1847) ├──┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
-       "            ├────────────┤  ├──────────────────┤                            »\n",
-       "  q_3: |0>──┤ Ry(1.3696) ├──┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
-       "            └────────────┘  └──────────────────┘                            »\n",
-       "  q_4: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "q_a_0: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "q_a_1: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "q_a_2: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "«       ┌────────────────┐┌───┐┌───────┐┌───┐┌───────┐                        »\n",
-       "«  q_0: ┤ U3(1.5708,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n",
-       "«       └────────────────┘└─┬─┘└───────┘└─┬─┘└───────┘  │                     »\n",
-       "«  q_1: ────────────────────■─────────────■─────────────┼─────────────────────»\n",
-       "«                                                     ┌─┴─┐┌─────────────────┐»\n",
-       "«  q_2: ──────────────────────────────────────────────┤ X ├┤ U3(0.14182,0,0) ├»\n",
-       "«                                                     └───┘└─────────────────┘»\n",
-       "«  q_3: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«  q_4: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«q_a_0: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«q_a_1: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
+       "
                                              ┌───┐┌────────────────┐┌───┐»\n",
+       "  q_0: |0>────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
+       "          ┌──────────────┐     ┌───────┐      └─┬─┘└────────────────┘└─┬─┘»\n",
+       "  q_1: |0>┤ U3(pi/2,0,0) ├─────┤ U1(0) ├────────■──────────────────────■──»\n",
+       "          └┬────────────┬┘┌────┴───────┴─────┐                            »\n",
+       "  q_2: |0>─┤ Ry(1.1847) ├─┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
+       "           ├────────────┤ ├──────────────────┤                            »\n",
+       "  q_3: |0>─┤ Ry(1.3696) ├─┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
+       "           └────────────┘ └──────────────────┘                            »\n",
+       "  q_4: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "q_a_0: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "q_a_1: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "q_a_2: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "«       ┌──────────────┐┌───┐┌───────┐┌───┐┌───────┐                        »\n",
+       "«  q_0: ┤ U3(pi/2,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n",
+       "«       └──────────────┘└─┬─┘└───────┘└─┬─┘└───────┘  │                     »\n",
+       "«  q_1: ──────────────────■─────────────■─────────────┼─────────────────────»\n",
+       "«                                                   ┌─┴─┐┌─────────────────┐»\n",
+       "«  q_2: ────────────────────────────────────────────┤ X ├┤ U3(0.14182,0,0) ├»\n",
+       "«                                                   └───┘└─────────────────┘»\n",
+       "«  q_3: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«  q_4: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«q_a_0: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«q_a_1: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«q_a_2: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
        "«                                                             »\n",
        "«  q_0: ──■────■───────────────────────────────────────────■──»\n",
        "«         │    │                                           │  »\n",
@@ -496,60 +498,60 @@
        "«                                                                            ░ »\n",
        "«q_a_2: ─────────────────────────────────────────────────────────────────────░─»\n",
        "«                                                                            ░ »\n",
-       "«                                                ░               »\n",
-       "«  q_0: ─────────────────────────────────────────░───────────────»\n",
-       "«                                                ░               »\n",
-       "«  q_1: ─────────────────────────────────────────░───────────────»\n",
-       "«                                                ░               »\n",
-       "«  q_2: ──■────■────■─────────■──────────────────░───────────────»\n",
-       "«         │    │    │         │                  ░               »\n",
-       "«  q_3: ──┼────┼────┼─────────┼────■────■────────░───────────────»\n",
-       "«         │    │    │         │    │    │        ░ ┌────────────┐»\n",
-       "«  q_4: ──┼────┼────┼─────────┼────┼────┼────────░─┤ Ry(1.1781) ├»\n",
-       "«         │  ┌─┴─┐  │  ┌───┐  │    │    │  ┌───┐ ░ └────────────┘»\n",
-       "«q_a_0: ──■──┤ X ├──┼──┤ X ├──■────┼────┼──┤ X ├─░───────────────»\n",
-       "«         │  └───┘┌─┴─┐└───┘  │  ┌─┴─┐┌─┴─┐└───┘ ░               »\n",
-       "«q_a_1: ──┼───────┤ X ├───────┼──┤ X ├┤ X ├──────░───────────────»\n",
-       "«       ┌─┴─┐     └─┬─┘     ┌─┴─┐└───┘└─┬─┘      ░               »\n",
-       "«q_a_2: ┤ X ├───────■───────┤ X ├───────■────────░───────────────»\n",
-       "«       └───┘               └───┘                ░               »\n",
-       "«                                                                             »\n",
-       "«  q_0: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«  q_1: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«  q_2: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«  q_3: ──────────────────────────────────────────────────────────────────────»\n",
-       "«       ┌────────────────┐┌───┐┌─────────────────┐┌───┐┌────────────────┐┌───┐»\n",
-       "«  q_4: ┤ U3(0.1309,0,0) ├┤ X ├┤ U3(-0.1309,0,0) ├┤ X ├┤ U3(0.2618,0,0) ├┤ X ├»\n",
-       "«       └────────────────┘└─┬─┘└─────────────────┘└─┬─┘└────────────────┘└─┬─┘»\n",
-       "«q_a_0: ────────────────────■───────────────────────■──────────────────────┼──»\n",
-       "«                                                                          │  »\n",
-       "«q_a_1: ───────────────────────────────────────────────────────────────────■──»\n",
-       "«                                                                             »\n",
-       "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«                                ░                                          ░ \n",
-       "«  q_0: ─────────────────────────░──────────────────────────────────────────░─\n",
-       "«                                ░                                          ░ \n",
-       "«  q_1: ─────────────────────────░──────────────────────────────────────────░─\n",
-       "«                                ░                                          ░ \n",
-       "«  q_2: ─────────────────────────░──────────────────■────■─────────■────■───░─\n",
-       "«                                ░                  │    │         │    │   ░ \n",
-       "«  q_3: ─────────────────────────░───■─────────■────┼────┼─────────┼────┼───░─\n",
-       "«       ┌─────────────────┐┌───┐ ░   │         │    │    │         │    │   ░ \n",
-       "«  q_4: ┤ U3(-0.2618,0,0) ├┤ X ├─░───┼─────────┼────┼────┼─────────┼────┼───░─\n",
-       "«       └─────────────────┘└─┬─┘ ░   │  ┌───┐  │    │    │  ┌───┐┌─┴─┐  │   ░ \n",
-       "«q_a_0: ─────────────────────┼───░───┼──┤ X ├──┼────■────┼──┤ X ├┤ X ├──■───░─\n",
-       "«                            │   ░ ┌─┴─┐└───┘┌─┴─┐  │  ┌─┴─┐└───┘└───┘  │   ░ \n",
-       "«q_a_1: ─────────────────────■───░─┤ X ├─────┤ X ├──┼──┤ X ├────────────┼───░─\n",
-       "«                                ░ └─┬─┘     └───┘┌─┴─┐└─┬─┘          ┌─┴─┐ ░ \n",
-       "«q_a_2: ─────────────────────────░───■────────────┤ X ├──■────────────┤ X ├─░─\n",
-       "«                                ░                └───┘               └───┘ ░ 
" + "« ░ »\n", + "« q_0: ─────────────────────────────────────────░──────────────»\n", + "« ░ »\n", + "« q_1: ─────────────────────────────────────────░──────────────»\n", + "« ░ »\n", + "« q_2: ──■────■────■─────────■──────────────────░──────────────»\n", + "« │ │ │ │ ░ »\n", + "« q_3: ──┼────┼────┼─────────┼────■────■────────░──────────────»\n", + "« │ │ │ │ │ │ ░ ┌───────────┐»\n", + "« q_4: ──┼────┼────┼─────────┼────┼────┼────────░─┤ Ry(3pi/8) ├»\n", + "« │ ┌─┴─┐ │ ┌───┐ │ │ │ ┌───┐ ░ └───────────┘»\n", + "«q_a_0: ──■──┤ X ├──┼──┤ X ├──■────┼────┼──┤ X ├─░──────────────»\n", + "« │ └───┘┌─┴─┐└───┘ │ ┌─┴─┐┌─┴─┐└───┘ ░ »\n", + "«q_a_1: ──┼───────┤ X ├───────┼──┤ X ├┤ X ├──────░──────────────»\n", + "« ┌─┴─┐ └─┬─┘ ┌─┴─┐└───┘└─┬─┘ ░ »\n", + "«q_a_2: ┤ X ├───────■───────┤ X ├───────■────────░──────────────»\n", + "« └───┘ └───┘ ░ »\n", + "« »\n", + "« q_0: ───────────────────────────────────────────────────────────────────»\n", + "« »\n", + "« q_1: ───────────────────────────────────────────────────────────────────»\n", + "« »\n", + "« q_2: ───────────────────────────────────────────────────────────────────»\n", + "« »\n", + "« q_3: ───────────────────────────────────────────────────────────────────»\n", + "« ┌───────────────┐┌───┐┌────────────────┐┌───┐┌───────────────┐┌───┐»\n", + "« q_4: ┤ U3(pi/24,0,0) ├┤ X ├┤ U3(-pi/24,0,0) ├┤ X ├┤ U3(pi/12,0,0) ├┤ X ├»\n", + "« └───────────────┘└─┬─┘└────────────────┘└─┬─┘└───────────────┘└─┬─┘»\n", + "«q_a_0: ───────────────────■──────────────────────■─────────────────────┼──»\n", + "« │ »\n", + "«q_a_1: ────────────────────────────────────────────────────────────────■──»\n", + "« »\n", + "«q_a_2: ───────────────────────────────────────────────────────────────────»\n", + "« »\n", + "« ░ ░ \n", + "« q_0: ────────────────────────░──────────────────────────────────────────░─\n", + "« ░ ░ \n", + "« q_1: ────────────────────────░──────────────────────────────────────────░─\n", + "« ░ ░ \n", + "« q_2: ────────────────────────░──────────────────■────■─────────■────■───░─\n", + "« ░ │ │ │ │ ░ \n", + "« q_3: ────────────────────────░───■─────────■────┼────┼─────────┼────┼───░─\n", + "« ┌────────────────┐┌───┐ ░ │ │ │ │ │ │ ░ \n", + "« q_4: ┤ U3(-pi/12,0,0) ├┤ X ├─░───┼─────────┼────┼────┼─────────┼────┼───░─\n", + "« └────────────────┘└─┬─┘ ░ │ ┌───┐ │ │ │ ┌───┐┌─┴─┐ │ ░ \n", + "«q_a_0: ────────────────────┼───░───┼──┤ X ├──┼────■────┼──┤ X ├┤ X ├──■───░─\n", + "« │ ░ ┌─┴─┐└───┘┌─┴─┐ │ ┌─┴─┐└───┘└───┘ │ ░ \n", + "«q_a_1: ────────────────────■───░─┤ X ├─────┤ X ├──┼──┤ X ├────────────┼───░─\n", + "« ░ └─┬─┘ └───┘┌─┴─┐└─┬─┘ ┌─┴─┐ ░ \n", + "«q_a_2: ────────────────────────░───■────────────┤ X ├──■────────────┤ X ├─░─\n", + "« ░ └───┘ └───┘ ░
" ], "text/plain": [ - "" + "" ] }, "execution_count": 12, @@ -643,7 +645,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHfBJREFUeJzt3XvUHFWd7vHvw0UItwACgUGGCF4ijCyPvCLMYSThTjhHBNFkoWdWHDTqUWFmoQMiQkCHJTgCuhgXsHTgcEYTZoDhDJcQwuUNdzVIECcJGDQgF1Gcl8QYiEB+549dgUq9/XZX36rTneezVq/u3rVr966dTv/eqn0pRQRmZmbdtkmvK2BmZhsHBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JjVIWmWpOHs9bCkWU3uP1lSFMsaI+9Nkh6ts/1SSSOStij52W+TFJKObqbOZt3igGO24ZgN/IWkfYsbJG0KnAhcHxFrKq+ZWQc44JhtOP4fsBqYXmPbFGACKSiZ9SUHHLMWSTpI0n9IelbSHyUtkvSxVsuLiFXATcC0GpunA88Dd2WfvbukKyX9StJLkh6XdK6kzevUd7PsEttnCulfl/SbQtqekq7JLuGtljRX0ttbPTYzgM16XQGzDVlEzMq9nlzYvCdwH3AZ8DLw34ErJa2NiNnZPsOAimXVMRv4qKT9I+IhgCyIHA/8ICJey/LtDLwA/C3wIjAJOAfYCfhck4e5Hkk7Zcf1PDAzO7YzgfmS3ulLetYqBxyzFkXEnHWvJQm4G3gL8Clav/Q1lxRApgMPZWlHATvmy4yIRcCi3OffB7wEXCbp1Ih4tcXPBzgN2AI4LCJezMq/H1gOzAAub6Ns24j5kppZiyTtIOk7kp4EXskeM4F3tFpmdvbw76SzHGXJ04AngQdzn72JpNMkLZH0UvbZ/wcYRwp67TgcmAesyi7DbQasAH4KDLVZtm3EHHDMWncVKRh8EzgSeB/wz8CWbZY7G/hz4CBJWwLHAbNj/aXdTwMuAP4N+CBwAHBKtq3dz98J+BhvBNF1jw8Ae7RZtm3EfEnNrAVZIDgW+HxEXJZL78QfcXeS+k+mA7sB2zL6Et1HgDkRcXbus/drUO5rwKvAmwrpOxbe/xfwMHB+jTJWNvgMszE54Ji1ZgtgU+D1DnRJ25LONtq6yVREvCbp30hBZXdgSUT8rJBtXP6zM3VHyEVESHoGeFeuzpsChxay3kE6q3rUAwSskxxwzFoQESsk/QQ4W9JKYC1wBqmvY7sOfMRs4POk0Wln19g+H/ispIXAL4G/BiaWKPffgZmSHiH1C30K2KqQ5x+Bk4A7JV0KPAvsChwCDEfEvzZ9NGY44Ji14yTgCuBq4PfApaQf7893oOwHSKPCJgJzamw/B3gz6bJXANcCfwfc0KDcs0l9NOcDfwK+AywGPrkuQ0T8VtKBwD8AlwDbA88B9wBjLr1j1oiqvsW0pLcBXwIOBP4CuKfG/IZa+40nffk/RBrscBNwSkT8vpDvOODrwNtJf/mdGxHXdPIYzMyseb0YpbYvMBV4PHuUdQ0wmfSX2AzSiKD1/pqTdDBwHWk29jHAzcBsSUe2W2kzM2tPL85wNomItdnra4GdGp3hSDoIuB84JCLuztIOAH4EHBERt2dp84DNI+LQ3L63ANtFxMHdOB4zMyun8jOcdcGmSccAz68LNlk5PwZ+lW0jW7J9ClDs0JxDms8wvrUam5lZJ/TLxM9JwNIa6UuybQB7A5vXyLeEdJwtz/42M7P29csotR1I60sVjQB75fJQI99IYft6JM0kLUfCuHHj9t9jj85MpF67di2bbNIv8bx33E7luJ3KcTuV08l2evzxx1+IiJ3L5O2XgAO1J9OpRnrxvcZIT4kRV5CGtjI0NBQLFy5sp46vGx4eZvLkyR0pa5C5ncpxO5Xjdiqnk+2UrSVYSr/8KTBCmgtQtD1vnNGM5NKKeaD2GZKZmVWkXwLOUt7oq8nL9+08QVpgsJhvEmkWeDNDsM3MrMP6JeDMBXbN5tkAIGmI1H8zF15f1v0u0vpTedOAByJiRUV1NTOzGirvw5G0FWniJ6SFCbeTdGL2/paIWC1pGbAgIk4GiIgHsjk2V0v6IumM5QLg3nVzcDJfA4YlXUKaFDo1exzd9QMzM7O6ejFoYBfSPTzy1r1/K2n9qM1IK/HmTQcuJt1v5PWlbfIZIuLeLHh9HfgsaZ7OSRFxWwfrb2ZmLag84ETEct4YOTZWnok10l4EPpE96u17A40XMDQzs4r1Sx+OmZn1OQccMzOrhAOOmZlVop9WGjDriYln3Fx3+/JvHFtRTcz6m89wzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpWoPOBI2kfSHZJWS3pW0nmSNm2wzyxJMcbjy7l8V42RZ1L3j8zMzOrZrMoPk7QDcDuwGDgO2Bv4FinwnVVn1+8BtxbSPgScDswtpC8FPlFIW95ajc3MrFMqDTjAZ4BxwAkRsRKYL2k7YJakC7O0USLiaeDpfJqkrwJLI2JRIfsfI+LBLtTdzMzaUPUltWOAeYXAMocUhA4pW4ikHYEjgNmdrZ6ZmXVL1QFnEumS1+si4ilgdbatrBOBzUnBqmgfSSslrZF0r6TSgczMzLpHEVHdh0mvAF+KiEsK6U8DV0fEmSXLuRMYHxH7F9JPBf5E6iPaGTgN2B84OCJ+PEZZM4GZABMmTNh/zpxaMax5q1atYptttulIWYOsH9rp0WdW1N3+7t3Hd70O/dBOGwK3UzmdbKcpU6Y8FBFDZfJW3YcDUCvCaYz00Rml3UiX304fVXDEtwt5byYFnzNJgwxGVybiCuAKgKGhoZg8eXKZajQ0PDxMp8oaZP3QTjPOuLnu9uUfm9z1OvRDO20I3E7l9Kqdqr6kNgJsXyN9PPBiyTI+SgpQ1zTKGBEvAbcA7y1bQTMz646qA85SCn01kvYAtqbQt1PHdODeiPh1E59b3XVDMzOrqeqAMxc4StK2ubRpwEvAgkY7S5oIHEjJ0WmSxpFGxj3UbEXNzKyzqg44lwFrgOslHZ512M8CLsoPlZa0TNL3a+w/HXgVuLa4QdJ4SfdI+rSkwyRNA+4CdgfO78KxmJlZEyodNBARI5IOAy4FbiT121xMCjrFetVa7mY6cEdE/K7GtjXA70grFuwCvAw8ABwSEQs7cgBmZtayykepRcRi4NAGeSaOkf6eOvu8DJzQVuXMzKxrvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVWiqYAjqdZyM2ZmZg01e4bzjKQLJb2rK7UxM7OB1WzAuRw4Efi5pB9Jmilpuy7Uy8zMBkxTAScizomIvYAjgMeAi4DnJP1A0uHdqKCZmQ2GlgYNRMSdEfHXwK7AF4B3AvMkLZc0S9KfdbKSZmbW/9odpTYEfIB02+gR4B7gk8AySR9vs2wzMxsgTQccSXtKOkfSE8AdwG7A3wB/FhH/C9iT1NfzzY7W1MzM+lpTN2CTdCfpjOZp4Crgyoh4Mp8nIl6T9EPg1E5V0szM+l+zd/x8AZgKzI+IqJNvEfDWlmtlZmYDp9lLapcC99cKNpK2kfQBgIh4pXjmY2ZmG7dmA85dwD5jbHtntt3MzGyUZgOO6mzbBljdRl3MzGyANezDyS6TTc4lfVLS0YVsWwLHAo92rmpmZjZIygwaeD9pcidAAB8BXi3k+ROwFPhS56pmZmaDpGHAiYhvks2pkfQr4PiIWNTtipmZ2WBpalh0RHios5mZtaRMH85U4N6IWJm9risibulIzczMbKCUOcO5CTgQ+HH2Ohh7tFoAvkmbmZmNUibgvBV4LvfazMysaWUGDTxZ67WZmVkzyvThbNVMgRHhyZ9mZjZKmUtqq0h9M2W5D8fMzEYpE3D+huYCjpmZ2Shl+nCuqqAeZmY24Nq9xbSZmVkpZQYN/BiYERGLJf2EBpfXIuKATlXOzMwGR5k+nP8EXsq9dn+OmZk1rUwfzidyr2d0tTZmZjawWu7DUbKzpHo3ZTMzMwNaCDiSpkq6H3gZ+A3wsqT7JR3b8dqZmdnAaCrgSPo0cCNpMuippJuxnZq9/49su5mZ2ShN3Q8HOBO4IiI+W0i/TNJlwFeAyztSMzMzGyjNXlJ7M3D9GNuuA3ZsVICkfSTdIWm1pGclnSep7nI4kiZKihqPOTXyHifpUUkvS1osaVqpIzMzs65q9gznLuAQYH6NbYcAd9fbWdIOwO3AYuA4YG/gW6TAd1aJz/8icF/u/QuF8g8mBb7vAqcAU4HZkkYi4rYS5ZuZWZeUmfi5T+7td4DvSXozcAPwW2AX4HjgGOCTDYr7DDAOOCEiVgLzJW0HzJJ0YZZWz2MR8WCd7V8F7o6IU7L3d0naFzgbcMAxM+uhMmc4P2f9yZ4CPp09inf/vJX6q0UfA8wrBJY5wAWkM6QbS9SnJklbAFNIZzZ5c4ArJY2PiBWtlm9mZu0pE3CmdPDzJgF35hMi4ilJq7NtjQLOlZJ2JJ1ZzQa+EhHrVkHYG9gcWFrYZwnpkt07gJ+0V30zM2tVmZUGFnTw83YAXqyRPpJtG8sa4J9Il8VWApOB00lB5rhc2dQof6SwfT2SZgIzASZMmMDw8HC9+pe2atWqjpU1yPqhnU5796t1t1dR/35opw2B26mcXrVTs4MGXidpE2DLYnqJO37WWotNY6SvK/M54PO5pGFJzwPflfSeiFhUp3yNkb6u7CuAKwCGhoZi8uTJ9Wtf0vDwMJ0qa5D1QzvNOOPmutuXf2xy1+vQD+20IXA7ldOrdmp24qcknS5pGfAK8Icaj3pGgO1rpI+n9plPPddmz+/NlU2N8te9b7Z8MzProGbn4ZwCnAF8n3Tm8A/AecDjwHKyS1N1LCX11bxO0h7A1ozue2kkCs9PkILgpEK+ScDarI5mZtYjzQacTwHnABdm72+IiHOBfUkB4+0N9p8LHCVp21zaNNLtD5rtKzoxe34IICLWkOYJfaSQbxrwgEeomZn1VrN9OG8FFkXEa5JeIbtcFRFrJX0X+B7pDGgsl5HOkq6XdAGwFzALuCg/VDq7ZLcgIk7O3s8CtiVN+lwJfAD4EnB9RPwsV/7XSP07l5DmCU3NHkc3eZxmZtZhzZ7h/B7YJnv9FPDfctt2IE3qHFNEjACHkebq3AicC1xMOmvK24z15/MsJc3TuRK4BTgJ+Gb2nC//XtKZz+HAPOCDwEleZcDMrPeaPcO5D3gf6Uf/h6QVAnYE/gR8DrijUQERsRg4tEGeiYX3c0gTOBuKiBtIZzdmZrYBaTbgzAJ2z16fT7qkNoN0ZjMf+EKnKmZmZoOlqYATEY8Bj2Wv15DuhXNqF+plZmYDpp2Jn28BdgOejYhnOlclMzMbRK3cYvqzkn4NPAn8CHhK0tOS/nfHa2dmZgOj2ZUGzgYuJc2nORYYyp7nAt/JtpuZmY3S7CW1zwHnR8RXC+m3ZmubfY608oCZmdl6mr2kNo6x7+q5gBqLeZqZmUHzAecG4IQxtn0YuKm96piZ2aAqc4vpqbm3c4ELJU1k9C2m9wX+vvNVNDOzQVCmD+cmRt9KenfgqBp5/4V0J04zM7P1lAk4b+16LczMbOCVucX0k1VUxMzMBlvTKw1I2ow0QOBgYEfgv4B7SLcKqH/zdzMz22g1FXAk7QLcBuxHusPn88BBpPk3j0g6MiJ+1+lKmplZ/2t2WPRFwJuB90fEXhFxUETsBbw/S7+o0xU0M7PB0GzAmQqcHhE/ySdm779MWubGzMxslGYDzhbAH8bY9gfgTe1Vx8zMBlWzAedB4HRJW+cTs/enZ9vNzMxGaXaU2mnAXcCvJd1GGjSwC2kSqIDJHa2dmZkNjKbOcCJiEfB24ApgZ+AIUsC5DHh7RDzS8RqamdlAKH2GI2lz4ADgVxFxRveqZGZmg6iZM5zXgDuBd3WpLmZmNsBKB5yIWAv8ApjQveqYmdmganaU2leAsyW9uxuVMTOzwdXsKLWzSCsKLJL0DGmUWuQzRMQBHaqbmZkNkGYDzs+zh5mZWVNKBRxJ40jL2vwc+A1we0Q8382KmZnZYClzi+m9gNuBibnklZI+GhG3datiZmY2WMoMGrgQWAv8FbAVsC/wMHB5F+tlZmYDpkzAOQg4KyLui4iXI2IJ8GngzyXt1t3qmZnZoCgTcHYDfllIe4K0dtquHa+RmZkNpLLzcKJxFjMzs7GVHRY9T9KrNdLvKKZHxC7tV8vMzAZNmYBzbtdrYWZmA69hwIkIBxwzM2tbs2upmZmZtcQBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEpUHHEn7SLpD0mpJz0o6T9KmDfZ5n6QrJS3L9ntM0jmStizkmyUpajyO7u5RmZlZI83egK0tknYg3epgMXAcsDfwLVLgO6vOrtOyvBcAvwD2A76WPX+4kHcFUAwwS9qtu5mZtafSgAN8BhgHnBARK4H5krYDZkm6MEur5YKI+F3u/bCkl4HLJe0ZEU/mtr0aEQ92p/pmZtaqqi+pHQPMKwSWOaQgdMhYOxWCzToPZ89eu83MrA9UHXAmAUvzCRHxFLA629aMvyTdGO6xQvr2kl6Q9IqkhyWd0HJtzcysYxRR3Z0HJL0CfCkiLimkPw1cHRFnlixnV+BnwC0RMSOX/nHSGc8iYBvSjeKmAh+OiOvHKGsmMBNgwoQJ+8+ZM6fZw6pp1apVbLPNNh0pa5D1Qzs9+syKutvfvfv4rtehH9ppQ+B2KqeT7TRlypSHImKoTN5eBJwvRsS3C+nPAFdFxFdKlPEm0sCDtwD7R8RInbwC7gfGRcR7GpU9NDQUCxcubJStlOHhYSZPntyRsgZZP7TTxDNurrt9+TeO7Xod+qGdNgRup3I62U6SSgecqi+pjQDb10gfD7zYaOcsgFwN7AtMrRdsACJF0+uB/RoNvTYzs+6qepTaUgp9NZL2ALam0LczhotJw6mPiIgy+dfxHUvNzHqs6jOcucBRkrbNpU0DXgIW1NtR0peBLwAfj4h7y3xYdkZ0PPBIRLzWWpXNzKwTqj7DuQw4Bbhe0gXAXsAs4KL8UGlJy4AFEXFy9v4k4HzgKuAZSQfmynxi3bBpSQuA60hnS1sDnwIOBD7U3cMyM7NGKg04ETEi6TDgUuBGUr/NxaSgU6xXvs/lyOx5RvbI+wQpEAEsA/4W2I00ZPqnwLERMbcT9Tczs9ZVfYZDRCwGDm2QZ2Lh/QxGB5pa+53cRtXMzKyLvFq0mZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKlF5wJG0j6Q7JK2W9Kyk8yRtWmK/8ZKulDQiaYWkH0h6c418x0l6VNLLkhZLmtadIzEzs2ZsVuWHSdoBuB1YDBwH7A18ixT4zmqw+zXAO4FPAmuBC4AbgL/KlX8wcB3wXeAUYCowW9JIRNzW0YOxnpl4xs0N8yz/xrEV1MTMmlFpwAE+A4wDToiIlcB8SdsBsyRdmKWNIukg4CjgkIi4O0t7BviRpMMj4vYs61eBuyPilOz9XZL2Bc4GHHCsbxSD6mnvfpUZuTQHVOtHVV9SOwaYVwgsc0hB6JAG+z2/LtgARMSPgV9l25C0BTAF+NfCvnOAgySNb7/6ZmbWqqrPcCYBd+YTIuIpSauzbTfW2W9pjfQl2TZIl+c2r5FvCSmwvgP4SWvVHizduiTlS139q+p/O39XNk5VB5wdgBdrpI9k21rZb69cHmrkGylsX4+kmcDM7O0qSY/VqUczdgJe6FBZldMFlZXblXbqVv179VmnFNqpyuPr1We2+Hl9/f+uQp1spz3LZqw64ABEjTSNkd7KfsX3qrM/EXEFcEWDz26apIURMdTpcgeN26kct1M5bqdyetVOVffhjADb10gfT+0zmEb7bZ/bbySXVsxDg/LNzKzLqg44S3mjzwUASXsAW1O7j2bM/TL5vp0ngFdq5JtEGkb9eAv1NTOzDqk64MwFjpK0bS5tGvASsKDBfrtm82wAkDRE6r+ZCxARa4C7gI8U9p0GPBARK9qvflM6fpluQLmdynE7leN2Kqcn7aSIRl0nHfywNPFzMfBz0sTNvYCLgEsi4qxcvmXAgog4OZd2K2mk2Rd5Y+LnbyOiOPFzGLiUNCl0apb/aE/8NDPrrUrPcCJiBDgM2JQ0BPpc4GLgnELWzbI8edNJZ0H/DFwNPAQcXyj/XuBE4HBgHvBB4CQHGzOz3qv0DMfMzDZeXi26AS822lgrbSTpfVn7LMv2e0zSOZK2LOSbJSlqPI7u7lF1XovtNHGM459TI2/ff5eg5XYa63sSkr6cy3fVGHlqDUraoEl6m6TLJT0i6TVJwyX369lvUy/m4fQNLzbaWBttNC3LewHwC2A/4GvZ84cLeVcAxQCzpN26V6nN7xKkvsj7cu/Xm7Q3CN8laKudvgfcWkj7EHA62cCinKXAJwppy1urcU/tS/p3fhB4UxP79e63KSL8GOMBfJk0v2e7XNrfA6vzaTX2O4g00fQDubQDsrTDc2nzgDsL+94C3NvrY6+gjXaukTYza6M9c2mzgBd6fZw9bKeJWZv8jwbl9/13qZ12GqOsm4ElhbSrgIW9Ps4OtdUmudfXAsMl9unpb5MvqdXnxUYba6mNIuJ3NZIfzp536Vz1NhitfpcaGqDvEnSonSTtCBwBzO5s9TYcEbG2hd16+tvkgFPfqEVDI+Ip0l9b9a75dmqx0X7QahvV8pekU/zienbbS3pB0iuSHpZ0Qsu17Z122+nK7Dr9c5IukjQut21QvkvQue/TiaQ2GdXXBewjaaWkNZLuldRWwO8zPf1tcsCprxuLje6Qy0ONfHUXG90AtdpG65G0K/AV4P8W/rpdRrqk8lFS386zwHV9GHRabac1wD8BJ5OmFFwOfJb1f0gH5bsEHfo+kaZR/DQiiiuMPAycBvxP4GOk6RfzJR3QQl37UU9/mzxooLENarHRDVSrbZQySm8inb6vAv5uvYIj/qWQ90bgftJN9a5vpbI91HQ7RcRzwOdzScOSnge+K+k9EbGoTvn9+F2C9r9Pu5Euv50+quCIbxfy3kwaoHAmaZDBxqBnv00+w6nPi4021mobASBJpIm8+wJTI00OHlOk3svrgf3KDE/fgLTVTgXXZs/vzZVNjfL77bsEnWmnj5J+HK9plDEiXiJ1hr+3Ud4B0dPfJgec+rzYaGOtttE6F5OGvx4XEWXyr9Nvf7W32055UXgelO8SdKadppNGU/26ic/tt+9Tq3r62+SAU9/GtNhoq1ptI7IJeV8APh5pWaKGsjOi44FHIuK11qrcEy23Uw0nZs8PwUB9l6DNdpI0ETiQkqPTssEXx5C15Uagt79NvR5LviE/SJ1jzwHzSeuzzST1M3y9kG8Z8P1C2q3AL4ETSNeGHwPuKeQ5GHgVuASYDFxI+gviyF4fe7fbCDiJ9FfllaQfiPxj51y+BaSJZ0eSAs0tWRt9sNfHXlE7zSJNfDwh2+880o/vdYP2XWqnnXLpZ5D+Oq81z2s8cA/wadIAjGmkSZNrgKFeH3sLbbUV6Y+PE4EHgP/Mvd9qrHbq5W9TzxttQ38A+wB3Zv/JnyPNht+0kGc5cFUhbfvsx/RFYCXwQ2CnGuV/iLR69hrSKe30Xh9zFW1EmoAXYzxm5PJ9P/vP8RLwx+wH45heH3OF7TQdWEhabeFP2Q/IecAWg/hdarWdcumLgFvHKHdLUv/fr7M2WpH9+B7Y62NusZ0m1vk/NHGsdurlb5MX7zQzs0q4D8fMzCrhgGNmZpVwwDEzs0o44JiZWSUccMzMrBIOOGZmVgkHHDMzq4QDjpmZVeL/A/DOldtOjqMQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAd30lEQVR4nO3de7QcZZ3u8e/DRQi3AAKBQYYIXiKMLI9sEeYwssOdcI4IoslCz6w4aNSjwsxCB0SEgA5LcAR0MS5g6cDhjCbMAMMZLiGEyw53NUgQJwkYNCAXUZxNYgxEIL/zx1uBSqV3d/Wlaqd3ns9avbr7rbfefutNp3+76r2UIgIzM7Ne22S0K2BmZmOTA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMyakDRT0lD2ekjSzDb3H5QUxbJGyHuTpEebbL9U0rCkLUp+9tskhaSj26mzWa84wJhtOGYBfyFp3+IGSZsCJwLXR8Tq2mtm1gEHGLMNx/8DVgHTGmybDEwgBSGzvuAAY9YhSQdJ+g9Jz0r6o6SFkj7WaXkRsRK4CZjaYPM04Hngruyzd5d0paRfSXpJ0uOSzpW0eZP6bpZdMvtMIf3rkn5TSNtT0jXZJblVkuZIenunx2Ybp81GuwJmG7KImJl7PVjYvCdwH3AZ8DLw34ErJa2JiFnZPkOAimU1MQv4qKT9I+IhgCxoHA/8ICJey/LtDLwA/C3wIjAJOAfYCfhcm4e5Dkk7Zcf1PDAjO7YzgXmS3ulLdFaWA4xZhyJi9trXkgTcDbwF+BSdX8qaQwoY04CHsrSjgB3zZUbEQmBh7vPvA14CLpN0akS82uHnA5wGbAEcFhEvZuXfDywDpgOXd1G2bUR8icysQ5J2kPQdSU8Cr2SPGcA7Oi0zOzv4d9JZjLLkqcCTwIO5z95E0mmSFkt6Kfvs/wOMIwW5bhwOzAVWZpfVNgOWAz8FBros2zYiDjBmnbuK9OP/TeBI4H3APwNbdlnuLODPgYMkbQkcB8yKdZc+Pw24APg34IPAAcAp2bZuP38n4GO8ETTXPj4A7NFl2bYR8SUysw5kP/zHAp+PiMty6b34o+1OUv/HNGA3YFvWv+T2EWB2RJyd++z9WpT7GvAq8KZC+o6F9/8FPAyc36CMFS0+w+x1DjBmndkC2BR4vcNb0raks4mubrIUEa9J+jdSENkdWBwRPytkG5f/7EzTEWwREZKeAd6Vq/OmwKGFrHeQzpoedYe+dcMBxqwDEbFc0k+AsyWtANYAZ5D6KrbrwUfMAj5PGj12doPt84DPSloA/BL4a2BiiXL/HZgh6RFSv86ngK0Kef4ROAm4U9KlwLPArsAhwFBE/GvbR2MbJQcYs86dBFwBXA38HriU9GP9+R6U/QBp1NZEYHaD7ecAbyZdxgrgWuDvgBtalHs2qY/lfOBPwHeARcAn12aIiN9KOhD4B+ASYHvgOeAeYMSlbMyKVPctkyW9DfgScCDwF8A9DeYXNNpvPOnL/iHS4ISbgFMi4veFfMcBXwfeTvrL7tyIuKaXx2BmZq2NxiiyfYEpwOPZo6xrgEHSX1rTSSN21vlrTdLBwHWk2c7HADcDsyQd2W2lzcysPaNxBrNJRKzJXl8L7NTqDEbSQcD9wCERcXeWdgDwI+CIiLg9S5sLbB4Rh+b2vQXYLiIOruJ4zMyssdrPYNYGlzYdAzy/Nrhk5fwY+FW2jWwJ88lAsQNyNmk+wfjOamxmZp3ol4mWk4AlDdIXZ9sA9gY2b5BvMek4O55dbWZm7euXUWQ7kNZnKhoG9srloUG+4cL2dUiaQVreg3Hjxu2/xx69mai8Zs0aNtmkX+L36HE7leN2KsftVE4v2+nxxx9/ISJ2brStXwIMNJ68pgbpxfcaIT0lRlxBGmrKwMBALFiwoJs6vm5oaIjBwcGelDWWuZ3KcTuV43Yqp5ftlK3F11C/hPph0lj8ou1544xlOJdWzAONz4DMzKwi/RJglvBGX0tevm/mCdKCfMV8k0izrNsZEm1mZl3qlwAzB9g1m+cCgKQBUv/LHHh9mfO7SOs35U0FHoiI5TXV1czMGIU+GElbkSZaQlrIbztJJ2bvb4mIVZKWAvMj4mSAiHggm+NytaQvks5ILgDuXTsHJvM1YEjSJaRJmFOyx9GVH5iZma1jNDr5dyHdwyJv7fu3ktZf2oy0Um3eNOBi0v02Xl8qJp8hIu7NgtXXgc+S5smcFBG39bD+ZmZWQu0BJiKW8cbIrpHyTGyQ9iLwiezRbN8baL3gn5mZVaxf+mDMzKzPOMCYmVklHGDMzKwS/TST32xUTDzj5qbbl33j2JpqYtZffAZjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq0TtAUbSPpLukLRK0rOSzpO0aYt9ZkqKER5fzuW7aoQ8k6o/MjMzy9uszg+TtANwO7AIOA7YG/gWKdCd1WTX7wG3FtI+BJwOzCmkLwE+UUhb1lmNzcysU7UGGOAzwDjghIhYAcyTtB0wU9KFWdp6IuJp4Ol8mqSvAksiYmEh+x8j4sEK6m5mZm2o+xLZMcDcQiCZTQo6h5QtRNKOwBHArN5Wz8zMeqXuADOJdAnrdRHxFLAq21bWicDmpOBUtI+kFZJWS7pXUunAZWZmvaOIqO/DpFeAL0XEJYX0p4GrI+LMkuXcCYyPiP0L6acCfyL18ewMnAbsDxwcET8eoawZwAyACRMm7D97dqOY1b6VK1eyzTbb9KSssawf2unRZ5Y33f7u3cdXXod+aKcNgdupnF620+TJkx+KiIFG2+rugwFoFNE0Qvr6GaXdSJfTTl+v4IhvF/LeTAo2Z5IGBaxfmYgrgCsABgYGYnBwsEw1WhoaGqJXZY1l/dBO08+4uen2ZR8brLwO/dBOGwK3Uzl1tVPdl8iGge0bpI8HXixZxkdJAemaVhkj4iXgFuC9ZStoZma9UXeAWUKhr0XSHsDWFPpmmpgG3BsRv27jc+u7DmhmZkD9AWYOcJSkbXNpU4GXgPmtdpY0ETiQkqPHJI0jjVx7qN2KmplZd+oOMJcBq4HrJR2edbDPBC7KD12WtFTS9xvsPw14Fbi2uEHSeEn3SPq0pMMkTQXuAnYHzq/gWMzMrIlaO/kjYljSYcClwI2kfpeLSUGmWK9Gy8dMA+6IiN812LYa+B1pRYBdgJeBB4BDImJBTw7AzMxKq30UWUQsAg5tkWfiCOnvabLPy8AJXVXOzMx6xqspm5lZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVkl2gowkhot32JmZraeds9gnpF0oaR3VVIbMzMbM9oNMJcDJwI/l/QjSTMkbVdBvczMrM+1FWAi4pyI2As4AngMuAh4TtIPJB1eRQXNzKw/ddTJHxF3RsRfA7sCXwDeCcyVtEzSTEl/1stKmplZ/+l2FNkA8AHSbZCHgXuATwJLJX28y7LNzKyPtR1gJO0p6RxJTwB3ALsBfwP8WUT8L2BPUl/NN3taUzMz6ytt3XBM0p2kM5angauAKyPiyXyeiHhN0g+BU3tVSTMz6z/t3tHyBWAKMC8iokm+hcBbO66VmZn1vXYvkV0K3N8ouEjaRtIHACLileKZjZmZbVzaDTB3AfuMsO2d2XYzM7O2A4yabNsGWNVFXczMbAxp2QeTXfYazCV9UtLRhWxbAscCj/auamZm1s/KdPK/nzSZEiCAjwCvFvL8CVgCfKl3VTMzs37WMsBExDfJ5rRI+hVwfEQsrLpiZmbW39oaphwRHnpsZmallOmDmQLcGxErstdNRcQtPamZmZn1tTJnMDcBBwI/zl4HI48mC8A3JTMzs1IB5q3Ac7nXZmZmLZXp5H+y0WszM7NmyvTBbNVOgRHhyZZmZlbqEtlKUt9KWe6DMTOzUgHmb2gvwJiZmZXqg7mqhnqYmdkY0+0tk83MzBoq08n/Y2B6RCyS9BNaXC6LiAN6VTkzM+tfZfpg/hN4Kffa/TFmZtZSmT6YT+ReT6+0NmZmNmZ03AejZGdJzW5CZmZmG6m2A4ykKZLuB14GfgO8LOl+Scf2vHZmZta32gowkj4N3EiafHkq6eZjp2bv/yPbbmZm1t79YIAzgSsi4rOF9MskXQZ8Bbi8JzUzM7O+1u4lsjcD14+w7Tpgx1YFSNpH0h2SVkl6VtJ5kpouLyNpoqRo8JjdIO9xkh6V9LKkRZKmljoyMzPrqXbPYO4CDgHmNdh2CHB3s50l7QDcDiwCjgP2Br5FCnRnlfj8LwL35d6/UCj/YFKg+y5wCjAFmCVpOCJuK1G+mZn1SJmJlvvk3n4H+J6kNwM3AL8FdgGOB44BPtmiuM8A44ATImIFME/SdsBMSRdmac08FhEPNtn+VeDuiDgle3+XpH2BswEHGDOzGpU5g/k5606uFPDp7FG8u+WtNF9N+RhgbiGQzAYuIJ0B3ViiPg1J2gKYTDpzyZsNXClpfEQs77R8MzNrT5kAM7mHnzcJuDOfEBFPSVqVbWsVYK6UtCPpzGkW8JWIWLvKwN7A5sCSwj6LSZfg3gH8pLvqm5lZWWVm8s/v4eftALzYIH042zaS1cA/kS5zrQAGgdNJQeW4XNk0KH+4sH0dkmYAMwAmTJjA0NBQs/qXtnLlyp6VNZb1Qzud9u5Xm26vo/790E4bArdTOXW1U7ud/K+TtAmwZTG9xB0tG61lphHS15b5HPD5XNKQpOeB70p6T0QsbFK+RkhfW/YVwBUAAwMDMTg42Lz2JQ0NDdGrssayfmin6Wfc3HT7so8NVl6HfminDYHbqZy62qndiZaSdLqkpcArwB8aPJoZBrZvkD6exmc2zVybPb83VzYNyl/7vt3yzcysC+3OgzkFOAP4PunM4B+A84DHgWVkl5qaWELqa3mdpD2ArVm/76SVKDw/QQp6kwr5JgFrsjqamVlN2g0wnwLOAS7M3t8QEecC+5ICxNtb7D8HOErStrm0qaTbAbTb13Ni9vwQQESsJs3T+Ugh31TgAY8gMzOrV7t9MG8FFkbEa5JeIbv8FBFrJH0X+B7pDGckl5HOgq6XdAGwFzATuCg/dDm7BDc/Ik7O3s8EtiVNslwBfAD4EnB9RPwsV/7XSP0zl5Dm6UzJHke3eZxmZtalds9gfg9sk71+CvhvuW07kCZRjigihoHDSHNlbgTOBS4mnRXlbca682mWkObJXAncApwEfDN7zpd/L+nM5nBgLvBB4CTP4jczq1+7ZzD3Ae8j/cj/kDQDf0fgT8DngDtaFRARi4BDW+SZWHg/mzRhsqWIuIF09mJmZqOo3QAzE9g9e30+6RLZdNKZyzzgC72qmJmZ9be2AkxEPAY8lr1eTboXzKkV1MvMzPpcNxMt3wLsBjwbEc/0rkpmZjYWdHLL5M9K+jXwJPAj4ClJT0v63z2vnZmZ9a12Z/KfDVxKms9yLDCQPc8BvpNtNzMza/sS2eeA8yPiq4X0W7O1wT5HmtlvZmYbuXYvkY1j5LtWzqfB4pdmZrZxajfA3ACcMMK2DwM3dVcdMzMbK8rcMnlK7u0c4EJJE1n/lsn7An/f+yqamVk/KtMHcxPr3xp5d+CoBnn/hXSnSTMz28iVCTBvrbwWZmY25pS5ZfKTdVTEzMzGlrZn8kvajNShfzCwI/BfwD2kpfOb37zczMw2Gm0FGEm7ALcB+5HuYPk8cBBp/ssjko6MiN/1upJmZtZ/2h2mfBHwZuD9EbFXRBwUEXsB78/SL+p1Bc3MrD+1G2CmAKdHxE/yidn7L5OWjTEzM2s7wGwB/GGEbX8A3tRddczMbKxoN8A8CJwuaet8Yvb+9Gy7mZlZ26PITgPuAn4t6TZSJ/8upEmXAgZ7WjszM+tbbZ3BRMRC4O3AFcDOwBGkAHMZ8PaIeKTnNTQzs75U+gxG0ubAAcCvIuKM6qpkZmZjQTtnMK8BdwLvqqguZmY2hpQOMBGxBvgFMKG66piZ2VjR7iiyrwBnS3p3FZUxM7Oxo91RZGeRZuwvlPQMaRRZ5DNExAE9qpuZmfWxdgPMz7OHmZlZU6UCjKRxpGVifg78Brg9Ip6vsmJmZtbfytwyeS/gdmBiLnmFpI9GxG1VVczMzPpbmU7+C4E1wF8BWwH7Ag8Dl1dYLzMz63NlAsxBwFkRcV9EvBwRi4FPA38uabdqq2dmZv2qTIDZDfhlIe0J0tpju/a8RmZmNiaUnQcTrbOYmZm9oeww5bmSXm2QfkcxPSJ26b5aZmbW78oEmHMrr4WZmY05LQNMRDjAmJlZ29pdi8zMzKwUBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0rUHmAk7SPpDkmrJD0r6TxJm7bY532SrpS0NNvvMUnnSNqykG+mpGjwOLraozIzs6J2bzjWFUk7kJb+XwQcB+wNfIsU6M5qsuvULO8FwC+A/YCvZc8fLuRdDhQDyuJu625mZu2pNcAAnwHGASdExApgnqTtgJmSLszSGrkgIn6Xez8k6WXgckl7RsSTuW2vRsSD1VTfzMzKqvsS2THA3EIgmU0KOoeMtFMhuKz1cPbstc/MzDZAdQeYScCSfEJEPAWsyra14y9JN0J7rJC+vaQXJL0i6WFJJ3RcWzMz65gi6luJX9IrwJci4pJC+tPA1RFxZslydgV+BtwSEdNz6R8nndEsBLYh3RhtCvDhiLh+hLJmADMAJkyYsP/s2bPbPayGVq5cyTbbbNOTssayfminR59Z3nT7u3cfX3kd+qGdNgRup3J62U6TJ09+KCIGGm0bjQDzxYj4diH9GeCqiPhKiTLeRBoo8BZg/4gYbpJXwP3AuIh4T6uyBwYGYsGCBa2ylTI0NMTg4GBPyhrL+qGdJp5xc9Pty75xbOV16Id22hC4ncrpZTtJGjHA1H2JbBjYvkH6eODFVjtnAeNqYF9gSrPgAhApel4P7NdqKLSZmfVW3aPIllDoa5G0B7A1hb6ZEVxMGt58RESUyb+W78hpZlazus9g5gBHSdo2lzYVeAmY32xHSV8GvgB8PCLuLfNh2RnP8cAjEfFaZ1U2M7NO1H0GcxlwCnC9pAuAvYCZwEX5ocuSlgLzI+Lk7P1JwPnAVcAzkg7MlfnE2mHMkuYD15HOhrYGPgUcCHyo2sMyM7OiWgNMRAxLOgy4FLiR1O9yMSnIFOuV7zM5Mnuenj3yPkEKPABLgb8FdiMNYf4pcGxEzOlF/c3MrLy6z2CIiEXAoS3yTCy8n876gaXRfid3UTUzM+shr6ZsZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzStQeYCTtI+kOSaskPSvpPEmblthvvKQrJQ1LWi7pB5Le3CDfcZIelfSypEWSplZzJGZm1sxmdX6YpB2A24FFwHHA3sC3SIHurBa7XwO8E/gksAa4ALgB+Ktc+QcD1wHfBU4BpgCzJA1HxG09PRgbNRPPuLllnmXfOLaGmphZM7UGGOAzwDjghIhYAcyTtB0wU9KFWdp6JB0EHAUcEhF3Z2nPAD+SdHhE3J5l/Spwd0Sckr2/S9K+wNmAA4z1jWIQPe3drzI9l+YAav2g7ktkxwBzC4FkNinoHNJiv+fXBheAiPgx8KtsG5K2ACYD/1rYdzZwkKTx3VffzMzKqvsMZhJwZz4hIp6StCrbdmOT/ZY0SF+cbYN0uW3zBvkWkwLpO4CfdFbtsaWqS0y+dNW/6v6383dl41B3gNkBeLFB+nC2rZP99srloUG+4cL2dUiaAczI3q6U9FiTerRjJ+CFHpVVO11QW7mVtFNV9R+tzzql0E51Ht9ofWaHn9fX/+9q1Mt22nOkDXUHGIBokKYR0jvZr/heTfYnIq4Armjx2W2TtCAiBnpd7ljjdirH7VSO26mcutqp7j6YYWD7BunjaXyG0mq/7XP7DefSinloUb6ZmfVY3QFmCW/0mQAgaQ9gaxr3sYy4XybfN/ME8EqDfJNIw5of76C+ZmbWoboDzBzgKEnb5tKmAi8B81vst2s2zwUASQOk/pc5ABGxGrgL+Ehh36nAAxGxvPvqt6Xnl93GKLdTOW6nctxO5dTSTopo1fXRww9LEy0XAT8nTZTcC7gIuCQizsrlWwrMj4iTc2m3kkaCfZE3Jlr+NiKKEy2HgEtJkzCnZPmP9kRLM7N61XoGExHDwGHApqQhyecCFwPnFLJuluXJm0Y6y/ln4GrgIeD4Qvn3AicChwNzgQ8CJzm4mJnVr9YzGDMz23h4NeUWvDhna520kaT3Ze2zNNvvMUnnSNqykG+mpGjwOLrao+q9Dttp4gjHP7tB3r7/LkHH7TTS9yQkfTmX76oR8jQaRLRBk/Q2SZdLekTSa5KGSu5X22/TaMyD6RtenLO1Ltpoapb3AuAXwH7A17LnDxfyLgeKAWVxt3WvU5ffJUh9iffl3q8zSW4sfJegq3b6HnBrIe1DwOlkA4FylgCfKKQt66zGo2pf0r/zg8Cb2tivvt+miPBjhAfwZdL8mu1yaX8PrMqnNdjvINLEzg/k0g7I0g7Ppc0F7izsewtw72gfew1ttHODtBlZG+2ZS5sJvDDaxzmK7TQxa5P/0aL8vv8uddNOI5R1M7C4kHYVsGC0j7NHbbVJ7vW1wFCJfWr9bfIlsua8OGdrHbVRRPyuQfLD2fMuvaveBqPT71JLY+i7BD1qJ0k7AkcAs3pbvQ1HRKzpYLdaf5scYJpbb5HNiHiK9NdUs2u2vVqcsx902kaN/CXplL24Htz2kl6Q9IqkhyWd0HFtR0+37XRldp39OUkXSRqX2zZWvkvQu+/TiaQ2Wa+vCthH0gpJqyXdK6mrAN9nav1tcoBprorFOXfI5aFBvqaLc26AOm2jdUjaFfgK8H8Lf70uJV0i+Sipb+ZZ4Lo+DDKdttNq4J+Ak0lD/C8HPsu6P5xj5bsEPfo+kaY1/DQiiit4PAycBvxP4GOk6RDzJB3QQV37Ua2/Te7kb22DWpxzA9VpG6WM0ptIp+Mrgb9bp+CIfynkvRG4n3QTues7qewoarudIuI54PO5pCFJzwPflfSeiFjYpPx+/C5B99+n3UiX005fr+CIbxfy3kwaUHAmaVDAxqC23yafwTTnxTlb67SNAJAk0sTZfYEpkSbjjihSb+P1wH5lhotvQLpqp4Jrs+f35sqmQfn99l2C3rTTR0k/hte0yhgRL5E6r9/bKu8YUetvkwNMc16cs7VO22iti0nDUY+LiDL51+q3v8q7bae8KDyPle8S9KadppFGO/26jc/tt+9Tp2r9bXKAaW5jWpyzU522EdkEuC8AH4+0zE9L2RnP8cAjEfFaZ1UeFR23UwMnZs8PwZj6LkGX7SRpInAgJUePZYMljiFry41Avb9Noz2We0N+kDqzngPmkdY3m0HqJ/h6Id9S4PuFtFuBXwInkK7tPgbcU8hzMPAqcAkwCFxI+gvhyNE+9qrbCDiJ9FfjlaQfhPxj51y++aSJXkeSAsstWRt9cLSPvaZ2mkmaaHhCtt95pB/b68bad6mbdsqln0H667vRPKvxwD3Ap0kDJqaSJimuBgZG+9g7aKutSH9snAg8APxn7v1WI7VTnb9No95IG/oD2Ae4M/tP/RxptvmmhTzLgKsKadtnP54vAiuAHwI7NSj/Q6TVpVeTTlGnjfYx19FGpAlvMcJjei7f97P/DC8Bf8x+II4Z7WOusZ2mAQtIqxn8KfvBOA/YYix+lzptp1z6QuDWEcrdktR/9+usjZZnP7YHjvYxd9hOE5v8H5o4UjvV+dvkxS7NzKwS7oMxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpX4/7B6cf+/ofCKAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -655,7 +657,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8XeO97/HPty5tCHFNqNqCam2qZ9cKpZTEpYjzqlZpbNvpoSTR9pR9Tinq0mBzirrs1rEltNQ+JbpRu1TcYiWkdWmSammEUnGJS4UQETSR3/7jGTOmueZca8615hxjZub7fr3Ga67xjGeM+ZtLrN98LuMZigjMzMxa7UNFB2BmZqsGJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44VjHkTRBUtTYjig6vmokDc3iHt7Ea/5Q0rw+6kyQtKBZ72nWm9WLDsCsRd4A9q9S/mTegdRpKPB9YBowr9BIzFrECcc61bKIeKDoIMzsfe5Ss1WSpBMlvSNpu7KynSUtk3RMtj8y64b7gqRbJb0l6VlJx1a53u6SpktaIulVSVdIWqeizhaSrpO0IKv3R0mHZ91oj2TVukvdf2XnbSBpoqSXs5h/K+mzFddeT9K1WYwvSjq1ib+rLSXdLGmRpDcl3SLp4xV1jpb0J0lvZ59vuqTty46fIunJLP6XJd0uaZNmxWgrB7dwrGNJ6vHvOyKWZT9eCBwE/EzSrqT/F34G3BkRV1ac9hPg34EfAwcD/ybp+Yi4NXuf3YCpwM3AIcCGwA+A9bN9JA0F7geWACcAzwGfAjYHXgT+Cfg58C1gdtln+DBwN7AecCLwV+AbwN2StomIl7KqVwEjgX8GXsreY2ug9Hn7JXv/qcBSYGx2vTOB6ZJ2iIjXJO0BXA6ckX3GdYFdgSHZNb4GfA84CfhT9vvZC1h7ILHZSigivHnrqA2YAESNbXhZvY8Di4HTgYuA14CPlh0fmZ0zqeL6dwEPlO3fB3RX1NkrO/dT2f7/Bd4CNq0R86ey+iMryo8G/gZsU1a2OvAUcEG2v3127piyOoOzzzOvjt/Vgl6OH0tKMluVlX0si+mUbP8EYFYv17gUuLHofxfeit/cpWad6g1gpyrbC6UKEfEk6Vv36cDxwLcj4oWel+KXFfs3AV2SVpO0Funb/C8krV7agBmkVkFXds5ewO0R8WKDn2MfYBbwdNm1AaYDI7Kfd8pef1X22RaTEuNA7QzMjoi/lF37eeA3wO5Z0cPAZyRdLGkPSWtWXONhYLSkM7Nuy9WaEJethJxwrFMti4iZVba/VdS7MXt9DfiPGtf6a5X91YGNSN1mqwGXkRJMaXsXWIPUZQapG6nRZEP2HrtUXHspcFTZtTcB3oyIt/uIuz82BV6uUv4ysAFARNydxbMHaZbdAkmXSSp1mf2U1KX2VeBB4GVJZzvxrHo8hmOruonAs6RpyRNIfxgrDa2yvwxYAHyE1J01AbityrmlFtOrpD/ejXoNmEkat6n0bvb6ErCOpEEVSacy7v54kdRlV2lYFhsAEfEz0njYxqRxrouBRcDJEbE8279Y0uak8apzgPmksR9bRbiFY6usbDD7QOAI4DvAdyXtXKXql6vsz4qI9yLiLeAB4JM1WlSlhDMV2E/SsBrhlFpeH6kon0oaa3q2yrVLM9t+l71+seyzDQb27fUXUJ8HSd2HW5ZdezPgc6Ruww+IiFciYiJpXGu7Ksefi4gfkO6H6nHcOptbONapVpe0S5Xy5yJivqSPAf9KGnh/AHhA0sGkb+mfiYh3ys45QNI5pHGTg0l/yA8qO/5dYKqk5cANwJvA35GS2akR8QTpG/7XgPuyaz0H/D2wdkScT2plvQ38T0lvAEsjYiZwDWngfpqkHwJ/IXXP7Qy8FBEXR8SfJP2KNHtuXVKr5ETSjLh6rCnpkCrl04GrSeNcUySdAbxHNtGA1DpE0pmk7rVpWflngD2Bk7PjE0mtoQdIY2ujgG2y69qqpOhZC968NXuj91lqp2V1bifd+7Jm2XmbAQuBC7P9kdk5+wFTSH/Anwe+WeU9P5tdcxFpNtoc0sy3IWV1tgCuz95jCfAH4LCy4/8EPEFq7URZ+RBScnwuO/Y8aeLCbmV11gcmZ+/9MmmK8g+pb5Zard/VyKzOVqQp32+SZvXdygdnzf13UkvsFeAd4HFSslF2/EjSJIPXss/9R+Doov+deMt/K/2DyE12w9iJpIHQTwH3RcTIOs4bAlwCfInUFXgrcFxEvFpR7yDgX0jfoP4CnBkR1zfzM9iqQdJIoBvYISIeLTgcs5VeEWM42wOjSd/knmjgvOtJ3ziPIX1j2on0rWsFSbuTZh11AwcAvwauk/SFgQZtZmYDU0QL50ORZq0g6QZgo75aONmd4L8F9oyIe7OynUkDmvtGmpaJpDuANSJir7JzbwPWjYjde17ZrDa3cMyaK/cWTinZNOgA4OVSssmu8xDwdHastATHKOAXFedOBnbNuuTM6hYR0yJCTjZmzbGyTIveFphbpfyx7BikdaPWqFLvMdLn/ETLojMzsz6tLNOi1wder1K+kDSDplSHKvUWVhz/AEnjgHEAgwYN6tp8882rVWuZ5cuX86EPtWfeb+fYoPXxrfNEGmJ88xONf1dZ1X93A9HOsUF7x1dEbE888cSCiNi4nrorS8KBNE2zkqqUV+6rl/OJiEnAJIARI0bEzJkzBxJjw6ZNm8bIkSNzfc96tXNskEN8yv7pPP54w6eu8r+7AWjn2KC94ysiNknP1Fu3PdN0TwtJy7NXWo/3WzQLy8oq60D1FpKZmeVkZUk4c3l/rKZc+djOU6RFDSvrbQssp7Ep2GZm1mQrS8KZAmyS3WcDgKQRpPGbKQAR8S5pCuuhFeeOAe6PiDdyitXMzKrIfQwne37I6Gx3M2DdsnWcbouIJZKeBKZHxNEAEXF/do/NNZJOILVYzgNmlO7ByZxNWnPqEtJNoaOzbf+WfzAzM+tVEZMGhtLzuSOl/S2BeaS4Kp+VcRhpAcSfUra0TXmFiJiRJa9/IS3n/jRweETc2cT4bVWR803RZp0u94QTEfN4f+ZYrTrDq5S9TnrI01F9nHszFUvemJlZ8VaWMRwzM1vJOeGY1dLVlTYza4qV6cZPs3zNnl10BGYdxQnHrE7DT/71ip/n/eDAAiMxWzm5S83MzHLhhGNmZrlwwjEzs1w44ZiZWS48acCslrFji47ArKM44ZjVMmlS0RGYdRR3qZmZWS6ccMxqmTUrbWbWFO5SM6tlxIj06lWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjV4sdLmzWVu9TMzCwXTjhmtYwblzYzawonHLNarrgibWbWFE44ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma58I2fZrXsuGPREZh1FCccs1r8eGmzpnKXmpmZ5cIJx8zMcuGEY1aLlDYzawonHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmuXDCMTOzXDjhmJlZLrzSgFktEycWHYFZR3HCMavFj5c2a6rcu9QkbSdpqqQlkl6QdJak1fo4Z4KkqLGdUlbv6hp1tm39JzMzs97k2sKRtD5wNzAHOAjYGriQlPhO6+XUK4HbK8q+BJwETKkonwscVVE2r38R2ypt0qT06paOWVPk3aV2LDAIODgiFgF3SVoXmCDp/Kysh4h4Hni+vEzS6cDciHi4ovpbEfFAC2K3Vc348enVCcesKfLuUjsAuKMisUwmJaE9672IpA2AfYHrmhuemZm1St4JZ1tSl9cKEfEssCQ7Vq9DgDVIyarSdpIWSXpX0gxJdScyMzNrHUVEfm8mLQVOjIhLKsqfB66JiO/VeZ17gCER0VVRfjzwN9IY0cbAd4AuYPeIeKjGtcYB4wCGDRvWNXlytRzWOosXL2bw4MG5vme92jk2aH18I0eNAmBadzcAj8x/Y8WxHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEbhuwFDi+Svl84Jw6r7Ep8B5wQh11BwFPAzfXc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9Tqv8VVAwPV9VYyIt4HbAD+c3sysYHknnLlUjNVI2hxYm4qxnV4cBsyIiOcaeN/8+g3NzKyqvBPOFGA/SeuUlY0B3gam93WypOHALtQ5O03SINLMuFmNBmpGqVPNzJoi74RzOfAucJOkfbIB+wnARVE2VVrSk5J+UuX8w4BlwA2VByQNkXSfpPGS9pY0BugGNgPObcFnMTOzBuR642dELJS0N3ApcAtp3OZiUtKpjKvacjeHAVMj4pUqx94FXiGtWDAUeAe4H9gzImY25QOYmVm/5b54Z0TMAfbqo87wGuX/0Ms57wAHDyg4s3Jd2az7We6RNWsGrxZtVsvs2UVHYNZR/AA2MzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7NceJaaWS1jxxYdgVlHccIxq6X0iGkzawp3qZmZWS4aSjiSqi03Y9aZZs3yKgNmTdRol9p8SdcAV0XEY60IyKxtjMgeYugVo82aotEutYnAIcCjkh6UNE7Sui2Iy8zMOkxDCScivh8RWwH7Ao8DFwEvSvq5pH1aEaCZmXWGfk0aiIh7IuJrwCbAt4FPAndImidpgqSPNjNIMzNb+Q10ltoIYA/SY6MXAvcBxwBPSjpigNc2M7MO0nDCkbSFpO9LegqYCmwKfB34aET8D2AL0ljPBU2N1MzMVmoNzVKTdA+pRfM8cDVpttoz5XUi4j1J1wLHNytIMzNb+TU6LXoBMBq4K6LXuaIPA1v2OyqzdjDTTyY3a6ZGE86lwOxqyUbSYGDHiLg3IpYCz/Q422xlUnrEtJk1RaNjON3AdjWOfTI7bmZm1kOjCUe9HBsMLBlALGbtZdy4tJlZU/TZpSZpD2BkWdExkvavqPYR4EDgkeaFZlawK65Ir1412qwp6hnD+Szp5k6AAA4FllXU+RswFzixeaGZmVkn6TPhRMQFZPfUSHoa+HJEPNzqwMzMrLM0NEstIjzV2czM+qWeMZzRwIyIWJT93KuIuK0pkZmZWUepp4VzK7AL8FD2c1B7tloAfkibmZn1UE/C2RJ4sexns1XDjjsWHYFZR6ln0sAz1X4263h+vLRZU9UzhrNWIxeMCN/8aWZmPdTTpbaYNDZTL4/hmJlZD/UknK/TWMIx6wzK5sb0ujC6mdWrnjGcq3OIw8zMOtxAHzFtZmZWl3omDTwEHBkRcyT9jj661yJi52YFZ2ZmnaOeMZw/AW+X/ewObTMza1g9YzhHlf18ZEujMTOzjtXvMRwlG0vq7aFsZmZmQIOrRcOKxTxPA7qy85dJmgWcExG/bnJ8ZsWZOLHoCMw6SkMJR9J44DJgKnA88FdgKHAw8CtJ34wI/19qncGPlzZrqkZbON8DJkXENyrKL5d0OXAq4IRjZmY9NDqGsyFwU41jNwIb9HUBSdtJmippiaQXJJ0lqdflcCQNlxRVtslV6h4k6RFJ70iaI2lMXZ/MrNKkSWkzs6ZotIXTDewJ3FXl2J7Avb2dLGl94G5gDnAQsDVwISnxnVbH+58A/KZsf0HF9XcnJb7LgOOA0cB1khZGxJ11XN/sfePHp1d3rZk1RT03fm5Xtvsj4EpJGwI38/4YzpeBA4Bj+rjcscAg4OCIWATcJWldYIKk87Oy3jweEQ/0cvx04N6IOC7b75a0PXAG4IRjZlagelo4j/LBmz0FjM+2yqd/3k7vq0UfANxRkVgmA+eRWki31BFPVZI+DIwitWzKTQaukjQkIt7o7/XNzGxg6kk4o5r4ftsC95QXRMSzkpZkx/pKOFdJ2oDUsroOODUiSqsgbA2sAcytOOcxUpfdJ4DfDSx8MzPrL0WOS69LWgqcGBGXVJQ/D1wTEd+rcd6mpBlwdwKLgJHAScCdEXFQVmc3YAbwmYh4uOzcjwN/BvarNo4jaRwwDmDYsGFdkyf3mIfQUosXL2bw4MG5vme92jk2aH18I0el71rTursBeGT++w3kHTYbUmhsA9XO8bVzbNDe8RUR26hRo2ZFxIi6KkdEvzZSq2Gtyq2Pc5YCx1cpn0+6cbSR9/8GqUvvH7L93bL9/1ZRb5usfN++rtnV1RV56+7uzv0969XOsUXkEF96Es6K3S1OunXF1pdV/nc3AO0cW0R7x1dEbMDMqPPvdkPTorPlbE6S9GSWPN6ssvVmIbBelfIhwOuNxALckL3uWHZtqly/tN/o9c3MrIkavQ/nOOBk4CekyQLnAGcBTwDzyLqmejGXNFazgqTNgbXpOfbSl6h4fYqUBLetqLctsDyL0ax+pTaOmTVFowlnLPB94Pxs/+aIOBPYnpQwtunj/CnAfpLWKSsbQ3r8wfQGYzkke50FEBHvku4TOrSi3hjg/vAMNTOzQjV64+eWwMMR8V42AWA9gIhYLuky4EpSC6iWy0mtpJsknQdsBUwALoqyqdJZl930iDg6258ArEO66XMRsAdwInBTRPyx7PpnA9MkXUK6T2h0tu3f4Oc0M7Mma7SF8ypQmgLxLPCZsmPrk27qrCkiFgJ7k+7VuQU4E7iY1GoqtzofvJ9nLuk+nauA24DDgQuy1/LrzyC1fPYB7gC+CBweXmXA+qOrK21m1hSNtnB+A+xE+qN/LWmFgA2AvwHfIq0i3auImAPs1Ued4RX7k0k3cPYpIm4mtW7MBmb27KIjMOsojSacCcBm2c/nkrrUjiS1bO4Cvt2swMzMrLM0lHAi4nHg8eznd0nPxDm+BXGZmVmHafiJnyWSPgZsCrwQEfObF5KZmXWiRicNIOkbkp4DngEeBJ6V9LykbzY9OjMz6xiNrjRwBnAp6X6aA4ER2esU4EfZcTMzsx4a7VL7FnBuRJxeUX67pJez42c1JTKzoo0dW3QEZh2l0YQziNpP9ZyOZ6lZJ/Hjpc2aqtExnJuBg2sc+wpw68DCMTOzTlXPI6ZHl+1OAc6XNJyej5jeHvhu80M0K8isWenVqw2YNUU9XWq30vNR0psB+1Wp+/9JT+I0W/mNyJ4p5RWjzZqinoSzZcujMDOzjtdnwomIZ/IIxMzMOlvDKw1IWp00QWB3YAPgNeA+0qMCljU3PDMz6xQNJRxJQ4E7gU+TnvD5MrAr6f6bP0j6QkS80uwgzcxs5dfotOiLgA2Bz0bEVhGxa0RsBXw2K7+o2QGamVlnaDThjAZOiojflRdm+6eQlrkxMzProdExnA8Db9Y49iaw5sDCMWsjM2cWHYFZR2k04TwAnCTpnoh4q1QoaW3gpOy4WWfwDZ9mTdVowvkO0A08J+lO0qSBoaSbQAWMbGp0ZmbWMRoaw4mIh4FtgEnAxsC+pIRzObBNRPyh6RGaFWXcuLSZWVPU3cKRtAawM/B0RJzcupDM2sQVV6RXrxpt1hSNtHDeA+4B/r5FsZiZWQerO+FExHLgz8Cw1oVjZmadqtH7cE4FzpC0QyuCMTOzztXoLLXTSCsKPCxpPmmW2gfWbo+InZsUm5mZdZBGE86j2WZmZtaQuhKOpEGkZW0eBV4C7o6Il1sZmFnhdtyx6AjMOko9j5jeCrgbGF5WvEjSVyPizlYFZla40iOmzawp6pk0cD6wHPg8sBawPfB7YGIL4zIzsw5TT8LZFTgtIn4TEe9ExGPAeODvJG3a2vDMzKxT1JNwNgX+UlH2FGnttE2aHpFZu5DSZmZNUe99ONF3FTMzs9rqnRZ9h6RlVcqnVpZHxNCBh2VmZp2mnoRzZsujMDOzjtdnwokIJxwzMxuwRtdSMzMz6xcnHDMzy0Wja6mZrTom+t5ms2ZywjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hS5JxxJ20maKmmJpBcknSVptT7O2UnSVZKezM57XNL3JX2kot4ESVFl27+1n8o60vjxaTOzpsh1DEfS+qRHHcwBDgK2Bi4kJb7Tejl1TFb3PODPwKeBs7PXr1TUfQOoTDCPDTR2MzMbmLwnDRwLDAIOjohFwF2S1gUmSDo/K6vmvIh4pWx/mqR3gImStoiIZ8qOLYuIB1oTvpmZ9VfeXWoHAHdUJJbJpCS0Z62TKpJNye+zV6/dZma2Esg74WwLzC0viIhngSXZsUZ8jvRguMcryteTtEDSUkm/l3Rwv6M1M7OmUUR+Tx6QtBQ4MSIuqSh/HrgmIr5X53U2Af4I3BYRR5aVH0Fq8TwMDCY9KG408JWIuKnGtcYB4wCGDRvWNXny5EY/1oAsXryYwYMH5/qe9Wrn2KD18Y0cNQqAad3dADwy/40Vx3bYbEihsQ1UO8fXzrFBe8dXRGyjRo2aFREj6qocEbltwFLg+Crl84Fz6rzGmsC9pIfCrd9HXQH3Aw/Xc+2urq7IW3d3d+7vWa92ji0ih/ggbZktTrp1xdaXVf53NwDtHFtEe8dXRGzAzKgzB+TdpbYQWK9K+RDg9b5OliTgGmB7YHRELOytfvbLuAn4dF9Tr816KKUcM2uKvGepzaVirEbS5sDaVIzt1HAxaTr1vhFRT/0S/9UwMytY3i2cKcB+ktYpKxsDvA1M7+1ESacA3waOiIgZ9bxZ1iL6MvCHiHivfyGbmVkz5N3CuRw4DrhJ0nnAVsAE4KIomyot6UlgekQcne0fDpwLXA3Ml7RL2TWfimzatKTpwI2k1tLawFhgF+BLrf1Y1pG6utLrrFnFxmHWIXJNOBGxUNLewKXALaRxm4tJSacyrvIxly9kr0dmW7mjSIkI4Engn4FNSVOmZwMHRsSUZsRvq5jZs4uOwKyj5P54goiYA+zVR53hFftH0jPRVDvv6AGEZmZmLeTVos3MLBdOOGZmlgsnHDMzy4UTjpmZ5SL3SQNmK42xY4uOwKyjOOGY1eLHS5s1lbvUzMwsF044ZrXMmuVVBsyayF1qZrWMyB7x4RWjzZrCLRwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS48Ldqslpkzi47ArKM44ZjVUnrEtJk1hbvUzMwsF044ZrWMG5c2M2sKJxyzWq64Im1m1hROOGZmlgsnHDMzy4UTjpmZ5cIJx8zMcuGEY2ZmufCNn2a17Lhj0RGYdRQnHLNa/Hhps6Zyl5qZmeXCCcfMzHLhhGNWi5Q2M2sKJxwzM8uFE46ZmeXCCcfMzHLhhGNmZrlwwjEzs1w44ZiZWS680oBZLRMnFh2BWUdxwjGrxY+XNmsqd6mZmVkunHDMapk0KW1m1hTuUjOrZfz49OquNbOmcAvHzMxykXvCkbSdpKmSlkh6QdJZklar47whkq6StFDSG5J+LmnDKvUOkvSIpHckzZE0pjWfxMzMGpFrwpG0PnA3EMBBwFnAd4Az6zj9emAkcAxwJLATcHPF9XcHbgS6gQOAXwPXSfpCUz6AtZVH5r/B8JN/XXQYZlanvMdwjgUGAQdHxCLgLknrAhMknZ+V9SBpV2A/YM+IuDcrmw88KGmfiLg7q3o6cG9EHJftd0vaHjgDuLN1H8usdUpJdd4PDiw4ErOBybtL7QDgjorEMpmUhPbs47yXS8kGICIeAp7OjiHpw8Ao4BcV504GdpU0ZODhm5lZf+XdwtkWuKe8ICKelbQkO3ZLL+fNrVL+WHYMYGtgjSr1HiMl1k8Av+tf2J2nld+a/Y185VfeVZnXf8fSe169/9q5vJ/lL++Esz7wepXyhdmx/py3VVkdqtRbWHH8AySNA0rzXhdLeryXOFphI2BBzu+5gs7r9fCAYuvj2s2wEbCg5e9T5amfdbxn0/+7Nvlz1h1fDv8dP2DUecX+P1GHdo6viNi2qLdiEffhRJUy1Sjvz3mV+6pRngojJgGF3d0naWZEjCjq/XvTzrFBe8fXzrFBe8fXzrFBe8fXzrFB/mM4C4H1qpQPoXoLpq/z1is7b2FZWWUd+ri+mZm1WN4JZy7vj7kAIGlzYG2qj9HUPC9TPrbzFLC0Sr1tgeXAE/2I18zMmiTvhDMF2E/SOmVlY4C3gel9nLdJdp8NAJJGkMZvpgBExLuk+28OrTh3DHB/RLwx8PBbop0X62rn2KC942vn2KC942vn2KC942vn2FBEX0MnTXyzdOPnHOBR4DxSwrgIuCQiTiur9yQwPSKOLiu7nTTT7ARSi+U84K8R8fmyOrsD04BLSTeFjs7q7x8Rvg/HzKxAubZwImIhsDewGmkK9JnAxcD3K6quntUpdxipFfRT4BpgFvDliuvPAA4B9gHuAL4IHO5kY2ZWvFxbOGZmturyatFtQNK6ks6U9FC2MOlLkn4p6RNFx1YiaYykmyS9KCkkHVlQHP1a/DUPkj4uaaKkP0h6T9K0omMqkXSopF9Jmi9psaRZkv6x6LhKJB0i6beSXs0W3n1c0mmS1iw6tkqSNst+hyFpcBvEc2QWS+V2bNGxVfLzcNrD3wFjgZ8ApwJrAaeQ1or7dEQ8V2RwmUOA4cCtpAVUc1e2+Osc0uKvWwMXkr44ndbLqXnZnjRu+ADQbn8o/w9pKaj/TboxcDRwraSNIuLHhUaWbEia9HMB6RaGnYEJwCbA/yourKouABaTZte2k71IE7BK/lJUILW4S60NSFobWB4Rb5eVbQA8C1wQEfWspt1Skj4UEcuzb3RvAkdFxNU5x3AK8F1gi9J6fJK+S/aHqdbir3kp/Y6yn28ANoqIkUXGVJIllgUVZdcCu0bElgWF1StJ5wDfAtaPNvlDJenzwH8C55ISzzoRsbjgmI4ErmqHWPriLrU2EBFvlSebrOw14BlgaDFRfVDpD2nB+rv4ay7a5HdUVWWyyfyeNvn3VcOrtFFLMeu6/THpsSrturRNW3PCaVOSNgY+Tuo+sqTHIq4R8SxQWvzVGvM52uzfl6TVJK2V3eJwHPBv7dK6IT1e5SPA/ys6kBqekrQsG/8aX3Qw1XgMp31dSOonnlx0IG2kv4u/WgVJe5PGwb5edCwV3gI+nP18DXBigbGskD1d+GzgiIhYqioLuhboRdKzwB4i3U7yj8DlktaKiIsLjayCE06LZM/f2bSvehHRY0kfSd8AjgC+EhGvtiC8AcUkpRQRAAACcUlEQVRXsP4u/moZScOBa4H/zHscrg6fI02a2Zn04MRLgW8WGlFyDvBgRNxWdCCVIuIO0n2HJVOy54OdJulf26mr1wmndQ4Frqij3ge+Kkn6Iqmf+KSI+GUrAsv0K76C9XfxV8tkk1GmkCakHFFwOD1ExOzsxxmSFgA/k3RhRDxVVEzZU4O/DuwhqfTvb63sdYik9yrHYNvADcBXSTNL22a2msdwWiQirowI9bWVnyPpc6QutMsj4oJ2i68N9HfxVwMkrUWa1r4mcGBEvFVwSH0pJZ+iZ9FtQ3q44/2kLz0LeX8c53nSF8R21VYtf7dw2kT2LepW4HbSYKn1NAU4UdI6EfFmVlbP4q+rPEmrA/9B+uO5W0T8teCQ6rFb9vp0oVHADNLj68vtD5xEup+pbVoQZb5Cmkn3TNGBlHPCaQOShpISzWLgR8DOZYOSiyKi8JlEkrYDtiPN0gEYIWkx8EpE5PXH/nJSMr5JUmnx1wnARUXfgwMrWhCjs93NgHUlHZLt3xYRS4qJDIDLSLEdD2wgaZeyY7/PVlsvTLY4793An4D3SMnmO8D1RXanwYop5dPKy7JxMID7ir73RdKNpAkDfyRNGhiTbce10/gN+MbPtiBpJOku62qmt8PNg5Im0HORVcg5vizxXQrsShq3uRKYEBHv5RVDLdkfoVrfxreMiHm5BVNB0jxqPwq40NgAJJ1NWox3OLCM1Gq4itS9vLTA0Kpqp5stJZ1LatFsThpznUNagf/fi4yrGiccMzPLhScNmJlZLpxwzMwsF044ZmaWCyccMzPLhROOmZnlwgnHzMxy4YRjZma5cMIxM7Nc/BdtOPoFOYDNHAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7xd473v8c+3Lm0IcQ2qtqBam+rZtUIpJXEp4ryqVRrbdnooSbQ9ZZ9Tiro02JyiLrt1bAkttU+JbtSuVNxiJWhdmqRaGqFUkLhUCBFBE/ntP54xY5qZc60551pjjjlXvu/Xa7zmGs94xpi/ucT6zfHchiICMzOz/vahogMwM7OByQnGzMxy4QRjZma5cIIxM7NcOMGYmVkunGDMzCwXTjA24EgaLylqbEcWHV81koZmcQ/rx2v+UNLcXuqMl7Sgv97TrNzqRQdglpM3gAOqlD/V6kDqNBT4PjANmFtoJGb9xAnGBqplEfFg0UGYrcrcRGarJEknSXpH0vZlZbtIWibp2Gx/RNas9gVJkyW9Jek5ScdVud4ekqZLWiLpVUlXSlqnos6Wkq6XtCCr90dJR2TNYo9m1bpLzXll520gaYKkl7OYfyvpsxXXXk/SdVmML0o6rR9/V1tJukXSIklvSrpV0scr6hwj6U+S3s4+33RJO5QdP1XSU1n8L0u6XdKm/RWjtSffwdiAJWmlf98RsSz78SLgYOBnknYj/b/wM+DOiLiq4rSfAP8O/Bg4BPg3SfMiYnL2PrsDU4FbgEOBDYEfAOtn+0gaCjwALAFOBJ4HPgVsAbwI/BPwc+BbwKyyz/Bh4G5gPeAk4K/AN4C7JW0bES9lVa8GRgD/DLyUvcc2QOnzNiV7/6nAUmBMdr2zgOmSdoyI1yTtCVwBnJl9xnWB3YAh2TW+BnwPOBn4U/b72RtYuy+xWQeICG/eBtQGjAeixjasrN7HgcXAGcDFwGvAR8uOj8jOmVhx/buAB8v27wO6K+rsnZ37qWz//wJvAZvViPlTWf0RFeXHAH8Dti0rWx14Grgw298hO3d0WZ3B2eeZW8fvakEPx48jJZWty8o+lsV0arZ/IjCzh2tcBtxU9L8Lb63f3ERmA9UbwM5VthdKFSLiKdK36jOAE4BvR8QLK1+KX1bs3wx0SVpN0lqkb+u/kLR6aQPuJ33r78rO2Ru4PSJebPBz7AvMBJ4puzbAdGB49vPO2euvyj7bYlIi7KtdgFkR8Zeya88DfgPskRU9AnxG0iWS9pS0ZsU1HgFGSTora4ZcrR/isg7gBGMD1bKImFFl+1tFvZuy19eA/6hxrb9W2V8d2IjUDLYacDkpoZS2d4E1SE1gkJqFGk0uZO+xa8W1lwJHl117U+DNiHi7l7ibsRnwcpXyl4ENACLi7iyePUmj4BZIulxSqQnsp6Qmsq8CDwEvSzrHiWbgcx+MreomAM+RhgmPJ/0hrDS0yv4yYAHwEVLz1Hjgtirnlu6IXiX9sW7Ua8AMUr9LpXez15eAdSQNqkgylXE340VSE1ylTbLYAIiIn5H6szYm9VNdAiwCTomI5dn+JZK2IPU3nQvMJ/Xd2ADlOxhbZWWdzwcBRwLfAb4raZcqVb9cZX9mRLwXEW8BDwKfrHHHVEowU4H9JW1SI5zSndVHKsqnkvqKnqty7dLIs99lr18s+2yDgf16/AXU5yFSc+BWZdfeHPgcqRnwAyLilYiYQOqX2r7K8ecj4gek+UgrHbeBxXcwNlCtLmnXKuXPR8R8SR8D/pXUUf4g8KCkQ0jfwj8TEe+UnXOgpHNJ/R6HkP5wH1x2/LvAVEnLgRuBN4G/IyWv0yLiSdI3+K8B92XXeh74e2DtiLiAdBf1NvA/Jb0BLI2IGcC1pI72aZJ+CPyF1Ny2C/BSRFwSEX+S9CvS6LZ1SXcdJ5FGrNVjTUmHVimfDlxD6qeaIulM4D2ygQGkuz8knUVqLpuWlX8G2As4JTs+gXS38yCpb2wksG12XRvIih5l4M1bf2/0PIrs9KzO7aS5J2uWnbc5sBC4KNsfkZ2zPzCF9Ad7HvDNKu/52eyai0ijxWaTRqYNKauzJXBD9h5LgD8Ah5cd/yfgSdLdTJSVDyElw+ezY/NIAw12L6uzPjApe++XSUOGf0h9o8hq/a5GZHW2Jg3BfpM06m4yHxzV9t9Jd1qvAO8AT5CSi7LjR5EGBbyWfe4/AscU/e/EW/5b6R9Ay2QTtE4idVx+CrgvIkbUcd4Q4FLgS6SmvcnA8RHxakW9g4F/IX1D+gtwVkTc0J+fwVYNkkYA3cCOEfFYweGYdZwi+mB2AEaRvqk92cB5N5C+UR5L+ka0M+lb1QqS9iCNCuoGDgR+DVwv6Qt9DdrMzBpTxB3MhyKNKkHSjcBGvd3BZDOtfwvsFRH3ZmW7kDog94s0TBJJdwBrRMTeZefeBqwbEXusfGWz2nwHY9Y3Lb+DKSWXBh0IvFxKLtl1HgaeyY6VlrQYCfyi4txJwG5ZE5tZ3SJiWkTIycWsOZ0yTHk7YE6V8sezY5DWXVqjSr3HSZ/zE7lFZ2ZmK+mUYcrrA69XKV9IGuFSqkOVegsrjn+ApLHAWIBBgwZ1bbHFFtWq5Wb58uV86EPtmefbOTbIP751nkxdhG9+ovHvJqv6764v2jk2aO/4iojtySefXBARG1c71ikJBtKwyUqqUl65rx7OJyImAhMBhg8fHjNmzOhLjA2bNm0aI0aMaOl71qudY4MWxKfsn84TTzR86ir/u+uDdo4N2ju+ImKT9GytY+2Zhle2kLRceaX1eP+OZWFZWWUdqH4HZGZmOemUBDOH9/taypX3zTxNWgSwst52wHIaGxJtZmZ91CkJZgqwaTbPBQBJw0n9L1MAIuJd0pDSwyrOHQ08EBFvtChWMzOjgD6Y7PkZo7LdzYF1y9ZBui0ilkh6CpgeEccARMQD2RyXayWdSLojOR+4vzQHJnMOac2mS0mTMEdl2wG5fzAzM/uAIjr5h7LyczdK+1sBc0lxVT4r4nDSgoE/pWypmPIKEXF/lqz+hbS8+TPAERFxZz/Gb6uKFk9CNhtoWp5gImIu74/sqlVnWJWy10kPNTq6l3NvoWIJGTMza71O6YMxM7MO4wRjVktXV9rMrCmdNNHSrLVmzSo6ArOO5gRjVqdhp/x6xc9zf3BQgZGYdQY3kZmZWS6cYMzMLBdOMGZmlgsnGDMzy4U7+c1qGTOm6AjMOpoTjFktEycWHYFZR3MTmZmZ5cIJxqyWmTPTZmZNcROZWS3Dh6dXr6ps1hTfwZiZWS6cYMzMLBdOMGZmlgsnGDMzy4UTjJmZ5cIJxszMcuFhyma1zJhRdARmHc0JxqwWPy7ZrE/cRGZmZrlwgjGrZezYtJlZU5xgzGq58sq0mVlTnGDMzCwXTjBmZpYLJxgzM8uFE4yZmeXCCcbMzHLhiZZmtey0U9ERmHU0JxizWvy4ZLM+cROZmZnlwgnGzMxy4QRjVouUNjNrihOMmZnlwgnGzMxy4QRjZma5cIIxM7NcOMGYmVkunGDMzCwXnslvVsuECUVHYNbRnGDMavHjks36pOVNZJK2lzRV0hJJL0g6W9JqvZwzXlLU2E4tq3dNjTrb5f/JzMysXEvvYCStD9wNzAYOBrYBLiIlutN7OPUq4PaKsi8BJwNTKsrnAEdXlM1tLmJbpU2cmF59J2PWlFY3kR0HDAIOiYhFwF2S1gXGS7ogK1tJRMwD5pWXSToDmBMRj1RUfysiHswhdlvVjBuXXp1gzJrS6iayA4E7KhLJJFLS2avei0jaANgPuL5/wzMzs/7S6gSzHakJa4WIeA5Ykh2r16HAGqTkVGl7SYskvSvpfkl1Jy4zM+s/iojWvZm0FDgpIi6tKJ8HXBsR36vzOvcAQyKiq6L8BOBvpD6ejYHvAF3AHhHxcI1rjQXGAmyyySZdkyZVy1n5Wbx4MYMHD27pe9arnWOD/OMbMXIkANO6uwF4dP4bK47tuPmQQmPrq3aOr51jg/aOr4jYRo4cOTMihlc9GBEt24ClwAlVyucD59Z5jc2A94AT66g7CHgGuKWea3d1dUWrdXd3t/w969XOsUW0ID5IW2bLkyev2Hqzyv/u+qCdY4to7/iKiA2YETX+pra6iWwhsF6V8iHA63Ve46uAgBt6qxgRbwO3AX64uplZi7U6wcyhoq9F0hbA2lT0zfTgcOD+iHi+gfdtXTugmZkBrU8wU4D9Ja1TVjYaeBuY3tvJkoYBu1Ln6DFJg0gj12Y2GqgZpUYyM2tKqxPMFcC7wM2S9s062McDF0fZ0GVJT0n6SZXzDweWATdWHpA0RNJ9ksZJ2kfSaKAb2Bw4L4fPYmZmPWjpRMuIWChpH+Ay4FZSv8slpCRTGVe15WMOB6ZGxCtVjr0LvEJaEWAo8A7wALBXRMzolw9gZmZ1a/lilxExG9i7lzrDapT/Qw/nvAMc0qfgzMp1ZaPgZ7qF1awZXk3ZrJZZs4qOwKyj+YFjZmaWCycYMzPLhROMmZnlwgnGzMxy4QRjZma58Cgys1rGjCk6ArOO5gRjVkvpkclm1hQ3kZmZWS4aSjCSqi3fYjYwzZzpWfxmfdBoE9l8SdcCV0fE43kEZNY2hmcP6fOKymZNabSJbAJwKPCYpIckjZW0bg5xmZlZh2sowUTE9yNia2A/4AngYuBFST+XtG8eAZqZWWdqqpM/Iu6JiK8BmwLfBj4J3CFprqTxkj7an0GamVnn6esosuHAnqTHIC8E7gOOBZ6SdGQfr21mZh2s4QQjaUtJ35f0NDAV2Az4OvDRiPgfwJakvpoL+zVSMzPrKA2NIpN0D+mOZR5wDWk02bPldSLiPUnXASf0V5BmZtZ5Gh2mvAAYBdwV0ePYzUeArZqOyqwdzPCTts36otEEcxkwq1pykTQY2Cki7o2IpcCzK51t1klKj0w2s6Y02gfTDWxf49gns+NmZmYNJxj1cGwwsKQPsZi1l7Fj02ZmTem1iUzSnsCIsqJjJR1QUe0jwEHAo/0XmlnBrrwyvXpVZbOm1NMH81nSZEqAAA4DllXU+RswBzip/0IzM7NO1muCiYgLyea0SHoG+HJEPJJ3YGZm1tkaGkUWER56bGZmdamnD2YUcH9ELMp+7lFE3NYvkZmZWUer5w5mMrAr8HD2c1B7NFkAfiiZmZnVlWC2Al4s+9ls1bDTTkVHYNbR6unkf7baz2YDnh+XbNYn9fTBrNXIBSPCky3NzKyuJrLFpL6VerkPxszM6kowX6exBGM2MCgby9LjwuFmVks9fTDXtCAOMzMbYPr6yGQzM7Oq6unkfxg4KiJmS/odvTSXRcQu/RWcmZl1rnr6YP4EvF32sxukzcysV/X0wRxd9vNRuUZjZmYDRtN9MEo2ltTTQ8jMzGwV1dBqyrBi8cvTga7s/GWSZgLnRsSv+zk+s+JMmFB0BGYdraEEI2kccDkwFTgB+CswFDgE+JWkb0aE/6+0gcGPSzbrk0bvYL4HTIyIb1SUXyHpCuA0wAnGzMwa7oPZELi5xrGbgA16u4Ck7SVNlbRE0guSzpbU4/IykoZJiirbpCp1D5b0qKR3JM2WNLquT2ZWaeLEtJlZUxq9g+kG9gLuqnJsL+Denk6WtD5wNzAbOBjYBriIlOhOr+P9TwR+U7a/oOL6e5AS3eXA8cAo4HpJCyPizjqub/a+cePSq5vKzJpSz0TL7ct2fwRcJWlD4Bbe74P5MnAgcGwvlzsOGAQcEhGLgLskrQuMl3RBVtaTJyLiwR6OnwHcGxHHZ/vdknYAzgScYMzMWqieO5jH+ODkSgHjsq3y6Za30/NqygcCd1QkkknA+aQ7oFvriKcqSR8GRpLuXMpNAq6WNCQi3mj2+mZm1ph6EszIfny/7YB7ygsi4jlJS7JjvSWYqyVtQLpzuh44LSJKqwxsA6wBzKk453FSE9wngN/1LXwzM6uXooVLkUtaCpwUEZdWlM8Dro2I79U4bzPSCLU7gUXACOBk4M6IODirsztwP/CZiHik7NyPA38G9q/WDyNpLDAWYJNNNumaNGmlcQO5Wrx4MYMHD27pe9arnWOD/OMbMTJ9t5rW3Q3Ao/PfvwHecfMhhcbWV+0cXzvHBu0dXxGxjRw5cmZEDK96MCKa2kh3BWtVbr2csxQ4oUr5fNJEzUbe/xukJrp/yPZ3z/b/W0W9bbPy/Xq7ZldXV7Rad3d3y9+zXu0cW0QL4ktPglmxu+XJk1dsvVnlf3d90M6xRbR3fEXEBsyIGn9TGxqmnC0Pc7Kkp7Jk8WaVrScLgfWqlA8BXm8kFuDG7HWnsmtT5fql/Uavb2ZmfdDoPJjjgVOAn5A6988FzgaeBOaSNTX1YA6pr2UFSVsAa7Ny30lvouL1aVLS266i3nbA8ixGs/qV7mHMrCmNJpgxwPeBC7L9WyLiLGAHUoLYtpfzpwD7S1qnrGw06XEA0xuM5dDsdSZARLxLmqdzWEW90cAD4RFkZmYt1ehEy62ARyLivazDfj2AiFgu6XLgKtIdTi1XkO6CbpZ0PrA1MB64OMqGLmdNcNMj4phsfzywDmmS5SJgT+Ak4OaI+GPZ9c8Bpkm6lDRPZ1S2HdDg5zQzsz5q9A7mVaA0ROE54DNlx9YnTaKsKSIWAvuQ5srcCpwFXEK6Kyq3Oh+cTzOHNE/mauA24Ajgwuy1/Pr3k+5s9gXuAL4IHBGexW/N6OpKm5k1pdE7mN8AO5P+yF9HmoG/AfA34FukVZZ7FBGzgb17qTOsYn8SacJkryLiFtLdi1nfzJpVdARmHa3RBDMe2Dz7+TxSE9lRpDuXu4Bv91dgZmbW2RpKMBHxBPBE9vO7pGfCnJBDXGZm1uEafqJliaSPAZsBL0TE/P4LyczMBoJGO/mR9A1JzwPPAg8Bz0maJ+mb/R6dmZl1rEZn8p8JXEaaz3IQMDx7nQL8KDtuZmbWcBPZt4DzIuKMivLbJb2cHT+7XyIzK9qYMUVHYNbRGk0wg6j91MrpeBSZDSR+XLJZnzTaB3MLcEiNY18BJvctHDMzGyjqeWTyqLLdKcAFkoax8iOTdwC+2/8hmhVk5sz06tn8Zk2pp4lsMis/GnlzYP8qdf8/6UmTZp1vePYMJa+obNaUehLMVrlHYWZmA06vCSYinm1FIGZmNrA0PJNf0uqkDv09gA2A14D7SEvnL+vf8MzMrFM1lGAkDQXuBD5NeoLly8BupPkvf5D0hYh4pb+DNDOzztPoMOWLgQ2Bz0bE1hGxW0RsDXw2K7+4vwM0M7PO1GiCGQWcHBG/Ky/M9k8lLRtjZmbWcB/Mh4E3axx7E1izb+GYtZEZM4qOwKyjNZpgHgROlnRPRLxVKpS0NnBydtxsYPAES7M+aTTBfAfoBp6XdCepk38oadKlgBH9Gp2ZmXWshvpgIuIRYFtgIrAxsB8pwVwBbBsRf+j3CM2KMnZs2sysKXXfwUhaA9gFeCYiTskvJLM2ceWV6dWrKps1pZE7mPeAe4C/zykWMzMbQOpOMBGxHPgzsEl+4ZiZ2UDR6DyY04AzJe2YRzBmZjZwNDqK7HTSjP1HJM0njSL7wFrmEbFLP8VmZmYdrNEE81i2mZmZ9aiuBCNpEGmZmMeAl4C7I+LlPAMzK9xOOxUdgVlHq+eRyVsDdwPDyooXSfpqRNyZV2BmhSs9MtnMmlJPJ/8FwHLg88BawA7A74EJOcZlZmYdrp4EsxtwekT8JiLeiYjHgXHA30naLN/wzMysU9WTYDYD/lJR9jRp7bFN+z0is3Yhpc3MmlLvPJjovYqZmdn76h2mfIekZVXKp1aWR8TQvodlZmadrp4Ec1buUZiZ2YDTa4KJCCcYMzNrWKNrkZmZmdXFCcbMzHLR6FpkZquOCZ5LbNYXTjBmtfhxyWZ94iYyMzPLhROMWS0TJ6bNzJrS8gQjaXtJUyUtkfSCpLMlrdbLOTtLulrSU9l5T0j6vqSPVNQbLymqbAfk+6lsQBo3Lm1m1pSW9sFIWp+09P9s4GBgG+AiUqI7vYdTR2d1zwf+DHwaOCd7/UpF3TeAyoTyeF9jNzOzxrS6k/84YBBwSEQsAu6StC4wXtIFWVk150fEK2X70yS9A0yQtGVEPFt2bFlEPJhP+GZmVq9WN5EdCNxRkUgmkZLOXrVOqkguJb/PXr32mZlZG2p1gtkOmFNeEBHPAUuyY434HOlBaE9UlK8naYGkpZJ+L+mQpqM1M7OmKaJ1K/FLWgqcFBGXVpTPA66NiO/VeZ1NgT8Ct0XEUWXlR5LuaB4BBpMejDYK+EpE3FzjWmOBsQCbbLJJ16RJkxr9WH2yePFiBg8e3NL3rFc7xwb5xzdi5EgApnV3A/Do/DdWHNtx8yGFxtZX7RxfO8cG7R1fEbGNHDlyZkQMr3owIlq2AUuBE6qUzwfOrfMaawL3kh6Ctn4vdQU8ADxSz7W7urqi1bq7u1v+nvVq59giWhAfpC2z5cmTV2y9WeV/d33QzrFFtHd8RcQGzIgaf1Nb3US2EFivSvkQ4PXeTpYk4FpgB2BURCzsqX724W8GPt3bUGizlZRSjJk1pdWjyOZQ0dciaQtgbSr6Zmq4hDS8eb+IqKd+if9KmJm1WKvvYKYA+0tap6xsNPA2ML2nEyWdCnwbODIi7q/nzbI7ni8Df4iI95oL2czMmtHqO5grgOOBmyWdD2wNjAcujrKhy5KeAqZHxDHZ/hHAecA1wHxJu5Zd8+nIhjFLmg7cRLobWhsYA+wKfCnfj2UDUldXep05s9g4zDpUSxNMRCyUtA9wGXArqd/lElKSqYyrvM/kC9nrUdlW7mhS4gF4CvhnYDPSEOZZwEERMaU/4rdVzKxZRUdg1tFavlx/RMwG9u6lzrCK/aNYObFUO++YPoRmZmb9yKspm5lZLpxgzMwsF04wZmaWCycYMzPLRcs7+c06xpgxRUdg1tGcYMxq8eOSzfrETWRmZpYLJxizWmbO9Cx+sz5wE5lZLcOzR1x4RWWzpvgOxszMcuEEY2ZmuXCCMTOzXDjBmJlZLpxgzMwsF04wZmaWCw9TNqtlxoyiIzDraE4wZrWUHplsZk1xE5mZmeXCCcaslrFj02ZmTXGCMavlyivTZmZNcYIxM7NcOMGYmVkunGDMzCwXTjBmZpYLJxgzM8uFJ1qa1bLTTkVHYNbRnGDMavHjks36xE1kZmaWCycYMzPLhROMWS1S2sysKU4wZmaWCycYMzPLhROMmZnlwgnGzMxy4QRjZma5cIIxM7NceCa/WS0TJhQdgVlHc4Ixq8WPSzbrEzeRmZlZLpxgzGqZODFtZtYUN5GZ1TJuXHp1U5lZU3wHY2ZmuWh5gpG0vaSpkpZIekHS2ZJWq+O8IZKulrRQ0huSfi5pwyr1Dpb0qKR3JM2WNDqfT2JmZj1paYKRtD5wNxDAwcDZwHeAs+o4/QZgBHAscBSwM3BLxfX3AG4CuoEDgV8D10v6Qr98AGsrj85/g2Gn/LroMMyshlb3wRwHDAIOiYhFwF2S1gXGS7ogK1uJpN2A/YG9IuLerGw+8JCkfSPi7qzqGcC9EXF8tt8taQfgTODO/D6WWX5KSXTuDw4qOBKzxrS6iexA4I6KRDKJlHT26uW8l0vJBSAiHgaeyY4h6cPASOAXFedOAnaTNKTv4ZuZWb1afQezHXBPeUFEPCdpSXbs1h7Om1Ol/PHsGMA2wBpV6j1OSqSfAH7XXNgDT57fiv2Nu/OVNz226r9j6T2vOWDtlryf5a/VCWZ94PUq5QuzY82ct3VZHarUW1hx/AMkjQVK41AXS3qihzjysBGwoMXvuYLO7/Fwn2Lr5dr9YSNgQe7vU+WplnW8Z7//d+3nz1l3fC347/gBI88v9v+JOrRzfEXEtmWtA0XMg4kqZapR3sx5lfuqUZ4KIyYChc2mkzQjIoYX9f49aefYoL3ja+fYoL3ja+fYoL3ja7fYWt0HsxBYr0r5EKrfofR23npl5y0sK6usQy/XNzOzftbqBDOH9/tMAJC0BbA21ftYap6XKe+beRpYWqXedsBy4Mkm4jUzsya1OsFMAfaXtE5Z2WjgbWB6L+dtms1zAUDScFL/yxSAiHiXNP/lsIpzRwMPRMQbfQ8/F+282FU7xwbtHV87xwbtHV87xwbtHV9bxaaI3ro++vHN0kTL2cBjwPmkBHExcGlEnF5W7ylgekQcU1Z2O2kk2ImkO5Lzgb9GxOfL6uwBTAMuI03CHJXVPyAiPA/GzKyFWnoHExELgX2A1UhDks8CLgG+X1F19axOucNJdzk/Ba4FZgJfrrj+/cChwL7AHcAXgSOcXMzMWq+ldzBmZrbq8GrKbUDSupLOkvRwtpDnS5J+KekTRcdWImm0pJslvSgpJB1VUBxNLZbaCpI+LmmCpD9Iek/StKJjKpF0mKRfSZovabGkmZL+sei4SiQdKum3kl7NFqp9QtLpktYsOrZKkjbPfochaXAbxHNUFkvldlzRsfl5MO3h74AxwE+A04C1gFNJa619OiKeLzK4zKHAMGAyacHRlitbLHU2abHUbYCLSF+UTu/h1FbZgdTv9yDQbn8Y/w9paaX/TZqINwq4TtJGEfHjQiNLNiQN0rmQNKVgF2A8sCnwv4oLq6oLgcWk0a/tZG/SgKmSvxQVSImbyNqApLWB5RHxdlnZBsBzwIURUc9q07mS9KGIWJ59Y3sTODoirmlxDKcC3wW2LK1nJ+m7ZH+Iai2W2iql31H2843ARhExosiYSrJEsqCi7Dpgt4jYqqCweiTpXOBbwPrRJn+oJH0e+E/gPFKiWSciFhcc01HA1e0QSyU3kbWBiHirPLlkZa8BzwJDi4nqg0p/OAvW7GKpLdEmv6OqKpNL5ve0yb+vGl6lje4Es6bYH5MeM9KuS8W0FSeYNiVpY+DjpOYgS1Za9DQingNKi6VaYz5Hm/37krSapLWyKQfHA//WLncvpMeNfAT4f0UHUsPTkpZl/Vfjig4G3AfTzi4itfNOKjqQNtLsYqlWQdI+pH6srxcdS4W3gA9nP18LnFRgLCtkT889BzgyIpaqygKoBXqR9Cysh0nTO/4RuELSWhFxSZGBOcHkJHv+zGa91YuIlZbIkfQN4EjgKxHxag7h9Sm+gjW7WKplJA0DrgP+s9X9aHEEQl4AAAJdSURBVHX4HGmQyy6kBwVeBnyz0IiSc4GHIuK2ogOpFBF3kOb9lUzJno91uqR/LbLp1gkmP4cBV9ZR7wNfhSR9kdTOe3JE/DKPwDJNxVewZhdLtUw2eGQKaQDJkQWHs5KImJX9eL+kBcDPJF0UEU8XFVP2VNyvA3tKKv37Wyt7HSLpvco+1DZwI/BV0sjPwkaTuQ8mJxFxVUSot638HEmfIzWJXRERF7ZbfG2g2cVSDZC0FmmY+ZrAQRHxVsEh9aaUbIoe5bYt6WGGD5C+5Czk/X6YeaQvhO2q0Dt738G0iexb0mTgdlLnpq1sCnCSpHUi4s2srJ7FUld5klYH/oP0x3L3iPhrwSHVY/fs9ZlCo4D7SY9jL3cAcDJpPlHh802q+ApppNuzRQbhBNMGJA0lJZbFwI+AXco6ERdFROEjfSRtD2xPGkUDMFzSYuCViGjVH/crSMn3ZkmlxVLHAxcXPQcGVtwhjMp2NwfWlXRotn9bRCwpJjIALifFdgKwgaRdy479PluNvDDZYrZ3A38C3iMll+8ANxTZPAYrhnhPKy/L+rEA7it67omkm0gd/H8kdfKPzrbjix4674mWbUDSCNIs5mqmt8NkPUnjWXlRUmhxfFmiuwzYjdTvchUwPiLea1UMtWR/dGp9294qIua2LJgKkuZS+9G2hcYGIOkc0uK1w4BlpLuCq0nNxUsLDK2qdprcKOk80h3LFqQ+09mkFer/vci4wAnGzMxy4k5+MzPLhROMmZnlwgnGzMxy4QRjZma5cIIxM7NcOMGYmVkunGDMzCwXTjBmZpaL/wIavL5B5Ni+WAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -791,40 +793,40 @@ { "data": { "text/html": [ - "
                                                ┌───┐┌────────────────┐┌───┐»\n",
-       "  q_0: |0>──────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
-       "          ┌────────────────┐     ┌───────┐      └─┬─┘└────────────────┘└─┬─┘»\n",
-       "  q_1: |0>┤ U3(1.5708,0,0) ├─────┤ U1(0) ├────────■──────────────────────■──»\n",
-       "          └─┬────────────┬─┘┌────┴───────┴─────┐                            »\n",
-       "  q_2: |0>──┤ Ry(1.1847) ├──┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
-       "            ├────────────┤  ├──────────────────┤                            »\n",
-       "  q_3: |0>──┤ Ry(1.3696) ├──┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
-       "            └────────────┘  └──────────────────┘                            »\n",
-       "  q_4: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "q_a_0: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "q_a_1: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "q_a_2: |0>──────────────────────────────────────────────────────────────────»\n",
-       "                                                                            »\n",
-       "«       ┌────────────────┐┌───┐┌───────┐┌───┐┌───────┐                        »\n",
-       "«  q_0: ┤ U3(1.5708,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n",
-       "«       └────────────────┘└─┬─┘└───────┘└─┬─┘└───────┘  │                     »\n",
-       "«  q_1: ────────────────────■─────────────■─────────────┼─────────────────────»\n",
-       "«                                                     ┌─┴─┐┌─────────────────┐»\n",
-       "«  q_2: ──────────────────────────────────────────────┤ X ├┤ U3(0.14182,0,0) ├»\n",
-       "«                                                     └───┘└─────────────────┘»\n",
-       "«  q_3: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«  q_4: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«q_a_0: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«q_a_1: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
-       "«q_a_2: ──────────────────────────────────────────────────────────────────────»\n",
-       "«                                                                             »\n",
+       "
                                              ┌───┐┌────────────────┐┌───┐»\n",
+       "  q_0: |0>────────────────────────────────────┤ X ├┤ U3(0.7907,0,0) ├┤ X ├»\n",
+       "          ┌──────────────┐     ┌───────┐      └─┬─┘└────────────────┘└─┬─┘»\n",
+       "  q_1: |0>┤ U3(pi/2,0,0) ├─────┤ U1(0) ├────────■──────────────────────■──»\n",
+       "          └┬────────────┬┘┌────┴───────┴─────┐                            »\n",
+       "  q_2: |0>─┤ Ry(1.1847) ├─┤ U3(-0.14182,0,0) ├────────────────────────────»\n",
+       "           ├────────────┤ ├──────────────────┤                            »\n",
+       "  q_3: |0>─┤ Ry(1.3696) ├─┤ U3(-0.11174,0,0) ├────────────────────────────»\n",
+       "           └────────────┘ └──────────────────┘                            »\n",
+       "  q_4: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "q_a_0: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "q_a_1: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "q_a_2: |0>────────────────────────────────────────────────────────────────»\n",
+       "                                                                          »\n",
+       "«       ┌──────────────┐┌───┐┌───────┐┌───┐┌───────┐                        »\n",
+       "«  q_0: ┤ U3(pi/2,0,0) ├┤ X ├┤ U1(0) ├┤ X ├┤ U1(0) ├──■─────────────────────»\n",
+       "«       └──────────────┘└─┬─┘└───────┘└─┬─┘└───────┘  │                     »\n",
+       "«  q_1: ──────────────────■─────────────■─────────────┼─────────────────────»\n",
+       "«                                                   ┌─┴─┐┌─────────────────┐»\n",
+       "«  q_2: ────────────────────────────────────────────┤ X ├┤ U3(0.14182,0,0) ├»\n",
+       "«                                                   └───┘└─────────────────┘»\n",
+       "«  q_3: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«  q_4: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«q_a_0: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«q_a_1: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
+       "«q_a_2: ────────────────────────────────────────────────────────────────────»\n",
+       "«                                                                           »\n",
        "«                                                             »\n",
        "«  q_0: ──■────■───────────────────────────────────────────■──»\n",
        "«         │    │                                           │  »\n",
@@ -895,7 +897,7 @@
        "«            └───┘               └───┘ ░ 
" ], "text/plain": [ - "" + "" ] }, "execution_count": 21, @@ -969,7 +971,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm4HFWd//H3hz0gkIAQGIcxLCKyKKMRQRmJsiRgMBLRQPQ3RHHixuaDGkDUgE4w+LANkYE8IsFRQH/Aj5kEkrDesAgqSCIYAgYNiCwjeiHGQGT5/v6outCp20t1375Vtzuf1/P007dPnTr97UPT31TVOacUEZiZmQ229coOwMzM1g1OOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmLWRpImSbpX0nKQ1kh6R9G1Jb0y3R8XjBUmPS7pW0uFV2pqeqd/3uDlT712SeiVtkb5+q6TvSXpI0mpJv5N0gaThmf2+J+nSwewPs0oblB2AWbeQdA5wEnAZcB6wEtgd+BywB3BEWvUc4GpgQ2AH4MPAf0uaExGfzjT7PDCuSlmlbwMXR8TK9PXBwPuA/wR+DeyU1tlP0r4R8Wpa77vAMklnRcTy1j61WX7ySgNmA5ceofwPcGxE/CCzbX3gkIiYLymA4yNiVqbOp4FLgSkRcXlaNh04LiLeWOd93wI8AuwaEb9Ny7YG/hIV/3NLOgRYCIyJiEUV5TcDSyLi5NY/vVk+PqVm1h5fAn6VTTYAEfFKRMyvt3O638+Bzzf5vscAv+5LNmlbf47+/5K8P33eNlN+DfAJSf4tsEHnL5nZAEnaEHgvsGCATd0EvCttr7L9DTIPVWw+EPhZjrbfmz4vzZT/DBgJ7NVq0GZ5OeGYDdzWwMbA4wNs5wmS66pbZdp+KfM4ECBNPP8MPFivUUmbAt8BFkXEbzKbfwO8AuwzwNjNGvKgAbP2GegFUVUpex44KFP2cPo8giTRPVuzwSQpXUpyKu1D2e0R8bKk54DtWgnYrBlOOGYD92dgDfBPA2znTSRHMH+pKHs5Iu6tUX+T9HlNnTZnkoyOOzgiflejzpqKtswGjU+pmQ1QRLwE3AWMHWBThwD3pe3l8ef0eXi1jZK+BHwZ+NeIuKNOO8NZO8mZDQonHLP2OB8YLemY7AZJ60nKzqXJ1vk0yXWU/8z7hhGxhuS60Y5V2ptMMt/n5Ij4aZ333QbYlGRotdmg8ik1szaIiLmSzgUulfQ+4L+BVcBuJBM/V/D6KLZRkvYlmfj5j8AE4OPADyLih02+9V3AuyoLJB0AzAFuBO5O36vPExHxRMXr0STXnvKMdDMbkMKPcCTtIukSSUskvSKpJ+d+W0q6LF3C43lJP04nuGXrTZD0gKQXJS2VNKntH8KsinTy5CTgLcAVJMOcTwZuYe35NScDd6fbzwY2AiZExLEtvO21wAGShlWUfYAkmY1N36fy8ZnM/uNIRq/9GbNBVvhKA5ImALOAe4A9gWciYkyO/RYAbyU5J/0qycXQZyLiXyrq7A/0ABcB/w84jOR/7nERcWNbP4jZECBpI5Lh1F+MiP/b5L7rA48Bp0TEjwYjPrNKZSSc9frWcpJ0NfDGRglH0n4kh/wHRMTtadk+JDOzD46Im9OyhcCGEfHBin1vALaIiP0H4/OYlU3SV0iOkJr6jks6CvgW8LaIeHlQgjOrUPgptYqFA5txKMnRzO0V7fwC+H26DUkbk5xKyF4gvYpk0cItW4vYbMibBdzUwndcJGu/OdlYITpl0MBuwLIq5Q+l2wB2Jjlvna33EEli3RX45WAFaFaWiHgBOKOF/a4chHDMauqUhDMCeK5KeS/J0ut9dahSrzezfS2SpgJTAYYNG/auHXbYYWCRpl599VXWW8+jzhtxP+XjfspnXeynzR9JRrT/ddddc+/Tzn565JFHno2IbfLU7ZSEA9WXDVGV8uxr1ShPCiNmA7MBRo8eHffeW2tSd3N6enoYM2ZMW9rqZu6nfNxP+awr/TTqlOtf+/vhmeOTsiPOXavOiu/0W8noNe3sJ0mP5a3bKf8U6KX6bOrhvH5E01tRlq0D1Y+QzMysIJ2ScJbx+rWaSpXXdh4lWYcqW283kmHUnkltZlaiTkk484Ht0nk2AEgaTXL9Zj68tszHbcDHMvtOAu6OiOxtec3MrECFX8NJ781xWPryTcAWko5MX98QEaslLSeZ/XwsQETcnc6x+aGkyomfd/bNwUl9C+iRdD5wXfo+h9H/nvBmZlawMgYNbAtkZ0T3vd6RZM2pDYD1M3WOAs4DfkByZDYPOKGyQkTcmSavb5MsJfJ7YLJXGTCzbjVq2ryyQ8it8IQTESuofqOpyjqjqpQ9B3wqfdTb9zqSoxszMxtCOuUajpmZdTgnHDOzDjZ3zonMnXNi2WHk0kkTP83MLGOvZx4tO4TcfIRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQTjhmZlYIj1IzM+tgV7xjbNkh5OaEY2bWwU4bd3zZIeTmU2pmZlYIJxwzsw6259PL2fPp5WWHkYtPqZmZdbB5l58EdMaq0T7CMTOzQjjhmJlZIZxwzMysEE44ZmZWCCccMzMrhBOOmZkVwsOizcw62Phjzi87hNyccMzMOtiD2+1Sdgi5+ZSamZkVwgnHzKyDzVhwITMWXFh2GLk44ZiZdbDJSxYyecnCssPIxQnHzMwK4YRjZmaFcMIxM7NCOOGYmVkhnHDMzKwQnvhpZtbBHhi5c9kh5OaEY2bWwQ6fckHZIeTmU2pmZlYIJxwzMyuEE46ZWQdbMXM8K2aOLzuMXJxwzMysEE44ZmZWCCccMzMrhBOOmZkVwgnHzMwK4YRjZmaF8EoDZmYd7NSxx5UdQm5OOGZmHezKvceVHUJuhZ9Sk7S7pFskrZb0pKQzJa3fYJ/pkqLG49SKenNq1Nlt8D+ZmZnVU+gRjqQRwM3AUmACsDNwDkniO73Ort8HFmTKPgJMA+ZnypcBn8qUrWgtYjOzoe3oxclPYycc6RR9Su1zwDBgYkSsBG6StAUwXdLZaVk/EfEE8ERlmaSvA8siYnGm+t8i4p5BiN3MbMg5a+EsoDMSTtGn1A4FFmYSy1UkSeiAvI1I2go4GLiyveGZmdlgKTrh7EZyyus1EfE4sDrdlteRwIYkySprd0krJa2RdKek3InMzMwGT9Gn1EYAz1Up70235XUU8KuIeCRTfj/wc5JrRNsAJ5Octts/In5RrSFJU4GpACNHjqSnp6eJMGpbtWpV29rqZu6nfNxP+awr/XTyXi83LKvXD2X1UxnDoqNKmWqU968obU9y+m1av4YjLsjUvZ4k+ZxGMsigfzARs4HZAKNHj44xY8bkCaOhnp4e2tVWN3M/5eN+ymdd6acpp1z/2t/Hp8/nPLD2z/mKT4ypuX9Z/VT0KbVeYHiV8i2pfuRTzcdJEtRPGlWMiBeAG4B35g3QzMwGR9EJZxmZazWSdgA2I3Ntp46jgDsj4g9NvG+uoyczMxs8RZ9Smw98RdLmEfHXtGwS8AKwqNHOkkYB+wJfyPNmkoaRjIy7r5VgzcyGulHT5pUdQm5FH+FcDKwBrpV0UHrBfjpwbuVQaUnLJV1aZf+jgJeBq7MbJG0p6Q5Jn5V0oKRJwG3Am4AZg/BZzMysCYUe4UREr6QDgVnAXJLrNueRJJ1sXNWWuzkKuCUi/lRl2xrgTyQrFmwLvAjcDRwQEfe25QOYmVnLCh+lFhFLgQ82qDOqRvnedfZ5EZg4oODMzDrM3DknAnD4lAsa1CyfV4s2M+tgez3zaNkh5OYbsJmZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcKj1MzMOtgV7xhbdgi5OeGYmXWw08Yd37jSEOFTamZmVoimEo6kasvNmJlZSfZ8ejl7Pr287DByafYI54+Szpb0tkGJxszMmjLv8pOYd/lJZYeRS7MJ5xLgSOBBST+XNFXSFoMQl5mZdZmmEk5EfDMidgIOBh4GzgWekvRjSQcNRoBmZtYdWho0EBG3RsS/AtuR3FL7rcBCSSskTZf0D+0M0szMOt9AR6mNBt5PctvoXuAO4DPAckmfHGDbZmbWRZpOOJLeLOmbkh4FbgG2Bz4N/ENE/B/gzSTXer7b1kjNzKyjNTXxU9KtJEc0TwBzgMsi4rHKOhHxiqQrgBPbFaSZmXW+ZlcaeBY4DLgpIqJOvcXAji1HZWZmuYw/5vyyQ8it2YQzC/hVtWQj6Q3AOyPi9oh4CXis395mZtZWD263S9kh5NbsNZzbgN1rbHtrut3MzKyfZhOO6mx7A7B6ALGYmVmTZiy4kBkLLiw7jFwanlKT9H5gTEXRZySNy1TbBPgQ8ED7QjMzs0YmL1kIdMaq0Xmu4byHZHInQAAfA17O1Pk7sAz4SvtCMzOzbtIw4UTEd0nn1Ej6PXBERCwe7MDMzKy7NDVKLSI81NnMzFqS5xrOYcCdEbEy/buuiLihLZGZmVlXyXOEMw/YF/hF+ndQe7RaAL5Jm5mZ9ZMn4ewIPFXxt5mZDREPjNy57BByyzNo4LFqf5uZWfkOn3JB2SHklucazqbNNBgRnvxpZmb95Dmltork2kxevoZjZmb95Ek4n6a5hGNmZgVZMXM8AKOmzSs5ksbyXMOZU0AcZmbW5QZ6i2kzM7Nc8gwa+AUwJSKWSvolDU6vRcQ+7QrOzMy6R55rOL8BXqj429dzzMysaXmu4Xyq4u8pgxqNmZl1rZav4SixjaR6N2UzMzMDmlwtGl5bzPN04F3p/i9Lug/494i4vs3xmZlZHaeOPa7sEHJrKuFI+ixwEXALcCLwv8C2wETgfyR9ISIuaXuUZmZW1ZV7Z2/APHQ1e4RzGjA7Ij6fKb9Y0sXA1wAnHDMz66fZazhbA9fW2HYNsFWjBiTtLukWSaslPSnpTEl1l8ORNEpSVHlcVaXuBEkPSHpR0lJJk3J9MjOzDnT04gUcvXhB2WHk0uwRzm3AAcBNVbYdANxeb2dJI4CbgaXABGBn4BySxHd6jvf/MnBXxetnM+3vT5L4LgJOAA4DrpTUGxE35mjfzKyjnLVwFtAZp9byTPzcveLlfwDfl7Q1cB2vX8M5AjgU+EyD5j4HDAMmRsRK4CZJWwDTJZ2dltXzcETcU2f714HbI+KE9PVtkvYAvgE44ZiZlSjPEc6DrD3ZU8Bn00f27p8LqL9a9KHAwkxiuQqYSXKENDdHPFVJ2hj4AMmRTaWrgMskbRkRz7favpmZDUyehPOBNr7fbsCtlQUR8bik1em2RgnnMklbkRxZXQl8LSL6VkHYGdgQWJbZ5yGSU3a7Ar8cWPhmZtaqPCsNLGrj+40AnqtS3ptuq2UN8D2S02IrgTHANJIkM6Gibaq035vZvhZJU4GpACNHjqSnp6de/LmtWrWqbW11M/dTPu6nfNaVfjp5r5cbltXrh7L6qemJn30krQdski3PccfPamuxqUZ5X5tPAZWzm3okPQNcJGnviFhcp33VKO9rezYwG2D06NExZsyY+tHn1NPTQ7va6mbup3zcT/msK/005ZTX59gfnz6f88DaP+crPjGm5v5l9VNTw6LT5WymSVoOvAT8tcqjnl5geJXyLal+5FPP1enzOyvapkr7fa+bbd/MzNqo2SOcE4BTgLOBfwe+DbwCHAVsBMxosP8ykms1r5G0A7AZ/a+9NBKZ50dJkuBuQOVpwN2AV4FHmmzfzGzI64Q7ffZpduLnvwHfJEk4ANdFxBnAHiQJ4y0N9p8PjJW0eUXZJJLbHzR7rejI9Pk+gIhYQzJP6GOZepOAuz1CzcysXM0e4ewILI6IVyS9RHq6KiJelXQR8H2SI6BaLiY5SrpW0kxgJ2A6cG7lUOn0lN2iiDg2fT0d2Jxk0udK4P3AV4BrI+LXFe1/i+T6zvkk84QOSx9Df0aUmVmXa/YI58/AG9K/Hwf+uWLbCJJJnTVFRC9wIMlcnbnAGcB5JEdNlTZg7fk8y0jm6VwG3ABMBr6bPle2fyfJkc9BwELgw8BkrzJgZt1q7pwTmTvnxLLDyKXZI5y7gHeT/OhfQbJCwFbA34EvkqwiXVdELAU+2KDOqMzrq0gmcDYUEdeRHN2YmXW9vZ55tOwQcms24UwH3pT+PYPklNoUkiObm3h9hJ6Zmdlamko4EfEw8HD69xqSe+J0xrGcmZmVaiATP/8R2B54MiL+2L6QzMysGzU7aABJn5f0B+Ax4OfA45KekPSFtkdnZmZdo9mVBr4BzCKZT/MhYHT6PB/4j3S7mZlZP82eUvsiMCMivp4pX5CubfZF4My2RGZmZg1d8Y6xZYeQW7MJZxi17+q5CI9SMzMr1GnjOudnt9lrONcBE2ts+yjQOYv6mJlZofLcYvqwipfzgbMljaL/Lab3AL7a/hDNzKyWPZ9eDsCD2+1SciSN5TmlNo/+t5J+E1DtxOGPSO7EaWZmBZh3+UlAZ6wanSfh7DjoUZiZWdfLc4vpx4oIxMzMulvTKw1I2oBkgMD+wFbAX4A7SG4V0P9G22ZmZjSZcCRtC9wIvB1YATwD7Ecy/2aJpEMi4k/tDtLMzDpfs8OizwW2Bt4TETtFxH4RsRPwnrT83HYHaGZm3aHZhHMYMC0ifllZmL4+lWSZGzMzs36avYazMfDXGtv+Cmw0sHDMzKwZ4485v+wQcms24dwDTJN0a0T8ra9Q0mbAtHS7mZkVpBMmfPZpNuGcDNwG/EHSjSSDBrYlmQQqYExbozMzs67R1DWciFgMvAWYDWwDHEyScC4G3hIRS9oeoZmZ1TRjwYXMWHBh2WHkkvsIR9KGwD7A7yPilMELyczM8pq8ZCHQGatGN3OE8wpwK/C2QYrFzMy6WO6EExGvAr8FRg5eOGZm1q2anYfzNeAbkvYajGDMzKx7NTtK7XSSFQUWS/ojySi1qKwQEfu0KTYzM+sizSacB9OHmZlZU3IlHEnDSJa1eRB4Grg5Ip4ZzMDMzKyxB0buXHYIueW5xfROwM3AqIrilZI+HhE3DlZgZmbW2OFTLig7hNzyDBo4G3gV+BdgU2AP4H7gkkGMy8zMukyehLMfcHpE3BURL0bEQ8BngX+StP3ghmdmZt0iT8LZHvhdpuxRkrXTtmt7RGZmltuKmeNZMXN82WHkknceTjSuYmZmVlveYdELJb1cpfyWbHlEbDvwsMzMrNvkSThnDHoUZmbW9RomnIhwwjEzswFrdi01MzOzljjhmJlZIZpdS83MzIaQU8ceV3YIuTnhmJl1sCv3Hld2CLn5lJqZmRXCCcfMrIMdvXgBRy9eUHYYuRSecCTtLukWSaslPSnpTEnrN9jn3ZIuk7Q83e9hSd+UtEmm3nRJUeXROcecZmZNOGvhLM5aOKvsMHIp9BqOpBEktzpYCkwAdgbOIUl8p9fZdVJadybwW+DtwLfS549m6j4PZBPMQwON3czMBqboQQOfA4YBEyNiJXCTpC2A6ZLOTsuqmRkRf6p43SPpReASSW+OiMcqtr0cEfcMTvhmZtaqok+pHQoszCSWq0iS0AG1dsokmz73p89eu83MrAMUnXB2A5ZVFkTE48DqdFsz3ktyY7iHM+XDJT0r6SVJ90ua2HK0ZmbWNkWfUhsBPFelvDfdlouk7YCvAf+VOVpaDnwVWAy8geRGcddI+mhEXFujranAVICRI0fS09OTN4y6Vq1a1ba2upn7KR/3Uz7rSj+dvFf/xfuzZfX6oax+KmPiZ7V766hGef+K0kbAT4FVwJfWajjiR5m6c4GfAd8AqiaciJgNzAYYPXp0jBkzJk8YDfX09NCutrqZ+ykf91M+60o/TTnl+tf+Pj59PueBtX/OV3xiTM39y+qnohNOLzC8SvmWVD/yWYskAT8E9gDeFxG99epHREi6Fpgpaf2IeKWFmM3MhqxR0+aVHUJuRSecZWSu1UjaAdiMzLWdGs4jGU59cETkqd/Hdyw1MytZ0YMG5gNjJW1eUTYJeAFYVG9HSaeSHD1+MiLuzPNm6RHREcASH92YmZWr6COci4ETgGslzQR2AqYD51Ze/Je0HFgUEcemrycDM4A5wB8l7VvR5qN9w6YlLQKuITla2gz4N2Bf4COD+7HMzMoxd86JABw+5YKSI2ms0IQTEb2SDgRmAXNJrtucR5J0snFVLndzSPo8JX1U+hRJIoJklNpJwPYkQ6Z/BXwoIua3I34zs6Fmr2ceLTuE3AofpRYRS4EPNqgzKvN6Cv0TTbX9jh1AaGZmNoi8WrSZmRXCCcfMzArhhGNmZoVwwjEzs0KUsbSNmZm1yRXvGFt2CLk54ZiZdbDTxh3fuNIQ4VNqZmZWCCccM7MOtufTy9nz6eVlh5GLT6mZmXWweZefBHTGqtE+wjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcLDos3MOtj4Y84vO4TcnHDMzDrYg9vtUnYIufmUmpmZFcIJx8ysg81YcCEzFlxYdhi5OOGYmXWwyUsWMnnJwrLDyMUJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwzMysEJ74aWbWwR4YuXPZIeTmhGNm1sEOn3JB2SHk5lNqZmZWCCccMzMrhBOOmVkHWzFzPCtmji87jFyccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhfBKA2ZmHezUsceVHUJuTjhmZh3syr3HlR1Cbj6lZmZmhXDCMTPrYEcvXsDRixeUHUYuPqVmZtbBzlo4C+iMU2s+wjEzs0IUnnAk7S7pFkmrJT0p6UxJ6+fYb0tJl0nqlfS8pB9L2rpKvQmSHpD0oqSlkiYNzicxM7NmFJpwJI0AbgYCmACcCZwMnJFj958AY4DPAFOAdwPXZdrfH7gGuA04FLgeuFLSIW35AGZm1rKir+F8DhgGTIyIlcBNkrYApks6Oy3rR9J+wFjggIi4PS37I/BzSQdFxM1p1a8Dt0fECenr2yTtAXwDuHHwPpaZmTVS9Cm1Q4GFmcRyFUkSOqDBfs/0JRuAiPgF8Pt0G5I2Bj4A/DSz71XAfpK2HHj4ZmbWqqKPcHYDbq0siIjHJa1Ot82ts9+yKuUPpdsAdgY2rFLvIZLEuivwy9bCNjN73ahTrm9YZ8V3PlRAJJ2l6IQzAniuSnlvuq2V/XaqqEOVer2Z7WuRNBWYmr5cJenhOnE0443As21qq5u5n/JxP+UzZPpJMwt6n74/Mnf9bPD+7eynN+etWMY8nKhSphrlreyXfa0a5UlhxGxgdoP3bpqkeyNidLvb7Tbup3zcT/m4n/Ipq5+KvobTCwyvUr4l1Y9gGu03vGK/3oqybB0atG9mZoOs6ISzjNevuQAgaQdgM6pfo6m5X6ry2s6jwEtV6u0GvAo80kK8ZmbWJkUnnPnAWEmbV5RNAl4AFjXYb7t0ng0AkkaTXL+ZDxARa0jm33wss+8k4O6IeH7g4Tel7afpupT7KR/3Uz7up3xK6SdFNLp00sY3SyZ+LgUeBGaSJIxzgfMj4vSKesuBRRFxbEXZApKRZl8mOWKZCfxvRPxLRZ39gR5gFsmk0MPS+uMiwvNwzMxKVOgRTkT0AgcC65MMgT4DOA/4ZqbqBmmdSkeRHAX9APghcB9wRKb9O4EjgYOAhcCHgclONmZm5Sv0CMfMzNZdXi26AS822lgrfSTp3Wn/LE/3e1jSNyVtkqk3XVJUeQz9tdgzWuynUTU+/1VV6nb8dwla7qda35OQdGpFvTk16lQblDSkSdpF0iWSlkh6RVJPzv1K+23y/XDqqFhsdCnJYqM7A+eQJOrT6+wKyWKjbyVZbLTvmtN1QPaa0zXARcAJJNecrpTU2ymnAQfQR5PSujOB3wJvB76VPn80U/d5IJtgHhpo7EUa4HcJkmuRd1W8XmvSXjd8l2BA/fR9IHsXso8A00gHFlVYBnwqU7aitYhLtQfJf+d7gI2a2K+836aI8KPGAziVZH7PFhVlXwVWV5ZV2W8/komm768o2yctO6iibCFwa2bfG4A7y/7sBfTRNlXKpqZ99OaKsunAs2V/zhL7aVTaJ+MbtN/x36WB9FONtq4HHsqUzQHuLftztqmv1qv4+2qgJ8c+pf42+ZRafV5stLGW+igi/lSl+P70edv2hTdktPpdaqiLvkvQpn6StBVwMHBle8MbOiLi1RZ2K/W3yQmnvn6LhkbE4yT/2qp3zrddi412glb7qJr3khziZ9ezGy7pWUkvSbpf0sSWoy3PQPvpsvQ8/VOSzpU0rGJbt3yXoH3fpyNJ+qTftS5gd0krJa2RdKekASX8DlPqb5MTTn2DsdjoiIo6VKlXd7HRIajVPlqLpO2ArwH/lfnX7XKSUyofJ7m28yRwTQcmnVb7aQ3wPeBYkikFlwCfZ+0f0m75LkGbvk8k0yh+FRHZFUbuJ7np4+HAJ0imX9wkaZ8WYu1Epf42edBAY0NqsdEhqtU+SipKG5Ecvq8CvrRWwxE/ytSdC/yM5KZ617YSbIma7qeIeAo4rqKoR9IzwEWS9o6IxXXa78TvEgz8+7Q9yem3af0ajrggU/d6kgEKp5EMMlgXlPbb5COc+rzYaGOt9hEAkkQykXcP4LBIJgfXFMnVy2uBt+cZnj6EDKifMq5On99Z0TZV2u+07xK0p58+TvLj+JNGFSPiBZKL4e9sVLdLlPrb5IRTnxcbbazVPupzHsnw1wkRkad+n077V/tA+6lSZJ675bsE7emno0hGU/2hiffttO9Tq0r9bXLCqW9dWmy0Va32EemEvOOBT0ayLFFD6RHREcCSiHiltZBL0XI/VXFk+nwfdNV3CQbYT5JGAfuSc3RaOvjiUNK+XAeU+9tU9ljyofwguTj2FHATyfpsU0muM3w7U285cGmmbAHwO2Aiybnhh4E7MnX2B14GzgfGAGeT/AvikLI/+2D3ETCZ5F+Vl5H8QFQ+tqmot4hk4tkhJInmhrSPPlz2Zy+on6aTTHycmO53JsmP7zXd9l0aSD9VlJ9C8q/zavO8tgTuAD5LMgBjEsmkyTXA6LI/ewt9tSnJPz6OBO4GflPxetNa/VTmb1PpnTbUH8DuwK3p/+RPkcyGXz9TZwUwJ1M2PP0xfQ5YCVwBvLFK+x8hWT17Dckh7VFlf+b7FSn1AAAAk0lEQVQi+ohkAl7UeEypqHdp+j/HC8Df0h+MQ8v+zAX201HAvSSrLfw9/QE5E9i4G79LrfZTRfliYEGNdjchuf73h7SPnk9/fPct+zO32E+j6vw/NKpWP5X52+TFO83MrBC+hmNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIJx8zMCvH/AZS9ZydPm2mDAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3debRcVZn38e+POSCQgBBomzYMIjIorRFBaYkyJGAwEtFA9G2i2HFicqEGEDWgHQwupibSkCUSbAX0BV66E0jCeMMgqCCJYAgYNCAytOiFGAOR4Xn/2CdQOanh1L11qm7d/D5r1apb++yz66lNUU/O2Wfvo4jAzMys1dbrdABmZjY4OcGYmVkpnGDMzKwUTjBmZlYKJxgzMyuFE4yZmZXCCcbMzErhBGPWQpLGS7pV0nOSVkl6RNK3Jb0x2x4VjxckPS7pWkmHV2lraq7+6sfNuXrvktQraYvs9VslfU/SQ5JWSvqdpAskDc3t9z1Jl5bZH7Zu26DTAZgNFpLOAU4CLgPOA5YDuwOfA/YAjsiqngNcDWwI7AB8GPhvSbMi4tO5Zp8HxlQpq/Rt4OKIWJ69Phh4H/CfwK+BnbI6+0naNyJezep9F1gi6ayIWNq3T21WmzyT36z/siOQ/wGOjYgf5LatDxwSEXMlBXB8RMzI1fk0cCkwKSIuz8qmAsdFxBvrvO9bgEeAXSPit1nZ1sBfouJ/bkmHAPOBURGxoKL8ZmBRRJzc909vVp1PkZm1xpeAX+WTC0BEvBIRc+vtnO33c+DzTb7vMcCvVyeXrK0/x9r/crw/e942V34N8AlJ/i2wlvOXyqyfJG0IvBeY18+mbgLelbVX2f4GuYcqNh8I/KxA2+/Nnhfnyn8GDAf26mvQZrU4wZj139bAxsDj/WznCdK46Fa5tl/KPQ4EyBLNPwMP1mtU0qbAd4AFEfGb3ObfAK8A+/QzdrO1eJDfrHX6O6CpKmXPAwflyh7OnoeREtuzNRtMSehS0qmxD+W3R8TLkp4DtutLwGb1OMGY9d+fgVXAP/WznTeRjlD+UlH2ckTcW6P+JtnzqjptTiddvXZwRPyuRp1VFW2ZtYxPkZn1U0S8BNwFjO5nU4cA92XtFfHn7HlotY2SvgR8GfjXiLijTjtDWTOpmbWEE4xZa5wPjJR0TH6DpPUk5eey5Ot8mjQO8p9F3zAiVpHGfXas0t5E0nybkyPip3XedxtgU9KlzmYt5VNkZi0QEbMlnQtcKul9wH8DK4DdSBMtl/H6VWYjJO1Lmmj5j8A44OPADyLih02+9V3AuyoLJB0AzAJuBO7O3mu1JyLiiYrXI0ljR0WuRDNrStuPYCTtIukSSYskvSKpp+B+W0q6LFsS43lJP84mlOXrjZP0gKQXJS2WNKHlH8Ksimyy4gTgLcAVpMuOTwZuYc35LScDd2fbzwY2AsZFxLF9eNtrgQMkDako+wApeY3O3qfy8Znc/mNIV5f9GbMWa/tMfknjgBnAPcCewDMRMarAfvOAt5LOKb9KGrx8JiL+paLO/kAPcBHw/4DDSP8zj4mIG1v6QcwGAEkbkS5v/mJE/N8m910feAw4JSJ+VEZ8tm7rRIJZb/VaSJKuBt7YKMFI2o90CH9ARNyele1Dmvl8cETcnJXNBzaMiA9W7HsDsEVE7F/G5zHrNElfIR0BNfUdl3QU8C3gbRHxcinB2Tqt7afIKhbaa8ahpKOV2yva+QXw+2wbkjYmnRrID2heRVrkb8u+RWw24M0AburDd1yktdOcXKwU3TLIvxuwpEr5Q9k2gJ1J553z9R4iJdJdgV+WFaBZp0TEC8AZfdjvyhLCMXtNtySYYcBzVcp7SUuRr65DlXq9ue1rkDQZmAwwZMiQd+2www79izTz6quvst56vgq8EfdTMe6nYtbFftr8kXSF+V933bXwPq3sp0ceeeTZiNim2rZuSTBQfRkOVSnPv1aN8lQYMROYCTBy5Mi4995ak6ab09PTw6hRo1rS1mDmfirG/VTMutJPI065/rW/H54+NpUdce4adZZ9Z62VgV7Tyn6S9Fitbd2S6nupPlt5KK8fsfRWlOXrQPUjIDMzK0m3JJglvD7WUqlybOZR0jpO+Xq7kS5r9kxlM7M26pYEMxfYLpvnAoCkkaTxl7nw2rIZtwEfy+07Abg7IvK3mTUzsxK1fQwmuzfFYdnLNwFbSDoye31DRKyUtJQ0u/hYgIi4O5vj8kNJlRMt71w9BybzLaBH0vnAddn7HMba9zQ3M7OSdWKQf1sgP+N49esdSWs2bQCsn6tzFHAe8APSkdcc4ITKChFxZ5asvk1amuP3wETP4jezwWrElDmdDqGmtieYiFhG9RsrVdYZUaXsOeBT2aPevteRjl7MzKyDumUMxszMuowTjJlZF5s960Rmzzqx02FU1U0TLc3MLGevZx7tdAg1+QjGzMxK4QRjZmalcIIxM7NSOMGYmVkpnGDMzKwUvorMzKyLXfGO0Z0OoSYnGDOzLnbamOM7HUJNPkVmZmalcIIxM+tiez69lD2fXtrpMKryKTIzsy425/KTgIG5qrKPYMzMrBROMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpfBlymZmXWzsMed3OoSanGDMzLrYg9vt0ukQavIpMjMzK4UTjJlZF5s270Kmzbuw02FU5QRjZtbFJi6az8RF8zsdRlVOMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpfBESzOzLvbA8J07HUJNTjBmZl3s8EkXdDqEmnyKzMzMSuEEY2ZmpXCCMTPrYsumj2XZ9LGdDqMqJxgzMyuFE4yZmZXCCcbMzErhBGNmZqVwgjEzs1I4wZiZWSk8k9/MrIudOvq4TodQkxOMmVkXu3LvMZ0Ooaa2nyKTtLukWyStlPSkpDMlrd9gn6mSosbj1Ip6s2rU2a38T2ZmZpXaegQjaRhwM7AYGAfsDJxDSnSn19n1+8C8XNlHgCnA3Fz5EuBTubJlfYvYzGxgO3ph+mkciEcy7T5F9jlgCDA+IpYDN0naApgq6eysbC0R8QTwRGWZpK8DSyJiYa763yLinhJiNzMbcM6aPwMYmAmm3afIDgXm5xLJVaSkc0DRRiRtBRwMXNna8MzMrFXanWB2I53Cek1EPA6szLYVdSSwISk55e0uabmkVZLulFQ4cZmZWeu0+xTZMOC5KuW92baijgJ+FRGP5MrvB35OGuPZBjiZdBpu/4j4RbWGJE0GJgMMHz6cnp6eJsKobcWKFS1razBzPxXjfipmXemnk/d6uWFZvX5oVz914jLlqFKmGuVrV5S2J51Om7JWwxEX5OpeT0o2p5EuClg7mIiZwEyAkSNHxqhRo4qE0VBPTw+tamswcz8V434qZl3pp0mnXP/a38dnz+c8sObP+bJPjKq5f7v6qd2nyHqBoVXKt6T6kU01HyclpJ80qhgRLwA3AO8sGqCZmbVGuxPMEnJjLZJ2ADYjNzZTx1HAnRHxhybet9DRkZmZtU67T5HNBb4iafOI+GtWNgF4AVjQaGdJI4B9gS8UeTNJQ0hXrt3Xl2DNzAa6EVPmdDqEmtp9BHMxsAq4VtJB2QD7VODcykuXJS2VdGmV/Y8CXgauzm+QtKWkOyR9VtKBkiYAtwFvAqaV8FnMzKyOth7BRESvpAOBGcBs0rjLeaQkk4+r2vIxRwG3RMSfqmxbBfyJtCLAtsCLwN3AARFxb0s+gJmZFdb2q8giYjHwwQZ1RtQo37vOPi8C4/sVnJlZl5k960QADp90QYOa7efVlM3Muthezzza6RBq8g3HzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK4avIzMy62BXvGN3pEGpygjEz62KnjTm+caUO8SkyMzMrRVMJRlK15VvMzKxD9nx6KXs+vbTTYVTV7BHMHyWdLeltpURjZmZNmXP5Scy5/KROh1FVswnmEuBI4EFJP5c0WdIWJcRlZmZdrqkEExHfjIidgIOBh4Fzgack/VjSQWUEaGZm3alPg/wRcWtE/CuwHemW0G8F5ktaJmmqpH9oZZBmZtZ9+nsV2Ujg/aTbIPcCdwCfAZZK+mQ/2zYzsy7WdIKR9GZJ35T0KHALsD3waeAfIuL/AG8mjdV8t6WRmplZV2lqoqWkW0lHLE8As4DLIuKxyjoR8YqkK4ATWxWkmZl1n2Zn8j8LHAbcFBFRp95CYMc+R2VmZoWMPeb8TodQU7MJZgbwq2rJRdIbgHdGxO0R8RLw2Fp7m5lZSz243S6dDqGmZsdgbgN2r7Htrdl2MzOzphOM6mx7A7CyH7GYmVmTps27kGnzLux0GFU1PEUm6f3AqIqiz0gak6u2CfAh4IHWhWZmZo1MXDQfGJirKhcZg3kPaTIlQAAfA17O1fk7sAT4SutCMzOzbtYwwUTEd8nmtEj6PXBERCwsOzAzM+tuTV1FFhG+9NjMzAopMgZzGHBnRCzP/q4rIm5oSWRmZtbVihzBzAH2BX6R/R3UvposAN+UzMzMCiWYHYGnKv42M7MB4oHhO3c6hJqKDPI/Vu1vMzPrvMMnXdDpEGoqMgazaTMNRoQnW5qZWaFTZCtIYytFeQzGzMwKJZhP01yCMTOzNlk2fSwAI6bM6XAkaysyBjOrDXGYmdkg099bJpuZmVVVZJD/F8CkiFgs6Zc0OF0WEfu0KjgzM+teRcZgfgO8UPG3x2PMzKyhImMwn6r4e1Kp0ZiZ2aDR5zEYJdtIqncTMjMzW0c1tZoyvLb45enAu7L9X5Z0H/DvEXF9i+MzM7M6Th19XKdDqKmpBCPps8BFwC3AicD/AtsC44H/kfSFiLik5VGamVlVV+6dv8HwwNHsEcxpwMyI+Hyu/GJJFwNfA5xgzMys6TGYrYFra2y7BtiqUQOSdpd0i6SVkp6UdKakusvLSBohKao8rqpSd5ykByS9KGmxpAmFPpmZWRc6euE8jl44r9NhVNXsEcxtwAHATVW2HQDcXm9nScOAm4HFwDhgZ+AcUqI7vcD7fxm4q+L1s7n29ycluouAE4DDgCsl9UbEjQXaNzPrKmfNnwEMzFNlRSZa7l7x8j+A70vaGriO18dgjgAOBT7ToLnPAUOA8RGxHLhJ0hbAVElnZ2X1PBwR99TZ/nXg9og4IXt9m6Q9gG8ATjBmZm1U5AjmQdacXCngs9kjf3fLedRfTflQYH4ukVwFTCcdAc0uEE9VkjYGPkA6cql0FXCZpC0j4vm+tm9mZs0pkmA+0ML32w24tbIgIh6XtDLb1ijBXCZpK9KR05XA1yJi9SoDOwMbAkty+zxEOgW3K/DL/oVvZmZFFZnJv6CF7zcMeK5KeW+2rZZVwPdIp7mWA6OAKaSkMq6ibaq035vbvgZJk4HJAMOHD6enp6de/IWtWLGiZW0NZu6nYtxPxawr/XTyXi83LKvXD+3qp6YnWq4maT1gk3x5gTtaVlvLTDXKV7f5FFA5m6hH0jPARZL2joiFddpXjfLVbc8EZgKMHDkyRo0aVT/6gnp6emhVW4OZ+6kY91Mx60o/TTrl9Tntx2fP5zyw5s/5sk+Mqrl/u/qpqcuUs+VhpkhaCrwE/LXKo55eYGiV8i2pfmRTz9XZ8zsr2qZK+6tfN9u+mZn1Q7NHMCcApwBnA/8OfBt4BTgK2AiY1mD/JaSxltdI2gHYjLXHThqJ3POjpKS3G1B5Wm834FXgkSbbNzMb8AbinSxXa3ai5b8B3yQlGIDrIuIMYA9SgnhLg/3nAqMlbV5RNoF0O4Bmx3qOzJ7vA4iIVaR5Oh/L1ZsA3O0ryMzM2qvZI5gdgYUR8Yqkl8hOP0XEq5IuAr5POsKp5WLSUdC1kqYDOwFTgXMrL13OTsEtiIhjs9dTgc1JkyyXA+8HvgJcGxG/rmj/W6TxmfNJ83QOyx4DbwaSmdkg1+wRzJ+BN2R/Pw78c8W2YaRJlDVFRC9wIGmuzGzgDOA80lFRpQ1Ycz7NEtI8mcuAG4CJwHez58r27yQd2RwEzAc+DEz0LH4zG6xmzzqR2bNO7HQYVTV7BHMX8G7Sj/wVpBn4WwF/B75IWmW5rohYDHywQZ0RuddXkSZMNhQR15GOXszMBr29nnm00yHU1GyCmQq8Kft7GukU2STSkctNvH7FnJmZreOaSjAR8TDwcPb3KtI9YQbmsZmZmXVUfyZa/iOwPfBkRPyxdSGZmdlg0OwgP5I+L+kPwGPAz4HHJT0h6Qstj87MzLpWszP5vwHMIM1n+RAwMnueC/xHtt3MzKzpU2RfBKZFxNdz5fOytcG+CJzZksjMzKyhK94xutMh1NRsghlC7btWLsBXkZmZtdVpYwbuz26zYzDXAeNrbPsoMHAXxTEzs7YqcsvkwypezgXOljSCtW+ZvAfw1daHaGZmtez59FIAHtxulw5HsrYip8jmsPatkd8EVDvx9yPSnSbNzKwN5lx+EjAwV1UukmB2LD0KMzMbdIrcMvmxdgRiZmaDS9Mz+SVtQBrQ3x/YCvgLcAdp6fy1bxRtZmbrpKYSjKRtgRuBtwPLgGeA/UjzXxZJOiQi/tTqIM3MrPs0e5nyucDWwHsiYqeI2C8idgLek5Wf2+oAzcysOzWbYA4DpkTELysLs9enkpaNMTMza3oMZmPgrzW2/RXYqH/hmJlZM8Yec36nQ6ip2QRzDzBF0q0R8bfVhZI2A6Zk283MrE0G4gTL1ZpNMCcDtwF/kHQjaZB/W9KkSwGjWhqdmZl1rabGYCJiIfAWYCawDXAwKcFcDLwlIha1PEIzM6tp2rwLmTbvwk6HUVXhIxhJGwL7AL+PiFPKC8nMzIqauGg+MDBXVW7mCOYV4FbgbSXFYmZmg0jhBBMRrwK/BYaXF46ZmQ0Wzc6D+RrwDUl7lRGMmZkNHs1eRXY6acb+Qkl/JF1FFpUVImKfFsVmZmZdrNkE82D2MDMzq6tQgpE0hLRMzIPA08DNEfFMmYGZmVljDwzfudMh1FTklsk7ATcDIyqKl0v6eETcWFZgZmbW2OGTLuh0CDUVGeQ/G3gV+BdgU2AP4H7gkhLjMjOzLlckwewHnB4Rd0XEixHxEPBZ4J8kbV9ueGZm1q2KJJjtgd/lyh4lrT22XcsjMjOzwpZNH8uy6WM7HUZVRefBROMqZmZmryt6mfJ8SS9XKb8lXx4R2/Y/LDMz63ZFEswZpUdhZmaDTsMEExFOMGZm1rRm1yIzMzMrxAnGzMxK0exaZGZmNoCcOvq4TodQkxOMmVkXu3LvMZ0OoSafIjMzs1I4wZiZdbGjF87j6IXzOh1GVW1PMJJ2l3SLpJWSnpR0pqT1G+zzbkmXSVqa7fewpG9K2iRXb6qkqPIYuMeQZmb9cNb8GZw1f0anw6iqrWMwkoaRlv5fDIwDdgbOISW60+vsOiGrOx34LfB24FvZ80dzdZ8H8gnlof7GbmZmzWn3IP/ngCHA+IhYDtwkaQtgqqSzs7JqpkfEnype90h6EbhE0psj4rGKbS9HxD3lhG9mZkW1+xTZocD8XCK5ipR0Dqi1Uy65rHZ/9uy1z8zMBqB2J5jdgCWVBRHxOLAy29aM95JuhPZwrnyopGclvSTpfknj+xytmZn1WbtPkQ0DnqtS3pttK0TSdsDXgP/KHQ0tBb4KLATeQLox2jWSPhoR19ZoazIwGWD48OH09PQUDaOuFStWtKytwcz9VIz7qZh1pZ9O3mvtxe3zZfX6oV391ImJltXuLaMa5WtXlDYCfgqsAL60RsMRP8rVnQ38DPgGUDXBRMRMYCbAyJEjY9SoUUXCaKinp4dWtTWYuZ+KcT8Vs67006RTrn/t7+Oz53MeWPPnfNknRtXcv1391O4E0wsMrVK+JdWPbNYgScAPgT2A90VEb736ERGSrgWmS1o/Il7pQ8xmZgPWiClzOh1CTe1OMEvIjbVI2gHYjNzYTA3nkS5vPjgiitRfzXfkNDNrs3YP8s8FRkvavKJsAvACsKDejpJOJR0NfjIi7izyZtkRzxHAIh+9mJm1V7uPYC4GTgCulTQd2AmYCpxbOVgvaSmwICKOzV5PBKYBs4A/Stq3os1HV1/GLGkBcA3paGgz4N+AfYGPlPuxzMw6Y/asEwE4fNIFHY5kbW1NMBHRK+lAYAYwmzTuch4pyeTjqlw+5pDseVL2qPQpUuKBdBXZScD2pEuYfwV8KCLmtiJ+M7OBZq9nHu10CDW1/SqyiFgMfLBBnRG515NYO7FU2+/YfoRmZmYt5NWUzcysFE4wZmZWCicYMzMrhROMmZmVohNLxZiZWYtc8Y7RnQ6hJicYM7MudtqY4xtX6hCfIjMzs1I4wZiZdbE9n17Knk8v7XQYVfkUmZlZF5tz+UnAwFxV2UcwZmZWCicYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NS+DJlM7MuNvaY8zsdQk1OMGZmXezB7XbpdAg1+RSZmZmVwgnGzKyLTZt3IdPmXdjpMKpygjEz62ITF81n4qL5nQ6jKicYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSeKKlmVkXe2D4zp0OoSYnGDOzLnb4pAs6HUJNPkVmZmalcIIxM7NSOMGYmXWxZdPHsmz62E6HUZUTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFJ7Jb2bWxU4dfVynQ6jJCcbMrItdufeYTodQk0+RmZlZKZxgzMy62NEL53H0wnmdDqMqnyIzM+tiZ82fAQzMU2U+gjEzs1K0PcFI2l3SLZJWSnpS0pmS1i+w35aSLpPUK+l5ST+WtHWVeuMkPSDpRUmLJU0o55OYmVk9bU0wkoYBNwMBjAPOBE4Gziiw+0+AUcBngEnAu4Hrcu3vD1wD3AYcClwPXCnpkJZ8ADMzK6zdYzCfA4YA4yNiOXCTpC2AqZLOzsrWImk/YDRwQETcnpX9Efi5pIMi4uas6teB2yPihOz1bZL2AL4B3FjexzIzs7x2nyI7FJifSyRXkZLOAQ32e2Z1cgGIiF8Av8+2IWlj4APAT3P7XgXsJ2nL/odvZmZFtfsIZjfg1sqCiHhc0sps2+w6+y2pUv5Qtg1gZ2DDKvUeIiXSXYFf9i1sM7PXjTjl+oZ1ln3nQ22IZGBrd4IZBjxXpbw329aX/XaqqEOVer257WuQNBmYnL1cIenhOnE0443Asy1qazBzPxXjfipmwPSTprfpfVb/kburZYP3b2U/vbnWhk7Mg4kqZapR3pf98q9VozwVRswEZjZ476ZJujciRra63cHG/VSM+6kY91Mx7eqndo/B9AJDq5RvSfUjlEb7Da3Yr7eiLF+HBu2bmVmLtTvBLOH1MRMAJO0AbEb1MZaa+2Uqx2YeBV6qUm834FXgkT7Ea2ZmfdTuBDMXGC1p84qyCcALwIIG+22XzXMBQNJI0vjLXICIWEWa//Kx3L4TgLsj4vn+h9+Ulp92G6TcT8W4n4pxPxXTln5SRKOhjxa+WZpouRh4EJhOShDnAudHxOkV9ZYCCyLi2IqyeaQrwb5MOiKZDvxvRPxLRZ39gR5gBmkS5mFZ/TER4XkwZmZt1NYjmIjoBQ4E1iddknwGcB7wzVzVDbI6lY4iHeX8APghcB9wRK79O4EjgYOA+cCHgYlOLmZm7dfWIxgzM1t3eDXlBrw4Z2N96SNJ7876Z2m238OSvilpk1y9qZKiymPgrU3eQB/7aUSNz39Vlbpd/12CPvdTre9JSDq1ot6sGnWqXUQ0oEnaRdIlkhZJekVST8H92vbb5PvB1FGxOOdi0uKcOwPnkBLz6XV2hbQ451tJi3OuHjO6DsiPGV0DXAScQBozulJSb7ec1utHH03I6k4Hfgu8HfhW9vzRXN3ngXxCeai/sbdTP79LkMYS76p4vcYkucHwXYJ+9dP3gfxdtz4CTCG7EKjCEuBTubJlfYu4o/Yg/Xe+B9ioif3a99sUEX7UeACnkubXbFFR9lVgZWVZlf32I03sfH9F2T5Z2UEVZfOBW3P73gDc2enP3oY+2qZK2eSsj95cUTYVeLbTn7OD/TQi65OxDdrv+u9Sf/qpRlvXAw/lymYB93b6c7aor9ar+PtqoKfAPm39bfIpsvq8OGdjfeqjiPhTleL7s+dtWxfegNHX71JDg+i7BC3qJ0lbAQcDV7Y2vIEjIl7tw25t/W1ygqlvrUU2I+Jx0r+m6p2zbdXinN2gr31UzXtJh+z59eCGSnpW0kuS7pc0vs/Rdk5/++my7Dz7U5LOlTSkYttg+S5B675PR5L6ZK2xKmB3ScslrZJ0p6R+Jfgu09bfJieY+spYnHNYRR2q1Ku7OOcA1Nc+WoOk7YCvAf+V+9frUtIpko+TxmaeBK7pwiTT135aBXwPOJZ0if8lwOdZ84dzsHyXoEXfJ9K0hl9FRH4Fj/tJNzk8HPgEaTrETZL26UOs3aitv00e5G9sQC3OOUD1tY9SRWkj0uH4CuBLazQc8aNc3dnAz0g3kbu2L8F2UNP9FBFPAcdVFPVIega4SNLeEbGwTvvd+F2C/n+ftiedTpuyVsMRF+TqXk+6oOA00kUB64K2/Tb5CKY+L87ZWF/7CABJIk2c3QM4LNJk3JoijTZeC7y9yOXiA0i/+inn6uz5nRVtU6X9bvsuQWv66eOkH8OfNKoYES+QBq/f2ajuINHW3yYnmPq8OGdjfe2j1c4jXY46LiKK1F+t2/5V3t9+qhS558HyXYLW9NNRpKud/tDE+3bb96mv2vrb5ART37q0OGdf9bWPyCbAHQ98MtIyPw1lRzxHAIsi4pW+hdwRfe6nKo7Mnu+DQfVdgn72k6QRwL4UvHosu1jiULK+XAe097ep09dyD+QHaTDrKeAm0vpmk0njBN/O1VsKXJormwf8DhhPOrf7MHBHrs7+wMvA+cAo4GzSvxAO6fRnL7uPgImkfzVeRvpBqHxsU1FvAWmi1yGkxHJD1kcf7vRnb1M/TSVNNByf7Xcm6cf2msH2XepPP1WUn0L613e1eVZbAncAnyVdMDGBNElxFTCy05+9D321KekfG0cCdwO/qXi9aa1+audvU8c7aaA/gN2BW7P/qZ8izTZfP1dnGTArVzY0+/F8DlgOXAG8sUr7HyGtLr2KdIh6VKc/czv6iDThLWo8Jt87qBwAAACKSURBVFXUuzT7n+EF4G/ZD8Shnf7Mbeyno4B7SasZ/D37wTgT2Hgwfpf62k8V5QuBeTXa3YQ0fveHrI+ez35s9+30Z+5jP42o8//QiFr91M7fJi92aWZmpfAYjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrxf8HCYFDS5S8NL0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1317,7 +1319,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHd9JREFUeJzt3Xu0HFWd9vHvw0UItxAEAoMMEbxEGFmORgSHkXCH8I5cRJOFvrPioFFfFWcWOkRECOiwBEdAF+MClg68jJowAwzvQAghXE4gXNQgQZwkYNCAXERxDsQYiEB+7x+7DnbqdJ/T1Zd9cvo8n7V6dfeuXdW7djr9nKraVaWIwMzMrNs2G+kGmJnZ2ODAMTOzLBw4ZmaWhQPHzMyycOCYmVkWDhwzM8vCgWM2BElzJPUVr/skzak4/1RJUV5Wg7o3SXp4iOmXSuqXtFWTn/0mSSHpmCptNusWB47ZpmMu8BeS9itPkLQ5cDJwfUSsz94ysw5w4JhtOv4fsA6YUWfaocBEUiiZjUoOHLMWSTpI0n9JelrSHyQtk/ThVpcXEWuBm4DpdSbPAJ4F7iw+ew9JV0r6paQXJT0q6VxJWw7R3i2KXWyfLJV/VdKvS2V7Sbqm2IW3TtICSW9udd3MALYY6QaYbcoiYk7N66mlyXsB9wCXAS8BfwVcKWlDRMwt5ukDVF7WEOYCH5L0roh4AKAIkROB70fEq0W9XYDngL8HngcmA+cAOwOfrriaG5G0c7FezwKzinU7E1gk6a3epWetcuCYtSgi5g28liTgLuANwMdpfdfXAlKAzAAeKMqOBnaqXWZELAOW1Xz+PcCLwGWSPhcRr7T4+QCnA1sBh0fE88Xy7wVWAzOBy9tYto1h3qVm1iJJEyR9S9LjwMvFYxbwllaXWWw9/CdpK0dF8XTgceD+ms/eTNLpklZIerH47P8LjCOFXjuOABYCa4vdcFsALwA/Aaa0uWwbwxw4Zq27ihQGXweOAt4N/CuwdZvLnQv8OXCQpK2B44G5sfGl3U8HLgD+A3g/cABwWjGt3c/fGfgwfwrRgcf7gD3bXLaNYd6lZtaCIgiOAz4TEZfVlHfij7g7SMdPZgC7A9szeBfdB4F5EXF2zWfvP8xyXwVeAV5XKt+p9P5/gAeB8+ssY80wn2HWkAPHrDVbAZsDrx1Al7Q9aWujrZtMRcSrkv6DFCp7ACsi4qelauNqP7sw5Ai5iAhJTwFvq2nz5sBhpaq3k7aqHvYAAeskB45ZCyLiBUk/Bs6WtAbYAMwmHevYoQMfMRf4DGl02tl1pi8CPiVpKfAL4G+BSU0s9z+BWZIeIh0X+jiwTanOPwOnAHdIuhR4GtgNOAToi4h/r7w2ZjhwzNpxCnAFcDXwO+BS0o/3Zzqw7PtIo8ImAfPqTD8HeD1pt1cA1wL/ANwwzHLPJh2jOR/4I/AtYDnwsYEKEfEbSQcC/wRcAuwIPAPcDTS89I7ZcJT7FtOS3gR8ATgQ+Avg7jrnN9Sbbzzpy38CabDDTcBpEfG7Ur3jga8Cbyb95XduRFzTyXUwM7PqRmKU2n7ANODR4tGsa4CppL/EZpJGBG3015ykg4HrSGdjHwvMB+ZKOqrdRpuZWXtGYgtns4jYULy+Fth5uC0cSQcB9wKHRMRdRdkBwA+BIyPitqJsIbBlRBxWM+/NwA4RcXA31sfMzJqTfQtnIGwqOhZ4diBsiuX8CPhlMY3iku2HAuUDmvNI5zOMb63FZmbWCaPlxM/JwMo65SuKaQD7AFvWqbeCtJ4tn/1tZmbtGy2j1CaQri9V1g/sXVOHOvX6S9M3ImkW6XIkjBs37l177tn6idQbNmxgs81GS4aPLPdVNe6v5rmvqmm3vx599NHnImKXZuqOlsCB+ifTqU55+b0alKfCiCtIQ1uZMmVKLF26tOUG9vX1MXXq1JbnH0vcV9W4v5rnvqqm3f4qriXYlNHyZ0A/6VyAsh350xZNf01ZuQ7U30IyM7NMRkvgrORPx2pq1R7beYx0gcFyvcmks8CrDME2M7MOGy2BswDYrTjPBgBJU0jHbxbAa5d1v5N0/ala04H7IuKFTG01M7M6sh/DkbQN6cRPSBcm3EHSycX7myNinaRVwOKIOBUgIu4rzrG5WtLnSVssFwBLBs7BKXwF6JN0Cemk0GnF45iur5iZmQ1pJAYN7Eq6h0etgfdvJF0/agvSlXhrzQAuJt1v5LVL29RWiIglRXh9FfgU6TydUyLi1g6238zMWpA9cCJiNX8aOdaozqQ6Zc8DHy0eQ817A8NfwNDMzDIbLcdwzMxslHPgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFtkDR9K+km6XtE7S05LOk7T5MPPMkRQNHl+sqXdVgzqTu79mZmY2lC1yfpikCcBtwHLgeGAf4Buk4DtriFm/A9xSKjsBOANYUCpfCXy0VLa6tRabmVmnZA0c4JPAOOCkiFgDLJK0AzBH0oVF2SAR8STwZG2ZpC8DKyNiWan6HyLi/i603czM2pB7l9qxwMJSsMwjhdAhzS5E0k7AkcDczjbPzMy6JXfgTCbt8npNRDwBrCumNetkYEtSWJXtK2mNpPWSlkhqOsjMzKx7cu9SmwA8X6e8v5jWrBnATyLi0VL5g8APSceIdgFOJ+22OzgiflRvQZJmAbMAJk6cSF9fX4VmbGzt2rVtzT+WuK+qcX81z31VTc7+yh04AFGnTA3KB1eUdiftfjtj0IIjvlmqO58UPmeSBhkMbkzEFcAVAFOmTImpU6c204y6+vr6aGf+scR9VY37q3nuq2py9lfuXWr9wI51ysdTf8unng+RAuqa4SpGxIvAzcA7m22gmZl1R+7AWUnpWI2kPYFtKR3bGcIMYElE/KrC5za19WRmZt2TO3AWAEdL2r6mbDrwIrB4uJklTQIOpMnRaZLGkUbGPVC1oWZm1lm5A+cyYD1wvaQjigP2c4CLaodKS1ol6bt15p8BvAJcW54gabykuyV9QtLhkqYDdwJ7AOd3YV3MzKyCrIMGIqJf0uHApcCNpOM2F5NCp9yuepe7mQHcHhG/rTNtPfBb0hULdgVeAu4DDomIpR1ZATMza1n2UWoRsRw4bJg6kxqUv2OIeV4CTmqrcdYzJs2eD8Dqrx03wi0xswG+WrSZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWVRKXAk1bvcjJmZ2bCqbuE8JelCSW/rSmvMzKxnVQ2cy4GTgZ9J+qGkWZJ26EK7zMysx1QKnIg4JyL2Bo4EHgEuAp6R9H1JR3SjgWZm1htaGjQQEXdExN8CuwGfBd4KLJS0WtIcSX/WyUaamdno1+4otSnA+0i3je4H7gY+BqyS9JE2l21mZj2kcuBI2kvSOZIeA24Hdgf+DviziPjfwF6kYz1f72hLzcxsVKt0AzZJd5C2aJ4ErgKujIjHa+tExKuSfgB8rlONNDOz0a/qHT+fA6YBiyIihqi3DHhjy60yM7OeU3WX2qXAvfXCRtJ2kt4HEBEvl7d8zMxsbKsaOHcC+zaY9tZiupmZ2SBVA0dDTNsOWNdGW8zMrIcNewyn2E02taboY5KOKVXbGjgOeLhzTTMzs17SzKCB95BO7gQI4IPAK6U6fwRWAl/oXNPMzKyXDBs4EfF1inNqJP0SODEilnW7YWZm1lsqDYuOCA91NjOzljRzDGcasCQi1hSvhxQRN3ekZWZm1lOa2cK5CTgQ+FHxOmg8Wi0A36TNzMwGaSZw3gg8U/PazMyssmYGDTxe77WZmVkVzRzD2abKAiPCJ3+amdkgzexSW0s6NtMsH8MxM7NBmgmcv6Na4JiZmQ3SzDGcqzK0w8zMely7t5g2MzNrSjODBn4EzIyI5ZJ+zDC71yLigE41zszMekczx3D+G3ix5rWP55iZWWXNHMP5aM3rmV1tjZmZ9ayWj+Eo2UXSUDdlMzMzA1oIHEnTJN0LvAT8GnhJ0r2Sjut468zMrGdUChxJnwBuJJ0M+jnSzdg+V7z/r2K6mZnZIJXuhwOcCVwREZ8qlV8m6TLgS8DlHWmZmZn1lKq71F4PXN9g2nXATsMtQNK+km6XtE7S05LOkzTk5XAkTZIUdR7z6tQ9XtLDkl6StFzS9KbWzMzMuqrqFs6dwCHAojrTDgHuGmpmSROA24DlwPHAPsA3SMF3VhOf/3ngnpr3z5WWfzAp+L4NnAZMA+ZK6o+IW5tYvpmZdUkzJ37uW/P2W8B3JL0euAH4DbArcCJwLPCxYRb3SWAccFJErAEWSdoBmCPpwqJsKI9ExP1DTP8ycFdEnFa8v1PSfsDZgAPHzGwENbOF8zM2PtlTwCeKR/nun7cw9NWijwUWloJlHnABaQvpxibaU5ekrYBDSVs2teYBV0oaHxEvtLp8MzNrTzOBc2gHP28ycEdtQUQ8IWldMW24wLlS0k6kLau5wJciYuAqCPsAWwIrS/OsIO2yewvw4/aab2ZmrWrmSgOLO/h5E4Dn65T3F9MaWQ/8C2m32BpgKnAGKWSOr1k2dZbfX5q+EUmzgFkAEydOpK+vb6j2D2nt2rVtzT+WdLuvTn/7KwA98+/h71bz3FfV5OyvqoMGXiNpM2DrcnkTd/ysdy02NSgfWOYzwGdqivokPQt8W9I7ImLZEMtXg/KBZV8BXAEwZcqUmDp16tCtH0JfXx/tzD+WdLuvZs6eD8DqD3fvM3Lyd6t57qtqcvZX1RM/JekMSauAl4Hf13kMpR/YsU75eOpv+Qzl2uL5nTXLps7yB95XXb6ZmXVQ1fNwTgNmA98lbTn8E3Ae8CiwmmLX1BBWko7VvEbSnsC2DD72MpwoPT9GCsHJpXqTgQ1FG83MbIRUDZyPA+cAFxbvb4iIc4H9SIHx5mHmXwAcLWn7mrLppNsfVD1WdHLx/ABARKwnnSf0wVK96cB9HqFmZjayqh7DeSOwLCJelfQyxe6qiNgg6dvAd0hbQI1cRtpKul7SBcDewBzgotqh0sUuu8URcWrxfg6wPemkzzXA+4AvANdHxE9rlv8V0vGdS0jnCU0rHsdUXE8zM+uwqls4vwO2K14/AfxlzbQJpJM6G4qIfuBw0rk6NwLnAheTtppqbcHG5/OsJJ2ncyVwM3AK8PXiuXb5S0hbPkcAC4H3A6f4KgNmZiOv6hbOPcC7ST/6PyBdIWAn4I/Ap4Hbh1tARCwHDhumzqTS+3mkEziHFRE3kLZuzMxsE1I1cOYAexSvzyftUptJ2rJZBHy2Uw0zM7PeUilwIuIR4JHi9XrSvXA+14V2mZlZj2nnxM83ALsDT0fEU51rkpmZ9aJWbjH9KUm/Ah4Hfgg8IelJSf+n460zM7OeUfVKA2cDl5LOpzkOmFI8LwC+VUw3MzMbpOoutU8D50fEl0vltxTXNvs06coDZmZmG6m6S20cje/quZg6F/M0MzOD6oFzA3BSg2kfAG5qrzlmZtarmrnF9LSatwuACyVNYvAtpvcD/rHzTTQzs17QzDGcmxh8K+k9gKPr1P0e6U6cZmZmG2kmcN7Y9VaYmVnPa+YW04/naIiZmfW2ylcakLQFaYDAwcBOwP8Ad5NuFfBKZ5tnZma9olLgSNoVuBXYn3SHz2eBg0jn3zwk6aiI+G2nG2lmZqNf1WHRFwGvB94TEXtHxEERsTfwnqL8ok430MzMekPVwJkGnBERP64tLN5/kXSZGzMzs0GqBs5WwO8bTPs98Lr2mmNmZr2qauDcD5whadvawuL9GcV0MzOzQaqOUjsduBP4laRbSYMGdiWdBCpgakdbZ2ZmPaPSFk5ELAPeDFwB7AIcSQqcy4A3R8RDHW+hmZn1hKa3cCRtCRwA/DIiZnevSWZm1ouqbOG8CtwBvK1LbTEzsx7WdOBExAbg58DE7jXHzMx6VdVRal8Czpb09m40xszMelfVUWpnka4osEzSU6RRalFbISIO6FDbzMysh1QNnJ8VDzMzs0qaChxJ40iXtfkZ8Gvgtoh4tpsNMzOz3tLMLab3Bm4DJtUUr5H0oYi4tVsNMzOz3tLMoIELgQ3AXwPbAPsBDwKXd7FdZmbWY5oJnIOAsyLinoh4KSJWAJ8A/lzS7t1tnpmZ9YpmAmd34BelssdI107breMtMjOzntTseTgxfBUzM7PGmh0WvVDSK3XKby+XR8Su7TfLzMx6TTOBc27XW2FmZj1v2MCJCAeOmZm1req11MzMzFriwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLInvgSNpX0u2S1kl6WtJ5kjYfZp53S7pS0qpivkcknSNp61K9OZKizuOY7q6VmZkNp+oN2NoiaQLpVgfLgeOBfYBvkILvrCFmnV7UvQD4ObA/8JXi+QOlui8A5YBZ0W7bzcysPVkDB/gkMA44KSLWAIsk7QDMkXRhUVbPBRHx25r3fZJeAi6XtFdEPF4z7ZWIuL87zTczs1bl3qV2LLCwFCzzSCF0SKOZSmEz4MHi2dduMzMbBXIHzmRgZW1BRDwBrCumVfFe0o3hHimV7yjpOUkvS3pQ0kktt9bMzDpGEfnuPCDpZeALEXFJqfxJ4OqIOLPJ5ewG/BS4OSJm1pR/hLTFswzYjnSjuGnAByLi+gbLmgXMApg4ceK75s2bV3W1XrN27Vq22267lucfS7rdVw8/9QIAb99jfNc+Iyd/t5rnvqqm3f469NBDH4iIKc3UHYnA+XxEfLNU/hRwVUR8qYllvI408OANwLsion+IugLuBcZFxDuGW/aUKVNi6dKlw1VrqK+vj6lTp7Y8/1jS7b6aNHs+AKu/dlzXPiMnf7ea576qpt3+ktR04OTepdYP7FinfDzw/HAzFwFyNbAfMG2osAGIlKbXA/sPN/TazMy6K/cotZWUjtVI2hPYltKxnQYuJg2nPjIimqk/wHcsNTMbYbm3cBYAR0vavqZsOvAisHioGSV9Efgs8JGIWNLMhxVbRCcCD0XEq6012czMOiH3Fs5lwGnA9ZIuAPYG5gAX1Q6VlrQKWBwRpxbvTwHOB64CnpJ0YM0yHxsYNi1pMXAdaWtpW+DjwIHACd1dLTMzG07WwImIfkmHA5cCN5KO21xMCp1yu2qPuRxVPM8sHrU+SgoigFXA3wO7k4ZM/wQ4LiIWdKL9ZmbWutxbOETEcuCwYepMKr2fyeCgqTffqW00zczMushXizYzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHBs1Jo0ez6TZs8f6WaYWZMcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwDEzsywcOGZmloUDx8zMsnDgmJlZFg4cMzPLwoFjZmZZOHDMzCwLB46ZmWXhwLExZ9Ls+UyaPX+km2E25jhwzMwsCweOmZllscVIN8BsKLW7vlZ/7bgRbImZtSv7Fo6kfSXdLmmdpKclnSdp8ybmGy/pSkn9kl6Q9H1Jr69T73hJD0t6SdJySdO7syZmZlZF1sCRNAG4DQjgeOA84HTg3CZmvwaYCnwMmAm8G7ihtPyDgeuAO4FjgfnAXElHdWQFzMysZbl3qX0SGAecFBFrgEWSdgDmSLqwKBtE0kHA0cAhEXFXUfYU8ENJR0TEbUXVLwN3RcRpxfs7Je0HnA3c2r3Vsl4xsAvPu+/MOi/3LrVjgYWlYJlHCqFDhpnv2YGwAYiIHwG/LKYhaSvgUODfS/POAw6SNL795lu3jIahygNt3NTbabapyr2FMxm4o7YgIp6QtK6YduMQ862sU76imAawD7BlnXorSMH6FuDHrTV7bGv0V3+nynvFUOvXzLRG0816hSIi34dJLwNfiIhLSuVPAldHxJkN5lsE/CEiTiiVfw/YOyLeK+mvgCXAX0bEspo6bwJ+DhwdEYN2q0maBcwq3r4VeKTlFYSdgefamH8scV9V4/5qnvuqmnb7a6+I2KWZiiMxLLpewqlBeSvzld9riPmJiCuAK4b57KZIWhoRUzqxrF7nvqrG/dU891U1Ofsr9zGcfmDHOuXjgedbmG/Hmvn6a8rKdRhm+WZm1mW5A2clfzrmAoCkPYFtqX+MpuF8hdpjO48BL9epNxnYADzaQnvNzKxDcgfOAuBoSdvXlE0HXgQWDzPfbsV5NgBImgLsXUwjItaTzr/5YGne6cB9EfFC+80fVkd2zY0R7qtq3F/Nc19Vk62/cg8amAAsB34GXEAKjIuASyLirJp6q4DFEXFqTdktpJFmnydtsVwA/CYi/rqmzsFAH3Ap6aTQaUX9Y+oNGDAzs3yybuFERD9wOLA5aQj0ucDFwDmlqlsUdWrNIG0F/StwNfAAcGJp+UuAk4EjgIXA+4FTHDZmZiMv6xaOmZmNXb49QYkvLlpNK/0l6d1FX60q5ntE0jmSti7VmyMp6jyO6e5adUeLfTWpQR/Mq1PX363G35mQ9MWaelc1qFNvcNImT9KbJF0u6SFJr0rqa3K+rL9bvj1BjZqLiy4nXVx0H+AbpGA+a4hZIV1c9K2ki4sOHGO6ASgfY7oO+DZwGukY01xJ/aNxt18b/TW9qHsB6aTc/YGvFM8fKNV9ASgHzIp2255bm98tSMci76l5v9GJev5uveY7wC2lshOAMygGGNVYCXy0VLa6tRaPuP1I/+b3A6+rMF/e362I8KN4AF8knc+zQ03ZPwLrasvqzHcQ6cTS99WUHVCUHVFTthC4ozTvzcCSkV73zP21S52yWUV/7VVTNgd4bqTXc4T7alLRL/9rmOX7u9V4WfOBFaWyq4ClI72eHeyvzWpeXwv0NTFP9t8t71LbmC8uWk1L/RURv61T/GDxvGvnmrdJafW7NSx/txqTtBNwJDC3s83btETEhhZmy/675cDZ2KCLhEbEE6S/qobat9upi4uONq32Vz3vJW3Sl69lt6Ok5yS9LOlBSSe13NqR1W5fXVnsm39G0kWSxtVM83ersZNJfTPomBewr6Q1ktZLWiKpreAfhbL/bjlwNjaB+pfA6S+mtTPfwHO5Xn9p+mjSan9tRNJuwJeAfyv9RbuKtBvlQ6RjO08D143S0Gm1r9YD/wKcSjql4HLgU2z8A+rvVmMzgJ9ERPlKIw+Sbv74N8CHSadhLJJ0QAttHa2y/2550MBgm9TFRUeBVvsrVZReR9pcXwv8w0YLjvheqe6NwL2kG+pd30pjR1jlvoqIZ4DP1BT1SXoW+Lakd0TNldHrLGesf7d2J+1+O2PQgiO+Wao7nzRA4UzSIIOxIuvvlrdwNuaLi1bTan8BIEmkk3j3A6ZFOjG4oUhHK68H9m9mqPompq2+Krm2eH5nzbKps/wx+90qfIj0w3jNcBUj4kXSgfB3Dle3h2T/3XLgbMwXF62m1f4acDFpyOvxEdFM/QGj8S/2dvuqVpSe/d2qbwZpJNWvKnzuaPxutSr775YDZ2O9fnHRTmu1vyhOwvss8JFIlyQaVrFFdCLwUES82lqTR0zLfVXHycXzA+DvVj2SJgEH0uTotGIQxrEUfTpG5P/dGunx45vSg3QA7BlgEel6bLNIxxa+Wqq3CvhuqewW4BfASaR9wI8Ad5fqHAy8AlwCTAUuJP2VcNRIr3vO/gJOIf0leSXpR6H2sUtNvcWkE82OIgXNzUV/vX+k1z1jX80hnfB4UjHfeaQf3ev83ar/f7Eon036y7zeOV/jgbuBT5AGYkwnnTC5Hpgy0uveYn9tQ/pD5GTgPuC/a95v06ivcv9ujXhHbWoPYF/gjuI/9TOkM+A3L9VZDVxVKtux+AF9HlgD/ADYuc7yTyBdLXs9abN1xkivc+7+Ip10Fw0eM2vqfbf4z/Ai8IfiR+LYkV7nzH01A1hKuuLCH4sfjfOArfzdqv9/sShfBtzSYLlbk44F/qroqxeKH94DR3qd2+irSUP8n5rUqK9y/2754p1mZpaFj+GYmVkWDhwzM8vCgWNmZlk4cMzMLAsHjpmZZeHAMTOzLBw4ZmaWhQPHzMyy+P/sRLFWrSgmxQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAd0UlEQVR4nO3de7BcVZ328e/DRQi3EAQCgwxH8BJhpByNCA4jQe7hHbmIJoW+U3HQqK+KM4UOERECOpTgCGgxFlA68DJqwgwwvAMhhHA5gXBRgwRxkoBBA3IRxTkQYyAC+b1/rH1gZ6dvu7t3n/Q5z6eqq7vXXmv12iud/p29115rKyIwMzPrts1GugFmZjY6OcCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcasAUmzJQ1mrwclzS5ZfoqkKNZVJ++Nkh5qsP0SSUOStmrxs98kKSQdXabNZt3iAGO26ZgD/IWk/YobJG0OnARcFxHret4yszY4wJhtOv4fsBaYXmPbocBEUhAy6wsOMGZtknSQpP+S9JSkP0paKukj7dYXEWuAG4FpNTZPB54B7sg+ew9JV0j6laQXJD0i6RxJWzZo7xbZKbNPFdK/Juk3hbS9JF2dnZJbK2m+pDe3u282Nm0x0g0w25RFxOzc6ymFzXsBdwOXAi8CfwVcIWl9RMzJygwCKtbVwBzgw5LeFRH3A2RB4wTgBxHxSpZvF+BZ4O+B54BJwNnAzsBnSu7mBiTtnO3XM8DMbN/OABZKeqtP0VmrHGDM2hQRc4dfSxJwJ/AG4BO0fyprPilgTAfuz9KOAnbK1xkRS4Gluc+/G3gBuFTS5yPi5TY/H+A0YCvgsIh4Lqv/HmAVMAO4rIO6bQzxKTKzNkmaIOnbkh4DXsoeM4G3tFtndnTwn6SjGGXJ04DHgPtyn72ZpNMkLZf0QvbZ/xcYRwpynTgcWACsyU6rbQE8D/wUmNxh3TaGOMCYte9K0o//N4AjgXcD/wps3WG9c4A/Bw6StDVwHDAnNlz6/DTgfOA/gA8ABwCnZts6/fydgY/wWtAcfrwP2LPDum0M8SkyszZkP/zHAp+NiEtz6d34o+120vjHdGB3YHs2PuX2IWBuRJyV++z9m9T7CvAy8LpC+k6F9/8DPACcV6OO1U0+w+xVDjBm7dkK2Bx4dcBb0vako4mObrIUEa9I+g9SENkDWB4RPytkG5f/7EzDK9giIiQ9Cbwt1+bNgfcXst5GOmp6yAP61gkHGLM2RMTzkn4CnCVpNbAemEUaq9ihCx8xB/gs6eqxs2psXwh8WtIS4JfA3wIDLdT7n8BMSQ+SxnU+AWxTyPPPwMnA7ZIuAZ4CdgMOAQYj4t9L742NSQ4wZu07GbgcuAr4PXAJ6cf6s12o+17SVVsDwNwa288GXk86jRXANcA/ANc3qfcs0hjLecCfgG8Dy4CPD2eIiN9KOhD4J+BiYEfgaeAuoO5SNmZF6vUtkyW9CfgicCDwF8BdNeYX1Co3nvRlP550ccKNwKkR8ftCvuOArwFvJv1ld05EXN3NfTAzs+ZG4iqy/YCpwCPZo1VXA1NIf2nNIF2xs8Ffa5IOBq4lzXY+BpgHzJF0ZKeNNjOzckbiCGaziFifvb4G2LnZEYykg4B7gEMi4s4s7QDgR8AREXFrlrYA2DIi3p8rexOwQ0QcXMX+mJlZbT0/ghkOLiUdAzwzHFyyen4M/CrbRraE+aFAcQByLmk+wfj2WmxmZu3ol4mWk4AVNdKXZ9sA9gG2rJFvOWk/255dbWZm5fXLVWQTSOszFQ0Be+fyUCPfUGH7BiTNJC3vwbhx4961557tT1Rev349m23WLzF7ZLmvynF/tc59VU6n/fXII488GxG71NrWLwEGak9eU4304nvVSU+JEZeTLjVl8uTJsWTJkrYbODg4yJQpU9ouP5a4r8pxf7XOfVVOp/2VrcVXU7+E+SHStfhFO/LaEctQLq2YB2ofAZmZWUX6JcCs4LWxlrz82MyjpAX5ivkmkWZZl7kk2szMOtQvAWY+sFs2zwUASZNJ4y/z4dVlzu8grd+UNw24NyKe71FbzcyMERiDkbQNaaIlpIX8dpB0Uvb+pohYK2klsCgiTgGIiHuzOS5XSfoC6YjkfGDx8ByYzFeBQUkXkyZhTs0eR1e+Y2ZmtoGRGOTflXQPi7zh928krb+0BWml2rzpwEWk+228ulRMPkNELM6C1deAT5PmyZwcEbd0sf1mZtaCngeYiFjFa1d21cszUCPtOeBj2aNR2etpvuCfmZlVrF/GYMzMrM84wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVkleh5gJO0r6TZJayU9JelcSZs3KTNbUtR5fCmX78o6eSZVv2dmZpa3RS8/TNIE4FZgGXAcsA/wTVKgO7NB0e8CNxfSjgdOB+YX0lcAHyukrWqvxWZm1q6eBhjgU8A44MSIWA0slLQDMFvSBVnaRiLiCeCJfJqkrwArImJpIfsfI+K+CtpuZmYl9PoU2THAgkIgmUsKOoe0WomknYAjgDndbZ6ZmXVLrwPMJNIprFdFxOPA2mxbq04CtiQFp6J9Ja2WtE7SYkktBy4zM+ueXp8imwA8VyN9KNvWqunATyPikUL6A8CPSGM8uwCnkU7DHRwRP65VkaSZwEyAiRMnMjg4WKIZG1qzZk1H5ccS91U57q/Wua/KqbK/eh1gAKJGmuqkb5xR2p10Ou30jSqO+FYh7zxSsDmDdFHAxo2JuBy4HGDy5MkxZcqUVppR0+DgIJ2UH0vcV+W4v1rnviqnyv7q9SmyIWDHGunjqX1kU8uHSQHp6mYZI+IF4Cbgna020MzMuqPXAWYFhbEWSXsC21IYm2lgOrA4In5d4nNbOjoyM7Pu6XWAmQ8cJWn7XNo04AVgUbPCkgaAA2nx6jFJ40hXrt1ftqFmZtaZXgeYS4F1wHWSDs8G2GcDF+YvXZa0UtL3apSfDrwMXFPcIGm8pLskfVLSYZKmAXcAewDnVbAvZmbWQE8H+SNiSNJhwCXADaRxl4tIQabYrlrLx0wHbouI39XYtg74HWlFgF2BF4F7gUMiYklXdsDMzFrW86vIImIZ8P4meQbqpL+jQZkXgRM7apyNGgOz5gGw6uvHjnBLzMYur6ZsZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpUoFWAk1Vq+xczMbCNlj2CelHSBpLdV0hozMxs1ygaYy4CTgJ9L+pGkmZJ2qKBdZmbW50oFmIg4OyL2Bo4AHgYuBJ6W9ANJh1fRQDMz609tDfJHxO0R8bfAbsDngLcCCyStkjRb0p91s5FmZtZ/Or2KbDLwPtJtkIeAu4CPAyslfbTDus3MrI+VDjCS9pJ0tqRHgduA3YG/A/4sIv43sBdprOYbXW2pmZn1lVI3HJN0O+mI5QngSuCKiHgsnyciXpH0Q+Dz3WqkmZn1n7J3tHwWmAosjIhokG8p8Ma2W2VmZn2v7CmyS4B7agUXSdtJeh9ARLxUPLIxM7OxpWyAuQPYt862t2bbzczMSgcYNdi2HbC2g7aYmdko0nQMJjvtNSWX9HFJRxeybQ0cCzzUvaaZmVk/a2WQ/z2kyZQAAXwIeLmQ50/ACuCL3WuamZn1s6YBJiK+QTanRdKvgBMiYmnVDTMzs/5W6jLliPClx2Zm1pJWxmCmAosjYnX2uqGIuKkrLTMzs77WyhHMjcCBwI+z10H9q8kC8E3JzMyspQDzRuDp3GszM7OmWhnkf6zWazMzs0ZaGYPZpkyFEeHJlmZm1tIpsjWksZVWeQzGzMxaCjB/R7kAY2Zm1tIYzJU9aIeZmY0ynd4y2czMrKZWBvl/DMyIiGWSfkKT02URcUC3GmdmZv2rlTGY/wZeyL32eIyZmTXVyhjMx3KvZ1TaGjMzGzXaHoNRsoukRjchMzOzMap0gJE0VdI9wIvAb4AXJd0j6diut87MzPpWqQAj6ZPADaTJl58n3Xzs89n7/8q2m5mZlbsfDHAGcHlEfLqQfqmkS4EvA5d1pWVmZtbXyp4iez1wXZ1t1wI7NatA0r6SbpO0VtJTks6V1HB5GUkDkqLGY26NvMdJekjSi5KWSZrW0p6ZmVlXlT2CuQM4BFhYY9shwJ2NCkuaANwKLAOOA/YBvkkKdGe28PlfAO7OvX+2UP/BpED3HeBUYCowR9JQRNzSQv1mZtYlrUy03Df39tvAdyW9Hrge+C2wK3ACcAzw8SbVfQoYB5wYEauBhZJ2AGZLuiBLa+ThiLivwfavAHdGxKnZ+zsk7QecBTjAmJn1UCtHMD9nw8mVAj6ZPYp3t7yZxqspHwMsKASSucD5pCOgG1poT02StgIOJR255M0FrpA0PiKeb7d+MzMrp5UAc2gXP28ScHs+ISIel7Q229YswFwhaSfSkdMc4MsRMbzKwD7AlsCKQpnlpFNwbwF+0lnzzcysVa3M5F/Uxc+bADxXI30o21bPOuBfSKe5VgNTgNNJQeW4XN3UqH+osH0DkmYCMwEmTpzI4OBgo/Y3tGbNmo7KjyVV99Vpb38ZYNT8e/i71Tr3VTlV9lfZQf5XSdoM2LqY3sIdLWutZaY66cN1Pg18Npc0KOkZ4DuS3hERSxvUrzrpw3VfDlwOMHny5JgyZUrj1jcwODhIJ+XHkqr7asaseQCs+kh1n9FL/m61zn1VTpX9VXaipSSdLmkl8BLwhxqPRoaAHWukj6f2kU0j12TP78zVTY36h9+Xrd/MzDpQdh7MqcAs4HukI4N/As4FHgFWkZ1qamAFaazlVZL2BLZl47GTZqLw/Cgp6E0q5JsErM/aaGZmPVI2wHwCOBu4IHt/fUScA+xHChBvblJ+PnCUpO1zadNItwMoO9ZzUvZ8P0BErCPN0/lQId804F5fQWZm1ltlx2DeCCyNiFckvUR2+iki1kv6DvBd0hFOPZeSjoKuk3Q+sDcwG7gwf+lydgpuUUSckr2fDWxPmmS5Gngf8EXguoj4Wa7+r5LGZy4mzdOZmj2OLrmfZmbWobJHML8HtstePw78ZW7bBNIkyroiYgg4jDRX5gbgHOAi0lFR3hZsOJ9mBWmezBXATcDJwDey53z9i0lHNocDC4APACd7Fr+ZWe+VPYK5G3g36Uf+h6QZ+DsBfwI+A9zWrIKIWAa8v0megcL7uaQJk01FxPWkoxczMxtBZQPMbGCP7PV5pFNkM0hHLguBz3WrYWZm1t9KBZiIeBh4OHu9jnQvmM9X0C4zM+tznUy0fAOwO/BURDzZvSaZmdlo0M4tkz8t6dfAY8CPgMclPSHp/3S9dWZm1rfKzuQ/C7iENJ/lWGBy9jwf+Ha23czMrPQpss8A50XEVwrpN2drg32GNLPfzMzGuLKnyMZR/66Vi6ix+KWZmY1NZQPM9cCJdbZ9ELixs+aYmdlo0cotk6fm3s4HLpA0wMa3TN4P+MfuN9HMzPpRK2MwN7LxrZH3AI6qkff7pDtNmpnZGNdKgHlj5a0wM7NRp5VbJj/Wi4aYmdnoUnomv6QtSAP6BwM7Af8D3EVaOv/l7jbPzMz6VakAI2lX4BZgf9IdLJ8BDiLNf3lQ0pER8btuN9LMzPpP2cuULwReD7wnIvaOiIMiYm/gPVn6hd1uoJmZ9aeyAWYqcHpE/CSfmL3/EmnZGDMzs9IBZivgD3W2/QF4XWfNMTOz0aJsgLkPOF3StvnE7P3p2XYzM7PSV5GdBtwB/FrSLaRB/l1Jky4FTOlq68zMrG+VOoKJiKXAm4HLgV2AI0gB5lLgzRHxYNdbaGZmfanlIxhJWwIHAL+KiFnVNcnMzEaDMkcwrwC3A2+rqC1mZjaKtBxgImI98AtgYnXNMTOz0aLsVWRfBs6S9PYqGmNmZqNH2avIziTN2F8q6UnSVWSRzxARB3SpbWZm1sfKBpifZw8zM7OGWgowksaRlon5OfAb4NaIeKbKhpmZWX9r5ZbJewO3AgO55NWSPhwRt1TVMDMz62+tDPJfAKwH/hrYBtgPeAC4rMJ2mZlZn2slwBwEnBkRd0fEixGxHPgk8OeSdq+2eWZm1q9aCTC7A78spD1KWntst663yMzMRoVW58FE8yxmZmavafUy5QWSXq6RflsxPSJ27bxZZmbW71oJMOdU3gozMxt1mgaYiHCAMTOz0squRWZmZtYSBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0r0PMBI2lfSbZLWSnpK0rmSNm9S5t2SrpC0Miv3sKSzJW1dyDdbUtR4HF3tXpmZWVHZG451RNIE0tL/y4DjgH2Ab5IC3ZkNik7L8p4P/ALYH/hq9vzBQt7ngWJAWd5p283MrJyeBhjgU8A44MSIWA0slLQDMFvSBVlaLedHxO9y7wclvQhcJmmviHgst+3liLivmuabmVmren2K7BhgQSGQzCUFnUPqFSoEl2EPZM9e+8zMbBPU6wAzCViRT4iIx4G12bYy3ku6EdrDhfQdJT0r6SVJD0g6se3WmplZ2xTRu5X4Jb0EfDEiLi6kPwFcFRFntFjPbsDPgJsiYkYu/aOkI5qlwHakG6NNBT4YEdfVqWsmMBNg4sSJ75o7d27Z3XrVmjVr2G677douP5ZU3VcPPfk8AG/fY3xln9FL/m61zn1VTqf9deihh94fEZNrbRuJAPOFiPhWIf1J4MqI+HILdbyOdKHAG4B3RcRQg7wC7gHGRcQ7mtU9efLkWLJkSbNsdQ0ODjJlypS2y48lVffVwKx5AKz6+rGVfUYv+bvVOvdVOZ32l6S6AabXp8iGgB1rpI8HnmtWOAsYVwH7AVMbBReASNHzOmD/ZpdCm5lZd/X6KrIVFMZaJO0JbEthbKaOi0iXNx8REa3kH+Y7cpqZ9Vivj2DmA0dJ2j6XNg14AVjUqKCkLwGfAz4aEYtb+bDsiOcE4MGIeKW9JpuZWTt6fQRzKXAqcJ2k84G9gdnAhflLlyWtBBZFxCnZ+5OB84ArgSclHZir89Hhy5glLQKuJR0NbQt8AjgQOL7a3TIzs6KeBpiIGJJ0GHAJcANp3OUiUpAptis/ZnJk9jwje+R9jBR4AFYCfw/sTrqE+afAsRExvxvtNzOz1vX6CIaIWAa8v0megcL7GWwcWGqVO6WDppmZWRd5NWUzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgrG8NzJrHwKx5I90MM6vDAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yNOQOz5jEwa95IN8Ns1HOAMTOzSjjAmJlZJbYY6QaYNZI/lbXq68eOYEvMrKyeH8FI2lfSbZLWSnpK0rmSNm+h3HhJV0gakvS8pB9Ien2NfMdJekjSi5KWSZpWzZ6YmVkjPQ0wkiYAtwIBHAecC5wGnNNC8auBKcDHgRnAu4HrC/UfDFwL3AEcA8wD5kg6sis7YGZmLev1KbJPAeOAEyNiNbBQ0g7AbEkXZGkbkXQQcBRwSETcmaU9CfxI0uERcWuW9SvAnRFxavb+Dkn7AWcBt1S3WzZaDJ+S8+k4s871+hTZMcCCQiCZSwo6hzQp98xwcAGIiB8Dv8q2IWkr4FDg3wtl5wIHSRrfefOtKv1w6fBwGzf1dpptKnp9BDMJuD2fEBGPS1qbbbuhQbkVNdKXZ9sA9gG2rJFvOSmQvgX4SXvNHtvq/VXfrfTRotH+tbKt3nazfqWI6N2HSS8BX4yIiwvpTwBXRcQZdcotBP4YEccX0r8P7B0R75X0V8Bi4C8jYmkuz5uAXwBHRcRGp8kkzQRmZm/fCjzc9g7CzsCzHZQfS9xX5bi/Wue+KqfT/torInaptWEkLlOuFdFUJ72dcsX3alCeiLgcuLzJZ7dE0pKImNyNukY791U57q/Wua/KqbK/ej0GMwTsWCN9PPBcG+V2zJUbyqUV89CkfjMz67JeB5gVvDZmAoCkPYFtqT3GUrdcJj828yjwUo18k4D1wCNttNfMzNrU6wAzHzhK0va5tGnAC8CiJuV2y+a5ACBpMrB3to2IWEea//KhQtlpwL0R8XznzW+qK6faxgj3VTnur9a5r8qprL96Pcg/AVgG/Bw4nxQgLgQujogzc/lWAosi4pRc2s2kK8G+QDoiOR/4bUT8dS7PwcAgcAlpEubULP/RtQb4zcysOj09gomIIeAwYHPSJcnnABcBZxeybpHlyZtOOsr5V+Aq4H7ghEL9i4GTgMOBBcAHgJMdXMzMeq+nRzBmZjZ2eLn+Ai/GWU47/SXp3VlfrczKPSzpbElbF/LNlhQ1HkdXu1fVaLOvBur0wdwaef3dqv+dCUlfyuW7sk6eWhcTbfIkvUnSZZIelPSKpMEWy1X6u+Xl+nNyi3EuIy3GuQ/wTVIgPrNBUUiLcb6VtBjn8BjR9UBxjOha4DvAqaQxojmShvrxNF4H/TUty3s+aRLs/sBXs+cPFvI+DxQDyvJO295rHX63II0l3p17v8HEOH+3XvVd4OZC2vHA6WQXBOWsAD5WSFvVXotH3H6kf/P7gNeVKFft71ZE+JE9gC+R5tPskEv7R2BtPq1GuYNIEznfl0s7IEs7PJe2ALi9UPYmYPFI73uP+2uXGmkzs/7aK5c2G3h2pPdzhPtqIOuX/9Wkfn+36tc1D1heSLsSWDLS+9nF/tos9/oaYLCFMpX/bvkU2Ya8GGc5bfVXRPyuRvID2fOu3WveJqXd71ZT/m7VJ2kn4AhgTnebt2mJiPVtFKv8d8sBZkMbLaoZEY+T/mpqdG62W4tx9pt2+6uW95IO0Ytrwe0o6VlJL0l6QNKJbbd2ZHXaV1dk59aflnShpHG5bf5u1XcSqW82GrMC9pW0WtI6SYsldRTo+1Dlv1sOMBuaQO0lZYaybZ2UG34u5hsqbO8n7fbXBiTtBnwZ+LfCX6wrSadFPkwam3kKuLZPg0y7fbUO+BfgFNIl/pcBn2bDH0x/t+qbDvw0IooreTxAutnh3wAfIU2LWCjpgDba2q8q/93yIP/GNqnFOPtAu/2VMkqvIx1+rwH+YYOKI75fyHsDcA/pBnLXtdPYEVa6ryLiaeCzuaRBSc8A35H0jsitHF6jnrH+3dqddDrt9I0qjvhWIe880gUFZ5AuChgrKv3d8hHMhrwYZznt9hcAkkSaNLsfMDXSRNy6Io0uXgfs38ql45uYjvqq4Jrs+Z25uqlR/5j9bmU+TPohvLpZxoh4gTRw/c5meUeRyn+3HGA25MU4y2m3v4ZdRLoE9biIaCX/sH78i7zTvsqLwrO/W7VNJ13p9OsSn9uP3612Vf675QCzodG+GGe3tdtfZJPePgd8NNISP01lRzwnAA9GxCvtNXnEtN1XNZyUPd8P/m7VImkAOJAWrx7LLpo4hqxPx4jqf7dG+vrtTelBGrB6GlhIWs9sJmls4GuFfCuB7xXSbgZ+CZxIOof7MHBXIc/BwMvAxcAU4ALSXwFHjvS+97K/gJNJfyleQfoRyD92yeVbRJrYdSQpsNyU9dcHRnrfe9hXs0kTDE/Myp1L+pG91t+t2v8Xs/RZpL+8a825Gg/cBXySdOHENNIExXXA5JHe9zb7axvSHx4nAfcC/517v029vqr6d2vEO2ZTewD7Ardn/4mfJs0w37yQZxVwZSFtx+wH8zlgNfBDYOca9R9PWk16HekwdPpI73Ov+4s0yS3qPGbk8n0v+/K/APwx+1E4ZqT3ucd9NR1YQlrR4E/Zj8S5wFb+btX+v5ilLwVurlPv1qSxvF9nffV89kN74Ejvcwd9NdDg/9RAvb6q+nfLi12amVklPAZjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrx/wGIP416oij7pAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1329,7 +1331,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm0XGWZ7/Hvj9FASJiHppEwaS60XiUBAWlImAlLEQSDXL0dhSRgL+EqIsgYUFyCi6Ft9JKg4mXZGFpM0zIECHACRBFMAgoNYZJB0EbAAxjCEOC5f7z7wKZS59Suc6p27dT5fdbaq6re/e5dT1VOznP2O21FBGZmZu22SqcDMDOz4cEJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZiWQdKikWyW9KOl1SQ9L+pakDVv8Pk9Iimx7Q9Ijks6VtHYr38dsMJxwzNpM0vnAz4E/AJ8H9gMuBD4BXNqGt7wC2BXYB7gc+ArwL214H7OmyBM/zdpH0ieAXwJHRcSPa/atCuwXEXNb+H5PAFdFxNdyZZcAU4C1IuLtVr2XWbN8hWPWXl8BFtcmG4CIeCsi5kp6XNJ5tfslXSXpjuz52pIulvSQpGXZMd+XNKpADL8D1gQ2GuqHMRsKJxyzNpG0OrAbcEODqv8OfEaScseOBCYBV2ZFawGrAqcCBwKnA3uRmuoaeT/wN+D5ZuI3a7XVOh2AWRfbgHRl8VSDerOBrwMfA36TlX0iO/bnABHxHHBs3wGSVgMeBxZIen9E5N9D2f41gD2AY4BzIuKtIX8isyHwFY5Z+w3YURoR9wAPA5NzxZOB+RHxbF+BpM9LukfSUmA5sCDb9YGaU3412/8KMBfoiYhzh/YRzIbOCcesfV4AXic1aTVyJXC4klHAAaQrHwAkHUIacXYncDiwC3BItvt9Nef6KbATMAG4DDhE0rGYdZgTjlmbRMRy4FfA/gWqzwY2B3YHPkXqr5mT2384cFdEfCki5kbEXUBvP+d6NiIWRsRtEfFF4FbgbM/FsU5zwjFrr4uA8ZL+qXaHpFUkHQAQEQ8A95Oa0iYD8yLihVz1EaSrpbz/VTCGbwAbAkc1GbtZS3nQgFkbRcQ1ki4AfiTp48B/AkuBsaTO/Cd4dxTblcDxwGhgas2p5gHfl3QqcBdpBNveBWO4W9I84CuSvu/BA9YpvsIxa7OIOIF01bIdaRWAecAJwC3kRp6RmtU2BN4Grq45zUzgfFJCmgNsCRzZRBjfAsYAn2n6A5i1SOkrDUjaFjiR1On5D8AdETGhwHGjSc0TnyIlymuB42qaHZB0MOk/13akpUTOiogrMTOzjurEFc4OpOaAh7OtqCtJo26OJi3TsRM1fwVK2h34BdBDmhx3HfAzSfsNNWgzMxuaTlzhrNK3npOkq4ANG13hSNoV+DWwZ0TcnpXtTGrL3jcibs7KbgRWj4i9csdeD4yKiN3b8XnMzKyY0q9wBrl44IGkoZ63585zN2mm9YEAktYEJpKWCcmbDeyaNcmZmVmHrCyDBsYCS+qUP5jtA9gGWL1OvQdJn7N2NraZmZVoZRkWvR7wYp3yXmDrXB3q1Out2f8ekqYB0wBGjBgxbostthgwkLfffptVVllZ8nQyHGJe5+HUHfi3D3Tu74rh8D1XgWMuR9GYH3744ecjotBK5CtLwoH661GpTnnta/VTngojZgGzAMaPHx8LFy4cMIj58+czYcKERrFWyrCIuW+h5Yceaks8RQyL77kCHHM5isYs6cmi51xZUm4vsG6d8nV594qmN1dWWwfqXyGZmVlJVpaEs4R3+2ry8n07j5FWyK2tN5Y0ka6ZIdhmZtZiK0vCmQtsms2zAUDSeFL/zVyAiHidNP/m8JpjJwN3RsRLJcVqZmZ1lN6HI2kt0sRPSKvjjpJ0WPb6+ohYJulR4LaIOAogIu7M5thcLulrpCuWc4EFfXNwMt8E5ku6iDQpdFK2HdD2D2ZmZgPqxKCBjVnxtrh9r7ciLWa4Gml59rwjgAuBH5Nb2iZfISIWZMnrW6Q1qh4HjoyIm1oYv1VRyROYzax5pSeciHiCd0eO9VdnTJ2yF4EvZNtAx17NigsfmplZh60sfThmZraSc8Kx7jBuXNrMrLJWpomfZv1bvLjTEZhZA77CMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhUepWXeYOrXTEZhZA0441h1mzep0BGbWgJvUzMysFE441h0WLUqbmVWWm9SsO4wfnx69arRZZfkKx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCg+Ltu6wcGGnIzCzBpxwrDv49tJmlecmNTMzK4UTjnWHadPSZmaV5YRj3eHSS9NmZpXlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgpP/LTusOOOnY7AzBpwwrHu4NtLm1Wem9TMzKwUTjhmZlYKJxzrDlLazKyynHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqXwSgPWHWbO7HQEZtaAE451B99e2qzySm9Sk7S9pFskLZP0J0lnS1q1wTEzJEU/2zdy9X7ST52x7f9kZmY2kFKvcCStB9wMPAAcDGwDnE9KfKcNcOgPgRtqyj4FnATMrSlfAnyhpuyJwUVsK41Zs9Kjr3TMKqvsJrVjgBHAoRHxMjBP0ihghqTzsrIVRMTTwNP5MkmnA0si4t6a6q9ExG/aELtV2fTp6dEJx6yyym5SOxC4sSaxzCYloT2LnkTS+sC+wM9aG56ZmbVL2QlnLKnJ6x0R8RSwLNtX1GHA6qRkVWt7SS9Lel3SAkmFE5mZmbWPIqK8N5OWAydGxEU15U8Dl0fEKQXPcyswOiLG1ZQfD7xB6iPaCDgBGAfsHhF393OuacA0gE022WTc7Nn1cti7li5dysiRI4uEWRnDIeYJEycCML+np10hNTQcvucqcMzlKBrzxIkTF0XE+EInjYjSNmA5cHyd8meAcwqeYzPgLeBrBeqOAB4Hri5y7nHjxkUjPT09DetUzbCIGdLWQcPie64Ax1yOojEDC6NgDii7Sa0XWLdO+WjgxYLn+Awg4MpGFSPiVeB6wDe8NzPrsLITzhJq+mokbQGsTU3fzgCOABZExB+beN/y2g3NzKyushPOXGB/SevkyiYDrwK3NTpY0hhgFwqOTpM0gjQyblGzgdpKpq9Rzcwqq+yEcwnwOjBH0j5Zh/0M4ILIDZWW9KikH9U5/gjgTeCq2h2SRku6Q9J0SXtLmgz0AJsD327DZzEzsyaUOvEzInol7Q1cDFxD6re5kJR0auOqt9zNEcAtEfFcnX2vA8+RVizYGHgNuBPYMyIWtuQDmJnZoJW+eGdEPADs1aDOmH7KPzLAMa8Bhw4pOFt5jctGyC9KradjTr7unV1PfOegTkRkZjW8WrR1h8WLOx2BmTXgG7CZmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCo9SsO0yd2ukIzKwBJxzrDn23mDazynKTmpmZlaKphCOp3nIzZp23aNE7qwyYWTU126T2jKTLgcsi4sF2BGQ2KOOzGw56xWizymq2SW0mcBhwv6S7JE2TNKoNcZmZWZdpKuFExJkRsTWwL/AQcAHwZ0n/JmmfdgRoZmbdYVCDBiLi1oj438CmwJeBDwI3SnpC0gxJf9fKIM3MbOU31FFq44E9SLeN7gXuAI4GHpX0uSGe28zMukjTCUfSlpLOlPQYcAuwGfBF4O8i4vPAlqS+nu+2NFIzM1upNTVKTdKtpCuap4GfkEarPZmvExFvSboCOL5VQZqZ2cqv2WHRzwOTgHkRA44/vRfYatBRmTVroe8iblZ1zSaci4HF9ZKNpJHAjhFxe0QsB55c4Wizdum7xbSZVVazfTg9wPb97Ptgtt/MzGwFzSYcDbBvJLBsCLGYDd60aWkzs8pq2KQmaQ9gQq7oaEkH1FR7H3AQcF/rQjNrwqWXpkevGm1WWUX6cD5GmtwJEMDhwJs1dd4AlgAnti40MzPrJg0TTkR8l2xOjaTHgUMi4t52B2ZmZt2lqVFqEeGhzmZmNihF+nAmAQsi4uXs+YAi4vqWRGZmZl2lyBXOtcAuwN3Z86D/0WoB+CZtZma2giIJZyvgz7nnZtWz446djsDMGigyaODJes/NKsW3lzarvCJ9OGs1c8KI8ORPMzNbQZEmtaWkvpmi3IdjZmYrKJJwvkhzCcesfMrGsQy4iLmZdVKRPpyflBCHmZl1uaHeYtrMzKyQIoMG7gamRMQDkn5Lg+a1iNi5VcGZmVn3KNKH81/Aq7nnbiQ3M7OmFenD+ULu+ZS2RmNmZl1r0H04SjaSNNBN2czMzIAmV4uGdxbzPA0Ylx3/pqRFwDkRcV2L4zMrZubMTkdgZg00lXAkTQd+ANwCHA/8BdgYOBT4paQvRYT/51v5fHtps8pr9grnFGBWRBxbU36JpEuAUwEnHDMzW0GzfTgbAHP62fcLYP1GJ5C0vaRbJC2T9CdJZ0sacDkcSWMkRZ1tdp26B0u6T9Jrkh6QNLnQJ7OV26xZaTOzymr2CqcH2BOYV2ffnsDtAx0saT3gZuAB4GBgG+B8UuI7rcD7fw34Ve718zXn352U+H4AHAdMAn4mqTcibipwfltZTZ+eHt20ZlZZRSZ+bp97+T3gh5I2AK7m3T6cQ4ADgaMbnO4YYARwaES8DMyTNAqYIem8rGwgD0XEbwbYfzpwe0Qcl73ukbQDcAbghGNm1kFFrnDu572TPQVMz7bau3/ewMCrRR8I3FiTWGYD55KukK4pEE9dktYEJpKubPJmA5dJGh0RLw32/GZmNjRFEs7EFr7fWODWfEFEPCVpWbavUcK5TNL6pCurnwGnRkTfKgjbAKsDS2qOeZDUZPcB4LdDC9/MzAZLUeJy7pKWAydGxEU15U8Dl0fEKf0ctxlpBNxNwMvABOAk4KaIODir83FgAfDRiLg3d+y2wCPA/vX6cSRNA6YBbLLJJuNmz15hHMJ7LF26lJEjRxb6vFUxHGKeMDH9XTS/pweA+55592L2Q5uPbm1w/RgO33MVOOZyFI154sSJiyJifKGTRsSgNtJVw1q1W4NjlgPH1yl/hjRxtJn3P5bUpPeR7PXHs9f/s6bedln5vo3OOW7cuGikp6enYZ2qGRYxpzvhvPNyy5OufWcry7D4nivAMZejaMzAwij4e7upYdHZcjYnSXo0Sx5/q7MNpBdYt075aODFZmIBrsoed8ydmzrn73vd7PnNzKyFmp2HcxxwMvAj0mCBc4CzgYeBJ8iapgawhNRX8w5JWwBrs2LfSyNR8/gYKQmOrak3Fng7i9G6Vd81jplVVrMJZypwJnBe9vrqiDgL2IGUMLZrcPxcYH9J6+TKJpNuf3Bbk7Eclj0uAoiI10nzhA6vqTcZuDM8Qs3MrKOanfi5FXBvRLyVDQBYFyAi3pb0A+CHpCug/lxCukqaI+lcYGtgBnBB5IZKZ012t0XEUdnrGcA6pEmfLwN7ACcCcyLi97nzfxOYL+ki0jyhSdl2QJOf08zMWqzZK5wXgL5hC08BH83tW480qbNfEdEL7E2aq3MNcBZwIemqKW813jufZwlpns5lwPXAkcB3s8f8+ReQrnz2AW4EPgkcGV5loPuNG5c2M6usZq9wfgXsRPqlfwVphYD1gTeAfyatIj2giHgA2KtBnTE1r2eTJnA2FBFXk65ubDhZvLjTEZhZA80mnBnA5tnzb5Oa1KaQrmzmAV9uVWBmZtZdmko4EfEQ8FD2/HXSPXGOb0NcZmbWZZq+42cfSX8PbAb8KSKeaV1IZmbWjZodNICkYyX9EXgSuAt4StLTkr7U8ujMzKxrNLvSwBnAxaT5NAcB47PHucD3sv1mZmYraLZJ7Z+Bb0fE6TXlN0h6Ntt/dksiM2vG1KmdjsDMGmg24Yyg/7t63oZHqVmn+PbSZpXXbB/O1cCh/ez7NHDt0MIxM7NuVeQW05NyL+cC50kaw4q3mN4B+HrrQzQrYNGi9OjVBswqq0iT2rWseCvpzYH969T9KelOnGblGp/d/8krRptVVpGEs1XbozAzs67XMOFExJNlBGJmZt2t6ZUGJK1GGiCwO7A+8FfgDtKtAt5sbXhmZtYtmko4kjYGbgI+TLrD57PArqT5N7+TtF9EPNfqIM3MbOXX7LDoC4ANgI9FxNYRsWtEbA18LCu/oNUBmplZd2g24UwCToqI3+YLs9ffIC1zY2ZmtoJm+3DWBP7Wz76/AWsMLRyzQVq4sNMRmFkDzSac3wAnSbo1Il7pK5S0NnBStt+sfJ7waVZ5zSacE4Ae4I+SbiINGtiYNAlUwISWRmdmZl2jqT6ciLgX2A6YBWwE7EtKOJcA20XE71oeoVkR06alzcwqq/AVjqTVgZ2BxyPi5PaFZDYIl16aHr1qtFllNXOF8xZwK/A/2hSLmZl1scIJJyLeBh4BNmlfOGZm1q2anYdzKnCGpA+1IxgzM+tezY5SO420osC9kp4hjVJ7z3rwEbFzi2IzM7Mu0mzCuT/bzMzMmlIo4UgaQVrW5n7gv4GbI+LZdgZm1pQdd+x0BGbWQJFbTG8N3AyMyRW/LOkzEXFTuwIza0rfLabNrLKKDBo4D3gb+EdgLWAH4B5gZhvjMjOzLlMk4ewKnBYRv4qI1yLiQWA68H5Jm7U3PDMz6xZFEs5mwB9qyh4jrZ22acsjMhsMKW1mVllF5+FE4ypmZmb9Kzos+kZJb9Ypv6W2PCI2HnpYZmbWbYoknLPaHoWZmXW9hgknIpxwzMxsyJpdS83MzGxQnHDMzKwUza6lZlZNMz0P2azqnHCsO/j20maV5yY1MzMrhROOdYdZs9JmZpVVesKRtL2kWyQtk/QnSWdLWrXBMTtJukzSo9lxD0k6U9L7aurNkBR1tgPa+6ms46ZPT5uZVVapfTiS1iPd6uAB4GBgG+B8UuI7bYBDJ2d1zwUeAT4MfDN7/HRN3ZeA2gTz4FBjNzOzoSl70MAxwAjg0Ih4GZgnaRQwQ9J5WVk950bEc7nX8yW9BsyUtGVEPJnb92ZE/KY94ZuZ2WCV3aR2IHBjTWKZTUpCe/Z3UE2y6XNP9ui128zMVgJlJ5yxwJJ8QUQ8BSzL9jVjN9KN4R6qKV9X0vOSlku6R9Khg47WzMxaRhHl3XlA0nLgxIi4qKb8aeDyiDil4Hk2BX4PXB8RU3LlnyNd8dwLjCTdKG4S8OmImNPPuaYB0wA22WSTcbNnzx7wvZcuXcrIkSOLhFkZwyHmCRMnAjC/pweA+5556Z19H9p8dGuD68dw+J6rwDGXo2jMEydOXBQR4wudNCJK24DlwPF1yp8Bzil4jjWA20k3hVuvQV0BdwL3Fjn3uHHjopGenp6GdapmWMQMactsedK172xlGRbfcwU45nIUjRlYGAVzQNlNar3AunXKRwMvNjpYkoDLgR2ASRHRO1D97MuYA3y40dBrW8n1pRwzq6yyR6ktoaavRtIWwNrU9O3040LScOp9I6JI/T7+TWRm1mFlX+HMBfaXtE6ubDLwKnDbQAdK+gbwZeBzEbGgyJtlV0SHAL+LiLcGF7KZmbVC2Vc4lwDHAXMknQtsDcwALojcUGlJjwK3RcRR2esjgW8DPwGekbRL7pyPRTZsWtJtwC9IV0trA1OBXYBPtfdjWceNG5ceFy3qbBxm1q9SE05E9EraG7gYuIbUb3MhKenUxpXvc9kve5ySbXlfICUigEeB/wNsRhoyvRg4KCLmtiJ+q7DFizsdgZk1UPrtCSLiAWCvBnXG1LyewoqJpt5xRw0hNDMzayOvFm1mZqVwwjEzs1I44ZiZWSmccMzMrBSlDxowa4upUzsdgZk14IRj3cG3lzarPDepmZlZKZxwrDssWuRVBswqzk1q1h3GZ7fj8IrRZpXlKxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJqttMacfN07z5/oXBhmVpATjnWHhQs7HYGZNeCEY92h7xbTZlZZ7sMxM7NSOOFYd5g2LW1mVllOONYdLr00bWZWWU44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmal8MRP6w477tjpCMysAScc6w6+vbRZ5blJzczMSuGEY2ZmpXDCse4gpc3MKssJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCq80YN1h5sxOR2BmDTjhWHfw7aXNKs8Jx4adMSdf987zJ75zUAcjMRte3Idj3WHWrLSZWWX5Cse6w/Tp6dFNa2aV5YRjlebmL7PuUXqTmqTtJd0iaZmkP0k6W9KqBY4bLekySb2SXpL0b5I2qFPvYEn3SXpN0gOSJrfnk5iZWTNKTTiS1gNuBgI4GDgbOAE4q8DhVwITgKOBKcBOwNU1598d+AXQAxwIXAf8TNJ+LfkAZmY2aGU3qR0DjAAOjYiXgXmSRgEzJJ2Xla1A0q7A/sCeEXF7VvYMcJekfSLi5qzq6cDtEXFc9rpH0g7AGcBN7ftY1i3chGfWPmUnnAOBG2sSy2zgXGBP4JoBjnu2L9kARMTdkh7P9t0saU1gInBczbGzgcskjY6Il1r0OayF8r/kobq/6J2MzIam7IQzFrg1XxART0lalu3rL+GMBZbUKX8w2wewDbB6nXoPkpoOPwD8dnBhD2/9/aJtVXk3GHPydZzwoTeZkn3G/j537b7a/d32vZjlKSLKezNpOXBiRFxUU/40cHlEnNLPcfOAVyLiUzXlPwW2jojdJH0cWAB8NCLuzdXZFngE2D8iVmhWkzQN6BtL+0HgoQYfY0Pg+QZ1qsYxl8Mxl8Mxl6NozFtGxEZFTtiJYdH1Mpz6KR/McbWv1U95KoyYBRSeMShpYUSML1q/ChxzORxzORxzOdoRc9nDonuBdeuUjwZeHMRx6+aO682V1dahwfnNzKzNyk44S3i3zwUASVsAa1O/j6bf4zL5vp3HgOV16o0F3gYeHkS8ZmbWImUnnLnA/pLWyZVNBl4Fbmtw3KbZPBsAJI0Hts72ERGvk+bfHF5z7GTgzhaOUFsZF+xyzOVwzOVwzOVoecxlDxpYD3gAuJ80FHpr4ALgoog4LVfvUeC2iDgqV3YDaaTZ10hXLOcCf4mIf8zV2R2YD1xMmhQ6Kat/QL0BA2ZmVp5Sr3AiohfYG1iVNAT6LOBC4MyaqqtldfKOIF0F/Ri4HFgEHFJz/gXAYcA+wI3AJ4EjnWzMzDqv1CscMzMbvnw/nAIkjZJ0lqS7s4VD/1vSf0j6QJ26hRYZLSnuyZLmSPqzpJA0pZ96m2efZ6mk5yVdLGmtksMd9MKuZZG0raSZkn4n6S1J8+vUkaRTJP1R0quSbpf0kQ6Ei6TDJf1S0jPZv+0iSZ+tU2+qpEeyBW8XSdq7E/FmsRwm6deSXsjieUjSaZLWyNWpzHdcT/b/aWn2f25krrwycUuaksVXux3TznidcIp5PzCV1Ex3GDAd2Iy0ltsWNXUbLjJaosOAMcC1/VWQtBrpc21JGmBxPGngRamdnBrawq5l2YHUL/gw/Y96PJm0pt+5wCeApaSllzYtJcL3+mr2/l8hNS/3AFdI+nJfBUlHAJeQmqkPBP4LuFbSP5QfLgAbkOI8Oovnx8CppL7ePlX6juv5LimmWlWMey9g19w2J7ev9fFGhLcGG2nY9oiasvWzf4Azc2W7kn5h7pEr2zkr26cDca+SPY7MYphSp85ngbeArXJlnyENzNiuxFi/QZpLNSpX9nVgWb6swz8Hq+SeXwXMr9n/PuAl4Iyan53ngG91IN4N65RdATyee/0Q8OP8ZwTuA37a6e87F9M5pHl0qtp3XCfWfwT+ShqsFMDIiv5sTMnHV2d/W+L1FU4BEfFKRLxaU/ZX4Elg41xx3UVGgb5FRksVEW8XqHYg8NuIeDxXdjXwBnBAWwLrP456C7uOIC3s2nEFvs/dgFHAv+eOeYU0QKYT//71liW5h+xnVtLWpJGf+XjfBn5OB+IdwAtAX5Napb7jvKz5919JV+e1331l4+5HW+J1whkkSRsB25KGefcpssho1awQc0S8QZpIW2bM9eJ4inSFU9XvrtZY0tXiIzXlVfr33413f2b7Yqq34O362c94R0haVdJa2VSH44D/G+nP7Cp/x8eQrgy+X2dfVeN+TNKbWV/Z9Fx5W+L1LaYH73xSk9rsXNl61F9Cp5c056iKBop5vWEYx1CsByyNiLdqynuBtSStkSXzjsgGAxwMfDEr6vtea7/33tz+50oIrZ5XgDWz55cDJ2bPK/kdZwODvgl8LiKWS6qtUrW4/0zqn7mbNAXls8AlktaKiAvbFe+wTTiSRpM6/gcUEStcsUg6Fvgc8OmIeKH2kHpv1095U4YSc6ND6r1dP+XtVJU4hqK/z9DfvlJIGkPqv/nPiPhJze6mFrwtyW7AWqQ+0DNIk7m/lO2r4nd8DnBXRFw/QJ3KxB0RN5IGC/WZq3RPsdMk/csAMQ0p3mGbcEgjsS4tUO89f6pI+iSpnfakiPiPmrq9QL1miPwio0MxqJgbKLIwahkGu7BrlfQC60hateYvw3WBZRGxvBNBSVqftATUU6Q/lPrkF7zNL/3U8QVvI2Jx9nSBpOeB/yfpfCr4HSvdVfiLwB6S+r67vmkFoyW9RQXjruMq0oChMbQp3mHbhxMRP4wINdryx0jajdSEdklEfLfOaYssMlpqzAXUW1B1DVIT4JBjHmIcRRZ2rZIlpOaJbWvKW/LvPxjZfKprSZ3uB2Udv336Yqq34O1fI6JTzWm1+pLPVlTwOwa2I9388U7SL+pe3u3HeZr0B2oV4+5P0KZ4h23CaVb2V8y1wA2seBvrPg0XGa2gucBOkrbMlX2S1H5+Q8lxDGZh1yr5NfAyuQVks1/4n6AD//7ZHKufk34hHhgRf8nvj4g/kOYT5eNdJXtdpZ/Xj2ePj1Ox7zizgHR7+/x2brZvEmleThXjrvVp0ui6J2lTvMO5Sa0wSRuTfvkuBb4H7JzrFHw5Ih4AiIg7Jd0IXC4pv8jogoi4uQNxbw9sTxo5AzBe0lLguYjo+yV+FWli3RxJp5OasC4EroiI2hEq7XQJKZHPkdS3sOsM4IKaodIdk/3WVBloAAABUklEQVSHm5S93BwYJemw7PX1EbFM0neA0yX1kv4S/CrpD7t/LT1g+AEp3uNJo852ye27J9IK6zOAn0p6AvgV8E+kBHVkuaEmSov03kyagPoWKdmcAFwZEY9ldar0HfcNP5+fL8v6zADuiIilWVll4pb0C9KAgd+TrmQmZ9tx2dD419oSbxmTjFb2jbRyQPSzza+puy5wGan9+2VSR+0KE/BKintGwZj/njT3ZilpzsP3gbU6EO/2wK2kq5o/k0b9rNrpf/9cfGMG+DkYk9URKYE/nX2OO0i3Pe9EvE80ijerNxV4FHid1Hy1dwe/42+SVpNfmv0fWgx8GVg9V6cy3/EAn2MKNRMrqxQ38G3SpN9lWSyLgM/X1Gl5vF6808zMSuE+HDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWiv8PBF6ohXaEv4IAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5RcZZnv8e+PmwZCAiggwyABRXNg9CgJKMhAIigQlyIIRjl6JgpJwFnCUUSQa0BxCS4u46AHgoqH5WgYMcMoEO4dIIpgElAZCDe5CDoK2IAhXAI85493N2x2qruqumvv2l39+6y1V1W9+927nqp0+un93rYiAjMzs05bq9sBmJlZb3KCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrhROMWQUkHSDpeklPSnpe0j2SvibpjR1+nwclRba9IOleSadL2qCT72PWCicYs5JJOhP4CfB74NPAB4GzgQ8DF5Twlj8CdgH2Ai4CvgD8SwnvYzYkeaKlWXkkfRj4GXBIRHy/sG9t4IMRsaiD7/cgcElEfClXdh4wC1g/Il7u1HuZNeMrGLNyfQFYXkwuABHxUkQskvSApDOK+yVdIumm7PkGks6VdLekVdkx35Y0oYUYfgO8Dth0pB/GrB1OMGYlkbQusCtwZZOq/w58XJJyx44HZgAXZ0XrA2sDxwP7AicC7yc1vTXzZuBvwOPtxG82Uut0OwCzHvYG0pXDw03qLQC+DLwH+FVW9uHs2J8ARMRjwOEDB0haB3gAWCLpzRGRfw9l+9cDdgcOA06LiJdG/InM2uArGLPyDdnRGRG3AfcAM3PFM4HFEfHngQJJn5Z0m6SVwGpgSbbrbYVTfjHb/wywCOiLiNNH9hHM2ucEY1aeJ4DnSU1UzVwMHKRkArAP6coGAEn7k0aE3QwcBLwX2D/b/frCuX4I7ARMAy4E9pd0OGYVc4IxK0lErAZ+AezdQvUFwJbAbsBHSf0tC3P7DwJuiYjPRcSiiLgF6B/kXH+OiKURcUNEfBa4HjjVc2Gsak4wZuU6B5gq6Z+KOyStJWkfgIi4E7iD1DQ2E7gmIp7IVR9HuhrK+18txvAV4I3AIW3GbjYi7uQ3K1FE/FzSWcD3JL0P+E9gJTCZ1Pn+IK+OMrsYOBKYCMwunOoa4NuSjgduIY0w27PFGG6VdA3wBUnfdme/VcVXMGYli4ijSFcl25Fm2V8DHAVcR25kGKmZ7I3Ay8ClhdOcD5xJSkALga2Bg9sI42vAJODjbX8As2GqfCa/pLcCR5M6Kf8BuCkiprVw3ERSc8NHSYnxMuCIQjMCkvYj/WfajrQ0xykRcTFmZlapblzB7EC6vL8n21p1MWlUzKGkZS92ovBXnqTdgJ8CfaTJaJcDP5b0wZEGbWZm7enGFcxaA+shSboEeGOzKxhJuwC/BPaIiBuzsp1JbdEfiIhrs7KrgHUj4v25Y68AJkTEbmV8HjMza6zyK5hhLra3L2no5Y2589xKmsm8L4Ck1wHTSctu5C0Adsma2MzMrCKjpZN/MrCiQfld2T6AtwDrNqh3F+lzFmc7m5lZiUbLMOWNgScblPcD2+bq0KBef2H/a0iaA8wBGDdu3JStttpqyEBefvll1lprtOTlZCzEvOE9qTvvb2/r3t8RY+F7rgPHXI1WY77nnnsej4iGK3WPlgQDjddzUoPy4msNUp4KI+YD8wGmTp0aS5cuHTKIxYsXM23atGax1sqYiHlgIeK77y4lnlaMie+5BhxzNVqNWdJDg+0bLSm1H9ioQflGvHrF0p8rK9aBxldAZmZWktGSYFbwal9LXr5v5n7SCrLFepNJE9faGRJtZmYjNFoSzCLgTdk8FwAkTSX1vywCiIjnSfNfDiocOxO4OSKeqihWMzOjC30wktYnTbSEtHrsBEkHZq+viIhVku4DboiIQwAi4uZsjstFkr5EuiI5HVgyMAcm81VgsaRzSJMwZ2TbPqV/MDMze41udPJvxpq3eR14vQ1p8b91SMuV530COBv4PrmlYvIVImJJlqy+Rlrj6QHg4Ii4uoPxWx1VPGHYzJqrPMFExIO8OrJrsDqTGpQ9CXwm24Y69lLWXCjQzMwqNlr6YMzMbJRxgrHeMGVK2sysNkbTREuzwS1f3u0IzKzAVzBmZlYKJxgzMyuFE4yZmZXCCcbMzErhBGNmZqXwKDLrDbNndzsCMytwgrHeMH9+tyMwswI3kZmZWSmcYKw3LFuWNjOrDTeRWW+YOjU9elVls9rwFYyZmZXCCcbMzErhBGNmZqVwgjEzs1I4wZiZWSmcYMzMrBQepmy9YenSbkdgZgVOMNYbfLtks9pxE5mZmZXCCcZ6w5w5aTOz2nCCsd5wwQVpM7PacIIxM7NSOMGYmVkpnGDMzKwUTjBmZlYKJxgzMyuFJ1pab9hxx25HYGYFTjDWG3y7ZLPacROZmZmVwgnGzMxK4QRjvUFKm5nVhhOMmZmVwgnGzMxK4QRjZmalcIIxM7NSOMGYmVkpnGDMzKwUnslvveH887sdgZkVOMFYb/Dtks1qp/ImMknbS7pO0ipJf5R0qqS1mxwzT1IMsn0lV+8Hg9SZXP4nMzOzvEqvYCRtDFwL3AnsB7wFOJOU6E4Y4tDvAlcWyj4KHAMsKpSvAD5TKHtweBHbqDF/fnr0lYxZbVTdRHYYMA44ICKeBq6RNAGYJ+mMrGwNEfEI8Ei+TNKJwIqIuL1Q/ZmI+FUJsVudzZ2bHp1gzGqj6iayfYGrColkASnp7NHqSSRtAnwA+HFnwzMzs06pOsFMJjVhvSIiHgZWZftadSCwLik5FW0v6WlJz0taIqnlxGVmZp2jiKjuzaTVwNERcU6h/BHgoog4rsXzXA9MjIgphfIjgRdIfTybAkcBU4DdIuLWQc41B5gDsPnmm09ZsKBRznrVypUrGT9+fCth1sZYiHna9OkALO7rKyukpsbC91wHjrkarcY8ffr0ZRExteHOiKhsA1YDRzYofxQ4rcVzbAG8BHyphbrjgAeAS1s595QpU6KZvr6+pnXqZkzEDGnrojHxPdeAY65GqzEDS2OQ36lVN5H1Axs1KJ8IPNniOT4OCLi4WcWIeBa4AvAN283MKlZ1gllBoa9F0lbABhT6ZobwCWBJRPyhjfetrh3QzMyA6hPMImBvSRvmymYCzwI3NDtY0iTgvbQ4ekzSONLItWXtBmqjzEAjmZnVRtUJ5jzgeWChpL2yDvZ5wFmRG7os6T5J32tw/CeAF4FLijskTZR0k6S5kvaUNBPoA7YEvl7CZzEzsyFUOtEyIvol7QmcC/yc1O9yNinJFONqtHzMJ4DrIuKxBvueBx4jrQiwGfAccDOwR0Qs7cgHMDOzllW+2GVE3Am8v0mdSYOUv2uIY54DDhhRcDZ6TclGrC9LraGTjr38lV0PfuND3YjIbMzzasrWG5Yv73YEZlbgG46ZmVkpnGDMzKwUTjBmZlYKJxgzMyuFE4yZmZXCo8isN8ye3e0IzKzACcZ6w8Atk82sNtxEZmZmpWgrwUhqtHyLWfctW/bKLH4zq4d2m8gelXQRcGFE3FVGQGbDMjW7oZ5XVDarjXabyM4HDgTukHSLpDmSJpQQl5mZjXJtJZiIODkitgU+ANwNnAX8SdK/SdqrjADNzGx0GlYnf0RcHxH/G3gT8Hng7cBVkh6UNE/S33UySDMzG31GOopsKrA76TbI/cBNwKHAfZI+NcJzm5nZKNZ2gpG0taSTJd0PXAdsAXwW+LuI+DSwNamv5psdjdTMzEaVtkaRSbqedMXyCPAD0miyh/J1IuIlST8CjuxUkGZmNvq0O0z5cWAGcE3EkONBbwe2GXZUZu1a6rtim9VNuwnmXGB5o+QiaTywY0TcGBGrgYfWONqsLAO3TDaz2mi3D6YP2H6QfW/P9puZmbWdYDTEvvHAqhHEYjZ8c+akzcxqo2kTmaTdgWm5okMl7VOo9nrgQ8DvOheaWRsuuCA9elVls9popQ/mPaTJlAABHAS8WKjzArACOLpzoZmZ2WjWNMFExDfJ5rRIegDYPyJuLzswMzMb3doaRRYRHnpsZmYtaaUPZgawJCKezp4PKSKu6EhkZmY2qrVyBXMZ8F7g1ux5MPhosgB8UzIzM2spwWwD/Cn33Kx+dtyx2xGYWUErnfwPNXpuViu+XbJZ7bTSB7N+OyeMCE+2NDOzlprIVpL6VlrlPhgzM2spwXyW9hKMWfWUjTsZcpFvM6tSK30wP6ggDjMz6zEjvWWymZlZQ6108t8KzIqIOyX9mibNZRGxc6eCMzOz0auVPpj/Ap7NPXcjt5mZNdVKH8xncs9nlRqNmZn1jGH3wSjZVNJQNyEzM7Mxqq3VlOGVxS9PAKZkx78oaRlwWkRc3uH4zFpz/vndjsDMCtpKMJLmAt8BrgOOBP4CbAYcAPxM0uciwv/TrXq+XbJZ7bR7BXMcMD8iDi+UnyfpPOB4wAnGzMza7oN5A7BwkH0/BTZpdgJJ20u6TtIqSX+UdKqkIZeXkTRJUjTYFjSou5+k30l6TtKdkma29MlsdJs/P21mVhvtXsH0AXsA1zTYtwdw41AHS9oYuBa4E9gPeAtwJinRndDC+38J+EXu9eOF8+9GSnTfAY4AZgA/ltQfEVe3cH4brebOTY9uKjOrjVYmWm6fe/kt4LuS3gBcyqt9MPsD+wKHNjndYcA44ICIeBq4RtIEYJ6kM7KyodwdEb8aYv+JwI0RcUT2uk/SDsBJgBOMmVmFWrmCuYPXTq4UMDfbine3vJKhV1PeF7iqkEgWAKeTroB+3kI8DUl6HTCddOWStwC4UNLEiHhquOc3M7P2tJJgpnfw/SYD1+cLIuJhSauyfc0SzIWSNiFdOf0YOD4iBlYZeAuwLrCicMxdpCa4twG/Hln4ZmbWKkWFy5tLWg0cHRHnFMofAS6KiOMGOW4L0gi1q4GngWnAMcDVEbFfVud9wBLg3RFxe+7YtwL3Ans36oeRNAeYA7D55ptPWbBgjXEDr7Fy5UrGjx/f0ueti7EQ87Tp6e+gxX19APzu0VcvVt+x5cTOBjeIsfA914FjrkarMU+fPn1ZRExtuDMihrWRrgrWL25NjlkNHNmg/FHSRM123v9wUhPdu7LX78te/89Cve2y8g80O+eUKVOimb6+vqZ16mZMxJzuBPPKy62PueyVrSpj4nuuAcdcjVZjBpbGIL9T2xqmnC0Pc4yk+7Jk8bcG21D6gY0alE8EnmwnFuCS7HHH3LlpcP6B1+2e38zMRqDdeTBHAMcC3yN17p8GnArcAzxI1tQ0hBWkvpZXSNoK2IA1+06aicLj/aSkN7lQbzLwchaj9aqBaxgzq412E8xs4GTgjOz1pRFxCrADKUFs1+T4RcDekjbMlc0k3Q7ghjZjOTB7XAYQEc+T5ukcVKg3E7g5PILMzKxS7U603Aa4PSJeyjrsNwKIiJclfQf4LukKZzDnka6CFko6HdgWmAecFbmhy1kT3A0RcUj2eh6wIWmS5dPA7sDRwMKI+G3u/F8FFks6hzRPZ0a27dPm5zQzsxFq9wrmCWBgWMHDwLtz+zYmTaIcVET0A3uS5sr8HDgFOJt0VZS3Dq+dT7OCNE/mQuAK4GDgm9lj/vxLSFc2ewFXAR8BDg7P4u99U6akzcxqo90rmF8AO5F+yf+INAN/E+AF4J9JqywPKSLuBN7fpM6kwusFpAmTTUXEpaSrFxtLli/vdgRmVtBugpkHbJk9/zqpiWwW6crlGuDznQrMzMxGt7YSTETcDdydPX+edE+YI0uIy8zMRrm272g5QNLfA1sAf4yIRzsXkpmZ9YJ2O/mRdLikPwAPAbcAD0t6RNLnOh6dmZmNWu3O5D8JOJc0n+VDwNTscRHwrWy/mZlZ201k/wx8PSJOLJRfKenP2f5TOxKZWTtmz+52BGZW0G6CGcfgd628AY8is27x7ZLNaqfdPphLgQMG2fcx4LKRhWNmZr2ilVsmz8i9XAScIWkSa94yeQfgy50P0awFy5alR8/mN6uNVprILmPNWyNvCezdoO4PSXeaNKvW1Ox+R15R2aw2Wkkw25QehZmZ9ZymCSYiHqoiEDMz6y1tz+SXtA6pQ383YBPgr8BNpKXzX+xseGZmNlq1lWAkbQZcDbyTdAfLPwO7kOa//EbSByPisU4HaWZmo0+7w5TPAt4AvCcito2IXSJiW+A9WflZnQ7QzMxGp3YTzAzgmIj4db4we/0V0rIxZmZmbffBvA742yD7/gasN7JwzIZp6dJuR2BmBe0mmF8Bx0i6PiKeGSiUtAFwTLbfrHqeYGlWO+0mmKOAPuAPkq4mdfJvRpp0KWBaR6MzM7NRq60+mIi4HdgOmA9sCnyAlGDOA7aLiN90PEKzVsyZkzYzq42Wr2AkrQvsDDwQEceWF5LZMFxwQXr0qspmtdHOFcxLwPXA/ygpFjMz6yEtJ5iIeBm4F9i8vHDMzKxXtDsP5njgJEnvKCMYMzPrHe2OIjuBNGP/dkmPkkaRvWZ99IjYuUOxmZnZKNZugrkj28zMzIbUUoKRNI60TMwdwH8D10bEn8sMzKwtO+7Y7QjMrKCVWyZvC1wLTMoVPy3p4xFxdVmBmbVl4JbJZlYbrXTynwG8DPwjsD6wA3AbcH6JcZmZ2SjXSoLZBTghIn4REc9FxF3AXODNkrYoNzwzMxutWkkwWwC/L5TdT1p77E0dj8hsOKS0mVlttDoPJppXMTMze1Wrw5SvkvRig/LriuURsdnIwzIzs9GulQRzSulRmJlZz2maYCLCCcbMzNrW7lpkZmZmLXGCMTOzUrS7FplZPZ3veb9mdeMEY73Bt0s2qx03kZmZWSmcYKw3zJ+fNjOrjcoTjKTtJV0naZWkP0o6VdLaTY7ZSdKFku7Ljrtb0smSXl+oN09SNNj2KfdTWdfNnZs2M6uNSvtgJG1MWvr/TmA/4C3AmaREd8IQh87M6p4O3Au8E/hq9vixQt2ngGJCuWuksZuZWXuq7uQ/DBgHHBARTwPXSJoAzJN0RlbWyOkR8Vju9WJJzwHnS9o6Ih7K7XsxIn5VTvhmZtaqqpvI9gWuKiSSBaSks8dgBxWSy4DbskevfWZmVkNVJ5jJwIp8QUQ8DKzK9rVjV9KN0O4ulG8k6XFJqyXdJumAYUdrZmbDpojqVuKXtBo4OiLOKZQ/AlwUEce1eJ43Ab8FroiIWbnyT5GuaG4HxpNujDYD+FhELBzkXHOAOQCbb775lAULFgz53itXrmT8+PGthFkbYyHmadOnA7C4rw+A3z361Cv73rHlxM4GN4ix8D3XgWOuRqsxT58+fVlETG24MyIq24DVwJENyh8FTmvxHOsBN5JugrZxk7oCbgZub+XcU6ZMiWb6+vqa1qmbMREzpC2z9TGXvbJVZUx8zzXgmKvRaszA0hjkd2rVTWT9wEYNyicCTzY7WJKAi4AdgBkR0T9U/ezDLwTe2WwotI1yAynGzGqj6lFkKyj0tUjaCtiAQt/MIM4mDW/+QES0Un+Af/OYmVWs6iuYRcDekjbMlc0EngVuGOpASV8BPg98KiKWtPJm2RXP/sBvIuKl4YVsZmbDUfUVzHnAEcBCSacD2wLzgLMiN3RZ0n3ADRFxSPb6YODrwA+ARyW9N3fO+yMbxizpBuCnpKuhDYDZwHuBj5b7sazrpkxJj8uWdTcOM3tFpQkmIvol7QmcC/yc1O9yNinJFOPK95l8MHuclW15nyElHoD7gP8DbEEawrwc+FBELOpE/FZjy5d3OwIzK6h8uf6IuBN4f5M6kwqvZ7FmYml03CEjCM3MzDrIqymbmVkpnGDMzKwUTjBmZlYKJxgzMytF5Z38ZqWYPbvbEZhZgROM9QbfLtmsdtxEZmZmpXCCsd6wbJln8ZvVjJvIrDdMzW5H4RWVzWrDVzBmZlYKJxgzMyuFE4yZmZXCCcbMzErhBGNmZqXwKDIbtSYde/krzx/sXhhmNggnGOsNS5d2OwIzK3CCsd4wcMtkM6sN98GYmVkpnGCsN8yZkzYzqw0nGOsNF1yQNjOrDScYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSeKKl9YYdd+x2BGZW4ARjvcG3SzarHTeRmZlZKZxgzMysFE4w1huktJlZbTjBmJlZKZxgzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK4Zn81hvOP7/bEZhZgROM9QbfLtmsdpxgbMyZdOzlrzx/8Bsf6mIkZr3NfTDWG+bPT5uZ1YavYKw3zJ2bHt1UZlYbTjBWa27OMhu9Km8ik7S9pOskrZL0R0mnSlq7heMmSrpQUr+kpyT9m6Q3NKi3n6TfSXpO0p2SZpbzSczMbCiVJhhJGwPXAgHsB5wKHAWc0sLhFwPTgEOBWcBOwKWF8+8G/BToA/YFLgd+LOmDHfkAZmbWsqqbyA4DxgEHRMTTwDWSJgDzJJ2Rla1B0i7A3sAeEXFjVvYocIukvSLi2qzqicCNEXFE9rpP0g7AScDV5X0s6xVukjPrnKoTzL7AVYVEsgA4HdgD+PkQx/15ILkARMStkh7I9l0r6XXAdOCIwrELgAslTYyIpzr0OayD8r/Uob6/2J18zNpTdYKZDFyfL4iIhyWtyvYNlmAmAysalN+V7QN4C7Bug3p3kZoC3wb8enhhj22D/WLtVHkvmHTs5Rz1jheZlX3GwT53cV9xf699Lza2KSKqezNpNXB0RJxTKH8EuCgijhvkuGuAZyLio4XyHwLbRsSukt4HLAHeHRG35+q8FbgX2Dsi1mgmkzQHGBjb+nbg7iYf443A403q1I1jroZjroZjrkarMW8dEZs22tGNYcqNMpoGKR/OccXXGqQ8FUbMB1qeoSdpaURMbbV+HTjmajjmajjmanQi5qqHKfcDGzUonwg8OYzjNsod158rK9ahyfnNzKzDqk4wK3i1zwQASVsBG9C4j2XQ4zL5vpn7gdUN6k0GXgbuGUa8ZmY2TFUnmEXA3pI2zJXNBJ4Fbmhy3JuyeS4ASJoKbJvtIyKeJ81/Oahw7Ezg5g6OIBuNC1455mo45mo45mqMOOaqO/k3Bu4E7iANTd4WOAs4JyJOyNW7D7ghIg7JlV1JGgn2JdIVyenAXyLiH3N1dgMWA+eSJmHOyOrv06iD38zMylPpFUxE9AN7AmuThiSfApwNnFyouk5WJ+8TpKuc7wMXAcuA/QvnXwIcCOwFXAV8BDjYycXMrHqVXsGYmdnY4fvBtEDSBEmnSLo1W2jzvyX9h6S3Najb0qKcFcU9U9JCSX+SFJJmDVJvy+zzrJT0uKRzJa1fcbjDXgi1KpLeKul8Sb+R9JKkxQ3qSNJxkv4g6VlJN0p6VxfCRdJBkn4m6dHs33aZpE82qDdb0r3ZArHLJO3ZjXizWA6U9EtJT2Tx3C3pBEnr5erU5jtuJPv/tDL7Pzc+V16buCXNyuIrbod1Ml4nmNa8GZhNanY7EJgLbEFaC22rQt2mi3JW6EBgEnDZYBUkrUP6XFuTBkQcSRooUWmnpEa2EGpVdiD1693D4KMSjyWtiXc68GFgJWkpozdVEuFrfTF7/y+Qmov7gB9J+vxABUmfAM4jNTvvC/wXcJmkf6g+XADeQIrz0Cye7wPHk/pqB9TpO27km6SYiuoY9/uBXXLbwty+kccbEd6abKRh1OMKZZtkX/jJubJdSL8gd8+V7ZyV7dWFuNfKHsdnMcxqUOeTwEvANrmyj5MGUmxXYaxfIc1lmpAr+zKwKl/W5Z+DtXLPLwEWF/a/HngKOKnws/MY8LUuxPvGBmU/Ah7Ivb4b+H7+MwK/A37Y7e87F9NppHlsqtt33CDWfwT+ShpcFMD4mv5szMrH12B/R+L1FUwLIuKZiHi2UPZX4CFgs1xxw0U5gYFFOSsVES+3UG1f4NcR8UCu7FLgBWCfUgIbPI5GC6GOIy2E2nUtfJ+7AhOAf88d8wxpQEs3/v0bLfNxG9nPrKRtSSMz8/G+DPyELsQ7hCeAgSayWn3HeVlz7r+Srr6L331t4x5ER+J1ghkmSZsCbyUNux7QyqKcdbNGzBHxAmniapUxN4rjYdIVTF2/u6LJpKvBewvldfr335VXf2YHYmq0QOwm2c94V0haW9L62dSDI4D/G+nP6Dp/x4eR/vL/doN9dY37fkkvZn1dc3PlHYnXt0wevjNJTWQLcmUb03hJmn7SnJ86GirmjcdgHCOxMbAyIl4qlPcD60taL0veXZF13u8HfDYrGvhei997f27/YxWE1sgzwOuy5xcBR2fPa/kdZwN5vgp8KiJWSypWqVvcfyL1r9xKmhLySeA8SetHxNmdinfMJhhJE0kd9UOKiDWuSCQdDnwK+FhEPFE8pNHbDVLelpHE3OyQRm83SHmZ6hLHSAz2GQbbVwlJk0j9L/8ZET8o7G5rgdiK7AqsT+rDPIk0efpz2b46fsenAbdExBVD1KlN3BFxFWlwz4BFSvfUOkHSvwwRU1vxjtkEQxopdUEL9V7zp4ikj5DaWY+JiP8o1O0HGjUr5BflHIlhxdxEKwuJVmG4C6HWST+woaS1C3/5bQSsiojV3QhK0iakJZUeJv1hNCC/QGx+KaWuLxAbEcuzp0skPQ78P0lnUsPvWOmuuZ8Fdpc08N0NDPOfKOklahh3A5eQBvhMokPxjtk+mIj4bkSo2ZY/RtKupCax8yLimw1O28qinJXG3IJGC5CuR2rSG3HMI4yjlYVQ62QFqbnhrYXyjvz7D0c2n+kyUif5h7KO2gEDMTVaIPavEdGt5rGigWSzDTX8joHtSDc7vJn0i7mfV/thHiH9QVrHuAcTdCjeMZtg2pX9lXIZcCVr3pZ5QNNFOWtoEbCTpK1zZR8htX9fWXEcw1kItU5+CTxNbsHV7Bf8h+nCv382x+knpF+A+0bEX/L7I+L3pPk8+XjXyl7X6ef1fdnjA9TsO84sId2uPb+dnu2bQZoXU8e4iz5GGv32EB2Kdyw3kbVM0makX7YrgW8BO+c68Z6OiDsBIuJmSVcBF0nKL8q5JCKu7ULc2wPbk0a2AEyVtBJ4LCIGfmlfQprItlDSiaQmqbOBH0VEcQRJmc4jJe6FkgYWQp0HnFUYutw12X+wGdnLLYEJkg7MXl8REaPLoLoAAAFDSURBVKskfQM4UVI/6S+9L5L+kPvXygOG75DiPZI0Kuy9uX23RVqBfB7wQ0kPAr8A/omUkA6uNtREaVHba0kTPl8iJZejgIsj4v6sTp2+44Hh4IvzZVmfF8BNEbEyK6tN3JJ+Surg/y3pSmVmth2RDVV/riPxVj3BZzRupJn5Mci2uFB3I+BCUvv106SO1TUmvFUU97wWY/570tyXlaQ5B98G1u9CvNsD15OuWv5EGpWzdrf//XPxTRri52BSVkekhP1I9jluIt3GuxvxPtgs3qzebOA+4HlSc9SeXfyOv0pabX1l9n9oOfB5YN1cndp8x0N8jlkUJjLWKW7g66RJtquyWJYBny7UGXG8XuzSzMxK4T4YMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSOMGYmVkpnGDMzKwUTjBmZlaK/w9NMWzBUWOSxgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1374,9 +1376,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -1388,7 +1390,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/european_call_option_pricing.ipynb b/qiskit/finance/simulation/european_call_option_pricing.ipynb index e402d2a93..f472c217c 100644 --- a/qiskit/finance/simulation/european_call_option_pricing.ipynb +++ b/qiskit/finance/simulation/european_call_option_pricing.ipynb @@ -46,8 +46,10 @@ "\\Delta = \\mathbb{P}\\left[S_T \\geq K\\right]\n", "$$\n", "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." + "The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:\n", + "\n", + "- Quantum Risk Analysis. Woerner, Egger. 2018.\n", + "- Option Pricing using Quantum Computers. Stamatopoulos et al. 2019." ] }, { @@ -118,7 +120,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEyCAYAAADOV2anAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVdn+8e8tCMQEArIERCSACqJRMFEIoCSgsr0KghAVfQ0iERXwpwgiIgRwAZTtBRUjasQtuCDKLgQCskMQCYQgAUIkKAgkwawk5Pn9cWqgUume6Z7uqWqS+3Ndfc3UqVNVT/f09NNV59Q5igjMzMz62quqDsDMzFYNTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqWoPOFI2lbSREkLJD0p6RRJq/WwzVslXZ3VXyxppqQLJW1SqDdeUtR4bNO3z8rMzIpWr/LgktYDrgOmAvsCWwFnkhLhCd1sOhB4DLgIeBLYAjgJGCrpXRGxNFd3GnBIYfsZjcS3wQYbxODBgxup2ifmz59P//79Kzt+PZ0aFzi23ujUuMCx9UbVcU2ePPmZiNiw5sqIqOwBfA2YDayTKzsWWJAva3Bf7wcCeGeubDxwd2/jGzp0aFTphhtuqPT49XRqXBGOrTc6Na4Ix9YbVcfV3Wdu1ZfU9gKuiYjnc2UTgH7Ark3u69ns5xrtCMzMzNqr6oSzDemS10siYibpDKfHdhZJr5K0hqStgdOAu4A7C9W2lfR81tZzs6RmE5mZmbWBosKx1CQtAY6JiHMK5U8AF0XE8T1sfzWwR7Y4Gdg7Ip7Orf8i8AKpjWhD4GhgKLBLRBQTU9c2Y4AxAIMGDRo6YcKE3jy1tpg3bx4DBgyo7Pj1dGpc4Nh6o1PjAsfWG1XHNXLkyMkRMazmynrX2sp4AEuAL9YonwV8q4Ht3wTsAHyCdKY0GVirm/r9SJ0NLm0kPrfh1NapcUU4tt7o1LgiHFtvVB0XHdyGMxtYt0b5QGBOTxtHxMMRcUdE/JJ0prM98PFu6i8ErgTe2btwzcyst6pOONMotNVI2gzoT6FtpycR8TjwHLBlI9Wb2beZmbWu6oRzFbCHpLVzZaOAhcCNzewo6ziwPumSWb06/Ug94yY3H6qZmbWi0hs/gQuAo4BLJJ1OOjsZC5wVua7SkqYDN0bEodny94ClwB2kS29vId2/8wipWzWSBgKXA78EpgMbAF8CNgUOKuG5mZlZTqUJJyJmS9odOB+4jJQ8ziYlnbzVgfxwN3cDR5J6k60FzAT+AHwnIuZndRYD/yGNWLARsAi4Ddg1Iu7ui+djZmb1VX2GQ0RMBXbroc7gwvIEsjOZbrZZBOzfanxmAIOPu6LlfRw9ZCmjW9zPjNP2aTkOs6pU3YZjZmarCCccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK0XlCUfStpImSlog6UlJp0harYdt3irp6qz+YkkzJV0oaZMadfeVNEXSIklTJY3qu2djZmb1rF7lwSWtB1wHTAX2BbYCziQlwhO62XQg8BhwEfAksAVwEjBU0rsiYmm2/12APwA/AI4C9gZ+I2l2RPylT56UmZnVVGnCAQ4H+gH7R8TzwLWS1gHGSjojK1tBRNwK3JormiTpCeAvwNuBe7LybwA3RcRR2fINkt4KnJjVNTOzklR9SW0v4JpCYplASkK7NrmvZ7OfawBIWhMYCfy2UG8CMFzSwObDNTOz3qo64WwDTMsXRMRMYEG2rluSXiVpDUlbA6cBdwF3Zqu3Al5d3D/wIOl5v7m10M3MrBmKiOoOLi0BjomIcwrlTwAXRcTxPWx/NbBHtjgZ2Dsins7W7QzcDGwfEffmtnkj8DCwR612HEljgDEAgwYNGjphwoTePr2WzZs3jwEDBlR2/Ho6NS7ou9imzJrb8j4G9YOnFra2jyGbtv/EfFX8e7ZDp8ZWdVwjR46cHBHDaq2rug0HoFbGU53yoiOB1wJvInUyuErSzhGxqJv9q5vjEhHjgHEAw4YNixEjRjQQRt+YNGkSVR6/nk6NC/outtHHXdHyPo4espQzp7T2Lzfj4BEtx1G0Kv4926FTY+vUuKD6hDMbWLdG+UBgTk8bR8TD2a93SPorqefax4GfZvumxv67lnvcv5mZtU/VbTjTKLTVSNoM6M+KbS/diojHgeeALbOiR4Alxf1ny8uAf/QiXjMz66WqE85VwB6S1s6VjQIWAjc2s6Os48D6pLMcImIxcANwYKHqKOC2iGj9oryZmTWs6ktqF5BuyLxE0umks5OxwFn5rtKSpgM3RsSh2fL3gKXAHaRLY28BjiWd1eRb+U8l3aNzDnAp6cbPvYE9+/ZpmZlZUaUJJyJmS9odOB+4jJQ8ziYlnbzVgfxwN3eTOgyMAdYCZpJGFPhORMzP7f9mSR8Bvgl8jqyNx6MM2MpicJs6M7TaKWLGafu0HIet/Ko+wyEipgK79VBncGF5AsufyXS37aWksxszM6tQ1W04Zma2inDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaKpkeLljQEeDewMWlqgOdIs2feGhGzu9vWzMxWXQ0lHElbkuaTORgYRJqieQ6wGFgXeA2wTNKNwIXAxRGxrE8iNjOzV6QeL6lJuhB4ANgOOAXYHlgrIjaMiNdHxABgI+CDwBTgDOBBSbv0XdhmZvZK08gZziJgm4h4vF6FiHgGuAq4StKXgQOBTdsTopmZrQx6PMOJiCO6SzY16i+LiIsj4uJG6kvaVtJESQskPSnpFEmr9bDNuyT9TNL0bLuHJJ0kaa1CvbGSosZjz0afj5mZtUdLU0xLehuwKyDgxoiY0uT26wHXAVOBfYGtgDNJifCEbjYdldU9HXgYeDtwavbzgELduUAxwTzYTJxmZta6XiccSZ8DvgVMBPoD35V0dET8oIndHA70A/aPiOeBayWtA4yVdEZWVsvpEfGf3PIkSYuAH0navHBGtjQibm8iJjMz6wONdBp4TZ1VXwWGR8SBEbE38AXg600efy/gmkJimUBKQrvW26iQbLr8Lfu5UZMxmJlZCRq58fMfkg6uUS5S9+gu0YvjbwNMyxdExExgQbauGTtl8TxUKF9X0jOSlkj6m6T9exGnmZm1SBHd5wlJ7wXOBl4AjoqIu7LyL5C6SU8k3YezO3BsRJzX8MGlJcAxEXFOofwJ4KKIOL7B/WwM3AdcGRGjc+WfIJ3x3AsMAD4L7A0cEBGX1NnXGGAMwKBBg4ZOmDCh0afTdvPmzWPAgAGVHb+eTo0L+i62KbPmtryPQf3gqYWt7WPIpgOXW+7UuNplVXyvtarquEaOHDk5IobVWtdjwgGQJOAzpARzLfDViPiXpHfw8qWvmyLi3mYCyxLOVyLi3EL5LGB8RPR4iU7SGqSOB68HhnY32kH2PG4F+kXEdj3te9iwYXH33Xf3VK3PTJo0iREjRlR2/Ho6NS7ou9gGH3dFy/s4eshSzpzSUj8dZpy2z3LLnRpXu6yK77VWVR2XpLoJp6Gx1CL5MbA18BQwRdLxwLSI+L/s0VSyycwmjVRQNJA0kkG3sgRyEfBWYO+ehtaJlF0vAd7eU9drMzNrr6YG74yI5yPiGGBHYAdgmqSPtHD8aRTaaiRtRur1Nq3mFss7m9Sdet+IaKR+l960N5mZWQsa6qUm6ZuS7sga3ccBiyJiX+Aw4CRJN2aX15p1FbCHpLVzZaOAhcCNPcT1NeBI4BMRcXMjB8vOiD4M/D0iXuxFvGZm1kuNXLj9CbAt6Z6bBaQG9WslbRsR10najjSw57WSLo2IMU0c/wLgKOASSacDWwJjgbPyXaUlTSfdWHpotvxx4NvAeGCWpB1z+3ykq9t0NpjoH0hnS/1JCXJHYL8mYjQzszZoJOHsBRwYEdcCSLoFeJZ0p//07EzhfEm/IiWLhkXEbEm7A+cDl5Habc6usZ/VgXybyweyn6OzR94hpEQEMB34f8AmpC7T9wD7RMRVzcRpZmatayThTAM+KWkyaSDPzwLzgSfylbIG+y82G0BETAV266HO4MLyaFZMNLW2O7TZeMzMrG80knA+RTpjeIbU2P4Y6YxnUR/GZWZmK5keE05EPAQMl9QfWMOzepqZWW80fLdXRMwnXUozMzNrWiPdoj/Z7E2Skt4o6T29D8vMzFY2jdz4eTTwiKRTu7vXRtL6kg6WdBlp5OZN2hWkmZm98jXShrOdpFGkmyy/LmkeaQKzZ4DFpKFptgDeQBqq5pfA4RExq8+iNjOzV5yG2nCy6aIvlrQV8D7gncDGpJspnwJuAm4BJkXEkj6K1czMXsGaGiI2Ih4BHumjWMzMbCXW1OCdZmZmveWEY2ZmpXDCMTOzUjjhmJlZKZpKOJL+R5KTlJmZNa3Z5PEn0vwzp0t6S18EZGZmK6dmE85WwDjgIOB+SbdJOkzSOu0PzczMViZNJZyImBERJ0XEFsD7SROcnQ38S9IvJI3siyDNzOyVr9ftMRFxfUR8EngzMBk4GLhO0mOSviSpqZtKzcxs5dbrhCNpV0njgYeAtwHfJ039/DvgZOCidgRoZmYrh2Z7qW0u6URJjwDXA5sBY4BNIuLIiJgYEceSZgndt8F9bitpoqQFkp6UdEpP0yFIepekn0manm33kKSTJK1Vo+7Oku6QtDA7+zqqmedsZmbt0exlr0eBJ0lTTv80Ih6rU+8B4M6ediZpPeA6YCopQW0FnElKhCd0s+morO7pwMPA24FTs58H5Pb/RuAa4HLga8C7gbMkLYiIC3uKz8zM2qfZhPNB4OqIWNZdpYj4B9BIB4LDgX7A/hHxPHBt1uNtrKQzsrJaTo+I/+SWJ0laBPxI0uYR8XhWfgwpQX4iIpYC10t6A3CSpJ9ERDQQo5mZtUGzbTjDSNMSrEDSJpJObHJ/ewHXFBLLBFIS2rXeRoVk0+Vv2c+NCvu/JEs2+f2/ntTuZGZmJWk24ZxE+rCu5XXZ+mZsA0zLF0TETGBBtq4ZOwHLSJ0YkNSf1MY0rVDvwdyxzcysJGrmqpKkZcAOEXFXjXX7Aj+JiA2a2N8S4JiIOKdQ/gRwUUQc3+B+NgbuA66MiNFZ2abAE8CHI+LSXN3VgSXAZyNiXI19jSF1hGDQoEFDJ0yY0OjTabt58+YxYMCAyo5fT6fGBX0X25RZc1vex6B+8NTC1vYxZNOByy13alztsiq+11pVdVwjR46cHBHDaq3rsQ1H0qdIvc4AAvihpGLbylrAEOAvvYivVsZTnfJa8a0B/BaYB3ypwf3XLc+S0DiAYcOGxYgRIxoJo09MmjSJKo9fT6fGBX0X2+jjrmh5H0cPWcqZU1q7PW3GwSOWW+7UuNplVXyvtapT44LGOg0sAJ7NfhcwF3iuUOcF4CrgB00efzawbo3ygcCcnjaWJNL9Pm8Fdo6I2bnVXdsX979eYb2ZmZWgx4QTEb8j3cyJpJ8Bp3TTHbpZ0yi0pUjaDOjPim0vtZxN6k79/ogotgXNl/TP4v5zy43s38zM2qTZsdQOaWOygXRWtIektXNlo4CFwI3dbSjpa8CRpC7PN3ez/w8XbiQdBfwTuL/XUZuZWdOqntvmAmAxcImk92UN9mOBs/JdpbMRBX6SW/448G3S5bRZknbMPTbM7f+7pF51v5A0UtKxwGdJZ2m+B8fMrESNdBq4ExgdEVMl3UUPjfkR8e5GDx4RsyXtDpwPXEZqVzmblHSKcebPUj6Q/RydPfIOIY2EQERMl7QncBbpbOffwNEeZcDMrHyNdBp4gHSJq+v3tp4ZRMRUYLce6gwuLI9mxURTb9ubSUPamJlZhRrpNHBI7vfRfRqNmZmttKpuwzEzs1VEI204Pbbb5DXThmNmZquORttw3KPLzMxa0kgbzugS4jAzs5Wc23DMzKwUld6HY2Zmq47K78MxM7NVg+/DMTOzUjQ9CUY2/8xo0t37mwD/Au4Afh4RL7Q1OjMzW2k01WlA0luAh4HvA28DXsx+fh+YLmnbtkdoZmYrhWbPcMaRJmB7T0TM7CqU9AbgCtLoz+9tX3hmZrayaDbhDAM+lk82ABExU9KJwK/bFpmtcga3abrkVqddnnHaPi3HYWYravY+nBnAWnXWrQXMrLPOzMxWcc0mnOOAb0raIV8oaUfgFOCr7QrMzMxWLr0ZvHMd4FZJTwNPAxtlj2eB44FL+yBOMzN7hevN4J0P9FEsZma2Eqt88M6sK/V5wHDSFNMXAidHxIvdbLMG8C1gR1JHhrUiQjXqjQc+VWMXb4mIaa1Hb2ZmjWr6xs92krQecB0wFdgX2Ao4k9S2dEI3m74G+AxwJ3Ar3U9RPQ04pFA2o3cRm5lZb1WacIDDgX7A/hHxPHCtpHWAsZLOyMpWEBFzJL02IkLSEXSfcOZHxO3tD93MzJrR9PQEkkZJuk7STElPFx9N7m4v4JpCYplASkK7drdhRHgQUTOzV5Bmh7b5OPBzYDrweuDPwOXZfp4Hzm/y+NuQLnm9JLupdEG2rh22lfS8pMWSbpbUbSIzM7O+oWZOFCT9Dfg9cBqwBBgWEfdIWhu4Fvh9RHyvif0tAY6JiHMK5U8AF0XE8Q3s4wjgvDqdBr4IvEBqI9oQOBoYCuwSEXfW2d8YYAzAoEGDhk6YMKHRp9N28+bNY8CAAZUdv56+imvKrLkt72NQP3hqYc/1ujNk04ErlHVqbJ0aV7t06v8AdG5sVcc1cuTIyRExrNa6Zttw3gTcEhEvSnqRdE8OEfFfSacDZwMNJ5xMrYynOuXN7Tji3OV2Kl1BSj7HA/vV2WYcacw4hg0bFiNGjGg1jF6bNGkSVR6/nr6Kq9UhaSANbXPmlNaaJmccPGKFsk6NrVPjapdO/R+Azo2tU+OC5ttw5gJrZr/PAt6SWydg/Sb3NxtYt0b5QFIX6baKiIXAlcA7271vMzPrXrNfa+4G3g5cQ2q/OVHSUtJlqxNJ8+I0YxqFthpJmwH9KbTttJk7HJiZlazZhPMdYPPs9xOz338ArAbcRdb20YSrgGMkrR0R/83KRpGmtL6xyX31SFI/Us+4ye3et5mZda+phJPdz3J79vscYF9JawJr1rtnpgcXAEcBl2RtQFsCY4Gz8vuTNB24MSIOzZXtRToT2i5b/ki26q6IeFzSQFIPul+SetVtAHwJ2BQ4qBexmplZC9o2xbSkpqeYjojZknYndae+jNRuczYp6RTjXK1Q9kNePtsC+F328xBgPLAY+A9pxIKNgEXAbcCuEXF3M3GamVnrmko42RTTVwOvI12Wepo0xfT/At+QtGdETG1mn1n97kYKICIGN1JWWL8I2L+ZWMzMrO94imkzMytFs92ihwEn1ppimtSJ4F3tCszMzFYunmLazMxK0ewlteOAMyU9FhEv3XOTm2L6mHYGZ2avXIPbNApCq6MpzDhtn5bjsPbwFNNmZlYKTzFtZmalqHyKaTMzWzX0aohYSa8DhgOvJV1Kuz0inmxnYGZmtnJp9sbP1YDzgMNY/s7/FyWNA46MiGVtjM/MzFYSzXaLPhn4NKlzwGDSVNCDs+VPs+KQNGZmZkDzl9T+FzihMKvnTOC7koI0EOeJ7QrOzMxWHs2e4WwE3Fdn3X3ZejMzsxU0m3D+AXy0zrqPAg+1Fo6Zma2smr2k9k1gQjZY5++Bp0hnNQcCI6mfjMzMbBXX7ARsv5U0h9R54Fzg1cAS0lQFe0bEte0P0czMVgYNJxxJryZNunZ/RAyX9CrSLJrPuCu0mZn1pJk2nBeB64G3AETEsoh42snGzMwa0XDCyRLLw8CgvgvHzMxWVs32Uvs6cKKkIe0KQNK2kiZKWiDpSUmnZCMadLfNGpK+K+mvkhZm9wDVq7uvpCmSFkmaKmlUu2I3M7PGNdtL7QRgfeBeSbNIvdSW+7CPiHc3ujNJ6wHXAVOBfYGtgDNJifCEbjZ9DfAZ4E7gVmC3OvvfBfgD8APSTal7A7+RNDsi/tJonGZm1rpmE84DwP1tPP7hpOFx9o+I54FrJa0DjJV0Rla2goiYI+m1ERGSjqBOwgG+AdwUEUdlyzdIeitpNAQnHDOzEjXbLXp0m4+/F3BNIbFMAE4HdgUu6yaWupfRACStSbo36KjCqgnAzyQNjIi5vYrazMya1lAbjqR+kg6QdLSkj0tqV8eBbYBp+YKImAksyNa1YivSfULTCuUPkp73m1vcv5mZNUE9nCggaUtSO8vgXPHzwEGttoNIWgIcExHnFMqfAC6KiOMb2McRwHkRoUL5zsDNwPYRcW+u/I2k3nZ71Ipf0hhgDMCgQYOGTpgwofkn1ibz5s1jwIABlR2/nr6Ka8qs1k84B/WDpxa2to8hmw5coaxTY+vUuKCzY2uHVe3/s1EjR46cHBHDaq1r5JLaGcAy4D2kEQW2IDXC/yj7vVW1Mp7qlLdj/6pTngojxgHjAIYNGxYjRoxoUxjNmzRpElUev56+imv0cVe0vI+jhyzlzCm9mlfwJTMOHrFCWafG1qlxQWfH1g6r2v9nOzRySW04aUqCWyJiUUQ8CHwWeIOkTVo8/mxg3RrlA4E5bdg3Nfbftdzq/s3MrAmNJJxNgEcLZY+QzhQ2bvH40yi01UjaDOjPim0vzXqENM5bsS1oG9IZ2z9a3L+ZmTWh0Rs/23V5q+gqYA9Ja+fKRgELgRtb2XFELAZuII1knTcKuM091MzMytXoxdFrJC2tUT6xWB4RzUzCdgGp2/Ilkk4HtiRNU31Wvqu0pOnAjRFxaK5sL9KZ0HbZ8keyVXdFxOPZ76cCkySdA1xKuvFzb2DPJmI0M7M2aCThnNxXB4+I2ZJ2B84n3XMzBziblHTyVgeKw938ENg8t/y77OchwPhs/zdnieibwOeAx4CPe5QBM7Py9ZhwIqLPEk62/6nUHymgq87gRsrqbHsp6ezGzMwq1OzgnWZmZr3ihGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVwgnHzMxKUXnCkbStpImSFkh6UtIpkorTSdfabqCkn0maLWmupF9JWr9QZ7ykqPHYpu+ekZmZ1dLjFNN9SdJ6wHXAVGBfYCvgTFIiPKGHzS8GtgY+AywDTidNJf2eQr1pwCGFshmtxG1mZs2rNOEAhwP9gP0j4nngWknrAGMlnZGVrUDScGAPYNeIuCkrmwXcIel9EXFdrvr8iLi9b5+GmZn1pOpLansB1xQSywRSEtq1h+2e6ko2ABFxJ/BYts7MzDpM1QlnG9Ilr5dExExgQbau4e0yD9bYbltJz0taLOlmSd0lMjMz6yOKiOoOLi0BjomIcwrlTwAXRcTxdba7lnSpbL9C+S+BLSNip2z5i8ALpDaiDYGjgaHALtkZUa19jwHGAAwaNGjohAkTWniGrZk3bx4DBgyo7Pj19FVcU2bNbXkfg/rBUwtb28eQTQeuUNapsXVqXNDZsbXDqvb/2aiRI0dOjohhtdZV3YYDUCvjqU55U9tFxLnLrZSuICWf44H9qCEixgHjAIYNGxYjRozoIYy+M2nSJKo8fj19Fdfo465oeR9HD1nKmVNae1vPOHjECmWdGlunxgWdHVs7rGr/n+1Q9SW12cC6NcoHAnN6sd263W0XEQuBK4F3NhGjmZm1QdUJZxqFNhdJmwH9qd1GU3e7TL22naLqriOama2iqk44VwF7SFo7VzYKWAjc2MN2G0vapatA0jBgy2xdTZL6kXqxTW4laDMza17VCecCYDFwiaT3ZQ32Y4Gz8l2lJU2X9JOu5Yi4DbgGuEjS/pL2A34F3Nx1D042EsFfJX1W0u6SRgE3AJsC3y7rCZqZWVJpp4GImC1pd+B84DJS+8vZpKSTtzpQHO7mo1ndn5IS5+XAUbn1i4H/kEYs2AhYBNxGuln07rY+ETMz61HlvdQiYiqwWw91Btcom0MasqY4bE3X+kXA/m0I0cxWMoPb1IOulZ54M07bp+UYXmmqvqRmZmarCCccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaKykcasHJ1wh3WsGreZW22qvMZjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrReU3fkraFjgPGA7MAS4ETo6IF3vYbiBwDrAfKXFeDhwVEc8W6u0LfBN4E/Botu+L2/08zMxatbLfmF3pGY6k9YDrgAD2BU4BjgZObmDzi4ERwGeA0cC7gEsL+98F+ANwA7AXcAXwG0kfaMsTMDOzhlV9hnM40A/YPyKeB66VtA4wVtIZWdkKJA0H9gB2jYibsrJZwB2S3hcR12VVvwHcFBFHZcs3SHorcCLwl757WmZmVlR1G85ewDWFxDKBlIR27WG7p7qSDUBE3Ak8lq1D0prASOC3hW0nAMOzS3JmZlaSqhPONsC0fEFEzAQWZOsa3i7zYG67rYBX16j3IOl5v7kX8ZqZWS8pIqo7uLQEOCYizimUPwFcFBHH19nuWmB+ROxXKP8lsGVE7CRpZ+BmYPuIuDdX543Aw8AeEbHCZTVJY4Ax2eLWwEO9foKt2wB4psLj19OpcYFj641OjQscW29UHdfmEbFhrRVVt+FA6jBQpDrlvdmuuKxuticixgHjejh2KSTdHRHDqo6jqFPjAsfWG50aFzi23ujUuKD6S2qzgXVrlA8kdZFudrt1c9vNzpUV69DD/s3MrM2qTjjTKLTVSNoM6E/tNpq622XybTuPAEtq1NsGWAb8oxfxmplZL1WdcK4C9pC0dq5sFLAQuLGH7TbO7rMBQNIwYMtsHRGxmHT/zYGFbUcBt0XE3NbD73MdcWmvhk6NCxxbb3RqXODYeqNT46q808B6wFTgfuB0UsI4CzgnIk7I1ZsO3BgRh+bKrib1NPsK6YzldODpiHhPrs4uwBFDC3IAABl+SURBVCTgfNJNoXtn9fes1WHAzMz6TqVnOBExG9gdWA24jDTCwNnASYWqq2d18j5KOgv6KXARMBn4cGH/NwMfAd4HXAN8CPi4k42ZWfkqPcMxM7NVR9VtOGZmtopwwjEzs1I44ZiZWSk6YaSBVZ4kkTo87AO8BXgt8CLwFHA7MD4iKrlvKLsvam/SCA2/i4hnJb2e1NtvK2AGMC4ippQY01eBK8s8ZqMk9QNWj4j/5so2BI4AtiX1qLwX+MErpGt+JbL/iQ8C7ySNCnI36W/eEY3O2aj2zwC7ZZ2TqophN2AN4IqImJ+9175A6vH7KOl/88kq4qvFnQYqlr1BrgSGkhLMYmBT0j/ZVaQ3ztbAqRFxasmxvZs0jcMAYCnwHGlaiCtJCfEB4G3AxsD7IuKvJcW1jPT6TAN+DVwcEdPLOHZPJF0JPBwRX8yWh5P+jstIPSlF+lu/QPqweqCkuLYH+kXErbmyPYGv8XIi/DswNl+npNhuBQ6NiAez5fVI77uhwLys2gDSl6898sm8j+P6fDer+wHfBc4ljc1IRPygjLjgpTEhJwKbZUWPAR8AriWNpvII6XNjITA0Ip4oK7ZuRYQfFT6A35DesENyZa8Drgb+kC3vSvrH+3TJsV1Lunl2XdLI2+cDTwB/Al6d1VmT9IF6Q4lxLQO+Q5rldTEp+d0FfAnYtOK/5zPAvrnl20kfDGvnygaSuvRfU2JctwNfzy1/OnsdJwJfB07I/tZL8/GX+Pd8d275J6QvN3vmyvYkDVd1dslxvZj9rPXIr3ux5Nfst6QvCG8kXRH5RfY5cmvXe400iOffgR+VGVu3cVcdwKr+II3pdkCN8sHZG3qTbPl44O8lx/YssFdueaPsn+sDhXr7AM+UGNdLH1DAeqTRvSdmH5ZLSTf7jgHWr+DvuQB4b275heLrlXvN5pcY1/P5OIDpwHk16l1QwfusmHD+A/y/GvW+AjxeYlyXAv8CDiG7GpRbt24W93vLiqdw/CeBg3LLm2fx7F+odwjwjypirPVwp4HqiZRYil7M1nVNFHcH5c/hEyw/qnYUfhbLSxcRsyNiXETsDryeNEX5GqQPzicltT5JfHPuJ0381+Up0jfQovVJyaksywrLmwO/r1Hv96RLMVVal9RmUzSZdPm2FJGmP/kUcAxwVzblyUury4qjjvWAf+eWZ2U/Hy/Ue5T0f9ERnHCqdx3wTUlbdhVk17D/j/SG6uosMAAou5F5MvAVSWtLehXpLGsW8DlJq2Wxrg58nvRBW6mI+HdEnBsROwFbkEaseF3JYZwGHCfp09lr8y3gu5LeL2kNSWtmbSffYcXZaPvSX4GDc8sPALWGsH8XL394lekASZ/P2k1mA7XmU9mAdKZWmkijkrydNFPwFZImZJ1mqvY06UtDlxeBH5G+4ORtBJTS5tWQqk+xVvUH6dvH/aSRraeTxpZbSLrUlr+cdQapcbzM2IaR/vmXZDE9C7yDdK34UdJwRI+R2lFGlhjXcpdgOu0BfIb0wTgXuDP7/cXssTT7+UfgNSXGNCSL4xfAu0lTsT9NSojvzx6nAYuocTmrhL9n8fHTGvV+BPy1wr/rxqRhtOYBZ2Z/x6ouqV1a6zWqUe884LqqXrPiw73UOkB2tnAQ6cN8LVLi+XVEPFdpYED2be5/SF3o/xAR/5K0MXAs6dLL48CFEXFPiTGdBPw4Oqi7Z5Gk9Ukjk7+b9EH1KlJD+IPA5RExuYKYtgN+COxAuiSUn4xQpC8Xp0TEuWXH1ghJhwGPRMT1FccxnDTm49bAPlFyr74shkGkLyyP9VDvy6Q2uYnlRNY9JxyzVYykt5CSTjER3hoRS6qMzVZuTjgdRNJbSRPErUf61jkHmBYl3avRLEmrRUStDg+VkLQW6WbUZcD0qj88szacLcndyBsRM6uM6ZUmuwGUqPCDKruZVxGxIFe2HdmNz1Wcrb5SudNAB8gamB8H7gN+R5pA6cfZ7/dJmiHpkIpi21/SpZKulPTBrGyUpBnAC5Iezy51lBnTJyR9Ore8uqTTSN/U7yO1iT0n6bgy48rFM1TSn0mNtQ8Ct5Dug3lM0ixJp0h6TRWxdSJJHyhMwoik/STdQ2o/fEHS3ZL2KTmugZL+SGr7el7SjyWtJunnwD2k/887Jd0iaYMyY2uUpAMkdcyXQiecikk6ktQYejkwgtSr5NXZYyPSTZ+XAxdI+kLJsR1E6ia7Aekf/+IsufyCdN/LUaQbzS6QtEeJoR1PuuG0y+lZLN8B3kt6zc4ETpJ0fIlxIekDpNfkdcA5wKmku+ZfBMaSJhg8ALg1641YZmz/I2mipCmSLpb03hp1dqjgA+oq0pBOXTF8GLiE1IHhONJoCC8Af8pe37KcCrwH+DLpRtmdSD0LdyPdiDqI1L45OKtrPfAltYpJehS4ICLO6KHescDhEbFld/XaSdJdwOSIODxbPpg04d35EXF0rt7PgM0i4n0lxbWA1IPvxmz5aeBbxcZuSV8BjoyIzWvspq9imwzcHxGfKpQfSbpHaEvSfUK3ArdHRHfDp7QzrveTRq+4HfgbMBzYjpQUv9J1yUrSDqS2nOKEh30Z2zJgx4i4M1u+B5gVER8s1LsS6B8Ru5YU12PAtyPix9ny9qRbBQ6JiJ/n6h0GHB8RW5QRV3bMnzZYdXNgRJl/z+74DKd6G5O6zvbkTkq86S2zNcvfHHg56cyreDPlJaTxuMoyl3TW1WUgaQiPor+TzhLLtC3wyxrlvwTeAGwdEYtIH/QfrlGvr5wEXBQRO0fEERExFDgM+CxwSdb+1SneRjrrLxpHGsyzLBvx8n1wkI2ZRhqnLG86te8b6kufIo2dNqSHR2lfthrhhFO9+4DDshsra8oaTg/L6pYpWH5q766BFOcU6s0j3R1elj+TbkhdI1u+DvhYjXofI93gWKanSd3bi95Bej27bt59nJdHkSjD2ygkwoj4Keny447A9ZJqjYhQlvyllrm8/F7Lm0+5n1mPkV6fLu8hdUjZqVBvZ6DsziAPA9dHxLu6e5AuSXYMT09QvaNJlzqmSrqENALyHNI/4LqkXmsfJt0gumfJsT1O+sZ+DUBEvJjdg/Bgod6WLD/MRl/7GunO+fslXUi6AfV0SW8jjaMG6Tr79qQh7ss0DjhVUn9SO9cLpLv3v04a4LTr3qEtKfdDahHQv1gYEZOzIVuuIV3mG1tiTHnXSFqa/T6QdLlvUqHONqSxzcpyAXCupCGkJHgQ6b13oqQBpDPod5IGjS27Ded2Vkx8teTvt6qcE07FIuKWrIvlsaShRzYrVPknqVH1uxFRPJXva5dQGIcpIu6oUe/jQGlzgkTEc5J2JH2If5mXL5sNzx4vkEa6fk9E3FVWXFls38raJI4jXcaC9E//G+D/5aouAb5dYmj3kUYX+HNxRUQ8miWdK4HxJcbU5eQaZU/XKDuANKJ1KSLi/OzKw8dIQyUdGxEXSHqCNPRU13h4FwDfKyuuzHmknnI9uZHlx/arlDsNdJisu2zX5ak5+b7/nUrSG0ixljrOVe74g1n+JsZHOuAenFeT7tNYC3i0qtcmF89nSb37tq83gkV2VvZH0txGvtzejewy9wYR8Z+qY3klccIxM7NS+JJah1Caynkj4KGIWKHBNLuxbO+IuKj04GrIrmHfAxxc9mUrdfg0zurAabk7nV4h0yVnZzb5qa8nk+It/Zu7pGGky4wiTUM/TdI7SJcou95n34+Iq8uOrR6f4VRM0pqk3kP7Z0XLSCPSfjn/YVnR/RF7d7O6P3Axqa3ifoCIuLKkuDpyGucslo6clrtRSuOsHRgRp5R4zI6cLlkdOvV1FssepM4yz5F6720I7Etqd51K+sI1lNRh5YCIuLSs2LpVxpDUfnQ7fPiJpF5ph5GmA/giaU6Lh4E35ertQPnT2HbkFLt06DTO2XE7clruJuI/oIL3WUdOl0yHTn2dHfcW0tA6q2XLx2dx/KRQ7xekG4wrf29FeIrpyh+kbtBHFMo2Bm4iTbU7PCurIuFM5uUpdjcvPN6e/UMe1FVWYlwdOY1zdsxOnZb7DQ0+Dq/gfdaR0yXXSDgdMfV1dsy5pDPkruX1snh3K9T7AKlDT2mxdfdwG071NqNwQ2dE/FvS7qRvJ9dlQ8qUef9Bl2GkM6/TSfe9fCWy+Tckdd20+O+IKE5r29e6pnG+KVvulGmcoXOn5Z7R4DHVYL12eqVMl9wRU19nFrL8fVVdv/cr1HsN6R6sjuCEU70ngTfx8ocnAJG69X5U0jmkU+fSOwtE+oo0TtJvgW+SRq4+P/u9SqcBv5L0T9Lr0jWN87Oky2giJaSyp3GGl6flvoV0bT0/Lff1kW6erWJa7v8C1wMX9lBvF9I9YWXq5OmSD8ga56GDpr4mXVI7UdLD2bG/R2q7+aqkmyLiv9mXwmNJ78nOUPUp1qr+IA2GOamHOl+j5HaSOnG8nXT395OktqYqp9jtuGmcs7g6dVrua0lDofRUr4o2nI6cLpkOnvqa1N41I/eef4R0SbTrf2EKKTnPBrYrM7buHj7Dqd4PgFGS1o+IZ2tViIjvKM2X8/5yQ1shjvuAEZI+CpxBhUNmRMSF2VwlXdM4P0cHTOMcEXdnQ6EUp+V+Dy9Py30VJU/LTTqDHtNAvf9QONsuwWdJl3568hgpOZUiGr/59W5Sj83SRMT0bCinnUmdUyZGxEJJI0hfxrYmXZL/dZTUq68R7hZtvZJdFuoPzIsOmvXTzDqXE46ZmZXC4yW9QmTT2/6k6jhq6dTYOjUu6OzYOpWk6yRNrDqOok6NCzovNrfhvHKMpHO/IHRqbJ0aF3RobJKuI1352L3qWGoQHfia0blxQYfF5ktqZvaS7NvwqyKiY4a0t5VHx2Q+656ktbJpADpOp8bWqXFB58YWEbt3arKR9OpOfM06NS7ovNiccF459iF1C+1EnRpbp8YFHRpbVR9Qkr4g6RFJ/5V0h6RP1qj2Tkp+zTo1rk6PrR4nHLNVRKd+QGX3dZ1HGoT1ZNKNxeMl/T6biqISnRpXp8fWHbfhVEzS9Q1W3RDYNsqdnqAjY+vUuKBzY8s+oH5Nmur6b6QbBj9EGo3hkxGxMKtXxTQYd5NGQTg2V7Y78CvS3fT7RJpTqNTYOjWuTo+tO044FZO0FHiINA5SdzYFdij5Td2RsXVqXNC5sXXyB5Sk/wIfjIhJhfLBpFEZVgP2Io1ZVmbC6ci4Oj227rhbdPXuJ83yOaq7SpI+QsnDZ9C5sXVqXNC5sW1NGkb/JRExUdKOpA+o2yTtVWI8eXNJH4zLiYgZknYCriDNjXOq43pJJ8dWl9twqncHsGMD9YLyxy7r1Ng6NS7o3NjqfkABO5EmtbuVNENk2SYD+9VaERGzgd1J45X9X5lB0blxQWfHVpcTTvXOAI5soN6VwBZ9HEtRp8bWqXFB58bWyR9QvwS2lFRrTiOy9qUPkaZWmOm4gM6OrS634ZitAiQdCHwJ+J+IeK5OndWAHwLvj4iyE7WtApxwzMysFL6kZmZmpXDCMTOzUjjhmJlZKZxwzMysFE441i1JoyVNzsbfmi3pb5LO6qNjHSRpdAP1xkqK3ONJSX+QtFWDxxmf3XlfuUafc1a363k/XGf99Gz92L6Kocn9Lvc6t/s4kl4l6YjsPblQ0vOSHpD0f5J6dY+Tkr9L+lSd9eOzu/lrrfu+PKlet5xwrC5JXyP1478G2B/4X+BPpP79feEgYHSDdecCw7PHV4DtgImS+jew7alNHKevNfOcARYBW0gali+U9C5g82x9X8fQqOLr3O7jTAC+CVxCek9+inR/007R++63BwHrkcada9Z3gYMlvbGXx17peWgb684RwI8i4vhc2WWSTq4qoJylEXF79vvtkmYCfwX2Bn5XrJzdY7JaRLwQEY+UGGe7zQfuAT5KulGzy0eB64GhVQTVpazXORuG50Bg74i4Krfqj709u8kcBfwiIpbkjrU6KXl+Engd8DFJjwAnR8RLwxNlw8rcDHwOOLqFGFZaPsOx7qwL/LtYmP/22HXZRNJ+kqZJWiTpZknbFrfLLqlMkbRY0j8lfSv7Z0bSeOAAYNfcpbKxTcQ6Ofs5uEZcD5C++e+QX1eI7b2SbpA0T9JcSZMkbZ9bv4ukGyUtkPSspB9LWru7gCQNl/Tn7JLffEn3Sjo4/9r18jlPAA7q+mDNfh6Ulbcthuw1+H1hfyOyOm/Lv5Y9vc71jiNpH0nLJG1ROM4WWXm9s+lds58rjM7d27Ob7MxkJ+D3hVVfBI4ljcJwJfBp4KfA+jV28wfSWY4/W2vwGY515x7gyOzs4fKIeLZOvc2Bs4BvAAtJ83NcI+lNEbEIQNIHSINVXgQcA7yd9K1xfeDw7Pc3kJLc57P9PtFErIOzn/8ulJ0BnAI8RZ15XiSNAK4FbiBdlplPGr5/U+BvknYGJgKXAh/JYj6NdOnlI93EtDlwC3AB6YN4Z+BnkpZFxG/o/XO+hDQiwC6ks7r3kKY7+CPpsk4ZMeQNpufXud5x/kWay+VTwNhc/dHAf0gf8LXMz35+V9KZEfF4kzHXsnu2378XyncljbR9RvZF6pZsDLpabgUGAUNq7Mciwg8/aj5ISeFR0kCTy4AHSB8q6+TqjM/W75Qr2xxYChyeK7sduKGw/2OBF4HXZ8u/ByY1ENdY0mCTq2ePN5OSxfPAJoW4tqux/Xjg7tzybaTLU6pzvL/WiH23bP9va/C1VBbrj0gfXl3lDT3n/PPOfv8T8P3s9x8Al2a/PwOMbUcMwCTg94WyEfnn3eTrXO843yQlKeXinAF8r5vXYmPgvuzYQRql+3hgQAvv93HAXTXKfwT8MzvmeGBwN/tYPXvvH9bbOFbmh0/7rK6IuA94C6lB9gekD4JvAHdLGpCr+nRE3Jrb7nHSJa53w0vX9d/Jim0rF5Mu6w7vRXjrA0uyx0PAlsCoiPhXrs6siLi3u51knQx2AH4e2SdGYf1rsvh+K2n1rgdwc3bsum0mktZT6jH1eC7WMaQE2aoJwEckrUk6y1rhcloJMXTp8XXuwU9JX1JGZMsjs+Wf1dsgIv4NbA/sQTrbWxf4FnCrpDXgpR6W92aPxdkl33uVel2+usZuNyYl7KJvkc58HiP9L3wlO+utFddSYE62LytwwrFuRcTiiLgsIo6IiG2BzwBvAg7NVXu6xqZPA5tkv28AvJp0uSWva7nmiLc9mEsaSn8Y8HrSt86rCnWKx6tlPVIi/Vc361cjJdwlucdi0nParJt9jwdGkS5zfSCL96fAWg3E1ZM/AwNIH4b9gcsqiKFLI69zXRHxKOls6pCs6BDgzoh4oIftXoyIv0TE50mX635GupQ1PFs/PiK2I33ZWQrsHBHbRcTQyHUKyFmL9HctHmdmtt8Pk874dwFuVv3bAxbT3td3peE2HGtKRPxE0hnANrnijWpU3Yh0CQ7St8YlNeoNyn7WHL24B0sjoqd7aRppPJ5Nuly4SZ31c7L9jKV2e8KTtTaStBawD3BERFyQK2/Ll7yImC/pctII0L+LiPnFOm2IYRGwRqGs1peDdowAfCHwY6Wu+PvTZC+viFgm6S+kZFX8sH8TMDvqt0F2eY46ZyZZgrpaaarusaSpHs6WdE6WkPLWpXfv6ZWez3CsLkkrJBJJGwIDWf5b7UZKswx21XkD6VvlnZC+iZIusR1Y2N1BpA/727LlFyj5m2H2QX0H8L9dvb5qrL8d2Doi7q7xqJlwgDVJZ0YvfWPOerUVe1218px/SDqzuaDO+lZjeILlv1gAvL9XkXZ/HEgdIV4gXRp8FXUuEQJIGlRn1YeABaS/Z947aKwB/yFqzFFU630B3JX9fG2h7obAa4B/NHC8VY7PcKw7UyT9CfgL6RLZ5qSbLBcAP8/Vewb4haSuXmqnZPXH5+qcROq59jPSh8kQUs+lH0dEV6+oacC+kvYjfdg92c0HejsdB1wHXCVpHOl6/XBSg/flpM4NEyUtIzV8/5d0CWcf4OsRscKHS0TMlXQXcKKk50mJ9TjSpcB1clV7/ZwjzWc/qZv1rcbwR+BQSWeTpiweSWoz6a26zzUiFkn6FfAF4DcRMaeb/fxW0n+B35I6F2wEHAzsS2qsL277DlIHg57cQnqtNoyI/+TKfy3pb8BNpMuXQ0lnlrOABwv7GEY647sVW1HVvRb86NwH6Z//L6TLRotI/9y/BrbJ1RlP6uG1P+lb3WLSP+4KvbdIbQlTSN9knyC1P6yeW78B6UPuObLLWHXiGkvWW6ub2MeT6yHV0zpS19ebSMl0DqnX23a59TsAV5N6ws0HppK6gg/sJoY3ku4TmU+adfHYYuyNPucmnvdyvdRajQH4GqmH1n9Js0x+iBV7qTX0Ovf0XIH3ZeXv6+E5fjr7WzyRvZeeIyXEEXXqXwZ8tIH3+xrAs8AnC+Ufzo73b1LSfp6U6LevsY9zKfRo9OPlhydgs5ZkN/S9LSKG9VTXrDtZ2+AoYIuIWNbG/c4E9oiI4tlIrbrnAm+MiH3qrB9PSpQzaqxbDXgcOC4iftlS0CspX1Izs0pJ2hrYljQkzMltTjbrkW6KbbRN5bvAQ5LeHDUulfbgQNIl5brtT6s6dxows6r9iHSp9krS8DFtExGzI6JfpI4rjdR/gtTlv16vxUtJl1xrEXBopHtxrAZfUjMzs1L4DMfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK8X/B7qsNRkALQemAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -214,7 +216,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XnclXP+x/HXRyGVki0ZdA8zdn5DZmgwlCUtRJaQSUIYjN0wDSUydmMnUpgoZClaVCrbWMrMMCJLKmQrJXW39/n98b2OTqdz3/e5l3Ouc933+/l4nMd9n+tc17nf993pfM51fTdzd0RERKpqvbgDiIhIsqmQiIhItaiQiIhItaiQiIhItaiQiIhItaiQiIhItaiQSNEys75m5mm3OWY23Mx2iDHT/mb2rpktNTOPtjUys6FmNi/K2aOMYwdn/D6p20MF/SXW5OllZkdn2T7TzG6JI5MkU/24A4hU4EfgiOj77YFrgQlmtpu7L44hzwPAd0A7YFm07RzgSKA78BXwWTnHfwSclrHtuxrOmKtewP+A5zK2HwPMK3wcSSoVEil2K939zej7N81sNvAq0AF4KoY8OwMD3H1yxrbp7j48h+MXp/0+Rcnd/x13BkkWXdqSpJkafS0BMLPWZjYiuuy12Mz+Y2bdUjub2abRZahT05/Egs/N7La0bW3N7K1o/2/N7F4zaxw9dnB0KasecEd0SWqwmc0ETgf2Sl2qquovlvoZZrZ7xvZJZvZ02v3BZjbFzA4zs/ei3/s1M9st47h6ZnalmX1sZsvM7EszG5x6TqAVcGraJbYe0WPrXNoysxPM7P3oeb4ws/5mVj/t8R7Rc+xhZuOiTB+ZWZeq/j0kOVRIJGlKoq/fRF9bAq8DZxAuLw0HBpnZSQDu/gPwLOteTjo4eq5BAGa2KzAGmAscC/QBTgZSb+DvAq2j72+Nvr+WcBloFOGSVeu0fcpkZvXTbzn91uvaDrgZ6A+cBGwJPGlmlrbPA8A1wJNAJ+ASoFH02J+izKPScr9YRt7DgWGEv0Fn4C7gUuDuLLs/Dowg/F0+AYaa2TZV/B0lIXRpS4pe2pvt9sC9wE/AeAB3H5q2nwGvANsAZwJPRA8NBF4ys+3dfUa07TRgqru/H92/GpgFHOXuq6Ln+wEYZmat3f1fhEtrADPTL0+Z2fdA8xwvWbUCVmT8fr92909zODbdpsD+7v5J9BzrEQrmTsBHZrYz4UzpAne/M+24YQDuPs3MFgPf55C7HzDJ3VNndWOiv8Pfzew6d/8ybd/b3f3hKNNU4FtCEbu/kr+fJIjOSKTYbUZ4410BTCcUk67u/jWAmTUzszvNbFbafr2AHdOeYwKhSJwaHbMx0IXobCTyO+DZVBGJDAdWAgfU4O/zIfDbjNsXVXiemakiEpkWfU19+m8TfR1chef+mZnVA/Zm3faoYYT3j8wzsJdS37j7PEJHAp2R1HI6I5Fi9yNwKOCEy1lzfO0pqwcD+xEuM00DFhJ6UXVO7eDubmaDgJ5m1hc4gfDafzzteVoQPj2TdtwqM5tH+PRfU0rdfUoNPM+CjPvLo68Noq+bERr2F1bz52wOrE/G3ybtfubfJluuBkitpkIixW5lWW+8ZtYA6Aic5+73p23PdqY9iNDu0QboATzn7vPTHv+a0M6Q/vz1CG/IP1TnF6iEpdHXDTK2b0pou6mMeUAjM2tSzWIyl3CWt2XG9ubR10L9baSI6dKWJNmGhF5UqfEcqctWR2Xu6O5fEC67XEO4VDUoY5e3gGOi4pHShfBh67WajV2mVFvDLqkNZrYtod2jsl6OvnYvZ58KzxaiS31TgeMzHjoBWA38qwrZpJbRGYkklrv/aGbvAFeb2ULCG9sVhMthTbIcMpBwrf9LYFzGY9cB/waeM7P7CNf1bwTGRg3teefuX0a/z7VmVkr4oPdXqvCp392nm9kA4FYz25LQCWET4Dh3PzHa7SOgnZm1I5zBfB61a2TqA4yNLg8OBfYgXEp8MKOhXeoonZFI0p0MfA48CtxBaCB/tIx9XyA0nj/i7qvTH3D3D4D2hEs4zxAKyxPAcfmJXaaTgdnAP4HrCT2mplfxuf5EOAM7hdDN9x/AkrTHryM0/j8JvEPoPr0Od38JOBHYBxgJXEjoAn1eFXNJLWNaalfqCjPrQCgmO1ahu62IlEGFRGo9M9sa+DVhIN1sd+8UcySRWkWXtqQu6EUYS7IUOD/mLCK1js5IRESkWnRGIiIi1VInuv9uvvnmXlJSUqVjFy9eTKNGjSresUgkKW+SskKy8iYpKyQrb5KyQvXyTp06da67b1Hhju5e62+tWrXyqpo4cWKVj41DkvImKat7svImKat7svImKat79fICUzyH91hd2hIRkWpRIRERkWpRIRERkWpRIRERkWpRIRERkWpRIRERqY2GDIGSEg5q2xZKSsL9PKkT40hEROqUIUOgVy8oLcUAZs0K9wG6davxH6czEhGR2qZ3bygtXXtbaWnYngcqJCIitc3s2ZXbXk0qJCIitU3Tptm3b7ddXn6cComISG0ybBgsWAD16q29vWFD6N8/Lz9ShUREpLZ45RXo3h0OPBAeeghatsTNoGVLGDAgLw3toF5bIiK1w7Rp0LkzbL89PPccbLop9OjB5EmTOPjgg/P6o3VGIiKSdF9/De3bQ4MGMHp0KCIFpDMSEZEk++kn6NgR5s0Ll7aquPZSdaiQiIgk1YoVcPzx8N57MHIk7L13LDFUSEREksgdzj4bxo4NDevt28cWRW0kIiJJdO218PDDcNVVcPrpsUZRIRERSZpBg6BPHzj1VLjmmrjTqJCIiCTKSy+FCRgPOwwefBDM4k6kQiIikhj/+Q8ceyzsths8/TSsv37ciQAVEhGRZJg9Gzp0gGbN4MUXoUmTuBP9TL22RESK3fz5oVdWaSm8/jr84hdxJ1qLComISDFbtgyOOQY++SR09d1tt7gTrUOFRESkWK1eDT16wOTJYdXDNm3iTpSV2khERIrVlVfC0KFwww1w8slxpymTComISDG65x646SY45xy4/PK405RLhUREpNg8/zz8+c9w1FFw111FMVakPAUvJGa2q5lNMLNSM5tjZv3MrF4Ox+1jZi+Z2Twz+8HMxpvZvoXILCJSMG+9BSedBPvsA088se5Kh0WooIXEzJoB4wEHOgP9gEuAcsf4m9m20XH1ge7AH6PvXzKzlvnMLCJSMJ9+Cp06QYsWYTbfhg3jTpSTQvfaOhvYCOji7guBcWbWBOhrZjdF27LpCGwcHbcAwMzeAOYCHYD78h9dRCSPvv8+jBVxhzFjYMst406Us0Jf2moPjM0oGEMJxeWgco5bH1gJLErbtijaVtwXD0VEKlJaCkceCV9+CS+8AL/+ddyJKqXQhWRn4KP0De4+GyiNHivL8GifW81sSzPbErgdmA88laesIiL5t2pV6Nr79tvw+OOw335xJ6q0QheSZsCCLNvnR49l5e5zgDbAscC30a0L0M7dv89DThGR/HOHCy4IvbTuvDOMYE8gc/fC/TCzFcCl7n5HxvavgMHu3ruM41oArwIfsKY95FxgL+D30VlN5jG9gF4AzZs3bzV06NAqZV60aBGNGzeu0rFxSFLeJGWFZOVNUlZIVt6azLrt0KHs8MADzO7alRlnn10jz5mpOnnbtGkz1d33qXBHdy/YDfgO6JNl+yLgsnKOuw2YCayftm0DYBZwZ0U/t1WrVl5VEydOrPKxcUhS3iRldU9W3iRldU9W3hrL+sQT7uDetav7qlU185xZVCcvMMVzeG8v9KWtj8hoC4m69jYio+0kw87AB+6+IrXB3ZcTzlB2yENOEZH8mTw5rG74hz/A4MGwXrLHhhc6/WignZltnLatK7AEmFzOcbOA3c1sg9QGM9sQ2J1wpiIikgzTpsHRR8MOO8Bzz0GDBnEnqrZCF5L7gWXAM2Z2aNSO0Re4zdO6BJvZp2Y2MO24h4CtgWfNrKOZdQKeA1oAAwqWXkSkOubMCWNFGjSA0aPDIlW1QEELibvPBw4B6gEjCSPabwf6ZOxaP9onddxU4AjCoMTHgEeBhsBh7v7f/CcXEammn36Cjh3hhx9g1ChoWXsm5Sj4eiTuPg1oW8E+JVm2TQAm5CmWiEj+rFgBxx0H778flsnda6+4E9UoLWwlIpJP7nDWWfDSSzBwILRrF3eiGpfsrgIiIsWuXz8YNAj69IGePeNOkxcqJCIi+fLww9C3L5x2WigktZQKiYhIPowdC716weGHwwMPFP3iVNWhQiIiUtP+/e/QuL7HHvDUU7D++nEnyisVEhGRmjRrFnToAJtuGnpoNWkSd6K8U68tEZGaMn9+GHC4ZAmMHw9bbx13ooJQIRERqQnLloWpTz77LLSP7LZb3IkKRoVERKS6Vq8OkzC+8go88QQcfHDciQpKbSQiItV1xRUwbBjceCOceGLcaQpOhUREpDruuQduvhnOPRcuuyzuNLFQIRERqarnnoPzz4fOneGOO2r1WJHyqJCIiFTFm2/CSSfB734Hjz8O9epVfEwtpUIiIlJZn34KRx4J22wDI0dCw4ZxJ4qVComISC6GDIGSEg5q2xZ22QWWLg2LU22xRdzJYqdCIiJSkSFDwrxZs2Zh7rByZbi99VbcyYqCComISEV694bS0rW3LV0atosKiYhIhWbPrtz2OkaFRESkIk2bZt++3XaFzVGkVEhERMrzxBOwYMG63XsbNoT+/ePJVGRUSEREyjJpEvToAQcdFNZbb9kSN4OWLWHAAOjWLe6ERUGTNoqIZPPBB2E231/9Cp59Fpo1g1NPZfKkSRxcxyZlrIjOSEREMs2ZE9YVadgQRo0KRUTKpDMSEZF0CxeGFQ7nz4dXXw2XsaRcKiQiIikrVoS11v/3v7BM7m9+E3eiRFAhEREBcA+j18eNg4cfhnbt4k6UGGojEREBuOYaGDwY+vaF006LO02iqJCIiAwcGApJz55w9dVxp0kcFRIRqdvGjIGzzgqXsu6/v84uTlUdKiQiUne9+y4cfzzsuSc89RSsv37ciRKp4IXEzHY1swlmVmpmc8ysn5nltLSYmXUxs3fMbImZzTOzMWbWKN+ZRaQWmjkTOnaETTcNPbQ23jjuRIlV0F5bZtYMGA9MAzoDOwC3Egra3yo49gzgbuAm4DKgGdAW9TwTkcqaPz+MFVm6FCZMgBYt4k6UaIV+Ez4b2Ajo4u4LgXFm1gToa2Y3RdvWYWabA7cD57v7g2kPPZv3xCJSuyxdGqY++eyz0NV3113jTpR4hb601R4Ym1EwhhKKy0HlHHdC9PWRfAUTkTpg9Wo49VR45RV45BH4wx/iTlQrFLqQ7Ax8lL7B3WcDpdFjZdkXmA6cbmZfmtkKM3vLzH6fv6giUuv85S/w5JNw881w4olxp6k1Cl1ImgELsmyfHz1Wlq2AnQjtKH8BjgQWA2PMrHlNhxSRWuiuu+CWW+C88+CSS+JOU6uYuxfuh5mtAC519zsytn8FDHb3rAsgm9k44FCgvbuPibY1AWYBd7v7VVmO6QX0AmjevHmroUOHVinzokWLaNy4cZWOjUOS8iYpKyQrb5KyQv7zbv7qq+zWpw9z99+fD/r2XXeRqkqoS3/bNm3aTHX3fSrc0d0LdgO+A/pk2b4IuKyc44YBDjTI2D4eGF7Rz23VqpVX1cSJE6t8bBySlDdJWd2TlTdJWd3znPeNN9wbNHDfbz/3xYur/XR16W8LTPEc3tsLfWnrIzLaQsxsW6ARGW0nGT4kFJLMIacGrK7JgCJSi3z8MRx5JGyzDYwYEdYXkRpX6EIyGmhnZukjf7oCS4DJ5Rz3AqFotEltMLOmQCvgv3nIKSJJ9913YXEqMxg9GrbYIu5EtVahC8n9wDLgGTM7NGrH6Avc5mldgs3sUzMbmLrv7lOA54GBZnaqmXUERgArgHsK+QuISAIsXhzORL7+Gl54ISyXK3lT0ELi7vOBQ4B6wEjgGsJAwz4Zu9aP9kl3CvAccBvwNKGItI2eU0QkWLkSTjoJpkyBoUNh333jTlTrFXx6EXefRpjapLx9SrJsWwScE91ERNblDn/+M4wcCffcA0cdFXeiOkGz/4pI7XHTTXDffWHg4Z/+FHeaOkOFRERqh8cfhyuuCJe1rr8+7jR1SoWFxMy6m9lmhQgjIlIlEydCjx5w8MEwaBCsp8/IhZTLX3sQYbp3zGyVmf0uv5FERCrhf/+DY46BHXeEZ5+FDTeMO1Gdk0shmQ9sHX1vhIGBIiLx++qrsK5Io0YwahRsskncieqkXHptjQceM7PphCIy2MwWl7Wzu+uMRUTyb+HCUETmz4dXX4Xttos7UZ2VSyHpCfyJMPvu3sDnwPf5DCUiUq4VK+C442DatLBM7m9+E3eiOq3CQuLupcAtAGZ2KNDb3TUtiYjEwx3OPDOsbjhoEBx+eNyJ6rxcem2tMrPfRncnAVmXwxURKYg+fcLqhtdcE3pqSexyaWxfDqS6QXQHNPOZiMTjoYfg2mvh9NPhqnWWIZKY5NJGMg3oa2bPEXptHWdmZS104u5+X42lExFJGT0azj4bjjgijF63zFUlJC65FJLzgQcIkys6cGk5+zqgQiIiNWvqVDj+eNhzz7Dm+vrrx51I0lR4acvd33D3Pdx9fcIZyX7uvl4Zt6qvXykiks3MmdCxI2y+eeihtfHGFR4ihVXZ2X/bEC51iYjk3w8/hMWpli8P06C0aBF3IsmiUoXE3ScDmNm+wAHApsAPwGvu/lbNxxOROmvpUujcGWbMgPHjYZdd4k4kZahUITGzRsBTQDtgFTAP2AyoZ2ZjgOOjcSciIlW3ejWceiq89hoMGwYHHhh3IilHZafIvAloDZwINHD3FkCD6H5r4MaajSciddLll4dG9VtugRNOiDuNVKCyheRY4C/u/pS7rwZw99Xu/hRwBXB8TQcUkTrmzjvh1lvh/PPh4ovjTiM5qGwhaQp8UcZjXwBNqhdHROq0Z56BCy8M08LffrvGiiREZQvJf4FzzNb+143unxM9LiJSeW+8Ad26wX77wZAhUE+jCZKist1//wqMBj4ys2eBb4EtgWOAEqB9jaYTkdptyBDo3ZuDZs0KqxpusQWMGAEbbRR3MqmESp2RuPvLwF7AvwntIf2BE4B3gb3dfWKNJxSR2mnIEOjVC2bNwiD01PrxRxg7Nu5kUkmVPSPB3acRemmJiFRd795QmjFaYOnSsL1bt3gySZVU6ozEzG4xs13zFUZE6pDZsyu3XYpWVbr/vm9mb5vZ2WbWNB+hRKSWcw/rrGejJXMTp7JtJL8EDgU+Am4Gvjazx6OVE0VEcnPjjbBoEdTPuLresCH07x9PJqmyyp6R4O4T3b070IIwxfw2wFgzm2Vm15jZ9jUdUkRqkSFD4Mor4eSTw1K5LVviZtCyJQwYoPaRBKp0IUlx90XuPhDoA7wObAtcCXxsZs+bWcsayigitcXLL8Npp0GbNvDww3DKKTBzJpNffjlMF68ikkhVKiRmVmJmfcxsBvASsIjQHXhj4CjCmJKhNRVSRGqB998PI9Z33DGMYN9ww4qPkUSo7Oy/fwROA/4AzAYGAYPc/cu03UaZ2WJgfI2lFJFk+/JL6NABGjcOS+ZusknciaQGVXYcyQDgWaCdu08oZ7+PgeuqnEpEao+FC8MKhz/+CK++CttuG3ciqWGVvbS1tbufXEERwd2/dvdrsj1mZrua2QQzKzWzOWbWz8xynlTHzNYzs6lm5mbWqZL5RaSQli+HY4+FadNg+HD4v/+LO5HkQWVXSJxfnR9mZs0Il7ymAZ2BHYBbCQXtbzk+zRnAL6qTQ0QKwB3OPDOsbjh4MBx2WNyJJE8qPUWKmXUFzgR2JCxqtRZ337Kcw88GNgK6uPtCYJyZNQH6mtlN0bbyfnYzwvxeVwAPVTa7iBTQ1VfDo4/CtdeG1Q6l1qrsFCknA48AnxLGj4wAXoieZyFwdwVP0R4Ym1EwhhKKy0E5RLiW0NW43EtrIhKzBx+E666DM84Ic2dJrVbZNpLLCG/m50b373X3nsAvgblAReu170wYFf8zd58dHbdzeQea2Z6EHmOXVjKziBTSqFFwzjnQvj3cd58Wp6oDzN1z39lsEdDJ3SeZ2QrgMHefFD12DHC7u5eUc/wK4DJ3/0fG9i+BR939r+UcOxl4y90vN7MS4HPgSHd/oYz9ewG9AJo3b95q6NCqDWtZtGgRjRs3rtKxcUhS3iRlhWTljStr4+nT2evCCynddlv+c8cdrMpxXRH9bfOnOnnbtGkz1d33qXBHd8/5BnxF6PoLMBM4J+2xLsBPFRy/ArigjOftX85xJwLfAE2i+yWAE4pahblbtWrlVTVx4sQqHxuHJOVNUlb3ZOWNJeuMGe7Nm7uXlLh//XWlDtXfNn+qkxeY4jm8x1a2sX0KsCcwltA+crWZrQSWA1cDb1Vw/Hwg20ikpsCCbAeY2fqECSJvBNYzs01YszZ8IzPb2N1/quTvISI1ad68cClr+XKYNAm22iruRFJAlS0kfwdSc2hdHX1/L1APeIfoUlI5PiKjLcTMtgUakdF2kqYRoWH/tuiWbijwGfCr3OKLSI1buhQ6dw5zZY0fDzuX29wptVBOhcTMNgI6EC4pfWNmzd39W6CzmW0IbOgVdN2NjAYuyziL6AosASaXccwioE3Gtq2AJwhryL+cy+8gInmwejX88Y/wxhswbBgccEDciSQGFRaSaFr48YQikrLQzE5w95fcfRmwLMefdz/wZ+AZM7sR2B7oC9yWXojM7FNgsruf7u4rgUkZmVJZ3nf3ii6niUi+XHopPP003HorHH983GkkJrl0/70JWA0cCDQEdgP+DTxQ2R/mYWT8IYRLYSOBa4DbCVPRp6sf7SMixeqOO+D22+GCC+Cii+JOIzHK5dJWa+ASd389uv+hmZ0VfW3h7l9X5ge6+zSgbQX7lFTw+ExAndNF4jJ8eCgeXbqEsxGNFanTcjkjaQHMyNj2GeGNXF0zROqa118PC1C1bg3//CfU08WDui7Xke25j1oUkdpr+nQ46qiwLO7zz0OOAw6ldsu1++/YaLxIpgmZ2738SRtFJKm+/TaMFalfPyxOtfnmcSeSIpFLIcm6roiI1CGLF0OnTqGYTJoE228fdyIpIhUWEi9jgSoRqSNWroSuXeHdd8PlrN/+Nu5EUmQqvR6JiNQh7nDuufDii3D//eGsRCRDZaeRF5G65O9/hwED4Mor4ayz4k4jRUqFRESy++c/w6JUp5wC/fvHnUaKmAqJiKxrwgTo2RPatoWBAzXgUMqlQiIia3v//TBifaed4JlnYIMN4k4kRU6FRETW+PLLMFZk443DkrlNm8adSBJAvbZEJPjxR+jQAX76CV59FbbdNu5EkhAqJCISVjY89lj48EMYMwb23DPuRJIgKiQidZ07nHFGaGB/5BE45JC4E0nCqI1EpK676ip47DG47jro3j3uNJJAKiQiddmAAWGMyJlnwl//GncaSSgVEpG66sUX4ZxzQgP7vfdqrIhUmQqJSF00ZQqccALstRcMGxamhhepIhUSkbpmxgzo2BG23BJeeAEaN447kSScColIXTJvXhhwuGJFWJxqK62WLdWn81mRumLJkrBM7qxZMH487Lxz3ImkllAhEakLVq2CP/4R/vUvePJJOOCAuBNJLaJCIlIXXHopDB8Ot90Gxx0XdxqpZdRGIlLb/eMf4XbhhXDRRXGnkVpIhUSkNnv6abj44jCP1q23xp1Gaild2hKpTYYMgd69OWj27NC9d+5caN06TIGynj43Sn6okIjUFkOGQK9eUFqKAXz7bRit3r07bLRR3OmkFtNHFJHaondvKC1de5s7/P3v8eSROkOFRKS2mD27cttFaogKiUhtUdaKhtttV9gcUucUvJCY2a5mNsHMSs1sjpn1M7N6FRzzWzMbZGafRsdNN7M+ZtagULlFipo77LDDutsbNgzTxIvkUUELiZk1A8YDDnQG+gGXANdUcGhXYAfgRqADcA9wMTAkb2FFkuT662HixDAFSsuWuBm0bBnWG+nWLe50UssVutfW2cBGQBd3XwiMM7MmQF8zuynals2N7v592v1JZrYUeMDMWrr7rDznFilejz0Gf/tbmALlkUfAjMmTJnHwwQfHnUzqiEJf2moPjM0oGEMJxeWgsg7KKCIp/46+bllz8UQSZvx46NkzrLP+0ENanEpiUehCsjPwUfoGd58NlEaPVcbvgdXA9JqJJpIw770HXbrALruEebQ22CDuRFJHmbsX7oeZrQAuc/d/ZGz/EnjU3XNaNNrMtgLeA0a5e48y9ukF9AJo3rx5q6FDh1Yp86JFi2icoIV/kpQ3SVmhuPJu+N137H3uuQC8e++9LNtii7UeL6asuUhS3iRlherlbdOmzVR336fCHd29YDdgBXBBlu1fAf1zfI4NgFeAGUCzXI5p1aqVV9XEiROrfGwckpQ3SVndiyjv/Pnuu+/u3qSJ+3vvZd2laLLmKEl5k5TVvXp5gSmew3tsoRvb5wObZNneFFhQ0cFmZsCjwG7A/u4+v2bjiRS55cvD5azp08MKh3vsEXcikYIXko/IaAsxs22BRmS0nZThdkK34cPcPZf9RWoP99CwPnEiPPpoaGAXKQKFbmwfDbQzs43TtnUFlgCTyzvQzK4EzgdOcffX8hdRpEj17h0mZuzfP3T1FSkShS4k9wPLgGfM7NCoQbwvcJundQmORrAPTLt/MnA94bLWV2a2X9pt7VZGkdrogQfC5Iu9esGVV8adRmQtBb205e7zzewQ4G5gJKFd5HZCMcnMlT5tyuHR1x7RLd1pwOCaTSpSRF54Af70J+jYEe65R2NFpOgUfD0Sd58GtK1gn5KM+z1Yt4CI1H7vvANdu8Lee8OwYVBfSwhJ8dHsvyLFasYM6NQJmjcPZyWNGsWdSCQrFRKRYjR3LhxxBKxcGbr5Nm8edyKRMuk8WaTYLFkSZvGdPRsmTICddoo7kUi5VEhEismqVXDKKfDmm/DUU7D//nEnEqmQColIsXCHiy+GZ56Bf/wDjj027kQiOVEbiUixuP12uPNOuOgiuOCCuNOI5EyFRKQYPPUUXHIJHHcc3HJL3GlEKkUSbRLJAAAaZUlEQVSFRCRur74apjw54ICw2uF6+m8pyaJXrEicPvwQOneGkhJ4/nlo0CDuRCKVpkIiEpdvvoH27cPKhqNHw6abxp1IpErUa0skDosWhbmz5s6FSZPgl7+MO5FIlamQiBTaypVwwgnw3//CiBGwT8UrmYoUMxUSkUJyh3POCZeyBgyADh3iTiRSbWojESmk/v3hoYfgb3+DM8+MO41IjVAhESmURx6Bq66C7t2hX7+404jUGBUSkUIYNw7OOAMOPRQefFCLU0mtokIikm///W+YN2vXXeHpp0N3X5FaRIVEJJ+++CI0qDdtCqNGha8itYx6bYnky4IFYcDhokXw2mvwi1/EnUgkL1RIRPJh2TI45hj4+GMYMwb22CPuRCJ5o0IiUtNWr4aePcOI9X/+E9q2jTuRSF6pjUSkpvXuDY8/DtdfD926xZ1GJO9USERq0n33wQ03wNlnwxVXxJ1GpCBUSERqyogRcN550KkT3HWXxopInaFCIlIT3n4bTjwRWrWCoUOhvpofpe5QIRGprs8+C2chLVrAyJHQqFHciUQKSoVEpDrmzg1jRVavDjP6Nm8edyKRgtP5t0hVLVkCRx0VRq9PmAA77hh3IpFYqJCIVMWqVaFr75tvhvmzfv/7uBOJxEaFRKSy3OGii+DZZ+GOO6BLl7gTicSq4G0kZrarmU0ws1Izm2Nm/cysXg7HNTWzQWY238x+NLMhZrZZITKLrOW220L33osvhj//Oe40IrEr6BmJmTUDxgPTgM7ADsCthIL2twoOHwbsBJwBrAZuBJ4DDsxXXpF1DBsGl14a1ly/+ea404gUhUKfkZwNbAR0cfdx7n4/cA1wsZk1KesgM2sNtANOdffh7v4scApwgJkdmpekQ4ZASQkHtW0LJSXhfjFLUt4kZYU1edu0CWNFdtoprHa4njo9ikDhC0l7YKy7L0zbNpRQXA6q4Lhv3f2V1AZ3fxv4PHqsZg0ZAr16waxZmDvMmhXuF+sbXpLyJikrrJ03tW32bBg+PM5UIkWl0I3tOwMvp29w99lmVho9NrKc4z7Ksv3D6LGa1bs3lJauva20FHr0CBPxFZuPP4aVK9feVqx5y8t67bXhvvvaX7Nty/VrdY/5/vswRiTdkiXhNaIJGUWAwheSZsCCLNvnR49V5bjtsx1gZr2AXgDNmzdn0qRJOYc8aPZsss2S5CtX8v0WW+T8PIWyxbRpiclbbtYWLX6en8qzzVOV2lbWPhmP57JPRT+nxciR2fPOns3kSrymCm3RokWVes3HLUl5k5QVCpTX3Qt2A1YAF2TZ/hXQv5zjxgHPZtk+BHi9op/bqlUrr5SWLd3DZ9K1by1bVu55CiVJeZOU1T15eSMTJ06MO0KlJClvkrK6Vy8vMMVzeG8vdBvJfGCTLNubkv2Mo6LjNqnguKrp3x8aNlx7W8OGYXsxSlLeJGWF5OUViUGhC8lHZLRpmNm2QCOyt4GUeVykrLaT6unWDQYMgJYtw6WPli3D/WK9Jp6kvEnKCsnLKxKDQheS0UA7M9s4bVtXYAkwuYLjtjKzA1IbzGwfQvvI6HwEpVs3mDmTyS+/DDNnFv8bR5LyJikrJC+vSIEVupDcDywDnjGzQ6MG8b7AbZ7WJdjMPjWzgan77v4vYCzwqJl1MbOjCe0jr7n7+IL+BiIispaCFhJ3nw8cAtQjdPW9Brgd6JOxa/1on3QnEs5aHgYeBaYCx+Qzr4iIVKzgkza6+zSgbQX7lGTZtgA4LbqJiEiR0BwPIiJSLSokIiJSLebp00LUUmb2PTCriodvDsytwTj5lqS8ScoKycqbpKyQrLxJygrVy9vS3SucHqNOFJLqMLMp7r5P3DlylaS8ScoKycqbpKyQrLxJygqFyatLWyIiUi0qJCIiUi0qJBUbEHeASkpS3iRlhWTlTVJWSFbeJGWFAuRVG4mIiFSLzkhERKRaVEhERKRaVEhERKRaVEhERKRaVEhERKRaCj77r9SMaGXJDoABT7n7PDPbBrgU2AGYCQxw9/fjSwlm9hdgVNw5cmVmGwH13f2ntG1bAOcBuwKrgf8A97r7j/GkFCku6v4bMTMjrG/SEdgF2BRYBXwLvAkMdveP40u4hpn9DngJaAysBH4A2gGjCJk/AHYHtgIOdfdXY4qKma0GnLAk8uPAMHf/NK48FTGzUcAn7n5BdL81YRXO1YQ1cAxoBSwH2rr7BzFm3QvYyN3fSNt2BHAla4ref4G+6fsUi+j/3JHA3oTXyBTCh46iflMysyaEuavauvtrceeBnzO1BTYAXnT3xdEHoHMJK8nOIHywnJOXn1/k/2YFEf3BRxHeIL4lrOL4C8KLezThH2In4Fp3vzaunClmNo5wNnkMsJiwONjRhDe649x9hZltCDwHNHD3NjFmXQ3cCOwBHEbI/S6hqDzp7l/FlS0bM5sLnO7uz0f33yT8jY9OnaWYWVNgBLDU3dvFmPVNYKS794/u9wQeAiYCLxOK3iHAgcCxqd8ppqxvEP6uH0b3mxE+DLUCFkW7NSZ8aGuXfkYYBzP7UzkPbwTcDNwBfALg7vcWIlc2ZvYrYAKwbbTpc+BwYBywCfAZ4f1rCdDK3b+s8RDuXudvwBOEF8Qeadu2BsYAw6P7BxFe8D2LIO88oH3a/S0Jnz4Pz9ivIzA35qyrgd9F3zcDekUv+pXRbVK0bbO4/65RxlLgD2n3l2f+XdP+totjzrowPRvwKXBXlv3uB/5bLK+D6P5Awpn0EWnbjgDmA7cXwetgNeHsfnUZt/THVsWc9UnCmeevCFdSHovez94ANo722Tza54F8ZFBje9AeuMLTruN7OAU8GzjazFq4+2TgeuCCmDKm8+iWfp+Mbdnux8rd57v7AHc/BNgGuIRwKn4/MMfMXow1YPA/IP0M7lvCf85MmxGKTpxWZ9xvCTydZb+nCZ9Ii8lRQD93H5PaEH3fH+gSW6o1RgDfAacD9dx9vdSN8How4OBoW+ay4IV2ANDf3T919x+AvxHaSW/x6MzO3ecC/2Dt13aNUSEJjPAJI9Oq6LGm0f23gB0LFaocU4FLzWxjM1sP+CvwFXCOmdUDMLP6wJ8Ib4xFx92/cfc73P33wC+BPoSzwLjdAFxhZj2jv2F/4GYzO8zMNjCzDaN2iL8TPgnG6VWgW9r9D4Bs04X/lvD6KCabENpEMk0ltO3Fyt2PBk4FLgPeMbP90x+OJ1WZmgHfpN1P/VtnrsE0g/ABrsap11YwHrjOzN5z9xnw8zXcOwn/QKlG9sZAMfTU6U24/vkD4fJQKaGh7WngEzNLNbZvTbhcUNTcfRbhDfyGIsjyjJmdT/j0djswnfBBIvXJ2QkfLkYQ3mTi9Ffg9ejDxF2ERvZHzGxTwiVDCG0kFwJXxJJwbceaWarQzQeyLZi0OeGSXezc/SUz25Pw93vRzMYQekXG2n6TxXeEs9GUVcADhLPpdFuSp+xqbAeibrNjCKf/swjXxX9JaHQ/yd1HR/vdRFgxrGtcWVOizJ0IHwaGu/vXZrYVcDlrfo+H3P3dGGNiZn2ABz1PvUXyxcw2A7oCvyN8Ql6PULg/BF5w96kxxvuZmf0GuA/YlzVFjrTv5xMuId0RT8Ig6nSRabC798zY7wFgV3c/sDDJchP937qJcNntAUJxaePur8QaDDCz54AfMv+WWfa7C9jF3Q+t8QwqJEF0SegE4P+ABoSGy8eja44iRc3MdiEUk8yi94a7r4gzW2WY2ZnAZ+7+ctxZsom6g99O+LDW0YugW7WZNQcauvvnFex3MaHTxYQaz6BCUvuYWT13z9bmUzTMrAGhQXA18GkxvtlFbSTbkzamyN1nx5tKpPiosT2Dme1mZsea2Rlmdnr0/W5x58pkZl3M7DkzG2VmR0bbuprZTGC5mc2KPt3FysxOicY3pO7XN7MbCJ+Y3yN0BvjBzIrhGj4AZtbKzEYQrid/CLxOGN/wuZl9ZWb9zKxhrCFrEYvEnSMbM9so89/azH4TvS+0iitX0Ymz/3Mx3YCehHaFbH3HVxGmHDkt7pxR1hOiXK8BzxMa288ktO0MJIxmfSLK3S7mrNOAc9Lu3xrlvQrYn9B1sS9hsNRfi+BvezihbWwKoWdWX8Kg1OVR5ksIvaP+AzQrgrydCONy3geGkTYGJm2ffYl/rMPhRGMa0rYdTRicuhJYEf3NO8b9N42yNQWejXKtBB4E6gGPZLwvvA5sHnfeHH+nY/P1Ooj9lyuGG3B+9IK5hzAKePPoRVMv+v4A4O7oDebcIsj7DnB/2v1uUbZbM/YbBIyPOWspcFDa/e+AC7Lsdykwqwj+tlOBR8p4jcwknMU3iN4A740562Fpb2Z3R9lXRcXa0vYrhkKyirUHJB4TvRm/Ef3bXxp9v5IsA0BjyHsnYRqU84Hu0YeH4cAXUVHcgjD+7Cvgvrjz5vg75a2QqI0EMLMZhDfmmyrY73LgbHffvjDJysyxEOji7uOj+00JvXMO9bRGyuiS1wPuHtv4DDP7GjjP3YdH95cRzpImZex3GDDC3TcqfMq1ciwBjnL3cRnbmxFmFNjN3T80s+7Aje7eIo6cUabXCPOCnZa2rSfhTXAcocfhUjPbl9DoHtvAuajX1n7u/nZ0/13gK3c/MmO/UUAjdz8ohpjpOT4Hrnf3B6P7exEK9Wnu/kjafmcSzqR/GU9SMLOHc9y1JWEQZY2/DtRGEmwFvJ3Dfm9TBIOlCF07018MqbmKFmTst4gw8CtOIwiDJzeI7o8HTsqy30mET31x+47Qcy/T/xH+7qlxRLNYM1A1LrsD/0zf4O4PE6bz2Q94ORpTUox2J3SjzTSAMIlj3LZkzfgxiObUIsxble5Tso+HKaRTCWdJe1Rwa1nWE1SXBiQG7wFnmtkr7p6tv3tqptIzo33jNoswu+tYAHdfFXVL/DBjv+1Ze8RrHK4kjMD+n5k9BIwEbjSz3VkzaK4tsBdhJti4DQCuNbNGhLaH5YSR4b2Bib5mPMz2QNw9uJYCjTI3uvvUaCT2WMLlor4FzlWW9MsfP7LmA1C6xRTHB9zPCQV5cnT/QMKluN8T2iZT9if+18EnwNvu3r28nczsOEI7Wo1TIQkuIQxInGZmzxCmPF9AeOFvAuxMuKa7DcUxUvwZMqY6cPe3sux3Mmu/6AvO3X8ws/0Ib8QXEz7pAbSObssJl2EOdPd34km5hrv3jy7DXEGYtgXC6+AJwiC0lBWEudfi9B7hOv2IzAfcfUZUTEYBgwucqyxjzWxl9H1T4Des+TCRsjPwdSFDleF+4A4z24NQ9E4gfCi62swaEyZA3Bu4CIh7RvA3CQWuIukDVmuU2kgiZrYDYVT4EayZjjnlC0LPnZvdPfPUtmiZ2XbAAncviiknAMyshLUHzX3mxTmGZH3COJcGwIxi+hummNlZhGlS9vIyBs5GZ1bPEtrPYvukH81wkOkTd388Y79J0fZi6Lr+Z8Il1/UJs0Tcb2YnEdqgUpN2DgD+EudrOOqGvL+731nBfpsT2vgml7dflTKokKwr6jeealtY4O5xz/IqIkUiusy9ubt/H3eWYqFCUstEp93vAt2K4VKRJXDpWkvIMsYixUKFJE30BrIlMN3d12kIjE4NO7j7owUPt3aODuU83IjQoHYF0RTy7j6qELmysQQtXQvJWsY4V9E8XMe7e7+Yc8S6HGx1RWci6UsDTyX8HrG/iVqYVflYwv+nwe7+kZn9H3ANaz783ONp67/UqLgHyRTDDdgQeIrwRrGK0JA6EGiasV/sA7uiHElavW0u0Dnt/puE3lAbp21rSugdM7YI/rbjCEvVbkK4Nn438CVhBoH1014vowm9uGJ//ebwO+VtIFolMvyK0Nsw9br8jPAGN4NQrN8hTB//LbBNEfzN3iDMlJu63yzKuDrKuZA1Ayo3jitnlK0d4YPYN9HfdSFhAav5hMGq90T/71YRloyu+Qxx/4MVww24mtBL60zCwkAXRC/oT4Bfp+1XLIVkKqFny2mEvuHptz2jF/gJqW0xZ03M0rVRjiQtY7xdjrez437dUgTLwVYyb2KWBo6KxVOElRwhdMCYDwzM2O8x4M28ZIj7H6wYboTuvudlbNsKeAX4HmgdbSuWQmKEdc6/I0zb8Mu0x5pG/wnWmXMppqxvA33S7n8BnJhlv+7A90WQd27Gm8UW0d/zsIz9OhRBIUmdfVZ0K4Yz0znACWn3W0a5umTsdxrwcRG8DjILyffAhVn2i31qH0L35EPT7jeL8rfN2O9wQuehGs+gcSTBtmQMNHT3b8zsEEIVH29m3SiO/u14eFUMMLMngeuA98zs7uj7YnMDMMTMvgAeZc3StfMIl7OMcBpeDEvXwppljF8nDI5LX8b4ZQ+DP4tlGeOfgJeBhyrY7wBC1/Y4xb4cbDUV89LAS1h7YGrq+8zphhoSBrHWOBWSYA7wa8IZyM889A0/0cz+QTh1jLWRPZO7LwDOM7MBhL7tnwA3UkRrSnuylq6FZC1j/DahHe/F8naK1n6JW+zLwVZBUpYGfp0wUPKTKMsthFm3/xLN1vFTNB/f5YTCV+PUa4ufJz3b3t0PLmefKwmfpt1jnPyuPGZ2ImE50G0Ik7PFvgxoiiVk6VpI1DLGVwG93D1zAG3mfn8ArnH3NoVJljVD7MvBVoYlaGlgM/sVYQ671OtgJuEs/2nCTAGzgBLCB6M27v6fGs+gQvJz17muwA3uPq+c/U4mXCs/rax94hZddmkELPIiXyVR6g4rguVg88GKZGngaPzY/oSehhPcfUk0sPoM1nz4edzdv8zLz1chERGR6iiGWTYlT8zsQTMbGHeOXCQpKyQvr0g+qbG9EszsQWA9dz897iw5akNyPiwkKSskKK+ZjSdcfTgk7iwVSVJWSFbefGZVIamcxLx5ALj7r+LOkKskZYXE5TWS87pNUlZIVt68ZVUbSS0Wdfvc0t3jXninQknKCsnLK5JPSamkRcHMGkRrfCRFR8JKb0mQpKyQoLxmtn5SXrdJygrJypvPrCoklZOYNw+pG8zsXDP7zMx+MrO3zOyPWXbbmyJ43SYpKyQrb9xZ1UaSQGaWa5/1bCNxCypJWSFZeaMBqHcRlgH+N2EcwWAz6wz80d2XxJkvXZKyQrLyFkNWtZFQ6TePXeMe2W5h3evphGkQyvMLYN848yYpKyQrr5lNAV5298vTth0CDCGMbu7oYVGufYE3lDV3ScpbDFlVSEjWmweAmf2HsPhW1wr2Ow4YFvOLPDFZoxyJyWtmPwFHuvukjO0lhPVS6gHtCfNBxf1ml5iskKy8xZBVbSTB/4D/ufvx5d2A2+IOGnkL2C+H/VITIsYpSVkhWXl/JLw5rMXdZwK/J0yJ/wbw28LGyipJWSFZeWPPqjMSfp547Qh3b1nBfscS1vCOtQCb2Q7Abu4+ooL9NiJ0Uc2cqrtgkpQ1ypGYvGb2PPCTu59SxuMbESbua0/Mk40mKWuUJzF5iyGrCgnJevMQSTGz44GLgE7u/kMZ+9QD7iNMNvrLQubLyJGYrFGWxOQthqwqJCIiUi1qIxERkWpRIRERkWpRIZE6xcx6mNnUaATwfDP7t5nlpTeeme1oZn3NbJMc9u1rZp52m2Nmw6P2u4qO7REd07hmkotUjgqJ1BkWlkt+CBgLdAG6A88DR+XpR+4I9AEqLCSRH4HW0e1S4DfABDNrVMFxL0bHlFYxp0i1aIoUqUvOAx5w97+mbRtpZtfEFSjDSnd/M/r+TTObDbwKdACeytw56olTz92/B74vXEyRtemMROqSTYBvMjd6WtdFMyuJLhOdbGaPRZfAvjOzPpnHmVnbaIK8pWb2rZndm7q8ZGYHAyOjXT+PnnNmJfNOjb6WRM852MymmNnRZvYBsBTYN9ulLTPbyMxuMrNZZrbMzD43s79n5D/DzD6IHp9lZpcjUgU6I5G65F3g/OiT/gvuPq+cfW8GXgCOA/4A9DGzue5+D4CZ7QqMAcYBxwLbAjcA2wNHRD/rUuAWwmW0r4FllcxbEn39JmPbTUA/4FvCbK5rtaOYmREu2bUGriUUpF8AB6btcxlwffRck4BWwLVmVurud1cyp9R17q6bbnXiBuwJzCBMb7Ia+IDwhtwkbZ+S6PGXMo59EPiKsNQywFDgE8KlpdQ+J0THto7ud4rul+SQrS9hKov60W1HYCKwEGgR7TM4er7fZBzbI9reOLrfLrp/VBk/qwmwCOiTsb0foWjVqyivbrql33RpS+oMd38P2IXQuH4vYa6sq4ApWXo8PZtx/xlga2Cb6P7vgGfdfVXaPsOBlcABVYy4GbAiuk0nnN10dfev0/b5yt3/U8HztAV+8LJnamgNNAKeMrP6qRvwMtCcNb+jSE50aUvqFHdfRmi7GAlgZqcTenKdDtyRtut3GYem7rcAZkdfv8147lVmNg/YtIrxfgQOJZxNfAPMcffMqSe+XeeodW1GuJRWltQEfx+U8fi2gKYBkpypkEid5u4DzewmYOeMh7Ys4/7XaV/X2ifqRbUZkHW+oxysdPcpFeyTy5xG8wiFriypfJ3IXpim5/AzRH6mS1tSZ5hZZnHAzLYAmrLuG+oxGfdTDeZfRvffAo6Jikf6PvWB16L7y6OvDaoRuyomAJuaWacyHv8XsATY2t2nZLn9VLioUhvojETqkvejKbdfIlyqaknoWVUKPJKx727R8gLDCb22TgcucPfV0ePXEZY1fc7M7iO0K9wIjHX3f0X7pD7Zn2VmQ4FSd38/P7/aWsYRBl0+bmb9CD3IWgB/cPez3H2BmfUF7jCzlsArhA+VOwJt3D2ziIqUS4VE6pJ+QGfgTkI7xjeEBX+6uvvnGfteTrj0M5wwXuNa4Oduse7+gZm1J3ShfYbQu+qJ6LjUPrPM7FLgz8D5hLOZknz8Yunc3c3smCjzhYQloucAj6ftc5OZzSFMP34J4Xf8GBiW73xS+2gaeZE00fKknxOWLn0h3jQiyaA2EhERqRYVEhERqRZd2hIRkWrRGYmIiFSLComIiFSLComIiFSLComIiFSLComIiFTL/wMSBNLPLRyYmQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAE+CAYAAAB1DJw3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7xVc/7H8ddbIZWSWzLoDDPu/IbM0GAol3QhcgmZJITBuBumoUTG3bgTKUwUcim6qFRu41JmhhG5pEJupaRO9z6/P75ra7fb57LP2Wevvc75PB+P/Thnrb3W3u+z2+3PXuv7Xd+vzAznnHMuF+vFHcA551zyePFwzjmXMy8ezjnncubFwznnXM68eDjnnMuZFw/nnHM58+LhipakvpIs7TZH0nBJO8SYaX9J70paKsmidY0kDZU0L8rZo4x9B2f8PanbQwX9I9bk6SXp6CzrZ0q6JY5MLjnqxx3AuQr8CBwR/b49cC0wQdJuZrY4hjwPAN8B7YBl0bpzgCOB7sBXwGfl7P8RcFrGuu/ynLGyegH/A57LWH8MMK/wcVySePFwxW6lmb0Z/f6mpNnAq0AH4KkY8uwMDDCzyRnrppvZ8Ersvzjt7ylKZvbvuDO44uenrVzSTI1+lgBIai1pRHRKa7Gk/0jqltpY0qbRKaZT0x9EweeSbktb11bSW9H230q6V1Lj6L6Do9NU9YA7otNNgyXNBE4H9kqdhqrqH5Z6Dkm7Z6yfJOnptOXBkqZIOkzSe9Hf/Zqk3TL2qyfpSkkfS1om6UtJg1OPCbQCTk07fdYjum+d01aSTpD0fvQ4X0jqL6l+2v09osfYQ9K4KNNHkrpU9fVwxc2Lh0uakujnN9HPlsDrwBmEU0fDgUGSTgIwsx+AZ1n3VNHB0WMNApC0KzAGmAscC/QBTgZSH9rvAq2j32+Nfr+WcIpnFOF0VOu0bcokqX76rVJ/9bq2A24G+gMnAVsCT0pS2jYPANcATwKdgEuARtF9f4oyj0rL/WIZeQ8HhhFeg87AXcClwN1ZNn8cGEF4XT4Bhkrapop/oytiftrKFb20D9jtgXuBn4DxAGY2NG07Aa8A2wBnAk9Edw0EXpK0vZnNiNadBkw1s/ej5auBWcBRZrYqerwfgGGSWpvZvwinzQBmpp96kvQ90LySp6NaASsy/r5fm9mnldg33abA/mb2SfQY6xGK5E7AR5J2JhwRXWBmd6btNwzAzKZJWgx8X4nc/YBJZpY6ehsTvQ5/l3SdmX2Ztu3tZvZwlGkq8C2hcN2f49/nipwfebhitxnhw3YFMJ1QQLqa2dcAkppJulPSrLTtegE7pj3GBEJhODXaZ2OgC9FRR+R3wLOpwhEZDqwEDsjj3/Mh8NuM2xdVeJyZqcIRmRb9TH3LbxP9HFyFx/6ZpHrA3qzbvjSM8PmReaT1UuoXM5tH6AzgRx61kB95uGL3I3AoYIRTVXNs7aGgBwP7EU4hTQMWEno/dU5tYGYmaRDQU1Jf4ATCe//xtMdpQfiWTNp+qyTNI3zLz5dSM5uSh8dZkLG8PPrZIPq5GaFxfmE1n2dzYH0yXpu05czXJluuBrhax4uHK3Yry/qwldQA6AicZ2b3p63PdkQ9iNCO0QboATxnZvPT7v+a0G6Q/vj1CB/CP1TnD8jB0ujnBhnrNyW0xeRiHtBIUpNqFpC5hKO5LTPWN49+Fuq1cUXGT1u5JNuQ0Pspdb1F6pTUUZkbmtkXhFMq1xBOQw3K2OQt4JioYKR0IXzBei2/scuUajvYJbVC0raEdoxcvRz97F7ONhUeFUSn8aYCx2fcdQKwGvhXFbK5WsCPPFximdmPkt4Brpa0kPBhdgXhVFeTLLsMJJy7/xIYl3HfdcC/geck3Uc4T38jMDZqLK9xZvZl9PdcK6mU8OXur1Th272ZTZc0ALhV0paEjgSbAMeZ2YnRZh8B7SS1IxypfB61U2TqA4yNTv0NBfYgnCZ8MKOx3NUhfuThku5k4HPgUeAOQiP3o2Vs+wKhAfwRM1udfoeZfQC0J5yeeYZQTJ4AjquZ2GU6GZgN/BO4ntDTaXoVH+tPhCOtUwhdcv8BLEm7/zpCA/6TwDuErs7rMLOXgBOBfYCRwIWE7srnVTGXqwXk09C6ukJSB0IB2bEKXWOdc2m8eLhaT9LWwK8JF7fNNrNOMUdyLvH8tJWrC3oRrvVYCpwfcxbnagU/8nDOOZczP/JwzjmXszrRVXfzzTe3kpKSKu27ePFiGjVqVPGGRSJJeZOUFZKVN0lZIVl5k5QVqpd36tSpc81si6x3mlmtv7Vq1cqqauLEiVXeNw5JypukrGbJypukrGbJypukrGbVywtMsTI+V/20lXPOuZx58XDOOZczLx7OOedy5sXDOedczrx4OOecy5kXD+ecq42GDIGSEg5q2xZKSsJyHtWJ6zycc65OGTIEevWC0lIEMGtWWAbo1i0vT+FHHs45V9v07g2lpWuvKy0N6/PEi4dzztU2s2fntr4KvHg451xt07Rp9vXbbZe3p/Di4ZxztcmwYbBgAdSrt/b6hg2hf/+8PY0XD+ecqy1eeQW6d4cDD4SHHoKWLTEJWraEAQPy1lgO3tvKOedqh2nToHNn2H57eO452HRT6NGDyZMmcfDBB+f96fzIwznnku7rr6F9e2jQAEaPDoWjhvmRh3POJdlPP0HHjjBvXjhtVcW5i3LlxcM555JqxQo4/nh47z0YORL23rtgT+3FwznnksgMzj4bxo4NjePt2xf06b3Nwznnkujaa+Hhh+Gqq+D00wv+9F48nHMuaQYNgj594NRT4ZprYongxcM555LkpZfCIIeHHQYPPghSLDG8eDjnXFL85z9w7LGw227w9NOw/vqxRfHi4ZxzSTB7NnToAM2awYsvQpMmscbx3lbOOVfs5s8PvalKS+H11+EXv4g7kRcP55wrasuWwTHHwCefhG65u+0WdyLAi4dzzhWv1auhRw+YPDnMDtimTdyJfuZtHs45V6yuvBKGDoUbboCTT447zVq8eDjnXDG65x646SY45xy4/PK406zDi4dzzhWb55+HP/8ZjjoK7rortms5ylPw4iFpV0kTJJVKmiOpn6R6ldhvH0kvSZon6QdJ4yXtW4jMzjlXMG+9BSedBPvsA088se6MgEWioMVDUjNgPGBAZ6AfcAlQ7vX1kraN9qsPdAf+GP3+kqSWNZnZOecK5tNPoVMnaNEijJLbsGHcicpU6N5WZwMbAV3MbCEwTlIToK+km6J12XQENo72WwAg6Q1gLtABuK/mozvnXA36/vtwLYcZjBkDW24Zd6JyFfq0VXtgbEaRGEooKAeVs9/6wEpgUdq6RdG64jsZ6JxzuSgthSOPhC+/hBdegF//Ou5EFSp08dgZ+Ch9hZnNBkqj+8oyPNrmVklbStoSuB2YDzxVQ1mdc67mrVoVuuG+/TY8/jjst1/ciSql0MWjGbAgy/r50X1ZmdkcoA1wLPBtdOsCtDOz72sgp3PO1TwzuOCC0LvqzjvDleQJITMr3JNJK4BLzeyOjPVfAYPNrHcZ+7UAXgU+YE37xrnAXsDvo6OXzH16Ab0Amjdv3mro0KFVyrxo0SIaN25cpX3jkKS8ScoKycqbpKyQrLz5zLrt0KHs8MADzO7alRlnn52Xx8xUnbxt2rSZamb7ZL3TzAp2A74D+mRZvwi4rJz9bgNmAuunrdsAmAXcWdHztmrVyqpq4sSJVd43DknKm6SsZsnKm6SsZsnKm7esTzxhBmZdu5qtWpWfx8yiOnmBKVbG52qhT1t9REbbRtQNtxEZbSEZdgY+MLMVqRVmtpxwJLJDDeR0zrmaM3lymAXwD3+AwYNhveRdr13oxKOBdpI2TlvXFVgCTC5nv1nA7pI2SK2QtCGwO+GIxDnnkmHaNDj6aNhhB3juOWjQIO5EVVLo4nE/sAx4RtKhUbtEX+A2S+u+K+lTSQPT9nsI2Bp4VlJHSZ2A54AWwICCpXfOueqYMydcy9GgAYweHSZ2SqiCFg8zmw8cAtQDRhKuLL8d6JOxaf1om9R+U4EjCBcKPgY8CjQEDjOz/9Z8cuecq6affoKOHeGHH2DUKGiZ7MExCj6fh5lNA9pWsE1JlnUTgAk1FMs552rOihVw3HHw/vthCtm99oo7UbX5ZFDOOVeTzOCss+Cll2DgQGjXLu5EeZG8Jn7nnEuSfv1g0CDo0wd69ow7Td548XDOuZry8MPQty+cdlooHrWIFw/nnKsJY8dCr15w+OHwwANFOaFTdXjxcM65fPv3v0MD+R57wFNPwfrrx50o77x4OOdcPs2aBR06wKabhp5VTZrEnahGeG8r55zLl/nzw0WAS5bA+PGw9dZxJ6oxXjyccy4fli0Lw4589llo79htt7gT1SgvHs45V12rV4eBDl95BZ54Ag4+OO5ENc7bPJxzrrquuAKGDYMbb4QTT4w7TUF48XDOueq45x64+WY491y47LK40xSMFw/nnKuq556D88+Hzp3hjjtq3bUc5fHi4ZxzVfHmm3DSSfC738Hjj0O9ehXvU4t48XDOuVx9+ikceSRssw2MHAkNG8adqOC8eDjnXGUMGQIlJRzUti3ssgssXRomdNpii7iTxcKLh3POVWTIkDBO1axZyAxWrgy3t96KO1lsvHg451xFeveG0tK11y1dGtbXUV48nHOuIrNn57a+DvDi4ZxzFWnaNPv67bYrbI4i4sXDOefK88QTsGDBul1xGzaE/v3jyVQEvHg451xZJk2CHj3goIPC/OMtW2IStGwJAwZAt25xJ4yND4zonHPZfPBBGCX3V7+CZ5+FZs3g1FOZPGkSB9eBgQ8r4kcezjmXac6cMC9Hw4YwalQoHG4tfuThnHPpFi4MMwHOnw+vvhpOUbl1ePFwzrmUFSvC3OP/+1+YQvY3v4k7UdHy4uGccwBm4SrycePg4YehXbu4ExU1b/NwzjmAa66BwYOhb1847bS40xQ9Lx7OOTdwYCgePXvC1VfHnSYRvHg45+q2MWPgrLPCaar7769TEzpVhxcP51zd9e67cPzxsOee8NRTsP76cSdKjIIXD0m7SpogqVTSHEn9JFVqCi5JXSS9I2mJpHmSxkhqVNOZnXO10MyZ0LEjbLpp6Fm18cZxJ0qUgva2ktQMGA9MAzoDOwC3EorY3yrY9wzgbuAm4DKgGdAW7zHmnMvV/PnhWo6lS2HCBGjRIu5EiVPoD96zgY2ALma2EBgnqQnQV9JN0bp1SNocuB0438weTLvr2RpP7JyrXZYuDcOOfPZZ6Ja7665xJ0qkQp+2ag+MzSgSQwkF5aBy9jsh+vlITQVzztUBq1fDqafCK6/AI4/AH/4Qd6LEKnTx2Bn4KH2Fmc0GSqP7yrIvMB04XdKXklZIekvS72suqnOu1vnLX+DJJ+Hmm+HEE+NOk2iFLh7NgAVZ1s+P7ivLVsBOhHaRvwBHAouBMZKa5zukc64WuusuuOUWOO88uOSSuNMknsyscE8mrQAuNbM7MtZ/BQw2s6wTAksaBxwKtDezMdG6JsAs4G4zuyrLPr2AXgDNmzdvNXTo0CplXrRoEY0bN67SvnFIUt4kZYVk5U1SVqj5vJu/+iq79enD3P3354O+fded2CkHdem1bdOmzVQz2yfrnWZWsBvwHdAny/pFwGXl7DcMMKBBxvrxwPCKnrdVq1ZWVRMnTqzyvnFIUt4kZTVLVt4kZTWr4bxvvGHWoIHZfvuZLV5c7YerS68tMMXK+Fwt9Gmrj8ho25C0LdCIjLaQDB8SikfmpZ8CVuczoHOuFvn4YzjySNhmGxgxIszP4fKi0MVjNNBOUvrVOF2BJcDkcvZ7gVAo2qRWSGoKtAL+WwM5nXNJ9913YUInCUaPhi22iDtRrVLo4nE/sAx4RtKhUbtEX+A2S+u+K+lTSQNTy2Y2BXgeGCjpVEkdgRHACuCeQv4BzrkEWLw4HHF8/TW88EKYStblVUGLh5nNBw4B6gEjgWsIF//1ydi0frRNulOA54DbgKcJhaNt9JjOOResXAknnQRTpsDQobDvvnEnqpUKPrSHmU0jDCtS3jYlWdYtAs6Jbs45ty4z+POfYeRIuOceOOqouBPVWj6qrnOu9rjpJrjvvnAx4J/+FHeaWs2Lh3Oudnj8cbjiinDK6vrr405T61VYPCR1l7RZIcI451yVTJwIPXrAwQfDoEGwnn8vrmmVeYUHEYZOR9IqSb+r2UjOOZeD//0PjjkGdtwRnn0WNtww7kR1QmWKx3xg6+h3ES7Wc865+H31VZiXo1EjGDUKNtkk7kR1RmV6W40HHpM0nVA4BktaXNbGZuZHJs65mrdwYSgc8+fDq6/CdtvFnahOqUzx6An8iTCq7d7A58D3NRnKOefKtWIFHHccTJsWppD9zW/iTlTnVFg8zKwUuAVA0qFAbzPzIUGcc/EwgzPPDLMADhoEhx8ed6I6qTK9rVZJ+m20OAnIOlWsc84VRJ8+YRbAa64JPaxcLCrTYL4cSHVf6A746GLOuXg89BBcey2cfjpctc40Pq6AKtPmMQ3oK+k5Qm+r4yRlnxwEzMzuy1s655xLGT0azj4bjjgiXEWuzBkaXCFVpnicDzxAGMDQgEvL2dYALx7OufyaOhWOPx723DPMQb7++nEnqvMqPG1lZm+Y2R5mtj7hyGM/M1uvjFvV53Z0zrlsZs6Ejh1h881Dz6qNN65wF1fzch1Vtw3hNJZzztW8H34IEzotXx6GIGnRIu5ELpJT8TCzyQCS9gUOADYFfgBeM7O38h/POVdnLV0KnTvDjBkwfjzsskvciVyanIqHpEbAU0A7YBUwD9gMqCdpDHB8dF2Ic85V3erVcOqp8NprMGwYHHhg3IlchlyHnrwJaA2cCDQwsxZAg2i5NXBjfuM55+qkyy8PDeO33AInnBB3GpdFrsXjWOAvZvaUma0GMLPVZvYUcAVwfL4DOufqmDvvhFtvhfPPh4svjjuNK0OuxaMp8EUZ930BNKleHOdcnfbMM3DhhWGI9dtv92s5iliuxeO/wDnS2v+i0fI50f3OOZe7N96Abt1gv/1gyBCo5z3/i1muXXX/CowGPpL0LPAtsCVwDFACtM9rOudc7TZkCPTuzUGzZoXZ/7bYAkaMgI02ijuZq0BORx5m9jKwF/BvQvtGf+AE4F1gbzObmPeEzrnaacgQ6NULZs1CEHpY/fgjjB0bdzJXCbkeeWBm0wi9q5xzrup694bSjJ79S5eG9d26xZPJVVpORx6SbpG0a02Fcc7VIbNn57beFZWqdNV9X9Lbks6W1LQmQjnnajmzMO94Nj6dbCLk2ubxS+BQ4CPgZuBrSY9HMww651zl3HgjLFoE9TPOnDdsCP37x5PJ5STXIw/MbKKZdQdaEIZr3wYYK2mWpGskbZ/vkM65WmTIELjySjj55DCNbMuWmAQtW8KAAd7ekRA5F48UM1tkZgOBPsDrwLbAlcDHkp6X1DJPGZ1ztcXLL8Npp0GbNvDww3DKKTBzJpNffjkMve6FIzGqVDwklUjqI2kG8BKwiNB1d2PgKMI1H0PzFdI5Vwu8/364cnzHHcOV5BtuWPE+rmjlOqruH4HTgD8As4FBwCAz+zJts1GSFgPj85bSOZdsX34JHTpA48ZhOtlNNok7kaumXK/zGAA8C7QzswnlbPcxcF2VUznnao+FC8NMgD/+CK++CttuG3cilwe5nrba2sxOrqBwYGZfm9k12e6TtKukCZJKJc2R1E9SpQexkbSepKmSTFKnHPM75wpp+XI49liYNg2GD4f/+7+4E7k8yXUmwfnVeTJJzQins6YBnYEdgFsJRexvlXyYM4BfVCeHc64AzODMM8MsgIMHw2GHxZ3I5VHOw5NI6gqcCexImAhqLWa2ZTm7nw1sBHQxs4XAOElNgL6SborWlffczQjjaV0BPJRrdudcAV19NTz6KFx7bZgV0NUquQ5PcjLwCPAp4fqOEcAL0eMsBO6u4CHaA2MzisRQQkE5qBIRriV0Cy73tJlzLmYPPgjXXQdnnBHGqnK1Tq5tHpcRPsDPjZbvNbOewC+BuUBF85fvTLg6/WdmNjvab+fydpS0J6Gn16U5ZnbOFdKoUXDOOdC+Pdx3n0/oVEvJzCq/sbQI6GRmkyStAA4zs0nRfccAt5tZSTn7rwAuM7N/ZKz/EnjUzP5azr6TgbfM7HJJJcDnwJFm9kIZ2/cCegE0b9681dChVbvsZNGiRTRu3LhK+8YhSXmTlBWSlTeurI2nT2evCy+kdNtt+c8dd7CqkvNy+Gtbc6qTt02bNlPNbJ+sd5pZpW/AV4RuugAzgXPS7usC/FTB/iuAC8p43P7l7Hci8A3QJFouAYxQyCrM3apVK6uqiRMnVnnfOCQpb5KymiUrbyxZZ8wwa97crKTE7Ouvc9rVX9uaU528wBQr43M11wbzKcCewFhCe8fVklYCy4Grgbcq2H8+kO3qoKbAgmw7SFqfMAjjjcB6kjZhzVzpjSRtbGY/5fh3OOfyad68cJpq+XKYNAm22iruRK6G5Vo8/g6kxqy6Ovr9XqAe8A7RaaJyfERG24akbYFGZLSFpGlEaJy/LbqlGwp8BvyqcvGdc3m3dCl07hzGpho/HnYut/nS1RKVKh6SNgI6EE4XfSOpuZl9C3SWtCGwoVXQzTYyGrgs42ihK7AEmFzGPouANhnrtgKeIMyp/nJl/gbnXA1YvRr++Ed44w0YNgwOOCDuRK5AKiwe0RDr4wmFI2WhpBPM7CUzWwYsq+Tz3Q/8GXhG0o3A9kBf4Lb04iPpU2CymZ1uZiuBSRmZUlneN7OKTpU552rKpZfC00/DrbfC8cfHncYVUGW66t4ErAYOBBoCuwH/Bh7I9cksXKF+COE010jgGuB2wrDu6epH2zjnitUdd8Dtt8MFF8BFF8WdxhVYZU5btQYuMbPXo+UPJZ0V/WxhZl/n8oRmNg1oW8E2JRXcPxPwzuPOxWX48FAwunQJRx1+LUedU5kjjxbAjIx1nxE+vL1LhXN1zeuvh0mbWreGf/4T6vlJgrqosleYV/5KQudc7TV9Ohx1VJgy9vnnoZIXAbrap7JddcdG13NkmpC53sofGNE5l1Tffhuu5ahfP0zotPnmcSdyMapM8cg6L4dzrg5ZvBg6dQoFZNIk2H77uBO5mFVYPKyMSZ2cc3XEypXQtSu8+244VfXb38adyBWBnOfzcM7VIWZw7rnw4otw//3h6MM5ch+S3TlXl/z97zBgAFx5JZx1VtxpXBHx4uGcy+6f/wwTOZ1yCvTvH3caV2S8eDjn1jVhAvTsCW3bwsCBfhGgW4cXD+fc2t5/P1w5vtNO8MwzsMEGcSdyRciLh3NujS+/DNdybLxxmE62adO4E7ki5b2tnHPBjz9Chw7w00/w6quw7bZxJ3JFzIuHcy7MAHjssfDhhzBmDOy5Z9yJXJHz4uFcXWcGZ5wRGskfeQQOOSTuRC4BvM3Dubruqqvgscfguuuge/e407iE8OLhXF02YEC4huPMM+Gvf407jUsQLx7O1VUvvgjnnBMaye+916/lcDnx4uFcXTRlCpxwAuy1FwwbFoZZdy4HXjycq2tmzICOHWHLLeGFF6Bx47gTuQTy4uFcXTJvXrgIcMWKMKHTVj6TtKsaP1Z1rq5YsiRMITtrFowfDzvvHHcil2BePJyrC1atgj/+Ef71L3jySTjggLgTuYTz4uFcXXDppTB8ONx2Gxx3XNxpXC3gbR7O1Xb/+Ee4XXghXHRR3GlcLeHFw7na7Omn4eKLw7hVt94adxpXi/hpK+dqkyFDoHdvDpo9O3TFnTsXWrcOw4+s598VXf548XCuthgyBHr1gtJSBPDtt+Gq8e7dYaON4k7nahn/KuJcbdG7N5SWrr3ODP7+93jyuFrNi4dztcXs2bmtd64avHg4V1uUNfPfdtsVNoerEwpePCTtKmmCpFJJcyT1k1Svgn1+K2mQpE+j/aZL6iOpQaFyO1fUzGCHHdZd37BhGHLduTwraPGQ1AwYDxjQGegHXAJcU8GuXYEdgBuBDsA9wMXAkBoL61ySXH89TJwYhh9p2RKToGXLMF9Ht25xp3O1UKF7W50NbAR0MbOFwDhJTYC+km6K1mVzo5l9n7Y8SdJS4AFJLc1sVg3ndq54PfYY/O1vYfiRRx4BicmTJnHwwQfHnczVYoU+bdUeGJtRJIYSCspBZe2UUThS/h393DJ/8ZxLmPHjoWfPMO/4Qw/5hE6uYApdPHYGPkpfYWazgdLovlz8HlgNTM9PNOcS5r33oEsX2GWXMG7VBhvEncjVITKzwj2ZtAK4zMz+kbH+S+BRM6vUJMqStgLeA0aZWY8ytukF9AJo3rx5q6FDh1Yp86JFi2icoMlykpQ3SVmhuPJu+N137H3uuQC8e++9LNtii7XuL6aslZGkvEnKCtXL26ZNm6lmtk/WO82sYDdgBXBBlvVfAf0r+RgbAK8AM4BmldmnVatWVlUTJ06s8r5xSFLeJGU1K6K88+eb7b67WZMmZu+9l3WToslaSUnKm6SsZtXLC0yxMj5XC91gPh/YJMv6psCCinaWJOBRYDdgfzObn994zhW55cvDqarp08NMgHvsEXciV0cVunh8REbbhqRtgUZktIWU4XZCF9/DzKwy2ztXe5iFxvGJE+HRR0MjuXMxKXSD+WignaSN09Z1BZYAk8vbUdKVwPnAKWb2Ws1FdK5I9e4dBj/s3z90y3UuRoUuHvcDy4BnJB0aNWr3BW6ztO670ZXkA9OWTwauJ5yy+krSfmm3tVsKnauNHnggDHDYqxdceWXcaZwr7GkrM5sv6RDgbmAkoZ3jdkIBycyVPmTJ4dHPHtEt3WnA4Pwmda6IvPAC/OlP0LEj3HOPX8vhikLB5/Mws2lA2wq2KclY7sG6RcO52u+dd6BrV9h7bxg2DOr7FDyuOPious4VqxkzoFMnaN48HH00ahR3Iud+5sXDuWI0dy4ccQSsXBm65DZvHnci59bix8DOFZslS8LouLNnw4QJsNNOcSdybh1ePJwrJqtWwSmnwJtvwlNPwf77x53Iuay8eDhXLMzg4ovhmWfgH/+AY4+NO5FzZfI2D+eKxe23w513wkUXwQUXxJ3GuXJ58TesLvEAABpaSURBVHCuGDz1FFxyCRx3HNxyS9xpnKuQFw/n4vbqq2G4kQMOCLMCruf/LV3x83epc3H68EPo3BlKSuD556FBg7gTOVcpXjyci8s330D79mEGwNGjYdNN407kXKV5byvn4rBoURirau5cmDQJfvnLuBM5lxMvHs4V2sqVcMIJ8N//wogRsE/2WT6dK2ZePJwrJDM455xwmmrAAOjQIe5EzlWJt3k4V0j9+8NDD8Hf/gZnnhl3GueqzIuHc4XyyCNw1VXQvTv06xd3GueqxYuHc4UwbhyccQYceig8+KBP6OQSz4uHczXtv/8N41Ttuis8/XTomutcwnnxcK4mffFFaBRv2hRGjQo/nasFvLeVczVlwYJwEeCiRfDaa/CLX8SdyLm88eLhXE1YtgyOOQY+/hjGjIE99og7kXN55cXDuXxbvRp69gxXjv/zn9C2bdyJnMs7b/NwLt9694bHH4frr4du3eJO41yN8OLhXD7ddx/ccAOcfTZccUXcaZyrMV48nMuXESPgvPOgUye46y6/lsPVal48nMuHt9+GE0+EVq1g6FCo782Jrnbz4uFcdX32WTjaaNECRo6ERo3iTuRcjfPi4Vx1zJ0bruVYvTqMlNu8edyJnCsIP7Z2rqqWLIGjjgpXkU+YADvuGHci5wrGi4dzVbFqVeiG++abYbyq3/8+7kTOFZQXD+dyZQYXXQTPPgt33AFdusSdyLmCK3ibh6RdJU2QVCppjqR+kupVYr+mkgZJmi/pR0lDJG1WiMzOreW220JX3Isvhj//Oe40zsWioEcekpoB44FpQGdgB+BWQhH7WwW7DwN2As4AVgM3As8BB9ZUXufWMWwYXHppmIP85pvjTuNcbAp95HE2sBHQxczGmdn9wDXAxZKalLWTpNZAO+BUMxtuZs8CpwAHSDq0RpIOGQIlJRzUti2UlITlYpakvEnKCmvytmkTruXYaacwK+B63lnR1V2Ffve3B8aa2cK0dUMJBeWgCvb71sxeSa0ws7eBz6P78mvIEOjVC2bNQmYwa1ZYLtYPuSTlTVJWWDtvat3s2TB8eJypnItdoRvMdwZeTl9hZrMllUb3jSxnv4+yrP8wui+/eveG0tK115WWQo8eYbC7YvPxx7By5drrijVveVmvvTYsm639M9u6yv6s7j7ffx+u4Ui3ZEl4j/igh64OK3TxaAYsyLJ+fnRfVfbbPtsOknoBvQCaN2/OpEmTKh3yoNmzyTYqka1cyfdbbFHpxymULaZNS0zecrO2aPHzeFCWbVyo1Lqytsm4vzLbVPQ8LUaOzJ539mwm5/CeKrRFixbl9J6PW5LyJikr1GBeMyvYDVgBXJBl/VdA/3L2Gwc8m2X9EOD1ip63VatWlpOWLc3Cd8+1by1b5vY4hZKkvEnKapa8vJGJEyfGHSEnScqbpKxm1csLTLEyPlcL3eYxH9gky/qmZD+yqGi/TSrYr2r694eGDdde17BhWF+MkpQ3SVkheXmdK5BCF4+PyGijkLQt0IjsbRpl7hcpqy2kerp1gwEDoGXLcFqjZcuwXKznuJOUN0lZIXl5nSuQQheP0UA7SRunresKLAEmV7DfVpIOSK2QtA+hvWN0TQSlWzeYOZPJL78MM2cW/4dFkvImKSskL69zBVDo4nE/sAx4RtKhUaN2X+A2S+u+K+lTSQNTy2b2L2As8KikLpKOJrR3vGZm4wv6FzjnnCts8TCz+cAhQD1Ct9xrgNuBPhmb1o+2SXci4ejkYeBRYCpwTE3mdc45l13BB0Y0s2lA2wq2KcmybgFwWnRzzjkXIx9fwTnnXM68eDjnnMuZLH1IhlpK0vfArCruvjkwN49xalqS8iYpKyQrb5KyQrLyJikrVC9vSzPLOkxFnSge1SFpipntE3eOykpS3iRlhWTlTVJWSFbeJGWFmsvrp62cc87lzIuHc865nHnxqNiAuAPkKEl5k5QVkpU3SVkhWXmTlBVqKK+3eTjnnMuZH3k455zLmRcP55xzOfPi4ZxzLmdePJxzzuXMi4dzzrmcFXxUXZcf0QyMHQABT5nZPEnbAJcCOwAzgQFm9n58KUHSX4BRceeoLEkbAfXN7Ke0dVsA5wG7AquB/wD3mtmP8aR0Ln7eVTciSYT5QToCuwCbAquAb4E3gcFm9nF8CdeQ9DvgJaAxsBL4AWgHjCJk/gDYHdgKONTMXo0pKpJWA0aYLvhxYJiZfRpXnopIGgV8YmYXRMutCbNVribMISOgFbAcaGtmH8SYdS9gIzN7I23dEcCVrCl0/wX6pm9TLKL/c0cCexPeI1MIXzSK+kNJUhPCWFFtzey1uPPAz5naAhsAL5rZ4uhLz7mEGVdnEL5Mzsnbcxb5v1NBRC/yKMKHwreE2Q5/QXhDjya8+DsB15rZtXHlTJE0jnDUeAywmDCh1tGED7fjzGyFpA2B54AGZtYmxqyrgRuBPYDDCLnfJRSSJ83sq7iyZSNpLnC6mT0fLb9JeI2PTh2NSGoKjACWmlm7GLO+CYw0s/7Rck/gIWAi8DKh0B0CHAgcm/qbYsr6BuF1/TBabkb4AtQKWBRt1pjwRa1d+pFfHCT9qZy7NwJuBu4APgEws3sLkSsbSb8CJgDbRqs+Bw4HxgGbAJ8RPr+WAK3M7Mu8PLGZ1fkb8AThTbBH2rqtgTHA8Gj5IMKbvGcR5J0HtE9b3pLwLfPwjO06AnNjzroa+F30ezOgV/RGXxndJkXrNov7dY0ylgJ/SFtenvm6pr22i2POujA9G/ApcFeW7e4H/lss74NoeSDhiPmItHVHAPOB24vgfbCacBS/uoxb+n2rYs76JOEI81eEMyaPRZ9nbwAbR9tsHm3zQL6e1xvMg/bAFZZ2Xt7C4d3ZwNGSWpjZZOB64IKYMqaz6Ja+TMa6bMuxMrP5ZjbAzA4BtgEuIRxm3w/MkfRirAGD/wHpR2rfEv5DZtqMUGjitDpjuSXwdJbtniZ88ywmRwH9zGxMakX0e3+gS2yp1hgBfAecDtQzs/VSN8L7QcDB0brMKbML7QCgv5l9amY/AH8jtHveYtERnJnNBf7B2u/tavHiEYjwTSLTqui+ptHyW8COhQpVjqnApZI2lrQe8FfgK+AcSfUAJNUH/kT4MCw6ZvaNmd1hZr8HfkmYx37rmGMB3ABcIaln9Br2B26WdJikDSRtGLUr/J3wjS9OrwLd0pY/ALINvf1bwvujmGxCaOPINJXQVhcrMzsaOBW4DHhH0v7pd8eTqkzNgG/SllP/1plzGM0gfGnLC+9tFYwHrpP0npnNgJ/Pyd5J+EdJNZQ3Boqhh01vwvnMHwinfkoJjWVPA59ISjWYb004FVDUzGwW4UP7hiLI8oyk8wnf0m4HphO+PKS+IRvhC8UIwgdLnP4KvB59gbiL0FD+iKRNCacDIbR5XAhcEUvCtR0rKVXc5gPZJhnanHA6LnZm9pKkPQmv34uSxhB6M8baHpPFd4SjzpRVwAOEo+Z0W5LH7N5gDkRdXMcQDu1nEc5z/5LQcH6SmY2OtruJMLNW17iypkSZOxG+AAw3s68lbQVczpq/4yEzezfGmEjqAzxoeezlUQiSNgO6Ar8jfBNej1CsPwReMLOpMcb7maTfAPcB+7KmsJH2+3zC6aE74kkYRB0nMg02s54Z2z0A7GpmBxYmWeVE/7duIpxSe4BQUNqY2SuxBgMkPQf8kPlaZtnuLmAXMzs0L8/rxSOITvecAPwf0IDQ+Ph4dA7RuaImaRdCAcksdG+Y2Yo4s+VC0pnAZ2b2ctxZsom6bt9O+ILW0YqgC7Sk5kBDM/u8gu0uJnScmJCX5/XiUftIqmdm2dpwioakBoRGvdXAp8X4ARe1eWxP2jU/ZjY73lTOFQdvMM8gaTdJx0o6Q9Lp0e+7xZ0rk6Qukp6TNErSkdG6rpJmAsslzYq+xcVK0inR9Qep5fqSbiB8M36P0KD/g6RiOCcPgKRWkkYQzg9/CLxOuP7gc0lfSeonqWGsIWsRReLOkY2kjTL/rSX9JvpcaBVXrqIQZ//kYroBPQntBNn6dq8iDPdxWtw5o6wnRLleA54nNJifSWirGUi4qvSJKHe7mLNOA85JW741ynsVsD+hm2FfwgVMfy2C1/ZwQlvXFEKPqr6EC0WXR5kvIfRq+g/QrAjydiJcN/M+MIy0a1TSttmX+K9FOJzomoO0dUcTLhhdCayIXvOOcb+mUbamwLNRrpXAg0A94JGMz4XXgc3jzlvJv+nYfL4PYv+DiuEGnB+9Se4hXI27efRGqRf9fgBwd/Shcm4R5H0HuD9tuVuU7daM7QYB42POWgoclLb8HXBBlu0uBWYVwWs7FXikjPfITMLReoPoQ+/emLMelvYBdneUfVVUoJW2XTEUj1WsfZHgMdEH8BvRv/2l0e8ryXJRZgx57yQMQXI+0D36wjAc+CIqhFsQrg/7Crgv7ryV/JvyWjy8zQOQNIPwYXxTBdtdDpxtZtsXJlmZORYCXcxsfLTclNCr5lBLa2iMTmc9YGaxXT8h6WvgPDMbHi0vIxwNTcrY7jBghJltVPiUa+VYAhxlZuMy1jcjXNm/m5l9KKk7cKOZtYgjZ5TpNcI4XKelretJ+OAbR+gpuFTSvoSG89guZot6W+1nZm9Hy+8CX5nZkRnbjQIamdlBMcRMz/E5cL2ZPRgt70UozqeZ2SNp251JOGL+ZTxJQdLDldy0JeHCxry8D7zNI9gKeLsS271NEVzAROiGmf4GSI0NtCBju0WEi7HiNIJwQeMG0fJ44KQs251E+HYXt+8IPe4y/R/hdU9d5zOLNRePxmV34J/pK8zsYcJQOvsBL0fXfBSj3QldXjMNIAyUGLctWXN9F0RjWBHGiUr3KdmvVymkUwlHQ3tUcGtZ1gNUhV8kGLwHnCnpFTPL1h89NQLomdG2cZtFGDV1LICZrYq6EH6Ysd32rH3laRyuJFwJ/T9JDwEjgRsl7c6aC9naAnsRRliN2wDgWkmNCG0JywlXaPcGJtqa61W2B+LuebUUaJS50symRldEjyWcCupb4FxlST/N8SNrvvSkW0xxfKn9nFCEJ0fLBxJOs/2e0NaYsj/xvw8+Ad42s+7lbSTpOEK7WF548QguIVwkOE3SM4ThwxcQ3uybADsTztFuQ3Fcsf0MGcMMmNlbWbY7mbXf6AVnZj9I2o/w4Xsx4RsdQOvotpxwiuVAM3snnpRrmFn/6BTLFYQhUyC8D54gXBiWsoIw1lmc3iOcdx+ReYeZzYgKyChgcIFzlWWspJXR702B37DmC0TKzsDXhQxVhvuBOyTtQSh0JxC+CF0tqTFhkMG9gYuAuEfafpNQ1CqSfhFptXmbR0TSDoSrs49gzdDGKV8QetzcbGaZh61FS9J2wAIzK4rhHgAklbD2hWyfWXFe47E+4TqUBsCMYnoNUySdRRiiZC8r42LW6AjqWUJ7WGzf6KORBjJ9YmaPZ2w3KVpfDN3M/0w4nbo+YbSG+yWdRGhTSg2MOQD4S5zv4ajL8P5mdmcF221OaLObXN52lX5eLx7rivp1p9oKFphZ3KOnOueKRHQKe3Mz+z7uLHHy4lHLRIfU7wLdiuE0kBI4rasSMsWvc3Hy4pEm+tDYEphuZus05kWHfR3M7NGCh1s7R4dy7m5EaBS7gmg4djMbVYhc2ShB07pCsqb4raxo3KvjzaxfzDkKPlVqPkVHHOnT5k4l/B2xf4gqjFZ8LOH/02Az+0jS/wHXsOYLzz2WNn9KtcV94Uox3IANgacIHw6rCI2hA4GmGdvFfrFVlCNJs5zNBTqnLb9J6MW0cdq6poReLWOL4LUdR5jGdRPCue67gS8JV/Kvn/Z+GU3ofRX7+7cSf1NeLw6rYoZfEXoJpt6XnxE+1GYQCvQ7hKHYvwW2KYLX7A3CCLSp5WZRxtVRzoWsuchx47hyRtnaEb58fRO9rgsJkz7NJ1xAek/0/24VYTrl/Dxv3P9IxXADrib0rjqTMJnOBdGb+BPg12nbFUvxmErokXIaoe92+m3P6E19QmpdzFkTM61rlCNJU/xuV8nb2XG/b4lpqtRq5E3MtLlRgXiKMOMhhE4U84GBGds9BryZt+eN+x+pGG6ErrnnZazbCngF+B5oHa0rluIhwrzf3xGGTPhl2n1Nozf+OmMcxZT1baBP2vIXwIlZtusOfF8EeedmfEBsEb2eh2Vs16EIikfqKLOiWzEcgc4BTkhbbhnl6pKx3WnAx0XwPsgsHt8DF2bZLvZhdQhdiQ9NW24W5W+bsd3hhA5AeXlev84j2JaMi//M7BtJhxCq9XhJ3SiO/udYeCcMkPQkcB3wnqS7o9+LzQ3AEElfAI+yZlrXeYRTVSIcYhfDtK6wZorf1wkXrKVP8fuyhQsyi2WK35+Al4GHKtjuAEI39DjFMlVqHhXztLlLWPti0dTvmUP9NCRcWJoXXjyCOcCvCUcaP7PQd/tESf8gHBbG2lCeycwWAOdJGkDoe/4JcCNFNMeyJWtaV0jWFL9vE9rlXixvo2julLjFMlVqNSVl2tzXCRcvfhJluYUwmvVfolEzforGv7ucUOzywntb8fPAYtub2cHlbHMl4VuzWYwDzJVH0omEqTK3IQyAFvsUmSlKyLSukKgpfq8CeplZ5kWtmdv9AbjGzNoUJlnWDLFMlVpVStC0uZJ+RRgzLvU+mEk4mn+acMX+LKCE8GWojZn9Jy/P68Xj525uXYEbzGxeOdudTDj3fVpZ28QtOqXSCFhkRT6boKs7FNNUqTVNRTJtbnR91/6EHoITzGxJdLHzGaz5wvO4mX2Zt+f04uGccy5XxTB6pashkh6UNDDuHJWRpKyQvLzO5Zs3mOdA0oPAemZ2etxZKqkNyfmCkKSskKC8ksYTzjIcEneWiiQpKyQrb76zevHITWI+MADM7FdxZ6isJGWFxOUVyXnfJikrJCtvXrN6m0ctFnXR3NLM4p6spkJJygrJy+tcviWlYhYFSQ2iOTKSoiNhRrQkSFJWSFBeSesn5X2bpKyQrLz5zurFIzeJ+cBwdYOkcyV9JuknSW9J+mOWzfamCN63ScoKycobR1Zv80ggSZXtU57titiCSlJWSFbe6KLQuwhT5P6b0M9/sKTOwB/NbEmc+dIlKSskK29cWb3Ng5w/MHaN+wpzhXmgpxOGICjPL4B948ybpKyQrLySpgAvm9nlaesOAYYQrjLuaGEiq32BNzxr5SUpb1xZvXiQrA8MAEn/IUxY1bWC7Y4DhsX8xk5M1ihHYvJK+gk40swmZawvIcw3Ug9oTxh/Ke4PuMRkhWTljSurt3kE/wP+Z2bHl3cDbos7aOQtYL9KbJcadDBOScoKycr7I+EDYS1mNhP4PWF4+TeA3xY2VlZJygrJyhtLVj/y4OfBzY4ws5YVbHcsYU7rWIuupB2A3cxsRAXbbUToTpo57HXBJClrlCMxeSU9D/xkZqeUcf9GhMHx2hPzgJ5JyhrlSUzeuLJ68SBZHxjOpUg6HrgI6GRmP5SxTT3gPsKAnr8sZL6MHInJGmVJTN64snrxcM45lzNv83DOOZczLx7OOedy5sXD1SmSekiaGl2JO1/SvyXVSC86STtK6itpk0ps21eSpd3mSBoetcdVtG+PaJ/G+UnuXMW8eLg6Q2Eq4YeAsUAXoDvwPHBUDT3ljkAfoMLiEfkRaB3dLgV+A0yQ1KiC/V6M9imtYk7ncubDk7i65DzgATP7a9q6kZKuiStQhpVm9mb0+5uSZgOvAh2ApzI3jnrQ1DOz74HvCxfTOT/ycHXLJsA3mSstrcuhpJLoFNDJkh6LTm99J6lP5n6S2kaD0C2V9K2ke1OnjiQdDIyMNv08esyZOeadGv0siR5zsKQpko6W9AGwFNg322krSRtJuknSLEnLJH0u6e8Z+c+Q9EF0/yxJl+NcJfmRh6tL3gXOj77Rv2Bm88rZ9mbgBeA44A9AH0lzzeweAEm7AmOAccCxwLbADcD2wBHRc10K3EI4RfY1sCzHvCXRz28y1t0E9AO+JYySula7iCQRTse1Bq4lFKFfAAembXMZcH30WJOAVsC1kkrN7O4cc7q6yMz85rc6cQP2BGYQhhZZDXxA+BBukrZNSXT/Sxn7Pgh8RZiGGGAo8AnhtFFqmxOifVtHy52i5ZJKZOtLGEaifnTbEZgILARaRNsMjh7vNxn79ojWN46W20XLR5XxXE2ARUCfjPX9CIWqXkV5/eY3P23l6gwzew/YhdBAfi9hbKqrgClZeio9m7H8DLA1sE20/DvgWTNblbbNcGAlcEAVI24GrIhu0wlHMV3N7Ou0bb4ys/9U8DhtgR+s7BETWgONgKck1U/dgJeB5qz5G50rk5+2cnWKmS0jtEWMBJB0OqEH1unAHWmbfpexa2q5BTA7+vltxmOvkjQP2LSK8X4EDiUcNXwDzDGzzCEgvl1nr3VtRjhNVpbUIHoflHH/toAPwePK5cXD1WlmNlDSTcDOGXdtWcby12k/19om6v20GZB1fKFKWGlmUyrYpjLjCc0jFLeypPJ1Insxml6J53B1nJ+2cnWGpMyCgKQtgKas+yF6TMZyqtH7y2j5LeCYqGCkb1MfeC1aXh79bFCN2FUxAdhUUqcy7v8XsATY2symZLn9VLioLqn8yMPVJe9Hw1e/RDgN1ZLQI6oUeCRj292iofqHE3pbnQ5cYGaro/uvI0z5+Zyk+wjtBDcCY83sX9E2qW/wZ0kaCpSa2fs186etZRzhQsjHJfUj9PxqAfzBzM4yswWS+gJ3SGoJvEL4Irkj0MbMMgunc+vw4uHqkn5AZ+BOQrvEN4RJcrqa2ecZ215OOK0znHA9xbXAz11YzewDSe0J3V2fIfSKeiLaL7XNLEmXAn8GzicctZTUxB+WzsxM0jFR5gsJ0yfPAR5P2+YmSXMIQ3lfQvgbPwaG1XQ+Vzv4kOzOpYmm7vycMK3nC/Gmca54eZuHc865nHnxcM45lzM/beWccy5nfuThnHMuZ148nHPO5cyLh3POuZx58XDOOZczLx7OOedy9v8y4V5Ehe38GgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -319,7 +321,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdhJREFUeJzt3XuwXFWd9vHvw0UItxAEAoMMEbxEGClHI4LDSJB7eEcuokmh7xQOGvVVcabQAREhoEMJjoAWYwGlE15GTZgBhne4hBAuJxAuapAgThIwaEAuojgHYgxEIL/3j7UDnX36nN59W53T5/lUdXX32muvXnul07+z9l5rbUUEZmZm3bZJrytgZmZjgwOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGM2AkmzJA0UrwckzWpy/6mSolzWMHlvkPTQCNsvkTQoaYuKn/0mSSHpyGbqbNYtDjhmG485wF9I2qe8QdKmwAnAtRGxNnvNzDrAAcds4/H/gDXAjDrbDgYmkoKS2ajkgGPWIkkHSPovSU9J+qOkJZI+0mp5EbEauAGYXmfzDOAZ4I7is3eTNFvSryS9IOkRSedI2nyE+m5WnGL7VCn9a5J+U0rbQ9JVxSm8NZLmSXpzq8dmBrBZrytgtjGLiFk1r6eWNu8B3A1cCrwI/BUwW9K6iJhT7DMAqFzWCOYAH5b0roi4H6AIIscBP4iIV4p8OwHPAn8PPAdMBs4GdgQ+0+RhbkDSjsVxPQPMLI7tDGCBpLf6lJ61ygHHrEURMXf9a0kC7gTeAHyC1k99zSMFkBnA/UXaEcAOtWVGxBJgSc3n3w28AFwq6fMR8XKLnw9wKrAFcEhEPFeUfw+wEjgJuKyNsm0M8yk1sxZJmiDp25IeA14qHjOBt7RaZtF7+E9SL0dF8nTgMeC+ms/eRNKpkpZJeqH47P8LjCMFvXYcCswHVhen4TYDngd+Ckxps2wbwxxwzFp3BSkYfAM4HHg38K/Alm2WOwf4c+AASVsCxwBzYsOl3U8Fzgf+A/gAsB9wSrGt3c/fEfgIrwXR9Y/3Abu3WbaNYT6lZtaCIhAcDXw2Ii6tSe/EH3G3k66fzAB2BbZl6Cm6DwFzI+Ksms/et0G5rwAvA68rpe9Qev8/wAPAeXXKWNXgM8yG5YBj1potgE2BVy+gS9qW1Nto6yZTEfGKpP8gBZXdgGUR8bNStnG1n10YcYRcRISkJ4G31dR5U+D9pay3kXpVD3mAgHWSA45ZCyLieUk/Ac6StApYB5xOutaxXQc+Yg7wWdLotLPqbF8AfFrSYuCXwN8CkyqU+5/ATEkPkq4LfQLYqpTnn4ETgdslXQI8BewCHAQMRMS/N300ZjjgmLXjROBy4Erg98AlpB/vz3ag7HtJo8ImAXPrbD8beD3ptFcAVwP/AFzXoNyzSNdozgP+BHwbWAp8fH2GiPitpP2BfwIuBrYHngbuAoZdesesEeW+xbSkNwFfBPYH/gK4q878hnr7jSd9+Y8lDXa4ATglIn5fyncM8DXgzaS//M6JiKs6eQxmZta8XoxS2weYBjxSPKq6CphK+kvsJNKIoA3+mpN0IHANaTb2UcCNwBxJh7dbaTMza08vejibRMS64vXVwI6NejiSDgDuAQ6KiDuLtP2AHwGHRcStRdp8YPOIeH/NvjcB20XEgd04HjMzqyZ7D2d9sGnSUcAz64NNUc6PgV8V2yiWbD8YKF/QnEuazzC+tRqbmVknjJaJn5OB5XXSlxXbAPYCNq+TbxnpOFue/W1mZu0bLaPUJpDWlyobBPasyUOdfIOl7RuQNJO0HAnjxo171+67tzeRet26dWyyyWiJ473ltqrObVWd26q6TrTVI4888mxE7FQl72gJOFB/Mp3qpJffa5j0lBhxOWloK1OmTInFixe3U0cGBgaYOnVqW2WMFW6r6txW1bmtqutEWxVrCVYyWv4MGCTNBSjbntd6NIM1aeU8UL+HZGZmmYyWgLOc167V1Kq9tvMoaYHBcr7JpFngzQzBNjOzDhstAWcesEsxzwYASVNI12/mwavLut9BWn+q1nTg3oh4PlNdzcysjuzXcCRtRZr4CWlhwu0knVC8vyki1khaASyMiJMBIuLeYo7NlZK+QOqxnA8sWj8Hp/BVYEDSxaRJodOKx5FdPzAzMxtRLwYN7Ey6h0et9e/fSFo/ajPSSry1ZgAXke438urSNrUZImJREby+BnyaNE/nxIi4pYP1NzOzFmQPOBGxktdGjg2XZ1KdtOeAjxWPkfa9jsYLGJqZWWaj5RqOmZmNcg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpZF9oAjaW9Jt0laI+kpSedK2rTBPrMkxTCPL9Xku2KYPJO7f2RmZjaSzXJ+mKQJwK3AUuAYYC/gm6TAd+YIu34XuLmUdixwGjCvlL4c+FgpbWVrNTYzs07JGnCATwHjgOMjYhWwQNJ2wCxJFxRpQ0TEE8ATtWmSvgIsj4glpex/jIj7ulB3MzNrQ+5TakcB80uBZS4pCB1UtRBJOwCHAXM6Wz0zM+uW3AFnMumU16si4nFgTbGtqhOAzUnBqmxvSaskrZW0SFLlQGZmZt2T+5TaBOC5OumDxbaqZgA/jYhHSukPAD8iXSPaCTiVdNruwIj4cb2CJM0EZgJMnDiRgYGBJqox1OrVq9suY6xwW1XntqrObVVd7rbKHXAAok6ahkkfmlHalXT67bQhBUd8q5T3RlLwOYM0yGBoZSIuBy4HmDJlSkydOrVKNYY1MDBAu2WMFW6r6txW1bmtqsvdVrlPqQ0C29dJH0/9nk89HyYFqKsaZYyIF4CbgHdWraCZmXVH7oCznNK1Gkm7A1tTurYzghnAooj4dROfW6n3ZGZm3ZM74MwDjpC0bU3adOAFYGGjnSVNAvan4ug0SeNII+Pub7aiZmbWWbkDzqXAWuBaSYcWF+xnARfWDpWWtELS9+rsPwN4Gbi6vEHSeEl3SfqkpEMkTQfuAHYDzuvCsZiZWROyDhqIiEFJhwCXANeTrttcRAo65XrVW+5mBnBbRPyuzra1wO9IKxbsDLwI3AscFBGLO3IAZmbWsuyj1CJiKfD+BnkmDZP+jhH2eRE4vq3KmZlZ13i1aDMzy8IBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8uiqYAjqd5yM2ZmZg0128N5UtIFkt7WldqYmVnfajbgXAacAPxc0o8kzZS0XRfqZWZmfaapgBMRZ0fEnsBhwMPAhcDTkn4g6dBuVNDMzPpDS4MGIuL2iPhbYBfgc8BbgfmSVkqaJenPOllJMzMb/dodpTYFeB/pttGDwF3Ax4EVkj7aZtlmZtZHmg44kvaQdLakR4HbgF2BvwP+LCL+N7AH6VrPNzpaUzMzG9WaugGbpNtJPZongCuA2RHxWG2eiHhF0g+Bz3eqkmZmNvo1e8fPZ4FpwIKIiBHyLQHe2HKtzMys7zR7Su0S4J56wUbSNpLeBxARL5V7PmZmNrY1G3DuAPYeZttbi+1mZmZDNBtwNMK2bYA1bdTFzMz6WMNrOMVpsqk1SR+XdGQp25bA0cBDnauamZn1kyqDBt5DmtwJEMCHgJdLef4ELAe+2LmqmZlZP2kYcCLiGxRzaiT9CjguIpZ0u2JmZtZfmhoWHREe6mxmZi2pcg1nGrAoIlYVr0cUETd1pGZmZtZXqvRwbgD2B35cvA6GH60WgG/SZmZmQ1QJOG8Enq55bWZm1rQqgwYeq/fazMysGVWu4WzVTIER4cmfZmY2RJVTaqtJ12aq8jUcMzMbokrA+TuaCzhmZmZDVLmGc0WGepiZWZ9r9xbTZmZmlVQZNPBj4KSIWCrpJzQ4vRYR+3WqcmZm1j+qXMP5b+CFmte+nmNmZk2rcg3nYzWvT+pqbczMrG+1fA1HyU6SRropm5mZGdBCwJE0TdI9wIvAb4AXJd0j6eiO187MzPpGUwFH0ieB60mTQT9Puhnb54v3/1VsNzMzG6Kp++EAZwCXR8SnS+mXSroU+DJwWUdqZmZmfaXZU2qvB64dZts1wA6NCpC0t6TbJK2R9JSkcyWNuByOpEmSos5jbp28x0h6SNKLkpZKml7pyMzMrKua7eHcARwELKiz7SDgzpF2ljQBuBVYChwD7AV8kxT4zqzw+V8A7q55/2yp/ANJge87wCnANGCOpMGIuKVC+WZm1iVVJn7uXfP228B3Jb0euA74LbAzcBxwFPDxBsV9ChgHHB8Rq4AFkrYDZkm6oEgbycMRcd8I278C3BkRpxTv75C0D3AW4IBjZtZDVXo4P2fDyZ4CPlk8ynf/vJmRV4s+CphfCixzgfNJPaTrK9SnLklbAAeTeja15gKzJY2PiOdbLd/MzNpTJeAc3MHPmwzcXpsQEY9LWlNsaxRwZkvagdSzmgN8OSLWr4KwF7A5sLy0zzLSKbu3AD9pr/pmZtaqKisNLOzg500AnquTPlhsG85a4F9Ip8VWAVOB00hB5piasqlT/mBp+wYkzQRmAkycOJGBgYGR6t/Q6tWr2y5jrHBbVee2qs5tVV3utmp20MCrJG0CbFlOr3DHz3prsWmY9PVlPg18tiZpQNIzwHckvSMiloxQvoZJX1/25cDlAFOmTImpU6eOXPsGBgYGaLeMsaIXbTXp9BuHpK38+sY/Z9nfq+rcVtXlbqtmJ35K0mmSVgAvAX+o8xjJILB9nfTx1O/5jOTq4vmdNWVTp/z175st38zMOqjZeTinAKcD3yP1HP4JOBd4BFhJcWpqBMtJ12peJWl3YGuGXntpJErPj5KC4ORSvsnAuqKOZmbWI80GnE8AZwMXFO+vi4hzgH1IAePNDfafBxwhaduatOmk2x80e63ohOL5foCIWEuaJ/ShUr7pwL0eoWZm1lvNXsN5I7AkIl6R9BLF6aqIWCfpO8B3ST2g4VxK6iVdK+l8YE9gFnBh7VDp4pTdwog4uXg/C9iWNOlzFfA+4IvAtRHxs5ryv0q6vnMxaZ7QtOJxZJPHaWZmHdZsD+f3wDbF68eBv6zZNoE0qXNYETEIHEKaq3M9cA5wEanXVGszNpzPs5w0T2c2cBNwIvCN4rm2/EWkns+hwHzgA8CJXmXAzKz3mu3h3A28m/Sj/0PSCgE7AH8CPgPc1qiAiFgKvL9Bnkml93NJEzgbiojrSL0bMzPbiDQbcGYBuxWvzyOdUjuJ1LNZAHyuUxUzM7P+0lTAiYiHgYeL12tJ98L5fBfqZWZmfaadiZ9vAHYFnoqIJztXJTMz60et3GL605J+DTwG/Ah4XNITkv5Px2tnZmZ9o9mVBs4CLiHNpzkamFI8zwO+XWw3MzMbotlTap8BzouIr5TSby7WNvsMaeUBMzOzDTR7Sm0cw9/VcyF1FvM0MzOD5gPOdcDxw2z7IHBDe9UxM7N+VeUW09Nq3s4DLpA0iaG3mN4H+MfOV9HMzPpBlWs4NzD0VtK7AUfUyft90p04zczMNlAl4Lyx67UwM7O+V+UW04/lqIiZmfW3plcakLQZaYDAgcAOwP8Ad5FuFfByZ6tnZmb9oqmAI2ln4BZgX9IdPp8BDiDNv3lQ0uER8btOV9LMzEa/ZodFXwi8HnhPROwZEQdExJ7Ae4r0CztdQTMz6w/NBpxpwGkR8ZPaxOL9l0jL3JiZmQ3RbMDZAvjDMNv+ALyuveqYmVm/ajbg3AecJmnr2sTi/WnFdjMzsyGaHaV2KnAH8GtJt5AGDexMmgQqYGpHa2dmZn2jqR5ORCwB3gxcDuwEHEYKOJcCb46IBzteQzMz6wuVeziSNgf2A34VEad3r0pmZtaPmunhvALcDrytS3UxM7M+VjngRMQ64BfAxO5Vx8zM+lWzo9S+DJwl6e3dqIyZmfWvZkepnUlaUWCJpCdJo9SiNkNE7NehupmZWR9pNuD8vHiYmZk1pVLAkTSOtKzNz4HfALdGxDPdrJiZmfWXKreY3hO4FZhUk7xK0ocj4pZuVczMzPpLlUEDFwDrgL8GtgL2AR4ALutivczMrM9UCTgHAGdGxN0R8WJELAM+Cfy5pF27Wz0zM+sXVQLOrsAvS2mPktZO26XjNTIzs75UdZRaNM5i1r8mnX7jkLSVX/ftn8yaUTXgzJf0cp3028rpEbFz+9UyM7N+UyXgnNP1WpiZWd9rGHAiwgHHzMza1uxaamZmZi1xwDEzsywccMzMLAsHHDMzy8IBx8zMsnDAMTOzLLIHHEl7S7pN0hpJT0k6V9KmDfZ5t6TZklYU+z0s6WxJW5byzZIUdR5HdveozMyskWZvwNYWSRNItzpYChwD7AV8kxT4zhxh1+lF3vOBXwD7Al8tnj9Yyvs8UA4wy9qtu5mZtSdrwAE+BYwDjo+IVcACSdsBsyRdUKTVc35E/K7m/YCkF4HLJO0REY/VbHs5Iu7rTvXNzKxVuU+pHQXMLwWWuaQgdNBwO5WCzXoPFM9eu83MbBTIHXAmA8trEyLicWBNsa0Z7yXdGO7hUvr2kp6V9JKkByQd33JtzcysYxSR784Dkl4CvhgRF5fSnwCujIgzKpazC/Az4KaIOKkm/aOkHs8SYBvSjeKmAR+MiGuHKWsmMBNg4sSJ75o7d26zh7WB1atXs80227RVxljRi7Z66Mnnh6S9fbfxXduvU/y9qs5tVV0n2urggw++PyKmVMnbi4DzhYj4Vin9SeCKiPhyhTJeRxp48AbgXRExOEJeAfcA4yLiHY3KnjJlSixevLhRthENDAwwderUtsoYK3rRVq3e16bX98Px96o6t1V1nWgrSZUDTu5TaoPA9nXSxwPPNdq5CCBXAvsA00YKNgCRoum1wL6Nhl6bmVl35R6ltpzStRpJuwNbU7q2M4yLSMOpD4uIKvnX8x1Lzcx6LHcPZx5whKRta9KmAy8AC0faUdKXgM8BH42IRVU+rOgRHQc8GBGvtFZlMzPrhNw9nEuBU4BrJZ0P7AnMAi6sHSotaQWwMCJOLt6fCJwHXAE8KWn/mjIfXT9sWtJC4BpSb2lr4BPA/sCx3T0sMzNrJGvAiYhBSYcAlwDXk67bXEQKOuV61V5zObx4Pql41PoYKRABrAD+HtiVNGT6p8DRETGvE/U3M7PW5e7hEBFLgfc3yDOp9P4khgaaevud3EbVzMysi7xatJmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmlsVmva6AWSsmnX7jkLSVXz+6BzUxs6rcwzEzsyzcwzHrMvfGzBL3cMzMLAsHHDMzy8IBx8zMssgecCTtLek2SWskPSXpXEmbVthvvKTZkgYlPS/pB5JeXyffMZIekvSipKWSpnfnSMzMrBlZBw1ImgDcCiwFjgH2Ar5JCnxnNtj9KuCtwMeBdcD5wHXAX9eUfyBwDfAd4BRgGjBH0mBE3NLRg7GO8UX14a1vm1Pf/jInnX6j28VGtdyj1D4FjAOOj4hVwAJJ2wGzJF1QpA0h6QDgCOCgiLizSHsS+JGkQyPi1iLrV4A7I+KU4v0dkvYBzgIccMzMeih3wDkKmF8KLHNJvZWDgOtH2O+Z9cEGICJ+LOlXxbZbJW0BHEzq2dSaC8yWND4inu/Qcdgw3FvZOPjfwTZGuQPOZOD22oSIeFzSmmLbcAFnMrC8TvqyYhuk03Ob18m3jHTK7i3AT1qrduvq/cevZ+XXj274I1HlR6ScZ7gfmar5ms1ro1+r/96tBrlW9suxj7/3naeIyPdh0kvAFyPi4lL6E8CVEXHGMPstAP4YEceW0r8P7BkR75X0V8Ai4C8jYklNnjcBvwCOqHcdR9JMYGbx9q3Awy0fYLIj8GybZYwVbqvq3FbVua2q60Rb7RERO1XJ2IuVBupFOA2T3sp+5fcaYX8i4nLg8gafXZmkxRExpVPl9TO3VXVuq+rcVtXlbqvcw6IHge3rpI8Hnmthv+1r9husSSvnoUH5ZmbWZbkDznJeu+YCgKTdga2pf41m2P0Ktdd2HgVeqpNvMmkY9SMt1NfMzDokd8CZBxwhaduatOnAC8DCBvvtUsyzAUDSFGDPYhsRsRa4A/hQad/pwL0ZR6h17PTcGOC2qs5tVZ3bqrqsbZV70MAE0qTPn5OGQu8JXAhcHBFn1uRbASyMiJNr0m4mjTT7Aq9N/PxtRJQnfg4Al5AmhU4r8h/piZ9mZr2VtYcTEYPAIcCmpCHQ5wAXAWeXsm5W5Kk1g9QL+lfgSuB+4LhS+YuAE4BDgfnAB4ATHWzMzHovaw/HzMzGLq8WXYcXGK2ulbaS9O6inVYU+z0s6WxJW5byzZIUdR5HdveouqPFtpo0TBvMrZN3rH+vhvu+hKQv1eS7Ypg89QYmbfQkvUnSZZIelPSKpIGK+2X/vfIdP0u8wGh1bbTV9CLv+aRJufsCXy2eP1jK+zxQDjDL2q17bm1+ryBdi7y75v0Gk/X8vQLgu8DNpbRjgdMoBhfVWA58rJS2srUa99w+pH/v+4DXNbFf/t+riPCj5gF8iTSnZ7uatH8E1tSm1dnvANLk0vfVpO1XpB1akzYfuL20703Aol4fe8a22qlO2syirfaoSZsFPNvr4+xxW00q2uV/NSh/zH+vhinrRmBZKe0KYHGvj7OD7bVJzeurgYEK+/Tk98qn1IYaboHRcaQFRkfab8gCo8D6BUapWWD030v7zgUOkDS+/epn1VJbRcTv6iQ/UDzv3LnqbVRa/V415O9VfZJ2AA4D5nS2ehuXiFjXwm49+b1ywBlqyEKhEfE46a+rkc7xdmqB0dGk1baq572kbn15LbvtJT0r6SVJD0g6vuXa9la7bTW7OD//tKQLJY2r2ebvVX0nkNplyPUuYG9JqyStlbRIUltBfxTqye+VA85QE6i/DM5gsa2d/dY/l/MNlraPFq221QYk7QJ8Gfi30l+1K0inUj5MurbzFHDNKA06rbbVWuBfgJNJUwouAz7Nhj+i/l7VNwP4aUSUVxl5ADgV+BvgI6QpGAsk7ddCXUernvxeedBAfRvVAqMbuVbbKmWUXkfqsq8G/mGDgiO+X8p7PXAP6YZ617ZS2R5ruq0i4mngszVJA5KeAb4j6R1RszJ6nXLG8vdqV9Lpt9OGFBzxrVLeG0kDFM4gDTIYK7L/XrmHM5QXGK2u1bYCQJJIk3j3AaZFmhg8rEhXLK8F9q0yTH0j01ZblVxdPL+zpmzqlD8mv1eFD5N+GK9qlDEiXiBdCH9no7x9pCe/Vw44Q3mB0epabav1LiINez0mIqrkX280/sXeblvVitKzv1dDzSCNpPp1E587Gr9XrerJ75UDzlBjYYHRTmm1rSgm4n0O+GikJYkaKnpExwEPRsQrrVW5Z1puqzpOKJ7vB3+vyiRNAvan4ui0YgDGURTtOUb05veq12PIN7YH6ULY08AC0ppsM0nXF75WyrcC+F4p7Wbgl8DxpHPBDwN3lfIcCLwMXAxMBS4g/bVweK+PPVdbASeS/pqcTfphqH3sVJNvIWmy2eGkQHNT0VYf6PWxZ2yrWaRJj8cX+51L+uG9xt+rof8Hi/TTSX+Z15vvNR64C/gkaRDGdNKEybXAlF4fe4vttRXpj5ATgHuB/655v9VwbdWL36ueN9bG+AD2Bm4v/mM/TZoFv2kpz0rgilLa9sWP6HPAKuCHwI51yj+WtGL2WlL3dUavjzlnW5Em3sUwj5Nq8n2v+A/xAvDH4ofiqF4fc+a2mgEsJq248Kfih+NcYAt/r4b+HyzSlwA3D1PulqTrgL8u2un54od3/14fcxttNWmE/0+ThmurXvxeefFOMzPLwtdwzMwsCwccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcfMzLJwwDEzsyz+P+FH0I72V+suAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAdyElEQVR4nO3de7BcVZ328e/DPdxCuAUGGSKIRBgpRyOCw0CQe3hHLiJJoe8UDBj0FWGmkAERIaBDCY6AFkMBpRNeRk2YAYZ3uIQQLicQ7kGCMEnAIOEugnMgxkAE8nv/WDuws0/36d2X3Sed83yqurp77bVXr73S6d9Ze+21tiICMzOzTltrqCtgZmZrJgcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYDULSFEl92es+SVOa3H+8pCiWVSfvzZKeGGT7ZZL6Ja1f8rM/IikkHdJMnc06xQHGbPUxDfgLSbsVN0haGzgauCEilne9ZmYtcIAxW338P2AZMKnGtv2A0aQgZNYTHGDMWiRpL0n/JellSX+UNE/Sl1otLyKWAjcDE2tsngS8CtydffZ2kqZKelbSW5KelnSepHUHqe862SmzrxbSvyfpt4W0HSRdm52SWyZphqSdWz02G57WGeoKmK3OImJK7vX4wuYdgPuAK4C3gb8CpkpaERHTsn36ABXLGsQ04BhJn4qIRwGyoHEk8POIeC/LtxXwOvD3wBvAWOBcYEvg600e5iokbZkd16vA5OzYzgJmSdrFp+isLAcYsxZFxPSVryUJuAf4EPAVWj+VNYMUMCYBj2ZpBwOb58uMiHnAvNzn3we8BVwh6dSIeLfFzwc4DVgf2D8i3sjKvx9YDBwHXNlG2TaM+BSZWYskjZL0Y0nPAe9kj8nAR1stM+sd/CepF6MseSLwHPBg7rPXknSapAWS3so++/8CI0hBrh0HADOBpdlptXWAN4FfAuPaLNuGEQcYs9ZdTfrx/wFwEPBp4F+BDdosdxrw58BekjYADgemxapLn58GXAj8B/B5YA/glGxbu5+/JfAlPgiaKx/7ANu3WbYNIz5FZtaC7If/MODkiLgil96JP9ruIo1/TAK2BTZh4Cm3LwLTI+Kc3Gfv3qDc94B3gfUK6ZsX3v8P8BhwQY0yljT4DLP3OcCYtWZ9YG3g/QFvSZuQehNt3WQpIt6T9B+kILIdsCAiflXINiL/2ZlBr2CLiJD0EvCxXJ3XBj5XyHonqdf0hAf0rR0OMGYtiIg3JT0CnCNpCbACOJM0VrFpBz5iGnAy6eqxc2psnwV8TdJc4DfA3wJjSpT7n8BkSY+TxnW+AmxYyPPPwLHAXZIuA14GtgH2Bfoi4t+bPhoblhxgzFp3LHAVcA3we+Ay0o/1yR0o+wHSVVtjgOk1tp8LbEE6jRXAdcA/ADc2KPcc0hjLBcCfgB8D84ETV2aIiN9J2hP4J+BSYDPgFeBeoO5SNmZF6vYtkyV9BDgd2BP4C+DeGvMLau03kvRlP4J0ccLNwCkR8ftCvsOB7wE7k/6yOy8iru3kMZiZWWNDcRXZbsAE4OnsUda1wHjSX1rHka7YWeWvNUl7A9eTZjsfCtwCTJN0ULuVNjOz5gxFD2atiFiRvb4O2LJRD0bSXsD9wL4RcU+WtgfwEHBgRNyRpc0E1o2Iz+X2vRXYNCL2ruJ4zMystq73YFYGlyYdCry6Mrhk5TwMPJttI1vCfD+gOAA5nTSfYGRrNTYzs1b0ykTLscDCGukLsm0AOwHr1si3gHScLc+uNjOz5vXKVWSjSOszFfUDO+byUCNff2H7KiRNJi3vwYgRIz61/fbtTVResWIFa63VK3F7aLmtynNblee2Kq8TbfX000+/HhFb1drWKwEGak9eU4304nvVSU+JEVeRLjVl3LhxMXfu3HbqSF9fH+PHj2+rjOHCbVWe26o8t1V5nWirbC2+mnolzPeTrsUv2owPeiz9ubRiHqjdAzIzs4r0SoBZyAdjLXn5sZlnSAvyFfONJc2ybuaSaDMza1OvBJgZwDbZPBcAJI0jjb/MgPeXOb+btH5T3kTggYh4s0t1NTMzhmAMRtKGpImWkBby21TS0dn7WyNimaRFwOyIOAEgIh7I5rhcI+mbpB7JhcCclXNgMt8F+iRdSpqEOSF7HFL5gZmZ2SqGYpB/a9I9LPJWvv8waf2ldUgr1eZNAi4h3W/j/aVi8hkiYk4WrL4HfI00T+bYiLi9g/U3M7MSuh5gImIxH1zZVS/PmBppbwDHZ4/B9r2Rxgv+mZlZxXplDMbMzHqMA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVousBRtKuku6UtEzSy5LOl7R2g32mSIo6j2/l8l1dJ8/Y6o/MzMzy1unmh0kaBdwBzAcOB3YCfkgKdGcPsutPgNsKaUcAZwAzCukLgeMLaYtbq7GZmbWqqwEG+CowAjgqIpYAsyRtCkyRdFGWNkBEvAi8mE+T9B1gYUTMK2T/Y0Q8WEHdzcysCd0+RXYoMLMQSKaTgs6+ZQuRtDlwIDCts9UzM7NO6XaAGUs6hfW+iHgeWJZtK+toYF1ScCraVdISScslzZFUOnCZmVnndPsU2SjgjRrp/dm2siYBv4yIpwvpjwEPkcZ4tgJOI52G2zsiHq5VkKTJwGSA0aNH09fX10Q1Blq6dGnbZQwXbqvy3Fblua3Kq7qtuh1gAKJGmuqkD8wobUs6nXbGgIIjflTIewsp2JxFuihgYGUirgKuAhg3blyMHz++TDXq6uvro90yhgu3VXluq/LcVuVV3VbdPkXWD2xWI30ktXs2tRxDCkjXNsoYEW8BtwKfLFtBMzPrjG4HmIUUxlokbQ9sRGFsZhCTgDkR8UITn1uqd2RmZp3T7QAzAzhY0ia5tInAW8DsRjtLGgPsScmrxySNIF259mizFTUzs/Z0O8BcASwHbpB0QDbAPgW4OH/psqRFkn5aY/9JwLvAdcUNkkZKulfSSZL2lzQRuBvYDriggmMxM7NBdHWQPyL6Je0PXAbcRBp3uYQUZIr1qrV8zCTgzoh4rca25cBrpBUBtgbeBh4A9o2IuR05ADMzK63rV5FFxHzgcw3yjKmT/olB9nkbOKqtypmZWcd4NWUzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq0RTAUZSreVbzMzMBmi2B/OSpIskfayS2piZ2Rqj2QBzJXA08KSkhyRNlrRpBfUyM7Me11SAiYhzI2JH4EDgKeBi4BVJP5d0QBUVNDOz3tTSIH9E3BURfwtsA3wD2AWYKWmxpCmS/qyTlTQzs97T7lVk44B9SLdB7gfuBU4EFkn6cptlm5lZD2s6wEjaQdK5kp4B7gS2Bf4O+LOI+N/ADqSxmh90tKZmZtZTmrrhmKS7SD2WF4GrgakR8Vw+T0S8J+kXwKmdqqSZmfWeZu9o+TowAZgVETFIvnnAh1uulZmZ9bxmT5FdBtxfK7hI2ljSPgAR8U6xZ2NmZsNLswHmbmDXOtt2ybabmZk1HWA0yLaNgWVt1MXMzNYgDcdgstNe43NJJ0o6pJBtA+Aw4InOVc3MzHpZmUH+z5AmUwIE8EXg3UKePwELgdM7VzUzM+tlDQNMRPyAbE6LpGeBIyNiXtUVMzOz3tbUZcoR4UuPzcyslDJjMBOAORGxJHs9qIi4tSM1MzOznlamB3MzsCfwcPY6qH81WQC+KZmZmZUKMB8GXsm9NjMza6jMIP9ztV6bmZkNpswYzIbNFBgRnmxpZmalTpEtJY2tlOUxGDMzKxVg/o7mAoyZmVmpMZiru1APMzNbw7R7y2QzM7OaygzyPwwcFxHzJT1Cg9NlEbFHpypnZma9q8wYzH8Db+VeezzGzMwaKjMGc3zu9XGV1sbMzNYYLY/BKNlK0mA3ITMzs2Gq6QAjaYKk+4G3gd8Cb0u6X9JhHa+dmZn1rKYCjKSTgJtIky9PJd187NTs/X9l283MzJq7HwxwFnBVRHytkH6FpCuAbwNXdqRmZmbW05o9RbYFcEOdbdcDmzcqQNKuku6UtEzSy5LOlzTo8jKSxkiKGo/pNfIeLukJSW9Lmi9pYqkjMzOzjmq2B3M3sC8wq8a2fYF7BttZ0ijgDmA+cDiwE/BDUqA7u8TnfxO4L/f+9UL5e5MC3eXAKcAEYJqk/oi4vUT5ZmbWIWUmWu6ae/tj4CeStgBuBH4HbA0cCRwKnNiguK8CI4CjImIJMEvSpsAUSRdlaYN5KiIeHGT7d4B7IuKU7P3dknYDzgEcYMzMuqhMD+ZJVp1cKeCk7FG8u+VtDL6a8qHAzEIgmQ5cSOoB3VSiPjVJWh/Yj9RzyZsOTJU0MiLebLV8MzNrTpkAs18HP28scFc+ISKel7Qs29YowEyVtDmp5zQN+HZErFxlYCdgXWBhYZ8FpFNwHwUeaa/6ZmZWVpmZ/LM7+HmjgDdqpPdn2+pZDvwL6TTXEmA8cAYpqByeK5sa5fcXtq9C0mRgMsDo0aPp6+sbrP4NLV26tO0yhgu3VXluq/LcVuVV3VbNDvK/T9JawAbF9BJ3tKy1lpnqpK8s8xXg5FxSn6RXgcslfSIi5g1Svuqkryz7KuAqgHHjxsX48eMHr30DfX19tFvGcDEUbTXmzFsGpC3+/uo/R9jfq/LcVuVV3VbNTrSUpDMkLQLeAf5Q4zGYfmCzGukjqd2zGcx12fMnc2VTo/yV75st38zM2tDsPJhTgDOBn5J6Bv8EnA88DSwmO9U0iIWksZb3Sdoe2IiBYyeNROH5GVLQG1vINxZYkdXRzMy6pNkA8xXgXOCi7P2NEXEesBspQOzcYP8ZwMGSNsmlTSTdDqDZsZ6js+dHASJiOWmezhcL+SYCD/gKMjOz7mp2DObDwLyIeE/SO2SnnyJihaTLgZ+Qejj1XEHqBd0g6UJgR2AKcHH+0uXsFNzsiDghez8F2IQ0yXIJsA9wOnBDRPwqV/53SeMzl5Lm6UzIHoc0eZxmZtamZnswvwc2zl4/D/xlbtso0iTKuiKiH9ifNFfmJuA84BJSryhvHVadT7OQNE9mKnArcCzwg+w5X/4cUs/mAGAm8HngWM/iNzPrvmZ7MPcBnyb9yP+CNAN/c+BPwNeBOxsVEBHzgc81yDOm8H46acJkQxFxI6n3YmZmQ6jZADMF2C57fQHpFNlxpJ7LLOAbnaqYmZn1tqYCTEQ8BTyVvV5OuhfMqRXUy8zMelw7Ey0/BGwLvBwRL3WuSmZmtiZo5ZbJX5P0AvAc8BDwvKQXJf2fjtfOzMx6VrMz+c8BLiPNZzkMGJc9zwB+nG03MzNr+hTZ14ELIuI7hfTbsrXBvk6a2W9mZsNcs6fIRlD/rpWzqbH4pZmZDU/NBpgbgaPqbPsCcHN71TEzszVFmVsmT8i9nQFcJGkMA2+ZvBvwj52vopmZ9aIyYzA3M/DWyNsBB9fI+zPSnSbNzGyYKxNgPlx5LczMbI1T5pbJz3WjImZmtmZpeia/pHVIA/p7A5sD/wPcS1o6/93OVs/MzHpVUwFG0tbA7cDupDtYvgrsRZr/8rikgyLitU5X0szMek+zlylfDGwBfCYidoyIvSJiR+AzWfrFna6gmZn1pmYDzATgjIh4JJ+Yvf8WadkYMzOzpgPM+sAf6mz7A7Bee9UxM7M1RbMB5kHgDEkb5ROz92dk283MzJq+iuw04G7gBUm3kwb5tyZNuhQwvqO1MzOzntVUDyYi5gE7A1cBWwEHkgLMFcDOEfF4x2toZmY9qXQPRtK6wB7AsxFxZnVVMjOzNUEzPZj3gLuAj1VUFzMzW4OUDjARsQL4NTC6uuqYmdmaotmryL4NnCPp41VUxszM1hzNXkV2NmnG/jxJL5GuIot8hojYo0N1MzOzHtZsgHkye5iZmQ2qVICRNIK0TMyTwG+BOyLi1SorZmZmva3MLZN3BO4AxuSSl0g6JiJur6piZmbW28oM8l8ErAD+GtgQ2A14DLiywnqZmVmPKxNg9gLOjoj7IuLtiFgAnAT8uaRtq62emZn1qjIBZlvgN4W0Z0hrj23T8RqZmdkaoexVZNE4i9maa8yZtwxIW/x93/7IbDBlA8xMSe/WSL+zmB4RW7dfLTMz63VlAsx5ldfCzMzWOA0DTEQ4wJiZWdOaXYvMzMysFAcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKdD3ASNpV0p2Slkl6WdL5ktZusM+nJU2VtCjb7ylJ50raoJBviqSo8Tik2qMyM7OiZm841hZJo0hL/88HDgd2An5ICnRnD7LrxCzvhcCvgd2B72bPXyjkfRMoBpQF7dbdzMya09UAA3wVGAEcFRFLgFmSNgWmSLooS6vlwoh4Lfe+T9LbwJWSdoiI53Lb3o2IB6upvpmZldXtU2SHAjMLgWQ6KejsW2+nQnBZ6bHs2WufmZmthrodYMYCC/MJEfE8sCzb1ozPkm6E9lQhfTNJr0t6R9Jjko5qubZmZtYyRXRvJX5J7wCnR8SlhfQXgWsi4qyS5WwD/Aq4NSKOy6V/mdSjmQdsTLox2gTgCxFxQ52yJgOTAUaPHv2p6dOnN3tYq1i6dCkbb7xxW2UMF0PRVk+89OaAtI9vN7Ky/TrF36vy3FbldaKt9ttvv0cjYlytbUMRYL4ZET8qpL8EXB0R3y5RxnqkCwU+BHwqIvoHySvgfmBERHyiUdnjxo2LuXPnNso2qL6+PsaPH99WGcPFULRVq/d1Ger7wfh7VZ7bqrxOtJWkugGm26fI+oHNaqSPBN5otHMWMK4BdgMmDBZcACJFzxuA3RtdCm1mZp3V7avIFlIYa5G0PbARhbGZOi4hXd58YESUyb+S78hpZtZl3e7BzAAOlrRJLm0i8BYwe7AdJX0L+Abw5YiYU+bDsh7PkcDjEfFea1U2M7NWdLsHcwVwCnCDpAuBHYEpwMX5S5clLQJmR8QJ2ftjgQuAq4GXJO2ZK/OZlZcxS5oNXE/qDW0EfAXYEzii2sMyM7OirgaYiOiXtD9wGXATadzlElKQKdYrP2ZyUPZ8XPbIO54UeAAWAX8PbEu6hPmXwGERMaMT9Tczs/K63YMhIuYDn2uQZ0zh/XEMDCy19juhjaqZmVkHeTVlMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVYZ6grYNaKMWfeMiBt8fcPG4KamFk97sGYmVkl3IMxq5h7WzZcuQdjZmaVcIAxM7NKOMCYmVkluh5gJO0q6U5JyyS9LOl8SWuX2G+kpKmS+iW9Kennkraoke9wSU9IelvSfEkTqzkSMzMbTFcH+SWNAu4A5gOHAzsBPyQFurMb7H4tsAtwIrACuBC4EfjrXPl7A9cDlwOnABOAaZL6I+L2jh6MdYwHwetb2TanffxdjjvzFreL9ZRuX0X2VWAEcFRELAFmSdoUmCLpoixtAEl7AQcD+0bEPVnaS8BDkg6IiDuyrN8B7omIU7L3d0vaDTgHcIAxM+uibgeYQ4GZhUAyndQb2Re4aZD9Xl0ZXAAi4mFJz2bb7pC0PrAfqeeSNx2YKmlkRLzZoeOwOtwbWT3438FWB90OMGOBu/IJEfG8pGXZtnoBZiywsEb6gmwbpNNt69bIt4B0Cu6jwCOtVbt1tf6j17L4+4c1/FEo86NRzFPvR6VsvmbzWu9r9d+71aDWyn7d2Mff+/YpIrr3YdI7wOkRcWkh/UXgmog4q85+s4A/RsQRhfSfATtGxGcl/RUwB/jLiJiXy/MR4NfAwbXGYSRNBiZnb3cBnmr5AJMtgdfbLGO4cFuV57Yqz21VXifaaoeI2KrWhqGYyV8roqlOeiv7Fd9rkP2JiKuAqxp8dmmS5kbEuE6VtyZzW5XntirPbVVe1W3V7cuU+4HNaqSPBN5oYb/Ncvv159KKeWhQvpmZdVi3A8xCPhgzAUDS9sBG1B5jqbtfJj828wzwTo18Y0mXNT/dQn3NzKxF3Q4wM4CDJW2SS5sIvAXMbrDfNtk8FwAkjQN2zLYREcuBu4EvFvadCDzQxSvIOna6bRhwW5XntirPbVVepW3V7UH+UaRJlk+SLk3eEbgYuDQizs7lWwTMjogTcmm3ka4E+yYfTLT8XUQUJ1r2AZeRJmFOyPIf4omWZmbd1dUeTET0A/sDa5MuST4PuAQ4t5B1nSxP3iRSL+dfgWuAR4EjC+XPAY4GDgBmAp8HjnVwMTPrvq72YMzMbPjwaso1eEHO8lppK0mfztppUbbfU5LOlbRBId8USVHjcUi1R1WNFttqTJ02mF4j73D/XtX7voSkb+XyXV0nT60LiVZ7kj4i6UpJj0t6T1Jfyf0q/73yHS0LvCBneW201cQs74WkSbC7A9/Nnr9QyPsmUAwoC9qte7e1+b2CNJZ4X+79KpPj/L0C4CfAbYW0I4AzyC4GylkIHF9IW9xajYfcbqR/7weB9ZrYr/rfq4jwI/cAvkWaU7NpLu0fgWX5tBr77UWazLlPLm2PLO2AXNpM4K7CvrcCc4b62LvYVlvVSJuctdUOubQpwOtDfZxD3FZjsnb5Xw3KH/bfqzpl3QIsKKRdDcwd6uPsYHutlXt9HdBXYp+u/F75FNlA9RbkHEFakHOw/QYsyAmsXJCT3IKc/17Ydzqwl6SR7Ve/q1pqq4h4rUbyY9nz1p2r3mql1e9VQ/5e1SZpc+BAYFpnq7d6iYgVLezWld8rB5iBBiysGRHPk/56GuwcbacW5OwlrbZVLZ8lddOLa8FtJul1Se9IekzSUS3Xdmi121ZTs/Prr0i6WNKI3DZ/r2o7mtQuA8argF0lLZG0XNIcSW0F+R7Uld8rB5iBRlF7WZn+bFs7+618LubrL2zvFa221SokbQN8G/i3wl+ti0inRo4hjc28DFzfo0Gm1bZaDvwLcALpEv8rga+x6o+mv1e1TQJ+GRHFVTweA04D/gb4EmlKxCxJe7RQ117Vld8rD/LXtlotyLmaa7WtUkZpPVIXfCnwD6sUHPGzQt6bgPtJN5C7oZXKDrGm2yoiXgFOziX1SXoVuFzSJyK3cniNcobz92pb0um0MwYUHPGjQt5bSBcUnEW6KGC4qPz3yj2YgbwgZ3mtthUAkkSaNLsbMCHSRNy6Io0w3gDsXuay8dVMW21VcF32/Mlc2dQof1h+rzLHkH4Ir22UMSLeIg1cf7JR3jVIV36vHGAG8oKc5bXaVitdQroM9fCIKJN/pV78i7zdtsqLwrO/VwNNIl3p9EITn9uL36tWdeX3ygFmoOGwIGentNpWZBPfvgF8OdISPw1lPZ4jgccj4r3WqjxkWm6rGo7Onh8Ff6+KJI0B9qTk1WPZBROHkrXnMNGd36uhvoZ7dXuQBq5eAWaR1jSbTBof+F4h3yLgp4W024DfAEeRzuU+BdxbyLM38C5wKTAeuIj018BBQ33s3Wor4FjSX4tTST8E+cdWuXyzSZO7DiIFlluztvr8UB97F9tqCmmS4VHZfueTfmiv9/dq4P/BLP1M0l/eteZbjQTuBU4iXTQxkTRBcTkwbqiPvcX22pD0R8fRwAPAf+feb1ivrbrxezXkjbM6PoBdgbuy/8ivkGaZr13Isxi4upC2Wfaj+QawBPgFsGWN8o8grSi9nNQdnTTUx9zNtiJNdIs6j+Ny+X6a/Qd4C/hj9sNw6FAfc5fbahIwl7SiwZ+yH4rzgfX9vRr4fzBLnwfcVqfcDUjjeC9k7fRm9kO751AfcxttNWaQ/09j6rVVN36vvNilmZlVwmMwZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwS/x++layyZcXe/gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -331,7 +333,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu0HFWd9vHvw0WIXEK4BXSQGBUz4LiURIR5GQmCAsFlFEEYx3GhkMTREWeWKKioAS8jKOCo40uCCvKqBAWGGeQml5wAjihJgEEhwaDhLgIeCCEhEvi9f+xqKOp09+k+p6v6dOf5rFWrT+3au3rv6j7nd2rXrl2KCMzMzMq2UbcrYGZmGwYHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgWEdJmispGizvb3Efu2X72aaQfnS2ny3LqX1r9RjlPi+UNNBCvk0k/Yuk2yStlTQo6XJJ+47wfcfKMT268J34k6SrJO3ZQtnpWZnXVVFX6zwHHCvDE8A+dZYrWyy/G/AFoPiH/rJsP2s6U80R16NUkjYGLgG+Avw3MAM4GngWGJD0vhHsdqwc05q3Zu87B9gBWCjpZcOUWZqVubvkullJNul2BawvrY+Imzq904h4BHik0/sdgz4GHAocEhH5IP1fkhYA8yUtiogHRvtGXTymN0fEagBJi4F7gH8AvlbMKEnAZhGxCuj498qq4zMc6wpJn5a0QtLTkh6WdKWknSRNBy7Nsv0h60JZmZV5UfePpEnZ+lGSzpG0StL9ta47SZ+S9KCkRySdKmmj3PtPkbRA0n2S1kj6bdaFtVG2vWE9su2vyMr/OSt/laTXFtq4S9YNtlbSSknHtnh4Pg4sLASbms8CmwPH5N5npaSvS/qcpD9KWi3pR5LGD9eWel1qkraX9ANJj2VtG5A0rdC22nv+a3bMB7Pj0fbZYETcRwp6k7J9z5X0qKR9Jd0MPA0cUa9LTdLG2XfpLknrsrqcW6jrTEmLs+/aHyWdJmnTdutpo+czHCuFpCHfrYhYn237APAZ4ATgt8B2pC6WLUjdJscDXwcOAx4C1g3zdqcCPwLeA3wI+IGkNwK7ZutTgS8BtwALsjIvB5Zn5Z4E3gCcDIwD/q1ZPSRtC9wIPAZ8mNQddSJwjaTdImJt9l/5fwHbk4LD09n+twV+1+S47UL6w3tmve0Rcbek24G3FDb9PbACmAXsDJwGfBc4ollbGrgEeHVW5lHgk6QurzdGxIpcvvcC/wvMBv4KOIPUDfiRJvseQtJWpOPyx1zyS4EfZO24C3gwa1fRPOADWb5F2X4Oz+37vcD5Wb7PAK8ifb4bZe2zKkWEFy8dW4C5QDRYJmV5vg1c1GQf78jnz6UfnaVvma1PytbPyeXZGniG9Ed941z6r4ELGryfSP98fQb4fQv1+CIp2GybS5tAunb10Wx9Rlb2zbk8uwLrgYEmbd87KzezSZ5LgDtz6yuBP9eOS5b2D8BzwF+3eUwPztb3y+XZgnQGMq/wnncDm+TSvgH8cZjvR+39xmfHfBfgguy4vKHwHZpZKDs9S39dtj4lWz+uyed6T/77kaV/CFgLbNft35cNbfEZjpXhCeDAOukPZq+3AsdIOpl00XpJRDw7ive7tvZDRKyS9AiwqLDPFcAraiuSNgc+TfrD/Apg09y2TSI7G2vgQOBqYFXuTO5JYAlQ63raC3g4In6Vq9s9kpaMoH2tuDqyayKZi4EfAm8C7mxjP3sBj0TEolpCRDwl6WdAcYTcwsJxugPYUdJLIuIvw7zP47mfHwU+FBG35tICuGKYfeyfvZ7bYPtupM/2J4Uz7utI3ZKvI50VWUUccKwM6yNicZPt3we2InXFfB54TNL/BeaOMPA8Xlj/S4O0zXPrpwLHkrq5lmb5ZwInZflW09j2pDORI+tsqwW/nYA/1dn+J1LbG6kNBNi1SZ5dc/ny+31epG691dTvhmpmZ+DhOukPk7qr8uodYwEvyX5u5i2krshHgfsi4rnC9sEWgtZ2wFORBhPUs332enmD7bsMs3/rMAccq1z2x+VM4MzsmsU/AF8m/RE9q6JqHAF8KyJOqyVIOrTFsn8mDVf+Yp1tT2avfwR2rLN9R1J3Tl0RcV92Qf+dwDeL2yW9kvSfefG9dyzkGwdsSbpe046HivvKTCS1u1NuKZyRFbXy3JTHgC0kbd0g6NTqO5t0/a7oDy28h3WQR6lZV0XEfRHxVVKX1+5Zcu0/283rl+qIceQunCvd+3JUIU+jelwL7AH8NiIWF5blWZ6bgYmS3px7j1cAw97gCPw7cICkt9fZ9qWs3t8rpL9NL7558zDSH+3amWarx/RXpG6x5wclSHopaZj2jS3UvUrXZa8faLB9OemfmEl1PqfFEfFYNdW0Gp/hWBk2kbR3nfT7IuIBSfNI/33eRLresz/wGtKoNUh/KADmKN13siYibu9wHa8GPippRVaXjwKbFfI0qscZwPuB6yR9i/RHbSKwH3BjRJxP6sa5DfippBNIo9ROoX43W9G3SNeJ/lPS14EBUjfcMaSL//8YQ+/BWQtcJulrpG6xrwH/GRF3DNOWF4mIqyT9ArhA0omks4jjSQF6yD0y3RQRyyXNB06XtCNwPenG1sMj4qiIeE7SJ4D/J2lr0jWhvwCTgXdl+aq+4XXD1u1RC176a6H5KLWTsjxHA78g/aFfQxpae0xhP58gjTBaD6zMlas3Su0dhbIrga8X0s4FFufWJwL/CawiXZ84jTSk+Pn9N6pHlv4y4Jys7LrsPX8I7JHL8wrS7Aprs33MAS6kySi1XNlNgH/Njs1aYJD0B3PfOnlXAqdnx/5h4CnSUOBt2j2mWdoOwHnZe64lXVh/UwvHeMi+6tS1lTxzgUfrpE8nN0otS9uYbHQhKZjcz9BRaYcAN2THZRVp0MqXyI2w81LNouwDqYykV5PG9e9N6ou+ISKmt1BuPGnY5btIXYE/Iw2HfKyQbybpy/Qa0pfw5Ii4oJNtMBtLsms+F0aE7yuxMa0b13D2IN2jcFe2tOoC0n84x5L+S3oT6X6E5ylNbHgRsJD0X81lwPkN+sLNzKxC3TjD2SiyIZCSLgS2H+4MR9I+wP+Qbka7Pkvbi3SB820RcU2WdhWwaUS8NVf2cmDriBjRLLtmY53PcKxXVH6GE0PH27fiENJNdNfn9vNr0rDGQwAkbUa6+PyTQtkFwD61eaXM+k1ETHKwsV7QK8OipwDL6qTfmW2DNEfSpnXy3Ulq526l1c7MzIbVK8OiJzD0rmZIo2gm5/JQJ99gYfuLSJpNujGMcePGTd1ll965+fi5555jo4165X+Gzut0+7e6K11SfHK33vjfZEP//MHHYCy0/6677no0InZoJW+vBByof+ex6qQX19WkPBExH5gPMG3atFi8uNmMLGPLwMAA06dP73Y1uqbj7Vf2VVm+vHm+MWJD//zBx2AstF/SPa3m7ZV/DQap/9TFbXjhjGYwl1bMA/XPkMzMrCK9EnCW8cK1mrz8tZ27SdPSF/NNIU3T3s4QbDMz67BeCThXADtl99kAkD2BcHK2jYhYR7r/5ohC2SOBX0bEExXV1czM6qj8Gk42EeCMbPXlwNaSak/ouzwi1mTzWy2KiGMAIuKX2T0250k6nnTGcipp3qprcrv/IjAg6Rukm0JnZMvBpTfMzMya6saggR2BnxbSauuvJM3RtAlpjqS8o0hT2n+f3NQ2+QwRcWMWvL4E/BPpPp33RcTPO1h/61cV3wRttqGpPOBExEpeGDnWKM+kOmmPAx/MlmZlL6Ew5Y2ZmXVfr1zDMTOzHueAY1YzdWpazKwUvXTjp1m5li7tdg3M+prPcMzMrBIOOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuFRamY1s2Z1uwZmfc0Bx6xm/vxu18Csr7lLzczMKuGAY1azZElazKwU7lIzq5k2Lb161mizUvgMx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCQ+LNqtZvLjbNTDraw44ZjV+vLRZqdylZmZmlXDAMauZPTstZlYKBxyzmrPPTouZlcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEr7x06xmzz27XQOzvuaAY1bjx0ublcpdamZmVgkHHDMzq4QDjlmNlBYzK4UDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEp5pwKxm3rxu18CsrzngmNX48dJmpaq8S03S7pKulbRG0oOSTpG08TBl5kqKBsunc/nObZBnSvktMzOzZio9w5E0AbgGuAOYCbwKOJ0U+E5qUvS7wJWFtHcBJwBXFNKXAR8spK0cWY1tgzJ/fnr1mY5ZKaruUvswMA44LCJWAVdL2hqYK+m0LG2IiLgfuD+fJulzwLKIuLWQ/amIuKmEulu/mzMnvTrgmJWi6i61Q4CrCoFlASkI7dfqTiRtC7wNOL+z1TMzs7JUHXCmkLq8nhcR9wJrsm2tOhzYlBSsinaXtErSOkk3Smo5kJmZWXmq7lKbADxeJ30w29aqo4ClEXFXIf0W4Feka0Q7AJ8gddvtGxG/rrcjSbOB2QATJ05kYGCgjWp01+rVq3uqvp3W6fZPz1575Zhu6J8/+Bj0XPsjorIFeAb4eJ30B4Avt7iPnYFngeNbyDsO+ANwSSv7njp1avSShQsXdrsKXdXx9kNaesSG/vlH+BiMhfYDi6PFGFB1l9ogsE2d9PHUP/Op572AgAuGyxgRa4HLAT+s3sysy6oOOMsoXKuRtAuwBYVrO00cBdwYEfe18b7RRl4zMytB1QHnCuAgSVvl0o4E1gKLhissaRKwNy2OTpM0jjQybkm7FbUNUK1TzcxKUXXAOQtYB1ws6cDsgv1c4IzIDZWWtELS9+qUPwpYD1xY3CBpvKQbJM2RdICkI4GFwMuBr5TQFjMza0Olo9QiYlDSAcC3gUtJ123OJAWdYr3qTXdzFHBtRDxSZ9s64BHSjAU7Ak8DvwT2i4jFHWmAmZmNWOWTd0bEHcBbh8kzqUH6G5qUeRo4bFSVsw3b1KnpdYl7YM3K4NmizWqWLu12Dcz6mh/AZmZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCY9SM6uZNavbNTDraw44ZjW1R0ybWSncpWZmZpVoK+BIqjfdjFl/WLLEswyYlajdLrUHJJ0HnBMRd5ZRIbOumTYtvXrGaLNStNulNg84HPiNpF9Jmi1p6xLqZWZmfaatgBMRX4iIycDbgOXAGcBDkn4k6cAyKmhmZv1hRIMGIuK6iPgAsBPwMeC1wFWSVkqaK+llnaykmZn1vtGOUpsGvIX02OhB4AbgWGCFpPePct9mZtZH2g44knaV9AVJdwPXAjsDHwJeFhH/COxKutbztY7W1MzMelpbo9QkXUc6o7kfOJc0Wu2efJ6IeFbSj4GPd6qSZmbW+9odFv0oMAO4OqLp2NFbgVeOuFZm3bDYTyI3K1O7AefbwNJ6wUbSlsCeEXF9RDwD3DOktNlYVnvEtJmVot1rOAuB3Rtse2223czMbIh2A46abNsSWDOKuph11+zZaTGzUgzbpSbpLcD0XNKxkg4uZNscOBS4vXNVM6vY2WenV88abVaKVq7hvJl0cydAAEcA6wt5/gIsAz7ZuaqZmVk/GTbgRMTXyO6pkfQH4N0RcWvZFTMzs/7S1ii1iPBQZzMzG5FWruHMAG6MiFXZz01FxOUdqZmZmfWVVs5wfgbsDfw6+zloPFotAD+kzczMhmgl4LwSeCj3s1l/2nPPbtfArK+1Mmjgnno/m/UdP17arFStXMN5aTs7jAjf/GlmZkO00qW2mnRtplW+hmNmZkO0EnA+RHsBx6w3KRsL03QidDMbqVau4ZxbQT3MzKzPjfYR02ZmZi1pZdDAr4GjI+IOSTczTPdaROzVqcqZmVn/aOUazm+Btbmf3cFtZmZta+UazgdzPx9dam3MzKxvjfgajpIdJDV7KJuZmRnQ5mzR8PxknicBU7Py6yUtAb4cEZd1uH5m1Zk3r9s1MOtrbQUcSXOA7wDXAh8H/gTsCBwG/Lekj0SEf2utN/nx0malavcM5zPA/Ij4p0L6WZLOAj4LOOCYmdkQ7V7D2Q64uMG2i4Bth9uBpN0lXStpjaQHJZ0iqel0OJImSYo6y4I6eWdKul3S05LukHRkSy0zmz8/LWZWinbPcBYC+wFX19m2H3B9s8KSJgDXAHcAM4FXAaeTAt9JLbz/8cAvcuuPFva/LynwfQc4DpgBnC9pMCJ+3sL+bUM2Z056ddeaWSlaufFz99zqN4HvStoOuIQXruG8GzgEOHaY3X0YGAccFhGrgKslbQ3MlXRaltbM8oi4qcn2zwHXR8Rx2fpCSXsAnwcccMzMuqiVM5zf8OKbPQXMyZbi0z+vpPls0YcAVxUCywLgVNIZ0qUt1KcuSZsB+5PObPIWAOdIGh8RT4x0/2ZmNjqtBJz9O/h+U4Dr8gkRca+kNdm24QLOOZK2JZ1ZnQ98NiJqsyC8CtgUWFYocyepy2434ObRVd/MzEaqlZkGFnXw/SYAj9dJH8y2NbIO+A9St9gqYDpwAinIzMztmzr7HyxsfxFJs4HZABMnTmRgYKBZ/ceU1atX91R9O63T7Z+evfbKMd3QP3/wMei19rd942eNpI2AzYvpLTzxs95cbGqQXtvnQ8A/55IGJD0MfEfSGyLi1ib7V4P02r7nA/MBpk2bFtOnT29e+zFkYGCAXqpvp42k/ZNOfPG9ySu/euiQPL1yTDf0zx98DHqt/W0Ni86mszlB0grgGeDJOkszg8A2ddLHU//Mp5kLs9c9c/umzv5r6+3u38zMOqjd+3COA04Evkc6c/gycApwF7CSrGuqiWWkazXPk7QLsAVDr70MJwqvd5OC4JRCvinAc1kdzRqL8NM+zUrUbsCZBXwBOC1bvyQiTgb2IAWM1wxT/grgIElb5dKOJD3+oN1rRYdnr0sAImId6T6hIwr5jgR+6RFqZmbd1e41nFcCt0bEs5KeIeuuiojnJH0H+C7pDKiRs0hnSRdLOhWYDMwFzsgPlc667BZFxDHZ+lxgK9JNn6uAtwCfBC6OiP/N7f+LpOs73yDdJzQjWw5us51mZtZh7Z7hPAZsmf18L/DG3LYJpJs6G4qIQeAA0r06lwInA2eSzpryNuHF9/MsI92ncw5wOfA+4GvZa37/N5LOfA4ErgLeCbzPswxYS6ZOTYuZlaLdM5xfAG8i/dH/MWmGgG2BvwAfJc0i3VRE3AG8dZg8kwrrC0g3cA4rIi4hnd2YtWfp0m7XwKyvtRtw5gIvz37+CqlL7WjSmc3VwMc6VTEzM+svbQWciFgOLM9+Xkd6Js7HS6iXmZn1mdHc+PlXwM7AgxHxQOeqZGZm/ajdQQNI+idJ9wH3AL8C7pV0v6SPdLx2ZmbWN9qdaeDzwLdJ99McCkzLXq8AvpltNzMzG6LdLrWPAl+JiM8V0q/M5jb7KGnmAbPeM2tWt2tg1tfaDTjjaPxUz0V4lJr1Mj9e2qxU7V7DuQQ4rMG29wA/G111zMysX7XyiOkZudUrgNMkTWLoI6b3AD7V+SqaVWTJkvTq2QbMStFKl9rPGPoo6ZcDB9XJ+0PSkzjNes+0aenVM0ablaKVgPPK0mthZmZ9r5VHTN9TRUXMzKy/tT3TgKRNSAME9gW2Bf4M3EB6VMD6zlbPzMz6RVsBR9KOwM+B15Oe8PkwsA/p/pvbJL09Ih7pdCXNzKz3tTss+gxgO+DNETE5IvaJiMnAm7P0MzpdQTMz6w/tBpwZwAkRcXM+MVv/NGmaGzMzsyHavYazGfBkg21PAi8ZXXXMumjx4m7XwKyvtRtwbgJOkHRdRDxVS5S0BXBCtt2sN/mGT7NStRtwPgEsBO6T9HPSoIEdSTeBCpje0dqZmVnfaOsaTkTcCrwGmA/sALyNFHDOAl4TEbd1vIZmVZk9Oy1mVoqWz3AkbQrsBfwhIk4sr0pmXXL22enVs0ablaKdM5xngeuAvy6pLmZm1sdaDjgR8RzwO2BiedUxM7N+1e59OJ8FPi/pb8qojJmZ9a92R6mdRJpR4FZJD5BGqb1oLveI2KtDdTMzsz7SbsD5TbaYmZm1paWAI2kcaVqb3wB/BK6JiIfLrJhZ5fbcs9s1MOtrrTxiejJwDTApl7xK0nsj4udlVcyscrVHTJtZKVoZNHAa8Bzwd8BLgT2AW4B5JdbLzMz6TCsBZx/gpIj4RUQ8HRF3AnOAV0jaudzqmZlZv2gl4OwM/L6Qdjdp7rSdOl4js26R0mJmpWh1lFoMn8Wsv0068bIXra/8qh//ZNaOVgPOVZLW10m/tpgeETuOvlpmZtZvWgk4J5deCzMz63vDBpyIcMAxM7NRa3cuNTMzsxFxwDEzs0q0O5eaWf+a53uZzcrkgGNW48dLm5XKXWpmZlYJBxyzmvnz02Jmpag84EjaXdK1ktZIelDSKZI2HqbMmySdI2lFVm65pC9I2ryQb66kqLMcXG6rrC/MmZMWMytFpddwJE0gPergDmAm8CrgdFLgO6lJ0SOzvKcCvwNeD3wxe31PIe8TQDHA3DnaupuZ2ehUPWjgw8A44LCIWAVcLWlrYK6k07K0ek6NiEdy6wOSngbmSdo1Iu7JbVsfETeVU30zMxupqrvUDgGuKgSWBaQgtF+jQoVgU3NL9uq528zMekDVAWcKsCyfEBH3Amuybe34W9KD4ZYX0reR9KikZyTdIumwEdfWzMw6RhHVPXlA0jPAJyPiG4X0+4HzIuIzLe5nJ+B/gcsj4uhc+vtJZzy3AluSHhQ3A3hPRFzcYF+zgdkAEydOnLpgwYJ2m9U1q1evZsstt+x2NbpmJO2//YEnXrT+Ny8f//zP0/ffH4CBhQvbLtsNG/rnDz4GY6H9+++//5KImNZK3m4EnOMj4t8L6Q8A50bEZ1vYx0tIAw/+CpgaEYNN8gr4H2BcRLxhuH1PmzYtFi9ePFy2MWNgYIDp06d3uxpdM5L2N32mTe3haw1+J8ba83A29M8ffAzGQvsltRxwqu5SGwS2qZM+Hnh8uMJZADkP2AOY0SzYAESKphcDrx9u6LUZEQ2DjZmNXtWj1JZRuFYjaRdgCwrXdho4kzSc+m0R0Ur+Gv8VMTPrsqrPcK4ADpK0VS7tSGAtsKhZQUmfBj4GvD8ibmzlzbIzoncDt0XEsyOrspmZdULVZzhnAccBF0s6FZgMzAXOyA+VlrQCWBQRx2Tr7wO+ApwLPCBp79w+764Nm5a0CLiIdLa0BTAL2Bt4V7nNsr4wdWp6XbKku/Uw61OVBpyIGJR0APBt4FLSdZszSUGnWK/8NZe3Z69HZ0veB0mBCGAF8C/AzqQh00uBQyPiik7U3/rc0qXdroFZX6v88QQRcQfw1mHyTCqsH83QQFOv3DGjqJqZmZXIs0WbmVklHHDMzKwSDjhmZlYJBxwzM6tE5YMGzMasWbO6XQOzvuaAY1bjx0ublcpdamZmVgkHHLOaJUs8y4BZidylZlYzLZth3TNGm5XCZzhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0p4WLRZzeLF3a6BWV9zwDGrqT1i2sxK4S41MzOrhAOOWc3s2Wkxs1I44JjVnH12WsysFA44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaV8I2fZjV77tntGpj1NQccsxo/XtqsVO5SMzOzSjjgmJlZJRxwzGqktJhZKRxwzMysEg44ZmZWCQccMzOrhAOOmZlVwgHHzMwq4YBjZmaV8EwD1rNuf+AJjj7xMgBWfvXQ0e9w3rzR78PMGnLAMavx46XNSuWAY1aySdlZWE1HzsbMepCv4ZjVzJ+fFjMrhc9wzGrmzEmv7lozK4XPcMzMrBKVBxxJu0u6VtIaSQ9KOkXSxi2UGy/pHEmDkp6Q9CNJ29XJN1PS7ZKelnSHpCPLaYmZmbWj0i41SROAa4A7gJnAq4DTSYHvpGGKXwC8FjgWeA44FbgE+Lvc/vcFLgK+AxwHzADOlzQYET/vaGOsY3xRvTEfG+snVV/D+TAwDjgsIlYBV0vaGpgr6bQsbQhJ+wAHAftFxPVZ2gPAryQdGBHXZFk/B1wfEcdl6wsl7QF8HnDAMTProqoDziHAVYXAsoB0trIfcGmTcg/Xgg1ARPxa0h+ybddI2gzYn3Rmk7cAOEfS+Ih4okPtsCby/5X7P/Lu8dmRjTVVB5wpwHX5hIi4V9KabFujgDMFWFYn/c5sG6TuuU3r5LuT1GW3G3DzyKo9cvV+6Zv9IWj2x7pY7tyDt2jp/VqtVyP+w7VhGc3nPdKyI/knZdKJl/GJv1nf8mwT7dbN3/vOU0RU92bSM8AnI+IbhfT7gfMi4jMNyl0NPBUR7yqk/xCYHBF/K+n/ADcCb4yIW3N5Xg38Djio3nUcSbOB2jjY1wLLR9zA6m0PPNrtSnSR279htx98DMZC+3eNiB1aydiN+3DqRTg1SB9JueK6GqSnxIj5QE/e7SdpcURM63Y9usXt37DbDz4Gvdb+qodFDwLb1EkfDzw+gnLb5MoN5tKKeRhm/2ZmVrKqA84yXrjmAoCkXYAtqH+NpmG5TP7azt3AM3XyTSENo75rBPU1M7MOqTrgXAEcJGmrXNqRwFpg0TDldsruswFA0jRgcraNiFgHLASOKJQ9Evhln45Q68muwA5y+21DPwY91f6qBw1MIN30+RvSUOjJwBnANyLipFy+FcCiiDgml3YlaaTZ8bxw4+efIqJ44+cA8G3STaEzsvwH+8ZPM7PuqvQMJyIGgQOAjUlDoE8GzgS+UMi6SZYn7yjSWdD3gfOAJcC7C/u/ETgcOBC4Cngn8D4HGzOz7qv0DMfMzDZcni26h0iaJel32cSkSyQd0EKZuZKiznJwFXUeibIneB3rRtJ+SZMafM4Lqqp3p0h6taR5km6T9KykgRbL9cXnDyM7Br3wHfDzcHqEpKOAs4C5pBtcPwj8TNKbIuI3wxR/AigGmDs7XskOKHuC17FulO2HdM3yF7n1bt8UOBJ7kK6/3gS8pI1yPf/554z0GMBY/g5EhJceWEgzIHw/t74RcDvww2HKzQUe7XZyZNliAAADNklEQVT922jnp0n3VG2dS/sUsCafVqfcPqSbe9+SS9srSzuw2+2qoP2Tsra+o9tt6MAx2Cj384XAQAtl+uLzH+UxGPPfAXep9QBJk0kj9H5SS4uI54CfkiYv7SeNJngdR5rgtVm5IRO8ArUJXnvFSNvfN7Lvdrv65fMHRnwMxjwHnN5Qu5m13sSk20oabh6jbSQ9KukZSbdIOqzzVeyYIRO1RsS9pP/w693827BcJj/Bay8Yaftrzsn6/B+SdIakcWVUcgzql8+/E8bsd8DXcHrDhOy1OD3PYG77Iw3KriB1ydwKbAnMAS6S9J6IuLjTFe2ACdSfhmiQF45Du+Umd6BeVRlp+9cB/0F67tMqYDpwAuka0MzOVnFM6pfPfzTG/HfAAadLJI0Hdh4uX0Tk/2tra2LSrPwPC+97KfA/pIfSjcWAA+VP8DrWtd2OiHgI+Odc0oCkh4HvSHpD5GZQ72P98vmPSC98B9yl1j1HkE73h1uggxOTRrq6eDHw+laGGndBmRO89oKRtr+eC7PXPUdVo97QL59/p42p74ADTpdExHcjQsMtWfbaWU69iUn/HBGNutOaVmHElS9XmRO89oKRtr+eKLz2s375/DttTH0HHHB6QET8njTb9fMTk0raKFu/op19SRJpSqDbIuLZTtazQ0qb4LVHjLT99RyevS7pRMXGuH75/DttbH0Huj0u20trC/D3wLOkm//2B84l/RF6XS7PfsB6YL9c2iLgOODtpEBzOemmuHd2u00N2jkBeAi4mjQn3mxgNfClQr4VwPcKaVcCvwcOA95Funfphm63qYr2k+63Oj1r+4HAKdn346Jut2kEx+ClpD+UhwO/BH6bW39pP3/+ozkGvfAd6HoFvLTxYcGs7Eu2DlgKHFDYPp106jw9l/a97JdwLfAUcANwSLfbMkw7dweuy+r8EPBFYONCnpXAuYW0bYBzSH32q4AfA9t3uz1VtJ80ue1i0qwSf8m+J6cAm3W7PSNo/6Tse1xvmdTvn/9Ij0EvfAc8eaeZmVXC13DMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0o44JiZWSX+PxnXeRNYLQ4+AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de7QcVZ328e/DRYhcQrgFdJAYFTOgLiURYV5GgqBAcBlFEEYdFwpJvIw4s0RBRQ2gjqCAo44vCSrIqxIUkBnkJpecACpKEkAUEgwa7iLggRASIoHf+8euhqLS3af7nKru053ns1atPrVrV/Xe1X3O79TetXcpIjAzMyvbBt0ugJmZ9ScHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAWKkkzZYUDZb3t3iMXbLjbFVIPzI7zubVlL61cozwmBdIGmgh30aS/l3SrZJWSxqUdJmkvYf5vqPlnB5Z+E78VdKVknZvYd+p2T6v6URZbeQcYKwKjwN71VmuaHH/XYAvAsU/7Jdmx1lVTjGHXY5KSdoQuBj4CvC/wDTgSOAZYEDSe4dx2NFyTmvekr3vLGA7YL6klwyxz+Jsn7sqLpuVZKNuF8D60tqIuLHsg0bEw8DDZR93FPo4cDBwUETkg/L/SJoHzJW0ICLuH+kbdfGc3hQRKwEkLQTuBt4HfK2YUZKATSJiBVD698qq4ysY6wpJn5G0TNJTkh6SdIWkHSRNBS7Jsv05axJZnu3zguYcSROy9SMknS1phaT7ak1xkj4t6QFJD0s6RdIGufefJGmepHslrZL0h6xJaoNse8NyZNtflu3/t2z/KyW9ulDHnbJmrdWSlks6usXT8wlgfiG41HwO2BQ4Kvc+yyV9XdLnJf1F0kpJP5I0dqi61Gsik7StpB9IejSr24CkKYW61d7zP7JzPpidj7av9iLiXlKQm5Ade7akRyTtLekm4CngsHpNZJI2zL5Ld0pak5XlnEJZp0tamH3X/iLpVEkbt1tOa5+vYKwSktb5bkXE2mzbB4DPAscBfwC2ITWZbEZqBjkW+DpwCPAgsGaItzsF+BHwbuBDwA8kvQHYOVufDHwJuBmYl+3zUmBptt8TwOuBE4ExwH82K4ekrYEbgEeBD5Oal44Hrpa0S0Sszv7r/h9gW1IweCo7/tbAH5uct51If2jPqLc9Iu6SdBvw5sKmfwGWATOAHYFTge8ChzWrSwMXA6/M9nkE+BSpCesNEbEsl+89wO+AmcA/AKeTmvU+2uTY65C0Bem8/CWX/GLgB1k97gQeyOpVNAf4QJZvQXacQ3PHfg9wXpbvs8ArSJ/vBln9rEoR4cVLaQswG4gGy4Qsz7eBC5sc4+35/Ln0I7P0zbP1Cdn62bk8WwJPk/6Ib5hL/y1wfoP3E+mfrc8Cf2qhHCeTgsvWubRxpL6nj2Xr07J935TLszOwFhhoUvc9s/2mN8lzMXBHbn058LfaecnS3gc8C/xjm+f0wGx9n1yezUhXGHMK73kXsFEu7RvAX4b4ftTeb2x2zncCzs/Oy+sL36HphX2nZumvydYnZevHNPlc785/P7L0DwGrgW26/fvS74uvYKwKjwP710l/IHu9BThK0omkTuZFEfHMCN7vmtoPEbFC0sPAgsIxlwEvq61I2hT4DOkP8cuAjXPbNorsaquB/YGrgBW5K7UngEVArSlpD+ChiPhNrmx3S1o0jPq14qrI+jQyFwE/BN4I3NHGcfYAHo6IBbWEiHhS0s+B4h1s8wvn6XZge0kvioi/D/E+j+V+fgT4UETckksL4PIhjrFv9npOg+27kD7bnxSuqK8lNTO+hnTVYxVxgLEqrI2IhU22fx/YgtS08gXgUUn/F5g9zEDzWGH97w3SNs2tnwIcTWq2Wpzlnw6ckOVbSWPbkq40Dq+zrRbsdgD+Wmf7X0l1b6TWcb9zkzw75/Llj/ucSM10K6nfrNTMjsBDddIfIjU/5dU7xwJelP3czJtJTYuPAPdGxLOF7YMtBKltgCcjdf7Xs232elmD7TsNcXwbIQcY67jsj8kZwBlZn8P7gC+T/mie2aFiHAZ8KyJOrSVIOrjFff9Gun345Drbnshe/wJsX2f79qTmmboi4t6sA/4dwDeL2yW9nPSfd/G9ty/kGwNsTupvaceDxWNlxpPqXZabC1dcRa08R+RRYDNJWzYIMrXyziT1vxX9uYX3sBHwXWTWVRFxb0R8ldSEtWuWXPvPddP6e5ViDLmObqWxJ0cU8jQqxzXAbsAfImJhYVma5bkJGC/pTbn3eBkw5IBC4L+A/SS9rc62L2Xl/l4h/a164WDJQ0h/pGtXkq2e09+Qmrmeu4lA0otJt03f0ELZO+na7PUDDbYvJf3TMqHO57QwIh7tTDHXX76CsSpsJGnPOun3RsT9kuaQ/ru8kdRfsy/wKtJdZZD+MADMUhr3sSoibiu5jFcBH5O0LCvLx4BNCnkaleN04P3AtZK+RfojNh7YB7ghIs4jNcvcCvxU0nGku8hOon6zWdG3SP08P5P0dWCA1Kx2FKmz/l9j3TEwq4FLJX2N1Mz1NeBnEXH7EHV5gYi4UtIvgfMlHU+6SjiWFJDXGaPSTRGxVNJc4DRJ2wPXkQaSHhoRR0TEs5I+Cfw/SVuS+nT+DkwE3pnl6/QA0/VLt+8y8NJfC83vIjshy3Mk8EvSH/ZVpFtdjyoc55OkO4DWAstz+9W7i+zthX2XA18vpJ0DLMytjwd+Bqwg9S+cSrrF97njNypHlv4S4Oxs3zXZe/4Q2C2X52Wk2QtWZ8eYBVxAk7vIcvtuBPxHdm5WA4OkP5B718m7HDgtO/cPAU+Sbs3dqt1zmqVtB5ybvedqUkf4G1s4x+scq05ZW8kzG3ikTvpUcneRZWkbkt39Rwoe97HuXWMHAddn52UF6SaTL5G7A85LNYuyD6BjJL2SdF/9nqS25OsjYmoL+40l3Qb5TlLT3s9Jtyc+Wsg3nfTleRXpS3diRJxfZh3MRpOsz+aCiPC4DhtVutEHsxtpjMCd2dKq80n/wRxN+i/ojaTxAM9RmgjwQmA+6b+WS4HzGrRlm5lZhbpxBbNBZLckSroA2HaoKxhJewG/Ig3+ui5L24PUIfnWiLg6S7sS2Dgi3pLb9zJgy4gY1iy0ZqOdr2BstOr4FUyse797Kw4iDVq7Lnec35JuMzwIQNImpM7inxT2nQfsVZuXyazfRMQEBxcbjXrlNuVJwJI66Xdk2yDNMbRxnXx3kOq5S2WlMzOzdfTKbcrjWHfUMKS7XCbm8lAn32Bh+wtImkkaiMWYMWMm77RT7wzuffbZZ9lgg175H6F8Zdd/iztTl+ATu/TG/yLr++cPPgejof533nnnIxGxXb1tvRJgoP7IXtVJL66ryf5ExFxgLsCUKVNi4cJmM5yMLgMDA0ydOrXbxeia0uuv7KuydGnzfKPE+v75g8/BaKi/pLsbbeuV0D9I/acKbsXzVyyDubRiHqh/BWRmZhXplQCzhOf7WvLyfTN3kaZpL+abRJq2vJ1bos3MbIR6JcBcDuyQjXMBIHvC3sRsGxGxhjT+5bDCvocDv46IxztUVjMzowt9MNnEedOy1ZcCW0qqPYHusohYlc0PtSAijgKIiF9nY1zOlXQs6YrkFNK8T1fnDn8yMCDpG6RBmNOy5cDKK2ZmZi/QjU7+7YGfFtJq6y8nzXG0EWmOobwjSFO8f5/cVDH5DBFxQxasvgR8hDRO5r0R8YsSy2/9qsODjs36XccDTEQs5/k7uxrlmVAn7THgg9nSbN+LKUwhY2ZmndcrfTBmZtZjHGDMaiZPTouZlaKXBlqaVWvx4m6XwKyv+ArGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSvovMrGbGjG6XwKyvOMCY1cyd2+0SmPUVN5GZmVklHGDMahYtSouZlcJNZGY1U6akV8+qbFYKX8GYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrh25TNahYu7HYJzPqKA4xZjR+XbFYqN5GZmVklHGDMambOTIuZlcIBxqzmrLPSYmalcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEB1qa1ey+e7dLYNZXHGDMavy4ZLNSuYnMzMwq4QBjZmaVcIAxq5HSYmalcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCI/nNaubM6XYJzPqKA4xZjR+XbFaqjjeRSdpV0jWSVkl6QNJJkjYcYp/ZkqLB8plcvnMa5JlUfc3MzCyvo1cwksYBVwO3A9OBVwCnkQLdCU12/S5wRSHtncBxwOWF9CXABwtpy4dXYluvzJ2bXn0lY1aKTjeRfRgYAxwSESuAqyRtCcyWdGqWto6IuA+4L58m6fPAkoi4pZD9yYi4sYKyW7+bNSu9OsCYlaLTTWQHAVcWAsk8UtDZp9WDSNoaeCtwXrnFMzOzsnQ6wEwiNWE9JyLuAVZl21p1KLAxKTgV7SpphaQ1km6Q1HLgMjOz8nS6iWwc8Fid9MFsW6uOABZHxJ2F9JuB35D6eLYDPklqhts7In5b70CSZgIzAcaPH8/AwEAbxeiulStX9lR5y1Z2/admr71yTtf3zx98DkZ9/SOiYwvwNPCJOun3A19u8Rg7As8Ax7aQdwzwZ+DiVo49efLk6CXz58/vdhG6qvT6Q1p6xPr++Uf4HIyG+gMLo8Hf1E43kQ0CW9VJH0v9K5t63gMIOH+ojBGxGrgM8MPWzcw6rNMBZgmFvhZJOwGbUeibaeII4IaIuLeN94028pqZWQk6HWAuBw6QtEUu7XBgNbBgqJ0lTQD2pMW7xySNId25tqjdgtp6qNZIZmal6HSAORNYA1wkaf+sg302cHrkbl2WtEzS9+rsfwSwFriguEHSWEnXS5olaT9JhwPzgZcCX6mgLmZm1kRH7yKLiEFJ+wHfBi4h9bucQQoyxXLVmz7mCOCaiHi4zrY1wMOkGQG2B54Cfg3sExELS6mAmZm1rOOTXUbE7cBbhsgzoUH665vs8xRwyIgKZ+u3yZPT6yK3qJqVwbMpm9UsXtztEpj1FT9wzMzMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEr6LzKxmxoxul8CsrzjAmNXUHplsZqVwE5mZmVWirQAjqd70LWb9YdEij+I3K1G7TWT3SzoXODsi7qiiQGZdM2VKevWMymalaLeJbA5wKPB7Sb+RNFPSlhWUy8zMelxbASYivhgRE4G3AkuB04EHJf1I0v5VFNDMzHrTsDr5I+LaiPgAsAPwceDVwJWSlkuaLeklZRbSzMx6z0jvIpsCvJn0GORB4HrgaGCZpPeP8NhmZtbD2g4wknaW9EVJdwHXADsCHwJeEhH/CuxM6qv5WqklNTOzntLWXWSSriVdsdwHnEO6m+zufJ6IeEbSj4FPlFVIMzPrPe3epvwIMA24KqLpvZy3AC8fdqnMumGhn6xtVqZ2A8y3gcX1goukzYHdI+K6iHgauHudvc1Gs9ojk82sFO32wcwHdm2w7dXZdjMzs7YDjJps2xxYNYKymHXXzJlpMbNSDNlEJunNwNRc0tGSDixk2xQ4GLitvKKZddhZZ6VXz6psVopW+mDeRBpMCRDAYcDaQp6/A0uAT5VXNDMz62VDBpiI+BrZmBZJfwbeFRG3VF0wMzPrbW3dRRYRvvXYzMxa0kofzDTghohYkf3cVERcVkrJzMysp7VyBfNzYE/gt9nPQeO7yQLwQ8nMzKylAPNy4MHcz2b9affdu10Cs77SSif/3fV+Nus7flyyWala6YN5cTsHjAgPtjQzs5aayFaS+lZa5T4YMzNrKcB8iPYCjFlvUnbvStOJws2sVa30wZzTgXKYmVmfGekjk83MzOpqpZP/t8CREXG7pJsYorksIvYoq3BmZta7WumD+QOwOvezG6jNzGxIrfTBfDD385GVlsbMzPrGsPtglGwnqdlDyMzMbD3V1mzK8NzklycAk7P910paBHw5Ii4tuXxmnTNnTrdLYNZX2gowkmYB3wGuAT4B/BXYHjgE+F9JH40I/5Zab/Ljks1K1e4VzGeBuRHxkUL6mZLOBD4HOMCYmVnbfTDbABc12HYhsPVQB5C0q6RrJK2S9ICkkyQ1nV5G0gRJUWeZVyfvdEm3SXpK0u2SDm+pZmZz56bFzErR7hXMfGAf4Ko62/YBrmu2s6RxwNXA7cB04BXAaaRAd0IL738s8Mvc+iOF4+9NCnTfAY4BpgHnSRqMiF+0cHxbn82alV7dVGZWilYGWu6aW/0m8F1J2wAX83wfzLuAg4Cjhzjch4ExwCERsQK4StKWwGxJp2ZpzSyNiBubbP88cF1EHJOtz5e0G/AFwAHGzKyDWrmC+T0vHFwpYFa2FJ9ueQXNZ1M+CLiyEEjmAaeQroAuaaE8dUnaBNiXdOWSNw84W9LYiHh8uMc3M7P2tBJg9i3x/SYB1+YTIuIeSauybUMFmLMlbU26cjoP+FxE1GYZeAWwMbCksM8dpCa4XYCbRlZ8MzNrVSsj+ReU+H7jgMfqpA9m2xpZA/w3qZlrBTAVOI4UVKbnjk2d4w8Wtr+ApJnATIDx48czMDDQrPyjysqVK3uqvGUru/5Ts9deOafr++cPPgejvf5tD7SskbQBsGkxvYUnWtaby0wN0mvHfBD4t1zSgKSHgO9Ien1E3NLk+GqQXjv2XGAuwJQpU2Lq1KnNSz+KDAwM0EvlLdtw6j/h+BeOBV7+1YPXydMr53R9//zB52C017+t25Sz6WGOk7QMeBp4os7SzCCwVZ30sdS/smnmgux199yxqXP82nq7xzczsxFodxzMMcDxwPdIVwZfBk4C7gSWkzU1NbGE1NfyHEk7AZuxbt/JUKLwehcp6E0q5JsEPJuV0ayxCD/N0qxE7QaYGcAXgVOz9Ysj4kRgN1KAeNUQ+18OHCBpi1za4aTHAbTb13No9roIICLWkMbpHFbIdzjwa99BZmbWWe32wbwcuCUinpH0NFnzU0Q8K+k7wHdJVziNnEm6CrpI0inARGA2cHr+1uWsCW5BRByVrc8GtiANslwBvBn4FHBRRPwud/yTSf0z3yCN05mWLQe2WU8zMxuhdq9gHgU2z36+B3hDbts40iDKhiJiENiPNFbmEuBE4AzSVVHeRrxwPM0S0jiZs4HLgPcCX8te88e/gXRlsz9wJfAO4L0exW8tmTw5LWZWinavYH4JvJH0R/7HpBH4WwN/Bz5GmmW5qYi4HXjLEHkmFNbnkQZMDikiLiZdvZi1Z/HibpfArK+0G2BmAy/Nfv4KqYnsSNKVy1XAx8sqmJmZ9ba2AkxELAWWZj+vIT0T5hMVlMvMzHrcSAZa/gOwI/BARNxfXpHMzKwftNvJj6SPSLoXuBv4DXCPpPskfbT00pmZWc9qdyT/F4Bvk8azHAxMyV4vB76ZbTczM2u7iexjwFci4vOF9CuyucE+RhrZb9Z7ZszodgnM+kq7AWYMjZ9auQDfRWa9zI9LNitVu30wFwOHNNj2buDnIyuOmZn1i1YemTwtt3o5cKqkCaz7yOTdgE+XX0SzDlm0KL16NL9ZKVppIvs56z4a+aXAAXXy/pD0pEmz3jNlSnr1jMpmpWglwLy88lKYmVnfaeWRyXd3oiBmZtZf2h7JL2kjUof+3sDWwN+A60lT568tt3hmZtar2gowkrYHfgG8jvQEy4eAvUjjX26V9LaIeLjsQpqZWe9p9zbl04FtgDdFxMSI2CsiJgJvytJPL7uAZmbWm9oNMNOA4yLipnxitv4Z0rQxZmZmbffBbAI80WDbE8CLRlYcsy5auLDbJTDrK+0GmBuB4yRdGxFP1hIlbQYcl203600eYGlWqnYDzCeB+cC9kn5B6uTfnjToUsDUUktnZmY9q60+mIi4BXgVMBfYDngrKcCcCbwqIm4tvYRmnTJzZlrMrBQtX8FI2hjYA/hzRBxfXZHMuuSss9KrZ1U2K0U7VzDPANcC/1hRWczMrI+0HGAi4lngj8D46opjZmb9ot1xMJ8DviDptVUUxszM+ke7d5GdQBqxf4uk+0l3kb1gbvOI2KOkspmZWQ9rN8D8PlvMzMyaainASBpDmibm98BfgKsj4qEqC2bWcbvv3u0SmPWVVh6ZPBG4GpiQS14h6T0R8YuqCmbWcbVHJptZKVrp5D8VeBb4Z+DFwG7AzcCcCstlZmY9rpUAsxdwQkT8MiKeiog7gFnAyyTtWG3xzMysV7USYHYE/lRIu4s099gOpZfIrFuktJhZKVq9iyyGzmLW3yYcf+kL1pd/1Y8/Mmum1QBzpaS1ddKvKaZHxPYjL5aZmfW6VgLMiZWXwszM+s6QASYiHGDMzKxt7c5FZmZm1hIHGDMzq0S7c5GZ9a85HjtsViYHGLMaPy7ZrFRuIjMzs0o4wJjVzJ2bFjMrRccDjKRdJV0jaZWkBySdJGnDIfZ5o6SzJS3L9lsq6YuSNi3kmy0p6iwHVlsr6wuzZqXFzErR0T4YSeNIU//fDkwHXgGcRgp0JzTZ9fAs7ynAH4HXASdnr+8u5H0cKAaUO0ZadjMza0+nO/k/DIwBDomIFcBVkrYEZks6NUur55SIeDi3PiDpKWCOpJ0j4u7ctrURcWM1xTczs1Z1uonsIODKQiCZRwo6+zTaqRBcam7OXj33mZnZKNTpADMJWJJPiIh7gFXZtnb8E+lBaEsL6VtJekTS05JulnTIsEtrZmbDpojOzcQv6WngUxHxjUL6fcC5EfHZFo+zA/A74LKIODKX/n7SFc0twOakB6NNA94dERc1ONZMYCbA+PHjJ8+bN6/danXNypUr2XzzzbtdjK4ZTv1vu//xF6y/9qVjn/t56r77AjAwf37b+3bD+v75g8/BaKj/vvvuuygiptTb1o0Ac2xE/Fch/X7gnIj4XAvHeBHpRoF/ACZHxGCTvAJ+BYyJiNcPdewpU6bEwoULh8o2agwMDDB16tRuF6NrhlP/ps90qT1srMHvxGh7Hsz6/vmDz8FoqL+khgGm001kg8BWddLHAo8NtXMWMM4FdgOmNQsuAJGi50XA64a6FdqMiIbBxcza1+m7yJZQ6GuRtBOwGYW+mQbOIN3e/NaIaCV/jf9qmJl1WKevYC4HDpC0RS7tcGA1sKDZjpI+A3wceH9E3NDKm2VXPO8Cbo2IZ4ZXZDMzG45OX8GcCRwDXCTpFGAiMBs4PX/rsqRlwIKIOCpbfy/wFeAc4H5Je+aOeVftNmZJC4ALSVdDmwEzgD2Bd1ZbLesLkyen10WLulsOsz7R0QATEYOS9gO+DVxC6nc5gxRkiuXK95m8LXs9MlvyPkgKPADLgH8HdiTdwrwYODgiLi+j/NbnFi/udgnM+krHp+uPiNuBtwyRZ0Jh/UjWDSz19jtqBEUzM7MSeTZlMzOrhAOMmZlVwgHGzMwq4QBjZmaV6Hgnv9moNWNGt0tg1lccYMxq/Lhks1K5iczMzCrhAGNWs2iRR/GblchNZGY1U7IZxz2jslkpfAVjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEb1M2q1m4sNslMOsrDjBmNbVHJptZKdxEZmZmlXCAMauZOTMtZlYKBxizmrPOSouZlcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEh5oaVaz++7dLoFZX3GAMavx45LNSuUmMjMzq4QDjJmZVcIBxqxGSouZlcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCY/kt5512/2Pc+TxlwKw/KsHj/yAc+aM/Bhm9hwHGLMaPy7ZrFQOMGYVm5BdZdWUcrVl1gPcB2NWM3duWsysFL6CMauZNSu9uqnMrBS+gjEzs0p0PMBI2lXSNZJWSXpA0kmSNmxhv7GSzpY0KOlxST+StE2dfNMl3SbpKUm3Szq8mpqYmVkzHW0ikzQOuBq4HZgOvAI4jRToThhi9/OBVwNHA88CpwAXA/+cO/7ewIXAd4BjgGnAeZIGI+IXpVbGSuNO8MZ8bqyXdboP5sPAGOCQiFgBXCVpS2C2pFOztHVI2gs4ANgnIq7L0u4HfiNp/4i4Osv6eeC6iDgmW58vaTfgC4ADjJlZB3U6wBwEXFkIJPNIVyP7AJc02e+hWnABiIjfSvpztu1qSZsA+5KuXPLmAWdLGhsRj5dUD2si/1+3/+PuHl/9WLd1OsBMAq7NJ0TEPZJWZdsaBZhJwJI66Xdk2yA1t21cJ98dpCa4XYCbhlfs4av3S97sF7/ZH+fifuccuFlL79dquRrxH6r1y0g+7+HuO5x/SiYcfymffO3almdzaLds/t6PnCKic28mPQ18KiK+UUi/Dzg3Ij7bYL+rgCcj4p2F9B8CEyPinyT9H+AG4A0RcUsuzyuBPwIH1OuHkTQTqN2X+mpg6bAr2HnbAo90uxBd5Pqv3/UHn4PRUP+dI2K7ehu6MQ6mXkRTg/Th7FdcV4P0lBgxF+jJ0XWSFkbElG6Xo1tc//W7/uBzMNrr3+nblAeBreqkjwUeG8Z+W+X2G8ylFfMwxPHNzKxknQ4wS3i+zwQASTsBm1G/j6Xhfpl838xdwNN18k0i3dZ85zDKa2Zmw9TpAHM5cICkLXJphwOrgQVD7LdDNs4FAElTgInZNiJiDTAfOKyw7+HAr/v0DrKebNorketv6/s5GNX173Qn/zjSIMvfk25NngicDnwjIk7I5VsGLIiIo3JpV5DuBDuW5wda/jUiigMtB4BvkwZhTsvyH+iBlmZmndXRK5iIGAT2AzYk3ZJ8InAG8MVC1o2yPHlHkK5yvg+cCywC3lU4/g3AocD+wJXAO4D3OriYmXVeR69gzMxs/eHZlHuIpBmS/phN5LlI0n4t7DNbUtRZDuxEmYej6glRR7vh1F/ShAaf87xOlbsskl4paY6kWyU9I2mgxf364vOH4Z2D0fgd8PNgeoSkI4AzgdmkAaUfBH4u6Y0R8fshdn8cKAaUO0ovZAmqnhB1tBth/SH1Of4yt97tQXjDsRup//RG4EVt7Nfzn3/OcM8BjKbvQER46YGFNMPA93PrGwC3AT8cYr/ZwCPdLn8b9fwMaUzTlrm0TwOr8o5CEaoAAAMmSURBVGl19tuLNJj2zbm0PbK0/btdrw7Uf0JW17d3uw4lnIMNcj9fAAy0sE9ffP4jPAej7jvgJrIeIGki6Q66n9TSIuJZ4KekyT77SaMJUceQJkRttt86E6ICtQlRe8Vw6983su92u/rl8weGfQ5GHQeY3lAbPFpvIs+tJdWdByhnK0mPSHpa0s2SDim/iKVZZ2LTiLiH9B98vcG2DffL5CdE7QXDrX/N2Vmb/YOSTpc0popCjkL98vmXYdR8B9wH0xvGZa/F6W4Gc9sfbrDvMlITyy3A5sAs4EJJ746Ii8ouaAnGUX9an0GePw/t7jexhHJ1ynDrvwb4b9Jzj1YAU4HjSH0408st4qjUL5//SIy674ADTJdIGgvsOFS+iMj/V9bWRJ7Z/j8svO8lwK9ID2EbjQEGqp8QdbRrux4R8SDwb7mkAUkPAd+R9PrIzTDex/rl8x+W0fgdcBNZ9xxGunwfaoESJ/KM1Bt4EfC6Vm797YIqJ0TtBcOtfz0XZK+7j6hEvaFfPv+ydfU74ADTJRHx3YjQUEuWvXYVU28iz79FRKPmsaZFGHbhq1XlhKi9YLj1rycKr/2sXz7/snX1O+AA0wMi4k+k2aCfm8hT0gbZ+uXtHEuSSFPs3BoRz5RZzpJUNiFqjxhu/es5NHtdVEbBRrl++fzL1t3vQLfvk/bS2gL8C/AMabDdvsA5pD86r8nl2QdYC+yTS1sAHAO8jRRYLiMNQntHt+vUoJ7jgAeBq0hzys0EVgJfKuRbBnyvkHYF8CfgEOCdpLFD13e7Tp2oP2m802lZ3fcHTsq+Hxd2u07DOAcvJv1hPBT4NfCH3PqL+/nzH8k5GI3fga6fSC9tfFgwI/tSrQEWA/sVtk8lXQpPzaV9L/ulWw08CVwPHNTtugxRz12Ba7MyPwicDGxYyLMcOKeQthVwNqnNfQXwY2DbbtenE/UnTQa7kDRrw9+z78lJwCbdrs8w6j8h+x7XWyb0++c/3HMwGr8DnuzSzMwq4T4YMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlaJ/w9ViDFb48S6iQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -459,7 +461,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYHVWd//H3h0WJrEEgMAwQARFB/ClpNoeRIHvAQQFlczQO0NFxQH0QA4gQwMEJyDITZoY0KuhPIY6IjGwJa4NRtgSDYQkYMOwgSyCEBGT5zh+nGirVt7vvvX1v3e6bz+t56umuU6fqfs+9yf32qTp1ShGBmZlZs63Q6gDMzGz54IRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxxrGEmTJEUfyxeqPMYW2XHWKpSPz46zWnOiry6OQR7zMkndVdRbSdI3JN0jaamkhZKukbRzna87VN7T8bl/D29LelnSHyWdJ2mzOo/ZLemy3Pqekr7RuKitkZxwrNFeBnaqsEyvcv8tgFOA4hf91dlxljQmzLrjaCpJKwJXAGcAvwHGAeOBt4BuSYfVcdih8p72+BTwCeBA4EfAnsAfJe3TgGPvCTjhDFErtToAaztvRsTtjT5oRDwHPNfo4w5BRwP7AvtERD5J/6+kaUCXpFsi4snBvlAL39O7ImJx9vsNki4ArgIukTQ6Il5uQUxWAvdwrHSSTpA0X9Jrkp6VNF3S+pLGAldm1f6cnXpZkO2zzOkfSaOz9UMkXSRpkaQnek7dSfq2pKckPSdpsqQVcq+/paRpkh6XtETSfdkprBWy7X3GkW3fONv/xWz/GZI+VGjjRtlpsKWSFkg6ssq35+vAzYVk0+M7wCrAEbnXWSDpB5K+K+kZSYsl/VzSmgO1pdIpNUnrSPqJpBeytnVL6ii0rec1v5m95wuz96Ou3mBEvE5KtGsBh+ZeZwVJx2f/Vl6X9JCkL/V1HEmTgGOBTXKn7i7Otu0k6TfZv4lXJc2RdHg98Vr93MOxhpPU699VRLyZbfsicCIwEbgPeD/pFMuqwN3At4AfAAcATwOvD/Byk4Gfk07P/BPwE0kfBzbJ1scA3wP+AEzL9tkQeDDb7xXgY8CpwAjg+/3FIWltYCbwAvAV0umo40l/qW8REUslCfhfYB1ScngtO/7awJ/6ed82AkYD51baHhEPS5oLfLKw6VBgPnAUsAFwJvBD4HP9taUPVwCbZ/s8DxwH3Czp4xExP1fv88AfgU7gb4FzSKcB/7mfY/cpIuZJegLYEbggK54CfAk4LWvHHsCPJb0QEVdVOMwPgQ+S/j19Nivr6cFtAvwuO/ZrwN8BF0l6OyIurSdmq0NEePHSkAWYBEQfy+iszvnAr/o5xn75+rny8Vn5atn66Gz9olydNYA3SF/qK+bK7wR+0cfrifSH14nAI1XEcTop2aydKxtJunb1tWx9XLbvDrk6mwBvAt39tH3HbL/9+6lzBfBAbn0B8GLP+5KVHQ68DXy4xvd072x9l1ydVUlf2lMLr/kwsFKu7DzgmQH+fSzzehW23wZcm/2+edaGLxXq/JR0Sq5nvRu4LLf+A2DBAHH0fOZTgZta/f9meVrcw7FGexnYvUL5U9nPOcARkk4lXbSeHRFvDeL1buz5JSIWSXoOuKVwzPnAxj0rklYBTiB9MW8MrJzbtlJkvbE+7A5cDyzK9eReAWYDPaeetgeejYg7crE9Kml2He2rxvXx7jURgMuBnwHbAQ/UcJztgeci4paegoh4VdJVQHGE3M2F9+l+YD1J74mIv9YW/juU+303UsL5daHHfCNwqKQVa/l3I2kkqZe5P6mHu2K2adDXwqx6TjjWaG9GxKx+tv8YWJ10KuZk4AVJ/w1MqjPxvFRY/2sfZavk1icDR5K+gO7O6u8PnJTVW0zf1iH1RA6usK0n+a0P/KXC9r+Q2t6Xni+/Tfqpswm9vySXea1Ip/UWk06v1WID4NkK5c+STgfmVXqPBbwn+70eGwLzst/XISWFvgYQbAA8UcOxLyZ9bqeTkuMi4Kukz91K4oRjpYqIt0nXKM7NrlkcDvwr6Uv0gv72baDPAVMi4syeAkn7Vrnvi6ThyqdX2PZK9vMZYL0K29cDlvZ14Ih4PLug/w/AfxS3S/oA8JEKr71eod4IYDXS9ZpaPF08VmYUqd1NI+nDpGtBt2VFL5JOQf4dqadTVCmh93XsVUgj//4lIi7IlXvQVMn8hlvLRMTjEfFvpFNeW2XFPX8dr1J5r4YYQe7CudK9L4cU6vQVx43A1sB9ETGrsDyY1bkLGCVph9xrbAxsW0Vs/w7sJmnPCtu+l8X9o0L5Hlr25s0DSNdKenqa1b6nd5BOi70zKEHS+0hf1jOriL0ukt5LSrAv8e7AjptIPZw1K7zPs/o5bVfszQK8NztW/jNfnZTYrUTu4VijrSRpxwrlj0fEk5Kmkv56vZ10umRX0siiiVm9ni/tCUr3nSyJiLkNjvF64GuS5mexfI30pZTXVxznAF8AbpI0hdQzGwXsAsyMNOLpGuAe4JeSJpJGRZ1GdX+VTyFdJ/q1pB+QLoqvThrtth/wj9H7HpylwNWSziKdajoL+HVE3D9AW5YRETMk/Q74haTjSYMjvkVK0GdVEXu1tpO0FHgfqcc2gTQI5KDI7sGJiAeV7s+ZJulMUvJchZTst4iIvoaZzyMl+/HAvcDzEbFA0l3AyZIWkXpMx5P+/a3RwHbZQFo9asFL+yz0P0rtpKzOeNLw1BdJQ4r/CBxROM6xwKOkUyoLcvtVGqW2X2HfBcAPCmUXA7Ny66OAX5PO4z9LGkZ8FIURVJXiyMr/Brgo2/f17DV/Bmydq7MxaXaFpdkxJgCX0c8otdy+KwHfzN6bpcBC4Fpg5wp1FwBnZ+/9s8CrwKXAWrW+p1nZuqSRYAuz174F2K6K97jXsSrE2lOnZ3kFmEvq1W1Wob5Iswbcl73Pz2XxfDFXp5tlR6mtkn02f8le4+KsfHNSr+lV4DHg29l79nyr/98sT4uyD6M0kjYnje3fkfTXzW8jYmwV+61JGnr5GdKpwKuAYyLihUK9/UmnHj4IPAKcGhG/aGQbzIaK7JrPZRHxrVbHYjaQVlzD2Zp0n8JD2VKtXwBjSaOLxpOGfF6Rr6A0ueGvgJuBfUjDbi/t43y4mZmVqBU9nBUijVRCaZbXdQbq4UjaCfg96Ya0W7Oy7UkXOfeIiBuyshnAyhHxqdy+1wBrRERdM+2aDWXu4dhwUnoPpyfZ1Ggf0o10t+aOcyfw52xbz0iXXYH/Kew7DdipZ24ps3YSEaOdbGy4GC7Dorfk3RvC8h7ItgFsRrpjvFjvAVI7t2hadGZmNqDhMix6JL3vbIY0kmbTXB0q1FtY2L4MSZ2ku94ZMWLEmI022mhQgb799tussMJwyeOD5/a2t+W1vas/lC4vv7JFe/+d2ojP96GHHno+Itatpu5wSTiQhjgWqUJ5cV19lKfCiC6gC6CjoyNmzepvVpaBdXd3M3bs2EEdYzhxe9vbctteZV8bDz7Yb/3hrhGfr6RHq607XP50WUjlJy+uxbs9moW5smIdqNxDMjOzkgyXhDOPd6/V5OWv7TxMmpq+WG9L0p3FtQzBNjOzBhsuCedaYP3sPhsAsqcQbpptI9JTA28mTcyYdzBwW/ixtWZmLVX6NZxsMsBx2eqGwBqSDsrWr4mIJdkcV7dExBEAEXFbdo/NTyV9i9RjmUyau+qG3OFPB7olnUe6KXRctuzd9IaZmVm/WjFoYD3gl4WynvUPkOZpWol3H5DU4xDStPY/Jje1Tb5CRMzMktf3SM+6+DNwWERc18D4zazdlXxD/PKi9IQTEQtY9sl+leqMrlD2EvDlbOlv3ysoTHljZmatN1yu4ZiZ2TDnhGNmVjRmTFqsoYbTjZ9mZuW4++5WR9CW3MMxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFR6mZmRUddVSrI2hLTjhmZkVdXa2OoC35lJqZmZXCCcfMrGj27LRYQ/mUmplZUUdH+ulZoxvKPRwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1J4lJqZWR9GH3/1O78v+Ld9WxhJe3DCMTMrmjWL/abMbHUUbccJx8ysaMwY7l3/mVZH0XZ8DcfMzErhhGNmVtTZyRnTp7Q6irbjhGNmVnThhRx2z4xWR9F2nHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhGz/NzIq23Za5T77c6ijajhOOmVnR7Nl8OjePmjWGT6mZmVkpnHDMzKwUTjhmZkUSCybv1+oo2o4TjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFJ5pwMysaOpUTrh8bqujaDtOOGZmRZ2dXPqIp7ZptNJPqUnaStKNkpZIekrSaZJWHGCfSZKij+WEXL2L+6izZfNbZmZm/Sm1hyNpJHADcD+wP7AZcDYp8Z3Uz64/BKYXyj4DTASuLZTPA75cKFtQX8Rmtlzq6uLQOXO59GN7tzqStlL2KbWvACOAAyJiEXC9pDWASZLOzMp6iYgngCfyZZK+C8yLiDmF6q9GxO1NiN3MlhcTJvB9cMJpsLJPqe0DzCgklmmkJLRLtQeRtDawB3BpY8MzM7NmKTvhbEk65fWOiHgMWJJtq9ZBwMqkZFW0laRFkl6XNFNS1YnMzMyap+xTaiOBlyqUL8y2VesQ4O6IeKhQ/gfgDtI1onWBY0mn7XaOiDsrHUhSJ9AJMGrUKLq7u2sIo7fFixcP+hjDidvb3pbX9o7N1o/d5s13trXj+1D259uKYdFRoUx9lPeuKG1AOv02sdeBI/69UPdqUvI5kTTIoHcwEV1AF0BHR0eMHTu2mjD61N3dzWCPMZy4ve1teW/v2XPf/YpccPjY3jsMc2V/vmWfUlsIrFWhfE0q93wq+TwpQf1ioIoRsRS4Bti22gDNzKw5yk448yhcq5G0EbAqhWs7/TgEmBkRj9fwulX1nszMrHnKTjjXAntJWj1XdjCwFLhloJ0ljQZ2pMrRaZJGkEbGza41UDNbjkUweuJVrY6i7ZSdcC4AXgcul7R7dsF+EnBOfqi0pPmSflRh/0OAN4HLihskrSnpt5ImSNpN0sHAzcCGwBlNaIuZmdWg1EEDEbFQ0m7A+cCVpOs255KSTjGuStPdHALcGBHPVdj2OvAcacaC9YDXgNuAXSJiVkMaYGZmdSt9lFpE3A98aoA6o/so/1g/+7wGHDCo4MzMAMaM4conX+bT4/994LpWNc8WbWZWdPfdbNPqGNqQH8BmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1IzMys66iguufOxVkfRdtzDMTMr6urixL2PbnUUbccJx8zMSlFTwpFUaboZM7P2Mns2H3lmfqujaDu19nCelHSmpA83JRozs6Ggo4OrfvKNVkfRdmpNOFOBg4B7Jd0hqVPSGk2Iy8zM2kxNCSciTomITYE9gAeBc4CnJf1c0u7NCNDMzNpDXYMGIuKmiPgisD5wNPAhYIakBZImSfqbRgZpZmbD32BHqXUAnyQ9Nnoh8FvgSGC+pC8M8thmZtZGak44kjaRdIqkh4EbgQ2AfwL+JiL+EdiEdK3nrIZGamZmw1pNMw1IuonUo3kCuBi4KCIezdeJiLckXQJ8vVFBmpnZ8Ffr1DbPA+OA6yMi+qk3B/hA3VGZmbXSrFnsN2Vmq6NoO7WeUjsf+H2lZCNpNUmfBIiIN4o9HzOzYWPMGO5df/NWR9F2ak04NwNb9bHtQ9l2MzOzXmpNOOpn22rAkkHEYmY2NHR2csb0Ka2Oou0MeA0nO002Nld0pKS9C9VWAfYF5jYuNDOzFrnwQg4DzxjdYNUMGtiBdHMnQACfA94s1PkrMA84rnGhmZlZOxkw4UTEWWT31Ej6M/DZiJjT7MDMzKy91DQsOiI81NnMzOpSzTWcccDMiFiU/d6viLimIZGZmVlbqaaHcxWwI3Bn9nvQ92i1APyQNjMz66WahPMB4Onc72Zm7W3bbZn75MutjqLtVDNo4NFKv5uZta3Zs/n08Ve3Ooq2U801nPfVcsCI8M2fZmbWSzWn1BaTrs1Uy9dwzMysl2oSzj9RW8IxMxveJBYAoyde1epI2ko113AuLiEOMzNrc4N9xLSZmVlVqhk0cCcwPiLul3QXA5xei4jtGxWcmZm1j2qu4dwHLM397us5ZmZWs2qu4Xw59/v4pkZjZmZtq+5rOErWldTfQ9nMzMyAOhKOpHGSfg+8BjwDvCbp95L2bXh0ZmatMHUqJ+z1L62Oou3UlHAkTQCuJN0M+nXSw9i+nq3/JttuZja8dXZy6ceKDza2warpeTjAiUBXRHy1UH6BpAuA7wBTGxKZmZm1lVpPqb0fuLyPbb8C1h7oAJK2knSjpCWSnpJ0mqR+p8ORNFpSVFimVai7v6S5kl6TdL+kg6tqmZlZj64uDp0zvdVRtJ1aezg3A7sA11fYtgtwa387SxoJ3ADcD+wPbAacTUp8J1Xx+t8Cfpdbf75w/J1Jie+/gGOAccClkhZGxHVVHN/MDCZM4Pvg02oNVs2Nn1vlVv8D+KGk9wNXAH8B1gM+C+wDHDnA4b4CjAAOiIhFwPWS1gAmSTozK+vPgxFxez/bvwvcGhHHZOs3S9oaOBlwwjEza6Fqejj3suzNngImZEvx6Z/T6X+26H2AGYXEMg2YTOohXVlFPBVJei+wK6lnkzcNuEjSmhHhJyqZmbVINQln1wa+3pbATfmCiHhM0pJs20AJ5yJJa5N6VpcC34mInlkQNgNWBuYV9nmAdMpuC+CuwYVvZmb1qmamgVsa+HojgZcqlC/MtvXldeA/SafFFgFjgYmkJLN/7thUOP7CwvZlSOoEOgFGjRpFd3d3f/EPaPHixYM+xnDi9ra35bW9Y7P1Y7d5851t7fg+lP351jpo4B2SVgBWKZZX8cTPSnOxqY/ynmM+DeTvwuqW9CzwX5I+FhFz+jm++ijvOXYX0AXQ0dERY8eO7T/6AXR3dzPYYwwnbm97W97be/bcd78iFxw+tvcOw1zZn2+tN35K0kRJ84E3gFcqLP1ZCKxVoXxNKvd8+nNZ9nPb3LGpcPye9VqPb2ZmDVTrfTjHAMcDPyL1HP4VOA14CFhAdmqqH/NI12reIWkjYFV6X3sZSBR+PkxKglsW6m0JvJ3FaGY2sAg/7bMJak04RwGnAGdm61dExKnA1qSE8cEB9r8W2EvS6rmyg0mPP6j1WtFB2c/ZABHxOuk+oc8V6h0M3OYRamZmrVXrNZwPAHMi4i1Jb5CdroqItyX9F/BDUg+oLxeQekmXS5oMbApMAs7JD5XOTtndEhFHZOuTgNVJN30uAj4JHAdcHhF/zB3/dNL1nfNI9wmNyxbfvWVm1mK19nBeAFbLfn8M+Hhu20jSTZ19ioiFwG6ke3WuBE4FziX1mvJWYtn7eeaR7tO5CLgGOAw4K/uZP/5MUs9nd2AG8A/AYZ5lwMxqMmYMV1789VZH0XZq7eH8DtiO9KV/CWmGgLWBvwJfA24c6AARcT/wqQHqjC6sTyPdwDmgiLiC1LsxM6vP3XezTatjaEO1JpxJwIbZ72eQTqmNJ/VsrgeOblRgZmbWXmpKOBHxIPBg9vvrpGfhuN9pZmYDGsyNn38LbAA8FRFPNi4kMzNrR/U8Yvqrkh4HHgXuAB6T9ISkf254dGZm1jZqnWngZOB80v00+wId2c9rgf/ItpuZmfVS6ym1rwFnRMR3C+XTs7nNvkaaecDMbPg66iguufOxVkfRdmo9pTaCvp/qeQsVJvM0Mxt2uro4cW8Pum20WhPOFcABfWw7EPDkQ2ZmVlE1j5gel1u9FjhT0mh6P2J6a+DbjQ/RzKxks2fzkWfmc+/6m7c6krZSzTWcq+j9KOkNgb0q1P0Z6UmcZmbDV0cHV4FnjG6wahLOB5oehZmZtb1qHjH9aBmBmJlZe6t5pgFJK5EGCOwMrA28CPyW9KiAN/vb18zMll81JRxJ6wHXAR8lPeHzWWAn0v0390jaMyKea3SQZmY2/NU6LPoc4P3ADhGxaUTsFBGbAjtk5ec0OkAzM2sPtSacccDEiLgrX5itn0Ca5sbMzKyXWq/hvBd4pY9trwDvGVw4ZmZDwKxZ7DdlZqujaDu19nBuByZKWjVfmK1PzLabmQ1vY8b4ps8mqLWHcyxwM/C4pOtIgwbWI90EKmBsQ6MzM7O2UVMPJyLmAB8EuoB1gT1ICecC4IMRcU/DIzQzK1tnJ2dMn9LqKNpO1T0cSSsD2wN/jojjmxeSmVmLXXghh4FnjG6wWno4bwE3AR9uUixmZtbGqk44EfE28CdgVPPCMTOzdlXrKLXvACdL2qYZwZiZWfuqdZTaSaQZBeZIepI0Si3yFSJi+wbFZmZmbaTWhHNvtpiZmdWkqoQjaQRpWpt7gWeAGyLi2WYGZmbWMttuy9wnX251FG2nmkdMbwrcAIzOFS+S9PmIuK5ZgZmZtczs2Xz6+KtbHUXbqWbQwJnA28DfA+8Dtgb+AExtYlxmZtZmqkk4OwEnRcTvIuK1iHgAmABsLGmD5oZnZmbtopqEswHwSKHsYdLcaes3PCIzs1aTWDB5v1ZH0XaqvQ8nBq5iZmbWt2qHRc+Q9GaF8huL5RGx3uDDMjOzdlNNwjm16VGYmVnbGzDhRIQTjpmZDVqtc6mZmZnVxQnHzMxKUetcamZm7W/qVE64fG6ro2g7TjhmZkWdnVz6iKe2aTSfUjMzs1I44ZiZFXV1ceic6a2Oou2UnnAkbSXpRklLJD0l6TRJKw6wz3aSLpI0P9vvQUmnSFqlUG+SpKiw7N3cVplZW5kwge/POL/VUbSdUq/hSBpJetTB/cD+wGbA2aTEd1I/ux6c1Z0M/An4KHB69vPAQt2XgWKCeWCwsZuZ2eCUPWjgK8AI4ICIWARcL2kNYJKkM7OySiZHxHO59W5JrwFTJW0SEY/mtr0ZEbc3J3wzM6tX2afU9gFmFBLLNFIS2qWvnQrJpscfsp+eu83MbBgoO+FsCczLF0TEY8CSbFstPkF6MNyDhfK1JD0v6Q1Jf5B0QN3RmplZwyiivCcPSHoDOC4iziuUPwH8NCJOrPI46wN/BK6JiPG58i+QejxzgNVID4obBxwYEZf3caxOoBNg1KhRY6ZNm1Zrs5axePFiVltttUEdYzhxe9vb8tresbvuCsCUn13xzrZtNlyzVWE1TSM+31133XV2RHRUU7cVN35WynDqo7x3Rek9wP8Ai4FvLnPgiJ8V6l4J/B44GaiYcCKiC+gC6OjoiLFjx1YTRp+6u7sZ7DGGE7e3vS3v7T177rtfkQsOH9t7h2Gu7M+37FNqC4G1KpSvCbw00M6SBPwU2BoYFxEL+6sfqft2OfDRgYZem5m9I4LRE69qdRRtp+wezjwK12okbQSsSuHaTh/OJQ2n3iMiqqnfw08sNTNrsbJ7ONcCe0laPVd2MLAUuKW/HSWdABwNfCEiZlbzYlmP6LPAPRHxVn0hm5lZI5SdcC4AXgcul7R7dsF+EnBOfqh0NqPAj3LrhwFnkE6nPSlpx9yybq7eLZKOkbSnpM8CVwM7Zq9hZladMWO48uKvtzqKtlPqKbWIWChpN+B84ErSdZtz6Z0QVgLy11z2zH6Oz5a8LwMXZ7/PB74BbEAaMn03sG9EXNuI+M1sOXH33WzT6hjaUOmj1CLifuBTA9QZXVgfT+9EU2m/IwYRmpmZNZFnizYzs1I44ZiZWSmccMzMrBROOGZmVopWTG1jZja0HXUUl9z5WKujaDvu4ZiZFXV1ceLeR7c6irbjhGNmZqVwwjEzK5o9m488M7/VUbQdJxwzs6KODq76yTdaHUXbccIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCU9uYmRXNmsV+U6p6kr3VwAnHzKxozBjuXf+ZVkfRdnxKzczMSuGEY2ZW1NnJGdOntDqKtuOEY2ZWdOGFHHbPjFZH0XaccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuEbP83MirbdlrlPvtzqKNqOE46ZWdHs2Xz6+KtbHUXb8Sk1MzMrhROOmZmVwgnHzKxIYsHk/VodRdtxwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIzDZjZcmF0hZkDFvzbvpUrT53KCZfPbXJEyx8nHDOzos5OLn3EU9s0mk+pmZlZKZxwzMyKuro4dM70VkfRdpxwzMyKJkzg+zPOb3UUbccJx8zMSlF6wpG0laQbJS2R9JSk0yStWMV+a0q6SNJCSS9L+rmk91eot7+kuZJek3S/pIOb0xIzs2T08Vcvs1hlpSYcSSOBG4AA9gdOA44FTq1i918AY4EjgfHAdsAVhePvDPwKuBnYB7gauFTSng1pgJmZ1a3sYdFfAUYAB0TEIuB6SWsAkySdmZX1ImknYC9gl4i4NSt7ErhD0u4RcUNW9bvArRFxTLZ+s6StgZOB65rXLDMzG0jZCWcfYEYhsUwDJgO7AFf2s9+zPckGICLulPTnbNsNkt4L7AocU9h3GnCRpDUjwg8pN2sDNd3EOYQU4x4OMTdS2QlnS+CmfEFEPCZpSbatr4SzJTCvQvkD2TaAzYCVK9R7gHTqcAvgrvrCNlt+5L8Uj93mTcbWsV+Par5Qh2vyaIaB3ou+EtZweQ8VEeW9mPQGcFxEnFcofwL4aUSc2Md+1wOvRsRnCuU/AzaNiE9I+jtgJvDxiJiTq7M58Cdgr4jodVpNUifQma1+CHiw7gYm6wDPD/IYw4nb297c3vbWiPZuEhHrVlOxFVPbVMpw6qO8nv2K6+pnfyKiC+ga4LWrJmlWRHQ06nhDndvb3tze9lZ2e8seFr0QWKtC+ZrAS3Xst1Zuv4W5smIdBji+mZk1WdkJZx7vXnMBQNJGwKpUvkbT536Z/LWdh4E3KtTbEngbeKiOeM3MrEHKTjjXAntJWj1XdjCwFLhlgP3Wz+6zAUBSB7Bpto2IeJ10/83nCvseDNxW4gi1hp2eGybc3vbm9ra3Uttb9qCBkcD9wL2kodCbAucA50XESbl684FbIuKSL16YAAAFX0lEQVSIXNl00kizb5F6LJOBv0TE3+fq7Ax0A+eTbgodl9Xfu9KAATMzK0+pPZyIWAjsBqxIGgJ9KnAucEqh6kpZnbxDSL2gHwM/BWYDny0cfyZwELA7MAP4B+AwJxszs9YrtYdjZmbLL88WXaVmTzo61NTTXknbZW2dn+33oKRTJK1SVtz1qvfzze2/gqTZkkLSfs2MtREG015JB0i6S9JSSS9Imi5p1WbHPBiD+P/bIem6rJ0vSrpB0g5lxDwYkjaXNFXSPZLektRd5X5N/b7yI6arkJt09H7SpKObAWeTEvZJ/ewKadLRD5EmHe259nQF8Pf97dRKg2jvwVndyaSbbT8KnJ79PLCJIQ/KID/fHkcCGzYlwAYbTHslHUm6RnomcBwwEvgUQ/i7pN72ZiNobwDuBr6YFR8HXCfpoxHxaDPjHqStSdewbwfeU8N+zf2+iggvAyzACaT7fNbIlX0bWJIvq7DfTqQbTj+ZK9s+K9u91e1qQnvXrVDWmbV3k1a3q9HtzdUdCTwHHJG1db9Wt6lJn+86wCvAUa1uQ0nt/QrwFrBW4bN+C/hqq9s1QJtXyP1+GdBdxT5N/77yKbXq9DXp6AjSpKP97ddr0lGgZ9LRoaqu9kbEcxWK/5D9XK9x4TVcvZ9vj9OB3wE3NiG2Zqi3vZ/Pfv6kWYE1Sb3tXRl4E1icK1uclaniHkNERLxdx25N/75ywqlOr8lDI+Ix0l9IlW5I7XO/TH7S0aGo3vZW8glS13ywc9Q1U93tlfRR4Muk4ffDRb3t3YH0OR4h6QlJb0i6Q9InmhdqQ9Tb3l9ldc6WtJ6k9UijahcCv2xSrK3U9O8rJ5zqjKTy1DgLs22N3q/VGhK3pPWB7wD/P/p41tEQMZj2TgH+MyLmNzyq5qm3veuTzu+fBEwEPg28CkyXNKrRQTZQXe2NiKdIjzw5EHg2Ww4gTQRcqTc/3DX9+8oJp3rNnnR0qBlU3JLeA/wP6RTENxsYV7PU3F5Jh5C+gL/XrKCaqJ7PdwVgNeCIiPh5REwHPkO6pvEvjQ+xoer5fDcgXf+YTTqltE/2+9WSNm5GkENAU7+vnHCq08xJR4eietsLgCSRbs7dGhgX6Ybfoazm9kpaGTiLNIpnBUlrAWtkm1ctTN801NT7+b6Y/ezuKch6rrOBrRoVXBPU297jSKPvDoqI6VmCPZCUYIfTKdRqNf37ygmnOs2cdHQoqre9Pc4lDT/dPyKGcjt71NPeVYG/JU3NtDBb7sm2TePdwRJDUb2f7wOkv3SLF8xFuk43VNXb3i2B+yLijZ6CiPgrcB9paHW7afr3lRNOdZo26egQVW97kXQCcDTwhUhTDQ0H9bR3Men8fn45NNt2InB4c0JtiHo/36tIyWXXngJJawJjeDfZDkX1tvdR4CPZ6WEAlB5l/xFgQRPibLXmf1+1erz4cFhIF8yeBq4nzdPWSfrC+V6h3nzgR4Wy6cAjpIuNnyGN8vltq9vUjPYCh5H+Ar4I2LGw9LpHZ6gsg/l8C9tHMzzuwxnMv+crsn2/BOxL+sJ+DhjZ6nY1ur2kRPoGcHXW1v1IX7xvAP+v1e0aoM3vI80reRBwG6lX1rP+vn4+36Z+X7X8jRkuC+kc9U2kv4qeJt17sWKhzgLg4kLZWtkX8EvAIuASYJ1Wt6cZ7QUuzr5wKy3jW92mZny+he3DIuEMpr2kQQP/DbyQ7XsDsE2r29PE9u4G3Eq6fvUiKcGObXV7qmhvz7/FSsvoftrb1O8rT95pZmal8DUcMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaK/wMevZSoec8I7gAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgdVZ3/8feHRYmsQSAwDBABEUH8KQmbw0iQPeCggLI5Ggfo6DigPogBRAjg4ARkmQkzQxoV9KcQR0RGtoS1wShbgsGwBAwYdpAlEEICsnznj1MNlcrt7rvVvX07n9fz1NNdp07V/Z57k/vtU+dUlSICMzOzZluh3QGYmdnQ5ARjZmalcIIxM7NSOMGYmVkpnGDMzKwUTjBmZlYKJxhrGkkTJUUfyxeqPMYW2XHWKpSPy46zWjnRVxdHg8e8TFJPFfVWkvQNSfdIWiJpgaRrJO1c5+sOlvd0XO7fw9uSXpb0R0nnSdqszmP2SLost76npG80L2prhBOMNdvLwE4VlmlV7r8FcApQ/GK/OjvO4uaEWXccpZK0InAFcAbwG2AsMA54C+iRdFgdhx0s72mvTwGfAA4EfgTsCfxR0j5NOPaegBPMILFSuwOwIefNiLi92QeNiOeA55p93EHoaGBfYJ+IyCfl/5U0FeiWdEtEPNnoC7XxPb0rIhZlv98g6QLgKuASSSMj4uU2xGQlcA/GWk7SCZLmSXpN0rOSpklaX9IY4Mqs2p+zUynzs32WOp0jaWS2foikiyQtlPRE76k4Sd+W9JSk5yRNkrRC7vW3lDRV0uOSFku6LzsltUK2vc84su0bZ/u/mO0/XdKHCm3cKDuttUTSfElHVvn2fB24uZBcen0HWAU4Ivc68yX9QNJ3JT0jaZGkn0tac6C2VDpFJmkdST+R9ELWth5Jowtt633Nb2bv+YLs/airtxcRr5MS61rAobnXWUHS8dm/ldclPSTpS30dR9JE4Fhgk9ypuIuzbTtJ+k32b+JVSbMlHV5PvFY992Cs6SQt8+8qIt7Mtn0ROBGYANwHvJ90ymRV4G7gW8APgAOAp4HXB3i5ScDPSadb/gn4iaSPA5tk66OA7wF/AKZm+2wIPJjt9wrwMeBUYBjw/f7ikLQ2MAN4AfgK6fTS8aS/xLeIiCWSBPwvsA4pGbyWHX9t4E/9vG8bASOBcyttj4iHJc0BPlnYdCgwDzgK2AA4E/gh8Ln+2tKHK4DNs32eB44Dbpb08YiYl6v3eeCPQBfwt8A5pNN6/9zPsfsUEXMlPQHsCFyQFU8GvgSclrVjD+DHkl6IiKsqHOaHwAdJ/54+m5X19tA2AX6XHfs14O+AiyS9HRGX1hOzVSEivHhpygJMBKKPZWRW53zgV/0cY798/Vz5uKx8tWx9ZLZ+Ua7OGsAbpC/xFXPldwK/6OP1RPpD60TgkSriOJ2UXNbOlQ0njT19LVsfm+27Q67OJsCbQE8/bd8x22//fupcATyQW58PvNj7vmRlhwNvAx+u8T3dO1vfJVdnVdKX9JTCaz4MrJQrOw94ZoB/H0u9XoXttwHXZr9vnrXhS4U6PyWdYutd7wEuy63/AJg/QBy9n/kU4KZ2/78Zyot7MNZsLwO7Vyh/Kvs5GzhC0qmkQeZZEfFWA693Y+8vEbFQ0nPALYVjzgM27l2RtApwAumLeGNg5dy2lSLrbfVhd+B6YGGup/YKMAvoPZW0PfBsRNyRi+1RSbPqaF81ro93xzQALgd+BmwHPFDDcbYHnouIW3oLIuJVSVcBxRlsNxfep/uB9SS9JyL+Wlv471Du991ICebXhR7xjcChklas5d+NpOGkXuT+pB7sitmmhseyrG9OMNZsb0bEzH62/xhYnXRq5WTgBUn/DUysM9G8VFj/ax9lq+TWJwFHkr5w7s7q7w+clNVbRN/WIfU0Dq6wrTfZrQ/8pcL2v5Da3pfeL7tN+qmzCct+KS71WpFO0y0inS6rxQbAsxXKnyWd3sur9B4LeE/2ez02BOZmv69DSgJ9DfhvADxRw7EvJn1up5OS4ULgq6TP3UriBGMtFRFvk8YYzs3GHA4H/pX0pXlBf/s20eeAyRFxZm+BpH2r3PdF0vTh0ytseyX7+QywXoXt6wFL+jpwRDyeDcD/A/Afxe2SPgB8pMJrr1eoNwxYjTTeUouni8fKjCC1uzSSPkway7ktK3qRdErx70g9maJKCbyvY69Cmpn3LxFxQa7ck5xK5jfY2iYiHo+IfyOdwtoqK+7963eVyns1xTByA91K154cUqjTVxw3AlsD90XEzMLyYFbnLmCEpB1yr7ExsG0Vsf07sJukPSts+14W948K5Xto6YslDyCNdfT2JKt9T+8gneZ6ZxKBpPeRvpxnVBF7XSS9l5RQX+LdiRg3kXowa1Z4n2f2cxqu2FsFeG92rPxnvjopkVuJ3IOxZltJ0o4Vyh+PiCclTSH9dXo76fTHrqSZPxOyer1f0uOVrvtYHBFzmhzj9cDXJM3LYvka6Usor684zgG+ANwkaTKp5zUC2AWYEWlG0jXAPcAvJU0gzVo6jer+6p5MGuf5taQfkAaxVyfNRtsP+MdY9hqYJcDVks4inTo6C/h1RNw/QFuWEhHTJf0O+IWk40mTGb5FSshnVRF7tbaTtAR4H6lHNp40aeOgyK6BiYgHla6PmSrpTFKyXIWU3LeIiL6mfc8lJfdxwL3A8xExX9JdwMmSFpJ6RMeT/v2t0cR2WVG7Zxl4GToL/c8iOymrM440XfRF0hTfPwJHFI5zLPAo6RTJ/Nx+lWaR7VfYdz7wg0LZxcDM3PoI4Nek8/DPkqb1HkVhhlOlOLLyvwEuyvZ9PXvNnwFb5+psTLp7wZLsGOOBy+hnFllu35WAb2bvzRJgAXAtsHOFuvOBs7P3/lngVeBSYK1a39OsbF3STK0F2WvfAmxXxXu8zLEqxNpbp3d5BZhD6rVtVqG+SFfl35e9z89l8XwxV6eHpWeRrZJ9Nn/JXuPirHxzUq/oVeAx4NvZe/Z8u//fDOVF2ZvfMpI2J82t35H018tvI2JMFfutSZoK+RnSqb2rgGMi4oVCvf1JpxI+CDwCnBoRv2hmG8wGi2zM5rKI+Fa7YzErascYzNak6wQeypZq/QIYQ5r9M440BfOKfAWlmwH+CrgZ2Ic0DfbSPs5nm5lZidrRg1kh0kwilO6Cus5APRhJOwG/J10AdmtWtj1pUHKPiLghK5sOrBwRn8rtew2wRkTUdSdas8HMPRgbzFreg+lNLjXah3Th2q2549wJ/Dnb1jsTZVfgfwr7TgV26r03k9lQEhEjnVxssOqUacpb8u4FWHkPZNsANiNdkV2s9wCpnVuUFp2ZmS2jU6YpD2fZK4chzXTZNFeHCvUWFLYvRVIX6apyhg0bNmqjjTZqKNC3336bFVbolLzdOLd3aFte27v6Q2l4+JUthvbfpc34fB966KHnI2LdSts6JcFAmnJYpArlxXX1UZ4KI7qBboDRo0fHzJn93eVkYD09PYwZM6ahY3QSt3doW27bq+xr48EH+63f6Zrx+Up6tK9tnfKnyQIqP1lwLd7tsSzIlRXrQOUekJmZlaRTEsxc3h1rycuPzTxMulV7sd6WpCt3a5kSbWZmDeqUBHMtsH52nQsA2VP2Ns22EempeDeTbmSYdzBwW/gxrGZmLdXyMZjs5nljs9UNgTUkHZStXxMRi7N7RN0SEUcARMRt2TUuP5X0LVKPZBLp3k835A5/OtAj6TzSRZhjs2Xv0htmZmZLaccg/3rALwtlvesfIN3naCXefSBQr0NIt3n/MblbxeQrRMSMLFl9j/Sshz8Dh0XEdU2M38yGuhZfgD5UtTzBRMR8ln5yXaU6IyuUvQR8OVv62/cKCreQMTOz1uuUMRgzM+swTjBmZkWjRqXFGtJJF1qambXG3Xe3O4IhwT0YMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSeBaZmVnRUUe1O4IhwQnGzKyou7vdEQwJPkVmZmalcIIxMyuaNSst1hCfIjMzKxo9Ov30XZUb4h6MmZmVwgnGzMxK4QRjZmalcIIxM7NSOMGYmVkpPIvMzKwPI4+/+p3f5//bvm2MpDM5wZiZFc2cyX6TZ7Q7io7nBGNmVjRqFPeu/0y7o+h4HoMxM7NSOMGYmRV1dXHGtMntjqLjOcGYmRVdeCGH3TO93VF0PCcYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NS+EJLM7OibbdlzpMvtzuKjucEY2ZWNGsWn87dh8zq41NkZmZWCicYMzMrhROMmVmRxPxJ+7U7io7nBGNmZqVwgjEzs1I4wZiZWSmcYMzMrBROMGZmVgonGDMzK4Wv5DczK5oyhRMun9PuKDqeE4yZWVFXF5c+4lvFNKrlp8gkbSXpRkmLJT0l6TRJKw6wz0RJ0cdyQq7exX3U2bL8lpmZWV5LezCShgM3APcD+wObAWeTEt1J/ez6Q2BaoewzwATg2kL5XODLhbL59UVsZsul7m4OnT2HSz+2d7sj6WitPkX2FWAYcEBELASul7QGMFHSmVnZMiLiCeCJfJmk7wJzI2J2ofqrEXF7CbGb2fJi/Hi+D04wDWr1KbJ9gOmFRDKVlHR2qfYgktYG9gAubW54ZmbWLK1OMFuSTmG9IyIeAxZn26p1ELAyKTkVbSVpoaTXJc2QVHXiMjOz5mn1KbLhwEsVyhdk26p1CHB3RDxUKP8DcAdpjGdd4FjSabidI+LOSgeS1AV0AYwYMYKenp4awljWokWLGj5GJ3F7h7bltb1jsvVjt3nznW1D8X0o+/NtxzTlqFCmPsqXrShtQDqdNmGZA0f8e6Hu1aRkcyJpUsCywUR0A90Ao0ePjjFjxlQTRp96enpo9BidxO0d2pb39p49592vyPmHj1l2hw5X9ufb6lNkC4C1KpSvSeWeTSWfJyWkXwxUMSKWANcA21YboJmZNUerE8xcCmMtkjYCVqUwNtOPQ4AZEfF4Da9bVe/IzMyap9UJ5lpgL0mr58oOBpYAtwy0s6SRwI5UOXtM0jDSzLVZtQZqZsuxCEZOuKrdUXS8VieYC4DXgcsl7Z4NsE8EzslPXZY0T9KPKux/CPAmcFlxg6Q1Jf1W0nhJu0k6GLgZ2BA4o4S2mJlZP1o6yB8RCyTtBpwPXEkadzmXlGSKcVW6fcwhwI0R8VyFba8Dz5HuCLAe8BpwG7BLRMxsSgPMzKxqLZ9FFhH3A58aoM7IPso/1s8+rwEHNBScmRnAqFFc+eTLfHrcvw9c1/rkuymbmRXdfTfbtDuGIcAPHDMzs1I4wZiZWSmcYMzMrBROMGZmVgonGDMzK4VnkZmZFR11FJfc+Vi7o+h47sGYmRV1d3Pi3ke3O4qO5wRjZmalqCnBSKp0+xYzs6Fl1iw+8sy8dkfR8WrtwTwp6UxJHy4lGjOzwWD0aK76yTfaHUXHqzXBTAEOAu6VdIekLklrlBCXmZl1uJoSTEScEhGbAnsADwLnAE9L+rmk3csI0MzMOlNdg/wRcVNEfBFYHzga+BAwXdJ8SRMl/U0zgzQzs87T6Cyy0cAnSY9BXgD8FjgSmCfpCw0e28zMOljNCUbSJpJOkfQwcCOwAfBPwN9ExD8Cm5DGas5qaqRmZtZRarqSX9JNpB7LE8DFwEUR8Wi+TkS8JekS4OvNCtLMzDpPrbeKeR4YC1wfEdFPvdnAB+qOysysnWbOZL/JM9odRcer9RTZ+cDvKyUXSatJ+iRARLxR7NmYmXWMUaO4d/3N2x1Fx6s1wdwMbNXHtg9l283MzGpOMOpn22rA4gZiMTMbHLq6OGPa5HZH0fEGHIPJTnuNyRUdKWnvQrVVgH2BOc0LzcysTS68kMPAd1RuUDWD/DuQLqYECOBzwJuFOn8F5gLHNS80MzPrZAMmmIg4i+yaFkl/Bj4bEbPLDszMzDpbTdOUI8JTj83MrCrVjMGMBWZExMLs935FxDVNiczMzDpaNT2Yq4AdgTuz34O+Z5MF4IeSmZlZVQnmA8DTud/NzIa2bbdlzpMvtzuKjlfNIP+jlX43MxuyZs3i08df3e4oOl41YzDvq+WAEeGLLc3MrKpTZItIYyvV8hiMmZlVlWD+idoSjJlZZ5OYD4yccFW7I+lo1YzBXNyCOMzMbIhp9JHJZmZmFVUzyH8nMC4i7pd0FwOcLouI7ZsVnJmZda5qxmDuA5bkfvd4jJmZDaiaMZgv534fV2o0ZmY2ZNQ9BqNkXUn9PYTMzMyWUzUnGEljJf0eeA14BnhN0u8l7dv06MzM2mHKFE7Y61/aHUXHqynBSBoPXEm6+PLrpIePfT1b/0223cyss3V1cenHig/utVrV9DwY4ESgOyK+Wii/QNIFwHeAKU2JzMzMOlqtp8jeD1zex7ZfAWsPdABJW0m6UdJiSU9JOk1Sv7eXkTRSUlRYplaou7+kOZJek3S/pIOrapmZWa/ubg6dPa3dUXS8WnswNwO7ANdX2LYLcGt/O0saDtwA3A/sD2wGnE1KdCdV8frfAn6XW3++cPydSYnuv4BjgLHApZIWRMR1VRzfzAzGj+f74NNkDarmQsutcqv/AfxQ0vuBK4C/AOsBnwX2AY4c4HBfAYYBB0TEQuB6SWsAEyWdmZX158GIuL2f7d8Fbo2IY7L1myVtDZwMOMGYmbVQNT2Ye1n64koB47Ol+HTLafR/N+V9gOmFRDIVmETqAV1ZRTwVSXovsCup55I3FbhI0poR4ScImZm1SDUJZtcmvt6WwE35goh4TNLibNtACeYiSWuTek6XAt+JiN67DGwGrAzMLezzAOkU3BbAXY2Fb2Zm1armSv5bmvh6w4GXKpQvyLb15XXgP0mnuRYCY4AJpKSyf+7YVDj+gsL2pUjqAroARowYQU9PT3/xD2jRokUNH6OTuL1D2/La3jHZ+rHbvPnOtqH4PpT9+dY6yP8OSSsAqxTLq3iiZaV7mamP8t5jPg3kr3rqkfQs8F+SPhYRs/s5vvoo7z12N9ANMHr06BgzZkz/0Q+gp6eHRo/RSdzeoW15b+/Zc979ipx/+Jhld+hwZX++tV5oKUkTJM0D3gBeqbD0ZwGwVoXyNancs+nPZdnPbXPHpsLxe9drPb6ZmTWg1utgjgGOB35E6hn8K3Aa8BAwn+xUUz/mksZa3iFpI2BVlh07GUgUfj5MSnpbFuptCbydxWhmNrAIP82yCWpNMEcBpwBnZutXRMSpwNakBPHBAfa/FthL0uq5soNJjwOodaznoOznLICIeJ10nc7nCvUOBm7zDDIzs9aqdQzmA8DsiHhL0htkp58i4m1J/wX8kNTD6csFpF7Q5ZImAZsCE4Fz8lOXs1Nwt0TEEdn6RGB10kWWC4FPAscBl0fEH3PHP500PnMe6Tqdsdniq6XMzFqs1h7MC8Bq2e+PAR/PbRtOuoiyTxGxANiNdK3MlcCpwLmkXlHeSix9Pc1c0nUyFwHXAIcBZ2U/88efQerZ7A5MB/4BOMxX8ZtZTUaN4sqLv97uKDperT2Y3wHbkb7kLyFdgb828Ffga8CNAx0gIu4HPjVAnZGF9amkCyYHFBFXkHovZmb1uftutml3DENArQlmIrBh9vsZpFNk40g9l+uBo5sVmJmZdbaaEkxEPAg8mP3+OulZMO5HmpnZMhq50PJvgQ2ApyLiyeaFZGZmQ0E9j0z+qqTHgUeBO4DHJD0h6Z+bHp2ZmXWsWq/kPxk4n3Q9y77A6OzntcB/ZNvNzMxqPkX2NeCMiPhuoXxadm+wr5Gu7Dcz61xHHcUldz7W7ig6Xq2nyIbR91Mrb6HCzS/NzDpOdzcn7u1JsY2qNcFcARzQx7YDAd+8x8zMgOoemTw2t3otcKakkSz7yOStgW83P0QzsxabNYuPPDOPe9ffvN2RdLRqxmCuYtlHI28I7FWh7s9IT5o0M+tco0dzFfiOyg2qJsF8oPQozMxsyKnmkcmPtiIQMzMbWmq+kl/SSqQB/Z2BtYEXgd+Sbp3/Zn/7mpnZ8qOmBCNpPeA64KOkJ1g+C+xEuv7lHkl7RsRzzQ7SzMw6T63TlM8B3g/sEBGbRsROEbEpsENWfk6zAzQzs85Ua4IZC0yIiLvyhdn6CaTbxpiZmdU8BvNe4JU+tr0CvKexcMzMBoGZM9lv8ox2R9Hxau3B3A5MkLRqvjBbn5BtNzPrbKNG+SLLJqi1B3MscDPwuKTrSIP865EuuhQwpqnRmZlZx6qpBxMRs4EPAt3AusAepARzAfDBiLin6RGambVaVxdnTJvc7ig6XtU9GEkrA9sDf46I48sLycyszS68kMPAd1RuUC09mLeAm4APlxSLmZkNIVUnmIh4G/gTMKK8cMzMbKiodRbZd4CTJW1TRjBmZjZ01DqL7CTSFfuzJT1JmkUW+QoRsX2TYjMzsw5Wa4K5N1vMzMz6VVWCkTSMdJuYe4FngBsi4tkyAzMza5ttt2XOky+3O4qOV80jkzcFbgBG5ooXSvp8RFxXVmBmZm0zaxafPv7qdkfR8aoZ5D8TeBv4e+B9wNbAH4ApJcZlZmYdrpoEsxNwUkT8LiJei4gHgPHAxpI2KDc8MzPrVNUkmA2ARwplD5PuPbZ+0yMyM2s3ifmT9mt3FB2v2utgYuAqZmZm76p2mvJ0SW9WKL+xWB4R6zUelpmZdbpqEsyppUdhZmZDzoAJJiKcYMzMrGa13ovMzMysKk4wZmZWilrvRWZmNvRNmcIJl89pdxQdzwnGzKyoq4tLH/GtYhrlU2RmZlYKJxgzs6Lubg6dPa3dUXS8licYSVtJulHSYklPSTpN0ooD7LOdpIskzcv2e1DSKZJWKdSbKCkqLHuX2yozG1LGj+f7089vdxQdr6VjMJKGk279fz+wP7AZcDYp0Z3Uz64HZ3UnAX8CPgqcnv08sFD3ZaCYUB5oNHYzM6tNqwf5vwIMAw6IiIXA9ZLWACZKOjMrq2RSRDyXW++R9BowRdImEfFobtubEXF7OeGbmVm1Wn2KbB9geiGRTCUlnV362qmQXHr9Ifvpe5+ZmQ1CrU4wWwJz8wUR8RiwONtWi0+QHoT2YKF8LUnPS3pD0h8kHVB3tGZmVjdFtO5O/JLeAI6LiPMK5U8AP42IE6s8zvrAH4FrImJcrvwLpB7NbGA10oPRxgIHRsTlfRyrC+gCGDFixKipU6fW2qylLFq0iNVWW62hY3QSt3doW17bO2bXXQGY/LMr3tm2zYZrtius0jTj8911111nRcToStvacaFlpYymPsqXrSi9B/gfYBHwzaUOHPGzQt0rgd8DJwMVE0xEdAPdAKNHj44xY8ZUE0afenp6aPQYncTtHdqW9/aePefdr8j5h49ZdocOV/bn2+pTZAuAtSqUrwm8NNDOkgT8FNgaGBsRC/qrH6l7djnw0YGmQpuZvSOCkROuancUHa/VPZi5FMZaJG0ErEphbKYP55KmN+8REdXU7+UncpqZtVirezDXAntJWj1XdjCwBLilvx0lnQAcDXwhImZU82JZj+ezwD0R8VZ9IZuZWT1anWAuAF4HLpe0ezbAPhE4Jz91Obti/0e59cOAM0inx56UtGNuWTdX7xZJx0jaU9JngauBHbPXMDOrzqhRXHnx19sdRcdr6SmyiFggaTfgfOBK0rjLuSybAFYC8mMme2Y/x2VL3peBi7Pf5wHfADYgTWG+G9g3Iq5tRvxmtpy4+262aXcMQ0DLZ5FFxP3ApwaoM7KwPo5lE0ul/Y5oIDQzM2si303ZzMxK4QRjZmalcIIxM7NSOMGYmVkp2nGrGDOzwe2oo7jkzsfaHUXHcw/GzKyou5sT9z663VF0PCcYMzMrhROMmVnRrFl85Jl57Y6i4znBmJkVjR7NVT/5Rruj6HhOMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUvhWMWZmRTNnst/kqp7Mbv1wgjEzKxo1invXf6bdUXQ8nyIzM7NSOMGYmRV1dXHGtMntjqLjOcGYmRVdeCGH3TO93VF0PCcYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NS+EJLM7OibbdlzpMvtzuKjucEY2ZWNGsWnz7+6nZH0fF8iszMzErhBGNmZqVwgjEzK5KYP2m/dkfR8ZxgzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK4QRjZmal8JX8ZrZcGFnhyvz5/7Zv5cpTpnDC5XNKjmjoc4IxMyvq6uLSR3yrmEb5FJmZmZXCCcbMrKi7m0NnT2t3FB3PCcbMrGj8eL4//fx2R9HxnGDMzKwULU8wkraSdKOkxZKeknSapBWr2G9NSRdJWiDpZUk/l/T+CvX2lzRH0muS7pd0cDktMTNLRh5/9VKLJS1NMJKGAzcAAewPnAYcC5xaxe6/AMYARwLjgO2AKwrH3xn4FXAzsA9wNXCppD2b0gAzM6taq6cpfwUYBhwQEQuB6yWtAUyUdGZWtgxJOwF7AbtExK1Z2ZPAHZJ2j4gbsqrfBW6NiGOy9ZslbQ2cDFxXXrPMzKyo1QlmH2B6IZFMBSYBuwBX9rPfs73JBSAi7pT052zbDZLeC+wKHFPYdypwkaQ1I8IP2TYbAmq6aHIQKcbdCTE3otUJZkvgpnxBRDwmaXG2ra8EsyUwt0L5A9k2gM2AlSvUe4B0KnAL4K76wjZbfuS/BI/d5k3G1LFfr2q+QDs1WZRhoPeirwQ1WN9DRUTrXkx6AzguIs4rlD8B/DQiTuxjv+uBVyPiM4XynwGbRsQnJP0dMAP4eETMztXZHPgTsFdELHOaTFIX0JWtfgh4sO4GJusAzzd4jE7i9g5tbu/Q1oz2bhIR61ba0I5bxVTKaOqjvJ79iuvqZ38iohvoHuC1qyZpZkSMbtbxBju3d2hze4e2stvb6mnKC4C1KpSvCbxUx35r5fZbkCsr1mGA45uZWZO1OsHM5d0xEwAkbQSsSuUxlj73y+THZh4G3qhQb0vgbeChOuI1M7M6tTrBXAvsJWn1XNnBwBLglgH2Wz+7zgUASaOBTbNtRMTrpOtfPlfY92DgthbOIGva6bYO4fYObW7v0FZqe1s9yD8cuB+4lzQ1eVPgHOC8iDgpV28ecEtEHJErm0aaCfYtUo9kEsYD2g0AAAVOSURBVPCXiPj7XJ2dgR7gfNJFmGOz+ntXGuA3M7PytLQHExELgN2AFUlTkk8FzgVOKVRdKauTdwipl/Nj4KfALOCzhePPAA4CdgemA/8AHObkYmbWei3twZiZ2fLDd1OuUtk36Rxs6mmvpO2yts7L9ntQ0imSVmlV3PWq9/PN7b+CpFmSQtJ+ZcbaDI20V9IBku6StETSC5KmSVq17Jgb0cD/39GSrsva+aKkGyTt0IqYGyFpc0lTJN0j6S1JPVXu19TvKz8yuQq5m3TeT7pJ52bA2aQEfVI/u0K6SeeHSDfp7B07ugL4+/52aqcG2ntwVncS6eLWjwKnZz8PLDHkhjT4+fY6EtiwlACbrJH2SjqSNMZ5JnAcMBz4FIP4u6Te9mYzXG8A7ga+mBUfB1wn6aMR8WiZcTdoa9IY9O3Ae2rYr7nfVxHhZYAFOIF0nc0aubJvA4vzZRX224l0gecnc2XbZ2W7t7tdJbR33QplXVl7N2l3u5rd3lzd4cBzwBFZW/drd5tK+nzXAV4Bjmp3G1rU3q8AbwFrFT7rt4CvtrtdA7R5hdzvlwE9VezT9O8rnyKrTl836RxGuklnf/stc5NOoPcmnYNVXe2NiOcqFP8h+7le88Jruno/316nA78DbiwhtjLU297PZz9/UlZgJam3vSsDbwKLcmWLsjJV3GOQiIi369it6d9XTjDVWeZmmxHxGOkvoEoXgPa5XyZ/k87BqN72VvIJUle70Xu8lanu9kr6KPBl0nT4TlFve3cgfY5HSHpC0huS7pD0ifJCbYp62/urrM7ZktaTtB5p1usC4JclxdpOTf++coKpznAq32pmQbat2fu1W1PilrQ+8B3g/0cfz/oZJBpp72TgPyNiXtOjKk+97V2fdH7+JGAC8GngVWCapBHNDrKJ6mpvRDxFegTIgcCz2XIA6ca5lXrrna7p31dOMNUr+yadg01DcUt6D/A/pFMK32xiXGWpub2SDiF94X6vrKBKVM/nuwKwGnBERPw8IqYBnyGNSfxL80Nsqno+3w1I4xezSKeI9sl+v1rSxmUEOQg09fvKCaY6Zd6kczCqt70ASBLpYtitgbGRLrAdzGpur6SVgbNIs2xWkLQWsEa2edXC7ZAGm3o/3xeznz29BVnPdBawVbOCK0G97T2ONDvuoIiYliXUA0kJtZNOiVar6d9XTjDVKfMmnYNRve3tdS5pOuj+ETGY29mrnvauCvwt6VZHC7LlnmzbVN6d3DAY1fv5PkD6S7Y4wC3SONtgVW97twTui4g3egsi4q/AfaSpzkNN07+vnGCqU9pNOgepetuLpBOAo4EvRLp1Tyeop72LSOfn88uh2bYTgcPLCbUp6v18ryIlk117CyStCYzi3eQ6GNXb3keBj2SnewFQejT7R4D5JcTZbs3/vmr3fO1OWEgDXE8D15Puc9ZF+oL5XqHePOBHhbJpwCOkwcHPkGbh/LbdbSqjvcBhpL9wLwJ2LCzLXCMzWJZGPt/C9pF0xnUwjfx7viLb90vAvqQv6OeA4e1uV7PbS0qcbwBXZ23dj/RF+wbw/9rdrgHa/D7SfRkPAm4j9bp619/Xz+fb1O+rtr8RnbKQzjHfRPqr52nStQ8rFurMBy4ulK2VfeG+BCwELgHWaXd7ymgvcHH2BVtpGdfuNpXx+Ra2d0SCaaS9pEH+/wZeyPa9Adim3e0psb27AbeSxp9eJCXUMe1uTxXt7f23WGkZ2U97m/p95ZtdmplZKTwGY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK8X+PTljknU5wCgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -493,9 +495,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -507,7 +509,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/european_put_option_pricing.ipynb b/qiskit/finance/simulation/european_put_option_pricing.ipynb index d9897256a..dfa2901c2 100644 --- a/qiskit/finance/simulation/european_put_option_pricing.ipynb +++ b/qiskit/finance/simulation/european_put_option_pricing.ipynb @@ -46,8 +46,10 @@ "\\Delta = -\\mathbb{P}\\left[S_T \\leq K\\right]\n", "$$\n", "
\n", - "The approximation of the objective function is explained in detail in the following paper:
\n", - "Quantum Risk Analysis. Woerner, Egger. 2018." + "The approximation of the objective function and a general introduction to option pricing and risk analysis on quantum computers are given in the following papers:\n", + "\n", + "- Quantum Risk Analysis. Woerner, Egger. 2018.\n", + "- Option Pricing using Quantum Computers. Stamatopoulos et al. 2019." ] }, { @@ -118,7 +120,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAE0CAYAAABqwecMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8ZXP9x/HXO8JkGJPLkGSQSJSaqUyUGUT49SNiKvWLlPRL+pVLUjGRcgn5kTQpk27ThZ9yi3EZcme6TcbIYMgowgzmai6f3x/fdVizZu+z9z57n72WOe/n47Ef56zv+q61PnufffZnr/X9ru9XEYGZmVm3vaLsAMzMbGByAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlF6ApK0jaTrJc2X9LikkySt0mCbN0n6fVZ/kaRHJV0oaaNCvQmSosZj6/59VmZm1siqZR5c0lDgOmAasA+wBXAmKTF+tZdNhwAPAxcDjwObAScCIyS9PSKW5OpOBw4pbD+zmfjWW2+9GD58eDNV+8W8efNYc801Szt+PVWNCxxbX1Q1LnBsfVF2XFOmTHkqItZvqnJElPYAvgzMBtbOlR0LzM+XNbmv9wIBvC1XNgG4p6/xjRgxIsp04403lnr8eqoaV4Rj64uqxhXh2Pqi7Lha+cwt+xLcnsA1EfFcrmwiMAjYucV9PZ39XK0TgZmZWf8qOwFtTbpE9qKIeJR0BtSwnUbSKyStJmkr4FTgbuCuQrVtJD2XtRXdIqnVxGZmZv1AUeJo2JIWA8dExHcK5Y8BF0fE8Q22/z2wR7Y4BdgrIp7Mrf888AKpjWl94ChgBLBTRBQTVc82hwGHAQwbNmzExIkT+/LUOmLu3LkMHjy4tOPXU9W4wLH1RVXjAsfWF2XHNWbMmCkRMbKpys1eq+uPB7AY+HyN8lnAKU1svyXwTuCjpDOpKcAavdQfROq8cFkz8bkNqLaqxhXh2PqiqnFFOLa+KDsuXkZtQLOBdWqUDwHmNNo4Ih6IiDsj4qekM6G3Ah/ppf4C4CrgbX0L18zMOqXsBDSdQluPpE2ANSm0DTUSEY8AzwCbN1O9lX2bmVnnlZ2Argb2kLRWrmwssAC4qZUdZR0R1iVdYqtXZxCp592U1kM1M7NOKvVGVOAC4EjgUkmnkc5exgFnRa5rtqQZwE0RcWi2/G1gCXAn6VLdG0n3Dz1I6saNpCHAFcBPgRnAesAXgI2BA7vw3MzMrBelJqCImC1pV+A84HJSMjmblITyVgXyw/PcA3yO1FttDeBR4BLgWxExL6uzCPg3aUSFDYCFwO3AzhFxT388HzMza17ZZ0BExDRglwZ1hheWJ5Kd6fSyzUJgv3bjMwMYftyVbe/jqO2WcHCb+5l56t5tx2FWFWW3AZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmVwgnIzMxKUXoCkrSNpOslzZf0uKSTJK3SYJs3Sfp9Vn+RpEclXShpoxp195E0VdJCSdMkje2/Z2NmZs0qdUpuSUOB64BpwD7AFsCZpMT41V42HQI8DFwMPA5sBpwIjJD09ohYku1/J+AS4HzgSGAv4BeSZkfEtf3ypMzMrCmlJiDgcGAQsF9EPAdMkrQ2ME7S6VnZCiLiNuC2XNFkSY8B1wJvBv6YlX8NuDkijsyWb5T0JuCErK6ZmZWk7EtwewLXFBLNRFJS2rnFfT2d/VwNQNLqwBjgV4V6E4FRkoa0Hq6ZmXVK2Qloa2B6viAiHgXmZ+t6JekVklaTtBVwKnA3cFe2egvglcX9A/eRnvcb2gvdzMzaUXYCGgrMqVE+O1vXyFXAIlKSeTXwHxGxLLdvaux/dmG9mZmVQBFR3sGlxcDREXFOoXwWMCEivtJg+y1JiWdLUqeFecCOEbFQ0o7ALcD2EfGXwjZ/B3aPiEk19nkYcBjAsGHDRkycOLGdp9iWuXPnMnjw4NKOX09V44L+i23qrGfb3sewQfDEgvb2sd3Gnb9yPBD/np1Q1djKjmvMmDFTImJkM3XL7oQwG1inRvkQap8ZLSciHsh+vVPSH0g94z4C/IiXznSK++9Zrrn/iBgPjAcYOXJkjB49ulEY/Wby5MmUefx6qhoX9F9sBx93Zdv7OGq7JZw5tb1/uZkHjW47jqKB+PfshKrGVtW4ain7Etx0Cm09kjYB1mTFtpteRcQjwDPA5lnRg8Di4v6z5WWksyAzMytJ2QnoamAPSWvlysYCC4CbWtlR1hFhXdJZEBGxCLgROKBQdSxwe0S0f03FzMz6rOxLcBeQbhC9VNJppLOXccBZ+a7ZkmYAN0XEodnyt4ElwJ2kS2lvBI4lnfXkG21OJt0j9B3gMtKNqHsB7+vfp2VmZo2UegYUEbOBXYFVgMuBrwNnk0Y1yFs1q9PjHuDdwA+BK0lJ7BJgh4iYl9v/LcAHgd2Aa4D/BD7iURDMzMpX9hkQETEN2KVBneGF5Yksf6bT27aXkc5+zFY6wzvUOaLdThYzT9277Ths4Cm7DcjMzAYoJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSuEEZGZmpXACMjOzUrQ8HYOk7YB3ABsCa5Cmwf47cFs2v4+ZmVlDTSUgSZsDnwEOAoYBy0gzkS4C1gFeBSyTdBNwIfDLiFjWLxGbmdlKoeElOEkXAvcC2wMnAW8F1oiI9SPitRExGNgAeD8wFTgduE/STv0XtpmZvdw1cwa0ENg6Ih6pVyEingKuBq6W9EXgAGDjzoRoZmYro4ZnQBFxRG/Jp0b9ZRHxy4j4ZTP1JW0j6XpJ8yU9LukkSas02Obtki6SNCPb7n5JJ0pao1BvnKSo8Xhfs8/HzMz6R8udEPIkbQvsDAi4KSKmtrj9UOA6YBqwD7AFcCYpMX61l03HZnVPAx4A3gycnP3cv1D3WaCYcO5rJU4zM+u8PicgSZ8BTgGuB9YEzpB0VESc38JuDgcGAftFxHPAJElrA+MknZ6V1XJaRPw7tzxZ0kLg+5I2LZyxLYmIO1qIyczMuqCZTgivqrPqS8CoiDggIvYCPgt8pcXj7wlcU0g0E0lJaed6GxWST48/ZT83aDEGMzMrQTM3ov5d0kE1ykXqjt0j+nD8rYHp+YKIeBSYn61rxbuyeO4vlK8j6SlJiyX9SdJ+fYjTzMw6TBG95w1J7wHOBl4AjoyIu7Pyz5K6ZV9Pug9oV+DYiDi36YNLi4FjIuI7hfLHgIsj4vgm97Mh8Ffgqog4OFf+UdIZ0Z+BwcCngb2A/SPi0jr7Ogw4DGDYsGEjJk6c2OzT6bi5c+cyePDg0o5fT1Xjgv6LbeqsZ9vex7BB8MSC9vax3cZDlluualydMhDfa+0qO64xY8ZMiYiRzdRtmIAAJAn4JCnhTAK+FBH/lPQWXrpUdnNE/LmVQLMEdHREnFMonwVMiIiGl/QkrUbqyPBaYERvozFkz+M2YFBEbN9o3yNHjox77rmnUbV+M3nyZEaPHl3a8eupalzQf7ENP+7Ktvdx1HZLOHNqW/1+mHnq3sstVzWuThmI77V2lR2XpKYTUFNjwUXyA2Ar4AlgqqTjgekR8b/Zo6Xkk5lNGkmhaAhppIVeZQnlYuBNwF6NhgKKlG0vBd7cqKu3mZn1r5YGI42I5yLiGGAH4J3AdEkfbOP40ym09UjahNSrbnrNLZZ3Nqn79j4R0Uz9Hn1przIzsw5qqhecpG9IujNrxB8PLIyIfYBPASdKuim7HNeqq4E9JK2VKxsLLABuahDXl4HPAR+NiFuaOVh2xvQB4C8RsbQP8ZqZWYc0c+H3h8A2pHt+5pMa6CdJ2iYirpO0PWmg0kmSLouIw1o4/gXAkcClkk4DNgfGAWflu2ZLmkG60fXQbPkjwDeBCcAsSTvk9vlgTzftbHDUS0hnU2uSEuYOwL4txGhmZv2gmQS0J3BAREwCkHQr8DRpJIIZ2ZnEeZJ+RkoeTYuI2ZJ2Bc4DLie1+5xdYz+rAvk2m92znwdnj7xDSIkJYAbwP8BGpC7afwT2joirW4nTzMw6r5kENB34mKQppIFJPw3MAx7LV8o6AHy+1QAiYhqwS4M6wwvLB7Ni4qm13aGtxmNmZt3RTAL6OOmM4ilS4/3DpDOihf0Yl5mZreQaJqCIuB8YJWlNYDXPempmZp3Q9N1nETGPdOnNzMysbc10w/5YqzdtSnq9pHf3PSwzM1vZNXMj6lHAg5JO7u1eH0nrSjpI0uWkkak36lSQZma28mmmDWh7SWNJN31+RdJc0oRuTwGLSEPpbAa8jjS0zk+BwyNiVr9FbWZmL3tNtQFl02v/UtIWwG7A24ANSTd3PgHcDNwKTI6Ixf0Uq5mZrURaGgI3Ih4EHuynWMzMbABpaTBSMzOzTnECMjOzUjgBmZlZKZyAzMysFC0lIEn/IclJy8zM2tZqMvktaf6d0yS9sT8CMjOzgaHVBLQFMB44EPibpNslfUrS2p0PzczMVmYtJaCImBkRJ0bEZsB7SRO+nQ38U9JPJI3pjyDNzGzl0+f2nIi4ISI+BrwBmAIcBFwn6WFJX5DU0k2uZmY2sPQ5AUnaWdIE4H5gW+C7pKmyfw18Hbi4yf1sI+l6SfMlPS7ppEajb0t6u6SLJM3Itrtf0omS1qhRd0dJd0pakCXHI1t9rmZm1nktnaVI2pQ0Q+rHgeHAZOAw4NKIWJRVu17S7aRBSRvtbyhwHTAN2IfUxnQmKTF+tZdNx2Z1TwMeAN4MnJz93D+3/9cD1wBXAF8G3gGcJWl+RFzYzHM2M7P+0eplsoeAx0lTdP8oIh6uU+9e4K4m9nc4MAjYLyKeAyZlHRrGSTo9K6vltIj4d255sqSFwPclbRoRj2Tlx2TxfjQilgA3SHodcKKkH0ZENBGjmZn1g1Yvwb0f2DQivtZL8iEi/h4RzXRI2BO4ppBoJpKS0s697P/fNYr/lP3coLD/S7Pkk9//a0mXDc3MrCStJqCRpGkYViBpI0kntLi/rYHp+YKIeBSYn61rxbuAZaQ2KSStCWxS3D9pLqOeY5uZWUlaTUAnks4eanlNtr4VQ4E5NcpnZ+uaImlD4CvAT3JnU+tkP4v7n507tpmZlaTVNiAB9dpNXstLH+6tqLW/3o6zfEVpNeBXwFzgC03uv265pMNIHSsYNmwYkydPbiaMfjF37txSj19PVeOC/ovtqO2WNK7UwLBB7e+n+NyqGlenDMT3WruqGlctDROQpJ5eb5A+tL8nqdg5YA1gO+DaFo8/m5fOVPKGUPvMqBibSN293wTsGBH5BNizfXH/QwvrlxMR40mjPTBy5MgYPXp0ozD6zeTJkynz+PVUNS7ov9gOPu7Ktvdx1HZLOHNqe7fHzTxo9HLLVY2rUwbie61dVY2rlmbedfOBp7PfBTwLPFOo8wJwNXB+i8efTqEtRtImpKm+i203tZxN6r793ogotiXNk/SP4v5zy83s38zM+knDBBQRvybdXIqki4CTeusB16KrgWMkrRURz2dlY4EFwE29bSjpy8DngAMj4pZe9v8BSV+NiKW5/f8D+Fvb0ZuZWZ+1OhbcIR1MPgAXAIuASyXtlrW/jAPOynfNzkY8+GFu+SPAN0mX32ZJ2iH3WD+3/zNIbVM/kTRG0rHAp0lJ1PcAmZmVqNTx2iJitqRdgfOAy0ntMmeTklDeqkB+eJ7ds58HZ4+8Q0g3yhIRMyS9DziLdDb0L+Aoj4JgZla+Zjoh3AUcHBHTJN1Ng95pEfGOVgKIiGnALg3qDC8sH8yKiafetreQhuAxM7MKaeYM6F5Sm0zP7750ZWZmbWumE8Ihud8P7tdozMxswOjzdAxmZmbtaKYNqGG7T16rbUBmZjYwNdsG5HYfMzPrqGbagA7uQhxmZjbAuA3IzMxKUfp9QGZmNjD5PiAzMyuF7wMyM7NStDwWXDYB3MGk4W02Av4J3An8OCJe6Gh0Zma20mqpE4KkNwIPAN8FtgWWZj+/C8yQtE3HIzQzs5VSq2dA40kT0r07Ih7tKZT0OuBK0vQK7+lceGZmtrJqNQGNBD6cTz4AEfGopBOAn3csMhtwhndoeul2p6meeerebcdhZo21eh/QTGCNOuvWAB6ts87MzGw5rSag44BvSHpnvlDSDsBJwJc6FZiZma3c+jIY6drAbZKeBJ4ENsgeTwPHA5f1Q5xmZraS6ctgpPf2UyxmZjaAlD4YadZ1+1xgFDAHuBD4ekQs7WWb1YBTgB1IHSPWiAjVqDcB+HiNXbwxIqa3H72ZmfVVyzeidpKkocB1wDRgH2AL4ExS29RXe9n0VcAngbuA24Bdeqk7HTikUDazbxGbmVmnlJqAgMOBQcB+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIek9A8yLijs6HbmZm7Wh5OgZJYyVdJ+lRSU8WHy3ubk/gmkKimUhKSjv3tmFEeFBUM7OXsVaH4vkI8GNgBvBa4HfAFdl+ngPOa/H4W5Mukb0ou8l1frauE7aR9JykRZJukdRrYjMzs+5QKycSkv4E/AY4FVgMjIyIP0paC5gE/CYivt3C/hYDx0TEdwrljwEXR8TxTezjCODcOp0QPg+8QGpjWh84ChgB7BQRd9XZ32HAYQDDhg0bMXHixGafTsfNnTuXwYMHl3b8evorrqmznm17H8MGwRMLGtfrzXYbD1mhrKqxVTWuTqnq/wBUN7ay4xozZsyUiBjZTN1W24C2BG6NiKWSlpLuCSIinpd0GnA20HQCytTKgKpT3tqOI85ZbqfSlaRkdDywb51txpPGvGPkyJExevTodsPos8mTJ1Pm8evpr7jaHUIH0lA8Z05tr2lz5kGjVyiramxVjatTqvo/ANWNrapx1dJqG9CzwOrZ77OAN+bWCVi3xf3NBtapUT6E1CW7oyJiAXAV8LZO79vMzFrT6teee4A3A9eQ2n9OkLSEdJnrBNK8QK2YTqGtR9ImwJoU2oY6zB0YzMxK1moC+hawafb7Cdnv5wOrAHeTtZ204GrgGElrRcTzWdlY0hTgN7W4r4YkDSL1vJvS6X2bmVlrWkpA2f00d2S/zwH2kbQ6sHq9e3YauAA4Erg0a0PaHBgHnJXfn6QZwE0RcWiubE/SmdL22fIHs1V3R8QjkoaQeuj9lNRrbz3gC8DGwIF9iNXMzDqoY1NyS2p5Su6ImC1pV1L37ctJ7T5nk5JQMc5VCmXf46WzMYBfZz8PASYAi4B/k0ZU2ABYCNwO7BwR97QSp5mZdV5LCSibkvv3wGtIl7GeJE3J/V/A1yS9LyKmtbLPrH5vIxkQEcObKSusXwjs10osZmbWPZ6S28zMStFqN+yRwAm1puQmdUp4e6cCMzOzlZun5DYzs1K0egnuOOBMSQ9HxIv3/OSm5D6mk8GZ2cvX8A6N0tDuaA8zT9277Tisf3hKbjMzK4Wn5DYzs1KUPiW3mZkNTH0aAlfSa4BRwKtJl97uiIjHOxmYmZmt3Fq9EXUV4FzgUyw/MsFSSeOBz0XEsg7GZ2ZmK6lWu2F/HfgEqbPBcNLU2cOz5U+w4hA6ZmZmNbV6Ce6/gK8WZj19FDhDUpAGFj2hU8GZmdnKq9UzoA2Av9ZZ99dsvZmZWUOtJqC/Ax+qs+5DwP3thWNmZgNFq5fgvgFMzAYf/Q3wBOms5wBgDPWTk5mZ2XJanZDuV5LmkDojnAO8ElhMmprhfRExqfMhmpnZyqjpBCTplaRJ6P4WEaMkvYI0y+hT7nptZmataqUNaClwA/BGgIhYFhFPOvmYmVlfNJ2AskTzADCskwFI2kbS9ZLmS3pc0knZDa+9bbOapDMk/UHSgqwLeL26+0iaKmmhpGmSxnYyfjMz65tWe8F9BThB0nadOLikocB1pMFO9yFN6XAUqY2pN68CPgnMB27rZf87AZcANwJ7kmZt/YWk3dsO3szM2tJqL7ivAusCf5Y0i9QLbrmzj4h4Rwv7O5w0msJ+EfEcMEnS2sA4SadnZSuIiDmSXh0RIekIYJc6+/8acHNEHJkt3yjpTaSbZa9tIU4zM+uwVhPQvcDfOnj8PYFrColmInAasDNweb0NI6LuZTcASauTuoYfWVg1EbhI0pCIeLZPUZuZWdta7YZ9cIePvzWpY0P+GI9Kmp+tq5uAmrAFqZv49EL5faRLj28A7m5j/2Zm1oamEpCkQcBepIFH/wlcHxFPdOD4Q4E5NcpnZ+va3Tc19j+7sN7MzEqgBleykLQ5qaPA8Fzxc8CBEdFWO4qkxcDREXFOoXwWMCEivtLEPo4Azo0IFcp3BG4Bto+Iv+TKtyQNKbR7rRtnJR0GHAYwbNiwERMnTmz9iXXI3LlzGTx4cGnHr6e/4po6q/0rosMGwRML2tvHdhsPWaGsqrFVNS6odmydMND+P5s1ZsyYKRExspm6zZwBnQ4sA95NGvFgM+B84PvZ7+2YDaxTo3wItc+MWt03Nfbfs1xz/xExHhgPMHLkyBg9enSbYfTd5MmTKfP49fRXXAcfd2Xb+zhquyWcObVP8yy+aOZBo1coq2psVY0Lqh1bJwy0/8/+0Ew37FGkKRhujYiFEXEf8GngdZI2avP400ltPS+StAmwJiu23bTqQdIwQVsXyrcmJdS/t7l/MzNrQzMJaCPgoULZg4CADds8/tXAHpLWypWNBRYAN7Wz44hYRLr/54DCqrHA7e4BZ2ZWrmbPbXtvKOq7C0jdpC+VdBqwOWlW1bPyXbMlzQBuiohDc2V7ks6Uts+WP5itujsiHsl+PxmYLOk7wGWkjhR7Ae/rp+djZmZNajYBXSNpSY3y64vlEdH0pHQRMVvSrsB5pC7Xc4CzWXFq71WB4vA83wM2zS3/Ovt5CDAh2/8tWWL6BvAZ4GHgI+12njAzs/Y1k4AaDYvTloiYRv2RDHrqDG+mrM62l5HOfszMrEIaJqCI6NcEZGZmA1Org5GamZl1hBOQmZmVwgnIzMxK4QRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMyuFE5CZmZXCCcjMzErhBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK0XpCUjSNpKulzRf0uOSTpK0ShPbDZF0kaTZkp6V9DNJ6xbqTJAUNR5b998zMjOzZjSckrs/SRoKXAdMA/YBtgDOJCXGrzbY/JfAVsAngWXAacBlwLsL9aYDhxTKZrYTt5mZta/UBAQcDgwC9ouI54BJktYGxkk6PStbgaRRwB7AzhFxc1Y2C7hT0m4RcV2u+ryIuKN/n4aZmbWq7EtwewLXFBLNRFJS2rnBdk/0JB+AiLgLeDhbZ2ZmFVd2AtqadInsRRHxKDA/W9f0dpn7amy3jaTnJC2SdIuk3hKbmZl1iSKivINLi4FjIuI7hfLHgIsj4vg6200iXVrbt1D+U2DziHhXtvx54AVSG9P6wFHACGCn7Iyp1r4PAw4DGDZs2IiJEye28QzbM3fuXAYPHlza8evpr7imznq27X0MGwRPLGhvH9ttPGSFsqrGVtW4oNqxdcJA+/9s1pgxY6ZExMhm6pbdBgRQKwOqTnlL20XEOcutlK4kJaPjgX2pISLGA+MBRo4cGaNHj24QRv+ZPHkyZR6/nv6K6+Djrmx7H0dtt4Qzp7b3tp550OgVyqoaW1XjgmrH1gkD7f+zP5R9CW42sE6N8iHAnD5st05v20XEAuAq4G0txGhmZv2g7AQ0nUKbjaRNgDWp3cZTd7tMvbahovKuO5qZGVB+Aroa2EPSWrmyscAC4KYG220oaaeeAkkjgc2zdTVJGkTqJTelnaDNzKx9ZSegC4BFwKWSdss6AIwDzsp3zZY0Q9IPe5Yj4nbgGuBiSftJ2hf4GXBLzz1A2UgJf5D0aUm7ShoL3AhsDHyzW0/QzMxqK7UTQkTMlrQrcB5wOan95mxSEspbFSgOz/OhrO6PSIn0CuDI3PpFwL9JIypsACwEbifdvHpPR5+ImZm1rPRecBExDdilQZ3hNcrmkIbYKQ6z07N+IbBfB0I0s5XM8A710Gunp9/MU/duO4aXu7IvwZmZ2QDlBGRmZqVwAjIzs1I4AZmZWSmcgMzMrBROQGZmVgonIDMzK4UTkJmZlcIJyMzMSlH6SAjWXVW4Axx8F7iZ+QzIzMxK4gRkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkBmZlYKJyAzMytF6QlI0jaSrpc0X9Ljkk6SVJx+u9Z2QyRdJGm2pGcl/UzSujXq7SNpqqSFkqZJGts/z8TMzFpR6o2okoYC1wHTgH2ALYAzSYnxqw02/yWwFfBJYBlwGnAZ8O7c/ncCLgHOB44E9gJ+IWl2RFzb0SdjZtamgXajeNkjIRwODAL2i4jngEmS1gbGSTo9K1uBpFHAHsDOEXFzVjYLuFPSbhFxXVb1a8DNEXFktnyjpDcBJwBOQGZmJSr7EtyewDWFRDORlJR2brDdEz3JByAi7gIeztYhaXVgDPCrwrYTgVGShrQfvpmZ9VXZCWhrYHq+ICIeBeZn65reLnNfbrstgFfWqHcf6Xm/oQ/xmplZh5SdgIYCc2qUz87WtbNdz89ivdmF9WZmVgJFRHkHlxYDR0fEOYXyWcCEiPhKne0mAXMj4gOF8p8BwyNiR0k7ArcA20fEX3J1tgT+DuweEZNq7Psw4LBscSvg/j4/wfatBzxV4vHrqWpc4Nj6oqpxgWPri7Lj2jQi1m+mYtmdEGYD69QoH0LtM5z8drWe4Dq57Wbnyop1qLf/iBgPjO/l2F0j6Z6IGFl2HEVVjQscW19UNS5wbH1R1bhqKfsS3HQKbT2SNgHWpHYbT93tMvm2oQeBxTXqbU3qtv33PsRrZmYdUnYCuhrYQ9JaubKxwALgpgbbbZjd5wOApJHA5tk6ImIRcCNwQGHbscDtEfFs++GbmVlflZ2ALgAWAZdK2i1rfxkHnJXvmi1phqQf9ixHxO3ANcDFkvaTtC/wM+CW3D1AACcDoyV9R9JoSaeTbkY9qd+fWWdU4lI65KO6AAAYxUlEQVRgDVWNCxxbX1Q1LnBsfVHVuFZQaicESEPxAOcBo0jtMhcC4yJiaa7OTGByRBycK1sHOBv4ACmRXgEcGRHLNb5lyekbwJak+4TGRcTEfnxKZmbWhNITkJmZDUxlX4IzM7MBygnIzMxK4QRkZmalcAIyM7NSlD0SggGSROrNtzfwRuDVwFLgCeAO0rBEpdw4m90YvBcg4NcR8bSk1wJHkwZ8nQmMj4ipXYzpS8BV3TxmsyQNAlaNiOdzZesDRwDbkG6C/jNwfjfvRZP0VmBQRNyWK3sf8OVcXH8h9RK9rfZeuif7n3g/8DYggHtIf/NK9JrKpo15CtglIm4pMYZdgNWAKyNiXvZe+yzpnsiHSP+bj5cRXzPcC65k2RvmKmAEKeEsAjYm/dNdTXojbQWcHBEndzm2d5DmTRoMLAGeIc3DdBUpQd4LbAtsCOwWEX/oUlzLSK/PdODnwC8jYkY3jt2IpKuAByLi89nyKNLfcRkwhZTIRwAvkD687u1SXHcAl0fEKdnyJ0i3PNwI3JDFtStpQsf9I+K33Ygri+U24NCIuC9bHkp6340A5mbVBpO+jO2RT+79HNd/97J6EHAGcA7wAEBEnN+NuAAkvR64HtgkK3oY2B2YRBpu7EHS58YCYEREPNat2FoSEX6U+AB+QXoDb5crew3we+CSbHln0j/iJ7oc2yTSB9Q6pKktzgMeA34LvDKrszrpA/bGLsa1DPgW6d6vRaRkeDfwBWDjkv+eTwH75JbvIH1QrJUrG0Ia6eOaLsb1HGkA3p7lGcC5NepdAPyly6/ZMuAdueUfkr7svC9X9j7S+I5ndzmupdnPWo/8uqVdfs1+RTpjfT3pislPss+R23rea6RBSf8CfL+bsbX0PMoOYKA/SDff7l+jfHj2Bt8oWz6+hA+Gp4E9c8sbZP9suxfq7Q081cW4XvzAIk2rcVj2Ib8ke0zOytYt4e85H3hPbvmF4uuVe83mdfl9lk9Ai0kzChfr7QYs7PJrVkxA/wb+p0a9o4FHuhjXZcA/gUPIrhbl1q2Txf2ebsVTOP7jwIG55U2zePYr1DsE+HsZMTbzcCeE8omUaIqWZut6Zm69k+5PohfZI79MoazWctdExOyIGB8RuwKvBY4iXRO/AHhc0pVdDulvpJl4ezxB+oZatC4pWXXLH4CDcsv3ArVGTH47MKsrEdW3DqnNp2gK6XJvV0TEvsDHgWOAu7MpXl5c3a046hgK/Cu33PM3e6RQ7yHS/0UluRNC+a4DviHprxHxELx4Dfx/SW+wns4Hg4FuD6A6BTha0q3APNJZ2CzgM5JuiIilklYF/pv0wVuqiPgX6Zr8OZI2BT5MGny2m04FfibpH8DFwCnAGZKeJl12EylBfYsVp4vvT8cDt0p6BXAuqfPBjyW9mnTGCKkN6H+A47oYV4/9swGFof50K+uRLiV2TURcK+nNpNflSkm/J52JdaUdqhdPks56eiwFvk/6wpO3AeXHWl/Zp2AD/UH6dvI30iWRGcA0UsPhHJa//HU6qbG9m7GNJH0YLM5iehp4C+la80PA5aTGz0XAmC7Gtdwlm6o9gE+SPiifBe7Kfl+aPZZkP/8PeFWX49oeuJ0a7RfZz6eBz5fwetVqX/lRjXrfB/5Q4t91Q9KXirnAmdnrVtYluMtqvUY16p0LXFfWa9bo4V5wFSBpFeBA0of7GqRE9POIeKbUwICsy/V/kM6WL4mIf0raEDiW1MvmEeDCiPhjF2M6EfhBVLl7qbQu6ezrHaQPrleQGtbvA66IiCklxvZG4J014rotIhaXFVcjkj4FPBgRN5QcxyjSQMhbAXtHCd3WJQ0jfYF5uEG9L5Lajq/vTmStcQIyM7NSuA2oQiS9iTRj61BSI+ccYHp06V6RVklaJXLTZpRN0hqkm2OXATPK/jaftY9tTu7G4oh4tMyYXm6yG1KJEr8pZzcXKyLm58q2J7sRu8yz2Ze9sq8B+hEAnyBdyqp1z8FS0mgDh5QU236k681XAe/PysZmMS3N4v5Ul2P6KLl7okhfpE4l9SrraWt5HjiupNdsBPA7UrvZ0sJjFmlCxK62/2Rx/Qepu/pU4JfUaL8gXZrr9j0tu5O7Tyor2xf4I6nNbDGpV9zeXY5rCKmtbnEWxw+AVYAfF/4/bwXWK+O91sRz2L/bf89WHu6GXTJJnyM1rl4BjCb1Wnll9tiAdBPqFcAFkj7b5dgOBH5D6n20GPhldh3+J6QPsiNJN75dIGmPLoZ2POkG2B6nZbF8C3gP6TU7EzhR0vFdjAtJu5Nek9cA3yHNynst6YNqHHAW6UPhtqy3Y7fiei/pBuI1SL3xXg/cKOnMnrOMEl1NGoIKAEkfAC4FFpJ65H2ZdD/Vb7PXt1tOJo0M8UXSl8R3kXou7kK6MXYYKakPz+pai9wGVDJJDwEXRMTpDeodCxweEZt3JzKQdDcwJSIOz5YPAn4EnBcRR+XqXQRsEhG7dSmu+aQegjdly08Cp0TEOYV6RwOfi4hNa+ymv2KbAvwtIj5eKP8c6R6lzUn3Kd0G3BERvQ330sm4biENEXRIruwTpO7+k4APR8RCSe8kdUZYpRtxZXEsA3aIiLuy5T8CsyLi/YV6VwFrRsTOXYrrYeCbEfGDbPmtpFsTDomIH+fqfQo4PiI260Zc2TF/1GTVTYHR3fx7tsJnQOXbkNRVt5G76OJNeJmtSGdAPa4gnZkVb+68lDSgZbc8Szor6zGENORI0V9IZ5HdtA3w0xrlPwVeB2wVEQtJZ0cf6GJc2xbjiogfkc4WdwBuyO4JqoJtSVcFisaTBiftlg146T48yMZ8I42zljeD2vct9aePky5dbtfg0bUvX33hBFS+vwKfym4QrCm7RPKprG43Bemad4+egSHnFOrNJd293i2/I90gu1q2fB3pptOiD5Pu+O+mJ0nd6YveQno9e24mfoSXRrnohoXAmsXCSA3oO5I+QG8DuvYtvhhK7vdneem9ljeP7n5mPUxK0D3eTWr3eVeh3o5AtzuXPADcEBFv7+1BOTcVN8294Mp3FGng0WmSLiWN8DyH9A+5DqlX3AdIN6y+r8uxPUL6Rn8NQKSRD0aR7hnJ25zlhwXpb18mDS3zN0kXkm6IPU3Strx0V/8uwFtJQ/p303jgZElrktrJXiANb/MV0oCtPfcubU53P7T+CuxJSt7LiYiHsmFmrgImdDGmvGskLcl+H0K6aXZyoc7WpLHZuuUC0qga25GS4oGk994JkgaTzrDfRhoEt9ttQHewYiKsJUijb1SSE1DJIuLWrEvnsaSxujYpVPkHqZH2jIgonvr3t0spjCMVEXfWqPcRoGtzokTEM5J2IH2of5GXLrONyh4vkNo13h0Rd3crriy2U7I2jeOAE3uKSaOe/0+u6mLgm10M7RLgeEmvjho3OEfEk5J2JvX66kpbXs7Xa5Q9WaNsf9Lo7F0REedlVyY+TDozPDYiLpD0GKntrGc8vwuAb3crrsy5pF6CjdzE8mMTVoo7IVSMpFfx0uWsOZG796CqJL2OFGtXx+nKHX84y9/V/2CUfw/QK0n3iawBPFTWa2P9I7ssvl5E/LvsWF7OnIDMzKwUvgRXEdnU1xsA90fECg2wktYD9oqIi7seXA3ZNfA/Agd1+zJXVae9zsVSuWnMm5WNE3dARJzU5eO+LKaXrjFV+BRSvF3/Jp+NHr4/6X02ISKmS3oL6ZJmz/vsuxHx+27H1iyfAZVM0uqk7rH7ZUXLSCPufjH/4VnS/Rl79bJ6TdLd9MeRTcUQEVd1Ka5KTnudxVLJacybJWl/4Fddfp9Vcnrpqk4VnsWyB6nzzTOk3oHrA/uQ2m2nkb6AjSB1gNk/Ii7rVmwtKXsohoH+AE4g9Xr7FGn6g8+T5vR4ANgyV6+MIVIqOSUxFZ32OjtuVacxf12Tj8NLeJ9VcnppKjpVeHbcW4FfA6tky8dncfywUO8npBueuxZbS8+j7AAG+oPU7fqIQtmGwM2kqYlHZWVlJKApvDQl8aaFx5uzf9ADe8q6GFclp73OjlnlacyL49LVenT1y0QWWyWnl66RgCoxVXh2zGdJZ9A9y0OzeHcp1Nud1EGoa7G18nAbUPk2oXCDaUT8S9KupG8v12VD4HTz/oceI0lnZqeR7rs5OrL5RyT13ET5r4goTgPc33qmvb45W67KtNdQ3WnMnwduAC5sUG8n0i0B3fRymV66ElOFZxaw/I3FPb8PKtR7Fekm5EpyAirf48CWvPRhCkCkbsQfkvQd0ql21zsfRPoKNV7Sr4BvAH+VdF72e5mqOu01VHca87uAIRFRHEZpOdmUFt1W5emlKzlVOOkS3AmSHsiO/W1S28+XJN0cEc9nXxKPJb0nq6nsU7CB/iAN7jm5QZ0vU8KlkRpxvJl0d/rjpLaqMqckruq011WdxvxrwD+aqPceutg2lR2zktNLU+GpwkntZTNz7/kHSW14Pf8LU0nJejawfTdja+XhXnAly75djQVOjYine6n3EeC9kRvNuCySPgScTrocMjoibm6wSX/FUclpr6s4jXmVvdynly5rqvDsVogdSZ1dro+IBdmN7J/kpffZz6NLvQb7wgnI+iS7jLQmMDcqNCuqmb18OAGZmVkpPB3Dy4SkH0j6Ydlx1FLV2KoaF1Q3NknXSarUJa4eVY2tqnFBtWMD94J7ORlDdb8wVDW2qsYF1Y1NVDMuqG5sVY0Lqh2bL8GZmVk5KpsZbXmS1simPaicqsZW1bigurFJemUV44LqxlbVuKDasYET0MvJ3qT7R6qoqrFVNS4oITZJn5X0oKTnJd0p6WM1qr2t23FVObaqxlX12JrlBGQ2AGT3bp1LGrj166SbiSdI+k02vYVje5nEVfXYWuE2oJJJavbmtfWBbaK7w+RXMraqxgXVjU3SPcANEXFsrmxX4GekO+r3jjRvURnTflQytqrGVfXYWuEzoPK9BxhGGrKlt0e3x8CqcmxVjavKsW1FmpPoRdmIAjuQpq64XdIWXY6pR1Vjq2pcUO3YmuZu2OX7G2kW1LG9VZL0QdIEcN1U1diqGhdUN7ZnSYNmLiciZkp6F3Alaf6dk7sYU4+qxlbVuKDasTXNZ0Dlu5P0raWRIPXp76aqxlbVuKC6sU0B9q0ZSMRsYFfSVAP/28WYelQ1tqrGBdWOrWlOQOU7HfhcE/WuAjbr51iKqhpbVeOC6sb2U2BzSbXmTSIiFgD/SZov6NEuxgXVja2qcUG1Y2uaOyGYmVkpfAZkZmalcAIyM7NSOAGZmVkpnIDMzKwUTkDWK0kHS5qSjTc1W9KfJJ3VT8c6UNLBTdQbJylyj8clXdLsjXeSJmR3kpeu2eec1e153g/UWT8jWz+uv2Jocb/Lvc6dPo6kV0g6IntPLpD0nKR7Jf2vpD51cVfyF0kfr7N+gqThddZ9VxWc46nKnICsLklfJnXjvAbYD/gv4Lek7p394UDg4CbrPguMyh5HA9sD10tas4ltT27hOP2tlecMsBDYTNLIfKGktwObZuv7O4ZmFV/nTh9nIvAN4FLSe/LjpO7t74q+d+89EBgK/LwP254BHCTp9X089oDjkRCsN0cA34+I43Nll0v6elkB5SyJiDuy3++Q9CjwB2Av4NfFypJWAVaJiBci4sEuxtlp84A/Ah8i3WjY40PADcCIMoLq0a3XWdKewAHAXhFxdW7V//X17CdzJPCTiFicO9aqpGT6MeA1wIclPQh8PSJeHM0iG4XgFuAzwFFtxDBg+AzIerMO8K9iYf7bZc9lFkn7SpouaaGkWyRtU9wuuwQzVdIiSf+QdEr2z42kCcD+wM65S2vjWoh1SvZzeI247iWdGbwzv64Q23sk3ShprqRnJU2W9Nbc+p0k3SRpvqSnlabUXqu3gCSNkvS77BLhPEl/lnRQ/rXr43OeCBzY80Gb/TwwK+9YDNlr8JvC/kZndbbNv5aNXud6x5G0t6RlkjYrHGezrLze2fbO2c8VBn/t69lPdubyLuA3hVWfB44ljSpwFfAJ4EfAujV2cwnpLMifrU3wGZD15o/A57Kziysi4uk69TYFzgK+BiwgDQ9/jaQtI2IhgKTdSWOfXQwcA7yZ9K1yXeDw7PfXkZLef2f7fayFWIdnP/9VKDsdOAl4gjrzokgaDUwCbiRdxpkH7AhsDPxJ0o7A9cBlwAezmE8lXar5YC8xbQrcClxA+mDeEbhI0rKI+AV9f86XAt8DdiKd9b2bNLr2/5EuA3UjhrzhNH6d6x3nn6SpBD4OjMvVPxj4N4UBN3PmZT/PkHRmRDzSYsy17Jrt9y+F8p1JI0+fnn2xujUiZtbZx22kwWi3q7EfK4oIP/yo+SAliYdI45YtA+4lfcisnaszIVv/rlzZpsAS4PBc2R3AjYX9HwssBV6bLf8GmNxEXOOAp0hfoFYF3kBKHs8BGxXi2r7G9hOAe3LLt5MuZ6nO8f5QI/Zdsv1v2+RrqSzW75M+zHrKm3rO+eed/f5b4LvZ7+cDl2W/PwWM60QMwGTgN4Wy0fnn3eLrXO843yAlLeXinAl8u5fXYkPgr9mxgzQI7PHA4Dbe7+OBu2uUfx/4R3bMCcDwXvaxavbe/1Rf4xhID58mWl0R8VfgjaQG3vNJHwxfA+6RNDhX9cmIuC233SOkS2LvgBfbBd7Gim0zvyRdBh7Vh/DWBRZnj/uBzYGxEfHPXJ1ZEfHn3naSdVp4J/DjyD5BCutflcX3K0mr9jyAW7Jj121zkTRUqUfWI7lYDyMlzHZNBD4oaXXSWdgKl9+6EEOPhq9zAz8ifWkZnS2PyZYvqrdBRPwLeCuwB+lscB3gFOA2SavBiz04/5w9FmWXiP+s1KvzlTV2uyEpgRedQjozepj0v3B0dlZcK64lwJxsX9aAE5D1KiIWRcTlEXFERGwDfBLYEjg0V+3JGps+CWyU/b4e8ErS5Zm8nuWaAyo28CzwdmAk8FrSt9KrC3WKx6tlKCmx/rOX9auQEvDi3GMR6Tlt0su+JwBjSZfFds/i/RGwRhNxNfI7YDDpw3FN4PISYujRzOtcV0Q8RDrbOiQrOgS4KyLubbDd0oi4NiL+m3R57yLSpa9R2foJEbE96cvPEmDHiNg+IkZErpNBzhqkv2vxOI9m+/0A6YrATsAtqn87wiI6+/qutNwGZC2JiB9KOh3YOle8QY2qG5Au2UH6Vrm4Rr1h2c9n+hDKkohodC9PM43Rs0mXFzeqs35Otp9x1G6PeLzWRpLWAPYGjoiIC3LlHfnSFxHzJF0BfAH4dUTMK9bpQAwLgdUKZbW+LHRiROMLgR8odf3fjxZ7kUXEMknXkpJX8cN/S2B21G/D7PEMdc5csoT1e6WpsMeRpkI4W9J3sgSVtw59e08POD4DsrokrZBYJK1PmnEx/613A6VJsHrqvI70rfMuSN9USZfkDijs7kDSh//t2fILdPmbY/bBfSfwXz29ymqsvwPYKiLuqfGomYCA1UlnTi9+o856zRV7dbXznL9HOvO5oM76dmN4jOW/aAC8t0+R9n4cSB0rXiBdSnwFdS4pAkgaVmfVfwLzSX/PvLfQXIeA+6kxRUat9wVwd/bz1YW66wOvAv7exPEGPJ8BWW+mSvotcC3pktqmpJs+5wM/ztV7CviJpJ5ecCdl9Sfk6pxI6hl3EenDZTtSz6gfRERPr6vpwD6S9iV9+D3eywd8Jx0HXAdcLWk86Xr/KFID+hWkzhLXS1pGakh/nnTJZ2/gKxGxwodNRDwr6W7gBEnPkRLtcaRLh2vnqvb5OUfEZNKlq3rr243h/4BDJZ1NmmFzDKnNpa/qPteIWCjpZ8BngV9ExJxe9vMrSc8DvyJ1VtgAOAjYh9T4X9z2LaQOC43cSnqt1o+If+fKfy7pT8DNpMudI0hnnrOA+wr7GEk6I7wNa6zsXhB+VPdB+jC4lnSZaSHpn/3nwNa5OhNIPcj2I33rW0T6R16hdxipLWIq6ZvuY6T2i1Vz69cjfeg9Q3bZq05c48h6g/US+wRyPbAarSN1tb2ZlFznkHrVbZ9b/07g96SedvOAaaSu50N6ieH1pPtU5pEmBTu2GHuzz7mF571cL7h2YwC+TOoB9jxpErT/ZMVecE29zo2eK7BbVr5bg+f4iexv8Vj2XnqGlCBH16l/OfChJt7vqwFPAx8rlH8gO96/SEn8OVLif2uNfZxDocekH/UfnpDO2pLdYLhtRIxsVNesN1nb4lhgs4hY1sH9PgrsERHFs5Vadc8BXh8Re9dZP4GUOGfWWLcK8AhwXET8tK2gBwhfgjOzUknaCtiGNITN1zucfIaSbtJttk3mDOB+SW+IGpdWGziAdAm6bvuVLc+dEMysbN8nXdq9ijTcTcdExOyIGBSpI0wz9R8j3WJQr1fkZaRLtLUIODTSvUDWBF+CMzOzUvgMyMzMSuEEZGZmpXACMjOzUjgBmZlZKZyAzMysFE5AZmZWCicgMzMrhROQmZmV4v8Bzzme+z7FdgYAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEyCAYAAADOV2anAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZgcVdn+8e8tCMQEArIERCSACqJRMFEIoCSgsr0KghAVfQ0iERXwpwgiIgRwAZTtBRUjasQtuCDKLgQCskMQCYQgAUIkKAgkwawk5Pn9cWqgUume6Z7uqWqS+3Ndfc3UqVNVT/f09NNV59Q5igjMzMz62quqDsDMzFYNTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqWoPOFI2lbSREkLJD0p6RRJq/WwzVslXZ3VXyxppqQLJW1SqDdeUtR4bNO3z8rMzIpWr/LgktYDrgOmAvsCWwFnkhLhCd1sOhB4DLgIeBLYAjgJGCrpXRGxNFd3GnBIYfsZjcS3wQYbxODBgxup2ifmz59P//79Kzt+PZ0aFzi23ujUuMCx9UbVcU2ePPmZiNiw5sqIqOwBfA2YDayTKzsWWJAva3Bf7wcCeGeubDxwd2/jGzp0aFTphhtuqPT49XRqXBGOrTc6Na4Ix9YbVcfV3Wdu1ZfU9gKuiYjnc2UTgH7Ark3u69ns5xrtCMzMzNqr6oSzDemS10siYibpDKfHdhZJr5K0hqStgdOAu4A7C9W2lfR81tZzs6RmE5mZmbWBosKx1CQtAY6JiHMK5U8AF0XE8T1sfzWwR7Y4Gdg7Ip7Orf8i8AKpjWhD4GhgKLBLRBQTU9c2Y4AxAIMGDRo6YcKE3jy1tpg3bx4DBgyo7Pj1dGpc4Nh6o1PjAsfWG1XHNXLkyMkRMazmynrX2sp4AEuAL9YonwV8q4Ht3wTsAHyCdKY0GVirm/r9SJ0NLm0kPrfh1NapcUU4tt7o1LgiHFtvVB0XHdyGMxtYt0b5QGBOTxtHxMMRcUdE/JJ0prM98PFu6i8ErgTe2btwzcyst6pOONMotNVI2gzoT6FtpycR8TjwHLBlI9Wb2beZmbWu6oRzFbCHpLVzZaOAhcCNzewo6ziwPumSWb06/Ug94yY3H6qZmbWi0hs/gQuAo4BLJJ1OOjsZC5wVua7SkqYDN0bEodny94ClwB2kS29vId2/8wipWzWSBgKXA78EpgMbAF8CNgUOKuG5mZlZTqUJJyJmS9odOB+4jJQ8ziYlnbzVgfxwN3cDR5J6k60FzAT+AHwnIuZndRYD/yGNWLARsAi4Ddg1Iu7ui+djZmb1VX2GQ0RMBXbroc7gwvIEsjOZbrZZBOzfanxmAIOPu6LlfRw9ZCmjW9zPjNP2aTkOs6pU3YZjZmarCCccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK0XlCUfStpImSlog6UlJp0harYdt3irp6qz+YkkzJV0oaZMadfeVNEXSIklTJY3qu2djZmb1rF7lwSWtB1wHTAX2BbYCziQlwhO62XQg8BhwEfAksAVwEjBU0rsiYmm2/12APwA/AI4C9gZ+I2l2RPylT56UmZnVVGnCAQ4H+gH7R8TzwLWS1gHGSjojK1tBRNwK3JormiTpCeAvwNuBe7LybwA3RcRR2fINkt4KnJjVNTOzklR9SW0v4JpCYplASkK7NrmvZ7OfawBIWhMYCfy2UG8CMFzSwObDNTOz3qo64WwDTMsXRMRMYEG2rluSXiVpDUlbA6cBdwF3Zqu3Al5d3D/wIOl5v7m10M3MrBmKiOoOLi0BjomIcwrlTwAXRcTxPWx/NbBHtjgZ2Dsins7W7QzcDGwfEffmtnkj8DCwR612HEljgDEAgwYNGjphwoTePr2WzZs3jwEDBlR2/Ho6NS7ou9imzJrb8j4G9YOnFra2jyGbtv/EfFX8e7ZDp8ZWdVwjR46cHBHDaq2rug0HoFbGU53yoiOB1wJvInUyuErSzhGxqJv9q5vjEhHjgHEAw4YNixEjRjQQRt+YNGkSVR6/nk6NC/outtHHXdHyPo4espQzp7T2Lzfj4BEtx1G0Kv4926FTY+vUuKD6hDMbWLdG+UBgTk8bR8TD2a93SPorqefax4GfZvumxv67lnvcv5mZtU/VbTjTKLTVSNoM6M+KbS/diojHgeeALbOiR4Alxf1ny8uAf/QiXjMz66WqE85VwB6S1s6VjQIWAjc2s6Os48D6pLMcImIxcANwYKHqKOC2iGj9oryZmTWs6ktqF5BuyLxE0umks5OxwFn5rtKSpgM3RsSh2fL3gKXAHaRLY28BjiWd1eRb+U8l3aNzDnAp6cbPvYE9+/ZpmZlZUaUJJyJmS9odOB+4jJQ8ziYlnbzVgfxwN3eTOgyMAdYCZpJGFPhORMzP7f9mSR8Bvgl8jqyNx6MM2MpicJs6M7TaKWLGafu0HIet/Ko+wyEipgK79VBncGF5AsufyXS37aWksxszM6tQ1W04Zma2inDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaKpkeLljQEeDewMWlqgOdIs2feGhGzu9vWzMxWXQ0lHElbkuaTORgYRJqieQ6wGFgXeA2wTNKNwIXAxRGxrE8iNjOzV6QeL6lJuhB4ANgOOAXYHlgrIjaMiNdHxABgI+CDwBTgDOBBSbv0XdhmZvZK08gZziJgm4h4vF6FiHgGuAq4StKXgQOBTdsTopmZrQx6PMOJiCO6SzY16i+LiIsj4uJG6kvaVtJESQskPSnpFEmr9bDNuyT9TNL0bLuHJJ0kaa1CvbGSosZjz0afj5mZtUdLU0xLehuwKyDgxoiY0uT26wHXAVOBfYGtgDNJifCEbjYdldU9HXgYeDtwavbzgELduUAxwTzYTJxmZta6XiccSZ8DvgVMBPoD35V0dET8oIndHA70A/aPiOeBayWtA4yVdEZWVsvpEfGf3PIkSYuAH0navHBGtjQibm8iJjMz6wONdBp4TZ1VXwWGR8SBEbE38AXg600efy/gmkJimUBKQrvW26iQbLr8Lfu5UZMxmJlZCRq58fMfkg6uUS5S9+gu0YvjbwNMyxdExExgQbauGTtl8TxUKF9X0jOSlkj6m6T9exGnmZm1SBHd5wlJ7wXOBl4AjoqIu7LyL5C6SU8k3YezO3BsRJzX8MGlJcAxEXFOofwJ4KKIOL7B/WwM3AdcGRGjc+WfIJ3x3AsMAD4L7A0cEBGX1NnXGGAMwKBBg4ZOmDCh0afTdvPmzWPAgAGVHb+eTo0L+i62KbPmtryPQf3gqYWt7WPIpgOXW+7UuNplVXyvtarquEaOHDk5IobVWtdjwgGQJOAzpARzLfDViPiXpHfw8qWvmyLi3mYCyxLOVyLi3EL5LGB8RPR4iU7SGqSOB68HhnY32kH2PG4F+kXEdj3te9iwYXH33Xf3VK3PTJo0iREjRlR2/Ho6NS7ou9gGH3dFy/s4eshSzpzSUj8dZpy2z3LLnRpXu6yK77VWVR2XpLoJp6Gx1CL5MbA18BQwRdLxwLSI+L/s0VSyycwmjVRQNJA0kkG3sgRyEfBWYO+ehtaJlF0vAd7eU9drMzNrr6YG74yI5yPiGGBHYAdgmqSPtHD8aRTaaiRtRur1Nq3mFss7m9Sdet+IaKR+l960N5mZWQsa6qUm6ZuS7sga3ccBiyJiX+Aw4CRJN2aX15p1FbCHpLVzZaOAhcCNPcT1NeBI4BMRcXMjB8vOiD4M/D0iXuxFvGZm1kuNXLj9CbAt6Z6bBaQG9WslbRsR10najjSw57WSLo2IMU0c/wLgKOASSacDWwJjgbPyXaUlTSfdWHpotvxx4NvAeGCWpB1z+3ykq9t0NpjoH0hnS/1JCXJHYL8mYjQzszZoJOHsBRwYEdcCSLoFeJZ0p//07EzhfEm/IiWLhkXEbEm7A+cDl5Habc6usZ/VgXybyweyn6OzR94hpEQEMB34f8AmpC7T9wD7RMRVzcRpZmatayThTAM+KWkyaSDPzwLzgSfylbIG+y82G0BETAV266HO4MLyaFZMNLW2O7TZeMzMrG80knA+RTpjeIbU2P4Y6YxnUR/GZWZmK5keE05EPAQMl9QfWMOzepqZWW80fLdXRMwnXUozMzNrWiPdoj/Z7E2Skt4o6T29D8vMzFY2jdz4eTTwiKRTu7vXRtL6kg6WdBlp5OZN2hWkmZm98jXShrOdpFGkmyy/LmkeaQKzZ4DFpKFptgDeQBqq5pfA4RExq8+iNjOzV5yG2nCy6aIvlrQV8D7gncDGpJspnwJuAm4BJkXEkj6K1czMXsGaGiI2Ih4BHumjWMzMbCXW1OCdZmZmveWEY2ZmpXDCMTOzUjjhmJlZKZpKOJL+R5KTlJmZNa3Z5PEn0vwzp0t6S18EZGZmK6dmE85WwDjgIOB+SbdJOkzSOu0PzczMViZNJZyImBERJ0XEFsD7SROcnQ38S9IvJI3siyDNzOyVr9ftMRFxfUR8EngzMBk4GLhO0mOSviSpqZtKzcxs5dbrhCNpV0njgYeAtwHfJ039/DvgZOCidgRoZmYrh2Z7qW0u6URJjwDXA5sBY4BNIuLIiJgYEceSZgndt8F9bitpoqQFkp6UdEpP0yFIepekn0manm33kKSTJK1Vo+7Oku6QtDA7+zqqmedsZmbt0exlr0eBJ0lTTv80Ih6rU+8B4M6ediZpPeA6YCopQW0FnElKhCd0s+morO7pwMPA24FTs58H5Pb/RuAa4HLga8C7gbMkLYiIC3uKz8zM2qfZhPNB4OqIWNZdpYj4B9BIB4LDgX7A/hHxPHBt1uNtrKQzsrJaTo+I/+SWJ0laBPxI0uYR8XhWfgwpQX4iIpYC10t6A3CSpJ9ERDQQo5mZtUGzbTjDSNMSrEDSJpJObHJ/ewHXFBLLBFIS2rXeRoVk0+Vv2c+NCvu/JEs2+f2/ntTuZGZmJWk24ZxE+rCu5XXZ+mZsA0zLF0TETGBBtq4ZOwHLSJ0YkNSf1MY0rVDvwdyxzcysJGrmqpKkZcAOEXFXjXX7Aj+JiA2a2N8S4JiIOKdQ/gRwUUQc3+B+NgbuA66MiNFZ2abAE8CHI+LSXN3VgSXAZyNiXI19jSF1hGDQoEFDJ0yY0OjTabt58+YxYMCAyo5fT6fGBX0X25RZc1vex6B+8NTC1vYxZNOByy13alztsiq+11pVdVwjR46cHBHDaq3rsQ1H0qdIvc4AAvihpGLbylrAEOAvvYivVsZTnfJa8a0B/BaYB3ypwf3XLc+S0DiAYcOGxYgRIxoJo09MmjSJKo9fT6fGBX0X2+jjrmh5H0cPWcqZU1q7PW3GwSOWW+7UuNplVXyvtapT44LGOg0sAJ7NfhcwF3iuUOcF4CrgB00efzawbo3ygcCcnjaWJNL9Pm8Fdo6I2bnVXdsX979eYb2ZmZWgx4QTEb8j3cyJpJ8Bp3TTHbpZ0yi0pUjaDOjPim0vtZxN6k79/ogotgXNl/TP4v5zy43s38zM2qTZsdQOaWOygXRWtIektXNlo4CFwI3dbSjpa8CRpC7PN3ez/w8XbiQdBfwTuL/XUZuZWdOqntvmAmAxcImk92UN9mOBs/JdpbMRBX6SW/448G3S5bRZknbMPTbM7f+7pF51v5A0UtKxwGdJZ2m+B8fMrESNdBq4ExgdEVMl3UUPjfkR8e5GDx4RsyXtDpwPXEZqVzmblHSKcebPUj6Q/RydPfIOIY2EQERMl7QncBbpbOffwNEeZcDMrHyNdBp4gHSJq+v3tp4ZRMRUYLce6gwuLI9mxURTb9ubSUPamJlZhRrpNHBI7vfRfRqNmZmttKpuwzEzs1VEI204Pbbb5DXThmNmZquORttw3KPLzMxa0kgbzugS4jAzs5Wc23DMzKwUld6HY2Zmq47K78MxM7NVg+/DMTOzUjQ9CUY2/8xo0t37mwD/Au4Afh4RL7Q1OjMzW2k01WlA0luAh4HvA28DXsx+fh+YLmnbtkdoZmYrhWbPcMaRJmB7T0TM7CqU9AbgCtLoz+9tX3hmZrayaDbhDAM+lk82ABExU9KJwK/bFpmtcga3abrkVqddnnHaPi3HYWYravY+nBnAWnXWrQXMrLPOzMxWcc0mnOOAb0raIV8oaUfgFOCr7QrMzMxWLr0ZvHMd4FZJTwNPAxtlj2eB44FL+yBOMzN7hevN4J0P9FEsZma2Eqt88M6sK/V5wHDSFNMXAidHxIvdbLMG8C1gR1JHhrUiQjXqjQc+VWMXb4mIaa1Hb2ZmjWr6xs92krQecB0wFdgX2Ao4k9S2dEI3m74G+AxwJ3Ar3U9RPQ04pFA2o3cRm5lZb1WacIDDgX7A/hHxPHCtpHWAsZLOyMpWEBFzJL02IkLSEXSfcOZHxO3tD93MzJrR9PQEkkZJuk7STElPFx9N7m4v4JpCYplASkK7drdhRHgQUTOzV5Bmh7b5OPBzYDrweuDPwOXZfp4Hzm/y+NuQLnm9JLupdEG2rh22lfS8pMWSbpbUbSIzM7O+oWZOFCT9Dfg9cBqwBBgWEfdIWhu4Fvh9RHyvif0tAY6JiHMK5U8AF0XE8Q3s4wjgvDqdBr4IvEBqI9oQOBoYCuwSEXfW2d8YYAzAoEGDhk6YMKHRp9N28+bNY8CAAZUdv56+imvKrLkt72NQP3hqYc/1ujNk04ErlHVqbJ0aV7t06v8AdG5sVcc1cuTIyRExrNa6Zttw3gTcEhEvSnqRdE8OEfFfSacDZwMNJ5xMrYynOuXN7Tji3OV2Kl1BSj7HA/vV2WYcacw4hg0bFiNGjGg1jF6bNGkSVR6/nr6Kq9UhaSANbXPmlNaaJmccPGKFsk6NrVPjapdO/R+Azo2tU+OC5ttw5gJrZr/PAt6SWydg/Sb3NxtYt0b5QFIX6baKiIXAlcA7271vMzPrXrNfa+4G3g5cQ2q/OVHSUtJlqxNJ8+I0YxqFthpJmwH9KbTttJk7HJiZlazZhPMdYPPs9xOz338ArAbcRdb20YSrgGMkrR0R/83KRpGmtL6xyX31SFI/Us+4ye3et5mZda+phJPdz3J79vscYF9JawJr1rtnpgcXAEcBl2RtQFsCY4Gz8vuTNB24MSIOzZXtRToT2i5b/ki26q6IeFzSQFIPul+SetVtAHwJ2BQ4qBexmplZC9o2xbSkpqeYjojZknYndae+jNRuczYp6RTjXK1Q9kNePtsC+F328xBgPLAY+A9pxIKNgEXAbcCuEXF3M3GamVnrmko42RTTVwOvI12Wepo0xfT/At+QtGdETG1mn1n97kYKICIGN1JWWL8I2L+ZWMzMrO94imkzMytFs92ihwEn1ppimtSJ4F3tCszMzFYunmLazMxK0ewlteOAMyU9FhEv3XOTm2L6mHYGZ2avXIPbNApCq6MpzDhtn5bjsPbwFNNmZlYKTzFtZmalqHyKaTMzWzX0aohYSa8DhgOvJV1Kuz0inmxnYGZmtnJp9sbP1YDzgMNY/s7/FyWNA46MiGVtjM/MzFYSzXaLPhn4NKlzwGDSVNCDs+VPs+KQNGZmZkDzl9T+FzihMKvnTOC7koI0EOeJ7QrOzMxWHs2e4WwE3Fdn3X3ZejMzsxU0m3D+AXy0zrqPAg+1Fo6Zma2smr2k9k1gQjZY5++Bp0hnNQcCI6mfjMzMbBXX7ARsv5U0h9R54Fzg1cAS0lQFe0bEte0P0czMVgYNJxxJryZNunZ/RAyX9CrSLJrPuCu0mZn1pJk2nBeB64G3AETEsoh42snGzMwa0XDCyRLLw8CgvgvHzMxWVs32Uvs6cKKkIe0KQNK2kiZKWiDpSUmnZCMadLfNGpK+K+mvkhZm9wDVq7uvpCmSFkmaKmlUu2I3M7PGNdtL7QRgfeBeSbNIvdSW+7CPiHc3ujNJ6wHXAVOBfYGtgDNJifCEbjZ9DfAZ4E7gVmC3OvvfBfgD8APSTal7A7+RNDsi/tJonGZm1rpmE84DwP1tPP7hpOFx9o+I54FrJa0DjJV0Rla2goiYI+m1ERGSjqBOwgG+AdwUEUdlyzdIeitpNAQnHDOzEjXbLXp0m4+/F3BNIbFMAE4HdgUu6yaWupfRACStSbo36KjCqgnAzyQNjIi5vYrazMya1lAbjqR+kg6QdLSkj0tqV8eBbYBp+YKImAksyNa1YivSfULTCuUPkp73m1vcv5mZNUE9nCggaUtSO8vgXPHzwEGttoNIWgIcExHnFMqfAC6KiOMb2McRwHkRoUL5zsDNwPYRcW+u/I2k3nZ71Ipf0hhgDMCgQYOGTpgwofkn1ibz5s1jwIABlR2/nr6Ka8qs1k84B/WDpxa2to8hmw5coaxTY+vUuKCzY2uHVe3/s1EjR46cHBHDaq1r5JLaGcAy4D2kEQW2IDXC/yj7vVW1Mp7qlLdj/6pTngojxgHjAIYNGxYjRoxoUxjNmzRpElUev56+imv0cVe0vI+jhyzlzCm9mlfwJTMOHrFCWafG1qlxQWfH1g6r2v9nOzRySW04aUqCWyJiUUQ8CHwWeIOkTVo8/mxg3RrlA4E5bdg3Nfbftdzq/s3MrAmNJJxNgEcLZY+QzhQ2bvH40yi01UjaDOjPim0vzXqENM5bsS1oG9IZ2z9a3L+ZmTWh0Rs/23V5q+gqYA9Ja+fKRgELgRtb2XFELAZuII1knTcKuM091MzMytXoxdFrJC2tUT6xWB4RzUzCdgGp2/Ilkk4HtiRNU31Wvqu0pOnAjRFxaK5sL9KZ0HbZ8keyVXdFxOPZ76cCkySdA1xKuvFzb2DPJmI0M7M2aCThnNxXB4+I2ZJ2B84n3XMzBziblHTyVgeKw938ENg8t/y77OchwPhs/zdnieibwOeAx4CPe5QBM7Py9ZhwIqLPEk62/6nUHymgq87gRsrqbHsp6ezGzMwq1OzgnWZmZr3ihGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVwgnHzMxKUXnCkbStpImSFkh6UtIpkorTSdfabqCkn0maLWmupF9JWr9QZ7ykqPHYpu+ekZmZ1dLjFNN9SdJ6wHXAVGBfYCvgTFIiPKGHzS8GtgY+AywDTidNJf2eQr1pwCGFshmtxG1mZs2rNOEAhwP9gP0j4nngWknrAGMlnZGVrUDScGAPYNeIuCkrmwXcIel9EXFdrvr8iLi9b5+GmZn1pOpLansB1xQSywRSEtq1h+2e6ko2ABFxJ/BYts7MzDpM1QlnG9Ilr5dExExgQbau4e0yD9bYbltJz0taLOlmSd0lMjMz6yOKiOoOLi0BjomIcwrlTwAXRcTxdba7lnSpbL9C+S+BLSNip2z5i8ALpDaiDYGjgaHALtkZUa19jwHGAAwaNGjohAkTWniGrZk3bx4DBgyo7Pj19FVcU2bNbXkfg/rBUwtb28eQTQeuUNapsXVqXNDZsbXDqvb/2aiRI0dOjohhtdZV3YYDUCvjqU55U9tFxLnLrZSuICWf44H9qCEixgHjAIYNGxYjRozoIYy+M2nSJKo8fj19Fdfo465oeR9HD1nKmVNae1vPOHjECmWdGlunxgWdHVs7rGr/n+1Q9SW12cC6NcoHAnN6sd263W0XEQuBK4F3NhGjmZm1QdUJZxqFNhdJmwH9qd1GU3e7TL22naLqriOama2iqk44VwF7SFo7VzYKWAjc2MN2G0vapatA0jBgy2xdTZL6kXqxTW4laDMza17VCecCYDFwiaT3ZQ32Y4Gz8l2lJU2X9JOu5Yi4DbgGuEjS/pL2A34F3Nx1D042EsFfJX1W0u6SRgE3AJsC3y7rCZqZWVJpp4GImC1pd+B84DJS+8vZpKSTtzpQHO7mo1ndn5IS5+XAUbn1i4H/kEYs2AhYBNxGuln07rY+ETMz61HlvdQiYiqwWw91Btcom0MasqY4bE3X+kXA/m0I0cxWMoPb1IOulZ54M07bp+UYXmmqvqRmZmarCCccMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlaKykcasHJ1wh3WsGreZW22qvMZjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrReU3fkraFjgPGA7MAS4ETo6IF3vYbiBwDrAfKXFeDhwVEc8W6u0LfBN4E/Botu+L2/08zMxatbLfmF3pGY6k9YDrgAD2BU4BjgZObmDzi4ERwGeA0cC7gEsL+98F+ANwA7AXcAXwG0kfaMsTMDOzhlV9hnM40A/YPyKeB66VtA4wVtIZWdkKJA0H9gB2jYibsrJZwB2S3hcR12VVvwHcFBFHZcs3SHorcCLwl757WmZmVlR1G85ewDWFxDKBlIR27WG7p7qSDUBE3Ak8lq1D0prASOC3hW0nAMOzS3JmZlaSqhPONsC0fEFEzAQWZOsa3i7zYG67rYBX16j3IOl5v7kX8ZqZWS8pIqo7uLQEOCYizimUPwFcFBHH19nuWmB+ROxXKP8lsGVE7CRpZ+BmYPuIuDdX543Aw8AeEbHCZTVJY4Ax2eLWwEO9foKt2wB4psLj19OpcYFj641OjQscW29UHdfmEbFhrRVVt+FA6jBQpDrlvdmuuKxuticixgHjejh2KSTdHRHDqo6jqFPjAsfWG50aFzi23ujUuKD6S2qzgXVrlA8kdZFudrt1c9vNzpUV69DD/s3MrM2qTjjTKLTVSNoM6E/tNpq622XybTuPAEtq1NsGWAb8oxfxmplZL1WdcK4C9pC0dq5sFLAQuLGH7TbO7rMBQNIwYMtsHRGxmHT/zYGFbUcBt0XE3NbD73MdcWmvhk6NCxxbb3RqXODYeqNT46q808B6wFTgfuB0UsI4CzgnIk7I1ZsO3BgRh+bKrib1NPsK6YzldODpiHhPrs4uwBFDC3IAABl+SURBVCTgfNJNoXtn9fes1WHAzMz6TqVnOBExG9gdWA24jDTCwNnASYWqq2d18j5KOgv6KXARMBn4cGH/NwMfAd4HXAN8CPi4k42ZWfkqPcMxM7NVR9VtOGZmtopwwjEzs1I44ZiZWSk6YaSBVZ4kkTo87AO8BXgt8CLwFHA7MD4iKrlvKLsvam/SCA2/i4hnJb2e1NtvK2AGMC4ippQY01eBK8s8ZqMk9QNWj4j/5so2BI4AtiX1qLwX+MErpGt+JbL/iQ8C7ySNCnI36W/eEY3O2aj2zwC7ZZ2TqophN2AN4IqImJ+9175A6vH7KOl/88kq4qvFnQYqlr1BrgSGkhLMYmBT0j/ZVaQ3ztbAqRFxasmxvZs0jcMAYCnwHGlaiCtJCfEB4G3AxsD7IuKvJcW1jPT6TAN+DVwcEdPLOHZPJF0JPBwRX8yWh5P+jstIPSlF+lu/QPqweqCkuLYH+kXErbmyPYGv8XIi/DswNl+npNhuBQ6NiAez5fVI77uhwLys2gDSl6898sm8j+P6fDer+wHfBc4ljc1IRPygjLjgpTEhJwKbZUWPAR8AriWNpvII6XNjITA0Ip4oK7ZuRYQfFT6A35DesENyZa8Drgb+kC3vSvrH+3TJsV1Lunl2XdLI2+cDTwB/Al6d1VmT9IF6Q4lxLQO+Q5rldTEp+d0FfAnYtOK/5zPAvrnl20kfDGvnygaSuvRfU2JctwNfzy1/OnsdJwJfB07I/tZL8/GX+Pd8d275J6QvN3vmyvYkDVd1dslxvZj9rPXIr3ux5Nfst6QvCG8kXRH5RfY5cmvXe400iOffgR+VGVu3cVcdwKr+II3pdkCN8sHZG3qTbPl44O8lx/YssFdueaPsn+sDhXr7AM+UGNdLH1DAeqTRvSdmH5ZLSTf7jgHWr+DvuQB4b275heLrlXvN5pcY1/P5OIDpwHk16l1QwfusmHD+A/y/GvW+AjxeYlyXAv8CDiG7GpRbt24W93vLiqdw/CeBg3LLm2fx7F+odwjwjypirPVwp4HqiZRYil7M1nVNFHcH5c/hEyw/qnYUfhbLSxcRsyNiXETsDryeNEX5GqQPzicltT5JfHPuJ0381+Up0jfQovVJyaksywrLmwO/r1Hv96RLMVVal9RmUzSZdPm2FJGmP/kUcAxwVzblyUury4qjjvWAf+eWZ2U/Hy/Ue5T0f9ERnHCqdx3wTUlbdhVk17D/j/SG6uosMAAou5F5MvAVSWtLehXpLGsW8DlJq2Wxrg58nvRBW6mI+HdEnBsROwFbkEaseF3JYZwGHCfp09lr8y3gu5LeL2kNSWtmbSffYcXZaPvSX4GDc8sPALWGsH8XL394lekASZ/P2k1mA7XmU9mAdKZWmkijkrydNFPwFZImZJ1mqvY06UtDlxeBH5G+4ORtBJTS5tWQqk+xVvUH6dvH/aSRraeTxpZbSLrUlr+cdQapcbzM2IaR/vmXZDE9C7yDdK34UdJwRI+R2lFGlhjXcpdgOu0BfIb0wTgXuDP7/cXssTT7+UfgNSXGNCSL4xfAu0lTsT9NSojvzx6nAYuocTmrhL9n8fHTGvV+BPy1wr/rxqRhtOYBZ2Z/x6ouqV1a6zWqUe884LqqXrPiw73UOkB2tnAQ6cN8LVLi+XVEPFdpYED2be5/SF3o/xAR/5K0MXAs6dLL48CFEXFPiTGdBPw4Oqi7Z5Gk9Ukjk7+b9EH1KlJD+IPA5RExuYKYtgN+COxAuiSUn4xQpC8Xp0TEuWXH1ghJhwGPRMT1FccxnDTm49bAPlFyr74shkGkLyyP9VDvy6Q2uYnlRNY9JxyzVYykt5CSTjER3hoRS6qMzVZuTjgdRNJbSRPErUf61jkHmBYl3avRLEmrRUStDg+VkLQW6WbUZcD0qj88szacLcndyBsRM6uM6ZUmuwGUqPCDKruZVxGxIFe2HdmNz1Wcrb5SudNAB8gamB8H7gN+R5pA6cfZ7/dJmiHpkIpi21/SpZKulPTBrGyUpBnAC5Iezy51lBnTJyR9Ore8uqTTSN/U7yO1iT0n6bgy48rFM1TSn0mNtQ8Ct5Dug3lM0ixJp0h6TRWxdSJJHyhMwoik/STdQ2o/fEHS3ZL2KTmugZL+SGr7el7SjyWtJunnwD2k/887Jd0iaYMyY2uUpAMkdcyXQiecikk6ktQYejkwgtSr5NXZYyPSTZ+XAxdI+kLJsR1E6ia7Aekf/+IsufyCdN/LUaQbzS6QtEeJoR1PuuG0y+lZLN8B3kt6zc4ETpJ0fIlxIekDpNfkdcA5wKmku+ZfBMaSJhg8ALg1641YZmz/I2mipCmSLpb03hp1dqjgA+oq0pBOXTF8GLiE1IHhONJoCC8Af8pe37KcCrwH+DLpRtmdSD0LdyPdiDqI1L45OKtrPfAltYpJehS4ICLO6KHescDhEbFld/XaSdJdwOSIODxbPpg04d35EXF0rt7PgM0i4n0lxbWA1IPvxmz5aeBbxcZuSV8BjoyIzWvspq9imwzcHxGfKpQfSbpHaEvSfUK3ArdHRHfDp7QzrveTRq+4HfgbMBzYjpQUv9J1yUrSDqS2nOKEh30Z2zJgx4i4M1u+B5gVER8s1LsS6B8Ru5YU12PAtyPix9ny9qRbBQ6JiJ/n6h0GHB8RW5QRV3bMnzZYdXNgRJl/z+74DKd6G5O6zvbkTkq86S2zNcvfHHg56cyreDPlJaTxuMoyl3TW1WUgaQiPor+TzhLLtC3wyxrlvwTeAGwdEYtIH/QfrlGvr5wEXBQRO0fEERExFDgM+CxwSdb+1SneRjrrLxpHGsyzLBvx8n1wkI2ZRhqnLG86te8b6kufIo2dNqSHR2lfthrhhFO9+4DDshsra8oaTg/L6pYpWH5q766BFOcU6s0j3R1elj+TbkhdI1u+DvhYjXofI93gWKanSd3bi95Bej27bt59nJdHkSjD2ygkwoj4Keny447A9ZJqjYhQlvyllrm8/F7Lm0+5n1mPkV6fLu8hdUjZqVBvZ6DsziAPA9dHxLu6e5AuSXYMT09QvaNJlzqmSrqENALyHNI/4LqkXmsfJt0gumfJsT1O+sZ+DUBEvJjdg/Bgod6WLD/MRl/7GunO+fslXUi6AfV0SW8jjaMG6Tr79qQh7ss0DjhVUn9SO9cLpLv3v04a4LTr3qEtKfdDahHQv1gYEZOzIVuuIV3mG1tiTHnXSFqa/T6QdLlvUqHONqSxzcpyAXCupCGkJHgQ6b13oqQBpDPod5IGjS27Ded2Vkx8teTvt6qcE07FIuKWrIvlsaShRzYrVPknqVH1uxFRPJXva5dQGIcpIu6oUe/jQGlzgkTEc5J2JH2If5mXL5sNzx4vkEa6fk9E3FVWXFls38raJI4jXcaC9E//G+D/5aouAb5dYmj3kUYX+HNxRUQ8miWdK4HxJcbU5eQaZU/XKDuANKJ1KSLi/OzKw8dIQyUdGxEXSHqCNPRU13h4FwDfKyuuzHmknnI9uZHlx/arlDsNdJisu2zX5ak5+b7/nUrSG0ixljrOVe74g1n+JsZHOuAenFeT7tNYC3i0qtcmF89nSb37tq83gkV2VvZH0txGvtzejewy9wYR8Z+qY3klccIxM7NS+JJah1Caynkj4KGIWKHBNLuxbO+IuKj04GrIrmHfAxxc9mUrdfg0zurAabk7nV4h0yVnZzb5qa8nk+It/Zu7pGGky4wiTUM/TdI7SJcou95n34+Iq8uOrR6f4VRM0pqk3kP7Z0XLSCPSfjn/YVnR/RF7d7O6P3Axqa3ifoCIuLKkuDpyGucslo6clrtRSuOsHRgRp5R4zI6cLlkdOvV1FssepM4yz5F6720I7Etqd51K+sI1lNRh5YCIuLSs2LpVxpDUfnQ7fPiJpF5ph5GmA/giaU6Lh4E35ertQPnT2HbkFLt06DTO2XE7clruJuI/oIL3WUdOl0yHTn2dHfcW0tA6q2XLx2dx/KRQ7xekG4wrf29FeIrpyh+kbtBHFMo2Bm4iTbU7PCurIuFM5uUpdjcvPN6e/UMe1FVWYlwdOY1zdsxOnZb7DQ0+Dq/gfdaR0yXXSDgdMfV1dsy5pDPkruX1snh3K9T7AKlDT2mxdfdwG071NqNwQ2dE/FvS7qRvJ9dlQ8qUef9Bl2GkM6/TSfe9fCWy+Tckdd20+O+IKE5r29e6pnG+KVvulGmcoXOn5Z7R4DHVYL12eqVMl9wRU19nFrL8fVVdv/cr1HsN6R6sjuCEU70ngTfx8ocnAJG69X5U0jmkU+fSOwtE+oo0TtJvgW+SRq4+P/u9SqcBv5L0T9Lr0jWN87Oky2giJaSyp3GGl6flvoV0bT0/Lff1kW6erWJa7v8C1wMX9lBvF9I9YWXq5OmSD8ga56GDpr4mXVI7UdLD2bG/R2q7+aqkmyLiv9mXwmNJ78nOUPUp1qr+IA2GOamHOl+j5HaSOnG8nXT395OktqYqp9jtuGmcs7g6dVrua0lDofRUr4o2nI6cLpkOnvqa1N41I/eef4R0SbTrf2EKKTnPBrYrM7buHj7Dqd4PgFGS1o+IZ2tViIjvKM2X8/5yQ1shjvuAEZI+CpxBhUNmRMSF2VwlXdM4P0cHTOMcEXdnQ6EUp+V+Dy9Py30VJU/LTTqDHtNAvf9QONsuwWdJl3568hgpOZUiGr/59W5Sj83SRMT0bCinnUmdUyZGxEJJI0hfxrYmXZL/dZTUq68R7hZtvZJdFuoPzIsOmvXTzDqXE46ZmZXC4yW9QmTT2/6k6jhq6dTYOjUu6OzYOpWk6yRNrDqOok6NCzovNrfhvHKMpHO/IHRqbJ0aF3RobJKuI1352L3qWGoQHfia0blxQYfF5ktqZvaS7NvwqyKiY4a0t5VHx2Q+656ktbJpADpOp8bWqXFB58YWEbt3arKR9OpOfM06NS7ovNiccF459iF1C+1EnRpbp8YFHRpbVR9Qkr4g6RFJ/5V0h6RP1qj2Tkp+zTo1rk6PrR4nHLNVRKd+QGX3dZ1HGoT1ZNKNxeMl/T6biqISnRpXp8fWHbfhVEzS9Q1W3RDYNsqdnqAjY+vUuKBzY8s+oH5Nmur6b6QbBj9EGo3hkxGxMKtXxTQYd5NGQTg2V7Y78CvS3fT7RJpTqNTYOjWuTo+tO044FZO0FHiINA5SdzYFdij5Td2RsXVqXNC5sXXyB5Sk/wIfjIhJhfLBpFEZVgP2Io1ZVmbC6ci4Oj227rhbdPXuJ83yOaq7SpI+QsnDZ9C5sXVqXNC5sW1NGkb/JRExUdKOpA+o2yTtVWI8eXNJH4zLiYgZknYCriDNjXOq43pJJ8dWl9twqncHsGMD9YLyxy7r1Ng6NS7o3NjqfkABO5EmtbuVNENk2SYD+9VaERGzgd1J45X9X5lB0blxQWfHVpcTTvXOAI5soN6VwBZ9HEtRp8bWqXFB58bWyR9QvwS2lFRrTiOy9qUPkaZWmOm4gM6OrS634ZitAiQdCHwJ+J+IeK5OndWAHwLvj4iyE7WtApxwzMysFL6kZmZmpXDCMTOzUjjhmJlZKZxwzMysFE441i1JoyVNzsbfmi3pb5LO6qNjHSRpdAP1xkqK3ONJSX+QtFWDxxmf3XlfuUafc1a363k/XGf99Gz92L6Kocn9Lvc6t/s4kl4l6YjsPblQ0vOSHpD0f5J6dY+Tkr9L+lSd9eOzu/lrrfu+PKlet5xwrC5JXyP1478G2B/4X+BPpP79feEgYHSDdecCw7PHV4DtgImS+jew7alNHKevNfOcARYBW0gali+U9C5g82x9X8fQqOLr3O7jTAC+CVxCek9+inR/007R++63BwHrkcada9Z3gYMlvbGXx17peWgb684RwI8i4vhc2WWSTq4qoJylEXF79vvtkmYCfwX2Bn5XrJzdY7JaRLwQEY+UGGe7zQfuAT5KulGzy0eB64GhVQTVpazXORuG50Bg74i4Krfqj709u8kcBfwiIpbkjrU6KXl+Engd8DFJjwAnR8RLwxNlw8rcDHwOOLqFGFZaPsOx7qwL/LtYmP/22HXZRNJ+kqZJWiTpZknbFrfLLqlMkbRY0j8lfSv7Z0bSeOAAYNfcpbKxTcQ6Ofs5uEZcD5C++e+QX1eI7b2SbpA0T9JcSZMkbZ9bv4ukGyUtkPSspB9LWru7gCQNl/Tn7JLffEn3Sjo4/9r18jlPAA7q+mDNfh6Ulbcthuw1+H1hfyOyOm/Lv5Y9vc71jiNpH0nLJG1ROM4WWXm9s+lds58rjM7d27Ob7MxkJ+D3hVVfBI4ljcJwJfBp4KfA+jV28wfSWY4/W2vwGY515x7gyOzs4fKIeLZOvc2Bs4BvAAtJ83NcI+lNEbEIQNIHSINVXgQcA7yd9K1xfeDw7Pc3kJLc57P9PtFErIOzn/8ulJ0BnAI8RZ15XiSNAK4FbiBdlplPGr5/U+BvknYGJgKXAh/JYj6NdOnlI93EtDlwC3AB6YN4Z+BnkpZFxG/o/XO+hDQiwC6ks7r3kKY7+CPpsk4ZMeQNpufXud5x/kWay+VTwNhc/dHAf0gf8LXMz35+V9KZEfF4kzHXsnu2378XyncljbR9RvZF6pZsDLpabgUGAUNq7Mciwg8/aj5ISeFR0kCTy4AHSB8q6+TqjM/W75Qr2xxYChyeK7sduKGw/2OBF4HXZ8u/ByY1ENdY0mCTq2ePN5OSxfPAJoW4tqux/Xjg7tzybaTLU6pzvL/WiH23bP9va/C1VBbrj0gfXl3lDT3n/PPOfv8T8P3s9x8Al2a/PwOMbUcMwCTg94WyEfnn3eTrXO843yQlKeXinAF8r5vXYmPgvuzYQRql+3hgQAvv93HAXTXKfwT8MzvmeGBwN/tYPXvvH9bbOFbmh0/7rK6IuA94C6lB9gekD4JvAHdLGpCr+nRE3Jrb7nHSJa53w0vX9d/Jim0rF5Mu6w7vRXjrA0uyx0PAlsCoiPhXrs6siLi3u51knQx2AH4e2SdGYf1rsvh+K2n1rgdwc3bsum0mktZT6jH1eC7WMaQE2aoJwEckrUk6y1rhcloJMXTp8XXuwU9JX1JGZMsjs+Wf1dsgIv4NbA/sQTrbWxf4FnCrpDXgpR6W92aPxdkl33uVel2+usZuNyYl7KJvkc58HiP9L3wlO+utFddSYE62LytwwrFuRcTiiLgsIo6IiG2BzwBvAg7NVXu6xqZPA5tkv28AvJp0uSWva7nmiLc9mEsaSn8Y8HrSt86rCnWKx6tlPVIi/Vc361cjJdwlucdi0nParJt9jwdGkS5zfSCL96fAWg3E1ZM/AwNIH4b9gcsqiKFLI69zXRHxKOls6pCs6BDgzoh4oIftXoyIv0TE50mX635GupQ1PFs/PiK2I33ZWQrsHBHbRcTQyHUKyFmL9HctHmdmtt8Pk874dwFuVv3bAxbT3td3peE2HGtKRPxE0hnANrnijWpU3Yh0CQ7St8YlNeoNyn7WHL24B0sjoqd7aRppPJ5Nuly4SZ31c7L9jKV2e8KTtTaStBawD3BERFyQK2/Ll7yImC/pctII0L+LiPnFOm2IYRGwRqGs1peDdowAfCHwY6Wu+PvTZC+viFgm6S+kZFX8sH8TMDvqt0F2eY46ZyZZgrpaaarusaSpHs6WdE6WkPLWpXfv6ZWez3CsLkkrJBJJGwIDWf5b7UZKswx21XkD6VvlnZC+iZIusR1Y2N1BpA/727LlFyj5m2H2QX0H8L9dvb5qrL8d2Doi7q7xqJlwgDVJZ0YvfWPOerUVe1218px/SDqzuaDO+lZjeILlv1gAvL9XkXZ/HEgdIV4gXRp8FXUuEQJIGlRn1YeABaS/Z947aKwB/yFqzFFU630B3JX9fG2h7obAa4B/NHC8VY7PcKw7UyT9CfgL6RLZ5qSbLBcAP8/Vewb4haSuXmqnZPXH5+qcROq59jPSh8kQUs+lH0dEV6+oacC+kvYjfdg92c0HejsdB1wHXCVpHOl6/XBSg/flpM4NEyUtIzV8/5d0CWcf4OsRscKHS0TMlXQXcKKk50mJ9TjSpcB1clV7/ZwjzWc/qZv1rcbwR+BQSWeTpiweSWoz6a26zzUiFkn6FfAF4DcRMaeb/fxW0n+B35I6F2wEHAzsS2qsL277DlIHg57cQnqtNoyI/+TKfy3pb8BNpMuXQ0lnlrOABwv7GEY647sVW1HVvRb86NwH6Z//L6TLRotI/9y/BrbJ1RlP6uG1P+lb3WLSP+4KvbdIbQlTSN9knyC1P6yeW78B6UPuObLLWHXiGkvWW6ub2MeT6yHV0zpS19ebSMl0DqnX23a59TsAV5N6ws0HppK6gg/sJoY3ku4TmU+adfHYYuyNPucmnvdyvdRajQH4GqmH1n9Js0x+iBV7qTX0Ovf0XIH3ZeXv6+E5fjr7WzyRvZeeIyXEEXXqXwZ8tIH3+xrAs8AnC+Ufzo73b1LSfp6U6LevsY9zKfRo9OPlhydgs5ZkN/S9LSKG9VTXrDtZ2+AoYIuIWNbG/c4E9oiI4tlIrbrnAm+MiH3qrB9PSpQzaqxbDXgcOC4iftlS0CspX1Izs0pJ2hrYljQkzMltTjbrkW6KbbRN5bvAQ5LeHDUulfbgQNIl5brtT6s6dxows6r9iHSp9krS8DFtExGzI6JfpI4rjdR/gtTlv16vxUtJl1xrEXBopHtxrAZfUjMzs1L4DMfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK8X/B7qsNRkALQemAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -214,7 +216,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAE+CAYAAACnXJZvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XeYVPXZxvHvDag0KTZEQVaSGGPUN4qNqDGgBimKgoJKVCygxhYVK1EQxIK9xIKiqEGxYEHEgoIkdkGTGBE7IM2CKOBaKM/7x++MDMNsmS1z5uw8n+uaa3fOnLN77zDMM+f8mswM55xzrqrqxR3AOedcsnkhcc45Vy1eSJxzzlWLFxLnnHPV4oXEOedctXghcc45Vy1eSFzBkjRUkqXdFkgaL+kXMWbaU9Jbkn6QZNG2JpLGSVoc5exfxrFjMv6e1O3OvP4Ra/IMlHRwlu2zJV0dRyaXTA3iDuBcBb4FDoi+bw8MB16Q9Fsz+y6GPLcDXwBdgB+jbScDBwJHA/OBj8s5fhZwbMa2L2o4Y2UNBP4HPJ6x/RBgcf7juKTyQuIK3Uozey36/jVJc4F/Ad2Ah2PIsy0wysymZWx738zGV+L479L+noJkZm/HncEli1/ackkzI/paAiCpo6QJ0WWv7yT9W1K/1M6SNoouQx2T/kMUfCrp2rRtnSW9Hu3/uaRbJDWNHvtjdCmrPnBDdElqjKTZwPHATqlLVVX9w1K/Q9L2GdtflPRI2v0xkqZL2l/Sf6O/+yVJv804rr6kCyR9IOlHSfMkjUn9TKADcEzaJbb+0WPrXNqS1EfSO9HP+UzSCEkN0h7vH/2MHSRNjjLNktSrqs+HSw4vJC5pSqKvi6Kv7YCXgRMIl5fGA3dLOgLAzL4GHmPdy0l/jH7W3QCStgOeAb4CegNDgCOB1Bv4W0DH6Ptrou+HEy4DTSJcsuqYtk+ZJDVIv1Xqr17XVsBVwAjgCGAz4CFJStvnduAS4CGgB3A20CR67C9R5klpuZ8qI++fgAcJz0FP4CZgEHBzlt3vByYQnpcPgXGS2lTxb3QJ4Ze2XMFLe7NtD9wCLAOeBzCzcWn7Cfgn0AYYADwQPTQaeE5SezP7JNp2LDDDzN6J7l8MzAEOMrNV0c/7GnhQUkcze5VwaQ1gdvrlKUlfAq0qecmqA7Ai4+/7lZl9VIlj020E7GlmH0Y/ox6hYP4amCVpW8KZ0hlmdmPacQ8CmNlMSd8BX1Yi9zDgRTNLndU9Ez0Pl0u61Mzmpe17nZndFWWaAXxOKGK35fj3uQTxMxJX6DYmvPGuAN4nFJO+ZrYQQFJLSTdKmpO230Bgm7Sf8QKhSBwTHbMh0IvobCSyG/BYqohExgMrgb1q8O95D9g14/ZZFX7O7FQRicyMvqY+/XeKvo6pws/+maT6wM6s2x71IOH9I/MM7LnUN2a2mNCRwM9I6jg/I3GF7ltgP8AIl7MW2NpTVo8B9iBcZpoJLCX0ouqZ2sHMTNLdwHGShgJ9CK/9+9N+TmvCp2fSjlslaTHh039NKTWz6TXwc77JuP9T9LVh9HVjQsP+0mr+nk2A9ch4btLuZz432XI1xNVpXkhcoVtZ1huvpIZAd+BUM7stbXu2M+27Ce0enYD+wONmtiTt8YWEdob0n1+f8Ib8dXX+gBz8EH1dP2P7RoS2m1wsBppIalbNYvIV4Sxvs4ztraKv+XpuXAHzS1suyTYg9KJKjedIXbY6KHNHM/uMcNnlEsKlqrszdnkdOCQqHim9CB+2XqrZ2GVKtTX8JrVBUltCu0eupkRfjy5nnwrPFqJLfTOAwzIe6gOsBl6tQjZXx/gZiUssM/tW0pvAxZKWEt7YzidcDmuW5ZDRhGv984DJGY9dCrwNPC7pVsJ1/SuBZ6OG9lpnZvOiv2e4pFLCB70LqcKnfjN7X9Io4BpJmxE6IbQADjWzw6PdZgFdJHUhnMF8GrVrZBoCPBtdHhwH7EC4lHhHRkO7K1J+RuKS7kjgU+Be4AZCA/m9Zew7kdB4fo+ZrU5/wMzeBboSLuE8SigsDwCH1k7sMh0JzAX+AVxG6DH1fhV/1l8IZ2B/JnTzvR74Pu3xSwmN/w8BbxK6T6/DzJ4DDgd2AZ4E/kroAn1qFXO5Oka+1K4rFpK6EYrJNlXobuucK4MXElfnSdoC+BVhIN1cM+sRcyTn6hS/tOWKwUDCWJIfgNNizuJcneNnJM4556rFz0icc85VS1F0/91kk02spKSkSsd+9913NGnSpOIdC0SS8iYpKyQrb5KyQrLyJikrVC/vjBkzvjKzTSvc0czq/K1Dhw5WVVOnTq3ysXFIUt4kZTVLVt4kZTVLVt4kZTWrXl5gulXiPdYvbTnnnKsWLyTOOeeqxQuJc865avFC4pxzrlq8kDjnnKsWLyRlGTsWSkrYp3NnKCkJ951zzq2jKMaR5GzsWBg4EEpLEcCcOeE+QL9+cSZzzrmC42ck2QweDKWla28rLQ3bnXPOrcULSTZz5+a23TnnipgXkmy22iq37c45V8S8kGQzYgQ0brzu9kPzvViec84VPi8k2fTrB6NGQbt2mARt24aeW7feCtOnx53OOecKiheSsvTrB7NnM23KlNA28uqrsNlm0L07fPJJ3Omcc65geCGprM03h6efhhUroGtXWLw47kTOOVcQvJDkYtttYcKEMK7koIPg++/jTuScc7HzQpKrvfaCf/wjXOo66ihYtSruRM45FysvJFVx6KFwzTUwfjwMGhR3Gueci5VPkVJVZ54ZLnFdf30YX3LmmXEncs65WHghqY5rroF58+Dss0MXYR9n4pwrQl5IqqN+fbjvPli4EP7859Cza6+94k7lnHN55W0k1dWoUejJ1a4d9OwJs2bFncg55/LKC0lN2HjjMMakQYMwxmTRorgTOedc3nghqSnt28NTT8EXX0CPHrB8edyJnHMuL7yQ1KRddoEHH4S334a+fWHlyrgTOedcrfNCUtN69IBbboFJk+AvfwGzuBM551yt8l5bteHEE8NEj5ddFhrhfWVF51wd5oWktlx6aSgmf/tbGGNy9NFxJ3LOuVrhhaS2SDB6dBhjcvzxsMUWsN9+cadyzrkal/c2EknbSXpBUqmkBZKGSapfieN2kfScpMWSvpb0vKTd85G5ytZfP8zH9ZvfQK9e8J//xJ3IOedqXF4LiaSWwPOAAT2BYcDZwCUVHNc2Oq4BcDRwVPT9c5La1WbmamvePDS8N2sG3brBZ5/Fncg552pUvs9ITgIaAb3MbLKZ3UYoImdJalbOcd2BDaPjnjKzp4BDgKZAt9oOXW1t2oQBi8uXh2LyzTdxJ3LOuRqT70LSFXjWzJambRtHKC77lHPcesBKIH2U3/Jom2o6ZK3YYQd49FF4//1wmeunn+JO5JxzNSLfhWRbYK3JqMxsLlAaPVaW8dE+10jaTNJmwHXAEuDhWspa8/bdNzTAT50Kxx3nY0ycc3VCvntttQSyXddZEj2WlZktkNQJmAicHm1eCHQxsy9rPGVtOuqo0E4yeHBYx+Syy+JO5Jxz1SLL46diSSuAQWZ2Q8b2+cAYM8s6ck9Sa+BfwLvArdHmU4CdgN9HZzWZxwwEBgK0atWqw7hx46qUefny5TRt2rRKx5bJjG2uvZYtJk7kgzPPZMFBB9XYj66VvLUkSVkhWXmTlBWSlTdJWaF6eTt16jTDzHapcEczy9sN+AIYkmX7cuCcco67FpgNrJe2bX1gDnBjRb+3Q4cOVlVTp06t8rHlWrHCrHt3s3r1zCZMqLEfW2t5a0GSspolK2+SspolK2+SsppVLy8w3Srx3p7vNpJZZLSFRF17m5DRdpJhW+BdM1uR2mBmPxHOUH5RCzlrX4MGMG4c7LwzHH44vPlm3Imcc65K8l1Inga6SNowbVtf4HtgWjnHzQG2l7R+aoOkDYDtCWcqydS0KUycCK1aQffu8PHHcSdyzrmc5buQ3Ab8CDwqab+oHWMocK2ldQmW9JGk0WnH3QlsATwmqbukHsDjQGtgVN7S14ZWrcIYk1WrwqJYX30VdyLnnMtJXguJmS0B9gXqA08SBiNeBwzJ2LVBtE/quBnAAYRBifcB9wKNgf3NLPnzjvz612G53rlz4aCD4Pvv407knHOVlvdJG81sJtC5gn1Ksmx7AXihlmLFb889YexYOOww6NcPHn4Y6lc4BZlzzsXOF7YqJL17w7XXwmOPwVln+YBF51wi+DTyheavfw2XuK67LiyKddZZcSdyzrlyeSEpRFdfHUa/n312mPCxT5+4EznnXJm8kBSievXgvvvColhHHQWtW8Pee8edyjnnsvI2kkLVsCE88QRsvTX07AnvvRd3Iuecy8oLSSHbeOMwxmT99cMYk0WL4k7knHPr8EJS6LbeOox+//LLMPp9+fKKj3HOuTzyQpIEu+wSxpX85z+h4X3lyrgTOefcz7yQJEW3bnDrreFS18kn+xgT51zB8F5bSTJgAMyZAyNGhEWxLroo7kTOOeeFJHGGDw9jTC6+OBSTY46JO5Fzrsh5IUkaCe64AxYsgBNOgC22gP33jzuVc66IeRtJEq2/PjzyCPzmN2F+rv8kfwJk51xyeSFJqubNYdKk8LVbt3C5yznnYuCFJMnatAnFZPly6NgR2rZln86doaQkTEnvnHN54IUk6XbYAU45BebPh3nzkFno2TVwoBcT51xeeCGpC+6/f91tpaUweHD+szjnio4Xkrpg7tzctjvnXA3yQlIXbLVVbtudc64GeSGpC0aMgMaN193eu3f+szjnio4XkrqgXz8YNQratcMkaNs2zBp8663wxhtxp3PO1XFeSOqKfv1g9mymTZkS2kZefRU23xx69ICPP447nXOuDvNCUle1agXPPAOrV4dFsb76Ku5Ezrk6ygtJXbbNNjBhQhj1fuCBoUuwc87VMC8kdd3vfx8GJr7+erj8tWpV3Imcc3WMF5Ji0KsXXH89PP44nHmmL4rlnKtRPo18sTj99DB1yrXXQrt2cPbZcSdyztURXkiKyVVXhfaSQYPChI99+8adyDlXB3ghKSb16sG998LChXD00dC6NfzhD3Gncs4lnLeRFJuGDeGJJ6B9e+jZE2bOjDuRcy7h8l5IJG0n6QVJpZIWSBomqX4lj+0l6U1J30taLOkZSU1qO3Ods9FG8PTTsMEGYYzJwoVxJ3LOJVheC4mklsDzgAE9gWHA2cAllTj2BOB+4GmgK3AC8CF+ea5qSkrgqadg8WLo3h2WLYs7kXMuofL9JnwS0AjoZWZLgcmSmgFDJY2Mtq1D0ibAdcBpZnZH2kOP1XriuqxDB3j44TBYsU+fMHhxvfXiTuWcS5h8X9rqCjybUTDGEYrLPuUc1yf6ek9tBStaXbvCbbeF6VROOsnHmDjncpbvQrItMCt9g5nNBUqjx8qyO/A+cLykeZJWSHpd0u9rL2oROeEEuOgiuOsuGD487jTOuYTJdyFpCXyTZfuS6LGybA78GvgbcB5wIPAd8IykVjUdsihdcgkccwwMGQJjxsSdxjmXILI8XsqQtAIYZGY3ZGyfD4wxs6yLjEuaDOwHdDWzZ6JtzYA5wM1mdlGWYwYCAwFatWrVYdy4cVXKvHz5cpo2bVqlY+NQnbxasYIdLriAFv/+N+9cfjlLdt21htOtrZie23xLUlZIVt4kZYXq5e3UqdMMM9ulwh3NLG834AtgSJbty4FzyjnuQUJPr4YZ258Hxlf0ezt06GBVNXXq1CofG4dq5/32W7MddzRr2tTs7bdrJFNZiu65zaMkZTVLVt4kZTWrXl5gulXivT3fl7ZmkdEWIqkt0ISMtpMM7xEKiTK2C1hdkwGLXrNmMGkStGgB3bqFRbKcc64c+S4kTwNdJG2Ytq0v8D0wrZzjJhKKRqfUBknNgQ7Af2ohZ3HbcsswYLG0NPTqWrIk7kTOuQKW70JyG/Aj8Kik/aJ2jKHAtZbWJVjSR5JGp+6b2XTgCWC0pGMkdQcmACuAv+fzDyga228Pjz0GH34IhxwCP/4YdyLnXIHKayExsyXAvkB94EnCiPbrgCEZuzaI9kn3Z+Bx4FrgEUIR6Rz9TFcbOnUKPbimTYP+/cOyvc45lyHv04uY2UygcwX7lGTZthw4Obq5fDnyyNBOcsEFsNVWcOWVcSdyzhUYn6fKVey880IxGTkyFJNTTok7kXOugHghcRWT4MYbYd68sNJimzZhCnrnnKMSbSSSjpa0cT7CuALWoAE88ECY6PGII+D11+NO5JwrEJVpbL8b+AWApFWSdqvdSK5gNWkCEyeGlRV79ICPPoo7kXOuAFSmkCwBtoi+F2FgoCtWm20WZgo2C2NMvvwy7kTOuZhVpo3keeA+Se8TisgYSd+VtbOZ+RlLXferX8GTT0LnzmEtkylToHHjuFM552JSmUJyHPAXwuy7OwOfAv4xtNh17Aj33w+9e4cuwuPHQ/1KrZjsnKtjKiwkZlYKXA0gaT9gsJn5tCQujHi/4YbQk+uMM+Cmm0IPL+dcUamwkEhaBexhZm8CLwJZl8N1Req002DOHLjmGmjXDs45J+5Ezrk8q0xj+0/ABtH3RwOb1l4cl0gjR4Y13889F6q47otzLrkq00YyExgq6XFCr61DJZW10ImZ2a01ls4lQ716cM89sGhRWGWxdWvYZ5+4Uznn8qQyheQ04HbC5IoGDCpnXwO8kBSjhg3DbMF77gkHHwwvvwzbbRd3KudcHlR4acvMXjGzHcxsPcIZyR5mVq+Mm3fbKWYbbRTWMWnYMIwxWbAg7kTOuTzIdRr5ToRLXc5lV1ICTz0FixdD9+6wbFnciZxztSynSRvNbBqApN2BvYCNgK+Bl8zMJ19ywc47wyOPhGlUDj00TKuy3npxp3LO1ZKczkgkNZE0CXgFuJwwWPFy4BVJT0ny4c0uOOAAuP12eO45OPHEMKWKc65OyvXS1kigI3A40NDMWgMNo/sdAV/1yK1x/PFw8cVw990wbFjcaZxztSTX9Uh6A+eZ2cOpDWa2GnhYUktgGKGXl3PB0KFhUayhQ8OiWMceG3ci51wNy7WQNAc+K+Oxz4Bm1Yvj6hwJRo2C+fNhwADYYgvo0iXuVM65GpTrpa3/ACdLa0+oFN0/OXrcubWtt15ofN9++9D4/vbbcSdyztWgXM9ILgSeBmZJegz4HNgMOAQoAbrWaDpXdzRrBpMmwR57QKdO0LQp+yxYEC53jRgB/frFndA5V0U5nZGY2RRgJ+Bt4DBgBNAHeAvY2cym1nhCV3dssQWccgp8+y3Mn4/MwoSPAwfC2LFxp3POVVGuZySY2UxCLy3ncndrlhl0Skth8GA/K3EuoXIdR3K1JJ9AyVXd3Lm5bXfOFbxcG9t7A+9IekPSSZKa10YoV4dttVVu251zBS/XNpKtgf2AWcBVwEJJ90crJzpXsREjsq/v/sc/5j2Kc65m5HpGgplNNbOjgdaEwYdtgGclzZF0iaT2NR3S1SH9+oVxJe3aYVI4E9l5Z7j3Xnj88bjTOeeqIOdCkmJmy81sNDAEeBloC1wAfCDpCUntaiijq2v69YPZs5k2ZUrotfWvf8Fuu8ERR8Brr8WdzjmXoyoVEkklkoZI+gR4DlhO6A68IXAQYUyJr7nqKqdxY3jySdhySzjwQPjoo7gTOedykGuvraMkTQE+Ao4B7ga2NrNuZjbezH40s0nA6UBZy/E6t65NNw2LYkGYOfjLL+PN45yrtFzPSEYBi4AuZtbezIab2bws+30AXFrtdK64/OpX4cxk/vywlklpadyJnHOVkGsh2cLMjjSzF8rbycwWmtkl2R6TtJ2kFySVSlogaZikSi/RK6mepBmSTFKPHPO7QrfHHvDAA/Dmm3DkkbBqVdyJnHMVyLX775Lq/LJoqvnnAQN6EqadPxvIWnTKcAKwZXVyuAJ38MFw443wxBNw+um+KJZzBS7nKVIk9QUGANsQFrVai5ltVs7hJwGNgF5mthSYLKkZMFTSyGhbeb+7JWF+r/OBO3PN7hLk1FPDaPerroJ27eDcc+NO5JwrQ66N7UcC9xAa29sAE4CJ0c9ZCtxcwY/oCjybUTDGEYrLPpWIMJzQ1bjcS2uujrjiCjj8cDjvvHC5yzlXkHJtIzmH8GZ+SnT/FjM7Dtga+AqoqHV0W8Ko+J+Z2dzouG3LO1DSjsCxwKAcM7ukqlcPxoyBP/wB+veHF1+MOZBzLhtZDtefJS0HepjZi5JWAPub2YvRY4cA15lZSTnHrwDOMbPrM7bPA+41swvLOXYa8LqZnSupBPgUONDMJpax/0BgIECrVq06jBtXtWEty5cvp2nTplU6Ng5JylvZrA2WLWOn005jg6++4q2bbqJ0663zkG5ddfG5LRRJypukrFC9vJ06dZphZhUP5TCzSt+A+YSuvwCzgZPTHusFLKvg+BXAGWX83BHlHHc4odtxs+h+CaHBvkdlcnfo0MGqaurUqVU+Ng5JyptT1tmzzTbf3KxtW7P582stU3nq7HNbAJKUN0lZzaqXF5hulXiPzfXS1nRgx+j7CcDFkgZIOoYwiePrFRy/BGiRZXtz4JtsB0haL/rZVwL1JLVgzdrwTSRtmNuf4BKpXbuwwuKSJdCtGywtt1+Gcy6Pci0klwOphSMuBt4AbiGMcP+K6FJSOWaR0RYiqS3QhIy2kzRNCA371xIK0RLWrA0/jrBaoysGO+0U1n7/3//C2u8rVsSdyDlHJQuJpEaSegN7Ag0ktTKzb8ysJ9AUaGFmu5vZJxX8qKeBLhlnEX2B74FpZRyzHOiUcTsieuxCwJfVKyZdusAdd8DkyWGJXh9j4lzsKhxHEk0L/zyhXSJlqaQ+Zvacmf0I/FjJ33cbYR6uRyVdCbQHhgLXWlqXYEkfAdPM7HgzWwm8mJEpleUdM6vocpqra449NowxGTo0XPIaOjTuRM4VtcqckYwEVgN7A42B3xIuJ92e6y+zMDJ+X6A+8CRhRPt1hKno0zWI9nEuu4svhuOOg0sugdGj407jXFGrzMj2jsDZZvZydP89SSdGX1ub2cJcfqGZzQQ6V7BPSQWPzwaUy+91dYwEt90WJng88cQwBf0BB8SdyrmiVJkzktZAZtvHx4Q38s1rPJFzlbXeevDww7DDDnDYYfDWW3Encq4oVbbXlrdousK04YahW/BGG0H37jB7dtyJnCs6lS0kz0r6InUDUpezXkjfHj3mXH61bh0WxfrhhzDGZEm1Jql2zuWoMm0kuUzx7lw8ttsOHn8c/vSnMA39s89Cw3Ump3bO1YIKC4mVsUCVcwVnn33gnnvgiCPgmGPCjMH1ch1z65zLVc7rkThX0A4/HD77LKxfstVWYT0T51yt8kLi6p5Bg8KAxauvDsXktNPiTuRcneaFxNU9Elx/PcybB2ecAW3awCGHxJ3KuTrLLyC7uql+fRg7FnbfHY48El59Ne5EztVZXkhc3dW4MUyYEM5IDjwQPvgg7kTO1UleSFzdtummYYyJBF27whc+1Mm5muaFxNV9v/wlTJwICxeGM5Pvvos7kXN1ihcSVxx23x3GjYPp08M4k5Ur407kXJ3hhcQVj4MOgptugiefhNNP90WxnKsh3v3XFZe//AXmzIGRI8OiWOedF3ci5xLPC4krPpdfHka/n38+tG0bugc756rMC4krPvXqwd13h8b3/v3D7MGdOsWdyrnE8jYSV5w22AAeewy22SaMev/f/+JO5FxieSFxxatFi7AoVpMmYR2T+fPjTuRcInkhccVtq63gqafCYljdusHSpXEnci5xvJA497vfwfjxMHMmHHoorFgRdyLnEsULiXMQVla84w6YPBkGDPAxJs7lwHttOZfSv39Yx2TIkHDJa9iwuBM5lwheSJxLd9FFoZgMHx6KyQknxJ3IuYLnhcS5dBLcemvowXXSSbDllmHWYOdcmbyNxLlM660HDz0EO+4Ihx0Gl14KJSXs07kzlJSEBbOccz/zQuJcNhtuGLoFN2wYLnfNmYPMwjxdAwd6MXEujRcS58rSujWsv/6620tLYfDg/OdxrkB5IXGuPIsWZd8+d25+czhXwLyQOFeerbbKbbtzRSjvhUTSdpJekFQqaYGkYZLqV3DMrpLulvRRdNz7koZIapiv3K5IjRgBjRuvva1Bg7DdOQfkufuvpJbA88BMoCfwC+AaQkH7WzmH9o32vRL4ENgRGB597V2LkV2x69cvfB08GJs7FzVtCsuWweLF8eZyroDkexzJSUAjoJeZLQUmS2oGDJU0MtqWzZVm9mXa/Rcl/QDcLqmdmc2p5dyumPXrB/36Me3FF/nj3nuHLsF//Su0aQO9esWdzrnY5fvSVlfg2YyCMY5QXPYp66CMIpLydvR1s5qL51wF6tcPXX/32CMUmFdeiTuRc7HLdyHZFpiVvsHM5gKl0WO5+D2wGni/ZqI5V0mNGsGECWGZ3oMOgg8+iDuRc7GS5XGWU0krgHPM7PqM7fOAe83swkr+nM2B/wKTzKx/GfsMBAYCtGrVqsO4ceOqlHn58uU0bdq0SsfGIUl5k5QV1s3bcP58dj71VFY1bsxbN9/MipYtY0y3tqQ/t4UsSVmhenk7deo0w8x2qXBHM8vbDVgBnJFl+3xgRCV/xvrAP4FPgJaVOaZDhw5WVVOnTq3ysXFIUt4kZTUrI+/rr5s1amS2665my5fnPVNZ6sRzW6CSlNWsenmB6VaJ99h8X9paArTIsr058E1FB0sScC/wW6CbmS2p2XjO5Wi33eDBB2HGDDj8cFi5Mu5EzuVdvgvJLDLaQiS1BZqQ0XZShusI3YZ7mlll9neu9h14IPz97zBxIpx2mi+K5YpOvrv/Pg2cI2lDM1sWbesLfA9MK+9ASRcApwF9zOyl2o3pXI5OOilM6HjFFdCuHZx/ftyJnMubfJ+R3Ab8CDwqab+oQXwocK2ldQmORrCPTrt/JHAZ4bLWfEl7pN02ze+f4FwZRoyAI4+ECy7w2YFdUcnrGYmZLZG0L3Az8CShXeQ6QjHJzJU+bcqfoq/9o1u6Y4ExNZvUuSqoVw/uugsWLoRjjw2zB3fuHHcq52pd3ldINLOZQLn/u8ysJON+f9YtIM4Vng02gEcfhb32gkMOgZdegh12iDuVc7XKZ/91rqbFzNNnAAAa9ElEQVS1aAFPPw1Nm0K3bjBvXtyJnKtVXkicqw1t28KkSfDtt9C9Oywtaxo555LPC4lzteX//g/Gj4eZM6F3b/jpp7gTOVcrvJA4V5v23x/uvBOefx4GDPAxJq5Oyntju3NF55hj4LPP4KKLwsqKw4fHnci5GuWFxLl8GDw4DFi89NJQTAYMiDuRczXGC4lz+SDBrbfC/Plw8smw5ZahR5dzdYC3kTiXLw0awEMPhUb4Pn3CRI/O1QFeSJzLp6ZN4amnYNNNQ7fgTz+NO5Fz1eaFxLl823zzMGDxp5+ga1dYvDjuRM5VixcS5+Kw7bZhud7Zs6FnT/jhh7gTOVdlXkici8tee8F998Err8BRR8Hq1XEncq5KvJA4F6fDDoOrr4ZHHoFBg+JO41yVePdf5+J25pkwdy5cd11YFOuMM+JO5FxOvJA4FzcJrrkmjH4/80xo0ybMzeVcQvilLecKQf368I9/QMeO0K8fvPxy3ImcqzQvJM4VikaN4IknwuWtgw6C99+PO5FzleKFxLlCsskmYYxJgwZhjMnnn8edyLkKeSFxrtC0bw8TJ4Yi0qMHfPdd3ImcK5cXEucK0a67woMPwltvQd++sHJl3ImcK5MXEucKVY8ecMstYW6uU07xRbFcwfLuv84VshNPDOuYXH55aIS/8MK4Ezm3Di8kzhW6ESPCGJPBg8OiWH/+c9yJnFuLFxLnCp0Eo0fDggVw3HHQujXsu2/cqZz7mbeROJcE668Pjz4Kv/419OoF77wTdyLnfuaFxLmkaN4cJk2CDTcMY0zmzYs7kXOAFxLnkqVt21BMli0La75/+23ciZzzQuJc4uy4Y7jM9d57YXLHn36KO5Ercl5InEuiffeFu+6CF16AE07wMSYuVt5ry7mkOuqosI7J3/4WugVfemnciVyRyvsZiaTtJL0gqVTSAknDJNWvxHHNJd0taYmkbyWNlbRxPjI7V7AuvBAGDAhjTUaNijuNK1J5PSOR1BJ4HpgJ9AR+AVxDKGh/q+DwB4FfAycAq4ErgceBvWsrr3MFTwrTqMyfDyefDFtuCd27x53KFZl8n5GcBDQCepnZZDO7DbgEOEtSs7IOktQR6AIcY2bjzewx4M/AXpL2y0dw5wpWgwZhgseddoJDDoHWrdmnc2coKYGxY+NOV76xY6GkJBl5k5QV8po334WkK/CsmS1N2zaOUFz2qeC4z83sn6kNZvYG8Gn0mHPFrWnTMOp95UpYtAiZhTm6Bg4s3De8sWNDvjlzCj9vkrJC3vPmu7F9W2BK+gYzmyupNHrsyXKOm5Vl+3vRY865kSPX7b1VWgpHHw1nnRUug0HuX6tyTGW+fvTRutPjl5ZC//5w2WUV/rl59cEHyckKZecdPDgs5VzD8l1IWgLfZNm+JHqsKse1z3aApIHAQIBWrVrx4osv5hQ0Zfny5VU+Ng5JypukrFD4efeZOxdl2W6rV7Ngjz0AwqdTWFNwMgpPeY9X59hsj286a1b2vCtX8uWmm2Z5JD6bzpyZmKxQTt65c5lWG69hM8vbDVgBnJFl+3xgRDnHTQYey7J9LPByRb+3Q4cOVlVTp06t8rFxSFLeJGU1S0Dedu3Mwtv02rd27eJOll2S8iYpq1mN5QWmWyXe2/PdRrIEaJFle3Oyn3FUdFyLCo5zrniMGAGNG6+9rXHjsL0QJSlvkrJC3vPmu5DMIqNNQ1JboAnZ20DKPC5SVtuJc8WnX78wlqRdO0wKC2GNGlUr18RrRJLyJikr5D1vvgvJ00AXSRumbesLfA9Mq+C4zSXtldogaRdC+8jTtRHUuUTq1w9mz2balCkwe3bhvtGlJClvkrJCXvPmu5DcBvwIPCppv6hBfChwraV1CZb0kaTRqftm9irwLHCvpF6SDia0j7xkZs/n9S9wzjm3lrwWEjNbAuwL1Cd09b0EuA4YkrFrg2ifdIcTzlruAu4FZgCH1GZe55xzFcv7pI1mNhPoXME+JVm2fQMcG92cc84VCJ9G3jnnXLV4IXHOOVctsiJYEEfSl8CcKh6+CfBVDcapbUnKm6SskKy8ScoKycqbpKxQvbztzKzCoftFUUiqQ9J0M9sl7hyVlaS8ScoKycqbpKyQrLxJygr5yeuXtpxzzlWLFxLnnHPV4oWkYklbvzRJeZOUFZKVN0lZIVl5k5QV8pDX20icc85Vi5+ROOecqxYvJM4556rFC4lzzrlq8ULinHOuWryQOOecq5a8z/7raka0smQ3QMDDZrZYUhtgEPALYDYwyszeiS8lSDoPmBR3jsqS1AhoYGbL0rZtCpwKbAesBv4N3GJm38aT0rnC4t1/I5JEWN+kO/AbYCNgFfA58Bowxsw+iC/hGpJ2A54DmgIrga+BLsAkQuZ3ge2BzYH9zOxfMUVF0mrACEsi3w88aGYfxZWnIpImAR+a2RnR/Y6EVThXE9bAEdAB+AnobGbvxph1J6CRmb2Stu0A4ALWFL3/AEPT9ykU0f+5A4GdCa+R6YQPHQX9piSpGWHuqs5m9lLceeDnTJ2B9YGnzOy76APQKYSVZD8hfLBcUCu/v8D/zfIiesInEd4gPies4rgl4cX9NOEf4tfAcDMbHlfOFEmTCWeThwDfERYHO5jwRneoma2QtAHwONDQzDrFmHU1cCWwA7A/IfdbhKLykJnNjytbNpK+Ao43syei+68RnuODU2cpkpoDE4AfzKxLjFlfA540sxHR/eOAO4GpwBRC0dsX2BvonfqbYsr6CuF5fS+635LwYagDsDzarSnhQ1uX9DPCOEj6SzkPNwKuAm4APgQws1vykSsbSb8EXgDaRps+Bf4ETAZaAB8T3r++BzqY2bwaD2FmRX8DHiC8IHZI27YF8AwwPrq/D+EFf1wB5F0MdE27vxnh0+efMvbrDnwVc9bVwG7R9y2BgdGLfmV0ezHatnHcz2uUsRT4Q9r9nzKf17Tn9ruYsy5NzwZ8BNyUZb/bgP8Uyusguj+acCZ9QNq2A4AlwHUF8DpYTTi7X13GLf2xVTFnfYhw5vlLwpWU+6L3s1eADaN9Non2ub02Mnhje9AVON/SruNbOAU8CThYUmszmwZcBpwRU8Z0Ft3S75OxLdv9WJnZEjMbZWb7Am2Aswmn4rcBCyQ9FWvA4H9A+hnc54T/nJk2JhSdOK3OuN8OeCTLfo8QPpEWkoOAYWb2TGpD9P0IoFdsqdaYAHwBHA/UN7N6qRvh9SDgj9G2zGXB820vYISZfWRmXwN/I7STXm3RmZ2ZfQVcz9qv7RrjhSQQ4RNGplXRY82j+68D2+QrVDlmAIMkbSipHnAhMB84WVJ9AEkNgL8Q3hgLjpktMrMbzOz3wNbAEMJZYNyuAM6XdFz0HI4ArpK0v6T1JW0QtUNcTvgkGKd/Af3S7r8LZJsufFfC66OQtCC0iWSaQWjbi5WZHQwcA5wDvClpz/SH40lVppbAorT7qX/rzDWYPiF8gKtx3msreB64VNJ/zewT+Pka7o2Ef6BUI3tToBB66gwmXP/8mnB5qJTQ0PYI8KGkVGP7FoTLBQXNzOYQ3sCvKIAsj0o6jfDp7TrgfcIHidQnZyN8uJhAeJOJ04XAy9GHiZsIjez3SNqIcMkQQhvJX4HzY0m4tt6SUoVuCZBtwaRNCJfsYmdmz0nakfD8PSXpGUKvyFjbb7L4gnA2mrIKuJ1wNp1uM2opuze2A1G32WcIp/9zCNfFtyY0uh9hZk9H+40krBjWN66sKVHmHoQPA+PNbKGkzYFzWfN33Glmb8UYE0lDgDuslnqL1BZJGwN9gd0In5DrEQr3e8BEM5sRY7yfSfodcCuwO2uKHGnfLyFcQrohnoRB1Oki0xgzOy5jv9uB7cxs7/wkq5zo/9ZIwmW32wnFpZOZ/TPWYICkx4GvM5/LLPvdBPzGzPar8QxeSILoklAf4P+AhoSGy/uja47OFTRJvyEUk8yi94qZrYgzWy4kDQA+NrMpcWfJJuoOfh3hw1p3K4Bu1ZJaAY3N7NMK9juL0OnihRrP4IWk7pFU38yytfkUDEkNCQ2Cq4GPCvHNLmojaU/amCIzmxtvKucKjze2Z5D0W0m9JZ0g6fjo+9/GnSuTpF6SHpc0SdKB0ba+kmYDP0maE326i5WkP0fjG1L3G0i6gvCJ+b+EzgBfSyqEa/gASOogaQLhevJ7wMuE8Q2fSpovaZikxrGGrEMUiTtHNpIaZf5bS/pd9L7QIa5cBSfO/s+FdAOOI7QrZOs7voow5cixceeMsvaJcr0EPEFobB9AaNsZTRjN+kCUu0vMWWcCJ6fdvybKexGwJ6Hr4lDCYKkLC+C5/ROhbWw6oWfWUMKg1J+izGcTekf9G2hZAHl7EMblvAM8SNoYmLR9dif+sQ5/IhrTkLbtYMLg1JXAiug57x73cxplaw48FuVaCdwB1AfuyXhfeBnYJO68lfybetfW6yD2P64QbsBp0Qvm74RRwJtEL5r60fd7ATdHbzCnFEDeN4Hb0u73i7Jdk7Hf3cDzMWctBfZJu/8FcEaW/QYBcwrguZ0B3FPGa2Q24Sy+YfQGeEvMWfdPezO7Ocq+KirWStuvEArJKtYekHhI9Gb8SvRvPyj6fiVZBoDGkPdGwjQopwFHRx8exgOfRUVxU8L4s/nArXHnreTfVGuFxNtIAEmfEN6YR1aw37nASWbWPj/JysyxFOhlZs9H95sTeufsZ2mNlNElr9vNLLbxGZIWAqea2fjo/o+Es6QXM/bbH5hgZo3yn3KtHN8DB5nZ5IztLQkzCvzWzN6TdDRwpZm1jiNnlOklwrxgx6ZtO47wJjiZ0OPwB0m7ExrdYxs4F/Xa2sPM3ojuvwXMN7MDM/abBDQxs31iiJme41PgMjO7I7q/E6FQH2tm96TtN4BwJr11PElB0l2V3LUdYRBljb8OvI0k2Bx4oxL7vUEBDJYidO1MfzGk5ir6JmO/5YSBX3GaQBg8uX50/3ngiCz7HUH41Be3Lwg99zL9H+F5T40jmsOagapx2R74R/oGM7uLMJ3PHsCUaExJIdqe0I020yjCJI5x24w148cgmlOLMG9Vuo/IPh4mn44hnCXtUMGtXVk/oLp8QGLwX2CApH+aWbb+7qmZSgdE+8ZtDmF212cBzGxV1C3xvYz92rP2iNc4XEAYgf0/SXcCTwJXStqeNYPmOgM7EWaCjdsoYLikJoS2h58II8MHA1NtzXiY9kDcPbh+AJpkbjSzGdFI7GcJl4uG5jlXWdIvf3zLmg9A6b6jMD7gfkooyNOi+3sTLsX9ntA2mbIn8b8OPgTeMLOjy9tJ0qGEdrQa54UkOJswIHGmpEcJU55/Q3jhtwC2JVzTbUNhjBR/lIypDszs9Sz7HcnaL/q8M7OvJe1BeCM+i/BJD6BjdPuJcBlmbzN7M56Ua5jZiOgyzPmEaVsgvA4eIAxCS1lBmHstTv8lXKefkPmAmX0SFZNJwJg85yrLs5JWRt83B37Hmg8TKdsCC/MZqgy3ATdI2oFQ9PoQPhRdLKkpYQLEnYEzgbhnBH+NUOAqkj5gtUZ5G0lE0i8Io8IPYM10zCmfEXruXGVmmae2BUvSVsA3ZlYQU04ASCph7UFzH1thjiFZjzDOpSHwSSE9hymSTiRMk7KTlTFwNjqzeozQfhbbJ/1ohoNMH5rZ/Rn7vRhtL4Su66cTLrmuR5gl4jZJRxDaoFKTdo4CzovzNRx1Q97TzG6sYL9NCG1808rbr0oZvJCsK+o3nmpb+MbM4p7l1TlXIKLL3JuY2ZdxZykUXkjqmOi0+y2gXyFcKlICl65VQpYxdq5QeCFJE72BbAa8b2brNARGp4bdzOzevIdbO0e3ch5uQmhQO59oCnkzm5SPXNkoQUvXQrKWMa6saB6uw8xsWMw5Yl0OtrqiM5H0pYFnEP6O2N9EFWZV7k34/zTGzGZJ+j/gEtZ8+Pm7pa3/UqPiHiRTCDdgA+BhwhvFKkJD6migecZ+sQ/sinIkafW2r4CeafdfI/SG2jBtW3NC75hnC+C5nUxYqrYF4dr4zcA8wgwC66W9Xp4m9OKK/fVbib+p1gai5ZDhl4TehqnX5ceEN7hPCMX6TcL08Z8DbQrgOXuFMFNu6n7LKOPqKOdS1gyo3DCunFG2LoQPYoui53UpYQGrJYTBqn+P/t+tIiwZXfMZ4v4HK4QbcDGhl9YAwsJAZ0Qv6A+BX6XtVyiFZAahZ8uxhL7h6bcdoxd4n9S2mLMmZunaKEeSljHeqpK3k+J+3VIAy8HmmDcxSwNHxeJhwkqOEDpgLAFGZ+x3H/BarWSI+x+sEG6E7r6nZmzbHPgn8CXQMdpWKIVEhHXOvyBM27B12mPNo/8E68y5FFPWN4Ahafc/Aw7Pst/RwJcFkPerjDeLTaPnc/+M/boVQCFJnX1WdCuEM9MFQJ+0++2iXL0y9jsW+KAAXgeZheRL4K9Z9ot9ah9C9+T90u63jPJ3ztjvT4TOQzWewceRBG3JGGhoZosk7Uuo4s9L6kdh9G/HwqtilKSHgEuB/0q6Ofq+0FwBjJX0GXAva5auXUy4nCXCaXghLF0La5YxfpkwOC59GeMpFgZ/FsoyxsuAKcCdFey3F6Fre5xiXw62mgp5aeDvWXtgaur7zOmGGhMGsdY4LyTBAuBXhDOQn1noG364pOsJp46xNrJnMrNvgFMljSL0bf8QuJICWlPakrV0LSRrGeM3CO14T5W3U7T2S9xiXw62CpKyNPDLhIGSH0ZZribMun1eNFvHsmg+vnMJha/Gea8tfp70rL2Z/bGcfS4gfJo2i3Hyu/JIOpywHGgbwuRssS8DmqKELF0LiVrG+CJgoJllDqDN3O8PwCVm1ik/ybJmiH052FwoQUsDS/olYQ671OtgNuEs/xHCTAFzgBLCB6NOZvbvGs/gheTnrnN9gSvMbHE5+x1JuFZ+bFn7xC267NIEWG4FvkqiKx4qgOVga4MKZGngaPzYnoSehi+Y2ffRwOoTWPPh534zm1crv98LiXPOueoohFk2XS2RdIek0XHnqIwkZYXk5XWuNnljew4k3QHUM7Pj485SSZ1IzoeFJGWFBOWV9Dzh6sO+cWepSJKyQrLy1mZWLyS5ScybB4CZ/TLuDJWVpKyQuLwiOa/bJGWFZOWttazeRlKHRd0+NzOzuBfeqVCSskLy8jpXm5JSSQuCpIbRGh9J0Z2w0lsSJCkrJCivpPWS8rpNUlZIVt7azOqFJDeJefNwxUHSKZI+lrRM0uuSjsqy284UwOs2SVkhWXnjzuptJAkkqbJ91rONxM2rJGWFZOWNBqDeRFgG+G3COIIxknoCR5nZ93HmS5ekrJCsvIWQ1dtIyPnNY7u4R7YrrHv9PmEahPJsCeweZ94kZYVk5ZU0HZhiZuembdsXGEsY3dzdwqJcuwOveNbKS1LeQsjqhYRkvXkASPo3YfGtvhXsdyjwYMwv8sRkjXIkJq+kZcCBZvZixvYSwnop9YGuhPmg4n6zS0xWSFbeQsjqbSTB/4D/mdlh5d2Aa+MOGnkd2KMS+6UmRIxTkrJCsvJ+S3hzWIuZzQZ+T5gS/xVg1/zGyipJWSFZeWPP6mck/Dzx2gFm1q6C/XoT1vCOtQBL+gXwWzObUMF+jQhdVDOn6s6bJGWNciQmr6QngGVm9ucyHm9EmLivKzFPNpqkrFGexOQthKxeSEjWm4dzKZIOA84EepjZ12XsUx+4lTDZ6Nb5zJeRIzFZoyyJyVsIWb2QOOecqxZvI3HOOVctXkicc85VixcSV1Qk9Zc0IxoBvETS25JqpTeepG0kDZXUohL7DpVkabcFksZH7XcVHds/OqZpzSR3LjdeSFzRUFgu+U7gWaAXcDTwBHBQLf3KbYAhQIWFJPIt0DG6DQJ+B7wgqUkFxz0VHVNaxZzOVYtPkeKKyanA7WZ2Ydq2JyVdElegDCvN7LXo+9ckzQX+BXQDHs7cOeqJU9/MvgS+zF9M59bmZySumLQAFmVutLSui5JKostER0q6L7oE9oWkIZnHSeocTZD3g6TPJd2Surwk6Y/Ak9Gun0Y/c3aOeWdEX0uinzlG0nRJB0t6F/gB2D3bpS1JjSSNlDRH0o+SPpV0eUb+EyS9Gz0+R9K5OFcFfkbiislbwGnRJ/2JZra4nH2vAiYChwJ/AIZI+srM/g4gaTvgGWAy0BtoC1wBtAcOiH7XIOBqwmW0hcCPOeYtib4uytg2EhgGfE6YzXWtdhRJIlyy6wgMJxSkLYG90/Y5B7gs+lkvAh2A4ZJKzezmHHO6YmdmfvNbUdyAHYFPCNObrAbeJbwhN0vbpyR6/LmMY+8A5hOWWgYYB3xIuLSU2qdPdGzH6H6P6H5JJbINJUxl0SC6bQNMBZYCraN9xkQ/73cZx/aPtjeN7neJ7h9Uxu9qBiwHhmRsH0YoWvUryus3v6Xf/NKWKxpm9l/gN4TG9VsIc2VdBEzP0uPpsYz7jwJbAG2i+7sBj5nZqrR9xgMrgb2qGHFjYEV0e59wdtPXzBam7TPfzP5dwc/pDHxtZc/U0BFoAjwsqUHqBkwBWrHmb3SuUvzSlisqZvYjoe3iSQBJxxN6ch0P3JC26xcZh6butwbmRl8/z/jZqyQtBjaqYrxvgf0IZxOLgAVmljn1xOfrHLWujQmX0sqSmuDv3TIebwv4NECu0ryQuKJmZqMljQS2zXhoszLuL0z7utY+US+qjYGs8x1Vwkozm17BPpWZ02gxodCVJZWvB9kL0/uV+B3O/cwvbbmiISmzOCBpU6A5676hHpJxP9VgPi+6/zpwSFQ80vdpALwU3f8p+tqwGrGr4gVgI0k9ynj8VeB7YAszm57ltix/UV1d4Gckrpi8E025/RzhUlU7Qs+qUuCejH1/Gy0vMJ7Qa+t44AwzWx09filhWdPHJd1KaFe4EnjWzF6N9kl9sj9R0jig1MzeqZ0/bS2TCYMu75c0jNCDrDXwBzM70cy+kTQUuEFSO+CfhA+V2wCdzCyziDpXLi8krpgMA3oCNxLaMRYRFvzpa2afZux7LuHSz3jCeI3hwM/dYs3sXUldCV1oHyX0rnogOi61zxxJg4DTgdMIZzMltfGHpTMzk3RIlPmvhCWiFwD3p+0zUtICwvTjZxP+xg+AB2s7n6t7fBp559JEy5N+Sli6dGK8aZxLBm8jcc45Vy1eSJxzzlWLX9pyzjlXLX5G4pxzrlq8kDjnnKsWLyTOOeeqxQuJc865avFC4pxzrlr+H2VW7fkh3ZMIAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAE+CAYAAAB1DJw3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5hU9dnG8e8NqDQFbIiCrCYxxqhvFBtRY0ANUhQFFZWoWECNLSpWoiCIBXuJBUVRg2LBgogFBUnsgiYxYldAmgVRwLVQnveP3xkZhtkyu7Nz5uw8n+uaa3fOnLN77zDMM+f8mswM55xzLhcN4g7gnHMuebx4OOecy5kXD+eccznz4uGccy5nXjycc87lzIuHc865nHnxcEVL0hBJlnabJ2mcpF/EmGl3SW9K+kGSRduaSRoraWGUs18Fx47O+HtStzsK+kesyjNA0oFZts+UdFUcmVxyNIo7gHNV+BbYL/p+S2AY8Lyk35rZdzHkuQ34AugC/BhtOwnYHzgKmAt8XMnx7wHHZGz7Is8Zq2sA8D/gsYztBwELCx/HJYkXD1fslpvZq9H3r0qaDfwL6AY8FEOerYGRZjY1Y9v7ZjauGsd/l/b3FCUzeyvuDK74+WUrlzTTo69lAJI6ShofXdL6TtK/JfVN7Sxp/egS09HpP0TBp5KuSdvWWdJr0f6fS7pZUvPosT9Gl6kaAtdHl5tGS5oJHAfskLoMVdM/LPU7JG2bsf0FSQ+n3R8taZqkfSX9N/q7X5T024zjGko6X9IHkn6UNEfS6NTPBDoAR6ddPusXPbbGZStJh0p6O/o5n0kaLqlR2uP9op+xnaRJUab3JPWq6fPhipsXD5c0ZdHXBdHX9sBLwPGES0fjgLskHQ5gZl8Dj7LmpaI/Rj/rLgBJ2wBPA18BvYHBwBFA6k37TaBj9P3V0ffDCJd4JhIuR3VM26dCkhql36r1V69pc+BKYDhwOLAx8KAkpe1zG3Ax8CDQAzgLaBY99pco88S03E9WkPdPwAOE56AncCMwELgpy+73AeMJz8uHwFhJbWv4N7oi5petXNFLe4PdErgZWAI8B2BmY9P2E/BPoC3QH7g/emgU8KykLc3sk2jbMcB0M3s7un8RMAs4wMxWRD/va+ABSR3N7BXCZTOAmemXniR9CbSu5uWoDsCyjL/vV2b2UTWOTbc+sLuZfRj9jAaEIvlr4D1JWxPOiE43sxvSjnsAwMxmSPoO+LIauYcCL5hZ6uzt6eh5uEzSJWY2J23fa83szijTdOBzQuG6Nce/zxU5P/NwxW4DwpvtMuB9QgHpY2bzASS1knSDpFlp+w0Atkr7Gc8TCsPR0THrAr2IzjoiuwCPpgpHZBywHNgjj3/Pu8DOGbfPavBzZqYKR2RG9DX1Kb9T9HV0DX72zyQ1BHZkzfalBwjvH5lnWs+mvjGzhYTOAH7mUQ/5mYcrdt8C+wBGuFQ1z1afCno0sBvhEtIMYDGh91PP1A5mZpLuAo6VNAQ4lPDavy/t57QhfEom7bgVkhYSPuXnS7mZTcvDz/km4/5P0dfG0dcNCI3zi2v5ezYE1iLjuUm7n/ncZMvVGFfvePFwxW55RW+2khoD3YFTzOzWtO3ZzqjvIrRjdAL6AY+Z2aK0x+cT2g3Sf35Dwpvw17X5A3LwQ/R17Yzt6xPaYnKxEGgmab1aFpCvCGdzG2dsbx19LdRz44qMX7ZySbYOofdTarxF6pLUAZk7mtlnhEsqFxMuQ92VsctrwEFRwUjpRfiA9WJ+Y1co1Xbwm9QGSe0I7Ri5mhx9PaqSfao8K4gu400HDsl46FBgJfBKDbK5esDPPFximdm3kt4ALpK0mPBmdh7hUtd6WQ4ZRbh2PweYlPHYJcBbwGOSbiFcp78CeCZqLK9zZjYn+nuGSSonfLi7gBp8ujez9yWNBK6WtDGhI0FL4GAzOyza7T2gi6QuhDOVT6N2ikyDgWeiS39jge0Ilwlvz2gsdyXEzzxc0h0BfArcA1xPaOS+p4J9JxAawO82s5XpD5jZO0BXwuWZRwjF5H7g4LqJXaEjgNnAP4BLCT2d3q/hz/oL4Uzrz4QuudcB36c9fgmhAf9B4A1CV+c1mNmzwGHATsATwF8J3ZVPqWEuVw/Il6F1pUJSN0IB2aoGXWOdc2m8eLh6T9KmwK8Ig9tmm1mPmCM5l3h+2cqVggGEsR4/AKfGnMW5esHPPJxzzuXMzzycc87lrCS66m644YZWVlZWo2O/++47mjVrVvWORSJJeZOUFZKVN0lZIVl5k5QVapd3+vTpX5nZRlkfNLN6f+vQoYPV1JQpU2p8bBySlDdJWc2SlTdJWc2SlTdJWc1qlxeYZhW8r/plK+eccznz4uGccy5nXjycc87lzIuHc865nHnxcM45lzMvHhUZMwbKytirc2coKwv3nXPOASUyziNnY8bAgAFQXo4AZs0K9wH69o0zmXPOFQU/88hm0CAoL199W3l52O6cc86LR1azZ+e23TnnSowXj2w23zy37c45V2K8eGQzfDg0bbrm9oMLvaicc84VJy8e2fTtCyNHQvv2mATt2oUeV7fcAtOmxZ3OOedi58WjIn37wsyZTJ08ObR1vPIKbLwxdO8On3wSdzrnnIuVF4/q2mQTeOopWLYMunaFhQvjTuScc7Hx4pGLrbeG8ePDuI8DDoDvv487kXPOxcKLR6722AP+8Y9wGevII2HFirgTOedcwXnxqImDD4arr4Zx42DgwLjTOOdcwfn0JDV1xhnh8tV114XxH2ecEXci55wrGC8etXH11TBnDpx1VujO6+NAnHMlwotHbTRsCPfeC/Pnw5//HHpk7bFH3Kmcc67OeZtHbTVpEnpgtW8PPXvCe+/Fncg55+qcF4982GCDMAakUaMwBmTBgrgTOedcnfLikS9bbglPPglffAE9esDSpXEncs65OuPFI5922gkeeADeegv69IHly+NO5JxzdcKLR7716AE33wwTJ8Jf/gJmcSdyzrm8895WdeGEE8JkipdeGhrSfQVC51w948WjrlxySSggf/tbGANy1FFxJ3LOubzx4lFXJBg1KowBOe442HRT2GefuFM551xeFLzNQ9I2kp6XVC5pnqShkhpW47idJD0raaGkryU9J2nXQmSusbXXDvNf/eY30KsX/Oc/cSdyzrm8KGjxkNQKeA4woCcwFDgLuLiK49pFxzUCjgKOjL5/VlL7usxcay1ahMbz9daDbt3gs8/iTuScc7VW6DOPE4EmQC8zm2RmtxIKx5mS1qvkuO7AutFxT5rZk8BBQHOgW12HrrW2bcMgwqVLQwH55pu4EznnXK0Uunh0BZ4xs8Vp28YSCspelRy3FrAcSB95tzTapnyHrBPbbQePPALvvx8uYf30U9yJnHOuxgpdPLYGVpv8ycxmA+XRYxUZF+1ztaSNJW0MXAssAh6qo6z5t/feoRF9yhQ49lgfA+KcS6xC97ZqBWS7ZrMoeiwrM5snqRMwATgt2jwf6GJmX+Y9ZV068sjQ7jFoUFgH5NJL407knHM5kxXw06+kZcBAM7s+Y/tcYLSZZR1NJ6kN8C/gHeCWaPPJwA7A76Ozl8xjBgADAFq3bt1h7NixNcq8dOlSmjdvXqNjK2TGVtdcw6YTJvDBGWcw74AD8vaj6yRvHUlSVkhW3iRlhWTlTVJWqF3eTp06TTeznbI+aGYFuwFfAIOzbF8KnF3JcdcAM4G10ratDcwCbqjq93bo0MFqasqUKTU+tlLLlpl1727WoIHZ+PF5+7F1lrcOJCmrWbLyJimrWbLyJimrWe3yAtOsgvfVQrd5vEdG20bUDbcZGW0hGbYG3jGzZakNZvYT4UzkF3WQs+41agRjx8KOO8Jhh8Ebb8SdyDnnqq3QxeMpoIukddO29QG+B6ZWctwsYFtJa6c2SFoH2JZwRpJMzZvDhAnQujV07w4ffxx3Iuecq5ZCF49bgR+BRyTtE7VLDAGusbTuu5I+kjQq7bg7gE2BRyV1l9QDeAxoA4wsWPq60Lp1GAOyYkVYSOqrr+JO5JxzVSpo8TCzRcDeQEPgCcIAwWuBwRm7Nor2SR03HdiPMFDwXuAeoCmwr5klf86PX/86LGU7ezYccAB8/33ciZxzrlIFnxjRzGYAnavYpyzLtueB5+soVvx23x3GjIFDDoG+feGhh6BhlVN+OedcLHwxqGLSuzdccw08+iiceaYPInTOFS2fkr3Y/PWv4fLVtdeGhaTOPDPuRM45twYvHsXoqqvCKPSzzgqTKh56aNyJnHNuNV48ilGDBnDvvWEhqSOPhDZtYM89407lnHM/8zaPYtW4MTz+OGyxBfTsCe++G3ci55z7mRePYrbBBmEMyNprhzEgCxbEncg55wAvHsVviy3CKPQvvwyj0JcurfoY55yrY148kmCnncK4j//8JzSeL18edyLnXInz4pEU3brBLbeEy1gnneRjQJxzsfLeVknSvz/MmgXDh4eFpC68MO5EzrkS5cUjaYYNC2NALrooFJCjj447kXOuBHnxSBoJbr8d5s2D44+HTTeFffeNO5VzrsR4m0cSrb02PPww/OY3YT6s/yR/YmHnXLJ48UiqFi1g4sTwtVu3cCnLOecKxItHkrVtGwrI0qXQsSO0a8denTtDWVmY3t055+qIF4+k2247OPlkmDsX5sxBZqFH1oABXkCcc3XGi0d9cN99a24rL4dBgwqfxTlXErx41AezZ+e23TnnasmLR32w+ea5bXfOuVry4lEfDB8OTZuuub1378Jncc6VBC8e9UHfvjByJLRvj0nQrl2YjfeWW+D11+NO55yrh7x41Bd9+8LMmUydPDm0dbzyCmyyCfToAR9/HHc651w948WjvmrdGp5+GlauDAtJffVV3Imcc/WIF4/6bKutYPz4MPp8//1D913nnMsDLx713e9/HwYLvvZauLS1YkXciZxz9YAXj1LQqxdcdx089hiccYYvJOWcqzWfkr1UnHZamLbkmmugfXs466y4EznnEsyLRym58srQ/jFwYJhUsU+fuBM55xLKi0cpadAA7rkH5s+Ho46CNm3gD3+IO5VzLoG8zaPUNG4Mjz8OW24JPXvCjBlxJ3LOJVDBi4ekbSQ9L6lc0jxJQyU1rOaxvSS9Iel7SQslPS2pWV1nrnfWXx+eegrWWSeMAZk/P+5EzrmEKWjxkNQKeA4woCcwFDgLuLgaxx4P3Ac8BXQFjgc+xC+91UxZGTz5JCxcCN27w5IlcSdyziVIod94TwSaAL3MbDEwSdJ6wBBJI6Jta5C0IXAtcKqZ3Z720KN1nrg+69ABHnooDCA89NAwoHCtteJO5ZxLgEJftuoKPJNRJMYSCspelRx3aPT17roKVrK6doVbbw1TmZx4oo8Bcc5VS6GLx9bAe+kbzGw2UB49VpFdgfeB4yTNkbRM0muSfl93UUvI8cfDhRfCnXfCsGFxp3HOJUChi0cr4Jss2xdFj1VkE+DXwN+Ac4H9ge+ApyW1znfIknTxxXD00TB4MIweHXca51yRkxXwMoWkZcBAM7s+Y/tcYLSZZV10W9IkYB+gq5k9HW1bD5gF3GRmF2Y5ZgAwAKB169Ydxo4dW6PMS5cupXnz5jU6Ng61yatly9ju/PNp+e9/8/Zll7Fo553znG51pfTcFlqSskKy8iYpK9Qub6dOnaab2U5ZHzSzgt2AL4DBWbYvBc6u5LgHCD20Gmdsfw4YV9Xv7dChg9XUlClTanxsHGqd99tvzbbf3qx5c7O33spLpoqU3HNbQEnKapasvEnKala7vMA0q+B9tdCXrd4jo21DUjugGRltIRneJRQPZWwXsDKfAUveeuvBxInQsiV06xYWlnLOuQyFLh5PAV0krZu2rQ/wPTC1kuMmEApFp9QGSS2ADsB/6iBnadtsszCIsLw89MZatCjuRM65IlPo4nEr8CPwiKR9onaJIcA1ltZ9V9JHkkal7pvZNOBxYJSkoyV1B8YDy4C/F/IPKBnbbguPPgoffggHHQQ//hh3IudcESlo8TCzRcDeQEPgCcLI8muBwRm7Nor2Sfdn4DHgGuBhQuHoHP1MVxc6dQo9r6ZOhX79wpK2zjlHDFN7mNkMoHMV+5Rl2bYUOCm6uUI54ojQ7nH++bD55nDFFXEncs4VAZ8XylXt3HNDARkxIhSQk0+OO5FzLmZePFzVJLjhBpgzJ6xI2LZtmM7dOVeyqmzzkHSUpA0KEcYVsUaN4P77w2SKhx8Or70WdyLnXIyq02B+F/ALAEkrJO1St5Fc0WrWDCZMCCsQ9ugBH30UdyLnXEyqUzwWAZtG34swWM+Vqo03DjPwmoUxIF9+GXci51wMqtPm8Rxwr6T3CYVjtKTvKtrZzPzMpL771a/giSegc+ewFsjkydC0adypnHMFVJ3icSzwF8KstjsCnwL+cbPUdewI990HvXuH7rzjxkHDaq0m7JyrB6osHmZWDlwFIGkfYJCZ+ZQgLow8v/760APr9NPhxhtDzyznXL1XZfGQtALYzczeAF4Asi4V60rUqafCrFlw9dXQvj2cfXbciZxzBVCdBvOfgHWi748CNqq7OC6RRowIa6Cfcw7UcN0U51yyVKfNYwYwRNJjhN5WB0vKvjgImJndkrd0LhkaNIC774YFC8JqhG3awF6VLUnvnEu66hSPU4HbCBMYGjCwkn0N8OJRiho3DrPw7r47HHggvPQSbLNN3Kmcc3WkystWZvaymW1nZmsRzjx2M7MGFdy8u00pW3/9sA5I48ZhDMi8eXEncs7VkVynZO9EuIzlXHZlZfDkk7BwIXTvDkuWxJ3IOVcHcpoY0cymAkjaFdgDWB/4GnjRzHyyIxfsuCM8/HCYwuTgg8OUJmutFXcq51we5XTmIamZpInAy8BlhAGElwEvS3pSkg8zdsF++8Ftt8Gzz8IJJ4TpTJxz9Uaul61GAB2Bw4DGZtYGaBzd7wj4SkFuleOOg4sugrvugqFD407jnMujXNfz6A2ca2YPpTaY2UrgIUmtgKGE3lnOBUOGhIWkhgwJC0kdc0zciZxzeZBr8WgBfFbBY58B69Uujqt3JBg5EubOhf79YdNNoUuXuFM552op18tW/wFOklafwCi6f1L0uHOrW2ut0IC+7bahAf2tt+JO5JyrpVzPPC4AngLek/Qo8DmwMXAQUAZ0zWs6V3+stx5MnAi77QadOkHz5uw1b164lDV8OPTtG3dC51wOcjrzMLPJwA7AW8AhwHDgUOBNYEczm5L3hK7+2HRTOPlk+PZbmDsXmYVJFQcMgDFj4k7nnMtBrmcemNkMQu8q53J3S5bZa8rLYdAgP/twLkFyHedxlSSfsMjV3OzZuW13zhWlXBvMewNvS3pd0omSWtRFKFePbb55btudc0Up1zaPLYB9gPeAK4H5ku6LVhh0rmrDh2df7/yPfyx4FOdczeV65oGZTTGzo4A2hAGBbYFnJM2SdLGkLfMd0tUjffuGcR/t22NSOOPYcUe45x547LG40znnqinn4pFiZkvNbBQwGHgJaAecD3wg6XFJ7fOU0dU3ffvCzJlMnTw59Lb6179gl13g8MPh1VfjTuecq4YaFQ9JZZIGS/oEeBZYSui6uy5wAGHMh69H6qqnaVN44gnYbDPYf3/46KO4EznnqpBrb6sjJU0GPgKOBu4CtjCzbmY2zsx+NLOJwGlARUvVOremjTYKC0lBmJH3yy/jzeOcq1SuZx4jgQVAFzPb0syGmdmcLPt9AFxS63SutPzqV+EMZO7csBZIeXnciZxzFci1eGxqZkeY2fOV7WRm883s4myPSdpG0vOSyiXNkzRUUrWXr5XUQNJ0SSapR475XbHbbTe4/3544w044ghYsSLuRM65LHLtqruoNr8smrb9OcCAnoQp3M8CshaaChwPbFabHK7IHXgg3HADPP44nHaaLyTlXBHKeXoSSX2A/sBWhIWgVmNmG1dy+IlAE6CXmS0GJklaDxgiaUS0rbLf3Yown9Z5wB25ZncJcsopYdT5lVdC+/ZwzjlxJ3LOpcm1wfwI4G5Cg3lbYDwwIfo5i4GbqvgRXYFnMorEWEJB2asaEYYRugVXetnM1ROXXw6HHQbnnhsuZTnnikaubR5nE97AT47u32xmxwJbAF8BVbVwbk0Ynf4zM5sdHbd1ZQdK2h44BhiYY2aXVA0awOjR8Ic/QL9+8MILMQdyzqXIcrieLGkp0MPMXpC0DNjXzF6IHjsIuNbMyio5fhlwtpldl7F9DnCPmV1QybFTgdfM7BxJZcCnwP5mNqGC/QcAAwBat27dYezYmg07Wbp0Kc2bN6/RsXFIUt7qZm20ZAk7nHoq63z1FW/eeCPlW2xRgHRrqo/PbbFIUt4kZYXa5e3UqdN0M8s+7MLMqn0D5hK66QLMBE5Ke6wXsKSK45cBp1fwc4dXctxhhC7C60X3ywiN7j2qk7tDhw5WU1OmTKnxsXFIUt6css6cabbJJmbt2pnNnVtnmSpTb5/bIpCkvEnKala7vMA0q+B9NdfLVtOA7aPvxwMXSeov6WjCRImvVXH8IqBllu0tgG+yHSBprehnXwE0kNSSVWulN5O0bm5/gkuk9u3DSoSLFkG3brC40r4Vzrk6lmvxuAxILbxwEfA6cDNhpPlXRJeJKvEeGW0bktoBzchoC0nTjNA4fw2h+Cxi1VrpYwmrGrpSsMMOYS30//0vrIW+bFnciZwrWdUqHpKaSOoN7A40ktTazL4xs55Ac6Clme1qZp9U8aOeArpknC30Ab4HplZwzFKgU8bt8OixCwBffq6UdOkCt98OkyaF5Wt9DIhzsahynEc0xfpzhHaGlMWSDjWzZ83sR+DHav6+WwnzXj0i6QpgS2AIcI2ldd+V9BEw1cyOM7PlwAsZmVJZ3jazqi6VufrmmGPCGJAhQ8LlrCFD4k7kXMmpzpnHCGAlsCfQFPgt4VLRbbn+Mgsj1PcGGgJPEEaWX0uY1j1do2gf57K76CI49li4+GIYNSruNM6VnOqMMO8InGVmL0X335V0QvS1jZnNz+UXmtkMoHMV+5RV8fhMQLn8XlfPSHDrrWESxRNOCNO577df3KmcKxnVOfNoA2S2ZXxMePPeJO+JnKuutdaChx6C7baDQw6BN9+MO5FzJaO6va28VdIVp3XXDV14118funeHmTPjTuRcSahu8XhG0hepG5C6VPV8+vboMecKq02bsJDUDz+EMSCLajX5s3OuGqrT5pHLdOnOxWObbeCxx+BPfwpTuj/zDDReY9Jn51yeVFk8rIJFnZwrOnvtBXffDYcfDkcfHWbibZDrOFjnXHXkvJ6Hc0XtsMPgs8/C+h+bbx7WA3HO5Z0XD1f/DBwYBhFedVUoIKeeGnci5+odLx6u/pHguutgzhw4/XRo2xYOOijuVM7VK35B2NVPDRvCmDGw665wxBHwyitxJ3KuXvHi4eqvpk1h/Phw5rH//vDBB3Encq7e8OLh6reNNgpjQCTo2hW+8KFIzuWDFw9X//3ylzBhAsyfH85Avvsu7kTOJZ4XD1cadt0Vxo6FadPCOJDly+NO5FyiefFwpeOAA+DGG+GJJ+C003whKedqwbvqutLyl7/ArFkwYkRYSOrcc+NO5FwiefFwpeeyy8Io9PPOg3btQlde51xOvHi40tOgAdx1V2hA79cvzMrbqVPcqZxLFG/zcKVpnXXg0Udhq63C6PP//S/uRM4lihcPV7patgwLSTVrFtYBmTs37kTOJYYXD1faNt8cnnwyLCDVrRssXhx3IucSwYuHc7/7HYwbBzNmwMEHw7JlcSdyruh58XAOwgqEt98OkyZB//4+BsS5KnhvK+dS+vUL64AMHhwuZw0dGnci54qWFw/n0l14YSggw4aFAnL88XEncq4oefFwLp0Et9wSel6deCJstlmYjdc5txpv83Au01prwYMPwvbbwyGHwCWXQFkZe3XuDGVlYZEp50qcFw/nsll33dCFt3HjcClr1ixkFubFGjDAC4greV48nKtImzaw9tprbi8vh0GDCp/HuSLixcO5yixYkH377NmFzeFckfHi4VxlNt88t+3OlYiCFw9J20h6XlK5pHmShkpqWMUxO0u6S9JH0XHvSxosqXGhcrsSNXw4NG26+rZGjcJ250pYQbvqSmoFPAfMAHoCvwCuJhSxv1VyaJ9o3yuAD4HtgWHR1951GNmVur59w9dBg7DZs1Hz5rBkCSxcGG8u52JW6HEeJwJNgF5mthiYJGk9YIikEdG2bK4wsy/T7r8g6QfgNkntzWxWHed2paxvX+jbl6kvvMAf99wzdN/961+hbVvo1SvudM7FotCXrboCz2QUibGEgrJXRQdlFI6Ut6KvG+cvnnNVaNgwdNPdbbdQVF5+Oe5EzsWi0MVja+C99A1mNhsojx7Lxe+BlcD7+YnmXDU1aQLjx4clbA84AD74IO5EzhWcrICzh0paBpxtZtdlbJ8D3GNmF1Tz52wC/BeYaGb9KthnADAAoHXr1h3Gjh1bo8xLly6lefPmNTo2DknKm6SssGbexnPnsuMpp7CiaVPevOkmlrVqFWO61SX9uS1mScoKtcvbqVOn6Wa2U9YHzaxgN2AZcHqW7XOB4dX8GWsD/wQ+AVpV55gOHTpYTU2ZMqXGx8YhSXmTlNWsgryvvWbWpInZzjubLV1a8EwVqRfPbZFKUlaz2uUFplkF76uFvmy1CGiZZXsL4JuqDpYk4B7gt0A3M1uU33jO5WiXXeCBB2D6dDjsMFi+PO5EzhVEoYvHe2S0bUhqBzQjoy2kAtcSuvj2NLPq7O9c3dt/f/j732HCBDj1VF9IypWEQnfVfQo4W9K6ZrYk2tYH+B6YWtmBks4HTgUONbMX6zamczk68cQwaeLll0P79nDeeXEncq5OFfrM41bgR+ARSftEjdpDgGssrftuNJJ8VNr9I4BLCZes5kraLe22UWH/BOcqMHw4HHEEnH++z7rr6r2CnnmY2SJJewM3AU8Q2jmuJRSQzFzpU5b8KfraL7qlOwYYnd+kztVAgwZw550wfz4cc0yYlbdz57hTOVcnCr6SoJnNACr9H2VmZRn3+7Fm0XCu+KyzDjzyCOyxBxx0ELz4Imy3XdypnMs7n1XXuXxr2RKeetnyXGsAABrmSURBVAqaN4du3WDOnLgTOZd3Xjycqwvt2sHEifDtt9C9OyyuaNo255LJi4dzdeX//g/GjYMZM6B3b/jpp7gTOZc3Xjycq0v77gt33AHPPQf9+/sYEFdvFLzB3LmSc/TR8NlncOGFYQXCYcPiTuRcrXnxcK4QBg0KgwgvuSQUkP79407kXK148XCuECS45RaYOxdOOgk22yz0xHIuobzNw7lCadQIHnwwNKQfemiYTNG5hPLi4VwhNW8OTz4JG20UuvB++mnciZyrES8ezhXaJpuEQYQ//QRdu8LChXEnci5nXjyci8PWW4elbGfOhJ494Ycf4k7kXE68eDgXlz32gHvvhZdfhiOPhJUr407kXLV58XAuToccAlddBQ8/DAMHxp3GuWrzrrrOxe2MM2D2bLj22rCQ1Omnx53IuSp58XAubhJcfXUYhX7GGdC2bZgLy7ki5petnCsGDRvCP/4BHTtC377w0ktxJ3KuUl48nCsWTZrA44+HS1cHHADvvx93Iucq5MXDuWKy4YZhDEijRmEMyOefx53Iuay8eDhXbLbcEiZMCIWjRw/47ru4Ezm3Bi8ezhWjnXeGBx6AN9+EPn1g+fK4Ezm3Gi8ezhWrHj3g5pvDXFgnn+wLSbmi4l11nStmJ5wQ1gG57LLQkH7BBXEncg7w4uFc8Rs+PIwBGTQoLCT15z/Hncg5Lx7OFT0JRo2CefPg2GOhTRvYe++4U7kS520eziXB2mvDI4/Ar38NvXrB22/HnciVOC8eziVFixYwcSKsu24YAzJnTtyJXAnz4uFckrRrFwrIkiVhDfRvv407kStRXjycS5rttw+XsN59N0yg+NNPcSdyJciLh3NJtPfecOed8PzzcPzxPgbEFZz3tnIuqY48MqwD8re/hS68l1wSdyJXQgp+5iFpG0nPSyqXNE/SUEkNq3FcC0l3SVok6VtJYyRtUIjMzhWtCy6A/v3DWJCRI+NO40pIQc88JLUCngNmAD2BXwBXE4rY36o4/AHg18DxwErgCuAxYM+6yutc0ZPCFCZz58JJJ8Fmm0H37nGnciWg0GceJwJNgF5mNsnMbgUuBs6UtF5FB0nqCHQBjjazcWb2KPBnYA9J+xQiuHNFq1GjMIniDjvAQQdBmzbs1bkzlJXBmDFxp6vcmDFQVpaMvEnKCnWet9DFoyvwjJktTts2llBQ9qriuM/N7J+pDWb2OvBp9Jhzpa158zD6fPlyWLAAmYU5sQYMKN43uTFjQr5Zs4o/b5KyQkHyFrrBfGtgcvoGM5stqTx67IlKjnsvy/Z3o8eccyNGrNnrqrwcjjoKzjwzXOKC3L/W5JjqfP3oozWnmi8vh3794NJLq/xzC+qDD5KTFSrOO2hQWOY4DwpdPFoB32TZvih6rCbHbZntAEkDgAEArVu35oUXXsgpaMrSpUtrfGwckpQ3SVmh+PPuNXs2yrLdVq5k3m67AYRPobCqyGQUm8oer82x2R7f6L33suddvpwvN9ooyyPx2WjGjMRkhUryzp7N1Hy9hs2sYDdgGXB6lu1zgeGVHDcJeDTL9jHAS1X93g4dOlhNTZkypcbHxiFJeZOU1SwBedu3Nwtvzavf2rePO1l2ScqbpKxmecsLTLMK3lcL3eaxCGiZZXsLsp9ZVHVcyyqOc650DB8OTZuuvq1p07C9GCUpb5KyQkHyFrp4vEdGG4WkdkAzsrdpVHhcpKK2EOdKT9++YaxH+/aYFBaPGjkyb9e48y5JeZOUFQqSt9DF4ymgi6R107b1Ab4HplZx3CaS9khtkLQTob3jqboI6lwi9e0LM2cydfJkmDmzeN/cUpKUN0lZoc7zFrp43Ar8CDwiaZ+oUXsIcI2ldd+V9JGkUan7ZvYK8Axwj6Rekg4ktHe8aGbPFfQvcM45V9jiYWaLgL2BhoRuuRcD1wKDM3ZtFO2T7jDC2cmdwD3AdOCguszrnHMuu4JPjGhmM4DOVexTlmXbN8Ax0c0551yMfEp255xzOfPi4ZxzLmeyElhERtKXwKwaHr4h8FUe49S1JOVNUlZIVt4kZYVk5U1SVqhd3vZmlnUIfUkUj9qQNM3Mdoo7R3UlKW+SskKy8iYpKyQrb5KyQt3l9ctWzjnncubFwznnXM68eFQtaWt7JilvkrJCsvImKSskK2+SskId5fU2D+eccznzMw/nnHM58+LhnHMuZ148nHPO5cyLh3POuZx58XDOOZezgs+q6/IjWoGxGyDgITNbKKktMBD4BTATGGlmb8eXEiSdC0yMO0d1SWoCNDKzJWnbNgJOAbYBVgL/Bm42s2/jSelc/LyrbkSSCOuDdAd+A6wPrAA+B14FRpvZB/ElXEXSLsCzQHNgOfA10AWYSMj8DrAtsAmwj5n9K6aoSFoJGGG54PuAB8zso7jyVEXSROBDMzs9ut+RsFrlSsIaMgI6AD8Bnc3snRiz7gA0MbOX07btB5zPqkL3H2BI+j7FIvo/tz+wI+E1Mo3wQaOo35QkrUeYK6qzmb0Ydx74OVNnYG3gSTP7LvrQczJhxdVPCB8m5+Xtdxb5v1NBRE/yRMKbwueE1Q43I7ygnyI8+b8GhpnZsLhypkiaRDhrPAj4jrCg1oGEN7eDzWyZpHWAx4DGZtYpxqwrgSuA7YB9CbnfJBSSB81sblzZspH0FXCcmT0e3X+V8BwfmDobkdQCGA/8YGZdYsz6KvCEmQ2P7h8L3AFMASYTCt3ewJ5A79TfFFPWlwnP67vR/VaED0AdgKXRbs0JH9S6pJ/5xUHSXyp5uAlwJXA98CGAmd1ciFzZSPol8DzQLtr0KfAnYBLQEviY8P71PdDBzObk5RebWcnfgPsJL4Lt0rZtCjwNjIvu70V4kR9bBHkXAl3T7m9M+JT5p4z9ugNfxZx1JbBL9H0rYED0Ql8e3V6Itm0Q9/MaZSwH/pB2/6fM5zXtuf0u5qyL07MBHwE3ZtnvVuA/xfI6iO6PIpwx75e2bT9gEXBtEbwOVhLO4ldWcEt/bEXMWR8knGH+knDF5N7o/exlYN1onw2jfW7L1+/1BvOgK3CepV2Xt3B6dyJwoKQ2ZjYVuBQ4PaaM6Sy6pd8nY1u2+7Eys0VmNtLM9gbaAmcRTrNvBeZJejLWgMH/gPQztc8J/yEzbUAoNHFamXG/PfBwlv0eJnzyLCYHAEPN7OnUhuj74UCv2FKtMh74AjgOaGhmDVI3wutBwB+jbZlLZhfaHsBwM/vIzL4G/kZo97zKojM4M/sKuI7VX9u14sUjEOGTRKYV0WMtovuvAVsVKlQlpgMDJa0rqQFwATAXOElSQwBJjYC/EN4Mi46ZLTCz683s98AWhHXsN405FsDlwHmSjo2ew+HAlZL2lbS2pHWidoXLCJ/44vQvoG/a/XeAbFNv70x4fRSTloQ2jkzTCW11sTKzA4GjgbOBNyTtnv5wPKkq1ApYkHY/9W+duYbRJ4QPbXnhva2C54BLJP3XzD6Bn6/J3kD4R0k1lDcHiqGHzSDC9cyvCZd+ygmNZQ8DH0pKNZhvSrgUUNTMbBbhTfvyIsjyiKRTCZ/SrgXeJ3x4SH1CNsIHivGEN5Y4XQC8FH2AuJHQUH63pPUJlwMhtHn8FTgvloSr6y0pVdwWAdkWGdqQcDkudmb2rKTtCc/fk5KeJvRmjLU9JosvCGedKSuA2whnzek2Jo/ZvcEciLq4Pk04tZ9FuM69BaHh/HAzeyrabwRhZa0+cWVNiTL3IHwAGGdm8yVtApzDqr/jDjN7M8aYSBoM3G557OVRCJI2APoAuxA+CTcgFOt3gQlmNj3GeD+T9DvgFmBXVhU20r5fRLg8dH08CYOo40Sm0WZ2bMZ+twHbmNmehUlWPdH/rRGES2q3EQpKJzP7Z6zBAEmPAV9nPpdZ9rsR+I2Z7ZOX3+vFI4gu9xwK/B/QmND4eF90DdG5oibpN4QCklnoXjazZXFmy4Wk/sDHZjY57izZRF23ryV8QOtuRdAFWlJroKmZfVrFfmcSOk48n5ff68Wj/pHU0MyyteEUDUmNCY16K4GPivENLmrz2JK0MT9mNjveVM4VB28wzyDpt5J6Szpe0nHR97+NO1cmSb0kPSZpoqT9o219JM0EfpI0K/oUFytJf47GH6TuN5J0OeGT8X8JDfpfSyqGa/IASOogaTzh+vC7wEuE8QefSporaaikprGGrEcUiTtHNpKaZP5bS/pd9L7QIa5cRSHO/snFdAOOJbQTZOvbvYIw3ccxceeMsh4a5XoReJzQYN6f0FYzijCq9P4od5eYs84ATkq7f3WU90Jgd0I3wyGEAUwXFMFz+ydCW9c0Qo+qIYSBoj9Fmc8i9Gr6N9CqCPL2IIybeRt4gLQxKmn77Er8YxH+RDTmIG3bgYQBo8uBZdFz3j3u5zTK1gJ4NMq1HLgdaAjcnfG+8BKwYdx5q/k39c7n6yD2P6gYbsCp0Yvk74TRuBtGL5SG0fd7ADdFbyonF0HeN4Bb0+73jbJdnbHfXcBzMWctB/ZKu/8FcHqW/QYCs4rguZ0O3F3Ba2Qm4Wy9cfSmd3PMWfdNewO7Kcq+IirQStuvGIrHClYfJHhQ9Ab8cvRvPzD6fjlZBmXGkPcGwhQkpwJHRR8YxgGfRYVwI8L4sLnALXHnrebflNfi4W0egKRPCG/GI6rY7xzgRDPbsjDJKsyxGOhlZs9F91sQetXsY2kNjdHlrNvMLLbxE5LmA6eY2bjo/o+Es6EXMvbbFxhvZk0Kn3K1HN8DB5jZpIztrQgj+39rZu9KOgq4wszaxJEzyvQiYR6uY9K2HUt445tE6Cn4g6RdCQ3nsQ1mi3pb7WZmr0f33wTmmtn+GftNBJqZ2V4xxEzP8SlwqZndHt3fgVCcjzGzu9P26084Y94inqQg6c5q7tqeMLAxL68Db/MINgFer8Z+r1MEA5gI3TDTXwCpuYG+ydhvKWEwVpzGEwY0rh3dfw44PMt+hxM+3cXtC0KPu0z/R3jeU+N8ZrFq8GhctgX+kb7BzO4kTKWzGzA5GvNRjLYldHnNNJIwUWLcNmbV+C6I5rAizBOV7iOyj1cppKMJZ0PbVXFrX9EPqAkfJBj8F+gv6Z9mlq0/emoG0P7RvnGbRZg19RkAM1sRdSF8N2O/LVl95GkczieMhP6fpDuAJ4ArJG3LqoFsnYEdCDOsxm0kMExSM0Jbwk+EEdqDgCm2arzKlkDcPa9+AJplbjSz6dGI6GcIl4KGFDhXRdIvc3zLqg896b6jOD7UfkoowlOj+3sSLrP9ntDWmLI78b8OPgReN7OjKttJ0sGEdrG88OIRnEUYJDhD0iOE6cO/IbzYWwJbE67RtqU4Rmw/QsY0A2b2Wpb9jmD1F3rBmdnXknYjvPmeSfhEB9Axuv1EuMSyp5m9EU/KVcxseHSJ5TzClCkQXgf3EwaGpSwjzHUWp/8SrruPz3zAzD6JCshEYHSBc1XkGUnLo+9bAL9j1QeIlK2B+YUMVYFbgeslbUcodIcSPghdJKk5YZLBHYEzgLhn2n6VUNSqkj6ItNa8zSMi6ReE0dn7sWpq45TPCD1urjSzzNPWoiVpc+AbMyuK6R4AJJWx+kC2j604x3isRRiH0hj4pJiewxRJJxCmKNnBKhjMGp1BPUpoD4vtE30000CmD83svoz9Xoi2F0M389MIl1PXIszWcKukwwltSqmJMUcC58b5Go66DO9uZjdUsd+GhDa7qZXtV+3f68VjTVG/7lRbwTdmFvfsqc65IhFdwt7QzL6MO0ucvHjUM9Ep9ZtA32K4DKQELuuqhCzx61ycvHikid40NgbeN7M1GvOi075uZnZPwcOtnqNbJQ83IzSKnUc0HbuZTSxErmyUoGVdIVlL/FZXNO/VIWY2NOYcBV8qNZ+iM470ZXOnE/6O2N9EFWYr7k34/zTazN6T9H/Axaz6wPN3S1s/pdbiHrhSDDdgHeAhwpvDCkJj6CigRcZ+sQ+2inIkaZWzr4CeafdfJfRiWjdtWwtCr5ZniuC5nURYxrUl4Vr3TcAcwkj+tdJeL08Rel/F/vqtxt+U18FhNczwS0IvwdTr8mPCm9onhAL9BmEq9s+BtkXwnL1MmIE2db9VlHFllHMxqwY5rhtXzihbF8KHrwXR87qYsOjTIsIA0r9H/+9WEJZTzs/vjfsfqRhuwEWE3lX9CYvpnB69iD8EfpW2X7EUj+mEHinHEPpup9+2j17Uh6a2xZw1Mcu6RjmStMTv5tW8nRj365aYlkqtRd7ELJsbFYiHCCseQuhEsQgYlbHfvcCrefu9cf8jFcON0DX3lIxtmwD/BL4EOkbbiqV4iLDu9xeEKRO2SHusRfTCX2OOo5iyvg4MTrv/GXBYlv2OAr4sgrxfZbxBbBQ9n/tm7NetCIpH6iyzqlsxnIHOAw5Nu98+ytUrY79jgA+K4HWQWTy+BP6aZb/Yp9UhdCXeJ+1+qyh/54z9/kToAJSX3+vjPIJ2ZAz+M7MFkvYmVOvnJPWlOPqfY+GVMFLSg8AlwH8l3RR9X2wuB8ZI+gy4h1XLui4kXKoS4RS7GJZ1hVVL/L5EGLCWvsTvZAsDMotlid8lwGTgjir224PQDT1OsSyVmkfFvGzu96w+WDT1feZUP00JA0vzwotHMA/4FeFM42cW+m4fJuk6wmlhrA3lmczsG+AUSSMJfc8/BK6giNZYtmQt6wrJWuL3dUK73JOV7RStnRK3WJZKraWkLJv7EmHw4odRlqsIs1mfG82asSSa/+4cQrHLC+9txc8Ti21pZn+sZJ/zCZ+azWKcYK4ykg4jLJXZljABWuxLZKYoIcu6QqKW+L0QGGBmmYNaM/f7A3CxmXUqTLKsGWJZKrWmlKBlcyX9kjBnXOp1MJNwNv8wYcT+LKCM8GGok5n9Oy+/14vHz93c+gCXm9nCSvY7gnDt+5iK9olbdEmlGbDUinw1QVc6FNNSqXVNRbJsbjS+a3dCD8Hnzez7aLDz8az6wHOfmc3J2+/04uGccy5XxTB7pasjkm6XNCruHNWRpKyQvLzO5Zs3mOdA0u1AAzM7Lu4s1dSJ5HxASFJWSFBeSc8RrjLsHXeWqiQpKyQrb76zevHITWLeMADM7JdxZ6iuJGWFxOUVyXndJikrJCtvXrN6m0c9FnXR3NjM4l6spkpJygrJy+tcviWlYhYFSY2jNTKSojthRbQkSFJWSFBeSWsl5XWbpKyQrLz5zurFIzeJecNwpUHSyZI+lrRE0muSjsyy244Uwes2SVkhWXnjyOptHgkkqbp9yrONiC2oJGWFZOWNBoXeSFgi9y1CP//RknoCR5rZ93HmS5ekrJCsvHFl9TYPcn7D2CbuEeYK60C/T5iCoDKbAbvGmTdJWSFZeSVNAyab2Tlp2/YGxhBGGXe3sJDVrsDLnrX6kpQ3rqxePEjWGwaApH8TFqzqU8V+BwMPxPzCTkzWKEdi8kpaAuxvZi9kbC8jrDfSEOhKmH8p7je4xGSFZOWNK6u3eQT/A/5nZodUdgOuiTto5DVgt2rsl5p0ME5JygrJyvst4Q1hNWY2E/g9YXr5l4GdCxsrqyRlhWTljSWrn3nw8+Rm+5lZ+yr2601Y0zrWoivpF8BvzWx8Ffs1IXQnzZz2umCSlDXKkZi8kh4HlpjZnyt4vAlhcryuxDyhZ5KyRnkSkzeurF48SNYbhnMpkg4BzgB6mNnXFezTELiFMKHnFoXMl5EjMVmjLInJG1dWLx7OOedy5m0ezjnncubFwznnXM68eLiSIqmfpOnRSNxFkt6SVCe96CRtJWmIpJbV2HeIJEu7zZM0LmqPq+rYftExzfOT3LmqefFwJUNhKeE7gGeAXsBRwOPAAXX0K7cCBgNVFo/It0DH6DYQ+B3wvKRmVRz3ZHRMeQ1zOpczn57ElZJTgNvM7IK0bU9IujiuQBmWm9mr0fevSpoN/AvoBjyUuXPUg6ahmX0JfFm4mM75mYcrLS2BBZkbLa3LoaSy6BLQEZLujS5vfSFpcOZxkjpHk9D9IOlzSTenLh1J+iPwRLTrp9HPnJlj3unR17LoZ46WNE3SgZLeAX4Ads122UpSE0kjJM2S9KOkTyVdlpH/eEnvRI/PknQOzlWTn3m4UvImcGr0iX6CmS2sZN8rgQnAwcAfgMGSvjKzvwNI2gZ4GpgE9AbaAZcDWwL7Rb9rIHAV4RLZfODHHPOWRV8XZGwbAQwFPifMkrpau4gkES7HdQSGEYrQZsCeafucDVwa/awXgA7AMEnlZnZTjjldKTIzv/mtJG7A9sAnhKlFVgLvEN6E10vbpyx6/NmMY28H5hKWIQYYC3xIuGyU2ufQ6NiO0f0e0f2yamQbQphGolF02wqYAiwG2kT7jI5+3u8yju0XbW8e3e8S3T+ggt+1HrAUGJyxfSihUDWsKq/f/OaXrVzJMLP/Ar8hNJDfTJib6kJgWpaeSo9m3H8E2BRoG93fBXjUzFak7TMOWA7sUcOIGwDLotv7hLOYPmY2P22fuWb27yp+Tmfga6t4xoSOQDPgIUmNUjdgMtCaVX+jcxXyy1aupJjZj4S2iCcAJB1H6IF1HHB92q5fZByaut8GmB19/TzjZ6+QtBBYv4bxvgX2IZw1LADmmVnmFBCfr3HUmjYgXCarSGoSvXcqeLwd4FPwuEp58XAlzcxGSRoBbJ3x0MYV3J+f9nW1faLeTxsAWecXqoblZjatin2qM5/QQkJxq0gqXw+yF6P3q/E7XInzy1auZEjKLAhI2ghowZpvogdl3E81es+J7r8GHBQVjPR9GgEvRvd/ir42rkXsmngeWF9SjwoefwX4HtjUzKZluS0pXFSXVH7m4UrJ29H01c8SLkO1J/SIKgfuztj3t9FU/eMIva2OA043s5XR45cQlvx8TNIthHaCK4BnzOyVaJ/UJ/gTJI0Fys3s7br501YziTAQ8j5JQwk9v9oAfzCzE8zsG0lDgOsltQf+SfgguRXQycwyC6dza/Di4UrJUKAncAOhXWIBYZGcPmb2aca+5xAu64wjjKcYBvzchdXM3pHUldDd9RFCr6j7o+NS+8ySNBA4DTiVcNZSVhd/WDozM0kHRZn/Slg+eR5wX9o+IyTNI0zlfRbhb/wAeKCu87n6wadkdy5NtHTnp4RlPSfEm8a54uVtHs4553LmxcM551zO/LKVc865nPmZh3POuZx58XDOOZczLx7OOedy5sXDOedczrx4OOecy9n/A4TOeW4RmG4DAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -319,7 +321,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHdhJREFUeJzt3Xm0XFWd9vHvwyCEKYQp0EgTQSVCy7I1Iti0BEGG8LYMoslC317YaNRXxe6FNogIAW2WYAvool3A0g4vrSZ0A83bDCGE4QbCoAaJYicBgwZkEMW+EGMgAvm9f+wTqJxbdevUcHfl1n0+a9Wqqn322bXPTqV+95w9HEUEZmZmI22TXlfAzMzGBgccMzPLwgHHzMyycMAxM7MsHHDMzCwLBxwzM8vCAcdsGJJmSRooXg9ImtXi/lMlRbmsBnlvlPTQMNsvlTQoaYuKn/1GSSHpqFbqbDZSHHDMNh5zgL+QtF95g6RNgROB6yJibfaamXWBA47ZxuP/AWuAGXW2HQpMJAUls1HJAcesTZIOkvRfkp6S9EdJSyR9uN3yImI1cCMwvc7mGcAzwJ3FZ+8uabakX0l6QdIjks6VtPkw9d2suMT2yVL6VyX9ppS2p6Sri0t4ayTNk/Smdo/NDGCzXlfAbGMWEbNqXk8tbd4TuAe4DHgR+CtgtqR1ETGn2GcAULmsYcwBPiTpHRHxAEARRI4Hvh8RrxT5dgaeBf4eeA6YDJwD7AR8usXD3ICknYrjegaYWRzbmcACSfv4kp61ywHHrE0RMXf9a0kC7gJeD3yc9i99zSMFkBnAA0XakcAOtWVGxBJgSc3n3wO8AFwm6XMR8XKbnw9wGrAFcFhEPFeUfy+wEjgZuLyDsm0M8yU1szZJmiDpW5IeA14qHjOBN7dbZnH28J+ksxwVydOBx4D7az57E0mnSVom6YXis/8vMI4U9DpxODAfWF1chtsMeB74CTClw7JtDHPAMWvflaRg8HXgCOCdwL8CW3ZY7hzgz4GDJG0JHAvMiQ2Xdj8NuAD4D+D9wAHAqcW2Tj9/J+DDvBZE1z/eA+zRYdk2hvmSmlkbikBwDPCZiLisJr0bf8TdQeo/mQHsBmzL0Et0HwTmRsTZNZ+9f5NyXwFeBl5XSt+h9P5/gAeB8+uUsarJZ5g15IBj1p4tgE2BVzvQJW1LOtvo6CZTEfGKpP8gBZXdgWUR8bNStnG1n10YdoRcRISkJ4G31NR5U+C9pay3k86qHvIAAesmBxyzNkTE85J+DJwtaRWwDjiD1NexXRc+Yg7wGdLotLPrbF8AfErSYuCXwN8CkyqU+5/ATEk/JfULfRzYqpTnn4GTgDskXQo8BewKHAIMRMS/t3w0ZjjgmHXiJOAK4Crg98ClpB/vz3Sh7PtIo8ImAXPrbD8H2JF02SuAa4B/AK5vUu7ZpD6a84E/Ad8ClgIfW58hIn4r6UDgn4BLgO2Bp4G7gYZL75g1o9y3mJb0RuALwIHAXwB315nfUG+/8aQv/3GkwQ43AqdGxO9L+Y4Fvgq8ifSX37kRcXU3j8HMzFrXi1Fq+wHTgEeKR1VXA1NJf4mdTBoRtMFfc5IOBq4lzcY+GrgJmCPpiE4rbWZmnenFGc4mEbGueH0NsFOzMxxJBwH3AodExF1F2gHAD4H3RcRtRdp8YPOIeG/NvjcD20XEwSNxPGZmVk32M5z1waZFRwPPrA82RTk/An5VbKNYsv1QoNyhOZc0n2F8ezU2M7NuGC0TPycDy+ukLyu2AewNbF4n3zLScbY9+9vMzDo3WkapTSCtL1U2COxVk4c6+QZL2zcgaSZpORLGjRv3jj326Gwi9bp169hkk9ESx3vLbVWd26o6t1V13WirRx555NmI2LlK3tEScKD+ZDrVSS+/V4P0lBhxBWloK1OmTInFixd3UkcGBgaYOnVqR2WMFW6r6txW1bmtqutGWxVrCVYyWv4MGCTNBSjbntfOaAZr0sp5oP4ZkpmZZTJaAs5yXuurqVXbt/MoaYHBcr7JpFngrQzBNjOzLhstAWcesGsxzwYASVNI/Tfz4NVl3e8krT9VazpwX0Q8n6muZmZWR/Y+HElbkSZ+QlqYcDtJJxbvb46INZJWAAsj4hSAiLivmGNzlaTPk85YLgAWrZ+DU/gKMCDpEtKk0GnF46gRPzAzMxtWLwYN7EK6h0et9e/fQFo/ajPSSry1ZgAXk+438urSNrUZImJREby+CnyKNE/npIi4tYv1NzOzNmQPOBGxktdGjjXKM6lO2nPAR4vHcPteT/MFDM3MLLPR0odjZmajnAOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWWRPeBI2lfS7ZLWSHpK0nmSNm2yzyxJ0eDxxZp8VzbIM3nkj8zMzIazWc4PkzQBuA1YChwL7A18gxT4zhpm1+8At5TSjgNOB+aV0pcDHy2lrWyvxmZm1i1ZAw7wSWAccEJErAIWSNoOmCXpwiJtiIh4AniiNk3Sl4HlEbGklP2PEXH/CNTdzMw6kPuS2tHA/FJgmUsKQodULUTSDsD7gDndrZ6ZmY2U3AFnMumS16si4nFgTbGtqhOBzUnBqmxfSaskrZW0SFLlQGZmZiMn9yW1CcBzddIHi21VzQB+EhGPlNIfBH5I6iPaGTiNdNnu4Ij4Ub2CJM0EZgJMnDiRgYGBFqox1OrVqzsuY6xwW1XntqrObVVd7rbKHXAAok6aGqQPzSjtRrr8dvqQgiO+Wcp7Eyn4nEkaZDC0MhFXAFcATJkyJaZOnVqlGg0NDAzQaRljhduqOrdVdW6r6nK3Ve5LaoPA9nXSx1P/zKeeD5EC1NXNMkbEC8DNwNurVtDMzEZG7oCznFJfjaQ9gK0p9e0MYwawKCJ+3cLnVjp7MjOzkZM74MwDjpS0bU3adOAFYGGznSVNAg6k4ug0SeNII+MeaLWiZmbWXbkDzmXAWuA6SYcXHfazgItqh0pLWiHpu3X2nwG8DFxT3iBpvKS7JX1C0mGSpgN3ArsD54/AsZiZWQuyDhqIiEFJhwGXAjeQ+m0uJgWdcr3qLXczA7g9In5XZ9ta4HekFQt2AV4E7gMOiYjFXTkAMzNrW/ZRahGxFHhvkzyTGqS/bZh9XgRO6KhyZmY2YrxatJmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXRUsCRVG+5GTMzs6ZaPcN5UtKFkt4yIrUxM7O+1WrAuRw4Efi5pB9KmilpuxGol5mZ9ZmWAk5EnBMRewHvAx4GLgKelvR9SYePRAXNzKw/tDVoICLuiIi/BXYFPgvsA8yXtFLSLEl/1s1KmpnZ6NfpKLUpwHtIt40eBO4GPgaskPSRDss2M7M+0nLAkbSnpHMkPQrcDuwG/B3wZxHxv4E9SX09X+9qTc3MbFRr6QZsku4gndE8AVwJzI6Ix2rzRMQrkn4AfK5blTQzs9Gv1Tt+PgtMAxZERAyTbwnwhrZrZWZmfafVS2qXAvfWCzaStpH0HoCIeKl85mNmZmNbqwHnTmDfBtv2KbabmZkN0WrA0TDbtgHWdFAXMzPrY037cIrLZFNrkj4m6ahSti2BY4CHulc1MzPrJ1UGDbyLNLkTIIAPAi+X8vwJWA58oXtVMzOzftI04ETE1ynm1Ej6FXB8RCwZ6YqZmVl/aWlYdER4qLOZmbWlSh/ONGBRRKwqXg8rIm7uSs3MzKyvVDnDuRE4EPhR8TpoPFotAN+kzczMhqgScN4APF3z2szMrGVVBg08Vu+1mZlZK6r04WzVSoER4cmfZmY2RJVLaqtJfTNVuQ/HzMyGqBJw/o7WAo6ZmdkQVfpwrsxQDzMz63Od3mLazMyskiqDBn4EnBwRSyX9mCaX1yLigG5VzszM+keVPpz/Bl6oee3+HDMza1mVPpyP1rw+eURrY2ZmfavtPhwlO0sa7qZsZmZmQBsBR9I0SfcCLwK/AV6UdK+kY7peOzMz6xstBRxJnwBuIE0G/RzpZmyfK97/V7HdzMxsiJbuhwOcCVwREZ8qpV8m6TLgS8DlXamZmZn1lVYvqe0IXNdg27XADs0KkLSvpNslrZH0lKTzJA27HI6kSZKizmNunbzHSnpI0ouSlkqaXunIzMxsRLV6hnMncAiwoM62Q4C7httZ0gTgNmApcCywN/ANUuA7q8Lnfx64p+b9s6XyDyYFvm8DpwLTgDmSBiPi1grlm5nZCKky8XPfmrffAr4jaUfgeuC3wC7A8cDRwMeaFPdJYBxwQkSsAhZI2g6YJenCIm04D0fE/cNs/zJwV0ScWry/U9J+wNmAA46ZWQ9VOcP5ORtO9hTwieJRvvvnLQy/WvTRwPxSYJkLXEA6Q7qhQn3qkrQFcCjpzKbWXGC2pPER8Xy75ZuZWWeqBJxDu/h5k4E7ahMi4nFJa4ptzQLObEk7kM6s5gBfioj1qyDsDWwOLC/ts4x0ye7NwI87q76ZmbWrykoDC7v4eROA5+qkDxbbGlkL/AvpstgqYCpwOinIHFtTNnXKHyxt34CkmcBMgIkTJzIwMDBc/ZtavXp1x2WMFW6r6txW1bmtqsvdVq0OGniVpE2ALcvpFe74WW8tNjVIX1/m08BnapIGJD0DfFvS2yJiyTDlq0H6+rKvAK4AmDJlSkydOnX42jcxMDBAp2WMFW6r6txW1bmtqsvdVq1O/JSk0yWtAF4C/lDnMZxBYPs66eOpf+YznGuK57fXlE2d8te/b7V8MzProlbn4ZwKnAF8l3Tm8E/AecAjwEqKS1PDWE7qq3mVpD2ArRna99JMlJ4fJQXByaV8k4F1RR3NzKxHWg04HwfOAS4s3l8fEecC+5ECxpua7D8POFLStjVp00m3P2i1r+jE4vkBgIhYS5on9MFSvunAfR6hZmbWW6324bwBWBIRr0h6ieJyVUSsk/Rt4DukM6BGLiOdJV0n6QJgL2AWcFHtUOnikt3CiDileD8L2JY06XMV8B7gC8B1EfGzmvK/QurfuYQ0T2ha8TiqxeM0M7Mua/UM5/fANsXrx4G/rNk2gTSps6GIGAQOI83VuQE4F7iYdNZUazM2nM+znDRPZzZwM3AS8PXiubb8RaQzn8OB+cD7gZO8yoCZWe+1eoZzD/BO0o/+D0grBOwA/An4NHB7swIiYinw3iZ5JpXezyVN4GwqIq4nnd2YmdlGpNWAMwvYvXh9PumS2smkM5sFwGe7VTEzM+svLQWciHgYeLh4vZZ0L5zPjUC9zMysz3Qy8fP1wG7AUxHxZPeqZGZm/aidW0x/StKvgceAHwKPS3pC0v/peu3MzKxvtLrSwNnApaT5NMcAU4rnecC3iu1mZmZDtHpJ7dPA+RHx5VL6LcXaZp8mrTxgZma2gVYDzjga39VzIR6lZn1q0hk3DUlb+bVjelATs9Gr1T6c64ETGmz7AHBjZ9UxM7N+VeUW09Nq3s4DLpQ0iaG3mN4P+MfuV9HMzPpBlUtqNzL0VtK7A0fWyfs90p04zczMNlAl4LxhxGthZmZ9r8otph/LUREzM+tvLa80IGkz0gCBg4EdgP8B7ibdKuDl7lbPzMz6RUsBR9IuwK3A/qQ7fD4DHESaf/NTSUdExO+6XUkzMxv9Wh0WfRGwI/CuiNgrIg6KiL2AdxXpF3W7gmZm1h9aDTjTgNMj4se1icX7L5KWuTEzMxui1YCzBfCHBtv+ALyus+qYmVm/ajXg3A+cLmnr2sTi/enFdjMzsyFaHaV2GnAn8GtJt5IGDexCmgQqYGpXa2dmZn2j1Tt+LpH0JuDzwDtJo9WeBi4DLoqIZ7tfRbPu8SKcZr1TOeBI2hw4APhVRJwxclUyM7N+1EofzivAHcBbRqguZmbWxyoHnIhYB/wCmDhy1TEzs37V6ii1LwFnS3rrSFTGzMz6V6uj1M4irSiwRNKTpFFqUZshIg7oUt3MzKyPtBpwfl48zMzMWlIp4EgaR1rW5ufAb4DbIuKZkayYmZn1lyq3mN4LuA2YVJO8StKHIuLWkaqYmZn1lyqDBi4E1gF/DWwF7Ac8CFw+gvUyM7M+UyXgHAScFRH3RMSLEbEM+ATw55J2G9nqmZlZv6gScHYDfllKe5S0dtquXa+RmZn1parzcKJ5FjMzs8aqDoueL+nlOum3l9MjYpfOq2VmZv2mSsA5d8RrYWZmfa9pwIkIBxwzM+tYq2upmZmZtcUBx8zMsnDAMTOzLBxwzMwsCwccMzPLwgHHzMyyyB5wJO0r6XZJayQ9Jek8SZs22eedkmZLWlHs97CkcyRtWco3S1LUeRw1skdlZmbNtHoDto5ImkC61cFS4Fhgb+AbpMB31jC7Ti/yXgD8Atgf+Erx/IFS3ueBcoBZ1mndzcysM1kDDvBJYBxwQkSsAhZI2g6YJenCIq2eCyLidzXvByS9CFwuac+IeKxm28sRcf/IVN/MzNqV+5La0cD8UmCZSwpChzTaqRRs1nuwePbabWZmo0DugDMZWF6bEBGPA2uKba14N+nGcA+X0reX9KyklyQ9KOmEtmtrZmZdo4h8dx6Q9BLwhYi4pJT+BHBVRJxZsZxdgZ8BN0fEyTXpHyGd8SwBtiHdKG4a8IGIuK5BWTOBmQATJ058x9y5c1s9rA2sXr2abbbZpqMyxopetNVDTz4/JO2tu48fsf26xd+r6txW1XWjrQ499NAHImJKlby9CDifj4hvltKfBK6MiC9VKON1pIEHrwfeERGDw+QVcC8wLiLe1qzsKVOmxOLFi5tlG9bAwABTp07tqIyxohdtNemMm4akrfzaMSO2X7f4e1Wd26q6brSVpMoBJ/cltUFg+zrp44Hnmu1cBJCrgP2AacMFG4BI0fQ6YP9mQ6/NzGxk5R6ltpxSX42kPYCtKfXtNHAxaTj1+yKiSv71fMdSM7Mey32GMw84UtK2NWnTgReAhcPtKOmLwGeBj0TEoiofVpwRHQ/8NCJeaa/KZmbWDbnPcC4DTgWuk3QBsBcwC7iodqi0pBXAwog4pXh/EnA+cCXwpKQDa8p8dP2waUkLgWtJZ0tbAx8HDgSOG9nDMjOzZrIGnIgYlHQYcClwA6nf5mJS0CnXq7bP5Yji+eTiUeujpEAEsAL4e2A30pDpnwDHRMS8btTfzMzal/sMh4hYCry3SZ5JpfcnMzTQ1NvvlA6qZmZmI8irRZuZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmloUDjpmZZeGAY2ZmWTjgmJlZFg44ZmaWhQOOmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRab9boCZu2YdMZNQ9JWfu2YHtSkudFUV7OR5DMcMzPLwgHHzMyycMAxM7MsHHDMzCyL7AFH0r6Sbpe0RtJTks6TtGmF/cZLmi1pUNLzkr4vacc6+Y6V9JCkFyUtlTR9ZI7EzMxakXWUmqQJwG3AUuBYYG/gG6TAd1aT3a8G9gE+BqwDLgCuB/66pvyDgWuBbwOnAtOAOZIGI+LWrh6MdY1HcTW2vm1Oe+vLnHzGTW4XG9VyD4v+JDAOOCEiVgELJG0HzJJ0YZE2hKSDgCOBQyLiriLtSeCHkg6PiNuKrF8G7oqIU4v3d0raDzgbcMAxM+uh3AHnaGB+KbDMJZ2tHALcMMx+z6wPNgAR8SNJvyq23SZpC+BQ0plNrbnAbEnjI+L5Lh2HNeCzlY2D/x1sY5Q74EwG7qhNiIjHJa0ptjUKOJOB5XXSlxXbIF2e27xOvmWkS3ZvBn7cXrXbV+8/fj0rv3ZM0x+JKj8i5TyNfmSq5ms1r41+7f57txvk2tkvxz7+3nefIiLfh0kvAV+IiEtK6U8AV0XEmQ32WwD8MSKOK6V/D9grIt4t6a+ARcBfRsSSmjxvBH4BHFmvH0fSTGBm8XYf4OG2DzDZCXi2wzLGCrdVdW6r6txW1XWjrfaMiJ2rZOzF0jb1IpwapLezX/m9htmfiLgCuKLJZ1cmaXFETOlWef3MbVWd26o6t1V1udsq97DoQWD7Ounjgefa2G/7mv0Ga9LKeWhSvpmZjbDcAWc5r/W5ACBpD2Br6vfRNNyvUNu38yjwUp18k0nDqB9po75mZtYluQPOPOBISdvWpE0HXgAWNtlv12KeDQCSpgB7FduIiLXAncAHS/tOB+7LOEKta5fnxgC3VXVuq+rcVtVlbavcgwYmkCZ9/pw0FHov4CLgkog4qybfCmBhRJxSk3YLaaTZ53lt4udvI6I88XMAuJQ0KXRakf8oT/w0M+utrGc4ETEIHAZsShoCfS5wMXBOKetmRZ5aM0hnQf8KXAU8ABxfKn8RcCJwODAfeD9wkoONmVnvZT3DMTOzscurRdfhBUara6etJL2zaKcVxX4PSzpH0palfLMkRZ3HUSN7VCOjzbaa1KAN5tbJO9a/V42+LyHpizX5rmyQp97ApI2epDdKulzSTyW9Immg4n7Zf698i+kSLzBaXQdtNb3IewFpUu7+wFeK5w+U8j4PlAPMsk7rnluH3ytIfZH31LzfYLKev1cAfAe4pZR2HHA6xeCiGsuBj5bSVrZX457bj/TvfT/wuhb2y/97FRF+1DyAL5Lm9GxXk/aPwJratDr7HUSaXPqemrQDirTDa9LmA3eU9r0ZWNTrY8/YVjvXSZtZtNWeNWmzgGd7fZw9bqtJRbv8ryblj/nvVYOybgKWldKuBBb3+ji72F6b1Ly+BhiosE9Pfq98SW2oRguMjiMtMDrcfkMWGAXWLzBKzQKj/17ady5wkKTxnVc/q7baKiJ+Vyf5weJ5l+5Vb6PS7veqKX+v6pO0A/A+YE53q7dxiYh1bezWk98rB5yhhiwUGhGPk/66Gu4ab7cWGB1N2m2ret5NOq0vr2W3vaRnJb0k6UFJJ7Rd297qtK1mF9fnn5Z0kaRxNdv8varvRFK7DOnvAvaVtErSWkmLJHUU9EehnvxeOeAMNYH6y+AMFts62W/9cznfYGn7aNFuW21A0q7Al4B/K/1Vu4J0KeVDpL6dp4BrR2nQabet1gL/ApxCmlJwOfApNvwR9feqvhnATyKivMrIg8BpwN8AHyZNwVgg6YA26jpa9eT3yoMG6tuoFhjdyLXbVimj9DrSKftq4B82KDjie6W8NwD3km6od107le2xltsqIp4GPlOTNCDpGeDbkt4WNSuj1ylnLH+vdiNdfjt9SMER3yzlvYk0QOFM0iCDsSL775XPcIbyAqPVtdtWAEgSaRLvfsC0SBODG4rUY3kdsH+VYeobmY7aquSa4vntNWVTp/wx+b0qfIj0w3h1s4wR8QKpI/ztzfL2kZ78XjngDOUFRqtrt63Wu5g07PXYiKiSf73R+Bd7p21VK0rP/l4NNYM0kurXLXzuaPxetasnv1cOOEONhQVGu6XdtqKYiPdZ4CORliRqqjgjOh74aUS80l6Ve6bttqrjxOL5AfD3qkzSJOBAKo5OKwZgHE3RnmNEb36vej2GfGN7kDrCngYWkNZkm0nqX/hqKd8K4LultFuAXwInkK4FPwzcXcpzMPAycAkwFbiQ9NfCEb0+9lxtBZxE+mtyNumHofaxc02+haTJZkeQAs3NRVu9v9fHnrGtZpEmPZ5Q7Hce6Yf3Wn+vhv4fLNLPIP1lXm++13jgbuATpEEY00kTJtcCU3p97G2211akP0JOBO4D/rvm/VaN2qoXv1c9b6yN8QHsC9xR/Md+mjQLftNSnpXAlaW07Ysf0eeAVcAPgJ3qlH8cacXstaTT1xm9PuacbUWaeBcNHifX5Ptu8R/iBeCPxQ/F0b0+5sxtNQNYTFpx4U/FD8d5wBb+Xg39P1ikLwFuaVDulqR+wF8X7fR88cN7YK+PuYO2mjTM/6dJjdqqF79XXrzTzMyycB+OmZll4YBjZmZZOOCYmVkWDjhmZpaFA46ZmWXhgGNmZlk44JiZWRYOOGZmlsX/ByRX0i7BqSM2AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAdxklEQVR4nO3debRcVZ328e/DIIQphCnQSBNAJULLsjUg2DSEGcLbMogkC317QaMBXxW6F9KMQkCbJdgCumgWsLTDS6sJ3UDzNkMIYbiBMKhBgtBJwCBhFsW+EGNCBPJ7/9gncHJu1a1Tw6mbyn0+a9Wqqn322bXPTqV+95w9HEUEZmZmnbbOUFfAzMzWTg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxG4SkKZL6std9kqY0uf94SVEsq07e2yU9Ocj2qyT1S9qg5Gd/SFJIOryZOpt1igOM2ZpjGvAXknYvbpC0LnAccEtErOh6zcxa4ABjtub4f8AyYFKNbQcAo0lByKwnOMCYtUjSPpL+S9Irkv4oaZ6kz7daXkQsBW4HJtbYPAl4Dbg/++ztJU2V9Jyk5ZKekXSRpPUHqe962SWzUwvp35L0m0LajpJuzC7JLZM0Q9KHWz02G57WG+oKmK3JImJK7vX4wuYdgYeAa4C3gL8CpkpaGRHTsn36ABXLGsQ04HhJn4yIxwCyoHEM8OOIeDfLtzXwOvD3wBvAWOBCYCvgK00e5mokbZUd12vA5OzYzgVmSdrVl+isLAcYsxZFxPRVryUJeAD4IPAlWr+UNYMUMCYBj2VphwFb5MuMiHnAvNznPwQsB66RdHpEvNPi5wOcAWwAHBQRb2TlPwwsBk4Erm2jbBtGfInMrEWSRkn6vqTngbezx2TgI62WmZ0d/CfpLEZZ8kTgeeDR3GevI+kMSQskLc8++/8CI0hBrh0HAzOBpdlltfWAN4FfAOPaLNuGEQcYs9ZdT/rx/w5wKLAn8K/Ahm2WOw34c2AfSRsCRwHTYvWlz88ALgX+A/gMsBdwWrat3c/fCvg87wfNVY/9gB3aLNuGEV8iM2tB9sN/JPDViLgml96JP9ruI/V/TAK2AzZl4CW3zwHTI+KC3Gfv0aDcd4F3gA8U0rcovP8f4HHgkhplLGnwGWbvcYAxa80GwLrAex3ekjYlnU20dZOliHhX0n+Qgsj2wIKI+GUh24j8Z2cGHcEWESHpZeCjuTqvCxxYyHov6azpSXfoWzscYMxaEBFvSvo5cIGkJcBK4GxSX8VmHfiIacBXSaPHLqixfRbwZUlzgV8DfwuMKVHufwKTJT1B6tf5ErBRIc8/AycA90m6CngF2BbYH+iLiH9v+mhsWHKAMWvdCcB1wA3A74GrSD/WX+1A2Y+QRm2NAabX2H4hsCXpMlYANwH/ANzaoNwLSH0slwB/Ar4PzAe+uCpDRPxW0t7APwFXApsDrwIPAnWXsjErUrdvmSzpQ8CZwN7AXwAP1phfUGu/kaQv+9GkwQm3A6dFxO8L+Y4CvgV8mPSX3UURcWMnj8HMzBobilFkuwMTgGeyR1k3AuNJf2mdSBqxs9pfa5L2BW4mzXY+ArgDmCbp0HYrbWZmzRmKM5h1ImJl9vomYKtGZzCS9gEeBvaPiAeytL2AnwKHRMQ9WdpMYP2IODC3753AZhGxbxXHY2ZmtXX9DGZVcGnSEcBrq4JLVs7PgOeybWRLmB8AFDsgp5PmE4xsrcZmZtaKXploORZYWCN9QbYNYBdg/Rr5FpCOs+XZ1WZm1rxeGUU2irQ+U1E/sHMuDzXy9Re2r0bSZNLyHowYMeKTO+zQ3kTllStXss46vRK3h5bbqjy3VXluq/I60VbPPPPM6xGxda1tvRJgoPbkNdVIL75XnfSUGHEdaagp48aNi7lz57ZTR/r6+hg/fnxbZQwXbqvy3Fblua3K60RbZWvx1dQrYb6fNBa/aHPeP2Ppz6UV80DtMyAzM6tIrwSYhbzf15KX75t5lrQgXzHfWNIs62aGRJuZWZt6JcDMALbN5rkAIGkcqf9lBry3zPn9pPWb8iYCj0TEm12qq5mZMQR9MJI2Ik20hLSQ32aSjsve3xkRyyQtAmZHxMkAEfFINsflBklfJ52RXArMWTUHJvNNoE/SlaRJmBOyx+GVH5iZma1mKDr5tyHdwyJv1fudSOsvrUdaqTZvEnAF6X4b7y0Vk88QEXOyYPUt4MukeTInRMTdHay/mZmV0PUAExGLeX9kV708Y2qkvQGclD0G2/dWGi/4Z2ZmFeuVPhgzM+sxDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWia4HGEm7SbpX0jJJr0i6WNK6DfaZIinqPM7J5bu+Tp6x1R+ZmZnlrdfND5M0CrgHmA8cBewCfJcU6M4fZNcfAHcV0o4GzgJmFNIXAicV0ha3VmMzM2tVVwMMcCowAjg2IpYAsyRtBkyRdFmWNkBEvAS8lE+T9A1gYUTMK2T/Y0Q8WkHdzcysCd2+RHYEMLMQSKaTgs7+ZQuRtAVwCDCts9UzM7NO6XaAGUu6hPWeiHgBWJZtK+s4YH1ScCraTdISSSskzZFUOnCZmVnndPsS2SjgjRrp/dm2siYBv4iIZwrpjwM/JfXxbA2cQboMt29E/KxWQZImA5MBRo8eTV9fXxPVGGjp0qVtlzFcuK3Kc1uV57Yqr+q26naAAYgaaaqTPjCjtB3pctpZAwqO+F4h7x2kYHMuaVDAwMpEXAdcBzBu3LgYP358mWrU1dfXR7tlDBduq/LcVuW5rcqruq26fYmsH9i8RvpIap/Z1HI8KSDd2ChjRCwH7gQ+UbaCZmbWGd0OMAsp9LVI2gHYmELfzCAmAXMi4sUmPrfU2ZGZmXVOtwPMDOAwSZvm0iYCy4HZjXaWNAbYm5KjxySNII1ce6zZipqZWXu6HWCuAVYAt0g6OOtgnwJcnh+6LGmRpB/W2H8S8A5wU3GDpJGSHpR0iqSDJE0E7ge2By6p4FjMzGwQXe3kj4h+SQcBVwG3kfpdriAFmWK9ai0fMwm4NyJ+V2PbCuB3pBUBtgHeAh4B9o+IuR05ADMzK63ro8giYj5wYIM8Y+qkf3yQfd4Cjm2rcmZm1jFeTdnMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKtFUgJFUa/kWMzOzAZo9g3lZ0mWSPlpJbczMbK3RbIC5FjgOeErSTyVNlrRZBfUyM7Me11SAiYgLI2Jn4BDgaeBy4FVJP5Z0cBUVNDOz3tRSJ39E3BcRfwtsC3wN2BWYKWmxpCmS/qyTlTQzs97T7iiyccB+pNsg9wMPAl8EFkn6Qptlm5lZD2s6wEjaUdKFkp4F7gW2A/4O+LOI+N/AjqS+mu90tKZmZtZTmrrhmKT7SGcsLwHXA1Mj4vl8noh4V9JPgNM7VUkzM+s9zd7R8nVgAjArImKQfPOAnVqulZmZ9bxmL5FdBTxcK7hI2kTSfgAR8XbxzMbMzIaXZgPM/cBudbbtmm03MzNrOsBokG2bAMvaqIuZma1FGvbBZJe9xueSvijp8EK2DYEjgSc7VzUzM+tlZTr5P0WaTAkQwOeAdwp5/gQsBM7sXNXMzKyXNQwwEfEdsjktkp4DjomIeVVXzMzMeltTw5QjwkOPzcyslDJ9MBOAORGxJHs9qIi4syM1MzOznlbmDOZ2YG/gZ9nroP5osgB8UzIzMysVYHYCXs29NjMza6hMJ//ztV6bmZkNpkwfzEbNFBgRnmxpZmalLpEtJfWtlOU+GDMzKxVg/o7mAoyZmVmpPpjru1APMzNby7R7y2QzM7OaynTy/ww4MSLmS/o5DS6XRcRenaqcmZn1rjJ9MP8NLM+9dn+MmZk1VKYP5qTc6xMrrY2Zma01Wu6DUbK1pMFuQmZmZsNU0wFG0gRJDwNvAb8B3pL0sKQjO147MzPrWU0FGEmnALeRJl+eTrr52OnZ+//KtpuZmTV3PxjgXOC6iPhyIf0aSdcA5wHXdqRmZmbW05q9RLYlcEudbTcDWzQqQNJuku6VtEzSK5IuljTo8jKSxkiKGo/pNfIeJelJSW9Jmi9pYqkjMzOzjmr2DOZ+YH9gVo1t+wMPDLazpFHAPcB84ChgF+C7pEB3fonP/zrwUO7964Xy9yUFuquB04AJwDRJ/RFxd4nyzcysQ8pMtNwt9/b7wA8kbQncCvwW2AY4BjgC+GKD4k4FRgDHRsQSYJakzYApki7L0gbzdEQ8Osj2bwAPRMRp2fv7Je0OXAA4wJiZdVGZM5inWH1ypYBTskfx7pZ3MfhqykcAMwuBZDpwKekM6LYS9alJ0gbAAaQzl7zpwFRJIyPizVbLNzOz5pQJMAd08PPGAvflEyLiBUnLsm2NAsxUSVuQzpymAedFxKpVBnYB1gcWFvZZQLoE9xHg5+1V38zMyiozk392Bz9vFPBGjfT+bFs9K4B/IV3mWgKMB84iBZWjcmVTo/z+wvbVSJoMTAYYPXo0fX19g9W/oaVLl7ZdxnDhtirPbVWe26q8qtuq2U7+90haB9iwmF7ijpa11jJTnfRVZb4KfDWX1CfpNeBqSR+PiHmDlK866avKvg64DmDcuHExfvz4wWvfQF9fH+2WMVy4rcpzW5Xntiqv6rZqdqKlJJ0laRHwNvCHGo/B9AOb10gfSe0zm8HclD1/Ilc2Ncpf9b7Z8s3MrA3NzoM5DTgb+CHpzOCfgIuBZ4DFZJeaBrGQ1NfyHkk7ABszsO+kkSg8P0sKemML+cYCK7M6mplZlzQbYL4EXAhclr2/NSIuAnYnBYgPN9h/BnCYpE1zaRNJtwNotq/nuOz5MYCIWEGap/O5Qr6JwCMeQWZm1l3N9sHsBMyLiHclvU12+SkiVkq6GvgB6QynnmtIZ0G3SLoU2BmYAlyeH7qcXYKbHREnZ++nAJuSJlkuAfYDzgRuiYhf5sr/Jql/5krSPJ0J2ePwJo/TzMza1OwZzO+BTbLXLwB/mds2ijSJsq6I6AcOIs2VuQ24CLiCdFaUtx6rz6dZSJonMxW4EzgB+E72nC9/DunM5mBgJvAZ4ATP4jcz675mz2AeAvYk/cj/hDQDfwvgT8BXgHsbFRAR84EDG+QZU3g/nTRhsqGIuJV09mJmZkOo2QAzBdg+e30J6RLZiaQzl1nA1zpVMTMz621NBZiIeBp4Onu9gnQvmNMrqJeZmfW4diZafhDYDnglIl7uXJXMzGxt0Motk78s6UXgeeCnwAuSXpL0fzpeOzMz61nNzuS/ALiKNJ/lSGBc9jwD+H623czMrOlLZF8BLomIbxTS78rWBvsKaWa/mZkNc80GmBHUv2vlbDyKzNZSY86+Y0Da4m8fOQQ1MesdzfbB3AocW2fbZ4Hb26uOmZmtLcrcMnlC7u0M4DJJYxh4y+TdgX/sfBXNzKwXlblEdjsDb428PXBYjbw/It1p0szMhrkyAWanymthZmZrnTK3TH6+GxUxM7O1S9Mz+SWtR+rQ3xfYAvgf4EHS0vnvdLZ6ZmbWq5oKMJK2Ae4G9iDdwfI1YB/S/JcnJB0aEb/rdCXNzKz3NDtM+XJgS+BTEbFzROwTETsDn8rSL+90Bc3MrDc1G2AmAGdFxM/zidn7c0jLxpiZmTUdYDYA/lBn2x+AD7RXHTMzW1s0G2AeBc6StHE+MXt/VrbdzMys6VFkZwD3Ay9KupvUyb8NadKlgPEdrZ2ZmfWsZu9oOU/Sh4GvA3uSRpO9ClwDXB4Rr3e+imad40UrzbqndICRtD6wF/BcRJxdXZXMzGxt0EwfzLvAfcBHK6qLmZmtRUoHmIhYCfwKGF1ddczMbG3R7Ciy84ALJH2sisqYmdnao9lRZOeTZuzPk/QyaRRZ5DNExF4dqpuZmfWwZgPMU9nDzMxsUKUCjKQRpGVingJ+A9wTEa9VWTEzM+ttZW6ZvDNwDzAml7xE0vERcXdVFTMzs95WppP/MmAl8NfARsDuwOPAtRXWy8zMelyZALMPcH5EPBQRb0XEAuAU4M8lbVdt9czMrFeVCTDbAb8upD1LWnts247XyMzM1gpl58FE4yxmZmbvKztMeaakd2qk31tMj4ht2q+WmZn1ujIB5qLKa2FmZmudhgEmIhxgzMysac2uRWZmZlaKA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSW6HmAk7SbpXknLJL0i6WJJ6zbYZ09JUyUtyvZ7WtKFkjYs5JsiKWo8Dq/2qMzMrKjZG461RdIo0tL/84GjgF2A75IC3fmD7Doxy3sp8CtgD+Cb2fNnC3nfBIoBZUG7dTczs+Z0NcAApwIjgGMjYgkwS9JmwBRJl2VptVwaEb/Lve+T9BZwraQdI+L53LZ3IuLRaqpvZmZldfsS2RHAzEIgmU4KOvvX26kQXFZ5PHv22mdmZmugbgeYscDCfEJEvAAsy7Y149OkG6E9XUjfXNLrkt6W9LikY1uurZmZtUwR3VuJX9LbwJkRcWUh/SXghog4t2Q52wK/BO6MiBNz6V8gndHMAzYh3RhtAvDZiLilTlmTgckAo0eP/uT06dObPazVLF26lE022aStMoaLoWirJ19+c0Dax7YfWdl+neLvVXluq/I60VYHHHDAYxExrta2oQgwX4+I7xXSXwauj4jzSpTxAdJAgQ8Cn4yI/kHyCngYGBERH29U9rhx42Lu3LmNsg2qr6+P8ePHt1XGcDEUbTXm7DsGpC3+9pGV7dcp/l6V57YqrxNtJalugOn2JbJ+YPMa6SOBNxrtnAWMG4DdgQmDBReASNHzFmCPRkOhzcyss7o9imwhhb4WSTsAG1Pom6njCtLw5kMiokz+VXxHTjOzLuv2GcwM4DBJm+bSJgLLgdmD7SjpHOBrwBciYk6ZD8vOeI4BnoiId1urspmZtaLbZzDXAKcBt0i6FNgZmAJcnh+6LGkRMDsiTs7enwBcAlwPvCxp71yZz64axixpNnAz6WxoY+BLwN7A0dUelpmZFXU1wEREv6SDgKuA20j9LleQgkyxXvk+k0Oz5xOzR95JpMADsAj4e2A70hDmXwBHRsSMTtTfzMzK6/YZDBExHziwQZ4xhfcnMjCw1Nrv5DaqZmZmHeTVlM3MrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwq4QBjZmaVcIAxM7NKOMCYmVklHGDMzKwSDjBmZlYJBxgzM6uEA4yZmVXCAcbMzCrhAGNmZpVwgDEzs0o4wJiZWSUcYMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJRxgzMysEg4wZmZWCQcYMzOrhAOMmZlVwgHGzMwqsd5QV8CsFWPOvmNA2uJvHzkENWmsl+pq1kk+gzEzs0o4wJiZWSUcYMzMrBIOMGZmVomuBxhJu0m6V9IySa9IuljSuiX2GylpqqR+SW9K+rGkLWvkO0rSk5LekjRf0sRqjsTMzAbT1VFkkkYB9wDzgaOAXYDvkgLd+Q12vxHYFfgisBK4FLgV+Otc+fsCNwNXA6cBE4Bpkvoj4u6OHox1jEdZ1beqbc742DucePYdbhfrKd0epnwqMAI4NiKWALMkbQZMkXRZljaApH2Aw4D9I+KBLO1l4KeSDo6Ie7Ks3wAeiIjTsvf3S9oduABwgDEz66JuB5gjgJmFQDKddDayP3DbIPu9tiq4AETEzyQ9l227R9IGwAGkM5e86cBUSSMj4s0OHYfV4bORNYP/HWxN0O0AMxa4L58QES9IWpZtqxdgxgILa6QvyLZButy2fo18C0iX4D4C/Ly1areu1n/0WhZ/+8iGPwplfjSKeer9qJTN12xe632t/nu3GtRa2a8b+/h73z5FRPc+THobODMiriykvwTcEBHn1tlvFvDHiDi6kP4jYOeI+LSkvwLmAH8ZEfNyeT4E/Ao4rFY/jKTJwOTs7a7A0y0fYLIV8HqbZQwXbqvy3Fblua3K60Rb7RgRW9faMBRLxdSKaKqT3sp+xfcaZH8i4jrgugafXZqkuRExrlPlrc3cVuW5rcpzW5VXdVt1e5hyP7B5jfSRwBst7Ld5br/+XFoxDw3KNzOzDut2gFnI+30mAEjaAdiY2n0sdffL5PtmngXerpFvLGlY8zMt1NfMzFrU7QAzAzhM0qa5tInAcmB2g/22zea5ACBpHLBzto2IWAHcD3yusO9E4JEujiDr2OW2YcBtVZ7bqjy3VXmVtlW3O/lHkSZZPkUamrwzcDlwZUScn8u3CJgdESfn0u4ijQT7Ou9PtPxtRBQnWvYBV5EmYU7I8h/uiZZmZt3V1TOYiOgHDgLWJQ1Jvgi4AriwkHW9LE/eJNJZzr8CNwCPAccUyp8DHAccDMwEPgOc4OBiZtZ9XT2DMTOz4cOrKdfgBTnLa6WtJO2ZtdOibL+nJV0oacNCvimSosbj8GqPqhotttWYOm0wvUbe4f69qvd9CUnn5PJdXydPrYFEazxJH5J0raQnJL0rqa/kfpX/XvmWyQVekLO8NtpqYpb3UtIk2D2Ab2bPny3kfRMoBpQF7da929r8XkHqS3wo9361yXH+XgHwA+CuQtrRwFlkg4FyFgInFdIWt1bjIbc76d/7UeADTexX/e9VRPiRewDnkObUbJZL+0dgWT6txn77kCZz7pdL2ytLOziXNhO4r7DvncCcoT72LrbV1jXSJmdttWMubQrw+lAf5xC31ZisXf5Xg/KH/feqTll3AAsKadcDc4f6ODvYXuvkXt8E9JXYpyu/V75ENlC9BTlHkBbkHGy/AQtyAqsW5CS3IOe/F/adDuwjaWT71e+qltoqIn5XI/nx7HmbzlVvjdLq96ohf69qk7QFcAgwrbPVW7NExMoWduvK75UDzEADFtaMiBdIfz0Ndo22Uwty9pJW26qWT5NO04trwW0u6XVJb0t6XNKxLdd2aLXbVlOz6+uvSrpc0ojcNn+vajuO1C4D+quA3SQtkbRC0hxJbQX5HtSV3ysHmIFGUXtZmf5sWzv7rXou5usvbO8VrbbVaiRtC5wH/Fvhr9ZFpEsjx5P6Zl4Bbu7RINNqW60A/gU4mTTE/1rgy6z+o+nvVW2TgF9ERHEVj8eBM4C/AT5PmhIxS9JeLdS1V3Xl98qd/LWtUQtyruFabauUUfoA6RR8KfAPqxUc8aNC3tuAh0k3kLullcoOsabbKiJeBb6aS+qT9BpwtaSPR27l8BrlDOfv1Xaky2lnDSg44nuFvHeQBhScSxoUMFxU/nvlM5iBvCBnea22FQCSRJo0uzswIdJE3Loi9TDeAuxRZtj4Gqattiq4KXv+RK5sapQ/LL9XmeNJP4Q3NsoYEctJHdefaJR3LdKV3ysHmIG8IGd5rbbVKleQhqEeFRFl8q/Si3+Rt9tWeVF49vdqoEmkkU4vNvG5vfi9alVXfq8cYAYaDgtydkqrbUU28e1rwBciLfHTUHbGcwzwRES821qVh0zLbVXDcdnzY+DvVZGkMcDelBw9lg2YOIKsPYeJ7vxeDfUY7jXtQeq4ehWYRVrTbDKpf+BbhXyLgB8W0u4Cfg0cS7qW+zTwYCHPvsA7wJXAeOAy0l8Dhw71sXerrYATSH8tTiX9EOQfW+fyzSZN7jqUFFjuzNrqM0N97F1sqymkSYbHZvtdTPqhvdnfq4H/B7P0s0l/edeabzUSeBA4hTRoYiJpguIKYNxQH3uL7bUR6Y+O44BHgP/Ovd+oXlt14/dqyBtnTXwAuwH3Zf+RXyXNMl+3kGcxcH0hbfPsR/MNYAnwE2CrGuUfTVpRegXpdHTSUB9zN9uKNNEt6jxOzOX7YfYfYDnwx+yH4YihPuYut9UkYC5pRYM/ZT8UFwMb+Hs18P9glj4PuKtOuRuS+vFezNrpzeyHdu+hPuY22mrMIP+fxtRrq278XnmxSzMzq4T7YMzMrBIOMGZmVgkHGDMzq4QDjJmZVcIBxszMKuEAY2ZmlXCAMTOzSjjAmJlZJf4/jMGuUp1I/cgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -331,7 +333,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu0HFWd9vHvw0WIXEK4BXSQGBUzoC4lAWFeRoKgQHAZRRAGHRcKSVRGnFmioKIGvIyggKMMLwkqyKsSFJAZ5CaXnAAqShJQEBIMGu4iwQMhJEQCv/ePXQcqle4+3edUV5/uPJ+1avWpXXtX713d5/xO7dq1SxGBmZlZu23Q6QqYmdn6wQHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhWKkkzJUWd5YNN7mOXbD9bFdKPzvazeXtq31w9hrnPSyT1NZFvI0n/Lul3klZJ6pd0laR9hvi+I+WYHl34TvxV0rWSdm+i7OSszBuqqKuVzwHH2uEpYO8ayzVNlt8F+BJQ/EN/ZbafleVUc8j1aCtJGwKXA18D/heYAhwNPA/0STpqCLsdKcd0wNuz950BbAfMlfSKQcoszMrc1+a6WZts1OkKWE9aExG3lr3TiHgceLzs/Y5AnwAOAQ6OiHyQ/h9Jc4DZkuZFxMPDfaMOHtPbImIFgKT5wP3AB4BvFDNKErBJRCwHSv9eWXV8hmMdIemzkpZIelbSY5KukbSDpMnAFVm2P2ddKEuzMmt1/0gal60fKel8ScslPTTQdSfpM5IekfS4pNMkbZB7/wmS5kh6UNJKSX/IurA2yLbXrUe2/VVZ+b9l5a+V9PpCG3fKusFWSVoq6dgmD88ngbmFYDPg88CmwDG591kq6ZuSviDpL5JWSPqRpNGDtaVWl5qkbSX9QNITWdv6JE0qtG3gPf8jO+b92fFo+WwwIh4kBb1x2b5nSlomaR9JtwHPAofX6lKTtGH2XbpX0uqsLhcU6jpV0vzsu/YXSadL2rjVetrw+QzH2kLSOt+tiFiTbfsQ8DngROAPwDakLpbNSN0mJwDfBA4FHgVWD/J2pwE/At4HfAT4gaS3ADtn6xOBrwC3A3OyMq8EFmflngbeDJwCjAL+s1E9JG0N3AI8AXyU1B11EnC9pF0iYlX2X/n/ANuSgsOz2f63Bv7Y4LjtRPrDe1at7RFxn6Q7gbcVNv0LsASYBuwInA58Fzi8UVvquBx4bVZmGfBpUpfXWyJiSS7f+4HfA9OBfwDOJHUDfrzBvtchaQvScflLLvnlwA+ydtwLPJK1q2gW8KEs37xsP4fl9v1+4KIs3+eA15A+3w2y9lmVIsKLl9IWYCYQdZZxWZ6zgUsb7ONd+fy59KOz9M2z9XHZ+vm5PFsCz5H+qG+YS/8tcHGd9xPpn6/PAX9qoh5fJgWbrXNpY0jXro7L1qdkZd+ay7MzsAboa9D2vbJyUxvkuRy4J7e+FPjbwHHJ0j4AvAD8Y4vH9KBsfd9cns1IZyCzCu95H7BRLu1bwF8G+X4MvN/o7JjvBFycHZc3F75DUwtlJ2fpb8jWJ2Trxzf4XO/Pfz+y9I8Aq4BtOv37sr4tPsOxdngKOKBG+iPZ6x3AMZJOIV20XhARzw/j/W4Y+CEilkt6HJhX2OcS4FUDK5I2BT5L+sP8KmDj3LaNIjsbq+MA4Dpgee5M7mlgATDQ9bQn8FhE/CZXt/slLRhC+5pxXWTXRDKXAT8E9gDuaWE/ewKPR8S8gYSIeEbSz4HiCLm5heN0N7C9pJdFxN8HeZ8ncz8vAz4SEXfk0gK4epB97Je9XlBn+y6kz/YnhTPuG0ndkm8gnRVZRRxwrB3WRMT8Btu/D2xB6or5IvCEpP8LzBxi4HmysP73Ommb5tZPA44ldXMtzPJPBU7O8q2gvm1JZyJH1Ng2EPx2AP5aY/tfSW2vZ2AgwM4N8uycy5ff74sideutoHY3VCM7Ao/VSH+M1F2VV+sYC3hZ9nMjbyN1RS4DHoyIFwrb+5sIWtsAz0QaTFDLttnrVXW27zTI/q1kDjhWueyPy1nAWdk1iw8AXyX9ET23omocDnwnIk4fSJB0SJNl/0YarvzlGtuezl7/AmxfY/v2pO6cmiLiweyC/ruBbxe3S3o16T/z4ntvX8g3CticdL2mFY8W95UZS2p3WW4vnJEVNfPclCeAzSRtWSfoDNR3Oun6XdGfm3gPK5FHqVlHRcSDEfF1UpfXrlnywH+2m9YuVYpR5C6cK937cmQhT7163ADsBvwhIuYXlsVZntuAsZLemnuPVwGD3uAI/Bewv6R31tj2laze3yukv0Nr37x5KOmP9sCZZrPH9DekbrEXByVIejlpmPYtTdS9Sjdmrx+qs30x6Z+YcTU+p/kR8UQ11bQBPsOxdthI0l410h+MiIclzSL993kr6XrPfsDrSKPWIP2hAJihdN/Jyoi4s+Q6XgccJ2lJVpfjgE0KeerV40zgg8CNkr5D+qM2FtgXuCUiLiJ14/wO+KmkE0mj1E6ldjdb0XdI14l+JumbQB+pG+4Y0sX/f41178FZBVwp6RukbrFvAD+LiLsHactaIuJaSb8ELpZ0Euks4gRSgF7nHplOiojFkmYDZ0jaHriJdGPrYRFxZES8IOlTwP+TtCXpmtDfgfHAe7J8Vd/wun7r9KgFL7210HiU2slZnqOBX5L+0K8kDa09prCfT5FGGK0BlubK1Rql9q5C2aXANwtpFwDzc+tjgZ8By0nXJ04nDSl+cf/16pGlvwI4Pyu7OnvPHwK75fK8ijS7wqpsHzOAS2gwSi1XdiPgP7JjswroJ/3B3KdG3qXAGdmxfwx4hjQUeKtWj2mWth1wYfaeq0gX1vdo4hivs68adW0mz0xgWY30yeRGqWVpG5KNLiQFk4dYd1TawcDN2XFZThq08hVyI+y8VLMo+0AqI+m1pHH9e5H6om+OiMlNlBtNGnb5HlJX4M9JwyGfKOSbSvoyvY70JTwlIi4usw1mI0l2zeeSiPB9JTaideIazm6kexTuzZZmXUz6D+dY0n9Je5DuR3iR0sSGlwJzSf/VXAlcVKcv3MzMKtSJM5wNIhsCKekSYNvBznAk7Q38inQz2k1Z2p6kC5zviIjrs7RrgY0j4u25slcBW0bEkGbZNRvpfIZj3aLyM5xYd7x9Mw4m3UR3U24/vyUNazwYQNImpIvPPymUnQPsPTCvlFmviYhxDjbWDbplWPQEYFGN9HuybZDmSNq4Rr57SO3cpW21MzOzQXXLsOgxrHtXM6RRNONzeaiRr7+wfS2SppNuDGPUqFETd9qpe24+fuGFF9hgg275n6F87Wj/Fvemy4pP7zLy/z9Z3z9/8DEYCe2/9957l0XEds3k7ZaAA7XvPFaN9OK6GpQnImYDswEmTZoU8+c3mpFlZOnr62Py5MmdrkbHtKX9yr4uixc3zjcCrO+fP/gYjIT2S7q/2bzd8q9BP7WfurgVL53R9OfSinmg9hmSmZlVpFsCziJeulaTl7+2cx9pWvpivgmkadpbGYJtZmYl65aAczWwQ3afDQDZEwjHZ9uIiNWk+28OL5Q9Avh1RDxVUV3NzKyGyq/hZBMBTslWXwlsKWngCX1XRcTKbH6reRFxDEBE/Dq7x+ZCSSeQzlhOI81bdX1u918G+iR9i3RT6JRsOajtDTMzs4Y6MWhge+CnhbSB9VeT5mjaiDRHUt6RpCntv09uapt8hoi4JQteXwE+RrpP56iI+EWJ9bdeVvGN0Gbrk8oDTkQs5aWRY/XyjKuR9iTw4WxpVPZyClPemJlZ53XLNRwzM+tyDjhmeRMnpsXMStdNN36atd/ChZ2ugVnP8hmOmZlVwgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklPErNLG/atE7XwKxnOeCY5c2e3ekamPUsd6mZmVklHHDM8hYsSIuZlc5damZ5kyalV88abVY6n+GYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCAcfMzCrhYdFmefPnd7oGZj3LAccsz4+XNmsbd6mZmVklHHDM8qZPT4uZlc4BxyzvvPPSYmalc8AxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEb/w0y9t9907XwKxnOeCY5fnx0mZt4y41MzOrhAOOmZlVwgHHLE9Ki5mVzgHHzMwq4YBjZmaVcMAxM7NKOOCYmVklHHDMzKwSDjhmZlYJzzRgljdrVqdrYNazHHDM8vx4abO2qbxLTdKukm6QtFLSI5JOlbThIGVmSoo6y2dz+S6ok2dC+1tmZmaNVHqGI2kMcD1wNzAVeA1wBinwndyg6HeBawpp7wFOBK4upC8CPlxIWzq0Gtt6Z/bs9OozHbPSVd2l9lFgFHBoRCwHrpO0JTBT0ulZ2joi4iHgoXyapC8AiyLijkL2ZyLi1jbU3dYHM2akVwccs9JV3aV2MHBtIbDMIQWhfZvdiaStgXcAF5VbPTMza5eqA84EUpfXiyLiAWBltq1ZhwEbk4JV0a6SlktaLekWSU0HMjMza5+qu9TGAE/WSO/PtjXrSGBhRNxbSL8d+A3pGtF2wKdI3Xb7RMRva+1I0nRgOsDYsWPp6+troRqdtWLFiq6qb9na0f7J2Ws3HNf1/fMHH4Oua39EVLYAzwGfrJH+MPDVJvexI/A8cEITeUcBfwYub2bfEydOjG4yd+7cTleho9rSfkhLF1jfP/8IH4OR0H5gfjQZA6ruUusHtqqRPpraZz61vB8QcPFgGSNiFXAV4AfVm5l1WNUBZxGFazWSdgI2o3Btp4EjgVsi4sEW3jdayGtmZm1QdcC5GjhQ0ha5tCOAVcC8wQpLGgfsRZOj0ySNIo2MW9BqRW09NdCpZmalqzrgnAusBi6TdEB2wX4mcGbkhkpLWiLpezXKHwmsAS4pbpA0WtLNkmZI2l/SEcBc4JXA19rQFjMza0Glo9Qiol/S/sDZwBWk6zZnkYJOsV61prs5ErghIh6vsW018DhpxoLtgWeBXwP7RsT8UhpgZmZDVvnknRFxN/D2QfKMq5P+5gZlngUOHVblzCZOTK8L3AtrVjbPFm2Wt3Bhp2tg1rP8ADYzM6uEA46ZmVXCAcfMzCrhgGNmZpVwwDEzs0p4lJpZ3rRpna6BWc9ywDHLG3jEtJmVzl1qZmZWiZYCjqRa082Y9Y4FCzzLgFmbtNql9rCkC4HzI+KedlTIrKMmTUqvnjHarHStdqnNAg4D7pL0G0nTJW3ZhnqZmVmPaSngRMSXImI88A5gMXAm8KikH0k6oB0VNDOz3jCkQQMRcWNEfAjYAfgE8HrgWklLJc2U9IoyK2lmZt1vuKPUJgFvIz02uh+4GTgWWCLpg8Pct5mZ9ZCWA46knSV9SdJ9wA3AjsBHgFdExL8CO5Ou9Xyj1JqamVlXa2mUmqQbSWc0DwEXkEar3Z/PExHPS/ox8MmyKmlmZt2v1WHRy4ApwHURDceN3gG8esi1MuuU+X4auVm7tBpwzgYW1go2kjYHdo+ImyLiOeD+dUqbjXQDj5g2s9K1eg1nLrBrnW2vz7abmZmto9WAowbbNgdWDqMuZp03fXpazKx0g3apSXobMDmXdKykgwrZNgUOAe4sr2pmHXDeeenVs0abla6ZazhvJd3cCRDA4cCaQp6/A4uAT5dXNTMz6yWDBpyI+AbZPTWS/gy8NyLuaHfFzMyst7Q0Si0iPNTZzMyGpJlrOFOAWyJiefZzQxFxVSk1MzOzntLMGc7Pgb2A32Y/B/VHqwXgh7SZmdk6mgk4rwYezf1s1rt2373TNTDrWc0MGri/1s9mPcmPlzZrm2au4by8lR1GhG/+NDOzdTTTpbaCdG2mWb6GY2Zm62gm4HyE1gKOWfdSNh6m4WToZjYUzVzDuaCCepiZWY8b7iOmzczMmtLMoIHfAkdHxN2SbmOQ7rWI2LOsypmZWe9o5hrOH4BVuZ/duW1mZi1r5hrOh3M/H93W2piZWc8a8jUcJdtJavRQNjMzM6DF2aLhxck8TwYmZuXXSFoAfDUiriy5fmbVmjWr0zUw61ktBRxJM4BzgBuATwJ/BbYHDgX+V9LHI8K/sda9/Hhps7Zp9Qznc8DsiPhYIf1cSecCnwcccMzMbB2tXsPZBriszrZLga0H24GkXSXdIGmlpEcknSqp4XQ4ksZJihrLnBp5p0q6U9Kzku6WdERTLTMDmD07LWZWulbPcOYC+wLX1di2L3BTo8KSxgDXA3cDU4HXAGeQAt/JTbz/CcAvc+vLCvvfhxT4zgGOB6YAF0nqj4hfNLF/W9/NmJFe3bVmVrpmbvzcNbf6beC7krYBLuelazjvBQ4Gjh1kdx8FRgGHRsRy4DpJWwIzJZ2epTWyOCJubbD9C8BNEXF8tj5X0m7AFwEHHDOzDmrmDOcu1r7ZU8CMbCk+/fMaGs8WfTBwbSGwzAFOI50hXdFEfWqStAmwH+nMJm8OcL6k0RHx1FD3b2Zmw9NMwNmvxPebANyYT4iIByStzLYNFnDOl7Q16czqIuDzETEwC8JrgI2BRYUy95C67HYBbhte9c3MbKiamWlgXonvNwZ4skZ6f7atntXAf5O6xZYDk4ETSUFmam7f1Nh/f2H7WiRNB6YDjB07lr6+vkb1H1FWrFjRVfUtWzvaPzl77Ybjur5//uBj0G3tb/nGzwGSNgA2LaY38cTPWnOxqU76wD4fBf4tl9Qn6THgHElvjog7GuxfddIH9j0bmA0wadKkmDx5cuPajyB9fX10U33L1s72d8NxXd8/f/Ax6Lb2tzQsOpvO5kRJS4DngKdrLI30A1vVSB9N7TOfRi7JXnfP7Zsa+x9Yb3X/ZmZWolbvwzkeOAn4HunM4avAqcC9wFKyrqkGFpGu1bxI0k7AZqx77WUwUXi9jxQEJxTyTQBeyOpo1liEn/Zp1iatBpxpwJeA07P1yyPiFGA3UsB43SDlrwYOlLRFLu0I0uMPWr1WdFj2ugAgIlaT7hM6vJDvCODXHqFmZtZZrV7DeTVwR0Q8L+k5su6qiHhB0jnAd0lnQPWcSzpLukzSacB4YCZwZn6odNZlNy8ijsnWZwJbkG76XA68Dfg0cFlE/D63/y+Tru98i3Sf0JRsOajFdpqZWclaPcN5Atg8+/kB4C25bWNIN3XWFRH9wP6ke3WuAE4BziKdNeVtxNr38ywi3adzPnAVcBTwjew1v/9bSGc+BwDXAu8GjvIsA9a0iRPTYmala/UM55fAHqQ/+j8mzRCwNfB34DjSLNINRcTdwNsHyTOusD6HdAPnoCLictLZjVnrFi7sdA3MelarAWcm8Mrs56+RutSOJp3ZXAd8oqyKmZlZb2kp4ETEYmBx9vNq0jNxPtmGepmZWY8Zzo2f/wDsCDwSEQ+XVyUzM+tFrQ4aQNLHJD0I3A/8BnhA0kOSPl567czMrGe0OtPAF4GzSffTHAJMyl6vBr6dbTczM1tHq11qxwFfi4gvFNKvyeY2O44084BZd5o2rdM1MOtZrQacUdR/quc8PErNul2Dx0uPO+nKtdaXfv2QdtfGrKe0eg3ncuDQOtveB/x8eNUxM7Ne1cwjpqfkVq8GTpc0jnUfMb0b8Jnyq2hWoQUL0qtnGzArXTNdaj9n3UdJvxI4sEbeH5KexGnWnSZNSq+eMdqsdM0EnFe3vRZmZtbzmnnE9P1VVMTMzHpbyzMNSNqINEBgH2Br4G/AzaRHBawpt3pmZtYrWgo4krYHfgG8ifSEz8eAvUn33/xO0jsj4vGyK2lmZt2v1WHRZwLbAG+NiPERsXdEjAfemqWfWXYFzcysN7QacKYAJ0bEbfnEbP2zpGluzMzM1tHqNZxNgKfrbHsaeNnwqmPWYfPnd7oGZj2r1YBzK3CipBsj4pmBREmbASdm2826l2/4NGubVgPOp4C5wIOSfkEaNLA96SZQAZNLrZ2ZmfWMVp/4eYek1wEnAHuQRqs9CpwLnBkRy8qvoll5Bp2Ac/r09NpgEk8zG5qmA46kjYE9gT9HxEntq5JZB513Xnp1wDErXSuj1J4HbgT+sU11MTOzHtZ0wImIF4A/AmPbVx0zM+tVrd6H83ngi5Le2I7KmJlZ72p1lNrJpBkF7pD0MGmU2lrzuEfEniXVzczMekirAeeubDEzM2tJUwFH0ijStDZ3AX8Bro+Ix9pZMbOO2H33TtfArGc184jp8cD1wLhc8nJJ74+IX7SrYmYdMfCIaTMrXTODBk4HXgD+GXg5sBtwOzCrjfUyM7Me00zA2Rs4OSJ+GRHPRsQ9wAzgVZJ2bG/1zMysVzQTcHYE/lRIu480d9oOpdfIrJOktJhZ6Zq9DycGz2JmZlZfs8Oir5W0pkb6DcX0iNh++NUyM7Ne00zAOaXttTAzs543aMCJCAccMzMbtlbnUjMzMxsSBxwzM6tEq3OpmfW2Wb6f2axdHHDM8gYeMW1mpXOXmpmZVcIBxyxv9uy0mFnpKg84knaVdIOklZIekXSqpA0HKbOHpPMlLcnKLZb0JUmbFvLNlBQ1loPa2yrrGTNmpMXMSlfpNRxJY0iPOrgbmAq8BjiDFPhOblD0iCzvacAfgTcBX85e31fI+xRQDDD3DLfuZmY2PFUPGvgoMAo4NCKWA9dJ2hKYKen0LK2W0yLi8dx6n6RngVmSdo6I+3Pb1kTEre2pvpmZDVXVXWoHA9cWAsscUhDat16hQrAZcHv26rnbzMy6QNUBZwKwKJ8QEQ8AK7Ntrfgn0oPhFhfSt5K0TNJzkm6XdOiQa2tmZqVRRHVPHpD0HPDpiPhWIf0h4MKI+FyT+9kB+D1wVUQcnUv/IOmM5w5gc9KD4qYA74uIy+rsazowHWDs2LET58yZ02qzOmbFihVsvvnmna5Gxwyl/Xc+/NRa62985ei11ifvtx8AfXPntly2auv75w8+BiOh/fvtt9+CiJjUTN5OBJwTIuK/CukPAxdExOeb2MfLSAMP/gGYGBH9DfIK+BUwKiLePNi+J02aFPPnzx8s24jR19fH5MmTO12NjhlK+8eddOVa60u/fsjaGQYevlbj92LQshVb3z9/8DEYCe2X1HTAqbpLrR/Yqkb6aODJwQpnAeRCYDdgSqNgAxApml4GvGmwoddmQAo0Ff4TZrY+qXqU2iIK12ok7QRsRuHaTh1nkYZTvyMimsk/wH9BzMw6rOoznKuBAyVtkUs7AlgFzGtUUNJngU8AH4yIW5p5s+yM6L3A7yLi+aFV2czMylD1Gc65wPHAZZJOA8YDM4Ez80OlJS0B5kXEMdn6UcDXgAuAhyXtldvnfQPDpiXNAy4lnS1tBkwD9gLe095mWc+YODG9LljQ2XqY9aBKA05E9EvaHzgbuIJ03eYsUtAp1it/zeWd2evR2ZL3YVIgAlgC/DuwI2nI9ELgkIi4uoz623pg4cJO18CsZ1X+eIKIuBt4+yB5xhXWj2bdQFOr3DHDqJqZmbWRZ4s2M7NKOOCYmVklHHDMzKwSDjhmZlaJygcNmI1o06Z1ugZmPcsBxyzPj5c2axt3qZmZWSUccMzyFizwLANmbeIuNbO8Sdks654x2qx0PsMxM7NKOOCYmVklHHDMzKwSDjhmZlYJBxwzM6uEA46ZmVXCw6LN8ubP73QNzHqWA45Z3sAjps2sdO5SMzOzSjjgmOVNn54WMyudA45Z3nnnpcXMSueAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEg44ZmZWCd/4aZa3++6droFZz3LAMcvz46XN2sZdamZmVgkHHDMzq4QDjlmelBYzK50DjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEp5pwCxv1qxO18CsZzngWNe68+GnOPqkKwFY+vVDytlpGx4vPS6r44DS6mrWZdylZmZmlXDAMcubPTstZlY6d6mZ5c2YkV7b0LVmtr7zGY6ZmVWi8oAjaVdJN0haKekRSadK2rCJcqMlnS+pX9JTkn4kaZsa+aZKulPSs5LulnREe1piZmatqLRLTdIY4HrgbmAq8BrgDFLgO3mQ4hcDrweOBV4ATgMuB/45t/99gEuBc4DjgSnARZL6I+IXpTbGSuNRXPX52FgvqfoazkeBUcChEbEcuE7SlsBMSadnaeuQtDdwILBvRNyUpT0M/EbSARFxfZb1C8BNEXF8tj5X0m7AFwEHHDOzDqo64BwMXFsILHNIZyv7Alc0KPfYQLABiIjfSvpztu16SZsA+5HObPLmAOdLGh0RT5XUDmsg/1+5/yPvHJ8d2UhTdcCZANyYT4iIByStzLbVCzgTgEU10u/JtkHqntu4Rr57SF12uwC3Da3aQ1frl77RH4JGf6yL5S44aLOm3q/ZetXjP1zrl+F83kMtO5R/UsaddCWfeuOapm/+bbVu/t6XTxFR3ZtJzwGfjohvFdIfAi6MiM/VKXcd8ExEvKeQ/kNgfET8k6T/A9wCvCUi7sjleS3wR+DAWtdxJE0HBsbAvh5YPOQGVm9bYFmnK9FBbv/63X7wMRgJ7d85IrZrJmMn7sOpFeFUJ30o5YrrqpOeEiNmA115p5+k+RExqdP16BS3f/1uP/gYdFv7qx4W3Q9sVSN9NPDkEMptlSvXn0sr5mGQ/ZuZWZtVHXAW8dI1FwAk7QRsRu1rNHXLZfLXdu4DnquRbwJpGPW9Q6ivmZmVpOqAczVwoKQtcmlHAKuAeYOU2yG7zwYASZOA8dk2ImI1MBc4vFD2CODXPTpCrSu7Akvk9tv6fgy6qv1VDxoYQ7rp8y7SUOjxwJnAtyLi5Fy+JcC8iDgml3YNaaTZCbx04+dfI6J442cfcDbpptApWf6DfOOnmVlnVXqGExH9wP7AhqQh0KcAZwFfKmTdKMuTdyTpLOj7wIXAAuC9hf3fAhwGHABcC7wbOMrBxsys8yo9wzEzs/WXZ4vuIpKmSfpjNjHpAkn7N1FmpqSosRxURZ2Hot0TvI50Q2m/pHF1Puc5VdW7LJJeK2mWpN9Jel5SX5PleuLzh6Edg274Dvh5OF1C0pHAucBM0g2uHwZ+LmmPiLhrkOJPAcUAc0/plSxBuyd4HemG2X5I1yx/mVvv9E2BQ7Eb6frrrcDLWijX9Z9/zlCPAYzk70BEeOmChTQDwvdz6xsAdwI/HKQ6XxvsAAADO0lEQVTcTGBZp+vfQjs/S7qnastc2meAlfm0GuX2Jt3c+7Zc2p5Z2gGdblcF7R+XtfVdnW5DCcdgg9zPlwB9TZTpic9/mMdgxH8H3KXWBSSNJ43Q+8lAWkS8APyUNHlpL6k3weso0gSvjcqtM8ErMDDBa7cYavt7RvbdblWvfP7AkI/BiOeA0x0GbmatNTHp1pIGm8doK0nLJD0n6XZJh5ZfxdKsM1FrRDxA+g+/1s2/dctl8hO8doOhtn/A+Vmf/6OSzpQ0qh2VHIF65fMvw4j9DvgaTncYk70Wp+fpz21/vE7ZJaQumTuAzYEZwKWS3hcRl5Vd0RKMofY0RP28dBxaLTe+hHpVZajtXw38N+m5T8uBycCJpGtAU8ut4ojUK5//cIz474ADTodIGg3sOFi+iMj/19bSxKRZ+R8W3vcK4Fekh9KNxIAD7Z/gdaRruR0R8Sjwb7mkPkmPAedIenPkZlDvYb3y+Q9JN3wH3KXWOYeTTvcHW6DEiUkjXV28DHhTM0ONO6CdE7x2g6G2v5ZLstfdh1Wj7tArn3/ZRtR3wAGnQyLiuxGhwZYs+8BZTq2JSf8WEfW60xpWYciVb692TvDaDYba/lqi8NrLeuXzL9uI+g444HSBiPgTabbrFycmlbRBtn51K/uSJNKUQL+LiOfLrGdJ2jbBa5cYavtrOSx7XVBGxUa4Xvn8yzayvgOdHpftpbkF+BfgedLNf/sBF5D+CL0hl2dfYA2wby5tHnA88E5SoLmKdFPcuzvdpjrtHAM8ClxHmhNvOrAC+Eoh3xLge4W0a4A/AYcC7yHdu3Rzp9tURftJ91udkbX9AODU7PtxaafbNIRj8HLSH8rDgF8Df8itv7yXP//hHINu+A50vAJeWviwYFr2JVsNLAT2L2yfTDp1npxL+172S7gKeAa4GTi4020ZpJ27AjdmdX4U+DKwYSHPUuCCQtpWwPmkPvvlwI+BbTvdniraT5rcdj5pVom/Z9+TU4FNOt2eIbR/XPY9rrWM6/XPf6jHoBu+A56808zMKuFrOGZmVgkHHDMzq4QDjpmZVcIBx8zMKuGAY2ZmlXDAMTOzSjjgmJlZJRxwzMysEv8fqlZ6tMgSuLcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5QcZZ3/8feHixBuIdwCukiMillQD5KAsD9WgqBA8BhFEBZdDwpJVFbcPaIgogZQV0DAVZYfCSrITyUoILvI/ZIJF0VJAgpCgkHDXSQ4EEJCIPD9/fHUQKXS3dM93dU93fm8zqnTU09d+nmqe+Y79dxKEYGZmVmrrdPpDJiZWW9ygDEzs1I4wJiZWSkcYMzMrBQOMGZmVgoHGDMzK4UDjLWUpOmSosry8TrPsWN2ns0L6Udm59mknNzXl48mz3mppL469ltP0r9L+r2kFZL6JV0taa8hvu9wuaZHFr4Tf5N0naRd6zh2YnbM29uRV2ueA4yV4VlgzwrLtXUevyPwdaD4h/2q7DzLW5PNIeejVJLWBa4AvgX8LzAJOBJ4GeiTdMQQTjtcrumA92bvOw3YGpgt6fWDHDM/O+bBkvNmLbJepzNgPWlVRNzR6pNGxFPAU60+7zD0OeAg4MCIyAfl/5E0C5gpaU5EPNbsG3Xwmt4ZEcsAJM0FHgI+BpxR3FGSgA0iYinQ8u+Vlcd3MNYRkr4saZGkFyQ9KelaSdtKmghcme32l6xKZHF2zGrVOZLGZOuHS7pA0lJJjw5UxUn6kqTHJT0l6TRJ6+Tef5ykWZIekbRc0h+zKql1su1V85Ftf2N2/N+z46+T9LZCGbfPqrVWSFos6eg6L8/ngdmF4DLgK8CGwFG591ks6TuSvirpr5KWSfqppJGDlaVSFZmkrST9WNLTWdn6JE0olG3gPf8ju+b92fVo+G4vIh4hBbkx2bmnS1oiaS9JdwIvAIdWqiKTtG72XXpA0sosLxcW8jpZ0tzsu/ZXSadLWr/RfFrjfAdjpZC0xncrIlZl2z4BnAgcD/wR2JJUZbIxqRrkOOA7wMHAE8DKQd7uNOCnwEeATwE/lvQuYIdsfTzwDeAuYFZ2zBuAhdlxzwG7ACcDI4D/rJUPSVsAtwFPA58mVS+dANwoaceIWJH91/0/wFakYPBCdv4tgD/VuG7bk/7Qnl1pe0Q8KOke4D2FTf8CLAKmANsBpwM/AA6tVZYqrgDekh2zBPgiqQrrXRGxKLffR4E/AFOBfwDOIlXrfbbGudcgaVPSdflrLnkj4MdZOR4AHs/KVTQD+ES235zsPIfkzv1R4OJsvxOBN5M+33Wy8lmZIsKLl5YtwHQgqixjsn3OAS6rcY4P5PfPpR+ZpW+SrY/J1i/I7bMZ8BLpj/i6ufTfAZdUeT+R/tk6EfhzHfk4lRRctsiljSK1PR2TrU/Kjn13bp8dgFVAX42y75EdN7nGPlcA9+fWFwN/H7guWdrHgFeAf2zwmh6Qre+d22dj0h3GjMJ7Pgisl0v7LvDXQb4fA+83Mrvm2wOXZNdll8J3aHLh2IlZ+tuz9XHZ+rE1PteH8t+PLP1TwApgy07/vvT64jsYK8OzwH4V0h/PXu8GjpJ0MqmReV5EvNzE+9008ENELJX0FDCncM5FwBsHViRtCHyZ9If4jcD6uW3rRXa3VcV+wA3A0tyd2nPAPGCgKml34MmI+G0ubw9JmjeE8tXjhsjaNDKXAz8BdgPub+A8uwNPRcScgYSIeF7Sr4BiD7bZhet0H7CNpNdFxIuDvM8zuZ+XAJ+KiLtzaQFcM8g59sleL6yyfUfSZ/vzwh31zaRqxreT7nqsJA4wVoZVETG3xvYfAZuSqla+Bjwt6f8C04cYaJ4prL9YJW3D3PppwNGkaqv52f6TgZOy/ZZR3VakO43DKmwbCHbbAn+rsP1vpLJXM9Bwv0ONfXbI7Zc/76siVdMto3K1Ui3bAU9WSH+SVP2UV+kaC3hd9nMt7yFVLS4BHomIVwrb++sIUlsCz0dq/K9kq+z16irbtx/k/NYkBxhru+yPydnA2Vmbw8eAb5L+aJ7XpmwcCnw/Ik4fSJB0UJ3H/p3UffjUCtuey17/CmxTYfs2pOqZiiLikawB/oPA94rbJb2J9J938b23Kew3AtiE1N7SiCeK58qMJpW7Ve4q3HEV1fMckaeBjSVtViXIDOR3Kqn9regvdbyHNcG9yKyjIuKRiPg2qQprpyx54D/XDSsf1RIjyDV0K409ObywT7V83ATsDPwxIuYWloXZPncCoyW9O/cebwQGHVAI/Bewr6T3V9j2jSzfPyykv0+rD5Y8mPRHeuBOst5r+ltSNdernQgkbUTqNn1bHXlvp5uz109U2b6Q9E/LmAqf09yIeLo92Vx7+Q7GyrCepD0qpD8SEY9JmkH67/IOUnvNPsBbSb3KIP1hAJimNO5jeUTc0+I83gAcI2lRlpdjgA0K+1TLx1nAx4GbJX2f9EdsNLA3cFtEXEyqlvk98AtJx5N6kZ1C5Wqzou+T2nl+Kek7QB+pWu0oUmP9v8aaY2BWAFdJOoNUzXUG8MuIuG+QsqwmIq6TdDtwiaQTSHcJx5EC8hpjVDopIhZKmgmcKWkb4BbSQNJDIuLwiHhF0heA/ydpM1KbzovAWOBD2X7tHmC6dul0LwMvvbVQuxfZSdk+RwK3k/6wLyd1dT2qcJ4vkHoArQIW546r1IvsA4VjFwPfKaRdCMzNrY8GfgksJbUvnE7q4vvq+avlI0t/PXBBduzK7D1/Auyc2+eNpNkLVmTnmAZcSo1eZLlj1wP+I7s2K4B+0h/IvSrsuxg4M7v2TwLPk7rmbt7oNc3StgYuyt5zBakhfLc6rvEa56qQ13r2mQ4sqZA+kVwvsixtXbLef6Tg8Shr9ho7ELg1uy5LSZ1MvkGuB5yXchZlH0DbSHoLqV/9HqS65FsjYmIdx40kdYP8EKlq71ek7olPF/abTPryvJX0pTs5Ii5pZRnMhpOszebSiPC4DhtWOtEGszNpjMAD2VKvS0j/wRxN+i9oN9J4gFcpTQR4GTCb9F/LVcDFVeqyzcysRJ24g1knsi6Jki4FthrsDkbSnsCvSYO/bsnSdic1SL4vIm7M0q4D1o+I9+aOvRrYLCKGNAut2XDnOxgbrtp+BxNr9nevx4GkQWu35M7zO1I3wwMBJG1Aaiz+eeHYWcCeA/MymfWaiBjj4GLDUbd0Ux4HLKiQfn+2DdIcQ+tX2O9+Ujl3LC13Zma2hm7ppjyKNUcNQ+rlMja3DxX26y9sX42kqaSBWIwYMWL89tt3z+DeV155hXXW6Zb/EVqvjPJv+kBqFnxux+H//8ja/vmDr8FwKP8DDzywJCK2rrStWwIMVB7ZqwrpxXXVOJ6ImAnMBJgwYULMnVtrhpPhpa+vj4kTJ3Y6Gx1TSvmVfV0WLqy93zCwtn/+4GswHMov6aFq27ol9PdT+amCm/PaHUt/Lq24D1S+AzIzs5J0S4BZwGttLXn5tpkHSdO0F/cbR5q2vJEu0WZm1qRuCTDXANtm41wAyJ6wNzbbRkSsJI1/ObRw7GHAbyLi2Tbl1czM6EAbTDZx3qRs9Q3AZpIGnkB3dUQsz+aHmhMRRwFExG+yMS4XSTqOdEdyGmnepxtzpz8V6JP0XdIgzEnZckDpBTMzs9V0opF/G+AXhbSB9TeR5jhajzTHUN7hpCnef0Ruqpj8DhFxWxasvgF8hjRO5oiIuL6F+bde1uaBx2a9rO0BJiIW81rPrmr7jKmQ9gzwyWypdewVFKaQMTOz9uuWNhgzM+syDjBmeePHp8XMmtZNAy3Nyjd/fqdzYNYzfAdjZmalcIAxM7NSOMCYmVkpHGDMzKwUDjBmZlYK9yIzy5sypdM5MOsZDjBmeTNndjoHZj3DVWRmZlYKBxizvHnz0mJmTXMVmVnehAnp1bMqmzXNdzBmZlYKBxgzMyuFA4yZmZXCAcbMzErhAGNmZqVwgDEzs1K4m7JZ3ty5nc6BWc9wgDHL8+OSzVrGVWRmZlYKBxizvKlT02JmTXOAMcs7//y0mFnTHGDMzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErhgZZmebvu2ukcmPUMBxizPD8u2axlXEVmZmalcIAxM7NSOMCY5UlpMbOmOcCYmVkpHGDMzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErhkfxmeTNmdDoHZj3DAcYsz49LNmuZtleRSdpJ0k2Slkt6XNIpktYd5JjpkqLK8uXcfhdW2Wdc+SUzM7O8tt7BSBoF3AjcB0wG3gycSQp0J9U49AfAtYW0DwHHA9cU0hcAnyykLR5ajm2tM3NmevWdjFnT2l1F9mlgBHBwRCwFbpC0GTBd0ulZ2hoi4lHg0XyapK8CCyLi7sLuz0fEHSXk3dYG06alVwcYs6a1u4rsQOC6QiCZRQo6e9d7EklbAO8DLm5t9szMrFXaHWDGkaqwXhURDwPLs231OgRYnxScinaStFTSSkm3Sao7cJmZWeu0u4psFPBMhfT+bFu9DgfmR8QDhfS7gN+S2ni2Br5AqobbKyJ+V+lEkqYCUwFGjx5NX19fA9norGXLlnVVflutjPJPzF674bqu7Z8/+BoM+/JHRNsW4CXg8xXSHwO+Wec5tgNeBo6rY98RwF+AK+o59/jx46ObzJ49u9NZ6KhSyg9p6QJr++cf4WswHMoPzI0qf1PbXUXWD2xeIX0kle9sKvkoIOCSwXaMiBXA1YAftG5m1mbtDjALKLS1SNoe2JhC20wNhwO3RcQjDbxvNLCvmZm1QLsDzDXA/pI2zaUdBqwA5gx2sKQxwB7U2XtM0ghSz7V5jWbU1lIDlWRm1rR2B5jzgJXA5ZL2yxrYpwNnRa7rsqRFkn5Y4fjDgVXApcUNkkZKulXSNEn7SjoMmA28AfhWCWUxM7Ma2tqLLCL6Je0LnANcSWp3OZsUZIr5qjR9zOHATRHxVIVtK4GnSDMCbAO8APwG2Dsi5rakAGZmVre2T3YZEfcB7x1knzFV0nepccwLwMFNZc5s/Pj0Os+1qmbN8mzKZnnz53c6B2Y9ww8cMzOzUjjAmJlZKRxgzMysFA4wZmZWCgcYMzMrhXuRmeVNmdLpHJj1DAcYs7yBRyabWdNcRWZmZqVoKMBIqjR9i1nvmDfPo/jNWqTRKrLHJF0EXBAR95eRIbOOmjAhvXpGZbOmNVpFNgM4BLhX0m8lTZW0WQn5MjOzLtdQgImIr0fEWOB9wELgLOAJST+VtF8ZGTQzs+40pEb+iLg5Ij4BbAt8DngbcJ2kxZKmS3p9KzNpZmbdp9leZBOA95Aeg9wP3AocDSyS9PEmz21mZl2s4QAjaQdJX5f0IHATsB3wKeD1EfGvwA6ktpozWppTMzPrKg31IpN0M+mO5VHgQlJvsofy+0TEy5J+Bny+VZk0M7Pu02g35SXAJOCGiJr9OO8G3jTkXJl1ylw/XdusVRoNMOcA8ysFF0mbALtGxC0R8RLw0BpHmw13A49MNrOmNdoGMxvYqcq2t2XbzczMGg4wqrFtE2B5E3kx67ypU9NiZk0btIpM0nuAibmkoyUdUNhtQ+Ag4J7WZc2sA84/P716VmWzptXTBvNu0mBKgAAOBVYV9nkRWAB8sXVZMzOzbjZogImIM8jGtEj6C/DhiLi77IyZmVl3a6gXWUS467GZmdWlnjaYScBtEbE0+7mmiLi6JTkzM7OuVs8dzK+APYDfZT8H1XuTBeCHkpmZWV0B5k3AE7mfzXrXrrt2OgdmPaOeRv6HKv1s1pP8uGSzlqmnDWajRk4YER5saWZmdVWRLSO1rdTLbTBmZlZXgPkUjQUYs+6lrP9KzcnCzawe9bTBXNiGfJiZWY9p9pHJZmZmFdXTyP874MiIuE/SnQxSXRYRu7cqc2Zm1r3qaYP5I7Ai97Mrp83MbFD1tMF8MvfzkaXmxszMesaQ22CUbC2p1kPIzMxsLdXQbMrw6uSXJwHjs+NXSZoHfDMirmpx/szaa8aMTufArGc0FGAkTQPOBW4CPg/8DdgGOBj4X0mfjQj/hlr38uOSzVqm0TuYE4GZEfGZQvp5ks4DvgI4wJiZWcNtMFsCl1fZdhmwxWAnkLSTpJskLZf0uKRTJNWcXkbSGElRYZlVYd/Jku6R9IKk+yQdVlfJzABmzkyLmTWt0TuY2cDewA0Vtu0N3FLrYEmjgBuB+4DJwJuBM0mB7qQ63v844Pbc+pLC+fciBbpzgWOBScDFkvoj4vo6zm9ru2nT0qurysyaVs9Ay51yq98DfiBpS+AKXmuD+TBwIHD0IKf7NDACODgilgI3SNoMmC7p9CytloURcUeN7V8FbomIY7P12ZJ2Br4GOMCYmbVRPXcw97L64EoB07Kl+HTLa6k9m/KBwHWFQDILOI10B3RlHfmpSNIGwD6kO5e8WcAFkkZGxLNDPb+ZmTWmngCzTwvfbxxwcz4hIh6WtDzbNliAuUDSFqQ7p4uBr0TEwCwDbwbWBxYUjrmfVAW3I3Bnc9k3M7N61TOSf04L328U8EyF9P5sWzUrgf8mVXMtBSYCx5OCyuTcualw/v7C9tVImgpMBRg9ejR9fX218j+sLFu2rKvy22pllH9i9toN13Vt//zB12C4l7/hgZYDJK0DbFhMr+OJlpXmMlOV9IFzPgH8Wy6pT9KTwLmSdomIu2ucX1XSB849E5gJMGHChJg4cWLt3A8jfX19dFN+W63M8nfDdV3bP3/wNRju5W+om3I2PczxkhYBLwHPVVhq6Qc2r5A+ksp3NrVcmr3umjs3Fc4/sN7o+c3MrAmNjoM5FjgB+CHpzuCbwCnAA8BisqqmGhaQ2lpeJWl7YGPWbDsZTBReHyQFvXGF/cYBr2R5NKstwk+zNGuRRgPMFODrwOnZ+hURcTKwMylAvHWQ468B9pe0aS7tMNLjABpt6zkke50HEBErSeN0Di3sdxjwG/cgMzNrr0bbYN4E3B0RL0t6iaz6KSJekXQu8APSHU4155Hugi6XdBowFpgOnJXvupxVwc2JiKOy9enApqRBlkuB9wBfBC6PiD/kzn8qqX3mu6RxOpOy5YAGy2lmZk1q9A7maWCT7OeHgXflto0iDaKsKiL6gX1JY2WuBE4GzibdFeWtx+rjaRaQxslcAFwNHAGckb3mz38b6c5mP+A64IPAER7Fb3UbPz4tZta0Ru9gbgd2I/2R/xlpBP4WwIvAMaRZlmuKiPuA9w6yz5jC+izSgMlBRcQVpLsXs8bNn9/pHJj1jEYDzHTgDdnP3yJVkR1JunO5AfhcqzJmZmbdraEAExELgYXZzytJz4T5fAn5MjOzLtfMQMt/ALYDHo+Ix1qXJTMz6wWNNvIj6TOSHgEeAn4LPCzpUUmfbXnuzMysazU6kv9rwDmk8SwHAROy12uA72XbzczMGq4iOwb4VkR8tZB+bTY32DGkkf1m3WnKlE7nwKxnNBpgRlD9qZVzcC8y63Y1Hpc85oSrVltf/O2Dys6NWVdrtA3mCuDgKts+AvyqueyYmVmvqOeRyZNyq9cAp0saw5qPTN4Z+FLrs2jWRvPmpVeP5jdrWj1VZL9izUcjvwHYv8K+PyE9adKsO02YkF49o7JZ0+oJMG8qPRdmZtZz6nlk8kPtyIiZmfWWhkfyS1qP1KC/F7AF8HfgVtLU+atamz0zM+tWDQUYSdsA1wPvJD3B8klgT9L4l99Len9EPNXqTJqZWfdptJvyWcCWwLsjYmxE7BkRY4F3Z+lntTqDZmbWnRoNMJOA4yPiznxitv5l0rQxZmZmDbfBbAA8V2Xbc8DrmsuOWYfNndvpHJj1jEYDzB3A8ZJujojnBxIlbQwcn203614eYGnWMo0GmC8As4FHJF1PauTfhjToUsDElubOzMy6VqNPtLxb0luB44DdSL3JngDOA86KiCWtz6JZ6ww6YeXUqem1xqSXZlafugOMpPWB3YG/RMQJ5WXJrIPOPz+9OsCYNa2RXmQvAzcD/1hSXszMrIfUHWAi4hXgT8Do8rJjZma9otFxMF8BvibpHWVkxszMekejvchOIo3Yv1vSY6ReZKvNax4Ru7cob2Zm1sUaDTD3ZouZmVlNdQUYSSNI08TcC/wVuDEiniwzY2Ydseuunc6BWc+o55HJY4EbgTG55KWSPhoR15eVMbOOGHhkspk1rZ5G/tOBV4B/BjYCdgbuAmaUmC8zM+ty9QSYPYGTIuL2iHghIu4HpgFvlLRdudkzM7NuVU+A2Q74cyHtQdLcY9u2PEdmnSSlxcyaVu84mBh8FzMzs9fU2035OkmrKqTfVEyPiG2az5aZmXW7egLMyaXnwszMes6gASYiHGDMzKxhjc5FZmZmVhcHGDMzK0Wjc5GZ9bYZHj9s1ioOMGZ5A49MNrOmuYrMzMxK4QBjljdzZlrMrGltDzCSdpJ0k6Tlkh6XdIqkdQc5ZjdJF0halB23UNLXJW1Y2G+6pKiwHFBuqaxnTJuWFjNrWlvbYCSNIk39fx8wGXgzcCYp0J1U49DDsn1PA/4EvBM4NXv9SGHfZ4FiQLm/2bybmVlj2t3I/2lgBHBwRCwFbpC0GTBd0ulZWiWnRcRTufU+SS8AMyTtEBEP5batiog7ysm+mZnVq91VZAcC1xUCySxS0Nm72kGF4DLgruzVc5+ZmQ1D7Q4w44AF+YSIeBhYnm1rxD+RHoS2sJC+uaQlkl6SdJekg4ecWzMzGzJFtG8mfkkvAV+MiO8W0h8FLoqIE+s8z7bAH4CrI+LIXPrHSXc0dwObkB6MNgn4SERcXuVcU4GpAKNHjx4/a9asRovVMcuWLWOTTTbpdDY6Zijlv+exZ1dbf8cbRq62PnGffQDomz274WPbbW3//MHXYDiUf5999pkXERMqbetEgDkuIv6rkP4YcGFEfKWOc7yO1FHgH4DxEdFfY18BvwZGRMQug517woQJMXfu3MF2Gzb6+vqYOHFip7PRMUMp/5gTrlptffG3D1p9h4GHjVX4vRj02DZb2z9/8DUYDuWXVDXAtLuKrB/YvEL6SOCZwQ7OAsZFwM7ApFrBBSBS9LwceOdgXaHNgBRY2vhPl1kva3cvsgUU2lokbQ9sTKFtpoqzSd2b3xcR9ew/wH8xzMzarN13MNcA+0vaNJd2GLACmFPrQElfBj4HfDwibqvnzbI7ng8Dv4+Il4eWZTMzG4p238GcBxwLXC7pNGAsMB04K991WdIiYE5EHJWtHwF8C7gQeEzSHrlzPjjQjVnSHOAy0t3QxsAUYA/gQ+UWy3rG+PHpdd68zubDrAe0NcBERL+kfYFzgCtJ7S5nk4JMMV/5NpP3Z69HZkveJ0mBB2AR8O/AdqQuzPOBgyLimlbk39YC8+d3OgdmPaPt0/VHxH3AewfZZ0xh/UjWDCyVjjuqiayZmVkLeTZlMzMrhQOMmZmVwgHGzMxK4QBjZmalaHsjv9mwNmVKp3Ng1jMcYMzy/Lhks5ZxFZmZmZXCAcYsb948j+I3axFXkZnlTchmHfeMymZN8x2MmZmVwgHGzMxK4QBjZmalcIAxM7NSOMCYmVkpHGDMzKwU7qZsljd3bqdzYNYzHGDM8gYemWxmTXMVmZmZlcIBxixv6tS0mFnTHGDM8s4/Py1m1jQHGDMzK4UDjJmZlcIBxszMSuEAY2ZmpXCAMTOzUnigpVnerrt2OgdmPcMBxizPj0s2axlXkZmZWSkcYMzMrBQOMGZ5UlrMrGkOMGZmVgoHGDMzK4UDjJmZlcIBxszMSuEAY2ZmpXCAMTOzUngkv1nejBmdzoFZz3CAsa51z2PPcuQJVwGw+NsHteakJTwueUyWxwEty6vZMOcqMjMzK4UDjFnezJlpMbOmuYrMLG/atPRaQlWZ2drGdzBmZlaKtgcYSTtJuknSckmPSzpF0rp1HDdS0gWS+iU9K+mnkrassN9kSfdIekHSfZIOK6ckZmZWS1uryCSNAm4E7gMmA28GziQFupMGOfwS4G3A0cArwGnAFcA/586/F3AZcC5wLDAJuFhSf0Rc39LCWMu4l1V1vjbWzdrdBvNpYARwcEQsBW6QtBkwXdLpWdoaJO0J7A/sHRG3ZGmPAb+VtF9E3Jjt+lXglog4NlufLWln4GuAA4yZWRu1O8AcCFxXCCSzSHcjewNX1jjuyYHgAhARv5P0l2zbjZI2APYh3bnkzQIukDQyIp5tUTmshvx/3f6Pu3N892Od1u4AMw64OZ8QEQ9LWp5tqxZgxgELKqTfn22DVN22foX97idVwe0I3Dm0bA9dpV/yWr/4tf44F4+78ICN63q/evNVjf9QrV2a+byHeuxQ/ikZc8JVfOEdq+oebNto3vy9b54ion1vJr0EfDEivltIfxS4KCJOrHLcDcDzEfGhQvpPgLER8U+S/g9wG/CuiLg7t89bgD8B+1dqh5E0FRjok/o2YOGQC9h+WwFLOp2JDnL51+7yg6/BcCj/DhGxdaUNnRgHUymiqUr6UI4rrqtKekqMmAl05cg6SXMjYkKn89EpLv/aXX7wNRju5W93N+V+YPMK6SOBZ4Zw3Oa54/pzacV9GOT8ZmbWYu0OMAt4rc0EAEnbAxtTuY2l6nGZfNvMg8BLFfYbR+rW/MAQ8mtmZkPU7gBzDbC/pE1zaYcBK4A5gxy3bTbOBQBJE4Cx2TYiYiUwGzi0cOxhwG96tAdZV1bttZDLb2v7NRjW5W93I/8o0iDLe0ldk8cCZwHfjYiTcvstAuZExFG5tGtJPcGO47WBln+LiOJAyz7gHNIgzEnZ/gd4oKWZWXu19Q4mIvqBfYF1SV2STwbOBr5e2HW9bJ+8w0l3OT8CLgLmAR8unP824BBgP+A64IPAEQ4uZmbt19Y7GDMzW3t4NuUuImmKpD9lE3nOk7RvHcdMlxQVlgPakeehKHtC1OFuKOWXNKbK5zyrXfluFUlvkTRD0u8lvSypr87jeuLzh6Fdg+H4HfDzYLqEpMOB84DppAGlnwR+JWm3iLh3kMOfBYoB5f6WZ7IFyp4QdbhrsvyQ2hxvz613ehDeUOxMaj+9A3hdA8d1/eefM9RrAMPpOxARXrpgIc0w8KPc+jrAPcBPBjluOrCk0/lvoJxfJo1p2iyX9tUgjn4AAAMrSURBVCVgeT6twnF7kgbTvieXtnuWtl+ny9WG8o/JyvqBTpehBddgndzPlwJ9dRzTE59/k9dg2H0HXEXWBSSNJfWg+/lAWkS8AvyCNNlnL6k2IeoI0oSotY5bY0JUYGBC1G4x1PL3jOy73ahe+fyBIV+DYccBpjsMDB6tNJHnFpIqzgOUs7mkJZJeknSXpINbn8WWWWNi04h4mPQffKXBtlWPy+QnRO0GQy3/gAuyOvsnJJ0laUQZmRyGeuXzb4Vh8x1wG0x3GJW9Fqe76c9tf6rKsYtIVSx3A5sA04DLJH0kIi5vdUZbYBSVp/Xp57Xr0OhxY1uQr3YZavlXAv9Neu7RUmAicDypDWdya7M4LPXK59+MYfcdcIDpEEkjge0G2y8i8v+VNTSRZ3b8TwrveyXwa9JD2IZjgIHyJ0Qd7houR0Q8AfxbLqlP0pPAuZJ2idwM4z2sVz7/IRmO3wFXkXXOoaTb98EWaOFEnpFaAy8H3llP198OKHNC1G4w1PJXcmn2umtTOeoOvfL5t1pHvwMOMB0SET+ICA22ZLsP3MVUmsjz7xFRrXqsZhaGnPlylTkhajcYavkricJrL+uVz7/VOvodcIDpAhHxZ9Js0K9O5ClpnWz9mkbOJUmkKXZ+HxEvtzKfLVLahKhdYqjlr+SQ7HVeKzI2zPXK599qnf0OdLqftJf6FuBfgJdJg+32AS4k/dF5e26fvYFVwN65tDnAscD7SYHlatIgtA92ukxVyjkKeAK4gTSn3FRgGfCNwn6LgB8W0q4F/gwcDHyINHbo1k6XqR3lJ413OjMr+37AKdn347JOl2kI12Aj0h/GQ4DfAH/MrW/Uy59/M9dgOH4HOn4hvTTwYcGU7Eu1EpgP7FvYPpF0Kzwxl/bD7JduBfA8cCtwYKfLMkg5dwJuzvL8BHAqsG5hn8XAhYW0zYELSHXuS4GfAVt1ujztKD9pMti5pFkbXsy+J6cAG3S6PEMo/5jse1xpGdPrn/9Qr8Fw/A54skszMyuF22DMzKwUDjBmZlYKBxgzMyuFA4yZmZXCAcbMzErhAGNmZqVwgDEzs1I4wJiZWSn+P+xiMvzUlZ0WAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -459,7 +461,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XmYXFWd//H3h0VBdkQCwwCRICLLiBIRRkaC7BBFEQxER6JsjqzzoAQQNYCGCSiL4ecAgxL8KcQZRGYSIGFLB2HYIRiWgEGanQjSEEICEvjOH+c23FRX19JVdau7+Lyep57uOvfcW99T3V3fPueee64iAjMzs1Zbrt0BmJnZe4MTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQjjhmJlZIZxwrGkkTZAU/Ty+VuMxNsuOs2ZJ+bjsOKu2Jvra4mjwmFdI6qqh3gqSjpN0v6QlknokXSNpxwG+7mB5T8flfh/elvSKpD9KOlfSiAEes0vSFbnnu0s6rnlRWzM54VizvQLsUOYxo8b9NwN+CJR+0F+dHWdxc8IccBwtJWl54CpgIvA/wN7AOOAtoEvS2AEcdrC8p70+B/wj8GXgF8DuwB8l7dWEY+8OOOEMUiu0OwDrOEsj4vZmHzQiXgBeaPZxB6GjgX2AvSIin6T/W9JU4CJJsyPimUZfqI3v6V0RsSj7/gZJFwDTgcskDY+IV9oQkxXAPRwrnKSTJM2X9LqkBZJmSFpP0ihgWlbt8WzopTvbZ5nhH0nDs+cHSrpE0kJJT/cO3Uk6QdKzkl6QNEnScrnX31zSVElPSVos6cFsCGu5bHu/cWTbN8r2fynbf6akj5a0ccNsGGyJpG5Jh9b49hwLzCpJNr2+B6wEHJJ7nW5JP5H0fUnPS1ok6TeS1qjWlnJDapLWkXSppL9mbeuSNLKkbb2v+a/Ze96TvR8D6g1GxBukRLsmcFDudZaTdGL2u/KGpEclHdzfcSRNAI4HNs4N3U3Jtu0g6X+y34nXJM2R9NWBxGsD5x6ONZ2kPr9XEbE02/Z14GRgPPAg8EHSEMsqwL3Ad4CfAPsBzwFvVHm5ScBvSMMz3wQulfQJYOPs+bbAj4D7gKnZPhsAj2T7vQpsA5wKrAycUSkOSWsDtwB/Bb5FGo46kfSf+mYRsUSSgP8G1iElh9ez468N/KnC+7YhMBw4p9z2iHhM0lzgsyWbDgLmA4cB6wNnAhcDB1RqSz+uAjbN9nkR+C4wS9InImJ+rt5XgD8ChwN/D5xNGgb8doVj9ysi5kl6GtgeuCArngwcDJyWtWM34JeS/hoR08sc5mLgI6Tfpy9lZb09uI2BW7Njvw58BrhE0tsRcflAYrYBiAg//GjKA5gARD+P4Vmd84HfVTjG6Hz9XPm4rHzV7Pnw7PkluTqrA2+SPtSXz5XfCfy2n9cT6R+vk4E/1xDH6aRks3aubC3Suasjs+d7Z/t+OldnY2Ap0FWh7dtn++1boc5VwMO5593AS73vS1b2VeBt4GN1vqd7Zs93ytVZhfShfWHJaz4GrJArOxd4vsrvxzKvV2b7bcC12febZm04uKTOr0hDcr3Pu4Arcs9/AnRXiaP3Z34hcFO7/27eSw/3cKzZXgF2LVP+bPZ1DnCIpFNJJ63viYi3Gni9G3u/iYiFkl4AZpcccz6wUe8TSSsBJ5E+mDcCVsxtWyGy3lg/dgWuBxbmenKvAvcAvUNP2wELIuKOXGxPSLpnAO2rxfXx7jkRgCuBXwOfAh6u4zjbAS9ExOzegoh4TdJ0oHSG3KyS9+khYF1J74uIv9UX/juU+34XUsL5fUmP+UbgIEnL1/N7I2ktUi9zX1IPd/lsU8Pnwqx2TjjWbEsj4u4K238JrEYaivkB8FdJ/w5MGGDiebnk+d/6KVsp93wScCjpA+jerP6+wClZvUX0bx1ST2RMmW29yW894C9ltv+F1Pb+9H74bVyhzsb0/ZBc5rUiDestIg2v1WN9YEGZ8gWk4cC8cu+xgPdl3w/EBsC87Pt1SEmhvwkE6wNP13HsKaSf2+mk5LgQ+BfSz90K4oRjhYqIt0nnKM7Jzll8Ffgx6UP0gkr7NtEBwOSIOLO3QNI+Ne77Emm68ulltr2afX0eWLfM9nWBJf0dOCKeyk7ofwH4Wel2SR8Gtirz2uuW1FsZWJV0vqYez5UeKzOM1O6WkfQx0rmg27Kil0hDkJ8h9XRKlUvo/R17JdLMv6Mi4oJcuSdNFcxvuLVNRDwVEf9GGvLaIivu/e94pfJ7NcXK5E6cK137cmBJnf7iuBHYEngwIu4ueTyS1bkLGCbp07nX2Aj4ZA2xnQfsImn3Mtt+lMX9i5Ly3bTsxZv7kc6V9PY0a31P7yANi70zKUHSB0gf1rfUEPuASHo/KcG+zLsTO24i9XDWKPM+311h2K60Nwvw/uxY+Z/5aqTEbgVyD8eabQVJ25cpfyoinpF0Iem/19tJwyU7k2YWjc/q9X5oH6F03cniiJjb5BivB46UND+L5UjSh1Jef3GcDXwNuEnSZFLPbBiwE3BLpBlP1wD3A/8laTxpVtRp1PZf+WTSeaLfS/oJ6aT4aqTZbqOBf46+1+AsAa6WdBZpqOks4PcR8VCVtiwjImZKuhX4raQTSZMjvkNK0GfVEHutPiVpCfABUo/tCNIkkP0juwYnIh5Ruj5nqqQzSclzJVKy3ywi+ptmPo+U7McBDwAvRkS3pLuAH0haSOoxnUj6/Vu9ie2yato9a8GPznlQeZbaKVmdcaTpqS+RphT/ETik5DjHA0+QhlS6c/uVm6U2umTfbuAnJWVTgLtzz4cBvyeN4y8gTSM+jJIZVOXiyMr/Drgk2/eN7DV/DWyZq7MRaXWFJdkxjgCuoMIstdy+KwD/mr03S4Ae4FpgxzJ1u4GfZu/9AuA14HJgzXrf06zsQ6SZYD3Za88GPlXDe9znWGVi7a3T+3gVmEvq1Y0oU1+kVQMezN7nF7J4vp6r08Wys9RWyn42f8leY0pWvimp1/Qa8CRwQvaevdjuv5v30kPZD6MwkjYlze3fnvTfzR8iYlQN+61Bmnr5RdJQ4HTgmIj4a0m9fUlDDx8B/gycGhG/bWYbzAaL7JzPFRHxnXbHYlZNO87hbEm6TuHR7FGr3wKjSLOLxpGmfF6Vr6C0uOHvgFnAXqRpt5f3Mx5uZmYFakcPZ7lIM5VQWuV1nWo9HEk7AP9LuiDt5qxsO9JJzt0i4oasbCawYkR8LrfvNcDqETGglXbNBjP3cGwoKbyH05ts6rQX6UK6m3PHuRN4PNvWO9NlZ+A/S/adCuzQu7aUWSeJiOFONjZUDJVp0Zvz7gVheQ9n2wBGkK4YL633MKmdm7UsOjMzq2qoTItei75XNkOaSbNJrg5l6vWUbF+GpMNJV72z8sorb7vhhhs2FOjbb7/NcssNlTxem9UeTafaXt2sb87uxPZW4vZ2Nre3fo8++uiLEfGhWuoOlYQDaYpjKZUpL32ufspTYcRFwEUAI0eOjLvvrrQqS3VdXV2MGjWqoWMMOsrewkce6bOpI9tbgdvb2dze+kl6ota6QyWV91D+zotr8m6PpidXVloHyveQzMysIEMl4czj3XM1eflzO4+RlqYvrbc56crieqZgWxnDT7ya4Sde3e4wzGyIGioJ51pgvew6GwCyuxBukm0j0l0DZ5EWZswbA9wWvm2tmVlbFX4OJ1sMcO/s6QbA6pL2z55fExGLszWuZkfEIQARcVt2jc2vJH2H1GOZRFq76obc4U8HuiSdS7oodO/ssWfLG2ZmZhW1Y9LAusB/lZT1Pv8waZ2mFXj3Bkm9DiQta/9Lckvb5CtExC1Z8voR6V4XjwNjI+K6Jsb/njN8fLm7+ZqZ1afwhBMR3Sx7Z79ydYaXKXsZ+Eb2qLTvVZQseWNmZu03VM7hmJnZEOeEY1VNm3Is06Yc2+4wzGyIG0oXflqbbL3gsXaHYGYdwD0cMzMrhBOOmZkVwgnHzMwK4YRjZmaFcMIxM7NCeJaaVXXZx/dodwhm1gGccKyqk/c8ut0hmFkH8JCamZkVwgnHqtrq+fls9fz8dodhZkOch9SsqumXHgd41Wgza4x7OGZmVggnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQnhatFU1+uBz2x2CmXUAJxyr6oH1Nm13CGbWATykZmZmhXDCsaomzpjMxBmT2x2GmQ1xTjhW1dj7ZzL2/pntDsPMhjgnHDMzK4QTjpmZFcIJx8zMCuGEY2ZmhXDCMTOzQvjCT6tq7rAR7Q7BzDqAE45V9flx57U7BDPrAB5SMzOzQjjhmJlZIZxwrKruSaPpnjS63WGY2RDnhGNmZoVwwjEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4RXGrCqTtrjqHaHYGYdwAnHqrp8mz3bHYKZdYDCh9QkbSHpRkmLJT0r6TRJy1fZZ4Kk6OdxUq7elH7qbN76lpmZWSWF9nAkrQXcADwE7AuMAH5KSnynVNj1YmBGSdkXgfHAtSXl84BvlJR1DyxiAzhoTnrr3dMxs0YUPaT2LWBlYL+IWAhcL2l1YIKkM7OyPiLiaeDpfJmk7wPzImJOSfXXIuL2FsT+nnXGzPMBJxwza0zRQ2p7ATNLEstUUhLaqdaDSFob2A24vLnhmZlZqxSdcDYnDXm9IyKeBBZn22q1P7AiKVmV2kLSQklvSLpFUs2JzMzMWqfoIbW1gJfLlPdk22p1IHBvRDxaUn4fcAfpHNGHgONJw3Y7RsSd5Q4k6XDgcIBhw4bR1dVVRxh9LVq0qOFjDDajsq/Hb70UYJn2dWJ7K3F7O5vb21rtmBYdZcrUT3nfitL6pOG38X0OHHFeSd2rScnnZNIkg77BRFwEXAQwcuTIGDVqVC1h9Kurq4tGjzFY/XRu+nXp/uqod8o6ub3luL2dze1traKH1HqANcuUr0H5nk85XyElqN9WqxgRS4BrgE/WGqCZmbVG0QlnHiXnaiRtCKxCybmdCg4EbomIp+p43Zp6T2Zm1jpFD6ldC3xX0moR8WpWNgZYAsyutrOk4cD2wLdreTFJK5Nmxt0zkGAtGT5+ertDMLMOUHQP5wLgDeBKSbtmJ+wnAGfnp0pLmi/pF2X2PxBYClxRukHSGpL+IOkISbtIGgPMAjYAJragLWZmVodCezgR0SNpF+B8YBrpvM05pKRTGle55W4OBG6MiBfKbHsDeIG0YsG6wOvAbcBOEXF3UxpgZmYDVvgstYh4CPhclTrD+ynfpsI+rwP7NRSclTVtyrEAfH7ceVVqmpn1z6tFW1VbL3is3SGYWQfwDdjMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhWWpW1WUf36PdIZhZB3DCsapO3vPododgZh3AQ2pmZlaIuhKOpHLLzViH2+r5+Wz1/Px2h2FmQ1y9PZxnJJ0p6WMticYGpemXHsf0S49rdxhmNsTVm3AuBPYHHpB0h6TDJa3egrjMzKzD1JVwIuKHEbEJsBvwCHA28Jyk30jatRUBmplZZxjQpIGIuCkivg6sBxwNfBSYKalb0gRJf9fMIM3MbOhrdJbaSOCzpNtG9wB/AA4F5kv6WoPHNjOzDlJ3wpG0saQfSnoMuBFYH/gm8HcR8c/AxqRzPWc1NVIzMxvS6rrwU9JNpB7N08AU4JKIeCJfJyLeknQZcGyzgjQzs6Gv3pUGXgT2Bq6PiKhQbw7w4QFHZYPK6IPPbXcIZtYB6k045wP3lks2klYFPhkRN0fEm8ATffa2IemB9TZtdwhm1gHqPYczC9iin20fzbabmZn1UW/CUYVtqwKLG4jFBqmJMyYzccbkdodhZkNc1SE1SZ8FRuWKDpW0Z0m1lYB9gLnNC80Gi7H3zwS8arSZNaaWczifJl3cCRDAAcDSkjp/A+YB321eaGZm1kmqJpyIOIvsmhpJjwNfiog5rQ7MzMw6S12z1CLCU53NzGxAajmHszdwS0QszL6vKCKuaUpkZmbWUWrp4UwHtgfuzL4P+p+tFoBv0mZmZn3UknA+DDyX+97eY+YOG9HuEMysA9QyaeCJct/be8fnx53X7hDMrAPUcg7nA/UcMCJ88aeZmfVRy5DaItK5mVr5HI6ZmfVRS8L5JvUlHOsw3ZNGAzB8/PQ2R2JmQ1kt53CmFBCHmZl1uEZvMW1mZlaTWiYN3AmMi4iHJN1FleG1iNiuWcGZmVnnqOUczoPAktz3Pp9jZmZ1q+Uczjdy349raTRmZtaxBnwOR8mHJFW6KZuZmRlQ52rR8M5inqcA22b7L5V0D/DjiLi6yfHZIHDSHke1OwQz6wB1JRxJRwA/B24EjgX+AqwL7Af8j6RvR8SFTY/S2urybUpv8GpmVr96ezgnAxdFxL+UlF8g6QLge4ATjpmZ9VHvOZwPAlf2s+13wNrVDiBpC0k3Slos6VlJp0mquByOpOGSosxjapm6+0qaK+l1SQ9JGlNTy6xfB82ZwUFzZrQ7DDMb4urt4cwCdgKuL7NtJ+DmSjtLWgu4AXgI2BcYAfyUlPhOqeH1vwPcmnv+YsnxdyQlvp8DxwB7A5dL6omI62o4vpVxxszzAQ+tmVljarnwc4vc058BF0v6IHAV757D+RKwF3BolcN9C1gZ2C8iFgLXS1odmCDpzKyskkci4vYK278P3BwRx2TPZ0naEvgB4IRjZtZGtfRwHmDZiz0FHJE9Su/+OYPKq0XvBcwsSSxTgUmkHtK0GuIpS9L7gZ1JPZu8qcAlktaIiFcGenwzM2tMLQln5ya+3ubATfmCiHhS0uJsW7WEc4mktUk9q8uB70VE7yoII4AVgXkl+zxMGrLbDLirsfDNzGygallpYHYTX28t4OUy5T3Ztv68Afw/0rDYQmAUMJ6UZPbNHZsyx+8p2b4MSYcDhwMMGzaMrq6uSvFXtWjRooaPMdiMyr4ev/VSgGXa14ntrcTt7Wxub2vVfeFnL0nLASuVltdwx89ya7Gpn/LeYz4H5K8+7JK0APi5pG0iYk6F46uf8t5jXwRcBDBy5MgYNWpU5eir6OrqotFjDFY/nZt+Xbq/Ouqdsk5ubzlub2dze1urrmnR2XI24yXNB94EXi3zqKQHWLNM+RqU7/lUckX29ZO5Y1Pm+L3P6z2+mZk1Ub09nGOAE4EzgR8DPwLeAg4E3gdMrLL/PNK5mndI2hBYhb7nXqqJkq+PkZLg5kB+GHBz4G3g0TqPbxnf6dPMmqHeCz8PA35ISjgAV0XEqcCWpITxkSr7XwvsIWm1XNkY0u0P6j1XtH/29R6AiHiDdJ3QASX1xgC3eYaamVl71dvD+TAwJyLekvQm2XBVRLwt6efAxaQeUH8uIPWSrpQ0CdgEmACcnZ8qnQ3ZzY6IQ7LnE4DVSBd9LgQ+C3wXuDIi/pg7/umk8zvnkq4T2jt7+IpFM7M2q7eH81dg1ez7J4FP5LatRbqos18R0QPsQrpWZxpwKnAOqdeUtwLLXs8zj3SdziXANcBY4Kzsa/74t5B6PrsCM4EvAGO9ykBjpk05lmlTjm13GGY2xNXbw7kV+BTpQ/8y0goBawN/A44krSJdUUQ8BHyuSp3hJc+nki7grCoiriL1bqxJtl7wWLtDMLMOUG/CmQBskH0/kTSkNo7Us7keOLpZgZmZWWepK+FExCPAI9n3b5DuieOxFjMzq6qRCz//HlgfeDYinmleSGZm1onqnTSApH+R9BTwBHAH8KSkpyV9u+nRmZlZx6h3pYEfAOeTrqfZBxiZfb0W+Fm23czMrI96h9SOBCZGxPdLymdka5sdCZzWlMhs0Ljs43u0OwQz6wD1JpyV6f+unrPxLLWOdPKe/rGaWePqPYdzFbBfP9u+DHjRLTMzK6uWW0zvnXt6LXCmpOH0vcX0lsAJzQ/R2m2r5+cD8MB6m7Y5EjMbymoZUptO31tJbwCUG9j/NelOnNZBpl96HOBVo82sMbUknA+3PAozM+t4tdxi+okiAjEzs85W90oDklYgTRDYEVgbeAn4A+lWAUubG56ZmXWKuhKOpHWB64B/ALqBBcAOpOtv7pe0e0S80Owgzcxs6Kt3WvTZwAeBT0fEJhGxQ0RsAnw6Kz+72QGamVlnqDfh7A2Mj4i78oXZ85NIy9yYmZn1Ue85nPcDr/az7VXgfY2FY4PR6IPPbXcIZtYB6k04twPjJd0UEa/1FkpaBRifbbcO4ws+zawZ6k04xwOzgKckXUeaNLAu6SJQAaOaGp2ZmXWMus7hRMQc4CPARcCHgN1ICecC4CMRcX/TI7S2mzhjMhNnTG53GGY2xNXcw5G0IrAd8HhEnNi6kGywGXv/TMCrRptZY+rp4bwF3AR8rEWxmJlZB6s54UTE28CfgGGtC8fMzDpVvdfhfA/4gaStWxGMmZl1rnpnqZ1CWlFgjqRnSLPUIl8hIrZrUmxmZtZB6k04D2QPMzOzutSUcCStTFrW5gHgeeCGiFjQysBs8Jg7bES7QzCzDlDLLaY3AW4AhueKF0r6SkRc16rAbPD4/Ljz2h2CmXWAWiYNnAm8DfwT8AFgS+A+4MIWxmVmZh2mloSzA3BKRNwaEa9HxMPAEcBGktZvbXhmZtYpakk46wN/Lil7jLR22npNj8gGne5Jo+meNLrdYZjZEFfrdThRvYqZmVn/ap0WPVPS0jLlN5aWR8S6jYdlZmadppaEc2rLozAzs45XNeFEhBOOmZk1rN611MzMzAbECcfMzApR71pq9h500h5HtTsEM+sATjhW1eXb7NnuEMysA3hIzczMCuGEY1UdNGcGB82Z0e4wzGyIKzzhSNpC0o2SFkt6VtJpkpavss+nJF0iaX623yOSfihppZJ6EyRFmYfHhBpwxszzOWPm+e0Ow8yGuELP4Uhai3Srg4eAfYERwE9Jie+UCruOyepOAv4E/ANwevb1yyV1XwFKE8zDjcZuZmaNKXrSwLeAlYH9ImIhcL2k1YEJks7MysqZFBEv5J53SXoduFDSxhHxRG7b0oi4vTXhm5nZQBU9pLYXMLMksUwlJaGd+tupJNn0ui/76rXbzMyGgKITzubAvHxBRDwJLM621eMfSTeGe6SkfE1JL0p6U9J9kvYbcLRmZtY0iijuzgOS3gS+GxHnlpQ/DfwqIk6u8TjrAX8EromIcbnyr5F6PHOAVUk3itsb+HJEXNnPsQ4HDgcYNmzYtlOnTq23WctYtGgRq666akPHGGxG7bwzAJN/fRUAW2+wxjvbOrG9lbi9nc3trd/OO+98T0SMrKlyRBT2AN4Eji1T/gzw4xqP8T7gZtJN4daqUlfAbcCcWo697bbbRqNmzZrV8DEGHYiA2Hj89Nh4/PRlNnVkeytwezub21s/4O6oMQcUPWmgB1izTPkawMvVdpYk4FfAlsBnIqKnUv2ICElXApMkLR8Rbw0g5ve84eOntzsEM+sARSeceZScq5G0IbAKJed2+nEOaTr1bhFRS/1evmOpmVmbFT1p4FpgD0mr5crGAEuA2ZV2lHQScDTwtYi4pZYXy3pEXwLud+/GzKy9iu7hXAAcA1wpaRKwCTABODtyU6UlzQdmR8Qh2fOxwERgCvCMpO1zx3wssmnTkmYDvyP1llYBDgO2B77Y2mZ1tmlTjgXg8+POa3MkZjaUFZpwIqJH0i7A+cA00nmbc0hJpzSu/HI3u2dfx2WPvG+QEhHAfOA4YH3SlOl7gX0i4tpmxP9etfWCx9odgpl1gMJvTxARDwGfq1JneMnzcfRNNOX2O6SB0MzMrIW8WrSZmRXCCcfMzArhhGNmZoVwwjEzs0IUPmnAhp7LPr5Hu0Mwsw7ghGNVnbzn0e0Owcw6gIfUzMysEE44VtVWz89nq+fntzsMMxviPKRmVU2/9DjAq0abWWPcwzEzs0I44ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcLToq2q0Qef2+4QzKwDOOFYVQ+st2m7QzCzDuAhNTMzK4QTjlU1ccZkJs6Y3O4wzGyIc8KxqsbeP5Ox989sdxhmNsQ54ZiZWSGccMzMrBBOOGZmVggnHDMzK4QTjpmZFcIXflpVc4eNaHcIZtYBnHCsqs+PO6/dIZhZB/CQmpmZFcIJx8zMCuGEY1V1TxpN96TR7Q7DzIY4JxwzMyuEE46ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSG80oBVddIeR7U7BDPrAE44VtXl2+zZ7hDMrAN4SM3MzArhhGNVHTRnBgfNmdHuMMxsiPOQmlV1xszzAQ+tmVlj3MMxM7NCFJ5wJG0h6UZJiyU9K+k0ScvXsN8aki6R1CPpFUm/kfTBMvX2lTRX0uuSHpI0pjUtMTOzehSacCStBdwABLAvcBpwPHBqDbv/FhgFHAqMAz4FXFVy/B2B3wGzgL2Aq4HLJe3elAaYmdmAFX0O51vAysB+EbEQuF7S6sAESWdmZX1I2gHYA9gpIm7Oyp4B7pC0a0TckFX9PnBzRByTPZ8laUvgB8B1rWuWmZlVU/SQ2l7AzJLEMpWUhHaqst+C3mQDEBF3Ao9n25D0fmBn4D9L9p0K7CBpjcbDNzOzgSq6h7M5cFO+ICKelLQ42zatwn7zypQ/nG0DGAGsWKbew6TEuhlw18DC7jzDT7x6mefd/7ZPS47bzGOb2dBWdMJZC3i5THlPtm0g+22Sq0OZej0l25ch6XDg8OzpIkmPVIijFusALzZ4jMJpUg2Vsrt+ltSt2t6ajj10DMmfbwPc3s7WjPZuXGvFdlyHE2XK1E/5QPYrfa4K+xMRFwEXVXntmkm6OyJGNut4g53b29nc3s5WdHuLPofTA6xZpnwNyvdgqu23Zm6/nlxZaR2qHN/MzFqs6IQzj3fPuQAgaUNgFcqfo+l3v0z+3M5jwJtl6m0OvA08OoB4zcysSYpOONcCe0haLVc2BlgCzK6y33rZdTYASBpJOn9zLUBEvEG6/uaAkn3HALdFxCuNh1+Tpg3PDRFub2dzeztboe1VRLVTJ018sXTh50PAA8AkUsI4Gzg3Ik7J1ZsPzI6IQ3JlM0gzzb5D6rFMAv4SEf+Uq7Mj0AWcT7oodO+s/p4R4etwzMzaqNAeTkT0ALsAy5OmQJ8KnAP8sKTqClmdvANJvaBfAr8C7gFN+hZLAAAGDElEQVS+VHL8W4D9gV2BmcAXgLFONmZm7VdoD8fMzN67vFp0AySNkXSlpOckhaRxdez7GUl3SFoi6XFJx1Tfq/0kHSbpT9niqPdI2qWGfSTpKEkPZou2dkuaLKnczMNBZSDtzfb7gKRJkp7M9v2zpBNaHW+jBtre3P6fkPSWpCFxLcsAf5+PkHS9pAXZQsK3Drb1Glu9SPJAOeE0Zn9gODC9np0kbUoa8nsc2Ae4EDhb0qHNDrCZJB0IXEAa0twLeBCYLmmrKrseDfwMuILU3jOAscClrYu2cQNtb/aHfQ1pgdrvAXsCP25ttI1r4Ofbu79I509faFmQTdRAe79H+ts9gvQZMB+YIekLLQy3Zq1eJLkhEeHHAB/ActnXVbMf7rga97uQNE17hVzZz4GnyIY5B+MDeAT4Zb79wFzg11X2ux34XUnZMcBbwCrtblcL2vst0nVh67a7DUW0N1f/n0kfvhOBF9vdnhb+fNcpU/a/wKx2tymL5aTs92/1XNkJwOJ8WZn9dsg+xz6bK9suK9u1GbG5h9OAiHh7gLvuBVwZEUtzZVOBvwdq+m+yaJI2Ic0SfGdx1Kz9/0W2gGoFKwKl09JfJq0Cob7V26/B9n4T+M+I+EvrImyuBttLdqnDJNKs0L+1KMymaaS9EVFuuPA+YN1mxtiAli2S3CgnnIJJWgXYkPKLjEL5C1wHg964ysW9tqQPVdj3YuArkvaWtJqkTwAnAlMiYlELYm2GAbVX0vuATwBPZ+PfS7Kx8EuyW3EMVo38fCHdAuThiGje8EtrNdreUjuQLvkYDPosdhwRT5J6OJU+X2pZJLkh7VhL7b2uv6V2Ki4yOgjUsjhq2bH7iPj37D/gabz7T85VpDHwwWqg7f0g6e/qBOBG0tT8jYCzSCtqfKXpkTbHgH++kj4KHAl8ujWhtcSA21tK0jdJ/2Qc35zQGtbKRZIb4oSTk90zZ/1q9SKi0jI8tepvPnph89QH2N66FkfNXucg0n/ApwC3km4lcTrwC+DrdYTckILa25tQe4ADIuLN7LXfBC6VNCIiHqs96oEr6ucLnEfqrc6tL8LmKrC9+dfcFpgMnBcRs2rZpyCtXiR5QJxwlnUA8B811GvkvEPvfxClU4L7+4+rleppb35x1Pz5mIqLo0pajnf/IM/Iim+W9CxpZs+5EXFv3ZEPTMvbm9vv1t5kk+m9D9QWpHX/ilDEz3cv4DPAUblp7iulTVoTWBJp2akiFPHzffcg6TzQ1aSe7GDp3UBjiySXG0rML5LcEJ/DyYmIiyNC1R4NvsZrpNlo5RYZhcqLmDZVne3tjatc3C9FRH/DD+uQhpnmlJTfl30d0XBDalREeyNiMfBEmU29xx3oRJO6FfTz/ShpluafSB9YPcB4YO3s++82tVEVFNReACStS7q04QngwIh4q6mNaUwrF0luiBNOe1wLfKnkQqwxpET0QHtCqiwi/kyayv3O4qhZ7+UAsgVU+/EC6WTlJ0vKt82+djcvyuZpoL2QrsvaMZtA0GsXUrJp67BTfxpo7xWkW7vnH5cCC7Pv/3+LQm5IIz9fSauSrrMCGJ39kzGYtGyR5IY1Y271e/VBGh7ZH/gaaYzz/Oz5Trk6OwFLS8o2BRYBl5H+KE8g3Vrh0Ha3qUp7DyJdO3NKFvcU0i/xVlXaew7wOvB94HPAYcCzpOtzlmt3u1rQ3o1JQxDTSNNJDyf9t/8f7W5TK9pb5jgTGBrX4Qz053sdaer3WGD7/KPdbcriWwt4DrietK7k4dnnzY9K6s0HflFSNgP4M7Af8EXStUp/aFps7X5zhvIj+8OKMo+uXJ1RWdmokn13BO7MPoi7gWPa3Z4a23xY9ov6BnAvsEvJ9j7tBd5Pujp7Hqm38wRpWfRBf2HkQNqblY8E/pB9gC0AzgVWand7WtXekjpDIuEMtL39/M0HEO1uTy7GLUjnDZdkyed0YPmSOt2kyR75sjWBS0j/MC0k/VPc50LXgT68eKeZmRXC53DMzKwQTjhmZlYIJxwzMyuEE46ZmRXCCcfMzArhhGNmZoVwwjEzs0I44ZiZWSH+D6dW9oWBOX3EAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZhcVZ3/8feHRYnsiARkIJEgIsuIgggjI0F2iKIIBqIjUTaVdR6QAKIG0DABZTH8HGBQgj+FOIOYmQRI2JIgDDsEw5JgkGYngjSEkIAEvvPHuQ03lepauupWdTWf1/PU013nnnvre6q769v3nHPPVURgZmbWbCu0OwAzMxuYnGDMzKwQTjBmZlYIJxgzMyuEE4yZmRXCCcbMzArhBGNNI2mspOjl8fUaj7FZdpy1SspHZ8dZrZjoa4ujwWNeJWlmDfVWknS8pAckLZHULelaSTv18XX7y3s6Ovf78LakVyT9SdL5kob18ZgzJV2Ve76HpOObF7U1wgnGmu0VYMcyj2k17r8Z8COg9IP9muw4i5sTZp/jKJSkFYHJwDjgf4B9gNHAW8BMSaP6cNj+8p72+DzwT8BXgF8CewB/krR3E469B+AE00+s1O4AbMBZGhF3NPugEfEC8EKzj9sPHQPsC+wdEfmk/N+SJgGXSJoVEc80+kJtfE/vjohF2fc3SroImApcIWloRLzShpisAD6DsZaTdIqk+ZJel7RA0jRJ60saDkzJqj2edaV0Zfss050jaWj2/CBJl0laKOnpnq44SSdJelbSC5LGS1oh9/qbS5ok6SlJiyU9lHVJrZBt7zWObPvG2f4vZftPl/SxkjZulHVrLZHUJemwGt+e44AZJcmlx/eBVYBDc6/TJemnkn4g6XlJiyT9VtKa1dpSrotM0rqSLpf0t6xtMyVtV9K2ntf81+w9787ejz6d7UXEG6TEuhZwcO51VpB0cva78oakRyUd0ttxJI0FTgCG5LriJmbbdpT0P9nvxGuSZkv6Wl/itdr5DMaaTtJyv1cRsTTb9g3gVGAM8BDwQVKXyarAfcCJwE+B/YHngDeqvNx44Lek7pZvAZdL+iQwJHu+LfBj4H5gUrbPhsC8bL9XgW2A04FBwFmV4pC0DnAr8Dfg26TupZNJ/4lvFhFLJAn4b2BdUjJ4PTv+OsCfK7xvGwFDgfPKbY+IxyTNAT5XsulgYD5wOLABcDZwKXBgpbb0YjKwabbPi8D3gBmSPhkR83P1vgr8CTgC+AfgXFK33ncrHLtXETFX0tPADsBFWfEE4BDgjKwduwO/kvS3iJha5jCXAh8l/T59OSvrOUMbAtyWHft14LPAZZLejogr+xKz1SAi/PCjKQ9gLBC9PIZmdS4Efl/hGCPy9XPlo7Py1bLnQ7Pnl+XqrAG8SfoQXzFXfhfwu15eT6R/tE4F/lJDHGeSkss6ubK1SWNPR2XP98n2/UyuzhBgKTCzQtt3yPbbr0KdycAjueddwEs970tW9jXgbeDjdb6ne2XPd87VWZX0IX1xyWs+BqyUKzsfeL7K78cyr1dm++3Addn3m2ZtOKSkzq9JXWw9z2cCV+We/xToqhJHz8/8YuDmdv/dDOSHz2Cs2V4BditT/mz2dTZwqKTTSYPM90bEWw283k0930TEQkkvALNKjjkf2LjniaRVgFNIH8QbAyvntq0U2dlWL3YDbgAW5s7UXgXuBXq6krYHFkTEnbnYnpB0bx/aV4sb4t0xDYCrgd8AnwYeqeM42wMvRMSsnoKIeE3SVKB0BtuMkvfpYWA9Se+LiL/XF/47lPt+V1KC+UPJGfFNwMGSVqzn90bS2qSzyP1IZ7ArZpsaHsuy3jnBWLMtjYh7Kmz/FbA6qWvlh8DfJP07MLaPieblkud/76Vsldzz8cBhpA+c+7L6+wGnZfUW0bt1SWcaI8ts60l26wN/LbP9r6S296bnw25IhTpDWP5DcZnXitRNt4jUXVaPDYAFZcoXkLr38sq9xwLel33fFxsCc7Pv1yUlgd4G/DcAnq7j2BNJP7czSclwIfAd0s/dCuIEYy0VEW+TxhjOy8Ycvgb8hPSheVGlfZvoQGBCRJzdUyBp3xr3fYk0ffjMMttezb4+D6xXZvt6wJLeDhwRT2UD8F8Efl66XdJHgK3KvPZ6JfUGAauRxlvq8VzpsTKDSe0ujKSPk8Zybs+KXiJ1KX6WdCZTqlwC7+3Yq5Bm5h0dERflyj3JqWB+g61tIuKpiPg3UhfWFllxz3+/q5TfqykGkRvoVrr25KCSOr3FcROwJfBQRNxT8piX1bkbGCzpM7nX2Bj4VA2xXQDsKmmPMtt+nMX9y5Ly3bXsxZL7k8Y6es4ka31P7yR1c70ziUDSB0gfzrfWEHufSHo/KaG+zLsTMW4mncGsWeZ9vqdCN1zp2SrA+7Nj5X/mq5MSuRXIZzDWbCtJ2qFM+VMR8Yyki0n/nd5B6v7YhTTzZ0xWr+dD+kil6z4WR8ScJsd4A3CUpPlZLEeRPoTyeovjXODrwM2SJpDOvAYDOwO3RpqRdC3wAPBfksaQZi2dQW3/dU8gjfP8QdJPSYPYq5Nmo40A/iWWvwZmCXCNpHNIXUfnAH+IiIertGUZETFd0m3A7ySdTJrMcCIpIZ9TQ+y1+rSkJcAHSGdkR5ImbRwQ2TUwETFP6fqYSZLOJiXLVUjJfbOI6G3a91xSch8NPAi8GBFdku4GfihpIemM6GTS798aTWyXlWr3LAM/Bs6DyrPITsvqjCZNF32JNMX3T8ChJcc5AXiC1EXSlduv3CyyESX7dgE/LSmbCNyTez4Y+AOpH34BaVrv4ZTMcCoXR1b+YeCybN83stf8DbBlrs7GpNULlmTHOBK4igqzyHL7rgT8a/beLAG6geuAncrU7QJ+lr33C4DXgCuBtep9T7OyD5FmanVnrz0L+HQN7/FyxyoTa0+dnserwBzSWduwMvVFuir/oex9fiGL5xu5OjNZdhbZKtnP5q/Za0zMyjclnRW9BjwJnJS9Zy+2++9mID+UvfktI2lT0tz6HUj/vfwxIobXsN+apKmQXyJ17U0Fjo2Iv5XU24/UlfBR4C/A6RHxu2a2way/yMZsroqIE9sdi1mpdozBbEm6TuDR7FGr3wHDSbN/RpOmYE7OV1BaDPD3wAxgb9I02Ct76c82M7MCteMMZoVIM4lQWgV13WpnMJJ2BP6XdAHYLVnZ9qRByd0j4sasbDqwckR8PrfvtcAaEdGnlWjN+jOfwVh/1vIzmJ7kUqe9SReu3ZI7zl3A49m2npkouwD/WbLvJGDHnrWZzAaSiBjq5GL9VadMU96cdy/Aynsk2wYwjHRFdmm9R0jt3Kyw6MzMbDmdMk15bZa/chjSTJdNcnUoU6+7ZPsyJB1BuqqcQYMGbbvRRhs1FOjbb7/NCit0St6uzeqPpqGyVzdbPkcPxPZW4vYObG5v/R599NEXI+JD5bZ1SoKBNOWwlMqUlz5XL+WpMOIS4BKA7bbbLu65p9IqJ9XNnDmT4cOHN3SMfkfZWzhv3nKbBmR7K3B7Bza3t36SnuhtW6ek6m7K31lwLd49Y+nOlZXWgfJnQGZmVpBOSTBzeXesJS8/NvMYaan20nqbk67crWdKtJUx9ORrGHryNe0Ow8w6RKckmOuA9bPrXADI7rK3SbaNSHfFm0FayDBvJHB7+DasZmYt1fIxmGzxvH2ypxsCa0g6IHt+bUQsztaImhURhwJExO3ZNS6/lnQi6YxkPGntpxtzhz8TmCnpfNJFmPtkj70Kb5iZmS2jHYP86wH/VVLW8/wjpHWOVuLdGwL1OIi0zPuvyC0Vk68QEbdmyerHpHs9PA6Miojrmxj/e87QMeXuTmtmVlnLE0xEdLHsnevK1Rlapuxl4JvZo9K+kylZQsbMzFqvU8ZgzMyswzjBWFVTJh7HlInHtTsMM+swnXShpbXJ1gsea3cIZtaBfAZjZmaFcIIxM7NCOMGYmVkhnGDMzKwQTjBmZlYIzyKzqq74xJ7tDsHMOpATjFV16l7HtDsEM+tA7iIzM7NCOMFYVVs9P5+tnp/f7jDMrMO4i8yqmnr58YBXVTaz+vgMxszMCuEEY2ZmhXCCMTOzQjjBmJlZIZxgzMysEE4wZmZWCE9TtqpGHHJ+u0Mwsw7kBGNVPbj+pu0Owcw6kLvIzMysEE4wVtW4aRMYN21Cu8Mwsw7jBGNVjXpgOqMemN7uMMyswzjBmJlZIZxgzMysEE4wZmZWCCcYMzMrhBOMmZkVwhdaWlVzBg9rdwhm1oGcYKyqL4y+oN0hmFkHcheZmZkVwgnGzMwK4QRjVXWNH0HX+BHtDsPMOowTjJmZFcIJxszMCuEEY2ZmhXCCMTOzQjjBmJlZIZxgzMysEL6S36o6Zc+j2x2CmXUgJxir6spt9mp3CGbWgVreRSZpC0k3SVos6VlJZ0hasco+YyVFL49TcvUm9lJn8+JbZmZmeS09g5G0NnAj8DCwHzAM+Bkp0Z1WYddLgWklZV8CxgDXlZTPBb5ZUtbVt4gN4ODZ6a33mYyZ1aPVXWTfBgYB+0fEQuAGSWsAYyWdnZUtJyKeBp7Ol0n6ATA3ImaXVH8tIu4oIPb3rLOmXwg4wZhZfVrdRbY3ML0kkUwiJZ2daz2IpHWA3YErmxuemZk1S6sTzOakLqx3RMSTwOJsW60OAFYmJadSW0haKOkNSbdKqjlxmZlZ87S6i2xt4OUy5d3ZtlodBNwXEY+WlN8P3Eka4/kQcAKpG26niLir3IEkHQEcATB48GBmzpxZRxjLW7RoUcPH6G+GZ19P2HopwDLtG4jtrcTtHdjc3iaLiJY9gDeB48qUPwP8pMZjbAC8BZxYQ91BwOPA5FqOve2220ajZsyY0fAx+h2IgBgyZmoMGTN1mU0Dsr0VuL0Dm9tbP+Ce6OUztdVdZN3AWmXK16T8mU05XwUE/K5axYhYAlwLfKrWAM3MrDlanWDmUjLWImkjYFVKxmYqOAi4NSKequN1o466ZmbWBK0eg7kO+J6k1SPi1axsJLAEmFVtZ0lDgR2A79byYpIGkWau3duXYC0ZOmZqu0Mwsw7U6jOYi4A3gKsl7ZYNsI8Fzo3c1GVJ8yX9ssz+BwFLgatKN0haU9IfJR0paVdJI4EZwIbAuALaYmZmFbT0DCYiuiXtClwITCGNu5xHSjKlcZVbPuYg4KaIeKHMtjeAF0grAqwHvA7cDuwcEfc0pQFmZlazli92GREPA5+vUmdoL+XbVNjndWD/hoKzsqZMPA6AL4y+oM2RmFkn8WrKVtXWCx5rdwhm1oF8wzEzMyuEE4yZmRXCCcbMzArhBGNmZoVwgjEzs0J4FplVdcUn9mx3CGbWgZxgrKpT9zqm3SGYWQdyF5mZmRWirgQjqdzyLTbAbfX8fLZ6fn67wzCzDlPvGcwzks6W9PFCorF+aerlxzP18uPbHYaZdZh6E8zFwAHAg5LulHSEpDUKiMvMzDpcXQkmIn4UEZsAuwPzgHOB5yT9VtJuRQRoZmadqU+D/BFxc0R8A1gfOAb4GDBdUpeksZI+3Mwgzcys8zQ6i2w74HOk2yB3A38EDgPmS/p6g8c2M7MOVneCkTRE0o8kPQbcBGwAfAv4cET8CzCENFZzTlMjNTOzjlLXhZaSbiadsTwNTAQui4gn8nUi4i1JVwDHNStIMzPrPPVeyf8isA9wQ0REhXqzgY/0OSrrV0Yccn67QzCzDlRvgrkQuK9ccpG0GvCpiLglIt4Enlhub+tID66/abtDMLMOVO8YzAxgi162fSzbbmZmVneCUYVtqwGLG4jF+qlx0yYwbtqEdodhZh2maheZpM8Bw3NFh0naq6TaKsC+wJzmhWb9xagHpgNeVdnM6lPLGMxnSBdTAgRwILC0pM7fgbnA95oXmpmZdbKqCSYiziG7pkXS48CXI2J20YGZmVlnq2sWWUR46rGZmdWkljGYfYBbI2Jh9n1FEXFtUyIzM7OOVssZzFRgB+Cu7Pug99lkAfimZGZmVlOC+QjwXO57e4+ZM3hYu0Mwsw5UyyD/E+W+t/eOL4y+oN0hmFkHqmUM5gP1HDAifLGlmZnV1EW2iDS2UiuPwZiZWU0J5lvUl2BsgOkaPwKAoWOmtjkSM+sktYzBTGxBHGZmNsA0estkMzOzsmoZ5L8LGB0RD0u6myrdZRGxfbOCMzOzzlXLGMxDwJLc9x6PMTOzqmoZg/lm7vvRhUZjZmYDRp/HYJR8SFKlm5CZmdl7VF2rKcM7i1+eBmyb7b9U0r3ATyLimibHZ/3AKXse3e4QzKwD1ZVgJB0J/AK4CTgO+CuwHrA/8D+SvhsRFzc9SmurK7cpvYGpmVl19Z7BnApcEhHfKSm/SNJFwPcBJxgzM6t7DOaDwNW9bPs9sE61A0jaQtJNkhZLelbSGZIqLi8jaaikKPOYVKbufpLmSHpd0sOSRtbUMuvVwbOncfDsae0Ow8w6TL1nMDOAnYEbymzbGbil0s6S1gZuBB4G9gOGAT8jJbrTanj9E4Hbcs9fLDn+TqRE9wvgWGAf4EpJ3RFxfQ3HtzLOmn4h4K4yM6tPLRdabpF7+nPgUkkfBCbz7hjMl4G9gcOqHO7bwCBg/4hYCNwgaQ1grKSzs7JK5kXEHRW2/wC4JSKOzZ7PkLQl8EPACcbMrIVqOYN5kGUvrhRwZPYovbvlNCqvprw3ML0kkUwCxpPOgKbUEE9Zkt4P7EI6c8mbBFwmac2IeKWvxzczs/rUkmB2aeLrbQ7cnC+IiCclLc62VUswl0lah3TmdCXw/YjoWWVgGLAyMLdkn0dIXXCbAXc3Fr6ZmdWqliv5ZzXx9dYGXi5T3p1t680bwP8jdXMtBIYDY0hJZb/csSlz/O6S7cuQdARwBMDgwYOZOXNmpfirWrRoUcPH6G+GZ19P2HopwDLtG4jtrcTtHdjc3uaq+0LLHpJWAFYpLa/hjpbl1jJTL+U9x3wOyF/tN1PSAuAXkraJiNkVjq9eynuOfQlwCcB2220Xw4cPrxx9FTNnzqTRY/RXP5uTfl26vjb8nbKB3N5y3N6Bze1trrqmKWfLw4yRNB94E3i1zKOSbmCtMuVrUv7MppKrsq+fyh2bMsfveV7v8c3MrAH1nsEcC5wMnA38BPgx8BZwEPA+YFyV/eeSxlreIWkjYFWWHzupJkq+PkZKepsD+W69zYG3gUfrPL5lfCdLM+uLei+0PBz4ESnBAEyOiNOBLUkJ4qNV9r8O2FPS6rmykaTbAdQ71nNA9vVegIh4g3SdzoEl9UYCt3sGmZlZa9V7BvMRYHZEvCXpTbLup4h4W9IvgEtJZzi9uYh0FnS1pPHAJsBY4Nz81OWsC25WRByaPR8LrE66yHIh8Dnge8DVEfGn3PHPJI3PnE+6Tmef7OErBM3MWqzeM5i/Aatl3z8JfDK3bW3SRZS9iohuYFfStTJTgNOB80hnRXkrsez1NHNJ18lcBlwLjALOyb7mj38r6cxmN2A68EVglK/ib8yUiccxZeJx7Q7DzDpMvWcwtwGfJn3IX0G6An8d4O/AUaRVliuKiIeBz1epM7Tk+STSBZNVRcRk0tmLNcnWCx5rdwhm1oHqTTBjgQ2z78eRushGk85cbgCOaVZgZmbW2epKMBExD5iXff8G6Z4w7jsxM7PlNHKh5T8AGwDPRsQzzQvJzMwGgnoH+ZH0HUlPAU8AdwJPSnpa0nebHp2ZmXWseq/k/yFwIel6ln2B7bKv1wE/z7abmZnV3UV2FDAuIn5QUj4tWxvsKOCMpkRm/cYVn9iz3SGYWQeqN8EMove7Vs7Cs8gGpFP38o/VzOpX7xjMZGD/XrZ9BfCiVWZmBtR2y+R9ck+vA86WNJTlb5m8JXBS80O0dtvq+fkAPLj+pm2OxMw6SS1dZFNZ/tbIGwLlOuZ/Q7rTpA0gUy8/HvCqymZWn1oSzEcKj8LMzAacWm6Z/EQrAjEzs4Gl7iv5Ja1EGtDfCVgHeAn4I2np/KXNDc/MzDpVXQlG0nrA9cA/Al3AAmBH0vUvD0jaIyJeaHaQZmbWeeqdpnwu8EHgMxGxSUTsGBGbAJ/Jys9tdoBmZtaZ6k0w+wBjIuLufGH2/BTSsjFmZmZ1j8G8H3i1l22vAu9rLBzrj0Yccn67QzCzDlRvgrkDGCPp5oh4radQ0qrAmGy7DTC+wNLM+qLeBHMCMAN4StL1pEH+9UgXXQoY3tTozMysY9U1BhMRs4GPApcAHwJ2JyWYi4CPRsQDTY/Q2m7ctAmMmzah3WGYWYep+QxG0srA9sDjEXFycSFZfzPqgemAV1U2s/rUcwbzFnAz8PGCYjEzswGk5gQTEW8DfwYGFxeOmZkNFPVeB/N94IeSti4iGDMzGzjqnUV2GumK/dmSniHNIot8hYjYvkmxmZlZB6s3wTyYPczMzCqqKcFIGkRaJuZB4HngxohYUGRg1n/MGTys3SGYWQeq5ZbJmwA3AkNzxQslfTUiri8qMOs/vjD6gnaHYGYdqJZB/rOBt4F/Bj4AbAncD1xcYFxmZtbhakkwOwKnRcRtEfF6RDwCHAlsLGmDYsMzM7NOVUuC2QD4S0nZY6S1x9ZvekTW73SNH0HX+BHtDsPMOkyt18FE9SpmZmbvqnWa8nRJS8uU31RaHhHrNR6WmZl1uloSzOmFR2FmZgNO1QQTEU4wZmZWt3rXIjMzM6uJE4yZmRWi3rXI7D3olD2PbncIZtaBnGCsqiu32avdIZhZB3IXmZmZFcIJxqo6ePY0Dp49rd1hmFmHaXmCkbSFpJskLZb0rKQzJK1YZZ9PS7pM0vxsv3mSfiRplZJ6YyVFmYf7eBpw1vQLOWv6he0Ow8w6TEvHYCStTVr6/2FgP2AY8DNSojutwq4js7rjgT8D/wicmX39SkndV4DShPJIo7GbmVl9Wj3I/21gELB/RCwEbpC0BjBW0tlZWTnjI+KF3POZkl4HLpY0JCKeyG1bGhF3FBO+mZnVqtVdZHsD00sSySRS0tm5t51KkkuP+7OvXvvMzKwfanWC2RyYmy+IiCeBxdm2evwT6UZo80rK15L0oqQ3Jd0vaf8+R2tmZn2miNatxC/pTeB7EXF+SfnTwK8j4tQaj7M+8Cfg2ogYnSv/OumMZjawGunGaPsAX4mIq3s51hHAEQCDBw/edtKkSfU2axmLFi1itdVWa+gY/c3wXXYBYMJvJgOw9YZrvrNtILa3Erd3YHN767fLLrvcGxHbld0YES17AG8Cx5Upfwb4SY3HeB9wC+kmaGtXqSvgdmB2Lcfedttto1EzZsxo+Bj9DkRADBkzNYaMmbrMpgHZ3grc3oHN7a0fcE/08pna6kH+bmCtMuVrAi9X21mSgF8DWwKfjYjuSvUjIiRdDYyXtGJEvNWHmN/zho6Z2u4QzKwDtTrBzKVkrEXSRsCqlIzN9OI80vTm3SOilvo9fEdOM7MWa/Ug/3XAnpJWz5WNBJYAsyrtKOkU4Bjg6xFxay0vlp3xfBl4wGcvZmat1eozmIuAY4GrJY0HNgHGAudGbuqypPnArIg4NHs+ChgHTASekbRD7piPRTaNWdIs4Peks6FVgcOBHYAvFdusgW3KxOMA+MLoC9ociZl1kpYmmIjolrQrcCEwhTTuch4pyZTGlV8+Zo/s6+jskfdNUuIBmA8cD2xAmsJ8H7BvRFzXjPjfq7Ze8Fi7QzCzDtTy5foj4mHg81XqDC15PprlE0u5/Q5tIDQzM2sir6ZsZmaFcIIxM7NCOMGYmVkhnGDMzKwQLR/kt85zxSf2bHcIZtaBnGCsqlP3OqbdIZhZB3IXmZmZFcIJxqra6vn5bPX8/HaHYWYdxl1kVtXUy48HvKqymdXHZzBmZlYIJxgzMyuEE4yZmRXCCcbMzArhBGNmZoVwgjEzs0J4mrJVNeKQ89sdgpl1ICcYq+rB9Tdtdwhm1oHcRWZmZoVwgrGqxk2bwLhpE9odhpl1GCcYq2rUA9MZ9cD0dodhZh3GCcbMzArhBGNmZoVwgjEzs0I4wZiZWSGcYMzMrBC+0NKqmjN4WLtDMLMO5ARjVX1h9AXtDsHMOpC7yMzMrBBOMGZmVggnGKuqa/wIusaPaHcYZtZhnGDMzKwQTjBmZlYIJxgzMyuEE4yZmRXCCcbMzArhBGNmZoXwlfxW1Sl7Ht3uEMysAznBWFVXbrNXu0Mwsw7kLjIzMyuEE4xVdfDsaRw8e1q7wzCzDuMuMqvqrOkXAu4qM7P6+AzGzMwK0fIEI2kLSTdJWizpWUlnSFqxhv3WlHSZpG5Jr0j6raQPlqm3n6Q5kl6X9LCkkcW0xMzMKmlpgpG0NnAjEMB+wBnACcDpNez+O2A4cBgwGvg0MLnk+DsBvwdmAHsD1wBXStqjKQ0wM7OatXoM5tvAIGD/iFgI3CBpDWCspLOzsuVI2hHYE9g5Im7Jyp4B7pS0W0TcmFX9AXBLRBybPZ8haUvgh8D1xTXLzMxKtbqLbG9gekkimURKOjtX2W9BT3IBiIi7gMezbUh6P7AL8J8l+04CdpS0ZuPhm5lZrVp9BrM5cHO+ICKelLQ42zalwn5zy5Q/km0DGAasXKbeI6REuhlwd9/CHniGnnzNMs+7/m3fQo7bzGObWWdpdYJZG3i5THl3tq0v+22Sq0OZet0l25ch6QjgiOzpIknzKsRRi3WBFxs8RstpfA2VsrtaltSt2t6ajt05OvLn2wC3d2BrRnuH9LahHdfBRJky9VLel/1Kn6vC/kTEJcAlVV67ZpLuiYjtmnW8/s7tHdjc3oGt6Pa2egymG1irTPmalD9DqbbfWrn9unNlpXWocnwzM2uyVieYubw7ZgKApI2AVSk/xtLrfpn82MxjwJtl6m0OvA082od4zcysj1qdYK4D9pS0eq5sJLAEmFVlv/Wz61wAkLQdafzlOoCIeIN0/cuBJfuOBG6PiFcaD78mTetu6xBu78Dm9g5shbZXEdWGPpr4YulCy4eBB4HxpARxLnB+RJyWqzcfmBURh+bKppFmgp1IOiMZD/w1Iv45V2cnYCZwIekizH2y+ntFhK+DMTNroZaewUREN7ArsCJpSvLpwHnAj0qqrpTVyTuIdJbzK+DXwL3Al0uOfytwALAbMB34IjDKycXMrBYwQYoAAAX3SURBVPVaegZjZmbvHV5NuQGSRkq6WtJzkkLS6Dr2/aykOyUtkfS4pGOr79V+kg6X9OdsMdF7Je1awz6SdLSkh7JFTrskTZBUbmZgv9KX9mb7fUDSeElPZvv+RdJJRcfbqL62N7f/JyW9JakjriXp4+/zkZJukLQgW3j3tv623mHRiwrXygmmMQcAQ4Gp9ewkaVNSF97jwL7AxcC5kg5rdoDNJOkg4CJSF+XewEPAVElbVdn1GODnwFWk9p4FjAIuLy7axvW1vdkf8rWkBV2/D+wF/KTYaBvXwM+3Z3+Rxj9fKCzIJmqgvd8n/e0eSfoMmA9Mk/TFAsOtWdGLCtclIvzo4wNYIfu6WvbDHF3jfheTpk2vlCv7BfAUWbdlf3wA84Bf5dsPzAF+U2W/O4Dfl5QdC7wFrNrudhXQ3m+Trstar91taEV7c/X/hfRhOw54sd3tKfDnu26Zsv8FZrS7TVksp2S/f2vkyk4CFufLyuy3Y/Y59rlc2fZZ2W59icVnMA2IiLf7uOvewNURsTRXNgn4B6Cm/xZbTdImpFl87ywmmrX/v8gWHK1gZaB0mvjLpFUWtHz19muwvd8C/jMi/lpchM3VYHvJLj0YT5q1+feCwmyaRtobEeW6/+4H1mtmjA0obFHhejnBtJikVYGNKL8oJ5S/oLQ/6ImrXNzrSPpQhX0vBb4qaR9Jq0v6JHAyMDEiFhUQazP0qb2S3gd8Eng6679ekvVlX5bdmqK/auTnC+mWGI9ERN+7U1qr0faW2pF0CUZ/sNziwBHxJOkMptLnSy2LCtelHWuRvdf1tnRNxUU5+4FaFhMt2/ceEf+e/Yc7hXf/qZlM6sPur/ra3g+S/q5OAm4iTZXfGDiHtGLFV5seaXP0+ecr6WPAUcBnigmtEH1ubylJ3yL9U3FCc0JrWJGLCtfFCSYnu2fMBtXqRUSlZW1q1dv88JbNG+9je+taTDR7nYNJ/+GeBtxGurXCmcAvgW/UEXJDWtTengTaDRwYEW9mr/0mcLmkYRHxWO1R912rfr7ABaSz0Tn1RdhcLWxv/jW3BSYAF0TEjFr2aZGiFxWuiRPMsg4E/qOGeo2MG/T8h1A6Rbe3/6iKVE9784uJ5sdTKi4mKmkF3v0DPCsrvkXSs6SZN+dHxH11R943hbc3t99tPckl03MfpC1I6+a1Qit+vnsDnwWOzk07XyVt0lrAkkjLOLVCK36+7x4kjeNcQzpT7S9nL9DYosLlugbziwrXxWMwORFxaUSo2qPB13iNNFus3KKcUHnRz6aqs709cZWL+6WI6K07YV1St9HskvL7s6/DGm5IjVrR3ohYDDxRZlPPcfs6MaRuLfr5fow0i/LPpA+obmAMsE72/fea2qgKWtReACStR7rU4AngoIh4q6mNaUyRiwrXxQmmPa4Dvlxy4dNIUuJ5sD0hVRYRfyFNrX5nMdHs7ORAsgVHe/ECaXDxUyXl22Zfu5oXZfM00F5I10XtlA3499iVlFza2o3UmwbaexXpVuX5x+XAwuz7/19QyA1p5OcraTXSdU4AI7J/KvqTwhYVrlsj863f6w9Sd8cBwNdJfZQXZs93ztXZGVhaUrYpsAi4gvRHeBLpVgOHtbtNVdp7MOnaldOyuCdmv7RbVWnvecDrwA+AzwOHA8+Sro9Zod3tKqC9Q0hdClNI0zuPIP03/x/tblMR7S1znLF0xnUwff35Xk+aij0K2CH/aHebsvjWBp4DbiCty3hE9nnz45J684FflpRNA/4C7A98iXSt0B/7HEu734xOfmR/SFHmMTNXZ3hWNrxk352Au7IP3i7g2Ha3p8Y2H579Yr4B3AfsWrJ9ufYC7ydd/TyXdDbzBGmZ8H5/IWJf2puVbwf8MfvAWgCcD6zS7vYU1d6SOh2RYPra3l7+5gOIdrcnF+MWpHG/JVmyORNYsaROF2lyRr5sLeAy0j9IC0n/BC93YWmtDy92aWZmhfAYjJmZFcIJxszMCuEEY2ZmhXCCMTOzQjjBmJlZIZxgzMysEE4wZmZWCCcYMzMrxP8BevtyiAlEAqQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -493,9 +495,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -507,7 +509,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/fixed_income_pricing.ipynb b/qiskit/finance/simulation/fixed_income_pricing.ipynb index 3eed08902..28e7d03bf 100644 --- a/qiskit/finance/simulation/fixed_income_pricing.ipynb +++ b/qiskit/finance/simulation/fixed_income_pricing.ipynb @@ -111,7 +111,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xm4HFWd//H3h8QbthCWqPgjhIRFM3Hc2NSRVbagzxDFMCw6A7/BQZS4DILiAgIuM8gA6g8cjYRNhwHE5YljMCIoyKgYBARDEk0QwiWiRC4EDMkl5Pv7o6qx0+nb3be3qur+vJ6nn9t16pyq05Wb++2z1ClFBGZmZs3YLOsKmJlZcTmImJlZ0xxEzMysaQ4iZmbWNAcRMzNrmoOImZk1LfMgImm6pFskrZG0UtL5ksbUKbOPpCslLUvLLZX0KUmb1yjzOknPS1rV/k9hZtafxmZ5cknbAT8CHgBmArsBF5EEt0/WKHpsmvcC4HfAq4FPpz/fUeU8Ai4FHifjz2xm1kuybomcCmwBHB0RN0fEV4DzgNMlbVOj3AURcUBEfC0ifhIRXwLOBI6WtEuV/O8CXgpc0e4PYGaWN5JmpD00yySdVWX/AZLulrRe0qyKfZMl/VDSYkkPSJpS61xZB5EjgQURsbos7TqSwHLgSIUi4vEqyfekP19SnihpPEmL5QxguKXampnlXDoccBnJ39fpwPGSpldkWwGcBFxb5RDXABdGxN8A+wJ/qnW+rIPINGBJeUJErADWpPtG4++ADcDSivRzgMUR8d1mK2lmViD7Assi4sGIGCb5Yj6zPENEPBQR95H8zXxBGmzGRsTNab5nImJNrZNlHUS2A56skj6U7muIpB2BTwBfL2/VSHoFcBrwoRbraWZWFDsBj5RtD6ZpjXg58KSkb0u6R9KF9SY65WGQudoKkBohfdOM0gBwA/AM8K8Vu78IXBUR9zd4rFOAUwDGjRu3144veVkjxdompK6er+M2q/15xm4m1m9o/wKg0Y3LqO4sXKo2fM0bG2J9k/Udow31M+XAWLKt5+9+98iqiHhxK8fY/6DNY+iJ+p9j0f3PLQLWliXNiYg5ZdvV/gc0+gswFtgfeB1Jl9f1JN1ec2sVyNIQsG2V9AlUb6FsJJ11dQ3wSuBNETFUtu9I4E3AbEmlc2yeFtsWeDYi1pUfL/2HmAMwZfLU+Jvn3jL6T9SC4WmTunq+Tntqt3E195+8/07M/emjbT/v07t0Poqsm9yd4bUpk6oN/43OCWtey7Vb3ttU2cN2XFI/U07M2ubuzM49bTIPt3qMoSc28K3vT2zgXH9YGxF718gyCOxctj0JWNlgNQaBeyLiQQBJ3wXeQI0gknV31hIqxj4k7QxsRcVYyQguIenrmxkRlflfAWxNMgV4KH19FNg+fX9mSzW3vjZuxUDWVeiKmx8b7dCk5cBCYA9JU9OemuOAeaMou52kUqvqzSS3YIwo6yByE3BEOoOq5FjgWeC2WgUlfQx4P/CuiLijSpYbgYMrXlcDq9P3X2+59mYd9tBgSz0k1ociYj0wG1gALAZuiIhF6Y3cR8ELN2wPAscAX5W0KC37PMlM1lsk3U/SNfa1WufLujvrK8AHgG9LugDYFTgXuLhigHwZcFtEnJxunwB8DrgKeFTSG8qOuTwiHo+IQZKmGWXHOQh4LiJ+0qkPZGbZuHH1npl2aeVJRMwH5leknVP2fiFJN1e1sjeT3LjdkExbIukYxiHAGOB7JDcaXgJ8qiLr2DRPyeHpz5OAn1e83tq5Gpv1H3dpWS1Zt0SIiAdI+t1q5ZlSsX0SSQAZ7bnOJWnpWBdMWL6u7uC6mRVb1mMiZmZtc+PqPbOuQt9xEDEzs6Y5iJhZXR4XsZE4iFjPGf9wd+4m79a9Ip7mOzru0uouB5EcGVgyWD+TmVmOOIiYWUPcpWXVOIiYWc9xl1b3OIhYR01Yvq5+JjMrLAcRMzNrmoOImTWsSOMi7tLqDgcRswLwNF/LKwcRsxb0y3NFzEbiIGJmo+IuLSvnIGJmZk1zEDEzs6Y5iFjHZXGvSLfWz+pX7tKyEgcRs4LwDC1rlKQZkpZKWibprCr7D5B0t6T1kmZV2b+NpEclXVrvXA4iZmY9RNIY4DLgSGA6cLyk6RXZVpA8HfbaEQ7zaeC2Rs7nIGJmPa/PurT2BZZFxIMRMQxcB8wszxARD0XEfcCGysKS9gJeCvywkZM5iJhZU4o0LtJndgIeKdseTNPqkrQZcBFwZqMncxDJGT9TpHh8w6F12URJd5W9TqnYryplGp1p8j5gfkQ8UjdnamyjGc3MiuzG1Xsya5u7s67GiIae37LBbrfvr4qIvWtkGAR2LtueBKxssBpvBPaX9D5ga2BA0jMRscngfIlbImbWNHdp5dJCYA9JUyUNAMcB8xopGBHvjIjJETEFOAO4plYAAQcRs0LxNF+rJyLWA7OBBcBi4IaIWCTpfElHAUjaR9IgcAzwVUmLmj2fu7OsKyYsX8dTu43LuhrW5/LepdUuETEfmF+Rdk7Z+4Uk3Vy1jnEVcFW9c7klYmZmTXMQsZ7lpU+6w+Mi/c1BxMz6Sp/deNhxDiJmbeB7RaxfOYiYWcvcpdW/HETMCsbTfFvnLq32cRAxM7OmOYhY12TxcCoz6ywHETNri6KNi7hLqz0cRMzMrGkOImZm1jQHETNrG3dp9R8HkRzyg6nap5tLn3TzhkNP87W8cBAxs77m1khrHETMzKxpDiJm1lZFGxex1jiIWFf5hkPLI3dpNc9BxMzMmuYgYlZQeZ6h5S6t/uEgYmZGb3VpSZohaamkZZLOqrL/AEl3S1ovaVZZ+msl/VzSIkn3STq23rkcRMzayA+nsqxJGgNcBhwJTAeOlzS9ItsK4CTg2or0NcA/RcQrgRnAFyRtW+t8DiJm1hHu0srMvsCyiHgwIoaB64CZ5Rki4qGIuA/YUJH+24j4Xfp+JfAnoGa/qYOImVmqIF1aEyXdVfY6pWL/TsAjZduDadqoSNoXGACW18o3drQHNiua8Q8HT++irKthVtPq9Zs32Hr7/qqI2LtGhmq/7KNa/0fSy4CvAydGxIZaed0Ssa7zvSJmHTUI7Fy2PQlY2WhhSdsA3wc+GRG/qJffQcSswPI8zReKOS5SkC6tWhYCe0iaKmkAOA6Y10jBNP93gGsi4puNlHEQMTPrIRGxHpgNLAAWAzdExCJJ50s6CkDSPpIGgWOAr0palBb/B+AA4CRJ96av19Y6n8dEzMx6TETMB+ZXpJ1T9n4hSTdXZblvAN8YzbncEjGzjnKXVm9zEMkpP5iquHzDofUTBxEzM2uag4iZWRXu0mqMg4hZweV9mi8Uc1zEGuMgYpnwDYdmvcFBxMxsBO7Sqi/zICJpuqRbJK2RtDK9IWZMnTIDki6U9FNJz0oacV0YSTtI+qqkx9K8SyT9U/s/ieXZ+IdHtXSQdYC7tHpTpjcbStoO+BHwAMlSxbsBF5EEt0/WKLol8G7gl8DPgDePcPxtgNuBZ4D3A6tI1tf3HEwzszbI+o71U4EtgKMjYjVwc/qH/1xJn0/TNhERT0raPiJC0mxGCCLAx4FxwN4R8Wya9uM2fwazTYxbMcC6ycNZV8Pa4MbVezJrm7uzrkZuZd2ddSSwoCJYXEcSWA6sVTAiGumf+L/A3LIAYmZmbZR1EJkGLClPiIgVJI9obKkDVdJU4CXAk5LmSxqW9Liki9OVKs16RhGm+YLHRXpR1t1Z2wFPVkkfSve1Ysf05+dJWjczgNcAnwPWAx+pLJA+IewUgIkTJ3L02a9vsQqtic17O9Ztt/UAJ+8/6geuNW3DQHcfTLVhoOazfNpu3Jrq13L7DVtywpqaC7F21TaPFC+Q3MPb2G7Mmho5Pti1uuRN1kEEqj9xSyOkj0aplbUoIv4lfX+rpPHAxyWdGxEb/VZExBxgDsCUyVPj2/92Z4tVaM3wtE0W2ewps07albk/fbRr5+v20w27PSYyZdLjVdNPWPNart3y3q7WpZ7DdlxSP1POeFykuqy7s4aAbaukT6B6C2U0nkh/Vg6k30oy2L5bi8fvuF5fhHHMuu5Ou+32NN9uL8RYlC4tKGa3lu8ZqS7rILKEirEPSTsDW1ExVtKE5UC1r4Klr6Pd7Wsws404kPSGrIPITcARaRdTybHAs8BtrRw4IoaBm9l0+u8hJAP3y1o5vpm1zoGk+LIOIl8B1gHflnRoOrB9LnBx+bRfScskzS0vKOlISbOA16bbs9LXLmXZzgdeJ+lKSYdLOgM4C/hcRHjxpj7kLq38cSAptkyDSEQMkbQMxgDfA84DLgE+VZF1bJqn3H8C3wROTre/mb4OLjv+L4G/J5mV9T2SKRSfBf6tnZ/DzFrjQNJekmZIWpp+AT+ryv4DJN0taX36Zbx834mSfpe+Tqx3rsxnZ0XEA4x8x3kpz5RG0kYou4DkgfWFNLBksKdnaU1Yvo6ndhuXdTU6qtt3rz80+OIRZ2rl2c2PTSvcrK083s2erj14GXAYMAgslDQv/VtbsgI4CTijouz2JF/i9yaZIfurtOzQSOfLujvLzKzQctgi2RdYFhEPpmPD15GsTfiCiHgoIu5j0wlGRwA3R8QTaeC4meQeuxE5iFjfyWJFX4+NNKaI3VoZmCjprrLXKRX7dwIeKdseTNMaMeqymXdnmZmVK2K3VjsMD49tNPivioi9a+yvdldto9+cRl3WLREzyx23SFoyCOxctj0JWNmpsg4iBdDrd65n8ahcd2nlnwNJ0xYCe0iami42exwwr8GyC4DDJW2XPu/pcOpMTHIQMbPcciAZvYhYD8wm+eO/GLghIhalT409CkDSPpIGgWOAr0palJZ9Avg0SSBaCJyfpo3IYyJmXZTFdF+279rpOqJfx0haERHzgfkVaeeUvV9I0lVVrewVwBWNnsstEetb/fLc9XXDxf+u6BZJfo36t0vSq0jmIe8IbE6yWu5vgZ/VuiHFWtPrNx1aZxX1BsRybpHkU0NBRNKuwHuBdwIvJblB5UmSda+2BbYENki6DbgcuD4ivEquNawf7lwvyer56w4k1gl1u7MkXQ4sIlno8HzgdcDmEfHiiJgUEVuTPIb274H7SZ4kuFjSfp2rtll79EuXVknRZ2yBu7byppExkbXAtIg4LCK+EhH3RcTz5RkiYlVE3BQRHwJ2Ac6h8TskzfpOt6f7lnMgsXaqG0QiYnZEPNzoASNiQ0RcHxHXt1Y1M+sUBxJrF8/OKpBev+kwK1l1aWXZGukVDiTZaymISPpbSadJmp3O2jJrWhZ3rvezXmiNgANJ1poOIpLeC9wOHAS8BfilpPe1qV5m1gUOJNaqRmZnbTnCro8Cb4yIYyLiLcBpwCfaWTmzXpeHLi0HEmtFIy2R30p6Z5V0sfEDTfprrqT1lH6b6lvJgcSa1UgQOQE4XdLPJe1Tlv554BeSbpD0P8CXgX/vRCXtr3p9cL0fx0Xy0BoBBxJrTiNTfG8ned7uFcA8SddIellEXEbybPQ7gB+SdG39v47W1sw6yoHERquhgfVIfA14BfBH4H5JHweWRMSX0te9nayoWaf1e5dWiQOJjcaoZmdFxOqIOBN4A/B6YImkWR2pmVkfyUuXVokDiTWqodlZkj4j6U5J90iaA6yNiJnAvwCfknSbpNd0vLZmZqPkQNJZjbRE5pIsrngRcDbJEvA3S1JE/IhkYcZvpmlzOlZTe4EH1zsnyy4tt0Y6x4GkcxoJIkcCZ0TEDRHxP8CJJGMjuwFExPMRcWma9mzHampmXedAYvU0EkSWAP8oafv0xsP3AH8BNvo6HBFDEfHBDtTRrG/krTUCvRVI+oWkGZKWSlom6awq+8dJuj7df6ekKWn6iyRdLel+SYslfazeuRoJIicCewCrgKeBdwPHRMTa0Xwos6LwLK1N9Uog6YfWiKQxwGUkvUjTgeMlTa/IdjIwFBG7A5cAF6TpxwDjIuJVwF7Ae0oBZiSN3CeyNCLeCIwHJkbE7hHxg8Y/knVCr4+LWP44kBTGvsCyiHgwIoaB64CZFXlmAlen728EDpEkkpVHtpI0FtgCGAZW1zpZI7Oz/lHSZhHxl0afoS5pd0n7N5LXrJp+vHO9JI9dWiUOJIWwE/BI2fYgmz4k8IU8EbEeeArYgSSg/AX4A7AC+I+IeKLWyRrpzvow8KCkT9eaxitpB0nvlPQ94B7gZQ0c2yyX3KU1MgeSztCwGLdioO4LmCjprrLXKZWHqnL4yl/okfLsCzwP/B9gKvBhSbvWqvfYeh8sIl4r6Vjg/cAnJD0DLCYZI1kHbJuebDIwBHwDODUiHq13bDOrbtyKAdZNHs66GiN6aPDFTJn0eNbVaNnNj03jsB2XZF2N0VoVEXvX2D8I7Fy2PQlYOUKewbTragLwBMlaiT+IiOeAP0n6X5Jlrx4c6WSNLntyfUTsRzLAfiZwL7Ae2IpkGZSrgRnAyyLiQw4gZlYUeWuRtMFCYA9JUyUNAMcB8yryzCOZNAUwC7g1IoKkC+vNSmxFsjpJzShbtyVSLiKWA8tHU8Y6Z2DJIMPTJmVdDetTvdIagcK2SKqKiPWSZgMLgDHAFRGxSNL5wF0RMY/kJvKvS1pG0gI5Li1+GXAl8BuSLq8rI+K+WucbVRAx66YJy9fx1G7jMjv/+IeDp3ep1nXcHXnv0gIHkryKiPnA/Iq0c8reryWZzltZ7plq6bW09Ix1M7NeGWiHnuza6jgHEbMcy/N033IOJP3LQcSsBk/1bZwDSX9yECk437ne+4rSGgEHkn7kIGK51s93rheVA0l/aSmISHq7pA9IekVF+uzWqmWWH+7SGj0Hkv7RdBCR9O/AB4HdSR5I9aGy3f/casXM7K+K1KXVixxIRtZKS+StwKER8QHgdcBRki5M92U3ud7McqGXWiPgQDKSVoLIZunqj0TEn0mWPZkiaW6Lx7VR6vXB9TyMi+ShS6uIrREHkt7Xyh/7P0jas7SRrlt/LMlKkH/basXMrDc4kPS2hoNI+tjE35Q9J+QkKlaGjIgNEfFuwM8SMeuAIrZGwIGklzUcRNKlgV8CDKTbgxHx2Ah5f9ae6pnlRx66tIrMgaQ3jbY761rg7Z2oiLWm18dFrDc4kPSe0QaR3wNvk3SepOyWV7W+k4fB9bwoapdWiQNJbxntUvCfBbYEzgZOl/QT4G7g18Cv0+eNmJlZnxhtS2Q8ydMN3wFcCKwleZjJDcDvJD3d3uqZ5UtexkXcGrG8GO2TDYPkyYbLge+U0iVtTjKt11N7zawhvfRAq37WlpsCI2JtRNwVEVe143jWHA+uW9G4RVJ8vrPcCiMvg+vu0movB5L2kzRD0lJJyySdVWX/OEnXp/vvlDSlbN+rJf1c0iJJ96c9TSNyEDGzzDmQtI+kMcBlwJHAdOB4SdMrsp0MDEXE7sAlwAVp2bHAN4BTI+KVwEHAc7XO5yBiVmC90hoBB5I22hdYFhEPpstRXQfMrMgzE7g6fX8jcIgkAYcD90XEryFZFzEinq91MgcRsybkpUur1ziQtMVOwCNl24NpWtU86UK6TwE7AC8HQtICSXdL+ki9k432PhHLuYElgwxPm5R1NayLxq0YYN3k4ayr0Tb9OmtrzHDDX04mSrqrbHtORMwp2672KI7KA4+UZyywH7APsAa4RdKvIuKWkSrjIGKFMmH5Op7azYslWF9bFRF719g/COxctj2JisVyy/IMpuMgE4An0vTbImIVgKT5wJ7AiEHE3VlmTXKXVue4W6slC4E9JE2VNEByQ/i8ijzzgBPT97OAW9P7ABcAr5a0ZRpcDgQeqHWyzIOIpOmSbpG0RtJKSeenswvqlZsg6UpJQ5KekvRfknaoyDMg6Zx0Gtuz6U+v+2U9p5cG2EscSJqTjnHMJgkIi4EbImJR+rf1qDTbXGAHScuA04Gz0rJDwMUkgehe4O6I+H6t82XanSVpO+BHJJFuJrAbcBFJcPtkneLXA68A3g1sIJmi9l02fpbJvwOnpse6h6RZ9hlgW5Lnw5tZjvXr+EirImI+ML8i7Zyy92uBY0Yo+w2Sab4NyXpM5FRgC+DoiFgN3CxpG+BcSZ9P0zYh6Y3AEcCBEXF7mvYocKekQyPiR2nWE4D/jIiL0+0fS9oJeCc9HEQ8uN494x8Ont6l2hhl9/XaAHuJA0m+Zd2ddSSwoCJYXEcSWA6sU+6PpQACEBG/JFmq/siyfC8imbpW7kmqz0ywgsjLnevWPe7ayq+sg8g0YEl5QkSsIJlaVmuR/k3KpRZXlLsceI+kN0naOn2073uBS1uqtZl1nQNJPmUdRLYjaRlUGkr3tVruLOBbwB3A08DtwLcj4vymamuWc704wF7OgSR/sh4TgU1vgoGku6ne/MlGyp0JvAt4P3Af8Brg05L+XD7I9EJh6RTgFICJEydy9Nmvr1/7HIvN8/0HZfvtx3Hs8VObKvv8uHz1SG4YyE99Ngxs2Gj7pWPG8eGtd8moNh3w5C6MG1ifdS02clvWFchQ1kFkiGSmVKUJVG9plJer9pVk21I5SRNJZmKdFhFfS/ffLmkYuFTSpRHxp/LC6V2fcwCmTJ4a3/63O0fzWXIn74Prxx4/lev/+/dNl8/bTYd5GWAHNhpg//DWu3DRMw9nWJvO8GB7PmTdnbWEirEPSTsDW1F9zGPEcqnysZJdSQbW763Icw9J8Oyhr2bV+fki/avXu7Ug6dpy91b2sg4iNwFHSBpflnYs8Cy1W4g3ATtK2q+UIGlvksBxU5pU+uq1Z0XZvdKfDzVZZ8uJvM3S8h3s2XAgyVbWQeQrwDrg25IOTcckzgUuLp/2m95pPre0HRE/J7kb8xpJR0t6G/BfwB2le0Qi4o8kNx9eIOmDkg6W9K8kNyB+MyL6oi3s1kj/6ofWSIlbJdnJNIikt9gfAowBvgecR/KAlE9VZB2b5il3HElr5QrgGuBXwNsr8pxIMs33AyR3b54GfJXkgSzWA9waqa2fAgm4VZKFrAfWiYgHgDfXyTOlStqTwP9NXyOVWw2ckb7MuiJPd7EDbDa8Wc/ezV5NKZB44L07su7Osi7o9S6tvLVG8sqtEusEBxGzDshbt1bJuBUDfRVMHEg6z0GkT7g10n15DSTQX60SD7p3loOIWZ9yq8TawUGkj7g10n15bo2U9FsgcTBpLwcRsw4rSiDpt2Bi7eEg0mfcGrFa+i2QOJi0zkHErAuK0Bopcauk+CTNkLQ0Xe3jrCr7x0m6Pt1/p6QpFfsnS3pGUt177BxE+pBbI9koUiABt0qKStIY4DKSp7xOB46XNL0i28nAUETsTrJKyAUV+y/hr+sQ1uQgYmYjcqukkPYFlkXEgxExTPLI8ZkVeWYCV6fvbwQOkSSAdC3CB4FFjZzMQaRPuTWSjaK1Rkr6LZAUPJjsBDxStj2YplXNExHrgaeAHSRtBXyUZB3DhjiImHVZkQNJvwWTnJoo6a6y1ykV+6st3Fb5SzdSnvOASyLimUYrk/kCjJadgSWDuX/6YSsmLF+Xu6cf9gIv5tgZY9ZGoy3oVRGxd439g8DOZduTgJUj5BmUNJbkabJPAK8HZkn6PMmTYjdIWhsRl450MrdEzDJQ1NZIiVslubYQ2EPSVEkDJI/NmFeRZx7JozIAZgG3RmL/iJiSrpz+BeBztQIIOIj0vV4fG8mzogcS8FhJHqVjHLNJHty3GLghIhZJOl/SUWm2uSRjIMuA04FNpgE3yt1Z1tPcpdV5pUDST11ceX9WSUTMJ3kQX3naOWXv1wLH1DnGuY2cyy0Rc2skQ73QGinppy6uorRKusFBxHpeXqf7lvRSIIH+6+Lqdw4iBrg1Yu3Vb62SfuYgYn3BrZFs9Esg6WcOIvYCt0ay1cuBxMGkdzmIWN/Ie2uk1zmQ9CYHEduIWyPZ6tXWSIlbJb3HQcT6ShFaI70eSMCtkl7iIGKbcGvEusGtkt7gIGJ9x62RfHEgKTYHEavKrZHs9VsgcTApJgcR60tFaI30IweS4nEQsRG5NZK9fmqNlLhVUiwOIta3itIa6cdAAm6VFIWDiNXk1ohlya2S/HMQsb7m1kgxOJDkl4OI1eXWSD44kLhVkkcOItb3itIasYQDSb44iFhD3BrJh35vjZS4VVKbpBmSlkpaJmmT56dLGifp+nT/nZKmpOmHSfqVpPvTn2+udy4HETPcGikqB5JNSRoDXAYcCUwHjpc0vSLbycBQROwOXAJckKavAv4+Il4FnAh8vd75HETMCsatkY25VbKJfYFlEfFgRAwD1wEzK/LMBK5O398IHCJJEXFPRKxM0xcBm0saV+tkDiLWsF7v0ipSa8SBZFMOJC/YCXikbHswTauaJyLWA08BO1TkeQdwT0TU/I8xtqWqmpnlSCmQrJs8nHFNOmqipLvKtudExJyybVUpU/mto2YeSa8k6eI6vF5lHERsVAaWDDI8bVLW1eiYCcvX8dRuNVvvuTH+4eDpXar9LbBxKwYKF0i0drjR1v6qiNi7xv5BYOey7UnAyhHyDEoaC0wAngCQNAn4DvBPEbG8XmXcnWVWYO7WGlkfj5UsBPaQNFXSAHAcMK8izzySgXOAWcCtERGStgW+D3wsIv63kZM5iNio9frYiPWWfgsk6RjHbGABsBi4ISIWSTpf0lFptrnADpKWAacDpWnAs4HdgbMl3Zu+XlLrfO7OMqtQpC4tcLdWI/pkrOQFETEfmF+Rdk7Z+7XAMVXKfQb4zGjO5ZaINcWtkXxxt1Zj+q1V0g0OImZVFGm6r41OH4+VdISDiDXNrZF8cWtkdBxI2sNBxGwERWyNOJCMjlslrXMQsZa4NWK9wIGkeQ4iZjW4NdI/3CppjoOItcytkfxxIGmeA8noOIiY1VHE1oi1xq2SxjmIWFu4NZI/bo20zoGkPgcRswYUtTUy/uFgs2EHk1a4VVKbg4i1jVsj+eVWSescSKpzEDFrUFFbIyXjHw4Hkxa5VbIpBxFrK7dG8s+BpHUOJH/lIGI2CkVvjZS4VdI6t0oSDiLWdm6NFIeDSev6PZA4iJiNUq+0Rso5kFizHESsI9waKR63SqwZmQcRSdMl3SJpjaSV6SMcxzRQboKkKyUNSXpK0n9J2qFKvpmS7pe0VtIDko77q6QrAAAKtUlEQVTtzCexftKLrZESBxIbjUyDiKTtgB8BAcwEzgc+DJzXQPHrgYOAdwMnAfsA3604/n7At4AfA0eSPID+vyUd3pYPYDW5NVJcbpVYo7JuiZwKbAEcHRE3R8RXSALI6ZK2GamQpDcCRwAnRsS3IuI7wLuA/SQdWpb1bOD2iPhARPw4Is4EfgCcs+lRzUanl1sjJQ4mxSRphqSlkpZJOqvK/nGSrk/33ylpStm+j6XpSyUdUe9cWQeRI4EFEbG6LO06ksByYJ1yf4yI20sJEfFL4PfpPiSNAw4Gbqgoex3wRkkTWq++1ePWSG9wICmOdDjgMpK/hdOB4yVNr8h2MjAUEbsDlwAXpGWnA8cBrwRmAF+uN7yQdRCZBiwpT4iIFcCadF/D5VKLy8rtBryoSr7FJJ/75U3U12wj/dAaKXGrpDD2BZZFxIMRMUzyxXlmRZ6ZwNXp+xuBQyQpTb8uItZFxO+BZenxRjS2rVUfve2AJ6ukD6X7mim3a1kequQbqtj/AkmnAKekm+se5su/qVEHa9Rj1ZNv/QkTgVVdrUsn/CTrCtT2q7k9cp3z7RWtHmD1+scX/OCxL09sIOvmku4q254TEXPKtncCHinbHgReX3GMF/JExHpJTwE7pOm/qCi7U63KZB1EIBlUr6QR0pspV7mtkcqn/xBzACTdFRF716mDtcDXuDt8nTuv4o96UyJiRjvqwl//xm10+AbzNFJ2I1l3Zw0B21ZJn0D1lka9ctuWlRsqS6vMQ53jm5kV1SCwc9n2JGDlSHkkjSX5m/tEg2U3knUQWULF2IeknYGtqD7mMWK5VPlYyXLguSr5pgEbgN82UV8zs7xbCOwhaaqkAZKB8nkVeeYBJ6bvZwG3RkSk6cels7emAnsAv6x1sqyDyE3AEZLGl6UdCzwL3Fan3I7pfSAASNqbZDzkJoCIWEdyf8gxFWWPBX4eEU/VqducOvutdb7G3eHr3Hm5ucYRsR6YDSwgmUh0Q0QsSm/kPirNNhfYQdIy4HTgrLTsIpIZrQ+Q3A5xWkQ8X+t8SoJPNtKbDR8AfkMyxWxX4GLgCxHxybJ8y4DbIuLksrQfkMywOoOkZXEB8KeI2L8sz34kw56XktyI+JY0/4yI+GFHP5yZWR/ItCUSEUPAIcAY4HskNxpeAnyqIuvYNE+540haK1cA1wC/At5ecfw7SJpqh5JE5aOAExxAzMzaI9OWiJmZFVvWYyId5cUdu6PT17ks/9skRTumUxZNJ6+xpAFJ56RLXTyb/jwvXfWhbzRzjdNrd6Gkn6bXbpNv5ZLGSPpomufP6euHkvbp3KfpoojoyRfJzYQrSRZ4PIxkna6/AJ9poOwPSJZQeQdJF9lvgZ9W5NkPWA98iWR5lQtJxmYOz/qz99J1Lsu7OfAgya2Ld2X9uXvpGpOMQ64hGWA9mGQR1GeBL2b92fN+jUluGRgi6S6/JfmTukmerdM8F5OMy5YWg10H7JX1Z2/52mVdgQ7+Unws/YfbpiztI+l/lm1qlHsjyc01B5Sl7ZumHVqWtoBkWlx52fnAHVl/9l66zmX7zgZ+ClzVh0Gk07/LjwEXVZS9mGR9usw/f56vcZqvNCwwe4QgMgbYriJtAHgIuDLrz97qq5e7s7y4Y3d07DqXSJpM8h/6g+2qdMF0+hq/CKic8v4k1e9e7lXNXuMkatTe/3wkk4jK04aBRcBLmqtufvRyEPHijt3RyetcchHJXPe7W6hnkXX6Gl8OvEfSmyRtLWl/4L0kU+P7RbPXuCnpF9G9SG5xKLQ8rJ3VKbla3LGHdfI6I+lgkmfH9FNgrtTRa0xyo9kWwB1laV+OiPNHWc8ia/YaN+sT6XEv78Cxu6qXgwjkaHHHHteR65yu6fMlksHNEdYC7hud/F0+k+Shbu8H7gNeA3xa0p8jop8e4NbsNR4VSW8lCSIfjoil7Tx2Fno5iLSyuOOLq6R7ccfqOnmd/yXdvlpS6RwDwJh0+y8R8VxTtS6Wjl1jSROBz5Asb/G1dP/tkoaBSyVdGhF/arrmxdHsNR6VdFrv9cBXI+IL7Tpulnp5TMSLO3ZHJ6/zK0hWEX2M5D/5EHA88Nr0fb/cl9PJa7wryfjevRV57iH5krlLE/UtomavccMkvZxkau8tJK2+ntDLQSTPizv2ko5dZ5KB3YMrXgtIgvTBwM1t+gx518lr/HD6c8+KsnulPx9qss5F0+w1boikl5H87i4Hjo86ixoWStZzjDv1Ihm0+gPJH5pDSZ5Y+AwVNw+RPP5xbkXaD0hubDsaeBuwlJFvNvwCcBDwefr3ZsOOXecq57uK/rtPpNO/y98h6bL5IElw/leSKb83ZP3ZC3KNjyRZo+9ykvGTWelrl3T/FiQtvSeBtwJvKHu9LuvP3vK1y7oCHf7FmA7cSvJt4g/Ap4ExFXkeAq6qSNsWuDL9R18NXAtMrHL8t5GsQLyOpMl7XNafuRevc0WZvgsinb7GwDbAf5B8S342/UP5eWB81p+7INf4oTR4VL5OSvdPGWF/AA9l/blbfXkBRjMza1ovj4mYmVmHOYiYmVnTHETMzKxpDiJmZtY0BxEzM2uag4iZmTXNQcTMzJrmIGLWICV+LenEdHuapDvTZ5dfJ2nrivwHSHq0Mj3dd5mkud2qu1mnOIiYNe4fSJbHuDbdvork7u5/ILnb+eOljJI2I1kS52MR8UyVY10IvFPS7p2ssFmnOYhY35E00GTRDwBfj4jn0tbF64EPRcQC4LPAYWV5TyZZ6fnr1Q4UEQ+RPATqvU3WxSwXHESsp0naTNJfJH1I0hclPc6my543cpzdgb8DbkyTSoHo2fTnmlKapG1I1l36YNReV+hbJK0R/z+0wvIvr/W6XYEtgY+QPDfjBJr79n8I8Bfg1wAR8QTwe+D9krYnWfX1rjTv2cCPIuIXdY75M+ClwKuaqI9ZLvTykw3NAF6d/rwiIj7ZwnH2AhZHxIaytNOAbwKfA34HnJa2WE4uO28ti4DngX1Jg5NZ0bglYr3uVSRdTZ8tT5T0n+nMqUaXsd4RWFWeEBE3AS8heQLj30TECuBi4JKIGJR0mqQV6et9lQeMiPUkS7TvOOpPZZYTbolYr3sV8JOIeLYi/b+Bc0kevduIzUmC0UYiYg3p45AlHQq8BjhW0mtIxkX+Ls36c0l3RMR9FYdYlx7brJDcErFe92rg7srEiLg9Iv44iuM8QfKAp6okjSWZ0vuRNGAdBNwaEUsiYgnJc7UPrFJ02/TYZoXkIGI9S9IWwG60Z7xhKTC1xv5TgaGIuL4sbcuy91sBqqjfi9M8v21D/cwy4SBiveyVJL/j7Qgi/wtMTv/wb0TSdsCnSJ5RXnI7cIikf5b0z8Cbgdsqiu5N8ojUn7WhfmaZ8JiI9bLSoPryNhzrJyTdTjPY9AbC84B5EfFCt1lE3CPpI/x1QP+MiKgMZjOA2yLiz22on1km/Ix162uSIiJUPydI+iKwe0S8tQ3nHQM8DJwVEd9o9XhmWXF3lvUlSZdLGkzfD0q6vIFiFwIHSXp5G6pwDMnd7te14VhmmXFLxGwUJB0H/CEiKsc3Rnuc44FHI+L29tTMLBsOImZm1jR3Z5mZWdMcRMzMrGkOImZm1jQHETMza5qDiJmZNc1BxMzMmuYgYmZmTXMQMTOzpv1/ZzufzULIqxUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEaCAYAAADQVmpMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3debgcVZ3/8feHxBu2EJao+COEhEUzcdzY1JFVtqDPEMUwLDoDv8FBlLgMguICAi4zyADqDxyNhE2HAcTliWMwIijIqBgEBEMSTRDCJaJELgQMySXk+/ujqrHT6dvdt7eq6v68nqef23XqnKrTlZv77bPUKUUEZmZmzdgs6wqYmVlxOYiYmVnTHETMzKxpDiJmZtY0BxEzM2uag4iZmTUt8yAiabqkWyStkbRS0vmSxtQps4+kKyUtS8stlfQpSZvXKPM6Sc9LWtX+T2Fm1p/GZnlySdsBPwIeAGYCuwEXkQS3T9Yoemya9wLgd8CrgU+nP99R5TwCLgUeJ+PPbGbWS7JuiZwKbAEcHRE3R8RXgPOA0yVtU6PcBRFxQER8LSJ+EhFfAs4Ejpa0S5X87wJeClzR7g9gZpY3kmakPTTLJJ1VZf8Bku6WtF7SrIp9kyX9UNJiSQ9ImlLrXFkHkSOBBRGxuiztOpLAcuBIhSLi8SrJ96Q/X1KeKGk8SYvlDGC4pdqameVcOhxwGcnf1+nA8ZKmV2RbAZwEXFvlENcAF0bE3wD7An+qdb6sg8g0YEl5QkSsANak+0bj74ANwNKK9HOAxRHx3WYraWZWIPsCyyLiwYgYJvliPrM8Q0Q8FBH3kfzNfEEabMZGxM1pvmciYk2tk2UdRLYDnqySPpTua4ikHYFPAF8vb9VIegVwGvChFutpZlYUOwGPlG0PpmmNeDnwpKRvS7pH0oX1JjrlYZC52gqQGiF904zSAHAD8AzwrxW7vwhcFRH3N3isU4BTAMaNG7fXji95WSPF2iakrp6v4zar/XnGbibWb2j/AqDRjcuo7ixcqjZ8zRsbYn2T9R2jDfUz5cBYsq3n7373yKqIeHErx9j/oM1j6In6n2PR/c8tAtaWJc2JiDll29X+BzT6CzAW2B94HUmX1/Uk3V5zaxXI0hCwbZX0CVRvoWwknXV1DfBK4E0RMVS270jgTcBsSaVzbJ4W2xZ4NiLWlR8v/YeYAzBl8tT4m+feMvpP1ILhaZO6er5Oe2q3cTX3n7z/Tsz96aNtP+/Tu3Q+iqyb3J3htSmTqg3/jc4Ja17LtVve21TZw3ZcUj9TTsza5u7Mzj1tMg+3eoyhJzbwre9PbOBcf1gbEXvXyDII7Fy2PQlY2WA1BoF7IuJBAEnfBd5AjSCSdXfWEirGPiTtDGxFxVjJCC4h6eubGRGV+V8BbE0yBXgofX0U2D59f2ZLNbe+Nm7FQNZV6IqbHxvt0KTlwEJgD0lT056a44B5oyi7naRSq+rNJLdgjCjrIHITcEQ6g6rkWOBZ4LZaBSV9DHg/8K6IuKNKlhuBgyteVwOr0/dfb7n2Zh320GBLPSTWhyJiPTAbWAAsBm6IiEXpjdxHwQs3bA8CxwBflbQoLfs8yUzWWyTdT9I19rVa58u6O+srwAeAb0u6ANgVOBe4uGKAfBlwW0ScnG6fAHwOuAp4VNIbyo65PCIej4hBkqYZZcc5CHguIn7SqQ9kZtm4cfWemXZp5UlEzAfmV6SdU/Z+IUk3V7WyN5PcuN2QTFsi6RjGIcAY4HskNxpeAnyqIuvYNE/J4enPk4CfV7ze2rkam/Ufd2lZLVm3RIiIB0j63WrlmVKxfRJJABntuc4laelYF0xYvq7u4LqZFVvWYyJmZm1z4+o9s65C33EQMTOzpjmImFldHhexkTiIWM8Z/3B37ibv1r0inuY7Ou7S6i4HkRwZWDJYP5OZWY44iJhZQ9ylZdU4iJhZz3GXVvc4iFhHTVi+rn4mMyssBxEzM2uag4iZNaxI4yLu0uoOBxGzAvA0X8srBxGzFvTLc0XMRuIgYmaj4i4tK+cgYmZmTXMQMTOzpjmIWMdlca9It9bP6lfu0rISBxGzgvAMLWuUpBmSlkpaJumsKvsPkHS3pPWSZlXZv42kRyVdWu9cDiJmZj1E0hjgMuBIYDpwvKTpFdlWkDwd9toRDvNp4LZGzucgYmY9r8+6tPYFlkXEgxExDFwHzCzPEBEPRcR9wIbKwpL2Al4K/LCRkzmImFlTijQu0md2Ah4p2x5M0+qStBlwEXBmoydzEMkZP1OkeHzDoXXZREl3lb1OqdivKmUanWnyPmB+RDxSN2dqbKMZzcyK7MbVezJrm7uzrsaIhp7fssFut++vioi9a2QYBHYu254ErGywGm8E9pf0PmBrYEDSMxGxyeB8iVsiZtY0d2nl0kJgD0lTJQ0AxwHzGikYEe+MiMkRMQU4A7imVgABBxGzQvE0X6snItYDs4EFwGLghohYJOl8SUcBSNpH0iBwDPBVSYuaPZ+7s6wrJixfx1O7jcu6Gtbn8t6l1S4RMR+YX5F2Ttn7hSTdXLWOcRVwVb1zuSViZmZNcxCxnuWlT7rD4yL9zUHEzPpKn9142HEOImZt4HtFrF85iJhZy9yl1b8cRMwKxtN8W+curfZxEDEzs6Y5iFjXZPFwKjPrLAcRM2uLoo2LuEurPRxEzMysaQ4iZmbWNAcRM2sbd2n1HweRHPKDqdqnm0ufdPOGQ0/ztbxwEDGzvubWSGscRMzMrGkOImbWVkUbF7HWOIhYV/mGQ8sjd2k1z0HEzMya5iBiVlB5nqHlLq3+4SBiZkZvdWlJmiFpqaRlks6qsv8ASXdLWi9pVln6ayX9XNIiSfdJOrbeuRxEzNrID6eyrEkaA1wGHAlMB46XNL0i2wrgJODaivQ1wD9FxCuBGcAXJG1b63wOImbWEe7Sysy+wLKIeDAihoHrgJnlGSLioYi4D9hQkf7biPhd+n4l8CegZr+pg4iZWaogXVoTJd1V9jqlYv9OwCNl24Np2qhI2hcYAJbXyjd2tAc2K5rxDwdP76Ksq2FW0+r1mzfYevv+qojYu0aGar/so1r/R9LLgK8DJ0bEhlp53RKxrvO9ImYdNQjsXLY9CVjZaGFJ2wDfBz4ZEb+ol99BxKzA8jzNF4o5LlKQLq1aFgJ7SJoqaQA4DpjXSME0/3eAayLim42UcRAxM+shEbEemA0sABYDN0TEIknnSzoKQNI+kgaBY4CvSlqUFv8H4ADgJEn3pq/X1jqfx0TMzHpMRMwH5leknVP2fiFJN1dluW8A3xjNudwSMbOOcpdWb3MQySk/mKq4fMOh9RMHETMza5qDiJlZFe7SaoyDiFnB5X2aLxRzXMQa4yBimfANh2a9wUHEzGwE7tKqL/MgImm6pFskrZG0Mr0hZkydMgOSLpT0U0nPShpxXRhJO0j6qqTH0rxLJP1T+z+J5dn4h0e1dJB1gLu0elOmNxtK2g74EfAAyVLFuwEXkQS3T9YouiXwbuCXwM+AN49w/G2A24FngPcDq0jW1/ccTDOzNsj6jvVTgS2AoyNiNXBz+of/XEmfT9M2ERFPSto+IkLSbEYIIsDHgXHA3hHxbJr24zZ/BrNNjFsxwLrJw1lXw9rgxtV7Mmubu7OuRm5l3Z11JLCgIlhcRxJYDqxVMCIa6Z/4v8DcsgBiZmZtlHUQmQYsKU+IiBUkj2hsqQNV0lTgJcCTkuZLGpb0uKSL05UqzXpGEab5gsdFelHW3VnbAU9WSR9K97Vix/Tn50laNzOA1wCfA9YDH6kskD4h7BSAiRMncvTZr2+xCq2JzXs71m239QAn7z/qB641bcNAdx9MtWGg5rN82m7cmurXcvsNW3LCmpoLsXbVNo8UL5Dcw9vYbsyaGjk+2LW65E3WQQSqP3FLI6SPRqmVtSgi/iV9f6uk8cDHJZ0bERv9VkTEHGAOwJTJU+Pb/3Zni1VozfC0TRbZ7CmzTtqVuT99tGvn6/bTDbs9JjJl0uNV009Y81qu3fLertalnsN2XFI/U854XKS6rLuzhoBtq6RPoHoLZTSeSH9WDqTfSjLYvluLx++4Xl+Eccy67k677fY0324vxFiULi0oZreW7xmpLusgsoSKsQ9JOwNbUTFW0oTlQLWvgqWvo93tazCzjTiQ9Iasg8hNwBFpF1PJscCzwG2tHDgihoGb2XT67yEkA/fLWjm+mbXOgaT4sg4iXwHWAd+WdGg6sH0ucHH5tF9JyyTNLS8o6UhJs4DXptuz0tcuZdnOB14n6UpJh0s6AzgL+FxEePGmPuQurfxxICm2TINIRAyRtAzGAN8DzgMuAT5VkXVsmqfcfwLfBE5Ot7+Zvg4uO/4vgb8nmZX1PZIpFJ8F/q2dn8PMWuNA0l6SZkhamn4BP6vK/gMk3S1pffplvHzfiZJ+l75OrHeuzGdnRcQDjHzHeSnPlEbSRii7gOSB9YU0sGSwp2dpTVi+jqd2G5d1NTqq23evPzT44hFnauXZzY9NK9ysrTzezZ6uPXgZcBgwCCyUNC/9W1uyAjgJOKOi7PYkX+L3Jpkh+6u07NBI58u6O8vMrNBy2CLZF1gWEQ+mY8PXkaxN+IKIeCgi7mPTCUZHADdHxBNp4LiZ5B67ETmIWN/JYkVfj400pojdWhmYKOmustcpFft3Ah4p2x5M0xox6rKZd2eZmZUrYrdWOwwPj200+K+KiL1r7K92V22j35xGXdYtETPLHbdIWjII7Fy2PQlY2amyDiIF0Ot3rmfxqFx3aeWfA0nTFgJ7SJqaLjZ7HDCvwbILgMMlbZc+7+lw6kxMchAxs9xyIBm9iFgPzCb5478YuCEiFqVPjT0KQNI+kgaBY4CvSlqUln0C+DRJIFoInJ+mjchjImZdlMV0X7bv2uk6ol/HSFoREfOB+RVp55S9X0jSVVWt7BXAFY2eyy0R61v98tz1dcPF/67oFkl+jfq3S9KrSOYh7whsTrJa7m+Bn9W6IcVa0+s3HVpnFfUGxHJukeRTQ0FE0q7Ae4F3Ai8luUHlSZJ1r7YFtgQ2SLoNuBy4PiK8Sq41rB/uXC/J6vnrDiTWCXW7syRdDiwiWejwfOB1wOYR8eKImBQRW5M8hvbvgftJniS4WNJ+nau2WXv0S5dWSdFnbIG7tvKmkTGRtcC0iDgsIr4SEfdFxPPlGSJiVUTcFBEfAnYBzqHxOyTN+k63p/uWcyCxdqobRCJidkQ83OgBI2JDRFwfEde3VjUz6xQHEmsXz84qkF6/6TArWXVpZdka6RUOJNlrKYhI+ltJp0manc7aMmtaFneu97NeaI2AA0nWmg4ikt4L3A4cBLwF+KWk97WpXmbWBQ4k1qpGZmdtOcKujwJvjIhjIuItwGnAJ9pZObNel4cuLQcSa0UjLZHfSnpnlXSx8QNN+muupPWUfpvqW8mBxJrVSBA5AThd0s8l7VOW/nngF5JukPQ/wJeBf+9EJe2ven1wvR/HRfLQGgEHEmtOI1N8byd53u4VwDxJ10h6WURcRvJs9DuAH5J0bf2/jtbWzDrKgcRGq6GB9Uh8DXgF8EfgfkkfB5ZExJfS172drKhZp/V7l1aJA4mNxqhmZ0XE6og4E3gD8HpgiaRZHamZWR/JS5dWiQOJNaqh2VmSPiPpTkn3SJoDrI2ImcC/AJ+SdJuk13S8tmZmo+RA0lmNtETmkiyueBFwNskS8DdLUkT8iGRhxm+maXM6VlN7gQfXOyfLLi23RjrHgaRzGgkiRwJnRMQNEfE/wIkkYyO7AUTE8xFxaZr2bMdqamZd50Bi9TQSRJYA/yhp+/TGw/cAfwE2+jocEUMR8cEO1NGsb+StNQK9FUj6haQZkpZKWibprCr7x0m6Pt1/p6QpafqLJF0t6X5JiyV9rN65GgkiJwJ7AKuAp4F3A8dExNrRfCizovAsrU31SiDph9aIpDHAZSS9SNOB4yVNr8h2MjAUEbsDlwAXpOnHAOMi4lXAXsB7SgFmJI3cJ7I0It4IjAcmRsTuEfGDxj+SdUKvj4tY/jiQFMa+wLKIeDAihoHrgJkVeWYCV6fvbwQOkSSSlUe2kjQW2AIYBlbXOlkjs7P+UdJmEfGXRp+hLml3Sfs3ktesmn68c70kj11aJQ4khbAT8EjZ9iCbPiTwhTwRsR54CtiBJKD8BfgDsAL4j4h4otbJGunO+jDwoKRP15rGK2kHSe+U9D3gHuBlDRzbLJfcpTUyB5LO0LAYt2Kg7guYKOmustcplYeqcvjKX+iR8uwLPA/8H2Aq8GFJu9aq99h6HywiXivpWOD9wCckPQMsJhkjWQdsm55sMjAEfAM4NSIerXdsM6tu3IoB1k0ezroaI3po8MVMmfR41tVo2c2PTeOwHZdkXY3RWhURe9fYPwjsXLY9CVg5Qp7BtOtqAvAEyVqJP4iI54A/SfpfkmWvHhzpZI0ue3J9ROxHMsB+JnAvsB7YimQZlKuBGcDLIuJDDiBmVhR5a5G0wUJgD0lTJQ0AxwHzKvLMI5k0BTALuDUigqQL681KbEWyOknNKFu3JVIuIpYDy0dTxjpnYMkgw9MmZV0N61O90hqBwrZIqoqI9ZJmAwuAMcAVEbFI0vnAXRExj+Qm8q9LWkbSAjkuLX4ZcCXwG5Iurysj4r5a5xtVEDHrpgnL1/HUbuMyO//4h4Ond6nWddwdee/SAgeSvIqI+cD8irRzyt6vJZnOW1numWrptbT0jHUzs14ZaIee7NrqOAcRsxzL83Tfcg4k/ctBxKwGT/VtnANJf3IQKTjfud77itIaAQeSfuQgYrnWz3euF5UDSX9pKYhIerukD0h6RUX67NaqZZYf7tIaPQeS/tF0EJH078AHgd1JHkj1obLd/9xqxczsr4rUpdWLHEhG1kpL5K3AoRHxAeB1wFGSLkz3ZTe53sxyoZdaI+BAMpJWgshm6eqPRMSfSZY9mSJpbovHtVHq9cH1PIyL5KFLq4itEQeS3tfKH/s/SNqztJGuW38syUqQf9tqxcysNziQ9LaGg0j62MTflD0n5CQqVoaMiA0R8W7AzxIx64AitkbAgaSXNRxE0qWBXwIMpNuDEfHYCHl/1p7qmeVHHrq0isyBpDeNtjvrWuDtnaiItabXx0WsNziQ9J7RBpHfA2+TdJ6k7JZXtb6Th8H1vChql1aJA0lvGe1S8J8FtgTOBk6X9BPgbuDXwK/T542YmVmfGG1LZDzJ0w3fAVwIrCV5mMkNwO8kPd3e6pnlS17GRdwasbwY7ZMNg+TJhsuB75TSJW1OMq3XU3vNrCG99ECrftaWmwIjYm1E3BURV7XjeNYcD65b0bhFUny+s9wKIy+D6+7Sai8HkvaTNEPSUknLJJ1VZf84Sden+++UNKVs36sl/VzSIkn3pz1NI3IQMbPMOZC0j6QxwGXAkcB04HhJ0yuynQwMRcTuwCXABWnZscA3gFMj4pXAQcBztc7nIGJWYL3SGgEHkjbaF1gWEQ+my1FdB8ysyDMTuDp9fyNwiCQBhwP3RcSvIVkXMSKer3UyBxGzJuSlS6vXOJC0xU7AI2Xbg2la1TzpQrpPATsALwdC0gJJd0v6SL2TjfY+Ecu5gSWDDE+blHU1rIvGrRhg3eThrKvRNv06a2vMcMNfTiZKuqtse05EzCnbrvYojsoDj5RnLLAfsA+wBrhF0q8i4paRKuMgYoUyYfk6ntrNiyVYX1sVEXvX2D8I7Fy2PYmKxXLL8gym4yATgCfS9NsiYhWApPnAnsCIQcTdWWZNcpdW57hbqyULgT0kTZU0QHJD+LyKPPOAE9P3s4Bb0/sAFwCvlrRlGlwOBB6odbLMg4ik6ZJukbRG0kpJ56ezC+qVmyDpSklDkp6S9F+SdqjIMyDpnHQa27PpT6/7ZT2nlwbYSxxImpOOccwmCQiLgRsiYlH6t/WoNNtcYAdJy4DTgbPSskPAxSSB6F7g7oj4fq3zZdqdJWk74EckkW4msBtwEUlw+2Sd4tcDrwDeDWwgmaL2XTZ+lsm/A6emx7qHpFn2GWBbkufDm1mO9ev4SKsiYj4wvyLtnLL3a4FjRij7DZJpvg3JekzkVGAL4OiIWA3cLGkb4FxJn0/TNiHpjcARwIERcXua9ihwp6RDI+JHadYTgP+MiIvT7R9L2gl4Jz0cRDy43j3jHw6e3qXaGGX39doAe4kDSb5l3Z11JLCgIlhcRxJYDqxT7o+lAAIQEb8kWar+yLJ8LyKZulbuSarPTLCCyMud69Y97trKr6yDyDRgSXlCRKwgmVpWa5H+TcqlFleUuxx4j6Q3Sdo6fbTve4FLW6q1mXWdA0k+ZR1EtiNpGVQaSve1Wu4s4FvAHcDTwO3AtyPi/KZqa5ZzvTjAXs6BJH+yHhOBTW+CgaS7qd78yUbKnQm8C3g/cB/wGuDTkv5cPsj0QmHpFOAUgIkTJ3L02a+vX/sci83z/Qdl++3HcezxU5sq+/y4fPVIbhjIT302DGzYaPulY8bx4a13yag2HfDkLowbWJ91LTZyW9YVyFDWQWSIZKZUpQlUb2mUl6v2lWTbUjlJE0lmYp0WEV9L998uaRi4VNKlEfGn8sLpXZ9zAKZMnhrf/rc7R/NZcifvg+vHHj+V6//7902Xz9tNh3kZYAc2GmD/8Na7cNEzD2dYm87wYHs+ZN2dtYSKsQ9JOwNbUX3MY8RyqfKxkl1JBtbvrchzD0nw7KGvZtX5+SL9q9e7tSDp2nL3VvayDiI3AUdIGl+WdizwLLVbiDcBO0rar5QgaW+SwHFTmlT66rVnRdm90p8PNVlny4m8zdLyHezZcCDJVtZB5CvAOuDbkg5NxyTOBS4un/ab3mk+t7QdET8nuRvzGklHS3ob8F/AHaV7RCLijyQ3H14g6YOSDpb0ryQ3IH4zIvqiLezWSP/qh9ZIiVsl2ck0iKS32B8CjAG+B5xH8oCUT1VkHZvmKXccSWvlCuAa4FfA2yvynEgyzfcDJHdvngZ8leSBLNYD3BqprZ8CCbhVkoWsB9aJiAeAN9fJM6VK2pPA/01fI5VbDZyRvsy6Ik93sQNsNrxZz97NXk0pkHjgvTuy7s6yLuj1Lq28tUbyyq0S6wQHEbMOyFu3Vsm4FQN9FUwcSDrPQaRPuDXSfXkNJNBfrRIPuneWg4hZn3KrxNrBQaSPuDXSfXlujZT0WyBxMGkvBxGzDitKIOm3YGLt4SDSZ9wasVr6LZA4mLTOQcSsC4rQGilxq6T4JM2QtDRd7eOsKvvHSbo+3X+npCkV+ydLekZS3XvsHET6kFsj2ShSIAG3SopK0hjgMpKnvE4Hjpc0vSLbycBQROxOskrIBRX7L+Gv6xDW5CBiZiNyq6SQ9gWWRcSDETFM8sjxmRV5ZgJXp+9vBA6RJIB0LcIHgUWNnMxBpE+5NZKNorVGSvotkBQ8mOwEPFK2PZimVc0TEeuBp4AdJG0FfJRkHcOGOIiYdVmRA0m/BZOcmijprrLXKRX7qy3cVvlLN1Ke84BLIuKZRiuT+QKMlp2BJYO5f/phKyYsX5e7px/2Ai/m2Blj1kajLehVEbF3jf2DwM5l25OAlSPkGZQ0luRpsk8ArwdmSfo8yZNiN0haGxGXjnQyt0TMMlDU1kiJWyW5thDYQ9JUSQMkj82YV5FnHsmjMgBmAbdGYv+ImJKunP4F4HO1Agg4iPS9Xh8bybOiBxLwWEkepWMcs0ke3LcYuCEiFkk6X9JRaba5JGMgy4DTgU2mATfK3VnW09yl1XmlQNJPXVx5f1ZJRMwneRBfedo5Ze/XAsfUOca5jZzLLRFzayRDvdAaKemnLq6itEq6wUHEel5ep/uW9FIggf7r4up3DiIGuDVi7dVvrZJ+5iBifcGtkWz0SyDpZw4i9gK3RrLVy4HEwaR3OYhY38h7a6TXOZD0JgcR24hbI9nq1dZIiVslvcdBxPpKEVojvR5IwK2SXuIgYptwa8S6wa2S3uAgYn3HrZF8cSApNgcRq8qtkez1WyBxMCkmBxHrS0VojfQjB5LicRCxEbk1kr1+ao2UuFVSLA4i1reK0hrpx0ACbpUUhYOI1eTWiGXJrZL8cxCxvubWSDE4kOSXg4jV5dZIPjiQuFWSRw4i1veK0hqxhANJvjiIWEPcGsmHfm+NlLhVUpukGZKWSlomaZPnp0saJ+n6dP+dkqak6YdJ+pWk+9Ofb653LgcRM9waKSoHkk1JGgNcBhwJTAeOlzS9ItvJwFBE7A5cAlyQpq8C/j4iXgWcCHy93vkcRMwKxq2RjblVsol9gWUR8WBEDAPXATMr8swErk7f3wgcIkkRcU9ErEzTFwGbSxpX62QOItawXu/SKlJrxIFkUw4kL9gJeKRsezBNq5onItYDTwE7VOR5B3BPRNT8jzG2paqameVIKZCsmzyccU06aqKku8q250TEnLJtVSlT+a2jZh5JryTp4jq8XmUcRGxUBpYMMjxtUtbV6JgJy9fx1G41W++5Mf7h4Oldqv0tsHErBgoXSLR2uNHW/qqI2LvG/kFg57LtScDKEfIMShoLTACeAJA0CfgO8E8RsbxeZdydZVZg7tYaWR+PlSwE9pA0VdIAcBwwryLPPJKBc4BZwK0REZK2Bb4PfCwi/reRkzmI2Kj1+tiI9ZZ+CyTpGMdsYAGwGLghIhZJOl/SUWm2ucAOkpYBpwOlacCzgd2BsyXdm75eUut87s4yq1CkLi1wt1Yj+mSs5AURMR+YX5F2Ttn7tcAxVcp9BvjMaM7llog1xa2RfHG3VmP6rVXSDQ4iZlUUabqvjU4fj5V0hIOINc2tkXxxa2R0HEjaw0HEbARFbI04kIyOWyWtcxCxlrg1Yr3AgaR5DiJmNbg10j/cKmmOg4i1zK2R/HEgaZ4Dyeg4iJjVUcTWiLXGrZLGOYhYW7g1kj9ujbTOgaQ+BxGzBhS1NTL+4WCzYQeTVrhVUpuDiLWNWyP55VZJ6xxIqnMQMWtQUVsjJeMfDgeTFrlVsikHEWsrt0byz4GkdQ4kf+UgYjYKRW+NlLhV0jq3ShIOItZ2bo0Uh4NJ6/o9kDiImI1Sr7RGyjmQWLMcRKwj3BopHrdKrBmZBxFJ0yXdImmNpJXpIxzHNFBugqQrJQ1JekrSf0naoUq+mZLul7RW0gOSjvurpCsAAAq1SURBVO3MJ7F+0outkRIHEhuNTIOIpO2AHwEBzATOBz4MnNdA8euBg4B3AycB+wDfrTj+fsC3gB8DR5I8gP6/JR3elg9gNbk1UlxulVijsm6JnApsARwdETdHxFdIAsjpkrYZqZCkNwJHACdGxLci4jvAu4D9JB1alvVs4PaI+EBE/DgizgR+AJyz6VHNRqeXWyMlDibFJGmGpKWSlkk6q8r+cZKuT/ffKWlK2b6PpelLJR1R71xZB5EjgQURsbos7TqSwHJgnXJ/jIjbSwkR8Uvg9+k+JI0DDgZuqCh7HfBGSRNar77V49ZIb3AgKY50OOAykr+F04HjJU2vyHYyMBQRuwOXABekZacDxwGvBGYAX643vJB1EJkGLClPiIgVwJp0X8PlUovLyu0GvKhKvsUkn/vlTdTXbCP90BopcaukMPYFlkXEgxExTPLFeWZFnpnA1en7G4FDJClNvy4i1kXE74Fl6fFGNLatVR+97YAnq6QPpfuaKbdrWR6q5Buq2P8CSacAp6Sb6x7my7+pUQdr1GPVk2/9CROBVV2tSyf8JOsK1ParuT1ynfPtFa0eYPX6xxf84LEvT2wg6+aS7irbnhMRc8q2dwIeKdseBF5fcYwX8kTEeklPATuk6b+oKLtTrcpkHUQgGVSvpBHSmylXua2Ryqf/EHMAJN0VEXvXqYO1wNe4O3ydO6/ij3pTImJGO+rCX//GbXT4BvM0UnYjWXdnDQHbVkmfQPWWRr1y25aVGypLq8xDneObmRXVILBz2fYkYOVIeSSNJfmb+0SDZTeSdRBZQsXYh6Sdga2oPuYxYrlU+VjJcuC5KvmmARuA3zZRXzOzvFsI7CFpqqQBkoHyeRV55gEnpu9nAbdGRKTpx6Wzt6YCewC/rHWyrIPITcARksaXpR0LPAvcVqfcjul9IABI2ptkPOQmgIhYR3J/yDEVZY8Ffh4RT9Wp25w6+611vsbd4evcebm5xhGxHpgNLCCZSHRDRCxKb+Q+Ks02F9hB0jLgdOCstOwikhmtD5DcDnFaRDxf63xKgk820psNHwB+QzLFbFfgYuALEfHJsnzLgNsi4uSytB+QzLA6g6RlcQHwp4jYvyzPfiTDnpeS3Ij4ljT/jIj4YUc/nJlZH8i0JRIRQ8AhwBjgeyQ3Gl4CfKoi69g0T7njSForVwDXAL8C3l5x/DtImmqHkkTlo4ATHEDMzNoj05aImZkVW9ZjIh3lxR27o9PXuSz/2yRFO6ZTFk0nr7GkAUnnpEtdPJv+PC9d9aFvNHON02t3oaSfptduk2/lksZI+mia58/p64eS9uncp+miiOjJF8nNhCtJFng8jGSdrr8An2mg7A9IllB5B0kX2W+Bn1bk2Q9YD3yJZHmVC0nGZg7P+rP30nUuy7s58CDJrYt3Zf25e+kak4xDriEZYD2YZBHUZ4EvZv3Z836NSW4ZGCLpLr8l+ZO6SZ6t0zwXk4zLlhaDXQfslfVnb/naZV2BDv5SfCz9h9umLO0j6X+WbWqUeyPJzTUHlKXtm6YdWpa2gGRaXHnZ+cAdWX/2XrrOZfvOBn4KXNWHQaTTv8uPARdVlL2YZH26zD9/nq9xmq80LDB7hCAyBtiuIm0AeAi4MuvP3uqrl7uzvLhjd3TsOpdImkzyH/qD7ap0wXT6Gr8IqJzy/iTV717uVc1e4yRq1N7/fCSTiMrThoFFwEuaq25+9HIQ8eKO3dHJ61xyEclc97tbqGeRdfoaXw68R9KbJG0taX/gvSRT4/tFs9e4KekX0b1IbnEotDysndUpuVrcsYd18joj6WCSZ8f0U2Cu1NFrTHKj2RbAHWVpX46I80dZzyJr9ho36xPpcS/vwLG7qpeDCORoccce15HrnK7p8yWSwc0R1gLuG538XT6T5KFu7wfuA14DfFrSnyOinx7g1uw1HhVJbyUJIh+OiKXtPHYWejmItLK444urpHtxx+o6eZ3/Jd2+WlLpHAPAmHT7LxHxXFO1LpaOXWNJE4HPkCxv8bV0/+2ShoFLJV0aEX9quubF0ew1HpV0Wu/1wFcj4gvtOm6WenlMxIs7dkcnr/MrSFYRfYzkP/kQcDzw2vR9v9yX08lrvCvJ+N69FXnuIfmSuUsT9S2iZq9xwyS9nGRq7y0krb6e0MtBJM+LO/aSjl1nkoHdgyteC0iC9MHAzW36DHnXyWv8cPpzz4qye6U/H2qyzkXT7DVuiKSXkfzuLgeOjzqLGhZK1nOMO/UiGbT6A8kfmkNJnlj4DBU3D5E8/nFuRdoPSG5sOxp4G7CUkW82/AJwEPB5+vdmw45d5yrnu4r+u0+k07/L3yHpsvkgSXD+V5Ipvzdk/dkLco2PJFmj73KS8ZNZ6WuXdP8WJC29J4G3Am8oe70u68/e8rXLugId/sWYDtxK8m3iD8CngTEVeR4CrqpI2xa4Mv1HXw1cC0yscvy3kaxAvI6kyXtc1p+5F69zRZm+CyKdvsbANsB/kHxLfjb9Q/l5YHzWn7sg1/ihNHhUvk5K908ZYX8AD2X9uVt9eQFGMzNrWi+PiZiZWYc5iJiZWdMcRMzMrGkOImZm1jQHETMza5qDiJmZNc1BxMzMmuYgYtYgJX4t6cR0e5qkO9Nnl18naeuK/AdIerQyPd13maS53aq7Wac4iJg17h9Ilse4Nt2+iuTu7n8gudv546WMkjYjWRLnYxHxTJVjXQi8U9LunaywWac5iFjfkTTQZNEPAF+PiOfS1sXrgQ9FxALgs8BhZXlPJlnp+evVDhQRD5E8BOq9TdbFLBccRKynSdpM0l8kfUjSFyU9zqbLnjdynN2BvwNuTJNKgejZ9OeaUpqkbUjWXfpg1F5X6FskrRH/P7TC8i+v9bpdgS2Bj5A8N+MEmvv2fwjwF+DXABHxBPB74P2StidZ9fWuNO/ZwI8i4hd1jvkz4KXAq5qoj1ku9PKTDc0AXp3+vCIiPtnCcfYCFkfEhrK004BvAp8DfgeclrZYTi47by2LgOeBfUmDk1nRuCVive5VJF1Nny1PlPSf6cypRpex3hFYVZ4QETcBLyF5AuPfRMQK4GLgkogYlHSapBXp632VB4yI9SRLtO846k9llhNuiVivexXwk4h4tiL9v4FzSR6924jNSYLRRiJiDenjkCUdCrwGOFbSa0jGRf4uzfpzSXdExH0Vh1iXHtuskNwSsV73auDuysSIuD0i/jiK4zxB8oCnqiSNJZnS+5E0YB0E3BoRSyJiCclztQ+sUnTb9NhmheQgYj1L0hbAbrRnvGEpMLXG/lOBoYi4vixty7L3WwGqqN+L0zy/bUP9zDLhIGK97JUkv+PtCCL/C0xO//BvRNJ2wKdInlFecjtwiKR/lvTPwJuB2yqK7k3yiNSftaF+ZpnwmIj1stKg+vI2HOsnJN1OM9j0BsLzgHkR8UK3WUTcI+kj/HVA/4yIqAxmM4DbIuLPbaifWSb8jHXra5IiIlQ/J0j6IrB7RLy1DecdAzwMnBUR32j1eGZZcXeW9SVJl0saTN8PSrq8gWIXAgdJenkbqnAMyd3u17XhWGaZcUvEbBQkHQf8ISIqxzdGe5zjgUcj4vb21MwsGw4iZmbWNHdnmZlZ0xxEzMysaQ4iZmbWNAcRMzNrmoOImZk1zUHEzMya5iBiZmZNcxAxM7Om/X9nO5/NQsirFQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -155,7 +155,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEUCAYAAAAfooCMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYXVV5x/Hvz8gl3JJQzIiIBkGbkoZ6GSwgyiA3gbZcBILCU4NoxEdJ1UDBIhDxCnJrKVQilBQFogIFIUQkyASjgCZcjA0BQwlIQC7tEMy1JHn7x9pDdjZn5pwzc84+M5Pf53nOc7LXXmuf9xw2ebP2WnsvRQRmZmbN9oZWB2BmZpsGJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVoo3tjqAgWSHHXaIMWPGtDqMQW/FihVsvfXWrQ7DrFc+Txtj/vz5L0XEm2qp64STM2bMGObNm9fqMAa9zs5OOjo6Wh2GWa98njaGpKdqretLamZmVgonHDMzK4UTjpmZlaLUhCPpWEk/kbRU0nJJ8yV9rIZ2W0i6SNILklZImilpTIV6H5D0gKRVkp6UNLkZ38PMzOpXdg/nS8By4IvA3wH3ANdLOrVKu38BJgKnAccAOwB3Sdqyu4Kk3YA7gSeBw4ErgYslfarB38HMzPqg7FlqfxsRL+W2fy7pLaREdFmlBpLeCpwMfDIirs3KfktKLCcCV2VVTweeBU6MiLXZsd8GnCvp6vBKc2ZmLVVqD6eQbLo9BIzupdnB2fvNueMsBeYCh+bqHQrcnCWbbjOAtwJ/2aeAzcysYQbCpIF9gIW97B8LPBMRywvlj2b7kLQ1sDOwqEKd7mOYmVkLtfTGT0kHAEcAn+yl2ijg5QrlXdk+gJHZe7FeV+4YZmbWQi1LONkss+uBWyNiepXqlcZfVKG8p3GaHsdvJE0CJgG0tbXR2dlZJRSrZvny5f4dB6AFS5e1OoQBpW04XHbdra0OY0AYv9OIUj6nJQlH0vbALOBp0sB/b7rY0IPJG8mGHs3LubK8UYX9rxMR04BpAO3t7eFHXfSfHxkyME08c2arQxhQpoxfy0UL/HQvgCUndJTyOaWP4UjaCrgd2Bw4PCJWVGmyCNg5G6fJG5vtIzvGH3j9WE33dnFsx8zMSlb2jZ9vBH4MvBM4NCJeqKHZz7L3o3LHeQvwQVIvqdss4ChJw3JlE0iJ6Hf9idvMzPqv7P7kFcBhwD8A20vaK7fvoYhYI+lugIg4IHt/RtLVwKWSBLwITAWeAn6Qa/8d4ATg+5K+B+wJfAb4rO/BMTNrvbITTvc9Nf9cYd8uwBJgWIV9k4EVwMXAVsAc4GMRsbq7QkQslvSRrM4s4I/AlIi4qsLxzMysZKUmnIgYU0Odjgpla0hPI/hSlbZzgff3MTwzM2uigXDjp5mZbQKccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWCiccMzMrhROOmZmVohUrfu4m6UpJj0haJ6mzhjZTJUUPry/n6k3voU5xJVAzMytZKxb0HkdahO1+0jLTtbgK+Gmh7EjgDDZe9RPSctInFcqW1BeimZk1WisSzm0RcSuApBuBHao1iIhngGfyZZLOBhZFxMOF6isi4v5GBWtmZo1R+iW1iFjf32NI2h44CLih/xGZmVkZBuukgWOAzYAZFfbtLukVSWskzZW0X8mxmZlZBYM14RwPPBgRjxfKHwKmAH8LnAAMA+6S5GWnzcxaTBHRug/PxnAioqOONjuSxnPOiIgLq9QdDiwEHomII3uoMwmYBNDW1va+GTMqdZqsHsuXL2ebbbZpdRhWsGDpslaHMKC0DYfnV7U6ioFh/E4j+tx2//33nx8R7bXUbcWkgf46DhDww2oVI2KVpDtIPZ6e6kwDpgG0t7dHR0dHg8LcdHV2duLfceCZeObMVocwoEwZv5aLFgzGvwIbb8kJHaV8zmC8pHY8MDci/lBHm9Z148zMDBhkCUfSGGAvapydll1SOxSY37yozMysFqX3JyVtRbrxE2AnYDtJx2Tbd0TESkmLgTkRcXKh+fHAWuDGCscdAdwO/ABYTLq/54vZZxzX8C9iZmZ1acUFzNHAjwtl3du7kJ4K8EbSDLOi44G7I+LFCvvWAC8CX8k+YzVwH7BfRMzrf9hmZtYfpSeciFhCGvTvrc6YHsrf3Uub1cDR/YnNzMyaZ1CN4ZiZ2eDlhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFKUnHEm7SbpS0iOS1knqrKHNGElR4TWjQt0jJC2QtFrSQkkTmvJFzMysLq1YD2ccaQG2+4HN62x7GvDL3PZL+Z2S9gVuAq4AJmefc4Okroj4WZ8jNjOzfmtFwrktIm4FkHQjaWXOWj0WEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCpV9Si4j1zTiupC2A/YEfFXbNAPbOlqA2M7MWGWyTBq7Jxn2ek3SxpOG5fbsCmwGLCm0eJX3Pd5UVpJmZvV4rLqn1xRrgctJlsVeADuAMUpI5IqszKnt/udC2q7B/I5ImAZMA2tra6OzsbFTMm6zly5f7dxyApoxf2+oQBpS24f5NupX1/+ugSDgR8Rzw+VxRp6TngSskvTsiHs5XLzRXD+Xdx54GTANob2+Pjo6OxgS9Cevs7MS/48Az8cyZrQ5hQJkyfi0XLRgUfwU23ZITOkr5nMF2SS3vxuz9vdl7d09mZKFe93ax52NmZiWqOb1LGgl8EHg/8GZgS+B/gceBXxZ6GWWIwvsTwKvAWGBOrt5YYD0pTjMza5GqCUfSh4BTgb8h3TfzNOn+lzXAe4CTgK0lPQlcDVweEa80LeINjsne5wNExBpJ9wDHAlfm6k0A7ouIZSXEZGZmPeg14UiaTbpkdRNwFPCrYjKRJODPgUNJf9mfJukTEXF7D8fcinRDJsBOwHaSupPHHRGxUtJiYE5EnJy1mQpsS7rp8xXgQ8DpwM0R8dvc4b9GGt+5FLgl+5zDgI9U+yHMzKy5qvVwfgocGRHLe6oQEUGairwIuETS+4HteznmaODHhbLu7V2AJVlcw3L7F5GeMvApYDipl/Ud4BuFWOZmyevrwGeBJ4GP+ykDZmat12vCiYgL6z1gRPy6yv4lbJg51lOdMYXtGaQbOGv5/FtIvRszMxtABvMsNTMzG0RqSjiS2iS9o1C2j6S7JD0o6XxJWzYnRDMzGwpq7eH8gDSGAoCkNwN3kAby55HGSy5oeHRmZjZk1Jpw2kkJpttxwDLggxExCfgMcHSDYzMzsyGk2rToe7I/jgCmSvoSacD/ncAWwJ1pVjRbATtK+nlWf3pEXNuckM3MbDCqNkttfwBJLwNTI+L27L6bPwCnR8T0bP/upHt0PtzkeM3MbJCq9dE29wEXStoG2I/0fLL8JbZxwH83ODYzMxtCak04k4GbgeuBlcDnIuKF3P7PAz9pcGxmZjaE1JRwIuL3wHhJo4BXImJdocrfAy+8vqWZmVlS12IQEdHVQ/lTjQnHzMyGql6nRUv6YL0HlDRC0vi+h2RmZkNRtftwfiTpl5I+mV1O65GkD0i6DHgK2LthEZqZ2ZBQ7ZLaO0gTBs4FrpT0OPA7NqyHM5L0hOf3kJ7ifAdwYETMa1rEZmY2KPXaw4mIVRFxPjCGtN7NraQksy9wOPAXpB7N6cDOEXFUtWQjaTdJV0p6RNI6SZ3VgpS0p6RrJC2WtFLSY5LOLT6/TdJUSVHh5fVwzMxarNZZagHMzl79NY60KNr9pBVEazEB2BU4H/g9sAdpsbU9gI8W6i7j9QuuPdrXYM3MrDHqmqXWILdFxK0Akm4EdqihzfkR8WJuu1PSatJlvrcXZsmtjYj7GxivmZk1QOnr4UTE+j60ebFC8UPZ++j+RWRmZmUYzAuw7QOsBx4rlI+U9JKkVyU9JMlPsTYzGwBacUmt37L1eM4Cvh8Rr+R2LQb+EXgY2Ia0bMJNkj4aETf3cKxJwCSAtrY2Ojs7mxn6JmH58uX+HQegKePXtjqEAaVtuH+TbmX9/6o0H6A1usdwIqKjjjabkyYvvBV4X09PP8jqCvgVMDwi3l3t2O3t7TFvnmd091dnZycdHR2tDsMKxpw5s9UhDChTxq/logWD8t/cDbfk24f3ua2k+RHRXkvdmi+pSTpZ0jv7HFUDZAnkWrKZbr0lG3htdt3NwB6ShpUQopmZ9aCe9H4hsJ2kF4G5wC+y18N9mQjQR5cARwAHRcSiOtq1rhtnZmZAfZMGtictNf1N0l/gZwLzgC5JP5V0VhPie42kLwOnAidGxNwa2wg4CnikwhOuzcysRDX3cLLLUw9lr38BkHQQafD+YOAg4BvVjiNpK9KNnwA7kXpNx2Tbd0TESkmLgTkRcXLW5uOkRDcdWCppr9whn+ieNi1pDnATsAjYGvg0sBdwZK3f08zMmqOuETNJfwF8MPfaCfgv4HLS5bVajAZ+XCjr3t4FWJLFlR9zOTh7n5i98k4iJSJIs9S+AOxImjL9IHB4RMyqMTYzM2uSmhOOpBeA7YD5wL3A54C5EbGsng+MiCWAqtQZU9ieyOsTTaV2J9cTi5mZlaeeMZy1pF7H5tlrMzbuhZiZmfWo5oQTEW8hPR36CtIEgguBFyT9TtIVkiY0KUYzMxsC6nq0TUQsjohrIuKkiNiNtGTBS8ApwPXNCNDMzIaGesZwhgHvZcOEgX1JPZ1lwExqnzRgZmaboHpmqS0jrer5R9KNn1NJSWZBtPL5OGZmNijUk3BOBe6NiCeaFYyZmQ1d9dz4eU1+W9JmEfFq40MyM7OhqK5JA5L2kTRL0p+A1ZL+JOkOSXs3KT4zMxsi6pk0cBBpcsBjwHeA54E24BjSks+HR8TspkRpZmaDXj1jON8AfgIcW5gkcJ6km0jPOnPCMTOziuq5pDYe+F4PM9KmZfvNzMwqqifhvAzs2sO+3bL9ZmZmFdWTcH4MfEvSiZK2BJC0paQTSZfbftSMAM3MbGioJ+GcAdwO/AewQtIyYEW2fXu2vypJu0m6UtIjktZJ6qyx3QhJ10jqkrRM0nWS/qxCvSMkLZC0WtJCP+PNzGxgqOc+nFXACZK+BuxJWnPmOeA3dS73PI60ANv9pKdO1+qHwJ8DnyKtdXM+cAvpMTsASNqXtADbFcDk7HNukNQVET+r47PMzKzB6lqADSBLLvUkmKLbIuJWAEk3AjtUa5Dd53MIsF9E3JuVLQUekHRgbjr22aSnIUzOtu+RNA44B3DCMTNroV4TjqTd6zlYRCysoc76eo6ZORR4vjvZZMf5taQns32zJW0B7E/q2eTNAK6RNKLexeLMzKxxqvVwfgfU8mBOZfWatSDbWCr3qh7N9kGaQbdZhXqPksaq3gX8pknxmZlZFdUSzv6lRFHdKCpPu+4C3pGrQ4V6XYX9G5E0CZgE0NbWRmdnZ58CXLDUnadubcPhsutubXUYA8b4nUa0OgQApoxf2+oQBpS24f5NuvX17716VUs4nwC+FhFPSvoQ8GBELC8hrkoq9bRUoby4rV7aExHTSDeu0t7eHh0dHX0KbuKZM/vUbiiaMn4tFy2oe3hwyFpyQkerQwB8jhb5PN2grHO02rToTwBvyv58D1DXmE4DdQEjK5SPZEOPpitXVqwDvjHVzKylqiWc54AOSduQegpbStqqp1cT41zEhrGavPzYzhPAqxXqjSVNo368adGZmVlV1RLONODbpNU+g9TL+VMvr2aZBbw5u88GAEntpPGbWQARsSaL79hC2wnAfZ6hZmbWWr1ewIyI8yTNBP4CuBb4Oqkn0WdZT+iwbHMnYDtJx2Tbd0TESkmLgTkRcXIWx32S7gSulXQaG278nFtYEuFrpKUSLiXdFHpY9vpIf2I2M7P+qzpiFhHzgfmSDgCuiYgn+/mZo0nPZcvr3t4FWJLFVZxifTxwCfDvpJ7Z7RTuuYmIuVny+jrwWeBJ4ON+yoCZWevV82ibkxrxgRGxhA0zx3qqM6ZC2cvASdmrt7a3kHo3ZmY2gNQ1JzAbNzkaeCuwZXF/RBzXoLjMzGyIqWeJ6c8ClwMvAb8H/q9ZQZmZ2dBTTw/nNNL4ySkR4dtzzcysLvWshzMauMHJxszM+qKehDML+OtmBWJmZkNbPcsTXA5Mk7QZcBcVHhVTy/IEZma2aap3eQIB55IWNKNQ3szlCczMbJAbLMsTmJnZIFft0TZzygrEzMyGtponDUgaLWmX3LYkTZJ0qaS/bU54ZmY2VNQzS2068MXc9leBK0gPxvxPSRMbF5aZmQ019SSc9wI/B5D0BtLDMf8pIsYC3wC+0PjwzMxsqKgn4YwA/if78/uA7YHrsu2fA7vVchBJu0u6W9JKSc9KOk9Sr7PbJE2VFD28vpyrN72HOpUWbzMzsxLV82ibZ0hLTP8COBxYFBFLs30jgNXVDiBpFDAbWAgcAewKXERKfF/ppelVwE8LZUcCZ5AtwJaziNc/UXpJtdjMzKy56kk4/w5cIOlAUsL5cm7fXsCjNRzjFGA4cHREvALcJWk7YKqkC7Ky14mIZ0gJ7zWSziYlvYcL1VdExP01fSMzMytNzZfUIuJbwKnAH7P3f8nt3p7UC6nmUODOQmKZQUpC+9Uai6TtgYOAG2ptY2ZmrVXXejgRcS1pqeli+Sk1HmIs2cSDXNunJa3M9t1W43GOATYjJaui3SW9AmwB/AY4y/cTmZm1Xl0JB0DSG4G3UXkBtmrPUhtFhWewAV3ZvlodDzwYEY8Xyh8CHiCNEb0JmEK6bLdvRPy6juObmVmD1bMA22aky2ifIPUeKqnlWWpRoUw9lFeKY0fS5bczXnfgiH8u1J1JSj7/RJpkUOl4k4BJAG1tbXR2dtYSxutMGe9VG7q1DffvkdfXc6rR/N9kYz5PNyjrHK2nh3MO8DfAyaTp0J8DVgAnkmabnVrDMbqAkRXKR1C551PJcaQE9cNqFSNilaQ7gB6fhBAR04BpAO3t7dHR0VFjGBubeObMPrUbiqaMX8tFC+ruPA9ZS07oaHUIgM/RIp+nG5R1jtZzH85xwFTgR9n2ryPi2og4GJhLmuZczSLSWM1rJO0MbJ3tq8XxwNyI+EON9aHG3pOZmTVPPQlnZ+DxiFhHuucmP+ZyHfDRGo4xCzhE0ra5sgnAKqDqwL6kMaQp2DXNTpM0nDQzbn4t9c3MrHnqSTjPseFy2JPAh3L7dq3xGN8F1gA3SzowGz+ZClycnyotabGkqyu0Px5YC9xY3CFphKRfSPqMpAMkTQDuAXYCvlljfGZm1iT1XMDsBD5Imrr8PeBCSbuREsgEauh1RESXpAOAf82O8zJwCSnpFOOqNAHheODuiHixwr41wIukJxaMJvXC7gP2i4h51WIzM7PmqifhnAXsABARl0oS6X6Y4cBlwHm1HCSbOv3hKnXG9FD+7l7arAaOriUGMzMrX80JJyL+SHrKQPf2JaTeiZmZWVX1LMD2V5IO62HfYZL2aFxYZmY21NQzaeAS4K972Lcn7u2YmVkv6l2A7Zc97LsPeE//wzEzs6GqnoQzjHSDZiVbA5v3PxwzMxuq6kk4vyF75lgFkwBPPTYzsx7VMy16KjBb0gPAf5BmrO0I/D3wV6T1aczMzCqqZ1r0vZIOBr5Fuu9GwHrScgAHRcQvmhOimZkNBfUuwNYJ7C1pK9Kz1LoiYmUzAjMzs6GlT8/mzpKME42ZmdWsnkkDZmZmfeaEY2ZmpXDCMTOzUpSecCTtLuluSSslPSvpPEmVliLItxkjKSq8ZlSoe4SkBZJWS1qYrYtjZmYtVuqC3pJGAbOBhaQlqXcFLiIlvq/UcIjT2PjxOi8Vjr8vcBNwBTAZOAy4QVJXRPys31/AzMz6rNSEA5xCWj/n6GyFz7skbQdMlXRBftXPHjwWEff3sv9s4N6ImJxt3yNpHHAO4IRjZtZCZV9SOxS4s5BYZpCS0H79ObCkLYD9gR8Vds0g3Ts0oj/HNzOz/ik74YwFFuULIuJp0j09Y2tof42kdZKek3SxpOG5fbsCmxWPDzxK+p7v6nvYZmbWX2VfUhsFvFyhvCvb15M1wOWky2KvAB3AGaQkc0Tu2FQ4fldhv5mZtUDZCQcgKpSph/LUIOI54PO5ok5JzwNXSHp3RDzcy/HVy+ciaRLZU7Db2tro7OzsPfoeTBm/tk/thqK24f498vp6TjWa/5tszOfpBmWdo2UnnC5gZIXyEVTu+fTmRtJstPcCD7OhJ1M8fvd2xeNHxDRgGkB7e3t0dHTUGUYy8cyZfWo3FE0Zv5aLFrTi3zID05ITOlodAuBztMjn6QZlnaNlj+EsojBWI2ln0gJuxbGXaqLw/gTwavH42fZ64PE6j29mZg1UdsKZBRwiadtc2QRgFTCnzmMdk73PB4iINcA9wLGFehOA+yJiWf3hmplZo5Tdn/wu6YbMmyWdD7yDtLDbxfmp0pIWA3Mi4uRseyqwLemmz1eADwGnAzdHxG9zx/8aaXznUuAW0o2fhwEfae7XMjOzakrt4UREF3AAMAy4DfgqcAlwbqHqG7M63RaR7tO5BrgD+Djwnew9f/y5pJ7PgcCdwN8BH/dTBszMWq/0EbOIWAh8uEqdMYXtGaQbOGs5/i2k3o2ZmQ0gflq0mZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCCcfMzErhhGNmZqVwwjEzs1I44ZiZWSlKTziSdpd0t6SVkp6VdJ6kYVXa7CnpGkmLs3aPSTpX0paFelMlRYWX18MxM2uxUpcnkDQKmA0sBI4AdgUuIiW+r/TSdEJW93zg98AepMXW9gA+Wqi7jNcvuPZof2M3M7P+KXs9nFOA4cDR2Qqfd0naDpgq6YL8qp8F50fEi7ntTkmrgSslvT0insrtWxsR9zcnfDMz66uyL6kdCtxZSCwzSElov54aFZJNt4ey99GNC8/MzJql7IQzlrRc9Gsi4mlgZbavHvsA64HHCuUjJb0k6VVJD0k6us/RmplZw5SdcEYBL1co78r21UTSm4GzgO8XekuLgX8EjiON7TwL3OSkY2bWeoqI8j5MehU4LSL+uVC+FJgeEWfVcIzNSRMP3gq8LyK6eqkr4FfA8Ih4dw91JgGTANra2t43Y8aMWr/ORhYsXdandkNR23B4flWroxg4xu80otUhAD5Hi3yebtCfc3T//fefHxHttdQte9JAFzCyQvkIKvd8NpIlkGuBccAHeks2ABERkm4Gzpc0LCLWVagzDZgG0N7eHh0dHVW/RCUTz5zZp3ZD0ZTxa7loQdmn1sC15ISOVocA+Bwt8nm6QVnnaNm/9iIKYzWSdga2pjC204NLSNOpD4qIWup3K68bZ2ZmFZU9hjMLOETStrmyCcAqYE5vDSV9GTgVODEi5tbyYVmP6CjgkUq9GzMzK0/ZPZzvApOBmyWdD7wDmApcnB/8l7QYmBMRJ2fbHwe+CUwHlkraK3fMJ7qnTUuaA9xE6i1tDXwa2As4srlfy8zMqik14UREl6QDgH8FbiON21xCSjrFuPKPuzk4e5+YvfJOIiUiSLPUvgDsSJoy/SBweETMakT8ZmbWd6WPmEXEQuDDVeqMKWxP5PWJplK7k/sRmpmZNZGfFm1mZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUjjhmJlZKZxwzMysFE44ZmZWitITjqTdJd0taaWkZyWdJ2lYDe1GSLpGUpekZZKuk/RnFeodIWmBpNWSFkqa0JxvYmZm9Sg14UgaBcwmLfl8BHAeMAX4ag3Nfwh0AJ8iLVWwJ3BL4fj7khZguwc4FJgJ3CDpYMzMrKXKXg/nFGA4cHS2wuddkrYDpkq6IL/qZ56kvYFDgP0i4t6sbCnwgKQDI2J2VvVs4N6ImJxt3yNpHHAO8LPmfS0zM6um7EtqhwJ3FhLLDFIS2q9Ku+e7kw1ARPwaeDLbh6QtgP2BHxXazgD2ljSi/+GbmVlflZ1wxgKL8gUR8TSwMttXc7vMo7l2uwKbVaj3KOl7vqsP8ZqZWYOUnXBGAS9XKO/K9vWnXfd7sV5XYb+ZmbVA2WM4kCYMFKmH8r60K26rl/ZImgRMyjaXS3qsShxWxWTYAXip1XEMFDq/1RFYJT5PN+jnOfr2WiuWnXC6gJEVykdQuQeTb/emCuUjc+26cmXFOvR0/IiYBkzr5bOtTpLmRUR7q+Mw643P0/KVfUltEYWxGkk7A1tTeYymx3aZ/NjOE8CrFeqNBdYDj/chXjMza5CyE84s4BBJ2+bKJgCrgDlV2r05u88GAEntwDuyfUTEGtL9N8cW2k4A7ouIZf0P38zM+qrshPNdYA1ws6QDs/GTqcDF+anSkhZLurp7OyLuA+4ErpV0tKQjgeuAubl7cAC+BnRIulRSh6QLgMNIN5haeXyJ0gYDn6clU0S1sfoGf6C0O/CvwN6kcZWrgKkRsS5XZwnQGRETc2UjgUuAo0iJ8nZgckRsNOiXJaOvA+8k3aczNSJmNPErmZlZDUpPOGZmtmny06KtISTtJulKSY9IWieps9UxmeVJOlbSTyQtlbRc0nxJH2t1XJuSVtyHY0PTONJ42f3A5i2OxaySL5Eus3+RdP/NYcD1knaIiMtaGtkmwpfUrCEkvSEi1md/vhHYISI6WhuV2QZZYimO+V4P7B0Ru7QorE2KL6lZQ3QnG7OBqphsMg8Bo8uOZVPlhGNmm7J9gIWtDmJT4TEcM9skSTqAtBDkJ1sdy6bCPRwz2+RIGgNcD9waEdNbGswmxAnHzDYpkrYnPRLraeDEFoezSXHCMbNNhqStSE8p2Rw4PCJWtDikTYrHcMxskyDpjcCPSY+9+kBEvNDikDY5TjjWENm/HA/LNncCtpN0TLZ9R0SsbE1kZq+5gnSO/gOwvaS9cvseyp44b03kGz+tIbJB2Cd72L1LRCwpLRizCrKHAve0OqXP0RI44ZiZWSm4FeB6AAADsklEQVQ8acDMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHLMBStJUSZXWcOnLsS7M7kMxaxknHLOB6yrgkFYHYdYofrSN2QAjaTNgfUQ8AzzT6njMGsU9HLM+kjRd0jxJR0paJGm1pLmSds/VeYOkMyUtlrRG0uOSPlE4TqekGyVNkvQEsBp4S6VLapJ2kXSLpFck/UnSbZJ2K9QZKel6SSskPSfprAqxj5R0laRns7iflvS9xv5CZhtzD8esf94OXAycDawCvgrcKemdEbEauAz4BHAe8CBwEPDvkv4nIm7PHecDwK7AGcBKYFnxgyRtAdwNvAp8Glibfd4cSeMj4n+zqtcAHcAXgD8Cp2XHXps73MWk5ZW/mNXZGfhQf34Is2qccMz6ZwfgiIj4FYCk+cATwERJs4HPAidFxH9k9WdL2hE4l7QuS7eRwHsi4o/dBZKKn3US8DbgXRHx31mdB4D/Bj4DfEvSOOBI4PiI+GFW5x7SYmOv5I71fuDy7jqZH/TtJzCrjROOWf+80J1sACLiqSzpvB8IYD3wn9laLN3uBj4maVhErMvK5ueTTQ/eDzzYnWyyz3tG0i+BfbOiPbP3n+TqLJd0F/DXuWM9DJwuaR0wOyIer/ULm/WVx3DM+qfSIl4vADuSej/DSJfHXs29ppP+sbdjrs3zNXzWjj3Uex7YPvvzm4E/RcSqKnF+HrgFOAd4TNLvJR1fQwxmfeYejln/jO6h7L+A/yWNm3yA1NMpyieBWtYJeQ4YV6G8LfssSOMx20oaXkg6G8UZES8Dk4HJkvYA/hG4TtJvI2JhDbGY1c09HLP+GS1pn+4NSW8D3gv8Gvg5qYczIiLmVXj9X52f9QDwPkm75D5vJ9Lg/9ys6DfZ+9/l6mxDmqxQUUT8Fjid9PfB2DpjMquZezhm/fMS8H1J3bPUziP1XKZHxGpJ3wVmSLoAmAdsSeqlvCsiPlXnZ00nzWKbJekcYB0wNYvhSoCI+C9JPwH+TdJ2pF7R6aSZb6+RNBf4T+B3pN7Vp4EVpERp1hROOGb98xTwTeDbpCnS84CPZVOiAT4HPE76C/080kyxhcDV9X5QRKyRdCBpSvPVgIBO4OjclGiAicC/AZcCy4HLST2fY3J17svqjSElroeAQ7ObTc2awktMm/WRpOnAX0ZEe6tjMRsMPIZjZmalcMIxM7NS+JKamZmVwj0cMzMrhROOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkp/h/WI2xAUloInAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEQCAYAAACN2GLgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5hdVX3/8fdHruGWhFJGRDQI+ktJQ6kOFhBkkJuB1iACQfCpQTTiU03VQMEqELFeQG4thUq8kKJAVKAghIgEM8EooAkXoyFgKAFB5NIOwSQkJeT7+2PtITubc+acM3P2OTOTz+t5znPYe6+1zneGw3xZe621lyICMzOzZntduwMwM7PhyQnGzMxK4QRjZmalcIIxM7NSOMGYmVkpNm93AIPJTjvtFGPGjGl3GEPeqlWr2Hbbbdsdhlmf/D1tjkWLFj0fEX9e6ZoTTM6YMWNYuHBhu8MY8rq7u+nq6mp3GGZ98ve0OSQ9Xu2ab5GZmVkpnGDMzKwUTjBmZlYKJxgzMytFSxOMpOMl/UjSU5JWSlok6YN11NtK0kWSnpW0StJsSWMqlHuXpHslvSTpMUlTy/g5zMystlb3YD4LrAQ+A7wPmAdcK+lTNer9GzAZOB04DtgJuEPS1r0FJO0J3A48BhwNXAlcLOmjTf4ZzMysDq2epvx3EfF87vinkt5ASjyXVaog6Y3AqcBHIuLq7NyvSYnkQ8C3sqJnAH8APhQR67K23wScK+nb4cdGm5m1VEt7MIXk0ut+YOc+qh2Rvd+Ya+cpYAEwIVduAnBjllx6zQLeCPxlvwI2M7N+GwyD/AcAS/q4PhZ4MiJWFs4/lF1D0rbAbsDSCmV62zAzsxZq60p+SYcCE4GP9FFsNPBChfM92TWAUdl7sVxPro1qMUwBpgB0dHTQ3d3dd9BW08qVK/17HIQWP7Wi3SEMKh0j4LJrbm53GIPC+F1HltJu2xJMNgvsWuDmiJhZo3il8RNVOF9tnKXq+EtEzABmAHR2doYfHTFwfgTH4DT5rNntDmFQmTZ+HRct9tOyAJaf3FVKu225RSZpR2AO8ARpoL4vPWzooeSNYkOP5YXcubzRhetmZtYiLU8wkrYBbgW2BI6OiFU1qiwFdsvGWfLGZtfI2vg9rx1r6T0ujs2YmVnJWr3QcnPgh8BbgQkR8Wwd1X6Svb8/184bgINIvaBec4D3S9osd24SKfH8ZiBxm5lZ41p9A/IK4CjgH4EdJe2Xu3Z/RKyVdCdARByavT8p6dvApZIEPAdMBx4Hvper/3XgZOC7kr4J7At8HPiE18CYmbVeqxNM75qWf61wbXdgObBZhWtTgVXAxcA2wHzggxGxprdARCyT9N6szBzgj8C0iPhWhfbMzKxkLU0wETGmjjJdFc6tJa32/2yNuguAd/YzPDMza6LBsNDSzMyGIScYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSOMGYmVkpnGDMzKwUTjBmZlYKJxgzMyuFE4yZmZXCCcbMzErRjg3H9pR0paQHJb0iqbuOOtMlRZXX53LlZlYpU9yIzMzMStaODanHkfaEuYe0q2U9vgX8uHDuGOBMNt50DNLulacUzi1vLEQzMxuodiSYWyLiZgBJ1wM71aoQEU8CT+bPSTobWBoRDxSKr4qIe5oVrJmZ9U/Lb5FFxPqBtiFpR+Bw4LqBR2RmZmUYqoP8xwFbALMqXNtL0ouS1kpaIOngFsdmZmYM3QRzInBfRDxSOH8/MA34O+Bk0vbLd0jyLpdmZi2miGjfh2djMJW2Se6jzi6k8ZgzI+LCGmVHAEuAByPimCplpgBTADo6Ot4xa1alTpE1YuXKlWy33XbtDsMKFj+1ot0hDCodI+CZl9odxeAwfteR/a57yCGHLIqIzkrX2jHIP1AnAAK+X6tgRLwk6TZSj6ZamRnADIDOzs7o6upqUpibru7ubvx7HHwmnzW73SEMKtPGr+OixUPxT2DzLT+5q5R2h+ItshOBBRHx+wbqtK+bZma2iRpSCUbSGGA/6pw9lt0imwAsKi8qMzOrpOX9Q0nbkBZaAuwK7CDpuOz4tohYLWkZMD8iTi1UPxFYB1xfod2RwK3A94BlpPU1n8k+44Sm/yBmZtandtyA3Bn4YeFc7/HupFX3m5NmgBWdCNwZEc9VuLYWeA74QvYZa4C7gYMjYuHAwzYzs0a0PMFExHLSIH1fZcZUOb9PH3XWAMcOJDYzM2ueITUGY2ZmQ4cTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NStDzBSNpT0pWSHpT0iqTuOuqMkRQVXrMqlJ0oabGkNZKWSJpUyg9iZmZ9asd+MONIG47dA2zZYN3TgZ/njp/PX5R0IHADcAUwNfuc6yT1RMRP+h2xmZk1rB0J5paIuBlA0vWknSfr9XBE3NPH9bOBuyJianY8T9I44BzACcbMrIVafossItaX0a6krYBDgB8ULs0C9s+2VDYzsxYZaoP8V2XjNk9LuljSiNy1PYAtgKWFOg+Rfs63tSpIMzNrzy2y/lgLXE66zfUi0AWcSUoqE7Myo7P3Fwp1ewrXNyJpCjAFoKOjg+7u7mbFvMlauXKlf4+D0LTx69odwqDSMcK/k15l/fc6JBJMRDwNfDJ3qlvSM8AVkvaJiAfyxQvVVeV8b9szgBkAnZ2d0dXV1ZygN2Hd3d349zj4TD5rdrtDGFSmjV/HRYuHxJ/A0i0/uauUdofaLbK867P3t2fvvT2VUYVyvcfFno2ZmZVoKCeYKLw/CrwMjC2UGwusBx5pUVxmZkYDt8gkjQIOAt4JvB7YGvhf0h/unxduU7XCcdn7IoCIWCtpHnA8cGWu3CTg7ohY0eL4zMw2aTUTjKR3A58C/pa0MPIJ0gLHtcBfA6cA20p6DPg2cHlEvNhHe9uQFkAC7ArsIKk3WdwWEaslLQPmR8SpWZ3pwPakRZYvAu8GzgBujIhf55r/Eml85lLgpuxzjgLeW+vnNDOz5uozwUiaSxrjuAF4P/CLYvKQJOD/ARNIvYfTJX04Im6t0uzOwA8L53qPdweWZ3Ftlru+lLSK/6PACFKS+zrw5XwjEbEgS1b/AnwCeAw4yav4zcxar1YP5sfAMRGxslqBiAhSAlgKXCLpncCOfZRfzoaZXdXKjCkczyItmKwpIm4i9V7MzKyN+kwwEXFhow1GxC/7H46ZmQ0XQ3kWmZmZDWJ1JRhJHZLeUjh3gKQ7JN0n6XxJW5cTopmZDUX19mC+RxpkB0DS64HbSDO7FpIG1C9oenRmZjZk1ZtgOkkJpdcJwArgoIiYAnwcOLbJsZmZ2RBWa5ryvOwfRwLTJX2WNAPsrcBWwO1pljLbALtI+mlWfmZEXF1OyGZmNhTUmkV2CICkF4DpEXFrtu7l98AZETEzu74XaY3Me0qO18zMhoh6HxVzN3ChpO2Ag0kPkMzfMhsH/HeTYzMzsyGs3gQzFbgRuBZYDfxDRDybu/5J4EdNjs3MzIawuhJMRPwOGC9pNPBiRLxSKPL3wLOvrWlmZpuqhnbbiYieKucfb044ZmY2XPQ5TVnSQY02KGmkpPH9D8nMzIaDWutgfiDp55I+kt0eq0rSuyRdBjwO7N+0CM3MbEiqlWDeQhq8Pxd4VtJvJX1f0uWSLpb0HUnzsmnMPwXeCByW7XNfkaQ9JV0p6UFJr0jqrhWkpH0lXSVpmaTVkh6WdG7x8TSSpkuKCi/vB2Nm1mK11sG8BJwv6QLgUOA9wDtI2xD37mj5MGl22c2FmWXVjCNtAnYPaQOzekwC9gDOB34H7E3aXGxv4AOFsit47QZjD9X5OWZm1iT1ziILYG72GqhbIuJmAEnXAzvVUef8iHgud9wtaQ1wpaQ3FyYZrIuIe5oQp5mZDUDLH9cfEev7Uee5Cqfvz953HlhEZmZWhqG8H8wBwHrSLbq8UZKel/SypPsl+SGcZmZt0NA6mMEi2y7g88B3I+LF3KVlwD8BDwDbkZ7yfIOkD0TEjVXamgJMAejo6KC7u7vM0DcJK1eu9O9xEJo2fl27QxhUOkb4d9KrrP9elYZX2qN3DCYiuhqosyVpLOiNwDuqLf7Mygr4BTAiIvap1XZnZ2csXLiw3lCsiu7ubrq6utodhhWMOWt2u0MYVKaNX8dFi4fk/2M33fKvHd3vupIWRURnpWtD6hZZljCuJpuJ1ldygVcnJ9wI7C1psxaEaGZmmboTjKRTJb21zGDqcAkwEZgYEUsbqNe+bpqZ2Saqkf7hhcAOkp4DFgA/y14P9GdmWKMkfQ74FHBCRCyos46A9wMPVnhAp5mZlaiRBLMjsA9wUPY6i9Sj+JOku4GfRcSXazUiaRvSQkuAXUlJ67js+LaIWC1pGTA/Ik7N6pwEfAWYCTwlab9ck4/2TmOWNB+4AVgKbAt8DNgPOKaBn9PMzJqg7gSTjWfcn73+DUDS4aTZXEcAhwM1Ewxp3coPC+d6j3cHlmdx5cdMjsjeJ2evvFNIiQfSLLJPA7uQpjDfBxwdEXPqiMvMzJqooSkUkv6CDT2Yg0g9kN8Cl5Nul9UUEcsB1SgzpnA8mdcmlkr1Tq0nBjMzK1/dCUbSs8AOwCLgLuAfgAURsaKk2MzMbAhrZJryOtJtqy2z1xZsfBvLzMzsVXUnmIh4A/AXwBWkAf8LSY/w/42kKyRNKilGMzMbghpaaBkRyyLiqog4JSL2BCYAzwOnkR7Zb2ZmBjQ2BrMZ8HY2DPAfSOrJrABmU+cgv5mZbRoamUW2AhgB/JG00HI6KaksjnY+0MzMzAalRhLMp4C7IuLRsoIxM7Pho5GFllfljyVtEREvNz8kMzMbDhoa5Jd0gKQ5kv4ErJH0J0m3Sdq/pPjMzGyIamSQ/3DSYP7DwNeBZ4AO4DigW9LRETG3lCjNzGzIaWQM5svAj4DjC4P650m6gfQwSicYMzMDGrtFNh74ZpUZYzOy62ZmZkBjCeYFYI8q1/bMrpuZmQGNJZgfAl+V9CFJWwNI2lrSh0i3z35QTyOS9pR0paQHJb0iqbvOeiMlXSWpR9IKSddI+rMK5SZKWixpjaQlfoSNmVl7NJJgzgRuBf4TWCVpBbAqO741u16PcaQNxx7JXvX6PtAFfJT06P59gZvyBSQdSNpwbB7pMTazgeskHYGZmbVUI+tgXgJOlvQl0h/3XYCngV9FxNIGPvOWiLgZQNL1wE61KmTToI8EDo6Iu7JzTwH3SjosN3vtbNJi0KnZ8TxJ44BzgJ80EKOZmQ1QQxuOAWTJpJGEUqy/vh/VJgDP9CaXrJ1fSnosuzZX0lbAIcDUQt1ZwFWSRnrvGjOz1ukzwUjaq5HGImLJwMKpaiyVk9pD2TVIExC2qFDuIdKtwLcBvyopPjMzK6jVg/kNUM+DLJWVK2sDstFUnqXWA7wlV4YK5XoK1zciaQowBaCjo4Pu7u5+Bbj4KXeOenWMgMuuubndYQwa43cd2e4QAJg2fl27QxhUOkb4d9Krv3/3aqmVYA4p5VP7p1KiU4XzxWP1UZ+ImEFax0NnZ2d0dXX1K7jJZ83uV73haNr4dVy0uOG7r8PW8pO72h0C4O9okb+nG5T1Ha312/0w8KWIeEzSu4H7ImJlKZH0rQf48wrnR7Ghx9KTO1csA16nY2bWUrWmKX+YDX/Y5wENjck00VI2jLXk5cdmHgVerlBuLLCexqZEm5nZANVKME8DXZK2I91q2lrSNtVeJcY5B3h9ts4FAEmdpPGXOQARsZaUBI8v1J0E3O0ZZGZmrVXrFtkM4GvAV0ljGPNqlK85yJ8loqOyw12BHSQdlx3fFhGrJS0D5kfEqQARcbek24GrJZ1O6pGcDywoPMH5S6QnO19KWoR5VPZ6b624zMysufpMMBFxnqTZwF8AVwP/QroVNRA7kx47k9d7vDuwPIurmKxOBC4BvkPqed1KYc1LRCzIktW/AJ8AHgNOiggvsjQza7GaUygiYhGwSNKhwFUR8dhAPjAilrNhZle1MmMqnHsBOCV79VX3JgqPkDEzs9Zr5FExff5hNzMzy2toEng2sH4s8EZg6+L1iDihSXGZmdkQ18iWyZ8ALgeeB34H/F9ZQZmZ2dDXSA/mdNIA+2kR4ecrmJlZnxrZD2Zn4DonFzMzq0cjCWYO8DdlBWJmZsNLI4/rvxyYIWkL4A4qPNurxMf1m5nZENPo4/oFnEvaIZLC+TIf129mZkPMUHpcv5mZDSG1HhUzv1WBmJnZ8FL3IL+knSXtnjuWpCmSLpX0d+WEZ2ZmQ1Ujs8hmAp/JHX8RuIL0pOL/kjS5eWGZmdlQ10iCeTvwUwBJryM9rfifI2Is8GXg080Pz8zMhqpGEsxI4H+yf34HsCNwTXb8U2DPehqRtJekOyWtlvQHSedJ6nP2maTpkqLK63O5cjOrlKm0G6aZmZWokUfFPEnaMvlnwNHA0oh4Krs2ElhTqwFJo4G5wBJgIrAHcBEp0X2hj6rfAn5cOHcMcCbZjpY5S3ntI/2X14rNzMyaq5EE8x3gAkmHkRLM53LX9gMeqqON04ARwLER8SJwh6QdgOmSLsjOvUZEPElKcK+SdDYpyT1QKL4qIu6p6ycyM7PS1H2LLCK+CnwK+GP2/m+5yzuSehm1TABuLySSWaSkc3C9sUjaETgcuK7eOmZm1loN7QcTEVeTtk4unj+tzibGkk0UyNV9QtLq7NotdbZzHLAFKTkV7SXpRWAr4FfA572ex8ys9RpKMACSNgfeROUNx2o9i2w0FZ5hBvRk1+p1InBfRDxSOH8/cC9pjOfPgWmk23AHRsQvKzUkaQowBaCjo4Pu7u4Gwthg2ng/ZLpXxwj/PvL6+51qNv872Zi/pxuU9R1tZMOxLUi3xT5M6h1UUs+zyKLCOVU5XymOXUi30858TcMR/1ooO5uUbP6ZNCngtcFEzABmAHR2dkZXV1c9YbzG5LNm96vecDRt/DouWtzw/7sMW8tP7mp3CIC/o0X+nm5Q1ne0kWnK5wB/C5xKSgifJM3WupM0S6ue1fw9wKgK50dSuWdTyQnZ53+/VsGIeAm4jbSGx8zMWqiRBHMCMB34QXb8y4i4OiKOABaQph3XspQ01vIqSbsB22bX6nEisCAifl9neaizd2RmZs3TSILZDXgkIl4hrXnJj5lcA3ygjjbmAEdK2j53bhLwElBzIF7SGNKU6Lpmj0kaQZq5tqie8mZm1jyNJJin2XB76zHg3blre9TZxjeAtcCNkg7LBtinAxfnpy5LWibp2xXqnwisA64vXpA0UtLPJH1c0qGSJgHzgF2Br9QZn5mZNUkjI1zdwEGkqcTfBC6UtCcpYUyijl5FRPRIOhT496ydF4BLSEmmGFelCQMnAndGxHMVrq0FniM9EWBnUi/rbuDgiFhYKzYzM2uuRhLM54GdACLiUkkirUcZAVwGnFdPI9lU5vfUKDOmyvl9+qizBji2nhjMzKx8dSeYiPgjaRV/7/ElpN6HmZnZazSy4dhfSTqqyrWjJO3dvLDMzGyoa2SQ/xLgb6pc2xf3ZszMLKfRDcd+XuXa3cBfDzwcMzMbLhpJMJuRFkRWsi2w5cDDMTOz4aKRBPMrsodCVjAF8FRgMzN7VSPTlKcDcyXdC/wnaUbZLsDfA39F2p/FzMwMaGya8l2SjgC+Slr3ImA96fH4h0fEz8oJ0czMhqJGNxzrBvaXtA3pWWQ9EbG6jMDMzGxo69dmCFlScWIxM7OqGhnkNzMzq5sTjJmZlcIJxszMStHyBCNpL0l3Slot6Q+SzpNU6dH8+TpjJEWF16wKZSdKWixpjaQl2b4wZmbWYv0a5O8vSaOBucAS0hbLewAXkRLdF+po4nQ2flzN84X2DwRuAK4ApgJHAddJ6omInwz4BzAzs7q1NMEAp5H2jzk228HyDkk7ANMlXZDf1bKKhyPinj6unw3cFRFTs+N5ksYB5wBOMGZmLdTqW2QTgNsLiWQWKekcPJCGJW0FHAL8oHBpFmntzsiBtG9mZo1pdYIZCyzNn4iIJ0hrasbWUf8qSa9IelrSxZJG5K7tAWxRbB94iPRzvq3/YZuZWaNafYtsNPBChfM92bVq1gKXk25zvQh0AWeSksrEXNtUaL+ncH0jkqaQPcSzo6OD7u7uvuKvatr4df2qNxx1jPDvI6+/36lm87+Tjfl7ukFZ39FWJxiAqHBOVc6nChFPA5/MneqW9AxwhaR9IuKBPtpXH59LRMwAZgB0dnZGV1dX39FXMfms2f2qNxxNG7+Oixa346s1OC0/uavdIQD+jhb5e7pBWd/RVt8i6wFGVTg/kso9m75cn72/Pdc2FdrvPW60fTMzG4BWJ5ilFMZaJO1G2rCsOHZSSxTeHwVeLrafHa8HHmmwfTMzG4BWJ5g5wJGSts+dmwS8BMxvsK3jsvdFABGxFpgHHF8oNwm4OyJWNB6umZn1V6tvQH6DtADyRknnA28hbWR2cX7qsqRlwPyIODU7ng5sT1pk+SLwbuAM4MaI+HWu/S+RxmcuBW4iLbQ8CnhvuT+WmZkVtbQHExE9wKHAZsAtwBeBS4BzC0U3z8r0WkpaJ3MVcBtwEvD17D3f/gJSz+Yw4HbgfcBJXsVvZtZ6LZ9CERFLgPfUKDOmcDyLtGCynvZvIvVezMysjfw0ZTMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NStDzBSNpL0p2SVkv6g6TzJG1Wo86+kq6StCyr97CkcyVtXSg3XVJUeHk/GDOzFmvp4/oljQbmAkuAicAewEWkRPeFPqpOysqeD/wO2Ju0udjewAcKZVfw2g3GHhpo7GZm1phW7wdzGjACODbbwfIOSTsA0yVdkN/VsuD8iHgud9wtaQ1wpaQ3R8TjuWvrIuKecsI3M7N6tfoW2QTg9kIimUVKOgdXq1RILr3uz953bl54ZmbWLK1OMGNJ2x+/KiKeAFZn1xpxALAeeLhwfpSk5yW9LOl+Scf2O1ozM+u3Vt8iGw28UOF8T3atLpJeD3we+G6hN7QM+CfgAWA74OPADZI+EBE3VmlrCjAFoKOjg+7u7nrD2Mi08ev6VW846hjh30def79TzeZ/Jxvz93SDsr6jiohSGq74YdLLwOkR8a+F808BMyPi83W0sSVposAbgXdERE8fZQX8AhgREfvUaruzszMWLlxYq1hFY86a3a96w9G08eu4aHGr/99l8Fr+taPbHQLg72iRv6cbDOQ7KmlRRHRWutbqW2Q9wKgK50dSuWezkSxhXA2MA47qK7kARMqeNwJ715oKbWZmzdXq9L2UwliLpN2AbSmMzVRxCWl68+ERUU/5Xq3rppmZGdD6Hswc4EhJ2+fOTQJeAub3VVHS54BPAR+KiAX1fFjW43k/8GBEvNK/kM3MrD9a3YP5BjAVuFHS+cBbgOnAxfnBeknLgPkRcWp2fBLwFWAm8JSk/XJtPto7jVnSfOAGUm9oW+BjwH7AMeX+WGZmVtTSBBMRPZIOBf4duIU07nIJKckU48qPmRyRvU/OXnmnkBIPpFlknwZ2IU1hvg84OiLmNCN+MzOrX8unUETEEuA9NcqMKRxP5rWJpVK9UwcQmpmZNZGfpmxmZqVwgjEzs1I4wZiZWSmcYMzMrBROMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWipYnGEl7SbpT0mpJf5B0Xj3bGUsaKekqST2SVki6RtKfVSg3UdJiSWskLZE0qZyfxMzM+tLSBCNpNDCXtIXxROA8YBrwxTqqfx/oAj5KenT/vsBNhfYPJG04Ng+YAMwGrpN0BGZm1lKt3g/mNGAEcGy2g+UdknYApku6IL+rZZ6k/YEjgYMj4q7s3FPAvZIOi4i5WdGzgbsiYmp2PE/SOOAc4Cfl/VhmZlbU6ltkE4DbC4lkFinpHFyj3jO9yQUgIn4JPJZdQ9JWwCHADwp1ZwH7Sxo58PDNzKxerU4wY4Gl+RMR8QSwOrtWd73MQ7l6ewBbVCj3EOnnfFs/4jUzs35q9S2y0cALFc73ZNf6U+8tuTJUKNdTuL4RSVOAKdnhSkkP9xGH1WEq7AQ83+44Bgud3+4IrBJ/TzcY4Hf0zdUutDrBQBrgL1KV8/2pVzxWH/WJiBnAjBqfbQ2QtDAiOtsdh1lf/D0tX6tvkfUAoyqcH0nlHkqteqNy9Xpy54plqNG+mZk1WasTzFIKYy2SdgO2pfIYS9V6mfzYzKPAyxXKjQXWA4/0I14zM+unVieYOcCRkrbPnZsEvATMr1Hv9dk6FwAkdZLGX+YARMRa0vqX4wt1JwF3R8SKgYdvdfItRxsK/D0tmSJqDX008cPSQsslwG+A80kJ4mLg0oj4Qq7cMmB+RJyaO/dj0kyw00k9kvOBZyPioFyZA4Fu4N9JizCPysq/NyK8DsbMrIVa2oOJiB7gUGAz4BbSCv5LgHMLRTfPyuSdSOrlfAe4GlgEvL/Q/gLgOOAw4HbgfcBJTi5mZq3X0h6MmZltOvw0ZWsKSXtKulLSg5JekdTd7pjM8iQdL+lHkp6StFLSIkkfbHdcw1k71sHY8DSONOZ1D7Blm2Mxq+SzpMdLfYa0wPIo4FpJO0XEZW2NbJjyLTJrCkmvi4j12T9fD+wUEV3tjcpsgyyRPF84dy2wf0Ts3qawhjXfIrOm6E0uZoNVMblk7gd2bnUsmwonGDPblB1AWjphJfAYjJltkiQdStr48CPtjmW4cg/GzDY5ksYA1wI3R8TMtgYzjDnBmNkmRdKOpEdMPQF8qM3hDGtOMGa2yZC0DXAraSr90RGxqs0hDWsegzGzTYKkzYEfAm8F3hURz7Y5pGHPCcaaIvs/w6Oyw12BHSQdlx3fFhGr2xOZ2auuIH1H/xHYUdJ+uWv3Z09ktybyQktrimzQ9LEql3ePiOUtC8asAknLqb69r7+jJXCCMTOzUniQ38zMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFE4wZmZWCicYs0FK0nRJlcsTOuQAAAOASURBVPYw6U9bF2brQMxaxgnGbPD6FnBku4Mw6y8/KsZskJG0BbA+Ip4Enmx3PGb95R6MWT9JmilpoaRjJC2VtEbSAkl75cq8TtJZkpZJWivpEUkfLrTTLel6SVMkPQqsAd5Q6RaZpN0l3STpRUl/knSLpD0LZUZJulbSKklPS/p8hdhHSfqWpD9kcT8h6ZvN/Q3Zps49GLOBeTNwMXA28BLwReB2SW+NiDXAZcCHgfOA+4DDge9I+p+IuDXXzruAPYAzgdXAiuIHSdoKuBN4GfgYsC77vPmSxkfE/2ZFrwK6gE8DfwROz9pel2vuYtJ2wZ/JyuwGvHsgvwizIicYs4HZCZgYEb8AkLQIeBSYLGku8AnglIj4z6z8XEm7AOeS9iXpNQr464j4Y+8JScXPOgV4E/C2iPjvrMy9wH8DHwe+KmkccAxwYkR8Pyszj7S51ou5tt4JXN5bJvO9/v0KzCpzgjEbmGd7kwtARDyeJZl3AgGsB/4r24uk153AByVtFhGvZOcW5ZNLFe8E7utNLtnnPSnp58CB2al9s/cf5cqslHQH8De5th4AzpD0CjA3Ih6p9wc2q5fHYMwGptKmVc8Cu5B6N5uRbne9nHvNJP3P3S65Os/U8Vm7VCn3DLBj9s+vB/4UES/ViPOTwE3AOcDDkn4n6cQ6YjCrm3swZgOzc5VzvwX+lzTu8S5ST6Yo/0e/nn0zngbGVTjfkX0WpPGU7SWNKCSZjeKMiBeAqcBUSXsD/wRcI+nXEbGkjljManIPxmxgdpZ0QO+BpDcBbwd+CfyU1IMZGRELK7z+r8HPuhd4h6Tdc5+3K2mwfkF26lfZ+/tyZbYjTS6oKCJ+DZxB+nswtsGYzKpyD8ZsYJ4HviupdxbZeaSeycyIWCPpG8AsSRcAC4GtSb2Qt0XERxv8rJmkWWZzJJ0DvAJMz2K4EiAifivpR8B/SNqB1Os5gzQz7VWSFgD/BfyG1Hv6GLCKlBjNmsIJxmxgHge+AnyNNGV5IfDBbIoywD8Aj5D+gJ9Hmsm1BPh2ox8UEWslHUaaYvxtQEA3cGxuijLAZOA/gEuBlcDlpJ7Ncbkyd2flxpAS1f3AhGxxp1lTeMtks36SNBP4y4jobHcsZoORx2DMzKwUTjBmZlYK3yIzM7NSuAdjZmalcIIxM7NSOMGYmVkpnGDMzKwUTjBmZlaK/w9n2FjqsON9kQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -272,7 +272,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEPCAYAAAD4aTuoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAHiZJREFUeJzt3XuQHNV99vHvw11gkASISzAgwFgyGMqxAYNDYLmDeGMuxkgFflMiYAGvMSQl21wNAjuUhV8udhEKVHZEiG2JBAhvuAghLisQdzAiEF2wMOJuDM6CLEvICP3eP04vtHpnd2dmZ2Z7d59P1dTMnD595vSpnvlNd59zWhGBmZlZGa3T3xUwMzPrjoOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUmZmVloOUWQ8kTZHUnr1ulzSlxvXbJEWxrG7y3inp+R6WXyupQ9KGVX72ZySFpCNrqbNZmThImZXHDODzknYvLpC0LnACcFtErGp5zcz6iYOUWXn8P2AFMKHCsoOArUmBzGzIcJAyq5Ok/ST9p6Q3Jf1J0nxJJ9dbXkQsB+4ExldYPAF4G3gw++ztJE2X9LKklZJelHSppPV7qO962em/MwrpP5T0u0LajpJuzk4vrpA0S9Ku9W6bWb3W6+8KmJVZREzJvW4rLN4ReAS4HvgA+CtguqQ1ETEjW6cdULGsHswATpT0pYh4BiALPMcBv4yIj7J8o4B3gb8H3gPGApcAWwLfqnEz1yJpy2y73gYmZdt2ATBH0hifbrRWcpAyq1NEzOx8LUnAQ8CngW9S/2m5WaSgMwF4Jks7Atg8X2ZEzAfm5z7/EWAlcL2kcyJidZ2fDzAZ2BA4JCLey8p/FFgKTARu6EPZZjXx6T6zOkkaKemnkl4BPswek4DP1ltmdpTyH6SjKWXJ44FXgMdzn72OpMmSFkpamX32vwDDSIGyLw4FZgPLs1OE6wHvA78G9upj2WY1cZAyq9+NpADyY+BwYG/gn4GN+ljuDGAHYD9JGwHHADNi7VsWTAamAv8OfBXYBzg7W9bXz98SOJlPAm/n4wBg+z6WbVYTn+4zq0MWPI4GzoqI63Ppjfjj9wDpetAEYFtgU7qePvw6MDMiLs599p69lPsRsBrYoJC+eeH9/wDPApdXKGNZL59h1lAOUmb12RBYF/i4E4GkTUlHNX26SVtEfCTp30mBaDtgYUT8VyHbsPxnZ3rsWRgRIekN4HO5Oq8LHFzIej/p6O15d5Kw/uYgZVaHiHhf0lPAxZKWAWuA80jXbjZrwEfMAM4i9eq7uMLyOcCZkp4Gfgv8LTC6inL/A5gk6TnSda5vAhsX8vxf4CTgAUnXAm8C2wAHAu0R8W81b41ZnRykzOp3EjANuAn4A3At6Qf/rAaU/RipN91oYGaF5ZcAW5BOyQVwC/APwO29lHsx6ZrT5cCfgZ8CC4DTOjNExO8l7Qv8I3ANMAJ4C3gY6HbaJrNmUKtvHy/pM8B3gX2BzwMPVxh/Umm94aQvzLGkDh93AmdHxB8K+Y4BfgjsSvqHeWlE3NzIbTAzs9boj959uwPjgBezR7VuBtpI//gmknpSrfWvUdL+wK2kUflHAXcBMyQd3tdKm5lZ6/XHkdQ6EbEme30LsGVvR1KS9gMeBQ6MiIeytH2AJ4DDIuK+LG02sH5EHJxb925gs4jYvxnbY2ZmzdPyI6nOAFWjo4C3OwNUVs6TwMvZMrLbFxwEFC/qziSNNxleX43NzKy/DJTBvGOBRRXSF2bLAHYB1q+QbyFpO+ueBcDMzPrHQOndN5I0n1lRB7BzLg8V8nUUlq9F0iTSVDZstNFGX9phhx36VlMDYM2aNayzzkD5D1R+bs/Gcns2zosvvvhuRIxqVvkDJUhB5QGSqpBefK9u0lNixDRSN2LGjBkTixcv7ksdLdPe3k5bW1t/V2PQcHs2ltuzcbK5K5tmoPyV6CCN1SgawSdHTh25tGIeqHwkZmZmJTZQgtQiPrn2lJe/VvUSaRLMYr6xpNkAaunubmZmJTBQgtQsYJtsHBQAkvYiXY+aBR/f4uBB0nxneeOBxyLi/RbV1czMGqTl16QkbUwazAtp8szNJJ2Qvb87IlZIWgLMjYhTASLisWwM1E2SvkM6MpoKzOscI5X5AdAu6RrSQN9x2ePIpm+YmZk1XH90nNiKdA+cvM73O5HmK1uPNMN03gTgatL9ej6eFimfISLmZQHvh8CZpHFUJ0XEvQ2sv5mZtUjLg1RELOWTHnfd5RldIe094JTs0dO6t9P7JJtmZjYADJRrUmZmNgQ5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWk5SJmZWWmt198VMLO1jT7vri5pk/dYzcRC+tIfHd2qKpn1Gx9JmZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZabU8SEnaTdL9klZIelPSZZLW7WWdKZKim8f5uXw3dpNnbPO3zMzMGq2ld+aVNBK4D1gAHAPsAlxJCpYX9bDqz4B7CmnHAucCswrpi4BTCmlL66uxmZn1p1bfPv4MYBhwfEQsA+ZI2gyYIumKLK2LiHgdeD2fJun7wKKImF/I/qeIeLwJdTczsxZr9em+o4DZhWA0kxS4Dqy2EEmbA4cBMxpbPTMzK5NWB6mxpNNxH4uIV4EV2bJqnQCsTwpwRbtJWiZplaR5kqoOfmZmVi6tPt03EnivQnpHtqxaE4BfR8SLhfRngSdI17xGAZNJpxT3j4gnKxUkaRIwCWDUqFG0t7fXUA3rzvLly92WdZq8x+ouaVsP65ru9q2f98+Bo9VBCiAqpKmb9K4ZpW1JpwbP7VJwxE8Kee8iBawLSB0tulYmYhowDWDMmDHR1tZWTTWsF+3t7bgt6zPxvLu6pE3eYzVXPr/213XpyW0tqtHg4/1z4Gj16b4OYESF9OFUPsKq5ERSULu5t4wRsRK4G/hitRU0M7PyaHWQWkTh2pOk7YFNKFyr6sEEYF5EvFbD51Z1lGZmZuXS6iA1CzhC0qa5tPHASmBubytLGg3sS5W9+iQNI/UofKbWipqZWf9rdZC6HlgF3Cbp0KzTwhTgqny3dElLJP28wvoTgNXALcUFkoZLeljS6ZIOkTQeeBDYDri8CdtiZmZN1tKOExHRIekQ4FrgDtJ1qKtJgapYr0pTJU0A7o+IdyosWwW8Q5q5YivgA+Ax4MCIeLohG2BmZi3V8t59EbEAOLiXPKO7Sf9CD+t8ABzfp8qZmVmpeBZ0MzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrrZqClKRKUxWZmZk1Ra1HUm9IukLS55pSGzMzs5xag9QNwAnAC5KekDRJ0mZNqJeZmVltQSoiLomInYHDgMXAVcBbkn4p6dBmVNDMzIauujpORMQDEfG3wDbAt4ExwGxJSyVNkfQXjaykmZkNTX3t3bcXcADplvAdwMPAacASSd/oY9lmZjbE1RykJO0o6RJJLwH3A9sCfwf8RUT8b2BH0rWrHze0pmZmNuTUdNNDSQ+QjpxeB24EpkfEK/k8EfGRpF8B5zSqkmZmNjTVemfed4FxwJyIiB7yzQd2qrtWZmZm1H6671rg0UoBStKnJB0AEBEfFo+wzMzMalVrkHoQ2K2bZWOy5WZmZg1Ra5BSD8s+BazoQ13MzMzW0us1qewUXlsu6TRJRxaybQQcDTzfuKqZmdlQV03HiS+TBuwCBPB1YHUhz5+BRcB3G1c1MzMb6noNUhHxY7IxT5JeBo6LiPnNrpiZmVlNXdAjwt3KzcysZaq5JjUOmBcRy7LXPYqIuxtSMzMzG/KqOZK6E9gXeDJ7HXTfyy8A3xjRzMwaopogtRPwVu61mZlZS1TTceKVSq/NzMyarZprUhvXUmBEeECvmZk1RDWn+5aTrjVVy9ekzMysIaoJUn9HbUHKzMysIaq5JnVjC+phZmbWRV9vH29mZtY01XSceBKYGBELJD1FL6f+ImKfRlXOzMyGtmquSf03sDL32tenzMysJaq5JnVK7vXEptbGzMwsp+5rUkpGSerpRohmZmZ1qzlISRon6VHgA+B3wAeSHpV0dMNrZ2ZmQ1pNQUrS6cAdpAG+55BugHhO9v4/s+VmZmYNUdP9pIALgGkRcWYh/XpJ1wMXAjc0pGZmZjbk1Xq6bwvgtm6W3Qps3lsBknaTdL+kFZLelHSZpB6nUpI0WlJUeMyskPcYSc9L+kDSAknjq9oyMzMrnVqPpB4EDgTmVFh2IPBQTytLGgncBywAjgF2Aa4kBcuLqvj87wCP5N6/Wyh/f1KwvA44GxgHzJDUERH3VlG+mZmVSDWDeXfLvf0p8DNJWwC3A78HtgKOA44CTuuluDOAYcDxEbEMmCNpM2CKpCuytJ4sjojHe1j+feChiDg7e/+gpN2BiwEHKTOzAaaaI6kXWHsAr4DTs0fxLr330PMs6EcBswvBaCYwlXQkdkcV9alI0obAQaQjqLyZwHRJwyPi/XrLNzOz1qsmSB3UwM8bCzyQT4iIVyWtyJb1FqSmS9qcdAQ3A7gwIjpnw9gFWB9YVFhnIel04meBp/pWfTMza6VqZpyY28DPGwm8VyG9I1vWnVXAP5FO2S0D2oBzSYHpmFzZVCi/o7B8LZImAZMARo0aRXt7e0/1tyotX77cbVmnyXus7pK29bCu6W7f+nn/HDhq7TjxMUnrABsV06u4M2+luf/UTXpnmW8BZ+WS2iW9DVwn6QsRMb+H8tVNemfZ04BpAGPGjIm2traea29VaW9vx21Zn4nn3dUlbfIeq7ny+bW/rktPbmtRjQYf758DR62DeSXpXElLgA+BP1Z49KQDGFEhfTiVj7B6ckv2/MVc2VQov/N9reWbmVk/q3Wc1NnAecDPSUco/whcBrwILCU7bdaDRaRrTx+TtD2wCV2vJfUmCs8vkQLn2EK+scCarI5mZjaA1BqkvglcAlyRvb89Ii4FdicFmV17WX8WcISkTXNp40m3Aqn12tcJ2fMzABGxijSO6+uFfOOBx9yzz8xs4Kn1mtROwPyI+EjSh2Sn0iJijaTrgJ+RjrS6cz3paOw2SVOBnYEpwFX5bunZ6cS5EXFq9n4KsClpIO8y4ADgu8BtEfFfufJ/QLpedQ1pHNe47HFkjdtpZmYlUOuR1B+AT2WvXwX+MrdsJGmgbrciogM4hDSW6g7gUuBq0tFZ3nqsPd5qEWkc1XTgbuAk4MfZc778eaQjrEOB2cBXgZM824SZ2cBU65HUI8DepEDxK9JMEZsDfwa+BdzfWwERsQA4uJc8owvvZ5IG5fYqIm4nHUWZmdkAV2uQmgJsl72+nHS6byLpCGoO8O1GVczMzKymIBURi4HF2etVpHtJndOEepmZmfVpMO+ngW2BNyPijcZVyczMLKnn9vFnSnoNeAV4AnhV0uuS/k/Da2dmZkNarTNOXAxcSxrvdDSwV/Y8C/hpttzMzKwhaj3d9y3g8oj4fiH9nmwuvW+RZqAwMzPrs1pP9w2j+7vvzqXChLNmZmb1qjVI3Q4c382yrwF39q06ZmZmn6jm9vHjcm9nAVdIGk3X28fvDnyv8VU0M7OhqpprUnfS9Tbx2wFHVMj7C9Idc83MzPqsmiC1U9NrYWZmVkE1t49/pRUVMTMzK6p5xglJ65E6SewPbA78D/Aw6bYZqxtbPTMzG8pqClKStgLuBfYk3Yn3bWA/0vio5yQdHhHvNLqSZmY2NNXaBf0qYAvgyxGxc0TsFxE7A1/O0q9qdAXNzGzoqjVIjQPOjYin8onZ+/NJUySZmZk1RK1BakPgj90s+yOwQd+qY2Zm9olag9TjwLmSNsknZu/PzZabmZk1RK29+yYDDwKvSbqX1HFiK9LAXgFtDa2dmZkNaTUdSUXEfGBXYBowCjiMFKSuB3aNiOcaXkMzMxuyqj6SkrQ+sA/wckSc17wqmZmZJbUcSX0EPAB8rkl1MTMzW0vVQSoi1gC/AbZuXnXMzMw+UWvvvguBiyXt0YzKmJmZ5dXau+8i0swS8yW9QerdF/kMEbFPg+pmZmZDXK1B6oXsYWZm1nRVBSlJw0hTIr0A/A64LyLebmbFzMzMqrl9/M7AfcDoXPIySSdGxL3NqpiZmVk1HSeuANYAfw1sDOwOPAvc0MR6mZmZVRWk9gMuiohHIuKDiFgInA7sIGnb5lbPzMyGsmqC1LbAbwtpL5Hm6tum4TUyMzPLVDtOKnrPYmZm1ljVdkGfLWl1hfT7i+kRsVXfq2VmZlZdkLq06bUwMzOroNcgFREOUmZm1i9qnbvPzMysZRykzMystBykzMystBykzMystBykzMystBykzMystFoepCTtJul+SSskvSnpMknr9rLO3pKmS1qSrbdY0iWSNirkmyIpKjyObO5WmZlZM9R608M+kTSSdNuPBcAxwC7AlaRgeVEPq47P8k4FfgPsCfwge/5aIe/7QDEoLexr3c3MrPVaGqSAM4BhwPERsQyYI2kzYIqkK7K0SqZGxDu59+2SPgBukLRjRLySW7Y6Ih5vTvXNzKyVWn267yhgdiEYzSQFrgO7W6kQoDo9mz17rkAzs0Gq1UFqLLAonxARrwIrsmW1+ArpZoyLC+kjJL0r6UNJz0o6vu7amplZv2r16b6RwHsV0juyZVWRtA1wIfCvhaOyJcD3gPnAp0g3Z7xV0tci4rZuypoETAIYNWoU7e3t1VbDerB8+XK3ZZ0m79H1hgNbD+ua7vatn/fPgUMRrbtVlKQPge9ExE8K6W8AN0bEhVWUsQGp88WngS9FREcPeQU8CgyLiC/0VvaYMWNi8eLigZnVo729nba2tv6uxoA0+ry7uqRN3mM1Vz6/9n/KpT86ulVVGnS8fzaOpGciYq9mld/q030dwIgK6cOpfIS1lizo3ATsDozrKUABRIrAtwF79tbN3czMyqfVp/sWUbj2JGl7YBMK16q6cTWp6/phEVFN/k6+s7CZ2QDU6iOpWcARkjbNpY0HVgJze1pR0vnAt4FvRMS8aj4sO/I6DnguIj6qr8pmZtZfWn0kdT1wNnCbpKnAzsAU4Kp8BwhJS4C5EXFq9v4k4HLgRuANSfvmynyps4u6pLnAraSjsk2AbwL7Asc2d7PMzKwZWhqkIqJD0iHAtcAdpOtQV5MCVbFe+WtIh2fPE7NH3imk4AWpd9/fA9uSuqf/Gjg6ImY1ov5mZtZarT6SIiIWAAf3kmd04f1EuganSuud2oeqmZlZyXgWdDMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzK631+rsCZmUy+ry7qsq39EdHN7kmZgY+kjIzsxJzkDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9JykDIzs9LyYF4z68KDmq0sWn4kJWk3SfdLWiHpTUmXSVq3ivWGS5ouqUPS+5J+KWmLCvmOkfS8pA8kLZA0vjlbYmZmzdbSICVpJHAfEMAxwGXAZODSKla/GWgDTgMmAnsDtxfK3x+4FXgQOAq4C5gh6fCGbICZmbVUq0/3nQEMA46PiGXAHEmbAVMkXZGldSFpP+AI4MCIeChLewN4QtKhEXFflvX7wEMRcXb2/kFJuwMXA/c2b7OskXyqycw6tTpIHQXMLgSjmcBU4EDgjh7We7szQAFExJOSXs6W3SdpQ+Ag4OzCujOB6ZKGR8T7DdqOIcMBw1rN+5zltTpIjQUeyCdExKuSVmTLugtSY4FFFdIXZssAdgHWr5BvIem05meBp3qq3MoPP6r6C9Kd7r44zfji+cts1hit+C6V8Tegr793raCIaN2HSR8C342IawrprwM3RcQF3aw3B/hTRBxbSP8FsHNEfEXSXwHzgL+MiPm5PJ8BfgMcERFdTvlJmgRMyt5+Hnih7g20vC2Bd/u7EoOI27Ox3J6NMyYiNm1W4f3RBb1SVFQ36fWsV3yvHtYnIqYB0wAkPR0Re/VSD6uC27Kx3J6N5fZsHElPN7P8VndB7wBGVEgfDrxXx3ojcut15NKKeeilfDMzK6FWB6lFfHINCQBJ2wObUPmaU7frZfLXql4CPqyQbyywBnixjvqamVk/anWQmgUcISl//nI8sBKY28t622TjoACQtBewc7aMiFhFGh/19cK644HHquzZN62KPFYdt2VjuT0by+3ZOE1ty1Z3nBgJLCB1TphKCjJXAddExEW5fEuAuRFxai7tHlIPve+QjoymAr+PiL/O5dkfaAeuJQ30HZflP7JSpwkzMyu3lh5JRUQHcAiwLqm7+aXA1cAlhazrZXnyJpCOtv4ZuAl4BjiuUP484ATgUGA28FXgJAcoM7OBqaVHUmZmZrUYdLfq8AS2jVVPe0raO2vLJdl6iyVdImmjQr4pkqLC48jmblX/qLMtR3fTRjMr5PW+2Xt7drfPhaTzc/lu7CZPpQ5cA56kz0i6QdJzkj6S1F7lek3/3RxUt+rITWC7gDSB7S7AlaRgfFEPq0KawHYMaQLbzmtetwPFa163AteRpl8aR5rAtmMwnlLsQ3uOz/JOJQ2k3hP4Qfb8tULe94FiUFrY17qXTR/3TUjXVh/JvV9rIKr3zarb82fAPYW0Y4FzyTph5SwCTimkLa2vxqW3O2mfeRzYoIb1mv+7GRGD5gGcTxovtVku7XvAinxahfX2Iw32PSCXtk+WdmgubTbwQGHdu4F5/b3tJWvPURXSJmXtuWMubQrwbn9vZ8nbcnTWbv+rl/K9b1bRnt2UdRewsJB2I/B0f29nC9tzndzrW4D2KtZpye/mYDvd190EtsNIE9j2tF6XCWyBzglsyU1g+2+FdWcC+0ka3vfql05d7RkR71RIfjZ73qpx1RtQ6t03e+V982M1t6ekzYHDgBmNrd7AEhFr6litJb+bgy1IdZmINiJeJf276ulccqMmsB1s6m3PSr5COh2wuJA+QtK7kj6U9Kyk4+uubbn1tS2nZ9cK3pJ0laRhuWXeN6l73zyB1HZdrvEBu0laJmmVpHmS+vRnYhBqye/mYAtSI6k8/VFHtqwv63U+F/N1FJYPJvW251okbQNcCPxr4Z/vEtIpmhNJ16reBG4dpIGq3rZcBfwTcCpp+MYNwJms/aPqffMTNe2bpKEtv46I4ow0z5JuyPo3wMmkITFzJO1TR10Hq5b8bg6qjhOZUk1gOwjU254po7QB6VB/OfAPaxUc8YtC3juAR0k3qbytnsqWXM1tGRFvAWflktolvQ1cJ+kLkZvxv0I53jd7IGlb0qnBc7sUHPGTQt67SJ00LiB1tLCk6b+bg+1IyhPYNla97QmAJJEGXu8OjIs0mLtbka6o3gbsWc2wgQGmT21ZcEv2/MVc2VQo3/tmz04k/Vje3FvGiFhJutj/xd7yDiEt+d0cbEHKE9g2Vr3t2elqUvfgYyKimvydBuM//762ZV4Unr1vUld7TiD1MHuths8djPtmvVryuznYglTZJ7AdaOptT7KBkd8GvhFpuqpeZUdexwHPRcRH9VW5tOpuywpOyJ6fAe+bubSq21PSaGBfquzVl3VUOYqszQ1o1e9mf/fPb3Bf/5HAW8Ac0vx9k0jXQn5YyLcE+Hkh7R7gt8DxpHPOi4GHC3n2B1YD1wBtwBWkfwOH9/e2l6k9gZNI/zink34I8o9RuXxzSYP7DicFp7uz9vxqf297idpyCmmQ6vHZepeRfohv9b5Z33c9Sz+P9A+/0pi+4cDDwOmkzirjSYNcVwF79fe2N6k9Nyb9+TkBeAz479z7jbtry1b8bvZ74zShsXcDHsi+yG+RZjpYt5BnKXBjIW1E9qP6HrAM+BWwZYXyjyXN4r6KdEg7ob+3uWztSRoIGd08Juby/TzbwVcCf8p+GI7q720uWVtOAJ4mzczx5+yH4jJgQ++b9X3Xs/T5wD3dlLsR6droa1lbvp/9GO/b39vcxLYc3cN3dnR3bdmK301PMGtmZqU12K5JmZnZIOIgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpeUgZWZmpfX/AftE5VrVUDbMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEPCAYAAAD4aTuoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAeJklEQVR4nO3de5Ac1X328e/DXWCQBIhLMCDAWDIYyrEBg0NguYN4Yy7GSAV+UyJgAa8xJCXbXA0CO5SFXy52EQpUdkSIbYkECG+4CCEuKxB3MCIQXbAw4m4MzoIsS8gI/d4/Ti+0emd3Z2ZnZnt3n0/V1MycPn3m9Kme+U13n3NaEYGZmVkZrdPfFTAzM+uOg5SZmZWWg5SZmZWWg5SZmZWWg5SZmZWWg5SZmZWWg5RZDyRNkdSevW6XNKXG9dskRbGsbvLeKen5HpZfK6lD0oZVfvZnJIWkI2ups1mZOEiZlccM4POSdi8ukLQucAJwW0SsannNzPqJg5RZefw/YAUwocKyg4CtSYHMbMhwkDKrk6T9JP2npDcl/UnSfEkn11teRCwH7gTGV1g8AXgbeDD77O0kTZf0sqSVkl6UdKmk9Xuo73rZ6b8zCuk/lPS7QtqOkm7OTi+ukDRL0q71bptZvdbr7wqYlVlETMm9biss3hF4BLge+AD4K2C6pDURMSNbpx1QsawezABOlPSliHgGIAs8xwG/jIiPsnyjgHeBvwfeA8YClwBbAt+qcTPXImnLbLveBiZl23YBMEfSGJ9utFZykDKrU0TM7HwtScBDwKeBb1L/ablZpKAzAXgmSzsC2DxfZkTMB+bnPv8RYCVwvaRzImJ1nZ8PMBnYEDgkIt7Lyn8UWApMBG7oQ9lmNfHpPrM6SRop6aeSXgE+zB6TgM/WW2Z2lPIfpKMpZcnjgVeAx3OfvY6kyZIWSlqZffa/AMNIgbIvDgVmA8uzU4TrAe8Dvwb26mPZZjVxkDKr342kAPJj4HBgb+CfgY36WO4MYAdgP0kbAccAM2LtWxZMBqYC/w58FdgHODtb1tfP3xI4mU8Cb+fjAGD7PpZtVhOf7jOrQxY8jgbOiojrc+mN+OP3AOl60ARgW2BTup4+/DowMyIuzn32nr2U+xGwGtigkL554f3/AM8Cl1coY1kvn2HWUA5SZvXZEFgX+LgTgaRNSUc1fbpJW0R8JOnfSYFoO2BhRPxXIduw/GdneuxZGBEh6Q3gc7k6rwscXMh6P+no7Xl3krD+5iBlVoeIeF/SU8DFkpYBa4DzSNduNmvAR8wAziL16ru4wvI5wJmSngZ+C/wtMLqKcv8DmCTpOdJ1rm8CGxfy/F/gJOABSdcCbwLbAAcC7RHxbzVvjVmdHKTM6ncSMA24CfgDcC3pB/+sBpT9GKk33WhgZoXllwBbkE7JBXAL8A/A7b2UezHpmtPlwJ+BnwILgNM6M0TE7yXtC/wjcA0wAngLeBjodtoms2ZQq28fL+kzwHeBfYHPAw9XGH9Sab3hpC/MsaQOH3cCZ0fEHwr5jgF+COxK+od5aUTc3MhtMDOz1uiP3n27A+OAF7NHtW4G2kj/+CaSelKt9a9R0v7AraRR+UcBdwEzJB3e10qbmVnr9ceR1DoRsSZ7fQuwZW9HUpL2Ax4FDoyIh7K0fYAngMMi4r4sbTawfkQcnFv3bmCziNi/GdtjZmbN0/Ijqc4AVaOjgLc7A1RWzpPAy9kystsXHAQUL+rOJI03GV5fjc3MrL8MlMG8Y4FFFdIXZssAdgHWr5BvIWk7654FwMzM+sdA6d03kjSfWVEHsHMuDxXydRSWr0XSJNJUNmy00UZf2mGHHfpWUwNgzZo1rLPOQPkPVH5uz8ZyezbOiy+++G5EjGpW+QMlSEHlAZKqkF58r27SU2LENFI3YsaMGROLFy/uSx0t097eTltbW39XY9BwezaW27Nxsrkrm2ag/JXoII3VKBrBJ0dOHbm0Yh6ofCRmZmYlNlCC1CI+ufaUl79W9RJpEsxivrGk2QBq6e5uZmYlMFCC1Cxgm2wcFACS9iJdj5oFH9/i4EHSfGd544HHIuL9FtXVzMwapOXXpCRtTBrMC2nyzM0knZC9vzsiVkhaAsyNiFMBIuKxbAzUTZK+QzoymgrM6xwjlfkB0C7pGtJA33HZ48imb5iZmTVcf3Sc2Ip0D5y8zvc7keYrW480w3TeBOBq0v16Pp4WKZ8hIuZlAe+HwJmkcVQnRcS9Day/mZm1SMuDVEQs5ZMed93lGV0h7T3glOzR07q30/skm2ZmNgAMlGtSZmY2BDlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaTlImZlZaa3X3xUws7WNPu+uLmmT91jNxEL60h8d3aoqmfUbH0mZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlpOUiZmVlptTxISdpN0v2SVkh6U9JlktbtZZ0pkqKbx/m5fDd2k2ds87fMzMwaraV35pU0ErgPWAAcA+wCXEkKlhf1sOrPgHsKaccC5wKzCumLgFMKaUvrq7GZmfWnVt8+/gxgGHB8RCwD5kjaDJgi6YosrYuIeB14PZ8m6fvAooiYX8j+p4h4vAl1NzOzFmv16b6jgNmFYDSTFLgOrLYQSZsDhwEzGls9MzMrk1YHqbGk03Efi4hXgRXZsmqdAKxPCnBFu0laJmmVpHmSqg5+ZmZWLq0+3TcSeK9Ceke2rFoTgF9HxIuF9GeBJ0jXvEYBk0mnFPePiCcrFSRpEjAJYNSoUbS3t9dQDevO8uXL3ZZ1mrzH6i5pWw/rmu72rZ/3z4Gj1UEKICqkqZv0rhmlbUmnBs/tUnDETwp57yIFrAtIHS26ViZiGjANYMyYMdHW1lZNNawX7e3tuC3rM/G8u7qkTd5jNVc+v/bXdenJbS2q0eDj/XPgaPXpvg5gRIX04VQ+wqrkRFJQu7m3jBGxErgb+GK1FTQzs/JodZBaROHak6TtgU0oXKvqwQRgXkS8VsPnVnWUZmZm5dLqIDULOELSprm08cBKYG5vK0saDexLlb36JA0j9Sh8ptaKmplZ/2t1kLoeWAXcJunQrNPCFOCqfLd0SUsk/bzC+hOA1cAtxQWShkt6WNLpkg6RNB54ENgOuLwJ22JmZk3W0o4TEdEh6RDgWuAO0nWoq0mBqlivSlMlTQDuj4h3KixbBbxDmrliK+AD4DHgwIh4uiEbYGZmLdXy3n0RsQA4uJc8o7tJ/0IP63wAHN+nypmZWal4FnQzMystBykzMystBykzMystBykzMystBykzMystBykzMystBykzMystBykzMystBykzMyutmoKUpEpTFZmZmTVFrUdSb0i6QtLnmlIbMzOznFqD1A3ACcALkp6QNEnSZk2ol5mZWW1BKiIuiYidgcOAxcBVwFuSfinp0GZU0MzMhq66Ok5ExAMR8bfANsC3gTHAbElLJU2R9BeNrKSZmQ1Nfe3dtxdwAOmW8B3Aw8BpwBJJ3+hj2WZmNsTVHKQk7SjpEkkvAfcD2wJ/B/xFRPxvYEfStasfN7SmZmY25NR000NJD5COnF4HbgSmR8Qr+TwR8ZGkXwHnNKqSZmY2NNV6Z953gXHAnIiIHvLNB3aqu1ZmZmbUfrrvWuDRSgFK0qckHQAQER8Wj7DMzMxqVWuQehDYrZtlY7LlZmZmDVFrkFIPyz4FrOhDXczMzNbS6zWp7BReWy7pNElHFrJtBBwNPN+4qpmZ2VBXTceJL5MG7AIE8HVgdSHPn4FFwHcbVzUzMxvqeg1SEfFjsjFPkl4GjouI+c2umJmZWU1d0CPC3crNzKxlqrkmNQ6YFxHLstc9ioi7G1IzMzMb8qo5kroT2Bd4MnsddN/LLwDfGNHMzBqimiC1E/BW7rWZmVlLVNNx4pVKr83MzJqtmmtSG9dSYER4QK+ZmTVENaf7lpOuNVXL16TMzKwhqglSf0dtQcrMzKwhqrkmdWML6mFmZtZFX28fb2Zm1jTVdJx4EpgYEQskPUUvp/4iYp9GVc7MzIa2aq5J/TewMvfa16fMzKwlqrkmdUru9cSm1sbMzCyn7mtSSkZJ6ulGiGZmZnWrOUhJGifpUeAD4HfAB5IelXR0w2tnZmZDWk1BStLpwB2kAb7nkG6AeE72/j+z5WZmZg1R0/2kgAuAaRFxZiH9eknXAxcCNzSkZmZmNuTVerpvC+C2bpbdCmzeWwGSdpN0v6QVkt6UdJmkHqdSkjRaUlR4zKyQ9xhJz0v6QNICSeOr2jIzMyudWo+kHgQOBOZUWHYg8FBPK0saCdwHLACOAXYBriQFy4uq+PzvAI/k3r9bKH9/UrC8DjgbGAfMkNQREfdWUb6ZmZVINYN5d8u9/SnwM0lbALcDvwe2Ao4DjgJO66W4M4BhwPERsQyYI2kzYIqkK7K0niyOiMd7WP594KGIODt7/6Ck3YGLAQcpM7MBppojqRdYewCvgNOzR/EuvffQ8yzoRwGzC8FoJjCVdCR2RxX1qUjShsBBpCOovJnAdEnDI+L9ess3M7PWqyZIHdTAzxsLPJBPiIhXJa3IlvUWpKZL2px0BDcDuDAiOmfD2AVYH1hUWGch6XTiZ4Gn+lZ9MzNrpWpmnJjbwM8bCbxXIb0jW9adVcA/kU7ZLQPagHNJgemYXNlUKL+jsHwtkiYBkwBGjRpFe3t7T/W3Ki1fvtxtWafJe6zukrb1sK7pbt/6ef8cOGrtOPExSesAGxXTq7gzb6W5/9RNemeZbwFn5ZLaJb0NXCfpCxExv4fy1U16Z9nTgGkAY8aMiba2tp5rb1Vpb2/HbVmfiefd1SVt8h6rufL5tb+uS09ua1GNBh/vnwNHrYN5JelcSUuAD4E/Vnj0pAMYUSF9OJWPsHpyS/b8xVzZVCi/832t5ZuZWT+rdZzU2cB5wM9JRyj/CFwGvAgsJTtt1oNFpGtPH5O0PbAJXa8l9SYKzy+RAufYQr6xwJqsjmZmNoDUGqS+CVwCXJG9vz0iLgV2JwWZXXtZfxZwhKRNc2njSbcCqfXa1wnZ8zMAEbGKNI7r64V844HH3LPPzGzgqfWa1E7A/Ij4SNKHZKfSImKNpOuAn5GOtLpzPelo7DZJU4GdgSnAVflu6dnpxLkRcWr2fgqwKWkg7zLgAOC7wG0R8V+58n9Aul51DWkc17jscWSN22lmZiVQ65HUH4BPZa9fBf4yt2wkaaButyKiAziENJbqDuBS4GrS0Vneeqw93moRaRzVdOBu4CTgx9lzvvx5pCOsQ4HZwFeBkzzbhJnZwFTrkdQjwN6kQPEr0kwRmwN/Br4F3N9bARGxADi4lzyjC+9nkgbl9ioibicdRZmZ2QBXa5CaAmyXvb6cdLpvIukIag7w7UZVzMzMrKYgFRGLgcXZ61Wke0md04R6mZmZ9Wkw76eBbYE3I+KNxlXJzMwsqef28WdKeg14BXgCeFXS65L+T8NrZ2ZmQ1qtM05cDFxLGu90NLBX9jwL+Gm23MzMrCFqPd33LeDyiPh+If2ebC69b5FmoDAzM+uzWk/3DaP7u+/OpcKEs2ZmZvWqNUjdDhzfzbKvAXf2rTpmZmafqOb28eNyb2cBV0gaTdfbx+8OfK/xVTQzs6GqmmtSd9L1NvHbAUdUyPsL0h1zzczM+qyaILVT02thZmZWQTW3j3+lFRUxMzMrqnnGCUnrkTpJ7A9sDvwP8DDpthmrG1s9MzMbymoKUpK2Au4F9iTdifdtYD/S+KjnJB0eEe80upJmZjY01doF/SpgC+DLEbFzROwXETsDX87Sr2p0Bc3MbOiqNUiNA86NiKfyidn780lTJJmZmTVErUFqQ+CP3Sz7I7BB36pjZmb2iVqD1OPAuZI2ySdm78/NlpuZmTVErb37JgMPAq9JupfUcWIr0sBeAW0NrZ2ZmQ1pNR1JRcR8YFdgGjAKOIwUpK4Hdo2I5xpeQzMzG7KqPpKStD6wD/ByRJzXvCqZmZkltRxJfQQ8AHyuSXUxMzNbS9VBKiLWAL8Btm5edczMzD5Ra+++C4GLJe3RjMqYmZnl1dq77yLSzBLzJb1B6t0X+QwRsU+D6mZmZkNcrUHqhexhZmbWdFUFKUnDSFMivQD8DrgvIt5uZsXMzMyquX38zsB9wOhc8jJJJ0bEvc2qmJmZWTUdJ64A1gB/DWwM7A48C9zQxHqZmZlVFaT2Ay6KiEci4oOIWAicDuwgadvmVs/MzIayaoLUtsBvC2kvkebq26bhNTIzM8tUO04qes9iZmbWWNV2QZ8taXWF9PuL6RGxVd+rZWZmVl2QurTptTAzM6ug1yAVEQ5SZmbWL2qdu8/MzKxlHKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0HKTMzKy0Wh6kJO0m6X5JKyS9KekySev2ss7ekqZLWpKtt1jSJZI2KuSbIikqPI5s7laZmVkz1HrTwz6RNJJ0248FwDHALsCVpGB5UQ+rjs/yTgV+A+wJ/CB7/loh7/tAMSgt7Gvdzcys9VoapIAzgGHA8RGxDJgjaTNgiqQrsrRKpkbEO7n37ZI+AG6QtGNEvJJbtjoiHm9O9c3MrJVafbrvKGB2IRjNJAWuA7tbqRCgOj2bPXuuQDOzQarVQWossCifEBGvAiuyZbX4CulmjIsL6SMkvSvpQ0nPSjq+7tqamVm/avXpvpHAexXSO7JlVZG0DXAh8K+Fo7IlwPeA+cCnSDdnvFXS1yLitm7KmgRMAhg1ahTt7e3VVsN6sHz5crdlnSbv0fWGA1sP65ru9q2f98+BQxGtu1WUpA+B70TETwrpbwA3RsSFVZSxAanzxaeBL0VERw95BTwKDIuIL/RW9pgxY2Lx4uKBmdWjvb2dtra2/q7GgDT6vLu6pE3eYzVXPr/2f8qlPzq6VVUadLx/No6kZyJir2aV3+rTfR3AiArpw6l8hLWWLOjcBOwOjOspQAFEisC3AXv21s3dzMzKp9Wn+xZRuPYkaXtgEwrXqrpxNanr+mERUU3+Tr6zsJnZANTqI6lZwBGSNs2ljQdWAnN7WlHS+cC3gW9ExLxqPiw78joOeC4iPqqvymZm1l9afSR1PXA2cJukqcDOwBTgqnwHCElLgLkRcWr2/iTgcuBG4A1J++bKfKmzi7qkucCtpKOyTYBvAvsCxzZ3s8zMrBlaGqQiokPSIcC1wB2k61BXkwJVsV75a0iHZ88Ts0feKaTgBal3398D25K6p/8aODoiZjWi/mZm1lqtPpIiIhYAB/eSZ3Th/US6BqdK653ah6qZmVnJeBZ0MzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrLQcpMzMrrfX6uwJmZTL6vLuqyrf0R0c3uSZmBj6SMjOzEnOQMjOz0nKQMjOz0nKQMjOz0nKQMjOz0nKQMjOz0nKQMjOz0nKQMjOz0vJgXjPrwoOarSxafiQlaTdJ90taIelNSZdJWreK9YZLmi6pQ9L7kn4paYsK+Y6R9LykDyQtkDS+OVtiZmbN1tIgJWkkcB8QwDHAZcBk4NIqVr8ZaANOAyYCewO3F8rfH7gVeBA4CrgLmCHp8IZsgJmZtVSrT/edAQwDjo+IZcAcSZsBUyRdkaV1IWk/4AjgwIh4KEt7A3hC0qERcV+W9fvAQxFxdvb+QUm7AxcD9zZvs6yRfKrJzDq1OkgdBcwuBKOZwFTgQOCOHtZ7uzNAAUTEk5JezpbdJ2lD4CDg7MK6M4HpkoZHxPsN2o4hwwHDWs37nOW1OkiNBR7IJ0TEq5JWZMu6C1JjgUUV0hdmywB2AdavkG8h6bTmZ4Gneqrcyg8/qvoL0p3uvjjN+OL5y2zWGK34LpXxN6Cvv3etoIho3YdJHwLfjYhrCumvAzdFxAXdrDcH+FNEHFtI/wWwc0R8RdJfAfOAv4yI+bk8nwF+AxwREV1O+UmaBEzK3n4eeKHuDbS8LYF3+7sSg4jbs7Hcno0zJiI2bVbh/dEFvVJUVDfp9axXfK8e1icipgHTACQ9HRF79VIPq4LbsrHcno3l9mwcSU83s/xWd0HvAEZUSB8OvFfHeiNy63Xk0op56KV8MzMroVYHqUV8cg0JAEnbA5tQ+ZpTt+tl8teqXgI+rJBvLLAGeLGO+pqZWT9qdZCaBRwhKX/+cjywEpjby3rbZOOgAJC0F7BztoyIWEUaH/X1wrrjgceq7Nk3rYo8Vh23ZWO5PRvL7dk4TW3LVnecGAksIHVOmEoKMlcB10TERbl8S4C5EXFqLu0eUg+975COjKYCv4+Iv87l2R9oB64lDfQdl+U/slKnCTMzK7eWHklFRAdwCLAuqbv5pcDVwCWFrOtlefImkI62/hm4CXgGOK5Q/jzgBOBQYDbwVeAkBygzs4GppUdSZmZmtRh0t+rwBLaNVU97Sto7a8sl2XqLJV0iaaNCvimSosLjyOZuVf+osy1Hd9NGMyvk9b7Ze3t2t8+FpPNz+W7sJk+lDlwDnqTPSLpB0nOSPpLUXuV6Tf/dHFS36shNYLuANIHtLsCVpGB8UQ+rQprAdgxpAtvOa163A8VrXrcC15GmXxpHmsC2YzCeUuxDe47P8k4lDaTeE/hB9vy1Qt73gWJQWtjXupdNH/dNSNdWH8m9X2sgqvfNqtvzZ8A9hbRjgXPJOmHlLAJOKaQtra/Gpbc7aZ95HNighvWa/7sZEYPmAZxPGi+1WS7te8CKfFqF9fYjDfY9IJe2T5Z2aC5tNvBAYd27gXn9ve0la89RFdImZe25Yy5tCvBuf29nydtydNZu/6uX8r1vVtGe3ZR1F7CwkHYj8HR/b2cL23Od3OtbgPYq1mnJ7+ZgO93X3QS2w0gT2Pa0XpcJbIHOCWzJTWD7b4V1ZwL7SRre9+qXTl3tGRHvVEh+NnveqnHVG1Dq3Td75X3zYzW3p6TNgcOAGY2t3sASEWvqWK0lv5uDLUh1mYg2Il4l/bvq6VxyoyawHWzqbc9KvkI6HbC4kD5C0ruSPpT0rKTj665tufW1Ladn1wreknSVpGG5Zd43qXvfPIHUdl2u8QG7SVomaZWkeZL69GdiEGrJ7+ZgC1IjqTz9UUe2rC/rdT4X83UUlg8m9bbnWiRtA1wI/Gvhn+8S0imaE0nXqt4Ebh2kgaretlwF/BNwKmn4xg3Amaz9o+p98xM17ZukoS2/jojijDTPkm7I+jfAyaQhMXMk7VNHXQerlvxuDqqOE5lSTWA7CNTbnimjtAHpUH858A9rFRzxi0LeO4BHSTepvK2eypZczW0ZEW8BZ+WS2iW9DVwn6QuRm/G/QjneN3sgaVvSqcFzuxQc8ZNC3rtInTQuIHW0sKTpv5uD7UjKE9g2Vr3tCYAkkQZe7w6MizSYu1uRrqjeBuxZzbCBAaZPbVlwS/b8xVzZVCjf+2bPTiT9WN7cW8aIWEm62P/F3vIOIS353RxsQcoT2DZWve3Z6WpS9+BjIqKa/J0G4z//vrZlXhSevW9SV3tOIPUwe62Gzx2M+2a9WvK7OdiCVNknsB1o6m1PsoGR3wa+EWm6ql5lR17HAc9FxEf1Vbm06m7LCk7Inp8B75u5tKrbU9JoYF+q7NWXdVQ5iqzNDWjV72Z/989vcF//kcBbwBzS/H2TSNdCfljItwT4eSHtHuC3wPGkc86LgYcLefYHVgPXAG3AFaR/A4f397aXqT2Bk0j/OKeTfgjyj1G5fHNJg/sOJwWnu7P2/Gp/b3uJ2nIKaZDq8dl6l5F+iG/1vlnfdz1LP4/0D7/SmL7hwMPA6aTOKuNJg1xXAXv197Y3qT03Jv35OQF4DPjv3PuNu2vLVvxu9nvjNKGxdwMeyL7Ib5FmOli3kGcpcGMhbUT2o/oesAz4FbBlhfKPJc3ivop0SDuhv7e5bO1JGggZ3Twm5vL9PNvBVwJ/yn4YjurvbS5ZW04AnibNzPHn7IfiMmBD75v1fdez9PnAPd2UuxHp2uhrWVu+n/0Y79vf29zEthzdw3d2dHdt2YrfTU8wa2ZmpTXYrkmZmdkg4iBlZmal5SBlZmal5SBlZmal5SBlZmal5SBlZmal5SBlZmal5SBlZmal9f8B+0TlWtVQNswAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -284,7 +284,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEPCAYAAAB2s3LUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3XuYHFWd//H3h4sQCIRrArJIAMUsrPsoiQguKxNBgbDPoggGlfWJXBKVFXd/gFxEDXhZAbmorEuCLsiqhF1k8QIYuWSCURGSAKIhQVjCVREwEEICEvj+/jg12FR6eqpnuqtmuj+v56mnp06dqv6enst36tSpU4oIzMzM2m29qgMwM7Pu4IRjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxxrKUkzJUU/y1EFj7FbdpwtcuXTsuOMbk/0xeIY4jGvktRboN4Gkv5F0l2S1khaIek6SfsO8n2Hy2c6Lfcz8UdJcyXtWWDfnmyfvykjVms9Jxxrh2eAfeosPym4/27A54D8H/prs+Osbk2Yg46jrSStD1wDfAn4ITAFmAa8BPRK+uAgDjtcPtM+78zedwawLTBP0msH2Gdxts/9bY7N2mSDqgOwjrQ2Im5t9UEj4gngiVYfdxj6BHAIcHBE1CbpH0iaA8yWND8iHh3qG1X4md4eEasAJC0EHgQ+BJybryhJwEYRsRJo+c+VlcdnOFYJSadJuk/S85Iel/QTSdtJ6gF+lFV7IOtCWZ7t86ruH0njs/UjJV0qaaWkR/q67iR9StJjkp6QdLak9Wref4KkOZIelrRa0m+zLqz1su39xpFtf122/5+y/edKemOujTtm3WBrJC2XdGzBj+eTwLxcsunzaWBj4Jia91ku6SuSPiPpD5JWSfqupDEDtaVel5qkbSR9W9JTWdt6JU3Kta3vPf81+8xXZJ9H02eDEfEwKemNz449U9KTkvaVdDvwPHBEvS41SetnP0v3Snohi+WyXKyHSlqY/az9QdI5kjZsNk4bOp/hWFtIWudnKyLWZts+DJwOnAL8Ftia1MWyKanb5CTgK8BhwO+BFwZ4u7OB7wLvA44Gvi3pLcBO2fpE4AvAHcCcbJ8dgGXZfs8CbwbOBEYB/9YoDklbAQuAp4CPkrqjTgVulLRbRKzJ/iv/AbANKTk8nx1/K+B3DT63HUl/eC+otz0i7pd0N/CO3KYPAPcBxwHbA+cA3wSOaNSWflwDvD7b50ngZFKX11si4r6aeu8Hfg1MB/4KOJ/UDfjxBsdeh6TNSJ/LH2qKNwG+nbXjXuCxrF15s4APZ/XmZ8c5vObY7weuyOqdDuxK+v6ul7XPyhQRXry0bAFmAtHPMj6rcxHw/QbH+Ifa+jXl07Ly0dn6+Gz90po6mwMvkv6or19TfhtwZT/vJ9I/X6cD/1cgjs+Tks1WNWVbkq5dHZ+tT8n2fVtNnZ2AtUBvg7bvne13aIM61wD31KwvB/7U97lkZR8CXgb+usnP9KBsfb+aOpuSzkBm5d7zfmCDmrILgT8M8PPR935jss98R+DK7HN5c+5n6NDcvj1Z+d9k6xOy9RMafF8frP35yMqPBtYAW1f9+9Jti89wrB2eAQ6oU/5Y9noncIykM0kXrRdFxEtDeL+b+r6IiJWSngDm5455H/C6vhVJGwOnkf4wvw7YsGbbBpGdjfXjAOAGYGXNmdyzwCKgr+tpL+DxiPhVTWwPSlo0iPYVcUNk10QyVwPfAd4K3NPEcfYCnoiI+X0FEfGcpB8D+RFy83Kf0xJgrKTXRMSfB3ifp2u+fhI4OiLurCkL4PoBjjE5e72sn+27kb63/507476Z1C35N6SzIiuJE461w9qIWNhg+38Cm5G6Yj4LPCXpP4CZg0w8T+fW/9xP2cY162cDx5K6uRZn9Q8FzsjqraJ/25DORKbW2daX/LYD/lhn+x9Jbe9P30CAnRrU2ammXu1xXxGpW28V9buhGtkeeLxO+eOk7qpa9T5jAa/Jvm7kHaSuyCeBhyPi5dz2FQWS1tbAc5EGE9SzTfZ6XT/bdxzg+NZiTjhWuuyPywXABdk1iw8BXyT9Eb24pDCOAL4eEef0FUg6pOC+fyINV/58nW3PZq9/AMbW2T6W1J1TV0Q8nF3Q/0fga/ntknYm/Weef++xuXqjgNGk6zXN+H3+WJlxpHa3yh25M7K8Is9NeQrYVNLm/SSdvnink67f5T1Q4D2shTxKzSoVEQ9HxJdJXV67Z8V9/9luXH+vlhhFzYVzpXtfjszV6S+Om4A9gN9GxMLcsiyrczswTtLbat7jdcCANzgCXwX2l/TuOtu+kMX9rVz5u/TqmzcPI/3R7jvTLPqZ/orULfbKoARJm5CGaS8oEHuZbs5eP9zP9mWkf2LG1/k+LYyIp8oJ0/r4DMfaYQNJe9cpfzgiHpU0i/Tf562k6z2TgTeQRq1B+kMBMEPpvpPVEXF3i2O8AThe0n1ZLMcDG+Xq9BfH+cBRwM2Svk76ozYO2A9YEBFXkLpx7gL+R9IppFFqZ1G/my3v66TrRP8r6StAL6kb7hjSxf9/inXvwVkDXCvpXFK32LnA/0bEkgHa8ioRMVfSz4ErJZ1KOos4iZSg17lHpkoRsUzSbOA8SWOBW0g3th4eEUdGxMuSTgT+S9LmpGtCfwZ2Ad6T1Sv7htfuVvWoBS+dtdB4lNoZWZ1pwM9Jf+hXk4bWHpM7zomkEUZrgeU1+9UbpfYPuX2XA1/JlV0GLKxZHwf8L7CSdH3iHNKQ4leO318cWflrgUuzfV/I3vM7wB41dV5Hml1hTXaMGcBVNBilVrPvBsC/Zp/NGmAF6Q/mvnXqLgfOyz77x4HnSEOBt2j2M83KtgUuz95zDenC+lsLfMbrHKtOrEXqzASerFPeQ80otaxsfbLRhaRk8gjrjko7GPhZ9rmsJA1a+QI1I+y8lLMo+4aURtLrSeP69yb1Rf8sInoK7DeGNOzyPaSuwB+ThkM+lat3KOmH6Q2kH8IzI+LKVrbBbDjJrvlcFRG+r8SGtSqu4exBukfh3mwp6krSfzjHkv5LeivpfoRXKE1s+H1gHum/mmuBK/rpCzczsxJVcYazXmRDICVdBWwz0BmOpH2AX5BuRrslK9uLdIHzXRFxY1Y2F9gwIt5Zs+91wOYRMahZds2GO5/h2EhR+hlOrDvevoiDSTfR3VJznNtIwxoPBpC0Eeni83/n9p0D7NM3r5RZp4mI8U42NhKMlGHRE4CldcrvybZBmiNpwzr17iG1c7e2RWdmZgMaKcOit2Tdu5ohjaLZpaYOdeqtyG1/FUnTSTeGMWrUqIk77jg8bj5++eWXWW+9kfL/QHGd2K6ibdrs3nTJ8tndRsb/Pp34vYLObFeVbbr33nufjIhti9QdKQkH6t95rDrl+XU12J+ImA3MBpg0aVIsXNhoRpby9Pb20tPTU3UYLdeJ7SrcJmU/isuWNa43THTi9wo6s11VtknSg0XrjpQ0v4L6T13cgr+c0ayoKcvXgfpnSGZmVpKRknCW8pdrNbVqr+3cT5qWPl9vAmma9maGYJuZWYuNlIRzPbBddp8NANkTCHfJthERL5Duvzkit+9U4JcR8UxJsZqZWR2lX8PJJgKckq3uAGwuqe8JfddFxOpsfqv5EXEMQET8MrvH5nJJJ5HOWM4mzVt1Y83hPw/0SrqQdFPolGw5qO0NMzOzhqoYNDAW+J9cWd/6zqQ5mjYgzZFU60jSlPb/Sc3UNrUVImJBlry+AHyMdJ/OByPipy2M32xwSr7J2my4KT3hRMRy/jJyrL864+uUPQ18JFsa7XsNuSlvzMyseiPlGo6ZmY1wTjhmZZk4MS1mXWok3fhpNrItXlx1BGaV8hmOmZmVwgnHzMxK4YRjZmalcMIxM7NSOOGYmVkpPErNrCzHHVd1BGaVcsIxK8vs2VVHYFYpd6mZmVkpnHDMyrJoUVrMupS71MzKMmlSevWs0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfx4aety7lIzM7NSOOGYlWX69LSYdSknHLOyXHJJWsy6lBOOmZmVwoMGzIaZ8adeW6je8i8f0uZIzFrLZzhmZlYKJxwzMyuFE46ZmZXC13DMyrLnnlVHYFYpJxyzsvjx0tbl3KVmZmalcMIxM7NSOOGYlUVKi1mXcsIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFE46ZmZXCMw2YlWXWrKojMKuUE45ZWfx4aetypXepSdpd0k2SVkt6TNJZktYfYJ+ZkqKf5bSaepf1U2dC+1tmZmaNlHqGI2lL4EZgCXAosCtwHinxndFg128CP8mVvQc4Bbg+V74U+EiubPngIjZrodmz06vPdKxLld2l9lFgFHBYRKwEbpC0OTBT0jlZ2Toi4hHgkdoySZ8BlkbEnbnqz0XErW2I3WxoZsxIr0441qXK7lI7GJibSyxzSElov6IHkbQV8C7gitaGZ2Zm7VJ2wplA6vJ6RUQ8BKzOthV1OLAhKVnl7S5ppaQXJC2QVDiRmZlZ+ygiynsz6UXg5Ii4MFf+CHB5RJxe8Dg3A2MiYmKu/JPAn0nXiLYFTgQmAvtGxG39HGs6MB1g3LhxE+fMqZfDyrdq1SpGjx5ddRgt14ntKtqmnsmTAeidN69hvbsffabQ+75phzGF6g1WJ36voDPbVWWbJk+evCgiJhWpW0XCOSkivporfxS4LCI+XeAY25Ou55wSEV8ZoO4oUvK5KyLeM9CxJ02aFAsXLhyoWil6e3vp6empOoyW68R2FW5T36MJBvidG3/qtYXed/mXDylUb7A68XsFndmuKtskqXDCKbtLbQWwRZ3yMcDTBY/xfkDAlQNVjIg1wHWAHyZvZlaxshPOUnLXaiTtCGxK7tpOA0cCCyLi4Sbet7zTODMzq6vshHM9cKCkzWrKpgJrgPkD7SxpPLA3BUenZV1qBwOLmg3UrOUiBuxOM+tkZSeci4EXgKslHZBdsJ8JnF87VFrSfZK+VWf/I4G1wFX5DZLGSPqZpBmS9pc0FZgH7AB8qQ1tMTOzJpR642dErJC0P3AR8CPSdZsLSEknH1e96W6OBG6KiCfqbHsBeII0Y8FY4Hngl8B+ETE8RgKYmXWx0ifvjIglwDsHqDO+n/I3N9jneeCwIQVn1k4Ts1H8i9zDa93Js0WblWXx4qojMKuUH8BmZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKj1IzK8txx1UdgVmlnHDMytL3iGmzLuUuNTMzK0VTCUdSvelmzKyIRYs8y4B1tWa71B6VdDlwaUTc046AzDrWpOwZVZ4x2rpUs11qs4DDgd9I+pWk6ZI2b0NcZmbWYZpKOBHxuYjYBXgXsAw4H/i9pO9KOqAdAZqZWWcY1KCBiLg5Ij4MbAd8AngjMFfSckkzJb22lUGamdnIN9RRapOAd5AeG70C+BlwLHCfpKOGeGwzM+sgTSccSTtJ+pyk+4GbgO2Bo4HXRsQ/ATuRrvWc29JIzcxsRGtqlJqkm0lnNI8Al5FGqz1YWyciXpL0PeCTrQrSzMxGvmaHRT8JTAFuiGg4tvNOYOdBR2XWiRb6SefW3ZpNOBcBi+slG0mjgT0j4paIeBF4cJ29zbpZ3yOmzbpUs9dw5gG797Ptjdl2MzOzdTSbcNRg22hg9RBiMets06enxaxLDdilJukdQE9N0bGSDspV2xg4BLi7daGZdZhLLkmvnjXaulSRazhvI93cCRDAEcDaXJ0/A0uBk1sXmpmZdZIBE05EnEt2T42kB4D3RsSd7Q7MzMw6S1Oj1CLCQ53NzGxQilzDmQIsiIiV2dcNRcR1LYnMzMw6SpEznB8DewO3ZV8H/Y9WC8APaTMzs3UUSTg7A7+v+drMBmPPPauOwKxSRQYNPFjvazNrkh8vbV2uyDWcTZo5YET45k8zM1tHkS61VaRrM0X5Go6Zma2jSMI5muYSjpnVo2ysTcOJ1s06V5FrOJeVEIeZmXW4oT5i2szMrJAigwZuA6ZFxBJJtzNA91pE7NWq4MzMrHMUuYbzW2BNzdfugDYzs6YVuYbzkZqvp7U1GjMz61iDvoajZFtJjR7KZmZmBjQ5WzS8MpnnGcDEbP+1khYBX4yIa1scn1nnmDWr6gjMKtVUwpE0A/gGcBPwSeCPwFjgMOCHkj4eEf6tMqvHj5e2LtfsGc7pwOyI+Fiu/GJJFwOfBpxwzMxsHc1ew9kauLqfbd8HthroAJJ2l3STpNWSHpN0lqSG0+FIGi8p6ixz6tQ9VNLdkp6XtETS1EItM2u32bPTYtalmj3DmQfsB9xQZ9t+wC2Ndpa0JXAjsAQ4FNgVOI+U+M4o8P4nAT+vWX8yd/x9SYnvG8AJwBTgCkkrIuKnBY5v1j4zZqRXd61Zlypy4+fuNatfA74paWvgGv5yDee9wMHAsQMc7qPAKOCwiFgJ3CBpc2CmpHOyskaWRcStDbZ/BrglIk7I1udJ2gP4LOCEY2ZWoSJnOL/h1Td7CpiRLfmnf/6ExrNFHwzMzSWWOcDZpDOkHxWIpy5JGwGTSWc2teYAl0oaExHPDPb4ZmY2NEUSzuQWvt8E4Obagoh4SNLqbNtACedSSVuRzqyuAD4dEX2zIOwKbAgsze1zD6nLbjfg9qGFb2Zmg1VkpoH5LXy/LYGn65SvyLb15wXg30ndYiuBHuAUUpI5tObY1Dn+itz2V5E0HZgOMG7cOHp7exvFX5pVq1YNm1haqRPbVbRNPdnrQHVPfNPaQu/b7s+xE79X0JntGiltavrGzz6S1gM2zpcXeOJnvbnY1E953zF/D/xzTVGvpMeBb0h6c0Tc2eD46qe879izgdkAkyZNip6ensbRl6S3t5fhEksrdWK7mm3TQHWnnVrs/unlHyr+noPRid8r6Mx2jZQ2NTUsOpvO5hRJ9wEvAs/WWRpZAWxRp3wM9c98Grkqe92z5tjUOX7ferPHNzOzFmr2PpwTgFOBb5HOHL4InAXcCywn65pqYCnpWs0rJO0IbMq6114GErnX+0lJcEKu3gTg5SxGs+pE+Gmf1tWaTTjHAZ8DzsnWr4mIM4E9SAnjDQPsfz1woKTNasqmkh5/0Oy1osOz10UAEfEC6T6hI3L1pgK/9Ag1M7NqNXsNZ2fgzoh4SdKLZN1VEfGypG8A3ySdAfXnYtJZ0tWSzgZ2AWYC59cOlc667OZHxDHZ+kxgM9JNnyuBdwAnA1dHxK9rjv950vWdC0n3CU3JloOabKeZmbVYs2c4TwGjs68fAt5Ss21L0k2d/YqIFcD+pHt1fgScCVxAOmuqtQGvvp9nKek+nUuB64APAudmr7XHX0A68zkAmAv8I/BBzzJgw8LEiWkx61LNnuH8HHgr6Y/+90gzBGwF/Bk4njSLdEMRsQR45wB1xufW55Bu4BxQRFxDOrsxG14WL646ArNKNZtwZgI7ZF9/idSlNo10ZnMD8IlWBWZmZp2lqYQTEcuAZdnXL5CeifPJNsRlZmYdZig3fv4VsD3wWEQ82rqQzMysEzU7aABJH5P0MPAg8CvgIUmPSPp4y6MzM7OO0exMA58FLiLdT3MIMCl7vR74WrbdzMxsHc12qR0PfCkiPpMr/0k2t9nxpJkHzCzvuOOqjsCsUs0mnFH0/1TP+XiUmln//Hhp63LNXsO5Bjisn23vA348tHDMzKxTFXnE9JSa1euBcySNZ91HTO8BfKr1IZp1iEWL0qtnG7AuVaRL7ces+yjpHYAD69T9DulJnGaWN2lSevWM0daliiScndsehZmZdbwij5h+sIxAzMysszU904CkDUgDBPYFtgL+BPyM9KiAYg9jNzOzrtNUwpE0Fvgp8LekJ3w+DuxDuv/mLknvjognWh2kmZmNfM0Oiz4f2Bp4W0TsEhH7RMQuwNuy8vNbHaCZmXWGZhPOFOCUiLi9tjBbP400zY2Zmdk6mr2GsxHwbD/bngVeM7RwzDrYwoVVR2BWqWYTzq3AKZJujojn+golbQqckm03s3p8w6d1uWYTzonAPOBhST8lDRoYS7oJVEBPS6MzM7OO0dQ1nIi4E3gDMBvYFngXKeFcDLwhIu5qeYRmnWL69LSYdanCZziSNgT2Ah6IiFPbF5JZh7rkkvTqWaOtSzVzhvMScDPw122KxczMOljhhBMRLwO/A8a1LxwzM+tUzd6H82ngs5Le1I5gzMysczU7Su0M0owCd0p6lDRK7VVzrUfEXi2KzczMOkizCec32WJmZtaUQglH0ijStDa/Af4A3BgRj7czMLOOs+eeVUdgVqkij5jeBbgRGF9TvFLS+yPip+0KzKzj9D1i2qxLFRk0cA7wMvD3wCbAHsAdwKw2xmVmZh2mSMLZBzgjIn4eEc9HxD3ADOB1krZvb3hmZtYpiiSc7YH/y5XdT5o7bbuWR2TWqaS0mHWpovfhxMBVzMzM+ld0WPRcSWvrlN+UL4+IsUMPy8zMOk2RhHNm26MwM7OON2DCiQgnHDMzG7Jm51IzMzMbFCccMzMrRbNzqZnZYM3yvdLW3ZxwzMrix0tbl3OXmpmZlcIJx6wss2enxaxLlZ5wJO0u6SZJqyU9JuksSesPsM9bJV0q6b5sv2WSPidp41y9mZKiznJQe1tlVsCMGWkx61KlXsORtCXpUQdLgEOBXYHzSInvjAa7Ts3qng38Dvhb4PPZ6/tydZ8B8gnmnqHGbmZmQ1P2oIGPAqOAwyJiJXCDpM2BmZLOycrqOTsinqhZ75X0PDBL0k4R8WDNtrURcWt7wjczs8Equ0vtYGBuLrHMISWh/frbKZds+tyRvXruNjOzEaDshDMBWFpbEBEPAauzbc14O+nBcMty5VtIelLSi5LukHTYoKM1M7OWUUR5Tx6Q9CJwckRcmCt/BLg8Ik4veJztgF8D10XEtJryo0hnPHcCo0kPipsCvC8iru7nWNOB6QDjxo2bOGfOnGab1RarVq1i9OjRVYfRcp3YrqJt6pk8GYDeefMa1rv70WcKve+bdhhTqN5gdeL3CjqzXVW2afLkyYsiYlKRulUknJMi4qu58keByyLi0wWO8RrSwIO/AiZGxIoGdQX8AhgVEW8e6NiTJk2KhQsXDlStFL29vfT09FQdRst1YrsKt6nv4WsD/M6NP/XaQu+7/MuHFKo3WJ34vYLObFeVbZJUOOGU3aW2AtiiTvkY4OmBds4SyOXAHsCURskGIFI2vRr424GGXpu1XcSAycask5U9Sm0puWs1knYENiV3bacfF5CGU78rIorU7+PfcjOzipV9hnM9cKCkzWrKpgJrgPmNdpR0GvAJ4KiIWFDkzbIzovcCd0XES4ML2czMWqHsM5yLgROAqyWdDewCzATOrx0qLek+YH5EHJOtfxD4EnAZ8KikvWuOeX/fsGlJ84Hvk86WNgWOA/YG3tPeZpkVMHFiel20qNo4zCpSasKJiBWS9gcuAn5Eum5zASnp5OOqveby7ux1WrbU+ggpEQHcB/wLsD1pyPRi4JCIuL4V8ZsNyeLFVUdgVqnSH08QEUuAdw5QZ3xufRrrJpp6+x0zhNDMzKyNPFu0mZmVwgnHzMxK4YRjZmalcMIxM7NSlD5owKxrHXdc1RGYVcoJx6wsfry0dTl3qZmZWSmccMzKsmiRZxmwruYuNbOyTMpmcPeM0dalfIZjZmalcMIxM7NSOOGYmVkpnHDMzKwUTjhmZlYKJxwzMyuFh0WblWXhwqojMKuUE45ZWfoeMW3WpdylZmZmpXDCMSvL9OlpMetSTjhmZbnkkrSYdSknHDMzK4UTjpmZlcIJx8zMSuGEY2ZmpXDCMTOzUvjGT7Oy7Lln1RGYVcoJx6wsfry0dTl3qZmZWSmccMzMrBROOGZlkdJi1qWccMzMrBROOGZmVgqPUjNrYPyp1w5Y58Q3raWn/aGYjXg+wzEzs1I44ZiZWSmccMzMrBS+hmNWllmzqo7ArFJOOGZl8eOlrcu5S83MzErhhGNWltmz02LWpdylZlaWGTPSq7vWrEs54ZhZ3RtcT3zTWqbVlC//8iFlhmQdqPQuNUm7S7pJ0mpJj0k6S9L6BfYbI+lSSSskPSPpu5K2rlPvUEl3S3pe0hJJU9vTEjMza0apCUfSlsCNQACHAmcBJwJnFtj9SqAHOBaYBrwVuCZ3/H2B7wPzgIOBa4ErJL27JQ0wM7NBK7tL7aPAKOCwiFgJ3CBpc2CmpHOysnVI2gc4ENgvIm7Jyh4FfiXpgIi4Mav6GeCWiDghW58naQ/gs8BP29csK1OR+c3c/WM2/JSdcA4G5uYSyxzgbGA/4EcN9nu8L9kARMRtkh7Itt0oaSNgMnBCbt85wKWSxkTEMy1qh9XhiS6tKP/T0J3KTjgTgJtrCyLiIUmrs239JZwJwNI65fdk2wB2BTasU+8eUtfhbsDtgwu7OUV+mQZy2UGbDuq4RX5J/ctu3aC/n/NWDIao8nexyACPIqr4HVdElPdm0ovAyRFxYa78EeDyiDi9n/1uAJ6LiPfkyr8D7BIRb5f0d8AC4C0RcWdNndcDvwMOjIh1utUkTQf6xqm+EVg26Aa21jbAk1UH0Qad2K5ObBO4XSNJlW3aKSK2LVKximHR9TKc+ikfzH75dfVTngojZgPD7m48SQsjYlLVcbRaJ7arE9sEbtdIMlLaVPaw6BXAFnXKxwBPD2K/LWr2W1FTlq/DAMc3M7M2KzvhLOUv11wAkLQjsCn1r9H0u1+m9trO/cCLdepNAF4G7h1EvGZm1iJlJ5zrgQMlbVZTNhVYA8wfYL/tsvtsAJA0Cdgl20ZEvEC6/+aI3L5TgV+OwBFqw66br0U6sV2d2CZwu0aSEdGmsgcNbAksAX5DGgq9C3A+cGFEnFFT7z5gfkQcU1P2E9JIs5NIZyxnA3+MiL+vqbMv0AtcRLopdEpW/6B6AwbMzKw8pZ7hRMQKYH9gfdIQ6DOBC4DP5apukNWpdSTpLOg/gcuBRcB7c8dfABwOHADMBf4R+KCTjZlZ9Uo9wzEzs+7l5+EMI4Od2HS4k/R6SbMk3SXpJUm9Vcc0VJKOkPRDSY9KWiVpkaQPVB3XUEg6XNIvJD2VTX67TNIZkl5t2TrcAAADk0lEQVRTdWytImmH7PsVkkZXHc9QSJqWtSO/fLTq2PrjxxMMEzUTmy4hTWy6K3Ae6Z+CMxrsOhLsQbqedivQKX+8/h/wAPCvpBvupgDfk7RNRHy90sgGb2vSwJtzSbcR7AXMBLYD/rm6sFrqXGAVaWRsp3gnaeBVn/+rKpCBuEttmJB0GvAp0l27K7OyT5H9wvc3selIIGm9iHg5+/oqYJuI6Kk2qqHJEsuTubLvAftExM4VhdVykr4IHA9sGSP8j4Wkvwd+AHyJlHg2i4hV1UY1eJKmAZcygtrhLrXho7+JTUeRJjYdsfqSTSfJJ5vMHcDYsmNps6fogLPSrGv666RHonTatDYjhhPO8LHOBKUR8RDQN7GpDX9vJ3WJjmiS1pe0SXabwQnAf4z0sxvSo1E2Bv696kDa4H5Ja7NrbjOqDqYRX8MZPrak/vQ7K7JtNoxJ2p907e3oqmNpgeeAjbKvLwdOrjCWIcueDPx54KiIeFHSQLuMFL8nPQPsNtJtJB8ALpa0SURcUGlk/XDCGV4GO7GpVUjSeOB7wA8i4rJKg2mNtwObkAYNfJZ0I/XHK41oaL4I/Coirqs6kFaKiLmk+w37XJ89F+wMSV8djl3ZTjjDx2AnNrUKSdqKNL3SQ8BRFYfTEhGxOPtygaQngW9LOi8i7q8yrsHInvh7NPAOSX2/X5tkr2MkvRQRa+rvPSJdBbwfGM8wHK3mhDN8DHZiU6uIpE2AH5Muqh8SEc9VHFI79CWfnUkT5I40byA9mPGXdbY9AnwLOLbUiMoxLHtFnHCGj+uBkyVtFhHPZmVFJja1CkjaAPgf0h+0v4uIP1YcUrv8Xfb6QKVRDN4C0qPnax0EnEK6d2rYnQUM0ftIo/AerDqQepxwho+LSSOCrpbUN7HpTOD8kXwPDrxyJjAlW90B2FzS4dn6dRGxuprIhuQbpDZ9EthK0t412+7IZi8fUbIJcm8Efgu8REo2JwJXjsTuNHhl+HpvbVl2zQ3gZyPl/pV6JH2fNGDg16RBA1Oz5YTheP0GnHCGjYhYkY10uog0senTpIlNZ1YZV4uMJZ0N1Opb3xlYXmo0rfHu7PWrdbaN1DbdDkwj9f+vJf33fxrpnyEbfpaRrk/tSBpctAT4cET8V6VRNeCZBszMrBS+8dPMzErhhGNmZqVwwjEzs1I44ZiZWSmccMzMrBROOGZmVgonHDMzK4UTjpmZleL/A3AAGz/5q1y3AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEPCAYAAAB/WNKuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5QcZZ3/8feHixAIhGsCskgAxSyse5REBJeViaBA2LMogkFlPZFLorLi7g+Qi6gBLysgF5V1SdAFWZWwiyxeACOXTDAqQhJANCQIS7gqAgZCSEAC398fTw02lZ6Z6pmu6unuz+ucPj391FPV3+q5fKeeWykiMDMza7b1Wh2AmZl1JicYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSOMFYU0maKSn6eRxV8Bi7ZcfZIlc+LTvO6HKiLxbHMI95laTeAvU2kPQvku6StEbSCknXSdp3iO87Uj7TabmfiT9KmitpzwL79mT7/E0VsdrwOcFYGZ4B9qnz+EnB/XcDPgfk/7Bfmx1ndXPCHHIcpZK0PnAN8CXgh8AUYBrwEtAr6YNDOOxI+Uz7vDN73xnAtsA8Sa8dZJ/F2T73lxybNckGrQ7AOtLaiLi12QeNiCeAJ5p93BHoE8AhwMERUZuUfyBpDjBb0vyIeHS4b9TCz/T2iFgFIGkh8CDwIeDcfEVJAjaKiJVA03+urDy+grGWkHSapPskPS/pcUk/kbSdpB7gR1m1B7ImkeXZPq9qzpE0Pnt9pKRLJa2U9EhfU5ykT0l6TNITks6WtF7N+0+QNEfSw5JWS/pt1iS1Xra93ziy7a/L9v9Ttv9cSW/MneOOWbPWGknLJR1b8OP5JDAvl1z6fBrYGDim5n2WS/qKpM9I+oOkVZK+K2nMYOdSr4lM0jaSvi3pqezceiVNyp1b33v+a/aZr8g+j4av9iLiYVKSG58de6akJyXtK+l24HngiHpNZJLWz36W7pX0QhbLZblYD5W0MPtZ+4OkcyRt2Gic1jhfwVgpJK3zsxURa7NtHwZOB04BfgtsTWoy2ZTUDHIS8BXgMOD3wAuDvN3ZwHeB9wFHA9+W9BZgp+z1ROALwB3AnGyfHYBl2X7PAm8GzgRGAf82UByStgIWAE8BHyU1L50K3Chpt4hYk/3X/QNgG1IyeD47/lbA7wb43HYk/aG9oN72iLhf0t3AO3KbPgDcBxwHbA+cA3wTOGKgc+nHNcDrs32eBE4mNWG9JSLuq6n3fuDXwHTgr4DzSc16Hx/g2OuQtBnpc/lDTfEmwLez87gXeCw7r7xZwIezevOz4xxec+z3A1dk9U4HdiV9f9fLzs/KFBF++NG0BzATiH4e47M6FwHfH+AY/1Bbv6Z8WlY+Ons9Pnt9aU2dzYEXSX/E168pvw24sp/3E+mfrdOB/ysQx+dJyWWrmrItSX1Px2evp2T7vq2mzk7AWqB3gHPfO9vv0AHqXAPcU/N6OfCnvs8lK/sQ8DLw1w1+pgdlr/erqbMp6QpjVu497wc2qCm7EPjDID8ffe83JvvMdwSuzD6XN+d+hg7N7duTlf9N9npC9vqEAb6vD9b+fGTlRwNrgK1b/fvS6Q9fwVgZngEOqFP+WPZ8J3CMpDNJncyLIuKlYbzfTX1fRMRKSU8A83PHvA94Xd8LSRsDp5H+EL8O2LBm2waRXW314wDgBmBlzZXas8AioK8paS/g8Yj4VU1sD0paNITzK+KGyPo0MlcD3wHeCtzTwHH2Ap6IiPl9BRHxnKQfA/kRbPNyn9MSYKyk10TEnwd5n6drvn4SODoi7qwpC+D6QY4xOXu+rJ/tu5G+t/+du6K+mdTM+Dekqx4riROMlWFtRCwcYPt/ApuRmlY+Czwl6T+AmUNMNE/nXv+5n7KNa16fDRxLarZanNU/FDgjq7eK/m1DutKYWmdbX7LbDvhjne1/JJ17f/o67ncaoM5ONfVqj/uKSM10q6jfrDSQ7YHH65Q/Tmp+qlXvMxbwmuzrgbyD1LT4JPBwRLyc276iQJLaGnguUud/Pdtkz9f1s33HQY5vw+QEY5XL/phcAFyQ9Tl8CPgi6Y/mxRWFcQTw9Yg4p69A0iEF9/0Tafjw5+tsezZ7/gMwts72saTmmboi4uGsA/4fga/lt0vamfSfd/69x+bqjQJGk/pbGvH7/LEy40jn3Sx35K648orcR+QpYFNJm/eTZPrinU7qf8t7oMB72DB4FJm1VEQ8HBFfJjVh7Z4V9/3nunH9vZpiFDUd3UpzT47M1ekvjpuAPYDfRsTC3GNZVud2YJykt9W8x+uAQScUAl8F9pf07jrbvpDF/a1c+bv06smSh5H+SPddSRb9TH9FauZ6ZRCBpE1Iw6YXFIi9Sjdnzx/uZ/sy0j8t4+t8nxZGxFPVhNm9fAVjZdhA0t51yh+OiEclzSL9d3krqb9mMvAG0qgySH8YAGYozftYHRF3NznGG4DjJd2XxXI8sFGuTn9xnA8cBdws6eukP2LjgP2ABRFxBalZ5i7gfySdQhpFdhb1m83yvk7q5/lfSV8BeknNaseQOuv/KdadA7MGuFbSuaRmrnOB/42IJYOcy6tExFxJPweulHQq6SrhJFJCXmeOSitFxDJJs4HzJI0FbiFNJD08Io6MiJclnQj8l6TNSX06fwZ2Ad6T1at6gml3afUoAz8668HAo8jOyOpMA35O+sO+mjTU9ZjccU4kjQBaCyyv2a/eKLJ/yO27HPhKruwyYGHN63HA/wIrSf0L55CG+L5y/P7iyMpfC1ya7ftC9p7fAfaoqfM60uoFa7JjzACuYoBRZDX7bgD8a/bZrAFWkP5A7lun7nLgvOyzfxx4jjQ0d4tGP9OsbFvg8uw915A6wt9a4DNe51h1Yi1SZybwZJ3yHmpGkWVl65ON/iMlj0dYd9TYwcDPss9lJWmQyReoGQHnRzkPZd+Aykh6PWlc/d6ktuSfRURPgf3GkIZBvofUtPdj0vDEp3L1DiX98LyB9EN3ZkRc2cxzMBtJsj6bqyLC8zpsRGlFH8wepDkC92aPoq4k/QdzLOm/oLeS5gO8QmkhwO8D80j/tVwLXNFPW7aZmZWoFVcw60U2JFHSVcA2g13BSNoH+AVp8tctWdlepA7Jd0XEjVnZXGDDiHhnzb7XAZtHxJBWoTUb6XwFYyNV5Vcwse549yIOJk1au6XmOLeRhhkeDCBpI1Jn8X/n9p0D7NO3LpNZp4mI8U4uNhK1yzDlCcDSOuX3ZNsgrTG0YZ1695DOc7fSojMzs3W0yzDlLVl31jCkUS671NShTr0Vue2vImk6aSIWo0aNmrjjjiNjcu/LL7/Meuu1S/4vrhPPq+g5bXZv6nJ8drf2+F+nE79X0Jnn1cpzuvfee5+MiG3rbWuXBAP1Z/aqTnn+tQbYn4iYDcwGmDRpUixcONAKJ9Xp7e2lp6en1WE0XSeeV+FzUvajuGzZwPVGiE78XkFnnlcrz0nSg/1ta5c0voL6dxXcgr9csayoKcvXgfpXQGZmVpJ2STBL+UtfS63avpn7Scu05+tNIC1b3siQaDMzG6Z2STDXA9tl81wAyO6wt0u2jYh4gTT/5YjcvlOBX0bEMxXFamZmtKAPJls4b0r2cgdgc0l9d6C7LiJWZ+tDzY+IYwAi4pfZHJfLJZ1EuiI5m7Tu0401h/880CvpQtIkzCnZ46DST8zMzF6lFZ38Y4H/yZX1vd6ZtMbRBqQ1hmodSVri/T+pWSqmtkJELMiS1ReAj5HmyXwwIn7axPjNhqbiSc1mrVZ5gomI5fxlZFd/dcbXKXsa+Ej2GGjfa8gtIWNmZtVrlz4YMzNrM04wZlWZODE9zLpEO020NGtvixe3OgKzSvkKxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFB5FZlaV445rdQRmlXKCMavK7NmtjsCsUm4iMzOzUjjBmFVl0aL0MOsSbiIzq8qkSenZqypbl/AVjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKZxgzMysFB6mbFaVhQtbHYFZpZxgzKri2yVbl3ETmZmZlcIJxqwq06enh1mXcIIxq8oll6SHWZdwgjEzs1K4k99shBl/6rWF6i3/8iElR2I2PL6CMTOzUjjBmJlZKZxgzMysFO6DMavKnnu2OgKzSjnBmFXFt0u2LuMmMjMzK4UTjJmZlcIJxqwqUnqYdQknGDMzK4UTjJmZlcIJxszMSuEEY2ZmpXCCMTOzUjjBmJlZKTyT36wqs2a1OgKzSjnBmFXFt0u2LlN5E5mk3SXdJGm1pMcknSVp/UH2mSkp+nmcVlPvsn7qTCj/zMzMrFalVzCStgRuBJYAhwK7AueREt0ZA+z6TeAnubL3AKcA1+fKlwIfyZUtH1rEZk00e3Z69pWMdYmqm8g+CowCDouIlcANkjYHZko6JytbR0Q8AjxSWybpM8DSiLgzV/25iLi1hNjNhmfGjPTsBGNdouomsoOBublEMoeUdPYrehBJWwHvAq5obnhmZtYsVSeYCaQmrFdExEPA6mxbUYcDG5KSU97uklZKekHSAkmFE5eZmTWPIqK6N5NeBE6OiAtz5Y8Al0fE6QWPczMwJiIm5so/CfyZ1MezLXAiMBHYNyJu6+dY04HpAOPGjZs4Z069nFW9VatWMXr06FaH0XSdeF5Fz6ln8mQAeufNG7De3Y8+U+h937TDmEL1hqoTv1fQmefVynOaPHnyooiYVG9bKxLMSRHx1Vz5o8BlEfHpAsfYntQfc0pEfGWQuqNIyeauiHjPYMeeNGlSLFy4cLBqlejt7aWnp6fVYTRdJ55X4XPqW6p/kN+58adeW+h9l3/5kEL1hqoTv1fQmefVynOS1G+CqbqJbAWwRZ3yMcDTBY/xfkDAlYNVjIg1wHWAb4ZuZlaxqhPMUnJ9LZJ2BDYl1zczgCOBBRHxcAPvW91lmpmZAdUnmOuBAyVtVlM2FVgDzB9sZ0njgb0pOHosayI7GFjUaKBmTRcxaPOYWSepOsFcDLwAXC3pgKyDfSZwfu3QZUn3SfpWnf2PBNYCV+U3SBoj6WeSZkjaX9JUYB6wA/ClEs7FzMwGUOlEy4hYIWl/4CLgR6R+lwtISSYfV73lY44EboqIJ+psewF4grQiwFjgeeCXwH4RMTJ67s3Mukjli11GxBLgnYPUGd9P+ZsH2Od54LBhBWdWponZqPpFbrG17uDVlM2qsnhxqyMwq5RvOGZmZqVwgjEzs1I4wZiZWSmcYMzMrBROMGZmVgqPIjOrynHHtToCs0o5wZhVpe+WyWZdwk1kZmZWioYSjKR6y7eYWRGLFnkWv3WVRpvIHpV0OXBpRNxTRkBmHWtSdk8mr6hsXaLRJrJZwOHAbyT9StJ0SZuXEJeZmbW5hhJMRHwuInYB3gUsA84Hfi/pu5IOKCNAMzNrT0Pq5I+ImyPiw8B2wCeANwJzJS2XNFPSa5sZpJmZtZ/hjiKbBLyDdBvkFcDPgGOB+yQdNcxjm5lZG2s4wUjaSdLnJN0P3ARsDxwNvDYi/gnYidRXc25TIzUzs7bS0CgySTeTrlgeAS4jjSZ7sLZORLwk6XvAJ5sVpJmZtZ9Ghyk/CUwBbogYcKzlncDOQ47KrBMt9J27rbs0mmAuAhbXSy6SRgN7RsQtEfEi8OA6e5t1s75bJpt1iUb7YOYBu/ez7Y3ZdjMzs4YTjAbYNhpYPYxYzDrb9OnpYdYlBm0ik/QOoKem6FhJB+WqbQwcAtzdvNDMOswll6Rnr6psXaJIH8zbSJMpAQI4Alibq/NnYClwcvNCMzOzdjZogomIc8nmtEh6AHhvRNxZdmBmZtbeGhpFFhEeemxmZoUU6YOZAiyIiJXZ1wOKiOuaEpmZmbW1IlcwPwb2Bm7Lvg76H00WgG9KZmZmhRLMzsDva742s6HYc89WR2BWqSKd/A/W+9rMGuTbJVuXKdIHs0kjB4wIT7Y0M7NCTWSrSH0rRbkPxszMCiWYo2kswZhZPcrGxgy4ELlZ5yjSB3NZBXGYmVmHGe4tk83MzOoq0sl/GzAtIpZIup1BmssiYq9mBWdmZu2rSB/Mb4E1NV+7AdnMzAZVpA/mIzVfTys1GjMz6xhD7oNRsq2kgW5CZmZmXaqh1ZThlcUvzwAmZvuvlbQI+GJEXNvk+Mw6x6xZrY7ArFINJRhJM4BvADcBnwT+CIwFDgN+KOnjEeHfIrN6fLtk6zKNXsGcDsyOiI/lyi+WdDHwacAJxszMGu6D2Rq4up9t3we2GuwAknaXdJOk1ZIek3SWpAGXl5E0XlLUecypU/dQSXdLel7SEklTC52ZWdlmz04Psy7R6BXMPGA/4IY62/YDbhloZ0lbAjcCS4BDgV2B80iJ7owC738S8POa10/mjr8vKdF9AzgBmAJcIWlFRPy0wPHNyjNjRnp2U5l1iSITLXevefk14JuStgau4S99MO8FDgaOHeRwHwVGAYdFxErgBkmbAzMlnZOVDWRZRNw6wPbPALdExAnZ63mS9gA+CzjBmJlVqMgVzG949eRKATOyR/7ulj9h4NWUDwbm5hLJHOBs0hXQjwrEU5ekjYDJpCuXWnOASyWNiYhnhnp8MzNrTJEEM7mJ7zcBuLm2ICIekrQ62zZYgrlU0lakK6crgE9HRN8qA7sCGwJLc/vcQ2qC2w24fXjhm5lZUUVm8s9v4vttCTxdp3xFtq0/LwD/TmrmWgn0AKeQksqhNcemzvFX5La/iqTpwHSAcePG0dvbO1D8lVm1atWIiaWZOvG8ip5TT/Y8WN0T37S20PuW/Tl24vcKOvO8Ruo5NTzRso+k9YCN8+UF7mhZby0z9VPed8zfA/9cU9Qr6XHgG5LeHBF3DnB89VPed+zZwGyASZMmRU9Pz8DRV6S3t5eREkszdeJ5NXpOg9Wddmqx+crLP1T8PYeiE79X0JnnNVLPqaFhytnyMKdIug94EXi2zmMgK4At6pSPof6VzUCuyp73rDk2dY7f97rR45uZ2TA0Og/mBOBU4FukK4MvAmcB9wLLyZqaBrCU1NfyCkk7Apuybt/JYCL3fD8p6U3I1ZsAvJzFaNY6Eb6bpXWVRhPMccDngHOy19dExJnAHqQE8YZB9r8eOFDSZjVlU0m3A2i0r+fw7HkRQES8QJqnc0Su3lTglx5BZmZWrUb7YHYG7oyIlyS9SNb8FBEvS/oG8E3SFU5/LiZdBV0t6WxgF2AmcH7t0OWsCW5+RByTvZ4JbEaaZLkSeAdwMnB1RPy65vifJ/XPXEiapzMlexzU4HmamdkwNXoF8xQwOvv6IeAtNdu2JE2i7FdErAD2J82V+RFwJnAB6aqo1ga8ej7NUtI8mUuB64APAudmz7XHX0C6sjkAmAv8I/BBz+K3EWHixPQw6xKNXsH8HHgr6Y/890gz8LcC/gwcT1pleUARsQR45yB1xudezyFNmBxURFxDunoxG1kWL251BGaVajTBzAR2yL7+EqmJbBrpyuUG4BPNCszMzNpbQwkmIpYBy7KvXyDdE+aTJcRlZmZtbjgTLf8K2B54LCIebV5IZmbWCRrt5EfSxyQ9DDwI/Ap4SNIjkj7e9OjMzKxtNTqT/7PARaT5LIcAk7Ln64GvZdvNzMwabiI7HvhSRHwmV/6TbG2w40kz+80s77jjWh2BWaUaTTCj6P+ulfPxKDKz/vl2ydZlGu2DuQY4rJ9t7wN+PLxwzMysUxS5ZfKUmpfXA+dIGs+6t0zeA/hU80M06xCLFqVnz+a3LlGkiezHrHtr5B2AA+vU/Q7pTpNmljdpUnr2isrWJYokmJ1Lj8LMzDpOkVsmP1hFIGZm1lkanskvaQNSh/6+wFbAn4CfkZbOL3YzcTMz63gNJRhJY4GfAn9LuoPl48A+pPkvd0l6d0Q80ewgzcys/TQ6TPl8YGvgbRGxS0TsExG7AG/Lys9vdoBmZtaeGk0wU4BTIuL22sLs9WmkZWPMzMwa7oPZCHi2n23PAq8ZXjhmHWzhwlZHYFapRhPMrcApkm6OiOf6CiVtCpySbTezejzB0rpMownmRGAe8LCkn5I6+ceSJl0K6GlqdGZm1rYa6oOJiDuBNwCzgW2Bd5ESzMXAGyLirqZHaNYppk9PD7MuUfgKRtKGwF7AAxFxankhmXWoSy5Jz15V2bpEI1cwLwE3A39dUixmZtZBCieYiHgZ+B0wrrxwzMysUzQ6D+bTwGclvamMYMzMrHM0OorsDNKM/TslPUoaRfaqtccjYq8mxWZmZm2s0QTzm+xhZmY2oEIJRtIo0jIxvwH+ANwYEY+XGZhZx9lzz1ZHYFapIrdM3gW4ERhfU7xS0vsj4qdlBWbWcfpumWzWJYp08p8DvAz8PbAJsAdwBzCrxLjMzKzNFUkw+wBnRMTPI+L5iLgHmAG8TtL25YZnZmbtqkiC2R74v1zZ/aS1x7ZrekRmnUpKD7MuUXQeTAxexczM7C+KDlOeK2ltnfKb8uURMXb4YZmZWbsrkmDOLD0KMzPrOIMmmIhwgjEzs4Y1uhaZmZlZIU4wZmZWikbXIjOzoZrlucnWXZxgzKri2yVbl3ETmZmZlcIJxqwqs2enh1mXqDzBSNpd0k2SVkt6TNJZktYfZJ+3SrpU0n3ZfsskfU7Sxrl6MyVFncdB5Z6VWQEzZqSHWZeotA9G0pakpf+XAIcCuwLnkRLdGQPsOjWrezbwO+Bvgc9nz+/L1X0GyCeUe4Ybu5mZNabqTv6PAqOAwyJiJXCDpM2BmZLOycrqOTsinqh53SvpeWCWpJ0i4sGabWsj4tZywjczs6KqbiI7GJibSyRzSElnv/52yiWXPndkz177zMxsBKo6wUwAltYWRMRDwOpsWyPeTroR2rJc+RaSnpT0oqQ7JB025GjNzGzIFFHdSvySXgROjogLc+WPAJdHxOkFj7Md8GvguoiYVlN+FOmK5k5gNOnGaFOA90XE1f0cazowHWDcuHET58yZ0+hplWLVqlWMHj261WE0XSeeV9Fz6pk8GYDeefMGrHf3o88Uet837TCmUL2h6sTvFXTmebXynCZPnrwoIibV29aKBHNSRHw1V/4ocFlEfLrAMV5DGijwV8DEiFgxQF0BvwBGRcSbBzv2pEmTYuHChYNVq0Rvby89PT2tDqPpOvG8Cp9T383GBvmdG3/qtYXed/mXDylUb6g68XsFnXlerTwnSf0mmKqbyFYAW9QpHwM8PdjOWcK4HNgDmDJQcgGIlD2vBv52sKHQZqWLGDS5mHWSqkeRLSXX1yJpR2BTcn0z/biANLz5XRFRpH4f/1abmVWs6iuY64EDJW1WUzYVWAPMH2hHSacBnwCOiogFRd4su+J5L3BXRLw0tJDNzGwoqr6CuRg4Abha0tnALsBM4PzaocuS7gPmR8Qx2esPAl8CLgMelbR3zTHv7xvGLGk+8H3S1dCmwHHA3sB7yj0tswImTkzPixa1Ng6zilSaYCJihaT9gYuAH5H6XS4gJZl8XLV9Ju/Onqdlj1ofISUegPuAfwG2Jw1hXgwcEhHXNyN+s2FZvLjVEZhVqvLl+iNiCfDOQeqMz72exrqJpd5+xwwjNDMzayKvpmxmZqVwgjEzs1I4wZiZWSmcYMzMrBSVd/Kbda3jjmt1BGaVcoIxq4pvl2xdxk1kZmZWCicYs6osWuRZ/NZV3ERmVpVJ2YrmXlHZuoSvYMzMrBROMGZmVgonGDMzK4UTjJmZlcIJxszMSuEEY2ZmpfAwZbOqLFzY6gjMKuUEY1aVvlsmm3UJN5GZmVkpnGDMqjJ9enqYdQknGLOqXHJJeph1CScYMzMrhROMmZmVwgnGzMxK4QRjZmalcIIxM7NSeKKlWVX23LPVEZhVygnGrCq+XbJ1GTeRmZlZKZxgzMysFE4wZlWR0sOsSzjBmJlZKZxgzMysFB5FZjaA8adeO2idE9+0lp7yQzFrO76CMTOzUjjBmJlZKZxgzMysFO6DMavKrFmtjsCsUk4wZlXx7ZKty7iJzMzMSuEEY1aV2bPTw6xLuInMrCozZqRnN5VZl3CCMbO6E0pPfNNaptWUL//yIVWGZB2g8iYySbtLuknSakmPSTpL0voF9hsj6VJJKyQ9I+m7krauU+9QSXdLel7SEklTyzkTMzMbSKUJRtKWwI1AAIcCZwEnAmcW2P1KoAc4FpgGvBW4Jnf8fYHvA/OAg4FrgSskvbspJ2BmZoVV3UT2UWAUcFhErARukLQ5MFPSOVnZOiTtAxwI7BcRt2RljwK/knRARNyYVf0McEtEnJC9nidpD+CzwE/LOy2rUpH1wdycY9Z6VSeYg4G5uUQyBzgb2A/40QD7Pd6XXAAi4jZJD2TbbpS0ETAZOCG37xzgUkljIuKZJp2H1eGFIa0o/5PQHapOMBOAm2sLIuIhSauzbf0lmAnA0jrl92TbAHYFNqxT7x5SU+BuwO1DC7sxRX55BnPZQZsO6bhFfin9y23doL+f82YMXmjl72KRARlFVPE7rogo/U1eeTPpReDkiLgwV/4IcHlEnN7PfjcAz0XEe3Ll3wF2iYi3S/o7YAHwloi4s6bO64HfAQdGxDrNZJKmA33jRt8ILBvyCTbXNsCTrQ6iBJ14Xp14TuDzaietPKedImLbehtaMUy5XkZTP+VD2S//Wv2Up8KI2cCIm/0maWFETGp1HM3WiefViecEPq92MlLPqephyiuALeqUjwGeHsJ+W9Tst6KmLF+HQY5vZmZNVnWCWcpf+kwAkLQjsCn1+1j63S9T2zdzP/BinXoTgJeBe4cQr5mZDVHVCeZ64EBJm9WUTQXWAPMH2W+7bJ4LAJImAbtk24iIF0jzX47I7TsV+GUbjiAbcc12TdKJ59WJ5wQ+r3YyIs+p6k7+LYElwG9IQ5N3Ac4HLoyIM2rq3QfMj4hjasp+QhoJdhLpiuRs4I8R8fc1dfYFeoGLSJMwp2T1D6rXwW9mZuWp9AomIlYA+wPrk4YknwlcAHwuV3WDrE6tI0lXOf8JXA4sAt6bO/4C4HDgAGAu8I/AB51czMyqV+kVjJmZdQ/fD2YEGepCoCOdpNdLmiXpLkkvSeptdUzDJekIST+U9KikVZIWSfpAq+MaDkmHS/qFpKeyxWKXSTpD0mtaHVuzSNoh+90KJtwAAAOJSURBVH6FpNGtjmc4JE3LziP/+GirY+vj5fpHiJqFQJeQFgLdFTiP9E/AGQPs2g72IPWH3Qp0yh+r/wc8APwraYLbFOB7kraJiK+3NLKh25o0UOZc0rD+vYCZwHbAP7curKY6F1hFGrnaKd5JGijV5/9aFUiem8hGCEmnAZ8izYpdmZV9iuwXvL+FQNuBpPUi4uXs66uAbSKip7VRDU+WSJ7MlX0P2Ccidm5RWE0n6YvA8cCW0eZ/LCT9PfAD4EukRLNZRKxqbVRDJ2kacCkj+DzcRDZy9LcQ6CjSQqBtqy+5dJJ8csncAYytOpaSPUUHXHVmTc1fJ90ipNOWiRmxnGBGjnUW9IyIh4C+hUBt5Hs7qYmzrUlaX9Im2bD/E4D/aPerF9KtQjYG/r3VgZTgfklrsz6zGa0Oppb7YEaOLam/nM2KbJuNYJL2J/WdHd3qWJrgOWCj7OvLgZNbGMuwZXe+/TxwVES8KGmwXdrF70n3wLqNNK3jA8DFkjaJiAtaGlnGCWZkGepCoNZCksYD3wN+EBGXtTSY5ng7sAmpk/+zpInLH29pRMPzReBXEXFdqwNppoiYS5rv1+f67L5YZ0j66khomnaCGTmGuhCotZCkrUjLFT0EHNXicJoiIhZnXy6Q9CTwbUnnRcT9rYxrKLI72h4NvENS3+/XJtnzGEkvRcSa+nu3pauA9wPjGQGjyZxgRo6hLgRqLSJpE+DHpE7wQyLiuRaHVIa+ZLMzaUHZdvMG0o0If1ln2yPAt4BjK42oGiOi1cMJZuS4HjhZ0mYR8WxWVmQhUGsBSRsA/0P6A/Z3EfHHFodUlr/Lnh9oaRRDt4B0K/VaBwGnkOYutfy//CZ7H2mU3IOtDgScYEaSi0kjdq6W1LcQ6Ezg/HaeAwOv/Kc/JXu5A7C5pMOz19dFxOrWRDYs3yCd0yeBrSTtXbPtjmx177aSLSh7I/Bb4CVScjkRuLIdm8fgleHkvbVlWZ8ZwM9G6vyRIiR9n9TB/2tSJ//U7HHCSOh/ASeYESMiVmQjkS4iLQT6NGkh0JmtjKtJxpL+26/V93pnYHml0TTHu7Pnr9bZ1q7ndDswjdR+v5b03/1ppH9+bORZRupf2pE0GGgJ8OGI+K+WRlXDM/nNzKwUnmhpZmalcIIxM7NSOMGYmVkpnGDMzKwUTjBmZlYKJxgzMyuFE4yZmZXCCcbMzErx/wEuNANXiaaeZAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -329,9 +329,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -343,7 +343,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4, diff --git a/qiskit/finance/simulation/option_pricing.ipynb b/qiskit/finance/simulation/option_pricing.ipynb index f02bd60f4..de1324e8d 100644 --- a/qiskit/finance/simulation/option_pricing.ipynb +++ b/qiskit/finance/simulation/option_pricing.ipynb @@ -33,10 +33,11 @@ "- path-dependency (sum/average, barrier, etc.).\n", "\n", "The basic ideas on using QAE for option pricing and risk analysis are provided here:
\n", - "Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger (2019).\n", + "- Quantum Risk Analysis. Stefan Woerner, Daniel J. Egger (2019)\n", + "- Option Pricing using Quantum Computers. Stamatopoulos et al. (2019)\n", "\n", "A Qiskit Aqua tutorial on QAE can be found here:
\n", - "Qiskit Tutorial on QAE\n", + "Qiskit Tutorial on QAE\n", "\n", "We provide tutorials for the following types simple options:\n", "\n", @@ -50,10 +51,12 @@ "- Basket Option (multivariate, payoff with 2 segments)\n", "- Asian Barrier Spread (multivariate, path-dependent, payoff with 3 segments)\n", "\n", - "More examples on option pricing with a quantum computer can be found in the [Qiskit Finance Community](https://github.com/Qiskit/qiskit-tutorials-community/tree/master/finance) section of the Qiskit Tutorials.\n", + "More examples on option pricing with a quantum computer can be found in the [Qiskit Finance Community](https://github.com/Qiskit/qiskit-tutorials-community/tree/master/finance) section of the Qiskit Community Tutorials.\n", "\n", "All examples illustrate how to use the genereric Qiskit Finance framework to construct QAE-operators (uncertainty problems). The same framework can be easily adjusted to estimate risk as well, for instance, the Value at Risk (VaR) or the Conditional Value at Risk (CVaR, also known as Expected Shortfall). How to use Qiskit Finance for risk analysis is illustrated in the following tutorial:\n", - "Credit Risk Analysis.\n", + "Credit Risk Analysis\n", + "based on the paper\n", + "Credit Risk Analysis using Quantum Computers. Egger et al. (2019).\n", "\n", "An example of how quantum Generative Adversarial Networks (qGANs) can be used to learn and efficiently load generic random distributions for option pricing can be found here:\n", "QGANs to learn and load random distributions for option pricing" @@ -69,9 +72,9 @@ ], "metadata": { "kernelspec": { - "display_name": "qiskit_master", + "display_name": "Python 3", "language": "python", - "name": "qiskit_master" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -83,7 +86,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.7.1" } }, "nbformat": 4,